

Machine Learning Approaches for Electricity Markets Trading (EPEX spot)

EKAPOPE VIRIYAKOVITHYA, YEN-CHUN LIU, SAEED MIRZAEE, NITESH SHANBHAG

Introduction | French Electricity Market

What is the electricity market?

Where do they trade?

What is EPEX?

Electricity power sources in France?

Introduction | Market Design | Day Ahead Market

One day before delivery

Submit orders until 12 a.m. day-ahead

Introduction | Market Design | Intraday Market

Trade on delivery day

Continuous market

Introduction | Managerial Problems

How can we trade between the Day Ahead and Intraday Market and make profit?

What drives prices? Is it possible to find patterns?

Introduction | Trading Strategy

Buy day ahead Sell intraday **Predicting model** INTRADAY > DAY AHEAD No trading

Introduction | Financial Metrics

Price difference = Intraday price — Day ahead price

Trading fee = 0.16 * Number of trades

Model Gain/Loss = Trade With Model - Without Model

Introduction | Model Profit/Loss Example

TIME	MONDAY DAY AHEAD	TUESDAY INTRADAY	PRICE DIFF
14:00	10	15	5
15:00	20 30		10
16:00	20	35	15
17:00	10	10	0
18:00	10	5	-5
19:00	15	5	-10

Gain/Loss (Without using model)

15 - 0.96 = **14.04** €

Introduction | Model Profit/Loss Example

TIME	MONDAY DAY AHEAD	TUESDAY INTRADAY	PRICE DIFF	
14:00	10	15	5	
15:00	20	30	10	
16:00	20	35	15	
17:00	10	10	0	
18:00	10	5	-5	
19:00	15	5	-10	

Gain/Loss (Without using model)

Gain/Loss (Using model)

Model Gain/Loss = 10.64 €

Introduction | Data Sources

> epexspot

France & Germany

France Holiday data

Introduction | Variables

Date & Time (7 variables)

Holidays, Hour of day, Day of Week, Week of year, ...

Weather (171 variables)
Temperature, Pressure, Total Snow, Wind Speed, ...

Lagged Price Differences & Intraday & Dayahead Price (42 variables)

Lagged prices for French and German markets [24, 48, 72,..., 168 hours]

Methodology

Goal: Predicting if the Price Difference is positive in the next 1 month

2014	2015	2016	2017	2018
	Train	Validation	Test	

Walk-Forward Validation Rolling Forward Timeline on 2017 and 2018

Methodology | Target Variable Definition

	Model	Threshold	Price Difference (€)
ſ	1	> 0.0 SD	> 0.32 €
_	2	> 0.5 SD	> 3.48 €
	3	> 1.0 SD	> 6.64 €
	4	4 > 1.5 SD > 9.80 €	
	5	> 2.0 SD	> 12.67 €
	6	> 2.5 SD	> 16.13 €
	7	> 3.0 SD	> 19.30 €

Example: Model 1

Price Difference > 0.32 €

X1,X2,X3,	Price Difference (€)	Target
,,	2.96	1
,,	0.73	1
,,	-10.35	0
,,	7.06	1

Methodology | Target Variable Definition

Model	Threshold	Price Difference (€)			
1	> 0.0 SD	> 0.32 €			
2	> 0.5 SD	> 3.48 €			
3	> 1.0 SD	> 6.64 €			
4	> 1.5 SD	> 9.80 €			
5	> 2.0 SD	> 12.67 €			
6	> 2.5 SD	> 16.13 €			
7	> 3.0 SD	> 19.30 €			
7	> 3.0 SD				

Example: Model 3

Price Difference > 6.64 €

X1,X2,X3,	Price Difference (€)	Target
,,	2.96	0
,,	0.73	0
,,	-10.35	0
,,	7.06	1

Methodology | Target Variable Definition

Notice imbalanced classes problem! (0 SD & 1 SD)

Random Over Sampling, SMOTE, ...

Results | Baseline (without model) – 2017

Strategy:

For every hour block in 2017

Buy in Day Ahead Market, Sell in Intraday Market

Trading volume 1 MWh

Total number of transactions = 8,752 trades

Total gain/loss (without model) = 3,009.85 €

Results | Select Best Model on Validation set – 2017

All models were trained with:

- 7 Different target thresholds
- Random Oversampling technique

Best result for each algorithm

Model	Average AUC	Annual Gain (€)
Logistic Regression	0.54	3,552.80
Random Forest	0.53	2,738.46
Extreme Gradient Boosting	0.52	3,714.92
Light Gradient Boosting Machine	0.56	4,522.23

Model result 4,522.23 €

<u>Baseline</u> 3,009.85 €

Model Gain 1,512.38 €

51% more profit than baseline

Results | Select Best Model on Validation set – 2017

Closer look into Light Gradient Boosting Machine results

Model	Threshold	Average AUC	Profit (€)
1	> 0.0 SD	0.56	1,512.38
2	> 0.5 SD	0.53	586.16
3	> 1.0 SD	0.59	1,125.68
4	> 1.5 SD	0.56	925.19
5	> 2.0 SD	0.61	112.33
6	> 2.5 SD	0.70	1,110.16
7	> 3.0 SD	0.60	314.64

