Exercices d'oraux de la banque CCP 2014-2015 - Corrigés

BANQUE ANALYSE

EXERCICE 1

1) • Si on suppose que les suites (u_n) et (v_n) ne s'annulent pas à partir d'un certain rang,

$$u_n \underset{+\infty}{\sim} v_n \Rightarrow \lim_{n \to +\infty} \frac{u_n}{v_n} = 1.$$

Il existe alors un entier n_0 tel que pour tout entier naturel n supérieur ou égal à n_0 , $\frac{u_n}{v_n} \ge \frac{1}{2}$. En particulier, pour $n \ge n_0$, $\frac{u_n}{v_n} > 0$ et donc u_n et v_n ont même signe.

ullet Si on ne suppose pas que les suites (\mathfrak{u}_n) et (\mathfrak{v}_n) ne s'annulent pas à partir d'un certain rang,

$$\begin{split} u_n \underset{+\infty}{\sim} \nu_n & \Rightarrow \exists \left(\epsilon_n\right)_{n \in \mathbb{N}} \in \mathbb{R}^{\mathbb{N}} / \ u_n - \nu_n = \epsilon_n \nu_n \ \mathrm{et} \ \lim_{n \to +\infty} \epsilon_n = 0 \\ & \Rightarrow \exists \left(\epsilon_n\right)_{n \in \mathbb{N}} \in \mathbb{R}^{\mathbb{N}} / \ u_n = (1 + \epsilon_n) \nu_n \ \mathrm{et} \ \lim_{n \to +\infty} \epsilon_n = 0. \end{split}$$

Puisque $\lim_{n\to+\infty} \varepsilon_n = 0$, il existe un entier naturel n_0 tel que pour tout entier naturel n supérieur ou égal à n_0 , $\varepsilon_n > -\frac{1}{2}$ et donc $1+\varepsilon_n > \frac{1}{2}$. En particulier, pour $n \ge n_0$, $1+\varepsilon_n > 0$.

Pour $n\geqslant n_0$, on a donc $u_n=(1+\epsilon_n)\,\nu_n$ et $1+\epsilon_n>0$. Pour $n\geqslant 0$, on en déduit que

- si $v_n > 0$, alors $u_n > 0$,
- $\text{- si } \nu_n < 0, \, \mathrm{alors} \, u_n < 0,$
- $\text{- si } \nu_n=0, \, \mathrm{alors} \; u_n=0.$

Donc, pour $n \ge n_0$, u_n et v_n ont même signe.

2) Quand n tend vers $+\infty$,

$$\operatorname{sh}\left(\frac{1}{n}\right) - \tan\left(\frac{1}{n}\right) = \left(\frac{1}{n} + \frac{1}{6n^3}\right) - \left(\frac{1}{n} + \frac{1}{3n^3}\right) + o\left(\frac{1}{n^3}\right) = -\frac{1}{6n^3} + o\left(\frac{1}{n^3}\right).$$

 $\mathrm{Donc},\,\mathrm{sh}\left(\frac{1}{n}\right)-\tan\left(\frac{1}{n}\right)\underset{+\infty}{\sim}-\frac{1}{6n^3}\,\,\mathrm{et}\,\,\mathrm{en}\,\,\mathrm{particulier},\,\mathrm{\grave{a}}\,\,\mathrm{partir}\,\,\mathrm{d'un}\,\,\mathrm{certain}\,\,\mathrm{rang},\,\mathrm{sh}\left(\frac{1}{n}\right)-\tan\left(\frac{1}{n}\right)<0.$

EXERCICE 2

Pour $x \in \mathbb{R} \setminus \{-1; 3\}$, on pose $f(x) = \frac{1}{(1+x)^2(3-x)} = -\frac{1}{(x+1)^2(x-3)}$.

1) Il existe trois réels a, b et c tels que, pour tout x de $\mathbb{R} \setminus \{-1;3\}$,

$$f(x) = \frac{a}{x+1} + \frac{b}{(x+1)^2} + \frac{c}{x-3}$$

•
$$c = \lim_{x \to 3} (x - 3) f(x) = -\frac{1}{(3 + 1)^2} = -\frac{1}{16}$$
.

•
$$b = \lim_{x \to -1} (x+1)^2 f(x) = -\frac{1}{-1-3} = \frac{1}{4}$$
.

•
$$a + c = \lim_{x \to +\infty} xf(x) = 0$$
 et donc $a = -c = \frac{1}{16}$.

$$\forall x \in \mathbb{R} \setminus \{-1; 3\}, \ f(x) = \frac{1}{16} \left(\frac{1}{x+1} + \frac{4}{(x+1)^2} - \frac{1}{x-3} \right).$$

 $f \text{ est continue sur }]-1,3[\text{ en tant que fraction rationnelle définie sur }]-1,3[\text{ et donc } f \text{ admet des primitives sur }]-1,3[\text{ Les primitives de } f \text{ sur }]-1,3[\text{ sont les fonctions de la forme } x \mapsto \frac{1}{16} \left(\ln(x+1) - \frac{4}{x+1} - \ln(3-x)\right) + \lambda,\,\lambda \in \mathbb{R}.$

 $\text{Une telle primitive s'annule en 1 si et seulement si } \frac{1}{16} \left(\ln(2) - \frac{4}{2} - \ln(2) \right) + \lambda = 0 \text{ ou encore } \lambda = \frac{1}{8}.$

$$\forall x \in \mathbb{R} \setminus \{-1; 3\}, \ G(x) = \frac{1}{16} \left(\ln(x+1) - \frac{4}{x+1} - \ln(3-x) + 2 \right).$$

2) Soit n un entier naturel.

$$\begin{split} f(x) &= \frac{1}{16} \left(\frac{1}{1+x} + \frac{4}{(1+x)^2} + \frac{1}{3-x} \right) = \frac{1}{16} \left(\frac{1}{1+x} + 4 \times \frac{1}{(1+x)^2} + \frac{1}{3} \times \frac{1}{1-\frac{x}{3}} \right) \\ &= \frac{1}{16} \left(\sum_{k=0}^{n} (-1)^k x^k + 4 \sum_{k=0}^{n} (-1)^k (k+1) x^k + \frac{1}{3} \sum_{k=0}^{n} \frac{x^k}{3^k} \right) + o(x^n) \\ &= \frac{1}{16} \left(\sum_{k=0}^{n} \left((-1)^k (4k+5) + \frac{1}{3^{k+1}} \right) x^k \right) + o(x^n) \end{split}$$

