Part 1

- So far we've seen a lot of good news!
 - Many of the problems we have seen could be solved quickly (i.e., in close to linear time, or at least a time that is some small polynomial function of the input size)
- NP-completeness is a form of bad news!
 - Evidence that many important problems can not be solved quickly.
- NP-complete problems really come up all the time!
 - 0-1 Knapsack, Travelling Salesman, Bin Packing,
 Scheduling

- Some problems are intractable: as they grow large, we are unable to solve them in reasonable time
- What constitutes reasonable time? Standard working definition: polynomial time
 - On an input of size n the worst-case running time is $O(n^k)$ for some constant k
 - Polynomial time: O(n²), O(n³), O(1), O(n lg n)
 - Not in polynomial time: $O(2^n)$, $O(n^n)$, O(n!)

Why should we care?

- Knowing that they are hard lets you use other methods to solve them...
 - Use a heuristic: come up with a method for solving a reasonable fraction of the common cases.
 - Solve approximately: come up with a solution that you can prove that is close to right.
 - Use an exponential time solution: if you really have to solve the problem exactly and stop worrying about finding a better solution.

Decision problems

 Given an input and a question regarding a problem, determine if the answer is yes or no

Optimization problems

- Find a solution with the "best" value
- Optimization problems can be casted as decision problems that are easier to study

Shortest Path given G = (V,E) and w(u,v) edge weights

- Optimization: What is the minimum total weight of all paths between A and G?
- Decision: Does there exists a path between A and E with total weight at most 20?

Shortest Path given G = (V,E) and w(u,v) edge weights

- Optimization: What is the minimum total weight of all paths between A and G? 17
- Decision: Does there exists a path between A and E with total weight at most 20? YES

Problem: Knapsack (items, weights, benefits, W)

- Optimization: What is the maximum total benefit of all sets of items that can fit in a knapsack with capacity W.
- Decision: Does there exists a set of items having a total benefit
 of at least k that can fit in the knapsack with capacity W

Algorithmic vs Problem Complexity

- The algorithmic complexity of a computation is some measure of how difficult it is to perform the computation (i.e., specific to an algorithm)
- The complexity of a computational problem or task is the complexity of the algorithm with the lowest order of growth of complexity for solving that problem or performing that task.
 - e.g. the problem of searching an ordered list has at most lgn time complexity.
- Computational Complexity: deals with classifying problems by how hard they are.

Class of "P" Problems

- Class P consists of (decision) problems that are solvable in polynomial time
- Polynomial-time algorithms
 - Worst-case running time is O(n^k), for some constant k
- Examples of polynomial time:
 - $O(n^2), O(n^3), O(1), O(n \lg n)$
 - Searching and Sorting

Tractable/Intractable Problems

- Problems in P are also called tractable
- Problems not in P can be or
 - intractable solved in reasonable time only for small inputs
 - unsolvable can not be solved at all
- Are non-polynomial algorithms always worst than polynomial algorithms?
 - $n^{1,000,000}$ is technically tractable, but really impossible
 - $n^{\log \log \log n}$ is *technically* intractable, but easy

An Unsolvable Problem

- Turing discovered in the 1930's that there are problems unsolvable by any algorithm.
- The most famous of them is the *halting* problem
 - Given an arbitrary algorithm and its input, will that algorithm eventually halt, or will it continue forever in an "infinite loop?"
- This is an interesting topic but we will not be covering unsolvable problems in this class. To learn more you can take CS321

Intractable Problems

- Can be classified in various categories based on their degree of difficulty, e.g.,
 - NP
 - NP-complete
 - NP-hard
- Let's define NP algorithms and NP problems ...

