Linguagens Formais e Autômatos

Aula 09 - Autômatos finitos e expressões regulares

Prof. Dr. Daniel Lucrédio Departamento de Computação / UFSCar Última revisão: ago/2015

Referências bibliográficas

- Introdução à teoria dos autômatos, linguagens e computação / John
 E. Hopcroft, Rajeev Motwani, Jeffrey D. Ullman; tradução da 2.ed.
 original de Vandenberg D. de Souza. Rio de Janeiro: Elsevier, 2002
 (Tradução de: Introduction to automata theory, languages, and computation ISBN 85-352-1072-5)
 - Capítulo 3 Seção 3.2
- Introdução à teoria da computação / Michael Sipser; tradução técnica Ruy José Guerra Barretto de Queiroz; revisão técnica Newton José Vieira.
 São Paulo: Thomson Learning, 2007 (Título original: Introduction to the theory of computation. "Tradução da segunda edição norte-americana" -ISBN 978-85-221-0499-4)
 - Capítulo 1 Seção 1.3

Autômatos finitos e expressões regulares

- São diferentes na notação
 - Mas tanto autômatos finitos como expressões regulares representam exatamente o mesmo conjunto de linguagens
 - Linguagens regulares
- Ou seja:
 - Toda linguagem definida por um autômato finito também é definida por uma expressão regular
 - Toda linguagem definida por uma expressão regular é definida por um autômato finito

Autômatos finitos e expressões regulares

→ Já demonstrado→ A demonstrar

- Teorema: Se L = L(A) para algum DFA A, então existe uma expressão regular R tal que L = L(R)
- Conversão é surpreendentemente complicada
 - Método 1: n³ expressões, com 4ⁿ símbolos (pior caso)
 - Método 2: eliminação de estados
 - Mais simples, porém também trabalhosa
 - Envolve uma notação mista: autômatos + ERs
 - Autômato finito não-determinístico generalizado
 - Transições são expressões regulares

Autômatos + ERs

- Método da eliminação de estados
- Eliminamos todos os estados, um por um
 - Ao eliminar um estado s, todos os caminhos que passam por s não mais existem no autômato
- Substituiremos símbolos por ER nas transições, para representar as transições eliminadas

- Para cada estado de aceitação q, elimine todos os estados, com exceção de q e q0 (estado inicial)
 - Resultado = um autômato para cada estado de aceitação

Cada autômato terá uma ER equivalente

Basta fazer a união de todas as expressões

01*(1+0)*110

0+1*

01*(1+0)*110 + 0 +

1* + 111 + 1(0+
$$\epsilon$$
)10

1(0+ ϵ)10

Eliminando um estado s (caso não haja um determinado arco, considerar que existe um arco com rótulo Ø)

- Repetir esse procedimento para todos os estados
- No final, existem duas possibilidades:
 - o q0=q
 - Resta um único estado, com uma transição R
 - R é a expressão regular equivalente
 - o q0≠q
 - Restam dois estados, no seguinte formato genérico:

A expressão regular final é (R+SU*T)*SU*

 Exemplo: cadeias com símbolo 1 a duas ou três posições a partir do final

 Primeiro passo, substituir as transições rotuladas 0,1 por 0 + 1

- Eliminando B (assim dá para reaproveitar em outras reduções)
 - o Q1=1
 - o P1=0+1
 - ∘ R11=Ø
 - S=Ø
- Arco de A para C = R11+Q1S*P1 = Ø+1Ø*(0+1)
 - Simplificando: 1(0+1)

- Eliminando C
 - \circ Q1=1(0+1)
 - o P1=0+1
 - ∘ R11=Ø
 - S=Ø
- Arco de A para D = R11+Q1S*P1 = Ø+1(0+1)
 Ø*(0+1)
 - Simplificando: 1(0+1)(0+1)

- Restou um autômato de 2 estados
 - o R=0+1
 - \circ S=1(0+1)(0+1)
 - U=Ø
 - \circ T=Ø
- Fórmula: (R+SU*T)*SU*
 - Resultado: (0+1+1(0+1)(0+1)Ø*Ø)*1(0+1)(0+1)Ø*
 - Simplificando: (0+1)*1(0+1)(0+1)

- Eliminando D agora
 - Não há sucessor, portanto não haverá mudanças de arcos
 - Da mesma forma, restou um autômato de 2 estados
 - Expressão regular resultante: (0+1)*1(0+1)

- Haviam dois estados de aceitação
 - Foram obtidos dois autômatos
 - Duas expressões regulares equivalentes
 - A expressão regular final é a união dessas duas:
 - (0+1)*1(0+1)+(0+1)*1(0+1)(0+1)
- Simplificando
 - o (0+1)*1(0+1)(0+1)?

- Teorema: Toda linguagem definida por uma expressão regular também é definida por um autômato finito
- Prova por construção: ER→ε-NFA
 - Base + indução
- Base: ε, Ø e a (um símbolo qualquer)

 Indução: Os mesmos autômatos das provas sobre o fechamento das operações regulares

- Características do ε-NFA:
 - Possui exatamente um estado de aceitação
 - Nenhum arco chega no estado inicial
 - Nenhum arco sai do estado de aceitação

Fim

Aula 09 - Autômatos finitos e expressões regulares