Module : Analyse numériques

Chapitre 3 : Intégration Numérique

Exercice 5

Exercice

Cet exercice porte sur l'approximation de l'intégrale $I(g) = \int_{-1}^1 g(x) dx$ où g est une

fonction continue sur l'intervalle $\left[-1,1\right]$ à valeur dans $\mathbb{R}.$

On fixe $\omega \in]0,1]$ et on considère la méthode d'intégration numérique sur [-1,1] donnée par :

$$J_{\omega}(g) = \frac{4}{3}g\left(-\frac{\omega}{2}\right) + \frac{2}{3}g(\omega)$$

- **a**. Montrer que la méthode numérique est exacte pour les polynômes de degré inférieur ou égal à 1 quel que soit ω .
 - b. Déterminer ω pour que la méthode d'intégration numérique est exacte pour les polynômes de degré inférieur ou égal à 2.
 - c. Quel est alors son degré d'exactitude?

Pour la suite on prend la fonction g défine par

$$g(x) = xe^{x^2}, \ \forall x \in [-1, 1].$$

- **a** Justifier l'existence d'un unique polynôme $P_1 \in \mathbb{R}_1[X]$ qui interpole g en $x_0 = -1, \ x_1 = 1,$
 - Déterminer l'expression du polynôme P₁ par une méthode d'interpolation vue en cours.
 - c. Calculer $I_p(P_1) = \int_{-1}^{1} P_1(x) dx$. Conclure.
- Opprocher l'intégrale I(g) par la méthode simple des trapèzes I_T .
- **4** Calculer l'erreur d'intégration E_J commise par J_ω

Exercice *Correction*

1.a. • pour
$$P(x) = 1$$
, on a:

$$\int_{-1}^{1} 1 dx = 2$$

$$J_{\omega}(1) = \frac{4}{3} \times 1 + \frac{2}{3} \times 1 = 2$$

$$donc \left[\int_{-1}^{1} 1 dx = J_{\omega}(1) \right]$$

• pour P(x) = x, on a:

$$\int_{-1}^{1} x dx = 0$$

$$J_{\omega}(x) = \frac{4}{3} \times \left(-\frac{\omega}{2}\right) + \frac{2}{3} \times \omega = 0$$

$$donc \int_{-1}^{1} x dx = J_{\omega}(x)$$

Exercice

Correction

1.b. pour
$$P(x) = x^2$$
, on a: $\int_{-1}^{1} x^2 dx = \frac{4}{3} \times \left(-\frac{\omega}{2}\right)^2 + \frac{2}{3} \times \omega^2 = \frac{2}{3}$ donc $\omega = \sqrt{\frac{2}{3}}$

1.c. pour $P(x) = x^3$, on a:

$$\int_{-1}^{1} x^{3} dx = 0$$

$$J_{\sqrt{\frac{2}{3}}}(x^{3}) = \frac{4}{3} \times \left(-\frac{\sqrt{\frac{2}{3}}}{2}\right)^{3} + \frac{2}{3} \times \left(\sqrt{\frac{2}{3}}\right)^{3} = \frac{\sqrt{2}}{3\sqrt{3}}$$

$$donc \left[\int_{-1}^{1} x^{3} dx \neq J_{\sqrt{\frac{2}{3}}}(x^{3})\right]$$

La méthode est donc de degré d'exactitude 2.

2.a On a $x_0 \neq x_1$ alors il existe un unique polynôme d'interpolation.

2.b
$$L_0(x) = \frac{x - x_1}{x_0 - x_1} = \frac{1 - x}{2},$$

$$L_1(x) = \frac{x - x_0}{x_1 - x_0} = \frac{x + 1}{2}.$$
Donc $P_1(x) = f(x_0)L_0(x) + f(x_1)L_1(x) = xe$.

Exercice *Correction*

2.c.
$$I_p(P_1) = \int_{-1}^{1} P_1(x) dx = \int_{-1}^{1} xedx = e[\frac{1}{2}x^2]_{-1}^{1} = 0$$

3.
$$I_T = g(1) + g(-1) = 0$$
. $I_T = I_P$

4.
$$I(g) = \int_{-1}^{1} g(x) dx = \int_{-1}^{1} x e^{x^2} dx = \left[\frac{1}{2} e^{x^2}\right]_{-1}^{1} = 0.$$

 $E_J = |I(g) - J_{\omega}| = 0.3.$