# On the Robustness of Quantization Algorithms during the Training Phase of Deep Neural Networks

Researcher: Hok Fong WONG (hfwong2@cse.cuhk.edu.hk, Department of Computer Science and Engineering)

Supervisor: Prof. Hoi-To WAI (htwai@se.cuhk.edu.hk, Department of Systems Engineering and Engineering Management)

# 1. Introduction to Quantization in DNNs

- Goal: Model deployment on low-memory devices
  - · Lowering the inference time

#### Core Arithmetic Operations in DNNs:



- Matrix Multiplication
- Addition Operations

#### Motivation:

#### Manipulating number representation -

Fixed-point representation / Integer representation



# 2. Previous Works

### I. BinaryConnect (BC) (Courbariaux et al., 2015)

· Stochastically binarized weights:

with probability  $p = \sigma(w)$ , with probability 1-p. (Simple addition)  $\sigma(x) = \operatorname{clip}\left(\frac{x+1}{2}, 0, 1\right) = \max\left(0, \min\left(1, \frac{x+1}{2}\right)\right)$ 

- · Only binarized on the forward and backward path
- Full precision for parameter update
- Empirically as a regularizer (noisy weights unbiased in expectation)
- Save 2/3 of multiplications with specialized hardware design

#### II. Straight-Through Estimators (STEs) (Bengio et al., 2013)

- Forward propagation: weights are quantized
- Backward propagation: gradients directly pass through the quantizer layer to the front layer





- · Limited understanding despite the empirical
- · Oscillation of the generated gradient from "quantized" parameters
- Coarse gradient must be chosen with proper STEs, required to correlate positively with the population gradient, e.g. clipped ReLU (Yin et al., 2019)

# III. ProxQuant (Bai et al., 2019)

Proximal Operator

 $R(\theta) = \sum \min\{|\theta_i - 1|, |\theta_i + 1|\} \qquad \text{(Regularization Function)}$  $w_{t+1} = \operatorname{prox}_{\gamma_t \lambda_t R} \left( \theta_t - \gamma_t \widehat{\nabla} \ell(\theta_t) \right)$  (Soft Projection Function)  $\text{where} \quad \operatorname{prox}_{\lambda R}(\theta) = \operatorname{argmin}_{\hat{\theta} \in \mathbb{R}^d} \left. \left\{ \frac{1}{2} \middle| \hat{\theta} - \theta \middle|_2^2 + \lambda R(\hat{\theta}) \right\} \right.$ 

 $R(\theta) = 0$  when  $\theta \in Q$  and  $R(\theta) > 0$  when  $\theta \notin Q$ 

Best iterate is guaranteed to converge, with smoothed regularizers and loss function, step size is constant  $(1/\beta)$ 

# 3. Optimization Formulation and Notions

Minimization of Training Loss with Quantization Constraints on the Weights

$$\min_{w \in \mathcal{Q}} \ell(w), \ell(w) = \mathbb{E}_{(x,y) \sim p_{\text{data}}} [\ell(f(x,w),y)]$$

# Inherent difficulty

- Multi-layer DNNs can be non-convex, nondifferentiable
- Combinatorial: discrete quantization levels
- NP-Hard in general for smooth functions
- MINLP could fail due to the scale of the number

#### Smoothed Interval Constraint Relaxation

$$\min_{w \in C} \ell(w)\,, C = \{w \in \mathbb{R}^n \colon g(w) \geq 0\}$$

$$\psi^i_{\epsilon}(w^i) := \begin{cases} \epsilon - (q^i_1 - w^i)^2, & w^i < q^i_1, \\ \epsilon - (w^i - q^i_{j-1})^2 (w^i - q^i_j)^2, & q^i_{j-1} \leq w^i < q^i_j, j = 2, \dots, K, \\ \epsilon - (w^i - q^i_K)^2, & w^i \geq q^i_{K^i}, \end{cases}$$

Mangasarian-Fromovitz Constraint Qualification  $\forall w \in \mathbb{R}^n, \exists v \in \mathbb{R}^n \text{ s.t.} \nabla g_i(w)v > 0 \text{ for all } i \in I(w), \text{where}$  $I(w)=\{i\in[d]|g_i(w)\leq 0\}$ 

Tangent Cone and Normal Cone Induced by MFCQ

 $T_C(w) = \{v \mid \nabla g_i(x)^\top v \geq 0, \forall i \in I(w)\}, \text{ (Directions to mend)}$ all violated constraints)  $N_C(w) = \left\{ -\sum_{i \in I(x)} \lambda_i 
abla g_i(w) \, \middle| \, \lambda \in \mathbb{R}_+^d 
ight\}$  (Descent directions of Strong Duality and Optimality violated constraints)

Conditions  $Z = \{w \in C \colon 0 \in -\nabla \ell(w) - N_C(w)\}$ 

(Stationary points)

# 4. Muehlebach-Jordan's Algorithm (2022)

**Assumption 1.**  $\ell$ , g are continuously differentiable and have a Lipschitz continuous gradient.  $\ell$  is lower-bounded and C is non-empty and bounded.

