

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 7 : C12N 15/12, C07K 14/47, 16/18, A61K 38/17, G01N 33/68		A2	(11) International Publication Number: WO 00/31263
(21) International Application Number: PCT/US99/28013			(43) International Publication Date: 2 June 2000 (02.06.00)
(22) International Filing Date: 23 November 1999 (23.11.99)			
(30) Priority Data:			
60/109,592 23 November 1998 (23.11.98) US			CA 94040 (US). TANG, Y., Tom [CN/US]; 4230 Ran-
60/118,610 4 February 1999 (04.02.99) US			wick Court, San Jose, CA 95118 (US). BANDMAN, Olga
60/127,990 6 April 1999 (06.04.99) US			[US/US]; 366 Anna Avenue, Mountain View, CA 94043
(63) Related by Continuation (CON) or Continuation-in-Part (CIP) to Earlier Applications			(US). LAL, Preeti [IN/US]; 2382 Lass Drive, Santa Clara,
US 60/109,592 (CIP)			CA 95054 (US). YUE, Henry [US/US]; 826 Lois Av-
Filed on 23 November 1998 (23.11.98)			enue, Sunnyvale, CA 94087 (US). LU, Dyung, Aina, M.
US 60/118,610 (CIP)			[US/US]; 55 Park Belmont Place, San Jose, CA 95136 (US).
Filed on 4 February 1999 (04.02.99)			BAUGHN, Mariah, R. [US/US]; 14244 Santiago Road, San
US 60/127,990 (CIP)			Leandro, CA 94577 (US). YANG, Junming [CN/US]; 7136
Filed on 6 April 1999 (06.04.99)			Clarendon Street, San Jose, CA 95129 (US). AZIMZAI,
(71) Applicant (for all designated States except US): INCYTE PHARMACEUTICALS, INC. [US/US]; 3174 Porter Drive, Palo Alto, CA 94304 (US).			Yalda [US/US]; 2045 Rock Springs Drive, Hayward, CA
(72) Inventors; and			94545 (US).
(75) Inventors/Applicants (for US only): HILLMAN, Jennifer, L. [US/US]; 230 Monroe Drive, #12, Mountain View,			(74) Agents: BILLINGS, Lucy, J. et al.; Incyte Pharmaceuticals, Inc., 3174 Porter Drive, Palo Alto, CA 94304 (US).
			(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).
			Published Without international search report and to be republished upon receipt of that report.

(54) Title: GTPASE ASSOCIATED PROTEINS

(57) Abstract

The invention provides human GTPase associated proteins (GTPAP) and polynucleotides which identify and encode GTPAP. The invention also provides expression vectors, host cells, antibodies, agonist, and antagonists. The invention also provides methods for diagnosing, treating, or preventing disorders associated with expression of GTPAP.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav Republic of Macedonia	TM	Turkmenistan
BF	Burkina Faso	GR	Greece	ML	Mali	TR	Turkey
BG	Bulgaria	HU	Hungary	MN	Mongolia	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MR	Mauritania	UA	Ukraine
BR	Brazil	IL	Israel	MW	Malawi	UG	Uganda
BY	Belarus	IS	Iceland	MX	Mexico	US	United States of America
CA	Canada	IT	Italy	NE	Niger	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NL	Netherlands	VN	Viet Nam
CG	Congo	KE	Kenya	NO	Norway	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NZ	New Zealand	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's Republic of Korea	PL	Poland		
CM	Cameroon	KR	Republic of Korea	PT	Portugal		
CN	China	KZ	Kazakhstan	RO	Romania		
CU	Cuba	LC	Saint Lucia	RU	Russian Federation		
CZ	Czech Republic	LI	Liechtenstein	SD	Sudan		
DE	Germany	LK	Sri Lanka	SE	Sweden		
DK	Denmark	LR	Liberia	SG	Singapore		
EE	Estonia						

GTPASE ASSOCIATED PROTEINS

TECHNICAL FIELD

This invention relates to nucleic acid and amino acid sequences of GTPase associated proteins and to the use of these sequences in the diagnosis, treatment, and prevention of cell proliferative, autoimmune/inflammatory, and immune system disorders.

5

BACKGROUND OF THE INVENTION

Guanine nucleotide binding proteins (GTP-binding proteins) participate in a wide range of regulatory functions in all eukaryotic cells, including metabolism, cellular growth, differentiation, signal transduction, cytoskeletal organization, and intracellular vesicle transport and secretion. In higher organisms they are involved in signaling that regulates such processes as the immune response (Aussel, C. et al (1988) *J. Immunol.* 140:215-220), apoptosis, differentiation, and cell proliferation including oncogenesis (Dhanasekaran, N. et al. (1998) *Oncogene* 17:1383-1394). Exchange of bound GDP for GTP followed by hydrolysis of GTP to GDP provides the energy that enables GTP-binding proteins to alter their conformation and interact with other cellular components. The superfamily of GTP-binding proteins consists of several families and may be grouped as translational factors, heterotrimeric GTP-binding proteins involved in transmembrane signaling processes (also called G-proteins), and low molecular weight GTP-binding proteins including the proto-oncogene Ras proteins and products of rab, rap, rho, rac, smg21, smg25, YPT, SEC4, and ARF genes, and tubulins (Kaziro, Y. et al. (1991) *Ann. Rev. Biochem.* 60:349-400). In all cases, the GTPase activity is regulated through interactions with other proteins.

GTP-binding proteins involved in protein biosynthesis include initiation factor 2 (IF-2), elongation factor 2 (EF-Tu), and elongation factor G (EF-G), observed in prokaryotes; and initiation factor 2 (eIF-2), elongation factor I α (EF-I α) and elongation factor 2 (EF-2) observed in eukaryotes (Kaziro, *supra*). IF-2 promotes the GTP-dependent binding of the tRNA to the small subunit of the ribosome, the step that initiates protein translation. Similarly, elongation factors promote the binding of tRNA and GTP and the displacement of GDP after hydrolysis as protein biosynthesis proceeds.

Heterotrimeric GTP-binding proteins are composed of 3 subunits (α , β and γ) which, in their inactive conformation, associate as a trimer at the inner face of the plasma membrane. $G\alpha$ binds GDP or GTP and contains the GTPase activity. The $\beta\gamma$ complex enhances binding of $G\alpha$ to a receptor. $G\gamma$ is necessary for the folding and activity of $G\beta$. (Neer, E.J. et al. (1994) *Nature* 371:297-300.) Multiple homologs of each subunit have been identified in mammalian tissues, and different combinations of subunits have specific functions and tissue specificities. (Spiegel, A.M. (1997) *J.*

Inher. Metab. Dis. 20:113-121.) G protein activity is triggered by seven-transmembrane cell surface receptors (G-protein coupled receptors) which respond to lipid analogs, amino acids and their derivatives, peptides, cytokines, and specialized stimuli such as light, taste, and odor. Activation of the receptor by its stimulus causes the replacement of the G protein-bound GDP with GTP. G_α-GTP dissociates from the receptor/βγ complex and each of these separated components can interact with and regulate downstream effectors. The signaling stops when G_α hydrolyzes its bound GTP to GDP and reassociates with the βγ complex (Neer, supra).

The alpha subunits of heterotrimeric G proteins can be divided into four distinct classes. The α-s class is sensitive to ADP-ribosylation by pertussis toxin which uncouples the receptor:G-protein interaction. This uncoupling blocks signal transduction to receptors that decrease cAMP levels which normally regulate ion channels and activate phospholipases. The inhibitory α-I class is also susceptible to modification by pertussis toxin which prevents α-I from lowering cAMP levels. Two novel classes of α subunits refractory to pertussis toxin modification are α-q, which activates phospholipase C, and α-12, which has sequence homology with the *Drosophila* gene concertina and may contribute to the regulation of embryonic development (Simon, M.I. (1991) Science 252:802-808).

The mammalian Gβ and Gγ subunits, each about 340 amino acids long, share more than 80% homology. The Gβ subunit (also called transducin) contains seven repeating units, each about 43 amino acids long. The activity of both subunits may be regulated by other proteins such as calmodulin and phosducin or the neural protein GAP 43 (D. Clapham and E. Neer, 1993, Nature 365:403-406). The β and γ subunits are tightly associated. The β subunit sequences are highly conserved between species, implying that they perform a fundamentally important role in the organization and function of G-protein linked systems (Van der Voorn L. (1992) Febs. Lett. 307 (2):131-134). They contain seven tandem repeats of the WD-repeat sequence motif, a motif found in many proteins with regulatory functions. WD-repeat proteins contain from four to eight copies of a loosely conserved repeat of approximately 40 amino acids which participates in protein-protein interactions. Mutations and variant expression of β transducin proteins are linked with various disorders. Mutations in LIS1, a subunit of the human platelet activating factor acetylhydrolase, cause Miller-Dieker lissencephaly. RACK1 binds activated protein kinase C, and RbAp48 binds retinoblastoma protein. CstF is required for polyadenylation of mammalian pre-mRNA in vitro and associates with subunits of cleavage-stimulating factor. Defects in the regulation of β-catenin contribute to the neoplastic transformation of human cells. The WD40 repeats of the human F-box protein βTrCP mediate binding to β-catenin, thus regulating the targeted degradation of β-catenin by

- ubiquitin ligase (Neer, *supra*; Hart, M. et al (1999) *Curr. Biol.* 9:207-210). The γ subunit primary structures are more variable than those of the β subunits. They are often post-translationally modified by isoprenylation and carboxyl-methylation of a cysteine residue four amino acids from the C-terminus; this appears to be necessary for the interaction of the $\beta\gamma$ subunit with the membrane and with other GTP-binding proteins. The $\beta\gamma$ subunit has been shown to modulate the activity of isoforms of adenylyl cyclase, phospholipase C, and some ion channels. It is involved in receptor phosphorylation via specific kinases, and has been implicated in the p21ras-dependent activation of the MAP kinase cascade and the recognition of specific receptors by GTP-binding proteins. (Clapham and Neer, *supra*).
- 10 G-proteins interact with a variety of effectors including adenylyl cyclase (Clapham and Neer, *supra*). The signaling pathway mediated by cAMP is mitogenic in hormone-dependent endocrine tissues such as adrenal cortex, thyroid, ovary, pituitary, and testes. Cancers in these tissues have been related to a mutationally activated form of a $G\alpha$, known as the gsp (Gs protein) oncogene (Dhanasekaran, *supra*). Another effector is phosducin, a retinal phosphoprotein, which forms a 15 specific complex with retinal $G\beta$ and $G\gamma$ ($G\beta\gamma$) and modulates the ability of $G\beta\gamma$ to interact with retinal $G\alpha$ (Clapham and Neer, *supra*).
- Irregularities in the GTP-binding protein signaling cascade may result in abnormal activation of leukocytes and lymphocytes, leading to the tissue damage and destruction seen in many inflammatory and autoimmune diseases such as rheumatoid arthritis, biliary cirrhosis, hemolytic 20 anemia, lupus erythematosus, and thyroiditis. Abnormal cell proliferation, including cyclic AMP stimulation of brain, thyroid, adrenal, and gonadal tissue proliferation is regulated by G proteins. Mutations in $G\alpha$ subunits have been found in growth-hormone-secreting pituitary somatotroph tumors, hyperfunctioning thyroid adenomas, and ovarian and adrenal neoplasms (Meij, J.T.A. (1996) *Mol. Cell. Biochem.* 157:31-38; Aussel, *supra*).
- 25 LMW GTP-binding proteins are GTPases which regulate cell growth, cell cycle control, protein secretion, and intracellular vesicle interaction. They consist of single polypeptides which, like the alpha subunit of the heterotrimeric GTP-binding proteins, are able to bind to and hydrolyze GTP, thus cycling between an inactive and an active state. LMW GTP-binding proteins respond to extracellular signals from receptors and activating proteins by transducing mitogenic signals involved 30 in various cell functions. The binding and hydrolysis of GTP regulates the response of LMW GTP-binding proteins and acts as an energy source during this process (Bokoch, G. M. and Der, C. J. (1993) *FASEB J.* 7:750-759).

At least sixty members of the LMW GTP-binding protein superfamily have been identified.

and are currently grouped into the ras, rho, arf, sar₁, ran, and rab subfamilies. Activated ras genes were initially found in human cancers, and subsequent studies confirmed that ras function is critical in determining whether cells continue to grow or become differentiated. Ras₁ and Ras₂ proteins stimulate adenylate cyclase (Kaziro, *supra*), affecting a broad array of cellular processes. Stimulation of cell surface receptors activates Ras which, in turn, activates cytoplasmic kinases. These kinases translocate to the nucleus and activate key transcription factors that control gene expression and protein synthesis (Barbacid, M. (1987) *Ann. Rev Biochem.* 56:779-827, Treisman, R. (1994) *Curr. Opin. Genet. Dev.* 4:96-98). Other members of the LMW GTP-binding protein superfamily have roles in signal transduction that vary with the function of the activated genes and the locations of the GTP-binding proteins that initiate the activity. Rho GTP-binding proteins control signal transduction pathways that link growth factor receptors to actin polymerization, which is necessary for normal cellular growth and division. The rab, arf, and sar₁ families of proteins control the translocation of vesicles to and from membranes for protein processing, localization, and secretion. Vesicle- and target-specific identifiers (v-SNAREs and t-SNAREs) bind to each other and dock the vesicle to the acceptor membrane. The budding process is regulated by the closely related ADP ribosylation factors (ARFs) and SAR proteins, while rab proteins allow assembly of SNARE complexes and may play a role in removal of defective complexes (J. Rothman and F. Wieland (1996) *Science* 272:227-234). Ran GTP-binding proteins are located in the nucleus of cells and have a key role in nuclear protein import, the control of DNA synthesis, and cell-cycle progression (Hall, A. (1990) *Science* 249:635-640; Barbacid, M. (1987) *Ann. Rev Biochem.* 56:779-827; Ktistakis, N. (1998) *BioEssays* 20:495-504; and Sasaki, T. and Takai, Y. (1998) *Biochem. Biophys. Res. Commun.* 245:641-645).

The cycling of LMW GTP-binding proteins between the GTP-bound active form and the GDP-bound inactive form is regulated by additional proteins. Guanosine nucleotide exchange factors (GEFs) increase the rate of nucleotide dissociation by several orders of magnitude, thus facilitating release of GDP and loading with GTP. The best characterized is the mammalian homologue of the Drosophila Son-of-Sevenless protein. Certain Ras-family proteins are also regulated by guanine nucleotide dissociation inhibitors (GDIs), which inhibit GDP dissociation. The intrinsic rate of GTP hydrolysis of the LMW GTP-binding proteins is typically very slow, but it can be stimulated by several orders of magnitude by GTPase-activating proteins (GAPs) (Geyer, M. and Wittinghofer, A. (1997) *Curr. Opin. Struct. Biol.* 7:786-792). Both GEF and GAP activity may be controlled in response to extracellular stimuli and modulated by accessory proteins such as RaIBP1 and POB1. Mutant Ras-family proteins, which bind but can not hydrolyze GTP, are permanently activated, and cause cell proliferation or cancer, as do GEFs that inappropriately activate LMW GTP-binding proteins, such as the human oncogene NET1, a Rho-GEF (Drivas, G. T. et al. (1990) *Mol. Cell. Biol.* 10: 611-618).

10:1793-1798; Alberts, A. S. and Treisman, R. (1998) EMBO J. 14:4075-4085).

A novel group of GTP-binding proteins is the GTP1/OBG family, which are found in species ranging from bacteria to yeast to humans. These proteins contain characteristic GTP- binding motifs and are similar to one another but do not show sequence homology to other GTP-binding proteins.

- 5 The exact functions of these proteins are as yet uncertain, but they have been shown to be important for regulation of cell differentiation and development (Okamoto, S. and Ochi, K. (1998). Mol. Microbiol 30:107-119; Sazaka, T. et al. (1992) Biochem. Biophys. Res. Commun. 189:363-370).

The discovery of new GTPase associated proteins and the polynucleotides encoding them satisfies a need in the art by providing new compositions which are useful in the diagnosis,

- 10 prevention, and treatment of cell proliferative, autoimmune/inflammatory, and immune system disorders.

SUMMARY OF THE INVENTION

The invention features substantially purified polypeptides, GTPase associated proteins,

- 15 referred to collectively as "GTPAP" and individually as "GTPAP-1," "GTPAP-2," "GTPAP-3," "GTPAP-4," "GTPAP-5," "GTPAP-6," "GTPAP-7," "GTPAP-8," "GTPAP-9," "GTPAP-10," "GTPAP-11," "GTPAP-12," "GTPAP-13," "GTPAP-14," "GTPAP-15," "GTPAP-16," "GTPAP-17," "GTPAP-18," "GTPAP-19," "GTPAP-20," "GTPAP-21," "GTPAP-22," "GTPAP-23," "GTPAP-24," "GTPAP-25," "GTPAP-26," "GTPAP-27," "GTPAP-28," and "GTPAP-29." In one aspect, the
20 invention provides a substantially purified polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-29 and fragments thereof. The invention also includes a polypeptide comprising an amino acid sequence that differs by one or more conservative amino acid substitutions from an amino acid sequence selected from the group consisting of SEQ ID NO:1-29.

- The invention further provides a substantially purified variant having at least 90% amino acid
25 identity to at least one of the amino acid sequences selected from the group consisting of SEQ ID NO:1-29 and fragments thereof. The invention also provides an isolated and purified polynucleotide encoding the polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-29 and fragments thereof. The invention also includes an isolated and purified polynucleotide variant having at least 90% polynucleotide sequence identity to the polynucleotide
30 encoding the polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-29 and fragments thereof.

Additionally, the invention provides an isolated and purified polynucleotide which hybridizes under stringent conditions to the polynucleotide encoding the polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-29 and fragments thereof. The

invention also provides an isolated and purified polynucleotide having a sequence which is complementary to the polynucleotide encoding the polypeptide comprising the amino acid sequence selected from the group consisting of SEQ ID NO:1-29 and fragments thereof.

The invention also provides a method for detecting a polynucleotide in a sample containing nucleic acids, the method comprising the steps of: (a) hybridizing the complement of the polynucleotide sequence to at least one of the polynucleotides of the sample, thereby forming a hybridization complex; and (b) detecting the hybridization complex, wherein the presence of the hybridization complex correlates with the presence of a polynucleotide in the sample. In one aspect, the method further comprises amplifying the polynucleotide prior to hybridization.

The invention also provides an isolated and purified polynucleotide comprising a polynucleotide sequence selected from the group consisting of SEQ ID NO:30-58 and fragments thereof. The invention further provides an isolated and purified polynucleotide variant having at least 90% polynucleotide sequence identity to the polynucleotide sequence selected from the group consisting of SEQ ID NO:30-58 and fragments thereof. The invention also provides an isolated and purified polynucleotide having a sequence which is complementary to the polynucleotide comprising a polynucleotide sequence selected from the group consisting of SEQ ID NO:30-58 and fragments thereof.

The invention further provides an expression vector containing at least a fragment of the polynucleotide encoding the polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-29. In another aspect, the expression vector is contained within a host cell.

The invention also provides a method for producing a polypeptide, the method comprising the steps of: (a) culturing the host cell containing an expression vector containing a polynucleotide of the invention under conditions suitable for the expression of the polypeptide; and (b) recovering the polypeptide from the host cell culture.

The invention also provides a pharmaceutical composition comprising a substantially purified polypeptide having the amino acid sequence selected from the group consisting of SEQ ID NO:1-29 and fragments thereof, in conjunction with a suitable pharmaceutical carrier.

The invention further includes a purified antibody which binds to a polypeptide selected from the group consisting of SEQ ID NO:1-29 and fragments thereof. The invention also provides a purified agonist and a purified antagonist to the polypeptide.

The invention also provides a method for treating or preventing a disorder associated with decreased expression or activity of GTPAP, the method comprising administering to a subject in need of such treatment an effective amount of a pharmaceutical composition comprising a substantially

purified polypeptide having the amino acid sequence selected from the group consisting of SEQ ID NO:1-29 and fragments thereof, in conjunction with a suitable pharmaceutical carrier.

- The invention also provides a method for treating or preventing a disorder associated with increased expression or activity of GTPAP, the method comprising administering to a subject in need 5 of such treatment an effective amount of an antagonist of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-29 and fragments thereof.

BRIEF DESCRIPTION OF THE TABLES

Table 1 shows polypeptide and nucleotide sequence identification numbers (SEQ ID NOS), 10 clone identification numbers (clone IDs), cDNA libraries, and cDNA fragments used to assemble full-length sequences encoding GTPAP.

Table 2 shows features of each polypeptide sequence, including potential motifs, homologous sequences, and methods, algorithms, and searchable databases used for analysis of GTPAP.

Table 3 shows selected fragments of each nucleic acid sequence; the tissue-specific 15 expression patterns of each nucleic acid sequence as determined by northern analysis; diseases, disorders, or conditions associated with these tissues; and the vector into which each cDNA was cloned.

Table 4 describes the tissues used to construct the cDNA libraries from which cDNA clones 20 encoding GTPAP were isolated.

Table 5 shows the tools, programs, and algorithms used to analyze GTPAP, along with applicable descriptions, references, and threshold parameters.

DESCRIPTION OF THE INVENTION

Before the present proteins, nucleotide sequences, and methods are described, it is understood 25 that this invention is not limited to the particular machines, materials and methods described, as these may vary. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments only, and is not intended to limit the scope of the present invention which will be limited only by the appended claims.

It must be noted that as used herein and in the appended claims, the singular forms "a," "an," 30 and "the" include plural reference unless the context clearly dictates otherwise. Thus, for example, a reference to "a host cell" includes a plurality of such host cells, and a reference to "an antibody" is a reference to one or more antibodies and equivalents thereof known to those skilled in the art, and so forth.

Unless defined otherwise, all technical and scientific terms used herein have the same

meanings as commonly understood by one of ordinary skill in the art to which this invention belongs. Although any machines, materials, and methods similar or equivalent to those described herein can be used to practice or test the present invention, the preferred machines, materials and methods are now described. All publications mentioned herein are cited for the purpose of describing and disclosing 5 the cell lines, protocols, reagents and vectors which are reported in the publications and which might be used in connection with the invention. Nothing herein is to be construed as an admission that the invention is not entitled to antedate such disclosure by virtue of prior invention.

DEFINITIONS

"GTPAP" refers to the amino acid sequences of substantially purified GTPAP obtained from 10 any species, particularly a mammalian species, including bovine, ovine, porcine, murine, equine, and human, and from any source, whether natural, synthetic, semi-synthetic, or recombinant.

The term "agonist" refers to a molecule which intensifies or mimics the biological activity of GTPAP. Agonists may include proteins, nucleic acids, carbohydrates, small molecules, or any other compound or composition which modulates the activity of GTPAP either by directly interacting with 15 GTPAP or by acting on components of the biological pathway in which GTPAP participates.

An "allelic variant" is an alternative form of the gene encoding GTPAP. Allelic variants may result from at least one mutation in the nucleic acid sequence and may result in altered mRNAs or in 20 polypeptides whose structure or function may or may not be altered. A gene may have none, one, or many allelic variants of its naturally occurring form. Common mutational changes which give rise to allelic variants are generally ascribed to natural deletions, additions, or substitutions of nucleotides. Each of these types of changes may occur alone, or in combination with the others, one or more times in a given sequence.

"Altered" nucleic acid sequences encoding GTPAP include those sequences with deletions, insertions, or substitutions of different nucleotides, resulting in a polypeptide the same as GTPAP or a 25 polypeptide with at least one functional characteristic of GTPAP. Included within this definition are polymorphisms which may or may not be readily detectable using a particular oligonucleotide probe of the polynucleotide encoding GTPAP, and improper or unexpected hybridization to allelic variants, with a locus other than the normal chromosomal locus for the polynucleotide sequence encoding GTPAP. The encoded protein may also be "altered," and may contain deletions, insertions, or 30 substitutions of amino acid residues which produce a silent change and result in a functionally equivalent GTPAP. Deliberate amino acid substitutions may be made on the basis of similarity in polarity, charge, solubility, hydrophobicity, hydrophilicity, and/or the amphipathic nature of the residues, as long as the biological or immunological activity of GTPAP is retained. For example, negatively charged amino acids may include aspartic acid and glutamic acid, and positively charged +

amino acids may include lysine and arginine. Amino acids with uncharged polar side chains having similar hydrophilicity values may include: asparagine and glutamine; and serine and threonine.

Amino acids with uncharged side chains having similar hydrophilicity values may include: leucine, isoleucine, and valine; glycine and alanine; and phenylalanine and tyrosine.

5 The terms "amino acid" and "amino acid sequence" refer to an oligopeptide, peptide, polypeptide, or protein sequence, or a fragment of any of these, and to naturally occurring or synthetic molecules. Where "amino acid sequence" is recited to refer to an amino acid sequence of a naturally occurring protein molecule, "amino acid sequence" and like terms are not meant to limit the amino acid sequence to the complete native amino acid sequence associated with the recited protein
10 molecule.

 "Amplification" relates to the production of additional copies of a nucleic acid sequence. Amplification is generally carried out using polymerase chain reaction (PCR) technologies well known in the art.

15 The term "antagonist" refers to a molecule which inhibits or attenuates the biological activity of GTPAP. Antagonists may include proteins such as antibodies, nucleic acids, carbohydrates, small molecules, or any other compound or composition which modulates the activity of GTPAP either by directly interacting with GTPAP or by acting on components of the biological pathway in which GTPAP participates.

20 The term "antibody" refers to intact immunoglobulin molecules as well as to fragments thereof, such as Fab, F(ab'), and Fv fragments, which are capable of binding an epitopic determinant. Antibodies that bind GTPAP polypeptides can be prepared using intact polypeptides or using fragments containing small peptides of interest as the immunizing antigen. The polypeptide or oligopeptide used to immunize an animal (e.g., a mouse, a rat, or a rabbit) can be derived from the translation of RNA, or synthesized chemically, and can be conjugated to a carrier protein if desired.
25 Commonly used carriers that are chemically coupled to peptides include bovine serum albumin, thyroglobulin, and keyhole limpet hemocyanin (KLH). The coupled peptide is then used to immunize the animal.

30 The term "antigenic determinant" refers to that region of a molecule (i.e., an epitope) that makes contact with a particular antibody. When a protein or a fragment of a protein is used to immunize a host animal, numerous regions of the protein may induce the production of antibodies which bind specifically to antigenic determinants (particular regions or three-dimensional structures on the protein). An antigenic determinant may compete with the intact antigen (i.e., the immunogen used to elicit the immune response) for binding to an antibody.

 The term "antisense" refers to any composition containing a nucleic acid sequence which is -

complementary to the "sense" strand of a specific nucleic acid sequence. Antisense molecules may be produced by any method including synthesis or transcription. Once introduced into a cell, the complementary nucleotides combine with natural sequences produced by the cell to form duplexes and to block either transcription or translation. The designation "negative" or "minus" can refer to the antisense strand, and the designation "positive" or "plus" can refer to the sense strand.

The term "biologically active" refers to a protein having structural, regulatory, or biochemical functions of a naturally occurring molecule. Likewise, "immunologically active" refers to the capability of the natural, recombinant, or synthetic GTPAP, or of any oligopeptide thereof, to induce a specific immune response in appropriate animals or cells and to bind with specific antibodies.

10 The terms "complementary" and "complementarity" refer to the natural binding of polynucleotides by base pairing. For example, the sequence "5' A-G-T 3'" bonds to the complementary sequence "3' T-C-A 5'." Complementarity between two single-stranded molecules may be "partial," such that only some of the nucleic acids bind, or it may be "complete," such that total complementarity exists between the single stranded molecules. The degree of complementarity between nucleic acid strands has significant effects on the efficiency and strength of the hybridization between the nucleic acid strands. This is of particular importance in amplification reactions, which depend upon binding between nucleic acid strands, and in the design and use of peptide nucleic acid (PNA) molecules.

20 A "composition comprising a given polynucleotide sequence" and a "composition comprising a given amino acid sequence" refer broadly to any composition containing the given polynucleotide or amino acid sequence. The composition may comprise a dry formulation or an aqueous solution. Compositions comprising polynucleotide sequences encoding GTPAP or fragments of GTPAP may be employed as hybridization probes. The probes may be stored in freeze-dried form and may be associated with a stabilizing agent such as a carbohydrate. In hybridizations, the probe may be 25 deployed in an aqueous solution containing salts (e.g., NaCl), detergents (e.g., sodium dodecyl sulfate; SDS), and other components (e.g., Denhardt's solution, dry milk, salmon sperm DNA, etc.).

30 "Consensus sequence" refers to a nucleic acid sequence which has been resequenced to resolve uncalled bases, extended using the XL-PCR kit (Perkin-Elmer, Norwalk CT) in the 5' and/or the 3' direction, and resequenced, or which has been assembled from the overlapping sequences of one or more Incyte Clones and, in some cases, one or more public domain ESTs, using a computer program for fragment assembly, such as the GELVIEW fragment assembly system (GCG, Madison WI). Some sequences have been both extended and assembled to produce the consensus sequence.

"Conservative amino acid substitutions" are those substitutions that, when made, least interfere with the properties of the original protein, i.e., the structure and especially the function of the

protein is conserved and not significantly changed by such substitutions. The table below shows amino acids which may be substituted for an original amino acid in a protein and which are regarded as conservative amino acid substitutions.

	Original Residue	Conservative Substitution
5	Ala	Gly, Ser
	Arg	His, Lys
	Asn	Asp, Gln, His
	Asp	Asn, Glu
	Cys	Ala, Ser
10	Gln	Asn, Glu, His
	Glu	Asp, Gln, His
	Gly	Ala
	His	Asn, Arg, Gln, Glu
	Ile	Leu, Val
15	Leu	Ile, Val
	Lys	Arg, Gln, Glu
	Met	Leu, Ile
	Phe	His, Met, Leu, Trp, Tyr
	Ser	Cys, Thr
20	Thr	Ser, Val
	Trp	Phe, Tyr
	Tyr	His, Phe, Trp
	Val	Ile, Leu, Thr

25 Conservative amino acid substitutions generally maintain (a) the structure of the polypeptide backbone in the area of the substitution, for example, as a beta sheet or alpha helical conformation, (b) the charge or hydrophobicity of the molecule at the site of the substitution, and/or (c) the bulk of the side chain.

30 A "deletion" refers to a change in the amino acid or nucleotide sequence that results in the absence of one or more amino acid residues or nucleotides.

35 The term "derivative" refers to the chemical modification of a polypeptide sequence, or a polynucleotide sequence. Chemical modifications of a polynucleotide sequence can include, for example, replacement of hydrogen by an alkyl, acyl, hydroxyl, or amino group. A derivative polynucleotide encodes a polypeptide which retains at least one biological or immunological function of the natural molecule. A derivative polypeptide is one modified by glycosylation, pegylation, or any similar process that retains at least one biological or immunological function of the polypeptide from which it was derived.

40 A "fragment" is a unique portion of GTPAP or the polynucleotide encoding GTPAP which is identical in sequence to but shorter in length than the parent sequence. A fragment may comprise up to the entire length of the defined sequence, minus one nucleotide/amino acid residue. For example, a fragment may comprise from 5 to 1000 contiguous nucleotides or amino acid residues. A fragment

used as a probe, primer, antigen, therapeutic molecule, or for other purposes, may be at least 5, 10, 15, 20, 25, 30, 40, 50, 60, 75, 100, 150, 250 or at least 500 contiguous nucleotides or amino acid residues in length. Fragments may be preferentially selected from certain regions of a molecule. For example, a polypeptide fragment may comprise a certain length of contiguous amino acids selected from the 5 first 250 or 500 amino acids (or first 25% or 50% of a polypeptide) as shown in a certain defined sequence. Clearly these lengths are exemplary, and any length that is supported by the specification, including the Sequence Listing, tables, and figures, may be encompassed by the present embodiments.

A fragment of SEQ ID NO:30-58 comprises a region of unique polynucleotide sequence that specifically identifies SEQ ID NO:30-58, for example, as distinct from any other sequence in the 10 same genome. A fragment of SEQ ID NO:30-58 is useful, for example, in hybridization and amplification technologies and in analogous methods that distinguish SEQ ID NO:30-58 from related polynucleotide sequences. The precise length of a fragment of SEQ ID NO:30-58 and the region of SEQ ID NO:30-58 to which the fragment corresponds are routinely determinable by one of ordinary skill in the art based on the intended purpose for the fragment.

15 A fragment of SEQ ID NO:1-29 is encoded by a fragment of SEQ ID NO:30-58. A fragment of SEQ ID NO:1-29 comprises a region of unique amino acid sequence that specifically identifies SEQ ID NO:1-29. For example, a fragment of SEQ ID NO:1-29 is useful as an immunogenic peptide for the development of antibodies that specifically recognize SEQ ID NO:1-29. The precise length of a fragment of SEQ ID NO:1-29 and the region of SEQ ID NO:1-29 to which the fragment 20 corresponds are routinely determinable by one of ordinary skill in the art based on the intended purpose for the fragment.

The term "similarity" refers to a degree of complementarity. There may be partial similarity or complete similarity. The word "identity" may substitute for the word "similarity." A partially complementary sequence that at least partially inhibits an identical sequence from hybridizing to a 25 target nucleic acid is referred to as "substantially similar." The inhibition of hybridization of the completely complementary sequence to the target sequence may be examined using a hybridization assay (Southern or northern blot, solution hybridization, and the like) under conditions of reduced stringency. A substantially similar sequence or hybridization probe will compete for and inhibit the binding of a completely similar (identical) sequence to the target sequence under conditions of 30 reduced stringency. This is not to say that conditions of reduced stringency are such that non-specific binding is permitted, as reduced stringency conditions require that the binding of two sequences to one another be a specific (i.e., a selective) interaction. The absence of non-specific binding may be tested by the use of a second target sequence which lacks even a partial degree of complementarity (e.g., less than about 30% similarity or identity). In the absence of non-specific binding, the

substantially similar sequence or probe will not hybridize to the second non-complementary target sequence.

The phrases "percent identity" and "% identity," as applied to polynucleotide sequences, refer to the percentage of residue matches between at least two polynucleotide sequences aligned using a 5 standardized algorithm. Such an algorithm may insert, in a standardized and reproducible way, gaps in the sequences being compared in order to optimize alignment between two sequences, and therefore achieve a more meaningful comparison of the two sequences.

Percent identity between polynucleotide sequences may be determined using the default parameters of the CLUSTAL V algorithm as incorporated into the MEGALIGN version 3.12e 10 sequence alignment program. This program is part of the LASERGENE software package, a suite of molecular biological analysis programs (DNASTAR, Madison WI). CLUSTAL V is described in Higgins, D.G. and P.M. Sharp (1989) CABIOS 5:151-153 and in Higgins, D.G. et al. (1992) CABIOS 8:189-191. For pairwise alignments of polynucleotide sequences, the default parameters are set as follows: Ktuple=2, gap penalty=5, window=4, and "diagonals saved"=4. The "weighted" residue 15 weight table is selected as the default. Percent identity is reported by CLUSTAL V as the "percent similarity" between aligned polynucleotide sequence pairs.

Alternatively, a suite of commonly used and freely available sequence comparison algorithms is provided by the National Center for Biotechnology Information (NCBI) Basic Local Alignment Search Tool (BLAST) (Altschul, S.F. et al. (1990) J. Mol. Biol. 215:403-410), which is available from 20 several sources, including the NCBI, Bethesda, MD, and on the Internet at <http://www.ncbi.nlm.nih.gov/BLAST/>. The BLAST software suite includes various sequence analysis programs including "blastn," that is used to align a known polynucleotide sequence with other polynucleotide sequences from a variety of databases. Also available is a tool called "BLAST 2 Sequences" that is used for direct pairwise comparison of two nucleotide sequences. "BLAST 2 25 Sequences" can be accessed and used interactively at <http://www.ncbi.nlm.nih.gov/gorf/bl2.html>. The "BLAST 2 Sequences" tool can be used for both blastn and blastp (discussed below). BLAST programs are commonly used with gap and other parameters set to default settings. For example, to compare two nucleotide sequences, one may use blastn with the "BLAST 2 Sequences" tool Version 2.0.9 (May-07-1999) set at default parameters. Such default parameters may be, for example:

30 *Matrix: BLOSUM62*

Reward for match: 1

Penalty for mismatch: -2

Open Gap: 5 and Extension Gap: 2 penalties

Gap x drop-off: 50

Expect: 10

Word Size: 11

Filter: on

- Percent identity may be measured over the length of an entire defined sequence, for example,
5 as defined by a particular SEQ ID number, or may be measured over a shorter length, for example,
over the length of a fragment taken from a larger, defined sequence, for instance, a fragment of at
least 20, at least 30, at least 40, at least 50, at least 70, at least 100, or at least 200 contiguous
nucleotides. Such lengths are exemplary only, and it is understood that any fragment length supported
by the sequences shown herein, in the tables, figures, or Sequence Listing, may be used to describe a
10 length over which percentage identity may be measured.

Nucleic acid sequences that do not show a high degree of identity may nevertheless encode
similar amino acid sequences due to the degeneracy of the genetic code. It is understood that changes
in a nucleic acid sequence can be made using this degeneracy to produce multiple nucleic acid
sequences that all encode substantially the same protein.

- 15 The phrases "percent identity" and "% identity," as applied to polypeptide sequences, refer to
the percentage of residue matches between at least two polypeptide sequences aligned using a
standardized algorithm. Methods of polypeptide sequence alignment are well-known. Some
alignment methods take into account conservative amino acid substitutions. Such conservative
substitutions, explained in more detail above, generally preserve the hydrophobicity and acidity at the
20 site of substitution, thus preserving the structure (and therefore function) of the polypeptide.

- Percent identity between polypeptide sequences may be determined using the default
parameters of the CLUSTAL V algorithm as incorporated into the MEGALIGN version 3.12e
sequence alignment program (described and referenced above). For pairwise alignments of
polypeptide sequences using CLUSTAL V, the default parameters are set as follows: Ktuple=1, gap
25 penalty=3, window=5, and "diagonals saved"=5. The PAM250 matrix is selected as the default
residue weight table. As with polynucleotide alignments, the percent identity is reported by
CLUSTAL V as the "percent similarity" between aligned polypeptide sequence pairs.

- Alternatively the NCBI BLAST software suite may be used. For example, for a pairwise
comparison of two polypeptide sequences, one may use the "BLAST 2 Sequences" tool Version 2.0.9
30 (May-07-1999) with blastp set at default parameters. Such default parameters may be, for example:

Matrix: BLOSUM62

Open Gap: 11 and Extension Gap: 1 penalties

Gap x drop-off: 50

Expect: 10

Word Size: 3

Filter: on

Percent identity may be measured over the length of an entire defined polypeptide sequence, for example, as defined by a particular SEQ ID number, or may be measured over a shorter length, for 5 example, over the length of a fragment taken from a larger, defined polypeptide sequence, for instance, a fragment of at least 15, at least 20, at least 30, at least 40, at least 50, at least 70 or at least 150 contiguous residues. Such lengths are exemplary only, and it is understood that any fragment length supported by the sequences shown herein, in the tables, figures or Sequence Listing, may be used to describe a length over which percentage identity may be measured.

10 "Human artificial chromosomes" (HACs) are linear microchromosomes which may contain DNA sequences of about 6 kb to 10 Mb in size, and which contain all of the elements required for stable mitotic chromosome segregation and maintenance.

15 The term "humanized antibody" refers to antibody molecules in which the amino acid sequence in the non-antigen binding regions has been altered so that the antibody more closely resembles a human antibody, and still retains its original binding ability.

20 "Hybridization" refers to the process by which a polynucleotide strand anneals with a complementary strand through base pairing under defined hybridization conditions. Specific hybridization is an indication that two nucleic acid sequences share a high degree of identity. Specific hybridization complexes form under permissive annealing conditions and remain hybridized after the 25 "washing" step(s). The washing step(s) is particularly important in determining the stringency of the hybridization process, with more stringent conditions allowing less non-specific binding, i.e., binding between pairs of nucleic acid strands that are not perfectly matched. Permissive conditions for annealing of nucleic acid sequences are routinely determinable by one of ordinary skill in the art and may be consistent among hybridization experiments, whereas wash conditions may be varied among 30 experiments to achieve the desired stringency, and therefore hybridization specificity. Permissive annealing conditions occur, for example, at 68°C in the presence of about 6 x SSC, about 1% (w/v) SDS, and about 100 µg/ml denatured salmon sperm DNA.

Generally, stringency of hybridization is expressed, in part, with reference to the temperature under which the wash step is carried out. Generally, such wash temperatures are selected to be about 35 5°C to 20°C lower than the thermal melting point (T_m) for the specific sequence at a defined ionic strength and pH. The T_m is the temperature (under defined ionic strength and pH) at which 50% of the target sequence hybridizes to a perfectly matched probe. An equation for calculating T_m and conditions for nucleic acid hybridization are well known and can be found in Sambrook et al., 1989, Molecular Cloning: A Laboratory Manual, 2nd ed., vol. 1-3, Cold Spring Harbor Press, Plainview NY;

specifically see volume 2, chapter 9.

High stringency conditions for hybridization between polynucleotides of the present invention include wash conditions of 68°C in the presence of about 0.2 x SSC and about 0.1% SDS, for 1 hour. Alternatively, temperatures of about 65°C, 60°C, 55°C, or 42°C may be used. SSC concentration 5 may be varied from about 0.1 to 2 x SSC, with SDS being present at about 0.1%. Typically, blocking reagents are used to block non-specific hybridization. Such blocking reagents include, for instance, denatured salmon sperm DNA at about 100-200 µg/ml. Organic solvent, such as formamide at a concentration of about 35-50% v/v, may also be used under particular circumstances, such as for RNA:DNA hybridizations. Useful variations on these wash conditions will be readily apparent to 10 those of ordinary skill in the art. Hybridization, particularly under high stringency conditions, may be suggestive of evolutionary similarity between the nucleotides. Such similarity is strongly indicative of a similar role for the nucleotides and their encoded polypeptides.

The term "hybridization complex" refers to a complex formed between two nucleic acid sequences by virtue of the formation of hydrogen bonds between complementary bases. A 15 hybridization complex may be formed in solution (e.g., C₆t or R₆t analysis) or formed between one nucleic acid sequence present in solution and another nucleic acid sequence immobilized on a solid support (e.g., paper, membranes, filters, chips, pins or glass slides, or any other appropriate substrate to which cells or their nucleic acids have been fixed).

The words "insertion" and "addition" refer to changes in an amino acid or nucleotide 20 sequence resulting in the addition of one or more amino acid residues or nucleotides, respectively.

"Immune response" can refer to conditions associated with inflammation, trauma, immune disorders, or infectious or genetic disease, etc. These conditions can be characterized by expression of various factors, e.g., cytokines, chemokines, and other signaling molecules, which may affect cellular and systemic defense systems.

25 The term "microarray" refers to an arrangement of distinct polynucleotides on a substrate.

The terms "element" and "array element" in a microarray context, refer to hybridizable polynucleotides arranged on the surface of a substrate.

30 The term "modulate" refers to a change in the activity of GTPAP. For example, modulation may cause an increase or a decrease in protein activity, binding characteristics, or any other biological, functional, or immunological properties of GTPAP.

The phrases "nucleic acid" and "nucleic acid sequence" refer to a nucleotide, oligonucleotide, polynucleotide, or any fragment thereof. These phrases also refer to DNA or RNA of genomic or synthetic origin which may be single-stranded or double-stranded and may represent the sense or the antisense strand, to peptide nucleic acid (PNA), or to any DNA-like or RNA-like material.

"Operably linked" refers to the situation in which a first nucleic acid sequence is placed in a functional relationship with the second nucleic acid sequence. For instance, a promoter is operably linked to a coding sequence if the promoter affects the transcription or expression of the coding sequence. Generally, operably linked DNA sequences may be in close proximity or contiguous and, 5 where necessary to join two protein coding regions, in the same reading frame.

"Peptide nucleic acid" (PNA) refers to an antisense molecule or anti-gene agent which comprises an oligonucleotide of at least about 5 nucleotides in length linked to a peptide backbone of amino acid residues ending in lysine. The terminal lysine confers solubility to the composition. PNAs preferentially bind complementary single stranded DNA or RNA and stop transcript elongation, 10 and may be pegylated to extend their lifespan in the cell.

"Probe" refers to nucleic acid sequences encoding GTPAP, their complements, or fragments thereof, which are used to detect identical, allelic or related nucleic acid sequences. Probes are isolated oligonucleotides or polynucleotides attached to a detectable label or reporter molecule. Typical labels include radioactive isotopes, ligands, chemiluminescent agents, and enzymes. 15 "Primers" are short nucleic acids, usually DNA oligonucleotides, which may be annealed to a target polynucleotide by complementary base-pairing. The primer may then be extended along the target DNA strand by a DNA polymerase enzyme. Primer pairs can be used for amplification (and identification) of a nucleic acid sequence, e.g., by the polymerase chain reaction (PCR).

Probes and primers as used in the present invention typically comprise at least 15 contiguous 20 nucleotides of a known sequence. In order to enhance specificity, longer probes and primers may also be employed, such as probes and primers that comprise at least 20, 25, 30, 40, 50, 60, 70, 80, 90, 100, or at least 150 consecutive nucleotides of the disclosed nucleic acid sequences. Probes and primers may be considerably longer than these examples, and it is understood that any length supported by the specification, including the tables, figures, and Sequence Listing, may be used.

25 Methods for preparing and using probes and primers are described in the references, for example Sambrook et al., 1989, Molecular Cloning: A Laboratory Manual, 2nd ed., vol. 1-3, Cold Spring Harbor Press, Plainview NY; Ausubel et al., 1987, Current Protocols in Molecular Biology, Greene Publ. Assoc. & Wiley-Intersciences, New York NY; Innis et al., 1990, PCR Protocols, A Guide to Methods and Applications, Academic Press, San Diego CA. PCR primer pairs can be 30 derived from a known sequence, for example, by using computer programs intended for that purpose such as Primer (Version 0.5, 1991, Whitehead Institute for Biomedical Research, Cambridge MA).

Oligonucleotides for use as primers are selected using software known in the art for such purpose. For example, OLIGO 4.06 software is useful for the selection of PCR primer pairs of up to 100 nucleotides each, and for the analysis of oligonucleotides and larger polynucleotides of up to -

5,000 nucleotides from an input polynucleotide sequence of up to 32 kilobases. Similar primer selection programs have incorporated additional features for expanded capabilities. For example, the PrimOU primer selection program (available to the public from the Genome Center at University of Texas South West Medical Center, Dallas TX) is capable of choosing specific primers from megabase sequences and is thus useful for designing primers on a genome-wide scope. The Primer3 primer selection program (available to the public from the Whitehead Institute/MIT Center for Genome Research, Cambridge MA) allows the user to input a "mispriming library," in which sequences to avoid as primer binding sites are user-specified. Primer3 is useful, in particular, for the selection of oligonucleotides for microarrays. (The source code for the latter two primer selection programs may 5 also be obtained from their respective sources and modified to meet the user's specific needs.) The PrimeGen program (available to the public from the UK Human Genome Mapping Project Resource Centre, Cambridge UK) designs primers based on multiple sequence alignments, thereby allowing 10 selection of primers that hybridize to either the most conserved or least conserved regions of aligned nucleic acid sequences. Hence, this program is useful for identification of both unique and conserved 15 oligonucleotides and polynucleotide fragments. The oligonucleotides and polynucleotide fragments identified by any of the above selection methods are useful in hybridization technologies, for example, as PCR or sequencing primers, microarray elements, or specific probes to identify fully or partially complementary polynucleotides in a sample of nucleic acids. Methods of oligonucleotide selection are not limited to those described above.

20 A "recombinant nucleic acid" is a sequence that is not naturally occurring or has a sequence that is made by an artificial combination of two or more otherwise separated segments of sequence. This artificial combination is often accomplished by chemical synthesis or, more commonly, by the 25 artificial manipulation of isolated segments of nucleic acids, e.g., by genetic engineering techniques such as those described in Sambrook, supra. The term recombinant includes nucleic acids that have been altered solely by addition, substitution, or deletion of a portion of the nucleic acid. Frequently, a recombinant nucleic acid may include a nucleic acid sequence operably linked to a promoter sequence. Such a recombinant nucleic acid may be part of a vector that is used, for example, to transform a cell.

30 Alternatively, such recombinant nucleic acids may be part of a viral vector, e.g., based on a vaccinia virus, that could be used to vaccinate a mammal wherein the recombinant nucleic acid is expressed, inducing a protective immunological response in the mammal.

The term "sample" is used in its broadest sense. A sample suspected of containing nucleic acids encoding GTPAP, or fragments thereof, or GTPAP itself, may comprise a bodily fluid; an extract from a cell, chromosome, organelle, or membrane isolated from a cell; a cell; genomic DNA,-

RNA, or cDNA, in solution or bound to a substrate; a tissue; a tissue print; etc.

The terms "specific binding" and "specifically binding" refer to that interaction between a protein or peptide and an agonist, an antibody, an antagonist, a small molecule, or any natural or synthetic binding composition. The interaction is dependent upon the presence of a particular

- 5 structure of the protein, e.g., the antigenic determinant or epitope, recognized by the binding molecule. For example, if an antibody is specific for epitope "A," the presence of a polypeptide containing the epitope A, or the presence of free unlabeled A, in a reaction containing free labeled A and the antibody will reduce the amount of labeled A that binds to the antibody.

10 The term "substantially purified" refers to nucleic acid or amino acid sequences that are removed from their natural environment and are isolated or separated, and are at least about 60% free, preferably about 75% free, and most preferably about 90% free from other components with which they are naturally associated.

A "substitution" refers to the replacement of one or more amino acids or nucleotides by different amino acids or nucleotides, respectively.

15 "Substrate" refers to any suitable rigid or semi-rigid support including membranes, filters, chips, slides, wafers, fibers, magnetic or nonmagnetic beads, gels, tubing, plates, polymers, microparticles and capillaries. The substrate can have a variety of surface forms, such as wells, trenches, pins, channels and pores, to which polynucleotides or polypeptides are bound.

20 "Transformation" describes a process by which exogenous DNA enters and changes a recipient cell. Transformation may occur under natural or artificial conditions according to various methods well known in the art, and may rely on any known method for the insertion of foreign nucleic acid sequences into a prokaryotic or eukaryotic host cell. The method for transformation is selected based on the type of host cell being transformed and may include, but is not limited to, viral infection, electroporation, heat shock, lipofection, and particle bombardment. The term "transformed" cells 25 includes stably transformed cells in which the inserted DNA is capable of replication either as an autonomously replicating plasmid or as part of the host chromosome, as well as transiently transformed cells which express the inserted DNA or RNA for limited periods of time.

A "variant" of a particular nucleic acid sequence is defined as a nucleic acid sequence having at least 40% sequence identity to the particular nucleic acid sequence over a certain length of one of 30 the nucleic acid sequences using blastn with the "BLAST 2 Sequences" tool Version 2.0.9 (May-07-1999) set at default parameters. Such a pair of nucleic acids may show, for example, at least 50%, at least 60%, at least 70%, at least 80%, at least 85%, at least 90%, at least 95% or at least 98% or greater sequence identity over a certain defined length. A variant may be described as, for example, an "allelic" (as defined above), "splice," "species," or "polymorphic" variant. A splice variant may -

have significant identity to a reference molecule, but will generally have a greater or lesser number of polynucleotides due to alternate splicing of exons during mRNA processing. The corresponding polypeptide may possess additional functional domains or lack domains that are present in the reference molecule. Species variants are polynucleotide sequences that vary from one species to another. The resulting polypeptides generally will have significant amino acid identity relative to each other. A polymorphic variant is a variation in the polynucleotide sequence of a particular gene between individuals of a given species. Polymorphic variants also may encompass "single nucleotide polymorphisms" (SNPs) in which the polynucleotide sequence varies by one nucleotide base. The presence of SNPs may be indicative of, for example, a certain population, a disease state, or a propensity for a disease state.

A "variant" of a particular polypeptide sequence is defined as a polypeptide sequence having at least 40% sequence identity to the particular polypeptide sequence over a certain length of one of the polypeptide sequences using blastp with the "BLAST 2 Sequences" tool Version 2.0.9 (May-07-1999) set at default parameters. Such a pair of polypeptides may show, for example, at least 50%, at least 60%, at least 70%, at least 80%, at least 90%, at least 95%, or at least 98% or greater sequence identity over a certain defined length of one of the polypeptides.

THE INVENTION

The invention is based on the discovery of new human GTPase associated proteins (GTPAP), the polynucleotides encoding GTPAP, and the use of these compositions for the diagnosis, treatment, or prevention of cell proliferative, autoimmune/inflammatory, and immune system disorders.

