Exercícios Resolvidos do Livro Geometria Analítica e Álgebra Linear de Elon Lages Lima (Segunda Edição-Oitava Impressão)

Gustavo de Oliveira

26 de abril de 2018

Seção 1 – Coordenadas na Reta

1. Sejam a < b respectivamente as coordenadas dos pontos A e B sobre o eixo E. Determine as coordenadas dos pontos X_1, \ldots, X_{n-1} que dividem o segmento AB em n partes iguais.

Solução. Para j = 1, ..., n-1, observamos que $d(X_j, a) = j d(A, B)/n$. Seja x_j a coordenada do ponto X_j . Então $|x_j - a| = j|a - b|/n$, ou seja, $x_j - a = j(b - a)/n$, pois $x_j > a$ e b > a. Portanto $x_j = a + j(b - a)/n$.

2. Sejam a, x e b, com a < x < b, as coordenadas dos pontos A, X e B sobre um eixo \mathcal{E} , respectivamente. Dizemos que o ponto X divide o segmento de reta AB em m'edia e extrema $raz\~ao$ se X satisfaz

$$\frac{d(A,X)}{d(A,B)} = \frac{d(X,B)}{d(A,X)}.$$

O quociente d(A,X)/d(A,B) é chamado razão áurea. Supondo que X divide o segmento de reta AB em média e extrema razão, calcule x em função de a e b.

Solução. Usando coordenadas, a condição se escreve

$$\frac{|a-x|}{|a-b|} = \frac{|x-b|}{|a-x|}.$$

Como a < x < b, essa expressão é equivalente a

$$\frac{x-a}{b-a} = \frac{b-x}{x-a},$$

ou seja,

$$x^{2} + (b - 3a)x + (a^{2} - b^{2} + ab) = 0.$$

O discriminante dessa equação é $\Delta=5(b-a)^2$. Portanto as raízes da equação são

$$x_{\pm} = \frac{1}{2}(3a - b \pm \sqrt{5}(b - a)).$$

Usando a condição a < x < b, obtemos que $a < x_+ < b$ e $x_- < a$. Logo a única raiz no intervalo [a,b] é x_+ . Portanto o ponto X procurado tem coordenada

$$x = \frac{1}{2}((3 - \sqrt{5})a + (\sqrt{5} - 1)b).$$

3. Seja O a origem de um eixo \mathcal{E} , e seja A o ponto desse eixo cuja coordenada é igual a 1. Qual é a coordenada do ponto X que divide o segmento de reta OA em média e extrema razão? No Exercício 2, calcule a razão áurea d(O,X)/d(O,A) (veja o exercício anterior).

Solução. O ponto X tem coordenada

$$x = \frac{1}{2}((3-\sqrt{5})0 + (\sqrt{5}-1)1) = \frac{\sqrt{5}-1}{2}.$$

A razão áurea é

$$\frac{d(O,X)}{d(O,A)} = \frac{\sqrt{5}-1}{2}.$$

Seção 7 – As Equações da Reta

10. Sejam A = (1,2), B = (2,4) e C = (3,1). Ache as equações da mediana e da altura do triângulo ABC que partem do vértice A.

Solução. A mediana que parte do vêrtice A é o segmento AM onde M é o ponto médio do lado BC. Calculando M, obtemos M=(5/2,5/2). A reta que passa por A e M tem inclinação [(5/2)-2]/[(5/2)-1]=1/3, ou seja, a equação dessa reta é da forma y=(1/3)x+b. Calculando b, obtemos b=5/3. Logo a equação da reta AM é y=(1/3)x+5/3.

A reta que contém a altura do vértice A é a reta perpendicular ao lado BC passando por A. O lado BC é paralelo a OC' com C' = (1, -5). Logo a equação da reta tem a forma x - 5y = c. Como a reta passa por A, devemos ter 1 - 5(2) = c, ou seja, c = -9. Portanto a equação da reta é x - 5y = -9.

22. Qual é a distância entre as retas paralelas x - 3y = 4 e 2x - 6y = 1?

Solução. Sejam r e s as retas definidas por x-3y=4 e 2x-6y=1, respectivamente. Seja t a reta perpendicular a r (e portanto a s) que passa pela origem. Uma equação para t é 3x+y=0. Calculamos $P=r\cap t$, ou seja, resolvemos o sistema x-3y=4, 3x+y=0. A solução desse sistema é x=2/5 e y=-6/5. Portanto P=(2/5,-6/5). Calculamos $Q=s\cap t$, ou seja, resolvemos o sistema 2x-6y=1, 3x+y=0. A solução desse sistema é x=1/20 e y=-3/20. Portanto Q=(1/20,-3/20). Observamos que d(r,s)=d(P,Q). Calculando d(P,Q), concluímos que $d(r,s)=7/(2\sqrt{10})$.