Examples of Intractable Decision Problems

- Hamiltonian Cycle (HAM-CYCLE). Given a directed graph G = (V,E), does there exist a simple cycle C that visits every vertex?
- CIRCUIT-SAT. Given a combinational circuit built out of AND, OR, and NOT gates, is there a way to set the circuit inputs so that the output is 1?
- Travelling Salesman (TSP). Given a weighted graph G=(V,E)
 - Optimization Problem: Find a minimum weight Hamiltonian Cycle.
 - Decision Problem: Given a graph and an integer k, is there a Hamiltonian Cycle with a total weight at most k

Nondeterminism and NP Algorithms

Nondeterministic algorithm = two stage procedure:

- 1) Nondeterministic ("guessing") stage:
 - generate randomly an arbitrary string that can be thought of as a candidate solution ("certificate")
- 2) Deterministic ("verification") stage:
 - take the certificate and the instance to the problem and returns YES if the certificate represents a solution
- NP algorithms (Nondeterministic polynomial)
 - verification stage is polynomial

Class of "NP" Problems

- Class NP consists of problems that could be solved by Nondetermistic Polynomial algorithms
 Or verifiable in polynomial time
- If we were given a "certificate" of a solution, we could verify/certify that the certificate is correct in time polynomial to the size of the input
- Warning: NP does not mean "non-polynomial"

Decision 0-1 Knapsack is in NP

Given a knapsack with capacity W = 20 is there a subset of items with total benefit at least \$25?

Easy to verify in poly-time that

$$S = \{ 1, 3, 4, 5 \}$$
 is a certificate solution.

Total weight =
$$2 + 4 + 5 + 9 = 20$$

Total benefit =

$$3 + 5 + 8 + 10 = 26 > 25$$

V	Veight	Benefit
Item	W_{i}	$\mathbf{b_{i}}$
# 1	2	3
2	3	4
3	4	5
4	5	8
5	9	10

Hamiltonian Cycle is in NP

Given: a directed graph G = (V, E), determine a simple cycle that contains each vertex in V

Each vertex can only be visited once

Certificate:

– Sequence: (a, e, d, c, b)

certificate t

instance s Hamiltonian 18

3-SAT is in NP

Given a CNF formula Φ with three literals per clause, is there a satisfying assignment?

Certificate. An assignment of truth values to the n boolean variables.

Certifier. Check that each clause in Φ has at least one true literal.

instance s

$$(\overline{x_1} \lor x_2 \lor x_3) \land (x_1 \lor \overline{x_2} \lor x_3) \land (x_1 \lor x_2 \lor x_4) \land (\overline{x_1} \lor \overline{x_3} \lor \overline{x_4})$$

certificate t

$$x_1 = 1$$
, $x_2 = 1$, $x_3 = 0$, $x_4 = 1$

3-SAT is in NP

Given a CNF formula Φ with three literals per clause, is there a satisfying assignment?

Certificate. An assignment of truth values to the n boolean variables.

Certifier. Check that each clause in Φ has at least one true literal.

instance s

$$(\bar{1} \lor 1 \lor 0) \land (1 \lor \bar{1} \lor 0) \land (1 \lor 1 \lor 1) \land (\bar{1} \lor \bar{0} \lor \bar{1})$$
$$(1) \land (1) \land (1) \land (1)$$

1

P vs NP???

All problems that can be solved in polynomial time can be verified in polynomial time.

Any problem in P is also in NP: $P \subseteq NP$

Does P = NP?

The big (and open question)

is whether $NP \subset P$ or P = NP

- i.e., if it is always easy to check a solution, should it also be easy to find a solution?
- If yes: Efficient algorithms for KNAPSACK, TSP, FACTOR, SAT, ...
- If no: No efficient algorithms possible for KNAPSACK, TSP, SAT, ...
- Consensus opinion on P = NP? Probably no.

Most computer scientists believe that this is false but we do not have a proof ...

NP-Complete Problems

We will see that NP-Complete problems are the "hardest" problems in NP:

- If any one NP-Complete problem can be solved in polynomial time...
- ...then every NP-Complete problem can be solved in polynomial time...
- ...and in fact every problem in NP can be solved in polynomial time (which would show P = NP)
- Thus: solve Hamiltonian-cycle in $O(n^{100})$ time, you've proved that **P** = **NP**. Retire rich & famous.

Part 2

NP-Completeness (informally)

 NP-complete problems are defined as the hardest problems in NP

 Most practical problems turn out to be either P or NP-complete.

