7.7 Rearranging the terms of a series.

Def. Given a series $\sum_{0}^{\infty} a_n$, we say that $\sum_{0}^{\infty} b_n$ is a rearrangement of $\sum_{0}^{\infty} a_n$ (or a rearranged series

of $\sum_0^\infty a_n$) if $b_n=a_{\sigma(n)}$ for every n, where $\sigma:\mathbb{N}_0\equiv\{0,1,2,\cdots\}\to\mathbb{N}_0$ is one-to-one & onto (i.e., σ is a permutation (\mathbb{Z}^2 \mathbb{H}^2) on \mathbb{N}_0).

[a rearrangement of a series = 급수의 자리바꿈(합) = 자리바꿈 급수 = a rearranged seies]

Note: In general, $\sum_{n=0}^{\infty} a_n \neq a$ rearrangement of $\sum_{n=0}^{\infty} a_n$. For example, we know

$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots = \ln 2 \ (\equiv L) \neq 0$$

Recall that the series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$ is conditionally convergent.

$$\begin{split} \frac{L}{2} &= \frac{1}{2} - \frac{1}{4} + \frac{1}{6} - \frac{1}{8} + \cdots \\ &= 0 + \frac{1}{2} + 0 - \frac{1}{4} + 0 + \frac{1}{6} + 0 - \frac{1}{8} + \cdots \quad - - - (i) \end{split}$$

From this, we see that

$$L = 2 \times \frac{L}{2} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \frac{1}{6} + \frac{1}{7} - \frac{1}{8} + \dots - - - (ii)$$

$$(i) + (ii) \Rightarrow$$

$$\begin{split} \frac{3L}{2} &= 1 + 0 + \frac{1}{3} - \frac{1}{2} + \frac{1}{5} + 0 + \frac{1}{7} - \frac{1}{4} + \cdots \\ &= \underbrace{1 + \frac{1}{3} - \frac{1}{2} + \frac{1}{5} + \frac{1}{7} - \frac{1}{4} + \cdots}_{\text{a rearrangement of the series } \sum\limits_{1}^{\infty} \frac{(-1)^{n+1}}{n} \end{split}$$

Therefore,

$$\ln 2 = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \frac{1}{6} + \frac{1}{7} \cdots \quad \neq \quad \underbrace{1 + \frac{1}{3} - \frac{1}{2} + \frac{1}{5} + \frac{1}{7} - \frac{1}{4}}_{\text{a rearrangement of the LHS}} = \frac{3}{2} \ln 2$$

Theorem (Rearrangement Theorem) --- 결론을 기억할 것

- ① If $\sum a_n$ is **absolutely convergent**, and $\sum a_n = S$, then any rearrangement $\sum b_n$ of $\sum a_n$ is **still (absolutely) convergent** & $\sum b_n = S$.

 (In other words, if $\sum a_n$ is absolutely convergent, then it is unconditionally convergent)
- ② Suppose $\sum a_n$ is **conditionally convergent**, and let c be either a real number or ∞ or $-\infty$. Then there is a rearrangement $\sum b_n$ of $\sum a_n$ such that $\sum b_n = c$.

Pf of ①: Let $\sum_{n=0}^{\infty}a_n=S$, and let $\sum_{n=0}^{\infty}b_n$ be a rearrangement of $\sum_{n=0}^{\infty}a_n$.

Let $\ \varepsilon>0$, and choose $\ N$ such that $\ \sum_{n=N+1}^{\infty}|\ a_{_{n}}\ |<\varepsilon\left(\leftarrow\sum_{n=0}^{\infty}|\ a_{_{n}}\ |\ \mathrm{is\ convergent}\right)$

Choose an $\ M \geq N$ such that all the terms $\ a_{\scriptscriptstyle 0}, \cdots, a_{\scriptscriptstyle N}$ occur in the list $\ b_{\scriptscriptstyle 0}, \cdots, b_{\scriptscriptstyle M}$.

