Projeto e Análise de Algoritmos

Aula 15:

Classes de Complexidade P, NP (GPV 8.1,8.2)

DECOM/UFOP

2020

Anderson Almeida Ferreira Adaptado do material elaborado por: Andréa Iabrudi Tavares

Objetivos

- Saber definir o que é um problema de busca e um problema de decisão
- Saber definir classes de complexidade P e NP
- Entender a pergunta P≠NP
- Bibliografia
 - DPV 8.1,8.2

Melhor Rota: Meu primeiro emprego

- Você foi contratado por uma empresa de distribuição de produtos de limpeza. Você será responsável pelo sistema que gera as rotas para os 10 estabelecimentos atendidos.
- Seu chefe espera que você gere uma rota que passe uma única vez por cada um dos estabelecimentos, com a menor distância possível.

Melhor Rota: Modelagem

- O modelo de seu problema é um grafo G=(V,E):
 - cada cidade é um nó v, n = |V|
 - cada aresta e = (i,j) tem um peso w(e), a distância entre os estabelecimentos.
- O problema de busca é:
 - Encontre um ciclo C em G que passe por cada nó exatamente uma vez e tenha tamanho mínimo.

min
$$w(C) = \sum_{i=1}^{n-1} w(v_i, v_{i+1}) + w(v_n, v_1)$$

onde são válidos

$$C = (v_1, \dots, v_n) | \forall i, j \ i \neq j \Rightarrow v_i \neq v_j(v_n, v_1) \in E, \quad \forall 1 \leq i < n(v_i, v_{i+1}) \in E$$

Exemplo com 5 estabelecimentos

	Aurora	Bacanão	Camarada	Dasdona	Enlevo
Aurora	0	5	2	1	3
Bacanão		0	2	3	4
Camarada			0	2	2
Dasdona				0	1
Enlevo					0

Melhor Rota: Solução Gulosa

- Usando seus conhecimentos até o momento, você tenta uma abordagem gulosa para achar a solução para o problema.
- Como no algoritmo de Prim para menor árvore, seu algoritmo sempre escolhe um novo vértice para entrar no ciclo baseado no peso das arestas para o último vértice inserido.

Exemplo com 5 estabelecimentos

	A	В	C	D	E
A	O	5	2 (1	3
B (5	O	2	3	4
C	2 (2	0	2	2
D	1	3	2	o (1
E	3	4 (2	2	O

Tamanho = 11

Infelizmente, há uma solução melhor

	A	В	C	D	E
A	0	5	2 (1	3
В	5	O (2	3	4
C	2	2	0	2	2
D	1	3	2	o (1
E	3 (4	2	2	O

Tamanho = 10

Melhor Rota: Solução Ótima Exaustiva

- Após várias tentativas, você se entrega e decide inspecionar todos os ciclos possíveis.
- Como existem 9! ciclos diferentes (todas as permutações de estabelecimentos), seu algoritmo é O(n!). Mas, garantidamente, a menor rota será identificada.
- Você implementa seu algoritmo e encontra a rota num tempo bastante razoável. Seu chefe e você ficam felizes.

Melhor Rota: A empresa se expande...

- **Boas notícias**: seu algoritmo gerou economia e, com os novos investimentos, o negócio está se expandindo e 20 novos estabelecimentos serão atendidos.
- **Péssimas notícias**: seu algoritmo, tão rápido para os 10 estabelecimentos, está executando há dois dias com o novo grafo de 30 estabelecimentos e até agora nada! Por quê?????

Função de	Tamanho da Instância do Problema					
complexidade	10	20	30	40	50	60
n	0,00001	0,00002	0,00003	0,00004	0,00005	0,00006
	segundos	segundos	segundos	segundos	segundos	segundos
n^2	0,0001	0,0004	0,0009	0,0016	0,0025	0,0036
	segundos	segundos	segundos	segundos	segundos	segundos
n^3	0,001	0,008	0,027	0,064	0,125	0,216
	segundos	segundos	segundos	segundos	segundos	segundos
n^5	0,1	3,2	24,3	1,7	5,2	13,0
	segundos	segundos	segundos	minutos	minutos	minutos
2 ⁿ	0,001	1,0	17.9	12,7	35,7	366
	segundos	segundo:	minutos	dias	anos	séculos
3^n	0,059 segundos	58 minutos	6,5 anos	3855 séculos	2×10 ⁸ séculos	1,3 × 10 ¹³ séculos

Será que a solução é comprar um computador melhor?

