Discrete Mathematics 3. Relations

Artificial Intelligence & Computer Vision Lab School of Computer Science and Engineering Seoul National University

Binary Relations

Definition:

Let A and B be any two sets. A binary relation R from A to B is a subset of $A \times B$.

The notation aRb means $(a,b) \in R$.

Example:

$$a \le b$$
 means $(a,b) \in \le$

where \leq denotes the relation of *partial ordering*.

Complementary Relations

Definition:

Let $R \subseteq A \times B$ be any binary relation. Then, R, the *complement* of R, is the binary relation defined by __

 $\overline{R} = \{(a,b) \mid (a,b) \notin R\} = (A \times B) - R$

Note that the complement of R is R.

Inverse Relations

Definition:

An inverse (converse) relation of a binary relation $R \subseteq A \times B$, denoted by $R^{-1}(R^c)$, is defined to be $R^{-1} = \{(b, a) \mid (a, b) \in R\}$.

Theorem:

- 1. $(R_1 \cup R_2)^{-1} = R_1^{-1} \cup R_2^{-1}$
- 2. $(R_1 \cap R_2)^{-1} = R_1^{-1} \cap R_2^{-1}$

Relations on a Set

Definition:

- 1. A (binary) relation from a set *A* to itself is called a relation *on* the set *A*.
- 2. The *identity relation* I_A on a set A is the set, $I_A = \{(a,a) | a \in A\}.$

Properties of Relations

Definition:

- 1. A relation R on A is reflexive if for every a in A, $(a, a) \in R$.
- 2. A relation R on A is *irreflexive* if for every a in A, $(a, a) \notin R$.
- 3. A relation R on A is *symmetric* if for every a and b in A, if $(a,b) \in R$, then $(b,a) \in R$.
- 4. A relation R on A is antisymmetric if for every a and b in A, if $(a,b) \in R$ and $(b,a) \in R$, then (a=b).
- 5. A relation R on A is asymmetric if for every a and b in A, if $(a,b) \in R$, then $(b,a) \notin R$.
- 6. A relation R on A is *transitive* if for every a, b, and c in A, if $(a,b) \in R$ and $(b,c) \in R$, then $(a,c) \in R$.

Note "irreflexive" ≠ "not reflexive"!

Composite Relations

Definition:

Let $R \subseteq A \times B$, and $S \subseteq B \times C$. Then the *composite* of R and S, denoted by $R \circ S$, is defined to be

$$R \circ S = \{(a,c) \mid (a,b) \in R \land (b,c) \in S \text{ for some } b \text{ in } B\}$$

Definition:

The n^{th} power R^n of a relation R on a set A can be defined recursively by $R^{n+1} = R^n \circ R$ for all $n \ge 0$ where $R^0 = I_A$.

Theorem:

Let *R* be a relation. Then

- 1. $R^n \circ R^m = R^{n+m}$
- $2. \quad (R^n)^m = R^{nm}$

Theorem:

Let R_1 , R_2 , and R_3 be relations on a set A. Then

- 1. $R_1 \circ (R_2 \cap R_3) \subseteq (R_1 \circ R_2) \cap (R_1 \circ R_3)$
- 2. $R_1 \circ (R_2 \cup R_3) = (R_1 \circ R_2) \cup (R_1 \circ R_3)$

Proof of
$$R_1 \circ (R_2 \cap R_3) \subseteq (R_1 \circ R_2) \cap (R_1 \circ R_3)$$
:

For arbitrary element $\langle x,y \rangle$, let $\langle x,y \rangle \in R_1 \circ (R_2 \cap R_3) \cdots$ (1)

Then by definition of \circ , $\langle x,z\rangle \in R_1$ and $\langle z,y\rangle \in R_2 \cap R_3$ for some z.

