МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра ВТ

ОТЧЕТ

по лабораторной работе №7

по дисциплине «элементная база цифровых систем»

Тема: ПРОЕКТИРОВАНИЕ ДВОИЧНЫХ СЧЕТЧИКОВ Вариант 5

Степовик В.С.
Соболев М.С.
Дубенков С.
Ельчанинов М.Н

Санкт-Петербург 2022

Цель работы

Исследовать особенности функционирования двоичных счетчиков с вырожденными переходами (принудительной установкой в состояния) и различными способами организации переноса.

Ход работы

Часть 1. Синтезирование на основе мегафункции счетчика Вариант №5:

Harran	Способ	Способ
Номер бригады	реализации 1.	реализации 2.
оригады	Порядок счета	Порядок счета
5	7–14	2-4; 8-15

1. Способ реализации с помощью дешифратора

Порядок счета для реализации данным способом – 7-14

1.1. Схема узла, представленная с помощью Quartus II

1.2. Результаты моделирования

Функциональное моделирование

Временное моделирование

В схему были добавлены выводы на семисегментный индикатор. Ниже раскрывается схема осуществляющая активацию соответствующих сегментов при конкретных сигналах со счётчика.

1.3. Описание процесса макетирования

PIN_132 - Тактовый сигнал 40 МГц

 PIN_{151} — вывод на динамик

D0-D6 – семисегментный индикатор №0

D00-D06 – семисегментный индикатор №1

Node Name	Direction	Location	I/O Bank	VREF Group	Fitter Location	I/O Standard	Reserved	Current Strength	Differential Pair
eut BEEP	Output	PIN_151	3	B3_N0	PIN_151	3.3-V Lefault)		24mA (default)	
in_ C	Input	PIN_132	3	B3_N0	PIN_132	3.3-V Lefault)		24mA (default)	
out D0	Output	PIN_191	2	B2_N1	PIN_191	3.3-V Lefault)		24mA (default)	
out D00	Output	PIN_203	2	B2_N1	PIN_203	3.3-V Lefault)		24mA (default)	
out D1	Output	PIN_187	2	B2_N1	PIN_187	3.3-V Lefault)		24mA (default)	
out D01	Output	PIN_198	2	B2_N1	PIN_198	3.3-V Lefault)		24mA (default)	
out D2	Output	PIN_188	2	B2_N1	PIN_188	3.3-V Lefault)		24mA (default)	
out D02	Output	PIN_199	2	B2_N1	PIN_199	3.3-V Lefault)		24mA (default)	
out D3	Output	PIN_197	2	B2_N1	PIN_197	3.3-V Lefault)		24mA (default)	
out D03	Output	PIN_208	2	B2_N1	PIN_208	3.3-V Lefault)		24mA (default)	
out D4	Output	PIN_195	2	B2_N1	PIN_195	3.3-V Lefault)		24mA (default)	
out D04	Output	PIN_207	2	B2_N1	PIN_207	3.3-V Lefault)		24mA (default)	
out D5	Output	PIN_192	2	B2_N1	PIN_192	3.3-V Lefault)		24mA (default)	
º □ □ □ □ □ □ □ □ □ □ □ □ □	Output	PIN_205	2	B2_N1	PIN_205	3.3-V Lefault)		24mA (default)	
out D6	Output	PIN_193	2	B2_N1	PIN_193	3.3-V Lefault)		24mA (default)	
out D06	Output	PIN_206	2	B2_N1	PIN_206	3.3-V Lefault)		24mA (default)	
out DP	Output	PIN_201	2	B2_N1	PIN_201	3.3-V Lefault)		24mA (default)	

2. Способ реализации с помощью дополнительной логики

Порядок счета для реализации данным способом – 2-4, 8-15

2.1. Схема узла, представленная с помощью Quartus II

В схему также добавлены выводы на семисегментные индикаторы и динамик для визуализации работы схемы.

