PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2000-075520

(43) Date of publication of application: 14.03.2000

(51)Int.CI.

G03G 5/06

(21)Application number: 10-242081

(71)Applicant: FUJI ELECTRIC CO LTD

(22)Date of filing:

27.08.1998

(72)Inventor: KURODA MASAMI

(54) ELECTROPHOTOGRAPHIC PHOTORECEPTOR

(57)Abstract:

PROBLEM TO BE SOLVED: To obtain a positively electrostatic chargeable electrophotographic photoreceptor for a high speed copying machine and a printer by using a specific electron transferring compound as a charge transfer material in a photosensitive layer provided on a conductive base body.

SOLUTION: In the electrophotographic photoreceptor provided with the photosensitive layer containing a charge generating material and the charge transfer material on the conductive base body, the photosensitive layer contains at least one kind of the electron transferring compound expressed by a formula as the charge transfer material. In the formula, each of R1 and R2 is individually represents hydrogen atom, a halogen atom, a (substituted) 1-8C alkyl group or an alkoxy group, an arylalkyl group, a (substituted) aryl base body or a residual group for forming a ring. A1 represents oxygen atoms or =CR3R4 (where, each of R3 and R4 represents cyano group or an alkoxy carbonyl group), (m) represents integers of 1-4 and

LEGAL STATUS

[Date of request for examination]

(n) represents integers of 1-5.

11.09.2002

[Date of sending the examiner's decision of

rejection]

Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number] [Date of registration] 3666262

15.04.2005

[Number of appeal against examiner's decision

of rejection]

[Date of requesting appeal against examiner's

THIS PAGE BLANK (USPTO)

decision of rejection]
[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

THIS PAGE BLANK (USPTO)

THIS PAGE BLANK (USPTO)

S PAGE BLANK

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2000-75520 (P2000-75520A)

(43)公開日 平成12年3月14日(2000.3.14)

(51) Int.Cl.'
G 0 3 G 5/06

職別記号 319 FI G03G 5/06 デーヤコート*(参考) 319 2H068

審査請求 未請求 請求項の数2 OL (全 10 頁)

(21)出願番号

特願平10-242081

(22)出願日

平成10年8月27日(1998.8.27)

(71)出願人 000005234

富士電機株式会社

神奈川県川崎市川崎区田辺新田1番1号

(72) 発明者 黒田 昌美

神奈川県川崎市川崎区田辺新田1番1号

富士電機株式会社内

(74)代理人 100096714

弁理士 本多 一郎

F ターム(参考) 2H068 AA20 AA21 AA31 AA36 BA12 BA63 FC02

(54) 【発明の名称】 電子写真用感光体

(57)【要約】

(修正有)

【課題】 感光層に電荷輸送物質として今まで用いられたことのない新しい有機材料を用いることにより、高速度な複写機用及びプリンタ用正帯電型電子写真用感光体を提供する。

【解決手段】 導電性基体上に電荷発生物質及び電荷輸送物質を含有する感光層を設けた電子写真用感光体において、感光層に、下記一般式(I)、

$$A^{1} = CH - N = CH - CH$$

で示される電子輸送性化合物を電荷輸送物質として含有する。(式中、R¹ およびR² は水素原子、ハロゲン原子、炭素数1~8のアルキル基若しくはアルコキシ基、アリールアルキル基、アリール基、又は環を形成するための残基、A¹ は酸素原子、又は=CR³ R⁴ (但し、R³ およびR⁴ はそれぞれシアノ基又はアルコキシカルボニル基)、mは1~4の整数、nは1~5の整数を表

す。)

O

【特許請求の範囲】

【請求項1】 導電性基体上に電荷発生物質および電荷 輸送物質を含有する感光層を設けた電子写真用感光体に おいて、該感光層に、下記一般式(I)、

$$A^{1} = CH - N = CH - CH - (R^{2})_{n}$$
(I)

(式中、R 1 およびR 2 はそれぞれ独立に水素原子、ハ 1 ロゲン原子、置換基を有してもよい炭素数1~8のアル

キル基若しくはアルコキシ基、アリールアルキル基、置換基を有してもよいアリール基、又は環を形成するための残基、A¹ は酸素原子、又は=CR³ R⁴ (但し、R³ およびR⁴ はそれぞれシアノ基又はアルコキシカルボニル基)、mは1~4の整数、nは1~5の整数を表す。)で示される電子輸送性化合物の少なくとも1種を電荷輸送物質として含有することを特徴とする電子写真用感光体。

