1. Problem Statement

Two-Stage Operational Amplifier at 1 um technology

If K_N '=120 μ A/V², K_P '= 25 μ A/V², VTN = |VTP| = 0.5, λ n= 0.06V⁻¹, and λ p =0.08 V⁻¹.

Design a two-stage, CMOS op amp that meets the following specifications. Assume the channel length is to be $1\mu m$ and the load capacitor is CL = 10 pF.

Note: For 1um design consider the standard model used in the lab.

Av > 3000V/V	<i>VDD</i> =2.5V	<i>GB</i> = 5MHz	<i>SR</i> > 10V/μs
60° phase margin	0.5V <vout range<2v<="" td=""><td><i>ICMR</i> = 1.25V to 2V</td><td>Pdiss 2mW</td></vout>	<i>ICMR</i> = 1.25V to 2V	Pdiss 2mW

2. Circuit Diagram

3. Spice Code

a) SPICE CODE for AC Analysis of circuit:

```
*mini project
.include "1um_model.sp"
*set sizing of MOS
m1 1 3 2 0 N_1u w=1.644u l=1u
m2 4 5 2 0 N_1u w=1.644u l=1u
m3 1 1 6 6 P_1u w=20u l=1u
m4 4 1 6 6 P_1u w=20u l=1u
m5 2 9 0 0 N_1u w=4.25u l=1u
m6 7 4 6 6 P_1u w=209.6u l=1u
m7 7 9 0 0 N_1u w=20.77u l=1u
m8 9 9 0 0 N_1u w=4.25u l=1u
*capacitors
ib 6 9 30ua
Cc 7 4 2pf
Cl 7 0 10pf
vdd 6 0 2.5v
*set Vin val
vin1 3 10 dc 1.8v
vin2 5 12 dc 1.8v
vac 12 10 ac 1v
.ac dec 10 1 1g
.op
.probe
.end
```

b) SPICE CODE FOR Transient Analysis:

```
*mini project
.include "1um_model.sp"
*set sizing of MOS
m1 1 3 2 0 N_1u w=1.644u l=1u
m2 4 5 2 0 N_1u w=1.644u l=1u
m3 1 1 6 6 P_1u w=20u l=1u
m4 4 1 6 6 P_1u w=20u l=1u
m5 2 9 0 0 N_1u w=4.25u l=1u
m6 7 4 6 6 P_1u w=209.6u l=1u
m7 7 9 0 0 N_1u w=20.77u l=1u
m8 9 9 0 0 N_1u w=4.25u l=1u
*capacitors
ib 6 9 30ua
Cc 7 4 2pf
Cl 7 0 10pf
vdd 6 0 2.5v
*set Vin val
vin1 3 10 dc 1.8v
vin2 5 11 dc 1.8v
vin3 12 11 ac sin(0 0.0002 1000)
```

.op

.probe

.end

.tran 1u 40ms

4. Calculations

- 1.) The first step is to calculate the minimum value of the compensation capacitor C_c , $C_c > (2/10)(10 \text{ pF}) = 2 \text{ pF}$
- 2.) Choose C_c as 3pF. Using the slew-rate specification and C_c calculate I_5 . $I_5 = (2x10^{-12})(10x10^6) = 20 \mu A$
- 3.) Next calculate $(W/L)_3$ using ICMR requirements

$$(W/L)_3 = \frac{30X10^{-6}}{25X10^{-6}[2.5 - 2 - 0.65 + 0.25]} = 20 \rightarrow (W/L)_3 = (W/L)_4 = 20$$

4.) Now we can check the value of the mirror pole, p_3 , to make sure that it is in fact greater than 10GB. Assume the $C_{OX} = 6 \text{fF}/\mu\text{m}^2$. The mirror pole can be found as

$$p \approx \frac{-gm3}{2C_{gs3}} = \frac{-\sqrt{2}K^2pS3I3}{2(0.667)W3L3Cox} = \frac{(2x25x10^{6})x(30)x(15x10^{-6})^{1/2}}{2x(0.667)x30x1(6x10^{-3})^{1/2}} = 0.62GHz$$

or 622 MHz. Thus, p_3 , is not of concern in this design because $p_3 >> 10GB$.

