

LECTURE 13: SINGLE-SOURCE SHORTEST PATHS

Harold Soh harold@comp.nus.edu.sg

ı

A POLL:

What wasn't clear in yesterday's lecture?

- A. BFS and DFS
- B. Topological Sort ("Breadth-first")
- C. Topological Sort ("Depth-first")
- D. B and C
- E. A,B,C... All I don't understand.
- F. I understood it all. ©

LEARNING OUTCOMES

By the end of the session, students should be able to:

- describe the shortest path algorithm for unweighted graphs
- explain the Bellman-Ford algorithm
- describe the time complexity of the Bellman-Ford algorithm
- Understand when Bellman-Ford will fail

PROBLEM: FINDING HERBERT!

Herbert has gone missing! Last sighting: in the sewer

system.

How can we systematically search for Herbert... before he gets destroyed by an alligator?

The tunnels may have different lengths!

ROUTING YOUR VEHICLE

PATH TO ROUTE A PACKET OR A PACKAGE

Different edges have different costs:

- Time to send
- Cost to send
- Risk of going missing

WEIGHTED GRAPHS

7

Questions:

- How far is it from S to D?
- What is the shortest path from S to D?

- Find the shortest path from S to every node.
- Find the shortest path between every pair of nodes.

DISTANCE FROM THE SOURCE?

DISTANCE FROM THE SOURCE?

CAN WE USE **BFS**?

BFS finds minimum number of HOPS not minimum DISTANCE.

BFS finds minimum number of HOPS not minimum DISTANCE.

Notation: $\delta(u, v) = \text{minimum distance from } u \text{ to } v$

IF ALL WEIGHTS ARE POSITIVE, CAN THE SHORTEST PATH CONTAIN A CYCLE?

IF ALL WEIGHTS ARE POSITIVE, CAN THE SHORTEST PATH CONTAIN A CYCLE?

ha

Lemma 1: If G = (V, E) contains **only positive weights** then the shortest path p from source vertex s to a vertex v must be a **simple path**.

A **simple path** is defined as path $p = (v_0, v_1, v_2, ..., v_k)$ where $(v_i, v_{i+1}) \in E$, $\forall \ 0 \le i \le (k-1)$ and there is **no** repeated vertex along this path.

WHY PROVE STUFF?

Asymptotic Analysis

Algorithmic Thinking

Software Carpentry

Programming Languages

Theoretical CS

Data Structures

Computer Architecture

Computer Security

WHY PROVE STUFF?

PROOF METHODS

Direct Proof

Mathematical Induction

Contradiction

Contraposition

Proof by construction

Proof by exhaustion

Probabilistic proof

• • •

Page Fragment from Euclid's Elements of Geometry (75-125~A.D)

PROOF METHODS

Direct Proof

Mathematical Induction

Contradiction

Contraposition

Proof by construction

Proof by exhaustion

Probabilistic proof

• • •

Page Fragment from Euclid's Elements of Geometry (75-125~A.D)

IF ALL WEIGHTS ARE POSITIVE, CAN THE SHORTEST PATH CONTAIN A CYCLE?

Lemma 1: If G = (V, E) contains **only positive weights** then the shortest path p from source vertex s to a vertex v must be a **simple path**.

A **simple path** is defined as path $p = \{v_0, v_1, v_2, \dots, v_k\}$ where $(v_i, v_{i+1}) \in E, \forall \ 0 \le i \le (k-1)$ and there is **no** repeated vertex along this path.

PROOF SKETCH OF LEMMA 1

(By Contradiction)

Strategy:

- Assume some statement P to be false,
 i.e. not-P
- Show that if not-P, then two contradictory statements Q and not-Q are reached.
- Since both Q and not-Q cannot be true, not-P is false!
- So, P must be true

Contradiction!

Lemma 1: If G = (V, E) contains **only positive weights** then the shortest path p from source vertex s to a vertex v must be a **simple path**.

PROOF SKETCH OF LEMMA 1

Suppose the shortest path p is **not** a simple path

Then p must contain at least one cycle

Suppose there is a cycle c in p with positive weight:

If we remove c then we will have a "shorter" shortest path.

Contradiction! (we said at the beginning that p is the shortest path)

Conclusion: p is a simple path.

IF ALL WEIGHTS ARE POSITIVE, CAN THE SHORTEST PATH CONTAIN A CYCLE?

