$b_i = \text{number of basis functions (edges)}$ in box i $L_{\lambda} = \text{number of Legendre points in level } \lambda$ m = number of points in Lagrange polynomial interpolation

 d_{λ} = diameter of every box in level λ

Data	Shape	Indexing			$\mathcal{I}_i^{\mathcal{S}}$	$\mathcal{I}_i^{\mathcal{F}}$	$\mathcal{I}_i^{\mathcal{S}}$	
Z_{ij}^{near}	$b_i \times b_j$	$\lambda_{max}, \mathcal{B}_i, \mathcal{B}_j: \mathcal{B}_j \in \mathcal{I}_i^{\mathcal{N}}$	r					
I_i	$b_i \times 1$	$\lambda_{max}, \mathcal{B}_i$	r	r				
V_{i}	$b_i \times 1$	$\lambda_{max}, \mathcal{B}_i$	W					w
$\hat{\kappa}$	$2(L_{\lambda}+1)\times(L_{\lambda}+1)$	λ						
F_{ij}	$2(L_{\lambda}+1)\times(L_{\lambda}+1)$	$\lambda_{max}, j \in \mathcal{B}_i$		r				
$R_{ij}\ ilde{ ilde{F}_i}$	$2(L_{\lambda}+1)\times(L_{\lambda}+1)$	$\lambda_{max}, j \in \mathcal{B}_i$						r
$ ilde{F}_i$	$2(L_{\lambda}+1)\times(L_{\lambda}+1)$	$\lambda, {\cal B}_i$		w	rw	r		
G_{i}	$2(L_{\lambda}+1)\times(L_{\lambda}+1)$	λ, \mathcal{B}_i				w	rw	r
\mathcal{T}_i	$2(L_{\lambda}+1)\times(L_{\lambda}+1)$	λ, \mathcal{B}_i				r		
${\cal P}$	$m \times m$??	$\mathcal{P}_{\theta}, \mathcal{P}_{\phi}$			r		r	