Quantum approximate counting

A.J. Cornelissen

QuSoft, University of Amsterdam

November 9th, 2021

Ingredients:

Ingredients:

1 State space: Hilbert space \mathcal{H} .

Ingredients:

1 State space: Hilbert space \mathcal{H} .

2 Initial state: $|\psi_0\rangle \in \mathcal{H}$, $|||\psi_0\rangle|| = 1$.

Ingredients:

- **1** State space: Hilbert space \mathcal{H} .
- 2 Initial state: $|\psi_0\rangle \in \mathcal{H}$, $||\psi_0\rangle|| = 1$.
- **1** Unitary operations: U_1, \ldots, U_T acting on \mathcal{H} .

Ingredients:

- State space: Hilbert space \mathcal{H} .
- 2 Initial state: $|\psi_0\rangle \in \mathcal{H}$, $|||\psi_0\rangle|| = 1$.
- **1** Unitary operations: U_1, \ldots, U_T acting on \mathcal{H} .
- **Measurement**: Orthogonal decomposition of \mathcal{H} into subspaces $S_o \subseteq \mathcal{H}$:

$$\mathbb{P}(o) = \| \Pi_o |\psi_T \rangle \|^2.$$

Ingredients:

- State space: Hilbert space \mathcal{H} .
- 2 Initial state: $|\psi_0\rangle \in \mathcal{H}$, $|||\psi_0\rangle|| = 1$.
- **1** Unitary operations: U_1, \ldots, U_T acting on \mathcal{H} .
- **1** Measurement: Orthogonal decomposition of \mathcal{H} into subspaces $S_o \subseteq \mathcal{H}$:

$$\mathbb{P}(o) = \| \Pi_o |\psi_T \rangle \|^2.$$

Typically, we have two types of unitaries:

- 1 Input-dependent unitary, O.
- 2 Input-independent unitaries, U_i .

Ingredients:

- State space: Hilbert space \mathcal{H} .
- 2 Initial state: $|\psi_0\rangle \in \mathcal{H}$, $|||\psi_0\rangle|| = 1$.
- **1** Unitary operations: U_1, \ldots, U_T acting on \mathcal{H} .
- **Measurement:** Orthogonal decomposition of \mathcal{H} into subspaces $S_o \subseteq \mathcal{H}$:

$$\mathbb{P}(o) = \|\Pi_o |\psi_{\mathcal{T}}\rangle\|^2.$$

Typically, we have two types of unitaries:

- 1 Input-dependent unitary, O.
- ② Input-independent unitaries, U_j .

$$|\psi_0\rangle \stackrel{U_1}{\mapsto} |\psi_1\rangle \stackrel{O}{\mapsto} |\psi_2\rangle \stackrel{U_3}{\mapsto} |\psi_3\rangle \stackrel{O}{\mapsto} \cdots \stackrel{U_T}{\mapsto} |\psi_T\rangle.$$

1 Let $f: \{1, 2, \dots, n\} \rightarrow \{0, 1\}$.

- **1** Let $f: \{1, 2, \ldots, n\} \rightarrow \{0, 1\}$.
- 2 Let threshold $t \in \{1, 2, ..., n\}$. Distinguish between:
 - $|f^{(-1)}(1)| \geq t,$
 - $|f^{(-1)}(1)| < t.$

- **1** Let $f: \{1, 2, \ldots, n\} \rightarrow \{0, 1\}$.
- 2 Let threshold $t \in \{1, 2, ..., n\}$. Distinguish between:
 - $|f^{(-1)}(1)| \geq t$,
 - $|f^{(-1)}(1)| < t.$
- \odot How many times do we need to evaluate f?

- **1** Let $f: \{1, 2, \ldots, n\} \to \{0, 1\}$.
- 2 Let threshold $t \in \{1, 2, ..., n\}$. Distinguish between:
 - $|f^{(-1)}(1)| \geq t$,
 - $|f^{(-1)}(1)| < t.$
- \odot How many times do we need to evaluate f?
 - Classically: $\Theta(n)$ function evaluations.

