오픈소스 기초설계 개인 프로젝트 제안서. 20211771 김진영

소형주 모멘텀 예측을 위한 트랜스포머 모델 개발 및 오픈소스 구현

0. 프로젝트 목표 (Project Objectives)

본 프로젝트의 최종 목표는 **트랜스포머(Transformer) 모델을 활용하여 국내 소형주 시장에 특화된 고성능 주가 모멘텀 예측 시스템을 구축하고, 전체 프로세스를 재사용 가능한 오픈소스 코드로 공개**하는 것입니다.

이를 달성하기 위한 세부 목표는 다음과 같습니다.

- 소형주 모멘텀 특성 정의 및 데이터셋 구축: 국내 주식 시장 데이터를 기반으로 '시장 마찰'이 존재하며 '유의미한 거래가 가능한' 소형주를 식별하는 기준을 정의하고, 모멘텀 분석에 필요한 학습 데이터셋을 구축합니다.
- Transformer 기반 모멘텀 예측 모델 개발: 시계열 데이터의 장기 의존성 파악에 뛰어난 Transformer 아키텍처를 기반으로 소형주 모멘텀 패턴을 효과적으로 학습하는 예측 모델을 설계하고 구현합니다.
- 모델 성능 및 투자 전략 검증: 개발된 모델의 예측 정확도를 평가하고, 가상 투자 시뮬레이션(백테스팅)을 통해 실제 투자 전략으로서의 유효성과 수익성을 검증합니다.
- 프로세스 오픈소스화: 데이터 처리, 모델 학습, 백테스팅에 이르는 전 과정을 모듈화된 Python 코드로 작성하고 GitHub에 공개하여 금융 AI 분야의 다른 연구자 및 개발자들에게 기여합니다.

1. 프로젝트 배경 (Background & State-of-the-Art)

- 모델의 진화: 전통적인 시계열 분석 이후, 주가 예측 분야에서는 LSTM 과 같은 순환 신경망(RNN) 계열의 딥러닝 모델이 널리 사용되어 왔습니다. 하지만 LSTM 은 장기 의존성(long-term dependency) 문제, 즉 아주 먼 과거의 정보가 현재 예측에 미치는 영향을 포착하는 데 한계가 있습니다. 최근 자연어 처리(NLP) 분야에서 압도적인 성능을 보인 트랜스포머 모델이 이러한 장기 기억 문제를 효과적으로 해결하며 금융 시계열 데이터 분석의 새로운 대안으로 부상하고 있습니다.
- 기존 연구의 초점: 현재까지의 모멘텀 예측 연구는 대부분 시장 전체(대형주, 중형주 포함)를 대상으로 하는 '일반(general) 모델' 개발에 집중되어 있습니다. 하지만 소형주 시장은 대형주 시장과는 다른 독특한 특성을 가집니다.

2. 문제 정의 (Problem Definition)

- 1. 기술적 한계 (LSTM의 한계): 주가 모멘텀은 단기적 추세뿐만 아니라 장기적인 시장 심리와 과거 데이터 패턴에 영향을 받습니다. 기존 LSTM 모델은 이러한 장기적인 시계열 정보를 효과적으로 인식하고 학습하는 데 구조적인 한계가 있습니다.
- 2. **데이터의 함정 (지나친 소형주의 노이즈):** 필터링 되지 않은 극소형주는 다음과 같은 심각한 문제를 야기하여 모델의 학습을 방해하고 전략의 실효성을 떨어뜨립니다.
 - **가격 왜곡 (Price Distortion):** 낮은 유동성으로 인해 몇 건의 거래만으로 주가가 급등락하여 '가짜 모멘텀' 신호를 만듭니다.
 - **높은 거래 비용 (Transaction Cost):** 큰 매수-매도 호가 차이(Bid-Ask Spread)와 슬리피지(Slippage)로 인해 백테스트 상의 수익이 실제 거래에서는 손실로 전환될 수 있습니다.
- 3. 기존 모델의 한계 (General 모델의 한계):
 - 소형주 시장의 특수성 간과: 소형주 시장은 높은 Market Friction 때문에 기관 투자자의 대규모 자본 진입이 어렵고, 유동성이 낮아 차익거래(Arbitrage) 기회가 적습니다.
 - **비효율성 존재:** 이러한 특성으로 인해 소형주 시장은 대형주 시장보다 비효율적일 가능성이 높으며, 이는 일반화된 모델로는 포착하기 어려운 독특한 모멘텀 패턴이 존재할 수 있음을 시사합니다.