If $n \geq M$, then in the sum $\sum_{k=0}^n b_k - \sum_{k=0}^n a_k$, all the terms a_0, \cdots, a_N cancel out, and thus the remaining terms (in $\sum_{k=0}^n b_k - \sum_{k=0}^n a_k$) consist only of terms a_k with k > N.

$$\therefore \quad \sum_{k=0}^n b_k - \sum_{k=0}^n a_k \quad \text{is a sum of some non-repeating terms in} \quad \sum_{k=N+1}^\infty a_k$$

$$\left| \sum_{k=0}^{n} b_k - \sum_{k=0}^{n} a_k \right| \le 2 \sum_{k=N+1}^{\infty} |a_k| < 2\varepsilon$$

Since $\varepsilon > 0$ is arbitrary, we conclude that

$$\lim_{n\to\infty} \sum_{\underline{k=0}}^n b_{\underline{k}} = S \qquad \text{ i.e., } \sum_{k=0}^\infty b_{\underline{k}} = S = \sum_{k=0}^\infty a_{\underline{k}}$$
 partial sum of $\sum_{\underline{k}=0}^\infty b_{\underline{k}}$

Let $\, s_n' \,$ be the $\,$ $\, n$ -th partial sum of the rearrangement $\, \sum b_n \, . \,$

Note that every term of $\sum b_n$ is among the terms of the original series $\sum_{n=0}^\infty a_n$, and hence

$$s_n' \leq S igg(= \sum_{n=0}^\infty a_n igg)$$
 for every n (i.e., $\left\{ s_n'
ight\}$ is bounded above by S)

But s_n' is $\uparrow \left(\leftarrow a_n \geq 0 \ \forall n \right)$. Thus $\lim_{n \to \infty} s_n'$ exists. Write $S' = \lim_{n \to \infty} s_n'$.

Then we have $\lim_{n\to\infty} s_n' \leq S$ (by LLT) That is, $S' \leq S$

That is, the rearrangement $\; \sum b_n \;$ converges, & to a sum $\; S' \leq S \;$.

By symmetry, since $\sum a_n$ can be regarded as a rearrangement of $\sum b_n$, we must have $S \leq S'$.

Consequently, S = S'.

"Pf" of ②: (optional) We will not prove this statement; Instead we shall show that

there is a rearrangement $\sum b_n$ of the series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$ such that $\sum b_n = \pi$.

[A slight modification of the line of the argument below will show the statement in ② is true.]

Recall that
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$$
 is conditionally convergent & $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} = \ln 2$.

Note first that the series of **positive terms** and the series of **negative terms** both diverge;

That is,

$$1 + \frac{1}{3} + \frac{1}{5} + \cdots \xrightarrow{\text{diverges to}} \infty \quad \text{(we write } \sum_{0}^{\infty} p_n = \infty\text{)}$$

$$-\frac{1}{2} - \frac{1}{4} - \frac{1}{6} + \cdots \xrightarrow{\text{diverges to}} - \infty \quad \text{(we write } \sum_{0}^{\infty} q_n = -\infty\text{)}$$

Let ℓ_0 be the first integer such that

$$S_0 \equiv p_0 + p_1 + \dots + p_{\ell_0} > \pi$$

$$\text{That is,} \quad p_0 \, + \, p_1 \, + \, \cdots \, + \, p_{\ell_0 - 1} \, < \, \pi \, < \, p_0 \, + \, p_1 \, + \, \cdots \, + \, p_{\ell_0} \, = \, S_0 \quad \& \quad | \, S_0 \, - \, \pi \, | < \, p_{\ell_0}.$$

$$\frac{p_{\ell_o}}{\pi}$$

$$p_0 + p_1 + \dots + p_{\ell_o-1}$$

$$p_0 + p_1 + \dots + p_{\ell_o-1}$$

Let m_0 be the first integer such that

$$S_1 \equiv S_0 + q_0 + q_1 + \dots + q_{m_0} < \pi$$

Note that $\mid S_1 - \pi \mid < \mid q_{m_0} \mid$.

