#### **EDA and Data Prediction on the Telcom Churn Dataset**

"Churning" refers to the number of Customers or Employees that leave a Company in a given time period. Changes in a business's churn rate can provide valuable insight into an organization.

## Importing librariers required for Data Analysis and Predictions

```
In [1]: import numpy as np
   import pandas as pd
   import matplotlib.pyplot as plt
   import seaborn as sns
   import warnings
   warnings.filterwarnings("ignore")
In [2]: df=pd.read_csv("telecom_churn.csv")
```

```
In [3]: df.head()
```

#### Out[3]:

|   | customerID     | gender | SeniorCitizen | Partner | Dependents | tenure | PhoneService | MultipleLines    | InternetService | OnlineSecurity | <br>DevicePro |
|---|----------------|--------|---------------|---------|------------|--------|--------------|------------------|-----------------|----------------|---------------|
| 0 | 7590-<br>VHVEG | Female | 0             | Yes     | No         | 1      | No           | No phone service | DSL             | No             |               |
| 1 | 5575-<br>GNVDE | Male   | 0             | No      | No         | 34     | Yes          | No               | DSL             | Yes            |               |
| 2 | 3668-<br>QPYBK | Male   | 0             | No      | No         | 2      | Yes          | No               | DSL             | Yes            |               |
| 3 | 7795-<br>CFOCW | Male   | 0             | No      | No         | 45     | No           | No phone service | DSL             | Yes            |               |
| 4 | 9237-<br>HQITU | Female | 0             | No      | No         | 2      | Yes          | No               | Fiber optic     | No             |               |

5 rows × 21 columns

4

```
In [4]: df.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 7043 entries, 0 to 7042
        Data columns (total 21 columns):
                               Non-Null Count Dtype
             Column
             customerID
                                7043 non-null
                                                object
             gender
                                                object
         1
                                7043 non-null
                                                int64
             SeniorCitizen
                                7043 non-null
         3
             Partner
                                7043 non-null
                                                object
         4
             Dependents
                               7043 non-null
                                                object
         5
             tenure
                                7043 non-null
                                                int64
             PhoneService
                               7043 non-null
                                                object
             MultipleLines
                               7043 non-null
         7
                                                object
             InternetService
                                                object
                                7043 non-null
             OnlineSecurity
                                7043 non-null
                                                object
            OnlineBackup
                                                object
         10
                                7043 non-null
                               7043 non-null
                                                object
         11 DeviceProtection
         12 TechSupport
                                7043 non-null
                                                object
             StreamingTV
                               7043 non-null
                                                object
             StreamingMovies
                                                object
                               7043 non-null
         15 Contract
                                7043 non-null
                                                object
             PaperlessBilling 7043 non-null
                                                object
         17 PaymentMethod
                                                object
                                7043 non-null
         18 MonthlyCharges
                                7043 non-null
                                                float64
            TotalCharges
                                                object
         19
                                7043 non-null
         20 Churn
                                7043 non-null
                                                object
        dtypes: float64(1), int64(2), object(18)
```

memory usage: 1.1+ MB

# Handling Null values and then replacing them with Central Tendancies

In [5]: df[df["TotalCharges"]==" "]
#TotalCharges column has 11 rows without any value

| _          |     |      |   |
|------------|-----|------|---|
| $^{\circ}$ | +-  |      |   |
| w          |     | ו כו |   |
| _          | · · |      | • |