Table 1 lists the Incyte clones used to assemble full length nucleotide sequences encoding GTPAP. Columns 1 and 2 show the sequence identification numbers (SEQ ID NOs) of the polypeptide and nucleotide sequences, respectively. Column 3 shows the clone IDs of the Incyte clones in which nucleic acids encoding each GTPAP were identified, and column 4 shows the cDNA libraries from which these clones were isolated. Column 5 shows Incyte clones and their corresponding cDNA libraries. Clones for which cDNA libraries are not indicated were derived from pooled cDNA libraries. The Incyte clones in column 5 were used to assemble the consensus nucleotide sequence of each GTPAP and are useful as fragments in hybridization technologies.

The columns of Table 2 show various properties of each of the polypeptides of the invention: column 1 references the SEQ ID NO; column 2 shows the number of amino acid residues in each polypeptide; column 3 shows potential phosphorylation sites; column 4 shows potential glycosylation sites; column 5 shows the amino acid residues comprising signature sequences and motifs; column 6 shows homologous sequences as identified by BLAST analysis; and column 7 shows analytical

methods and in some cases, searchable databases to which the analytical methods were applied. The methods of column 7 were used to characterize each polypeptide through sequence homology and protein motifs.

The columns of Table 3 show the tissue-specificity and diseases, disorders, or conditions associated with nucleotide sequences encoding GTPAP. The first column of Table 3 lists the nucleotide SEQ ID NOs. Column 2 lists fragments of the nucleotide sequences of column 1. These fragments are useful, for example, in hybridization or amplification technologies to identify SEQ ID NO:30-58 and to distinguish between SEQ ID NO:30-58 and related polynucleotide sequences. The polypeptides encoded by these fragments are useful, for example, as immunogenic peptides. Column 10 lists tissue categories which express GTPAP as a fraction of total tissues expressing GTPAP. Column 11 lists diseases, disorders, or conditions associated with those tissues expressing GTPAP as a fraction of total tissues expressing GTPAP. Column 5 lists the vectors used to subclone each cDNA library. Of particular note is the specific expression of SEQ ID NO:43 in only one library, a human testis tissue library; the specific expression of SEQ ID NO:49 in only 4 libraries, one of which is 15 associated with cell proliferation and 3 of which are associated with inflammation; and the specific expression of SEQ ID NO:40 in only 5 libraries, 3 of which are associated with cell proliferation and one of which is associated with inflammation.

The columns of Table 4 show descriptions of the tissues used to construct the cDNA libraries from which cDNA clones encoding GTPAP were isolated. Column 1 references the nucleotide SEQ 20 ID NOs, column 2 shows the cDNA libraries from which these clones were isolated, and column 3 shows the tissue origins and other descriptive information relevant to the cDNA libraries in column 2.

The invention also encompasses GTPAP variants. A preferred GTPAP variant is one which has at least about 80%, or alternatively at least about 90%, or even at least about 95% amino acid sequence identity to the GTPAP amino acid sequence, and which contains at least one functional or 25 structural characteristic of GTPAP.

The invention also encompasses polynucleotides which encode GTPAP. In a particular embodiment, the invention encompasses a polynucleotide sequence comprising a sequence selected from the group consisting of SEQ ID NO:30-58, which encodes GTPAP.

The invention also encompasses a variant of a polynucleotide sequence encoding GTPAP. In 30 particular, such a variant polynucleotide sequence will have at least about 70%, or alternatively at least about 90%, or even at least about 95% polynucleotide sequence identity to the polynucleotide sequence encoding GTPAP. A particular aspect of the invention encompasses a variant of a polynucleotide sequence comprising a sequence selected from the group consisting of SEQ ID NO:30-58 which has at least about 70%, or alternatively at least about 90%, or even at least about

95% polynucleotide sequence identity to a nucleic acid sequence selected from the group consisting of SEQ ID NO:30-58. Any one of the polynucleotide variants described above can encode an amino acid sequence which contains at least one functional or structural characteristic of GTPAP.

It will be appreciated by those skilled in the art that as a result of the degeneracy of the genetic code, a multitude of polynucleotide sequences encoding GTPAP, some bearing minimal similarity to the polynucleotide sequences of any known and naturally occurring gene, may be produced. Thus, the invention contemplates each and every possible variation of polynucleotide sequence that could be made by selecting combinations based on possible codon choices. These combinations are made in accordance with the standard triplet genetic code as applied to the polynucleotide sequence of naturally occurring GTPAP, and all such variations are to be considered as being specifically disclosed.

Although nucleotide sequences which encode GTPAP and its variants are generally capable of hybridizing to the nucleotide sequence of the naturally occurring GTPAP under appropriately selected conditions of stringency, it may be advantageous to produce nucleotide sequences encoding GTPAP or its derivatives possessing a substantially different codon usage, e.g., inclusion of non-naturally occurring codons. Codons may be selected to increase the rate at which expression of the peptide occurs in a particular prokaryotic or eukaryotic host in accordance with the frequency with which particular codons are utilized by the host. Other reasons for substantially altering the nucleotide sequence encoding GTPAP and its derivatives without altering the encoded amino acid sequences include the production of RNA transcripts having more desirable properties, such as a greater half-life, than transcripts produced from the naturally occurring sequence.

The invention also encompasses production of DNA sequences which encode GTPAP and GTPAP derivatives, or fragments thereof, entirely by synthetic chemistry. After production, the synthetic sequence may be inserted into any of the many available expression vectors and cell systems using reagents well known in the art. Moreover, synthetic chemistry may be used to introduce mutations into a sequence encoding GTPAP or any fragment thereof.

Also encompassed by the invention are polynucleotide sequences that are capable of hybridizing to the claimed polynucleotide sequences, and, in particular, to those shown in SEQ ID NO:30-58 and fragments thereof under various conditions of stringency. (See, e.g., Wahl, G.M. and S.L. Berger (1987) Methods Enzymol. 152:399-407; Kimmel, A.R. (1987) Methods Enzymol. 152:507-511.) Hybridization conditions, including annealing and wash conditions, are described in "Definitions."

Methods for DNA sequencing are well known in the art and may be used to practice any of the embodiments of the invention. The methods may employ such enzymes as the Klenow fragment

of DNA polymerase I, SEQUENASE (US Biochemical, Cleveland OH), Taq polymerase (Perkin-Elmer), thermostable T7 polymerase (Amersham Pharmacia Biotech, Piscataway NJ), or combinations of polymerases and proofreading exonucleases such as those found in the ELONGASE amplification system (Life Technologies, Gaithersburg MD). Preferably, sequence preparation is
5 automated with machines such as the MICROLAB 2200 liquid transfer system (Hamilton, Reno NV), PTC200 thermal cycler (MJ Research, Watertown MA) and ABI CATALYST 800 thermal cycler (Perkin-Elmer). Sequencing is then carried out using either the ABI 373 or 377 DNA sequencing system (Perkin-Elmer), the MEGABACE 1000 DNA sequencing system (Molecular Dynamics, Sunnyvale CA), or other systems known in the art. The resulting sequences are analyzed using a
10 variety of algorithms which are well known in the art. (See, e.g., Ausubel, F.M. (1997) Short Protocols in Molecular Biology, John Wiley & Sons, New York NY, unit 7.7; Meyers, R.A. (1995) Molecular Biology and Biotechnology, Wiley VCH, New York NY, pp. 856-853.)

The nucleic acid sequences encoding GTPAP may be extended utilizing a partial nucleotide sequence and employing various PCR-based methods known in the art to detect upstream sequences, 15 such as promoters and regulatory elements. For example, one method which may be employed, restriction-site PCR, uses universal and nested primers to amplify unknown sequence from genomic DNA within a cloning vector. (See, e.g., Sarkar, G. (1993) PCR Methods Applic. 2:318-322.) Another method, inverse PCR, uses primers that extend in divergent directions to amplify unknown 20 sequence from a circularized template. The template is derived from restriction fragments comprising a known genomic locus and surrounding sequences. (See, e.g., Triglia, T. et al. (1988) Nucleic Acids Res. 16:8186.) A third method, capture PCR, involves PCR amplification of DNA fragments adjacent 25 to known sequences in human and yeast artificial chromosome DNA. (See, e.g., Lagerstrom, M. et al. (1991) PCR Methods Applic. 1:111-119.) In this method, multiple restriction enzyme digestions and ligations may be used to insert an engineered double-stranded sequence into a region of unknown sequence before performing PCR. Other methods which may be used to retrieve unknown sequences 30 are known in the art. (See, e.g., Parker, J.D. et al. (1991) Nucleic Acids Res. 19:3055-3060). Additionally, one may use PCR, nested primers, and PROMOTERFINDER libraries (Clontech, Palo Alto CA) to walk genomic DNA. This procedure avoids the need to screen libraries and is useful in finding intron/exon junctions. For all PCR-based methods, primers may be designed using 35 commercially available software, such as OLIGO 4.06 Primer Analysis software (National Biosciences, Plymouth MN) or another appropriate program, to be about 22 to 30 nucleotides in length, to have a GC content of about 50% or more, and to anneal to the template at temperatures of about 68°C to 72°C.

When screening for full-length cDNAs, it is preferable to use libraries that have been

size-selected to include larger cDNAs. In addition, random-primed libraries, which often include sequences containing the 5' regions of genes, are preferable for situations in which an oligo d(T) library does not yield a full-length cDNA. Genomic libraries may be useful for extension of sequence into 5' non-transcribed regulatory regions.

5 Capillary electrophoresis systems which are commercially available may be used to analyze the size or confirm the nucleotide sequence of sequencing or PCR products. In particular, capillary sequencing may employ flowable polymers for electrophoretic separation, four different nucleotide-specific, laser-stimulated fluorescent dyes, and a charge coupled device camera for detection of the emitted wavelengths. Output/light intensity may be converted to electrical signal using appropriate
10 software (e.g., GENOTYPER and SEQUENCE NAVIGATOR, Perkin-Elmer), and the entire process from loading of samples to computer analysis and electronic data display may be computer controlled. Capillary electrophoresis is especially preferable for sequencing small DNA fragments which may be present in limited amounts in a particular sample.

In another embodiment of the invention, polynucleotide sequences or fragments thereof
15 which encode GTPAP may be cloned in recombinant DNA molecules that direct expression of GTPAP, or fragments or functional equivalents thereof, in appropriate host cells. Due to the inherent degeneracy of the genetic code, other DNA sequences which encode substantially the same or a functionally equivalent amino acid sequence may be produced and used to express GTPAP.

The nucleotide sequences of the present invention can be engineered using methods generally
20 known in the art in order to alter GTPAP-encoding sequences for a variety of purposes including, but not limited to, modification of the cloning, processing, and/or expression of the gene product. DNA shuffling by random fragmentation and PCR reassembly of gene fragments and synthetic oligonucleotides may be used to engineer the nucleotide sequences. For example, oligonucleotide-mediated site-directed mutagenesis may be used to introduce mutations that create new restriction
25 sites, alter glycosylation patterns, change codon preference, produce splice variants, and so forth.

In another embodiment, sequences encoding GTPAP may be synthesized, in whole or in part, using chemical methods well known in the art. (See, e.g., Caruthers, M.H. et al. (1980) Nucleic Acids Symp. Ser. 7:215-223; and Horn, T. et al. (1980) Nucleic Acids Symp. Ser. 7:225-232.)

Alternatively, GTPAP itself or a fragment thereof may be synthesized using chemical methods. For
30 example, peptide synthesis can be performed using various solid-phase techniques. (See, e.g., Roberge, J.Y. et al. (1995) Science 269:202-204.) Automated synthesis may be achieved using the ABI 431A peptide synthesizer (Perkin-Elmer). Additionally, the amino acid sequence of GTPAP, or any part thereof, may be altered during direct synthesis and/or combined with sequences from other proteins, or any part thereof, to produce a variant polypeptide.

The peptide may be substantially purified by preparative high performance liquid chromatography. (See, e.g., Chiez, R.M. and F.Z. Regnier (1990) Methods Enzymol. 182:392-421.) The composition of the synthetic peptides may be confirmed by amino acid analysis or by sequencing. (See, e.g., Creighton, T. (1984) Proteins, Structures and Molecular Properties, WH Freeman, New York NY.)

In order to express a biologically active GTPAP, the nucleotide sequences encoding GTPAP or derivatives thereof may be inserted into an appropriate expression vector, i.e., a vector which contains the necessary elements for transcriptional and translational control of the inserted coding sequence in a suitable host. These elements include regulatory sequences, such as enhancers, 10 constitutive and inducible promoters, and 5' and 3' untranslated regions in the vector and in polynucleotide sequences encoding GTPAP. Such elements may vary in their strength and specificity. Specific initiation signals may also be used to achieve more efficient translation of sequences encoding GTPAP. Such signals include the ATG initiation codon and adjacent sequences, e.g. the Kozak sequence. In cases where sequences encoding GTPAP and its initiation codon and 15 upstream regulatory sequences are inserted into the appropriate expression vector, no additional transcriptional or translational control signals may be needed. However, in cases where only coding sequence, or a fragment thereof, is inserted, exogenous translational control signals including an in-frame ATG initiation codon should be provided by the vector. Exogenous translational elements and initiation codons may be of various origins, both natural and synthetic. The efficiency of expression 20 may be enhanced by the inclusion of enhancers appropriate for the particular host cell system used. (See, e.g., Scharf, D. et al. (1994) Results Probl. Cell Differ. 20:125-162.)

Methods which are well known to those skilled in the art may be used to construct expression vectors containing sequences encoding GTPAP and appropriate transcriptional and translational control elements. These methods include in vitro recombinant DNA techniques, synthetic techniques, 25 and in vivo genetic recombination. (See, e.g., Sambrook, J. et al. (1989) Molecular Cloning, A Laboratory Manual, Cold Spring Harbor Press, Plainview NY, ch. 4, 8, and 16-17; Ausubel, F.M. et al. (1995) Current Protocols in Molecular Biology, John Wiley & Sons, New York NY, ch. 9, 13, and 16.)

A variety of expression vector/host systems may be utilized to contain and express sequences 30 encoding GTPAP. These include, but are not limited to, microorganisms such as bacteria transformed with recombinant bacteriophage, plasmid, or cosmid DNA expression vectors; yeast transformed with yeast expression vectors; insect cell systems infected with viral expression vectors (e.g., baculovirus); plant cell systems transformed with viral expression vectors (e.g., cauliflower mosaic virus, CaMV, or

tobacco mosaic virus, TMV) or with bacterial expression vectors (e.g., Ti or pBR322 plasmids); or animal cell systems. The invention is not limited by the host cell employed.

In bacterial systems, a number of cloning and expression vectors may be selected depending upon the use intended for polynucleotide sequences encoding GTPAP. For example, routine cloning, 5 subcloning, and propagation of polynucleotide sequences encoding GTPAP can be achieved using a multifunctional E. coli vector such as PBLUESCRIPT (Stratagene, La Jolla CA) or PSORT1 plasmid (Life Technologies). Ligation of sequences encoding GTPAP into the vector's multiple cloning site disrupts the *lacZ* gene, allowing a colorimetric screening procedure for identification of transformed bacteria containing recombinant molecules. In addition, these vectors may be useful for 10 in vitro transcription, dideoxy sequencing, single strand rescue with helper phage, and creation of nested deletions in the cloned sequence. (See, e.g., Van Heeke, G. and S.M. Schuster (1989) *J. Biol. Chem.* 264:5503-5509.) When large quantities of GTPAP are needed, e.g. for the production of antibodies, vectors which direct high level expression of GTPAP may be used. For example, vectors containing the strong, inducible T5 or T7 bacteriophage promoter may be used.

15 Yeast expression systems may be used for production of GTPAP. A number of vectors containing constitutive or inducible promoters, such as alpha factor, alcohol oxidase, and PGH promoters, may be used in the yeast Saccharomyces cerevisiae or Pichia pastoris. In addition, such vectors direct either the secretion or intracellular retention of expressed proteins and enable integration of foreign sequences into the host genome for stable propagation. (See, e.g., Ausubel, 20 1995, supra; Bitter, G.A. et al. (1987) *Methods Enzymol.* 153:516-544; and Scorer, C.A. et al. (1994) *Bio/Technology* 12:181-184.)

Plant systems may also be used for expression of GTPAP. Transcription of sequences encoding GTPAP may be driven viral promoters, e.g., the 35S and 19S promoters of CaMV used alone or in combination with the omega leader sequence from TMV (Takamatsu, N. (1987) *EMBO J.* 25 6:307-311). Alternatively, plant promoters such as the small subunit of RUBISCO or heat shock promoters may be used. (See, e.g., Coruzzi, G. et al. (1984) *EMBO J.* 3:1671-1680; Broglie, R. et al. (1984) *Science* 224:838-843; and Winter, J. et al. (1991) *Results Probl. Cell Differ.* 17:85-105.) These constructs can be introduced into plant cells by direct DNA transformation or pathogen-mediated transfection. (See, e.g., The McGraw Hill Yearbook of Science and Technology 30 (1992) McGraw Hill, New York NY, pp. 191-196.)

In mammalian cells, a number of viral-based expression systems may be utilized. In cases where an adenovirus is used as an expression vector, sequences encoding GTPAP may be ligated into an adenovirus transcription/translation complex consisting of the late promoter and tripartite leader

sequence. Insertion in a non-essential E1 or E3 region of the viral genome may be used to obtain infective virus which expresses GTPAP in host cells. (See, e.g., Logan, J. and T. Shenk (1984) Proc. Natl. Acad. Sci. USA 81:3655-3659.) In addition, transcription enhancers, such as the Rous sarcoma virus (RSV) enhancer, may be used to increase expression in mammalian host cells. SV40 or EBV-based vectors may also be used for high-level protein expression.

Human artificial chromosomes (HACs) may also be employed to deliver larger fragments of DNA than can be contained in and expressed from a plasmid. HACs of about 6 kb to 10 Mb are constructed and delivered via conventional delivery methods (liposomes, polycationic amino polymers, or vesicles) for therapeutic purposes. (See, e.g., Harrington, J.J. et al. (1997) Nat. Genet. 10 15:345-355.)

For long term production of recombinant proteins in mammalian systems, stable expression of GTPAP in cell lines is preferred. For example, sequences encoding GTPAP can be transformed into cell lines using expression vectors which may contain viral origins of replication and/or endogenous expression elements and a selectable marker gene on the same or on a separate vector. Following the introduction of the vector, cells may be allowed to grow for about 1 to 2 days in enriched media before being switched to selective media. The purpose of the selectable marker is to confer resistance to a selective agent, and its presence allows growth and recovery of cells which successfully express the introduced sequences. Resistant clones of stably transformed cells may be propagated using tissue culture techniques appropriate to the cell type.

Any number of selection systems may be used to recover transformed cell lines. These include, but are not limited to, the herpes simplex virus thymidine kinase and adenine phosphoribosyltransferase genes, for use in *tk* and *apr* cells, respectively. (See, e.g., Wigler, M. et al. (1977) Cell 11:223-232; Lowy, I. et al. (1980) Cell 22:817-823.) Also, antimetabolite, antibiotic, or herbicide resistance can be used as the basis for selection. For example, *dhfr* confers resistance to methotrexate; *neo* confers resistance to the aminoglycosides neomycin and G-418; and *als* and *pat* confer resistance to chlorsulfuron and phosphinotricin acetyltransferase, respectively. (See, e.g., Wigler, M. et al. (1980) Proc. Natl. Acad. Sci. USA 77:3567-3570; Colbere-Garapin, F. et al. (1981) J. Mol. Biol. 150:1-14.) Additional selectable genes have been described, e.g., *trpB* and *hisD*, which alter cellular requirements for metabolites. (See, e.g., Hartman, S.C. and R.C. Mulligan (1988) Proc. Natl. Acad. Sci. USA 85:8047-8051.) Visible markers, e.g., anthocyanins, green fluorescent proteins (GFP; Clontech), β glucuronidase and its substrate β -glucuronide, or luciferase and its substrate luciferin may be used. These markers can be used not only to identify transformants, but also to quantify the amount of transient or stable protein expression attributable to a specific vector system.

(See, e.g., Rhodes, C.A. (1995) *Methods Mol. Biol.* 55:121-131.)

Although the presence/absence of marker gene expression suggests that the gene of interest is also present, the presence and expression of the gene may need to be confirmed. For example, if the sequence encoding GTPAP is inserted within a marker gene sequence, transformed cells containing sequences encoding GTPAP can be identified by the absence of marker gene function. Alternatively, a marker gene can be placed in tandem with a sequence encoding GTPAP under the control of a single promoter. Expression of the marker gene in response to induction or selection usually indicates expression of the tandem gene as well.

In general, host cells that contain the nucleic acid sequence encoding GTPAP and that express GTPAP may be identified by a variety of procedures known to those of skill in the art. These procedures include, but are not limited to, DNA-DNA or DNA-RNA hybridizations, PCR amplification, and protein bioassay or immunoassay techniques which include membrane, solution, or chip based technologies for the detection and/or quantification of nucleic acid or protein sequences.

Immunological methods for detecting and measuring the expression of GTPAP using either specific polyclonal or monoclonal antibodies are known in the art. Examples of such techniques include enzyme-linked immunosorbent assays (ELISAs), radioimmunoassays (RIAs), and fluorescence activated cell sorting (FACS). A two-site, monoclonal-based immunoassay utilizing monoclonal antibodies reactive to two non-interfering epitopes on GTPAP is preferred, but a competitive binding assay may be employed. These and other assays are well known in the art. (See, e.g., Hampton, R. et al. (1990) *Serological Methods, a Laboratory Manual*, APS Press, St. Paul MN, Sect. IV; Coligan, J.E. et al. (1997) *Current Protocols in Immunology*, Greene Pub. Associates and Wiley-Interscience, New York NY; and Pound, J.D. (1998) *Immunochemical Protocols*, Humana Press, Totowa NJ.)

A wide variety of labels and conjugation techniques are known by those skilled in the art and may be used in various nucleic acid and amino acid assays. Means for producing labeled hybridization or PCR probes for detecting sequences related to polynucleotides encoding GTPAP include oligolabeling, nick translation, end-labeling, or PCR amplification using a labeled nucleotide. Alternatively, the sequences encoding GTPAP, or any fragments thereof, may be cloned into a vector for the production of an mRNA probe. Such vectors are known in the art, are commercially available, and may be used to synthesize RNA probes *in vitro* by addition of an appropriate RNA polymerase such as T7, T3, or SP6 and labeled nucleotides. These procedures may be conducted using a variety of commercially available kits, such as those provided by Amersham Pharmacia Biotech, Promega (Madison WI), and US Biochemical. Suitable reporter molecules or labels which may be used for

ease of detection include radionuclides, enzymes, fluorescent, chemiluminescent, or chromogenic agents, as well as substrates, cofactors, inhibitors, magnetic particles, and the like.

Host cells transformed with nucleotide sequences encoding GTPAP may be cultured under conditions suitable for the expression and recovery of the protein from cell culture. The protein

- 5 produced by a transformed cell may be secreted or retained intracellularly depending on the sequence and/or the vector used. As will be understood by those of skill in the art, expression vectors containing polynucleotides which encode GTPAP may be designed to contain signal sequences which direct secretion of GTPAP through a prokaryotic or eukaryotic cell membrane.

In addition, a host cell strain may be chosen for its ability to modulate expression of the

- 10 inserted sequences or to process the expressed protein in the desired fashion. Such modifications of the polypeptide include, but are not limited to, acetylation, carboxylation, glycosylation, phosphorylation, lipidation, and acylation. Post-translational processing which cleaves a "pro" or "pro" form of the protein may also be used to specify protein targeting, folding, and/or activity. Different host cells which have specific cellular machinery and characteristic mechanisms for
15 post-translational activities (e.g., CHO, HeLa, MDCK, HEK293, and WI38) are available from the American Type Culture Collection (ATCC, Manassas VA) and may be chosen to ensure the correct modification and processing of the foreign protein.

In another embodiment of the invention, natural, modified, or recombinant nucleic acid sequences encoding GTPAP may be ligated to a heterologous sequence resulting in translation of a

- 20 fusion protein in any of the aforementioned host systems. For example, a chimeric GTPAP protein containing a heterologous moiety that can be recognized by a commercially available antibody may facilitate the screening of peptide libraries for inhibitors of GTPAP activity. Heterologous protein and peptide moieties may also facilitate purification of fusion proteins using commercially available affinity matrices. Such moieties include, but are not limited to, glutathione S-transferase (GST),
25 maltose binding protein (MBP), thioredoxin (Trx), calmodulin binding peptide (CBP), 6-His, FLAG, *c-myc*, and hemagglutinin (HA). GST, MBP, Trx, CBP, and 6-His enable purification of their cognate fusion proteins on immobilized glutathione, maltose, phenylarsine oxide, calmodulin, and metal-chelate resins, respectively. FLAG, *c-myc*, and hemagglutinin (HA) enable immunoaffinity
30 purification of fusion proteins using commercially available monoclonal and polyclonal antibodies that specifically recognize these epitope tags. A fusion protein may also be engineered to contain a proteolytic cleavage site located between the GTPAP encoding sequence and the heterologous protein sequence, so that GTPAP may be cleaved away from the heterologous moiety following purification. Methods for fusion protein expression and purification are discussed in Ausubel (1995, *supra*, ch. 10).

A variety of commercially available kits may also be used to facilitate expression and purification of fusion proteins.

In a further embodiment of the invention, synthesis of radiolabeled GTPAP may be achieved in vitro using the TNT rabbit reticulocyte lysate or wheat germ extract system (Promega). These 5 systems couple transcription and translation of protein-coding sequences operably associated with the T7, T3, or SP6 promoters. Translation takes place in the presence of a radiolabeled amino acid precursor, for example, ³⁵S-methionine.

Fragments of GTPAP may be produced not only by recombinant means, but also by direct peptide synthesis using solid-phase techniques. (See, e.g., Creighton, *supra*, pp. 55-60.) Protein 10 synthesis may be performed by manual techniques or by automation. Automated synthesis may be achieved, for example, using the ABI 431A peptide synthesizer (Perkin-Elmer). Various fragments of GTPAP may be synthesized separately and then combined to produce the full length molecule.

THERAPEUTICS

Chemical and structural similarity, e.g., in the context of sequences and motifs, exists 15 between regions of GTPAP and GTPase associated proteins. In addition, the expression of GTPAP is closely associated with proliferating tissues associated with cancer and fetal development, inflamed tissues, and tissues involved in the immune response. Therefore, GTPAP appears to play a role in cell proliferative, autoimmune/inflammatory, and immune system disorders. In the treatment of disorders associated with increased GTPAP expression or activity, it is desirable to decrease the 20 expression or activity of GTPAP. In the treatment of disorders associated with decreased GTPAP expression or activity, it is desirable to increase the expression or activity of GTPAP.

Therefore, in one embodiment, GTPAP or a fragment or derivative thereof may be administered to a subject to treat or prevent a disorder associated with decreased expression or activity of GTPAP. Examples of such disorders include, but are not limited to, a cell proliferative 25 disorder, such as actinic keratosis, arteriosclerosis, atherosclerosis, bursitis, cirrhosis, hepatitis, mixed connective tissue disease (MCTD), myelofibrosis, paroxysmal nocturnal hemoglobinuria, polycythemia vera, psoriasis, primary thrombocythemia, and cancers including adenocarcinoma, leukemia, lymphoma, melanoma, myeloma, sarcoma, teratocarcinoma, and, in particular, cancers of the adrenal gland, bladder, bone, bone marrow, brain, breast, cervix, gall bladder, ganglia, 30 gastrointestinal tract, heart, kidney, liver, lung, muscle, ovary, pancreas, parathyroid, penis, prostate, salivary glands, skin, spleen, testis, thymus, thyroid, and uterus; an autoimmune/inflammatory disorder, such as acquired immunodeficiency syndrome (AIDS), Addison's disease, adult respiratory distress syndrome, allergies, ankylosing spondylitis, amyloidosis, anemia, asthma, atherosclerosis,

autoimmune hemolytic anemia, autoimmune thyroiditis, autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED), bronchitis, cholecystitis, contact dermatitis, Crohn's disease, atopic dermatitis, dermatomyositis, diabetes mellitus, emphysema, episodic lymphopenia with lymphocytotoxins, erythroblastosis fetalis, erythema nodosum, atrophic gastritis,

5 glomerulonephritis, Goodpasture's syndrome, gout, Graves' disease, Hashimoto's thyroiditis, hypereosinophilia, irritable bowel syndrome, multiple sclerosis, myasthenia gravis, myocardial or pericardial inflammation, osteoarthritis, osteoporosis, pancreatitis, polymyositis, psoriasis, Reiter's syndrome, rheumatoid arthritis, scleroderma, Sjögren's syndrome, systemic anaphylaxis, systemic lupus erythematosus, systemic sclerosis, thrombocytopenic purpura, ulcerative colitis, uveitis, Werner syndrome, complications of cancer, hemodialysis, and extracorporeal circulation, viral, bacterial, fungal, parasitic, protozoal, and helminthic infections, and trauma; and an immune system disorder, such as acquired immunodeficiency syndrome (AIDS), X-linked agammaglobulinemia of Bruton, common variable immunodeficiency (CVI), DiGeorge's syndrome (thymic hypoplasia), thymic dysplasia, isolated IgA deficiency, severe combined immunodeficiency disease (SCID),

10 15 immunodeficiency with thrombocytopenia and eczema (Wiskott-Aldrich syndrome), Chediak-Higashi syndrome, chronic granulomatous diseases, hereditary angioneurotic edema, and immunodeficiency associated with Cushing's disease, leukemias such as multiple myeloma, and lymphomas such as Hodgkin's disease.

In another embodiment, a vector capable of expressing GTPAP or a fragment or derivative thereof may be administered to a subject to treat or prevent a disorder associated with decreased expression or activity of GTPAP including, but not limited to, those described above.

In a further embodiment, a pharmaceutical composition comprising a substantially purified GTPAP in conjunction with a suitable pharmaceutical carrier may be administered to a subject to treat or prevent a disorder associated with decreased expression or activity of GTPAP including, but not limited to, those provided above.

In still another embodiment, an agonist which modulates the activity of GTPAP may be administered to a subject to treat or prevent a disorder associated with decreased expression or activity of GTPAP including, but not limited to, those listed above.

In a further embodiment, an antagonist of GTPAP may be administered to a subject to treat or prevent a disorder associated with increased expression or activity of GTPAP. Examples of such disorders include, but are not limited to, those cell proliferative, autoimmune/inflammatory, and immune system disorders described above. In one aspect, an antibody which specifically binds GTPAP may be used directly as an antagonist or indirectly as a targeting or delivery mechanism for

bringing a pharmaceutical agent to cells or tissues which express GTPAP.

In an additional embodiment, a vector expressing the complement of the polynucleotide encoding GTPAP may be administered to a subject to treat or prevent a disorder associated with increased expression or activity of GTPAP including, but not limited to, those described above.

5 In other embodiments, any of the proteins, antagonists, antibodies, agonists, complementary sequences, or vectors of the invention may be administered in combination with other appropriate therapeutic agents. Selection of the appropriate agents for use in combination therapy may be made by one of ordinary skill in the art, according to conventional pharmaceutical principles. The combination of therapeutic agents may act synergistically to effect the treatment or prevention of the
10 various disorders described above. Using this approach, one may be able to achieve therapeutic efficacy with lower dosages of each agent, thus reducing the potential for adverse side effects.

An antagonist of GTPAP may be produced using methods which are generally known in the art. In particular, purified GTPAP may be used to produce antibodies or to screen libraries of pharmaceutical agents to identify those which specifically bind GTPAP. Antibodies to GTPAP may
15 also be generated using methods that are well known in the art. Such antibodies may include, but are not limited to, polyclonal, monoclonal, chimeric, and single chain antibodies, Fab fragments, and fragments produced by a Fab expression library. Neutralizing antibodies (i.e., those which inhibit dimer formation) are generally preferred for therapeutic use.

For the production of antibodies, various hosts including goats, rabbits, rats, mice, humans,
20 and others may be immunized by injection with GTPAP or with any fragment or oligopeptide thereof which has immunogenic properties. Depending on the host species, various adjuvants may be used to increase immunological response. Such adjuvants include, but are not limited to, Freund's, mineral gels such as aluminum hydroxide, and surface active substances such as lysolecithin, pluronic polyols, polyanions, peptides, oil emulsions, KLH, and dinitrophenol. Among adjuvants used in
25 humans, BCG (bacilli Calmette-Guerin) and Corynebacterium parvum are especially preferable.

It is preferred that the oligopeptides, peptides, or fragments used to induce antibodies to GTPAP have an amino acid sequence consisting of at least about 5 amino acids, and generally will consist of at least about 10 amino acids. It is also preferable that these oligopeptides, peptides, or fragments are identical to a portion of the amino acid sequence of the natural protein and contain the
30 entire amino acid sequence of a small, naturally occurring molecule. Short stretches of GTPAP amino acids may be fused with those of another protein, such as KLH, and antibodies to the chimeric molecule may be produced.

Monoclonal antibodies to GTPAP may be prepared using any technique which provides for

the production of antibody molecules by continuous cell lines in culture. These include, but are not limited to, the hybridoma technique, the human B-cell hybridoma technique, and the EBV-hybridoma technique. (See, e.g., Kohler, G. et al. (1975) *Nature* 256:495-497; Kozbor, D. et al. (1985) *J. Immunol. Methods* 81:31-42; Cote, R.J. et al. (1983) *Proc. Natl. Acad. Sci. USA* 80:2026-2030; and 5 Cole, S.P. et al. (1984) *Mol. Cell Biol.* 62:109-120.)

In addition, techniques developed for the production of "chimeric antibodies," such as the splicing of mouse antibody genes to human antibody genes to obtain a molecule with appropriate antigen specificity and biological activity, can be used. (See, e.g., Morrison, S.L. et al. (1984) *Proc. Natl. Acad. Sci. USA* 81:6851-6855; Neuberger, M.S. et al. (1984) *Nature* 312:604-608; and Takeda, 10 S. et al. (1985) *Nature* 314:452-454.) Alternatively, techniques described for the production of single chain antibodies may be adapted, using methods known in the art, to produce GTPAP-specific single chain antibodies. Antibodies with related specificity, but of distinct idiotypic composition, may be generated by chain shuffling from random combinatorial immunoglobulin libraries. (See, e.g., Burton, D.R. (1991) *Proc. Natl. Acad. Sci. USA* 88:10134-10137.)

15 Antibodies may also be produced by inducing *in vivo* production in the lymphocyte population or by screening immunoglobulin libraries or panels of highly specific binding reagents as disclosed in the literature. (See, e.g., Orlandi, R. et al. (1989) *Proc. Natl. Acad. Sci. USA* 86:3833-3837; Winter, G. et al. (1991) *Nature* 349:293-299.)

Antibody fragments which contain specific binding sites for GTPAP may also be generated. 20 For example, such fragments include, but are not limited to, F(ab')₂ fragments produced by pepsin digestion of the antibody molecule and Fab fragments generated by reducing the disulfide bridges of the F(ab')₂ fragments. Alternatively, Fab expression libraries may be constructed to allow rapid and easy identification of monoclonal Fab fragments with the desired specificity. (See, e.g., Huse, W.D. et al. (1989) *Science* 246:1275-1281.)

25 Various immunoassays may be used for screening to identify antibodies having the desired specificity. Numerous protocols for competitive binding or immunoradiometric assays using either polyclonal or monoclonal antibodies with established specificities are well known in the art. Such immunoassays typically involve the measurement of complex formation between GTPAP and its specific antibody. A two-site, monoclonal-based immunoassay utilizing monoclonal antibodies 30 reactive to two non-interfering GTPAP epitopes is generally used, but a competitive binding assay may also be employed (Pound, *supra*).

Various methods such as Scatchard analysis in conjunction with radioimmunoassay techniques may be used to assess the affinity of antibodies for GTPAP. Affinity is expressed as an

association constant, K_a , which is defined as the molar concentration of GTPAP-antibody complex divided by the molar concentrations of free antigen and free antibody under equilibrium conditions. The K_a determined for a preparation of polyclonal antibodies, which are heterogeneous in their affinities for multiple GTPAP epitopes, represents the average affinity, or avidity, of the antibodies 5 for GTPAP. The K_a determined for a preparation of monoclonal antibodies, which are monospecific for a particular GTPAP epitope, represents a true measure of affinity. High-affinity antibody preparations with K_a ranging from about 10^9 to 10^{12} L/mole are preferred for use in immunoassays in which the GTPAP-antibody complex must withstand rigorous manipulations. Low-affinity antibody preparations with K_a ranging from about 10^6 to 10^7 L/mole are preferred for use in 10 immunopurification and similar procedures which ultimately require dissociation of GTPAP, preferably in active form, from the antibody (Catty, D. (1988) Antibodies, Volume I: A Practical Approach, IRL Press, Washington, DC; Liddell, J.E. and Cryer, A. (1991) A Practical Guide to Monoclonal Antibodies, John Wiley & Sons, New York NY).

The titer and avidity of polyclonal antibody preparations may be further evaluated to 15 determine the quality and suitability of such preparations for certain downstream applications. For example, a polyclonal antibody preparation containing at least 1-2 mg specific antibody/ml, preferably 5-10 mg specific antibody/ml, is generally employed in procedures requiring precipitation of GTPAP-antibody complexes. Procedures for evaluating antibody specificity, titer, and avidity, and guidelines for antibody quality and usage in various applications, are generally available. (See, e.g., 20 Catty, supra, and Coligan et al. supra.)

In another embodiment of the invention, the polynucleotides encoding GTPAP, or any fragment or complement thereof, may be used for therapeutic purposes. In one aspect, the complement of the polynucleotide encoding GTPAP may be used in situations in which it would be desirable to block the transcription of the mRNA. In particular, cells may be transformed with 25 sequences complementary to polynucleotides encoding GTPAP. Thus, complementary molecules or fragments may be used to modulate GTPAP activity, or to achieve regulation of gene function. Such technology is now well known in the art, and sense or antisense oligonucleotides or larger fragments can be designed from various locations along the coding or control regions of sequences encoding GTPAP.

30 Expression vectors derived from retroviruses, adenoviruses, or herpes or vaccinia viruses, or from various bacterial plasmids, may be used for delivery of nucleotide sequences to the targeted organ, tissue, or cell population. Methods which are well known to those skilled in the art can be used to construct vectors to express nucleic acid sequences complementary to the polynucleotides

encoding GTPAP. (See, e.g., Sambrook, supra; Ausubel, 1995, supra.)

Genes encoding GTPAP can be turned off by transforming a cell or tissue with expression vectors which express high levels of a polynucleotide, or fragment thereof, encoding GTPAP. Such constructs may be used to introduce untranslatable sense or antisense sequences into a cell. Even in
5 the absence of integration into the DNA, such vectors may continue to transcribe RNA molecules until they are disabled by endogenous nucleases. Transient expression may last for a month or more with a non-replicating vector, and may last even longer if appropriate replication elements are part of the vector system.

As mentioned above, modifications of gene expression can be obtained by designing
10 complementary sequences or antisense molecules (DNA, RNA, or PNA) to the control, 5', or regulatory regions of the gene encoding GTPAP. Oligonucleotides derived from the transcription initiation site, e.g., between about positions -10 and +10 from the start site, may be employed. Similarly, inhibition can be achieved using triple helix base-pairing methodology. Triple helix pairing is useful because it causes inhibition of the ability of the double helix to open sufficiently for
15 the binding of polymerases, transcription factors, or regulatory molecules. Recent therapeutic advances using triplex DNA have been described in the literature. (See, e.g., Gee, J.E. et al. (1994) in Huber, B.E. and B.I. Carr, Molecular and Immunologic Approaches, Futura Publishing, Mt. Kisco NY, pp. 163-177.) A complementary sequence or antisense molecule may also be designed to block translation of mRNA by preventing the transcript from binding to ribosomes.

20 Ribozymes, enzymatic RNA molecules, may also be used to catalyze the specific cleavage of RNA. The mechanism of ribozyme action involves sequence-specific hybridization of the ribozyme molecule to complementary target RNA, followed by endonucleolytic cleavage. For example, engineered hammerhead motif ribozyme molecules may specifically and efficiently catalyze endonucleolytic cleavage of sequences encoding GTPAP.

25 Specific ribozyme cleavage sites within any potential RNA target are initially identified by scanning the target molecule for ribozyme cleavage sites, including the following sequences: GUA, GUU, and GUC. Once identified, short RNA sequences of between 15 and 20 ribonucleotides, corresponding to the region of the target gene containing the cleavage site, may be evaluated for secondary structural features which may render the oligonucleotide inoperable. The suitability of
30 candidate targets may also be evaluated by testing accessibility to hybridization with complementary oligonucleotides using ribonuclease protection assays.

Complementary ribonucleic acid molecules and ribozymes of the invention may be prepared by any method known in the art for the synthesis of nucleic acid molecules. These include techniques

for chemically synthesizing oligonucleotides such as solid phase phosphoramidite chemical synthesis. Alternatively, RNA molecules may be generated by in vitro and in vivo transcription of DNA sequences encoding GTPAP. Such DNA sequences may be incorporated into a wide variety of vectors with suitable RNA polymerase promoters such as T7 or SP6. Alternatively, these cDNA constructs that synthesize complementary RNA, constitutively or inducibly, can be introduced into cell lines, cells, or tissues.

RNA molecules may be modified to increase intracellular stability and half-life. Possible modifications include, but are not limited to, the addition of flanking sequences at the 5' and/or 3' ends of the molecule, or the use of phosphorothioate or 2' O-methyl rather than phosphodiesterase linkages within the backbone of the molecule. This concept is inherent in the production of PNAs and can be extended in all of these molecules by the inclusion of nontraditional bases such as inosine, queosine, and wybutoxine, as well as acetyl-, methyl-, thio-, and similarly modified forms of adenine, cytidine, guanine, thymine, and uridine which are not as easily recognized by endogenous endonucleases.

Many methods for introducing vectors into cells or tissues are available and equally suitable for use in vivo, in vitro, and ex vivo. For ex vivo therapy, vectors may be introduced into stem cells taken from the patient and clonally propagated for autologous transplant back into that same patient. Delivery by transfection, by liposome injections, or by polycationic amino polymers may be achieved using methods which are well known in the art. (See, e.g., Goldman, C.K. et al. (1997) Nat. Biotechnol. 15:462-466.)

Any of the therapeutic methods described above may be applied to any subject in need of such therapy, including, for example, mammals such as humans, dogs, cats, cows, horses, rabbits, and monkeys.

An additional embodiment of the invention relates to the administration of a pharmaceutical or sterile composition, in conjunction with a pharmaceutically acceptable carrier, for any of the therapeutic effects discussed above. Such pharmaceutical compositions may consist of GTPAP, antibodies to GTPAP, and mimetics, agonists, antagonists, or inhibitors of GTPAP. The compositions may be administered alone or in combination with at least one other agent, such as a stabilizing compound, which may be administered in any sterile, biocompatible pharmaceutical carrier including, but not limited to, saline, buffered saline, dextrose, and water. The compositions may be administered to a patient alone, or in combination with other agents, drugs, or hormones.

The pharmaceutical compositions utilized in this invention may be administered by any number of routes including, but not limited to, oral, intravenous, intramuscular, intra-arterial,

intramedullary, intrathecal, intraventricular, transdermal, subcutaneous, intraperitoneal, intranasal, enteral, topical, sublingual, or rectal means.

In addition to the active ingredients, these pharmaceutical compositions may contain suitable pharmaceutically-acceptable carriers comprising excipients and auxiliaries which facilitate processing of the active compounds into preparations which can be used pharmaceutically. Further details on techniques for formulation and administration may be found in the latest edition of Remington's Pharmaceutical Sciences (Maack Publishing, Easton PA).

- Pharmaceutical compositions for oral administration can be formulated using pharmaceutically acceptable carriers well known in the art in dosages suitable for oral administration.
- Such carriers enable the pharmaceutical compositions to be formulated as tablets, pills, dragees, capsules, liquids, gels, syrups, slurries, suspensions, and the like, for ingestion by the patient.

Pharmaceutical preparations for oral use can be obtained through combining active compounds with solid excipient and processing the resultant mixture of granules (optionally, after grinding) to obtain tablets or dragee cores. Suitable auxiliaries can be added, if desired. Suitable excipients include carbohydrate or protein fillers, such as sugars, including lactose, sucrose, mannitol, and sorbitol; starch from corn, wheat, rice, potato, or other plants; cellulose, such as methyl cellulose, hydroxypropylmethyl-cellulose, or sodium carboxymethylcellulose; gums, including arabic and tragacanth; and proteins, such as gelatin and collagen. If desired, disintegrating or solubilizing agents may be added, such as the cross-linked polyvinyl pyrrolidone, agar, and alginic acid or a salt thereof, such as sodium alginate.

Dragee cores may be used in conjunction with suitable coatings, such as concentrated sugar solutions, which may also contain gum arabic, talc, polyvinylpyrrolidone, carbopol gel, polyethylene glycol, and/or titanium dioxide. lacquer solutions, and suitable organic solvents or solvent mixtures. Dyestuffs or pigments may be added to the tablets or dragee coatings for product identification or to characterize the quantity of active compound, i.e., dosage.

Pharmaceutical preparations which can be used orally include push-fit capsules made of gelatin, as well as soft, sealed capsules made of gelatin and a coating, such as glycerol or sorbitol. Push-fit capsules can contain active ingredients mixed with fillers or binders, such as lactose or starches, lubricants, such as talc or magnesium stearate, and, optionally, stabilizers. In soft capsules, the active compounds may be dissolved or suspended in suitable liquids, such as fatty oils, liquid, or liquid polyethylene glycol with or without stabilizers.

Pharmaceutical formulations suitable for parenteral administration may be formulated in aqueous solutions, preferably in physiologically compatible buffers such as Hanks' solution, Ringer's

solution, or physiologically buffered saline. Aqueous injection suspensions may contain substances which increase the viscosity of the suspension, such as sodium carboxymethyl cellulose, sorbitol, or dextran. Additionally, suspensions of the active compounds may be prepared as appropriate oily injection suspensions. Suitable lipophilic solvents or vehicles include fatty oils, such as sesame oil, or synthetic fatty acid esters, such as ethyl oleate, triglycerides, or liposomes. Non-lipid polycationic amino polymers may also be used for delivery. Optionally, the suspension may also contain suitable stabilizers or agents to increase the solubility of the compounds and allow for the preparation of highly concentrated solutions.

For topical or nasal administration, penetrants appropriate to the particular barrier to be permeated are used in the formulation. Such penetrants are generally known in the art.

The pharmaceutical compositions of the present invention may be manufactured in a manner that is known in the art, e.g., by means of conventional mixing, dissolving, granulating, dragee-making, levigating, emulsifying, encapsulating, entrapping, or lyophilizing processes.

The pharmaceutical composition may be provided as a salt and can be formed with many acids, including but not limited to, hydrochloric, sulfuric, acetic, lactic, tartaric, malic, and succinic acids. Salts tend to be more soluble in aqueous or other protonic solvents than are the corresponding free base forms. In other cases, the preparation may be a lyophilized powder which may contain any or all of the following: 1 mM to 50 mM histidine, 0.1% to 2% sucrose, and 2% to 7% mannitol, at a pH range of 4.5 to 5.5, that is combined with buffer prior to use.

After pharmaceutical compositions have been prepared, they can be placed in an appropriate container and labeled for treatment of an indicated condition. For administration of GTPAP, such labeling would include amount, frequency, and method of administration.

Pharmaceutical compositions suitable for use in the invention include compositions wherein the active ingredients are contained in an effective amount to achieve the intended purpose. The determination of an effective dose is well within the capability of those skilled in the art.

For any compound, the therapeutically effective dose can be estimated initially either in cell culture assays, e.g., of neoplastic cells, or in animal models such as mice, rats, rabbits, dogs, or pigs. An animal model may also be used to determine the appropriate concentration range and route of administration. Such information can then be used to determine useful doses and routes for administration in humans.

A therapeutically effective dose refers to that amount of active ingredient, for example GTPAP or fragments thereof, antibodies of GTPAP, and agonists, antagonists or inhibitors of GTPAP, which ameliorates the symptoms or condition. Therapeutic efficacy and toxicity may be

determined by standard pharmaceutical procedures in cell cultures or with experimental animals, such as by calculating the ED₅₀ (the dose therapeutically effective in 50% of the population) or LD₅₀ (the dose lethal to 50% of the population) statistics. The dose ratio of toxic to therapeutic effects is the therapeutic index, which can be expressed as the LD₅₀/ED₅₀ ratio. Pharmaceutical compositions

- 5 which exhibit large therapeutic indices are preferred. The data obtained from cell culture assays and animal studies are used to formulate a range of dosage for human use. The dosage contained in such compositions is preferably within a range of circulating concentrations that includes the ED₅₀ with little or no toxicity. The dosage varies within this range depending upon the dosage form employed, the sensitivity of the patient, and the route of administration.

10 The exact dosage will be determined by the practitioner, in light of factors related to the subject requiring treatment. Dosage and administration are adjusted to provide sufficient levels of the active moiety or to maintain the desired effect. Factors which may be taken into account include the severity of the disease state, the general health of the subject, the age, weight, and gender of the subject, time and frequency of administration, drug combination(s), reaction sensitivities, and
15 response to therapy. Long-acting pharmaceutical compositions may be administered every 3 to 4 days, every week, or biweekly depending on the half-life and clearance rate of the particular formulation.

Normal dosage amounts may vary from about 0.1 µg to 100,000 µg, up to a total dose of about 1 gram, depending upon the route of administration. Guidance as to particular dosages and
20 methods of delivery is provided in the literature and generally available to practitioners in the art. Those skilled in the art will employ different formulations for nucleotides than for proteins or their inhibitors. Similarly, delivery of polynucleotides or polypeptides will be specific to particular cells, conditions, locations, etc.

DIAGNOSTICS

25 In another embodiment, antibodies which specifically bind GTPAP may be used for the diagnosis of disorders characterized by expression of GTPAP, or in assays to monitor patients being treated with GTPAP or agonists, antagonists, or inhibitors of GTPAP. Antibodies useful for diagnostic purposes may be prepared in the same manner as described above for therapeutics. Diagnostic assays for GTPAP include methods which utilize the antibody and a label to detect
30 GTPAP in human body fluids or in extracts of cells or tissues. The antibodies may be used with or without modification, and may be labeled by covalent or non-covalent attachment of a reporter molecule. A wide variety of reporter molecules, several of which are described above, are known in the art and may be used.

A variety of protocols for measuring GTPAP, including ELISAs, RIAs, and FACS, are known in the art and provide a basis for diagnosing altered or abnormal levels of GTPAP expression.

Normal or standard values for GTPAP expression are established by combining body fluids or cell extracts taken from normal mammalian subjects, for example, human subjects, with antibody to

- 5 GTPAP under conditions suitable for complex formation. The amount of standard complex formation may be quantitated by various methods, such as photometric means. Quantities of GTPAP expressed in subject, control, and disease samples from biopsied tissues are compared with the standard values. Deviation between standard and subject values establishes the parameters for diagnosing disease.

- 10 In another embodiment of the invention, the polynucleotides encoding GTPAP may be used for diagnostic purposes. The polynucleotides which may be used include oligonucleotide sequences, complementary RNA and DNA molecules, and PNAs. The polynucleotides may be used to detect and quantify gene expression in biopsied tissues in which expression of GTPAP may be correlated with disease. The diagnostic assay may be used to determine absence, presence, and excess expression of GTPAP, and to monitor regulation of GTPAP levels during therapeutic intervention.

- 15 In one aspect, hybridization with PCR probes which are capable of detecting polynucleotide sequences, including genomic sequences, encoding GTPAP or closely related molecules may be used to identify nucleic acid sequences which encode GTPAP. The specificity of the probe, whether it is made from a highly specific region, e.g., the 5' regulatory region, or from a less specific region, e.g., a 20 conserved motif, and the stringency of the hybridization or amplification will determine whether the probe identifies only naturally occurring sequences encoding GTPAP, allelic variants, or related sequences.

- 25 Probes may also be used for the detection of related sequences, and may have at least 50% sequence identity to any of the GTPAP encoding sequences. The hybridization probes of the subject invention may be DNA or RNA and may be derived from the sequence of SEQ ID NO:30-58 or from genomic sequences including promoters, enhancers, and introns of the GTPAP gene.

- 30 Means for producing specific hybridization probes for DNAs encoding GTPAP include the cloning of polynucleotide sequences encoding GTPAP or GTPAP derivatives into vectors for the production of mRNA probes. Such vectors are known in the art, are commercially available, and may be used to synthesize RNA probes in vitro by means of the addition of the appropriate RNA polymerases and the appropriate labeled nucleotides. Hybridization probes may be labeled by a variety of reporter groups, for example, by radionuclides such as ^{32}P or ^{35}S , or by enzymatic labels, such as alkaline phosphatase coupled to the probe via avidin/biotin coupling systems, and the like.

