Loop Optimization using Hierarchical Compilation and Kernel Decomposition

D.Barthou¹ S.Donadio²³ P.Carribault²³ A.Duchateau¹ W. Jalby¹³

¹University of Versailles, France

²Bull SA Company, France

³CEA/DAM

CGO 2007

Outline

Library code generation for monocore architectures

- Motivation
- Description of the approach
- Kernel Decomposition
- Experiments
- Concluding remarks

Motivation

High performance linear algebra library for monocore architectures

- Automatic generation: ATLAS, PhiPAC.
 - Uses algorithmic knowledge,
 - Optimizes first for cache usage,
 - Explores optimization space by empirical search or model.
- Hand-tuned assembly: constructor library (MKL, ESSL), Goto's BLAS.

Motivation

High performance linear algebra library for monocore architectures

- Automatic generation: ATLAS, PhiPAC.
 - Uses algorithmic knowledge,
 - Optimizes first for cache usage,
 - Explores optimization space by empirical search or model.
- Hand-tuned assembly: constructor library (MKL, ESSL), Goto's BLAS.

Hand-tuned code outperforms ATLAS (Itanium/Pentium).

Is there something missing in compilers and/or ATLAS?

Performance Analysis MKL/ATLAS: L2 misses

ATLAS version 5.6, MKL version 8.02 on Itanium ICC compiler v9.0

Performance Analysis MKL/ATLAS: L3 misses

ATLAS version 5.6, MKL version 8.02 on Itanium ICC compiler v9.0

Proposed Approach

Find a tradeoff between ILP and locality

- Tile the code for data locality (if any)
- 2 Improve ILP of tile code
 - Apply sequences of source optimizations
 - Decompose code into simple source kernels
 - Optimize kernels with compiler and test
- Ohoose the best kernel to build the best tile
 - Adapt tile size to kernel size

Kernel Decomposition

Tile for data locality

Constraint tile sizes

Kernel Decomposition

Tile for data locality

Constraint tile sizes

Explore optimization space on tile code

- Loop transformations
 - unroll (to improve IPC)
 - interchange (to change locality)
 - strip mine (to generate loops with constant bounds)
- Select inner loops
- Data layout transformations
 - scalar promotion (to reduce TLB misses and simplify address computation)

Kernel Decomposition

Tile for data locality

Constraint tile sizes

Explore optimization space on tile code

- Loop transformations
 - unroll (to improve IPC)
 - interchange (to change locality)
 - strip mine (to generate loops with constant bounds)
- Select inner loops
- Data layout transformations
 - scalar promotion (to reduce TLB misses and simplify address computation)

Drive optimizations and parameters with X-language [LCPC05]

- Exhaustive search on unrolling factors, interchanges.
- Selected loop bound values

Kernel Optimization

Kernels tuned with two parameters:

- Loop bound values
 - Unrolling factor, SWP parameters, ...
- Array alignments
 - Vectorization
 - Memory bank conflicts

Rely on compiler for:

- Vectorization
- Register allocation
- Dependence analysis
- Instruction scheduling

Original tile

```
for (i = 0; i < NI; i++)
for (j = 0; j < NJ; j++)
for (k = 0; k < NK; k++ )
  c[i][j] += a[i][k] * b[k][j];</pre>
```


Original tile

```
for (i = 0; i < NI; i++)
for (j = 0; j < NJ; j++)
for (k = 0; k < NK; k++ )
c[i][j] += a[i][k] * b[k][j];</pre>
```

Unroll i and j loops

```
for (i = 0; i < NI; i+=2)
for (j = 0; j < NJ; j+=2)
for (k = 0; k < NK; k++)
    c[i][j] += a[i][k] * b[k][j];
    c[i+1][j] += a[i+1][k] * b[k][j+1];
    c[i+1][j+1] += a[i+1][k] * b[k][j+1];</pre>
```


