Лабораторная работа №7

Эффективность рекламы

Габриэль Тьерри

25 марта 2023

Содержание

Информация	5
Докладчик	5
Цель работы	6
Задание	7
Материалы и методы	7
Теоретическое введение	8
Выполнение лабораторной работы	10
Вывол	20

Список таблиц

Список иллюстраций

1	sol №1(Julia)	11
2	Граф №1(Julia)	12
3	Граф \mathbb{N}_1 (Openmodelica)	13
4	sol $\mathbb{N}^2(Julia)$	14
5	Граф №2(Julia)	15
6	Граф \mathbb{N}^2 (Openmodelica)	16
7	sol $M3(Julia)$	17
8	Граф №3(Julia)	18
9	Граф №3(Openmodelica)	19

Информация

Докладчик

- Габриэль Тьерри
- студент НКНбд-01-20
- Факультет физико-математических и естественных наук
- Российский университет дружбы народов
- $\bullet \ \ https://github.com/tgabriel22/mathmod/tree/master/Labs$

Цель работы

Построить графики распространения рекламы, определить в какой момент времени скорость распространения рекламы будет иметь максимальное значение.

Задание

Постройте график распространения рекламы, математическая модель которой описывается следующим уравнением:

$$\frac{\partial n}{\partial t} = (0.895 + 0.0000433n(t))(N - n(t))$$

$$\frac{\partial n}{\partial t} = (0.0000145 + 0.295n(t))(N - n(t))$$

$$\frac{\partial n}{\partial t} = (0.196sin(t) + 0.699cos(t)n(t))(N - n(t))$$

При этом объем аудитории N=1170, в начальный момент о товаре знает 7 человек. Для случая 2 определите в какой момент времени скорость распространения рекламы будет иметь максимальное значение.

Материалы и методы

- Модель эффективности рекламы
- Язык программирования Julia
- Язык программирования Openmodelica

Теоретическое введение

Организуется рекламная кампания нового товара или услуги. Необходимо, чтобы прибыль будущих продаж с избытком покрывала издержки на рекламу. Вначале расходы могут превышать прибыль, поскольку лишь малая часть потенциальных покупателей будет информирована о новинке. Затем, при увеличении числа продаж, возрастает и прибыль, и, наконец, наступит момент, когда рынок насытиться, и рекламировать товар станет бесполезным.

Предположим, что торговыми учреждениями реализуется некоторая продукция, о которой в момент времени t из числа потенциальных покупателей N знает лишь п покупателей. Для ускорения сбыта продукции запускается реклама по радио, телевидению и других средств массовой информации. После запуска рекламной кампании информация о продукции начнет распространяться среди потенциальных покупателей путем общения друг с другом. Таким образом, после запуска рекламных объявлений скорость изменения числа знающих о продукции людей пропорциональна как числу знающих о товаре покупателей, так и числу покупателей о нем незнающих.

Модель рекламной кампании описывается следующими величинами. Считаем, что dn/dt - скорость изменения со временем числа потребителей, узнавших о товаре и готовых его купить, t - время, прошедшее с начала рекламной кампании, n(t) - число уже информированных клиентов. Эта величина пропорциональна числу покупателей, еще не знающих о нем, это описывается следующим образом: $\alpha_1(t)(N-n(t))$ где N - общее число потенциальных платежеспособных покупателей, $\alpha_1(t)>0$ - характеризует интенсивность рекламной кампании (зависит от затрат на рекламу в данный момент времени). Помимо этого, узнавшие о товаре потребители также

распространяют полученную информацию среди потенциальных покупателей, не знающих о нем (в этом случае работает т.н. сарафанное радио). Этот вклад в рекламу описывается величиной $\alpha_2(t)n(t)(N-n(t))$, эта величина увеличивается с увеличением потребителей узнавших о товаре. Математическая модель распространения рекламы описывается уравнением:

$$\frac{\partial n}{\partial t} = (\alpha_1(t) + \alpha_2(t)n(t))(N - n(t))$$

При $\alpha_1(t) >> \alpha_2(t)$ получается модель типа модели Мальтуса, решение которой имеет вид:

График решения урав-

нения модели Мальтуса

В обратном случае, при $\alpha_1(t) << \alpha_2(t)$ получаем уравнение логистической кри-

вой: График логистиче-

ской кривой

t0 = 0.0

tmax = 30.0

Выполнение лабораторной работы

a1 = 0.895 #значение коэффициента a1

a2 = 0.0000433 #значение коэффициента a2

1.1 Решение для случая 1 на Julia:

```
begin import Pkg Pkg.add("LaTeXStrings") \\ Pkg.activate() \\ using DifferentialEquations \\ using LaTeXStrings \\ import Plots \\ end \\ begin \\ N = 1170.0 \ \#максимальное количество людей, которых может заинтересовать товар n0 = 7.0 \ \#количество людей, знающих о товаре в начальный момент времени
```

end

```
begin U0 = [n0] T = [t0, tmax] \ \#временной промежуток (длительность рекламной кампании) prob = ODEProblem(F!, U0, T) end \# функция, описывающее распространение рекламы function <math>F!(du, u, p, t) du[1] = (0.895 + 0.0000433*u[1])*(N-u[1]) end
```