3)
$$G^{(3)}(0) = (G')''(0) = f''(0)2!\alpha_2 = 2! \times \frac{1}{16} \left((-1)^2 (4 \times 2 + 5) + \frac{1}{3^{2+1}} \right) = \frac{13 \times 27 + 1}{8 \times 27} = \frac{352}{8 \times 27} = \frac{44}{27}.$$

EXERCICE 3

- 1) Montrons par récurrence que tout entier naturel k, g est de classe C^k sur \mathbb{R} et pour tout réel x, $g^{(k)}(x) = 2^k e^{2x}$.
 - La fonction g est continue sur $\mathbb R$ et pour tout réel $x, \, g^{(0)}(x) = e^{2x} = 2^0 e^{2x}$. La propriété à démontrer est donc vraie quand k=0.
 - Soit $k \geqslant 0$. Supposons que g est de classe C^k sur $\mathbb R$ et pour tout réel x, $g^{(k)}(x) = 2^k e^{2x}$ et montrons que g est de classe C^{k+1} sur $\mathbb R$ et pour tout réel x, $g^{(k+1)}(x) = 2^{k+1} e^{2x}$. La fonction $g^{(k)}$ est de classe C^1 sur $\mathbb R$ ou encore la fonction g est de classe C^{k+1} sur $\mathbb R$ et pour tout réel x,

$$g^{(k+1)}(x) = \left(g^{(k)}\right)'(x) = 2^k \times 2e^{2x} = 2^{k+1}e^{2x}.$$

On a montré par récurrence que tout entier naturel k, g est de classe C^k sur $\mathbb R$ et pour tout réel $x, g^{(k)}(x) = 2^k e^{2x}$.

- Montrons par récurrence que tout entier naturel k, h est de classe C^k sur $\mathbb{R}\setminus\{-1\}$ et pour tout réel $x\in\mathbb{R}\setminus\{-1\}$, $h^{(k)}(x)=\frac{(-1)^k k!}{(1+x)^{k+1}}$.
 - La fonction h est continue sur $\mathbb{R}\setminus\{-1\}$ en tant que fraction rationnelle définie sur $\mathbb{R}\setminus\{-1\}$ et pour tout réel $x\in\mathbb{R}\setminus\{-1\}$,

$$h^{(0)}(x) = \frac{1}{1+x} = \frac{1(-1)^0 0!}{(1+x)^{1+0}}.$$

La propriété à démontrer est donc vraie quand k = 0.

- Soit $k \ge 0$. Supposons que h est de classe C^k sur $\mathbb{R} \setminus \{-1\}$ et pour tout réel $x \in \mathbb{R} \setminus \{-1\}$, $h^{(k)}(x) = \frac{(-1)^k k!}{(1+x)^{k+1}}$ et montrons que h est de classe C^{k+1} sur $\mathbb{R} \setminus \{-1\}$ et pour tout réel $x \in \mathbb{R} \setminus \{-1\}$, $h^{(k+1)}(x) = \frac{(-1)^{k+1} (k+1)!}{(1+x)^{k+2}}$.

La fonction $h^{(k)}$ est de classe C^1 sur $\mathbb{R}\setminus\{-1\}$ en tant que fraction rationnelle définie sur $\mathbb{R}\setminus\{-1\}$ ou encore la fonction h est de classe C^{k+1} sur $\mathbb{R}\setminus\{-1\}$ et pour tout réel $x\in\mathbb{R}\setminus\{-1\}$,

$$h^{(k+1)}(x) = \left(h^{(k)}\right)'(x) = (-1)^k k! \frac{-(k+1)}{(1+x)^{k+2}} = \frac{(-1)^{k+1}(k+1)!}{(1+x)^{k+2}}.$$

On a montré par récurrence que tout entier naturel k, h est de classe C^k sur $\mathbb{R}\setminus\{-1\}$ et pour tout réel $x\in\mathbb{R}\setminus\{-1\}$, $h^{(k)}(x)=\frac{(-1)^k k!}{(1+x)^{k+1}}$.

2) La fonction $f = g \times h$ est de classe C^{∞} sur $\mathbb{R} \setminus \{-1\}$ en tant que produit de fonctions de classe C^{∞} sur $\mathbb{R} \setminus \{-1\}$. Soit $n \in \mathbb{N}$. D'après la formule de LEIBNIZ, pour tout réel x

$$\begin{split} f^{(n)}(x) &= \sum_{k=0}^n \binom{n}{k} g^{(n-k)}(x) h^{k)}(x) \\ &= \sum_{k=0}^n \binom{n}{k} 2^{n-k} e^{2x} \times \frac{(-1)^k k!}{(1+x)^{k+1}} = n! e^{2x} \sum_{k=0}^n \frac{(-1)^k 2^{n-k}}{(n-k)! (1+x)^{k+1}} \\ &= \frac{n! e^{2x}}{x^{n+1}} \sum_{k=0}^n \frac{(-1)^k 2^{n-k}}{(n-k)!} (1+x)^{n-k} = \frac{n! e^{2x} (-1)^n}{x^{n+1}} \sum_{k=0}^n \frac{(-1)^k 2^k}{k!} (1+x)^k. \\ \hline \\ \forall x \in \mathbb{R} \setminus \{-1\}, \, \forall n \in \mathbb{N}, \, f^{(n)}(x) = \frac{n! e^{2x} (-1)^n}{x^{n+1}} \sum_{k=0}^n \frac{(-1)^k 2^k}{k!} (1+x)^k. \end{split}$$

3) Soient f et g deux fonctions définies sur un intervalle I de \mathbb{R} à valeurs dans \mathbb{R} ou \mathbb{C} . Montrons par récurrence que pour tout entier naturel non nul n, si f et g sont n fois dérivables sur I, alors $f \times g$ est n fois dérivable sur I et que

$$(f \times g)^{(n)} = \sum_{k=0}^{n} {n \choose k} f^{(k)} g^{(n-k)}.$$

 \bullet Pour n = 1, si f et g sont dérivables sur I, alors fg est dérivable sur I et

$$(fg)' = fg' + f'g = \sum_{k=0}^{1} {1 \choose k} f^{(k)} g^{(1-k)}.$$

La formule est donc vraie quand n = 1.

