MAURIZIO FERRARI DACREMA, Politecnico di Milano, Italy MICHAEL BENIGNI, Politecnico di Milano, Italy NICOLA FERRO, Università degli Studi di Padova, Italy

This is the additional online material associated with our paper "Reproducibility and Artifact Consistency of the SIGIR 2022 Recommender Systems Papers Based on Message Passing". This additional material contains the full results of the experiments of which, due to space reasons and for the sake of improving readability, only a selection is reported in the paper. The results for each of the papers we analyze are reported in separate sections.

ACM Reference Format:

CONTENTS

Abst	tract	1
Cont	tents	1
1	Baselines	3
2	Less is More: Reweighting Important Spectral Graph Features for Recommendation	4
3	Are Graph Augmentations Necessary? Simple Graph Contrastive Learning for	
	Recommendation	11
4	Learning to Denoise Unreliable Interactions for Graph Collaborative Filtering	17
5	INMO: A Model-Agnostic and Scalable Module for Inductive Collaborative Filtering	20
6	Hypergraph Contrastive Collaborative Filtering	24
7	HAKG: Hierarchy-Aware Knowledge Gated Network for Recommendation	28
8	Graph Trend Filtering Networks for Recommendation	32
9	Knowledge Graph Contrastive Learning for Recommendation	37
10	LightGCN: Simplifying and Powering Graph Convolution Network for	
	Recommendation	42
11	Comparison of the Analyzed Methods of SIGIR 2022	48
Α	Baseline Hyperparameter Ranges	57

Authors' addresses: Maurizio Ferrari Dacrema, Politecnico di Milano, Italy, maurizio.ferrari@polimi.it; Michael Benigni, Politecnico di Milano, Italy, michael.benigni@polimi.it; Nicola Ferro, Università degli Studi di Padova, Italy, ferro@dei.unipd.it.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2025 Association for Computing Machinery.

XXXX-XXXX/2025/7-ART \$15.00

https://doi.org/10.1145/nnnnnnnnnnnnn

References 61

1 BASELINES

Here we list all the 21 collaborative and 5 content-based and hybrid baseline algorithms used in each experiment, most of them are the same used by Ferrari Dacrema et al. [6]:

Non-personalized.

- Random: non-personalized method recommending random items the user has not yet interacted with.
- **TopPop**: non-personalized method recommending to all users the most popular items the user has not yet interacted with.
- Global Effects: leverages global, item and user biases to recommend items.

Nearest-Neighbor Collaborative and Content-Based.

- **UserKNN**: user-based nearest-neighbor algorithm [15], with cosine similarity and shrinkage [1].
- **ItemKNN**: item-based nearest-neighbor algorithm [16], with cosine similarity and shrinkage [1].
- **UserKNN CBF**: UserKNN computed on the user features.
- **UserKNN CFCBF**: UserKNN computed on the concatenation of the user profile and the user features. A hyperparameter controls the weight of the content-based part.
- ItemKNN CBF <attribute>: ItemKNN computed on the item features.
- ItemKNN CFCBF <attribute>: ItemKNN computed on the concatenation of the item interactions and the item features. A hyperparameter controls the weight of the content-based part.

Graph-based.

- $\mathbf{P}^3\alpha$: graph based algorithms modeling random walk on the bipartite graph of users-items interactions.
- $\mathbb{RP}^3\beta$: graph-based method that uses a two-steps random walk from users to items and vice-versa, where transition probabilities are computed from the normalized ratings [12].
- **GF-CF**: a graph-based method that is based on a low-pass filter and has a closed form solution [17].

Item-Based Machine Learning.

- **EASE**^R: An "embarrassingly shallow" linear model with strong connections with autoencoders and a closed form solution [18].¹
- **SLIM**: item-based model that uses linear regression to compute the item similarity [11].
- **SLIM-BPR**: item-based model similar to SLIM that computes the item similarity optimizing the *Bayesian Personalized Ranking* (BPR) loss [14].
- **NegHOSLIM**: linear full-rank model similar to SLIM that includes higher-order interactions as input-features [19].
- NegHOSLIM (EN): linear full-rank model similar to NegHOSLIM that optimizes the Elastic-Net loss.²

Matrix Factorization.

• **MF-BPR**: matrix factorization method based on the *Bayesian Personalized Ranking* (BPR) loss [14].

¹EASE^R has a high memory requirements and often exceeds the 64GB RAM available on our server.

²Due to the large memory requirement of the original NegHOSLIM we trained this version by using an ElasticNet loss which reduces memory requirement but sacrifices some effectiveness.

- **MF-WARP**: matrix factorization method based on the *Weighted Approximate-Rank Pairwise* loss (WARP).
- **SVDpp**: matrix factorization method for rating prediction accounting for user biases [9].³
- **PureSVD**: Matrix factorization method based on the truncated SVD decomposition of the user-item interaction matrix [3].⁴
- NMF: matrix factorization method that decomposes ratings matrix into two non-negative matrices [2].⁵
- iALS: matrix factorization method for ranking tasks based on alternating least-squares [8].

Other Machine Learning.

- MultVAE: variational autoencoder that assumes a multinomial likelihood for user-item interactions [10].
- LightFM CF: factorization machine method that uses only collaborative data.
- **LightFM ItemHybrid <attribute>**: factorization machine method that uses a combination of collaborative and item features.
- LightFM UserHybrid <attribute>: factorization machine method that uses a combination of collaborative and user features.

Note that occasionally the results for **GF-CF**, **EASE**^R, **SLIM-BPR** and **NegHOSLIM** may be missing due to their memory requirements exceeding the 64GB available on our server.

2 LESS IS MORE: REWEIGHTING IMPORTANT SPECTRAL GRAPH FEATURES FOR RECOMMENDATION

Peng et al. [13] analyzes the spectral properties of Graph Convolutional Networks and observe that the frequencies (i.e., eigenvalues) that contribute the most to the recommendation accuracy are both the highest and lowest ones, with the intermediate ones being less important. This effect is attributed to the different semantics of the two, with higher frequencies representing differences between users while the lower ones representing the commonalities. The article proposes *Graph Denoising Encoder* (GDE) which acts as a band-pass filter selecting high and low frequencies while removing intermediate ones. The proposed method is claimed to be substantially faster compared to LightGCN. The original implementation is available on GitHub.⁷

2.1 Datasets

The evaluation is performed on the datasets described and processed as follows, their statistics are reported in Table 1. All existing interactions are made implicit and assigned a value of 1.

MovieLens: Is a movie recommendation dataset, the explicit ratings (1-5) are all transformed in implicit ratings of value 1.

CiteULike-a: Is a dataset collected from CiteULike, which is an online service providing users with a digital catalogue to save and share academic papers. If the user has saved the article in their library it will be associated to a rating of 1.

Pinterest: refers to the well known social network which allows users to save or pin an image to their board. If a user has pinned an image on the board it will be associated to a rating of 1. **Gowalla:** A dataset collected from a social network where users check-in locations they visited.

³Note that to adapt SVDpp for the task of top-k recommendation we sample during training a certain quota of interactions that did not occur and attribute them a rating of zero. The specific quota is a hyperparameter.

⁴We use a standard SVD decomposition method provided in the scikit-learn package for Python.

⁵We use a standard NMF decomposition method provided in the scikit-learn package for Python.

⁶We use the LightFM library, https://github.com/lyst/lightfm

⁷https://github.com/tanatosuu/GDE

Dataset	Interactions	Items	Users	Sparsity
CiteULike	210504	16980	5551	0.9978
Gowalla	1027370	40981	29858	0.9992
MovieLens1M	1000209	3952	6040	0.9581
MovieLens100k	100000	1682	943	0.9370
Pinterest	1000154	9836	37501	0.9973

Table 1. Dataset statistics for GDE.

2.2 Results

The hyperparameter values used in our experiments are reported in Table 2 and the results for all the datasets and baseline algorithms are reported in Table 3 (CiteULike), 4 (MovieLens1M), 5 (MovieLens100k), 6 (Pinterest), and 7 (Gowalla).

Hyperparameter	Described in	Value					
		All datasets	CiteULike	ML-1M	ML-100K	Pinterest	Gowalla
Embedding size	Paper	64	-	-	-	-	-
Regularization rate	Paper	0.01	-	-	-	-	-
Learning rate	Source code	0.03	0.02	7.5	2.0	0.85/0.12	0.03
Dropout rate	Source code	0.1	0.3	0.5	0.2	0.2	0.1
Epochs	Source code	400	200	90	50	>200	160
Batch size	Paper	256	-	-	-	-	-
β	Source code	-	5.0 <mark>a</mark>	4.0	4.0^{b}	4.0/5.0	5.0
Loss type	Source code	adaptive	adaptive	adaptive	bpr	adaptive	adaptive
Smooth ratio	Source code	0.1	0.3	0.05	0.2	0.2	0.1
Rough ratio	Source code	0.0	0.0	0.005	0.002	0.0	0.0
Feature type ^c	Source code	smoothed	smoothed	both	both	smoothed	smoothed

^aThe paper reports that the optimal value should be 4.5.

Table 2. Hyperparameter values for GDE.

^bThe paper reports that the optimal value should be 4.5.

^cIf the value is "smoothed" only the smooth features (low frequencies) are used, the value is "both" rough features (high frequencies) are used as well.

Table 3. Experimental results for the GDE method for the CiteULike dataset.

