

Update on Open Science: Open Science @ UPM Spanish network on Open Science EOSC Interoperability Framework

Oscar Corcho

http://www.oeg-upm.net/index.php/en/researchareas/3-semanticscience/index.html

Ontology Engineering Group Universidad Politécnica de Madrid, Spain

OEG Talks

- This work is licensed under the license CC BY-SA 4.0 International
 - http://purl.org/NET/rdflicense/cc-by-nc-sa4.0

- You are free:
 - to Share to copy, distribute and transmit the work
 - to Remix to adapt the work
- Under the following conditions
 - Non-commercial You cannot use it for commercial purposes, nor for training inside a commercial company
 - Attribution You must attribute the work by inserting
 - "[source http://www.oeg-upm.net/]" at the footer of each reused slide
 - a credits slide stating: "These slides are partially based on "Update on Open Science: Open Science @ UPM, Spanish network on Open Science, EOSC Interoperability Framework" by O. Corcho"
 - o Share-Alike

Our Research Areas

Ontology-based Data Integration

Semantics in Open Science

Ontological Engineering

Lauticula Columbia

Lauticula Colu

(Social)
Semantic
Web and
Linked Data

2000

Data-driven language technologies

1997

The Umbrella of Open Science

Professor Eva Méndez. UC3M, Madrid

Why talking about reproducibility?

WWW. PHDCOMICS. COM

Experiment components

DATA

SCIENTIFIC PROCEDURE

EQUIPMENT

IN VIVO/VITRO

IN SILICO

Experiment components

Experimental Protocols

Explore alternative ways for documenting and retrieving information from experimental protocols

Olga Giraldo

Alexander Garcia

Semantic Representation for Protocols (SMART Protocols). Giraldo O (2019) PhD thesis Using Semantics and Natural Language Processing in Experimental Protocols. Giraldo O, García-Castro A, Figueredo J, Corcho O - J Biomedical Semantics Giraldo, O., García, A., & Corcho, O. (2018), A guideline for reporting experimental protocols in life sciences. PeerJ 6:e4795; DOI 10.7717/peerj.4795. Giraldo, O., García, A., López, F., & Corcho, O. (2017). Using semantics for representing experimental protocols. Journal of biomedical semantics, 8(1), 52

Computational Environments

Idafen Santana

Is it possible to describe the main properties of the Execution Environment of a Computational Scientific Experiment and, based on this description, derive a reproduction process for generating an equivalent environment using virtualization techniques?

Conservation of Computational Scientific Execution Environments for Workflow-based Experiments Using Ontologies. Santana-Pérez I. PhD thesis, 2016. http://oa.upm.es/39520/

A few more...

- José Manuel Gómez Pérez
 - Problem-solving methods for understanding process executions. http://oa.upm.es/2649/
- Dani Garijo
 - Mining abstractions in Scientific Workflows. http://oa.upm.es/39062/

And some ongoing work...

Light pollution (www.stars4all.eu)

STARS4ALL

Lifecycle for Citizen Science Data

Data portal

- A few options to be based on
 - CSIC-INIA: http://data.inia.es/: Research Data, CrossRef, DCAT-AP
 - STARS4ALL: http://data.stars4all.eu/: Zenodo
 - TransformingTransport: https://data.transformingtransport.eu/:
 Private data, Rich metadata

Indexing

Citable Findable

How do we eat our own dog food at OEG-UPM?

- Which research artefacts do we handle at OEG-UPM?
 - Papers (sure, chedk them at http://oa.upm.es/)
 - Data Management Plans (using DMPOnline)
 - Datasets
 - Normally in GitHub, e.g. https://github.com/oeg-upm/btn100
 - Software source code
 - Normally in GitHub: http://www.github.com/oeg-upm
 - Docker images, models and APIs
 - Normally in DockerHub: https://hub.docker.com/u/oegupm/
 - o Ontologies, thesauri, etc.
 - Normally in GitHub, e.g., <u>https://github.com/CiudadesAbiertas/vocab-sector-publico-agenda-municipal</u>
 - And published online, e.g., http://vocab.ciudadesabiertas.es/def/sector-publico/agenda-municipal/

0 ...

And which are our (good) practices?

