Для вычисления хеш-образа будем использовать упрощенную хеш-функцию квадратичной свертки:

$$h_i = (h_{i-1} + M_i)^2 \mod p$$
, (16)

где $h_0 = 0$, p — модуль алгоритма, M_i — коды символов сообщения. После обработки последнего символа текста получаем хеш-образ h всего сообщения.

Таблица 1 Алфавит «Русские буквы» (без символов Ё и Й)

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
A	Б	В	Γ	Д	Ε	Ж	З	N	К	Л	М	Н	0	Π	Р	С	Т	У	Φ
21	22	23	24	25	26	27	28	29	30	31									
X	Ц	Ч	Ш	Щ	Ъ	Ы	Ь	Э	Ю	Я									

Пример 7. Вычислим хэш-функцию в виде квадратичной функции свертки (16) сообщения «МАША». Коды символов соответствуют номеру буквы в алфавите (табл. 1), p — модуль эллиптической кривой (1) из примера 6. Результаты промежуточных вычислений сведем в таблицу.

i	Символы исходного сообщения M_i	Коды символов M_i	Вычисление хеш-образа \emph{h}
			$h_0 = 0$
1	M	14	$h_1 = h_0 + M_1^2 \mod p = 0 + 14^2 \mod 11 = 9$
2	A	1	$h_2 = h_1 + M_2^2 \mod p = 9 + 1^2 \mod 11 = 1$
3	Ш	26	$h_3 = h_2 + M_3^2 \mod p = 1 + 26^2 \mod 11 = 3$
4	A	1	$h_4 = h_3 + M_4^2 \mod p = 3 + 1^2 \mod 11 = 5$

Результатом является хэш-образ сообщения h=5.