Regression Assignment - 1

February 22, 2024

[]: """Q1. Explain the difference between simple linear regression and multiple $_{\sqcup}$ $_{\hookrightarrow}$ linear regression. Provide an example of each.

Ans: Simple linear regression is a statistical method that examines the \Box \neg relationship between two continuous variables.

It involves one independent variable and one dependent variable, and \neg aims to find a linear relationship between them.

An example of simple linear regression is analyzing the relationship \Box \Box between a person's height and weight.

Multiple linear regression, involves examining the relationship \Box \Box between multiple independent variables and one dependent variable.

It aims to find a linear relationship between the independent \cup variables and the dependent variable.

An example of multiple linear regression is analyzing the relationship \Box between a person's salary and their level of education, years of experience, \Box and age.

[]: """Q2. Discuss the assumptions of linear regression. How can you check whether \sqcup \hookrightarrow these assumptions hold in a given dataset?

Ans: Linear regression assumes that there is a linear relationship between \Box \Box the independent and dependent variables, the residuals are normally \Box \Box distributed,

the variance of the residuals is constant across the range of the \sqcup \neg independent variable, and there is no multicollinearity among independent \sqcup \neg variables.

[]: """Q3. How do you interpret the slope and intercept in a linear regression omodel? Provide an example using a real-world scenario.

Ans: In a linear regression model, the slope represents the rate of change \cup of the dependent variable with respect to the independent variable,

and the intercept represents the base price of a house with zero $_{\!\!\!\!\perp}$ square footage.

11 11 11

[]: """Q4. Explain the concept of gradient descent. How is it used in machine_\
\[\times \text{learning?} \]

Ans: Gradient descent is a method used in machine learning to find the best \Box \Box values for the parameters of a model by iteratively adjusting them to \Box \Box minimize

the error between predicted and actual outcomes. It does this by \Box \Box calculating the gradient of the error function with respect to the \Box \Box parameters and

11 11 11

[]: """Q5. Describe the multiple linear regression model. How does it differ from simple linear regression?

Ans: Multiple linear regression is a statistical method that helps us \sqcup \sqcup understand the relationship between multiple independent variables and a \sqcup \sqcup dependent variable.

the dependent variable.

[]: """Q6. Explain the concept of multicollinearity in multiple linear regression. \(\) \(\to \) How can you detect and address this issue?

Ans: Multicollinearity is a problem in multiple linear regression where the \Box \Box independent variables are highly correlated with each other.

This can cause issues in accurately estimating the effect of each \rightarrow independent variable on the dependent variable.

To detect and address multicollinearity, one can use correlation $_{\sqcup}$ $_{\hookrightarrow}$ matrices and variance inflation factors (VIF) to identify highly correlated $_{\sqcup}$ $_{\hookrightarrow}$ variables and

remove them or use regularization techniques to reduce their impact.

11 11 11

Ans: Polynomial regression is a type of regression analysis where the \Box \neg relationship between the independent variable (X) and the dependent variable \Box \Box (Y)

is modeled as an nth degree polynomial. It differs from linear \neg regression as it allows for a curved relationship between X and Y, rather \neg than assuming a straight line.

[]: """Q8. What are the advantages and disadvantages of polynomial regression ⇒compared to linear regression? In what situations would you prefer to use ⇒polynomial regression?

Ans: Advantages:

- 1. Polynomial regression can capture non-linear relationships $_{\sqcup}$ $_{\hookrightarrow}$ between variables that linear regression cannot.

Disadvantages:

- 1. Polynomial regression can be more complex than linear \neg regression, which can lead to overfitting if the model is not carefully \neg tuned.
 - 2. Polynomial regression can be sensitive to outliers. Situations where polynomial regression is preferred:
- 1. When there is a non-linear relationship between the dependent \neg variable and independent variable(s).
 - 2. When a higher degree of accuracy is required in the predictions.
- 3. When there is enough data to fit a complex model without $_{\!\!\!\!\perp}$ -overfitting.

n n n