|      | customerID     | gender | SeniorCitizen | Partner | Dependents | tenure | PhoneService | MultipleLines    | InternetService | OnlineSecurity      | <br>De |
|------|----------------|--------|---------------|---------|------------|--------|--------------|------------------|-----------------|---------------------|--------|
| 488  | 4472-LVYGI     | Female | 0             | Yes     | Yes        | 0      | No           | No phone service | DSL             | Yes                 |        |
| 753  | 3115-<br>CZMZD | Male   | 0             | No      | Yes        | 0      | Yes          | No               | No              | No internet service |        |
| 936  | 5709-<br>LVOEQ | Female | 0             | Yes     | Yes        | 0      | Yes          | No               | DSL             | Yes                 |        |
| 1082 | 4367-<br>NUYAO | Male   | 0             | Yes     | Yes        | 0      | Yes          | Yes              | No              | No internet service |        |
| 1340 | 1371-<br>DWPAZ | Female | 0             | Yes     | Yes        | 0      | No           | No phone service | DSL             | Yes                 |        |
| 3331 | 7644-<br>OMVMY | Male   | 0             | Yes     | Yes        | 0      | Yes          | No               | No              | No internet service |        |
| 3826 | 3213-<br>VVOLG | Male   | 0             | Yes     | Yes        | 0      | Yes          | Yes              | No              | No internet service |        |
| 4380 | 2520-<br>SGTTA | Female | 0             | Yes     | Yes        | 0      | Yes          | No               | No              | No internet service |        |
| 5218 | 2923-<br>ARZLG | Male   | 0             | Yes     | Yes        | 0      | Yes          | No               | No              | No internet service |        |
| 6670 | 4075-<br>WKNIU | Female | 0             | Yes     | Yes        | 0      | Yes          | Yes              | DSL             | No                  |        |
| 6754 | 2775-<br>SEFEE | Male   | 0             | No      | Yes        | 0      | Yes          | Yes              | DSL             | Yes                 |        |
|      |                |        |               |         |            |        |              |                  |                 |                     |        |

11 rows × 21 columns

In [6]: df["TotalCharges"].replace(' ',np.nan, inplace=True)
 df["TotalCharges"]=df["TotalCharges"].astype(float)
 #Replacing the blank space with null value and converting the datatype to float

In [7]: df.describe()

#### Out[7]:

|       | SeniorCitizen | tenure      | MonthlyCharges | TotalCharges |
|-------|---------------|-------------|----------------|--------------|
| count | 7043.000000   | 7043.000000 | 7043.000000    | 7032.000000  |
| mean  | 0.162147      | 32.371149   | 64.761692      | 2283.300441  |
| std   | 0.368612      | 24.559481   | 30.090047      | 2266.771362  |
| min   | 0.000000      | 0.000000    | 18.250000      | 18.800000    |
| 25%   | 0.000000      | 9.000000    | 35.500000      | 401.450000   |
| 50%   | 0.000000      | 29.000000   | 70.350000      | 1397.475000  |
| 75%   | 0.000000      | 55.000000   | 89.850000      | 3794.737500  |
| max   | 1.000000      | 72.000000   | 118.750000     | 8684.800000  |

In [8]: sns.distplot(df.TotalCharges)

#### Out[8]: <AxesSubplot:xlabel='TotalCharges', ylabel='Density'>



When the data is skewed, it is good to consider using the median value for replacing the null values. Since the above Distribution Plot signifies

the data is right skewed, replacing the null values with the median.

```
In [9]: df["TotalCharges"]=df["TotalCharges"].fillna(df["TotalCharges"].median())
```

In [10]: df.describe()

Out[10]:

|       | SeniorCitizen | tenure      | MonthlyCharges | TotalCharges |
|-------|---------------|-------------|----------------|--------------|
| count | 7043.000000   | 7043.000000 | 7043.000000    | 7043.000000  |
| mean  | 0.162147      | 32.371149   | 64.761692      | 2281.916928  |
| std   | 0.368612      | 24.559481   | 30.090047      | 2265.270398  |
| min   | 0.000000      | 0.000000    | 18.250000      | 18.800000    |
| 25%   | 0.000000      | 9.000000    | 35.500000      | 402.225000   |
| 50%   | 0.000000      | 29.000000   | 70.350000      | 1397.475000  |
| 75%   | 0.000000      | 55.000000   | 89.850000      | 3786.600000  |
| max   | 1.000000      | 72.000000   | 118.750000     | 8684.800000  |