 \bullet Soit $n \ge 1$. Supposons que si f et g sont n fois dérivables sur I, alors $f \times g$ est n fois dérivable sur I et que

$$(f \times g)^{(n)} = \sum_{k=0}^{n} {n \choose k} f^{(k)} g^{(n-k)},$$

et montrons que si f et g sont n+1 fois dérivables sur I, alors $f \times g$ est n+1 fois dérivable sur I et que

$$(f \times g)^{(n+1)} = \sum_{k=0}^{n+1} {n+1 \choose k} f^{(k)} g^{(n+1-k)}.$$

Soient donc f et g deux fonctions n+1 fois dérivables sur I. En particulier, f et g sont n fois dérivables sur I et par hypothèse de récurrence, $f \times g$ est n fois dérivable sur I et $(f \times g)^{(n)} = \sum_{k=0}^n \binom{n}{k} f^{(k)} g^{(n-k)}$.

Pour tout $k \in [0,n]$, $f^{(k)}g^{(n-k)}$ est dérivable sur I en tant que produit de fonctions dérivables sur I car $k \le n$ et $n-k \le n$ et donc $(f \times g)^{(n)}$ est dérivable sur I en tant que combinaison linéaire de fonctions dérivables sur I. Donc, $f \times g$ est n+1 fois dérivable sur I et

$$\begin{split} (f\times g)^{(n+1)} &= \left((f\times g)^{(n)} \right)' = \sum_{k=0}^n \binom{n}{k} f^{(k+1)} g^{(n-k)} + \sum_{k=0}^n \binom{n}{k} f^{(k)} g^{(n+1-k)} \\ &= \sum_{k=1}^{n+1} \binom{n}{k-1} f^{(k)} g^{(n-(k-1))} + \sum_{k=0}^n \binom{n}{k} f^{(k)} g^{(n+1-k)} \\ &= f^{(n+1)} + \sum_{k=1}^n \binom{n}{k-1} f^{(k)} g^{(n+1-k)} + \sum_{k=1}^n \binom{n}{k} f^{(k)} g^{(n+1-k)} + g^{(n+1)} \\ &= f^{(n+1)} + \sum_{k=1}^n \left(\binom{n}{k-1} + \binom{n}{k} \right) f^{(k)} g^{(n+1-k)} + g^{(n+1)} \\ &= f^{(n+1)} + \sum_{k=1}^n \binom{n+1}{k} f^{(k)} g^{(n+1-k)} + g^{(n+1)} = \sum_{k=0}^{n+1} \binom{n+1}{k} f^{(k)} g^{(n+1-k)} \end{split}$$

On a montré par récurrence que, pour tout entier naturel non nul n, si f et g sont n fois dérivables sur I, alors $f \times g$ est n fois dérivable sur I et $(f \times g)^{(n)} = \sum_{k=0}^{n} \binom{n}{k} f^{(k)} g^{(n-k)}$.

EXERCICE 4

1) Théorème des accroissements finis.

Soient a et b deux réels tels que a < b. Soit f une application de [a,b] dans \mathbb{R} .

Si f est continue sur [a,b] et dérivable sur [a,b[, alors il existe $c\in]a,b[$ tel que $\frac{f(b)-f(a)}{b-a}=f'(c)$.

2) Posons
$$\ell = \lim_{\substack{x \to x_0 \\ x \neq x_0}} f'(x)$$
.

Soit $x \in [x_0, b]$. Par hypothèse, f est continue sur $[x_0, x]$ et dérivable sur $[x_0, x]$. D'après le théorème des accroissements finis, il existe $c = c(x) \in]x_0, x[$ tel que $\frac{f(x) - f(x_0)}{x - x_0} = f'(c(x)).$ Puisque pour tout x de $]x_0, b]$, on a $x_0 < c(x) < x$, le théorème des gendarmes permet d'affirmer que $\lim_{\substack{x \to x_0 \\ x > x_0}} c(x) = x_0.$

D'après le théorème de composition des limites, f'(c(x)) tend vers ℓ quand x tend vers x_0 par valeurs supérieures. Ainsi, le taux $\frac{f(x) - f(x_0)}{x - x_0}$ a une limite réelle quand x tend vers x_0 par valeurs supérieures et

$$\lim_{\substack{x \to x_0 \\ x > x_0}} \frac{f(x) - f(x_0)}{x - x_0} = \ell.$$

f est donc dérivable à droite en x_0 et $f'_d(x_0) = \ell$.

De même, en remplaçant l'intervalle $[x_0, x]$ par l'intervalle $[x, x_0]$ quand $x < x_0$, on montre que f est dérivable à gauche en x_0 et que $f'_g(x_0) = \ell$.

Finalement, f est dérivable en x_0 et $f'(x_0) = \ell = \lim_{x \to x_0} f'(x)$.

- $\textbf{3) Pour } x \in \mathbb{R}, \ \mathrm{posons} \ g(x) = \left\{ \begin{array}{l} x^2 \sin \left(\frac{1}{x}\right) \ \mathrm{si} \ x \neq 0 \\ 0 \ \mathrm{si} \ x = 0 \end{array} \right..$
- Pour tout réel non nul x, $|g(x)| \le x^2$. On en déduit que $\lim_{\substack{x \to 0 \\ x \ne 0}} g(x) = 0 = f(0)$. g est donc continue en 0. Puisque d'autre part, g est continue sur \mathbb{R}^* en vertu de théorèmes généraux, g est continue sur \mathbb{R} .
- Pour tout réel non nul x, $\frac{g(x) g(0)}{x 0} = x \sin\left(\frac{1}{x}\right)$. Pour tout réel non nul x, $\left|\frac{g(x) g(0)}{x 0}\right| \leqslant |x|$ et on en déduit que $\lim_{x\to 0} \frac{g(x)-g(0)}{x-0} = 0. \text{ Par suite, } g \text{ est dérivable en } 0 \text{ et } g'(0) = 0.$
- g est dérivable sur \mathbb{R}^* et pour tout réel non nul x,

$$g'(x) = 2x \sin\left(\frac{1}{x}\right) - \cos\left(\frac{1}{x}\right).$$

Pour $n \in \mathbb{N}^*$, posons $u_n = \frac{1}{\frac{\pi}{2} + 2n\pi}$ et $v_n = \frac{1}{2n\pi}$. Les suites u et v sont deux suites tendant vers 0 quand n tend vers

 $+\infty$. Mais $g'(u_n)=2u_n$ tend vers 0 quand n tend vers $+\infty$ et $g'(v_n)=-1$ tend vers -1 quand n tend vers $+\infty$. On entropy -1 tend vers -1 quand -1 quand -1 tend vers -1 quand déduit que la fonction g' n'a pas de limite quand x tend vers 0.

