CLAIMS

What is claimed is:

5 1. A compound selected from Formula 1, an N-oxide or an agriculturally suitable salt thereof,

$$Q \longrightarrow (CR^6R^7)_q \longrightarrow N \longrightarrow R^2$$

wherein

10

15

20

25

Q is H; or C₁-C₁₂ alkyl, C₃-C₁₀ cycloalkyl, C₆-C₁₄ bicycloalkyl, C₃-C₁₂ alkenyl, C₃-C₁₀ cycloalkenyl, C₆-C₁₄ bicycloalkenyl or C₃-C₁₂ alkynyl, each optionally substituted with one or more R²¹; or

Q is a 3- to 7-membered fully saturated or 5- to 7-membered partially saturated heterocyclic ring containing one or two X, provided that (a) when X is other than O or S(O)_n, then only one X may be present and (b) when two X are present in the ring, they cannot be bonded directly to each other; or

Q is a 5- or 6-membered aromatic heterocyclic ring system containing 1 to 3 heteroatoms independently selected from the group consisting of nitrogen, oxygen and sulfur, provided that the heterocyclic ring system contains no more than one oxygen and no more than one sulfur, and each heterocyclic ring system is optionally substituted with one or more R¹⁶; and when Q is a 5- or 6-membered aromatic heterocyclic ring system containing a nitrogen, then Q is bonded through any available carbon or nitrogen atom by replacement of a hydrogen on said carbon or nitrogen atom; or

Q is phenyl optionally substituted with one or more substituents independently selected from the group consisting of R^{16} , phenoxy and Z; or

Q is

$$(\mathbb{R}^{12})_t$$
 $(\mathbb{R}^{12})_t$ $(\mathbb{R}^{12})_t$ or $(\mathbb{R}^{12})_t$

10

15

20

25

Q is $-C(R^{14})(=NOR^{15})$, $-C(O)R^{19}$, $-C(O)OR^{19}$, $-C(O)SR^{19}$, $-C(S)R^{19}$, $-C(S)OR^{19}$, $-C(S)SR^{19}$, $-C(O)NR^{23}R^{24}$, $-C(S)NR^{23}R^{24}$, $-OR^{19}$, $-NR^{19}R^{20}$, $-S(O)_nR^{19}$ or $-S(O)_nNR^{19}R^{20}$;

each X is -O-, $-S(O)_n$ -, -N=, -NR¹⁰- or -Si(R¹¹)₂-;

Y is, together with the carbons to which it is attached, a fully or partially saturated 5-, 6- or 7-membered carbocyclic ring optionally substituted with one or more C_1 - C_4 alkyl groups; or

Y is, together with the carbons to which it is attached, a fully or partially saturated 5-, 6- or 7-membered heterocyclic ring which contains one or two X and is optionally substituted with one or more R¹², provided that when said heterocyclic ring contains two X, then one X is other than O;

Z is phenyl or a 5- or 6-membered aromatic heterocyclic ring system containing 1 to 3 heteroatoms independently selected from the group consisting of nitrogen, oxygen and sulfur, provided that the heterocyclic ring system contains no more than one oxygen and no more than one sulfur, and each phenyl and heterocyclic ring system is optionally substituted with one or more R¹⁶;

R¹ is C₁-C₆ alkyl, C₁-C₆ haloalkyl, C₃-C₆ alkenyl, C₃-C₆ haloalkenyl, C₃-C₆ alkynyl, C₃-C₆ haloalkynyl, C₁-C₆ alkoxy, C₂-C₆ alkoxyalkyl or C₂-C₆ haloalkoxyalkyl; or R¹ is C₃-C₇ cycloalkyl or C₃-C₇ cycloalkenyl, each optionally substituted with one or more R⁵; or

R1 is phenyl optionally substituted with one or more R13; or

R¹ is a 5- or 6-membered aromatic heterocyclic ring system containing 1 to 3 heteroatoms independently selected from the group consisting of nitrogen, oxygen and sulfur, provided that the heterocyclic ring system contains no more than one oxygen and no more than one sulfur, and each heterocyclic ring system is optionally substituted with one or more R¹⁶;

