UofT-MAT257-2014 Note

hysw, etc(will add later)...

$\begin{array}{c} {\rm Monday}~5^{\rm th}~{\rm January},~2015\\ {\rm at}~18{:}12 \end{array}$

C	ontents		9.2 Riemann condition	10
1	KW	2	9.3 Riemann-Lebesgue theorem 9.4 Fundamental theorem of Calculus	10 10
2	TODO	2	9.5 Fubini's theorem	10
4	Basic knowledge 3.1 Abbreviations	3 3 4 4 5	10 Change of Variables 11 Diffeomorphism 12 Manifolds	10 11 11 12
5	Topology 5.1 Definitions	5 5		
6	Measure Theory6.1 Measure zero	6 6		
7	General Calculus7.1 Definitions7.2 Extreme Value Theorem7.3 Intermediate Value Theorem7.4 Mean Value Theorem	7 7 7 7 7		
8	Differential Calculus 8.1 Definitions	8 8 8 8 8 8 9 9		
9	Integral Calculus 9.1 Definitions	10 10		

Page 2 2 TODO

1 KW

Euclidean n-space \mathbb{R}^n , norm, inner product, usual basis, distance, closed rectangle, open rectangle, open, closed, interior, exterior, boundary, open cover, compact(etc...), Heine-Borel Theorem, function, composition, component function, projection function π^i , continuous function, continuous & compact, oscillation, Jacobian matrix, chain rule, partial derivative, continuously differentiable, inverse functions, implicit functions,

2 TODO

Munkers 11.3, 13.*, 14.3, 14.4, 15.*

3 Basic knowledge

Note, this section is for something that does not fit anywhere

3.1 Abbreviations

cts Continuous

msr Measure

3.2 Multi-index Notation

- $\alpha = (\alpha_1, \ldots, \alpha_n)$
- $|\alpha| = \alpha_1 + \dots + \alpha_n$
- $\alpha! = \alpha_1! \cdots \alpha_n!$
- $\bullet \ x^{\alpha} = x_1^{\alpha_1} \cdots x_n^{\alpha_n}$
- $\partial^{\alpha} f = \partial_1^{\alpha_1} \partial_2^{\alpha_2} \cdots \partial_n^{\alpha_n} f = \frac{\partial^{|\alpha|} f}{\partial x_1^{\alpha_1} \partial x_2^{\alpha_2} \cdots \partial x_n^{\alpha_n}}$

4 Linear Algebra

4.1 Definitions

norm A function $p: V \to \mathbb{R}$ such that For all $a \in F$ and all $u, v \in V$

- $p(v) \ge 0 \land [p(v) = 0 \iff v = 0]$ (separates points)
- p(av) = |a|p(v) (absolute homogeneity)
- $p(u+v) \le p(u) + p(v)$ (triangle inequality)

inner product A function $\langle x, y \rangle : V \times V \to \mathbb{R}$ such that

For all $x, y, z \in V$ and $c \in \mathbb{F}$.

- $\bullet \ \langle x, y \rangle = \langle y, x \rangle$
- $\langle x + y, z \rangle = \langle x, z \rangle + \langle y, z \rangle$
- $\langle cx, y \rangle = c \langle x, y \rangle = \langle x, cy \rangle$
- $\langle x, x \rangle > 0$ if $x \neq 0$

Page 5 5 TOPOLOGY

5 Topology

5.1 Definitions

metric A function $d: X \times X \to \mathbb{R}$ such that For all $x, y, z \in X$

- $d(x,y) \geq 0$
- $d(x,y) = 0 \iff x = y$
- $\bullet \ d(x,y) = d(y,x)$
- $d(x,z) \le d(x,y) + d(y,z)$

 ϵ -neighborhood $U(x; \epsilon) = \{y | d(x, y) < \epsilon\}$

open set in metric space A set $U \subseteq X$ is said to be open in X if $\forall x \in U \exists \epsilon > 0[\mathbf{U}(x;\epsilon) \subseteq U]$ note that finite intersections and arbitrary unions of open set are open set

closed set in metric space A set contains all its limit point.

note that closed set is complement of open set in topology

5.2 Partition of unity

TODO

6 Measure Theory

6.1 Measure zero

Let $A \subseteq \mathbb{R}^n$. We say A has measure zero in \mathbb{R}^n if for every $\epsilon > 0$, there is a covering Q_1, Q_2, \ldots of A by countably many rectangles such that $\sum_{i=1}^{\infty} v(Q_i) < \epsilon$. If this inequality holds, we often say that the total volume of the rectangles Q_1, Q_2, \ldots is less than ϵ .

