다변량 자료의 탐색

별그림 (Star Chart, Spider Chart)

- 중점: 축이 나타내는 최소값
- 가장 먼 끝은 최대값

별그림 (Star Chart, Spider Chart)

나이팅게일 차트

체르노프페이스

열 번호에 따라 아래 순서대로 대응되는 특징

- 얼굴 길이
- 얼굴너비
- 얼굴 윤곽
- 입의 높이
- 입의 너비
- 입모양
- 눈의 높이
- 눈의 너비
- 머리카락 높이
- 머리카락 너비
- 머리카락 모양
- 코의 높이
- 코의 너비
- 귀의 너비
- 귀의 높이

체르노프페이스

library(aplpack)
faces(crime[,2:8])

평행좌표플롯 (parallel coordinate plot)

평행좌표플롯 (parallel coordinate plot)

 reading을 기준으로 상위 50% 선으로 나누어 상위 50%와 하위 50%를 다른 색으로 구분

평행좌표플롯 (parallel coordinate plot)

• dropout_rate(중퇴율)을 기준으로 상위 25%를 다른 색으로 표시

주성분 분석

Principal Component Analysis

주성분 분석

- 본래의 변수들의 변이를 적은 수의 변환된 변수로 설명
- 무수히 많은 선형결합 가운데에서 그 중 가장 높은 설명력을 가지는 선형결합 형태
- 측정변수는 줄지않고 설명요인으로 묶임
- 목적
 - 차원 축약 (Dimension reduction)
 - 회귀분석. 군집분석 등에서 변수를 제거하기 위한 분석으로 사용
 - 자료탐색
 - 이상치 판별
 - 자료의 그룹화

주성분 분석의 원리

Good

Better

주성분 분석의 원리

- First PC is direction of maximum variance from origin
- Subsequent PCs are orthogonal to 1st PC and describe maximum residual variance

주성분 분석의 이해

- 확률벡터 $\boldsymbol{x} = (x_1, \dots, x_p)^T$
- 평균 μ, 공분산 행렬 Σ
- 공분산 행렬을 spectral decomposition

$$\Sigma = \Gamma \Lambda \Gamma^T = \sum_i \lambda_i \gamma_i \gamma_i^T$$

- Γ : eigenvector(γ_i)로 이루어진 직교행렬
- Λ:eigenvalue로 이루어진 대각행렬

주성분 분석의 이해

PCA에서 의 고려사항

■PCA에서 의 고려사항

- ■상관 행렬과 공분산 행렬 중 어느것을 선택할 것인가?
- ■주성분의 개수를 몇 개로 할 것인가?
- ■주성분에 영향을 미치는 변수는 어떤 변수를 택할 것인가?

■주성분 개수 결정(주성분을 결정하는 기준)

- ■고유치가 1보다 클 것 (상관계수 이용의 경우)
- ■주성분의 설명력이 원자료 변량의 80-90%이상 설명할 수 있을 것
- ■고유치를 그래프로 그려 급격히 감소하기 전까지 선택(Scree Analysis)
- ■주성분에 대한 해석이 가능할 것

Scree Plot

- 각 주성분의 분산을 그래프로 표현
- 주성분 수를 늘렸을 때 설명되는 분산의 증가량 시각화

plot(model)

행렬도 (Biplot)

- x축: 각 관찰치의 PC1의 값
- y축: 각 관찰치의 PC2의 값
- 벡터와 축의 각의 cosine: 변수가 해당 PC에 기여한 정도
- 두 벡터가 이루는 각의 cosine: 두 변수의 상관
- 벡터 길이의 제곱: 변수의 분산

주성분과 공변량 관계 탐색

pairs(cbind(predict(model)[,1:2],data.r[,57:59]))

예: 2014년 한국 프로야구

예: 2014년 한국 프로야구

