Part1

X	P(X)
0	0.300
1	0.700

Y	X	P(Y X)
0	0	0.300
1	0	0.700
0	1	0.800
1	1	0.200

\boldsymbol{z}	Y	P(Z Y)
0	0	0.600
1	0	0.400
0	1	0.800
1	1	0.200

1.

use the product rule:

$$P(X, Y) = P(Y) * P(X | Y) = P(X) * P(Y | X)$$

$$P(X = 0, Y = 0) = P(X = 0) * P(Y=0 | X=0) = 0.3 * 0.3 = 0.9$$

$$P(X = 0, Y = 1) = P(X = 0) * P(Y=1 | X=0) = 0.3 * 0.7 = 0.21$$

$$P(X = 1, Y = 0) = P(X = 1) * P(Y=0 | X=1) = 0.7 * 0.8 = 0.56$$

$$P(X = 1, Y = 1) = P(X = 1) * P(Y=1 | X=1) = 0.7 * 0.2 = 0.14$$

2.

$$P(X = 1, Y = 0, Z = 0) = 0.336$$

use the product rule:

$$P(X, Z \mid Y) = P(X \mid Y) * P(Z \mid Y)$$

$$P(X, Y, Z) = P(Y) * P(X, Z | Y) = P(Y) * P(X | Y) * P(Z | Y) = P(X,Y)$$

$$P(X=0, Y=0, Z=0) = P(X=0, Y=0) * P(Z=0 | Y=0) = 0.9 * 0.6$$

=0.054

$$P(X = 0, Y = 0, Z = 1) = 0.036$$

$$P(X = 0, Y = 1, Z = 0) = 0.168$$

$$P(X = 0, Y = 1, Z = 1) = 0.042$$

$$P(X = 1, Y = 0, Z = 0) = 0.336$$

$$P(X=1, Y=0, Z=1) = P(X=1, Y=0) * P(Z=1 | Y=0) = 0.56 * 0.4$$

=0.224

$$P(X=1, Y=1, Z=0) = P(X=1, Y=1) * P(Z=0 | Y=1) = 0.14 * 0.8$$

=0.112

$$P(X=1, Y=1, Z=1) = P(X=1, Y=1) * P(Z=1 | Y=1) = 0.14 * 0.2$$

=0.028

X	Υ	Z	P(X,Y,Z)
0	0	0	0.054
0	0	1	0.036
0	1	0	0.168
0	1	1	0.042
1	0	0	0.336
1	0	1	0.224
1	1	0	0.112

1	1	1	0.028

3.

(i)

 The sum rule: the probability of an event is the sum of all the joint probabilities with another event

$$-P(X=x) = \sum_{y \in \Omega} P(X=x, Y=y)$$

$$P(Z=0) = P(X=1, Y=1, Z=0) + P(X=1, Y=0, Z=0) + P(X=0, Y=0, Z=0) + P(X=0, Y=0, Z=0) = 0.112 + 0.336 + 0.168 + 0.054$$

= 0.67

$$P(X = 0, Z = 0) = P(X = 0, Y = 1, Z = 0) + P(X=0, Y=0, Z=0)$$

=0.168+0.054 = 0.222

(ii)

- Independence
 - P(A | B) = P(A)
 - P(B | A) = P(B)
 - P(A, B) = P(A) * P(B)

P(X=0) = P(X=0, Z=0) / P(Z=0) = 0.222/0.67 unequal 0.3 which means X and Z are not independent

4.

(i)

$$P(Z = 1) = P(X = 0, Y = 0, Z = 1) + P(X = 0, Y = 1, Z = 1) + P(X=1, Y=0, Z=1) + P(X=1, Y=1, Z=1)$$
 $=0.036 + 0.042 + 0.224 + 0.028 = 0.33$
 $P(X = 1, Y = 0|Z = 1) = P(X = 1, Y = 0, Z = 1) / P(Z = 1) = 0.224/0.33 = 0.679$
(ii)
 $P(Y = 0, Z = 0) = P(X=0, Y=0, Z=0) + P(X = 1, Y = 0, Z = 0) = 0.054 + 0.336 = 0.39$
 $P(X = 0 | Y = 0, Z = 0) = P(X = 0, Y = 0, Z = 0) / P(Y = 0, Z = 0) = 0.054/0.39 = 0.138$

Part2

1.

P(F8 = 1 | C = 1) = 0.7692307692307693, P(F8 = 1 | C = 0) =

2.