NP-Completeness (formally)

- A problem B is NP-complete if:
 - (1) $B \in \mathbf{NP}$
 - (2) $X \leq_p B$ for all $X \in \mathbf{NP}$

- If B satisfies only property (2) we say that B is NP-hard
- No polynomial time algorithm has been discovered for an NP-Complete problem
- No one has ever proven that no polynomial time algorithm can exist for any NP-Complete problem

NP-Complete

A problem *B* is in NP-complete if:

 $1. B \in \mathbf{NP}$

2. There is a polynomial-time reduction from every problem $A \in \mathbb{NP}$ to B.

NP-Complete Hard

A problem *B* is in NP-Hard if:

There is a polynomial-time reduction from every problem $A \in \mathbb{NP}$ to B.

P & NP-Complete Problems

Shortest simple path

- Given a graph G = (V, E) find a shortest path from a source to all other vertices
- Polynomial solution: O(VE)

Longest simple path

- Given a graph G = (V, E) find a longest path from a source to all other vertices
- NP-complete

P & NP-Complete Problems

Euler tour

- G = (V, E) a connected, directed graph find a cycle that traverses <u>each edge</u> of G exactly once (may visit a vertex multiple times)
- Polynomial solution O(E)

Hamiltonian cycle

- G = (V, E) a connected, directed graph find a cycle
 that visits <u>each vertex</u> of G exactly once
- NP-complete

Why Prove NP-Completeness?

- Though nobody has proven that P ≠ NP, if you prove a problem NP-Complete, most people accept that it is probably intractable
- Therefore it can be important to prove that a problem is NP-Complete
 - Don't need to come up with an efficient algorithm
 - Can instead work on approximation algorithms

Using Reductions

- If A is polynomial-time reducible to B, we denote this A ≤_p B
- Definition of NP-Complete:
 - If A is NP-Complete, A ∈ NP and all problems X are reducible to A
 - Formally: $X ≤_p A ∀ X ∈ NP$
- If A ≤_p B and A is NP-Complete, then B is NP-Hard
 - If B∈ NP too then B is NP-Complete

Reduction

The crux of NP-Completeness is *reducibility* ≤_p

- Informally, a problem A can be reduced to another problem B if any instance of A can be "easily rephrased" as an instance of B, the solution to which provides a solution to the instance of A
 - What do you suppose "easily" means?
 - This rephrasing is called transformation
- Intuitively: If A reduces to B,
 - $A \leq_p B$
 - A is "no harder to solve" than B

Reductions

- Reduction is a way of saying that one problem is "easier" than another.
- We say that problem A is no harder than problem B, (i.e., we write "A ≤_p B")

if we can solve A using the algorithm that solves B.

Idea: transform the inputs of A to inputs of B

Implications of Reduction

- If $A \leq_p B$ and $B \in P$, then $A \in P$
- if $A \leq_{D} B$ and $A \notin P$, then $B \notin P$

Polynomial Reductions

Given two problems A, B, we say that A is

polynomially **reducible** to B (A \leq_p B) if:

- There exists a function f that converts the input of A to inputs of B in polynomial time
- 2. $A(i) = YES \Leftrightarrow B(f(i)) = YES$

Proving Polynomial Time

- Use a polynomial time reduction algorithm to transform A into B
- 2. Run a known **polynomial time** algorithm for B
- 3. Use the answer for B as the answer for A

Reducibility

An example:

- A: Given a set of Booleans, (x₁, x₂, ..., x_n), is at least one TRUE?
- B: Given a set of integers, $(y_1, y_2, ..., y_n)$, is their sum positive?
- Transformation: $(x_1, x_2, ..., x_n) = (y_1, y_2, ..., y_n)$ where $y_i = 1$ if $x_i = TRUE$, $y_i = 0$ if $x_i = FALSE$

Reductions

Proving NP-Completeness

What steps do we have to take to prove a problem B is NP-Complete?

