#### ECE30030/ITP30010 – Database Systems

## Relational Data

Reading: Chapter 1-2

#### **Charmgil Hong**

charmgil@handong.edu

Spring, 2023 Handong Global University



# Agenda

- R-DBMS
- Relational Data Model

- Database
  - Organized collection of inter-related data that models some aspect of the real-world (A. Pavlo)
    - Things related are laid together; c.f., files are not like this
- Database system: Informal definition



Magnetic tapes (storage)

- Database
  - Organized collection of inter-related data that models some aspect of the real-world (A. Pavlo)
    - Things related are laid together; c.f., files are not like this
- Database system: Informal definition



IĤ

<sup>\*</sup> Image src: https://www.iconfinder.com/icons/4263530/disk\_drive\_gray\_ssd\_icon; https://pixabay.com/vectors/hdd-hard-disk-drive-disk-hard-disk\_154463/

- Database
  - Organized collection of inter-related data that models some aspect of the real-world (A. Pavlo)
    - Things related are laid together; c.f., files are not like this
- Database system: Informal definition



File System

- Flat file strawman
  - Store a database as comma-separated value (CSV) files
  - Manage the CSV files using our own code
    - Use a separate file per entity
    - The applications have to parse the CSV files each time they want to read or update records

- Database
  - Organized collection of inter-related data that models some aspect of the real-world (A. Pavlo)
    - Things related are laid together; c.f., files are not like this
- Database system: Informal definition



File System

- Flat file strawman
  - Issue: data integrity
    - How to examine the validity of the values?
  - Issue: implementation
    - How to find a particular record?
    - How to write a new application that uses the same data
  - Issue: durability
    - What if the machine crashes while file writing?



- Database
  - Organized collection of inter-related data that models some aspect of the real-world (A. Pavlo)
    - Things related are laid together; c.f., files are not like this
- Database system: Informal definition





- Database management system (DBMS)
  - Software that allows applications to store and analyze information in a database
    - Access data without worrying about the file I/O-level details
  - A general-purpose DBMS is designed to allow the definition, creation, querying, update, and administration of databases

- DBMS as a data storage
  - Database abstraction to avoid low-level implementation and maintenance chores
    - Store database in simple data structures
    - Access data through high-level language
  - Database abstraction does not include:
    - How to implement the storage, relations, ...
    - Clear separation between logical vs. physical layers
- DBMS as an interface
  - Data definition language (DDL)
  - Data manipulation language (DML)
  - → Structured query language (SQL) includes both DDL and DML

# Agenda

- R-DBMS
- Relational Data Model

### Data Model

- Data model: A notion for describing data or information
  - Data model consists of three parts:
    - Structure
    - Operations
    - Constraints
  - Examples
    - Relational data model: the most conventional ← main focus of the course!
    - NoSQL
      - Key/value
      - Graph
      - Document
      - Column-family
    - Machine learning
      - Array/matrix
    - Misc.: hierarchical, network

### Relational Data Model

 Relational data model: A data model describes data in terms of relations

- Relation
  - An unordered set that contains the relationship of attributes that represent entities

## Relation (Table)

- Attribute (column)
  - Attribute values are required to be atomic (indivisible data type)
    - String is an atomic data type in most database systems
  - The set of allowed values for each attribute is called the domain of the attribute
  - NULL is a member of every domain, indicating that the value is "unknown"
    - The NULL values cause complications in many operations
- Tuple (row)
  - A tuple is a set of attribute values (also known as its domain) in the relation
  - Each tuple has one value for each attribute of the relation
  - Values are (normally) atomic/scalar

## Example: a Relation

• *n*-ary relation = table with *n* columns

| IP ID | <b>‡</b> | ∎ name ‡   | dept_name ‡ | ∥≣ salary ‡ |
|-------|----------|------------|-------------|-------------|
| 10101 |          | Srinivasan | Comp. Sci.  | 65000.00    |
| 12121 |          | Wu         | Finance     | 90000.00    |
| 15151 |          | Mozart     | Music       | 40000.00    |
| 22222 |          | Einstein   | Physics     | 95000.00    |
| 32343 |          | El Said    | History     | 60000.00    |
| 33456 |          | Gold       | Physics     | 87000.00    |
| 45565 |          | Katz       | Comp. Sci.  | 75000.00    |
| 58583 |          | Califieri  | History     | 62000.00    |
| 76543 |          | Singh      | Finance     | 80000.00    |
| 76766 |          | Crick      | Biology     | 72000.00    |
| 83821 |          | Brandt     | Comp. Sci.  | 92000.00    |
| 98345 |          | Kim        | Elec. Eng.  | 80000.00    |

## Example: a Relation

• *n*-ary relation = table with *n* columns

| ID \$ | name 💠     | dept_name   dept_name | ≣ salary ‡ |
|-------|------------|-----------------------|------------|
| 10101 | Srinivasan | Comp. Sci.            | 65000.00   |
| 12121 | Wu         | Finance               | 90000.00   |
| 15151 | Mozart     | Music                 | 40000.00   |
| 22222 | Einstein   | Physics               | 95000.00   |
| 32343 | El Said    | History               | 60000.00   |
| 33456 | Gold       | Physics               | 87000.00   |
| 45565 | Katz       | Comp. Sci.            | 75000.00   |
| 58583 | Califieri  | History               | 62000.00   |
| 76543 | Singh      | Finance               | 80000.00   |
| 76766 | Crick      | Biology               | 72000.00   |
| 83821 | Brandt     | Comp. Sci.            | 92000.00   |
| 98345 | Kim        | Elec. Eng.            | 80000.00   |

