7장 공개키 암호 알고리즘

정보보호이론 Spring 2015

- 가장 많이 사용되고 있는 공개키 암호시스템
 - × Rivest, Shamir, and Adleman 의 이름에서 RSA
 - Clifford Cocks, an English mathematician working for the UK intelligence agency, described an equivalent system in 1973, but it was mostly considered a curiosity and, as far as is publicly known, was never deployed. His discovery, however, was not revealed until 1998 due to its top-secret classification, and Rivest, Shamir, and Adleman devised RSA independently of Cocks' work.

Shamir & Lee

■ 키 생성

- 1. 서로 다른 두 소수 p와 q 선택 (크기가 동일한 1024비트 이상의 수로 선택); ($P(k \text{ is prime}) \approx \frac{2}{\ln(2^{1024})} = \frac{2}{1024 \ln(2)} \approx \frac{1}{355}$)
- 2. $n = p \times q$ 값을 계산.
- 3. $\varphi(n) = (p-1)(q-1)$
- 4. $1 < e < \varphi(n) 1$ 의 범위에서 $\varphi(n)$ 과 서로소인 e를 선택
- 5. $d = e^{-1} \mod \varphi(n)$ (확장 유클리드 알고리즘)
- × (e,n): public-key
- (d,n): private-key

■ 예)

- 1. p = 127, q = 131
- 2. $n = p \times q = 127 \times 131 = 16637$
- 3. $\varphi(n) = \varphi(p \times q) = \varphi(p) \times \varphi(q) = (p-1) \times (q-1) = 126 \times 130 = 16380$
- 4. 공개키 e는 집합 $\mathbb{Z}_{\varphi(n)}^*$ 에서 $gcdig(e,\varphi(n)ig)=1$ 을 만족하는 e=17로 선택
- 5. $d \equiv e^{-1} \equiv 17^{-1} \equiv 14453 \pmod{16380}$
- 6. 공개키 (n = 16637, e = 17), 개인키 (d = 14453)

- 암 · 복호화
 - **Encryption**: $c = m^e \mod n$
 - ► Note m < n (for uniqueness)

- RSA암호의 정확성(correctness)
 - **Decryption**: $c^d \equiv (m^e)^d \equiv m^{ed} \pmod{n}$

```
* ed \equiv 1 \mod \varphi(n) \Longrightarrow ed = k\varphi(n) + 1

\therefore m^{ed} \equiv m^{k\varphi(n)+1} \equiv \left(m^{\varphi(n)}\right)^k \cdot m \pmod n

\equiv 1^k \cdot m \pmod n

(오일러 정리 m^{\varphi(n)} \equiv 1 \mod n)

\equiv m \pmod n
```

예

- p = 47 and q = 71, n = p*q = 3337
 - (p-1)*(q-1) = 46 * 70 = 3220, GCD(e, (p-1)*(q-1)) = 1
 - Choose e at random to be 79
 - $\mathbf{d} = 79^{-1} \mod 3220 = 1019$
 - ▶ To encrypt message m = 6882326879666683
 - $m_1 = 688$ $m_2 = 232$ $m_3 = 687$ $m_4 = 966$ $m_5 = 668$ $m_6 = 003$
 - $c_1 = m_1^e \mod n = 688^{79} \mod 3337 = 1570$
 - ightharpoonup c = 1570 2756 2091 2276 2423 158
 - ► To decrypt, $m_1 = c_1^d \mod n = 1570^{1019} \mod 3337 = 688$

- RSA암호의 안전성
 - **× RSA 문제** : $c \equiv m^e \pmod{n}$ 가 주어졌을 때 c의 e^{th} root를 구하는 문제
 - ▶ 인수분해 문제 → The RSA 문제
 - n = p × q을 인수분해 → φ(n)(= (p 1)(q 1)) → e의 곱셈상의 역원 d를 계산
 - ▶ The RSA 문제 → 인수분해 문제
 - Not known yet

