Spherical varieties and L-functions

Zhiyu Zhang

MIT

April 5th, 2021

Outline

- 1 Introduction
 - Branching laws
 - Motivation: images of Langlands transfer
 - Motivation: period integrals and L-functions
- 2 Spherical varieties
 - Dual group
 - Classification
 - Degeneration
- 3 More Ichino-Ikeda
 - Generalized global Ichino-Ikeda conjectures

Part 1: Orgins

Notions

Local story (main):

- $F = \mathbb{Q}_p$ or $F = \mathbb{F}_q((t))$ is a local field.
- $\circled{2}$ G is a (split) reductive group over F.
- **3** π is an irreducible (unitary) smooth \mathbb{C} -coefficient representation of G(F).
- \bullet W_F is the Weil-Deligne group of F.

Global story:

- $k = \mathbb{Q}$ or $k = \mathbb{F}_q(C)$ is a global field.
- 2 Still denote by G a (split) reductive group over k.
- Still denote by π an irreducible (cuspidal) automorphic representation of $[G] = G(\mathbb{A})/G(k)$.

Branching laws

 π an irr rep of G(F), $H \subseteq G$ a nice ("spherical") subgroup. A central problem in representation theory: when $\operatorname{Hom}_H(\pi, 1) \neq 0$? How to produce elements in $\operatorname{Hom}_H(\pi, 1)$? $\dim_{\mathbb{C}} \operatorname{Hom}_H(\pi, 1) =$? Global analog for automorphic representations?

Frobenius reciprocity

 $\operatorname{Hom}_{H}(\pi,1) \neq 0 \text{ iff } \pi \hookrightarrow C^{\infty}(G(F)/H(F)).$

This motivates the spectral study of function spaces on F-points of the spherical variety X = G/H.

A subtly is that $G(F)/H(F) \neq (G/H)(F)$, we will ignore the nature of inner forms and L-packets in this talk.

Frobenius reciprocity

 $\operatorname{Hom}_H(\pi,1) \neq 0 \text{ iff } \pi \hookrightarrow C^{\infty}(G(F)/H(F)).$

This motivates the spectral study of function spaces on F-points of the spherical variety X = G/H.

A subtly is that $G(F)/H(F) \neq (G/H)(F)$, we will ignore the nature of inner forms and L-packets in this talk.

Today:

- Why spherical X? Langlands transfer, period integrals and L-functions...
- How to think about spherical varieties? Examples, classifications...
- What is Ichino-Ikeda type conjecture? Relations between period integral and central *L*-values, relation between local and global program...

We also ignore convergence issues or derived branching laws, so things will be supercuspidal (local) and cuspidal (global).

Motivation: images of Langlands transfer

Local Langlands correspondence and functoriality (informal)

 $\{\text{irr smooth } \mathbb{C}\text{-reps of } G(F)\} \stackrel{\text{finite-to-one}}{\to} \{\text{Galois reps } \phi: W_F \to G^{\vee}(\mathbb{C})\}$

Given good $f: G_1^{\vee} \to G_2^{\vee}$, composition by f on RHS gives a transfer map from irr reps of G_1 to irr reps of G_2 on LHS.

Example: quadratic base change, parabolic induction.

Question (local/global)

Choose a map $G_X^{\vee} \to G^{\vee}$. For a rep π of G(F), when does $\phi_{\pi}: W_F \to G^{\vee}(\mathbb{C})$ factor through G_X^{\vee} ? For example, when is π a transfer from G_1 ?

Motivation: images of Langlands transfer

Local Langlands correspondence and functoriality (informal)

 $\{\text{irr smooth } \mathbb{C}\text{-reps of } G(F)\} \stackrel{\text{finite-to-one}}{\to} \{\text{Galois reps } \phi: W_F \to G^{\vee}(\mathbb{C})\}$

Given good $f: G_1^{\vee} \to G_2^{\vee}$, composition by f on RHS gives a transfer map from irr reps of G_1 to irr reps of G_2 on LHS.

Example: quadratic base change, parabolic induction.

Question (local/global)

Choose a map $G_X^{\vee} \to G^{\vee}$. For a rep π of G(F), when does $\phi_{\pi}: W_F \to G^{\vee}(\mathbb{C})$ factor through G_X^{\vee} ? For example, when is π a transfer from G_1 ?

Periods and L-values

Lots of examples \rightsquigarrow we can detect this by

- (global) poles or nonvanishing of certain L-function at $s = s_0$ (center or nearly center points);
- (global) nonvanishing of certain automorphic period integrals;
- (local) certain branching laws $\operatorname{Hom}_H(\pi, 1) \neq 0$.

So another question: relation between period integrals and L-functions in general?