Maior instância que um computador resolve em 1 hora					
Função de complexidade	Computador Atual	Computador 100x mais rápido	Computador 1000x mais rápido		
n	N	100 N	1000 N		
n^2	M	10 M	31,6 M		
n^3	Z	4,64 Z	10 Z		
n^5	W	2,5 W	3,98 W		
2 ⁿ	X	X + 6,64	X + 9,97		
3 ⁿ	Υ	Y + 4,19	Y + 6,29		

É possível resolver Melhor Rota?

 Você acha que não pode obter uma solução ótima em tempo razoável. Como você pode convencer seu chefe disso?

Problemas de busca

- É uma relação R entre instâncias e soluções.
- Verificação
 - Dadas uma instância x e uma solução y do problema, deve-se **verificar** se $(x,y) \in R$.
 - Algoritmo C_R $C_R(x, y) = \begin{cases} \sin & (x, y) \in R \\ \text{não} & (x, y) \notin R \end{cases}$

Busca

- Dada uma instância x do problema, deve-se
 encontrar uma solução y tal que (x,y) e R.
- ^a Algoritmo F_R $F_R(x) = \begin{cases} y & (x, y) \in R \\ \bot & \not\exists y \mid (x, y) \in R \end{cases}$

- Satisfabilidade, Horn, 2-SAT
- Caixeiro Viajante, Árvore Geradora Mínima
- Maior caminho entre dois vértices, Menor caminho entre dois vértices
- Caminho de Rudrata (Hamiltoniano), Caminho Euleriano

- Satisfabilidade ou SAT
 - Aplicações variam desde teste de chip e projeto de computadores a análise de imagens e engenharia de software.
 - Dada uma fórmula booleana na forma normal conjuntiva, encontre uma atribuição satisfatória ou então declare que nenhuma existe.
- O problema do caixeiro-viajante (tsp-traveling salesman problem)
 - Dado um conjunto de n vértices e todas as n(n-1)/2 distâncias entre eles, bem como um orçamento b, temos de encontrar um circuito, um ciclo que passe por todos os vértices exatamente uma vez, de custo total b ou menos ou declarar que nenhum circuito desse tipo existe.

- Euler e Rudrata (Hamilton)
 - Caminho Euleriano: Dado um grafo, encontre um caminho que contenha cada aresta exatamente uma vez – ou afirme que não existe tal caminho.
 - Caminho de Rudrata (Hamiltoniano): Dado um grafo, encontre um ciclo que visita cada vértice exatamente uma vez – ou afirme que não existe tal ciclo.

- Conjunto independente, cobertura de vértices e clique
 - Conjunto independente dado um grafo e um inteiro g, o objetivo é encontrar g vértices independentes, isto é, não existe aresta entre nenhum par deles.
 - Cobertura de vértices dado um grafo e um orçamento b, encontre b vértices que cubram (toquem) cada aresta.
 - Clique Dado um grafo e um objetivo g, encontre um conjunto de g vértices tal que todas as possíveis arestas entre eles estejam presentes.

- Caminho mais longo Dado um grafo *G* com pesos de arestas não-negativos e dois vértices *s* e *t* determinados e peso total de pelo menos *g*, encontre um caminho de *s* para *t* com peso total de pelo menos *g*.
- Mochila Dados pesos inteiros w_1 , ..., w_n e valores inteiros v_1 , ..., v_n para n itens, além de uma capacidade W e um objetivo g, encontre um conjunto de itens cujo peso total é no máximo W e cujo valor total é pelo menos g.
- Soma de subconjuntos Dado um conjunto de valores inteiros e um valor *W*, encontre um subconjunto desses valores que some exatamente *W*.