Lemma 1: If G = (V, E) contains **only positive weights** then the shortest path p from source vertex s to a vertex v must be a **simple path**.

A **simple path** is defined as path $p = \{v_0, v_1, v_2, \dots, v_k\}$ where $(v_i, v_{i+1}) \in E$, $\forall \ 0 \le i \le (k-1)$ and there is <u>no</u> repeated vertex along this path.

What about 0 weight?

0-cycles can occur but can be removed.

What about 0 weight?

• 0-cycles can occur but can be removed.

What about negative weights?

Ok! Up to a point ...

What about 0 weight?

0-cycles can occur but can be removed.

What about negative weights?

Ok! Up to a point ...

What about 0 weight?

0-cycles can occur but can be removed.

What about negative weights?

Ok!

But no negative weight cycles!

 Negative weight cycles make the problem ill-defined

SIMPLE PATHS

Lemma 2: If G = (V, E) contains **no negative weight cycles**, then the shortest path p from source vertex s to a vertex v is a **simple path**.

A **simple path** is defined as path $p = \{v_0, v_1, v_2, \dots, v_k\}$ where $(v_i, v_{i+1}) \in E$, $\forall \ 0 \le i \le (k-1)$ and there is <u>no</u> repeated vertex along this path.

This means that the shortest path can have at most |V|-1 edges

Lemma 3: Triangle Inequality. For any edge (u, v)

$$\delta(s, v) \le \delta(s, u) + w(u, v)$$

Proof Sketch (by contradiction):

Lemma 3: Triangle Inequality. For any edge (u, v)

$$\delta(s, v) \leq \delta(s, u) + w(u, v)$$

Proof Sketch (by contradiction):

Suppose the shortest path p has

$$\delta(s, v) > \delta(s, u) + w(u, v)$$

Lemma 3: Triangle Inequality. For any edge (u, v)

$$\delta(s, v) \leq \delta(s, u) + w(u, v)$$

Proof Sketch (by contradiction):

Suppose the shortest path p has

$$\delta(s, v) > \delta(s, u) + w(u, v)$$

But then, we can take the path from $s \rightsquigarrow u \rightarrow v$ which has shorter distance so, p could not have been the shortest path. Contradiction!

Maintain estimate for each distance:

- Reduce estimate d[s, u]
- Invariant: estimate $d[s,u] \ge \delta[s,u]$

```
// in Java
int[] dist = new int[V.length];
Arrays.fill(dist, INFTY);
dist[start] = 0;
```


NEXT, RELAX!

Maintain estimate for each distance:

relax(S, A)

The idea:

relax(w,v):

Test if the best way to get from $s \to v$ is to go from $s \to w$, then $w \to v$.


```
relax(int u, int v) {
    if (dist[v] > dist[u] + weight(u,v))
        dist[v] = dist[u] + weight(u,v);
}
```

Maintain estimate for each distance:

relax(S, A)

The idea:

relax(w,v):

Test if the best way to get from $s \to v$ is to go from $s \to w$, then $w \to v$.

Maintain estimate for each distance:

relax(A, C)

The idea:

relax(w,v):

Test if the best way to get from $s \to v$ is to go from $s \to w$, then $w \to v$.


```
relax(int u, int v) {
    if (dist[v] > dist[u] + weight(u,v))
        dist[v] = dist[u] + weight(u,v);
}
```

Maintain estimate for each distance:

relax(A, C)

The idea:

relax(w,v):

Test if the best way to get from $s \to v$ is to go from $s \to w$, then $w \to v$.


```
relax(int u, int v) {
    if (dist[v] > dist[u] + weight(u,v))
        dist[v] = dist[u] + weight(u,v);
}
```

Maintain estimate for each distance:

relax(A, B)

The idea:

relax(w,v):

Test if the best way to get from $s \to v$ is to go from $s \to w$, then $w \to v$.

Maintain estimate for each distance:

relax(S, B)

The idea:

relax(w,v):

Test if the best way to get from $s \to v$ is to go from $s \to w$, then $w \to v$.

Maintain estimate for each distance:

relax(B, C)

The idea:

relax(w,v):

Test if the best way to get from $s \to v$ is to go from $s \to w$, then $w \to v$.


```
relax(int u, int v)
  if (dist[v] > dist[u] + weight(u,v))
      dist[v] = dist[u] + weight(u,v);
```

RELAXATION: UPPER BOUND PROPERTY

Lemma 4: We always have $d[v] \geq \delta[v]$ for all $v \in V$ and once $d[v] = \delta[v]$, it never changes.