Reminder on *L*-functions

$$\zeta(s) = \prod_{p} (1 - p^{-s})^{-1} = \sum_{n} \frac{1}{n^{s}}.$$

Given a rep π of G(F), and $\rho: G^{\vee} \to \operatorname{GL}(V)$, the associated local L-function $(s \in \mathbb{C})$ is

$$L(\pi, \rho, s) = \det(1 - q_F^{-s}\rho \circ \phi_{\pi}(\operatorname{Frob}_F)|_{V^I})^{-1} \in \mathbb{C}[q^s, q^{-s}].$$

Reminder on *L*-functions

$$\zeta(s) = \prod_{p} (1 - p^{-s})^{-1} = \sum_{n} \frac{1}{n^s}.$$

Given a rep π of G(F), and $\rho: G^{\vee} \to \operatorname{GL}(V)$, the associated local L-function $(s \in \mathbb{C})$ is

$$L(\pi, \rho, s) = \det(1 - q_F^{-s}\rho \circ \phi_{\pi}(\operatorname{Frob}_F)|_{V^I})^{-1} \in \mathbb{C}[q^s, q^{-s}].$$

This is defined unconditionally for unramified π by Satake isomorphism. Given a rep π of [G], and $\rho: G^{\vee} \to \mathrm{GL}(V)$, the associated (incomplete) global L-function is

$$L(\pi, \rho, s) = \prod_{v} L(\pi_v, \rho_v, s)$$

where the product is over finite places v of k where π_v is unramified.

Reminder on global period integrals

Let $H \subseteq G$ be a "nice" subgroup. The "niceness" is encoded in X = G/H, e.g X is affine iff H is reductive. Below we ignore important convergence issues.

Automorphic period integrals

(global) For $\phi \in \pi$ on [G], $P_X(\phi) := \int_{[H]} \phi(h) dh$.

Reminder on global period integrals

Let $H \subseteq G$ be a "nice" subgroup. The "niceness" is encoded in X = G/H, e.g X is affine iff H is reductive. Below we ignore important convergence issues.

Automorphic period integrals

(global) For
$$\phi \in \pi$$
 on $[G]$, $P_X(\phi) := \int_{[H]} \phi(h) dh$.

Twisted version: insert "small" functions e.g a character of H, or a small kernel. Relations

- L-functions: $\int_{[H]} \phi(h) dh = (*)L(?,?,s_0).$
- Branching laws: note $P_X \in \operatorname{Hom}_H(\pi, 1)$, so $P_X \neq 0$ implies $\operatorname{Hom}_H(\pi, 1) \neq 0$ i.e π is H-distinguished.
- Langlands transfer: functoriality shall also be realized by integration along certain kernel functions (geometrization).

Reminder on global period integrals

Let $H \subseteq G$ be a "nice" subgroup. The "niceness" is encoded in X = G/H, e.g X is affine iff H is reductive. Below we ignore important convergence issues.

Automorphic period integrals

(global) For
$$\phi \in \pi$$
 on $[G]$, $P_X(\phi) := \int_{[H]} \phi(h) dh$.

Twisted version: insert "small" functions e.g a character of H, or a small kernel. Relations

- L-functions: $\int_{[H]} \phi(h) dh = (*)L(?,?,s_0).$
- Branching laws: note $P_X \in \operatorname{Hom}_H(\pi, 1)$, so $P_X \neq 0$ implies $\operatorname{Hom}_H(\pi, 1) \neq 0$ i.e π is H-distinguished.
- Langlands transfer: functoriality shall also be realized by integration along certain kernel functions (geometrization).

Local period integrals?

In practice, people study or construct L-functions by relating it to some (period) integrals e.g to show analytic continuation. See Tate thesis. \rightsquigarrow how about local decomposition of global period integrals? [G] is not a direct product, $\phi_v \in \pi_v$ is not naturally a function on some spaces.

Local period integrals?

In practice, people study or construct L-functions by relating it to some (period) integrals e.g to show analytic continuation. See Tate thesis. \rightsquigarrow how about local decomposition of global period integrals? [G] is not a direct product, $\phi_v \in \pi_v$ is not naturally a function on some spaces.

Ichino-Ikeda type conjecture: global $|P_H|^2$ can be decomposed into local pairings $(v_1, v_2) \mapsto \int_H \langle h.v_1, v_2 \rangle dh$, $v_1 \in \pi, v_2 \in \pi^{\vee}$, after some important normalizations. This will relate central L-values to period integrals, in a precise way.

Examples

We give examples for previous two questions.

- Dirichlet L-function $L(\chi, s)$ has a pole at $s_0 = 1$ iff $\chi : (\mathbb{Z}/N\mathbb{Z})^{\times} \to \mathbb{C}^{\times}$ is trivial i.e its Langlands parameter factors through the trivial subgroup.
- (Hecke period) For any normalized cusp form f $(a_1 = 1)$, $L(f,s) = \int_0^\infty f(it)t^s \frac{dt}{t}$. $H = \mathbb{G}_m = \operatorname{diag}\{*,1\} \hookrightarrow G = \operatorname{PGL}_2$. In automorphic language, $L(\pi,s) = \int_{[H]} f(h)|h|^{s-1/2}dh$ (center s = 1/2).
- (Waldspurger period) $G = \operatorname{PGL}_2$, $H' = (\operatorname{Res}_{k'/k} \mathbb{G}_m)/\mathbb{G}_m$ a non-split torus. Then $|\int_{[H']} \phi|^2 = \frac{L(\pi,1/2)L(\pi \otimes \eta_{E/F},1/2)}{L(\pi,\operatorname{Ad},1)}$.
- (Whittaker period) Fourier coefficients are also integrals. $X = (G/N, \psi)$.

