Kurven und Flächen

Einführung in die Computergrafik

Wiederholung

- Implizite Funktionen
- Interpolation
- Oberflächen-Extraktion
 - Marching Squares (2D)
 - Marching Cubes (3D)

Ausblick

Kurven

Agenda

- Polynomielle Kurven
 - Parametrisierung
 - Monom-Kurve
 - Hermite-Kurve
 - Bézier-Kurve
- Parametrisierte Flächen
- Zusammenfassung

Motivation

- Anwendungsbereich für Kurven und Flächen-Modellierungen:
 - CAD im Maschinenbau
 - Industriedesign (Auto, etc.)
 - Filmindustrie
 - Kamerapfade
 - Animation

Parametrisierung

Parametrisierung

- Abbildung:

$$t \to \mathbb{R}^n, t \in \mathbb{R}$$

- bei uns meist: t aus dem Intervall [0,1]
- Interpretation: t = Schieberegler

Ableitung

- Ableitung f'(t) von f an der Stelle t
 - Vektor u, der die Tangentenrichtung der Kurve an dieser Stelle angibt

Repräsentation von Kurven

- Basisfunktionen:
 - Gewichtsfunktionen für Kontrollpunkte

$$B_i(t): \mathbb{R} \to \mathbb{R}^3$$

- Kontrollpunkte:

$$c_i \in \mathbb{R}^3$$

$$p(t) = \sum_{i=0}^{n} c_i B_i(t) : \mathbf{R} \to \mathbf{R}^3$$

$$B_i(t): \mathbb{R} \to \mathbb{R}^3$$

- Basisfunktion repräsentiert ein (parametrisiertes) Gewicht
- bei Kurven
 - Gewicht für Kontrollpunkt
 - jeder Kontrollpunkt hat eigene Basisfunktion
 - meist: Werte zwischen 0 (kein Einfluss) und 1 (maximaler Einfluss)
- Beispiele

kein Einfluss für t = 0, maximaler Einfluss für t = 1

$$B(t) = 0.3$$

Einfluss konstant 0.3 (unabhängig von t)

$$B(t) = (t-1)^2$$

maximaler Einfluss für t=0, kein Einfluss für t = 1, Einfluss schwindet zu Beginn stärker

- lineare Interpolation
 - Spezialfall einer Kurve: zwei Kontrollpunkte, Basisfunktion
- generell bei Kurven
 - Kurvenwert ergibt sich als gewichtete Summe (durch Basisfunktionen) der Kontrollpunkte

jeder Kurvenpunkt = Summe der gewichteten Kontrollpunkte, Gewichte durch t bestimmt

Übung: Basisfunktionen

- Gegeben sind die drei Kontrollpunkte co bis c2
- und die drei Basisfunktionen B₀ bis B₂
- Wie sieht die resultierende Kurve aus?

- Monom-Kurve vom Grad n in Rn:

$$p:[a,b] \to \mathbf{R}^n, p(t) = c_0 + c_1 t + c_2 t^2 + \dots + c_n t^n, c_i \in \mathbf{R}$$

- Monome 1, t, t², ..., tⁿ bilden eine Basis

- geometrische Bedeutung der Koeffizienten?

$$p:[a,b] \to \mathbf{R}^{d}, p(t) = c_{0} + c_{1}t + c_{2}t^{2} + \dots + c_{n}t^{n}, c_{i} \in \mathbf{R}$$

$$c_{0} = p(0)$$

$$c_{1} = p'(0)$$

$$c_{2} = \frac{1}{2}p''(0)$$

$$c_{k} = \frac{1}{k!}p^{(k)}(0)$$

- Koeffizienten bestimmen Ableitungen an der Stelle 0 der Kurve
- Modellieren von Kurven ist mit Hilfe dieser Koeffizienten praktisch unmöglich

Tangente

- Richtung der Kurve in jedem Punkt
- Berechnung durch Ableitung nach Parameter t
- Tangente ist ein Vektor
 - Kontrollpunkte aus R² → Tangente 2D-Vektor
 - Kontrollpunkte aus $R^3 \rightarrow Tangente 3D-Vektor$
- Beispiel: Monomkurve vom Grad 1