Let ℓ_1 be the first integer such that

$$S_2 \equiv S_1 + p_{\ell_0+1} + p_{\ell_0+2} + \dots + p_{\ell_1} > \pi$$
 So, $|S_2 - \pi| < p_{\ell_1}$.

Let m_1 be the first integer such that

$$S_3 \equiv S_2 + q_{m_0+1} + q_{m_0+2} + \dots + q_{m_1} < \pi$$
 So, $\mid S_3 - \pi \mid < \mid q_{m_1} \mid$.

:

Let $\sum b_n$ be this rearranged series. That is,

$$\begin{split} \sum b_n &= \underbrace{p_0 + p_1 + p_2 + \dots + p_{\ell_0}}_{+ 0} + \underbrace{q_0 + q_1 + \dots + q_{m_0}}_{+ 0} + \underbrace{p_{\ell_0 + 1} + \dots + p_{\ell_1}}_{+ 0} \\ &+ \underbrace{q_{m_0 + 1} + \dots + q_{m_1}}_{+ 0} + \underbrace{p_{\ell_1 + 1} + \dots + p_{\ell_2}}_{+ 0} + \underbrace{q_{m_1 + 1} + q_{m_1 + 2} + \dots + q_{m_2}}_{+ 0} + \dots \\ &\stackrel{\text{rename}}{=} b_0 + b_1 + b_2 + \dots + \underbrace{b_{n_0}}_{+ 0} + b_{n_0 + 1} + \dots + \underbrace{b_{n_1}}_{+ 1} + b_{n_1 + 1} + \dots + \underbrace{b_{n_2}}_{+ 1} + \dots \\ &\text{(where } b_{n_0} = p_{\ell_0}, \quad b_{n_1} = q_{m_0}, \quad b_{n_2} = p_{\ell_1}, \quad b_{n_3} = q_{m_1}, \quad \dots) \end{split}$$

Then the sequence s_n of partial sums of $\sum b_n$ has S_i as a subsequence. That is,

$$S_{0} = s_{n_{0}} \stackrel{\text{i.e.}}{=} b_{0} + \dots + b_{n_{0}}$$

$$S_{1} = s_{n_{1}} \stackrel{\text{i.e.}}{=} b_{0} + \dots + b_{n_{1}}$$

$$S_{2} = s_{n_{2}} \stackrel{\text{i.e.}}{=} b_{0} + \dots + b_{n_{2}}$$

$$S_{3} = s_{n_{3}} \stackrel{\text{i.e.}}{=} b_{0} + \dots + b_{n_{3}}$$

$$\vdots$$

$$S_{i} = s_{n_{i}} \stackrel{\text{i.e.}}{=} b_{0} + \dots + b_{n_{i}}$$

$$\vdots$$

The construction shows that

$$\mid S_i - \pi \mid < \mid b_{n_i} \mid$$
 for every i .

Since
$$\lim_{n\to\infty}p_n=0$$
 & $\lim_{n\to\infty}q_n=0$, we have $\lim_{i\to\infty}b_{n_i}=0$
$$\therefore \quad \lim_{i\to\infty}S_i=\pi$$

On the other hand, for any fixed n, s_n lies between S_i and S_{i+1} for some i. And it is clear that $n \to \infty \iff i \to \infty$.

$$\therefore \quad \lim_{n \to \infty} s_n \, = \, \pi \quad \text{by Squeeze Principle}.$$

Remark. An idea for the proof of the statement in ②:

(i)
$$\sum a_n$$
 : conditionally converges $\Rightarrow \sum a_n^+ = \infty$ & $\sum a_n^- = \infty$ (easy Ex)

(ii) Apply the above argument to
$$\sum a_n^+$$
 & $\sum (-a_n^-)$ (instead of $\sum_{n=0}^{\infty} p_n$ & $\sum_{n=0}^{\infty} q_n$)

Ex. (optional)

Show that there is a rearrangement $\sum b_n$ of the series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$ such that $\sum b_n = \infty$.

