Chapitre: Vecteurs et droites

Rappels de 2nd (non fait l'année précédente)

Définition 1 : Soit d une droite et A, B deux points distincts.

1) Vecteurs directeur

On appelle	de $m{d}$ tout vecteur non nul \overrightarrow{AB} tel que					
les points A et B	B = à la droite $d.$					
Autrement dit :						
Un vecteur est appelé	Un vecteur est appelé vecteur directeur d'une droite lorsqu'il est					
	à tout ve	ecteur \overrightarrow{AB} avec A et B a	appartenant à la droite.			
Propriété 1 : Un vecte	Propriété 1: Un vecteur \vec{u} est un vecteur directeur d'une					
droite d s'il existe deu	•	: B				
appartenant à d tels q	ue:	d				
Remarque : une droite	possède une infinité	de vecteurs directeurs	5.			
Propriété 2 : Deux vec	tours directours d'un	o mômo droito cont				
Propriete 2: Deux vec	teurs directeurs d'une	e meme droite sont	•			
Application 1: Dans u	n repère $(0;\vec{\imath},\vec{\jmath})$, on	considère les points $A($	(5;-6) et $B(2;-1)$.			
1. Calculer les coordo	nnées du vecteur \overrightarrow{AB}					
	suivants lesquels sont	des vecteurs directeu	rs de la droite (AB) ?			
a. $\vec{u} {-1,5 \choose 2.5}$	b. $\overrightarrow{v} \begin{pmatrix} 0 \\ 0 \end{pmatrix}$	c. $\overrightarrow{w} \begin{pmatrix} 1 \\ -\frac{5}{2} \end{pmatrix}$	d. $\vec{t} \begin{pmatrix} -2 \\ 3 & 3 \end{pmatrix}$			
2,5 /	(8)	$\left(-\frac{5}{3}\right)$	(3,3)			
	<u> </u>					

Exercice 1: Vecteurs directeurs

- 1. $A(1;2), B(3;7) \text{ et } \vec{u} \begin{pmatrix} -2 \\ -5 \end{pmatrix}$.
- 2. $A(-3; 2), B(4; 7) \text{ et } \vec{u} {5 \choose 1}$.
- 3. $A(-1;3), B(7;3) \text{ et } \vec{u} \begin{pmatrix} 1 \\ 0 \end{pmatrix}$.

Application 2: Donner un vecteur directeur des droites suivantes : 1. $d : x = -4x + 1$
1. $d_1: y = -4x + 1$
2. $d_2: y = -4$ (droite parallèle à l'axe des abscisses)
3. $d_3: x=5$ (droite parallèle à l'axe des ordonnées)

Propriété 3 : Soit m et k deux réels.

- 1. Soit d la droite d'équation y=mx+p, le vecteur \vec{u} est un vecteur directeur de d.
- 2. Soit d la droite d'équation y=k, le vecteur \vec{i} $\bigg(\bigg)$ est un vecteur directeur de d.

(Conséquence du 1.)

3. Soit d la droite d'équation x = k, le vecteur \vec{j} () est un vecteur directeur de d.

Exemple: Revoir l'application précédente.

<u>Propriété 4 :</u> Soit d une droite de vecteur directeur \vec{u} et d' une droite de vecteur directeur \vec{v} .
v . 1. $d /\!\!/ d' \Leftrightarrow \vec{u}$ et \vec{v} sont
2. $d \perp d' \Leftrightarrow \vec{u} \text{ et } \vec{v} \text{ sont } \underline{\hspace{2cm}}$
<u>Propriété 5 :</u> Soit A un point, \vec{u} un vecteur non nul et d la droite passant par A et de
vecteur directeur \vec{u} et M un point du plan.
$M \in d \Leftrightarrow$
Application 3:
On considère la droite d de vecteur directeur $\vec{u} \begin{pmatrix} 2 \\ -3 \end{pmatrix}$ et passant par le point $A(-4;1)$.
` <i>5</i> '
Les points $B(1; -7)$ et $C(-1; -3; 5)$ sont-ils des points de d ?

2) Equation cartésienne de droite

Activité: On se place dans un repère $(0; \vec{i}, \vec{j})$. Soient A(4; -3) et B(2; 1).