- 효율적인 RSA 암·복호화
 - ▼ 두 소수 p와 q는 1024비트 이상의 수 → e, d > 2048 비트
 - ▶ 제곱-곱 연산 방법(Square-and-Multiply Method) : 지수가 2048 비트인 경우 2048번의 제곱과 평균 1024번의 곱셈
 - 1. 첫 번째 방법: 공개키 e로 3, 17, 65537을 사용
 - $ightharpoonup 3 = 11_{(2)}, 17 = 10001_{(2)}, 65537 = 10000000000000001_{(2)}$
 - ▶ 3은 2번의 (제곱, 혹은 곱셈) 연산, 17은 5번의 연산, 65537은 17 번의 연산
 - ▶개인키 d를 사용하는 복호화 과정을 현저하게 향상시키는 방법은 아직 존재하지 않는다

- 효율적인 RSA 암·복호화
 - 2. 두 번째 방법: CRT를 이용한 복호화
 - $ightharpoonup m = c^d \mod n$
 - 1. $m_1 = c^d \operatorname{mod} p$, $m_2 = c^d \operatorname{mod} q$
 - 2. $M = p \times q = n \rightarrow M_1 = \frac{n}{p} = q$, $M_2 = \frac{n}{q} = p$
 - 3. $m = (m_1 M_1^{-1} M_1 \pmod{p} + m_2 M_2 M_2^{-1} \pmod{q}) \pmod{M}$
 - ▶ n이 k비트인 경우 CRT를 이용하는 경우의 연산은 k/2 비트 수들(즉 mod p, 혹은 mod q)의 제곱과 곱셈연산
 - ▶ 기존 복호화 과정보다 약 4배 정도 향상
 - ▶ 이 경우 p와 q를 안전하게 저장 필요

- 효율적인 RSA 암·복호화
 - 2. 두 번째 방법: CRT를 이용한 복호화

$$n = p \times q = 127 \times 131 = 16637$$
, $d = 14453$, $c = 8806$

1.
$$m_1 \equiv c^d \equiv 8806^{14453} \equiv 12 \pmod{127}$$
,

2.
$$m_2 \equiv c^d \equiv 8806^{14453} \equiv 8 \pmod{131}$$

3.
$$M_1 = \frac{n}{p} = q = 131$$
, $M_2 = \frac{n}{q} = p = 127$

4.
$$M_1^{-1} \equiv 32 \pmod{p}$$
, $M_2^{-1} \equiv 98 \pmod{q}$

5.
$$m \equiv (m_1 M_1 (M_1^{-1} \mod p) + m_2 M_2 (M_2^{-1} \mod q)) \pmod n$$

 $\equiv (12 \times 131 \times 32 + 8 \times 127 \times 98) \pmod 16637$
 $\equiv (50304 + 99568) \pmod 16637$
 $\equiv 139 \pmod 16637$

- RSA 암호에 대한 공격
 - 선택 암호문 공격(Chosen Ciphertext Attack)
 - ▶ RSA의 준동형사상 (Homomorphism)의 성질 을 이용

$$- (r \times m^*)^e = (r)^e \times (m^*)^e$$

- ▶ 공격자는 암호문 *c**의 평 문을 목표
- 1. $r \in (0, n-1), y \equiv r^e c^* \pmod{n}$
- 2. CCA를 통해 새로운 암호문 y에 대한 평문 y^d 을 얻는다
- 3. $y^{d} \equiv (r^{e}c^{*})^{d} \equiv r^{ed}c^{*d} \pmod{n}$ $\equiv rc^{*d}$ $\equiv r(m^{*e})^{d} \pmod{n}$

- 암호화 지수 *e*에 대한 공격
 - × e=3 and $\{n_1, n_2, n_3\}$ relative primes, 동일한 m을 3명에게 전송하는 경우
 - * 공격자는 $c_1 \equiv x \pmod{n_1}$, $c_2 \equiv x \pmod{n_2}$, $c_3 \equiv x \pmod{n_3}$ 을 계산
 - × CRT를 이용하여 $c^* \equiv x \pmod{n_1 n_2 n_3}$ 을 계산
 - × $m^3 < n_1 n_2 n_3$ 이기 때문에 $x = m^3$
- 복호화 지수 d에 대한 공격
 - If d is revealed, regenerate p, q, n, e, and d
- 평문 공격(Plaintext Attack)
 - * 순환 공격: $c_1 \equiv c^e \pmod{n}$, $c_2 \equiv c_1^e \equiv (c^e)^e \pmod{n}$, ..., $c = c_k \pmod{n}$ $\rightarrow c_{k-1} = m$

