Structural Optimization for Large-Scale Problems

Lecture 4: Looking into the Black Box: Smoothing Technique

Yurii Nesterov

Minicourse: November 15, 16, 22, 23, 2024 (SDS, Shenzhen)

Outline

Nonsmooth Optimization

Smoothing technique

Application examples

先前我们假设 procle是在一个block box中,但现实中往往我们是对 procle有一定的了解的,因此可以 improve the procle/reformlate the problem.

第1之前对于Nonsmooth convex problem (first-order method) 筋対矩结果
Nonsmooth Unconstrained Optimization
(first order)

Problem: min $\{ f(x) : x \in \mathbb{R}^n \} \Rightarrow x^*, f^* = f(x^*),$ where $f(\cdot)$ is a nonsmooth convex function.

Subgradients: $g \in \partial f(x) \Leftrightarrow f(y) \geq f(x) + \langle g, y - x \rangle \quad \forall y \in R^n$.

Main difficulties:

- $ightharpoonup g \in \partial f(x)$ is *not* a descent direction at x.
- ▶ $g \in \partial f(x^*)$ does not imply g = 0.

Example

$$f(x) = \max_{1 \le j \le m} \{ \langle a_j, x \rangle + b_j \},$$

$$\partial f(x) = \text{Conv } \{ a_j : \langle a_j, x \rangle + b_j = f(x) \}.$$

Subgradient methods in Nonsmooth Optimization

Advantages

- Very simple iteration scheme.
- ► Low memory requirements. D(1/1)
- Optimal rate of convergence (uniformly in the dimension).
- Interpretation of the process.

Objections:

- Low rate of convergence. (Confirmed by theory!)
- No acceleration.
- High sensitivity to the step-size strategy.

Lower complexity bounds

Nemirovsky, Yudin 1976

If $f(\cdot)$ is given by a local *black-box*, it is impossible to converge faster than $O\left(\frac{1}{\sqrt{k}}\right)$ <u>uniformly in n</u>. (k is the # of calls of oracle.)

NB: Convergence is very slow.

Question: We want to find an ϵ -solution of the problem

$$\max_{1 \le j \le m} \{\langle a_j, x \rangle + b_j\} \quad \to \quad \min_{x} : x \in \mathbb{R}^n,$$

by a gradient scheme (n and m are big).

What is the worst-case complexity bound?

"Right answer" (Complexity Theory): $O\left(\frac{1}{\epsilon^2}\right)$ calls of oracle.

Our target: A gradient scheme with $O\left(\frac{1}{\epsilon}\right)$ complexity bound.

Reason of speed up: our problem is not in a black box.

Complexity of Smooth Minimization

(first broller)

Problem: $f(x) \rightarrow \min : x \in \mathbb{R}^n$, where f is a convex function and

 $\|\nabla f(x) - \nabla f(y)\|_* \le L(f)\|x - y\|$ for all $x, y \in \mathbb{R}^n$.

(For measuring gradients we use dual norms: $\|s\|_* = \max_{\|x\|=1} \langle s, x \rangle$.)

Rate of convergence: Optimal method gives $O\left(\frac{L(f)}{k^2}\right)$.

$$O\left(\sqrt{\frac{L(f)}{\epsilon}}\right)$$
.

Complexity: $O\left(\sqrt{\frac{L(f)}{\epsilon}}\right)$. The difference with $O\left(\frac{1}{\epsilon^2}\right)$ is very big.

如果锅把nonsmooth的问题转化为smooth的,提出会很大

§ 2 Smoothing technique

Smoothing for convex functions

用Fenchel dual 表展示这种 idea

For function *f* define its Fenchel conjugate:

$$f_*(s) = \max_{x \in R^n} [\langle s, x \rangle - f(x)].$$

It is a closed convex function with dom $f_* = \text{Conv}\{f'(x) : x \in R^n\}$.

Moreover, under very mild conditions $(f_*(s))_* \equiv f(x)$.

Define
$$f_{\mu}(x) = \max_{s \in \text{dom } f_*} [\langle s, x \rangle - f_*(s) - \frac{\mu}{2} ||s||_*^2]$$
, $(f_*(s))_* (x) = \max_{s \in \text{dom } f_*} [\langle x, s \rangle - f_*(s)]$ where $\|\cdot\|_*$ is a Euclidean norm.

