Лекция № 13 Восстановление базы данных, процесс синхронизаций репликации в современных системах управления базами данных

Репликация, дублирование и восстановление.

Репликация - это процесс, посредством которого данные копируются между базами данных, находящимися на том же самом сервере или на других серверах, связанных через LAN, WAN или Internet

Репликация Microsoft SQL Server использует метафоры:

publisher distributor subscriber. Publisher - сервер или база данных, которая посылает данные на другой сервер или в другую базу данных.

Subscriber - сервер или база данных, которая получает данные от другого сервера или другой базы данных.

Distributor - сервер, который управляет потоком данных через систему репликации. Этот сервер содержит специализированную базу данных: Distribution database.

Publisher содержит публикацию/публикации. Публикация - это совокупность одной или более статей, которые посылаются серверу подписчику (subscriber) или базе данных.

Статья (Article) - основной модуль репликации и это может быть таблица или подмножество таблицы.

Подписка (subscriptions) - это группа данных, которые сервер или база данных получает.

Существуют виды подписки:

push и pull subscriptions

Push subscription - это подписка, при которой сервер издатель периодически помещает транзакции на подписавшиеся сервера или базы данных.

Pull subscription - это подписка, при которой подписавшийся сервер будет периодически соединяться с тиражируемой информацией и перемещать её из Distribution database.

Distribution database - это системная база данных, которая хранится на дистрибуторе (distributor) и не содержит никаких пользовательских таблиц. Эта база данных используется для хранения снимков заданий и всех транзакций, ожидающих распределения подписчикам.

Топология репликации

Microsoft SQL Server поддерживает следующие топологии репликации

- Центральный publisher
- Центральный subscriber
- Центральный publisher с отдаленным distributor
- Центральный distributor
- Издающий subscriber

Центральный publisher

Это одна из наиболее используемых топологий репликации. В этом сценарии, один сервер исполняет роли publisher и distributor, а другой сервер/серверы определяется, как подписчик/подписчики.

Центральный subscriber

Это обычная топология складирования данных. Несколько серверов или баз данных копируют свои данные на центральный сервер в одну или более базы данных

Центральный publisher с отдаленным distributor

В этой топологии база Distribution постоянно находится на сервере, отличном от сервера, где располагается publisher. Эта топология используется для повышения эффективности, когда объём репликации увеличивается, а также, если сервер или сетевые ресурсы ограничены. Это уменьшает загрузку publisher, но увеличивает сетевой трафик. Эта топология требует отдельных инсталляций Microsoft SQL Server для publisher и distributor. ДЛЯ

Snapshot репликация

(снимок)

Является самой простой. При этом, все копируемые данные (точная копия) будут копироваться из базы данных publisher в базу(ы) данных subscriber/subscribers на периодической основе. Snapshot репликация является лучшим методом копирования данных, которые нечасто изменяются и когда размер копируемых данных не очень большой.

Transactional **репликации** лучше использовать, когда копируемые данные часто изменяются или когда размер копируемых данных достаточно велик и нет необходимости поддерживать автономные изменения реплицируемых данных относительно publisher и относительно subscriber.

Merge репликация

Является наиболее трудным типом репликации. Она предоставляет возможность автономных изменений реплицируемых данных и на publisher и на subscriber. При Merge репликации, SQL Server фиксирует все накопившиеся изменения не только в источнике данных, но и целевых базах данных, и урегулирует конфликты согласно правилам, которые предварительно конфигурируете, или посредством определённого Вами блока принятия решений resolver-pa.

Merge репликацию лучше использовать, когда Вы хотите обеспечить поддержку автономных изменений реплицируемых данных относительно publisher и относительно subscriber.

Агенты Репликации

Microsoft SQL Server поддерживает следующих агентов репликации:

- Snapshot Agent
- Log Reader Agent
- Distribution Agent
- Merge Agent

Snapshot Agent

Агент репликации, который создаёт файлы снимков, хранит снимки на distributor и производит запись информации о состоянии синхронизации в Distribution database. Snapshot Agent используется во всех типах репликации (Snapshot, Transactional и Merge) и может управляться из SQL Server Enterprise Manager.

Merge Agent

Агент **репликации**, который применяет первоначальные, обрабатывающие снимки задания по таблицам базы данных publication на подписчиках, и потом объединяет возможные последующие изменения данных, которые произошли после создания первоначального снимка. Мегge Agent используется только в Merge **репликации**

Merge Agent

Агент репликации, который применяет первоначальные, обрабатывающие снимки задания по таблицам базы данных publication на подписчиках, и потом объединяет возможные последующие изменения данных, которые произошли после создания первоначального снимка. Мегде Agent используется только в Мегде репликации

Резервное копирование

MS SQL поддерживает 3 типа backup'a данных

Full backup

Differential backup

Transaction-log backup

Full backup производит backup пользователей базы, но не производит бэкап логинов. Для того чтобы произвести backup логинов необходимо забэкапить базу данных master. В дальнейшем при восстановлении базы на другом сервере (имеющем свои логины) необходимо использовать процедуру sp_change_users_login для синхронизации имен логинов.

Резервное копирование

MS SQL поддерживает 3 типа backup'a данных

Full backup

Differential backup

Transaction-log backup

Full backup

Сохраняет все объекты вашей базы, включая пользователей и permissions. Full backup может производиться без остановки работы сервера, все транзакции произведенные за время выполнения backup'а добавляются к нему по окончании.

Full backup производит backup пользователей базы, но не производит бэкап логинов. Для того чтобы произвести backup логинов необходимо забэкапить базу данных master. В дальнейшем при восстановлении базы на другом сервере (имеющем свои логины) необходимо использовать процедуру sp_change_users_login для синхронизации имен логинов.

- Enterprise
 Manager
- 2. tools

3. backup database

Указание места бэкапа.

Выбор периодичности и времени бэкапа.

Differential backup

Сохраняет только данные, которые изменились со времени последнего full backup'a Благодаря этому занимает гораздо меньше места на диске и выполняется существенно быстрее, что позволяет выполнять его чаще.

