Graphen in der Informatik

Thema 07 Graphersetzung

Graphentheoretische Konzepte und Algorithmen

Julia Padberg

Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences

Graphentheorie: Welche Typen von Graphen gibt es? Welche Strukturen treten in Graphen auf? Welche bekannten Sätze über Graphen gibt es? (z.B. Vierfarbentheorem)

- Graphalgorithmen: Wie kann man Graphen am besten algorithmisch verarbeiten? Welche Verfahren gibt es, um Graphen zu untersuchen? (z.B. Chinese Postman Problem, Max Flow)
- **Graph Drawing:** Wie lassen sich Graphen am besten visualisieren? Welche Algorithmen gibt es, um Graphen zu zeichnen?
- **Graphtransformation:** Wie kann man Graphen mit Hilfe von Regeln transformieren? Wie funktionieren Graphgrammatiken? Wie kann man nebenläufige Systeme mit Hilfe von Graphtransformationsregeln modellieren?

Intro GraTras

Padberg (HAW Hamburg)

BAI3-GKA

Einführung in Graphersetzungssysteme

Padberg (HAW Hamburg)

Intro GraTras

THM 07

- Beschreibung von System-Zuständen
- → Petri-Netze, Graphen, Hypergraphen, attributierte Graphen, ...
- Beschreibung von Zustands-Änderungen
- → Netz-, Graph-, Hypergraph-, attributierte Graph-Ersetzung, ...

Graphersetzungssysteme

Graphen

- komplexe Datenobjekte, die Informationen und Beziehungen repräsentieren
- anschaulich
- mathematische Gebilde

Graphmanipulation

- ightharpoonup durch Ersetzungsregeln $L \Longrightarrow R$ (bewirken lokale Änderung)
- zum Erzeugen von Graphen
- zum Ändern von Zuständen
- als Berechnungsprozess

Padberg (HAW Hamburg) BAI3-GKA 3 Padberg (HAW Hamburg) BAI3-GKA

Idee der regelbasierten Graphersetzung

- Ziel: Intuitive und formale Beschreibung von Veränderungen.
- Idee: Regeln $L \Longrightarrow R$ beschreiben lokale Veränderungen.
- Graphmanipulation durch Anwendung von $L \Longrightarrow R$ in beliebiger Umgebung. Intuition: Gegeben ein "Vorkommen" von L in G, dann verändern wir L zu R.

- ▶ In welcher Form darf *L* in *G* vorkommen? Teilgraph? Teilgraph bis auf Isomorphie? ...
- ightharpoonup Was passiert mit Kanten in G L, die Knoten in L berühren? Wie wird Rmit G - L verbunden?

Anwendungsbereiche

Intro GraTras

- Auswertung von funktionalen Ausdrücken
- Logische Programmierung
- Semantik von objektorientierten Sprachen
- Semantik von visuellen Sprachen
- modellgetriebene Softwareentwicklung
- Modellierung von nebenläufigen oder verteilten Systemen
- Rollenbasierte Zugriffskontrolle
- Migration von Software

Padberg (HAW Hamburg)

Padberg (HAW Hamburg) Intro GraTras

THM 07

BAI3-GKA

THM 07

Intro GraTras

Semantik von visuellen Sprachen

Einfügen einer Assoziation in Klassendiagramm

Padberg (HAW Hamburg) BAI3-GKA Padberg (HAW Hamburg) BAI3-GKA Roles

Project Sponsor

Project Leader

Users

Anne

Charles

THM 07 Intro GraTras

Software Migration

Translating Satellite Procedures: PIL2SPELL

- Uni Luxembourg
 - & industrieller Partner SES (Socièté Europèenne des Satellites)
- ► Hersteller nutzen propritäre Sprachen
- SES betreibt 56 Satelliten
- automatisierte Migration open source satellite language SPELL

Padberg (HAW Hamburg) BAI3-GKA 9

Permissions

O

O) o3

O) o4

read

p

write

execute

Padberg (HAW Hamburg)

