Lecture 7:

Hidden Markov Models

Markus Hohle

University California, Berkeley

Bayesian Data Analysis and Machine Learning for Physical Sciences

Berkeley Bayesian Data Analysis and Machine Learning for Physical Sciences

Course Map	Module 1	Maximum Entropy and Information, Bayes Theorem
	Module 2	Naive Bayes, Bayesian Parameter Estimation, MAP
	Module 3	MLE, Lin Regression
	Module 4	Model selection I: Comparing Distributions
	Module 5	Model Selection II: Bayesian Signal Detection
	Module 6	Variational Bayes, Expectation Maximization
	Module 7	Hidden Markov Models
	Module 8	Stochastic Processes
	Module 9	Machine Learning Overview, Supervised Methods
	Module 10	Unsupervised Methods
	Module 11	ANN: Perceptron, Backpropagation
	Module 12	ANN: Basic Architecture, Regression vs Classification, Backpropagation again
	Module 13	Convolution and Image Classification and Segmentation
	Module 14	Graphs and GNNs
	Module 15	RNNs and LSTMs
	Module 16	Transformer and LLMs

<u>Outline</u>

Introduction

HMMs as Markov Chains

Viterbi-Algorithm

EM (again)

Examples

<u>Outline</u>

Introduction

HMMs as Markov Chains

Viterbi-Algorithm

EM (again)

Examples

applications:

- motif finding
- regulation/transcription processes
- diffusion, ligand binding
- drug development
- anomaly detection
- speech recognition
- saving process on hard drives
- economics

each state n draws O_t from a distribution $L_n(O_{t,n}|\theta)$ with parameters θ

a set of T observations $O = (O_1, O_2, O_3, \dots O_t, \dots O_T)$ drawing randomly from the states

applications:

- motif finding
- regulation/transcription processes
- diffusion, ligand binding
- drug development
- anomaly detection
- speech recognition
- saving process on hard drives
- economics

sequence of observations:

3 3 5 5 2 3 3 4 5 5 2 5 4 1 1 3 6 3 4 2 5 2 4 5 6 6 4 1 1 2 6 2 5 2 6 3 2 2 2 2 1 2 3

Was the die biased towards 2?

goal: finding the sequence of **hidden** states (fair/biased die) for each time t

GGATTATATA ACCGACGCGCATATGCGCGTTATCTGT CATATAGCATGCGCGCGCGCGCGCAACAGTATA

Is this a TATA box?

Is this a CpG island?

applications:

- motif finding
- regulation/transcription processes
- drug development

Zacher et al. 2016

Filion et al. 2010

<u>Outline</u>

Introduction

HMMs as Markov Chains

Viterbi-Algorithm

EM (again)

Examples

Wiki says: "Markov chain or Markov process is a **stochastic process** describing a sequence of possible events in which the **probability of each event depends only on the state** attained in the **previous event**."

- N number of states s_n
- time *t*
- q_t : actual state at time point t; note $q_t \neq s_n$

Markov Chain:

$$P(q_t = s_j | q_{t-1} = s_i, q_{t-2} = s_k, \dots, q_1 = s_l)$$

$$1 \le i, j, k, l \le N$$

$$1 \le t \le T$$

$$1 \le t \le T$$

transition probability a_{ij} $A = \{a_{ij}\}$

$$\sum_{i=1}^{N} a_{ij} = 1$$
 We assume that a_{ij} is not a function of t

Markov Chain:

$$P(q_t = s_j | q_{t-1} = s_i, q_{t-2} = s_k, \dots, q_1 = s_l)$$

$$= P(q_t = s_j | q_{t-1} = s_i)$$
1st order Markov Chain

transition probability a_{ij}

the Markov chain needs to start with some **initial state**:

$$\pi_i = P(q_1 = s_i)$$

$$\sum_{i=1}^{N} \pi_i = 1$$

number of states s_n N: t:

time

actual state at time point t q_t :

$$1 \le i, j, k, l \le N$$

$$1 \le t \le T$$

$$A = \{a_{ij}\}$$

$$\sum_{i=1}^{N} a_{ij} = 1$$

Markov Chain:

each state produces an **observable output** which is drawn from a set V (aka **the alphabet**) of M symbols:

$$V = \{V_1, \dots, V_m, \dots, V_M\}$$

$$1 \le m \le M$$

Where $B = \{b_j(m)\}$ is a set of **emission probabilities** $b_j(m)$

$$b_j(m) = P(V_m, t | q_t = s_j)$$

these emissions are the observations

$$O = (O_1, O_2, O_3, \dots O_t, \dots O_T)$$

the **model**
$$\lambda = (A, B, \Pi) = (\{a_{ij}\}, \{b_j(m)\}, \{\pi_i\})$$

N: number of states s_n

time

t:

 q_t : actual state at time point t

 π_i : $P(q_1 = s_i)$

 a_{ij} : $P(q_t = s_j | q_{t-1} = s_i)$

 $1 \le i, j, k, l \le N$

 $1 \le t \le T$

 $A = \{a_{ij}\}$

 $\sum_{i=1}^{N} a_{ij} = 1$

 $\sum_{i=1}^{N} \pi_i = 1$

Markov Chain:

different states S_1 , S_2 and S_3

<i>N</i> :	number of states s_n
<i>t</i> :	time
q_t :	actual state at $m{t}$
π_i :	$P(q_1 = s_i)$
$V = \{V_1,, V_m,, V_M\}$:	alphabet
$b_j(m)$:	$P(V_m, t q_t = s_j)$
λ:	model
$0 = (0_1, \dots 0_t, \dots 0_T)$:	observations
a_{ij} :	$P(q_t = s_j q_{t-1} = s_i)$

$$V = \{H, T\}$$

	S_1	S_2	S_3
$b_j(m=1)$	$ heta_1$	$ heta_2$	θ_3
$b_j(m=2)$	$1-\theta_1$	$1-\theta_2$	$1-\theta_3$

$$O = (H, H, T, T, H, T, H, H, T, T, H)$$

$$S = (?,?,?,?,?,?,?,?,?,?)$$

Markov Chain:

$$N: \qquad \text{number of states } s_n$$

$$t: \qquad \text{time}$$

$$q_t: \qquad \text{actual state at } t$$

$$P(q_1 = s_i)$$

$$V = \{V_1, ..., V_m, ..., V_M\}: \qquad \text{alphabet}$$

$$P(V_m, t | q_t = s_j)$$

$$\lambda: \qquad \text{model}$$

$$O = (O_1, ... O_t, ... O_T): \qquad \text{observations}$$

$$a_{ij}: \qquad P(q_t = s_i | q_{t-1} = s_i)$$

problems to solve:

1) find model parameter λ that best explain the observations

$$\lambda_{best} = \frac{argmax}{\lambda} \{ P(O|\lambda) \}$$

→ EM again!

2) once we have λ_{best} , find the sequence of states S that best explain the obs-

$$S_{best} = \frac{argmax}{S} \{ P(S|O, \lambda) \}$$

→ Viterbi algorithm

<u>Outline</u>

Introduction

HMMs as Markov Chains

Viterbi-Algorithm

EM (again)

