3 Sets, Relations, and Functions

3.2 Sets and Operations on Sets

Definition 3.1. The cardinality, denoted |A| of a set is the amount of elements it contains.

Definition 3.2. $A = B \iff \forall x (x \in A \leftrightarrow x \in B).$

Lemma 3.1. For any (sets) a and b, $\{a\} = \{b\} \Rightarrow a = b$

Definition 3.3. The set A is a subset of the set B, denoted $A \subseteq B$, if every element of A is also an element of B, i.e.,

$$A \subseteq B \iff \forall x (x \in A \to x \in B)$$

Lemma 3.2. $A = B \iff (A \subseteq B) \land (B \subseteq A)$.

Lemma 3.3. For any sets A, B, and C,

$$A \subseteq B \land B \subseteq C \Rightarrow A \subseteq C$$

Definition 3.4. The union of two sets A and B is defined as

$$A \cup B \stackrel{def}{=} \{x | x \in A \lor x \in B\}$$

and their intersection is defined as

$$A \cap B \stackrel{def}{=} \{x | x \in A \land x \in B\}$$

Definition 3.5. The difference of sets B and A, denoted $B \setminus A$ is the set of elements of B without those that are elements of A:

$$B \backslash A \stackrel{def}{=} \{x \in B | x \not\in A\}$$

Theorem 3.4. For any sets A, B, and C, the following laws hold:

Idempotence: $A \cap A = A$;

 $A \cup A = A$;

Commutativity: $A \cap B = B \cap A$;

 $A \cup B = B \cup A;$

Associativity: $A \cap (B \cap C) = (A \cap B) \cap C$;

 $A \cup (B \cup C) = (A \cup B) \cup C;$

Absorption: $A \cap (A \cup B) = A$;

 $A \cup (A \cap B) = A;$

Dirstibutivity: $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$;

 $A \cup (B \cap C) = (A \cup B) \cap (A \cup C);$

Consistency: $A \subseteq B \iff A \cap B = A \iff A \cup B = B$

Definition 3.6. A set A is called empty if it contains no elements, i.e., if $\forall x \neg (x \in A)$.

Lemma 3.5. There is onl one empty set (which is often denoted as \emptyset or $\{\}$).

Lemma 3.6. The mepty set is a subset of every set, i.e., $\forall A(\emptyset \subseteq A)$.

Definition 3.7. The power set of a set A denoted $\mathcal{P}(A)$, is the set of all subsets of A:

$$\mathcal{P}(A) \stackrel{def}{=} \{S | S \subseteq A\}$$

Remark 3.1. For a finite set with cardinality k, the power set has cardinality 2^k (hence the name 'power-set' and the alternative notation 2^A)

Definition 3.8. The Cartesian product $A \times B$ of two sets A and B is the set of all ordered pairs with the first component form A and the second component from B:

$$A \times B = \{(a, b) | a \in A \land b \in B\}$$

Remark 3.2. For finite sets, the cardinality of the Cartesian product of some sets is the product of their cardinalities: $|A \times B| = |A| \cdot |B|$

3.3 Relations

Definition 3.9. A (binary) relation ρ from a set A to a set B (also called an (A, B)-relation) is a subset of $A \times B$. If A = B, then ρ is called a relation on A.

Definition 3.10. The inverse of a relation ρ from A to B is the relation $\widehat{\rho}$ from B to A defined by

$$\widehat{\rho} \stackrel{def}{=} \{ (b, a) | (a, b) \in \rho \}$$

Definition 3.11. Let ρ be a relation from A to B and let σ be a relation from B to C. Then the composition of ρ and σ , denoted $\rho \circ \sigma$, is the relation from A to C defined by

$$\rho \circ \sigma \stackrel{def}{=} \{(a,c) | \exists ((a,b) \in \rho \land (b,c) \in \sigma) \}$$

The n-fold composition of a relation ρ on a set A with itself is denoted ρ^n .

Definition 3.12. For any set A, the identity relation on A, denoted id_A (or simply id), is the relation $id_A = \{(a, a) | a \in A\}$.

Lemma 3.7. The composition of relations is associative i.e., we have $\rho \circ (\sigma \circ \phi) = (\rho \circ \sigma) \circ \phi$.

Lemma 3.8. Let ρ be a relation form A to B and let σ be a relation form B to C. Then the inverse $\widehat{\rho\sigma}$ of $\rho\sigma$ is the relation $\widehat{\sigma}\widehat{\rho}$.

Definition 3.13. A relation ρ on a set A is called reflexive if

$$a\rho a$$

is true for all $a \in A$, i.e., if

$$id \subseteq \rho$$

Definition 3.14. A relation ρ on a set A is called irreflexive if a ρ for all $a \in A$, i.e., if $\rho \cap id = \emptyset$.

Definition 3.15. A relation ρ on a set A is called symmetrix if

$$a\rho b \iff b\rho a$$

is true for all $a, b \in A$, i.e., if

$$\rho = \widehat{\rho}$$

Definition 3.16. A relation ρ on a set A is called antisymmetric if

$$a\rho b \wedge b\rho a \Rightarrow a = b$$

is true for all $a, b \in A$, i.e. if

$$\rho \cap \widehat{\rho} \subseteq id$$

Definition 3.17. A relation ρ on a set A is called transitive if

$$a\rho b \wedge b\rho c \Rightarrow a\rho c$$

is true for all $a, b, c \in A$

Lemma 3.9. A relation ρ is transitive $\iff \rho^2 = \rho$

Definition 3.18. The transitive closure of a relation ρ on a set A, denoted ρ^* , is

$$\rho^* = \bigcup_{n \in \mathbb{N} \setminus \{0\}} \rho^n$$

3.4 Equivalence Relations

Definition 3.19. An equivalence relation is a relation on a set A that is reflexive symmetric, and transitive.

Definition 3.20. For an equivalence relation θ on a set A and for $a \in A$, the set of elements of A that are equivalent to a is called the equivalence class of a and is denoted as $[a]_{\theta}$:

$$[a]_{\theta} \stackrel{def}{=} \{b \in A | b\theta a\}$$

Lemma 3.10. The intersection of two equivalence relations (on the same set) is an equivalence relation.

Definition 3.21. A partition of a set A is a set of mutually disjoint subsets of A that cover A, i.e., a set $\{S_i|i\in\mathcal{I}\}$ of sets S_i (for some index set \mathcal{I}) satisfying

$$S_i \cap S_j = \emptyset$$
 for $i \neq j$ and $\bigcup_{i \in \mathcal{I}} S_i = A$

Definition 3.22. The set of equivalence classes of an equivalence relation θ , denoted by

$$A/\theta \stackrel{def}{=} \{ [a]_{\theta} | a \in A \}$$

is called the quotiont set of A by θ , or simply A modulo θ , or A mod θ .

