BASIC

194

$$(1)$$
 $\pm\sqrt{7}$

(2) $\sqrt[3]{7}$

(3) $\pm\sqrt{\pi}$

 $(4) \ \sqrt[3]{\pi}$

(5) $\pm \sqrt[4]{12}$

(6) $\sqrt[5]{12}$

(7) $\sqrt[3]{-16} = -\sqrt[3]{16}$

(8) なし

195 (1) 与式 =
$$\sqrt[4]{27 \times 3}$$
 = $\sqrt[4]{3^3 \times 3}$

$$= \sqrt{3^4 \times 3}$$

$$= \sqrt[4]{3^4} = (\sqrt[4]{3})^4 = 3$$

(3) 与式 =
$$\sqrt[3]{\frac{24}{3}}$$

= $\sqrt[3]{8}$
= $\sqrt[3]{2^3} = (\sqrt[3]{2})^3 = \mathbf{2}$

(6) 与式 =
$$\frac{\sqrt[3]{147 \times 63}}{7}$$

$$= \frac{\sqrt[3]{3 \times 7^{2}} \times (3^{2} \times 7)}{7}$$

$$= \frac{\sqrt[3]{3 \times 7^{3}}}{7}$$

$$= \frac{\sqrt[3]{213}}{7} = \frac{(\sqrt[3]{21})^{3}}{7}$$

$$= \frac{21}{7} = 3$$
(7) 与式 = $\frac{\sqrt{27 \times 9 \times 162}}{\sqrt[4]{65}}$

$$= \sqrt[4]{\frac{3^{3} \times 3^{2} \times (2 \times 3^{4})}{(2 \times 3)^{5}}}$$

$$= \sqrt[4]{\frac{2^{5} \times 3^{5}}{2^{5} \times 3^{5}}}$$

$$= \sqrt[4]{\frac{2^{4}}{2^{4}}}$$

$$= \sqrt[4]{\frac{3}{2}} + \left(\sqrt[4]{\frac{3}{2}}\right)^{4} = \frac{3}{2}$$
(8) 与式 = $\sqrt[3]{\frac{5}{100}} \sqrt[3]{\frac{25}{1000}}$

$$= \sqrt[3]{\frac{5}{10^{3}} \times \frac{5^{2}}{10^{3}}}$$

$$= \sqrt[3]{\frac{5^{3}}{(10^{3})^{2}}}$$

$$= \sqrt[3]{\frac{5^{3}}{(10^{3})^{2}}}$$

$$= \sqrt[3]{\frac{5^{3}}{(10^{2})^{3}}}$$

$$= \sqrt[3]{\frac{5^{3}}{(10^{3})^{2}}}$$

$$= \sqrt[3]{\frac{5^{3}}{(10^{3})^{2}}}$$

$$= \sqrt[3]{\frac{5^{3}}{(10^{3})^{2}}}$$

$$= \sqrt[3]{\frac{5^{3}}{(10^{3})^{2}}}$$

$$= \sqrt[3]{\frac{5^{3}}{(10^{3})^{3}}}$$

$$= \sqrt[3]{\frac{5^{3}}{(10^{3})^{3}}}$$

$$= \sqrt[3]{\frac{5^{3}}{(10^{3})^{3}}}$$

$$= (\sqrt[3]{\frac{9^{3}}{9}} - \frac{6}{\sqrt[3]{9}})^{3}$$

$$= \sqrt[3]{\frac{9^{3}}{9}} - \frac{6}{\sqrt[3]{9}} - \frac{6}{\sqrt[3]{9}}$$

$$= \sqrt[3]{\frac{9^{3}}{9}} - \frac{6}{\sqrt[3]{9}} - \frac{6}{\sqrt[3]{9}}$$

$$= \sqrt[3]{\frac{9^{3}}{9}} - \frac{6}{\sqrt[3]{9}} - \frac{6}{\sqrt[3]{9}} - \frac{6}{\sqrt[3]{9}}$$

$$= \sqrt[3]{\frac{9^{3}}{9}} - \frac{6}{\sqrt[3]{9}} -$$

(2) 与式 =
$$a^{-\frac{12}{10}}$$
 = $a^{\frac{-6}{5}} = \sqrt[5]{a^{-6}}$

(3) 与式
$$= a^{-0.75}$$

$$= a^{-\frac{75}{100}}$$

$$= a^{\frac{-3}{4}} = \sqrt[4]{a^{-3}}$$

(4) 与式
$$= a^{-(-1.75)}$$
 $= a^{\frac{175}{100}}$ $= a^{\frac{7}{4}} = \sqrt[4]{a^7}$

