CS 577 - Discrete Primer

Marc Renault

Department of Computer Sciences University of Wisconsin – Madison

Summer 2023

TopHat Section 001 Join Code: 275653

DISCRETE MATHEMATICS

Definition

Rigorous mathematical study of discrete structures.

DISCRETE MATHEMATICS

Definition

Rigorous mathematical study of discrete structures.

Key Discrete Concepts for CS 577

Core

- Logic
- Sets
- Recurrences
- Relations and Function
- Graphs and Trees
- Counting

GIC SETS RELATIONS INDUCTION PROOFS COUNTING INVARIANTS PROG. CORRECTNESS RECURRENCES GRAPHS

DISCRETE MATHEMATICS

Definition

Rigorous mathematical study of discrete structures.

Key Discrete Concepts for CS 577

Core

- Logic
- Sets
- Recurrences
- Relations and Function
- Graphs and Trees
- Counting

Applied in CS 577

- Proofs esp. Induction
- Invariants
- Program Correctness

Logic

Definition

A statement that is either true or false.

Definition

A statement that is either true or false.

Example

True proposition:

• Empire is the best Star Wars movie

Definition

A statement that is either true or false.

Example

True proposition:

- Empire is the best Star Wars movie
- Ottawa is the capital of Canada.

Definition

A statement that is either true or false.

Example

True proposition:

- Empire is the best Star Wars movie
- Ottawa is the capital of Canada.

False proposition:

• Toronto is the capital of Canada.

ogic Sets Relations Induction Proops Counting Invariants Prog. Correctness Recurrences Graphe

Propositions

Definition

A statement that is either true or false.

Example

True proposition:

- Empire is the best Star Wars movie
- Ottawa is the capital of Canada.

False proposition:

• Toronto is the capital of Canada.

Operations

- And: ∧, &, &&
- Or: \vee , |, |
- Negation: ¬,!

- Implies: \Longrightarrow
- If and only if (iff): \iff
 - $P \iff Q \equiv P \implies Q \land Q \implies P$

a	b	$a \wedge b$	$a \lor b$	$a \implies b$	-ι
F	F				
F	T				
T	F				
T	T				

a	b	$a \wedge b$	$a \lor b$	$a \implies b$	$ \neg \iota$
F	F	F			
F	T				
T	F				
T	T				

a	b	$a \wedge b$	$a \lor b$	$a \implies b$	$ \neg \iota$
F	F	F	F		
F	T				
T	F				
T	T				

a	b	$a \wedge b$	$a \lor b$	$a \implies b$	$ \neg \iota$
F	F	F	F	T	
F	T				
T	F				
T	T				

a	b	$a \wedge b$	$a \lor b$	$a \implies b$	-ι
F	F	F	F	T	T
F	T				
\overline{T}	F				
T	T				

a	b	$a \wedge b$	$a \lor b$	$a \implies b$	$ \neg a$
F	F	F	F	T	T
F	T	F			
T	F				
T	T				

a	b	$a \wedge b$	$a \lor b$	$a \implies b$	-ι
F	F	F	F	T	T
F	T	F	T		
T	F				
T	T				

a	b	$a \wedge b$	$a \lor b$	$a \implies b$	$\neg \iota$
F	F	F	F	T	T
F	T	F	T	T	
T	F				
T	T				

a	b	$a \wedge b$	$a \lor b$	$a \implies b$	-ι
F	F	F	F	T	T
F	T	F	T	T	T
T	F				
T	T				

a	b	$a \wedge b$	$a \lor b$	$a \implies b$	$\neg \iota$
F	F	F	F	T	T
F	T	F	T	T	T
T	F	F			
T	T				

a	b	$a \wedge b$	$a \lor b$	$a \implies b$	-ι
F	F	F	F	T	T
F	T	F	T	T	T
T	F	F	T		
T	T				

a	b	$a \wedge b$	$a \lor b$	$a \implies b$	-ι
F	F	F	F	T	T
F	T	F	T	T	T
T	F	F	T	F	
T	T				

a	b	$a \wedge b$	$a \lor b$	$a \implies b$	-ι
\overline{F}	F	F	F	T	Т
F	T	F	T	T	T
T	F	F	T	F	F
T	T				

a	b	$a \wedge b$	$a \lor b$	$a \implies b$	$ \neg a$
F	F	F	F	T	T
F	T	F	T	T	T
T	F	F	T	F	F
T	T	T			

a	b	$a \wedge b$	$a \lor b$	$a \implies b$	-ι
F	F	F	F	T	T
F	T	F	T	T	T
T	F	F	T	F	F
T	T	T	T		

a	b	$a \wedge b$	$a \lor b$	$a \implies b$	$ \neg a$
F	F	F	F	T	T
F	T	F	T	T	T
T	F	F	T	F	F
T	T	T	T	T	

a	b	$a \wedge b$	$a \lor b$	$a \implies b$	$ \neg a$
F	F	F	F	T	T
F	T	F	T	T	T
T	F	F	T	F	F
T	T	T	T	T	F