Theorem 3.11. The set A/θ of equivalence classes of an equivalence relation θ on A is a partition of A.

3.5 Partial Order Relations

Definition 3.23. A partial order (or simply an order relation) on a set A is a relation that is reflexive, antisymmetric, and transitive. A set A together with a partial order \leq on A is called a partially ordered set (or simply poset) and is denoted as $(A; \leq)$

Definition 3.24. For a poset $(A; \preceq)$, two elements a and b are called comparable if $a \preceq b$ or $b \preceq a$; otherwise they are called incomparable.

Definition 3.25. If any two elements of a poset $(A; \preceq)$ are comparable, then A is called totally ordered (or linearly ordered) by \preceq .

Definition 3.26. In a poset $(A; \preceq)$ an element b is said to cover an element a if $a \prec b$ and there exists no c with $a \prec c$ and $c \prec b$ (i.e., between a and b).

Definition 3.27. The Hasse diagram of a (finite) poset $(A; \preceq)$ is the directed graph whose vertices are labeled with the elements of A and where there is an edge from a to b if and only if b covers a.

Definition 3.28. The direct product of posets $(A; \preceq)$ and $(B; \sqsubseteq)$, denoted $(A; \preceq) \times (B; \sqsubseteq)$, is the set $A \times B$ with the relation \leq (on $A \times B$) defined by

$$(a_1, b_1) \le (a_2, b_2) \stackrel{def}{\iff} a_1 \le a_2 \land b_1 \sqsubseteq b_2$$

Theorem 3.12. $(A; \preceq) \times (B; \sqsubseteq)$ is a partial ordered set.

Theorem 3.13. For given posets $(A; \preceq)$ and $(B; \sqsubseteq)$, the relation \leq_{lex} defined on $A \times B$ by

$$(a_1, b_1) \leq_{lex} (a_2, b_2) \stackrel{def}{\iff} a_1 \prec a_2 \lor (a_1 = a_2 \land b_1 \sqsubseteq b_2)$$

Definition 3.29. Let $(A; \preceq)$ be a poset, and let $S \subseteq A$ be some subset of A. Then

- 1. $a \in A$ is a minimal (maximal) element of A if there exists no $b \in A$ with $b \prec a$ $(b \succ a)$
- 2. $a \in A$ is the least (greatest) element of A if $a \leq b$ ($a \succeq b$) for all $b \in A$.
- 3. $a \in A$ is a lower (upper) bound of S if $a \leq b$ ($a \succeq b$) for all $b \in S$.
- 4. $a \in A$ is the greatest lower (least upper) bound of S if a is the greatest (least) element of the set of all lower (upper) bounds of S.

Definition 3.30. A poset $(A; \preceq)$ is well-ordered if it is totaly ordered and if every non-empty subset of A has a least element.

Definition 3.31. Let $(A; \preceq)$ be a poset. If a and b (i.e., the set $\{a, v\} \subseteq A$) have a greatest lower bound, then it is called the meet of a and b, often denoted $a \land b$. If a and b have a least upper bound, then it is called the join of a and b, often denoted $a \lor b$.

Definition 3.32. A poset $(A; \preceq)$ in which every paor of elements has a meet and a join is called a lattice.

3.6 Functions

Definition 3.33. A function $f: A \to B$ from a domain A to a codomain B is a relation from A to B with the special properties (using the relation notation afb):

- 1. f is totally defined $\forall a \in A \quad \exists b \in B \quad afb$,
- 2. f is well-defined $\forall a \in A \quad \forall b, b' \in B \quad (afb \land afb' \rightarrow b = b')$.

Definition 3.34. The set of all functions $A \to B$ is denoted as B^A .

Definition 3.35. A partial function $A \to B$ is a relation from A to B such that ondition 2. above holds.

Definition 3.36. For a function $f: A \to B$ and a subset S of A, the image of S under f, denoted f(S), is the set

$$f(S) \stackrel{def}{=} \{ f(a) | a \in S \}$$

Definition 3.37. The subset f(A) of B is called the image (or range) of f and is also denoted Im(f)

Definition 3.38. For a subset T of B, the preimage of T denoted $f^{-1}(T)$, is the set of values in A that map into T:

$$f^{-1}(T) \stackrel{def}{=} \{ a \in A | f(a) \in T \}$$

Definition 3.39. A function $f: A \to B$ is called

- 1. injective (or one-to-one or an injection) if for $a \neq a'$ we have $f(a) \neq f(a')$, i.e., no two distinct values are mapped to the same function value (there are no "collisions").
- 2. surjective (or onto) if f(A) = B, i.e., if for every $b \in B$, b = f(a) for some $a \in A$ (every value in the codomain is taken on for some argument).
- 3. bijective (or bijection)if it is both injective and surjective.

Definition 3.40. For a bijective function f, the inverse (as a relation, see 3.9) is called the inverse function of f, usually denoted as f^{-1} .

Definition 3.41. The composition of a function $f: A \to B$ and a function $g: B \to C$, denoted by $g \circ f$ or simply gf, is defined by $(g \circ f)(a) = g(f(a))$.

Lemma 3.14. Function composition is associative, i.e., $(h \circ g) \circ f = h \circ (g \circ f)$.

3.7 Countable and Uncountable Sets

Definition 3.42.

- (i) Two sets A and B equinumerous, denoted $A \sim B$, if there exists a bijection $A \to B$.
- (ii) The set B dominates the set A, denoted $A \leq B$, if $A \sim C$ for some subset $C \subseteq B$ or, equivalently, if there exists an injective function $A \to B$.
- (iii) A set A is called countable if $A \leq \mathbb{N}$, and uncountable otherwise.

Lemma 3.15. .

- (i) The relation \sim is an equivalence relation.
- (ii) The relation \leq is transitive: $A \leq B \land B \leq C \Rightarrow A \leq C$.
- (iii) $A \subseteq B \Rightarrow A \preceq B$.

Theorem 3.16. $A \leq B \wedge B \leq A \Rightarrow A \sim B$

Theorem 3.17. A set A is contrable if and only if it is finite or if $A \sim \mathbb{N}$.

Theorem 3.18. The set $\{0,1\}^* \stackrel{def}{=} \{\epsilon,0,1,00,01,10,11,000,\dots\}$ of finite binary sequences is countable.

Theorem 3.19. The set $\mathbb{N} \times \mathbb{N}$ (= \mathbb{N}^2) of ordered pairs of natual numbers is coutable.

Corollary 3.20. The Cartesial product $A \times B$ of two countable sets A and B is couable, i.e., $A \leq \mathbb{N} \wedge B \leq \mathbb{N} \Rightarrow (A \times B) \leq \mathbb{N}$

Corollary 3.21. The rational number \mathbb{Q} are countable.

Theorem 3.22. Let A and A_i , for $i \in \mathbb{N}$ be countable sets.

