MARK SCHEME

1.

Circle
One half line correct
Secondhalf line

(b) Shading correct region

(ii) (a) Rearrange
$$w = \frac{z-1}{z}$$
 to give $z = f(w)$ or $z-1 = f(w)$

$$(z = \frac{1}{1-w}, \Rightarrow) z-1 = \frac{w}{1-w}, \quad \text{or } |z-1| = |z||w| \Rightarrow |z||w| = 1$$
Completion: $(|z-1| = 1 \Rightarrow) |w| = |1-w| = |w-1| *$

A1

Correct line shown

Circle
One half line correct
Secondhalf line

A1

A1

(1)

A1

A1

Correct shading

Correct shading

Correct shading

Circle
One half line correct
Secondhalf line
B1

A1

A1

(2)

2. (a) $(\cos \theta + i \sin \theta)^5 = \cos 5\theta + i \sin 5\theta$ M1 $(\cos \theta + i \sin \theta)^5 = \cos^5 \theta + 5 \cos^4 \theta (i \sin \theta) + 10 \cos^3 \theta (i \sin \theta)^2$ + $10\cos^2\theta(i\sin\theta)^3$ + $5\cos\theta(i\sin\theta)^4$ + $(i\sin\theta)^5$ M1 A1 $\cos 5\theta = \cos^5 \theta - 10 \cos^3 \theta \sin^2 \theta + 5 \cos \theta \sin^4 \theta$ M1 $=\cos^5\theta - 10\cos^3\theta(1-\cos^2\theta) + 5\cos\theta(1-2\cos^2\theta+\cos^4\theta)$ M1 $= 16 \cos^5 \theta - 20 \cos^3 \theta + 5 \cos \theta$ (*) A1 cso (6)(b) $\cos 5\theta = -1 \text{ (or 1, or 0)}$ M1 $5\theta = (2n \pm 1)180^{\circ} \Rightarrow \theta = (2n \pm 1)36^{\circ}$ A1 $x = \cos \theta = -1, -0.309, 0.809$ M1 A1 (4) [10]

3.

(a)
$$\frac{r^2 - (r - 1)^2}{r^2 (r - 1)^2} = \frac{2r - 1}{r^2 (r - 1)^2}$$
(b)
$$\sum_{r=2}^{n} \frac{2r - 1}{r^2 (r - 1)^2} = \sum_{r=2}^{n} \frac{1}{(r - 1)^2} - \frac{1}{r^2}$$

$$= \frac{1}{1^2} - \frac{1}{2^2} + \frac{1}{2^2} - \frac{1}{3^2} + \dots + \frac{1}{(n - 1)^2} - \frac{1}{n^2}$$
(b)
$$= \frac{1}{1^2} - \frac{1}{2^2} + \frac{1}{2^2} - \frac{1}{3^2} + \dots + \frac{1}{(n - 1)^2} - \frac{1}{n^2}$$
(c) M1
$$= 1 - \frac{1}{n^2} \quad (*)$$
(d) A1 CSO (3) (5 marks)

1. (b)
$$\frac{dy}{dx} = x^2 - y^2 \Rightarrow \frac{d^2y}{dx^2} = 2x - 2y\frac{dy}{dx}$$
 M1 A1

$$\Rightarrow \frac{d^3y}{dx^3} = 2 - 2y\frac{d^2y}{dx^2} - 2\left(\frac{dy}{dx}\right)^2 \quad \text{allow at this stage}$$
 M1 A1 (4)
(c) $[y_{x=0} = 1, \left(\frac{dy}{dx}\right)_{x=0} = -1,] \quad \left(\frac{d^2y}{dx^2}\right)_{x=0} = 0 - 2(1)(-1) = 2$ B1

$$\left(\frac{d^3y}{dx^3}\right)_{x=0} = 2 - 2(-1)^2 - 2(1)(2) = -4$$
 B1
Maclaurin: $y = 1 - x + x^2 - \frac{2}{3}x^3$ M1 A1 (4)
[Alternative (c) $y = 1 + a_1x + a_2x^2 + a_3x^3$ [14]

$$\Rightarrow x_x^2 - (1 + a_1x + a_2x^2 + a_3x^3)^2 = a_1 + 2a_2x + 3a_3x^2$$
 B1

Compare coeffs $\Rightarrow a_1 = -1$; $a_2 = 1$, $a_3 = -\frac{2}{3}$. B1; M1 A1]

<u>5.</u>

Identifying as critical values $-\frac{1}{2}$, $\frac{2}{3}$	B1, B1	
Establishing there are no further critical values		
Obtaining $2x^2 - 2x + 2$	or equivalent M1	
$\Delta = 4 - 16 < 0$	A1	
Using exactly two critical values to obtain inequalities	M1	
$-\frac{1}{2} < x < \frac{2}{3}$	A1	
	/6 a.ula-	
	(6 marks	,
Identifying $x = -\frac{1}{2}$ and $x = \frac{2}{3}$ as vertical asymptotes	B1, B1)
Identifying $x = -\frac{1}{2}$ and $x = \frac{2}{3}$ as vertical asymptotes Two rectangular hyperbolae oriented correctly with respect to as in the correct half-planes.	B1, B1)
Two rectangular hyperbolae oriented correctly with respect to as	B1, B1	,
Two rectangular hyperbolae oriented correctly with respect to as in the correct half-planes.	B1, B1 symptotes M1	,

