高分子物理补充讲义

孙尉翔 mswxsun@scut.edu.cn

2024-08-20

前言

本讲义旨在帮助高分子专业的同学联系大二学的物理化学知识和大三学的高分子物理知识。现有内容是笔者在日常工作中的零星积累,所以主题是分散的。

本讲义假定大二物理化学指定课本是《物理化学(第六版)》(傅献彩,侯文华),大三高分子物理指定课本是《高分子物理(第三版)》(何曼君,张红东,陈维孝,董西侠)。在讲义当中,凡不加说明地提到"《物理化学》"或"《高分子物理》"就默认指这两本书。选择这两本书是为了适应笔者所在院系学生的实际。

孙尉翔 2024 年 8 月

更新至 2024-08-20

目录

第一部分 热力学基础	7
第一章 热力学从理论到应用	9
1.1 热力学的学习建议	. 9
1.2 热力学是怎么应用的	. 11
第二章 混合物的热力学	21
2.1 混合物组成的定量描述方法	. 21
2.2 偏摩尔量	. 22
2.3 理想气体混合物	. 26
2.4 真实混合物	. 31
2.5 气液共存	. 38
第二部分 高分子热力学	39
第三部分 高分子平衡态统计力学	41
第三章 链统计	43
第四部分 高分子动力学和流变学	45
第五部分 附录	47
第四章 数学	49
4.1 多元函数微积分	. 49

目录		目录
第五章	物理学	51
5.1	平衡态统计进阶	. 51

第一部分 热力学基础

第一章 热力学从理论到应用

1.1 热力学的学习建议

仅靠在本科阶段的物理化学课堂学习是很难一次性把热力学学透彻的。

首先,想要顺利地学进去,很依赖对热力学最基本的概念和思想——尤其是引出热力学第一定律之前的准备性概念——的准确理解。而准确理解这些概念是需要反复地反思和质疑的,最好还能批判地回顾热力学的历史,以便理解今天所呈现的版本是如何从历史上的纷繁表象发展到现在的本质认识的。这便更是一个很长的学习过程。也是学习热力学的第一道槛。

学习热力学的第二道槛是把物理上的体系(body)与过程(path),和数学上的多元函数微积分语言统一起来。大部分同学在本科阶段只学习了一遍高等数学,对多元函数的微积分的理解可能还不准确、不熟练,面对热力学关系中大量出现的微分关系和偏导数关系,无法自行验算;哪怕是被动接受("记公式"),也不知道何时使用、如何使用。

学习热力学的第三道槛就是灵活应用热力学理论去处理科学研究或工业生产中的 问题。

我建议同学们分清这三个学习阶段,认识到热力学学习之路的悠远,不必急于一蹴而就。热力学是统领大半个物理学的基本理论,它值得任何一名未来的科技工作者花一生的时间去掌握,因此不必强求学习进度的快慢。以下我将分几个方面介绍一些写得好、易于自学的参考资料。

- 一、热力学思想和概念(到热力学第二定律为止)
- 以下章节可供读者在有限时间内,不太发散地集中学习这方面内容:
- 王竹溪. 热力学 [M]. 第二版. 高等教育出版社, 1960. 绪论、第一至三章
- 韩德刚高执棣高盘良. 物理化学 [M]. 第二版. 高等教育出版社, 2008. 第一章以下资料可供本科层次读者细致地了解热力学理论的历史脉络:
 - Fowler, Michael. Physics 152: Heat and Thermodynamics[EB/OL]. [2024/8/12]. https://galileo.phys.virginia.edu/classes/152.mf1i.spring02/HeatIndex.htm.
 - Müller, I. A History of Thermodynamics[M]. Springer, 2007.

以下资料可供读者在初步完整地学习完热力学之后温故而知新:

- 王竹溪. 热力学 [M]. 第二版. 高等教育出版社, 1960. 全书
- Callen, Herbert B. Thermodynamics and an introduction to thermostatistics[M]. 2nd ed. Wiley, 1985. Part I
- Reichl, E L. A Modern Course in Statistical Physics[M]. 2nd ed. University of Texas Press, 1980. Ch.1~4
- 二、复习高等数学中函数微积分部分的内容,并用这些知识去理解物理化学或热力学课本当中出现的数学式子和推导过程。这部分资料很多,不一一罗列了。建议在数学过关的基础上,亲自推导物理化学或热力学课本上的全部微分和偏导数关系式,最好重复若干次。
- 三、关于热力学的实践应用,可以参考以"化工热力学"为标题的教材,并重点留意关于处理非理想体系的内容。
 - Smith, J. M.; Van Ness, H. C.; Abbott, M. M. Introduction to Chemical Engineering Thermodynamics[M]. 9th ed. McGraw Hill, 2022.

除了一般的化工热力学教材之外,还可以参阅一些热力学在你关心领域的应用专著。例如溶液热力学:

- Van Ness, H. C. Classical Thermodynamics of Non-Electrolyte Solutions[M]. Pergamon Press, 1964.
- Van Dijk, M.; Wakker, A. Concepts of Polymer Thermodynamics[M]. ChemTec Publishing, 1997
- Klenin, V. J. Thermodynamics of Systems Containing Flexible-Chain Polymers[M]. Elsevier, 1999
- Flory, P. J. Principles of Polymer Chemistry[M]. Cornell University Press, 1953 最后,我列出几条一般的学习建议,希望能够解决学习过程中常见的困惑。
- 区分体系与环境。在讨论过程中要注意明确讨论对象。在有些问题当中我们不止 讨论一个体系,或者会变换所讨论的体系(比如相平衡问题)。在这种情况下就更 要敏感和清醒,每句陈述是视什么为体系,视什么为环境。
- 认清体系与环境之间的关系,即:有无物质交换和能量交换。
- 认真理解各类"过程"(可逆、不可逆、准静态、自发……)。任何时候都能立刻回答: 当前式子用到热力学第二律了没有?用到第二定律的式子,为什么写成等式?什么时候关心变化量 ΔM,什么时候关心微分 dM?它们之间有什么关系?
- 为物理化学课本上的微分关系式推导过程补全至高等数学课所要求的细致程度, 并重视在这件事上碰到的困惑,努力寻求解答。高等数学本身比较弱的同学,不要 急着开始学习热力学,而是建议先复习和加强高等数学。最终要习惯于不依赖文

字,只通过数学式子,就能听懂、讲好故事。

1.2 热力学是怎么应用的

1.2.1 状态函数与微积分

一般地,某体系的性质 M 若是状态函数,那它就是独立、完整地确定体系状态的一组变量 (X,Y,\cdots) 的函数 $M=M(X,Y,\cdots)$ 。如果 $\mathrm{d}M$ 是函数 M 的全微分,则应有

$$dM = \frac{\partial M}{\partial X} \bigg|_{Y,\dots} dX + \frac{\partial M}{\partial Y} \bigg|_{X,\dots} dY + \dots$$

反之,如果告诉你 dM 在最一般的情况下能写成上式,意思就是说 (X,Y,\cdots) 独立、完整地确定函数 M 的值,如果 M 还是状态函数且是体系的平衡态某性质,那就是说这个体系的状态独立、完整地地由 (X,Y,\cdots) 所确定,那么这个体系的其他状态函数性质也以 (X,Y,\cdots) 为自变量。独立、完整确定体系状态的变量可以不止一组。例如,说一个体系的状态可独立、完整地由温度 T 和压强 p 确定,那它也可以独立、完整地由温度 T 和体积 V 确定,因为这个体系的压强、温度和体积由状态方程所联系;是这三个量不是互相独立的,确定了两个就同时确定了第三个。例如,确定了 (T,p) 就同时确定了 V,即 V=V(T,p),是体系状态方程的一种表达形式。若说 M=M(T,V),则理论上总能通过把 V=V(T,p) 代进去,写出 M=M(T,V,V),那就叫"不独立"。独立、完整地确定体系平衡态的一组变量叫这个体系的一组状态参数(state parameters)。

经验表明,一个多组份体系(即混合物体系)的状态参数,除在相同前提下的单组份体系所需要的那些外,还需要增加各组份的摩尔数 n_1, n_2, \cdots ,简记为 $\{n_i\}$ 。例如,一个不受外场(重力、电、磁等)作用,且接触力作用只有各向同性静压(即所谓的"只做体积功")的单组分体系,摩尔数 n 一定时,它的状态可用温度 T、压强 p、体积 V 三个变量中的两个所确定。而对于总摩尔数 $n \equiv \sum_i n_i$ 一定的多组分体系,则还要在单组份情况的基础上加上 $\{n_i\}$ 才能确定其状态。

1.2.2 热力学基本关系

热力学基本关系是仅凭热力学基本定律和状态函数的微分性质就能得出的普适关系。具体物质之间的性质差异,是由状态方程来负责的。从热力学基本定律出发的推导过程,无论绕到哪儿去了,只要没有代入具体的状态方程(包括理想气体状态方程),那么就都是对所有体系都普适的热力学关系(前提当然是数学推算过程没有出错)。

更新至 2024-08-20 11

一个体系最基本的状态函数性质就是内能 U 和熵 S。它们的引入与热力学第一和第二定律直接相关,详见其他热力学教材,此略。对于单组份体系,由热力学第一定律

$$dU = dQ + dW$$

和第二定律

$$\mathrm{d}S = \frac{dQ_{\mathrm{rev}}}{T}$$

给出,在可逆过程中

$$dU = TdS + dW_{rev}$$

在只做体积功的情况下,

$$dU = TdS - pdV$$

由于内能 U 是状态量,上列式子又是普适定律,故上列式子可视为 U 的完整全微分,暗示 U = U(S, V),即 (S, V) 独立、完整地确定这种体系的状态,具体有

$$dU = \frac{\partial U}{\partial S} \Big|_{V} dS + \frac{\partial U}{\partial V} \Big|_{S} dV$$

$$= TdS - pdV$$

$$\Leftrightarrow \frac{\partial U}{\partial S} \Big|_{V} = T, \quad \frac{\partial U}{\partial V} \Big|_{S} = -p$$

对于多组份体系,确定体系状态的变量新增 $\{n_i\}$,即 $U = U(S, V, \{n_i\})$,故

$$dU = \frac{\partial U}{\partial S} \Big|_{V,\{n_i\}} dS + \frac{\partial U}{\partial V} \Big|_{S,\{n_i\}} dV + \sum_i \frac{\partial U}{\partial n_i} \Big|_{S,V,\{n_{j\neq i}\}} dn_i$$
 (1.1)

若保持该体系组成恒定,又可视体系相当于一个不区分组份种类的单组份体系,故仍有

$$\left.\frac{\partial U}{\partial S}\right|_{V,\{n_i\}} = T, \quad \left.\frac{\partial U}{\partial V}\right|_{S,\{n_i\}} = -p$$