1. Donner les coordonnées du vecteur \overrightarrow{AB} .

2. Soit M(x; y) un point appartenant à (AB). Donner une équation de la droite (AB).

Propriété 6 : Soient a, b, c des réels tels que $a \neq 0$ ou $b \neq 0$.

Toute droite d du plan admet une équation de la forme :

Cette équation est appelée

Propriété 7 (réciproque de la 6) : Soient a, b, c des réels tels que $a \neq 0$ ou $b \neq 0$.

L'ensemble des points M(x; y) vérifiant la relation ax + by + c = 0 est une

Exemple : L'équation cartésienne de la droite (AB) donnée au début de ce paragraphe est 4x + 2y - 10 = 0

Exercice 2 : Déterminer une équation cartésienne

Soit (d) la droite d'équation $y = \frac{1}{4}x - 2$.

Identifier s'autres équations de (d) parmi celle-ci :

a)
$$v = 4v \pm 2$$

$$x - 4v - 2 = 0$$

c)
$$x = 8$$

a)
$$x = 4y + 2$$

b) $x - 4y - 2 = 0$
d) $-x + 4y + 8 = 0$
e) $0.5x - 2y = 4$

e)
$$0.5x - 2y = 4$$

f)
$$y + 6 = x$$

cartésienne $ax + by + c = 0$						
Preuve : Soient (E) l'ensemble qui a pour équation $a \neq 0$ ou $b \neq 0$.	ax + by + c = 0 avec a, b, c des réels tels que					
$(E) \Leftrightarrow by = -ax - c$						
 Si b ≠ 0 alors y = -a/b x - c/b et en posant m = -a/b et p = -c/b on obtient une équation de la forme y = mx + p Si b = 0 alors a ≠ 0 et on a donc 0 = -ax - c ⇔ ax = -c ⇔ x = -c/a C'est une équation de la forme x = k, c'est-à-dire une droite parallèle à l'axe des ordonnées. 						
Exemple : Un vecteur directeur de la droite (AB) précédente est $\vec{u} \binom{-2}{4}$.						
<u>Application 4 : Vecteurs directeurs</u>						
Déterminer un vecteur directeur de la droit						
(d): 5x + 4y + 1 = 0	(d): x - 3 = 0					
(d): y = 7x - 5	(d): -x + 2y = 0					

est un vecteur directeur de toute droite d'équation

Propriété 8 : Soient a, b, c des réels tels que $a \neq 0$ ou $b \neq 0$.

Le vecteur de coordonnées (

Application 5: On considère $(0; \vec{i}, \vec{j})$ un repère du plan. Déterminer une équation cartésienne de la droite d passant par le point A(2; -1) et de vecteur directeur $\vec{u} \begin{pmatrix} -1 \\ 2 \end{pmatrix}$.

c ^{ère} méthode : (colinéarité)	
. (1)	
$\frac{e^{\text{ème}}}{a} \frac{\text{méthode}}{a}$	

Exercice 3 : Déterminer une équation cartésienne

On donne un point A d'une droite (d) et un vecteur directeur de cette droite. Déterminer une équation de (d).

a)
$$A(-2;3)$$
 et $\vec{u} \begin{pmatrix} -1 \\ 3 \end{pmatrix}$ b) $A(-4;6)$ et $\vec{u} \begin{pmatrix} 7 \\ 0 \end{pmatrix}$

Application 6 : On considère $(0; \vec{\imath}, \vec{\jmath})$ un repère du plan. Déterminer une équation cartésienne de la droite d passant par les points $A(2; -1)$ et $B(-25; 30)$.					
Exercice 4 : Déterminer une équation cartésienne					

On donne deux points A et B.

Déterminer une équation de la droite (AB).

1.
$$A(4;5)$$
 et $B(3;3)$

2.
$$A(-1; -1)$$
 et $B(11; 3)$

3.
$$A(2;2)$$
 et $B(-2;-2)$

4.
$$A(3;7)$$
 et $B(3;-9)$

Exercice 5 : Déterminer une équation cartésienne

Déterminer une équation de la droite (d), parallèle à (AB) et passant par C.