Examples

- (Rankin-Selberg) $L(\pi_1 \times \pi_2, s) = \int_{[GL_2]} f_1(g) f_2(g) E(g, s) dg$. $G = GL_2 \times GL_2, X = \mathbb{A}^2 \times GL_2$.
- (Tate thesis) $L(\chi_p, s) = \int_{GL_1(F)} 1_{\text{Mat}_{1\times 1}(O)}(x)\chi_p(x) |\det(x)|^s d^{\times}x$ for unramified χ_p . $G = \text{GL}_1$, $X = \mathbb{A}^1$.
- (Godement-Jacquet) $G = \operatorname{GL}_n \times \operatorname{GL}_n$, $X = \operatorname{Mat}_{n \times n}$: $L(\pi_p, \operatorname{Std}, s) = \int_{GL_{n \times n}(F)} 1_{\operatorname{Mat}_{n \times n}(O)}(x) \langle \phi_1(x), \phi_2 \rangle | \det(x)|^s d^{\times}x$ for unramified π_p .

You see more examples beyond homogeneous X = G/H. The main player is the G-variety X (H will be the stabilizer of the open G-orbit).

Slogan: For any "nice" (quasi-affine spherical) G-variety X, one can construct a local X-period integral, and a Langlands dual group G_X^{\vee} over \mathbb{C} with a distinguished map $\iota: G_X^{\vee} \to G^{\vee}$ (see Part 2).

Slogan: For any "nice" (quasi-affine spherical) G-variety X, one can construct a local X-period integral, and a Langlands dual group G_X^{\vee} over \mathbb{C} with a distinguished map $\iota: G_X^{\vee} \to G^{\vee}$ (see Part 2).

Conjecture

- There is a local period integral $|P_X|_{\pi}^2$, such that $|P_X|_{\pi}^2 \neq 0$ iff there is a functorial lifting ϕ_{σ} of π to G_X^{\vee} .
- There exists an (graded) algebraic rep $\rho_X : G_X^{\vee} \to GL(V_X)$ such that $|P_X|_{\pi}^2 = (*)L(\sigma, \rho_X, s_0) = (*)L_X(\pi_v)$.

Slogan: For any "nice" (quasi-affine spherical) G-variety X, one can construct a local X-period integral, and a Langlands dual group G_X^{\vee} over \mathbb{C} with a distinguished map $\iota: G_X^{\vee} \to G^{\vee}$ (see Part 2).

Conjecture

- There is a local period integral $|P_X|_{\pi}^2$, such that $|P_X|_{\pi}^2 \neq 0$ iff there is a functorial lifting ϕ_{σ} of π to G_X^{\vee} .
- There exists an (graded) algebraic rep $\rho_X : G_X^{\vee} \to GL(V_X)$ such that $|P_X|_{\pi}^2 = (*)L(\sigma, \rho_X, s_0) = (*)L_X(\pi_v)$.
- \leadsto images of local Langlands transfer is related to local branching laws i.e what G-reps will occur in $L^2(X)$.
- \rightsquigarrow local period integrals "=" local L-values.
- Also, there shall exist precise relative character identities relating relative characters π and σ as distributions.

If X = G/H, $|P_X|^2$ is the natural pairing $(v_1, v_2) \mapsto \int_H \langle h.v_1, v_2 \rangle dh$, $v_1 \in \pi, v_2 \in \pi^{\vee}$. But ρ_X is mysterious. To get $|P_X|^2$ and $L(-, \rho_X, s)$ in general, the idea is to study Plancherel

decomposition of $L^2(X(F))$ (or $C_c^{\infty}(X(F))$) under the action of G(F).

If X = G/H, $|P_X|^2$ is the natural pairing $(v_1, v_2) \mapsto \int_H \langle h.v_1, v_2 \rangle dh$, $v_1 \in \pi, v_2 \in \pi^{\vee}$. But ρ_X is mysterious.

To get $|P_X|^2$ and $L(-, \rho_X, s)$ in general, the idea is to study Plancherel decomposition of $L^2(X(F))$ (or $C_c^{\infty}(X(F))$) under the action of G(F).

Conjecture

$$L^2(X) \cong \int_{\widehat{G}_X} \iota_*(\sigma)^{\oplus m(\sigma)} d\mu_{G_X}(\sigma),$$

where $\mu_{G_X}(\sigma)$ denotes the Plancherel measure of G_X and $m(\sigma)$ is a multiplicity space.

