

### Типовые задачи на обработку текста.

Практические примеры составления блоксхем и псевдокода. Простейшие алгоритмические задачи. Перевод алгоритма в код. Подпрограммы (функции) как основные блоки кода.

Турашова Анна Николаевна Преподаватель anna1turashova@gmail.com Telegram: @anna1tur



# Поверка домашнего задания

#### Задача №3752. Встречалось ли число раньше



Во входной строке записана последовательность чисел через пробел. Для каждого числа выведите слово YES (в отдельной строке), если это число ранее встречалось в последовательности или NO, если не встречалось.

#### Входные данные

Вводится список чисел. Все числа списка находятся на одной строке.

#### Выходные данные

Выведите ответ на задачу.

#### Примеры

| входные данные  |
|-----------------|
| 1 2 3 2 3 4     |
| выходные данные |
| NO              |
| NO              |
| NO              |
| YES             |
| YES             |
| NO              |

#### Задача №112364. Поиск в матрице



Напишите программу, которая определяет, сколько раз встречается в матрице элемент, равный K .

#### Входные данные

В первой строке записаны через пробел размеры матрицы: количество строк N и количество столбцов M (  $1 \le N$  ,  $M \le 100$  ). В следующих N строках записаны строки матрицы, в каждой – по M натуральных чисел, разделённых пробелами. В следующей строке записано целое число K .

#### Выходные данные

Программа должна вывести количество элементов матрицы, равных K .

#### Примеры

```
ВХОДНЫЕ ДАННЫЕ

4 5
1 2 3 4 5
6 12 8 9 10
11 12 12 14 15
16 17 18 12 20
12

ВЫХОДНЫЕ ДАННЫЕ

4
```

#### Задача №112368. Столбцы с максимумом



Напишите программу, которая находит в матрице столбцы, в которых есть элемент, равный максимальному.

#### Входные данные

В первой строке записаны через пробел размеры матрицы: количество строк N и количество столбцов M (  $1 \le N$  ,  $M \le 100$  ). В следующих N строках записаны строки матрицы, в каждой – по M натуральных чисел, разделённых пробелами.

#### Выходные данные

Программа должна вывести все столбцы, в которых есть элемент, равный максимальному элементу в матрице. Каждый столбец выводится в одну строку, элементы разделяются пробелами.

#### Примеры

# ВХОДНЫЕ ДАННЫЕ 4 5 1 897 2 54 234 75 12 3 46 9 13 26 56 9 12 14 90 897 6 34 Выходные данные 897 12 26 90 2 3 56 897

#### Задача №354. Побочная диагональ



Дано число n,  $n \( eq\) 100$ . Создайте массив  $n \times n$  и заполните его по следующему правилу:

- числа на диагонали, идущей из правого верхнего в левый нижний угол, равны 1;
- числа, стоящие выше этой диагонали, равны 0;
- числа, стоящие ниже этой диагонали, равны 2.

#### Входные данные

Программа получает на вход число п.

#### Выходные данные

Необходимо вывести полученный массив. Числа разделяйте одним пробелом.

#### Примеры

# входные данные выходные данные 0 0 0 1 0 0 1 2 0 1 2 2 1 2 2 2

#### Задача №355. Симметричная ли матрица?



Проверьте, является ли двумерный массив симметричным относительно главной диагонали. Главная диагональ — та, которая идёт из левого верхнего угла двумерного массива в правый нижний.

#### Входные данные

Программа получает на вход число n \(\leq\) 100, являющееся числом строк и столбцов в массиве. Далее во входном потоке идет n строк по n чисел, являющихся элементами массива.

#### Выходные данные

Программа должна выводить слово yes для симметричного массива и слово no для несимметричного.