- 1. A(1;4), B(-1;4) et C(0;0)
- 2. A(-1; -3), B(-2; -4) et C(1; 1)
- 3. A(1;1), B(3;3) et C(2;7)

Exercice 6 : Droites parallèles

On donne une équation de deux droites (d_1) et (d_2) .

Indiquer si ces droites sont parallèles.

Donner les coordonnées du point d'intersection si les droites sont sécantes.

1.
$$(d_1): 7x + y - 1 = 0$$
 et $(d_2): x + 5y - 3 = 0$

2.
$$(d_1): x - y - 1 = 0$$
 et $(d_2): -2x + 2y - 3 = 0$

Exercice 7 : Déterminer une équation cartésienne

Déterminer une équation de la droite parallèle à la droite (d) et passant par le point A.

- 1. (d): 4x + 2y 5 = 0 et A(1; 1).
- 2. (d): x + 2y 5 = 0 et A(0; 1).
- 3. (d): x-5=0 et A(1;2).

Exercice 8 : Equation de médianes

Soit les points A(1; -2), B(6; 5) et C(8; -6).

- 1. Déterminer une équation des médianes issues de A et de B dans le triangle ABC.
- 2. En déduire les coordonnées du centre de gravité G du triangle ABC.

Exercice 9 : Equation de médianes

Soit les points A(-1; 1), B(3; 7) et C(4; -2).

- 1. Déterminer les coordonnées des points A' et C', milieux respectifs des segments [BC] et [AB].
- 2. Déterminer une équation des médianes issues de A et de C dans le triangle ABC.
- 3. En déduire les coordonnées du centre de gravité G du triangle ABC.

 rendant une éq		. ,	

II. Vecteur normal à une droite

Définition 2 : Soit d une droite de vecteur directeur \vec{u} .

Un vecteur à la droite d est un

vecteur non nul au vecteur \vec{u}

Propriété 9 : Soit a, b et c des réels tels que $a \neq 0$ ou $b \neq 0$, soit d une droite et \vec{u} un vecteur.

d a pour équation $ax + by + c = 0 \Leftrightarrow \vec{n}$ est un vecteur normal à d.

Preuve:

Sens direct :

Soit d la droite d'équation ax + by + c = 0, avec $a \neq 0$ ou $b \neq 0$. Soit $\vec{n} \begin{pmatrix} a \\ b \end{pmatrix}$. Montrons que \vec{n} est un vecteur normal à d.

o Si a=0, alors $\vec{n} \begin{pmatrix} 0 \\ h \end{pmatrix}$ et d est une droite horizontale de vecteur directeur $\vec{u} \begin{pmatrix} 1 \\ 0 \end{pmatrix}$.

$$\vec{n} \cdot \vec{u} = 0 \times 1 + b \times 0 =$$

Donc \vec{n} et \vec{u} sont orthogonaux, c'est-à-dire \vec{n} est normal à d.

• Si b = 0, alors $\vec{n} \begin{pmatrix} a \\ 0 \end{pmatrix}$ et d est une droite vecticale de vecteur directeur $\vec{u} \begin{pmatrix} 0 \\ 1 \end{pmatrix}$.

$$\vec{n}.\,\vec{u} = a \times 0 + 0 \times 1 = 0$$

Donc \vec{n} et \vec{u} sont orthogonaux, c'est-à-dire \vec{n} est normal à d.

 \circ Si $a \neq 0$ et $b \neq 0$: on cherche deux points A et B de d.

Prenons les points $A(0; -\frac{c}{b})$ et $B(-\frac{c}{a}; 0)$. Ainsi $\overrightarrow{AB}\begin{pmatrix} -\frac{c}{a} \\ \frac{c}{a} \end{pmatrix}$.

$$\vec{n}.\overrightarrow{AB} = a \times -\frac{c}{a} + b \times \frac{c}{b} = -c + c = 0$$

Donc \vec{n} et \overrightarrow{AB} sont orthogonaux, c'est-à-dire \vec{n} est normal à d.

• Sens réciproque :

Soit $\vec{n} \binom{a}{b}$ avec $a \neq 0$ ou $b \neq 0$ et d une droite de vecteur normal \vec{n} .

Montrons que d a pour équation ax + by + c = 0.