Random 0.0019 0.0010 0.0020 TopPop 0.0525 0.0446 0.0544 GlobalEffects 0.0019 0.0010 0.0017 UserKNN CF 0.1003 0.0552 0.1131 ItemKNN CF 0.0997 0.0545 0.1121 P³α 0.1032 0.0572 0.1156 RP³ββ 0.1028 0.0571 0.1151 GF-CF 0.0973 0.0608 0.1006 EASER 0.0981 0.0541 0.1099 SLIM BPR 0.0850 0.0499 0.0937 SLIM 0.1000 0.0553 0.1116 NegHOSLIM (EN) 0.0983 0.0541 0.1099 NegHOSLIM (EN) 0.0983 0.0541 0.1104 MF-BPR 0.0316 0.0257 0.0371 MF-WARP 0.0197 0.0117 0.0220 SVDpp 0.0566 0.0439 0.0599 PureSVD 0.0607 0.0302 0.0670 NMF 0.0143		1 0 0 0				
Random 0.0019 0.0010 0.0020 TopPop 0.0525 0.0446 0.0544 GlobalEffects 0.0019 0.0010 0.0017 UserKNN CF 0.1003 0.0552 0.1131 ItemKNN CF 0.0997 0.0545 0.1121 P³α 0.1032 0.0572 0.1156 RP³β 0.1028 0.0571 0.1151 GF-CF 0.0973 0.0608 0.1006 EASE ^R 0.0981 0.0541 0.1099 SLIM BPR 0.0850 0.0499 0.0937 SLIM 0.1000 0.0553 0.1116 NegHOSLIM (EN) 0.0980 0.0540 0.1099 NegHOSLIM (EN) 0.0983 0.0541 0.1104 MF-BPR 0.0316 0.0257 0.0371 MF-WARP 0.0197 0.0117 0.0220 SVDpp 0.0566 0.0439 0.0599 PureSVD 0.0607 0.0302 0.0670 NMF 0.0505						
TopPop 0.0525 0.0446 0.0544 GlobalEffects 0.0019 0.0010 0.0017 UserKNN CF 0.1003 0.0552 0.1131 ItemKNN CF 0.0997 0.0545 0.1121 $P^3 α$ 0.1032 0.0572 0.1156 RP $^3 β$ 0.1028 0.0571 0.1151 GF-CF 0.0973 0.0608 0.1006 EASE ^R 0.0981 0.0541 0.1099 SLIM BPR 0.0850 0.0499 0.0937 SLIM 0.1000 0.0553 0.1116 NegHOSLIM (EN) 0.0983 0.0541 0.1099 NegHOSLIM (EN) 0.0983 0.0541 0.1104 MF-BPR 0.0316 0.0257 0.0371 MF-WARP 0.0197 0.0117 0.0220 SVDpp 0.0666 0.0439 0.0599 PureSVD 0.0607 0.0302 0.0670 NMF 0.0505 0.0246 0.0551 iALS 0.1143		Recall (GDE)	Recall	NDCG		
Global Effects 0.0019 0.0010 0.0017 User KNN CF 0.1003 0.0552 0.1131 Item KNN CF 0.0997 0.0545 0.1121 $P^3 α$ 0.1032 0.0572 0.1156 RP $^3 β$ 0.1028 0.0571 0.1151 GF-CF 0.0973 0.0608 0.1006 EASE ^R 0.0981 0.0541 0.1099 SLIM BPR 0.0850 0.0499 0.0937 SLIM 0.1000 0.0553 0.1116 NegHOSLIM (EN) 0.0980 0.0540 0.1099 NegHOSLIM (EN) 0.0983 0.0541 0.1104 MF-BPR 0.0316 0.0257 0.0371 MF-WARP 0.0197 0.0117 0.0220 SVDpp 0.0666 0.0439 0.0599 PureSVD 0.0607 0.0302 0.0670 NMF 0.0505 0.0246 0.0551 iALS 0.1143 0.0667 0.1240 LightFM CF 0.117	Random	0.0019	0.0010	0.0020		
UserKNN CF 0.1003 0.0552 0.1131 ItemKNN CF 0.0997 0.0545 0.1121 $P^3\alpha$ 0.1032 0.0572 0.1156 RP $^3\beta$ 0.1028 0.0571 0.1151 GF-CF 0.0973 0.0608 0.1006 EASE ^R 0.0981 0.0541 0.1099 SLIM BPR 0.0850 0.0499 0.0937 SLIM 0.1000 0.0553 0.1116 NegHOSLIM (EN) 0.0980 0.0540 0.1099 NegHOSLIM (EN) 0.0983 0.0541 0.1104 MF-BPR 0.0316 0.0257 0.0371 MF-WARP 0.0197 0.0117 0.0220 SVDpp 0.0566 0.0439 0.0599 PureSVD 0.0607 0.0302 0.0670 NMF 0.0505 0.0246 0.0551 iALS 0.1143 0.0667 0.1240 LightFM CF 0.1170 0.0760 0.1272 MultVAE 0.1306	TopPop	0.0525	0.0446	0.0544		
ItemKNN CF 0.0997 0.0545 0.1121 $P^3\alpha$ 0.1032 0.0572 0.1156 RP³β 0.1028 0.0571 0.1151 GF-CF 0.0973 0.0608 0.1006 EASER 0.0981 0.0541 0.1099 SLIM BPR 0.0850 0.0499 0.0937 SLIM 0.1000 0.0553 0.1116 NegHOSLIM (EN) 0.0980 0.0540 0.1099 NegHOSLIM (EN) 0.0983 0.0541 0.1104 MF-BPR 0.0316 0.0257 0.0371 MF-WARP 0.0197 0.0117 0.0220 SVDpp 0.0566 0.0439 0.0599 PureSVD 0.0607 0.0302 0.0670 NMF 0.0505 0.0246 0.0551 iALS 0.1143 0.0667 0.1240 LightFM CF 0.1170 0.0760 0.1272 MultVAE 0.1306 0.0823 0.1402 GDE paper 0.0570 <t< td=""><td>GlobalEffects</td><td>0.0019</td><td>0.0010</td><td>0.0017</td></t<>	GlobalEffects	0.0019	0.0010	0.0017		
$P^3 α$ 0.1032 0.0572 0.1156 $RP^3 β$ 0.1028 0.0571 0.1151 GF - CF 0.0973 0.0608 0.1006 EASE ^R 0.0981 0.0541 0.1099 SLIM BPR 0.0850 0.0499 0.0937 SLIM 0.1000 0.0553 0.1116 NegHOSLIM (EN) 0.0980 0.0540 0.1099 NegHOSLIM (EN) 0.0983 0.0541 0.1104 MF-BPR 0.0316 0.0257 0.0371 MF-WARP 0.0197 0.0117 0.0220 SVDpp 0.0607 0.0302 0.0670 NMF 0.0505 0.0246 0.0551 iALS 0.1143 0.0667 0.1240 LightFM CF 0.1170 0.0760 0.1272 MultVAE 0.1306 0.0823 0.1402 GDE paper 0.0570 0.0360 0.0551 GDE provided number of epochs 0.0015 0.0008 0.0014	UserKNN CF	0.1003	0.0552	0.1131		
RP³β 0.1028 0.0571 0.1151 GF-CF 0.0973 0.0608 0.1006 EASER 0.0981 0.0541 0.1099 SLIM BPR 0.0850 0.0499 0.0937 SLIM 0.1000 0.0553 0.1116 NegHOSLIM 0.0980 0.0540 0.1099 NegHOSLIM (EN) 0.0983 0.0541 0.1104 MF-BPR 0.0316 0.0257 0.0371 MF-WARP 0.0197 0.0117 0.0220 SVDpp 0.0566 0.0439 0.0599 PureSVD 0.0607 0.0302 0.0670 NMF 0.0505 0.0246 0.0551 iALS 0.1143 0.0667 0.1240 LightFM CF 0.1170 0.0760 0.1272 MultVAE 0.1306 0.0823 0.1402 GDE paper 0.0570 0.0360 0.0551 GDE provided number of epochs 0.0015 0.0008 0.0014	ItemKNN CF	0.0997	0.0545	0.1121		
GF-CF 0.0973 0.0608 0.1006 EASER 0.0981 0.0541 0.1099 SLIM BPR 0.0850 0.0499 0.0937 SLIM 0.1000 0.0553 0.1116 NegHOSLIM 0.0980 0.0540 0.1099 NegHOSLIM (EN) 0.0983 0.0541 0.1104 MF-BPR 0.0316 0.0257 0.0371 MF-WARP 0.0197 0.0117 0.0220 SVDpp 0.0566 0.0439 0.0599 PureSVD 0.0607 0.0302 0.0670 NMF 0.0505 0.0246 0.0551 iALS 0.1143 0.0667 0.1240 LightFM CF 0.1170 0.0760 0.1272 MultVAE 0.1306 0.0823 0.1402 GDE paper 0.0270 0.0360 0.0551 GDE provided number of epochs 0.0015 0.0008 0.0014	$P^3\alpha$	0.1032	0.0572	0.1156		
EASE ^R 0.0981 0.0541 0.1099 SLIM BPR 0.0850 0.0499 0.0937 SLIM 0.1000 0.0553 0.1116 NegHOSLIM 0.0980 0.0540 0.1099 NegHOSLIM (EN) 0.0983 0.0541 0.1104 MF-BPR 0.0316 0.0257 0.0371 MF-WARP 0.0197 0.0117 0.0220 SVDpp 0.0566 0.0439 0.0599 PureSVD 0.0607 0.0302 0.0670 NMF 0.0505 0.0246 0.0551 iALS 0.1143 0.0667 0.1240 LightFM CF 0.1170 0.0760 0.1272 MultVAE 0.1306 0.0823 0.1402 GDE paper 0.1224 - 0.1339 GDE provided number of epochs 0.0015 0.0008 0.0014	$RP^3\beta$	0.1028	0.0571	0.1151		
SLIM BPR 0.0850 0.0499 0.0937 SLIM 0.1000 0.0553 0.1116 NegHOSLIM 0.0980 0.0540 0.1099 NegHOSLIM (EN) 0.0983 0.0541 0.1104 MF-BPR 0.0316 0.0257 0.0371 MF-WARP 0.0197 0.0117 0.0220 SVDpp 0.0566 0.0439 0.0599 PureSVD 0.0607 0.0302 0.0670 NMF 0.0505 0.0246 0.0551 iALS 0.1143 0.0667 0.1240 LightFM CF 0.1170 0.0760 0.1272 MultVAE 0.1306 0.0823 0.1402 GDE paper 0.1224 - 0.1339 GDE our early-stopping 0.0570 0.0360 0.0551 GDE provided number of epochs 0.0015 0.0008 0.0014	GF-CF	0.0973	0.0608	0.1006		
SLIM 0.1000 0.0553 0.1116 NegHOSLIM 0.0980 0.0540 0.1099 NegHOSLIM (EN) 0.0983 0.0541 0.1104 MF-BPR 0.0316 0.0257 0.0371 MF-WARP 0.0197 0.0117 0.0220 SVDpp 0.0566 0.0439 0.0599 PureSVD 0.0607 0.0302 0.0670 NMF 0.0505 0.0246 0.0551 iALS 0.1143 0.0667 0.1240 LightFM CF 0.1170 0.0760 0.1272 MultVAE 0.1306 0.0823 0.1402 GDE paper 0.1224 - 0.1339 GDE our early-stopping 0.0570 0.0360 0.0551 GDE provided number of epochs 0.0015 0.0008 0.0014	EASE ^R	0.0981	0.0541	0.1099		
NegHOSLIM 0.0980 0.0540 0.1099 NegHOSLIM (EN) 0.0983 0.0541 0.1104 MF-BPR 0.0316 0.0257 0.0371 MF-WARP 0.0197 0.0117 0.0220 SVDpp 0.0566 0.0439 0.0599 PureSVD 0.0607 0.0302 0.0670 NMF 0.0505 0.0246 0.0551 iALS 0.1143 0.0667 0.1240 LightFM CF 0.1170 0.0760 0.1272 MultVAE 0.1306 0.0823 0.1402 GDE paper 0.1224 - 0.1339 GDE our early-stopping 0.0570 0.0360 0.0551 GDE provided number of epochs 0.0015 0.0008 0.0014	SLIM BPR	0.0850	0.0499	0.0937		
NegHOSLIM (EN) 0.0983 0.0541 0.1104 MF-BPR 0.0316 0.0257 0.0371 MF-WARP 0.0197 0.0117 0.0220 SVDpp 0.0566 0.0439 0.0599 PureSVD 0.0607 0.0302 0.0670 NMF 0.0505 0.0246 0.0551 iALS 0.1143 0.0667 0.1240 LightFM CF 0.1170 0.0760 0.1272 MultVAE 0.1306 0.0823 0.1402 GDE paper 0.1224 - 0.1339 GDE our early-stopping 0.0570 0.0360 0.0551 GDE provided number of epochs 0.0015 0.0008 0.0014	SLIM	0.1000	0.0553	0.1116		
MF-BPR 0.0316 0.0257 0.0371 MF-WARP 0.0197 0.0117 0.0220 SVDpp 0.0566 0.0439 0.0599 PureSVD 0.0607 0.0302 0.0670 NMF 0.0505 0.0246 0.0551 iALS 0.1143 0.0667 0.1240 LightFM CF 0.1170 0.0760 0.1272 MultVAE 0.1306 0.0823 0.1402 GDE paper 0.1224 - 0.1339 GDE our early-stopping 0.0570 0.0360 0.0551 GDE provided number of epochs 0.0015 0.0008 0.0014	NegHOSLIM	0.0980	0.0540	0.1099		
MF-WARP 0.0197 0.0117 0.0220 SVDpp 0.0566 0.0439 0.0599 PureSVD 0.0607 0.0302 0.0670 NMF 0.0505 0.0246 0.0551 iALS 0.1143 0.0667 0.1240 LightFM CF 0.1170 0.0760 0.1272 MultVAE 0.1306 0.0823 0.1402 GDE paper 0.1224 - 0.1339 GDE our early-stopping 0.0570 0.0360 0.0551 GDE provided number of epochs 0.0015 0.0008 0.0014	NegHOSLIM (EN)	0.0983	0.0541	0.1104		
SVDpp 0.0566 0.0439 0.0599 PureSVD 0.0607 0.0302 0.0670 NMF 0.0505 0.0246 0.0551 iALS 0.1143 0.0667 0.1240 LightFM CF 0.1170 0.0760 0.1272 MultVAE 0.1306 0.0823 0.1402 GDE paper 0.1224 - 0.1339 GDE our early-stopping 0.0570 0.0360 0.0551 GDE provided number of epochs 0.0015 0.0008 0.0014	MF-BPR	0.0316	0.0257	0.0371		
PureSVD 0.0607 0.0302 0.0670 NMF 0.0505 0.0246 0.0551 iALS 0.1143 0.0667 0.1240 LightFM CF 0.1170 0.0760 0.1272 MultVAE 0.1306 0.0823 0.1402 GDE paper 0.1224 - 0.1339 GDE our early-stopping 0.0570 0.0360 0.0551 GDE provided number of epochs 0.0015 0.0008 0.0014	MF-WARP	0.0197	0.0117	0.0220		
NMF 0.0505 0.0246 0.0551 iALS 0.1143 0.0667 0.1240 LightFM CF 0.1170 0.0760 0.1272 MultVAE 0.1306 0.0823 0.1402 GDE paper 0.1224 - 0.1339 GDE our early-stopping 0.0570 0.0360 0.0551 GDE provided number of epochs 0.0015 0.0008 0.0014	SVDpp	0.0566	0.0439	0.0599		
iALS 0.1143 0.0667 0.1240 LightFM CF 0.1170 0.0760 0.1272 MultVAE 0.1306 0.0823 0.1402 GDE paper 0.1224 - 0.1339 GDE our early-stopping GDE provided number of epochs 0.0570 0.0360 0.0551 GDE paper 0.0015 0.0008 0.0014	PureSVD	0.0607	0.0302	0.0670		
LightFM CF 0.1170 0.0760 0.1272 MultVAE 0.1306 0.0823 0.1402 GDE paper 0.1224 - 0.1339 GDE our early-stopping GDE provided number of epochs 0.0570 0.0360 0.0551 GDE provided number of epochs 0.0015 0.0008 0.0014	NMF	0.0505	0.0246	0.0551		
MultVAE 0.1306 0.0823 0.1402 GDE paper 0.1224 - 0.1339 GDE our early-stopping GDE provided number of epochs 0.0570 0.0360 0.0551 GDE provided number of epochs 0.0015 0.0008 0.0014	iALS	0.1143	0.0667	0.1240		
GDE paper 0.1224 - 0.1339 GDE our early-stopping GDE provided number of epochs 0.0570 0.0360 0.0551 GDE provided number of epochs 0.0015 0.0008 0.0014	LightFM CF	0.1170	0.0760	0.1272		
GDE our early-stopping 0.0570 0.0360 0.0551 GDE provided number of epochs 0.0015 0.0008 0.0014	MultVAE	0.1306	0.0823	$\underline{0.1402}$		
GDE provided number of epochs 0.0015 0.0008 0.0014	GDE paper	0.1224	-	0.1339		
*	GDE our early-stopping	0.0570	0.0360	0.0551		
GDE our hyperparameters 0.0991 0.0594 0.1086	GDE provided number of epochs	0.0015	0.0008	0.0014		
	GDE our hyperparameters	0.0991	0.0594	0.1086		

Table 4. Experimental results for the GDE method for the MovieLens1M dataset.

	Cutoff 20				
	Recall (normalized)	NDCG			
Random	0.0347	0.0053	0.0346		
ТорРор	0.3838	0.0863	0.4062		
GlobalEffects	0.0376	0.0065	0.0399		
UserKNN CF	0.4876	0.1172	0.5184		
ItemKNN CF	0.4493	0.1067	0.4830		
$P^3\alpha$	0.5033	0.1223	0.5326		
$RP^3\beta$	0.5072	0.1230	0.5361		
GF-CF	0.5247	0.1290	0.5537		
EASE ^R	0.4780	0.1105	0.5062		
SLIM BPR	0.4764	0.1156	0.5087		
SLIM	0.4644	0.1085	0.4950		
NegHOSLIM	0.4693	0.1095	0.4996		
NegHOSLIM (EN)	0.4612	0.1080	0.4930		
MF-BPR	0.2848	0.0602	0.2918		
MF-WARP	0.3586	0.0795	0.3756		
SVDpp	0.4395	0.0992	0.4534		
PureSVD	0.4753	0.1090	0.5029		
NMF	0.4385	0.0969	0.4605		
iALS	0.5147	0.1237	0.5415		
LightFM CF	0.4856	0.1148	0.5069		
MultVAE	0.5305	0.1330	0.5587		
GDE paper	0.5423		0.5715		
GDE our early-stopping	0.5357	0.1344	0.5658		
GDE provided number of epochs	0.5356	0.1349	0.5636		
GDE our hyperparameters	0.5291	0.1294	0.5564		

Table 5. Experimental results for the GDE method for the MovieLens100k dataset.

	Cutoff 20				
	Recall (normalized) Recall ND				
Random	0.0511	0.0122	0.0522		
TopPop	0.4062	0.1301	0.4292		
GlobalEffects	0.0255	0.0042	0.0238		
UserKNN CF	0.4912	0.1734	0.5281		
ItemKNN CF	0.4289	0.1570	0.4644		
$P^3\alpha$	0.5002	0.1788	0.5348		
$RP^3\beta$	0.4820	0.1667	0.5207		
GF-CF	0.4421	0.1495	0.4747		
EASE ^R	0.4567	0.1518	0.4972		
SLIM BPR	0.5011	0.1791	0.5346		
SLIM	0.4689	0.1587	0.5047		
NegHOSLIM	0.4505	0.1500	0.4904		
NegHOSLIM (EN)	0.4654	0.1573	0.4979		
MF-BPR	0.3905	0.1308	0.4141		
MF-WARP	0.3646	0.1216	0.3867		
SVDpp	0.4111	0.1431	0.4329		
PureSVD	0.4583	0.1597	0.4920		
NMF	0.4061	0.1301	0.4292		
iALS	0.4194	0.1558	0.4370		
LightFM CF	0.4685	0.1651	0.5037		
MultVAE	0.5054	0.1805	0.5393		
GDE paper	0.5400	=	0.5731		
GDE our early-stopping	0.5196	0.1902	0.5515		
GDE provided number of epochs	0.5293	0.1930	0.5585		
GDE our hyperparameters	0.4229	0.1432	0.4516		

Table 6. Experimental results for the GDE method for the Pinterest dataset.

	Cutoff 20				
	Recall (normalized) Recall ND				
Random	0.0024	0.0020	0.0023		
TopPop	0.0174	0.0144	0.0181		
GlobalEffects	0.0028	0.0023	0.0030		
UserKNN CF	0.0879	0.0758	0.0948		
ItemKNN CF	0.0877	0.0755	0.0944		
$P^3\alpha$	0.0885	0.0762	0.0954		
$RP^3\beta$	0.0872	0.0749	0.0941		
GF-CF	0.1007	0.0874	0.1081		
EASE ^R	0.0831	0.0713	0.0898		
SLIM BPR	0.0827	0.0712	0.0889		
SLIM	0.0852	0.0732	0.0919		
NegHOSLIM	0.0799	0.0691	0.0857		
NegHOSLIM (EN)	0.0851	0.0732	0.0917		
MF-BPR	0.0654	0.0561	0.0699		
MF-WARP	0.0619	0.0531	0.0647		
SVDpp	0.0878	0.0761	0.0932		
PureSVD	0.0706	0.0612	0.0762		
NMF	0.0700	0.0608	0.0744		
iALS	0.1067	0.0925	0.1146		
LightFM CF	0.1013	0.0877	0.1084		
MultVAE	0.1063	0.0920	0.1143		
GDE paper	0.1147	-	0.1240		
GDE our early-stopping	0.0026	0.0022	0.0024		
GDE provided number of epochs	0.0026	0.0022	0.0024		
GDE our hyperparameters	0.1082	0.0940	0.1171		

Table 7. Experimental results for the GDE method for the Gowalla dataset.

	Cutoff 20			
	Recall (GDE)	Recall	NDCG	
Random	0.0008	0.0005	0.0008	
TopPop	0.0421	0.0298	0.0451	
GlobalEffects	0.0005	0.0004	0.0005	
UserKNN CF	0.1128	0.0748	0.1304	
ItemKNN CF	0.1119	0.0741	0.1288	
$P^3\alpha$	0.1153	0.0754	0.1326	
$RP^3\beta$	0.1116	0.0737	0.1285	
GF-CF	-	-	-	
EASE ^R	-	-	-	
SLIM BPR	0.0958	0.0623	0.1089	
SLIM	0.1057	0.0692	0.1219	
NegHOSLIM	-	-	-	
NegHOSLIM (EN)	0.1053	0.0690	0.1214	
MF-BPR	0.0299	0.0202	0.0319	
MF-WARP	0.0347	0.0201	0.0375	
SVDpp	0.0945	0.0636	0.1016	
PureSVD	0.0682	0.0445	0.0780	
NMF	0.0568	0.0373	0.0655	
iALS	0.1361	0.0963	0.1531	
LightFM CF	0.1346	0.0949	0.1496	
MultVAE	0.1362	0.0962	0.1540	
GDE paper	0.1449	-	0.1632	
GDE our early-stopping	0.0959	0.0704	0.1077	
GDE provided number of epochs	0.1433	0.1036	0.1627	
GDE our hyperparameters	0.1282	0.0910	0.1476	

3 ARE GRAPH AUGMENTATIONS NECESSARY? SIMPLE GRAPH CONTRASTIVE LEARNING FOR RECOMMENDATION

Yu et al. [26] propose Simple Graph Contrastive Learning (SimGCL). The paper claims that in constrastive learning based recommendations the main contribution to the recommendation quality is not the graph augmentation (e.g., random edge dropout) but rather the constrastive learning loss function (i.e., InfoNCE). The effect of the InfoNCE loss is to increase the separation between positive and negative samples for each user. SimGCL uses random perturbations of the embeddings instead of graph augmentations. In practice, SimCL is a LightGCM [7] with random embedding perturbations, a regularizing loss and the aggregated user and item embeddings that start from layer 1, therefore excluding layer zero (i.e., $E^{(0)}$). The original implementation is available on GitHub.

3.1 Datasets

The evaluation is performed on the datasets described and processed as follows, their statistics are reported in Table 8.

DoubanBook: Is a dataset of relations for the Douban Book service, with ratings in the range 1-5. Ratings greater or equal to 4 are transformed in implicit interactions with value 1, the other ratings are removed.

Yelp2018: Is a business reviews dataset. The split is the same used in LightGCN [7], see Section 10.

Amazon-Book: Is a dataset of book purchases on Amazon. The split is the same used in LightGCN [7], see Section 10.

Dataset	Interactions	Items	Users	Sparsity
Amazon-Book	2984108	91599	52643	0.9994
DoubanBook	598420	22348	13025	0.9979
Yelp2018	1561406	38048	31668	0.9987

Table 8. Dataset statistics for SimGCL.

3.2 Results

The hyperparameter values used in our experiments are reported in Table 9 and the results for all the datasets and baseline algorithms are reported in Table 10 (Amazon-Book Original Split), 11 (Amazon-Book Our Split), 12 (DoubanBook), 13 (Yelp2018 Original Split), and 14 (Yelp2018 Our Split).