- **1** Let $f: \{1, 2, \ldots, n\} \rightarrow \{0, 1\}$.
- ② Let threshold $t \in \{1, 2, ..., n\}$. Distinguish between:
 - $|f^{(-1)}(1)| \geq t,$
 - $|f^{(-1)}(1)| < t.$
- **1** How many times do we need to evaluate f?
 - Classically: $\Theta(n)$ function evaluations.
 - Quantumly:
 - **1** Hilbert space $\mathcal{H} = \mathbb{C}^n$.
 - 2 Input-dependent unitary: $O_f: |i\rangle \mapsto (-1)^{f(j)} |i\rangle$.
 - $\Theta(\sqrt{t(n-t+1)})$ evaluations of O_f .

- **1** Let $f: \{1, 2, \ldots, n\} \rightarrow \{0, 1\}$.
- 2 Let threshold $t \in \{1, 2, ..., n\}$. Distinguish between:
 - $|f^{(-1)}(1)| \geq t,$
 - $|f^{(-1)}(1)| < t.$
- **1** How many times do we need to evaluate f?
 - Classically: $\Theta(n)$ function evaluations.
 - Quantumly:
 - **1** Hilbert space $\mathcal{H} = \mathbb{C}^n$.
 - ② Input-dependent unitary: $O_f: |i\rangle \mapsto (-1)^{f(j)} |i\rangle$.
 - $\Theta(\sqrt{t(n-t+1)})$ evaluations of O_f .

- **1** Let $f: \{1, 2, \ldots, n\} \rightarrow \{0, 1\}$.
- 2 Let threshold $t \in \{1, 2, ..., n\}$. Distinguish between:
 - $|f^{(-1)}(1)| \geq t,$
 - $|f^{(-1)}(1)| < t.$
- **1** How many times do we need to evaluate f?
 - **1** Classically: $\Theta(n)$ function evaluations.
 - Quantumly:
 - **1** Hilbert space $\mathcal{H} = \mathbb{C}^n$.
 - 2 Input-dependent unitary: $O_f: |j\rangle \mapsto (-1)^{f(j)} |j\rangle$.
 - $\Theta(\sqrt{t(n-t+1)}) \text{ evaluations of } O_f.$
- Goal for today: look at the mathematics behind this phenomenon.

Function evaluations

lacktriangle Let $\mathcal H$ be a Hilbert space.

- lacktriangle Let $\mathcal H$ be a Hilbert space.
- **2** Let $A, B \subseteq \mathcal{H}$ be subspaces.

- Let \mathcal{H} be a Hilbert space.
- **2** Let $A, B \subseteq \mathcal{H}$ be subspaces.
- **3** Let $|\psi\rangle \in A^{\perp}$, with $|||\psi\rangle|| = 1$.

- Let \mathcal{H} be a Hilbert space.
- **2** Let $A, B \subseteq \mathcal{H}$ be subspaces.
- **3** Let $|\psi\rangle \in A^{\perp}$, with $||\psi\rangle| = 1$.
- Let $U = (2\Pi_B I)(2\Pi_A I)$.

Theorem: (Jordan's lemma)

- Let \mathcal{H} be a Hilbert space.
- **2** Let $A, B \subseteq \mathcal{H}$ be subspaces.
- **3** Let $|\psi\rangle \in A^{\perp}$, with $||\psi\rangle|| = 1$.
- Let $U = (2\Pi_B I)(2\Pi_A I)$.

- lacktriangle Let $\mathcal H$ be a Hilbert space.
- **2** Let $A, B \subseteq \mathcal{H}$ be subspaces.
- lacksquare Let $|\psi\rangle\in {\it A}^{\perp}$, with $|||\psi\rangle||=1.$
- Let $U = (2\Pi_B I)(2\Pi_A I)$.

Theorem: (Jordan's lemma)

• U acts as I on $(A \cap B) \oplus (A^{\perp} \cap B^{\perp})$.

lacktriangle Let $\mathcal H$ be a Hilbert space.

2 Let $A, B \subseteq \mathcal{H}$ be subspaces.

3 Let $|\psi\rangle \in A^{\perp}$, with $||\psi\rangle|| = 1$.

• Let $U = (2\Pi_B - I)(2\Pi_A - I)$.

Theorem: (Jordan's lemma)

1 U acts as I on $(A \cap B) \oplus (A^{\perp} \cap B^{\perp})$.

② U acts as -I on $(A^{\perp} \cap B) \oplus (A \cap B^{\perp})$.