Seção 12 – Equação da Circunferência

4. Qual é a equação da circunferência que passa pelos pontos A = (1, 2), B = (3, 4) e tem o centro sobre o eixo OY?

Solução. Como o centro da circunferência está sobre o eixo OY, a equação da circunferência tem a forma $x^2 + (y - b)^2 = r^2$. Como $A \in B$ pertencem à circunferência, devemos ter

$$1 + (2 - b)^{2} = r^{2}$$
$$9 + (4 - b)^{2} = r^{2}.$$

Resolvendo esse sistema, obtemos b=5 e $r=\sqrt{10}$. Portanto a equação da circunferência é $x^2+(y-5)^2=10$.

5. Escreva a equação da circunferência que tem centro no ponto P = (2,5) e é tangente à reta y = 3x + 1.

Solução. A equação da circunferência tem a forma $(x-2)^2+(y-5)^2=r^2$. Para que a circunferência seja tangente à reta, o sistema

$$(x-2)^2 + (y-5)^2 = r^2$$

y = 3x + 1

deve possuir apenas uma solução. Substituindo a segunda equação na primeira, obtemos $10x^2-28x+20-r^2=0$. Essa equação em x tem apenas uma solução se e somente se $28^2-800+40r^2=0$, ou seja, $r=\sqrt{2/5}$. Portanto a equação da circunferência é $(x-2)^2+(y-5)^2=2/5$.

Seção 14 - Vetores no Plano

2. Prove geometricamente que um quadrilátero é um paralelogramo se, e somente se, suas diagonais se cortam mutuamente ao meio.

Solução. (\Rightarrow) Suponha que o quadrilátero ABCD é um paralelogramo. O paralelogramo é formado por dois pares de lados. Em cada par de lados, os lados são paralelos e têm o mesmo comprimento. Portanto $\overrightarrow{AD} = \overrightarrow{BC}$ e $\overrightarrow{AB} = \overrightarrow{DC}$. Seja P o ponto médio de DB, e seja Q o ponto médio de AC. Vamos provar que Q = P. Escolhemos um sistema de coordenadas OXY de modo que A = (0,0), B = (b,0) e D = (c,d). Logo $\overrightarrow{AD} = (c,d)$ e $C = B + \overrightarrow{AD} = (b+c,d)$. Calculando os pontos P e Q, obtemos

$$\begin{split} P &= \left(\frac{c+b}{2}, \frac{d+0}{2}\right) = \left(\frac{b+c}{2}, \frac{d}{2}\right), \\ Q &= \left(\frac{b+c+0}{2}, \frac{d+0}{2}\right) = \left(\frac{b+c}{2}, \frac{d}{2}\right). \end{split}$$

Portanto P = Q.

(⇐) Seja P o ponto médio de DB, e seja Q o ponto médio de AC. Suponha que as diagonais do paralelogramo se cortam mutuamente ao meio, ou seja, suponha que P=Q. Escolhemos um sistema de coordenadas \overrightarrow{OXY} de modo que A=(0,0), B=(b,0) e D=(c,d). Temos então $\overrightarrow{AD}=(c,d)$ e $\overrightarrow{AB}=(b,0)$. Escrevemos C=(x,y). Vamos determinar x e y. Calculando os pontos P e Q, obtemos

$$P = \left(\frac{c+b}{2}, \frac{d}{2}\right),$$
$$Q = \left(\frac{x}{2}, \frac{y}{2}\right).$$

A igualdade P=Q implica x=c+b e y=d. Logo (x,y)=(b+c,d), ou seja, C=(b+c,d). Portanto $C=B+\overrightarrow{AD}$ e $C=D+\overrightarrow{AB}$, ou seja, $\overrightarrow{BC}=\overrightarrow{AD}$ e $\overrightarrow{DC}=\overrightarrow{AB}$. Isso implica que ABCD é um paralelogramo.

Seção 15 – Operações com Vetores

7. Seja P um ponto interior ao triângulo ABC tal que $\overrightarrow{PA}+\overrightarrow{PB}+\overrightarrow{PC}=0$. Prove que as retas AP, BP e CP são medianas de ABC, logo P é o baricentro desse triângulo.