(5) 与式 =
$$a^{\frac{15}{10}} \times a^{\frac{7}{10}}$$

= $a^{\frac{15}{10} + \frac{7}{10}}$
= $a^{\frac{22}{10}}$
= $a^{\frac{11}{5}} = \sqrt[5]{a^{11}}$

(6) 与式 =
$$\frac{a^{\frac{7}{10}}}{a^{\frac{13}{10}}}$$

= $a^{\frac{7}{10} - \frac{13}{10}}$
= $a^{-\frac{6}{10}}$
= $a^{\frac{-3}{5}} = \sqrt[5]{a^{-3}}$

199 (1) 与式
$$=a^{\frac{1}{4}} \times a^{\frac{1}{2}}$$
 $=a^{\frac{1}{4}+\frac{2}{4}}$ $=a^{\frac{3}{4}}$ または $\sqrt[4]{a^3}$

(2) 与式
$$= a^{\frac{2}{3}} \times a^{\frac{4}{5}}$$
 $= a^{\frac{10}{15} + \frac{12}{15}}$ $= a^{\frac{22}{15}}$ または $\sqrt[15]{a^{22}}$

(3) 与式 =
$$\frac{a \cdot a^{\frac{1}{6}}}{a^{\frac{1}{2}}}$$

$$= a^{\frac{6}{6} + \frac{1}{6} - \frac{3}{6}}$$

$$= a^{\frac{4}{6}}$$

$$= a^{\frac{2}{3}}$$
 または $\sqrt[3]{a^2}$

(4) 与式
$$= \frac{a^{\frac{2}{3}}}{a^{\frac{1}{6}}}$$
 $= a^{\frac{4}{6} - \frac{1}{6}}$ $= a^{\frac{3}{6}}$ または \sqrt{a}

200 (1)
$$x=0$$
 のとき , $y=\left(\frac{8}{5}\right)^0=1$ $x=1$ のとき , $y=\left(\frac{8}{5}\right)^1=\frac{8}{5}$

グラフは , 2 点 $(0,\ 1),\left(1,\ \frac{8}{5}\right)$ を通り , 単調に増加する曲線となる .

(2)
$$x=0\,\text{ のとき , }y=\left(\frac{5}{8}\right)^0=1$$

$$x=1\,\text{ のとき , }y=\left(\frac{5}{8}\right)^1=\frac{5}{8}$$

グラフは , 2 点 $(0,\ 1),\left(1,\ \frac{5}{8}\right)$ を通り , 単調に減少する曲線となる .

(3)
$$x = 0$$
 のとき, $y = 3^0 = 1$ $x = 1$ のとき, $y = 3^1 = 3$

グラフは , 2 点 $(0,\ 1),(1,\ 3)$ を通り , 単調に増加する曲線 となる .

(4)
$$x=0$$
 のとき , $y=\left(\frac{1}{3}\right)^0=1$ $x=1$ のとき , $y=\left(\frac{1}{3}\right)^1=\frac{1}{3}$

グラフは ,2 点 $(0,\ 1),\left(1,\ rac{1}{3}
ight)$ を通り ,単調に減少する曲泉となる .

201 (1)
$$y = 2^1 \cdot 2^x$$

よって , この関数のグラフは , $y=2^x$ のグラフを , x 軸方向に -1 平行移動したものである .

(2)
$$y = \frac{2^x}{2^1}$$

= 2^{x-}

よって , この関数のグラフは , $y=2^x$ のグラフを , x 軸方向に 1 平行移動したものである .

(3) この関数のグラフは , $y=2^x$ のグラフを , x 軸に関して対称移動したものである .

