特殊方程作业6

地物 2201 班 杨曜堃

2024年3月12日

问题 1 考虑满足下列边界条件及初始条件的一维热传导方程:

$$\begin{cases} \frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}, & 0 < x < 1, \ t > 0 \\ u|_{x=0} = 100, \ u|_{x=1} = 100, & t \geqslant 0 \\ u|_{t=0} = 3\sin(5\pi x) + 100, & 0 \leqslant x \leqslant 1 \end{cases}$$

- 1. 采用分离变量法求解该定解问题;
- 2. 验证上一步求得的 u(x,t) 满足定解问题。

问题 #1.1	Grade:
考虑到非齐次边界条件的具体形式,可设齐次化函数为	Faculty Comments
v(x) = 100	
于是令	
u(x,t) = v(x) + w(x,t) = w(x,t) + 100	
则有 $\frac{\partial w}{\partial t} = \frac{\partial^2 w}{\partial x^2}$	
对应的定解问题为	
$\begin{cases} \frac{\partial w}{\partial t} = \frac{\partial^2 w}{\partial x^2}, & 0 < x < 1, \ t > 0 \\ w _{x=0} = w _{x=1} = 0, & t \geqslant 0 \\ w _{t=0} = 3\sin(5\pi x), & 0 \leqslant x \leqslant 1 \end{cases}$	
$w _{t=0} = 3\sin(5\pi x), \qquad 0 \leqslant x \leqslant 1$	

问题 #1.1	Grade:
采用分离变量法,可得	Faculty Comments
$w(x,t) = \sum_{n=1}^{\infty} C_n \sin(n\pi x) e^{-(n\pi)^2 t}$	
代入初始条件	
$w(x,0) = \sum_{n=1}^{\infty} C_n \sin(n\pi x) = 3\sin(5\pi x)$	
于是可以取 $C_5=3$,	
$w(x,t) = 3\sin(5\pi x)e^{-(5\pi)^2t}$	
问题的形式解为	
$u(x,t) = 3\sin(5\pi x)e^{-(5\pi)^2t} + 100$;

特殊方程作业 6 3

问题 #1.2	Grade:
经验证,解得的 $u(x,t)$ 是满足边界条件和初始条件的一解。	Faculty Comments

MATLAB 计算代码如下,用于图示辅助验证。

$test6_script.m$

```
% 图示求解结果
1
      clear;
2
      % 定义参数
      x = 0:0.1:1;
      t = 0:0.1:1;
6
      [X,T]=meshgrid(x,t);
      uxt = 3*sin(5*pi*X).*exp(-(5*pi)^2*T)+100;
9
10
      %绘制图像
11
      figure;
12
      contourf(X,T,uxt,20);
13
      colorbar;
14
      xlabel('x');
15
      ylabel('t');
16
```


图 1: 结果图示