- (i) For any $n \in \mathbb{N}$, the set A^n of n-tuples over A is countable.
- (ii) The union $\bigcup_{i\in\mathbb{N}A_i}$ of a countable list A_0,A_1,\ldots of countable sets is countable.
- (iii) The set A^* of finite sequence of elements from A is countable.

Definition 3.43. Let $\{0,1\}^{\infty}$ denote the set of semi-infinite binary sequences or, equivalently, the set of functions $\mathbb{N} \to 0, 1$.

Theorem 3.23. The set $\{0,1\}^{\infty}$ is uncountable.

Definition 3.44. A function $f: \mathbb{N} \to \{0,1\}$ is called computable if there is a program that, for every $n \in \mathbb{N}$, when given n as input, outputs f(n).

Corollary 3.24. There are uncomputable functions $\mathbb{N} \to \{0,1\}$

4 Number Theory

4.2 Divisors and Division

Definition 4.1. For integers a and b we say that a devides b, denoted a|b, if there exists an integer c such that b=ac. In this case, a is called a divisor of b, and b is called a multiple of a. If $a \neq 0$ and a divisor c exists it is called the quotient when b is divided by a, and we write $c=\frac{b}{a}$ pr c=b/a. We write $a \nmid b$ if a does not divide b.

Theorem 4.1 (Euclid). For all integers a and $d \neq 0$ there exist unique integers q and r satisfying

$$a = dq + r$$
 and $0 \le r < |d|$

Definition 4.2. For integer a and b (not both 0), an integer d is called a greatest common divisor of a and b if d divides both a and b and if every common divisor of a and b divides d, i.e., if

$$d|a \wedge d|b \wedge \forall c ((c|a \wedge c|b) \leftarrow c|d)$$

Definition 4.3. For $a, b \in \mathbb{Z}$ (not both 0) one denotes the unique positive greatest common divisor by gcd(a, b) and usually calls it the greatest common divisor. If gcd(a, b) = 1, then a and b are called relatively prime.

Lemma 4.2. For any integers m, n, and q, we have

$$gcd(m, n - qm) = gcd(m, n)$$

Definition 4.4. For $a, b \in \mathbb{Z}$, the ideal generated by a and b, denoted (a, b), is the set

$$(a,b) \stackrel{def}{=} \{ua + vb | u, v \in \mathbb{Z}\}$$

Similarly, the ideal generated by a single integer a is

$$(a) \stackrel{def}{=} \{ua | u \in \mathbb{Z}\}$$

Lemma 4.3. For $a, b \in \mathbb{Z}$ there exists $d \in \mathbb{Z}$ such that (a, b) = (d).

Lemma 4.4. Let $a, b \in \mathbb{Z}$ (not both 0). If (a, b) = (d), then d is a greatest common divisor of a and b.

Corollary 4.5. For $a, b \in \mathbb{Z}$ (not both 0), there exist $u, v \in \mathbb{Z}$

$$qcd(a,b) = ua + vb$$

Definition 4.5. The least common multiple l of two positive integers a and b, denoted l = lcm(a, b), is the common multiple of a and b which divides every common multiple of a and b, i.e.,

$$a|l \wedge b|l \wedge \forall m ((a|m \wedge b|m) \rightarrow l|m)$$

4.3 Factorization into Primes

Definition 4.6. A positive integer p > 1 is called prime if the only positive divisor of p are 1 and p. An integer greater than 1 that is not a prime is called composite.

Theorem 4.6. Every positive integer can be written uniquely (up to the order in which factors are listed) as the product of primes.

Lemma 4.7. If p is prime which divides the product $x_1x_2 \cdots x_n$ of some integers x_1, \dots, x_n , then p divides one of them, i.e., $p|x_i$ for some $i \in \{1, \dots, n\}$.

Remark 4.1. Since we can write write any integers a and b as factors of primes

$$a = \prod_i p_i^{e_i}$$
 and $b = \prod_i p_i^{f_i}$

we can write gcd like this

$$gcd(a,b) = \prod_{i} p_i^{\min(e_i, f_i)}$$

and lcm like this

$$lcm(a,b) = \prod_{i} p_i^{\max(e_i, f_i)}$$

It's easy to see that $gcd(a,b) \cdot lcm(a,b) = ab$ because for all $i \min(e_i, f_i) + \max(e_i, f_i) = e_i + f_i$

4.5 Congruence and Modular Arithmetic

Definition 4.8. For $a, b, m \in \mathbb{Z}$ with $m \geq 1$, we say that a is congruent to b modulo m if m divides a - b. We write $a \equiv b \pmod{m}$ or simply $a \equiv_m b$, i.e.,

$$a \equiv_m b \iff m|(a-b)$$

Lemma 4.13. For any $m \geq 1$, \equiv_m is an equivalence relation on \mathbb{Z} .

Lemma 4.14. If $a \equiv_m b$ and $c \equiv_m d$, then

$$a + c \equiv_m b + d$$
 and $ac \equiv_m bd$

Corollary 4.15. Let $f(x_1,...,x_k)$ be a multi-variable polynomial in k variables with integer coefficients, and let $m \ge 1$. If $a_i \equiv_m b_i$ for $1 \le i \le k$, then

$$f(a_1,\ldots,a_k) \equiv_m f(b_1,\ldots,b_k)$$

Lemma 4.16. For any $a, b, m \in \mathbb{Z}$ with $m \geq 1$,

- (i) $a \equiv_m R_m(a)$.
- (ii) $a \equiv_m b \iff R_m(a) = R_m(b)$.

Corollary 4.17. Let $f(x_1,...,x_k)$ be a multi-variate polynomial in k variables with integer coefficients and let $m \geq 1$. Then

$$R_m(f(a_1,\ldots,a_k)) = R_m(f(R_m(a_1),\ldots,R_m(a_k))).$$

Lemma 4.18. The congruence equation

$$ax \equiv_m 1$$

has a solution $x \in \mathbb{Z}_m$ if and only if gcd(a, m) = 1. The solution is unique.

Definition 4.9. If gcd(a, m) = 1, the unique solution $x \in \mathbb{Z}_m$ to the congruence equation $ax \equiv_m 1$ is called the multiplicative inverse of a modulo m. One also uses the notation $x \equiv_m a^{-1}$ or $x \equiv_m \frac{1}{a}$.

Theorem 4.19. Let m_1, \ldots, m_r be pairwise relatively prime integers and let $M = \prod_{i=1}^r m_i$. For every list a_1, \ldots, a_r with $0 \le a_i < m_i$ for $1 \le i \le r$, the system of congruence equations

$$x \equiv_{m_1} a_1 x \qquad \equiv_{m_2} a_2 \dots$$
$$x \equiv_{m_r} a_r$$

for x has a unique solution x satisfying $0 \le x < M$.

5 Algebra

5.1 Introduction

Definition 5.1. An operation on a set S is a function $S^n \to S$, where $n \ge 0$ is called the "arity" of the operation.