Finalement, l'implication : (f est dérivable en x_0) \Longrightarrow (f' admet une limite finie en x_0) est fausse.

EXERCICE 5

1) (a) Supposons $\alpha \leq 0$. Pour tout $n \geq 3$,

$$u_n = \frac{1}{n} (\ln n)^{-\alpha} \geqslant \frac{1}{n} (\ln 3)^{-\alpha} \geqslant \frac{1}{n}.$$

Puisque la série de terme général $\frac{1}{n}$, $n \in \mathbb{N}^*$, diverge, la série de terme général u_n diverge.

(b) Supposons $\alpha > 0$. Pour x > 1, posons $f_{\alpha}(x) = \frac{1}{x(\ln x)^{\alpha}}$. Les deux fonctions $x \mapsto x$ et $x \mapsto (\ln x)^{\alpha}$ sont positives et croissantes sur $]1, +\infty[$ et donc la fonction $x \mapsto x(\ln x)^{\alpha}$ est croissante sur $]1, +\infty[$. Mais alors, f_{α} est décroissante sur $]1, +\infty[$ en tant qu'inverse d'une fonction strictement positive et croissante sur $]1, +\infty[$.

 $\begin{array}{l} \textbf{1er cas.} \; \mathrm{Supposons} \; \alpha \in]0,1]. \; \mathrm{Pour \; tout} \; k \geqslant 3, \; (\ln k)^{\alpha} \leqslant \ln k \; (\mathrm{par \; croissante \; de \; la \; fonction} \; x \mapsto (\ln k)^{x} \; \mathrm{puisque \; ln} \; k \geqslant 1) \\ \mathrm{puis} \; \frac{1}{k(\ln k)^{\alpha}} \geqslant \frac{1}{k \ln k}. \; \mathrm{Puisque \; la \; fonction} \; f_{1} \; \mathrm{est \; continue \; et \; décroissante \; sur \; }]1, +\infty[, \; \mathrm{pour} \; n \geqslant 3, \\ \end{array}$

$$\begin{split} \sum_{k=3}^n \frac{1}{k(\ln k)^\alpha} &\geqslant \sum_{k=3}^n \frac{1}{k \ln k} \geqslant \sum_{k=3}^n \int_k^{k+1} \frac{1}{x \ln x} \; dx \\ &= \int_3^{n+1} \frac{1}{x \ln x} \; dx = (n+1) \left(\ln(n+1) - 1 \right) - 3(\ln 3 - 1). \end{split}$$

Puisque $(n+1)(\ln(n+1)-1)-3(\ln 3-1)$ tend vers $+\infty$ quand n tend vers $+\infty$, il en est de même de $\sum_{k=3}^{n} \frac{1}{k(\ln k)^{\alpha}}$ et donc la série de terme général u_n diverge.

2ème cas. Supposons $\alpha \in]1, +\infty[$. Pour tout $k \ge 3$, on a $[k-1,k] \subset]1, +\infty[$. Puisque f_{α} est continue et décroissante sur $]1, +\infty[$, pour $n \ge 3$,

$$\begin{split} \sum_{k=3}^{n} \frac{1}{k(\ln k)^{\alpha}} &\leqslant \sum_{k=3}^{n} \int_{k-1}^{k} \frac{1}{x(\ln x)^{\alpha}} \ dx = \int_{2}^{n} \frac{1}{x(\ln x)^{\alpha}} \ dx \\ &= \left[-\frac{1}{(\alpha-1)(\ln x)^{\alpha-1}} \right]_{2}^{n} = \frac{1}{(\alpha-1)(\ln 2)^{\alpha-1}} - \frac{1}{(\alpha-1)(\ln n)^{\alpha-1}} \\ &\leqslant \frac{1}{(\alpha-1)(\ln 2)^{\alpha-1}}. \end{split}$$

Ainsi, chaque u_n est positif et la suite des sommes partielles $\left(\sum_{k=3}^n u_k\right)_{n\geqslant 3}$ est majorée. On en déduit que la série de terme général u_n converge.

En résumé,

la série de terme général u_n converge si et seulement si $\alpha>1$.

$$2) \left(1+\frac{1}{n}\right)^n = e^{n\ln\left(1+\frac{1}{n}\right)} \underset{n \to +\infty}{=} e^{n\left(\frac{1}{n}-\frac{1}{2n^2}+o\left(\frac{1}{n^2}\right)\right)} \underset{n \to +\infty}{=} e \times e^{-\frac{1}{2n}+o\left(\frac{1}{n}\right)} \underset{n \to +\infty}{=} e \left(1-\frac{1}{2n}+o\left(\frac{1}{n}\right)\right). \text{ Par suite,}$$

$$e - \left(1+\frac{1}{n}\right)^n \underset{n \to +\infty}{=} e - e\left(1-\frac{1}{2n}+o\left(\frac{1}{n}\right)\right) \underset{n \to +\infty}{=} \frac{e}{2n} + o\left(\frac{1}{n}\right) \underset{n \to +\infty}{\sim} \frac{e}{2n},$$

puis

$$\frac{\left(e-\left(1+\frac{1}{n}\right)^n\right)e^{\frac{1}{n}}}{\left(\ln\left(n^2+n\right)\right)^2} \underset{n \to +\infty}{\sim} \frac{\frac{e}{2n}\times 1}{\left(\ln\left(n^2\right)\right)^2} = \frac{e}{8n\ln^2(n)}.$$

Puisque 2 > 1, la série converge d'après la question 1).

EXERCICE 7

1) Soient (u_n) et (v_n) deux suites positives et équivalentes. Il existe une suite (ε_n) telle que pour tout entier naturel n, $v_n = u_n (1 + \varepsilon_n)$ et $\lim_{n \to +\infty} \varepsilon_n = 0$.

Puisque $\lim_{n\to +\infty}\epsilon_n=0$, il existe un rang n_0 tel que pour $n\geqslant n_0$, $-\frac{1}{2}\leqslant \epsilon_n\leqslant \frac{1}{2}$. Pour $n\geqslant n_0$, on a $\frac{1}{2}u_n\leqslant \nu_n\leqslant \frac{3}{2}u_n$ ou encore, plus explicitement,

$$\forall n\geqslant n_0,\, 0\leqslant u_n\leqslant 2\nu_n \,\, {\rm et} \,\, 0\leqslant \nu_n\leqslant \frac{3}{2}u_n\leqslant 2u_n.$$

Si la série de terme général u_n converge, il en est de même de la série de terme général $2u_n$ puis de la série de terme général v_n .