Proof via induction (left as an exercise)

d[s,v]

Notation note: I'm going to drop the dependence of $\underline{d[s,v]}$ on s to reduce clutter. So, $\underline{d[v]} = d[s,v]$ for some source node s

```
relax(int u, int v)
  if (dist[v] > dist[u] + weight(u,v))
      dist[v] = dist[u] + weight(u,v);
```

Lemma 5: If

- $s \rightsquigarrow u \rightarrow v$ is a shortest path from $s \leftrightarrow v$ and
- $d[u] = \delta[u]$ before relaxing edge (u, v),


```
relax(int u, int v)
  if (dist[v] > dist[u] + weight(u,v))
      dist[v] = dist[u] + weight(u,v);
```

Lemma 5: If

- S $\leadsto u \to v$ is a shortest path from S to v and
- $d[u] = \delta[u]$ before relaxing edge (u, v),

$$d[v] \le d[u] + w(u, v)$$


```
relax(int u, int v)
  if (dist[v] > dist[u] + weight(u,v))
      dist[v] = dist[u] + weight(u,v);
```

Lemma 5: If

- S $\leadsto u \to v$ is a shortest path from S to v and
- $d[u] = \delta[u]$ before relaxing edge (u, v),

$$d[v] \le d[u] + w(u, v)$$

= $\delta[u] + w(u, v)$


```
relax(int u, int v)
  if (dist[v] > dist[u] + weight(u,v))
      dist[v] = dist[u] + weight(u,v);
```

Lemma 5: If

- S $\leadsto u \to v$ is a shortest path from S to v and
- $d[u] = \delta[u]$ before relaxing edge (u, v),

$$d[v] \le d[u] + w(u, v)$$

$$= \delta[u] + w(u, v)$$

$$= \delta[v]$$

```
relax(int u, int v)
  if (dist[v] > dist[u] + weight(u,v))
      dist[v] = dist[u] + weight(u,v);
```

Lemma 5: If

- S $\leadsto u \to v$ is a shortest path from S to v and
- $d[u] = \delta[u]$ before relaxing edge (u, v),

then $d[v] = \delta[v]$ at all times after relaxing

$$d[v] \le d[u] + w(u, v)$$

= $\delta[u] + w(u, v)$
= $\delta[v]$

By Lemma 3 (upper bound property), $d[v] = \delta[v]$ is maintained and never changes \blacksquare

PATH RELAXATION PROPERTY

Lemma 6. If $p=(v_0,v_1,...,v_k)$ is a shortest path from $\underline{s}=v_0$ to v_k and we relax the edges of p in the order $v_k=v_0$

$$(v_0, v_1), (v_1, v_2), \dots, (v_{k-1}, v_k)$$

Then $d[v_k] = \delta[v_k]$.

This property holds regardless of any other relaxation steps that occur (even intermixed)

• E.g., (v_0, v_1) , (v_i, v_j) , (v_1, v_2) , ..., (v_{k-1}, v_k) will still result in $d[v_k] = \delta[v_k]$.

Lemma 5. If $p=(v_0,v_1,\ldots,v_k)$ is a shortest path from $s=v_0$ to v_k and we relax the edges of p in the order $(v_0,v_1),(v_1,v_2),\ldots,(v_{k-1},v_k)$ Then $d[v_k]=\delta[v_k]$.

Consider the shortest path p from source vertex s to v_k

Show: After the k-th edge is relaxed, $d[v_k] = \delta[v_k]$

Proof Strategy: (like recursion)

- Base case: Show the statement is true for k=0
- Inductive hypothesis: Assume the statement is true for some k-1
- Inductive step: Show the statement holds for k

Lemma 5. If $p=(v_0,v_1,\ldots,v_k)$ is a shortest path from $s=v_0$ to v_k and we relax the edges of p in the order $(v_0,v_1),(v_1,v_2),\ldots,(v_{k-1},v_k)$ Then $d[v_k]=\delta[v_k].$

Consider the **shortest path** $oldsymbol{p}$ from source vertex v_0 to v_k

Show: After the k-th edge is relaxed, $d[v_k] = \delta[v_k]$

Base Case:

$$D[v_0] = \delta[v_0] = 0$$

$$d[v_0] = \delta[v_0] = 0$$

Lemma 5. If $p=(v_0,v_1,\ldots,v_k)$ is a shortest path from $s=v_0$ to v_k and we relax the edges of p in the order $(v_0,v_1),(v_1,v_2),\ldots,(v_{k-1},v_k)$ Then $d[v_k]=\delta[v_k].$