The datasets descriptions shows that the average Monthly Charges are USD 64.76 and it has maximum gone upto USD 118.75 The average tenure the telecom company has is of 32 months. The average Total Amount charged to the customer is USD 2283 and the maximum amount is USD 8684. By observation, I found that the MonthlyCharges and TotalCharges are not evenly distributed

## Dropping the columns with least correlations

```
In [11]: df.drop(['customerID'],axis=1,inplace=True)
```

Dropping the costumerID column as it has the least correlation with the Churn column

# **Handling Categorical Data**

Seperating the numerical and categorical columns

```
In [13]: df_cat.head()
```

#### Out[13]:

|   | gender | Partner | Dependents | PhoneService | MultipleLines    | InternetService | OnlineSecurity | OnlineBackup | DeviceProtection | TechSupport S |
|---|--------|---------|------------|--------------|------------------|-----------------|----------------|--------------|------------------|---------------|
| 0 | Female | Yes     | No         | No           | No phone service | DSL             | No             | Yes          | No               | No            |
| 1 | Male   | No      | No         | Yes          | No               | DSL             | Yes            | No           | Yes              | No            |
| 2 | Male   | No      | No         | Yes          | No               | DSL             | Yes            | Yes          | No               | No            |
| 3 | Male   | No      | No         | No           | No phone service | DSL             | Yes            | No           | Yes              | Yes           |
| 4 | Female | No      | No         | Yes          | No               | Fiber optic     | No             | No           | No               | No            |

In [14]: from sklearn.preprocessing import LabelEncoder
le=LabelEncoder()

Performing Label Encoding on the categorical columns so as to convert then into the machine readable form!

```
In [15]: for i in df_cat:
    le=LabelEncoder()
    df_cat[i]=le.fit_transform(df_cat[i])
```

| In [16]: | df_ | _cat.hea | ıd()   |        |         |          |         |           |       |             |      |          |         |         |          |        |            |      |          |             |
|----------|-----|----------|--------|--------|---------|----------|---------|-----------|-------|-------------|------|----------|---------|---------|----------|--------|------------|------|----------|-------------|
| Out[16]: |     | gender   | Partne | r Dep  | endents | PhoneSe  | rvice l | Multiplel | _ines | InternetSer | vice | OnlineSe | ecurity | OnlineE | Backup   | Device | Protection | Tech | Support  | s           |
|          | 0   | 0        |        | 1      | 0       |          | 0       |           | 1     |             | 0    |          | 0       |         | 2        |        | 0          |      | 0        | _           |
|          | 1   | 1        | (      | )      | 0       |          | 1       |           | 0     |             | 0    |          | 2       |         | 0        |        | 2          |      | 0        |             |
|          | 2   | 1        | (      | )      | 0       |          | 1       |           | 0     |             | 0    |          | 2       |         | 2        |        | 0          |      | 0        |             |
|          | 3   | 1        | (      | )      | 0       |          | 0       |           | 1     |             | 0    |          | 2       |         | 0        |        | 2          |      | 2        |             |
|          | 4   | 0        | (      | )      | 0       |          | 1       |           | 0     |             | 1    |          | 0       |         | 0        |        | 0          |      | 0        |             |
|          |     |          |        |        |         |          |         |           |       |             |      |          |         |         |          |        |            |      |          |             |
|          | 4   |          |        |        |         |          |         |           |       |             |      |          |         |         |          |        |            |      | ı        | <b>&gt;</b> |
| In [17]: | df2 | 2=pd.con | cat([  | df_num | n,df_ca | t],axis= | :1)     |           |       |             |      |          |         |         |          |        |            |      |          |             |
| In [18]: | df2 | 2.head() |        |        |         |          |         |           |       |             |      |          |         |         |          |        |            |      |          |             |
| Out[18]: |     |          |        |        |         |          |         |           |       |             |      | _        |         |         |          |        |            |      |          |             |
|          |     | SeniorCi |        |        | Monthly |          | TotalCI |           |       | r Partner   | Depe |          | Phones  |         | Multiple |        | InternetSe |      | OnlineSe | CL          |
|          | 0   |          | 0      | 1      |         | 29.85    |         | 29.85     |       | 0 1         |      | 0        |         | 0       |          | 1      |            | 0    |          |             |
|          | 1   |          | 0      | 34     |         | 56.95    |         | 889.50    |       | 1 0         |      | 0        |         | 1       |          | 0      |            | 0    |          |             |
|          | 2   |          | 0      | 2      |         | 53.85    |         | 108.15    |       | 1 0         |      | 0        |         | 1       |          | 0      |            | 0    |          |             |
|          | 3   |          | 0      | 45     |         | 42.30    |         | 840.75    |       | 1 0         |      | 0        |         | 0       |          | 1      |            | 0    |          |             |
|          | 4   |          | 0      | 2      |         | 70.70    |         | 151.65    | (     | 0 0         |      | 0        |         | 1       |          | 0      |            | 1    |          |             |

