EMW3165

Data Sheet

嵌入式 Wi-Fi 模块

版本:1.1 日期:2015-07-05

编号: DS0007C

特性

- 包含一个 Cortex-M4 微控制器和一个 IEEE 802.11 b/g/n 射频芯片
 - 100MHz 的 Cortex-M4 内核
 - 2M 字节的片外 SPI flash 和 512K 字节的片 内 flash
 - 128K 字节的 RAM
- 工作电压:3V-3.6V
- 外设:
 - 22 个 GPIO 引脚
 - JTAG/SWD 调试接口
- WiFi 连通性
 - 支持 802.11 b/g/n
 - WEP,WPA/WPA2,PSK/Enterprise
 - 16.5dBm@11b,14.5dBm@11g,13.5dBm @11n
 - 接收灵敏度:-87 dBm
 - Station, Soft AP 和 WiFi Direct
 - 支持 EasyLink
 - 板载 PCB 天线,外接天线 IPEX 连接器
 - CE, FCC 适用
 - 工作温度:-30℃ ~ +85℃

应用

- 智能 LED
- 智能家居/家电
- 医疗保健

- 工业自动化
- POS 支付
- 智能公交网络

设备

Wi-Fi 型 号	天线类型	说明
EMW3165-P	PCB 天线	默认
EMW3165-E	外部天线	可选

硬件框图

版权声明

未经许可,禁止使用或复制本手册中全部或任何一部分内容,这尤其适用于商标、机型命名、零件号和图。

目 录

1.	功能能	简介	1
2.	模块技	接口	2
		引脚排列	
	2.2.	引脚定义	2
3.	电气参	参数	5
	3.1.	工作环境	5
	3.2.	绝对最大额定值(电压)	
	3.3.		
		3.3.1 Wi-Fi 模式	
		3.3.2 微控制模式	
		3.3.3 普通操作模式下的功耗	8
	3.4.	27.5 7 - 1.2 27	
		3.4.1 数字 I/O 口静态参数	8
		3.4.2 RESET引脚参数	9
	3.5.	温度与湿度	9
	3.6.		10
	3.7.		10
	3.8.	其它 MCU 电气参数	10
4.	射频特	导性	
	4.1.	基本射频特性	11
	4.2.	IEEE802.11b 模式	11
	4.3.	IEEE802.11g 模式	12
	4.4.	IEEE802.11n 20MHz 带宽模式	14
5.		言息	
		天线类型	
	5.2.	降低天线干扰	17
	5.3.	UF.L RF 连接器	
6.		信息及生产指导	
	6.1.	机械尺寸	
	6.2.	推荐封装尺寸	
	6.3.	生产指南(请务必仔细阅读)	19
		注意事项	
		储存条件	
7.		电路图	
8.			
9.		与技术支持信息	
		多订记录	

图目录

冬	1. 模块外观	1
图	2. EMW3165 模块框架	1
图	2. EMW3165 模块框架 3. 模块引脚示意图	2
图	4. EMW3165-P	16
冬	5. EMW3165-E	16
冬	6. EMW3165-B	16
图	7. 天线无干扰区域最小距离	17
冬	8. U.E.L RF 连接器	17
冬	9. 俯视图	18
冬	10. 侧视图	18
冬	11. 推荐封装示意图	19
冬	12. 温湿度指示卡	20
冬	13. 建议回焊温度曲线	21
图	14. 储存条件	22
冬	15. 电源参考电路	23
冬	16. USB 转串口参考电路	23
	17. EMW3165 外部接口参考设计	
冬	18. 5V UART-3.3V UART 转换电路	25
	+	
	表目录	
表	1. EMW3165 引脚排列	2
	2. 电压参数	
	3. 电流参数	
	4. 绝对最大额定值	
	5. Wi-Fi 模式电流功耗	
	6. 微控制器 Run 模式下一般最大电流功耗	
	7. 微控制器 Stop 模式一般最大功耗电流	
	8. 微控制器 Standby 模式下一般最大功耗电流	
	9. 普通操作模式下功耗电流	
	10. GPIO 静态参数	
	11. RESET 引脚参数	
	12. 温度与湿度参数	
	13. ESD 参数	
-	14. 静态 latch-up 参数	10

