

education

Lefapha la Thuto la Bokone Bophirima Noordwes Departement van Onderwys North West Department of Education NORTH WEST PROVINCE

NATIONAL SENIOR CERTIFICATE

GRADE 12

MATHEMATICS P1

SEPTEMBER 2021

MARKING GUIDELINES

MARKS: 150

These marking guidelines consists of 16 pages and 2 pages with the cognitive grid.

NOTE:

- If a candidate answers a question TWICE, only mark the FIRST attempt.
- Consistent Accuracy applies in ALL aspects of the marking guidelines..

QUESTION 1

1.1.1	(2x - 1)(x + 5) = 0	
	2x - 1 = 0 or $x + 5 = 0$	
	2x = 1 x = -5	$\checkmark x = -5$
	$x=\frac{1}{2}$	$\checkmark x = -5$ $\checkmark x = \frac{1}{2}$
	$\frac{x-2}{2}$	2
1.1.2	$7x^2 + 5x - 9 = 0$	(2)
1.1.2		
	$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$	
	2 <i>a</i>	✓ substitution into the
	$=\frac{-5\pm\sqrt{5^2-4(7)(-9)}}{2(7)}$	correct formula
	$=\frac{-5\pm\sqrt{277}}{14}$	
	x = 0.83 or x = -1.55	$\checkmark x = 0.83$
	x = 0.05 or $x = -1.55$	$\checkmark x = -1,55$
1.1.2	2 16 20	(3)
1.1.3	$x^2 - 16 \ge 0$	/ f t / - - - - - - - - - - - - - - - - - - - - - - - -
	$(x+4)(x-4) \ge 0 \qquad \qquad \boxed{-4 \qquad 4}$	✓ factors/critical values $\checkmark x \le -4$
	$\therefore x \le -4 \text{or} x \ge 4$	$\checkmark x \ge 4$
	OR $x \in (-\infty; -4] \cup [4; \infty)$	(3)
1.1.4	$3^{2x} + 2.3^x = 3$	
1.1.4	$3^{2x} + 2.3^{2x} = 3$ $3^{2x} + 2.3^{2x} - 3 = 0$	
		✓ standard form
	Let $k = 3^x$	
	$k^2 + 2k - 3 = 0$	/ footons/formanle
	(k-1)(k+3) = 0	✓ factors/formula
	k = 1 or $k = -3$	
	$3^x = 1 \qquad 3^x = -3$	✓ both equations
	$3^x = 3^0 \qquad \text{n.a}$	$\checkmark 1 = 3^0$
	x = 0	✓ answer (5)
	OR	(3)

	NSC – Marking guidelin	ies
	$3^{2x} + 2.3^x = 3$	
	$3^{2x} + 2.3^x - 3 = 0$	✓ standard form
	$\left(3^x - 1\right)\left(3^x + 3\right) = 0$	✓ factors/formula
	$3^x = 1$ or $3^x = -3$	
	$3^x = 1 3^x = -3$	✓ both equations
	$3^x = 3^0$ n.a.	$\checkmark 1 = 3^0$
	x = 0	✓ answer
		(5)
1.2	x - 2y = 1	
	x = 2y + 1	$\checkmark x = 2y + 1$
	$4x^2 - 3xy = 5 + 4y$	
	$4(2y + 1)^2 - 3(2y + 1)y = 5 + 4y$	✓substitution
	$4(4y^2 + 4y + 1) - 6y^2 - 3y - 5 - 4y = 0$	
	$16y^2 + 16y + 4 - 6y^2 - 3y - 5 - 4y = 0$	
	$10y^2 + 9y - 1 = 0$	✓ standard form
	(10y - 1)(y + 1) = 0	✓ factors/formula
	$y = \frac{1}{10}$ or $y = -1$	✓ both <i>y</i> -values
	$x = 2\left(\frac{1}{10}\right) + 1$ or $x = 2(-1) + 1$	
	$=\frac{6}{5} \qquad =-1$	✓ both <i>x</i> -values (6)
	OR	

