Programação para GPU usando CUDA

Alvaro Alvin Oesterreich Santos Ricardo de la Rocha Ladeira

Introdução

Em busca de aumentar o desempenho de programas, é comum buscar paralelizar partes da execução para permitir o uso simultâneo de múltiplos processadores de uma CPU (*Central Processing Unit*). CPUs a nível de consumidor atuais possuem de um a 92 núcleos [1], com CPUs para servidores chegando até 128 núcleos [2].

Entretanto, existem aplicações que podem obter vantagem com o uso simultâneo de ainda mais processadores e a GPU (*Graphics Processing Unit*) ou GPGPU (*General Purpose Graphics Processing Unit*) quando não é utilizada para aplicações gráficas, são placas especiais que podem conter até 16 mil processadores, aproximadamente [3].

Existem alguns modelos de computação que permitem que sejam executados códigos de propósito geral em GPUs, transformando-as em GPGPUs. Um dos modelos de computação que permite isso é desenvolvido pela NVIDIA e se chama CUDA¹ (*Compute Unified Device Architecture*). CUDA permite escrever programas que são executados na CPU e na GPGPU de forma conjunta.

Processamento em GPGPU

Inicialmente, GPUs foram feitas para fazer processamento gráfico, por isso são adequadas para processamentos do tipo SIMD (*Single Instruction Multiple Data*). Elas costumam possuir muito mais processadores do que CPUs, mas executam em um *clock* mais baixo.

As GPUs são otimizadas para fazerem o processamento de conjuntos de dados que requerem computação semelhante, de forma que possam ser processados de forma paralela. Por isso processamentos que podem se adequar a essas características podem

¹ https://developer.nvidia.com/cuda-toolkit

ter grande ganho de desempenho, por permitir ser executadas em uma grande quantidade de processadores, a computação não relacionada a gráficos em uma GPU a torna uma GPGPU.

Entretanto, a GPGPU possui algumas limitações devido a sua arquitetura. Ela possui uma grande quantidade de ALUs (*Arithmetic and Logic Units*) que, por serem especializadas em operações de ponto flutuante, não dão suporte nativo a operações *bit shift* e *bitwise*. Inicialmente não existia suporte nativo a operações de inteiros e aritmética de ponto flutuante de precisão dupla, mas as arquiteturas mais recentes fornecem essas operações sem necessidade de emulação. A Tabela 1 mostra uma comparação das características da CPU e da GPU.

Tabela 1. Comparação entre CPU e GPU.

СРИ	GPU
Caches muito rápidas (bom para reúso de dados)	Muitas unidades Lógicas e Aritméticas
Granularidade de ramificação	Acesso rápido à memória interna
Muitos threads/processos diferentes	Executa um programa em cada fragmento/vertex
Alta performance em execuções em um único thread	Alta taxa de tranferência de dados em tarefas paralelas
Boa para paralelização de tarefas	Boa para paralelização de dados
Otimizada para alto desempenho em códigos sequenciais (caches e previsão de ramificação)	Otimizada para alta intensidade de operações aritméticas de natureza paralela (operações de ponto flutuante)

Fonte: Adaptado de [4].

CUDA

Existem vários SDKs (*Software Development Kit*) e várias APIs (*Application Programming Interface*) que permitem fazer o processamento em GPGPUs, tais como CUDA, ATI Stream SDK, OpenCL, Rapidmind, HMPP e PGI Accelerator. Um dos mais utilizados é o CUDA, desenvolvido e mantido pela NVIDIA. Até o momento, o CUDA funciona somente com

placas NVIDIA por possuírem os chamados CUDA *cores*. A Figura 1 apresenta a arquitetura de uma GPU compatível com CUDA.

Figura 1. Arquitetura de uma GPU compatível com CUDA. Fonte: [5].

