Classification Models Wholesale Customer Analysis

Johnny Lee

2025-04-01

Libraries And Seed

```
library(caret)
library(tidyverse)
library(yardstick)
set.seed(7890682)
options(scipen = 999)
```

Functions

```
# Get validation scores on test data
validate = function(test, testZ, models) {
 results = data.frame(Metrics = c("Accuracy",
                                   "Recall",
                                   "Precision",
                                   "F".
                                   "ROC_AUC",
                                   "PR_AUC"))
  for (i in 1:length(models)) {
   if (names(models)[i] == "Random Forest") {
     test_data = test %>%
        mutate(preds = predict(models[[i]], test, type = "prob")[, "Horeca"],
          class_preds = predict(models[[i]], test, type = "raw"))
   } else {
     test data = test %>%
       mutate(preds = predict(models[[i]], testZ, type = "prob")[, "Horeca"],
          class_preds = predict(models[[i]], testZ, type = "raw"))
   }
   metrics = metric_set(accuracy, recall, precision, f_meas, roc_auc, pr_auc)
   curr_test = metrics(test_data,
                     truth = Channel,
```

```
estimate = class_preds,
                     preds,
                     event level = "first")
   curr_cv = models[[i]]$results %>%
      filter(ROC == max(ROC)) %>%
      select(Accuracy, Recall, Precision, F, ROC, AUC) %>%
      pivot_longer(cols = everything(),
                   names_to = "Metric",
                   values_to = "Value")
   results = results %>%
   mutate(
      !!paste(names(models)[i], "Test") := curr_test$.estimate,
      !!paste(names(models)[i], "CV") := curr_cv$Value
   )
  }
 return (results)
# Z-score scale continuous variables
scaleZ = function(train, test) {
 scaled_train = train[,3:8]
  scaled_test = test[,3:8]
 for (i in 3:8) {
   mu_train = mean(train[,i])
   sd_train = sd(train[,i])
   scaled_train[,i-2] = (train[,i] - mu_train)/sd_train
   scaled_test[,i-2] = (test[,i] - mu_train)/sd_train
  scaled_train = cbind(train[,1:2], scaled_train)
  scaled_test = cbind(test[,1:2], scaled_test)
  return (list(scaled_test = scaled_test, scaled_train = scaled_train))
}
```

Preparing Data

```
data = read.csv("Wholesale_customers_data.csv")

# Rename channel levels
data$Channel = factor(
   data$Channel,
   levels = c(1, 2),
   labels = c("Horeca", "Retail")
)

data$Region = factor(
   data$Region,
   levels = c(1, 2, 3),
   labels = c("Lisbon", "Oporto", "Other")
)
```

```
data = data %>%
  rename(
    'Delicatessen' = Delicassen
\# Split test and train data 30/70 split
trainRows = sample(nrow(data), 0.7*nrow(data))
train = data[trainRows, ]
test = data[-trainRows, ]
# Z-score scaled training and testing data
scaledData = scaleZ(train, test)
trainZ = scaledData$scaled_train
testZ = scaledData$scaled_test
# Custom function to calculate multiple metrics
customSummary = function(data, lev, model) {
  # ROC metrics
 roc_stats = twoClassSummary(data, lev, model)
  # Accuracy
 acc_stats = defaultSummary(data, lev, model)
  # Precision/Recall/F1
  f1_stats = prSummary(data, lev, model)
  c(roc_stats, acc_stats, f1_stats)
```

Logistic Regression Model

```
# Cross validation parameters
ctrl = trainControl(
  method = "cv",
  number = 10,
  summaryFunction = customSummary,
  classProbs = TRUE,
  savePredictions = "final",
  sampling = "up",
# Train model
log_model = train(
 Channel ~ .,
  data = trainZ,
 method = "glm",
 family = "binomial",
 trControl = ctrl,
  metric = "ROC",
```

Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

```
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
```

KNN Model

```
# Tune grid for optimal hyper-parameters
tuneGrid = expand.grid(k = c(3,5,7,9,11,13,15,17))
# Cross validation parameters
ctrl = trainControl(
 method = "cv",
  number = 10.
  summaryFunction = customSummary,
  classProbs = TRUE,
  savePredictions = "final",
  sampling = "up"
# Train model
knn model = train(
 Channel ~ .,
  data = trainZ,
 method = "knn",
 trControl = ctrl,
 metric = "ROC",
  tuneGrid = tuneGrid
```