- Let \mathcal{H} be a Hilbert space.
- **2** Let $A, B \subseteq \mathcal{H}$ be subspaces.
- **3** Let $|\psi\rangle \in A^{\perp}$, with $||\psi\rangle| = 1$.
- Let $U = (2\Pi_B I)(2\Pi_A I)$.

Theorem: (Jordan's lemma)

- U acts as I on $(A \cap B) \oplus (A^{\perp} \cap B^{\perp})$.
- ② U acts as -I on $(A^{\perp} \cap B) \oplus (A \cap B^{\perp})$.
- **1** The remainder of \mathcal{H} is decomposed into 2-dimensional rotation spaces.

- Let \mathcal{H} be a Hilbert space.
- **2** Let $A, B \subseteq \mathcal{H}$ be subspaces.
- **3** Let $|\psi\rangle \in A^{\perp}$, with $||\psi\rangle|| = 1$.
- Let $U = (2\Pi_B I)(2\Pi_A I)$.

Theorem: (Jordan's lemma)

- U acts as I on $(A \cap B) \oplus (A^{\perp} \cap B^{\perp})$.
- ② U acts as -I on $(A^{\perp} \cap B) \oplus (A \cap B^{\perp})$.
- **1** The remainder of \mathcal{H} is decomposed into 2-dimensional rotation spaces.

• Given \mathcal{H} , A, B, $|\psi\rangle$.

- Given \mathcal{H} , A, B, $|\psi\rangle$.
- ② Let Φ be the random variable with $\mathbb{P}[\Phi = \phi] = \|\Pi_{R_{\phi}} |\psi\rangle\|^2$.

- Given \mathcal{H} , A, B, $|\psi\rangle$.
- ② Let Φ be the random variable with $\mathbb{P}[\Phi = \phi] = \|\Pi_{R_{\Phi}} |\psi\rangle\|^2$.

- Given \mathcal{H} , A, B, $|\psi\rangle$.
- ② Let Φ be the random variable with $\mathbb{P}[\Phi = \phi] = \|\Pi_{R_{\Phi}} |\psi\rangle\|^2$.
- Opening Phase estimation:

One can sample from this binned distribution with $\mathcal{O}(1/\varepsilon)$ calls to $U = (2\Pi_B - I)(2\Pi_A - I)$.

Given \mathcal{H} , A, B, $|\psi\rangle$:

- Let $A' = (A \oplus \operatorname{Span}\{|\psi\rangle\})^{\perp}$.

Given \mathcal{H} , A, B, $|\psi\rangle$:

- Let $A' = (A \oplus \operatorname{Span}\{|\psi\rangle\})^{\perp}$.

Then, $U' = (2\Pi_{B'} - I)(2\Pi_{A'} - I)$ $= (2\Pi_{(B')^{\perp}} - I)(2\Pi_{(A')^{\perp}} - I)$ $= -(2\Pi_{B} - I)(2\Pi_{A} - I)(2|\psi\rangle\langle\psi| - I)$ $= -U(2|\psi\rangle\langle\psi| - I).$

Given \mathcal{H} , A, B, $|\psi\rangle$:

- Let $A' = (A \oplus \operatorname{Span}\{|\psi\rangle\})^{\perp}$.

Then, $U' = (2\Pi_{B'} - I)(2\Pi_{A'} - I)$ $= (2\Pi_{(B')^{\perp}} - I)(2\Pi_{(A')^{\perp}} - I)$ $= -(2\Pi_{B} - I)(2\Pi_{A} - I)(2|\psi\rangle\langle\psi| - I)$ $= -U(2|\psi\rangle\langle\psi| - I).$

Normal $X = \Phi$ Negated $X = \Phi'$

Characteristic function

• Let
$$Q = \sin^2(\Phi/2)$$
.

• Let $Q = \sin^2(\Phi/2)$.

