Teoria da Computação

Exame de Primeira Chamada

Universidade da Beira Interior

Segunda-Feira 29 de Janeiro de 2006

A consulta dos apontamentos manuscritos e os apontamentos da disciplina (**e só esses**) é tolerada.

Proibido o uso de calculadora e de telemóvel.

Qualquer fraude implica reprovação na disciplina.

Só serão corrigidas as provas **legíveis**.

Relembramos que, na tradição da axiomática de Peano, a notação \mathbb{N} refere-se ao conjunto dos naturais incluindo o 0. Referiremo-nos ao conjunto dos naturais sem o 0 por \mathbb{N}^* .

1 Princípios da Teoria da Computação

- 1. Como caracterizar a complexidade em tempo da solução dum problema indecidível?
- 2. Que impacto terá a descoberta dum algoritmo que não se pode expressar com a ajuda duma máquina de Turing?

2 Técnicas de Demonstração

Demonstre, usando o princípio da diagonalização, que o conjunto \mathcal{F} das funções unárias de \mathbb{N} para \mathbb{N} não é numerável. Para tal, prossiga por contradição (assuma que \mathcal{F} é numerável) e considere a matriz M booleana cujas linhas são as funções $f_0, f_1, \cdots f_i \cdots$ de \mathcal{F} e as colunas os inteiros de \mathbb{N} , ou seja, $0, 1, 2 \cdots, i, \cdots$. Que significado atribuir a $M(f_i, k) = true$? Neste caso, que representa o conjunto diagonal? Conclua.

3 OCaml

Considere o tipo das árvores binárias:

Defina uma função procura: 'a -> 'a bin_tree -> bool que devolve true se o seu primeiro argumento consta na árvore binária em segundo argumento, false senão.

4 Autómatos

Considere um autómato $M = \{Q, \Sigma, I, F, R_{\delta}\}$ não determinista com transições ϵ com |I| > 1. É sempre possível transformar um autómato como M num autómato não deterministico com transições ϵ equivalente M' possuindo um só estado inicial.

- 1. Proponha um algoritmo que realize tal transformação.
- 2. Demonstre (ou pelo menos dê um esboço de demonstração) que o autómato resultante M' é equivalente ao autómato M (ou seja que L(M) = L(M')). Esta propriedade é a propriedade de correcção do algoritmo proposto.

5 Autómatos de pilha

Defina um autómato com pilha que reconheça a linguagem $\{a^n.b^m.c^{n+m} \mid n,m \in \mathbb{N}\}$. Sugestão: inspira-se do autómato com pilha dado no teste modelo.

6 Máquinas de Turing

- 1. Diga que configuração atinge a execução da seguinte máquina $M = \{Q, \Gamma, \Sigma, \delta, q_0, \sharp, \emptyset\}$ sobre a palavra abba:
 - $Q = \{q_0, q_1, q_2, q_3\}$
 - $\Gamma = \{a, b, A, A', B, B'\}$
 - $\Sigma = \{a, b\}$
 - δ = q_0 A'Direita q_1 B'Direita q_3 q_1 DireitaDireita q_1 AADireita q_1 q_1 BBDireita q_1 AEsquerda q_1 q_2 EsquerdaabbEsquerda q_2 q_2 EsquerdaAAA'Direita q_0 ABBEsquerda q_2 B'BDireita q_0 Direita q_3 a q_3 abDireitab q_3 ADireita q_3 BBDireita

B

 q_2

Esquerda