⁸https://github.com/Coder-Yu/QRec we use the pytorch implementation available from the authors here https://github.com/Coder-Yu/SELFRec

Hyperparameter	Described in				
		All datasets	DoubanBook	Yelp2018	Amazon-Book
λ (contrastive loss weight)	Paper ^a	-	0.2	0.5	2
au (contrastive loss temperature)	Paper	0.2	-	-	-
ϵ (noise magnitude)	Paper ^b	0.1	-	-	-
Batch size	Paper	2048	-	-	-
Number of layers	Paper ^c	3	-	-	-
Learning rate	Paper	10^{-3}	-	-	-
Adaptive gradient	Paper	Adam	-	-	-
Embedding size	Paper	64	-	-	-
L_2 regularization	Paper	10^{-4}	-	-	-
Epochs	Paper ^d	-	25	11	10

^aFrom a section discussing hyperparameter sensitivity.

Table 9. Hyperparameter values for SimGCL.

Table 10. Experimental results for the SimGCL method for the Amazon-Book Original Split dataset.

	Cutoff 20		
	Recall	NDCG	
Random	0.0002	0.0002	
TopPop	0.0051	0.0044	
GlobalEffects	0.0004	0.0003	
UserKNN CF	0.0616	0.0518	
ItemKNN CF	0.0741	0.0617	
$P^3\alpha$	0.0690	0.0550	
$RP^3\beta$	0.0750	0.0608	
GF-CF	0.0710	0.0585	
EASE ^R	-	-	
SLIM BPR	-	-	
SLIM	0.0756	0.0600	
NegHOSLIM	-	-	
NegHOSLIM (EN)	0.0737	0.0607	
MF-BPR	0.0281	0.0220	
MF-WARP	0.0276	0.0217	
SVDpp	0.0398	0.0301	
PureSVD	0.0403	0.0335	
NMF	0.0351	0.0296	
iALS	0.0426	0.0342	
LightFM CF	0.0452	0.0341	
MultVAE	0.0593	0.0467	
SimGCL paper	0.0515	0.0414	
SimGCL our early-stopping	0.0507	0.0402	
SimGCL provided number of epochs	0.0506	0.0402	

^bFrom a section discussing hyperparameter sensitivity.

^cFrom a table comparing the result for different number of layers.

 $[^]d$ From a section that discusses a plot showing when the models converge with Recall and BPR loss.

Table 11. Experimental results for the SimGCL method for the Amazon Book Our Split dataset.

	Cutoff 20			
	Recall	NDCG		
Random	0.0002	0.0002		
TopPop	0.0093	0.0079		
GlobalEffects	0.0002	0.0002		
UserKNN CF	0.1381	0.1333		
ItemKNN CF	0.1707	0.1652		
$P^3\alpha$	0.1746	0.1658		
$RP^3\beta$	0.1687	0.1629		
GF-CF	0.1530	0.1443		
$EASE^R$	-	-		
SLIM BPR	-	-		
SLIM	0.1871	0.1816		
NegHOSLIM	-	-		
NegHOSLIM (EN)	0.1865	0.1806		
MF-BPR	0.0603	0.0518		
MF-WARP	0.0623	0.0543		
SVDpp	0.0910	0.0791		
PureSVD	0.0870	0.0844		
NMF	0.0682	0.0656		
iALS	0.1166	0.1012		
LightFM CF	0.0784	0.0668		
MultVAE	0.1442	0.1325		
SimGCL paper	0.1157	0.1043		
SimGCL provided number of epochs	0.1160	0.1047		

Table 12. Experimental results for the SimGCL method for the DoubanBook dataset.

		m 00
		off 20
	Recall	NDCG
Random	0.0006	0.0005
TopPop	0.0722	0.0582
GlobalEffects	0.0001	0.0001
UserKNN CF	0.1686	0.1575
ItemKNN CF	0.1972	0.1908
$P^3\alpha$	0.2089	0.1981
$RP^3\beta$	0.2033	0.1841
GF-CF	0.1788	0.1604
EASE ^R	0.2094	0.1994
SLIM BPR	0.1785	0.1667
SLIM	0.2250	0.2226
NegHOSLIM	-	-
NegHOSLIM (EN)	0.1971	0.1833
MF-BPR	0.0916	0.0774
MF-WARP	0.0825	0.0685
SVDpp	0.1620	0.1336
PureSVD	0.1420	0.1388
NMF	0.1313	0.1313
iALS	0.1833	0.1668
LightFM CF	0.1699	0.1385
MultVAE	0.1885	0.1694
SimGCL paper	0.1772	0.1583
SimGCL our early-stopping	0.1685	0.1492
SimGCL provided number of epochs	0.1629	0.1445

Table 13. Experimental results for the SimGCL method for the Yelp2018 Original Split dataset.

Random 0.0005 0.0004 TopPop 0.0124 0.0101 GlobalEffects 0.0006 0.0004 UserKNN CF 0.0638 0.0534 ItemKNN CF 0.0643 0.0536 P³α 0.0661 0.0548 RP³β 0.0670 0.0558 GF-CF 0.0708 0.0583 EASER - - SLIM BPR - - SLIM 0.0649 0.0543 NegHOSLIM (EN) 0.0622 0.0521 MF-BPR 0.0392 0.0322 MF-WARP 0.0386 0.0317 SVDpp 0.0575 0.0471 PureSVD 0.0532 0.0446 NMF 0.0492 0.0498 iALS 0.0652 0.0541 LightFM CF 0.0597 0.0485 MultVAE 0.0731 0.0602 SimGCL paper 0.0716 0.0592 SimGCL provided number of epochs 0.0719 0.0594		Cutoff 20	
TopPop GlobalEffects 0.0124 0.0006 0.0101 0.0004 UserKNN CF ItemKNN CF P³α 0.0643 0.0536 0.0536 0.0536 P³α 0.0661 0.0548 0.0548 0.0583 GF-CF 0.0708 0.0588 0.0583 EASER SLIM BPR - - SLIM BPR - - SLIM NegHOSLIM (EN) 0.0649 0.0543 0.0543 0.0521 MF-BPR 0.0392 0.0322 0.0521 0.0322 MF-WARP 0.0386 0.0317 0.0317 SVDpp SVDpp 0.0575 0.0471 0.0446 0.0492 0.0446 0.0486 NMF 0.0492 0.0408 0.0541 0.0602 0.0541 0.0602 SimGCL paper 0.0721 0.0601 SimGCL our early-stopping 0.0716 0.0592		Recall	NDCG
GlobalEffects 0.0006 0.0004 UserKNN CF 0.0638 0.0534 ItemKNN CF 0.0643 0.0536 P³α 0.0661 0.0548 RP³β 0.0670 0.0558 GF-CF 0.0708 0.0583 EASER - - SLIM BPR - - SLIM 0.0649 0.0543 NegHOSLIM (EN) 0.0622 0.0521 MF-BPR 0.0392 0.0322 MF-WARP 0.0386 0.0317 SVDpp 0.0575 0.0471 PureSVD 0.0532 0.0446 NMF 0.0492 0.0498 iALS 0.0652 0.0541 LightFM CF 0.0597 0.0485 MultVAE 0.0731 0.0602 SimGCL paper 0.0721 0.0501	Random	0.0005	0.0004
UserKNN CF 0.0638 0.0534 ItemKNN CF 0.0643 0.0536 P³α 0.0661 0.0548 RP³β 0.0670 0.0558 GF-CF 0.0708 0.0583 EASER - - SLIM BPR - - SLIM 0.0649 0.0543 NegHOSLIM (EN) 0.0622 0.0521 MF-BPR 0.0392 0.0322 MF-WARP 0.0386 0.0317 SVDpp 0.0575 0.0471 PureSVD 0.0532 0.0446 NMF 0.0492 0.0498 iALS 0.0652 0.0541 LightFM CF 0.0597 0.0485 MultVAE 0.0731 0.0602 SimGCL paper 0.0721 0.0501	TopPop	0.0124	0.0101
ItemKNN CF 0.0643 0.0536 $P^3α$ 0.0661 0.0548 $RP^3β$ 0.0670 0.0558 GF-CF 0.0708 0.0583 EASE ^R - - SLIM BPR - - SLIM 0.0649 0.0543 NegHOSLIM (EN) 0.0622 0.0521 MF-BPR 0.0392 0.0322 MF-WARP 0.0386 0.0317 SVDpp 0.0575 0.0471 PureSVD 0.0532 0.0446 NMF 0.0492 0.0498 iALS 0.0652 0.0541 LightFM CF 0.0597 0.0485 MultVAE 0.0731 0.0602 SimGCL paper 0.0721 0.0501	GlobalEffects	0.0006	0.0004
$P^3α$ 0.0661 0.0548 $RP^3β$ 0.0670 0.0558 GF - CF 0.0708 0.0583 EASE ^R - - SLIM BPR - - SLIM (Mellow) 0.0649 0.0543 NegHOSLIM (EN) 0.0622 0.0521 MF-BPR 0.0392 0.0322 MF-WARP 0.0386 0.0317 SVDpp 0.0575 0.0471 PureSVD 0.0532 0.0446 NMF 0.0492 0.0498 iALS 0.0652 0.0541 LightFM CF 0.0597 0.0485 MultVAE 0.0731 0.0602 SimGCL paper 0.0721 0.0501 SimGCL our early-stopping 0.0716 0.0592	UserKNN CF	0.0638	0.0534
RP³β 0.0670 0.0558 GF-CF 0.0708 0.0583 EASER - - SLIM BPR - - SLIM 0.0649 0.0543 NegHOSLIM - - NegHOSLIM (EN) 0.0622 0.0521 MF-BPR 0.0392 0.0322 MF-WARP 0.0366 0.0317 SVDpp 0.0575 0.0471 PureSVD 0.0532 0.0446 NMF 0.0492 0.0498 iALS 0.0652 0.0541 LightFM CF 0.0597 0.0485 MultVAE 0.0731 0.0602 SimGCL paper 0.0721 0.0501 SimGCL our early-stopping 0.0716 0.0592	ItemKNN CF	0.0643	0.0536
GF-CF 0.0708 0.0583 EASE ^R - - SLIM BPR - - SLIM 0.0649 0.0543 NegHOSLIM - - NegHOSLIM (EN) 0.0622 0.0521 MF-BPR 0.0392 0.0322 MF-WARP 0.0386 0.0317 SVDpp 0.0575 0.0471 PureSVD 0.0532 0.0446 NMF 0.0492 0.0498 iALS 0.0652 0.0541 LightFM CF 0.0597 0.0485 MultVAE 0.0731 0.0602 SimGCL paper 0.0721 0.0501 SimGCL our early-stopping 0.0716 0.0592	$P^3\alpha$	0.0661	0.0548
EASE ^R - - SLIM BPR - - SLIM 0.0649 0.0543 NegHOSLIM - - NegHOSLIM (EN) 0.0622 0.0521 MF-BPR 0.0392 0.0322 MF-WARP 0.0386 0.0317 SVDpp 0.0575 0.0471 PureSVD 0.0532 0.0446 NMF 0.0492 0.0408 iALS 0.0652 0.0541 LightFM CF 0.0597 0.0485 MultVAE 0.0731 0.0602 SimGCL paper 0.0721 0.0601 SimGCL our early-stopping 0.0716 0.0592	$RP^3\beta$	0.0670	0.0558
SLIM BPR - - SLIM 0.0649 0.0543 NegHOSLIM - - NegHOSLIM (EN) 0.0622 0.0521 MF-BPR 0.0392 0.0322 MF-WARP 0.0386 0.0317 SVDpp 0.0575 0.0471 PureSVD 0.0532 0.0446 NMF 0.0492 0.0408 iALS 0.0652 0.0541 LightFM CF 0.0597 0.0485 MultVAE 0.0731 0.0602 SimGCL paper 0.0721 0.0601 SimGCL our early-stopping 0.0716 0.0592	GF-CF	0.0708	0.0583
SLIM 0.0649 0.0543 NegHOSLIM - - NegHOSLIM (EN) 0.0622 0.0521 MF-BPR 0.0392 0.0322 MF-WARP 0.0386 0.0317 SVDpp 0.0575 0.0471 PureSVD 0.0532 0.0446 NMF 0.0492 0.0408 iALS 0.0652 0.0541 LightFM CF 0.0597 0.0485 MultVAE 0.0731 0.0602 SimGCL paper 0.0721 0.0591 SimGCL our early-stopping 0.0716 0.0592	EASE ^R	-	-
NegHOSLIM - - NegHOSLIM (EN) 0.0622 0.0521 MF-BPR 0.0392 0.0322 MF-WARP 0.0386 0.0317 SVDpp 0.0575 0.0471 PureSVD 0.0532 0.0446 NMF 0.0492 0.0408 iALS 0.0652 0.0541 LightFM CF 0.0597 0.0485 MultVAE 0.0731 0.0602 SimGCL paper 0.0721 0.0591 SimGCL our early-stopping 0.0716 0.0592	SLIM BPR	-	-
NegHOSLIM (EN) 0.0622 0.0521 MF-BPR 0.0392 0.0322 MF-WARP 0.0386 0.0317 SVDpp 0.0575 0.0471 PureSVD 0.0532 0.0446 NMF 0.0492 0.0408 iALS 0.0652 0.0541 LightFM CF 0.0597 0.0485 MultVAE 0.0731 0.0602 SimGCL paper 0.0721 0.0501 SimGCL our early-stopping 0.0716 0.0592	SLIM	0.0649	0.0543
MF-BPR 0.0392 0.0322 MF-WARP 0.0386 0.0317 SVDpp 0.0575 0.0471 PureSVD 0.0532 0.0446 NMF 0.0492 0.0408 iALS 0.0652 0.0541 LightFM CF 0.0597 0.0485 MultVAE 0.0731 0.0602 SimGCL paper 0.0721 0.0601 SimGCL our early-stopping 0.0716 0.0592	NegHOSLIM	-	-
MF-WARP 0.0386 0.0317 SVDpp 0.0575 0.0471 PureSVD 0.0532 0.0446 NMF 0.0492 0.0408 iALS 0.0652 0.0541 LightFM CF 0.0597 0.0485 MultVAE 0.0731 0.0602 SimGCL paper 0.0721 0.0601 SimGCL our early-stopping 0.0716 0.0592	NegHOSLIM (EN)	0.0622	0.0521
SVDpp 0.0575 0.0471 PureSVD 0.0532 0.0446 NMF 0.0492 0.0408 iALS 0.0652 0.0541 LightFM CF 0.0597 0.0485 MultVAE 0.0731 0.0602 SimGCL paper 0.0721 0.0601 SimGCL our early-stopping 0.0716 0.0592	MF-BPR	0.0392	0.0322
PureSVD 0.0532 0.0446 NMF 0.0492 0.0408 iALS 0.0652 0.0541 LightFM CF 0.0597 0.0485 MultVAE 0.0731 0.0602 SimGCL paper 0.0721 0.0601 SimGCL our early-stopping 0.0716 0.0592	MF-WARP	0.0386	0.0317
NMF 0.0492 0.0408 iALS 0.0652 0.0541 LightFM CF 0.0597 0.0485 MultVAE 0.0731 0.0602 SimGCL paper 0.0721 0.0601 SimGCL our early-stopping 0.0716 0.0592	SVDpp	0.0575	0.0471
iALS 0.0652 0.0541 LightFM CF 0.0597 0.0485 MultVAE 0.0731 0.0602 SimGCL paper 0.0721 0.0601 SimGCL our early-stopping 0.0716 0.0592	PureSVD	0.0532	0.0446
LightFM CF MultVAE 0.0597 0.0602 0.0485 0.0602 SimGCL paper 0.0721 0.0601 SimGCL our early-stopping 0.0716 0.0592	NMF	0.0492	0.0408
MultVAE 0.0731 0.0602 SimGCL paper 0.0721 0.0601 SimGCL our early-stopping 0.0716 0.0592	iALS	0.0652	0.0541
SimGCL paper 0.0721 0.0601 SimGCL our early-stopping 0.0716 0.0592	LightFM CF	0.0597	0.0485
SimGCL our early-stopping 0.0716 0.0592	MultVAE	0.0731	0.0602
,	SimGCL paper	0.0721	0.0601
SimGCL provided number of epochs 0.0719 0.0594	SimGCL our early-stopping	0.0716	0.0592
	SimGCL provided number of epochs	0.0719	0.0594

Table 14. Experimental results for the SimGCL method for the Yelp 2018 Our Split dataset.

	Cutoff 20		
	Recall	NDCG	
Random	0.0004	0.0003	
TopPop	0.0162	0.0132	
GlobalEffects	0.0003	0.0003	
UserKNN CF	0.0929	0.0798	
ItemKNN CF	0.0986	0.0850	
$P^3\alpha$	0.0991	0.0845	
$RP^3\beta$	0.0991	0.0848	
GF-CF	0.1038	0.0880	
EASE ^R	-	-	
SLIM BPR	-	-	
SLIM	0.1015	0.0887	
NegHOSLIM	-	-	
NegHOSLIM (EN)	0.0988	0.0858	
MF-BPR	0.0540	0.0446	
MF-WARP	0.0522	0.0431	
SVDpp	0.0804	0.0670	
PureSVD	0.0805	0.0695	
NMF	0.0723	0.0615	
iALS	0.1047	0.0895	
LightFM CF	0.0929	0.0774	
MultVAE	0.1123	0.0954	
SimGCL paper	0.1073	0.0921	
SimGCL provided number of epochs	0.1074	0.0920	

4 LEARNING TO DENOISE UNRELIABLE INTERACTIONS FOR GRAPH COLLABORATIVE FILTERING

Tian et al. [20] presents *Robust Graph Collaborative Filtering* (RGCF) based on the LighgGCN message passing architecture. RGCF consists of two steps, first a graph denoising module removes interactions that are estimated as being noisy and assigns a reliability weight to the other ones. This step is performed via the cosine similarity of the learned embeddings. Then, a diversity preserving module builds new interaction graphs (i.e., adjacency matrix) based on the denoised one. A certain number of random user-item candidates are sampled, the prediction computed using the learned embeddings and those with high score (the paper calls it reliability) are added to the interaction graph. RGCF is trained with BPR with a second loss added to pull the representation of nodes learned with the augmented graphs close to each other, this is done with the contrastive loss InfoNCE. The original implementation is available on GitHub.⁹

4.1 Datasets

The evaluation is performed on the datasets described and processed as follows, their statistics are reported in Table 15.

