Asymptotic Analysis

Big-O Notation: Definition

$$f(x) = O(g(x))$$
 means that

- There exists:
 - some positive constant M
 - some minimum x-value x_0
- Such that for all x > x₀:

$$-f(x) \le M * g(x)$$

$$M = 1000$$
 $X = 1000$
 $X = 1000$

constant M

m x-value
$$x_0$$
:

 $x > x_0$:

Other Types of Asymptotic Relationships

- Little-o notation: f(x) = o(g(x)) iff: f(x) = x- For every positive ε , f(x) = o(g(x)) iff: f(x) = x f(x) = x f(x) = o(g(x)) iff: f(x) = x f(x) = x f(x) = x

 - Such that $f(x) \le \epsilon g(x)$ for all $x \ge x_{\epsilon}$

Informally, this means that g(x) grows much faster than f(x): for EVERY ε , no matter how small, we can find a place where g(x) is $1/\epsilon$ -times bigger than f(x). In other words, even if we shrink g(x) by a factor of 100, 1000, 1,000,000, ..., it is still going to be bigger than f(x).

Other Types of Asymptotic Relationships

Big-Omega notation:

$$f(x) = \Omega(g(x)) \text{ iff } g(x) = O(f(x))$$

Big-Theta notation:

$$f(x) = \Theta(g(x))$$
 iff $f(x) = O(g(x))$ and $g(x) = O(f(x))$

Big-O Notation: In Practice

- Use these simplification rules:
 - Only pay attention to the dominant terms (x^3 more important than x^2)
 - Don't include constants in your big-O expression

$$5x^{2}+3x=0(2x^{2})$$

= $0(x^{2})$

Big-O Notation and Limits

<u>Theorem</u>: Let f(x) and g(x) be real-valued functions.

Let L =
$$\lim_{x \to \infty} \frac{f(x)}{g(x)}$$
. Then:
1. If L = 0, $f(x) = o(g(x))$ and $f(x) = O(g(x))$
2. If L = ∞ , $g(x) = o(f(x))$ and $f(x) = \Omega(g(x))$
3. If $0 < L < \infty$, $f(x) = \Theta(g(x))$ and $f(x) = O(g(x))$
4. If $L < \infty$, $f(x) = O(g(x))$

L'Hopital's Rule

What if f(x) and g(x) both = 0 or ∞ in the limit?

L'Hopital's Rule:

If
$$\lim_{x\to\infty} f(x) = \lim_{x\to\infty} g(x) = 0$$
 (or ∞), then $\lim_{x\to\infty} \frac{f(x)}{g(x)} = \lim_{x\to\infty} \frac{f'(x)}{g'(x)}$

(as long as the latter limit exists).

Example: What is the asymptotic relationship

between
$$f(x) = x^2$$
 and $g(x) = 2^x$?

Lim $\frac{x^2}{2^x} = \lim_{n \to \infty} \frac{2^n}{2^n} = \lim_{n \to \infty} \frac{2^n}{2$

$$f(x) = o(g(x))$$

 $f(x) = 0(g(x))$

Example: What is the asymptotic relationship between $g(x) = 10x^2 + 5$ and $h(x) = 15 \log x + 2x^2 + 5x + 2$?

Find a function g(x) such that $f(x) = 5x^4 + 3x^2 + 10000$ is O(g(x)), with proof.

$$f(x) = f(x-1) + f(x-2)$$

 $f(1) = 1, F(2) = 1$

Claim: Let f(x) be the xth Fibonacci number. Prove

that f(x) is $O(2^x)$.

that
$$f(x)$$
 is $O(2^{x})$.

Proof:
$$f(x) \subseteq M(2^{x})$$

$$\downarrow f(x) \subseteq M($$

$$\rightarrow f(x) = 2^{x}$$
for all x

I.tl: Assume
$$f(x) \leq 2^{x}$$
 for $x = k$
I.S.: Show that $F(x) \leq 2^{x}$ for $x = k+1$

ブッこし

Claim:
$$f(x)=0(2^x)$$

Proof: We will work from the defin of big-O.

Set $M=1$, $x_0=0$. Then we show that $F(x) \le 1 \cdot 2^x$

for all $x \ge 0$, by induction.

Base case: $x=1$. $f(1)=1$, $2=2$, so it clearly holds.

I.tl.: Suppose for some $k \ge 1$, $f(k) \le 2^k$ (for all smaller).

I.s.: We have to show that $f(k+1) \le 2^{k+1}$.

 $f(k+1) = f(k) + f(k-1) \le 2^k + 2^{k-1} \le 2^k + 2^k = 2^{k+1}$.

Thus, $f(k+1) \le 2^{k+1}$, so the claim holds.

Some Running Time Functions that Computer Scientists Like

- Polynomial time: O(n⁴), O(n²)
- Logarithmic: O(log n), O(log log n)
- Quasi-linear: O(n log n) fairly common
- Sublinear: O(n^{1/2}) this is the best!
- Exponential: O(2^x) very bad! Often indicates something that is basically brute force

Recurrence Relations

Recurrence Relations

A recurrence relation is an equation that recursively defines a function's values in terms of earlier values Fibonacci
 Very useful for analyzing an algorithm's running

time!

