NeuroKit2 MANUAL

La caja de herramientas de Python para el procesamiento de señales neurofisiológicas

GENERALIDADES

¿ QUÉ ES?

Este paquete es una herramienta fácil de utilizar que ofrece acceso simplificado a potentes rutinas para el procesamiento de bioseñales. Está diseñado para que tanto investigadores como clínicos sin experiencia avanzada en programación o en técnicas de procesamiento de bioseñales puedan analizar datos fisiológicos de manera eficiente

¿CÓMO SE UTILIZA?

1. Abre la terminal donde se desarrollará el trabajo e instala la libreria.

pip install neurokit2

2. En cada script de Python importa el modulo.

import neurokit2 as nk

TABLA DE LIBRO DE CODIGOS

Detalla los códigos que puedes usar para calcular las variables necesarios en el procesamiento de señales, en este caso ECG. Se puede descargar acá

https://neuropsychology.github.io/NeuroKit/_static/neurokit_code book.csv

se observa de esta manera:

Nombre del campo	Descripción del campo	Categoría de campo	Nombre del archivo de origen
ECG_Raw	La señal sin procesar.	Electrocardiografía	ecg_process.py
ECG_Clean	La señal limpia.	Electrocardiografía	ecg_process.py
ECG_Rate	Frecuencia cardíaca interpolada entre picos R.	Electrocardiografía	ecg_process.py

PROCEDMIENTO PARA LOCALIZACIÓN DE LAS ONDAS PQS Y T

Este ejemplo enseña cómo utilizar NeuroKit en Python para identificar y localizar los diferentes componentes del complejo QRS en una señal de ECG, incluyendo los picos P y T, y sus inicios y finales. El proceso es el siguiente:

1. Se cargan las librerías, la primera para el procesamiento y análisis de señales fisiológicas, la segunda para realizar operaciones matemáticas y la tercera para el análisis de datos estructurados

```
import neurokit2 as nk
import numpy as np
import pandas as pd
```

2. Se carga la señal ECG de interés, en este caso, una señal de ECG de fibrilación auricular con una frecuencia de muestreo de 500Hz llamada señal_ecg

PROCESAMIENTO DE LA SEÑAL

1. Se aplica la función ecg_peaks() para visualizar los picos R

ECG_PEAKS

Detecta los picos R en una señal de ECG usando el método especificado. Como entrada, se recomienda usar una señal filtrada para mejores resultados y la frecuencia de muestreo. Devuelve un diccionario que contiene las muestras en las que se encuentran los picos R.

SINTAXIS

2. Se seleccionan los primeros 5 picos R con el fin de verificar su correcta detección y asegurarse de que coincidan con las características esperadas de la señal cardíaca.

3. Se aplica la función ecg_delineate y se grfican los tres primeros picos

ECG_DELINEATE

Delinea (es decir, identifica y segmenta) las diferentes ondas del ciclo cardíaco en una señal de ECG, específicamente el complejo QRS. Se le ingresa una señal ECG limpia, las muestras en las que se producen picos R y la frecuencia de muestreo. Devuelve un diccionario con información de los picos y un DataFrame en la que se producen picos marcados como "1" en una lista de ceros.

4. Existe otra alternativa para tener una mejor visión general de todos los picos a la vez, esto se hace por medio del argumento *show* en la misma función delineate()

EEn la gráfica se puede observar la ausencia de la onda P, lo cual es característico de la fibrilación auricular, ya que esta onda tiende a ocultarse en este trastorno.

5. Si se desea identificar los limites de las ondas se puede variar el argumento show_type, es decir el incio de los picos P y el desplazamiento de los picos T

```
(señal_ecg,
  rpeaks,
  sampling_rate=500,
  method="peak",
  show=True,
  show_type='bounds_T')
```


6. Existen tres métodos de visualización de las ondas, anteriormente, se utilizó "peaks", veamos los demás métodos "CWT" y "CWD"

Para realizar el método de ondiculas continuas y el método de Wavelet discreto es necesario instalar la biblioteca *PyWavelets*

pip install PyWavelets

7. Se utiliza nuevamente la función *delineate()*, pero en este caso la parte *method* se reemplza por "cwt" o "cwd" dependiendo si es continua o discreta. El comando 'all' en show_type permite visualizar todos los picos con sus entradas y salidas.

```
signal_cwt, waves_cwt = nk.ecg_delineate(señal_ecg,
                                                        rpeaks,
                                                        sampling rate=500,
                                                        method="cwt",
                                                        show=True,
                                                        show type='all')
                 600
                                                          ECG_P_Onsets
                                                          ECG_P_Peaks
                                                          ECG_P_Offsets
                                                          ECG_Q_Peaks
                 400
                                                          ECG_R_Onsets
                                                          ECG_R_Offsets
                                                          ECG_S_Peaks
                200
                                                          ECG_T_Onsets
                                                          ECG_T_Peaks
                                                          ECG_T_Offsets
                  0
                -200
                            -0.2
                                      0.0
                                                 0.2
```

8. En estos métodos, se varía el argumento show_type si se quiere identificar los picos "picks" y los limites de las ondas "bounds_R", "bounds_T" y "bounds_P"

Como se puede evidenciar, Neurolink es una herramienta diseñada para facilitar la identificación, análisis y procesamiento de señales ECG. Sus funciones intuitivas permiten a los usuarios, tanto principiantes como expertos, acceder a potentes algoritmos de procesamiento que ayudan a la detección de patrones y la extracción de características importantes.