By definition of \cap , $\langle x,z \rangle \in R_1$ and $(\langle z,y \rangle \in R_2 \text{ and } \langle z,y \rangle \in R_3)$

By idempotent equivalence, $(\langle x,z\rangle \in R_1 \text{ and } \langle x,z\rangle \in R_1)$ and

$$(\langle z,y\rangle \in R_2 \text{ and } \langle z,y\rangle \in R_3)$$

By associative and commutative equivalences,

$$(< x, z > \in R_1 \text{ and } < z, y > \in R_2) \text{ and } (< x, z > \in R_1 \text{ and } < z, y > \in R_3)$$

By definition of \circ , $(\langle x,y \rangle \in R_1 \circ R_2)$ and $(\langle x,y \rangle \in R_1 \circ R_3)$

By definition of \cap , $\langle x,y \rangle \in R_1 \circ R_2 \cap R_1 \circ R_3 \cdots$ (2)

From (1) and (2), by definition of \subseteq , $R_1 \circ (R_2 \cap R_3) \subseteq (R_1 \circ R_2) \cap (R_1 \circ R_3)$

```
Proof of R_1 \circ (R_2 \cup R_3) = (R_1 \circ R_2) \cup (R_1 \circ R_3):
       For arbitrary element \langle x,y \rangle, let \langle x,y \rangle \in R_1 \circ (R_2 \cup R_3) \cdots (1)
Then by definition of \circ, \langle x,z\rangle \in R_1 and \langle z,y\rangle \in R_2 \cup R_3 for some z.
By definition of \bigcup, \langle x,z \rangle \in R_1 and (\langle z,y \rangle \in R_2) or \langle z,y \rangle \in R_3
By distributive equivalence, (\langle x,z\rangle \in R_1 \text{ and } \langle z,y\rangle \in R_2) or
                                                                 (\langle x,z\rangle \in R_1 \text{ and } \langle z,y\rangle \in R_3)
By definition of \circ, (\langle x,y \rangle \in R_1 \circ R_2) or (\langle x,y \rangle \in R_1 \circ R_3)
By definition of \bigcup, \langle x,y \rangle \in (R_1 \circ R_2) \cup (R_1 \circ R_3) \cdots (2)
From (1) and (2), by definition of \subseteq,
                                      R_1 \circ (R_2 \cup R_3) \subseteq (R_1 \circ R_2) \cup (R_1 \circ R_3) \cdots (3)
```

For arbitrary element $\langle x,y \rangle$, let $\langle x,y \rangle \in (R_1 \circ R_2) \cup (R_1 \circ R_3) \cdots$ (4) By definition of \cup , $\langle x,y \rangle \in R_1 \circ R_2$ or $\langle x,y \rangle \in R_1 \circ R_3$ By definition of \circ , $(\langle x,z \rangle \in R_1 \text{ and } \langle z,y \rangle \in R_2 \text{ for some z})$ or $(\langle x,w \rangle \in R_1 \text{ and } \langle x,y \rangle \in R_2 \cup R_3 \text{ for the set } R_3)$ or $(\langle x,w \rangle \in R_1 \text{ and } \langle x,y \rangle \in R_2 \cup R_3 \text{ for the set } R_2)$ By definition of \circ , $(\langle x,y \rangle \in R_1 \circ (R_2 \cup R_3))$ or $(\langle x,y \rangle \in R_1 \circ (R_2 \cup R_3))$

By idempotent equivalence, $\langle x,y \rangle \in R_1 \circ (R_2 \cup R_3) \cdots$ (5)

From (4) and (5), by definition of \subseteq ,

$$(R_1 \circ R_2) \cup (R_1 \circ R_3) \subseteq R_1 \circ (R_2 \cup R_3) \cdots (6)$$

From (3) and (6), by definition of =, $R_1 \circ (R_2 \cup R_3) = (R_1 \circ R_2) \cup (R_1 \circ R_3)$

Theorem:

Let R be a relation on a set A, i.e. $R \subseteq A \times A$, and I_A be a identity relation on a set A, $(I_A = \{\langle x, x \rangle | x \subseteq A\})$. Then the following holds:

- 1. R is reflexive iff $I_A \subseteq R$
- 2. R is *irreflexive* iff $I_A \cap R = \emptyset$
- 3. R is symmetric iff $R = R^{-1}$
- 4. R is asymmetric iff $R \cap R^{-1} = \emptyset$
- 5. R is antisymmetric iff $R \cap R^{-1} \subseteq I_A$
- 6. R is transitive iff $R \circ R \subseteq R$

Walk, path, cycle, loop, sling

Definition:

Given a directed graph G=<N, V> where N is a set of nodes and V is a set of edges,

- 1. A walk is a sequence $x_0, x_1, ..., x_n$ of the vertices of a directed graph such that $x_i x_{i+1}, 0 \le i \le n-1$, is an edge.
- 2. The *length of a walk* is the number of edges in the walk.
- 3. If a walk holds $x_i \neq x_j$ ($i \neq j$) i, j = 0, ..., n, (i.e., no edge is repeated), the walk is called a *path*.
- 4. If a walk holds $x_i \neq x_j$ ($i \neq j$) i, j = 0, ..., n, except $x_0 = x_n$, the walk is called a *cycle*.
- 5. A *loop* is a cycle of length one.
- 6. A *sling* is a cycle of length two.

Theorem:

Given a directed graph G=<N, R> where N is a set of nodes and R is a set of edges,

- 1. R is *reflexive* iff G has a loop at every node.
- 2. R is *irreflexive* iff G has no loop at any node.
- 3. *R* is *symmetric* iff if *G* has a walk of length one between two distinct nodes, then it has a sling between them.
- 4. *R* is *asymmetric* iff if *G* has a walk of length one between two distinct nodes, then it has no sling between them and no loop at any node.
- 5. *R* is *antisymmetric* iff if *G* has a walk of length one between two distinct nodes, then it has no sling between them.
- 6. R is *transitive* iff if G has a walk of length two between two nodes, then it has a walk of length one between them.

Digraph Reflexive, Symmetric

It is extremely easy to recognize the reflexive/irreflexive/ symmetric/antisymmetric properties by graph inspection.

Reflexive: Every node has a loop

Irreflexive:
No node
has a loop

Symmetric: Every link is bidirectional

Antisymmetric:
No link is
bidirectional

Closures of Relations

Definition:

For any property *X*, the "*X* closure" of a set *R* is defined as the "smallest" superset of *R* that has the given property.

Theorem:

- 1. The *reflexive closure* of a relation R on A is obtained by adding (a,a) to R for each $a \in A$, i.e., $r(R) = R \cup I_A$.
- 2. The *symmetric closure* of R on A is obtained by adding (b,a) to R for each (a,b) in R, i.e., $s(R) = R \cup R^{-1}$.
- 3. The *transitive closure* or *connectivity relation* of R on A is obtained by repeatedly adding (a,c) to R for each (a,b),(b,c) in R, *i.e.*, $t(R) = \bigcup_{n \neq 1}^{\infty} R^n$

Proof of
$$t(R) = \bigcup_{i=1}^{\infty} R^{i}$$

(1) Show that $\bigcup_{i=1}^{\infty} R^i \subseteq t(R)$.

By induction it is shown that $R^n \subseteq t(R)$ for every $n \ge 1$.

1. (Basis: *n*=1)

By definition of transitive closure t(R), $R \subseteq t(R)$.

2. (Induction: Assuming $R^n \subseteq t(R)$ holds for n=k, show that it holds for n=k+1)

Let $\langle a,b\rangle \in R^{k+1}$. Since $R^{k+1}=R^k \circ R$, there exists some $c \in A$ such that $\langle a,c\rangle \in R^k$ and $\langle c,b\rangle \in R$. By induction hypothesis that $R^k \subseteq t(R)$ and basis that $R \subseteq t(R)$, $\langle a,c\rangle \in t(R)$ and $\langle c,b\rangle \in t(R)$. Since t(R) is transitive, $\langle a,b\rangle \in t(R)$. Thus $R^{k+1} \subseteq t(R)$.

