

Machine Learning – Life Cycle Tools

Benjamin Wagner

Gliederung

- MLOps
- ML Prozessmodelle
 - Crips DM
 - Modell nach Google
- Komponenten eines vollständigen MLOps Systems
- Technologie-Stack
 - Single Solutions
 - Integrated Solutions

MLOps

Anwendung der DevOps Prinzipien auf Machine Learning Systeme

- Reproduzierbarkeit
- Skalierbarkeit
- Automation
- Deployment
- Monitoring und Management

Hochschule Konstanz
Technik, Wirtschaft und Gestaltung

M H

ML Prozessmodelle

Hochschule Konstanz

Hochschule Konstanz

Hochschule Konstanz

Hochschule Konstanz

Hochschule Konstanz

Hochschule Konstanz

Hochschule Konstanz

Technik, Wirtschaft und Gestaltung

H T ·

Komponenten eines Vollständigen MLOps System

G

Metadata
Management

Multiple Multiple

Workflow Pipelines

11

Deployment

Hyperparameter Tuning

Monitoring

ML code

Versioning

Deployment

Workflow Pipelines

Hochschule KonstanzTechnik, Wirtschaft und Gestaltung

Metadata Management Hyperparameter Tuning

Monitoring

ML code

Versioning

Deployment

Workflow Pipelines

Hyperparameter Tuning

Monitoring

ML code

Versioning

Deployment

Workflow Pipelines

Hyperparameter Tuning

Monitoring

ML code

Versioning

Deployment

Workflow Pipelines

Hyperparameter Tuning

Monitoring

ML code

Versioning

Deployment

Workflow Pipelines

Hyperparameter Tuning

Monitoring

ML code

Versioning

Deployment

Workflow Pipelines

Hochschule Konstanz

Technik, Wirtschaft und Gestaltung

H T W

Technologie-Stack

Single Solutions

H T Hochschule Konstanz
Technik, Wirtschaft und Gestaltung

Metadata management

- ML Flow
- Neptune
- Comet

Hyperparameter Tuning

- Optuna
- SigOPT

Monitoring

• Fiddler

G

Amazon Sage Maker

ML code

Versioning

- Pachyderm
- Apache Airflow
- DVC
- GIT

Deployment

- BentoML
- Cortex

Workflow Pipelines

- Kubeflow
- Polyaxon

Hochschule Konstanz

Technik, Wirtschaft und Gestaltung

H T W

G

Metadata Management

ML Flow

 Hochschule Konstanz
 09.11.2021
 20

Metadata Management

Metadata Management

Metadata Management Munitoring Munitoring

Workflow Pipelines

Deployment

Metrics

Name	Value
accuracy 🗠	0.994
loss 🗠	0.017

Metadata Management

Metadata Management

Hyperparameter Tuning

Monitoring

Versioning

Deployment

Workflow Pipelines

Environment Dependencies

```
channels:

    conda-forge

dependencies:
  python=3.9.5
  pip
  pip:
  - mlflow
  keras==2.6.0
  pillow==8.4.0
  - scipy==1.7.1
  tensorflow==2.6.0
name: mlflow-env
```


Hyperparameter Tuning

Monitoring

Versioning

Deployment

Workflow Pipelines

Model Summary

Metadata Management

ML Flow

Output Shape	Param #
(None, 784)	0
(None, 128)	100480
(None, 128)	16512
(None, 10)	1290
	(None, 784) (None, 128) (None, 128)

Total params: 118,282

Trainable params: 118,282 Non-trainable params: 0

Hochschule Konstanz

09.11.2021

24

Metadata Management

Metadata
Management

Munitoring

ML
code

Munitoring

- Läuft mit Python und R
- Sehr einfach einzubinden in bestehende Projekte
 - Z.b via >> mlflow.tensorflow.autolog()
- Unterstützt diverse Bibliotheken
 - Tensorflow, Scikit, Pytorch, Keras, Fastai ...
- Übersichtliches UI
 - Starten >> mlflow ui

Hochschule Konstanz

Technik, Wirtschaft und Gestaltung

H T W

Hyperparameter Tuning

Optuna

Hyperparameter Tuning

- 1. Aufstellen des Suchraumes
- 2. Abbrechen von wenig erfolgsversprechenden Strategien