7 Intro GraTras

THM 07

BAI3-GKA

10

THM 07 Intro GraTras

Programmer

```
SELECT
  CASE ($BATT = "HIGH")
                              if (BATT == 'HIGH'):
    CHECKTM (TEMP_C1)
    CHECKTM(VOLT D2 = 4)
                                GetTM('T TEMP C1')
                                Verify([['T VOLT_D2', eq, 4]])
  ENDCASE
  CASE (\$BATT = "LOW")
                              elif (BATT == 'LOW'):
    SEND SWITCH_B1_B2
                                Send(command = 'C SWITCH_B1_B2',
      CHECKTM(VOLT3 = 5)
                                     verify = [['T\ VOLT3', eq, 5]])
    ENDSEND
                              #ENDIF
  ENDCASE
ENDSELECT
```

 ${\bf Fig.\,1.}$ Procedure written in PIL (left) and translated procedure in SPELL (right)

Source Language AST-Conversion Target Language Refactoring (GT, Henshin) Extended Source Source Target Source Source Code **AST AST** Code Parsing Serialisation Initialisation Translation Graph (Xtext) (TGGs, Henshin) (Xtext) (GT, Henshin)

Fig. 2. Concept for software translation

Padberg (HAW Hamburg) BAI3-GKA 11 Padberg (HAW Hamburg) BAI3-GKA

Übersicht

Intro GraTras

Basisdefinitionen

Formalisierung

Modellierungskonzepte

Graphersetzungssystem

NACs

Graphgrammatiken

Basisdefinitioner

Mächtigkeit

Schluss

Padberg (HAW Hamburg)BAI3-GKA1

THM 07 Basisdefinitioner

Graphen

Definition

Sei $C = (C_V, C_E)$ ein Paar von **Markierungsalphabeten**. Ein gerichteter, markierter **Graph** über C ist durch G = (V, E, s, t, l, m) gegeben. Dabei sind

- ▶ V, E endliche Mengen von Knoten und Kanten,
- $s, t: E \rightarrow V$ Abbildungen, die jeder Kante eine **Quelle** und ein **Ziel** zuordnen,
- ▶ *I*: $V \to C_V$ und $m: E \to C_E$ Abbildungen, die jedem Knoten eine **Knotenmarkierung** und jeder Kante eine **Kantenmarkierung** zuordnen.

Die Komponenten von G werden auch mit V_G , E_G , s_G , t_G , l_G und m_G bezeichnet.

!!! Ein Graph mit leerer Knotenmenge heißt **leerer** Graph und wird mit 0 bezeichnet.

Padberg (HAW Hamburg) BAI3-GKA

......

Notation

.....und welche Graphen wir ab jetzt benutzen

Wir benutzen also

gerichtete,

15

- kantenmarkierte,
- knotenmarkierte
- Multigraphen (also mit Schlingen & Mehrfachkanten)

Konventionen

C	coloring alphabet	Markierungsalphabet
V	vertex set	Knotenmenge
E	edge set	Kantenmenge
S	source	Quelle
t	target	Ziel
1	labelling	Knotenmarkierung
m	marking	Kantenmarkierung
v_1, v_2, v_3, \dots	vertices	Knoten
e_1, e_2, e_3, \dots	edges	Kanten

THM 07 Basisdefinition

BSP

$$G = (V_G, E_G, s_G, t_G, l_G, m_G) \text{ mit } V_G = \{v_1, \dots, v_5\}$$
 $E_G = \{e_1, \dots, e_6\}$
 $\begin{vmatrix} e_1 & e_2 & e_3 & e_4 & e_5 & e_6 \\ s_G & v_2 & v_2 & v_2 & v_3 & v_4 & v_4 \\ \hline t_G & v_1 & v_2 & v_3 & v_4 & v_2 & v_2 \\ \hline m_G & B & A & A & B & D & A \end{vmatrix}$

$$I_G(v_i) = * \text{ für } i = 1, ..., 5$$

 $* \in C_V \text{ und } \{A, B, D\} \subseteq C_E$

Padberg (HAW Hamburg)

BAI3-G

Padberg (HAW Hamburg)

07 Basisdefinitionen

BAI3-GKA

THM 07 Basisdefinitionen

Idee der regelbasierten Graphmanipulation

► Regeln haben eine linke und eine rechte Seite. Die Seiten stehen über einen gemeinsamen Klebegraphen in Beziehung:

$$r = \langle L \supseteq K \subseteq R \rangle$$
.