Solução. Seja Q o ponto de intersecção da reta BP com o segmento AC. Observamos que $\overrightarrow{QA} = \alpha \overrightarrow{CA}$ para $\alpha \in \mathbb{R}$. Logo

$$\overrightarrow{QC} = \overrightarrow{QA} + \overrightarrow{AC} = \alpha \overrightarrow{CA} - \overrightarrow{CA} = (\alpha - 1)\overrightarrow{CA}.$$

Vamos provar que Q é o ponto médio de AC, ou seja, vamos provar que

 $\alpha = 1/2$. Escrevemos

$$\overrightarrow{PA} = \overrightarrow{PQ} + \overrightarrow{QA} = \overrightarrow{PQ} + \alpha \overrightarrow{CA},$$

$$\overrightarrow{PB} = \overrightarrow{PQ} + \overrightarrow{QC} + \overrightarrow{CB} = \overrightarrow{PQ} + (\alpha - 1)\overrightarrow{CA} + \overrightarrow{CB},$$

$$\overrightarrow{PC} = \overrightarrow{PQ} + \overrightarrow{QC} = \overrightarrow{PQ} + (\alpha - 1)\overrightarrow{CA}.$$

Logo

$$\overrightarrow{PA} + \overrightarrow{PB} + \overrightarrow{PC} = 3\overrightarrow{PQ} + (3\alpha - 2)\overrightarrow{CA} + \overrightarrow{CB}$$
.

Além disso,

$$\overrightarrow{BQ} = \overrightarrow{BC} + \overrightarrow{CQ} = -\overrightarrow{CB} - \overrightarrow{QC} = -\overrightarrow{CB} + (1 - \alpha)\overrightarrow{CA}.$$

Para algum $\beta \in \mathbb{R}$, temos

$$\overrightarrow{PQ} = \beta \overrightarrow{BQ}.$$

Portanto

$$\overrightarrow{PQ} = \beta \overrightarrow{BQ} = -\beta \overrightarrow{CB} + \beta (1 - \alpha) \overrightarrow{CA}.$$

Consequentemente

$$\overrightarrow{PA} + \overrightarrow{PB} + \overrightarrow{PC} = (3\beta(1-\alpha) + 3\alpha - 2)\overrightarrow{CA} + (1-3\beta)\overrightarrow{CB}.$$

Por outro lado, temos $\overrightarrow{PA} + \overrightarrow{PB} + \overrightarrow{PC} = 0$. Logo

$$(3\beta(1-\alpha) + 3\alpha - 2)\overrightarrow{CA} + (1-3\beta)\overrightarrow{CB} = 0.$$

Como \overrightarrow{CA} e \overrightarrow{CB} são linearmente independentes, essa igualdade implica (veja o Exercício 1 da Seção 15)

$$(3\beta(1-\alpha) + 3\alpha - 2) = 0$$
 e $1 - 3\beta = 0$.

A segunda equação implica $\beta=1/3$. Substituindo esse valor de β na primeira equação, obtemos $3(1/3)(1-\alpha)+3\alpha-2=0$, ou seja, $\alpha=1/2$. Portanto Q é o ponto médio de AC. Renomeando os pontos, obtemos a demonstração para as medianas correspondentes aos outros vértices do triângulo.

Seção 16 – Equação da Elipse

10. Quais são as tangentes à elipse $x^2 + 4y^2 = 32$ que têm inclinação igual a 1/2?

Solução. Uma reta com inclinação 1/2 é dada por y=(1/2)x+b para $b\in\mathbb{R}$. Vamos determinar os valores de b para os quais a reta y=(1/2)x+b

é tangente à elipse $x^2 + 4y^2 = 32$, ou seja, vamos determinar os valores de b para os quais o sistema

$$x^2 + 4y^2 = 32$$
$$y = (1/2)x + b$$

tem apenas uma solução. Substituindo a segunda equação na primeira e desenvolvendo, obtemos

$$2x^2 + 4bx + (4b^2 - 32) = 0.$$

Essa equação possui apenas uma solução se, e somente se, o discriminante da equação é igual a zero, ou seja,

$$\Delta = -16b^2 + 16^2 = 0.$$

Isso implica $b = \pm 4$. Portanto, as retas tangentes são

$$y = \frac{1}{2}x - 4$$
 e $y = \frac{1}{2}x + 4$.