The unramified spectrum $C_c^{\infty}(X(F))^{G(O)}$ is already interesting (related to relative Satake).

The IC function " $1_{X(O)}$ " \leadsto local unramified L-function, hence global (incomplete) L-function by products.

Part 2: spherical varieties

Spherical varieties

Now G is a reductive group with a Borel B over a field k_0 , X is a normal G-variety over k_0 . In practice, F is a local field with residue field $k_0 = \mathbb{F}_q$. For simplicity, now $k_0 = \mathbb{C}$, $F = k_0(t)$.

X is spherical if X has an open dense B-orbit X° .

We denote by X^{\bullet} the G-orbit containing X° . $X^{\bullet} \cong H \backslash G$ for some H.

Spherical varieties

Now G is a reductive group with a Borel B over a field k_0 , X is a normal G-variety over k_0 . In practice, F is a local field with residue field $k_0 = \mathbb{F}_q$. For simplicity, now $k_0 = \mathbb{C}$, $F = k_0(t)$.

X is spherical if X has an open dense B-orbit X° .

We denote by X^{\bullet} the G-orbit containing X° . $X^{\bullet} \cong H \backslash G$ for some H.

- Toric varieties for G = T a torus. $G = \mathbb{G}_m, X = \mathbb{A}^1$.
- Flag variety G/B
- (Whittaker) X = G/U.
- Fundamental example: X = H, $G = H \times H$ (group case).
- More generally, symmetric spaces X = G/K, $K = G^{\theta}$.
- $G = \operatorname{SL}_2$ on $X = \mathbb{A}^2$, $X^{\bullet} = \mathbb{A}^2 \setminus \{0\} = G/U$.
- (GGP) $G = SO_n \times SO_{n+1}, H = SO_n$.

Why?

Why spherical X? Many examples, good combinatorics, strong finiteness..

Why?

Why spherical X? Many examples, good combinatorics, strong finiteness..

Geometry: many things on G can be generalized to spherical X: root lattice Δ_X , weight lattice Λ_X , Weyl group W_X , dual group G_X^{\vee} , Chevalley isomorphism...

Why?

Why spherical X? Many examples, good combinatorics, strong finiteness..

Geometry: many things on G can be generalized to spherical X: root lattice Δ_X , weight lattice Λ_X , Weyl group W_X , dual group G_X^{\vee} , Chevalley isomorphism...

Rep theory: you can do geometric haramonic analysis on X(F): study of $L^2(X(F))$, Fourier transform, asymptotics (or nearby cycles), Satake isomorphism...

- If X is affine, $k_0[X]$ is a multiplicity-free G-module.
- X has only finitely many B-orbits.
- In practice (wavefront condition), $\dim \operatorname{Hom}_{G(F)}(\pi, C^{\infty}(X(F))) < +\infty$: uniqueness of Whittaker model for GL_n , $\dim_{\mathbb{C}} \operatorname{Hom}_{SO_{n-1}}(\pi_{SO_n}, 1) \leq 1$..

Root datum: Borel action is the key

Classically, the action of $H \times H$ on k[H] encodes Rep(H) hence everything. The $B_H \times B_H$ -action will encode root datum. As we don't assume X is affine, it's better to work with fraction field $k_0(X) = k_0(X^{\circ})$.

Root datum: Borel action is the key

Classically, the action of $H \times H$ on k[H] encodes Rep(H) hence everything. The $B_H \times B_H$ -action will encode root datum. As we don't assume X is affine, it's better to work with fraction field $k_0(X) = k_0(X^{\circ})$.

- Weight lattice: Let $k_0(X)^{(B)}$ be the *B*-eigenfunctions in $k_0(X)$. The weight lattice $\Lambda_X \subseteq \Lambda_G$ consists of *B*-eigencharacters in $k_0(X)^{(B)}$.
- Cartan torus of X: $T_X = \operatorname{Spec} \Lambda_X$. $T_X = T_G/\operatorname{Im}(B \cap H)$ acts freely on X° .
- The cone \mathcal{V} generated by anti-dominant weights in $\Lambda_{X,\mathbb{Q}}^{\vee}$: let \mathcal{V} denote the set of G-invariant valuations $k_0(X)^{\times} \to \mathbb{Q}$. Evaluating a valuation on B-eigenfunctions gives an injective map $\mathcal{V} \to \Lambda_{X,\mathbb{Q}}^{\vee}$.

The advantage of considering valuations is to generalize the notion of prime divisors birationally.