Definition 5.2. An algebra (or algebraic structure or Ω -algebra) is a pair $\langle S; \Omega \rangle$ where S is a set (the carrier of the algebra and $\Omega = (\omega_1, \ldots, \omega_n)$) is a list of operations on S.

5.2 Monoids and Groups

Definition 5.3. A left [right] neutral element (or identity element) of an algebra $\langle S; * \rangle$ is an element $e \in S$ such that e * a = a [a * e = a] for all $a \in S$. If e * a = a * e = a for all $a \in S$, then e is simply called neutral element.

Lemma 5.1. If $\langle S; * \rangle$ has both a left and a right neutral element, then they are equal. In particular $\langle S; * \rangle$ can have at most one neutral element.

Definition 5.4. A binary operation * on a set S is associative if a*(b*c) = (a*b)*c for all $a, b, c \in S$.

Definition 5.5. A monoid is an algebra $\langle M; *, e \rangle$ where * is associative and e is the neutral element.

Definition 5.6. A left [right] inverse element of an element a in an algebra $\langle S; *, e \rangle$ with neutral element e is an element $b \in S$ such that b * a = e [a * b = e]. If b * a = a * b = e, hen b is simply called an inverse of a.

Lemma 5.2. In a monoid $\langle M; *, e \rangle$, if $a \in M$ has a left and right inverse, then they are equal. In particular, a has at most one inverse.

Definition 5.7. A group is an algebra $\langle G; *, \hat{\ }, e \rangle$ satisfying the following axioms:

G1 * is associative.

G2 e is a neutral element: a * e = e * a = a for all $a \in G$.

G3 Every $a \in G$ has an inverse element \widehat{a} , i.e., $a * \widehat{a} = \widehat{a} * a = e$.

Definition 5.8. A group $\langle G; * \rangle$ (or monoid) is called commutative or abelian if a*b = b*a for all $a, b \in G$.

Lemma 5.3. For a group $\langle G; *, \hat{}, e \rangle$, we have for all $a, b, c \in G$:

(i)
$$\widehat{(a)} = a$$
,

(ii)
$$\widehat{a*b} = \widehat{b}*\widehat{a}$$
,

- (iii) Left cancellation law: $a * b = a * c \implies b = c$
- (iv) Right cancellation law: $b*a = c*a \implies b = c$
- (v) The equation a * x = b has a unique solution x for any a and b. So does the equation x * a = b.

5.3 The Structure of Groups

Definition 5.9. The direct product of n groups $\langle G_1; *_1 \rangle, \ldots, \langle G_n; *_n \rangle$ is the algebra.

$$\langle G_1 \times \cdots \times G_n; \star \rangle$$

where the operation \star is component-wise:

$$(a_1,\ldots,a_n)*(b_1,\ldots,b_2)=(a_1*_1b_1,\ldots,a_n*_nb_n)$$

Lemma 5.4. $\langle G_1 \times \cdots \times G_n; \star \rangle$ is a group, where the neutral element and the inverstion operation are component-wise in the respective groups.

Definition 5.10. For two groups $\langle G; *, \hat{\ }, e \rangle$ and $\langle H; \star, \hat{\ }, e' \rangle$, a function $\psi : G \to H$ is called a group homomorphism if, for all a and b,

$$\psi(a * b) = \psi(a) \star \psi(b)$$

If ψ is a bijection from G to H, then it is called an isomorphism, and we say that G and H are isomorphic and write $G \simeq H$

Lemma 5.5. A group homomorphism ψ from $\langle G; *, \hat{}, e \rangle$ to $\langle H; \star, \hat{}, e' \rangle$ satisfies

- (i) $\psi(e) = e'$,
- (ii) $\psi(\widehat{a}) = \widetilde{\psi(a)}$

Definition 5.11. A subset $H \subseteq G$ if a group $\langle G; *, \widehat{\ }, e \rangle$ is called a subgroup of G if $\langle H; *, \widehat{\ }, e \rangle$ is a group, i.e., if H is closed with respect to all operations:

- (i) $a * b \in H$ for all $a, b \in H$,
- (ii) $e \in H$, and
- (iii) $\hat{a} \in H$ for all $a \in H$.

Definition 5.12. Let G be a group and let a be an element of G. The order of a, denoted $\operatorname{ord}(a)$, is the least $m \geq 1$ such that $a^m = e$, if such an m exists, and $\operatorname{ord}(a)$ is said to be infinite otherwise, written $\operatorname{ord}(a) = \infty$.

Lemma 5.6. In a finite grou G, every element has a finite order.

Definition 5.13. For a finite group G, |G| is called the order of G.

Definition 5.14. For a group G and $a \in G$, the group generated by a, denoted $\langle a \rangle$, is defined as

$$\langle a \rangle \stackrel{def}{=} \{ a^n | n \in \mathbb{Z} \}$$

Remark 5.1. The group generated by $\langle a \rangle$ is the smallest subgroup of G containing the element $a \in G$.

Definition 5.15. A group $G = \langle g \rangle$ generated by an element $g \in G$ is called cyclic, and g is called a generator of G.

Theorem 5.7. A cyclic group of order n is isomorphic to $\langle \mathbb{Z}_n; \oplus \rangle$ (and hence commutative/abelian)

Theorem 5.8 (Lagrange). Let G be a finite group and let H be a subgroup of G. Then the order of H divides the order of G, i.e. |H| divides |G|.

Corollary 5.9. For a finite group G, the order of every element devides the group order, i.e., ord(a) divides |G| for every $a \in G$.

Corollary 5.10. Let G be a finite group. Then a|G| = e for every $a \in G$.

Corollary 5.11. Every group of prime order is cyclic, and in such a group every element except the natural element is a generator.

Definition 5.16. $\mathbb{Z}_m^* \stackrel{def}{=} \{a \in \mathbb{Z}_m | \gcd(a, m) = 1\}.$

Definition 5.17. The Euler function $\varphi(m) = |\mathbb{Z}_m^*|$

Lemma 5.12. If the prime factorization of m is $m = \prod_{i=1}^r p_i^{e_i}$, then

$$\varphi(m) = \prod_{i=1}^{r} (p_i - 1) p_i^{e_i - 1}$$

Theorem 5.13. $\langle \mathbb{Z}_m^*; \odot, ^{-1}, 1 \rangle$ is a group.

Corollary 5.14 (Fermat, Euler). For all $m \ge 2$ and all a with gcd(a, m) = 1,

$$a^{\varphi(m)} \equiv_m 1$$

In particular, for every prime p and every a not divisible by p,

$$a^{p-1} \equiv_p 1$$

Theorem 5.15. The group \mathbb{Z}_m^* is cyclic if and only if m=2, m=4, $m=p^e$, or $m=2p^e$, where p is an odd prime and e > 1.