Seção 17 – Equação da Hipérbole

2. Para todo ponto P=(m,n) na hipérbole $H: x^2/a^2-y^2/b^2=1$, mostre que a reta $r: (m/a^2)x-(n/b^2)y=1$ tem apenas o ponto P em comum com H. A reta r chama-se a tangente a H no ponto P.

Solução. A reta r é tangente à hipérbole H no ponto P se, e somente se, x=m e y=n é a única solução do sistema

$$(m/a^2)x - (n/b^2)y = 1$$

 $x^2/a^2 - y^2/b^2 = 1$.

A primeira equação implica

$$x = \frac{a^2}{m} \left(1 + \frac{n}{b^2} \right).$$

Substituindo essa expressão para x na segunda equação e desenvolvendo, obtemos

$$(a^2n^2 - b^2m^2)y^2 + b^2a^22ny + b^4(a^2 - m^2) = 0.$$

Como P pertence à hipérbole, temos $a^2n^2 - b^2m^2 = -a^2b^2$. Substituindo essa expressão na equação anterior e simplificado, encontramos

$$-a^2y^2 + a^22ny + b^2(a^2 - m^2) = 0.$$

Calculando o discriminante Δ dessa equação quadrática, obtemos

$$\Delta = 4a^2(a^2n^2 - b^2m^2 + b^2a^2) = 4a^2(-a^2b^2 + b^2a^2) = 4a^2(0) = 0.$$

Nesse cálculo, usamos novamente que P pertence a H. Como $\Delta=0$, a equação para y possui apenas uma solução. Associado a essa solução temos apenas um valor para x. Portanto o sistema de equações possui apenas uma solução (x,y), ou seja, a reta r é tangente à hipérbole H.

Seção 20 - Formas Quadráticas

- 1. Para cada uma das formas quadráticas abaixo, execute as seguintes tarefas:
 - 1. Escreva sua matriz e sua equação característica;
 - 2. Obtenha seus autovalores;
 - 3. Descreva suas linhas de nível;
 - 4. Ache autovetores unitários ortogonais u e u^* ;
 - 5. Determine os novos eixos em cujas coordenadas a forma quadrática se exprime como $A's^2 + C't^2$;
 - 6. Ache os focos da cônica $A's^2 + C't^2 = 1$ em termos das coordenadas $x \in y$.

As formas quadráticas são:

(a)
$$\varphi(x,y) = x^2 + xy + y^2$$
.

(b)
$$\varphi(x,y) = xy$$
.

(c)
$$\varphi(x,y) = x^2 - 6xy + 9y^2$$
.

(d)
$$\varphi(x,y) = x^2 + xy - y^2$$
.

(e)
$$\varphi(x,y) = x^2 + 2xy - 3y^2$$
.

(f)
$$\varphi(x,y) = x^2 + 24xy - 6y^2$$
.

Solução. (a) A matriz de φ é

$$\begin{bmatrix} 1 & 1/2 \\ 1/2 & 1 \end{bmatrix}.$$

A equação característica de φ é $\lambda^2 - 2\lambda + 3/4 = 0$. Logo os autovalores são $\lambda_1 = 3/2$ e $\lambda_2 = 1/2$. Os autovetores unitários correspondentes são

$$u = \left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right), \qquad u^* = \left(\frac{-1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right).$$

Consequentemente, se efetuarmos a mudança de variáveis

$$x = \frac{1}{\sqrt{2}}s - \frac{1}{\sqrt{2}}t,$$
$$y = \frac{1}{\sqrt{2}}s + \frac{1}{\sqrt{2}}t,$$

a forma quadrática assume a forma

$$\overline{\varphi}(s,t) = \frac{3}{2}s^2 + \frac{1}{2}t^2 = \frac{s^2}{2/3} + \frac{t^2}{2}.$$

Para d<0, as linhas de nível $\overline{\varphi}(s,t)=d$ são o conjunto vazio. Para d=0, a linha de nível $\overline{\varphi}(s,t)=d$ é o ponto (0,0). Para d>0, as linhas de nível $\overline{\varphi}(s,t)=d$ são elipses. Nesse caso, temos uma elipse com $c^2=a^2+b^2$, ou seja, $c=2\sqrt{2d/3}$. Portanto os focos da elipse são (-c,0) e (c,0), no sistema s e t. Em termos das coordenadas x e y, os focos são, respectivamente,

$$\left(-\frac{2\sqrt{d}}{\sqrt{3}}, -\frac{2\sqrt{d}}{\sqrt{3}}\right), \qquad \left(\frac{2\sqrt{d}}{\sqrt{3}}, \frac{2\sqrt{d}}{\sqrt{3}}\right).$$

