The Virtual Magnetospheric Observatory VMO

Jan Merka¹

¹University of Maryland Baltimore County, GEST, MD (merka@umbc.edu)

The Evolving Heliophysics Data Environment: VxO Kickoff

THE VMO TEAM

Jan Merka	UMBC	PI
Jeremy Faden	Cottagesystems	PAPCO
Homa Karimabadi	SciberQuest Inc.	Data mining
Guan Le	NASA/GSFC	ST-5
Jonathan Niehof	Boston University	SCATHA
William Paterson	Hampton University	Geotail CPI
Tim Quinn	Univ. of California Berkeley	THEMIS
Aaron Roberts	NASA/GSFC	ViSBARD
David Sibeck	NASA/GSFC	Science Lead
Eric Kihn	NOAA/NGDC	GOES
Daniel Morrison	JHU/APL	VITMO
Tom Narock	L-3 Com. GSI	Middleware
William Peterson	University of Colorado	Polar TIMAS
Adam Szabo	NASA/GSFC	VHO

- Data discovery
 - What kind of data is available (e.g., spacecraft, instrument)?
- Smart content search
 - Complex queries to quickly find subsets of data
- Multispacecraft correlative studies
 - Dayside magnetospheric interactions
 - Substorms
 - Magnetic reconnection

- Data discovery
 - What kind of data is available (e.g., spacecraft, instrument)?
- Smart content search
 - Complex queries to quickly find subsets of data
- Multispacecraft correlative studies
 - Dayside magnetospheric interactions
 - Substorms
 - Magnetic reconnection

- Data discovery
 - What kind of data is available (e.g., spacecraft, instrument)?
- Smart content search
 - Complex queries to quickly find subsets of data
- Multispacecraft correlative studies
 - Dayside magnetospheric interactions
 - Substorms
 - Magnetic reconnection

- Data discovery
 - What kind of data is available (e.g., spacecraft, instrument)?
- Smart content search
 - Complex queries to quickly find subsets of data
- Multispacecraft correlative studies
 - Dayside magnetospheric interactions
 - Substorms
 - Magnetic reconnection

COMMUNITY INVOLVEMENT AND FEEDBACK I

VMO's Mission

Help the community to find and use magnetospheric data.

Thus, a wide consensus and acceptance is crutial for VMO success.

To ensure community participation the following measures will be taken:

- VMO user interface and API
 - Feedback on usability and features
 - Collect usage/access statistics
- VMO design
 - Reuse successful features and components of current VxOs
 - Closely collaborate with other VxOs

To be continued...

COMMUNITY INVOLVEMENT AND FEEDBACK I

VMO's Mission

Help the community to find and use magnetospheric data.

Thus, a wide consensus and acceptance is crutial for VMO success. To ensure community participation the following measures will be taken:

- VMO user interface and API
 - Feedback on usability and features
 - Collect usage/access statistics
- VMO design
 - Reuse successful features and components of current VxOs
 - Closely collaborate with other VxOs

To be continued...

COMMUNITY INVOLVEMENT AND FEEDBACK I

VMO's Mission

Help the community to find and use magnetospheric data.

Thus, a wide consensus and acceptance is crutial for VMO success. To ensure community participation the following measures will be taken:

- VMO user interface and API
 - Feedback on usability and features
 - Collect usage/access statistics
- VMO design
 - Reuse successful features and components of current VxOs
 - Closely collaborate with other VxOs

To be continued...

COMMUNITY INVOLVEMENT AND FEEDBACK II

Continued...

- Standard data description (metadata)
 - SPASE+ terms (collaborate with the SPASE group)
 - Broad data provider participation
- Add-on services
 - Monitor which services are desired
 - Assist service providers with interfacing the VMO
 - Encourage submission of new proposal to enhance VMO data and service capabilities
- Issue SPA newsletter announcements
 - Advertise new services
 - Requests for comments

COMMUNITY INVOLVEMENT AND FEEDBACK II

Continued...