# **Checking For Outliers**

In [19]: fig,axes=plt.subplots(2,2,figsize=(16,10))
 sns.boxplot(data=df, x="Contract", y="TotalCharges",ax=axes[0,0])
 sns.boxplot(data=df2, x="SeniorCitizen", y="tenure",ax=axes[0,1])
 sns.boxplot(data=df2, x="Partner", y="tenure",ax=axes[1,0])
 sns.boxplot(data=df2, x="Churn", y="TotalCharges",ax=axes[1,1])
 plt.show()



## **Removing Outliers**

```
In [20]: | outlier1= df.loc[(df['Contract']=='Month-to-month') & (df['TotalCharges']>8000)]
          outlier2= df.loc[(df['Churn']=='Yes') & (df['TotalCharges']>8500)]
          print(outlier1.index,outlier2.index)
          Int64Index([3820], dtype='int64') Int64Index([4610], dtype='int64')
In [21]: df2.drop(index=3820,inplace=True)
In [22]: df2.drop(index=4610,inplace=True)
          By observing the boxplots, came across some outliers and removed them
In [23]: df2.head()
Out[23]:
             SeniorCitizen tenure MonthlyCharges TotalCharges gender Partner Dependents PhoneService MultipleLines InternetService OnlineSecu
           0
                       0
                                         29.85
                                                      29.85
                                                                0
                                                                                   0
                                                                                                0
                                                                                                                          0
                              1
                                                                                                            1
```

#### 3 45 42.30 1840.75 0 0 1 0 0 2 70.70 0 151.65 0 0 1

0

0

0

0

0

0

0

1

# **Reducing Skewness**

0

1

2

34

2

56.95

53.85

1889.50

108.15

Reduced the skewness

# **Data Exploration**

```
In [27]: data=[df.Churn.value_counts()[1],df.Churn.value_counts()[0]]
    label=['Yes','No']
    plt.pie(data,labels=label, shadow=True, autopct="%0.1f%%",explode=[0,0.1],startangle=90)
    plt.show()
```



26.5% Customers have left within the last month.

In [28]: fig,axes=plt.subplots(4,2,figsize=(16,25))
 sns.countplot(data=df,x='PhoneService',hue='Churn',ax=axes[0,0])
 sns.countplot(data=df,x='SeniorCitizen',hue='Churn',ax=axes[0,1])
 sns.countplot(data=df,x='InternetService',hue='Churn',ax=axes[1,0])
 sns.countplot(data=df,x='gender',hue='Churn',ax=axes[1,1])
 sns.countplot(data=df,x='Contract',hue='Churn',ax=axes[2,0])
 sns.countplot(data=df,x='OnlineSecurity',hue='Churn',ax=axes[2,1])
 sns.countplot(data=df,x='StreamingTV',hue='Churn',ax=axes[3,0])
 sns.countplot(data=df,x='TechSupport',hue='Churn',ax=axes[3,1])
 plt.show()







```
In [29]: fig,axes=plt.subplots(figsize=(10,5))
sns.countplot(data=df,x='PaymentMethod',hue='Churn')
plt.plot()
```

#### Out[29]: []



The above countplots describe the Churn analysis with other features in the dataset