Amazon-Book: Is a dataset of book purchases on Amazon. Only users and items with at least 15 interactions are retained, this corresponds to the 15-cores subgraph.

MovieLens1M: Is a movie recommendation dataset. Ratings ≥ 4 are transformed into implicit interactions with value 1.

Yelp: Is a business reviews dataset. Only users and items with at least 15 interactions are retained, this corresponds to the 15-cores subgraph.

Dataset	Interactions	Items	Users	Sparsity
Amazon-Book	2517437	58051	58144	0.9993
MovieLens1M	836478	3883	6040	0.9643
Yelp	1730025	31731	45160	0.9988

Table 15. Dataset statistics for RGCF.

4.2 Results

The hyperparameter values used in our experiments are reported in Table 16 and the results for all the datasets and baseline algorithms are reported in Table 17 (MovieLens1M).

⁹https://github.com/ChangxinTian/RGCF

Hyperparameter	Described in	Value All datasets
epochs	Source code	500
K	Source code	2
batch size	Paper	4096
embedding size	Paper	64
prune threshold beta	Source code	0.02
contrastive loss temperature tau	Source code	0.2
contrastive loss weight	Source code	1e-06
augmentation ratio	Source code	0.1
learning rate	Source code	4e-5
l2 reg	Paper	1e-05
optimizer	Paper	Adam

Table 16. Hyperparameter values for RGCF.

Table 17. Experimental results for the RGCF method for the MovieLens1M dataset.

	Cutoff 10			
	Recall	NDCG	HR	MRR
Random	0.0030	0.0047	0.0421	0.0120
TopPop	0.0773	0.1213	0.4894	0.2433
GlobalEffects	0.0007	0.0013	0.0117	0.0032
UserKNN CF	0.1939	0.2711	0.7733	0.4741
ItemKNN CF	0.1811	0.2578	0.7441	0.4610
$P^3\alpha$	0.1852	0.2565	0.7600	0.4561
$RP^3\beta$	0.1824	0.2557	0.7560	0.4577
GF-CF	0.2076	0.2885	<u>0.7897</u>	0.4944
EASE ^R	0.2128	0.3015	0.7970	0.5082
SLIM BPR	0.1947	0.2667	0.7785	0.4716
SLIM	0.2057	0.2944	0.7870	0.5034
NegHOSLIM	0.2141	0.3026	0.7972	0.5096
NegHOSLIM (EN)	0.2125	0.3001	0.7958	0.5059
MF-BPR	0.1500	0.2105	0.6971	0.3894
MF-WARP	0.1406	0.2000	0.6778	0.3764
SVDpp	0.1867	0.2602	0.7555	0.4516
PureSVD	0.1942	0.2748	0.7733	0.4756
NMF	0.1773	0.2441	0.7448	0.4244
iALS	0.1938	0.2759	0.7707	0.4783
LightFM CF	0.1844	0.2478	0.7667	0.4455
MultVAE	0.2029	$\underline{0.2812}$	$\underline{0.7858}$	0.4845
ItemKNN CBF ICM genres	0.0316	0.0445	0.2705	0.1012
ItemKNN CBF ICM year	-	-	-	-
UserKNN CBF	0.0817	0.1285	0.5087	0.2556
ItemKNN CFCBF ICM genres	0.1759	0.2507	0.7405	0.4526
ItemKNN CFCBF ICM year	0.1819	0.2583	0.7494	0.4598
UserKNN CFCBF	0.1887	0.2623	0.7641	0.4654
LightFM ItemHybrid ICM genres	0.1625	0.2405	0.7170	0.4283
LightFM ItemHybrid ICM year	0.1510	0.2200	0.6931	0.4116
LightFM UserHybrid	0.1921	0.2799	<u>0.7663</u>	<u>0.4815</u>
RGCF paper	0.1986	0.2565	0.7569	0.4429
RGCF original early-stopping	0.1887	0.2620	0.7634	0.4625
RGCF our early-stopping	0.1970	0.2710	0.7787	0.4758
RGCF our hyperparameters	0.1981	0.2763	0.7807	0.4813

5 INMO: A MODEL-AGNOSTIC AND SCALABLE MODULE FOR INDUCTIVE COLLABORATIVE FILTERING

Wu et al. [23] presents *Inductive Embedding Module for collaborative filtering* (INMO), that aims to improve the effectiveness of matrix factorization models to recommend to new users. The paper focuses on matrix factorization models that are *transductive* (i.e., memory-based, such as SVDpp, MF-BPR etc.) and proposes an *inductive* representation (i.e., model-based) of the user and item embeddings as a function of the embeddings of a selected subset of template user and items. Due to this, the number of learnable parameters used in INMO can be lower compared to memory-based matrix factorization models. INMO includes an annealing process for normalization as a hyperparameter. The original implementation is available on GitHub and the datasets are available in a Google Drive folder. ¹⁰

5.1 Datasets

The evaluation is performed on the datasets described and processed as follows, their statistics are reported in Table 18.

Amazon-Book: Is a dataset of book purchases on Amazon. Ratings ≥ 4 are transformed into implicit interactions with value 1, then a 10-core subgraph selection is applied.

Gowalla: Is a dataset collected from a social network where users check-in locations they visited. No details are provided on the preprocessing.

Yelp2018: Is a business reviews dataset. Ratings ≥ 4 are transformed into implicit interactions with value 1, then a 10-core subgraph selection is applied.

Dataset	Interactions	Items	Users	Sparsity
Amazon-Book	2780441	96421	109730	0.9997
Gowalla	900713	40988	29858	0.9993
Yelp2018	1680930	42706	75173	0.9995

Table 18. Dataset statistics for INMO.

5.2 Results

The hyperparameter values used in our experiments are reported in Table 19 and the results for all the datasets and baseline algorithms are reported in Table 20 (Gowalla), 21 (Amazon-Book), and 22 (Yelp2018).

¹⁰ https://github.com/WuYunfan/igcn_cf

Hyperparameter	Described in	Value			
		All datasets	Amazon-Book	Gowalla	Yelp2018
embedding size	Source code	64	-	-	-
batch size	Source code	2048	-	-	-
K	Source code	3	-	-	-
optimizer	Source code	Adam	-	-	-
epochs	Source code	1000 (max)	-	-	-
learning rate	Source code	10^{-3}	-	-	-
template loss weight	Source code	10^{-2}	-	-	-
λ_2	Source code	0.0	-	-	-
dropout rate	Source code	-	0.0	0.3	0.3
feature ratio	Source code	-	1.0	1.0	0.7
normalization decay	Source code	0.99	-	-	-
template node ranking	Source code	cardinality	-	-	-

Table 19. Hyperparameter values for INMO.

Table 20. Experimental results for the INMO method for the Gowalla dataset.

		Cutoff 20	,
	Recall	Precision	NDCG
Random	0.0005	0.0002	0.0004
TopPop	0.0303	0.0083	0.0208
GlobalEffects	0.0003	0.0001	0.0002
UserKNN CF	0.1834	0.0493	0.1376
ItemKNN CF	0.1908	0.0508	0.1431
$P^3\alpha$	0.2065	0.0558	0.1548
$RP^3\beta$	0.2029	0.0548	0.1523
GF-CF	0.2014	0.0525	0.1483
$EASE^R$	-	-	-
SLIM BPR	0.1906	0.0502	0.1437
SLIM	0.2037	0.0574	0.1573
NegHOSLIM	-	-	-
NegHOSLIM (EN)	0.1934	0.0526	0.1478
MF-BPR	0.1308	0.0350	0.0979
MF-WARP	0.1351	0.0350	0.0970
SVDpp	0.1691	0.0433	0.1258
PureSVD	0.1289	0.0377	0.0984
NMF	0.1295	0.0361	0.0958
iALS	0.1820	0.0491	0.1362
LightFM CF	0.1832	0.0493	0.1360
MultVAE	0.2079	0.0555	<u>0.1563</u>
INMO paper	0.2017	0.0536	0.1541
INMO original early-stopping	0.1961	0.0523	0.1456
INMO our early-stopping	0.1961	0.0523	0.1455

Table 21. Experimental results for the INMO method for the Amazon-Book dataset.

		Cutoff 20	
	Recall	Precision	NDCG
Random	0.0002	0.0001	0.0001
TopPop	0.0114	0.0024	0.0069
GlobalEffects	0.0001	0.0000	0.0001
UserKNN CF	0.1661	0.0353	0.1193
ItemKNN CF	0.1880	0.0420	0.1379
$P^3\alpha$	0.1933	0.0416	0.1376
$RP^3\beta$	0.1946	0.0418	0.1402
GF-CF	<u>0.1726</u>	0.0364	$\underline{0.1222}$
$EASE^R$	-	-	-
SLIM BPR	-	-	-
SLIM	0.2006	0.0445	0.1451
NegHOSLIM	-	-	-
NegHOSLIM (EN)	0.1947	0.0425	0.1408
MF-BPR	0.0876	0.0178	0.0597
MF-WARP	0.0875	0.0178	0.0590
SVDpp	0.1160	0.0225	0.0741
PureSVD	0.0852	0.0204	0.0619
NMF	0.0589	0.0140	0.0415
iALS	0.1447	0.0290	0.0941
LightFM CF	0.1370	0.0293	0.0920
MultVAE	<u>0.1751</u>	0.0374	$\underline{0.1241}$
INMO paper	0.1428	0.0301	0.0986
INMO original early-stopping	0.1394	0.0298	0.0934
INMO our early-stopping	0.1395	0.0297	0.0932

Table 22. Experimental results for the INMO method for the Yelp2018 dataset.

		Cutoff 20	
	Recall	Precision	NDCG
Random	0.0004	0.0001	0.0002
TopPop	0.0171	0.0035	0.0102
GlobalEffects	0.0002	0.0001	0.0001
UserKNN CF	0.0846	0.0188	0.0545
ItemKNN CF	0.0901	0.0205	0.0584
$P^3\alpha$	0.0892	0.0194	0.0564
$RP^3\beta$	0.0907	0.0204	0.0583
GF-CF	0.0979	0.0213	0.0620
EASE ^R	-	-	-
SLIM BPR	-	-	-
SLIM	0.0870	0.0201	0.0571
NegHOSLIM	-	-	-
NegHOSLIM (EN)	0.0861	0.0194	0.0557
MF-BPR	0.0539	0.0123	0.0332
MF-WARP	0.0451	0.0106	0.0290
SVDpp	0.0835	0.0180	0.0507
PureSVD	0.0638	0.0151	0.0410
NMF	0.0638	0.0146	0.0397
iALS	0.0994	0.0220	0.0635
LightFM CF	0.0887	0.0196	0.0555
MultVAE	0.1048	0.0231	<u>0.0670</u>
INMO paper	0.1026	0.0225	0.0651
INMO original early-stopping	0.1025	0.0226	0.0647
INMO our early-stopping	0.1025	0.0225	0.0646

6 HYPERGRAPH CONTRASTIVE COLLABORATIVE FILTERING

Xia et al. [24] presents Hypergraph Contrastive Collaborative Filtering (HCCF), based on the Light-GCN paradigm adds several components: besides the message passing done on the user-item adjacency matrix as in LightGCN, but with the addition of a nonlinear aggregation function, HCCF incorporates one layer of message passing done on a hypergraph whose adjacency matrix is learnable and decomposed as the product of two lower dimensionality matrices. There is an additional step called Hierarchical Hypergraph Mapping which does the usual message passing but on the learned hypergraph adjacency matrix. The model is trained with contrastive learning using the InfoNCE loss, the goal is to push the embeddings learned via the message passing on the user-item adjacency matrix to be close to those obtained by learning the low dimensional approximation of the hypergraph adjacency. The original implementation is available on GitHub.¹¹

6.1 Datasets

The evaluation is performed on the datasets described and processed as follows, their statistics are reported in Table 23.

Yelp: Is a business reviews dataset. The preprocessing is a 10-cores subgraph selection.

MovieLens10M: Is a movie recommendation dataset. The preprocessing is a 10-cores subgraph selection

Amazon-Book: Is a dataset of book purchases on Amazon. The preprocessing is a 20-cores subgraph selection.

Dataset	Interactions	Items	Users	Sparsity
Yelp	1527326	24734	29601	0.9979
MovieLens10M	9998816	10196	69878	0.9860
Amazon-Book	3200224	77801	78578	0.9995

Table 23. Dataset statistics for HCCF.

6.2 Results

The hyperparameter values used in our experiments are reported in Table 24 and the results for all the datasets and baseline algorithms are reported in Table 25 (Yelp2018), 26 (Amazon-Book), and 27 (MovieLens10M).

¹¹https://github.com/akaxlh/HCCF

Hyperparameter	Described in		Value		
		All datasets	MovieLens10M	Yelp	Amazon-Book
epochs	Paper	100	-	-	-
sgd mode	Paper	Adam	-	-	-
learning rate	Paper	10^{-3}	-	-	-
embedding size	Paper	32	-	-	-
learning rate decay	Paper	0.96	-	-	-
GNN layers (K)	Paper	2	-	-	-
hyperedge size	Paper	128	-	-	-
hypergraph mapping layers (C)	Paper	3	-	-	-
batch size	Source code	256	-	-	2048 ^a
dropout	Source code	0.5	0.0	-	-
contrastive loss weight (λ_1)	Source code	10^{-4}	10^{-6}	10^{-4}	10^{-7}
λ_2	Source code	10^{-5}	-	10^{-3}	10^{-2}
contrastive loss temperature (τ)	Paper / Source code	1.0	0.1	1.0	0.1
leaky relu slope	Paper	0.5	-	-	-

^aThe paper states the optimal value is 256 but in the experiments we use 2048 for Amazon-Book due to the very large computational cost of this model. On Amazon-Book a batch size of 256 results in a training time of 45 minutes per epoch, hence a total of 3 days.

Table 24. Hyperparameter values for HCCF.

Table 25. Experimental results for the HCCF method for the Yelp2018 dataset.

	Cuto	off 20	Cutoff 40	
	Recall	NDCG	Recall	NDCG
Random	0.0009	0.0007	0.0016	0.0010
ТорРор	0.0123	0.0109	0.0208	0.0141
GlobalEffects	0.0008	0.0006	0.0014	0.0008
UserKNN CF	0.0973	0.0848	0.1527	0.1049
ItemKNN CF	0.1054	0.0922	0.1646	0.1134
$P^3\alpha$	0.1054	0.0921	0.1640	0.1132
$\mathrm{RP}^3oldsymbol{eta}$	0.1082	0.0947	0.1687	0.1165
GF-CF	0.1115	0.0966	0.1752	0.1196
EASE ^R	-	-	-	-
SLIM BPR	-	-	-	-
SLIM	0.1062	0.0935	0.1642	0.1144
NegHOSLIM	-	-	-	-
NegHOSLIM (EN)	0.1032	0.0908	0.1602	0.1112
MF-BPR	0.0601	0.0507	0.0990	0.0650
MF-WARP	0.0569	0.0480	0.0945	0.0618
SVDpp	0.0928	0.0788	0.1504	0.0998
PureSVD	0.0863	0.0757	0.1360	0.0935
NMF	0.0761	0.0657	0.1229	0.0826
iALS	0.1090	0.0948	0.1706	0.1171
LightFM CF	0.0959	0.0822	0.1540	0.1034
MultVAE	0.1172	0.1029	0.1825	0.1264
HCCF paper	0.0607	0.0510	0.1007	0.0658
HCCF our early-stopping	0.0609	0.0525	0.1011	0.0672
HCCF provided number of epochs	0.0536	0.0459	0.0899	0.0592

Table 26. Experimental results for the HCCF method for the Amazon-Book dataset.

	Cuto			off 40
	Recall	NDCG	Recall	NDCG
Random	0.0002	0.0002	0.0005	0.0003
TopPop	0.0097	0.0073	0.0157	0.0093
GlobalEffects	0.0001	0.0001	0.0003	0.0002
UserKNN CF	0.1476	0.1278	0.1973	0.1434
ItemKNN CF	0.1726	0.1502	0.2209	0.1650
$P^3\alpha$	0.1705	0.1427	0.2300	<u>0.1617</u>
$RP^3\beta$	0.1773	0.1510	0.2377	0.1702
GF-CF	0.1580	$\underline{0.1344}$	0.2131	$\underline{0.1520}$
EASE ^R	-	-	-	-
SLIM BPR	-	-	-	-
SLIM	0.1885	0.1626	0.2458	0.1803
NegHOSLIM	-	-	-	-
NegHOSLIM (EN)	0.1811	0.1558	0.2363	0.1728
MF-BPR	0.0687	0.0532	0.1012	0.0640
MF-WARP	0.0713	0.0557	0.1050	0.0669
SVDpp	0.0980	0.0717	0.1482	0.0885
PureSVD	0.0820	0.0718	0.1177	0.0827
NMF	0.0662	0.0572	0.0974	0.0670
iALS	0.1185	0.0928	0.1744	0.1113
LightFM CF	0.1166	0.0880	0.1719	0.1062
MultVAE	0.1474	0.1222	0.2038	0.1405
HCCF paper	0.0344	0.0258	0.0561	0.0330
HCCF our early-stopping	0.0002	0.0001	0.0004	0.0002
HCCF provided number of epochs	0.0002	0.0001	0.0008	0.0003

Table 27. Experimental results for the HCCF method for the MovieLens10M dataset.