表	15. 基本射频特性	11
表	16. IEEE802.11b 模式参数	11
表	17. IEEE802.11b 模式(TX)发送特性参数	12
	18. IEEE802.11b 模式(RX)接收特性参数	
表	19. IEEE802.11g 模式参数	12
表	20. IEEE802.11g 模式 (TX) 发送特性参数	13
	21. IEEE802.11g 模式(RX)接收特性参数	
	22. IEEE802.11n 20MHz 带宽模式参数	
表	23. IEEE802.11n 20MHz 带宽式(TX)发送特性参数	14
	24. IEEE802.11n 20MHz 带宽模式(RX)接收特性参数	

1.功能简介

EMW3165 是由上海庆科信息技术有限公司开发的一款低功耗嵌入式 Wi-Fi 模块。它集成了一个无线射频芯片和一个型号为 STM32F411CE 的 Cortex-M4 微控制器,内置了独一无二的"self-hosted" Wi-Fi 网络函数库以及应用组件。此外,还提供 2M 字节的片外 flash、512K 字节的片内 flash、128K 字节的 RAM 以及丰富的外设资源。

EMW3165 同时也是一个 MiCO 平台。用户可以基于这些集成了所有 Wi-Fi MAC 以及 TCP/IP 协议的 MICO 函数库开发自己的嵌入式 Wi-Fi 应用,也可以配合一系列定制固件以满足相应的需求,如:无线 UART、 云服务等。

EMW3165 模块外观如1所示:

图 1. 模块外观

模块框架图如图 2 所示

图 2. EMW3165 模块框架

2.模块接口

2.1. 引脚排列

EMW3165 共有两排引脚 (1x20+1x21), 引脚间距为 1mm。

EMW3165 模块为"邮票孔"封装,有利于SMT贴片或者手工焊接。

引脚如图 3 所示:

2.2. 引脚定义

常规引脚定义如表1所示:

表 1. EMW3165 引脚排列

引脚	名称	IO 类型	电平	功能	用户
1	-	-	-	无连接	NC
2	PB2	I/O	FT	BOOT1	√
3	-	-	-	无连接	NC
4	PA7	I/O	FT	Flash_SPI1_MOSI	×
5	PA15	I/O	FT	Flash_SPI1_NSS	×
6	PB3	I/O	FT	Flash_SPI1_SCK	×
7	PB4	I/O	FT	Flash_SPI1_MISO	×
8	PA2	I/O	E	ТIM2_CH3,ТIM5_CH3,ТIM9_CH1,	× DEBUG_OUT(用
0	PAZ	1/0		I2S2_CKIN,USART2_TX, ADC1_2	户不可用)
9	PA1	I/O	FT	TIM2_CH2,TIM5_CH2,SPI4_MOSI/I2S4_SD,	× (EasyLink)
	171	1,0		USART2_RTS, ADC1_1	^ (LasyLink)

引脚	名称	IO 类型	电平	功能	用户
10	VBAT	S	-	-	×
11	-	-	-	无连接	NC
12	PA3	I/O	FT	TIM2_CH4,TIM5_CH4,TIM9_CH2, I2S2_MCK,USART2_RX, ADC1_3	× DEBUG_IN (用户 不可用)
13	NRST	I/O	FT	RESET , 复位	×
14	PA0	I	TC	Wi-Fi 唤醒 MCU	×
15	-	-	-	无连接	NC
16	PC13	I/O	FT	RTC_AMP1, RTC_OUT, RTC_TS	√
17	PB10	I/O	FT	TIM2_CH3,I2C2_SCL, SPI2_SCK/I2S2_CK,I2S3_MCK	√
18	PB9	I/O	FT	TIM4_CH4,TIM11_CH1,I2C1_SDA, SPI2_NSS/I2S2_WS,I2C2_SDA	√
19	PB12	I/O	FT	TIM1_BKIN,I2C2_SMBA,SPI2_NSS/I2S2_WS, SPI4_NSS/I2S4_WS, SPI3_SCK/I2S3_CK	√
20	GND	S	1+/	/->	×
21	GND	S		-//	×
22	-	-	-	无连接	NC
23	-	_	-	无连接	NC
24		-	-	无连接	NC
25	PA14	I/O	FT	SWD_SWCLK	×
26	PA13	I/O	FT	SWD_SWDIO	×
27	PA12	I/O	FT	TIM1_ETR, SPI5_MISO, USART1_RTS, USART6_RX, USB_FS_DP	√
28	-	-	-	无连接	NC
29	PA10	I/O	FT	TIM1_CH3, SPI5_MOSI/I2S5_SD, USART1_RX, USB_FS_ID	√ USER_UART_RX
30	PB6	I/O	FT	TIM4_CH1, I2C1_SCL, USART1_TX	√ USER_UART_TX
31	PB8	I/O	FT	TIM4_CH3, TIM10_CH1,I2C1_SCL, SPI5_MOSI/I2S5_SD, I2C3_SDA	√
32	-		-	无连接	NC
33	PB13	I/O	FT	TIM1_CH1N, SPI2_SCK/I2S2_CK, SPI4_SCK/I2S4_CK,	√
34	PA5	I/O	TC	ΠM2_CH1/ΠM2_ET, SPI1_SCK/I2S1_CK, ADC1_5	√
35	PA11	I/O	FT	TIM1_CH4, SPI4_MISO, USART1_CTS, USART6_TX, USB_FS_DM	√
36	PB1	I/O	FT	ПМ1_CH3N, ПМ3_CH4,	× (BOOT)