- Still missing many, but...
 - When a research or experiment starts, a new GitHub repository is created
 - The repository is connected to Zenodo, so as to get DOIs and ensure archival
 - Automated archival process after every release
 - DOIs also added to the GitHub repository
 - Our papers cite those DOIs
 - Bit.ly, dropbox, GDrive links, etc., are strictly prohibited in our papers
 - We tweet about them:
 https://twitter.com/ocorcho/status/1106989518941548544
 - Zenodo community

• https://zenodo.org/communities/ontc

Ontology Engineering Group at Universidad Politécnica de Madrid

Recent uploads

| Political Political Control of Political Control Control of Political Contro

Things that we do (another perspective)

https://figshare.com/articles/NPOS_Workflow-perspective-Bosman-Kramer_pptx/5065534/1

Now getting in to the meat for today....

- Open Science project at UPM (2020-2023)
- Spanish Open Science network
- EOSC Interoperability Framework

Open Science project at UPM

- Funded under "Programa Propio UPM 2020". 80K€
- Promoters:
 - Oscar Corcho (EOSC FAIR WG, Open software/data)
 - Mark Wilkinson (FAIR data)
 - Carlos del Cañizo (Responsible Research and Innovation)
 - Ana Laverón (ESA Scientific Data)
 - Raquel Cedazo (Citizen Science)
 - Alberto Brunete (Open hardware)
- Open to the UPM community:
 - Central library, school libraries and CESVIMA
 - Strategic actions at UPM
 - Open Science ambassadors and support team
- Whom?
 - Esteban González: 31 months part-time (50%)
 - Paco Yedro: 12 months part-time (40%)

Objectives and tasks (I)

- Obj1 Task 1. Análisis de necesidades de los investigadores de distintas áreas de conocimientos y disciplinas de la UPM, y creación de un informe estratégico y guías prácticas (M1-M36)
 - M12: Informe estratégico para la aplicación de políticas de Ciencia Abierta en la UPM (v1)
 - M24: Colección de guías prácticas para la aplicación de políticas de Ciencia Abierta en la UPM
 - M36: Informe estratégico para la aplicación de políticas de Ciencia Abierta en la UPM (v2)

Objectives and Tasks (II)

- Obj2 Task 2. Identificación, adaptación y despliegue de software relacionado con Ciencia Abierta (M1-M36)
 - M6: Catalogación inicial de sistemas que pueden ser utilizados para el almacenamiento de artefactos de investigación.
 - M15: Dashboards para la presentación de indicadores sobre Ciencia Abierta en la UPM.
 - M24: Despliegue de sistemas de depósito de datos u otros objetos de investigación en los casos que se consideren necesarios.

M36: Catálogo final y dashboards

Objectives and Tasks (III)

- Obj3-4. Task 3. Preparación y presentaciones en sesiones de formación y concienciación sobre el concepto de Ciencia Abierta y las oportunidades que brinda la Ciencia Abierta en una institución como la UPM (M1-M36)
 - M1: Reunión de lanzamiento para dar a conocer la iniciativa a la comunidad UPM
 - M7: Reunión de presentación del catálogo de iniciativas Open Science en UPM
 - M9: Materiales de formación para investigadores predoctorales
 - M13: MOOC sobre Ciencia Abierta en español, basado en materiales usados por MOOCs existentes generados por los proyectos FOSTER y FOSTER+.
 - M16: Reunión de presentación del informe estratégico y de los dashboards.
 - M25: Reunión de presentación de los sistemas puestos a disposición de la comunidad UPM y de las guías prácticas.

M36: Reunión de presentación de resultados finales

A few changes due to COVID-19

- We will create the UPM portal for COVID-19 and SARS-COV-2
- Similar (with less resources) to
 - https://www.covid19dataportal.org/
- Reusing ideas from ACTION data portal
 - Create a UPM community in Zenodo
 - Associate Research Artefacts with the UPM community and with the COVID-19 community from Zenodo
 - Show it in a dedicated portal

Spanish Open Science Network

Led by Universidad Politécnica de Valencia (Nacho Blanquer)

Network Proposal

Proposal funded in the call 2018 Acciones de Dinamización - Redes de Investigación built on top of the results of a set of National and European Projects on Open e-Science that focuses on coordinating, sharing and reinforcing such results in an international context.