Truth Tables

a	b	$a \wedge b$	$a \lor b$	$a \implies b$	
F	F	F	F	T	T
F	T	F	T	T	T
T	F	F	T	F	F
T	T	T	T	T	F

Logical Equivalence

TopHat 1: Is $P \implies Q$ equivalent to $\neg P \implies \neg Q$?

Truth Tables

a	b	$a \wedge b$	$a \lor b$	$a \implies b$	$\overline{ \neg a}$
F	F	F	F	T	T
F	T	F	T	T	T
T	F	F	T	F	F
T	T	T	T	T	F

Logical Equivalence

TopHat 1: Is $P \implies Q$ equivalent to $\neg P \implies \neg Q$?

Exercise: Prove it!

PREDICATES

Definition

For an underlying domain D. A predicate is a mapping of D to propositions.

PREDICATES

Definition

For an underlying domain *D*. A predicate is a mapping of *D* to propositions.

Quantifiers

- For all: $\forall x \in \mathbb{Z}$, $Even(x) \iff Odd(x+1)$
- There exists: \exists . \exists person \in This Room, LovesStarWars(x)
- Order matters when combining quantifiers!

PREDICATES

Definition

For an underlying domain *D*. A predicate is a mapping of *D* to propositions.

Quantifiers

- For all: $\forall x \in \mathbb{Z}$, $Even(x) \iff Odd(x+1)$
- There exists: \exists . \exists person \in This Room, LovesStarWars(x)
- Order matters when combining quantifiers!

Logical Equivalence

TopHat 2: What is the logical equivalence of $\neg(\forall xS(x))$?

Definition

- A well-defined collection of elements from some domain. Each element in a set is unique.
- A *multiset* may contain duplicates.

Definition

- A well-defined collection of elements from some domain. Each element in a set is unique.
- A *multiset* may contain duplicates.

Ex:
$$A = \{11, 12, 13\}$$

 $B = \{x \in \mathbb{Z} \mid 10 < x \le 13\}$

Definition

- A well-defined collection of elements from some domain. Each element in a set is unique.
- A *multiset* may contain duplicates.

Ex:
$$A = \{11, 12, 13\}$$

 $B = \{x \in \mathbb{Z} \mid 10 < x \le 13\}$

Basic Notations

- $A \subset B$ A is a proper subset of B, meaning that A contains some (or none) of the elements of B but not all.
- $A \subseteq B$ A is subset of B and A may contain all of the elements of B.
 - |A| The cardinality of A is the number of elements in the set.

SET OPERATIONS

IC SETS RELATIONS INDUCTION PROOFS COUNTING INVARIANTS PROG. CORRECTNESS RECURRENCES GRAPHS

SET OPERATIONS

Set difference: $A \setminus B$ or A - B

Intersection: $A \cap B$

Other Notions

 \emptyset **or** {} The null or empty set.

 $\mathcal{P}(A)$ Power set of A. A set of all possible subsets of A (including \emptyset).

TOPHATS

TopHat 3

What is $\{a, b, c\} \setminus \{c, d, e\}$?

TOPHATS

TopHat 3

What is $\{a, b, c\} \setminus \{c, d, e\}$?

TopHat 4

What is the size of $\mathcal{P}(A)$ for some set A?

Relations and Functions

Relations

Cartesian Product

For two set *A* and *B*, $A \times B = \{(a,b) \mid a \in A \land b \in B\}$.

RELATIONS

Cartesian Product

For two set *A* and *B*, $A \times B = \{(a, b) \mid a \in A \land b \in B\}$.

Definition

A relation between sets *A* and *B* is a defined subset of $A \times B$.