-
$$p(t) = c_0 + c_1 * t$$

-
$$p'(t) = c_1$$

Tangente (orange) an Kurve

Berechnung der Tangenten

- Tangente T
- Hinweis: Länge der Tangente gibt Geschwindigkeit an
 - hängt von Parametrisierung ab
 - zur Darstellung ggf. normieren
- Möglichkeit 1: Ableitung der Kurvenfunktion nach t:

$$T(t) = p'(t)$$

- Möglichkeit 2: Falls analytische Berechnung der Ableitung nicht möglich:
 - Differenzenquotienten (h klein, z.B. h=10⁻⁵)

$$T(t) = \frac{p(t+h) - p(t)}{h}$$

Interpolation

- Gegeben: Liste von Punkten $x_0, x_1, ..., x_n$
- Gesucht: Kurve vom Grad n, die die Punkte interpoliert
- Idee:
 - jedem Punkt x_i wird t-Wert zugeordnet (äquidistante Aufteilung)
 - Finden der notwendigen Kontrollpunkte c_i durch Lösung eines linearen Gleichungssystems

$$x_i = p(i\Delta t) = c_0 + c_1 i\Delta t + c_2 (i\Delta t)^2 + ... + c_n (i\Delta t)^n$$

Interpolation

- daraus ergibt sich das lineare Gleichungssystem:

$$x_{0} = c_{0}$$

$$x_{1} = c_{0} + c_{1}\Delta t + c_{2}(\Delta t)^{2} + \dots + c_{n}(\Delta t)^{n}$$

$$x_{2} = c_{0} + c_{1}2\Delta t + c_{2}(2\Delta t)^{2} + \dots + c_{n}(2\Delta t)^{n}$$

$$\dots$$

$$x_{n} = c_{0} + c_{1} + c_{2} + \dots + c_{n}$$

- also:

$$\begin{pmatrix} 1 & 0 & 0 & \dots & 0 \\ 1 & \Delta t & (\Delta t)^2 & \dots & (\Delta t)^n \\ 1 & 2\Delta t & (2\Delta t)^2 & \dots & (2\Delta t)^n \\ \vdots & & & \vdots & \\ 1 & 1 & 1 & \dots & 1 \end{pmatrix} \begin{pmatrix} c_0 \\ c_i \\ c_2 \\ \vdots \\ c_n \end{pmatrix} = \begin{pmatrix} x_0 \\ x_i \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$$

- oder:

$$Ac = x$$
 und damit $c = A^-1x$

Übung: Monom-Kurve

- Bestimmen Sie die Ableitung einer Monomkurve vom Grad 3 an der Parameterstelle 0.5. Die Kontrollpunkte sind mit c_i bezeichnet.
- **Hinweis**: Das Ergebnis hängt immer noch von den (variablen) Kontrollpunkten c_i ab.

Hermite-Kurve

Hermite-Kurve

Hermite-Kurve

- die Kurve $p(t) = c_0 \cdot H_0^3(t) + c_1 \cdot H_1^3(t) + c_2 \cdot H_2^3(t) + c_3 \cdot H_3^3(t)$ heißt Hermite-Kurve
- alternative Notation (siehe Abbildung)
 - $c_0 = p_0$, $c_1 = m_0$, $c_2 = m_1$, $c_3 = p_1$
- die Koeffizienten 0 und 3 sind Punkte (p_0 , p_1), die Koeffizienten 1 und 2 Ableitungen (m_0 , m_1) in diesen Punkten