6.2 Theorems

 ${Munkers-11.1}$

- 1. If $B \subseteq A$ and A has measure zero in \mathbb{R}^n , the so does B.
- 2. Let A be the union of the collection of sets A_1, A_2, \ldots If each A_i has measure zero, so does A
- 3. A set A has measure zero in \mathbb{R}^n if and only i

7 General Calculus

7.1 Definitions

oscillation

Given $a \in Q$ define $A_{\delta} = \{f(x)|x \in Q \land |x-a| < \delta\}$. Let $M_{\delta}(f) = \sup A_{\delta}$, and let $m_{\delta}(f) = \inf A_{\delta}$, define oscillation at f by $\operatorname{osc}(f;a) = \inf_{\delta>0}[M_{\delta}(f) - m_{\delta}(f)]$. f is cts at a iff $\operatorname{osc}(f;a) = 0$

7.2 Extreme Value Theorem

Suppose $f: X \to \mathbb{R}$ is continuous and X is compact, then $\exists x_0 \in X$ such that $\forall x \in X. f(x) \leq f(x_0)$.

7.3 Intermediate Value Theorem

Suppose $E \in \mathbb{R}$ is connected and $f: E \to \mathbb{R}$ is continuous.

Suppose f(x) = a and f(y) = b for some $x, y \in E$ and a < b.

Then $\forall a < c < b \exists$ some $z \in E$ such that f(z) = c.

7.4 Mean Value Theorem

Suppose $\phi: [a,b] \to \mathbb{R}$ is

- continuous at each point of **closed** interval [a, b]
- differentiable at each point of **open** interval (a,b)

Then there exists a point $c \in (a, b)$ such that $\phi(b) - \phi(a) = \phi'(c)(b - a)$.

8 Differential Calculus

8.1 Definitions

differentiable f is differentiable at a if there is an n by m matrix B such that

$$\frac{f(a+h) - f(a) - B \cdot h}{|h|} \to 0 \quad \text{as} \quad h \to 0$$

The matrix B is unique.

Directional derivative Given $u \in \mathbb{R}^m$ which $u \neq 0$ define

$$f'(a; u) = \lim_{t \to 0} \frac{f(a + tu) - f(a)}{t}$$

Provide the limit exists.

Partial derivative Define the j^{th} partial derivative of f at a to be the directional derivative of f at a with respect to the vector e_j , provide derivative exists.

$$D_j f(a) = \lim_{t \to 0} \frac{f(a + te_j) - f(a)}{t}$$

8.2 Notations

Df(a): derivative of f at a

f'(a; u): directional derivative of f at a respect to vector u.

 $D_i f(a) : j^{\text{th}}$ partial derivative of f at a.

 f_i : i^{th} component function of f.

 ∇g : gradient of g, $\nabla g = \mathbf{grad}g = \sum_i (D_i g)e_i$

Jf: Jacobian matrix, $J_{ij} = D_i f_i(a)$

8.3 Differentiability Theorems

Theorems Munkers.5.1

If f is differentiable at a then all directional derivative of f at a exist and $f'(a; u) = Df(a) \cdot u$

Theorems Munkers.5.2

If f is differentiable at a then f is continuous at a.

Theorems Munkers.5.3

If f is differentiable at a then $Df(a) = [D_1 f(a) \quad D_2 f(a) \quad \cdots \quad D_m f(a)].$

Theorems Munkers.5.4

- a. $[f \text{ is differentiable at } a] \Leftrightarrow \forall i[f_i \text{ is differentiable at } a].$
- b. If f is differentiable at a, then its derivative is the n by m matrix whose i^{th} row is the derivative of the function f_i . $(Df(a))_i = Df_i(a)$

8.4 Continuously Differentiable Functions

A function is C^1 if all of its partial derivatives are continuous. A function is C^r if all of its partial derivatives are C^{r-1} .

Munkers 6.1

If $f:[a,b] \to \mathbb{R}$ is continuous on [a,b] and differentiable on (a,b), then there exists $c \in (a,b)$ such that f(b) - f(a) = f'(c)(b-a).

Munkers 7.3

Let A be open in \mathbb{R}^m ; let $f: A \to \mathbb{R}$ be differentiable on A. If A contains the line segment with end points a and a + h, then there is a point c = a + th with 0 < t < 1 of this line segment such that f(a + h) - f(a) = (Df(c))h.

Munkers 6.2

Let A be open in \mathbb{R}^m . Suppose that the partial derivative $D_i f_i(x)$ of the component function of f exists at each point x of A and are continuous on A. Then f is differentiable at each point of A.

Munkers 6.3

Let A be open in \mathbb{R}^m , let $f: A \to \mathbb{R}$ be a function of class \mathbb{C}^2 . Then for each $a \in A$: $D_k D_j f(a) = D_j D_k f(a)$.

8.5 Chain Rule

Let $A \subset \mathbb{R}^m$. Let $B \subset \mathbb{R}^n$. Let $f : A \to \mathbb{R}^n$ and $g : B \to \mathbb{R}^p$, with $f(A) \subset B$. Suppose f(a) = b.

If f is differentiable at a and g is differentiable at b, then the composite function $g \circ f$ is differentiable at a. Furthermore,

$$D(g \circ f)(a) = Dg(b) \cdot Df(a)$$

8.6 Inverse Function Theorem

Let A be open in \mathbb{R}^n . Let $f:A\to\mathbb{R}^n$ be of class C^r .

IF Df(x) is invertible at $a \in A$.

