S.-T. Yau College Student Mathematics Contest

Applied Mathematics, Team, 2014

For the interval $[0, \pi]$, we divide it into N+1 equally spaced subintervals by using the nodal points:

$$0 = x_0 < x_1 < \dots < x_{N+1} = \pi,$$

with

$$x_i = i h, \quad h = \pi/(N+1).$$

For any continuous function w on $[0,\pi]$, we define $\Pi_h w$ to be the piecewise linear interpolation of w, namely $\Pi_h w$ is linear on each subinterval (x_i, x_{i+1}) for $i = 0, 1, \dots, N$, and it takes the same values as w at all nodal points x_i , $i = 0, 1, \dots, N+1$. For any function w, we define

$$||w|| = \left(\int_0^\pi w^2(x)dx\right)^{1/2}.$$

Prove the following estimates for any function $u \in C^2[0,\pi]$:

$$||u - \Pi_h u|| \le \frac{1}{\pi^2} h^2 ||u''||, \quad ||u' - (\Pi_h u)'|| \le \frac{1}{\pi} h ||u''||.$$

claw-free graphs

A graph G(V, E) is claw-free if it has no induced subgraph isomorphic to the bipartite complete graph $K_{1,3}$, (i.e, $V = \{w, u_1, u_2, u_3\}$, $E = \{wu_1, wu_2, wu_3\}$).

Let G be a claw-free graph of order n. Let δ be the minimum degree of G and α the size of a maximum independent set. Prove that

$$\alpha \le \frac{2n}{\delta + 2}.$$

Over $\Omega = (0,1)$, consider the heat equation with a homogeneous Dirichelt boundary condition

$$\partial_t u = u_{xx} + f, \quad \text{in } \Omega, \tag{1}$$

$$u(0,t) = u(1,t) = 0, (2)$$

in which f(x,t) is a given force term, with $||f(\cdot,t)||_{L^2} \leq M$, for any $t \geq 0$. The following semidiscrete implicit scheme is given

$$\frac{u^{n+1} - u^n}{\Delta t} = u_{xx}^{n+1} + f^{n+1}, \quad \text{in } \Omega,$$

$$u^{n+1}(0) = u^{n+1}(1) = 0,$$
(3)

$$u^{n+1}(0) = u^{n+1}(1) = 0, (4)$$

in which u^k denotes the numerical solution at t^k , with $t^k = k\Delta t$, Δt being the time step size.

The final time is set as T>0 and the initial data is given by $u^0(x)$. Prove the following uniform in time L^2 bound for the numerical scheme (3)-(4):

$$\|u^k\|_{L^2}^2 \le \tilde{C} := \|u^0\|_{L^2}^2 + C_2^4 M^2, \text{ for any } k \ge 0,$$
 (5)

in which \tilde{C} is independent on the time step t^k , and C_2 is given by the following Pincaré inequality

$$||v||_{L^2} \le C_2 ||v_x||_{L^2}, \quad \text{if } v(0) = v(1) = 0.$$
 (6)

Hint. Take an L^2 inner product with $2u^{n+1}$, use Poincaré inequality, and apply an induction in time to derive a uniform in time L^2 bound.