Integer Factorization Reading: Introduction Reading: Prime Numbers Practice Quiz: Puzzle: Arrange 2 questions

Reading: Factoring: Existence

Reading: Factoring: Uniqueness

Reading: Unique Factoring: Consequences

Quiz: Integer Factorization

6 questions

Chinese Remainder Theorem Modular Exponentiation

Prime Numbers

You can easily arrange 12 apples in three rows and four columns:

This is possible because 3 imes 4=12 or, in other words, because 12 can be represented as a product of two smaller numbers, 3 and 4. But the same idea does not work for 13 apples: either the table will consist of only one row or column, or some cells will be missing an apple.

Stop and think! Why? What happens for other numbers, say, 20, 21, 22, or 23?

The difference is that 12,20,21, and 22 are all $\emph{composite}$ numbers and can be represented as the product of two smaller numbers (sometimes in many different ways):

 $12 = 2 \times 6 = 3 \times 4 = 4 \times 3 = 6 \times 2$ $20 = 2 \times 10 = 4 \times 5 = 5 \times 4 = 10 \times 2$

21=3 imes7=7 imes3

 $22=2\times 11=11\times 2$

Note that we do not include "trivial" decompositions like 21=1 imes21 (a rectangle with one row or one column). On the other hand, 23 does not have any "non-trivial" decompositions (only 1 imes 23 and 23 imes 1), meaning it is *prime*.

Definition

A *prime* number is a positive integer p>1 that cannot be represented as the product of two smaller positive integers.

Stop and think! We previously defined the notion of a *divisor*. Using it, could you finish the statement: "A number p>1 is prime if it does not have. . . "?

A number p>1 is prime if it does not have positive integer divisors except for 1 and p. Indeed, if m=uv is composite where u and v are non-trivial divisors, then u and v are both smaller than m, making it impossible for either one to be equal to 1. And if a number m>1 has some non-trivial divisor d, then for some positive integer q we must have m=dq by the definition of a divisor, and neither d nor q can be equal to 1, so both must be smaller than

Stop and think! Is 1 a prime number?

It is tempting to guess that 1 is prime since it cannot be expressed as the product of smaller positive integers (there are no smaller positive integers to pick from!). Still, our definition explicitly requires p>1 for a prime, so 1 is not considered a prime number (nor is it considered composite). But this is just a decision that most mathematicians agree with, not a theorem. (See, for example, this long <u>stackexchange</u> discussion.)

Problem

Show that a composite number m has a divisor d such that $1 < d \leq \sqrt{m}$.

Solution

For a decomposition m=uv , we know that both divisors are greater than 1 (if u or v were equal to 1 , the other would have to be equal to m, but both are smaller). Now, suppose both u and v did exceed \sqrt{m} : then their product would exceed $\sqrt{m\cdot\sqrt{m}}=m$. Thus, at least one must be less than or equal to \sqrt{m} , satisfying the existence of d as described.

This problems shows that it is not necessary to check every possible number between 1 and m in search of a divisor if we want to check whether m is prime. It is enough to check the numbers that do not exceed \sqrt{m} : if there are no divisors among them, then m must be prime.

```
1 # Finds the smallest divisor>1 of the given integer m>1
  2 def min_divisor(m):
           for d in range(2, m + 1):
              if m % d == 0:
                  return d
              # optimization:
               if d * d > m:
                   return m
       for i in range (2, 25):
           divisor = min_divisor(i)
           print(f'\nThe smallest divisor of {i} is {divisor}', end='')
  14
               print(f' (hence, {i} is prime)', end='')
  15
The smallest divisor of 2 is 2 (hence, 2 is prime)
The smallest divisor of 3 is 3 (hence, 3 is prime)
The smallest divisor of 4 is 2
```

