Part 8: Policy Evaluation- Regression Discontinuity

Chris Conlon

March 31, 2020

Applied Econometrics

RDD

Regression Discontinuity Design

- Another popular research design is the Regression Discontinuity Design.
- In some sense this is a special case of IV regression. (RDD estimates a LATE).
- Most of this is taken from the JEL Paper by Lee and Lemieux (2010).

RDD: Basics

We have a running or forcing variable x such that

$$\lim_{x \to c^{+}} P(T_{i}|X_{i} = x) \neq \lim_{x \to c^{-}} P(T_{i}|X_{i} = x)$$

- The idea is that there is a discontinuous jump in the probability of being treated.
- For now we focus on the sharp discontinuity: $P(T_i|X_i > c) = 1$ and $P(T_i|X_i < c) = 0$

But we might not have that many people

- There is no single x for which we observe treatment and control. (Compare to Propensity Score!).
- The most important assumption is that of no manipulability $\tau_i \perp D_i$ in some neighborhood of c.
- Example: a social program is available to people who earned less than \$25,000.
 - If we could compare people earning \$24,999 to people earning \$25,001 we would have as-if random assignment. (MAYBE)

RDD: In Pictures

RDD: Sharp RD Case

RDD uses a set of assumptions distinct from our LATE/IV assumptions. Instead it depends on continuity.

- We need that $E[Y^{(1)}|X]$ and $E[Y^{(0)}|X]$ both be continuous at X=c.
- ullet People just to the left of c are a valid control for those just to the right of c.
- ullet This is not a testable assumption o draw pictures!
- We could run the regression where $D_i = \mathbf{1}[X_i > c]$.

$$Y_i = \beta_0 + \tau D_i + X_i \beta + \epsilon_i$$

- ullet This puts a lot of restrictions (linearity) on the relationship between Y and X.
- Also (without additional assumptions) we only learn about τ_i at the point X=c.

RDD: Nonlinearity

First thing to relax is assumption of linearity.

$$Y_i = f(x_i) + \tau D_i + \epsilon_i$$

This is known as partially linear model.

- Two options for $f(x_i)$:
 - 1. Kernels: Local Linear Regression
 - 2. Polynomials: $Y_i = \beta_0 + \beta_1 x_i + \beta_2 x_i^2 + \dots + \beta_p x^p + \tau D_i + \epsilon_i$.
 - Actually, people suggest different polynomials on each side of cutoff! (Interact everything with D_i).
- Same objective. Want to flexibly capture what happens on both sides of cutoff.
- Otherwise risk confusing nonlinearity with discontinuity!

RDD: Kernel Boundary Problem

RDD: Polynomial Implementation Details

To make life easier:

- replace $\tilde{x}_i = x_i c$.
- Estimate coefficients β : $(1, \tilde{x}, \tilde{x}^2, \dots, \tilde{x}^p)$ and $\tilde{\beta}$: $(D_i, D_i \tilde{x}, D_i \tilde{x}^2, \dots, D_i \tilde{x}^p)$.
- Now treatment effect at c just the coefficient on D_i . (We can ignore the interaction terms).
- If we want treatment effect at $x_i > c$ then we have to account for interactions.
 - \bullet Identification away from c is somewhat dubious.
- Lee and Lemieux (2010) suggest estimating a coefficient on a dummy for each bin in the polynomial regression $\sum_k \phi_k B_k$.
 - Add polynomials until you can satisfy the test that the joint hypothesis test that $\phi_1 = \cdots \phi_k = 0$.
 - There are better ways to choose polynomial order...

RDD: Checklist

Most RDD papers follow the same formula (so should yours)

- Plot of P(D|X) so that we can see the discontinuity
- ullet Plot of E[Y|X] so that we see discontinuity there also
- ullet Plot of E[W|X] so that we don't see a discontinuity in controls.
- Density of X (check for manipulation).
- Show robustness to different "windows"
- The OLS RDD estimates
- The Local Linear RDD estimates
- The polynomial (from each side) RDD estimates
- An f-test of "bins" showing that the polynomial is flexible enough.

Read Lee and Lemieux (2010) before you get started.

Application: Lee (2008)

Looked at incumbency advantage in the US House of Representatives

- Running variable was vote share in previous election
 - Problem of naive approach: good candidates get lots of votes!
 - ullet Compare outcomes of districts with barely D to barely R.
- First we plot bin-scatter plots and quartic (from each side) polynomials.
- Discussion about how to choose bin-scatter bandwidth (CV).

Lee (2008)

Lee (2008)

 $\it Figure~9.$ Winning the Next Election, Bandwidth of 0.02 (50 bins)

Lee (2008)

 ${\it Figure}~18.~Local~Linear~Regression~with~Varying~Bandwidth:~Share~of~Vote~at~Next~Election$

Other Examples

Luca on Yelp

- Have data on restaurant revenues and yelp ratings.
- Yelp produces a yelp score (weighted average rating) to two decimals ie: 4.32.
- Score gets rounded to nearest half star
- \bullet Compare 4.24 to 4.26 to see the impact of an extra half star.
- Now there are multiple discontinuities: Pool them? Estimate multiple effects?

Fuzzy RD

An important extension in the Fuzzy RD. Back to where we started:

$$\lim_{x \to c^{+}} P(T_{i}|X_{i} = x) \neq \lim_{x \to c^{-}} P(T_{i}|X_{i} = x)$$

• We need a discontinuous jump in probability of treatment, but it doesn't need to be $0 \to 1$.

$$\tau_i(c) = \frac{\lim_{x \to c^+} P(Y_i | X_i = x) - \lim_{x \to c^-} P(Y_i | X_i = x)}{\lim_{x \to c^+} P(T_i | X_i = x) - \lim_{x \to c^-} P(T_i | X_i = x)}$$

- Under sharp RD everyone was a complier, now we have some always takers and some never takers too.
- Now we are estimating the treatment effect only for the population of compliers at x=c.

Related Idea: Kinks

A related idea is that of kinks.

- Instead of a discontinuous jump in the outcome there is a discontinuous jump in β_i on x_i .
- Often things like tax schedules or government benefits have a kinked pattern.

One quantity to rule them all: MTE

Heckman and Vytlacil provide a unifying non-parametric framework to categorize treatment effects. Their approach is known as the marginal treatment effect or MTE

- The MTE isn't a number it is a function.
- All of the other objects (LATE, ATE, ATT, etc.) can be written as integrals (weighted averages) of the MTE.
- The idea is to bridge the treatment effect parameters (stuff we get from running regressions) and the structural parameters: features of $f(\beta_i)$.