Si la série de terme général v_n converge, il en est de même de la série de terme général $2v_n$ puis de la série de terme général u_n .

En résumé, la série de terme général u_n converge si et seulement si la série de terme général v_n converge. Ceci montre que les séries de termes généraux respectifs u_n et v_n sont de même nature.

2) Pour
$$n \ge 2$$
, posons $u_n = \frac{\sin\left(\frac{1}{n}\right)}{(\sqrt{n+3}-1)\ln n}$.

$$u_n = \frac{\sin\left(\frac{1}{n}\right)}{\left(\sqrt{n+3}-1\right)\ln n} \xrightarrow[n \to +\infty]{} \frac{1}{n^{3/2}\ln n} > 0. \text{ Donc la série de terme général } u_n \text{ est de même nature que la série de terme général } v_n = \frac{1}{n^{3/2}\ln n}.$$

général $v_n = \frac{1}{n^{3/2} \ln n}$.

Ensuite, $\frac{1}{n^{3/2} \ln n} \sim o\left(\frac{1}{n^{3/2}}\right)$ et puisque $\frac{3}{2} > 1$, la série de terme général v_n converge. On en déduit que la série de

terme général u_n converge et il en est de même de la série de terme général $\frac{(i-1)\sin\left(\frac{1}{n}\right)}{(\sqrt{n+3}-1)\ln n}$

EXERCICE 42

1) Sur $]0, +\infty[$, l'équation (H) est équivalente à l'équation $y' - \frac{3}{2x}y = 0$. La fonction $x \mapsto -\frac{3}{2x}$ est continue sur $]0, +\infty[$ et donc les solutions de (H) sur $]0, +\infty[$ constituent un \mathbb{R} -espace vectoriel de dimension 1. Soit f une fonction dérivable sur $]0, +\infty[$.

$$\begin{split} f \ \mathrm{solution} \ \mathrm{de} \ (H) \ \mathrm{sur} \] 0, + & \infty [\ \Leftrightarrow \forall x > 0, \ f'(x) - \frac{3}{2x} f(x) = 0 \ \Leftrightarrow \forall x > 0, \ e^{-\frac{3}{2} \ln x} f'(x) - \frac{3}{2x} e^{-\frac{3}{2} \ln x} f(x) = 0 \\ & \Leftrightarrow \forall x > 0, \ \left(\frac{f}{x^{3/2}}\right)'(x) = 0 \ \Leftrightarrow \exists \lambda \in \mathbb{R}/ \ \forall x > 0, \ \frac{f(x)}{x^{3/2}} = \lambda \\ & \Leftrightarrow \exists \lambda \in \mathbb{R}/ \ \forall x > 0, \ f(x) = \lambda x^{3/2}. \end{split}$$

Les solutions de (H) sur]0, $+\infty$ [sont les fonctions de la forme $x \mapsto \lambda x^{3/2}$, $\lambda \in \mathbb{R}$.

2) • Sur $]0, +\infty[$, l'équation (E) est équivalente à l'équation $y' - \frac{3}{2x}y = \frac{1}{2\sqrt{x}}$. Les fonctions $x \mapsto -\frac{3}{2x}$ et $x \mapsto \frac{1}{2\sqrt{x}}$ sont continues sur $]0, +\infty[$ et donc les solutions de (E) sur $]0, +\infty[$ constituent un \mathbb{R} -espace affine de dimension 1. Soit f une fonction dérivable sur $]0, +\infty[$.

$$\begin{split} \text{f solution de (E) sur }]0, +\infty[&\Leftrightarrow \forall x>0, \ f'(x) - \frac{3}{2x}f(x) = \frac{1}{2\sqrt{x}} \Leftrightarrow \forall x>0, \ e^{-\frac{3}{2}\ln x}f'(x) - \frac{3}{2x}e^{-\frac{3}{2}\ln x}f(x) = \frac{e^{-\frac{4}{2}\ln x}}{2\sqrt{x}} \\ &\Leftrightarrow \forall x>0, \ \left(\frac{f}{x^{3/2}}\right)'(x) = \frac{1}{2x^2} \Leftrightarrow \exists \lambda \in \mathbb{R}/\ \forall x>0, \ \frac{f(x)}{x^{3/2}} = -\frac{1}{2x} + \lambda \\ &\Leftrightarrow \exists \lambda \in \mathbb{R}/\ \forall x>0, \ f(x) = -\frac{\sqrt{x}}{2} + \lambda x^{3/2}. \end{split}$$

Les solutions de (E) sur]0, $+\infty$ [sont les fonctions de la forme $x \mapsto -\frac{\sqrt{x}}{2} + \lambda x^{3/2}$, $\lambda \in \mathbb{R}$.

• Soit f une éventuelle solution de (E) sur $[0, +\infty[$. Nécessairement, f(0) = 0 (égalité fournie par (E)) et il existe $\lambda \in \mathbb{R}$ tel que $\forall x > 0$, $f(x) = -\frac{\sqrt{x}}{2} + \lambda x^{3/2}$ ou encore, nécessairement

$$\exists \lambda \in \mathbb{R}/ \ \forall x \geqslant 0, \ f(x) = -\frac{\sqrt{x}}{2} + \lambda x^{3/2}.$$

Réciproquement, une telle fonction f est dérivable sur $]0,+\infty[$ et solution de (E) sur $]0,+\infty[$ et d'autre, si elle est dérivable en 0 à droite, vérifie encore (E) pour x=0. Donc, une telle fonction est solution de (E) sur $[0,+\infty[$ si et seulement si elle est dérivable en 0 à droite. Mais pour tout réel λ , $f(x) \underset{x\to 0^+}{\sim} -\frac{\sqrt{x}}{2}$ et on en déduit que f n'est pas dérivable en 0 à droite. L'équation (E) n'admet pas de solution sur $[0,+\infty[$.

EXERCICE 43

1) (a) Le signe d'un réel x est défini par $sgn(x) = \begin{cases} -1 \text{ si } x < 0 \\ 0 \text{ si } x = 0 \\ 1 \text{ si } x > 0 \end{cases}$.