Examples

$$O = (H, H, T, T, H, T, H, H, T, T, H)$$

$$S = (?,?,?,?,?,?,?,?,?,?)$$

sequence Q of states

$$Q = (q_1, \dots, q_t, \dots q_T)$$

$$Q = (q_1, \dots, q_t, \dots q_T)$$

$$P(O|Q,\lambda) = \prod_{t=1}^{I} P(O_{t}|q_{t},\lambda)$$

$$P(O|\lambda) = \sum_{Q} P(O|Q,\lambda) P(Q|\lambda)$$

$$P(O|Q,\lambda) = \prod_{t=1}^{T} P(V_m, t|q_t = s_j) = \prod_{t=1}^{T} b_{q_t}(O_t)$$

$$P(Q|\lambda) = \pi_{q_1} \prod_{t=1}^{T-1} P(q_{t+1} = s_j | q_t = s_i) = \pi_{q_1} \prod_{t=1}^{T-1} a_{q_t q_{t+1}}$$

$$\begin{array}{lll} N: & \text{number of states } s_n \\ t: & \text{time} \\ q_t: & \text{actual state at } t \\ \pi_i: & P(q_1 = s_i) \\ V = \{V_1, \dots, V_m, \dots, V_M\}: & \text{alphabet} \\ b_j(m): & P(V_m, t | q_t = s_j) \\ \lambda: & \text{model} \\ 0 = (O_1, \dots O_t, \dots O_T): & \text{observations} \\ a_{ij}: & P(q_t = s_j | q_{t-1} = s_i) \end{array}$$

for a specific sequence of states

 Ω : over all combinations of Q, $\Omega = N^T$

$$O = (H, H, T, T, H, T, H, H, T, T, H)$$

$$S = (?,?,?,?,?,?,?,?,?,?)$$

sequence Q of states

$$Q = (q_1, \dots, q_t, \dots q_T)$$

$$P(O|Q,\lambda) = \prod_{t=1}^{T} P(O_t|q_t,\lambda)$$

$$P(O|\lambda) = \sum_{\Omega} P(O|Q,\lambda) P(Q|\lambda)$$

$$P(O|\lambda) = \sum_{\Omega} \left\{ \prod_{t=1}^{T} b_{q_t}(O_t) \pi_{q_1} \prod_{t=1}^{T-1} a_{q_t q_{t+1}} \right\}$$

$$\begin{array}{lll} N: & \text{number of states } s_n \\ t: & \text{time} \\ q_t: & \text{actual state at } t \\ \pi_i: & P(q_1 = s_i) \\ V = \{V_1, \dots, V_m, \dots, V_M\}: & \text{alphabet} \\ b_j(m): & P(V_m, t | q_t = s_j) \\ \lambda: & \text{model} \\ O = (O_1, \dots O_t, \dots O_T): & \text{observations} \\ a_{ij}: & P(q_t = s_j | q_{t-1} = s_i) \end{array}$$

for a specific sequence of states

 Ω : over all combinations of Q, $\Omega = N^T$

$$P(O|\lambda) = \sum_{\Omega} P(O|Q, \lambda) P(Q|\lambda)$$

$$= \sum_{\Omega} \left\{ \prod_{t=1}^{T} b_{q_t}(O_t) \pi_{q_1} \prod_{t=1}^{T-1} a_{q_t q_{t+1}} \right\}$$

1: 1/6

1: 1/10

$$N$$
: number of states s_n t : time q_t : actual state at t π_i : $P(q_1 = s_i)$ $V = \{V_1, \dots, V_m, \dots, V_M\}$: alphabet $b_j(m)$: $P(V_m, t | q_t = s_j)$ λ : model $O = (O_1, \dots O_t, \dots O_T)$: observations a_{ij} : $P(q_t = s_j | q_{t-1} = s_i)$

 Ω : over all combinations of Q, $\Omega = N^T$

$$A = \begin{pmatrix} a_{ff} & a_{fl} \\ a_{lf} & a_{ll} \end{pmatrix} = \begin{pmatrix} 0.9 & 0.1 \\ 0.25 & 0.75 \end{pmatrix}$$

$$\Pi = {\pi(f), \pi(l)}; \text{ say, } \Pi = {0.8, 0.2}$$

$$P(O=(2\ 2\ 2),\ Q=(fff)/\lambda) = P(O=(2,2,2)|Q=(fff),\lambda) P(Q=(fff)|\lambda)$$