Pf. Recall that we are using the following notations:

$$\sum_{n=0}^{\infty} p_n = 1 + \frac{1}{3} + \frac{1}{5} + \dots = \infty, \qquad \sum_{n=0}^{\infty} q_n = -\frac{1}{2} - \frac{1}{4} - \frac{1}{6} + \dots = -\infty.$$

Let ℓ_0 be the first integer such that

$$p_0 + p_1 + \dots + p_{\ell_0} > 1 - q_0$$

and set
$$S_0 = p_0 + p_1 + \dots + p_{\ell_0} + q_0$$
. Then $S_0 > 1$.

Let ℓ_1 be the first integer such that

$$S_0 + p_{\ell_0+1} + p_{\ell_0+2} + \dots + p_{\ell_1} > 2 - q_1$$

and set
$$S_1 = S_0 + p_{\ell_0+1} + p_{\ell_0+2} + \dots + p_{\ell_1} + q_1$$
. Then $S_1 > 2$.

Let ℓ_2 be the first integer such that

$$S_1 + p_{\ell_1+1} + p_{\ell_1+2} + \dots + p_{\ell_2} > 3 - q_2$$

and set
$$S_2=S_1+p_{\ell_1+1}+p_{\ell_1+2}+\cdots+p_{\ell_2}+q_2$$
 . Then $S_2>3$.

:

Let $\sum b_n$ be this rearranged series. That is,

$$\sum b_n = \underbrace{p_0 + p_1 + p_2 + \dots + p_{\ell_0} + q_0}_{+ p_{\ell_1 + 1} + \dots + p_{\ell_2} + q_2} + \underbrace{p_{\ell_0 + 1} + \dots + p_{\ell_1} + q_1}_{+ p_{\ell_1 + 1} + \dots + p_{\ell_2} + q_2} + \dots$$

$$\stackrel{\text{rename}}{=} b_0 + b_1 + b_2 + \dots + \underline{b_{n_0}} + b_{n_0+1} + \dots + \underline{b_{n_1}} + b_{n_1+1} + \dots + \underline{b_{n_2}} + \dots$$

$$(\text{with } b_{n_0} = q_0, \quad b_{n_1} = q_1, \quad b_{n_2} = q_2, \quad \dots)$$

Then the sequence s_n of partial sums of $\sum b_n$ has S_i as a subsequence:

$$S_0 = s_{n_0}$$

 $S_1 = s_{n_1}$
 \vdots
 $S_i = s_{n_i}$
 \vdots

The construction shows that $S_i > i+1$ for every i

So
$$\lim_{i\to\infty} S_i = \infty$$
.

On the other hand, for any fixed n, s_n lies between S_i and S_{i+1} for some i.

This implies $\lim_{n \to \infty} s_n = \infty$ by Squeeze Principle.

lacktriangle Another three tests. [Cauchy's 2^n test: well-known; Raabe's test, Dirichlet test: advanced]

Cauchy's 2^n test (or Cauchy's condensation test) [기억할 것]

If
$$a_n \downarrow 0$$
, then $\sum_{1}^{\infty} a_n$ converges $\iff \sum_{1}^{\infty} 2^n a_{2^n}$ converges

Pf. Let $s_n,\,t_n$, respectively, denote the n-th partial sums of $\sum_{n=1}^\infty a_n$ & $\sum_{n=1}^\infty 2^n a_{2^n}$

Given n, there is a k satisfying $n < 2^k$, and hence

$$s_n = a_1 + a_2 + \dots + a_n$$

$$\leq a_1 + (a_2 + a_3) + (a_4 + a_5 + a_6 + a_7) + \dots + (a_{2^k} + a_{2^k + 1} + \dots + a_{2^{k+1} - 1})$$

$$(a_n \downarrow) \Rightarrow \leq a_1 + 2a_2 + 4a_4 + \dots + 2^k a_{2^k} = t_k$$

Thus if $\sum_{0}^{\infty} 2^n a_{2^n}$ converges, then (t_k) is bounded. Consequently, (s_n) is bounded above and hence

 $\sum_{1}^{\infty} a_n$ converges since (s_n) is monotonically increasing.

