Computation Theory (COMP 170), Fall 2020 Recitation 01

[1] Induction Practice

We define the reverse of a string recursively as follows:

$$rev(\varepsilon) = \varepsilon,$$

 $rev(w \cdot \mathbf{a}) = \mathbf{a} \cdot rev(w)$

for all $\mathbf{a} \in \Sigma$ and $w \in \Sigma^*$. Use this definition and induction on the length of v to prove that

for all
$$u, v \in \Sigma^*$$
, $rev(u \cdot v) = rev(v) \cdot rev(u)$.

For best results, use the induction proof paradigm resource to help structure your proof.

[2] DFA Construction

Show that each of the following languages are regular by constructing a DFA that accepts it:

- a. $A = \{x \in \{a, b\}^* \mid \text{ the second character of } x \text{ is a } b\}$
- b. $B = \{x \in \{a, b\}^* \mid \text{ the second to last character of } x \text{ is a } b\}$

You do not need to prove the correctness of your construction. However, you should give a brief explanation, and make sure any diagrams are laid out in a clear and logical manner (and labeled, when appropriate.)

[3] Twisted

For a language A, let twisted(A) be the language created by taking the even-length strings in A and exchanging every even-indexed character with the character that follows it. E.g. if

$$A = \{ \mathtt{cat}, \mathtt{bear}, \mathtt{monkey} \}$$

then

$$twisted(A) = \{ebra, omknye\}.$$

Show that if A is regular, then twisted(A) is also regular. In particular, given a general DFA $M = (Q, \Sigma, \delta, s, F)$ accepting A, show how to construct a DFA $M' = (Q', \Sigma, \delta', s', F')$ accepting twisted(A). You do not need to prove your construction is correct, but should provide an explanation of how your DFA works.