## Nonlinear Control Theory

## Bing Zhu

The Seventh Research Division Beihang University, Beijing, P.R.China

2020 Spring



# Lyapunov Stability





- Autonomous Systems
- The Invariance Principle
- Linear Systems and Linearization
- Comparison Functions
- Nonautonomous Systems
- Linear Time-varying Systems and Linearization
- Converse Theorems
- Boundedness and Ultimate Boundedness
- Input-to-State Stability



## Converse Theorems

- How can we search for Lyapunov functions to satisfy the foregoing theorems?
   Unfortunately, we do not have a systematic way for all systems.
- Can we at least prove the existence of Lyapunov functions?
   Yes, we can!



## Theorem (4.14 Converse theorem for exponential stability)

Let x=0 be an equilibrium point of  $\dot{x}=f(t,x)$ , where  $f:[0,\infty)\times D\to R^n$  is continuously differentiable,  $D=\{\|x\|< r\}$  and the Jacobian matrix  $\frac{\partial f}{\partial x}$  is bounded on D, uniformly in t. Let k,  $\lambda$  and  $r_0$  be positive constants with  $r_0<\frac{r}{k}$ . Let  $D_0=\{\|x\|< r_0\}$ . Assume that the trajectories of the system satisfy

$$||x(t)|| \le k||x(t_0)||e^{-\lambda(t-t_0)}, \ \forall x(t_0) \in D_0, \ \forall t \ge t_0 \ge 0.$$

Then, there exists a function  $V:[0,\infty)\times D_0\to R$  satisfying the inequalities

$$|c_1||x||^2 \leq V(t,x) \leq c_2||x||^2, \quad \frac{\partial V}{\partial t} + \frac{\partial V}{\partial x}f(t,x) \leq -c_3||x||^2, \quad \left\|\frac{\partial V}{\partial x}\right\| \leq c_4||x||^2$$

for some positive contants  $c_1$ ,  $c_2$ ,  $c_3$  and  $c_4$ . Moreover, if  $r = \infty$  and the origin is globally exponentially stable, then V(t,x) is defined and satisfies the aforementioned inequalities on  $\mathbb{R}^n$ . Furthermore, if the system is autonomous, V can be chosen independent of t.

The foregoing theorem can be used to prove exponential stability of the linearization is a necessary and sufficient condition for exponential stability of the corresponding nonlinear system.

#### **Theorem**

Let x=0 be an equilibrium point of  $\dot{x}=f(t,x)$ , where  $f:[0,\infty)\times D\to R^n$  is continuously differentiable,  $D=\{\|x\|< r\}$  and the Jacobian matrix  $\frac{\partial f}{\partial x}$  is bounded on D, uniformly in t. Let

$$A(t) = \left. \frac{\partial f}{\partial x}(t, x) \right|_{x=0}.$$

Then, x = 0 is an exponentially stable equilibrium point for the nonlinear system, if and only if it is an exponentially stable equilibrium point for the linear system

$$\dot{x} = A(t)x$$
.



**Proof:** (Sufficiency was proved in the previous section. Here is the proof of necessity.)

The linear system can be written by

$$\dot{x} = f(t,x) - [f(t,x) - A(t)x] = f(t,x) - g(t,x).$$

where  $||g(t, x)||_2 \le L||x||_2^2$ ,  $\forall x \in D$ ,  $\forall t \ge 0$ .

- Choose  $r_0 = \min\{c, \frac{r}{k}\}$ . Then all conditions in the foregoing theorem are satisfied, and there exists V(t, x) satisfying the foregoing inequalities.
- Use V(t, x) as the Lyapunov candidate for the linear system,

$$\dot{V} = \frac{\partial V}{\partial t} + \frac{\partial V}{\partial x} f(t, x) - \frac{\partial V}{\partial x} g(t, x) \le -c_3 ||x||_2^2 + c_4 L ||x||_2^3 
< -(c_3 - c_4 L \rho) ||x||_2^2 \qquad \forall ||x||_2 < \rho.$$

The choice  $\rho < \min\{r_0, \frac{c_3}{c_4L}\}$  ensures that V(t,x) is negative definite in  $\|x\|_2 < \rho$ . It is then concluded that x=0 is exponentially stable for the linear system.

## Corollary

Let x=0 be be an equilibrium point of  $\dot{x}=f(x)$ , where f(x) is continuously differentiable in some neighborhood of x=0. Let  $A=\frac{\partial f}{\partial x}\big|_{x=0}$ . Then x=0 is an exponentially stable equilibrium point for  $\dot{x}=f(x)$  if and only if A is Hurwitz.

## Example

Consider the system  $\dot{x}=-x^3$ . It is globally asymptotically stable. However, it is not exponentially stable, as can be seen from its linearization  $\dot{x}=0$  which is not exponentially stable.



### Theorem (4.16 Converse theorem for uniform asymptotic stability)

Suppose the conditions in Theorem 4.14 are all satisfied, except that

$$||x|| \le \beta(||x(t_0)||, t-t_0), \quad \forall x(t_0) \in D_0, \ \forall t \ge t_0 \ge 0,$$

where  $\beta(\cdot,\cdot)$  belongs to class  $\mathcal{KL}$ ;  $r_0$  is a positive constant such that  $\beta(r_0,0) < r$ ; and  $D_0 = \{\|x\| < r_0\}$ . Then, there exists a continuously differentiable function  $V: [0,\infty) \times D_0 \to R$  that satisfies the inequalities

$$\alpha_1(\|x\|) \leq V(t,x) \leq \alpha_2(\|x\|), \quad \frac{\partial V}{\partial t} + \frac{\partial V}{\partial x}f(t,x) \leq -\alpha_3(\|x\|), \quad \left\|\frac{\partial V}{\partial x}\right\| \leq \alpha_4(\|x\|)$$

where  $\alpha_1$ ,  $\alpha_2$ ,  $\alpha_3$  and  $\alpha_4$  are class  $\mathcal{K}$  functions defined on  $[0, r_0)$ . If the system is autonomous, V can be chosen independent of t.



#### Theorem

Let x=0 be an asymptotically stable equilibrium point for  $\dot{x}=f(x)$ , where f is locally Lipschitz on a domain  $D\subset R^n$  that contains the origin. Let  $R_A\subset D$  be the region of attraction of x=0. Then, there is a smooth, positive definite function V(x) and a continuous, positive definite function W(x), both defined for all  $x\in R_A$ , such that

$$V(x) o \infty \ \ \text{as} \ \ x o \partial R_A, \quad rac{\partial V}{\partial x} f \le -W(x), \ \ orall x \in R_A,$$

and for any c > 0,  $\{V(x) \le c\}$  is a compact subset of  $R_A$ . When  $R_A = R^n$ , V(x) is radially unbounded.