而新引入的偏导数 $(\partial U/\partial n_i)_{S,V,\{n_{j\neq i}\}}$ 则定义为组份 i 在混合物中的化学势 (chemical potential),记为

$$\mu_i \stackrel{\text{def}}{=} \left. \frac{\partial U}{\partial n_i} \right|_{S,V,\{n_{j \neq i}\}},$$

对焓、亥姆霍兹自由能和吉布斯自由能的定义式(仍假定体系只做体积功)

$$H \stackrel{\text{def}}{=} U + pV$$
, $A \stackrel{\text{def}}{=} U - TS$, $G \stackrel{\text{def}}{=} U + pV - TS$

作微分,可得出这些热力学函数作为特性函数(characteristic functions)*的微分式[†]

$$dH = TdS + Vdp + \sum_{i} \mu_{i} dn_{i}$$
(1.2)

$$dA = -SdT - pdV + \sum_{i} \mu_{i} dn_{i}$$
(1.3)

$$dG = -SdT + Vdp + \sum_{i} \mu_{i} dn_{i}$$
(1.4)

例如,对吉布斯自由能定义式作全微分,就有

$$dG = dU + pdV + Vdp - TdS - SdT$$

把式(1.1)代入上式就能得到式(1.4)。

特性函数可用于确定体系在两个状态之间变化的可逆性和方向性。若体系状态由 $(X,Y,\{n_i\})$ 独立、完整地确定,且对照特性函数与特征变量的对应关系应选用 $M=M(X,Y,\{n_i\})$,则两个状态—— $(X_1,Y_1,\{n_{i,1}\})$ 到 $(X_2,Y_2,\{n_{i,2}\})$ ——的 M 值变化将不依赖路径(因 M 是状态函数),且总可找到一条可逆路径[‡],将 M 的微分式 dM=XdY+Yd $X+\sum_i \mu_i \mathrm{d}n_i$ 进行如下积分,就可得到两状态间的 M 变化量 ΔM :

$$\Delta M = M(X_{2}, Y_{2}, \{n_{i,2}\}) - M(X_{1}, Y_{1}, \{n_{i,1}\})$$

$$= \int_{(X_{1}, Y_{1}, \{n_{i,1}\}) \to_{\text{rev}}(X_{2}, Y_{2}, \{n_{i,2}\})} dM$$

$$= \int_{Y_{1}}^{Y_{2}} X dY + \int_{X_{1}}^{X_{2}} Y dX + \sum_{i} \int_{n_{i,1}}^{n_{i,2}} \mu_{i} dn_{i}$$

$$(1.5)$$

知道 ΔM 还有许多其他应用,在《物理化学》课的学习中我们已有深刻体会。而 ΔM 全是靠 dM 在两个状态之间的积分算出来。所以在热力学中我们主要的篇幅都是在讨论 dM 的表达式和它们之间的关系。

式(1.2)至(1.4)与它们的全微分式比较可得

$$\mu_{i} = \left. \frac{\partial U}{\partial n_{i}} \right|_{S,V,\{n_{j\neq i}\}} = \left. \frac{\partial H}{\partial n_{i}} \right|_{S,p,\{n_{j\neq i}\}} = \left. \frac{\partial A}{\partial n_{i}} \right|_{T,V,\{n_{j\neq i}\}} = \left. \frac{\partial G}{\partial n_{i}} \right|_{T,p,\{n_{j\neq i}\}}$$
(1.6)

更新至 2024-08-20

^{*}见《物理化学》§3.13。

[†]在处理开放系统时,还会用到巨热力学势 $J \stackrel{\text{def}}{=} U - TS - n\mu$,这里不介绍了。

[‡]前提是由 $(X_1, Y_1, \{n_{i,1}\})$ 可连续变化至 $(X_2, Y_2, \{n_{i,2}\})$ 。

以及

$$T = \left. \frac{\partial U}{\partial S} \right|_{V,\{n_i\}} = \left. \frac{\partial H}{\partial S} \right|_{V,\{n_i\}},\tag{1.7}$$

$$p = -\left. \frac{\partial U}{\partial V} \right|_{S,\{n_i\}} = -\left. \frac{\partial A}{\partial V} \right|_{T,\{n_i\}}, \tag{1.8}$$

$$V = \frac{\partial H}{\partial p} \Big|_{S,\{n_i\}} = \frac{\partial G}{\partial p} \Big|_{T,\{n_i\}},$$

$$S = -\frac{\partial A}{\partial T} \Big|_{V,\{n_i\}} = -\frac{\partial G}{\partial T} \Big|_{p,\{n_i\}}$$
(1.10)

$$S = -\left. \frac{\partial A}{\partial T} \right|_{V,\{n_i\}} = -\left. \frac{\partial G}{\partial T} \right|_{p,\{n_i\}} \tag{1.10}$$

1.2.3 与体系的特殊性相关的可测量

 U_{S} , H_{A} ,G 等热力学函数(及其偏导数)是无法直接测量的。我们能直接测量的 是体系的状态参数——即独立、完整确定体系状态的那些量,及其关系——即状态方程。 此外我们还能通过量热手段测量体系的热容。因此,我们需要把热力学函数的微分式中 的那些偏导数努力地表示成这些我们能直接测量的量。对于物质的量恒定,只做体积功 的单组份体系,这些可直接测量的量包括:

两种可逆过程热容:定容热容

$$C_V \stackrel{\text{def}}{=} dQ_{\Pi \Box{i} \Box{i} \Box{i} \Box{s} \Box{e} \Box{g} \Box{e}} / dT$$

和定压热容

$$C_p \stackrel{\mathrm{def}}{=} \mathrm{d}Q$$
可逆等压变温/ $\mathrm{d}T$

它们常直接重新定义为

$$C_V \stackrel{\text{def}}{=} \left. \frac{\partial U}{\partial T} \right|_{V,\{n_i\}}, \quad C_p \stackrel{\text{def}}{=} \left. \frac{\partial H}{\partial T} \right|_{p,\{n_i\}}$$

但更有用的是由可逆过程熵变的热温商式得到的

$$C_p = T \left. \frac{\partial S}{\partial T} \right|_{p,\{n_i\}} \tag{1.11}$$

$$C_V = T \left. \frac{\partial S}{\partial T} \right|_{V,\{n_i\}} \tag{1.12}$$

体系状态参数之间的偏导数,可称之为 pVT 响应函数。它们之所以能有相互的偏 导数是因为它们数学上由体系的状态方程所联系。组份不变时,有——

等压热膨胀系数: $\alpha_p \stackrel{\text{def}}{=} V^{-1} \left. \frac{\partial V}{\partial T} \right|_{p,\{n_i\}}$ 等温压缩系数: $\kappa_T \stackrel{\text{def}}{=} -V^{-1} \frac{\partial V}{\partial p}\Big|_{T,\{p_i\}}$

等容压强系数: $\beta_V \stackrel{\text{def}}{=} \frac{\partial p}{\partial T}|_{V,\{n_i\}}$

由于 p、V、T 之间是相关联的,这三个偏导数之间也是相关联的: $\alpha_p = \beta_V \kappa_T^*$ 。

上列 pVT 响应函数是适用于等温实验的。还有另一系列等熵(isentropic)实验的对应参数 \dagger ——

等熵热膨胀系数: $\alpha_S \stackrel{\text{def}}{=} V^{-1} \frac{\partial V}{\partial T}|_{S,\{n_i\}}$

等熵压缩系数:
$$\kappa_S \stackrel{\text{def}}{=} -V^{-1} \left. \frac{\partial V}{\partial p} \right|_{S,\{n_i\}}$$

等熵压强系数: $\beta_S \stackrel{\text{def}}{=} \frac{\partial p}{\partial T}|_{S,\{n_i\}}$

等到后面面介绍 Maxwell 关系时我们将会发现,等温系列和等熵系列参数之间可通过热力学基本定律和状态方程相互关联。

还有一些表征体系特性的系数也是热力学函数的偏导数——

焦汤系数:
$$\mu_{\text{JT}} \stackrel{\text{def}}{=} \frac{\partial T}{\partial p}\Big|_{H,\{n_i\}}$$

热容比: $\gamma \stackrel{\text{def}}{=} \frac{C_p}{C_V}$

它们也是可以通过热力学定律和状态方程与上述的响应函数相关联的。特别地,

$$\gamma = \frac{\kappa_T}{\kappa_S} \tag{1.13}$$

多组份体系的各组份物质的量 $\{n_i\}$ 也是状态参数,所以状态参数之间的偏导数还应包括:

$$\left. \frac{\partial p}{\partial n_i} \right|_{T,V,\{n_{i \neq i}\}}, \quad \left. \frac{\partial V}{\partial n_i} \right|_{T,p,\{n_{i \neq i}\}}, \quad \left. \frac{\partial T}{\partial n_i} \right|_{p,V,\{n_{i \neq i}\}}$$

其中第二个就是偏摩尔体积。实际上只需要测量偏摩尔体积即可。因为

$$\begin{split} \frac{\partial p}{\partial n_i}\bigg|_{T,V,\{n_{j\neq i}\}} &= \left.\frac{\partial p}{\partial V}\right|_{T,\{n_i\}} \left.\frac{\partial V}{\partial n_i}\right|_{T,p,\{n_{j\neq i}\}} = -\frac{1}{\kappa_T V} \left.\frac{\partial V}{\partial n_i}\right|_{T,p,\{n_{j\neq i}\}}, \\ \left.\frac{\partial T}{\partial n_i}\right|_{p,V,\{n_{j\neq i}\}} &= \left.\frac{\partial T}{\partial V}\right|_{p,\{n_i\}} \left.\frac{\partial V}{\partial n_i}\right|_{T,p,\{n_{j\neq i}\}} = \frac{1}{\alpha_p V} \left.\frac{\partial V}{\partial n_i}\right|_{T,p,\{n_{j\neq i}\}}, \end{split}$$

类似地, $p \setminus V$ 关于 n_i 的等温偏导数也有另一套对应的等熵的版本,不再列出了。我们把混合物体系的这些等温或等熵性质叫做 $pVTn_i$ 响应函数。

1.2.4 Maxwell 关系和 Tobolsky 方法

运用 Tobolsky 方法^[1],可以把任意热力学函数偏导数表示成仅含上列可测量的形式,从而打通热力学理论和实验应用的道路。这个方法需要使用 Maxwell 关系[‡]。具体

^{*}见《物理化学》附录 I.3 式 (2)。

[†]等熵过程就是可逆绝热过程。在多数实验中,我们一般是控制一定的温度。如果体系在定温下等到平衡态再记录测量数据,得到的就是等温响应函数;而如果是在条件突然变化的瞬间测得数据,则由于热来不及传导而近似绝热条件的响应,这样的实验结果常近似作为等熵参数来报道。这是等熵参数的实际意义。