 - * 소인수분해와 동일한 복잡도

- 공통 법 공격(Common Modulus Attack)
 - * 공격자는 두 수신자의 동일한 메시지의 두 암호문 c_1 , c_2 와 수신자의 공개키 e_1 , e_2 가 서로소임을 알고 있다.
 - 1. $re_1 + se_2 = 1$ 을 계산
 - 2. r이 음수라고 가정 (r과 s 중 하나는 반드시 음수)
 - 3. 확장 유클리드 알고리즘을 통해 c_1^{-1} 을 계산한다.
 - $gcd(c_1, n) = 1 \rightarrow c_1^{-1}$ 이 존재
 - $gcd(c_1, n) \neq 1 \rightarrow c_1$ 이 p 또는 q의 배수(유클리드 알고리즘으로 p 또는 q를 구함)
 - 4. $(c_1^{-1})^{-r} \cdot c_2^s \equiv (m^{-e_1})^{-r} \cdot m^{e_2 \cdot s} \equiv m^{re_1 + se_2} \equiv m \pmod{n}$

Moral: Never share a common modulus.

- * 예) n = 35, $e_1 = 5$ 와 $e_2 = 11$, $c_1 \equiv 17 \pmod{35}$ 와 $c_2 \equiv 3 \pmod{35}$
 - 1. $5 \times (-2) + 11 \times 1 = 1$
 - 2. $c_1^{-1} \equiv 33 \pmod{35}$
 - 3. $(c_1^{-1})^{-r} \cdot c_2^s \equiv 33^2 \cdot 3^1 \equiv 3267 \equiv 12 \pmod{35}$

- 부채널 공격(Side Channel Attack)
 - × 시간차 공격(Timing Attack)
 - ▶방어 방법
 - 1. 지수 계산 할 때 각각의 지수 계산에 동일한 시간을 걸리도록 만든다.
 - 2. 암호문을 복호화하기 전에 난수를 곱하는 블라인딩 기법을 사용한다.
 - 전력차 공격(Power Analysis Attack)

■ RSA 이용 시 권고사항

- 1. n의 비트는 적어도 (서명의 경우) 2048비트가 되어야 한다.
- 2. 서로 다른 두 소수 p와 q는 적어도 1024비트 이상이 되어야 한다.
- 3. 서로 다른 두 소수 p와 q가 너무 가까이 있는 소수를 선택하지 않는 다.
- 4. p-1과 q-1은 적어도 하나의 큰 소인수를 가져야 한다.
- 5. 비율 $\frac{p}{q}$ 가 작은 분자나 작은 분모를 갖는 유리수와 가까이 있으면 안된다.
- 6. n을 공통적으로 이용하지 않는다.
- 7. 공개키 e는 $2^{16} + 1 = 65537$ 을 이용하거나 혹은 65537과 가까이 있는 값을 이용한다.
- 8. 만약 개인키 d가 노출되었을 경우, 수신자는 반드시 공개키 n과 e, 개인키 d를 즉시 교체해야 한다.
- 9. OAEP를 이용

- OAEP(Optimal Asymmetric Encryption Padding)
 - × C=(P1 || P2)e where P1 = (M||0k1)⊕F(r), P2 = H(P1)⊕ r
 - |P1| = m, |P2| = k

M: 패딩한평문 F: m비트로출력하는공개된함수 r: 임의의값 H: k비트로출력하는공개된함수

발신자 Alice

수신자 Bob

- OAEP(Optimal Asymmetric Encryption Padding)
 - The original version of OAEP was proved in the <u>random_oracle</u> model to be IND-CCA2 secure when OAEP is used with the RSA permutation, i.e., RSA-OAEP. An improved scheme (called OAEP+) that works with <u>any</u> trapdoor one-way permutation was offered by <u>Victor Shoup</u>. More recent work has shown that in the standard model, it is impossible to prove the IND-CCA2 security of RSA-OAEP under the assumed hardness of the <u>RSA problem</u>.
- random oracle model
 - 1. A <u>mathematical function</u> mapping every possible query to a random response from its output domain.
 - 2. Used when no known implementable function provides the mathematical properties required by the proof.