Mathematics/P1	4 NSC – Marking gui	NW/September 2021 idelines
$x - 2y = 1$ $2y = x - 1$ $y = \frac{x - 1}{2}$		$\checkmark y = \frac{x-1}{2}$
$4x^{2} - 3xy = 5 + 4y$ $4x^{2} - 3x\left(\frac{x-1}{2}\right) = 3$ $8x^{2} - 3x(x-1) = 10$	(=)	✓ substitution
$8x^{2} - 3x^{2} + 3x - 10$ $5x^{2} - x - 6 = 0$ $(5x - 6)(x + 1) = 0$	0 - 4x + 4 = 0	✓ standard form ✓ factors/formula
$x = \frac{6}{5} \qquad \text{or} x = \frac{6}{5} - 1$ $y = \frac{\frac{6}{5} - 1}{2} \text{or} y = \frac{1}{5}$		✓ both <i>x</i> -values
$=\frac{1}{10} =$	2	✓ both y-values (6)
1.3.1 $(x + 5)(x - 6) = 26$ $x^2 - x - 30 = 26$ $x^2 - x - 56 = 0$		✓ standard form
(x-8)(x+7) = 0 x = 8 of $x = -7$		✓ both answers (2)
1.3.2 $f(x) = 26 \text{ if } x = -5$ f(x) = 0 if x = -5 $\therefore \text{ If } 0 < f(x) < 26$ then -7 < x < -5	or $x = 6$	$f(x) = 0 \text{ if :}$ $\checkmark x = -5 \text{ or } x = 6$ $\checkmark -7 < x < -5$ $\checkmark 6 < x < 8$
26	J.	

(3) [24]

2.1.1	12 21 34 51 72	
	9 13 17 21	
	4 4 4	
	The next two terms: 51; 72	✓ 51 ✓ 72
2.1.2		(2)
2.1.2	2a = 4	✓ 2nd difference = 4 ✓ $a = 2$
	a = 2	$\mathbf{v} \cdot a = 2$
	$T_2 - T_1 = 3a + b$	
	9 = 3(2) + b	
	9 = 6 + b	
	b=3	$\checkmark b = 3$
	$T_1 = a + b + c$	
	12 = 2 + 3 + c	
	c = 7	✓ c = 7
	$\therefore T_n = 2n^2 + 3n + 7$	(4)
2.1.3	$T_n = 2n^2 + 3n + 7$	
	$T_{60} = 2(60)^2 + 3(60) + 7$	✓ substitution
	= 7 387	✓ answer
		(2)
2.2.1	4 + 7 + 10 + + 172	
	$T_n = a + (n-1)d$	
	172 = 4 + (n-1)(3)	✓ substitution
	168 = (n-1)(3)	
	56 = n - 1	
	n = 57	✓ answer (2)
2 2 2	n r	(2)
2.2.2	$S_n = \frac{n}{2} \left[2a + (n-1)d \right]$	
	$S_{57} = \frac{57}{2} [2(4) + (57 - 1)(3)]$	✓ substitution
	= 5016	✓ answer
		(2)
	OR	
	$S_n = \frac{n}{2} [a + l]$	
	$S_{57} = \frac{57}{2} [4 + 172]$	✓ substitution
	= 5016	✓ answer
		(2)
		[12]