引脚	名称	IO 类型	电平	功能	用户
				SPI5_NSS/I2S5_WS, ADC1_9	
37	PB0	I/O	FT	ПМ1_СН2N,ПМ3_СН3,	×STATUS
		,		SPI5_SCK/I2S5_CK, ADC1_8	
38	PA4	I/O	TC	SPI1_NSS/I2S1_WS,SPI3_NSS/I2S3_WS,	V
		-, -		USART2_CK, ADC1_4	
39	VDD	S	-		×
40	VDD	S	-	-	×
41	ANT	-	-	External Antenna Pad	×

说明:

- 1. 设计时请注意 PIN10、PIN39、PIN40 均需接 VDD 3V3 电源, PIN20、PIN21 均需接地;
- 2. PIN8、PIN12只可用作二次烧录、ATE和QC自动检测;
- 3. PIN29、PIN30用作用户串口透传通讯,进入bootloader模式;
- 4. S表示电源电压引脚,I表示输入引脚,I/O表示输入输出引脚;
- 5. FT 表示最大输入/输出电压为 5V; TC 表示常规输入/输出电压为 3.6V;
- 6. 4~7 引脚不能被用于其它接口,因为其已经被用于 SPI1 的片外 flash 接口;
- 7. 用 SWD (25、26 接口) 代替 JTAG 来调试/下载固件;
- 8. "√"表示用户可以使用的引脚, "×"表示用户不可用引脚,其中包括两路串口,一路SPI
- 9. 其它功能引脚请查询 STM32F411xE 说明;

注意:

开发者在 MICO 系统上开发应用时可以自定义或修改 EMW3165 的引脚定义。

由本公司开发的固件引脚定义除外,具体请参阅固件用户手册。

http://www.joinmx.com/uploadfiles/soft/EMW/RM0001E_mxchipWNet_DTU_V4_1.pdf

3. 电气参数

3.1. 工作环境

EMW3165 在输入电压低于最低额定电压下工作不稳定,电源设计时需要注意。电压参数如表 2 所示:

表 2. 电压参数

符号	说明	条件	详细			
1 ग 5	10000000000000000000000000000000000000	赤什	最小值	典型值	最大值	单位
V_{DD}	电源电压		3.0	3.3	3.6	V

电流参数如表 3 所示:

表 3 由流参数

符号	说明	最大值	单位
I_{VDD}	流入 VDD 电源侧的总电流	320	
Io	由任何一个IO输入输出引脚和控制引脚输出的电流	25	mA
	由任何一个 IO 输入输出引脚和控制引脚输出的电流源	-25	

3.2. 绝对最大额定值(电压)

模块在超出绝对最大额定值工作会给硬件造成永久性伤害。最大额定值下不利于设备工作。同时,长时间 在最大额定值下工作会影响模块的可靠性。

绝对最大值如表 4 所示:

表 4. 绝对最大额定值

符号	说明	最小值	最大值	单位
V_{DD}	电源电压	-0.3	4.0	V
V _{OUT}	5V 耐压引脚输出电压	-0.3	5.5	V
V _{IN}	其他引脚输入电压	-0.3	V _{DD} +0.3	V