- 1. Pick a known NP-Complete problem A. Reduce A to B
 - Describe a polynomial time transformation/reduction that maps instances of A to instances of B, s.t. "yes" for B = "yes" for A
 - Prove the transformation works
 - Prove it runs in polynomial time

By proving step 1 you have proved that problem B is NP-Hard

- 2. Prove $B \in NP$
 - Show that a solution to B can be verified in polynomial time

If you can prove steps 1 and 2 you have proven that B is NP-complete.

NP-Completeness

Part 3

NP-Completeness All problems below are NP-complete and polynomial reduce to one another!

Circuit satisfiability is in NP

Circuit satisfiability

Satisfiability Problem (SAT)

Satisfiability problem: given a logical expression ₱, find an assignment of values (F, T) to variables x_i that causes ₱ to evaluate to T

$$\Phi = X_1 \vee \neg X_2 \wedge X_3 \vee \neg X_4$$

 SAT was the first problem shown to be NPcomplete!

CNF Satisfiability

- CNF is a special case of SAT
- Φ is in "Conjuctive Normal Form" (CNF)
 - "AND" of expressions (i.e., clauses)
 - Each clause contains only "OR"s of the variables and their complements

$$\Phi = (\mathsf{x}_1 \vee \mathsf{x}_2) \wedge (\mathsf{x}_1 \vee \neg \mathsf{x}_2) \wedge (\neg \mathsf{x}_1 \vee \neg \mathsf{x}_2)$$

3-CNF Satisfiability

A subcase of CNF problem:

Contains three clauses

$$\Phi = (\mathbf{x}_1 \vee \neg \mathbf{x}_1 \vee \neg \mathbf{x}_2) \wedge (\mathbf{x}_3 \vee \mathbf{x}_2 \vee \mathbf{x}_4) \wedge (\neg \mathbf{x}_1 \vee \neg \mathbf{x}_3 \vee \neg \mathbf{x}_4)$$

- 3-CNF (3-SAT) is NP-Complete
- Interestingly enough, 2-CNF is in P!

Clique

Clique Problem:

- Undirected graph G = (V, E)
- Clique: a subset of vertices in V all connected to each other by edges in E (i.e., forming a complete graph)
- Size of a clique: number of vertices it contains

Optimization problem:

Find a clique of maximum size

Decision problem:

– Does G have a clique of size k?

Clique Verifier

- Given: an undirected graph G = (V, E)
- Problem: Does G have a clique of size k?
- Certificate:
 - A set of k nodes

 Verify that for all pairs of vertices in this set there exists an edge in E

Example: Clique

- CLIQUE = { <G,k> | G is a graph with a clique of size k }
- A clique is a subset of vertices that are all connected
- Why is CLIQUE in NP?

3-CNF \leq_p Clique

Idea:

Construct a graph G such that ₱ is satisfiable only if

G has a clique of size k

Reduce 3-SAT to Clique

- Pick an instance of 3-SAT, Φ, with k clauses
- Make a vertex for each literal
- Connect each vertex to the literals in other clauses that are not the negation
- Any k-clique in this graph corresponds to a satisfying assignment

Example

$$C_3 = x_1 \lor x_2 \lor x_3$$

Traveling Salesman Problem

- A traveling salesperson needs to visit *n* cities
- Is there a route of at most d length? (decision problem)
 - Optimization-version asks to find a shortest cycle visiting all vertices once in a weighted graph

NP-Completeness Proof Method

To show that B is NP-Complete:

1. Show that B is in NP.

Give a polynomial time algorithm for verifying a solution.

2. Show that $A \leq_P B$ for some $A \in NP$ -Complete

Pick an instance, A, of your favorite NP-Complete problem

Show a polynomial algorithm to transform A into an instance of B

Step 2 alone shows that a problem is NP-Hard

Traveling Salesman Problem

- In the traveling salesman problem, a salesman must visit
 n cities.
- Salesman wishes to make a tour visiting each city exactly once and finishing at the city he started.
- There is an integer cost c(i,j) to travel from city i to city j.
- For example, the salesman must travel to a, b, c, d locations.
- Travel costs are given