[‡]参见《物理化学》§3.13。

地,对式(1.6)至式(1.10)中的偏导数再作不同变量的交叉二阶导数,并由于这些状态函数都假定连续可微而可交换偏导数顺序,可以得到一系列 Maxwell 关系式。其中将会出现很多 $pVTn_i$ 响应函数。由内能的交叉偏导数得到:

$$\left. \frac{\partial^2 U}{\partial S \partial V} \right|_{\{n_i\}} = \left. \frac{\partial T}{\partial V} \right|_{S,\{n_i\}} = \left(\alpha_S V \right)^{-1} = -\left. \frac{\partial p}{\partial S} \right|_{V,\{n_i\}}$$
(1.14)

$$\left. \frac{\partial^2 U}{\partial n_i \partial S} \right|_{V, \{n_{j \neq i}\}} = \left. \frac{\partial \mu_i}{\partial S} \right|_{V, \{n_i\}} = \left. \frac{\partial T}{\partial n_i} \right|_{S, V, \{n_{j \neq i}\}}$$
(1.15)

$$\frac{\partial^2 U}{\partial n_i \partial V} \bigg|_{S,\{n_{i \neq i}\}} = \left. \frac{\partial \mu_i}{\partial V} \right|_{S,\{n_i\}} = -\left. \frac{\partial p}{\partial n_i} \right|_{S,V,\{n_{i \neq i}\}}$$
(1.16)

由焓的交叉偏导数得到

$$\frac{\partial^2 H}{\partial S \partial p}\Big|_{\{n_i\}} = \left. \frac{\partial T}{\partial p} \right|_{S,\{n_i\}} = \beta_S^{-1} = \left. \frac{\partial V}{\partial S} \right|_{p,\{n_i\}}$$
(1.17)

$$\frac{\partial^2 H}{\partial n_i \partial S} \bigg|_{p, \{n_{i \neq i}\}} = \frac{\partial \mu_i}{\partial S} \bigg|_{p, \{n_i\}} = \frac{\partial T}{\partial n_i} \bigg|_{S, p, \{n_{i \neq i}\}}$$
(1.18)

$$\left. \frac{\partial^2 H}{\partial n_i \partial p} \right|_{S,\{n_{j\neq i}\}} = \left. \frac{\partial \mu_i}{\partial p} \right|_{S,\{n_i\}} = \left. \frac{\partial V}{\partial n_i} \right|_{S,p,\{n_{j\neq i}\}}$$
(1.19)

由亥姆霍兹自由能的交叉偏导数得到:

$$\left. \frac{\partial^2 A}{\partial T \partial V} \right|_{\{n_i\}} = \left. \frac{\partial S}{\partial V} \right|_{T,\{n_i\}} = \left. \frac{\partial p}{\partial T} \right|_{V,\{n_i\}} = \beta_V \tag{1.20}$$

$$\frac{\partial^2 A}{\partial n_i \partial T} \Big|_{V, \{n_{j \neq i}\}} = \frac{\partial \mu_i}{\partial T} \Big|_{V, \{n_i\}} = -\frac{\partial S}{\partial n_i} \Big|_{T, V, \{n_{j \neq i}\}}$$
(1.21)

$$\frac{\partial^2 A}{\partial n_i \partial V}\Big|_{T,\{n_{j \neq i}\}} = \left. \frac{\partial \mu_i}{\partial V} \right|_{T,\{n_i\}} = -\left. \frac{\partial p}{\partial n_i} \right|_{T,V,\{n_{j \neq i}\}}$$
(1.22)

由吉布斯自由能的交叉偏导数得到:

$$\left. \frac{\partial^2 G}{\partial T \partial p} \right|_{\{n_i\}} = \left. \frac{\partial S}{\partial p} \right|_{T,\{n_i\}} = -\left. \frac{\partial V}{\partial T} \right|_{p,\{n_i\}} = -\alpha_p V \tag{1.23}$$

$$\frac{\partial^2 G}{\partial n_i \partial T} \bigg|_{p,\{n_{j\neq i}\}} = \frac{\partial \mu_i}{\partial T} \bigg|_{p,\{n_i\}} = -\frac{\partial S}{\partial n_i} \bigg|_{T,p,\{n_{j\neq i}\}}$$
(1.24)

$$\left. \frac{\partial^2 G}{\partial n_i \partial p} \right|_{T, \{n_{j \neq i}\}} = \left. \frac{\partial \mu_i}{\partial p} \right|_{T, \{n_i\}} = \left. \frac{\partial V}{\partial n_i} \right|_{T, p, \{n_{j \neq i}\}}$$
(1.25)

最后,从上述 Maxwell 关系可归纳出,除了 C_p 、 C_V 、各 $pVTn_i$ (等温或等熵)响应函数,还有两种必须知道的量我们还没讨论,那就是等压或等容偏摩尔熵

(式(1.21)和(1.24))。具体地,它们分别是含在视熵为 $(T, V, \{n_i\})$ 或 $(T, p, \{n_i\})$ 的函数的全微分中的:

$$dS = \frac{\partial S}{\partial T} \Big|_{V,\{n_i\}} dT + \frac{\partial S}{\partial V} \Big|_{T,\{n_i\}} dV + \sum_{i} \frac{\partial S}{\partial n_i} \Big|_{T,V,\{n_{j\neq i}\}}$$

$$= \frac{C_V}{T} dT + \beta_V^{-1} dV + \sum_{i} \frac{\partial S}{\partial n_i} \Big|_{T,V,\{n_{j\neq i}\}}$$
(1.26)

$$dS = \frac{\partial S}{\partial T} \Big|_{p,\{n_i\}} dT + \frac{\partial S}{\partial p} \Big|_{T,\{n_i\}} dp + \sum_{i} \frac{\partial S}{\partial n_i} \Big|_{T,p,\{n_{j\neq i}\}}$$

$$= \frac{C_p}{T} dT - \alpha_p V dp + \sum_{i} \frac{\partial S}{\partial n_i} \Big|_{T,p,\{n_{i\neq i}\}}$$
(1.27)

其中用到了式(1.11)和(1.12)。这些偏摩尔熵的实验测量,跟熵本身一样,最终是落实到相应的偏摩尔热容

$$C_{p,i} \stackrel{\text{def}}{=} \left. \frac{\partial C_p}{\partial n_i} \right|_{T,p\{n_{j\neq i}\}} \tag{1.28}$$

$$C_{V,i} \stackrel{\text{def}}{=} \left. \frac{\partial C_V}{\partial n_i} \right|_{T,V\{n_{i \neq i}\}} \tag{1.29}$$

和偏摩尔 pVT 等温响应函数

$$\alpha_{p,i} \stackrel{\text{def}}{=} \left. \frac{\partial \alpha_p}{\partial n_i} \right|_{T,p,\{n_{j\neq i}\}}$$
 (1.30)

$$\kappa_{T,i} \stackrel{\text{def}}{=} \left. \frac{\partial \kappa_T}{\partial n_i} \right|_{T,p,\{n_{j\neq i}\}} \tag{1.31}$$

$$\beta_{V,i} \stackrel{\text{def}}{=} \left. \frac{\partial \beta_V}{\partial n_i} \right|_{T,p,\{n_{i \neq i}\}} \tag{1.32}$$

的测量上。而偏摩尔 pVT 等温响应函数又可由 $pVTn_i$ 响应函数得到,所以真正需要额外测量的就是偏摩尔热容,这可以用一系列不同组成的试样在同温同压下的热容数据得到*。总而言之,想要完整确定体系的热力学性质,需要测定体系的热容和 pVT 响应函数;若是混合物体系,还需测定偏摩尔热容和偏摩尔体积。

有了这些关系,就总是能从已知体系的状态方程出发(无论是来自实验测量或者理论模型),把式(1.1)至(1.4)表示成仅含可测量的形式,再由式(1.5)得到体系的任何平衡态热力学行为,实现"想算什么就算什么"的自由。

例如,我们随便要求算一个古怪的偏导数: $\frac{\partial H}{\partial A}|_{S}$ 。从这个偏导数形式上看,它来自由 (A,S) 所独立而完整确定的形式 H=H(A,S),是单组分体系。故令 $X\equiv \frac{\partial H}{\partial E}|_{S}$ 、

更新至 2024-08-20 17

^{*}关于偏摩尔量,还有很多重要的热力学关系,将在后续章节专门介绍。

 $Y \equiv \frac{\partial H}{\partial S} |_{A}$,则 H 的全微分可表示成

$$dH = XdA + YdS$$

但是 H 自己有作为特性函数的微分式(1.2)(单组分体系 $dn_i = 0$),故可联系而得到以下式子:

$$XdA + YdS = TdS + Vdp$$

然后,我们需要确定,我们的实验是在什么特性参数条件下做的。例如,我们的实验是恒温恒压下做的,那么我们就需要把上列的微分式中的 $dA \cdot dS$ 换成 dT 和 dp。这需要恰当选用相应的式子。比如,如果我们用式(1.3)把 dA 换掉,就会新增我们所不需要的一个 dV 项。这时只需再通过状态方程按 V = V(T,p),可以把 $dV = \alpha_p V dT - \kappa_T V dp$ 再代进去,就得到只含 dT 和 dp 的项了。类似地 dS 用式(1.27)代入,最终可得到:

$$\left(-SX - pX\alpha_pV + \frac{YC_p}{T} - C_p\right)dT + (pX\kappa_TV - Y\alpha_pV + T\alpha_pV - V)dp = 0$$

由于上式是热力学关系推出来的,总成立,故有

$$-SX - pX\alpha_pV + \frac{YC_p}{T} - C_p = 0$$
$$pX\kappa_TV - Y\alpha_pV + T\alpha_pV - V = 0$$

解得

$$X = \frac{C_p}{C_p p \kappa_T - T \alpha_p (S + pV \alpha_p)}$$

$$Y = T \left(1 - \frac{S + pV \alpha_p}{T \alpha_p (S + pV \alpha_p) - C_p p \kappa_T} \right)$$

其中 X 是我们想要的。我们发现,这些表达式中除了含有之前说到的各种可测量响应函数之外,还含有熵值 S。这也是不用担心的。将来在最后应用式(1.5)时,可转化成同状态间的熵变 ΔS ,又可通过式(1.27)由积分(1.5)得到。此例说明,我们总是能用我们方便实验的条件(恒温恒压)测量的结果,去计算任意一个也许在特定理论分析中碰到的,又很难实验直接测量的偏导数("恒熵下含随亥姆霍兹自由能的变化量")。因此,热力学在实操层面上的重点在于体系的热容和状态方程的确定(多组份情况下还包括必要的偏摩尔热容和偏摩尔体积)。

1.2.5 体系的完整热力学性质

有了上一节介绍的一般方法,我们应该可以求出,在给定状态参数 (X,Y,\cdots) 下,一个已知性质的体系的内能和熵作为这组状态参数的特性函数的全微分式——

$$\mathrm{d}U\left(X,Y,\cdots\right)$$
 $\mathrm{Ad}S\left(X,Y,\cdots\right)$

且所含的偏微分全部用该体系的热响应函数和 $pVTn_i$ 响应函数来表示(通过 Tobolsky 方法)。有了内能和熵,其他热力学势的全微分式也就能推出来,而不需要额外信息。从而,一个体系的完整热力学性质就得以确定了。