La fonction $x \mapsto \operatorname{Arctan}(x)$ est strictement croissante sur \mathbb{R} . Par suite, pour tout entier naturel n

$$\operatorname{sgn}\left(u_{n+2}-u_{n+1}\right)=\operatorname{sgn}\left(\operatorname{Arctan}\left(u_{n+1}\right)-\operatorname{Arctan}\left(u_{n}\right)\right)=\operatorname{sgn}\left(u_{n+1}-u_{n}\right).$$

La suite $(u_{n+1} - u_n)_{n \in \mathbb{N}}$ est donc de signe constant ou encore la suite $(u_n)_{n \in \mathbb{N}}$ est monotone. Déterminons précisément le sens de variation de la suite $(u_n)_{n \in \mathbb{N}}$ en fonction de x_0 .

Pour $x \in \mathbb{R}$, Posons f(x) = x - Arctan(x). f est dérivable sur \mathbb{R} et pour tout réel x,

$$f'(x) = 1 - \frac{1}{1 + x^2} = \frac{x^2}{1 + x^2}.$$

f est dérivable sur \mathbb{R} et sa dérivée est strictement positive sur \mathbb{R}^* . Donc la fonction f est strictement croissante sur \mathbb{R} . Puisque f(0) = 0, f est strictement négative sur $]-\infty$, 0[et strictement positive sur $]0,+\infty[$. On en déduit que

- $\forall x > 0$, Arctan(x) < x,
- $\forall x < 0$, Arctan(x) > x,
- $\forall x \in \mathbb{R}$, $(Arctan(x) = x \Leftrightarrow x = 0)$.

On en déduit encore que

- $\bullet \ \mathrm{si} \ u_0>0, \ \mathrm{alors} \ u_1< u_0 \ \mathrm{et} \ \mathrm{donc} \ \mathrm{la} \ \mathrm{suite} \ (u_n)_{n\in\mathbb{N}} \ \mathrm{est} \ \mathrm{strictement} \ \mathrm{d\'{e}croissante},$
- $\bullet \ {\rm si} \ u_0 < 0, \ {\rm alors} \ u_1 > u_0 \ {\rm et \ donc \ la \ suite} \ (u_n)_{n \in \mathbb{N}} \ {\rm est \ strictement \ croissante},$
- si $u_0 = 0$, alors $u_1 = u_0$ et donc la suite $(u_n)_{n \in \mathbb{N}}$ est constante.
- (b) Pour tout entier naturel non nul n, $|u_n| = |\operatorname{Arctan}(u_{n-1})| \le \frac{\pi}{2}$. Donc pour tout entier naturel n, $|u_n| \le \operatorname{Max}\left\{|u_0|, \frac{\pi}{2}\right\}$. La suite u est donc bornée et monotone. On en déduit que la suite u est convergente. Soit ℓ la limite de la suite u. Par continuité de la fonction Arctan sur $\mathbb R$ et donc en ℓ ,

$$\ell = \lim_{n \to +\infty} u_{n+1} = \lim_{n \to +\infty} \operatorname{Arctan}\left(u_n\right) = \operatorname{Arctan}\left(\lim_{n \to +\infty} u_n\right) = \operatorname{Arctan}(\ell).$$

 ℓ est donc un point fixe de la fonction $x\mapsto \operatorname{Arctan}(x)$. L'étude de la fonction f effectuée en a) montre alors que $\ell=0$.

On a montré que pour tout réel x_0 , la suite $(u_n)_{n\in\mathbb{N}}$ converge et a pour limite 0.

2) Soit h une fonction continue sur \mathbb{R} telle que $\forall x \in \mathbb{R}$, $h(x) = h(\operatorname{Arctan} x)$.

Soit $x_0 \in \mathbb{R}$. Soit u la suite définie par $u_0 = x_0$ et $\forall n \in \mathbb{N}$, $u_{n+1} = \operatorname{Arctan}(u_n)$ puis v la suite définie par $\forall n \in \mathbb{N}$, $v_n = h(u_n)$. Alors, pour tout entier naturel n,

$$v_n = h(u_n) = h(Arctan(u_n)) = h(u_{n+1}) = v_{n+1}$$
.

La suite ν est donc constante et en particulier convergente, de limite $\nu_0 = h(x_0)$. D'autre part, d'après la question 1), la suite $(\mathfrak{u}_n)_{n\in\mathbb{N}}$ est convergente de limite 0. Maintenant, la fonction h sur \mathbb{R} est continue sur \mathbb{R} et en particulier continue en 0. On en déduit que

$$h(x_0) = \lim_{n \to +\infty} v_n = \lim_{n \to +\infty} h(u_n) = h\left(\lim_{n \to +\infty} u_n\right) = h(0).$$

Ainsi, pour tout réel x, h(x) = h(0) et donc la fonction h est constante sur \mathbb{R} . Réciproquement, les fonctions constantes conviennent

Les fonctions solutions sont les fonctions constantes.

1) (a) Soit $n \in \mathbb{N}^*$. Soit φ_n la fonction en escaliers sur [a,b] définie par

$$\forall x \in [\mathfrak{a}, \mathfrak{b}], \ \phi_{\mathfrak{n}}(x) = \left\{ \begin{array}{l} f\left(\frac{k}{\mathfrak{n}}\right) \ \mathrm{si} \ x \in \left[\frac{k-1}{\mathfrak{n}}, \frac{k}{\mathfrak{n}}\right[, \ k \in \llbracket 1, \mathfrak{n} \rrbracket \right. \\ f(\mathfrak{b}) \ \mathrm{si} \ x = \mathfrak{b} \end{array} \right. .$$

Alors, $R_n(f) = \int_a^b \phi_n(x) \ dx$. Si f est positive, $R_n(f)$ est la somme des aires des rectangles $\left[\frac{k-1}{n},\frac{k}{n}\right] \times \left[0,f\left(\frac{k}{n}\right)\right]$ et plus généralement si f est de signe quelconque, $R_n(f)$ est l'aire algébrique du domaine compris entre l'axe des abscisses et le graphe de ϕ_n .

