東芝バイポーラ形リニア集積回路 シリコン モノリシック

TA8428K(S),TA8428F/FG

DC モータ用フルブリッジドライバ (H-スイッチ) (正・逆転切り替えドライバ)

TA8428K (S)、TA8428F/FG は、ブラシ付きモータの正・逆転切り 替え用のフルブリッジドライバで、正転、逆転、ストップ、ブレー キの4モードがコントロールできます。

特長

- 出力電流 : K(S) タイプ 1.5 A (AVE)、3.0 A (PEAK) F/FG タイプ 0.8 A (AVE)、2.4 A (PEAK)
- モードは正転、逆転、ストップ、ブレーキの4モードで、逆起電 力吸収用ダイオードも内蔵しています。
- 熱しゃ断、過電流保護回路を内蔵しています。
- 動作電源電圧範囲 V_{CC} = 7.0 ~ 27.0 V

質量

HSIP7-P-2.54 : 1.88 g (標準) HSOP20-P-450-1.00:0.79 g (標準)

プロック図

TA8428K(S)は、Sn メッキ品で、内部に鉛使用しております。 TA8428FG は、Sn-Ag メッキの鉛フリー対応製品です。

はんだ付け性については、以下の条件で確認しております。

(1)はんだ槽: Sn-37Pb の場合

はんだ温度 230 、浸漬時間 5 秒間 1 回、R タイプ フラックス使用

(2)はんだ槽: Sn-3.0Ag-0.5Cu の場合

はんだ温度 245 、浸漬時間 5 秒間 1 回、R タイプ フラックス使用

端子説明

端子番号		· 端子記号	端子説明					
K (S)	F/FG	地丁心与	th 元 th					
1 2	8 9	IN1 IN2	出力の状態を制御する端子。 PNP タイプの電圧コンパレータを内蔵します。					
3	15	OUTA	C モータがつながる端子で Sink、Source とも K タイプで 1.5 A、F タイプで 0.8 A の電流容 łをもちます。 :た、モータの逆起電圧吸収用のダイオードを V _{CC} 側と GND 側に内蔵しています。					
4	Fin	GND	接地端子。					
5	16	OUT A	OUTA ピンとの間にモータがつながる端子で、OUTA ピンと同等の機能をもちます。					
6	他ピン	N.C	Non Connection					
7	1, 3	V _{CC}	電源端子。					

マルチプロテクション動作説明

TA8428K(S)、TA8428F/FGには、過電流(ISD)、過熱(TSD)の2つの保護機能が内蔵されています。

- 注 1: これらの保護機能は、出力短絡などの異常状態を一時的に回避する機能であり、いかなる場合でも IC を保護 するというものではありません。
- 注 2: 定格を超えて使用した際には、保護回路が動作する前に IC が破壊する場合があります。

過熱保護 (TSD)

• 基本動作

ジャンクション温度(チップ温度)が、TSD 検出温度以下では入力信号により出力は制御されますが、ジャンクション温度が検出温度を超えると、入力信号とは無関係に出力はハイインピーダンスとなります。

• 動作説明

温度検出は、チップ上の素子(ダイオード)の V_F を監視することにより行っています。ダイオードの V_F が内部基準電圧と比較し、低いと制御ロジック部に出力 Tr-OFF の命令を出し、高いと 、 ピンの入力信号によりロジック部は制御されます。

過電流保護 (ISD)

• 基本動作

出力電流 (3/15 ピン or 5/16 ピン、 I_{sink} or I_{source})が、ISD 検出電流以下では、入力信号により出力は制御されますが、出力電流が検出電流を超えると図-1 のようなスイッチング波形に切り替わります。

図-1 基本動作

• 動作説明

出力電流の検出は各出力 Tr の V_{BE} を監視することにより行っています。検出用素子は各出力 Tr ごとにつながっており、短絡保護回路へと接続されます。4 つの出力 Tr のうち、いずれか 1 つでも ISD 検出電流を超えた電流が流れると短絡保護回路が動作します。同回路にはタイマが内蔵されており、過電流モードが $20\,\mu\,s$ (Typ.) 続くと、出力をハイインピーダンスモードに切り替え、さらに $80\,\mu\,s$ (Typ.) 後にふたたび ON モードに復帰します。このときに依然として過電流モードにあると、上述のスイッチングモードを過電流モードが解除されるまで繰り返します。

ただし、すべての過電流を制限するものではなく、出力の短絡時や地絡時では回路が動作する前に IC が破壊することがありますので、電源ラインにヒューズを接続してください。

入出力等価回路

絶対最大定格 (Ta = 25)

		項	目		記号	定格	単位	
電	源		電	圧	V_{CC}	30	V	
入		力	電	圧	V_{IN}	-0.3 ~ V _{CC}	V	
	力電流	K (S)	タイプ	PEAK	I _{O (PEAK)}	3.0 (注 1)		
# 1		K(S) タイプ		AVE.	IO (AVE.)	1.5	Α	
Ш //		E/EC	カイプ	PEAK	I _{O (PEAK)}	2.4 (注 1)		
		F/FG タイプ		AVE.	IO (AVE.)	0.8		
	費	電	カ	K (S) タ イプ	P _D	1.25 (注 2)		
消						10.0 (注 3)	W	
/H3				F/FG タイ プ	P _D	1.9 (注 4)	VV	
						2.5 (注 5)		
動	作		温	度	T _{opr}	− 30 ~ 85		
保	存 温		温	度	T _{stg}	− 55 ~ 150		