5.4 Application: RSA Public-Key Encryption

Theorem 5.16. Let G be some finte group (multiplicatively written), and let $e \in \mathbb{Z}$ be relatively prime to |G| (i.e. gcd(e, |G|) = 1). The function $x \mapsto x^e$ is a bijection and the (unique) e-th root of $y \in G$, namely $x \in G$ satisfying $x^e = y$, is

$$x = y^d$$

where d is the muliplicative inverse of e modulo |G|, i.e.,

$$ed \equiv_{|G|} 1$$

5.5 Rings and Fields

Definition 5.18. A ring $\langle R; +, -, 0, \cdot, 1 \rangle$ is an algebra for which

R1 $\langle R; +, -, 0 \rangle$ is a commutative group,

R2 $\langle R; \cdot, 1 \rangle$ is a monoid, and

R3 left and right distributive law: a(a+b) = (ab) + (ac) and (b+c)a = (ba) + (ca) for all $a, b, c \in R$.

A ring is called commutative if multiplication is commutative (ab = ba)

Lemma 5.17. For any ring $\langle R; +, -, 0, \cdot, 1 \rangle$, and for all $a, b \in R$,

- (i) 0a = a0 = 0
- (ii) (-a)b = -(ab)
- (iii) (-a)(-b) = ab
- (iv) If R is non trivial (i.e. if it has more than one element), then $1 \neq 0$.

Definition 5.19. The characteristic of a ring is the order of 1 in the additive group if it is finitem and otherwise the characteristic is defined to be 0 (not infinite).

Definition 5.20. An element u of a ring R is claled a unit if u is invertible, i.e., uv = vu = 1 for some $v \in R$. (We write $v = u^{-1}$.) The set of units of R is denoted by R^* .

Lemma 5.18. For a ring R, R^* is a multiplicative group (the group of units of R).

Definition 5.21. For $a, b \in R$ we say that a divides b, denoted a|b, if there exists $c \in R$ such that b = ac. In this case, a is called a divisor of b and b is called a multiple of a.

Lemma 5.19. In any commutative ring,

- (i) If a|b and b|c, then a|c, i.e., the relation | is transitive,
- (ii) If a|b, then a|bc for all c, and
- (iii) If a|b and a|c, then a|(b+c).

Definition 5.22. For ring elements a and b (not both 0), a ring element d is called a greatest common divisor of a and b if d divides both a and b and if every common divisor of a and b divides d, i.e., if

$$d|a \wedge d|b \wedge \forall ((c|a \wedge c|b) \rightarrow c|d)$$

Definition 5.23. An element $a \neq 0$ of a commutative ring R is called a zerodivisor if ab = 0 for some $b \neq 0$ in R.

Definition 5.24. An integral domain is a (nontrivial) commutative ring without zerodivisors: $\forall a \forall b (ab = 0 \rightarrow a = 0 \lor b = 0)$.

Lemma 5.20. In an integral domain, if a|b, then c with b = ac is unique (and is denoted by $c = \frac{b}{a}$ or c = b/a and called quotient).

Definition 5.25. A polynomial a(x) over a commutative ring R in the indeterminate x is a formal expression of the form

$$a(x) = a_d x^d + \dots + a_0 x^0 = \sum_{i=1}^d a_i x^i$$

for some non-negative integer d, with $a_i \in R$. The degree of a(x), denoted deg(a(x)), is the greatest i for which $a_i \neq 0$. The special polynomial 0 (i.e., all the a_i are 0) is defined to have degree "minus infinity". Let R[x] denote the set of polynomials in x over R.

Theorem 5.21. For any commutative ring R, R[x] is a commutative ring.

Lemma 5.22. .

- (i) If D is an integral domain, then so is D[x].
- (ii) The units of D[x] are the constant polynomials that are units of $D: D[x]^* = D^*$.

Definition 5.26. A field is a nontrivial commutative ring F in which every nonzero element is a unit, i.e., $F^* = F \setminus \{0\}$.

Theorem 5.23. \mathbb{Z}_p is a field if and only if p is prime.

Theorem 5.24. A field is an integral domain.

5.6 Polynomials over a Field

Definition 5.27. A polynomial $a(x) \in F[x]$ is called monic if the leading coefficient is 1.

Definition 5.28. A polynomial $a(x) \in F[x]$ with degree at least 1 is called irreducible if it is divisible only by constant polynomials and by constant multiples of a(x).

Definition 5.29. The monic polynomial g(x) of largest gegree such that g(x)|a(x) and g(x)|b(x) is called the greatest common divisor of a(x) and b(x), denoted gcd(a(x),b(x)).

Theorem 5.25. Let F be a field. For any a(x) and $b(x) \neq 0$ in F[x] there exist a unique q(x) (the quotient) and a unique r(x) (the remainder) such that

$$a(x) = b(x) \cdot q(x) + r(x)$$
 and $\deg(r(x)) < \deg(b(x))$.

Definition 5.30. In an integral domain, a and b are called associates, denoted $a \sim b$, if a = ub for some unit u.

Definition 5.31. In an integral domain, a non-unit $p \in D \setminus \{0\}$ is irreducible if, whenever p = ab, then either a or b is a unit.

Lemma 5.26. $a \sim b \iff a|b \wedge b|a$

Definition 5.32. A Euclidean domain is an integral domain D together with a so-called degree function $d: D\setminus\{0\} \to \mathbb{N}$ such that

- (i) For every a and $b \neq 0$ in D there exist q and r such that a = bq + r and d(r) < d(b) or r = 0.
- (ii) For all nonzero a and b in D, $d(a) \leq d(ab)$

Theorem 5.27. In a Euclidean domain every element can be factored uniquely (up to taking associates) into irreducible elements.

5.7 Polynomials as Functions

Lemma 5.28. Polynomials evaluation is compatible with the ring operations:

- If c(x) = a(x) + b(x), then $c(\alpha) = a(\alpha) + b(\alpha)$ for any α .
- If $c(x) = a(x) \cdot b(x)$, then $c(\alpha) = a(\alpha) \cdot b(\alpha)$ for any α .

Definition 5.33. Let $a(x) \in R[x]$. An element $\alpha \in R$ for which $a(\alpha) = 0$ is called a root of a(x).

Lemma 5.29. For a field F, $\alpha \in F$ is a root of a(x) if and only if $x - \alpha$ divides a(x).

Corollary 5.30. A polynomial a(x) of degree 2 or 3 over a field F is irreducible if and only if it has no root.

Theorem 5.31. For a field F, a nonzero polynomial $a(x) \in F[x]$ of degree d has at most d roots.

Lemma 5.32. A polynomial $a(x) \in F[x]$ of degree at most d is uniquely determined by any d+1 values of a(x), i.e., by $a(\alpha_1), \ldots, a(\alpha_{d+1})$ for any distinct $\alpha_1, \ldots, \alpha_{d+1} \in F$.