- Standard data description (*metadata*)
 - SPASE+ terms (collaborate with the SPASE group)
 - Broad data provider participation
- Add-on services
 - Monitor which services are desired
 - Assist service providers with interfacing the VMO
 - Encourage submission of new proposal to enhance VMO data and service capabilities
- Issue SPA newsletter announcements
 - Advertise new services
 - Requests for comments

COMMUNITY INVOLVEMENT AND FEEDBACK II

Continued...

- Standard data description (metadata)
 - SPASE+ terms (collaborate with the SPASE group)
 - Broad data provider participation
- Add-on services
 - Monitor which services are desired
 - Assist service providers with interfacing the VMO
 - Encourage submission of new proposal to enhance VMO data and service capabilities
- Issue SPA newsletter announcements
 - Advertise new services
 - Requests for comments

FEEDBACK METHODS

- Annual meetings at conferences (especially at AGU)
- Directly contacting any VMO team member
- On-line at http://vmo.nasa.gov
 - E-mail
 - Comment submission through a web interface
- Statistical information about the VMO usage
 - http://vmo.nasa.gov/awstats/awstats.pl?config=vmo

USAGE INFORMATION EXAMPLE

Requested instrument data		
Instrument	Hits	Last visit
Mars Global Surveyor Solar Wind Proxy Data	12	27 Mar 2006 - 16:33
WIND SWE KP Data	8	27 Mar 2006 - 16:20
WIND 3DP Electron Data	1	27 Mar 2006 - 16:59
SOHO Celias Proton Monitor Data	1	24 Mar 2006 - 22:05
Average	5.5	
Total	22	

Requested data files			
Data file URL	Hits	Last visit	
ftp://zathras.gsfc.nasa.gov/pub/data5/swe/wi_k0_swe_20040319_v01.cdf		27 Mar 2006 - 16:20	
http://vho.nasa.gov/data/mgs_proxy/swp_mgs_2004.dat	4	17 Mar 2006 - 11:02	
http://vho.nasa.gov/data/mgs_proxy/swp_mgs_1999.dat	3	27 Mar 2006 - 16:33	
http://vho.nasa.gov/data/mgs_proxy/swp_mgs_2001.dat	2	16 Mar 2006 - 16:28	
http://vho.nasa.gov/data/mgs_proxy/swp_mgs_2002.dat	2	17 Mar 2006 - 11:04	
http://vho.nasa.gov/data/celias_pm/2006_001_0101.pm	1	24 Mar 2006 - 22:05	
http://sprg.ssl.berkeley.edu/wind3dp/data/wi/3dp/elpd/1999/wi_elpd_3dp_19990101_v02.cdf	1	27 Mar 2006 - 16:59	
http://vho.nasa.gov/data/mgs_proxy/swp_mgs_2000.dat	1	16 Mar 2006 - 16:26	
Average	2.75		
Total	22		

USAGE INFORMATION EXAMPLE

Requested instrument da

Instrument

Mars Global Surveyor Solar Wind Proxy Data

WIND SWE KP Data

WIND 3DP Electron Data

SOHO Celias Proton Monitor Data

Average

Total

Requested data files

Requested data files

USAGE INFORMATION EXAMPLE

Data file URL ftp://zathras.gsfc.nasa.gov/pub/data5/swe/wi_k0_swe_20040319_v01.cdf http://vho.nasa.gov/data/mgs_proxy/swp_mgs_2004.dat http://vho.nasa.gov/data/mgs_proxy/swp_mgs_1999.dat

http://vho.nasa.gov/data/mgs_proxy/swp_mgs_2001.dat http://vho.nasa.gov/data/mgs_proxy/swp_mgs_2002.dat

http://vho.nasa.gov/data/celias_pm/2006_001_0101.pm http://sprg.ssl.berkeley.edu/wind3dp/data/wi/3dp/elpd/1999/wi_elpd_3dp_199