Otimização x Decisão

Problema de otimização

$$\min w(C) = \sum_{i=1}^{n-1} w(v_i, v_{i+1}) + w(v_n, v_1)$$

$$C = (v_1, \dots, v_n) | \forall i, j \ i \neq j \Rightarrow v_i \neq v_j(v_n, v_1) \in E, \quad \forall 1 \leq i < n(v_i, v_{i+1}) \in E$$

Problema de decisão (sim/não)

$$\exists C \mid w(C) = \sum_{i=1}^{n-1} w(v_i, v_{i+1}) + w(v_n, v_1) \le b?$$

$$C = (v_1, \dots, v_n) \mid \forall i, j \mid i \neq j \Rightarrow v_i \neq v_j(v_n, v_1) \in E, \quad \forall 1 \le i < n(v_i, v_{i+1}) \in E$$

São equivalentes, então só problemas de decisão

Classe NP

- Classe de problemas para os quais se conhece um algoritmo de tempo polinomial para C_R .
 - Por que classe?
 - Conjunto, nenhum específico
 - Por que algoritmo?
 - Equivalência polinomial dos modelos (tese de Church-Turing)
 - Por que tempo?
 - Análise assintótica
 - Pior caso
 - Por que polinomial?
 - · Aceitável na prática
 - Fechada sob várias operações

Definição de C_R para ordenação

- Instância: um vetor *A* de *n* elementos inteiros
- Solução: uma permutação P dos indíces (1 a n)
 - Representação através de um vetor P de *n* posições
- Algoritmo C_R
 - Recebe A e P como parâmetros,
 - Verifica se é permutação (lembre-se do linear...)
 - Verifica se essa permutação resulta em uma sequência ordenada (A[P[i]] <= A[P[i+1]])

Problema de Satisfabilidade

- *n* variáveis lógicas (falso/verdadeiro)
- uma fórmula lógica com and, or e not
 - Conjunção de disjunções
- Existe uma atribuição para as variáveis que torna a fórmula verdadeira?

$$(x \lor y \lor z) (x \lor \overline{y}) (y \lor \overline{z}) (z \lor \overline{x}) (\overline{x} \lor \overline{y} \lor \overline{z})$$

O problema de decisão da Melhor Rota pertence a NP?

• Existe um algoritmo polinomial que, dados o grafo, um limite e uma permutação dos nós de entrada, verifica se é uma solução?

• Quem não pertence a NP? Problemas de otimização!

Melhor Rota: Pertence a NP

- Algoritmo verifica se uma seqüência de vértices é solução para problema de decisão com limite k.
- O algoritmo é simples. Dada a seqüência de nós da rota proposta : $s = (v_1, \dots, v_n)$
 - 1. É uma permutação . $v_i \neq v_j, \forall i \neq j$
 - 2. Existe aresta entre nós consecutivos.

$$\forall i < n, e(v_i, v_{i+1}) \in E, e(v_n, v_1) \in E$$

3. A soma dos pesos das arestas tem que ser menor ou igual ao limite. $k \le \sum_{i=1}^{n-1} w(e(v_i, v_{i+1})) + w(e(v_n, v_1))$

Classe P

• Classe de problemas para os quais se conhece um algoritmo de tempo polinomial para F_R

Melhor rota pertence a P?

 Aparentemente não, pois você (que é quase um gênio) não conseguiu nem projetar um algoritmo nem reduzir seu problema a outro que você conhece que tenha solução polinomial...

• E daí???????

decom departamento de computação

Relação de P e NP

Achar a solução de qualquer problema é tão fácil quanto verificar se ela existe?

Relação de P, NP e SAT

- Cook(1971) mostrou que o SAT é o problema mais difícil dentro dos NP, ou seja, todo problema em NP pode ser "transformado" no SAT.
- Então, se o SAT pode ser resolvido em tempo polinomial, P = NP...
- Agora, vamos definir os problemas tão difíceis quanto o SAT, ou seja, transformar o SAT em outro problema.

