Bioinformatics 101

Analysing WGS data

- A Maxime U. Garcia
- maxulysse.github.io
- @MaxUlysse
- 🎔 @gau

Barntumörbanken

Plan

DNA: From the sequencing to files

Plan

- DNA: From the sequencing to files
- Preprocessing: What to do with these files?

Plan

- DNA: From the sequencing to files
- Preprocessing: What to do with these files?
- Variant Calling and Annotation: Finally getting some results

DNA: From the sequencing to files

DNA: From the sequencing to files

- Sequencing
- Formats

How to store nucleotide sequence?

How to store nucleotide sequence?

AGCATCATACGGGGCTTTGG CTGTACTGTACAGTTACTGT AGGGGCAGTGACGCCGC

FASTA: text-based format for storing either nucleotide or peptide sequences.

Plainly store sequence

- Plainly store sequence
- Some meta data

FASTA: text-based format for storing either nucleotide or peptide sequences.

- Plainly store sequence
- Some meta data

AGCATCATACGGGGCTTTGG CTGTACTGTACAGTTACTGT AGGGGCAGTGACGCCGC

- Plainly store sequence
- Some meta data
- > My sequence AGCATCATACGGGGCTTTGG CTGTACTGTACAGTTACTGT AGGGGCAGTGACGCCGC

- Plainly store sequence
- Some meta data
- > My sequence|P3X-974 AGCATCATACGGGGCTTTGG CTGTACTGTACAGTTACTGT AGGGGCAGTGACGCCGC

- Plainly store sequence
- Some meta data
- > My sequence|P3X-974|Homo Sapiens
 AGCATCATACGGGGCTTTGG
 CTGTACTGTACAGTTACTGT
 AGGGGCAGTGACGCCGC

- Plainly store sequence
- Some meta data
- > My sequence|P3X-974|Homo Sapiens|GRCh38 AGCATCATACGGGGCTTTGG CTGTACTGTACAGTTACTGT AGGGGCAGTGACGCCGC

Moore's law in Bioinformatics

Sequencing with Illumina

Illumina's Hi $Seq\ X$

Sequencing with Illumina

Illumina's HiSeq X

 \blacksquare Short reads (\sim 120 -> 150 bp)

Sequencing with Illumina

Illumina's NovaSeq

 \bullet Short reads (\sim 120 -> 150 bp)

Back to sequencing

Each base in a read is assigned a quality score probability of error

FASTQ Files

FASTQ: text-based format for storing both nucleotide sequence and corresponding quality scores.

FASTQ Files

FASTQ: text-based format for storing both nucleotide sequence and corresponding quality scores.

```
@SEQ_ID
AGCATCATACGGGGCTTTGGCTGTACTGTACAGTTACTGTAGGGGCAGTGACGCCGCCGC
+
!''*((((***+))%%++)(%%%).1***-+*''))**55CCF>>>>>CCCCCCC65
```

FASTQ Files

FASTQ: text-based format for storing both nucleotide sequence and corresponding quality scores.

```
@SEQ_ID
AGCATCATACGGGGCTTTGGCTGTACTGTACAGTTACTGTAGGGGCAGTGACGCCGCCGC
+
!''*((((***+))%%%++)(%%%%).1***-+*''))**55CCF>>>>>CCCCCCC65
!"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}-
```

First conclusion

- FASTA: Used to store sequences
 - You might use or even open such file

First conclusion

- FASTA: Used to store sequences
 - You might use or even open such file
- FASTQ: Used to store sequences and quality
 - You will see that
 - You won't use that directly
 - You will never open such file
 - You will transform it

Preprocessing: What to do with these files?

Assembly

Preprocessing: What to do with these files?

- Assembly
- Cleanup

Difficult question is coming

 \blacksquare Human Genome: \sim 3,234.83 Mb

Difficult question is coming

 \blacksquare Human Genome: \sim 3,234.83 Mb

Depth of sequencing: 30X

Difficult question is coming

• Human Genome: \sim 3,234.83 Mb

Depth of sequencing: 30X

lacktriangle Reads: \sim 120 -> 150 bp

How many reads in the end?

• Human Genome: \sim 3,234.83 Mb

Depth of sequencing: 30X

lacktriangle Reads: ~ 120 -> 150 bp

600 M reads

• Human Genome: \sim 3,234.83 Mb

Depth of sequencing: 30X

lacktriangle Reads: \sim 120 -> 150 bp

Assembly with short reads - I

Assembly with short reads - II

GGCTTTG
TACGGGG
ATCATAC
AGCATCA

Some can be assembled

Assembly with short reads - III

GGCTTTG
TACGGGG
ATCATAC
AGCATCA
AGCATCA
AGCATCAAGCATCAAGCATCACAGTTACTGTAGGGGCAGTGACGCCGC

Easier with a Reference

https://software.broadinstitute.org/gatk/best-practices/

From the Broad Institute: GATK Best Practices (GATK 4.0)

https://software.broadinstitute.org/gatk/best-practices/

From the Broad Institute: GATK Best Practices (GATK 4.0)

