

Description

The VSM2305 uses advanced trench technology to provide excellent $R_{\rm DS(ON)}$, low gate charge and operation with gate voltages as low as 2.5V. This device is suitable for use as a load switch or in PWM applications.

General Features

• $V_{DS} = -20V, I_D = -4.1A$ $R_{DS(ON)} < 60m\Omega @ V_{GS} = -2.5V$ $R_{DS(ON)} < 45m\Omega @ V_{GS} = -4.5V$

- High power and current handing capability
- Surface mount package
- Pb free terminal plating
- RoHS compliant
- Halogen free

Application

- PWM applications
- Load switch
- Power management

Package Marking and Ordering Information

Device Marking	Device	Device Package	Reel Size	Tape width	Quantity
VSM2305-S2	VSM2305	SOT-23-3	Ø180mm	8 mm	3000 units

Absolute Maximum Ratings (T_A=25 ℃unless otherwise noted)

Parameter	Symbol	Limit	Unit		
Drain-Source Voltage	VDS	-20	V		
Gate-Source Voltage	Vgs	±12	V		
Continuous Drain Current	T _C =25°C	I _D	-5.4		
	T _C =70°C		-4.3	A	
	T _A =25°C		-4.1	A	
	T _A =70°C		-3.2		
Drain Current -Pulsed (Note 1)	I _{DM}	-20	Α		
	T _C =25°C		1.7		
Maximum Power Dissipation	T _C =70 °C		1.1	W	
	T _A =25°C	P _D	1.0	VV	
	T _A =70°C		0.65		
Operating Junction and Storage Temperature Range		T_{J}, T_{STG}	-55 To 150	$^{\circ}$ C	

Thermal Characteristic

Thermal Resistance,Junction-to-Ambient (Note 2)	R _{θJA}	125	°C/W
---	------------------	-----	------

Electrical Characteristics (T_A =25 $^{\circ}$ C unless otherwise noted)

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Off Characteristics			•			
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V I _D =-250μA	-20	-	-	V
Parameter	Symbol	Condition	Min	Тур	Max	Unit
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =-20V,V _{GS} =0V	-	-	-1	μA
Gate-Body Leakage Current	I _{GSS}	V _{GS} =±12V,V _{DS} =0V	-	-	±100	nA
On Characteristics (Note 3)						
Gate Threshold Voltage	$V_{GS(th)}$	$V_{DS}=V_{GS}$, $I_{D}=-250\mu A$	-0.45	-0.7	-1.0	V
Dunin Course On Ctata Basistana	-	V _{GS} =-4.5V, I _D =-4.1A	-	34	45	mΩ
Drain-Source On-State Resistance	R _{DS(ON)}	V _{GS} =-2.5V, I _D =-3A	-	44	60	
Forward Transconductance	g FS	V _{DS} =-5V,I _D =-4.1A	-	6	-	S
Dynamic Characteristics (Note4)		1				•
Input Capacitance	C _{lss}	\\ \\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	-	740	-	PF
Output Capacitance	Coss	V_{DS} =-4V, V_{GS} =0V,	-	290	-	PF
Reverse Transfer Capacitance	C _{rss}	F=1.0MHz	-	190	-	PF
Switching Characteristics (Note 4)			•			•
Turn-on Delay Time	t _{d(on)}		-	12	-	nS
Turn-on Rise Time	t _r	V_{DD} =-4V, , R_L =-1.2 Ω ,	-	35	-	nS
Turn-Off Delay Time	t _{d(off)}	V_{GEN} =-4.5 V , R_g =1 Ω	-	30	-	nS
Turn-Off Fall Time	t _f		-	10	-	nS
Total Gate Charge	Qg		-	7.8	-	nC
Gate-Source Charge	Q_{gs}	V _{DS} =-4V,I _D =-4.1A,V _{GS} =-4.5V	-	1.2	-	nC
Gate-Drain Charge	Q_{gd}	1	-	1.6	-	nC
Drain-Source Diode Characteristics			•	•	-	•
Diode Forward Voltage (Note 3)	V _{SD}	V _{GS} =0V,I _S =-4.1A	-	-	-1.2	V
Diode Forward Current (Note 2)	Is		-	-	-4.1	Α

Notes:

- 1. Repetitive Rating: Pulse width limited by maximum junction temperature.
- 2. Surface Mounted on FR4 Board, t ≤ 10 sec.
- **3.** Pulse Test: Pulse Width $\leq 300 \mu s$, Duty Cycle $\leq 2\%$.
- 4. Guaranteed by design, not subject to production

Typical Electrical and Thermal Characteristics

Figure 1:Switching Test Circuit

Figure 3 Power Dissipation

Figure 5 Output Characteristics

Figure 2:Switching Waveforms

Figure 4 Drain Current

Figure 6 Drain-Source On-Resistance

Vgs Gate-Source Voltage (V)

Figure 7 Transfer Characteristics

Vgs Gate-Source Voltage (V)

Figure 9 Rdson vs Vgs

Figure 11 Gate Charge

Figure 8 Drain-Source On-Resistance

Vds Drain-Source Voltage (V)

Figure 10 Capacitance vs Vds

Vsd Source-Drain Voltage (V)

Figure 12 Source- Drain Diode Forward

Vds Drain-Source Voltage (V)

Figure 13 Safe Operation Area

Figure 14 Power Dissipation

Figure 15 Normalized Maximum Transient Thermal Impedance