Polynucleotide sequences encoding GTPAP may be used for the diagnosis of disorders associated with expression of GTPAP. Examples of such disorders include, but are not limited to, a cell proliferative disorder, such as actinic keratosis, arteriosclerosis, atherosclerosis, bursitis, cirrhosis, hepatitis, mixed connective tissue disease (MCTD), myelofibrosis, paroxysmal nocturnal hemoglobinuria, polycythemia vera, psoriasis, primary thrombocythemia, and cancers including adenocarcinoma, leukemia, lymphoma, melanoma, myeloma, sarcoma, teratocarcinoma, and, in particular, cancers of the adrenal gland, bladder, bone, bone marrow, brain, breast, cervix, gall bladder, ganglia, gastrointestinal tract, heart, kidney, liver, lung, muscle, ovary, pancreas, parathyroid, penis, prostate, salivary glands, skin, spleen, testis, thymus, thyroid, and uterus; an autoimmune/inflammatory disorder, such as acquired immunodeficiency syndrome (AIDS), Addison's disease, adult respiratory distress syndrome, allergies, ankylosing spondylitis, amyloidosis, anemia, asthma, atherosclerosis, autoimmune hemolytic anemia, autoimmune thyroiditis, autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED), bronchitis, cholecystitis, contact dermatitis, Crohn's disease, atopic dermatitis, dermatomyositis, diabetes mellitus, emphysema, episodic lymphopenia with lymphocytotoxins, erythroblastosis fetalis, erythema nodosum, atrophic gastritis, glomerulonephritis, Goodpasture's syndrome, gout, Graves' disease, Hashimoto's thyroiditis, hypereosinophilia, irritable bowel syndrome, multiple sclerosis, myasthenia gravis, myocardial or pericardial inflammation, osteoarthritis, osteoporosis, pancreatitis, polymyositis, psoriasis, Reiter's syndrome, rheumatoid arthritis, scleroderma, Sjögren's syndrome, systemic anaphylaxis, systemic lupus erythematosus, systemic sclerosis, thrombocytopenic purpura, ulcerative colitis, uveitis, Werner syndrome, complications of cancer, hemodialysis, and extracorporeal circulation, viral, bacterial, fungal, parasitic, protozoal, and helminthic infections, and trauma; and an immune system disorder, such as acquired immunodeficiency syndrome (AIDS), X-linked agammaglobulinemia of Bruton, common variable immunodeficiency (CVI), DiGeorge's syndrome (thymic hypoplasia), thymic dysplasia, isolated IgA deficiency, severe combined immunodeficiency disease (SCID), immunodeficiency with thrombocytopenia and eczema (Wiskott-Aldrich syndrome), Chediak-Higashi syndrome, chronic granulomatous diseases, hereditary angioneurotic edema, and immunodeficiency associated with Cushing's disease, leukemias such as multiple myeloma, and lymphomas such as Hodgkin's disease. The polynucleotide sequences encoding GTPAP may be used in Southern or northern analysis, dot blot, or other membrane-based technologies; in PCR technologies; in dipstick, pin, and multiformat ELISA-like assays; and in microarrays utilizing fluids or tissues from patients to detect altered GTPAP expression. Such qualitative or quantitative methods are well known in the art.

In a particular aspect, the nucleotide sequences encoding GTPAP may be useful in assays that detect the presence of associated disorders, particularly those mentioned above. The nucleotide sequences encoding GTPAP may be labeled by standard methods and added to a fluid or tissue sample from a patient under conditions suitable for the formation of hybridization complexes. After a 5 suitable incubation period, the sample is washed and the signal is quantified and compared with a standard value. If the amount of signal in the patient sample is significantly altered in comparison to a control sample then the presence of altered levels of nucleotide sequences encoding GTPAP in the sample indicates the presence of the associated disorder. Such assays may also be used to evaluate the efficacy of a particular therapeutic treatment regimen in animal studies, in clinical trials, or to 10 monitor the treatment of an individual patient.

In order to provide a basis for the diagnosis of a disorder associated with expression of GTPAP, a normal or standard profile for expression is established. This may be accomplished by combining body fluids or cell extracts taken from normal subjects, either animal or human, with a sequence, or a fragment thereof, encoding GTPAP, under conditions suitable for hybridization or 15 amplification. Standard hybridization may be quantified by comparing the values obtained from normal subjects with values from an experiment in which a known amount of a substantially purified polynucleotide is used. Standard values obtained in this manner may be compared with values obtained from samples from patients who are symptomatic for a disorder. Deviation from standard values is used to establish the presence of a disorder.

Once the presence of a disorder is established and a treatment protocol is initiated, 20 hybridization assays may be repeated on a regular basis to determine if the level of expression in the patient begins to approximate that which is observed in the normal subject. The results obtained from successive assays may be used to show the efficacy of treatment over a period ranging from several days to months.

With respect to cancer, the presence of an abnormal amount of transcript (either under- or 25 overexpressed) in biopsied tissue from an individual may indicate a predisposition for the development of the disease, or may provide a means for detecting the disease prior to the appearance of actual clinical symptoms. A more definitive diagnosis of this type may allow health professionals to employ preventative measures or aggressive treatment earlier thereby preventing the development 30 or further progression of the cancer.

Additional diagnostic uses for oligonucleotides designed from the sequences encoding GTPAP may involve the use of PCR. These oligomers may be chemically synthesized, generated enzymatically, or produced in vitro. Oligomers will preferably contain a fragment of a

polynucleotide encoding GTPAP, or a fragment of a polynucleotide complementary to the polynucleotide encoding GTPAP, and will be employed under optimized conditions for identification of a specific gene or condition. Oligomers may also be employed under less stringent conditions for detection or quantification of closely related DNA or RNA sequences.

5 Methods which may also be used to quantify the expression of GTPAP include radiolabeling or biotinylation nucleotides, coamplification of a control nucleic acid, and interpolating results from standard curves. (See, e.g., Melby, P.C. et al. (1993) J. Immunol. Methods 159:235-244; Duplaa, C. et al. (1993) Anal. Biochem. 212:229-236.) The speed of quantitation of multiple samples may be accelerated by running the assay in a high-throughput format where the oligomer of interest is
10 presented in various dilutions and a spectrophotometric or colorimetric response gives rapid quantitation.

In further embodiments, oligonucleotides or longer fragments derived from any of the polynucleotide sequences described herein may be used as targets in a microarray. The microarray can be used to monitor the expression level of large numbers of genes simultaneously and to identify
15 genetic variants, mutations, and polymorphisms. This information may be used to determine gene function, to understand the genetic basis of a disorder, to diagnose a disorder, and to develop and monitor the activities of therapeutic agents.

Microarrays may be prepared, used, and analyzed using methods known in the art. (See, e.g., Brennan, T.M. et al. (1995) U.S. Patent No. 5,474,796; Schena, M. et al. (1996) Proc. Natl. Acad. Sci. USA 93:10614-10619; Baldeschweiler et al. (1995) PCT application WO95/251116; Shalon, D. et al. (1995) PCT application WO95/35505; Heller, R.A. et al. (1997) Proc. Natl. Acad. Sci. USA 94:2150-2155; and Heller, M.J. et al. (1997) U.S. Patent No. 5,605,662.)

In another embodiment of the invention, nucleic acid sequences encoding GTPAP may be used to generate hybridization probes useful in mapping the naturally occurring genomic sequence.
25 The sequences may be mapped to a particular chromosome, to a specific region of a chromosome, or to artificial chromosome constructions, e.g., human artificial chromosomes (HACs), yeast artificial chromosomes (YACs), bacterial artificial chromosomes (BACs), bacterial P1 constructions, or single chromosome cDNA libraries. (See, e.g., Harrington, J.J. et al. (1997) Nat. Genet. 15:345-355; Price, C.M. (1993) Blood Rev. 7:127-134; and Trask, B.J. (1991) Trends Genet. 7:149-154.)

30 Fluorescent in situ hybridization (FISH) may be correlated with other physical chromosome mapping techniques and genetic map data. (See, e.g., Heinz-Ulrich, et al. (1995) in Meyers, supra, pp. 965-968.) Examples of genetic map data can be found in various scientific journals or at the Online Mendelian Inheritance in Man (OMIM) World Wide Web site. Correlation between the

location of the gene encoding GTPAP on a physical chromosomal map and a specific disorder, or a predisposition to a specific disorder, may help define the region of DNA associated with that disorder. The nucleotide sequences of the invention may be used to detect differences in gene sequences among normal, carrier, and affected individuals.

5 In situ hybridization of chromosomal preparations and physical mapping techniques, such as linkage analysis using established chromosomal markers, may be used for extending genetic maps. Often the placement of a gene on the chromosome of another mammalian species, such as mouse, may reveal associated markers even if the number or arm of a particular human chromosome is not known. New sequences can be assigned to chromosomal arms by physical mapping. This provides
10 valuable information to investigators searching for disease genes using positional cloning or other gene discovery techniques. Once the disease or syndrome has been crudely localized by genetic linkage to a particular genomic region, e.g., ataxia-telangiectasia to 11q22-23, any sequences mapping to that area may represent associated or regulatory genes for further investigation. (See, e.g., Gatti, R.A. et al. (1988) *Nature* 336:577-580.) The nucleotide sequence of the subject invention
15 may also be used to detect differences in the chromosomal location due to translocation, inversion, etc., among normal, carrier, or affected individuals.

In another embodiment of the invention, GTPAP, its catalytic or immunogenic fragments, or oligopeptides thereof can be used for screening libraries of compounds in any of a variety of drug screening techniques. The fragment employed in such screening may be free in solution, affixed to a
20 solid support, borne on a cell surface, or located intracellularly. The formation of binding complexes between GTPAP and the agent being tested may be measured.

Another technique for drug screening provides for high throughput screening of compounds having suitable binding affinity to the protein of interest. (See, e.g., Geysen, et al. (1984) PCT application WO84/03564.) In this method, large numbers of different small test compounds are
25 synthesized on a solid substrate. The test compounds are reacted with GTPAP, or fragments thereof, and washed. Bound GTPAP is then detected by methods well known in the art. Purified GTPAP can also be coated directly onto plates for use in the aforementioned drug screening techniques. Alternatively, non-neutralizing antibodies can be used to capture the peptide and immobilize it on a solid support.

30 In another embodiment, one may use competitive drug screening assays in which neutralizing antibodies capable of binding GTPAP specifically compete with a test compound for binding GTPAP. In this manner, antibodies can be used to detect the presence of any peptide which shares one or more antigenic determinants with GTPAP.

In additional embodiments, the nucleotide sequences which encode GTPAP may be used in any molecular biology techniques that have yet to be developed, provided the new techniques rely on properties of nucleotide sequences that are currently known, including, but not limited to, such properties as the triplet genetic code and specific base pair interactions.

5 Without further elaboration, it is believed that one skilled in the art can, using the preceding description, utilize the present invention to its fullest extent. The following embodiments are, therefore, to be construed as merely illustrative, and not limitative of the remainder of the disclosure in any way whatsoever.

Without further elaboration, it is believed that one skilled in the art can, using the preceding 10 description, utilize the present invention to its fullest extent. The following preferred specific embodiments are, therefore, to be construed as merely illustrative, and not limitative of the remainder of the disclosure in any way whatsoever.

The disclosures of all patents, applications, and publications mentioned above and below, in particular U.S. Ser. Nos. 60/109,592, 60/118,610, and 60/127,990 are hereby expressly incorporated 15 by reference.

EXAMPLES

I. Construction of cDNA Libraries

RNA was purchased from Clontech or isolated from tissues described in Table 4. Some 20 tissues were homogenized and lysed in guanidinium isothiocyanate, while others were homogenized and lysed in phenol or in a suitable mixture of denaturants, such as TRIZOL (Life Technologies), a monophasic solution of phenol and guanidine isothiocyanate. The resulting lysates were centrifuged over CsCl cushions or extracted with chloroform. RNA was precipitated from the lysates with either isopropanol or sodium acetate and ethanol, or by other routine methods.

25 Phenol extraction and precipitation of RNA were repeated as necessary to increase RNA purity. In some cases, RNA was treated with DNase. For most libraries, poly(A+) RNA was isolated using oligo d(T)-coupled paramagnetic particles (Promega), OLIGOTEX latex particles (QIAGEN, Chatsworth CA), or an OLIGOTEX mRNA purification kit (QIAGEN). Alternatively, RNA was isolated directly from tissue lysates using other RNA isolation kits, e.g., the POLY(A)PURE mRNA 30 purification kit (Ambion, Austin TX).

In some cases, Stratagene was provided with RNA and constructed the corresponding cDNA libraries. Otherwise, cDNA was synthesized and cDNA libraries were constructed with the UNIZAP vector system (Stratagene) or SUPERSCRIPT plasmid system (Life Technologies), using the

recommended procedures or similar methods known in the art. (See, e.g., Ausubel, 1997, *supra*, units 5.1-6.6.) Reverse transcription was initiated using oligo d(T) or random primers. Synthetic oligonucleotide adapters were ligated to double stranded cDNA, and the cDNA was digested with the appropriate restriction enzyme or enzymes. For most libraries, the cDNA was size-selected (300-
5 1000 bp) using SEPHACRYL S1000, SEPHAROSE CL2B, or SEPHAROSE CL4B column chromatography (Amersham Pharmacia Biotech) or preparative agarose gel electrophoresis. cDNAs were ligated into compatible restriction enzyme sites of the polylinker of a suitable plasmid, e.g., PBLUESCRIPT plasmid (Stratagene), PSPORT1 plasmid (Life Technologies), or pINCY (Incyte Pharmaceuticals, Palo Alto CA). Recombinant plasmids were transformed into competent *E. coli*
10 cells including XL1-Blue, XL1-BlueMRF, or SOLR from Stratagene or DH5 α , DH10B, or ElectroMAX DH10B from Life Technologies.

II. Isolation of cDNA Clones

Plasmids were recovered from host cells by *in vivo* excision using the UNIZAP vector system (Stratagene) or by cell lysis. Plasmids were purified using at least one of the following: a
15 Magic or WIZARD Minipreps DNA purification system (Promega); an AGTC Miniprep purification kit (Edge Biosystems, Gaithersburg MD); and QIAWELL 8 Plasmid, QIAWELL 8 Plus Plasmid, QIAWELL 8 Ultra Plasmid purification systems or the R.E.A.L. PREP 96 plasmid purification kit from QIAGEN. Following precipitation, plasmids were resuspended in 0.1 ml of distilled water and stored, with or without lyophilization, at 4°C.

20 Alternatively, plasmid DNA was amplified from host cell lysates using direct link PCR in a high-throughput format (Rao, V.B. (1994) Anal. Biochem. 216:1-14). Host cell lysis and thermal cycling steps were carried out in a single reaction mixture. Samples were processed and stored in 384-well plates, and the concentration of amplified plasmid DNA was quantified fluorometrically using PICOGREEN dye (Molecular Probes, Eugene OR) and a FLUOROSCAN II fluorescence
25 scanner (Labsystems Oy, Helsinki, Finland).

III. Sequencing and Analysis

cDNA sequencing reactions were processed using standard methods or high-throughput instrumentation such as the ABI CATALYST 800 (Perkin-Elmer) thermal cycler or the PTC-200 thermal cycler (MJ Research) in conjunction with the HYDRA microdispenser (Robbins Scientific)
30 or the MICROLAB 2200 (Hamilton) liquid transfer system. cDNA sequencing reactions were prepared using reagents provided by Amersham Pharmacia Biotech or supplied in ABI sequencing kits such as the ABI PRISM BIGDYE Terminator cycle sequencing ready reaction kit (Perkin-Elmer). Electrophoretic separation of cDNA sequencing reactions and detection of labeled

polynucleotides were carried out using the MEGABACE 1000 DNA sequencing system (Molecular Dynamics); the ABI PRISM 373 or 377 sequencing system (Perkin-Elmer) in conjunction with standard ABI protocols and base calling software; or other sequence analysis systems known in the art. Reading frames within the cDNA sequences were identified using standard methods (reviewed in 5 Ausubel, 1997, *supra*, unit 7.7). Some of the cDNA sequences were selected for extension using the techniques disclosed in Example V.

The polynucleotide sequences derived from cDNA sequencing were assembled and analyzed using a combination of software programs which utilize algorithms well known to those skilled in the art. Table 5 summarizes the tools, programs, and algorithms used and provides applicable 10 descriptions, references, and threshold parameters. The first column of Table 5 shows the tools, programs, and algorithms used, the second column provides brief descriptions thereof, the third column presents appropriate references, all of which are incorporated by reference herein in their entirety, and the fourth column presents, where applicable, the scores, probability values, and other parameters used to evaluate the strength of a match between two sequences (the higher the score, the 15 greater the homology between two sequences). Sequences were analyzed using MACDNASIS PRO software (Hitachi Software Engineering, South San Francisco CA) and LASERGENE software (DNASTAR). Polynucleotide and polypeptide sequence alignments were generated using the default parameters specified by the clustal algorithm as incorporated into the MEGALIGN multisequence 20 alignment program (DNASTAR), which also calculates the percent identity between aligned sequences.

The polynucleotide sequences were validated by removing vector, linker, and polyA sequences and by masking ambiguous bases, using algorithms and programs based on BLAST, dynamic programming, and dinucleotide nearest neighbor analysis. The sequences were then queried against a selection of public databases such as the GenBank primate, rodent, mammalian, vertebrate, 25 and eukaryote databases, and BLOCKS, PRINTS, DOMO, PRODOM, and PFAM to acquire annotation using programs based on BLAST, FASTA, and BLIMPS. The sequences were assembled into full length polynucleotide sequences using programs based on Phred, Phrap, and Consed, and were screened for open reading frames using programs based on GeneMark, BLAST, and FASTA. The full length polynucleotide sequences were translated to derive the corresponding full length 30 amino acid sequences, and these full length sequences were subsequently analyzed by querying against databases such as the GenBank databases (described above), SwissProt, BLOCKS, PRINTS, DOMO, PRODOM, Prosite, and Hidden Markov Model (HMM)-based protein family databases such as PFAM. HMM is a probabilistic approach which analyzes consensus primary structures of gene

families. (See, e.g., Eddy, S.R. (1996) Curr. Opin. Struct. Biol. 6:361-365.)

The programs described above for the assembly and analysis of full length polynucleotide and amino acid sequences were also used to identify polynucleotide sequence fragments from SEQ ID NO:30-58. Fragments from about 20 to about 4000 nucleotides which are useful in hybridization and amplification technologies were described in The Invention section above.

IV. Northern Analysis

Northern analysis is a laboratory technique used to detect the presence of a transcript of a gene and involves the hybridization of a labeled nucleotide sequence to a membrane on which RNAs from a particular cell type or tissue have been bound. (See, e.g., Sambrook, *supra*, ch. 7; Ausubel, 1995, *supra*, ch. 4 and 16.)

Analogous computer techniques applying BLAST were used to search for identical or related molecules in nucleotide databases such as GenBank or LIFESEQ (Incyte Pharmaceuticals). This analysis is much faster than multiple membrane-based hybridizations. In addition, the sensitivity of the computer search can be modified to determine whether any particular match is categorized as exact or similar. The basis of the search is the product score, which is defined as:

$$\frac{\% \text{ sequence identity} \times \% \text{ maximum BLAST score}}{100}$$

The product score takes into account both the degree of similarity between two sequences and the length of the sequence match. For example, with a product score of 40, the match will be exact 20 within a 1% to 2% error, and, with a product score of 70, the match will be exact. Similar molecules are usually identified by selecting those which show product scores between 15 and 40, although lower scores may identify related molecules.

The results of northern analyses are reported as a percentage distribution of libraries in which the transcript encoding GTPAP occurred. Analysis involved the categorization of cDNA libraries by 25 organ/tissue and disease. The organ/tissue categories included cardiovascular, dermatologic, developmental, endocrine, gastrointestinal, hematopoietic/immune, musculoskeletal, nervous, reproductive, and urologic. The disease/condition categories included cancer, inflammation, trauma, cell proliferation, neurological, and pooled. For each category, the number of libraries expressing the sequence of interest was counted and divided by the total number of libraries across all categories. 30 Percentage values of tissue-specific and disease- or condition-specific expression are reported in Table 3.

V. Extension of GTPAP Encoding Polynucleotides

The full length nucleic acid sequences of SEQ ID NO:30-58 were produced by extension of

an appropriate fragment of the full length molecule using oligonucleotide primers designed from this fragment. One primer was synthesized to initiate 5' extension of the known fragment, and the other primer, to initiate 3' extension of the known fragment. The initial primers were designed using OLIGO 4.06 software (National Biosciences), or another appropriate program, to be about 22 to 30 5 nucleotides in length, to have a GC content of about 50% or more, and to anneal to the target sequence at temperatures of about 68°C to about 72°C. Any stretch of nucleotides which would result in hairpin structures and primer-primer dimerizations was avoided.

Selected human cDNA libraries were used to extend the sequence. If more than one extension was necessary or desired, additional or nested sets of primers were designed.

10 High fidelity amplification was obtained by PCR using methods well known in the art. PCR was performed in 96-well plates using the PTC-200 thermal cycler (MJ Research, Inc.). The reaction mix contained DNA template, 200 nmol of each primer, reaction buffer containing Mg²⁺, (NH₄)₂SO₄, and β-mercaptoethanol, Taq DNA polymerase (Amersham Pharmacia Biotech), ELONGASE enzyme (Life Technologies), and Pfu DNA polymerase (Stratagene), with the following parameters for primer 15 pair PCI A and PCI B: Step 1: 94°C, 3 min; Step 2: 94°C, 15 sec; Step 3: 60°C, 1 min; Step 4: 68°C, 2 min; Step 5: Steps 2, 3, and 4 repeated 20 times; Step 6: 68°C, 5 min; Step 7: storage at 4°C. In the alternative, the parameters for primer pair T7 and SK+ were as follows: Step 1: 94°C, 3 min; Step 2: 94°C, 15 sec; Step 3: 57°C, 1 min; Step 4: 68°C, 2 min; Step 5: Steps 2, 3, and 4 repeated 20 times; Step 6: 68°C, 5 min; Step 7: storage at 4°C.

20 The concentration of DNA in each well was determined by dispensing 100 μl PICOGREEN quantitation reagent (0.25% (v/v) PICOGREEN; Molecular Probes, Eugene OR) dissolved in 1X TE and 0.5 μl of undiluted PCR product into each well of an opaque fluorimeter plate (Corning Costar, Acton MA), allowing the DNA to bind to the reagent. The plate was scanned in a Fluoroskan II (Labsystems Oy, Helsinki, Finland) to measure the fluorescence of the sample and to quantify the 25 concentration of DNA. A 5 μl to 10 μl aliquot of the reaction mixture was analyzed by electrophoresis on a 1 % agarose mini-gel to determine which reactions were successful in extending the sequence.

The extended nucleotides were desalted and concentrated, transferred to 384-well plates, digested with CviJI cholera virus endonuclease (Molecular Biology Research, Madison WI), and 30 sonicated or sheared prior to religation into pUC 18 vector (Amersham Pharmacia Biotech). For shotgun sequencing, the digested nucleotides were separated on low concentration (0.6 to 0.8%) agarose gels, fragments were excised, and agar digested with Agar ACE (Promega). Extended clones were religated using T4 ligase (New England Biolabs, Beverly MA) into pUC 18 vector (Amersham

Pharmacia Biotech), treated with Pfu DNA polymerase (Stratagene) to fill-in restriction site overhangs, and transfected into competent *E. coli* cells. Transformed cells were selected on antibiotic-containing media, individual colonies were picked and cultured overnight at 37°C in 384-well plates in LB/2x carb liquid media.

5 The cells were lysed, and DNA was amplified by PCR using Taq DNA polymerase (Amersham Pharmacia Biotech) and Pfu DNA polymerase (Stratagene) with the following parameters: Step 1: 94°C, 3 min; Step 2: 94°C, 15 sec; Step 3: 60°C, 1 min; Step 4: 72°C, 2 min; Step 5: steps 2, 3, and 4 repeated 29 times; Step 6: 72°C, 5 min; Step 7: storage at 4°C. DNA was quantified by PICOGREEN reagent (Molecular Probes) as described above. Samples with low DNA 10 recoveries were reamplified using the same conditions as described above. Samples were diluted with 20% dimethylsulfoxide (1:2, v/v), and sequenced using DYENAMIC energy transfer sequencing primers and the DYENAMIC DIRECT kit (Amersham Pharmacia Biotech) or the ABI PRISM BIGDYE Terminator cycle sequencing ready reaction kit (Perkin-Elmer).

In like manner, the nucleotide sequences of SEQ ID NO:30-58 are used to obtain 5' 15 regulatory sequences using the procedure above, oligonucleotides designed for such extension, and an appropriate genomic library.

VI. Labeling and Use of Individual Hybridization Probes

Hybridization probes derived from SEQ ID NO:30-58 are employed to screen cDNAs, genomic DNAs, or mRNAs. Although the labeling of oligonucleotides, consisting of about 20 base 20 pairs, is specifically described, essentially the same procedure is used with larger nucleotide fragments. Oligonucleotides are designed using state-of-the-art software such as OLIGO 4.06 software (National Biosciences) and labeled by combining 50 pmol of each oligomer, 250 µCi of [γ -³²P] adenosine triphosphate (Amersham Pharmacia Biotech), and T4 polynucleotide kinase (DuPont NEN, Boston MA). The labeled oligonucleotides are substantially purified using a 25 SEPHADEX G-25 superfine size exclusion dextran bead column (Amersham Pharmacia Biotech). An aliquot containing 10⁷ counts per minute of the labeled probe is used in a typical membrane-based hybridization analysis of human genomic DNA digested with one of the following endonucleases: Ase I, Bgl II, Eco RI, Pst I, Xba I, or Pvu II (DuPont NEN).

The DNA from each digest is fractionated on a 0.7% agarose gel and transferred to nylon 30 membranes (Nytran Plus, Schleicher & Schuell, Durham NH). Hybridization is carried out for 16 hours at 40°C. To remove nonspecific signals, blots are sequentially washed at room temperature under conditions of up to, for example, 0.1 x saline sodium citrate and 0.5% sodium dodecyl sulfate. Hybridization patterns are visualized using autoradiography or an alternative imaging means and

compared.

VII. Microarrays

A chemical coupling procedure and an ink jet device can be used to synthesize array elements on the surface of a substrate. (See, e.g., Baldeschweiler, *supra*.) An array analogous to a dot or slot blot may also be used to arrange and link elements to the surface of a substrate using thermal, UV, chemical, or mechanical bonding procedures. A typical array may be produced by hand or using available methods and machines and contain any appropriate number of elements. After hybridization, nonhybridized probes are removed and a scanner used to determine the levels and patterns of fluorescence. The degree of complementarity and the relative abundance of each probe which hybridizes to an element on the microarray may be assessed through analysis of the scanned images.

Full-length cDNAs, Expressed Sequence Tags (ESTs), or fragments thereof may comprise the elements of the microarray. Fragments suitable for hybridization can be selected using software well known in the art such as LASERGENE software (DNASTAR). Full-length cDNAs, ESTs, or fragments thereof corresponding to one of the nucleotide sequences of the present invention, or selected at random from a cDNA library relevant to the present invention, are arranged on an appropriate substrate, e.g., a glass slide. The cDNA is fixed to the slide using, e.g., UV cross-linking followed by thermal and chemical treatments and subsequent drying. (See, e.g., Schena, M. et al. (1995) *Science* 270:467-470; Shalon, D. et al. (1996) *Genome Res.* 6:639-645.) Fluorescent probes are prepared and used for hybridization to the elements on the substrate. The substrate is analyzed by procedures described above.

VIII. Complementary Polynucleotides

Sequences complementary to the GTPAP-encoding sequences, or any parts thereof, are used to detect, decrease, or inhibit expression of naturally occurring GTPAP. Although use of oligonucleotides comprising from about 15 to 30 base pairs is described, essentially the same procedure is used with smaller or with larger sequence fragments. Appropriate oligonucleotides are designed using OLIGO 4.06 software (National Biosciences) and the coding sequence of GTPAP. To inhibit transcription, a complementary oligonucleotide is designed from the most unique 5' sequence and used to prevent promoter binding to the coding sequence. To inhibit translation, a complementary oligonucleotide is designed to prevent ribosomal binding to the GTPAP-encoding transcript.

IX. Expression of GTPAP

Expression and purification of GTPAP is achieved using bacterial or virus-based expression

systems. For expression of GTPAP in bacteria, cDNA is subcloned into an appropriate vector containing an antibiotic resistance gene and an inducible promoter that directs high levels of cDNA transcription. Examples of such promoters include, but are not limited to, the *trp-lac* (*tac*) hybrid promoter and the T5 or T7 bacteriophage promoter in conjunction with the *lac* operator regulatory element. Recombinant vectors are transformed into suitable bacterial hosts, e.g., BL21(DE3). 5 Antibiotic resistant bacteria express GTPAP upon induction with isopropyl beta-D-thiogalactopyranoside (IPTG). Expression of GTPAP in eukaryotic cells is achieved by infecting insect or mammalian cell lines with recombinant *Autographica californica* nuclear polyhedrosis virus (AcMNPV), commonly known as baculovirus. The nonessential polyhedrin gene of baculovirus is 10 replaced with cDNA encoding GTPAP by either homologous recombination or bacterial-mediated transposition involving transfer plasmid intermediates. Viral infectivity is maintained and the strong polyhedrin promoter drives high levels of cDNA transcription. Recombinant baculovirus is used to infect *Spodoptera frugiperda* (Sf9) insect cells in most cases, or human hepatocytes, in some cases. Infection of the latter requires additional genetic modifications to baculovirus. (See Engelhard, E.K. 15 et al. (1994) Proc. Natl. Acad. Sci. USA 91:3224-3227; Sandig, V. et al. (1996) Hum. Gene Ther. 7:1937-1945.)

In most expression systems, GTPAP is synthesized as a fusion protein with, e.g., glutathione S-transferase (GST) or a peptide epitope tag, such as FLAG or 6-His, permitting rapid, single-step, affinity-based purification of recombinant fusion protein from crude cell lysates. GST, a 26-kilodalton enzyme from *Schistosoma japonicum*, enables the purification of fusion proteins on immobilized glutathione under conditions that maintain protein activity and antigenicity (Amersham Pharmacia Biotech). Following purification, the GST moiety can be proteolytically cleaved from GTPAP at specifically engineered sites. FLAG, an 8-amino acid peptide, enables immunoaffinity purification using commercially available monoclonal and polyclonal anti-FLAG antibodies (Eastman Kodak). 6-His, a stretch of six consecutive histidine residues, enables purification on metal-chelate resins (QIAGEN). Methods for protein expression and purification are discussed in Ausubel (1995, *supra*, ch. 10 and 16). Purified GTPAP obtained by these methods can be used directly in the 25 following activity assay.

X. Demonstration of GTPAP Activity

The role of GTPAP can be assayed *in vitro* by monitoring the mobilization of Ca⁺⁺ as part of 30 the signal transduction pathway. (See, e.g., Grynkiewicz, G. et al. (1985) J. Biol. Chem. 260:3440; McColl, S. et al. (1993) J. Immunol. 150:4550-4555; and Aussel, C. et al. (1988) J. Immunol. 140-215.) The assay requires preloading neutrophils or T cells with a fluorescent dye such as FURA-2.

Upon binding Ca⁺⁺, FURA-2 exhibits an absorption shift that can be observed by scanning the excitation spectrum between 300 and 400 nm, while monitoring the emission at 510 nm. When the cells are exposed to one or more activating stimuli artificially (i.e., anti-CD3 antibody ligation of the T cell receptor) or physiologically (i.e., by allogeneic stimulation), Ca⁺⁺ flux takes place. Ca⁺⁺ flux 5 results from the release of Ca⁺⁺ from intracellular organelles or from Ca⁺⁺ entry into the cell through activated Ca⁺⁺ channels. This flux can be observed and quantified by assaying the cells in a fluorometer or fluorescence activated cell sorter. Measurements of Ca⁺⁺ flux are compared between cells in their normal state and those preloaded with GTPAP. Increased mobilization attributable to increased GTPAP availability results in increased emission.

10 Alternatively, GTPAP activity is measured by quantifying the amount of a non-hydrolyzable GTP analogue, GTP γ S, bound over a 10 minute incubation period. Varying amounts of GTPAP are incubated at 30°C in 50mM Tris buffer, pH 7.5, containing 1mM dithiothreitol, 1mM EDTA and 1 μ M [35 S]GTP γ S. Samples are passed through nitrocellulose filters and washed twice with a buffer consisting of 50mM Tris-HCl, pH 7.8, 1mM NaN₃, 10mM MgCl₂, 1mM EDTA, 0.5mM 15 dithiothreitol, 0.01mM PMSF, and 200mM NaCl. The filter-bound counts are measured by liquid scintillation to quantify the amount of bound [35 S]GTP γ S. GTPAP activity may also be measured as the amount of GTP hydrolysed over a 10 minute incubation period at 37°C. GTPAP is incubated in 50mM Tris-HCl buffer, pH 7.8, containing 1mM dithiothreitol, 2mM EDTA, 10 μ M [α - 32 P]GTP, and 1 μ M H-rab protein. GTPase activity is initiated by adding MgCl₂ to a final concentration of 10 mM. 20 Samples are removed at various time points, mixed with an equal volume of ice-cold 0.5mM EDTA, and frozen. Aliquots are spotted onto polyethyleneimine-cellulose thin layer chromatography plates, which are developed in 1M LiCl, dried, and autoradiographed. The signal detected is proportional to GTPAP activity.

Alternatively, GTPAP activity may be demonstrated as the ability to interact with its 25 associated G α or LMW GTPase in an in vitro binding assay. The candidate GTPases are expressed as fusion proteins with glutathione S-transferase (GST), and purified by affinity chromatography on glutathione-Sepharose. The GTPases are loaded with GDP by incubating 20 mM Tris buffer, pH 8.0, containing 100 mM NaCl, 2 mM EDTA, 5 mM MgCl₂, 0.2 mM DTT, 100 μ M AMP-PNP and 10 μ M GDP at 30°C for 20 minutes. GTPAP is expressed as a FLAG fusion proteins in a baculovirus system. 30 Extracts of these baculovirus cells containing GTPAP-FLAG fusion proteins are precleared with GST beads, then incubated with GST-GTPase fusion proteins. The complexes formed are precipitated by glutathione-Sepharose and separated by SDS-polyacrylamide gel electrophoresis. The separated proteins are blotted onto nitrocellulose membranes and probed with commercially available anti-

FLAG antibodies. GTPAP activity is proportional to the amount of GTPAP-FLAG fusion protein detected in the complex.

XI. Functional Assays

GTPAP function is assessed by expressing the sequences encoding GTPAP at physiologically elevated levels in mammalian cell culture systems. cDNA is subcloned into a mammalian expression vector containing a strong promoter that drives high levels of cDNA expression. Vectors of choice include pCMV SPORT (Life Technologies) and pCR3.1 (Invitrogen, Carlsbad CA), both of which contain the cytomegalovirus promoter. 5-10 µg of recombinant vector are transiently transfected into a human cell line, for example, an endothelial or hematopoietic cell line, using either liposome formulations or electroporation. 1-2 µg of an additional plasmid containing sequences encoding a marker protein are co-transfected. Expression of a marker protein provides a means to distinguish transfected cells from nontransfected cells and is a reliable predictor of cDNA expression from the recombinant vector. Marker proteins of choice include, e.g., Green Fluorescent Protein (GFP: Clontech), CD64, or a CD64-GFP fusion protein. Flow cytometry (FCM), an automated, laser optics-based technique, is used to identify transfected cells expressing GFP or CD64-GFP and to evaluate the apoptotic state of the cells and other cellular properties. FCM detects and quantifies the uptake of fluorescent molecules that diagnose events preceding or coincident with cell death. These events include changes in nuclear DNA content as measured by staining of DNA with propidium iodide; changes in cell size and granularity as measured by forward light scatter and 90 degree side light scatter; down-regulation of DNA synthesis as measured by decrease in bromodeoxyuridine uptake; alterations in expression of cell surface and intracellular proteins as measured by reactivity with specific antibodies; and alterations in plasma membrane composition as measured by the binding of fluorescein-conjugated Annexin V protein to the cell surface. Methods in flow cytometry are discussed in Ormerod, M.G. (1994) Flow Cytometry, Oxford, New York NY.

The influence of GTPAP on gene expression can be assessed using highly purified populations of cells transfected with sequences encoding GTPAP and either CD64 or CD64-GFP. CD64 and CD64-GFP are expressed on the surface of transfected cells and bind to conserved regions of human immunoglobulin G (IgG). Transfected cells are efficiently separated from nontransfected cells using magnetic beads coated with either human IgG or antibody against CD64 (DYNAL, Lake Success NY). mRNA can be purified from the cells using methods well known by those of skill in the art. Expression of mRNA encoding GTPAP and other genes of interest can be analyzed by northern analysis or microarray techniques.

XII. Production of GTPAP Specific Antibodies

GTPAP substantially purified using polyacrylamide gel electrophoresis (PAGE; see, e.g., Harrington, M.G. (1990) Methods Enzymol. 182:488-495), or other purification techniques, is used to immunize rabbits and to produce antibodies using standard protocols.

5 Alternatively, the GTPAP amino acid sequence is analyzed using LASERGENE software (DNASTAR) to determine regions of high immunogenicity, and a corresponding oligopeptide is synthesized and used to raise antibodies by means known to those of skill in the art. Methods for selection of appropriate epitopes, such as those near the C-terminus or in hydrophilic regions are well described in the art. (See, e.g., Ausubel, 1995, supra, ch. 11.)

10 Typically, oligopeptides of about 15 residues in length are synthesized using an ABI 431A peptide synthesizer (Perkin-Elmer) using fmoc-chemistry and coupled to KLH (Sigma-Aldrich, St. Louis MO) by reaction with N-maleimidobenzoyl-N-hydroxysuccinimide ester (MBS) to increase immunogenicity. (See, e.g., Ausubel, 1995, supra.) Rabbits are immunized with the oligopeptide-KLH complex in complete Freund's adjuvant. Resulting antisera are tested for antipeptide and anti-
15 GTPAP activity by, for example, binding the peptide or GTPAP to a substrate, blocking with 1% BSA, reacting with rabbit antisera, washing, and reacting with radio-iodinated goat anti-rabbit IgG.

XIII. Purification of Naturally Occurring GTPAP Using Specific Antibodies

Naturally occurring or recombinant GTPAP is substantially purified by immunoaffinity chromatography using antibodies specific for GTPAP. An immunoaffinity column is constructed by
20 covalently coupling anti-GTPAP antibody to an activated chromatographic resin, such as CNBr-activated SEPHAROSE (Amersham Pharmacia Biotech). After the coupling, the resin is blocked and washed according to the manufacturer's instructions.

Media containing GTPAP are passed over the immunoaffinity column, and the column is washed under conditions that allow the preferential absorbance of GTPAP (e.g., high ionic strength
25 buffers in the presence of detergent). The column is eluted under conditions that disrupt antibody/GTPAP binding (e.g., a buffer of pH 2 to pH 3, or a high concentration of a chaotrope, such as urea or thiocyanate ion), and GTPAP is collected.

XIV. Identification of Molecules Which Interact with GTPAP

GTPAP, or biologically active fragments thereof, are labeled with ¹²⁵I Bolton-Hunter
30 reagent. (See, e.g., Bolton A.E. and W.M. Hunter (1973) Biochem. J. 133:529-539.) Candidate molecules previously arrayed in the wells of a multi-well plate are incubated with the labeled GTPAP, washed, and any wells with labeled GTPAP complex are assayed. Data obtained using different concentrations of GTPAP are used to calculate values for the number, affinity, and association of

GTPAP with the candidate molecules.

Various modifications and variations of the described methods and systems of the invention will be apparent to those skilled in the art without departing from the scope and spirit of the invention. Although the invention has been described in connection with certain embodiments, it should be understood that the invention as claimed should not be unduly limited to such specific embodiments. Indeed, various modifications of the described modes for carrying out the invention which are obvious to those skilled in molecular biology or related fields are intended to be within the scope of the following claims.

Table 1

Polypeptide SEQ ID NO:	Nucleotide SEQ ID NO:	Clone ID	Library	Fragments
1	30	708398	SYNORATO4	568987X31 (NMLR3DT01), 708398H1, 708398X11, 708398X15, 708398X16, 708398X17, and 708398X21 (SYNORATO4), 2170523F6 (ENDCNOT03), 33374750H1 (CONNTUT05)
2	31	1259937	MENITUT03	913652R6 (STOMNOT02), 1259937F6 and 1259937H1 (MENITUT03), 1476721F1 (CORPNOT02), 1729248F6 (BRSTTUT08), 2191963H1 (THYRTUT03), 3129757F6 (LUNGUT12), 3268746X15F1 (BRAINOT20), 3428891F6 (SKINNOT04)
3	32	1452285	PENITUT01	1452285F6 and 1452285H1 (PENITUT01), 2605011H1 (LUNGUT07), 3505135H1 (ADRENOT11)
4	33	1812894	PROSTUT12	1812894H1, 1812894X12 and 1809113T6 (PROSTUT12), 1904479F6 (OVARNOT07), 2232535X15F1 and 2232535X18F1 (PROSNOT16), 2267486X16C1 (UTRSNOT02), 2508562F6 (CONUTUT01)
5	34	3074884	BONEUNT01	225362F1 (PANCNOT01), 900707R1 (BRSTTUT03), 1339234F6 (COLNTUT03), 1759046R6 (PITUNOT03), 3074884H1 (BONEUNT01), SBDA02767F1
6	35	3452277	UTRSNON03	1684553F6 (PROSNOT15), 1951534H1 (PITUNOT01), 3452277H1 (UTRSNON03), 4092781T6 (BSCNSZT01), SBFA01413F1, SBFA03044F1, SBFA01805F1
7	36	4203832	BRAITUT29	723394F1 (SYNOOAT01), 862290R1, and 862290T1 (BRAITUT03), 1560918F1 (SPLNNNOT04), 3509241H1 (CONCNOT01), 4203832H1 (BRAITUT29)
8	37	104368	BMARNOT02	104368H1 (BMARNOT02), SAEA03574F1, SAEA01063F1, SAEA00392F1, SAEA02287F1
9	38	1441680	THYRNNOT03	1441680F6, 1441680H1, and 1441680T6 (THYRNNOT03), 1904222F6 (OVARNOT07), 2477983F6 (SMCANOT01)
10	39	1494955	PROSNON01	965986R1 (BRSTNOT05), 1429037F1 and 1429037T1 (SINTBST01), 1453487F6 (PENITUT01), 1486114H1 (CORPNOT02), 1494955H1 (PROSNON01), 1995426R6 (BRSTTUT03), 2112074X18F1 and 2112348R6 (BRAITUT03)
11	40	1508161	LUNGNOT14	1508161F6 and 1508161H1 (LUNGNOT14), 3334303H1 (BRAIFET01), 4755656H1 (BRAHNOT01)
12	41	1811877	PROSTUT12	493795H1 (HNT2NOT01), 1573136H1 (LNODNOT03), 1811877F6 and (ENDANOT01), 2651022H1 (BLADTUT08), 3487062H1 (EPIGNOT01), 4536531H1 (OVARNOT12), 4795253H1 (LIVRTUT09), 4854087H1 (TESTNOT10), 4906149H2 (TLYMNNOT08), 5196386H1 (LUNLTUT04)

Table 1 (cont.)

Polypeptide SEQ. ID NO:	Nucleotide SEQ ID NO:	Clone ID	Library	Fragments
13	42	1848674	LUNGFET03	1574127F6, 3857867X306F1, and 3857867X313F1 (LNODNOT03), 1848674H1 (LUNGFE03), 1877170F6 (LEUKNOT03), 2695307H1 (UTRSNOT12), 4148654H1 (SINTTUTO4), 4984182H1 (HELATXT05), 52888671H1 (LIVRTUT02)
14	43	2012970	TESTNOT03	2012970H1, 2012970R6, 2012970X11F (TESTNOT03)
15	44	2254315	OVARTUT01	0223341F1 (ADENINB01), 198476R6 (KIDNNNOT02), 2254315H1 (OVARUT01), 2370170F6 (ADRENOT07), 2451278F6 (ENDANOT01)
16	45	2415545	HNT3AZT01	775722H1 (COLNNNOT05), 870320R6 (LUNGAST01), 889023R1 (STOMTUT01), 895724R1 (BRSTNOT05), 1398541F1 (BRAITUT08), 1662585F6 (BRSTNOT09), 2415545H1 (HNT3AZT01), 2985066H1 (CARGDIT01), 3462702H1 (293TF2T01)
17	46	2707969	PONSAZT01	282552R1, 282552X23, and 282552X7 (CARDNOT01), 889783R1 (STOMTUT01), 1995451R6 (BRSTTUT03), 2707969H1 (PONSAZT01), SAAC00359R1.com, SAAB00136R1, SAAC00330R1
18	47	2817769	BRSTNOT14	041660R1 (TBLYNNOT01), 077378R1 (SYNORAB01), 740028R1 (PANCNOT04), 1593201F6 (BRAINNOT14), 1924025R6 (BRSTTUT01), 2817769H1 (BRSTNOT14)
19	48	2917557	THYMFET03	473002F1 and 473002R1 (MLRL1DT01), 690999R6 (LUNGUT02), 997483R1 (KIDNTUT01), 1430662F6 (SINTBST01), 1514017F1 (PANCUT01), 1740475R6 (HIPONON01), 2109547H1 (BRAITUT03), 2917557H1 (THYMFET03), 4309528H1 (BRAUNOT01), 4990135H1 (LIVRTUT11)
20	49	3421335	UCMCNOT04	777588R6 and 777588T6 (COLNNNOT05), 3421335H1 (UCMCNOT04)
21	50	6057671	BRSTTUT01	605761F1, 605761H1, and 605761R6 (BRSTTUT01), 1271131X15 (TESTTUT02), 1516985F1 (PANCUT01), 1524935H1 (UCMCL5T01), 2234846F6 (PANCUT02)
22	51	483862	HNT2RAT01	483862H1 and 483862R1 (HNT2RAT01), 1750781X305F1, 1750781X307D2 (LIVRTUT01)
23	52	1256777	MENITUT03	264041R6 (HNT2AGT01), 826449R1 (PROSNOT06), 1256777H1 (MENITUT03), 2276061R6 (PROSNON01), 4614049H1 (BRAHNNOT01)
24	53	2198779	SPLNFET02	1557708F6 (BLADTUT04), 1922490R6 (BRSTTUT01), 2198779H1 (SPLNFET02), 2541193F7 (BONRTUT01), 3039254F6 (BRSTNOT16), 3057079H1 (LNODNOT08), 3105017H1 (COLNUCT03), 4239592H1 (SYNWDT01), 5064513H1 (ARTFTDT01)

Table 1 (cont.)

Polypeptide SEQ ID NO:	Nucleotide SEQ ID NO:	Clone ID	Library	Fragments
25	54	2226116	SEMVNOT01	1662607F6 (BRSTNOT09), 1662607T6 (BRSTNOT09), 2226116F6 (SEMVNOT01), 2226116H1 (SEMVNOT01), 2930011F6 (TLYMNNOT04), 3015747T6 (MUSCNOT07), 4087670H1 (LVENNOT06)
26	55	2504472	CONUTUT01	420365F1 (BRSTNOT01), 762246R1 (BRAITUT02), 907754R2 (COLNNOT09), 1007508H1 (HEALDIT02), 13023342F6 (PLACNOT02), 1913887H1 (PROSTUT04), 2023822F6 (CONNNOT01), 2023822X11R1 (CONNNOT01), 2504472H1 (CONNUTUT01), 2951618F6 (KIDNFET01)
27	56	3029920	HEARFET02	354846T6 (RATRNNOT01), 418533R6 (BRSTNOT01), 935073R1 (CERVNOT01), 1340722F1 (COLNTUT03), 1416203T6 (BRAINOT12), 1524567F1 (UCMCL5T01), 1773043H1 (MENTUNON3), 2590310H2 (LUNGNOT22), 3029920H1 (HEARFET02), 4873053H1 (COLDNOT01), 5687696H1 (BRAINTUT01)
28	57	3332415	BRAIFET01	118166R1 (MUSCNOT01), 1257348H1 (MENITUT03), 1288237T6 (BRAINOT11), 1335936F6 (COLNNOT13), 1452268H1 (PENITUT01), 1996016R6 (BRSTTUT03), 2116665R6 (BRSTTUT02), 2206894F6 (SINTFET03), 2540063H1 (BONRTUT01), 2808268H1 (BLADTUT08), 3086221H1 (HEAONOT03), 3127508H1 (LUNGUT12), 3295812H1 (TLYJINT01), 3332415H1 (BRAIFET01), 3604705H1 (LUNGNOT30), 4821203H1 (PROSTUT17), 4970353H1 (KIDEUNC10), 5055775H1 (COLATMT01)
29	58	4031536	BRAINOT23	029167X3 (SPLNFET01), 350137R1 (LVENNNOT01), 408825X1 (EOSIHTET02), 689446X23 (LUNGUT02), 1963062R6 (BRSTNOT04), 2288043R6 (BRAINON01), 4031536H1 (BRAINOT23)

Table 2

Polypeptide SEQ ID NO:	Amino Acid Residues	Potential Phosphorylation Sites	Potential Glycosylation Sites	Signature Sequences, Motifs, and Domains	Homologous Sequences	Analytical Methods and Databases
1	1002	T30 S224 T405 S499 T533 S558 S701 T737 T845 S864 S6 T152 T268 T412 T442 T464 T514 T528 T693 S814 S815 S823 T880 Y117 Y842	N446	G524-T531: ATP/GTP-binding site motif	GTP-binding protein [Mus musculus] g53169	BLAST MOTIFS
2	338	S21 S77 T86 S200 T246 T299 S77 S306 Y131	N244		CAMP-regulated Guanine nucleotide exchange factor [Rattus norvegicus] g4079657	BLAST
3	211	S159 S199	N33 N74	G16-T23: ATP/GTP-binding site motif	GTP-binding protein [Rattus norvegicus] g206543	BLAST MOTIFS PFAM BLOCKS PRINTS
4	516	T14 S42 T237 S270 S347 S360 T371 T395 T433 S500 T3 S13 S96 T316 S430			Fos-related antigen [Rattus norvegicus] g1016712 Rabaptin-4 [H. sapiens] g3832516	BLAST MOTIFS
5	445	T44 T114 T219 T297 S314 S341 S356 T412 T24 S72 T91 T328 T388 T394		G230-T237: ATP/GTP-binding site motif	GTP-binding protein [H. sapiens] g2765411	BLAST MOTIFS

Table 2 (cont.)

Polypeptide SEQ ID NO:	Amino Acid Residues	Potential Phosphorylation Sites	Potential Glycosylation Sites	Signature Sequences, Motifs, and Domains	Homologous Sequences	Analytical Methods and Databases
6	445	S174 S202 S289 S29 S305 S323 T434 T11 T147 T197 T198 S270 S273 S371 S397 Y125	N73		Regulator of G-protein signaling-9 [H. sapiens] g3284012	BLAST
7	281	S182 S210 S254 S13 T56 S110 S182 S32 T46 S66 S177	N130 N181	G31-T38:ATP/GTP-binding site motif	Putative ras-like protein [H. sapiens] g4092830	MOTIFS PRINTS BLAST PFAM
8	301	S92 T2 T3 Y15 S18 S19 S20 S25 S97 T120 S165 S296 T94 S116 T120 S284		E47-G66, S116-E178, Y188-G272: Phosducin signature	Phosducin-like protein [Rattus rattus] g1323727	MOTIFS PRINTS BLAST PFAM
9	485	T6 Y57 S82 T91 S112 S187 T231 T257 S309 T6 T81 S132 S157 S210 S241 T462	N460	L49-S82: Beta G protein	Similar to WD domain Beta transducin-like protein [C. elegans] g5596646	MOTIFS PRINTS BLAST PFAM
10	447	S420 S94 T107 S118 T167 T179 T308 S390 S39 S58 T78 T113 S129 T160 T167 Y174 T199 S216 S291 T302 T323 T359 T384 S423 T438	N76 N92 N231 N289 N378 N421	M294-T308: Beta transducin repeat protein [Homo sapiens] g4704417	WS beta-transducin repeat protein [Homo sapiens] g4704417	MOTIFS BLAST
11	199	S90 T55 T140 S190		K6-E130: Ras Guanine exchange factor	Putative guanine nucleotide releasing factor [Drosophila affinis] g2981229	MOTIFS BLAST PFAM

Table 2 (cont.)

