第二章 矩阵

1987~2008本章考题考点分布统计表

考点	考频	考题分布与分值					
矩阵运算、初等 变换	4	2003 , —(5) 题 4 分	2004,13 题 4 分	2005,14 题 4 分	2006,14 题 4 分		
伴随矩阵、可逆 矩阵	3	1998,二(5) 题 3 分	2000,一(5) 题 3分	2008,7 题 4 分			
矩阵的秩	2	1998 ,数 三 3分	2007,16 题 4 分				
矩阵方程	5	1997,三(6) 题 5分 2002,十一题 6分	1998,十二题 5分	1999,十一题 6分	2001 ,十一题 6分		

本章导读

本章从1997年开始有考题. 矩阵是线性代数的核心内容,矩阵的概念、运算及理论贯穿线性代数的始终. 几乎年年都有单纯的矩阵知识的考题,而且其他考题也回避不了矩阵的知识,矩阵的重要性不言而喻.

二十多年来,矩阵的解答题考得很少,但复习时,对于填空与选择不要大意失荆州.

真题分类练习

一阶题,相对容易,推荐先做

二阶题,较综合,可在第二轮复习时做

一、矩阵运算、初等变换。

试题特点

试题简单、基本,但容易失误.由于矩阵乘法没有交换律,没有消去律,有零因子,这和大家熟悉的算术运算有很大区别,试题往往就是考查这里的基本功,因此复习时对于矩阵的运算要正确,熟练,不要眼高手低,犯低级失误.

矩阵的初等行变换是左乘初等矩阵,矩阵的初等列变换是右乘初等矩阵,这里要分清左乘、右乘,记住初等矩阵的逆矩阵.

艾宾洛斯抗遗 忘复习计划	臻选			再做 时间	一天一四天一七天一一月一考前	143

真題真刷基础篇・考点分类详解版(数学二)

[1] (2003, -(5) 题,4 分) 设 α 为三维列向量, α^{T} 是 α 的转置,若 $\alpha\alpha^{T} = \begin{bmatrix} 1 & -1 & 1 \\ -1 & 1 & -1 \\ 1 & -1 & 1 \end{bmatrix}$,则

[2] (2004,13 题,4 分) 设 A 是三阶方阵,将 A 的第 1 列与第 2 列交换得 B,再把 B 的第 2 列 加到第 3 列得 C,则满足 AQ = C 的可逆矩阵 Q 为

$$(A) \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 1 \end{bmatrix} . \qquad (B) \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix} . \qquad (C) \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 1 \end{bmatrix} . \qquad (D) \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} .$$

$$(B) \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix}.$$

(C)
$$\begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 1 \end{bmatrix}$$

(D)
$$\begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$

答题区

[3] (2005,14 题,4 分) 设 A 为 $n(n \ge 2)$ 阶可逆矩阵,交换 A 的第 1 行与第 2 行得矩阵 B,

- A^*, B^* 分别为 A, B 的伴随矩阵,则
- (A) 交换 A^* 的第 1 列与第 2 列得 B^* . (B) 交换 A^* 的第 1 行与第 2 行得 B^* .
- (C) 交换 A^* 的第 1 列与第 2 列得 $-B^*$. (D) 交换 A^* 的第 1 行与第 2 行得 $-B^*$.

答题区

[1] (2006,14 题,4 分) 设A为三阶矩阵,将A的第2行加到第1行得B,再将B的第1列的—1

倍加到第 2 列得
$$C$$
,记 $P = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$,则

$$(A)C = \mathbf{P}^{-1}\mathbf{A}\mathbf{P}. \quad (B)C = \mathbf{P}\mathbf{A}\mathbf{P}^{-1}. \quad (C)C = \mathbf{P}^{T}\mathbf{A}\mathbf{P}. \quad (D)C = \mathbf{P}\mathbf{A}\mathbf{P}^{T}.$$

$$(B)\mathbf{C} = \mathbf{P}\mathbf{A}\mathbf{P}^{-1}.$$

$$(C)\mathbf{C} = \mathbf{P}^{\mathsf{T}}\mathbf{A}\mathbf{P}$$

$$(D)C = PAP^{T}.$$

答题区

解题加速度

1. (2001,数三,3分)设

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{bmatrix}, \mathbf{B} = \begin{bmatrix} a_{14} & a_{13} & a_{12} & a_{11} \\ a_{24} & a_{23} & a_{22} & a_{21} \\ a_{34} & a_{33} & a_{32} & a_{31} \\ a_{44} & a_{43} & a_{42} & a_{41} \end{bmatrix}$$
$$\mathbf{P}_{1} = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix}, \mathbf{P}_{2} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

其中A可逆,则B-1等于

$$(\mathbf{A})\mathbf{A}^{-1}\mathbf{P}_1\mathbf{P}_2.$$

(B)
$$P_1 A^{-1} P_2$$
. (C) $P_1 P_2 A^{-1}$. (D) $P_2 A^{-1} P_1$.

$$(\mathbf{C})\boldsymbol{P}_1\boldsymbol{P}_2\boldsymbol{A}^{-1}$$

(D)
$$P_2A^{-1}P_1$$
.