#### Примеры

# Входные данные 3 0 1 2 1 5 3 2 3 4 Выходные данные yes



# Повторение: Матрица

### Создание матриц



Матрица – это список списков

Каждый элемент имеет два индекса, нумерация элементов с нуля

| a[0][0] | a[0][1] | a[0][2] |
|---------|---------|---------|
| a[1][0] | a[1][1] | a[1][2] |
| a[2][0] | a[2][1] | a[2][2] |

### Ввод элементов с клавиатуры



Каждая строка таблицы на отдельной строке, значения в строке разделяются пробелами)

```
table = []
for i in range(n):
    row = [int(x) for x in input().split()]
    table.append(row)

table = [[int(x) for x in input().split()]
    for i in range(n)]
```

### Вывод элементов в консоль



```
for row in a:
    for x in row:
        print (x, end = "\t" )
    print()

for i in range(len(a)):
    for j in range(len(a[i])):
        print (f"{a[i][j]:4d}", end = "")
    print()
```

## Выделение строк, столбцов



#### Выделение первой строки

```
r = a[1][:]
```

#### Выделение третьего столбца

```
c = [row[3] for row in a]
```

#### Выделение главной диагонали

```
d = [a[i][i] for i in range(len(a))]
```



# Алгоритмы сортировки. Алгоритмы поиска.

#### Задача №4. Двоичный поиск



Реализуйте алгоритм бинарного поиска.

#### Входные данные

В первой строке входных данных содержатся натуральные числа N и K ( $0 < N, K \le 100\,000$ ). Во второй строке задаются N элементов первого массива, отсортированного по возрастанию, а в третьей строке – K элементов второго массива. Элементы обоих массивов - целые числа, каждое из которых по модулю не превосходит  $10^9$ 

#### Выходные данные

Требуется для каждого из K чисел вывести в отдельную строку "YES", если это число встречается в первом массиве, и "NO" в противном случае.

#### Примеры

# ВХОДНЫЕ ДАННЫЕ 10 5 1 2 3 4 5 6 7 8 9 10 -2 0 4 9 12 ВЫХОДНЫЕ ДАННЫЕ NO NO YES YES NO

# Двоичный поиск





4. Если x > a[c], искать дальше во

второй половине.

|          | _     |                |
|----------|-------|----------------|
| 1        |       | 1              |
| 2        |       | 2              |
| 3        | _     | 3              |
| 4        | X > 4 | 4              |
| 5        |       | 5              |
| 6        | -     | 6              |
| 7        |       | 7              |
| 8        |       | 8              |
| 9        | ſ     | 9              |
| 10       |       | 10             |
|          |       |                |
| 11       |       | 11             |
| 11<br>12 |       | -              |
|          |       | 11             |
| 12       |       | 11<br>12       |
| 12<br>13 |       | 11<br>12<br>13 |

| 1  |       | 1  |
|----|-------|----|
| 2  |       | 2  |
| 3  |       | 3  |
| 4  |       | 4  |
| 5  | ٠.    | 5  |
| 6  | x > 6 | 6  |
| 7  | 1     | 7  |
| 8  |       | 8  |
| 9  |       | 9  |
| 10 |       | 10 |
| 11 |       | 11 |
| 12 |       | 12 |
| 13 |       | 13 |
| 14 |       | 14 |
| 15 |       | 15 |
| 16 |       | 16 |
|    |       |    |

### Алгоритм двоичного поиска



```
L,R=0, N # начальный отрезок
while L < R - 1:
  c = (L + R) // 2 # нашли середину
  if x < a[c]: # сжатие отрезка
    R = c
  else:
    L = C
if a[L] == x:
  print(f"a[{L}]={x}")
else:
  print("He нашли!")
```

# Хранение элементов множества в неупорядоченном списке



Множество – структура данных, которая реализует хранение элементов без повторений и операции поиска, добавления, удаления, а также поиска минимального/максимального элемента

Поиск элемента (in, index) O(n)

Добавление элемента (append) O(1)

Удаление элемента (del ) O(n)

Поиск минимального/максимального O(n)

элемента

# Хранение элементов множества в упорядоченном списке



Поиск элемента (двоичный поиск) O(log n)

Добавление элемента (вставка) O(n)

Удаление элемента (del ) O(n)

Поиск минимального/максимального О(1)

элемента

### Сортировка



**Сортировка** – это расстановка элементов массива в заданном порядке.

Простые неэффективные алгоритмы – в худшем случае сложность O(n²):

- сортировка пузырьком
- сортировка вставками

Сложные эффективные алгоритмы — в худшем случае сложность  $O(n \ log n)$ :

- «быстрая сортировка» (QuickSort)
- пирамидальная сортировка (HeapSort)
- сортировка слиянием (MergeSort)



### Задача №233. Пузырьковая сортировка\_0

Требуется отсортировать массив по неубыванию методом "пузырька".