Inductive hypothesis:

Assume:

$$d[v_{k-1}] = \delta[v_{k-1}]$$

Lemma 5. If $p=(v_0,v_1,\ldots,v_k)$ is a shortest path from $s=v_0$ to v_k and we relax the edges of p in the order $(v_0,v_1),(v_1,v_2),\ldots,(v_{k-1},v_k)$ Then $d[v_k]=\delta[v_k].$

Inductive step: (Show for step k)

 v_k , is reachable from v_{k-1} where

$$d[v_{k-1}] = \delta[v_{k-1}]$$

Lemma 5. If $p=(v_0,v_1,\ldots,v_k)$ is a shortest path from $s=v_0$ to v_k and we relax the edges of p in the order $(v_0,v_1),(v_1,v_2),\ldots,(v_{k-1},v_k)$ Then $d[v_k]=\delta[v_k]$.

Inductive step: (Show for step k)

 v_k , is reachable from v_{k-1} where

$$d[v_{k-1}] = \delta[v_{k-1}]$$

When we relax $e = (v_{k-1}, v_k)$

$$d[v_k] = \delta[v_{k-1}] + w(e)$$
$$= \delta[v_k]$$

Lemma 5. If $p=(v_0,v_1,\ldots,v_k)$ is a shortest path from $s=v_0$ to v_k and we relax the edges of p in the order $(v_0,v_1),(v_1,v_2),\ldots,(v_{k-1},v_k)$ Then $d[v_k]=\delta[v_k]$.

Inductive step: (Show for step k)

 v_k , is reachable from v_{k-1} where

$$d[v_{k-1}] = \delta[v_{k-1}]$$

When we relax $e = (v_{k-1}, v_k)$

$$d[v_k] = \delta[v_{k-1}] + w(e)$$
$$= \delta[v_k]$$

 $d[v_{k-1}] = \delta[v_{k-1}]$ $0 \qquad k-1 \qquad k$ $d[v_0] = \delta[v_0] = 0 \qquad d[v_k] = \delta[v_k]$

And by convergence property, after relaxation, the equality is maintained. ■

LET'S SUMMARIZE:

Assuming no negative cycles:

The shortest path must be a simple path

When performing relaxations:

- Upper-Bound Property: Once a shortest path estimate $d[v_i]$ is correct, $d[v_i] = \delta[v_i]$, it never changes.
- **Convergence Property:** For a shortest path $v_0 \rightsquigarrow v_{k-1} \to v_k$, if the estimate $d[v_{k-1}]$ is correct, then after relaxing (v_{k-1}, v_k) , the estimate $d[v_k]$ will also be correct (forever).
- Path Relaxation Property: If p is a shortest path from v_0 to v_k , then once we relax the edges of p in order, then $d[v_k] = \delta[v_k]$

```
relax(int u, int v) {
    if (dist[v] > dist[u] + weight(u,v))
        dist[v] = dist[u] + weight(u,v);
}
```

Maintain estimate for each distance:

for Edge e in graph
 relax(e)

Maintain estimate for each distance:

for Edge e in graph
 relax(e)

Does this algorithm always work?

- A. Yes!
- B. No!
- C. Maybe yes, maybe no...
- D. Hmm.. I would ask Naruto but he hasn't appeared for a while...

Maintain estimate for each distance:

for Edge e in graph
 relax(e)

Does this algorithm always work?

- A. Yes!
- B. No!
- C. Maybe yes, maybe no...
- D. Hmm.. I would ask Naruto but he hasn't appeared for a while...

HOW MANY TIMES MUST I RELAX?

Assuming no negative cycles:

The shortest path must be a simple path

When performing relaxations:

- Upper-Bound Property: Once a shortest path estimate $d[v_i]$ is correct, $d[v_i] = \delta[v_i]$, it never changes.
- **Convergence Property:** For a shortest path $v_0 \rightsquigarrow v_{k-1} \to v_k$, if the estimate $d[v_{k-1}]$ is correct, then after relaxing (v_{k-1}, v_k) , the estimate $d[v_k]$ will also be correct (forever).
- Path Relaxation Property: If p is a shortest path from v_0 to v_k , then once we relax the edges of p in order, then $d[v_k] = \delta[v_k]$

SIMPLE PATHS

Lemma 2: If G = (V, E) contains **no negative weight cycles**, then the shortest path p from source vertex s to a vertex s is a **simple path**.