- L-K beschreibt die zu löschende Elemente.
- ► *R*−*K* beschreibt die hinzuzufügenden Elemente.
- K beschreibt den zu erhaltenden Teil.
- ▶ Das Vorkommen der linken Seite L in einem Graphen G wird durch einen Graphmorphismus $g: L \to G$ beschrieben.
- Nebenbedingungen garantieren, dass das Ergebnis der Regelanwendung wieder ein Graph ist.

Beispiel

Erzeugung von Flussdiagrammen

Syntax der Anweisungen (BNF)

Zuweisung Sequenz Alternative Schleife S ::= V := E S; $S \mid \underline{if} \mid B \mid \underline{then} \mid S \mid \underline{else} \mid S \mid \underline{while} \mid B \mid \underline{do} \mid S$

 $C_V = \{\bullet, S, V := E, B\}$ und $C_E = \{\text{"unmarkiert"}, t, f\}$

Padberg (HAW Hamburg) BAI3-GKA 19 Padberg (HAW Hamburg) BAI3-GKA

- 2: ● ⊇ ● ⊆ ● ●
 2. Wie müssten Sie Ihre Regelmenge verändern, um auch unzusammenhängende Graphen zu erzeugen?
- Vorkommen
- Ableitung

struktur- und markierungerhaltenden Abbildungen

zwischen Graphen:

- bilden Knoten auf Knoten und Kanten auf Kanten ab,
- bewahren Quelle und Ziel von Kanten.
- bewahren Markierungen.

Hinweis: Graphisomorphie

Padberg (HAW Hamburg)

BAI3-GKA

-GKA

TUM 07 Formal

Ausflug: Abbildungen

Definition

Unter einer Abbildung f von einer Menge A in eine Menge B versteht man eine Vorschrift, die jedem $a \in A$ eindeutig ein bestimmtes $b = f(a) \in B$ zuordnet: $f: A \longrightarrow B$.

Für die Elementzuordnung verwendet man die Schreibweise $a \mapsto b = f(a)$ und bezeichnet b als das Bild von a, bzw. a als ein Urbild von b.

- Eigenschaften: injektiv, surjektiv, bijektiv
- Komposition
- Identität, Umkehrabbildung
- ► Bild, Urbild, Kern

25

Padberg (HAW Hamburg)

BAI3-GKA

THM 07 Formalisierung

Ausflug: Abbildungen

Komposition

Die **Komposition** (oder Verknüpfung) zweier Abbildungen $f: A \rightarrow B$ und $g: B \rightarrow C$ ist durch

$$a \mapsto (g \circ f)(a) = g(f(a)), \quad a \in A$$

definiert und in dem folgendem Diagramm veranschaulicht:

 $g \circ f$

Die Verknüpfung o ist assoziativ, d.h.

$$(h \circ q) \circ f = h \circ (q \circ f)$$

aber offensichtlich nicht kommutativ.

Padberg (HAW Hamburg) BAI3-GKA

THM 07 Formalisierung

Ausflug: Abbildungen

Eigenschaften

Definition

Eine Abbildung $f: A \longrightarrow B$ zwischen zwei Mengen A und B heißt

- ▶ injektiv, falls $f(a) \neq f(a')$ für alle $a, a' \in A$ mit $a \neq a'$
- ▶ **surjektiv**, falls es für jedes $b \in B$ ein $a \in A$ gibt mit f(a) = b
- bijektiv, falls *f* sowohl injektiv als auch surjektiv ist.

27

Ausflug: Abbildungen

Aufgabe 2:

Gegeben sei $f: \mathbb{N}^+ \to \mathbb{N}^+$ mit f(1) = 2 und f(n) = f(n-1) + 2.

1. f ist injektiv.

X wahr oder falsch

2. f ist surjektiv.

wahr oder X falsch

3. $f \circ f$ ist injektiv.