THEN There exists a neighborhood of a such that

- $f|_U$ is injective AND f(U) = V open in \mathbb{R}^n
- the inverse function is of class C^r
- $f^{-1}(y) = [f'(f^{-1}(y))]^{-1}$

8.7 Implicit Function Theorem

Suppose $f: A \to \mathbb{R}^n$ be of class C^r .

Write f in the form f(x,y), for $x \in \mathbb{R}^k$ and $y \in \mathbb{R}^n$.

IF $(a,b) \in A$ AND f(a,b) = 0 AND $\det \frac{\partial f}{\partial y}(a,b) \neq 0$

THEN There exists $B \in \mathbb{R}^k, a \in B$ and a unique $g: B \to \mathbb{R}^n$ such that g(a) = b AND $\forall x \in B. f(x, g(x)) = 0$ AND g is C^r

Munkers 9.1

Let A be open in \mathbb{R}^{k+n} , B be open in \mathbb{R}^k .

Let $f: A \to \mathbb{R}^n$, $g: B \to \mathbb{R}^n$ be differentiable.

Write f in the form f(x,y), for $x \in \mathbb{R}^k$ and $y \in \mathbb{R}^n$.

IF f(x, g(x)) = 0 AND $\frac{\partial f}{\partial y}$ is invertible

THEN
$$Dg(x) = -\left[\frac{\partial f}{\partial y}(x, g(x))\right]^{-1} \cdot \frac{\partial f}{\partial x}(x, g(x))$$

8.8 Taylor's theorem

Suppose $f: \mathbb{R}^n \to \mathbb{R}$ is of class C^k on an open convex set S. If $a \in S$ and $a + h \in S$, then

$$f(a+h) = \sum_{|\alpha| \le k} \frac{\partial^{\alpha} f(a)}{\alpha!} h^{\alpha} + R_{a,k}(h),$$

If f is of class C^{k+1} on S, for some $c \in (0,1)$ we have

$$R_{a,k}(h) = \sum_{|\alpha|=k+1} \frac{\partial^{\alpha} f(a+ch)}{\alpha!} h^{\alpha}$$

9 Integral Calculus

Note, Riemann Integral was taught in this class.

9.1 Definitions

rectangle (in \mathbb{R}^n) $Q = [a_1, b_1] \times [a_2, b_2] \times [a_n, b_n]$ component interval of Q $[a_i, b_i]$

volume of Q $v(Q) = (b_1 - a_1)(b_2 - a_2) \cdots (b_n - a_n)$

partition TODO

subinterval(determined by P) OMIT

subrectangle(determined by P) OMIT

mech of P OMIT

refinement OMIT

common refinement OMIT

?- $m_R(f) = \inf\{f(x)|x \in R\}$

?- $M_R(f) = \inf\{f(x)|x \in R\}$

lower sum $L(f, P) = \sum_{R} m_{R}(f) \cdot v(R)$

upper sum $U(f,P) = \sum_{R} M_{R}(f) \cdot v(R)$

lower integral $\underline{\int_Q} f = \sup_P \{L(f, P)\}$

upper integral $\overline{\int_Q} f = \inf_P \{L(f, P)\}$

oscillation TODO

rectifiable set A bounded set $S \in \mathbb{R}^n$ is rectifiable if the constant function 1 is integrable over S. S is rectifiable iff S is bounded and BdS has measure zero

volume of a rectifiable set $v(S) = \int_S 1$

9.2 Riemann condition

Given: Q a rectangle, $f:Q\to\mathbb{R}$ a bounded function.

$$\int_{Q} f = \overline{\int_{Q}} f \text{ iff } \forall \epsilon_{>0} \exists P[U(f, P) - L(f, P) \le \epsilon]$$

P is a partion of Q

Corollary/Theorem: every constant function is integrable.

9.3 Riemann-Lebesgue theorem

A function on a compact interval [a, b] is Riemann integrable if and only if it is bounded and continuous almost everywhere (the set of its points of discontinuity has measure zero, in the sense of Lebesgue measure). [wiki] [11.2]

9.4 Fundamental theorem of Calculus

- If f is continuous on [a, b], and if $F(X) = \int_a^x f$ for $x \in [a, b]$, then F'(x) exists and equals f(x).
- If f is continious on [a, b], and if g is a function such that g'(x) = f(x) for $x \in [a, b]$ then $\int_a^b f = g(b) g(a)$

9.5 Fubini's theorem

Let $Q = A \times B$, where A is a rectangle in \mathbb{R}^k and A is a rectangle in \mathbb{R}^n . If f is bounded function and integrable over Q, then $\underline{\int_{y \in B}} f(x,y)$ and $\overline{\int_{y \in B}} f(x,y)$ are integrable over A and

$$\int_{Q} f = \int_{x \in A} \int_{y \in B} f(x, y) = \int_{x \in A} \overline{\int_{y \in B}} f(x, y)$$

9.6 Properties of integral

TODO

9.7 Properties of rectifiable set

TODO

10 Change of Variables

TODO

11 Diffeomorphism

TODO

Page 12 12 MANIFOLDS

12 Manifolds