(19)日本国特許庁 (JP)

# (12)公開特許公報 (A)

(11)特許出願公開番号

特開平7-267645

(43)公開日 平成7年(1995)10月17日

(51) Int. Cl. 6

識別記号

FΙ

C01G 49/00

H01F 1/36

Α

H01F 1/36

審査請求 未請求 請求項の数13 FD (全5頁)

(21)出願番号 特願平6-83624 (71)出願人 000204284 太陽誘電株式会社 (22)出願日 東京都台東区上野6丁目16番20号 平成6年(1994)3月31日 (72) 発明者 菅沼 靖 東京都台東区上野6丁目16番20号 太陽誘 電株式会社内 (72) 発明者 岸 弘志 東京都台東区上野6丁目16番20号 太陽誘 電株式会社内 (72) 発明者 平野 眞一 愛知県知多郡東浦町大字緒川字丸池台3-(74)代理人 弁理士 佐野 忠

# (54) 【発明の名称】フェライト粉末の製造方法

### (57)【要約】

【目的】組成ずれがなく、組成が均一で異層がなく、ア ルカリ金属の残存がなく、粒径が小さく、粒径分布の幅 が狭く、しかも安価に得られるフェライト粉末の製造法 を提供する。

(修正有)

【構成】Feとその他のフェライトの構成金属の少なくとも1種のそれぞれの金属の塩であって、硫酸塩、塩化物及び硝酸塩の少なくとも1種の金属塩溶液に一定濃度のアンモニア水を加え、金属水酸化物を生成、熟成し、濾別して乾燥させる。

【効果】組成ずれがなく、組成が均一で異層がなく、アルカリ金属の残存がなく、粒径が小さく、粒径分布の幅が狭く、しかも安価なフェライト粉末が得られる。

#### 【特許請求の範囲】

【請求項1】 Fe、Zn、Ni、Mn、Co、Cu及 びMgからなる群のFeとその他の少なくとも1種の金 属のそれぞれの金属塩であって、その金属塩が硫酸塩、 塩化物及び硝酸塩からなる群の少なくとも1種である金 属塩を溶解した金属塩水溶液を得る工程と、該金属塩水 溶液に0.05~5.0mol/1のNH,OH溶液を 加えた混合液から金属水酸化物を生成する工程と、該金 属水酸化物を熟成する工程を有するスピネル型フェライ ト粉末を得るフェライト粉末の製造方法。

【請求項2】 NH、OH溶液の濃度は0.1~3.0 mol/lである請求項1記載のフェライト粉末の製造 方法。

【請求項3】 金属塩水溶液にNH、OH溶液を加える 操作はFeの塩のFe<sup>2</sup>・がFe<sup>3</sup>・になるに十分な空気中 及び溶存酸素下で行う請求項1又は2に記載のフェライ ト粉末の製造方法。

【請求項4】 NH、OH溶液を金属塩水溶液中の金属 イオンに対して0.8~1.2当量加える請求項1ない し3のいずれかに記載のフェライト粉末の製造方法。

【請求項5】 金属塩水溶液にNH、OH溶液を加えた 混合液を撹拌することにより金属水酸化物を得る請求項 1ないし4のいずれかに記載のフェライト粉末の製造方 法。

【請求項6】 撹拌は毎分300~3000回転である 請求項5に記載のフェライト粉末の製造方法。

【請求項7】 撹拌は毎分500~2000転である 請求項5に記載のフェライト粉末の製造方法。

【請求項8】 混合液を常圧下で加熱する請求項1ない し7のいずれかに記載のフェライト粉末の製造方法。

【請求項9】 加熱は0~40℃で3~10時間である 請求項8記載のフェライト粉末の製造方法。

【請求項10】 加熱は10~30℃で3~7時間であ る請求項8に記載のフェライト粉末の製造方法。

【請求項11】 熟成を80~100℃で行う請求項1 ないし10のいずれかに記載のフェライト粉末の製造方

【請求項12】 熟成を80~90℃で1~5時間行う 請求項1ないし10のいずれかに記載のフェライト粉末 の製造方法。

【請求項13】 熟成後の金属水酸化物を含む液を濾過 し、沈澱を乾燥して粉末を得る請求項1ないし12のい ずれかに記載のフェライト粉末の製造方法。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、フェライト粉末、特に ソフトフェライト粉末の製造方法に関する。

[0002]