Normal X = Q

- Let $Q = \sin^2(\Phi/2)$.
- Characteristic function:

Let
$$\chi:[0,1] o\mathbb{R}$$
, $\chi(q)=\sum_{j}rac{p_{j}}{q-q_{j}}$

Normal X = Q

- Let $Q = \sin^2(\Phi/2)$.
- Characteristic function:

Let
$$\chi:[0,1] o\mathbb{R}$$
, $\chi(q)=\sum_{j}rac{p_{j}}{q-q_{j}}$

Normal X = Q

- Let $Q = \sin^2(\Phi/2)$.
- Characteristic function:

Let
$$\chi:[0,1] \to \mathbb{R}$$
, $\chi(q) = \sum_j \frac{p_j}{q-q_j}$

Normal
$$X = Q$$

Negated $X = Q'$

- Let $Q = \sin^2(\Phi/2)$.
- **2** Characteristic function:

Let
$$\chi:[0,1] \to \mathbb{R}$$
, $\chi(q) = \sum_j \frac{p_j}{q-q_j}$

Normal
$$X = Q$$

Negated $X = Q'$

$$\mathbb{P}[Q=q^*]=\lim_{q o q^*}\chi(q)(q-q^*).$$

- Let $Q = \sin^2(\Phi/2)$.
- Characteristic function:

Let
$$\chi:[0,1] \to \mathbb{R}$$
, $\chi(q) = \sum_j \frac{p_j}{q-q_j}$

Normal
$$X = Q$$

Negated $X = Q'$

• Let
$$Q = \sin^2(\Phi/2)$$
.

Let
$$\chi:[0,1] \to \mathbb{R}$$
, $\chi(q) = \sum_j \frac{p_j}{q-q_j}$

$$\mathbb{P}[Q=q^*]=\lim_{q o q^*}\chi(q)(q-q^*).$$

Main result:

$$\chi'(q) = \frac{1}{q(q-1)\chi(q)}.$$

Normal
$$X = Q$$

Negated $X = Q'$

• Let
$$Q = \sin^2(\Phi/2)$$
.

Let
$$\chi : [0,1] \to \mathbb{R}$$
,
 $\chi(q) = \sum_{j} \frac{p_{j}}{q - q_{j}}$
 $= \langle \psi | (\Pi_{A^{\perp}} \Pi_{B^{\perp}} \Pi_{A^{\perp}} - (1 - q)I)^{-1} | \psi \rangle$.

$$\mathbb{P}[Q=q^*]=\lim_{q\to q^*}\chi(q)(q-q^*).$$

Main result:

$$\chi'(q) = \frac{1}{q(q-1)\chi(q)}.$$

Normal
$$X = Q$$

Negated $X = Q'$

$$Q = \sin^2(\Phi/2)$$

$$\chi(q) = \sum_{j=1}^{k} \frac{p_j}{q - q_j}$$

$$Q = \sin^2(\Phi/2)$$

$$\chi(q) = \sum_{j=1}^{k} \frac{p_j}{q - q_j}$$

$$Q = \sin^2(\Phi/2)$$

$$\chi(q) = \sum_{j=1}^{k} \frac{p_j}{q - q_j}$$

$$\mathbb{P}[Q'=q^*]=arprojlim_{q o q^*}\chi'(q)(q-q^*)$$

$$Q = \sin^2(\Phi/2)$$

$$\chi(q) = \sum_{j=1}^{k} \frac{p_j}{q - q_j}$$

$$\Phi' = 2\arcsin\sqrt{Q'}$$

$$\mathbb{P}[Q'=q^*]=arprojlim_{q o q^*}\chi'(q)(q-q^*)$$

Recall:

- $O_f: |j\rangle \mapsto (-1)^{f(j)} |j\rangle.$
- **3** Let's write $s = |f^{(-1)}(1)|$.

Recall:

- $O_f: |j\rangle \mapsto (-1)^{f(j)} |j\rangle.$
- **3** Let's write $s = |f^{(-1)}(1)|$.

Let:

- **2** $A = \{0\}.$
- **3** $B = \text{Span}\{|j\rangle : f(j) = 0\}.$
- $|\psi\rangle = \frac{1}{\sqrt{n}} \sum_{j=1}^{n} |j\rangle.$

Recall:

- $O_f: |j\rangle \mapsto (-1)^{f(j)} |j\rangle.$
- **3** Let's write $s = |f^{(-1)}(1)|$.

Let:

- **2** $A = \{0\}.$
- **3** $B = \text{Span}\{|j\rangle : f(j) = 0\}.$

- $U = (2\Pi_B I)(2\Pi_A I) = -O_f.$
- $U' = O_f(2|\psi\rangle \langle \psi| I).$

Recall:

- $O_f: |j\rangle \mapsto (-1)^{f(j)} |j\rangle.$
- **3** Let's write $s = |f^{(-1)}(1)|$.

