Bài tập trên lớp - lấy điểm quá trình

$$T(n) = \begin{cases} C_1, & n = 1\\ 4T\left(\frac{n}{2}\right) + n, & n \ge 2 \end{cases}$$

Đoán: $f(n) = cn^2$

Trong trường hợp chứng minh không được thì kết luận dự đoán ban đầu là sai và dự đoán lại nghiệm khác

Ta đoán: $f(n) = cn^2$

Bước 1: Chứng minh $T(1) \le f(1)$

Với
$$n = 1$$
, $T(1) = C_1$ và $f(1) = c$,

Để có $T(1) \le f(1)$ thì chọn $C_1 \le c$

Bước 2: Giả sử $T(k) \le f(k)$, $\forall k < n$

Bước 3: Cần chứng minh $T(n) \le f(n)$, $\forall n$

Nếu
$$n \le 0$$
 thì $T(n) \le f(n)$

Man > 0

Nên dự đoán nghiệm sai

Đoán: $f(n) = cn^2 + bn$

Bước 1: Chứng minh $T(1) \le f(1)$

Với
$$n = 1$$
, $T(1) = C_1 \text{ và } f(1) = c + b$,

Để có
$$T(1) \le f(1)$$
 thì chọn $C_1 \le c + b$

Bước 2: Giả sử $T(k) \le f(k)$, $\forall k < n$

Bước 3: Cần chứng minh $T(n) \le f(n)$, $\forall n$

$$T(k) \le f(k)$$

$$\Leftrightarrow 4T(n/2) + n \le 4f(n/2) + n$$

$$\Leftrightarrow$$
 T(n) \leq 4(cn²/4+ bn/2) + n

$$\Leftrightarrow T(n) \le cn^2 + 2bn + n$$

$$\Leftrightarrow T(n) \le f(n) + bn + n$$

Nếu bn +
$$n \le 0$$

Thì
$$T(n) \le f(n)$$

$$\Rightarrow$$
 b+1 \leq 0

Liên hệ với
$$C_1 \le c + b$$

$$\label{eq:choice} \begin{array}{ll} \Leftrightarrow & Chọn \; b=-1, \; c=C_1+1 \\ & Ta\; chọn: \; f(n)=(C_1+1)\; n^2 - n \end{array}$$