Polypeptide SEQ ID NO:	Amino Acid Residues	Potential Phosphorylation Sites	Potential Glycosylation Sites	Signature Sequences, Motifs, and Domains	Homologous Sequences	Analytical Methods and Databases
12	694	S57 S67 S99 T150 T346 S416 S467 S500 T522 T684 S99 T156 S209 S285 T331 T360 T388 T430 T477 T650 T688	N353 N362	L10-I24, M96-L110: Beta transducin	Transducin-like protein [H. sapiens] g414536	MOTIFS BLAST
13	654	T10 S15 T49 S97 S102 S104 S112 S113 S377 S432 S638 T46 S54 S84 S97 T177 S217 T307 S401 S450 S504 T515 S546 T547 S561 Y618	N502	L197-F211: Beta transducin	Similar to the beta transducin family [C. elegans] g2315521	MOTIFS BLAST
14	180	S14		G23-S30: ATP-GTP binding site	Rab7C (small GTP binding protein) [Lotus japonicus] g1370186	MOTIFS BLAST
15	374	T100 T249 S260 T308 T328 S338 S351 S30 T73 T157 S237 T308	N114 N189 N222	G26-T33: ATP-GTP binding site	ATP(GTP)-binding protein [H. sapiens] g3646130	MOTIFS BLAST
16	649	S67 T344 S366 S63 S68 S75 S122 S177 S265 T282 T332 S373 S380 S563 T569 S634 S20 T94 S128 S314 T382 T385 T458 T559		F307-S544: Probable rabGAP domain	Similar to probable rabGAP [C. elegans] g3925265	MOTIFS BLAST PFAM
17	698	T244 S262 S17 T41 T42 T196 S206 S317 S479 S522 S556 T586 T680 T31 S95 T99 T140 T173 S257 T322 S374 T450 S568 T619	N171 N194 N685		Small GTP-binding protein associated protein [Mus musculus] g725274	MOTIFS BLAST

Table 2 (cont.)

Polypeptide SEQ ID NO:	Amino Acid Residues	Potential Phosphorylation Sites	Potential Glycosylation Sites	Signature Sequences, Motifs, and Domains	Homologous Sequences	Analytical Methods and Databases
18	396	T325 S115 T133 S232 S275 T336 S22 T221 S232 T320	N60 N230 N286	G29-S36: ATP-GTP binding site	Putative GTP-binding protein [C. elegans] g3880615	MOTIFS BLAST
19	634	T197 S3 S5 S9 T14 S132 T197 T285 T553 T40 T56 S160 T189 S261 S582 Y20 Y396 Y419		G52-T59: ATP-GTP binding site	Putative GTP-binding protein [H. sapiens] g3169010	MOTIFS BLAST
20	196	T60 S73 S90 S99 S73 S193		G19-T26: ATP-GTP binding site	Kidney injury associated protein HW052 Acc No W86322 ADP-ribosylation factor-like protein 3 (Rattus norvegicus) g560006	MOTIFS BLAST
21	446	T10 T24 T93 S122 T243 S263 S270 T305 S317 S325 T357 S372 T379 S100 S170 S223 T227 S285 T348	N79	L323-L337: Beta transducin	Putative WD40 repeat protein [A. thaliana] g4191784	MOTIFS BLAST
22	265	T184 T76 T137 S139 T161 T174 T183 S213	N159	L141, L148, L155 L: zipper gene regulatory motif	TipD; similar to beta transducin family [D. discoideum] g2407788	MOTIFS BLAST

Table 2 (cont.)

Polypeptide SEQ ID NO:	Amino Acid Residues	Potential Phosphorylation Sites	Potential Glycosylation Sites	Signature Sequences, Motifs, and Domains	Homologous Sequences	Analytical Methods and Databases
23	185	T55 S111 S127 S148 S171 S14 S94 Y103		G10-T17: ATP/GTP binding site (P-loop)		MOTIFS PFAM PRINTS
24	554	S388 T488 S30 S75 T111 S149 S220 S237 T255 S305 S325 T339 T359 S363 S509 S172 T195 S211 T378 T438 T470 Y203	N5	N297-D336, P345-D383, G481-Q519: Beta-transducin WD40 repeats	WD-repeat protein [Arabidopsis thaliana] g3924603	BLAST MOTIFS PFAM PRINTS
25	434	S164 S341 T347 S36 S68 S92 T286 S364	N22 N383	G259-S266:ATP/GTP binding site (P-loop): G113-R433: GTP1/OBG domain	Predicted GTP binding protein [C. elegans] g3878629	BLAST MOTIFS PFAM BLOCKS PRINTS
26	826	S122 T243 T247 T427 S454 S519 T528 S623 S701 S715 S809 T58 S143 S266 T411 S505 S577 S603 T661 S735 T753 S791 T815	N23 N264 N576 N600 N789	R48-E91, L97-S143, F197 K237, V273-W319, W378-A416, W604 K642, A659-G697: Beta-transducin WD40 repeats	Predicted WD repeat protein [S. cerevesiae] P42935	BLAST MOTIFS PFAM PRINTS
27	618	T414 S59 T105 S126 T139 T143 S196 T203 S311 S325 T370 T390 S477 T483 S541 T583 T94 S148 T247 Y160 Y383 Y456	N118 N154 N346	G11-T18, G425-S432: ATP/GTP binding site (P-loop) R6-K187: Ras domain	GTP-binding protein APD08 [H. sapiens] Accession W75771	BLAST MOTIFS PFAM PRINTS

Table 2 (cont.)

Polypeptide SEQ ID NO:	Amino Acid Residues	Potential Phosphorylation Sites	Potential Glycosylation Sites	Signature Sequences, Motifs, and Domains	Homologous Sequences	Analytical Methods and Databases
28	596	S17 S21 S50 S152 S153 T533 S539 T594 S36 S38 S80 T163 T169 S183 S211 T240 S306 T329 T417 S457 S508 T545 S45 T64 S88 T124 S139 S299 S451 S459 S528 S568 Y180 Y364		A178-L355: Rho-family guanine nucleotide exchange factor (RhGEF) domain	Guanine nucleotide regulatory protein (NET1 homologue) [Mus musculus] g3834631	BLAST MOTIFS PFAM BLOCKS
29	589	T108 S20 T90 S127 S176 S278 S467 T521 S522 T189 S254 T284 T292 T321 T324 T345 T364 T423 S444 T484 T527	N572	L252-S289, G293-N329, G333-D369, G373-D409, E413-D449, G453-D489, G493-D532: Beta-transducin WD40 repeats R160-K206: F-box domain	SEL-10 [C. elegans] g2677836	BLAST MOTIFS PFAM PRINTS

Table 3

Nucleotide Seq ID No:	Selected Fragments	Tissue Expression (Fraction of Total)	Disease or Condition (Fraction of Total)	Vector
30	628-711	Reproductive (0.256) Nervous (0.154) Gastrointestinal (0.154)	Cell Proliferation (0.692) Inflammation (0.372)	PSPORT1
31	1094-1129	Reproductive (0.268) Cardiovascular (0.146) Nervous (0.146)	Cell Proliferation (0.731) Inflammation (0.219) Neurological (0.049)	pINCY
32	652-703	Cardiovascular (0.375) Reproductive (0.375) Dermatologic (0.125) Endocrine (0.125)	Cell Proliferation (0.875) Trauma (0.125)	pINCY
33	1224-1292	Reproductive (0.412) Gastrointestinal (0.147) Hematopoietic/Immune (0.147)	Cell Proliferation (0.647) Inflammation (0.264)	pINCY
34	16-65	Nervous (0.211) Reproductive (0.197) Gastrointestinal (0.169)	Cell Proliferation (0.507) Inflammation (0.352)	pINCY
35	947-1043	Reproductive (0.444) Nervous (0.333) Gastrointestinal (0.111) Urologic (0.111)	Cell Proliferation (0.667) Inflammation (0.111) Neurological (0.111)	pINCY
36	840-1001	Nervous (0.340) Reproductive (0.208) Gastrointestinal (0.151)	Cell Proliferation (0.641) Inflammation (0.302) Neurological (0.038)	pINCY

Table 3 (cont.)

Nucleotide Seq ID NO:	Selected Fragments	Tissue Expression (Fraction of Total)	Disease or Condition (Fraction of Total)	Vector
37	507-551	Hematopoietic/Immune (0.269) Nervous (0.269) Reproductive (0.154)	Inflammation (0.423) Cell Proliferation (0.269)	PBLUESCRIPT
38	218-262	Cardiovascular (0.357) Nervous (0.214) Gastrointestinal (0.143)	Cell Proliferation (0.572) Inflammation (0.214)	PINCY
39	164-208	Nervous (0.280) Reproductive (0.260) Developmental (0.120)	Cell Proliferation (0.740) Inflammation (0.180)	PSPORT1
40	369-411	Cardiovascular (0.250) Developmental (0.250) Gastrointestinal (0.250)	Cell Proliferation (0.500) Inflammation (0.250)	PINCY
41	272-316	Reproductive (0.392) Gastrointestinal (0.118) Hematopoietic/Immune (0.118)	Cell Proliferation (0.626) Inflammation (0.137)	PINCY
42	664-708	Nervous (0.211) Reproductive (0.211) Cardiovascular (0.158)	Cell Proliferation (0.614) Inflammation (0.281)	PINCY
43	226-270	Reproductive (1.000)	Inflammation (1.000)	PBLUESCRIPT
44	11-55	Reproductive (0.254) Gastrointestinal (0.206) Cardiovascular (0.159)	Cell Proliferation (0.698) Inflammation (0.206)	PSPORT1

Table 3 (cont.)

Nucleotide Seq ID No:	Selected Fragments	Tissue Expression (Fraction of Total)	Disease or Condition (Fraction of Total)	Vector
45	637-681	Reproductive (0.281) Nervous (0.188) Gastrointestinal (0.156)	Cell Proliferation (0.781) Inflammation (0.234)	pINCY
46	1016-1060	Nervous (0.330) Reproductive (0.183) Hematopoietic/Immune (0.122)	Cell Proliferation (0.582) Inflammation (0.235)	pINCY
47	737-781	Nervous (0.218) Reproductive (0.188) Gastrointestinal (0.158)	Cell Proliferation (0.655) Inflammation (0.211)	pINCY
48	469-513	Reproductive (0.222) Hematopoietic/Immune (0.160) Nervous (0.160)	Cell Proliferation (0.543) Inflammation (0.272)	pINCY
49	226-270	Gastrointestinal (0.333) Hematopoietic/Immune (0.333) Reproductive (0.333)	Inflammation (1.000)	pINCY
50	456-500	Reproductive (0.289) Gastrointestinal (0.133) Hematopoietic/Immune (0.133)	Cell Proliferation (0.778) Inflammation (0.156)	PSPORT1
51	252-296	Nervous (0.500) Gastrointestinal (0.200) Cardiovascular (0.100)	Cell Proliferation (1.000) Inflammation (0.200)	PBLUESCRIPT
52	60-104	Nervous (0.326) Reproductive (0.326) Cardiovascular (0.152)	Cell proliferation (0.565) Inflammation (0.369)	pINCY

Table 3 (cont.)

Nucleotide Seq ID NO:	Selected Fragments	Tissue Expression (Fraction of Total)	Disease or Condition (Fraction of Total)	Vector
53	488-532	Reproductive (0.232) Nervous (0.195) Hematopoietic/Immune (0.146)	Cell proliferation (0.622) Inflammation (0.427)	pINCY
54	686-730	Reproductive (0.250) Gastrointestinal (0.150) Hematopoietic/Immune (0.150)	Cell proliferation (0.700) Inflammation (0.400)	pINCY
55	543-587 1299-1343	Reproductive (0.282) Nervous (0.155) Gastrointestinal (0.146)	Cell proliferation (0.592) Inflammation (0.359)	pINCY
56	345-389 792-836	Nervous (0.268) Reproductive (0.169) Cardiovascular (0.113) Hematopoietic/Immune (0.113)	Cell proliferation (0.606) Inflammation (0.296)	pINCY
57	163-207	Reproductive (0.270) Gastrointestinal (0.189) Nervous (0.156)	Cell proliferation (0.705) Inflammation (0.254)	pINCY
58	381-425 726-770	Nervous (0.317) Reproductive (0.250) Gastrointestinal (0.117)	Cell proliferation (0.450) Inflammation (0.283)	pINCY

Table 4

Nucleotide SEQ ID NO:	Library	Library Description
30	SYNORATO4	This library was constructed using RNA isolated from the wrist synovial membrane tissue of a 62-year-old female with rheumatoid arthritis.
31	MENITUTO3	This library was constructed using RNA isolated from brain meningioma tissue removed from a 35-year-old female during excision of a cerebral meningeal lesion. Pathology indicated a benign neoplasm in the right cerebellopontine angle of the brain. Patient history included hypothyroidism. Family history included myocardial infarction and breast cancer.
32	PENITUTO1	This library was constructed using RNA isolated from tumor tissue removed from the penis of a 64-year-old male during penile amputation. Pathology indicated a fungating invasive grade 4 squamous cell carcinoma involving the inner wall of the foreskin and extending onto the glans penis. Patient history included benign neoplasia of the large bowel, atherosclerotic coronary artery disease, angina pectoris, gout, and obesity. Family history included malignant pharyngeal neoplasm, chronic lymphocytic leukemia, and chronic liver disease.
33	PROSTUT12	This library was constructed using RNA isolated from prostate tumor tissue removed from a 65-year-old male during a radical prostatectomy. Pathology indicated an adenocarcinoma (Gleason grade 2+2). Adenofibromatous hyperplasia was also present. The patient presented with elevated prostate specific antigen (PSA).
34	BONEUNTO1	This library was constructed using RNA isolated from Saos-2, a primary osteogenic sarcoma cell line (ATCC HTB-85) derived from an 11-year-old Caucasian female.
35	UTRSNON03	This library was constructed from 6.4 million independent clones from a uterine library. RNA for these libraries was isolated from uterine myometrial tissue removed from a 41-year-old female during a vaginal hysterectomy with dilation and curettage. The endometrium was secretory and contained fragments of endometrial polyps. Benign endo- and ectocervical mucosa were identified in the endocervix. Pathology for the associated tumor tissue indicated uterine leiomyoma. The normalization and hybridization conditions were adapted from Soares et al. (Proc.Natl.Acad.Sci. USA (1994) 91:9928).
36	BRAITUT29	This library was constructed using RNA isolated from brain tumor tissue removed from the parietal lobe of a 43-year-old female during excision of a cerebral meningeal lesion. Pathology indicated high grade glioma. Family history included acute myocardial infarction, atherosclerotic coronary artery disease, benign hypertension, and hyperlipidemia.
37	BMARNOT02	This library was constructed using RNA isolated from the bone marrow of 24 male and female Caucasian donors, 16 to 70 years old. (RNA came from Clontech.)

Table 4 (cont.)

Nucleotide SEQ ID NO:	Library	Library Description
38	THYRNOT03	This library was constructed using RNA isolated from thyroid tissue removed from the left thyroid of a 28-year-old Caucasian female during a complete thyroidectomy. Pathology indicated a small nodule of adenomatous hyperplasia present in the left thyroid. Pathology for the associated tumor tissue indicated dominant follicular adenoma, forming a well-encapsulated mass in the left thyroid.
39	PROSNON01	This normalized library was constructed from 4.4 million independent clones from a prostate library. Starting RNA was made from prostate tissue removed from a 28-yearold Caucasian male who died from a self-inflicted gunshot wound. The normalization and hybridization conditions were adapted from Soares, M.B. et al. (1994) Proc. Natl. Acad. Sci. USA 91:9228-9232, using a longer (19 hour) reannealing hybridization period.
40	LUNGNOT14	This library was constructed using RNA isolated from lung tissue removed from the left lower lobe of a 47-year-old Caucasian male during a segmental lung resection. Pathology for the associated tumor tissue indicated a grade 4 adenocarcinoma, and the parenchyma showed calcified granuloma. Patient history included benign hypertension and chronic obstructive pulmonary disease. Family history included type II diabetes and acute myocardial infarction.
41	PROSTUT12	This library was constructed using RNA isolated from prostate tumor tissue removed from a 65-year-old Caucasian male during a radical prostatectomy. Pathology indicated an adenocarcinoma (Gleason grade 2+2). Adenofibromatous hyperplasia was also present. The patient presented with elevated prostate specific antigen (PSA).
42	LUNGFET03	This library was constructed using RNA isolated from lung tissue removed from a Caucasian female fetus who died at 20 weeks' gestation.
43	TESTNOT03	This library was constructed using RNA isolated from testicular tissue removed from a 37-year-old Caucasian male, who died from liver disease. Patient history included cirrhosis, jaundice, and liver failure.
44	OVARTUT01	This library was constructed using RNA isolated from ovarian tumor tissue removed from a 43-year-old Caucasian female during removal of the Fallopian tubes and ovaries. Pathology indicated grade 2 mucinous cystadenocarcinoma involving the entire left ovary. Patient history included mitral valve disorder, pneumonia, and viral hepatitis. Family history included atherosclerotic coronary artery disease, pancreatic cancer, stress reaction, cerebrovascular disease, breast cancer, and uterine cancer.
45	HNT3AZT01	This library was constructed using RNA isolated from the hNT2 cell line (derived from a human teratocarcinoma that exhibited properties characteristic of a committed neuronal precursor). Cells were treated for three days with 0.35 micromolar 5-aza-2'-deoxycytidine (AZ).

Table 4 (cont.)

Nucleotide SEQ ID NO:	Library	Library Description
46	PONSAZT01	This library was constructed using RNA isolated from diseased pons tissue from the brain of a 74-year-old Caucasian male who died from Alzheimer's disease.
47	BRSTNOT14	This library was constructed using RNA isolated from breast tissue obtained from a 62-year-old Caucasian female during a unilateral extended simple mastectomy. Pathology for the associated tumor tissue indicated an invasive grade 3 (of 4), nuclear grade 3 (of 3) adenocarcinoma, ductal type. Patient history included a benign colon neoplasm, hyperlipidemia, cardiac dysrhythmia, and obesity. Family history included atherosclerotic coronary artery disease, myocardial infarction, colon cancer, ovarian cancer, lung cancer, and cerebrovascular disease.
48	THYMFET03	This library was constructed using RNA isolated from thymus tissue removed from a Caucasian male fetus.
49	UCMCNOT04	This library was constructed using RNA isolated from mononuclear cells obtained from the umbilical cord blood of multiple individuals of mixed age and sex. The cells were treated with G-CSF.
50	BRSTTUT01	This library was constructed using RNA isolated from breast tumor tissue removed from a 55-year-old Caucasian female during a unilateral extended simple mastectomy. Pathology indicated invasive grade 4 mammary adenocarcinoma of mixed lobular and ductal type, extensively involving the left breast. Family history included benign hypertension, atherosclerotic coronary artery disease, cerebrovascular disease, and depressive disorder.
51	HNT2RAT01	This library was constructed at Stratagene (SRR937231), using RNA isolated from the hNT2 cell line (derived from a human teratocarcinoma that exhibited properties characteristic of a committed neuronal precursor). Cells were treated with retinoic acid for 24 hours.
52	MENITUT03	This library was constructed using RNA isolated from brain meningioma tissue removed from a 35-year-old Caucasian female during excision of a cerebral meningeal lesion. Pathology indicated a benign neoplasm in the right cerebellopontine angle of the brain. Patient history included myocardial infarction and breast cancer.
53	SPUNFET02	This library was constructed using RNA isolated from spleen tissue removed from a Caucasian male fetus, who died at 23 weeks' gestation.
54	SEMVNOT01	This library was constructed using RNA isolated from seminal vesicle tissue removed from a 58-year-old Caucasian male during radical prostatectomy. Pathology for the associated tumor tissue indicated adenocarcinoma (Gleason grade 3+2) of the prostate. Adenofibromatous hyperplasia was also present. The patient presented with elevated prostate specific antigen (PSA). Family history included a malignant breast neoplasm.

Table 4 (cont.)

Nucleotide SEQ ID NO:	Library	Library Description
55	CONUTUTO1	This library was constructed using RNA isolated from sigmoid mesentery tumor tissue obtained from a 61-year-old female during a total abdominal hysterectomy and bilateral salpingo-oophorectomy with regional lymph node excision. Pathology indicated a metastatic grade 4 malignant mixed mullerian tumor present in the sigmoid mesentery at two sites.
56	HEARFET02	This library was constructed using RNA isolated from heart tissue removed from a Caucasian male fetus, who was stillborn at 23 weeks' gestation with a hypoplastic left heart.
57	BRAIFET01	This library was constructed using RNA isolated from brain tissue removed from a Caucasian male fetus, who was stillborn at 23 weeks' gestation with a hypoplastic left heart.
58	BRAINOT23	This library was constructed using RNA isolated from right temporal lobe tissue removed from a 45-year-old Black male during a brain lobectomy. Pathology for the associated tumor tissue indicated dysembryoplastic neuroepithelial tumor of the right temporal lobe. The right temporal region dura was consistent with calcifying pseudotumor of the neuraxis. The patient presented with convulsive intractable epilepsy, partial epilepsy, and memory disturbance. Patient history included obesity, meningitis, backache, unspecified sleep apnea, acute stress reaction, acquired knee deformity, and chronic sinusitis. Family history included obesity, benign hypertension, cirrhosis of the liver, alcohol abuse, hyperlipidemia, cerebrovascular disease, and type II diabetes.

Table 5

Program	Description	Reference	Parameter Threshold
ABI FACTURA	A program that removes vector sequences and masks ambiguous bases in nucleic acid sequences.	Perkin-Elmer Applied Biosystems, Foster City, CA.	Mismatch <50%
ABI/PARACEL FDF	A Fast Data Finder useful in comparing and annotating amino acid or nucleic acid sequences.	Perkin-Elmer Applied Biosystems, Foster City, CA; Paracel Inc., Pasadena, CA.	
ABI AutoAssembler	A program that assembles nucleic acid sequences.	Perkin-Elmer Applied Biosystems, Foster City, CA.	
BLAST	A Basic Local Alignment Search Tool useful in sequence similarity search for amino acid and nucleic acid sequences. BLAST includes five functions: blastp, blastn, blastx, tblastn, and tblastx.	Altschul, S.F. et al. (1990) J. Mol. Biol. 215:403-410; Altschul, S.F. et al. (1997) Nucleic Acids Res. 25:3389-3402.	ESTs: Probability value= 1.0E-8 or less Full Length sequences: Probability value= 1.0E-10 or less
FASTA	A Pearson and Lipman algorithm that searches for similarity between a query sequence and a group of sequences of the same type. FASTA comprises at least five functions: fasta, tfasta, fastx, tfastx, and search.	Pearson, W.R. and D.J. Lipman (1988) Proc. Natl. Acad Sci. 85:2444-2448; Pearson, W.R. (1990) Methods Enzymol. 183: 63-98; and Smith, T.F. and M. S. Waterman (1981) Adv. Appl. Math. 2:482-489.	ESTs: fasta E value= 1.0E-6 Assembled ESTs: fasta Identity= 95% or greater and Match length=200 bases or greater; fastx E value= 1.0E-8 or less Full Length sequences: fastx score=100 or greater
BLIMPS	A BLocks IMProved Searcher that matches a sequence against those in BLOCKS, PRINTS, DOMO, PRODOM, and PFAM databases to search for gene families, sequence homology, and structural fingerprint regions.	Henikoff, S and J.G. Henikoff, Nucl. Acid Res., 19:6565-72, 1991. J.G. Henikoff and S. Henikoff (1996) Methods Enzymol. 266:88-105; and Atwood, T.K. et al. (1997) J. Chem. Inf. Comput. Sci. 37: 417-424.	Score=1000 or greater; Ratio of Score/Strength = 0.75 or larger; and, if applicable, Probability value= 1.0E-3 or less
HMMER	An algorithm for searching a query sequence against hidden Markov model (HMM)-based databases of protein family consensus sequences, such as PFAM.	Krogh, A. et al. (1994) J. Mol. Biol., 235:1501-1531; Sonnhammer, E.L.L. et al. (1998) Nucleic Acids Res. 26:320-322.	Score=10-50 bits for PFAM hits, depending on individual protein families

Table 5 (cont.)

Program	Description	Reference	Parameter Threshold
ProfileScan	An algorithm that searches for structural and sequence motifs in protein sequences that match sequence patterns defined in Prosite.	Gribskov, M. et al. (1988) CABIOS 4:61-66; Gribskov, et al. (1989) Methods Enzymol. 183:146-159; Bairoch, A. et al. (1997) Nucleic Acids Res. 25: 217-221.	Normalized quality score \geq GCG-specified "HIGH" value for that particular Prosite motif. Generally, score=1.4-2.1.
Phred	A base-calling algorithm that examines automated sequencer traces with high sensitivity and probability.	Ewing, B. et al. (1998) Genome Res. 8:175-185; Ewing, B. and P. Green (1998) Genome Res. 8:186-194.	
Phrap	A Phils Revised Assembly Program including SWAT and CrossMatch, programs based on efficient implementation of the Smith-Waterman algorithm, useful in searching sequence homology and assembling DNA sequences.	Smith, T.F. and M. S. Waterman (1981) Adv. Appl. Math. 2:482-489; Smith, T.F. and M. S. Waterman (1981) J. Mol. Biol. 147:195-197; and Green, P., University of Washington, Seattle, WA.	Score= 120 or greater; Match length= 56 or greater
Consed	A graphical tool for viewing and editing Phrap assemblies	Gordon, D. et al. (1998) Genome Res. 8:195-202.	
SPScan	A weight matrix analysis program that scans protein sequences for the presence of secretory signal peptides.	Nielson, H. et al. (1997) Protein Engineering 10:1-6; Claverie, J.M. and S. Audic (1997) CABIOS 12: 431-439.	Score=3.5 or greater
Motifs	A program that searches amino acid sequences for patterns that matched those defined in Prosite.	Bairoch et al. <i>supra</i> ; Wisconsin Package Program Manual, version 9, page M51-59, Genetics Computer Group, Madison, WI.	

What is claimed is:

1. A substantially purified polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-29 and fragments thereof.
- 5 2. A substantially purified variant having at least 90% amino acid sequence identity to the amino acid sequence of claim 1.
- 10 3. An isolated and purified polynucleotide encoding the polypeptide of claim 1.
4. An isolated and purified polynucleotide variant having at least 90% polynucleotide sequence identity to the polynucleotide of claim 3.
- 15 5. An isolated and purified polynucleotide which hybridizes under stringent conditions to the polynucleotide of claim 3.
6. An isolated and purified polynucleotide having a sequence which is complementary to the polynucleotide of claim 3.
- 20 7. A method for detecting a polynucleotide, the method comprising the steps of:
 - (a) hybridizing the polynucleotide of claim 6 to at least one nucleic acid in a sample, thereby forming a hybridization complex; and
 - (b) detecting the hybridization complex, wherein the presence of the hybridization complex correlates with the presence of the polynucleotide in the sample.
- 25 8. The method of claim 7 further comprising amplifying the polynucleotide prior to hybridization.
9. An isolated and purified polynucleotide comprising a polynucleotide sequence selected from the group consisting of SEQ ID NO:30-58 and fragments thereof.
- 30 10. An isolated and purified polynucleotide variant having at least 90% polynucleotide sequence identity to the polynucleotide of claim 9.

11. An isolated and purified polynucleotide having a sequence which is complementary to the polynucleotide of claim 9.
12. An expression vector comprising at least a fragment of the polynucleotide of claim 3.
5
13. A host cell comprising the expression vector of claim 12.
14. A method for producing a polypeptide, the method comprising the steps of:
 - a) culturing the host cell of claim 13 under conditions suitable for the expression of the polypeptide; and
 - b) recovering the polypeptide from the host cell culture.
10
15. A pharmaceutical composition comprising the polypeptide of claim 1 in conjunction with a suitable pharmaceutical carrier.
15
16. A purified antibody which specifically binds to the polypeptide of claim 1.
17. A purified agonist of the polypeptide of claim 1.
20. 18. A purified antagonist of the polypeptide of claim 1.
19. A method for treating or preventing a disorder associated with decreased expression or activity of GTPAP, the method comprising administering to a subject in need of such treatment an effective amount of the pharmaceutical composition of claim 15.
25
20. A method for treating or preventing a disorder associated with increased expression or activity of GTPAP, the method comprising administering to a subject in need of such treatment an effective amount of the antagonist of claim 18.

SEQUENCE LISTING

<110> INCYTE PHARMACEUTICALS, INC.

HILLMAN, Jennifer L.
TANG, Y. Tom
BANDMAN, Olga
LAL, Preeti
YUE, Henry
LU, Dyung Aina M.
BAUGHN, Mariah R.
YANG, Junming
AZIMZAI, Yalda

<120> GTPASE ASSOCIATED PROTEINS

<130> PF-0629 PCT

<140> To Be Assigned
<141> Herewith

<150> 60/109,592; 60/118,610; 60/127,990

<151> 1998-11-23; 1999-02-04; 1999-04-06

<160> 58

<170> PERL Program

<210> 1
<211> 1002
<212> PRT
<213> Homo sapiens

<220>

<221> misc_feature
<223> Incyte ID No: 708398CD1

<400> 1
Met Pro Ser Lys Phe Ser Cys Arg Gln Leu Arg Glu Ala Gly Gln
1 5 10 15
Cys Phe Glu Ser Phe Leu Val Val Arg Gly Leu Asp Met Glu Thr
20 25 30
Asp Arg Glu Arg Leu Arg Thr Ile Tyr Asn Arg Asp Phe Lys Ile
35 40 45
Ser Phe Gly Thr Pro Ala Pro Gly Phe Ser Ser Met Leu Tyr Gly
50 55 60
Met Lys Ile Ala Asn Leu Ala Tyr Val Thr Lys Thr Arg Val Arg
65 70 75
Phe Phe Arg Leu Asp Arg Trp Ala Asp Val Arg Phe Pro Glu Lys
80 85 90
Arg Arg Met Lys Leu Gly Ser Asp Ile Ser Lys His His Lys Ser
95 100 105
Leu Leu Ala Lys Ile Phe Tyr Asp Arg Ala Glu Tyr Leu His Gly
110 115 120
Lys His Gly Val Asp Val Glu Val Gln Gly Pro His Glu Ala Arg

	125	130	135
Asp Gly Gln Leu	Leu Ile Arg Leu Asp	Leu Asn Arg Lys Glu	Val
140		145	150
Leu Thr Leu Arg	Leu Arg Asn Gly Gly	Thr Gln Ser Val Thr	Leu
155		160	165
Thr His Leu Phe	Pro Leu Cys Arg Thr	Pro Gln Phe Ala Phe	Tyr
170		175	180
Asn Glu Asp Gln	Glu Leu Pro Cys Pro	Leu Gly Pro Gly Glu	Cys
185		190	195
Tyr Glu Leu His	Val His Cys Lys Thr	Ser Phe Val Gly Tyr	Phe
200		205	210
Pro Ala Thr Val	Leu Trp Glu Leu Leu	Gly Pro Gly Glu Ser	Gly
215		220	225
Ser Glu Gly Ala	Gly Thr Phe Tyr Ile	Ala Arg Phe Leu Ala	Ala
230		235	240
Val Ala His Ser	Pro Leu Ala Ala Gln	Leu Lys Pro Met Thr	Pro
245		250	255
Phe Lys Arg Thr	Arg Ile Thr Gly Asn	Pro Val Val Thr Asn	Arg
260		265	270
Ile Glu Glu Gly	Glu Arg Pro Asp Arg	Ala Lys Gly Tyr Asp	Leu
275		280	285
Glu Leu Ser Met	Ala Leu Gly Thr Tyr	Tyr Pro Pro Pro Arg	Leu
290		295	300
Arg Gln Leu Leu	Pro Met Leu Leu Gln	Gly Thr Ser Ile Phe	Thr
305		310	315
Ala Pro Lys Glu	Ile Ala Glu Ile Lys	Ala Gln Leu Glu Thr	Ala
320		325	330
Leu Lys Trp Arg	Asn Tyr Glu Val Lys	Leu Arg Leu Leu Leu	His
335		340	345
Leu Glu Glu Leu	Gln Met Glu His Asp	Ile Arg His Tyr Asp	Leu
350		355	360
Glu Ser Val Pro	Met Thr Trp Asp Pro	Val Asp Gln Asn Pro	Arg
365		370	375
Leu Leu Thr Leu	Glu Val Pro Gly Val	Thr Glu Ser Arg Pro	Ser
380		385	390
Val Leu Arg Gly	Asp His Leu Phe Ala	Leu Leu Ser Ser Glu	Thr
395		400	405
His Gln Glu Asp	Pro Ile Thr Tyr Lys	Gly Phe Val His Lys	Val
410		415	420
Glu Leu Asp Arg	Val Lys Leu Ser Phe	Ser Met Ser Leu Leu	Ser
425		430	435
Arg Phe Val Asp	Gly Leu Thr Phe Lys	Val Asn Phe Thr Phe	Asn
440		445	450
Arg Gln Pro Leu	Arg Val Gln His Arg	Ala Leu Glu Leu Thr	Gly
455		460	465
Arg Trp Leu Leu	Trp Pro Met Leu Phe	Pro Val Ala Pro Arg	Asp
470		475	480
Val Pro Leu Leu	Pro Ser Asp Val Lys	Leu Lys Leu Tyr Asp	Arg
485		490	495
Ser Leu Glu Ser	Asn Pro Glu Gln Leu	Gln Ala Met Arg His	Ile
500		505	510
Val Thr Gly Thr	Thr Arg Pro Ala Pro	Tyr Ile Ile Phe Gly	Pro
515		520	525
Pro Gly Thr Gly	Lys Thr Val Thr Leu	Val Glu Ala Ile Lys	Gln
530		535	540

Val Val Lys His Leu Pro Lys Ala His Ile Leu Ala Cys Ala Pro
 545 550 555
 Ser Asn Ser Gly Ala Asp Leu Leu Cys Gln Arg Leu Arg Val His
 560 565 570
 Leu Pro Ser Ser Ile Tyr Arg Leu Leu Ala Pro Ser Arg Asp Ile
 575 580 585
 Arg Met Val Pro Glu Asp Ile Lys Pro Cys Cys Asn Trp Asp Ala
 590 595 600
 Lys Lys Gly Glu Tyr Val Phe Pro Ala Lys Lys Lys Leu Gln Glu
 605 610 615
 Tyr Arg Val Leu Ile Thr Thr Leu Ile Thr Ala Gly Arg Leu Val
 620 625 630
 Ser Ala Gln Phe Pro Ile Asp His Phe Thr His Ile Phe Ile Asp
 635 640 645
 Glu Ala Gly His Cys Met Glu Pro Glu Ser Leu Val Ala Ile Ala
 650 655 660
 Gly Leu Met Glu Val Lys Glu Thr Gly Asp Pro Gly Gly Gln Leu
 665 670 675
 Val Leu Ala Gly Asp Pro Arg Gln Leu Gly Pro Val Leu Arg Ser
 680 685 690
 Pro Leu Thr Gln Lys His Gly Leu Gly Tyr Ser Leu Leu Glu Arg
 695 700 705
 Leu Leu Ile Tyr Asn Ser Leu Tyr Lys Gly Pro Asp Gly Tyr
 710 715 720
 Asp Pro Gln Phe Ile Thr Lys Leu Leu Arg Asn Tyr Arg Ser His
 725 730 735
 Pro Thr Ile Leu Asp Ile Pro Asn Gln Leu Tyr Tyr Glu Gly Glu
 740 745 750
 Leu Gln Ala Cys Ala Asp Val Val Asp Arg Glu Arg Phe Cys Arg
 755 760 765
 Trp Ala Gly Leu Pro Arg Gln Gly Phe Pro Ile Ile Phe His Gly
 770 775 780
 Val Met Gly Lys Asp Glu Arg Glu Gly Asn Ser Pro Ser Phe Phe
 785 790 795
 Asn Pro Glu Glu Ala Ala Thr Val Thr Ser Tyr Leu Lys Leu Leu
 800 805 810
 Leu Ala Pro Ser Ser Lys Lys Gly Lys Ala Arg Leu Ser Pro Arg
 815 820 825
 Ser Val Gly Val Ile Ser Pro Tyr Arg Lys Gln Val Glu Lys Ile
 830 835 840
 Arg Tyr Cys Ile Thr Lys Leu Asp Arg Glu Leu Arg Gly Leu Asp
 845 850 855
 Asp Ile Lys Asp Leu Lys Val Gly Ser Val Glu Glu Phe Gln Gly
 860 865 870
 Gln Glu Arg Ser Val Ile Leu Ile Ser Thr Val Arg Ser Ser Gln
 875 880 885
 Ser Phe Val Gln Leu Asp Leu Asp Phe Asn Leu Gly Phe Leu Lys
 890 895 900
 Asn Pro Lys Arg Phe Asn Val Ala Val Thr Arg Ala Lys Ala Leu
 905 910 915
 Leu Ile Ile Val Gly Asn Pro Leu Leu Leu Gly His Asp Pro Asp
 920 925 930
 Trp Lys Val Phe Leu Glu Phe Cys Lys Glu Asn Gly Gly Tyr Thr
 935 940 945
 Gly Cys Pro Phe Pro Ala Lys Leu Asp Leu Gln Gln Gly Gln Asn

950	955	960
Leu Leu Gln Gly	Leu Ser Lys Leu Ser Pro Ser Thr Ser Gly Pro	
965	970	975
His Ser His Asp Tyr	Leu Pro Gln Glu Arg Glu Gly Glu Gly Gly	
980	985	990
Leu Ser Leu Gln Val Glu Pro Glu Trp Arg Asn Glu		
995	1000	

<210> 2
<211> 338
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 1259937CD1

<400> 2		
Met Ala Ala Leu Ala Gln Glu Asp Gly Trp Thr Lys Gly Gln Val		
1	5	10
Leu Val Lys Val Asn Ser Ala Gly Asp Ala Ile Gly Leu Gln Pro		
20	25	30
Asp Ala Arg Gly Val Ala Thr Ser Leu Gly Leu Asn Glu Arg Leu		
35	40	45
Phe Val Val Asn Pro Gln Glu Val His Glu Leu Ile Pro His Pro		
50	55	60
Asp Gln Leu Gly Pro Thr Val Gly Ser Ala Glu Gly Leu Asp Leu		
65	70	75
Val Ser Ala Lys Asp Leu Ala Gly Gln Leu Thr Asp His Asp Trp		
80	85	90
Ser Leu Phe Asn Ser Ile His Gln Val Glu Leu Ile His Tyr Val		
95	100	105
Leu Gly Pro Gln His Leu Arg Asp Val Thr Thr Ala Asn Leu Glu		
110	115	120
Arg Phe Met Arg Arg Phe Asn Glu Leu Gln Tyr Trp Val Ala Thr		
125	130	135
Glu Leu Cys Leu Cys Pro Val Pro Gly Pro Arg Ala Gln Leu Leu		
140	145	150
Arg Lys Phe Ile Lys Leu Ala Ala His Leu Lys Glu Gln Lys Asn		
155	160	165
Leu Asn Ser Phe Phe Ala Val Met Phe Gly Leu Ser Asn Ser Ala		
170	175	180
Ile Ser Arg Leu Ala His Thr Trp Glu Arg Leu Pro His Lys Val		
185	190	195
Arg Lys Leu Tyr Ser Ala Leu Glu Arg Leu Leu Asp Pro Ser Trp		
200	205	210
Asn His Arg Val Tyr Arg Leu Ala Leu Ala Lys Leu Ser Pro Pro		
215	220	225
Val Ile Pro Phe Met Pro Leu Leu Leu Lys Asp Met Thr Phe Ile		
230	235	240
His Glu Gly Asn His Thr Leu Val Glu Asn Leu Ile Asn Phe Glu		
245	250	255
Lys Met Arg Met Met Ala Arg Ala Ala Arg Met Leu His His Cys		
260	265	270

Arg Ser His Asn Pro Val Pro Leu Ser Pro Leu Arg Ser Arg Val
275 280 285
Ser His Leu His Glu Asp Ser Gln Val Ala Arg Ile Ser Thr Cys
290 295 300
Ser Glu Gln Ser Leu Ser Thr Arg Ser Pro Ala Ser Thr Trp Ala
305 310 315
Tyr Val Gln Gln Leu Lys Val Ile Asp Asn Gln Arg Glu Leu Ser
320 325 330
Arg Leu Ser Arg Glu Leu Glu Pro
335

<210> 3
<211> 211
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 1452285CD1

<400> 3
Met Gln Ala Pro His Lys Glu His Leu Tyr Lys Leu Leu Val Ile
1 5 10 * 15
Gly Asp Leu Gly Val Gly Lys Thr Ser Ile Ile Lys Arg Tyr Val
20 25 30
His Gln Asn Phe Ser Ser His Tyr Arg Ala Thr Ile Gly Val Asp
35 40 45
Phe Ala Leu Lys Val Leu His Trp Asp Pro Glu Thr Val Val Arg
50 55 60
Leu Gln Leu Trp Asp Ile Ala Gly Gln Glu Arg Phe Gly Asn Met
65 70 75
Thr Arg Val Tyr Tyr Arg Glu Ala Met Gly Ala Phe Ile Val Phe
80 85 90
Asp Val Thr Arg Pro Ala Thr Phe Glu Ala Val Ala Lys Trp Lys
95 100 105
Asn Asp Leu Asp Ser Lys Leu Ser Leu Pro Asn Gly Lys Pro Val
110 115 120
Ser Val Val Leu Leu Ala Asn Lys Cys Asp Gln Gly Lys Asp Val
125 130 135
Leu Met Asn Asn Gly Leu Lys Met Asp Gln Phe Cys Lys Glu His
140 145 150
Gly Phe Val Gly Trp Phe Glu Thr Ser Ala Lys Glu Asn Ile Asn
155 160 165
Ile Asp Glu Ala Ser Arg Cys Leu Val Lys His Ile Leu Ala Asn
170 175 180
Glu Cys Asp Leu Met Glu Ser Ile Glu Pro Asp Val Val Lys Pro
185 190 195
His Leu Thr Ser Thr Lys Val Ala Ser Cys Ser Gly Cys Ala Lys
200 205 210
Ser

<210> 4
<211> 516

<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 1812894CD1

<400> 4
Met Glu Thr Met Lys Ala Val Ala Glu Val Ser Glu Ser Thr Lys
1 5 10 15
Ala Glu Ala Val Ala Ala Val Gln Arg Gln Cys Gln Glu Glu Val
20 25 30
Ala Ser Leu Gln Ala Ile Leu Lys Asp Ser Ile Ser Ser Tyr Glu
35 40 45
Ala Gln Ile Thr Ala Leu Lys Gln Glu Arg Gln Gln Gln Gln
50 55 60
Asp Cys Glu Glu Lys Glu Arg Glu Leu Gly Arg Leu Lys Gln Leu
65 70 75
Leu Ser Arg Ala Tyr Pro Leu Asp Ser Leu Glu Lys Gln Met Glu
80 85 90
Lys Ala His Glu Asp Ser Glu Lys Leu Arg Glu Ile Val Leu Pro
95 100 105
Met Glu Lys Glu Ile Glu Glu Leu Lys Ala Lys Leu Leu Arg Ala
110 115 120
Glu Glu Leu Ile Gln Glu Ile Gln Arg Arg Pro Arg His Ala Pro
125 130 135
Ser Leu His Gly Ser Thr Glu Leu Leu Pro Leu Ser Arg Asp Pro
140 145 150
Ser Pro Pro Leu Glu Pro Leu Glu Glu Leu Ser Gly Asp Gly Gly
155 160 165
Pro Ala Ala Glu Ala Phe Ala His Asn Cys Asp Asp Ser Ala Ser
170 175 180
Ile Ser Ser Phe Ser Leu Gly Gly Val Gly Ser Ser Ser Ser
185 190 195
Leu Pro Gln Ser Arg Gln Gly Leu Ser Pro Glu Gln Glu Glu Thr
200 205 210
Ala Ser Leu Val Ser Thr Gly Thr Leu Val Pro Glu Gly Ile Tyr
215 220 225
Leu Pro Pro Pro Gly Tyr Gln Leu Val Pro Asp Thr Gln Trp Glu
230 235 240
Gln Leu Gln Thr Glu Gly Arg Gln Leu Gln Lys Asp Leu Glu Ser
245 250 255
Val Ser Arg Glu Arg Asp Glu Leu Gln Glu Gly Leu Arg Arg Ser
260 265 270
Asn Glu Asp Cys Ala Lys Gln Met Gln Val Leu Leu Ala Gln Val
275 280 285
Gln Asn Ser Glu Gln Leu Leu Arg Thr Leu Gln Gly Thr Val Ser
290 295 300
Gln Ala Gln Glu Arg Val Gln Leu Gln Met Ala Glu Leu Val Thr
305 310 315
Thr His Lys Cys Leu His His Glu Val Lys Arg Leu Asn Glu Glu
320 325 330
Asn Gln Gly Ieu Arg Ala Glu Gln Leu Pro Ser Ser Ala Pro Gln
335 340 345
Gly Ser Gln Gln Glu Gln Gly Glu Glu Ser Leu Pro Ser Ser

350	355	360
Val Pro Glu Leu Gln Gln Leu Leu Cys	Cys Thr Arg Gln Glu Ala	
365	370	375
Arg Ala Arg Leu Gln Ala Gln Glu His	Gly Ala Glu Arg Leu Arg	
380	385	390
Ile Glu Ile Val Thr Leu Arg Glu Ala	Leu Glu Glu Glu Thr Val	
395	400	405
Ala Arg Ala Ser Leu Glu Gly Gln Leu Arg	Val Gln Arg Glu Glu	
410	415	420
Thr Glu Val Leu Glu Ala Ser Leu Cys	Ser Leu Arg Thr Glu Met	
425	430	435
Glu Arg Val Gln Gln Glu Gln Ser Lys	Ala Gln Leu Pro Asp Leu	
440	445	450
Leu Ser Glu Gln Arg Ala Lys Val Leu Arg	Leu Gln Ala Glu Leu	
455	460	465
Glu Thr Ser Glu Gln Val Gln Arg Asp	Phe Val Arg Leu Ser Gln	
470	475	480
Ala Leu Gln Val Arg Leu Glu Arg Ile Arg	Gln Ala Glu Thr Leu	
485	490	495
Glu Gln Val Arg Ser Ile Met Asp Glu Ala Pro	Leu Thr Asp Val	
500	505	510
Arg Asp Ile Lys Asp Thr		
515		

<210> 5
<211> 445
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 3074884CD1

<400> 5		
Met Pro Glu Asp Ala Asp Glu Asn Ala Glu Glu Glu Leu Leu Arg		
1 5 10 15		
Gly Glu Pro Leu Leu Pro Ala Gly Thr Gln Arg Val Cys Leu Val		
20 25 30		
His Pro Asp Val Lys Trp Gly Pro Gly Lys Ser Gln Met Thr Arg		
35 40 45		
Ala Glu Trp Gln Val Ala Glu Ala Thr Ala Leu Val His Thr Leu		
50 55 60		
Asp Gly Trp Ser Val Val Gln Thr Met Val Val Ser Thr Lys Thr		
65 70 75		
Pro Asp Arg Lys Leu Ile Phe Gly Lys Gly Asn Phe Glu His Leu		
80 85 90		
Thr Glu Lys Ile Arg Gly Ser Pro Asp Val Thr Cys Val Phe Leu		
95 100 105		
Asn Val Glu Arg Met Ala Ala Pro Thr Lys Lys Glu Leu Glu Ala		
110 115 120		
Ala Trp Gly Val Glu Val Phe Asp Arg Phe Thr Val Val Leu His		
125 130 135		
Ile Phe Arg Cys Asn Ala Arg Thr Lys Glu Ala Arg Leu Gln Val		
140 145 150		

Ala Leu Ala Glu Met Pro Leu His Arg Ser Asn Leu Lys Arg Asp
 155 160 165
 Val Ala His Leu Tyr Arg Gly Val Gly Ser Arg Tyr Ile Met Gly
 170 175 180
 Ser Gly Glu Ser Phe Met Gln Leu Gln Gln Arg Leu Leu Arg Glu
 185 190 195
 Lys Glu Ala Lys Ile Arg Lys Ala Leu Asp Arg Leu Arg Lys Lys
 200 205 210
 Arg His Leu Leu Arg Arg Gln Arg Thr Arg Arg Glu Phe Pro Val
 215 220 225
 Ile Ser Val Val Gly Tyr Thr Asn Cys Gly Lys Thr Thr Leu Ile
 230 235 240
 Lys Ala Leu Thr Gly Asp Ala Ala Ile Gln Pro Arg Asp Gln Leu
 245 250 255
 Phe Ala Thr Leu Asp Val Thr Ala His Ala Gly Thr Leu Pro Ser
 260 265 270
 Arg Met Thr Val Leu Tyr Val Asp Thr Ile Gly Phe Leu Ser Gln
 275 280 285
 Leu Pro His Gly Leu Ile Glu Ser Phe Ser Ala Thr Leu Glu Asp
 290 295 300
 Val Ala His Ser Asp Leu Ile Leu His Val Arg Asp Val Ser His
 305 310 315
 Pro Glu Ala Glu Leu Gln Lys Cys Ser Val Leu Ser Thr Leu Arg
 320 325 330
 Gly Leu Gln Leu Pro Ala Pro Leu Leu Asp Ser Met Val Glu Val
 335 340 345
 His Asn Lys Val Asp Leu Val Pro Gly Tyr Ser Pro Thr Glu Pro
 350 355 360
 Asn Val Val Pro Val Ser Ala Leu Arg Gly His Gly Leu Gln Glu
 365 370 375
 Leu Lys Ala Glu Leu Asp Ala Ala Val Leu Lys Ala Thr Gly Arg
 380 385 390
 Gln Ile Leu Thr Leu Arg Val Arg Leu Ala Gly Ala Gln Leu Ser
 395 400 405
 Trp Leu Tyr Lys Glu Ala Thr Val Gln Glu Val Asp Val Ile Pro
 410 415 420
 Glu Asp Gly Ala Ala Asp Val Arg Val Ile Ile Ser Asn Ser Ala
 425 430 435
 Tyr Gly Lys Phe Arg Lys Leu Phe Pro Gly
 440 445

<210> 6
 <211> 445
 <212> PRT
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte ID No: 3452277CD1

<400> 6
 Met Tyr Tyr Gln Gln Ala Leu Met Arg Ser Thr Val Lys Ser Ser
 1 5 10 15
 Val Ser Leu Gly Gly Ile Val Lys Tyr Ser Glu Gln Phe Ser Ser

20	25	30
Asn Asp Ala Ile Met Ser Gly Cys Leu Pro Ser Asn Pro Trp Ile		
35	40	45
Thr Asp Asp Thr Gln Phe Trp Asp Leu Asn Ala Lys Leu Val Glu		
50	55	60
Ile Pro Thr Lys Met Arg Val Glu Arg Trp Ala Phe Asn Phe Ser		
65	70	75
Glu Leu Ile Arg Asp Pro Lys Gly Arg Gln Ser Phe Gln Tyr Phe		
80	85	90
Leu Lys Lys Glu Phe Ser Gly Glu Asn Leu Gly Phe Trp Glu Ala		
95	100	105
Cys Glu Asp Leu Lys Tyr Gly Asp Gln Ser Lys Val Lys Glu Lys		
110	115	120
Ala Glu Glu Ile Tyr Lys Leu Phe Leu Ala Pro Gly Ala Arg Arg		
125	130	135
Trp Ile Asn Ile Asp Gly Lys Thr Met Asp Ile Thr Val Lys Gly		
140	145	150
Leu Lys His Pro His Arg Tyr Val Leu Asp Ala Ala Gln Thr His		
155	160	165
Ile Tyr Met Leu Met Lys Lys Asp Ser Tyr Ala Arg Tyr Leu Lys		
170	175	180
Ser Pro Ile Tyr Lys Asp Met Leu Ala Lys Ala Ile Glu Pro Gln		
185	190	195
Glu Thr Thr Lys Ser Ser Thr Leu Pro Phe Met Arg Arg His		
200	205	210
Leu Arg Ser Ser Pro Ser Pro Val Ile Leu Arg Gln Leu Glu Glu		
215	220	225
Glu Ala Lys Ala Arg Glu Ala Ala Asn Thr Val Asp Ile Thr Gln		
230	235	240
Pro Gly Gln His Met Ala Pro Ser Pro His Leu Thr Val Tyr Thr		
245	250	255
Gly Thr Cys Met Pro Pro Ser Pro Ser Ser Pro Phe Ser Ser Ser		
260	265	270
Cys Arg Ser Pro Arg Lys Pro Phe Ala Ser Pro Ser Arg Phe Ile		
275	280	285
Arg Arg Pro Ser Thr Thr Ile Cys Pro Ser Pro Ile Arg Val Ala		
290	295	300
Leu Glu Ser Ser Ser Gly Leu Glu Gln Lys Gly Glu Cys Ser Gly		
305	310	315
Ser Met Ala Pro Arg Gly Pro Ser Val Thr Glu Ser Ser Glu Ala		
320	325	330
Ser Leu Asp Thr Ser Trp Pro Arg Ser Arg Pro Arg Ala Pro Pro		
335	340	345
Lys Ala Arg Met Ala Leu Ser Phe Ser Arg Phe Leu Arg Arg Gly		
350	355	360
Cys Leu Ala Ser Pro Val Phe Ala Arg Leu Ser Pro Lys Cys Pro		
365	370	375
Ala Val Ser His Gly Arg Val Gln Pro Leu Gly Asp Val Gly Gln		
380	385	390
Gln Leu Pro Arg Leu Lys Ser Lys Arg Val Ala Asn Phe Phe Gln		
395	400	405
Ile Lys Met Asp Val Pro Thr Gly Ser Gly Thr Cys Leu Met Asp		
410	415	420
Ser Glu Asp Ala Gly Thr Gly Glu Ser Gly Asp Arg Ala Thr Glu		
425	430	435