Hyperparameter Tuning

Code Integration

Hyperparameter Tuning

Code Integration

Metadata
Management

ML
code

Multiple Monitoring

Multiple Monitoring

Multiple Monitoring

Multiple Monitoring

Multiple Monitoring

Wersioning

Deployment

Workflow Pipelines

657/657 [==========] - 1s 895us/step - loss: 0.0939 - accuracy: 0.9719
0.9719047546386719
0.09385089576244354
[I 2021-11-03 15:55:32,337] Trial 99 finished with value: 0.09385089576244354 and parameters: {'n_layers': 1, 'n_units_lo': 237, 'optimizer': 'Adam', 'n_epochs': 7}. Best is trial 31 with value: 0.08841179311275482.

Process finished with exit code 0

Hyperparameter Tuning

Parameter Einfluss

Hyperparameter Tuning

Metadata Management Hyperparameter Tuning

Monitoring

ML code

Versioning

Deployment

Workflow Pipelines

Parallel Computing

\$ python example.py [I 2019-05-21 11:16:43,493] Using an existing study with name 'example-study' in stead of creating a new one. [I 2019-05-21 11:16:53,916] Finished trial#9 resulted in value: 0.744140625. Cur rent best value is 0.744140625 with parameters: {'momentum_sgd_lr': 7.9440223034 05195e-05, 'n_layers': 1, 'n_units_l0': 28.753028463759527, 'optimizer': 'MomentumSGD', 'weight_decay': 2.1924271434430527e-06}. Lotal [####################################	737. Current best value is 0.805814303457737 with parameters: {'adam_alpha .5501424552926803e-05, 'n_layers': 1, 'n_units_l0': 4.237994876174356, 'opzer': 'Adam', 'weight_decay': 4.2909422937320695e-09}.
<pre>\$ python example.py [I 2019-05-21 11:16:43,621] Using an existing study with name 'example-study' in stead of creating a new one. [I 2019-05-21 11:16:55,890] Finished trial#10 resulted in value: 0.8976862980052 829. Current best value is 0.16624098271131516 with parameters: {'momentum_sgd_1 r': 0.012378325131946236, 'n_layers': 3, 'n_units_10': 10.118405976356666, 'n_units_11': 99.22366485593328, 'n_units_12': 6.970853785986278, 'optimizer': 'MomentumSGD', 'weight_decay': 0.0007099850265678694}.</pre>	instead of creating a new one. [I 2019-05-21 11:16:56,449] Finished trial#6 resulted in value: 0.88273737 1315. Current best value is 0.16624098271131516 with parameters: ('momentum d_lr': 0.012378325131946236, 'n_layers': 3, 'n_units_l0': 10.1184059763566
\$ python example.py [I 2019-05-21 11:16:42,729] Using an existing study with name 'example-study' in stead of creating a new one. [I 2019-05-21 11:16:54,781] Finished trial#8 resulted in value: 0.91624098550528 29. Current best value is 0.16624098271131516 with parameters: {'momentum_sgd_lr': 0.012378325131946236, 'n_layers': 3, 'n_units_l0': 10.118405976356666, 'n_units_l1': 99.22366485593328, 'n_units_l2': 6.970853785986278, 'optimizer': 'MomentumSGD', 'weight_decay': 0.0007099850265678694}.	instead of creating a new one. [I 2019-05-21 11:16:54,576] Finished trial#5 resulted in value: 0.16624098: 31516. Current best value is 0.16624098271131516 with parameters: {'momentigd_Ir': 0.012378325131946236, 'n_layers': 3, 'n_units_l0': 10.118405976356

Hyperparameter Tuning

Metadata
Management

Munitoring

Deployment

Workflow Pipelines

- Integrierte Bibliotheken

- Pytorch lightning
- Pytorch ignite
- FastAi
- Parallel Computing
- Visualisierung des Suchraumes
- Gewichtung des Parametereinflusses

.