Since $R^n \subseteq t(R)$ for every $n \ge 1$, $\bigcup_{i=1}^{\infty} R^i \subseteq t(R)$.

•

(2) Show that $t(R) \subseteq \bigcup_{i=1}^{\infty} R^{i}$.

Claim that $\bigcup_{i=1}^{\infty} R^i$ is transitive:

Let $\langle a,b \rangle$ and $\langle b,c \rangle$ be arbitrary elements of $\bigcup_{i=1}^{\infty} R^{i}$.

Then for some integers $n \ge 1$ and $m \ge 1$, $\langle a,b \rangle \in R^n$ and $\langle b,c \rangle \in R^m$. By definition of \circ , $\langle a,c \rangle \in R^n \circ R^m$. Since $R^n \circ R^m = R^{n+m}$ by the previous theorem, $\langle a,c \rangle \in \bigcup_{i=1}^{\infty} R^i$. Thus $\bigcup_{i=1}^{\infty} R^i$ is transitive.

Since $\bigcup_{t=1}^{\infty} R^{i}$ is a transitive relation which contains R and t(R) is the smallest transitive relation containing R, it follows that $t(R) \subseteq \bigcup_{i=1}^{\infty} R^{i}$.

From (1) & (2), by definition of =, $t(R) = \bigcup_{i=1}^{\infty} R^i$.

Equivalence Relations

Definition:

A relation *R* on a set *A* is called an *equivalence* relation if it is reflexive, symmetric, and transitive.

Equivalence Classes

Definition:

Let R be any equivalence relation on a set A. For each a in A, the equivalence class of a with respect to R, denoted by $[a]_{R}$, is

$$[a]_R = \{ b \mid \langle a,b \rangle \in R \}$$

Examples:

- 1. "Strings a and b are the same length."
 - [a] = the set of all strings of the same length as a.
- 2. "Integers a and b have the same absolute value."
 - $[a] = \text{the set } \{a, -a\}$
- 3. "Real numbers a and b have the same fractional part $(i.e., a b \in \mathbf{Z})$."
 - [a] = the set $\{..., a-2, a-1, a, a+1, a+2, ...\}$
- 4. "Integers *a* and *b* have the same residue modulo *m*." (for a given *m*>1)
 - [a] = the set $\{..., a-2m, a-m, a, a+m, a+2m, ...\}$

Theorem:

Let *R* be an equivalence relation on a set *A*.

- 1. For every x in A, $x \in [x]_R$.
- 2. If $\langle x, y \rangle \in R$, then $[x]_R = [y]_R$.

Theorem:

Let *R* be an equivalence relation on a set *A*.

If
$$\langle x, y \rangle \notin R$$
, then $[x]_R \cap [y]_R = \emptyset$.

Partition and Covering of a Set

Definition:

Let *S* be a given set and $\pi = \{A_1, A_2, ..., A_m\}$ where each A_i , i=1, ..., m, is a non-empty subset of *S* and $\bigcup_{i=1}^{m} A_i = S.$

- 1. Then the set π is called a *covering* of S, and the sets $A_1, A_2, ..., A_m$ are said to *cover* S.
- 2. If the elements of π , which are subsets of S, are mutually disjoint, then π is called a *partition* of S, and the sets $A_1, A_2, ..., A_m$ are called the *blocks* of the partition.

Quotient Set

Definition:

Let R be an equivalence relation on a set A. Then $A/R = \{[x]_R | x \in A\}$ is called a *quotient set of A modulo R*.

Theorem:

Let R be an equivalence relation on a set A. Then the quotient set of A modulo R, $A/R = \{[x]_R | x \in A\}$, is a partition of A.