3.3. 电流功耗

3.3.1 Wi-Fi 模式

Wi-Fi 模式下电流功耗如表 5 所示:

表 5. Wi-Fi 模式电流功耗

符号	说明	条件	典型值	单位
I_{RF}	OFF ¹	-	2	μΑ
I_{RF}	SLEEP ⁴	/ ₋ / -	200	μΑ
I_{RF}	Rx(Listen) ²		52	mA
I_{RF}	Rx(Active) ³		59	mA
I_{RF}	Power Save ^{5, 6}	-	1.9	mA
I_{RF}	Tx CCK ^{7, 10}	11 Mbps at 18.5 dBm	320	mA
I_{RF}	Tx OFDM ^{8,10}	54 Mbps at 15.5 dBm	270	mA
I_{RF}	Tx OFDM ⁹ ,10	65 Mbps at 14.5 dBm	260	mA

注释:

- 1. 电源关闭;
- 2. 载波侦听 (CCA)——无载体;
- 3. 载波检测 (CS) ——Rx 检测;
- 4. Beacon 间隔休眠;
- 5. Beacon 信号间隔 102.4ms, DTIM 是 1, 信号宽度 1ms@1Mbps;
- 6. 在 WLAN 低功耗模式下,以下模块将被关闭:晶体振荡器,基带 PLL, AFE, RF PLL, 射频;
- 7. 芯片端口 CCK 功率。占空比是 100%。(包含功率放大器影响)
- 8. 芯片端口 OFDM 功率。占空比是 100%。(包含功率放大器影响)
- 9. 芯片端口 16dBm 的 OFDM 功率。占空比是 100%。(包含功率放大器影响)
- 10. 通过主动查询温度和动态控制发送占空比,用以避免片内温度超限。

3.3.2 微控制模式

微控制器 Run 模式下, 一般最大电流功耗如表 6 所示:

表 6. 微控制器 Run 模式下一般最大电流功耗

符号	条件	时钟频率	环境温度	₹Ta=25°C	单位
10 5	ボ ロ	(MHz)	典型值	最大值	+177
		100	21.0	23.3	
Імси	外部时钟,	84	17.0	19.2	mA
IMCU	所有外设使能	64	12.0	13.2	ША
		50	9.5	10.4	
	外部时钟 , 所有外设使能	20	4.5	5.8	
	-/=	100	12.0	14.6	
I _{MCU}	外部时钟,	84	10.0	11.9	mA
	所有外设不使能	64	7.0	8.4	
	IN BOLIZITIZE	50	5.5	6.6	
		20	2.5	3.7	

微控制器 Stop 模式下的一般最大电流功耗如表 7 所示:

表 7. 微控制器 Stop 模式一般最大功耗电流

<i>%</i> ∱ □	← *h	タル	环境温度	光 /÷	
符号	参数		典型值	最大值	单位
	主调节器使用	Flash 工作在停止模式,	114	145	
I _{MCU}	低功耗调节器使用	所有晶振关闭,无独立看门狗	43	68	
	主调节器使用		76	105	uA
	低功耗调节器使用	Flash 工作在深度低功耗模式	14	38	
	低功耗低压调节器使用	所有晶振关闭,无独立看门狗	10	30	

微控制器 Standby 模式下的一般最大电流功耗如表 8 所示:

表 8. 微控制器 Standby 模式下一般最大功耗电流

符号	参数	条件	典型值	単位
19 5	多女人	赤叶	环境温度 Ta=25℃	十四
Tracu		低速振荡器和 RTC(实时时钟)开启	3.0	
IMCU	1分份的关工(下口)中已//尔巴///	低速振荡器和 RTC(实时时钟)关闭	2.1	μΑ

3.3.3 普通操作模式下的功耗

EMW3165 普通操作模式下的电流功耗如表 9 所示:

表 9. 普通操作模式下功耗电流

符号	参数	条件	最小值	平均值	最大值	单位
参数		水け	环境温度 Ta=25℃			平位
		无 Wi-Fi 数据传输	2.8	7.2	75	mA
I_{Module}	I _{Module} EMW3165 总功耗电流	UDP 模式接收数据 , 速率为 20kbps1	2.8	12	262	mA
		UDP 模式发送数据,速率为 20kbps ¹	3	24	280	mA
		射频关闭,MCU 进入待机模式 ²	4	6	8	μΑ
		接入AP	52	74	340	mA