•

32

H T W

G

Hochschule Konstanz

Technik, Wirtschaft und Gestaltung

Versioning

DVC/MLFlow/Git

Data Version Control

Versioning

Metadata
Management

ML
Code

Multiple Versioning

Deployment

Workflow Pipelines

- Versionierung von Datensätzen
- Prinzip: Versionierung des Codes über Git
- Datensätze zu groß für GitHub Repos
- Trainingsdaten werden über DVC auf einen Storage geladen (z.b. direkt auf gdrive)
- Im Git Repository wird eine dvc/config file abgelegt welche das Git-Repo mit dem DVC-Repo verknüpft

ML Flow Versioning

Versionierung von Modellen

Metadata
Management

Multiple Monitoring

Multiple Multiple Multiple Monitoring

Multiple Mul

Versionierung von Code und Pipelines

Hochschule Konstanz

09.11.2021

36

Hochschule Konstanz

Technik, Wirtschaft und Gestaltung

H T ·

Workflow Pipelines

Kedro

Workflow Pipelines

- Python library
- Erstellen von Noden
 - Funktion
 - Inputs
 - Outputs
 - Name
- Verbinden von Nodes zu einer Pipeline
- Verbinden von mehreren Pipelines
- Speichern/Teilen von Pipelines
- Visualisieren von Pipelines

Metadata
Management

Munitoring

ML
code

Munitoring

Munitoring

Munitoring

Munitoring

Munitoring

Munitoring

Munitoring

Munitoring

Deployment

Workflow Pipelines

•

. .

KedroWorkflow Pipelines

Metadata
Management

ML
code

MU
Code

MU
Code

MU
Code

Workflow Pipelines

- Neues Projekt: >> kedro new
- Datensets importieren
- Catalog definieren
- Funktionen/Nodes definieren
- Pipelines registrieren
- Sequentiell/Parallel laufen lassen

Workflow Pipelines

Workflow Pipelines

Deployment

Datensets/Artefakte definieren

```
companies:
 type: pandas.CSVDataSet
 filepath: data/01_raw/companies.csv
  layer: raw
reviews:
 type: pandas.CSVDataSet
 filepath: data/01 raw/reviews.csv
 layer: raw
shuttles:
 type: pandas.ExcelDataSet
 filepath: data/01_raw/shuttles.xlsx
  layer: raw
```

Workflow Pipelines

Metadata Management ML code Multoring Mul

(Node)-Funktion

```
def preprocess_companies(companies: pd.DataFrame) -> pd.DataFrame:
    """Preprocesses the data for companies.

Args:
    | companies: Raw data.
Returns:
    | Preprocessed data, with `company_rating` converted to a float and
        `iata_approved` converted to boolean.
    """
    companies["iata_approved"] = _is_true(companies["iata_approved"])
    companies["company_rating"] = _parse_percentage(companies["company_rating"])
    return companies
```

en de la companya de

.

Workflow Pipelines

Pipeline Definition

```
def create pipeline(**kwargs):
    return Pipeline(
            node(
                func=preprocess_companies,
                inputs="companies",
                outputs="preprocessed_companies",
                name="preprocess companies node",
            ),
           node(
                func=preprocess shuttles,
                inputs="shuttles",
                outputs="preprocessed_shuttles",
                name="preprocess shuttles node",
            ),
           node(
                func=create_model_input_table,
                inputs=["preprocessed_shuttles", "preprocessed_companies", "reviews"],
                outputs="model_input_table",
                name="create model input table node",
```

Workflow Pipelines

Pipelines verbinden

```
def register_pipelines() -> Dict[str, Pipeline]:
    """Register the project's pipeline.
    Returns:
        A mapping from a pipeline name to a ``Pipeline`` object.
    data processing pipeline = dp.create pipeline()
    data science pipeline = ds.create pipeline()
    return {
        "__default__": data_processing_pipeline + data_science_pipeline,
        "dp": data_processing_pipeline,
        "ds": data science pipeline,
```

•

raw

intermediate

primary

models

Companies Reviews Shuttles $f\,$ Preprocess Companies Node $f\,$ Preprocess Shuttles Node Preprocessed Companies Preprocessed Shuttles f Create Model Input Table Node Model Input Table f Split Data Node X Train **⊜** XTest ∀ Train f Train Model Node Regressor **⊘** Y Test f Evaluate Model Node