- RSAES-PKCS#1(v1.5)
 - 특 징 : 초기 PKCS#1 기술규격 공개키로 평문을 암호화하기 위한 EM(암호메시지) 구조 및 RSA연산방법이 기술되어있음
 - 보 안 성 : 1998년 Bleichenbacher는 선택된 암호문 공격을 통해 평문을 얻어낼 수 있는 확률을 높일 수 있음; 실제 암호 공간이 1/2로 줄어드는 보안 취약점이 존재
 - * PKCS: Public-Key Cryptography Standard published by RSA Laboratories.

PNUS Standards Summary

PKCS

PNC5 Standards Summary								
	Version	Name	Comments					
PKCS #1	2.1	RSA Cryptography Standard ^[1]	See RFC 3447 ②. Defines the mathematical properties and format of RSA public and private keys (ASN.1-encoded in clear-text), and the basic algorithms and encoding/padding schemes for performing RSA encryption, decryption, and producing and verifying signatures.					
PKCS #2	-	Withdrawn	No longer active as of 2010. Covered RSA encryption of message digests; subsequently merged into F #1.					
PKCS #3	1.4	Diffie-Hellman Key Agreement Standard ^[2]	A cryptographic protocol that allows two parties that have no prior knowledge of each other to jointly establish a shared secret key over an insecure communications channel.					
PKCS #4	-	Withdrawn	No longer active as of 2010. Covered RSA key syntax; subsequently merged into PKCS #1.					
PKCS #5	2.0	Password-based Encryption Standard ^[3]	See RFC 2898 & and PBKDF2.					
PKCS #6	1.5	Extended-Certificate Syntax Standard ^[4]	Defines extensions to the old v1 X.509 certificate specification. Obsoleted by v3 of the same.					
PKCS #7	1.5	Cryptographic Message Syntax Standard ^[5]	See RFC 2315 & Used to sign and/or encrypt messages under a PKI. Used also for certificate dissemination (for instance as a response to a PKCS#10 message). Formed the basis for S/MIME, which is as of 2010 based on RFC 5652 &, an updated Cryptographic Message Syntax Standard (CMS). Often used for single sign-on.					
PKCS #8	1.2	Private-Key Information Syntax Standard ^[6]	See RFC 5208 & Used to carry private certificate keypairs (encrypted or unencrypted).					
PKCS #9	2.0	Selected Attribute Types	See RFC 2985 . Defines selected attribute types for use in PKCS #6 extended certificates, PKCS #7 digitally signed messages, PKCS #8 private-key information, and PKCS #10 certificate-signing requests.					
PKCS #10	1.7	Certification Request Standard ^[8]	See RFC 2986 . Format of messages sent to a certification authority to request certification of a public key. See certificate signing request.					
PKCS #11	2.20	Cryptographic Token Interface ^[9]	Also known as "Cryptoki". An API defining a generic interface to cryptographic tokens (see also Hardware Security Module). Often used in single sign-on, Public-key cryptography and disk encryption ^[10] systems.					
PKCS #12	1.0	Personal Information Exchange Syntax Standard ^[11]	Defines a file format commonly used to store private keys with accompanying public key certificates, protected with a password-based symmetric key. PFX is a predecessor to PKCS#12. This container format can contain multiple embedded objects, such as multiple certificates. Usually protected/encrypted with a password. Usable as a format for the Java key store and to establish client authentication certificates in Mozilla Firefox. Usable by Apache Tomcat, but not by Apache HTTP Server.					
PKCS #13	_	Elliptic Curve Cryptography Standard	(Under development as of 2011.) ^[13]					
PKCS #14	-	Pseudo-random Number Generation	(Under development as of 2011.) ^[13]					
PKCS #15	1.1	Cryptographic Token Information Format Standard ^[14]	Defines a standard allowing users of cryptographic tokens to identify themselves to applications, independent of the application's Cryptoki implementation (PKCS #11) or other API. RSA has relinquished IC-card-related parts of this standard to ISO/IEC 7816-15. [15]					