5.) The next step in the design is to calculate g_{m1} to get

$$gm1 = (5x10^6)(2\pi)(2x10^{-12}) = 62.83\mu S$$

Therefore, $(W/L)_1$ is

$$(W/L)_1 = (W/L)_2 = g_{m1}^2 = (62.83x10^{-6})^2 = 1.644$$

 $2K_N I_1 = (62.83x10^{-6})^2 = 1.644$

$$\Rightarrow$$
 (W/L)₁=(W/L)₂=1.644

6.) Next calculate VDS5,

$$V_{DS5} = (-1) - (-2.5) - \sqrt{\frac{20 \times 10^{-6}}{120 \times 10^{-6} \times 1.6449}} - .65 = 0.28168 \text{V}$$

Using V_{DS5} calculate $(W/L)_5$ from the saturation relationship.

$$(W/L)_5 = 2(20x10^{-6}) = 4.25$$

 $(120x10^{-6})(0.2816)^2$

7.) For 60° phase margin, we know that

$$gm6 \ge 10gm1 = 691.3\mu S$$

Assuming that $g_{m6} = 691.3 \mu S$ and knowing that $g_{m4} = 150 \mu S$, we calculate $(W/L)_6$ as

$$(W/L)_6 = 20 \times \frac{691.3 \times 10^{-6}}{(150 \times 10^{-6})} = 97.74$$

8.) Calculate *I*6 using the small-signal *gm* expression:

$$I_6 = \frac{(691.13 \times 10^{-6})^2}{(2)(25 \times 10^{-6})(97.74)} = 94.256 \mu A$$

If we calculate $(W/L)_6$ based on $V_{out}(max)$, the value is approximately 15. Since 94 exceeds the specification and maintains better phase margin, we will stay with $(W/L)_6 = 94$ and $I6 = 94.256 \mu A$.

With $I_6 = 94.256\mu A$ the power dissipation is

$$P_{diss} = 5V \cdot (30\mu A + 94.256\mu A) = 0.6218\text{mW}$$

9.) Finally, calculate (W/L)7

$$\frac{(W/L)^7 = 4.2 \times 97.74 \times 10^{-6}}{20 \times 10^{-6}} = \frac{20.77}{20 \times 10^{-6}}$$

Let us check the $V_{out}(min)$ specification although the W/L of M7 is so large that this is probably not necessary. The value of $V_{out}(min)$ is

$$v_{out(min)} = v_{DS7(sat)} = \sqrt{\frac{2.97.74}{120.20.77}} = 0.28 \text{V}$$

which is less than required. At this point, the first-cut design is complete.

10.) Now check to see that the gain specification has been met
$$A_{V} = \frac{(62.83 \times 10^{-6})(691.3 \times 10^{-6})}{20 \times 10^{-6} (.08 + .06) 97.74 \times 10^{-6} (.08 + .06)} = 1133.36 \text{V/V}$$

If the gain specification is not met, then the currents, 15 and 16, can be decreased or the W/L ratios of M2 and/or M6 increased. So I have increased W/L ratio of M6 in the final design to get a desired value of Av > 3000

5. Simulation

200uV input

Vout in transient analysis

Phase plot in AC analysis

-3db frequency in AC analysis

Magnitude Plot in AC Analysis

6. Observation Tables

S.No.	(W/L)6	gm1 (uS)	VDS5 (V)	gm6 (uS)	Av (V/V)	15 (uA)	I6 (uA)	-3db freq (KHz)	GM (db)	PM (deg)
1.	97.7	58.3	3.69e-1	766	360.945	28.7	74.5	163.27 562	-28.761 048	88.10
2.	150	58.3	3.69e-1	1170	627.5	28.7	114	109.90 343	-29.443 602	84.35
3.	180	58.3	3.69e-1	1410	831.9	28.7	137	80.56	-29.632 364	82.70
4.	209.6	58.3	3.69e-1	1630	1131.3	28.7	159	51.565 538	-29.556 951	81.15
5.	<mark>234.5</mark>	58.3	3.69e-1	1790	<mark>3010</mark>	28.7	175	9.2509 604	-28.894 108	79.6

7. Conclusion

- 1. A two stage differential amplifier was designed using the given specifications. It was found that increasing the value of (W/L)6 increased the gain of the differential amplifier which is visible in the above observations.
- 2. The 2-Stage Opamp using CMOS had an equivalent effect on increasing I6.
- 3. 3db Frequency decreases with increasing (W/L)6 or I6 equivalently.

4. Table for calculated values of circuit parameters for S6 = 97.7 vs Simulated results

S.No.	Parameter	Calculated Value	Simulated Value	Deviation
1	I6 (uA)	97.74	74.5	23.77%
2	gm1 (uS)	62.83	58.3	7.21%
3	gm4 (uS)	141.42	145	2.53%
4	gm6 (uS)	691.13	766	10.83%
5	Av (V/V)	1133.36	360.945	68.15%

8. Result

- 1. We have successfully designed a two-stage, CMOS op amp that met the criterion specified in the problem statement.
- 2. We have done AC and Transient Analysis of the circuit & observed the 3dB Frequency, Phase Margin, Gain Margin and Voltage Gain for different values of (W/L)6
- 3. **DESIGN** -