Root datum: Borel action is the key

- Weight lattice Λ_X : $k_0(X)^{(B)} =$ the *B*-eigenfunctions in $k_0(X)$. $\Lambda_X \subseteq \Lambda_G$ consists of *B*-eigencharacters in $k_0(X)^{(B)}$. Similarly, define Λ_X^{++} for $k[X]^{(B)}$ if *X* is quasi-affine, then $\Lambda_X = \mathbb{Z}[\Lambda_X^{++}]$. $\Lambda_X = k_0(X)^{(B),\times}/k_0^{\times}$ (mult one).
- Cartan torus: $T_X = \operatorname{Spec} \Lambda_X$.
- The polyhedral cone $\mathcal{V} \subseteq \Lambda_{X,\mathbb{Q}}^{\vee}$: the set of G-invariant valuations $k_0(X)^{\times} \to \mathbb{Q}$.
- Spherical roots $\Sigma_X \subseteq \Lambda_X$: generators of (extremal rays of $-\mathcal{V}^{\vee}$) $\cap \Lambda_X$.
- Normalized spherical root Δ_X : integral issues, $\Sigma_X = \Delta_X$ in many cases e.g Hecke, GGP..
- Dual group G_X^{\vee} over \mathbb{C} : given by the root datum $(\Lambda_X, \Lambda_X^{\vee}, \Delta_X, \Delta_X^{\vee})$.

Fact: up to $\{1, 2, 1/2\}$, any spherical root of X is sum of two roots of G.

Some generalizations

Classically, $W_G = N(T)/T$. W_X is defined as the group generated by the reflections about the codimension-1-faces of the valuation cone $\mathcal{V}(X)$. It's the Weyl group of G_X^{\vee} .

Chevalley restriction theorem:

$$\mathfrak{g}^*//G \cong \mathfrak{a}_G^*//W_G$$
.

Example: $\operatorname{Mat}_{n \times n} / / \operatorname{GL}_n = \mathbb{A}^n / / S_n$.

Spherical variety version:

$$\mathfrak{g}_X^*//G \cong \mathfrak{a}_X^*//W_X.$$

Cartan decomposition

G(O)-orbits in $X^{\bullet}(F)$ is in bijection to Λ_X^{\vee}/W_X .

Colors

The dual group does not determine X, because it only depends on X^{\bullet} . **Fact**: in many interesting cases (e.g X is strongly tempered),

 $G_X^{\vee} = G^{\vee}.$

To classify X, we need colors of X. In a dual way, you can think a B-eigenfunction f via the B-stable divisor $\operatorname{div}(f)$.

Colors

The dual group does not determine X, because it only depends on X^{\bullet} . **Fact**: in many interesting cases (e.g X is strongly tempered), $G_X^{\vee} = G^{\vee}$.

To classify X, we need colors of X. In a dual way, you can think a B-eigenfunction f via the B-stable divisor $\operatorname{div}(f)$.

- $\mathcal{D}(X)$ is the finite set of all B-stable prime divisors of X.
- A color of X is a B-stable but not G-stable prime divisor of X, and $\mathcal{D} = \mathcal{D}(H \backslash G)$ is the set of colors.

Colors as coweights

- $\rho_X : \mathcal{D}(X) \to \Lambda_X^{\vee} : D \mapsto v_D$: any $D \in \mathcal{D}(X)$ gives a valuation on $k(X)^{\times}$ hence on Λ_X . ρ_X is similar to $\mathcal{V} \to \Lambda_{X,\mathbb{Q}}^{\vee}$, but may not be injective.
- The rational cone $C_0 = C_0(X) \subseteq \Lambda_{X,\mathbb{Q}}^{\vee}$ generated by $\rho_X(\mathcal{D}(X))$. $\operatorname{Hom}(\Lambda_X^{++}, \mathbb{Z}_{\geq 0}) = C_0 \cap \Lambda_X^{\vee}$.

Examples

In group case, $G_X^{\vee} = H^{\vee}$, and colors of H are in bijection to simple roots of H by the Bruhat decomposition.

Examples

In group case, $G_X^{\vee} = H^{\vee}$, and colors of H are in bijection to simple roots of H by the Bruhat decomposition.

In Hecke case $G = \operatorname{PGL}_2$, $H = \mathbb{G}_m = \operatorname{diag}\{*,1\}$, $X = H \setminus G$, we have $G_X^{\vee} = G^{\vee} = SL_2$.

To see this, B-orbits on X is the same as $H = \mathbb{G}_m$ -orbits on $G/B = \mathbb{P}^1$, so three orbits $\mathbb{G}_m, 0, \infty$, and two colors $D^+(0), D^-(\infty)$.

Examples

In group case, $G_X^{\vee} = H^{\vee}$, and colors of H are in bijection to simple roots of H by the Bruhat decomposition.

In Hecke case $G = \operatorname{PGL}_2$, $H = \mathbb{G}_m = \operatorname{diag}\{*,1\}$, $X = H \setminus G$, we have $G_X^{\vee} = G^{\vee} = SL_2$.

To see this, B-orbits on X is the same as $H = \mathbb{G}_m$ -orbits on $G/B = \mathbb{P}^1$, so three orbits $\mathbb{G}_m, 0, \infty$, and two colors $D^+(0), D^-(\infty)$.