Como é possível ver na Figura 1, a GPU é composta por um fluxo de processadores que possuem grande capacidade de paralelismo. Cada GPU possui diversos *grids*, indicados por retângulos de cor azul clara, conectados por uma flecha verde na Figura 1. Cada *grid* possui blocos, indicados pelos retângulos laranjas contidos dentro de cada *grid*, e cada um desses blocos possui múltiplas *threads*, que não estão exibidas na figura. A Figura 2 exibe os componentes de processamento da GPU.

Figura 2. Visão mais detalhada dos componentes de processamento da GPU. Fonte: [5].

As funções executadas pela GPU são chamadas de *kernels*. CUDA passa cada *kernel* para um *grid* e todas as *threads* que estão naquele *grid* executam o mesmo *kernel* de forma assíncrona. Entretanto, cada *grid*, cada bloco e cada *thread* possui seu próprio identificador referente à estrutura que está contida, dessa forma é possível determinar qual dado cada *thread* deverá processar.

Com relação a memória, cada *thread* possui uma memória de acesso rápido privada e também pode acessar uma memória que é compartilhada pelas *threads* de um bloco. A partir desse nível é preciso se preocupar com condições de corrida. Cada *grid* também tem acesso a uma memória global que é compartilhada por todos os *grids*. As arquiteturas mais recentes dão suporte à memória unificada que permite que a memória da GPU e da CPU possam ser acessadas através de um único endereçamento. A Figura 3 apresenta um diagrama que indica o acesso à memória de cada parte do sistema.

Figura 3. Visão mais detalhada dos componentes de memória da GPU. Fonte: [5].

O programador é responsável por definir a quantidade de *grids* e *threads* que cada *kernel* vai executar. Entretanto, ele não precisa estar ciente da quantidade física de *grids*, blocos e

processadores que a GPGPU possui, já que a própria interface do CUDA faz o gerenciamento para adequar a exigência do programa para as características de cada GPGPU.

A interface do CUDA permite que um programa escrito em CUDA seja compatível com todas as placas que dão suporte à tecnologia, desde a primeira placa com tecnologia CUDA lançada até as placas mais recentes. Funcionalidades mais recentes executadas nativamente em placas modernas também rodam em placas antigas, mas o CUDA faz uma emulação internamente.

Codificando CUDA

Um programa CUDA é um programa que é executado tanto na CPU (chamada de *host*) quanto na GPGPU (chamada de *device*). No programa, as funções que são executadas pelo *device* e invocadas pelo *host* possuem a anotação __global__. Podem ser escritas funções que são chamadas somente pelo *device*; essas funções possuem a anotação __device__. Por fim, funções que são executadas somente no *host* possuem a anotação __host__, entretanto essa anotação é opcional, visto que é a opção padrão no caso de nenhuma anotação.

Os *kernels*, funções que são executadas no *device*, não possuem retorno, justamente por serem executadas de forma assíncrona. Também, os *kernels* mandados para o *device* não devem ter resultados dependentes, visto que a ordem de execução não é garantida, sendo definida pela interface do CUDA de acordo com a situação.

São usadas funções especiais para fazer a manipulação de memória no device. Essas funções são:

- CudaMalloc: aloca memória.
 - o cudaError t cudaMalloc(void **devPtr, size t size);
- CudaFree: libera a memória alocada na GPU.
 - o cudaError_t cudaFree(void *devPtr);
- CudaMemcopy: copia dados entre a memória da CPU e a memória da GPU.
 - o cudaError_t cudaMemcpy(void *dst, const void *src, size t count, cudaMemcpyKind kind);

É possível configurar as dimensões e os tamanhos de cada *grid* e bloco utilizados na computação de cada conjunto de *threads*. Essas informações são passadas como argumentos, estruturados da seguinte maneira quando um *kernel* é invocado pela CPU:

```
<>< dimensão e tamanho de cada grid, dimensão e tamanho de cada bloco >>>
```

A dimensão é definida pela natureza do processamento. O tipo aceito por essa estrutura é um tipo de dado especial chamado dim3 que pode indicar até 3 dimensões.