3. 해결 방안 (Proposed Solution)

위에서 정의한 두 가지 문제를 해결하기 위해 다음과 같은 접근 방식을 제안합니다.

- 1. 트랜스포머 모델 도입 (기술적 문제 해결):
 - LSTM 의 장기 의존성 문제를 해결하기 위해 **트랜스포머 아키텍처**를 주가 예측 모델의 핵심 엔진으로 도입합니다.
 - 트랜스포머의 '어텐션(Attention) 메커니즘'을 통해 과거의 어떤 시점 데이터가 현재 모멘텀 예측에 더 중요한지 가중치를 부여하여, 더 정교하고 장기적인 패턴을 학습합니다.
- 2. 소형주 필터링 (데이터의 함정 문제 해결):
 - '노이즈'를 제거하고 '유의미한 모멘텀'을 탐색하기 위해 단순히 시가총액 하위 그룹이 아닌, **최소한의 유동성 기준(예: 일평균 거래대금, 최소 시가총액)을 적용**하여 거래 자체가 불가능하거나 왜곡이 심한 종목을 **사전 제거**합니다.
 - **도구 활용:** mlfinlab 라이브러리를 활용하여 금융 데이터 정제 및 레이블링 작업을 효율화합니다.
- 3. 소형주 특화 데이터셋 구축 및 모델 학습 (General 모델의 문제 해결):
 - 실용성 확보 가능: 이 필터링 과정은 실제 매매 전략 구사 시 발생할 수 있는 과도한 슬리피지(Slippage)나 가격 왜곡(Price Distortion) 문제를 사전에 방지하는 역할을 합니다.
 - **특화 모델 학습 가능:** 선별된 소형주 데이터를 기반으로 '소형주 특화 모멘텀 예측 모델'을 학습시켜, 해당 세그먼트에서만 나타나는 고유한 패턴을 포착합니다.

4. 주요 연구 내용 및 방법 (Methodology)

<1 단계: 데이터 수집 및 전처리 (소형주 데이터셋 구축)>

- 데이터 확보: 국내 상장 주식의 시계열 데이터(시가, 고가, 저가, 종가, 거래량)와 시가총액 등 재무 지표를 수집합니다.
- 핵심 소형주 필터링: '노이즈'를 제거하고 '유의미한 모멘텀'을 탐색하기 위해 단순히 시가총액 하위 그룹이 아닌, 최소한의 유동성 기준(예: 일평균 거래대금, 최소 시가총액)을 적용하여 거래 자체가 불가능하거나 왜곡이 심한 종목을 사전 제거합니다.
- 도구 활용: mlfinlab 라이브러리를 활용하여 금융 데이터 정제 및 레이블링 작업을 효율화합니다.

<2 단계: Transformer 기반 예측 모델 설계>

- 모델 아키텍처: TFT-Lite (Temporal Fusion Transformer-Lite) 하이브리드 모델
 - 본 프로젝트는 단순 Transformer 인코더 구조를 넘어, Google AI 에서 발표한 **Temporal Fusion Transformer (TFT) 모델**의 핵심 아이디어를 차용하여 '소형주 모멘텀 예측'에 최적화된 **TFT-Lite** 모델을 설계합니다.
 - 이 모델은 LSTM 과 트랜스포머의 장점을 결합한 하이브리드 구조를 가집니다.
 - LSTM Encoder: 시계열 데이터(과거 N 일의 주가, 거래량 등)를 입력받아 단기적인 지역 패턴(local pattern)을 먼저 학습하고 요약합니다.
 - Transformer (Attention): LSTM 이 요약한 단기 패턴들과 종목 고유 정보(섹터, 시총 등급)를 함께 입력받아, 예측에 중요한 장기적인 의존성(long-term dependency)을 찾아냅니다.
 - Static Encoder: 종목의 고유 정보를 학습하여, 모든 주식에 동일한 패턴을 적용하는 것이 아닌 '소형주'라는 특성을 모델이 이해하도록 돕습니다.
- 구현: PyTorch 또는 TensorFlow 프레임워크를 사용하여 모델을 구현합니다.
- 참고 모델 및 논문:
 - 아래 논문에서 제안된 TFT 아키텍처를 기반으로, 본 프로젝트의 목표에 맞게 구조를 경량화하고 출력부를 수정하여 적용합니다. GRN(Gated Residual Network)과 같은 핵심 부품은 해당 논문의 설계를 따릅니다.
 - Lim, B., Arık, S. Ö., Loeff, N., & Pfister, T. (2021). "Temporal Fusion Transformers for interpretable multi-horizon time series forecasting". *International Journal of Forecasting*, 37(4).

