Projeto e Análise de Algoritmos Notações Assintóticas

Nelson Cruz Sampaio Neto nelsonneto@ufpa.br

Universidade Federal do Pará Instituto de Ciências Exatas e Naturais Programa de Pós-Graduação em Ciência da Computação

11 de março de 2023

Como comparar algoritmos?

- A unidade de comparação entre dois algoritmos é uma função que calcula o número de instruções no tamanho da entrada.
- Essa função define a eficiência ou complexidade no tempo do algoritmo.
- Seja a complexidade do algoritmo A: $f(n) = n^2 + 2n + 1$.
- Seja a complexidade do algoritmo $B: g(n) = 2^n$.
- Qual dos dois algoritmos é mais eficiente?

• Primeiramente, analisaremos f(n) e g(n) para $0 \le n \le 4$.

• Agora, analisaremos f(n) e g(n) para $0 \le n \le 8$.

- Conclui-se que f(n) é mais eficiente que g(n) a longo prazo.
- A longo prazo significa "para todo $n \ge 6$ ", por exemplo.
- É feita uma **análise assintótica** do problema, em outras palavras, considera-se grandes valores nas instâncias.
- O algoritmo B com $g(n) = 2^n$ (exponencial) sequer pode ser considerado um algoritmo eficiente, já que sua complexidade no tempo não é limitada por um polinômio.

Algoritmos equivalentes

- Seja a complexidade do algoritmo A: $f(n) = 0, 5n^2 + 3n$.
- Seja a complexidade do algoritmo $B: g(n) = n^2$.

• A notação Big-O define o **limite assintótico superior** sobre uma dada função f(n).

$$0 \le f(n) \le c \ g(n)$$
, sempre que $n \ge k$.
Ou seja, $f(n) \notin O(g(n))$.

- c e k são constantes positivas.
- Normalmente usada para limitar o tempo de execução do pior caso de um algoritmo.
- Por exemplo, $O(n^2)$ é o limite no tempo de execução do pior caso da ordenação por inserção.

- Exemplo: Sejam $f(n) = 7n^2$ e $g(n) = n^3$.
- Mostre que f(n) é O(g(n)).
- É fácil provar que $0 \le 7n^2 \le n^3$, para $n \ge 7$ (c = 1 e k = 7).
- (c = 2 e k = 4) também seria uma solução?
- Mostre que g(n) não é O(f(n)).
- É fácil provar que n^3 jamais será menor ou igual a $7n^2$ para elevados valores de n.

• Podemos dizer que $7n^2$ é $O(n^3)$, mas não o contrário.

• Podemos dizer que $5log_2(x)$ é O(x), mas não o contrário.

• Podemos dizer que x^2 é O(x!), mas não o contrário.

Notação Ω

• A notação Ω define o **limite assintótico inferior** sobre uma dada função f(n).

$$0 \le c \ g(n) \le f(n)$$
, sempre que $n \ge k$.
Ou seja, $f(n)$ é $\Omega(g(n))$.

- Normalmente usada para limitar o tempo de execução do melhor caso de um algoritmo.
- Por exemplo, $\Omega(n)$ é o limite no tempo de execução do melhor caso da ordenação por inserção.

Notação Ω

• Podemos dizer que n^2 é $\Omega(2n)$?

Notação Ω

• Podemos dizer que n^2 é $\Omega(2n)$, mas não o contrário.

- A notação Θ define o limite assintótico restrito sobre uma dada função f(n).
- Teorema: Para duas funções f(n) e g(n), dizemos que f(n) é
 Θ(g(n)) para um valor de n suficientemente grande se e somente se

$$f(n) \in O(g(n)) \in f(n) \in \Omega(g(n)).$$

- Podemos dizer que $0,5n^2 + 3n \in \Theta(n^2)$.
- Também é fácil verificar que $6n^3$ não é $\Theta(n^2)$.

- Exemplo: Sejam $f(n) = n^2 + 2n + 1 e g(n) = n^2$.
- É fácil provar que $0 \le n^2 + 2n + 1 \le 4n^2$, para $n \ge 1$.
- f(n) parece pior que g(n), mas a longo prazo f(n) é menor ou igual 4g(n). Então, f(n) é O(g(n)) com c=4 e k=1.
- Também é fácil provar que $0 \le n^2 \le n^2 + 2n + 1$, para $n \ge 1$. Então, g(n) é O(f(n)) com c = 1 e k = 1.
- Como "uma é big-O da outra", podemos dizer que elas são Θ, ou ainda, equivalentes.

• Por exemplo, podemos dizer que $0,5n^2 + 3n \in \Theta(n^2)$.