Note:
$$\underline{f'_{\mu}(x) = s_{\mu}(x)}$$
, and $x = f'_{*}(s_{\mu}(x)) + \mu s_{\mu}(x)$. Therefore, $\|x_{1} - x_{2}\|^{2} = \|f'_{*}(s_{1}) - f'_{*}(s_{2})\|^{2} + 2\mu \langle f'_{*}(s_{1}) - f'_{*}(s_{2}), s_{1} - s_{2} \rangle + \mu^{2} \|s_{1} - s_{2}\|^{2} \ge \mu^{2} \|s_{1} - s_{2}\|^{2}$.

Thus, $f_{\mu} \in C^{1,1}_{1/\mu}$ and

$$f(x) \ge f_{\mu}(x) \ge f(x) - \frac{1}{2}\mu D^2$$

where $D = Diam(dom f_*)$.

Main questions

1. Given by a non-smooth convex $f(\cdot)$, can we form its computable smooth ϵ -approximation $f_{\epsilon}(x)$ with

$$L(f_{\epsilon}) = O\left(\frac{1}{\epsilon}\right)$$
?

If yes, we need only $O\left(\sqrt{\frac{L(f_{\epsilon})}{\epsilon}}\right) = O\left(\frac{1}{\epsilon}\right)$ iterations.

2. Can we do this in a systematic way?

Conclusion: We need a convenient *model* of our problem.

Adjoint problem

 $f_{\mu}(x) = \max_{s \in \text{dom } f_*} [\langle s, x \rangle - f_*(s) - \frac{\mu}{2} \|s\|_*^2]$

Primal problem: Find $f^* = \min_x \{f(x) : x \in Q_1\}$, where $Q_1 \subset E_1$ is convex closed and bounded.

Objective: $f(x) = \hat{f}(x) + \max_{u} \{ \langle Ax, u \rangle_2 - \hat{\phi}(u) : u \in Q_2 \},$ where

- $\hat{f}(x)$ is differentiable and convex on Q_1 . (原本就 smooth 的社)
- $ightharpoonup Q_2 \subset E_2$ is a closed convex and bounded.
- $\hat{\phi}(u)$ is continuous convex function on Q_2 . (有多种选择)
- ▶ linear operator $A: E_1 \rightarrow E_2^*$.

Adjoint problem: $\max_{u} \{\phi(u) : u \in Q_2\}$, where $\phi(u) = -\hat{\phi}(u) + \min_{x} \{\langle Ax, u \rangle_2 + \hat{f}(x) : x \in Q_1\}.$

NB: Adjoint problem is not unique! (取以子声, に 的進取)

 $min + f(x) = min + f(x) + max + (Ax, \mu)_2 - \beta(\mu) = max + min + f(x) + (Ax, \mu)_2 - \beta(\mu) = max + min + f(x) + (Ax, \mu)_2 + \beta(\mu) = max + \beta(\mu) + min + f(x) + (Ax, \mu)_2 = max + \beta(\mu) = max + \beta$

Example (不同的 adjoint problem)

Consider
$$f(x) = \max_{1 \le j \le m} |\langle a_j, x \rangle_1 - b_j|$$
.

1.
$$Q_2 = E_1^*$$
, $A = I$, $\hat{\phi}(u) \equiv f_*(u) = \max_x \{ \langle u, x \rangle_1 - f(x) : x \in E_1 \}$

$$= \min_{s \in R^m} \left\{ \sum_{j=1}^m s_j b_j : u = \sum_{j=1}^m s_j a_j, \sum_{j=1}^m |s_j| \le 1 \right\}.$$

2.
$$E_2 = R^m$$
, $\frac{\hat{\phi}(u) = \langle b, u \rangle_2}{\sum_{j=1}^m u_j [\langle a_j, x \rangle_1 - b_j]} = \max_{1 \le j \le m} |\langle a_j, x \rangle_1 - b_j|$
= $\max_{u \in R^m} \left\{ \sum_{j=1}^m u_j [\langle a_j, x \rangle_1 - b_j] : \sum_{j=1}^m |u_j| \le 1 \right\}$.

