

UNIVERSIDADE FEDERAL DE PERNAMBUCO DEPARTAMENTO DE FÍSICA

Dinâmica Clássica Avançada - 2023.1 Prof. Mauro Copelli

4^a Lista de Problemas: Hamilton-Jacobi e variáveis Ação-Ângulo

Questão 1: Usando o método de Hamilton-Jacobi, resolva o problema do lançamento oblíquo em três dimensões dado pela hamiltoniana

$$H = \frac{1}{2m} \left(p_x^2 + p_y^2 + p_z^2 \right) + mgz .$$

Questão 2: Uma partícula de massa m move-se no plano xy sujeita ao campo gravitacional de duas massas muito maiores m_1 e m_2 que permanecem fixas sobre o eixo x nas posições $(\pm a, 0)$.

(a) Mostre que em coordenadas elípticas (u, v) definidas por

$$x = a \cosh u \cos v ,$$

$$y = a \sinh u \sin v ,$$

a Hamiltoniana deste problema é

$$H = \frac{1}{2ma^2} \frac{p_u^2 + p_v^2}{\cosh^2 u - \cos^2 v} + \frac{k}{\cosh u - \cos v} + \frac{k'}{\cosh u + \cos v}$$

e determine $k \in k'$.

(b) Mostre que a equação de Hamilton-Jacobi correspondente é separável e reduza a solução das equações de movimento a quadraturas (isto é, você pode deixar integrais indicadas na solução final).

Questão 3: Uma partícula de massa m restrita ao eixo x se move sob a ação de um potencial $V(x) = V_0 \tan^2(\alpha x)$, onde V_0 e α são constantes positivas.

- (a) Obtenha a variável de ação como função da energia e, a partir deste resultado, obtenha a freqüencia como função da energia.
- (b) Tome os limites de alta e baixa energias para mostrar que os resultados se aproximam respectivamente do oscilador harmônico e da partícula na caixa.

Dado:
$$\int_0^{\beta^{-1} \arctan(\sqrt{f/v})} dq \sqrt{f - v \tan^2(\beta q)} = \pi(\sqrt{f + v} - \sqrt{v})/(2\beta) \ (f > 0).$$

Questão 4: Resolva o problema do átomo de hidrogênio (V(r) = -k/r) usando variáveis ação-ângulo. Obtenha os níveis de energia aplicando a regra de Bohr-Sommerfeld. Algumas integrais úteis:

$$\int \frac{dx}{1 - k^2 \sin^2 x} = \frac{1}{\sqrt{1 - k^2}} \arctan\left(\sqrt{1 - k^2} \tan(x)\right)$$

$$\int \frac{\sqrt{a+bx+cx^2}}{x} dx = \sqrt{a+bx+cx^2} - \sqrt{-a} \arcsin\left(\frac{2a+bx}{x\sqrt{\Delta}}\right) - \frac{b}{2\sqrt{-c}} \arcsin\left(\frac{2cx+b}{\sqrt{\Delta}}\right) \; ,$$

onde $\Delta = b^2 - 4ac$, a, c < 0. Sugestão: siga os passos detalhados no livro de Nivaldo Lemos [Lem04].

Questão 5: Revisite o retrato de fase do pêndulo simples (por exemplo, seção 1.3 de José & Saletan ou seção 9.5 de Nivaldo Lemos). Observe que, para energias baixas, as curvas de energia constante são curvas fechadas C_{α} no plano (θ, p_{θ}) que circundam o ponto de equilíbrio estável $(\theta = 0, p_{\theta} = 0)$. Fisicamente,

estas curvas fechadas correspondem à oscilação do pêndulo em torno do ponto mais baixo. Foi neste tipo de movimento (chamado de *libração*) que concentramos a aplicação das variáveis Ação-Ângulo.

Para energias suficientemente altas, entretanto, o pêndulo atinge o ponto mais alto de sua trajetória com energia cinética suficiente para permanecer girando. Este tipo de movimento (chamado de rotação) é representado no espaço de fase por trajetórias que não são mais fechadas. Observe que $p_{\theta}(\theta)$ ainda é uma função periódica, mas $\theta(t)$ não mais (θ cresce monotonicamente com o tempo). Ainda assim, neste caso é possível definir uma variável de ação J que parametriza a curva de energia constante na qual a partícula se mantém. Para isso, definimos

$$J = \int_{q_0}^{q_0 + T_q} p \, dq \,,$$

onde T_q é a periodicidade no eixo q (no caso do pêndulo, $T_{\theta} = 2\pi$).