		T	
3.1.1	$\sum_{k=3}^{12} 4 \left(\frac{1}{2}\right)^{k-1}$		
	$=4\left(\frac{1}{2}\right)^2+4\left(\frac{1}{2}\right)^3+4\left(\frac{1}{2}\right)^4+$	✓ substitution	
	$=1+\frac{1}{2}+\frac{1}{4}+\dots$ Answer only: Full marks	✓ answer	(2)
3.1.2	$1 + \frac{1}{2} + \frac{1}{4} + \dots$		
	$S_n = \frac{a(1-r^n)}{1-r}$		
	$S_{10} = \frac{1\left(1 - \left(\frac{1}{2}\right)^{10}\right)}{1 - \frac{1}{2}}$	✓ $n = 10$ ✓ substitution	
	$=\frac{1023}{512}$	✓ answer	(3)
3.2.1	$\cos\theta + \sin 2\theta + 4\sin^2\theta \cos\theta + \dots$		
	$= \cos\theta + 2\sin\theta\cos\theta + 4\sin^2\theta\cos\theta$	$\checkmark 2\sin\theta\cos\theta$	
	$\frac{T_2}{T_1} = \frac{2\sin\theta\cos\theta}{\cos\theta} = 2\sin\theta$	$\checkmark \frac{T_2}{T_1} = 2\sin\theta$	
	$\frac{T_3}{T_2} = \frac{4\sin^2\theta\cos\theta}{2\sin\theta\cos\theta} = 2\sin\theta$	$\checkmark \frac{T_3}{T_2} = 2\sin\theta$	
	$\therefore \frac{T_2}{T_1} = \frac{T_3}{T_2}$	$\checkmark \frac{T_2}{T_1} = \frac{T_3}{T_2}$	
	:. Geometric series		(4)
3.2.2	-1 < r < 1		
	$-1 < 2\sin\theta < 1$	✓ substitution	
	$-\frac{1}{2} < \sin \theta < \frac{1}{2}$	✓ simplify	
	$\frac{2}{0^{\circ}} < \theta < 30^{\circ}$	✓ answer	
			(3)
			[12]
<u> </u>			

4.1	$f(x) = p^{x}$ $\frac{27}{8} = p^{-3}$ $\frac{8}{27} = p^{3}$	✓ substitution ✓ simplify (2)
	$\frac{2}{3} = p$	
4.2	$f: y = \left(\frac{2}{3}\right)^x$	
	$f^{-1} \colon x = \left(\frac{2}{3}\right)^{y}$	\checkmark swop x and y
	$y = \log_{\frac{2}{3}} x$	✓ answer (2)
4.3	y f^{-1} $\left(\frac{27}{8};-3\right)$	✓ shape ✓ $(1;0)$ ✓ $\left(\frac{27}{8}; -3\right)$ (3)
4.4	$k(x) = \left(\frac{2}{3}\right)^{-x}$	$\checkmark \left(\frac{2}{3}\right)^{-x}$
	$= \left(\frac{3}{2}\right)^{x}$ Answer only: Full marks	$\checkmark \left(\frac{3}{2}\right)^x \tag{2}$
4.5		✓ increasing graph
	$0 < x \le 1$ OR $x \in (0; 1]$ OR $\log_{\frac{3}{2}} x \le 0$ when $\log_{\frac{2}{3}} x \ge 0$ $0 < x \le 1$ OR $x \in (0; 1]$	

5.1	y = -10	$\checkmark y = -10$
	(0;-10)	(1)
5.2	Axis of symmetry: $x = 3$	\checkmark axis of symmetry: $x = 3$
	$\therefore x$ -intercepts: $x = 5$ or $x = 1$	
	\therefore D(1;0)	✓ D(1; 0)
	Answer only: Full marks	(2)
5.3	y = a(x-5)(x-1)	✓ substitution
	-10 = a(0-5)(0-1)	✓ substitution $(0; -10)$
	-10 = a(5)	$\checkmark -10 = 5a$
	a = -2	
	f(x) = -2(x-5)(x-1)	
	$= -2(x^2 - 6x + 5)$	✓ simplify
	$= -2x^2 + 12x - 10$	(4)
	OR	
	$\sim \sim $	
	$f(x) = a(x - 3)^2 + k$	✓ substitution $E(3; k)$
	$0 = a(5-3)^2 + k$	
	0 = 4a + k(1)	✓ substitution
	$-10 = a(0-3)^2 + k$	(0; -10) and $(5; 0)$
	$-10 = 9a + k \dots (2)$	
	$0 = 4a + k \dots (1)$	$\checkmark -10 = 5a$
	-10 = 5a	\mathbf{v} $-10 = 3a$
	a = -2	
	0 = 4(-2) + k $k = 8$	
	$f(x) = -2(x-3)^2 + 8$	√ simmlifu
	$= -2(x^2 - 6x + 9) + 8$	✓ simplify
	$= -2x^2 + 12x - 18 + 8$	
	$= -2x^2 + 12x - 10$	(4)
5.4	$f(x) = -2x^2 + 12x - 10$	
	$f(3) = -2(3)^2 + 12(3) - 10$	✓ substitution
	= 8	✓ answer
	∴ E(3;8)	(2)
	Answer only: Full marks	
	,	