R² is C₁-C₆ alkyl, C₁-C₆ haloalkyl, C₃-C₇ cycloalkyl, C₃-C₆ alkenyl, C₃-C₆ haloalkenyl, C₃-C₆ alkynyl, C₃-C₆ haloalkynyl, C₁-C₆ alkoxy, C₂-C₆ alkoxyalkyl, C₂-C₆ haloalkoxyalkyl or NR³R⁴; or

 R^2 is

R¹ and R² are taken together as -CH₂CH₂-, -CH₂CH₂CH₂-, -CH₂CH₂CH₂CH₂CH₂-, -CH₂CH₂CH₂CH₂- or -CH₂CH₂OCH₂CH₂-;

25

- R³ is C₁-C₆ alkyl, C₁-C₆ haloalkyl, C₃-C₆ alkenyl, C₃-C₆ haloalkenyl, C₃-C₆ alkynyl, C₃-C₆ haloalkynyl; or
- R³ is C₃-C₇ cycloalkyl or C₃-C₇ cycloalkenyl, each optionally substituted with one or more R⁵; or
- R³ is a saturated or partially saturated 5-, 6- or 7-membered heterocyclic ring containing 1 to 2 heteroatoms independently selected from the group consisting of nitrogen, oxygen and sulfur, and each heterocyclic ring is optionally substituted with one or more R⁵; or
- R³ is phenyl optionally substituted with one or more R²⁶ groups; or
- 10 R¹ and R³ are taken together with the two nitrogen atoms to which they are attached to form a saturated or partially saturated 5-, 6- or 7-membered heterocyclic ring containing an optional third heteroatom selected from the group consisting of oxygen, sulfur and nitrogen, and said heterocyclic ring is optionally substituted with one or more R⁹; or
- 15 R² and R¹³, together with the two atoms to which they are attached and the atom between them, form a fully saturated 5-, 6- or 7-membered carbocyclic or heterocyclic ring containing one oxygen, one sulfur or one or two nitrogen atoms, said heterocyclic ring is optionally substituted with one or more R¹², provided that when said heterocyclic ring contains two nitrogen atoms, they are other than bonded directly to each other;
 - R^4 is H or C_1 - C_4 alkyl; or
 - R³ and R⁴ are taken together with the nitrogen atom to which they are attached to form a saturated or partially saturated 5-, 6- or 7-membered heterocyclic ring containing an optional second heteroatom selected from the group consisting of oxygen, sulfur and nitrogen, and said heterocyclic ring is optionally substituted with 1-4 R⁹;
 - each R⁵ is independently halogen, C₁-C₄ alkyl or C₁-C₄ alkoxy; or when two R⁵ are attached to the same carbon, then said two R⁵ groups are taken together as (=O); each R⁶ and R⁷ are independently H or C₁-C₄ alkyl;
- R⁸ is independently C₁-C₄ alkyl, C₁-C₄ haloalkyl or C₁-C₄ alkoxy; each R⁹ is independently C₁-C₄ alkyl or C₁-C₄ alkoxy; or when two R⁹ are attached to the same carbon, then said two R⁹ groups are taken together as (=O);
 - W is, together with the carbons to which it is attached, a fully or partially saturated 5-, 6- or 7-membered heterocyclic ring containing one or two X, provided that (a) when X is other than O or S(O)_n, then only one X may be present; (b) when two

375

X are present in the ring, they cannot be bonded directly to each other; and (c) said heterocyclic ring is bonded to the group $(CR^{17}R^{18})_q$ through other than X;

R¹⁰ is H, C₁-C₄ alkyl, C₁-C₄ haloalkyl, C₃-C₄ alkenyl, C₃-C₄ alkynyl, C₂-C₄ alkoxycarbonyl or C₂-C₄ alkylcarbonyl; or R¹⁰ is phenyl optionally substituted with C₁-C₃ alkyl, halogen, cyano, nitro or C₂-C₄ alkoxycarbonyl;

each R¹¹ is C₁-C₄ alkyl;