7.2 RABIN 암호

- RSA 암호 시스템에서 공개키 e = 2로 고정한 경우
 - ☀ 키생성
 - 1. $k \in \mathbb{Z}, 4k + 3$ 인 서로 다른 두 소수 p와 q를 선택
 - 2. $n = p \times q$
 - 3. (p,q) 개인키,, n 공개키
 - 🗴 암호화
 - $ightharpoonup c \equiv m^2 \pmod{n}$

7.2 RABIN 암호

$$x \equiv a^{(p+1)/4} \pmod{p}$$
 and $x \equiv -a^{(p+1)/4} \pmod{p}$

- 1. 복호화 (p 와 q 가 4k + 3 형태임을 이용)
 - $ightharpoonup a_1 \equiv c_1^{\frac{p+1}{4}} \pmod{p}, \ a_2 \equiv -c_1^{\frac{p+1}{4}} \pmod{p}$
 - $b_1 \equiv c_2^{\frac{q+1}{4}} \pmod{q}, b_2 \equiv -c_2^{\frac{q+1}{4}} \pmod{q}$
- 2. CRT를 이용
 - $\triangleright P_1 = CRT(a_1, b_1, p, q),$ $P_2 = \text{CRT}(a_1, b_2, p, q), P_3 = \text{CRT}(a_2, b_1, p, q), P_4 = \text{CRT}(a_2, b_2, p, q)$
- 3. {P₁, P₂, P₃, P₄} 중 하나가 평문

7.2 RABIN 암호 (예제)

- 1. 키 생성
 - ▶ 4k + 3의 형태인 p = 7과 q = 11
 - $n = p \times q = 7 \times 11 = 77$
- 2. $m = 10 \rightarrow c \equiv 10^2 \equiv 100 \equiv 23 \pmod{77}$
- 3. 복호화
 - ▶ $c_1 \equiv 23 \equiv 2 \pmod{7}$, $c_2 \equiv 23 \equiv 1 \pmod{11}$.
 - ▶ $a_1 \equiv 2^{\frac{(7+1)}{4}} \equiv 2^2 \equiv 4 \pmod{7}$, $a_2 \equiv -2^{\frac{(7+1)}{4}} \equiv 2^2 \equiv -4 \equiv 3 \pmod{7}$
 - ▶ $b_1 \equiv 1^{\frac{(11+1)}{4}} \equiv 1^3 \equiv 1 \pmod{11}, b_2 \equiv -1^{\frac{(11+1)}{4}} \equiv -1^3 \equiv -1 \pmod{11}$
 - ▶ CRT를 이용
 - $-m_1 \equiv 7 \times 8 \times 1 + 11 \times 2 \times 4 \equiv 56 + 88 = 144 \equiv 67 \pmod{77}$
 - $-m_2 \equiv 7 \times 8 \times (-1) + 11 \times 2 \times 4 \equiv -56 + 88 \equiv 32 \pmod{77}$
 - $m_3 \equiv 7 \times 8 \times (-1) + 11 \times 2 \times (-4) \equiv -56 88 \equiv -144 \equiv -67 \equiv \frac{10 \pmod{77}}{}$
 - $-m_4 \equiv 7 \times 8 \times 1 + 11 \times 2 \times (-4) \equiv 56 88 \equiv -32 \equiv 45 \pmod{77}$

7.2 RABIN 암호(안전성)

Polynomial Time Reducibility

만약 문제 Π1 이 (다항식 시간 안에) 문제 Π2 로 reduce된다면 , Π1은 Π2보다 어렵지는 않다는 것을 의미

- f(x) 는 문제 П1 의 입력을 문제 П2의 입력으로 변환하는 함수
- A_2 is an algorithm to solve $\Pi 2$, i.e. to decide M
- A_1 is an algorithm to solve $\Pi 1$, i.e. to decide L