2

【請求項2】 導電性基体上に電荷発生物質および電荷 輸送物質を含有する感光層を設けた電子写真用感光体に おいて、該感光層に、下記一般式(II)、

$$\mathbb{C}^{(g_2^{(r)})_{Q_1^{(r)}}} = \mathbb{C}^{(R^6)_p}$$

$$\mathbb{C}^{(R^6)_p} = \mathbb{C}^{(R^7)_q} = \mathbb{C}^{(R^7)_q}$$

$$\mathbb{C}^{(R^7)_q} = \mathbb{C}^{(R^7)_q} = \mathbb{C}$$

(式中、 R ⁵ 、 R ⁶ および R 7はそれぞれ独立に水素原子、ハロゲン原子、関換基を 有してもよい炭素数 1 ~8のアルキル基若しくはアルコ キシ基、アリールアルキル基、関換基を有してもよいア

 リール基、又は環を形成するための機基。
 B¹ およびB

 2 はそれぞれ酸素原子、又は=CR⁸ R⁹ (但し、R⁸ およびR⁹ はそれぞれシアノ基又はアルコキシカルボニ

ル基)、o、pおよびqは1~4の整数を表す。)で示される電子輸送性化合物の少なくとも1種を電荷輸送物質として含有することを特徴とする電子写真用感光体。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、電子写真用感光体に関し、詳しくは、導電性基体上に有機材料を含む感光層を設けた、電子写真方式のプリンタ、複写機などに用いられる電子写真用感光体に関する。

[0002]

【従来の技術】従来は、電子写真方式のプリンタ、ファクシミリ、各種複写機等に用いられる電子写真用感光体として、セレンまたはセレン合金などの無機光導電性物質、酸化亜鉛もしくは硫化カドミウムなどの無機光導電性物質を樹脂バインダー中に分散させたものが用いられてきた。近年では、有機光導電性物質を用いた電子写真 40 用感光体の研究も進み、感度や耐久性などが改善されて実用化されているものもある。

【0003】また、感光体には、暗所で表面電荷を保持する機能、光を受容して電荷を発生する機能、同じく光を受容して電荷を輸送する機能とが必要であるが、一つの層でこれらの機能を合わせ持った、所謂単層型感光体と、主として電荷発生に寄与する層と、暗所での表面電荷の保持と光受容時の電荷輸送に寄与する層とに機能分離した層を積層した、所謂積層型感光体がある。

【0004】これらの感光体を用いた電子写真法による 50

画像形成には、例えば、カールソンプロセスが適用される。この方法での画像形成は、暗所での感光体へのコロナ放電による帯電、帯電された感光体表面上への露光による原稿の文字や絵などの静電潜像の形成、形成された静電潜像のトナーによる現像、現像されたトナー像の紙などの支持体への定着により行われ、トナー像転写後の感光体は除電、残留トナーの除去、光除電などを行った後、再使用に供される。

【0005】実用化されている有機感光体は、無機感光体に比べ、可とう性、膜形成性、低コスト、安全性などの利点があり、材料の多様性からさらに感度、耐久性などの改善が進められている。

【0006】有機感光体のほとんどは、電荷発生層と電荷輸送層に機能を分離した積層型の感光体である。一般に、積層型有機感光体は、導電性基体上に、顔料、染料などの電荷発生物質からなる電荷発生層、ヒドラゾン、トリフェニルアミンなど電荷輸送物質からなる電荷輸送物質の性質上、正孔移動型となり、感光体表面を負帯電したときに感度を有する。ところが負帯電では、正帯電に比べ帯電時に用いるコロナ放電が不安定であり、またオゾンや窒素酸化物などを発生し、これが感光体表面に吸着して物理的、化学的劣化を引きおこしやすく、さらに環境を悪化するという問題がある。このような点から、感光体としては負帯電型感光体よりも使用条件の自由度の大きい正帯電型感光体の方がその適用範囲は広く有利である。

【0007】そこで、正帯電で使用するための感光体が 種々提案されている。例えば、電荷発生物質と電荷輸送 物質を同時に樹脂バインダーに分散させて、単層の感光 層として使用する方法が提案され、一部実用化されてい る。しかし、単層型感光体は高速機に適用するには感度 が十分ではなく、また繰り返し特性などの点からもさら に改良が必要である。また、高感度化を目的として機能 分離型の積層構造とするため、電荷輸送層上に電荷発生 層を積層して感光体を形成し、正帯電で使用する方法が