Lys Glu Val Ile Cys Pro Trp Glu Ser Leu
440 445

<210> 7
<211> 281
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 4203832CD1

<400> 7
Met Lys Leu Ala Ala Met Ile Lys Lys Met Cys Pro Ser Asp Ser
1 5 10 15
Glu Leu Ser Ile Pro Ala Lys Asn Cys Tyr Arg Met Val Ile Leu
20 25 30
Gly Ser Ser Lys Val Gly Lys Thr Ala Ile Val Ser Arg Phe Leu
35 40 45
Thr Gly Arg Phe Glu Asp Ala Tyr Thr Pro Thr Ile Glu Asp Phe
50 55 60
His Arg Lys Phe Tyr Ser Ile Arg Gly Glu Val Tyr Gln Leu Asp
65 70 75
Ile Leu Asp Thr Ser Gly Asn His Pro Phe Pro Ala Met Arg Cys
80 85 90
Leu Ser Ile Leu Thr Gly Asp Val Phe Ile Leu Val Phe Ser Leu
95 100 105
Asp Asn Arg Asp Ser Phe Glu Glu Val Gln Arg Leu Arg Gln Gln
110 115 120
Ile Leu Asp Thr Lys Ser Cys Leu Lys Asn Lys Thr Lys Glu Asn
125 130 135
Val Asp Val Pro Leu Val Ile Cys Gly Asn Lys Gly Asp Arg Asp
140 145 150
Phe Tyr Arg Glu Val Asp Gln Arg Glu Ile Glu Gln Leu Val Gly
155 160 165
Asp Asp Pro Gln Arg Cys Ala Tyr Phe Glu Ile Ser Ala Lys Lys
170 175 180
Asn Ser Ser Leu Asp Gln Met Phe Arg Ala Leu Phe Ala Met Ala
185 190 195
Lys Leu Pro Ser Glu Met Ser Pro Asp Leu His Arg Lys Val Ser
200 205 210
Val Gln Tyr Cys Asp Val Leu His Lys Lys Ala Leu Arg Asn Lys
215 220 225
Lys Leu Leu Arg Ala Gly Ser Gly Gly Gly Gly Asp Pro Gly
230 235 240
Asp Ala Phe Gly Ile Val Ala Pro Phe Ala Arg Arg Pro Ser Val
245 250 255
His Ser Asp Leu Met Tyr Ile Arg Glu Lys Ala Ser Ala Gly Ser
260 265 270
Gln Ala Lys Asp Lys Glu Arg Cys Val Ile Ser
275 280
<210> 8
<211> 301
<212> PRT

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte ID No: 104368CD1

<400> 8

Met	Thr	Thr	Leu	Asp	Asp	Lys	Leu	Leu	Gly	Glu	Lys	Leu	Gln	Tyr
1										10				15
Tyr	Tyr	Ser	Ser	Ser	Glu	Asp	Glu	Asp	Ser	Asp	His	Glu	Asp	Lys
										25				30
Asp	Arg	Gly	Arg	Cys	Ala	Pro	Ala	Ser	Ser	Ser	Val	Pro	Ala	Glu
										40				45
Ala	Glu	Leu	Ala	Gly	Glu	Gly	Ile	Ser	Val	Asn	Thr	Gly	Pro	Lys
										55				60
Gly	Val	Ile	Asn	Asp	Trp	Arg	Arg	Phe	Lys	Gln	Leu	Glu	Thr	Glu
										70				75
Gln	Arg	Glu	Glu	Gln	Cys	Arg	Glu	Met	Glu	Arg	Leu	Ile	Lys	Lys
										85				90
Leu	Ser	Met	Thr	Cys	Arg	Ser	His	Leu	Asp	Glu	Glu	Glu	Glu	Gln
										100				105
Gln	Lys	Gln	Lys	Asp	Leu	Gln	Glu	Lys	Ile	Ser	Gly	Lys	Met	Thr
										115				120
Leu	Lys	Glu	Phe	Ala	Ile	Met	Asn	Glu	Asp	Gln	Asp	Asp	Gln	Glu
										130				135
Phe	Leu	Gln	Gln	Tyr	Arg	Lys	Gln	Arg	Met	Glu	Glu	Met	Arg	Gln
										145				150
Gln	Leu	His	Lys	Gly	Pro	Gln	Phe	Lys	Gln	Val	Phe	Glu	Ile	Ser
										160				165
Ser	Gly	Glu	Gly	Phe	Leu	Asp	Met	Ile	Asp	Lys	Glu	Gln	Lys	Ser
										175				180
Ile	Val	Ile	Met	Val	His	Ile	Tyr	Glu	Asp	Gly	Ile	Pro	Gly	Thr
										190				195
Glu	Ala	Met	Asn	Gly	Cys	Met	Ile	Cys	Leu	Ala	Ala	Glu	Tyr	Pro
										205				210
Ala	Val	Lys	Phe	Cys	Lys	Val	Lys	Ser	Ser	Val	Ile	Gly	Ala	Ser
										220				225
Ser	Gln	Phe	Thr	Arg	Asn	Ala	Leu	Pro	Ala	Leu	Leu	Ile	Tyr	Lys
										235				240
Gly	Gly	Glu	Leu	Ile	Gly	Asn	Phe	Val	Arg	Val	Thr	Asp	Gln	Leu
										250				255
Gly	Asp	Asp	Phe	Phe	Ala	Val	Asp	Leu	Glu	Ala	Phe	Leu	Gln	Glu
										265				270
Phe	Gly	Leu	Leu	Pro	Glu	Lys	Glu	Val	Leu	Val	Leu	Thr	Ser	Val
										275				285
Arg	Asn	Ser	Ala	Thr	Cys	His	Ser	Glu	Asp	Ser	Asp	Leu	Glu	Ile
										290				300

Asp

<210> 9

<211> 485

<212> PRT

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte ID No: 1441680CD1

<400> 9

Met	Arg	Ala	Val	Leu	Thr	Trp	Arg	Asp	Lys	Ala	Glu	His	Cys	Ile
1				5					10				15	
Asn	Asp	Ile	Ala	Phe	Lys	Pro	Asp	Gly	Thr	Gln	Leu	Ile	Leu	Ala
		20							25				30	
Ala	Gly	Ser	Arg	Leu	Leu	Val	Tyr	Asp	Thr	Ser	Asp	Gly	Thr	Leu
		35							40				45	
Leu	Gln	Pro	Leu	Lys	Gly	His	Lys	Asp	Thr	Val	Tyr	Cys	Val	Ala
		50							55				60	
Tyr	Ala	Lys	Asp	Gly	Lys	Arg	Phe	Ala	Ser	Gly	Ser	Ala	Asp	Lys
		65							70				75	
Ser	Val	Ile	Ile	Trp	Thr	Ser	Lys	Leu	Glu	Gly	Ile	Leu	Lys	Tyr
		80							85				90	
Thr	His	Asn	Asp	Ala	Ile	Gln	Cys	Val	Ser	Tyr	Asn	Pro	Ile	Thr
		95							100				105	
His	Gln	Leu	Ala	Ser	Cys	Ser	Ser	Ser	Asp	Phe	Gly	Leu	Trp	Ser
		110							115				120	
Pro	Glu	Gln	Lys	Ser	Val	Ser	Lys	His	Lys	Ser	Ser	Ser	Lys	Ile
		125							130				135	
Ile	Cys	Cys	Ser	Trp	Thr	Asn	Asp	Gly	Gln	Tyr	Leu	Ala	Leu	Gly
		140							145				150	
Met	Phe	Asn	Gly	Ile	Ile	Ser	Ile	Arg	Asn	Lys	Asn	Gly	Glu	Glu
		155							160				165	
Lys	Val	Lys	Ile	Glu	Arg	Pro	Gly	Gly	Ser	Leu	Ser	Pro	Ile	Trp
		170							175				180	
Ser	Ile	Cys	Trp	Asn	Pro	Ser	Arg	Glu	Glu	Arg	Asn	Asp	Ile	Leu
		185							190				195	
Ala	Val	Ala	Asp	Trp	Gly	Gln	Lys	Val	Ser	Phe	Tyr	Gln	Leu	Ser
		200							205				210	
Gly	Lys	Gln	Ile	Gly	Lys	Asp	Arg	Ala	Leu	Asn	Phe	Asp	Pro	Cys
		215							220				225	
Cys	Ile	Ser	Tyr	Phe	Thr	Lys	Gly	Glu	Tyr	Ile	Leu	Leu	Gly	Gly
		230							235				240	
Ser	Asp	Lys	Gln	Val	Ser	Leu	Phe	Thr	Lys	Asp	Gly	Val	Arg	Leu
		245							250				255	
Gly	Thr	Val	Gly	Glu	Gln	Asn	Ser	Trp	Val	Trp	Thr	Cys	Gln	Ala
		260							265				270	
Lys	Pro	Asp	Ser	Asn	Tyr	Val	Val	Val	Gly	Cys	Gln	Asp	Gly	Thr
		275							280				285	
Ile	Ser	Phe	Tyr	Gln	Leu	Ile	Phe	Ser	Thr	Val	His	Gly	Val	Tyr
		290							295				300	
Lys	Asp	Arg	Tyr	Ala	Tyr	Arg	Asp	Ser	Met	Thr	Asp	Val	Ile	Val
		305							310				315	
Gln	His	Leu	Ile	Thr	Glu	Gln	Lys	Val	Arg	Ile	Lys	Cys	Lys	Glu
		320							325				330	
Leu	Val	Lys	Lys	Ile	Ala	Ile	Tyr	Arg	Asn	Arg	Leu	Ala	Ile	Gln
		335							340				345	
Leu	Pro	Glu	Lys	Ile	Leu	Ile	Tyr	Glu	Leu	Tyr	Ser	Glu	Asp	Leu
		350							355				360	

Ser Asp Met His Tyr Arg Val Lys Glu Lys Ile Ile Lys Lys Phe
 365 370 375
 Glu Cys Asn Leu Leu Val Val Cys Ala Asn His Ile Ile Leu Cys
 380 385 390
 Gln Glu Lys Arg Leu Gln Cys Leu Ser Phe Ser Gly Val Lys Glu
 395 400 405
 Arg Glu Trp Gln Met Glu Ser Leu Ile Arg Tyr Ile Lys Val Ile
 410 415 420
 Gly Gly Pro Pro Gly Arg Glu Gly Leu Leu Val Gly Leu Lys Lys
 425 430 435
 Met Tyr Leu Leu Val Tyr Ser Phe Ile Leu Ile Val Lys Asp Tyr
 440 445 450
 Phe Ser Leu Ser Thr Asp Val Leu Gly Asn Leu Thr Trp Lys His
 455 460 465
 Val Cys Lys Lys His Tyr Trp Val Phe His Leu Phe Ser Trp Tyr
 470 475 480
 Tyr Ile Phe Val Gln
 485

<210> 10
 <211> 447
 <212> PRT
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte ID No: 1494955CD1

<400> 10
 Met Glu Leu Ser Gln Met Ser Glu Leu Met Gly Leu Ser Val Leu
 1 5 10 15
 Leu Gly Leu Leu Ala Leu Met Ala Thr Ala Ala Val Ala Arg Gly
 20 25 30
 Trp Leu Arg Ala Gly Glu Glu Arg Ser Gly Arg Pro Ala Cys Gln
 35 40 45
 Lys Ala Asn Gly Phe Pro Pro Asp Lys Ser Ser Gly Ser Lys Lys
 50 55 60
 Gln Lys Gln Tyr Gln Arg Ile Arg Lys Glu Lys Pro Gln Gln His
 65 70 75
 Asn Phe Thr His Arg Leu Leu Ala Ala Leu Lys Ser His Ser
 80 85 90
 Gly Asn Ile Ser Cys Met Asp Phe Ser Ser Asn Gly Lys Tyr Leu
 95 100 105
 Ala Thr Cys Ala Asp Asp Arg Thr Ile Arg Ile Trp Ser Thr Lys
 110 115 120
 Asp Phe Leu Gln Arg Glu His Arg Ser Met Arg Ala Asn Val Glu
 125 130 135
 Leu Asp His Ala Thr Leu Val Arg Phe Ser Pro Asp Cys Arg Ala
 140 145 150
 Phe Ile Val Trp Leu Ala Asn Gly Asp Thr Leu Arg Val Phe Lys
 155 160 165
 Met Thr Lys Arg Glu Asp Gly Gly Tyr Thr Phe Thr Ala Thr Pro
 170 175 180
 Glu Asp Phe Pro Lys Lys His Lys Ala Pro Val Ile Asp Ile Gly

	185	190	195
Ile Ala Asn Thr Gly Lys Phe Ile Met Thr Ala Ser Ser Asp Thr			
200	205	210	
Thr Val Leu Ile Trp Ser Leu Lys Gly Gln Val Leu Ser Thr Ile			
215	220	225	
Asn Thr Asn Gln Met Asn Asn Thr His Ala Ala Val Ser Pro Cys			
230	235	240	
Gly Arg Phe Val Ala Ser Cys Gly Phe Thr Pro Asp Val Lys Val			
245	250	255	
Trp Glu Val Cys Phe Gly Lys Gly Glu Phe Gln Glu Val Val			
260	265	270	
Arg Ala Phe Glu Leu Lys Gly His Ser Ala Ala Val His Ser Phe			
275	280	285	
Ala Phe Ser Asn Asp Ser Arg Arg Met Ala Ser Val Ser Lys Asp			
290	295	300	
Gly Thr Trp Lys Leu Trp Asp Thr Asp Val Glu Tyr Lys Lys Lys			
305	310	315	
Gln Asp Pro Tyr Leu Leu Lys Thr Gly Arg Phe Glu Glu Ala Ala			
320	325	330	
Gly Ala Ala Pro Cys Arg Leu Ala Leu Ser Pro Asn Ala Gln Val			
335	340	345	
Leu Ala Leu Ala Ser Gly Ser Ser Ile His Leu Tyr Asn Thr Arg			
350	355	360	
Arg Gly Glu Lys Glu Glu Cys Phe Glu Arg Val His Gly Glu Cys			
365	370	375	
Ile Ala Asn Leu Ser Phe Asp Ile Thr Gly Arg Phe Leu Ala Ser			
380	385	390	
Cys Gly Asp Arg Ala Val Arg Leu Phe His Asn Thr Pro Gly His			
395	400	405	
Arg Ala Met Val Glu Glu Met Gln Gly His Leu Lys Arg Ala Ser			
410	415	420	
Asn Glu Ser Thr Arg Gln Arg Leu Gln Gln Gln Leu Thr Gln Ala			
425	430	435	
Gln Glu Thr Leu Lys Ser Leu Gly Ala Leu Lys Lys			
440	445		

<210> 11
<211> 199
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 1508161CD1

<400> 11
Met Pro Val Lys Lys Lys His Arg Ala Arg Met Ile Glu Tyr Phe
1 5 10 15
Ile Asp Val Ala Arg Glu Cys Phe Asn Ile Gly Asn Phe Asn Ser
20 25 30
Leu Met Ala Ile Ile Ser Gly Met Asn Met Ser Pro Val Ser Arg
35 40 45
Leu Lys Lys Thr Trp Ala Lys Val Lys Thr Ala Lys Phe Asp Ile
50 55 60

Leu Glu His Gln Met Asp Pro Ser Ser Asn Phe Tyr Asn Tyr Arg
 65 70 75
 Thr Ala Leu Arg Gly Ala Ala Gln Arg Ser Leu Thr Ala His Ser
 80 85 90
 Ser Arg Glu Lys Ile Val Ile Pro Phe Phe Ser Leu Leu Ile Lys
 95 100 105
 Asp Ile Tyr Phe Leu Asn Glu Gly Cys Ala Asn Arg Leu Pro Asn
 110 115 120
 Gly His Val Asn Phe Glu Lys Phe Trp Glu Leu Ala Lys Gln Val
 125 130 135
 Ser Glu Phe Met Thr Trp Lys Gln Val Glu Cys Pro Phe Glu Arg
 140 145 150
 Asp Arg Lys Ile Leu Gln Tyr Leu Leu Thr Val Pro Val Phe Ser
 155 160 165
 Glu Asp Ala Leu Tyr Leu Ala Ser Tyr Glu Ser Glu Gly Pro Glu
 170 175 180
 Asn His Ile Glu Lys Asp Arg Trp Lys Ser Leu Arg Ser Ser Leu
 185 190 195
 Leu Gly Arg Val

<210> 12
 <211> 694
 <212> PRT
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte ID No: 1811877CD1

<400> 12

Met Ala Phe Asp Pro Thr Ser Thr Leu Leu Ala Thr Gly Gly Cys		
1 5 10 15		
Asp Gly Ala Val Arg Val Trp Asp Ile Val Arg His Tyr Gly Thr		
20 25 30		
His His Phe Arg Gly Ser Pro Gly Val Val His Leu Val Ala Phe		
35 40 45		
His Pro Asp Pro Thr Arg Leu Leu Leu Phe Ser Ser Ala Thr Asp		
50 55 60		
Ala Ala Ile Arg Val Trp Ser Leu Gln Asp Arg Ser Cys Leu Ala		
65 70 75		
Val Leu Thr Ala His Tyr Ser Ala Val Thr Ser Leu Ala Phe Ser		
80 85 90		
Ala Asp Gly His Thr Met Leu Ser Ser Gly Arg Asp Lys Ile Cys		
95 100 105		
Ile Ile Trp Asp Leu Gln Ser Cys Gln Ala Thr Arg Thr Val Pro		
110 115 120		
Val Phe Glu Ser Val Glu Ala Ala Val Leu Leu Pro Glu Glu Pro		
125 130 135		
Val Ser Gln Leu Gly Val Lys Ser Pro Gly Leu Tyr Phe Leu Thr		
140 145 150		
Ala Gly Asp Gln Gly Thr Leu Arg Val Trp Glu Ala Ala Ser Gly		
155 160 165		
Gln Cys Val Tyr Thr Gln Ala Gln Pro Pro Gly Pro Gly Gln Glu		
170 175 180		

Leu Thr His Cys Thr Leu Ala His Thr Ala Gly Val Val Leu Thr
 185 190 195
 Ala Thr Ala Asp His Asn Leu Leu Leu Tyr Glu Ala Arg Ser Leu
 200 205 210
 Arg Leu Gln Lys Gln Phe Ala Gly Tyr Ser Glu Glu Val Leu Asp
 215 220 225
 Val Arg Phe Leu Gly Pro Glu Asp Ser His Val Val Val Ala Ser
 230 235 240
 Asn Ser Pro Cys Leu Lys Val Phe Glu Leu Gln Thr Ser Ala Cys
 245 250 255
 Gln Ile Leu His Gly His Thr Asp Ile Val Leu Ala Leu Asp Val
 260 265 270
 Phe Arg Lys Gly Trp Leu Phe Ala Ser Cys Ala Lys Asp Gln Ser
 275 280 285
 Val Arg Ile Trp Arg Met Asn Lys Ala Gly Gln Val Met Cys Val
 290 295 300
 Ala Gln Gly Ser Gly His Thr His Ser Val Gly Thr Val Cys Cys
 305 310 315
 Ser Arg Leu Lys Glu Ser Phe Leu Val Thr Gly Ser Gln Asp Cys
 320 325 330
 Thr Val Lys Leu Trp Pro Leu Pro Lys Ala Leu Leu Ser Lys Asn
 335 340 345
 Thr Ala Pro Asp Asn Gly Pro Ile Leu Leu Gln Ala Gln Thr Thr
 350 355 360
 Gln Arg Cys His Asp Lys Asp Ile Asn Ser Val Ala Ile Ala Pro
 365 370 375
 Asn Asp Lys Leu Leu Ala Thr Gly Ser Gln Asp Arg Thr Ala Lys
 380 385 390
 Leu Trp Ala Leu Pro Gln Cys Gln Leu Leu Gly Val Phe Ser Gly
 395 400 405
 His Arg Arg Gly Leu Trp Cys Val Gln Phe Ser Pro Met Asp Gln
 410 415 420
 Val Leu Ala Thr Ala Ser Ala Asp Gly Thr Ile Lys Leu Trp Ala
 425 430 435
 Leu Gln Asp Phe Ser Cys Leu Lys Thr Phe Glu Gly His Asp Ala
 440 445 450
 Ser Val Leu Lys Val Ala Phe Val Ser Arg Gly Thr Gln Leu Leu
 455 460 465
 Ser Ser Gly Ser Asp Gly Leu Val Lys Leu Trp Thr Ile Lys Asn
 470 475 480
 Asn Glu Cys Val Arg Thr Leu Asp Ala His Glu Asp Lys Val Trp
 485 490 495
 Gly Leu His Cys Ser Arg Leu Asp Asp His Ala Leu Thr Gly Ala
 500 505 510
 Ser Asp Ser Arg Val Ile Leu Trp Lys Asp Val Thr Glu Ala Glu
 515 520 525
 Gln Ala Glu Glu Gln Ala Arg Gln Glu Glu Gln Val Val Arg Gln
 530 535 540
 Gln Glu Leu Asp Asn Leu Leu His Glu Lys Arg Tyr Leu Arg Ala
 545 550 555
 Leu Gly Leu Ala Ile Ser Leu Asp Arg Pro His Thr Val Leu Thr
 560 565 570
 Val Ile Gln Ala Ile Arg Arg Asp Pro Glu Ala Cys Glu Lys Leu
 575 580 585
 Glu Ala Thr Met Leu Arg Leu Arg Arg Asp Gln Lys Glu Ala Leu

590	595	600
Leu Arg Phe Cys Val Thr Trp Asn Thr	Asn Ser Arg His Cys His	
605	610	615
Glu Ala Gln Ala Val Leu Gly Val Leu	Leu Arg Arg Glu Ala Pro	
620	625	630
Glu Glu Leu Leu Ala Tyr Glu Gly Val	Arg Ala Ala Leu Glu Ala	
635	640	645
Leu Leu Pro Tyr Thr Glu Arg His Phe	Gln Arg Leu Ser Arg Thr	
650	655	660
Leu Gln Ala Ala Ala Phe Leu Asp Phe	Leu Trp His Asn Met Lys	
665	670	675
Leu Pro Val Pro Ala Ala Ala Pro Thr	Pro Trp Glu Thr His Lys	
680	685	690
Gly Ala Leu Pro		

<210> 13
<211> 654
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 1848674CD1

<400> 13
Met Glu Arg Ser Gly Pro Ser Glu Val Thr Gly Ser Asp Ala Ser
1 5 10 15
Gly Pro Asp Pro Gln Leu Ala Val Thr Met Gly Phe Thr Gly Phe
20 25 30
Gly Lys Lys Ala Arg Thr Phe Asp Leu Glu Ala Met Phe Glu Gln
35 40 45
Thr Arg Arg Thr Ala Val Glu Arg Ser Arg Lys Thr Leu Glu Ala
50 55 60
Arg Glu Lys Glu Glu Glu Met Asn Arg Glu Lys Glu Leu Arg Arg
65 70 75
Gln Asn Glu Asp Ile Glu Pro Thr Ser Ser Arg Ser Asn Val Val
80 85 90
Arg Asp Cys Ser Lys Ser Ser Ser Arg Asp Thr Ser Ser Ser Glu
95 100 105
Ser Glu Gln Ser Ser Asp Ser Ser Asp Asp Glu Leu Ile Gly Pro
110 115 120
Pro Leu Pro Pro Lys Met Val Gly Lys Pro Val Asn Phe Met Glu
125 130 135
Glu Asp Ile Leu Gly Pro Leu Pro Pro Pro Leu Asn Glu Glu Glu
140 145 150
Glu Glu Ala Glu Asn
155 160 165
Pro Val His Lys Ile Pro Asp Ser His Glu Ile Thr Leu Lys His
170 175 180
Gly Thr Lys Thr Val Ser Ala Leu Gly Leu Asp Pro Ser Gly Ala
185 190 195
Arg Leu Val Thr Gly Gly Tyr Asp Tyr Asp Val Lys Phe Trp Asp
200 205 210
Phe Ala Gly Met Asp Ala Ser Phe Lys Ala Phe Arg Ser Leu Gln

215	220	225
Pro Cys Glu Cys His Gln Ile Lys Ser	Leu Gln Tyr Ser Asn Thr	
230	235	240
Gly Asp Met Ile Leu Val Val Ser Gly	Ser Ser Gln Ala Lys Val	
245	250	255
Ile Asp Arg Asp Gly Phe Glu Val Met	Glu Cys Ile Lys Gly Asp	
260	265	270
Gln Tyr Ile Val Asp Met Ala Asn Thr	Lys Gly His Thr Ala Met	
275	280	285
Leu His Thr Gly Ser Trp His Pro Lys	Ile Lys Gly Glu Phe Met	
290	295	300
Thr Cys Ser Asn Asp Ala Thr Val Arg	Thr Trp Glu Val Glu Asn	
305	310	315
Pro Lys Lys Gln Lys Ser Val Phe Lys	Pro Arg Thr Met Gln Gly	
320	325	330
Lys Lys Val Ile Pro Thr Thr Cys Thr	Tyr Ser Arg Asp Gly Asn	
335	340	345
Leu Ile Ala Ala Ala Cys Gln Asn Gly	Ser Ile Gln Ile Trp Asp	
350	355	360
Arg Asn Leu Thr Val His Pro Lys Phe	His Tyr Lys Gln Ala His	
365	370	375
Asp Ser Gly Thr Asp Thr Ser Cys Val	Thr Phe Ser Tyr Asp Gly	
380	385	390
Asn Val Leu Ala Ser Arg Gly Gly Asp	Asp Ser Leu Lys Leu Trp	
395	400	405
Asp Ile Arg Gln Phe Asn Lys Pro Leu	Phe Ser Ala Ser Gly Leu	
410	415	420
Pro Thr Met Phe Pro Met Thr Asp Cys	Cys Phe Ser Pro Asp Asp	
425	430	435
Lys Leu Ile Val Thr Gly Thr Ser Ile	Gln Arg Gly Cys Gly Ser	
440	445	450
Gly Lys Leu Val Phe Phe Glu Arg Arg	Thr Phe Gln Arg Val Tyr	
455	460	465
Glu Ile Asp Ile Thr Asp Ala Ser Val	Val Arg Cys Leu Trp His	
470	475	480
Pro Lys Leu Asn Gln Ile Met Val Gly	Thr Gly Asn Gly Leu Ala	
485	490	495
Lys Val Tyr Tyr Asp Pro Asn Lys Ser	Gln Arg Gly Ala Lys Leu	
500	505	510
Cys Val Val Lys Thr Gln Arg Lys Ala	Lys Gln Ala Glu Thr Leu	
515	520	525
Thr Gln Asp Tyr Ile Ile Thr Pro His	Ala Leu Pro Met Phe Arg	
530	535	540
Glu Pro Arg Gln Arg Ser Thr Arg Lys	Gln Leu Glu Lys Asp Arg	
545	550	555
Leu Asp Pro Leu Lys Ser His Lys Pro	Glu Pro Pro Val Ala Gly	
560	565	570
Pro Gly Arg Gly Arg Val Gly Thr	His Gly Gly Thr Leu Ser	
575	580	585
Ser Tyr Ile Val Lys Asn Ile Ala Leu	Asp Lys Thr Asp Asp Ser	
590	595	600
Asn Pro Arg Glu Ala Ile Leu Arg His	Ala Lys Ala Ala Glu Asp	
605	610	615
Ser Pro Tyr Trp Val Ser Pro Ala Tyr	Ser Lys Thr Gln Pro Lys	
620	625	630

Thr Met Phe Ala Gln Val Glu Ser Asp Asp Glu Glu Ala Lys Asn
635 640 645
Glu Pro Glu Trp Lys Lys Arg Lys Ile
650

<210> 14
<211> 180
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 2012970CD1

<400> 14
Met Glu Ala Asn Met Pro Lys Arg Lys Glu Pro Gly Arg Ser Leu
1 5 10 15
Arg Ile Lys Val Ile Ser Met Gly Asn Ala Glu Val Gly Lys Ser
20 25 30
Cys Ile Ile Lys Arg Tyr Cys Glu Lys Arg Phe Val Ser Lys Tyr
35 40 45
Leu Ala Thr Ile Gly Ile Asp Tyr Gly Val Thr Lys Val His Val
50 55 60
Arg Asp Arg Glu Ile Lys Val Asn Ile Phe Asp Met Ala Gly His
65 70 75
Pro Phe Phe Tyr Glu Val Arg Asn Glu Phe Tyr Lys Asp Thr Gln
80 85 90
Gly Val Ile Leu Val Tyr Asp Val Gly Gln Lys Asp Ser Phe Asp
95 100 105
Ala Leu Asp Ala Trp Leu Ala Glu Met Lys Gln Glu Leu Gly Pro
110 115 120
His Gly Asn Met Glu Asn Ile Ile Phe Val Val Cys Ala Asn Lys
125 130 135
Ile Asp Cys Thr Lys His Arg Cys Val Asp Glu Ser Glu Gly Arg
140 145 150
Leu Trp Ala Glu Ser Lys Gly Phe Leu Tyr Phe Glu Thr Ser Ala
155 160 165
Gln Thr Gly Glu Gly Ile Asn Glu Met Phe Gln Ile His Leu Gly
170 175 180

<210> 15
<211> 374
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 2254315CD1

<400> 15
Met Ala Ala Ser Ala Ala Ala Ala Glu Leu Gln Ala Ser Gly Gly
1 5 10 15
Pro Arg His Pro Val Cys Leu Leu Val Leu Gly Met Ala Gly Ser

	20	25	30
Gly Lys Thr Thr Phe Val Gln Arg Leu Thr Gly His Leu His Ala			
35	40	45	
Gln Gly Thr Pro Pro Tyr Val Ile Asn Leu Asp Pro Ala Val His			
50	55	60	
Glu Val Pro Phe Pro Ala Asn Ile Asp Ile Arg Asp Thr Val Lys			
65	70	75	
Tyr Lys Glu Val Met Lys Gln Tyr Gly Leu Gly Pro Asn Gly Gly			
80	85	90	
Ile Val Thr Ser Leu Asn Leu Phe Ala Thr Arg Phe Asp Gln Val			
95	100	105	
Met Lys Phe Ile Glu Lys Ala Gln Asn Met Ser Lys Tyr Val Leu			
110	115	120	
Ile Asp Thr Pro Gly Gln Ile Glu Val Phe Thr Trp Ser Ala Ser			
125	130	135	
Gly Thr Ile Ile Thr Glu Ala Leu Ala Ser Ser Phe Pro Thr Val			
140	145	150	
Val Ile Tyr Val Met Asp Thr Ser Arg Ser Thr Asn Pro Val Thr			
155	160	165	
Phe Met Ser Asn Met Leu Tyr Ala Cys Ser Ile Leu Tyr Lys Thr			
170	175	180	
Lys Leu Pro Phe Ile Val Val Met Asn Lys Thr Asp Ile Ile Asp			
185	190	195	
His Ser Phe Ala Val Glu Trp Met Gln Asp Phe Glu Ala Phe Gln			
200	205	210	
Asp Ala Leu Asn Gln Glu Thr Thr Tyr Val Ser Asn Leu Thr Arg			
215	220	225	
Ser Met Ser Leu Val Leu Asp Glu Phe Tyr Ser Ser Leu Arg Val			
230	235	240	
Val Gly Val Ser Ala Val Leu Gly Thr Gly Leu Asp Glu Leu Phe			
245	250	255	
Val Gln Val Thr Ser Ala Ala Glu Glu Tyr Glu Arg Glu Tyr Arg			
260	265	270	
Pro Glu Tyr Glu Arg Leu Lys Lys Ser Leu Ala Asn Ala Glu Ser			
275	280	285	
Gln Gln Gln Arg Glu Gln Leu Glu Arg Leu Arg Lys Asp Met Gly			
290	295	300	
Ser Val Ala Leu Asp Ala Gly Thr Ala Lys Asp Ser Leu Ser Pro			
305	310	315	
Val Leu His Pro Ser Asp Leu Ile Leu Thr Arg Gly Thr Leu Asp			
320	325	330	
Glu Glu Asp Glu Glu Ala Asp Ser Asp Thr Asp Asp Ile Asp His			
335	340	345	
Arg Val Thr Glu Glu Ser His Glu Glu Pro Ala Phe Gln Asn Phe			
350	355	360	
Met Gln Glu Ser Met Ala Gln Tyr Trp Lys Arg Asn Asn Lys			
365	370		

<210> 16
 <211> 649
 <212> PRT
 <213> Homo sapiens

<220>

<221> misc_feature
<223> Incyte ID No. 2415545CD1

<400> 16
Met Glu Gly Ala Gly Tyr Arg Val Val Phe Glu Lys Gly Gly Val
1 5 10 15
Tyr Leu His Thr Ser Ala Lys Lys Tyr Gln Asp Arg Asp Ser Leu
20 25 30
Ile Ala Gly Val Ile Arg Val Val Glu Lys Asp Asn Asp Val Leu
35 40 45
Leu His Trp Ala Pro Val Glu Glu Ala Gly Asp Ser Thr Gln Ile
50 55 60
Leu Phe Ser Lys Lys Asp Ser Ser Gly Gly Asp Ser Cys Ala Ser
65 70 75
Glu Glu Glu Pro Thr Phe Asp Pro Gly Tyr Glu Pro Asp Trp Ala
80 85 90
Val Ile Ser Thr Val Arg Pro Gln Pro Cys His Ser Glu Pro Thr
95 100 105
Arg Gly Ala Glu Pro Ser Cys Pro Gln Gly Ser Trp Ala Phe Ser
110 115 120
Val Ser Leu Gly Glu Leu Lys Ser Ile Arg Arg Ser Lys Pro Gly
125 130 135
Leu Ser Trp Ala Tyr Leu Val Leu Val Thr Gln Ala Gly Gly Ser
140 145 150
Leu Pro Ala Leu His Phe His Arg Gly Gly Thr Arg Ala Leu Leu
155 160 165
Arg Val Leu Ser Arg Tyr Leu Leu Ala Ser Ser Pro Gln Asp
170 175 180
Ser Arg Leu Tyr Leu Val Phe Pro His Asp Ser Ser Ala Leu Ser
185 190 195
Asn Ser Phe His His Leu Gln Leu Phe Asp Gln Asp Ser Ser Asn
200 205 210
Val Val Ser Arg Phe Leu Gln Asp Pro Tyr Ser Thr Thr Phe Ser
215 220 225
Ser Phe Ser Arg Val Thr Asn Phe Phe Arg Gly Ala Leu Gln Pro
230 235 240
Gln Pro Glu Gly Ala Ala Ser Asp Leu Pro Pro Pro Pro Asp Asp
245 250 255
Glu Pro Glu Pro Gly Phe Glu Val Ile Ser Cys Val Glu Leu Gly
260 265 270
Pro Arg Pro Thr Val Glu Arg Gly Pro Pro Val Thr Glu Glu Glu
275 280 285
Trp Ala Arg His Val Gly Pro Glu Gly Arg Leu Gln Gln Val Pro
290 295 300
Glu Leu Lys Asn Arg Ile Phe Ser Gly Gly Leu Ser Pro Ser Leu
305 310 315
Arg Arg Glu Ala Trp Lys Phe Leu Leu Gly Tyr Leu Ser Trp Glu
320 325 330
Gly Thr Ala Glu Glu His Lys Ala His Ile Arg Lys Lys Thr Asp
335 340 345
Glu Tyr Phe Arg Met Lys Leu Gln Trp Lys Ser Val Ser Pro Glu
350 355 360
Gln Glu Arg Arg Asn Ser Leu Leu His Gly Tyr Arg Ser Leu Ile
365 370 375
Glu Arg Asp Val Ser Arg Thr Asp Arg Thr Asn Lys Phe Tyr Glu

	380	385	390
Gly Pro Glu Asn	Pro Gly Leu Gly Leu	Leu Asn Asp Ile	Leu
395	395	400	405
Thr Tyr Cys Met	Tyr His Phe Asp Leu	Gly Tyr Val Gln	Gly Met
410	410	415	420
Ser Asp Leu Leu	Ser Pro Ile Leu Tyr	Val Ile Gln Asn	Glu Val
425	425	430	435
Asp Ala Phe Trp	Cys Phe Cys Gly Phe	Met Glu Leu Val	Gln Gly
440	440	445	450
Asn Phe Glu Glu	Ser Gln Glu Thr Met	Lys Arg Gln Leu	Gly Arg
455	455	460	465
Leu Leu Leu Leu	Leu Arg Val Leu Asp	Pro Leu Leu Cys	Asp Phe
470	470	475	480
Leu Asp Ser Gln	Asp Ser Gly Ser Leu	Cys Phe Cys Phe	Arg Trp
485	485	490	495
Leu Leu Ile Trp	Phe Lys Arg Glu Phe	Pro Phe Pro Asp	Val Leu
500	500	505	510
Arg Leu Trp Glu	Val Leu Trp Thr Gly	Leu Pro Gly Pro	Asn Leu
515	515	520	525
His Leu Leu Val	Ala Cys Ala Ile Leu	Asp Met Glu Arg	Asp Thr
530	530	535	540
Leu Met Leu Ser	Gly Phe Gly Ser Asn	Glu Ile Leu Lys	His Ile
545	545	550	555
Asn Glu Leu Thr	Met Lys Leu Ser Val	Glu Asp Val Leu	Thr Arg
560	560	565	570
Ala Glu Ala Leu	His Arg Gln Leu Thr	Ala Cys Thr Arg	Ala Ala
575	575	580	585
Pro Gln Arg Ala	Gly Asp Pro Gly Ala	Gly Pro Ala Thr	Gln Ser
590	590	595	600
Pro Thr Ala Pro	Arg Pro Pro Pro	Arg Cys Leu Cys	Thr Pro
605	605	610	615
Thr Arg Ala Pro	Pro Thr Pro Pro	Ser Thr Asp Thr	Ala Pro
620	620	625	630
Gln Pro Asp Ser	Ser Leu Glu Ile Leu	Pro Glu Glu Asp	Glu
635	635	640	645
Gly Ala Asp Ser			

<210> 17
<211> 698
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 2707969CD1

<400> 17
Met Cys His Asp Asp Asp Asp Lys Asp Pro Val Leu Arg Val Phe
1 5 10 15
Asp Ser Arg Val Asp Lys Ile Arg Leu Leu Asn Val Arg Thr Pro
20 25 30
Thr Leu Arg Thr Ser Met Tyr Gln Lys Cys Thr Thr Val Asp Glu
35 40 45
Ala Glu Lys Ala Ile Glu Leu Arg Leu Ala Lys Ile Asp His Thr

50	55	60
Ala Ile His Pro His Leu Leu Asp Met Lys	Ile Gly Gln Gly	Lys
65	70	75
Tyr Glu Pro Gly Phe Phe Pro Lys Leu Gln Ser Asp Val Leu Ser		
80	85	90
Thr Gly Pro Ala Ser Asn Lys Trp Thr Lys Arg Asn Ala Pro Ala		
95	100	105
Gln Trp Arg Arg Lys Asp Arg Gln Lys Gln His Thr Glu His Leu		
110	115	120
Arg Leu Asp Asn Asp Gln Arg Glu Lys Tyr Ile Gln Glu Ala Arg		
125	130	135
Thr Met Gly Ser Thr Ile Arg Gln Pro Lys Leu Ser Asn Leu Ser		
140	145	150
Pro Ser Val Ile Ala Gln Thr Asn Trp Lys Phe Val Glu Gly Leu		
155	160	165
Leu Lys Glu Cys Arg Asn Lys Thr Lys Arg Met Leu Val Glu Lys		
170	175	180
Met Gly Arg Glu Ala Val Glu Leu Gly His Gly Glu Val Asn Ile		
185	190	195
Thr Gly Val Glu Glu Asn Thr Leu Ile Ala Ser Leu Cys Asp Leu		
200	205	210
Leu Glu Arg Ile Trp Ser His Gly Leu Gln Val Lys Gln Gly Lys		
215	220	225
Ser Ala Leu Trp Ser His Leu Leu His Tyr Gln Asp Asn Arg Gln		
230	235	240
Arg Lys Leu Thr Ser Gly Ser Leu Ser Thr Ser Gly Ile Leu Leu		
245	250	255
Asp Ser Glu Arg Arg Lys Ser Asp Ala Ser Ser Leu Met Pro Pro		
260	265	270
Leu Arg Ile Ser Leu Ile Gln Asp Met Arg His Ile Gln Asn Ile		
275	280	285
Gly Glu Ile Lys Thr Asp Val Gly Lys Ala Arg Ala Trp Val Arg		
290	295	300
Leu Ser Met Glu Lys Lys Leu Leu Ser Arg His Leu Lys Gln Leu		
305	310	315
Leu Ser Asp His Glu Leu Thr Lys Lys Leu Tyr Lys Arg Tyr Ala		
320	325	330
Phe Leu Arg Cys Asp Asp Glu Lys Glu Gln Phe Leu Tyr His Leu		
335	340	345
Leu Ser Phe Asn Ala Val Asp Tyr Phe Cys Phe Thr Asn Val Phe		
350	355	360
Thr Thr Ile Leu Ile Pro Tyr His Ile Leu Ile Val Pro Ser Lys		
365	370	375
Lys Leu Gly Gly Ser Met Phe Thr Ala Asn Pro Trp Ile Cys Ile		
380	385	390
Ser Gly Glu Leu Gly Glu Thr Gln Ile Met Gln Ile Pro Arg Asn		
395	400	405
Val Leu Glu Met Thr Phe Glu Cys Gln Asn Leu Gly Lys Leu Thr		
410	415	420
Thr Val Gln Ile Gly His Asp Asn Ser Gly Leu Tyr Ala Lys Trp		
425	430	435
Leu Val Glu Tyr Val Met Val Arg Asn Glu Ile Thr Gly His Thr		
440	445	450
Tyr Lys Phe Pro Cys Gly Arg Trp Leu Gly Lys Gly Met Asp Asp		
455	460	465

Gly Ser Leu Glu Arg Ile Leu Val Gly Glu Leu Leu Thr Ser Gln
 470 475 480
 Pro Glu Val Asp Glu Arg Pro Cys Arg Thr Pro Pro Leu Gln Gln
 485 490 495
 Ser Pro Ser Val Ile Arg Arg Leu Val Thr Ile Ser Pro Asn Asn
 500 505 510
 Lys Pro Lys Leu Asn Thr Gly Gln Ile Gln Glu Ser Ile Gly Glu
 515 520 525
 Ala Val Asn Gly Ile Val Lys His Phe His Lys Pro Glu Lys Glu
 530 535 540
 Arg Gly Ser Leu Thr Leu Leu Leu Cys Gly Glu Cys Gly Leu Val
 545 550 555
 Ser Ala Leu Glu Gln Ala Phe Gln His Gly Phe Lys Ser Pro Arg
 560 565 570
 Leu Phe Lys Asn Val Phe Ile Trp Asp Phe Leu Glu Lys Ala Gln
 575 580 585
 Thr Tyr Tyr Glu Thr Leu Glu Lys Asn Glu Val Val Pro Glu Glu
 590 595 600
 Asn Trp His Thr Arg Ala Arg Asn Phe Cys Arg Phe Val Thr Ala
 605 610 615
 Ile Asn Asn Thr Pro Arg Asn Ile Gly Lys Asp Gly Lys Phe Gln
 620 625 630
 Met Leu Val Cys Leu Gly Ala Arg Asp His Leu Leu His His Trp
 635 640 645
 Ile Ala Leu Leu Ala Asp Cys Pro Ile Thr Ala His Met Tyr Glu
 650 655 660
 Asp Val Ala Leu Ile Lys Asp His Thr Leu Val Asn Ser Leu Ile
 665 670 675
 Arg Val Leu Gln Thr Leu Gln Glu Phe Asn Ile Thr Leu Glu Thr
 680 685 690
 Ser Leu Val Lys Gly Ile Asp Ile
 695

<210> 18
<211> 396
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 2817769CD1

<400> 18
 Met Pro Pro Lys Lys Gly Gly Asp Gly Ile Lys Pro Pro Pro Ile
 1 5 10 15
 Ile Gly Arg Phe Gly Thr Ser Leu Lys Ile Gly Ile Val Gly Leu
 20 25 30
 Pro Asn Val Gly Lys Ser Thr Phe Phe Asn Val Leu Thr Asn Ser
 35 40 45
 Gln Ala Ser Ala Glu Asn Phe Pro Phe Cys Thr Ile Asp Pro Asn
 50 55 60
 Glu Ser Arg Val Pro Val Pro Asp Glu Arg Phe Asp Phe Leu Cys
 65 70 75
 Gln Tyr His Lys Pro Ala Ser Lys Ile Pro Ala Phe Leu Asn Val
 80 85 90

Val Asp Ile Ala Gly Leu Val Lys Gly Ala His Asn Gly Gln Gly
 95 100 105
 Leu Gly Asn Ala Phe Leu Ser His Ile Ser Ala Cys Asp Gly Ile
 110 115 120
 Phe His Leu Thr Arg Ala Phe Glu Asp Asp Asp Ile Thr His Val
 125 130 135
 Glu Gly Ser Val Asp Pro Ile Arg Asp Ile Glu Ile Ile His Glu
 140 145 150
 Glu Leu Gln Leu Lys Asp Glu Glu Met Ile Gly Pro Ile Ile Asp
 155 160 165
 Lys Leu Glu Lys Val Ala Val Arg Gly Gly Asp Lys Lys Leu Lys
 170 175 180
 Pro Glu Tyr Asp Ile Met Cys Lys Val Lys Ser Trp Val Ile Asp
 185 190 195
 Gln Lys Lys Pro Val Arg Phe Tyr His Asp Trp Asn Asp Lys Glu
 200 205 210
 Ile Glu Val Leu Asn Lys His Leu Phe Leu Thr Ser Lys Pro Met
 215 220 225
 Val Tyr Leu Val Asn Leu Ser Glu Lys Asp Tyr Ile Arg Lys Lys
 230 235 240
 Asn Lys Trp Leu Ile Lys Ile Lys Glu Trp Val Asp Lys Tyr Asp
 245 250 255
 Pro Gly Ala Leu Val Ile Pro Phe Ser Gly Ala Leu Glu Leu Lys
 260 265 270
 Leu Gln Glu Leu Ser Ala Glu Glu Arg Gln Lys Tyr Leu Glu Ala
 275 280 285
 Asn Met Thr Gln Ser Ala Leu Pro Lys Ile Ile Lys Ala Gly Phe
 290 295 300
 Ala Ala Leu Gln Leu Glu Tyr Phe Phe Thr Ala Gly Pro Asp Glu
 305 310 315
 Val Arg Ala Trp Thr Ile Arg Lys Gly Thr Lys Ala Pro Gln Ala
 320 325 330
 Ala Gly Lys Ile His Thr Asp Phe Glu Lys Gly Phe Ile Met Ala
 335 340 345
 Glu Val Met Lys Tyr Glu Asp Phe Lys Glu Glu Gly Ser Glu Asn
 350 355 360
 Ala Val Lys Ala Ala Gly Lys Tyr Arg Gln Gln Gly Arg Asn Tyr
 365 370 375
 Ile Val Glu Asp Gly Asp Ile Ile Phe Phe Lys Phe Asn Thr Pro
 380 385 390
 Gln Gln Pro Lys Lys Lys
 395

<210> 19
 <211> 634
 <212> PRT
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte ID No: 2917557CD1

<400> 19
 Met Ser Ser Asp Ser Glu Tyr Asp Ser Asp Asp Asp Arg Thr Lys

1	5	10	15
Glu Glu Arg Ala Tyr Asp Lys Ala Lys Arg Arg Ile Glu Lys Arg			
20		25	30
Arg Leu Glu His Ser Lys Asn Val Asn Thr Glu Lys Leu Arg Ala			
35		40	45
Pro Ile Ile Cys Val Leu Gly His Val Asp Thr Gly Lys Thr Lys			
50		55	60
Ile Leu Asp Lys Leu Arg His Thr His Val Gln Asp Gly Glu Ala			
65		70	75
Gly Gly Ile Thr Gln Gln Ile Gly Ala Thr Asn Val Pro Leu Glu			
80		85	90
Ala Ile Asn Glu Gln Thr Lys Met Ile Lys Asn Phe Asp Arg Glu			
95		100	105
Asn Val Arg Ile Pro Gly Met Leu Ile Ile Asp Thr Pro Gly His			
110		115	120
Glu Ser Phe Ser Asn Leu Arg Asn Arg Gly Ser Ser Leu Cys Asp			
125		130	135
Ile Ala Ile Leu Val Val Asp Ile Met His Gly Leu Glu Pro Gln			
140		145	150
Thr Ile Glu Ser Ile Asn Leu Leu Lys Ser Lys Lys Cys Pro Phe			
155		160	165
Ile Val Ala Leu Asn Lys Ile Asp Arg Leu Tyr Asp Trp Lys Lys			
170		175	180
Ser Pro Asp Ser Asp Val Ala Ala Thr Leu Lys Lys Gln Lys Lys			
185		190	195
Asn Thr Lys Asp Glu Phe Glu Glu Arg Ala Lys Ala Ile Ile Val			
200		205	210
Glu Phe Ala Gln Gln Gly Leu Asn Ala Ala Leu Phe Tyr Glu Asn			
215		220	225
Lys Asp Pro Arg Thr Phe Val Ser Leu Val Pro Thr Ser Ala His			
230		235	240
Thr Gly Asp Gly Met Gly Ser Leu Ile Tyr Leu Leu Val Glu Leu			
245		250	255
Thr Gln Thr Met Leu Ser Lys Arg Leu Ala His Cys Glu Glu Leu			
260		265	270
Arg Ala Gln Val Met Glu Val Lys Ala Leu Pro Gly Met Gly Thr			
275		280	285
Thr Ile Asp Val Ile Leu Ile Asn Gly Arg Leu Lys Glu Gly Asp			
290		295	300
Thr Ile Ile Val Pro Gly Val Glu Gly Pro Ile Val Thr Gln Ile			
305		310	315
Arg Gly Leu Leu Leu Pro Pro Pro Met Lys Glu Leu Arg Val Lys			
320		325	330
Asn Gln Tyr Glu Lys His Lys Glu Val Glu Ala Ala Gln Gly Val			
335		340	345
Lys Ile Leu Gly Lys Asp Leu Glu Lys Thr Leu Ala Gly Leu Pro			
350		355	360
Leu Leu Val Ala Tyr Lys Glu Asp Glu Ile Pro Val Leu Lys Asp			
365		370	375
Glu Leu Ile His Glu Leu Lys Gln Thr Leu Asn Ala Ile Lys Leu			
380		385	390
Glu Glu Lys Gly Val Tyr Val Gln Ala Ser Thr Leu Gly Ser Leu			
395		400	405
Glu Ala Leu Leu Glu Phe Leu Lys Thr Ser Glu Val Pro Tyr Ala			
410		415	420

Gly Ile Asn Ile Gly Pro Val His Lys Lys Asp Val Met Lys Ala
 425 430 435
 Ser Val Met Leu Glu His Asp Pro Gln Tyr Ala Val Ile Leu Ala
 440 445 450
 Phe Asp Val Arg Ile Glu Arg Asp Ala Gln Glu Met Ala Asp Ser
 455 460 465
 Leu Gly Val Arg Ile Phe Ser Ala Glu Ile Ile Tyr His Leu Phe
 470 475 480
 Asp Ala Phe Thr Lys Tyr Arg Gln Asp Tyr Lys Lys Gln Lys Gln
 485 490 495
 Glu Glu Phe Lys His Ile Ala Val Phe Pro Cys Lys Ile Lys Ile
 500 505 510
 Leu Pro Gln Tyr Ile Phe Asn Ser Arg Asp Pro Ile Val Met Gly
 515 520 525
 Val Thr Val Glu Ala Gly Gln Val Lys Gln Gly Thr Pro Met Cys
 530 535 540
 Val Pro Ser Lys Asn Phe Val Asp Ile Gly Ile Val Thr Ser Ile
 545 550 555
 Glu Ile Asn His Lys Gln Val Asp Val Ala Lys Lys Gly Gln Glu
 560 565 570
 Val Cys Val Lys Ile Glu Pro Ile Pro Gly Glu Ser Pro Lys Met
 575 580 585
 Phe Gly Arg His Phe Glu Ala Thr Asp Ile Leu Val Ser Lys Ile
 590 595 600
 Ser Arg Gln Ser Ile Asp Ala Leu Lys Asp Trp Phe Arg Asp Glu
 605 610 615
 Met Gln Lys Ser Asp Trp Gln Leu Ile Val Glu Leu Lys Lys Val
 620 625 630
 Phe Glu Ile Ile

<210> 20
 <211> 196
 <212> PRT
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte ID No: 3421335CD1