Soit $A(x_A; y_A) \in d$ et $M(x; y) \in d$ ainsi $\overrightarrow{AM} \begin{pmatrix} x - x_A \\ y - y_A \end{pmatrix}$. Alors:

 $\overrightarrow{AM} \cdot \overrightarrow{n} = 0 \Leftrightarrow a(x - x_A) + b(y - y_A) = 0 \Leftrightarrow ax + by - ax_A - by_A = 0$

Si on pose $c = -ax_A - by_A$. On obtient bien d : ax + by + c = 0.

Exercice 10 : Equations de droite et vecteur normal

- 1. Proposer une équation d'une droite (d) dont un vecteur normal est $\vec{n} \binom{5}{2}$.
- 2. Proposer une équation d'une droite (d) dont un vecteur normal est $\vec{n} \begin{pmatrix} 7 \\ 2 \end{pmatrix}$

Exercice 11: Equations de droite et vecteur normal

- 1. Pourquoi un vecteur normal de la droite (d) d'équation 3x 5y + 7 = 0 a-t-il pour coordonnées
- 2. Indiquer une équation d'une autre droite avant le même vecteur normal.

3

Application 8:

Soient A(2;1), B(0;-2) et C(-3;5) trois points dans un repère orthonormé. Déterminer une équation de la hauteur du triangle ABC issue de A.

Exercice 12: Equations de droite et vecteur normal

Donner une équation cartésienne de la droite (d) passant par le point \vec{n} et dont \vec{n} est un vecteur normal.

a)
$$A(1;2)$$
 et $\vec{n} \begin{pmatrix} 1 \\ -1 \end{pmatrix}$ b) $A(-3;4)$ et $\vec{n} \begin{pmatrix} 2 \\ -3 \end{pmatrix}$ c) $A(1;5)$ et $\vec{n} \begin{pmatrix} 1 \\ 2 \end{pmatrix}$ d) $A(5;-2)$ et $\vec{n} \begin{pmatrix} -4 \\ 1 \end{pmatrix}$

b)
$$A(-3;4)$$
 et $\vec{n} \left(\frac{2}{3} \right)$

c)
$$A(1;5)$$
 et \vec{n}

d)
$$A(5; -2)$$
 et $\vec{n} {-4 \choose 1}$

Application 9:

Déterminer les coordonnées d'un vecteur normal à la droite d d'équation y = 2x + 3.

Exercice 13: Equations de droite et vecteur normal

- 1. Déterminer les coordonnées d'un vecteur normal de la droite d'équation 2x + 3y + 4 = 0.
- 2. Déterminer les coordonnées d'un vecteur normal de la droite d'équation 3x 2y 5 = 0.

Propriété 10 : Conclusion (vecteurs et droite) :

Soit a, b et c des réels tels que $a \neq 0$ ou $b \neq 0$.

Si la droite d a pour équation ax + by + c = 0, elle a pour vecteur normal \vec{n} (l et pour vecteur directeur \vec{u} (

Exercice 14: Equations de droite et vecteur normal

Donner un vecteur normal et un vecteur directeur de la droite d'équation :

a)
$$5x - 3y + 7 = 0$$

b)
$$y = -7x + 3$$

c)
$$x = -5$$

d)
$$y = 2$$

b)
$$y = -/x + 3$$
 c) $x = -5$
e) $-3x + 5y - 2 = 0$ f) $y = 4x - 10$

f)
$$v = 4x - 10$$

Exercice 15: Equations de droite et vecteur normal

Soit (d) une droite de vecteur directeur $\vec{u} \begin{pmatrix} 5 \\ -2 \end{pmatrix}$. Le vecteur $\vec{n} \begin{pmatrix} 1 \\ 2 \end{pmatrix}$ est-il un vecteur normal de la droite (d)?

Exercice 16: Equations de droite et vecteur normal

Soit les points A(2;3) et B(-2;8).

- 1. Calculer les coordonnées d'un vecteur directeur de la droite (AB).
- 2. En déduire que le vecteur de coordonnées $\binom{5}{4}$ est un vecteur normal de la droite (AB).

