BT Ch5 Bài 2. Tính gần đúng tích phân xác định

Sai số

1. Sai số công thức hình thang:

$$R_n(T) \le h^{2*}(b-a)M_2/12$$
, $M_2 = \sup\{|f''(x)|\}$, với mọi x thuộc [a,b];

2. Sai số của công Simpson:

$$R_n(S) \le h^{4*}(b-a)M_4/180, M_4 =$$

 $Sup\{|f^{(4)}(x)|\}, \text{ v\'oi moi x thuộc [a,b];}$

1. Approximate the following integrals using the Trapezoidal rule.

$$\mathbf{a.} \quad \int_{0.5}^{1} x^4 \ dx$$

b.
$$\int_0^{0.5} \frac{2}{x-4} dx$$

$$\mathbf{c.} \quad \int_1^{1.5} x^2 \ln x \, dx$$

$$\mathbf{d.} \quad \int_0^1 x^2 e^{-x} \ dx$$

e.
$$\int_{1}^{1.6} \frac{2x}{x^2 - 4} \, dx$$

$$\mathbf{f.} \quad \int_0^{0.35} \frac{2}{x^2 - 4} \, dx$$

$$\mathbf{g.} \quad \int_0^{\pi/4} x \sin x \, dx$$

h.
$$\int_0^{\pi/4} e^{3x} \sin 2x \ dx$$

2. Approximate the following integrals using the Trapezoidal rule.

$$\mathbf{a.} \quad \int_{-0.25}^{0.25} (\cos x)^2 \, dx$$

b.
$$\int_{-0.5}^{0} x \ln(x+1) \ dx$$

c.
$$\int_{0.75}^{1.3} \left((\sin x)^2 - 2x \sin x + 1 \right) dx$$

d.
$$\int_{e}^{e+1} \frac{1}{x \ln x} dx$$

- 3. Find a bound for the error in Exercise 1 using the error formula, and compare this to the actual
- 4. Find a bound for the error in Exercise 2 using the error formula, and compare this to the actual
- 5. Repeat Exercise 1 using Simpson's rule.
- **6.** Repeat Exercise 2 using Simpson's rule.
- 7. Repeat Exercise 3 using Simpson's rule and the results of Exercise 5.
- 8. Repeat Exercise 4 using Simpson's rule and the results of Exercise 6.
- 9. Repeat Exercise 1 using the Midpoint rule.
- 10. Repeat Exercise 2 using the Midpoint rule.

- 11. Repeat Exercise 3 using the Midpoint rule and the results of Exercise 9.
- 12. Repeat Exercise 4 using the Midpoint rule and the results of Exercise 10.
- 13. The Trapezoidal rule applied to $\int_0^2 f(x) dx$ gives the value 4, and Simpson's rule gives the value 2. What is f(1)?
- 14. The Trapezoidal rule applied to $\int_0^2 f(x) dx$ gives the value 5, and the Midpoint rule gives the value 4. What value does Simpson's rule give?
- 15. Find the degree of precision of the quadrature formula

$$\int_{-1}^{1} f(x) dx = f\left(-\frac{\sqrt{3}}{3}\right) + f\left(\frac{\sqrt{3}}{3}\right).$$

16. Let h = (b - a)/3, $x_0 = a$, $x_1 = a + h$, and $x_2 = b$. Find the degree of precision of the quadrature formula

$$\int_{a}^{b} f(x) dx = \frac{9}{4} h f(x_1) + \frac{3}{4} h f(x_2).$$

- 17. The quadrature formula $\int_{-1}^{1} f(x) dx = c_0 f(-1) + c_1 f(0) + c_2 f(1)$ is exact for all polynomials of degree less than or equal to 2. Determine c_0 , c_1 , and c_2 .
- **18.** The quadrature formula $\int_0^2 f(x) dx = c_0 f(0) + c_1 f(1) + c_2 f(2)$ is exact for all polynomials of degree less than or equal to 2. Determine c_0 , c_1 , and c_2 .
- **19.** Find the constants c_0 , c_1 , and x_1 so that the quadrature formula

$$\int_0^1 f(x) \, dx = c_0 f(0) + c_1 f(x_1)$$

has the highest possible degree of precision.

20. Find the constants x_0 , x_1 , and c_1 so that the quadrature formula

$$\int_0^1 f(x) \, dx = \frac{1}{2} f(x_0) + c_1 f(x_1)$$

has the highest possible degree of precision.

