Amendments to the Specification:

Please replace paragraph [0046] with the following amended paragraph:

[0046] FIGS. 6-8 illustrate three different types of type zero commands, the write command

220, a read type zero command 230 of FIG. 7 and a type zero response command 240 of FIG. 8.

Consistent with the description of the type zero command 220, commands 230 and 240 include

a most significant bit "0", an operational code, a length in bytes, and a byte address. Bits 25-

[[38]] 29 contain the number of bytes to be read/written. There are only five bits for this field

because a maximum of 16 bytes can be transmitted by a single request in this embodiment. The

bit 24 defines 24/32 address length and the last 24 bits of the byte address, which is the starting

address for the read/write operation. In this embodiment, type zero requests are suited for longer

data transfer since each type zero command consumes at least four bytes of overhead.

Please replace paragraph [0052] with the following amended paragraph:

[0052] When the encoded multimedia display command is a type one data packet, the next

step, step 206, is accessing a lookup table using the client identifier as an index, FIG. 13

illustrates representative embodiment of a lookup table 300 having multiple entries including a

client identifier 302, a starting address 304, transaction length 306 and an auto-increment flag

(AI) 308. Therefore, in response to a client identifier 302 within a command 250, a starting

address 304 may be retrieved and the transaction length 306 may also be retrieved. If the auto-

increment flag is set, in one embodiment, the MMD 100 will automatically update the starting

address for a client after each transaction request for that client. For example, if client "0" is

addressed "X" within the frame buffer, [[in]] and the associated length is "4", the first time client 2

CHICAGO/#2004522.2

"0" is accessed, the starting address within the table will be automatically [[be]] updated to X+4 when the transaction is complete. The second time the client "0" is accessed, the starting address will be X+4 and it will be updated to X+8 upon the completion of the transfer. In order to reset the starting address, the client identifier 302 must be reprogrammed into the table.