Reads mapped to reference genome with bwa

https://software.broadinstitute.org/gatk/best-practices/

From the Broad Institute: GATK Best Practices (GATK 4.0)

- Reads mapped to reference genome with bwa
- Duplicates marked with picard MarkDuplicates

https://software.broadinstitute.org/gatk/best-practices/

From the Broad Institute: GATK Best Practices (GATK 4.0)

- Reads mapped to reference genome with bwa
- Duplicates marked with picard MarkDuplicates
- Recalibrate with GATK BaseRecalibrator

Tools

Burrows-Wheeler Aligner

http://bio-bwa.sourceforge.net/

Software package for mapping low-divergent sequences against a large reference genome.

Burrows-Wheeler Aligner

http://bio-bwa.sourceforge.net/

Software package for mapping low-divergent sequences against a large reference genome.

GATK/Picard

https://software.broadinstitute.org/gatk/ https://broadinstitute.github.io/picard/

Sets of bioinformatic tools for analyzing/manipulating high-throughput sequencing (HTS) data.

Command lines

```
bwa mem -R \"@RG\tID:group1\tSM:file1\tPL:illumina\tLB:lib1\tPU:unit1\" -M \
Reference.fasta file1.fastq file2.fastq | \
samtools sort - > file.bam
gatk MarkDuplicates \
-- INPUT file.bam \
--METRICS FILE file.bam.metrics \
--ASSUME_SORT_ORDER coordinate \
-- CREATE INDEX true \
--OUTPUT file.md.bam
gatk BaseRecalibrator \
--input file.md.bam \
--output file.recal.table \
-R Reference fasta
```

BAM files

Binary Alignment Map (BAM): compressed binary representation for storing biological sequences aligned to a reference sequence.

BAM files

Binary Alignment Map (BAM): compressed binary representation for storing biological sequences aligned to a reference sequence.

```
@HD VN:1.6 SO:coordinate
@SQ SN:ref LN:45
r001 99 ref 7 30 8M2I4M1D3M = 37 39 AGCATCATACGGGGCTTTG *
```

BAM files

Binary Alignment Map (BAM): compressed binary representation for storing biological sequences aligned to a reference sequence.

```
QHD VN:1.6 SD:coordinate
@SQ SN:ref LN:45
r001 99 ref 7 30 8M2I4M1D3M = 37 39 AGCATCATACGGGGCTTTG *
   ONAME
          String
                 Query template NAME
2 FLAG
         Int
                 bitwise FLAG
3 RNAME String References sequence NAME
4 POS
        Int
                 1-based leftmost mapping POSition
5 MAPO Int
                 MAPping Quality
6 CIGAR String CIGAR String
7 RNEXT
                Ref. name of the mate/next read
          String
8 PNEXT Int
                 Position of the mate/next read
  TI.EN
         Int
                 observed Template LENgth
10 SEQ
          String segment SEQuence
11
   QUAL
          String ASCII of Phred-scaled base QUALity+33
```

CRAM files

Basically even more compressed BAM.

CRAM files

Basically even more compressed BAM.

Not yet widely adopted, but good to know about.

Second conclusion

• Follow Best Practices, unless you know what you're doing

Second conclusion

- Follow Best Practices, unless you know what you're doing
- Try to save space
 - Keep only your latest BAMs and your FASTQs
 - Look at BAM files with visualization tools (IGV...)

Variant Calling

• Differences to Reference genome

According to 1 000 Genomes Project:

- According to 1 000 Genomes Project:
 - lacksquare \sim 1 000 deletions

- According to 1 000 Genomes Project:
 - $\sim 1~000$ deletions
 - ullet \sim 1 000 insertions

- According to 1 000 Genomes Project:
 - lacksquare \sim 1 000 deletions
 - $\sim 1~000$ insertions
 - \sim 160 copy number variation

- According to 1 000 Genomes Project:
 - $\sim 1~000$ deletions
 - $\sim 1~000$ insertions
 - \sim 160 copy number variation
 - lacksquare \sim 10 inversions

SNVs¹ and small indels²

¹Single Nucleotide Variant

²insertion or deletion

- SNVs¹ and small indels²
 - HaplotypeCaller (GATK)
 - Strelka2 (Illumina)

¹Single Nucleotide Variant

²insertion or deletion

- SNVs¹ and small indels²
 - HaplotypeCaller (GATK)
 - Strelka2 (Illumina)
- Structural variants:

¹Single Nucleotide Variant

²insertion or deletion

- SNVs¹ and small indels²
 - HaplotypeCaller (GATK)
 - Strelka2 (Illumina)
- Structural variants:
 - Manta (Illumina)

¹Single Nucleotide Variant

²insertion or deletion

Annotation

- VEP, SnpEff, ANNOVAR...
- ClinVar, COSMIC, dbSNP, GENCODE, gnomAD, polyphen, sift, etc.