21. Approximate the following integrals using formulas (4.25) through (4.32). Are the accuracies of the approximations consistent with the error formulas? Which of parts (d) and (e) give the better approximation?

$$\mathbf{a.} \quad \int_0^{0.1} \sqrt{1+x} \, dx$$

b.
$$\int_0^{\pi/2} (\sin x)^2 dx$$

$$\mathbf{c.} \quad \int_{1.1}^{1.5} e^x \, dx$$

d.
$$\int_{1}^{10} \frac{1}{x} dx$$

e.
$$\int_{1}^{5.5} \frac{1}{x} dx + \int_{5.5}^{10} \frac{1}{x} dx$$

f.
$$\int_0^1 x^{1/3} dx$$

22. Given the function f at the following values,

approximate $\int_{1.8}^{2.6} f(x) dx$ using all the appropriate quadrature formulas of this section.

23. Suppose that the data of Exercise 22 have round-off errors given by the following table.

x 1.8 2.0 2.2 2.4 2.6
Error in
$$f(x)$$
 2 × 10⁻⁶ -2 × 10⁻⁶ -0.9 × 10⁻⁶ -0.9 × 10⁻⁶ 2 × 10⁻⁶

Calculate the errors due to round-off in Exercise 22.

24. Derive Simpson's rule with error term by using

$$\int_{x_0}^{x_2} f(x) \, dx = a_0 f(x_0) + a_1 f(x_1) + a_2 f(x_2) + k f^{(4)}(\xi).$$

Find a_0 , a_1 , and a_2 from the fact that Simpson's rule is exact for $f(x) = x^n$ when n = 1, 2, and 3. Then find k by applying the integration formula with $f(x) = x^4$.

- **25.** Prove the statement following Definition 4.1; that is, show that a quadrature formula has degree of precision n if and only if the error E(P(x)) = 0 for all polynomials P(x) of degree k = 0, 1, ..., n, but $E(P(x)) \neq 0$ for some polynomial P(x) of degree n + 1.
- **26.** Derive Simpson's three-eighths rule (the closed rule with n=3) with error term by using Theorem 4.2.
- **27.** Derive the open rule with n = 1 with error term by using Theorem 4.3.

1. Apply the extrapolation process described in Example 1 to determine $N_3(h)$, an approximation to $f'(x_0)$, for the following functions and stepsizes.

a.
$$f(x) = \ln x, x_0 = 1.0, h = 0.4$$

c.
$$f(x) = 2^x \sin x, x_0 = 1.05, h = 0.4$$

b.
$$f(x) = x + e^x, x_0 = 0.0, h = 0.4$$

d.
$$f(x) = x^3 \cos x, x_0 = 2.3, h = 0.4$$

- **2.** Add another line to the extrapolation table in Exercise 1 to obtain the approximation $N_4(h)$.
- 3. Repeat Exercise 1 using four-digit rounding arithmetic.
- 4. Repeat Exercise 2 using four-digit rounding arithmetic.
- 5. The following data give approximations to the integral

$$M = \int_0^{\pi} \sin x \, dx.$$

$$N_1(h) = 1.570796, \quad N_1\left(\frac{h}{2}\right) = 1.896119, \quad N_1\left(\frac{h}{4}\right) = 1.974232, \quad N_1\left(\frac{h}{8}\right) = 1.993570.$$

Assuming $M = N_1(h) + K_1h^2 + K_2h^4 + K_3h^6 + K_4h^8 + O(h^{10})$, construct an extrapolation table to determine $N_4(h)$.

6. The following data can be used to approximate the integral

$$M = \int_0^{3\pi/2} \cos x \, dx.$$

$$N_1(h) = 2.356194, \qquad N_1\left(\frac{h}{2}\right) = -0.4879837,$$

$$N_1\left(\frac{h}{4}\right) = -0.8815732, \quad N_1\left(\frac{h}{8}\right) = -0.9709157.$$

Assume a formula exists of the type given in Exercise 5 and determine $N_4(h)$.

- 7. Show that the five-point formula in Eq. (4.6) applied to $f(x) = xe^x$ at $x_0 = 2.0$ gives $N_2(0.2)$ in Table 4.6 when h = 0.1 and $N_2(0.1)$ when h = 0.05.
- 8. The forward-difference formula can be expressed as

$$f'(x_0) = \frac{1}{h} [f(x_0 + h) - f(x_0)] - \frac{h}{2} f''(x_0) - \frac{h^2}{6} f'''(x_0) + O(h^3).$$

Use extrapolation to derive an $O(h^3)$ formula for $f'(x_0)$.

9. Suppose that N(h) is an approximation to M for every h > 0 and that

$$M = N(h) + K_1h + K_2h^2 + K_3h^3 + \cdots$$

for some constants K_1 , K_2 , K_3 , Use the values N(h), $N\left(\frac{h}{3}\right)$, and $N\left(\frac{h}{9}\right)$ to produce an $O(h^3)$ approximation to M.