Note $k_0[\mathbb{G}_m \backslash SL_2]^{(B)} = k_0[\mathbb{G}_m \backslash (\mathbb{A}^2 - 0)]^{(\mathbb{G}_m)}$.

 $k_0[\mathbb{G}_m \setminus (\mathbb{A}^2 - 0)] = k_0[xy]$, you see the *T*-eigenvalues for $\mathbb{G}_m \setminus SL_2$ are generated by $t \mapsto t^2$, the simple root of SL_2 .

For $X = \mathbb{G}_m \backslash \mathrm{PGL}_2$, things are dual, so $\Lambda_X^{\vee} = \Lambda_G^{\vee} = \mathbb{Z}_{\frac{1}{2}} \alpha^{\vee}$, where $\alpha : t \mapsto t$ is the simple root of PGL_2 . And $v_{D^+} = v_{D^-} = \frac{1}{2} \alpha^{\vee}$.

Rank 1 cases

The rank of spherical roots is easy to compute, and is called the rank of X.

One can classify all rank 1 cases. Beyond the group case, there are more examples.

For example, $X = SO_{2n-1} \backslash SO_{2n}$ has $G_X^{\vee} = PGL_2$. $SO_2 \backslash SO_3$ is the Hecke case as before.

 $X \cong \{x \in V_{2n} | (x, x) = 1\}$ is a "sphere" (maybe a motivation for the name "spherical varieties").

 $C_c^{\infty}(V_{2n}) \to C_c^{\infty}(X(F))$ is surjective, so one can use Weil representation and theta correspondence tools.

Classification of homogeneous spherical $H\backslash G$

Homogeneous spherical varieties $H\backslash G$ are classified by combinatorial invariants called homogeneous spherical datum.

For a simple root α of G, let $B \subseteq P_{\alpha}$ denote the corresponding sub-minimal parabolic of G.

For any B-orbit closure $Y \subseteq X$, we say that α moves Y if $P_{\alpha}Y \neq Y$. Let $\mathcal{D}(\alpha)$ denote the set of colors in \mathcal{D} such that α moves D.

Using this, one can describe those spherical roots of X that come from G.

Classification of homogeneous spherical $H\backslash G$

Homogeneous spherical varieties $H\backslash G$ are classified by combinatorial invariants called homogeneous spherical datum.

For a simple root α of G, let $B \subseteq P_{\alpha}$ denote the corresponding sub-minimal parabolic of G.

For any B-orbit closure $Y \subseteq X$, we say that α moves Y if $P_{\alpha}Y \neq Y$. Let $\mathcal{D}(\alpha)$ denote the set of colors in \mathcal{D} such that α moves D.

Using this, one can describe those spherical roots of X that come from G.

$|\#\mathcal{D}(\alpha) \leq 2|$

Theorem [Lun97, 3.2 and 3.4]

 $\#\mathcal{D}(\alpha) \leq 2$. There are 4 cases:

- $\mathcal{D}(\alpha) = \emptyset$. Equivalently, α is among the simple roots associated to the stabilizer $P(X^{\circ}) \subseteq G$ of X° .
- (Type U, SL_2/U) $\mathcal{D}(\alpha) = \{D\}$, and no multiple of α is in X. In this case $v_D = \alpha^{\vee}|_{\Lambda_X}$.
- (Type N, PGL_2/O_2) $\mathcal{D}(\alpha) = \{D\}$, and some non-trivial multiple of α is in X. In this case $v_D = \frac{1}{2}\alpha^{\vee}|_{\Lambda_X}$, and $2\alpha \in \Sigma$.
- (Type T, $\operatorname{PGL}_2/\mathbb{G}_m$) $\mathcal{D}(\alpha) = \{D_{\alpha}^+, D_{\alpha}^-\}$. Equivalently, $\alpha \in \Sigma_X$, and $v_{D_{\alpha}^+} + v_{D_{\alpha}^-} = \alpha^{\vee}|_{\Lambda_X}$.

Homogeneous spherical datum

Roughly speaking, the homogeneous spherical datum associated to $X = H \setminus G$ consists of the lattice X; the colors $D(\alpha)$ for $\alpha \in \Sigma \cap \Delta_G$ i.e in case 4; the set Σ_X , and the set of simple roots moving no color.

Homogeneous spherical datum

Roughly speaking, the homogeneous spherical datum associated to $X = H \setminus G$ consists of the lattice X; the colors $D(\alpha)$ for $\alpha \in \Sigma \cap \Delta_G$ i.e in case 4; the set Σ_X , and the set of simple roots moving no color.

Next step: Then one needs to classify all spherical embeddings

 $X^{\bullet} = H \backslash G \hookrightarrow X$ for fixed X^{\bullet} .

Origin: classification of toric varieties by families of cones: firstly do affine toric varieties, then glue.

Fact (using normality): any spherical variety X is covered by quasi-affine G-stable open subsets.