Conversely,

$$\begin{split} s_{2^n} &= a_1 + a_2 + (a_3 + a_4) + (a_5 + a_6 + a_7 + a_8) + \dots + (a_{2^{n-1}+1} + a_{2^{n-1}+2} + \dots + a_{2^n}) \\ &\geq \frac{1}{2}a_1 + a_2 + 2a_4 + 2^2a_8 + \dots + 2^{n-1}a_{2^n} \qquad (\Leftarrow a_n \downarrow) \\ &= \frac{1}{2}(a_1 + 2a_2 + 2^2a_4 + 2^3a_8 + \dots + 2^na_{2^n}) = \frac{1}{2}t_n \end{split}$$

If $\sum_{n=1}^{\infty} a_n$ converges, then in particular (s_{2^n}) is bounded. So $(\frac{1}{2}t_n)$ is bounded above and hence (t_n)

is bounded above. Since (t_n) is also increasing, it is convergent. This means $\sum_{n=0}^{\infty} 2^n a_{2^n}$ converges.

$$\begin{array}{lll} \textbf{Short proof:} & a_1 + (a_2 \, + a_3) + (a_4 \, + \, a_5 \, + \, a_6 \, + \, a_7) + a_8 \, \cdots \, \leq \, a_1 \, + \, 2a_2 \, + \, 4a_4 \, + \, 8a_8 \, + \, \cdots \\ & & \underbrace{\frac{a_1}{2} + a_2 \, + \, 2a_4 \, + \, 4a_8 \, + \, \cdots}_{=\frac{1}{2} \left(a_1 + 2a_2 + 4a_4 + 8a_8 + \cdots\right)} \, \leq \, a_1 \, + \, a_2 \, + \, \left(a_3 \, + \, a_4\right) + \left(a_5 \, + \, a_6 \, + \, a_7 \, + \, a_8\right) \cdots \\ & & \underbrace{=\frac{1}{2} \left(a_1 + 2a_2 + 4a_4 + 8a_8 + \cdots\right)}_{=\frac{1}{2} \left(a_1 + 2a_2 + 4a_4 + 8a_8 + \cdots\right)} \end{array}$$

Applications of Cauchy's 2^n test

Eg1.
$$(p - \text{series})$$
 $\sum_{1}^{\infty} \frac{1}{n^p} \ (p > 0)$

$$\text{Sol.} \quad \frac{1}{n^p} \downarrow 0 \quad \text{as } n \to \infty \,. \quad \sum_{1}^{\infty} 2^n \cdot \frac{1}{\left(2^n\right)^p} = \sum_{1}^{\infty} (2^{1-p})^n = \begin{cases} \text{conv if } 2^{1-p} < 1 & (\Leftrightarrow p > 1) \\ \text{div if } 2^{1-p} \ge 1 & (\Leftrightarrow p \le 1) \end{cases}$$

Eg2.
$$\sum_{n=0}^{\infty} \frac{1}{n(\ln n)^p} \ (p > 0)$$

Sol.
$$\frac{1}{n(\ln n)^p} \downarrow 0$$
 as $n \to \infty$ (& for $n \gg 1$)

$$\sum_{N_0}^{\infty} 2^{p'} \cdot \frac{1}{2^{p'} (\ln 2^n)^p} = \sum_{N_0}^{\infty} \frac{1}{(\ln 2^n)^p} = \sum_{N_0}^{\infty} \frac{1}{(n \ln 2)^p} = \frac{1}{(\ln 2)^p} \sum_{N_0}^{\infty} \frac{1}{n^p} = \begin{cases} \text{conv} & \text{if } p > 1 \\ \text{div} & \text{if } p \leq 1 \end{cases}$$