考えられる。

【0008】しかし、この方式では電荷発生層が表面に 形成されるため、コロナ放電、光照射、機械的摩耗など により、繰り返し使用時での安定性などに問題がある。 この場合、電荷発生層の上にさらに保護層を設けること も提案されているが、機械的摩耗は改善されるものの、 感度など電気特性の低下を招くなどの問題がある。

【0009】さらに、電荷発生層上に電子輸送性の電荷輸送層を積層して感光体を形成する方法も提案されている。電子輸送性物質として、2,4,7ートリニトロー9ーフルオレノンなどが知られているが、この物質は発ガン性があり、安全上問題がある。その他、シアノ化合物、キノン系化合物などが特開昭50-131941号公報、特開平6-59483号公報、特開平9-190002号公報、特開平9-190003号公報などにより提案されているが、実用化に十分な電子輸送能を有する化合物が得られていないのが実情であった。

[0010]5

【発明が解決しようとする課題】そこで、本発明の目的は、上述の問題点を解決するため、感光層に電荷輸送物質として今まで用いられたことのない新しい有機材料を用いることにより、高速度な複写機用およびプリンタ用正帯電型電子写真用感光体を提供することにある。

[0011]

【課題を解決するための手段】本発明者らは、前記目的 を達成するために各種有機材料について鋭意検討するな かで、数多くの実験を行った結果、その技術的解明はまだ十分なされてはいないものの、後述の一般式(I)又は(II)で表される特定の化合物を電荷発生物質として使用することが、電子写真特性の向上に極めて有効であり、正帯電で使用可能な高感度感光体を得ることができることを見出し、本発明を完成するに至った。

【0012】即ち、本発明の電子写真用感光体は、導電性基体上に電荷発生物質および電荷輸送物質を含有する 感光層を設けた電子写真用感光体において、該感光層 に、下記一般式(I)、

$$A^{1} = CH - N = CH - CH$$
(D)

(式中、R¹ およびR² はそれぞれ独立に水素原子、ハロゲン原子、置換基を有してもよい炭素数1~8のアルキル基若しくはアルコキシ基、アリールアルキル基、置換基を有してもよいアリール基、又は環を形成するための残基、A¹ は酸素原子、又は=CR³ R⁴ (但し、R³ およびR⁴ はそれぞれシアノ基又はアルコキシカルボニル基)、mは1~4の整数、nは1~5の整数を表す。)で示される電子輸送性化合物の少なくとも1種を電荷輸送物質として含有することを特徴とするものである

【0013】また、本発明の他の電子写真用感光体は、 導電性基体上に電荷発生物質および電荷輸送物質を含有 する感光層を設けた電子写真用感光体において、該感光 層に、下記一般式(II)、

$$B^{1} = \begin{array}{c} (R^{5})_{o} \\ (R^{6})_{p} \\ (R^{7})_{q} \\ ($$

20

(式中、R⁵、R⁶ およびR 7はそれぞれ独立に水森原子、ハロゲン原子、四換基を 有してもよい炭素数1~8のアルキル基若しくはアルコ キシ基、アリールアルキル基、<u>四換基を有してもよい</u>ア

リール基、又は原を形成するための残基、

B¹ およびB

 2 はそれぞれ酸素原子、又は= C R 8 R 9 (但し、R 8 および R 9 はそれぞれシアノ基又はアルコキシカルボニル基)、 $_{\rm O}$ 、 $_{\rm P}$ および $_{\rm Q}$ は $_{\rm C}$ $_{\rm C}$ へ $_{\rm O}$ 整数を表す。)で示

される電子輸送性化合物の少なくとも1種を電荷輸送物 質として含有することを特徴とするものである。

[0014]

【発明の実施の形態】前記一般式(I) および(II) で示される化合物の具体例を、それぞれ下記の化合物No. I-1~I-16で表される構造式にて示す。

[0015]

特開2000-75520

(4)

$$CH_{2}$$

$$CH-N=CH-C_{2}H_{5}$$

$$CH_{2}$$

$$H_3C$$
 $O \longrightarrow CH-N=CH- \bigcirc Br$
 $t-C_4H_9$

$$t-C_4H_9$$
 $O=CH-N=CH-COCH_3$
 $t-C_4H_9$

$$t-C_4H_9$$
 $O-CH-N=CH-CI$
 $t-C_4H_9$

[0016]