Luna-Vust theory of spherical embeddings

Assume $H \setminus G$ is quasi-affine. Assume X is affine spherical, so X has an unique closed G-orbit Y.

Let $\mathcal{C}(X) \subseteq \mathcal{C}_0(X)$ be the cone in $\Lambda_{X,\mathbb{Q}}^{\vee}$ generated by the valuations v_D for all B-stable divisors $D \in \mathcal{D}(X)$ containing Y. Then

Luna-Vust theory of spherical embeddings

Assume $H \setminus G$ is quasi-affine. Assume X is affine spherical, so X has an unique closed G-orbit Y.

Let $\mathcal{C}(X) \subseteq \mathcal{C}_0(X)$ be the cone in $\Lambda_{X,\mathbb{Q}}^{\vee}$ generated by the valuations v_D for all B-stable divisors $D \in \mathcal{D}(X)$ containing Y. Then

[Kno91, Theorems 3.1 and 6.7]

 $X \mapsto \mathcal{C}(X)$ gives a bijection (up to iso) between affine spherical embeddings of X^{\bullet} and admissible rational polyhedral cones in $\Lambda_{X,\mathbb{Q}}^{\vee}$.

In short, the colors $\mathcal{D} = \mathcal{D}(H \setminus G)$ plus the cone C(X) (adimissile colored cone) give a complete understanding of all quasi-affine spherical varieties X. Then the full classification follows by gluing.

Rankin-Selberg example

$$n > 1, G = \operatorname{GL}_n \times \operatorname{GL}_n, H = \begin{pmatrix} \operatorname{GL}_{n-1} & * \\ 0 & 1 \end{pmatrix}. H \backslash G = \operatorname{GL}_n \times (\mathbb{A}^n - 0)$$

quasi-affine but not affine.

There are (3n-3)-colors and the dual group $G_X^{\vee} = G^{\vee}$. for a simple root of GL_n , the set $D(\alpha_i; 0) \cup D(0, \alpha_i)$ has cardinality 3 and there are no other overlaps.

Let $H \setminus G \hookrightarrow X = \operatorname{GL}_n \times \mathbb{A}^n$ be the canonical affine embedding. The cone $\mathcal{C}(X) \cap \mathcal{V} \subset \Lambda_{X,\mathbb{Q}}^{\vee} = \mathbb{Q}^n \times \mathbb{Q}^n$ corresponds to $-\mathbb{Q}_{\geq 0}$ diagonally embedded inside $\mathbb{Q}^n \times \mathbb{Q}^n$.

Degeneration

To do harmonic analysis on X(F), a trick is to degenerate X to simple spherical variety X_{\emptyset} .

A G-variety X_{\emptyset} is horospherical if for each $x \in X_{\emptyset}$, its stabilizer subgroup in G contains the unipotent radical of a Borel subgroup of G. **Fact**: If X_{\emptyset} is horospherical and spherical, then its dual group is always the dual torus $T_{X_{\emptyset}}$.

Degeneration

To do harmonic analysis on X(F), a trick is to degenerate X to simple spherical variety X_{\emptyset} .

A G-variety X_{\emptyset} is horospherical if for each $x \in X_{\emptyset}$, its stabilizer subgroup in G contains the unipotent radical of a Borel subgroup of G.

Fact: If X_{\emptyset} is horospherical and spherical, then its dual group is always the dual torus $T_{X_{\emptyset}}$.

[SV, 2.5]

There exists a principal degeneration $\mathcal{X} \to \mathbb{A}^1$ degenerating X to a horospherical variety X_{\emptyset} .

Idea: deformation to the normal cone.

Part 3: Ichino-Ikeda

Global branching laws and global GGP

Globally, we have a candidate P_H . If $P_H \neq 0$, it's necessary that all local spaces $\operatorname{Hom}_{H_v}(\pi_v, 1) \neq 0$.

Consider $H = SO_n \hookrightarrow G = SO_n \times SO_{n+1}$.

Gan-Gross-Prasad conjecture

- (local) Whether $\operatorname{Hom}_H(\pi, 1) \neq 0$ can be understood by ϵ -factors/genericity of σ .
- (global) under local non-vanishing assumptions, globally we have $L(\pi, 1/2) \neq 0 \Leftrightarrow \exists \phi \in \pi, \int_{[H]} \phi \neq 0.$

Hecke periods

Examples

 $G = \operatorname{PGL}_2, H = \mathbb{G}_m$. For a cusp eigenform f, its central L-value satisfies $(\int_{[N]} f(n)\psi(n)dn)L(\pi, 1/2) = \int_{[H]} f(h)dh$. Rankin-Selberg gives $|\int_{[N]} f(n)\psi(n)dn|^2 = \prod_v \int_{N(F_v)} \langle \pi(h)f, f \rangle \psi(n)dn$.