<400> 20
 Met Gly Ser Val Asn Ser Arg Gly His Lys Ala Glu Ala Gln Val
 1 5 10 15
 Val Met Met Gly Leu Asp Ser Ala Gly Lys Thr Thr Leu Leu Tyr
 20 25 30
 Lys Leu Lys Gly His Gln Leu Val Glu Thr Leu Pro Thr Val Gly
 35 40 45
 Phe Asn Val Glu Pro Leu Lys Ala Pro Gly His Val Ser Leu Thr
 50 55 60
 Leu Trp Asp Val Gly Gly Gln Ala Pro Leu Arg Ala Ser Trp Lys
 65 70 75
 Asp Tyr Leu Glu Gly Thr Asp Ile Leu Val Tyr Val Leu Asp Ser
 80 85 90
 Thr Asp Glu Ala Arg Leu Pro Glu Ser Ala Ala Glu Leu Thr Glu
 95 100 105

Val Leu Asn Asp Pro Asn Met Ala Gly Val Pro Phe Leu Val Leu
 110 115 120
 Ala Asn Lys Gln Glu Ala Pro Asp Ala Leu Pro Leu Leu Lys Ile
 125 130 135
 Arg Asn Arg Leu Ser Leu Glu Arg Phe Gln Asp His Cys Trp Glu
 140 145 150
 Leu Arg Gly Cys Ser Ala Leu Thr Gly Glu Gly Leu Pro Glu Ala
 155 160 165
 Leu Gln Ser Leu Trp Ser Leu Leu Lys Ser Arg Ser Cys Met Cys
 170 175 180
 Leu Gln Ala Arg Ala His Gly Ala Glu Arg Gly Asp Ser Lys Arg
 185 190 195
 Ser

<210> 21
<211> 446
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 605761CD1

<400> 21
Met Ala Ala Arg Lys Gly Arg Arg Arg Thr Cys Glu Thr Gly Glu
 1 5 10 15
Pro Met Glu Ala Glu Ser Gly Asp Thr Ser Ser Glu Gly Pro Ala
 20 25 30
Gln Val Tyr Leu Pro Gly Arg Gly Pro Pro Leu Arg Glu Gly Glu
 35 40 45
Glu Leu Val Met Asp Glu Glu Ala Tyr Val Leu Tyr His Arg Ala
 50 55 60
Gln Thr Gly Ala Pro Cys Leu Ser Phe Asp Ile Val Arg Asp His
 65 70 75
Leu Gly Asp Asn Arg Thr Glu Leu Pro Leu Thr Leu Tyr Leu Cys
 80 85 90
Ala Gly Thr Gln Ala Glu Ser Ala Gln Ser Asn Arg Leu Met Met
 95 100 105
Leu Arg Met His Asn Leu His Gly Thr Lys Pro Pro Pro Ser Glu
 110 115 120
Gly Ser Asp Glu Glu Glu Glu Glu Asp Glu Glu Asp Glu Glu
 125 130 135
Glu Arg Lys Pro Gln Leu Glu Leu Ala Met Val Pro His Tyr Gly
 140 145 150
Gly Ile Asn Arg Val Arg Val Ser Trp Leu Gly Glu Glu Pro Val
 155 160 165
Ala Gly Val Trp Ser Glu Lys Gly Gln Val Glu Val Phe Ala Leu
 170 175 180
Arg Arg Leu Leu Gln Val Val Glu Glu Pro Gln Ala Leu Ala Ala
 185 190 195
Phe Leu Arg Asp Glu Gln Ala Gln Met Lys Pro Ile Phe Ser Phe
 200 205 210
Ala Gly His Met Gly Glu Gly Phe Ala Leu Asp Trp Ser Pro Arg
 215 220 225

Val Thr Gly Arg Leu Leu Thr Gly Asp Cys Gln Lys Asn Ile His
 230 235 240
 Leu Trp Thr Pro Thr Asp Gly Gly Ser Trp His Val Asp Gln Arg
 245 250 255
 Pro Phe Val Gly His Thr Arg Ser Val Glu Asp Leu Gln Trp Ser
 260 265 270
 Pro Thr Glu Asn Thr Val Phe Ala Ser Cys Ser Ala Asp Ala Ser
 275 280 285
 Ile Arg Ile Trp Asp Ile Arg Ala Ala Pro Ser Lys Ala Cys Met
 290 295 300
 Leu Thr Thr Ala Thr Ala His Asp Gly Asp Val Asn Val Ile Ser
 305 310 315
 Trp Ser Arg Arg Glu Pro Phe Leu Leu Ser Gly Gly Asp Asp Gly
 320 325 330
 Ala Leu Lys Ile Trp Asp Leu Arg Gln Phe Lys Ser Gly Ser Pro
 335 340 345
 Val Ala Thr Phe Lys Gln His Val Ala Pro Val Thr Ser Val Glu
 350 355 360
 Trp His Pro Gln Asp Ser Gly Val Phe Ala Ala Ser Gly Ala Asp
 365 370 375
 His Gln Ile Thr Gln Trp Asp Leu Ala Val Glu Arg Asp Pro Glu
 380 385 390
 Ala Gly Asp Val Glu Ala Asp Pro Gly Leu Ala Asp Leu Pro Gln
 395 400 405
 Gln Leu Leu Phe Val His Gln Gly Glu Thr Glu Leu Lys Glu Leu
 410 415 420
 His Trp His Pro Gln Cys Pro Gly Leu Leu Val Ser Thr Ala Leu
 425 430 435
 Ser Gly Phe Thr Ile Phe Arg Thr Ile Ser Val
 440 445

<210> 22
<211> 265
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 483862CD1

<400> 22
Met Ser Ser Gly Leu Arg Ala Ala Asp Phe Pro Arg Trp Lys Arg
 1 5 10 15
 His Ile Ser Glu Gln Leu Arg Arg Arg Asp Arg Leu Gln Arg Gln
 20 25 30
 Ala Phe Glu Glu Ile Ile Leu Gln Tyr Asn Lys Leu Leu Glu Lys
 35 40 45
 Ser Asp Leu His Ser Val Leu Ala Gln Lys Leu Gln Ala Glu Lys
 50 55 60
 His Asp Val Pro Asn Arg His Glu Ile Ser Pro Gly His Asp Gly
 65 70 75
 Thr Trp Asn Asp Asn Gln Leu Gln Glu Met Ala Gln Leu Arg Ile
 80 85 90
 Lys His Gln Glu Glu Leu Thr Glu Leu His Lys Lys Arg Gly Glu

95	100	105
Leu Ala Gln Leu Val Ile Asp Leu Asn Asn Gln Met Gln Arg Lys		
110	115	120
Asp Arg Glu Met Gln Met Asn Glu Ala Lys Ile Ala Glu Cys Leu		
125	130	135
Gln Thr Ile Ser Asp Leu Glu Thr Glu Cys Leu Asp Leu Arg Thr		
140	145	150
Lys Leu Cys Asp Leu Glu Arg Ala Asn Gln Thr Leu Lys Asp Glu		
155	160	165
Tyr Asp Ala Leu Gln Ile Thr Phe Thr Ala Leu Glu Gly Lys Leu		
170	175	180
Arg Lys Thr Thr Glu Glu Asn Gln Glu Leu Val Thr Arg Trp Met		
185	190	195
Ala Glu Lys Ala Gln Glu Ala Asn Arg Leu Asn Ala Glu Asn Glu		
200	205	210
Lys Asp Ser Arg Arg Arg Gln Ala Arg Leu Gln Lys Glu Leu Ala		
215	220	225
Glu Ala Ala Lys Glu Pro Leu Pro Val Glu Gln Asp Asp Asp Ile		
230	235	240
Glu Val Ile Val Asp Glu Thr Ser Asp His Thr Glu Glu Thr Ser		
245	250	255
Pro Val Arg Ala Ile Ser Arg Ala Ala Thr		
260	265	

<210> 23
<211> 185
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 1256777CD1

<400> 23		
Met Leu Lys Ala Lys Ile Leu Phe Val Gly Pro Cys Glu Ser Gly		
1	5	10
Lys Thr Val Leu Ala Asn Phe Leu Thr Glu Ser Ser Asp Ile Thr		
20	25	30
Glu Tyr Ser Pro Thr Gln Gly Val Arg Ile Leu Glu Phe Glu Asn		
35	40	45
Pro His Val Thr Ser Asn Asn Lys Gly Thr Gly Cys Glu Phe Glu		
50	55	60
Leu Trp Asp Cys Gly Gly Asp Ala Lys Phe Glu Ser Cys Trp Pro		
65	70	75
Ala Leu Met Lys Asp Ala His Gly Val Val Ile Val Phe Asn Ala		
80	85	90
Asp Ile Pro Ser His Arg Lys Glu Met Glu Met Trp Tyr Ser Cys		
95	100	105
Phe Val Gln Gln Pro Ser Leu Gln Asp Thr Gln Cys Met Leu Ile		
110	115	120
Ala His His Lys Pro Gly Ser Gly Asp Asp Lys Gly Ser Leu Ser		
125	130	135
Leu Ser Pro Pro Leu Asn Lys Leu Lys Leu Val His Ser Asn Leu		
140	145	150

Glu Asp Asp Pro Glu Glu Ile Arg Met Glu Phe Ile Lys Tyr Leu
155 160 165
Lys Ser Ile Ile Asn Ser Met Ser Glu Ser Arg Asp Arg Glu Glu
170 175 180
Met Ser Ile Met Thr
185

<210> 24
<211> 554
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 2198779CD1

<400> 24
Met Gly Ser Arg Asn Ser Ser Ala Gly Ser Gly Ser Gly Asp
1 5 10 15
Pro Ser Glu Gly Leu Pro Arg Arg Gly Ala Gly Leu Arg Arg Ser
20 25 30
Glu Glu Glu Glu Glu Asp Glu Asp Val Asp Leu Ala Gln Val
35 40 45
Leu Ala Tyr Leu Leu Arg Arg Gly Gln Val Arg Leu Val Gln Gly
50 55 60
Gly Gly Ala Ala Asn Leu Gln Phe Ile Gln Ala Leu Leu Asp Ser
65 70 75
Glu Glu Glu Asn Asp Arg Ala Trp Asp Gly Arg Leu Gly Asp Arg
80 85 90
Tyr Asn Pro Pro Val Asp Ala Thr Pro Asp Thr Arg Glu Leu Glu
95 100 105
Phe Asn Glu Ile Lys Thr Gln Val Glu Leu Ala Thr Gly Gln Leu
110 115 120
Gly Leu Arg Arg Ala Ala Gln Lys His Ser Phe Pro Arg Met Leu
125 130 135
His Gln Arg Glu Arg Gly Leu Cys His Arg Gly Ser Phe Ser Leu
140 145 150
Gly Glu Gln Ser Arg Val Ile Ser His Phe Leu Pro Asn Asp Leu
155 160 165
Gly Phe Thr Asp Ser Tyr Ser Gln Lys Ala Phe Cys Gly Ile Tyr
170 175 180
Ser Lys Asp Gly Gln Ile Phe Met Ser Ala Cys Gln Asp Gln Thr
185 190 195
Ile Arg Leu Tyr Asp Cys Arg Tyr Gly Arg Phe Arg Lys Phe Lys
200 205 210
Ser Ile Lys Ala Arg Asp Val Gly Trp Ser Val Leu Asp Val Ala
215 220 225
Phe Thr Pro Asp Gly Asn His Phe Leu Tyr Ser Ser Trp Ser Asp
230 235 240
Tyr Ile His Ile Cys Asn Ile Tyr Gly Glu Gly Asp Thr His Thr
245 250 255
Ala Leu Asp Leu Arg Pro Asp Glu Arg Arg Phe Ala Val Phe Ser
260 265 270
Ile Ala Val Ser Ser Asp Gly Arg Glu Val Leu Gly Gly Ala Asn
275 280 285

Asp	Gly	Cys	Leu	Tyr	Val	Phe	Asp	Arg	Glu	Gln	Asn	Arg	Arg	Thr
					290				295					300
Leu	Gln	Ile	Glu	Ser	His	Glu	Asp	Asp	Val	Asn	Ala	Val	Ala	Phe
					305				310					315
Ala	Asp	Ile	Ser	Ser	Gln	Ile	Leu	Phe	Ser	Gly	Gly	Asp	Asp	Ala
					320				325					330
Ile	Cys	Lys	Val	Trp	Asp	Arg	Arg	Thr	Met	Arg	Glu	Asp	Asp	Pro
					335				340					345
Lys	Pro	Val	Gly	Ala	Leu	Ala	Gly	His	Gln	Asp	Gly	Ile	Thr	Phe
					350				355					360
Ile	Asp	Ser	Lys	Gly	Asp	Ala	Arg	Tyr	Leu	Ile	Ser	Asn	Ser	Lys
					365				370					375
Asp	Gln	Thr	Ile	Lys	Leu	Trp	Asp	Ile	Arg	Arg	Phe	Ser	Ser	Arg
					380				385					390
Glu	Gly	Met	Glu	Ala	Ser	Arg	Gln	Ala	Ala	Thr	Gln	Gln	Asn	Trp
					395				400					405
Asp	Tyr	Arg	Trp	Gln	Gln	Val	Pro	Lys	Lys	Gly	Phe	Thr	Leu	His
					410				415					420
Pro	Tyr	Pro	Ala	Trp	Arg	Lys	Leu	Lys	Leu	Pro	Gly	Asp	Ser	Ser
					425				430					435
Leu	Met	Thr	Tyr	Arg	Gly	His	Gly	Val	Leu	His	Thr	Leu	Ile	Arg
					440				445					450
Cys	Arg	Phe	Ser	Pro	Ile	His	Ser	Thr	Gly	Gln	Gln	Phe	Ile	Tyr
					455				460					465
Ser	Gly	Cys	Ser	Thr	Gly	Lys	Val	Val	Val	Tyr	Asp	Leu	Leu	Ser
					470				475					480
Gly	His	Ile	Val	Lys	Lys	Leu	Thr	Asn	His	Lys	Ala	Cys	Val	Arg
					485				490					495
Asp	Val	Ser	Trp	His	Pro	Phe	Glu	Glu	Lys	Ile	Val	Ser	Ser	Ser
					500				505					510
Trp	Asp	Gly	Asn	Leu	Arg	Leu	Trp	Gln	Tyr	Arg	Gln	Ala	Glu	Tyr
					515				520					525
Phe	Gln	Asp	Asp	Met	Pro	Glu	Ser	Glu	Glu	Cys	Ala	Ser	Ala	Pro
					530				535					540
Ala	Pro	Val	Pro	Gln	Ser	Ser	Thr	Pro	Phe	Ser	Ser	Pro	Gln	
					545				550					

<210> 25
<211> 434
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 2226116CD1

<400> 25
Met Arg Pro Ser Ser Ser Val Ser Val Ser Cys Pro Ala Leu Asn
1 5 10 15
Gln Val Ser His Phe Ala Asn Leu Thr Ser Val Gly Ala Met Ala
20 25 30
Pro Ala Arg Cys Phe Ser Ala Arg Leu Arg Thr Val Phe Gln Gly
35 40 45
Val Gly His Trp Ala Leu Ser Thr Trp Ala Gly Leu Lys Pro Ser

50	55	60
Arg Leu Leu Pro Gln Arg Ala Ser Pro Arg	Leu Leu Ser Val Gly	
65	70	75
Arg Ala Asp Leu Ala Lys His Gln Glu Leu Pro Gly Lys Lys Leu		
80	85	90
Leu Ser Glu Lys Lys Leu Lys Arg Tyr Phe Val Asp Tyr Arg Arg		
95	100	105
Val Leu Val Cys Gly Gly Asn Gly Gly Ala Gly Ala Ser Cys Phe		
110	115	120
His Ser Glu Pro Arg Lys Glu Phe Gly Gly Pro Asp Gly Gly Asp		
125	130	135
Gly Gly Asn Gly Gly His Val Ile Leu Arg Val Asp Gln Gln Val		
140	145	150
Lys Ser Leu Ser Ser Val Leu Ser Arg Tyr Gln Gly Phe Ser Gly		
155	160	165
Glu Asp Gly Gly Ser Lys Asn Cys Phe Gly Arg Ser Gly Ala Val		
170	175	180
Leu Tyr Ile Arg Val Pro Val Gly Thr Leu Val Lys Glu Gly Gly		
185	190	195
Arg Val Val Ala Asp Leu Ser Cys Val Gly Asp Glu Tyr Ile Ala		
200	205	210
Ala Leu Gly Gly Ala Gly Gly Lys Gly Asn Arg Phe Phe Leu Ala		
215	220	225
Asn Asn Asn Arg Ala Pro Val Thr Cys Thr Pro Gly Gln Pro Gly		
230	235	240
Gln Gln Arg Val Leu His Leu Glu Leu Lys Thr Val Ala His Ala		
245	250	255
Gly Met Val Gly Phe Pro Asn Ala Gly Lys Ser Ser Leu Leu Arg		
260	265	270
Ala Ile Ser Asn Ala Arg Pro Ala Val Ala Ser Tyr Pro Phe Thr		
275	280	285
Thr Leu Lys Pro His Val Gly Ile Val His Tyr Glu Gly His Leu		
290	295	300
Gln Ile Ala Val Ala Asp Ile Pro Gly Ile Ile Arg Gly Ala His		
305	310	315
Gln Asn Arg Gly Leu Gly Ser Ala Phe Leu Arg His Ile Glu Arg		
320	325	330
Cys Arg Phe Leu Leu Phe Val Val Asp Leu Ser Gln Pro Glu Pro		
335	340	345
Trp Thr Gln Val Asp Asp Leu Lys Tyr Glu Leu Glu Met Tyr Glu		
350	355	360
Lys Gly Leu Ser Ala Arg Pro His Ala Ile Val Ala Asn Lys Ile		
365	370	375
Asp Leu Pro Glu Ala Gln Ala Asn Leu Ser Gln Leu Arg Asp His		
380	385	390
Leu Gly Gln Glu Val Ile Val Leu Ser Ala Leu Thr Gly Glu Asn		
395	400	405
Leu Glu Gln Leu Leu His Leu Lys Val Leu Tyr Asp Ala Tyr		
410	415	420
Ala Glu Ala Glu Leu Gly Gln Gly Arg Gln Pro Leu Arg Trp		
425	430	

<210> 26
<211> 826

<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 2504472CD1

<400> 26
Met Val Ala Pro Val Leu Glu Thr Ser His Val Phe Cys Cys Pro
1 5 10 15
Asn Arg Val Arg Gly Val Leu Asn Trp Ser Ser Gly Pro Arg Gly
20 25 30
Leu Leu Ala Phe Gly Thr Ser Cys Ser Val Val Leu Tyr Asp Pro
35 40 45
Leu Lys Arg Val Val Thr Asn Leu Asn Gly His Thr Ala Arg
50 55 60
Val Asn Cys Ile Gln Trp Ile Cys Lys Gln Asp Gly Ser Pro Ser
65 70 75
Thr Glu Leu Val Ser Gly Gly Ser Asp Asn Gln Val Ile His Trp
80 85 90
Glu Ile Glu Asp Asn Gln Leu Leu Lys Ala Val His Leu Gln Gly
95 100 105
His Glu Gly Pro Val Tyr Ala Val His Ala Val Tyr Gln Arg Arg
110 115 120
Thr Ser Asp Pro Ala Leu Cys Thr Leu Ile Val Ser Ala Ala Ala
125 130 135
Asp Ser Ala Val Arg Leu Trp Ser Lys Lys Gly Pro Glu Val Met
140 145 150
Cys Leu Gln Thr Leu Asn Phe Gly Asn Gly Phe Ala Leu Ala Leu
155 160 165
Cys Leu Ser Phe Leu Pro Asn Thr Asp Val Pro Ile Leu Ala Cys
170 175 180
Gly Asn Asp Asp Cys Arg Ile His Ile Phe Ala Gln Gln Asn Asp
185 190 195
Gln Phe Gln Lys Val Leu Ser Leu Cys Gly His Glu Asp Trp Ile
200 205 210
Arg Gly Val Glu Trp Ala Ala Phe Gly Arg Asp Leu Phe Leu Ala
215 220 225
Ser Cys Ser Gln Asp Cys Leu Ile Arg Ile Trp Lys Leu Tyr Ile
230 235 240
Lys Ser Thr Ser Leu Glu Thr Gln Asp Asp Asp Asn Ile Arg Leu
245 250 255
Lys Glu Asn Thr Phe Thr Ile Glu Asn Glu Ser Val Lys Ile Ala
260 265 270
Phe Ala Val Thr Leu Glu Thr Val Leu Ala Gly His Glu Asn Trp
275 280 285
Val Asn Ala Val His Trp Gln Pro Val Phe Tyr Lys Asp Gly Val
290 295 300
Leu Gln Gln Pro Val Arg Leu Leu Ser Ala Ser Met Asp Lys Thr
305 310 315
Met Ile Leu Trp Ala Pro Asp Glu Glu Ser Gly Val Trp Leu Glu
320 325 330
Gln Val Arg Val Gly Glu Val Gly Gly Asn Thr Leu Gly Phe Tyr
335 340 345
Asp Cys Gln Phe Asn Glu Asp Gly Ser Met Ile Ile Ala His Ala

350	355	360
Phe His Gly Ala Leu His Leu Trp Lys Gln Asn Thr Val Asn Pro		
365	370	375
Arg Glu Trp Thr Pro Glu Ile Val Ile Ser Gly His Phe Asp Gly		
380	385	390
Val Gln Asp Leu Val Trp Asp Pro Glu Gly Glu Phe Ile Ile Thr		
395	400	405
Val Gly Thr Asp Gln Thr Thr Arg Leu Phe Ala Pro Trp Lys Arg		
410	415	420
Lys Asp Gln Ser Gln Val Thr Trp His Glu Ile Ala Arg Pro Gln		
425	430	435
Ile His Gly Tyr Asp Leu Lys Cys Leu Ala Met Ile Asn Arg Phe		
440	445	450
Gln Phe Val Ser Gly Ala Asp Glu Lys Val Leu Arg Val Phe Ser		
455	460	465
Ala Pro Arg Asn Phe Val Glu Asn Phe Cys Ala Ile Thr Gly Gln		
470	475	480
Ser Leu Asn His Val Leu Cys Asn Gln Asp Ser Asp Leu Pro Glu		
485	490	495
Gly Ala Thr Val Pro Ala Leu Gly Leu Ser Asn Lys Ala Val Phe		
500	505	510
Gln Gly Asp Ile Ala Ser Gln Pro Ser Asp Glu Glu Glu Leu Leu		
515	520	525
Thr Ser Thr Gly Phe Glu Tyr Gln Gln Val Ala Phe Gln Pro Ser		
530	535	540
Ile Leu Thr Glu Pro Pro Thr Glu Asp His Leu Leu Gln Asn Thr		
545	550	555
Leu Trp Pro Glu Val Gln Lys Leu Tyr Gly His Gly Tyr Glu Ile		
560	565	570
Phe Cys Val Thr Cys Asn Ser Ser Lys Thr Leu Leu Ala Ser Ala		
575	580	585
Cys Lys Ala Ala Lys Lys Glu His Ala Ala Ile Ile Leu Trp Asn		
590	595	600
Thr Thr Ser Trp Lys Gln Val Gln Asn Leu Val Phe His Ser Leu		
605	610	615
Thr Val Thr Gln Met Ala Phe Ser Pro Asn Glu Lys Phe Leu Leu		
620	625	630
Ala Val Ser Arg Asp Arg Thr Trp Ser Leu Trp Lys Lys Gln Asp		
635	640	645
Thr Ile Ser Pro Glu Phe Glu Pro Val Phe Ser Leu Phe Ala Phe		
650	655	660
Thr Asn Lys Ile Thr Ser Val His Ser Arg Ile Ile Trp Ser Cys		
665	670	675
Asp Trp Ser Pro Asp Ser Lys Tyr Phe Phe Thr Gly Ser Arg Asp		
680	685	690
Lys Lys Val Val Val Trp Gly Glu Cys Asp Ser Thr Asp Asp Cys		
695	700	705
Ile Glu His Asn Ile Gly Pro Cys Ser Ser Val Leu Asp Val Gly		
710	715	720
Gly Ala Val Thr Ala Val Ser Val Cys Pro Val Leu His Pro Ser		
725	730	735
Gln Arg Tyr Val Val Ala Val Gly Leu Glu Cys Gly Lys Ile Cys		
740	745	750
Leu Tyr Thr Trp Lys Lys Thr Asp Gln Val Pro Glu Ile Asn Asp		
755	760	765

Trp Thr His Cys Val Glu Thr Ser Gln Ser Gln Ser His Thr Leu
 770 775 780
 Ala Ile Arg Lys Leu Cys Trp Lys Asn Cys Ser Gly Lys Thr Glu
 785 790 795
 Gln Lys Glu Ala Glu Gly Ala Glu Trp Leu His Phe Ala Ser Cys
 800 805 810
 Gly Glu Asp His Thr Val Lys Ile His Arg Val Asn Lys Cys Ala
 815 820 825
 Leu

<210> 27
<211> 618
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 3029920CD1

<400> 27
Met Lys Lys Asp Val Arg Ile Leu Leu Val Gly Glu Pro Arg Val
1 5 10 15
Gly Lys Thr Ser Leu Ile Met Ser Leu Val Ser Glu Glu Phe Pro
20 25 30
Glu Glu Val Pro Pro Arg Ala Glu Glu Ile Thr Ile Pro Ala Asp
35 40 45
Val Thr Pro Glu Arg Val Pro Thr His Ile Val Asp Tyr Ser Glu
50 55 60
Ala Glu Gln Ser Asp Glu Gln Leu His Gln Glu Ile Ser Gln Ala
65 70 75
Asn Val Ile Cys Ile Val Tyr Ala Val Asn Asn Lys His Ser Ile
80 85 90
Asp Lys Val Thr Ser Arg Trp Ile Pro Leu Ile Asn Glu Arg Thr
95 100 105
Asp Lys Asp Ser Arg Leu Pro Leu Ile Leu Val Gly Asn Lys Ser
110 115 120
Asp Leu Val Glu Tyr Ser Ser Met Glu Thr Ile Leu Pro Ile Met
125 130 135
Asn Gln Tyr Thr Glu Ile Glu Thr Cys Val Glu Cys Ser Ala Lys
140 145 150
Asn Leu Lys Asn Ile Ser Glu Leu Phe Tyr Tyr Ala Gln Lys Ala
155 160 165
Val Leu His Pro Thr Gly Pro Leu Tyr Cys Pro Glu Glu Lys Glu
170 175 180
Met Lys Pro Ala Cys Ile Lys Ala Leu Thr Arg Ile Phe Lys Ile
185 190 195
Ser Asp Gln Asp Asn Asp Gly Thr Leu Asn Asp Ala Glu Leu Asn
200 205 210
Phe Phe Gln Arg Ile Cys Phe Asn Thr Pro Leu Ala Pro Gln Ala
215 220 225
Leu Glu Asp Val Lys Asn Val Val Arg Lys His Ile Ser Asp Gly
230 235 240
Val Ala Asp Ser Gly Leu Thr Leu Lys Gly Phe Leu Phe Leu His
245 250 255

Thr Leu Phe Ile Gln Arg Gly Arg His Glu Thr Thr Trp Thr Val
 260 265 270
 Leu Arg Arg Phe Gly Tyr Asp Asp Asp Leu Asp Leu Thr Pro Glu
 275 280 285
 Tyr Leu Phe Pro Leu Leu Lys Ile Pro Pro Asp Cys Thr Thr Glu
 290 295 300
 Leu Asn His His Ala Tyr Leu Phe Leu Gln Ser Thr Phe Asp Lys
 305 310 315
 His Asp Leu Asp Arg Asp Cys Ala Leu Ser Pro Asp Glu Leu Lys
 320 325 330
 Asp Leu Phe Lys Val Phe Pro Tyr Ile Pro Trp Gly Pro Asp Val
 335 340 345
 Asn Asn Thr Val Cys Thr Asn Glu Arg Gly Trp Ile Thr Tyr Gln
 350 355 360
 Gly Phe Leu Ser Gln Trp Thr Leu Thr Thr Tyr Leu Asp Val Gln
 365 370 375
 Arg Cys Leu Glu Tyr Leu Gly Tyr Leu Gly Tyr Ser Ile Leu Thr
 380 385 390
 Glu Gln Glu Ser Gln Ala Ser Ala Val Thr Val Thr Arg Asp Lys
 395 400 405
 Lys Ile Asp Leu Gln Lys Lys Gln Thr Gln Arg Asn Val Phe Arg
 410 415 420
 Cys Asn Val Ile Gly Val Lys Asn Cys Gly Lys Ser Gly Val Leu
 425 430 435
 Gln Ala Leu Leu Gly Arg Asn Leu Met Arg Gln Lys Lys Ile Arg
 440 445 450
 Glu Asp His Lys Ser Tyr Tyr Ala Ile Asn Thr Val Tyr Val Tyr
 455 460 465
 Gly Gln Glu Lys Tyr Leu Leu Leu His Asp Ile Ser Glu Ser Glu
 470 475 480
 Phe Leu Thr Glu Ala Glu Ile Ile Cys Asp Val Val Cys Leu Val
 485 490 495
 Tyr Asp Val Ser Asn Pro Lys Ser Phe Glu Tyr Cys Ala Arg Ile
 500 505 510
 Phe Lys Gln His Phe Met Asp Ser Arg Ile Pro Cys Leu Ile Val
 515 520 525
 Ala Ala Lys Ser Asp Leu His Glu Val Lys Gln Glu Tyr Ser Ile
 530 535 540
 Ser Pro Thr Asp Phe Cys Arg Lys His Lys Met Pro Pro Pro Gln
 545 550 555
 Ala Phe Thr Cys Asn Thr Ala Asp Ala Pro Ser Lys Asp Ile Phe
 560 565 570
 Val Lys Leu Thr Thr Met Ala Met Tyr Pro His Val Thr Gln Ala
 575 580 585
 Asp Leu Lys Ser Ser Thr Phe Trp Leu Arg Ala Ser Phe Gly Ala
 590 595 600
 Thr Val Phe Ala Val Leu Gly Phe Ala Met Tyr Lys Ala Leu Leu
 605 610 615
 Lys Gln Arg

<210> 28
 <211> 596
 <212> PRT
 <213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte ID No: 3332415CD1

<400> 28

Met	Glu	Pro	Glu	Leu	Asp	Ala	Gln	Lys	Gln	Pro	Arg	Pro	Arg	Arg
1	5						10				15			
Arg	Ser	Arg	Arg	Ala	Ser	Gly	Leu	Ser	Thr	Glu	Gly	Ala	Thr	Gly
		20						25			30			
Pro	Ser	Ala	Asp	Thr	Ser	Gly	Ser	Glu	Leu	Asp	Gly	Arg	Cys	Ser
			35					40			45			
Leu	Arg	Arg	Gly	Ser	Ser	Phe	Thr	Phe	Leu	Thr	Pro	Gly	Pro	Asn
			50					55			60			
Trp	Asp	Phe	Thr	Leu	Lys	Arg	Lys	Arg	Glu	Lys	Asp	Asp	Asp	
			65					70			75			
Val	Val	Ser	Leu	Ser	Ser	Leu	Asp	Leu	Lys	Glu	Pro	Ser	Asn	Lys
			80					85			90			
Arg	Val	Arg	Pro	Leu	Ala	Arg	Val	Thr	Ser	Leu	Ala	Asn	Leu	Ile
			95					100			105			
Ser	Pro	Val	Arg	Asn	Gly	Ala	Val	Arg	Arg	Phe	Gly	Gln	Thr	Ile
			110					115			120			
Gln	Ser	Phe	Thr	Leu	Arg	Gly	Asp	His	Arg	Ser	Pro	Ala	Ser	Ala
			125					130			135			
Gln	Lys	Phe	Ser	Ser	Arg	Ser	Thr	Val	Pro	Thr	Pro	Ala	Lys	Arg
			140					145			150			
Arg	Ser	Ser	Ala	Leu	Trp	Ser	Glu	Met	Leu	Asp	Ile	Thr	Met	Lys
			155					160			165			
Glu	Ser	Leu	Thr	Thr	Arg	Glu	Ile	Arg	Arg	Gln	Glu	Ala	Ile	Tyr
			170					175			180			
Glu	Met	Ser	Arg	Gly	Glu	Gln	Asp	Leu	Ile	Glu	Asp	Leu	Lys	Leu
			185					190			195			
Ala	Arg	Lys	Ala	Tyr	His	Asp	Pro	Met	Leu	Lys	Leu	Ser	Ile	Met
			200					205			210			
Ser	Glu	Glu	Glu	Leu	Thr	His	Ile	Phe	Gly	Asp	Leu	Asp	Ser	Tyr
			215					220			225			
Ile	Pro	Leu	His	Glu	Asp	Leu	Leu	Thr	Arg	Ile	Gly	Glu	Ala	Thr
			230					235			240			
Lys	Pro	Asp	Gly	Thr	Val	Glu	Gln	Ile	Gly	His	Ile	Leu	Val	Ser
			245					250			255			
Trp	Leu	Pro	Arg	Leu	Asn	Ala	Tyr	Arg	Gly	Tyr	Cys	Ser	Asn	Gln
			260					265			270			
Leu	Ala	Ala	Lys	Ala	Leu	Leu	Asp	Gln	Lys	Lys	Gln	Asp	Pro	Arg
			275					280			285			
Val	Gln	Asp	Phe	Leu	Gln	Arg	Cys	Leu	Glu	Ser	Pro	Phe	Ser	Arg
			290					295			300			
Lys	Leu	Asp	Leu	Trp	Ser	Phe	Leu	Asp	Ile	Pro	Arg	Ser	Arg	Leu
			305					310			315			
Val	Lys	Tyr	Pro	Leu	Leu	Leu	Lys	Glu	Ile	Leu	Lys	His	Thr	Pro
			320					325			330			
Lys	Glu	His	Pro	Asp	Val	Gln	Leu	Leu	Glu	Asp	Ala	Ile	Leu	Ile
			335					340			345			
Ile	Gln	Gly	Val	Leu	Ser	Asp	Ile	Asn	Leu	Lys	Lys	Gly	Glu	Ser
			350					355			360			
Glu	Cys	Gln	Tyr	Tyr	Ile	Asp	Lys	Leu	Glu	Tyr	Leu	Asp	Glu	Lys
			365					370			375			

Gln Arg Asp Pro Arg Ile Glu Ala Ser Lys Val Leu Leu Cys His
 380 385 390
 Gly Glu Leu Arg Ser Lys Ser Gly His Lys Leu Tyr Ile Phe Leu
 395 400 405
 Phe Gln Asp Ile Leu Val Leu Thr Arg Pro Val Thr Arg Asn Glu
 410 415 420
 Arg His Ser Tyr Gln Val Tyr Arg Gln Pro Ile Pro Val Gln Glu
 425 430 435
 Leu Val Leu Glu Asp Leu Gln Asp Gly Asp Val Arg Met Gly Gly
 440 445 450
 Ser Phe Arg Gly Ala Phe Ser Asn Ser Glu Lys Ala Lys Asn Ile
 455 460 465
 Phe Arg Ile Arg Phe His Asp Pro Ser Pro Ala Gln Ser His Thr
 470 475 480
 Leu Gln Ala Asn Asp Val Phe His Lys Gln Gln Trp Phe Asn Cys
 485 490 495
 Ile Arg Ala Ala Ile Ala Pro Phe Gln Ser Ala Gly Ser Pro Pro
 500 505 510
 Glu Leu Gln Gly Leu Pro Glu Leu His Glu Glu Cys Glu Gly Asn
 515 520 525
 His Pro Ser Ala Arg Lys Leu Thr Ala Gln Arg Arg Ala Ser Thr
 530 535 540
 Val Ser Ser Val Thr Gln Val Glu Val Asp Glu Asn Ala Tyr Arg
 545 550 555
 Cys Gly Ser Gly Met Gln Met Ala Glu Asp Ser Lys Ser Leu Lys
 560 565 570
 Thr His Gln Thr Gln Pro Gly Ile Arg Arg Ala Arg Asp Lys Ala
 575 580 585
 Leu Ser Gly Gly Lys Arg Lys Glu Thr Leu Val
 590 595

<210> 29
 <211> 589
 <212> PRT
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte ID No: 4031536CD1

<400> 29
 Met Ser Lys Pro Gly Lys Pro Thr Leu Asn His Gly Leu Val Pro
 1 5 10 15
 Val Asp Leu Lys Ser Ala Lys Glu Pro Leu Pro His Gln Thr Val
 20 25 30
 Met Arg Ile Phe Ser Ile Ser Ile Ile Ala Gln Gly Leu Pro Phe
 35 40 45
 Cys Arg Arg Arg Met Lys Arg Lys Leu Asp His Gly Ser Glu Val
 50 55 60
 Arg Ser Phe Ser Leu Gly Lys Lys Pro Cys Lys Val Ser Glu Tyr
 65 70 75
 Thr Ser Thr Thr Gly Leu Val Pro Cys Ser Ala Thr Pro Thr Thr
 80 85 90
 Phe Gly Asp Leu Arg Ala Ala Asn Gly Gln Gly Gln Arg Arg

95	100	105
Arg Ile Thr Ser Val Gln Pro Pro Thr Gly Leu Gln Glu Trp Leu		
110	115	120
Lys Met Phe Gln Ser Trp Ser Gly Pro Glu Lys Leu Leu Ala Leu		
125	130	135
Asp Glu Leu Ile Asp Ser Cys Glu Pro Thr Gln Val Lys His Met		
140	145	150
Met Gln Val Ile Glu Pro Gln Phe Gln Arg Asp Phe Ile Ser Leu		
155	160	165
Leu Pro Lys Glu Leu Ala Leu Tyr Val Leu Ser Phe Leu Glu Pro		
170	175	180
Lys Asp Leu Leu Gln Ala Ala Gln Thr Cys Arg Tyr Trp Arg Ile		
185	190	195
Leu Ala Glu Asp Asn Leu Leu Trp Arg Glu Lys Cys Lys Glu Glu		
200	205	210
Gly Ile Asp Glu Pro Leu His Ile Lys Arg Arg Lys Val Ile Lys		
215	220	225
Pro Gly Phe Ile His Ser Pro Trp Lys Ser Ala Tyr Ile Arg Gln		
230	235	240
His Arg Ile Asp Thr Asn Trp Arg Arg Gly Glu Leu Lys Ser Pro		
245	250	255
Lys Val Leu Lys Gly His Asp Asp His Val Ile Thr Cys Leu Gln		
260	265	270
Phe Cys Gly Asn Arg Ile Val Ser Gly Ser Asp Asp Asn Thr Leu		
275	280	285
Lys Val Trp Ser Ala Val Thr Gly Lys Cys Leu Arg Thr Leu Val		
290	295	300
Gly His Thr Gly Gly Val Trp Ser Ser Gln Met Arg Asp Asn Ile		
305	310	315
Ile Ile Ser Gly Ser Thr Asp Arg Thr Leu Lys Val Trp Asn Ala		
320	325	330
Glu Thr Gly Glu Cys Ile His Thr Leu Tyr Gly His Thr Ser Thr		
335	340	345
Val Arg Cys Met His Leu His Glu Lys Arg Val Val Ser Gly Ser		
350	355	360
Arg Asp Ala Thr Leu Arg Val Trp Asp Ile Glu Thr Gly Gln Cys		
365	370	375
Leu His Val Leu Met Gly His Val Ala Ala Val Arg Cys Val Gln		
380	385	390
Tyr Asp Gly Arg Arg Val Val Ser Gly Ala Tyr Asp Phe Met Val		
395	400	405
Lys Val Trp Asp Pro Glu Thr Glu Thr Cys Leu His Thr Leu Gln		
410	415	420
Gly His Thr Asn Arg Val Tyr Ser Leu Gln Phe Asp Gly Ile His		
425	430	435
Val Val Ser Gly Ser Leu Asp Thr Ser Ile Arg Val Trp Asp Val		
440	445	450
Glu Thr Gly Asn Cys Ile His Thr Leu Thr Gly His Gln Ser Leu		
455	460	465
Thr Ser Gly Met Glu Leu Lys Asp Asn Ile Leu Val Ser Gly Asn		
470	475	480
Ala Asp Ser Thr Val Lys Ile Trp Asp Ile Lys Thr Gly Gln Cys		
485	490	495
Leu Gln Thr Leu Gln Gly Pro Asn Lys His Gln Ser Ala Val Thr		
500	505	510

Cys	Leu	Gln	Phe	Asn	Lys	Asn	Phe	Val	Ile	Thr	Ser	Ser	Asp	Asp
515									520				525	
Gly	Thr	Val	Lys	Leu	Trp	Asp	Leu	Lys	Thr	Gly	Glu	Phe	Ile	Arg
530									535				540	
Asn	Leu	Val	Thr	Leu	Glu	Ser	Gly	Gly	Ser	Gly	Gly	Val	Val	Trp
545									550				555	
Arg	Ile	Arg	Ala	Ser	Asn	Thr	Lys	Leu	Val	Cys	Ala	Val	Gly	Ser
560									565				570	
Arg	Asn	Gly	Thr	Glu	Glu	Thr	Lys	Leu	Leu	Val	Leu	Asp	Phe	Asp
575									580				585	
Val	Asp	Met	Lys											

<210> 30
<211> 3375
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 708398CB1

<400> 30
ggggagaagg gagcccgca gatcaggggt cagagttagg gggcttcctt cctgtgcac 60
cctcatctca gggccgcca cttccagctg cagccgcac tttcagttc atttcacgg 120
accctcctgc ctggggcccgc agccgcgcgc gcgatgccc gtaagttcag ctgccggcag 180
ctccgggagg cggggcagtg ttccgagagt ttccctggctg ttccgggact ggacatggag 240
acagatcgcg agccgcgtcg gaccattat aaccgcact tcaagatcag ctttgggacc 300
cccgcctctg gcttcttc catgctgtat ggaatgaaga ttgcaaattt ggcctacgtc 360
accaagactc gggtcaggtt cttcagactc gaccgctggg ccgacgtcgc gttcccagaa 420
aagaggagaa tgaagctggg gtcagatatac agcaaacacc acaagtcaact gctagccaag 480
atcttttatg acagggtctga gtatcttcat gggaaacatg gtgtggatgt ggaagtccag 540
gggccccatg aagcccgaga tgggcagtc cttatccgcc tggatttcaa cccgaaagag 600
gtgctgaccc tgaggcttcg gaatggcggaa acccagtctg ttaccctcac tcacctcttc 660
ccactctgcc ggacacccca gtttgccttc tacaatgaag accaggagtt gccctgtcca 720
ctggggcccg gtgaatgcta tgaactccat gtccattgtt agaccagctt tgtggctac 780
ttcccgcca cagtgtctg ggagctgtc ggaccctgggg agtcgggttc agaaggagcc 840
ggcacattct acattgccc cttcttgct gccgtcgccc acagccccc ggtgcacag 900
ctgaagccca tgactccctt caagcggacc cggatcaccc gaaaccctgt ggtgaccaat 960
cgatagagg aaggagagag acctgaccgc gctaagggtc atgacacttga gttaaatgt 1020
gcccgtggga catactaccc acctccccgc ctcaggcgc tgctcccat gcttcttcag 1080
ggaacaagta tcttcactgc ccctaaggag atcgcagaga tcaaggccca gctggagaca 1140
gcccgtgaagt ggaggaacta tgaggtgaag ctgcggctgc tgctgcaccc gggagaactg 1200
cagatggagc atgatatccg gcactatgac ctggagtcgg tgcccatgac ctgggaccct 1260
gtggaccaga accccaggct gtcacgtc gaggttcctg gagtgaactgaa gagccgcggcc 1320
tcagtgtcac gggcgcacca cctgtttgcc cttttgtctt cggagacaca ccaggaggac 1380
cccatcacat ataagggttt tgcacaaatgg accgtgtcaa gctgagctt 1440
tccatgagcc tccctgagccg ctttgtggat gggtgaccc tcaagggtaa ctttaccttc 1500
aaccgcgcagc cgctgcgcgt ccagcaccgt gcccctggc tgacaggccg ctggctgctg 1560
tggcccatgc tctttccctgt ggcacctcgg gacgtcccgc tgctgcctc agatgtgaaa 1620
ctcaagctgt acgaccggag tctggagtc aaccagagc agtcgcaggc catgaggcac 1680
attgttacgg gcaccacccg tccagccccc tacatcatct ttgggcctcc aggacccggc 1740
aagactgtca cggttagtggaa ggcaattaag caggtggta agcacttgcc caaagccac 1800
atcttggcct gcgctccatc caactcaggg gctgacccatc tctgtcaaaag gctccgggtc 1860
caccttccta gctccatcta ccgcctctgt gccccccagca gggacatccg catggaccc 1920

gaggacatca agccctgctg caactggac gcaaagaagg gggagtatgt atttcccccc 1980
 aagaagaagc tgcaggaata cccggctta attaccaccc tcatactgc cgccagggtt 2040
 gtctcgccc agttcccat tgatcaccc acacacatct tcatacgatga ggctggccac 2100
 tgcattggc ctgagagtct ggtagctata gcagggctga tggaaagtaaa ggaaacacagg 2160
 gatccaggag ggcagctggt gctggcagga gaccctcgac agctggggcc tgcgtgcgt 2220
 tccccactga cccagaagca tggactggta tactactgc tggagcggt gtcatactac 2280
 aactccctgt acaagaaggg ccctgatggc tatgacccccc agttcataac caagctgctc 2340
 cgcaactaca ggtctcatcc caccatcctg gacattccta accagctcta ttatgaaggg 2400
 gagctgcagg cctgtgctga tgcgtgatcg cgagaacgct tgcgtgcgt ggcggcccta 2460
 cctcgacagg gctttccat catcttcac ggcgtaatgg gcaaagatga gcgtgaaggc 2520
 aacagcccat ctttcttcaa ccctgaagag gctgccacag tgacttccta cctgaagctg 2580
 ctctggccc cttcctccaa gaagggccaa gctgcctga gccctcgaag tggggcgctc 2640
 atctccccgt accggaaaca ggtggagaaa atccgttact gcatcaccaa acttgacagg 2700
 gagcttcgag gactggatga catcaaggac ttgaagggtgg gttcagtaga agaattccaa 2760
 ggcacaagaac gaagcgtcat ctcatactcc accgtgcgaa gcagccagag ctttgtcag 2820
 ctggatctgg actttaatct gggtttcctt aagaacccca agaggttcaa tgcgtgtg 2880
 acccgggcca aggccctgct catcatcgta gggaaacccccc ttctcctggg ccatgaccct 2940
 gactggaaag tattcttggta gttctgtaaa gaaaacggag ggtataccgg gtgtcccttc 3000
 cctgcacaaac tggacctgca acagggacag aatttactgc aaggctctgag caagctcagc 3060
 ccctctaccc cagggccccca cagccatgac tacctccccca aggagcggga gggtaaggg 3120
 ggcctgtctc tgcacgtggta gccagagtgg aggaatgagc tctgaagaca cagcacccag 3180
 cttctcgca ccagccaaac cttaactgccc tgcctgaccc tgaaccagaa cccagctgaa 3240
 ctggccctcc aagggacagg aaggctgggg gaggaggtt acaacccaag ccattccacc 3300
 ccctccctg ctggggagaa tgacacatca agctgctaac aattggggaa agggaaagga 3360
 agaaaactct gaaac 3375

<210> 31
 <211> 2434
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte ID No: 1259937CB1

<400> 31

caaggatccg atgggtatggaggtgtag gtaatggatc attcatgtgg aaggatgcag 60
 ggggttttg agaccagggt ttggaaagaga gttcagact gctggtagtt ttggaaatca 120
 cccatgtgca ggcgcacacat gaggcagtaa ggaactctgc aggggccctt gagatttgg 180
 aatgttagggaa agagcaatgg attgaggctcc gAACCTGGAG gatctgttat acgcagagct 240
 gggaggaggg acagagtcag taccagagtc gaaaaaaagc agggtggggaa gggcaccc 300
 agtcaggaga cttgcctggc aggcgctgcc ctgcacgcag aggcctgaca gtggttcca 360
 tgaactgcat ccctgtgtg ggctggaca gggccactga cacagtatcg gacacagaa 420
 ggggaaagga gcaggagggaa ttccaaactt gccagtttc agctgtgtgg ctttggccat 480
 gttacttaac ctctctgagc ctcattttt tcattccataa aatggaaata aaaataatac 540
 ttttgtcaaa ggcgcattgt gaatattttt atcctcagaa taatgcctgg cttgttagcaa 600
 atggtagctg gaggaaaaagg aagagaaaaac caaatgcagc agctgaaggg ttttcatatt 660
 agaactgctc tggacctatc tggcagatgc agaagcacac acacacggag gggcatggat 720
 ttggcccgcc cttagacatg ttgtgtcttc tcctggatcc ttgggtcccg gtgccttacc 780
 tgagctcagg tgaatgtggc aagcagagcc ctctgggtgt gtgaatgctg tggggcccc 840
 gtgctctgg tgacacaggg acctcacaat ccctccctcc acggctctct tcatacttc 900
 cccagcctta tttctcggtt ctcatttcctc ccaggccccgg aacttgcctg tttggctccc 960
 caaccaggac gagcccccttc ctggcagcag ctgtgcccata caagttgggg ataaagtccc 1020
 ctatgacatc tgccggccag accactcgt gttgaccctg cagctgcctg tgacagcctc 1080

cgtgagagag gtatggcag cgccggccca ggaggatggc tggaccaagg ggcagggtgct 1140
 ggtgaaggta aattctgcag gtatggccat tggccgtcag ccagatgccc gtgggtggc 1200
 cacatctctg gggctcaatg agcgtctt tttgtcaac ccacaggaag tgcgtgatct 1260
 gatccccacac cctgaccagc tggggccac tggggctct gctgaggggc tggacctgg 1320
 gagtgccaag gacctggcag gccagctgac ggaccacgac tggagcctct tcaacagtat 1380
 ccaccaggta gagctgatcc actatgtgt gggcccccag catctgcggg atgtcaccac 1440
 cgccaaacctg gaggcttca tgcggcgctt caatgagctg cagtactggg tggccaccga 1500
 gctgtgtctc tgccctgtc cggggcccg ggcccaagct ctcaggaatg tcattaagct 1560
 ggccggccac ctcaaggagc agaagaatct caattcttc ttggccgtca tggggccct 1620
 cagcaactcg gccatcagcc gcctagcca cacctggag cggctgcctc acaaagtccg 1680
 gaagctgtac tccggccctcg agaggctgt ggatccctca tggaaaccacc gggtataaccg 1740
 actggccctc gccaagctct cccctctgt catcccttc atgccccttc ttctcaaaaga 1800
 catgaccctc attcatgagg gaaaccacac actatgtggag aatctcatca actttgagaa 1860
 gatgagaatg atggccagag cceggcggt gtcgaccac tgccgaagcc acaaccctgt 1920
 gcctctctca ccactcagaa gccgagttt ccacccctcc gaggacagcc aggtggcgag 1980
 gatttccaca tgctggagc agtcccttag cacccggagt ccagccagca cctgggctta 2040
 tgtccagcag ctgaaggta ttgacaacca gcgggaactc tcccgccctct cccgagagct 2100
 ggagccatga ggaggggctg ggactggagc tggagcaggc acttgcagcc gggaaagcca 2160
 gggtgtggcg ggccaaagata ctcacaggtt ggccacagct gggcaaggct ctcctggag 2220
 tggactcgag tccctggagc aggcaagtgtt gaggcagcca tccctgtga tgactggcag 2280
 ctaaggagga cctcggagtg gacccgagcc aggaataacg aatgacccaa ggccaaaggaa 2340
 gggaggacag agaggccca ggagtgggtt gagatggag tgcgtgggaa cttgtgtgc 2400
 aatagagagg tctccacacc agaaaaaaaaaaaa 2434

<210> 32
 <211> 892
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte ID No: 1452285CB1

<400> 32
 cacgcctctc tctgcaccta cacttgcgtt ccccaagtct ctctcgtgcg cagagcccg 60
 gctgcgttcc cctgggtcagg cacggcacgt ctggccggcc gccaggatgc aggcccccga 120
 caaggagcac ctgtacaatgt tgctgggtat tggcgtacgtt ggcgtggggaa agaccagtat 180
 catcaagcgc tacgtgcacc agaacttctc ctgcactac cggggccacaa tggcgctgga 240
 ctgcgtctc aagggtctcc actgggaccc ggagactgtt gtgcgtctc agctctggga 300
 tatacgatgtt caagaaatgtt ttggaaacat gacgagggtt tattaccgag aagctatggg 360
 tgcattttatgtt tcaccaggcc agccacattt gaagcgttgg caaatggaa 420
 aaatgatttg gactccaatgt taatgttccc taatggcaaa ccgttttcag tggttttgtt 480
 ggccaaacaaa tggaccagg ggaaggatgt gtcgttgcac aatggccctca agatggacca 540
 gttctgcacca gggacgggtt tcgttgcgtt gtttggaaaca tcagcaaagg aaaatataaa 600
 cattgtgaa gcctccatgtt gcctgggtt acacataactt gcaaatgtt gtcgttgcac 660
 ggaggcttattt gggccggacg tcgttgcgtt ccacatctca tcaaccaagg tggccagctg 720
 ctctggctgtt gccaaatctt agtggcacc tttgtgggtt tctggtagga atgacctcat 780
 tggccacaaatgttgcctc tatttttacc atttgggtt aacgtcagga tagagataacc 840
 aatgtggca agccaaatgtt ctatgcctcc atatgtgcctt ttctgttgc 892