说明:

- 1. 环境温度 Ta = 25℃,单片机 Flash 存储器的数据运算频率为 100MHz (ART accelerator (自适应实时存储器)加速器启用)。当无任务挂起时,固件程序每 250ms,进入一次停止模式,此时 Wi-Fi 子系统接入无线接入点,并运行在省电模式。该模式发送功耗为 IEEE 802.11n @ 14.5 dBm。AP的信标间隔周期为 100ms, DTIM = 1。
- 2. Wi-Fi 连接断开。
- 3. 依据不同的固件功能,这些数据可能不同。

3.4. 数字 I/O 口参数

3.4.1 数字 I/O 口静态参数

数字 I/O 口的静态运行参数如表 10 所示:

表 10. GPIO 静态参数

符号	参数	条件	最小值	典型值	最大值	单位
	FT 和 NRST 输入输出端口		-	ı	0.3V _{DD}	
V _{IL}	的输入低电平最大电压值	1.7V ~ 3.6V				V
V1L	BOOTO 输入输出端口的输	\	_	_	$0.1V_{DD} + 0.1$	
	入低电平最大电压值					
	FT和 NRST 输入输出端口		0.7V _{DD}	-	-	
V	的输入高电平最小电压值	1.7V ~ 3.6V				V
V _{IH}	BOOTO 输入输出端口的输	1.7 0 0.0 0	0.17V _{DD} +0.7	-	_	
	入高电平最小电压值		0.17 (00 (0.7			
Vina	FT和 NRST 输入输出端口	1.7V ~3.6V	0.1V _{DD}	_	-	V
V _{HYS}	输入滞后电压值	1.7 V ~ 3.0 V	0.1 000			•

符号	参	数	条件	最小值	典型值	最大值	单位
	BOOTO 输入 滞后电压值	、输出端口输入		0.1	1	-	
R _{PU}	等效弱上拉 电阻	所有引脚, PA10除外 PA10	V _{IN} =V _{SS}	30 7	40	50 14	kΩ
R _{PD}	等效弱下拉电阻	所有引脚 , PA10 除外 PA10	V _{IN} =V _{DD}	30	40	50 14	kΩ
C _{IO}	输入输出引		-	-	5	-	pF

3.4.2 RESET 引脚参数

RESET 引脚驱动采用 CMOS 技术,与一个固定上拉电阻 R_{PU} 相连。EMW3165 采用 RC 复位电路,以确保上电时模块精确复位。如果用户需手动复位,只要将外部控制信号与 RESET 引脚相连,但是控制信号必须处于开漏模式。

RESET 引脚参数如表 11 所示:

表 11. RESET 引脚参数

符号	参数	条件	最小值	典型值	最大值	单位
V _F (NRST)	NRST 输入可滤波脉冲电压		-0.5	-	0.8	V
V _{NF} (NRST)	NRST 输入不可滤波脉冲电压	(//x	2	-	V _{DD} +0.5	
R _{PU}	上拉电阻	$V_{IN} = V_{SS}$	30	40	50	kΩ
T _{NRST_OUT}	产生复位脉冲持续时间	内部复位源	20	-	-	us

3.5. 温度与湿度

EMW3165 工作温度与湿度参数如表 12 所示:

表 12. 温度与湿度参数

符号	参数	范围	单位
Tstg	储存温度	-40 to +85	℃
Ta	工作温度	-30 to +85	℃
Humidity	非冷凝,相对湿度	95%	-

3.6. 静电释放参数

静电放电参数如表 13 所示:

表 13. ESD 参数

符号	参数	条件	等级	最大值	单位
V _{ESD} (HBM)	静电放电电压 (人体模型)	TA= +25 ℃ (按照 JESD22-A114)	2	2000	V
V _{ESD} (CDM)	静电放电电压 (充电设备模型)	TA = +25 ℃ (按照 JESD22-C101)	II	500	V

3.7. 静态 latch-up (闩锁效应) 参数

所有参数经测试完全通过 EIA/JESD 78A IC 标准。

静态 latch-up 参数如表 14 所示:

表 14. 静态 latch-up 参数

符号	参数	条件	等级
Lu	静态 latch-up (闩锁效应)等级	环境温度 Ta= +105 ℃ (按照 JESD78A)	II level A

3.8. 其它 MCU 电气参数

更多信息请自行下载,参阅STM32F411xE用户手册。

4. 射频特性

4.1. 基本射频特性

基本射频特性如表 15 所示:

表 15. 基本射频特性

参数项	详细说明
工作电压	2.412~2.484GHz
Wi-Fi 标准	802.11b/g/n(单通道 N)
调制类型	11b: DBPSK, DQPSK,CCK for DSSS 11g: BPSK, QPSK, 16QAM, 64QAM for OFDM 11n: MCS0~7,OFDM *
数据传输速率	11b:1, 2, 5.5 and 11Mbps 11g:6, 9, 12, 18, 24, 36, 48 and 54 Mbps 11n: MCS0~7, up to 72Mbps
天线类型	PCB 印制天线(默认) U.F.L 连接器外接天线 (可选)

4.2. IEEE802.11b 模式

IEEE802.11b 模式规格如表 16 所示:

表 16. IEEE802.11b 模式参数

参数项	详细说明
调制类型	DSSS / CCK
频率范围	2400MHz~2484MHz
通道	CH1 to CH14
数据传输速率	1, 2, 5.5, 11Mbps

IEEE802.11b 模式 (TX) 发送特性参数如表 17 所示:

表 17. IEEE802.11b 模式 (TX) 发送特性参数

发送特性	最小值.	测试值	最大值	单位	
发送输出功率					
11b 目标功率	13.5	16.2	16.5	dBm	
频谱掩码 @ 目标功率					
fc +/-11MHz to +/-22MHz	_/	-41.73	-30	dBr	
fc > +/-22MHz	/-	-51.89	-50	dBr	
频率误差	-20	3.9	+ 20	ppm	
Constellation 误差(峰值 EVM)@目标功率					
1~11Mbps	-	-25.52	-9	dB	

IEEE802.11b 模式 (RX)接收特性参数如表 18 所示:

表 18. IEEE802.11b 模式 (RX)接收特性参数

接收特性	最小值	测试值	最大值	单位
最小輸入电平灵敏度				
1Mbps (FER≦8%)	-	-87	-83	dBm
2Mbps (FER≦8%)	- //	-85	-80	dBm
5.5Mbps (FER≤8%)	Y- /	-83	-79	dBm
11Mbps (FER≦8%)	-	-80	-76	dBm

4.3. IEEE802.11g 模式

IEEE802.11g 模式规格如表 19 所示:

表 19. IEEE802.11g 模式参数

参数项	详细说明
调制类型	OFDM
频率范围	2400MHz~2484MHz
通道	CH1 to CH14
数据传输速率	6, 9, 12, 18, 24, 36, 48, 54Mbps

IEEE802.11g 模式 TX 参数如表 20 所示:

表 20. IEEE802.11g 模式 (TX) 发送特性参数

发送特性	最小值	测试值	最大值	单位
发送输出功率				
11g 目标功率	11.5	14.16	14.5	dBm
频谱掩码@目标功率		1		
fc +/-11MHz	-	-31.61	-20	dBr
fc +/-20MHz		-40.73	-28	dBr
fc > +/-30MHz	-/\	-43.54	-40	dBr
频率误差	-20	3.9	+ 20	ppm
Constellation 误差(峰值 EVM)@目标功率				
54Mbps	1 /	-28.52	-25	dB

IEEE802.11g 模式 (RX)接收特性参数如表 21 所示:

表 21. IEEE802.11g 模式 (RX)接收特性参数

接收特性	最小值.	测试值	最大值	单位
最小输入电平灵敏度		/_		
6Mbps (FER≦10%)	-	-87	-82	dBm
9Mbps (FER≦10%)		-85	-80	dBm
12Mbps (FER≦10%)	- `	-84	-79	dBm
18Mbps (FER≦10%)	-	-82	-77	dBm
24Mbps (FER≤10%)	-	-80	-74	dBm
36Mbps (FER≦10%)	-	-79	-70	dBm
48Mbps (FER≦10%)	- 7	-77	-66	dBm
54Mbps (FER≦10%)		-75	-65	dBm

