

Princípios de compressão de informação visual

- vídeo e imagem digitais
 - princípios de compressão de media
 - compressão versus qualidade
 - redundância no sinal
 - informação irrelevante
 - ferramentas de compressão de imagem e vídeo
 - espaços de cor, resoluções e sub-amostragem de cor
 - técnicas de processamento no tempo
 - técnicas de processamento no espaço
 - técnicas de codificação estatística

Princípios de compressão

- os algoritmos de compressão podem ser sem e com perdas
 - sem perdas ("lossless") permite reconstruir o sinal sem qualquer distorção (ex. zip)
 - sinal reconstruído = sinal original, não só perceptualmente como também matematicamente
 - com perdas ("lossy") significa que introduz degradações no sinal as quais não é possível eliminar totalmente, logo não permite reconstruir o sinal exactamente igual ao original
 - a quantidade de informação que se perde, "quantidade" de degradação, depende dos requisitos da aplicação
 - da quantidade de compressão necessária e do tipo de conteúdo
- existe ainda a variação de "codificação com perdas mas perceptualmente sem perdas"
 - em termos matemáticos existem diferenças mas o observador humano não consegue distingui-las

Princípios de compressão - distorção

- a distorção no sinal reconstruído traduz a diferença relativamente ao sinal original
 - pode ser medida de forma objectiva
 - como uma diferença dos valores de pixels correspondentes nas duas imagens
 - frequentemente medido através do SNR (Signal to Noise Ratio) ou MSE (Mean Square Error)
 - embora essas métricas ofereçam uma medida da distância entre o sinal original e o sinal reconstruído, por vezes não traduzem fielmente a percepção do observador humano
 - um valor baixo de PSNR ou elevado de MSE é uma indicação subjectiva de má qualidade (elevada degradação) mas um observador humano pode ter a percepção de um boa qualidade

Princípios de compressão - factores determinantes

- características importantes a ter em conta na selecção de um algoritmo de compressão
 - eficiência
 - relação entre grau de compressão e qualidade
 - o grau de compressão pode ser medido pela relação entre os tamanhos dos ficheiros antes e depois da compressão
 - complexidade
 - só hardware, só software ou híbrido
 - tempo de processamento exigido, n° de operações por unidade de tempo
 - tempo real ou não
 - atraso
 - quanto tempo é necessário esperar até ser possível começar a descodificar o sinal comprimido?

Princípios de compressão - qualidade

- é então importante conseguir avaliar a qualidade ou a eficiência (qualidade versus bit rate) de diferentes esquemas de compressão
 - medidas objectivas
 - PSNR (peak signal to noise ratio), MSAD (mean sum of absolute differences), MSE (mean square error), ...
 - podem ser automatizadas e obtidas em tempo real
 - é uma operação aritmética ...
 - mas podem <u>não</u> traduzir fielmente a percepção que temos sobre a qualidade
 - é por isso que existem <u>medidas subjectivas</u>
 - é medido em dB
 - um valor de 50 dB indica uma reconstrução do sinal quase perfeita
 - \approx 30 dB dá indicação de qualidade aceitável

quando as medidas objectivas falham ...

- trocando entre si a primeira e a última linha da imagem
 - pouca perturbação para o observador (boa qualidade subjectiva/perceptual)
 - mas o valor de MSE é grande (qualidade objectiva baixa)

cameraman original

linhas trocadas (MSE=337.8)

Avaliação da qualidade na compressão

medidas subjectivas

- são mais difíceis de realizar
- MOS (Mean Opinion Score)
 - utiliza uma audiência para visualizar as sequências e as classificar numa escala de 1 a 5
 - segue um procedimento de "estímulo duplo"
 - a cada pessoa é dada a visualizar a sequência original (com qualidade total) e de seguida uma versão comprimida e reconstruída
 - a pessoa deve classificar numa escala de l a 5 a sequência comprimida de uma forma relativa
 - atribuíndo I se tiver uma qualidade que está muito longe da qualidade original (com muita degradação)
 - atribuíndo 5 se a qualidade fôr igual (se as degradações forem imperceptíveis)
- mas podem ser automatizadas também
- **VQM** (video quality metric)
 - métricas que tentam modelar de forma probabilística o comportamento do sistema visual humano