Relation induced by the Partition

Definition:

Let A be a set. Let $\pi = \{A_1, A_2, ..., A_n\}$ be a partition of A. R_{π} is a relation induced by the partition π and defined as follows.

$$R_{\pi} = \{ \langle x, y \rangle | (x \in A_i) \land (y \in A_i) \text{ for some } i \}$$

Theorem:

Let A be a set. Let $\pi = \{A_1, A_2, ..., A_n\}$ be a partition of A and R_{π} be the relation induced by the partition π . Then, R_{π} is an equivalence relation on A.

Refinement

Definition:

Let π_1 and π_2 be two partitions of a set A. π_2 is a *refinement* of π_1 , (π_2 refines π_1), if for every block B_i in π_2 , there exists some block A_j in π_1 such that $B_i \subseteq A_j$.

Theorem:

Let π and π' be two partitions of a nonempty set A and let R_{π} and $R_{\pi'}$ be the equivalence relations induced by π and π' respectively. Then π' refines π if and only if $R_{\pi'} \subseteq R_{\pi}$.

```
Proof
// \pi' refines \pi if R_{\pi'} \subseteq R_{\pi} //
Let B_i \in \pi'. .... (1)
Then for every x and y in B_i, \langle x, y \rangle \in R_{\pi'} by definition of R_{\pi'}. From the
     given condition that R_{\pi'} \subseteq R_{\pi}, \langle x, y \rangle \in R_{\pi} by definition of \subseteq. By
     definition of R_{\pi}, then there exists some A_i in \pi such that x and y in A_i,
     and thus B_i \subseteq A_i by definition of \subseteq. .... (2)
From (1) & (2), by definition of refinement, \pi' refines \pi.
// \pi' refines \pi only if R_{\pi'} \subseteq R_{\pi} //
Let \langle x, y \rangle \in R_{\pi'}. .... (3)
Then by definition of R_{\pi'}, there exists some B_i in \pi' such that x and y in B_i.
     From the given condition that \pi' refines \pi, there exists some A_i in \pi
     such that B_i \subseteq A_j and thus x and y in A_j by definition of \subseteq. By
     definition of R_{\pi}, then \langle x, y \rangle \in R_{\pi}. .... (4)
From (3) & (4), by definition of \subseteq, R_{\pi} \subseteq R_{\pi}.
```

Partial Orderings

Definition:

- 1. A relation R on a set S is called a partial ordering or partial order iff it is reflexive, antisymmetric, and transitive.
- 2. A set *S* together with a *partial ordering R* is called a *partially ordered set*, or *poset*, denoted by (*S*, *R*).

Example:

Consider the "greater than or equal to" relation \geq (defined by $\{(a, b) \mid a \geq b\}$). Is \geq a partial ordering on the set of integers?

Proof:

- 1. \geq is reflexive, because $a \geq a$ for every integer a.
- 2. \geq is antisymmetric, because if $a \geq b \land b \geq a$, then a=b.
- 3. \geq is transitive, because if $a \geq b$ and $b \geq c$, then $a \geq c$.

Consequently, (\mathbf{Z}, \geq) is a partially ordered set.

Example:

Is the "inclusion relation" \subseteq on the power set of a set S a partial ordering?

Proof:

- 1. \subseteq is reflexive, because $A \subseteq A$ for every set A.
- 2. \subseteq is antisymmetric, because if $A \subseteq B \land B \subseteq A$, then A = B.
- 3. \subseteq is transitive, because if $A \subseteq B$ and $B \subseteq C$, then $A \subset C$.

Consequently, $(\mathcal{O}(S), \subseteq)$ is a partially ordered set

Partially Ordered Sets

In a poset, the notation $a \le b$ denotes that $(a, b) \in \subseteq$.

Note that the symbol \leq is used to denote the relation in any poset, not just the "less than or equal" relation. The notation a < b denotes that $a \leq b$, but $a \neq b$. If a < b, we say "a is less than b" or "b is greater than a".

