Ortskurven

Datum	Uhrzeit	Versuchsleiter		
Name	Vorname	MatrNr.	Teilnahmetestat	Protokollabnahme
Name	Vorname	MatrNr.	Teilnahmetestat	
Name	Vorname	MatrNr.	Teilnahmetestat	

Ziel des Versuchs:

Messung und Darstellung von Ortskurven für verschiedene R-L-C-Schaltungen.

Vorbemerkungen:

Siehe auch Vorlesungsskript "Grundlagen der Elektrotechnik" S. 81-84, 88-93 und 97-106.

- Ein komplexer Widerstand Z, d.h. eine gemischte Schaltung aus R-, L- und C-Gliedern, lässt sich in der komplexen Ebene (Z-Ebene) als Operator darstellen. Für eine bestimmte Frequenz f ist Z in Ohm die Länge des Operators, der unter dem Winkel φ gegen die Richtung der positiven reellen Achse in der Z-Ebene liegt.
- 2. Für den gleichen Widerstand \underline{Z} lässt sich der zugehörige Leitwert \underline{Y} in einer anderen komplexen Ebene (Y-Ebene) als Operator darstellen, wobei die Richtung dieses Y-Operators spiegelbildlich zur reellen Achse des Z-Operators ist ($\phi_y = -\phi_z$) und der Betrag ist: $|Y| = \frac{1}{|Z|}$.
- 3. Die Winkel der Operanden in den Z- und Y-Ebenen sind identisch mit den Phasenwinkeln zwischen der an Z anliegenden sinusförmigen Spannung und dem aufgenommen Strom, d.h. bei Darstellung von Spannung und Stromstärke als Zeiger liegt in der Z-Ebene der Spannungszeiger in Richtung Z bei Stromzeiger in Richtung der reellen Achse (U = Z · I), in der Y-Ebene liegt der Stromzeiger in Richtung Y bei Spannungszeiger in der reellen Achse (I = Y · U).
- 4. Für unterschiedliche Frequenzen f ergeben sich wegen der Frequenzabhängigkeit der Widerstandswerte $X_L = \omega \cdot L$ und $X_C = \frac{1}{\omega \cdot C}$ unterschiedliche Z- und Y-Operatoren, wobei sich sowohl die Beträge als auch die Winkel mit der Frequenz ändern.
- 5. Der geometrische Ort aller Endpunkte der Z-Operatoren bei Variation der Frequenz f (bzw. ω) wird als Ortskurve $Z(\omega)$ bezeichnet, in der Y-Ebene ist entsprechend eine Ortskurve $Y(\omega)$ der Ortskurve $Z(\omega)$ invers zugeordnet. Die Frequenzen, für die die Ortskurve durch die reelle Achse verläuft, für die also die Z- und Y-Operatoren keine imaginären Anteile haben und die Phasenwinkel zwischen U- und I-Zeiger also Null sind, sind die Resonanzfrequenzen f_r (bzw. ω_r).
- 6. Jeder komplexe Widerstand Z, d.h. jedes R-L-C-Netzwerk, hat eine charakteristische Ortskurve $Z(\omega)$ bzw. $Y(\omega)$. Wird die speisende Spannung U, der aufgenommene Strom I und der zwischen U und I liegende Phasenwinkel ϕ für mehrere Frequenzen gemessen, so können Z bzw. Y ermittelt und die Ortskurven gezeichnet werden.

Aufgabenstellung und Durchführung des Versuchs:

Es liegen folgende Bauelemente vor, mit denen unterschiedliche Schaltungen untersucht werden:

 $R_{M} = 100 \Omega$

Es wird zuerst die Schaltung nach c) R - L - C1 in Reihe aufgebaut. Daraus erhalten Sie:

- a) Reihenschaltung R L C₁ kurzschließen!
- b) Reihenschaltung R C₁ L kurzschließen!
- c) Reihenschaltung R L C₁
- d) Gemischte Schaltung $(R-L-C_1) \parallel C_2$ C_2 parallel schalten!