• Mostre que $log_a(n) \in \Theta(log_b(n))$.

i)
$$0 \le log_a(n) \le c log_b(n)$$

ii)
$$0 \le c' \log_b(n) \le \log_a(n)$$

i)
$$log_a(n) \le c \ log_b(n) = c \ \frac{log_a(n)}{log_a(b)} = \frac{c}{log_a(b)} \ log_a(n)$$

Tomando $c = log_a(b)$ e $n \ge 1$, temos o resultado desejado.

ii) Análogo ao anterior.

Notação Little-o

 A notação o define o limite assintótico superior que não é assintoticamente restrito sobre uma dada função f(n).

$$0 \le f(n) < c \ g(n)$$
, sempre que $n \ge k$.
Ou seja, $f(n)$ é $o(g(n))$.

- As definições da notação O e da notação o são semelhantes.
- A principal diferença é que em f(n) = O(g(n)), o limite $0 \le f(n) \le c$ g(n) se mantém válido para **alguma** constante c > 0, porém, em f(n) = o(g(n)), o limite $0 \le f(n) < c$ g(n) deve se manter válido para **todas** as constantes c > 0.
- A notação o não aceita equivalência!
- Por exemplo, $2n \in o(n^2)$, mas $2n^2$ não é $o(n^2)$.

• Fazendo uso da definição formal das notações, mostre se a igualdade $10\sqrt{2}^{log(n)} = o(\sqrt{n})$ é verdadeira ou falsa.

$$0 \le 10\sqrt{2}^{\log(n)} < c\sqrt{n}$$
 para todo $n \ge k$.

$$0 \le 10 n^{\log(\sqrt{2})} < c \sqrt{n}$$
 para todo $n \ge k$.

$$0 \le 10n^{0.5} < c\sqrt{n}$$
 para todo $n \ge k$.

$$0 \leq 10\sqrt{n} < c \sqrt{n} \quad \text{para todo } n \geq k.$$

$$0 \le 10 < c$$
 para todo $n \ge k$.

É falsa porque não é satisfeita para qualquer c > 0.

Notação ω

 A notação ω define o limite assintótico inferior que não é assintoticamente restrito sobre uma dada função f(n).

$$0 \le c \ g(n) < f(n)$$
, sempre que $n \ge k$.
Ou seja, $f(n)$ é $\omega(g(n))$.

- Por analogia, a notação ω está para a notação Ω como a notação o está para a notação O.
- A notação ω não aceita equivalência!
- Por exemplo, $0,5n^2 \in \omega(n)$, mas $0,5n^2$ não é $\omega(n^2)$.

Classes de complexidade

Obs. Existem mais classes de complexidade que nesta figura! Por exemplo, \sqrt{n} , n^4 , n^5 etc.

Classes de complexidade

Propriedades

- Na soma de funções, para a notação Big-O, sempre vale a que tem a **maior** complexidade.
 - Qual o Big-O de $f(n) = nlog(n) + 2n + n^2$?
 - Qual o Big-O de $f(n) = n! + 3n^6 + n^3$?
 - Qual o Big-O de $f(n) = (n^4 + 2)(n^5 + 3n^2)$?

Propriedades

Transitividade:

$$\begin{split} f(n) &= \Theta(g(n)) \text{ e } g(n) = \Theta(h(n)) \text{ implicam } f(n) = \Theta(h(n)) \\ f(n) &= O(g(n)) \text{ e } g(n) = O(h(n)) \text{ implicam } f(n) = O(h(n)) \\ f(n) &= \Omega(g(n)) \text{ e } g(n) = \Omega(h(n)) \text{ implicam } f(n) = \Omega(h(n)) \\ f(n) &= o(g(n)) \text{ e } g(n) = o(h(n)) \text{ implicam } f(n) = o(h(n)) \\ f(n) &= \omega(g(n)) \text{ e } g(n) = \omega(h(n)) \text{ implicam } f(n) = \omega(h(n)) \end{split}$$

Reflexividade:

$$f(n) = \Theta(f(n))$$

 $f(n) = O(f(n))$
 $f(n) = \Omega(f(n))$

Propriedades

Simetria:

$$f(n) = \Theta(g(n))$$
 se e somente se $g(n) = \Theta(f(n))$

Simetria de transposição:

$$f(n) = O(g(n))$$
 se e somente se $g(n) = \Omega(f(n))$
 $f(n) = o(g(n))$ se e somente se $g(n) = \omega(f(n))$

Conclusões

- A notação Big-O é usada para estimar o número de operações que um algoritmo precisa realizar dado o crescimento dos seus dados de entrada.
- Com ela é possível determinar se é prático usar um algoritmo, ou mesmo comparar dois algoritmos para determinar qual é o mais eficiente.
- Por exemplo, se um algoritmo usa $7n^2$ e outro n^3 operações, com a notação Big-O, concluímos que o primeiro realiza um número menor de operações quando n é grande.