atticitiatics/1 1)
	NSC – Marking guidelines

5.5	$g(x) = \frac{m}{x - 5} - 10$	\checkmark substitution of p and q
	$8 = \frac{m}{3 - 5} - 10$	✓ substitution (3; 8)
	$18 = \frac{m}{-2}$	
	m = -36	$\checkmark m = -36$
	$\therefore g(x) = \frac{-36}{x-5} - 10$	(3)
5.6	$y = \frac{-36}{0-5} - 10$	$\checkmark x = 0$ $\checkmark y = -2.8$
	=-2,8	✓ $y = -2.8$
	∴ (0;-2,8)	(2)
5.7	h(x) = -(x-5) - 10	$\checkmark m = -1$
	= -x - 5 OR	✓ answer (2)
	OK	
	y = -x + c	$\checkmark m = -1$
	-10 = -5 + c	
	c = -5	
7.0	$\therefore h(x) = -x - 5$	✓ answer (2)
5.8	$0 = \frac{-36}{x - 5} - 10$	$\checkmark g(x) = 0$
	$10 = \frac{-36}{x - 5}$	
	10(x-5) = -36	✓ simplify
	10x - 50 = -36	
	10x = 14	
	$x = \frac{14}{10} = \frac{7}{5} = 1,4$	✓ answer
	10 5	(3)
5.9	$x \in [1; 1, 4]$	✓ critical values
		✓ notation (2)
5.10	g(x) = -t	(2)
	-2.8 > -t > -10	
	2,8 < t < 10	✓ critical values ✓ notation
	OR $t \in (2,8;10)$	(2) [23]