Ex:
$$R = \{(x, y) \mid x \neq y\}$$

Relations

Definition

A relation between sets *A* and *B* is a defined subset of $A \times B$. Ex: $R = \{(x, y) \mid x \neq y\}$

Properties of Relations

Reflexive If $\forall a \in A, R(a, a)$. (antireflexive: $\forall a \in A, \neg R(a, a)$)

Symmetric If $\forall a, b \in A, R(a, b) \iff R(b, a)$. (antisymmetric: $\forall a, b \in A, R(a, b) \cap R(b, a) \implies a = b$)

Transitive If $\forall a, b, c \in A, R(a, b) \cap R(b, c) \implies R(a, c)$.

dgic Sets **Relations** Induction Proops Counting Invariants Prog. Correctness Recurrences Graphs

RELATIONS

Definition

A relation between sets *A* and *B* is a defined subset of $A \times B$. Ex: $R = \{(x, y) \mid x \neq y\}$

Properties of Relations

Reflexive If $\forall a \in A, R(a, a)$. (antireflexive: $\forall a \in A, \neg R(a, a)$)

Symmetric If $\forall a, b \in A, R(a, b) \iff R(b, a)$. (antisymmetric: $\forall a, b \in A, R(a, b) \cap R(b, a) \implies a = b$)

Transitive If $\forall a, b, c \in A, R(a, b) \cap R(b, c) \implies R(a, c)$.

Types of Relations

- Equivalence Relations: reflexive, symmetric, and transitive.
- Order Relations: antisymmetric and transitive.
- Functions

FUNCTIONS

Definition

 $f: A \rightarrow B$ is a function from A to B. That is for every $a \in A$ there is at most one $b \in B$.

Ex.
$$f(x) = y + 1$$
 for $x, y \in \mathbb{R}$.

FUNCTIONS

Definition

 $f: A \rightarrow B$ is a function from A to B. That is for every $a \in A$ there is at most one $b \in B$.

Ex. f(x) = y + 1 for $x, y \in \mathbb{R}$.

Terminology

- **Domain**: The values of *A*.
- Range / Codomain: The values of B

ogic Sets **Relations** Induction Proofs Counting Invariants Prog. Correctness Recurrences Graphs

FUNCTIONS

An injective non-surjective function (injection, not a **bijection**)

An injective surjective function (bijection)

A non-injective surjective function (surjection, not a **bijection**)

A non-injective non-surjective function (also not a bijection)

Types of Functions

- one-to-one / injective
- onto / surjective
- bijection (both onto and one-to-one)

Induction

What is induction?

- The most important proof technique in discrete math and CS.
- It proves that P(n) holds for every natural number n, i.e., $n = 0, 1, 2, 3, \dots$

dgic Sets Relations **Induction** Proofs Counting Invariants Prog. Correctness Recurrences Graphs

Proof by Induction

What is induction?

- The most important proof technique in discrete math and CS.
- It proves that P(n) holds for every natural number n, i.e., $n = 0, 1, 2, 3, \dots$

Induction Formula

- **Step 1** State the induction hypothesis.
- **Step 2** Show that the induction hypothesis holds for the base case(s).
- **Step 3** Assume hypothesis is true for k, show that it holds for k + 1.

Induction Formula

- **Step 1** State the induction hypothesis.
- **Step 2** Show that the induction hypothesis holds for the base case(s).
- **Step 3** Assume hypothesis is true for k, show that it holds for k + 1.

Special Types of Induction

- Strong induction: we assume true for 1 to *k* instead of just *k*.
- Structural induction: we are reasoning about a structure that we map to the natural numbers.

Induction Formula

- **Step 1** State the induction hypothesis.
- **Step 2** Show that the induction hypothesis holds for the base case(s).
- **Step 3** Assume hypothesis is true for k, show that it holds for k + 1.

Induction Exercises

• Show $\sum_{1}^{n} 2^{n} = 2^{n+1} - 2$.

Induction Formula

- **Step 1** State the induction hypothesis.
- **Step 2** Show that the induction hypothesis holds for the base case(s).
- **Step 3** Assume hypothesis is true for k, show that it holds for k + 1.

Induction Exercises

- Show $\sum_{1}^{n} 2^{n} = 2^{n+1} 2$.
- Show, for n > 5, $4n < 2^n$.

Definition

A proof of a proposition P is a chain of logical deductions ending in P and starting from some set of axioms.

Definition

A proof of a proposition *P* is a chain of logical deductions ending in *P* and starting from some set of axioms.

Types (other than induction)

Proof by Picture Actually not valid!

Definition

A proof of a proposition *P* is a chain of logical deductions ending in *P* and starting from some set of axioms.

Types (other than induction)

Direct Proof Series of implications.

Definition

A proof of a proposition *P* is a chain of logical deductions ending in *P* and starting from some set of axioms.

Types (other than induction)

Direct Proof Series of implications.

Indirect Proof (Contrapositive) To show $P \implies Q$, we show that $\neg Q \implies \neg P$.

PROOFS

Definition

A proof of a proposition *P* is a chain of logical deductions ending in *P* and starting from some set of axioms.

Types (other than induction)

Direct Proof Series of implications.