Exemplos:

```
dim3 a(X); // cria uma variável de uma dimensão de tamanho X;
dim3 b(X, Y); // cria uma variável de duas dimensões com cada
dimensão com tamanho X e Y respectivamente;
dim3 c(X, Y, Z); // cria uma variável de três dimensões com cada
dimensão com tamanho X, Y e Z respectivamente;
```

Utilizar um inteiro tem o mesmo efeito de utilizar um dim3 inicializado com somente uma dimensão.

Executando CUDA

Os códigos de exemplo mostrados aqui são códigos CUDA escritos em C, mas CUDA possui interfaces para diversas outras linguagens como C++, C#, Fortran, Java, Python etc.

O código a seguir, disponível também no arquivo <u>dobra-valores.cu</u>, traduzido de [7], mostra um exemplo de programa CUDA mínimo que dobra cada elemento de um *array* de tamanho *N* utilizando a GPU.

```
#include <stdio.h>

// Exemplo quase mínimo de CUDA. Compile com:

// nvcc -o dobra-valores dobra-valores.cu

#define N 1000

// A função marcada com __global__ roda na GPU mas pode ser
```

```
chamada pela CPU
// Essa função multiplica os elementos
// de um array de inteiros por 2
// Toda computação pode ser pensada como rodar com
// uma thread por elemento do array com blockIdx.x
// identificando a thread
// A comparação i<N ocorre porque não é conveniente ter
// exatamente uma correspondência de 1 para 1 entre threads
// e elementos do array. Não é realmente necessário aqui
//
// Note como estamos misturando código de GPU e CPU no
// mesmo arquivo fonte. Uma forma alternativa de usar CUDA
// é manter o código C/C++ separado do código cuda
// compilar e carregar esse código dinamicamente em
// tempo de execução, um pouco semelhante a como shaders
// são compilados e carregados pelo código C/C++ no OpenGL
 global
void add(int *a, int *b) {
    int i = blockIdx.x;
    if (i<N) {
       b[i] = 2*a[i];
    }
}
int main() {
    // Cria um array na CPU.
    // ('h' indica host, por convenção, não é obrigatório)
    int ha[N], hb[N];
    // Cria um array correspondente na GPU.
    // ('d' indica device, por convenção, não é obrigatório)
    int *da, *db;
    cudaMalloc((void **)&da, N*sizeof(int));
    cudaMalloc((void **)&db, N*sizeof(int));
```

```
// Inicializa os dados na CPU.
    for (int i = 0; i < N; ++i) {
        ha[i] = i;
    }
    // Copia os dados para o array da GPU.
    cudaMemcpy(da, ha, N*sizeof(int), cudaMemcpyHostToDevice);
    // Inicia o código em GPU com N threads, uma por elemento do
array.
    add<<<N, 1>>>(da, db);
    // Copia o resultado do array da GPU para o da CPU.
    cudaMemcpy(hb, db, N*sizeof(int), cudaMemcpyDeviceToHost);
    for (int i = 0; i < N; ++i) {
        printf("%d\n", hb[i]);
    }
    // Libera o espaço na GPU.
    cudaFree(da);
    cudaFree (db);
    return 0;
}
```

Programas CUDA só rodam em GPUs da NVIDIA, por isso será mostrado passo a passo como executar programas CUDA em GPUs na nuvem, utilizando a plataforma Google Colab². Para acessar o Google Colab é necessário ter uma conta Google.

1) No Colab, crie um novo Notebook (*Arquivo* → *Novo notebook*):

² https://colab.research.google.com/

2) Altere o tipo de ambiente para GPU:

3) Clique em "Arquivos":

4) Selecione a opção "Fazer upload para o armazenamento da sessão":

- 5) Selecione o arquivo dobra-valores.cu.
- 6) Agora é possível fazer a compilação do programa. Para isso, é possível executar comandos com o padrão do *shell* do Linux iniciando por '!'. A figura a seguir mostra como é possível fazer a compilação de um arquivo .cu utilizando o compilador nvcc. Para compilar o arquivo dobra-valores.cu, é necessário usar o comando:

! nvcc dobra-valores.cu -o dobra-valores

7) E para executar o código, usa-se o comando! ./dobra-valores, semelhante ao que é feito na figura a seguir com um arquivo de teste chamado minimal sum.

