SignalAPI User's Guide

CONTACT INFORMATION

Further Details in https://github.com/xzhou99/SignalAPI

For more information, please contact:

Xuesong Zhou (xzhou74@asu.edu)

TABLE OF CONTENTS

1	Int	roduction	1
2	Ste	ps for using SignalAPI	1
	2.1	Download software packages	1
	2.2	Input Data Preparation	1
	2.3	Prepare file road_link.csv	2
	2.4	Compile and run SignalAPI in visual C++ environment	3
	2.5	Screen output	4
3	Bri	ief introduction on computational steps of QEM	5
	Step	1. Input information	5
	Step	2. Determine left-turn treatment	5
	Step	3. Determine Ring-Barrier Structure and Movements	6
		4. Adjust Lane Volumes (Calculate Analysis Flow Rate, not fully emented in Signal API)	7
	Step	5. Determine Critical Lane Group	8
	Step	6. Calculate sum of the flow ratios	8
	Step	7. Calculate total cycle lost time	8
	Step	8. Calculate minimum Cycle Length and Optimal Cycle Length	9
	Step	9. Allocate green time and calculate effective green time	10
	Step	10. Calculate capacity and V/C ratio	10
	Step	11. Calculate Signal Delay and LOS	10
R	efere	nces	11

1 Introduction

The goal of this open-source package is to develop a light-weight computational engine to input and optimize signal control timing data, and analyze the effectiveness of signal control strategies. This SignalAPI engine is written in C++ based on an QEM spreadsheet tool written by Prof. Milan Zlatkovic (https://github.com/milan1981/Sigma-X).

Meanwhile, users can utilize NeXTA-GMNS (https://github.com/xzhou99/NeXTA-GMNS) as a network visualization tool to display related optimization results.

2 Steps for using SignalAPI

2.1 Download software packages

Before using SignalAPI executables, the users are strongly recommended to use and understand the internal logic of Sigma-X. https://github.com/milan1981/Sigma-X

The latest software release can be downloaded at https://github.com/xzhou99/Sig nalAPI. Table 1. illustrates the contents of different folders in the package.

Table 1. Folders of SignalAPI package

Github Folder Name	Contents
Src	source code of SignalAPI
Release	Executable of SignalAPI.exe in Windows
Doc	User's guide and other documentations for SignalAPI
Dataset	Steps for Signal Control.docx GMNS based network csv files, and additional extension in the road_link.csv for additional movement related attributes) Case studies (including 3 cases with QEM Excel file)

2.2 Input Data Preparation

Users should collect the basic information for signal control, including intersection id, movement type, number of lanes, lane type, and volume for each movement.

2.3 Prepare file road link.csv

Once we have the count data ready for the intersection of interest, please open folder "dataset ->1_signal_intersection_test2" (Fig.1) and locate the csv file "road_link.csv" (Fig.2).

Date modified Size Name Cases 8/2/2020 3:40 PM File folder agent.csv 8/2/2020 4:23 PM Microsoft Excel ... 217 KB agent_type.csv 7/9/2020 8·17 PM Microsoft Excel ... 1 KB demand_file_list.csv 7/9/2020 8:17 PM Microsoft Excel ... Microsoft Excel ... demand p.csv 8/2/2020 3·57 PM 1 KB demand_period.csv 7/9/2020 8:17 PM Microsoft Excel ... Equilibrium GAP.xls 7/9/2020 8:17 PM Microsoft Excel ... 113 KB link_performance.csv 8/2/2020 4:23 PM Microsoft Excel ... 7/23/2020 3:17 PM Microsoft Excel ... link_type.csv 1 KB log.txt 8/7/2020 1:08 PM Text Document 21 KB NeXTA.log 8/6/2020 3:55 PM Text Document 0 KB NEXTA_Settings.ini 8/6/2020 3:55 PM Configuration s... 1 KB NEXTA0728.exe 7/28/2020 3:55 PM 3,674 KB Application Microsoft Excel ... node.csv 8/2/2020 4:03 PM 7/9/2020 8:17 PM Microsoft Excel ... a output solution.csv 0 KB road_link.csv 7/28/2020 10:55 PM Microsoft Excel ... 27 KB service_arc.csv 8/7/2020 1:08 PM Microsoft Excel ... 2 KB settings.csv 7/28/2020 11:13 PM Microsoft Excel ... 1 KB STALite_log.txt 8/2/2020 4:23 PM Text Document 301 KB Steps for Signal Control.docx 8/2/2020 12:44 AM Microsoft Word... 643 KB uniform_delay.xlsx 8/2/2020 3:57 PM

Fig.2 Location of the csv file "road_link.csv"

The basic attributes of the file "road_link.csv" follow the GMNS specification (link here). The additional fields for signal timing optimization are shown in Table 2.