[0017]

t-C4H9

t-C₄H₉

$$\begin{array}{c} H_3C \\ O \longrightarrow CH-N-CH- \bigcirc CH=N-CH= \bigcirc CH_3 \\ t\cdot C_4H_9 \end{array} \qquad \begin{array}{c} CH_3 \\ t\cdot C_4H_9 \end{array}$$

[0018]

【0019】前記一般式(I) および(II) で示される 化合物は、通常の方法により合成することができる。例 えば、化合物No. I-1 あるいは化合物No. II-1 で示される化合物は、下記構造式(III) あるいは構造

式 (IV) で示される化合物を適当な酸化剤 (例えば、過マンガン酸カリウムなど) を用いて有機溶媒 (例えば、クロロホルムなど) 中で酸化することにより、それぞれ容易に合成することができる。

$$\begin{array}{c} t-C_4H_9\\ HO \longrightarrow CH=N-CH_2 \longrightarrow (III)\\ t-C_4H_9\\ HO \longrightarrow CH=N-CH_2 \longrightarrow CH_2-N=CH \longrightarrow OH\\ t-C_4H_9 \end{array} \qquad (IV)$$

(8)

【0020】以下、本発明の感光体の好適例の具体的構成について図面を参照しながら説明する。図1および図2は、感光体の各種構成例を示す模式的断面図である。

【0021】図1は、所謂単層型感光体の一構成例を示し、導電性基体1の上に、電荷発生物質と電荷輸送物質とを樹脂パインダー(結着剤)中に分散させた単層の感光層2が設けられ、さらに必要に応じて被覆層(保護層)5が積層されてなる。この感光体は、電荷発生物質を電荷輸送物質および樹脂パインダを溶解した溶液中に分散せしめ、この分散液を導電性基体上に塗布することによって作製することができる。さらに、必要な場合は被覆層を塗布形成することができる。

【0022】図2は、所謂積層型感光体の一構成例を示し、導電性基体1の上に電荷発生物質を主体とする電荷発生層3と、電荷輸送物質を含有する電荷輸送層4とが順次積層された感光層が設けられてなる。この感光体は、導電性基体上に電荷発生物質を真空蒸着するか、あるいは電荷発生物質の粒子を溶剤または樹脂バインダー中に分散させて得た分散液を塗布、乾燥し、その上に電荷輸送物質を樹脂バインダー中に溶解又は分散させて得た分散液を塗布、乾燥することにより作製することができる。

【0023】なお、本発明のいずれのタイプの感光体も、前記電荷輸送物質として前記一般式(I)または(II)で表される電子輸送性化合物を含有する。

【0024】以下、本発明の好適な実施の形態を図2に示す積層型感光体について説明するが、本発明は以下の具体例に限定されるものではない。導電性基体1は、感光体の電極としての役目と同時に他の各層の支持体となっており、円筒状、板状、フィルム状のいずれでもよく、材質的にはアルミニウム、ステンレス鋼、ニッケルなどの金属、あるいはガラス、樹脂などの上にに導電処理を施したものを用いることができる。

【0025】電荷発生層3は、前記のように電荷発生物質の粒子を樹脂バインダー中に分散させた材料を塗布するか、あるいは真空蒸着などの方法により形成され、光を受容して電荷を発生する。また、その電荷発生効率が高いことと同時に発生した電荷の電荷輸送層4への注入性が重要で、電場依存性が少なく低電場でも注入の良いことが望ましい。電荷発生物質としては、無金属フタロ

シアニン、チタニルフタロシアニンなどのフタロシアニン化合物、各種アゾ、キノン、インジゴ、シアニン、スクアリリウム、アズレニウム、ピリリウム化合物などの顔料あるいは染料や、セレン又はセレン化合物などが用いられ、画像形成に使用される露光光源の光波長領域に応じて好適な物質を選ぶことができる。電荷発生層は電荷発生機能を有すればよいので、その膜厚は電荷発生物質の光吸収係数より決まり、一般的には $5~\mu$ m以下であり、好適には $2~\mu$ m以下である。電荷発生層は電荷発生物質を主体としてこれに電荷輸送物質などを添加して使用することも可能である。