8) A saída exibida é:

O código a seguir, disponível no arquivo <u>soma-elementos-arrays.cu</u> (adaptado de [8]), exemplifica o uso da função de endereçamento de memória unificado, fazendo uma única alocação de dados para o uso da CPU e da GPU:

```
#include "stdio.h"
#include "math.h"
// Kernel para somar dois elementos de um array
 global void add(int n, float *x, float *y) {
    /*
    como a quantidade de threads e blocos é personalizada,
   cada thread precisa saber exatamente qual parte do array
   deve pegar para fazer a computação
    */
    // o índice é dado pelo índice do bloco * dimensão do bloco *
indice da thread
    int index = blockIdx.x * blockDim.x + threadIdx.x;
    // o incremento é dado pela dimensão do bloco * dimensão do
grid
    int stride = blockDim.x * gridDim.x;
    for (int i = index; i < n; i += stride)</pre>
        y[i] = x[i] + y[i];
```

```
}
int main(void) {
    int N = 1 << 20;
    float *x, *y;
    // Aloca memória unificada, para uso da CPU e GPU
    cudaMallocManaged(&x, N * sizeof(float));
    cudaMallocManaged(&y, N * sizeof(float));
    // inicializa os arrays no host
    for (int i = 0; i < N; i++) {
        x[i] = 1.0f;
        y[i] = 2.0f;
    }
    // Roda o kernel em 1M elementos na GPU
    // define quantas threads por blocos
    int blockSize = 256;
    // define quantos blocos são necessários para 1M de elementos
    int numBlocks = (N + blockSize - 1) / blockSize;
    // executa na GPU definindo a quantidade de blocos e threads
(por bloco) utilizadas
    add<<<numBlocks, blockSize>>>(N, x, y);
    // Aguarda a GPU terminar a computação
    cudaDeviceSynchronize();
    // Exibe os valores calculados, todos devem ser 3.0
    for (int i = 0; i < N; i++) {
        printf("%f\n", y[i]);
    }
    // Libera a memória alocada
    cudaFree(x);
    cudaFree(y);
```

```
return 0;
}
```

Vídeos Sugeridos

- 1. CUDA Hardware
- 2. CUDA Programming

Observações

- Por vezes, a plataforma Google Colab pode apresentar instabilidade. Essas situações são imprevisíveis, não havendo o que o usuário possa fazer para contorná-las.
- Pode ser que o Google Colab exija uma configuração de localidade (locale) UTF-8 para executar comandos. Um erro pode ocorrer se a configuração estiver definida como ANSI_X3.4-1968, pois esta não suporta caracteres UTF-8. Para contornar este problema, muito comum ao digitar comandos como !lscpu e !nvidia-smi -q, é necessário alterar a codificação de caracteres para UTF-8. Nesse sentido, sugere-se digitar os comandos abaixo no início do notebook Colab:

```
import locale
locale.getpreferredencoding = lambda: "UTF-8"
```

Resumo

Neste documento foi apresentada brevemente a estrutura de uma GPU e suas características que por si só fazem com a GPU tenha uma grande poder computacional para realizar um tipo de processamento não só gráfico com múltiplos dados sendo estes independentes entre si, então foi apresentada a interface que permite desenvolver programas que utilizam essas características em placas da Nvidia, o CUDA, e por fim foi apresentado conceitos básicos sobre a implementação desses programa, exemplos, e uma maneira de executá-los em GPUs na nuvem.