X wahr oder falsch

Graphmorphismen

Definition

Seien G und H Graphen über C. Ein **Graphmorphismus** $f:G\to H$ von G nach H ist ein Paar von Abbildungen $f=\langle f_V:V_G\to V_H,f_E:E_G\to E_H\rangle$, so dass für alle $e\in E_G$ und alle $v\in V_G$ gilt:

 $f_V(s_G(e)) = s_H(f_E(e)) \text{ und } f_V(t_G(e)) = t_H(f_E(e))$

(Bewahrung von Quelle und Ziel)

 $\vdash I_G(v) = I_H(f_V(v)) \text{ und } m_G(e) = m_H(f_E(e))$

(Bewahrung von Markierungen)

Padberg (HAW Hamburg)

BAI3-GKA

Padberg (HAW Hamburg)

BAI3-GKA

THM 07

Formalisierung

Diagrammatische Darstellung

Graphmorphismen

Definition

Seien G und H Graphen über C. Ein **Graphmorphismus** $f:G\to H$ von G nach H ist ein Paar von Abbildungen, so dass

kommutiert.

THM 07 Formalisierung

Beispiel

BAI3-GKA

Padberg (HAW Hamburg) BAI3-GKA

31

Padberg (HAW Hamburg)

Aufgabe 3:

Gegeben die folgenden Graphen, wobei die Knoten und Kantenalphabete

 $C_V = C_E = \{*\}$ seien:

Gibt es einen Morphismus zwischen den folgenden Graphen?

- 1. $f: G_1 \rightarrow G_2$
- 2. $f: G_3 \rightarrow G_1$

- 3. $f: G_2 \to G_3$
- 4. $f: G_2 \rightarrow G_1$

Padberg (HAW Hamburg)

Lösung von Aufg

1. $f: G_1 \rightarrow G_2$

Ja, mit

- $f_V: v1 \rightarrow v2$ $v2\rightarrow v1$
 - $v3\rightarrow v3$
 - $v4\rightarrow v2$ $v5\rightarrow v4$
- 2. $f: G_3 \to G_1$

Nein, den die Schlinge e1 kann nicht abgebildet werden.

- 3. $f: G_2 \to G_3$
 - Ja, mit $f_V: v1 \rightarrow v1$
 - $v2\rightarrow v1$
 - $v3\rightarrow v1$
 - $v4\rightarrow v2$
 - $v5\rightarrow v3$
- 4. $f: G_2 \rightarrow G_1$

Nein, denn die Schlinge e3 kann nicht abgebildet werden.

Padberg (HAW Hamburg)

THM 07 Formalisierung

Definition

Ein Graphmorphismus $f = \langle f_V, f_E \rangle$ heißt **injektiv (surjektiv, bijektiv)**, wenn f_V und f_F injektiv (surjektiv, bijektiv) sind.

Zwei Graphmorphismen $f, g: G \to H$ sind **gleich**, in Zeichen f = g, wenn $f_V = g_V$ und $f_E = g_E$ gilt, d.h $f_V(v) = g_V(v)$ für alle $v \in V_G$ und $f_E(e) = g_E(e)$ für alle $e \in E_G$ gilt.

Ein bijektiver Graphmorphismus $f: G \rightarrow H$ heißt *Isomorphismus*. In diesem Fall heißen G und H isomorph, in Zeichen $G \cong H$.

Ein **abstrakter Graph** [G] ist die Isomorphieklasse eines Graphen G:

$$[G] = \{G' \mid G \cong G'\}.$$

Komposition von Graphmorphismen

Definition

Seien $f: G \to H$ und $g: H \to I$ Graphmorphismen.

Dann ist die **Komposition** $g \circ f : G \to I$ von f und g definiert durch $g \circ f := (g_V \circ f_V, g_F \circ f_F)$ die Komposition der Kanten- und Knotenabbildungen.

BSP:

BAI3-GKA Padberg (HAW Hamburg)

35

Definition

Eine Graphersetzungsregel (kurz Regel) über C hat die Form

$$r = \langle L \supseteq K \subseteq R \rangle$$

wobei *L*, *K*, und *R* Graphen über *C* sind. *L* heißt linke Seite, *R* rechte Seite und *K* Klebegraph von *r*.