Avaliação da qualidade na compressão

avaliação objectiva

 $MSE = \frac{\sum\limits_{M,N} \left[I_{1}(m,n) - I_{2}\left(m,n\right)\right]^{2}}{M*N}$

$$PSNR = 10 \log_{10} \left(\frac{R^2}{MSE} \right)$$

Avaliação da qualidade na compressão

avaliação subjectiva automatizada

VQM - blocos com mais brilho correspondem a diferenças maiores, logo menor qualidade

Princípios da compressão - redundância e irrelevância

- como é que é possível comprimir e ainda assim obter uma boa representação do sinal original?
 - tirando partido da <u>redundância</u> que existe no sinal
 - dados redundantes duplicam informação, ou não trazem informação adicional
 - são previsíveis na medida em que podem ser obtidos à custa de dados anteriores
 - tirando partido das propriedades do sistema humano de percepção
 - redundância perceptual (psico-acústica e psico-visual)
 - ou vista de outra forma, informação contida nos dados mas que é irrelevante para os sistemas audio e visual humano pois não são capazes de os percepcionar
 - irrelevância

Princípios da compressão - redundância

- Dado que:
 - sinal áudio digital = sucessão de amostras no tempo
 - imagem digital = matriz rectangular de pixels (amostras espaciais)
 - video = sequência de imagens que se sucedem a uma certa frequência no tempo
- amostras vizinhas nesses sinais (amostras temporais de áudio, pixels ou imagens) estão mais ou menos correlacionadas entre elas
 - isto é, parte da sua informação é a mesma ou muito semelhante, logo, redundante
 - em geral, a correlação será tanto mais maior, quanto mais próximas no tempo ou no espaço essas amostras estiverem

Princípios da compressão - redundância (2)

- vários tipos de redundância nos sinais de áudio e vídeo
 - redundância espectral
 - por exemplo, duplicação de informação (redundância!) entre as cores primárias RGB
 - daqui a vantagem de se usarem outros espaços de côr :-)
 - redundância espacial
 - por exemplo, entre pixels de uma imagem adjacentes ou próximos
 - redundância temporal
 - por exemplo, entre duas imagens consecutivas de uma sequência vídeo com movimento moderado
 - pixels que pertencem ao background de duas imagens numa sequência vídeo, onde apenas pessoas se movem
 - redundância estatística ou de codificação (própria da codificação)
 - palavras do código com comprimento maior do que o necessário
 - código ineficiente

Princípios da compressão - redundância (3)

- Redundância relativa ao sistema humano de percepção
 - o nosso sistema não consegue percepcionar parte da informação áudio e vídeo
 - por exemplo, o olho humano é muito mais sensível às baixas frequências do que às altas, logo
 - distorções nas baixas frequências do sinal perturbam muito mais o visionamento do que distorções nas altas frequências (a nossa sensação é a de uma imagem mais deteriorada, com pior qualidade)
 - erros/distorções em zonas da imagem que varia pouco (uma parede pintada com uma única cor homogénea, por ex.) contribuem mais para piorar a qualidade da imagem subjectiva do que erros em zonas da imagem de alta frequência (por ex., um jardim com flores pequenas de várias tonalidades e formas)

Princípios da compressão - (4)

Redundância perceptual relativa à visão

- maior sensibilidade às variações de brilho do que às variações de cor
 - erros/distorções introduzidos na componente de cor são mais bem tolerados do que erros na luminância
- limite na acuidade espacial
 - a percepção visual humana não consegue analisar/distinguir pixels individuais ou cada valor da escala de valores da luz colorida

Redundância perceptual relativa à audição

- o ouvido humano não consegue percepcionar sons se as suas amplitudes ficam abaixo do limiar de audição
- o ouvido humano n\(\tilde{a}\)o consegue distinguir sons vizinhos no tempo, quando esses sons t\(\tilde{e}\)m amplitudes ou frequ\(\tilde{e}\)ncias muito diferentes
- É por isso possível eliminar (não codificar) informação dos sinais audiovisuais sem introduzir degradação aparente porque essa informação não é relevante para o processamento normal audiovisual