Table 2. List of additional fields for signal timing optimization

Field Name	Description
lanes	Number of lanes for a movement
main_node_id	Intersection ID
movement_str	Movement Type
volume	Volume for each movement

An illustrative example of an intersection is shown in Fig.3.

Fig.3 An illustrative example of an intersection

The user can summarize the basic information of the intersection in Table 3.

Table 3. Basic information of the illustrative intersection

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Volume	104	697	304	201	762	93	127	640	112	138	896	122
No. of lanes	2	3	1	2	3	1	1	3	1	1	3	1

2.4 Compile and run SignalAPI in visual C++ environment

Firstly, open the folder "src->Exe_src" and open the C++ project solution file "SignalAPI.sln", as shown in Fig.4.

Fig.4 Location of the C++ project solution file

The source code starts with "SignalAPI.cpp", as shown in Fig.5.

Fig.5 SignalAPI.cpp source code

The mechanism of signal control and the core modeling steps of SignalAPI are implemented in file "main_api.cpp" (Fig.6). To successfully execute the project with a data set, we need to setup the working directory of the data set through "Project"-"AgentLite Attribute"-"Debugging".

Fig.6 Location of the file "main api.cpp"

2.5 Screen output

The output is shown partially in Fig.7. The users can check the console for the entire display, and read the user guide to understand a detailed process of the underlying QEM method, based on a particular data set.

Fig.7 Screen output for signal timing optimization result

3 Brief introduction on computational steps of QEM

Step 1. Input information

Movement volume and number of lanes:

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Volume												
No. of lanes												
Shared lanes												

Step 2. Determine left-turn treatment

(1) Left-turn lane check

<u>Criterion</u>: If the number of left-turn lane on any approach exceeds 1, then it is recommended that the left turns on that approach be protected.

(2) Minimum volume Check

<u>Criterion</u>: If left-turn volume on any approach exceeds 240 veh/h, then it is recommended that the left turns on that approach be protected.

(3) Opposing Through Lanes Check

<u>Criterion</u>: If there are more than 4 or more through lanes on the opposing approach, then it is recommended that the left turns on that approach be protected.

(4) Opposing Traffic Speed Check

<u>Criterion</u>: If the opposing traffic speed exceeds 45mph, then it is recommended that the left turns on that approach be protected.

(5) Minimum Cross-Product Check

Criterion:

Protected+permissive:

Number of Through Lanes	Minimum Cross-Product
1	50000
2 or more	100000

Protected only:

Number of Through Lanes	Minimum Cross-Product
1	150000
2 or more	300000

<u>Calculation</u>: cross-product for each left-turn

Movement	EBL	WBL	NBL	SBL
Opposing Through Lanes				
Cross-Product				
Exceed Protected Minimum Cross-Product?(Y/N)				
Exceed Protected+Permissive Minimum Cross-Product?(Y/N)				
Protected decision				

Based on the analysis above, we can reach the left-turn final decision.

Left-turn Final Decision

Movement	EBL	WBL	NBL	SBL
Left-turn				
Treatment				

Step 3. Determine Ring-Barrier Structure and Movements

Final Ring-Barrier Structure

Ring1			
Ring2			
	Final Ring-Ba	rrier Movement	
Ring1	Final Ring-Ba	rrier Movement	

Step 4. Adjust Lane Volumes (Calculate Analysis Flow Rate, not fully implemented in Signal API)

(1) Right-turn Movement

	Exclusive RT Lane	Shared RT Lane
RT volume, V _R (veh/h)		
Number of exclusive RT lanes, N _{RT}		use 1
RT adjustment factor, 1 f _{RT}		
RT volume per lane, V_{RT} (veh/h/ln) $V_{RT} = \frac{V_R}{(N_{pT} \times f_{pT})}$		

