Unbiased kernel shap

Michał Kucharczyk i Edward Sucharda

Test poprawności i nieobciążenia modelu

- Zbiór danych: 9 cech mieszkania określających jego cenę
- Modele: SVM, xgboost
- 500 pomiarów
- 10 różnych wartości n_samples
- 5 próbek badanych

Porównanie jakości z Kernel Shap

- Dwa zbiory danych:
 - 9 cech mieszkania określających jego cenę
 - 31 cech określających współczynnik śmiertelności
- Dobór n_samples i liczby danych uczących tak by obie metody miały podobny czas wyjaśniania pojedynczej próbki
- 500 pomiarów próbki
- 20 próbek

Mean standard deviation of estmated shapley values for xgboost per first 10 features on 31 feature regression

unbiased kenrel shap
kernel shap

2.5
2.0
1.5

povertyPercent

studyPerCap

MedianAge

MedianAgeMale MedianAgeFemale

popEst2015

medIncome

0.5

0.0

avgAnnCount avgDeathsPerYear incidenceRate

Mean standard deviation of estmated shapley values for SVM per first 10 features on 31 feature regression

*dla SVM kernel shap był dużo lepszy i wykresy nie oddawały skali różnicy