Schaltbild: Versuchsanordnung Ortskurven

Die Schaltungen werden nacheinander aufgebaut (siehe Schaltbild) und die Ortskurven messtechnisch ermittelt. Hierzu werden die Schaltungen bei unterschiedlichen Frequenzen (Frequenzgenerator) über einen Messwiderstand R_{M} = 100 Ω an Spannung U gelegt. Die Spannung an R_{M} ergibt dann den aufgenommenen Strom I in mA. Der Phasenwinkel ϕ wird aus einem Oszillographenbild ermittelt, wobei die gegenphasige Abbildung von U zu berücksichtigen ist (siehe Skizze auf dem Schaltbild).

Für alle Schaltungen liegen vorbereitete Messprotokolle bei, in denen die sinnvollen Frequenzen als Parameter vorgegeben sind.

Darstellung der Ergebnisse:

Als Ergebnisse sind die Ortskurven $Z(\omega)$ und $Y(\omega)$ darzustellen, wobei aus Übersichtlichkeitsgründen die Punkte in der komplexen Ebene jeweils mit der der Nummer der entsprechenden Messzeile zu kennzeichnen sind. Am besten wird Millimeterpapier verwendet!

Als Maßstäbe werden empfohlen:

für
$$Z(\omega)$$
: 100 $\Omega \triangleq 2$ cm für a), b) und c)

100
$$\Omega$$
 \triangleq 1 cm für d)

$$f\ddot{u}r\ Y(\omega);\quad 1\ mS\quad \triangleq 1\ cm$$

Rechnerische Kontrolle:

- Für c) und d) sind die Resonanzfrequenzen rechnerisch zu ermitteln.
- Für die mit * gekennzeichneten Messpunkte sind ausführliche Kontrollrechnungen durchzuführen.

Messprotokolle:

a) Reihenschaltung R-L

$$R = 100 \Omega$$
 $L = ___ mH$

Nr.	f [Hz]	U [V]	I [mA]	$Z = \frac{U}{I} [\Omega]$	φ[၅	$Y = \frac{1}{Z}$ [mS]
1	500					
2*	1000					
3	2000					
4	3000					
5*	4000					
6	5000					

b) Reihenschaltung R - C₁

$$R = 100 \Omega$$
 $C_1 = ___ nF$

Nr.	f [Hz]	U [V]	I [mA]	$Z = \frac{U}{I} [\Omega]$	φ[¶	$Y = \frac{1}{Z} [mS]$
1	2000					
2*	3000					
3	4000					
4	5000					
5*	10000					
6	20000					

c) Reihenschaltung R - L - C_1

$$R = 100 \Omega$$

$$R = 100 \; \Omega \qquad \qquad L = \underline{\qquad} \; mH \qquad \qquad C_1 = \underline{\qquad} \; nF$$

Nr.	f [Hz]	U [V]	I [mA]	$Z = \frac{U}{I} [\Omega]$	φ[¶	$Y = \frac{1}{Z} [mS]$
1	1000					
2*	2000					
3	3000					
4	f _r =					
5	5000					
6*	7500					
7	10000					
8	15000					_

d) Gemischte Schaltung (R - L - C_1) || C_2

$$R = 100 \Omega$$

$$C_1 = _{nF}$$

$$R = 100 \ \Omega \hspace{1cm} L = \underline{\hspace{1cm}} \hspace{1cm} mH \hspace{1cm} C_1 = \underline{\hspace{1cm}} \hspace{1cm} nF \hspace{1cm} C_2 = \underline{\hspace{1cm}} \hspace{1cm} nF$$

Nr.	f [Hz]	U [V]	I [mA]	$Z = \frac{U}{I} [\Omega]$	φ[၅	$Y = \frac{1}{Z}$ [mS]
1	750					
2	1000					
3*	2000					
4	3000					
5	f _{r1} =					
6	4500					
7	5000					
8*	6000					
9	6500					
10	f _{r2} =					
11	7300					
12	7500					
13	8000					
14*	8500					
15	10000		_		_	
16	20000					