Hyperparameter Tuning

Versioning

Workflow Pipelines

Hochschule

Visualisierung

44

H T

Hochschule Konstanz
Technik, Wirtschaft und Gestaltung

G

Deployment

Bento

Deployment

1. Model

```
Metadata
Management

Multiple Monitoring

Multiple Monitoring

Multiple Monitoring

Multiple Monitoring

Multiple Monitoring

Workflow Pipelines
```

```
# train.py
from sklearn import svm
from sklearn import datasets

# Load training data
iris = datasets.load_iris()
X, y = iris.data, iris.target

# Model Training
clf = svm.SVC(gamma='scale')
clf.fit(X, y)
```

Deployment

Metadata Management ML code ML code Deployment Workflow Pipelines

2. Create API

```
# bento_service.py
import pandas as pd
from bentoml import env, artifacts, api, BentoService
from bentoml.adapters import DataframeInput
from bentoml.frameworks.sklearn import SklearnModelArtifact
@env(infer_pip_packages=True)
@artifacts([SklearnModelArtifact('model')])
class IrisClassifier(BentoService):
   A minimum prediction service exposing a Scikit-learn model
   @api(input=DataframeInput(), batch=True)
   def predict(self, df: pd.DataFrame):
       An inference API named `predict` with Dataframe input adapter, which codifies
       how HTTP requests or CSV files are converted to a pandas Dataframe object as the
        inference API function input
       return self.artifacts.model.predict(df)
```

Deployment

Metadata Management ML code Multiple Monitoring Multiple Mul

3. Pack Model and API

```
# bento packer.py
# import the IrisClassifier class defined above
from bento service import IrisClassifier
# Create a iris classifier service instance
iris classifier service = IrisClassifier()
# Pack the newly trained model artifact
iris classifier service.pack('model', clf)
# Save the prediction service to disk for model serving
saved path = iris classifier service.save()
```

Bento Deployment

4. Serve API

Metadata
Management

Munitoring

ML
Code

Munitoring

bentoml serve IrisClassifier:latest

Model API wird auf localhost:5000 bereitgestellt

Deployment

Running API Services

Deployment

Request Body

Responses

```
Curl -X POST "http://127.0.0.1:5000/predict" -H "accept: */*" -H "Content-Type: application/json" -d "
[{5.1,3.5,1.4,0.2},{5,3.5,1.6,0.3},{4.9,4.5,1.2,0.2}]"

Request URL

http://127.0.0.1:5000/predict
```

Deployment

Response

H T

Hochschule KonstanzTechnik, Wirtschaft und Gestaltung

G

Monitoring

Fiddler

Monitoring

Metadata Management ML code Multipring Multipring

Model Details

Monitoring

Metadata Management Munitoring ML Code Multiple Versioning Deployment Workflow Pipelines

Model Decisions

•

Monitoring

Metadata Management Monitoring ML code Multiple Monitoring Multiple Monitoring Multiple Monitoring Multiple Monitoring Wersioning Deployment Workflow Pipelines

Model Accuracy

Monitoring

Metadata Management MU Code Monitoring MI Code Deployment Workflow Pipelines

Model Drift

Monitoring

Feature Drift 1. April

Drift Analytics 0 Q S Apr 01, 2021 5PM - 1 Day PREDICTION DRIFT IMPACT . (1) FEATURE DRIFT \$ 0 FEATURE IMPACT \$ (1) 0 ▶ age 45.472% 0.08 33.91% ▶ balance 19.467% 0.09 13.56% ▶ numofproducts 0.03 15.149% 27.13% 9.280% 0.04 14.45% ▶ isactivemember

Monitoring

Feature Drift 12. April

Drift Analytics 0 Q Sear Apr 12, 2021 5PM - 1 Day PREDICTION DRIFT IMPACT . (1) FEATURE IMPACT \$ FEATURE DRIFT \$ 0 69.306% 0.32 27.13% ▶ numofproducts 15.815% 0.06 33.91% ▶ age 0.07 13.56% ▶ balance 7.564% ▶ isactivemember 2.299% 0.02 14.45%

.

.

