

2 TransComp modeling tool — Mathematical description

 $_{\mbox{\tiny 3}}$ Antonia Golab $^{\rm a,b},~$, Sebastian Zwickl-Bernhard $^{\rm b,~c},$ Marcus Otti $^{\rm b},$ Hans Auer $^{\rm b,~c}$

 $^{{\}rm ^aCorresponding}$ author, email: golab@eeg.tuwien.ac.at

^bEnergy Economy Group (EEG), Technische Universität Wien, Gusshausstraße 25-29, E370-3, 1040 Vienna, Austria

 $^{^{\}rm c}$ Department of Industrial Economics and Technology Management, The Norwegian University of Science and Technology, Trondheim, Norway

Table 1. Sets, decision variables and parameters used for the formulation of the linear program.

Notation	Description	Unit
$y \in \mathcal{Y}$	year	
$p \in \mathcal{M}$	product type (incl. passengers)	p/T
$m \in \mathcal{M}$	mode	
$r \in \mathcal{R}$	O-D pair	
$k \in \mathcal{K}$	route	
$v \in \mathcal{V}$	vehicle type	
$t \in \mathcal{T}$	drive-train technology - fuel pair	
$l \in \mathcal{L}_t$	fuel supply options for technology t	
$e \in \mathcal{E}$	location	
$ic \in \mathcal{IC}$	income class	
$b \in \mathcal{B}_{kmtg}$	subset defined for each route k and technology t for year y	
$g\in\mathcal{G}$	generation of vehicle fleet	
\mathcal{V}_k	(e_1,e_2,e_3,\ldots,e_I)	
\mathcal{U}_k	$\{(i, e_i) e_i \in \mathcal{V}_k, 1 \le i \le I\}$	
\mathcal{Y}_y	$\{0,\ldots,y\}$	
\mathcal{E}_{kmtgb}	subset of edges within the driving range of technology t in year y along route k	
	transport volumes transported using technology t on mode m along route k	
$f_{yprkmvtg}$	in year y	${ m T}$
h_{yprmtg}	vehicle fleet for mode m with technology t	#
h_{yprmtg}^{+}	vehicle fleet growth for mode m with technology t	#
	vehicle fleet reduction for mode m with technology t	#
$h_{yprmtg}^{-} \ h_{yprmtg}^{exist}$	vehicle fleet existing for mode m with technology t at the beginning of year y fueling demand during annual peak hour covered at edge e of	#
$S_{ypkmvtle}$	technology t with fuel supplied with supply option l along route k in year y	kWh
	fueling demand during annual peak hour covered at node n of	
$S_{ypkmtln}$	technology t with fuel supplied with supply option l along route k in year y	kWh
$q_{yet}^{+,mode_infr}$	installed mode infrastructure for technology t along edge e in year y	kW
$q_{yet}^{+,fuel_infr}$	installed fueling infrastructure for technology t along edge e in year y	kW
+.supply in fr	capacity of supply infrastructure l installed along edge e in	1 337
$q_{yle}^{+,supply_infr}$	year y	kW
LoS_{yktv}	level of service	h
F_{yrp}	transport demand between O-D pair r for product p in year y	Τ
D_{yvtg}^{spec}	specific energy consumption of drive-train technology t in year y	kWh/kn
W_{yvtg}	average load of a vehicle of technology t bought in year g	Τ
L_{gmvt}^a	maximum annual mileage of vehicle	km
I_{l_2}	length of path k	km
$Q_{et}^{mode_infr}$	initial transport capacity for edge e on mode m	Τ
$O^{Juei_{-injr}}$	initial fueling capacity for technology t at edge e	kW
$Q_{et}^{supply_infr}$ Q_{le}^{tank}	initial capacity for supply l at edge e	kW
Q_{gmt}^{tank}	tank size	kWh
δgmt δ	maximum substitution rate	• ••
α	Bass diffusion coefficient	
β	Bass diffusion coefficient	
κ	Discount rate	
	210004110 1000	