Recurrence Relations in Math

• For instance: Fibonacci numbers

$$F(1) = 1$$

 $F(2) = 2$
 $F(n) = F(n-1) + F(n-2)$

```
x'' n int \geq 0
def naivePower(x, n):
                            x return X·nP(x,1)
\rightarrow if n == 0:
                                   \times = \times \cdot nP(x,0)
      return 1
      return x * naivePower(x, n \overline{\phantom{a}} 1)
```

How can we write the running time?

$$\left(\begin{array}{c} T(n) = C_z + T(n-1) \\ T(0) = C_1 \end{array} \right)$$

$$\left(\begin{array}{c} (ook-up of \times, branching, multiple torn, \\ (ook-up of$$

$$T(0) = c_1$$

 $T(n) = c_2 + T(n-1)$

If only we had an expression for T(n-1)...

$$T(n)^{-1}(z+t(n-1))$$

= $cz+(cz+T(n-2))$
= $cz+cz+(cz+T(n-3))$
= $cz+...+cz+T(0) = ncz+c_1$

$$T(0) = c_1$$

 $T(n) = c_2 + T(n - 1)$

Expanded:

```
T(n) = the number of
                def betterPower(x, n):
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              p.o.s required
                                                           if n == 0:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                     For input
                                                                                                  return 1
                                                        else if n == 1:
                                                                                                                                                                                                                                                                                                                                                                                          6,50,50,
                                                                                                    return x 🗲
                                                        else if n%2 : \( \)
return Power(x * x, n/2)
                                                                                                                                                                                                                    bP (x2)^/2=x
                (assume for simplicity that n is a power of 2)
How can we write the running time? \int_{0}^{\infty} \int_{0}^{\infty}
```

$$T(0) = c_1$$

$$T(1) = c_2$$

$$T(n) = c_3 + T(n/2)$$
(for simplification we'll assume n is a power of 2)

If only we had an expression for T(n/2)...

$$T(0) = c_{1}$$
, $T(1) = c_{2}$, ..., $T(n) = c_{3} + T(n/2)$

Expanded:

$$T(n) = c_3 + T(n/2)$$
 $= c_3 + (c_3 + T(n/4))$
 $= c_3 + c_3 + c_3 + T(n/4)$
 $= c_3 + c_3 + c_3 + c_3 + c_4$
 $= c_3 + c_3 + c_3 + c_4$
 $= c_3 + c_4$
 $= c_3 + c_5$
 $= c_3 + c_5$
 $= c_5$

$$T(0) = c_1$$
, $T(1) = c_2$, ..., $T(n) = c_3 + T(n/2)$

$$T(n) = c_3 + T(n/2)$$

$$= c_3 + c_3 + T(n/4)$$

$$= c_3 + c_3 + c_3 + T(n/8)$$

• • • •

$$= kc_3 + T(n/(2^k))$$

What should k be in order for us to get down to T(1)?

$$T(0) = c_1$$
, $T(1) = c_2$, ..., $T(n) = c_3 + T(n/2)$

$$T(n) = c_3 + T(n/2)$$

$$= c_3 + c_3 + T(n/4)$$

$$= c_3 + c_3 + c_3 + T(n/8)$$

• • • •

$$= kc_3 + T(n/(2^k))$$

What should k be in order for us to get down to T(1)?

$$2^k = n$$
, so $k = log n$

$$T(0) = c_1$$
, $T(1) = c_2$, ..., $T(n) = c_3 + T(n/2)$

$$T(n) = c_3 + T(n/2)$$

= $c_3 + c_3 + T(n/4)$
= $c_3 + c_3 + c_3 + T(n/8)$

• • • •

=
$$kc_3 + (T(n/(2^k)))$$

= $c_3 * log n$

What should k be in order for us to get down to T(1)?

$$2^k = n$$
, so $k = log n$

Writing Functions as Recurrences

 Many "normal" mathematical functions can be written as recurrence relations:

```
• f(x) = x
 F(1)=1
 f(x)=(+f(x-1)
• f(x) = 2^x
 F(1)=2
  F(x)=2.F(x-1)
• f(x) = x!
  F(1)=1
  F(x)=x.F(x-D
```

Solving Recurrences

 Solving recurrence relations is like integrating an expression- there are tricks, but no techniques are guaranteed to work

Solving Recurrences

- Simplest method: Guess the solution, prove with induction
- Sometimes it helps to do a few expansions to get some intuition

```
Claim: The recurrence relation given by:
T(0) = c_1
T(n) = c_2 + T(n-1). Define T'(n) = n(z+c_i).
has the solution T(n) = nc_2 + c_1 Claim: T(n) = T'(n)
Proof: By induction.
Base case: n=D. T(0)=c1. T'(0)=c1.
I.H.: Assure that up to some k, T(k)=T'(k).
I.s.: We need to show that T(k+1)=T'(k+1).
T(k+1) = (2+T(k) = (2+T/(k)= C2+KC2+C1=
                     (/ T/(k+1) = (h+1) c2+C1.
```

In-Class Exercise

Solve (with proof!) the following recurrences:

1.
$$T(0) = 1$$
, $T(1) = 0$, $T(n) = 2 * T(n-2)$

- 2. T(0) = 0, T(n) = T(n-1) + n
- 3. T(0) = 0, T(n) = T(n-1) * n
- 4. T(1) = 1, T(n) = 2 * T(n/2) (assume n is a power of 2)
- 5. T(0) = -1, $T(n) = T(n-1)^2$

Solutions

$$T(0)=1$$
, $T(1):0$, $T(n):2$, $T(n-2)$
 $\frac{n}{1}$, $T(n)$
 $\frac{n}{1}$,