**Assumption 2.** MFCQ is satisfied for all x.

**Assumption 3.** C is convex and  $\ell$  is strongly convex.

$$\begin{aligned} \text{pdate rule:} & \begin{cases} w_{k+1} = w_k + \gamma_k v_k \\ v_k = \operatorname{argmin}_{v \in V_a(w_k)} (1/2) |v + \nabla \ell(w_k)|^2 \end{cases} \end{aligned}$$

**Theorem 1**. The iterates are guaranteed to converge to the minimizer of  $\ell$  at nearly a linear rate, under Assumptions 1-3.

#### 5. Extension: ASkewSGD Algorithm

Techniques by Leconte et al. (2023): Construction of a regularization function with MFCQ + Simulated

- annealing for discovery + Gradient flow characterization
- No projection; Stochastic gradients for large-scale ML "Simple is the best" dictum

**Assumption 4.** The step sizes  $\gamma_k$  are non-increasing, nonsummable, and square-summable.

**Assumption 5.**  $\ell(\cdot; \xi_i)$  is **d-times continuously**  ${f differentiable}$  and has  $M_{\ell_i}$  Lipschitz continuous gradients Explicit solution for  $v_k$ :

 $[s_{\epsilon,\alpha}(\widehat{\nabla}\ell(w_k), w_k)]^i = \begin{cases} -\widehat{\nabla}\ell(w_k^i), & \text{if } \psi_\epsilon(w^i) > 0 \text{ or } \\ -\widehat{\nabla}\ell(w_k^i), & -\psi'_\epsilon(w^i)\widehat{\nabla}\ell(w_k^i) \geq -\alpha\psi_\epsilon(w^i) > 0, \\ \operatorname{clip}(-\alpha\psi_\epsilon(w^i)/\psi'_\epsilon(w^i), M_\epsilon), & \text{otherwise.} \end{cases}$ 

Theorem 2. Under Assumption 1, 4, 5, and

 $0 < \epsilon \le \inf_{1 \le i \le d} \inf_{1 \le j \le K^i} |c^i_j - c^i_{j+1}|^4 / 16$ , where  $\{c^i_j\}$  are the quantization levels. Then,  $\ell(w_k)$  converges and  $\lim d(w_k, Z_{\epsilon}) = 0$  almost surely.

Our work: Eliminating the need to introduce the highly-differentiable loss function

Observation: Three cases for an iterate:

- (a) Taking the descent direction
- (b) Descent direction matches with the pushing force c)Gradient mismatches with the pushing force

In classical stochastic smooth analysis, we mainly rely on the bounded gradient for local minimization guarantees. Difficulty: Quantifying the motions of iterates depends on the loss function! Without clipping,  $v_k$ can be very large which leads the iterate to infinity

 $\mathbb{E}\left[\ell(w_{k+1})|w_k\right] \le \ell(w_k) + \gamma_k \mathbb{E}\left[\nu_k^\top \nabla \ell(w_k) |w_k\right] + \frac{\gamma_k^2 L}{2} \mathbb{E}\left[||v_k||^2 |w_k\right]$ Idea (Coordinate-wise): Given sufficient time, iterates stay within

a distance  $\epsilon$  from feasible set. (a) Small gradients on the edge of feasible set: ignorable; (b) Large gradients on the edge of feasible set iterate converges as a KKT point / takes a small pushing force  $O(\epsilon)$  / by smoothness gradually leaving the boundary stripe in **finite time** 

# 6. Stochastic Gradient Descent Ascent

#### Lagrangian-Primal Problem Formulation

 $\min_{w \in \mathbb{R}^n} \max_{\lambda \geq 0} \mathcal{L}(w, \lambda)$  $\mathcal{L}(w, \lambda) := \ell(w) - \lambda^{\top} g(w)$ 

- Stochastic Gradient Descent Ascent (SGDA) for Nonconvex-Concave Minimax Problem (Lin et al.,
- Very small step sizes for w,  $\lambda$ , and smoothness of  $\mathcal L$  is enough to guarantee convergence ( $\epsilon$ -stationary  $w_k \leftarrow w_{k-1} - \eta_x \widehat{\nabla}_{w_{k-1}} \mathcal{L}(w_{k-1}, \lambda_{k-1})$

$$\lambda_k \leftarrow \mathcal{P}\left(w_{k-1} + \eta_\lambda \widehat{\nabla}_{\lambda_{k-1}} \mathcal{L}(w_{k-1}, \lambda_{k-1})\right)$$

# 7. Experiment Setup and Results

We used full-precision SGD for comparison, and tested Connect, Straight-Through Estimator, ASkewSGD, mou SGD and SGDA. BinaryConnect and STE both suffered from strong oscillations and exhibited a larger loss. ASkewSGD and SGDA are close to the full precision method for task I and II.

# I. Convex Logistic Regression (Single Layer)



II. Two Moons Classification (Shallow NN)





III. Computer Vision Task (ResNet-18 on CIFAR-10) Method [W1/A32] [W2/A4]

BinaryConnect Straight-Through Estimator ASkewSGD SGDA **88.30** (20 epochs) Full-precision [W32/A32]

# 8. Future Works

- Does ASkewSGD escape from saddle points?
- Step sizes for Lagrangian-type minimax problems
- Distributed optimization for block-structured constraint formulations
- Possibility of solving combinatorial optimization tasks

# 9. Major Text

L. Leconte, S. Schechtman and E. Moulines, (2023) ASkewSGD: An Annealed Interval-Constrained Optimisation Method to Train Quantized Neural Networks. In Artificial Intelligence and Statistics 2023, 206:3644-3663.