	Cuto	off 20	Cuto	off 40
	Recall	NDCG	Recall	NDCG
Random	0.0019	0.0032	0.0039	0.0038
TopPop	0.1363	0.1903	0.2114	0.2022
GlobalEffects	0.0001	0.0003	0.0002	0.0003
UserKNN CF	0.3503	0.4448	0.4700	0.4595
ItemKNN CF	0.2816	0.3645	0.3884	0.3790
$P^3\alpha$	0.2576	0.3263	0.3521	0.3391
$RP^3\beta$	0.2886	0.3761	0.3960	0.3895
GF-CF	0.3342	$\underline{0.4210}$	0.4484	0.4354
EASE ^R	-	-	-	-
SLIM BPR	-	-	-	-
SLIM	0.3387	0.4422	0.4578	0.4563
NegHOSLIM	-	-	-	-
NegHOSLIM (EN)	0.3430	0.4430	0.4630	0.4582
MF-BPR	0.2849	0.3569	0.3989	0.3759
MF-WARP	0.2823	0.3529	0.3964	0.3724
SVDpp	0.3391	0.4171	0.4672	0.4381
PureSVD	0.3090	0.4032	0.4212	0.4166
NMF	0.2800	0.3627	0.3853	0.3765
iALS	0.3368	0.4232	0.4593	0.4426
LightFM CF	0.3310	0.4183	0.4528	0.4367
MultVAE	0.3563	$\underline{0.4291}$	0.4840	$\underline{0.4547}$
HCCF paper	0.2048	0.2467	0.3081	0.2717
HCCF our early-stopping	0.2904	0.3754	0.4086	0.3945
HCCF provided number of epochs	0.2714	0.3605	0.3911	0.3798

7 HAKG: HIERARCHY-AWARE KNOWLEDGE GATED NETWORK FOR RECOMMENDATION

Du et al. [4] presents *Hierarchy-Aware Knowledge Gated Network* (HAKG), which aims to combine graphs obtained with collaborative interactions as well as knowledge-based. The goal of the paper is to exploit the hierarchical structure of knowledge graphs as well as the "higher order" relations in collaborative data. The paper claims that it is not sufficient to use a Euclidean space for this purpose, and therefore the embeddings are represented in hyperbolic space. The paper proposes a hierarchy-aware modeling strategy which includes an aggregation function for hyperbolic embeddings and a constraint on the angles generated by the embeddings involved, aiming at better preserving their hierarchical structure. The aggregation function is computed in Euclidean space, so the embeddings are converted from hyperbolic to Euclidean space, then aggregated, and then converted back to Hyperbolic space. Knowledge-based and collaborative embeddings are separate (dual embeddings) and are fused with a "learnable gating fusion unit", which learns a weight matrix. The final prediction is computed with the cosine similarity of embeddings. The original implementation is available on GitHub.¹²

7.1 Datasets

The evaluation is performed on the datasets described and processed as follows, their statistics are reported in Table 28.

Alibaba-iFashion: Is a datasets of outfits for garment recommendation. The data is preprocessed with 10-cores subgraph selection.

Yelp2018: Is a business reviews dataset. The data is preprocessed with 10-cores subgraph selection.

Last-FM: Is a dataset for song recommendation. The split is the same used in KGAT, including the knowledge base [22]. The preprocessing filters the data retaining the interactions from Jan 2015 to June 2015, followed by 10-cores subgraph selection.

The two-hop neighbor entities of items in the knowledge base are used to construct the item knowledge graph for each dataset. All existing relations are considered as hierarchical. A 10-core subgraph selection is applied on the entities in the knowledge base as well.

Dataset	Interactions	Items	Users	Sparsity
Alibaba-iFashion	1781093	30040	114737	0.9995
Yelp2018	1183610	45538	45919	0.9994
Last-FM	1542856	48123	23566	0.9986

Table 28. Dataset statistics for HAKG.

7.2 Results

The hyperparameter values used in our experiments are reported in Table 29 and the results for all the datasets and baseline algorithms are reported in Table 30 (Alibaba-iFashion), 31 (Yelp2018), and 32 (Last-FM).

 $^{^{12}} https://github.com/zealscott/HAKG$

Hyperparameter	Described in		Value		
		All datasets	Alibaba-iFashion	Yelp2018	Last-FM
embedding size	Paper	64	-	-	-
optimizer	Paper	Adam	-	-	-
batch size	Paper	4096	-	-	-
weight of angle loss w	Source code	$5 \cdot 10^{-3}$	-	-	-
learning rate	Source code	=	10^{-4}	$5 \cdot 10^{-4}$	10^{-4}
GNN layers	Source code	-	3	2	3
negative samples $ M_u $	Paper	=	200	400	400
margin m	Paper	-	0.6	0.8	0.7

Table 29. Hyperparameter values for HAKG.

Table 30. Experimental results for the HAKG method for the Alibaba iFashion dataset.

	Cuto	off 20
	Recall	NDCG
Random	0.0007	0.0004
TopPop	0.0312	0.0167
GlobalEffects	0.0002	0.0001
UserKNN CF	0.1090	0.0700
ItemKNN CF	0.1264	0.0818
$P^3\alpha$	0.1219	0.0779
$RP^3\beta$	0.1247	0.0807
GF-CF	0.1182	0.0742
EASE ^R	0.1262	0.0819
SLIM BPR	0.1208	0.0776
SLIM	0.1276	0.0832
NegHOSLIM	-	-
NegHOSLIM (EN)	0.1259	0.0822
MF-BPR	0.0761	0.0460
MF-WARP	0.0773	0.0466
SVDpp	0.1183	0.0740
PureSVD	0.0687	0.0434
NMF	0.0716	0.0429
iALS	0.1268	0.0807
LightFM CF	0.1183	0.0737
MultVAE	0.1388	0.0898
ItemKNN CBF	0.0099	0.0057
ItemKNN CFCBF	0.1273	0.0820
LightFM ItemHybrid	0.0553	0.0328
HAKG paper	0.1319	0.0848
HAKG original early-stopping	0.1261	0.0787
HAKG our early-stopping	0.1263	0.0789

Table 31. Experimental results for the HAKG method for the Yelp2018 dataset.

	Cuto	off 20
	Recall	NDCG
Random	0.0004	0.0002
TopPop	0.0174	0.0110
GlobalEffects	0.0006	0.0003
UserKNN CF	0.0715	0.0477
ItemKNN CF	0.0727	0.0485
$P^3\alpha$	0.0728	0.0480
$RP^3\beta$	0.0733	0.0485
GF-CF	0.0752	0.0492
EASE ^R	-	-
SLIM BPR	-	-
SLIM	0.0739	0.0494
NegHOSLIM	-	-
NegHOSLIM (EN)	0.0692	0.0465
MF-BPR	0.0484	0.0310
MF-WARP	0.0443	0.0280
SVDpp	0.0613	0.0389
PureSVD	0.0546	0.0364
NMF	0.0510	0.0339
iALS	0.0764	0.0495
LightFM CF	0.0705	0.0454
MultVAE	0.0799	0.0521
ItemKNN CBF	0.0272	0.0175
ItemKNN CFCBF	0.0743	0.0492
LightFM ItemHybrid	0.0516	0.0331
HAKG paper	0.0778	0.0501

Table 32. Experimental results for the HAKG method for the Last-FM dataset.

	Cutoff 20		
	Recall	NDCG	
Random	0.0004	0.0005	
ТорРор	0.0229	0.0198	
GlobalEffects	0.0004	0.0003	
UserKNN CF	0.1720	0.1695	
ItemKNN CF	0.1836	0.1838	
$P^3\alpha$	0.1979	0.1994	
$RP^3\beta$	0.2012	0.2014	
GF-CF	<u>0.1806</u>	<u>0.1729</u>	
EASE ^R	-	-	
SLIM BPR	0.1861	0.1877	
SLIM	0.2070	0.2078	
NegHOSLIM	-	-	
NegHOSLIM (EN)	0.2049	0.2058	
MF-BPR	0.1281	0.1250	
MF-WARP	0.1337	0.1322	
SVDpp	0.1745	<u>0.1660</u>	
PureSVD	0.1314	0.1369	
NMF	0.1086	<u>0.1146</u>	
iALS	0.1750	0.1645	
LightFM CF	0.1816	0.1716	
MultVAE	$\underline{0.1884}$	0.1838	
ItemKNN CBF	0.1887	<u>0.1797</u>	
ItemKNN CFCBF	0.1849	0.1838	
LightFM ItemHybrid	<u>0.1945</u>	0.1865	
HAKG paper	0.1008	0.0931	
HAKG original early-stopping	0.1655	0.1644	
HAKG our early-stopping	<u>0.1693</u>	<u>0.1687</u>	

8 GRAPH TREND FILTERING NETWORKS FOR RECOMMENDATION

Fan et al. [5] presents *Graph Trend Filtering Networks for Recommendation* (GTN), which proposes a method to adaptively capture the reliability of interactions. This is done with a new *smoothness* constraint on the embeddings, which in practice penalizes the occurrence of interactions between users and items with very different embeddings. The paper then proposes to use the Proximal Alternating Predictor-Corrector method and formulates an iterative solver requiring three steps. The original implementation is available on GitHub.¹³

8.1 Datasets

The evaluation is performed on the datasets described and processed as follows, their statistics are reported in Table 33.

Gowalla: Is a dataset collected from a social network where users check-in locations they visited. The split is the same used in LightGCN [7], see Section 10.

Yelp2018: Is a business reviews dataset. The split is the same used in LightGCN [7], see Section 10.

Amazon-Book: Is a dataset of book purchases on Amazon. The split is the same used in LightGCN [7], see Section 10.

Last-FM: Is a dataset for song recommendation. The split is the same used in KGAT, including the knowledge base [22]. The preprocessing filters the data retaining the interactions from Jan 2015 to June 2015, followed by 10-cores subgraph selection.

Dataset	Interactions	Items	Users	Sparsity
Gowalla	1027370	40981	29858	0.9992
Yelp2018	1561406	38048	31668	0.9987
Amazon-Book	2984108	91599	52643	0.9994
Last-FM	1542856	48123	23566	0.9986

Table 33. Dataset statistics for GTN.

8.2 Results

The hyperparameter values used in our experiments are reported in Table 34 and the results for all the datasets and baseline algorithms are reported in Table 35 (Yelp2018), 36 (Amazon-Book), 37 (Gowalla), and 38 (Last-FM).

¹³https://github.com/wenqifan03/GTN-SIGIR2022

Hyperparameter	Described in			Value		
		All datasets	Gowalla	Yelp2018	Amazon-Book	Last-FM
embedding size	Source code	256	-	-	-	-
optimizer	Paper	Adam	-	-	-	-
batch size	Source code	2048	-	-	-	-
epochs	Paper	1000	-	-	-	-
learning rate	Source code	10^{-3}	-	-	-	-
GNN layers	Paper	-	3	3	2	3
embedding smoothness weight ^a	Paper	3	-	-	-	-
l2 regularization	Source code	10^{-4}	-	-	-	-
dropout rate LightGCN ^b	Source code	0.4	_	-	-	_
dropout rate GTN ^c	Source code	0.1	-	-	-	-
ogb	Paper	True	-	-	-	-
incnorm_para	Paper	True	-	=	-	-

 a In the source code it is called lambda2.

Table 34. Hyperparameter values for GTN.

Table 35. Experimental results for the GTN method for the Yelp2018 dataset.

		off 20
	Recall	NDCG
Random	0.0005	0.0004
TopPop	0.0124	0.0101
GlobalEffects	0.0006	0.0004
UserKNN CF	0.0637	0.0533
ItemKNN CF	0.0622	0.0514
$P^3\alpha$	0.0661	0.0548
$RP^3\beta$	0.0672	0.0558
GF-CF	0.0693	0.0568
EASE ^R	-	-
SLIM BPR	-	-
SLIM	0.0646	0.0541
NegHOSLIM	-	-
NegHOSLIM (EN)	0.0590	0.0492
MF-BPR	0.0382	0.0313
MF-WARP	0.0415	0.0339
SVDpp	0.0606	0.0492
PureSVD	0.0537	0.0448
NMF	0.0517	0.0424
iALS	0.0667	0.0546
LightFM CF	0.0592	0.0482
MultVAE	0.0719	<u>0.0590</u>
GTN paper	0.0679	0.0554
GTN our early-stopping	0.0679	0.0559

^bIn the source code it is called *keep_prob* and is 0.6, hence dropout is 0.4.

^cIn the source code is called *prop_dropout*.

Table 36. Experimental results for the GTN method for the Amazon-Book dataset.

	Cutoff 20	
	Recall	NDCG
Random	0.0002	0.0002
TopPop	0.0051	0.0044
GlobalEffects	0.0004	0.0003
UserKNN CF	0.0616	0.0518
ItemKNN CF	0.0750	0.0624
$P^3\alpha$	0.0696	0.0561
$RP^3\beta$	0.0701	0.0585
GF-CF	0.0710	0.0585
EASE ^R	-	-
SLIM BPR	-	-
SLIM	0.0757	0.0600
NegHOSLIM	-	-
NegHOSLIM (EN)	0.0754	0.0609
MF-BPR	0.0254	0.0203
MF-WARP	0.0288	0.0230
SVDpp	0.0379	0.0293
PureSVD	0.0403	0.0336
NMF	0.0341	0.0287
iALS	0.0451	0.0347
LightFM CF	0.0501	0.0384
MultVAE	0.0553	0.0435
GTN paper	0.0450	0.0346
GTN our early-stopping	0.0496	0.0384

Table 37. Experimental results for the GTN method for the Gowalla dataset.

	Cutoff 20	
	Recall	NDCG
Random	0.0005	0.0003
TopPop	0.0416	0.0317
GlobalEffects	0.0007	0.0004
UserKNN CF	0.1699	0.1387
ItemKNN CF	0.1559	0.1228
$P^3\alpha$	0.1838	0.1526
$RP^3\beta$	0.1811	0.1490
GF-CF	0.1843	0.1505
EASE ^R	-	-
SLIM BPR	-	-
SLIM	0.1767	0.1448
NegHOSLIM	-	-
NegHOSLIM (EN)	0.1723	0.1410
MF-BPR	0.1319	0.1060
MF-WARP	0.1266	0.0992
SVDpp	0.1611	0.1298
PureSVD	0.1135	0.0917
NMF	0.1278	0.1063
iALS	0.1669	0.1370
LightFM CF	0.1783	0.1468
MultVAE	0.1873	0.1539
GTN paper	0.1870	0.1588
GTN our early-stopping	0.1849	0.1565

Table 38. Experimental results for the GTN method for the Last-FM dataset.

	1 0 .	m a a
	Cutoff 20	
	Recall	NDCG
Random	0.0004	0.0005
TopPop	0.0229	0.0198
GlobalEffects	0.0004	0.0003
UserKNN CF	0.1720	0.1695
ItemKNN CF	0.1836	0.1838
$P^3\alpha$	0.1979	0.1994
$RP^3\beta$	0.2012	0.2014
GF-CF	0.1806	0.1729
EASE ^R	-	-
SLIM BPR	0.1861	0.1877
SLIM	0.2070	0.2078
NegHOSLIM	-	-
NegHOSLIM (EN)	0.2049	0.2058
MF-BPR	0.1281	0.1250
MF-WARP	0.1337	0.1322
SVDpp	0.1745	0.1660
PureSVD	0.1314	0.1369
NMF	0.1086	0.1146
iALS	0.1750	0.1645
LightFM CF	0.1816	0.1716
MultVAE	0.1884	<u>0.1838</u>
ItemKNN CBF	0.1887	<u>0.1797</u>
ItemKNN CFCBF	0.1849	0.1838
LightFM ItemHybrid	0.1945	<u>0.1865</u>
GTN paper	0.0932	0.0857
GTN our early-stopping	0.1773	0.1776

9 KNOWLEDGE GRAPH CONTRASTIVE LEARNING FOR RECOMMENDATION

Yang et al. [25] presents *Knowledge Graph Contrastive Learning framework* (KGCL), aiming to reduce the impact of noisy knowledge bases, this is done with a knowledge graph augmentation schema that guides a contrastive learning process. KGCL uses a parameterized attention matrix on the concatenation of the user and item embeddings to calculate an estimation of relevance between the two. KGCL also uses TransE, which is a translation aware loss function aiming to ensure that the embedding of the head entity + the embedding of the relation is close to the embedding of the tail entity (i.e., $e_h + e_r \approx e_t$). The training is done with contrastive learning and multiple views are created with a graph augmentation scheme which aims to identify items that are less sensitive to structure (edges) variations, the contrastive learning process is also guided by the knowledge based. The original implementation is available on GitHub. 14

9.1 Datasets

The evaluation is performed on the datasets described and processed as follows, their statistics are reported in Table 39.