Question Number	Scheme	Marks
12. (a)	$v + x \frac{\mathrm{d}v}{\mathrm{d}x} = (4 + v)(1 + v)$	M1, M1
	$x\frac{\mathrm{d}v}{\mathrm{d}x} = v^2 + 5v + 4 - v$	A1
	$x\frac{\mathrm{d}v}{\mathrm{d}x} = (v+2)^2 *$	A1 (4)
(b)	$\int \frac{1}{(v+2)^2} dv = \int \frac{1}{x} dx$	B1, M1
	$-\frac{1}{2+v} = \ln x + c \qquad \text{must have } +$	M1 A1
	$2 + v = -\frac{1}{\ln x + c}$	M1
	$\mathbf{v} = -\frac{1}{\ln x + c} - 2$	A1 (5)
(c)	$y = -2x - \frac{x}{\ln x + c}$	B1 (1)
		(10 marks)

Question Number	Scheme		Marks	
	$z^2 = (3 - 3i)(3 - 3i) = -18i$	M1 A1	(2)	
(b)	$\frac{1}{z} = \frac{(3+3i)}{(3-3i)(3+3i)} = \frac{3+3i}{18} = \frac{1+i}{6}$ $ z = \sqrt{(9+9)} = \sqrt{18} = 3\sqrt{2}$ $ z = 18$ two	M1 A1	(2)	
(c)	$ z = \sqrt{(9+9)} = \sqrt{18} = 3\sqrt{2}$			
	z = 18 two correct	M1		
	$\left \frac{1}{z} \right = \sqrt{\frac{1}{18}} = \frac{1}{3\sqrt{2}} = \frac{\sqrt{2}}{6}$ all three	A1	(2)	
	correct			
(d)	$ \begin{array}{c} $			
	o × two correct	B1		
	$egin{array}{cccccccccccccccccccccccccccccccccccc$	B1	(2)	
	$\boldsymbol{\mathit{B}}$			
(e)	$\frac{OB}{OD} = 18, \qquad \frac{OA}{OC} = \frac{3\sqrt{2}}{\sqrt{2}/6} = 18$	M1 A1		
	$\angle AOB = \angle COD = 45$: similar	B1	(3)	
		(11	marks)	

Question Number	Scheme	Marks
`14. (a)	$y = \lambda x \cos 3x$	
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \lambda \cos 3x - 3\lambda x \sin 3x$	M1 A1
	$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = -3\lambda \sin 3x - 3\lambda \sin 3x - 9\lambda x \cos 3x$	A1
	$\therefore -6\lambda \sin 3x - 9\lambda x \cos 3x + 9\lambda x \cos 3x = -12 \sin 3x$	
	$\lambda = 2$ cso	A1 (4)
(b)	$\lambda^2 - 9 = 0$	M1
	$\lambda = (\pm)3i$	A1
	$\therefore y = A \sin 3x + B \cos 3x$ form	M1
	$\therefore y = A \sin 3x + B \cos 3x + 2x \cos 3x$	A1 ft on λ's (4)
(c)	$y=1, x=0 \implies B=1$	B1
	$\frac{\mathrm{d}y}{\mathrm{d}x} = 3A\cos 3x - 3B\sin 3x + 2\cos 3x - 6x\sin 3x$	M1 A1ft on λ 's
	$2 = 3A + 2 \implies A = 0$	
	$\therefore y = \cos 3x + 2x \cos 3x$	A1 (4)

Questio n Numbe r	Scheme	Marks
15. (a)	$\frac{1}{2}a^2\int 1+\cos^2\theta+2\cos\theta\ d\theta$	M1 A1correct with limits
	$= \frac{1}{2}a^2 \int 1 + \frac{\cos 2\theta + 1}{2} + 2\cos\theta d\theta$	M1 A1
	$= 2 \times \frac{1}{2} a^2 \left[\theta + \frac{\sin 2\theta}{4} + \frac{\theta}{2} + 2\sin \theta \right]_0^{\pi}$	A1
	$= a^2 \left[\frac{3\pi}{2} \right] = \frac{3\pi a^2}{2}$	A1 (6)
(b)	$x = a \cos \theta + a \cos^2 \theta$ $r \cos \theta$	M1
	$\frac{\mathrm{d}x}{\mathrm{d}\theta} = -a\sin\theta - 2a\cos\theta\sin\theta$	A1

		$\frac{\mathrm{d}x}{\mathrm{d}\theta} = 0 \Rightarrow \cos\theta = -\frac{1}{2}$		
		$d\theta$ finding θ	M1	
		$\theta = \frac{2\pi}{3} \text{ or } \theta = \frac{4\pi}{3}$		
		$r = \frac{a}{2}$ or $r = \frac{a}{2}$	M1	
		finding r		
		$A: \mathbf{r} = \frac{a}{2}, \boldsymbol{\theta} = \frac{2\pi}{3}$		
		$B: r = \frac{a}{2}, \ \theta = \frac{-2\pi}{3}$	A1	(5)
		both A and B		
(c)		$x = -\frac{1}{4}a$: $WX = 2a + \frac{1}{4}a = 2\frac{1}{4}a$	M1 A1	
	(d)	$WXYZ = \frac{27\sqrt{3}a^2}{8}$	B1 ft	(1)
	(e)	Area = $\frac{27\sqrt{3}}{8} \times 100 - \frac{3\pi \times 100}{2} = 113.3 \text{ cm}^2$	M1 A1	(2)
				(16 marks)