

Inference

- A claim that the evidence supports a particular conclusion
- Inferential statistics help justify this claim
 - Not because numbers are impressive
 - They show how likely the conclusions are (given certain assumptions)

Population

 The group of people (or things) we are interested in

Sample

 The subset we collect data from is called our sample.

Coin flips

- Is a coin biased?
 - Population: All coin flips with that coin (past, present, future)
 - Sample: We flip the coin lots of times and record the results

Sampling Problems

- We can easily collect a biased sample
 - We usually don't sample our population randomly
 - There might be things our sample has in common just due to the way we collected it
- This is a threat to validity something that means our inferences might not be correct

Construct Validity

- Validity is an argument that you make in support of your conclusions
 - Has your experiment actually measured what you think it has?
- Biased sample → less convincing

External Validity

 Can we generalise our findings beyond our sample?

Coin Flips

- Does the fairness of the coin change over time?
 - We don't expect that to be the case
 - Unlikely to make someone reject our argument

A common criticism...

- Social science studies
 - Population: all humans
 - **Sample:** undergraduates
- A big problem?
 - Are undergraduates a biased sample for this variable?

Drug studies

- We run a study to check a drug is safe
 - We recruit **1000 healthy people** to our study
 - Our results show the drug is safe
- Is the drug safe?

Summary

Population

Set we want to say something about

Sample

Subset we collect data from

Inference

- Claim data supports a conclusion

External Validity

Do our findings generalise from sample to population?