Ceramics - II

Instructor: Prof. Bishakh Bhattacharya

Dept. of Mechanical Engineering

IIT Kanpur

India

E-mail : bishakh@iitk.ac.in

Content

- ✓ Processing of ceramics
- ✓ Ceramic elastic modulus
- ✓ Weibull modulus
- ✓ Hardness
- ✓ Fracture toughness
- ✓ Failure in ceramics

Processing of Ceramics

- Unlike **metals and glasses**, which can be **cast** from the **melt** and subsequently rolled, drawn, or pressed into shape, **ceramics** are made from **powders**.
- Ceramics powder is consolidated and densified by sintering.
- Sintering is a process whereby particles bond and merge under the influence of pressure & heat, leading to shrinkage and reduction in porosity.
- Expensive fabrication technique due to high cost of mould & die.
- A similar process in metal manufacturing is referred to as powder metallurgy.

Sintering begins - Particles coalescence and pore forms

Sintering terminates - pores change size and shape

Influence of Porosity

- There always occur some pores or void spaces between the powder particles even after sintering and subsequent heat treatment.
- Residual porosity has a negative influence on both the elastic properties and strength.
- Porosity also leads to :-
 - ✓ Reduction in effective load carrying area.
 - ✓ Acts as stress concentrators.

 $Volume\ fraction\ porosity = \frac{Volume\ of\ pores}{Volume\ of\ specimen}$

How to measure Ceramic Elastic modulus?

Ceramics are not subjected to Tensile testing due to 3 important reasons:

- ✓ Difficult to prepare test specimen as required for tensile testing.
- ✓ Difficult to grip brittle materials without fracturing.
- ✓ Ceramics fail at very low strain (≈0.1%), which requires very precise alignment on machine to avoid bending stress.

Hence, three-point bending test is used.

Three-point bending test

- At the point of loading
 - ✓ Specimen top surface in compression
 - ✓ Bottom surface in tension
- Stress is computed from the specimen thickness,
 B.M, and the M.I of the cross section.
- Maximum tensile stress at the bottom surface directly below the loading point.
- Fracture occurs on the tensile specimen face.
- Tensile strengths of ceramics are about one-tenth of their compressive strengths.

$$\sigma = \text{stress} = \frac{Mc}{I}$$

where M = maximum bending moment

c = distance from center of specimen to outer fibers

I = moment of inertia of cross section

F = applied load

$$\frac{M}{4} \quad \frac{c}{c} \quad \frac{I}{I} \qquad \frac{\sigma}{2}$$
 Rectangular
$$\frac{FL}{4} \quad \frac{d}{2} \quad \frac{bd^3}{12} \quad \frac{3FL}{2bd^2}$$
 Circular
$$\frac{FL}{4} \quad R \quad \frac{\pi R^4}{4} \quad \frac{FL}{\pi R^3}$$

Modulus of Elasticity

- The slope in the elastic region is the modulus of elasticity.
- Range of moduli of elasticity for ceramic materials is between about 40 and 1000 GPa (Diamond).
- Ceramics have compressive strength 10-15 times of their tensile strength.
- Under compression failure occur either by crushing or buckling.

Silicon carbide under compression Reference: www.csm.mech.utah.edu

Comparison under Tension & Compression

Reference: W.D Callister, 7 Ed.

Spe	Specific Moduli: Ceramics Compared to Metals		
Material	Modulus <i>E</i> (GN m ⁻²)	Density ρ (Mg m ⁻³)	Specific Modulus E/ρ
Steels	210	7.8	27
Al alloys	70	2.7	26
Alumina, Al ₂ O ₃	390	3.9	100
Silica, SiO ₂	69	2.6	27
Cement	45	2.4	19

Reference: Engineering Materials 2: Ashby & Jones, 4th Ed.

Weibull Modulus

- For ceramics and other brittle materials, the **maximum stress** before failure may **vary** from specimen to specimen, even under identical testing conditions.
- Occurs due to the **distribution of physical flaws** present in the surface or volume of the brittle specimen.
- Weibull modulus maps the **probability of failure** of a component at **varying stresses**.
- Probability of failure for components can be calculated without knowing defect density.

Probability of Survival & Failure:

$$P_{S} = exp\left[-\left(\frac{\sigma}{\sigma_{0}}\right)^{m}\right]$$

$$\begin{aligned} \mathbf{P_f} &= \mathbf{1} - \mathbf{P_S} = 1 - exp \left[-\left(\frac{\sigma}{\sigma_0}\right)^m \right] \\ P_f &= \frac{n_x}{N+1} \end{aligned}$$

Where,

 n_x : No. of samples failed at particular stress x

N: Total no. of samples

 σ : Applied stress

 σ_0 : Average strength (or stress level for which survival probability is 37%)

m: Weibull modulus (slope of straight line)

If
$$\sigma = \sigma_0$$
, then $P_S = \frac{1}{e} \approx 0.37$

 σ_0 : Characteristic/Average strength (or stress level for which survival probability is 37% or failure probability is 63%).