Lemma 5.33. Congruence modulo m(x) is a equivalence relation on F[x], and each equivalence class has a unique representation of degree less than deg(m(x)).

Definition 5.34. Let m(x) be a polynomial of degree d over F. Then

$$F[x]_{m(x)} \stackrel{def}{=} \{a(x) \in F[x] | \deg(a(x)) < d\}$$

Lemma 5.34. Let F e a finite field with q elements and let m(x) be a polynomial of degree d over F. Then $|F[x]_{m(x)}| = q^d$.

Lemma 5.35. $F[x]_{m(x)}$ is a ring with respect to addition and multiplication modulo m(x).

Lemma 5.36. The congruence equation

$$a(x)b(x) \equiv_{m(x)} 1$$

(for a given a(x)) has a solution $b(x) \in F[x]_{m(x)}$ if and only if gcd(a(x), m(x)) = 1. The solution is unique. In other words,

$$F[x]_{m(x)}^* = \{a(x) \in F[x]_{m(x)} | \gcd(a(x), m(x)) = 1\}$$

Theorem 5.37. The ring $F[x]_{m(x)}$ is a field if and only if m(x) is irreducible.

Theorem 5.38. For every prime p and every $d \ge 1$ there exists an irreducible polynomial of degree d in $GF(p)[x]_{m(x)}$. In particular, there exists a finite field with p^d elements.

Theorem 5.39. There exists a finite field with q elements if and only if q is a power of a prime. Moreover, any two finite fields of the same size q are isomorphic.

Theorem 5.40. The muliplicative group of every finite field GF(q) is cyclic.

5.8 Application: Error-Correcting Codes

Definition 5.35. A (n-k)-encoding function E for some alphabet A is an injective function that mpas a list $(a_0, \ldots, a_{k-1}) \in A^k$ of K (information) symbols to a list $(c_0, \ldots, c_{n-1}) \in A^n$ of n > k (encoded) symbols in A, called codeword:

$$E: \mathcal{A}^k \to \mathcal{A}^n: (a_0, \dots, a_{k-1}) \mapsto E((a_0, \dots, a_{k-1})) = (c_0, \dots, c_{n-1})$$

Definition 5.36. An (n,k)-error-correcting code over the alphabet \mathcal{A} with $|\mathcal{A}| = q$ is a subset of \mathcal{A}^n of cardinality q^k .

Definition 5.37. The Hamming distance between two strings of equal length over a finite alphabet A is the number of positions at which the two strings differ.

Definition 5.38. The minimum distance of an error-correcting code C, denoted $d_{min}(C)$, is the minimum of the Hamming distance between any two codewords.

Definition 5.39. A decoding function D for an (n,k)-encoding function is a function $D: \mathcal{A}^n \to \mathcal{A}^k$.

Definition 5.40. A decoding function D is t-error correcting for encoding function E if for any (a_0, \ldots, a_{k-1})

$$D((r_0,\ldots,r_{n-1}))=(a_0,\ldots,a_{k-1})$$

for any (r_0, \ldots, r_{n-1}) with Hamming distance at most t from $E((a_0, \ldots, a_{k-1}))$. A code C is t-error correcting if there eists E and D with C = Im(E) where D is t-error correcting.

Theorem 5.41. A code C with minimum distance d is t correcting if and only if $d \ge 2t+1$.

Theorem 5.42. Let A = GF(q) and let $\alpha_0, \ldots, \alpha_{n-1}$ be arbitrary distinct elements of GF(q). Consider the encoding function

$$E((a_0, \ldots, a_{k-1})) = (a(\alpha_0), \ldots, a(\alpha_{n-1}))$$

where a(x) is the polynomial

$$a(x) = a_{k-1}x^{k-1} + \dots + a_0x^0$$

This code has minimum distance n - k + 1.

6 Logic

6.2 Proof Systems

Definition 6.1. A proof system is a quadruple $\Pi = (\mathcal{S}, \mathcal{P}, \tau, \phi)$, where \mathcal{S} is the set of all possible statements, \mathcal{P} is the set of all possible proofs, $\tau : \mathcal{S} \to \{0, 1\}$, and $\phi : \mathcal{S} \times \mathcal{P} \to \{0, 1\}$

Definition 6.2. A proof system $\Pi = (S, \mathcal{P}, \tau, \phi)$ is sound if no false statement has a proof, i.e., if for all $s \in S$ for which there exists $p \in \mathcal{P}$ with $\phi(s, p) = 1$, we have $\tau(s) = 1$.

Definition 6.3. A proof system $\Pi = (S, \mathcal{P}, \tau, \phi)$ is complete if every true statement has a proof, i.e., if for all $s \in S$ whit $\tau(s) = 1$, there exists $p \in \mathcal{P}$ with $\phi(s, p) = 1$.

6.3 Elementary General Concepts in Logic

Definition 6.4. The syntax of a logic defines an alphabet Λ (of allowed symbols) and specifies which strings in λ^* are formulas (i.e., are syntactically correct).

Definition 6.5. The semantics of alogic defines (among other things) a function free which assigns to each formula $F = (f_1, \ldots, f_k) \in \Lambda^*$ a subset free $(F) \subseteq \{1, \ldots, k\}$ of indices. If $i \in free(F)$, then the symbol f_i is said to occur free in F.

Definition 6.6. An interpretation consists of a set $\mathcal{Z} \subseteq \Lambda$ of symbols of Λ , a domain (a set of possible values) for each symbol in \mathcal{Z} , and a function that assigns to each symbol in \mathcal{Z} a value in its associated domain.

Definition 6.7. An interpretation is suitable for a formula F if it assigns a value to all symbols $\beta \in \Lambda$ occurring free in F.

Definition 6.8. The semantics of a logic also defines a function σ assigning to each formula F, and each interpretation A suitable for F, a truth value $\sigma(F, A)$ in $\{0, 1\}$. In treatments of logic one often writes A(F) instead of $\sigma(F, A)$ and calls A(F) the truth value of F under interpretation A.

Definition 6.9. A (suitable) interpretation \mathcal{A} for which a formula F is true, (i.e., $\mathcal{A}(F) = 1$) is called a model for F, and one also writes

$$\mathcal{A} \models F$$

More generally, for a set M of formulas, a (suitable) interpretation for which all formulas

in M are true is called a model for M, denoted as

$$\mathcal{A} \models M$$

If A is not a model for M one write $A \not\models M$.

Definition 6.10. A formula F (or set M of formulas) is called satisfiable if there exists a model for F (or M), and unsatisfiable otherwise. The symbol \bot is used for an unsatisfiable formula.

Definition 6.11. A formula F is called a tautology or valid if it is true for every suitable interpretation. The symbol \top is used for a tautology.

Definition 6.12. A formula G is a logical consequence of a formula F (or a set M of formulas), denoted

$$F \models G \quad (or \quad M \models G)$$

if very interpretation suitable for both F (or M) and G, which is a model for F (for M), is also a model for G.

