

How many layers? How many neurons? How many weights?



- Occam's razor: the simplest network is always the best
- Too few neurons: insufficient complexity, poor (underfit) model
- Too many neurons: excessive complexity, poor (overfit) model
- What do we know about the complexity of any given problem?
  - Number of training patterns
  - Input/output dimensionality
  - Complexity of input-output relationship (function)

Making guesstimates based on the number of data patterns

- Rule of thumb: The number of training patterns should always exceed the number of free parameters.
- Why?
- Because otherwise overfitting may easily occur: free parameters will match exact patterns rather than extracting the big picture
- Food for thought: knowledge is a result of data compression
- If the number of patterns is the same as the number of parameters, we might as well do k-nearest-neighbour classification (no learning)

Making guesstimates based on dimensionality

Let N be the input dimensionality, M be the output dimensionality, T be the number of training patterns, and  $N_h$  be the number of hidden neurons.

- - No mathematical justification
  - Used by default in Weka (scientific tool)
- 2  $N_h = T/(5*(N+M))$ 
  - Five training samples per weight (magic numbers!)
  - Used by default in Neuralware (commercial tool)
- $N_h = \sqrt{T/(N \log T)}$ 
  - Optimises the mean integrated squared error for some classes of smooth functions
  - Smoothness assumption?
- - Pyramidal structures (# neurons reducing from layer to layer) have shown good generalisation performance

Making guesstimates based on dimensionality

- ...Out of the four rules, the second one gave the most reliably good results on a binary benchmark of varied complexity/dimensionality
- Reason: Rule # 2 generated the largest architectures
- Larger architectures tend to make the problem easier for gradient descent
  - "Blessing of dimensionality: mathematical foundations of the statistical physics of data", A.N. Gorban, I.Y. Tyukin
  - The number of local minima reduces with an increase in dimensionality
  - Instead of geting out of local minima, gradient descent needs to get over multiple saddle points
  - Saddle points are easier to deal with than local minima!



#### • What about the layers?

- More can be better (deep learning), but is harder to train
- How much is enough?
- https://playground.tensorflow.org
- What about the weights?
  - If the training algorithm is good, it should be capable of setting irrelevant weights to zero
  - Regularisation: minimise not only the error, but also the complexity

## Penalizing complexity

- Add a penalty term to the objective function:
  - $E_{NN} = E + \lambda E_p$
- Now we are minimizing both the error and the complexity

## How do you measure complexity?

- Weight decay:
  - $E_p = \sum_{i=1}^W w_i^2$
  - Minimize weight vector magnitude; only constantly reinforced weights will survive
- Weight elimination:
  - $E_p = \sum_{i=1}^W \frac{w_i^2/w_0^2}{1+w_i^2/w_0^2}$
  - w<sub>0</sub> determines the "significance" of weights
  - $|w_i| >> w_0$  => high complexity, penalize more
  - $|w_i| << w_0 =>$  low complexity, penalize less

### Penalizing complexity

- Laplace: L1 regularisation
  - $E_p = \sum_{i=1}^{W} |w_i|$
  - Contribution of each w to the penalty term increases linearly with the increase of the weight
- Multiple other penalty functions were proposed
- Consider the objective function:
  - $E_{NN} = E + \lambda E_p$
- How do we choose  $\lambda$ ?
  - Cross-validation
  - Make it adaptive?

## Regularisation and the Bias Weights



### Should we penalise the biases?

- Regularisation makes the function smoother, i.e. less sensitive to changes in the input
- Biases provide constant input
- In practice, we usually do not regularise the bias weights
- Regularising biases may cause underfitting

### Dropout: a new form of regularization

- Hinton, 2012: overfitting occurs because the model is too complex, eg. each hidden unit relies on neighbour units to make the final prediction
- "Dropout": On each presentation of each training pattern, each hidden unit is randomly omitted from the network with a probability of 0.5, so a hidden unit cannot rely on other hidden units being present
- Force hidden units to "take responsibility"
- More robust models are obtained by preventing "co-adaptation"
- Can be combined with other regularisation methods

Dropout: a new form of regularization



(a) Standard Neural Net



(b) After applying dropout.

Dropconnect: a generalisation of Dropout

You can also "disable" weights rather than neurons:



Essentially, we train an ensemble that looks like a single NN

How to automate architecture selection

How do we automatically construct an optimal architecture?

#### Minimalistic approach

- Start with just a few neurons, add more when stagnation occurs
  - Cascade correlation NNs embraced this principle
  - The NN contains a working model when a new neuron is added => integrating the new neuron may slow down training
  - How do we decide when to add a neuron, and when to stop growing?
  - How do we expand this to adding layers?
  - What about adding recurrent connections?

### Evolutionary approach

- Optimise the weights and/or the architecture using a genetic algorithm
  - Evolutionary algorithms were successfully used to "evolve" NN architectures
  - If you can represent it, you can evolve it
  - Probably the best "growing" approach
  - Start with a perceptron-like architecture: inputs + outputs
  - Allow the algorithm to establish new neurons and connections
  - Evolving NNs is a slow process

### **Evolutionary pruning**

- Make different architectures compete for survival
- Assign higher fitness to smaller architectures

#### **NEAT: NeuroEvolution of Augmenting Topologies**





- NEAT uses direct encoding: every node/connection is stored in the representation
- Indirect encoding:
  - Define primitves (layers, neuron types, activation functions...)
  - Representation is a graph of primitives
  - Allows to re-use the primitives/subgraphs iteratively/recursively
  - The research is ongoing!



To grow or to prune?