In [30]: sns.pairplot(data=df,vars=['MonthlyCharges','TotalCharges','tenure'],hue='Churn', palette='husl')

Out[30]: <seaborn.axisgrid.PairGrid at 0x213119b1d30>



In [31]: #Histogram of MonthlyCharges Frequency Distribution
 plt.figure(figsize=(7,7))
 plt.hist(df2["MonthlyCharges"], bins=10)
 plt.xticks(rotation="vertical")
 plt.title("MonthlyCharges Frequency Distribution")
 plt.ylabel("No. of Customers")
 plt.xlabel("MonthlyCharges")
 plt.show()



Large number of customers (around 1600) pay MonthlyCharges between USD 20 to USD 30. The MonthlyCharges frequency is not evenly

```
In [32]: df2.corr()['Churn']
Out[32]: SeniorCitizen
                             0.151278
         tenure
                            -0.352681
         MonthlyCharges
                           0.193197
         TotalCharges
                            -0.225502
         gender
                            -0.008765
         Partner
                            -0.150660
         Dependents
                            -0.164169
         PhoneService
                             0.011895
         MultipleLines
                             0.037883
         InternetService
                            -0.047328
         OnlineSecurity
                            -0.289667
         OnlineBackup
                            -0.195799
         DeviceProtection
                            -0.178401
         TechSupport
                            -0.282844
         StreamingTV
                            -0.036769
         StreamingMovies
                            -0.038679
                            -0.396982
         Contract
         PaperlessBilling
                             0.191761
         PaymentMethod
                             0.107407
         Churn
                             1.000000
         Name: Churn, dtype: float64
```

Correlation of the target variable with other features

# According to the analysis, I came to the following conclusions:

- 1. 26.5% Customers have left the Company within last month.
- 2. The company has more no of Younger Generation than Senior Citizens with almost almost equal no of Male and Females.
- 3. Younger Generation Churn more than compared to the Senior Citizens. So the company must come up with more ideas in interest of the Young people.
- 4. The company provides phone services to many of the customers (i.e 6361 out of 7041).
- 5. The customers who is being provided Online Security Churn less. So the Company should increase the number of Customers with Online Security.

- 6. The customers with Technical Support tend to Churn less. So the Company should increase the number of Customers with Technical Support
- 7. The Customers with DSL as the Internet Service churn less as compared to the customers with Optical Fiber.
- 8. The Customers using Electronic Check as their Payment Method Churn more comparitively.
- 9. Customers with Yearly Contract tend to churn less as compared to customers with Monthly COntract

#### **Scaling**

```
In [33]: from sklearn.preprocessing import MinMaxScaler
    mm=MinMaxScaler()
    df2[["TotalCharges"]]=mm.fit_transform(df2[["TotalCharges"]])
```

Performed Feature Scaling on Total Charges

# Seperating the Dependent and Independent variables for Training and Testing of Data

```
In [34]: x=df2.iloc[:,:-1]
x
```

#### Out[34]:

|      | SeniorCitizen | tenure | MonthlyCharges | TotalCharges | gender | Partner | Dependents | PhoneService | MultipleLines | InternetService | OnlineS |
|------|---------------|--------|----------------|--------------|--------|---------|------------|--------------|---------------|-----------------|---------|
| 0    | 0             | 1      | 29.85          | 0.012700     | 0      | 1       | 0          | 0            | 1             | 0               |         |
| 1    | 0             | 34     | 56.95          | 0.440730     | 1      | 0       | 0          | 1            | 0             | 0               |         |
| 2    | 0             | 2      | 53.85          | 0.068292     | 1      | 0       | 0          | 1            | 0             | 0               |         |
| 3    | 0             | 45     | 42.30          | 0.434374     | 1      | 0       | 0          | 0            | 1             | 0               |         |
| 4    | 0             | 2      | 70.70          | 0.089861     | 0      | 0       | 0          | 1            | 0             | 1               |         |
| •••  |               |        |                |              |        | •••     |            |              |               |                 |         |
| 7038 | 0             | 24     | 84.80          | 0.453644     | 1      | 1       | 1          | 1            | 2             | 0               |         |
| 7039 | 0             | 72     | 103.20         | 0.917574     | 0      | 1       | 1          | 1            | 2             | 1               |         |
| 7040 | 0             | 11     | 29.60          | 0.160798     | 0      | 1       | 1          | 0            | 1             | 0               |         |
| 7041 | 1             | 4      | 74.40          | 0.148374     | 1      | 1       | 0          | 1            | 2             | 1               |         |
| 7042 | 0             | 66     | 105.65         | 0.882932     | 1      | 0       | 0          | 1            | 0             | 1               |         |

