Report of data analysis for early-stage epithelial ovarian cancer and the comparison to the previous results thereof

Fan Zhang

1. Background

This analysis has heretofore intended to repeat the previous study from Joselle O'Brien regarding the predictive modeling for early-stage epithelial ovarian cancer using CA125, Mass Spectrometry (MS) and Nuclear Magnetic Resonance (NMR) Spectroscopy data. The analysis started from pre-processing of the raw data, followed by modeling using kNN, Partial Least Square (PLS), Bagging, RandomForest (RF), Support Vector Machine (SVM), Logistic regression and Boosting for each dataset and each classification model, i.e., Healthy and Benign lumped (HB) model, Malignant and Benign lumped (MB) model, original three classes model, respectively.

2. Methods and Results

2.1 Pre-processing

Variables from MS dataset have been filtered such that those variables of which values are only 1's are deleted. By checking with Joselle's dataset, observations of g214 and g275 were also deleted from the MS dataset. Each dataset was separated into two parts, XX and YY, with XX representing all dependent variables and YY being one dimensional vector indicating the diagnostic classification. For MS data, each variable's name has been replaced by the associated compound ID prefixed by an "X". Details of each dataset are listed below in Table 1:

	David	4-4-			Class data	
Dataset		data			Clean data	
	XX	YY coding	XX YY coding		HB coding	MB coding
CA-125	120 x 1	Benign Cancer Normal	120 x 1	"Normal"-1, "Benign"-2, "Cancer"-3	Normal/Benign-Negtive-1 Cancer-Positive-2	Normal-Negtive-1 Benign/Cancer-Positive-2
MS	120 x 758	Benign Cancer Healthy	118 x 720	"Healthy"-1, "Benign"-2, "Cancer"-3	Healthy/Benign-Negtive-1 Cancer-Positive-2	Healthy-Negtive-1 Benign/Cancer-Positive-2
DIRE			118 x 3055	"Normal"-1, "Benign"-2, "Cancer"-3	Normal/Benign-Negtive-1 Cancer-Positive-2	Normal-Negtive-1 Benign/Cancer-Positive-2
DOSY			118 x 3053	"Normal"-1, "Benign"-2, "Cancer"-3	Normal/Benign-Negtive-1 Cancer-Positive-2	Normal-Negtive-1 Benign/Cancer-Positive-2
CPMGc			118 x 3055	"Normal"-1, "Benign"-2, "Cancer"-3	Normal/Benign-Negtive-1 Cancer-Positive-2	Normal-Negtive-1 Benign/Cancer-Positive-2
CPMGm			118 x 3057	"Normal"-1, "Benign"-2, "Cancer"-3	Normal/Benign-Negtive-1 Cancer-Positive-2	Normal-Negtive-1 Benign/Cancer-Positive-2
NOESYc			118 x 3055	"Normal"-1,	Normal/Benign-Negtive-1	Normal-Negtive-1

			"Benign"-2, "Cancer"-3	Cancer-Positive-2	Benign/Cancer-Positive-2
NOESYm	 	118 x 3057	"Normal"-1, "Benign"-2, "Cancer"-3	Normal/Benign-Negtive-1 Cancer-Positive-2	Normal-Negtive-1 Benign/Cancer-Positive-2

Table 1: Dimensions for each dataset

2.2 Parameter scanning and model building

Principle component analysis (PCA) was not included in the modeling part, but an individual level plot (Figure 1) was created to give a glance over the classification of the observations for the MS data.

Figure 1: Individuals factor map. The X axis represents the first principle component (PC) and the Y axis represents the second PC, percentages in the parenthesis indicate the X variance explained by the corresponding PC, respectively. Each observation is projected onto the map according to the scores from both PCs. It can be seen that the Benign group is in the middle between Cancer and Healthy groups.