Hochschule Konstanz

09.11.2021

59

Monitoring

Metadata Management Multiple Monitoring Multiple Monitoring Multiple Monitoring Multiple Monitoring Multiple Monitoring Workflow Pipelines

Feature Distribution

Hochschule Konstanz

Technik, Wirtschaft und Gestaltung

H T W

Technologie-Stack

Integrated Solutions

Azure Machine Learning

Metadata Management

 Python SDK für Azure Machine Learning Hyperparameter Tuning

hyperdrive Paket

Monitoring

Azure Monitor

ML code

Versioning

Datesets

Deployment

Azure Pipelines

Workflow Pipelines

- Azure Machine Learning Pipelines
- Azure Data Factory-Pipelines
- Azure Pipelines

Hochschule Konstanz

09.11.2021

······ Amazon SageMaker ······

Prepare \rightarrow

SageMaker Ground Truth Label training data for machine learning

SageMaker Data Wrangler NEW Aggregate and prepare data for machine learning

SageMaker Processing Built-in Python, BYO R/Spark

SageMaker Feature Store NEW Store, update, retrieve, and share features

SageMaker Clarify NEW
Detect bias and understand
model predictions

Build \rightarrow

SageMaker Studio Notebooks Jupyter notebooks with elastic compute and sharing

Built-in and Bring-your-own Algorithms Dozens of optimized algorithms or bring your own

Local Mode Test and prototype on your local machine

SageMaker Autopilot
Automatically create machine
learning models with full visibility

SageMaker JumpStart NEW
Pre-built solutions for common
use cases

Train & tune \rightarrow

One-click Training
Distributed infrastructure
management

SageMaker Experiments Capture, organize, and compare every step

Automatic Model Tuning Hyperparameter optimization

Distributed Training Libraries NEW Training for large datasets and models

SageMaker Debugger NEW
Debug and profile
training runs

Managed Spot Training Reduce training cost by 90%

Deploy & manage \rightarrow

One-click Deployment Fully managed, ultra low latency, high throughput

Kubernetes & Kubeflow Integration Simplify Kubernetes-based machine learning

Multi-Model Endpoints
Reduce cost by hosting multiple
models per instance

SageMaker Model Monitor Maintain accuracy of deployed models

SageMaker Edge Manager NEW Manage and monitor models on edge devices

SageMaker Pipelines NEW Workflow orchestration and automation

SageMaker Studio

Integrated development environment (IDE) for ML

Amazon SageMaker – IDE for ML

Metadata Management - SageMaker

Hyperparameter TuningAuto Tuning

MonitoringSM Model MonitorEdge Manager

ML code VersioningSM ExperimentsModel Versions

Deployment
- One-click deployment

Workflow Pipelines
- SM Pipelines

Google Cloud Al

Google Cloud AI - Vertex

Metadata Management

Vertex

Hyperparameter Tuning

Vertex Al Vizier

Monitoring

 Vertex Al Model Monitoring ML code

Versioning

Deployment

Al Platform Prediction

Workflow Pipelines

Vertex Al Pipelines

Hochschule Konstanz

09.11.2021

H T W G

TensorFlow Extended

Metadata Management

Hyperparameter Tuning

Monitoring

ML code

Versioning

Deployment

Workflow Pipelines

Handlungsempfehlung

Flexibilität

Neues Gebiet > Wechsel eines Tools muss einfach möglich sein

Stabilität

 Untergang von kleinen Tools auf lange Sicht möglich > Auf große Player setzen

Priorisierung

Komplexes Gebiet > Da anfangen wo der größte Nutzen liegt

Quellenverzeichnis

- https://www.trustradius.com/mlops
- https://neptune.ai/blog/best-mlops-tools
- https://cloud.google.com/architecture/mlops-continuous-delivery-and-automation-pipelines-in-machine-learning#mlops_level_0_manual_process
- https://optuna.readthedocs.io/en/stable/tutorial/index.html
- https://www.youtube.com/watch?v=kLKBcPonMYw
- https://towardsdatascience.com/google-cloud-ai-platform-hyper-accessible-ai-machine-learning-cddd8c3348b3
- https://searchcloudcomputing.techtarget.com/tip/6-Amazon-SageMaker-capabilities-developersshould-know-about
- https://aws.amazon.com/de/machine-learning/
- https://datasolut.com/crisp-dm-standard/#Business-Understanding
- https://kedro.readthedocs.io/en/stable/01_introduction/01_introduction.html
- https://kedro.readthedocs.io/en/stable/03_tutorial/06_visualise_pipeline.html
- https://docs.bentoml.org/en/latest/quickstart.html#run-on-google-colab
- https://www.fiddler.ai/ml-monitoring