<210> 33

<211> 2288
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 1812894CB1

<400> 33
cggctcgagc ccagatggag gcaacagtac tagttgcag gacttgctaa gccggtaggt 60
ggcctgggt aagagatggg aagagaggct gatccctgtc cccccacagca ctggaggact 120
cccggtccca ggaaggggca aatggtgagg ccgagtcagg tgagctcagc cggcttcggg 180
ctgagctggc aggcccctg gcagaaatgg aaaccatgaa ggctgtggca gaggtgagcg 240
agagcaegaa ggcggaggt gtggctgcgg tgcagcggca gtgccaagag gaggtggcct 300
cgctgcaggc catcctgaaa gactccatca gcagctatga agcccagatc accgccccta 360
agcaggagcg acagcagcag cagcaggact gtgaggagaa ggagcggagc ctggccgc 420
tgaagcaact gctgtccccc gcctacccccc tggactccct ggagaagcag atggaaaagg 480
cccacgagga ctggagaag ctgcggaga tctactgccc catggaaaag gagatcgagg 540
agctgaaggc gaagctgctg agggccgagg agctgattca ggagatccag agacgtcccc 600
ggcatgcccc ttccctgcac ggctccacgg agttgctgcc cctgtccccc gatccatcgc 660
ccccgctgga gcctctggag gagctgagcg gagatggggg tccagccct gaggcctcg 720
ctcacaactg cgatgacagc gcctccatct cctccttctc cttggcggt ggggtcggca 780
gcagctcctc cctgccccaa agccgcagg gcctgagccc tgaacagaa gagacggcct 840
cgctgggtgc tacgggcacc ctggttcccg agggcatcta cctgccccct cctggctacc 900
agctcgccc agacactcag tggagcagc tgcagacaga gggccgacag ctgcagaagg 960
acctggagag cgctcagtcgc gagcgggacg agctccaaga gggcctgaga cggagcaatg 1020
aggactgtgc caagcagatg caggtgtcct tggcccgagg ccagaactca gagcagctgc 1080
tgcggaccct gcaagggacc gtgagccagg cccaggagcg ggtgcagctg cagatggcg 1140
agctggtcac cacccacaag tgcctgcacc atgaggtaaa gcggttgaat gagaaaaacc 1200
aagggtccg ggcggagcag ctgcctatct cagccccca gggctcgag caggagcagg 1260
gcgaggagga atcaactgccc agctctgtgc cagagctgca gcagctgctg tgcacgc 1320
ggcaagaggc gaggggcccg ctgcaggccc aggagcacgg ggcggagcgc ctgcggatcg 1380
agatcgtagc gctggggag gctctggagg aggagacagt ggcaggggcc agctggagg 1440
ggcagctgag ggtgcagcgg gaggagacag aggtgcttga ggcctccctg tgcagcctga 1500
ggacagagat ggagcgggtg cagcaggaaac agagcaaggc ccagctccca gacctcctct 1560
cagaacagag ggcacaggtg ctgcggctgc aggagacatg ggagaccagt gagcaggtgc 1620
agagggattt cgtcgactg tcccaggccc tgcaggtgcg cctagagcgg atccggcagg 1680
ctgagaccct ggagcaagtg cgcagcatca tggatgaggc gcaactcactc gacgtcagg 1740
acatcaagga cacctgaggg gtcaggatat cccacccccc accctggaa agacgccttt 1800
ccccactcct gaaccatgag gcctcgctct ggggtcttgg atggctttc caccgtccct 1860
gagactgggg ttgaggggac tgacggggc caccacggcc cgcgcctcca ggcctcctc 1920
ccaggggtgc tggcctctt gttctcaggg atcacacctg ggtgagggc ccaagccct 1980
cccggaacca aagggtgcagg ctcaggccctg cggctttctg gctgctgtgc tgctcctgg 2040
gctccagccc tccctgccc ccagccctgc ccctgcccag ggcacagcgg agccatgggg 2100
gctgggagtc cccatcagag gcagtgaggt gggcccccggc cctggacag gcaactgcct 2160
tctggctgc atgacactaa gacgctgtc cacagcggcg acccaggcct ccaagcttc 2220
acagaggcaa gcccagactt ttccgtcggtt tattttcaat aaataagcag ctcagcgc当地 2280
aaaaaaaaa 2288

<210> 34
<211> 1813
<212> DNA
<213> Homo sapiens

<220>
<221> unsure
<222> 1708, 1711, 1713, 1715
<223> Incyte ID No: a or g or c or t, unknown, or other

<220>
<221> misc_feature
<223> Incyte ID No: 3074884CB1

<400> 34
gcacgaagga ggccggcgtt caggtggccc tggeggagat gccgaaagat gcggacgaga 60
acggcgagga ggagctgctg cggggagagc ctctgctgcc gcgggggacc cagcgcgtgt 120
gtctgggttca ccctgacgtc aagtggggcc cggggaaagtc gagatgact cgagccgagt 180
ggcagggtggc ggaggccaca gcgcgtggc acacgctgga cggctggtcc gtggtgcaga 240
caatggtcgt gtccacaaa acgcggaca ggaagctcat ctttggcaaaa gggaaactttg 300
agcacctgac agaaaagata cgagggtctc cagacgtcac gtgcgttcc ctgaacgtgg 360
agaggatggc tgccccgacc aagaaaagaac tggaaagccgc ctggggcgtg gaggtgtttg 420
acgcgttcac ggtcgtectg cacatttcc gctgtAACgc cccacacgaa gaggccggc 480
ttcagggtggc cctggcggag atgcgcgtgc acaggtcgaa cttgaaaagg gacgtcgccc 540
acctgttaccg aggagtccgc tcgcgttaca tcatgggtc aggagaatcc ttcatgcage 600
tgcaagcagcg tctcttgaga gagaaggagg ccaagatcag gaaggcctt gacaggcttc 660
gcaagaagag gcacctgctc cgcggcgcgc ggacgaggcg ggagttcccc gtgatctccg 720
tggtgggtta caccactgc gggaaagacca cgctgttcaa ggcactgacg ggcgtatgccc 780
ccatccagcc acgggaccag ctgtttgcca cgcgttgcgtt caccatcgg ttccctctcc cagctgccc 840
tgccctcactc catgaccgtc ctgtacgtgg acaccatcgg tggaaagacgt ggccactcg gatctcatct 900
acggcctcat cgagtccttc tccgcaccc tggaaagacgtt gaaatgcacg gttctgtcca 1020
tgcacgttag ggacgtcagc caccggagg cggagcttca gaaatgcacg gttctgtcca 1080
cgctgcgtgg cctgcagctg cccggccgc tcctggactc catggggag gttcacaaca 1140
agggtggaccc cgtggccggg tacagccca cggaaaccgaa cgtcggtccc gtgtctgccc 1200
tgcggggcca cgggtccag gagctgaaag ctgagctcga tgcgggggtt ttgaaggcga 1260
cgggggagaca gatectcaact ctccgtgtga ggctcgcagg ggccgtacgtc agctggctgt 1320
ataaggaggc cacagttcag gaggtggacg tgatccctga ggacggggcg gcccacgtga 1380
gggtcatcat cagcaactca gcctacggca aattccggaa gctctttcca ggatgaacgg 1440
acgcccacag aggctgcgg ggtggggca tcgcgttccg gggagctgag gcttacccgc 1500
tgtgttgggg gcaagtttgtt gtcagggttca gcagggttccct ctttgcaccc ttctgcaccc 1560
gtctcgctcc cagccatcc ctgggatgac cgtgcaggcc ggtgacacgg ccgcacactgc 1620
cccaaagccgg gcccggccgag cgtccactcc aagccgtggc atccacacaa ttccactggg 1680
ccctcggtgc ctgctgtgaa ctgtttcc tggaaatgtt tccgttacag gacattaaac 1740
ctttgtttt acttccgtga aaaaaanac ngnngaaaaa aaaaaggggc ggccgcgtcc 1800
tagaggattc caagccttac cgtaacgcgt tgcattggcg agcggtcata agcttcttct 1861
aatagggggt cac

<210> 35
<211> 1733
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 3452277CB1

<400> 35
ctacggcctg gaccgagtga ccaatccgaa tgaagtcaag gtaaaccaga aacaaacagt 60
cgttgtgtc aaaaaagaga tcatgttatta ccaacaggcc ttgatgaggt ccacagtcaa 120

gtcttctgtc tccctggag ggattgtgaa atacagttag cagttctcat ccaacgatgc 180
 catcatgtca ggctgcctcc ccagcaaccc ctggatcacc gatgacaccc agttctggaa 240
 cttaaatgcc aaattggtgg aaatcccaac caagatgcga gtggaaacgt gggccttcaa 300
 cttcagcgaa ttgatccgag accccaaagg tcgacagagc ttccactact tcctcaagaa 360
 agaattcagt ggagagaatac tgggattctg ggaagcctgc gaggatctga agtatggaga 420
 tcagtc当地 gtc当地aggaa aagcagagga gatttacaag ctgttctgg cccccc当地 480
 gagggc当地ggg当地 atccaacatag atggcaaaaac catggacatc acagtgaagg ggctgaagca 540
 cccccaccgc tatgtgctgg acgccc当地aca aaccacatt tacatgctca tgaagaagga 600
 ttcttatgtc cgcttattaa aatctccat ctataaggac atgctggcca aagctattga 660
 acctcaggaa accaccaaga aaagctccac cctcccttt atgc当地ggc acctgc当地c 720
 cagcccaaggc cctgtc当地cc tgagacagct ggaagagggaa gccaaggccc gagaagcage 780
 caacactgtg gacatcaccc agccgggcca gcacatggct cccagcccccc atctgaccgt 840
 gtacaccggg acctgc当地tgc cccctgtcc ttcttagcccc ttcttctctt cctgc当地gc当地 900
 cccccaggaaag cctt当地cgctt cacccaggcc cttcatccgg cgaccaggca ccaccatctg 960
 cccctc当地cc accatagatgg ccttggagag ctc当地tggc ttggagcaga aaggggagtg 1020
 cagc当地ggg当地tcc atggccccc当地tcc gtc当地accggag agcagc当地ggg cctccctc当地a 1080
 cacctt当地ggg cctc当地cgagcc ggccc当地aggcc cccctcttaag gccc当地catgg ctctgtc当地tcc 1140
 cagc当地ggg当地tcc ctgagacagag gctgtc当地ggc ctc当地accgtc tt当地ggc当地ggc tctc当地accctaa 1200
 gtgc当地ctgtc gt当地cccaag ggagggtt当地ea gccc当地tgggg gacgtggggcc agcagctgcc 1260
 acgattgaaa tccaagagag tagcaaactt ttccagatc aaaatggatg tgccc当地acggg 1320
 gagegggacc tgctt当地gtgg actc当地gggagga tgctggaaaca ggagaggctgg gtgaccggg 1380
 cacagaaaag gaggtcatct gccc当地tgggaa gagcctgtaa ggaaagaggc aggctgagct 1440
 gggggctctg gaccaggaaag atgctctgac agatgc当地atg gtatgggcca caggacacac 1500
 tt当地gtc当地gaga accaaagtgc atttgggatg cattt当地gaga tt当地gggagatc aagatggggt 1560
 agattgtggc aaagaatgct ctggctgggacc accaggggcc aactccttctt cctt当地tcc 1620
 accctt当地ccctc cc当地tgggccag aagaaacgca tgc当地ggaccag aagacttcc ctgctgc当地tcc 1680
 aaaaccaata aaaggtaac tt当地agtttc tt当地ggaaaaaaa aaaaaaaaaaag ggg 1733

<210> 36
 <211> 1776
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte ID No: 4203832CE1

<400> 36
 cccagccgag cccagcctag cccgagccca gccc当地ggcga accgc当地ggcc ccaaggccccga 60
 gccc当地ggccca gccc当地ggcag agccctccag cccgtc当地acc cccagc当地ggacc 120
 ctc当地agccgt ctctgccc当地tcc ctctggggcc cccgccc当地ggcc ctctgccc当地aa 180
 tggaaactggc cccgatgtc aagaagatgt gccc当地ggcga cccggagctg agtatccccgg 240
 ccaaggaaactg ctatc当地gtc gtc当地tccaa ggtggg当地aa acggccatcg 300
 tgc当地gegctt cctc当地ccggc cccgtc当地ggagg acgc当地tccacac gc当地tccaccatc gaggacttcc 360
 acccgcaaggaaactt ctactccatc cccgccc当地ggagg tccaccagct cccatc当地tcc gacacgtccg 420
 gcaaccaccctt gttccccc当地cc atgc当地ggtcc tccatc当地tcc cacaggagac gttt当地catcc 480
 tgggtt当地ccag tctggacaac cccgacttcc tccggagggt gc当地ggccctc aggccaggaa 540
 tc当地tccgacac caagtcttgc ct当地agaaca aaacc当地aggaa gaacgtggac gtgccc当地tcc 600
 tc当地atctgccc当地gggg caacaagggtt gaccgc当地act tccaccgc当地gg ggtggaccag cccgaggatcg 660
 agcaggctggt gggccgaccc cccaggccct cccgcttactt cccaggatctg gccaaggaa 720
 acaggccctt ggaccaggatg ttccggccgc tcccttccat gggccaaaggctg cccaggccgaga 780
 tggccccaga cctgc当地accgc当地 aaggcttccgg tgc当地actg cccaggctg cccaggatcg 840
 cccgtc当地ggggaa caagaaggctg ctgc当地ggggcc gcaaggccggg cccggccggc gaccggggccg 900
 acgc当地tcccttgg catc当地tggca ccccttccggc gccggccccc当地agc gatc当地acaggc gacccatcg 960

acatccgcga gaaggccagc gcccgcagcc aggccaagga caaggagcgc tgcgtcatca 1020
gcttaggagcc cgcgcgcgt ggcgacacaa cctaaggagg accttttgc taagtcaaat 1080
ccaaacggccc ggtgcgcggcc aggcggggag cgccgcgcga ctggcgctcc ccctcccgcc 1140
gatccgcggc cagcaactggg gaggcgccac tgaaccgaga agggacggtc atctgtccg 1200
gaagggaaaga gaacgggcca agactgggac tattccccac ccccggtccc ccattgaggc 1260
ccgcccacccc cataactttg ggagcgaggg cccagccgag ggtggattta tcttctcaa 1320
gacctaagag tgagcgcggg gtgggggagg gatgtgaagt tatccagccct ctgctaggct 1380
tcaagaaaacc gtcatgcggc cttgaggggtc aggaccacg gggcattatc ttgtctgtga 1440
ttccgggttg ctgtacagc cggtagagcc tctgcctcc cggaaactaag cgggggggcg 1500
tgggtcaaat catagccaag tgacttgtt acatgtgagt gaaaactgcac aaaggaacac 1560
aaaacaaaac ttgcaactta acggtagttc cgggtcaac atggacacga aaaaaacctt 1620
acccaggtgt ttatactgtg tgggtgtgag gtctttaaag ttattgcttt atttggtttt 1680
ttaatataca ataaaataat taaaatgga aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa 1740
aaaaaaaaaa aaaaaaaaaa gaaaaaaaaa aaaaaaa 1776

<210> 37
<211> 1316
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 104368CB1

<400> 37
cggacgcgtg gggcggttt tcttttagc gtcaggcgg ctgaccacact gctctccctc 60
ttaagaaaagt gtcattcc ttccggcggc cggagctgct gcccggaaagg gatccggagc 120
gagcttagggc agacaccatg accacccttg atgataagtt gctgggggag aactgcagt 180
actactatacg cagcagttag gatgaggaca gtgaccacga ggacaaggac cgaggcagat 240
gtgccccagc cagcagtctc gtgcctgcag aggctgagct ggcaggcggaa ggcatctcag 300
ttaacacagg cccaaaaggt gtgatcaatg actggcgccg cttcaagcag ttggagacag 360
agcagagggg ggagcagtgc cgggagatgg aaaggctgtat caagaagctg tcaatgactt 420
gcaggtccca tctggatgaa gaggaggagc aacagaaaaca gaaagaccc caggagaaga 480
tcagtgggaa gatgactctg aaggagtttgc ccataatgaa tgaggaccaa gatgatgaag 540
agtttctgca gcagtaccgg aagcagcggaa tggaaagagat gcccggcggcagc cttcacaaagg 600
ggcccccaatt caagcagggtt ttgagatct ccagtggaga agggttttta gacatgattt 660
ataaaagaaca gaaaagcatt gtcatcatgg ttcataattt tgaggatggc attccaggga 720
ccgaagccat gaatgggtgc atgatctgcc ttgcgcgcga gtacccagct gtcaagttct 780
gcaaggtgaa gagctcagtt attggcgcca gcagtcagtt caccaggaat gcccctccctg 840
ccctgcgtat ctataagggg ggtgaatttga tcggcaattt ttttcgtgtt actgaccagc 900
tggggatgtt tttttttgtt gtggaccttgc aagcttttcc caggaattt ggattactcc 960
cagaaaagga agtctgggtg ctgacatctg tgcgttaactc tgccacgtgt cacagtggagg 1020
atagcgcacct gggaaatagat tgaactgata gtctagttgc atagattttt cattttttgg 1080
gttggaaatac acgtcattgt ttatttttgtt tcctttgtct tctggctttt cagctgtttt 1140
ttgttagtccc ttttattatg catabaaataa agaaaattttt agattaaatc agaatgctga 1200
ataaccttgc agctgcaat aaggtgactt acagggttat aacacggaaag ccaggctttt 1260
gaactgttttta cttaagattc tgggtgtga catctctgtt attgtttcca gtcaat 1316

<210> 38
<211> 1554
<212> DNA
<213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte ID No: 1441680CB1

<400> 38
 gtggctgtg gagtggcgac cgtagtgag gcgggtgctg agacagacgc tgaggcgggt 60
 aggagggcc cgagccgtaa gggaaagccgt gatgaggggcc gtgttgcgt ggagagataa 120
 agccgagcac tgtataaatg acatgcatt taagcctgat ggaactcaac tgattttggc 180
 tgccggaagc agattactgg ttatgacac ctctgtatggc accttacttc agccctcaa 240
 gggacacaaa gacactgtgt actgtgtggc atatgcgaag gatggcaagg gctttgttc 300
 tggatcagct gacaaaagcg ttattatctg gacatcaaaa ctggaaggca ttctgaagta 360
 cacgcacaat gatgtatac aatgtgtctc ctacaatctt attactcatc aactggcattc 420
 ttgttccctcc agtactttg gttgtggc tcctgaacag aagtctgtct ccaaaccacaa 480
 atcaagcagc aagatcatct gctgcagctg gacaaatgtat ggtcagttacc tggcgctggg 540
 gatgttcaat gggatcatca gcatacggaa caaaaatggc gaggagaaaag taaagatcga 600
 gcggccgggg ggctccctct cgccaaatgt gtccatctgc tggaaaccctt caagagagga 660
 acgtaatgac atccggctg tggctgactg gggacagaaaa gtttcccttc accagctgag 720
 tggaaaacay attggaaagg atcggggact gaactttgac ccctgctgca tcagctactt 780
 tactaaaggc gagtacattt tgctggggg ttcagacaag caagtatctc ttttcaccaa 840
 ggatggagtg cggcttggga ctggtgggaa gcagaactcc tgggtgtgga cgtgtcaagc 900
 gaaaccggat tccaaatgt tggtggtcgg ctgcaggac ggcaccattt cttctacca 960
 gcttattttc agcacagtcc atggagtttta caaggaccgc tatgcctaca gggatagcat 1020
 gactgacgtc attgtcagc acctgatcac tgagcagaaaa gttcggatta aatgc当地 1080
 gcttgc当地 aagattgcca tctacagaaa tcgattggct atccaaatgc tagagaaaaat 1140
 cctcatctat gagttgtatt cagaggactt atcagacatg cattaccggg taaaggagaa 1200
 gattatcaag aagtttgagt gcaacctctt ggtgggtgtt gccaatcaca tcattctgt 1260
 ccaggagaaaa cggctgcagt gcctgcctt cagcggagtg aaggagcggg agtggcagat 1320
 ggagtctctc attcgttaca tcaaggtgat cggggccctt cctgaaagag aaggcccttt 1380
 agtggggctg aagaagatgt acttggtagt gtattcattc atattgattt taaaggatta 1440
 ttttcaactc agtactgtat tccttggaaa tcttacactgg aaacatgttt gcaaaaaaca 1500
 ttatttggtc tttcatctt tttcttggta ttacatattt gttcaataaa aata 1554

<210> 39
 <211> 2320
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte ID No: 1494955CB1

<400> 39
 gggcgccgc gtactcacta gctgagggtgg cagtggttcc accaacatgg agctctcgca 60
 gatgtcggag ctcatgggc tgcgggttt gcttgggctg ctggccctga tggcgacggc 120
 ggcggtagcg cgggggtggc tgcgcgcggg ggaggagagg agcggccggc ccgcctgcca 180
 aaaagcaaat ggatttccac ctgacaaatc ttccggatcc aagaagcaga aacaatatca 240
 gcggattcgg aaggagaagc ctcaacaaca caacttcacc caccgcctcc tggctgcagc 300
 tctgaagagc cacagcggga acatatctg catggacttt agcagcaatg gcaaataacct 360
 ggctacctgt gcagatgatc gcaccatccg catctggagc accaaggact tcctgcagcg 420
 agagcaccgc agcatgagag ccaacgtgga gctggaccac gccaccctgg tgcgcttcag 480
 ccctgactgc agagcattca tcgtctggct gccaacggg gacaccctcc gtgtctcaa 540
 gatgaccaag cgggaggatg ggggctacac cttcacagcc acccccagagg acttccctaa 600
 aaagcacaag ggcctgtca tcgacattgg cattgctaacc acagggaaat ttatcatgac 660
 tgcctccagt gacaccactg tcctcatctg gagcctgaaag ggtcaagtgc tgcctaccat 720

caacacccaaac cagatgaaca acacacacgc tgctgttatct ccctgtggca gatttttagc 780
ctcgctggc ttcacccccag atgtgaagg tttggaaagtc tgctttggaa agaaggggga 840
gttccaggag gtgggtcgag ctttcgaact aaagggccac tccgcccgtg tgcactcg 900
tgctttctcc aacgactcac ggaggatggc ttctgtctcc aaggatggta catggaaact 960
gtgggacaca gatgtggaat acaagaagaa gcaggacccc tacttgctga agacaggccg 1020
ctttgaagag gcggcggggtg cgcgcggcgtg cgcgcggcc ctctccccc acgcccaggt 1080
cttggcccttgc ccaactggca gtagtattca tctctacaat accccggcgcc gcgagaagga 1140
ggagtgctt gagcgggtcc atggcgagtg tatcgccaaac ttgtccctttg acatcaactgg 1200
ccgctttctg gcctcctgtg gggaccggc ggtgcggctg tttcacaaca ctctggcca 1260
ccgagccatg gtggaggaga tgcaaggccca cctgaagcgg gcctccaacg agagcaccgg 1320
ccagaggctg cagcagcagc tgaccaggc ccaagagacc ctgaagagcc tgggtgcct 1380
gaagaagtga ctctgggagg gcccggcga gaggattgag gaggaggat ctggcctct 1440
catggcgctg ctgcacatctt tcctcccagg tggaagcctt tcagaaggag tccctgggt 1500
ttcttactgg tggccctgtc tttcccaatt gaaactactc ttgtctactt aggtctct 1560
cttcttgcgtc gctgtgactc ctccctgact agtggccaag gtgcctttct tcctccagg 1620
cccagtgggt ggaatctgtc cccacactggc actgaggaga atggtagaga ggagaggaga 1680
gagagagaga atgtgattt tggcctgtg gcagcacatc ctcacacccca aagaagttt 1740
taaatgttcc agaacaacct agagaacacc tgagtactaa gcagcagtt tgcaaggatg 1800
ggagactggg atagttcccc atcacagaac tgtgttccat caaaagaca ctaaggatt 1860
tccttctggg cctcagttct atttgtaa tggagaataa tcctctctgt gaactcctt 1920
caaagatgt atgaggctaa gagaatatca agtccccagg tctggaaagaa aagtagaaaa 1980
gagtagtact attgtccat gtcgtggaaatg tggtaaaatg gggaaaccagt gtgccttgg 2040
accaaattag aaacacattc cttggaaagg caaagtttc tgggacttga tcatacattt 2100
tatatggttt ggacttctt cttcgggaga tgatgttgc tttaggaga cctctttca 2160
gttcatcaag ttcatcgat atttgatgtc ccactctgtc cccaaataaa tatgagctgg 2220
ggattaaata cgaataagac atggtttctg ccatcaaaga tggctggtg gagagagaga 2280
tacaccctta ttaatgttctt tgggttagtt tattcatagc 2320

<210> 40
<211> 879
<212> DNA
<213> *Homo sapiens*

<220>
<221> misc_feature
<223> Incyte ID No: 1508161CB1

```

<400> 40
gaagaatttgcgtt cgtgcagaag gacccttgg ataatgacaa gagttgctac 60
agtgaacgga agaaaacacg aaacttagaa gcttacgtgg aatggttta tcgcctcagc 120
tacttgggtg ctacagaaat ctgtatgcct gttaagaaaa aacaccgagc aagaatgatt 180
gagtatttca ttgacgtac tcggggagtgt ttaaacattt gcaacttcaa ctcccttgatg 240
gcgataatct ctggtatgaa tatgagccca gtctctcgac taaaaaaaaac ttgggcca 300
gtgaagactg caaaatttga cattctttag catcagatgg acccttcaag caatttctat 360
aattatcgaa cagctttcg tggggcagca caaaggctt taactgctca tagtagt 420
aaaaagattt tgataccatt ctgcgttc ttaatcaaag atattttttt cctcaatgag 480
ggttgtgcca accgccttcc caatggccat gtcaatttt agaaattttt ggaactggcc 540
aaacaagtga gtgaattttt gacatggaaa caagtggagt gtccatttga gagggaccgg 600
aagatcttgc agtatctgct cacagttacca gtcttcagtg aagatgtct ctacttggct 660
tcttatgaga gtgaaggacc tgaaaatcat atagagaaaa acagatggaa gtctttaaagg 720
tcgagctct taggcagagt ttaacacatg ggagctgcct gcctgctgtc gctgtgcctt 780
cctgcagatc atggaggggc tggccttgc tttctggcat ctgcgtaccac gaacactcat 840
qaagacccctq cagtcatggg agcaccceggg tcagccaaag 879

```

```
<210> 42  
<211> 2146  
<212> DNA  
<213> Homo sapiens
```

<220>
<221> misc_feature
<223> Incyte ID No: 1848674CB1

<400> 42
gttattggca agtccccctg cagttgtttg ggctgtccct gtggctgggt ctgggggtgtg 60
cgcccagcca tggagcgctc tggggccacgc gaagtgcacag gtcagacgc gtcgggaccg 120
gaccgcgcgc ttgcggtcac catgggcctc acggggttcg gtaaaaaaagc tcgcacattt 180
gacttggaaag caatgtttga acaaaactcga aggacagctg tggaaagaag tgcaaaaca 240
cttggaaagcaa gagaaaaaaga ggaagaaaatg aacagagaga aagaattaag aagacaaaat 300
gaagatattg agccaacatc ctcaagatca aatgtggtca gagattgctc caaatcatct 360
tccagggata cgagcagcag tgaaagtgaa cagagttctg actcttctga tgatgagtt 420
attggccctc ctttacccccc taaaatgtta gggaaaaccag ttaattttat ggaggaagat 480
atcctcggtc ctttacacctc acctcttaat gaagaagaag aagaagcaga ggaagaagaa 540
gaggaagagg aggaagagga aaatccctgtt cacaagattc ctgactcgcg tgagataacg 600
ctgaagcatg gcactaaaac agtgtctgtt ttgggtctgg atccctcagg tgcccggtt 660
gtgacaggag gatatgacta tgatgttaag tttttggatt ttgctggat ggatgtttct 720
ttaaggcat ttgcattccct tcagccctgt gагтгссате agatcaagtc attacagtt 780
agtaacacag gagacatgt tcttgggtta tctggaaagct ctcaggccaa ggtgattgac 840
agagatggtt ttgaagtaat ggaatgtata aaaggagacc agtatattgt ggacatggcc 900
aacaccaagg gtcatacagc aatgcttcat actggctcat ggcattccaa aataaaggga 960
gaatttatga cttgtctaaa tgatgcact gtgaggacgt gggaaagttga aaatccaaag 1020
aagcaaaaaa gtgtgtttaa accacggacg atgcacggca aaaaagtcat tcccactacg 1080
tgcacatata gtagagatgg aaacctata gcagctgcct gccagaatgg aagcatacag 1140
atctgggacc gaaatttgac tgttcatctt aagtccact ataaaacagge tcatgactcg 1200
ggcacagaca cttcttgcgt gacttttcc tatgtatggta atgtccttgc ctctcggtg 1260
ggtgacgatt cattaaaattt atgggacatc cgacaattt ataaaaccact ttttcagcc 1320
tcgggtcttc ccaccatgtt ccaatgact gactgctgtt tcagtcaga tgataagctc 1380
atagtcaactg gtacatctat tcaaagagga tggggcagcg gcaaaacttgc tttctttgag 1440
cgtaggactt tccaaagggt gtatgaaata gacatcacag atgcgagttgt tggtcgctgc 1500
ctgtggcatc caaagctgaa ccagatcatg gttggactg gaaatggatt ggctaaagtc 1560
tattacgacc ccaacaagag tcagagggga gcaaaattat gtgtggttaa aaccggcgg 1620
aaggcaaaac aagctgagac tctaactcag gactacatca tcacccctca tggcttgcct 1680
atgttccgtg agccccggca acggagatca agggaaacagc tggagaagga cagactggat 1740
ccccctgaagt cgcataaaacc tgaacccctt gtagcaggcc caggtcgtgg tggccgagtt 1800
ggaacccacg gggcactct ctcttcatat attgtgaaga acattgcattt ggacaagacc 1860
gatgacagta atcctcggtt agccattttg cgtcatgcca aagcagcaga agacagccca 1920
tattgggttt ctccagcata ttccaagact cagccccaaa ccatgtttgc ccaagttgaa 1980
tctgtatgtt aggaagcaa gaatgagcca gaatggaaaa aacgtaaaat ttgaagaatc 2040
tcattttgaga gctgtttgca tgagtggag gggatggga cagggtttggg tttttttttt 2100
atgctcatga aattaaaaat tcattttat gaaaaaaaaaaaaaa 2146

<210> 43
<211> 714
<212> DNA
<213> *Homo sapiens*

<220>
<221> misc_feature
<223> Incyte ID No: 2012970CB1

<400> 43 qqatggcgag cagcggaggc gagggcggtga cgagagcagc ggctccgcga ttggacgagg 60

aggcctgagg gacggggccag cggtgcacaa gaagagaccg aggcgggtgg ccccqagaga 120
 gccagggccca tggaggccaa catgccgaag cggaaaggagc ctggcaggc tctccgtatc 180
 aaagtcatct ccatggccaa cgccgaagt gggaaaagct gtattataaa gcgataactgt 240
 gagaaaagat tcgtgtctaa atacctggca acaattggaa ttgactatgg agtcacaaag 300
 gtacacgtca gagacagaga aatcaaagtt aacatcttgc atatggctgg acatcccttc 360
 ttctatgagg ttcgaaaatga gttttacaag gacacacagg gtgtatact ggtctatgat 420
 gttggccaga aagactccct tgacgcccatt gatgcgtggc tggcagaaat gaagcaagag 480
 cttggacccctc atggaaaacat ggaaaatatt atattttag tttgtgccaa caagattgat 540
 tgtacccaaac atcgctgtgt agatgaaagt gaaggacgtc tttggctga aagcaaagg 600
 ttcctgtact ttgaaaacttc agcacaaact ggagaaggca ttaatgagat gttccagata 660
 catcttggat agaactaatg gataaaatttg tctgtttaaa aaagaaaaaaa aaaa 714

<210> 44
<211> 1779
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 2254315CB1

<400> 44
caggaggaag atggcggcgt ccgcagctgc cgctgagctc caggcttctg ggggtccgcg 60
gcacccactg tgcgtgttgg tggggaaat ggcgggatcc gggaaaacca cttttgtaca 120
gaggctcaca ggacacctgc atgcccagg cactccaccc tatgtgatca acctggatcc 180
agcagtacat gaagttccct ttcctgccaa tattgatatt cgtgatactg taaagtataa 240
agaagtaatg aaacaatatg gacttggacc caatggcgcg atagtgaccc cactcaatct 300
ctttgttacc agatttgatc aggtgatgaa atttattttag aaggcccaga acatgtccaa 360
atatgttttgc attgacacac ctggacagat tgaggatattt acctggatcc cttctggac 420
aattatctact gaagcccttg catccttattt tccaacagtt gtcatctatg taatggacac 480
atcgagaagt accaacccttgc tgaccttcat gtccaaatgc ctctatgcgc gcagcatctt 540
atacaacc aagctgcctt tcattgttgcg catgataaa actgacatca ttgaccacag 600
ctttgcgttgc gaatggatgc aggattttga ggcttccaa gatgccttgc atcaagagac 660
tacatacgcc agtaaccttgc ctcgttcaat gagctgggtt ttagatgatgttttacagctc 720
actcagggtt gtgggtgttgc ctgctgttgc ggttacttgcg ttagatgatgc tctttgtca 780
agttaccagt gctggcgaag aatatgaaag ggagttatcg tctgtatgc aacgtctgaa 840
aaaatctactt gccaacgcg agagccaaaca gcagagagaa caactggac gccttcgaaa 900
agatatgggt tctgttagct tggatgcagg gactgccaa gacagcttat ctcctgtct 960
gcaccccttgc gatttgcattt tgactcgagg aaccttggat gaagaggatg aggaagcaga 1020
cagcgataact gatgacattt accacagatg tacagaggaa agccatgcg agccagcatt 1080
ccagaatttt atgcaagaatgc cgtggcaca atactggaaag agaaaacaata aataggagac 1140
tttagcacac ttcaacttgc tctagaatgc cagaatttttgc gacctccacg tgaaagaact 1200
gttcttaccc tctgaaacttgggg ggctccatata agggataattt ttcctcagag tagcaaagtt 1260
tctcttatta gagaatctt gtgactcaga tgaatgcagg gatagaagac cttggaccc 1320
ggcagggttta tctgtgattt tcccttgc tttatgcggaa gaggatata 1380
ctgagctgtat actcttccaa gcttacaact tcaagtttttgc tcatatgcac tcaagtactt 1440
ttgctgtca ggaatggaaat caaaagaacg tagtctcctg gtgaccaccc tcatatgc 1500
ttatttaggtt agatgtatag cctctactcc cccagcttgc tgcgttgc cctgactgt 1560
aagttggccct tctatttagca gccaaggaaa agggaaaacat gagtttatcc agaacgggtgg 1620
cagagcttcc ttggcaatca accaacgttg ctatgaaata tgcctcacac tgcgtatgc 1680
attataggac gtcagggttttgc ttgaaaaaaatggcaagac atgattaatg aatcagaatc 1740
ctgttttgcattt ggtgacttgg ataaagactt ttatattttt 1779

<210> 45
<211> 2234
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 2415545CB1

<400> 45
ccccctctga aaaatggttt caccgcgtcc ttctcttagaa cgggtcgccc cgctaccact 60
gtccggcccg gaggggact gtttctccg gaagtgcacaa caccgtgact aggaaaagga 120
ggaggcgggg cagtggggcc ttccggcggcg actatggaa gagccggcta cagggtggtg 180
tttgagaagg gcggagtgta cctgcacacc agcgtcaaga agtatacgga ccgagactct 240
ctcatcgctg gtgtcatccg ttcgtggaa aaggacaatg acgtccctccct gcactgggct 300
cctgttagagg aggtggaga ttccacccaa atccctttt ccaagaaggaa ctccagtggg 360
ggtgaactcat gtgttctga ggaggaacca acctttgacc ccggctatga acctgactgg 420
gctgtcatca gcactgtgcg gccacagccc tgccactcg agccccacgag aggtgcagag 480
cccagctgcc cccagggtctc ctgggccttc tcagttagtc tggggggagct aaagtccatc 540
cgccgctcca acccaggctc cagctggggc tacctgggtc tggtgaccca ggctggaggt 600
tccctgccc cactgcactt ccaccgggg ggcacccgcg ccctgctccg cgtccctcagc 660
cgatcacctgc ttttggccag ctcccccgeag gactcccgcc tctaccttgt ctccccccac 720
gactccctgt ctctctccaa ctccctccac cacctgcagc tcttgacca ggacagctcc 780
aatgtgggtt caccgttccct ccaggatccc tactccacca ctttcagcag cttcccccga 840
gtgaccaact tttccgggg tgcctctgcag ccacagctg agggagccgc ctccgacatt 900
ccccccgccc cccgacgtga gcccggactt ggattcgagg tcatttcctg tggagactg 960
gggcctcggc caaccgtggaa gggggccct ccagttacag aggaggagtg ggcacgccc 1020
gtggggccctg aaggtcgcct gcagcaggctc cctgagctga agaacccgat cttctgggg 1080
ggtctgagcc ccagcctgcg gcgcggaggcc tggaatgtcc tcctagggtt cctcagctgg 1140
gaaggcacag ctgaggagca caaggccac atacgcaaga aaacggatga gtattccgc 1200
atgaagctgc agtggaaatc tgtgagccct gaggcaggagc ggagaaaactc acttctgcatt 1260
ggataccgca gcctcatcga aaggatgtg agccgcactg acaggaccaa caagtctac 1320
gagggtcccc agaaccgggg gctgggcctg ctgaacgata tcctcctcac ctactgcatt 1380
tatcacttcg acctcggcta cgtccaggcc atgagtgtac ttctctcccc gatecctctac 1440
gtcattcaga acgagggtggaa tgcattctgg tggatctgtg gtttgcatttgc gtcgtgcaa 1500
gggaactttt aagagagcca ggagaccatg aagccggcaac tcggggcact gtcgtgctc 1560
ctgaggggtgc tggacccctt gctctgcac tcctggatt cccaggactc cggctctctc 1620
tgcttcgttt tccgggtggct gtcattctgg ttcaagaggg aattcccccctt cccggatgtc 1680
cttcggctgt gggagggtgt gtttgcatttgc tggacaggcc tcctcgtggcc ccaatctgcatt 1740
gcctgcgcac tcctggacat ggagaggggac accctcatgc tggatctggcc cggctccaaat 1800
gagatcctca agcacatcaa cggatctgact atgaagctga gcgtggagga cgtgcgtgacc 1860
cgccgcggagg ccctgcacccg ccagcttaacc gcctgcaccc gagctgcccc acaacgtgca 1920
ggagatcctg gggctggccc cgccacgcag agcccccacag cccctcgccc accgcctccc 1980
cgctgcctct gtacgcccccc cggggccccc cccaccccccgc cggccctccac ggacacagcc 2040
ccgcagcccg acagcaggctt ggagatctgtt cccggaggagg aggacgaggcc cgccgactcc 2100
taacccccc accgcacccctc gtttgcacca ggcacttttag cccggaggccag gcacacactgc 2160
gagggggcag gtgtgtcccg ccgcctgtgt gataagctgg cttcattaaa ctgcacacttc 2220
tcaaaaaaaaaaaaaaaa 2234

<210> 46
<211> 3150
<212> DNA
<213> Homo sapiens

<220>
<221> unsure
<222> 96, 97, 99, 3070-3072, 3074, 3078, 3080-3082, 3085-3087, 3091,
<222> 3099, 3100, 3103, 3107, 3110-3112, 3114, 3115, 3121, 3123, 3125,
<222> 3128, 3136, 3138, 3140, 3141, 3143, 3145, 3147, 3149
<223> Incyte ID No: a or g or c or t, unknown, or other

<220>
<221> misc_feature
<223> Incyte ID No: 2707969CB1

<400> 46
acacaggagc aatgcaaaat ttgataaagc attttctgt cagatcagct gagccctact 60
gcccttcctc tcaagattcc tggagaccca gatgttnnngna tctttcatgt acaacaaaat 120
aatgtgtcat gatgtatgtg ataaaagaccc tgtactccgg gtatttgatt cccgagttga 180
caagatcagg ctgttgaatg ttcggacacc tactctccgt acatccatgt accagaagtg 240
taccactgtg gatgaaggcag agaaaagcaat tgagctgcgt ctggcaaaaa ttgaccatac 300
tgcaattcac ccacatttac ttgacatgaa gattggacaa gggaaatatg agccgggctt 360
cttccctaag ctgcagtcgt atgtacttgc cactgggcca gccagcaaca agtggacgaa 420
aaggaatgcc cctgcccagt ggaggcgcaa agatcgccag aagcagcaca cagaacacacct 480
gcgttagat aatgaccaga gggagaagta catccaggaa gccaggacta tggcagcac 540
tatcccccag cccaaactgtt ccaacccctc tccatcagtg attgcccaga ccaattggaa 600
gtttgttagag ggcctgctga aggaatgccg caataagacc aagaggatgc tggtagaaaa 660
gatggggccga gaagctgtgg agctaggcga tggggaggtg aacatcacag¹gggtggaaga 720
gaacaccctg attgcccagcc tttgtgatct cctggaaagg atctggagtc atggactaca 780
agtgtaaacag gggaaatcag ccttatggtc ccactgttta cattatcagg acaaccggca 840
gagaaaactc acatcaggaa gcctcagtag ctcaggaata cttcttgatt cagaacgtag 900
gaagtcgtat gccagctcac tcatgcctc cctgaggatc tccctgatcc aggtatgag 960
gcacatccag aacatcgcccc aaatcaagac tgatgtggaa aaggccagag catgggtgcg 1020
actgtccatg gaaaaaaaaatg tactttccag acacctgaag cagctccctc cagaccatga 1080
gctcacccaa aagttatata agcgctatgc cttcctgcgc tgtgtatgac agaaggagca 1140
gttcctctat cacccctgtt cttcaatgc cgtcgattac ttttgcttca ccaatgtctt 1200
cacaactatc ctgatcccgtt accacattct gatcgtacca agcaagaagc tggggggctc 1260
catgttcaact gccaacccat ggatctgtat atcaggagaa ttgggtgaga cacagatcat 1320
gcagattccc aggaatgtgc tagagatgac cttcctgcgc cagaacttgg ggaagcttac 1380
tactgtccag atttggccatg ataactctgg gctgtatgcc aaatggctgg tggagttatgt 1440
gatggtcagg aatagagatca caggacatac ctacaaggc ccgtgtggcc ggtggtagg 1500
gaaggccatg gatgtatggaa gcctggagcg gatcttagtt ggggagctgc tcacatcccc 1560
gcctgaggtg gatgagagggc catgcccggac cccggcgtc cagcagtccc ccagtgtcat 1620
ccggaggctt gttaccatct cacccaaacaa caagccccaa ctgaaacactg ggcagatcca 1680
ggagtccatc gggaggccag tcaatggcat tgtgaagcac ttccataagc ctgagaaaaga 1740
gcgaggccatg ctgacgctgt tgctctgtgg agagtgtggc cttgtctcgg ctttggaaaca 1800
ggctttccatg catggattta aatcgccccg gctttcaaaa aatgtcttca tttgggattt 1860
cctggaaaaaa gcacaaacctt attatgagac attagagaag aatgaagtag tccctgagga 1920
aaactggcat acaagagccc ggaacttctg ccgatttgc actgcaatca acaataactcc 1980
ccggaacatc ggaaggatg gcaagtttca gatgtctgg tgcttggag ccagagatca 2040
cctcctacac cactggattt ccctgtctggc tgactgcccc atcactgcac acatgtatga 2100
ggatgtggca ctgatcaaag accatacact tgtcaattcc ttgattcgtg tgctgcagac 2160
attgcaggag ttcaacatca cgctggagac gtccttgc aagggcatcg acatctgacc 2220
tcccagcacc agccagcagc aggactgaga aagactcacc ctgcagctct gaccttttt 2280
cccaaaggga cttaaagcgat tgtgcaggag taggagacaa aatgtacact cactgtaaaa 2340
agagaacttag aggatttttg gaataaataa tctatttttag agtatttttg ctgatttgct 2400
ttttcacacac tttcatgtga aagagtgata gggagagggaa gcgaggctgg tgccgcttat 2460
tttgaagctg gtggccctccc tcgcccgtggc cacatgtgg aagcctgagg cctccctgg 2520
ctgagctgtt ggcactgcgt gcggggacagt tatgtttccct tgcccccgtcg cattaatgag 2580

```
gcccttccac atcattttta aactaatgtt tttcttatatt aacattatta tggtatattg 2640  
gttttcata gccccacaca ggtgtgctgc gcgggaagcc ccatgctcca atcaaaggaa 2700  
tttttagtag tgcctctaag caagcacccga tgagtcaagtc ccacgttattt tcttttttgt 2760  
cagttttttt tgggaaggag acatgccggg atgtgtcata gtgccaaata ccacatttcc 2820  
tgttggcaca gtttcacaga agtaaacata agcatgtttt aacagggtttt tcttttcttt 2880  
tttctttttt aaaatgtttt atttattttaa cccgcatttg tgtgttttttta agtattttct 2940  
tttttaagg aaaggaaaaag ctgtcaca tcttaactggc tatgttattttt ttattaaatt 3000  
tatgttttgc aacttagaaa ccagctacag tatggcccac ttaataaaaac acctgaaaaca 3060  
aaaaaaaaagn nngnggggn nngtnnnnag naggagggnn ggngggnggn nngnnngggag 3120  
ntnантntq qggtgngn nngnangnt 3150
```

<210> 47
<211> 1806
<212> DNA
<213> *Homo sapiens*

<220>
<221> misc_feature
<223> Incyte ID No: 2817769CB1

gaaaacagac atccaccagt aagcaagctc tgttaggctt ccatgttagt gtagctctc 2760
tcccacaagt tgtccctcta ggacaagaat tatcttacaa actaaactat catcacacta 2820
ccttgtatgc cagcacctgg taacagtaga gattttata cattaatctt gatctgttt 2880

<210> 49
<211> 1109
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 3421335CB1

<400> 49
ccccacgcgtc cgctcgctct tgggtcatgc ctggccagca gaaaggcagct ccatagggga 60
ggagagccac gcaggatctc acagctgcag tctaatacgta acacagagga ttcagcagt 120
gccaccatgg gttctgtgaa ttccagaggc cacaaggcgg aagcccagggt ggtgtatgt 180
ggcctggact cggcggggcaa gaccacgctc ctttacaagc tgaaggggcca ccagctggtg 240
gagaccctgc ccactgttgg tttcaacgtg gaggctctga aagctctgg gcacgtgtca 300
ctgactctct gggacgttgg gggggcaggcc cccgctcagag ccagctggaa ggactatctg 360
gaaggccacag atatctctgt gtacgtgtc gacagcacag atgaagcccg cttaccggag 420
tcggcggctg agtcacaga agtcctgaac gaccccaaca tggctggcgt ccccttcttg 480
gtgctggcca acaagcagga ggcacctgtat gcacccctgc tgcttaagat, cagaacacagg 540
ctgagtcttag agagattcca ggaccactgc tgggagctcc ggggctgcag tgccctca 600
ggggaggggc tgcccgaggc cctgcagagc ctgtggagcc tcctgaaatc tcgcagctgc 660
atgtgtctgc aggccgagac ccattggggtt gaggcggag acagcaagag atcttgatcc 720
agacagagca gcatatcttt gtcatacaca actagaagaa ccagctgatc ttgagaaat 780
ttacgcttag tctatcaaac aaaaaatgtt ggcttggccc ggtggctcat gcctgtatc 840
ccagcaactgt gggagaccac ggtgggggaa tcccttgagc ccaggagttt gagagcaaca 900
tcacaacacc ccatttctac taataatcaa aaaattggcc gggcatggtg gcatgtgcct 960
ttagtcccag ctacttggga ggctgaggca ggagaatcgc ttgagcccaa gaggttagagg 1020
ttgcagttag ccaagatcgc gccactgcac tccagttctgg gcaacagagt gagaccctgt 1080
tctagtggta ataataataa tgatgttagt 1109

<210> 50
<211> 2407
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 605761CB1

<400> 50
cttcgctgg cgcattacc tgagttctcc tccagcgttt ccgcaccctc tccgattagc 60
ggtcccagga gttccaagg taaccgcgcga gttagggcggta tctcattagg cgaaaagcga 120
aaccgcgaag tgacgcttt accgggtgtc agcagcgcaga gggttcgaag atggccggcgc 180
gcaagggtcg gcgtcgacg tggaaaccgg gggaaaccat ggaagcccgag tccggcgaca 240
caagttccga gggcccgccg caggtctacc tgcccgccg gggccgcgc ctacgcgaag 300
gggaggagct ggtcatggac gaggaggct atgtgtctta ccaccgagcg cagactggcg 360
ccccctgtct cagtttgac atagtccggg atcacctggg agacaaccgg acagagcttc 420
ctcttacact ttacttgcgt gctgggaccc aggctgagag cggccagagc aacagactga 480
tgatgcttcg gatgcacaat ctgcattggga caaagccccc accctcagag ggcagtgtat 540

aagaagaaga ggaggaagat gaagaggatg aagaagagcg gaaacctcag ctggagctgg 600
 ccatgggcc ccactatggt ggcataacc gagttcggt gtcatggctg ggtgaagagc 660
 ctgtggctgg ggtgtggtca gagaagggcc aggtggaggt gtttgcgcgtg cggcgccccc 720
 tgcagggtgt ggaggagccc caggccctgg cagccttcctt ccgggatgag caggcccaa 780
 tgaagccccat ctttccttc gctggacaca tggcgaggg ctttgcctt gactgtccc 840
 cccgggtgac cggtcgectg ctgaccgggt actgtaaaaa gaacatccac ctctggacac 900
 ctacggacgg cggctctgg cacgtggacc agcggccatt cgtggccac acacgtctg 960
 tggaggacct gcagtggtca cgcactgaga acacgggtt tgcctcctgc tcagctgacg 1020
 cctccatccg catctggac atccgggcag cccccagcaa ggcctgcatg ctcaccacag 1080
 ccaccggcca ttagtggggac gtcaatgtca tcagctggag cccggggag cccttcctgc 1140
 tcagtggcgg ggatgtggg gcccctaaga tctgggacct tggcagttc aagtctggtt 1200
 ccccagtggc caccctcaag cagcacgtgg ccccggtgac ctccgtcgag tggcaccccc 1260
 aggacagcgg ggtctttgca gcctcggtg cagaccacca gatcacacag tggacacctgg 1320
 cagtggagcg ggaccctgag gccggccgacg tggaggccga ccccggaactg gccgacacct 1380
 cgcagcagct gctgttcgtg caccaggccg agaccgagct gaaggagctg cactggcacc 1440
 cgcagtggcc aggcttcgtg gtcagcacgg cgctgtcagg ctccaccatc ttccgcacca 1500
 tcagcgctg aggctccca ctggctctga tcttgccttcc tgcttgaaa ctgaagtcga 1560
 attgggtctcc ccttggaaagg gttcatttcg gtctgttgc ttagactggc cggcctgtgg 1620
 gctccgtga tggattctgt ttgacgtatt gttctctaga aggccctggct ctgatccagt 1680
 gaccctctc accaaagaac tcggtttaac caggctctg taagaccact cccaccaga 1740
 gacttgtgtg gcctgggtg gcctgtgtg cggattctt cctgtcagct gtgaccatt 1800
 tgacctgtgt ccccaagaacc cagtttttg tttgtttgtt ttagactggc tcttggctcg 1860
 tcgcccaggc tggagtgcag tagcacgatc ttggctcaact gcaacctcg cccctgggt 1920
 taaagtgtatt ctctcagctc agtctccca gtagctggta ttacaggcat gtgcaccac 1980
 accccgttaa tttttgtatt ttttagtagag acggggtttc accatgttgg ccaggctgg 2040
 ctcaaattct ttagtcaag ttagtctgtcc gccccggcct cccagagtgc tgggttggg 2100
 ttacaggcgt gagccaccgc gtccggctca ggaccaggat ttggctgtcg gtccctggca 2160
 ggggactcgg gggatataca gtggctgcac caaattggag gtgtgggttc ctccaaacaca 2220
 atttgccttc gcccgttgc ttctgcacag ctgggtttgg ccaggatttc tccgtgtggg 2280
 ggctacatgc gaccctctcc cctctccct gacttttagag gctggctgtc tgcgggagg 2340
 aaggtcaggg ctctgagca gcaataaagg accaggaaga ggcctgaggt gtaaaaaaaa 2400
 aaaaaaaaaa 2407

