Filtered Tractography Validation on a Physical Phantom

James Malcolm

Advisor: Yogesh Rathi Psychiatry Neuroimaging Lab. Harvard Medical School

method: the model

multi-tensor mixture model

$$S(\boldsymbol{u}) = S_0 \sum_{j} w_j e^{-b\boldsymbol{u}^T D_j \boldsymbol{u}}$$

```
\begin{array}{ccc} D_j & \text{diffusion tensor} \\ \boldsymbol{u} & \text{unit} \\ w_j & \text{direction} \\ b & \text{convex} \\ b & \text{acquisition} \\ s_0 & \text{null signal} \\ (b=0) \end{array}
```

model assumptions

...in this project

Two fibers

Fixed volume fractions

Tensors are elliptic or isotropic

model parameters

```
for two fibers... ...two principal directions \mathbf{m} \in \mathbb{R}^3 ...two primary eigenvalues \lambda_1 \in \mathbb{R} ...two minor eigenvalues \lambda_2 \in \mathbb{R} 5+5=10 parameters
```

model parameters

for two fibers...

...two principal directions $m \in \mathbb{R}^3$

...two primary eigenvalues $\lambda_1 \in \mathbb{R}$

...two minor eigenvalues $\lambda_2 \in \mathbb{R}$

5 + 5 = 10 parameters

$$S(u) = 0.5 s_0 e^{-bu^T D_1 u} + 0.5 s_0 e^{-bu^T D_1 u}$$

$$D_1 = \lambda_{11} m_1 m_1^T + \lambda_{21} (p p^T + q q^T)$$

eigenvectors: m, p, q

method: estimating the model

IPMI 2009 *MICCAI* 2009

independent estimation

the system: a fiber

model-based filtering

objectives:

- estimate model from measurements
- suppress noise

notation

$$\boldsymbol{x}_t$$
 state of system at time t state = "model parameters"
 \boldsymbol{y}_t what you see at time t observation, measurement

update:
$$\mathbf{x}_{t+1} = F \mathbf{x}_t \quad \mathbf{x}_{t+1} = f(\mathbf{x}_t)$$

observation:
$$y_t = G x_t$$
 $y_t = g(x_t)$

linear nonlinear

Kalman filtering

predict ... measure ... reconcile ... repeat ...

$$\mathbf{x} = [\mathbf{m}_1 \lambda_{11} \lambda_{12} \mathbf{m}_2 \lambda_{21} \lambda_{22}]^T \in \mathbb{R}^{10}$$

$$\mathbf{y} \in \mathbb{R}^m \text{ signal}$$

$$10 \text{ dimensional state}$$

$$\mathbf{x} = [\mathbf{m}_1 \lambda_{11} \lambda_{12} \mathbf{m}_2 \lambda_{21} \lambda_{22}]^T \in \mathbb{R}^{10}$$

$$\mathbf{v} \in \mathbb{R}^m \text{ signal}$$
10 dimensional state

$$\mathbf{x}_{t+1} = f(\mathbf{x}_t) = \mathbf{x}_t$$

 $y_t = g(x_t) = S(u)$

small steps slowly varying state

$$\mathbf{x} = [\mathbf{m}_1 \lambda_{11} \lambda_{12} \mathbf{m}_2 \lambda_{21} \lambda_{22}]^T \in \mathbb{R}^{10}$$

$$\mathbf{y} \in \mathbb{R}^m \text{ signal}$$

$$10 \text{ dimensional state}$$

$$\mathbf{x}_{t+1} = f(\mathbf{x}_t) = \mathbf{x}_t$$
 small steps
slowly varying
 $\mathbf{y}_t = g(\mathbf{x}_t) = S(\mathbf{u})$ state

$$y(\boldsymbol{u}) = S(\boldsymbol{u}) = 0.5 s_0 e^{-b\boldsymbol{u}^T D_1 \boldsymbol{u}} + 0.5 s_0 e^{-b\boldsymbol{u}^T D_2 \boldsymbol{u}}$$
$$D = \lambda_1 \boldsymbol{m} \boldsymbol{m}^T + \lambda_2 (\boldsymbol{p} \boldsymbol{p}^T + \boldsymbol{q} \boldsymbol{q}^T)$$

signal reconstruction is nonlinear

independent optimization

- least squares
 linearization
- gradient descent local minima
- Levenberg-Marquardt local minima

causal estimation

- extended Kalman filter mean + covariance linearization
- particle filter
 non-parametric
 sampling
- unscented Kalman filter mean + covariance no linearization limited sampling

linear Kalman filter

predict ... measure ... reconcile ... repeat ...

unscented Kalman filter

same update equations modified prediction step

unscented transform

approximate the statistics...not the function

unscented transform

for signal reconstruction...

$$x = [\boldsymbol{m}_1 \lambda_{11} \lambda_{12} \boldsymbol{m}_2 \lambda_{21} \lambda_{22}]^T$$

unscented Kalman filter

predict ... measure ... reconcile ... repeat ...

algorithm

estimate model parameters with UKF
proceed in most consistent direction

terminate: FA < 0.15

the phantom

- 1)Seed throughout the mask ("full brain")
- 2)Select fibers passing through seed points
- 3) Manually select representative fiber

b=1500, 3mm

the phantom

3mm b=1500

conclusion

inherent coherence along the fiber we should exploit it in the estimation

Connectivity Studies

- Discrete paths
 - Pros: fast, tract-based studies
 - Cons: easily go off-track
- Probabilistic connectivity
 - Pros: handle uncertainty
 - Cons: leaking, difficult to interpret
- Filtered tractography
 - Accurate local estimates (mean, cov)
 - Probabilistic tractography

Local vs. Global

- Local methods easy go off track
- Global methods often over-regularize path
- Anatomic priors
- Hybrid
 - local: signal-model
 - global: path
- Filtered tractography
 - Replace local streamline in sampling
 - Covariance uncertainty indicates failure

end

James Malcolm malcolm@bwh.harvard.edu www.jgmalcolm.com Yogesh Rathi yogesh@bwh.harvard.edu www.yogesh-rathi.com