EOSC Interoperability Framework. EOSC

EOSC Interoperability Framework. EOSC Landscape

EOSC Interoperability Framework. EOSC FAIR WG

 https://www.eoscsecretariat.eu/working-groups/fairworking-group

OVERVIEW

WHAT

provide recommendations on the implementation of FAIR, including corresponding requirements for EOSC services, in order to foster cross-disciplinary interoperability

WHY

Connect people, data and service via standards

Be the glue

HOW

- Data standards & sharing agreements
- Upscale best-practice solutions
- EOSC Interoperability Framework
- 4. Identify service requirements for FAIR

- Persistent Identifier Policy for EOSC
- Frameworks to assess FAIR data and certify services that enable FAIR
- Converge towards globally-accepted frameworks

Q2 2019 2019 Annual FAIR work plan Q4 2019
PID policy defined
Outline metrics for
FAIR data & service
certification

Q1 2020 2020 Annual FAIR work plan

testing & iterating

Q3 2020 Q4 2020

EOSC Updated PID policy
Interoperability
Framework Updated FAIR metrics
& service certification

Open Science Ur

- Objective:
 - Identify the general principles that should drive the creation of the EOSC Interoperability Framework
- Current version at: <u>https://docs.google.com/document/d/1QDLJhwvyHsp</u> Hnkly4A1kgEi7oJ8BX4IHpHmBctwBmgM/edit
 - Will open for public comments in 2 weeks
 - Workshop with European Interoperability Framework

EOSC Interoperability Framework (v0.9) 31 March 2020 Draft for internal FAIR WG consultation

Oscar Corcho, Universidad Politécnica de Madrid, 0000-0002-9260-0753
Magnus Eriksson, Swedish Research Council
Milan Ojsteršek, University of Maribor, 0000-0003-1743-8300
Christine Choirat, Swiss Data Science Center, ETH Zürich and EPFL
Mark van de Sanden, SURFsara
Krzysztof Kurowski, Poznań Supercomputing and Networking Center IBCH PAS
Frederik Coppens, VIB-UGent Center for Plant Systems Biology, 0000-0001-6565-5145

EOSC IF. Table of Contents (I)

1. Introduction

- 1.1 Context and definitions
 - 1.1.1 The European Open Science Cloud (EOSC)
 - 1.1.2 FAIR principles and the role of Interoperability
 - 1.1.3 The European Interoperability Framework as a Starting Point for the EOSC Interoperability Framework
 - 1.1.4 Other definitions
- 1.2 Purpose and scope
- 1.3 How to read this document

2 Interoperability layers

- 2.1 Technical interoperability
- 2.2 Semantic interoperability
- 2.3 Organisational interoperability
- 2.4 Legal interoperability (not in v1)

EOSC IF. Table of Contents (II)

- 3. Minimum Requirements and Recommendations for the EOSC Interoperability Framework
 - 3.1 Technical Interoperability
 - 3.1.1 Problems and needs
 - 3.2 Semantic Interoperability
 - 3.2.1 Problems and needs
 - 3.3 Organisational interoperability
 - 3.3.1 Problems and needs
 - 3.4 Legal interoperability (not in v1)
 - 3.5 Some general recommendations from the European Interoperability Framework
- 4. Towards an EOSC Interoperability Framework: Model and Components
 - 4.1 Model overview
 - 4.1.1 The FAIR digital object
 - 4.1.2 The European Interoperability Framework and the EOSC IF
 - 4.1.3 Interlinking digital objects
 - 4.2 Basic components
 - 4.2.1 Common semantic artefacts
 - 4.2.2 Metadata frameworks and elements
 - 4.2.2.1 The metadata framework core as a part of the foundation for semantic interoperability
 - 4.2.3 Common resources for semantic artefacts, including examples
 - 4.2.3.1 Common Semantic artefacts
 - 4.2.3.2 Conceptual metadata standards & Data type registry models

EOSC IF v0.9

 Let's now check the document: https://docs.google.com/document/d/1QDL JhwvyHspHnkly4A1kgEi7oJ8BX4IHpHmBctwBmgM/edit

Update on Open Science: Open Science @ UPM Spanish network on Open Science EOSC Interoperability Framework

Oscar Corcho

http://www.oeg-upm.net/index.php/en/researchareas/3-semanticscience/index.html

Ontology Engineering Group Universidad Politécnica de Madrid, Spain

OEG Talks