Formulario di Goniometria a.a. 2006-2007

Dott. Simone Zuccher

9 novembre 2006

Nota. Queste pagine potrebbero contenere degli errori: chi li trova è pregato di segnalarli all'autore (zuccher@sci.univr.it).

Indice

1	Gon	niometria						
	1.1	Relazioni fondamentali						
	1.2	Periodicità						
	1.3	Formule di conversione						
	1.4	Archi associati						
	1.5	Formule di addizione e sottrazione						
	1.6	Formule di duplicazione e triplicazione						
	1.7	Formule di bisezione						
	1.8	Formule parametriche						
	1.9	Formule di prostaferesi e di Werner						
	1.10	Archi noti						

1 Goniometria

Nota: in quanto segue, con il simbolo $\sin^2 x$ si intende $(\sin x)^2$. È chiaro che questa scrittura non è corretta perché $\sin^2 x = \sin(\sin x)$ ma, essendo entrata nell'uso corrente ed essendo più veloce da scrivere, la adottiamo anche qui.

1.1 Relazioni fondamentali

Descrizione	relazione matematica	restrizioni
Relazione fondamentale:	$\sin^2 x + \cos^2 x = 1$	$\forall x \in \mathbb{R}$
Definizione di tangente:	$\tan x = \frac{\sin x}{\cos x}$	$x \neq \frac{\pi}{2} + k\pi, k \in \mathbb{Z}$
Definizione di cotangente:	$\cot x = \frac{1}{\tan x} = \frac{\cos x}{\sin x}$	$x \neq k\pi, k \in \mathbb{Z}$
Definizione di secante:	$\sec x = \frac{1}{\cos x}$	$x \neq \frac{\pi}{2} + k\pi, k \in \mathbb{Z}$
Definizione di cosecante:	$\csc x = \frac{1}{\sin x}$	$x \neq k\pi, k \in \mathbb{Z}$

1.2 Periodicità

$\sin(x+2k\pi)$	=	$\sin x$	$\cos(x+2k\pi)$	=	$\cos x$	$k \in \mathbb{Z}$
$\tan(x+k\pi)$	=	$\tan x$	$\cot(x+k\pi)$	=	$\cot x$	$k \in \mathbb{Z}$
$\sec(x+2k\pi)$	=	$\sec x$	$\csc(x+2k\pi)$	=	$\csc x$	$k \in \mathbb{Z}$

1.3 Formule di conversione

	noto $\sin x$	noto $\cos x$	nota $\tan x$
$\sin x =$	$\sin x$	$\pm\sqrt{1-\cos^2 x}$	$\pm \frac{\tan x}{\sqrt{1 + \tan^2 x}}$
$\cos x =$	$\pm \sqrt{1 - \sin^2 x}$	$\cos x$	$\pm \frac{1}{\sqrt{1 + \tan^2 x}}$
$\tan x =$	$\pm \frac{\sin x}{\sqrt{1 - \sin^2 x}}$	$\pm \frac{\sqrt{1 - \cos^2 x}}{\cos x}$	$\tan x$

Una volta noti $\sin x$, $\cos x$ o $\tan x$, il passaggio alle altre funzioni trigonometriche è banale essendo $\cot x = 1/\tan x$, $\sec x = 1/\cos x$ e $\csc x = 1/\sin x$.

1.4 Archi associati

f(x)	$\sin f(x)$	$\cos f(x)$	$\tan f(x)$	$\cot f(x)$
-x	$-\sin x$	$\cos x$	$-\tan x$	$-\cot x$
$\frac{\pi}{2} - x$	$\cos x$	$\sin x$	$\cot x$	$\tan x$
$\frac{\pi}{2} + x$	$\cos x$	$-\sin x$	$-\cot x$	$-\tan x$
$\pi - x$	$\sin x$	$-\cos x$	$-\tan x$	$-\cot x$
$\pi + x$	$-\sin x$	$-\cos x$	$\tan x$	$\cot x$
$\frac{3}{2}\pi - x$	$-\cos x$	$-\sin x$	$\cot x$	$\tan x$
$\frac{3}{2}\pi + x$	$-\cos x$	$\sin x$	$-\cot x$	$-\tan x$
$2\pi - x$	$-\sin x$	$\cos x$	$-\tan x$	$-\cot x$

Nota: questi archi associati sono deducibili immediatamente dal cerchio goniometrico, quindi è inutile memorizzarli.

