KOSHA GUIDE

H - 20 - 2023

트리클로로에틸렌의 생물학적 노출지표물질 분석에 관한 지침

2023. 8.

한국산업안전보건공단

안전보건기술지침은 산업안전보건기준에 관한 규칙 등 산업안전보건법령의 요구사항을 이행하는데 참고하거나 사업장 안전·보건 수준향상에 필요한 기술적 권고 지침임

안전보건기술지침의 개요

○ 작성자 : 한국산업안전보건공단 산업안전보건연구원 양정선

○ 개정자 : 한국산업안전보건공단 산업안전보건연구원 원용림(1차 개정)

사회정보연구원 김기웅(2차 개정)

한국산업안전보건공단 산업안전보건연구원 이미영(3차 개정)

- 제·개정 경과
- 1999년 7월 산업의학분야 제정위원회 심의(제정)
- 1999년 8월 총괄기준제정위원회 심의
- 2011년 6월 산업의학분야 제정위원회 심의(1차 개정)
- 2020년 11월 산업의학분야 제정위원회 심의(2차 개정)
- 2023년 7월 산업의학분야 표준제정위원회 심의(3차 개정)
- 관련규격 및 자료
- 한국산업안전보건공단 산업안전보건연구원. 생물학적 노출평가 기준 및 분석 방법 연구 II: 디메틸포름아미드 등 유기용제 13종. 연구원 2010-65-881. 2010
- American Conference of Governmental Industrial Hygienists. Trichloroethylene. IN: Documentation of the threshold limit values and biological exposure indices. 2010
- 관련법규·규칙·고시 등
- 산업안전보건법 130조(특수건강진단 등)
- 고용노동부고시(제2010-37호) 「특수건강진단정도관리규정」
- 고용노동부고시(제2020-60호) 「근로자 건강진단 실시기준」
- 한국산업안전보건공단 산업안전보건연구원. 「근로자건강진단 실무지침」 제1권 특수 건강진단 개요. 2022-산업안전보건연구원-777
- 안전보건기술지침의 적용 및 문의
- 이 기술지침에 대한 의견 또는 문의는 한국산업안전보건공단 홈페이지 (www.kosha.or.kr)의 안전보건기술지침 소관 분야별 문의처 안내를 참고 하시기 바랍니다.
- 동 지침 내에서 인용된 관련규격 및 자료, 법규 등에 관하여 최근 개정본 이 있을 경우에는 해당 개정본의 내용을 참고하시기 바랍니다.

공표일자 : 2023년 8월 24일

제 정 자 : 한국산업안전보건공단 이사장

<u>목 차</u>

1.	목적1
2.	적용범위1
3.	용어의정의1
4.	분석개요2
5.	분석방법2
5.1	분석원리 및 시료채취2
5.2	가스크로마토그래프-전자포획검출법3

트리클로로에틸렌의 생물학적 노출지표물질 분석에 관한 지침

1. 목적

이 지침은 트리클로로에틸렌에 노출된 근로자의 생물학적 노출평가와 관련된 생물학적 노출지표물질 분석 방법의 제시를 목적으로 한다.

2. 적용범위

이 지침은 법, 시행규칙 및 고용노동부고시에 따라 실시하는 근로자 건강진단 중 트리클로로에틸렌에 노출되는 근로자의 생물학적 노출 평가에 적용한다.

3. 용어의 정의

- (1) 이 지침에서 사용하는 용어의 뜻은 다음과 같다.
 - (가) "생물학적 노출평가"란 혈액, 소변 등 생체시료 중 유해물질 자체 또는 유해물질의 대사산물이나 생화학적 변화산물 분석값을 이용한, 유해물질 노출에 의한 체내 흡수정도나 건강영향 가능성 등의 평가를 의미한다.
 - (나) "생물학적 노출지표물질"이란 생물학적 노출평가를 실시함에 있어 생체 흡수 정도를 반영하는 물질로 유해물질 자체나 그 대사산물, 생화학적 변화물 등을 말한다.
 - (다) "생물학적 노출기준값"이란 일주일에 40시간 작업하는 근로자가 고용노동부고시에서 제시하는 작업환경 노출기준 정도의 수준에 노출될 때 혈액 및 소변 중에서 검출되는 생물학적 노출지표물질의 값이다.
 - (라) "정밀도(precision)"란 일정한 물질에 대하여 반복측정·분석을 했을 때 나타나는 자료분석치의 변동의 크기를 나타낸다. 이 경우 같은 조건에서 측정

KOSHA Guide H-20-2023

했을 때 일어나는 우연오차(random error)에 의한 분산(dispersion)의 정도를 측정값의 변이계수(coefficient of variation)로 표시한다.