Indirect Proof (Contrapositive) To show $P \implies Q$, we show that $\neg Q \implies \neg P$.

If and only if $P \iff Q$ means proving $P \implies Q$ and $Q \implies P$.

ogic Sets Relations Induction **Proofs** Counting Invariants Prog. Correctness Recurrences Graphs

Proofs

Definition

A proof of a proposition *P* is a chain of logical deductions ending in *P* and starting from some set of axioms.

Types (other than induction)

Direct Proof Series of implications.

Indirect Proof (Contrapositive) To show $P \implies Q$, we show that $\neg Q \implies \neg P$.

If and only if $P \iff Q$ means proving $P \implies Q$ and $Q \implies P$.

Proof by Contradiction Assume claim is not true, and derive a contradiction.

ogic Sets Relations Induction **Proofs** Counting Invariants Prog. Correctness Recurrences Graphs

Proofs

Definition

A proof of a proposition *P* is a chain of logical deductions ending in *P* and starting from some set of axioms.

Types (other than induction)

Direct Proof Series of implications.

Indirect Proof (Contrapositive) To show $P \implies Q$, we show that $\neg Q \implies \neg P$.

If and only if $P \iff Q$ means proving $P \implies Q$ and $Q \implies P$.

Proof by Contradiction Assume claim is not true, and derive a contradiction.

Proof by Cases (Brute Force / Exhaustion) Split into cases and prove separately for each case.

Counting

COUNTING

Basic Techniques

- *k*-to-1 Rule: Is there a *k* to 1 ratio between 2 sets?
- Sum Rule: Combine disjoint sets; add cardinality.
- Product Rule: Cartesian product of sets; multiply cardinality.

Counting

Basic Techniques

- *k*-to-1 Rule: Is there a *k* to 1 ratio between 2 sets?
- Sum Rule: Combine disjoint sets; add cardinality.
- Product Rule: Cartesian product of sets; multiply cardinality.

Perms and Comb

- *k*-Permutation: *k*!
- *r*-Permutation of *n* items: ${}_{n}P_{r} = P(n,r) = \frac{n!}{(n-r)!}$
- *r*-Combination of *n* items: ${}_{n}C_{r} = C(n,r) = \frac{n!}{r!(n-r)!}$

Counting

Basic Techniques

- *k*-to-1 Rule: Is there a *k* to 1 ratio between 2 sets?
- Sum Rule: Combine disjoint sets; add cardinality.
- Product Rule: Cartesian product of sets; multiply cardinality.

Perms and Comb

- *k*-Permutation: *k*!
- *r*-Permutation of *n* items: ${}_{n}P_{r} = P(n,r) = \frac{n!}{(n-r)!}$
- *r*-Combination of *n* items: ${}_{n}C_{r} = C(n,r) = \frac{n!}{r!(n-r)!}$

Pigeonhole Principal

If n pigeons are placed into m holes, and n > m, then at least one hole has more than one pigeon.

INVARIANTS

Invariants

Definition

• A property of a system that holds after every step.

Invariants

Definition

- A property of a system that holds after every step.
- Often critical to showing program correctness.

Invariants

Definition

- A property of a system that holds after every step.
- Often critical to showing program correctness.

Robot Exercise

Suppose we have a robot which walks on a 2-dimensional grid. The rows and columns of the grid are labelled by integers. Our robot starts at position (0,0), and can only move diagonally, one square at a time. Can we get to (8,9)? Why or why not?

Program Correctness

Program Correctness

Definition

A program/algorithm is correct if it is:

- Partial correctness/correct/sound (any returned value is true), and
- **Termination/complete** (returns a value for all valid inputs).

Program Correctness

Definition

A program/algorithm is correct if it is:

- Partial correctness/correct/sound (any returned value is true), and
- Termination/complete (returns a value for all valid inputs).

Proving correctness

- Requires 2 proofs (one for soundness and one for completeness).
- Often requires identifying invariants and induction.

RECURRENCES

RECURRENCES

Definition

An inductive (or recursive) definition of a sequence.

RECURRENCES

Definition

An inductive (or recursive) definition of a sequence.

Methods for Solving Recurrences

- Guess Method / Recurrence Tree
- Unwind
- Master Theorem

RECURRENCES

Definition

An inductive (or recursive) definition of a sequence.

Methods for Solving Recurrences

- Guess Method / Recurrence Tree
- Unwind
- Master Theorem

Exercises

Assume T(1) = 1 for all.

