

UNIVERSITÀ DEGLI STUDI DI UDINE COMUNICAZIONE MULTIMEDIALE E TECNOLOGIE DELL'INFORMAZIONE

Tecniche di Deep Learning per il rilevamento di anomalie nelle immagini

Relatore: Prof. Gian Luca Foresti

Laureando: Riccardo Verk

Definizione del problema

 Rilevamento di possibili anomalie in immagini attraverso tecniche di Deep Learning

È una tecnica utilizzata per l'identificazione di elementi, eventi o osservazioni anomale che si differenziano in modo significativo dalla maggior parte dei dati

Tipi di anomalia

- Anomalie puntiformi: una singola istanza di dati è considerata anomala rispetto al resto dei dati
- Anomalie contestuali: un'istanza di dati è anomala in un contesto specifico (ma non altrove)
- Anomalie collettive: una raccolta di istanze di dati correlati è anomala rispetto all'intero set di dati

Anomalie puntiformi

Anomalie collettive

COME LE RETI NEURALI RICONOSCONO LA FOTO DI UN CANE

ESPERIENZA

Durante l'apprendimento la rete neurale è allenata con l'input di migliaia di immagini marcate di diversi animali.

Un'immagine non marcata viene mostrata alla rete che è stata precedentemente addestrata.

PRIMO LIVELLO

I neuroni del primo livelo rispondono a diverse forme semplici, ad esempio i bordi.

LIVELLI SUPERIORI

I neuroni alti rispondono a strutture più complesse.

ULTIMO LIVELLO

I neuroni rispondono a strutture molto complesse e a concetti astratti che identificano gli animali.

OUTPUT

La rete indovina che oggetto è in base all'addestramento fatto.

Il Deep Learning

- ▶ È definito come una classe di algoritmi di apprendimento automatico
- ▶ Usa vari livelli di unità non lineari a cascata per svolgere compiti di estrazione di caratteristiche e di trasformazione
- ▶ Le caratteristiche di livello più alto vengono derivate da quelle di livello più basso per creare una rappresentazione gerarchica
- Apprendono più livelli di rappresentazione che corrispondono a differenti livelli di astrazione
- L'output di una rete è di solito una label che indovina l'oggetto di input

Label dei dati nel caso dell'Anomaly Detection

- Le label associate ad un'istanza di dati indicano se tale istanza è normale o anomala
- Problemi: ottenere le label dei dati che siano accurate e rappresentative di tutti i tipi di comportamento è spesso proibitivo
- Il labeling è spesso eseguito manualmente da esperti umani e richiede quindi un notevole sforzo per ottenere i dati di training etichettati

Apprendimento di una rete di Deep Learning

- In base alla disponibilità delle label, le tecniche di rilevamento delle anomalie possono operare in una delle tre modalità seguenti:
 - 1. Supervised anomaly detection
 - 2. Unsupervised anomaly detection
 - 3. Semi-Supervised anomaly detection

Tecniche statistiche per l'Anomaly Detection

Tecniche di rilevazione delle anomalie basate sulla classificazione (Approccio supervisionato)

- La classificazione è usata per addestrare un modello (classificatore) da un insieme di istanze di dati etichettati (training) e poi, classificare un'istanza di test in una delle classi usando il modello appreso (testing)
- Possono essere raggruppate in due grandi categorie:
 - One-class anomaly detection
 - Multi-class anomaly detection

(b) One-class Anomaly Detection

(a) Multi-class Anomaly Detection

Tecniche di rilevamento delle anomalie basate sulla densità (Approccio non supervisionato)

- Il rilevamento delle anomalie basato sulla densità si basa sull'algoritmo KNN (K-Nearest Neighbors)
- I dati normali si presentano in un insieme denso, mentre le anomalie sono lontane
- L'insieme più vicino di dati viene valutato utilizzando un punteggio, che si basa su una distanza (es. euclinese)

Tecniche di rilevamento delle anomalie basate sul clustering (Approccio non supervisionato)

- ► Il clustering è uno dei concetti più popolari nel campo dell'apprendimento non supervisionato
- I dati simili in uno spazio di n dimensioni tendono ad appartenere a gruppi simili, in base alla media aritmetica delle loro posizioni (centroide)
- Il clustering è usato per raggruppare istanze di dati simili in gruppi
- Un algoritmo ampiamente usato è il K-mean:
 - Crea 'k' gruppi simili di dati in uno spazio
 - Le istanze di dati che non rientrano in questi gruppi potrebbero essere potenzialmente contrassegnate come anomalie.