例如,对于一个由温度和压强确定平衡态的混合物体系,由 $U=U(T,p,\{n_i\})$,我们需要用 Tobolsky 写 $(\partial U/\partial T)_p$ 、 $(\partial U/\partial p)_T$ 和各组份化学势 μ_i 的仅含热响应函数和 $pVTn_i$ 响应函数的表达式。熵的情况也类似。本节关心的问题是,最少需要知道多少可测性质,才足以确定一个体系的完整热力学性质。

我们先考虑单组份体系,具体地,我们否定以下说法:对于单组份体系,仅靠 pVT状态方程就能确定一个体系的完整热力学性质。

我们仍以体系状态由参数 (T,p) 确定为例。先通过 Tobolsky 方法得到内能的全微分式(过程留作练习):

$$dU = (C_p - \alpha_p pV) dT + (\kappa_T pV - \alpha_p V) dp$$

我们看到,该式除了含有 pVT 响应函数外,还含有等压热容 C_p 。读者若自行尝试写出体系状态由参数 (T,V) 确定的情况,则将会发现式中除了含有 pVT 响应函数外,还含有等容势容 C_V 。

能否把等压或等容热容也换成仅含 pVT 响应函数的形式呢?如果可以,那么上列第一个命题就为真了。可惜, C_V 和 C_p 单独任一个都不能写成仅含 pVT 响应函数的表达式 (利用 Tobolsky 方法是徒劳的);它们单独等于啥,与 pVT 关系一样,需要借助统计力学针对体系微观特性推导而得到。比如单原子分子理想气体 $C_V=3nR/2$ 和 $C_p=5nR/2$,就是非得通过统计力学才能给出的*。Tobolsky 方法倒是能够给出以下普适关系:

$$C_p - C_V = \alpha_p \beta_V^{-1} V T, \quad \alpha_p = \beta_V \kappa_T$$

把理想气体状态方程代进去将得到《物理化学》式 (2.23)。但是这些关系也不能使得 C_V 或 C_p 的任一个被 pVT 响应函数表出。

确定混合物体系完整热力学的必要信息将在 §二详细介绍。

^{*《}物理化学》§7.5。

第二章 混合物的热力学

2.1 混合物组成的定量描述方法

本节介绍三种刻划混合物组成的方法。考虑一个均一的混合物体系,记 m_i 、 n_i 分别是组份 i 在体系中的质量和物质的量,由可定义以下三种强度性质:

质量分数(mass fraction): $w_i \stackrel{\text{def}}{=} \frac{m_i}{\sum_i m_i}$

摩尔分数 (mole fraction): $x_i \stackrel{\text{def}}{=} \frac{n_i}{\sum_i n_j}$

浓度(concentration): $c_i \stackrel{\text{def}}{=} \frac{n_i}{V}$

一般地,完整确定体系的组成需要所有组份的质量或物质的量,记为 $\{m_i\} = \{m_1, m_2, \dots\}$ 和 $\{n_i\} = \{n_1, n_2, \dots\}$ 。

如果采用 $\{w_i\}$ 或 $\{x_i\}$ 来表示组成,虽然利用恒等关系

$$\sum_{i} x_i = \sum_{i} w_i = 1$$

似乎可比使用 $\{n_i\}$ 或 $\{m_i\}$ 少用一个变量来确定体系的组成,但计算 x_i 或 w_i 所需要的分母 $\sum_i n_i$ 和 $\sum_i m_i$ 本身就要求所有 $\{n_i\}$ 和 $\{m_i\}$,因此独立、完整地确定混合物体系组成的变量个数是一定的。

注意到,对于给定的一个混合物体系,其各组份的摩尔数 $\{n_i\}$ 可视为摩尔份数 $\{x_i\}$ 恒定下的广度性质,因为它们在这种条件下正比于体系的(总)摩尔数 $n:n_i=x_in$ 。因此 x_i 就是与 n_i 对应的强度性质。

给定一个混合物体系的状态函数 M,我们经常写成 $M = M(X,Y,\{n_i\})$,其中 X、Y 是除组成外的其他状态参数。但是在讨论中,我们又经常考虑某组份 i 的摩尔分数 x_i 在保持总摩尔数 n 恒定(封闭体系)时,取值的连续变化过程,而不对其他组份的摩尔数 $\{n_{j\neq i}\}$ 的变化方式作出规定。诚然,满足这一要求的组成变化路径是有无数条的。在理论探讨中,我们仅需要明确,状态函数的取值不依赖历史路径的选择,且总有一条可逆的路径使得式(1.5)得以适用即可。因此,在本讲义和很多其他资料中,都不会仔细

区分 $M(T, p, \{n_i\})$ 和 $M(T, p, \{n; x_i\})$ 这两种写法,例如会出现类似以下的表达式:

$$\int_{a}^{b} M\left(T, p, \{n_i\}\right) \mathrm{d}x_i$$

上式表示,找到组份 i 的摩尔分数 x_i 由 a 连续变化至 b 的某条可逆路径来求这个积分。这不是一个简单的定积分,而是一个在组成空间中某条规定路径上的曲线积分。所幸的是我们几乎不可能被要求具体计算这样一个积分。不限制组份数,且坚持使用数学语言,是为了保证理论构建的严格性和一般性。

浓度定义中的 V 是混合物体系的体积。它本身又依赖体系的状态,由该体系的 $pVTn_i$ 状态方程来主导其变化规律。因此给定组成的混合物体系的浓度仍然依赖该体系的状态,不是独立反映体系组成的量,所以在热力学理论叙述中不常采用。但是对于远离临界点的凝聚态,体积随温度、压强的变化一般不大,所以在实验中广泛使用。

若记组份 i 的摩尔质量(molar mass)*为

$$M_{\mathbf{w},i} \stackrel{\text{def}}{=} \frac{n_i}{m_i}$$

则易知 x_i 与 w_i 之间有如下关系

$$w_i = x_i \frac{M_i}{\overline{M_{ii}}}$$

其中

$$\overline{M_{\rm w}} \equiv \frac{\sum_j n_j M_{{\rm w},j}}{\sum_j n_j} = \frac{\sum_j m_j}{\sum_j n_j}$$

是混合物的平均摩尔质量。混合物组成与组分的摩尔质量的关系是利用稀溶液依数性测量分子量的基础。

在上述讨论中,我们并不明确体系所含组份种类的个数。这是考虑到开放体系不仅各组份的量可能会变化,就连组份种类数量也可能会变化。

2.2 偏摩尔量

设一混合物体系的某广度性质 M 是状态函数,不妨记作 $M=M(X,Y,\{n_i\})$,其中 X、Y 表示除组成 $\{n_i\}$ 外,独立、完整确定体系状态的其他强度性质。组份 i 在体系中的偏摩尔性质(partial molar property)定义为 \dagger

$$M_i \stackrel{\text{def}}{=} \left. \frac{\partial M}{\partial n_i} \right|_{X,Y,\{n_{j \neq i}\}}$$

^{*}即平时说的"分子量",但我们考虑的组份的微观最小单元未必是分子。

[†]大部分资料中的偏摩尔量定义规定为 X=T、Y=p 的情况,但这并不是必要的。我们将看到,推广为一般情况并不增加难度,且所有偏摩尔量的规律仍成立。本节的推导过程是跟《物理化学》§4.3 很像的。

仅由该定义和热力学基本关系,可依次推出两个重要知识: 偏摩尔量的加和性和吉布斯-杜亥姆方程。

2.2.1 偏摩尔量的加和性

在本小节我们将证明

$$M = \sum_{i} n_i M_i \tag{2.1}$$

这件事称为偏摩尔量的加和性。

由广度性质的定义可知, $M = \sum_{i} n_{i}$ 成正比。故对每一 $X \setminus Y$ 有

$$M(X, Y, \{\lambda n_i\}) = \lambda M(X, Y, \{n_i\})$$

其中 λ 为任意正实数。该性质又可说成是:混合物体系的广度性质,是体系各组份摩尔数的 1 次齐函数*。由欧拉齐函数定理可直接得到偏摩尔量的加和性结论。

定义混合物体系的摩尔量(molar porperty)为

$$M_{\rm m} \stackrel{\rm def}{=} \frac{M}{n}$$

则式(2.1)又可写成

$$M_{\rm m} = \sum_{i} x_i M_i \tag{2.2}$$

式(2.2)又可以这样推导。由全微分式

$$dM = \frac{\partial M}{\partial X} \Big|_{Y,\{n_i\}} dX + \frac{\partial M}{\partial Y} \Big|_{X,\{n_i\}} dY + \sum_i M_i dn_i$$

和以下系列微分关系式

$$\begin{aligned} \mathrm{d}M &= \mathrm{d}\left(nM_{\mathrm{m}}\right) = n\mathrm{d}M_{\mathrm{m}} + M_{\mathrm{m}}\mathrm{d}n \\ \mathrm{d}n_{i} &= \mathrm{d}\left(x_{i}n\right) = x_{i}\mathrm{d}n_{i} + n\mathrm{d}x_{i} \\ \frac{\partial M}{\partial X}\bigg|_{Y,\{n_{i}\}} &= \frac{\partial\left(nM_{\mathrm{m}}\right)}{\partial X}\bigg|_{Y,\{n_{i}\}} = n\left.\frac{\partial M_{\mathrm{m}}}{\partial X}\right|_{Y,\{x_{i}\}} \\ \frac{\partial M}{\partial Y}\bigg|_{Y,\{n_{i}\}} &= \frac{\partial\left(nM_{\mathrm{m}}\right)}{\partial Y}\bigg|_{X,\{n_{i}\}} = n\left.\frac{\partial M_{\mathrm{m}}}{\partial Y}\right|_{X,\{x_{i}\}} \end{aligned}$$

^{*}见《物理化学》附录 I.8,或者 §4.1.1。

可得

$$\begin{split} n\left(\mathrm{d}M_{\mathrm{m}} - \left.\frac{\partial M_{\mathrm{m}}}{\partial X}\right|_{Y,\{x_i\}} \mathrm{d}X - \left.\frac{\partial M_{\mathrm{m}}}{\partial Y}\right|_{X,\{x_i\}} \mathrm{d}Y - \sum_i M_i \mathrm{d}x_i\right) \\ + \left(M_{\mathrm{m}} - \sum_i x_i M_i\right) \mathrm{d}n = 0 \end{split}$$

上式第一项恰好就是 M 的全微分式,故为零。剩下的含 dn 的一项也只能为零,得到式($\frac{2.2}{2}$)。

2.2.2 吉布斯-杜亥姆方程

由偏摩尔量的加和性,联系M的全微分式

$$dM = d\left(\sum_{i} n_{i} M_{i}\right) = \sum_{i} n_{i} dM_{i} + \sum_{i} M_{i} dn_{i}$$
$$= \frac{\partial M}{\partial X} \Big|_{Y,\{n_{i}\}} dX + \frac{\partial M}{\partial Y} \Big|_{X,\{n_{i}\}} dY + \sum_{i} M_{i} dn_{i}$$