Eg3.
$$\sum_{1000}^{\infty} \frac{1}{n \ln n (\ln \ln n)^p} \quad (p > 0)$$

Sol.
$$\frac{1}{n \ln n (\ln \ln n)^p} \downarrow 0 \quad \text{as } n \to \infty \quad (\& \text{ for } n \gg 1)$$

$$\sum_{N_0}^{\infty} 2^{p'} \cdot \frac{1}{2^{p'} \ln 2^n (\ln \ln 2^n)^p} = \frac{1}{\ln 2} \sum_{N_0}^{\infty} \frac{1}{n (\ln n + \ln \ln 2)^p} = \begin{cases} \text{conv if } p > 1 \\ \text{div if } p \le 1 \end{cases}$$
 (by Eg2)

because of $\frac{1}{n(\ln n + \ln \ln 2)^p} \sim \frac{1}{n(\ln n)^p}$

Eg4. Let $a_n \downarrow 0$. Then $\sum_{1}^{\infty} a_n$ converges \Rightarrow $na_n \to 0$ as $n \to \infty$.

Pf.
$$\sum_{1}^{\infty} a_n : \text{conv} \stackrel{2^n \text{ test}}{\Rightarrow} \sum_{1}^{\infty} 2^n a_{2^n} : \text{conv} \Rightarrow \lim_{n \to \infty} 2^n a_{2^n} = 0$$

Given any k , we can choose an integer n such that $2^n \le k \le 2^{n+1}$. Then $a_k \le a_{2^n}$ $(\because a_n \downarrow)$

$$\therefore ka_k \le 2^{n+1}a_{2^n} = 2 \cdot (2^n a_{2^n}) \to 0 \text{ as } n \to \infty$$

Note that $n \to \infty \quad \Leftrightarrow \quad k \to \infty$. Therefore, $\lim_{k \to \infty} k a_k = 0$.

• Raabe's test (often useful in the case that $\lim_{n\to\infty} \frac{a_{n+1}}{a_n} = 1$ ($a_n > 0$) or $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = 1$; Ratio test fails)

Lemma:
$$p > 1$$
 & $x \in (0,1)$ $\Rightarrow (1-x)^p > 1-px$

Pf. M1. Follows from "Bernoulli inequality": $p > 1 \implies (1+x)^p > 1 + px$ for $\forall x > -1$ (Ex)

M2. (A direct pf) Let
$$f(x) = (1-x)^p - 1 + px$$
 $(p > 1)$

$$f'(x) = -p(1-x)^{p-1} + p = p(1-(1-x)^{p-1}) > 0$$
 for $\forall x \in (0,1)$, since $0 < 1-x < 1$ & $p-1 > 0$

$$f(x)$$
 is strictly \uparrow on $(0,1)$ & $f(0) = 0$; and so $f(x) > 0$ for $\forall x \in (0,1)$ --- done

Raabe's test. (\leftarrow comparison with p-series) Assume $a_n > 0$ ($\forall n$) and

$$\lim_{n\to\infty} n \left(1 - \frac{a_{n+1}}{a_n} \right) = L \quad \begin{pmatrix} \text{easy} & a_{n+1} \\ \Rightarrow & a_n \end{pmatrix} \to 1$$

If $L > 1 \implies \sum a_n$: converges (main interest)

If $L < 1 \implies \sum a_n$: diverges

If $L=1 \implies$ no conclusion

Pf. We prove only the case L > 1; the case L < 1: Ex

Choose p such that L > p > 1. Then by SLT

$$n\left(1-\frac{a_{n+1}}{a_n}\right) > p$$
 for $n \gg 1$ $\therefore \frac{a_{n+1}}{a_n} < 1-\frac{p}{n}$ for $n \gg 1$