5

10

20

35

each R¹² is independently halogen, C₁-C₄ alkyl, C₁-C₄ haloalkyl, C₁-C₄ alkoxy, C₁-C₄ haloalkoxy, C₁-C₄ alkylthio, C₁-C₄ haloalkylthio, C₁-C₄ alkylsulfinyl, C₁-C₄ alkylsulfonyl or C₂-C₄ alkoxycarbonyl;

each R¹³ is independently halogen, C₁-C₃ alkyl, C₁-C₃ haloalkyl, C₁-C₃ alkoxy, C₁-C₃ haloalkoxy, C₃-C₆ alkenyloxy, C₃-C₆ alkynyloxy, C₁-C₄ alkylthio, C₁-C₄ haloalkylthio, C₁-C₄ alkylsulfinyl, C₁-C₄ alkylsulfonyl, cyano, amino, nitro or C₂-C₄ alkoxycarbonyl;

R¹⁴ is H, C₁-C₆ alkyl, C₁-C₆ haloalkyl or C₂-C₆ alkoxyalkyl; or

15 R¹⁴ and R⁶, together with the carbon atoms to which they are bonded, form a 5- or 6-membered saturated carbocyclic ring optionally substituted with one or more C₁-C₄ alkyl groups;

R¹⁵ is H, C₁-C₆ alkyl, C₁-C₆ haloalkyl, C₃-C₄ alkenyl or C₃-C₄ alkynyl;

each R¹⁶ is independently halogen, nitro, cyano, C₁-C₄ alkyl, C₁-C₄ haloalkyl, C₃-C₄ alkenyl, C₃-C₄ alkynyl, OR²², NR²³R²⁴ or S(O)_nR¹⁹;

each R¹⁷ and R¹⁸ are independently H or C₁-C₄ alkyl;

each R^{19} and R^{20} are independently C_1 - C_{12} alkyl, C_3 - C_8 cycloalkyl, C_3 - C_{12} alkenyl, C_3 - C_8 cycloalkenyl or C_3 - C_{12} alkynyl, each optionally substituted with one or more R^{21} ;

each R^{21} is halogen, C_4 - C_8 trialkylsilylalkyl, CN, NO_2 , $-OR^{22}$, $-NR^{23}R^{24}$, $-S(O)_nR^{22}$, $-S(O)_nNR^{23}R^{24}$, $-C(O)R^{22}$, $-C(S)R^{22}$, $-C(S)OR^{22}$, $-C(S)SR^{22}$, $-C(O)NR^{23}R^{24}$, $-C(S)NR^{23}R^{24}$, $-CHR^{25}COR^{22}$, $-CHR^{25}P(O)(OR^{22})_2$, $-CHR^{25}P(S)(OR^{22})_2$, $-CHR^{25}C(O)NR^{23}R^{24}$, $-CHR^{25}C(O)NH_2$, $-CHR^{25}CO_2R^{22}$, phenyl optionally substituted with one or more R^{26} groups or benzyl optionally substituted with one or more R^{26} groups;

each R²² is C₁-C₈ alkyl, C₃-C₈ cycloalkyl, C₃-C₈ alkenyl, C₃-C₈ alkynyl, C₁-C₈ haloalkyl, C₂-C₈ alkoxyalkyl, C₂-C₈ alkylsulfinylalkyl, C₂-C₈ alkylsulfinylalkyl, C₄-C₈ alkylsulfonylalkyl, C₄-C₈ alkoxyalkoxyalkyl, C₄-C₈ cycloalkylalkyl, C₄-C₈ alkenoxyalkyl, C₄-C₈ alkynyloxyalkyl, C₆-C₈ cycloalkoxyalkyl, C₄-C₈ alkenyloxyalkyl, C₄-C₈ haloalkoxyalkyl, C₄-C₈ haloalkoxyalkyl, C₆-C₈ cycloalkylthioalkyl,

