Programming Project 2

Task 1:

Note: Lambda = 0 has been omitted from the graphs for visibility purposes

	Optimal Lambda	Resulting MSE	
100-10	8	4.159678509482877	
100-100	22	5.078299800593872	
1000-100	27	4.315570630318436	
forest_fire	150	244.36480655282236	
real_estate	0	52.00475385468231	
50(1000)-100	8	5.5409022291854075	
100(1000)-100	19	5.205911957333213	
150(1000)-100	23 4.848943053347755		

From the above graphs, it can be clearly seen that the training mean squared error is strictly increasing with respect to lambda in all eight graphs. This makes sense, because the error is being calculated on the same data used to train the regression model, so no regularization will produce optimal MSE. It is for this reason that the training data cannot be used to do model selection on the regularization parameter.

The first three graphs have optimal lambda values of 8, 22, and 27 with resulting test MSE values of 4.16, 5.08 and 4.32, only slightly above the true MSE values of 3.78, 3.78 and 4.015 respectively. From these numbers, two conclusions can be drawn. Firstly, to achieve a low MSE, the number of examples must outnumber the number of features. In other words, as the ratio of examples to features increases, the MSE decreases. Secondly, as the size of the problem increases, the more regularization is needed to produce optimal MSE. The last three graphs corroborate these conclusions because as the number of examples, and thereby the ratio of examples to features, increases, the MSE also decreases. Furthermore, as the size of the data set increases, the more regularization is needed, as the optimal lambda values are 8, 19 and 23 respectively.

The forest fire and real estate graphs show that no amount of parameter optimization will cause a data set that does not fit a linear regression to be modeled appropriately by a linear regression.

Task 2:

	Optimal Lambda	Resulting MSE	
100-10	5	5.92969408967808	
100-100	41	7.869193641231156	
1000-100	150	4.50562444416904	
forest_fire	150	244.36480655282236	
real_estate	150	61.00199308221777	
50(1000)-100	25	13.432009521283886	
100(1000)-100	42	7.420858413999264	
150(1000)-100	56	5.812422230099203	

In general, the optimal lambda values found using 10 fold cross validation on the training data are larger than the optimal lambda values found using the test data, with the exception of the 100-10 data set. Additionally, the MSE from cross validation is larger than the MSE from test data for all data sets. I propose that this occurs because the number of examples used for testing in 10 fold cross validation is 1/10 of the number of examples used for testing when an entire test set is used.

If we assume that calculating MSE is $O(n^2)$ where n is the larger dimension of the data matrix, then model selection of lambda for using l values and f fold cross validation, then the time complexity is $O(lfn^2)$. Increasing the number of examples, number of features, number of l values, and number of folds will all increase the time complexity, however only increasing the number of examples and number of l values can improve the quality of the model selection, while increasing number of features and number of folds will decrease the quality of the model selection.

Task 3:

	Optimal Alpha	Optimal Beta	Resulting MSE
100-10	11273999.411778929	0.0009183573231667	13.431120335707789
100-100	0.2019101166585637	0.0006936584682662	16.75844768504774
1000-100	0.2188095449302109	.00007554936025004	12.990715137530454
forest_fire	47931857.26680571	.00000353394434723	687.6097463800669
real_estate	150152093.99171722	.00000186250294029	1647.0249351789566
50(1000)-100	0.2191820811737866	0.0015507221137088	15.734034657644061
100(1000)-100	0.219754993498758	0.0007552255881888	14.906661535175356
150(1000)-100	0.2226629052283457	0.0005271623575228	13.608836499775556

From this table, it can seen that the trends previously discussed continue because a higher ratio of examples to features leads to lower MSE. Additionally, with the exception of the 100-10, all of the artificial data sets have comparatively low MSE and very similar optimal alpha and beta values, which suggests that there is some alpha/beta ratio that is optimal. Compared to the MSE values from tasks 1 and 2, this approach has significantly worse MSE values across the board. This is especially true of the forest fire and real estate data sets, which have already been determined to not fit a linear regression model.

Since the speed of convergence of this model selection algorithm is determined by the initial parameters and the cutoff at which convergence is deemed to be reached, I cannot provide a specific time complexity. However, it seems that each iteration costs $O(n^2)$ due to matrix operations.

Task 4:

Comparing 10 fold cross validation and Bayesian convergence as model selection methods, it can be seen that 10 fold cross validation results in MSE values closer to the true values. However, cross validation requires MSE to be calculated for each fold and for each lambda value, while the Bayesian method only requires one MSE calculation per data set, making cross validation a much more expensive model in terms of time complexity. For both methods, a high number of examples to number of features ratio will lead to a lower MSE. Also, regardless of model selection, if the data set doesn't fit a linear regression, the MSE will be high