(c) A matriz de φ é

$$\begin{bmatrix} 1 & -3 \\ -3 & 9 \end{bmatrix}.$$

A equação característica de φ é $\lambda^2 - 10\lambda = 0$. Logo os autovalores são $\lambda_1 = 0$ e $\lambda_2 = 10$. Os autovetores unitários correspondentes são

$$u = \left(\frac{3}{\sqrt{10}}, \frac{1}{\sqrt{10}}\right), \qquad u^* = \left(-\frac{1}{\sqrt{10}}, \frac{3}{\sqrt{10}}\right).$$

Consequentemente, se efetuarmos a mudança de variáveis

$$x = \frac{3}{\sqrt{10}}s - \frac{1}{\sqrt{10}}t,$$
$$y = \frac{1}{\sqrt{10}}s + \frac{3}{\sqrt{10}}t,$$

a forma quadrática assume a forma

$$\overline{\varphi}(s,t) = 10t^2.$$

Para d < 0, as linhas de nível $\overline{\varphi}(s,t) = d$ são o conjunto vazio. Para d = 0, a linha de nível $\overline{\varphi}(s,t) = d$ é a reta horizontal t = 0 que passa pela origem. Para d > 0, as linhas de nível $\overline{\varphi}(s,t) = d$ são o par de retas horizontais $t = \pm \sqrt{d/10}$. Em termos das coordenadas $x \in y$, a reta t = 0 é dada por x - 3y = 0, e as retas $t = \pm \sqrt{d/10}$ são dadas por $x - 3y = \mp \sqrt{d}$.

(d) A matriz de φ é

$$\begin{bmatrix} 1 & 1/2 \\ 1/2 & -1 \end{bmatrix}.$$

A equação característica de φ é $\lambda^2 - 5/4 = 0$. Logo os autovalores são $\lambda_1 = \sqrt{5}/2$ e $\lambda_2 = -\sqrt{5}/2$. Os autovetores unitários correspondentes são

$$u = \left(\frac{1}{\sqrt{10 - 4\sqrt{5}}}, \frac{\sqrt{5} - 2}{\sqrt{10 - 4\sqrt{5}}}\right), \qquad u^* = \left(\frac{2 - \sqrt{5}}{\sqrt{10 - 4\sqrt{5}}}, \frac{1}{\sqrt{10 - 4\sqrt{5}}}\right).$$

Consequentemente, se efetuarmos a mudança de variáveis

$$x = u_1 s - u_2 t,$$
$$y = u_2 s + u_1 t,$$

onde u_1 e u_2 são as coordenadas de u, a forma quadrática assume a forma

$$\overline{\varphi}(s,t) = \frac{\sqrt{5}}{2}s^2 - \frac{\sqrt{5}}{2}t^2 = \frac{s^2}{2/\sqrt{5}} - \frac{t^2}{2/\sqrt{5}}.$$

Para d=0, as linhas de nível $\overline{\varphi}(s,t)=d$ são as retas $t=\pm s$. Para $d\neq 0$, as linhas de nível $\overline{\varphi}(s,t)=d$ são hipérboles. Nesse caso, temos uma hipérbole com $c^2=a^2+b^2$, ou seja, $c=2\sqrt{d}/\sqrt{\sqrt{5}}$. Portanto os focos da hipérbole são (-c,0) e (c,0), no sistema s e t. Em termos das coordenadas x e y, os focos são, respectivamente,

$$\left(\frac{-2}{\sqrt{10\sqrt{5}-20}}, \frac{4-2\sqrt{5}}{\sqrt{10\sqrt{5}-20}}\right), \qquad \left(\frac{2}{\sqrt{10\sqrt{5}-20}}, \frac{2\sqrt{5}-4}{\sqrt{10\sqrt{5}-20}}\right).$$