7.2 RABIN 암호(안전성)

- RABIN 암호의 안전성
 - * Fact 1: 정수 y와 x, 만약 $x^2 \equiv y^2 \pmod{n}$, $x \neq \pm y \pmod{n}$ 이면 $\gcd(x-y,n)$ 혹은 $\gcd(x+y,n)$ 는 n의 1이 아닌 인수

 - $x^2 y^2 \equiv 0 \pmod{n}$
 - $(x+y)(x-y) \equiv 0 \pmod{n}$
 - $(x + y)(x y) = k \times n = k \times p \times q$
 - ▶ $x \pm y \neq 0 \pmod{n}$ $\rightarrow \gcd(x y, n)$ 혹은 $\gcd(x + y, n)$ 은 인수
 - * Fact 2: n = pq, gcd(y, n) = 1, $x^2 \equiv y^2 \pmod{n}$, 4개의 해가 존재하며 그 중 2개는 $x = y \pmod{n}$ 과 $x = -y \pmod{n}$ 이다.
 - ▶ $n = 35, x^2 \equiv 4 \pmod{n}$ → x = 2, 12, 23 (= -12), 33 (= -2)

7.2 RABIN 암호

- 제곱근 문제 (Square root problem)
 Given $y \in \mathbb{Z}_n$, Find $x \in \mathbb{Z}_n$ s.t $x^2 \equiv y \pmod{n}$
- FACTOR is poly-time reducible to SQROOT (all-or-nothing security)
 - A: SQROOT solver; B: FACTOR solver using A
 - (1) Select random x such that gcd(x, n) = 1.
 - (2) B calls $A(x^2, n)$
 - (3) If $A(x^2, n) = |x|$, go to (1) (in average, two calls to $A(x^2, n)$)
 - (4) $gcd(x A(x^2, n), n)$ is a factor of n
 - × Note that in average, two calls to $A(x^2, n)$ are expected

7.3 ElGamal 암호

- 이산대수문제(Discrete Logarithm Problem, DLP) 의 어려움에 기반
 - ✗ 키생성
 - 1. 큰 소수 p를 선택
 - 2. $1 \le d \le p-2$ 의 범위에서 임의의 d를 선택
 - 3. \mathbb{Z}_p^* 에서 원시근(Primitive Root) e_1 을 선택
 - 4. d와 e_1 을 이용해 $e_2 \equiv e_1^d \pmod{p}$ 을 계산
 - 5. 공개키는 (e_1, e_2, p) , 개인키는 d

7.3 ElGamal 암호

- 이산대수문제(Discrete Logarithm Problem, DLP) 의 어려움에 기반
 - 🗴 암호화
 - 1. 임의의 값 r을 선택
 - $2. \ c_1 \equiv e_1^r \pmod{p}$
 - 3. $c_2 \equiv (m \times e_2^r) \pmod{p}$
 - 4. 암호문 (c_1, c_2)
 - 💌 복호화
 - 1. $c_2 \times (c_1^d)^{-1} \mod p$
 - $(c_2 \times (c_1^d)^{-1} \equiv (e_2^r \times m) \times (e_1^{rd})^{-1} \equiv (e_1^{dr}) \times m \times (e_1^{rd})^{-1} \equiv m \pmod{p}$

7.3 ElGamal 암호

■ ElGamal 암호의 예제

- ☀ 키생성
 - 1. 소수 p = 13
 - 2. $1 \le d \le 11$ 의 범위에서 d = 3
 - 3. \mathbb{Z}_{13}^* 에서 원시근 $e_1 = 2$
 - 4. d = 3과 $e_1 = 2$ 를 이용해 $e_2 \equiv 2^3 \equiv 8 \pmod{13}$
 - 5. 공개키 $(e_1, e_2, p) = (2, 8, 13)$, 개인키 d = 3

🗴 암호화

- 1. 평문 m = 11을 선택하고, r = 5
- 2. $c_1 \equiv 2^5 \equiv 32 \equiv 6 \pmod{13}$
- 3. $c_2 \equiv 11 \times 8^5 \equiv 360,448 \equiv 10 \pmod{13}$
- 4. 암호문 $(c_1, c_2) = (6, 10)$
- 🗴 복호화
 - 1. $c_2 \times (c_1^d)^{-1} \equiv 10 \times (6^3)^{-1} \equiv 10 \times 6^9 \equiv 10 \times 5 \equiv 11 \pmod{13}$