VCF files

The Variant Call Format (VCF): text-based format for storing gene sequence variations.

VCF files

The Variant Call Format (VCF): text-based format for storing gene sequence variations.

```
##fileformat=VCFv4.3
##fileDate=20090805
##source=myImputationProgramV3.1
##reference=file:///seq/references/1000GenomesPilot-NCBI36.fasta
##phasing=partial
#CHROM POS ID REF ALT QUAL FILTER INFO FORMAT NAOOOO1 NAOOOO2 NAOOOO3
20 14370 rs6054257 G A 29 PASS NS=3;DP=14;AF=0.5;DB;H2 GT:GQ:DP:HQ
 0|0:48:1:51,51 1|0:48:8:51,51 1/1:43:5:.,.
20 17330 . T A 3 q10 NS=3;DP=11;AF=0.017 GT:GQ:DP:HQ
 0|0:49:3:58.50 0|1:3:5:65.3 0/0:41:3
20 1110696 rs6040355 A G,T 67 PASS NS=2;DP=10;AF=0.333,0.667;AA=T;DB GT:GQ:DP:H
 1|2:21:6:23,27 2|1:2:0:18,2 2/2:35:4
20 1230237 . T . 47 PASS NS=3;DP=13;AA=T GT:GQ:DP:HQ
 0|0:54:7:56.60 0|0:48:4:51.51 0/0:61:2
20 1234567 microsat1 GTC G,GTCT 50 PASS NS=3;DP=9;AA=G GT:GQ:DP
 0/1:35:4 0/2:17:2 1/1:40:3
```

Third conclusion

- Lots of different variant callers
 - Lots of variants found

Third conclusion

- Lots of different variant callers
 - Lots of variants found
 - Need to filter
 - Need to annotate
 - Can even improve that with prioritisation

Do analysis!

Do analysis!

- Easy to use
- Easy to install

Do analysis!

- Easy to use
- Easy to install
- Reproducible

Tools

- Tools
 - Installed
 - Specific version

- Tools
 - Installed
 - Specific version
- Reference files

- Tools
 - Installed
 - Specific version
- Reference files
 - Dowloaded
 - Specific version

What do we need?

- Tools
 - Installed
 - Specific version
- Reference files
 - Dowloaded
 - Specific version
- Annotation files / databases

What do we need?

- Tools
 - Installed
 - Specific version
- Reference files
 - Dowloaded
 - Specific version
- Annotation files / databases
 - Dowloaded
 - Specific version

What do we need?

- Tools
 - Installed
 - Specific version
- Reference files
 - Dowloaded
 - Specific version
- Annotation files / databases
 - Dowloaded
 - Specific version
- Works with cluster executor

Analysis germline and somatic workflow

- Analysis germline and somatic workflow
- Whole genome or targeted sequencing

http://sarek.scilifelab.se/

- Analysis germline and somatic workflow
- Whole genome or targeted sequencing
- Developed with NGI and NBIS

http://sarek.scilifelab.se/

- Analysis germline and somatic workflow
- Whole genome or targeted sequencing
- Developed with NGI and NBIS
- Support from The Swedish Childhood Tumor Biobank

https://www.nextflow.io/

- Data-driven workflow language
- Portable (executable on multiple platforms)
- Shareable and reproducible

https://www.nextflow.io/

- Data-driven workflow language
- Portable (executable on multiple platforms)
- Shareable and reproducible

https://www.sylabs.io/singularity/

- Docker-like container engine
 - Specific for HPC environnment

Data and files workflow

Acknowledgments

Barntumörbanken	Elisa Basmaci	NGI	Johannes Alneberg	NBIS	Sebastian DiLorenzo

Szilveszter Juhos Anandashankar Anil Malin Larsson Gustaf Liungman Franziska Bonath Marcel Martin Monica Nistèr Orlando Contreras-López Markus Mayrhofer Gabriela Prochazka Phil Fwels Biörn Nystedt Johanna Sandgren Sofia Haglund Markus Ringnér Teresita Díaz De Ståhl Max Käller Pall I Olason Katarzyna Zielinska-Chomei Anna Konrad Jonas Söderberg

Saad Algahtani Grupp Nistèr

> Min Guo Daniel Hägerstrand Anna Hedrén

Martin Proks Rong Yu

Jian Zhao Clinical Genetics Jesper Eisfeldt

Remi-Andre Olsen Clinical Genomics

Senthilkumar Panneerselvam

Fanny Taborsak Chuan Wang

Pär Lundin

Nextflow folks

Paolo Di Tommaso Sven Fillinger

Hassan Foroughi Asl

Kenny Billiau

Valtteri Wirta

Alexander Peltzer

Any questions?

