Laboratorio 9 - Electrónica Digital 1

Ejercicio 1 - Flip Flop tipo D de 1 bit

Este ejercicio consistió en la construcción de un Flip Flop tipo D de 1 bit, el cual debía contar con un enable, que al estar encendido, permitiera pasar la señal de entrada. A partir de este Flip Flop tipo D de 1 bit, se partió para la construcción de un Flip Flop tipo D de 2 y 4 bits.

Módulo Flip Flop tipo D

Módulo testbench Flip Flop tipo D

Ejercicio 1 - Flip Flops tipo D					
Reset	Enable	D	Q		
0	0	0000	xxxx		
1	0	0000	0000		
0	0	0001	0000		
0	1	1000	0001		
0	0	0110	0001		
0	0	0001	0001		
0	0	0101	0001		
0	1	1001	0101		
0	1	0110	0101		
0	1	0001	0110		
0	1	0011	0110		
1	0	0100	0000		
0	1	1000	0000		
0	1	1000	1000		

Tabla 1

Diagrama de timing - Flip Flop tipo D

• Ejercicio 2 - Flip Flop tipo T de 1 bit

Este ejercicio consistió en la construcción de un Flip Flop tipo T de 1 bit, basado en la estructura de un Flip Flop tipo D de 1 bit. El funcionamiento de dicho Flip Flop consiste en ir variando con los flancos de reloj siempre que el enable esté activado, con una duración de 2 flancos, es decir, 1 periodo. En este caso la señal de entrada es ~Q.

Módulo Flip Flop tipo T

```
| Spreador | Figreador | Spreador | Spreador
```

Módulo testbench Flip Flop tipo T

Flip Flop tipo T

Tabla 2

Diagrama de timing - Flip Flop tipo T

• Ejercicio 3 - Flip Flop tipo JK

Este ejercicio consistió en la construcción de un Flip Flop tipo JK de 1 bit. Al igual que en el anterior, se partió de un Flip Flop tipo D de 1 bit. El funcionamiento de este Flip Flop es el siguiente:

- \Box Jy K = 0 \rightarrow Q = Mantiene su valor anterior
- $\Box \quad J = 1 \text{ y } K = 0 \rightarrow Q = 1$
- $\Box \quad J = 0 \text{ y } K = 1 \longrightarrow Q = 0$
- \Box J y K = 1 \rightarrow Q = El valor de Q va alternando en cada flanco de reloj. Q \rightarrow \sim Q

```
### Ejercicio3.v  ### Ejercici
```

Módulo Flip Flop JK

```
### Company of Figure 1 | Figure
```

Módulo testbench Flip Flop JK

Т	Reset	Enable	j	K I	Q
9	0	0	0	0	x
1	1	0	0	0	0
9	0	0	0	0	0
L	0	1	0	0	0
9	0	1	0	0	0
L	0	1	1	1	0
9	0	1	1	1	0
1	0	1	1	1	1
9	0	1	1	1	1
1	0	1	1	1	0
9	0	1	1	1	0
1	0	1	1	1	1
9	0	1	1	1	1
L	0	1	1	1	0
9	0	1	1	1	0
1	0	1	0	0	1
3	0	1	0	0	1
1	0	1	0	0	1
9	0	1	0	1	1
1	0	1	0	1	0
9	0	1	0	1	0
1	0	1	0	0	0
9	0	1	1	0	0
1	0	1	1	0	1
3	0	1	1	0	1
1	0	0	1	1	1
9	0	0	1	0	1
1	0	0	1	0	1
9	0	0	1	0	1
1	0	0	1	0	1

J O O Q

K O O O Q

enable 1

Flip Flop tipo JK

Tabla 3

Diagrama de timing- Flip Flop JK

• Ejercicio 4 - Buffer triestado

Este ejercicio consistió en la construcción de un Buffer Triestado de 4 bits. El funcionamiento es básicamente que cuando el enable esté activado, la señal de entrada pasa a ser la señal de salida, pero cuando el enable está apagado, la señal de salida esta en alta impedancia.

Módulo Buffer triestado

Módulo testbench Buffer triestado

Ejercicio 4 - Buffer Triestado					
Enable	Input A	Output Y			
0	0000	ZZZZ			
0	1100	ZZZZ			
0	1111	ZZZZ			
1	0100	0100			
1	1011	1011			
0	1100	ZZZZ			
1	1110	1110			

Tabla 4

Diagrama de timing - Buffer triestado

• Ejercicio 5 - Implementación de memoria ROM

Este ejercicio consistió en la construcción de una memoria ROM de 7 bits de entrada y 13 bits de salida para luego implementarla con ciertos parámetros. En este caso, básicamente era darle una instrucción a la memoria, es decir, indicarle la localidad requerida para que la memoria nos desplegara lo que sea que estuviera en dicha localidad. Se utilizó un casex, con el propósito de tener la posibilidad de asignarle don't cares (x) a los módulos de la memoria y que fuera capaz de interpretarlos.

Módulo de memoria ROM

```
| Type |
```

Módulo testbench memoria ROM

Tabla 5

Diagrama de timing - Memoria ROM