(4)
$$y = 2^{-1} \cdot 2^{-x}$$

= 2^{-1-x}
= $2^{-(x+1)}$

よって,この関数のグラフは, $y=2^{-x}$ のグラフを,x 軸 方向に -1 平行移動したものであり, $y=2^{-x}$ のグラフは, $y=2^x$ のグラフを y 軸に関して対称移動したものであるから, $y=2^x$ のグラフを y 軸に関して対称移動し,x 軸方向に -1 平行移動したものである.

(5)
$$y = 2^{1} \cdot 2^{-x}$$

= 2^{1-x}
= $2^{-(x-1)}$

よって,この関数のグラフは, $y=2^{-x}$ のグラフを,x 軸方向に 1 平行移動したものであり, $y=2^{-x}$ のグラフは, $y=2^x$ のグラフを y 軸に関して対称移動したものであるから, $y=2^x$ のグラフを y 軸に関して対称移動し,x 軸方向に 1 平行移動したものである.

(6)
$$y = -(2^{-1})^{3-x}$$

= -2^{x-3}

よって,この関数のグラフは, $y=2^x$ のグラフを,x 軸方向に 3 平行移動したグラフを x 軸に関して対称移動したものである.

202 (1)
$$3^{3x} = 81^{\frac{1}{3}}$$
$$3^{3x} = (3^4)^{\frac{1}{3}}$$
$$3^{3x} = 3^{\frac{4}{3}}$$
$$57$$
$$3x = \frac{4}{3}$$
$$x = \frac{4}{3}$$

(2)
$$(2^3)^{2x-4} = 2^1$$

$$2^{3(2x-4)} = 2^1$$
 よって
$$3(2x-4) = 1$$

$$6x - 12 = 1$$

$$6x = 13$$

$$x = \frac{13}{6}$$

(3)
$$5^{-x} = 125^{\frac{1}{2}}$$
$$5^{-x} = (5^3)^{\frac{1}{2}}$$
$$5^{-x} = 5^{\frac{3}{2}}$$
$$5 = 7$$
$$-x = \frac{3}{2}$$
$$x = -\frac{3}{2}$$

(4)
$$3^x = X$$
 とおく、ただし、 $X > 0$ $(3^x)^2 - 4 \cdot 3^x + 3 = 0$ $X^2 - 4X + 3 = 0$ $(X - 1)(X - 3) = 0$ よって、 $X = 1$ 、 3 $X = 1$ のとき、 $3^x = 1$ より、 $x = 0$

$$X=3\,$$
のとき, $3^x=3\,$ より, $x=1\,$ したがって, $x=0,\,\,1\,$

(5)
$$\left(\frac{1}{2}\right)^x = X$$
 とおく、ただし, $X > 0$ $\left\{\left(\frac{1}{2}\right)^x\right\}^2 - 2\left(\frac{1}{2}\right)^x - 8 = 0$ $X^2 - 2X - 8 = 0$ $(X+2)(X-4) = 0$ $X > 0$ より, $X = 4$ $\left(\frac{1}{2}\right)^x = 4$ $(2^{-1})^x = 2^2$ $2^{-x} = 2^2$ よって, $-x = 2$ であるから, $x = -2$

$$203$$
 (1) $2^x < rac{1}{2^3}$ $2^x < 2^{-3}$ 底は 2 で 1 より大きいので $x < -3$

(2)
$$2^{x-1} > 2^3$$
 底は 2 で 1 より大きいので $x-1>3$ $x>4$

(3)
$$3^{3x-4} > (3^2)^{2x}$$
 $3^{3x-4} > 3^{4x}$ 底は 3 で 1 より大きいので $3x-4 > 4x$ $-x > 4$ $x < -4$

(4)
$$\frac{1}{5^x} > 5^2$$
 $5^{-x} > 5^2$ 底は 5 で 1 より大きいので $-x > 2$ $x < -2$

CHECK

204 (1) 与式 =
$$(-\sqrt[3]{64}) \cdot (-\sqrt[5]{32})$$

= $\sqrt[3]{4^3} \cdot \sqrt[5]{2^5}$
= $(\sqrt[3]{4})^3 \cdot (\sqrt[5]{2})^5$
= $4 \cdot 2 = 8$