- neben Punkten auch Ableitungen (Tangentenvektoren) interpolieren
 - Hermite-Basis
 - im kubischen Fall: vier Basisfunktionen über [0,1]:

$$H_0^3(t) = (1-t)^2(1+2t)$$

$$H_1^3(t) = t(1-t)^2$$

$$H_2^3(t) = -t^2(1-t)$$

$$H_3^3(t) = (3-2t)t^2$$

- Betrachten wir t = 0
 - $-H_0^3(t)$ hat den Wert 1, alle anderen Basisfunktionen 0
 - → Interpolation von p0 (c0)
 - Ableitung $H_1^{3'}(t)$ hat den Wert 1, Ableitungen aller anderen Basisfunktionen 0
 - → Ableitung entspricht m0(c1)

$$p(t) = p_0 \cdot H_0^3(t) + m_0 \cdot H_1^3(t) + m_1 \cdot H_2^3(t) + p_1 \cdot H_3^3(t)$$

- Betrachten wir t = 1
- analoge Argumentation:
 - Interpolation p_1 (c₃) wegen $H_3^3(t)$
 - Ableitung m₁ (c₂) wegen

$$H_2^{3'}(t)$$

$$p(t) = p_0 \cdot H_0^3(t) + m_0 \cdot H_1^3(t) + m_1 \cdot H_2^3(t) + p_1 \cdot H_3^3(t)$$

Zusammenfassung

- Hermite-Kurve

$$p(t) = c_0 \cdot H_0^3(t) + c_1 \cdot H_1^3(t) + c_2 \cdot H_2^3(t) + c_3 \cdot H_3^3(t)$$
$$p(t) = p_0 \cdot H_0^3(t) + m_0 \cdot H_1^3(t) + m_1 \cdot H_2^3(t) + p_1 \cdot H_3^3(t)$$

- Startpunkt-Interpolation bei co
- Endpunkt-Interpolation bei c₃
- Tangente am Startpunkt: c₁
- Tangente am Endpunkt: c2

Übung: Hermite-Kurve

- Skizzieren Sie den Verlauf der Hermite-Kurve mit folgenden Kontrollpunkten
 - $p_0 = (0,0,0)$
 - $p_1 = (1,1,0)$
 - Tangente m_0 an $p_0 = (1,0,0)$
 - Tangente m_1 an $p_1 = (-1,0,0)$

- Interpolation vs. Approximation

Interpolation

Approximation

- Basisfunktionen: $B_i^n(t)$
- Grad der Kurve: n
- Kontrollpunkte: ci

$$p(t) = \sum_{i=0}^{n} c_i \cdot B_i^n(t)$$

- Bezierkurve
 - approximiert die Kontrollpunkte 1 ... n-1
 - interpoliert die Kontrollpunkt 0 und n

die Polynome

$$B_i^n(t) = \binom{n}{i} t^i (1-t)^{n-i}, t \in [0,1]$$

heißen Bernsteinpolynome über dem Intervall [0,1] vom Grad n und bilden eine Basis des (n+1)dimensionalen Polynom-Raums

 sie können aus den binomischen Formeln entwickelt werden:

$$1 = (t + (1 - t))^n = \sum_{i=0}^n \binom{n}{i} t^i (1 - t)^{n-i}, t \in [0, 1]$$
$$\binom{n}{i} = \frac{n!}{i!(n-i)}$$

Eigenschaften

- Partition der Eins:
$$\sum_{i=0}^{n} B_i^n(t) = 1$$

- Positivität:
$$B_i^n(t) > 0, t \in [0,1]$$

- Symmetrie:
$$B_i^n(t) = B_{n-i}^n(1-t)$$

Bézier-Kurve

- Beispiel

$$p(t) = \sum_{i=0}^{n} c_i \cdot B_i^n(t)$$

Eigenschaft: Konvexe Hülle

- Kurve liegt in der konvexen Hülle des Kontrollpolygons

Eigenschaft: Tangente an Start- und Endpunkt

- Kurve verläuft durch Anfangs- und Endpunkt
- es gilt $t(0) = c_0$, $t(1) = c_n$
- für die Ableitungen in den Anfangs- und Endpunkten gilt

$$p'(0) = n(c_1 - c_0)$$
$$p'(1) = n(c_n - c_{n-1})$$

- d.h. Tangente
 - an c₀: parallel zum ersten Segment des Kontrollpolygons
 - an c₁: parallel zum letzten Segment des Kontrollpolygons