6.1
$$A = P(1 + i)^{n}$$

$$= 800 000 \left(1 + \frac{0.08}{12}\right)^{24}$$

$$= R938 310.35$$

$$A = P(1 + i)^{n}$$

$$= 120 000 \left(1 + \frac{0.08}{12}\right)^{12}$$

$$= R129 959.94$$
After 2 years
$$= R938 310.35 - R129 959.94$$

$$= R808 350.41$$

$$OR$$

$$A = P(1 + i)^{n}$$

$$= 800 000 \left(1 + \frac{0.08}{12}\right)^{12}$$

$$= R866 399.61$$
Withdraw R120 000
$$= R866 399.61 - R120 000$$

$$= R746 399.61$$

$$A = P(1 + i)^{n}$$

$$= 746 399.61 \left(1 + \frac{0.08}{12}\right)^{12}$$

$$= R808 350.41$$

$$OR$$

$$A = P(1 + i)^{n}$$

$$= 746 399.61 \left(1 + \frac{0.08}{12}\right)^{12}$$

$$= R808 350.41$$

$$\Rightarrow \text{ substitution}$$

$$\Rightarrow \text{ subst$$

NSC – Marking guidelines

6.2.1	$1 + i_{eff} = \left(1 + \frac{i_{nom}}{m}\right)^m$		
	$= \left(1 + \frac{0.08}{12}\right)^{12}$	✓	substitution
	= 1,082999507		
	$1,082999507 = \left(1 + \frac{i_{halve}}{2}\right)^2$	✓	substitution
	$\sqrt{1,082999507} = 1 + \frac{i_{halve}}{2}$		
	$1,0406726223 = 1 + \frac{i_{halve}}{2}$	✓	simplify
	$0.0406726223 = \frac{i_{halve}}{2}$ $0.0813452446 = i_{halve}$		
	$i_{halve} \approx 0,0813$		
	r = 8,13%	✓	r = 8,13% or $i = 0.0613$
			(4)
6.2.2	$P = \frac{x \left[1 - \left(1 + i\right)^{-n}\right]}{x^{n}}$		(+)
	$i = \frac{95\ 000 \left[1 - \left(1 + \frac{0,0813}{2}\right)^{-n}\right]}{\frac{0,0813}{2}}$	✓	i substitution into the correct formula
	$0,305238886 = 1 - \left(1 + \frac{0,0813}{2}\right)^{-n}$		
	$\left(1 + \frac{0,0813}{2}\right)^{-n} = 0,694761114$	✓	simplify
	$-n = \log_{\left(1 + \frac{0.0813}{2}\right)} (0.694761114)$	✓	logs
	OR $-n = \frac{\log(0,694761114)}{\log(1 + \frac{0,0813}{2})}$ n = 9.14		
	n = 9.14 ∴ he will be able to study 10 (9 plus the first payment) complete semesters	~	answer (5) [13]