Exercice 17: Equations de droite et vecteur normal

Soit (d) une droite de vecteur directeur $\vec{u} \begin{pmatrix} 4 \\ r \end{pmatrix}$

Parmi les vecteurs ci-dessous, indiquer ceux qui sont des vecteurs normaux de la droite (d).

a)
$$\vec{v} \begin{pmatrix} 15 \\ -12 \end{pmatrix}$$
 b) $\vec{w} \begin{pmatrix} 2 \\ 8 \end{pmatrix}$

b)
$$\vec{w} \begin{pmatrix} 2 \\ 9 \end{pmatrix}$$

c)
$$\vec{s} \begin{pmatrix} -4 \\ 5 \end{pmatrix}$$
 d) $\vec{t} \begin{pmatrix} -5 \\ 4 \end{pmatrix}$

d)
$$\vec{t} \begin{pmatrix} -5 \\ 4 \end{pmatrix}$$

Exercice 18: Hauteurs et vecteur normal

- 1. Soit les points A(-1; 2), B(3; 1) et C(2; -2). Donner une équation de la droite perpendiculaire à (AB) passant par C
- 2. Soit les points A(3:5). B(6:-1) et C(1:4). Donner une équation de la hauteur issue de B dans le triangle ABC.

Exercice 19: Hauteurs et vecteur normal

Soit les points A(0; 2), B(4; 1) et C(3; 4).

- 1. Donner une équation de la hauteur issue de A et de la hauteur issue de B dans le triangle ABC.
- 2. a. Déterminer le point d'intersection H de ces deux hauteurs.
 - b. Calculer \overrightarrow{CH} , \overrightarrow{AB} . Ou'en déduit-on ?

Exercice 20 : Médiatrices et vecteur normal

- 1. Soit A(1; 2) et B(-1; 4). Déterminer une équation de la médiatrice du segment [AB].
- 2. Soit A(2; 5) et B(-1; -3). Déterminer une équation de la médiatrice du segment [AB].

Exercice 21 : Médiatrices et vecteur normal

Soit A(-1; 2), B(0; -3) et C(3; 1).

- 1. Détermine une équation de la médiatrice de [AB].
- 2. Déterminer une équation de la médiatrice de [AC].
- 3. Déterminer le centre du cercle circonscrit à ABC

Exercice 22: Tangente à un cercle et vecteur normal

Soit le cercle de centre $\Omega(-1; -2)$ et passant par l'origine O du repère.

Déterminer une équation de la tangente à ce cercle passant par O, puis tracer le cercle et cette tangente.

Exercice 23: Tangente à un cercle et vecteur normal

Soit C le cercle de centre $\Omega(4; -2)$ et de rayon r = 10.

- 1. Vérifier que le point M(-2; 6) appartient à C.
- 2. Déterminer une équation de la tangente en M au cercle C.

III. Applications du produit scalaire

1) Formule de la médiane

Propriété 11 : Soient deux points A et B et I le milieu du segment [AB].

Pour tout point M, on a : $MA^2 + MB^2 =$

Preuve:

$$\begin{split} MA^2 + MB^2 &= \left\| \overrightarrow{MA} \right\|^2 + \left\| \overrightarrow{MB} \right\|^2 \\ &= \overrightarrow{MA}^2 + \overrightarrow{MB}^2 \\ &= (\overrightarrow{MI} + \overrightarrow{IA})^2 + (\overrightarrow{MI} + \overrightarrow{IB})^2 \\ &= \overrightarrow{MI}^2 + 2\overrightarrow{MI}.\overrightarrow{IA} + \overrightarrow{IA}^2 + \overrightarrow{MI}^2 + 2\overrightarrow{MI}.\overrightarrow{IB} + \overrightarrow{IB}^2 \\ &= 2\overrightarrow{MI}^2 + 2\overrightarrow{MI}.\left(\overrightarrow{IA} + \overrightarrow{IB}\right) + \overrightarrow{IA}^2 + \overrightarrow{IB}^2 \text{ or } \overrightarrow{IA} = -\overrightarrow{IB} \text{ car } I \text{ milieu de } [AB] \\ &= 2MI^2 + 2\overrightarrow{MI}.\overrightarrow{0} + IA^2 + IB^2 \text{ or } IA = IB = \frac{AB}{2} \text{ car } I \text{ milieu de } [AB] \\ &= 2MI^2 + \left(\frac{AB}{2}\right)^2 + \left(\frac{AB}{2}\right)^2 \\ &= 2MI^2 + 2\left(\frac{AB}{2}\right)^2 \\ &= 2MI^2 + 2 \times \frac{AB^2}{4} \\ &= 2MI^2 + \frac{AB^2}{2} \end{split}$$

Application 10 : Formule de la médiane

Soit un triangle ABC tel que AC = 2, CB = 5 et AB = 6.