Princípios de compressão - irrelevância

- imagem não comprimida de resolução total = matriz bidimensional de grande n° de pixels, cada um representado por três valores
 - um para cada componente RGB
 - oferecendo uma aproximação óptima ao espectro contínuo de luz colorida
- no entanto, essa aproximação óptima tem informação redundante, irrelevante para o observador humano
 - que não consegue distinguir detalhes espaciais inferiores a 0,1 mm
 - limite da acuidade espacial
 - não há interesse em representar áreas diferentes entre si e que sejam inferiores a 0.1mm ou em usar um número extremamente elevado de amostras

Princípios de compressão - irrelevância (2)

- não consegue distinguir variações de brilho (luminância) inferiores a 1%
 - se uma área tiver um valor de brilho que difere menos do que
 l% do valor do brilho de uma área que lhe é adjacente, o olho humano não vai distinguir essa diferença de brilho
 - vai percepcionar as duas áreas como tendo o mesmo brilho
 - logo não há interesse em usar muitos níveis ou bits para representar essas diferenças mínimas
- o SVH tem apenas 3 tipos de sensores para detectar as 3 cores
 RGB
 - já vimos que é por estímulo simultâneo de pelo menos 2 desses sensores e pelo fenómeno de integração que conseguimos percepcionar diferentes cores ao longo do espectro de luz visível
 - por isso, não é necessário ter um sistema complexo para codificar todas as cores possíveis do espectro

Princípios da compressão - ferramentas

- cada bloco tenta eliminar um certo tipo de redundância
- grau total de compressão = n1/n2

Espaços de cor

- Já vimos que existem vários espaços ou modelos para representar sinais de luz colorida
 - alguns são mais eficientes do ponto de vista tecnológico pois permitem representações mais compactas, com menos informação correlacionada
 - em particular o espaço YUV / YIQ / Y
 - Y: luminância
 - UV, IQ, C_bC_r : sinais diferença de cor
 - estas componentes são obtidas como combinação linear das cores primárias

$$Y = 0.299R + 0.587G + 0.114B$$

 $U = -0.147R - 0.289G + 0.436B$ domínio analógico
 $V = 0.615R - 0.515G - 0.100B$

```
Y = 0.2989 R + 0.5866 G + 0.1145 B

Cb = -0.1687 R - 0.3312 G + 0.5000 B domínio digital

Cr = 0.5000 R - 0.4183 G - 0.0816 B
```


Espaços de cor (2)

- normalmente os displays recebem RGB
 - mas esse espaço de representação da cor não é eficiente para armazenamento ou para transmissão
 - existe um elevado grau de correlação entre essas três componentes
 - duplicação de informação
 - e é difícil indicar qual delas tem mais importância para o SVH
 - seria desejável poder eliminar a duplicação e identificar a componente mais importante para a visão humana
 - que sabemos ser o brilho ou quantidade de luz
 - já que sem luz os bastonetes não funcionam ...
 - o espaço YUV consegue isso e é um bom compromisso entre eficiência de processamento e qualidade perceptual
 - cada componente transporta informação específica com pouca sobreposição à das outras componentes

Espaços de cor (3)

- Espaço YUV / YC_bC_r
 - uma vez estando as componentes descorrelacionadas, é
 possível implementar algoritmos de processamento de
 vídeo que introduzem mais ou menos erros^(*) de acordo
 com a importância perceptual do sinal
- dessa forma o sistema visual humano, não se apercebe (tanto) desses erros
 - o sinal de luminância (Y) pode ser armazenado ou transmitido com maior resolução
 - ▶ os dois componentes de cor (Cb e Cr) podem ser sub-amostrados e comprimidos de forma independente para aumentar a eficiência do sistema
 - * ao comprimir acima de um determinado valor, introduzem-se necessariamente erros

Espaços de cor (4)

Sub-amostragem de cor

- a norma ITU-R Rec. 601, usada em ambientes profissionais, amostra a luminância (brilho) e as componentes de cor separadamente
 - no espaço de cor YC_rC_b usa a frequência de 13.5 MHz para a luminância Y
 - a frequência de amostragem das componentes de cor varia de acordo com a resolução pretendida
 - se quisermos obter o mesmo n° de amostras para cada componente, então utiliza-se a mesma frequência
 - no entanto é normal usar menos amostras para a cor
 - para difusão de televisão utiliza-se 1/4 de 13.5 = 3.375 MHz

