

Diego Joel Zuñiga Fragoso

Frequency response of Filters	PRACTICA	6
	FECHA	14/05/2024

1. OBJETIVO

En esta práctica, vamos a sumergirnos en el mundo de los filtros usando MATLAB. Los filtros son como porteros, deciden qué frecuencias pueden pasar y cuáles no. Los hay de varios tipos: paso bajo, paso alto, paso banda y rechazo banda. Cada uno tiene su propia función de transferencia, que es como su regla de decisión. Realizaremos ejemplos de estos filtros utilizando las funciones de MATLAB.

2. MARCO TEÓRICO

Los filtros son dispositivos electrónicos o algoritmos que permiten el paso o bloqueo selectivo de ciertas frecuencias en una señal, siendo esenciales en numerosas aplicaciones de procesamiento de señales y comunicaciones. Los filtros se clasifican según su respuesta en frecuencia, siendo los principales tipos los filtros paso bajo, paso alto, paso banda y rechazo banda. La función de transferencia H(s) de un filtro pasa bajo se define como:

$$H_{\text{LPF}}(s) = K \left(\frac{\omega_c}{s + \omega_c} \right)^N$$

La función de transferencia H(s) de un filtro pasa alto se define como:

$$H_{\text{HPF}}(s) = K \left(\frac{s}{s + \omega_c}\right)^N$$

Para filtros de pasa banda y rechaza banda se definen de la siguiente manera:

$$H_{\mathrm{BPF}}(\omega) = H_{\mathrm{LPF}}(\omega)H_{\mathrm{HPF}}(\omega) = K \frac{s\omega_{c1}}{(s + \omega_{c1}) + (s + \omega_{c2})}$$

$$H_{\mathrm{BSF}}(s) = H_{\mathrm{LPF}}(s) + H_{\mathrm{HPF}}(s) = K \left(\frac{\omega_{c1}}{(s + \omega_{c1})} + \frac{s}{(s + \omega_{c2})}\right)$$

Los filtros pasa banda y rechazo banda de segundo orden tienen funciones de transferencia más complejas, pero pueden diseñarse utilizando técnicas como la transformación de frecuencia o el diseño directo en el dominio de Laplace.

hold off;

La importancia de estudiar la respuesta en frecuencia de estos filtros radica en su aplicación en una variedad de campos, como telecomunicaciones, procesamiento de audio y video, sistemas de control, medicina, entre otros. Por ejemplo, en telecomunicaciones, los filtros se utilizan para la selección de canales, eliminación de ruido y recuperación de señales. En medicina, los filtros son esenciales en la adquisición y procesamiento de señales biomédicas, como en electrocardiogramas (ECG) y electroencefalogramas (EEG), donde ayudan a detectar y analizar patrones específicos de señales. Estas aplicaciones ilustran la importancia y versatilidad de los filtros en diversas áreas de la ingeniería y la ciencia.

3. IMPLEMENTACIÓN EN MATLAB

Se anexa el código con explicaciones

```
Código
%% Low Pass Filter
% Filtro de 1° orden
N1 = 2000*pi;
D1 = [1 \ 2000*pi];
H1 = tf(N1, D1);
hold on;
% Filtro de 2° orden
N2 = 4000000*pi*pi;
D2 = [1 \ 4000 \text{*pi} \ 4000000 \text{*pi*pi}];
H2 = tf(N2, D2);
% Graficacion de resultados
bode (H1, H2);
legend('Firts order','Second order');
grid on;
hold off;
%% High Pass Filter
% Filtro de 1° orden
N3 = [1 \ 0];
D3 = [1 \ 20*pi];
H3 = tf(N3, D3);
hold on;
% Filtro de 2° orden
N4 = [1 \ 0 \ 0];
D4 = [1 \ 40*pi \ 100*pi*pi];
H4 = tf(N4, D4);
% Graficacion de resultados
figure, bode (H3, H4);
legend('Firts order','Second order');
grid on;
```



```
%% Band Pass Filter
N5 = [2000*pi 0];
D5 = [1 2020*pi 40000*pi*pi];
H5 = tf(N5, D5);

% Graficacion de resultados
figure, bode (H5);
grid on;

%% Band Stop Filter
N6 = [1 40*pi 40000*pi*pi];
D6 = [1 2020*pi 40000*pi*pi];
H6 = tf(N6, D6);

% Graficacion de resultados
figure, bode (H6);
grid on;
```

3. RESULTADOS

High Pass Filter

Band Pass Filter

4. CONCLUSIÓN

En conclusión, esta práctica nos ha permitido explorar y entender profundamente los distintos tipos de filtros utilizando MATLAB. Hemos logrado representar correctamente los filtros paso bajo, paso alto, paso banda y rechazo banda, lo que nos ha proporcionado una visión clara de su funcionamiento y aplicaciones