《电子电路与系统基础 II》期中考试试题

2013.11.30 学号: 姓名:

填空题答案直接填写到试题纸空位中。本考卷共108分,卷面超过100分按100分计。

一、 填空题(53分):

- 1、已知某运放电压增益为 200000, 饱和电压为±13V, 该运放差分输入电压 v_{id} 与输出电压 v_{o} 之间的转移关系可三段折线描述为如下表达式:
- 2、图 1 所示负反馈应用放大器的负反馈连接方式为 () 连接,这种负反馈连接形式将形成 () 放大作用,之所以称之为反相电压放大器,是由于 (
 -)。假设运放是理想运放,该反相电压放大器的电压放大倍数为 (),输入 电阻为 () Ω ,输出电阻为 () Ω 。

图 1 反相电压放大器

- 3、运放'虚短'特性是将()极致化为()导致的结果,运放 '虚断'特性是将()极致化为()导致的结果。
- 4、图 2 中运放为理想运放。该电路的频域传递函数为 $H_o(j\omega)=rac{\dot{V}_{out}}{\dot{V}_{in}}=$ ()

图 2 运放正反馈应用

5、写出图 3 所示 CMOS 电路实现的逻辑表达式,画出真值表,文字描述输出 C_{i+1} 和输入 A_i , B_i , C_i 之间的关系为 ()。

图 3 某 CMOS 数字逻辑电路

逻辑表达式:

 $C_{i+1} =$

A _i	B _i	Ci	C_{i+1}
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

- 7、线性时不变电感 L 具有三个基本特性, 分别为:
 - a) (),细致描述为(

).

b) (),细致描述为 (

)。

c) (), 细致描述为 ()。

- 9、图 4a 所示电路中,如果 v_s(t)=V_{so}(大于 0 的常值),该电路的相轨迹方程为 (),请在图 4b 位置画出其相轨迹,并在相轨迹上标注状态 转移方向,平衡点位置用字母'Q'标记,该平衡点为()<稳定平衡点、不稳定平衡点>。
- 10、 用幅度为 10V 的正弦波电压激励一个 RL 串联回路,在电阻上测得正弦波的电压为 6V,那么在电感上测得的正弦波电压为 () V。
- 11、 一阶线性时不变电路系统的激励源为冲激、阶跃、正弦波或方波源时可利用三要素法求解,这三个要素分别为()、()和()。假设待求电量为x(t),三要素表达式为x(t)=()。
- 12、 电源 V_{so} 通过某伏安特性单调变化的非线性电阻对初始电压为0的电容C充电,充电结束后,电容电压充至电源电压 V_{so} 。在这个充电过程中,非线性电阻消耗了 ()的电能。
- 13、 时间常数τ是一阶线性时不变动态电路的关键参量。对一阶 RL 电路, 其时间常数为τ=()。如果输出电压取自()<电阻、电感、电源>电压, 那么输入输出转移特性将形成一阶低通特性, 此时, 该 RL 低通网络的 3dB 频点为 f_{3dB}=()。低通特性的伯特图, 低于 3dB 频点时, 幅频特性具有

()特性,高于 3dB 频点时,幅频特性具有 ()特性。<幅频特性可选项为:不随频率变化的平 坦,频率每升高 10 倍增益则下降 20dB,频率每升高 10 倍增益则上升 20dB,频率 每升高 10 倍增益则下降 40dB,频率每升高 10 倍频增益则上升 40dB,等,或根据实际情况给出适当描述>

14、 列写如图 5 所示晶体管小信号放大电路的结点电压法向量域电路方程,以结点 @ ②相对于地结点 @ 的结点电压 $\dot{V_1}$ 、 $\dot{V_2}$ 为未知量,以正弦激励电压源 $\dot{V_3}$ 为已知量,其中正弦波频率为 ω_0 。该电路为 () <零阶、一阶、二阶、三阶>动态电路。

图 5 晶体管小信号放大电路

结点电压法电路方程:

15、 如图 6a 所示,这是一个方波信号经过一个很大耦合电容到达负载电阻的电路。请直接在图 6b 输入方波波形图(虚线)上用实线画出负载电阻电压的稳态响应波形示意图。

图 6a 耦合电容耦合交流信号

图 6b 激励信号和负载信号波形图

《电子电路与系统基础Ⅱ》期中考试试题

2013.11.30 学号: 姓名:

二、(19 分)图 7 为 4 线—2 线优先编码器,表 1 为该优先编码器的码表: 优先编码器将多位输入 $I_3I_2I_1I_0$ 编码为少位输出 O_1O_0 。此编码器同时输出有效位 V 指示: 当 V=1 时则表示输出 O_1O_0 有效: 输出 O_1O_0 为输入 $I_3I_2I_1I_0$ 中权重最大的 1 出现在哪个位置; 当 V=0 时则表示输出 O_1O_0 无效: 此时输入 $I_3I_2I_1I_0$ 全零(没有 1 出现)。请画出该编码器的卡诺图,并用标准 CMOS 门电路格式(上 PMOS 下 NMOS)实现图 7 方框内部电路。

图 7 4-2 优先编码器

有效指示位 4 输入 2 输出 I_3 I_2 I_1 I_0 O_1 O_0 0 0 0 (无效) 0 0 0 0 0 1 (有效) 0 0 1 0 0 0 1 1 0 0 1 1 1 1 1 1 1

表 1 4-2 优先编码器码表

三、(19分)运放电路分析与应用:

(3.1)(6 分)如图 8 所示的运放非线性负反馈应用,给出输出 v_{OUT} 和两个输入 v_{IN1} 和 v_{IN2} 的关系式,说明该电路完成什么功能。已知二极管正向导通时压流具有指数控制关系, $i_D = I_{S0}e^{\frac{v_D}{v_T}}$ ($v_D > 0$),反偏则完全截止, $i_D = 0$ ($v_D < 0$),三个二极管具有完全一致的工艺参量。同时要求两个输入都大于 0,即 $v_{IN1} > 0$, $v_{IN2} > 0$ 。

图 8 运放负反馈非线性应用

- (3.2)(7 分)图 9 电路为正反馈应用的运放电路,假设线性区运放电压增益无穷大,饱和电压为 \pm 12V,参考电压为 $V_{REF}=4V$,片外电阻为 $R_1=1k\Omega$, $R_2=10k\Omega$, $R_3=2k\Omega$ 。
 - a) 分析输出 v_{out} 输入 v_{IN} 关系, v_{out}=f(v_{IN})。
 - b) 画出输入输出转移特性曲线 vouT=f(vIN)。

图 9 运放正反馈应用

(3.3)(6 分)图 10 中的运放,其输入阻抗被极致化为无穷大,输出阻抗被极致化为零,但其增益在高频不能被极致化为无穷大。当运放工作在线性区时,其输入输出转移特性(开环电压增益)在向量域的传递函数关系为 $A_{v,o}(j\omega)=rac{\dot{V}_{out}}{\dot{V}_{id}}=rac{A_{v0}}{1+rac{j\omega}{\omega_0}}$,其中,下标 o 表示开环(open

loop), V_{id} 为运放差模输入电压,而 $A_{v0}=200000$ 则是开环电压(直流)增益,其中频率参量为 $\omega_0=2\pi f_0$, $f_0=10H_Z$ 。

- c) 分析确认图 10 所示同相电压放大器的电压反馈系数 F 为多少。
- d) 分析确认闭环电压传递函数为 $H(j\omega) = \frac{\dot{V}_{out}}{\dot{V}_{in}}$,说明这个传递函数具有什么频响特性<低通、高通、带通、带阻、全通、仅放大而无频响>? 如果有频响特性,对应的 3dB 带宽? 如果是滤波器,滤波器最大电压增益为多少 dB?
- e) 如果输入信号为单位阶跃信号, $v_{in}(t)=U(t)$,给出输出信号 $v_{out}(t)$ 时域表达式。

图 10 同相电压放大器

- 四、(17 分)某非线性电阻具有 S 型负阻特性曲线,如图 11a 所示。恒流源 I_0 为其提供直流偏置工作点,如图 11b 所示。
 - a) 回答: 当直流偏置电流源电流 I₀为多少时,开关闭合后,该电路可形成一个张弛振 荡器? 张弛振荡波形大体是什么波形?
 - b) 如果直流偏置电流源电流振荡波形 I_0 =0.8mA,电容初始电压为 20V,t=0 时刻开关 闭合。给出电容电压 $v_c(t)$ 时域表达式和波形示意图。

图 11a S型负阻伏安特性曲线

图 11b S型负阻加电容