【従来の技術】従来、Ni-2nフェライトやMn-2 n等のフェライトの粉末を得るには、構成金属元素の酸 50 塩化物及び硝酸塩からなる群の少なくとも1種である金

化物や炭酸塩の粉末を混合し、その混合物を800~1 000℃で熱処理を行なう乾式法が行われており、この 方法により得られたフェライト粉末は電子部品用材、例 えは磁性材としてのフェライト焼結体の原料として用い られている。この乾式法により得られるフェライト粉末 は、その原料粉末を混合するので金属元素の分布も不均 ーとなり、また、熱処理により生じた塊りを砕いて粉末 とするので、平均粒径が0.1μm~10μmとなって 粒径分布が広くなるという問題がある。そのため、良質 のフェライト焼結体を得ようとすれば、1000℃以上 の髙温で処理する必要がある。一方、フェライトの構成 金属のイオン溶液にアルカリ金属の水酸化物溶液を加え てこれら金属を水酸化物として共沈させ、その沈澱物を 乾燥させて粉末とする、いわゆる湿式法によりフェライ ト粉末を得る方法も行われている。

#### ∴ [0003]···

30

【発明が解決しようとする課題】しかしながら、この湿 式法により得られたフェライト粉末であってもその組成 が不均一になることは避け難く、また、所望の組成から 20 ずれることが多く、組成の安定した粉末を製造すること は難しい。組成が安定しないフェライト粉末を用いて得 られたフェライト焼結体の磁性材は電気磁気特性が安定 せず、使用し難い。アルカリ金属の水酸化物を用いる と、得られたフェライト粉末にアルカリ金属が残存する が、金属の水酸化物を共沈させる際にそのアルカリ金属 の水酸化物を洗浄により除去するようにしてもその残存 を十分に無くすことは難しい。フェライト焼結体を薄膜 に応用する場合にはその組成の均一性が厳しく要求さ れ、また、そのフェライト焼結体からなる成形体に電極 を設ける場合等においてメッキを施す場合には、メッキ を妨害させないことが要求されるので、アルカリ金属が フェライト粉末に残存しないフェライト粉末の製造方法 の開発が望まれる。その解決方法として、金属アルコキ シドから高純度、髙品質のフェライト粉末が得られる合 成方法が研究されているが、金属アルコキシドが高価で あるため実用化には到っていない。

【0004】本発明の第1の目的は、組成ずれがなく、 アルカリ金属の残存がなく、しかも安価に得られるフェ ライト粉末の製造方法を提供することにある。本発明の 第2の目的は、組成に不均一性がなく、異相のないスピ ネル相単相のフェライト粉末の製造方法を提供すること にある。本発明の第3の目的は、粒径が小さく、粒径分 布が狭いフェライト粉末の製造方法を提供することにあ る。

[0005]

【課題を解決するための手段】本発明は、上記課題を解 決するために、Fe、Zn、Ni、Mn、Co、Cu及 びMgからなる群のFeとその他の少なくとも1種の金 属のそれぞれの金属塩であって、その金属塩が硫酸塩、

属塩を溶解した金属塩水溶液を得る工程と、該金属塩水 溶液に0.05~5.0mol/lのNH,OH溶液を 加えた混合液から金属水酸化物を生成する工程と、該金 属水酸化物を熟成する工程を有するスピネル型フェライ ト粉末を得るフェライト粉末の製造方法を提供するもの である。

【0006】この際、NH、OH溶液の濃度は、好まし くは0.05~5.0mol/l、より好ましくは0. 1~3. 0mol/lとすること、金属塩水溶液にNH ↓ OH溶液を加える操作はFeの塩のFe<sup>2</sup>がFe<sup>3</sup>に 10 なるに十分であるように空気中及び溶存酸素下で行うこ と、NH、OHを金属塩水溶液中の金属イオンに対して 0. 8~1. 2当量加えること、金属塩水溶液にNH。 OH溶液を加えた混合液を撹拌すること、その撹拌は好 ましくは毎分300~300回転、より好ましくは毎 分500~2000回転であること、混合液を常圧下で 加熱すること、その加熱は好ましくは0~40℃で3~ 10時間、より好ましくは10~30℃で3~7時間で あること、熟成は好ましくは80~100℃、より好ま しくは80~90℃で1~5時間行うこと、熟成した金 20 属水酸化物を濾過し、乾燥して粉末を得ることが好まし 11

【0007】本発明において、Fe、Zn、Ni、M n、Co、Cu及びMgからなる群のFeとその他の少 なくとも1種の金属のそれぞれの硫酸塩、塩化物及び硝 酸塩からなる群の少なくとも1種を溶解した金属塩溶液 とは、Feの硫酸塩、塩化物及び硝酸塩の内の1種又は 2種以上と、上記のその他の1種又は2種以上の金属の 硫酸塩、塩化物及び硝酸塩の内の1種又は2種以上との 組み合わせからなる金属塩溶液をいい、具体的には所望 のフェライト、例えばNi-Zn、Mn-Zn、Ni-Cu-Zn, Mg-Cu-Zn, Co-Cu-Zn, Mn-Mg-Zn、Ni-Cu-Coのそれぞれの金属構 成元素に従って例えば後述の実施例に記載したように金 属塩を組み合わせて用いる。これらの金属塩溶液にアン モニア水NH、OHが加えられることにより、金属の水 酸化物の生成反応が起こり、これら水酸化物は共沈する が、その際、その操作を空気中で行うとその酸素及び溶 液中の溶存酸素により、Fe2. はFe3. に酸化され易い ので、第1鉄の上記塩が含まれていたとしても、Fe<sup>2</sup>・ はFe<sup>3</sup> として計算できるため、NH。OHの量はFe 3. に見合う量とすることができる。このように空気中で 反応させると、乾式法の場合よりも製造設備を簡素化す ることができる。