 $\it I$ est le milieu de $\it [AB]$. Déterminer $\it IC$.

Exercice 24 : Formule de la médiane

Soit un triangle ABC tel que AB = 6, AC = 5 et BC = 7.

En utilisant le théorème de la médiane, calculer les longueurs des médianes de ce triangle.

2) Equation de cercle

Propriété 12:

Soit C un cercle de centre $O(x_0; y_0)$ et de rayon r. Soit M(x; y) un point du plan.

$$M \in \mathcal{C} \Leftrightarrow$$

Preuve : $M \in C \Leftrightarrow OM = r \Leftrightarrow OM^2 = r^2 \Leftrightarrow (x - x_0)^2 + (y - y_0)^2 = r^2$

RAPPEL : Soit les points $A(x_A; y_A)$ et $B(x_B; y_B)$ on a alors :

$$AB = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2}$$

Application 11 : Déterminer une équation du cercle de centre O(-1; 2) et de rayon 3.

Propriété 13 : Soient A et B deux point du plan.

Soit ${\cal C}$ un cercle de diamètre [AB]. Soit ${\cal M}$ un point du plan.

$$M \in C \Leftrightarrow$$

Preuve:

• Si M distinct de A et B.

 $\overrightarrow{MA}.\overrightarrow{MB} = 0 \Leftrightarrow \text{les droites } (MA) \text{ et } (MB) \text{ sont perpendiculaire} \Leftrightarrow \text{le triangle } AMB \text{ est rectangle en } M \Leftrightarrow M \in C \text{ de diamètre } [AB]$

• Si M = A ou M = B alors M appartient au cercle de diamètre AB et \overline{MA} . $\overline{MB} = 0$ car l'un des deux vecteurs \overline{MA} ou \overline{MB} est nul.

Application 12: Déterminer une équation du cercle de diamètre $[AR]$ avec $A(A \cdot 5)$ et $R(-2 \cdot 7)$	
Déterminer une équation du cercle de diamètre $[AB]$ avec $A(4;5)$ et $B(-2;7)$.	
Application 13 : Déterminer et préciser les éléments caractéristiques de l'ensemble de	!S
points $M(x;y)$ vérifiant l'équation : $x^2 + y^2 - 4x + 6y - 3 = 0$.	

Exercice 25: Equations de cercles

- 1. Déterminer le rayon du cercle d'équation $(x-2)^2 + (y-3)^2 = 4$
- 2. Déterminer les coordonnées du centre du cercle d'équation $(x-5)^2 + (y-7)^2 = 14$.
- 3. Déterminer une équation du cercle de centre A(1;0) et de rayon 2.
- 4. Déterminer une équation du cercle de centre 0 et de rayon 3.
- 5. Déterminer une équation du cercle de diamètre [AB] tel que A(1;9) et B(4;3).
- 6. Déterminer une équation du cercle de diamètre [AB] tel que A(-3;5) et B(2;-1).
- 7. Déterminer l'ensemble des points M(x;y) vérifiant l'équation $x^2 + y^2 6x + 2y + 5 = 0$ et préciser les éléments caractéristiques de cet ensemble.

Exercice 26: Intersection d'un cercle et d'une droite.

- 1. Déterminer, s'ils existent, les coordonnées des points d'interception de la droite (d) d'équation 2x y + 1 = 0 et du cercle C d'équation $x^2 4x + y^2 21 = 0$.
- 2. Déterminer, s'ils existent, les coordonnées des points d'interception de la droite (d) d'équation 6x + 2y 10 = 0 et du cercle C de centre A(-1; -1) et de rayon 5.

IV. Supplément

1) Formule des aires

Propriété 14 : Soient A, B et C trois points distincts.