可得到下式

$$\sum_{i} n_{i} dM_{i} = \left. \frac{\partial M}{\partial X} \right|_{Y,\{n_{i}\}} dX + \left. \frac{\partial M}{\partial Y} \right|_{X,\{n_{i}\}} dY \tag{2.3}$$

该式称吉布斯–杜亥姆方程 (Gibbs–Duhem equation)。它在 $X \setminus Y$ 恒定条件下的形式 是

$$\sum_{i} n_i dM_i = 0 \tag{2.4}$$

《物理化学》书上的吉布斯--杜亥姆方程只是 $M = G \setminus X = T \setminus Y = p$ 的特例而已。

2.2.3 不同状态变量下的偏摩尔量之间的关系

对于同一体系,采用不同的两组状态变量——

$$(X, Y, \{n_i\})$$
 和 $(X', Y', \{n_i\})$

下, $M(X,Y,\{n_i\})$ 和 $M(X',Y',\{n_i\})$ 一般是不同表达式的函数,因此在相应条件下定义的偏摩尔量也是不同表达式的函数。若我们小心地将同一体系在状态参数 $(X',Y',\{n_i\})$ 下的同一性质另记为

$$M' \equiv M'(X', Y', \{n_i\})$$

则如下所示 M_i 与 M'_i 是相互联系的。

由于体系的平衡状态是唯一的,使体系处于相同状态的 $(X,Y,\{n_i\})$ 和 $(X',Y',\{n_i\})$ 取值之间是一一对应的。由 M 的全微分式,

$$\mathrm{d}M = \left. \frac{\partial M}{\partial X} \right|_{Y,\{n_i\}} \mathrm{d}X + \left. \frac{\partial M}{\partial Y} \right|_{X,\{n_i\}} \mathrm{d}Y + \sum_i M_i \mathrm{d}n_i$$

两边除以 dn_i ,保持 $X' \setminus Y'$ 恒定,可得

$$M_i' = \left. \frac{\partial M}{\partial X} \right|_{Y,\{n_i\}} \left. \frac{\partial X}{\partial n_i} \right|_{X',Y',\{n_{j \neq i}\}} + \left. \frac{\partial M}{\partial Y} \right|_{X,\{n_i\}} \left. \frac{\partial Y}{\partial n_i} \right|_{X',Y',\{n_{j \neq i}\}} + M_i$$

此即为 M_i' 与 M_i 之间的一般关系式。所用到的两个偏微分——

$$\left. \frac{\partial X}{\partial n_i} \right|_{X',Y',\{n_{i \neq i}\}}, \quad \left. \frac{\partial Y}{\partial n_i} \right|_{X',Y',\{n_{i \neq i}\}}$$

是由混合物体系的状态方程可知的。例如,我们要考虑 $(T, p, \{n_i\})$ 和 $(T, V\{n_i\})$ 下定义的偏摩尔量之间的关系,那就是

$$\begin{split} & \left. \frac{\partial M}{\partial n_i} \right|_{T,V,\{n_{j \neq i}\}} = \left. \frac{\partial M}{\partial p} \right|_{T,\{n_i\}} \left. \frac{\partial p}{\partial n_i} \right|_{T,V,\{n_{j \neq i}\}} + \left. \frac{\partial M}{\partial n_i} \right|_{T,p,\{n_{j \neq i}\}} \\ & \left. \frac{\partial M}{\partial n_i} \right|_{T,p,\{n_{j \neq i}\}} = \left. \frac{\partial M}{\partial V} \right|_{T,\{n_i\}} \left. \frac{\partial V}{\partial n_i} \right|_{T,p,\{n_{j \neq i}\}} + \left. \frac{\partial M}{\partial n_i} \right|_{T,V,\{n_{j \neq i}\}} \end{split}$$

可见,要作两种偏摩尔性质之间的转换计算需已知混合物的状态方程,以便求得以下两个偏导数

$$\left. \frac{\partial p}{\partial n_i} \right|_{T,V,\{n_{j \neq i}\}}, \quad \left. \frac{\partial V}{\partial n_i} \right|_{T,p,\{n_{j \neq i}\}}$$

这两个偏导数在第一章已经介绍过了,都属于可测量。

2.2.4 偏摩尔量的测定

实验上,我们往往只能测量一个多组份体系的摩尔量 $M_{\rm m}=M_{\rm m}\left(X,Y,\{n_i\}\right)$ 随某组份 i 在恒定 X、Y 下的变化。以下推算,使得我们能够通过 $M_{\rm m}$ 对 x_i 的曲线得出 M_i 。

在恒定 $X \setminus Y$ 下, $M = nM_{\rm m}$, 对其进行微分有

$$d\left(nM_{\rm m}\right) = ndM_{\rm m} + M_{\rm m}dn$$

对 $n = \sum_{i} n_{i}$ 进行微分有

$$\mathrm{d}n = \sum_{i} \mathrm{d}n_{i}$$

上列两式联立起来有

$$n dM_{\rm m} + M_{\rm m} \sum_{i} dn_{i} = \sum_{i} M_{i} dn_{i}$$

利用该式求关于 n_i 的偏导(即保持 $\{n_{i\neq i}\}$ 恒定),得到

$$\begin{split} n \left. \frac{\partial M_{\mathrm{m}}}{\partial n_{i}} \right|_{X,Y,\{n_{j \neq i}\}} + M_{\mathrm{m}} &= M_{i} + \sum_{j \neq i} M_{j} \left. \frac{\partial n_{j}}{n_{i}} \right|_{n_{j \neq i}} \\ \Leftrightarrow & (1 - x_{i}) \left. \frac{\partial M_{\mathrm{m}}}{\partial x_{i}} \right|_{X,Y,\{n_{j \neq i}\}} + M_{\mathrm{m}} &= M_{i} \end{split}$$

利用这一结论,偏摩尔量 M_i 就能由摩尔量 M_m 对 x_i 的曲线数据,如图2.1所示般得出。

图 2.1: 从摩尔量曲线求偏摩尔量的"截距法"。

《物理化学》§4.3 中的"偏摩尔量的求法"之"3. 截距法"介绍了上述方法对于双组份混合物的特例。

2.3 理想气体混合物

在 §1.2中我们已经介绍了混合物体系的基本热力学关系。我们清楚,仅仅知道各组份纯物质的热力学性质,是无法直接得到它们的混合物体系的热力学性质的。以任一热力学状态函数 (广度性质) M 为例,已知所有组份 i 纯物质的 M_i^* $(T,p)^*$,我们朴素地

^{*}上标"*"号表示纯物质。

希望,混合物的相应性质 $M\left(T,p,\left\{n_{i}\right\}\right)$ 在任一组成 $\left\{n_{i}\right\}$ 下就是以下简单加和

$$M\left(T,p,\left\{ n_{i}\right\} \right)=\sum_{i}n_{i}M_{i}^{\ast}\left(T,p\right)$$

但实际体系往往并不如此。普适成立的加和性只有偏摩尔量的加和性(式(2.1)或(2.2))。 我们知道*,理想气体除了满足

- 1. 玻意耳定律: pV = 温度的函数;
- 2. 焦耳定律:内能是温度的函数[†];
- 3. 阿伏伽德罗定律: 同温同压下,一摩尔各种气体的体积相等:

这三条之外,还满足道尔顿分压定律。而后者说的就是多组份气体混合物压强的加和性:混合气体的压强等于各组份气体同温同体积下的压强之和,写成式子就是

$$p\left(T,V\right) = \sum_{i} p_{i}^{*}\left(T,V\right)$$

其中 $p_i^*(T,V)$ 是组份 i 纯物质的压强。如果这些组份的纯物质气态都是理想气体,则有 $p_i^*(T,V) = n_i RT/V$,由道尔顿分压定律可得 $p = \sum_i n_i RT/V = nRT/V$,即此时混合后的体系将仍是一个理想气体。上式与本小节开头设想的简单情况很类似,那么这是否给出了理想气体混合物的完整热力学性质呢?

考虑如图2.2所示的实验。整个体系与环境保持温度为 T。达到平衡时,左侧硬壁缸内的混合气体压强为 p,右侧为一系列品质相同的气球,经过半透膜的分隔,它们各只含有纯气体 i,气球膨胀的大小可反映气球内的压强大小 p_i^* (示意图中显得一样大了)。 p_i^* 各是多少一般将取决于左侧混合气体的组成 $\{x_i\}$ 。

仅靠道尔顿分压定律和基本热力学关系,是无法给出右侧各气球的压强 p_i^* 应是多少的。还需要规定,理想气体混合物在这样的实验中:给定温度 T 的平衡态下,任一能通过半透膜的组份 i,在膜两边的分压相等。写成式子就是:

$$p_i^*(T) = x_i p(T)$$
, 理想气体混合物 (2.5)

由于膜右室是单组份理想气体,由 $\mu_i^* = \mu_i^* (T,p)$ 以及恒温过程 $\mathrm{d}T = 0$,

$$d\mu_i^* = \frac{\partial \mu_i^*}{\partial p} \Big|_T dp$$

$$= V_i^* (T, p) dp$$

$$= \frac{RT}{p} dp = RT d \ln p$$

更新至 2024-08-20

^{*}见《物理化学》§1.1 之"气体分子运动公式对几个经验定律的说明"。

[†]亦可见《物理化学》§2.8 式 (2.18)。

图 2.2: 确定气体混合物行为的实验示意图。整个体系与环境保持温度为 T。达到平衡时左侧硬壁缸内的混合气体压强为 p,右侧为一系列同品质的气球,经半透膜,它们只含有纯气体 i,气球膨胀的大小可反映气球内的压强大小 p_i^* (示意图中显得一样大了)。 p_i^* 各是多少一般将取决于左侧混合气体的组成 $x_1, x_2, \cdots, x_i, \cdots$,但具体取决方式依赖气体混合物的状态方程。理想气体混合物满足 $p_i^* = x_i p$ 。

因此由相平衡条件 $\mu_i = \mu_i^*$ 和理想气体混合物的规定(式(2.5)),

$$d\mu_i = d\mu_i^* = RTd\ln p_i^* = RTd\ln (x_i p)$$

以上对所有组份 i 均成立。可见,体系这一特定实验中的性质规定,其实是规定了理想气体混合物的偏摩尔吉布斯自由能的表达形式。反过来说,只有当一个气体混合物体系是理想的时候,我们才能定量地预测它在实验中的行为(特别是图2.2的代表性实验)。因此,我们为理想气体混合物写下如下定义性质的化学势表达式:恒定 T 下,理想气体混合物的任意组成 i 的化学势均满足

$$\mathrm{d}\mu_i^{\mathrm{ig}}(T, p, \{n_i\}) = RT \mathrm{d}\ln(x_i p) \tag{2.6}$$