Problemi aperti

- Le tecniche viste in precedenza si basano su metodi statistici, e quindi hanno bisogno di parametri pre-impostati per poter addestrare il modello ad estrarre determinate feature
- La soluzione proposta invece, sfrutta un tipo di rete neurale e quindi l'estrazione delle feature avviene in modo automatico
- La tecnica proposta mostra quindi i suoi meriti quando i dati sono complessi e di natura non lineare

Soluzione proposta: Gli Autoencoder

Autoencoder

- Sono reti neurali con lo scopo di generare nuovi dati dapprima comprimendoli e, successivamente, ricostruendo l'output sulla base delle informazioni acquisite
- L'obiettivo dell'Autoencoder è quello di ottenere un apprendimento delle caratteristiche utili per la ricostruzione dell'input

Differenti tipologie di Autoencoder

- Basic Autoencoder: (o multilayer) la forma più semplice
- Convolutional Autoencoder: al posto di vettori unidimensionali, vengono utilizzati vettori tridimensionali
- Variational Autoencoder: sono il risultato della combinazione di Deep Learning e inferenza bayesiana, nel senso che sono costituiti da una rete neurale allenata con l'algoritmo di backpropagation modificato con una tecnica chiamata riparametrizzazione

Basic Autoencoder

Convolutional Autoencoder

Variational Autoencoder

Training

Training di un Autoencoder

- L'apprendimento avviene tramite la minimizzazione della loss function
- È un metodo per valutare il modo in cui uno specifico algoritmo modella i dati forniti
- Se le previsioni si discostano troppo dai risultati effettivi, la funzione di perdita potrebbe produrre un numero elevato
- Con l'aiuto di alcune funzioni di ottimizzazione, la funzione di perdita impara un po' alla volta a ridurre l'errore nella previsione

MSE: viene misurato come la media della differenza quadrata tra previsioni e osservazioni effettive

MSE =
$$\frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y}_i)^2$$

BCE: la perdita aumenta quando la probabilità prevista differisce dall'etichetta effettiva

$$BCE = -\frac{1}{N} \sum_{i=0}^{N} y_i \cdot log(\hat{y}_i) + (1 - y_i) \cdot log(1 - \hat{y}_i)$$

> **SSIM:** l'indice di similarità strutturale è un metodo per misurare la somiglianza tra due immagini

$$ext{SSIM}(x,y) = rac{(2\mu_x \mu_y + c_1)(2\sigma_{xy} + c_2)}{(\mu_x^2 + \mu_y^2 + c_1)(\sigma_x^2 + \sigma_y^2 + c_2)}$$

Testing

Schema completo dei test eseguiti

START

anomaly = 0 False END if (anomaly <= 100) digit = 0 False if (digit< 10) anomaly += 10 epoch = 1 False if (epoch < 200) digit += 1 Training epoch += 1 model Testing Save results

START

Approccio supervisionato

Approccio non supervisionato

MNIST VS CIFAR10

- ► Training set: 60,000 immagini
- ► Testing set: 10,000 immagini
- ▶ 28x28 in scala di grigi
- ► Classi: 10

- ► Training set: 50,000 immagini
- ▶ Testing set: 10,000 immagini
- ▶ 32x32 a colori (3 canali RGB)
- ► Classi: 10

airplane	<u>'</u>
automobile	
bird	
cat	
deer	
dog	
frog	
horse	
ship	
truck	

Risultati: approccio supervisionato

DATASET MNIST

DATASET CIFAR10

Risultati: approccio non supervisionato

DATASET MNIST

DATASET CIFAR10

Confronto dei migliori risultati ottenuti

DIGIT	AUTOENCODER	LOSS FUNCTION	ACCURACY	AUC	
0	BASIC	BCE + SSIM	0,9437	0,9775	
1	BASIC	MSE + SSIM	0,9865	0.9975	
2	BASIC	BCE + SSIM	0,9267	0,9749	
3	VAE	BCE + SSIM	0,8598	0,9103	
4	CONVOLUTIONAL	BCE	0,8549	0,9348	
5	BASIC	BCE + SSIM	0,8686	0,9176	
6	BASIC	BCE + SSIM	0,9530	0,9839	
7	BASIC	BCE	0,9410	0,9745	
8	BASIC	BCE	0,8272	0,8802	
9	CONVOLUTIONAL	BCE + SSIM	0,8916	0,9535	
AVG	BASIC	BCE + SSIM	0,8844	0,9346	