Padberg (HAW Hamburg)

BAI3-GKA

Anwendung von $r = \langle L \supseteq K \subseteq R \rangle$ auf G (skizziert):

- 1. Wähle ein Vorkommen von L in G, d.h. einen Graphmorphismus $g: L \rightarrow G$.
- 2. Überprüfe die Kontakt- und Identifikationsbedingung.
- 3. Lösche g(L-K), d.h. alle Kanten in $g_E(E_L-E_K)$ und alle Knoten in $g_V(V_L-V_K)$. Zwischenergebnis: D = G g(L-K).
- 4. Füge R-K hinzu, d.h. alle Knoten in $V_R - V_K$ und alle Kanten in $E_R - E_K$. Ergebnis: H = D + (R - K).

Padberg (HAW Hamburg)

BAI3-GKA

THM 07 Formalisierung

Aufgabe 4:

Gegeben der Graph G und die Regel: $r = \langle L \supseteq K \subseteq R \rangle$

 \supseteq

Wählen Sie ein Vorkommen von L in G,
 d.h. einen Graphmorphismus g: L → G.

Lösche g(L-K),

d.h. alle Kanten in $g_E(E_L-E_K)$ und alle Knoten in $g_V(V_L-V_K)$.

Zwischenergebnis: D = G - g(L-K).

Füge R-K hinzu,

d.h. alle Knoten in $V_R - V_K$ und alle Kanten in $E_R - E_K$.

Ergebnis: H = D + (R - K).

Geht das immer?

THM 07 Formalisie

Lösung von Aufgabe 4

Nein, geht nicht immer. Sie haben jetzt eine direkte Ableitung $G \Longrightarrow H$

Padberg (HAW Hamburg) BAI3-GKA 39 Padberg (HAW Hamburg) BAI3-GKA

THM 07 Formalisierung

Aufgabe 5:

Gegeben die Graphregeln, die von dem Graphen der aus einem Knoten besteht ausgehend, nur zusammenhängende Graphen erzeugten:

Multigraphen zu erzeugen.

- 2. Geben Sie bitte den Ableitungsschritt, der die Schlinge erzeugt, explizit an.

1. Geben Sie bitte die Ableitungen an, um diesen

Löschen ohne Identifikationsbedingung

Padberg (HAW Hamburg)

$\begin{bmatrix} A_{i} & A_{i} \\ A_{i} & A_{i} \end{bmatrix}$ $\supseteq \begin{bmatrix} A_{i} & A_{i} \end{bmatrix}$

BAI3-GKA

Löschen

Satz

Seien L und K Graphen mit $K \subseteq L$ und $g: L \rightarrow G$ ein Graphmorphismus, der die folgenden Bedingungen erfüllt:

- Kontaktbedingung:
- Für alle $e \in E_G g_E(E_L)$: $s_G(e)$, $t_G(e) \in V_G g_V(V_L V_K)$.
- Identifikationsbed.:

Für alle $x, y \in L$: g(x) = g(y) impl. x = y oder $x, y \in K$.

 $(x \in L \text{ steht für } x \in V_l \cup E_l)$

Dann ist $D = (V_D, E_D, s_D, t_D, l_D, m_D)$ ein Teilgraph von G mit:

$$V_D = V_G - g_V(V_L - V_K)$$
und $E_D = E_G - g_E(E_L - E_K)$
 $s_D = s_G|_{E_D}$ und $t_D = t_G|_{E_D}$
 $I_D = I_G|_{V_D}$ und $m_D = m_G|_{E_D}$

Padberg (HAW Hamburg) Formalisierung

Beweisidee

- Gegeben die Konstruktion von D
- Nachweis, dass D ein Graph ist, also für alle $e \in E_D$: $s_G(e)$, $t_G(e) \in V_D$.
 - Kante nur in G
 - Kante auch in K
- Markierungen sind trivialerweise Abbildungen, da die Markierungsalphabete nicht verändert werden
- \triangleright $s_D, t_D : E_D \rightarrow V_D$ sind Abbildungen.