2.2. Результаты моделирования

Функциональное моделирование

Временное моделирование

2.3. Описание процесса макетирования

PIN_132 - Тактовый сигнал 40 МГц

PIN_151 – вывод на динамик

D0-D6 – семисегментный индикатор №0

D00-D06 – семисегментный индикатор №1

Node Name	Direction	Location	I/O Bank	VREF Group	Fitter Location	I/O Standard	Reserved	Current Strength	Differential Pair
SEEP BEEP	Output	PIN_151	3	B3_N0	PIN_151	3.3-V Lefault)		24mA (default)	
in_ C	Input	PIN_132	3	B3_N0	PIN_132	3.3-V Lefault)		24mA (default)	
out D0	Output	PIN_191	2	B2_N1	PIN_191	3.3-V Lefault)		24mA (default)	
94 D00	Output	PIN_203	2	B2_N1	PIN_203	3.3-V Lefault)		24mA (default)	
out D1	Output	PIN_187	2	B2_N1	PIN_187	3.3-V Lefault)		24mA (default)	
94 D01	Output	PIN_198	2	B2_N1	PIN_198	3.3-V Lefault)		24mA (default)	
out D2	Output	PIN_188	2	B2_N1	PIN_188	3.3-V Lefault)		24mA (default)	
out D02	Output	PIN_199	2	B2_N1	PIN_199	3.3-V Lefault)		24mA (default)	
out D3	Output	PIN_197	2	B2_N1	PIN_197	3.3-V Lefault)		24mA (default)	
º □ □ □ □ □ □ □ □ □ □ □ □ □	Output	PIN_208	2	B2_N1	PIN_208	3.3-V Lefault)		24mA (default)	
out D4	Output	PIN_195	2	B2_N1	PIN_195	3.3-V Lefault)		24mA (default)	
ºut D04	Output	PIN_207	2	B2_N1	PIN_207	3.3-V Lefault)		24mA (default)	
out D5	Output	PIN_192	2	B2_N1	PIN_192	3.3-V Lefault)		24mA (default)	
º D05	Output	PIN_205	2	B2_N1	PIN_205	3.3-V Lefault)		24mA (default)	
out D6	Output	PIN_193	2	B2_N1	PIN_193	3.3-V Lefault)		24mA (default)	
out D06	Output	PIN_206	2	B2_N1	PIN_206	3.3-V Lefault)		24mA (default)	
DP DP	Output	PIN_189	2	B2_N1	PIN_189	3.3-V Lefault)		24mA (default)	

Часть 2. Синтезирование на основе триггеров

1. Описание синтеза

Синтезировать на основе имеющихся в библиотеке САПР Quartus II примитивов триггеров счетчик с вырожденными состояниями с модифицированными межразрядными связями.

Номер	Порядок	Тип
бригады	счета	триггера
5	3–10	D

Таблица значений

	Q3	Q2	Q1	Q0	Q3+	Q2+	Q1+	Q0+	D3	D2	D1	D0
0	0	0	0	0	0	0	1	1	0	0	1	1
1	0	0	0	1	0	0	1	1	0	0	1	1
2	0	0	1	0	0	0	1	1	0	0	1	1
3	0	0	1	1	0	1	0	0	0	1	0	0
4	0	1	0	0	0	1	0	1	0	1	0	1
5	0	1	0	1	0	1	1	0	0	1	1	0
6	0	1	1	0	0	1	1	1	0	1	1	1
7	0	1	1	1	1	0	0	0	1	0	0	0
8	1	0	0	0	1	0	0	1	1	0	0	1
9	1	0	0	1	1	0	1	0	1	0	1	0
10	1	0	1	0	0	0	1	1	0	0	1	1
11	1	0	1	1	0	0	1	1	0	0	1	1
12	1	1	0	0	0	0	1	1	0	0	1	1
13	1	1	0	1	0	0	1	1	0	0	1	1
14	1	1	1	0	0	0	1	1	0	0	1	1
15	1	1	1	1	0	0	1	1	0	0	1	1

Для выходов получим значения с помощью карт Карно

D3

D2

D1

D0

2. Схема узла, представленная с помощью Quartus II

3. Результаты моделирования

Функциональное моделирование

Временное моделирование

3. Описание процесса макетирования

С - Тактовый сигнал 40 МГц

D0-D3 – светодиодная линейка

Node Name	Direction	Location	I/O Bank	VREF Group	itter Location	I/O Standard	Reserved	ırrent Streng	ifferential Pa
<u>i</u> C	Input	PIN_132	3	B3_N0	PIN_23	3.3-Vault)		24mAault)	
º D[3]	Output	PIN_171	2	B2_N0	PIN_40	3.3-Vault)		24mAault)	
º D[2]	Output	PIN_173	2	B2_N0	PIN_39	3.3-Vault)		24mAault)	
5 D[1] €	Output	PIN_175	2	B2_N0	PIN_41	3.3-Vault)		24mAault)	
3 D[0] 3 D[0]	Output	PIN_176	2	B2_N0	PIN_43	3.3-Vault)		24mAault)	

Вывод

В данной лабораторной работе мы исследовали особенности функционирования двоичных счетчиков с вырожденными переходами (принудительной установкой в состояния) и различными способами организации переноса.