 C_4 - C_8 alkenylthioalkyl, C_4 - C_8 alkynylthioalkyl, C_1 - C_4 alkyl substituted with phenoxy or benzyloxy, each ring optionally substituted with halogen, C_1 - C_3 alkyl or C_1 - C_3 haloalkyl, C_4 - C_8 trialkylsilylalkyl, C_3 - C_8 cyanoalkyl, C_3 - C_8 halocycloalkyl, C_3 - C_8 haloalkenyl, C_5 - C_8 alkoxyalkenyl, C_5 - C_8 haloalkoxyalkenyl, C_5 - C_8 alkylthioalkenyl, C_5 - C_8 haloalkoxyalkynyl, C_5 - C_8 alkylthioalkynyl, C_5 - C_8 alkylthioalkynyl, C_2 - C_8 alkylcarbonyl, phenyl optionally substituted with halogen, C_1 - C_2 haloalkyl and C_1 - C_2 haloalkoxy or benzyl optionally substituted with halogen, C_1 - C_3 alkyl and C_1 - C_3 haloalkyl;

10 each R^{23} is H or C_1 - C_4 alkyl;

each R^{24} is C_1 - C_4 alkyl or phenyl optionally substituted with one or more R^{26} groups; R^{23} and R^{24} may be taken together as -(CH₂)₅-, -(CH₂)₄- or -CH₂CH₂OCH₂CH₂-, each ring optionally substituted with C_1 - C_3 alkyl, phenyl or benzyl;

each R²⁵ is H or C₁-C₄ alkyl;

each R²⁶ is C₁-C₃ alkyl, C₁-C₃ haloalkyl, C₁-C₃ alkoxy, C₁-C₃ haloalkoxy, C₁-C₃ alkylthio, C₂-C₅ alkylcarbonyl, C₂-C₅ alkoxycarbonyl, halogen, amino, cyano or nitro;

R²⁸ is H or C₁-C₄ alkyl;

 X^1 and X^2 are independently O or S:

20 X^3 is O, S or NR^{28} ;

m is 0, 1, 2, 3 or 4;

each n is independently 0, 1 or 2;

p is 0 or 1;

each q is independently 0, 1 or 2; and

25 t is 0, 1 or 2;

35

provided that when Q is unsubstituted phenyl, X^1 , X^2 and X^3 are O, q is 0 and R^2 is methyl, then R^1 is other than methyl.

2. The compound of Claim 1 wherein

- Q is H; or C₁-C₁₂ alkyl, C₃-C₁₀ cycloalkyl, C₆-C₁₄ bicycloalkyl, C₃-C₁₂ alkenyl, C₃-C₁₀ cycloalkenyl, C₆-C₁₄ bicycloalkenyl or C₃-C₁₂ alkynyl, each optionally substituted with one or more R²¹; or
 - Q is a 3- to 7-membered fully saturated or 5- to 7-membered partially saturated heterocyclic ring containing one or two X, provided that (a) when X is other than O or S(O)_n, then only one X may be present and (b) when two X are present in the ring, they cannot be bonded directly to each other; or

- Q is a 5- or 6-membered aromatic heterocyclic ring system containing 1 to 3 heteroatoms independently selected from the group consisting of nitrogen, oxygen and sulfur, provided that the heterocyclic ring system contains no more than one oxygen and no more than one sulfur, and each heterocyclic ring system is optionally substituted with one or more R¹⁶; and when Q is a 5- or 6-membered aromatic heterocyclic ring system containing a nitrogen, then Q is bonded through any available carbon or nitrogen atom by replacement of a hydrogen on said carbon or nitrogen atom; or
- Q is phenyl optionally substituted with one or more substituents independently selected from the group consisting of R¹⁶, phenoxy and Z.
- 3. The compound of Claim 2 wherein