其中上标"ig"表示理想气体。

我们分析一下这个式子蕴含的意义。作为一个状态函数,组份 i 在理想气体混合物中的化学势 $\mu_i^{\rm ig}$ 自然应是状态参量 $(T,p,\{n_i\})$ 的函数。它在恒定 $T({\rm d}T=0)$ 下的微分式理应形如

$$d\mu_i^{ig}(T, p, \{n_j\}) = \left. \frac{\partial \mu_i^{ig}}{\partial p} \right|_{T, \{n_j\}} dp + \sum_j \left. \frac{\partial \mu_i^{ig}}{\partial n_j} \right|_{T, p, \{n_k \neq i\}} dn_j$$

而式(2.6)等号右边的微分式 $d \ln (x_i p)$ 可推算至以下形式

$$d\ln(x_i p) = d\ln p + d\ln n_i$$

其中用到了 $x_i = n_i / \sum_i n_j$ 以及体系总摩尔数恒定(封闭系统) $\mathrm{d} n = \sum_i \mathrm{d} n_i = 0$ 。故有

$$\begin{split} \left. \frac{\partial \mu_i^{\text{ig}}}{\partial p} \right|_{T,\{n_j\}} &= V_i^{\text{ig}} = RT \mathrm{d} \ln p \\ \left. \frac{\partial \mu_i^{\text{ig}}}{\partial n_j} \right|_{T,p,\{n_{k \neq j}\}} &= \left\{ \begin{array}{ll} 0, & j \neq i \\ RT \mathrm{d} \ln n_i, & j = i \end{array} \right. \end{split}$$

理想气体混合物化学势定义式(2.6)是以微分关系的形式给出的。我们之所以不直接用明显的表达式来定义这个模型体系,是因为热力学函数的绝对值是不可知的,只有其变化量是可知的。用微分表达式来规定规律性,可供我们随时通过式(1.5)来进行任意状态之间的热力学函数变化量,故有最好的一般性和灵活性。所以我们要习惯用微分关系来定义模型体系的方式。例如,我们可任选某压强 p° 作为参考压强,则理想气体混合物等温等组分压它们过程的化学势变化就是

$$\mu_{i}^{ig}(T, p, \{n_{j}\}) - \mu_{i}^{ig}(T, p^{\circ}, \{n_{j}\}) = \int_{p^{\circ}}^{p} d\mu_{i}^{ig}(T, p', \{n_{j}\})$$

$$= RT \int_{p^{\circ}}^{p} d\ln(x_{i}p')$$

$$= RT \ln\left(\frac{x_{i}p}{p^{\circ}}\right)$$
(2.7)

《物理化学》书上的理想气体混合物化学势的定义式只是具体选择 $p^\circ = p^\circ$ 作为惯例而已。

总结理想气体混合物一共要遵守的定律就是:

- 1. 玻意耳定律: pV = 温度的函数;
- 2. 焦耳定律:内能是温度的函数*:
- 3. 阿伏伽德罗定律: 同温同压下, 一摩尔各种气体的体积相等:
- 4. 道尔顿分压定律:混合气体的压强等于各组份气体同温同体积下的压强之和。
- 5. 给定温度 T 的平衡态下,任一能通过半透膜的组份 i,在膜两边的分压相等。 式(2.6)足以给出理想气体混合物的完整热力学性质,以下列出部分。由式(1.24)和

更新至 2024-08-20

^{*}亦可见《物理化学》§2.8 式 (2.18)。

式(1.23)有,

$$S_i^{\text{ig}} = -\left. \frac{\partial \mu_i^{\text{ig}} (T, p, \{n_j\})}{\partial T} \right|_{p, \{n_j\}} = S_0 - R \left[\ln x_i + \ln \left(\frac{p}{p^\circ} \right) \right]$$
 (2.8)

$$V_i^{\text{ig}} = \left. \frac{\partial \mu_i^{\text{ig}} \left(T, p, \{ n_j \} \right)}{\partial p} \right|_{T, \{ n_j \}} = \frac{RT}{p}$$

$$(2.9)$$

其中 $S_0 \equiv -\left(\partial \mu_i^{\text{ig}}\left(T,p^\circ,\{n_j\}\right)/\partial T\right)_{\{n_i\}}$ 。恒压恒组成下,又由式(1.11)和式(1.23)有

$$\left. \frac{\partial S^{\text{ig}}}{\partial T} \right|_{p,\{n_i\}} = \frac{C_p}{T} \tag{2.10}$$

$$\left. \frac{\partial S^{\text{ig}}}{\partial p} \right|_{T,\{n_i\}} = -\frac{nR}{p} \tag{2.11}$$

故理想气体混合物的熵的完整全微分式是

$$dS^{ig} = \frac{C_p}{T}dT - \frac{nR}{p}dp + \sum_i \left[S_0 - R \ln x_i - R \ln \left(p/p^{\circ}\right)\right] dn_i$$

恒定 $T \setminus p$ 下,由偏摩尔量加和性,

$$S^{\text{ig}}(T, p, \{n_i\}) = \sum_{i} n_i \left[S_0 - R \ln x_i - R \ln (p/p^{\circ}) \right]$$

故同条件下的混合熵变(即把 n_1, n_2, \cdots 纯物质混合为组成是 $\{n_i\}$ 的气体混合物的熵变)

$$\Delta_{\text{mix}} S^{\text{ig}} = S^{\text{ig}} (T, p, \{n_i\}) - \sum_{i} n_i S^{*, \text{ig}} (T, p)$$

$$= \sum_{i} n_i [S_0 - R \ln x_i - R \ln (p/p^{\circ})] - \sum_{i} n_i [S_0 - R \ln (p/p^{\circ})]$$

$$= -R \sum_{i} n_i \ln x_i$$

其中利用到纯物质 $S_i^{*,ig} = S_i^{ig} (T, p, x_i = 1)$ 。

然后我们推导一下混合吉布斯自由能变。利用偏摩尔量的加和性,

$$\begin{split} \Delta_{\text{mix}} G^{\text{ig}} &= G^{\text{ig}}\left(T, p, \left\{n_{i}\right\}\right) - G^{*, \text{ig}}\left(T, p\right) \\ &= \sum_{i} n_{i} \left(\mu_{i}^{\text{ig}}\left(T, p, \left\{n_{j}\right\}\right) - \mu_{i}^{*, \text{ig}}\left(T, p\right)\right) \end{split}$$

而由式(2.6),

$$\mu_i^{\text{ig}}(T, p, \{n_j\}) - \mu_i^{*, \text{ig}}(T, p) = RT \int_1^{x_i} d\ln(x_i'p) = RT \ln x_i$$

31

故有

$$\Delta_{\min} G^{ig} = RT \sum_{i} n_i \ln x_i = -T \Delta_{\min} S^{ig} \Rightarrow \Delta_{\min} H^{ig} = 0$$

其中后面的等号和结论是与混合熵变的表达式比较而得。这些都是理想气体混合物的 重要的热力学特征。

2.4 真实混合物

对于单相真实混合物体系,无论物态是气、液还是固态,我们都可以引入两种衍生于 $pVTn_i$ 状态方程的量: 压缩因子(compressibility factor) Z 和逸度(fugacity) f 来描述。

2.4.1 混合物的压缩因子

压缩因子的定义是

$$Z \stackrel{\text{def}}{=} \frac{pV_{\text{m}}}{RT} = Z\left(X, Y, \{n_i\}\right)$$

其中 X,Y 是 T、p、V_m 中的任意两个参量。我们常常取 (T,p) 或 (T,ρ) ,其中 $\rho \equiv V_{\rm m}^{-1}$ 。对于纯物质,写成关于 p 或 ρ 的函数时,对应不同形式的位力展开式:

$$Z(T,p) = 1 + B_1 p + B_2 p^2 + \cdots$$

 $Z(T,\rho) = 1 + b_1 \rho + b_2 \rho^2 + \cdots$

这些位力展开式都保证了以下一致收敛性质

$$\lim_{p \to 0} Z\left(T, p\right) = 1, \quad \lim_{p \to 0} Z\left(T, \rho\right) = 1$$

即真实体系在压强极小时近似于理想气体*。

对于混合物, $Z = Z(X, Y, \{n_i\})$ 。由 Z 的定义,nZ 才是广度性质,故相对应的偏摩尔量应从 nZ 定义:

$$Z_{i} \stackrel{\text{def}}{=} \left. \frac{\partial \left(nZ \right)}{\partial n_{i}} \right|_{X,Y,\left\{ n_{i \neq i} \right\}}$$

例如,若 X=T,Y=p,则 $Z_i=pV_i/(RT)$ 。由偏摩尔量的加和性质,同温同压下

$$nZ\left(T,p,\left\{ n_{i}\right\} \right)=\sum_{i}n_{i}Z_{i}\left(T,p,\left\{ n_{i}\right\} \right),\quad \ \ \, \mathbb{P}Z=\sum_{i}x_{i}Z_{i}$$

更新至 2024-08-20

^{*}虽然这里讨论的真实体系未限定物态,但默认了任何体系在压强足够小时总是变成气态。

混合物压缩因子也必须有以下一致收敛行为:

$$\lim_{p \to 0} Z\left(T, p, \{n_i\}\right) = 1$$

虽然,原则上一个状态方程可用于描述一个体系的三种物态(例如范德华气体状态方程可描述气液转变),但由于相变潜热效应很大,因此实践上同一体系在不同物态的条件范围内将采用仅适用于该物态的状态方程。而采用压缩因子表示的状态方程,更常用于描述气态体系。可以提前说的是,逸度和逸度因子也不方便用于液态混合物,原因将在把逸度的具体知识介绍完之后明确。

