1. pesudo.
Znit b = 0, x = 0.0
Procedure; SA(b.n)
for i=1,2,ndo
$\chi := N(b, 6^2)$
bit = b: + x(x; -bi)
Return bru
4. Prove him E(bn) = b
$b_{n+1} = (1-\lambda)b_n + \lambda x_n$
E[bnq] = (1-d) E[bn] + d E[7n)
Since $x \sim N(b, \delta^2)$, $\overline{t}(x_n) = b$
Ilbn+1] = (1-2) Z(bn) + db
let x = lim + Tlbn), then x = (1-x)x+xb
So $x = b = \lim_{n \to \infty} Z(b_n)$
-
5. Prove or disprove bn > b in 22. lim Z[1 bn - b12] = lim Z[(bn - E[lan])2] = lim Var(bn)
$b_{n} = \frac{2^{-1}}{k^{-2}} (1 - 4)^{n-k-1} \lambda x_{k}, x_{k} \in N(k, 6^{2}).$
$V_{av}(l_{2n}) = 6^{2} l_{aa}^{2} l_{aa}^{-1} (1-l_{a})^{2(h-k-1)}$
$\lim_{n \to \infty} Var(bn) = 6 d^{2} \lim_{n \to \infty} \frac{3^{-1}}{k^{-1}} (1-d)^{\frac{1}{2}}$
$\frac{\sqrt{m} \operatorname{Var}(b_n) = 0 \times b^{\frac{n-1}{2}} b = 0 \times b^{\frac{n-1}{2}} \left(b_n - b_n ^2 \right)^2}{\left(b_n - b_n ^2 + b^{\frac{n-1}{2}} b = 0 \times b^{\frac{n-1}{2}} \left(b_n - b_n ^2 \right)^2}$
Thus by -> b in L2.