WiSe 21/22 Logik

Hausarbeit 2 Aufgabe 1

 $\textbf{Gruppe:}\ 402355,\ 392210,\ 413316,\ 457146$

Lösungen

	(i)	(ii)	(iii)	(iv)	(v)	(vi)	(vii)	(viii)	(ix)	(x)	Form	\sum
Aufgabe 1												

(i) Gaifmangraphen von \mathcal{B} :

(ii)
$$C := ([4], \mathcal{R}^C := \{(a, b, c) \in [4]^3 \mid a.b = c\})$$

$$\mathcal{D}\coloneqq \big(\big[4\big],\,\mathcal{R}^{\mathcal{D}}\coloneqq \big\{\big(a,b,c\big)\in \big[4\big]^3\,\big|\,a/b=c\big\}\big)$$

$$\mathcal{R}^{\mathcal{C}} = \{(1,2,2)(2,1,2)(1,3,3)(3,1,3)(1,4,4)(4,1,4)(2,2,4)\}\$$

 $\mathcal{R}^{\mathcal{D}} = \{(2,1,2)(3,1,3)(4,1,4)(4,2,4)\}$

$$\mathcal{R}^{\mathcal{C}} \not\equiv R^{\mathcal{D}}$$

$$\mathcal{G}(\mathcal{C})\cong\mathcal{G}(\mathcal{D})$$

(iii) Die Struktur $I_{\psi_1}(G_1)$ sieht wie folgt aus:

(iv)
$$\psi_2 := \exists z \exists w ((E(x,z) \land E(y,z)) \land (E(x,w) \land E(y,w)) \land (z \neq w \land \neg E(z,w)))$$

(v) $\psi_3(u,v) \coloneqq \exists z (R(u,v,z) \lor R(u,z,v) \lor R(z,u,v))$ Da die Formel sich auf τ -Signaturen bezieht, können wir nur das Dreistellige Relationssymbol R nutzen. Wir suchen durch jede mögliche Kombination aus R-Relationen die u und v beinhalten. Wenn es eine davon gibt, geben wir das Tupel (u,v) aus.

(vi)
$$\varphi_1(a,b) \coloneqq E(a,b) \wedge E(b,a)$$

(vii) Die Aussage ist Falsch.

Angenommen $G \equiv_m H$ mit m > 0 gilt, dann muss dies auch gelten wenn $G \not\equiv_0 H$. Sind G und H nicht 0-äquivalent und berechnen nun $I_{\varphi}(G)$ und $I_{\varphi}(H)$ für alle $\varphi \in FO[\delta]$ mit $qr(\varphi) = 0$. Dann sind $I_{\varphi}(G)$ und $I_{\varphi}(H)$ nicht äquivalent zueinander. Laut der Definition von m-äquivalenz können sie somit auch nicht für alle m > 0 äquivalent zueinander sein.

(viii) Die Aussage Stimmt.

Seien $I_{\varphi}(G) \equiv_m I_{\varphi}(H)$ mit m > 0 und $\operatorname{qr}(\varphi) = 0$. Dann gilt dadurch, dass φ nur mit einem zweistelligen Relationssymbol definiert ist, dass $I_{\varphi}(G) \equiv_m I_{\varphi}(H)$ auch auf m = 0 äquivalent sein müssen. Daher sind $I_{\varphi}(G)$ und $I_{\varphi}(H)$ elementär äquivalent. Laut "Tut 10 Lösung 3iii" gilt, dass wenn $I_{\varphi}(G) \equiv I_{\varphi}(H)$ gilt, dann gilt auch $I_{\varphi}(G) \cong I_{\varphi}(H)$ auf allen $\varphi_a \in \operatorname{FO}[\delta]$. Es gibt also eine Formel $\varphi_2 \in \operatorname{FO}[\delta]$ für die gilt, $I_{\varphi_2}(I_{\varphi}(G)) = G$, dann gilt auch $I_{\varphi_2}(I_{\varphi}(H)) = H$. Somit gilt die Aussage wenn $I_{\varphi}(G) \equiv_m I_{\varphi}(H)$, dann auch $G \equiv_m H$.

(ix) IA: Angenommen T ist ein Baum mit |V(T)| = n = 2, dann ist |E(T)| = 1. Dann ist T' ein Graph mit |V(T')| = n = 2 und |E(T')| = 1. Daraus folgt es gibt ein Hamiltonpfad von u nach v der Länge 2.

IV: Für ein festen $n \in \mathbb{N}$ mit $n \geq 2$ hat ein aus der Baum T konstruierten Graphen T' ein Hamiltonpfad für alle $\{u, v\} \in V(T')$

IS: Laut $\chi(x,y)$ gilt: T ist ein Teilgraph von T'. Für alle $\{u,v\} \in E(T)$ existiert auch $\{u,v\} \in E(T')$. Für alle $\{u,z\},\{z,v\} \in E(T)$ existiert auch $\{u,v\} \in E(T')$, was bedeuted, dass T' einen vollständigen Teilgraph (K_3) der Länge 3 hat. Für alle $\{u,z\},\{z,w\},\{w,v\} \in E(T)$ existiert auch $\{u,v\},\{u,w\},\{z,v\} \in E(T')$, was bedeuted, dass T' einen vollständigen Teilgraph (K_4) der Länge 4 hat.

Daraus folgt, dass T' enthält eine Menge aus vollstendigen K_3 und K_4 Teilgraphen, und jeder Knoten $x \in V(T')$ teil mindestens einen solchen vollständigen Teilgraph ist. (Für $n \geq 3$ sind alle $x \in V(T')$ immer Teil mindestens einen vollständigen K_4 Teilgraph).

Da jeder vollständigen Graph einen Hamiltonpfad hat, folgt, dass für alle $\{u, v\} \in E(T)$ einen Hamiltonpfad in T' existiert.

(x) Aus Aufgabe ix) können wir ableiten, dass es einen Hamiltonpfad in H' gibt von u nach v für jedem Zusammenhängenden Graphen H, da durch χ alle 3er und 4er Knotenpaare einen Kreis bilden. somit gibt es auch ein 3er Kreis mit (u,v,x) wobei x \in V(H). Durch den Hamiltonpfad von u nach v und der Kante E(u,v) existiert somit auch ein Hamiltonkreis in H'