7.3 ElGamal 암호(취약점)

- 작은 모듈러스 공격(Low-Modulus Attack)
 - p의 값이 충분히 크지 않을 경우 전수 조사나 이산대수의 성질을 이용한 효율적인 알고리즘을 통하여 개인키 d나 임의의 값 r을 찾아낼 수 있다.
 - ✗ p는 적어도 2048 비트
- 알려진 평문 공격(Known-Plaintext Attack)
 - * 평문 m에 대응하는 암호문 (c_1, c_2) 을 알고 있고, 같은 r을 사용한 암호문 $c_1^* \equiv e_1^r \pmod{p}$, $c_2^* \equiv (m^* \times e_2^r) \pmod{p}$ 을 얻었을 때
 - 1. $e_2^r \equiv C_2 \times m^{-1} \pmod{p}$
 - 2. $c_2^* \times (e_2^r)^{-1} \mod p m^*$

7.3 ElGamal 암호(안전성)

■ The Computational Diffie-Hellman (CDH) 문제

* 순환군 : G of order q, 생성원 $g \in G$ 에 대하여, $a,b \in \{0,1,...q-1\}$, (g,g^a,g^b,q) , 가 주어졌을 때, $g^{ab} \mod q \equiv$?

■ The Decisional Diffie-Hellman (DDH)문제

- * 순환군 : G of order q, 생성원 $g \in G$ 에 대하여, $a,b,c \in \{0,1,...q-1\}$, (g,g^a,g^b,g^c,q) , 가 주어졌을 때, $ab \equiv c \pmod{q}$
- CDH \propto DL; but DL \propto CDH?
- DDH \propto CDH; CDH \propto DDH?

7.3 ElGamal 암호(안전성)

- **ElGamal** is secure if DDH is hard. (all-or-nothing security)
 - A: ElGamal Oracle B: DDH Attacker

7.3 ElGamal 암호(안전성)

- ElGamal is secure if CDH is hard. (all-or-nothing security)
 - A: ElGamal Oracle B: CDH Attacker

- RSA와 ElGamal은 안전한 공개키 암호시스템이지만 키의 크기가 커야 한다. 타원곡선 암호시스템(ECC)는 동일한 안전성을 유지하면서 작은 크기의 키를 사용한다.
- 타원곡선의 일반식

$$y^2 + b_1 xy + b_2 y = x^3 + a_1 x^2 + a_2 x + a_3$$

■ 실수 상에서의 타원곡선

$$y^2 = x^3 + ax + b$$

Addition of point P and point Q

$$y^2 = x^3 - 7x$$

$$P (-2.35, -1.86)$$
 $Q (-0.1, 0.836)$
 $-R (3.89, 5.62)$
 $R (3.89, -5.62)$
 $P + Q = R = (3.89, -5.62)$.

$$\lambda = (y_2 - y_1)/(x_2 - x_1)$$

$$x_3 = \lambda^2 - x_1 - x_2 \qquad y_3 = \lambda(x_1 - x_3) - y_1$$

When Q = P

$$\lambda = (3x_1^2 + a)/(2y_1)$$

$$x_3 = \lambda^2 - x_1 - x_2$$

$$y_3 = \lambda (x_1 - x_3) - y_1$$

Addition of P and -P

By definition, $P + (-P) = \mathbf{O}$.

As a result of this equation, P + O = P in the elliptic curve group.

O = the additive identity of the elliptic curve group;

All elliptic curves have an additive identity.

Doubling the point P

$$2P = R = (-1.11, 2.64).$$

$$P = (x, y)$$

If $y \ne 0$, then the tangent line at P meets exactly one point of the curve.

the law for doubling a point on an elliptic curve group:

$$P + P = 2P = R$$

Doubling the point P when y = 0

By definition, 2P = 0 for such a point P.

To find 3P in this situation, one can add 2P + P. Then, P + O = P

Thus 3P = P. 3P = P, 4P = O, 5P = P, 6P = O, 7P = P, ...