#### Входные данные

В первой строке вводится одно натуральное число, не превосходящее 1000 — размер массива. Во второй строке задаются N чисел — элементы массива (целые числа, не превосходящие по модулю 1000).

#### Выходные данные

Вывести получившийся массив.

#### Примеры

#### входные данные

5 5 4 3 2 1

#### выходные данные

1 2 3 4 5



# Bubble sort - сортировка пузырьком



## Метод пузырька



Идея алгоритма – самый маленький элемент перемещается в начало списка (всплывает как пузырек)

#### 1-й проход:



- сравниваем два соседних элемента; если они стоят «неправильно», меняем их местами
- за 1 проход по массиву
   один элемент (самый маленький) становится на свое место

## Метод пузырька





Для сортировки нужен n-1 проход.

```
for i in range(n-1):
    for j in range(n-2, i-1,-1):
    if a[j+1] < a[j]:
        a[j], a[j+1] = a[j+1], a[j]</pre>
```

#### Задача №1436. Библиотечный метод



Продемонстрируйте работу метода сортировки вставками по возрастанию. Для этого выведите состояние данного массива после каждой вставки на отдельных строках. Если массив упорядочен изначально, то следует не выводить ничего.

#### Входные данные

На первой строке дано число ( $1 \le N \le 100$ ) – количество элементов в массиве. На второй строке задан сам массив: последовательность натуральных чисел, не превышающих  $10^9$ .

#### Выходные данные

В выходной файл выведите строки (по количеству вставок) по *N* чисел каждая.

# входные данные 4 2 1 5 3 выходные данные 1 2 5 3 1 2 3 5

# Insertion sort - сортировка вставками





### Метод вставок



Идея алгоритма – на каждом шаге i элемент вставляется на свое место среди предыдущих элементов.

6 5 3 1 8 7 2 4

```
# Сортировку начинаем со второго элемента,
for i in range(1, n):
    item_to_insert = a[i]
    # Сохраняем ссылку на индекс предыдущего элемента
    j = i - 1
    # Элементы перемещаем вперёд, если они больше
    # элемента для вставки
    while j >= 0 and a[j] > item_to_insert:
        a[j + 1] = a[j]
        j -= 1
# Вставляем элемент
    a[j + 1] = item_to_insert
```

# Selection sort - сортировка выбором





# Quick sort - быстрая сортировка





# Random quick sort – рандомная быстрая сортировка





# Merge sort – сортировка слиянием





# Counting sort – сортировка подсчетом





# Radix sort – поразрядная сортировка





# Сравнение сортировок



| Раз        | Пузырьковая  | Выборкой     | Вставками    | Куча          | Слиянием     | Быстрая      |
|------------|--------------|--------------|--------------|---------------|--------------|--------------|
| 1          | 5.5318861007 | 1.2315289974 | 1.6035542488 | 0.0400667190  | 0.0261991024 | 0.0163919925 |
| 2          | 4.9217622280 | 1.2472858428 | 1.5910329818 | 0.0399959087  | 0.0258429050 | 0.0166139602 |
| 3          | 4.9164218902 | 1.2244019508 | 1.5936298370 | 0.0440728664  | 0.0286228656 | 0.0164628028 |
| 4          | 5.1547043323 | 1.2505383491 | 1.6346361637 | 0.04128289222 | 0.0288281440 | 0.0186078548 |
| 5          | 4.9552288055 | 1.2898740768 | 1.6175961494 | 0.0451571941  | 0.0331487655 | 0.0188508033 |
| 6          | 5.0490729808 | 1.2546651363 | 1.6251549720 | 0.0425729751  | 0.0259521007 | 0.0162870883 |
| 7          | 5.0559189319 | 1.2491188049 | 1.6198101043 | 0.0402898788  | 0.0273351669 | 0.0176029205 |
| 8          | 5.0879919528 | 1.2580881118 | 1.6260371208 | 0.0426468849  | 0.0263381004 | 0.0170559883 |
| 9          | 5.0328917503 | 1.2491509914 | 1.6144649982 | 0.0430219173  | 0.0329370498 | 0.0176239013 |
| 10         | 5.1429288387 | 1.2202110290 | 1.5727391242 | 0.0396611690  | 0.0257260799 | 0.0160610675 |
| Ср.<br>зн. | 5.0848807811 | 1.2474863290 | 1.6098655700 | 0.0418768405  | 0.0280930280 | 0.0171558380 |



# Домашнее задание

#### Задача №3750. Количество совпадающих



Даны два списка чисел, которые могут содержать до 100000 чисел каждый. Посчитайте, сколько чисел содержится одновременно как в первом списке, так и во втором.