7041 rows × 19 columns

## **Model Building**

Machine Learning Algorithms for Classification problems are: Logistic Regression, K Nearest Neighbor, Naive Bayes, Support Vector MAchines (SVC)

```
In [37]: from sklearn.linear_model import LogisticRegression
    from sklearn.neighbors import KNeighborsClassifier
    from sklearn.naive_bayes import GaussianNB
    from sklearn.svm import SVC
    from sklearn.metrics import classification_report, accuracy_score, confusion_matrix
```

```
In [38]: def mymodel(model):
    model.fit(xtest,ytest)
    ypred=model.predict(xtest)
    ac=accuracy_score(ytest,ypred)
    cm=confusion_matrix(ytest,ypred)
    cr=classification_report(ytest,ypred)
    print(f" Accuracy: {ac} \n {cm} \n {cr} ")
In [39]: models=[]
models.append(("Logistic ",LogisticRegression()))
models.append(("KNN",KNeighborsClassifier()))
models.append(("Naive bayes", GaussianNB()))
models.append(("SVM", SVC()))
```

```
In [40]: for name, model in models:
             print(name)
             mymodel(model)
             print("\n\n")
         Logistic
          Accuracy: 0.8091993185689949
          [[1198 122]
          [ 214 227]]
                        precision
                                     recall f1-score
                                                        support
                            0.85
                                      0.91
                                                0.88
                                                          1320
                    0
                                      0.51
                    1
                            0.65
                                                0.57
                                                           441
                                                0.81
                                                          1761
             accuracy
                                                0.73
                                                          1761
                            0.75
                                      0.71
            macro avg
         weighted avg
                            0.80
                                      0.81
                                                0.80
                                                          1761
         KNN
          Accuracy: 0.8387279954571266
          [[1211 109]
          [ 175 266]]
                        precision
                                     recall f1-score
                                                        support
                            0.87
                                      0.92
                                                0.90
                                                          1320
                    0
                            0.71
                                      0.60
                                                0.65
                                                           441
                    1
             accuracy
                                                0.84
                                                          1761
                            0.79
                                      0.76
                                                0.77
                                                          1761
            macro avg
```

0.83

0.84

0.83

1761

weighted avg

|              | precision | recall | f1-score | support |
|--------------|-----------|--------|----------|---------|
| 0            | 0.91      | 0.77   | 0.83     | 1320    |
| 1            | 0.52      | 0.76   | 0.62     | 441     |
| accuracy     |           |        | 0.77     | 1761    |
| macro avg    | 0.71      | 0.76   | 0.72     | 1761    |
| weighted avg | 0.81      | 0.77   | 0.78     | 1761    |

SVM

Accuracy: 0.7995457126632595

[[1233 87] [ 266 175]]

| [ 200   | 1/5]] | precision | recall | f1-score | support |
|---------|-------|-----------|--------|----------|---------|
|         | 0     | 0.82      | 0.93   | 0.87     | 1320    |
|         | 1     | 0.67      | 0.40   | 0.50     | 441     |
| acc     | uracy |           |        | 0.80     | 1761    |
| macr    | o avg | 0.75      | 0.67   | 0.69     | 1761    |
| weighte | d avg | 0.78      | 0.80   | 0.78     | 1761    |

Logistic Regression and KNN works well on the above dataset. However KNN gives more accuracy compared to other Machine Learning Algorithms with an accuracy of 83%