3.
$$E_2 = R^{2m}$$
, $\hat{\phi}(u)$ is a linear, Q_2 is a simplex $f(x) = \max_{u \in R^{2m}} \{ \sum_{j=1}^{m} (u_j^1 - u_j^2) [\langle a_j, x \rangle_1 - b_j] : \sum_{j=1}^{m} (u_j^1 + u_j^2) = 1, \ u \ge 0 \}.$

NB: Increase in dim E_2 decreases the complexity of representation.

Smooth approximations

Prox-function: $d_2(u)$ is continuous and *strongly convex* on Q_2 :

$$d_2(v) \geq d_2(u) + \langle \nabla d_2(u), v - u \rangle_2 + \frac{1}{2}\sigma_2 ||v - u||_2^2.$$

Assume: $d_2(u_0) = 0$ and $d_2(u) \ge 0 \ \forall u \in Q_2$.

Fix $\mu > 0$, the *smoothing* parameter, and define

$$f_{\mu}(x) = \max_{u} \{ \langle Ax, u \rangle_{2} - \hat{\phi}(u) - \mu d_{2}(u) : u \in Q_{2} \}.$$

Denote by u(x) the solution of this problem.

加上了一个扰动 通常很 simple)

Theorem: $f_{\mu}(x)$ is convex and differentiable for $x \in E_1$.

Its gradient $\nabla f_{\mu}(x) = A^* u(x)$ is Lipschitz continuous with

$$L(f_{\mu}) = \frac{1}{\mu \sigma_2} ||A||_{1,2}^2$$
, smooth

where
$$||A||_{1,2} = \max_{x,u} \{ \langle Ax, u \rangle_2 : ||x||_1 = 1, ||u||_2 = 1 \}.$$

NB: 1. For any $x \in E_1$ we have $f_0(x) \ge f_{\mu}(x) \ge f_0(x) - \mu D_2$, where $D_2 = \max_{u} \{d_2(u) : u \in Q_2\}$.

2. All norms are very important.

Optimal method

(用子解决 smuoth 后的问题)

Problem:
$$\min_{x} \{ f(x) : x \in Q_1 \}$$
 with $f \in C^{1,1}(Q_1)$.

Prox-function: strongly convex $d_1(x)$, $d_1(x^0) = 0$, $d_1(x) \ge 0$, $x \in Q_1$.

Gradient mapping:

$$T_L(x) = \arg\min_{y \in Q_1} \left\{ \langle \nabla f(x), y - x \rangle_1 + \frac{1}{2} L \|y - x\|_1^2 \right\}.$$

Method. For k > 0 do:

- **1.** Compute $f(x^k)$, $\nabla f(x^k)$.
- **2.** Find $y^k = T_{L(f)}(x^k)$.
- **3.** Find $z^k = \arg\min_{x \in Q_1} \{ \frac{L(f)}{\sigma} d_1(x) + \sum_{i=0}^k \frac{i+1}{2} \langle \nabla f(x^i), x \rangle_1 \}.$
- **4.** Set $x^{k+1} = \frac{2}{k+3}z^k + \frac{k+1}{k+3}y^k$.

solution.

Convergence:
$$f(y^k) - f(x^*) \le \frac{4L(f)d_1(x^*)}{\sigma_1(k+1)^2}$$
, where x^* is the optimal solution

Applications

smooth 的部分

Smoothed problem:
$$\overline{f_{\mu}(x)} = \hat{f}(x) + \underline{f_{\mu}(x)} \rightarrow \min : x \in Q_1.$$

Lipschitz constant:
$$L_{\mu} = L(\hat{f}) + \frac{1}{\mu\sigma_2} ||A||_{1,2}^2$$
.

Denote $D_1 = \max\{d_1(x) : x \in Q_1\}$.

Theorem: Let us choose $N \ge 1$. Define

$$\mu = \mu(N) = \frac{2\|A\|_{1,2}}{N+1} \cdot \sqrt{\frac{D_1}{\sigma_1 \sigma_2 D_2}}$$
.

After N iterations set $\hat{x} = y^N \in Q_1$ and

$$\hat{u}=\sum\limits_{i=0}^{N}rac{2(i+1)}{(N+1)(N+2)}\;u(x^i)\in Q_2$$

After
$$N$$
 iterations $\hat{x} = y^N \in Q_1$ and $\hat{u} = \sum_{i=0}^N \frac{2(i+1)}{(N+1)(N+2)} u(x^i) \in Q_2$ Then $0 \le f(\hat{x}) - \phi(\hat{u}) \le \frac{4\|A\|_{1,2}}{N+1} \cdot \sqrt{\frac{D_1D_2}{\sigma_1\sigma_2}} + \frac{4L(\hat{f})D_1}{\sigma_1\cdot(N+1)^2}$.

