

Translogische Rodeche Chiminiesgörn

2006/2007

PON - Passive Optical Networks

Fernando M. Silva

Fernando. Silva@ist.utl.pt

Instituto Superior Técnico

Modelos de acesso em fibra

- Fibre to the Home (FTTH)
- Fibre to the Building/Curb (FTTB/C)
- Fibre to the Cabinet (FTTCab).

Soluções FTTx

PON - Passive Optical Network

- As soluções FTTH (Fiber To The Home) têm potencial para aumentar de forma significativa a largura de banda disponível.
- No entanto, a implementação de soluções completas ponto a ponto de fibra são caras e implicam um custo elevado, sobreudo nos equipamentos do operador
- A alternativa é usar redes ópticas passivas (PON, Passive Optical Network)
 - As redes ópticas passivas permitem interligar vários pontos de uma rede
 - A rede é realizada sem elementos activos intermédios (de onde o nome pas-sive)
 - Permitem simplificar de forma significativa o nó central

FTTH - Ligação ponto a ponto

FTTC - Fiber To The Curb

FTTH - PON, Passive Optical Network

 Nas tecnologias PON, apenas é necessária a instalação de elementos passivos – splitters – para multiplicar o acesso da infra-estrutura.

Topologias

• De um modo geral, as soluções de PON são montadas em árvore, normalmente com um valor máximo de 32 ou 64 elementos por fibra.

Fernando M. Silva Tecnologias de Redes de Comunicações

Normas

• O ETSI definiu em 1997 na ETS 300 681, Optical Distribution Network (ODN) for Optical Access Network (OAN)

R, S: pontos de referência Or, Om, Oi: interfaces ópticas

- Or: interface óptica no ponto de referência R/S entre a ONU e a ODN;
- Oi: interface óptica no ponto de referência S/R entre a OLT e a ODN;
- Om: interface óptica entre os equipamentos de teste/monitorização e a ODN.

Elementos

A ODN consiste dos seguintes componentes ópticos passivos:

- fibras mono-modo
- cabos de fibras mono-modo
- conectores ópticos
- dispositivos ópticos de ramificação (branching)
- atenuadores ópticos fixos
- junções de fusão (fusion splices)
- filtros ópticos
- dispositivos WDM
- amplificadores ópticos

Requisitos ODN

- transparência de comprimento de onda óptico: dispositivos, tais como ramificadores ópticos (optical branching) que não têm funções selectivas em comprimento de onda, deverão suportar a transmissão de sinais em qualquer comprimento de onda nas regiões 1310 nm e 1550 nm;
- reciprocidade: a inversão dos portos de entrada e saída não deve causar alterações significativas nas perdas ópticas através dos dispositivos;
- compatibilidade de fibra: todos os componentes ópticos deverão ser compatíveis com fibra mono-modo como especificado em EN 188101.

Terminologia

Direcção

- downstream: direcção dos sinais viajando da OLT para a ONU(s);
- upstream: direcção dos sinais viajando da ONU(s) para a OLT.

Modo

- A transmissão nas direcções downstream e upstream pode ter lugar na mesma fibra e componentes (duplex/diplex) ou em fibras e componentes separados (simplex):
- Duplex refere-se ao uso dos mesmos comprimentos de onda em ambas as direcções de transmissão sobre uma fibra única;
- Diplex refere-se ao uso de diferentes comprimentos de onda para cada direcção de transmissão sobre uma única fibra.
- Simplex refere-se ao uso de uma fibra diferente para cada direcção de transmissão.

Tecnologia de fibra

- Tecnologias dual-fiber: Uma fibra em cada direcção
- Modos
 - 100BASE-LX10
 - 1000BASE-LX10

Tecnologia de fibra (2)

• Tecnologias single-fiber: Uma fibra bidireccional

- Bi-direcionalidade em modo Diplex
- Modos
 - Uplink at 1260 1360 nm
 - Downlink 1480 1580 nm
- As tecnologias de PON baseiam-se normalmente em fibras bi-direccionais

Arquitectura

- A conexão física da OLT e ONUs à ODN é feita via uma ou duas fibras, dependendo do esquema de transmissão bidireccional adoptado (duplex, diplex or simplex).
 - É permitido o uso de um número maior de fibras para fins de ampliação ou de protecção.
- A configuração da ODN deve ser ponto-multiponto, onde um número de ONUs são ligados à OLT via a ODN.
- Podem ser definidas duas arquitecturas básicas ponto-multiponto para a ODN: estrela e bus.