Weibull modulus (m)

- m = 0: P_f is independent of applied stress
- m = 1 : P_f is exponential asymptotic curve
- $m = \infty : P_f \text{ is "step curve"}$

✓
$$P_f = 0$$
, if $\sigma < \sigma_0$

$$\checkmark$$
 P_f = 1, if $\sigma > \sigma_0$

- Large m: Narrow distribution; small spread in fracture strength
- Small m: Wide distribution, large spread in fracture strength

For Zirconia based BMG, m = 35 (under bending) m = 73.4 (under compression)

Sample	Weibull modulus, m	Dimension	Stress condition
Mg ₇₁ Zn ₂₅ Ca ₄	41	Φ1.9 mm×4 mm	Compression
$Mg_{66}Zn_{30}Ca_4$	26	Φ 1.9 mm × 4 mm	Compression
Mg ₆₁ Cu ₂₈ Gd ₁₁	33	Φ 1.9 mm × 4 mm	Compression
Mg ₆₁ Cu ₂₈ Gd ₁₁	5	$3 \text{ mm} \times 4 \text{ mm} \times 40 \text{ mm}$	Bending
(Zr ₄₈ Cu ₄₅ Al ₇) ₉₈ Y ₂	25.5	Φ 1.5 mm × 3 mm	Compression
Zr ₄₈ Cu ₄₅ Al ₇	73.4	Φ 1.5 mm × 3 mm	Compression
Zr ₄₈ Cu ₄₅ Al ₇	36.5	$4 \text{ mm} \times 1 \text{ mm} \times 0.7 \text{ mm}$	Tensile
Zr ₄₈ Cu ₄₅ Al ₇	34	$3 \text{ mm} \times 4 \text{ mm} \times 40 \text{ mm}$	Bending
Cu ₄₅ Hf ₄₆ Al ₉	53	Φ 1.5 mm × 3 mm	Compression
Cu ₄₉ Hf ₄₂ Al ₉	40	Φ 1.5 mm × 3 mm	Compression
Zr ₅₅ Ti ₂ Co ₂₈ Al ₁₅	107.9	$\Phi4 \text{ mm} \times 8 \text{ mm}$	Compression
Zr ₅₅ Ti ₂ Co ₂₈ Al ₁₅	36.2	Φ6 mm × 12 mm	Compression
Zr ₅₅ Ti ₂ Co ₂₈ Al ₁₅	3.8	Φ3 mm × 15 mm	Tensile

Weibull modulus for several Bulk metallic glass

Ref: http://www.nonmet.mat.ethz.ch/

Hardness

- Ceramics are hard and brittle due to the presence of ionic & covalent bonds that hold the atoms together.
- This property is utilized when an abrasive or grinding action is required.
- Ceramics having **Knoop hardness** of about 1000 or greater are utilized for their abrasive characteristics.

A		A
1000		37

Tungsten carbide wheel

Diamond abrasive

Material	Approximate Knoop Hardness
Diamond (carbon)	7000
Boron carbide (B ₄ C)	2800
Silicon carbide (SiC)	2500
Tungsten carbide (WC)	2100
Aluminum oxide (Al ₂ O ₃)	2100
Quartz (SiO ₂)	800
Glass	550

Knoop hardness value (100gm load)

Reference: W.D Callister, 7 Ed.

Fracture toughness of Ceramics

- ✓ **Ceramics** highly brittle in nature, thus *low fracture toughness*.
- ✓ Fracture toughness a material property
 - Ability to resist crack propagation.
 - Measurement of the energy required to grow a thin crack
 - Unit = MPa \sqrt{m}
- ✓ Low Fracture toughness = Brittle failure
- ✓ High fracture toughness = Ductile failure

Fracture toughness, $K_c = Y \sigma_c \sqrt{\pi a}$

Where,

Y =dimensionless parameter

 σ_c = critical stress for crack propagation

a = crack length

Fracture toughness comparison

Room temperature values

	<u>Yield Strength</u> F	racture tou
Material	MPa	$MPa\sqrt{m}$
	Metals	
Aluminum Alloy" (7075-T651)	495	24
Aluminum Alloy ^a (2024-T3)	345	44
Titanium Alloy ^a (Ti-6Al-4V)	910	55
Alloy Steel" (4340 tempered @ 260°C)	1640	50.0
Alloy Steel ^a (4340 tempered @ 425°C)	1420	87.4
	Ceramic	S
Concrete	_	0.2-1.4
Soda-Lime Glass	_	0.7 - 0.8
Aluminum Oxide	_	2.7 - 5.0

Reference: W.D Callister, 7 Ed.

Thus, cracks propagates slowly in metals as compared to ceramics or metals absorb more energy before fracture occurs.

Failures in Ceramics

- Ceramics have **negligible plastic deformation** before fracture (no warning).
- The brittle fracture of ceramics limits its applications.
- Occurs due to the unavoidable presence of microscopic flaws (micro-cracks, internal pores, and atmospheric contaminants) that result during fabrication.
- The inherent flaws leads to crack formation and propagation.
- Ceramics are good structural materials under compression as difficult for crack to propagate.
- The **flaws cannot** be closely **controlled** in **manufacturing**; this leads to a **large variability** (scatter) in the **fracture strength** of ceramic materials.

Brittle failure

Variability in fracture strength for Silicon nitride

Reference: W.D Callister, 7 Ed.

Brittle fracture of Ceramics

Typical crack configurations for common loadings

Creep

- Ceramic materials experience creep deformation under stress (usually compressive) at elevated temperatures.
- Time—deformation creep behavior of ceramics is similar to that of metals but at relatively higher temperatures

Creep behavior

How to make Ceramics Conductive?

Two ways to make ceramics electrically conductive.

✓ At sufficiently high temperatures point defects such as oxygen vacancies can arise, leading to ionic conductivity.

Example: Zirconia

✓ Introduction of certain **transition-metal** elements (such as iron, copper, manganese, or cobalt), **lanthanide elements** (such as cerium), or **actinide elements** (such as uranium) can produce special electronic states in which mobile electrons or electron holes arise.

Example: Copper-based superconductors are a good example of conductive transition-metal oxide ceramics—in this case, conductivity arising at extremely low temperatures.

In the **next lecture**, we will learn:

- ✓ Introduction on Polymers
- ✓ Classification