Original tile

```
for (i = 0; i < NI; i++)
for (j = 0; j < NJ; j++)
for (k = 0; k < NK; k++ )
c[i][j] += a[i][k] * b[k][j];</pre>
```

Unroll i and j loops

```
for (i = 0; i < NI; i+=2)'
for (j = 0; j < NJ; j+=2)
for (k = 0; k < NK; k++)
c[i][j] += a[i][k] * b[k][j];
c[i+1][j] += a[i+1][k] * b[k][j];
c[i][j+1] += a[i][k] * b[k][j+1];
c[i+1][j+1] += a[i+1][k] * b[k][j+1];
```

Extracted kernel: dotproduct

```
for (k = 0; k < NK; k++)

c00 += a0[k] * b0[k];

c10 += a1[k] * b0[k];

c01 += a0[k] * b1[k];

c11 += a1[k] * b1[k];
```

```
dotproduct nm
for(i = 0; i < ni; i++)
   c11 += a1[i] * b1[i];
   ...
   cin += a1[i] * bn[i];
   c21 += a2[i] * b1[i];
   ...
   cmm += am[i] * bn[i];</pre>
```


Original tile

```
for (i = 0; i < NI; i++)
for (j = 0; j < NJ; j++)
for (k = 0; k < NK; k++ )
c[i][j] += a[i][k] * b[k][j];</pre>
```

Interchange j,k, Unroll i and k

```
loops
```

```
for (i = 0; i < NI; i+=2)
for (k = 0; k < NK; k+=2)
for (j = 0; j < NJ; j++)
    c[i][j] += a[i][k] * b[k][j];
    c[i+1][j] += a[i+1][k] * b[k][j];
    c[i][j] += a[i][k+1] * b[k+1][j];
    c[i+1][j] += a[i+1][k+1] * b[k+1][j];</pre>
```

```
dotproduct nm
for(i = 0; i < ni; i++)
    c11 += a1[i] * b1[i];
    ...
    cin += a1[i] * bn[i];
    c21 += a2[i] * b1[i];
    ...
    cmn += am[i] * bn[i];</pre>
```


Original tile

```
for (i = 0; i < NI; i++)
for (j = 0; j < NJ; j++)
for (k = 0; k < NK; k++ )
  c[i][j] += a[i][k] * b[k][j];</pre>
```

Interchange j,k, Unroll i and k

loops

```
for (i = 0; i < NI; i+=2)
for (k = 0; k < NK; k+=2)
for (j = 0; j < NJ; j++)
    c[i][j] += a[i][k] * b[k][j];
    c[i+1][j] += a[i+1][k] * b[k][j];
    c[i][j] += a[i][k+1] * b[k+1][j];
    c[i+1][j] += a[i+1][k+1] * b[k+1][j];</pre>
```

Extracted kernel: daxpy

```
for (j = 0; j < NJ; j++)

c0 += a00 * b0[j];

c1 += a10 * b0[j];

c0 += a01 * b1[j];

c1 += a11 * b1[j];
```

```
dotproduct nm

for(i = 0 ; i < ni ; i++)
    c11 += a1[i] * b1[i];
    ...
    c1n += a1[i] * bn[i];
    c21 += a2[i] * b1[i];
    ...
    cmn += am[i] * bn[i];</pre>
```

```
daxpy nm
for(i = 0 ; i < ni ; i++)
   c1[i] += a11 * b1[i];
   ...
   c1[i] += a1n * bn[i];
   c2[i] += a2n * b1[i];
   ...
   cm[i] += amn * bn[i];</pre>
```


Original tile

```
for (i = 0; i < NI; i++)
for (j = 0; j < NJ; j++)
for (k = 0; k < NK; k++ )
   c[i][j] += a[i][k] * b[k][j];</pre>
```