http://vho.nasa.gov/data/mgs proxy/swp mgs 2000.dat

Average

Total

INITIAL VMO DATASETS

Mission	Data Type (Instrument)	Data Set Location	Coverage
AMPTE/CCE	Magnetic field	NASA/GSFC, JHU/APL	1984-1988
	Energetic particles (MEPA)	JHU/APL	
AMPTE/IRM	Magnetic field, Plasma KP	NASA/GSFC	1984-1986
AMPTE/UKS	Magnetic field, Plasma KP	NASA/GSFC	1984-1985
GOES 5-12	Magnetic field	NOAA/NGDC	1983-now
Geotail	Magnetic field	CDAWeb	1992-now
	Plasma key parameters (CPI)	Hampton University	
	Energetic particles (EPIC)	JHU/APL	
IMP 8	Magnetic field	NASA/GSFC	1973-2000
	Plasma key parameters		1973-now
ISEE-1/2	Magnetic field	NASA/GSFC	1983-1987
	Energetic particles (WAPS)	JHU/APL	
Polar	Magnetic field, Plasma par. (TIMAS)	CDAWeb	1996-now
Prognoz-10	Magnetic field, Ion flux	NASA/GSFC	1985
SCATHA	Magnetic field, Plasma parameters	Boston University	1979–1986
ST-5	Magnetic field	NASA/GSFC	2006
THEMIS	Magnetic & electric fields	UC Berkeley	[2006]
	Plasma parameters		
WIND	Magnetic field (MFI), Plasma KP (SWE)	NASA/GSFC	1995-now

SERVICES

DEFINITION

A service is a web or local application that uses VMO's API.

- Core services
 - Locate and deliver data pointers from a set of data sources based on user provided query.
- Added value services
 - Modular, community-need driven, interact with VMO's API
 - We focus on defining the API and to provide example services:
 - Data Mining to achieve smarter search capability
 - PAPCO for data visualization and analysis
 - ViSBARD for 3-D data display along spacecraft orbits
 - Software Library to provide data handling tools to the community and/or to facilitate community development of software tools

SERVICES

DEFINITION

A service is a web or local application that uses VMO's API.

- Core services
 - Locate and deliver data pointers from a set of data sources based on user provided query.
- Added value services
 - Modular, community-need driven, interact with VMO's API
 - We focus on defining the API and to provide example services:
 - Data Mining to achieve smarter search capability
 - PAPCO for data visualization and analysis
 - ViSBARD for 3-D data display along spacecraft orbits
 - Software Library to provide data handling tools to the community and/or to facilitate community development of software tools

SERVICES

DEFINITION

A service is a web or local application that uses VMO's API.

- Core services
 - Locate and deliver data pointers from a set of data sources based on user provided query.
- Added value services
 - Modular, community-need driven, interact with VMO's API
 - We focus on defining the API and to provide example services:
 - Data Mining to achieve smarter search capability
 - PAPCO for data visualization and analysis
 - ViSBARD for 3-D data display along spacecraft orbits
 - Software Library to provide data handling tools to the community and/or to facilitate community development of software tools

ARCHITECTURE OF THE VMO ENVIRONMENT

Main components:

- VMO Middleware
- Data products
- Services
- Other VxOs

Key technologies:

SOAP, WSDL, XML, rsync

Data model:

SPASE+

ARCHITECTURE OF THE VMO ENVIRONMENT

ARCHITECTURE OF THE VMO ENVIRONMENT

SPASE+ DATA MODEL

- SPASE+ will be based on the SPASE data model http://www.igpp.ucla.edu/spase
 - Developed by a broad consortium of space physics community members
 - Already used by other VxOs (e.g., VSO, VHO)
 - However, not detailed enough for VMO needs
- Develop SPASE+ in coordination with other VxOs and the SPASE committee (A. Roberts is a member of both the VMO team and SPASE committee)
- SPASE+ extensions will be submitted to the SPASE consortium for a possible inclusion in the next version of the SPASE model

PROJECT TIMELINE

