

Práctica 5. Reducción de la dimensión.

Pedro Sánchez García.

Inteligencia Computacional para Bioinformática.

MUBICS | Universidade da Coruña.

PREPROCESADO DE DATOS.

APRENDIZAJE.

- Extracción de características: Análisis de Componentes Principales.
- Selección de características: Relief.
 - Número de vecinos: 10 | Número de características: 20.
- Red neuronal: o Función de transferencia: lineal | 84 unidades en la capa oculta.
 - Entrenamiento con las entradas transformadas y targets correspondientes.
- Método de estimación del error: Validación cruzada.

APRENDIZAJE. Medidas de rendimiento.

ANÁLISIS DE COMPONENTES PRINCIPALES.

	Entrenamiento	Test
Sensibilidad (Recall)	0,8267 ± 0,1611	$0,8157 \pm 0,1533$
Especificidad	$0,8267 \pm 0,1611$	$0,8157 \pm 0,1533$
Precisión	$0,8499 \pm 0,0633$	$0,8314 \pm 0,0675$
Valor predictivo negativo	$0,8499 \pm 0,0633$	$0,8314 \pm 0,0675$
Exactitud (accuracy)	$0,8533 \pm 0,0489$	$0,8414 \pm 0,0473$
F1-Score	$0,8223 \pm 0,1499$	0,8116 ± 0,1371

RELIEF.

	Entrenamiento	Test
Sensibilidad (Recall)	$0,7407 \pm 0,1374$	$0,7425 \pm 0,1437$
Especificidad	$0,7407 \pm 0,1374$	$0,7425 \pm 0,1437$
Precisión	$0,7554 \pm 0,0758$	$0,7593 \pm 0,0866$
Valor predictivo negativo	$0,7554 \pm 0,0758$	$0,7593 \pm 0,0866$
Exactitud (accuracy)	$0,7800 \pm 0,0345$	$0,7826 \pm 0,0493$
F1-Score	0,7459 ± 0,1067	0,7486 ± 0,1138

ANÁLISIS DE COMPONENTES PRINCIPALES Y TÉCNICAS ANTERIORES:

• FI-Score en test:

Modelo	F1-Score (media ± desviación típica)		
Discriminante lineal	$0,8374 \pm 0,0770$		
Discriminante cuadrático	$0,7768 \pm 0,0567$ $0,7896 \pm 0,0385$		
Árbol de decisión			
SVM lineal	$0,8578 \pm 0,0550$		
Red neuronal	$0,8818 \pm 0,0546$		
Análisis de componentes principales	$0,8116 \pm 0,1371$		

ANÁLISIS DE COMPONENTES PRINCIPALES Y TÉCNICAS ANTERIORES:

■ FI-Score en test:

Source	SS	df	MS	F	Prob>F
Columns	0.01976	5	0.00395	3.77	0.0116
Error	0.02513	24	0.00105		
Total	0.04488	29			

COMPARACIÓN DE MODELOS. Test de comparación múltiple.

ANÁLISIS DE COMPONENTES PRINCIPALES Y TÉCNICAS ANTERIORES:

RELIEF Y TÉCNICAS ANTERIORES:

■ FI-Score en test:

Modelo	F1-Score (media ± desviación típica)		
Discriminante lineal	$0,8374 \pm 0,0770$		
Discriminante cuadrático	$0,7768 \pm 0,0567$		
Árbol de decisión	$0,7896 \pm 0,0385$		
SVM lineal	$0,8578 \pm 0,0550$		
Red neuronal	$0,8818 \pm 0,0546$		
Relief	$0,7486 \pm 0,1138$		

RELIEF Y TÉCNICAS ANTERIORES:

• FI-Score en test:

Source	SS	df	MS	F	Prob>F
Columns	0.04786	5	0.00957	6.3	0.007
Error	0.03649	24	0.00152		
Total	0.08436	29			
·					

COMPARACIÓN DE MODELOS. Test de comparación múltiple.

RELIEF Y TÉCNICAS ANTERIORES:

CONCLUSIONES.

CONCLUSIONES

ANÁLISIS DE COMPONENTES PRINCIPALES:

- □ Se alcanzan 22 componentes mediante la técnica de análisis de componentes principales.
- La medida de rendimiento empeora con la versión de red neuronal entrenada con estas entradas.
- Posible asociación con los resultados por la varianza mínima establecida.
- □ En general: mejora el rendimiento en comparación con el modelo de discriminante lineal y árbol de decisión.

CONCLUSIONES

RELIEF:

- ☐ La selección de características genera una medida de rendimiento similar al análisis de componentes principales.
- Se alcanzan las siguientes 10 características y pesos proporcionados por MatLab:

Característica	25	39	13	30	38	1	3	36	37	24
Peso	0,0230	0,0211	0,0171	0,0124	0,0087	0,0083	0,0063	0,0062	0,0034	0,0014

- Determinación de las 2 primeras características, empleadas en la mitad (o más) de las ejecuciones efectuadas.
- □ Futuros trabajos: realización de más pruebas para determinar parámetros adecuados y mejorar resultados.

GRACIAS POR VUESTRA ATENCIÓN.

Pedro Sánchez García.

Inteligencia Computacional para Bioinformática.

MUBICS | Universidade da Coruña.