Optimization TSP

- The salesman wishes to make the tour whose total cost is minimum.
- The total cost is sum of the individual costs along the edges of the tour
- In the example the minimum cost tour is a-c-b-d
- The cost of this tour is 1+2+1+3=7

Decision TSP

The formal language:

TSP = { $\langle G,c,k \rangle$: G=(V,E) is a complete graph, c is a function from $(V \times V) \rightarrow N$, $k \in \mathbb{N}$ and G has a traveling salesman tour with cost at most k}

$$G = (\{a, b, c, d\}, \{(a,b), ...(c,d)\}) c(a,b) = 4, c(a,c) = 1, ...c(c,d) = 5$$

Suppose k = 15

Can we verify the solution certificate

$$(a,d,c,b)$$
 - yes
 $c(a,d) + c(d,c) + c(c,b) + c(b,a) =$
 $3 + 5 + 2 + 4 = 14 < 15$

Prove TSP-Decision is NP-complete

1) Show that TSP belongs to NP.

Given an instance of the problem the certificate is the sequence of *n* vertices (cities) in the tour.

The certifier (verification algorithm) checks that

- this sequence contains each vertex exactly once,
- sums up the edge costs and checks whether the sum is at most k.

This process can be done in polynomial time.

Therefore TSP-Decision is in NP

Prove TSP-Decision is NP-complete

2) Prove that TSP is NP-hard. We can show that Ham-cycle ≤ _D TSP.

where Ham-cycle ∈ NP-Complete

Let G=(V,E) be an instance of Ham-cycle. We construct an instance of TSP as follows

- Form the complete graph G' = (V, E') where $E' = \{ (i,j) : i, j ∈ V \text{ and } i \neq j \}$ and
- Define the cost function c by $c(i,j) = \{ 0 \text{ if } (i,j) \in E, 1 \text{ if } (i,j) \notin E \}$

The instance of TSP is then $\langle G', c, 0 \rangle$ which is easily formed in polynomial time.

By proving 2) TSP-Decision is NP-Hard. Since 1) held too then we have shown that TSP-Decision is NP-Complete

We now show that graph **G** has a Hamiltonian cycle if and only if graph **G'** has a tour of cost at most 0.

Suppose the graph *G* has a Hamiltonian cycle *h*.

Each edge in **h** belongs to **E** and thus has a cost 0 in **G**'. Thus **h** is a tour in **G**' with cost 0

Conversely suppose that graph **G'** has a tour **h'** of cost at most 0.

Since the cost of edges in *E'* are 0 and 1, the cost of tour *h'* is exactly 0 and each edge on the tour must have cost 0.

Thus **h'** contains only edges in **E**.

Hence we conclude that h' is a Hamiltonian cycle in graph G.

By proving 2) TSP-Decision is NP-Hard. Since 1) held too then we have shown that TSP-Decision is NP-Complete

SUBSET-SUM

Instance: A set of numbers denoted S and a target number t.

Problem: To decide if there exists a subset S' \subseteq S, s.t $\Sigma_{y \in S}$, y=t.

SUBSET-SUM is in NP

On input S, t:

- Guess S'⊆S
- Accept iff $\Sigma_{y \in S}$, y=t.

The length of the certificate: O(n) (n=|S|)

Time complexity: O(n)

Examples of SUBSET-SUM

$$\langle \{2,4,8\},10 \rangle \in \text{SUBSET-SUM...}$$
 because 2+8=10 $\langle \{2,4,8\},11 \rangle \notin \text{SUBSET-SUM}$... because 11 cannot be made out of $\{2,4,8\}$

$$\begin{aligned} \text{SUBSET-SUM} = & \left\{ \left\langle S, t \right\rangle | \, S = \left\{ x_1, \dots, x_k \right\} \\ & \text{there is a subset R} \subseteq S \\ & \text{such that } \sum_{y \in R} y \ = \ t \right\} \end{aligned}$$

SUBSET-SUM is NP-Complete

Proof: We'll show 3SAT≤_pSUBSET-SUM.

