Aditya **Prakash**BT-MT (Dual Degree)

Department of Aerospace Engineering Indian Institute of Technology Kanpur prakashaditya144@gmail.com ► LeibTon ♠ LeibTon.github.io ♠ (+91) 7294014541 ✔

EDUCATION

Indian Institute of Technology Kanpur	2019 - 2024
BT-MT, Aerospace Engineering	8.9 (UG), 8.5 (PG)/10.0
BNS DAV Public School, Giridih	2019
CBSE - XII	97.6 %
BNS DAV Public School, Giridih	2017
CBSE - X	10.0/10.0

SCHOLASTIC ACHIEVEMENTS

- $\ \ \text{Recipient of prestigious } \textbf{Honda YES'21 Award} \ \ \text{by Honda Foundation granted to } 14 \ \text{exceptional students across all IITs}$
- Awarded Academic Excellence Award for exceptional academic performance in 2021 and 2022 by IIT Kanpur
- Received A^* grade for exceptional performance in 3 courses (Aerospace and Humanities) in the 3rd year at IIT Kanpur

RESEARCH WORKS

Journal Publication

Aditya Prakash, Dipak Kumar Giri, Shashi Ranjan Kumar, "Dynamic velocity error based trajectory tracking for space robotic manipulator", in Aerospace Science and Technology, Vol. 126, 2022, pp. 107650 ♂

Conference Presentations

Aditya Prakash, Dipak Kumar Giri, "Coordinated Control using Multi-Agent Reinforcement Learning for transfer of payload between skyhook and launch vehicle", AIAA Sci-Tech Forum, Florida, USA, 8-12 January 2024

Aditya Prakash, SPEG, "The Feasibility of Conducting Commercial Asteroid Exploration", 74th International Aeronautical Congress (IAC), Baku, Azerbaijan, 2-6 October 2023 &

Aditya Prakash, "Interstellar Exploration Using "EXPLORER" Spacecraft - Building The Foundation", 74th International Aeronautical Congress (IAC), Baku, Azerbaijan, 2-6 October 2023 ♂

Nitika Jaggi, Aditya Prakash, Gaurav Kumar, Priyank Dubey, Dipak Kumar Giri, "MagLev based 3-DOF experimental Platform for Autonomous Spacecraft Rendezvous and Docking", 73rd International Aeronautical Congress (IAC), Paris, France, 18-22 September 2022 &

Research Experiences

Short Te	rm Trainee Space Robotics Lab, Tohoku University (Japan)	June'23 - July'23		
Objective - Collaborate with a team of 6 members to create Moonbot , a reconfigurable four-legged rover				
	- Design and implement optimized control system to demonstrate Moonbot's modular			
	- Employed evolutionary and genetic algorithms to optimize walking gait pattern	ns and enhance limb design		
Approach	- Devised and implemented a multi-threaded ROS architecture using ROS 2, Python for seamless communication			
	- Implemented real-time limb detection mechanisms to ensure self-perception for me	odularity		
Impact	- Demonstrated the Moonbot's modularity, i.e., movement in 4 different configurations			
Research Intern (MITACS) Human Robot Interaction Lab, UNB (Canada) May'22 – July'22				
Objective	- Design a grasping user interface for teleoperating a Kinova robotic arm using shared	autonomy		
	- Conduct user study centered at understanding the role of authority vs autonomy in UI Design			
	- Developed a mathematical model using difference vector to predict user intentions	in realtime		
Approach	- Designed a shared autonomy control system using model predictions aimed at redu	icing human effort		
	- Utilized ROS, Python to implement and test the model and the control system on a l	Kinova Robotic Arm		
	- Designed a case study based on NASA TLX to understand autonomy vs authority	in robotic teleoperation		
Impact	- Demonstrated shared autonomy control, reducing grasping time by 10% and human e	effort by 30%		
	- Documented the entire design process and case study setting the foundation for futur			
	, , , , , , , , , , , , , , , , , , ,			

