

注意: 删除二叉排序树的某个指定结点后, 仍然要是二叉排序树

① 若p左子树PL为空,此时,只要令PR的根结点直接代替p即可

假设指针p指向要删除的结点,指针parentp指向p的父结点

① 若*p左子树PL为空,此时,只要令PR的根结点直接代替*p即可

假设指针p指向要删除的结点,指针parentp指向*p的父结点

方法1:

- (a) 按对称序周游p的左子树,找到关键码最大的结点 maxpl, 删除maxpl (用的左子女代替它)
 - (b) 用 maxpl 结点代替被删除结点p

Parentp记录maxpl的父节点,parentp==p

方法2: 令p的左子树的根结点代替p, maxpl 的右子树是p的右子树

maxpl

(p左子树中最大的结点);

5.5 二叉排序树的删除 BST--delete

maxpl

parent

R

具体见算法5-4

Parentp记录maxpl的父节点,parentp==p

maxpl

具体见算法5-3

BST算法分析

查找search 插入insert 删除delete

BST算法分析

最好情况:完全二叉树 O(logn)

最坏情况: 单支树 O(n)

BST算法分析

折中办法:相对平衡BST