For two elements a and b of a poset (S, \leq) , it is possible that neither $a \leq b$ nor $b \leq a$. For instance, in $(\mathcal{D}(\mathbf{Z}), \subseteq)$, $\{1, 2\}$ is not related to $\{1, 3\}$, and vice versa, since neither is contained within the other.

Definition:

- 1. The elements a and b of a poset (S, \leq) are called comparable if either $a \leq b$ or $b \leq a$.
- 2. The elements a and b of a poset (S, \leq) are called incomparable if neither $a \leq b$ nor $b \leq a$.

Definition:

If (S, \leq) is a poset and every two elements of S are comparable, (S, \leq) is called a *totally ordered* or *linearly ordered set*, and \leq is called a *total order* or *linear order*. A totally ordered set is also called a *chain*.

Example 1: Is (\mathbf{Z}, \leq) a totally ordered poset? Yes, because $a \leq b$ or $b \leq a$ for all integers a and b.

Example 2: Is (**Z**⁺, |) a totally ordered poset? No, because it contains incomparable elements such as 5 and 7.

Hasse Diagram

Definition:

Let G be a digraph representing a poset, (A, \leq) . The Hasse diagram of (A, \leq) is constructed from G by

- 1. All loops are omitted.
- 2. An arc is not present in a Hasse diagram if it is implied by the transitivity of the relation.
- 3. All arcs point upward and arrow heads are not used.

Example of Hasse Diagram

 $\{\langle a, b \rangle \mid a \leq b \}$ on $\{1, 2, 3, 4\}$

Greatest Elements and Least Elements

Definition:

Let (A, \leq) be a poset and B be a subset of A.

- 1. An element $a \in B$ is a greatest element of B iff for every element $a' \in B$, $a' \le a$.
- 2. An element $a \in B$ is a least element of B iff for every element $a' \in B$, $a \le a'$.

Theorem:

Let (A, \leq) be a poset and $B \subseteq A$. if a and b are greatest (least) elements of B, then a=b

Least Upper Bound (lub)

Definition:

Let (A, \leq) be a poset and B be a subset of A.

- 1. An element $a \in A$ is an *upper bound* for B iff for every element $a' \in B$, $a' \le a$.
- 2. An element $a \in A$ is a *least upper bound* (*lub*) for B iff a is an upper bound for B and for every upper bound a' for B, $a \le a'$.

Greatest Lower Bound (glb)

Definition:

Let (A, \leq) be a poset and B be a subset of A.

- 1. An element $a \in A$ is a *lower bound* for B iff for every element $a' \in B$, $a \le a'$.
- 2. An element $a \in A$ is a *greatest lower bound* (*glb*) for *B* iff a is a lower bound for *B* and for every lower bound a' for B, $a' \le a$.

lub and glb

Theorem:

Let (A, \leq) be a poset and $B \subseteq A$.

- 1. If b is a greatest element of B, then b is a lub of B.
- 2. If b is an upper bound of B and $b \in B$, then b is a greatest element of B.

Theorem:

Let (A, \leq) be a poset and $B \subseteq A$.

If a least upper bound (or a greatest lower bound) for B exists, then it is unique.

Lattices

Definition:

A poset, (A, \leq) , is a *lattice* if every pair of elements in A has a *lub* and a *glb*.

Theorem:

Let $\langle L, \leq \rangle$ be a lattice. If x^*y (x+y) denotes the glb (lub) for $\{x, y\}$, then the following holds: for any a, b, and c in L,

(i)
$$a*a=a$$
 (i) $a+a=a$ (idempotent)

(ii)
$$a*b=b*a$$
 (ii') $a+b=b+a$ (commutative)

(iii)
$$(a*b)*c = a*(b*c)$$
 (iii') $(a+b)+c = a+(b+c)$ (associative)