【0008】このとき加えるNH、OHの濃度は、0. 05~5.0mol/lが好ましく、より好ましくは  $0.1 \sim 3.0 mol/l rbs = 0.05 mol/l$ より小さければ加えるNH、OHの量が多くなり、不経 済であり、また、5.0mo1/1より大きければ得ら れるフェライト粉末の組成がずれる。フェライト粉末の 50 が、特に粒径が0.05μm以下であるため、低温焼成

組成ずれを起こさず、経済的に最も適当な濃度は、0. 1~3. Omol/lがより好ましい。また、加えるN H. OHの量は、金属塩溶液の金属イオンに対して0. 8~1. 2当量であることが得られるフェライト粉末の 組成ずれを起こさない点から好ましく、この範囲外では その組成ずれを起こす。より好ましくは1.0当量であ る。

【0009】得られるフェライト粉末の組成ずれや粒子 の組成の不均一性をなくすために上記金属塩溶液とNH OHの混合液を撹拌、特に高速撹拌して反応を行わせ ることが好ましい。この高速撹拌によりその組成ずれを 0.001モル比以内に抑えることができる。その速度 は300~3000rpm (毎分の回転数) が好まし く、300rpmより遅いと得られるフェライト粉末が スピネル単相とならず、ヘマタイトの異相が生じて電気 磁気特性を悪くする。3000 r p m より大きくすると 共沈を起こさせる反応槽の規模を大きくできず、生産性 を悪くする。得られるフェライト粉末に異相ができず組 成ずれが生ぜず、その生産性の低下しない最も適当な撹 拌の回転数は500~2000 r p m である。

【0010】得られるフェライト粉末に組成ずれを起こ さず、スピネル相単相にするためには反応を起こさせる 反応時間は3時間以上が好ましく、3時間より短いと異 相を生じ易く、組成ずれを生じ易い。反応時間が長過ぎ ても反応生成物の結晶性の向上は見られないので生産性 の点から反応時間は10時間以内とすることが好まし い。スピネル単相のフェライト粉末が得られる生産性を 考慮すると反応時間は5~7時間が最も適当である。反 応生成物の結晶性を向上させるためにはその反応後熟成 を行う必要があるが、その温度は生産設備の簡素化がは かられる点から100℃以下が好ましいが、その結晶化 が促進されるためには80℃以上に加熱することが好ま しい。最も適当な熟成温度は80~90℃である。その 熟成時間としては1時間以上とすることがその十分な結 晶性あるフェライト粉末を得るために好ましいが、生産 性を考慮すると3時間以下が好ましい。

【0011】 反応生成物をその含有液から分離するに は、フィルタープレス等の濾過を行うことで十分である が、この含有液を噴霧する噴霧乾燥によっても陰イオン の残留はなく、生産設備等を考慮して使用できる。噴霧 乾燥の場合陰イオンの残留をなくすため500℃以上の 温度で加熱することが好ましいが、生産設備を考慮する と900℃以下が好ましい。その最も適当な加熱温度は 600~750℃である。

【0012】このようにして得られるフェライト粉末 は、その粒径を0.05μm以下にすることができ、そ の粒径分布も狭くすることができる。

【0013】本発明によるフェライト粉末は、磁性材に 用いられるフェライト焼結体の原料として用いられる

用のセラミック原料や磁気シールド材への応用、磁性流 体の原料としても有望である。

#### [0014]

【作用】金属水酸化物の共沈の反応を起こさせるアルカ リに一定濃度のNH、OHを用いたので、その塩は水に 溶解し易いため残存の心配はなく、アルカリ金属の水酸 化物を用いた場合にはその金属が結晶格子中に取り込ま れるため残存してしまうのに比べて、得られるフェライ ト粉末にはフェライトを構成する金属以外の不純物の残 留が無いようにでき、その組成ずれを起こし難くするこ 10 組成を螢光X線で確認したところ、Nio.650 Zn とができる。この組成ずれは高速撹拌、金属イオンに対 する当量比、熟成の条件を選択することによりさらに改 善される。また、共沈を起こさせる際髙速撹拌すると、 粒子の組成の均一化もはかられ、異相もないようにでき