Student 1	Research Associate Space Dynamics and Flight Control Laboratory, IIT Kanpur January'22 – Present		
Objective	- Collaborate in a team to create a magnetic levitation based 3-D low gravity simulator (first in the world) - Design and implement efficient thruster system for the simulator using blowers to minimize mass of the simulator		
Approach	- Conducted in-depth research to understand existing low gravity simulators in the world and optimize our design - Optimized the thruster system by redesigning the configuration through CFD analysis and optimizing blower - Implemented control system to minimize the disturbance due to blowers and achieve a robust simulation platform - Used ROS to implement control modules for force control, bang-bang control, velocity control and path planning		
Impact	 Created a < 10 kg simulation platform which can be used for testing multiple spacecraft operations Experimentally validated the thruster system achieving an accuracy of 95% with a settling time of 2s Designed the ROS architecture with code to support different control modules to be used by various researchers 		
Research Intern SURGE, IIT Kanpur May'21 – July'21			
Objective	ctive - Design a simple and robust control design for trajectory tracking for space robotic manipulator		
Approach	- Conducted literature review to understand space robotics and existing trajectory tracking control - Defined dynamic velocity error (DVE) and designed control system to minimise the same through PD control - Performed the analytical and numerical analysis to prove the and validate stability of the algorithm		
Impact - Designed a simple control system using DVE and PD control method with a maximum error of 1.			

LEADERSHIP EXPERIENCE

Project Lead | Asteroid Mining, SPEG, SGAC

January'23 – July'23

	- Proposed a project under SPEG, SGAC to study the feasibility of conducting commercial Asteroid mining
Leadership	- Interviewed interested candidates and built a team of 5 members from different countries with required skills
	- Created the roadmap for the project and handled work distribution with regular meetings and discussions
	- Proposed a commercial infrastructure for asteroid mining based on Asteroid Transfer at Sun-Earth L4 point
Impact	- Conducted in-depth research of space policies to understand commercialisation and its impact on world economy
	- Summarised the result to be presented at 74th International Aeronautical Congress, Baku, Azerbaijan

- Published the results in a prestigious Aerospace journal, Aerospace Science and Technology (citations: 4)

Coordinator and Project Mentor | Brain and Cognitive Society, IITK

May'21 - May'22

Leadership

- Managed a group of 15 secretaries to organise several BCS activities including introductory lectures, workshops
 Invited proficient researchers in the field of AI and Neuroscience as a speaker for journal meetings for students
- Started a project under Science and Technology Council to analyse Steinmetz dataset during summer
- Mentored a group of 5 students through regular tutorials, assignments and doubt clearing sessions

TECHNICAL SKILLS

Programming Languages: C++, MATLAB, JavaScript, Python, C

Libraries: Numpy, Tensorflow, PyTorch, OpenCV Web: React, Node.js, MongoDB, Flask, Canvas

Utilities: Git, LATEX, LabView, ROS, Simulink, Siemens NX, AutoCAD, Fusion 260, Autodesk CFD, ROS2

Coursework

Machine Learning (Online Courses) and Algorithms					
Deep Learning Specialization	Natural Language Processing	Data Structures and Algorithms			
Aerospace and Robotics Courses					
Optimal Space Flight Control	Space Dynamics	Aircraft Control Systems			
Nonlinear and Adaptive control	Introduction to Robotics	Applied Numerical Methods			
Turbulence	Aeroacoustics	Computational Fluid Dynamics			

Extra-curricular Activities

- Provided a cademic and career guidance to 60+ junior students of aerospace department through counselling sessions
- Volunteered at Shiksha Sopan led by Padma Shri HC Verma teaching high school students Mathematics
- Volunteered at University of New Brunswick to conduct summer game development camp for primary school students

Facial Emotion Recognition | Brain and Cognitive Society, IIT Kanpur

July'20

- Extracted human faces (using OpenCV haar-cascade) from a camera stream and preprocessed them
- Implemented CNN classifier and trained it on FER2013 dataset and got an accuracy of 97% on JFFE test dataset
- Designed model for emotion recognition in video using CNN-RNN and C3D hybrid networks

Decoding relation b/w voxels & pixels | Neuromatch (Online)

July'20

- Worked in a team of 4 members to decode semantic features from ROIs of the visual cortex
- Extracted semantic features using last layers of different classifier DNN, Resnet50 & VGG16
- Tried dimensionality reduction and clustering techniques to find clusters in voxel responses

PETcat (vision) | Robotics Club, IIT Kanpur

April'20

- Developed vision modules of a user-friendly cat bot for gesture recognition using OpenCV
- Implemented Haar Cascade trainer and used it to train a model to detect complex objects and built ROS package

Facebook Hateful Memes Challenge | Self Project

Sep'20

- Extracted visual features using pretrained CNN classifier models, namely ResNet and Incetionv3
- Used LSTM, Word Embeddings and Attention Models to learn textual features
- Implemented different multi-modal models to learn relation between textual and visual features