Научно-исследовательская практика

Лето 2020

Быстрое умножение методом Карацубы

Scribe: Зарубко Мария Владимировна

1 Теория

Алгоритм Карацубы- метод быстрого умножения чисел. В отличие от обычного способа умножения, который имеет вычислительную сложность $O(n^2)$, алгоритм Карацубы требует только $n^{\log_2 3}$ операций. Пусть каждое из рассматриваемых десятичных чисел A и В разбиваются на два числа длины n и тогда их можно представить как:

$$A = a \cdot 10^n + b$$

$$B = c \cdot 10^n + d$$

При наивном умножении $AB = a \cdot c \cdot 10^{2 \cdot n} + (a \cdot d + c \cdot b) \cdot 10^n + b \cdot d$, то есть необходимо вычислить $a \cdot c, b \cdot d, c \cdot b, a \cdot d$, поэтому сложность алгоритма будет $4 \cdot n^2$. При умножении Карацубы необходимо найти $a \cdot c \cdot x^2 + ((a+b) \cdot (d+c) - a \cdot c - b \cdot d) \cdot x + b \cdot d$, таким образом вычисляются только $(a+b) \cdot (d+c), b \cdot d, a \cdot c$, что уменьшает сложность алгоритма до $3 \cdot n^2$.

2 Алгоритм

Algorithm 1 Алгоритм Карацубы

- 1: **procedure** Karatsuba(A, B)
- 2: 1. Разложим А и В следующим образом:
- 3: $1.1 A \leftarrow a \cdot x + b$
- 4: 1.2 $B \leftarrow c \cdot x + d$ > Где $x = m^{n/2}$, n четное и m степень системы счисления
- 5: $1.3 AB \leftarrow a \cdot c \cdot x^2 + ((a+b) \cdot (d+c) a \cdot c b \cdot d)x + b \cdot d$
- 6: 2. Если a,b,c,d могут быть разложены таким же образом как и A,B, то вернуться на шаг 1.1
- 7: $\mathbf{return} \ AB$

Данный алгоритм не дает существенного преимущества при вычислении чисел малых длин, но становится намного эффективнее при вычислении чисел порядка десятков десятичных разрядов.

3 Сравнение работы алгоритмов

3.1 Описание машины, использованной для тестов

Характеристики машины следующие:

Процессор: Intel(R) Core(TM) i5-8265U CPU @ 1.60GHz 1.80 GHz

Оперативная память: 8,00 ГБ

Видеоадаптер: Intel(R) UHD Graphics 620

Модель материнской платы: X509FA, ASUSTeK COMPUTER INC.

3.2 Анализ

N	<u>o</u> [Значение х
1	. 1	$1566156757236357352743265742^{110}$
2	5 ($987657565464456645689957352743265742^{222}$
3	3 ($987658437987985843657835983443287890098465673765765757657576249837^{1345} \\$

Nº	Значение у
1	$3487382686478324643475834678^{110}$
2	878765362589097888999489283775834678 ²²²
3	$983247325463743748389924632246746378445654646632342368987475255665^{1345}$

Nº	Скорость работы алгоритма	Скорость работы встроенной функции
1	$2.01 \mathrm{\ s}$	$142~\mu \mathrm{s}$
2	8.30 s	9.19 ms
3	256.80 s	7.65 ms

[1] [2]

Bibliography

- [1] Karatsuba algorithm. URL: http://www.wikipedia.org.
- [2] Львовский С.М. Набор и верстка в системе LATEX. -, 2014.