#### [0015]

【実施例】次に本発明の実施例を説明する。

#### 実施例1

硫酸第1鉄0.2mol、硫酸亜鉛0.03mol、硫 酸マンガン0.07molを3lビーカーに秤り取り、 これに水11を加えて金属塩溶液を調製する。この溶液 を1000rpmで高速撹拌し、0.8mol/lのア ンモニア水 (NH、OH) (11 (金属イオンに対して 1 当量)を加え、室温で5時間反応させた後、80℃で 2時間熟成した。沈澱物を濾別し、80℃で3時間乾燥 し、粉末を得た。得られた粉末の金属組成を螢光X線で 確認したところ、Mno.700 Zno.300Fe2.00004 と なった。飽和磁化 (σ.) はVSM (Vibratio n Sample Magnetometer) にて評 価したところ10emu/gであり、比表面積(BET 法)からの粒径は16nmであった。X線回折(CuK α線使用、以下同様)を行った結果を図1に示す。この 図の○印のピークからスピネル単相となっていることが 確認できた。

#### 【0016】実施例2

硝酸第2鉄0.2mol、硫酸亜鉛0.04mol、硫 酸ニッケル0.06m01を31ビーカーに秤り取り、 これに水11を加えて金属塩溶液を調製する。この溶液 を1000rpmで高速撹拌し、0.88mol/lの アンモニア水11 (金属イオンに対して1.1当量)を 40 流体等への応用も可能にすることができる。 加え、室温で7時間反応させた後、80℃で3時間熟成 した。沈澱物を濾別し、80℃で3時間乾燥し、粉末を 得た。得られた粉末の金属組成を螢光X線で確認したと ころ、Nio.500 Zno.400Fe2.00104 となった。飽 和磁化 (σ<sub>e</sub>) はVSMにて評価したところ5emu/ gであり、比表面積からの粒径は18nmであった。X 線回折を行った結果を図2に示す。この図の○印のピー クからスピネル単相となっていることが確認できた。

【0017】実施例3

硝酸第1鉄0.2mol、硫酸亜鉛0.03mol、硫 酸ニッケル 0. 065 mol、硫酸銅 0. 005 mol を31ビーカーに秤り取り、これに水11を加えて金属 塩溶液を調製する。この溶液を1000 г р m で高速撹 拌し、0.96mol/lのアンモニア水11 (金属イ オンに対して1.2当量)を加え、室温で5時間反応さ せた後、80℃で2時間熟成した。沈澱物を濾別し、8 0℃で3時間乾燥し、粉末を得た。得られた粉末の金属 o.sooFeo.oos Fez.ooo。となった。飽和磁化 (σ 。) はVSMにて評価したところ8emu/gであり、 比表面積からの粒径は12nmであった。X線回折を行 った結果を図3に示す。この図の○印のピークからスピ ネル単相となっていることが確認できた。

#### [0.018]

【発明の効果】本発明によれば、共沈を起こさせる金属 水酸化物生成反応の際に一定濃度のアンモニア水を用い たので、アルカリ金属等の不純物のない高純度かつ組成 20 ずれのないフェライト粉末が得られ、これらの性質は高 速撹拌、金属イオンに対する当量比、熟成の条件を選択 することによりさらに改善され、また、高速撹拌するこ とにより組成の均一な異相のない粒子を得ることがで き、このようなフェライト粉末を原料にして得られたフ ェライト焼結体からなる磁性材の電気磁気特性を安定に することができる。また、原料もコストの安い金属塩や アンモニア水を用い、しかも空気中、常圧下で反応を行 なうことができるので簡素な生産設備で生産することが でき、その製造コストを低減できる。また、本発明のフ 30 ェライト粉末は粒径が小さいので、これを原料にしたフ エライト焼結体が通常の焼成温度より低温で得られ、低 融点金属と同時焼成が可能であり、その焼結体に同時に 電極を形成させることができる。また、本発明のフェラ イト粉末は粒径が小さく、かつその粒径分布の幅が狭い ので、均一な結晶粒で緻密なフェライト焼結体を製造可 能であり、電気磁気特性を高めることができる。このよ うにして所望の組成のフェライト粉末が容易にしかも高 品質で得られ、種々の磁気特性をもつフェライト焼結体 からなる磁性材を提供でき、さらに磁気シールド、磁性

# 【図面の簡単な説明】

【図1】本発明の第1の実施例の方法により得られたフ ェライト粉末のX線回折線図である。

【図2】本発明の第2の実施例の方法により得られたフ ェライト粉末のX線回折線図である。

【図3】本発明の第3の実施例の方法により得られたフ ェライト粉末のX線回折線図である。

[図1]



【図2】



【図3】