Definition 6.13. Two formulas F and G are equivalent, denoted $F \equiv G$, if every interpretation suitable for both F and G yields the same truth value for F and G, i.e., if each one is a logical consequence of the other:

$$F \equiv G \iff F \models G \text{ and } G \models F$$

Definition 6.14. If F is a tautology, one also write $\models F$.

Definition 6.15. If F and G are formulas, then also $\neg F$, $(F \land G)$, and $(F \lor G)$ are formulas.

Remark 6.1.

$$\begin{array}{ccc} (F \to G) & \stackrel{def}{\Longleftrightarrow} & (\neg F \lor G) \\ (F \leftrightarrow G) & \stackrel{def}{\Longleftrightarrow} & ((F \land G) \lor (\neg F \land \neg G)) \end{array}$$

Definition 6.16.

$$\mathcal{A}((F \land G)) = 1 \iff \mathcal{A}(F) = 1 \text{ and } \mathcal{A}(G) = 1$$

$$\mathcal{A}((F \lor G)) = 1 \iff \mathcal{A}(F) = 1 \text{ or } \mathcal{A}(G) = 1$$

$$\mathcal{A}(\neg F) = 1 \iff \mathcal{A}(F) = 0$$

Lemma 6.1. For any formulas F,G, and H we have

- (i) $F \wedge F \equiv F$ and $F \vee F \equiv F$ (idempotence);
- (ii) $F \wedge G \equiv G \wedge F$ and $F \vee G \equiv G \vee F$ (commutativity);

(iii)
$$(F \wedge G) \wedge H \equiv F \wedge (G \wedge H)$$
 and $(F \vee G) \vee H \equiv F \vee (G \vee H)$ (associativity);

- (iv) $F \wedge (F \vee G) \equiv F$ and $F \vee (F \wedge G)$ (absorption);
- (v) $F \wedge (G \vee H) \equiv (F \wedge G) \vee (F \wedge H)$ (distributive law);
- (vi) $F \vee (G \wedge H) \equiv (F \vee G) \wedge (F \vee H)$ (distributive law);
- (vii) $\neg \neg F \equiv F$ (double negation);

(viii)
$$\neg (F \land G) \equiv \neg F \lor \neg G$$
 and $\neg (F \lor G) \equiv \neg F \land \neg G$ (de Morgan's law);

- (ix) $F \lor \top \equiv \top$ and $F \land \top \equiv F$ (tautology rules);
- (x) $F \lor \bot \equiv F$ and $F \land \bot \equiv \bot$ (unsatisfiability rules);
- (xi) $F \vee \neg F \equiv \top$ and $F \wedge \neg F \equiv \bot$;

Lemma 6.2. A formula F is a tautology if and only if $\neg F$ is unsatisfiable.

Lemma 6.3. The following three statements are equivalent:

- (i) $\{F_1,\ldots,F_k\} \models G$
- (ii) $(F_1, \ldots, F_k) \to G$ is a tautology
- (iii) $\{F_1, \ldots, F_k, \neg G\}$ is unsatisfiable.

6.4 Logical Calculi

Definition 6.17. A derivation rule or inference rule is a rule for deriving a formula from a set of formulas (called the precondition or premises). We write

$$\{F_1,\ldots,F_k\}\vdash_R G$$

if G can be derived from the set $\{F_1, \ldots, F_k\}$ by rule R.

Definition 6.18. The application of a derivation rule R to a set M of formulas means. Assigning a formula $F \in M$ to any placeholder in R and adding the resulting formula G to the set M.

Definition 6.19. A (logical) calculus K is a finite set of derivation rules $K = \{R_1, \ldots, R_m\}$.

Definition 6.20. A derivation of a formula G from a set M of formulas in a calculus K is a finite sequence (of some length n) of applications of rules inK, leading to G. More precisely, we have

• $M_0 := M$,

- $M_i := M_{i-1} \cup \{G_i\}$ for $1 \le i \le n$, where $N \vdash_{R_i} G_i$ for some $N \subseteq M_{i-1}$ and for some $R_j \in K$, and where
- $G_n = G$.

We write

$$M \vdash_K G$$

if three is a derivation of G from M in the calculus K.

Definition 6.21. A derivation rule R is correct if for every set M of formulas and every formula F, $M \vdash_R F$ implies $M \models F$.

Definition 6.22. A calculus K is sound or correct if for every set M of formulas and every formula F, if F can be derived from M then F is also a logical consequence of M:

$$M \vdash_K F \implies M \models F$$

and K is complete if for every M and F, if F is a logical consequence of M then F can also be derived from M:

$$M \models F \implies M \vdash_K F$$

6.5 Propositional Logic

Definition 6.23 (Syntax). An atomic formula is a symbol of the form A_i with $i \in \mathbb{N}$. A formula is defined as follows:

- An atomic formula is a formula.
- If F and G are formulas, then also $\neg F$, $(F \land G)$, and $(F \lor G)$ are formulas.

Definition 6.24 (Semantics). For a set Z of atomic formulas, an interpretation A, called truth assignment, is a function $A: Z \to \{0,1\}$. A truth assignment A is suitable for a formula F if Z contains all atomic formulas appearing in F. The semantics (i.e., the truth value of A(F) of a formula F under interpretation A) is defined by $A(F) = A(A_i)$ for any atomic formula $F = A_i$, and by Definition 6.16

$$\mathcal{A}((F \land G)) = 1 \iff \mathcal{A}(F) = 1 \text{ and } \mathcal{A}(G) = 1$$

$$\mathcal{A}((F \lor G)) = 1 \iff \mathcal{A}(F) = 1 \text{ or } \mathcal{A}(G) = 1$$

$$\mathcal{A}(\neg F) = 1 \iff \mathcal{A}(F) = 0$$

Definition 6.25. A literal is an atomic formula or the negation of an atomic formula.

Definition 6.26. A formula F is in conjunctive normal form (CNF) if it is a conjunction of disjunctions of literals, i.e., if it is of the form

$$F = (L_{11} \vee \cdots \vee L_{1m_1}) \wedge \cdots \wedge (L_{n1} \vee \cdots \vee L_{nm_n})$$

for some literals L_{ij} .

Definition 6.27. A formula F is in disjunctive normal form (DNF) if it is a disjunction of conjunctions of literals, i.e., if it is of the form

$$F = (L_{11} \wedge \cdots \wedge L_{1m_1}) \vee \cdots \vee (L_{n1} \wedge \cdots \wedge L_{nm_n})$$

for some literals L_{ij} .

Theorem 6.4. Every formula is equivalent to a formula in CNF and also to a formula in DNF.

Definition 6.28. A clause is a set of literals.