Formalisierung

Padberg (HAW Hamburg)

Hinzufügen/Verkleben

Satz

THM 07

Seien K und R Graphen mit $K \subseteq R$ und $d: K \to D$ ein Graphmorphismus.

Dann ist $H = (V_H, E_H, s_H, t_H, l_H, m_H)$ mit

$$V_H = V_D + (V_R - V_K)$$

 $E_H = E_D + (E_R - E_K)$

$$s_H \colon E_H \to V_H \text{ mit } s_H(e) = \left\{ egin{array}{ll} s_D(e) & ext{für } e \in E_D \\ d_V(s_R(e)) & ext{für } e \in E_R - E_K \text{ mit } s_R(e) \in V_K \\ s_R(e) & ext{sonst} \end{array} \right.$$

 $t_H \colon E_H \to V_H$ analog zu s_H

$$I_H \colon V_H \to C_V \text{ mit } I_H(v) = \left\{ \begin{array}{ll} I_D(v) & \text{für } v \in V_D \\ I_R(v) & \text{sonst} \end{array} \right.$$

 $m_H \colon E_H \to C_E$ analog zu l_H

ein Graph, die **Verklebung** von **D** und **R** gemäß **d**.

Eigenschaften der Verklebung

Satz

Seien K und R Graphen mit $K \subseteq R$ und $d: K \to D$ ein Graphmorphismus.

Dann hat die Verklebung H von D und R gemäß d folgende Eigenschaften:

BAI3-GKA

- 1. *D* ⊆ *H*
- 2. $h: R \to H$ mit $h(x) = \begin{cases} x & \text{für } x \in R K \\ d(x) & \text{sonst} \end{cases}$ ist ein Graphmorphismus.

BAI3-GKA

3. $d: K \to D$ ist die Einschränkung von $h: R \to H$ auf K und D.

47 Padberg (HAW Hamburg) BAI3-GKA Padberg (HAW Hamburg)

Direkte Ableitung

Definition

Sei G ein Graph, $r = \langle L \supseteq K \subseteq R \rangle$ eine Regel, $g: L \to G$ ein Graphmorphismus, der die Kontakt- und Identifikationsbedingung erfüllt, und M isomorph zu dem Ergebnis der Anwendung von r auf G:

 $G \stackrel{(r,g)}{\Longrightarrow} M$ heisst **direkte Ableitung** von G nach M bezüglich r und g. Hierfür schreiben wir auch $G \stackrel{r}{\Longrightarrow} M$ oder kurz $G \Longrightarrow M$.

Ableitung

Definition

 $G \Longrightarrow M$ heisst **Ableitung** von G nach M, wenn

- ▶ $G \cong M$ oder
- wenn es eine Folge direkter Ableitungen der Form $G = G_0 \stackrel{r_1,g_1}{\Longrightarrow} \dots \stackrel{r_n,g_n}{\Longrightarrow} G_n \cong M$ gibt. Wir schreiben für eine Regelmenge $\mathcal R$ auch $G \stackrel{\mathcal R}{\Longrightarrow} M$ falls $r_1,\dots,r_n \in \mathcal R$.

Padberg (HAW Hamburg) BAI3-GKA

107 Modellierungskonzepte

Padberg (HAW Hamburg)

BAI3-GKA

BSP

THM 07

Direkte Ableitung

Formalisierung

Padberg (HAW Hamburg)

BAI3-GKA

Konzepte

	Fokus	typische Ergänzungen
Graph- Ersetzungs- Systeme ¹	Modellierung von Syste- men durch direkte, se- quentielle oder pararalle Ableitungen	Kontrollstrukturen, wie negative Anwendungs-bedingungen ³ Typgraphen Transformationseinheiten
Graph- Grammatiken ²	Beschreibung aller ableit- baren Graphen, also Gra- phsprachen Mächigkeit	Terminal- und Nontermi- nalsymbole

¹auch Graphtransformationssysteme (engl graph transformation (rewriting) systems)

²(engl graph grammars)

³(engl Negative Application Conditions (NACs))