【0026】電荷発生層用の樹脂バインダーとしては、ポリカーボネート、ポリエステル、ポリアミド、ポリウレタン、塩化ビニル樹脂、フェノキシ樹脂、ポリビニルブチラール、ジアクリルフタレート樹脂、メタクリル酸エステルの重合体およびこれらの共重合体などを適宜組み合わせて使用することが可能である。

【0027】電荷輸送層4は、樹脂バインダ中に電荷輸送物質として前記一般式(I)または(II)で表される電子輸送性化合物を分散させた塗膜であり、暗所では絶縁体層として感光体の電荷を保持し、光受容時には電荷発生層から注入される電荷を輸送する機能を発揮する。

【0028】電荷輸送層用の樹脂バインダーとしては、 各種ポリカーボネートをはじめ、ポリエステル、ポリス チレン、メタクリル酸エステルの重合体および共重合体 等を用いることができる。

【0029】また、感光体を使用する際に使用上障害となるオゾン劣化などを防止する目的で、電荷輸送層4にアミン系、フェノール系、硫黄系、亜リン酸エステル系、リン系などの酸化防止剤を含有させることも可能である。

【0030】被覆層5は、暗所ではコロナ放電の電荷を受容して保持する機能を有しており、かつ感光層が感応する光を透過する性能を有し、露光時に光を透過して感光層に到達させ、発生した電荷の注入を受けて表面電荷を中和消滅させることが必要である。被覆層の材料としては、ポリエステル、ポリアミドなどの有機絶縁性皮膜形成材料を適用することができる。また、これら有機材料とガラス、SiO2などの無機材料、さらには金属、金属酸化物などの電気抵抗を低減せしめる材料とを混合

10

して用いることができる。被覆層の材料は前述の通り電 荷発生物質の光の吸収極大の波長領域においてできるだ け透明であることが望ましい。

【0031】被覆層自体の膜厚は被覆層の配合組成にも 依存するが、繰り返し連続使用したとき残留電位が増大 するなどの悪影響が出ない範囲で任意に設定できる。

【実施例】以下、本発明を実施例に基づき具体的に説明 する。

実施例1

x型無金属フタロシアニン(H2 Pc) 2重量部と、前 記化合物No. I-1で示される化合物40重量部と、 下記式、

で表されるベンジジン誘導体60重量部と、ポリカーボ ネート樹脂 (PCZ-200、三菱ガス化学(株) 製) 80重量部とを塩化メチレンとともに3時間混合機によ り混練して塗布液を調製し、導電性基体である外径30

Н3

で表されるトリフェニルアミン誘導体60重量部と、ポ リカーボネート樹脂 (BP-PC、出光興産(株)) 8 0重量部とを塩化メチレンとともに3時間混合機により 混練して塗布液を調製し、アルミニウム支持体上に乾燥 後の膜厚が約20μmになるように感光体を作製した。

【0035】実施例4

実施例3において、チタニルフタロシアニンに代えて下 記式、

$$\begin{array}{c} \text{CH}_3 \\ \text{CH}_3 \\ \text{CH}_3 \end{array} \text{N} \begin{array}{c} \text{OH} \\ \text{OH} \\ \text{OH} \\ \text{OH} \end{array} \begin{array}{c} \text{CH}_3 \\ \text{CH}_3 \\ \text{CH}_3 \end{array}$$

で表されるスクアリリウム化合物を用い、また化合物N o. I-6に代えて化合物No. II-1の化合物を用い た以外は実施例3と同様にして感光体を作製した。

【0036】実施例5

チタニルフタロシアニン (TiOPc) 70 軍量部と、 塩化ビニル共重合体(商品名MR-110、日本ゼオン 50 6に代えて化合物No. II-4の化合物を用いた以外は

mm、長さ260mmのアルミニウム製ドラム上に塗布 して、乾燥後の膜厚が約20μmになるように感光体を 作製した。

16

【0033】実施例2

チタニルフタロシアニン (TiOPc) 2重量部と、前 記化合物No. I-4で示される化合物30重量部と、

で表されるベンジジン誘導体70重量部と、ポリカーボ ネート樹脂(BP-PC、出光興産(株))80重量部 とを塩化メチレンとともに3時間混合機により混練して **塗布液を調製し、アルミニウム支持体上に乾燥後の膜厚** が約20μmになるように感光体を作製した。