2.4.2 逸度和逸度因子

引入

我们可以令真实混合物的化学势取形如理想气体混合物的化学势的简单形式。定义组份 i 在混合物中的逸度 f_i ,以替代式(2.6)中的 x_ip ,使得恒定 T 下

$$d\mu_i = RT d \ln f_i \tag{2.12}$$

此处 $f_i = f_i(T, p, \{n_j\})$ 。对于理想气体混合物,自然有 $f_i^{ig} \equiv x_i p$ 。但我们也由经验知道,真实混合物在压强极低时近似理想气体混合物,故在定义逸度时还要求以下一致收敛性质:

$$\lim_{p \to 0} \frac{f_i\left(T, p, \{n_i\}\right)}{x_i p} = 1$$

定义式(2.12)在纯物质 $(x_i = 1)$ 时的形式就是(恒定 T 下)

$$\mathrm{d}\mu_i^* = RT\mathrm{d}\ln f_i^* \tag{2.13}$$

其中 $f_i^* = f_i^* (T, p)$ 是组份 i 纯物质的逸度。

我们也可以为混合物体系定义其逸度 f,它要满足:

$$dG_{\rm m} = RT d \ln f \tag{2.14}$$

其中 $f = f(T, p, \{n_i\})$,而且还满足以下一致收敛性质:

$$\lim_{p \to 0} \frac{f\left(T, p, \{n_i\}\right)}{p} = 1$$

原则上,一个真实混合物体系,用逸度或用压缩因子描述都是等价的,所以逸度与压缩因子之间是有联系的。以下以单组份纯物质的情况为例推算这二者的关系。对

于单组份纯物质 i,定温 (dT = 0) 下其逸度 f_i^* 与其压缩因子 Z_i^* 和 (偏) 摩尔体积 $V_i^* \equiv V_m^*$ 之间的关系是:

$$d\mu_i^* = V_i^* dp = RTZ_i^* d \ln p = RT d \ln f_i^*$$

其中用到了式(1.25)和(2.13)。类似地,对混合物体系,定温下我们有

$$V_i dp = RTZ_i d \ln p = RT d \ln f_i$$

 $V_m dp = RTZ d \ln p = RT d \ln f$

以下引入逸度因子。留意到,恒定T 和组成时

$$d \ln \frac{f}{p} = d \ln f - d \ln p = (Z - 1) d \ln p$$

则等号两边同求以下广义积分有

$$\int_{0}^{p} d \ln \frac{f(T, p', \{n_{i}\})}{p'} = \int_{0}^{p} \left[Z(T, p', \{n_{i}\}) - 1 \right] d \ln p'$$

$$\Leftrightarrow \ln \frac{f(T, p, \{n_{i}\})}{p} - \lim_{p' \to 0} \ln \frac{f(T, p', \{n_{i}\})}{p'} = \int_{0}^{p} \left[Z(T, p', \{n_{i}\}) - 1 \right] d \ln p'$$

$$\Leftrightarrow \ln \frac{f}{p} = \int_{0}^{p} (Z - 1) d \ln p'$$

整个推导是在恒温恒组成条件下的,在推导过程中强调了完整的状态参数。最后得到的 关系,对于 Z_i^* 与 f_i^* 、 Z_i 与 f_i 都以类似形式成立。

 $f/p \cdot f_i^*/p \cdot f_i/(x_i p)$ 都将定义为相应讨论对象的逸度因子。组份 i 在混合物中的逸度因子(fugacity factor) φ_i 定义为

$$\varphi_i \stackrel{\text{def}}{=} \frac{f_i}{x_i p} = \varphi_i \left(T, p, \{ n_i \} \right) \tag{2.15}$$

由 f_i 的一致收敛规定有 $\lim_{p\to 0} \varphi_i = 1$ 。纯物质 i 的逸度因子 φ_i^* 、混合物的(平均)逸度因子 φ 可类似地得到定义。上面推导的逸度与压缩因子的关系式,用逸度因子表示将更简洁:

$$\ln \varphi = \int_0^p (Z - 1) \, \mathrm{d} \ln p'$$

$$\ln \varphi_i = \int_0^p (Z_i - 1) \, \mathrm{d} \ln p'$$

$$\ln \varphi_i^* = \int_0^p (Z_i^* - 1) \, \mathrm{d} \ln p'$$

^{*}纯物质的偏摩尔体积等于其摩尔体积。

值得注意的是,与逸度相关的偏摩尔量对应关系是

$$\left. \frac{\partial}{\partial n_i} \left(n \ln f \right) \right|_{T, p, \{n_{i \neq i}\}} = \ln \frac{f_i \left(T, p, \{n_j\} \right)}{x_i}$$

证明过程如下---

按照式(1.5)的精神,同温同组成下有

$$G(T, p, \{n_i\}) - G(T, p', \{n_i\}) = nG_{\rm m}(p) - nG_{\rm m}(p')$$

$$= n \int_{p'}^{p} dG_{\rm m}(T, p'', \{n_i\})$$

$$= RT [n \ln f(p) - n \ln f(p')]$$

等号两边同求偏摩尔量——

$$\begin{split} \frac{\partial}{\partial n_i} lhs \bigg|_{T,p,\{n_{j\neq i}\}} &= \mu_i \left(T,p,\{n_j\}\right) - \mu_i \left(T,p',\{n_j\}\right) \\ &= \left. \frac{\partial}{\partial n_i} rhs \right|_{T,p,\{n_{j\neq i}\}} \\ &= RT \left. \frac{\partial}{\partial n_i} \left[n \ln f \left(T,p,\{n_j\}\right) - n \ln f \left(T,p',\{n_j\}\right) \right] \right|_{T,p,\{n_{j\neq i}\}} \end{split}$$

又由 f_i 的定义,

$$\mu_{i}(T, p, \{n_{j}\}) - \mu_{i}(T, p', \{n_{j}\}) = \int_{p'}^{p} d\mu_{i}(T, p'', \{n_{j}\})$$

$$= RT \int_{p'}^{p} d\ln f_{i}(T, p'', \{n_{j}\})$$

$$= RT d\ln \frac{f_{i}(T, p, \{n_{j}\})}{f_{i}(T, p', \{n_{j}\})}$$

比较两个结果可得

$$\begin{split} &\left. \frac{\partial}{\partial n_{i}} \left[n \ln f \left(T, p, \{ n_{j} \} \right) \right] \right|_{T, p, \{ n_{j} \neq i \}} - \left. \frac{\partial}{\partial n_{i}} \left[n \ln f \left(T, p', \{ n_{j} \} \right) \right] \right|_{T, p, \{ n_{j} \neq i \}} \\ = & \ln f_{i} \left(T, p, \{ n_{j} \} \right) - \ln f_{i} \left(T, p', \{ n_{j} \} \right) \end{split}$$

两边求 $p' \to 0$ 的极限,由各逸度的一致收敛规定,可得到

$$\frac{\partial}{\partial n_i} \left[n \ln f \left(T, p, \{ n_j \} \right) \right] \bigg|_{T, p, \{ n_{j \neq i} \}} - \ln p' = \ln f_i \left(T, p, \{ n_j \} \right) - \ln \left(x_i p' \right)$$

$$\Leftrightarrow \ln f_i / x_i = \left. \frac{\partial}{\partial n_i} \left(n \ln f \right) \right|_{T, p, \{ n_{j \neq i} \}}$$

证毕。

由偏摩尔量的加和性,定温定压下有

$$n \ln f = \sum_{i} n_i \ln f_i / x_i$$
 $\vec{x} \ln f = \sum_{i} x_i \ln f_i / x_i$

逸度因子也相应地有如下偏摩尔量对应关系

$$\ln \varphi = \sum_{i} x_i \ln \varphi_i$$

理想混合物

微分形式的定义是不便直接使用的。我们总要选择一个参考状态,然后应用式(1.5)来写下一个状态函数的显示表达式。这里我们选用同温同压下组份 i 纯物质作为参考状态来表出其在混合物中的化学势。假定组份 i 纯物质的逸度 $f_i^*(T,p)$ 已测定,设想一个恒温恒压下,保持总摩尔数恒定,由纯物质 i 到摩尔分数为 x_i 的混合物的可逆过程(请回顾 §2.1关于这个问题的说明),则该过程发生前后组份 i 的化学势变化为

$$\mu_{i}(T, p, \{n_{j}\}) - \mu_{i}^{*}(T, p) = \int_{1}^{x_{i}} d\mu_{i}(T, p, x_{i}')$$

$$= \int_{1}^{x_{i}} RT d \ln f_{i}(T, p, x_{i}')$$

$$= RT \ln \frac{f_{i}(T, p, \{n_{j}\})}{f^{*}(T, p)}$$

其中基于式(2.12)利用了式(1.5)。上式可直接写成

$$\mu_{i}\left(T,p,\left\{ n_{j}\right\} \right)=\mu_{i}^{*}\left(T,p\right)+RT\ln\frac{f_{i}\left(T,p,\left\{ n_{j}\right\} \right)}{f_{i}^{*}\left(T,p\right)}$$

这是选纯物质为参考态时,组份 i 在混合物中的化学势的表达式。这个式子中的各状态函数都使用相同的 T 和 p,也就是说,这个式子是在每一组给定的 (T,p) 下成立的式子。若取 $p \to 0$ 极限,利用逸度定义中规定的一致收敛行为,有

$$\lim_{p \to 0} \left[\mu_i \left(T, p, \{ n_i \} \right) - \mu_i^* \left(T, p \right) \right] = RT \lim_{p \to 0} \left[\ln \frac{f_i \left(p \right)}{x_i p} - \ln \frac{f_i^* \left(p \right)}{p} + \ln x_i \right] = RT \ln x_i$$

其中为了简洁,不求极限的状态参量没有明显写出。故在 p 足够小时,真实混合物的化学势可近似为

$$\mu_i\left(T, p, \{n_j\}\right) \approx \mu_i^*\left(T, p\right) + RT \ln x_i$$

上式是我们定义理想混合物的起点。我们正式地把理想混合物(ideal mixture)定义为上式精确取等号的模型体系,即理想混合物的每一组份的化学势都满足:

$$\mu_i^{\text{id}}(T, p, \{n_i\}) = \mu_i^*(T, p) + RT \ln x_i \tag{2.16}$$

更新至 2024-08-20

其中上标"id"表示理想混合物。注意到,理想气体混合物就是理想混合物。由理想气体混合物的定义式(2.6)应用式(1.5)作类似的定积分有

$$\mu_i^{ig}(T, p, x_i) - \mu_i^{*,ig}(T, p) = RT \ln x_i$$

与式(2.16)是相同的。

如果用逸度因子来表示混合物的化学势,由

$$\begin{split} \mu_{i}\left(T,p,\left\{n_{j}\right\}\right) &= \mu_{i}^{*}\left(T,p\right) + RT\ln\frac{f_{i}\left(T,p,\left\{n_{j}\right\}\right)}{f_{i}^{*}\left(T,p\right)} \\ &= \mu_{i}^{*}\left(T,p\right) + RT\ln\frac{x_{i}p\varphi_{i}\left(T,p,\left\{n_{j}\right\}\right)}{p\varphi_{i}^{*}\left(T,p\right)} \\ &= \mu_{i}^{*}\left(T,p\right) + RT\ln\frac{x_{i}\varphi_{i}\left(T,p,\left\{n_{j}\right\}\right)}{\varphi_{i}^{*}\left(T,p\right)} \\ &= \mu_{i}^{\mathrm{id}}\left(T,p,\left\{n_{j}\right\}\right) + RT\ln\frac{\varphi_{i}\left(T,p,\left\{n_{j}\right\}\right)}{\varphi_{i}^{*}\left(T,p\right)} \end{split}$$

这就是选纯物质为参考状态时,组份 i 在真实混合物中的化学势的逸度因子表达式。

2.4.3 活度和活度因子

在逸度、逸度因子与压缩因子的关系式中涉及到的关于压强 p 的广义积分,物理上相当于从零压强极限连续等温等组成压缩到压强为 p 的过程。如果在当前温度 T 和压强 p 下,混合物体系处于液态,那么这个过程中就发生了气液转变;相比相变潜热造成的热力学性质变化,由组成变化造成的热力学性质变化将小到可以忽略,这不利于以后者为目的的研究。