注 1: t = 100ms 注 2: 放熱板なし

注 3: Tc = 85

注 4: 基板実装時 (PCB 面積 30 × 30 × 1.6 銅箔面積 60%) 注 5: 基板実装時 (PCB 面積 50 × 50 × 1.6 銅箔面積 60%)

電気的特性 (V_{CC} = 24 V, Ta = 25)

	項	目	記号	測定 回路	測定条件	最小	標準	最大	単位
			I _{CC1}		ストップ		8	15	
消	費	電流	I _{CC2} 1	フォワード/リバース		35	85	mA	
			I _{CC3}		ブレーキ		16	30	
入	力	電圧	V _{IL}	- 2				0.8	V
	//	电 江	V _{IH}			2.0			
入	力	電流	I _{IL}	- 2	V _{IN} = GND			50	- μΑ
	//	电 加	l _{IH}		$V_{IN} = V_{CC}$			10	
<u></u>	力飽和電圧	K (S) タイプ	V _{sat}	3	I _O = 1.5 A, Tc = 25		2.2	2.9	V
Ш.	刀 配 和 电 工	F/FG タイプ	(total)		I _O = 0.8 A, Tc = 25		1.8	2.5	
出	カ リ -	- ク 電 流	ILU	4	V _L = 25 V			50	μA - V
Ш	73 9		I _{LL}	7	V[- 25 V			50	
		K (S) タイプ	ILU		I _F = 1.5 A		2.6		
ダ	イ オ - ド	K (0) 7 1 7	I _{LL}				1.5		
順	方向電圧	F/FG タイプ	ILU	4	I _F = 0.8 A		2.2		
			ILL				1.2		
シ	ヤットダ	ウン温度	T _{SD}				150		
伝	達	時 間	t _{pLH}	2			1		μs
Ш	Æ.	4·) [B]	t _{pHL}	2			1		μο

真理值表

λ	. 力	出	出力モード	
IN1	IN2	OUTA	OUT A	山りモード
Н	Н	L	L	ブレーキ
L	Н	L	Н	逆転
Н	L	Н	L	正転
L	L	OFF (ハイインピーダンス)		ストップ

測定回路 1.

Icc1, Icc2, Icc3

測定回路 2.

 $V_{IL},\ V_{IH},\ I_{IL},\ I_{IH},\ t_{pLH},\ t_{pHL}$

測定回路 3.

V_{sat}

測定回路 4.

I_{LH}, I_{LL}

測定回路 5.

 V_{FU} , V_{FL}

応用回路例

- 注 1: 入力信号切り替え時は OFF TIME を挿入してください (100 µs 以上)。
- 注 2: 放熱板を取り付ける場合はシリコンラバーの使用を禁止します (TA8428K (S) のみ)。
- 注3: ピン、 ピンは、かならず接続してください (TA8428Fのみ)。
- 注 4: 電源 (V_{CC}) 投入時は、かならず IN1 = IN2 = L レベルとし、 V_{CC} が所定の電圧となった後に入力 (IN1/IN2) を 切り換えてください。
- 注 5: 出力間ショート出力の天絡、地絡、隣接ピンショート時に IC の破壊の恐れがありますので、VCC, VM, GND, ラインの設計は十分注意してください。

外形図

HSIP7-P-2.54 Unit: mm

質量: 1.88 g (標準)

外形図

質量: 0.79 g (標準)