A **simple path** is defined as path $p = \{v_0, v_1, v_2, \dots, v_k\}$ where $(v_i, v_{i+1}) \in E$, $\forall \ 0 \le i \le (k-1)$ and there is <u>no</u> repeated vertex along this path.

This means that the shortest path can have at most |V|-1 edges

BELLMAN-FORD ALGORITHM

n = V.length
for i = 1 to n-1
 for Edge e in Graph
 relax(e)

Does Bellman-Ford always work?

Yes! Because of Path Relaxation. Proof by Induction in Visualgo

WHY DOES BELLMAN FORD WORK?

Theorem 1: If G=(V,E) contains no negative weight cycle, then after Bellman Ford's algorithm terminates, we will have $D[u] = \delta(s,u), \forall u \in V$.

WHY DOES BELLMAN-FORD WORK?


```
BellmanFord(V,E)
    n = V.length
    for i = 1 to n-1
       for Edge e in E
       relax(e)
```


Look at minimum weight path from S to D.

(Path is simple: no loops.)

```
BellmanFord(V,E)
    n = V.length
    for i = 1 to n-1
       for Edge e in E
       relax(e)
```


After 1 iteration, 1 hop estimate is correct. (Path Relaxation) meaning: All shortest paths that are 1 hop long are now correct

```
BellmanFord(V,E)
    n = V.length
    for i = 1 to n-1
       for Edge e in E
       relax(e)
```


After 1 iteration, 1 hop estimate is correct. (Path Relaxation)

```
BellmanFord(V,E)
    n = V.length
    for i = 1 to n-1
       for Edge e in E
       relax(e)
```


After 1 iteration, 1 hop estimate is correct. (Path Relaxation)

```
BellmanFord(V,E)
    n = V.length
    for i = 1 to n-1
       for Edge e in E
       relax(e)
```


After 2 iterations, 2 hop estimate is correct. (Path Relaxation)

```
BellmanFord(V,E)
    n = V.length
    for i = 1 to n-1
       for Edge e in E
       relax(e)
```


After 3 iterations, 3 hop estimate is correct. (Path Relaxation)

```
BellmanFord(V,E)
    n = V.length
    for i = 1 to n-1
       for Edge e in E
       relax(e)
```


After 4 iterations, D estimate is correct. (Path Relaxation)

Keep running till V-1 and Bellman-Ford finds shortest paths from s to all other nodes!

BELLMAN-FORD WORKS.

Theorem 1: If G=(V,E) contains no negative weight cycles, then after Bellman Ford's algorithm terminates, we will have $D[u] = \delta(s,u), \forall u \in V$.

Proof Sketch (Direct):

Given source \underline{s} and any destination \underline{t}

Let $p = (v_0, v_1, \dots, v_k)$ be the shortest path from s to t

Theorem 1: If G = (V, E) contains no negative weight cycles, then after Bellman Ford's algorithm terminates, we will have $D[v] = \delta(s, u), \forall u \in V$.

BellmanFord(V,E)
 n = V.length
 for i = 1 to n-1
 for Edge e in E
 relax(e)

Proof Sketch (Direct):

How long can p be? $k \leq |V| - 1$

What happens at each iteration?

In each iteration, we relax all |E| edges. Within the $i=1,2,\ldots,k$ iteration, we relax (v_{i-1},v_i) By the path relaxation property, after |V|-1 iterations, $d[t=v_k]=\delta[t=v_k]$


```
n = V.length

for i = 1 to n-1

for Edge e in Graph

relax(e)
```

What is the running time of Bellman-Ford?

- A. O(V)
- B. O(E)
- C. O(V+E)
- D. O(VE)
- E. $O(E \log V)$
- F. I have no idea.


```
n = V.length
for i = 1 to n-1
  for Edge e in Graph
  relax(e)
```

What is the running time of Bellman-Ford?

- A. O(V)
- B. O(E)
- C. O(V+E)
- D. O(VE)
- E. $O(E \log V)$
- F. I have no idea.

EARLY TERMINATION?

When can we terminate early?

- A. When a relax operation has no effect.
- B. When two consecutive relax operations have no effect.
- C. When an entire sequence of |E| relax operations have no effect.
- D. Never. Only after |V| complete iterations.