Results | Evaluation Best Model on Test Set – 2018

Results | Evaluation Best Model on Test Set – 2018

Closer look on Positive Predictions

Number of Trades the Model Predicted Correctly

True Positives : 2112

Number of Trades the Model Predicted Wrong

False Positives: 1640

Results | Evaluation Best Model on Test Set – 2018

	Baseline	Model
total trades	8752	3752
total gain	€ 5,117.69	€ 7,542.06

Apply to test data of year 2018, it proved that using model helped increase 47% profit compare to baseline without the model.

Variable Importance | Maximum Temperature

When max temperature moves close to 5 degC

Price difference **rises**

Variable Importance | Number of Sun Hours

When total sun hour moves closes to 4 hours/day

Price difference rises

Variable Importance | Pressure

Positive targets increases

When pressure in Marseille goes **below** 990 millibar

Model Usage

Retrain the model monthly and predict the target daily

Take action based on the predicted result daily

Model assumption is based on 1 MWh volume

Make sure not to disturb the market equilibrium!

Conclusion

Implementation of the prediction model helps increase profits by 47% in 2018 for trading in the French electricity market.

Combining weather data with historical EPEX data helps to find price difference patterns between intraday and day ahead.

Thank You!

Appendix | Models Performance on Validation – 2017

4 Different Models/Algorithms

Model	Average AUC	Annual Gain (€)	Threshold	Target Incidence (%)	True Positive	False Positive	True Negative	False Negative	Total Trades	Profit (€)
Logistic Regression	0.54	3,552.80	> 0.5 SD	21.4%	860	2083	4793	1016	2943	542.95
Random Forest	0.53	2,738.46	> 0 SD	48.6%	1629	1366	3128	2629	2995	(271.39)
Extreme Gradient Boosting	0.52	3,714.92	> 0.5 SD	21.4%	376	670	6206	1500	1046	705.07
Light Gradient Boosting Machine	0.56	4,522.23	> 0 SD	48.6%	2172	1726	2768	2086	3898	1,512.38

Appendix | Models Performance on Validation – 2017

Light GBM Model – 7 Different Target Thresholds

Model	Threshold	Target Incidence (%)	Average AUC	Profit (€)	True Positive	False Positive	True Negative	False Negative
1	> 0.0 SD	48.6%	0.56	1,512.38	2,172	1,726	2,768	2,086
2	> 0.5 SD	21.4%	0.53	586.16	882	2,190	4,686	994
3	> 1.0 SD	8.7%	0.59	1,125.68	498	2,605	5,387	262
4	> 1.5 SD	4.6%	0.56	925.19	276	2,516	5,834	126
5	> 2.0 SD	2.5%	0.61	112.33	160	2,412	6,124	56
6	> 2.5 SD	1.5%	0.70	1,110.16	118	2,080	6,469	37
7	> 3.0 SD	1.1%	0.60	314.64	61	1,580	7,027	36

Appendix | Models Performance on Validation – 2017

Month

€ 2,000

€ 1,500

€ 1,000

€ 500

€ 0

-€ 500

12

Appendix | Best Model Performance by Month on Test – 2018

Light GBM Model

Target Threshold > 0.0 SD

Month	Target Incidence (%)	AUC Score	True Positive	False Positive	True Negative	False Negative	Total Trades	Profit (€)
1	58.74%	0.52	247	161	146	190	408	(162.20)
2	59.08%	0.49	347	247	28	50	594	(122.37)
3	52.10%	0.61	218	126	227	166	344	(110.61)
4	48.82%	0.52	69	56	312	282	125	(94.37)
5	49.46%	0.52	148	134	242	220	282	(96.27)
6	42.92%	0.53	195	235	176	114	430	155.35
7	50.27%	0.61	189	104	266	185	293	150.85
8	41.80%	0.68	248	193	240	63	441	775.02
9	48.33%	0.56	97	60	312	251	157	397.74
10	42.74%	0.46	41	92	334	277	133	90.77
11	39.03%	0.59	125	115	324	156	240	600.39
12	48.52%	0.61	188	117	266	173	305	840.07
Total			2112	1640	2873	2127	3752	2,424.37

Appendix | Variable Importance | Maximum Temperature

Positive targets increase

When the maximum temperature in Lille are below 5 or above 25 degC

Appendix | Variable Importance | Number of Sun Hours

Higher % targets

When the **number of sun hours in Lille** are around

3.5, 11.8, 12.5, 14.8 hours.

Appendix | Variable Importance | Wind Direction

Lower % targets

When the wind direction in Marseille are between

0-70 degree, at 10-23 hr 150-250 degree, at 22-08 hr