(2) 与式 =
$$|-3|\sqrt[3]{3^3}$$

= $3 \cdot (\sqrt[3]{3})^3$
= $3 \cdot 3 = 9$

(3) 与式 =
$$\sqrt[3]{16 \times 2}$$

= $\sqrt[3]{2^4 \times 2}$
= $\sqrt[3]{2^5}$
= $\sqrt[3]{2^3 \times 2^2}$
= $\sqrt[3]{2^3} \times \sqrt[3]{2^2}$
= $(\sqrt[3]{2})^3 \times \sqrt[3]{4} = 2\sqrt[3]{4}$

$$(4) \qquad \Rightarrow \vec{x} = \frac{\sqrt[3]{(2^3)^2}}{\sqrt[4]{(3^2)^2}}$$

$$= \frac{\sqrt[3]{(2^2)^3}}{\sqrt[4]{3^4}}$$

$$= \frac{\sqrt[3]{4^3}}{\sqrt[4]{3^4}}$$

$$= \frac{(\sqrt[3]{4})^3}{(\sqrt[4]{3})^4} = \frac{4}{3}$$

(5) 与式 =
$$10\sqrt[3]{0.6^3}$$

= $10(\sqrt[3]{0.6})^3$
= $10 \cdot 0.6 = 6$

(6) 与式 =
$$3\sqrt[3]{24 \times 3 \times 81}$$

= $3\sqrt[3]{(2^3 \times 3) \times 3 \times (3^4)}$
= $3\sqrt[3]{2^3 \times 3^6}$
= $3\sqrt[3]{2^3 \times (3^2)^3}$
= $3\sqrt[3]{(2 \times 9)^3}$
= $3\sqrt[3]{18^3}$
= $3(\sqrt[3]{18})^3$
= $3 \cdot 18 = 54$

205 (1) 正しい

- (2) 正しくない a=-1 のとき,左辺=1,右辺=-1
- (3) 正しい
- (4) 正しい
- (5) 正しい
- (6) 正しくない a<0 または b<0 のとき , 右辺を満たす 実数が存在しない .
- (7) 正しくない a < 0 のとき , 右辺を満たす実数が存在しない .
- (8) 正しくない a=1 のとき, 左辺=1, 右辺=-1
- (9) 正しい

(2) 与式 =
$$a \cdot a^{\frac{3}{4}}$$

$$= a^{1+\frac{3}{4}} = a^{\frac{7}{4}}$$
(3) 与式 = $\sqrt{a^{\frac{4}{3}}}$

$$= (a^{\frac{4}{3}})^{\frac{1}{2}}$$

 $=a^{\frac{4}{3}\cdot\frac{1}{2}}=a^{\frac{2}{3}}$

207 (1) 与式 =
$$a^{\frac{4}{3}-\frac{1}{2}}$$
 = $a^{\frac{8}{6}-\frac{3}{6}}$ = $a^{\frac{5}{6}}$ = $\sqrt[6]{a^5}$

(2) 与式
$$= \frac{a^{\frac{4}{3}}}{a^{\frac{5}{6}}}$$
 $= a^{\frac{4}{3} - \frac{5}{6}}$

$$= a^{\frac{8}{6} - \frac{5}{6}}$$
$$= a^{\frac{3}{6}} = a^{\frac{1}{2}} = \sqrt{a}$$

(3) 与式 =
$$\frac{a^{\frac{3}{5}}}{a^2}$$

= $a^{\frac{3}{5}-2}$
= $a^{\frac{3}{5}-\frac{10}{5}}$
= $a^{-\frac{7}{5}} = a^{-\frac{7}{5}} = \sqrt[5]{a^{-7}}$

