

COMPX527-25B Lecture 1.2 Introduction to Cloud Computing

□ Quiz 1:

☐ Open: 10th July-12:30 pm

☐ Close: 17th July-12:30 pm

☐ Group Project Proposal:

☐ Deadline: 28th July – 8:00 am

WHAT IS CLOUD COMPUTING?

Computing as a service

NIST Definition

 The National Institute of Standards and Technology (NIST) defines cloud computing as "a model for enabling convenient, on-demand network access to a shared pool of configurable computing resources (e.g., networks, servers, storage, applications, and services) that can be rapidly provisioned and released with minimal management effort or service provider interaction."

Essential Characteristics

NIST Cloud Computing Reference Architecture

NIST Cloud Computing Reference Architecture

- The reference architecture describes a conceptual model comprising abstract architectural elements and their relations or interactions, such as
 - Cloud computing actors and how they interact with each other in their activities;
 - System components and how these components are orchestrated to deliver the computing services;
 - Management functionalities that are required to support the life cycle of operations; and
 - Other cross-cutting aspects such as security and privacy associated with these elements

Cloud Service/Delivery Models

- Infrastructure as a Service
- Platform as a Service
- Software as a Service

Notes:

Brand names for illustrative / example purposes only, and examples are not exhaustive.

^{*} Assumed to incorporate subordinate layers.

Separation of Responsibilities

■ Managed by customer □ Managed by cloud service provider

Saas from the end users' view

Paid Examples:

- Salesforce.com
- Xero
- Apple iCloud

'Free' Examples:

- **TVNZ OnDemand**
- Facebook
- Gmail

Examples:

 Microsoft Azure – Operating System, Database Server, etc.. , IBM Bluemix, ...

Examples from Amazon

- EC2 (Elastic Compute Cloud) Compute
- S3 (Simple Storage Service) Storage

Examples:

- Network-as-a-Service
- Database-as-a-Service
- Functions-as-a-Service
- Security-as-a-Service

Cloud Deployment Models

- Public Cloud
- Private Cloud
- Hybrid Cloud
- Community Cloud

Public Cloud

- ☐ The cloud infrastructure is made available to **general end-users** and is owned by an organization selling cloud services.
- ☐ Also known as external cloud or multi-tenant cloud, this model essentially represents a cloud environment that is openly accessible.
- ☐ Basic characteristics :
 - ■No wasted resources-pay as you
 - ☐Open to the public
 - ☐Common policies
 - ☐ Leased or rented infrastructure
 - ☐ Easy and inexpensive setup

THE UNIVERSITY OF WAIKATO Te Whare Wananga o Waikato

Private Cloud

- ☐ The cloud infrastructure is operated **solely** for an organization.
- ☐ Also referred to as internal cloud or on-premise cloudlimits access to its resources to service consumers that belong to the same organization that owns the cloud.
- ☐ Basic characteristics :
 - ☐ Increased control over data, and system
 - ☐ Customized and tailored policies
 - □ Dedicated resources

Community Cloud

□ The cloud infrastructure is shared by **several** organizations and supports a specific community that has shared concerns (e.g., mission, security requirements, policy, and compliance considerations).

Hybrid Cloud (Federated Cloud)

- ☐ The cloud infrastructure is a **composition** of two or more clouds (private, community, or public).
- ☐ Unique entities are bound together by standardized or proprietary technology that enables data and application portability

TABLE 2.2 Comparison of Cloud Deployment Models

	Private	Community	Public	Hybrid
Scalability	Limited	Limited	Very high	Very high
Security	Most secure option	Very secure	Moderately secure	Very secure
Performance	Very good	Very good	Low to medium	Good
Reliability	Very high	Very high	Medium	Medium to high
Cost	High	Medium	Low	Medium

	Traditional	With Cloud Computing
Hardware Requirement	User needs to buy powerful hardware	Only basic hardware to connect to internet
Software Requirement	Install application in local computer	No local installation required
Portability	Hard to be portable	Natively portable

For End-Users: Storage

	Traditional	With Cloud Computing	
Storage Space	Limited to local disk, may be under utilized	Dynamically allocated on demand	
Storage Data Consistency	Difficult to maintain data consistency	Data consistency maintained by cloud	
Availability	Regular user backup	Cloud service guarantee	

For End-Users: Devices

	Traditional	With Cloud Computing
Computing Power	Only accessed through desktop computer	Accessed through small smart devices
Small Device Intelligence	Functionalities was limited due to their power consumption	Shift computing incentive jobs into cloud, and then wait for results

Conclusions

History

https://www.igmguru.com/blog/best-cloud-computing-services

Cloud shifts from 2020 - 2025

2020	VS 2025
Popular Computing Style	Pervasive Computing Style
Technology Innovation	Business Innovation
Centralized Cloud	Centralized and Distributed Cloud
"Private" Cloud	Intentional Multicloud
Unintentional Multicloud	Fusion
Shared Services	Teams

https://www.seasiainfotech.com/blog/history-and-evolution-cloud-computing/

Future of Cloud Computing

References

 Alex Kilpatrick and Mary Haskett "Cloud 101: Basics of Using and Controlling Cloud Based Applications"

 Anonymous authors, "Introduction to Cloud Computing"

 William Stallings, "Overview of Cloud Computing"