我们利用模拟退火算法求解上述单目标优化模型。使用模拟退火算法求解"有效遮蔽时间单目标优化模型"的核心思路是:通过模拟物理退火过程的随机搜索与概率接受机制,在决策变量的可行域内寻找使有效遮蔽时间 Δt 最大化的最优解。具体步骤如下:步骤 1 初始化参数

- 初始解: 在可行域内随机生成 $S_0 = (\alpha_0, v_{\text{FY1.0}})$, 其中 $\alpha_0 \in [0, 2\pi]$, $v_{\text{FY1.0}} \in [70, 140]$;
- 算法参数: 初始温度 $T_0 = 100$,降温系数 k = 0.95,终止温度 $T_{\text{end}} = 10^{-5}$,每轮迭代次数 L = 50。

步骤 2 目标函数 Δt 计算 (核心)

对任意解 $S = (\alpha, v_{\text{FY1}})$, 按以下流程计算 Δt :

- 依据"无人机位置公式", 计算烟幕投放时刻 $t_{\text{FYi},11}$ 的无人机坐标;
- 依据"烟幕弹起爆位置公式"(含重力下落项), 计算起爆时刻 $t_{\text{FYi},12}$ 的位置;
- 依据"烟幕云团运动公式",计算 $t \in [t_{\text{FYj},12}, t_{\text{FYj},12} + \Delta t_0]$ 内的云团中心,结合球面方程确定有效区域;
- 在真目标圆柱面 $(x_1^2 + (y_1 y_0)^2 = r_0^2, z_1 \in [0, h_0]$)上采样关键点位,通过 $\sum_{j=1}^3 a_1^j$ 判定各时刻遮挡状态,累加有效时长得 Δt 。

步骤 3 邻域解生成

对当前解 $S = (\alpha, v_{\text{FY1}})$ 添加随机扰动:

- 方向角: $\alpha' = \alpha \pm 0.1$ (弧度), 超出 $[0, 2\pi]$ 则取模调整;
- 速度: $v'_{\text{FYI}} = v_{\text{FYI}} \pm 5 \text{ (m/s)}$, 超出 [70, 140] 则截断至边界。

步骤 4 Metropolis 准则 (接受新解)

计算目标函数差值 $\Delta E = \Delta t(S') - \Delta t(S)$:

- 若 $\Delta E > 0$: 直接接受 S' 为当前解;
- 若 $\Delta E \leq 0$: 以概率 $P = \exp(\Delta E/T)$ 接受 S' (T 为当前温度,温度越高接受概率越大)。

步骤 5 降温迭代与终止

每完成 L 次迭代后,按 $T = k \cdot T$ 降温;重复"邻域搜索 \rightarrow 接受准则 \rightarrow 降温",直至 $T \leq T_{\text{end}}$,输出最优解 $S^* = (\alpha^*, v_{\text{FYI}}^*)$ 及最大 Δt^* 。