Seção 23 – Transformações Lineares

11. Uma transformação linear $T:\mathbb{R}^2\to\mathbb{R}^2$ de posto 2 transforma toda reta numa reta. Prove isto.

Solução. Seja T(x,y)=(ax+by,cx+dy) e seja M a matriz de T. Como M tem posto 2, os vetores-coluna de M são não-colinares. Se r é uma reta vertical, então r é formada pelos pontos $(x,y)=(\alpha,t)$ para $t\in\mathbb{R}$. Logo, os pontos

$$T(x,y) = T(\alpha,t) = (a\alpha + bt, c\alpha + dt) = \alpha(a,c) + t(b,d)$$

para $t \in \mathbb{R}$ formam uma reta, pois $(b, d) \neq (0, 0)$ (caso contrário teríamos ad - bc = 0, o que é impossível). Se r é uma reta não-vertical, então r é o conjunto dos pontos $(x, y) = (t, \alpha t + \beta)$ para $t \in \mathbb{R}$. Logo, os pontos

$$T(x,y) = T(t,\alpha t + \beta) = \beta(b,d) + t((a,c) + \alpha(b,d))$$

para $t \in \mathbb{R}$ formam uma reta, pois não existe α tal que $(a, c) + \alpha(b, d) = 0$ (caso contrário (a, c) e (b, d) seriam colineares).

15. Seja $T: \mathbb{R}^2 \to \mathbb{R}^2$ uma transformação linear invertível. Mostre que T transforma retas paralelas em retas paralelas, portanto paralelogramos em paralelogramos. E losangos?

Solução. Seja T(x,y)=(ax+by,cx+dy) e seja M a matriz de T. Como T é invertível, para todo $(m,n) \in \mathbb{R}^2$ existe apenas um vetor $(x,y) \in \mathbb{R}^2$ tal que T(x,y)=(m,n). Dito de outra forma, o sistema de equações

$$ax + by = m$$
$$cx + dy = n$$

possui apenas uma solução. Portanto as retas ax + by = m e cx + dy = nsão concorrentes. Logo os vetores (a, b) e (c, d) são não-colineares, ou seja, $ad - bc \neq 0$. Isso implica que os vetores (a, c) e (b, d) são não-colineares, ou seja, que a matrix de M tem posto 2. Pela solução do Exercício 11, para qualquer valor de α , a transformação T mapeia a reta $x = \alpha$ em uma reta paralela ao vetor (b,d) que passa por (a,c). Isso mostra que T transforma as retas paralelas $x = \alpha$ e $x = \alpha'$ em retas paralelas ao vetor (b, d). Pela solução do Exercício 11, a transformação T mapeia a reta $y = \alpha x + \beta$ em uma reta paralela ao vetor $(a,c) + \alpha(b,d)$ que passa por (a,c). Analogamente, a transformação T mapeia a reta $y = \alpha' x + \beta$ em uma reta paralela ao vetor $(a,c)+\alpha'(b,d)$ que passa por (a,c). Como $(a,b)+\alpha(c,d)$ e $(a,c)+\alpha'(b,d)$ são vetores colineares, concluímos que T transforma retas não-verticais paralelas em retas não-verticais paralelas. Além disso, concluímos que T transforma paralelogramos em paralelogramos. A transformação T não mapeia losangos em losangos, em geral. De fato, considere o quadrado cujos vértices são os pontos A = (0,0), B = (1,0), C = (1,1) e D = (0,1) (esse é um exemplo de losango). Observamos que os os vetores unitários $\overrightarrow{AB} = (1,0)$ e $\overrightarrow{AD} = (0,1)$ são mapeados nos vetores (a, c) e (b, d), que não são unitários, em geral. Logo o quadrado ABCD não é transformado em um quadrado, em geral.

17. Dados u = (1, 2), v = (3, 4), u' = (5, 6) e v' = (7, 8), ache uma transformação linear $T : \mathbb{R}^2 \to \mathbb{R}^2$ tal que Tu = u' e Tv = v'.

Solução. Seja T(x,y)=(ax+by,cx+dy), onde $a,b,c,d \in \mathbb{R}$. Procuramos constantes a,b,c e d tais que T(1,2)=(5,6) e T(3,4)=(7,8), ou seja,

(a+2b,c+2d)=(5,6) e (3a+4b,3c+4d)=(7,8), ou seja, a+2b=5, c+2d=6 e 3a+4b=7, 3c+4d=8. Obtemos portanto um sistema de quatro equações e quatro incógnitas, a,b,c e d. De fato, obtemos dois sistemas de duas equações e duas incógnitas, desacoplados:

$$a + 2b = 5$$
 $c + 2d = 6$
 $3a + 4b = 7$ $3c + 4d = 8$.