Примечание. Эту задачу на Питоне можно решить в одну строчку.

#### Входные данные

Вводятся два списка чисел. Все числа каждого списка находятся на отдельной строке.

#### Выходные данные

Выведите ответ на задачу.

#### Примеры

# входные данные 1 3 2 4 3 2 выходные данные 2

#### Задача №365. Заполнение спиралью



Дано число n. Создайте массив A[2\*n+1][2\*n+1] и заполните его по спирали, начиная с числа 0 в центральной клетке A[n+1][n+1]. Спираль выходит вверх, далее закручивается против часовой стрелки.

#### Входные данные

Программа получает на вход одно число п.

#### Выходные данные

Программа должна вывести полученный массив, отводя на вывод каждого числа ровно 3 символа.

#### Примеры

# входные данные выходные данные 12 11 10 9 24 13 2 1 8 23 14 3 0 7 22 15 4 5 6 21 16 17 18 19 20



#### Задача №1099. Скидки

В супермаркете проводится беспрецедентная акция – «Покупая два любых товара, третий получаешь бесплатно\*», а внизу мелким шрифтом приписано «\* - из трех выбранных вами товаров оплачиваются два наиболее дорогих».

Вася, идя в супермаркет, определился, какие товары он хочет купить, и узнал, сколько они стоят. Помогите ему определить минимальную сумму денег, которую ему нужно взять с собой, чтобы в итоге стать счастливым обладателем этих товаров.

#### Входные данные

Во входном файле задано сначала число N ( $1 \le N \le 1000$ ), а затем N чисел – стоимости выбранных Васей товаров. Все стоимости – натуральные числа, не превышающие 10000.

#### Выходные данные

В выходной файл выведите одно число – сумму денег, которую Вася должен взять с собой в супермаркет (минимально возможную).

#### Комментарии к примерам тестов



- 1. Вася сначала пройдет через кассу с товарами стоимостью 1, 3 и 4 заплатит 7 рублей и товар стоимостью 1 получит в подарок, а затем снова зайдет в супермаркет и купит товары стоимостью 5 и 7, еще один товар стоимостью 5 получив в подарок.
- 2. Вася в первый заход в супермаркет купит товары стоимостью 15 и 25 рублей, в качестве подарка взяв товар стоимостью 8 рублей. А во второй заход в супермаркет купит товары стоимостью 3 и 8, не взяв никакого подарка.

#### Примеры

# входные данные 6 1 5 4 3 5 7 выходные данные 19

```
ВХОДНЫЕ ДАННЫЕ

5
3 15 25 8 8

ВЫХОДНЫЕ ДАННЫЕ

51
```





Входит в ГК Аплана



Основана в 1995 г.

E-learning и очное обучение

#### Филиалы:

Санкт-Петербург, Казань, Уфа, Челябинск, Хабаровск, Красноярск, Тюмень, Нижний Новгород, Краснодар, Волгоград, Ростов-на-Дону

#### Головной офис в Москве

Ресурсы более 400 высококлассных экспертов и преподавателей

Разработка программного обеспечения и информационных систем



Ежегодные награды Microsoft, Huawei, Cisco и другие

#### Направления обучения:

Информационные технологии
Информационная безопасность
ИТ-менеджмент и управление проектами
Разработка и тестирование ПО
Гос. и муниципальное управление

Программы по импортозамещению

Сеть региональных учебных центров по всей России

Крупные заказчики











**100 +** сотрудников





# Спасибо за внимание!

#### Центральный офис:

Москва, Варшавское шоссе 47, корп. 4, 7 этаж

Тел: +7 (495) 150-96-00

academy@it.ru academyit.ru