7.1
$$f(x) = 3x^{2} + 11$$

$$f(x + h) = 3(x + h)^{2} + 11$$

$$= 3(x^{2} + 2xh + h^{2}) + 11$$

$$= 3x^{2} + 6xh + 3h^{2} + 11$$

$$= 6xh + 3h^{2}$$

$$f'(x) = \lim_{k \to 0} \frac{f(x + h) - f(x)}{h}$$

$$= \lim_{k \to 0} \frac{6xh + 3h^{2}}{h}$$

$$= \lim_{k \to 0} \frac{6xh + 3h}{h}$$

$$= \lim_{k \to 0} \frac{6(x + 3h)}{h}$$

$$= \lim_{k \to 0} (6x + 3h)$$

$$= 6x$$

$$6x$$

$$f(x) = 3x^{2} + 11$$

$$f'(x) = \lim_{k \to 0} \frac{f(x + h) - f(x)}{h}$$

$$f'(x) = \lim_{k \to 0} \frac{3(x^{2} + 2xh + h^{2}) + 11 - 3x^{2} - 11}{h}$$

$$f'(x) = \lim_{k \to 0} \frac{3x^{2} + 2xh + h^{2} + 11 - 3x^{2} - 11}{h}$$

$$f'(x) = \lim_{k \to 0} \frac{6xh + 3h^{2}}{h}$$

$$= \lim_{k \to 0} \frac{6xh + 3h^{2}}{h}$$

$$= \lim_{k \to 0} \frac{6xh + 3h^{2}}{h}$$

$$f'(x) = \lim_{k \to 0} \frac{3x^{2} + 6xh + 3h^{2} + 11 - 3x^{2} - 11}{h}$$

$$f'(x) = \lim_{k \to 0} \frac{6(6x + 3h)}{h}$$

$$f'(x) = \lim_{k \to 0} \frac{h(6x + 3h)}{h}$$

$$f'(x) = \lim_{k \to 0} \frac{h(6x + 3h)}{h}$$

$$f'(x) = \frac{2x^{4} - \pi \sqrt{x^{2}} + 8}{x^{2}}$$

$$f'(x) = \frac{2x^{4$$

8.1	$f(x) = ax^3 + bx + c$	
	$f^{\prime}(x) = 3ax^2 + b$	$\checkmark f'(x) = 3ax^2 + b$
	$0 = 3a(2)^2 + b$	✓ substitution
	0 = 12a + b(1)	
	$15 = 3a(3)^2 + b$	✓ substitution
	$15 = 27a + b \dots (2)$	
	0 = 12a + b(1)	
	15 = 15a	✓ elimination/substitution
	a = 1	
	0 = 12(1) + b	✓ substitution
	b = -12	
	$32 = 1(-2)^3 - 12(-2) + c$	✓ substitution
	32 = -8 + 24 + c	
	c = 16	(6)
8.2.1	$f'(x) = 3x^2 - 12$	
	$f^{\prime\prime}(x)=6x$	$\checkmark f^{\prime\prime}(x) = 6x$
	0 = 6x	
	x = 0	$\checkmark x = 0$
8.2.2	x < 0	(2) ✓ answer
0.2.2		(1)
8.3	D'(-2; -32)	$\checkmark x = -2$
		$\checkmark y = -32$
8.4	Yes, because f satisfies the vertical line test.	(2) ✓ yes
	, , ,	✓ reason
		(2)
		[13]

9.1	$x \in \mathbf{R}$ OR $x \in (-\infty; \infty)$	✓ answer
		(1)
9.2	m=2	✓ answer
		(1)
9.3	(1;y) -2 -2	 ✓ shape ✓ point of inflection at x = 1 ✓ x-intercept ✓ y-intercept (4) [6]

QUESTION 10

10.1	$S(t) = t - \frac{t^2}{6}$ $S(1) = 1 - \frac{1^2}{6}$	
	$S(1) = 1 - \frac{1^2}{6}$	✓ substitution
	$=\frac{5}{6}$	✓ answer (2)
	$= 0.83 \mathrm{km} \mathrm{from}\mathrm{A}$.	(2)
10.2	Speed:	
	$S'(t) = 1 - \frac{2}{6}t$ or $t = \frac{-1}{2(\frac{-1}{6})}$	
	$0 = 1 - \frac{1}{3}t$	$\checkmark 0 = 1 - \frac{2}{6}t$
	$\frac{1}{3}t = 1$	
	$t = 3 \min$	$\checkmark t = 3$
	Distance:	
	$S(3) = 3 - \frac{3^2}{6}$	
	= 1.5 km	✓ $S(3) = 1.5$
	∴ Bus doesn't reach the top.	✓ conclusion
	OR	(4)
L	<u> </u>	

	$2 = t - \frac{t^2}{6}$	✓ equating distance to 2km
	$t^2 - 6t + 12 = 0$	✓ standard form
	$t = \frac{-(-6) \pm \sqrt{(-6)^2 - 4(1)(12)}}{2(1)}$	✓ substitution
	roots are non-real	
	∴ the bus will not reach the top of the hill	✓ conclusion (4)
10.3	$S'(t) = 1 - \frac{1}{3}t$	
	$S'(t) = 1 - \frac{1}{3}t$ $S'(1) = 1 - \frac{1}{3}(1)$	✓ substitution
	$=\frac{2}{3}$	
	= 0,67 km/min	✓ answer
		(2)
10.4	$S'(t) = 1 - \frac{1}{3}t$ $S''(t) = -\frac{1}{3} \text{ km} / \text{min}^2$	
	$S''(t) = -\frac{1}{3} \mathrm{km} /\mathrm{min}^2$	✓ answer
		(1) [9]

		T .	
11.1	$P(Green) = \frac{66}{126}$	✓ 66	
11.1	126	✓ <u>66</u>	
	= 0,52	126	(2)
			(2)
11.2	$LH = P(boy) \times P(blue)$		
	$=\frac{50}{100}\times\frac{60}{1000}$	$50 \times 60 = 0.10$	
	$-\frac{126}{126} \stackrel{\wedge}{126}$	$\checkmark \frac{50}{126} \times \frac{60}{126} = 0,19$	
	$=\frac{250}{}$		
	$-\frac{1}{1323}$		
	= 0,19		
	RH = P(boy and blue)		
	= 19	19 0.15	
	$=\frac{126}{126}$	$\checkmark \frac{19}{126} = 0.15$	
	= 0,15		
	$\therefore P(boy) \times P(blue) \neq P(boy and blue)$	✓ $P(boy) \times P(blue) \neq$	
	:. The events are not independent.	P(boy and blue)	
	Î	✓ conclusion	
			(4)
			[6]