- T(n) = T(n/2) + 1
- T(n) = T(n/2) + n
- T(n) = 3T(n/3) + n

GRAPHS AND TREES

Definition

A graph G is a pair G = (V, E), where V is a set of vertices/nodes and E is a set of edges/arcs connecting a pair of vertices. That is, $E \in V \times V$.

Definition

A graph G is a pair G = (V, E), where V is a set of vertices/nodes and E is a set of edges/arcs connecting a pair of vertices. That is, $E \in V \times V$.

Some Special Graphs

• Complete graph (K_4)

Definition

A graph G is a pair G = (V, E), where V is a set of vertices/nodes and E is a set of edges/arcs connecting a pair of vertices. That is, $E \in V \times V$.

- Complete graph (K_4)
- Cycle (*C*₄)

Definition

A graph G is a pair G = (V, E), where V is a set of vertices/nodes and E is a set of edges/arcs connecting a pair of vertices. That is, $E \in V \times V$.

- Complete graph (*K*₄)
- Cycle (*C*₄)
- Path (*P*₄)

Definition

A graph G is a pair G = (V, E), where V is a set of vertices/nodes and E is a set of edges/arcs connecting a pair of vertices. That is, $E \in V \times V$.

- Complete graph (K_4)
- Cycle (C_4)
- Path (P_4)
- Trees

GRAPHS

Definition

A graph G is a pair G = (V, E), where V is a set of vertices/nodes and E is a set of edges/arcs connecting a pair of vertices. That is, $E \in V \times V$.

Some Special Graphs

- Complete graph (K_4)
- Cycle (C_4)
- Path (P_4)
- Trees

Digraph

GRAPHS

Definition

A graph G is a pair G = (V, E), where V is a set of vertices/nodes and E is a set of edges/arcs connecting a pair of vertices. That is, $E \in V \times V$.

- Complete graph (*K*₄)
- Cycle (*C*₄)
- Path (P_4)
- Trees

- Digraph
- Directed Acyclic Graph (DAG)

GRAPHS

Definition

A graph G is a pair G = (V, E), where V is a set of vertices/nodes and E is a set of edges/arcs connecting a pair of vertices. That is, $E \in V \times V$.

- Complete graph (K₄)
- Cycle (*C*₄)
- Path (P_4)
- Trees

- Digraph
- Directed Acyclic Graph (DAG)
- Bipartite

GRAPHS

Definition

A graph G is a pair G = (V, E), where V is a set of vertices/nodes and E is a set of edges/arcs connecting a pair of vertices. That is, $E \in V \times V$.

- Complete graph (K_4)
- Cycle (*C*₄)
- Path (P_4)
- Trees

- Digraph
- Directed Acyclic Graph (DAG)
- Bipartite
- Forests

Representations

• Adjacency matrix: |V| by |V| matrix with a 1 if nodes are adjacent.

Representations

- Adjacency matrix: |V| by |V| matrix with a 1 if nodes are adjacent.
- Adjacency list: For each node, list adjacent nodes.

Representations

- Adjacency matrix: |V| by
 |V| matrix with a 1 if nodes are adjacent.
- Adjacency list: For each node, list adjacent nodes.
- Edge list: List of all node pairs representing the edges.

Representations

- Adjacency matrix: |V| by |V| matrix with a 1 if nodes are adjacent.
- Adjacency list: For each node, list adjacent nodes.
- Edge list: List of all node pairs representing the edges.
- Incidence matrix: |V| by |E| matrix with a 1 if node is incident to the edge.

TREES

Definition

- A connected graph without cycles.
- A single node may be designated as the *root* of the tree.
- Any node with degree 1 that is not the root is a *leaf*.

TREES

Definition

- A connected graph without cycles.
- A single node may be designated as the *root* of the tree.
- Any node with degree 1 that is not the root is a *leaf*.

Properties of a tree *T*

- If $|V| \ge 2$, (unrooted) T has at least 2 leaves.
- For all nodes *u* and *v*, there exists one path between them in *T*.
- **3** |V| = |E| + 1 for $|V| \ge 1$.

TREES

Definition

- A connected graph without cycles.
- A single node may be designated as the *root* of the tree.
- Any node with degree 1 that is not the root is a *leaf*.

Properties of a tree *T*

- If $|V| \ge 2$, (unrooted) T has at least 2 leaves.
- 2 For all nodes *u* and *v*, there exists one path between them in *T*.
- **3** |V| = |E| + 1 for $|V| \ge 1$.

TopHat 6

Is P_{10} a tree?

Appendix Reference:

Appendix

Appendix References

REFERENCES

PPENDIX REFERENCES

IMAGE SOURCES I

WISCONSIN https://brand.wisc.edu/web/logos/

https://en.wikipedia.org/wiki/Bijection