4.4. IEEE802.11n 20MHz 带宽模式

IEEE802.11n 20MHz 带宽模式规格如表 22 所示:

表 22. IEEE802.11n 20MHz 带宽模式参数

参数项	详细说明
调制类型	MIMO-OFDM
通道	CH1 to CH14
数据传输速率	MCS0/1/2/3/4/5/6/7

IEEE802.11n 20MHz 带宽模式 (TX) 发送特性参数如表 23 所示:

表 23. IEEE802.11n 20MHz 带宽模式 (TX) 发送特性参数

发送特性	最小值	测试值	最大值	单位
发送输出功率	7			
11n HT20 目标功率	10.5	13.43	13.5	dBm
频谱掩码@目标功率			1X/	
fc +/-11MHz	-	-30.23	-20	dBr
fc +/-20MHz	-	-38.48	-28	dBr
fc > +/-30MHz	-	-44.8	-40	dBr
频率误差	-20	3.9	+ 20	ppm
Constellation 误差(峰值 EVM)@ 目标功率				
MCS7	-	-28.59	-28	dB

IEEE802.11n 20MHz 带宽模式 RX 参数如表 24 所示:

表 24. IEEE802.11n 20MHz 带宽模式 (RX)接收特性参数

	发送特性		最小值	测试值	最大值	单位
	最小输入电平灵敏度	$\overline{}$				
	MCS0 (FER≤10%)		-	-85	-82	dBm
K	MCS1 (FER≤10%)		-	-83	-79	dBm
	MCS2 (FER≤10%)		-	-82	-77	dBm
	MCS3 (FER≤10%)		-	-80	-74	dBm
	MCS4 (FER≤10%)		-	-78	-70	dBm

发送特性	最小值	测试值	最大值	单位
MCS5 (FER≦10%)	-	-74	-66	dBm
MCS6 (FER≦10%)	-	-72	-65	dBm
MCS7 (FER≦10%)	-	-69	-64	dBm

5.天线信息

5.1. 天线类型

有 PCB 内嵌天线、外接天线和天线贴盘三种天线接入方式。默认方式是 PCB 内嵌天线。

用户可用以下方法修改天线接入方式: (EMW3165 配备电阻—— $0\Omega/0402$ 在红色方框标出,可供用户更换天线接入方式)

图 4. EMW3165-P

图 5. EMW3165-E

图 6. EMW3165-B

5.2.降低天线干扰

在 WIFI 模块上使用 PCB 内嵌天线时,需确保主板 PCB 和其它金属器件距离至少 15mm 以上。下图中,阴影部分标示区域需要远离金属器件、传感器、干扰源以及其它可能造成信号干扰的材料。

图 7. 天线无干扰区域最小距离

5.3. UF.L RF 连接器

EMW3165 通过 U.F.L RF 连接器连接外接天线。

U.F.L RF 连接器参数如图 8 所示:

6. 总装信息及生产指导

6.1. 机械尺寸

EMW3165 机械尺寸俯视图如图 9 所示:(单位:mm)

EMW3165 机械尺寸侧视图如图 10 所示:(单位:mm)

图 10. 侧视图

6.2. 推荐封装尺寸

阻焊开窗和焊盘大小一致, SMT 建议钢网厚度 0.12mm-0.14mm。

6.3. 生产指南(请务必仔细阅读)

- 庆科出厂的邮票口封装模块必须由 SMT 机器贴片,并且贴片前要对模块进行烘烤
 - SMT贴片需要仪器:
 - 1. 回流焊贴片机
 - 2. AOI 检测仪
 - 3. 口径 6-8mm 吸嘴
 - 烘烤需要设备:
 - 1. 柜式烘烤箱
 - 2. 防静电、耐高温托盘
 - 3. 防静电耐高温手套
- 庆科出厂的模块存储条件如下(存储环境如 6.6 节图 14 所示):
 - 1. 防潮袋必须储存在温度 < 30℃, 湿度 < 85% RH 的环境中。
 - 2. 干燥包装的产品,其保质期应该是从包装密封之日起6个月的时间。
 - 3. 密封包装内装有湿度指示卡,如图 12 所示。
- 庆科出厂模块需要烘烤,湿度指示卡及烘烤的几种情况如下所述:

图 12. 温湿度指示卡

- 拆封时,如果温湿度指示卡读得30%、40%、50%三色环均为蓝色,需对模块进行持续烘烤2小时;
- 拆封时,如果湿度指示卡读取到30%色环变为粉色,需要对模块进行持续烘烤4小时;
- 拆封时,如果湿度指示卡读取到30%、40%色环变为粉色,需要对模块进行持续烘烤6小时;
- 拆封时,如果湿度指示卡读取到30%、40%、50%色环均变为粉色,需要对模块进行持续烘烤12小时;
- 烘烤参数如下:
 - 烘烤温度:125℃±5℃;
 - 报警温度设定为 130℃;
 - 自然条件下冷却<36℃后 ,即可进行 SMT 贴片;
 - 干燥次数:1次;
 - 如果烘烤后超过12小时没有焊接,请再次进行烘烤;
- 如果拆封时间超过3个月,请禁止使用SMT工艺焊接此批次模块,因为PCB沉金工艺,超过3个月焊盘氧化严重,SMT贴片时极有可能导致虚焊、漏焊,由此带来的种种问题我司不承担相应责任。
- SMT贴片前请对模块进行 ESD (静电放电,静电释放)保护;
- 请根据回流焊曲线图进行 SMT 贴片,峰值温度 245°C,回流焊温度曲线如 6.5 节图 13 所示;
- 为了确保回流焊合格率,首次贴片请抽取 10%产品进行目测、AOI 检测,以确保炉温控制、器件吸附方式、摆放方式的合理性;之后的批量生产建议每小时抽取 5-10 片进行目测、AOI 测试;

6.4. 注意事项

- 在生产全程中,各工位的操作人员必须戴静电手套;
- 烘烤时,不能超过烘烤时间;

- 烘烤时,严禁加入爆炸性、可燃性、腐蚀性物质;
- 烘烤时,模块应用高温托盘放入烤箱中,保持每片模块之间空气流通,同时避免模块与烤箱内壁直接接触;
- 烘烤时,请将烘烤箱门关好,保证烘烤箱封闭,防止温度外泄,影响烘烤效果;
- 烘烤箱运行时尽量不要打开箱门,若必须打开,尽量缩短可开门时间;
- 烘烤完毕后,需待模块自然冷却至<36℃后,方可戴静电手套拿出,以免烫伤;
- 操作时,严防模块底面沾水或者污物;
- 庆科出厂模块温湿度管控等級为 Level3,存储和烘烤条件依据 IPC/JEDEC J-STD-020。

6.5. 建议回焊曲线

焊锡膏建议:SAC305,无铅焊膏。

回焊次数:不超过2次。

建议回焊温度曲线如图 13 所示:

图 13. 建议回焊温度曲线

6.6. 储存条件

模块储存条件如图 14 所示:

图 14. 储存条件

7.参考电路图

EMW3088 用户参考电路如下图 15 电源参考电路、图 16 USB 转串口参考电路、图 17 外部接口参考设计 所示供用户参考。

图 15. 电源参考电路

图 17. EMW3165 外部接口参考设计

8.5V UART- 3.3V UART 转换参考电路

EMW3088 UART 为 3.3V UART,如果用户使用芯片的 UART 为 5V 电压,则需要把 5V UART 转成 3.3V UART,方能与 EMW3088 UART 通讯,5V-3.3V UART 转换电路请参考图 18 所示电路。

9.销售与技术支持信息

如果需要购买本产品,请在办公时间拨打电话咨询上海庆科信息技术有限公司。

办公时间:

星期一至星期五上午 9:00~12:00, 下午 13:00~18:00

联系电话:+86-21-52655026/52655025

联系地址:上海市普陀区同普路 1220 号同普大厦 811 室

邮编:200333

Email: sales@mxchip.com

10.版本修订记录

日期	版本	修改
2015-1-26	1.0	初始文档
2015-7-3	1.1	更新 5.1 节 , 天线类型 ; 更新 6.2 节 , 推荐封装尺寸 ; 更新 6.3 节 , 生产指南 ; 更新 6.4 节 , 注意事项 ; 增加第 7 章 , 参考电路图 增加第 8 章 , 5V UART- 3.3V UART 转换参考 电路