Pour tout triangle ABC non aplati, tel que =BC , b=AC et c=AB. L'aire du triangle ABC vaut :

$$S =$$

Preuve (formule des aires):

Soit H la hauteur issue de C dans le triangle ABC. On sait que : $S = \frac{1}{2}AB \times CH$

- Si l'angle \hat{A} est aigu $CH = AC \sin(\hat{A})$
- Si l'angle \hat{A} est obtus $CH = AC \sin(\widehat{CAH})$ Or $\widehat{CAH} = \pi - \hat{A}$ et $\sin(\pi - \hat{A}) = \sin(\hat{A})$ Ainsi $CH = AC \sin(\hat{A})$

Dans les deux cas, on a $S = \frac{1}{2}AB \times AC \sin(\hat{A}) = cb \sin(\hat{A})$

2) Formule des sinus

Propriété 15 : Soient A, B et C trois points distincts.

Pour tout triangle ABC non aplati, tel que =BC, b=AC et c=AB

Exercice 27 : Calculs de longueurs et d'angles 1. a=125 ; $\hat{A}=54^\circ$; $\hat{B}=65^\circ$ Dans chacun des cas suivants on demande de 2. a=512 ; b=426 ; $\hat{A}=48,50^\circ$ trouver pour un triangle ABC une mesure des trois 3. a=6,34 ; b=7,30 ; c=9,98angles \hat{A},\hat{B},\hat{C} et les longueurs a=BC,b=AC,c=4. b=215 ; c=150 ; $\hat{B}=42^\circ$ AB. 5. $\hat{B}=50,29^\circ$; $\hat{C}=88,36^\circ$; a=48,17Tous les résultats sont à arrondir à 10^{-2} .

Exercice 28: Calculs d'angles et d'aires

On considère le triangle ABC tel que AC = 24 cm, BC = 28 cm et AB = 40 cm.

- 1. Faire un dessin à l'échelle $\frac{1}{4}$.
- 2. Calculer la mesure en degrés de l'angle \widehat{ACB} du triangle ABC. Arrondir à 10^{-1} .
- 3. Calculer l'aire S du triangle ABC. Arrondir à 10^{-1}
- 4. Calculer l'aire S' du triangle dessiné à la première question.
- 5. On appelle H le pied de la hauteur issue du point C. Placer H sur le dessin. Donner l'expression de l'aire du triangle ABC en fonction de CH. En déduire CH.
- 6. Calculer la mesure en degrés de l'angle $\widehat{\it BAC}$. Arrondir à 10^{-1} .
- 7. Calculer une valeur approchée de la mesure de l'angle $\widehat{\it CBA}$.

3) Cosinus d'un angle

Propriété 16: Soient \vec{u} et \vec{v} deux vecteurs non nuls et θ une mesure de l'angle (\vec{u}, \vec{v}) .

$$\cos(\theta) =$$

Preuve : Par la définition du produit scalaire : $\vec{u} \cdot \vec{v} = ||\vec{u}|| \times ||\vec{v}|| \cos(\theta)$

Propriété 17: Soient $\vec{u} \begin{pmatrix} x \\ y \end{pmatrix}$ et $\vec{v} \begin{pmatrix} x' \\ y' \end{pmatrix}$ deux vecteurs non nuls et θ une mesure de l'angle (\vec{u}, \vec{v}) .

$$cos(\theta) =$$

Preuve : Soient $\vec{u} \binom{x}{y}$ et $\vec{v} \binom{x'}{y'}$, on sait que pour \vec{u} . $\vec{v} = xx' + yy'$ et $||\vec{u}|| = \sqrt{x^2 + y^2}$

3) Formules d'addition des sinus et cosinus

Propriété 18 : Pour tous nombres réels a et b, on a :

- 1) $\cos(a b) =$
- $2) \cos(a+b) =$
- $3) \sin(a+b) =$
- $4) \sin(a-b) =$

Preuve (Formules d'addition des sinus et cosinus) :

1) Considérons les points A et B du cercle trigonométrique associés aux nombres a et b.

$$(\overrightarrow{OB}, \overrightarrow{OA}) = a - b$$

Comme A et B appartiennent au cercle trigonométrique, $\|\overrightarrow{OA}\| = \|\overrightarrow{OB}\| = 1$, donc :

$$\overrightarrow{OB} \cdot \overrightarrow{OA} = \cos(a - b)$$

De plus $\overrightarrow{OA}\begin{pmatrix}\cos(a)\\\sin(a)\end{pmatrix}$ et $\overrightarrow{OB}\begin{pmatrix}\cos(b)\\\sin(b)\end{pmatrix}$ donc \overrightarrow{OB} . $\overrightarrow{OA}=\cos(a)\cos(b)+\sin(a)\sin(b)$.