Corollary. Let $L(\hat{f}) = 0$. For getting an ϵ -solution, we choose

$$\mu = \frac{\epsilon}{2D_2}$$
, $L = \frac{D_2}{2\sigma_2} \cdot \frac{\|A\|_{1,2}^2}{\epsilon}$, $N \ge 4\|A\|_{1,2} \sqrt{\frac{D_1 D_2}{\sigma_1 \sigma_2}} \cdot \frac{1}{\epsilon}$.

$$N \geq 4\|A\|_{1,2}\sqrt{rac{D_1D_2}{\sigma_1\sigma_2}}\cdotrac{1}{\epsilon}$$

Example: Equilibrium in matrix games (1)

Denote $\Delta_n = \{x \in R^n : x \ge 0, \sum_{i=1}^n x^{(i)} = 1\}$. Consider the problem $\min_{x \in \Delta_n} \max_{u \in \Delta_m} \{\langle Ax, u \rangle_2 + \langle c, x \rangle_1 + \langle b, u \rangle_2 \}$.

Minimization form:

$$\lim_{x \in \Delta_n} f(x), \quad f(x) = \langle c, x \rangle_1 + \max_{1 \leq j \leq m} [\langle a_j, x \rangle_1 + b_j],$$

$$\max_{u \in \Delta_m} \phi(u), \quad \phi(u) = \langle b, u \rangle_2 + \min_{1 \leq i \leq n} [\langle \hat{a}_i, u \rangle_2 + c_i],$$

where a_i are the rows and \hat{a}_i are the columns of A.

1. Euclidean distance: Let us take

$$||x||_1^2 = \sum_{i=1}^n x_i^2, \quad ||u||_2^2 = \sum_{j=1}^m u_j^2,$$

$$d_1(x) = \frac{1}{2} ||x - \frac{1}{n} e_n||_1^2, \quad d_2(u) = \frac{1}{2} ||u - \frac{1}{m} e_m||_2^2.$$

Then
$$||A||_{1,2} = \lambda_{\max}^{1/2}(A^TA)$$
 and $f(\hat{x}) - \phi(\hat{u}) \leq \frac{4\lambda_{\max}^{1/2}(A^TA)}{N+1}$.

Example: Equilibrium in matrix games (2)

2. Entropy distance. Let us choose

$$||x||_1 = \sum_{i=1}^n |x_i|, \quad d_1(x) = \ln n + \sum_{i=1}^n x_i \ln x_i,$$

 $||u||_2 = \sum_{j=1}^m |u_j|, \quad d_2(u) = \ln m + \sum_{j=1}^m u_j \ln u_j.$

LM:
$$\sigma_1 = \sigma_2 = 1$$
. (Hint: $\langle d_1''(x)h, h \rangle = \sum_{i=1}^n \frac{h_i^2}{x_i} \to \min_{x \in \Delta_n} = \|h\|_1^2$.)

Moreover, since $D_1 = \ln n$, $D_2 = \ln m$, and

$$\|A\|_{1,2} = \max_{x} \{ \max_{1 \leq j \leq m} |\langle a_j, x \rangle| : \ \|x\|_1 = 1 \} = \max_{i,j} |A_{i,j}|,$$

we have
$$f(\hat{x}) - \phi(\hat{u}) \leq \frac{4\sqrt{\ln n \ln m}}{N+1} \cdot \max_{i,j} |A_{i,j}|$$
.

NB: 1. Usually $\max_{i,j} |A_{i,j}| << \lambda_{\max}^{1/2} (A^T A)$.

2. We have
$$\bar{f}_{\mu}(x) = \langle c, x \rangle_1 + \mu \ln \left(\frac{1}{m} \sum_{j=1}^m e^{[\langle a_j, x \rangle + b_j]/\mu} \right)$$
.

Example 2: Continuous location problem

Problem: p cities with populations m_j , $j=1,\ldots,m$, are located at positions

$$c_j \in R^n, \quad j=1,\ldots,p.$$

Goal: Construct a service center at point x^* , which minimizes the total distance to the center.