(2)
$$= \frac{1}{2} \left(\frac{a^{\frac{1}{3}}}{a^{\frac{1}{4}}} \right)^{5} \times a^{\frac{1}{6}}$$

$$= (a^{\frac{1}{3} - \frac{1}{4}})^{5} \times a^{\frac{1}{6}}$$

$$= (a^{\frac{4}{12} - \frac{3}{12}})^{5} \times a^{\frac{1}{6}}$$

$$= (a^{\frac{1}{12}})^{5} \times a^{\frac{1}{6}}$$

$$= a^{\frac{5}{12}} \times a^{\frac{1}{6}}$$

$$= a^{\frac{5}{12} + \frac{1}{6}}$$

$$= a^{\frac{5}{12} + \frac{2}{12}}$$

$$= a^{\frac{7}{12}} = \sqrt[12]{a^{7}}$$

(2)
$$= \frac{3a}{(4a^2)^{-\frac{1}{2}}}$$

$$= \frac{3a}{4^{-\frac{1}{2}}(a^2)^{-\frac{1}{2}}}$$

$$= \frac{3a}{4^{-\frac{1}{2}}a^{-1}}$$

$$= 3 \cdot 4^{-(-\frac{1}{2})}a^{1-(-1)}$$

$$= 3 \cdot 4^{\frac{1}{2}}a^2$$

$$= 3 \cdot (2^2)^{\frac{1}{2}}a^2$$

$$= 3 \cdot 2a^2 = 6a^2$$

210 (1)
$$y = 3^2 \cdot 3^x$$

= 3^{x+2}

よって , この関数のグラフは , $y=3^x$ のグラフを , x 軸方向に -2 平行移動したものである .

(2)
$$y = -(3^{-1})^x$$

= -3^{-x}

よって , この関数のグラフは , $y=3^x$ のグラフを , 原点に関して対称移動したものである .

(3)
$$y = 3 \cdot (3^{-1})^x + 1$$

= $3 \cdot 3^{-x} + 1$
= $3^{1-x} + 1$
= $3^{-(x-1)} + 1$

よって,この関数のグラフは, $y=3^x$ のグラフを,y 軸に関して対称移動し,x 軸方向に 1,y 軸方向に 1 平行移動したものである.

$$(4) y = -\frac{3^x}{3^3}$$

よって , この関数のグラフは , $y=3^x$ のグラフを , x 軸方向に $\mathbf 3$ 平行移動し , x 軸に関して対称移動したものである .

(2)
$$2^x=X$$
 とおく、ただし, $X>0$ $(2^x)^2-6\cdot 2^x-16=0$ $X^2-6X-16=0$ $(X+2)(X-8)=0$ $X>0$ より, $X=8$

$$2^x=8=2^3$$
 より, $oldsymbol{x=3}$

212 (1)
$$(2^{-1})^x > 32^{\frac{1}{3}}$$
 $2^{-x} > (2^5)^{\frac{1}{3}}$ $2^{-x} > 2^{\frac{5}{3}}$ 底は 2 で 1 よりカ

底は
$$2$$
で 1 より大きいので $-x>rac{5}{3}$ $x<-rac{5}{3}$

(2)
$$3^{2x-1} > \frac{1}{81^{\frac{1}{3}}}$$
$$3^{2x-1} > \frac{1}{(3^4)^{\frac{1}{3}}}$$
$$3^{2x-1} > \frac{1}{3^{\frac{4}{3}}}$$
$$3^{2x-1} > 3^{-\frac{4}{3}}$$
底は3で1より大きいので

$$2x - 1 > -\frac{4}{3}$$
 $6x - 3 > -4$
 $6x > -1$
 $x > -\frac{1}{6}$

STEP UP

(2)
$$\left(\frac{1}{2}\right)^x = X$$
 とおく、ただし, $X > 0$ $\left(\frac{1}{2}\right)^2 x - \frac{9}{8} \left(\frac{1}{2}\right)^x + \frac{1}{8} = 0$ $\left\{\left(\frac{1}{2}\right)^x\right\}^2 - \frac{9}{8} \left(\frac{1}{2}\right)^x + \frac{1}{8} = 0$ $X^2 - \frac{9}{8}X + \frac{1}{8} = 0$ $8X^2 - 9X + 1 = 0$ $(8x - 1)(x - 1) = 0$ $X = \frac{1}{8}$, 1 これは, $X > 0$ を満たす. $X = \frac{1}{8}$ のとき, $\left(\frac{1}{2}\right)^x = \frac{1}{8} = \left(\frac{1}{2}\right)^3$ より, $x = 3$ $X = 1$ のとき, $\left(\frac{1}{2}\right)^x = 1$ より, $x = 0$ したがって, $x = 3$, 0