Exercícios

- 1) A arquitetura da GPU é ideal para qual tipo de operação? Assinale a alternativa correta:
 - a) Múltiplas instruções com múltiplos dados;
 - b) Multiplus instruções com um dado;
 - c) Única instrução com múltiplos dados;
 - d) Única instrução com único dado.
- 2) Sobre GPUs, arquitetura e programas CUDA, analise as afirmações.
- I. Programas CUDA podem ser executados em qualquer GPU.
- II. A interface CUDA é responsável por organizar a execução das operações na GPU, mesmo que os parâmetros passados para execução do kernel, como número de threads e blocos não sejam compatíveis com a GPU do sistema.
- III. Existem funções oferecidas pela interface CUDA que só podem ser certas GPUs dentro do conjunto de GPUs que são compatíveis com CUDA.
- IV. Cada thread tem acesso a três memória diferentes, uma exclusiva dela, outra compartilhada entre as threads de um mesmo bloco e ou global, compartilhada por toda a GPU.

Quais estão corretas?

- a) I, II e IV.
- b) II, III e IV.
- c) II e IV.
- d) Somente IV.
- 3) Modifique o primeiro programa para utilizar a memória unificada e utilizar mais de uma thread para o processamento dos kernels. Quando mais de uma thread por bloco é utilizada, é preciso calcular a posição do dado que cada kernel precisa acessar de acordo com seu bloco e identificador.

Gabarito

- 1) c
- 2) c
- 3)

```
#include <stdio.h>
#define N 1000
_global__ void add(int *a, int *b)
    int index = blockIdx.x * blockDim.x + threadIdx.x;
    int stride = blockDim.x * gridDim.x;
    for (int i = index; i < N; i += stride)</pre>
        b[i] = 2 * a[i];
}
int main() {
    int *a, *b;
    cudaMallocManaged(&a, N * sizeof(float));
    cudaMallocManaged(&b, N * sizeof(float));
    for (int i = 0; i < N; ++i)
        a[i] = i;
    int blockSize = 256;
    int numBlocks = (N + blockSize - 1) / blockSize;
    add <<< blockSize, numBlocks >>> (a, b);
    cudaDeviceSynchronize();
    for (int i = 0; i < N; ++i)
        printf("%d\n", b[i]);
    cudaFree(a);
    cudaFree(b);
    return 0;
```

Referências

[1] AMD. AMD Introduces New AMD Ryzen Threadripper 7000 Series Processors and Ryzen Threadripper PRO 7000 WX-Series Processors for the Ultimate Workstation. Disponível em:

https://www.amd.com/en/newsroom/press-releases/2023-10-19-amd-introduces-new-amd-ryzen-threadripper-7000-ser.html. Acesso em: 06 ago. 2024.

[2] AMD. 4th Generation AMD EPYC™ Processors. Disponível em:

https://www.amd.com/en/products/processors/server/epyc/4th-generation-9004-and-8004-series.html. Acesso em: 06 ago. 2024.

[3] NVIDIA. GeForce RTX 4090. Disponível em:

https://www.nvidia.com/pt-br/geforce/graphics-cards/40-series/rtx-4090/. Acesso em: 06 ago. 2024.

- [4] GHORPADE, J. GPGPU Processing in CUDA Architecture. Advanced Computing: An International Journal, v. 3, n. 1, p. 105–120, 31 jan. 2012.
- [5] LIPPERT, A. NVIDIA GPU Architecture for General Purpose Computing. [s.l: s.n.]. Disponível em: https://www.cs.wm.edu/~kemper/cs654/slides/nvidia.pdf. Acesso em: 06 ago. 2024.
- [6] OH, Fred. What Is CUDA? NVIDIA Blog. Disponível em: https://blogs.nvidia.com/blog/what-is-cuda-2/. Acesso em: 06 ago. 2024.
- [7]. PIPONI, Dan. example.cu. Github. Disponível em:

https://gist.github.com/dpiponi/1502434. Acesso em: 06 ago. 2024.

[8]. HARRIS, Mark. An Even Easier Introduction to CUDA. Disponível em: https://developer.nvidia.com/blog/even-easier-introduction-cuda/. Acesso em: 06 ago. 2024.