Introduction to Computational Fluid Dynamics using OpenFOAM and Octave

Lakshman Anumolu Kumaresh Selvakumar (Session-2)

Instructions: Mon, Wed, Thu (3:30PM-4:30PM IST)

Query session: Sundays 8:30AM-9:00AM IST

Overview

- Fluid Behavior & Mathematical Operators
- Lagrangian & Eulerian Frames
- Governing Equations

Reminder

- Exercise-1
 - Github
 - Discussion forum:
 - https://github.com/exaslate-courses/cfd-openfoam-b2/discussions
 - Operating System:
 - Ubuntu 22.04
 - Softwares:
 - OpenFOAM v2306
 - Octave

Fluid Behavior & Mathematical Operators

Fluid

Fluid Behavior

Expansion

Deformation

Mathematical Operators

Gradient

$$\nabla \rho = \left(\frac{\partial}{\partial x} \boldsymbol{e}_x + \frac{\partial}{\partial y} \boldsymbol{e}_y + \frac{\partial}{\partial z} \boldsymbol{e}_z\right) \rho = \left(\frac{\partial \rho}{\partial x} \boldsymbol{e}_x + \frac{\partial \rho}{\partial y} \boldsymbol{e}_y + \frac{\partial \rho}{\partial z} \boldsymbol{e}_z\right)$$

$$\nabla \boldsymbol{u} = \begin{bmatrix} \frac{\partial u}{\partial x} & \frac{\partial v}{\partial x} & \frac{\partial w}{\partial x} \\ \frac{\partial u}{\partial y} & \frac{\partial v}{\partial y} & \frac{\partial w}{\partial y} \\ \frac{\partial u}{\partial z} & \frac{\partial v}{\partial z} & \frac{\partial w}{\partial z} \end{bmatrix}$$

Divergence

$$\nabla \cdot \boldsymbol{u} = \left(\frac{\partial}{\partial x}\boldsymbol{e}_x + \frac{\partial}{\partial y}\boldsymbol{e}_y + \frac{\partial}{\partial z}\boldsymbol{e}_z\right) \left(u\boldsymbol{e}_x + v\boldsymbol{e}_y + w\boldsymbol{e}_z\right) = \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z}\right)$$

$$\nabla \rho = \left(\frac{\partial}{\partial x} \boldsymbol{e}_x + \frac{\partial}{\partial y} \boldsymbol{e}_y + \frac{\partial}{\partial z} \boldsymbol{e}_z\right) \rho = \left(\frac{\partial \rho}{\partial x} \boldsymbol{e}_x + \frac{\partial \rho}{\partial y} \boldsymbol{e}_y + \frac{\partial \rho}{\partial z} \boldsymbol{e}_z\right)$$

$$\frac{\partial \rho}{\partial x} = \frac{d\rho}{dx} (in \ 1D)$$

$$\nabla \rho = \left(\frac{\partial}{\partial x} \boldsymbol{e}_x + \frac{\partial}{\partial y} \boldsymbol{e}_y + \frac{\partial}{\partial z} \boldsymbol{e}_z\right) \rho = \left(\frac{\partial \rho}{\partial x} \boldsymbol{e}_x + \frac{\partial \rho}{\partial y} \boldsymbol{e}_y + \frac{\partial \rho}{\partial z} \boldsymbol{e}_z\right)$$

Numerical Approximation

$$\left(\frac{\partial \rho}{\partial x}\right)_{i} = \frac{\rho(x_{i+1}) - \rho(x_{i})}{\Delta x_{i}} + O(\Delta x_{i})$$

Numerical Approximation

$$\nabla \rho = \left(\frac{\partial}{\partial x} \boldsymbol{e}_x + \frac{\partial}{\partial y} \boldsymbol{e}_y + \frac{\partial}{\partial z} \boldsymbol{e}_z\right) \rho = \left(\frac{\partial \rho}{\partial x} \boldsymbol{e}_x + \frac{\partial \rho}{\partial y} \boldsymbol{e}_y + \frac{\partial \rho}{\partial z} \boldsymbol{e}_z\right)$$

$$\nabla \boldsymbol{u} = \begin{bmatrix} \frac{\partial u}{\partial x} & \frac{\partial v}{\partial x} & \frac{\partial w}{\partial x} \\ \frac{\partial u}{\partial y} & \frac{\partial v}{\partial y} & \frac{\partial w}{\partial y} \\ \frac{\partial u}{\partial z} & \frac{\partial v}{\partial z} & \frac{\partial w}{\partial z} \end{bmatrix}$$

Mathematical Operations

Divergence

$$\nabla \cdot \boldsymbol{u} = \left(\frac{\partial}{\partial x}\boldsymbol{e}_x + \frac{\partial}{\partial y}\boldsymbol{e}_y + \frac{\partial}{\partial z}\boldsymbol{e}_z\right)(u\boldsymbol{e}_x + v\boldsymbol{e}_y + w\boldsymbol{e}_z) = \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z}\right) \quad \boldsymbol{e}_y$$
erical approximation

- Numerical approximation
 - Same as earlier
- Physical significance
 - Positive value : Source or expansion of fluid volume
 - Negative value: Sink
 - Zero signifies incompressible nature or no change in volume

What Did We Discuss?