■ 타원곡선 군

- 1. 닫힘: (in "+" operation)
- 2. 결합법칙:P+(Q+R)=(P+Q)+R
- 3. 교환법칙:P+Q=Q+P
- 4. 항등원:P+**O**=P
- 5. 역원: P + Q = **O**: 점 (x, y)의 역원은 (x, -y)이다. (-y는 y의 덧셈상의 역원이다. 예로 p = 13이면 (4, 2)의 역원은 (4, -2) = (4, 11).

■ \mathbb{Z}_{13} 위에서 $y^2 = x^3 + x$ 에 정의되는 타원 곡선 군

For a = 1 and b = 0, (9,5) is on $y^2 = x^3 + x$. because:

> $y^2 \mod p = x^3 + x \mod p$ $5^2 \mod 23 = 9^3 + 9 \mod 23$ 25 mod 23 = 738 mod 23 2 = 2

위 식을 만족하는 23 점들:

(0,0)(1,5)(1,18)(9,5)(9,18)(11,10)(11,13)(13,5)(13,18) (15,3) (15,20) (16,8) (16,15) (17,10) (17,13) (18,1 0) (18,13) (19,1) (19,22) (20,4) (20,19) (21,6) (21,17)

- \blacksquare GF(p): finite field with p elements
- Order of a point P on EC: the least integer x satisfying xP = O
- Elliptic Curve DLP
 - For two point Q and P (with order t) on EC defined in GF(p), fin d integer x s.t. Q = xP
- Example: $y^2 \mod 23 = x^3 + 9x + 17 \mod 23$,
 - What is the discrete logarithm x of Q = (4,5) to the base P = (16,5)? Q = xP

$$P = (16,5)$$
 $2P = (20,20)$ $3P = (14,14)$ $4P = (19,20)$ $5P = (13,10)$ $6P = (7,3)$ $7P = (8,7)$ $8P = (12,17)$ $9P = (4,5)$

Since 9P = (4,5) = Q, the discrete logarithm of Q to the base P is x = 9.

- We may compute P, 2P = P + P, 3P = P + P + P, ... to find x.
- Repeated doubling and multiplication

```
\times 2P = P + P
```

 \times 100P = 2(2(P+2(2(P+2P)))))

■ ECC simulating ElGamal

	ElGamal	ECC ElGamal
Public Key	{e ₁ , p, e ₂ =e ₁ ^d mod p }	{e ₁ , p, e ₂ = de ₁ }
Private Key	{ d }	{d}
Enc .	[c ₁ , c ₂] = [e ₁ ^r mod p, e ₂ ^r m mod p]	[C ₁ , C ₂] = [re ₁ , re ₂ + M]
Dec.	c ₂ c ₁ ^{-d} mod p	C ₂ - dC ₁

ElGamal cryptosystem using the elliptic curve

Example: For p = 11, a = 1, b = 6, points on EC $y^2 = x^3 + x + 6$ defined in GF(p) are as follows:

```
(2,4) (2,7) (3,5) (3,6) (5,2) (5,9) (7,2) (7,9) (8,3) (8,8) (10,2) (10,9)
```

When private key d = 7, public key $e_1 = (2, 7)$, and $e_2 = 7(2, 7) = (7, 2)$ are given, Alice selects r = 3 randomly, and encrypts M = (10, 9) into C1 = 3(2, 7) = (8, 3), C2 = 3(7, 2) + (10, 9) = (10, 2).

- Key length
 - **X** RSA: 2048 bit = ECC: 224 bit
- Enc./Dec. Efficiency
 - X Computation Speed on a low power device such as Cellular Phone
 - ▶ RSA: 1 sec (2048 bit RSA exponentiation)
 - ▶ECC: 0.09 sec (224 bit scalar multiplication)

	ECC-160	RSA-1024	ECC-192	RSA-1536	ECC-224	RSA-2048
Time (ms)	3.69	8.75	3.87	27.47	5.12	56.18
Ops/sec	271.3	114.3	258.1	36.4	195.5	17.8
Performance ratio	2.4 : 1		7.1:1		11:1	
Key-size ratio	1:6.4		1:8		1:9.1	