5. (Theoretical) Show that the D^4	f operator is given by:		
$D^4 f(x_j) \cong \frac{f(x_{j+2}) - f(x_{j+2})}{f(x_{j+2})}$	$\frac{-4f(x_{j+1}) + 6f(x_j) - 4f(x_{j-1}) + f(x_{j-2})}{h^4} $ (3.33)		
For this operator, what is the order	ler $(\mathcal{O}(h^k))$ of the approximation?		
Error de ap	proximación en términos	de h	
	$(x_j) - ((f(x_j + 2h) -$	4 f (xj +h) + 6 f	$(x_j) - 4f(x_j-h)$
t f(xj-2h	())/ _K 4		
Expandimos	en series de taylor.	para hallar el	a(h~)
f(xj + 2h)	= f(xj) + 2hf'(xj)	$+ \left(\frac{4h^2}{2l}\right) f''(x_j) +$	$+ \left(8 + \frac{1}{3}\right) \cdot f'''(x_{0}) +$
16 h f (xj			

Rem platamos en la fórmula del error de aproximación.

$$E(h) = \int_{1}^{1/1} (x_{j}) - \left(f(x_{j}) + 2h f'(x_{j}) + \frac{4h^{2}}{2} f''(x_{j}) + \frac{8h^{3}}{6} f'''(x_{j}) + \frac{16h^{4}}{2h} f'''(x_{j}) - 4 (f(x_{j}) + hf'(x_{j}) + \frac{1}{2} f''(x_{j}) + \frac{16h^{4}}{2h} f'''(x_{j}) - 4 (f(x_{j}) + hf'(x_{j}) + \frac{1}{2} f''(x_{j}) - \frac{1}{2} f''(x_{j}) + \frac{1}{2} f''(x_{j}) - \frac{1}{2} f''(x_{j}) - \frac{1}{2} f''(x_{j}) - \frac{1}{2} f''(x_{j}) - \frac{1}{2} f''(x_{j}) + \frac{1}{2} f''(x_{j}) - \frac{1}{2} f''(x_{j}) + \frac{1}{2} f''(x_{j}) + \frac{1}{2} f''(x_{j}) - \frac{1}{2} f''(x_{j}) + \frac{$$