Utilizando variáveis Ação-Ângulo, resolva o problema de um rotor com momento de inércia I girando sobre um eixo fixo na ausência de torques externos, ou seja,

$$H = \frac{p_{\theta}^2}{2I} \ .$$

Observação: neste caso, a extrema simplicidade do problema faz com que o período da função $p_{\theta}(\theta)$ seja... qualquer!

Questão 6: Façamos inicialmente uma revisão sobre modos normais de vibração (se preferir, consulte e.g. Goldstein ou Nivaldo Lemos ou pule diretamente para o item (a)). Quando um sistema conservativo com n coordenadas generalizadas $\{q_{\alpha}\}_{\alpha=1,\dots,n}$ tem um mínimo local de energia potencial, $\frac{\partial V}{\partial q_{\alpha}}\Big|_{q=q_0}$, $\forall \alpha$, normalmente é possível expandir a lagrangiana até os primeiros termos relevantes,

$$L = \frac{1}{2} \left(\sum_{\alpha\beta} T_{\alpha\beta} \dot{\eta}_{\alpha} \dot{\eta}_{\beta} - \sum_{\alpha\beta} V_{\alpha\beta} \eta_{\alpha} \eta_{\beta} \right) , \qquad (1)$$

onde $\eta \equiv q - q_0$ é a perturbação em torno do mínimo em $q = q_0$. Se se propõe uma solução periódica do tipo $\eta_{\alpha}(t) = \Re[z_{\alpha}^0(t)] = \Re[z_{\alpha}^0 e^{i\omega t}]$, as equações de Euler-Lagrange levam a uma equação do tipo

$$(V - \omega^2 T)\vec{z}_0 = 0 , \qquad (2)$$

onde $\vec{z}_0 = (z_1^0, \dots, z_n^0)^T$ é um vetor constante. Ela tem solução não-trivial desde que $\det(V - \omega^2 V) = 0$, que é uma equação algébrica de grau n para ω^2 , com n raízes positivas $\omega = \omega_s$, $s = 1, \dots, n$. A estas raízes estão associados vetores característicos reais $\vec{v}^{(s)}$ que são solução da eq. (2), isto é, $\vec{z}_0 = \vec{v}^{(s)}$. Assim, $\vec{z}_s \equiv \vec{v}^{(s)} e^{i\omega_s t}$, $s = 1, \dots, n$ são n soluções independentes chamadas de modos normais de vibração. Uma solução geral do problema é uma combinação linear de modos normais:

$$\vec{z}(t) = \sum_{s}^{n} C_s \vec{v}^{(s)} e^{i\omega_s t} . \tag{3}$$

De fato, é possível fazer uma transformação de coordenadas $\vec{\eta} = A\vec{\zeta}$ tal que a lagrangiana (1) fique inicialmente reescrita como $L = \frac{1}{2}\dot{\zeta}^TA^TTA\dot{\zeta} - \frac{1}{2}\vec{\zeta}^TA^TVA\dot{\zeta}$. A escolha $A_{ij} = v_j^{(i)}$ promove a diagonalização $A^TTA = 1$ e $A^TVA = W^D$, onde W^D é uma matriz diagonal contendo os ω_s^2 . Assim, em termos das coordenadas normais $\{\zeta_{\alpha}\}$, a lagrangiana fica

$$L = \frac{1}{2} \sum_{\alpha} \left(\dot{\zeta}_{\alpha}^2 - \omega_{\alpha}^2 \zeta_{\alpha}^2 \right) , \qquad (4)$$

que corresponde a n osciladores harmônicos desacoplados. Ou seja, a equação de Hamilton-Jacobi deste problema é completamente separável. Projetando a trajetória do espaço de fase 2n-dimensional no plano bidimensional $(\zeta_{\alpha}, p_{\alpha})$ (onde $[\zeta_{\alpha}, p_{\beta}] = \delta_{\alpha,\beta}$), temos uma elipse.

Figura 1: Dois pêndulos acoplados [Fig. 5.5 de Nivaldo Lemos].