Übung: Bezier-Kurve

- Wie müssen die Kontrollpunkte einer Bezier-Kurve vom Grad 3 lauten, damit die folgenden Eigenschaften erfüllt sind?
 - Startpunkt: (0,0,0)
 - Endpunkt: (1,2,3)
 - Ableitung am Startpunkt: (1,1,0)
 - Ableitung am Endpunkt: (1,-1,-1)

Limitationen (gilt für alle Kurven)

- Interpolation/Approximation von vielen Punkten
 - hoher Grad der Kurve
 - Überschwingungen
- Lösung: Splines

- Zusammensetzen mehrere Kurven von kleinem Grad
- Erzeugen glatter Übergänge
- erster Schritt: mehrere Segmente von Hermite-Kurven
 - Endpunkt Segment n = Startpunkt Segment n+1
 - Tangente Endpunkt Segment n = Tangente Startpunkt Segment n+1
- Verallgemeinerung
 - Splines mit eigenen Basisfunktionen
 - lokal wird damit nur eine Kurven niedrigen Grades verwendet
 - Splines aus Basis von Bezierkurven: B-Splines

Übung: Bezierkurve

- Gesucht ist ein Bezier-Spline vom Grad 3 mit folgenden Eigenschaften:
 - Interpolation in den Punkten $p_0 = (1,2)$, $p_1 = (3,2)$ und $p_2 = (5,2)$
 - stetiger Übergang von der ersten Bezierkurve in die zweite an p₁
 - Kurvenverlauf in etwa wie in der Skizze
- Aufgabe: Geben Sie dazu eine Liste von Kontrollpunkten an

Parametrisierte Flächen

Parametrisierte Flächen

- Abbildung

$$(u,v) \to \mathbb{R}^n, (u,v) \in \mathbb{R} \times \mathbb{R}$$

- also: zwei Parameter anstelle von einem (t)
- Parametergebiet:

$$D = [a,b] \times [c,d] \text{ oder } D = [0,1]^2$$

Tensorproduktflächen

- zwei verschachtelte Kurven: u-Richtung + v-Richtung
- Kontrollnetz statt Kontrollpolygon
- kombinierte Kurve:

Tangenten

- an jedem Punkt S(u,v)
 - zwei Tangenten (u-Tangente und v-Tangente)
 - Berechnung durch partielle Ableitungen

$$S_v(u,v) = \frac{\partial S(u,v)}{\partial v}$$

$$S_u(u,v) = \frac{\partial S(u,v)}{\partial u}$$

Normale am Punkt S(u,v) =Kreuzprodukt aus Tangenten

Beispiel

- Monom-Basisfunktionen vom Grad 1

$$F_i^1(u) = u^i$$
$$G_j^1(v) = v^j$$

- Fläche

$$S(u, v) = \sum_{i=0}^{1} \sum_{j=0}^{1} c_{ij} \cdot u^{i} \cdot v^{j}$$

- Tangenten

$$S(u,v) = c_{00} + c_{01} \cdot v + c_{10} \cdot u + c_{11} \cdot uv$$

$$S_u(u, v) = c_{10} + c_{11} \cdot v$$

$$S_v(u,v) = c_{01} + c_{11} \cdot u$$

Erinnerung:

$$S_u(u, v) = \sum_{i=0}^{1} \sum_{j=0}^{1} c_{ij} \cdot F_i^n(u) \cdot G_j^m(v)$$

Zusammenfassung

- Polynomielle Kurven
 - Parametrisierung
 - Monom-Kurve
 - Hermite-Kurve
 - Bézier-Kurve
- Parametrisierte Flächen

Quellen

- Die Folien basieren auch auf Vorlesungsfolien von Prof. Dr. Stefan Gumhold (Technische Universität Dresden) und Prof. Dr. Wolfgang Straßer (Universität Tübingen, emeritiert)