Solutions for Assignment 8

1. Select the correct option(s):

- a) Composition of a CPA-secure scheme together with a SCMA-secure MAC will always ensure an authenticated encrypted scheme
- b) If message m is made up of a sequence of blocks m_1, \ldots, m_d and MAC algorithm outputs a sequence of tags t_1, \ldots, t_d respectively for each of the blocks, then it is easy to forge a MAC on a new message by reordering the tags
- c) Choosing separate keys for encryption and authentication is not needed if the correct order of encryption and authentication is chosen to obtain a secure authenticated encryption scheme
- d) Padding Oracle attack is based on the error response sent by the receiver

The first statement is incorrect, because as discussed in the lectures, not every composition of a CPA-secure cipher and a secure MAC necessary leads to an authenticated encryption scheme. The second statement is a correct statement. Supposed adversary learns the tag (t_1, \ldots, t_d) for a message $m = (m_1, \ldots, m_d)$. Then it can come up with a tag $(t_2, t_1, t_3, \ldots, t_d)$ for a new message $m' = (m_2, m_1, m_3, \ldots, m_d)$. The third statement is also incorrect, as it has been demonstrated in the lectures that the encrypt-then-authenticate approach is secure, only if the encryption component and MAC component are instantiated with independent keys. The fourth statement is correct. So the answers are $\bf b$ and $\bf d$.

- 2. Which of the following is(are) correct for the key-exchange problem?
 - a) The goal of the sender and receiver is to agree upon a random common key, over a public channel
 - b) Stronger security notion of key-exchange protocol requires the adversary to unable to distinguish between the output key and a uniformly random element from the key space, except with a negligible probability
 - c) The goal of the sender and receiver is to agree upon a fixed common key, over a private channel
 - d) Weaker security notion of key-exchange protocol requires the adversary to unable to compute the output key, except with a negligible probability

The first statement is correct, as the communication between sender and receiver happens over a public channel. And their goal is agree upon a random and private key. So, the third statement is incorrect. The second and fourth statements are true, which follows from the definition of strong security and weak security of key-exchange protocols. So the answers are **a**, **b** and **d**.

- 3. Let sender and receiver have a pre-shared, random and private AES key k. Then consider the following method of authenticating messages of size which is a multiple of 64 bits: to authenticate a message $m \in \{\{0,1\}^{64}\}^{\leq \ell}$ containing ℓ blocks m_1, \ldots, m_ℓ each of size 64 bits, the tag-generation algorithm outputs $t = (t_1, \ldots, t_\ell)$ as the tag, where $t_i = \text{AES}_k(m_i|| < \ell >)$. Here $\ell < \ell >$ denotes a 64-bit representation of the integer ℓ , the number of blocks in m. Accordingly, the tag-verification algorithm performs the corresponding verification steps. Identify the correct statement(s) from the following.
 - a) The above MAC is randomized and hence is SCMA-secure
 - b) The above MAC is deterministic and hence is CMA-secure
 - c) The above MAC is neither CMA-secure nor SCMA-secure
 - d) The above MAC when used in the encrypt-and-authenticate approach leads to an authenticated encryption scheme
 - e) The adversary can always win the MAC forgery game

The MAC is neither CMA-secure, nor SCMA-secure and hence can never lead to an authenticated encryption scheme. Consider the following mix-and-match attack. The adversary asks for the MAC on messages $m=(m_1,\ldots,m_\ell)$ and $m'=(m'_1,\ldots,m'_\ell)$, where $m_i\neq m'_i$, for $i=1,\ldots,\ell$. Say the resultant tags are $t=(t_1,\ldots,t_\ell)$ and $t'=(t'_1,\ldots,t'_\ell)$ respectively. Then the tag on the message $m''=(m_1,m'_2,m_3,m'_4,\ldots,m_{\ell-1},m'_\ell)$ will be $(t_1,t'_2,t_3,t'_4,\ldots,t_{\ell-1},t'_\ell)$, which can be easily computed by the adversary and hence adversary can always win the MAC forgery game. So the answers are ${\bf c}$ and ${\bf e}$.

- 4. Select the correct option(s):
 - a) A cyclic group has one or more generators
 - b) Group $(Z_5, +_5)$ has 5 generators
 - c) The order of the group (Z_p^*, \cdot_p) where p is prime, is a prime number
 - d) $46^{51} \mod 55 = 46$

The first statement is true, as each cyclic group definitely has one generator, but it could have more than 1 generator. The second statement is false, as $\mathbb{Z}_5 = \{0,\dots,4\}$, and all the elements except the identity element, namely 0, is a generator, so it has total 4 generators. The third statement is false, as the size of \mathbb{Z}_p^\star is p-1. In the fourth statement, the modulo $N=55=5\times11$ and so p=5 and q=11, which are the prime factors of 55. Now $\phi(55)=|\mathbb{Z}_{55}^\star|=(5-1)\cdot(11-1)=40$. Also GCD(46,55)=1 and hence $46\in\mathbb{Z}_{55}^\star$. This further implies that the order of the element 46 is 40, implying that $46^{40}\mod 55=1$, where 1 is the identity element of the group $(\mathbb{Z}_{55}^\star, \dots \mod 55)$. Now $46^{51}\mod 55=(46^{40}\mod 55)\cdot(46^{11}\mod 55)=46^{11}\mod 55$. We can write $46^{11}\mod 55$ as $(46^3\mod 55)\cdot(46^3\mod 55)\cdot(46^3\mod 55)\cdot(46^3\mod 55)$. Now $(46^3\mod 55)=41$ and so $(46^2\mod 55)=26$. So the overall answer is $(41\cdot41\cdot41\cdot26)\mod 55=46$. So the answers are \mathbf{a} and \mathbf{d} .

- 5. Consider a secure PRF $F_k: \{0,1\}^n \to \{0,1\}^n$, using which we construct a keyed function $F_k': \{0,1\}^{2n} \to \{0,1\}^{2n}$, where $F_k'(x_1||x_2) \stackrel{def}{=} F_k(x_1)||F_k(F_k(x_2))$ and $x = x_1||x_2$, where $x_1, x_2 \in \{0,1\}^n$.
 - a. Function F' is a secure PRF and when used directly leads to a CMA-secure MAC
 - b. Function F' is not a secure PRF
 - c. Function F' is a secure PRF but when used directly does not lead to a CMA-secure MAC
 - d. Function F' when used directly does not lead to a CMA-secure MAC

The construction F'_k is not a a secure PRF (and hence it does not lead to a secure MAC). An adversary upon learning the output of $F'_k(x_1||x_2)$ and $F'_k(x_1'||x_2')$ can always and easily compute the output of $F'_k(x_1||x_2')$, which it can do for a TRF only with a negligible probability. So the answers are **b** and **d**.