After PCA, modeling using kNN and logistic regression were performed on CA125 dataset. MS and NMR datasets were modeled by kNN, PLS, Bagging, RF, Boosting and SVM. When it's modeled by SVM, three different kernels, i.e., linear, polynomial and radial kernels, were tried with different parameters. Since all methods have different tuning parameters, wide ranges of parameters or combinations of parameters for different methods were searched for best predicative power. Due to computational limit, the ranges of some parameters searched for all six

N	Method	Parameter	MS	NMR (6 sets)
	kNN	K	1, 2, , 30	1, 2, , 15
	PLS	Latent Variables	1, 2,, 30	1, 2, , 15
Е	Bagging	# trees	3000	3000
	RF	mtry	Sqrt(p)	Sqrt(p)
	NΓ	# trees	3000	3000
		Depth	1, 2,, 5	1, 2, 3
В	oosting	Shrinkage	0.01, 0.001	0.01, 0.001
		#trees	1000, 5000	10, 100
	Linear	Cost	2^(-10), 2^(-9),, 2^15	2^(-10), 2^(-9),, 2^15
	Polynomial	Cost	2^(-10), 2^(-9),, 2^15	2^(-10), 2^(-9),, 2^15
SVM	PolyHollilai	Degree	2, 3, 4, 5	2, 3
	Radial	Cost	2^(-10), 2^(-9),, 2^15	2^(-10), 2^(-9),, 2^15
	Naulal	gamma	2^(-15), 2^(-14),, 2^15	2^(-15), 2^(-14),, 2^15

Table 2: Parameters setting

Cross validation using three folds were performed to get the mean prediction accuracy. The highest mean accuracy of different methods among various parameter settings is listed in Table 3 with respect to all the datasets and in Table 4 with respect to classification models.

NA o Alo o al				Dat	aset				Madal
Method	CA125	MS	CPMGc	CPMGm	DIRE	DOSY	NOESYc	NOESYm	Model
	0.833/0.808	0.796/0.797	0.807/0.814	0.712/0.678	0.744/0.661	0.762/0.746	0.889/0.822	0.787/0.746	НВ
kNN	0.708/0.625	0.813/0.847	0.874/0.873	0.771/0.703	0.838/0.703	0.779/0.745	0.882/0.831	0.832/0.772	MB
	0.583/0.492	0.610/0.703	0.747/0.772	0.551/0.407	0.634/0.415	0.753/0.703	0.864/0.796	0.576/0.509	3-Class
		0.737/0.822	0.789/0.813	0.644/0.754	0.721/0.754	0.88/0.865	0.846/0.898	0.78/0.746	НВ
PLS		0.804/0.856	0.873/ <mark>0.872</mark>	0.805/0.823	0.788/ <mark>0.797</mark>	0.897/0.889	0.871/0.898	0.806/ <mark>0.822</mark>	MB
		0.484/0.652	0.61/0.576	0.542/0.483	0.552/0.475	0.695/0.593	0.625/0.643	0.517/0.593	3-Class
		0.814/0.839	0.747/0.746	0.652/0.695	0.693/0.679	0.814/0.822	0.856/0.847	0.72/0.754	НВ
Bagging		0.837/0.873	0.804/0.856	0.73/0.771	0.762/0.746	0.779/0.804	0.839/0.873	0.788/0.780	MB
		0.754/0.763	0.746/0.712	0.525/0.551	0.599/ <mark>0.653</mark>	0.702/0.720	0.814/0.881	0.603/0.602	3-Class
		0.814/0.805	0.721/0.762	0.669/0.703	0.668/0.713	0.814/0.797	0.873/0.847	0.754/0.771	НВ
RF		0.864/0.831 0.804/0.8		0.737/0.771	0.721/0.754	0.753/0.788	0.858/0.839	0.771/0.780	MB
		0.771/0.746	0.763/0.746	0.485/0.525	0.6/ <mark>0.653</mark>	0.736/0.788	0.882/0.872	0.577/0.593	3-Class
		0.881/0.848	0.823/0.703	0.72/0.687	0.719/0.687	0.831/0.720	0.924/0.839	0.771/0.721	НВ
Boosting		0.855/ <mark>0.890</mark>	0.88/0.762	0.848/0.686	0.788/0.669	0.821/0.695	0.89/0.856	0.865/0.797	MB
		0.814/0.840	0.805/0.559	0.595/0.407	0.65/0.534	0.737/0.619	0.847/0.644	0.618/0.399	3-Class
		0.763/0.797	0.814/0.78	0.627/0.703	0.779/ <mark>0.789</mark>	0.839/0.856	0.872/0.839	0.745/0.737	НВ
SVM-L		0.796/0.805	0.84/0.865	0.771/0.797	0.846/0.865	0.873/0.813	0.898/0.864	0.815/0.772	MB
									3-Class
		0.763/ <mark>0.78</mark>	0.814/0.661	0.627/0.661	0.779/0.661	0.839/0.661	0.872/0.66	0.745/0.661	HB
SVM-P		0.796/0.797	0.84/0.660	0.771/0.661	0.846/0.66	0.873/0.661	0.898/0.661	0.815/0.662	MB
									3-Class
		0.763/ <mark>0.78</mark>	0.814/0.822	0.627/0.703	0.779/ <mark>0.789</mark>	0.839/ <mark>0.890</mark>	0.872/0.898	0.745/0.788	НВ
SVM-R		0.796/0.839	0.84/0.865	0.771/ <mark>0.797</mark>	0.846 <mark>/0.898</mark>	0.873/0.847	0.898/ <mark>0.915</mark>	0.815/0.78	MB
									3-Class
Logistic	0.817/ <mark>0.833</mark>								НВ
LOGISTIC	0.642/0.617								MB

