ЛАБОРАТОРНАЯ РАБОТА № 6 Построение формирующих фильтров

Цель: построение и исследование характеристик формирующих фильтров.

1. Порядок выполнения

- 1) Разработать программу для моделирования дискретного белого шума с интенсивностью σ^2 , значение процесса в каждый момент времени должно подчиняться равномерному закону распределения.
- 2) Разработать программу для моделирования дискретного белого шума с интенсивностью σ^2 , значение процесса в каждый момент времени должно подчиняться нормальному закону распределения.
- 3) Построить формирующий фильтр для моделирования экспоненциально коррелированного шума с параметрами Δ и T.
- 4) Рассчитать спектральную плотность и установившиеся значения математического ожидания и дисперсии выхода формирующегося фильтра.
- 5) Осуществить моделирование формирующего фильтра с начальными условиями, распределенными по закону N(1,4), и входными сигналами из п.1 и п.2.
- 6) На основе обработки экспериментальных данных оценить автокорреляционную функцию, установившиеся значения математического ожидания и дисперсии, законы распределения реализаций выхода формирующего фильтра.

2. Содержание отчета

- 1) Реализации дискретного белого шума с равномерным и экспоненциальным распределениями.
- 2) Уравнения и дискретная передаточная функция формирующего фильтра.
- 3) Рассчитанные спектральная плотность и установившиеся значения математического ожидания и дисперсии выхода формирующегося фильтра.
- 4) Реализации выхода формирующего фильтра для входных последовательностей с различными законами распределения.
- 5) Оценки автокорреляционной функции, установившихся значений математического ожидания и дисперсии, результаты проверки статистических гипотез о законах распределения выходного сигнала.
- 6) Программа экспериментов.

3. Варианты заданий

Вариант	σ^2	Δ	T
1	3	1	50
2	2	2	10
3	1	2	10
4	4	3	50
5	5	1	20
6	6	2	10
7	3	2	30
8	4	2	50
9	6	4	10
10	7	9	25
11	8	8	15
12	9	3	12

13	5	4	35
14	4	9	60
15	8	2	15
16	4	7	55
17	8	6	15
18	5	3	20
19	1	9	55
20	8	5	25
21	7	9	15
22	2	4	35
23	9	9	70
24	8	2	15
25	3	8	30
26	6	4	20
27	7	7	10
28	3	9	40
29	8	4	55
30	9	3	35