Reducing 3SAT to SubSet Sum

Proof idea:

- Choosing the subset numbers from the set S corresponds to choosing the assignments of the variables in the 3CNF formula.
- The different digits of the sum correspond to the different clauses of the formula.
- If the target t is reached, a valid and satisfying assignment is found.

Subset Sum

3CNF formula:

$$(x_1 \lor x_2 \lor x_3) \land (\overline{x}_1 \lor x_2 \lor x_4) \land (\overline{x}_2 \lor \overline{x}_2 \lor \overline{x}_3) \land (x_1 \lor \overline{x}_3 \lor \overline{x}_4)$$

clause: 1 2 3 4

1	0	0	0	1	0	0	1
1	0	0	0	0	1	0	0
	1	0	0	1	1	0	0
	1	0	0	0	0	1	0
		1	0	1	0	0	0
		1	0	0	0	1	1
			1	0	1	0	0
			1	0	0	0	1
		-		1	0	0	0

Make the number table, and the 'target sum' t

dummies

Reducing 3SAT to SubSet Sum

- Let φ∈3CNF with k clauses and ℓ variables x₁,...,x_ℓ.
- Create a Subset-Sum instance <S_φ,t> by:
 2ℓ+2k elements of

$$S_{\phi} = \{y_1, z_1, \dots, y_{\ell}, z_{\ell}, g_1, h_1, \dots, g_k, h_k\}$$

- y_j indicates positive x_j literals in clauses
- z_i indicates negated x_i literals in clauses
- g_j and h_j are dummies
- and

Subset Sum

$$(x_1 \lor x_2 \lor x_3) \land (\overline{x}_1 \lor x_2 \lor x_4) \land (\overline{x}_2 \lor \overline{x}_2 \lor \overline{x}_3) \land (x_1 \lor \overline{x}_3 \lor \overline{x}_4)$$

Note 1: The "1111" in the target forces a proper assignment of the x_i variables.

Note 2: The target "3333" is only possible if each clause is satisfied. (The dummies can add maximally 2 extra.)

+x ₁
-x ₁
+X ₂
-x ₂
+X ₃
-x ₃
+X ₄
-x ₄
-

1	0	0	0	1	0	0	1
1	0	0	0	0	1	0	0
	1	0	0	1	1	0	0
	1	0	0	0	0	1	0
		1	0	1	0	0	0
		1	0	0	0	1	1
			1	0	1	0	0
_			1	Ь	ס	P	7
				1	0	0	0
				1	0	0	0
					1	0	0
					1	0	0
						1	0
						1	0
							1
1	1	1	1	3	3	3	37

 $\begin{vmatrix} (\mathbf{X}_1 \vee \mathbf{X}_2 \vee \mathbf{X}_3) \wedge (\overline{\mathbf{X}}_1 \vee \mathbf{X}_2 \vee \mathbf{X}_4) \wedge \\ (\overline{\mathbf{X}}_2 \vee \overline{\mathbf{X}}_2 \vee \overline{\mathbf{X}}_3) \wedge (\mathbf{X}_1 \vee \overline{\mathbf{X}}_3 \vee \overline{\mathbf{X}}_4) \end{vmatrix}$

Subset Sum

	1	0	0	0	1	0	0	1	
		1	0	0	0	0	1	0	•
			1	0	0	0	1	1	+
				1	0	1	0	0	+
					1	0	0	0	+
					1	0	0	0	*
						1	0	0	•
						1	0	0	*
							1	0	*
								1	+
	1	1	1	1	3	3	3	3	•
X_1	X	2 ,	\overline{X}_3	, X	4	is	a	Sã	atisfying

assignment

		1	0
		1	0
			1
			1
_	,		
_	,		
_	1		
_	,		
`	/		

+X₁

 $-X_1$

+X2

 $-x_2$

+X₃

 $-x_3$

+X4

				,		_	
			1	0	0	0	1
				1	0	0	0
				1	0	0	0
					1	0	0
					1	0	0
						1	0
						1	0
							1
1	1	1	1	3	3	3	377