Topologias (série)

Topologias (estrela)

Topologia em estrela - modelo de referência

OBD - Repartidor óptico

Arquitectura em estrela simples

 Na arquitectura em estrela simples, o comprimento permitido da fibra é maior, mas o custo muito mais elevado.

APON/BPON, EPON e GPON

- APON/BPON ATM PON/Broadband PON ITU-T G.983
- EPON Ethernet PON IEEE 802.3ah
- GPON Gigabit PON ITU-T G.984

APON/BPON - ATM over PON

APON/BPON

- Normalizado pelo ITU-T G.983
- APON (ATM PON) foi a primeira norma para xPON
- Desenhado para ter compatibilidade directa com os aneis SONET/SDH usados no core dos operadores
 - * BPON (Broadband PON) é uma variante de APON que adiciona suporta para WDM e melhora a reserva de largura de banda ascendente.
- Inconveniente: ATM, custos do equipamento terminal.
- Com o progressivo predomínio de ethernet nas redes core, o APON/BPON está hoje ultrapassado pelo EPON e GPON

Evolução de preços

EPON - Ethernet over PON

EPON

- Com o aumento da popularidade das soluções baseadas em IP e ethernet, e sua extensão às redes de core, foi natural considerar a extensão do protocolo Ethernet às redes de acesso
- Integração natural com as redes IP.
- O EPON (Ethernet over PON) está incluído numa norma bem estabelecida do IETF (802.3ah)
- Desenvolvimento: 10GEPON (10 Gigabit Ethernet PON)
 - Grupo de trabalho IEEE 802.3av (próxima reunião: Atlanta, 11-16Nov 2007)

GPON

• GPON

- Norma ITU-T G.984
 - * Em grande parte, já aprovada, mas alguns componentes ainda em desenvolvimento.
- Evolução do APON/BPON, com suporte GFP (Generalized Framing Procedure). Avariante de GFP é designada GEM (GPON Encapsulation Mechanismo)
 - * O suporte GFP permite que o GPON possa suportar vários protocolos de nível 2 (Ethernet ou ATM).
- Embora mais recente e eficiente que o EPON, este último tem a vantagem de ser mais maduro
- O GPON, embora já colocado em produção por alguns fabricantes, tem ainda alguns módulos em desenvolvimento, pelo que não é ainda uma norma completa.
- EPON normalmente mais económico que o GPON

GPON ou EPON?

- Muitas operadoras estão ainda no processo de decisão sobre EPON e GPON
- De um modo geral, o EPON é considerado superior, mas o atraso na norma levou a que a sua adopção seja por vezes substituída pelo EPON
- BPON
 - 155,52 bit/s (up), 622,08 bit/s (down)
- EPON
 - 1,25Gbit/s, simétrico
 - split ratio: 1:16, (evolução: 1:32).
- GPON
 - -2,5Gbit/s (d), 1,25 Gbit/s (up)
 - split ratio: 1:32 (evolução: 1:64, 1:128)

Transmissão

Mecanismo semelhante em GPON/EPON/APON

- Sentido descendente
 - Broadcasting
- Sentido ascendente
 - Atribuição de canais pelo OLT (CO)
 - DBA Dynamic Bandwidth Allocation

Tramas

- Em EPON a trama é Etehrnet é mapeada directamente na trama de transmissão
 - EPON não suporta fragmentação
 - Os slots devem ajustar-se ao tamanho dos pacotes
- Em GPON, é usado GEM (GPON encapsulation mechanism) que prevê o suporte de outro tipo de tramas para além de ethernet.

Tramas

Sentido ascendente

• As tramas de GPON é baseado em tramas síncronas de $125\mu s$, pelo que pode ocorrer fragmentação.

Tramas GPON:

PLI	Port ID	PTI	HEC	Fragment payload L Bytes	
12 bits	12 bits	3 bits	13 bits		
Payload Length Indicator	h Type			G,984,3_F8-14	

PTI code	Meaning		
000	User data fragment, Congestion has Not occurred, Not the end of a frame		
001	User data fragment, Congestion has Not occurred, End of a frame		
010	User data fragment, Congestion Has occurred, Not the end of a frame		
011	User data fragment, Congestion Has occurred, End of a frame		
100	GEM OAM		
101	Reserved		
110	Reserved		
111	Reserved		

Pilha de protocolos Pilha de protocolos GPON

Reserva de largura de banda ascendente

- DBA Dynamic Bandwith Allocation
 - A atribuição da largura de banda é realizada pelo OLT/CO.
 - Modelo de atribuição tem que incluir provisão para os tempos de ligar/desligar o laser, tempo de preambulo e intervalo de guarda, para além de uma componente de incerteza dependente do sincronismo.