Applying
$$x = \frac{1}{n} (n \gg 1)$$
 to Lemma: $p > 1$ & $x \in (0,1)$ \Rightarrow $(1-x)^p > 1-px$

$$\Rightarrow \frac{a_{n+1}}{a_n} < \underbrace{1 - \frac{p}{n}} < \underbrace{\left(1 - \frac{1}{n}\right)^p}_{\text{key idea}} < \left(1 - \frac{1}{n+1}\right)^p = \frac{n^p}{(n+1)^p} \quad \text{for } n \gg 1$$

$$(n+1)^p a_{n+1} < n^p a_n$$
 for $n \gg 1$ i.e., $n^p a_n$ is strictly \downarrow for $n \ge N$
 $\Rightarrow n^p a_n < N^p a_N$ for $n \ge N$ $\Rightarrow a_n < (N^p a_N) n^{-p}$ for $n \ge N$

$$\therefore \sum_{N=0}^{\infty} a_n < (N^p a_N) \sum_{N=0}^{\infty} n^{-p} : \text{converges since } p > 1 \qquad \therefore \sum_{N=0}^{\infty} a_n : \text{converges (by Tail Conv Thm)}$$

Eg1. Test the convergence of
$$\sum \frac{(2n)!}{4^n (n!)^2}$$

Sol.
$$a_n := \frac{(2n)!}{4^n (n!)^2}$$
 (>0) $\frac{a_{n+1}}{a_n} = \frac{1}{2} \frac{2n+1}{n+1} \to 1$: ratio test fails

But
$$\lim_{n \to \infty} n \left(1 - \frac{a_{n+1}}{a_n} \right) = \lim_{n \to \infty} n \left(1 - \frac{1}{2} \frac{2n+1}{n+1} \right) = \frac{1}{2} < 1$$
 : div

Eg2. Test the convergence of
$$\sum \frac{1 \cdot 4 \cdot 7 \cdots (3n+1)}{n^2 3^n n!}$$

Sol.
$$a_n := \frac{1 \cdot 4 \cdot 7 \cdots (3n+1)}{n^2 3^n n!}$$
 $\frac{a_{n+1}}{a_n} = \frac{(3n+4)n^2}{3(n+1)^3} \rightarrow 1$ \therefore ratio test fails

But
$$n\left(1 - \frac{a_{n+1}}{a_n}\right) = n\left(1 - \frac{(3n+4)n^2}{3(n+1)^3}\right) = \frac{5n^3 + 9n^2 + 3}{3(n+1)^3} \rightarrow \frac{5}{3} > 1$$
 : conv

• Dirichlet test

Summation by parts formula:

$$\begin{split} \sum_{k=1}^{n} \ a_k b_k &= a_n B_n + \sum_{k=1}^{n-1} \ (a_k - a_{k+1}) B_k, \quad \text{ where } \ B_k = \sum_{\ell=1}^{k} \ b_\ell \\ &= a_n B_n - \sum_{k=1}^{n-1} \ (a_{k+1} - a_k) B_k = \underbrace{a_n}_{\square} \underbrace{B_n}_{\square} - \sum_{k=1}^{n-1} \ (\underbrace{\Delta a_k}_{\square}) \underbrace{B_k}_{\square}, \quad \text{ where } \ \Delta a_k = a_{k+1} - a_k \end{split}$$

Pf.
$$\sum_{k=1}^{n} a_k b_k = a_1 b_1 + a_2 b_2 + \dots + a_n b_n = a_1 B_1 + a_2 (B_2 - B_1) + \dots + a_n (B_n - B_{n-1})$$
$$= (a_1 - a_2) B_1 + (a_2 - a_3) B_2 + \dots + (a_{n-1} - a_n) B_{n-1} + a_n B_n$$
$$= \sum_{k=1}^{n-1} (a_k - a_{k+1}) B_k + a_n B_n$$

*** Dirichlet Test**

Suppose (i) a_n is $\downarrow 0$ (i.e., $a_1 \geq a_2 \geq a_3 \geq \cdots \downarrow 0$) &

(ii)
$$\left| \sum_{k=1}^{n} b_{k} \right| \leq \underbrace{M}_{\text{inder of } n} (n = 1, 2, \cdots)$$
 (i.e., the sequence of partial sums of (b_{n}) is bounded).