P = NP?

- Como formular esse problema?
 - Achar uma classe de problemas tais que todos os problemas de NP podem ser polinomialmente reduzidos a eles.

NP-difícil: tão ou mais difíceis que qualquer um em NP

 Achar uma classe de problemas em NP onde todos os problemas de NP podem ser polinomialmente reduzidos a eles.

NP-completo: em NP, tão ou mais difíceis que qualquer outro em NP

P, NP, NP-difícil e NP-completo

Classe NP-completo

- Os problemas de busca na versão decisão MAIS difíceis: todos se reduzem a eles
 - todos são o mesmo problema disfarçado...
- Subconjunto de NP e nenhum NPC possui solução polinomial conhecida
 - parece intratável.
- Seu problema está NPC, então
 - ou você não conseguirá um algoritmo polinomial
 - ou você ganhará o Prêmio Turing!

P, NP, NP-difícil e NP-completo

P = NP?

$D \in NPC$ tem solução polinomial $\Leftrightarrow P = NP$

 Se P ≠ NP, então todo D em NPC é intratável.

• Se D em NPC tem solução polinomial, então P = NP.

Existe algum problema em NP-completo (intratável)?

• Cook mostrou que SAT é NP-completo, ou seja, que todos os problemas em NP podem ser reduzidos polinomialmente ao SAT. Logo, há fortes evidências de que SAT é intratável...

Isso foi feito utilizando a máquina de Turing nãodeterminística, então não vamos ver a prova...

No livro-texto há uma outra versão, transformando todos NP para Circuito-SAT. Também não veremos.

Redução polinomial de problemas

- f e h são polinomiais
- Se A pode ser reduzido polinomialmente a B , B é tão (ou mais) difícil quanto A. $A \leq_P B$
 - O que não pode acontecer é A ser exponencial e B polinomial, por exemplo... (Por quê?)

Redução de Problemas

Transforma um problema A em outro B

$$T(A) = T(f) + T(B) + T(h)$$

Como mostrar problema A é P por redução?

- 1. Um algoritmo resolvedor polinomial para B
- 2. Uma redução polinomial (f e h) de A para B

Se
$$B \in P$$
 e $A \leq_P B$ então $A \in P$

$$\Theta(A) = \Theta(B) + \Theta(f) + \Theta(h)$$

$$\Theta(A) = \max(\Theta(B) + \Theta(f) + \Theta(h))$$

decom

Máximo \leq_P Ordenação

- Máximo (A):
 - Instância: vetor V
 - Solução: máximo m

- Ordenação (B):
 - Instância: vetor V_2
 - Solução: vetor ordenado V_2

Algorithm for A

- Função f: Instância de A em Instância de B
 - Identidade V_2 = V

 Função h: Solução de B em Solução de A

$$\bullet \quad M = V_2[n]$$

É possível resolver Melhor Rota?

- Não sabemos, mas se mostrarmos que ele pertence à classe dos problemas NP-completos há forte evidência de que não existe um algoritmo polinomial para resolvê-lo...
- Então, como mostrar que é NP-completo?

Como mostrar problema é NP-Completo?

• O problema B é NPC e quero mostrar que A também é NPC.

Se B \in NPC, A \in NP e B \leq_P A então A \in NPC

- Para um problema de busca versão decisão:
 - 1. Um algoritmo polinomial para verificação
 - 2. Uma redução polinomial (f e h) de um problema NPC a ele

Algumas Reduções Importantes

Melhor Rota: Provando que é NPC

- Vamos provar que Melhor Rota é NPC:
 - Mostrando que ele é NP.
 - Reduzindo polinomialmente o problema do ciclo hamiltoniano, que é NPC, a ele.
- Melhor Rota é uma instância do conhecido problema do Caixeiro Viajante (*Travelling Salesman Problem – TSP*), que tem inspirado o desenvolvimento de inúmeras abordagens exatas e aproximadas.

