Solution of Homework 1: Basic Logic

- Q.1 Make truth tables for the following statement:
 - $p \vee (\overline{r \vee q});$

Answer

p	q	r	$r \lor q$	$r \lor q$	$p \lor (\overline{r \lor q})$
T	T	T	T	F	T
T	T	F	T	F	T
T	F	T	T	F	T
T	F	F	F	T	T
F	T	T	T	F	F
\overline{F}	T	F	T	F	F
F	F	T	T	F	F
F	F	F	F	T	T

• $(p \land \neg q) \rightarrow r$.

Answer

p	q	r	$\neg q$	$p \wedge \neg q$	$(p \land \neg q) \to r$
T	T	T	F	F	T
T	T	F	F	F	T
T	F	T	T	T	T
T	F	F	T	T	F
F	T	T	F	F	T
\overline{F}	T	F	F	F	T
F	F	T	T	F	T
\overline{F}	F	F	T	\overline{F}	T

Q.2 Using logical equivalences discussed in class prove that

$$(p \land q) \to (p \lor q)$$

is a tautology, that is, prove that

$$(p \land q) \rightarrow (p \lor q) \equiv T.$$

Answer

$$\begin{array}{rcl} (p \wedge q) \rightarrow (p \vee q) & \equiv & \neg (p \wedge q) \vee (p \vee q) \\ & \equiv & (\neg p \vee \neg q) \vee (p \vee q) \\ & \equiv & (\neg p \vee p) \vee (\neg q \vee q) \\ & \equiv & T \vee T \\ & \equiv & T \end{array}$$

Note: Another way to solve this question is by constructing the truth table for the given logical expression and showing that it always yields T for all values of p and q.

Q.3 Let

$$P(x,y): x+y \ge 5$$
 where x, y are positive integers.

Tell whether the following statements are true or false:

- $\forall_x \forall_y \ P(x,y)$
- $\forall_x \exists_y \ P(x,y)$.

Answer

- $\forall_x \forall_y \ P(x,y)$: "False" Counterexample: $P(1,2): 1+2 \ngeq 5$.
- $\forall_x \exists_y \ P(x,y)$: "True" If we pick an arbitrary value for x, say a, then there always exists a value for y (for example, a+5) such that $x+y=2a+5\geq 5$.

Q.4 Which of the following is equivalent to $\overline{\forall_x \exists_y P(x,y)} \equiv \neg \forall_x \exists_y P(x,y)$:

- (a) $\exists_x \overline{\forall_y P(x,y)};$
- (b) $\forall_x \overline{\exists_y P(x,y)};$
- (c) $\exists_x \forall_y \overline{P(x,y)}$;
- (d) $\exists_x \exists_y \overline{P(x,y)}$.

Answer

(c) $\exists_x \forall_y \overline{P(x,y)}$.