DeepMove: Predicting Human Mobility with Attentional Recurrent Networks

Jie Feng¹, Yong Li¹, Chao Zhang², Funing Sun³, Fanchao Meng³, Ang Guo³, Depeng Jin¹

Tsinghua University¹
University of Illinois at Urbana-Champaign²
Tencent Inc.³

Background

Human mobility prediction is of great importance for a lot of location-based applications

Background

 Estimating travel demand for Uber and Didi

Background

 Estimating travel demand for Uber and Didi

Mobility management in mobile cellular network

 Given a spatial-temporal points sequence (trajectory), predict the next spatial-temporal point of it

- Given a spatial-temporal points sequence (trajectory), predict the next spatial-temporal point of it
 - With the fixed temporal resolution, we only care about predicting the spatial context: location

- Given a spatial-temporal points sequence (trajectory), predict the next spatial-temporal point of it
 - With the fixed temporal resolution, we only care about predicting the spatial context: location
- We divide the whole trajectory of each person into two parts: current trajectory and trajectory history

- Given a spatial-temporal points sequence (trajectory), predict the next spatial-temporal point of it
 - With the fixed temporal resolution, we only care about predicting the spatial context: location
- We divide the whole trajectory of each person into two parts: current trajectory and trajectory history
 - predict the next location of the current trajectory with the help of current trajectory and trajectory history

Multi-level periodicity of human mobility: daily routines, weekend leisure, yearly festivals, and even other personal periodic activities

the sequential information influences the next mobility status

the sequential information influences the next mobility status

the periodical information takes effects

Challenges

- Multi-level periodicity of human mobility
 - daily routines, weekend leisure, yearly festivals and even other personal periodic activities

Challenges

- Multi-level periodicity of human mobility
 - daily routines, weekend leisure, yearly festivals and even other personal periodic activities
- Complex sequential transition regularities
 - time-dependent and high-order transitions in human mobility

Challenges

- Multi-level periodicity of human mobility
 - daily routines, weekend leisure, yearly festivals and even other personal periodic activities
- Complex sequential transition regularities
 - time-dependent and high-order transitions in human mobility
- Heterogeneity and sparsity of collected data
 - low-sampling and random-sampling nature in the data recording human mobility

Recurrent Module

Simple Model

Simple Model

DeepMove

DeepMove

DeepMove-Multi-modal Embedding

- Multi-modal Embedding
 - one-hot encoding

 Location, Time, User-ID
 - sparse linear layers
 - concatenate layer

DeepMove-Multi-modal Embedding

DeepMove-Recurrent Network

DeepMove-Recurrent Network

- Candidate Generator
 - MLP-based Generator
 - RNN-based Generator
- Attention Selector
 - Score Layer for "correlation"
 - Soft-max Layer
 - Weighted Sum Layer

- Candidate Generator
 - MLP-based Generator
 - RNN-based Generator
- Attention Selector
 - Score Layer for "correlation"
 - Soft-max Layer
 - Weighted Sum Layer

- Candidate Generator
 - MLP-based Generator
 - RNN-based Generator
 - Attention Selector

- Candidate Generator
 - MLP-based Generator
 - RNN-based Generator
 - Attention Selector

Embedded Trajectory History

- Candidate Generator
 - MLP-based Generator
 - RNN-based Generator
 - Attention Selector

- Attention Selector
 - Score Layer for "correlation"
 - Soft-max + Weighted Sum

- Candidate Generator
- Attention Selector
 - Score Layer for "correlation"
 - Soft-max + Weighted Sum

- Candidate Generator
- Attention Selector
 - Score Layer for "correlation"
 - Soft-max + Weighted Sum

- Candidate Generator
- Attention Selector
 - Score Layer for "correlation"
 - Soft-max + Weighted Sum

- Candidate Generator
- Attention Selector
 - Score Layer for "correlation"
 - Soft-max + Weighted Sum

- Candidate Generator
- Attention Selector
 - Score Layer for "correlation"
 - Soft-max + Weighted Sum

DeepMove-Prediction Module

- Prediction Module
 - concatenate + FCN + soft-max
 - Input: vector representations of next location
 - Output: probability distribution of next location

DeepMove-Prediction Module

Datasets

Dataset	Foursquare	Mobile Application	Cellular Network
City	New York	Beijing	Shanghai
Duration	1 year	1 month	1 month
Users	15639	5000	1075
Records	293559	15007511	491077
Locaitons	43379	31522	17785
Loc./User	40	48	40

Table 1: Basic statistics of mobility datasets.

