A/D & D/A II

ECE 3710

Yesterday I saw a chicken crossing the road. I asked it why. It told me it was none of my business.

- Steven Wright

ADC: voltage — → code DAC: code — voltage

more interesting waveforms?

can only update DAC so often:

settling time
 uC speed

sine wave generation: table method

decisions:

I. how many points of wave (angles) will we reproduce

2. amplitude

3. offset

limited by V_max and V_min

4. voltage increment

ex: sine wave generation w/10 entries (use full range of DAC)

angles =
$$0,40,80,120,160,200,240,280,320,360$$

B = 1.65 V

simulator is 0--3.3 \vee $A = 1.65 \vee$

and 10-bits

 $V_{inc} = 3.3/(2^{10});$

for each angle:

$$code = \lceil V_{inc}^{-1}(B + A \times \sin(x)) \rceil$$

codes = 512, 842, 1017, 956, 688, 337, 69, 8, 183, 512

getSineCode.m

ex: sine wave generation w/10 entries

```
int main(void)
  unsigned int i;
  unsigned int delay;
  DACInit();
  while(1)
                                              to make sine wave more
     for(i=0;i<10;i++)
                                             apparent on logic analyser
           DAC CR = (SIN 10[i] << 6);
           for(delay=0;delay<1024;delay++);
```

Q: how to specify frequency of sine wave?

Q:
how to specify frequency of sine wave?
A:
go through table at 1/frequency

it should take this long to go through table

how to produce sine wave of specified frequency

let:

1. n be number of table entries2. f be the desired frequency

I. find period

2. output each table entry for $\frac{T}{n}$

ex: 4 kHz sine wave w/ 25-entry table freq. independent

codes (B=1.65, A=1.65):

512,645,768,875,956,1007,1024,1007,956,875,768,
645,512,380,256,150,69,18,0,18,69,150,256,380,
512

$$f=4~{\rm kHz}~\to T=\frac{1}{4e+3}=250~\mu{\rm s}$$

$$\frac{250~\mu{\rm s}}{25}=10~\mu{\rm s}~{\rm setup~timer~to~overflow}$$
 this often

ex: 4 kHz sine wave w/ 25-entry table (SysClk = 12 MHz)

procedure:

- 1. configure SysTick to expire every 10 us
- 2. SysTick ISR should update DAC register

(keep track of which code to place there)

ex: 10 us delay with SysClk = 12 MHz

$$(INITIAL + 1) \times \frac{1}{12e6}$$

$$n \times 0.083 \mu s = 10 \mu s \rightarrow n = 121$$

$$INITIAL + 1 = 121 \rightarrow INITIAL = 120$$

0x78

ex: 4 kHz sine wave w/ 25-entry table (SysClk = 12 MHz)

```
AREA DATA, ALIGN=2
I DCD 0 ; where we are in entry table
          | text | CODE, READONLY, ALIGN=2
 AREA
SIN 25 DCD 512,645,768,875,956,...,512
          allocates one
                        pseudo-code:
    word for each entry
                          for(I=0;I<25;I++)
                         DAC CR = SIN 25[I]
```

ex: 4 kHz sine wave w/ 25-entry table

(SysClk = 12 MHz)

```
SysTick Handler
  ; procedure: get current entry in table,
  ; put in dac reg, increment position in table
  ; 1. get current table entry
  ldr R1,=I ;addr of counter
  ldr R0,[R1]; get location in table
  ldr R3,=SIN 25; location of table
  ldr R2, [R3, R0]; get current entry in table (SIN 25[I])
  ; 2. update dac reg
  ldr R3,=DAC CR
  str R2, [R3]
  ; 3. update position in table
  cmp R0,\#0x60; 24*4=96=0x60
  ITE LT
  addlt R0,#4 ;go to next entry (DCD allocates a word)
 movge R0,#0 ;go back to beginning of table
  str R0, [R1]; update location in table
  bx LR
```

note: can't produce every frequency

let:

possible freqs =
$$ceil(1./(40*12e-6*((2^8-1) + 1 - timers)))$$

lesson: choose SysClk carefully

note: can't produce every frequency

lesson: choose SysClk carefully

note: can't produce every frequency

lesson: choose SysClk carefully

your psyche after the exam...

...and then after receiving grade

remember...

He romale, no passarán He chavale, non rien de rien Hey, venceremos, Все равно мы победим! Last one, last one goes the hope - Gogol Bordello

this class: understanding will come

(even if it's at the end)

exam I.

I. read value and shift to C of APSR:

Logical Shift Right LSR

2. shift C into buffer:

exam 2.

pass by reference: memory location of var. in Rx or on stack

pass by value: var. in Rx or on stack

what if n = 0?

exam 3.

$$T = I/Ie3 = I ms$$

Ton = I/4*Ie-3 = 250 us

r*I/6e6 = 250 us => n = 1500

notes:

I. tell, don't show, configuration 2.assume BB addr. of PD0 via label/register 3. use SysTick

exam 4.