Permute i and k

```
for (k = 0; k < NK; k++)
for (i = 0; i < NI; i++ )
for (j = 0; j < NJ; j++)
c[i][j] += a[i][k] * b[k][j];</pre>
```

dotproduct nm for(i = 0 ; i < ni ; i++) c11 += a1[i] * b1[i]; ... cin += a1[i] * bn[i];</pre>

c21 += a2[i] * b1[i]:

cmn += am[i] * bn[i];

```
daxpy nm
for(i = 0 ; i < ni ; i++)
    c1[i] += a11 * b1[i];
    ...
    c1[i] += a1n * bn[i];
    c2[i] += a2n * b1[i];
    ...
    cm[i] += amn * bn[i];</pre>
```


Original tile

```
for (i = 0; i < NI; i++)
for (j = 0; j < NJ; j++)
for (k = 0; k < NK; k++ )
c[i][j] += a[i][k] * b[k][j];</pre>
```

Permute i and k

```
for (k = 0; k < NK; k++)
for (i = 0; i < NI; i++ )
for (j = 0; j < NJ; j++)
c[i][j] += a[i][k] * b[k][j];</pre>
```

Extracted kernel: outerproduct

```
for (i = 0; i < NI; i++)
for (j = 0; j < NJ; j++)
c[i][i] += a[i] * b[i]:</pre>
```

dotproduct nm for(i = 0 ; i < ni ; i++) c11 += a1[i] * b1[i]; ... c1n += a1[i] * bn[i]; c21 += a2[i] * b1[i];</pre>

cmn += am[i] * bn[i];

```
daxpy nm
for(i = 0 ; i < ni ; i++)
    c1[i] += a11 * b1[i];
    ...
    c1[i] += a1n * bn[i];
    c2[i] += a2n * b1[i];
    ...
    cm[i] += amn * bn[i];</pre>
```

```
outerproduct n

for (i = 0; i < ni ; i++)
   for (j = 0; j < nj ; j++)
        c[i][j] += a1[i] * b1[j];
        ...
    c[i][j] += an[i] * bn[j];</pre>
```


Kernel Properties

Kernel Performance

- Independent of the application context,
- Only depends on cache level of data.

Additional benefits of kernels

- Execution time much lower than for whole application,
- Possible reuse among different applications.

Kernel Performance on Pentium4

Pentium4 Prescott 2.8Ghz, 16KB L1, 1MB L2

Kernel Performance on Pentium4

Pentium4 Prescott 2.8Ghz, 16KB L1, 1MB L2

Kernel Performance on Itanium

Itanium2 Madison 1.6GHz, 256KB L2, 9MB L3

Kernel Performance on Itanium

Itanium2 Madison 1.6GHz, 256KB L2, 9MB L3

Kernel Composition

Build the best performing tile:

- For each possible kernel, add copies/transpositions (if necessary)
- Select best kernel (with copy times)
- Choose a tile size multiple of kernel size

Predict global performance out of:

- kernel measured performance,
- memory copies/transpositions measured performance

Performance Results for Pentium4

Performance Results for Itanium

dgemm for(I = 0; I < NI; I+=ni) for(J = 0; J < NJ; J+=nj) for(K = 0; K < NK; K+=nk) // copy a,c and transpose b for(i = 0; i < ni; i++) for(j = 0; j < nj; j++) dotprod44(&c[i][j],&a[i],&b[j]) // copy-out c</pre>

Summary

Proposed Approach

- Not application dependent,
- Code generation
 - No assembly code,
 - Only classical optimizations and compiler technology,
 - Very competitive with MKL, outperforming ATLAS,
 - Works for rectangular matrices,
- Exploration space
 - Optimization parameters: (unrolling factors, interchange, selection of inner loops, loop bound values, alignment)
 - Execution of all kernels
 - No execution for whole code (within 1% of predicted time)

Future Works

How to further guide the search?

- Avoid execution
 - Filtering assembly codes
 - Matching previously executed kernels (reuse)
- Make exploration space smaller
 - Model performance

Extend to multicore codes

Thank You!

L2 and L3 performance impact

