

Continuum mechanics and fluid-structure interaction problems: mathematical modelling and numerical approximation

Reference configuration, deformation gradient

Luca Heltai < luca.heltai@sissa.it>

International School for Advanced Studies (www.sissa.it)
Mathematical Analysis, Modeling, and Applications (math.sissa.it)
Master in High Performance Computing (www.mhpc.it)
SISSA mathLab (math.sissa.it)
King Abdullah University of Science and Technology (kaust.edu.sa)

M, Y, Z, ei smell letters i, J, kl: 1, ..., h U, V, X, Ex copital detters xB, 8: 1,...,h $X \in B$ $x \in M$ $x = \phi(X)$ $\phi^i = x^i$ $g_{\alpha} = \frac{\partial \phi^{i}}{\partial x^{\alpha}} e^{i}$ $g_{\alpha} \in E^{n}$ converted coordinate system gd is different at every X IF M IS SMOOTH ENOUGH TnH := span { ga { $\phi^i(x)$: $\mathbb{R}^m \equiv \mathbb{E}^m$ \rightarrow faed E(Em)*
faed E(Em)* $f: B \rightarrow \mathbb{R}: f(X)$ $\frac{\partial}{\partial X^d} f = f_d$ 2di = di, x =: Fix F'a ei & Ed = F F is Known as the Deformation andheut F = F' & ei & E d ¥ f:B →R Grad f := 24 gap gp

Frankling der ve tives w. z.t. X taking derivatives w.z.t. 2 $w(x) = w(x^i e_i)$ grad (w) := $\frac{\partial w}{\partial x^i}$ $g^{iT}e_J = \frac{\partial w}{\partial x^i}e^i$ E^n $g_{iJ} = \delta_{iJ}$ if orthogonal $M^{\circ}:=\frac{3^{\circ}}{9^{\circ}}$ $d[w] := \frac{\partial w}{\partial x} = \frac{\partial w}$ gd:= $\frac{\partial \dot{u}}{\partial x^d}$ ei = Fidei (grad w). $V = \frac{\partial w}{\partial x^i}$ V^L gap = ga. gp = Fa gij Fr

gap= (FTF) dB:= Fagis FTB

C=FTF