That is: Find
$$f^* = \min_{x} \left\{ f(x) = \sum_{j=1}^{p} m_j \|x - c_j\|_1 : \|x\|_1 \leq \bar{r} \right\}$$
.

Primal space:

$$||x||_1^2 = \sum_{i=1}^n (x^{(i)})^2$$
, $d_1(x) = \frac{1}{2} ||x||_1^2$, $\sigma_1 = 1$, $D_1 = \frac{1}{2} \bar{r}^2$.

Adjoint space:
$$E_2 = (E_1^*)^p$$
, $||u||_2^2 = \sum_{j=1}^p m_j (||u_j||_1^*)^2$,

$$Q_2 = \{u = (u_1, \ldots, u_p) \in E_2 : \|u_j\|_1^* \le 1, \ j = 1, \ldots, p\},\$$

$$d_2(u) = \frac{1}{2} ||u||_2^2, \quad \sigma_2 = 1, \quad D_2 = \frac{1}{2} P.$$

with $P \equiv \sum_{j=1}^{p} m_j$, the total size of population.

Operator norm: $||A||_{1,2} = P^{1/2}$.

Rate of convergence: $f(\hat{x}) - f^* \leq \frac{2P\bar{r}}{N+1}$.

$$f_{\mu}(x) = \sum_{j=1}^{p} m_{j} \psi_{\mu}(\|x - c_{j}\|_{1}), \quad \psi_{\mu}(\tau) = \begin{cases} \frac{\tau^{2}}{2\mu}, & \tau \leq \mu, \\ \tau - \frac{\mu}{2}, & \mu \leq \tau. \end{cases}$$

Example 3: Variational inequalities (linear operator)

Consider B(w) = Bw + c: $E \rightarrow E^*$, which is monotone:

$$\langle Bh, h \rangle \geq 0 \quad \forall h \in E.$$

Problem: Find $w^* \in Q$: $\langle B(w^*), w - w^* \rangle \ge 0 \quad \forall w \in Q$,

where Q is a bounded convex closed set.

Merit function: $\psi(w) = \max_{v} \{ \langle B(v), w - v \rangle : v \in Q \}.$

- $\blacktriangleright \psi(w)$ is convex on E_1 .
- $\blacktriangleright \ \psi(w) \geq 0$ for all $w \in Q$.
- $\psi(w) = 0$ if and only if w solves VI-problem.
- $ightharpoonup \langle B(v), v \rangle$ is a *convex* function. Thus, ψ is *exactly* in our form.

Primal smoothing: $\psi_{\mu}(w) = \max_{v} \{ \langle B(v), w - v \rangle - \mu d_2(v) : v \in Q \}.$

Dual smoothing: $\phi_{\mu}(v) = \min_{w} \{ \langle B(v), w - v \rangle + \mu d_1(w) : w \in Q \}.$ (Looks better.)

Example 4: Piece-wise linear functions

1. Maximum of absolute values. Consider

$$\min_{x} \left\{ f(x) = \max_{1 \leq j \leq m} |\langle a_j, x \rangle_1 - b^{(j)}| : x \in Q_1 \right\}.$$

For simplicity choose $||x||_1^2 = \sum_{i=1}^n (x^{(i)})^2$, $d_1(x) = \frac{1}{2} ||x||^2$.

It is convenient to choose $E_2 = R^{2m}$,

$$||u||_2 = \sum_{j=1}^{2m} |u^{(j)}|, \quad d_2(u) = \ln(2m) + \sum_{j=1}^{2m} u^{(j)} \ln u^{(j)}.$$

Denote by A the matrix with the rows a_i . Then

$$f(x) = \max_{u} \{\langle \hat{A}x, u \rangle_2 - \langle \hat{b}, u \rangle_2 : u \in \Delta_{2m} \},$$

where
$$\hat{A}=\left(\begin{array}{c}A\\-A\end{array}\right)$$
 and $\hat{b}=\left(\begin{array}{c}b\\-b\end{array}\right)$.

Thus,
$$\sigma_1 = \sigma_2 = 1$$
, $D_2 = \ln(2m)$, $D_1 = \frac{1}{2}\bar{r}^2$, $\bar{r} = \max_x \{ \|x\|_1 : x \in Q_1 \}$.

