

Track-based Alignment of the Muon System

Jim Pivarski, Alexei Safonov, Dmitry Yakorev Texas A&M University

> Karoly Banicz Purdue University

16 June, 2007

Introduction and Overview

- Development of infrastructure: ready for CSA07
- Survey measurements (used as constraints for track-based alignment)
- ▶ MC: developing the procedure
- Alignment results in MC
- ► MTCC: early attempts on real data

Notes for the previous page (page 2)

You have downloaded the annotated version of this talk. I didn't show these notes (grey pages) visually when I presented the talk, though I should have made the following points orally.

If you are following the presentation as I am making it, please download the other version (should say "download-this-one") which is the same, minus the grey pages.

- This will be a general overview, but with a focus on A&M work
- ▶ The majority of this talk will be about developing and testing the procedure with MC

Infrastructure

- Defined data path and triggers
- Defined data format for muon alignment stream
- Developed monitoring tools
- Ready for CSA07

Notes for the previous page (page 3)

- We plan to get muons from all available triggers (single-, di-muon...)
- ► Express stream is 25% of all data (in early running), very inclusive
- We have completed the pipeline from express stream, through prompt reconstruction, AlCaReco, Alignment Producers, Alignment Monitors, to database (SQLite file, at least).
- ▶ DQM Monitor, DB Validator and the last stage of Alignment Validation (external legs on this graph) still need work

- 1. CommonAlignmentMonitor: general plotting package integrated into AlignmentProducer
 - Manages iteration, collection after parallel processing
- 2. AlignmentMonitorMuonHIP outputs histograms for every chamber (or every layer): residuals versus everything
- 3. pyROOT script merges histograms on the fly

▶ Offline Alignment Validation, the last step in monitoring, sees changes in p_T , Z' resolution (Javier Fernandez)

Notes for the previous page (page 4)

- ► Command for the featured plot: "r.select(lambda c, h: not c.barrel and h.GetEntries() > 0)"
- Can pass arbitrary Python functions to select by chamber information (c) or histogram features (h)
- Almost as much versatility as an ntuple, this tool will allow us to "zoom in" on alignment problems, to understand specific outliers and allow human decision-making in early data
- ▶ ROOT file sizes are \sim 10 MB per iteration
- ► A link to information about Javier's analyzer: http://indico.cern.ch/conferenceDisplay.py?confld=13742
- Due to the way we do track refitting, the integrated monitor is sensitive to updated residuals but not updated track parameters. Thus, we can use AlignmentMonitorMuonHIP to see narrowing residuals/ χ^2 , and then re-reconstruct from scratch with Javier's analyzer to see the change in p_T distributions, the Z' peak, Drell-Yan seepage, etc.

Survey measurements

- ▶ This is the initial geometry used in track-based alignment
- Can also be used as a constraint on track-based alignment
- Positions of optical targets are measured by photogrammetry and later transformed into chamber positions/orientations
- CSC measurement is good; transformation contains an error

Consistency check: \sim 1 mm

Measurement resolution: \sim 300 μ m

Notes for the previous page (page 5)

- Survey constraint implemented for tracker alignment, not yet tested for muon alignment, but we use the same infrastructure
- Pablo Martinez Ruiz del Arbol has transformed DT survey measurements into chamber orientations, but has not yet uploaded to the database
- ▶ Dmitry Yakorev has transformed CSC survey measurements into chamber orientations and performed the consistency check that revealed the error. He's dividing-and-conquering the problem now...

Testing the alignment system in MC

MC: developing the procedure

- More realistic than this spring's test-run (presented at UCLA)
 - ▶ Large datasets: 10 pb⁻¹ and 100 pb⁻¹ of muons from W and Z (simulated by Z only)
 - More ambitious precision goals (200 μ m, rather than 1 cm)
 - Random misalignments with SurveyOnlyScenario (rather than moving all chambers in the same direction)
 - ▶ First attempt at muon system self-measurement
- Two major approaches, developed simultaneously
 - ► Align the muon system to the tracker (globalMuons)
 - converges more quickly
 - Align the muon system to itself (standAloneMuons)
 - independent of the tracker

