(a)

a. Table A		Cases.	
Centrols	High	2000	Total.
High	3		4
	3		4
Low		2	8.
tal	6		

Table B.	Diet	Case	Centrol.	· Case · Crowl
	High	1	1	thigh o I
	low	0	0	2000 1 0
	Type 2:	3		Type I: 1
		Case	Corol.	Case Corol.
	High		0	High 0
The second secon	lan		1	200 41 1
19 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Type II:			Type IV:

(b)

Modernar
$$g^2$$
: $\chi^2 = \frac{(n_{12} - n_{22})^2}{n_{12} + n_{21}} = 1$

As $\chi_{0.es,1} = 3.84$, so our test statistic is smaller than $\chi_{art,1}^2$, so we fail to reject to, two marginal probabilities are equal.

= 0.5 Type II or II = 4 type I & II table.

= 0.5 Type IV.

 $\chi^2 = \frac{(n_{12} - n_{11})^2}{n_{12} + n_{11}} = 1$ Save as McNerman startistic above.

(c)

If delete the data on case and control, which have some over the squal to remove type I, type W table.

(d)

as. nu | na + nu ~ Bin (na+ nn, pu / (pa+pw) = Bin (4, 1/2).

Grad p-vale = P[ny-ni2 32 | Ho] = P[ny=3 | Ho] + 7[ny=4 | Ho] = 0, 3125

(a)

The FREQ Procedure

Frequency Percent

	Table of resd16 by resd04									
		resd04								
resd16	1	2	3	4	Total					
1	425	17	80	36	558					
	16.42	0.66	3.09	1.39	21.55					
2	10	555	74	47	686					
	0.39	21.44	2.86	1.82	26.50					
3	7	34	771	33	845					
	0.27	1.31	29.78	1.27	32.64					
4	5	14	29	452	500					
	0.19	0.54	1.12	17.46	19.31					
Total	447	620	954	568	2589					
	17.27	23.95	36.85	21.94	100.00					

Statistics for Table of resd16 by resd04

Symmetry Test							
Chi-Square	DF	Pr > ChiSq					
119.4321	6	<.0001					

Interpretation: As p-value above is <0.0001 which is smaller than 0.05, so we reject H₀, so the symmetry model is not applied.

	Analysis Of Maximum Likelihood Parameter Estimates										
Parameter	DF	Estimate	Standard Error	Wald 95% Conf	fidence Limits	Wald Chi-Square	Pr > ChiSq				
Intercept	0	0.0000	0.0000	0.0000	0.0000						
x1	1	2.1375	0.2745	1.5995	2.6756	60.63	<.0001				
x2	1	1.1115	0.2104	0.6992	1.5238	27.92	<.0001				
х3	1	0.1570	0.1976	-0.2304	0.5444	0.63	0.4270				
Scale	0	1.0000	0.0000	1.0000	1.0000						

Interpretation: for p-value of the β_1 is smaller than 0.05, so we reject H₀, $\beta_1 = 0$ is not applied. for p-value of the β_2 is smaller than 0.05, so we reject H₀, $\beta_2 = 0$ is not applied. for p-value of the β_3 is bigger than 0.05, so we reject H₀, $\beta_3 = 0$ is applied. Not all slopes are not equal to 0 so marginal symmetry model is not applied.

(b)
$$G^{2} = 2 \underbrace{\xi \left\{ n_{ij} \log \left(\frac{2m_{ij}}{n_{ij} + n_{ji}} \right) + n_{ji} \log \left(\frac{2n_{ji}}{(n_{ij} + n_{ji})} \right) \right\}}_{17i} = 2 \times (17 \times \log \frac{2x_{ij}}{177i0}) + 36 \times \log \left(\frac{2x_{ij}}{26 + 5} \right) + 30 \times \log \left(\frac{2x_{ij}}{8v + 7} \right) + 74 \times \log \left(\frac{2x_{ij}}{74 + 34} \right) + 47 \times \log \left(\frac{2x_{ij}}{47 + 14} \right) + 33 \log \left(\frac{2x_{ij}}{33 + 29} \right) + 10 \times \log \left(\frac{2x_{ij}}{17 \times 10} \right) + 5 \times \log \left(\frac{2x_{ij}}{36 + 5} \right) + 7 \times \log \left(\frac{2x_{ij}}{30 + 7} \right) + 34 \times \log \left(\frac{2x_{ij}}{74 + 34} \right) + 14 \times \log \left(\frac{2x_{ij}}{17 \times 10} \right) + 29 \times \log \left(\frac{2x_{ij}}{33 + 29} \right) + 2134$$

$$df = \frac{4 \times (4 - 1)}{2} = 6 \qquad \qquad \chi_{6, o.05}^{2} = 12 + 92 \qquad \text{As } \log G^{2} > \chi_{6, o.05}^{2}$$
So we reject the symmetry model.

