CARDIFF UNIVERSITY EXAMINATION PAPER

Academic Year: 2007/2008

Examination Period: Autumn

Examination Paper Number: CM0340

Examination Paper Title: Multimedia

Duration: 2 hours

Do not turn this page over until instructed to do so by the Senior Invigilator.

Structure of Examination Paper:

There are 3 pages.

There are 4 questions in total.

There are no appendices.

The mark obtainable for a question or part of a question is shown in brackets alongside the question.

Students to be provided with:

The following items of stationery are to be provided:

ONE answer book.

Instructions to Students:

Answer 3 questions.

The use of translation dictionaries between English or Welsh and a foreign language bearing an appropriate departmental stamp is permitted in this examination.

- (a) Why is *data compression* desirable for multimedia activities? [2]
 - (b) What is the distinction between lossy and lossless data compression? [2]
 - (c) What are the main differences between the target media for JPEG and GIF compression? [2]
 - (d) What improvement did the LZW algorithm make on previous LZ versions? [2]
 - (e) Describe the LZW algorithm for encoding an input sequence, giving suitable pseudocode. [7]
 - (f) Given an initial dictionary:

Index	Entry
1	a
2	b
3	h
4	i
5	s
6	t

and output of an LZW encoder:

63451316291116

decode the above sequence (which is not intended to represent meaningful English. [12]

- Q2. (a) In a digital signal processing system, what is meant by block and sample-by sample processing. [2] [2]
 - Give one example of an application of each type.
 - (b) In a digital signal processing system, what is meant by a linear and a non-linear time invariant system. [2]
 - Give one example of an application of each type. [2]
 - (c) Give the definition of an *impulse response*. [2] Give two practical uses of an impulse response in digital signal processing. [2]
 - (d) List the three basic components used in constructing a *signal flow graph*. [3] Why is it desirable to describe systems using these components. [3]
 - (e) What is the **main** distinction between an *infinite impulse response (IIR)* and a finite impulse response (FIR) filter. [1]
 - (f) Given the following difference equation construct its signal flow diagram:

$$y(n) = b_0 x(n) + b_1 x(n-1) + b_2 x(n-2)$$
$$-a_1 y(n-1) - a_2 y(n-2)$$

[8]

Q3.	(a) List six broad classes of <i>digital audio effect</i> . Give an example effect of each of effect.	type [6]
	(b) Give a description, including a signal flow diagram and algorithm, of the variable filter.	state [8]
	(c) Give two advantages of the state variable filter.	[2]
	(d) A <i>band-reject</i> filter is a filter which passes all frequencies except those in a band centered on a center frequency. How can such a filter be implemented utwo state variable filters?	_
	(e) How may a <i>phaser</i> effect be implemented using two state variable filters?	[7]
Q4.	(a) Give a definition of a one-dimensional Fourier transform.	[2]
	(b) Explain in detail how data is represented after the Fourier transform has applied to a signal.	peen [2]
	(c) Outline the basic approach to performing data <i>filtering</i> with the Fourier transform.	[4]
	(d) Describe one application of Fourier transform filtering methods in multim data compression.	edia [8]
	(e) An <i>exciter</i> is a digital audio signal process that emphasises or de-emphasized certain frequencies in a signal in order to change its <i>timbre</i> . Describe how could use the Fourier transform to implement such a process, giving a <i>prace example</i> and explaining how it works.	you