2.(2004, 数三, 4分) 设 n 阶矩阵 A 与 B 等价,则必有

- (A) $| A | = a(a \neq 0)$ 时, | B | = a. (B) $| A | = a(a \neq 0)$ 时, | B | = -a.
- (C) 当 $|A| \neq 0$ 时, |B| = 0. (D) 当 |A| = 0 时, |B| = 0.

二、伴随矩阵、可逆矩阵

试题特点

伴随与可逆是矩阵中最重要的知识点,关键公式: $AA^* = A^*A = |A|E$,进而有

$$\mathbf{A}^{-1} = \frac{1}{|\mathbf{A}|} \mathbf{A}^* \ \overrightarrow{\mathbf{x}} \ \mathbf{A}^* = |\mathbf{A}| \mathbf{A}^{-1}$$

涉及伴随与可逆的试题非常多. 要想到并灵活运用 $AA^* = A^*A = |A|E$ 这一核心公式.

定义法,单位矩阵恒等变形,可逆的充要条件都是重要的考点.

5(1998,二(5) 题,3 分) 设 A 是任一n(n≥3) 阶方阵,A* 是其伴随矩阵,又 k 为常数,且 $k \neq 0, \pm 1,$ 则必有 $(kA)^* =$

 $(\mathbf{B})k^{n-1}\mathbf{A}^*$.

 $(C)k^nA^*$.

(D) $k^{-1}A^*$.

答题区

(2008, 7 题, 4 分) 设 A 为 n 阶非零矩阵, E 为 n 阶单位矩阵. 若 $A^3 = O$, 则

(A)E-A 不可逆, E+A 不可逆. (B)E-A 不可逆, E+A 可逆.

(C)E-A可逆,E+A可逆.

(D)E-A可逆,E+A不可逆.

7 (2000, -(5) 题, 3 分) 设 $A = \begin{bmatrix} 1 & 0 & 0 & 0 \\ -2 & 3 & 0 & 0 \\ 0 & -4 & 5 & 0 \\ 0 & 0 & -6 & 7 \end{bmatrix}$, E 为四阶单位矩阵, 且 B = (E + E)

$$(E-A)^{-1}(E-A)$$
, $\emptyset(E+B)^{-1}=$ _______

答题区

 $1.(1993, \underline{\&matherem{89}{200}})$ 已知三阶矩阵A的逆矩阵为 $A^{-1} = egin{bmatherem{1}{1} & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 3 \end{bmatrix}$. 试求伴随矩阵 A^* 的逆矩阵.

2. (2002, 300, 300) 设 A, B, 300 为 100 所矩阵, 100 10

$$\begin{bmatrix} A & O \\ O & B \end{bmatrix}$$
,则 C 的伴随矩阵 $C^* =$

$$(A) \begin{bmatrix} |A|A^{\bullet} & O \\ O & |B|B^{\bullet} \end{bmatrix}.$$

$$(C) \begin{bmatrix} |A| B^{\bullet} & O \\ O & |B| A^{\bullet} \end{bmatrix}.$$

(B)
$$\begin{bmatrix} |B|B^* & O \\ O & |A|A^* \end{bmatrix}$$

$$(D) \begin{bmatrix} | B | A^* & O \\ O & | A | B^* \end{bmatrix}.$$

3. (1992, 数四, 3 分) 设 A, B, A + B, $A^{-1} + B^{-1}$ 均为 n 阶可逆矩阵, 则($A^{-1} + B^{-1}$) = 等于 $(A)A^{-1} + B^{-1}$. (B)A + B. $(C)A(A+B)^{-1}B.$ $(D)(A+B)^{-1}.$

4. (2002,数四,3分) 设矩阵 $A = \begin{bmatrix} 1 & -1 \\ 2 & 3 \end{bmatrix}$, $B = A^2 - 3A + 2E$,则 $B^{-1} = \underline{}$.

三、矩阵的秩

试题特点

矩阵的秩是重点也是难点,要正确理解矩阵秩的概念

 $r(A) = r \Leftrightarrow A$ 中有 r 阶子式不为 0,每个 r+1 阶子式(若还有) 全为 0.

在这里要分清"有一个"与"每一个",当r(A) = r时,A中能否有r-1阶子式为0?能否有r+1阶子式不为0?

你用行列式来如何描述 $r(A) \ge r$?如何描述 r(A) < r?

要搞清矩阵的秩与向量组秩之间的关系,这种转换是重要的.在线性相关的判断与证明中往往是由矩阵的秩推导向量组的秩,而解方程组时往往由相关、无关推导矩阵的秩.