4 attributes (columns)

## Example: a Relation

• *n*-ary relation = table with *n* columns

Header



12 tuples (rows, or records)

| IP ID | <b>‡</b> | ∎ name ‡   | dept_name ‡ | salary ‡ |
|-------|----------|------------|-------------|----------|
| 10101 |          | Srinivasan | Comp. Sci.  | 65000.00 |
| 12121 |          | Wu         | Finance     | 90000.00 |
| 15151 |          | Mozart     | Music       | 40000.00 |
| 22222 |          | Einstein   | Physics     | 95000.00 |
| 32343 |          | El Said    | History     | 60000.00 |
| 33456 |          | Gold       | Physics     | 87000.00 |
| 45565 |          | Katz       | Comp. Sci.  | 75000.00 |
| 58583 |          | Califieri  | History     | 62000.00 |
| 76543 |          | Singh      | Finance     | 80000.00 |
| 76766 |          | Crick      | Biology     | 72000.00 |
| 83821 |          | Brandt     | Comp. Sci.  | 92000.00 |
| 98345 |          | Kim        | Elec. Eng.  | 80000.00 |

## Relation (Table)

- Attribute (column)
  - Attribute values are required to be atomic (indivisible data type)
    - String is an atomic data type in most database systems
  - The set of allowed values for each attribute is called the domain of the attribute
  - NULL is a member of every domain, indicating that the value is "unknown"
    - The NULL values cause complications in many operations
- Tuple (row)
  - A tuple is a set of attribute values (also known as its domain) in the relation
  - Each tuple has one value for each attribute of the relation
  - Values are (normally) atomic/scalar

## Relation (Table)

- Relations are unordered: Order of tuples is irrelevant (tuples may be stored in an arbitrary order)
  - Example

| ₽ ID  | <b>‡</b> | ∎ name ‡   | dept_name ‡ | salary ‡ |
|-------|----------|------------|-------------|----------|
| 10101 |          | Srinivasan | Comp. Sci.  | 65000.00 |
| 12121 |          | Wu         | Finance     | 90000.00 |
| 15151 |          | Mozart     | Music       | 40000.00 |
| 22222 |          | Einstein   | Physics     | 95000.00 |
| 32343 |          | El Said    | History     | 60000.00 |
| 33456 |          | Gold       | Physics     | 87000.00 |
| 45565 |          | Katz       | Comp. Sci.  | 75000.00 |
| 58583 |          | Califieri  | History     | 62000.00 |
| 76543 |          | Singh      | Finance     | 80000.00 |
| 76766 |          | Crick      | Biology     | 72000.00 |
| 83821 |          | Brandt     | Comp. Sci.  | 92000.00 |
| 98345 |          | Kim        | Elec. Eng.  | 80000.00 |



#### **Notations**

Using a table



Using a set notation

Structure: instructor(ID, name, dept\_name, salary),

Tuples: (76766, Crick, Biology, 72000.00), (83821, Brandt, Comp. Sci., 92000.00), (45565, Katz, Comp. Sci., 75000.00)

- Mathematically, sets do not have orders nor duplicates
- However, we implicitly treat them as ordered sets
  - (76766, Crick, Biology, 72000.00) != (72000.00, Biology, Crick, 76766)

### Keys

- Key
  - One type of constraints
  - One or more attributes form a key
  - A key for a relation → do NOT allow duplicates of the same values of the key attributes

## **Primary Keys**

- A relation's primary key uniquely identifies a single tuple
- Some DBMSs automatically create an internal primary key if you do not define one
  - E.g., SQL:2003 (SEQUENCE), MySQL (AUTO\_INCREMENT)
- Example
  - instructor(<u>ID</u>, name, dept\_name, salary)



### Foreign Keys

- A foreign key specifies that an attribute from one relation has to map to a tuple in another relation
  - Value in one relation must appear in another relation
    - Referencing relation → Referenced relation
- Example





#### **Relation: department**

| dept_name  | <b>‡</b> | <b>■</b> building | <b>‡</b> | ∥≣ budget ‡ |
|------------|----------|-------------------|----------|-------------|
| Biology    |          | Watson            |          | 90000.00    |
| Comp. Sci. |          | Taylor            |          | 100000.00   |
| Elec. Eng. |          | Taylor            |          | 85000.00    |
|            |          |                   |          |             |



### Data Language

- Data definition language (DDL)
  - How to represent relations and information in a database
    - Defines database schemas
- Data manipulation language (DML)
  - How to store and retrieve information from a database
  - Procedural
    - The query specifies the (high-level) strategy the DBMS should use to find the desired results
    - Based on relational algebra
  - *C.f.*, there are non-procedural DML
    - The query specifies only what data is wanted and not how to find it
    - Based on relational calculus this is related to query optimization

## Data Language (Optional)

- A bit more specific ...
  - DDL
  - DML
  - TCL: Transaction Control Lang.
  - DQL: Data Query Lang.
  - DCL: Data Control Lang.



#### **Database Schema**

- Database: a collection of relations (tables)
- Database schema: the logical structure of the database
- Database instance: a snapshot of the data in the database at a given instant in time
  - Relation instance: a snapshot of a relation (attributes and tuples) at a given instant in time

### Next

- Coming next:
  - Relational algebra