(iv)
$$a*(a+b)=a$$
 (iv') $a+(a*b)=a$ (absorption)

```
Proof of a*(a+b)=a:
//Show a*(a+b) \le a //
a*(a+b) is a glb of \{a, a+b\}
    By definition of glb, a*(a+b) is a lb of \{a, a+b\}
    By definition of lb, a*(a+b) \le a and a*(a+b) \le a+b .... (1)
//Show a \le a*(a+b) //
 (a+b) is a lub of \{a,b\}
    By definition of lub, (a+b) is a ub of \{a, b\}
    By definition of ub, a \le (a+b) and b \le (a+b) .... (2)
    Since \leq is reflexive, a \leq a \cdots (3)
    From (2) & (3), a is a lb of \{a, a+b\} ..... (4)
    However, a*(a+b) is a glb of \{a, a+b\} ···· (5)
    By definition of glb, from (4) & (5), a \le a*(a+b) \cdots (6)
 Since \leq is antisymmetric, from (1) & (6), a*(a+b)=a
```

Exercise

1. For each of the following relation *R* on set *A*, state whether or not *R* is reflexive, irreflexive, symmetric, asymmetric, antisymmetric, and transitive.

(a)
$$A = \{1, 2, ..., 9\}$$

 $R = \{\langle x, y \rangle \mid x+y=10\}$

(b) A = a set of real numbers

$$R = \{ \langle x, y \rangle \mid |x| \le |y| \}$$

(c) A = a set of natural numbers

$$R = \{ \langle x, y \rangle \mid x - y = 2k, \ k \in A \}$$

2. Suppose that *R* and *S* are reflexive relations on a set *A*.

Prove or disprove each of theses statements

- (a) $R \cup S$ is reflexive
- (b) $R \cap S$ is reflexive

3. Show that the relation R on a set A is symmetric if and only if $R=R^{-1}$, where R^{-1} is the inverse relation.

- 4. Let R_1 and R_2 be arbitrary relations on a set A. Prove or disprove the following assertions.
 - (a) If R_1 and R_2 are reflexive, then $R_1 {}^{\circ}R_2$ is reflexive.
 - (b) If R_1 and R_2 are transitive, then $R_1 {}^{\circ}R_2$ is transitive.
 - (c) If R_1 and R_2 are symmetric, then $R_1 {}^{\circ}R_2$ is symmetric.

- 5. Show that the relation R on a set A is symmetric if and only if $R=R^{-1}$, where R^{-1} is the inverse relation.
- 6. Let *A* be a set of ordered pairs of positive integers and *R* be a relation on A such that $\langle (x,y),(u,v)\rangle \in R$ if and only if x+v=y+u. Determine whether or not *R* is an equivalence relation.
- 7. Let R_1 and R_2 be two equivalence relations on a nonempty set A. Prove or disprove the following :
 - (a) $R_1 \cup R_2$ an equivalence relation.
 - (b) $R_1 \cap R_2$ an equivalence relation.

- 8. If *R* is a partial ordering relation on a set *X* and $A \subseteq X$, show that $R \cap (A \times A)$ is a partial ordering on *A*.
- 9. Let *S* be a set of all partitions defined on a nonempty set *A*. The relation *R* on a set *S* is defined to be $\langle \pi_1, \pi_2 \rangle \subseteq R$ if and only if π_1 refines π_2 (π_1 is the refinement of π_2).
 - (a) Show that *R* is a partial ordering.
 - (b) Is a p.o. set *<S*, *R>* a lattice? If yes, prove it. Otherwise, explain why.

- 10. Let $\langle A, \leq \rangle$ be a lattice. Prove that for every x, y, and z in A,
 - (a) $x^*(y^*z) = (x^*y)^*z$
 - (b) x + (x * y) = x

where x*y is glb(x,y) and x+y is lub(x,y).

- 11. Let $\langle E(A), \subseteq \rangle$ be a p.o.set where E(A) is a set of all equivalence relations defined on a set A.
 - (a) For every x and y in E(A), is $x \cap y$ the glb of $\{x,y\}$?
 - (b) For every x and y in E(A), is $x \cup y$ the lub of $\{x,y\}$?