(2) Left-turn Movement

Left-Turn Movement				
LT volume, V _L (veh/h)				
Opposing mainline volume, V _o (veh/h)				
Number of exclusive LT lanes, N _{LT}				
LT adjustment factor, ² f _{LT}				
LT volume per lane, 3 V _{LT} (veh/h/ln)				
$V_{LT} = \frac{V_L}{(N_{LT} \times f_{LT})}$	Permitted LT _use 0	Protected LT	Not Opposed LT	

(3) Through Movement

Through Movement			
	Permitted LT	Protected LT	Not Opposed LT
Through volume, V _T (veh/h)			1000
Parking adjustment factor, fp			
Number of through lanes, N _{TH}			
Total approach volume, ${}^4V_{tot}$ (veh/h) $V_{tot} = \frac{[V_{RT}(shared) + V_{T} + V_{LT} (not opp)]}{f_p}$			

(4) Through Movement with exclusive LT lane & shared LT lane

Through volume per lane, V_{TH} (veh/h/ln) $V_{TH} = \frac{V_{tot}}{N_{TH}}$		
Critical lane volume, ⁵ V _{CL} (veh/h) Max[V _{LT} , V _{RT} (exclusive), V _{TH}]		
Through Movement with Shared LT Lane		
Proportion of left turns, P _{LT}	Does not apply	Does not apply
LT equivalence, E _{L1} (Exhibit C16-3)	Does not apply	Does not apply
LT adjustment, f _{DL} (Exhibit A10-6)		use 1.0
Through volume per lane, V_{TH} (veh/h/ln) $V_{TH} = \frac{V_{lot}}{(N_{TH} \times f_{DL})}$		
Critical lane volume, ⁵ V _{CL} (veh/h) Max[V _{RT} (exclusive), V _{TH}]		

(5) Saturation flow rate

for protected phase:

The default value of saturation flow rate for protected phase is 1530veh/h/lane $Saturation\ flow\ rate(veh/h) = 1530 \times num_of_left_turn_lanes \times PHF$

for permissive phase(for left-turn):

The default value of saturation flow rate for permissive phase is 150-200veh/h/lane

$$Saturation\ flow\ rate\ =\ f_{lu}\times f_{hv}\times opposing_volume \times \frac{e^{-opposing_volume \times 4.5/3600}}{1-e^{-opposing_volume \times 2.5/3600}}$$

Step 5. Determine Critical Lane Group

To determine the critical lane group for each stage, we should select the lane group with maximum v/s(v: volume, s: saturation rate) for each stage.

Step 6. Calculate sum of the flow ratios

The sum of the flow ratios for the critical lane groups for this phasing plan will be needed for the next section. Since this phasing plan does not include any overlapping phases, this value is simply the sum of the highest lane group v/s ratios for the three stages, as follows:

$$Y_c = \sum_{i=1}^n (\frac{v}{s})_{ci}$$

where

 $Y_c = sum \ of \ flow \ ratios \ for \ critical \ lanes \ groups,$ $(v/s)_{ci} = flow \ ratio \ for \ critical \ lane \ group \ i, \ and$ $n = number \ of \ critical \ lane \ groups$

Step 7. Calculate total cycle lost time

The total lost time for the cycle will also be used in the calculation of cycle length. In determining the total lost time for the cycle, the general rule is to apply the lost time for a critical lane group when its movements are initiated (the start of its green interval).

The total cycle lost time is given as

$$L = \sum_{i=1}^{n} (t_L)_{ci}$$

where

 $L = sum \ of \ lost \ time \ for \ cycle \ in \ seconds,$

 $(t_L)_{ci} = total lost time for critical lane group i in seconds, and$

n = number of critical lane groups

Step 8. Calculate minimum Cycle Length and Optimal Cycle Length

(1) calculation of minimum cycle length:

$$C_{min} = \frac{L \times X_c}{X_c - \sum_{i=1}^{n} \left(\frac{v}{S}\right)_{ci}}$$

where

 $C_{min} = minumum necessary cycle length in seconds (typically rounded up to the nearest 5 – second increment in practice)$

L = total lost time for cycle in seconds,

 $X_c = critical v/c ratio for the intersection,$

 $(v/s)_{ci} = flow ratio for critical lane group i, and$

n = number of critical lane groups

(2) calculation of optimal cycle length:

A practical equation for the calculation of the cycle length that seeks to minimize vehicle delay was developed by Webster (1969). Webster's optimum cycle length formula is

$$C_{opt} = \frac{1.5 \times L + 5}{1.0 - \sum_{i=1}^{n} \left(\frac{v}{s}\right)_{ci}}$$

where

 C_{min} = cycle length to minimize delay in seconds, and other terms are as defined previously

The analytical cycle length determined from the above calculation is only approximate in nature, and should be further adjusted to the real-world considerations. Webster noted that values between $0.75C_{opt}$ and $1.5C_{opt}$ will likely give similar values of delay, and engineers typically select a cycle length as a multiplier of 5 or 10 seconds, e.g., 70 seconds, as oppose to 67.5 seconds.

Step 9. Allocate green time and calculate effective green time

There are several strategies for allocating the green time to the various stages. One of the most popular and simplest is to distribute the green time so that the v/c ratios are equalized for the critical lane groups, as by the following equation:

$$g_i = \left(\frac{v}{s}\right)_{ci} \left(\frac{C}{X_i}\right)$$

where

 $g_i = effective green time for phase i,$

 $(v/s)_{ci} = flow ratio for critical lane group i,$

C = cycle length in seconds, and

 $X_i = v/c$ ratio for lane group i,

Effective green time is calculated as follows:

$$g = G + Y + AR - t_L$$

where

g = effective green time for a traffic movement in seconds,

G = displayed green time for a traffic movement in seconds,

Y = displayed yellow time for a traffic movement in seconds,

AR = displayed all - red time in seconds, and

 t_L = total lost time for a movement during a cycle in seconds.

Step10. Calculate capacity and V/C ratio

Capacity can be calculated as follows:

$$c = s \times g/C$$

where

c = capacity (the maximum hourly volume that can pass through an intersection from a lane or group of lanes under prevailing roadway, traffic, and control conditions) in veh/h

s = saturation flow rate in veh/h, and

 $g/C = ratio \ of \ effective \ green \ time \ to \ cycle \ length$

Then we can calculate the ratio of V/C.

Step11. Calculate Signal Delay and LOS

(1) Average Uniform Delay

$$d_1 = \frac{0.5C(1 - \frac{g}{C})^2}{1 - (\frac{v}{C} \times \frac{g}{C})}$$

(2) Average Incremental Delay (not fully implemented in Signal API)

$$d_2 = 900T \left[(X - 1) + \sqrt{(X - 1)^2 + \frac{8KIX}{cT}} \right]$$

where

 d_2 = average incremental delay per vehicle due to random arrivals and occasional oversaturation in seconds,

T = duration of analysis period in h,

X = v/c ratio for lane group,

k = delay adjustment factor that is dependent on signal controller mode,

 $I = upstream\ filtering/metering\ adjustment\ factor, and$

c = lane group capacity in veh/h.

(3) Control Delay

Control Delay = Average Uniform Delay + Average Incremental Delay

(4) Approach Delay

$$d_A = \frac{\sum_i d_i v_i}{\sum_i v_i}$$

where

 $d_A = average delay per vehicle for approach A in seconds,$

 d_i = average delay per vehicle for lane group i (on approach A) in seconds, and

 v_i = analysis flow rate for lane group i in veh/h

(5) Intersection Delay

$$d_I = \frac{\sum_A d_A v_A}{\sum_A v_A}$$

where

 $d_I = average delay per vehicle for the intersection in seconds,$

 d_A = average delay per vehicle for approach A in seconds, and

 v_A = analysis flow rate for approach A in veh/h

(6) LOS for each lane group, each approach and the intersection

The corresponding relationship between LOS and control delay is shown in Table 3:

Table 3. The relationship of LOS and Control delay

LOS	Control delay per vehicle
A	≤10
В	>10-20
C	>20-35
D	>35-55
E	>55-80
F	>80
•	

References

Traffic Control Systems Handbook https://ops.fhwa.dot.gov/publications/fhwahop06006/
Traffic Signal Timing Manual https://ops.fhwa.dot.gov/publications/fhwahop08024/
Signalized Intersections: Informational Guide https://www.fhwa.dot.gov/publications/research/s
afety/04091