Aligning to the tracker

▶ Residuals from globalMuons have two peaks per chamber, due to track-fitting bias

- Simply extrapolating a tracker track into the muon system removes the bias, but at a severe resolution cost (note wider scale)
- Neither is optimal

Notes for the previous page (page 8)

- ► The tracker-to-muon extrapolation is what I presented in my last EMU talk at UCLA
- ► Alignment resolution was ~4 mm

The "lowbias" method

- Re-fit globalMuon tracks with inflated hit uncertainties in the muon system
- Resulting tracks are determined mostly by the silicon tracker, but they "know" about scattering in the muon system

Notes for the previous page (page 9)

- ► The tall peak at 1 cm is the misalignment, small peak at 0 is due to bias
- Usually converges in one iteration

The "standalone" method

- standAloneMuons have the two-peak structure in residuals, and therefore need to iterate to decouple track-fitting from chamber alignment
- ▶ With a |residuals| < 5 cm cut, this method shows clear convergence for most chambers:

▶ We are keenly interested in saving the tails. . .

Notes for the previous page (page 10)

- We need to study the outliers! Figure out what's happening to the tails! Find a way to diagnose it in data, also (shape of residual distribution?)
- ► Muon alignment is especially important for keeping Drell-Yan backgrounds from smearing into high dimuon-mass channels for New Physics. We therefore care very much about the higher moments of the p_T distribution, which is to say, alignment outliers.

The same plots for "lowbias"

- Converges in one iteration
- ▶ Beyond that most chambers are stable, but a few DTs wander
- ► There's also a cumulative problem with hit efficiency

Alignment Results (10 pb $^{-1}$)

- Starting from MuonSurveyOnlyScenario: positions misaligned 2.5 mm, ϕ_z misaligned 0.25 mrad
- ▶ Five degrees of freedom in alignment: x, y, ϕ_x , ϕ_y , ϕ_z
- ► Accuracy: one iteration lowbias, ten iterations standalone

Precision: alignment uncertainties are still underestimated by a factor of 3-4

Figures of merit

- 1. σ of core Gaussian (best-measured chambers)
- 2. RMS, cut at 1 cm
- 3. |max| (worst outlier)

790 chambers	core σ	RMS	max
lowbias x	50	280	4500
lowbias y	270	860	6000
standalone x	50	1040	∞
standalone y	290	1540	34000
	1	I	microns

standalone lowbias Entries 0.0000768 0.03091 100 0.01661 9.63/7 0.00487 ± 0.00027 x chamber positions (cm) x chamber positions (cm)

Notes for the previous page (page 13)

- Fits are purely Gaussian on a restricted range: $\pm 100~\mu \text{m}$ for x and $\pm 500~\mu \text{m}$ for y.
- ▶ The RMS that I quote is cut at 1 cm (as stated on the previous page). The RMS that ROOT reports in its statistics boxes is cut to the current window width, and I zoom into some of the plots for detail. Therefore, ROOT sometimes a different RMS in its statistics box than I quote in the table and in plots on the next few pages. I was careful to always use a 1 cm cut in all the numbers I report!
- |max| is extremely twitchy, as you may imagine. These |max| numbers are dominated by the few chambers that diverge, so the numerical value doesn't have a precise meaning, it's only a guide to say that I still have divergent chambers. It will become more useful when I fix that DT problem.
- For the sake of the table, I selected the largest "reasonable" value. A few values were 5098450298475e+4598; I skipped those. In the case labelled with an ∞, there wasn't a clear break between reasonable and unreasonable.