Resolvendo esses sistemas, obtemos $a=-3,\,b=4,\,c=-4$ e d=5. Portanto, a transformação linear procurada é

$$T(x,y) = (-3x + 4y, -4x + 5y).$$

Seção 24 – Coordenadas no Espaço

5. Escreva a equação do plano vertical que passa pelos pontos P = (2, 3, 4) e Q = (1, 1, 758).

Solução. O plano vertical que passa por P e Q deve conter todos os pontos da forma (2,3,z) e (1,1,z') para $z\in\mathbb{R}$ e $z'\in\mathbb{R}$. Em particular, o plano vertical deve conter os pontos P'=(2,3,0) e Q'=(1,1,0). Além disso, observamos que o plano vertical deve conter a reta P'Q'. As coordenadas de P' e Q' no plano Π_{xy} são (2,3) e (1,1). Portanto $\overline{P'Q'}=(-1,-2)$ no plano Π_{xy} . O vetor v=(2,-1) é ortogonal a $\overline{P'Q'}$. Logo a equação da reta P'Q' no plano Π_{xy} é 2x-y=c=2(1)-1(1)=1, ou seja, 2x-y=1. O plano vertical que passa por P e Q é formado por todos os pontos (x,y,z) tais que 2x-y=1. Essa é a equação do plano.

7. Escreva a equação geral de um plano vertical.

Solução. A equação geral de um plano vertical é ax + by = c, onde a, b e c são números reais. De fato, o conjunto de todos os pontos (x, y, z) tais que ax + by = c forma um plano que contém o eixo OZ ou é paralelo ao eixo OZ (veja a solução do Exercício 5).

Seção 28 – Vetores no Espaço

3. Seja u=(a,b,c) um vetor unitário, com $abc \neq 0$. Determine o valor de t de modo que, pondo v=(-bt,at,0) e w=(act,bct-1/t), os vetores u, v e w sejam unitários e mutuamente ortogonais.

Solução. Como u é unitário, temos $a^2 + b^2 + c^2 = 1$. Observamos que $u \cdot v = 0$ e $v \cdot w = 0$ para qualquer valor de t. Por outro lado, $u \cdot w = 0$ implica

 $t=\pm 1/\sqrt{a^2+b^2}$. Para esses valores de t, obtemos $\|v\|^2=(b^2+a^2)t^2=1$ e $\|w\|^2=c^2+a^2+b^2=1$. A condição $abc\neq 0$ pode ser substituída por $a^2+b^2\neq 0$.

Seção 29 - Equação do Plano

2. Obtenha uma equação para o plano que contém P e é perpendicular ao segmento de reta AB nos seguintes casos:

(a)
$$P = (0,0,0), A = (1,2,3) \in B = (2,-1,2).$$

(b)
$$P = (1, 1, -2), A = (3, 5, 2) \in B = (7, 1, 12).$$

(c)
$$P = (3,3,3), A = (2,2,2) \in B = (4,4,4).$$

(d)
$$P = (x_0, y_0, z_0), A = (x_1, y_1, z_1) \in B = (x_2, y_2, z_2).$$

Solução. (a) Observamos que o plano é perpendicular à reta AB se e somente se o plano é perpendicular à reta OB' com B'=(1,-3,-1). Logo uma equação para o plano é x-3y-z=d para alguma constante d. Como P pertence ao plano, devemos ter 1(0)-3(0)-1(0)=d, ou seja, d=0. Portanto uma equação do plano é x-3y-z=0.

- (b) Procedendo como no item (a), obtemos a equação 4x-4y+10z=-20.
- (c) Procedendo como no item (a), obtemos a equação 2x + 2y + 2z = 18.
- (d) Procedendo como no item (a), obtemos a equação $(x_2 x_1)x + (y_2 y_1)y + (z_2 z_1)z = (x_2 x_1)x_0 + (y_2 y_1)y_0 + (z_2 z_1)z_0$.
- 4. Sejam A = (-1, 1, 2), B = (2, 3, 5) e C = (1, 3, -2). Obtenha uma equação para o plano que contém a reta AB e o ponto C.