記載内容の留意点

1. プロック図

ブロック図内の機能ブロック/回路/定数などは、機能を説明するため、一部省略・簡略化している場合があります。

2. 等価回路

等価回路は、回路を説明するため、一部省略・簡略化している場合があります。

3. タイミングチャート

タイミングチャートは機能・動作を説明するため、単純化している場合があります。

4. 応用回路例

応用回路例は、参考例であり、量産設計に際しては、十分な評価を行ってください。 また、工業所有権の使用の許諾を行うものではありません。

5. 測定回路図

測定回路内の部品は、特性確認のために使用しているものであり、応用機器の誤動作や故障が発生しないことを 保証するものではありません。

使用上のご注意およびお願い事項

使用上の注意事項

- (1) 絶対最大定格は複数の定格の、どの一つの値も瞬時たりとも超えてはならない規格です。 複数の定格のいずれに対しても超えることができません。 絶対最大定格を超えると破壊、損傷および劣化の原因となり、破裂・燃焼による傷害を負うことがあります。
- (2) 過電流の発生や IC の故障の場合に大電流が流れ続けないように、適切な電源ヒューズを使用してください。 IC は絶対最大定格を超えた使い方、誤った配線、および配線や負荷から誘起される異常パルスノイズなどが原因で破壊することがあり、この結果、IC に大電流が流れ続けることで、発煙・発火に至ることがあります。破壊における大電流の流出入を想定し、影響を最小限にするため、ヒューズの容量や溶断時間、挿入回路位置などの適切な設定が必要となります。
- (3) モータの駆動など、コイルのような誘導性負荷がある場合、ON 時の突入電流や OFF 時の逆起電力による 負極性の電流に起因するデバイスの誤動作あるいは破壊を防止するための保護回路を接続してください。 IC が破壊した場合、傷害を負ったり発煙・発火に至ることがあります。 保護機能が内蔵されている IC には、安定した電源を使用してください。電源が不安定な場合、保護機能が動作せず、IC が破壊することがあります。IC の破壊により、傷害を負ったり発煙・発火に至ることがあります。
- (4) デバイスの逆差し、差し違い、または電源のプラスとマイナスの逆接続はしないでください。電流や消費電力が絶対最大定格を超え、破壊、損傷および劣化の原因になるだけでなく、破裂・燃焼により傷害を負うことがあります。なお、逆差しおよび差し違いのままで通電したデバイスは使用しないでください。

使用上の留意点

(1) 過電流保護回路

過電流制限回路(通常: カレントリミッタ回路)はどのような場合でも IC を保護するわけではありません。動作後は、速やかに過電流状態を解除するようお願いします。

絶対最大定格を超えた場合など、ご使用方法や状況により、過電流制限回路が正常に動作しなかったり、動作する前に IC が破壊したりすることがあります。また、動作後、長時間過電流が流れ続けた場合、ご使用方法や状況によっては、IC が発熱などにより破壊することがあります。

(2) 熱遮断回路

熱遮断回路(通常: サーマルシャットダウン回路) は、どのような場合でも IC を保護するわけではありません。動作後は、速やかに発熱状態を解除するようお願いします。

絶対最大定格を超えて使用した場合など、ご使用法や状況により、熱遮断回路が正常に動作しなかったり、動作する前に IC が破壊したりすることがあります。

(3) 放熱設計

パワーアンプ、レギュレータ、ドライバなどの、大電流が流出入する IC の使用に際しては、適切な放熱を行い、規定接合温度 (Tj) 以下になるように設計してください。これらの IC は通常使用時においても、自己発熱をします。 IC 放熱設計が不十分な場合、IC の寿命の低下・特性劣化・破壊が発生することがあります。

また、IC の発熱に伴い、周辺に使用されている部品への影響も考慮して設計してください。

(4) 逆起電力

モータを逆転やストップ、急減速を行った場合に、モータの逆起電力の影響でモータからモータ側電源へ電流が流れ込みますので、電源の Sink 能力が小さい場合、IC のモータ側電源端子、出力端子が定格以上に上昇する恐れがあります。

逆起電力によりモータ側電源端子、出力端子が定格電圧を超えないように設計してください。

当社半導体製品取り扱い上のお願い

060919TBA R6

- 当社は品質、信頼性の向上に努めておりますが、一般に半導体製品は誤作動したり故障することがあります。当社半導体製品をご使用いただく場合は、半導体製品の誤作動や故障により、生命・身体・財産が侵害されることのないように、購入者側の責任において、機器の安全設計を行うことをお願いします。なお、設計に際しては、最新の製品仕様をご確認の上、製品保証範囲内でご使用いただくと共に、考慮されるべき注意事項や条件について「東芝半導体製品の取り扱い上のご注意とお願い」、「半導体信頼性ハンドブック」などでご確認ください。 021023_A
- 本資料に掲載されている製品は、一般的電子機器 (コンピュータ、パーソナル機器、事務機器、計測機器、産業用ロボット、家電機器など) に使用されることを意図しています。特別に高い品質・信頼性が要求され、その故障や誤作動が直接人命を脅かしたり人体に危害を及ぼす恐れのある機器 (原子力制御機器、航空宇宙機器、輸送機器、交通信号機器、燃焼制御、医療機器、各種安全装置など) にこれらの製品を使用すること (以下"特定用途"という) は意図もされていませんし、また保証もされていません。本資料に掲載されている製品を当該特定用途に使用することは、お客様の責任でなされることとなります。 021023_B
- 本資料に掲載されている製品を、国内外の法令、規則及び命令により製造、使用、販売を禁止されている応用製品に使用することはできません。 060106_Q
- 本資料に掲載してある技術情報は、製品の代表的動作・応用を説明するためのもので、その使用に際して当社及び 第三者の知的財産権その他の権利に対する保証または実施権の許諾を行うものではありません。 021023_C
- 本製品のご使用に際しては、特定の物質の含有・使用を規制する RoHS 指令などの法令を十分調査の上、かかる法令に適合するようご使用ください。
 お客様が適用される法令を遵守しないことにより生じた損害に関して、当社は一切の責任を負いかねます。
 060919 AF
- 本資料に掲載されている製品は、外国為替及び外国貿易法により、輸出または海外への提供が規制されているものです。 021023_E
- 本資料の掲載内容は、技術の進歩などにより予告なしに変更されることがあります。 021023 D