Let:

2
$$A = \{0\}.$$

3
$$B = \text{Span}\{|j\rangle : f(j) = 0\}.$$

$$|\psi\rangle = \frac{1}{\sqrt{n}} \sum_{j=1}^{n} |j\rangle.$$

$$U' = O_f(2|\psi\rangle \langle \psi| - I).$$

Recall:

$$O_f: |j\rangle \mapsto (-1)^{f(j)} |j\rangle.$$

3 Let's write $s = |f^{(-1)}(1)|$.

Let:

2
$$A = \{0\}.$$

3
$$B = \text{Span}\{|j\rangle : f(j) = 0\}.$$

$$|\psi\rangle = \frac{1}{\sqrt{n}} \sum_{j=1}^{n} |j\rangle.$$

$$U' = O_f(2|\psi\rangle \langle \psi| - I).$$

Recall:

$$O_f: |j\rangle \mapsto (-1)^{f(j)} |j\rangle.$$

3 Let's write
$$s = |f^{(-1)}(1)|$$
.

Let:

2
$$A = \{0\}.$$

3
$$B = \text{Span}\{|j\rangle : f(j) = 0\}.$$

$$|\psi\rangle = \frac{1}{\sqrt{n}} \sum_{j=1}^{n} |j\rangle.$$

$$U' = O_f(2|\psi\rangle \langle \psi| - I).$$

Recall:

$$O_f: |j\rangle \mapsto (-1)^{f(j)} |j\rangle.$$

3 Let's write $s = |f^{(-1)}(1)|$.

Let:

2
$$A = \{0\}.$$

3
$$B = \text{Span}\{|j\rangle : f(j) = 0\}.$$

$$|\psi\rangle = \frac{1}{\sqrt{n}} \sum_{j=1}^{n} |j\rangle.$$

Then:

$$U' = O_f(2|\psi\rangle \langle \psi| - I).$$

Recall:

$$O_f: |j\rangle \mapsto (-1)^{f(j)} |j\rangle.$$

3 Let's write $s = |f^{(-1)}(1)|$.

Let:

②
$$A = \{0\}.$$

3
$$B = \text{Span}\{|j\rangle : f(j) = 0\}.$$

$$|\psi\rangle = \frac{1}{\sqrt{n}} \sum_{j=1}^{n} |j\rangle.$$

Then:

$$U = (2\Pi_B - I)(2\Pi_A - I) = -O_f.$$

$$U' = O_f(2|\psi\rangle \langle \psi| - I).$$

Recall:

- $O_f: |j\rangle \mapsto (-1)^{f(j)} |j\rangle.$
- **3** Let's write $s = |f^{(-1)}(1)|$.

Let:

②
$$A = \{0\}.$$

3
$$B = \text{Span}\{|j\rangle : f(j) = 0\}.$$

$$U' = O_f(2|\psi\rangle \langle \psi| - I).$$

$$U' = O_f(2|\psi\rangle \langle \psi| - I).$$

- $U' = O_f(2|\psi\rangle \langle \psi| I).$

$$U' = O_f(2|\psi\rangle \langle \psi| - I).$$

Phase estimation:

With $\mathcal{O}(1/\varepsilon)$ calls to U', we can sample from Φ' up to precision ε .

$$U' = O_f(2|\psi\rangle \langle \psi| - I).$$

Phase estimation:

With $\mathcal{O}(1/\varepsilon)$ calls to U', we can sample from Φ' up to precision ε .

$$\varepsilon = \arcsin\left(\sqrt{\frac{t}{n}}\right) - \arcsin\left(\sqrt{\frac{t-1}{n}}\right) \quad \Leftrightarrow \quad \frac{1}{\varepsilon} = \mathcal{O}\left(\sqrt{t(n-t+1)}\right).$$

Quantum computing & Quantum counting

- Quantum computing & Quantum counting
- Jordan's lemma & Peak diagrams

- Quantum computing & Quantum counting
- Jordan's lemma & Peak diagrams
- Negation & Characteristic function

- Quantum computing & Quantum counting
- Jordan's lemma & Peak diagrams
- Negation & Characteristic function
- Application to quantum counting

- Quantum computing & Quantum counting
- Jordan's lemma & Peak diagrams
- Negation & Characteristic function
- Application to quantum counting

Thanks for your attention! arjan@cwi.nl