Yelp2018: Is a business reviews dataset. The preprocessing is a 10-cores subgraph selection. The split is the same used in HAKG [4]. The entities are collected in the same way as KGAT [22]

Amazon-Book: Is a dataset of book purchases on Amazon. The preprocessing is a 10-cores subgraph selection. The entities are collected in the same way as KGAT [22]

MIND: is a news recommendation dataset. The data and knowledge base are collected in the same way as [21], by randomly sampling one million users who had at least 5 news clicks during six weeks (i.e., October 12 to November 22, 2019).

Dataset	Interactions	Items	Users	Sparsity
Amazon-Book Yelp2018	846434 1183610	24915 45538	70679 45919	0.9995 0.9994
MIND	2545327	48957	300000	0.9998

Table 39. Dataset statistics for KGCL.

9.2 Results

The hyperparameter values used in our experiments are reported in Table 40 and the results for all the datasets and baseline algorithms are reported in Table 41 (Amazon-Book), 42 (Yelp2018), and 43 (MIND).

 $^{^{14}} https://github.com/yuh-yang/KGCL-SIGIR22\\$

Hyperparameter	Described in			Value	
		All datasets	Amazon-Book	Yelp2018	MIND
embedding size	Paper	64	-	-	-
learning date	Paper	10^{-3}	-	-	$5 \cdot 10^{-4}$
batch size	Paper	2048	-	-	-
self supervised loss weight λ_1	Paper	0.1	-	-	0.06 ^a
contrastive loss temperature $ au$	Paper	0.2	-	-	-
optimizer	Source code	Adam	-	-	-
epochs	Source code	1000	-	-	-
GNN layers K	Source code	3	-	-	-
GNN dropout rate	Source code	0.2	0.2	0.2	0.4
entities per head	Source code	10	-	-	6
knowledge graph dropout rate	Source code	0.5	-	-	0.5
user interaction dropout rate	Source code	0.001	0.05	0.1	0.4
mix_ratio ^b	Source code	-	0.75 ^c	-	0.6 ^d
uicontrast ^e	Source code	-	"WEIGHTED"	"WEIGHTED"	"WEIGHTED-MIX"
l2 regularization	Source code	10^{-4f}	-	-	10^{-3}
learning rate milestones	Source code	-	[1500, 2500] ^g	[1500, 2500] ^h	[5, 10]
min number of epochs ⁱ	Source code	-	15	25	1
earlystopping patience	Source code	-	5	5	3

^aFor this dataset the source code uses a different value compared to the paper.

^dDefined as 1-ui_p_drop.

Table 40. Hyperparameter values for KGCL.

^bThis hyperparameter appears to be used to add random samples as part of the user interaction dropout process, only when uicontrast is "weighted-mix".

^cThis hyperparameter is never used because it is not used when uicontrast is "weighted".

^eThis hyperparameter could impact how the graph augmentations are generated for the contrastive learning part, but the values are not described in the paper.

fThe TransR learning part had a hardcoded l2 regularization weight of 10^{-3} , the ported version uses the one provided as hyperparameter.

gThis hyperparameter has no impact because the epochs never reach 1500.

^hThis hyperparameter has no impact because the epochs never reach 1500.

 $^{^{}i}$ The patience and minimum number of epochs are different across the datasets, but the paper does not describe how were those values determined.

Table 41. Experimental results for the KGCL method for the Amazon-Book dataset.

	Cutoff 20		
	Recall	NDCG	
Random	0.0007	0.0003	
TopPop	0.0287	0.0123	
GlobalEffects	0.0004	0.0002	
UserKNN CF	0.1658	0.0944	
ItemKNN CF	0.1653	0.0974	
$P^3\alpha$	0.1683	0.0958	
$RP^3\beta$	0.1706	0.0983	
GF-CF	<u>0.1712</u>	0.0973	
EASE ^R	-	-	
SLIM BPR	-	-	
SLIM	0.1742	0.1031	
NegHOSLIM	-	-	
NegHOSLIM (EN)	0.1740	0.1028	
MF-BPR	0.1143	0.0637	
MF-WARP	0.1103	0.0602	
SVDpp	0.1569	0.0848	
PureSVD	0.1059	0.0620	
NMF	0.0953	0.0548	
iALS	<u>0.1676</u>	0.0908	
LightFM CF	0.1573	0.0830	
MultVAE	<u>0.1707</u>	0.0953	
ItemKNN CBF	0.1125	0.0640	
ItemKNN CFCBF	0.1698	0.0992	
LightFM ItemHybrid	0.1414	0.0762	
KGCL paper	0.1496	0.0793	
KGCL our early-stopping	0.1478	0.0794	

Table 42. Experimental results for the KGCL method for the Yelp2018 dataset.

	Cutoff 20		
	Recall	NDCG	
Random	0.0004	0.0002	
TopPop	0.0174	0.0110	
GlobalEffects	0.0006	0.0003	
UserKNN CF	0.0715	0.0477	
ItemKNN CF	0.0727	0.0485	
$P^3\alpha$	0.0728	0.0480	
$RP^3\beta$	0.0733	0.0485	
GF-CF	0.0752	0.0492	
$EASE^R$	-	-	
SLIM BPR	-	-	
SLIM	0.0739	0.0494	
NegHOSLIM	-	-	
NegHOSLIM (EN)	0.0692	0.0465	
MF-BPR	0.0484	0.0310	
MF-WARP	0.0443	0.0280	
SVDpp	0.0613	0.0389	
PureSVD	0.0546	0.0364	
NMF	0.0510	0.0339	
iALS	0.0764	0.0495	
LightFM CF	0.0705	0.0454	
MultVAE	0.0799	$\underline{0.0521}$	
ItemKNN CBF	0.0272	0.0175	
ItemKNN CFCBF	0.0743	0.0492	
LightFM ItemHybrid	0.0516	0.0331	
KGCL paper	0.0756	0.0493	
KGCL our early-stopping	0.0729	0.0477	

Table 43. Experimental results for the KGCL method for the MIND dataset.

	Cutoff 20		
	Recall	NDCG	
Random	0.0004	0.0002	
TopPop	0.0894	0.0437	
GlobalEffects	0.0009	0.0003	
UserKNN CF	0.0972	0.0509	
ItemKNN CF	0.1225	0.0647	
$P^3\alpha$	0.1189	0.0621	
$RP^3\beta$	0.1187	0.0621	
GF-CF	0.1017	0.0524	
$EASE^R$	-	-	
SLIM BPR	0.1193	0.0627	
SLIM	0.1287	0.0686	
NegHOSLIM	-	-	
NegHOSLIM (EN)	0.1281	0.0681	
MF-BPR	0.0888	0.0435	
MF-WARP	0.0842	0.0389	
SVDpp	0.0989	0.0489	
PureSVD	0.0892	0.0436	
NMF	0.0894	0.0437	
iALS	0.1130	0.0600	
LightFM CF	0.1044	0.0522	
MultVAE	0.1321	<u>0.0700</u>	
ItemKNN CBF	0.0051	0.0024	
ItemKNN CFCBF	0.1076	0.0556	
LightFM ItemHybrid	0.0688	0.0320	
KGCL paper	0.1073	0.0551	
KGCL our early-stopping	0.1006	0.0531	

10 LIGHTGCN: SIMPLIFYING AND POWERING GRAPH CONVOLUTION NETWORK FOR RECOMMENDATION

He et al. [7] proposes LightGCN, a graph-based collaborative filtering method in which the user and item embeddings are propagated according to the graph adjacency matrix. LightGCN is presented as a "light" model based on message-passing, compared to previous more complex architectures. The original implementation is available on Github. 15

10.1 Datasets

The evaluation is performed on the datasets described and processed as follows, their statistics are reported in Table 44

Amazon Book: Is a dataset of book purchases on Amazon. The preprocessing applies a 10-cores subgraph selection.

Gowalla: Is a dataset collected from a social network where users check-in locations they visited. The preprocessing applies a 10-cores subgraph selection.

Yelp2018: Is a business reviews dataset. The preprocessing applies a 10-cores subgraph selection.

Dataset	Interactions	Items	Users	Sparsity
Amazon Book	2984108	91599	52643	0.9994
Gowalla	1027370	40981	29858	0.9992
Yelp2018	1561406	38048	31668	0.9987

Table 44. Dataset statistics for LightGCN.

10.2 Results

The hyperparameter values used in our experiments are reported in Table 45 and the results for all the datasets and baseline algorithms are reported in Table 46 (Gowalla), 47 (Amazon-Book Original Split), 48 (Amazon-Book Our Split), 49 (Yelp 2018 Original Split), and 50 (Yelp 2018 Our Split).

Hyperparameter	Described in		Value		
		All datasets	Amazon Book	Gowalla	Yelp2018
embedding size	Paper	64	-	-	-
optimizer	Paper	Adam	-	-	-
learning rate	Paper	10^{-3}	-	-	-
batch size	Paper	1024	2048	-	-
l2 reg	Paper	10^{-4}	-	-	-
dropout	Source code	0.0	-	-	-
epochs	Paper	1000 (max)	-	-	-
GNN layers K	Paper	3	-	_	-
α_k	Paper	$\frac{1}{1+K}$	-	-	-

Table 45. Hyperparameter values for LightGCN.

¹⁵https://github.com/gusye1234/LightGCN-PyTorch

Table 46. Experimental results for the LightGCN method for the Gowalla dataset.

	Cutoff 20	
	Recall	NDCG
Random	0.0005	0.0003
TopPop	0.0416	0.0317
GlobalEffects	0.0007	0.0004
UserKNN CF	0.1699	0.1387
ItemKNN CF	0.1559	0.1228
$P^3\alpha$	0.1838	0.1526
$RP^3\beta$	0.1811	0.1490
GF-CF	0.1843	0.1505
$EASE^R$	-	-
SLIM BPR	-	-
SLIM	0.1767	0.1448
NegHOSLIM	-	-
NegHOSLIM (EN)	0.1723	0.1410
MF-BPR	0.1319	0.1060
MF-WARP	0.1266	0.0992
SVDpp	0.1611	0.1298
PureSVD	0.1135	0.0917
NMF	0.1278	0.1063
iALS	0.1669	0.1370
LightFM CF	0.1783	0.1468
MultVAE	0.1873	0.1539
LightGCN paper	0.1830	0.1550
LightGCN original early-stopping	0.1798	0.1536
LightGCN our early-stopping	0.1772	0.1519

Table 47. Experimental results for the LightGCN method for the Amazon Book Original Split dataset.

	Cuto	off 20
	Recall	
Random	0.0002	0.0002
TopPop	0.0051	0.0044
GlobalEffects	0.0004	0.0003
UserKNN CF	0.0616	0.0518
ItemKNN CF	0.0750	0.0624
$P^3\alpha$	0.0696	0.0561
$RP^3\beta$	0.0701	0.0585
GF-CF	0.0710	0.0585
EASE ^R	-	-
SLIM BPR	-	-
SLIM	0.0757	0.0600
NegHOSLIM	-	-
NegHOSLIM (EN)	0.0754	0.0609
MF-BPR	0.0254	0.0203
MF-WARP	0.0288	0.0230
SVDpp	0.0379	0.0293
PureSVD	0.0403	0.0336
NMF	0.0341	0.0287
iALS	0.0451	0.0347
LightFM CF	0.0501	0.0384
MultVAE	0.0553	$\underline{0.0435}$
LightGCN paper	0.0406	0.0313
LightGCN original early-stopping	0.0407	0.0315
LightGCN our early-stopping	0.0409	0.0317

Table 48. Experimental results for the LightGCN method for the Amazon Book Our Split dataset.

	Cutoff 20	
	Recall	NDCG
Random	0.0002	0.0002
TopPop	0.0093	0.0079
GlobalEffects	0.0002	0.0002
UserKNN CF	0.1396	0.1357
ItemKNN CF	0.1719	0.1680
$P^3\alpha$	0.1688	0.1596
$RP^3\beta$	0.1652	0.1583
GF-CF	0.1543	0.1470
EASE ^R	-	-
SLIM BPR	-	-
SLIM	0.1880	0.1838
NegHOSLIM	-	-
NegHOSLIM (EN)	0.1778	0.1730
MF-BPR	0.0589	0.0518
MF-WARP	0.0555	0.0485
SVDpp	0.0986	0.0818
PureSVD	0.0872	0.0853
NMF	0.0675	0.0655
iALS	0.1157	0.1020
LightFM CF	0.1257	0.1117
MultVAE	0.1373	0.1272
LightGCN original early-stopping	0.0997	0.0862
LightGCN our early-stopping	0.0968	0.0840

Table 49. Experimental results for the LightGCN method for the Yelp 2018 Original Split dataset.

		off 20
	Recall	NDCG
Random	0.0005	0.0004
TopPop	0.0124	0.0101
GlobalEffects	0.0006	0.0004
UserKNN CF	0.0637	0.0533
ItemKNN CF	0.0622	0.0514
$P^3\alpha$	0.0661	0.0548
$RP^3\beta$	0.0672	0.0558
GF-CF	0.0693	0.0568
EASE ^R	-	-
SLIM BPR	-	-
SLIM	0.0646	0.0541
NegHOSLIM	-	-
NegHOSLIM (EN)	0.0590	0.0492
MF-BPR	0.0382	0.0313
MF-WARP	0.0415	0.0339
SVDpp	0.0606	0.0492
PureSVD	0.0537	0.0448
NMF	0.0517	0.0424
iALS	0.0667	0.0546
LightFM CF	0.0592	0.0482
MultVAE	0.0719	0.0590
LightGCN paper	0.0649	0.0530
LightGCN original early-stopping	0.0618	0.0506
LightGCN our early-stopping	0.0621	0.0510

Table 50. Experimental results for the LightGCN method for the Yelp 2018 Our Split dataset.

	Cutoff 20	
	Recall	NDCG
Random	0.0007	0.0005
TopPop	0.0160	0.0130
GlobalEffects	0.0004	0.0003
UserKNN CF	0.0937	0.0811
ItemKNN CF	0.1002	0.0868
$P^3\alpha$	0.1002	0.0864
$RP^3\beta$	0.1029	0.0891
GF-CF	0.1043	0.0893
$EASE^R$	-	-
SLIM BPR	-	-
SLIM	0.0996	0.0866
NegHOSLIM	-	-
NegHOSLIM (EN)	0.0904	0.0778
MF-BPR	0.0525	0.0435
MF-WARP	0.0511	0.0429
SVDpp	0.0841	0.0702
PureSVD	0.0792	0.0689
NMF	0.0701	0.0600
iALS	0.1037	0.0891
LightFM CF	0.0982	0.0837
MultVAE	0.1126	0.0971
LightGCN original early-stopping	0.0942	0.0802
LightGCN our early-stopping	0.0943	0.0803

11 COMPARISON OF THE ANALYZED METHODS OF SIGIR 2022

This section reports the details of the experimental protocol of the comparative analysis between all SIGIR 2022 methods we analyze.

11.1 Datasets

The evaluation is performed on the datasets described and processed as follows, their statistics are reported in Table 51:

Amazon Book: Is a dataset of book purchases on Amazon. The preprocessing applies a 10-cores subgraph selection. The entities for KGCL and HAKG are collected in the same way as KGAT [22].

Yelp2018: Is a business reviews dataset. The preprocessing applies a 10-cores subgraph selection. The entities for KGCL and HAKG are collected in the same way as KGAT [22].

Dataset	Interactions	Items	Users	Sparsity
Amazon Book	846434	24915	70679	0.9995
Yelp2018	1183610	45538	45919	0.9994

Table 51. Datasets statistics for the comparison of the analyzed methods of SIGIR 2022.

11.2 Hyperparameter Ranges

In this section we report the hyperparameter ranges and distribution for all the GNN algorithms we analyze, see Table 52 for the purely collaborative models and Table 53 for those including a Knowledge Base. Notice that some hyperparameters are searched for all models and are labeled as *Common Hyperparameters* in Table 52. Overall, for each model there are between 9 and 16 hyperparameters.

11.3 Results

The values of the optimized hyperparameters for our baselines are reported in Table 54 (Nearest-Neighbor Collaborative), Table 55 (Graph-based), Table 56 (Item-based Machine Learning), Table 57 (Matrix Factorization), and Table 58 (Autoencoder). The values of the optimized hyperparameters for the GNN algorithms we analyze are reported in Table 59 and 60 (Collaborative), and Table 61 (Knowledge Base).

The results for all the datasets and baseline algorithms are reported in 62 (Amazon-Book), and 63 (Yelp2018).