- (마) "정확도(accuracy)"란 분석치가 참값에 접근한 정도를 의미한다. 다만, 인 증표준물질이 있는 경우는 상대오차로 표시하고, 인증표준물질이 없는 경우는 시료에 첨가한 값으로부터 구한 평균회수율로 표시한다.
- (바) "검출한계(limit of detection: LOD)"란 공시료 신호값(blank signal, background signal)과 통계적으로 유의하게 다른 신호값(signal)을 나타낼 수 있는 최소의 농도를 의미한다. 이 경우 가장 널리 사용하는 공시료 신호값과의 차이가 공시료 신호값 표준편차의 3배인 경우로 한다.
- (2) 그 밖에 이 지침에서 사용하는 용어의 정의는 특별한 규정이 있는 경우를 제외하고는 산업안전보건법, 같은 법 시행령, 같은 법 시행규칙 및 산업안전 보건기준에 관한 규칙에서 정하는 바에 따른다.

4. 분석개요

소변 중 삼염화초산을 분석하며, 분석장비는 가스크로마토그래프-전자포획검출 기(gas chromatograph-electron capture detector, GC-ECD)를 사용한다.

5. 분석방법

5.1 분석원리 및 시료채취

(1) 분석 원리

트리클로로에틸렌은 체내에 흡수된 후, 소변 중으로 삼염화초산(18%), 삼염화에탄올(33%)의 형태로 배출되며, 이 때 유리형 또는 포합체로 배설된다. 삼염화에탄올의 포합체를 산으로 가수분해하여 유리형 삼염화에탄올로 만들어 분석한다. 삼염화초산은 휘발성이 없으므로 유도체화하여 휘발성으로 만든 후 GC에 주입하고, 분자중의 염소를 민감하게 검출하는 전자포획검출기 (electron capture detector)로 삼염화초산과 삼염화에탄올을 검출한다. 소변중 삼염화초산 을 트리클로로에틸렌의 생물학적 노출 지표로 이용한다.

KOSHA Guide H-20-2023

(2) 시료 채취

(가) 시료 채취 시기

시료 채취는 주말 작업 종료 직후 해야 하나 현장의 여건이 어려운 경우, 연속 3일 또는 4일 작업 종료 직후의 시료를 채취한다.

(나) 시료 채취 요령

- ① 채취 용기는 밀봉이 가능한 용기를 사용하고. 시료는 10 mL 이상 채취한다.
- ② 채취한 시료 용기를 밀봉하고 채취 후 5일 이전에 분석하며 4 ℃(2~8 ℃)에서 보관한다. 단, 분석까지 보관 기간이 5일 이상 걸리면 시료를 냉동보관용 저온바이알에 옮겨 20 ℃이하에서 보관한다.

5.2 가스크로마토그래프-전자포획검출법

(1) 기구 및 시약

(가) 기구

- ① 자동 피펫 10 100 µL, 100 1000 µL
- ② 용량플라스크 50 mL 1 개, 20 mL 1 개, 10 mL 5 개
- ③ 마개달린 시험관 5 mL

(나) 시약

- ① 삼염화초산(표준시약)
- ② 오르소-디클로로벤젠(o-dichlorobenzene, 내부표준시약)
- ③ 황산
- ④ 노말헥산(n-hexane)
- ⑤ 메탄올
- ⑥ 탈이온수(18 MΩ/cm 이상)

(2) 시약 조제

(가) 표준용액 조제를 위한 희석용 소변

트리클로로에틸렌에 노출되지 않은 정상인 소변을 채취하여 냉동 보관한다. 냉동한 소변을 상온에서 녹이고, 여과지를 사용하여 여과한 후 여액을 표준용액 조제를 위한 희석용 소변으로 사용한다. 단, 사용 이전에 미리소변을 분석하여 소변 중 삼염화에탄올이 없는 것을 확인한 소변을 표준용액 조제에 사용한다.

(나) 표준용액

- ① 삼염화초산 10 mg을 20 mL 용량플라스크에 옮기고 탈이온수로 표선을 채워 각각 1000, 500 mg/L의 표준용액 원액을 만든다.
- ② 표준용액 원액을 1, 3, 5, 7 mL 취하여 10 mL 용량플라스크에 옮기고 희석용 소변으로 표선을 채워 삼염화초산 50, 150, 250, 350 mg/L의 검량선용 표준용액을 제조한다.
- ③ 검량선에 사용되는 표준물질의 농도는 검체 결과가 검량선 범위에 들어가 도록 자유롭게 정할 수 있다.

