## NERS 570 Project Proposal: Laser Scan Thermal Field Prediction

Weihao Liu\*1 and Jun Fan†2

<sup>1</sup>Department of Climate and Space Sciences and Engineering, University of Michigan, MI, USA

<sup>2</sup>Department of Mechanical Engineering, University of Michigan, MI, USA

December 8, 2023

## 1 Introduction

Laser Additive Metal Manufacturing (LAMM) is at the forefront of technology in the field of additive manufacturing (Gu et al. 2012; Gu 2015). It involves a set of metal additive manufacturing processes that harness high power density of lasers to melt and fuse the metal powder and build the three-dimensional structure layer by layer. Benefiting from its unprecedented geometry flexibility and rapid prototyping capability, LAMM has gained significant traction across various industries including aerospace, automotive, and healthcare. Despite its widespread adoption, many aspects of LAMM are still not fully understood due to the lack of accurate in-situ monitoring techniques. Consequently, numerical modeling stands as an indispensable tool in the ongoing research and development of LAMM processes.



**Figure 1:** Schematic graph for the laser scan thermal field problem: Panels (a) and (b) illustrate how the laser scans over the top surface of the part. The laser scans along x-axis and then y-axis at the next iteration. A thin layer will be piled up along z-axis after each iteration of scanning. At each scan iteration, the laser beam will also heat the surface through radiation and change the thermal field in this material. Panel (c) gives an illustration of the thermal distribution, taken from Ren et al. 2020.

In most LAMM processes, the laser beam scans a predefined pattern layer by layer to construct the desired 3D geometry of the product, as illustrated in Figure 1(a) and 1(b). This multi-layer deposition has a profound impact on the temperature field of the part, leading to the reheating of the printed layers. The reheating cycles in the thermal history can lead to residual stress concentration, micro-defects, and deformation of the printed part. Furthermore, the thermal history is critical to the grain formation during cooling, thus determining the mechanical and electrical behavior of the printed metal material. Therefore, understanding the thermal history during LAMM is essential for predicting product behavior and can assist in improving the manufacturing process.

The Laser scan Thermal Field Prediction (LTFP) project aims to develop a numerical solver to estimate the thermal field resulting from multi-layer laser scan patterns during the LAMM process, similar to

\*Email: whliu@umich.edu †Email: junfan@umich.edu Figure 1(c). The solver should be able to handle dynamic mesh, temperature-dependent material properties, and complex boundary conditions. Later, the solver will be integrated with an established LAMM model as an upstream module that provides thermal history for micro-structure prediction.

#### 2 Method

The thermal field generated by laser scan is governed by the heat equation:

$$\begin{cases} \frac{\partial T}{\partial t} = \kappa \nabla^2 T + q, \\ \text{Initial Condition: } T(x, y, z, 0) = T_0, \\ \text{Boundary Condition for } T(x, y, z, t). \end{cases}$$
 (1)

with  $\kappa$  being the thermal conductivity of the material, and q being the source term of the laser. Here, we propose to develop the thermal solver by the Finite Volume Method (FVM, Eymard et al. 2000). In the FVM, the computational domain is divided into non-overlapping control volumes with the state stored in each cell, typically the mean value (Thompson 1985). At cell interfaces, we define fluxes that provide information on how much of the state flow in and out of the adjacent cells, which can be applied with specific limiters to avoid numerical oscillations (e.g., Sweby 1984; Leonard 1988).

A simplified algorithm of LTFP is demonstrated in Algorithm 1. After loading the simulation configuration and initialization of the data structure, the main loop advances in time until the end time is marched. Finally, the exported data are visualized for inspection.

#### Algorithm 1 Solver algorithm

```
1: Load simulation configuration: Mesh and boundary condition
 2: Initialize the data structure by the initial condition
 3: t \leftarrow 0
 4: t_{\text{export}} \leftarrow \Delta t_{\text{export}}
 5: while t < t_{\text{final}} \text{ do}
         Determine time step size \Delta t
 6:
         Perform domain increment
 7:
         Compute laser energy distribution
 8:
         Solve thermal diffusion equation
 9:
         if t \geqslant t_{\text{export}} then
10:
              Export mesh and temperature
11:
12:
              t_{\text{export}} \leftarrow t_{\text{export}} + \Delta t_{\text{export}}
         end if
13:
         t \leftarrow t + \Delta t
14:
15: end while
16: Final export and visualize results
```

The code in this project is designed to be highly object-oriented, with each function module being an independent class object, as shown in Figure 2.

#### 3 Tasks

In the LTFP project, we will first derive the formulas for the numerical solvers, and then construct the framework of the solver using some high-level design techniques. In our code, we will develop the input



Figure 2: Diagram of class objects in LTFP.

and output loader, mesh and data structure, and the analytical (if possible) and numerical (with low or high order of accuracy), serial and parallelized FVM solvers. During this process, we will validate the solver by having some benchmark tests. The details are demonstrated in Table 1.