EARLY TERMINATION?

When can we terminate early?

- A. When a relax operation has no effect.
- B. When two consecutive relax operations have no effect.
- C. When an entire sequence of |E| relax operations have no effect.
- D. Never. Only after |V| complete iterations.

SHORTEST PATHS

```
relax(int u, int v) {
    if (dist[v] > dist[u] + weight(u,v))
        dist[v] = dist[u] + weight(u,v);
}
```

Maintain estimate for each distance:

for Edge e in graph
 relax(e)

If we relax all the edges and there is no faster way to get to any node, we have the shortest paths!

NEGATIVE EDGE WEIGHTS?

Bellman-Ford has no problems with negative edge weights!

Almost...

WHAT IF THE GRAPH LOOKS LIKE THIS:

NEGATIVE WEIGHT CYCLE

d(S,C) is infinitely negative!

NEGATIVE WEIGHT CYCLE

Run Bellman-Ford for |V| iterations.

If an estimate changes in the last iteration then negative weight cycle.

How to detect negative weight cycles?

SPECIAL CASE:

all edges have the same weight: What can we use? BFS!!!

SPECIAL CASES

Condition	Algorithm	Time Complexity
No Negative Weight Cycles	Bellman-Ford Algorithm	O(VE)
On Unweighted Graph (or equal weights)	BFS	O(V+E)
No Negative Weights	Dijkstra's Algorithm	
On Tree	BFS / DFS	
On DAG	Topological Sort	

BELLMAN-FORD ALGORITHM

n = V.length

for
$$i = 1$$
 to $n-1$

for Edge e in Graph
 relax(e)

In what order should we relax edges?

SPECIAL CASES

Condition	Algorithm	Time Complexity
No Negative Weight Cycles	Bellman-Ford Algorithm	O(VE)
On Unweighted Graph (or equal weights)	BFS	O(V+E)
No Negative Weights	Dijkstra's Algorithm	
On Tree	BFS / DFS	
On DAG	Topological Sort	

SPECIAL CASE: UNDIRECTED, WEIGHTED TREE

TREES (REDEFINED)

What is an (undirected) tree?

A graph with no cycles is an (undirected) tree.

What is a rooted tree?

A tree with a special designated root note.

Our previous (recursive) definition of a tree:

- A node with zero, one, or more sub-trees.
- a rooted tree.

UNDIRECTED WEIGHTED TREE

Assume you can only cross an edge once on your path.

UNDIRECTED WEIGHTED TREE

how many ways to get from S to D?

(assume no backpedaling)

Just 1 way! It's a tree!

UNDIRECTED WEIGHTED TREE

TREE: SOURCE-TO-ALL

In what order should we relax the nodes?

Use DFS or BFS

TREE: SOURCE-TO-ALL

TREE: SOURCE-TO-ALL

TREE: SOURCE-TO-ALL

TREE: SOURCE-TO-ALL

Special case:

- Positive or negative weights
- Undirected tree (no backpedaling)

Basic idea:

- Perform DFS or BFS
- Relax each edge the first time you see it.

What is the running time?

- A. O(V)
- B. O(E)
- C. O(V+E)
- D. O(VE)
- E. Naturo says it is **not** C.

TREE: SOURCE-TO-ALL

Special case:

- Positive or negative weights
- Undirected tree (no backpedaling)

Basic idea:

- Perform DFS or BFS
- Relax each edge the first time you see it.

how many edges in a tree?

What is the running time?

- A. O(V)
- B. O(E)
- C. O(V+E)
- D. O(VE)
- E. Naturo says it is **not** C.

UNDIRECTED WEIGHTED TREE

every node only has one parent (except the root). O(V) = O(E) edges.

SUMMARY

By the end of the session, students should be able to:

- describe the shortest path algorithm for unweighted graphs
- explain the Bellman-Ford algorithm
- describe the time complexity of the Bellman-Ford algorithm
- Understand when Bellman-Ford will fail

NEXT WEEK: SPECIAL CASES

Condition	Algorithm	Time Complexity
No Negative Weight Cycles	Bellman-Ford Algorithm	O(VE)
On Unweighted Graph (or equal weights)	BFS	O(V+E)
No Negative Weights	Dijkstra's Algorithm	
On Tree	BFS / DFS	O(V)
On DAG	Topological Sort	