4 1. Methodology and Data

Objective function

5

ಬ

$$minimize_x Z$$
 (1)

$$Z = \sum_{y} \frac{1}{(1+\kappa)^{(y-y_0)}} \left(C^{infrastructure,total} + C^{vehiclestock,total} + C^{transportactivity,total} + C^{intangiblecosts,total} + C^{paneltycosts,total} \right)$$
(2)

$$C^{infrastructure,total} = \sum_{t} \sum_{y} \left(\sum_{e} C^{fuel_infr}_{yte} q^{+,fuel_infr}_{yte} + \sum_{y' \in \mathcal{Y}^{y}} C^{fuel_infr,OM,fix}_{yte} \left(Q^{fuel_infr}_{te} + q^{+,fuel_infr}_{y'te} \right) \right)$$

$$+ \sum_{m} \sum_{y} \left(\sum_{e} C^{mode_infr}_{yme} q^{+,mode_infr}_{yme} + \sum_{y' \in \mathcal{Y}^{y}} C^{mode_infr,OM,fix}_{yme} \left(Q^{fuel_infr}_{te} + q^{+,fuel_infr}_{y'me} \right) \right)$$

$$+ \sum_{l} \sum_{y} \left(\sum_{e} C^{supply_infr}_{yle} q^{+,supply_infr}_{yle} + \sum_{y' \in \mathcal{Y}^{y}} C^{supply_infr,OM,fix,supply}_{yle} \left(Q^{supply_infr}_{te} + q^{+,supply_infr}_{y'te} \right) \right)$$

$$(3)$$

$$C^{vehiclestock,total} = \sum_{y} \sum_{m} \sum_{v} \sum_{t} \sum_{g} \left(C_{yvtg}^{CAPEX} h_{yprvtg}^{+} + C_{yvtg}^{h,OM,fix} h_{yprvtg} + \sum_{l} \sum_{e \in E^{k}} C_{yle}^{fuelcosts} * s_{ypkmvtle} \right)$$

$$(4)$$

$$C^{transportactivity,total} = \sum_{y} \left(C^{OM,fix,dist}_{mvt} f_{y,prkmvtg} + \sum_{k} C^{OM,var,dist}_{mvt} \sum_{k} L_{k} f_{y,prkmvtg} \right)$$

$$(5)$$

$$C^{intangible costs, total} = \sum_{y} \sum_{m} \sum_{r} \sum_{kvt} VoT_{ykvt, ic} * LoS_{ykvt}^{f} * f_{yprkmvtg}$$

$$\tag{6}$$

$$LoS_{yk}^{f} = \frac{L_k}{Speed_u vmt} + Fueling_time_{ykvmt} + Waiting_time_{ykm}$$

$$\tag{7}$$

$$C^{paneltycosts,total} = \sum_{y} \sum_{p} \sum_{r} penalty_{pry}^{budget}$$
(8)

Demand coverage

$$\sum_{kmvtq} f_{yprkmvtg} = F_{yrp} \quad : \forall y \in \mathcal{Y}, r \in \mathcal{R}, p \in \mathcal{P}$$

$$(9)$$

Vehicle stock sizing

$$h_{yprmvtg} \ge \sum_{k \in \mathcal{K}_r} \sum_{e \in \mathcal{E}_k} \sum_{n \in \mathcal{N}_k} \sum_{a \in \mathcal{A}^p} \frac{L_e}{W_{ymvtg} L_{ymvtg}^a} f_{yprkmvtg} : \forall y \in \mathcal{Y}, r \in \mathcal{R}, p \in \mathcal{P}, m \in \mathcal{M}, v \in \mathcal{V}, t \in \mathcal{T}, g \in \mathcal{G}$$

$$\tag{10}$$

Vehicle stock aging

$$h_{yprmvtg} = h_{yprmvt(g-1)}^{exist} + h_{yprmvtg}^{+} - h_{yprmvtg}^{-} : \forall y \in \mathcal{Y} \setminus \{y_0\}, r \in \mathcal{R}, p \in \mathcal{P}, m \in \mathcal{M}, v \in \mathcal{V}, t \in \mathcal{T}, g \in \mathcal{G}$$

$$(11)$$

$$h_{uprmvt(q-1)}^{exist} = h_{(y-1)prmvtg} \quad : y = y_0, r \in \mathcal{R}, p \in \mathcal{P}, m \in \mathcal{M}, v \in \mathcal{V}, t \in \mathcal{T}, g \in \mathcal{G}$$

$$\tag{12}$$

Fueling demand

$$\sum_{l \in \mathcal{L}_{t}} \sum_{e \in \mathcal{E}_{kmvtbg}} s_{ypkmvtle} \ge \sum_{g} \sum_{e \in \mathcal{E}_{pkmvtbg}} \gamma \frac{D_{gmt}^{spec} L_{ke}}{W_{gmvt}} f_{ypkmvtg}
: \forall y \in \mathcal{Y}, p \in \mathcal{P}, k \in \mathcal{K}, m \in \mathcal{M}, t \in \mathcal{T}_{m}, b \in \mathcal{B}_{kmvtg}$$
(13)