Table 1: Task description and assignment

| Task              | Description                                     | Member | Related topics      |  |  |
|-------------------|-------------------------------------------------|--------|---------------------|--|--|
| Derivation        | Derive math formulas for numerical solver(s)    | Weihao |                     |  |  |
| High-level design | Develop high-level design of solver and main-   | Jun    | High-level design,  |  |  |
|                   | tain main function                              |        | Object-orientated   |  |  |
|                   |                                                 |        | programming         |  |  |
| Pre-processing    | Load and save configuration of simulation,      | Jun    |                     |  |  |
|                   | initialize class objects and solver environment |        |                     |  |  |
| Mesh and data     | Generate mesh and save mesh-based data in-      | Weihao | Matrix storage      |  |  |
|                   | clding temperature field                        |        |                     |  |  |
| Boundary models   | Store three types of thermal boundary model     | Jun    |                     |  |  |
|                   | and manage laser heat source                    |        |                     |  |  |
| FVM solvers       | Solve thermal diffusion using multiple types    | Weihao | Solving linear sys- |  |  |
|                   | of finite volume solvers                        |        | tems                |  |  |
| FVM solver par-   | Parallelize FVM solvers to increase solver per- | Weihao | Parallel computing  |  |  |
| allelization      | formance                                        |        | using OpenMP        |  |  |
| Post-processing   | Export data to vtk files and visualize results  | Jun    |                     |  |  |
| Validation        | Validate solver using benchmark cases           | Both   | Software develop-   |  |  |
|                   |                                                 |        | ment                |  |  |
| Documentation     | Generate documentation using Doxygen            | Both   |                     |  |  |

# 4 Project Plans

#### 4.1 Deliverables

For the detailed tasks listed in Table 1, the expected deliverables for each of them are shown in Table 2. We will use the version control tricks on the repository of <a href="https://github.com/Lazy-Beee/ners570f23-LTFP">https://github.com/Lazy-Beee/ners570f23-LTFP</a>. Ultimately, we hope to give the numerical solutions for LTFP and see how well our solvers work and predict the thermal field in time.

| Task                       | Deliverables                                                      |
|----------------------------|-------------------------------------------------------------------|
| Derivation                 | Formulas for the numerical FVM solvers                            |
| High-level design          | UML diagrams and the main function                                |
| Pre-processing             | Loaders and writers for meshes and outputs, and the ready objects |
| Mesh and data              | Visualized mesh for the tests and actual case                     |
| Boundary models            | Code and tests for boundary conditions implemented in solvers     |
| FVM solvers                | Simulated results by the specific solver                          |
| FVM solver parallelization | Parallel code and performance analysis                            |
| Post-processing            | Animation of domain increment and thermal field                   |
| Validation                 | Comparison with analytical results in benchmark cases             |
| Documentation              | Generated documents including reports and presentation slides     |

Table 2: Task deliverables

## 4.2 Timeline

To be more specific for each of the tasks in Table 1, here we provide a gantt chart for our schedule as shown in Figure 3, and hope to finish this project by early December.

|                            | 10/30-11/05 | 11/06-11/12 | 11/13-11/19 | 11/20-11/26 | 11/27-12/03           | 12/04-12/10 |
|----------------------------|-------------|-------------|-------------|-------------|-----------------------|-------------|
| Derivations                |             |             |             |             |                       |             |
| High-level design          |             |             |             |             |                       |             |
| Pre-processing             |             |             |             |             |                       |             |
| Mesh and data              |             |             |             |             |                       |             |
| Boundary models            |             |             |             |             | Buffer                |             |
| FVM solvers                |             |             |             |             |                       |             |
| FVM solver parallelization |             |             |             |             |                       |             |
| Post-processing            |             |             |             |             |                       |             |
| Validation                 |             |             |             |             |                       |             |
| Documentation              |             |             |             |             | Presentation + Report |             |
|                            |             |             |             |             |                       |             |
|                            |             |             |             | Jun         | Weihao                | Both        |

Figure 3: Timeline of this project.

### References

- R. Eymard, T. Gallouët, and R. Herbin. Finite Volume Methods. *Handbook of Numerical Analysis*, 7:713–1018, 2000. doi: 10.1016/S1570-8659(00)07005-8.
- D. Gu. Laser Additive Manufacturing of High-Performance Materials. Springer, 2015. ISBN 978-3-662-46088-7. doi: 10.1007/978-3-662-46089-4.
- D. Gu, W. Meiners, K. Wissenbach, and R. Poprawe. Laser Additive Manufacturing of Metallic Components: Materials, Processes and Mechanisms. *International Materials Reviews*, 57(3):133–164, 2012. doi: 10.1179/1743280411Y.0000000014.
- B. P. Leonard. Simple High-accuracy Resolution Program for Convective Modelling of Discontinuities. *International Journal for Numerical Methods in Fluids*, 8(10):1291–1318, 1988. doi: 10.1002/fld.1650081013.
- K. Ren, Y. Chew, Y. Zhang, J. Fuh, and G. Bi. Thermal Field Prediction for Laser Scanning Paths in Laser Aided Additive Manufacturing by Physics-based Machine Learning. Computer Methods in Applied Mechanics and Engineering, 362:112734, 2020. doi: https://doi.org/10.1016/j.cma.2019.112734.
- P. K. Sweby. High Resolution Schemes Using Flux Limiters for Hyperbolic Conservation Laws. SIAM Journal on Numerical Analysis, 21(5):995–1011, 1984. doi: 10.1137/0721062.
- J. F. Thompson. A Survey of Dynamically-adaptive Grids in the Numerical Solution of Partial Differential Equations. *Applied Numerical Mathematics*, 1(1):3–27, 1985. doi: 10.1016/0168-9274(85)90026-1.