NSC – Marking guidelines

QUESTION 12

12.1	Fastest to slowest in lane 1 tot 12	
	= 1	✓ answer
		(1)
12.2	12! – (2!)(11!)	✓ 12!
	= 399 168 000	✓ (2!)(11!)
		✓ answer
		(3)
12.3	CABABABABABC or	
	C B A B A B A B A B A C	
	$[(2)(5!)(5!)(1)] \times 2$	\checkmark (5!)(5!) for A and B
		\checkmark 2 (2 ways for C)
	= 57 600	✓ 2 (AB or BA)
		(3)
12.4	$(2\times10\times9\times8\times7\times6)(6)$	✓ (2×11×10×9×8×7)
	$\overline{(12)(11)(10)(9)(8)(7)}$	\checkmark ×6 (or 6 terms)
	_ 362 880 _ 6	✓ (12)(11)(10)(9)(8)(7)
		✓ answer
	665 280 11	(4)
		[11]
		TOTAL: 150

COGNITIVE LEVELS

MATHEMATICS P1

	CO	GNITIV	TOPICS								
	LEVEL 1 (20%)	LEVEL 2 (35%)	LEVEL 3 (30%)	LEVEL 4 (15%)							
QUESTION	KNOWLEDGE	ROUTINE PROCEDURES	COMPLEX PROCEDURES	PROBLEM SOLVING	ALGEBRA	PATTERNS	FUNCTIONS	FINANCE	CALCULUS	PROBABILITY	TOTAL MARKS
1.1.1	2				2						
1.1.2	3				3						
1.1.3		3			3						
1.1.2 1.1.3 1.1.4 1.2			5		5						
1.2		6			6						
1.3.1		2			2						
1.3.1 1.3.2 2.1.1 2.1.2				3	3						24
2.1.1	2					2					
2.1.2		4				4					
2.1.3 2.2.1 2.2.2	2					2					
2.2.1		2				2					40
2.2.2	2					2					12
3.1.1		2				2					
3.1.2 3.2.1		3				3					
3.2.1			4			4					40
3.2.2				3		3					12
4.1		2					2				
4.2	2						2				
4.3		3					3				
4.4		2					2				
4.5			3				3				12
5.1	1						1				
5.2	2						2				
5.3		4					4				
5.4	2						2				
5.5		3					3				
5.6		2					2				
5.7		2					2				
5.8		3					3				
5.9			2	_			2				23
5.10			,	2			2	4			23
6.1			4					4			
6.2.1			4 5					<u>4</u> 5			13
7.1		5	Ü					Ü			
7.1		5	4						5 4		9
8.1			6						6		
8.2.1		2	υ						2		
8.2.2	1	۷							1		
8.3	2								2		
8.4	2								2		13

Mathematics/P1 NW/September 2020

	COGNITIVE LEVELS					TOPICS					
	LEVEL 1 (25%)	LEVEL 2 (30 %)	(30%)	LEVEL 4 (15%)							
QUESTION	KNOWLEDGE	ROUTINE PROCEDURES	COMPLEX PROCEDURES	PROBLEM SOLVING	ALGEBRA	PATTERNS	FUNCTIONS	FINANCE	CALCULUS	PROBABILITY	TOTAL MARKS
9.1	1								1		
9.2	1								1		
9.3			4						4		6
10.1	2								2		
10.2				4					4		
10.3				2					2		
10.4				1					1		9
11.1	2									2	
11.2		4								4	6
12.1	1									1	
12.2			3							3	
12.3 12.4				3						3	4.4
12.4				4						4	11
TOT	30	54	44	22	24	24	35	13	37	17	150
%	20%	36%	29%	15%							450
Pol	20%	35%	30%	15%	25	25	35	15	35	15	150