Model	MNIST									
	Class 0	Class 1	Class 2	Class 3	Class 4	Class 5	Class 6	Class 7	Class 8	Class 9
GANomaly [4]	0.881	0.675	0.953	0.801	0.827	0.864	0.849	0.682	0.856	0.558
AnoGAN [3]	0.623	0.31	0.521	0.458	0.442	0.431	0.492	0.401	0.392	0.368
EGBAD [23]	0.783	0.294	0.523	0.506	0.453	0.436	0.593	0.398	0.523	0.358
DenseNet-169	0.998265	0.994258	0.984126	0.980750	0.983918	0.992295	0.984011	0.997476	0.991551	0.999386
ResNet-152	0.998050	0.994176	0.982025	0.981253	0.984338	0.989994	0.980970	0.998940	0.989815	0.998982
Inception-V4	0.997676	0.994609	0.983431	0.980548	0.984617	0.992676	0.983624	0.997108	0.994305	0.999080

DATASET MNIST

classe normale originale

classe normale ricostruita

classe anomala originale

classe anomala ricostruita

CLASS	AUTOENCODER	LOSS FUNCTION	ACCURACY	AUC
0	CONVOLUTIONAL	MSE + SSIM	0,7306	0,7714
1	CONVOLUTIONAL	BCE + SSIM	0,4919	0,6093
2	BASIC	MSE	0,7550	0,6116
3	VAE	BCE	0,5188	0,5808
4	VAE	MSE	0,6676	0,7311
5	VAE	MSE + SSIM	0,5326	0,5893
6	VAE	BCE	0,6877	0,7069
7	VAE	BCE	0,5527	0,6104
8	VAE	SSIM	0,7370	0,7757
9	VAE	BCE + SSIM	0,5984	0,6566
AVG	VAE	MSE + SSIM	0,5920	0,5767

Model	CIFAR10									
	plane	car	bird	cat	deer	frog	horse	ship	truck	dog
GANomaly [4]	0.633	0.631	0.51	0.587	0.593	0.683	0.605	0.616	0.617	0.628
AnoGAN [3]	0.516	0.492	0.411	0.399	0.335	0.321	0.399	0.567	0.511	0.393
EGBAD [23]	0.577	0.514	0.383	0.448	0.374	0.353	0.526	0.413	0.555	0.481
DenseNet-169	0.998449	0.998933	0.994980	0.992014	0.998145	0.991758	0.999031	0.998386	0.998948	0.998291
ResNet-152	0.998071	0.998203	0.995249	0.991605	0.998480	0.991375	0.999607	0.999289	0.998934	0.997900
Inception-V4	0.930263	0.971474	0.842340	0.853591	0.895042	0.893674	0.949273	0.921899	0.954804	0.931945

DATASET CIFAR10

classe normale originale

classe normale ricostruita

classe anomala originale

classe anomala ricostruita

- ▶ Gli Autoencoder dei test eseguiti hanno un'architettura con 4-5 livelli, contro i 169 della DenseNet
- Gli Autoencoder riducono la dimensionalità dei dati, guadagnando così spazio in memoria
- Inoltre, gli Autoencoder a differenza delle classiche reti neurali, hanno il vantaggio di poter separare l'Encoder dal Decoder

Conclusione e futuri sviluppi

- In conclusione, possiamo dire che gli Autoencoder possono essere utilizzati nella risoluzione di problemi dell'Anomaly Detection con ottimi risultati
- In futuro, per ottenere dei risultati ancora più significativi si potrebbe puntare su:
 - Aumento del numero di livelli della rete
 - ▶ Perfezionamento dei parametri:
 - ▶ Numero di epoche (ampliare lo studio già fatto in questa tesi)
 - ▶ Learning rate
 - ▶ Loss function (ampliare lo studio già fatto in questa tesi)