Datasets

Dataset	Foursquare	Mobile Application	Cellular Network
City	New York	Beijing	Shanghai
Duration	1 year	1 month	1 month
Users	15639	5000	1075
Records	293559	15007511	491077
Locaitons	43379	31522	17785
Loc./User	40	48	40

Table 1: Basic statistics of mobility datasets.

Baselines

- Markov: widely used mobility model working with state transition matrix
- **PMM:** spatiotemporal mixture model with considering periodicity
- RNN-based: simple version of our propose model without attention

Quantitative Evaluation

(a) top-1 prediction accuracy

(b) top-5 prediction accuracy

Quantitative Evaluation

(a) top-1 prediction accuracy

(b) top-5 prediction accuracy

Quantitative Evaluation

Our model outperforms than all three baselines by 10%

Visualize the attention weights from historical attention module.

Visualize the attention weights from historical attention module.

1. Align these weights with their timestamp

Visualize the attention weights from historical attention module.

- 1. Align these weights with their timestamp
- 2. Obtain the **average** value of these weights from different trajectory

Visualize the attention weights from historical attention module.

- 1. Align these weights with their timestamp
- 2. Obtain the **average** value of these weights from different trajectory

Deeper green means the larger weight

Visualize the attention weights from historical attention module.

- 1. Align these weights with their timestamp
- 2. Obtain the **average** value of these weights from different trajectory

Deeper green means the larger weight

1. Weekly regularity: comparing four matrix

Visualize the attention weights from historical attention module.

- 1. Align these weights with their timestamp
- 2. Obtain the **average** value of these weights from different trajectory

Deeper green means the larger weight

1. Weekly regularity: comparing four matrix

Visualize the attention weights from historical attention module.

- 1. Align these weights with their timestamp
- 2. Obtain the **average** value of these weights from different trajectory

Deeper green means the larger weight

- 1. Weekly regularity: comparing four matrix
- 2. Daily regularity: dive into specific matrix

Visualize the attention weights from historical attention module.

- 1. Align these weights with their timestamp
- 2. Obtain the **average** value of these weights from different trajectory

Deeper green means the larger weight

- 1. Weekly regularity: comparing four matrix
- 2. Daily regularity: dive into specific matrix

(a) sampling strategy

(b) user embedding

(a) sampling strategy

(b) user embedding

The average sampling mechanism performs best.

The average sampling mechanism performs best.

The average sampling mechanism performs best.

The historical trajectory can be useful to identify person.

horizontal-axis: bigger entropy/explore/rg means more active.

horizontal-axis: bigger entropy/explore/rg means more active.

horizontal-axis: bigger entropy/explore/rg means more active.

Our model performs better for these active moving users.

We propose DeepMove model

Interesting future directions

- We propose DeepMove model
 - an attentional recurrent neural network model for predicting human mobility from **lengthy and sparse trajectories**.

Interesting future directions

- We propose DeepMove model
 - an attentional recurrent neural network model for predicting human mobility from **lengthy and sparse trajectories**.
 - offer an easy-to-interpret way to understand which historical activities are emphasized in the mobility prediction process.
- Interesting future directions

We propose DeepMove model

- an attentional recurrent neural network model for predicting human mobility from **lengthy and sparse trajectories**.
- offer an easy-to-interpret way to understand which historical activities are emphasized in the mobility prediction process.

Interesting future directions

• Considering **external information** like Point of Interest to enable semantic mobility prediction.

We propose DeepMove model

- an attentional recurrent neural network model for predicting human mobility from **lengthy and sparse trajectories**.
- offer an easy-to-interpret way to understand which historical activities are emphasized in the mobility prediction process.

Interesting future directions

- Considering **external information** like Point of Interest to enable semantic mobility prediction.
- Accelerating the model training and improve the performance on dense duplicate trajectory.

Thanks!

Jie Feng feng-j16@mails.tsinghua.edu.cn

In the near future, codes will be released in : https://github.com/vonfeng/DeepMove