Then $\sum_{n=1}^{\infty} a_n b_n$ is convergent.

Remark: Dirichlet test is a generalization of Alternating series test (why?)

Pf of the Dirichlet test:

$$\sum_{k=1}^n a_k b_k = \underbrace{a_n B_n} + \sum_{k=1}^{n-1} (a_k - a_{k+1}) B_k \quad \text{---} (*) \textbf{(Summation by parts formula)}$$

Enough to show that $\lim_{n\to\infty} a_n B_n$ exists and the series $\sum_{k=1}^{\infty} (a_k - a_{k+1}) B_k$ converges.

- (1) Clearly $|a_n B_n| \le Ma_n \to 0$ as $n \to \infty$
- (2) Will show $\sum_{k=1}^{\infty} (a_k a_{k+1}) B_k$ converges absolutely

$$\begin{split} \text{Pf of (2):} \qquad \sum_{k=1}^{n-1} \mid (a_k - a_{k+1}) B_k \mid & \stackrel{\text{"a_n is \downarrow" is used}}{\leq} M \Biggl(\sum_{k=1}^{n-1} \left(a_k - a_{k+1} \right) \Biggr) = M \left(a_1 - a_n \right) \\ & \& \ \ \, \sum_{k=1}^{\infty} \left(a_k - a_{k+1} \right) = \lim_{n \to \infty} \sum_{k=1}^{n-1} \left(a_k - a_{k+1} \right) = a_1 - \lim_{n \to \infty} a_n = a_1 \text{ ; converges} \end{split}$$

$$\therefore \sum_{k=1}^{\infty} (a_k - a_{k+1}) B_k$$
 converges absolutely \therefore it converges.

(3) (optional)
$$\sum_{k=1}^{\infty} a_k b_k = \lim_{n \to \infty} \sum_{k=1}^{n} a_k b_k \stackrel{(*)+(1)+(2)}{=} \sum_{k=1}^{\infty} (a_k - a_{k+1}) B_k$$

Eg. Show that the series $1+\frac{1}{2}-\frac{2}{3}+\frac{1}{4}+\frac{1}{5}-\frac{2}{6}+\cdots$ is convergent.

Pf. Note that

$$1 + \frac{1}{2} - \frac{2}{3} + \frac{1}{4} + \frac{1}{5} - \frac{2}{6} + \dots = 1 \cdot 1 + \frac{1}{2} \cdot 1 + \frac{1}{3} \cdot (-2) + \frac{1}{4} \cdot 1 + \frac{1}{5} \cdot 1 + \frac{1}{6} (-2) + \dots =: \sum_{n=1}^{\infty} a_n b_n = 0$$

That is, $\ a_{\scriptscriptstyle n}=1\,/\,n$ & $\left\{b_{\scriptscriptstyle n}\right\}_{\scriptscriptstyle 1}^{\infty}=(1,1,-2,1,1,-2,\cdots)$

Clearly $a_n \downarrow 0$ as $n \to \infty$

Let
$$B_n = \sum_{k=1}^n b_k$$
 . Then

$$\left\{B_n\right\}_1^{\infty} = (1, 2, 0, 1, 2, 0, \cdots)$$
 \therefore $\left|B_n\right| \le 2$ for every $n \ge 1$

Thus by Dirichlet test, the series $1 + \frac{1}{2} - \frac{2}{3} + \frac{1}{4} + \frac{1}{5} - \frac{2}{6} + \cdots$ is convergent.

HS. Prove that $\sum_{n=1}^{\infty} \frac{\cos n}{n} \& \sum_{n=1}^{\infty} \frac{\sin n}{n}$ are both convergent