0.508/0.508 -- -- -- -- -- 3-Class

Table 3: Mean accuracy for datasets. Values on the left side of "/" represent Joselle's results, values on the right side represent my result. Red color indicates increasing, green for decreasing, black for tie. Dashed box indicates the highest value in that column.

Dataset	НВ	MB	3-Class	Method	НВ	MB	3-Class	Method
CA125	0.833/0.808	0.708/0.625	0.583/0.492					
MS	0.796/0.797	0.813/0.847	0.610/0.703		0.763/0.797	0.796/ <mark>0.805</mark>		
CPMGc	0.807/0.814	0.874/0.873	0.747/0.772		0.814/0.78	0.84/0.865		
CPMGm	0.712/0.678	0.771/0.703	0.551/0.407	LAINI	0.627/0.703	0.771/ <mark>0.797</mark>		CVAAL
DIRE	0.744/0.661	0.838/0.703	0.634/0.415	kNN	0.779/0.789	0.846/0.865		SVM-L
DOSY	0.762/0.746	0.779/0.745	0.753/0.703		0.839/0.856	0.873/0.813		
NOESYc	0.889/0.822	0.882/0.831	0.864/0.796		0.872/0.839	0.898/0.864		
NOESYm	0.787/0.746	0.832/0.772	0.576/0.509		0.745/0.737	0.815/0.772		
CA125								
MS	0.737/0.822	0.804/0.856	0.484/0.652		0.763/ <mark>0.78</mark>	0.796/0.797		
CPMGc	0.789/0.813	0.873/0.872	0.61/0.576		0.814/0.661	0.84/0.660		
CPMGm	0.644/0.754	0.805/0.823	0.542/0.483	5.0	0.627/ <mark>0.661</mark>	0.771/0.661		0.4.5
DIRE	0.721/0.754	0.788/0.797	0.552/0.475	PLS	0.779/0.661	0.846/0.66		SVM-P
DOSY	0.88/0.865	0.897/0.889	0.695/0.593		0.839/0.661	0.873/0.661		
NOESYc	0.846/0.898	0.871/0.898	0.625/0.643		0.872/0.66	0.898/0.661		
NOESYm	0.78/0.746	0.806/0.822	0.517/ <mark>0.593</mark>		0.745/0.661	0.815/0.662		
CA125								
MS	0.814/0.839	0.837/0.873	0.754/0.763		0.763/0.78	0.796/0.839		
CPMGc	0.747/0.746	0.804/0.856	0.746/0.712		0.814/0.822	0.84/0.865		
CPMGm	0.652/0.695	0.73/0.771	0.525/ <mark>0.551</mark>		0.627/0.703	0.771/0.797		
DIRE	0.693/0.679	0.762/0.746	0.599/0.653	Bagging	0.779/0.789	0.846/0.898		SVM-R
DOSY	0.814/0.822	0.779/0.804	0.702/0.720		0.839/0.890	0.873/0.847		
NOESYc	0.856/0.847	0.839/0.873	0.814/0.881		0.872/ <mark>0.898</mark>	0.898/0.915		
NOESYm	0.72/0.754	0.788/0.780	0.603/0.602		0.745/0.788	0.815/0.78		
CA125								
MS	0.814/0.805	0.864/0.831	0.771/0.746		0.881/0.848	0.855/0.890	0.814/0.840	
CPMGc	0.721/0.762	0.804/0.856	0.763/0.746		0.823/0.703	0.88/0.762	0.805/0.559	
CPMGm	0.669/0.703	0.737/0.771	0.485/0.525		0.72/0.687	0.848/0.686	0.595/0.407	
DIRE	0.668/0.713	0.721/0.754	0.6/0.653	RF	0.719/0.687	0.788/0.669	0.65/0.534	Boosting
DOSY	0.814/0.797	0.753/0.788	0.736/0.788		0.831/0.720	0.821/0.695	0.737/0.619	
NOESYc	0.873/0.847	0.858/0.839	0.882/0.872		0.924/0.839	0.89/0.856	0.847/0.644	
NOESYm	0.754/0.771	0.771/0.780	0.577/0.593		0.771/0.721	0.865/0.797	0.618/0.399	
CA125	0.817/0.833	0.642/0.617	0.508/0.508		<u> </u>	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	
MS	, 		, 					
CPMGc								
CPMGm								
DIRE				Logistic				
DOSY								
NOESYc								
NOESYm								