(다) 내부표준용액

- ① 오르소-디클로로벤젠 100 μ L를 10 mL 용량플라스크에 옮긴 후 메탄올을 1 mL를 가하여 혼합하고 탈이온수로 표선을 채워 이를 내부표준용액 원액으로 하다.
- ② 내부표준용액 원액을 500 µL 취하여 50 mL 용량플라스크에 옮기고 탈이 온수로 표선을 채워 이를 내부표준용액으로 사용한다.

(3) 시료 및 표준용액 전처리

- (가) 표준용액 및 시료 500 μL를 취하여 마개달린 시험관에 옮기고 내부표준 용액 500 μL, 황산 500 μL, 메탄올 250 μL를 가한다.
- (나) 시험관에 마개를 하여 끓는 물(100 °C)에 시료가 담긴 부분이 잠기도록 담가 15 분 반응시킨 후, 상온에서 식힌다.
- (다) 추출용매로 노말핵산을 각 시험관에 2 mL씩 넣는다. 1분간 진탕기 (vortex mixer)에서 잘 섞은 후, 원심분리(2000 rpm, 3분)하여 위쪽의 핵 산층을 취하여 바이알에 옮겨 GC에 주입한다.

KOSHA Guide H-20-2023

- (4) 기체 크로마토그라프 분석 조건
- (가) 컬럼: DB-WAX(30 m × 0.25 mm ID × 0.25 μm 막 두께) 또는 그 이 상의 분리능을 가진 컬럼
- (나) 온도
 - ① 주입구 : 250 ℃
 - ② 검출기: 250 ℃
 - ③ 컬럼 : 70 ℃(2 분) (10 ℃/분 승온) 130 ℃(1 분)
- (다) 유속 : 2 mL/min
- (라) 분할주입비(split ratio): 100:1
- (마) 주입량 : 1 µL
- (바) 가스 : 초고순도질소(99.9999%)
- (5) 분석 결과 크로마토그램 예시

<그림 1> 삼염화초산 (TCA)과 삼염화에탄올(TCE)의 GC-ECD 크로마토그램 (5 mg/L 표준용액)

<그림 2> 삼염화초산 (TCA)과 삼염화에탄올(TCE)의 GC-ECD 크로마토그램 (5 mg/L의 표준시약을 첨가한 소변시료)

(6) 농도 계산

검량선용 표준용액의 농도를 가로(x)축으로 하고 시료의 피크 면적을 내부 표준물질의 피크 면적으로 보정한 값을 세로(y)축으로 하여 검량선을 작성하고, y= ax+b의 회귀방정식에 시료의 피크 면적을 대입하여 시료 중 포함된 삼염화초산과 삼염화에탄올의 농도(mg/L)를 구한다.

(7) 생물학적 노출기준

(가) 기준값 : 소변 중 삼염화초산 15 mg/L

(8) 정밀도(예)

(가) 삼염화초산 50 - 200 mg/L 농도 범위에서 변이계수 0.6 - 4.1%

(9) 정확도(예)

(가) 삼염화초산 50 - 200 mg/L 농도 범위에서 회수율 96 - 106%

(10) 검출한계

(가) 검출한계

예) 삼염화초산 4.2 mg/L(S/N 비 3)1)

(나) 산출 방법

검량선에 의한 표준용액의 농도와 면적간의 회귀식을 구하고 이 회귀식의 표준오차와 기울기를 이용하여 검출한계를 산출한다.

$$LOD = 3 \times \frac{\sqrt{\frac{\sum (Y_{ei} - Y_i)^2}{N - 2}}}{b}$$

 Y_{ei} : 회귀식에 의해 구한 각 시료량에 대한 반응값

 Y_i : 각 시료량에 대한 반응값

N: 표준용액 시료 수

b: 회귀방정식의 x계수

¹⁾ 배경 반응값(noise, N)의 3배인 시료 반응값(signal, S)을 나타내는 농도를 검출한계로 함.

지침 개정 이력

□ 개정일 : 2023. 8. 24.

○ 개정자 : 산업안전보건연구원 이미영

- 개정사유: 고용노동부고시 화학물질 및 물리적 인자의 노출기준에서 트리클로로에틸렌의 작업환경측정 노출기준이 50ppm에서 10ppm으로 강화되었으나 해당 생물학적 노출지표 중 하나인 총삼염화물 노출기준은 변동이 없으므로 평가지표에서 제외(노출기준 강화된 삼염화초산으로 평가 가능)
- 주요 개정내용
- 소변 중 총삼염화물(삼염화에탄올 분석 관련 내용 포함)을 삭제
- 소변 중 삼염화초산 분석값을 크레아티닌으로 보정하지 않으므로 크레아티 닌 보정 내용 삭제