(b) Supposons f de classe C^1 sur [0,1]. Soit $n \in \mathbb{N}^*$.

$$\begin{split} \int_0^1 f(x) \ dx - R_n(f) &= \sum_{k=1}^n \int_{\frac{k-1}{n}}^{\frac{k}{n}} f(x) \ dx - \frac{1}{n} \sum_{k=1}^n f\left(\frac{k}{n}\right) = \sum_{k=1}^n \int_{\frac{k-1}{n}}^{\frac{k}{n}} f(x) \ dx - \sum_{k=1}^n \int_{\frac{k-1}{n}}^{\frac{k}{n}} f\left(\frac{k}{n}\right) \ dx \\ &= \sum_{k=1}^n \int_{\frac{k-1}{n}}^{\frac{k}{n}} \left(f(x) - f\left(\frac{k}{n}\right)\right) dx, \end{split}$$

puis $\left|\int_0^1 f(x) \ dx - R_n(f)\right| \le \sum_{k=1}^n \int_{\frac{k-1}{n}}^{\frac{k}{n}} \left|f(x) - f\left(\frac{k}{n}\right)\right| dx$. Puisque la fonction f est de classe C^1 sur le segment [0,1], la fonction f' est définie et bornée sur ce segment. Soit M un majorant de la fonction |f'| sur ce segment. On sait que l'inégalité des accroissements finis permet d'affirmer que la fonction f est M-lipschitzienne sur le segment [0,1]. Par suite

$$\begin{split} \left| \int_{0}^{1} f(x) \, dx - R_{n}(f) \right| & \leq \sum_{k=1}^{n} \int_{\frac{k-1}{n}}^{\frac{k}{n}} \left| f(x) - f\left(\frac{k}{n}\right) \right| dx \leqslant \sum_{k=1}^{n} \int_{\frac{k-1}{n}}^{\frac{k}{n}} M \left| x - \frac{k}{n} \right| dx \leqslant \sum_{k=1}^{n} \int_{\frac{k-1}{n}}^{\frac{k}{n}} \frac{M}{n} dx \\ & = \sum_{k=1}^{n} \frac{M}{n^{2}} = \frac{M}{n}. \end{split}$$

Puisque $\lim_{n\to+\infty}\frac{M}{n}=0$, on a montré que $\lim_{n\to+\infty}R_n(f)=\int_0^1f(x)\ dx$.

2) Pour tout entier naturel non nul n,

$$x_n = \sum_{k=1}^n \frac{n}{3n^2 + k^2} = \sum_{k=1}^n \frac{n}{n^2} \times \frac{1}{3 + \frac{k^2}{n^2}} = \frac{1}{n} \sum_{k=1}^n \frac{1}{3 + \left(\frac{k}{n}\right)^2}.$$

On applique alors le 1) à la fonction f définie sur [0,1] par : $\forall x \in [0,1]$, $f(x) = \frac{1}{3+x^2}$. f est continue sur [0,1] et donc la suite (x_n) converge et

$$\lim_{n \to +\infty} x_n = \int_0^1 \frac{dx}{3 + x^2} = \left[\frac{1}{\sqrt{3}} \operatorname{Arctan} \left(\frac{x}{\sqrt{3}} \right) \right]_0^1 = \frac{1}{\sqrt{3}} \operatorname{Arctan} \left(\frac{1}{\sqrt{3}} \right) = \frac{\pi}{6\sqrt{3}}.$$

$$\lim_{n \to +\infty} \frac{n}{3n^2 + k^2} = \frac{\pi}{6\sqrt{3}}.$$

EXERCICE 55

- 1) Vérifions que E est un sous-espace vectoriel de $\mathbb{C}^{\mathbb{N}}$.
- La suite nulle est dans E.
- Soient $(u, v) \in E^2$ et $(\lambda, \mu) \in \mathbb{C}^2$. Pour tout entier naturel n

$$\begin{split} (\lambda u + \mu \nu)_{n+2} &= \lambda u_{n+2} + \mu \nu_{n+2} = \lambda \left(2\alpha u_{n+1} + 4(i\alpha - 1)u_n \right) + \mu \left(2\alpha \nu_{n+1} + 4(i\alpha - 1)\nu_n \right) \\ &= 2\alpha \left(\lambda u_{n+1} + \mu \nu_{n+1} \right) + 4(i\alpha - 1)u_n \left(\lambda u_n + \mu \nu_n \right) = 2\alpha \left(\lambda u + \mu \nu \right)_{n+1} + 4(i\alpha - 1)u_n \left(\lambda u + \mu \nu \right)_n \,, \end{split}$$

et donc $\lambda u + \mu v \in E$.

On a montré que E est un sous-espace vectoriel de $\mathbb{C}^{\mathbb{N}}$.

Montrons que $\dim_{\mathbb{C}}(E)=2$. Pour cela, considérons $\phi:E\to\mathbb{C}^2$ et montrons que ϕ est un isomorphisme $u\mapsto(u_0,u_1)$

d'espaces vectoriels.

• φ est une application de E dans \mathbb{C}^2 . Soient $(u, v) \in E^2$ et $(\lambda, \mu) \in \mathbb{C}^2$.

$$\phi\left(\lambda u + \mu v\right) = \left(\lambda u_0 + \mu v_0, \lambda u_1 + \mu v_1\right) = \lambda\left(u_0, u_1\right) + \mu\left(v_0, v_1\right) = \lambda\phi(u) + \mu\phi(v).$$

Donc, φ est une application linéaire de E vers \mathbb{C}^2 .

- Soit $u \in E$ tel que $\varphi(u) = 0$. On a donc $u_0 = u_1 = 0$. Mais alors, par récurrence double, pour tout entier naturel n, on a $u_n = 0$ et donc la suite u est nulle. Ceci montre que φ est injective.
- Soit $(a,b) \in \mathbb{C}^2$. Soit u la suite définie par $u_0 = a$, $u_1 = b$ et $\forall n \in \mathbb{N}$, $u_{n+2} = 2au_{n+1} + 4(ia-1)u_n$. u est un élément de E tel que $\phi(u) = (a,b)$. Ceci montre que ϕ est surjective.

Finalement, φ est un isomorphisme d'espaces vectoriels. On en déduit que $\dim_{\mathbb{C}}(E) = \dim_{\mathbb{C}}(\mathbb{C}^2) = 2$.

2) L'équation caractéristique associée à la relation de récurrence est

$$z^2 - 2az + 4(1 - ia) = 0$$
 (E_c).

Le discriminant réduit de cette équation est

$$\Delta' = \alpha^2 - 4(1 - i\alpha) = \alpha^2 + 4i\alpha - 4 = (\alpha + 2i)^2$$
.