Table 4: Mean accuracy for classification models. Values on the left side of "/" represent Joselle's results, values on the right side represent my result. Red color indicates increasing, green for decreasing, black for tie. Dashed

box indicates the highest value in that column.

Table 3 and 4 are of same values but in different arrangements. From table 3, we can see that the highest accuracy for CA125 data is 83.3% from both Joselle's and my result, and each method from kNN and logistic regression can achieve it. For MS data, it's 89% as opposed to 88.1%, and both were obtained by boosting. For NMR data, the highest accuracy occurs in NOESYc dataset achieved by SVM-Radial, it's 91.5% while the previous one is 92.4% obtained by boosting. In regards to classification models (Table 4), the highest accuracies from HB and MB models are 89.8% and 91.5%, both obtained by SVM-Radial. But the accuracy for 3-class model is slightly lower, which is 88.1% as opposed to 88.2%, from Bagging and RF, respectively.

If takes standard deviation into account as the accuracy was obtained from three folds (Figure 2-4), it would be clear that SVM stands out as the best choice for NMR data, i.e., NOESYc, in terms of HB and MB models while the Bagging is the best for 3-Class model thereof. For MS data, it turned out that the Boosting is uniformly superior among all methods for all three models. Taking account of highest mean accuracy and smallest SD, the models chosen and the associated parameters are concluded in Table 5.

Data source	Chosen method	Parameters	Model
	kNN	K=17	НВ
CA125	kNN	K=25	MB
	kNN	K=29	3-class
	Boosting	TreeNum=1000, Shrinkage=0.01, Depth=2	НВ
MS	Boosting	TreeNum=5000, Shrinkage=0.01, Depth=2	MB
	Boosting	TreeNum=5000, Shrinkage=0.001, Depth=1	3-class
	SVM Radial	Cost=32, Gamma=1024	НВ
NMR (NOESYc)	SVM Radial	Cost=128, Gamma=256	MB
	Bagging	TreeNum=3000	3-class

Table 5: Chosen models and the corresponding parameters.

2.3 Consensus results

Consensus analysis was performed based on the chosen methods from last section for each model. Those selected models were refit to each dataset, i.e., CA125, MS and NOESYc, and their predictions for each subject were merged together, after which a majority vote was conducted in a way that the final prediction for each subject was the majority vote among the three datasets. The results are in Table 6-8. In conclusion, the accuracies are 85%, 90% and 82% for HB, MB and 3-class models, respectively.

Appendix

Figure 2: Mean accuracy comparison for HB model.

Figure 3: Mean accuracy comparison for MB model.

Figure 4: Mean accuracy comparison for 3-Class model.