1.5 Formule di addizione e sottrazione

$$\sin(x \pm y) = \sin x \cos y \pm \cos x \sin y$$

$$\cos(x \pm y) = \cos x \cos y \mp \sin x \sin y$$

$$\tan(x \pm y) = \frac{\tan x \pm \tan y}{1 \mp \tan x \tan y}$$

$$\cot(x \pm y) = \frac{\cot x \cot y \mp 1}{\cot x \pm \cot y}$$

1.6 Formule di duplicazione e triplicazione

$$\sin(2x) = 2\sin x \cos x$$

$$\cos(2x) = \cos^2 x - \sin^2 x = 1 - 2\sin^2 x = 2\cos^2 x - 1$$

$$\tan(2x) = \frac{2\tan x}{1 - \tan^2 x}$$

$$\sin(3x) = 3\sin x - 4\sin^3 x$$

$$\cos(3x) = 4\cos^3 x - 3\cos x$$

$$\tan(3x) = \frac{3\tan x - \tan^3 x}{1 - 3\tan^2 x}$$

1.7 Formule di bisezione

$$\sin\left(\frac{x}{2}\right) = \pm\sqrt{\frac{1-\cos x}{2}}$$

$$\cos\left(\frac{x}{2}\right) = \pm\sqrt{\frac{1+\cos x}{2}}$$

$$\tan\left(\frac{x}{2}\right) = \pm\sqrt{\frac{1-\cos x}{1+\cos x}} = \frac{\sin x}{1+\cos x} = \frac{1-\cos x}{\sin x}$$

1.8 Formule parametriche

$$t = \tan\left(\frac{x}{2}\right), x \neq \pi(1+2k) \ k \in \mathbb{Z} \Rightarrow \qquad \sin x = \frac{2t}{1+t^2} \quad \cos x = \frac{1-t^2}{1+t^2} \quad \tan x = \frac{2t}{1-t^2}$$

1.9 Formule di prostaferesi e di Werner

$$\sin x + \sin y = 2\sin\frac{x+y}{2}\cos\frac{x-y}{2}$$

$$\sin x - \sin y = 2\cos\frac{x+y}{2}\sin\frac{x-y}{2}$$

$$\cos x + \cos y = 2\cos\frac{x+y}{2}\cos\frac{x-y}{2}$$

$$\cos x - \cos y = -2\sin\frac{x+y}{2}\sin\frac{x-y}{2}$$

$$\sin x \sin y = \frac{1}{2} \left[\cos(x - y) - \cos(x + y) \right]$$

$$\cos x \cos y = \frac{1}{2} \left[\cos(x + y) + \cos(x - y) \right]$$

$$\sin x \cos y = \frac{1}{2} \left[\sin(x + y) + \sin(x - y) \right]$$

1.10 Archi noti

x[rad]	$x[\deg]$	$\sin x$	$\cos x$	$\tan x$	$\cot x$
0	0	0	1	0	A
$\frac{\pi}{12}$	15°	$\frac{\sqrt{6}-\sqrt{2}}{4}$	$\frac{\sqrt{6} + \sqrt{2}}{4}$	$2-\sqrt{3}$	$2+\sqrt{3}$
$\frac{\pi}{10}$	18°	$\frac{\sqrt{5}-1}{4}$	$\frac{\sqrt{10+2\sqrt{5}}}{4}$	$\sqrt{1 - \frac{2\sqrt{5}}{5}}$	$\sqrt{5+2\sqrt{5}}$
$\frac{\pi}{8}$	22°30′	$\frac{\sqrt{2-\sqrt{2}}}{2}$	$\frac{\sqrt{2+\sqrt{2}}}{2}$	$\sqrt{2}-1$	$\sqrt{2} + 1$
$\frac{\pi}{6}$	30°	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{3}}{3}$	$\sqrt{3}$
$\frac{\pi}{4}$	45°	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	1	1
$\frac{\pi}{3}$	60°	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$\sqrt{3}$	$\frac{\sqrt{3}}{3}$
$\frac{3}{8}\pi$	67°30′	$\frac{\sqrt{2+\sqrt{2}}}{2}$	$\frac{\sqrt{2-\sqrt{2}}}{2}$	$\sqrt{2}+1$	$\sqrt{2}-1$
$\frac{5}{12}\pi$	75°	$\frac{\sqrt{6} + \sqrt{2}}{4}$	$\frac{\sqrt{6}-\sqrt{2}}{4}$	$2+\sqrt{3}$	$2-\sqrt{3}$
$\frac{\pi}{2}$	90°	1	0	Æ	0

Nota: sono qui riportati solo gli archi del primo quadrante in quanto gli altri sono riconducibili a tale quadrante tramite gli archi associati (vedi $\S1.4$).