Probability for Spam is 4.563570134160374E-6, Probability

for non-spam is 4.954267164176628E-4, Non Spam Probability for Spam is 7.210346867817722E-5, Probability for non-spam is 4.5438790152493946E-5, Spam Probability for Spam is 2.337624408575223E-4, Probability for non-spam is 1.3955766540710917E-4, Spam Probability for Spam is 7.663585265070243E-6, Probability for non-spam is 6.466481819829655E-4, Non_Spam Probability for Spam is 7.7202748511879E-5, Probability for non-spam is 1.0025583637879425E-4, Non Spam Probability for Spam is 7.434338745588349E-5, Probability for non-spam is 5.026186824410612E-5, Spam Probability for Spam is 5.124916761793711E-6, Probability for non-spam is 3.540527014157241E-4, Non_Spam Probability for Spam is 8.117842746585805E-5, Probability for non-spam is 4.2357652476948595E-4, Non_Spam Probability for Spam is 2.3376244085752235E-4 Probability for non-spam is 4.10847332740555E-5, Spam Probability is 2.8353542253659124E-5 for Spam Probability for 7.338396327966042E-4, non-spam İS Non_Spam

3. Naive Bayes algorithm for independent feature. The test

results are not all correct that indicate they are not all independent.

Part3

1.M for meeting, LT for lecture teaching, O for office, L for light, C for computer

M	P(M)
1	0.7
0	0.3

LT	P(LT)
1	0.6
0	0.4

M	LT	0	P(O M, LT)
1	1	1	0.95
1	1	0	0.05
1	0	1	0.75
1	0	0	0.25
0	1	1	0.8
0	1	0	0.2

0	0	1	0.06
0	0	0	0.94

L	О	P(L O)
1	1	0.5
0	1	0.5
1	0	0.02
0	0	0.98

С	О	P(C O)
1	1	0.8
0	1	0.2
1	0	0.2
0	0	0.8

2. depend on above probability graph, half of them is CPT size

3. P(M=0) * P(LT=1) * P(O=1|M=0, LT=1)* P(L=0|O=1)* P(C=1|O=1)

0.3*0.6*0.8*0.5*0.8 = 0.0576

4. P(O|M=1, T=1) + P(O|M=1,T=0) + P(O|M=0,T=1) + P(O|M=0,T=0)

0.95*0.7*0.6+0.75*0.7*0.4+0.8*0.3*0.6+0.06*0.3*0.4=0.7602

5.
$$P(C=1|O=1)*P(L=0|O=1) = 0.8*0.5 = 0.4$$

6. light and computer log on are dependent, we can not know if Rachels in office. Thus, there is not effect on the students belief that Rachels light is on.

Part4

1(i).

Evidence variables: XRay

Hidden variables: Smoker, Cancer, Dyspnoea

query variables: Pollution

(ii).

choose c, join p,s,c,x then eliminate c. choose s join p,s,x ,then eliminate s.

(iii).

$$P(P=t| X=t) = P(P=t) * P(S=t) * P(C=t| P=t, S=t) * P(X=t| C=t) \\ + P(P=t) * P(S=f) * P(C=t| P=t, S=f) * P(X=t| C=t) \\ + P(P=t) * P(S=t) * P(C=f| P=t, S=t) * P(X=t| C=f) \\ + P(P=t) * P(S=f) * P(C=f| P=t, S=f) * P(X=t| C=f) = \\ 0.9*0.3*0.05*0.9+0.9*0.7*0.02*0.9+0.9*0.3*0.95*0.2+0.9*0.7*$$

0.98 * 0.2 = 0.19827

$$P(P=f|X=t) = \\ P(P=f) * P(S=t) * P(C=t|P=f,S=t) * P(X=t|C=t) \\ + P(P=f) * P(S=f) * P(C=t|P=f,S=f) * P(X=t|C=t) \\ + P(P=f) * P(S=t) * P(C=f|P=f,S=t) * P(X=t|C=f) \\ + P(P=f) * P(S=f) * P(C=t|P=f,S=f) * P(X=t|C=f) = \\ 0.1*0.3*0.03*0.9+0.1*0.7*0.001*0.9+0.1*0.3*0.97*0.2+0.1*0. \\ 7*0.999*0.2=0.020679$$

$$P(p=t|X=t)/(P(p=t|X=t)+P(P=f|x=f))=0.19827/(0.19827+0.02$$

 $0679) = 0.906$

2.

D and X, they got common cause.

P and X, P is indirect cause of X.

S and X, S is indirect cause of X.

3.

STEP1:

P(S|P) != P(P) P->S

STEP2:

P(C|P,C) != P(C)

P(C|P,S) = P(C|P)

P(C|P,S) = P(C|S) => P->C and S->C

STEP3:

P(X|P,S,C) = P(X)

P(X|P,S,C) = P(X|C) => C->X, no other link

STEP4:

P(D|P,S,C,X) !=P(D)

P(D|P,S,C,X) = P(D|C)

P(D|P,S,C,X) = P(D|X)

P(D|P,S,C,X) = P(D|C,X) => C->D,X->D no other link