The smallest divisor of 5 is 5 (hence, 5 is prime) The smallest divisor of 6 is 2 The smallest divisor of 7 is 7 (hence, 7 is prime) The smallest divisor of 8 is 2 The smallest divisor of 9 is 3 The smallest divisor of 10 is 2 The smallest divisor of 11 is 11 (hence, 11 is prime) The smallest divisor of 12 is 2 The smallest divisor of 13 is 13 (hence, 13 is prime) The smallest divisor of 14 is 2 The smallest divisor of 15 is 3 The smallest divisor of 16 is 2 The smallest divisor of 17 is 17 (hence, 17 is prime) The smallest divisor of 18 is 2 The smallest divisor of 19 is 19 (hence, 19 is prime) The smallest divisor of 20 is 2 The smallest divisor of 21 is 3 The smallest divisor of 22 is 2 The smallest divisor of 23 is 23 (hence, 23 is prime) The smallest divisor of 24 is 2

The function $\min_{\mathbf{divisor}}(\mathbf{m})$ is applied to an integer $\mathbf{m}>1$ } and returns the smallest divisor of \mathbf{m} (not counting 1). It tests all $d \in \{2, \dots, m\}$ (note that in python, range(a, b) includes a, but not b) until a divisor is found. It will return m if there are no other divisors, i.e. if m is prime. The last two lines of this function take advantage of the

optimization mentioned above: if **d** is too large (exceeding \sqrt{m} , which is true when d*d>m), then we know that **m** is prime and return **m** immediately.

```
1 The minimal divisor of 2 is 2 (hence, 2 is prime)
2 The minimal divisor of 3 is 3 (hence, 3 is prime)
3 The minimal divisor of 4 is 2
4 The minimal divisor of 5 is 5 (hence, 5 is prime)
5 The minimal divisor of 6 is 2
 6 The minimal divisor of 7 is 7 (hence, 7 is prime)
7 The minimal divisor of 8 is 2
 8 The minimal divisor of 9 is 3
9 The minimal divisor of 10 is 2
10 The minimal divisor of 11 is 11 (hence, 11 is prime)
11 The minimal divisor of 12 is 2
12 The minimal divisor of 13 is 13 (hence, 13 is prime)
13 The minimal divisor of 14 is 2
14 The minimal divisor of 15 is 3
15 The minimal divisor of 16 is 2
16 The minimal divisor of 17 is 17 (hence, 17 is prime)
17 The minimal divisor of 18 is 2
18 The minimal divisor of 19 is 19 (hence, 19 is prime)
19 The minimal divisor of 20 is 2
20 The minimal divisor of 21 is 3
21 The minimal divisor of 22 is 2
22 The minimal divisor of 23 is 23 (hence, 23 is prime)
23 The minimal divisor of 24 is 2
```

In the output you may easily recognize prime numbers (rows with two identical numbers).

The following example shows a function that returns an ordered list of the first n primes:

```
1 # Finds the minimal divisor>1 of the given integer m>1
  2 def min_divisor(m):
          for d in range(2, m + 1):
              if m % d == 0:
                  return d
              # optimization:
              if d * d > m:
                  return m
       def is_prime(m):
           return m == min_divisor(m)
  12
  13
  14
  15
       def primes_list(n):
  16
          lst = []
  17
           boundary = 2
           # primes < boundary are in lst</pre>
  18
           while len(lst) < n:</pre>
              if is_prime(boundary):
  20
  21
                 lst.append(boundary)
  22
              boundary += 1
  23
  24
           return 1st
  25
  26
  27 print('The first ten primes:')
                                                                                   Run
  28 print(primes_list(10))
The first ten primes:
[2, 3, 5, 7, 11, 13, 17, 19, 23, 29]
```

We store in 1st the list of all the primes smaller than boundary; initially boundary is 2 and 1st is empty. Then, while ${ t lst}$ is not yet long enough, we increase ${ t boundary}$ by 1 after updating the list (appending the old value of boundary if it was prime).

```
1 The first ten primes:
2 [2, 3, 5, 7, 11, 13, 17, 19, 23, 29]
```