0

0

0

 $\begin{vmatrix} (x_1 \lor x_2 \lor x_3) \land (\overline{x}_1 \lor x_2 \lor x_4) \land \\ (\overline{x}_2 \lor \overline{x}_2 \lor \overline{x}_3) \land (x_1 \lor \overline{x}_3 \lor \overline{x}_4) \end{vmatrix}$

+X₁

 $-x_1$

+x₂

 $-x_2$

+X₃

 $-x_3$

+X₄

Subset Sum

1	0	0	0	0	1	0	0	
	1	0	0	0	0	1	0	•
		1	0	0	0	1	1	+
			1	0	1	0	0	+
				1	0	0	0	*
				1	0	0	0	+
					?	?	?	+
1	1	1	1	2	?	?	3	_

	is not a
satisfying	assignment

1	0	0	0	1	0	0	1
1	0	0	0	0	1	0	0
	1	0	0	1	1	0	0
	1	0	0	0	0	1	0
		1	0	1	0	0	0
		1	0	0	0	1	1
			1	0	1	0	0
			1	0	0	0	1
				1	0	0	0
				1	0	0	0
					1	0	0
					1	0	0
						1	0
						1	0
							1
1	1	1	1	3	3	3	37

Proof 3SAT ≤_P Subset Sum

- For every 3CNF φ, take target t=1...13...3
 and the corresponding set S_φ.
- If φ∈3SAT, then the satisfying assignment defines a subset that reaches the target.

 Also, the target can only be obtained via a set that gives a satisfying assignment for φ.

$$\phi \in 3SAT$$
 if and only if $\langle S_{\phi}, 1...13...3 \rangle \in SubsetSum$

0-1 KNAPSACK

Prove the following knapsack problem to be NP complete

Optimization Version:

```
n objects, each with a weight w_i > 0 and a benefit b_i > 0 capacity of knapsack : W Maximize \sum_{1 \le i \le n} b_i x_i Subject to \sum_{1 \le i \le n} w_i x_i \le W x_i = 0 or 1, 1 \le i \le n
```

Decision version :

Given K,
$$\exists \sum_{1 \le i \le n} b_i x_i \ge K$$
?

KNAPSACK is NP-Complete

- 1) Show NP Verify a solution in polynomial time
- 2) Show NP-Hard. Reduce SUBSET-SUM to KNAPSACK

Show NP-Hard. Reduce SUBSET-SUM to KNAPSACK. How can you use Knapsack to solve Subset-Sum

Reduction from SUBSET-SUM to Decision-KNAPSACK: SUBSET- $SUM = \{ \langle S, t \rangle \mid S = \{x_1, ..., x_k\} \text{ and for some } \{y_1, ..., y_l\} \subseteq S, \Sigma y_i = t \}$

Set
$$b_i = w_i = x_i$$

Set
$$W = k = t$$

Then for any subset $T \subseteq S$

$$\sum_{i \in T} x_i = t \quad \text{if and only if} \quad \sum_{i \in T} b_i = \sum_{i \in T} x_i \geq t \quad \text{and} \quad \sum_{i \in T} w_i = \sum_{i \in T} x_i \leq t$$

Bin Packing Problem

• Given a set of items $S = \{x_1...x_n\}$ each with some weight w_i , pack maximum number of items into a collection of finite number of bins each with some capacity B_i using minimum number of bins.

 Knapsack problem is a particular case of Binpacking when the number of bins is 1 and its capacity is K

SUBSET-SUM to PARTITION

- PARTITION = $\{x_1, x_2, ..., x_k \mid \text{ we can split the integers into two sets which sum to half }\}$
- SUBSET-SUM = { <x₁,x₂,... x_k,t> | there exists a subset which sums to t }
- 1) If I can solve SUBSET-SUM, how can I use that to solve an instance of PARTITION?
- 2) If I can solve PARTITION, how can I use that to solve an instance of SUBSET-SUM?

Polynomial Reductions

- 1) Partition REDUCES to Subset-Sum
 - Partition ≤_D Subset-Sum
- 2) Subset-Sum REDUCES to Partition
 - Subset-Sum ≤_p Partition
- Therefore they are equivalently hard