

Química-Física A – 2022

Problemas de cinética aula 2 de maio

1) Prove que a reacção N_2O_2 (g) \rightarrow 2 NO (g) é de 1ª ordem em relação a N_2O_2 sabendo que no instante inicial t=0 já existem 0.25 bar de NO no reator. A pressão total varia da seguinte maneira em função do tempo:

t / min	1	2	3	5	20	100
p _t / bar	2.30	2.62	2.85	3.14	3.45	3.45

2) Moelwyn-Hughes et al. estudaram a hidrólise1 do acetato de etilo em solução

t/horas	mM	aquosa, catalisada por ácido clorídrico de concentração 0,05 M.
0	39.8	Os resultados, à temperatura de 15 °C, da evolução da
4	38.88	
15.5	35.88	concentração do reagente acetato com o tempo são
27	33.18	apresentados na tabela ao lado.
40	30.47	aprocontados na taxona do tado.

- a) Comprove que a reação é de pseudo-primeira ordem e calcule a constante de velocidade k_1 .
- b) Explique porque é que se utiliza o termo "pseudo" neste caso e calcule a constante de velocidade k₂.
- 3) A dimerização de butadieno em 3-vinil-ciclohexeno, 2 $C_4H_6 \rightarrow C_8H_{12}$, tem uma constante de velocidade k_2 que se pode exprimir em função da temperatura T da seguinte forma:

$$k_2 = 9.2 \times 10^6 \text{ exp } (-11.965 / T) \text{ dm}^3 \text{ mol}^{-1} \text{ s}^{-1}$$

- a) Calcule a energia de ativação da reação.
- b) Admitindo que a reação é de segunda ordem, calcule a concentração de produto obtido ao fim de 2 minutos de dimerização, quando a concentração inicial de reagente for 0,5 M e a temperatura 600 K.