为了避免相变潜热主导,我们就希望所选定的参考状态与需要描述的当前状态体系保持物态相同,在这两个状态间的路径中不要发生相变。具体地,同温下,如果参考状态的压强和组成分别记作 p° 和 $\{n_i^\circ\}$,则相当于希望体系在 $(T,p^\circ,\{n_i^\circ\})$ 下与 $(T,p,\{n_i\})$ 下是处于相同的物态的(例如都处于液态),从而由 $(T,p^\circ,\{n_i^\circ\})$ 到 $(T,p,\{n_i\})$ 的过程没有发生相变。此时组份 i 在混合物中的化学势表达式为

$$\mu_i(T, p, \{n_j\}) = \mu_i(T, p^{\circ}, \{n_j^{\circ}\}) + RT \ln \frac{f_i(T, p, \{n_j\})}{f_i(T, p^{\circ}, \{n_j^{\circ}\})}$$
(2.17)

- 一般地,我们称如此选定的参考状态是组份 i 的混合物标准态 (mixture standard state for component i)。理论上,我们可以为混合物的不同组份定义不同的混合物标准态,但混合物标准态的选择大致遵循如下几点考虑:
 - 标准态的温度与所讨论的混合物温度一致,因此标准态随所讨论的混合物的温度 变化:

- 为组份 i 定义的混合物标准态的组成 $\{n_i^o\}$ 最好是一个固定值,即它不随问题中混合物的组成变化而变化。这个标准态组成的选择方式既可以对所有组份统一,又可以对各组份有不同的定义。一个常见的选择就是令组分 i 的混合物标准态组成为 $\{n_i^o\} = \{n_i, n_{i \neq i} = 0\}$ 或 $x_i = 1$,即组份 i 的纯物质态;
- 标准态的压强,既可以定为某固定值,也可以与实际问题中的混合物压强一致,从 而标准态随所讨论的压强而变化。还可以选择组份 *i* 的蒸气压,而随所讨论的混 合物温度而变化。

在选定了组分 i 的混合物标准态的压强 p° 和组成 $\{n_i^\circ\}$ 之后,可定义组份 i 在混合物中的活度(activity)

$$a_{i}\left(T, p, \left\{n_{j}\right\}\right) \stackrel{\text{def}}{=} \frac{f_{i}\left(T, p, \left\{n_{j}\right\}\right)}{f_{i}\left(T, p^{\circ}, \left\{n_{j}^{\circ}\right\}\right)}$$

和活度系数(activity coefficient)

$$\gamma_i\left(T, p, \{n_j\}\right) \stackrel{\text{def}}{=} \frac{a_i\left(T, p, \{n_j\}\right)}{x_i}$$

以下介绍两种常用于液态混合物的混合物标准态选择惯例。

拉乌尔定律标准态

如果组份 i 纯物质在问题所关心的温度和压强范围内的物态与混合物相同,则可直接定义

$$p^{R} = p, \quad x_i^{R} = 1$$

即选择同温同压下组份i的纯物质态作为组份i的混合物标准态。此时,定温定压下

$$a_i^{R}(T, p, \{n_j\}) = \frac{f_i(T, p, \{n_j\})}{f_i^*(T, p)}$$
$$\gamma_i^{R}(T, p, \{n_j\}) = \frac{f_i(T, p, \{n_j\})}{x_i f_i^*(T, p)}$$

式(2.17)就变成

$$\mu_{i}(T, p, \{n_{j}\}) = \mu_{i}^{*}(T, p) + RT \ln a_{i}^{R}(T, p, \{n_{j}\})$$
$$= \mu_{i}^{id}(T, p, \{n_{j}\}) + RT \ln \gamma_{i}^{R}(T, p, \{n_{j}\})$$

亨利定律标准态

如果组份 i 在混合物中的溶解度有限,无法从 $x_i=1$ 连续地变至所关心的组成 x_i ; 或者组份 i 纯物质在所关心的温压下的物态与混合物不同,我们就不方便选用拉乌尔

更新至 2024-08-20

定律标准态。此时可考虑选组份 i 无限稀 $(x_i \to 0)$ 的极限状态为标准态,具体定

$$p^{\mathrm{H}} = p, \quad f_i^{\mathrm{H}} \equiv \lim_{x_i \to 0} \frac{f_i\left(T, p, \{n_i\}\right)}{x_i}$$

其中 $f_i^{\mathrm{H}} = f_i^{\circ} (T, p, \{n_i\})$ 是亨利定律标准态逸度。则定温定压下

$$a_{i}^{\mathrm{H}}\left(T, p, \{n_{j}\}\right) = \frac{f_{i}\left(T, p, \{n_{j}\}\right)}{f_{i}^{\circ}\left(T, p, \{n_{j}\}\right)}$$

$$\gamma_{i}^{\mathrm{H}}\left(T, p, \{n_{j}\}\right) = \frac{f_{i}\left(T, p, \{n_{j}\}\right)}{x_{i}f_{i}^{\circ}\left(T, p, \{n_{j}\}\right)}$$

式(2.17)就变成

$$\mu_{i}\left(T,p,\left\{ n_{j}\right\} \right)=\mu_{i}^{\mathrm{H}}\left(T,p,\left\{ n_{j}\right\} \right)+RT\ln a_{i}^{\mathrm{H}}\left(T,p,\left\{ n_{j}\right\} \right)$$

其中

$$\mu_i^{\mathrm{H}}(T, p, \{n_j\}) = \lim_{x_i \to 0} \mu_i(T, p, \{n_j\})$$

是组份 i 在亨利定律标准态下的化学势。

这两种标准态选择的活度和活度因子之间有转换关系。注意到定温定压下

$$\begin{split} \gamma_{i}^{\mathrm{R}}\left(T,p,\left\{n_{j}\right\}\right) &= \frac{\varphi_{i}\left(T,p,\left\{n_{j}\right\}\right)}{\varphi_{i}^{*}\left(T,p\right)} \\ \lim_{x_{i}\rightarrow0} \frac{f_{i}\left(T,p,\left\{n_{j}\right\}\right)}{x_{i}} &= p\lim_{x_{i}\rightarrow0}\varphi_{i}\left(T,p,\left\{n_{j}\right\}\right) \equiv p\varphi_{i}^{\infty}\left(T,p,\left\{n_{j}\right\}\right), \quad \gamma_{i}^{\mathrm{H}} &= \frac{\varphi_{i}\left(T,p,\left\{n_{j}\right\}\right)}{\varphi_{i}^{\infty}\left\{n_{j}\right\}} \\ \gamma_{i}^{\mathrm{H}} &= \frac{\varphi_{i}^{\infty}\left(T,p,\left\{n_{j}\right\}\right)}{\varphi_{i}^{*}\left(T,p\right)} \gamma_{i}^{\mathrm{R}} \end{split}$$

其中 φ_i 的两个极限—— φ_i^* 和 φ_i^∞ ——可通过 φ_i 与 Z_i 的关系式,转变为求 Z_i 的相应 极限得到。由这一转换关系,组份 i 在混合物中的化学势又可表示成

$$\mu_{i}\left(T, p, \{n_{j}\}\right) = \mu_{i}^{\text{id}}\left(T, p, \{n_{j}\}\right) + RT \ln \frac{\varphi_{i}^{*}\left(T, p\right)}{\varphi_{i}^{\infty}\left(T, p, \{n_{j}\}\right)} \gamma_{i}^{\text{H}}\left(T, p, \{n_{j}\}\right)$$

《物理化学》中关于非理想稀溶液活度的内容是双组份混合物的特例。对于双组份混合物,视关心的组份 B 为"溶质",则另一组份 A 为"溶剂", x_B 可以连续地趋于 0,此极限无非是作为"溶剂"的组份 A 的纯物质状态($x_A = 1$)。

我们注意到,本讲义中理想混合物的定义不依赖拉乌尔定律。上述两种标准态的规定,虽然分别称作"拉乌尔定律标准态"和"亨利定律标准态",但是也没有直接利用相关的定律来定义。这些做法与《物理化学》课本不同。在下一节,我们将利用本节介绍的真实混合物描述方式,来得出理想混合物中的组份 i 在 $x_i=1$ 时满足拉乌尔定律,以及在 $x_i \to 0$ 时满足亨利定律的结论。

2.5 气液共存

第二部分 高分子热力学

第三部分 高分子平衡态统计力学

第三章 链统计

更新至 2024-08-20

第四部分 高分子动力学和流变学

第五部分 附录

第四章 数学

4.1 多元函数微积分

4.1.1 欧拉齐次函数定理的证明

定义 1. 设 k 是整数, \mathcal{V} 、 \mathcal{W} 是同数域 \mathbb{F} 上的向量空间,C 是 \mathcal{V} 的一个满足 $\forall \mathbf{r} \in C, s \in \mathbb{F} \setminus 0 \land s\mathbf{r} \in C$ 的凸锥。若函数 $f: \mathcal{V} \to \mathcal{W}$ 有一个以 C 为定义域的偏函数满足

$$\forall \mathbf{r} \in C \forall s \in \mathbb{F} \setminus 0, f(s\mathbf{r}) = s^k \mathbf{r}$$

则称 f 是一个k 次齐函数(homogeneous function of degree k)。

留意到,0次齐函数就是恒等映射。

若 $\mathbb{F}=\mathbb{R}$,我们常考虑正次齐函数,即限制 s>0。此时 k 可推广至实数。此时留意到,有些正次齐函数不是齐函数。例如,若 \mathcal{V} 、 \mathcal{W} 是赋范向量空间,函数 $f(\mathbf{r})=\|\mathbf{r}\|$ 是正次齐函数,但不是齐函数。

定理 1 (齐函数的欧拉定理). 设 k 是实数、n 是正整数,函数 $f: \mathbb{R}^n \to \mathbb{R}$ 在 \mathbb{R}^n 的开 子集 D 上可微分,且为 k 次齐函数,则 f 在 D 上满足偏微分方程

$$kf(\mathbf{r}) = \mathbf{r} \cdot \nabla f(\mathbf{r})$$

证明. 因为 f 是正次齐函数,故在 D 上有

$$\forall s > 0, f(s\mathbf{r}) = s^k f(\mathbf{r})$$

两边对 s 求导下式在开集 D 上仍成立

$$\forall s > 0, s\mathbf{r} \cdot \nabla f(s\mathbf{r}) = ks^{k-1}f(\mathbf{r})$$

当 s=1 时命题得证。

不太严格但较易懂的版本可见《物理化学》上册附录 I.8。

第五章 物理学

5.1 平衡态统计进阶

参考文献

55

[1] TOBOLSKY A. A Systematic Method of Obtaining the Relations Between Thermodynamic Derivatives[J/OL]. The Journal of Chemical Physics, 1942, 10(10): 644-645. eprint: https://pubs.aip.org/aip/jcp/article-pdf/10/10/644/18792815/644_1_online.pdf. https://doi.org/10.1063/1.1723632. DOI: 10.1063/1.1723632.

更新至 2024-08-20