Bring Flow Cells!

HTS Background and Theory

Josh Granek

Molecular Biology

http://www.geograph.org.uk/photo/2847164 https://commons.wikimedia.org/wiki/File:Pcr.jpg

Bioinformatic Analysis

@M00698:36:000000000-AFBEL:1:1101:14738:1412 1:N:0:0

TTACGCTAACAGGCGGTAGCCTGGCAGGGTCAGGAAATCAATTAACTCATCGGAAGTGGTGATCTGTTCCATCAAGCGTGCGGCATCGTCAAAACGCCC

ABBBABBBAFFFGGGGGGGGGGGGGGGCG2GF3FFGHHHHHHGGFGHEHHGGGEHHHHAGGHHGHHHFFDHFHHHGEGGGG@F@H?GHH/GBEFGGG @M00698:36:000000000-AFBEL:1:1101:16483:1412 1:N:0:0

CTGCCAGTTGAACGACGGCGAGCAGTTATAAGCCAGCAGTTTGCCCGGATATTTCGCGTGGATAGCTTGTGCAAAGCGACGCCAGTTCCAGATCCGGCG

GTAAAGTCCTGAGTGATACCGGCAACTTTTACCCCCAGTCCCACTTTCGAACCGGCAAACATATCGGCAAAAGAGGCCGTGCCTGATTTAAAGCCGTAGGT

+

	Sample 1	Sample 2	 Sample N
Bacteria 1			
Bacteria 2			
Bacteria N			

Statistical Analysis

	Sample 1	Sample 2	 Sample N
Bacteria 1			
Bacteria 2			
Bacteria N			

- I. What is present?
- 2. How much?

- 3. Are there differences between treatments, host species, ...?
- 4. What are the differences?

Molecular Biology

http://www.geograph.org.uk/photo/2847164 https://commons.wikimedia.org/wiki/File:Pcr.jpg

Molecular Biology

PCR

https://www.genome.gov/ images/content/ pcr_factsheet.jpg

Sanger Sequencing

DNA Synthesis

 What are the minimum components for DNA Replication?

DNA Synthesis

- What are the minimum components for DNA Replication?
 - Template
 - Primer
 - Nucleoside triphosphates
 - DNA Polymerase*

DNA Synthesis

Sanger Sequencing

Sanger Sequencing

5464 Biochemistry: Sanger et al.

Proc. Natl. Acad. Sci. USA 74 (1977)

Dye-terminator

PCR in presence of fluorescent, chain-terminating nucleotides

Fluorescent fragments detected by laser and represented on a chromatogram

Radiolabel vs. Dye

High-Throughput Sequencing

AGCTTTTCATTCTGACTGCAACGGGCAATATGTCTCTGTGTGGA

Dye-terminator Sanger Sequencing

Double Sequence

How?

How?

- Separate
- Detect
- Removable Terminator

Template immobilization

a Roche/454, Life/APG, Polonator Emulsion PCR

One DNA molecule per bead. Clonal amplification to thousands of copies occurs in microreactors in an emulsion

Billions of primed single-molecule templates

d Helicos BioSciences: two-pass sequencing Single molecule: template immobilized

Billions of primed, single-molecule templates

Thousands of primed, single-molecule templates

A Flow Cell

Pass Around Flow Cells!!!

SBS: Sequencing by Synthesis

An Illumina Story

A Flow Cell

Bind Library

50th Cycle

GAATTCTAAAACAGTTGCATTCTATAATTACAAAATAATTGAAACACTTC

Illumina Short Reads

• 50 - 300bp

Hybridization

5'-CTGATCTGACTGATGCGTATGCTAGT-3'

+

3'-GCATAC-5'

=

5'-CTGATCTGACTGATGCGTATGCTAGT-3'
3'-GCATAC-5'

Library Preparation

Why Adapters?

DNA Synthesis

 What are the minimum components for DNA Replication?

DNA Synthesis

- What are the minimum components for DNA Replication?
 - Template
 - Primer
 - Nucleoside triphosphates
 - DNA Polymerase*

DNA Synthesis

Why Adapters?

- Universal Priming Sites
 - Sequencing Primers
 - PCR Primers
- Hybridization to Flow Cell
- (more to come)

Additional Sequencing Details

bases
50 ----


```
bases
50 →
100 →
```



```
bases
50 →
100 →
150 →
```


Paired-End

Paired-End

AGCTTTTCATTCTGACTGCAACGGGCAATATGTCTCTGTGTGGA GACACACCT

bases
50 ----


```
bases
50 →
100 →
```



```
bases
50 →
100 →
150 →
```


bases

bases
50 ----

bases
50 →
100 →


```
bases
50 →
100 →
150 →
```


Barcodes: Why?

Multiplexing: Combine multiple samples in a lane

Barcodes

Barcodes

Sample_Name	I7_Index_ID	index
1_A	P49-E1	AAGACCGT
2_A	P50-E2	TTGCGAGA
3_A	P51-E3	GCAATTCC
4_A	P52-E4	GAATCCGT
5_A	P53-E5	CCGCTTAA
6_A	P54-E6	TACCTGCA
7_B	P55-E7	GTCGATTG
8_B	P56-E8	TATGGCAC
9_B	P57-E9	CTCGAACA
10_B	P58-E10	CAACTCCA

Multiplexing (Barcodes)

STRUCTURE DETAILS

MiSeq, NextSeq, and More Seqs

	MiSeq	NextSeq	HiSeq 4000	NovaSeq 6000
Maximum Output	15 Gb	120 Gb	750 Gb	3000 Gb
Maximum Reads per Run	25 million	400 million	2.5 billion	10 billion
Maximum Read Length	2 × 300 bp	2 x 150 bp	2 × 150 bp	2 × 150 bp
Run Time	4-56 hours	15-29 hours	< 1–3.5 days	13-45 hours
Cost*	\$1,787	\$4,695	\$19,206	\$35,538
Cost/Mbp*	\$0.119	\$0.039	\$0.026	\$0.012

^{*} Duke Sequencing and Genomic Technologies Shared Resource, July 2018

1st Generation	2nd Generation	3rd Generation
Chemical (Maxim-Gilbert)	Pyrosequencing (454)	Single molecule real time (PacBio)
Chain Termination (Sanger)	Chain Termination (Illumina)	Nanopore sequencing (Oxford Nanopore)
Pyrosequencing	Sequencing by ligation (SOLiD sequencing)	
	Ion semiconductor (Ion Torrent)	

Illumina Video

https://www.youtube.com/watch?v=HMyCqWhwB8E

Patterned Flow Cells

- ExAmp
- Machines
 - HiSeq X
 - HiSeq 3000/4000
 - NovaSeq 6000

4-Channel Chemistry

2-Channel Chemistry

