

Range 3) distante percorsa prime du la particeble incidente si lermi

50000 20000

10000 5000 2000

1000

500 200

$$R(E) = \int dx = \int dx = \int -\frac{1}{\sqrt{dx}} dE$$

$$E = \int dx = \int -\frac{1}{\sqrt{dx}} dE$$

=

$$\int \frac{d}{-dE} dE$$
 $m \left(\overline{dE} \right)$

Fe

H₂ liquid

He gas

Masse in GeV
$$R = \int \frac{1}{-\frac{1}{e} \frac{dE}{dx}} dE$$

Ph: fp = 11 g/cm3

20
10
5
2
1
0.1 2 5 1.0 2 5 10.0 2 5 100.0

$$\beta \gamma = p/Mc$$

$$0.02 0.05 0.1 0.2 0.5 1.0 2.0 5.0 10.0$$
Muon momentum (GeV/c)

Pion momentum (GeV/c)

1
0.1 0.2 0.5 1.0 2.0 5.0 10.0

Pion momentum (GeV/c)

Proton momentum (GeV/c)

P = 26W profone M=1 GeV B8 = = 2

 $R = (800) \times M = 800 \frac{9}{0.000} = 0.000$ R(con) = 800 cm

Rouge à spessore percorso prime di perdone tette l'enessie cuctica

Spessore com mex di perchita di energia

Dose's evergic depositate one well-

Applicatione medica del picco di Bregg per ottimizzene deposito di energia nella vicinanza del tumore.

Elettroninel Mezzo

Elettroni ioniziono come totte le perticelle coriche.

conice 2p accelerata in ou compo elettrico esterno evelte radiazione

Télétho Lermor & emissione di Polone de particula Cenica potenze di irregeiam accelerate in un campo elettrico.

$$P = \frac{2}{3} \frac{e^2}{m^2 c^3} |\vec{y}|^2 \qquad \vec{v} = \alpha$$

=> P minore per m P

Effetto Lermor Relativisticos $P = -\frac{2}{3} \frac{e^2}{m^2c^3} \frac{dP_n}{d\tau} \frac{dP^n}{d\tau}$ τ : tempo rel nif. solidele con la perticeba, the = τ τ

$$P_{\mu} = (\mathcal{E}_{1}\mathcal{P}) = (\mathcal{E}_{1}\mathcal{P}$$

Successione di

accel. Circolore

a ragg: divers:

Colevazione Inegre 3

$$\vec{\beta} \mid \vec{\beta} = \vec{\beta} \times \vec{\beta} = 0$$
 $\vec{\beta} \mid \vec{\beta} = \vec{\beta} \times \vec{\beta} = 0$
 $\vec{\beta} \mid \vec{\beta} = \vec{\beta} \times \vec{\beta} = 0$
 $\vec{\beta} \mid \vec{\beta} = \vec{\beta} \times \vec{\beta} = 0$

$$C\vec{\beta} = \vec{a} \implies \vec{\beta} = \frac{\vec{a}}{\vec{c}}$$

$$\frac{\partial^2}{\partial \beta^2} - (\beta^2 \times \beta^2)^2 = \beta^2 - \beta^2 \beta^2 = \beta^2 (1 - \beta^2) = \beta^2 + \beta^2$$

tente
$$P = \frac{2}{3} \frac{e^2}{C^3} \times \frac{Q^2}{V^2} = \frac{2}{3} \frac{e^2}{C^3} + \frac{Q^2}{Curvilineo}$$

Pour 2 1/2
$$V = \frac{E}{m}$$
 perticula accelerate

a porite di energia E con acceleratore Circolare

$$\frac{Pe}{P_{\text{Prof}}} = 8e \frac{1}{V_{\text{P}}^{4}} \rightarrow \frac{(M_{\text{P}})^{4}}{(M_{\text{e}})^{4}} = \left(\frac{1000 \, \text{MeV}}{(0.5) \, \text{MeV}}\right)^{4} = 2 \times 10^{12}$$

Ragsio di Curveture u 5 km. LHC: Pp=6,5 TeV

=) adalta eversic perdite d'eversic per rediazione don: nonte per elettroni. Bremsstrahlung

Effetto Breusstrchluf douine ad Alta Evergia

$$\frac{dE}{dx} = \frac{dE}{dx} |_{\text{fin}} + \frac{dE}{dx} |_{\text{gem.}}$$

$$\frac{dE}{dx} |_{\text{Brewn}} = \frac{dE}{dx} |_{\text{fin}} + \frac{dE}{dx} |_{\text{gem.}}$$

$$\frac{dE}{dx} |_{\text{Brewn}} = \frac{dE}{dx} |_{\text{fin}} + \frac{dE}{dx} |_{\text{gem.}}$$

$$\frac{dE}{dx} |_{\text{Brewn}} = \frac{dE}{dx} |_{\text{fin}} + \frac{dE}{dx} |_{\text{gem.}}$$

$$\frac{dE}{dx} |_{\text{gem.}} = \frac{dE}{dx} |_{\text{fin}} + \frac{dE}{dx} |_{\text{gem.}}$$

$$\frac{dE}{dx} |_{\text{fin}} = \frac{E}{dx} |_{\text{fin}} = \frac{E$$

Esempio : Confronto di dE | US. dE | Bren

per E con Eo = 100 MeV e Xo x 1 Cm.

Muon momentum