Sub-amostragem de cor

- O esquema de amostragem exprime-se como x:y:z
 - x representa o n° relativo de amostras de luminância
 - y representa o n° relativo de amostras de crominância (Cr and Cb) nas linhas ímpares
 - z representa o n° relativo de amostras de crominância (Cr and Cb) nas linhas pares
 - ex., 4:2:0 indica que para cada 4 amostras de Y existem 2 amostras de crominância (I Cr e I Cb) apenas nas linhas ímpares
 - origina uma compressão de 1:4
 - por cada bloco de 2 x 2 pixels, existem 4 amostras de Y e apenas I de cada sinal diferença de cor (Cr and Cb)
 - é o formato usado em difusão de TV

Sub-amostragem de cor

- O esquema de amostragem exprime-se como x:y:z
- para cada x amostras de Y existem y amostras de crominância (Cb e Cr) nas linhas ímpares e z amostras de crominância (Cb e Cr) nas linhas pares
 - se y, z < x dá origem a uma taxa de compressão relativa do sinal de côr

4:2:2 - por cada 4Y (2x2), 2 de Cr+Cb na linhas ímpares e 2 de Cr+Cb nas pares sub-amostragem horizontal 2:1

4:1:1 - por cada 4Y (4x1), I de Cr+Cb na linhas ímpares e I de Cr+Cb nas pares sub-amostragem horizontal 4:1

4:2:0 - por cada **4** Y (2x2), 2 de Cr+Cb na linhas ímpares e 0 de Cr+Cb nas pares sub-amostragem horizontal 2:1 e vertical 2:1

luminância (1 amostra Y) 🛖 crominância (1 amostra Cr e 1 amostra Cb)

Sub-amostragem de côr

4·4·4 - não há subamostragem

4:1:1 - há subamostragem na horizontal (ao longo da linha, em cada 4 pixels de luminância só preenchemos um com côr)

4:2:0 - há subamostragem na horizontal (ao longo da linha, em cada 2 pixels de preenchemos um com côr)

coluna-sim. coluna-não; linha-sim, linha-não

luminância só

e na vertical

Vídeo - formatos espaciais

- a resolução espacial dos formatos digitais de vídeo exprime-se em n° de pixels em cada linha por n° de linhas em cada imagem
 - alternativamente, em n° de amostras em cada linha por n° de linhas em cada imagem para cada componente (luminância e diferença de cor)
- alguns formatos comuns relativamente à resolução espacial e sub-amostragem de cor
 - HHR Half Horizontal resolution
 - utilizado em MPEG-2
 - SIF Source Intermediate Format
 - utilizado em MPEG-I

Vídeo - formatos espaciais (2)

HHR 576 pels 480 linhas

288 240

SIF 352 pels 240 linhas

Cr 180

Vídeo - formatos espaciais (3)

- CIF Common Input Format e QCIF Quarter CIF
 - 352 pixels x 288 linhas
 - utilizado em MPEG-1, MPEG-2, videoconferência (H.261),
 Internet
- SDT Standard Television (640/704 pixels x 480 linhas)
 - utilizado em TV digital e DVDs
- ITU-R 601 (720 pixels x 576 linhas)
 - utilizado em TV digital; sinal de entrada para codificadores
 MPEG-2, H.264
- HDTV High Definition TV (aspect ratio 16:9)
 - 1920 pixels x 1080 linhas. entrelaçado (1080i)
 - 1280 pixels x 720 linhas, progressivo, (720p)
 - 1920 pixels x 1080 linhas progressivo (1080p)

Vídeo - formatos espaciais (4)

- cinema digital
 - 2K: 2048 pixels x 1080 linhas e 4K: 4096 pixels x 2160 linhas
- UHD ou SHD
 - 4K e 8K: 3840 pixels x 2160 linhas e 7680 pixels x 4320 linhas
 - no futuro 16K: 15360 pixels \times 8640 linhas

Vídeo - imagem e quadro

- Progressivo versus entrelaçado
- o entrelaçamento foi introduzido na TV analógica
 - cada imagem é dividida em dois campos/quadros cada um com metade das linhas (quadros par e ímpar)

- truque para manter a resolução do vídeo e taxa de refrescamento das imagens no écran, diminuíndo a largura de banda
- conta com a persistência da imagem no écran e sistema visual humano

