Adversarial Debiasing Word Embeddings

Rochelle Choenni (10999949) Maximilian Filtenborg (11042729) Victoria Foing (11773391) Gaurav Kudva (12205583)

Overview

Topics today:

- 1. Adversarial Debiasing
- 2. Gender biased word embeddings
- 3. Method
- 4. Experiments
- 5. Results
- 6. Reproducibility
- 7. Discussion & Conclusion

Zhang et al. Mitigating unwanted biases with adversarial learning.

ICU Dataset Experiment

Biased word embeddings analogy Task:

1. He:she::king:?

2. man:woman::boss:?

Analogy 'formula':

$$v = x_2 + x_3 - x_1$$

Brian Hu Zhang, Blake Lemoine, and Margaret Mitchell. 2018. Mitigating unwanted biases with adversarial learning. In Proceedings of the 2018 AAAI/ACM Conference on AI, Ethics, and Society. ACM, 335–340.

Gender Biased Word Embeddings

man:woman::boss:?

biased		
neighbor	similarity	
bosses	0.577	
girlfriend	0.529	
waitress	0.509	
woman	0.506	
abruze	0.498	
gaigalas	0.498	
prostitute	0.497	
backtalking	0.492	
gambarro	0.49	

Adversarial Debiasing

A debiasing framework for any machine learning model.

Adversarial debiasing is a way of debiasing using a Adversary model, similar to a GAN setup.

Premise: There is a protected variable z, that should not be incorporated in the prediction

Figure 1: The architecture of the adversarial network.

Predictor & Adversary models

Predictor predicts the analogy word embedding.

Adversary predicts the **protected** variable.

Question: How do we quantify **z**?

Algorithm 2 predictor_model(self, features):

```
d = self.embedding\_dim

x1 = features[:, 0 : d] // split features into 3 word vectors

x2 = features[:, d : d \cdot 2]

x3 = features[:, d \cdot 2 : d \cdot 3]

v = x2 + x3 - x1 // analogy vector

\hat{y} = v - self.w \cdot self.w^Tv // PyTorch linear layer

return \hat{y}
```

Algorithm 3 adversary_model(self, \hat{y}):

```
\hat{z} = u^T \hat{y} // PyTorch linear layer return \hat{z}
```

Gender Subspace

We define a gender subspace.

The gender subspace is computed by the PCA of the word-pair differences, and by taking the first principal component with the largest eigenvalue.

10 male-female word pairs ["he", "she"], ["his", "her"], ["man", "woman"] ["himself", "herself"], ["son", "daughter"], ["father", "mother"] ["guy", "gal"], ["boy", "girl"], ["male", "female"], ["john", "mary"]

Table 1: 10 male-female word pairs

Algorithm 1 obtain_gender_subspace(pairs, k):

```
diff = [x[0] - x[1] \text{ for } x \text{ in pairs}]
pca = PCA(n\_components = k)
pca.fit(diff)
return pca.components\_
```

Original results from paper

- After debiasing
 - Subservient roles are replaced by doctor professions
 - Correlation metric increases

biased		debiased	
neighbor	similarity	neighbor	similarity
nurse	1.0121	nurse	0.7056
nanny	0.9035	obstetrician	0.6861
fiancée	0.8700	pediatrician	0.6447
maid	0.8674	dentist	0.6367
fiancé	0.8617	surgeon	0.6303
mother	0.8612	physician	0.6254
fiance	0.8611	cardiologist	0.6088
dentist	0.8569	pharmacist	0.6081
woman	0.8564	hospital	0.5969

Table 1: Completions for he : she :: doctor : ?

- Biased $w^T \cdot g = 0.08$ - Debiased $w^T \cdot g = 0.55$

Experiments

- Test the **generalizability** of the method across different word embedding types:
 - Wikipedia2Vec, GoogleNews and GloVe.
- Perform **gridsearch** to optimize the hyperparameter values for each embedding type
- Monitor the **correlation** between the learned predictor weights and the gender direction
 - $w^T \cdot g$

Evaluation: Analogy examples

- Compare the **top 10 nearest neighbours** for both the biased and debiased models.
- Verify that correct gender relations are still preserved after debiasing

Sexism traps

- 1. He : she :: doctor : ?
- 2. Man: woman:: boss:?
- 3. He : she :: pilot : ?
- 4. He : she :: rich :?
- 5. He : she :: intelligent :?
- 6. He : she :: director :?

Gendered analogies

- 1. Man: woman:: he: she
- 2. Man: woman:: king: queen

Hyperparameter Tuning

Embedding	w	biased $w^T \cdot g$	debiased $w^T \cdot g$	λ	α
GoogleNews	1.31	-0.09	-0.38	$ 2^{-6}$	1.0
Wikipedia2Vec	1.13	-0.02	-0.46	2^{-6}	1.0
GloVe	1.12	-0.08	0.37	2^{-6}	1.0

Here we see that after debiasing, the correlation metric increases!

Results: Gender Biased Word Embeddings

man:woman::boss:?

biased		debiased	
neighbor	similarity	neighbor	similarity
bosses	0.577	bosses	0.556
girlfriend	0.529	capofamiglia	0.498
waitress	0.509	mobster	0.464
woman	0.506	abruze	0.461
abruze	0.498	ingarao	0.461
gaigalas	0.498	umetaro	0.461
prostitute	0.497	alimzhan	0.46
backtalking	0.492	ENTITY/	0.459
gambarro	0.49	mobsters	0.456

Table 3: Wikipedia2Vec: Completions for man: woman:

boss:?

Results: GoogleNews

he : doctor :: she :

		L	L
Biased Neighbour	Biased Similarity	Debiased Neighbour	Debiased Similarity
nurse gynecologist nurse_practitioner midwife pediatrician dermatologist ob_gyn pharmacist doctors	0.659 0.647 0.626 0.6 0.592 0.558 0.556 0.556	gynecologist nurse nurse_practitioner pediatrician midwife doctors ob_gyn physician dermatologist	0.632 0.624 0.602 0.585 0.572 0.556 0.552 0.548
+		+	++

Results: Glove

e : doctor ::			
Biased Neighbour	Biased Similarity	Debiased Neighbour	Debiased Similarity
nurse	0.653	mordrid	0.544
doctors	0.652	gynecologist	0.485
physician	0.627	midwife	0.48
pregnant	0.618	kerish	0.467
pregnancy	0.589	obstetrician	0.464
she	0.584	nurse	0.462
midwife	0.568	pediatrician	0.454
her	0.566	naturopath	0.451
patient	0.565	dermatologist	0.45
		L -	

Results

- We do not reproduce the **exact results** in the paper
- We do reproduce **general debiasing trends** for all word embedding types
- The results are highly influenced by hyperparameters
- Still hard to measure to what extent the debiasing really worked
- The lack of a **quantitative metric** is the biggest weak point in the paper

Reproducibility challenges

- Equations in the paper
- Loss functions
- Word embeddings
- Hyperparameters
- Implementation and unofficial implementations

Discussion

- How can we know debiasing is successful?
 - Regarding the boss analogy, mobster clearly contains a negative connotation.
- Sexism is a complex phenomena shaped by human judgement, which makes it hard to quantitatively evaluate.
- It is also a risky to measure qualitatively, and would require a carefully selected group from different backgrounds