Timings

$$\begin{aligned} t_{DZ} &= 128 \text{ ns} & t_{G} &= 26 \text{ ns (min)} \\ t_{EON} &= 512 \text{ ns (max)} & t_{GON} &= 13 \text{ ns (max)} \\ t_{AGC} &= 96, 192, 288 \text{ or } 400 \text{ ns} & t_{P} &= 35 \text{ ns (suggested)} \\ t_{CDR} &= 96, 192, 288 \text{ or } 400 \text{ ns} & t_{D} &= 16 \text{ ns (suggested)} \end{aligned}$$

Algoritmo DBA

- A norma não define nenhum algoritmo de atribuição
- Definido apenas o contexto e protocolos associados
- Princípios base de um bom algoritmo
 - Suporte de QoS / tráfego prioritizado
 - Distribuição fair da largura de banda
 - Utilização da informação do comprimento de largura de banda de cada ONU para ajustar a largura de banda atribuída

Algoritmos DBA

- TRU Transmission Upon Reception
 - O ONU, recebe uma trama de dimensão S_1 no instante t_1
 - Neste caso, é atribuído ao ONU a possibilidade de transmissão entre $S_1 + t_1$ e $S_1 + t_1 + S_1 d$, onde d acautela as diferenças entre tempos de propagação e flutuações de sincronismo
 - A determinação de d ém realizada por um sincronismo inicial.
 - Implica criar alguns períodos de vazio no "upstream".

Diagrama ONU - (TRU)

TRU - Distribuição

Problemas?

• Possibilidade de colisão devido aos tempos de propagação

• Possibilidade de colisão devido aos tempos de propagação

R. Incluir um tempo de guarda $d=2\delta$. δ é o intervalo entre o nó mais perto e mais longe do CO.

- Possibilidade de colisão devido aos tempos de propagação
- Multicast

- Possibilidade de colisão devido aos tempos de propagação
- Multicast

R. As mensagens de multicast incluem informação complementar que indicam aos nós os intervalos de transmissão.

- Possibilidade de colisão devido aos tempos de propagação
- Multicast
- Oportunidades de transmissão na ausência de tráfego descendente

- Possibilidade de colisão devido aos tempos de propagação
- Multicast
- Oportunidades de transmissão na ausência de tráfego descendente

- Possibilidade de colisão devido aos tempos de propagação
- Multicast
- Oportunidades de transmissão na ausência de tráfego descendente

R. Na ausência de tráfego ascendente, o CO envia envia uma mensagem com pedido de satus. O ONU envia informação sobre o estado do seu buffer de transmissão. O CO aloca slots de acordo com os requisitos e envia no sentido descendente tramas dummy (sem informação) para garantir a possibilidade de transmissão. Esta informação é corrigida periodicamente pelo ONU caso se esgotem as tramas a enviar.

DBA - G.983.4

- O método de DBA, embora originário do G.983, foi igualmente adoptado no G.984
- Mensagens PLOAM (Physical Layer OAM) periódicas indicam os slots de transmissão
- No G.983.1 (APON original) os slots eram reservados e ajustados de forma estática quando entravam ou saíam terminais da rede.
 - Método bem adaptado para ligações connection oriented
 - Este método não permite ajustar de forma dinâmica as necessidades dos terminais.
- A adopção de DBA permite melhor aproveitamento da largura de banda

Métodos básicos de DBA

• Idle Cell Adjustement

- OLT monitoriza a largura de banda usada por cada ONT
- Se a utilização ultrapassar um dado limiar, é adicionada largura de banda a este caso esteja disponível.
- A OLT infere as necessidades de largura de banda com base na utilização efectiva.
- Inconveniente: reacção lenta a pedidos de largura de banda ascendentes.

• Buffer Status Reporting

- Cada ONU reporta o estado da sua fila de transmissão
- O OLT distribui a largura de banda de acordo com as necessidades