C477: Computational Optimisation Tutorial 3: 1D Optimisation

Exercise 1. Let $f(x) = x^2 + 4\cos(x)$, $x \in \mathbb{R}$. We wish to find the minimiser x^* of f over the interval [1, 2].

(a) Use the Golden Section method to locate x^* to within an uncertainty of 0.2. Display all intermediate steps using a table

$\overline{\text{Iteration } k}$	a_k	b_k	$f(a_k)$	$f(b_k)$	New uncertainty interval
1	?	?	?	?	[?,?]
2	?	?	?	?	[?,?]
:	÷	÷	:	:	÷

(b) Repeat part (a) using the same number of iterations but using the Newton method with $x_0=1$

Exercise 2. Consider the problem of finding the zero of $g(x) = (e^x - 1)/(e^x + 1)$, $x \in \mathbb{R}$ (not that 0 is the unique zero of x).

- (a) Write down the algorithm for Newton's method to find a zero of this function. Simplify your calculations using the identity $\sinh(x) = (e^x e^{-x})/2$.
- (b) Find an initial condition x_0 such that the algorithm cycles. You need not explicitly calculate the initial condition; it suffices to provide an equation that the initial condition must satisfy.
- (c) For what values of the initial condition does the algorithm converge?

Exercise 3. Consider the function $f: \mathbb{R} \to \mathbb{R}$:

$$f(x) = x^{4/3}$$

The minimiser x = 0 gives a global minimum value of f(x = 0) = 0. Suppose we initialise 1-dimensional Newton's algorithm at a point other than the global solution. What happens? Please justify your argument.

Exercise 4 (Exam Question, Spring 2016). Consider the function $f: \mathbb{R} \to \mathbb{R}$:

$$f(x) = x^3 - 3x^2 - 24x.$$

- (a) Use the first-order necessary condition and the second-order sufficient condition to find the local minima and local maxima of f(x).
- (b) Use the first- and second-derivatives to show that f(x) has neither a global maximum nor a global minimum.

Let $f: \mathbb{R}^n \to \mathbb{R}$ be a continuously differentiable function, i.e., $f \in \mathcal{C}^1$. Suppose that \boldsymbol{x}^* is a local minimum of f along every line that passes through \boldsymbol{x}^* , i.e., the function:

$$g(\alpha) = f(\boldsymbol{x}^* + \alpha \boldsymbol{d})$$

is minimized at $\alpha = 0$ for all $\mathbf{d} \in \mathbb{R}^n$.

- (a) Show that $\nabla f(\boldsymbol{x}^*) = 0$.
- (b) Is x^* a local minimum of f? Justify your answer.
- (c) Consider the function:

$$f(x_1, x_2) = (x_2 - x_1^2)(x_2 - 2x_1^2).$$

Show that the point (0, 0) is a local minimum of f along every line that passes through (0, 0).

Hint: Consider a line that goes through (0, 0), namely $x_2 = \gamma x_1$ where γ is a scalar. Calculate the function values of $f(x_1, \gamma x_1)$.

(d) Show that the point (0, 0) is not a local minimum of f. Hint: Consider the values of f for $x_1 = y$ and $x_2 = my^2$ and $m \in \mathbb{R}$.

Exercise 5 (Lipschitz Continuity). Consider the function $f(x) = x^{T}Ax + 2b^{T}x + c$.

- (a) Is the gradient $\nabla f(x)$ Lipschitz continuous?
- (b) If yes, what is a Lipschitz constant L of $\nabla f(x)$?