Algorithm	Hyperparameter	Range	Туре	Distribution
	epochs	1000	Categorical	_
	batch size	256, 512, 1024, 2048, 4096	Categorical	-
Common	learning rate	$10^{-6} - 10^{-1}$	Real	log-uniforn
Hyperparameters	embedding size	2 - 350	Integer	uniform
71 1	optimizer	Adam	-	-
	beta	10 ⁻¹ - 10 ⁺²	Real	log-uniforn
	feature type	smoothed, both	Categorical	-
GDE	smooth ratio	$\frac{1}{\min(\text{n_users}, \text{n_items})-1}$ - 0.1	Real	log-uniforr
GDE	rough ratio	$\frac{1}{\min(\text{n_users, n_items})^{-1}} - 0.1$	Real	log-uniforr
	loss type	adaptive, bpr	Categorical	-
	dropout rate	0.1 - 0.9	Real	uniform
	regularization rate	10 ⁻⁶ - 10 ⁻¹	Real	log-unifor
		1 - 6		uniform
	GNN layers K		Integer	uniform
CTN	embedding smoothness weight	$ \begin{array}{c c} 1 - 15 \\ 10^{-6} - 10^{-1} \end{array} $	Integer	
GTN	l2 reg		Real	log-unifor
	dropout rate GTN	0.1 - 0.9	Real	uniform
	dropout rate LightGCN	0.1 - 0.9	Real	uniform
	GNN layers K	1 - 6	Integer	uniform
	HYP layers C	1 - 4	Integer	uniform
	hyperedge size	2, 350	Integer	uniform
HCCF	dropout rate	0.1 - 0.9	Real	uniform
	l2 reg	$10^{-6} - 10^{-1}$	Real	log-unifor
	contrastive loss temperature $ au$	$10^{-2} - 10^{0}$	Real	log-unifor
	contrastive loss weight	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Real	log-unifor
	leaky relu slope			
	GNN layers K	$ \begin{array}{c c} 1 - 6 \\ 10^{-6} - 10^{-1} \end{array} $	Integer	uniform
	l2 reg	$10^{-6} - 10^{-1}$ $10^{-4} - 10^{-1}$	Real	log-unifor
DD (0	template loss weight		Real	log-unifor
INMO	template node ranking metric	degree, sort, page rank	Categorical	c
	dropout rate	0.1 - 0.9	Real	uniform
	template ratio normalization decay	0.1 - 1.0 0.99	Real -	uniform -
	,	<u> </u>	T.	
	GNN layers K	1 - 6	Integer	uniform
	prune threshold β	$10^{-3} - 10^{0}$ $10^{-2} - 10^{0}$	Real	log-unifor
RGCF	contrastive loss temperature τ		Real	log-unifor
	contrastive loss weight	10 ⁻⁷ - 10 ⁻¹	Real	log-unifor
	augmentation ratio	$\begin{array}{c} 0.01 - 0.3 \\ 10^{-6} - 10^{-1} \end{array}$	Real	log-unifor
	l2 reg	1	Real	log-unifor
	GNN layers K	1 - 6	Integer	uniform
0: 007	noise magnitude ϵ	$10^{-2} - 10^{0}$	Real	log-unifor
SimGCL	contrastive loss temperature $ au$	$10^{-2} - 10^{0}$	Real	log-unifor
	contrastive loss weight	$10^{-7} - 10^{-1}$ $10^{-6} - 10^{-1}$	Real Real	log-unifor
	l2 reg	1		
T. 1.00Y	GNN layers K	1 - 6	Integer	uniform
LightGCN	l2 reg	$10^{-6} - 10^{-1}$	Real	log-unifor
	dropout rate	0.1 - 0.9	Real	uniform

Table 52. Hyperparameter ranges and distributions for the purely collaborative GNN models.

Algorithm	Hyperparameter	Range	Туре	Distribution
	GNN layers K	1 - 6	Integer	uniform
	angle loss weight	$10^{-6} - 10^{-1}$	Real	log-uniform
	l2 reg	$10^{-6} - 10^{-1}$	Real	log-uniform
	add KB inverse relation	True, False	Categorical	-
HAKG	dropout rate node	0.1 - 0.9	Real	uniform
	dropout rate mess	0.1 - 0.9	Real	uniform
	dropout rate angle	0.1 - 0.9	Real	uniform
	n negative samples M	100, 500	Integer	uniform
	contrastive loss margin	0.1 - 0.9	Real	uniform
	GNN layers K	1 - 6	Integer	uniform
	contrastive loss temperature $ au$	$10^{-2} - 10^{0}$	Real	log-uniform
	GNN dropout rate	0.1 - 0.9	Real	uniform
	knowledge graph dropout rate	0.1 - 0.9	Real	uniform
KGCL	user interaction dropout rate	0.1 - 0.9	Real	uniform
KGCL	mix ratio	0.1 - 0.9	Real	uniform
	uicontrast	weighted, weighted-mix	Categorical	-
	entities per head	1, 20	Integer	uniform
	l2 reg	$10^{-6} - 10^{-1}$	Real	log-uniform
	self supervised loss weight	$10^{-4} - 10^{-1}$	Real	log-uniform

Table 53. Hyperparameter ranges and distributions for the GNN models that include a knowledge base.

Table 54. Selected hyperparameter values for our Nearest-Neighbor Collaborative baselines.

Algorithm	Hyperparameter	Yelp2018	Amazon-Book
	topK	397	636
	shrink	0	1000
UserKNN CF	similarity	cosine	cosine
	normalize	True	True
	feature weighting	TF-IDF	TF-IDF
	topK	996	1000
	shrink	993	1000
ItemKNN CF	similarity	cosine	cosine
	normalize	True	True
	feature weighting	TF-IDF	TF-IDF

Table 55. Selected hyperparameter values for our Graph-based baselines.

Algorithm	Hyperparameter	Yelp2018	Amazon-Book
P3alpha	topK	401	201
	alpha	0.6278	0.4115
	normalize similarity	False	True
$\mathrm{RP}^3oldsymbol{eta}$	topK	927	680
	alpha	0.3973	0.4485
	beta	0.2520	0.2321
	normalize similarity	False	False
GF-CF	-	-	-

Table 56. Selected hyperparameter values for our Item-based Machine Learning baselines.

Algorithm	Hyperparameter	Yelp2018	Amazon-Book
EASE ^R	l2 norm	-	7.60E+01
	topK	1000	1000
SLIM	l1 ratio	1.15E-03	2.08E-04
	alpha	0.0010	0.0010
	topK	880	733
	epochs	200	420
	symmetric	True	True
SLIM BPR	sgd mode	adagrad	adagrad
	lambda i	1.93E-04	1.00E-05
	lambda j	1.00E-05	1.00E-02
	learning rate	4.50E-02	4.99E-03
NegHOSLIM	=	-	-
	feature pairs n	6	1
	topK	777	1000
NegHOSLIM (EN)	l1 ratio	3.38E-05	1.81E-04
	alpha	0.0273	0.0010

Table 57. Selected hyperparameter values for our Matrix Factorization baselines.

Algorithm	Hyperparameter	Yelp2018	Amazon-Book
	sgd mode	adagrad	adagrad
	epochs	540	1500
	num factors	200	200
MF-BPR	batch size	1024	1024
	positive reg	2.78E-04	2.55E-04
	negative reg	1.00E-02	1.00E-02
	learning rate	4.31E-02	1.00E-01
	sgd mode	adagrad	adagrad
	epochs	845	940
	num factors	196	200
MF-WARP	batch size	1024	1024
MIT-WARE	neg item attempts	20	5
	positive reg	1.00E-02	3.57E-03
	negative reg	1.50E-03	1.00E-02
	learning rate	3.65E-02	6.61E-02
	sgd mode	adam	adam
	epochs	495	445
	use bias	True	False
	batch size	128	8
SVDpp	num factors	193	200
	item reg	1.19E-04	1.91E-03
	user reg	1.87E-04	1.00E-02
	learning rate	1.29E-03	1.56E-03
	negative quota	0.0324	0.0742
PureSVD	num factors	148	350
	num factors	34	323
NMF	solver beta loss	multiplicative update:kullback-leibler	multiplicative update:frobenius
	init type	random	nndsvda
	num factors	200	200
	epochs	30	110
iALS	confidence scaling	linear	linear
IVIN	alpha	20.3787	50.0000
	epsilon	10.0000	0.0125
	reg	1.00E-02	1.00E-05

Table 58. Selected hyperparameter values for our Autoencoder baselines.

Algorithm	Hyperparameter	Yelp2018	Amazon-Book
	epochs	400	500
	learning rate	9.22E-05	3.68E-05
	sgd mode	rmsprop	rmsprop
	l2 reg	1.00E-06	4.89E-05
	dropout	0.6449	0.2031
MultVAE	anneal steps	357709	118728
	anneal cap	0.1076	0.3358
	batch size	1024	256
	encoding size	503	512
	layer size multiplier	6	10
	max n hidden layers	1	4

Table 59. Selected hyperparameter values for the purely collaborative GNN models.

Algorithm	Hyperparameter	Yelp2018	Amazon-Book
	epochs	845	5
	batch size	4096	4096
	learning rate	1.00E-06	1.02E-03
	embedding size	344	168
	sgd mode	adam	adam
GDE	beta	0.1000	3.7201
GDE	feature type	both	both
	drop out	0.9000	0.2956
	reg	1.00E-01	1.63E-04
	smooth ratio	0.0135	0.0040
	rough ratio	0.0021	0.0001
	loss type	bpr	adaptive
	epochs	85	700
	batch size	512	256
	learning rate	6.92E-03	1.21E-04
	embedding size	93	88
OM) I	sgd mode	adam	adam
GTN	GNN layers K	5	4
	embedding smoothness weight	5	7
	l2 reg	2.74E-04	6.73E-05
	dropout rate LightGCN	8.00E-01	1.15E-01
	dropout rate GTN	3.26E-01	2.34E-01
RGCF	-	-	-
	epochs	65	400
	batch size	256	512
	learning rate	8.71E-05	8.93E-06
	embedding size	172	278
	sgd mode	adam	adam
	GNN layers K	2	2
HCCF	HYP layers C	3	1
	hyperedge size	51	350
	dropout	0.1547	0.4043
	contrastive loss weight	0.0080	0.0000
	l2 reg	1.47E-06	1.64E-05
	contrastive loss temperature $ au$	0.4450	0.1365
	leaky relu slope	0.0100	0.0100
	epochs	355	150
	batch size	256	256
	learning rate	2.99E-04	4.28E-04
	embedding size	304	350
	sgd mode	adam	adam
	K	6	4
INMO	l2 reg	1.00E-06	1.89E-05
	template loss weight	0.0709	0.1000
	template node ranking metric	page rank	degree
	dropout	0.3442	0.4744
	template ratio	0.9074	
	normalization decay		0.9264
	normanzanon decay	9.90E-01	9.90E-01

Table 60. Selected hyperparameter values for the purely collaborative GNN models.

Algorithm	Hyperparameter	Yelp2018	Amazon-Book
	epochs	100	20
	batch size	512	2048
	learning rate	1.56E-04	7.68E-04
	embedding size	322	344
SimGCL	sgd mode	adam	adam
SHIIGCL	GNN layers K	6	1
	noise magnitude ϵ	0.0476	0.0379
	contrastive loss temperature $ au$	0.0824	0.1873
	contrastive loss weight	0.1000	0.0755
	l2 reg	7.41E-06	1.12E-05
	epochs	710	530
	batch size	256	256
	learning rate	1.25E-04	2.74E-04
I : ~b+CCNI	embedding size	350	298
LightGCN	sgd mode	adam	adam
	GNN layers K	5	6
	l2 reg	2.65E-05	9.17E-06
	dropout rate	2.28E-01	1.00E-01

Table 61. Selected hyperparameter values for the GNN models that include a knowledge base.

Algorithm	Hyperparameter	Yelp2018	Amazon-Book
HAKG	-	-	-
	epochs	25	630
	batch size	1024	512
	learning rate	1.81E-03	1.43E-04
	sgd mode	adam	adam
	GNN layers K	4	5
	contrastive loss temperature $ au$	0.0342	0.0123
	GNN dropout rate	4.91E-01	3.50E-01
KGCL	knowledge graph dropout rate	4.79E-01	3.39E-01
	user interaction dropout rate	8.38E-01	3.84E-01
	embedding size	211	323
	mix ratio	0.8547	0.7095
	uicontrast	weighted-mix	weighted-mix
	entities per head	20	7
	l2 reg	7.91E-05	1.02E-04
	self supervised loss weight	0.0122	0.0002

Table 62. Experimental results for all analyzed methods of SIGIR 2022 for the Amazon Book dataset.

	Cuto	off 20
	Recall	NDCG
Random	0.0007	0.0003
TopPop	0.0370	0.0168
GlobalEffects	0.0003	0.0001
UserKNN CF	0.2301	0.1371
ItemKNN CF	0.2436	0.1496
$P^3\alpha$	0.2432	0.1459
$RP^3\beta$	0.2474	0.1488
GF-CF	-	-
$EASE^R$	0.2479	0.1543
SLIM BPR	0.2337	0.1399
SLIM	0.2511	0.1563
NegHOSLIM	-	-
NegHOSLIM (EN)	0.2472	0.1536
MF-BPR	0.1633	0.0911
MF-WARP	0.1672	0.0945
SVDpp	0.2163	0.1211
PureSVD	0.1418	0.0862
NMF	0.1262	0.0749
iALS	0.2378	0.1356
MultVAE	0.2485	0.1473
GDE	0.0004	0.0002
GTN	0.1852	0.0996
HAKG	-	-
RGCF	-	-
HCCF	0.1328	0.0651
INMO	0.2511	0.1456
KGCL	0.2425	0.1403
SimGCL	0.2441	0.1412
LightGCN	0.2442	0.1407

Table 63. Experimental results for all analyzed methods of SIGIR 2022 for the Yelp 2018 dataset.

	Cutoff 20		
	Recall	NDCG	
Random	0.0004	0.0003	
TopPop	0.0213	0.0132	
GlobalEffects	0.0004	0.0002	
UserKNN CF	0.0988	0.0668	
ItemKNN CF	0.1057	0.0718	
$P^3\alpha$	0.1033	0.0682	
$RP^3\beta$	0.1043	0.0693	
GF-CF	-	-	
EASE ^R	-	-	
SLIM BPR	0.0989	0.0659	
SLIM	0.1007	0.0700	
NegHOSLIM	-	-	
NegHOSLIM (EN)	0.0994	0.0667	
MF-BPR	0.0556	0.0358	
MF-WARP	0.0600	0.0380	
SVDpp	0.0879	0.0572	
PureSVD	0.0757	0.0512	
NMF	0.0744	0.0479	
iALS	0.1120	0.0750	
MultVAE	0.1188	0.0796	
GDE	0.0834	0.0535	
GTN	0.1000	0.0643	
HAKG	-	-	
RGCF	-	-	
HCCF	0.0610	0.0399	
INMO	0.1219	0.0809	
KGCL	0.1125	0.0745	
SimGCL	0.1222	0.0822	
LightGCN	0.1172	0.0781	

A BASELINE HYPERPARAMETER RANGES

In this section we report the hyperparameter ranges and distribution for all the baselines in our experiments, see Table 64 (Nearest-Neighbor Collaborative and Content-Based), 65 (Graphbased), 66 (Item-based Machine Learning), 67 (Matrix Factorization), 68 (Factorization Machines Collaborative and Hybrid), and 69 (Autoencoder).

Algorithm	Hyperparameter	Range	Type	Distribution
UserKNN, ItemKNN UserKNN CBF ItemKNN CBF	topK shrink similarity normalize ^a feature weighting	5 - 1000 0 - 1000 cosine True, False none, TF-IDF, BM25	Integer Integer Categorical Categorical Categorical	uniform uniform
UserKNN CFCBF ItemKNN CFCBF	topK shrink similarity normalize ^a feature weighting ICM or UCM weight	5 - 1000 0 - 1000 cosine True, False none, TF-IDF, BM25 10 ⁻² - 10 ⁺²	Integer Integer Categorical Categorical Categorical Real	uniform uniform

^aThe *normalize* hyperparameter in KNNs refers to the use of the denominator when computing the similarity. Table 64. Hyperparameter ranges and distributions for our Nearest-Neighbor Collaborative and Content-Based baselines.

Algorithm	Hyperparameter	Range	Туре	Distribution
$P^3\alpha$	topK alpha normalize similarity ^a	5 - 1000 0 - 2 True, False	Integer Real Categorical	uniform uniform
$\mathrm{RP}^3oldsymbol{eta}$	topK alpha beta normalize similarity ^a	5 - 1000 0 - 2 0 - 2 True, False	Integer Real Real Categorical	uniform uniform uniform
GF-CF	topK alpha num factors	5 - 5000 10 ⁻³ - 10 ⁺³ 1 - 350	Integer Real Integer	uniform log-uniform uniform

^aThe *normalize similarity* hyperparameter refers to applying L1 regularization on the rows of the similarity matrix. Table 65. Hyperparameter ranges and distributions for our Graph-based baselines.

Algorithm	Hyperparameter	Range	Туре	Distribution
EASE ^R	l2 norm	10 ⁰ - 10 ⁺⁷	Real	log-uniform
SLIM	topK l1 ratio alpha	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Integer Real Real	uniform log-uniform uniform
SLIM BPR	topK epochs symmetric sgd mode lambda i lambda j learning rate	5 - 1000 1 - 1500 True, False sgd, adam, adagrad 10 ⁻⁵ - 10 ⁻² 10 ⁻⁵ - 10 ⁻² 10 ⁻⁴ - 10 ⁻¹	Integer Integer Categorical Categorical Real Real	uniform early-stopping log-uniform log-uniform log-uniform
NegHOSLIM	epochs feature pairs n lambdaBB lambdaCC rho	$ \begin{array}{r} 1 - 300^{a} \\ 1 - 1000 \\ 1 - 10^{7} \\ 1 - 10^{7} \\ 1 - 10^{7} \end{array} $	Integer Integer Real Real Real	early-stopping uniform log-uniform log-uniform log-uniform
NegHOSLIM (EN)	feature pairs n topK l1 ratio alpha	$ \begin{array}{r} 1 - 1000 \\ 5 - 1000 \\ 10^{-5} - 10^{0} \\ 10^{-3} - 10^{0} \end{array} $	Integer Integer Real Real	uniform uniform log-uniform uniform

^aThe number of epochs is lower due to the algorithm being slower, but converging in a lower number of epochs. Table 66. Hyperparameter ranges and distributions for our Item-based Machine Learning baselines.