Finalement : cos(a - b) = cos(a)cos(b) + sin(a)sin(b)

2)
$$\cos(a+b) = \cos(a-(-b))$$
 Rappel:
 $= \cos(a)\cos(-b) + \sin(a)\sin(-b)$ $\cos(-x) = \cos(x)$ et
 $= \cos(a)\cos(b) - \sin(a)\sin(b)$ $\sin(-x) = -\sin(x)$

3)
$$sin(a+b) = cos\left(a+b-\frac{\pi}{2}\right)$$
 Rappel: $cos(a)cos\left(b-\frac{\pi}{2}\right)-sin(a)sin\left(b-\frac{\pi}{2}\right)$ $cos\left(x-\frac{\pi}{2}\right)=sin(x)$ et $cos(a)sin(b)+sin(a)cos(b)$ $sin\left(x-\frac{\pi}{2}\right)=-cos(x)$

4)
$$sin(a - b) = sin(a + (-b))$$

= $cos(a) sin(-b) + sin(a) cos(-b)$
= $-cos(a) sin(b) + sin(a) cos(b)$
= $sin(a) cos(b) - cos(a) sin(b)$

Application 14:

a) Calculer $\frac{\pi}{4} + \frac{\pi}{6}$ et en déduire la valeur en radians de 75°

b) Calculer les valeurs exactes de cos 75° et sin 75°

Exercice 29: Formules d'addition

1. a. Quelle est la valeur exacte des nombres :

π	
$\cos \frac{\pi}{3}$	

$$\sin \frac{\pi}{3}$$

$$\cos \frac{\pi}{4}$$

$$\sin \frac{\pi}{4}$$

b. En déduire $\cos \frac{7\pi}{12}$.

2. a. Quelle est la valeur exacte des nombres :

$$\cos \frac{\pi}{6}$$

$$\sin\frac{\pi}{6}$$

$$\cos \frac{\pi}{4}$$

$$\sin \frac{\pi}{4}$$

b. En déduire $\sin \frac{5\pi}{12}$

4) Formules de duplication des sinus et cosinus

Propriété 19 : Pour tous nombres réels a et b, on a :

- 1) $\cos(2a) =$
- 2) $\sin(2a) =$

Preuve:

On utilise les propriétés 2 et 3 du II)4) en remplaçant b par a et la relation :

$$\cos^2(a) + \sin^2(a) = 1$$

Application 15 : Utiliser les formules de duplication pour déterminer des valeurs exactes de sinus et cosinus.

Calculer les valeurs exactes de $\cos \frac{\pi}{12}$ et $\sin \frac{\pi}{12}$

Exercice 30: Formules de duplication

- 1. On sait que $\cos a = 0.6$. Déterminer $\cos(2a)$.
- 2. On sait que $\sin a = 0.3$. Déterminer $\cos(2a)$.
- 3. On sait que $\cos a = \frac{\sqrt{2}}{2}$ et $\sin a = \frac{\sqrt{2}}{2}$. Déterminer $\sin(2a)$.
- 4. Soit a le réel tel que $\cos a = \frac{2}{3}$ et $\sin a = \frac{\sqrt{5}}{3}$.
- 5. Calculer la valeur exacte de cos(2a) et de sin(2a).

Propriété 20 : Pour tous nombres réels *a* et *b*, on a :

- 1) $cos^{2}(a) =$
- 2) $sin^2(a) =$

Application 16 : Linéariser $cos^2(a)$ et $sin^2(a)$

Linéariser $\cos^2\left(2t + \frac{\pi}{6}\right)$ et $\sin^2\left(2t + \frac{\pi}{6}\right)$