CS 391L Machine Learning Assignment 3

Name: Shun Zhang Email address: jensen.zhang@utexas.edu EID: sz4554

Problem 1

(a)

$$Cov(y) = E((y - E(y)(y - E(y)^{T}))$$

$$= E((Ax + b - E(Ax + b))(Ax + b - E(Ax + b))^{T})$$

$$= E((Ax - E(Ax))(Ax - E(Ax))^{T})$$

$$= AE((x - E(x))(x - E(x))^{T})A^{T}$$

$$= A\Sigma A^{T}$$

$$(1)$$

$$(2)$$

$$(3)$$

$$(3)$$

$$(4)$$

$$(4)$$

$$(5)$$

(b) Base case: by the defition of eigenvalue and eigenvector, $Ax = \lambda x$. Inductive hypothesis: assume $A^k x = \lambda^k x$ for some $k \in N$. Want to show $A^{k+1}x = \lambda^{k+1}x$.

$$A^k x = \lambda^k x I.H. (6)$$

$$A^{k+1}x = A\lambda^k x \tag{7}$$

$$A^{k+1}x = \lambda^k Ax \tag{8}$$

$$A^{k+1}x = \lambda^{k+1}x \qquad Ax = \lambda x \tag{9}$$

Problem 2

(a)

$$r = 1 - \frac{H(Y|X)}{H(X)} \tag{10}$$

$$=\frac{H(X) - H(Y|X)}{H(X)}\tag{11}$$

$$= \frac{I(Y|X)}{H(X)}$$
 Def. of Mutual Information (12)

(b)
$$H(Y|X) \ge 0$$
, $H(X) > 0$. So $\frac{H(Y|X)}{H(X)} \ge 0$, $1 - \frac{H(Y|X)}{H(X)} \le 1$.
 $H(Y|X) < H(X)$, so $\frac{H(Y|X)}{H(X)} <= 1$, $1 - \frac{H(Y|X)}{H(X)} \ge 0$.
 Therefore, $0 \le r \le 1$.

(c) r=0 when two variables are independent. r=1 when two vairables are perfectly correlated.

Problem 3

(a) $\tanh x = \frac{\sinh x}{\cosh x} = \frac{e^x - e^{-x}}{e^x + e^{-x}} = \frac{1 - e^{-2x}}{1 + e^{-2x}}$. Compared to $\frac{1}{1 + e^{-x}}$, \tanh has a steeper slope.

To be an appropriate sigmoid function, tanh needs to be scaled to range of [0, 1].

(b) We know W^k is 2×2 .

$$\frac{\partial H}{\partial w_{ij}^k} = \frac{\partial}{\partial w_{ij}^k} \sum_{k=0}^{K-1} (\lambda^{k+1})^T g(W^k x^k)$$
(13)

$$= \frac{\partial}{\partial w_{ij}^k} (\lambda_1^{k+1} g(w_{11} x_1^k + w_{12} x_2^k) + \lambda_2^{k+1} g(w_{21} x_1^k + w_{22} x_2^k))$$
 (14)

$$= \lambda_1^{k+1} \frac{\partial}{\partial w_{ij}^k} g(w_{11} x_1^k + w_{12} x_2^k) + \lambda_2^{k+1} \frac{\partial}{\partial w_{ij}^k} g(w_{21} x_1^k + w_{22} x_2^k) \quad (15)$$

Therefore, for $w_{11}, w_{12}, w_{21}, w_{22}$, there is $\frac{\partial H}{\partial w_{ij}^k} = \lambda^{k+1} x_j^k g'(w_i^k x^k)$.

Problem 4

(a) The code for computing these results is attached separately.

$$IG(Color) = 0.1043$$

$$IG(Size) = 0.4086$$

$$IG(Noise) = 0.0207$$

For small size,

$$IG(Color) = 0.3219$$

$$IG(Noise) = 0.0207$$

For medium size,

$$\begin{array}{l} IG(Color) = 0.1226 \\ IG(Noise) = 0.1226 \end{array}$$

For large size, IG is clearly 0.

The decision tree is

(b) If the event of missing a datum is uniformly random over all the attributes, then it doesn't harm if we simply delete that line.

Problem 5

(a)
$$\min \frac{1}{3}\pi r^2 h$$
 such that $A = \pi r s + \pi r^2$, $s^2 = r^2 + h^2$.
Use Lagrange multiplier, $H = \frac{1}{3}\pi r^2 h + \lambda(\pi r s + \pi r^2 - A) + \gamma(r^2 + h^2 - s^2)$.
 $\frac{\partial H}{\partial r} = \frac{2}{3}\pi r h + \lambda(\pi s + 2\pi r) + 2\gamma r = 0$
 $\frac{\partial H}{\partial h} = \frac{1}{3}\pi r^2 + 2\gamma h = 0$