Solução. Procuramos um vetor v=(a,b,c) tal que $\langle v,\overrightarrow{AB}\rangle=0$ e $\langle v,\overrightarrow{AC}\rangle=0$. Calculamos $\overrightarrow{AB}=(3,2,3)$ e $\overrightarrow{AC}=(2,2,-4)$. Com isso obtemos o seguinte sistema de equações para (a,b,c):

$$3a + 2b + 3c = 0$$

$$2a + 2b - 4c = 0.$$

Escrevemos

$$3a + 2b = -3c$$

$$2a + 2b = 4c$$

e resolvemos para a e b considerando c como um parâmetro. Obtemos que (-7c, 9c, c) para $c \in \mathbb{R}$ são as soluções do sistema original. Em particular, o vetor v = (-7, 9, 1) é solução do sistema. Portanto, uma equação do plano

é -7x + 9y + z = d para alguma constante d. Como A pertence ao plano, devemos ter -7(-1) + 9(1) + 1(2) = d, ou seja, d = 18. Portanto, uma equação para o plano é -7x + 9y + z = 18.

Seção 31 - Sistemas de Equações Lineares com Três Incógnitas

1. Para cada um dos sistemas a seguir, decida se existem ou não soluções. No caso afirmativo, exiba todas as soluções do sistema em termos de um ou dois parâmetros independentes.

(a)
$$x + 2y + 3z = 4$$
 (b) $2x - y + 5z = 3$ (c) $6x - 4y + 12z = 2$ $4x - 2y + 10z = 5$

Solução. (a) Observamos que os vetores $l_1 = (1,2,3)$ e $l_2 = (2,3,4)$ não são colineares. Logo os planos definidos pelas equações se intersectam segundo uma reta, ou seja, o sistema possui soluções. A matriz aumentada do sistema é

$$\begin{bmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 5 \end{bmatrix}.$$

Escalonando essa matriz, obtemos

$$\begin{bmatrix} 1 & 0 & -1 & -2 \\ 0 & 1 & 2 & 3 \end{bmatrix}.$$

Portanto as soluções do sistema são x = -2 + t, y = 3 - 2t, z = t para $t \in \mathbb{R}$.

- (b) Observamos que os vetores $l_1=(2,-1,5)$ e $l_2=(4,-2,10)$ são colineares e os vetores $L_1=(2,-1,5,3)$ e $L_2=(4,-2,10,5)$ não são colineares. Logo os planos definidos pelas equações são paralelos, ou seja, o sistema não possui soluções.
- (c) Observamos que os vetores $l_1 = (6, -4, 12)$ e $l_2 = (9, -6, 18)$ são colineares e os vetores $L_1 = (6, -4, 12, 2)$ e $L_2 = (9, -6, 18, 3)$ são colineares. Logo os planos definidos pelas equações são coincidentes, ou seja, o sistema possui soluções. A matriz aumentada do sistema é

$$\begin{bmatrix} 6 & -4 & 12 & 2 \\ 9 & -6 & 18 & 3 \end{bmatrix}.$$

Escalonando essa matriz obtemos

$$\begin{bmatrix} 1 & -2/3 & 2 & 1/3 \\ 0 & 0 & 0 & 0 \end{bmatrix}.$$

Portanto as soluções do sistema são x=1/3+(2/3)s-2t, y=s, z=t para $s,t\in\mathbb{R}$.

Seção 41 - Mudança de Coordenadas no Espaço

1. Ache números α , β de modo que os múltiplos αm e βn das matrizes abaixo sejam matrizes ortogonais

$$m = \begin{bmatrix} 2 & -2 & 1 \\ 1 & 2 & 2 \\ 2 & 1 & -2 \end{bmatrix}, \qquad n = \begin{bmatrix} 6 & 3 & 2 \\ -3 & 2 & 6 \\ 2 & -6 & 3 \end{bmatrix}.$$

Solução. Procuramos α tal que $(\alpha m)(\alpha m)^T=I$, ou seja, $\alpha^2(mm^T)=I$. Calculando mm^T , obtemos

$$\alpha^2(mm^T) = \alpha^2 \begin{bmatrix} 9 & 0 & 0 \\ 0 & 9 & 0 \\ 0 & 0 & 9 \end{bmatrix}.$$

Portanto, a condição para β é $\beta^2 9 = 1$, ou seja, $\beta = \pm 1/3$.

Procuramos β tal que $(\beta n)(\beta n)^T=I$, ou seja, $\beta^2(nn^T)=I$. Calculando nn^T , obtemos

$$\beta^2(nn^T) = \beta^2 \begin{bmatrix} 49 & 0 & 0 \\ 0 & 49 & 0 \\ 0 & 0 & 49 \end{bmatrix}.$$

Portanto, a condição para β é $\beta^2 49=1,$ ou seja, $\beta=\pm 1/7.$