```
In [ ]: #https://www.w3schools.com/python/python_ml_decision_tree.asp
```

Machine Learning Lab3: Created by Jibrael Jos, PhD

Topic: Decision Tree Explorations

Student Name: Naveen Krishna

Roll No:23122023

Date: 15 March

Submission: 4th April

```
In [ ]:
In [ ]:
        import pandas
        import numpy as np
        df = pandas.read_csv("cancerAllv3.csv")
        features=['radius', 'texture', 'perimeter', 'area', 's', 'c', 'concavity', 'cp',
        X = np.array(df)
        y = X[:, 30]
        X = X[:, 0:9]
In [ ]: from sklearn.model_selection import train_test_split
        X_train, X_test, y_train, y_test = train_test_split(X,y ,
                                             random_state=104,
                                             test_size=0.25,
                                             shuffle=True)
In [ ]: features=['radius','texture','perimeter','area','s','c','concavity','cp',
        import numpy as np
        X = np.array(df)
        y = X[:,30]
        X = X[:,0:9]
        print(X)
        print(y)
```

```
[1.799e+01\ 1.038e+01\ 1.228e+02\ \dots\ 3.001e-01\ 1.471e-01\ 2.419e-01]
       [2.057e+01 1.777e+01 1.329e+02 ... 8.690e-02 7.017e-02 1.812e-01]
       [1.969e+01 2.125e+01 1.300e+02 ... 1.974e-01 1.279e-01 2.069e-01]
       [1.660e+01 2.808e+01 1.083e+02 ... 9.251e-02 5.302e-02 1.590e-01]
       [2.060e+01 2.933e+01 1.401e+02 ... 3.514e-01 1.520e-01 2.397e-01]
       [7.760e+00 2.454e+01 4.792e+01 ... 0.000e+00 0.000e+00 1.587e-01]]
      1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 0. 1. 1. 1. 1. 1. 1. 1. 0. 1.
       0. 0. 0. 0. 0. 1. 1. 0. 1. 1. 0. 0. 0. 1. 0. 1. 1. 0. 0. 0. 1. 0.
       1. 1. 0. 1. 0. 1. 1. 0. 0. 0. 1. 1. 0. 1. 1. 1. 0. 0. 0. 1. 0. 0. 1. 1.
       0. 0. 0. 1. 1. 0. 0. 0. 0. 1. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 1. 1. 1.
       0. 1. 1. 0. 0. 0. 1. 1. 0. 1. 0. 1. 1. 0. 1. 1. 0. 0. 1. 0. 0. 1. 0. 0.
       0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 1. 1. 0. 1. 0. 0. 1.
       1. 0. 0. 1. 1. 0. 0. 0. 0. 1. 0. 0. 1. 1. 1. 0. 1. 0. 1. 0. 0. 0. 1. 0.
       0. 1. 1. 0. 1. 1. 1. 1. 0. 1. 1. 1. 0. 1. 0. 1. 0. 0. 1. 0. 1. 1. 1. 1. 1.
       0. 0. 1. 1. 0. 0. 0. 1. 0. 0. 0. 0. 0. 1. 1. 0. 0. 1. 0. 0. 1. 1. 0. 1.
       1. 1. 0. 0. 0. 0. 0. 0. 1. 0. 1. 0. 0. 1. 0. 0. 1. 0. 1. 1. 0. 0. 0. 0.
       0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 1. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
       0. 0. 0. 0. 0. 1. 0. 0. 0. 1. 0. 1. 0. 0. 0. 0. 1. 1. 1. 0. 0. 0. 0. 1.
       0. 1. 0. 1. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 1. 1. 1. 0. 0. 0. 0. 0. 0.
       0. 0. 0. 0. 0. 1. 1. 0. 1. 1. 1. 0. 1. 1. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0.
       0. 1. 0. 0. 0. 1. 0. 0. 1. 1. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0.
       1. 0. 0. 0. 0. 0. 1. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0.
       1. 1. 0. 1. 0. 0. 0. 0. 0. 1. 0. 0. 1. 0. 1. 0. 0. 1. 0. 1. 0. 0. 0. 0.
       0. 0. 0. 0. 1. 1. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1.
       0. 0. 0. 0. 0. 0. 1. 0. 1. 0. 0. 1. 0. 0. 0. 0. 0. 1. 1. 0. 1. 0. 1.
       0. 0. 0. 0. 0. 1. 0. 0. 1. 0. 1. 0. 1. 1. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0.
       0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 1. 1. 1. 1. 1. 0.]
In [ ]: from sklearn.model_selection import train_test_split
       X_train, X_test, y_train, y_test = train_test_split(X,y ,
                                        random_state=104,
                                        test size=0.25.
                                        shuffle=True)
In [ ]: import pandas
       from sklearn import tree
       from sklearn.tree import DecisionTreeClassifier
       import matplotlib.pyplot as plt
       clf = DecisionTreeClassifier(criterion='gini')
       clf = clf.fit(X_train, y_train)
       tree.plot_tree(clf, feature_names=features)
       print(X_train.shape)
      (426, 9)
```



```
In []: from sklearn.metrics import accuracy_score
    predicted = clf.predict(X_train)
    print (accuracy_score(y_train, predicted))
```

1.0

Accuracy

```
In []: from sklearn.metrics import accuracy_score
    predicted = clf.predict(X_test)
    print (accuracy_score(y_test, predicted))
```

0.916083916083916

Classification Report

```
In []: from sklearn.metrics import classification_report
    features=['radius','texture','perimeter','area','s','c','concavity','cp',
    y_pred = clf.predict(X_test)
    print(classification_report(y_test, y_pred))
```

	precision	recall	f1–score	support
0.0	0.92	0.94	0.93	87
1.0	0.91	0.88	0.89	56
accuracy			0.92	143
macro avg	0.91	0.91	0.91	143
weighted avg	0.92	0.92	0.92	143

Confusion matrix

```
In []: from sklearn.metrics import confusion_matrix

conf_matrix = confusion_matrix(y_test, y_pred)

print( conf_matrix)

[[82 5]
[ 7 49]]
```

Grid Search

```
In [ ]: from sklearn.model_selection import train_test_split, GridSearchCV
        from sklearn.tree import DecisionTreeClassifier
        from sklearn.metrics import accuracy_score
        # Define the parameter grid to search
        param_grid = {
            'criterion': ['gini', 'entropy'],
            'max_depth': [None, 5, 10, 15, 20],
            'min_samples_split': [2, 5, 10],
            'min_samples_leaf': [1, 2, 4]
        # Create a grid search object for Decision Tree
        tree_grid_search = GridSearchCV(DecisionTreeClassifier(random_state=42),
        # Perform grid search on the training data
        tree_grid_search.fit(X_train, y_train)
        # Get the best hyperparameters and model for Decision Tree
        best_tree_params = tree_grid_search.best_params_
        best_tree_model = tree_grid_search.best_estimator_
        # Evaluate the best Decision Tree model on the test set
        y_pred = best_tree_model.predict(X_test)
        tree_accuracy = accuracy_score(y_test, y_pred)
        print("Best Decision Tree hyperparameters:", best_tree_params)
        print("Decision Tree Test set accuracy:", tree_accuracy)
       Best Decision Tree hyperparameters: {'criterion': 'gini', 'max_depth': 5,
       'min_samples_leaf': 4, 'min_samples_split': 2}
       Decision Tree Test set accuracy: 0.9230769230769231
In [ ]:
```