Spatial fueling flexibility

$$\sum_{l \in \mathcal{L}_t} \sum_{e \in \mathcal{E}_k} s_{ypkmvtle} = \sum_{g \in \mathcal{G}} \sum_{a \in \mathcal{A}^p} \sum_{e \in \mathcal{E}_k} \sum_{n \in \mathcal{N}_k} \gamma \frac{D_{yt}^{spec} L_{ke}}{W_{ymvt}} f_{ypakmvtg} : \forall y \in \mathcal{Y}, p \in \mathcal{P}, k \in \mathcal{K}, m \in \mathcal{M}, t \in \mathcal{T}_m$$

$$(14)$$

$$\sum_{l \in \mathcal{L}_t} \sum_{e \in \mathcal{U}_{ke}} s_{ypkmvtle} \le \gamma \sum_{g \in \mathcal{G}} \frac{1}{W_{gmvt}} f_{ypkmvtg} * Q_{gmvt}^{tank} : \forall y, p, k, m, t$$
(15)

Vehicle stock shift

$$\pm \left(\sum_{g} h_{yprmvt} - \sum_{g} h_{(y-1)prmvt} \right) \le \alpha \sum_{gvt} h_{yprmvt} + \beta \sum_{g} h_{(y-1)prmvtg} : \forall y \in \mathcal{Y} \setminus \{y_0\}, r \in \mathcal{R}, m \in \mathcal{M}, v \in \mathcal{V}, t \in \mathcal{T}_m$$
 (16)

$$\pm \left(\sum_{g} h_{yprmvtg} - \sum_{g} h_{yprmvtg}^{exist} \right) \le \alpha \sum_{gvt} h_{yprmvt} + \beta \sum_{g} h_{yprmvtg}^{exist} : \forall y \in \{y_0\}, r \in \mathcal{R}, m \in \mathcal{M}, v \in \mathcal{V}, t \in \mathcal{T}_m$$

$$(17)$$

6

$$\pm \left(\sum_{kg} f_{yprkmvtg} - \sum_{kg} f_{(y-1)prkmvtg} \right) \le \alpha F_{yrp} + sum_{kg} f_{(y-1)prkmvtg} : \forall y \in \mathcal{Y} \setminus \{y_0\}, r \in \mathcal{R}, m \in \mathcal{M}$$
(18)

Mode infrastructure expansion

$$Q_{me}^{mode_infr} + \sum_{y \in \mathcal{Y}_y} q_{yme}^{+,mode_infr} \ge \gamma \sum_{e \in \mathcal{K}_e} \sum_{p \in \mathcal{P}} \sum_{t \in T_m} f_{ypkmtg} : \forall y \in \mathcal{Y}, m \in \mathcal{M}, e \in \mathcal{E}$$

$$(19)$$

Fueling infrastructure expansion

$$Q_{te}^{fuel_infr} + \sum_{y \in \mathcal{Y}_y} q_{yte}^{+,fuel_infr} \ge \sum_{k \in \mathcal{K}_e} \sum_{p \in \mathcal{P}} \sum_{m \in \mathcal{M}} \sum_{l \in \mathcal{L}_t} s_{ypkmtle} : \forall y \in \mathcal{Y}, t \in \mathcal{T}, e \in \mathcal{E}$$

$$(20)$$

Supply infrastructure expansion

$$Q_{le}^{supply_infr} + \sum_{y \in \mathcal{Y}_y} q_{yle}^{+,supply_infr} \ge \sum_{e \in \mathcal{K}_e} \sum_{p \in \mathcal{P}} \sum_{m \in M} \sum_{t \in \mathcal{T}_l} s_{ypkmtle} : \forall y \in \mathcal{Y}, l \in \mathcal{L}, e \in \mathcal{E}$$

$$(21)$$

Monetary budget constraints

$$\sum_{y} C_{yvtg}^{CAPEX} * h_{yr}^{+} \leq Budget_{ic} * f * |Y| + penalty^{+,invbudget}$$
(22)

$$\sum_{y} C_{yvtg}^{CAPEX} * h_{yr}^{+} \ge Budget_{ic} * f * |Y| - penalty^{-,invbudget}$$
(23)

$$\sum_{y'_{Y}i} C_{y'vtg}^{CAPEX} * h_{y'r}^{+} \leq Budget_{ic} * f * \tau^{i} + penalty^{+,invbudget}$$

$$\tag{24}$$

$$\sum_{y'_{Y}i} C_{y'vtg}^{CAPEX} * h_{y'r}^{+} \ge Budget_{ic} * f * \tau^{i} - penalty^{+,invbudget}$$

$$\tag{25}$$