10

15

20

25

30

- Q is H; or C₁-C₁₂ alkyl, C₃-C₁₀ cycloalkyl, C₆-C₁₄ bicycloalkyl, C₃-C₁₂ alkenyl, C₃-C₁₀ cycloalkenyl, C₆-C₁₄ bicycloalkenyl or C₃-C₁₂ alkynyl, each optionally substituted with one or more R²¹.
- 4. The compound of Claim 2 wherein
- Q is a 3- to 7-membered fully saturated or 5- to 7-membered partially saturated heterocyclic ring containing one or two X, provided that (a) when X is other than O or S(O)_n, then only one X may be present and (b) when two X are present in the ring, they cannot be bonded directly to each other; or
- Q is a 5- or 6-membered aromatic heterocyclic ring system containing 1 to 3 heteroatoms independently selected from the group consisting of nitrogen, oxygen and sulfur, provided that the heterocyclic ring system contains no more than one oxygen and no more than one sulfur, and each heterocyclic ring system is optionally substituted with one or more R¹⁶; and when Q is a 5- or 6-membered aromatic heterocyclic ring system containing a nitrogen, then Q is bonded through any available carbon or nitrogen atom by replacement of a hydrogen on said carbon or nitrogen atom.
- 5. The compound of Claim 2 wherein
- Q is phenyl optionally substituted with one or more substituents independently selected from the group consisting of R^{16} , phenoxy and Z.
- 6. The compound of Claim 3 wherein

378

- Q is C_1 - C_6 alkyl optionally substituted with one or more R^{21} , C_3 - C_7 cycloalkyl, C_3 - C_7 alkenyl or C_3 - C_6 alkynyl.
- 7. The compound of Claim 4 wherein
- Q is a 5- or 6-membered aromatic heterocyclic ring system containing 1 to 3

 heteroatoms independently selected from the group consisting of nitrogen,
 oxygen and sulfur, provided that the heterocyclic ring system contains no more
 than one oxygen and no more than one sulfur, and each heterocyclic ring system
 is optionally substituted with one or more R¹⁶; and when Q is a 5- or 6membered aromatic heterocyclic ring system containing a nitrogen, then Q is
 bonded through any available carbon or nitrogen atom by replacement of a
 hydrogen on said carbon or nitrogen atom.
 - 8. The compound of Claim 5 wherein
- Q is phenyl optionally substituted with one or more substituents independently selected from the group consisting of R¹⁶.
 - 9. The compounds of Claim 3, Claim 4 or Claim 5 wherein X^1 , X^2 and X^3 are O.
- The compound of Claim 8 wherein
 Q is phenyl with substituents on the 2-, and 6-position independently selected from the group consisting of R¹⁶.
 - 11. The compound of Claim 6 wherein q is 0 or 1.
- 12. The compound of Claim 7 wherein q is 0 or 1.

25

- 13. The compound of Claim 8 wherein q is 0 or 1.
- 30 14. The compound of Claim 1 wherein R¹ is phenyl substituted with one or more R¹³.
 - The compound of Claim 1 wherein
 R² is C₂-C₆ alkyl, C₂-C₆ haloalkyl or C₂-C₆ alkoxyalkyl.
 - 16. The compound of Claim 1 which is selected from the group consisting of:

- (a) N-(4-fluorophenyl)-N-(1-methylethyl)-4-(2-methylphenyl)-3,5-dioxo-1,2,4-oxadiazolidine-2-carboxamide;
- (b) 4-(2,6-dimethylphenyl)-*N*-(4-fluorophenyl)-*N*-(1-methylethyl)-3,5-dioxo-1,2,4-oxadiazolidine-2-carboxamide;
- (c) 4-(2,6-dimethylphenyl)-*N*-(1-methylethyl)-3,5-dioxo-*N*-phenyl-1,2,4-oxadiazolidine-2-carboxamide;
- (d) 4-cyclohexyl-N-(1-methylethyl)-3,5-dioxo-N-phenyl-1,2,4-oxadiazolidine-2-carboxamide;
- (e) 4-cyclohexyl-N-(4-fluorophenyl)-N-(1-methylethyl)-3,5-dioxo-1,2,4-oxadiazolidine-2-carboxamide;
- (f) N,4-bis(1-methylethyl)-3,5-dioxo-N-phenyl-1,2,4-oxadiazolidine-2-carboxamide;
- (g) N-(4-fluorophenyl)-N-(1-methylethyl)-3,5-dioxo-4-(cyclopropyl)-1,2,4-oxadiazolidine-2-carboxamide; and
- (h) N-(4-fluorophenyl)-N,4-bis(1-methylethyl)-3,5-dioxo-1,2,4-oxadiazolidine-carboxamide.

