# INTRODUCTION TO MACHINE LEARNING COMPSCI 4ML3

LECTURE 3

HASSAN ASHTIANI

# ORDINARY LEAST SQUARES (D-DIMENSIONS)

- Assume  $x \in \mathbb{R}^d$ ,  $y \in \mathbb{R}$
- Instead of a line,
   We need to fit a hyperplane!
- WHY ARE THE LINES VERTICAL?
  - ANY DIFFERENT IF WE MINIMIZE THE DISTANCE TO THE HYPERPLANE?



#### MATRIX FORM OLS

• 
$$\Delta = \begin{pmatrix} \Delta_1 \\ \dots \\ \Delta_n \end{pmatrix} = \begin{pmatrix} x_1^1 & \dots & x_d^1 \\ \vdots & \ddots & \vdots \\ x_1^n & \dots & x_d^n \end{pmatrix} \begin{pmatrix} w_1 \\ \dots \\ w_d \end{pmatrix} - \begin{pmatrix} y^1 \\ \dots \\ y^n \end{pmatrix}$$

$$\underset{W \in \mathbb{R}^{d \times 1}}{\min} \sum_{i=1}^n (\Delta_i)^2 = \underset{W \in \mathbb{R}^{d \times 1}}{\min} < \Delta, \Delta > = \underset{W \in \mathbb{R}^{d \times 1}}{\min} \|\Delta\|_2^2$$

$$\min_{W \in \mathbb{R}^{d \times 1}} ||XW - Y||_2^2$$

# TAKING THE "DERIVATIVE"

REAL-VALUED FUNCTION OF A VECTOR

GRADIENT:

VECTOR-VALUED FUNCTION OF A VECTOR

JACOBIAN:

# MATRIX/VECTOR CALCULUS

- $u, v \in \mathbb{R}^n$
- $g(u) = u^T v$

• 
$$\nabla u(g) =$$

# MATRIX/VECTOR CALCULUS

- $A \in \mathbb{R}^{m \times n}$ ,  $u \in \mathbb{R}^n$
- g(u) = Au

• 
$$\nabla u(g) =$$

# MATRIX/VECTOR CALCULUS

- $A \in \mathbb{R}^{m \times n}$ ,  $u \in \mathbb{R}^n$
- $g(u) = u^T A u$

•  $\nabla u(g) =$ 



# **SOLVING OLS**

$$f(W) = \min_{W \in \mathbb{R}^{d \times 1}} ||XW - Y||_2^2. \quad \text{WHAT IS } \nabla f?$$





#### SOLVING OLS

$$W^{LS} = (X^T X)^{-1} X^T Y$$

• DEGENERATE CASE WHEN  $X^TX$  IS NOT INVERTIBLE?

## BIAS/INTERCEPT TERM

• WE ARE MISSING THE BIAS TERM  $(W_0)$ 

$$\min_{w_0, w_1, \dots, w_d \in \mathbb{R}} \sum_{i=1}^n (w_1 x_1^i + \dots + w_d x_d^i + w_0 - y^i)^2$$

MATRIX FORM WITH THE BIAS TERM?

$$\min_{W \in \mathbb{R}^{d \times 1}, w_0 \in \mathbb{R}} \|XW + \begin{pmatrix} w_0 \\ w_0 \\ \cdots \\ w_0 \end{pmatrix} - Y\|_2^2$$

# **EXAMPLE**

## BIAS/INTERCEPT TERM

ADD A NEW AUXILIARY DIMENSION TO THE DATA

• 
$$X'_{n \times (d+1)} = \begin{pmatrix} x_1^1 & \cdots & x_d^1 & 1 \\ \vdots & \ddots & \vdots & 1 \\ x_1^n & \cdots & x_d^n & 1 \end{pmatrix}$$
,  $W'_{(d+1) \times 1} = \begin{pmatrix} w_1 \\ \cdots \\ w_d \\ w_0 \end{pmatrix}$ 

- SOLVE OLS:  $\min_{W' \in \mathbb{R}^{(D+1) \times 1}} \|X'W' Y\|_2^{2}$
- $w_0$  WILL BE THE BIAS TERM!

# **SOME EXAMPLES**

OLS NOTEBOOK