Random Forest Model

```
# Tune grid for optimal hyper-parameters
tuneGrid = expand.grid(
  mtry = c(2, 3, 4, 5),
  splitrule = "gini",
  min.node.size = c(1,3,5,10)
)

# Cross validation parameters
ctrl = trainControl(
  method = "cv",
  number = 10,
  summaryFunction = customSummary,
  classProbs = TRUE,
```

```
savePredictions = "final",
  sampling = "up",
# Number of trees vector
num_tree_vec = c(100, 200, 300, 400, 500)
rf_model = NULL
best_AUC = -1
best_numTrees = -1
# Train model
for (ntree in num_tree_vec) {
  model = train(
    Channel ~ .,
   data = train,
   method = "ranger",
   trControl = ctrl,
    metric = "ROC",
   tuneGrid = tuneGrid,
   num.trees = ntree,
   importance = "impurity"
  if (max(model$results$ROC) > best_AUC) {
    best_AUC = max(model$results$ROC)
    rf_model = model
    best_numTrees = ntree
  }
}
rf_model$bestNumTrees = best_numTrees
```

Validating Models

```
# List models
models_list = list(
   "Logistic" = log_model,
   "KNN" = knn_model,
   "Random Forest" = rf_model
)

# Validate
validation = validate(test, testZ, models_list) %>%
   mutate(across(where(is.numeric), ~ round(., 3)))

# Table
knitr::kable(
   validation,
   align = c("l", "r", "r", "r", "r", "r", "r"),
   caption = "Model Performance Comparison",
)
```

Table 1: Model Performance Comparison

3.f. / .	T (T) .	T OV	KNN	KNN	Random Forest	Random Forest
Metrics	Logistic Test	Logistic CV	Test	CV	Test	CV
Accuracy	0.909	0.910	0.871	0.899	0.924	0.925
Recall	0.939	0.913	0.866	0.879	0.963	0.926
Precision	0.917	0.957	0.922	0.976	0.919	0.968
F	0.928	0.933	0.893	0.924	0.940	0.945
ROC_AUC	0.936	0.958	0.944	0.948	0.955	0.970
PR_AUC	0.913	0.930	0.963	0.464	0.971	0.907

```
# Saving Models
saveRDS(
  list(models_list = models_list, validate = validate, scaleZ = scaleZ),
  "class_models_and_functions.rds"
)
```

ROC and PR Curves

```
# Create prediction data frame
data_pred = tibble()
for (i in 1:length(models_list)) {
  if (names(models_list)[i] == "Random Forest") {
    estimate = predict(models_list[[i]], test, type = "prob")[, "Horeca"]
  } else {
    estimate = predict(models_list[[i]], testZ, type = "prob")[, "Horeca"]
  preds = tibble(
   truth = test$Channel,
    estimate = estimate,
   model = names(models_list)[i]
  data_pred = bind_rows(data_pred, preds)
# ROC Curves
data_pred %>%
  group_by(model) %>%
  roc_curve(truth, estimate,
            event_level = "first") %>%
  autoplot() +
  labs(title = "ROC Curves")
```


Summary

Best Performing Model: Random Forest (Test ROC-AUC = 0.948, CV ROC-AUC = 0.973)

Most Stable Model: Logistic Regression and Random Forest (Δ ROC-AUC = 0.025 Test vs CV)

Worst Model: KNN (Test Accuracy = 0.864, CV PR-AUC = 0.430)

Most Overfit Model: KNN (Δ PR-AUC = 0.501 Test vs CV)

Final Model Selection

We select the Random Forest model due to its:

Best ROC-AUC performance (ability to distinguish between classes)

Robustness across metrics (High Recall, Precision, F, PR-AUC, and stability)

Handling complex interactions as it captures non-linear patterns

While Logistic Regression offers interpretability, Random Forest excels in our primary metric (ROC-AUC), which prioritizes overall classification performance over precision/recall for a specific class.