(c)

	Analysis of Variance								
Source DF Chi-Square Pr > Cl									
Intercept	3	3964.90	<.0001						
time	3	170.13	<.0001						
Residual	0								

As p-value here is smaller than 0.05, so we reject null hypothesis, so there is difference between them, so the homogeneity is not applied. 8.20

(a)

Statistic	DF	Value	Prob
Chi-Square	9	64.7524	<.0001
Likelihood Ratio Chi-Square	9	69.1626	<.0001
Mantel-Haenszel Chi-Square	1	51.4239	<.0001
Phi Coefficient		0.6592	
Contingency Coefficient		0.5504	
Cramer's V		0.3806	

than 5. Chi-Square may not be a valid test.

Statistics for Table of rater1 by rater2

As p-value above is <0.0001 smaller than 0.05, so we reject H₀, so they are not independent.

			Observation	n Statistics		
Observation	Raw Residual	Pearson Residual	Deviance Residual	Std Deviance Residual	Std Pearson Residual	Likelihood Residua
1	13.194631	2.6492589	2.4549372	4.4276709	4.7781451	4.6732018
2	-5.926174	-1.792835	-2.00876	-2.76001	-2.463332	-2.624664
3	-3.248322	-1.80231	-2.548852	-3.15498	-2.230908	-2.867973
4	-4.020134	-1.79425	-2.193936	-2.776698	-2.270845	-2.598223
5	6.5033557	1.2634035	1.2163854	2.2258746	2.3119135	2.2865583
6	-0.671141	-0.196452	-0.198382	-0.276553	-0.273864	-0.27525
7	-0.469799	-0.252208	-0.258247	-0.324326	-0.316742	-0.321572
8	-5.362416	-2.315689	-3.274879	-4.205276	-2.973579	-3.76889
9	-9.731544	-2.190792	-2.422895	-4.193838	-3.792088	-3.93074
10	5.3087248	1.8007294	1.6526357	2.1792245	2.3745061	2.264256
11	2.4161074	1.5030693	1.3301106	1.5800908	1.7855553	1.642615
12	2.0067113	1.0041985	0.9339751	1.1344417	1.2197377	1.16260
13	-9.966443	-2.767768	-3.339217	-5.497801	-4.556948	-4.92499
14	1.2885906	0.5391918	0.5206144	0.6529925	0.6762936	0.661577
15	1.3020134	0.9991906	0.9005486	1.0175801	1.1290412	1.04275
16	7.3758389	4.5531942	3.4647942	4.0030542	5.2605385	4.352756

From the residues above, we can get the same conclusion as above due to the residuals difference is not large enough to make it noticed compared to the independent conditions.

(b)

			Analys	sis Of Maxin	num Likelihood I	Parameter Estin	nates	
Parameter		DF	Estimate	Standard Error	Wald 95% Con	fidence Limits	Wald Chi-Square	Pr > ChiSq
Intercept		1	1.0767	0.2126	0.6600	1.4934	25.64	<.0001
rater1	1	1	-0.3860	0.2331	-0.8428	0.0708	2.74	0.0977
rater1	2	1	1.8705	0.1509	1.5749	2.1662	153.75	<.0001
rater1	3	1	0.6871	0.1357	0.4210	0.9531	25.62	<.0001
rater1	4	0	0.0000	0.0000	0.0000	0.0000		
rater2	1	1	0.5432	0.1897	0.1714	0.9151	8.20	0.0042
rater2	2	1	0.8782	0.1773	0.5306	1.2257	24.52	<.0001
rater2	3	1	-1.2987	0.3015	-1.8897	-0.7077	18.55	<.0001
rater2	4	0	0.0000	0.0000	0.0000	0.0000		
qi	1	1	2.4037	0.2265	1.9597	2.8476	112.61	<.0001
qi	2	1	-1.4275	0.1474	-1.7164	-1.1385	93.74	<.0001
qi	3	1	1.1444	0.3223	0.5127	1.7761	12.61	0.0004
qi	4	1	1.2259	0.2350	0.7654	1.6864	27.22	<.0001
qi	5	0	0.0000	0.0000	0.0000	0.0000		
Scale		0	1.0000	0.0000	1.0000	1.0000		