$$2^x = X$$
 とおく、ただし, $X > 0$
$$2^{2x} \cdot 2^{-1} + 2 \cdot 2^x - 6 = 0$$

$$\frac{(2^x)^2}{2} + 2 \cdot 2^x - 6 = 0$$

$$(2^x)^2 + 4 \cdot 2^x - 12 = 0$$

$$X^2 + 4X - 12 = 0$$

$$(X + 6)(X - 2) = 0$$

$$X = -6, 2$$

$$X > 0$$
 より, $X = 2$
$$2^x = 2 = 2^1$$
 であるから, $x = 1$

$$(4)$$
 $2^x = X$ とおく、ただし, $X > 0$ $2^{2x} \cdot 2^1 - 5 \cdot 2^x \cdot 2^4 + (2^x)^3 = 0$ $(2^x)^2 \cdot 2 - 80 \cdot 2^x + (2^x)^3 = 0$ $X^3 + 2X^2 - 80X = 0$ $X(X^2 + 2X - 80) = 0$ $X(X + 10)(X - 8) = 0$ $X = 0, -10, 8$ $X > 0$ より, $X = 8$ $2^x = 8 = 2^3$ であるから, $x = 3$

$$2^{-2} < 2^{-\frac{9}{5}} < 2^{-\frac{7}{4}} < 2^{-\frac{3}{2}}$$

よって
 $\frac{1}{4}, \sqrt[5]{2^{-9}}, 2^{-\frac{7}{4}}, \frac{1}{\sqrt[4]{64}}$

調に増加するので

(2)
$$3\sqrt[3]{3} \qquad \sqrt[4]{243} \qquad 3\sqrt[5]{9} \qquad 3\sqrt[6]{3}$$

$$\downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow$$

$$3 \cdot 3^{\frac{1}{3}} \qquad (3^5)^{\frac{1}{4}} \qquad 3 \cdot (3^2)^{\frac{1}{5}} \qquad 3 \cdot 3^{\frac{1}{6}}$$

$$\downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow$$

$$3^{\frac{4}{3}} \qquad 3^{\frac{5}{4}} \qquad 3 \cdot 3^{\frac{2}{5}} \qquad 3^{\frac{7}{6}}$$

$$\downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow$$

$$3^{\frac{4}{3}} \qquad 3^{\frac{5}{4}} \qquad 3^{\frac{7}{5}} \qquad 3^{\frac{7}{6}}$$

$$\downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow$$

$$3^{\frac{80}{60}} \qquad 3^{\frac{75}{60}} \qquad 3^{\frac{84}{60}} \qquad 3^{\frac{70}{60}}$$

$$\frac{70}{60} < \frac{75}{60} < \frac{80}{60} < \frac{84}{60}$$
 であり, $y = 3^x$ は,単調に増加

するので
$$3^{\frac{7}{6}} < 3^{\frac{5}{4}} < 3^{\frac{4}{3}} < 3^{\frac{7}{5}}$$
よって $3^{\frac{6}{3}}$ $3^{\frac{4}{3}}$ $3^{\frac{3}{3}}$ $3^{\frac{5}{9}}$

215 (1)
$$0.3^x > 0.3^2$$
 底の 0.3 は 1 より小さいので , $x < 2$

(2)
$$2^x = X$$
 とおく、ただし, $X > 0$ $2^{2x} \cdot 2^3 - 33 \cdot 2^x + 4 < 0$ $8(2^x)^2 - 33 \cdot 2^x + 4 < 0$ $8X^2 - 33X + 4 < 0$ $(8X - 1)(X - 4) < 0$ $\frac{1}{8} < X < 4$ これと $X > 0$ より, $\frac{1}{8} < X < 4$ であるから $\frac{1}{8} < 2^x < 4$

$$\frac{1}{2^3} < 2^x < 2^2$$
$$2^{-3} < 2^x < 2^2$$

底の2は1より大きいので,-3 < x < 2

ここで

$$(a^{x} + a^{-x})^{2} = a^{2x} + 2 \cdot a^{x} \cdot a^{-x} + a^{-2x}$$
$$= 5 + 2 + \frac{1}{5}$$
$$= 7 + \frac{1}{5} = \frac{36}{5}$$

$$=7+rac{1}{5}=rac{36}{5}$$
 $a^x+a^{-x}>0$ であるから , $a^x+a^{-x}=rac{6}{\sqrt{5}}$