Entrelaçamento

- Na TV analógica, constatou-se que para uma boa visualização do sinal de TV seriam necessárias pelo menos
 - 570 linhas em cada imagem
 - 50 imagens por segundo
- O sistema PAL com 625 linhas, cada uma com 720 pixels, usando uma taxa de imagens de 50 por segundo, conduziria a uma largura de banda de cerca de 12 MHz (porquê?)
 - a largura de banda de um sinal de TV analógico mede-se com base na maior frequência que pode ocorrer no sinal.

largura de banda do sinal TV analógico

- o que é a frequência? o que são as altas e as baixas frequências numa imagem?
 - alta frequência ocorre quando há grandes variações de intensidade luminosa e/ou de cor de um pixel para o seguinte
 - baixa frequência quando os pixels são muito homogéneos e o seu brilho e/ou cor pouco varia.
- No limite temos:
 - a frequência mais alta, quando um pixel é branco e o seu vizinho é preto
 - essa frequência vai ser igual ao inverso do tempo dos dois pixels (f_{max}=1/2T_{pixel})
 - a frequência mais baixa, quando um pixel é exactamente igual ao seu vizinho, verificando-se isto para toda a imagem
 - essa frequência vai ser igual à frequência de imagem (f_{min}=I/T_{imagem})

largura de banda do sinal TV analógico (2)

 Assim num sinal PAL com 50 imagens por segundo, 625 linhas por imagem e 720 pixels por linha:

 $T_{pixel} = I/(720 \text{ pels/linha} \times 625 \text{ linhas/imagem} \times 50 \text{ imagens/s}) = 44.(4) \text{ ns}$

$$f_{\text{max}} = I/(2x44.4x10^{-9}) = II.250 \text{ MHz}$$

$$f_{min} = I/T_{imagem} = 50 Hz$$

- taxa de repetição de imagem: f_{imagem} = 50 Hz
- taxa de repetição de linha: $f_{linha} = n^{\circ}$ de linhas x $f_{imagem} = 625 \times 50 = 31250$ Hz
- taxa de repetição de pixel: f_{pixel} = n° de pixels x f_{linha} = 720 x 31250 =
 22.5 MHz

Entrelaçamento - o motivo

- como vimos, os canais de rádio-frequência utilizados para a difusão do sinal de TV, têm uma largura de banda disponível de 6 ou 8 MHz
 - 12 MHz era excessivo para difundir o sinal!
- Foi assim introduzida a técnica de entrelaçamento, que permitia respeitar a taxa mínima de refrescamento
 - agora não de imagem mas sim de quadro
 - como cada quadro tem apenas metade das linhas, permite diminuir para metade a largura de banda necessária

Progressivo versus entrelaçado

- o entrelaçado permite aumentar a resolução espacial das imagens^(*)
 - oferece boa qualidade para imagens paradas
 - como tem uma taxa maior de refrescamento, o movimento pode ser reproduzido de uma forma mais fiel, sem saltos
 - no entanto funciona apenas para imagens com movimento limitado
 - se fizermos pan/pause numa sequência com muito movimento, a imagem vai aparecer com flicker
 - depende muito do tipo de conteúdo!
- em geral, o modo progressivo permite obter imagens mais homogéneas, com maior qualidade de detalhe e reprodução de texto

(*) de uma forma fictícia e para uma mesma taxa de refrescamento! no progressivo para manter a taxa de refrescamento e cumprir restrições de largura de banda é necessário reduzir a resolução espacial.

Progressivo versus entrelaçado (2)

Progressivo versus entrelaçado (3)

- em sinais entrelaçados
 - contornos, em especial verticais, podem aparecer mal definidos

- introduz o efeito de "twitter" inter-linha
 - quando o detalhe da imagem na vertical se aproxima da resolução horizontal
 - ex., uma pessoa vestida com uma camisola às riscas fininhas
 - a camisola parece que tem movimento para a esquerda e para a direita

Progressivo versus entrelaçado (4)

- a norma MPEG2 manteve o entrelaçado por compatibilidade com sistema analógico TV
 - mas suporta progressivo também
 - DVDs actuais usam 480p (720 pixels x 480 linhas, progressivo)
- para HDTV inicialmente foram propostos um formato entrelaçado (1080i) e um progressivo (720p)
 - mas os monitores LCD são inerentemente progressivos, por isso é necessário fazer uma conversão de entrelaçado para progressivo
- sempre que possível, isto é, não havendo restrições de banda, é preferível o formato progressivo!