Figures of merit versus iteration

- \triangleright Core σ largely unchanged after first iteration
- standalone method requires 7 iterations

Figures of merit versus integrated luminosity

- ▶ lowbias reaches sensitivity limit between 10 and 100 pb⁻¹
- ▶ standalone technique reaches limit below 10 pb⁻¹

Notes for the previous page (page 15)

▶ That second plot looks very strange because the high-luminosity point actually has less resolution than the low luminosity point. If you look at the corresponding resolution vs. iteration, you'll see that this difference is in the noise. If I assigned errorbars, the points would be consistent.

in progress

Planned systematics studies

- Dependence of lowbias on tracker alignment in progress
- Dependence on fitting constraints
- Dependence on survey constraints
 - obtain survey geometries and apply constraints
- Dependence on tracking algorithm
 - Uncertainty in distribution of material
 - Uncertainty in $\vec{B}(\vec{x})$
- Background studies in CSA07
 - ► Multiple scattering in low-p_T muons
 - Alignment with $J/\psi \rightarrow \mu\mu$
 - Effect of fake muons in the alignment stream
 - Obtain realistic background samples from CSA07
 - Finalize track quality cuts

Notes for the previous page (page 16)

• We already have a small J/ψ sample that we can work with. Due to inefficiencies of low- p_T muons, it probably won't be possible to do an alignment with these J/ψ s, but we can at least compare the widths of the residual distributions, and scale from that.

Testing the alignment system in **MTCC**

Karoly Banicz's (re-)discovery of layer offsets

- Agrees with FAST site measurements
- ▶ We want to reproduce this study in AlignmentProducer

□ Pick good segments, fix end-points and look at residuals in intermediate layers:

120 aligned layer positions	mean	stdev	max
X	-55 μ m	$190~\mu$ m	$670~\mu{ m m}$
y	$110~\mu$ m	330 μ m	1.2 mm
$\phi_{m{z}}$	0.01 mrad	0.04 mrad	0.15 mrad

Preliminary MTCC alignment with AlignmentProducer

- ▶ Alignment attempts were beset by random crashes
- ► A single standalone iteration survived; not enough for a reliable alignment, but enough for order-of-magnitude

102 semi-aligned layer positions	mean	stdev	max
X	8 μ m	192 μ m	440 μ m

- in rough agreement with Karoly's results
- ▶ We'll need more data and more robust computation
- ► Likely to get both with MTCC 1_5_0 re-reconstruction

How well can we do layer-by-layer alignments anyway?

Back to MC...

3920 layers	core σ	RMS	max
lowbias x	50	1630	6600
lowbias y	360	1830	13000
standalone x	60	1720	6600
standalone y	380	1970	6400
			microns

Summary

- Overall scheme and infrastructure components are now mature
- ► Entering the era of precision alignment studies
- Procedure is ready for CSA07, some updates need to be checked into CVS
- ▶ We have taken a first glance at MTCC data and are ready to apply our software to 1_5_0 re-reconstructed data
- Concrete list of systematics studies planned for CSA07
- ▶ The software is available for cosmic ray/beam halo studies. . .
- ▶ We're starting to write a CMS Note

Backup Slides

Dependence of lowbias on tracker alignment

- ► The lowbias technique aligns the muon system using tracks which were fitted to the silicon tracker
- ▶ How does muon alignment depend on the tracker's alignment?

▶ Differences between alignment scenarios appears to be weak

Dependence on fitting constraints

Reducing the number of degrees of freedom should improve convergence

Again, dependence is weak

Notes for the previous page (page 25)

- ▶ Both of the last two studies, the dependence on tracker alignment and on fitting constraints, seem pretty conclusive, but I'm not sure how to interpret the statistics.
- ▶ At face value, it looks like there are no statistically significant differences between anything, though the histograms are not exactly the same (which would be evidence of a mistake).
- ▶ But they all began with the same misalignment (at least they were supposed to!) and aligned on the same data, so they're not statistically independent.
- ▶ There are several follow-up studies I can do: (a) make sure that the initial misalignments are the same, (b) follow each chamber individually in the various cases.

Are the MTCC layer offsets real?

- Or are we under-reporting our uncertainties?
- Can we find a pair of divergent layers in the same chamber?

▶ red is layer 3, blue is layer 6 in chamber 27 in ME+3/2

Notes for the previous page (page 26)

▶ This is not completely convincing because I haven't controlled for the possibility that the whole chamber hasn't rotated, in, say, ϕ_{v} . This can lead to the x projection showing a discrepancy between layers. There could be rock-solid evidence of $\sim 200 \ \mu m$ misalignment here (other than, of course, Karoly's alignment calculation and its agreement with FAST measurements), but it will take more work to rule out other hypotheses.