Fluid Behavior

Gradient

• Numerical Approximation

Mathematical Operations

• Divergence

$$\nabla \cdot \boldsymbol{u} = \left(\frac{\partial}{\partial x}\boldsymbol{e}_x + \frac{\partial}{\partial y}\boldsymbol{e}_y + \frac{\partial}{\partial z}\boldsymbol{e}_z\right) \left(u\boldsymbol{e}_x + v\boldsymbol{e}_y + w\boldsymbol{e}_z\right) = \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z}\right) \quad \boldsymbol{e}_y$$

- Numerical approximation
 - Same as earlier
- Physical significance
 - Positive value : Source or expansion of fluid volume
 - Negative value: Sink
 - Zero signifies incompressible nature or no change in volume

Lagrangian & Eulerian Frameworks

Lagrangian frame

- Follow a fluid parcel ($p_1, p_2, ...$)
- Flow property at a location is obtained from the fluid parcel that happens to be at that location at that time
- Useful to derive conservation laws

Eulerian frame

- Conservation laws are applied around a fixed "control volume" in space
- Flux of quantities through the boundary is used to estimate the flow variables
- Useful to take observations at fixed locations

Lagrangian-Eulerian [Material Derivative]

$$\frac{D\phi(X(\boldsymbol{p}_i,t),t)}{Dt} = \frac{\partial\phi}{\partial t} + \frac{\partial\phi}{\partial x}\frac{DX}{Dt} + \frac{\partial\phi}{\partial y}\frac{DY}{Dt} + \frac{\partial\phi}{\partial z}\frac{DZ}{Dt}$$

$$\frac{D\phi}{Dt} = \frac{\partial\phi}{\partial t} + \boldsymbol{u} \cdot \nabla\phi$$

Governing Equations

Conservation Laws

Conservation of mass

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{u}) = 0; \quad \nabla \cdot (\rho \mathbf{u}) = \frac{\partial (\rho u)}{\partial x} + \frac{\partial (\rho v)}{\partial y} + \frac{\partial (\rho w)}{\partial z}$$

Conservation of momentum

$$\frac{\partial \rho \boldsymbol{u}}{\partial t} + \nabla \cdot (\rho \boldsymbol{u} \boldsymbol{u}) = -\nabla p + \nabla \cdot \boldsymbol{\sigma} + \rho \boldsymbol{g};$$

Scalar conservation law

$$\frac{\partial \rho \phi}{\partial t} + \nabla \cdot (\rho \boldsymbol{u} \phi) = \nabla \cdot (\Gamma \nabla \phi) + S_{\phi}$$

Integral Form – Differential Form

Conservation of mass

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{u}) = 0$$

Integrate over a control volume

$$\int_{V} \left(\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{u}) \right) dV = 0$$

$$\int_{V} \frac{\partial \rho}{\partial t} dV + \int_{V} \nabla \cdot (\rho \boldsymbol{u}) dV = 0$$

$$\frac{\partial}{\partial t} \int_{V} \rho dV + \oint_{S} \rho \mathbf{u} \cdot d\mathbf{S} = 0$$

Finite Difference – Finite Volume

Differential form

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{u}) = 0$$

Integral form

$$\frac{\partial}{\partial t} \int_{V} \rho dV + \oint_{S} \rho \boldsymbol{u} \cdot d\boldsymbol{S} = 0$$

Quick Recap

What Did We Discuss?

Fluid Behavior

Gradient

• Numerical Approximation

Mathematical Operations

• Divergence

$$\nabla \cdot \boldsymbol{u} = \left(\frac{\partial}{\partial x}\boldsymbol{e}_x + \frac{\partial}{\partial y}\boldsymbol{e}_y + \frac{\partial}{\partial z}\boldsymbol{e}_z\right) \left(u\boldsymbol{e}_x + v\boldsymbol{e}_y + w\boldsymbol{e}_z\right) = \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z}\right) \quad \boldsymbol{e}_y$$

- Numerical approximation
 - Same as earlier
- Physical significance
 - Positive value : Source or expansion of fluid volume
 - Negative value: Sink
 - Zero signifies incompressible nature or no change in volume

What Did We Discuss?

$$\frac{D\phi(\boldsymbol{X}(\boldsymbol{p}_i,t),t)}{Dt} = \frac{\partial\phi}{\partial t} + \frac{\partial\phi}{\partial x}\frac{DX}{Dt} + \frac{\partial\phi}{\partial y}\frac{DY}{Dt} + \frac{\partial\phi}{\partial z}\frac{DZ}{Dt}$$

$$\frac{D\phi}{Dt} = \frac{\partial\phi}{\partial t} + \boldsymbol{u} \cdot \nabla\phi$$

Finite Difference – Finite Volume

Differential form

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{u}) = 0$$

Integral form

$$\frac{\partial}{\partial t} \int_{V}^{\square} \rho dV + \oint_{S}^{\square} \rho \boldsymbol{u} \cdot d\boldsymbol{S} = 0$$

	(i, j + 1))	
(i-1,j)	(i,j)	•(<i>i</i> +	1, j
	(i,j-1)		

Next Session

- Reynolds Transport Theorem
- Gauss Divergence Theorem

Installations

Required Applications

- Preconfiguration packages:
 - https://ldrv.ms/f/s!AqT2YEB97-1RgP8MtsMPqoOGsq4ddg?e=locXv0
- List
 - Virtual Box [to create virtual machines]
 - Ubuntu 22.04 [OS to install OpenFOAM & Octave]
 - AnyDesk [For remote access]

Exercise-1

- Operating System:
 - Ubuntu 22.04
- Softwares:
 - OpenFOAM v2306

opentoa

Octave

- Create a github account:
 - https://github.com
 - Discussion forum:
 - https://github.com/exaslate-courses/cfd-openfoam-b2/discussions

Test Octave

Run numerical_derivative_first_order_approximation.m

Gradient

Numerical Approximation