Hecke periods

Examples

 $G = \operatorname{PGL}_2, H = \mathbb{G}_m$. For a cusp eigenform f, its central L-value satisfies $(\int_{[N]} f(n)\psi(n)dn)L(\pi,1/2) = \int_{[H]} f(h)dh$. Rankin-Selberg gives $|\int_{[N]} f(n)\psi(n)dn|^2 = \prod_v \int_{N(F_v)} \langle \pi(h)f, f \rangle \psi(n)dn$. For v where everything is unramified, $\int_{N(F_v)} \langle \pi(h)f, f \rangle \psi(n)dn = \frac{1}{L(\pi_v, \operatorname{Ad}, 1)}$. So we see

$$|\int_{[H]} f(h)dh|^2 = (*) \prod_{v} |P_v(\phi_v)|^2$$

where $|P_v(\phi_v)|^2 = \frac{L(\pi_v, 1/2)L(\overline{\pi}_v, 1/2)}{L(\pi_v, \text{Ad}, 1)}$ for unramified places.

The square absolute value of the period integral shall have a precise formula, related to central L-values of π . This is Ichino-Ikeda conjecture, generalizing Waldspurger's formula or Hecke's formula (n=1).

Global Ichino-Ikeda type conjectures

For a good pair (G, H), dim $\operatorname{Hom}_{H_v}(\pi_v, 1) \leq 1$. The global period integral decompose to tensor product of local linear functionals, uniquely up to scalar.

The global period integral gives a global pairing

$$P^{Aut}: \pi \otimes \overline{\pi} \to \mathbb{C}, P^{Aut}(\phi_1, \phi_2) := \int_{[H]} \phi_1 dh \int_{[H]} \overline{\phi_2} dh = P_X(\phi_1) \overline{P_X(\phi_2)}.$$

The local Plancherel decomposation gives a local pairing

$$P_{X,\pi_v}: \pi_v \otimes \overline{\pi_v} \to \mathbb{C}, P_v^{Planch}(u_1, u_2) = \int_{H(k_v)} \langle \pi_v(h) u_1, u_2 \rangle du,$$

Ichino-Ikeda conjecture (imprecise)

$$P^{Aut} = (*) \prod_{v}' P_v^{Planch}$$

with a formula for (*).

$$|P_{X,\pi}(\phi)|^2 = (*) \prod_{v} |P_{X,\pi_v}(\phi_v)|^2.$$

Normalizations

Normalization is needed for the convergence of Euler products, we can normalize unramified local term to be 1.

More precisely, one computes P_v^{Planch} for spherical unit vectors, it's $(*)\frac{L_X(\pi_v,1/2)}{L(\pi_v,\mathrm{Ad},1)}$.

$$P_v^{Planch,*} := ((*) \frac{L_X(\pi_v, 1/2)}{L(\pi_v, Ad, 1)})^{-1} P_v^{Planch}.$$

Program of Sakellaridis-Venkatesh (global)

[SV] gives an conjectural generalization of local Plancherel formula, and the Ichino-Ikeda conjecture: for $\phi = \bigotimes_v \phi_v \in \pi = \bigotimes_v \pi_v$,

$$|P_{X,\pi}(\phi)|^2 = c(\pi) \cdot \frac{L_X(\pi, 1/2)}{L(\pi, \text{Ad}, 1)} \cdot \prod_v |P_{X,\pi_v}^*(\phi_v)|^2$$

Program of Sakellaridis-Venkatesh (global)

[SV] gives an conjectural generalization of local Plancherel formula, and the Ichino-Ikeda conjecture: for $\phi = \bigotimes_v \phi_v \in \pi = \bigotimes_v \pi_v$,

$$|P_{X,\pi}(\phi)|^2 = c(\pi) \cdot \frac{L_X(\pi, 1/2)}{L(\pi, \text{Ad}, 1)} \cdot \prod_v |P_{X,\pi_v}^*(\phi_v)|^2$$

Examples: original Ichino-Ikeda in the GGP case, Rallis inner product formula..

- The incomplete global L-values $\frac{L_X(\pi,1/2)}{L(\pi,\mathrm{Ad},1)}$ is defined by analytic continuation. So the local and global normalization by central L-values don't cancel trivially.
- The adjoint L-values occur, as the normalization is based on Petersson inner products.
- $c(\pi)$ = products of some measure normalization constants and a power of 2 (size of Vogan L-packet).
- We ignore multiplicity > 1 issues.

What do we know?

For $H = U_n \hookrightarrow G = U_n \times U_{n+1}$, $L_X(\pi, 1/2) = L(\pi, \operatorname{Std}, \frac{1}{2})$, it is proved using relative trace formula after the work of many: Jacquet-Rallis, Z. Yun, W. Zhang...

For $H = SO_n \hookrightarrow G = SO_n \times SO_{n+1}...$

Main references

- Y. Sakellaridis and A. Venkatesh, Periods and harmonic analysis on spherical varieties, Asterisque (2017), no. 396, viii+360.
- W. T. Gan, X. Wan, Relative character identities and theta correspondence, arxiv:1905.13502.

Thank you!