Operator norm: $\|\hat{A}\|_{1,2} = \max_{1 \le j \le m} \|a_j\|_1^*$.

Complexity:
$$2\sqrt{2} \ \overline{r} \max_{1 \leq j \leq m} \|a_j\|_1^* \sqrt{\ln(2m)} \cdot \frac{1}{\epsilon}$$
.

Approximation: for $\xi(\tau) = \frac{1}{2}[e^{\tau} + e^{-\tau}]$ define

$$\bar{f}_{\mu}(x) = \mu \ln \left(\frac{1}{m} \sum_{j=1}^{m} \xi \left(\frac{1}{\mu} [\langle a_j, x \rangle + b^{(j)}] \right) \right).$$

Piece-wise linear functions: Sum of absolute values

$$\min_{x} \left\{ f(x) = \sum_{j=1}^{m} |\langle a_j, x \rangle_1 - b^{(j)}| : x \in Q_1 \right\}.$$

Let us choose $E_2=R^m,\ Q_2=\{u\in R^m:\ |u^{(j)}|\leq 1,\ j=1,\ldots,m\},$ and $d_2(u)=\frac{1}{2}\|u\|_2^2=\frac{1}{2}\sum_{j=1}^m\|a_j\|_1^*\cdot (u^{(j)})^2.$

Then
$$f_{\mu}(x) = \sum_{j=1}^{m} \|a_j\|_1^* \cdot \psi_{\mu} \left(\frac{|\langle a_j, x \rangle_1 - b^{(j)}|}{\|a_j\|_1^*} \right)$$
,
$$\|A\|_{1,2}^2 = P \equiv \sum_{j=1}^{m} \|a_j\|_1^*.$$

On the other hand, $D_2 = \frac{1}{2}P$ and $\sigma_2 = 1$. Thus, we get the following complexity bound: $\frac{1}{\epsilon} \cdot \sqrt{\frac{8D_1}{\sigma_1}} \cdot \sum_{j=1}^m \|a_j\|_1^*.$

NB: The bound and the scheme allow $m \to \infty$.

Computational experiments

Test problem: $\min_{x \in \Delta_n} \max_{u \in \Delta_m} \langle Ax, u \rangle_2$.

Entries of A are uniformly distributed in [-1, 1].

Goal: Test of computational stability. **Computer:** 2.6GHz.

Complexity of iteration: 2mn operations.

Table 1 Results for $\epsilon = 0.01$.

$m \setminus n$	100	300	1000	3000	10000
100	808	1011	1112	1314	1415
	0''	0''	3"	12"	44′′
300	910	1112	1415	1617	1819
	0''	2"	10''	35′′	135′′
1000	1112	1213	1415	1718	2020
	2"	8''	32"	115"	451′′

Number of iterations: 40 - 50% of predicted values.

Results for $\epsilon = 0.001$. Table 2

$m \setminus n$	100	300	1000	3000	10000
100	6970	8586	9394	10000	10908
	2"	8′	29",	91''	349′′
300	7778	10101	12424	14242	15656
	8''	27''	97''	313"	1162''
1000	8788	11010	13030	15757	18282
	30''	105''	339′′	1083''	4085′′

Results for $\epsilon = 0.0001$. Table 3

$m \setminus n$	100	300	1000	3000
100	67068	72073	74075	80081
	25′′	80′′	287''	945''
300	85086	92093	101102	112113
	$89^{\prime\prime},42\%$	243''	914′′	3302"
1000	97098	100101	116117	139140
	331"	760′′	2936"	11028"

Comparing the bounds

Smoothing + FGM: $2 \cdot 4 \cdot \frac{mn}{\epsilon} \sqrt{\ln n \ln m}$.

Short-step p.-f. method $(n \ge m)$: $(7.2\sqrt{n} \ln \frac{1}{\epsilon}) \cdot \frac{m(m+1)}{2} n$. Right digits

m	n	2	3	4	5
100	100	g	g	Ь	b
300	300	g	g	Ь	b
300	1000	g	g	Ь	b
300	3000	g	g	=	b
300	10000	g	g	g	b
1000	1000	g	g	g	b
1000	3000	g	g	g	b
1000	10000	g	g	g	

g - S+FGM, b - barrier method