Рис. 1: sol №1(Julia)

sol = solve(prob, saveat = 0.01)

Рис. 2: Граф №1(Julia)

Plots.plot(sol) #построение графика решения

1.2 Решение для случая 1 на Openmodelica:

model Lab7Part1

```
сопstant Real a1 = 0.895; #значение коэффициента a1 constant Real a2 = 0.0000433; #значение коэффициента a2 constant Real N = 1170; #объем аудитории
```

Real n; #количество человек, которые знают о товаре

initial equation

 $n=7;\;\#$ количество человек, которые знают о товаре в начальный момент времени

equation

$$der(n) = (a1+a2*n)*(N-n);$$

end Lab7Part1;

Рис. 3: Граф №1(Openmodelica)

1.3 Решение для случая 2 на Julia:

```
begin
  import Pkg
  Pkg.add("LaTeXStrings")
  Pkg.activate()
  using\ Differential Equations
  using LaTeXStrings
  import Plots
end
begin
  N=1170.0~\#максимальное количество людей, которых может заинтересовать товар
  {
m n0}=7.0~\#количество людей, знающих о товаре в начальный момент времени
  a1 = 0.0000145 #значение коэффициента a1
  a2 = 0.295 \ \#значение коэффициента a2
  t0 = 0.0
  tmax = 30.0
end
```

```
begin U0 = [n0] T = [t0, tmax] \ \#временной промежуток (длительность рекламной кампании) prob = ODEProblem(F!, U0, T) end \# функция, описывающее распространение рекламы function <math>F!(du, u, p, t) du[1] = (0.0000145 + 0.295*u[1])*(N-u[1]) end
```

3, 11:31 AM		Groundbreaking theory.jl — P	
sol =		timestamp	value1
	1	0.0	7.0
	2	0.01	186.694
	3	0.02	1002.69
	4	0.03	1163.85
	5	0.04	1169.81
	6	0.05	1169.99
	7	0.06	1169.99
	8	0.07	1169.98
	9	0.08	1170.03
	10	0.09	1170.39
	_ :	more	

Рис. 4: sol №2(Julia)

sol = solve(prob, saveat = 0.01)

Рис. 5: Граф №2(Julia)

Plots.plot(sol) #построение графика решения

Максимальное значение n достигается при time=0.006.

1.4 Решение для случая 2 на Openmodelica:

model Lab1Part2

```
сопstant Real a1 = 0.0000145; #значение коэффициента a1 constant Real a2 = 0.295; #значение коэффициента a2 constant Real N = 1170; #объем аудитории
```

Real n; #количество человек, которые знают о товаре

initial equation

n=7; #количество человек, которые знают о товаре в начальный момент времени

equation

$$der(n) = (a1+a2*n)*(N-n);$$
 #уравнение

end Lab1Part2;

Рис. 6: Граф №2(Openmodelica)

Максимальное значение n достигается при time=0.006.

1.5 Решение для случая 3 на Julia:

begin

```
import Pkg
Pkg.add("LaTeXStrings")
Pkg.activate()
using DifferentialEquations
using LaTeXStrings
import Plots
end
begin
N = 1170.0 \;\#максимальное количество людей, которых может заинтересовать товар
n0 = 7.0 \;\#количество людей, знающих о товаре в начальный момент времени
t0 = 0.0
tmax = 30.0
```

end

```
begin U0 = [n0] T = [t0, tmax] \ \# временной промежуток (длительность рекламной кампании) prob = ODEProblem(F!, U0, T) end
```

```
#функция, описывающее распространение рекламы function F!(du,\,u,\,p,\,t) du[1] = (0.196 sin(t) + 0.699 cos(t)*u[1])*(N-u[1]) end
```

	Groundbreakin	g theory.ji — i
	timestamp	value1
1	0.0	7.0
2	0.01	1118.08
3	0.02	1169.99
4	0.03	1169.98
5	0.04	1169.75
6	0.05	1169.3
7	0.06	1170.21
8	0.07	1170.04
9	0.08	1169.98
10	0.09	1170.0
	2 3 4 5 6 7 8	timestamp 1 0.0 2 0.01 3 0.02 4 0.03 5 0.04 6 0.05 7 0.06 8 0.07

Рис. 7: sol №3(Julia)

sol = solve(prob, saveat = 0.01)

Рис. 8: Граф №3(Julia)

Plots.plot(sol) #построение графика решения

1.6 Решение для случая 3 на Openmodelica:

model Lab7Part3

Real a1; #коэффициент a1

Real a2; #коэффициент a2

constant Real N = 1170; #объем аудитории

Real n; #количество человек, которые знают о товаре

initial equation

n=7;#количество человек, которые знают о товаре в начальный момент времени

equation

```
a1 = 0.196*sin(time);

a2 = 0.699*cos(time);

der(n) = (a1+a2*n)*(N-n);
```

${\it end \ Lab7Part3};$

Рис. 9: Граф №3(Openmodelica)

Вывод

В ходе выполнения лабораторной работы я научился строить графики распространения рекламы, определять в какой момент времени скорость распространения рекламы будет иметь максимальное значение.