よって
与式 =
$$\frac{6}{\sqrt{5}} \left(5 + \frac{1}{5}\right)$$

= $\frac{6}{\sqrt{5}} \cdot \frac{26}{5}$
= $\frac{156}{5\sqrt{5}} = \frac{156\sqrt{5}}{25}$

〔別解〕

$$\begin{split} a^{2x} &= 5, \ a^x > 0 \ \text{LU}, \ a^x = \sqrt{5} \\ \sharp \, \rlap{/}{\hbar} \, , \ a^{-x} &= \frac{1}{a^x} = \frac{1}{\sqrt{5}} \\ \ \text{Lot} \\ \end{split}$$

$$\exists \, \rlap{/}{\pi} = \frac{(a^x)^4 - (a^{-x})^4}{a^x - a^{-x}} \\ &= \frac{(\sqrt{5})^4 - \left(\frac{1}{\sqrt{5}}\right)^4}{\sqrt{5} - \frac{1}{\sqrt{5}}} \\ &= \frac{25 - \frac{1}{25}}{\sqrt{5} - \frac{1}{\sqrt{5}}} = \frac{\left(25 - \frac{1}{25}\right) \times 25\sqrt{5}}{\left(\sqrt{5} - \frac{1}{\sqrt{5}}\right) \times 25\sqrt{5}} \\ &= \frac{(625 - 1) \times \sqrt{5}}{(5 - 1) \times 25} \\ &= \frac{624\sqrt{5}}{4 \cdot 25} = \frac{156\sqrt{5}}{25} \end{split}$$

217 与式 =
$$(3^3)^x + (3^3)^{-x}$$

= $(3^x)^3 + (3^{-x})^3$
= $(3^x + 3^{-x})(3^{2x} - 3^x \cdot 3^{-x} + 3^{-2x})$
= $(3^x + 3^{-x})(3^{2x} + 3^{-2x} - 1)$
ここで

$$3^{2x} + 3^{-2x} = (3^x + 3^{-x})^2 - 2 \cdot 3^x \cdot 3^{-x}$$
$$= 4^2 - 2 \cdot 1 = 14$$

よって

与式 =
$$4(14-1)$$

= $4 \cdot 13 = 52$

218 (1)
$$4^x + 4^{-x} = (2^x)^2 + (2^{-x})^2$$

= $(2^x + 2^{-x})^2 - 2 \cdot 2^x \cdot 2^{-x}$
= $t^2 - 2$

よって
$$f(x) = (t^2 - 2) - t + 1$$

$$= t^2 - t - 1$$

(2) $2^x > 0$, $2^{-x} > 0$ であるから,相加平均と相乗平均の大小

$$2^{x} + 2^{-x} \ge 2\sqrt{2^{x} \cdot 2^{-x}}$$
$$= 2 \cdot 1 = 2$$

したがって , $t \ge 2$

(3)
$$t^{2}-t-1 = \left(x - \frac{1}{2}\right)^{2} - \frac{1}{4} - 1$$
$$= \left(x - \frac{1}{2}\right)^{2} - \frac{5}{4}$$

よって, t=2 のとき, 最小値1をとる.

219
$$3^x = X$$
 とおく.
 $y = -(3^x)^2 + 10 \cdot 3^x + 54$
 $= -X^2 + 10X + 54$
 $= -(X^2 - 10X) + 54$
 $= -\{(X - 5)^2 - 25\} + 54$
 $= -(X - 5)^2 + 79$

(1) $0 \le x \le 2$ より, $3^0 \le 3^x \le 3^2$ であるから, $1 \le X \le 9$

よって X=5 のとき,最大値 79 $X=1,\ 9$ のとき , 最小値 ${f 63}$

$$(\ 2\) -2 \le x \le 0$$
 より, $3^{-2} \le 3^x \le 3^0$ であるから, $\frac{1}{9} \le X \le 1$ よって $X=1$ のとき,最大値 63 $X=\frac{1}{9}$ のとき,最小値 $\frac{4463}{81}$