Definition 6.29. The set of clauses associated to a formula

$$F = (L_{11} \vee \cdots \vee L_{1m_1}) \wedge \cdots \wedge (L_{n1} \vee \cdots \vee L_{nm_n})$$

in CNF, denoted as K(F), is the set

$$\mathcal{F} \stackrel{def}{=} \{\{L_{11}, \dots, L_{1m_1}\}, \dots, \{L_{n1}, \dots, L_{nm_n}\}\}$$

The set of clauses associated with a set $M = \{F_1, \ldots, F_k\}$ of formulas is the union of their clause sets:

$$\mathcal{K}(M) \stackrel{def}{=} \bigcup_{i=1}^{k} \mathcal{K}(F_i)$$

Definition 6.30. A clause K is a resolvent of clauses K_1 and K_2 if there is a literal L such that $L \in K_1$, $\neg L \in K_2$, and

$$K = (K_1 \setminus \{L\}) \cup (K_2 \setminus \{\neg L\})$$

Lemma 6.5. The resolution calculus is sound, i.e., if $K \vdash_{Res} K$ then $K \models K$.

Theorem 6.6. A set M of formulas is unsatisfiable if and only if $K(M) \vdash_{Res} \emptyset$.

6.6 Predicate Logic (First-order Logic)

Definition 6.31 (Syntax of predicate logic). • A variable symbol is of the form x_i with $i \in \mathbb{N}$

- A function symbol is of the form $f_i^{(k)}$ with $i, k \in \mathbb{N}$, where k denotes the number of arguments of the function. Function symbols for k = 0 are called constants.
- A predicate symbol is of the form $P_i^{(k)}$ with $i, k \in \mathbb{N}$, where k denotes the number f arguments of the predicate.
- A term is defined inductively: A variable is a term and if t_1, \ldots, t_k are terms, then $f_i^{(k)}(t_1, \ldots, t_k)$ are terms, then $f_i^{(k)}(t_1, \ldots, t_k)$ is a term. For k = 0 one writes no parentheses.
- A formula is defined inductively:
 - For any i and k, if t_1, \ldots, t_k are terms, then $P_i^{(k)}(t_1, \ldots, t_k)$ is a formula, called an atomic formula.
 - If F and G are formulas, then $\neg F$, $(F \land G)$, and $(F \lor G)$ are formulas.
 - If F is a formula, then, for any i, $\forall x_i F$ and $\exists x_i F$ are formulas.

Definition 6.32. Every occurrence of a varible in a formula is either bound or free. If a veriable x occurs in a (sub-)formula of the form $\forall xG$ or $\exists xG$, then it is bound, otherwise it is free. A formula is closed if it contains no free variables.

Definition 6.33. For a formula F, a variable x and a term t, F[x/t] denotes the formula obtained from F by subtituting every free occurrence of x by t.

Definition 6.34. An interpretation or structure is a tuple $\mathcal{A} = (U, \phi, \psi, \xi)$ where

- *U* is a non-empty universe,
- ϕ is a function assigning to each function symbol (in a certain subset of all function symbols) a function, where for a k-ary function symbol f, $\phi(f)$ is a function $U^k \to U$,
- ψ is a function assigning to each predigcate symbol (in a certain subset of all predicate symbols) a function, where for a k-ary predicate symbol P, $\psi(P)$ is a function $U^k \to \{0,1\}$, and where
- ξ is a function assigning to each variable symbol (in a certain subset of all variable symbols) a value in U.

Definition 6.35. A interpretation (structure) A is suitable for a formula F if it defines all functions symbols, predicate symbols, and freely occurring variables of F.

Definition 6.36 (Semantics). For an interpretation (structure) $\mathcal{A} = (U, \phi, \psi, \xi)$, we define the value (in U) of the terms and the truth value of formulas under that structure.

- The value A of a ter t is defined recursively as follows:
 - If t is a veriable, i.e. $t = x_i$, then $A(t) = \xi(x_i)$.
 - If t is of the form $f(t_1, ..., t_k)$ for terms $t_1, ..., t_k$ and a k-ary predicate symbol P, then $A(t) = \phi(f)(A(t_1), ..., A(t_k))$.
- The truth value of a formula F is defined recursively by Definition 6.16 and
 - If F is of the form $F = P(t_1, ..., t_k)$ for term $t_1, ..., t_k$ and a k-ary predicate symbol P, then $A(F) = \psi(P)(A(t_1), ..., A(t_k))$.
 - If F is of the form $\forall xG$ or $\exists xG$, then let $\mathcal{A}_{[x\to u]}$ for $u\in U$ be the same structure as \mathcal{A} except that $\xi(x)$ is overwritten by u (i.e., $\xi(x)=u$):

$$\mathcal{A}(\forall xG) = \begin{cases} 1 & \text{if } \mathcal{A}_{[x \to u]}(G) = 1 \text{ for all } u \in U \\ 0 & \text{else} \end{cases}$$

$$\mathcal{A}(\exists xG) = \begin{cases} 1 & \text{if } \mathcal{A}_{[x \to u]}(G) = 1 \text{ for some } u \in U \\ 0 & \text{else} \end{cases}$$

Definition 6.37. For any formulas F, G, and H, where x does not occur free in H, we have

(i)
$$\neg(\forall xF) \equiv \exists x \neg F;$$

(ii)
$$\neg(\exists xF) \equiv \forall x \neg F$$
;

(iii)
$$(\forall xF) \land (\forall xG) \equiv \forall x(F \land G);$$

(iv)
$$(\exists xF) \lor (\exists xG) \equiv \exists (F \lor G);$$

(v)
$$\forall x \forall y F \equiv \forall x \forall y F$$
;

(vi)
$$\exists x \exists y F \equiv \exists x \exists y F$$
;

(vii)
$$(\forall xF) \land H \equiv \forall (F \land H);$$

(viii)
$$(\forall xF) \lor H \equiv \forall (F \lor H);$$

(ix)
$$(\exists xF) \land H \equiv \exists (F \land H);$$

(x)
$$(\exists x F) \lor H \equiv \exists (F \lor H);$$

Lemma 6.7. If one replaces a sub-formula G of a formula F by an equivalent (to G) formula H, then the resulting formula is equivalent to F.

Lemma 6.8. For a formula G in which y does not occur we have

•
$$\forall xG \equiv \forall yG[x/y],$$

•
$$\exists xG \equiv \exists yG[x/y],$$

Definition 6.38. A formula in which no variable occurs both as a bound and as a free variable and in which all variables appreaing after the quantifiers are distinct is said to be rectified form.

Definition 6.39. A formula of the form

$$Q_1x_1\cdots Q_nx_nG$$

where the Q_i are arbitrary quantifiers (\forall or \exists) and G is a formula free of quantifiers, is said to be in prenex form.

Theorem 6.9. For every formula there is an equivalent formula in prenex form.

Lemma 6.10. For any formula F and any term t we have

$$\forall xF \models F[x/t]$$