Homework 9

Wang Xinshi661975305

1. Let $\overline{N}(x;\epsilon) = \{y \in X : d(x,y) \le \epsilon\}$ denote a **closed neighborhood** in X. Using the lecture definitions of open and closed sets, prove that $\overline{N}(x;\epsilon)$ is a closed set in X.

Proof: In order to show $\bar{N}(x;\epsilon)$ is a closed set in X, we need to show $X\setminus \bar{N}(x;\epsilon)$ is an open set in X.

Let $x_1 \in X \setminus \bar{N}(x; \epsilon)$. Then $x_1 \in X$ and $x_1 \notin \bar{N}(x; \epsilon)$ which means $d(x, x_1) > \epsilon$. We pick $\epsilon_1 = d(x, x_1) - \epsilon$ and note $\epsilon_1 > 0$ since $d(x, x_1) > \epsilon$. Next, we need to prove $N(x_1; \epsilon_1) \subseteq X \setminus \bar{N}(x; \epsilon)$.

Let $x_2 \in N(x_1; \epsilon_1)$, then we have $x_2 \in X$ and $d(x_1, x_2) < \epsilon_1$. By the triangle inequality we have

$$d(x, x_1) \le d(x, x_2) + d(x_2, x_1)$$

$$d(x, x_2) \ge d(x, x_1) - d(x_1, x_2)$$

$$d(x, x_2) > d(x, x_1) - \epsilon_1$$

$$> d(x, x_1) - d(x, x_1) + \epsilon$$

$$> \epsilon$$

Thus we have $d(x, x_2) > \epsilon$ which implies $x_2 \notin \bar{N}(x; \epsilon)$. Therefore, $x_2 \in X$ and $x_2 \notin \bar{N}(x; \epsilon)$ which means $x_2 \in X \setminus \bar{N}(x; \epsilon)$. Hence $N(x_1; \epsilon_1) \subseteq X \setminus \bar{N}(x; \epsilon)$.

Since our choice of x_1 and x_2 are arbitrary, we have proved $X \setminus \bar{N}(x;\epsilon)$ is an open set in X, and therefore $\bar{N}(x;\epsilon)$ is a closed set in X.

2. Let (X,d) be a non-empty metric space and let $A \subseteq X$ be non-empty. Prove that $X \setminus \operatorname{int}(A) = \operatorname{cl}(X \setminus A)$.

In order to prove $X \setminus \operatorname{int}(A) = \operatorname{cl}(X \setminus A)$, we need to show $(i).X \setminus \operatorname{int}(A) \subseteq \operatorname{cl}(X \setminus A)$ $(ii).\operatorname{cl}(X \setminus A) \subseteq X \setminus \operatorname{int}(A)$.

First we need to prove $X \setminus \operatorname{int}(A) \subseteq \operatorname{cl}(X \setminus A)$. Let $x \in X \setminus \operatorname{int}(A)$. Thus we have $x \in X$ and $x \notin \operatorname{int}(A)$. Consider two exhaustive cases, $x \in A$ or $x \notin A$. If $x \in A$, we have $x \in \operatorname{bd}(A) \cup \operatorname{int}(A)$ since $A \subseteq \operatorname{bd}(A) \cup \operatorname{int}(A)$. Since $x \notin \operatorname{int}(A)$, $x \in \operatorname{bd}(A)$. Thus $N(x; \epsilon) \cap A \neq \emptyset$ and $N(x; \epsilon) \cap (X \setminus A) \neq \emptyset$. Hence $x \in \operatorname{bd}(X \setminus A)$. Thus $x \in (X \setminus A) \cup \operatorname{bd}(X \setminus A)$ which means $X \in \operatorname{cl}(A)$ if $x \notin A$. If $x \notin A$, then $x \in X \setminus A$ since $x \in X$. Thus $x \in (X \setminus A) \cup \operatorname{bd}(A)$ which means $X \in \operatorname{cl}(A)$ if $x \notin A$. Therefore, we have $X \in \operatorname{cl}(A)$ if $x \in X \setminus \operatorname{int}(A)$. Thus we have shown $X \setminus \operatorname{int}(A) \subseteq \operatorname{cl}(X \setminus A)$.

Next we need to prove $\operatorname{cl}(X \setminus A) \subseteq X \setminus \operatorname{int}(A)$. Let $x \in \operatorname{cl}(X \setminus A)$ and we have $x \in (X \setminus A) \cup bd(X \setminus A)$. Consider two exhaustive cases, $x \in (X \setminus A)$ or $x \in bd(X \setminus A)$. If $x \in (X \setminus A)$, we have $x \in X$ and $x \notin A$. Since $\operatorname{int}(A) \subseteq A$, we have $x \notin \operatorname{int}(A)$. Thus $x \in X \setminus \operatorname{int}(A)$. Therefore we have $\operatorname{cl}(X \setminus A) \subseteq X \setminus \operatorname{int}(A)$ if $x \in bd(X \setminus A)$, we have $x \in X \setminus A$. With the same reasonig in case 1 above, we have $\operatorname{cl}(X \setminus A) \subseteq X \setminus \operatorname{int}(A)$.