(a) Usaremos aqui um exemplo resolvido em detalhe no capítulo 5 de Nivaldo Lemos [Lem04]. Considere dois pêndulos planos idênticos (comprimento ℓ e massa m) acoplados por uma mola de constante elástica k (Fig. 1). Neste caso, a aplicação dos procedimentos descritos acima resulta em dois modos normais:

$$\begin{cases} \text{modo simétrico: } \vec{v}^{(1)} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \text{ com freqüência } \omega_1 = \sqrt{\frac{g}{\ell}} \text{ (isto \'e, com a mola sempre em equilíbrio)} \\ \text{modo anti-simétrico: } \vec{v}^{(2)} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}, \text{ com freqüência } \omega_2 = \sqrt{\frac{g}{\ell} + \frac{2k}{m}} \text{ .} \end{cases}$$
(5)

O modo simétrico corresponde aos dois pêndulos oscilando na mesma direção (observe que ω_1 não depende de k, pois a mola permanece em equilíbrio). O modo anti-simétrico corresponde aos dois pêndulos oscilando em direções opostas (com freqüência $\omega_2 > \omega_1$, uma vez que agora a mola contribui para a oscilação). As coordenadas normais respectivas são $\zeta_1 = \sqrt{\frac{m}{2}}(\eta_1 + \eta_2)$, que oscila com frequência ω_1 , e $\zeta_2 = \sqrt{\frac{m}{2}}(\eta_1 - \eta_2)$, que oscila com frequência ω_2 .

Como vimos em sala de aula, a trajetória deste sistema reside num 2-toro. O objetivo do exercício numérico a seguir é simplesmente visualizar como o movimento multiperiódico de um sistema hamiltoniano integrável de dimensão 4 aparece quando observamos a seção de Poincaré de dimensão 2. Suponha, por simplicidade, que escolhamos uma condição inicial tal que $\zeta_1(t=0)=\zeta_2(t=0)=0$ (isto é, os pêndulos começam parados). Neste caso, $\zeta_{\alpha}(t)=\zeta_{\alpha}^0\cos(\omega_{\alpha}t)$ e, calculando p_{α} a partir da lagrangiana (4), $p_{\alpha}=-\omega_{\alpha}\zeta_{\alpha}^0\sin(\omega_{\alpha}t)$ ($\alpha=1,2$). Por simplicidade, escolha $\zeta_1^0,\zeta_2^0>0$.

Tome agora a seção de Poincaré S como sendo, por exemplo, $p_2 = 0$ e $\zeta_2 > 0$. Ou seja, S reside no plano (ζ_1, p_1) . Pela escolha das condições iniciais e da seção de Poincaré, em t = 0 o sistema se encontra exatamente "furando" S, no ponto $(\zeta_1(0), p_1(0))$. Ele retornará a S quando as condições $p_2 = 0$ e $\zeta_2 > 0$ ocorrerem novamente, ou seja, após um período $T_2 = 2\pi/\omega_2$. O segundo ponto que aparece em S é portanto $(\zeta_1(T_2), p_1(T_2))$. Os seguintes são $(\zeta_1(2T_2), p_1(2T_2)), (\zeta_1(3T_2), p_1(3T_2)), \dots, (\zeta_1(mT_2), p_1(mT_2))$ etc.

Considere $g = 9, 8 \text{ m/s}^2$ e escolha valores razoáveis para ℓ , k e m. Observe que, a não ser que você manipule os dados com este propósito (ou tenha uma sorte merecedora de estudo...), a razão ω_1/ω_2 deve ser um número irracional (deixe registrado no gráfico os valores dos parâmetros utilizados, bem como de ω_1 , ω_2 e ω_1/ω_2). Faça três gráficos da seção de Poincaré, mostrando os pontos no plano (ζ_1, p_1) com m_1 pontos, m_2 pontos e m_3 pontos $(m_1 < m_2 < m_3)$. Observe que eles vão gradualmente preenchendo uma elipse no plano (ζ_1, p_1) , mas nunca se repetem.

(b) O movimento $\eta_1(t)$ da primeira partícula é dado, a menos de uma constante multiplicativa irrelevante, pela soma das duas coordenadas normais. Faça um gráfico de $\zeta_1(t)+\zeta_2(t)$ para um tempo longo o suficiente (digamos, $> 50T_1$) para se convencer de que $\eta_1(t)$ não é um movimento periódico (mas sim multiperiódico). Note que ele pode parecer periódico (daí o nome "quasi-periódico"!), mas não é.

Dica: observe que não é preciso integrar nenhuma equação diferencial, nem no item (a) nem no item (b). Basta usar a solução analítica!

Referências

[GPS02] H. Goldstein, C. Poole, and J. Safko. Classical Mechanics. Addison-Wesley, 3rd edition, 2002.

[Lem04] N. A. Lemos. *Mecânica Analítica*. Ed. Livraria da Física, São Paulo, 2004.