17. A compound of Formula 5

5

10

15

25

wherein R²⁷ is -(CR⁶R⁷)_q-Q; R⁶, R⁷, q, Q, X¹ and X² are as defined above for Formula 1; provided that when X¹ and X² are O and q is 0, then Q is other than unsubstituted benzyl.

18. A compound of Formula 8 or Formula 20

wherein R^6 , R^7 , q, Q and X^2 are as defined above for Formula 1; and X^1 is O;

380

provided that when X^1 and X^2 are O and q is 0, then Q is other than unsubstituted benzyl.

19. A process for preparing a compound of Formula 1

$$Q = (CR^6R^7)_q = N \int_{R^2}^{X^2} \int_{R^2}^{X^3} R^1$$

5

wherein Q, R^6 , R^7 , q, X^1 , X^2 , X^3 , R^1 and R^2 are as defined for Formula 1 in Claim 1, comprising:

(a) contacting a compound of Formula 5

wherein R^{27} is $-(CR^6R^7)_q$ -Q, with a compound of Formula 4

$$Q - (CR^6R^7)_q - X^4$$

4

wherein X⁴ is halogen or mesylate, in the presence of a base to provide a compound of Formula 3

$$Q - (CR^6R^7)_q - N$$
 X^1

an/

15 (b) contacting the compound of Formula 3 with a carbamoyl or thiocarbamoyl chloride of Formula 2

$$\begin{array}{c|c}
R^{1} & X^{3} \\
R^{2} & 2
\end{array}$$

20. A process for preparing a compound of Formula 1

$$Q \longrightarrow (CR^6R^7)_q \longrightarrow X^2 \longrightarrow X^3 \longrightarrow R^1$$

$$X^1 \longrightarrow 1$$

- wherein Q, R⁶, R⁷, q, X¹, X², X³, R¹ and R² are as defined for Formula 1 in Claim 1, comprising:
 - (a) contacting a compound of Formula 5

wherein R^{27} is -(CR^6R^7) $_q$ -Q, with an alcohol of Formula 6

$$Q - (CR^6R^7)_q - OH$$

10

under reaction conditions involving a tertiary phosphine and an azo compound to provide a compound of Formula 3

$$Q - (CR^{6}R^{7})_{q} - N$$

$$X^{1}$$

, and

(b) contacting the compound of Formula 3 with a carbamoyl or thiocarbamoyl chloride of Formula 2

$$\begin{array}{c|c}
R^{1} & X^{3} \\
N & 2
\end{array}$$

21. A process for preparing a compound of Formula 1

$$Q \longrightarrow (CR^6R^7)_q \longrightarrow N \longrightarrow R^1$$

$$X^1$$

wherein Q, R⁶, R⁷, q, X¹, X², X³, R¹ and R² are as defined for Formula 1 in Claim 1, comprising:

(a) contacting a compound of Formula 5

5

wherein R^{27} is $-(CR^6R^7)_q$ -Q, with a carbamoyl or thiocarbamoyl chloride of Formula 2

$$\begin{array}{c|c}
R^{1} & X^{3} \\
R^{2} & 2
\end{array}$$

in the presence of a base to provide the compound of Formula 1

$$\mathbb{R}^{27} - \mathbb{N} \longrightarrow \mathbb{N}^{2} \longrightarrow \mathbb{N}^{2}$$

directly or a compound of Formula 7

(b) contacting the compound of Formula 7 with an alcohol of Formula 6

$$Q$$
— $(CR^6R^7)_q$ — OH

5 under reaction conditions involving a tertiary phosphine and an azo compound or with a compound of Formula 4

$$Q - (CR^6R^7)_q - X^4$$

in the presence of a base.

