

Universidade do Estado do Amazonas Escola Superior de Tecnologia - EST Núcleo de Computação

Algoritmos e Estruturas de Dados II

Heapsort

Prof. Flávio José M. Coelho fcoelho@uea.edu.br

Objetivos

Entender o funcionamento da estrutura de dados **Heap**

Entender o funcionamento do algoritmo de ordenação **Heapsort**

Um **heap** (binário) é um vetor usado para representar uma árvore binária quase completa.

Heap máximo (*max-heap*). Chave de cada nó é maior ou igual às chaves de seus filhos.

Heap mínimo (*min-heap*). Chave de cada nó é menor ou igual às chaves de seus filhos.

Seja A[1..n] um heap binário (máximo).

- A.tamanho = n é o tamanho do vetor A.
- A.tamHeap é o tamanho do heap (número de items válidos no heap, contidos em A).
- $0 \le A.tamHeap \le A.tamanho$.

Seja A[1..n] um heap binário (máximo).

- A[1] é a raiz da árvore.
- ▶ Dado um índice i, obtém-se o pai de i e os filhos de i por meio dos procedimentos PAI(i), ESQ(i) E DIR(i).

PAI(i)

1 retorne $\lfloor i/2 \rfloor$

ESQ(i)

1 retorne 2i

DIR(i)

1 retorne 2i+1

Seja A[1..n] um heap binário (máximo).

• A propriedade do heap máximo deve ser satisfeita para todo nó i, não-raiz: $A[\mathsf{PAI}(i)] \geq A[i]$.

Seja A[1..n] um heap binário (máximo).

Os procedimentos HEAPFICA(A,i) e CONSTROI-HEAP(A) mantém a propriedade do heap e constrói o heap, respectivamente.

$\mathsf{HEAPFICA}(A,i)$

- $l = \mathsf{ESQ}(i), r = \mathsf{DIR}(i)$
- 3 se $l \leq A.tamHeap$ e A[l] > A[i]
- 4 maior = l
- 5 senão maior = i
- 6 se $r \leq A.tamHeap$ e A[r] > A[maior]
- 7 maior = r
- 8 se $maior \neq i$
- 9 troque A[i] com A[maior]
- 10 $\mathsf{HEAPFICA}(A, maior)$

Chamada: $\mathsf{HEAPFICA}(A,2)$

CONSTROI-HEAP(A)

- $1 \quad A.tamHeap = A.tamanho$
- 2 for $i = \lfloor A.tamanho/2 \rfloor$ até 1
- 3 HEAPFICA(A,i)

J. W. J. Williams

Heapsort foi inventado por Robert W. Floyd e J.W.J Williams nos anos 1960.

O algoritmo usa o heap máximo para obter sempre o maior elemento do vetor (raiz) e coloca-lo na última, penúltima, etc, até a sequenda posição do vetor.

HEAPSORT(A)

- 1 CONSTROI-HEAP(A)
- 2 for i = A.tamanho até 2
- 3 troque A[1] com A[i]
- 4 A.tamHeap = A.tamHeap 1
- 5 $\mathsf{HEAPFICA}(A,1)$

Referências

- A. Levitin. Introduction to the Design and Analysis of Algorithms. 3rd edition. Addison-Wesley,2007
- R. Sedgewick, K. Wayne. Algorithms. 4th edition, Addison-Wesley Professional, 2011
 - N. Ziviani. Projeto de Algoritmos com Implementação em Pascal C. Cengage Learning, 2012

Onde obter este material:

est.uea.edu.br/fcoelho