ID	CA125	MS	NMR	Vote	TRUE	ID	CA125	MS	NMR	Vote	TRUE	ID	CA125	MS	NMR	Vote	TRUE
g111	1	1	1	1	1	g208	1	1	1	1	1	g275	2	NA	1	99	1
g113	1	1	1	1	1	g209	1	1	1	1	1	g276	1	1	1	1	1
g119	1	1	1	1	1	g21	1	1	1	1	2	g277	1	1	1	1	1
g122	1	1	1	1	1	g210	1	1	2	1	1	g28	1	2	2	2	2
g124	1	1	2	1	1	g213	1	1	1	1	1	g281	1	1	1	1	1
g126	1	1	1	1	1	g214	1	NA	1	1	1	g286	1	1	1	1	1
g129	1	1	1	1	1	g215	1	1	1	1	1	g289	1	1	1	1	1
g135	2	2	2	2	2	g216	1	1	1	1	1	g291	1	1	1	1	1
g139	1	1	1	1	2	g217	1	1	1	1	1	g293	1	1	1	1	1
g140	2	1	1	1	2	g220	1	1	1	1	1	g295	1	1	1	1	1
g142	1	1	2	1	2	g221	1	1	1	1	1	g296	1	1	1	1	1
g143	1	1	1	1	2	g223	1	1	1	1	1	g298	1	1	1	1	1
g144	1	1	2	1	2	g225	1	1	1	1	1	g301	1	1	1	1	1
g147	2	2	2	2	2	g227	1	1	1	1	1	g303	1	1	1	1	1
g149	1	2	2	2	2	g23	1	1	2	1	2	g305	1	1	1	1	1
g15	1	2	1	1	2	g230	1	1	1	1	1	g306	1	1	1	1	1
g150	2	2	2	2	2	g233	1	1	1	1	1	g307	1	1	1	1	1
g151	2	2	2	2	2	g234	1	1	1	1	1	g308	1	1	1	1	1
g152	1	1	2	1	2	g237	1	1	1	1	1	g309	1	1	1	1	1
g155	2	2	2	2	2	g239	1	1	1	1	1	g314	1	1	1	1	1
g156	1	2	2	2	2	g241	1	1	1	1	1	g318	1	1	1	1	1
g159	1	1	1	1	2	g242	1	1	1	1	1	g326	1	1	1	1	1
g160	1	2	2	2	2	g244	1	1	1	1	1	g333	1	2	NA	99	1
g162	2	1	2	2	2	g245	1	1	1	1	1	g337	1	1	1	1	1
g17	1	2	1	1	2	g249	1	1	1	1	1	g339	1	1	1	1	1
g170	2	1	1	1	2	g250	1	1	1	1	1	g340	1	1	1	1	1
g173	2	2	2	2	2	g252	1	1	2	1	2	g342	1	1	1	1	1
g176	2	2	2	2	2	g256	1	1	NA	1	1	g343	1	1	1	1	1
g178	2	2	2	2	2	g257	1	1	1	1	1	g38	2	2	1	2	2
g179	1	1	2	1	2	g259	2	1	1	1	1	g40	2	2	2	2	2
g181	2	2	1	2	2	g26	2	2	2	2	2	g44	2	2	1	2	2
g188	2	2	1	2	2	g261	1	1	1	1	1	g48	2	1	1	1	2
g19	1	2	2	2	2	g265	1	1	1	1	1	g7	1	1	1	1	2
g191	2	2	2	2	2	g266	1	1	1	1	1	g72	1	1	1	1	1
g192	2	2	2	2	2	g267	1	2	1	1	1	g73	1	1	2	1	1
g193	1	2	2	2		g269	1	1	1	1	1	g74	1	1	1	1	1
g199	1	1	1	1	1	g270	1	2	1	1	1	g75	1	1	1	1	1
g201	1	1	1	1	1	g271	1	1	1	1	1	g77	1	2	1	1	1
	1	1	1	1	1		1	1	1	1	1		1	2	2	2	2
g203						g272						g8					
g205	1 le 6: HB	1	1	1	1	g274	2	1	1	1	1	g80	1	1	1	1	1

Table 6: HB consensus results. A majority vote value of "99" indicates that the predictions from the three datasets are all different on this subject.