10

15

22. A process for preparing a compound of Formula 1

$$Q \longrightarrow (CR^6R^7)_q \longrightarrow \bigvee_{i=1}^{X^2} \bigvee_{i=1}^{X^3} \bigvee_{i=1}^{X^3} R^1$$

wherein Q, R^6 , R^7 , q, X^2 , X^3 , R^1 and R^2 are as defined for Formula 1 in Claim 1, and X^1 is O, comprising:

(a) contacting a compound of Formula 19

$$Q-(CR^6R^7)_q-N$$
 X^1
 $Q=(CR^6R^7)_q$
 $Q=(CR^7)_q$
 $Q=(CR^7)_q$

with phosgene or thiophosgene to provide a compound of Formula 20

$$Q-(CR^{6}R^{7})_{q}-N = CI$$

$$Q-(CR^{6}R^{7})_{q}-N$$

$$X^{1}$$

(b) contacting the compound of Formula 20 with hydroxylamine, following by treatment with a base, and then an acid, to provide a compound of Formula 8

Q-
$$(CR^6R^7)_q$$
-NH

8 X^1
, and

5 (c) contacting the compound of Formula 8 with a compound of Formula 2

$$\begin{array}{c|c}
R^{1} & X^{3} \\
N & 2
\end{array}$$

23. A process for preparing a compound of Formula 1

- wherein Q, R⁶, R⁷, q, X¹, X², X³, R¹ and R² are as defined for Formula 1 in Claim 1, comprising:
 - (a) contacting a compound of Formula 2

$$\begin{array}{c|c}
R^{1} & X^{3} \\
R^{2} & 2
\end{array}$$

with hydroxylamine in the presence of a base to provide a compound of Formula 22

(b) contacting the compound of Formula 22 with a compound of Formula 23

$$CI - C - N = C = X^2$$
23

in the presence of a base to provide a compound of Formula 7

$$\begin{array}{c|c}
X^2 & X^3 \\
 & X^1 & X^3 \\
 & X^1 & X^2 \\
 & X^1 & X^2 \\
\end{array}$$
an

5

(c) contacting the compound of Formula 7 with an alcohol of Formula 6

Q—
$$(CR^6R^7)_q$$
—OH

under reaction conditions involving a tertiary phosphine and an azo compound or with a compound of Formula 4

$$Q \stackrel{\cdot}{\longrightarrow} (CR^6R^7)_q - X^4$$

in the presence of a base.

24. A process for preparing a compound of Formula 1

Q—
$$(CR^6R^7)_q$$
— N
 R^1
 R^2

wherein Q, R⁶, R⁷, q, X¹, X², X³, R¹ and R² are as defined for Formula 1 in Claim 1, comprising contacting a compound of Formula 7

$$\begin{array}{c|c}
X^2 & X^3 \\
H-N & I \\
0 & R^2
\end{array}$$

5 with an orthoformate of Formula 24

wherein R^{27} is $-(CR^6R^7)_q$ -Q, in the presence of a base.

25. A process for preparing a compound of Formula 1

$$Q - (CR^{6}R^{7})_{q} - N$$

$$X^{2}$$

$$X^{3}$$

$$X^{1}$$

$$R^{1}$$

10

wherein Q, R^6 , R^7 , q, X^1 , X^2 , X^3 , R^1 and R^2 are as defined for Formula 1 in Claim 1, comprising:

(a) contacting a compound of Formula 8

$$Q - (CR^{6}R^{7})_{q} - N$$

$$X^{1}$$

$$R$$

with a compound of Formula 26

to provide a compound of Formula 25

$$Q-(CR^6R^7)_q-N$$
 X^2
 X^3
 X^3
 X^1
 Z^2
 Z^3
 Z^3

5

or a compound of Formula 27

$$Q - (CR^{6}R^{7})_{q} - N \qquad X^{2} \qquad X^{3} \qquad X^{2} \qquad N - (CR^{6}R^{7})_{q} - Q$$

$$X^{1} \qquad 27 \qquad X^{1}$$

in the presence of a catalyst such as hexamethylguanidinium chloride; and

(c) contacting the compound of Formula 25 or Formula 27 with an amine of Formula

10

13

in the presence of a base.

- 26. A herbicidal composition comprising a herbicidally effective amount of a compound of Claim 1 and at least one of a surfactant, a solid diluent or a liquid diluent.
- 27. A method for controlling the growth of undesired vegetation comprising
 5 contacting the vegetation or its environment with a herbicidally effective amount of a compound of Claim 1.