<210> 51
 <211> 1158
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte ID No: 483862CB1

<400> 51
 ggaagaccgt cccggatggc ctggggact gccagtgtgt ggaggtgagc tccgggattg 60
 cccgcattcc cgcttctgt gtgtgtttca tgctgcaggc tgccggccgtc agccctcgct 120
 cgcattgggt ggcgtgaggt gccggggcag caagtgcacat gtcgtcggtc ctccgcggc 180
 ctgacttccc ccgttggaaag cggccacatct cggagcaact gaggcgccgg gaccggctgc 240
 agagacaggc gttcgaggag atcatcctgc agtataacaa attgctggaa aagttagatc 300
 ttcatcgt gttggcccag aaactacagg ctgaaaagca tgacgtacca aacaggcacc 360
 agataagtcc cggacatgtat ggcacatgga atgacaatca gctacaagaa atggccaaac 420
 tgaggattaa gcaccaagag gaactgactg aattacacaa gaaacgtggg gagttagctc 480
 aactgggtat tgacctgaat aaccaaatacg agcggaaagga cagggagatg cagatgaatg 540
 aagcaaaaaat tgcaaatgt ttgcagacta tctctgaccc ggagacggag tgcctagacc 600
 tgcgcactaa gctttgtgac cttgaaaagag ccaaccacagc cctgaaggat gaatatgtat 660

WO 00/31263

ccctgcagat cactttact gccttggagg gaaaacttag gaaaactacg gaagagaacc 720
 aggagcttgtt caccagatgg atggctgaga aagcccgagg accaaatcg cttaatgcag 780
 agaatgaaaa agactccagg aggcggcaag cccggctgca gaaagagctt gcagaagcag 840
 caaaggAAC tctaccatgc gaacaggatg atgacattga ggtcattgtg gatgaaaactt 900
 ctgatcacac agaagagacc ttcctgtgc gagccatcg cagagcagcc acgttaagttag 960
 gcaggTTTGG gcccaggAAA agacagctt aggagaata tgaaggcaca tctgtggaca 1020
 tgacaaagaa tgcagtcaga tgcacccaac cccttactcc ttttctgggac caccacgcgt 1080
 cgaacacacc acagagggtt ctatgtttc tcagttcacc tctgcttaat gggagggaaag 1140
 cagaacacagg gtggcttc 1158

<210> 52
 <211> 1026
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte ID No: 1256777CB1

<400> 52
 ctgcgggct ctctccgtcg ccatggaaac gaaagcggcc aagttagagct ccgtccgtac 60
 gcgcgcctc ccgtgggctc cggccggcta agccgcggcg gacaactatg ctgaaagcca 120
 agatccctt cgtggggctc tgcgagatgt gaaaactgt tttggccaac ttctgcacag 180
 aatcttcgtt catcaactgaa tacagcccaa cccaaaggagt gaggatccta gaatttgaga 240
 acccgcgtt taccagcaac aacaaaggca cgggcgtgtga attcgagcta tgggactgtg 300
 gtggcgttca taagttttag tcctgtgtgc cggccctgtat gaaggatgtt catggagtgg 360
 tgatcgctt caatgtgtac atcccaagcc accggaaaggaa atggagatgt tggatattcct 420
 gctttgtcca acagccgtcc ttacaggaca cacagtgtat gctaattgtca caccacaaac 480
 caggctctgg agatgataaa ggaaggctgt ctttgcgtcc acccttgaac aagctgaagc 540
 tgggtgcactt aaacctggaa gatgaccctg aggagatccg gatggaaattt ataaaggatt 600
 taaaagcat aatcaactcc atgtctgaga gcagagacag ggaggagatgt tcaatttatga 660
 cctagccagc cttcacctgg gactgccaca tccccagtgtaaatcgtatgtttctcggt 720
 cagatctgaa atcacatcca gctcctgtatg ttttcttctc cctctgactt cagaggaagt 780
 gttcctaccc gcaggaaggc acctgttcaca caggcggttc actcagacca tctgtgtct 840
 gcccctgagtt cagttgagaa aatccttata tcaaatttgg atttcctggc cccagaactt 900
 cccaaagacc tgtaaaatgg agggatttac cacctcacat atgtccagtt aaacagttt 960
 tggacttggta accgtcgcag cccaatgtata caacagtgtt ttaatcacgt gaaaaaaaaa 1020
 aaaaaa 1026

<210> 53
 <211> 2456
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte ID No: 2198779CB1

<400> 53
 gacgagcgcac gagatgacgg aggagcgggtt ggccaaacgca tgccggcagt cggtgtaaac 60
 aaggcctcgcc cccgcgtcggt gtcctgtcgac cgctcctggc tgggatttgc attggctgg 120
 cagagaggtt acctggaaat ccaacacccgc ccaacaccccc tcccgctccc cagtcgggg 180
 acttcgtatgtt gattggagaa ggagttgaca ggaggagcccg cccgcacagggaa cctaagaatgt 240

ctgtgaccag aagatggat cgccggAACAG cagcagtGCA ggatccgggt ccggagacCC 300
 ctccgaggGC ttccccGAA gaggggCtGG cctgcgtCG agtgagGAAG aggaAGAAGA 360
 ggasGGat gtggatctGG cccaggtact ggcttatCtC ctccgcAGAG gccaAGtGAG 420
 gttggTCAG ggaggaggTG cagcaaaATTt acaattcatt caggcccTtC tggactcaga 480
 ggaagagaat gacagagett gggatggTCg tcttgggat cgatacaACC cacctgtGA 540
 tgctaccCCT gacacccGGG agctggAAAT caatgagatC aagacacaAG tggactGGC 600
 cacaggcAG ctggggCtTA ggccgggCcC AGAGCAGC AGCTTCCtC gaatGttGCA 660
 ccagagAGAA cggggCCTC GccatcgGGG aagttCtCC CTTGGAGAAC agtctcgAGT 720
 gatatCtCAC ttcttgcCCA atgatctGGG CTTCACTGAT agtactCtC agaaggCttt 780
 ctgtggcAtC tacagcaaAG atggtcaaAT attcatgtCtC gcttgcCAAG accagacaAT 840
 ccgactCtAt gactGCCGAt atggccgTT ccgtAAATC aagagcAtCA aggCCGCGA 900
 tgttaggCTGG agcgtCttGG atgtggcTT caccCtGAt gggAACCACT tccttactC 960
 tagctggTtC gattacattC atatCtGCAA tatCtAtGtT gagggagata cacacactGC 1020
 cctggatCtC agGCCAGAtG agcgtcgCtC tgctgtCtC tccattgCtG tctCtCAGA 1080
 tggacgagAA gtactaggAG gggcaatGA tggctgCtG tATgtCtttG accgagaACa 1140
 gaaccGGCGC accCttCAGA ttgagtCCCA tgaggatGAt gtGAatGcAG tggCtttGc 1200
 tgatataAGC tcccaaAtCC tggatCtG gggagatGAt gccatCtGcA aagtgtGGG 1260
 tcgacgcAcc atgcgggAGG atgacccAA gcctgtGGGt gcaactggCtG gacaccAGGA 1320
 tggcatcAcc ttcatGACA gcaaggGTGA tggccGgtAt ctgatCtCtCA actctAAAGA 1380
 ccagaccatC aaactCtGGG atatCcgACG CTTTCCAGC cgggAAggcA tggAAgCttC 1440
 acggcaggCt GCCACACAGC AAAACTGGG CTAATCGGTG cagcaAGtGc ccaaaaaAGG 1500
 gtttactCtG catccCtAcc cagcctggcG gaagctGAAG CTCcccAGGGG acagtcCtt 1560
 gatgacCtAC CGGGGCCAcG gagtGtGcA caccCtCAtC CGtGCGGt tctccccat 1620
 tcataGcAct gggcAGcAgT tcatctACAG tggctgtCtC actggcAAAG tggttgtGtA 1680
 cgacCtCta agtggccACA ttgtGAAGAA gctgaccaAC cacaaggCtC gtgtgcgtGA 1740
 cgtcagtTtG caccCtttG aagagaAGAt tgcAGcAGt tgctggacG ggaacCtGcG 1800
 tctgtggcAG taccGCCAGG ctgagtactt ccaggatGAc atGCCAGAAt ctgagGAAtG 1860
 tggcageGCC cctgccccAG tggcccaAtC ctctacacCC ttttCtCtAC cccAGtagAt 1920
 ccaacCtCtA gccccatATA gggtaACtC tttgataAGC tctCtGcCtC tccCtCtCt 1980
 tctCtCtGt gggGAAtGtT tggaggAAAtC actggCtAtt gatggGAAt aacataAGCC 2040
 tgggCtCtGA gCtCtGAGtG agCCtGAA gattCtCCCC atggggcAGA gtggCtCtCt 2100
 tacgtGtCtA caccCAGtCA gcttggGtCC tcatCtCtG tCAGAGtGtG gcaggactGC 2160
 cattatCtGg ggtgtggCtC tgcCAGcAA gagaAGtGtC ctgggtGtT ttaatCAtGt 2220
 ttGAatGtTA ggggttGgAt cctAGAGtAG atGcCtGAGG ccACAtCtGA acAGACtGt 2280
 cagCCAGGCC tggcAGGtCtC tCACGtGAG gattCAACTG gccaAtCACA ggACAGGtGt 2340
 CCTggCtCtT CTCtCtGAGG tctctAGGGG agggGcAtGg gtaaggGtGt ttcCtCAGcA 2400
 cccteetGGG gtggGGtAtA tgcgtGtGtGt catgtCtGgg tctttaAGGt aggaca 2456

<210> 54
 <211> 1771
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte ID No: 2226116CB1

<400> 54
 cggctcgAGt taatatTTtC gttgagcGGA acCttGctAt tccataAGAG gatgtgtCCa 60
 gtgttGtGGA agatTTcatG ttttaAtCC tttgtacAGA aatCtGcTC ccaAGtCACA 120
 gataggCtGA cgggtcAGAG ggcaAGAcGt gaccCAGGGC cgagaggGtG agtgaccAGG 180
 aaaatCggat tcatcAGtTC acttGtttGt ttcAGAAACG tgcACAAAGA cctGctGcAt 240
 gagggCtCtG tttcAGtTT ctgttCAtG cccAGcAtTA aACCAAGtAt ctCAtttGc 300
 caatttGact tctgtAGGGG ccatggcAcc tgcaAGGtGt ttctcAGcAA gattGaggAC 360

cgtgtttcag ggctggggc attgggctt gtccacatgg gctggcctga agcccagccg 420
 gctactgcc a caggggctt ctcccaggt gctctcggtc ggccgtgcgg acctcgccaa 480
 gcatcaggaa ctccccgggaga agaagctgt ctctgagaaa aagctgaaaaa ggtactttgt 540
 ggactatcgg agagtgcgtt tctgtggagg aaacggaggc gctggggcaa gctgcttcca 600
 cagttagccc cgcaaggagt ttggaggccc tgatggaggg gacggaggca acggtgacca 660
 cgtcattctg agagttgacc agcaagtcaa gtcctgtcg tcggtctgt cgccgtacca 720
 gggtttcgt ggagaagatg gagggagtaa aaactgcctc gggcgcagtg gcgcgcgtcct 780
 ctacatccgg gtccccgtgg gcacgcgtgtt gaaggaggga ggcagagttt tggccgaccc 840
 gtcttcgtg ggagatgagt acattggccg gctggggcggg gcaggaggaa aaggcaaccg 900
 ctttttcctg gccaacaaca accgtgcccc tgcgttgcgtt accccctggac agccaggaca 960
 gcagcgagtt ctccacacttgg agctcaagac ggtggccac gccggaaatgg tggatcccc 1020
 caacgcggg aagtcttcac tgctccggc catttcaaacc gccagaccgg ccgtggcttc 1080
 ctaccgcgtt accaccctga agccccacgt cggtatcgcc cactacgaag gccacccata 1140
 aatagcgtg gccgacatcc cccgcatacat acgaggcgcc caccagaaca ggggtctggg 1200
 gtccgccttc ctcaggcaca tcgagcgttgc cccgtttctc ttgttcgtgg tggatcttc 1260
 tcagccttag cctggactt aagttgacga tttaaaatataaactggaga tttatggatgg 1320
 gggccgttgc gcgaggcccc acgcaatcgt cgcaacaacaaatggatttgcgttcc ctgaagccca 1380
 agccaaatctg tcccgatcttcc gggatcactt gggacaggag gtcatcggtc tgctggcggtt 1440
 gacccggcgg aacctggcgc agetgtgttgc acactgttgc gttgttatg acgcctacgc 1500
 ggaggccgag ctggccagg gccggccagcc gtcagggtgg tagccacggc agaggggggt 1560
 cgcctctggg cctctgtctg agccaaacctg ggtgtgaattt cgggtgggtt gaatgcataa 1620
 agtgccttgtt ggacacgggg gagttgtggt gcttctgggtt ctctggccccc cgcctgctgg 1680
 cctgagatgc cctcatgttg ggaagcattc cgtggccccc accccgccttgc cccctcgat 1740
 ttcctgcacc tgtagcgttgc cgctgacttgc t 1771

<210> 55
 <211> 2724
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte ID No: 2504472CB1

<400> 55
 gctgaccagt tgccgacatg gtggcaccgg tgctggagac ttctcacgtt ttttgcgtcc 60
 caaaccgggt gccccgggatc ctgaacttgg gctctggcc cagaggactt ctggcctttt 120
 gcacgttctg ctccgtgggt ctctatgacc ccctgaaaag gtttgcgtt accaacttga 180
 atggtcacac cggccggatc aattgcatac agtggatttgc taaacaggat ggctccccc 240
 ctactgaattt agtttcttgg ggtatcttata atcaactgtat tcactggaa atagaggata 300
 atcagctttt aaaacgttgc catcttcaag gccatgttgc acctgttttgc gcggtgcgt 360
 ctgtttacca gaggaggaca tcagatcttgc cattatgtac actgtatgtt tctgcagctg 420
 cagattctgc tggtcttgc tggatcttgc agtaatgtgc ctgcagactt 480
 taaacttgg aaatggattt gcttgcgtt tctgttttgcataactgtatgc 540
 taccaatattt agcatgtggc aatgtatgttgc cagaatttca catatttgc caacaaaatg 600
 atcagttca gaaatgtgtt tctctgttgc gacatgttgc ttggatttgc ggagtggaaat 660
 gggcgcctt tggttagatgttgc ttttccttgc caagctgttgc acaagatttgc ctgtataagaa 720
 tatggaaatgttgc ttttgcgtt ttttgcgtt ttttgcgtt ttttgcgtt ttttgcgtt 780
 tgaaagaaaa tacttttacc atagaaaaatgttgc aatgttgc aatgttgc ttttgcgtt 840
 tggagacatgttgc ttttgcgtt ttttgcgtt ttttgcgtt ttttgcgtt ttttgcgtt 900
 ttttgcgtt ttttgcgtt ttttgcgtt ttttgcgtt ttttgcgtt ttttgcgtt ttttgcgtt 960
 ccatgattct ctgggcttca gatgttgcgtt ttttgcgtt ttttgcgtt ttttgcgtt ttttgcgtt 1020
 gtgaagttaggttggaaatactt ttggattttgcgtt ttttgcgtt ttttgcgtt ttttgcgtt 1080
 ttttgcgtt ttttgcgtt ttttgcgtt ttttgcgtt ttttgcgtt ttttgcgtt ttttgcgtt 1140

caagagatg gactccagag attgtcattt caggacactt tgatgggtgc caagacctag 1200
 tctgggatcc agaaggagaa ttattatca ctgttgtac tgatcagaca actagactt 1260
 ttgctccatg gaagagaaaa gaccaatcac aggtgacttg gcatgaaatt gcaaggcctc 1320
 agatacatgg gtatgacctg aaatgttgg caatgattaa tcggtttcag tttgtatctg 1380
 gagcagatga aaaagttctt cgggttttt ctgcacctcg gaattttgtg gaaaattttt 1440
 gtgccattac aggacaatca ctgaatcatg tgctctgtaa tcaagatagt gatctccag 1500
 aaggagccac tgtccctgca ttgggattat caaataaaagc tgtcttcag ggagatata 1560
 ctctcagcc ttctgtatgaa gaggagctgt taacttagtac tggtttttag tatcagcagg 1620
 tggccttca gcctccata cttactgac ctcccactga ggatcatctt ctgcagaata 1680
 ctttgtggcc tgaagttcaa aaactatatg ggcacggta tgaaatattt tggtttactt 1740
 gtaacagttc aaagactctg cttgccttcag cttgtaaaggc agctaagaaa gagcatgcag 1800
 ctatcattct ttgaaacact acatcttgg aacaggtgca gaatttagtt ttccacagtt 1860
 tgacagtca cgcacatggcc ttctcaccta atgagaagtt cttaactgt gtttccagag 1920
 atcgaacctg gtcattgtgg aaaaagcagg atacaatctc acctgagttc gagccagttt 1980
 tttagtcttt tgccttcacc aacaaaatta cttctgtgca cagtagaattt atttgttctt 2040
 gtgattggag tcctgacagc aagtattct tcactggag tcgagacaaa aaggtgggtg 2100
 tctgggtga gtgcgactcc actgatgact gtattgagca caacattggc ccctgctcct 2160
 cagtccttgc cgtgggtggg gctgtgacag ctgtcagcgt ctgcccagtg ctccaccctt 2220
 ctcaacgata cgtgggttgcgat gtaggatgg agtgtggaaa gatttgccta tatacttgg 2280
 aaaagactga tcaagttcca gaaataaaatg actggaccca ctgtgttagaa acaagtcaaa 2340
 gccaaagtca tacactggct atcagaaaat tatgtggaa gaattgcagt ggaaaaactg 2400
 aacagaagga agcagaaggt gctgagttt tacacttgc aagctgtgtt gaagatcaca 2460
 ctgtgaagat acacagagtc aataaaatgtg cactgtaatg gacttaataa ctacatgctt 2520
 gcagtcaactg gtatcttaaa atattatcat gtaaacaggt catcttacc ttcataactg 2580
 aatttaggtt ctgggttttt ttttttttgg agatggagtc ttgctttgtc acaacctcca 2640
 cctcccaggt tcaagcgatt ctcttccttgc agcctccatgat gtagctggga ctagaggcac 2700
 accaccatgc ccggctaatt ttg 2724

<210> 56
 <211> 2963
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte ID No: 3029920CB1

<400> 56
 ggccgaagag gctggcagggt ggccgcgtgg ggtgggtgct cctgggtgaga ggagttccact 60
 ccgtgcgtgc gggcgaggc cggccccccga gagccgcga catgaagaaa gacgtgcgga 120
 tcctgcgtgtt gggagaacct agagttggg agacatcaact gattatgtct ctggtcagtg 180
 aagaatttcc agaagagggtt cctccccccggg cagaagaaaat caccattcca gctgtatgtca 240
 ccccagagag agtccaaca cacattgttag attactcaga agcagaacac agtgtatgaac 300
 aacttcatca agaaatatct caggctaattt tcattgttat agtgtatgcc gtttacaaca 360
 agcattctat tgataaggta acaagtcgtt ggattcttctt cataaatgaa agaacagaca 420
 aagacagcag gctgccttta atattgggtt ggaacaaaatc tgatctgggtg gaatata 480
 gtatggagac catccttctt attatgaacc agtatacaga aatagaaacc tgggtggagt 540
 gttcagcgaa aaacctgaag aacatatcag agctcttttta ttacgcacag aaagctgttc 600
 ttcatcctac agggccccctg tactgcccac agggagaagga gatgaaaccca gcttgataa 660
 aagcccttac tcgtatattt aaaatatctg atcaagataa tgatggactt ctcaatgtatg 720
 ctgaactcaa ctctttcag aggatttttttcaacactcc attagctctt caagctctgg 780
 aggtgtcaa gaatgttagtc agaaaacata taagtgtatgg tgggtgtac agtgggttga 840
 ccctgaaagg tttctctttt ttacacacac ttttatcca gagagggaga cacgaaacta 900
 cttggactgt gcttcgacga ttgggttatg atgatgacct ggatttgaca cctgaatattt 960

tgtccccct gctgaaaata ctcctgatt gcactactga attaaatcat catgcattt 1020
 tatttcctca aagcacctt gacaagcatg atttggatag agactgtgc ttgtcacctg 1080
 atgagctta agatttattt aaagttttcc cttacatacc ttgggggcca gatgtataa 1140
 acacagttt taccaatgaa agaggctgga taacctacca gggattcctt tcccagtgg 1200
 cgctcacac ttatttagat gtacagcggt gcctgaaata tttggctat ctaggctatt 1260
 caatattgac tgagaagag tctcaagctt cagctgttac agtgacaaga gataaaaaga 1320
 tagacctgca gaaaaaacaactcaa actcaaagaa atgtgttcag atgtaatgtt attggagtga 1380
 aaaactgtgg gaaaagtggaa gttcttcagg ctcttcttgg aagaaaactta atgaggcaga 1440
 agaaaatcg tgaagatcat aaatcctact atgcgattaa cactgtttat gtatattggac 1500
 aagagaata ctttgttgg catgatattt cagaatcgga atttctaact gaagctgaaa 1560
 tcatttgta tggtatgc ctggtatatg atgtcagcaa tcccaaattcc tttgaataact 1620
 gtgccaggat ttttaagccaa cactttatgg acagcagaat accttgctt atcgtagctg 1680
 caaagtccaga cctgcatgaa gttaaaacaag aatacagtat ttccacctact gatttctgca 1740
 ggaaacacaa aatgcctca ccacaagcct tcacttgca tactgtctgat gcccccaagta 1800
 aggatatctt tggtaaatttgg acaacaatgg ccatgtatcc gcacgtgaca caagctgacc 1860
 tcaagagctc cacgtttgg ctgcgagccaa gttttggc tactgttttt gcagtttgg 1920
 gctttctat gtacaaagca ttattgaaaac agcgatgata taaaaagaaa tactgtccct 1980
 accaaaaaaca aatacttttta tgtacatttctt gaatgcttta agttctgcta gaattattga 2040
 gatatttata catcagagt tactttatata atattgttaa ttcatgcata agagtatttt 2100
 aatgatagtt ataactgcag tattggcttag catatggaaa gaaaacagct aacagccaaa 2160
 ctaaaatggc taaattccag aggccaaaag ggaatattttt gtaaatataat gtacatattc 2220
 aggcaagata tggctccca agctgagttc tagaaatgat gtttctagac atttctaagt 2280
 ggtattgtta gtgtcactt ggctcactt tctaggttta agttagccca gagattgtat 2340
 ttactcatgg atcactttat ttatttcaca ttactcaga atgatcctt ggggtctata 2400
 aggacataag gtacaatttg ccattgtctc tccattttta aaaacataca agtcagtgtc 2460
 agcttacca catgacattt ttctagtcag ttgtggtagg ccagccttga agccatcgca 2520
 cagtcgttacaa acttggtagt ctgagtgtagt agtcacccctt taagggtgaa gtttaggtaaa 2580
 agcaatttgc agaggcggtt tctatgtgtat tatgttgctt cttgtcagt atgttgaatt 2640
 ttatagccct ttcaatgaaa taaaaaaaaa atttgtatata taccatgtt ttttagttaa 2700
 ataaagagtc acccttacta ctgttgaatt tcatcccaag tggtaatcat tctataatgg 2760
 ctgtgtctgt tatagtatata tacagtaact gcatgtgtca ccaagtgttc tatatcaggc 2820
 taggataacc tagaggcagt aatttttaa atgataaaat aaatctaattt aatataaaact 2880
 ctcatgataa accttattttt tccatcatca gcctttcaa gtatttaat aaataactgc 2940
 tgggtactgt gaaaaaaaaaaa aaa 2963

<210> 57
 <211> 3332
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte ID No: 3332415CB1

<400> 57
 gcctggcaga ggctggcgccg catcggtcccc gtcctgccc gtctccggg caccggcca 60
 cccggccacc ccctccccc tgccatggag cccgagctgg acgctcagaa gcagctcga 120
 cccggggagcc gaagccgccc ggcctctggg ctcagcacgg agggagccac ggggccttcg 180
 gcccacaccc cccgggtcgaa gctggacggg agatgttccc ttcggagagg cagctccctc 240
 acattcttaa caccctggccc caactggac ttcaatttga aaagaaaaacg cagagagaaa 300
 gatgtatgtt ttgttgcct tagcagccctt gatgttgcagg agccaagccaa taaaagagtt 360
 cgacccctgg ctctgttgcac gtccttgca aattttatctt ctcctgttgc aatgttgc 420
 gtcagacgtt ttgttgcac aatcagtc tttacccttc gttgttgcacca cagatcccc 480
 gcccctgtcccc agaagtttcc tagcaggta acagtcacca caccggccaa gagaaggagc 540

agtgcactgt ggtcagagat gctggacatc accatgaagg agtctctcac caccaggag 600
 atcagacggc aggaggcaat atatgaaaatg tcccggaggt aacaggattt aattgaggat 660
 ctcaaacttg caagaaaggc ctaccatgac cccatgttaa agttgtccat catgtcagaa 720
 gaggaactca cacatatatt tggtgatctg gactcttaca tacctctgca tgaagattt 780
 ttgacaagaa taggagaagc aaccaaggct gatggaacag tggagcagat tggtcacatt 840
 ctcgtgagct ggttaccgcg cttgaatgcc tacagaggtt actgttagtaa ccagctggca 900
 gccaaagctc ttcttgatca aaagaaacag gatccaagag tccaagactt cctccagcga 960
 tgtctcgagt ctcccttcag tcgaaaacta gatctttgga gtttcctaga tattcctcga 1020
 agtcgcctag tcaaataccc tttaactgtta aaagaaattc ttaaacacac tccaaaagag 1080
 caccctgtatc ttcaagttct ggaggatgtt atattgataa tacagggagt cctctctgtat 1140
 atcaacttga agaaagggtga atccgagtgc cagtattaca tcgacaagct ggagtagctg 1200
 gatgaaaagc agagggaccc cagaatcgaa gcgagcaaaag tgctgctgtg ccattggggag 1260
 ctgcggagca agagtggaca taaaacttac attttcctgt ttcaagacat cttgggtctg 1320
 actcggcccg tcacacggaa cgaacggcac tcttaccagg tttaccggca gccaatcccc 1380
 gtccaagagc tagtcctaga agacctgcag gatggagatg tgagaatggg aggctccctt 1440
 cgaggagctt tcaagtaactc agagaaagct aaaatatct tttagaattcg cttccatgac 1500
 cccttccag cccagtcata cactctgca gccaatgacg tggccacaa gcagcagtgg 1560
 ttcaactgtt ttcgagcggc cattggcccc ttccagtcgg caggcagtc acctgagctg 1620
 cagggcctgc cggagctgca cgaagagtgt gaggggaaacc acccctctgc gaggaaactc 1680
 acagcccaga ggagggcatac cacagttcc agtgttactc aggtagaagt tgatgaaaac 1740
 gcttacagat gtggctctgg catgcagatg gcagaggaca gcaagagctt aaagacacac 1800
 cagacacagc cggcatccg aagagcgggg gacaaagcccc ttctgggtgg caaacggaaa 1860
 gagactttgg ttagagaag gctctgtgtg ttaactgtatg ggagagactg ttgttata 1920
 aatgttaca gttttgtttt ctctgttggg gagcatcata gggttactt^tataccagttg 1980
 taacatttt attgttttg gttgttcttt tttttttttt taatggcage taaagatata 2040
 cagattactg ttaatttgca gtcctttttt ttttaaagat attttcttga gttattttaga 2100
 acatggtaag cctgttattt tttatcaaa caaaatattt atgaaatggg ttttcttta 2160
 attctggatt catcatggct ttctaatacc aattgttataa tttacaatat tcacccaaac 2220
 tttagaattttt gcaaatgctg gaattctgcc agtgtttctt tgctaaagcct tgcatgaaaa 2280
 atttggaaattt ttaacattgg caccaaaaac ctacatggaa tttatgtctg gaggatttca 2340
 aactttacat tgaacataaa ttcccttggaa aaacaaacca taaggctgag gaggtttta 2400
 tcaactggaa tgcttttat tagtttggg ttcactgtac attcctcatt ttacattcat 2460
 ttaacctgcc gattatttaa tttttttattt gtaaagttagt ttttagcatt tgcttttattt 2520
 tttttactttt gatgcctttt caaattggca tttttttttt gatgttatttctt tcctgattaa 2580
 aaatgtgtgt gtatgtgtgt gtgtgtgtt atatataat atttttttaa atcacattaa 2640
 ttttaccaag tgaacaccaag ccatactgtt tttgagccaa ttaagaaaaat tgccattttt 2700
 aaagtgttagc atttcagggtt aaagaccat gaaatggctt gatgttatttctt agactactga 2760
 aagaaaaacca cttcaagat tttgttggaaa gtttttagtgt tttctgaaat gcaagaggaa 2820
 aggtgatttgg tagtgagttt aaagaaaaag agagaaaaag agagtagttt tttcttcaag 2880
 taaaatgtct ggttgtgcca gacatccac aagtgtggaaa ggagatagga gaagctcaac 2940
 ttgagggcgt gtagtaagtt gtagaaggctt cgaggggacg tggacttattt tgccctgggtt 3000
 tgcaataacctt gcaaaaatgtt agtttgaaaa gaaacaatgtt aatgtgtttaa aaatttgacc 3060
 atatttagata aattttgggtt gattttagtca taagatggaa aaagactgtt gaatctttta 3120
 ttacaaaatgtt ttctgtttaa aatgggtatca tcatcttga aaggggggag gaggagtaaa 3180
 agcccgatta taatgggtat caattcaagt cagtggttgc tattctgttga aatatattt 3240
 gccagtgaa atgataatca gaaaagactg taaatagatc catccaaatgtt atttctctgt 3300
 acaaataat gatactttaa aaaaaaaaaaa aa 3332

<210> 58
 <211> 2617
 <212> DNA
 <213> Homo sapiens

<220>

<223> Incyte ID No: 4031536CB1

<400> 58
tttagtaatg tgccgttatt acatgttagag agtattcgct aaccaagagg agttttaaaa 60
tgtcaaaacc gggaaaacct actctaaacc atggcttggg tcctgttgat cttaaaagtg 120
caaaagagcc tctaccacat caaactgtga tgaggatatt tagcattagc atcattgccc 180
aaggcctccc ttttgcga agacggatga aaagaaaagg ggaccatggg tctgaggtcc 240
gctcttttc tttgggaaag aaaccatgca aagtctcaga atatacaagt accactggc 300
ttgttaccatg ttcaagcaaca ccaacaactt ttggggacct cagagcagcc aatggccaag 360
ggcaacaacg acggcgaatt acatctgtcc agccacctac aggccctccag gaatggctaa 420
aatgtttca gagctggagt ggaccagaga aattgttgc tttagatgaa ctcattgata 480
gttgcgaacc aacacaagta aaacatatga tgcaagtgt agaaccggc tttcaacgag 540
acttcatttc attgtccct aaagagttgg cactctatgt gctttcatc ctggaaacca 600
aagacctgtc acaaggagct cagacatgtc gctactggag aattttggct gaagacaacc 660
ttctctggag agagaaatgc aaagaagagg ggattgtgaa accattgcac atcaagagaa 720
aaaaagtaat aaaaccaggc ttccatcacaca gtccatggaa aagtgcatac atcagacagc 780
acagaattga tactaactgg aggcgaggag aactcaaattc tcctaagggtg ctgaaaggac 840
atgatgtatca tgtgtatcaca tgcttacagt ttgttggtaa cccaaatgtt agtggttctg 900
atgacaacac tttaaaagtgtt tggtcagcag tcacaggcaa atgtctgaga acattagtgg 960
gacatacagg tggagtatgg tcatcacaaa tgagagacaa catcatcatt agtggatcta 1020
cagatcggac actcaaaagtgtt tggaatgcag agactggaga atgtatacac accttatatg 1080
ggcataacttc cactgtgcgt tigtatgcattc ttcataaaaa aagagttgtt agcggttctc 1140
gagatgccac tcttagggtt tgggatattg agacaggcca gtgtttacat gttttgtatgg 1200
gtcatgtgc agcgtccgc tigtgttcaat atgatggcag gagggttggt agtggagcat 1260
atgattttat ggttaaagggtg tgggatccag agactgaaac ctgtctacac acgttgcagg 1320
ggcataactaa tagagtctat tcattacagt ttgatggat ccatgtgggt agtggatctc 1380
ttgatacatc aatccgttgg tgggatgtgg agacaggaa ttgcattcac acgttaacag 1440
ggcaccagtc gttaacaagt ggaatggaa tcaaaagacaa tattctgtc tctggaaatg 1500
cagattctac agttaaaatc tgggatataca aaacaggaca gtgtttacaa acattgcaag 1560
gtccccacaa gcatcagagt gctgtgaccc gtttacagtt caacaagaac ttgttaatta 1620
ccagctcaga tggatggact gtaaaactat gggacttgaa aacgggtgaa ttatttcgaa 1680
accttagtcac attggagagt ggggggagtg ggggagttgt gtggcggatc agacccctaa 1740
acacaaagct ggtgtgtca gttgggagtc ggaatggac tgaagaaacc aagctgctgg 1800
tgctggactt tgatgtggac atgaagtgaa gagcagaaaa gatgaatttg tccaaattgtg 1860
tagacgatat actccctgccc ctccccctg caaaaagaaaa aaaagaaaaag aaaaagaaaa 1920
aaatcccttg ttctcagttgg tgcaggatgt tggcttgggg caacagattt aaaaagacca 1980
cagactaaga agaaaaagaa gaagagatga caaaacataa ctgacaagag aggccgtctc 2040
tgtctcatca cataaaaggc ttcaactttt actgagggca gttttgcaaa atgagacttt 2100
ctaaatcaaa ccaggtgcaat ttatttctt atttttctt ccagtggtca ttggcagtg 2160
ttaatgtca aacatcatta cagattctgc tagcctgttc ttttaccact gacagctaga 2220
cacctagaaa ggaactgcaaa taatatcaaa acaagacttg gttgactttc taatttagaga 2280
gcatctgcaaa caaaaagtca ttttctgga gtggaaaagc taaaaaaaaat tactgtgaat 2340
tggttttgc tggatgtatcat gaaaagctt tttttttttt ttgcacacc attgcacatg 2400
tcaatcaatc acagtattag cctctgttaa tctatttact gttgcttcca tatacattct 2460
tcaatgcata tggatgtcaaa aggtggcaag ttgtcctggg ttctgtgagt cctgagatgg 2520
attnaattct tggatgtggt gctagaagta ggtctcaaa tatgggattt ttgtcccaac 2580
cctgtactgt actccctgca gccaaactta tttatgc 2617

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 7 : C12N 15/12, C07K 14/47, 16/18, A61K 38/17, G01N 33/68		A3	(11) International Publication Number: WO 00/31263 (43) International Publication Date: 2 June 2000 (02.06.00)																					
<p>(21) International Application Number: PCT/US99/28013</p> <p>(22) International Filing Date: 23 November 1999 (23.11.99)</p> <p>(30) Priority Data:</p> <table> <tr> <td>60/109,592</td> <td>23 November 1998 (23.11.98)</td> <td>US</td> </tr> <tr> <td>60/118,610</td> <td>4 February 1999 (04.02.99)</td> <td>US</td> </tr> <tr> <td>60/127,990</td> <td>6 April 1999 (06.04.99)</td> <td>US</td> </tr> </table> <p>(63) Related by Continuation (CON) or Continuation-in-Part (CIP) to Earlier Applications</p> <table> <tr> <td>US</td> <td>60/109,592 (CIP)</td> </tr> <tr> <td>Filed on</td> <td>23 November 1998 (23.11.98)</td> </tr> <tr> <td>US</td> <td>60/118,610 (CIP)</td> </tr> <tr> <td>Filed on</td> <td>4 February 1999 (04.02.99)</td> </tr> <tr> <td>US</td> <td>60/127,990 (CIP)</td> </tr> <tr> <td>Filed on</td> <td>6 April 1999 (06.04.99)</td> </tr> </table> <p>(71) Applicant (for all designated States except US): INCYTE PHARMACEUTICALS, INC. [US/US]; 3174 Porter Drive, Palo Alto, CA 94304 (US).</p> <p>(72) Inventors; and</p> <p>(75) Inventors/Applicants (for US only): HILLMAN, Jennifer, L. [US/US]; 230 Monroe Drive, #12, Mountain View,</p>		60/109,592	23 November 1998 (23.11.98)	US	60/118,610	4 February 1999 (04.02.99)	US	60/127,990	6 April 1999 (06.04.99)	US	US	60/109,592 (CIP)	Filed on	23 November 1998 (23.11.98)	US	60/118,610 (CIP)	Filed on	4 February 1999 (04.02.99)	US	60/127,990 (CIP)	Filed on	6 April 1999 (06.04.99)	<p>CA 94040 (US). TANG, Y., Tom [CN/US]; 4230 Ranwick Court, San Jose, CA 95118 (US). BANDMAN, Olga [US/US]; 366 Anna Avenue, Mountain View, CA 94043 (US). LAL, Preeti [IN/US]; 2382 Lass Drive, Santa Clara, CA 95054 (US). YUE, Henry [US/US]; 826 Lois Avenue, Sunnyvale, CA 94087 (US). LU, Dyung, Aina, M. [US/US]; 55 Park Belmont Place, San Jose, CA 95136 (US). BAUGHN, Mariah, R. [US/US]; 14244 Santiago Road, San Leandro, CA 94577 (US). YANG, Junming [CN/US]; 7136 Clarendon Street, San Jose, CA 95129 (US). AZIMZAI, Yalda [US/US]; 2045 Rock Springs Drive, Hayward, CA 94545 (US).</p> <p>(74) Agents: BILLINGS, Lucy, J. et al.; Incyte Pharmaceuticals, Inc., 3174 Porter Drive, Palo Alto, CA 94304 (US).</p> <p>(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).</p> <p>Published <i>With international search report.</i></p> <p>(88) Date of publication of the international search report: 14 September 2000 (14.09.00)</p>	
60/109,592	23 November 1998 (23.11.98)	US																						
60/118,610	4 February 1999 (04.02.99)	US																						
60/127,990	6 April 1999 (06.04.99)	US																						
US	60/109,592 (CIP)																							
Filed on	23 November 1998 (23.11.98)																							
US	60/118,610 (CIP)																							
Filed on	4 February 1999 (04.02.99)																							
US	60/127,990 (CIP)																							
Filed on	6 April 1999 (06.04.99)																							
<p>(54) Title: GTPASE ASSOCIATED PROTEINS</p> <p>(57) Abstract</p> <p>The invention provides human GTPase associated proteins (GTPAP) and polynucleotides which identify and encode GTPAP. The invention also provides expression vectors, host cells, antibodies, agonist, and antagonists. The invention also provides methods for diagnosing, treating, or preventing disorders associated with expression of GTPAP.</p>																								

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav Republic of Macedonia	TM	Turkmenistan
BF	Burkina Faso	GR	Greece	ML	Mali	TR	Turkey
BG	Bulgaria	HU	Hungary	MN	Mongolia	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MR	Mauritania	UA	Ukraine
BR	Brazil	IL	Israel	MW	Malawi	UG	Uganda
BY	Belarus	IS	Iceland	MX	Mexico	US	United States of America
CA	Canada	IT	Italy	NE	Niger	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NL	Netherlands	VN	Viet Nam
CG	Congo	KE	Kenya	NO	Norway	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NZ	New Zealand	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's Republic of Korea	PL	Poland		
CM	Cameroon	KR	Republic of Korea	PT	Portugal		
CN	China	KZ	Kazakhstan	RO	Romania		
CU	Cuba	LC	Saint Lucia	RU	Russian Federation		
CZ	Czech Republic	LI	Liechtenstein	SD	Sudan		
DE	Germany	LK	Sri Lanka	SE	Sweden		
DK	Denmark	LR	Liberia	SG	Singapore		
EE	Estonia						

INTERNATIONAL SEARCH REPORT

Internat'l Application No
PCT/US 99/28013

A. CLASSIFICATION OF SUBJECT MATTER					
IPC 7	C12N15/12	C07K14/47	C07K16/18	A61K38/17	G01N33/68

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
IPC 7 C07K C12N

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	MOOSLEHNER K ET AL: "STRUCTURE AND EXPRESSION OF A GENE ENCODING A PUTATIVE GTP-BINDING PROTEIN IDENTIFIED BY PROVIRUS INTEGRATION IN A TRANSGENIC MOUSE STRAIN" MOLECULAR AND CELLULAR BIOLOGY 1991, vol. 11, no. 2, 1991, pages 886-893, XP000891270 ISSN: 0270-7306 abstract; figure 1 ---	1-12
A	WO 98 37196 A (LUDWIG INST CANCER RES) 27 August 1998 (1998-08-27) abstract; claims 1-52; examples 1-8 ---	1-20
A	WO 94 16069 A (SCHERING CORP ;NAKAFUKU MASATO (JP); KAZIRO YOSHITO (JP)) 21 July 1994 (1994-07-21) abstract; claims 1-39 ---	1-6,9-15
	-/-	

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

° Special categories of cited documents :

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

- "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
- "Z" document member of the same patent family

Date of the actual completion of the international search

24 March 2000

Date of mailing of the international search report

05.07.00

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Authorized officer

Gurdjian, D

INTERNATIONAL SEARCH REPORT

Internat'l Application No
PCT/US 99/28013

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	WO 91 15582 A (CETUS CORP) 17 October 1991 (1991-10-17) abstract; claims 1-46; example 10 ----	1-16, 19, 20
A	WO 90 00607 A (CETUS CORP) 25 January 1990 (1990-01-25) abstract; claims 1-55; figures 3,4 -----	1-14

INTERNATIONAL SEARCH REPORT

Inte
tional application No.
PCT/US 99/28013

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)

This International Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:
· Although claims 19,20 are directed to a method of treatment of the human/animal body, the search has been carried out and based on the alleged effects of the compound/composition.
2. Claims Nos.: 17 18 20 because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically:
see FURTHER INFORMATION sheet PCT/ISA/210
3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

1. As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3. As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:
4. No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:
claims 1-20 partially

Remark on Protest

- The additional search fees were accompanied by the applicant's protest.
- No protest accompanied the payment of additional search fees.

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

Continuation of Box I.2

Claims Nos.: 17 18 20

Claims 17,18,20 refer to an antagonist and agonist and the use of antagonist of polypeptide of claim 1 without giving a true technical characterization. Moreover , no such compound is defined in the application . In consequence, the scope of said claims is ambiguous and vague , and their subject-matter is not sufficiently disclosed and supported (art.5 and 6 PCT) . No search can be carried out for such speculative claims the wording of which, is in fact , a mere recitation of the results to be achieved .

The applicant's attention is drawn to the fact that claims, or parts of claims, relating to inventions in respect of which no international search report has been established need not be the subject of an international preliminary examination (Rule 66.1(e) PCT). The applicant is advised that the EPO policy when acting as an International Preliminary Examining Authority is normally not to carry out a preliminary examination on matter which has not been searched. This is the case irrespective of whether or not the claims are amended following receipt of the search report or during any Chapter II procedure.

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

1. Claims: 1-20 (partially)

A protein with amino acid with seq.id. 1 and corresponding nucleotide sequence with seq.id. 30 , method for detecting a polynucleotide, expression vector ,host cell , method for producing a polypeptide , pharmaceutical composition , antibody , agonist and antagonist , method for preventing a disorder

2. Claims: 1-20 (partially)

A protein with amino acid with seq.id.2 and corresponding nucleotide sequence with seq.id. 31 , method for detecting a polynucleotide, expression vector ,host cell , method for producing a polypeptide , pharmaceutical composition , antibody , agonist and antagonist , method for preventing a disorder

3. Claims: 1-20 (partially)

A protein with amino acid with seq.id.3 and corresponding nucleotide sequence with seq.id. 32 , method for detecting a polynucleotide, expression vector ,host cell , method for producing a polypeptide , pharmaceutical composition , antibody , agonist and antagonist , method for preventing a disorder

4. Claims: 1-20 (partially)

A protein with amino acid with seq.id.4 and corresponding nucleotide sequence with seq.id. 33 , method for detecting a polynucleotide, expression vector ,host cell , method for producing a polypeptide , pharmaceutical composition , antibody , agonist and antagonist , method for preventing a disorder

5. Claims: 1-20 (partially)

A protein with amino acid with seq.id.5 and corresponding nucleotide sequence with seq.id. 34 , method for detecting a polynucleotide, expression vector ,host cell , method for producing a polypeptide , pharmaceutical composition , antibody , agonist and antagonist , method for preventing a disorder

6. Claims: 1-20 (partially)

A protein with amino acid with seq.id.6 and corresponding nucleotide sequence with seq.id. 35 , method for detecting a polynucleotide, expression vector ,host cell , method for

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

producing a polypeptide , pharmaceutical composition , antibody , agonist and antagonist , method for preventing a disorder

7. Claims: 1-20 (partially)

A protein with amino acid with seq.id.7 and corresponding nucleotide sequence with seq.id. 36 , method for detecting a polynucleotide, expression vector ,host cell , method for producing a polypeptide , pharmaceutical composition , antibody , agonist and antagonist , method for preventing a disorder

8. Claims: 1-20 (partially)

A protein with amino acid with seq.id.8 and corresponding nucleotide sequence with seq.id. 37 , method for detecting a polynucleotide, expression vector ,host cell , method for producing a polypeptide , pharmaceutical composition , antibody , agonist and antagonist , method for preventing a disorder

9. Claims: 1-20 (partially)

A protein with amino acid with seq.id.9 and corresponding nucleotide sequence with seq.id. 38 , method for detecting a polynucleotide, expression vector ,host cell , method for producing a polypeptide , pharmaceutical composition , antibody , agonist and antagonist , method for preventing a disorder

10. Claims: 1-20 (partially)

A protein with amino acid with seq.id.10 and corresponding nucleotide sequence with seq.id. 39 , method for detecting a polynucleotide, expression vector ,host cell , method for producing a polypeptide , pharmaceutical composition , antibody , agonist and antagonist , method for preventing a disorder

11. Claims: 1-20 (partially)

A protein with amino acid with seq.id.11 and corresponding nucleotide sequence with seq.id. 40, method for detecting a polynucleotide, expression vector ,host cell , method for producing a polypeptide , pharmaceutical composition , antibody , agonist and antagonist , method for preventing a disorder

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

12. Claims: 1-20 (partially)

A protein with amino acid with seq.id.12 and corresponding nucleotide sequence with seq.id. 41 , method for detecting a polynucleotide, expression vector ,host cell , method for producing a polypeptide , pharmaceutical composition , antibody , agonist and antagonist , method for preventing a disorder

13. Claims: 1-20 (partially)

A protein with amino acid with seq.id.13 and corresponding nucleotide sequence with seq.id. 42 , method for detecting a polynucleotide, expression vector ,host cell , method for producing a polypeptide , pharmaceutical composition , antibody , agonist and antagonist , method for preventing a disorder

14. Claims: 1-20 (partially)

A protein with amino acid with seq.id.14 and corresponding nucleotide sequence with seq.id. 43 , method for detecting a polynucleotide, expression vector ,host cell , method for producing a polypeptide , pharmaceutical composition , antibody , agonist and antagonist , method for preventing a disorder

15. Claims: 1-20 (partially)

A protein with amino acid with seq.id.15 and corresponding nucleotide sequence with seq.id. 44 , method for detecting a polynucleotide, expression vector ,host cell , method for producing a polypeptide , pharmaceutical composition , antibody , agonist and antagonist , method for preventing a disorder

16. Claims: 1-20 (partially)

A protein with amino acid with seq.id.16 and corresponding nucleotide sequence with seq.id. 45 , method for detecting a polynucleotide, expression vector ,host cell , method for producing a polypeptide , pharmaceutical composition , antibody , agonist and antagonist , method for preventing a disorder

17. Claims: 1-20 (partially)

A protein with amino acid with seq.id.17 and corresponding nucleotide sequence with seq.id. 46 , method for detecting a polynucleotide, expression vector ,host cell , method for

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

producing a polypeptide , pharmaceutical composition , antibody , agonist and antagonist , method for preventing a disorder

18. Claims: 1-20 (partially)

A protein with amino acid with seq.id.18 and corresponding nucleotide sequence with seq.id. 47 , method for detecting a polynucleotide, expression vector ,host cell , method for producing a polypeptide , pharmaceutical composition , antibody , agonist and antagonist , method for preventing a disorder

19. Claims: 1-20 (partially)

A protein with amino acid with seq.id.19 and corresponding nucleotide sequence with seq.id. 48 , method for detecting a polynucleotide, expression vector ,host cell , method for producing a polypeptide , pharmaceutical composition , antibody , agonist and antagonist , method for preventing a disorder

20. Claims: 1-20 (partially)

A protein with amino acid with seq.id.20 and corresponding nucleotide sequence with seq.id. 49 , method for detecting a polynucleotide, expression vector ,host cell , method for producing a polypeptide , pharamaceutical composition , antibody , agonist and antagonist , method for preventing a disorder

21. Claims: 1-20 (partially)

A protein with amino acid with seq.id.21 and corresponding nucleotide sequence with seq.id. 50 , method for detecting a polynucleotide, expression vector ,host cell , method for producing a polypeptide , pharmaceutical composition , antibody , agonist and antagonist , method for preventing a disorder

22. Claims: 1-20 (partially)

A protein with amino acid with seq.id.22 and corresponding nucleotide sequence with seq.id. 51 , method for detecting a polynucleotide, expression vector ,host cell , method for producing a polypeptide , pharmaceutical composition , antibody , agonist and antagonist , method for preventing a disorder

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

23. Claims: 1-20 (partially)

A protein with amino acid with seq.id.23 and corresponding nucleotide sequence with seq.id. 52 , method for detecting a polynucleotide, expression vector ,host cell , method for producing a polypeptide , pharmaceutical composition , antibody , agonist and antagonist , method for preventing a disorder

24. Claims: 1-20 (partially)

A protein with amino acid with seq.id.24 and corresponding nucleotide sequence with seq.id. 53 , method for detecting a polynucleotide, expression vector ,host cell , method for producing a polypeptide , pharmaceutical composition , antibody , agonist and antagonist , method for preventing a disorder

25. Claims: 1-20 (partially)

A protein with amino acid with seq.id.25 and corresponding nucleotide sequence with seq.id. 54 , method for detecting a polynucleotide, expression vector ,host cell , method for producing a polypeptide , pharmaceutical composition , antibody , agonist and antagonist , method for preventing a disorder

26. Claims: 1-20 (partially)

A protein with amino acid with seq.id.26 and corresponding nucleotide sequence with seq.id. 55 , method for detecting a polynucleotide, expression vector ,host cell , method for producing a polypeptide , pharmaceutical composition , antibody , agonist and antagonist , method for preventing a disorder

27. Claims: 1-20 (partially)

A protein with amino acid with seq.id.27 and corresponding nucleotide sequence with seq.id. 56 , method for detecting a polynucleotide, expression vector ,host cell , method for producing a polypeptide , pharmaceutical composition , antibody , agonist and antagonist , method for preventing a disorder

28. Claims: 1-20 (partially)

A protein with amino acid with seq.id.28 and corresponding nucleotide sequence with seq.id. 57 , method for detecting a polynucleotide, expression vector ,host cell , method for

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

producing a polypeptide , pharmaceutical composition , antibody , agonist and antagonist , method for preventing a disorder

29. Claims: 1-20 (partially)

A protein with amino acid with seq.id.29 and corresponding nucleotide sequence with seq.id. 58 , method for detecting a polynucleotide, expression vector ,host cell , method for producing a polypeptide , pharmaceutical composition , antibody , agonist and antagonist , method for preventing a disorder

INTERNATIONAL SEARCH REPORT

Information on patent family members

Intern: National Application No:

PCT/US 99/28013

Patent document cited in search report		Publication date	Patent family member(s)		Publication date
WO 9837196	A	27-08-1998	AU	6661298 A	09-09-1998
			EP	0981613 A	01-03-2000
WO 9416069	A	21-07-1994	AU	6083894 A	15-08-1994
			CA	2153486 A	21-07-1994
			EP	0679185 A	02-11-1995
			JP	8507204 T	06-08-1996
WO 9115582	A	17-10-1991	AU	7554691 A	30-10-1991
			EP	0537155 A	21-04-1993
WO 9000607	A	25-01-1990	US	5104975 A	14-04-1992
			AT	156518 T	15-08-1997
			AU	627764 B	03-09-1992
			AU	4034989 A	05-02-1990
			DE	68928242 D	11-09-1997
			DE	68928242 T	18-12-1997
			EP	0466688 A	22-01-1992
			EP	0649908 A	26-04-1995
			US	RE35171 E	05-03-1996
			US	5234839 A	10-08-1993
			US	5760203 A	02-06-1998
			US	5763573 A	09-06-1998
			US	5830684 A	03-11-1998