ID	CA125	MS	NMR	Vote	TRUE	ID	CA125	MS	NMR	Vote	TRUE	ID	CA125	MS	NMR	Vote	TRUE
g111	2	1	2	2	1	g208	2	1	1	1	1	g275	2	NA	2	2	2
g113	2	2	1	2	1	g209	2	1	1	1	1	g276	2	2	2	2	2
g119	1	1	1	1	1	g21	2	2	1	2	2	g277	1	2	2	2	2
g122	1	1	1	1	1	g210	1	2	2	2	1	g28	2	2	2	2	2
g124	1	2	1	1	1	g213	2	1	1	1	1	g281	1	2	2	2	2
g126	1	2	1	1	1	g214	1	NA	1	1	1	g286	2	2	2	2	2
g129	2	2	1	2	1	g215	2	1	1	1	1	g289	2	2	2	2	2
g135	2	2	2	2	2	g216	1	1	1	1	1	g291	2	2	2	2	2
g139	2	2	1	2	2	g217	1	1	1	1	1	g293	1	2	2	2	2
g140	2	1	1	1	2	g220	1	1	1	1	1	g295	1	2	2	2	2
g142	2	2	2	2	2	g221	2	1	1	1	1	g296	1	2	2	2	2
g143	2	1	1	1	2	g223	2	1	1	1	1	g298	1	2	2	2	2
g144	2	2	2	2	2	g225	1	1	1	1	1	g301	2	2	2	2	2
g147	2	2	2	2	2	g227	1	1	1	1	1	g303	2	2	2	2	2
g149	2	2	2	2	2	g23	1	2	2	2	2	g305	2	2	2	2	2
g15	2	2	1	2	2	g230	1	1	1	1	1	g306	1	1	2	1	2
g150	2	2	2	2	2	g233	2	1	1	1	1	g307	1	2	2	2	2
g151	2	2	2	2	2	g234	2	1	1	1	1	g308	1	2	2	2	2
g152	2	2	2	2	2	g237	2	1	1	1	1	g309	1	2	2	2	2
g155	2	2	2	2	2	g239	1	1	1	1	1	g314	1	2	2	2	2
g156	2	2	2	2	2	g241	1	1	1	1	1	g318	1	2	2	2	2
g159	1	1	1	1	2	g242	1	1	1	1	1	g326	1	2	2	2	2
g160	2	2	2	2	2	g244	1	1	1	1	1	g333	2	2	NA	2	2
g162	2	2	2	2	2	g245	1	1	1	1	1	g337	1	2	2	2	2
g17	2	2	1	2	2	g249	1	1	1	1	1	g339	1	2	2	2	2
g170	2	2	1	2	2	g250	1	1	1	1	1	g340	1	2	2	2	2
g173	2	2	2	2	2	g252	2	2	2	2	2	g342	1	2	2	2	2
g176	2	2	2	2	2	g256	1	2	NA	99	2	g343	2	2	2	2	2
g178	2	2	2	2	2	g257	2	1	2	2	2	g38	2	2	2	2	2
g179	1	2	2	2	2	g259	2	2	2	2	2	g40	2	2	2	2	2
g181	2	2	1	2	2	g26	2	2	2	2	2	g44	2	2	2	2	2
g188	2	2	2	2	2	g261	1	2	2	2	2	g48	2	2	1	2	2
g19	1	2	2	2	2	g265	2	2	2	2	2	g7	2	2	1	2	2
g191	2	2	2	2	2	g266	1	2	2	2	2	g72	2	2	1	2	1
g192	2	2	2	2	2	g267	2	2	2	2	2	g73	2	2	1	2	1
g193	2	2	2	2	2	g269	2	2	2	2	2	g74	1	1	2	1	1
g199	1	2	2	2	2	g270	1	2	2	2	2	g75	2	1	1	1	1
g201	2	1	1	1	1	g271	1	2	2	2	2	g77	1	2	1	1	1
g203	2	1	1	1	1	g272	2	2	2	2	2	g8	2	2	2	2	2
g205	2	1	1	1	1	g274	2	2	2	2	2	g80	2	2	1	2	1

Table 7: MB consensus result. A majority vote value of "99" indicates that the predictions from the three datasets are all different on this subject.