经初等变换矩阵的秩不变,这是求秩的最重要的方法,有时可以把定义法与初等变换法相结合来分析推导矩阵的秩.

要会用 ① |A| 是否为 0,② 相关、无关,③ 方程组的解;会用其中的两个信息夹逼求出矩阵 A 的秩.

8 (1998,数三,3 分)设 n(n≥3)阶矩阵

$$\mathbf{A} = \begin{bmatrix} 1 & a & a & \cdots & a \\ a & 1 & a & \cdots & a \\ a & a & 1 & \cdots & a \\ \vdots & \vdots & \vdots & & \vdots \\ a & a & a & \cdots & 1 \end{bmatrix}$$

若矩阵 A 的秩为 n-1 ,则 a 必为

(B)
$$\frac{1}{1-n}$$
.

$$(C) - 1.$$

(D)
$$\frac{1}{n-1}$$
.

答题区

再做时间

9 (2007,16 题,4 分) 设矩阵 A =

解题加速度

- 1. (1994, 数四, 3分)设A, B 都是n 阶非零矩阵, 且AB = O, 则A 和B 的秩
- (A) 必有一个等于 0.

- (B) 都小于 n.
- (C) 一个小于n,一个等于n.
- (D) 都等于 n.

- 2.(1995, 数四, 3分) 设矩阵 $A_{m \times n}$ 的秩为 $r(A) = m < n, E_m$ 为m 阶单位矩阵,下述结论中正确 的是
 - (A)A 的任意m 个列向量必线性无关.
 - (B)A 的任意一个m 阶子式不等于零.
 - (C)A 通过初等行变换,必可以化为 (E_m, O) 形式.
 - (D) 非齐次线性方程组 Ax = b 一定有无穷多组解.

真題真 刷基础篇・考点分类详解版 (数学二)

3. (1996,3 分) 设
$$A$$
 是 4×3 矩阵,且 A 的 $\Re r(A) = 2$,而 $B = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 2 & 0 \\ -1 & 0 & 3 \end{bmatrix}$,则 $r(AB) = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 2 & 0 \\ -1 & 0 & 3 \end{bmatrix}$

の、 矩阵方程

试题特点

解矩阵方程时,首先要根据矩阵的运算法则、性质把方程化简(特别要注意矩阵的乘法没有交换律),化简之后有三种形式:公众号: 旗胜考研

$$AX = B; XA = B; AXB = C$$

对于前两个方程,若判断出 A 可逆,则有

$$X = A^{-1}B : X = BA^{-1}$$

对于第三个方程,若 A,B 均可逆,则有 $X = A^{-1}CB^{-1}$.

那么,再通过求逆等运算就可求出X.

10 (1997, 三(6) 题,5 分) 已知矩阵 $\mathbf{A} = \begin{bmatrix} 1 & 1 & -1 \\ 0 & 1 & 1 \\ 0 & 0 & -1 \end{bmatrix}$,且 $\mathbf{A}^2 - \mathbf{AB} = \mathbf{E}$,其中 \mathbf{E} 是三阶单

位矩阵,求矩阵 B.

答题区

艾宾浩斯抗遗 忘复习计划

競选 題号

再做时间

一天一四天一七天一一月

[11] (1998, + 二 题, 5 分) 设 $(2E - C^{-1}B)A^{T} = C^{-1}$,其中 E 是 4 阶单位矩阵, A^{T} 是四阶矩阵 A 的转置矩阵,且

$$\boldsymbol{B} = \begin{bmatrix} 1 & 2 & -3 & -2 \\ 0 & 1 & 2 & -3 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \boldsymbol{C} = \begin{bmatrix} 1 & 2 & 0 & 1 \\ 0 & 1 & 2 & 0 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 \end{bmatrix},$$

求矩阵 A.

答题区

12 (1999, 十一题, 6 分) 设矩阵
$$\mathbf{A} = \begin{bmatrix} 1 & 1 & -1 \\ -1 & 1 & 1 \\ 1 & -1 & 1 \end{bmatrix}$$
,矩阵 \mathbf{X} 满足 $\mathbf{A}^*\mathbf{X} = \mathbf{A}^{-1} + 2\mathbf{X}$,其

中 A^* 是A 的伴随矩阵,求矩阵X.

答题区

真題真 刷基础篇・考点分类详解版 (数学二)

13 (2001,十一 题,6 分) 已知矩阵

$$\mathbf{A} = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix}, \mathbf{B} = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$

且矩阵X满足

$$AXA + BXB = AXB + BXA + E$$

其中E是三阶单位阵,求X.

答题区

- 14 (2002,十一题,6分)已知A,B为三阶矩阵,且满足 $2A^{-1}B = B 4E$,其中E是三阶单位矩阵.
- (1)证明:矩阵A-2E可逆;

(2) 若
$$\mathbf{B} = \begin{bmatrix} 1 & -2 & 0 \\ 1 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$
,求矩阵 \mathbf{A} .

答题区

再做时间