Algorithm	Hyperparameter	Range	Type	Distribution
MF-BPR	num factors epochs sgd mode batch size	1 - 200 ^d 1 - 1500 sgd, adam, adagrad 2 ⁰ - 2 ¹⁰ 10 ⁻⁵ - 10 ⁻²	Integer Integer Categorical Integer	uniform early-stopping log-uniform
	positive reg negative reg learning rate	$ \begin{array}{c cccccccccccccccccccccccccccccccccc$	Real Real Real	log-uniform log-uniform log-uniform
MF-WARP	num factors epochs sgd mode batch size	1 - 200 ^d 1 - 1500 sgd, adam, adagrad 2 ⁰ - 2 ¹⁰	Integer Integer Categorical Integer	uniform early-stopping log-uniform
	positive reg negative reg learning rate neg item attempts	$10^{-5} - 10^{-2}$ $10^{-5} - 10^{-2}$ $10^{-4} - 10^{-1}$ 5, 10, 15, 20	Real Real Real Categorical	log-uniform log-uniform log-uniform
SVDpp	num factors epochs use bias sgd mode batch size item reg user reg learning rate	1 - 200 ^a 1 - 500 ^b True, False sgd, adam, adagrad 2 ⁰ - 2 ¹⁰ 10 ⁻⁵ - 10 ⁻² 10 ⁻⁵ - 10 ⁻² 10 ⁻⁴ - 10 ⁻¹	Integer Integer Categorical Categorical Integer Real Real Real	uniform early-stopping log-uniform log-uniform log-uniform log-uniform
PureSVD	negative quota ^c	0.00 - 0.50	Real	uniform uniform
NMF	num factors init type solver beta loss	1 - 350 1 - 350 nndsvda, random mult. update:frobenius, coord. descent:frobenius, coord. descent:kullback-leibler	Integer Integer Categorical Categorical	uniform
iALS	num factors epochs confidence scaling alpha epsilon reg	$ \begin{array}{r} 1 - 200^{d} \\ 1 - 500^{e} \\ \text{linear, log} \\ 10^{-3} - 5 \cdot 10^{+1} f \\ 10^{-3} - 10^{+1} f \\ 10^{-5} - 10^{-2} \end{array} $	Integer Integer Categorical Real Real Real	uniform early-stopping log-uniform log-uniform log-uniform

^aThe number of factors is lower than PureSVD or NFM due to the algorithm being slower.

 $[^]b$ The number of epochs is lower than SLIM BPR or MF BPR due to the algorithm being slower. c The negative quota is the percentage of samples chosen among items unobserved by the user, having a target rating of 0. d The number of factors is lower due to the algorithm being slower.

 $[^]e$ The number of epochs is lower due to the algorithm being slower, but converging in a lower number of epochs. f The maximum value of this hyperparameter had been suggested in the article proposing the algorithm.

Algorithm	Hyperparameter	Range	Туре	Distribution
LightFM CF	epochs n components loss sgd mode learning rate item alpha user alpha	1 - 300 1 - 200 Categorical Categorical Real Real	Integer Integer bpr, warp, warp-kos adagrad, adadelta $10^{-6} - 10^{-1}$ $10^{-5} - 10^{-2}$ $10^{-5} - 10^{-2}$	early-stopping uniform uniform uniform log-uniform log-uniform log-uniform
LightFM ItemHybrid	epochs n components loss sgd mode learning rate item alpha user alpha	1 - 300 1 - 200 Categorical Categorical Real Real Real	Integer Integer bpr, warp, warp-kos adagrad, adadelta $10^{-6} - 10^{-1}$ $10^{-5} - 10^{-2}$ $10^{-5} - 10^{-2}$	early-stopping uniform uniform uniform log-uniform log-uniform log-uniform

Table 68. Hyperparameter ranges and distributions for our Factorization Machines Collaborative and Hybrid baselines.

Algorithm	Hyperparameter	Range	Type	Distribution
Algorithm	epochs learning rate 12 reg dropout annealing steps anneal cap batch size encoding size	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Integer Real Real Real Integer Real Categorical Integer	early-stopping log-uniform log-uniform uniform uniform uniform
	layer size multiplier ^b max n hidden layers	2 - 10 2 - 4	Integer Integer	uniform uniform

 $[^]a$ The number of epochs is lower due to the algorithm being slower, but converging in a lower number of epochs. b This hyperparameter is used to generate the decoder architecture. Starting from the encoding size the size of the next hidden layer is computer as the product of the previous one and the layer multiplier. The process terminates when either the desired number of hidden layers is reached or any further hidden layer added would exceed the size of the input data.

Table 69. Hyperparameter ranges and distributions for our Autoencoder baselines.

REFERENCES

- [1] Robert M Bell and Yehuda Koren. 2007. Improved neighborhood-based collaborative filtering. In KDD Cup and Workshop at the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD '07). 7–14.
- [2] Andrzej Cichocki and Anh Huy Phan. 2009. Fast Local Algorithms for Large Scale Nonnegative Matrix and Tensor Factorizations. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 92-A, 3 (2009), 708-721. https://doi.org/10.1587/ TRANSFUN.E92.A.708
- [3] Paolo Cremonesi, Yehuda Koren, and Roberto Turrin. 2010. Performance of recommender algorithms on top-n recommendation tasks. In Proceedings of the 2010 ACM Conference on Recommender Systems, RecSys 2010, Barcelona, Spain, September 26-30, 2010, Xavier Amatriain, Marc Torrens, Paul Resnick, and Markus Zanker (Eds.). ACM, 39-46. https://doi.org/10.1145/1864708.1864721
- [4] Yuntao Du, Xinjun Zhu, Lu Chen, Baihua Zheng, and Yunjun Gao. 2022. HAKG: Hierarchy-Aware Knowledge Gated Network for Recommendation. In SIGIR '22: The 45th International ACM SIGIR Conference on Research and Development in Information Retrieval, Madrid, Spain, July 11 - 15, 2022, Enrique Amigó, Pablo Castells, Julio Gonzalo, Ben Carterette, J. Shane Culpepper, and Gabriella Kazai (Eds.). ACM, 1390–1400. https://doi.org/10.1145/3477495.3531987
- [5] Wenqi Fan, Xiaorui Liu, Wei Jin, Xiangyu Zhao, Jiliang Tang, and Qing Li. 2022. Graph Trend Filtering Networks for Recommendation. In SIGIR '22: The 45th International ACM SIGIR Conference on Research and Development in Information Retrieval, Madrid, Spain, July 11 - 15, 2022, Enrique Amigó, Pablo Castells, Julio Gonzalo, Ben Carterette, J. Shane Culpepper, and Gabriella Kazai (Eds.). ACM, 112–121. https://doi.org/10.1145/3477495.3531985
- [6] Maurizio Ferrari Dacrema, Simone Boglio, Paolo Cremonesi, and Dietmar Jannach. 2021. A Troubling Analysis of Reproducibility and Progress in Recommender Systems Research. ACM Trans. Inf. Syst. 39, 2 (2021), 20:1–20:49. https://doi.org/10.1145/3434185
- [7] Xiangnan He, Kuan Deng, Xiang Wang, Yan Li, Yong-Dong Zhang, and Meng Wang. 2020. LightGCN: Simplifying and Powering Graph Convolution Network for Recommendation. In Proceedings of the 43rd International ACM SIGIR conference on research and development in Information Retrieval, SIGIR 2020, Virtual Event, China, July 25-30, 2020, Jimmy X. Huang, Yi Chang, Xueqi Cheng, Jaap Kamps, Vanessa Murdock, Ji-Rong Wen, and Yiqun Liu (Eds.). ACM, 639-648. https://doi.org/10.1145/3397271.3401063
- [8] Yifan Hu, Yehuda Koren, and Chris Volinsky. 2008. Collaborative Filtering for Implicit Feedback Datasets. In Proceedings of the 8th IEEE International Conference on Data Mining (ICDM 2008), December 15-19, 2008, Pisa, Italy. IEEE Computer Society, 263–272. https://doi.org/10.1109/ICDM.2008.22
- [9] Lukas Lerche and Dietmar Jannach. 2014. Using graded implicit feedback for bayesian personalized ranking. In Eighth ACM Conference on Recommender Systems, RecSys '14, Foster City, Silicon Valley, CA, USA - October 06 - 10, 2014, Alfred Kobsa, Michelle X. Zhou, Martin Ester, and Yehuda Koren (Eds.). ACM, 353–356. https://doi.org/10.1145/2645710. 2645759
- [10] Dawen Liang, Rahul G. Krishnan, Matthew D. Hoffman, and Tony Jebara. 2018. Variational Autoencoders for Collaborative Filtering. In Proceedings of the 2018 World Wide Web Conference on World Wide Web, WWW 2018, Lyon, France, April 23-27, 2018, Pierre-Antoine Champin, Fabien Gandon, Mounia Lalmas, and Panagiotis G. Ipeirotis (Eds.). ACM, 689-698. https://doi.org/10.1145/3178876.3186150
- [11] Xia Ning and George Karypis. 2011. SLIM: Sparse Linear Methods for Top-N Recommender Systems. In 11th IEEE International Conference on Data Mining, ICDM 2011, Vancouver, BC, Canada, December 11-14, 2011, Diane J. Cook, Jian Pei, Wei Wang, Osmar R. Zaïane, and Xindong Wu (Eds.). IEEE Computer Society, 497–506. https://doi.org/10.1109/ ICDM.2011.134
- [12] Bibek Paudel, Fabian Christoffel, Chris Newell, and Abraham Bernstein. 2017. Updatable, Accurate, Diverse, and Scalable Recommendations for Interactive Applications. ACM Trans. Interact. Intell. Syst. 7, 1 (2017), 1:1–1:34. https://doi.org/10.1145/2955101
- [13] Shaowen Peng, Kazunari Sugiyama, and Tsunenori Mine. 2022. Less is More: Reweighting Important Spectral Graph Features for Recommendation. In SIGIR '22: The 45th International ACM SIGIR Conference on Research and Development in Information Retrieval, Madrid, Spain, July 11 - 15, 2022, Enrique Amigó, Pablo Castells, Julio Gonzalo, Ben Carterette, J. Shane Culpepper, and Gabriella Kazai (Eds.). ACM, 1273–1282. https://doi.org/10.1145/3477495.3532014
- [14] Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-Thieme. 2009. BPR: Bayesian Personalized Ranking from Implicit Feedback. In *UAI 2009, Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence, Montreal, QC, Canada, June 18-21, 2009, Jeff A. Bilmes and Andrew Y. Ng (Eds.).* AUAI Press, 452–461. https://www.auai.org/uai2009/papers/UAI2009_0139_48141db02b9f0b02bc7158819ebfa2c7.pdf
- [15] Paul Resnick, Neophytos Iacovou, Mitesh Suchak, Peter Bergstrom, and John Riedl. 1994. GroupLens: An Open Architecture for Collaborative Filtering of Netnews. In CSCW '94, Proceedings of the Conference on Computer Supported Cooperative Work, Chapel Hill, NC, USA, October 22-26, 1994, John B. Smith, F. Donelson Smith, and Thomas W. Malone (Eds.). ACM, 175–186. https://doi.org/10.1145/192844.192905

- [16] Badrul Munir Sarwar, George Karypis, Joseph A. Konstan, and John Riedl. 2001. Item-based collaborative filtering recommendation algorithms. In *Proceedings of the Tenth International World Wide Web Conference, WWW 10, Hong Kong, China, May 1-5, 2001*, Vincent Y. Shen, Nobuo Saito, Michael R. Lyu, and Mary Ellen Zurko (Eds.). ACM, 285–295. https://doi.org/10.1145/371920.372071
- [17] Yifei Shen, Yongji Wu, Yao Zhang, Caihua Shan, Jun Zhang, Khaled B. Letaief, and Dongsheng Li. 2021. How Powerful is Graph Convolution for Recommendation?. In CIKM '21: The 30th ACM International Conference on Information and Knowledge Management, Virtual Event, Queensland, Australia, November 1 5, 2021, Gianluca Demartini, Guido Zuccon, J. Shane Culpepper, Zi Huang, and Hanghang Tong (Eds.). ACM, 1619–1629. https://doi.org/10.1145/3459637.3482264
- [18] Harald Steck. 2019. Embarrassingly Shallow Autoencoders for Sparse Data. In *The World Wide Web Conference, WWW 2019, San Francisco, CA, USA, May 13-17, 2019*, Ling Liu, Ryen W. White, Amin Mantrach, Fabrizio Silvestri, Julian J. McAuley, Ricardo Baeza-Yates, and Leila Zia (Eds.). ACM, 3251–3257. https://doi.org/10.1145/3308558.3313710
- [19] Harald Steck and Dawen Liang. 2021. Negative Interactions for Improved Collaborative Filtering: Don't go Deeper, go Higher. In RecSys '21: Fifteenth ACM Conference on Recommender Systems, Amsterdam, The Netherlands, 27 September 2021 1 October 2021, Humberto Jesús Corona Pampín, Martha A. Larson, Martijn C. Willemsen, Joseph A. Konstan, Julian J. McAuley, Jean Garcia-Gathright, Bouke Huurnink, and Even Oldridge (Eds.). ACM, 34–43. https://doi.org/10. 1145/3460231.3474273
- [20] Changxin Tian, Yuexiang Xie, Yaliang Li, Nan Yang, and Wayne Xin Zhao. 2022. Learning to Denoise Unreliable Interactions for Graph Collaborative Filtering. In SIGIR '22: The 45th International ACM SIGIR Conference on Research and Development in Information Retrieval, Madrid, Spain, July 11 - 15, 2022, Enrique Amigó, Pablo Castells, Julio Gonzalo, Ben Carterette, J. Shane Culpepper, and Gabriella Kazai (Eds.). ACM, 122-132. https://doi.org/10.1145/3477495.3531889
- [21] Yu Tian, Yuhao Yang, Xudong Ren, Pengfei Wang, Fangzhao Wu, Qian Wang, and Chenliang Li. 2021. Joint Knowledge Pruning and Recurrent Graph Convolution for News Recommendation. In SIGIR '21: The 44th International ACM SIGIR Conference on Research and Development in Information Retrieval, Virtual Event, Canada, July 11-15, 2021, Fernando Diaz, Chirag Shah, Torsten Suel, Pablo Castells, Rosie Jones, and Tetsuya Sakai (Eds.). ACM, 51-60. https://doi.org/10.1145/3404835.3462912
- [22] Xiang Wang, Xiangnan He, Yixin Cao, Meng Liu, and Tat-Seng Chua. 2019. KGAT: Knowledge Graph Attention Network for Recommendation. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, KDD 2019, Anchorage, AK, USA, August 4-8, 2019, Ankur Teredesai, Vipin Kumar, Ying Li, Rómer Rosales, Evimaria Terzi, and George Karypis (Eds.). ACM, 950-958. https://doi.org/10.1145/3292500.3330989
- [23] Yunfan Wu, Qi Cao, Huawei Shen, Shuchang Tao, and Xueqi Cheng. 2022. INMO: A Model-Agnostic and Scalable Module for Inductive Collaborative Filtering. In SIGIR '22: The 45th International ACM SIGIR Conference on Research and Development in Information Retrieval, Madrid, Spain, July 11 - 15, 2022, Enrique Amigó, Pablo Castells, Julio Gonzalo, Ben Carterette, J. Shane Culpepper, and Gabriella Kazai (Eds.). ACM, 91–101. https://doi.org/10.1145/3477495.3532000
- [24] Lianghao Xia, Chao Huang, Yong Xu, Jiashu Zhao, Dawei Yin, and Jimmy X. Huang. 2022. Hypergraph Contrastive Collaborative Filtering. In SIGIR '22: The 45th International ACM SIGIR Conference on Research and Development in Information Retrieval, Madrid, Spain, July 11 - 15, 2022, Enrique Amigó, Pablo Castells, Julio Gonzalo, Ben Carterette, J. Shane Culpepper, and Gabriella Kazai (Eds.). ACM, 70-79. https://doi.org/10.1145/3477495.3532058
- [25] Yuhao Yang, Chao Huang, Lianghao Xia, and Chenliang Li. 2022. Knowledge Graph Contrastive Learning for Recommendation. In SIGIR '22: The 45th International ACM SIGIR Conference on Research and Development in Information Retrieval, Madrid, Spain, July 11 - 15, 2022, Enrique Amigó, Pablo Castells, Julio Gonzalo, Ben Carterette, J. Shane Culpepper, and Gabriella Kazai (Eds.). ACM, 1434–1443. https://doi.org/10.1145/3477495.3532009
- [26] Junliang Yu, Hongzhi Yin, Xin Xia, Tong Chen, Lizhen Cui, and Quoc Viet Hung Nguyen. 2022. Are Graph Augmentations Necessary?: Simple Graph Contrastive Learning for Recommendation. In SIGIR '22: The 45th International ACM SIGIR Conference on Research and Development in Information Retrieval, Madrid, Spain, July 11 15, 2022, Enrique Amigó, Pablo Castells, Julio Gonzalo, Ben Carterette, J. Shane Culpepper, and Gabriella Kazai (Eds.). ACM, 1294–1303. https://doi.org/10.1145/3477495.3531937

Received February 2007; revised March 2009; accepted June 2009