Solutions of the experimental task

1. [*I point*] Let's examine the relationship between resistance of the thermoresistor and temperature based on the following setup

Here: 1 – digital thermometer; 2 – distilled water; 3 – thermoresistor; 4 – digital multimeter; 5 – glass.

2. [3 points] The relationship between resistance R of the thermoresistor and temperature t° C

		Table №1		
N	t, °C R, Ohm			
1	$80,0 \pm 0,1$	$15,6 \pm 0,1$		
2	$75,0 \pm 0,1$	$17,4 \pm 0,1$		
3	$70,0 \pm 0,1$	$19,5 \pm 0,1$		
4	$65,0 \pm 0,1$	$22,0 \pm 0,1$		
5	$60,0 \pm 0,1$	$25,3 \pm 0,1$		
6	$55,0 \pm 0,1$	$29,2 \pm 0,1$		
7	$50,0 \pm 0,1$	$34,3 \pm 0,1$		
8	$45,0 \pm 0,1$	$40,6 \pm 0,1$		
9	$40,0 \pm 0,1$	$48,5 \pm 0,1$		
10	$35,0 \pm 0,1$	$57,3 \pm 0,1$		
11	$30,0 \pm 0,1$	$71,2 \pm 0,1$		

3. [3 *points*] The expression

$$\sigma = \sigma_0 \exp \left\{ -\frac{\Delta W}{2kT} \right\}$$

can be linearized, if we take the logarithm of both sides:

$$\ln \sigma = \ln \sigma_0 - \frac{\Delta W}{2kT}$$

Therefore

$$\ln \sigma = -\frac{\Delta W}{2k} \frac{1}{T} + \ln \sigma_0$$

4. [2 points] The values that we need are as follows:

Table №2

N	t,°C	1/T, K ⁻¹	R, Ohm	$\sigma = 1/R$, Ohm ⁻¹	ln (σ Ohm)
1	80,0	0,00283	15,6	0,0641	-2,75
2	75,0	0,00287	17,4	0,0575	-2,86
3	70,0	0,00292	19,5	0,0513	-2,97
4	65,0	0,00296	22,0	0,0455	-3,09
5	60,0	0,00300	25,3	0,0395	-3,23
6	55,0	0,00304	29,2	0,0342	-3,38
7	50,0	0,00309	34,3	0,0292	-3,53
8	45,0	0,00314	40,6	0,0246	-3,71
9	40,0	0,00319	48,5	0,0206	-3,88
10	35,0	0,00324	57,3	0,0175	-4,05
11	30,0	0,00330	71,2	0,0140	$-4,\!27$

5. [3 points] Below is the graph of $\ell n \sigma$ versus 1/T, using ordinary least squares:

- 6. [3 points] According to the result in 5)
 - a) The slope of the linear relationship is $3,27 \cdot 10^3$ K. Then

$$\frac{\Delta W}{2k} = 3,27 \cdot 10^3 \text{K}$$

Then the width of the forbidden zone is

$$\Delta W = 3.27 \cdot 10^3 \cdot 2 \cdot k = 3.27 \cdot 10^3 \cdot 2 \cdot 1.38 \cdot 10^{-23}$$
 J = 0.90 · 10⁻¹⁹ J = 0.56 eV

The uncertainty is

$$(\Delta W) = 0.06 \cdot 10^{3} \cdot 2 \cdot k = 0.06 \cdot 10^{3} \cdot 2 \cdot 1.38 \cdot 10^{-23} = 0.02 \cdot 10^{-19} \text{ J} = 0.01 \text{ eV}$$

b) свободный член уравнении равняется 6,6. Тогда

$$\ln(\sigma_0 O_M) = 6.6$$

и значение σ_0 равняется

$$\sigma_0 = 1.87 \text{ Om}^{-1}$$

Соответственно погрешность

$$\Delta \sigma_0 = 0.37 \text{ Om}^{-1}$$

Finally

$$\Delta W = (0.56 \pm 0.01) \text{ eV}$$

$$\sigma_0 = (1.87 \pm 0.37) \text{ Om}^{-1}$$