【0034】実施例3

チタニルフタロシアニン (TiOPc) 2重量部と、前 記化合物No. I-6で示される化合物30重量部と、

CH3 СНЗ

> (株) 製) 30重量部とを塩化メチレンとともに3時間 混合機により混練して塗布液を調製し、アルミニウム支 持体上に約1μmになるように塗布し、電荷発生層を形 成した。次に、化合物No. II-7で示される化合物1 00重量部と、ポリカーボネート樹脂(PCZ-20 0、三菱ガス化学(株)製)100重量部と、シリコー シオイル 0. 1 重量部とを塩化メチレンと混合し、前記 電荷発生層の上に約10 μ mの膜厚となるように塗布 し、電荷輸送層を形成した。

40 【0037】実施例6

実施例3において、チタニルフタロシアニンに代えて下 記式、

で示されるビスアゾ顔料を用い、また化合物No. I-

17

実施例3と同様にして感光体を作製した。

【0038】実施例7

実施例3において、チタニルフタロシアニンに代えて下 記式、

で示されるビスアゾ顔料を用い、また化合物No. I-6に代えて化合物No. II-6の化合物を用いた以外は 実施例3と同様にして感光体を作製した。

【0039】感光体の評価

上述の実施例で作製した感光体の電子写真特性を下記の方法で評価した。感光体に暗所で+4.5 k V のコロナ 放電を行って感光体表面を正帯電せしめたときの初期の表面電位を V s (V) とし、続いてコロナ放電を中止し

た状態で5秒間暗所に保持したときの表面電位Vd

(V) を測定し、さらに続いて感光体表面に照度 100 ルックス (1ux) の白色光を照射して表面電位 Vd が 半分になるまでの時間 (秒)を求め、感度 $E_{1/2}$ ($1ux \cdot s$) とした。

18

【0040】また、照度100ルックスの白色光を10秒間照射したときの表面電位を残留電位Vr(V)とした。また、実施例1から5については、長波長での高感度が期待できるので、波長780nmの単色光を用いたときの電子写真特性も同時に測定した。すなわち、Vdまでは同様に測定し、次に白色光の替わりに $1\mu W$ の単色光(780nm)を照射して半減衰露光量($\mu J/cm^2$)を求め、また、この光を10秒間感光体表面に照射したときの残留電位をVr(V)を測定した。測定の結果を下記の表1に示す。

[0041]

【表1】

とし、続いてコロケ放電を中止し							
	白色光		780nm 単色光				
	感度(lux・s)	残留電位(V)	感度(µJ/cm²)	残留電位 (V)			
実施例1	1.3	60	1.1	40			
実施例2	0.9	80	1.0	50			
実施例3	1.2	60	0.8	50			
実施例4	1.3	70	1.2	70			
実施例5	3.0	100	2.6	90			
実施例6	1.1	100	_	-			
実施例7	1.2	80	_	_			

[0042]

【発明の効果】本発明によれば、導電性基体上に設けられた感光層に電荷輸送物質として前記一般式(I)または(II)で示される電子輸送性化合物を用いたことにより、正帯電において高感度で電気特性の優れた感光体を得ることができる。また、電荷発生物質は露光光源の種類に対応して好適な物質を選ぶことができ、フタロシアニン化合物、スクアリリウム化合物、ビスアゾ化合物などを用いることにより、半導体レーザプリンタや複写機に使用可能な感光体を得ることができる。さらに、必要に応じて表面に被覆層を設置して耐久性の向上を図るこ40とが可能である。

【図面の簡単な説明】

【図1】本発明に係る単層型電子写真感光体の模式的構造断面図である。

【図2】本発明に係る積層型電子写真感光体の模式的構造断面図である。

【符号の説明】

- 1 導電性基体
- 2 感光層
- 3 電荷発生層
- 4 電荷輸送層
- o 5 被覆層(保護層)

【図1】

【図2】

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

□ BLACK BORDERS
 □ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
 □ FADED TEXT OR DRAWING
 □ BLURRED OR ILLEGIBLE TEXT OR DRAWING
 □ SKEWED/SLANTED IMAGES
 □ COLOR OR BLACK AND WHITE PHOTOGRAPHS
 □ CRAY SCALE DOCUMENTS
 □ LINES OR MARKS ON ORIGINAL DOCUMENT

IMAGES ARE BEST AVAILABLE COPY.

OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

	·	