

Федеральное государственное бюджетное образовательное учреждение высшего образования «Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)»

Разработка системы извлечения терминов

Студент: Сапожков Андрей Максимович ИУ7-63Б

Научный руководитель: Строганов Юрий Владимирович

Цель и задачи

Цель – разработка системы извлечения многокомпонентных терминов и их переводных эквивалентов из параллельных научно-технических текстов.

Задачи:

- 1. Проанализировать предметную область и формализовать задачу.
- 2. Спроектировать базу данных и структуру программного обеспечения.
- 3. Реализовать интерфейс для доступа к базе данных.
- 4. Реализовать ПО, которое позволит пользователю создавать, получать и изменять сведения из разработанной базы данных.
- 5. Исследовать зависимость времени выполнения запросов от использования кеширования данных текущей сессии пользователя.

Предметная область

Переводчики (Google, Яндекс, DeepL) позволяют размечать тексты, но не дают работать с терминологией. Также нет возможности редактировать "разметку".

Словари (Thesaurus) позволяют в какой-то степени изучать терминологию, но не дают возможности дополнять её на основе размеченных текстов.

ER-модель базы данных

ER-диаграмма базы данных

Хранимая процедура БД

Архитектура ПО

Анализ СУБД

СУБД	Характеристики	Назначение
PostgreSQL	Объектно-реляционная модельОткрытый исходный кодСертификация ФСТЭК России	Долговременное хранение данных
Redis	Хранилище типа ключ-значениеХранение данных в оперативной памяти	Кеширование данных
InfluxDB	 Ориентированность на хранение и обработку временных рядов Оптимизация записи данных Встроенные графические средства визуализации данных 	Хранение логов

Логирование InfluxDB

В качестве СУБД для хранения логов была выбрана СУБД-ВР InfluxDB.

В InfluxDВ данные представляются в виде двумерной таблицы (measurement), столбцы которой соответствуют меткам времени (timestamp).

В InfluxDB сохраняются

- запросы пользователей;
- события в бизнес-логике;
- ошибки в базе данных;
- конфигурация сервера.

Кеширование Redis

Для хранения данных пользовательских сессий использовалась нереляционная СУБД **Redis** (хранилище типа **ключ-значение** в оперативной памяти сервера).

Формат ключа:

репозиторий:отношение:слой:язык

Нагрузочное тестирование

Цель – проведение нагрузочного тестирования и сравнение производительности веб-сервера при обработке запросов на сохранение терминов с использованием кеширования и без него.

Технические характеристики:

- 1. Операционная система: Manjaro Linux x86-64, версия ядра 5.15.32.
- 2. Объём оперативной памяти: 16 Гб.
- 3. Процессор: Intel i5-9300H 2.4 ГГц.

Открытая линейная нагрузка

Без использования кеширования Redis

С использованием кеширования Redis

Открытая постоянная нагрузка

Без использования кеширования Redis

С использованием кеширования Redis

Закрытая нагрузка

Без использования кеширования Redis

С использованием кеширования Redis

Предельная нагрузка системы

Без использования кеширования Redis максимум **33 RPS**

С использованием кеширования Redis максимум 83 RPS

Результаты исследования

С использованием кеширования

- 1) при линейной открытой нагрузке среднее время ответа сервера уменьшилось с 63 мс до 37 мс (на 41%);
- 2) при линейной постоянной нагрузке среднее время ответа сервера уменьшилось с 49 мс до 38 мс (на 22%);
- 3) при закрытой нагрузке среднее время ответа сервера уменьшилось с **44 мс** до **15 мс** (на **66%**);
- 4) уменьшился разброс времён ответов, то есть сервер стал отвечать на запросы стабильнее.

Заключение

В рамках курсовой работы была разработана система извлечения многокомпонентных терминов и их переводных эквивалентов из параллельных научно-технических текстов. Для достижения этой цели были решены следующие задачи:

- 1. Проведён анализ предметной области и формализована задача.
- 2. Спроектирована база данных и структура ПО.
- 3. Реализован интерфейс для доступа к базе данных.
- 4. Реализовано ПО, которое позволяет пользователю создавать, получать и изменять сведения из разработанной базы данных.
- 5. Проведено исследование зависимости времени выполнения запросов от использования кеширования данных текущей сессии пользователя.