10. Suppose that N(h) is an approximation to M for every h > 0 and that

$$M = N(h) + K_1h^2 + K_2h^4 + K_3h^6 + \cdots,$$

for some constants K_1 , K_2 , K_3 , Use the values N(h), $N\left(\frac{h}{3}\right)$, and $N\left(\frac{h}{9}\right)$ to produce an $O(h^6)$ approximation to M.

- 11. In calculus, we learn that $e = \lim_{h \to 0} (1+h)^{1/h}$.
 - **a.** Determine approximations to *e* corresponding to h = 0.04, 0.02, and 0.01.
 - **b.** Use extrapolation on the approximations, assuming that constants K_1, K_2, \ldots exist with $e = (1+h)^{1/h} + K_1h + K_2h^2 + K_3h^3 + \cdots$, to produce an $O(h^3)$ approximation to e, where h = 0.04.
 - c. Do you think that the assumption in part (b) is correct?
- 12. a. Show that

$$\lim_{h\to 0} \left(\frac{2+h}{2-h}\right)^{1/h} = e.$$

- **b.** Compute approximations to e using the formula $N(h) = \left(\frac{2+h}{2-h}\right)^{1/h}$, for h = 0.04, 0.02, and 0.01.
- **c.** Assume that $e = N(h) + K_1h + K_2h^2 + K_3h^3 + \cdots$. Use extrapolation, with at least 16 digits of precision, to compute an $O(h^3)$ approximation to e with h = 0.04. Do you think the assumption is correct?
- **d.** Show that N(-h) = N(h).
- **e.** Use part (d) to show that $K_1 = K_3 = K_5 = \cdots = 0$ in the formula

$$e = N(h) + K_1h + K_2h^2 + K_3h^3K_4h^4 + K_5h^5 + \cdots,$$

so that the formula reduces to

$$e = N(h) + K_2h^2 + K_4h^4 + K_6h^6 + \cdots$$

f. Use the results of part (e) and extrapolation to compute an $O(h^6)$ approximation to e with h = 0.04.

13. Suppose the following extrapolation table has been constructed to approximate the number M with $M = N_1(h) + K_1h^2 + K_2h^4 + K_3h^6$:

$$N_1(h)$$
 $N_1\left(\frac{h}{2}\right) \quad N_2(h)$
 $N_1\left(\frac{h}{4}\right) \quad N_2\left(\frac{h}{2}\right) \quad N_3(h)$

- **a.** Show that the linear interpolating polynomial $P_{0,1}(h)$ through $(h^2, N_1(h))$ and $(h^2/4, N_1(h/2))$ satisfies $P_{0,1}(0) = N_2(h)$. Similarly, show that $P_{1,2}(0) = N_2(h/2)$.
- **b.** Show that the linear interpolating polynomial $P_{0,2}(h)$ through $(h^4, N_2(h))$ and $(h^4/16, N_2(h/2))$ satisfies $P_{0,2}(0) = N_3(h)$.
- **14.** Suppose that $N_1(h)$ is a formula that produces O(h) approximations to a number M and that

$$M = N_1(h) + K_1h + K_2h^2 + \cdots$$

for a collection of positive constants K_1, K_2, \ldots Then $N_1(h), N_1(h/2), N_1(h/4), \ldots$ are all lower bounds for M. What can be said about the extrapolated approximations $N_2(h), N_3(h), \ldots$?

15. The semiperimeters of regular polygons with k sides that inscribe and circumscribe the unit circle were used by Archimedes before 200 B.C.E. to approximate π , the circumference of a semicircle. Geometry can be used to show that the sequence of inscribed and circumscribed semiperimeters $\{p_k\}$ and $\{P_k\}$, respectively, satisfy

$$p_k = k \sin\left(\frac{\pi}{k}\right)$$
 and $P_k = k \tan\left(\frac{\pi}{k}\right)$,

with $p_k < \pi < P_k$, whenever $k \ge 4$.

- **a.** Show that $p_4 = 2\sqrt{2}$ and $P_4 = 4$.
- **b.** Show that for $k \ge 4$, the sequences satisfy the recurrence relations

$$P_{2k} = \frac{2p_k P_k}{p_k + P_k}$$
 and $p_{2k} = \sqrt{p_k P_{2k}}$.

c. Approximate π to within 10^{-4} by computing p_k and P_k until $P_k - p_k < 10^{-4}$.

d. Use Taylor Series to show that

$$\pi = p_k + \frac{\pi^3}{3!} \left(\frac{1}{k}\right)^2 - \frac{\pi^5}{5!} \left(\frac{1}{k}\right)^4 + \cdots$$

and

$$\pi = P_k - \frac{\pi^3}{3} \left(\frac{1}{k}\right)^2 + \frac{2\pi^5}{15} \left(\frac{1}{k}\right)^4 - \cdots$$

e. Use extrapolation with h = 1/k to better approximate π .