• 모델 설계 예상 구조도

Gated Residual Network (GRN)

- o **GLU**: Gated Linear Unit
- o **ELU:** Exponential Linear Unit

Image 2: Gated Residual Network Architecture [10]

□ 1단계: 입력 처리 (단기 패턴 학습)

(상승 / 중립 / 하락)

• 목적: 데이터를 받아서 '단기적인 특징'과 '종목의 특성'을 파악합니다.

• 작동:

- Static (고유 정보): "이 종목은 IT 섹터의 소형주다" 같은 '변하지 않는 정보'를 Static Encoder 가 학습합니다.
- Time-Varying (시계열): "과거 60 일간의 주가, 거래량" 같은 '변하는 정보'를 LSTM Encoder 가 학습합니다. LSTM 은 여기서 '단기적인 추세'나 '로컬 패턴'을 요약하는 역할을 합니다.

□ 2 단계: 장기 패턴 학습 (트랜스포머)

• 목적: 1 단계에서 요약된 정보들을 모아 '장기적인 핵심 패턴'을 찾아냅니다.

• 작동:

- Interpretable Multi-head Attention (트랜스포머의 핵심)이 1 단계의 결과물들을 입력받습니다.
- "이 IT 소형주의 60 일치 단기 패턴들 중, 미래 모멘텀 예측에 가장 중요한 날은 언제였지?"를 스스로 찾아내 가중치를 부여합니다. (예: 30 일 전의 거래량 폭발 패턴)
- 이것이 바로 LSTM의 한계였던 **장기 의존성(Long-term dependency)을 해결**하는 부분입니다.

□ 3 단계: 예측 출력 (모멘텀 판단)

- 목적: 모든 정보를 종합하여 최종 결론을 내립니다.
- 작동:
 - 트랜스포머가 찾아낸 '핵심 정보'가 GRN Block 과 Output Layer 를 통과합니다.
 - Softmax 함수가 "앞으로 상승할 확률 70%, 횡보 20%, 하락 10%"처럼 최종 예측 결과를 확률로 출력합니다.

<3 단계: 모델 학습 및 성능 평가>

- 학습: 정제된 소형주 그룹의 과거 데이터를 사용하여 모델을 학습시킵니다.
- 평가: 예측된 주가 방향과 실제 방향의 일치도를 측정하는 정확도(Accuracy), F1-Score 등의 지표로 모델의 예측 성능을 평가합니다.

<4 단계: 백테스팅을 통한 투자 전략 검증>

- 전략 수립: 모델이 '상승 모멘텀'을 예측한 종목을 매수하는 가상 투자 전략을 수립합니다.
- 성과 검증: 과거 데이터를 이용한 시뮬레이션을 통해 누적수익률, 샤프 지수(Sharpe Ratio), 최대 낙폭(MDD) 등 투자 성과 지표를 산출하여 전략의 실효성을 검증합니다.
- **도구 활용:** 퀀트 전략 백테스팅 라이브러리인 zipline 을 활용하여 시뮬레이션의 정확성과 효율성을 높입니다.

5. 기대 효과 및 기여 방안 (Expected Outcomes)

- 기술적 기여: Transformer 모델이 금융 시계열 데이터, 특히 비효율성이 존재하는 소형주 시장 예측에 효과적으로 적용될 수 있음을 실증적으로 보입니다.
- 오픈소스 기여: 데이터 수집 및 정제, 모델 학습, 백테스팅에 이르는 전체 파이프라인 코드를 GitHub에 공개함으로써 금융 AI 분야 입문자들에게 실용적인 가이드를 제공하고, 특히 국내 주식 데이터 분석 커뮤니티 활성화에 기여하고자 합니다.