Melhor Rota Decisão é NP

- Algoritmo checa se uma seqüência de vértices é solução para problema de decisão com limite b.
- O algoritmo é simples. Dada a seqüência de nós da rota proposta : s = (v₁,···, v_n)
 - 1. É uma permutação . $v_i \neq v_j, \forall i \neq j$
 - 2. Existe aresta entre nós consecutivos. $\forall i < n, e(v_i, v_{i+1}) \in E, e(v_n, v_1) \in E$
 - 3. A soma dos pesos das arestas tem que ser menor ou igual ao limite.

$$k = \sum_{i=1}^{n-1} w(e(v_i, v_{i+1})) + w(e(v_n, v_1))$$

decom

Melhor Rota Decisão é NP

Encontrando um problema NPC para serimento reduzido a Melhor Rota...

Existem vários problemas NP-completos...

http://en.wikipedia.org/wiki/List of NP-complete problems

1 Graph theory

- 1.1 Covering and partitioning
- 1.2 Subgraphs and supergraphs
- 1.3 Vertex ordering
- 1.4 Iso- and other morphisms
- 1.5 Miscellaneous

2 Network design

- 2.1 Spanning trees
- 2.2 Cuts and connectivity
- 2.3 Routing problems
- 2.4 Flow problems
- 2.5 Miscellaneous
- 2.6 Graph Drawing

- 3 Sets and partitions
- 4 Storage and retrieval
- 5 Sequencing and scheduling
- 6 Mathematical programming
- 7 Algebra and number theory
- 8 Games and puzzles
- 9 Logic
- 10 Automata and language theory
- 11 Computational geometry
- 12 Program optimization

Caminho euleriano é P

Leonhard Euler (1735) – nascimento de teoria

dos grafos

Possível percorrer todas as pontes sem repetir?

Existe caminho que passe por cada **aresta** exatamente uma vez?

Basta testar cardinalidade dos vértices!

Ciclo Hamiltoniano ou de Rudrata é NP-Completo

Redescoberto por William Hamilton (1857), físico, astrônomo e matemático.

Dado um grafo G=(V,E), existe um ciclo que passa por cada **vértice** exatamente uma vez? (CH)

Ciclo Hamiltoniano -> Melhor Rota

• A partir do grafo G=(V,E) do CH, montamos o grafo da Melhor Rota da seguinte forma:

$$G^{MR} = (V, E^{MR})$$
, grafo completo com
$$w(v_i, v_j) = \begin{cases} 1, (v_i, v_j) \in E \\ 2, (v_i, v_j) \notin E \end{cases}$$

• Existe um CH em G se e somente se a melhor rota em G^{MR} tem tamanho n, pois nesse caso todas as arestas estavam originalmente em G.

CH -> Melhor Rota

• CH (A) se reduz polinomialmente a MR (B)

$$T(A) = T(f) + T(B) + T(h)$$

Transformando CH em MR

Solucionando MR e CH

Melhor rota é intratável!

- Muito bem, você pode mostrar para seu chefe que é bastante improvável que algum algoritmo ofereça a solução ótima de roteamento.
- Contudo, como você agora sabe que esse é um conhecido problema TSP, é hora de procurar boas estratégias de exploração do espaço de solução ou soluções aproximadas...

Resumo

- Problemas que pertencem a P têm solução polinomial.
- Problemas que pertencem a NP têm verificação de solução polinomial.
- Problemas NP-Completos são os mais difíceis em NP. NP e NP-Difícil.
- Há fortes evidências de que um NPC é intratável.
- Para provar que um problema é intratável:
 - Algoritmo verificador polinomial de solução do problema na versão decisão.
 - Redução polinomial de um NPC conhecido ao novo problema.

Algumas Reduções

Caminho (s,t) de Rudrata ≤_p Cliclo de Rudrata

Algumas Reduções

• 3SAT ≤_p Conjunto Independente

The graph corresponding to $(\overline{x} \lor y \lor \overline{z}) (x \lor \overline{y} \lor z) (x \lor y \lor z) (\overline{x} \lor \overline{y}).$