Quasi-independent model: $\delta_1=2.4037, \delta_2=-1.4275, \delta_3=1.1444, \delta_4=1.2259$ It seems more on agreement than disagreement between neurologists. $\tau_{12}=e^{2.4037-1.4275}=2.654\ \tau_{13}=e^{2.4037+1.1444}=34.747\ \tau_{14}=e^{2.4037+1.2259}=37.698$ $\tau_{23}=e^{-1.4275+1.1444}=0.753\ \tau_{24}=e^{-1.4275+1.2259}=0.817\ \tau_{34}=e^{1.1444+1.2259}=10.701$

$$\tau_{12} = e^{2.4037 - 1.4275} = 2.654 \,\tau_{13} = e^{2.4037 + 1.1444} = 34.747 \,\tau_{14} = e^{2.4037 + 1.2259} = 37.698$$

$$\tau_{23} = e^{-1.4275 + 1.1444} = 0.753 \,\tau_{24} = e^{-1.4275 + 1.2259} = 0.817 \,\tau_{34} = e^{1.1444 + 1.2259} = 10.701$$

Interpretation: For any pair of subjects, the conditional odds ratio on agreements to disagreements is τ_{XY} which neurologist may put in category X and the other in category Y.

(c)

	Kappa	a Statistics	8			
Statistic	Estimate	Standard Estimate Error		95% Confidence Limits		
Simple Kappa	0.2079	0.0505	0.1	091	0.3068	
Weighted Kappa	0.3797	0.0517	0.2	0.2785		
0.2079	H0 Std Err 0.0456	Z Pr > Z 4.5594 <.0001		Pr > 2 <.000	_	
Т	est of H0: W	eighted Ka	appa = 0			
Estimate	H0 Std Err	Z	Pr > Z	Pr > 2	Z	
0.3797	0.0530	0.0530 7.1620 <.0001 <.0001		1		

From the output above, we can see the p-value correspond to Kappa = 0 is smaller than 0.05, so we reject H₀ and the agreement is not random. And the Kappa weight is 0.3797 so it means that the 37.97% difference between observed and expected agreements conditional on their diagnoses.

8.24 (a)

Analysis Of Maximum Likelihood Parameter Estimates									
Parameter	DF	Estimate	Standard Error	Wald 95% Confidence Limits		Wald Chi-Square	Pr > ChiSq		
Intercept	0	0.0000	0.0000	0.0000	0.0000				
x1	1	0.1674	0.5960	-1.0007	1.3355	0.08	0.7788		
x2	1	-0.2795	0.5796	-1.4156	0.8565	0.23	0.6296		
х3	1	-0.4575	0.7249	-1.8782	0.9632	0.40	0.5279		
x4	1	0.5592	0.6957	-0.8044	1.9228	0.65	0.4215		
Scale	0	1.0000	0.0000	1.0000	1.0000				

From the output above, the $\beta_1=0.1674$, $\beta_2=-0.2795$, $\beta_3=-0.4575$, $\beta_4=0.5592$ So the rank is S.williams > Clijsters > V.williams > Davenport > Pierce

(b) probability that Serena Williams beats Venus Williams: $\frac{e^{\beta_4-\beta_5}}{1+e^{\beta_4-\beta_5}} = 0.6363$ sample proportion: 2/(2+2)=1/2

Compared the result above, the probability that Serena Williams beats Venus Williams is higher than the sample proportion of them.

(c)

	Estimated Covariance Matrix								
	Prm2 Prm3 Prm4 Prm5								
Prm2	0.35521	0.19101	0.19048	0.15389					
Prm3	0.19101	0.33598	0.16154	0.16596					
Prm4	0.19048	0.16154	0.52544	0.16395					
Prm5	0.15389	0.16596	0.16395	0.48405					

$$var(\beta_4 - \beta_5) = var(\beta_4) + var(\beta_5) - 2cov(\beta_4, \beta_5) = 0.48405$$
90% CI(\beta_4 - \beta_5): 0.5592 \overline{\pi} 1.645 * \sqrt{0.48405} = (-0.5852, 1.7037)
So for \Pi = \left(\frac{e^{-0.5852}}{1 + e^{-0.5852}}, \frac{e^{1.7037}}{1 + e^{1.7037}}\right) = (0.3577, 0.8640)

Interpretation: We are 90% confident the probability that SerenaWilliams beats VenusWilliams is in (0.3577,0.8640).

(d)

Testing Global Null Hypothesis: BETA=0			
Test	Chi-Square	DF	Pr > ChiSq
Likelihood Ratio	2.5611	4	0.6337
Score	2.5096	4	0.6429
Wald	2.4082	4	0.6611

As p-value for Wald test is 0.6611 which is bigger than 0.05, so we fail to reject H₀, there is no difference among players.