6. 참고 자료 (References)

가. 주요 학술 논문 (Academic Papers)

- 1. Vaswani, A., et al. (2017). "Attention Is All You Need". *Advances in neural information processing systems*, 30.
 - **내용:** 트랜스포머 아키텍처를 최초로 제안한 **필수적인 기초 논문**입니다. 모델의 핵심인 '어텐션 메커니즘'의 이론적 기반을 제공하여, 본 연구에서 트랜스포머를 채택한 기술적 타당성을 뒷받침합니다.
- 2. Lim, B., et al. (2021). "Time-series forecasting with deep learning: a survey". *Philosophical Transactions of the Royal Society A*, 379(2194).
 - **내용:** 금융을 포함한 시계열 예측 분야에서 딥러 NING 모델(LSTM, Transformer 등)이 어떻게 활용되는지 전반적으로 정리한 논문입니다. LSTM 의 한계와 트랜스포머의 가능성을 비교하며 **연구의 큰 그림**을 그릴 때 유용합니다.
- 3. Zhou, H., et al. (2021). "Informer: Beyond efficient transformer for long sequence time-series forecasting". *In Proceedings of the AAAI conference on artificial intelligence*, 35(12).
 - **내용:** 기존 트랜스포머를 장기 시계열 예측에 더 효율적으로 사용하기 위해 개선한 'Informer' 모델을 제안합니다. 본 프로젝트의 **모델 성능을 고도화하거나** 확장할 때 중요한 아이디어를 제공할 수 있습니다.
- 4. Lim, B., et al. (2019). "Deep Momentum Networks: A Deep Learning Approach for Price Momentum-Based Trading".
 - **내용:** LSTM을 사용하여 모멘텀 패턴을 직접 학습하는 방법을 제안한 논문입니다. 본 연구가 **비교 기준으로 삼는 기존 딥러닝 접근 방식**을 이해하는 데 중요한 참고 자료가 됩니다.
- 5. Freyberger, B., et al. (2020). "Dissecting Characteristics-Based Anomalies with Machine Learning".
 - **내용:** 어떤 주식 특성(시가총액, 가치 지표 등)이 주가 이상 현상(수익률)에 영향을 미치는지 머신러닝으로 분석한 논문입니다. '소외된 소형주'의 특성을 **정량적으로 정의하고 필터링하는 근거**를 마련하는 데 아이디어를 제공합니다.
- 6. Lim, B., Arık, S. Ö., Loeff, N., & Pfister, T. (2021). "Temporal Fusion Transformers for interpretable multi-horizon time series forecasting". *International Journal of Forecasting*, 37(4).
 - 내용: TFT 구조 제안

나. 오픈소스 및 기술 자료 (Open-Source & Technical Resources)

- 1. mlfinlab (GitHub Repository)
 - o **URL:** https://github.com/hudson-and-thames/mlfinlab
 - **역할:** 금융 데이터의 구조적 특징을 고려한 데이터 전처리, 피처 생성, 레이블링(Labeling) 등 복잡한 작업을 효율적으로 처리하기 위해 활용합니다.
- 2. zipline (GitHub Repository)
 - o **URL:** https://github.com/quantopian/zipline

- **역할:** 개발된 예측 모델을 기반으로 투자 전략을 수립하고, 과거 데이터를 이용해 성과(수익률, MDD 등)를 검증하는 백테스팅 시뮬레이터로 활용합니다.
- 3. Moon, T. (2023). "Momentum Transformers". The Moonlight Blog.
 - URL: https://www.themoonlight.io/ko/review/enhanced-momentum-withmomentum-transformers
 - **역할:** 트랜스포머를 모멘텀 전략에 적용하는 아이디어와 구현 사례를 쉽게 설명한 기술 블로그로, **초기 아이디어 구체화 및 구현**에 참고가 되었습니다.
 - o 논문 Enhanced Momentum with Momentum Transformers
 Max Mason¹, Waasi A Jagirdar², David Huang¹, Rahul Murugan²:
 https://arxiv.org/pdf/2412.12516