Since we have shown $X \setminus \operatorname{int}(A) \subseteq \operatorname{cl}(X \setminus A)$ and $\operatorname{cl}(X \setminus A) \subseteq X \setminus \operatorname{int}(A)$, we have therefore proved $X \setminus \operatorname{int}(A) = \operatorname{cl}(X \setminus A)$.

3. Consider the metric space (\mathbb{R}^2, d) where $d = |x_1 - y_1| + |x_2 - y_2|$. Use the definition of compactness to prove that the set

$$S = \{(x_1, x_2) \in \mathbb{R}^2 : x_1^2 + x_2^2 < 1\}$$

is not a compact subset of \mathbb{R}^2 .

Proof: In order to show the set S is not a compact subset of \mathbb{R}^2 , we need to prove there exists an open cover of S that has no finite subcovers.

Let \mathscr{F} be the set $\{N((0,0),\sqrt{2}-\frac{1}{n})|n\in\mathbb{N}\}$. We need to prove \mathscr{F} is an open cover of S, which means $S\subseteq \bigcup_{j\in\mathscr{F}}A_j=N((0,0),\sqrt{2})$.

Let $(x_1,x_2) \in S$, then we have $x_1^2+x_2^2<1$. We need to prove $(x_1,x_2) \in N((0,0),\sqrt{2})$. Let us assume $x \notin N((0,0),\sqrt{2})$. Then we know $|x_1|+|x_2|\geq 2$ by definition. Then we have $\sqrt{|x_1|^2+|x_2|^2}\leq \sqrt{||x_1|+|x_2||^2}$ by Minkowski's inequality. Thus we have $|x_1|+|x_2|\geq \sqrt{|x_1+x_2|^2}\geq \sqrt{2}$. Consider two exhaustive cases: $|x_1|\geq 1$ or $|x_1|<1$. If $|x_1|\geq 1$, then $|x_1|^2+|x_2|^2=(x_1)^2+(x_2)^2\geq 1$. Thus we found a contradiction when $|x_1|\geq 1$. If $|x_1|<1$, we have $|x_2|=\sqrt{2}-|x_1|\geq 1$. Thus $|x_1|^2+|x_2|^2=(x_1)^2+(x_2)^2\geq 1$. Then we found a contradiction when $|x_1|^2+|x_2|^2=(x_1)^2+(x_2)^2\geq 1$. Then we found a contradiction when $|x_1|^2+|x_2|^2=(x_1)^2+(x_2)^2\geq 1$. Then we found a contradiction when $|x_1|^2+|x_2|^2=(x_1)^2+(x_2)^2\geq 1$. Thus $|x_1|^2+|x_2|^2=(x_1)^2+(x_2)^2\geq 1$. Then we found a contradiction when $|x_1|^2+|x_2|^2=(x_1)^2+(x_2)^2\geq 1$. Then we found a contradiction when $|x_1|^2+|x_2|^2=(x_1)^2+(x_2)^2\geq 1$. Then we found a contradiction when $|x_1|^2+|x_2|^2=(x_1)^2+(x_2)^2\geq 1$. Thus $|x_1|^2+|x_2|^2=(x_1)^2+(x_2)^2\geq 1$. Thus $|x_1|^2+|x_2|^2=(x_1)^2+(x_2)^2\geq 1$. Thus $|x_1|^2+|x_2|^2=(x_1)^2+(x_1)^2+(x_2)^2\geq 1$.

Next, we prove there does not exist a finite subcover \mathscr{F}' for \mathscr{F} by contradiction. We need to find a point $(x_1,x_2)\in S$ such that is not covered by \mathscr{F}' . There exists a largest number n such that $N((0,0),\sqrt{2}-\frac{1}{n})\in \mathscr{F}'$. Thus for all $N\leq n$, we have $N((0,0),\sqrt{2}-\frac{1}{N})\in \mathscr{F}'$ and $\cup_{j\in\mathscr{F}'}A_j=N((0,0),\sqrt{2}-\frac{1}{N})$. Since $N\leq n$, we have $N((0,0),\sqrt{2}-\frac{1}{N})\subset N((0,0),\sqrt{2}-\frac{1}{n})$ which means \mathscr{F}' is a subset of \mathscr{F} . let (x_1,x_2) be the point $(\frac{\sqrt{2}}{2}-\epsilon,\frac{\sqrt{2}}{2})$ and $\epsilon<\frac{1}{N}$. Then we have $x_1^2+x_2^2=\frac{2}{4}+\frac{2}{4}+\epsilon^2<1$. Thus $(x_1,x_2)\in S$. However, $(x_1,x_2)\notin \mathscr{F}'$ since $|x_1|+|x_2|=\sqrt{2}-\epsilon>\sqrt{2}-\frac{1}{N}$. Thus we have point $(x_1,x_2)\in S$ but $(x_1,x_2)\notin \mathscr{F}'$.

Since our choice of (x_1, x_2) is arbitarry and we have shown there exists an open cover of S that has no finite subcovers, S is not compact