1er cas. Si $\alpha \neq -2i$, (E_c) admet deux solutions distinctes à savoir $z_1 = \alpha - (\alpha + 2i) = -2i$ et $z_2 = \alpha + (\alpha + 2i) = 2(\alpha + i)$. On sait alors que les éléments de E sont les suites de la forme

$$(\lambda(-2i)^n + \mu(2(\alpha+i))^n)_{n\in\mathbb{N}}, (\lambda,\mu) \in \mathbb{C}^2.$$

De plus, d'après les formules de Cramer,

$$\begin{cases} u_0 = 1 \\ = u_1 = 1 \end{cases} \Leftrightarrow \begin{cases} \lambda + \mu = 1 \\ (-2i)\lambda + 2(\alpha + i)\mu = 1 \end{cases} \Leftrightarrow \lambda = \frac{ \begin{vmatrix} 1 & 1 \\ 1 & 2(\alpha + i) \end{vmatrix}}{2(\alpha + 2i)} \text{ et } \mu = \frac{ \begin{vmatrix} 1 & 1 \\ -2i & 1 \end{vmatrix}}{2(\alpha + 2i)} \\ \Leftrightarrow \lambda = \frac{2\alpha - 1 + 2i}{2(\alpha + 2i)} \text{ et } \mu = \frac{1 + 2i}{2(\alpha + 2i)}.$$

$$\mathrm{Si}\ \alpha \neq -2\mathfrak{i},\ \forall n \in \mathbb{N},\ u_n = \frac{1}{2(\alpha+2\mathfrak{i})}\left((2\alpha-1+2\mathfrak{i})(-2\mathfrak{i})^n+(1+2\mathfrak{i})(2(\alpha+\mathfrak{i}))^n\right).$$

2ème cas. Si a = -2i, (E_c) admet une solution double à savoir z = -2i. On sait alors que les éléments de E sont les suites de la forme

$$((\lambda n + \mu)(-2i)^n)_{n \in \mathbb{N}}, (\lambda, \mu) \in \mathbb{C}^2.$$

De plus,

$$\left\{ \begin{array}{l} u_0=1 \\ =u_1=1 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} \mu=1 \\ (-2\mathfrak{i})(\lambda+\mu)=1 \end{array} \right. \Leftrightarrow \lambda=-1+\frac{\mathfrak{i}}{2} \, \operatorname{et} \, \mu=1.$$

$$\mathrm{Si}\ \mathfrak{a} = -2\mathfrak{i}, \, \forall \mathfrak{n} \in \mathbb{N}, \, \mathfrak{u}_{\mathfrak{n}} = \left(\left(-1 + \frac{\mathfrak{i}}{2} \right) \mathfrak{n} + 1 \right) (-2\mathfrak{i})^{\mathfrak{n}}.$$

EXERCICE 56

1) La fonctions $f: x \mapsto \frac{1}{\ln x}$ est continue sur $]1, +\infty[$ en tant qu'inverse d'une fonction continue sur $]1, +\infty[$ et ne s'annulant pas sur $]1, +\infty[$. Soit F une primitive de f sur $]1, +\infty[$. F est de classe C^1 sur $]1, +\infty[$.

Soit
$$x > 1$$
. Alors $1 < x < x^2$ et donc $H(x) = \int_{x}^{x^2} f(t) dt$ existe. De plus, $H(x) = F(x^2) - F(x)$.

La fonction $x \mapsto x^2$ est de classe C^1 sur $]1, +\infty[$ à valeurs dans $]1, +\infty[$ et la fonction F est de classe C^1 sur $]1, +\infty[$. Donc la fonction $x \mapsto F\left(x^2\right)$. est de classe C^1 sur $]1, +\infty[$. Mais alors, H est de classe C^1 sur $]1, +\infty[$ en tant que combinaisons linéaires de fonctions de classe C^1 sur $]1, +\infty[$. De plus, pour tout x > 1,

$$H'(x) = 2xF'(x^2) - F'(x) = 2xf(x^2) - 2f(x) = \frac{2x}{\ln(x^2)} - \frac{1}{\ln x} = \frac{x-1}{\ln x}.$$

$$\text{H est de classe } C^1 \text{ sur }]1, +\infty[\text{ et pour tout } x \in]1, +\infty[, \, H'(x) = \frac{x-1}{\ln x}.$$

2) Pour x > 1, posons h = x - 1 ou encore x = 1 + h de sorte que x tend vers 1 par valeurs supérieures si et seulement si h tend vers 0 par valeurs supérieures.

$$\begin{split} u(x) &= \frac{1}{\ln x} - \frac{1}{x-1} = \frac{1}{\ln(1+h)} - \frac{1}{h} \\ &= \underbrace{\frac{1}{h\to 0} \frac{1}{h - \frac{h^2}{2} + o\left(h^2\right)}}_{h\to 0} - \frac{1}{h} \underset{h\to 0}{=} \frac{1}{h} \left(\frac{1}{1 - \frac{h}{2} + o\left(h\right)} - 1\right) \underset{h\to 0}{=} \frac{1}{h} \left(1 + \frac{h}{2} + o(h) - 1\right) \\ &= \underbrace{\frac{1}{h\to 0} \frac{1}{2} + o(1)}_{h\to 0}. \end{split}$$

$$\lim_{x\to 1} u(x) = \frac{1}{2}.$$

3) La fonction $\mathfrak u$ est donc prolongeable par continuité en 1 en posant $\mathfrak u(1)=\frac{1}{2}$ (on note encore $\mathfrak u$ le prolongement obtenu). Soit $\mathfrak x>1$.

$$\begin{split} H(x) &= \int_{x}^{x^{2}} \frac{1}{\ln t} \, dt = \int_{x}^{x^{2}} \left(u(t) + \frac{1}{t-1} \right) \, dt = \int_{x}^{x^{2}} u(t) \, dt + \int_{x}^{x^{2}} \frac{1}{t-1} \, dt \\ &= \int_{x}^{x^{2}} u(t) \, dt + \left[\ln(t-1) \right]_{x}^{x^{2}} = \int_{x}^{x^{2}} u(t) \, dt + \ln\left(\frac{x^{2}-1}{x-1}\right) \\ &= \int_{x}^{x^{2}} u(t) \, dt + \ln(x+1). \end{split}$$

Puisque $\mathfrak u$ est définie et continue sur $[1,+\infty[$, $\lim_{x\to 1^+}\int_x^x u(t)\ dt=\int_1^1 u(t)\ dt=0$ et d'autre part, $\lim_{x\to 1^+}\ln(x+1)=\ln(2)$. Donc,

$$\lim_{x\to 1^+} \mathsf{H}(x) = \ln(2).$$