ID	CA125	MS	NMR	Vote	TRUE	ID	CA125	MS	NMR	Vote	TRUE	ID	CA125	MS	NMR	Vote	TRUE
g111	1	1	1	1	1	g208	1	1	1	1	1	g275	3	NA	2	99	2
g113	2	3	1	99	1	g209	1	1	1	1	1	g276	1	3	3	3	2
g119	1	1	1	1	1	g21	1	2	1	1	3	g277	1	3	2	99	2
g122	1	1	1	1	1	g210	1	1	3	1	1	g28	3	3	3	3	3
g124	1	1	3	1	1	g213	1	1	1	1	1	g281	1	2	2	2	2
g126	1	1	1	1	1	g214	1	NA	1	1	1	g286	1	2	2	2	2
g129	2	1	1	1	1	g215	2	1	1	1	1	g289	3	2	2	2	2
g135	3	3	3	3	3	g216	1	1	1	1	1	g291	1	2	2	2	2
g139	1	3	3	3	3	g217	1	1	1	1	1	g293	1	2	2	2	2
g140	3	1	1	1	3	g220	1	1	1	1	1	g295	1	2	2	2	2
g142	3	1	3	3	3	g221	2	1	1	1	1	g296	1	2	2	2	2
g143	1	1	1	1	3	g223	2	1	1	1	1	g298	1	2	2	2	2
g144	1	2	3	99	3	g225	1	1	1	1	1	g301	1	2	2	2	2
g147	3	3	3	3	3	g227	1	1	1	1	1	g303	1	2	2	2	2
g149	1	3	3	3	3	g23	1	3	3	3	3	g305	2	2	2	2	2
g15	1	3	3	3	3	g230	1	1	1	1	1	g306	1	2	2	2	2
g150	3	3	3	3	3	g233	1	1	1	1	1	g307	1	2	2	2	2
g151	3	3	3	3	3	g234	2	1	3	99	1	g308	1	3	2	99	2
g152	2	2	3	2	3	g237	2	1	1	1	1	g309	1	2	2	2	2
g155	3	3	3	3	3	g239	1	1	2	1	1	g314	1	2	2	2	2
g156	1	3	3	3	3	g241	1	1	1	1	1	g318	1	2	2	2	2
g159	1	1	1	1	3	g242	1	1	1	1	1	g326	1	3	2	99	2
g160	3	3	3	3	3	g244	1	1	1	1	1	g333	2	2	NA	2	2
g162	3	3	1	3	3	g245	1	1	1	1	1	g337	1	2	2	2	2
g17	1	3	1	1	3	g249	1	1	1	1	1	g339	1	1	2	1	2
g170	3	3	1	3	3	g250	1	1	1	1	1	g340	1	2	2	2	2
g173	3	3	3	3	3	g252	1	3	3	3	3	g342	1	2	2	2	2
g176	3	3	3	3	3	g256	1	2	NA	99	2	g343	1	2	2	2	2
g178	3	3	3	3	3	g257	1	2	2	2	2	g38	3	3	2	3	3
g179	1	3	1	1	3	g259	3	3	2	3	2	g40	3	3	3	3	3
g181	3	3	1	3	3	g26	3	3	1	3	3	g44	3	3	1	3	3
g188	3	3	2	3	3	g261	1	2	2	2	2	g48	3	3	1	3	3
g19	1	3	3	3	3	g265	1	2	2	2	2	g7	1	3	3	3	3
g191	3	3	3	3	3	g266	1	2	2	2	2	g72	1	1	1	1	1
g192	3	3	3	3	3	g267	2	3	3	3	2	g73	1	2	1	1	1
g193	2	3	3	3	3	g269	1	2	2	2	2	g74	1	1	3	1	1
g199	1	2	2	2	2	g270	1	3	2	99	2	g75	1	1	1	1	1
g201	2	1	1	1	1	g271	1	2	2	2	2	g77	1	3	1	1	1
g203	2	1	1	1	1	g272	1	2	2	2	2	g8	2	3	1	99	3
g205	1	1	1	1	1	g274	3	1	2	99	2	g80	1	2	1	1	1

Table 8: 3-Class consensus result. A majority vote value of "99" indicates that the predictions from the three datasets are all different on this subject.