#### Applying Occam's Razor

- Start with an oversized architecture, remove unnecessary parameters
  - Weights
  - Hidden units
  - Input units
  - Need a way of quantifying relevance of each parameter
- Large architectures have large functional flexibility => a lot of potential for a good fit
- And a lot of potential for an over-fit?..



(a) Goodness factor method





(c) Weights power method

#### Intuitive pruning

- Determine the "active" neurons, remove inactive ones
  - "An important unit is the one that fires frequently and has strong connections to other units"
  - $G_i = \sum_P \sum_j (w_{ji} o_i)^2$  Goodness factor
  - $E_i = \sum_P \sum_j (w_{ji}^I o_i^I o_j^{I+1})$  Consuming energy
- Units that output 0 more often than 1 are considered irrelevant - is it fair?
- Weight magnitude pruning: remove small weights

#### Information Matrix pruning

- Fisher information: a way of measuring the amount of information that an observable random variable X carries about an unknown parameter  $\theta$  upon which the probability of X depends.
  - $I = \frac{1}{P} \sum_{p=1}^{P} \frac{\partial f_{NN}}{\partial w} (\frac{\partial f_{NN}}{\partial w})^T$  approx. information matrix
  - Calculates the covariance of the weights
  - Captures curvature, just like the Hessian
  - May be time- (and memory-) consuming to compute
  - Prune the weights that bear the least information
- Principal Component Analysis (PCA): prune parameters (weights) that do not account for data variance
- All of these techniques do not scale very well to large NNs

### **Hypothesis Testing**

- Use statistical tests to calculate the significance of weights/hidden units
  - Null hypothesis: a subset of weights is equal to zero
  - If weights associated with a neuron are not statistically different from zero, prune the neuron
- Input pruning: Inject a noisy input
  - If the statistical significance of an original parameter is not higher than that of random noise, prune the parameter
- Assume that weights are ≈ normally distributed
  - Remove the weights that are in the distribution tails

### Sensitivity analysis pruning

- Saliency: the influence small perturbations to a parameter have on the approximated error/output function
- Prune parameters with low saliency
- Optimal Brain Damage (OBD), introduced by Yann LeCun:
  - Choose a reasonable NN architecture
  - Train until a reasonable solution is obtained
  - 3 Compute second order derivatives  $h_{kk}$  for each parameter (diagonal of the Hessian matrix)
  - Ompute the saliencies for each parameter:  $s_k = h_{kk} w^2/2$
  - Sort parameters by saliency and delete low-saliency ones
  - Go back to step 2
- Optimal Brain Surgeon (OBS) adjust weights
- Optimal Cell Damage (OCD) prune inputs
- Hessians are expensive to calculate

## **Neural Network Training**

Passive VS Active

- NN architecture and training algorithm are important, but so is the data
- Data contributes to the complexity of the model

#### Passive learning

Neural network passively accepts the training data, and tries to fit the data as well as possible

#### Active learning

Neural network is presented with a candidate training set. Heuristics are then used to choose the patterns that are most informative

## **Active Learning**

- Redundant data may slow down the training
- If one class is over-represented, it may bias the NN
- Choosing most informative and relevant patterns:
  - · Decrease training time
  - Improve generalisation
- Two main active learning approaches:
  - Selective learning
  - Incremental learning

## Selective learning

### Selecting patterns for training

- Given a candidate set, a subset of informative patterns is chosen as the training set
- The model is trained until convergence/stopping criteria
- New cycle starts by selecting a new subset for training
- Selective Updating:
  - Start training on the candidate set
  - At each epoch, see which patterns had the most influence on the weights, and discard the patterns that had the least influence
  - Training set may change from epoch to epoch
- Discard the patterns that have been classified correctly: this knowledge has already been absorbed
- Engelbrecht: choose patterns that are close to decision boundaries (sensitivity analysis)

## Incremental learning

### Training incrementally

- Given a candidate set, a subset of informative patterns is chosen as the training set
- That subset of patterns is removed from the candidate set
- The model is trained until convergence/stopping criteria
- New cycle starts by adding more patterns from the candidate set to the training set
- As training progresses, the candidate set decreases, and the training set grows
- Incremental learning does not discard patterns. Rather, it attempts to get the "best" ones first, and uses "weaker" ones to tweak a working model later
- Eventually, the entire candidate set may be used for training

## Incremental learning

### Information theory

- Most incremental learning approaches are based on information theory (Fisher information matrix)
- Optimal Experiment Design:
  - At each iteration, choose a pattern from the candidate set that minimizes the expected value of the error
  - Expensive: need to calculate the information matrix inverse
- A problem: Fukumizu showed that the Fisher information matrix may be singular
  - What if it does not have an inverse?
  - Same paper: Fisher matrix is singular iff the are redundant units
  - Remove units => solve the problem
  - 2-in-1: architecture selection + incremental learning
  - Very complex and computationally heavy

## Incremental learning

### Simpler approaches

- Information gain can be maximized by simply choosing patterns that yield the largest error
- Use Robel's factor  $(\frac{E_G}{E_T})$ : when overfitting is observed, add patterns that yield the largest errors
- Engelbrecht: Patterns that yield midrange sigmoid outputs are the most informative
- Many more methods exist, but all suffer from the following:
  - Overhead of using a heuristic
  - If we use more time to pick patterns than we save on training, was it worth it?
  - The data set should be bad/hard enough to justify these techniques

#### The End

- Questions?
- Next week: Wednesday is Spring Day, no lecture
- An extra lecture may be scheduled for a later slot (18:30 -20:30) on Mon, Tue, or Fri next week
- Next lecture: Deep Learning