Princípios da compressão - ferramentas

- o objectivo deste bloco é o de eliminar (reduzir) redundância temporal e espacial
 - tirando partido da redundância do sistema humano de percepção
- assume-se que a redundância espectral já foi tratada
 - já se está a usar o espaço de cores apropriado!
- inclui um conjunto de técnicas, nos domínios espaçotemporal e das frequências
 - estimação/compensação de movimento e transformadas espaciais

Princípios da compressão - ferramentas

- inclui um conjunto de técnicas, nos domínios espaçotemporal e das frequências
 - estimação/compensação de movimento e transformadas espaciais
- transforma o sinal de entrada num formato não-visionável ou não-audível
 - sequência de símbolos

Ferramentas de compressão - estimação de movimento

- estimação e compensação de movimento
 - elimina a redundância temporal
 - divide a imagem em blocos de pixels
 - para cada bloco, procura blocos semelhantes em imagens vizinhas, numa numa dada região vizinha
 - selecciona vectores de movimento (coordenadas x,y) que apontam para bloco(s) dessa(s) regiões, que menos diferem do bloco actual
 - que conduzem a um menor erro de predição

Ferramentas de compressão - transformadas espaciais

- transformada espacial (bi-dimensional, 2D)
 - transfere o sinal de vídeo do domínio espaço-temporal para o domínio das frequências
 - porque no domínio das frequências os elementos do sinal têm pesos distintos e assim podemos distingui-los melhor consoante a sua importância
 - a informação contida em cada elemento pode-se traduzir pela energia de cada um
 - no domínio espaço-temporal, a energia está espalhada por todo o sinal
 - uma representação do sinal imagem/vídeo no domínio das frequências, tende a concentrar a energia em torno dos elementos de baixa frequência

Ferramentas de compressão - transformadas espaciais

- transformada espacial (bi-dimensional, 2D)
 - a transformada é aplicada ao erro de predição, resultante da estimação de movimento, obtendo-se um conjo de coeficientes
 - uma grande percentagem da energia total do sinal erro de predição fica concentrada em torno de um nº pequeno de coeficientes (os de baixa frequência)
 - grande parte dos coeficientes contem energia mínima, logo não transporta informação relevante
 - são assim redundantes e por isso poderão ser eliminados!

Ferramentas de compressão - quantização

- responsável por alguma compressão (e distorção!)
 - juntamente com a transformada, elimina a redundância espacial
 - elimina informação de alta frequência (que não é bem percepcionada pelo HVS) mapeando (ou quantizando) os símbolos à saída do bloco de processamento num conjunto de valores discretos de uma escala finita
 - o grau de compressão depende do n° de valores dessa escala (ou níveis do quantizador) e da sua gama dinâmica
 - n° de bits ; tamanho do degrau de quantização (distância entre níveis)
 - um n° pequeno de níveis (e gama dinâmica pequena), pode resultar numa distorção muito significativa
 - esses valores dependem também do tipo de conteúdo a comprimir

Ferramentas de compressão - codificação

- o codificador de símbolos explora redundância estatística ou de codificação
- utiliza codificação de entropia e códigos de comprimento variável
- atribui palavras de código mais curtas aos símbolos que ocorrem mais frequentemente
 - RLC, Run Length Coding
 - SFC, Shannon-Fano coding
 - Huffman
 - arithmetic coding

Ferramentas de compressão - conclusão sumária

- compressão é obtida à custa da eliminação da redundância do sinal
 - espectral, entre as cores primárias
 - convertendo para espaços de cores onde as componentes estão menos correlacionadas
 - temporal, entre imagens consecutivas no caso do vídeo
 - utilizando técnicas predictivas com compensação de movimento
 - espacial, entre pixels vizinhos de uma imagem
 - aplicando uma transformada ao erro de predição, conseguindo concentrar energia (*)
 - estatística ou de codificação
 - usando códigos mais eficientes, em particular de comprimento variável
- e também tirando partido das limitações do SVH
 - irrelevância