$$= \pi_f \ b_f(2) \ a_{ff} \ b_f(2) \ a_{ff} \ b_f(2)$$

$$= 0.8 \ x\ 1/6 \ x\ 0.9 \ x\ 1/6 \ x\ 0.9 \ x\ 1/6 = 0.003$$

$$P(O|\lambda) = \sum_{\Omega} P(O|Q, \lambda) P(Q|\lambda)$$

$$= \sum_{\Omega} \left\{ \prod_{t=1}^{T} b_{q_t}(O_t) \pi_{q_1} \prod_{t=1}^{T-1} a_{q_t q_{t+1}} \right\}$$

 $b_{q_t}(O_t)$

1: 1/6

2: 1/6

3: 1/6

4: 1/6

5: 1/6

6: 1/6

number of states S_n time actual state at t q_t : $P(q_1 = s_i)$ $V = \{V_1, \dots, V_m, \dots, V_M\}:$ alphabet $P(V_m, t|q_t = s_i)$ $b_j(m)$: model $\mathbf{0} = (\mathbf{0}_1, \dots \mathbf{0}_t, \dots \mathbf{0}_T)$: observations $P(q_t = s_i | q_{t-1} = s_i)$ a_{ii} :

 Ω : over all combinations of Q, $\Omega = N^T$

$$A = \begin{pmatrix} a_{ff} & a_{fl} \\ a_{lf} & a_{ll} \end{pmatrix} = \begin{pmatrix} 0.9 & 0.1 \\ 0.25 & 0.75 \end{pmatrix}$$

$$\Pi = {\pi(f), \pi(l)}; \text{ say, } \Pi = {0.8, 0.2}$$

1: 1/10

6: 1/10

 $P(O=(2\ 2\ 2),\ Q=(f\ f\ f)/\lambda)=0.8\ \ \times\ 1/6\ \ \times\ 0.9\ \ \times\ 1/6\ \ \times\ 0.9\ \times\ 1/6\ =\ \textbf{0.003}$

$$P(O=(2\ 2\ 2),\ Q=(III)|\lambda) = 0.2\ x\ 0.5\ x\ 0.75\ x\ 0.5\ x\ 0.75\ x\ 0.5\ = \textbf{0.014}$$

N:

$$\frac{P(O=(2\ 2\ 2),\ Q=(fff)|\lambda)}{P(O=(2\ 2\ 2),\ Q=(III)|\lambda)}=4.7$$

How do we find the most likely sequence?

rolling dice with two states (fair = F, loaded = F)

$$V = \{1,2,3,4,5,6\}$$
 $\pi = \{0.5,0.5\}$

$$A = \begin{pmatrix} a_{FF} = 0.9 & a_{LF} = 0.1 \\ a_{FL} = 0.1 & a_{LL} = 0.9 \end{pmatrix}$$

	$b_j(m=1)$	$b_j(m=2)$	$b_j(m=3)$	$b_j(m=2)$	$b_j(m=5)$	$b_j(m=6)$
$S_1 = F$	1/6	1/6	1/6	1/6	1/6	1/6
$S_2 = L$	1/10	1/10	1/10	1/10	1/10	1/2

idea: 1) forward, we follow the most likely path

observation

4

1

3

5

2

5

6

6

predicted state

?

rolling dice with two states (fair = F, loaded = F)

$$V = \{1,2,3,4,5,6\}$$
 $\pi = \{0.5,0.5\}$

$$A = \begin{pmatrix} a_{FF} = 0.9 & a_{LF} = 0.1 \\ a_{FL} = 0.1 & a_{LL} = 0.9 \end{pmatrix}$$

	$b_j(m=1)$	$b_j(m=2)$	$b_j(m=3)$	$b_j(m=2)$	$b_j(m=5)$	$b_j(m=6)$
$S_1 = F$	1/6	1/6	1/6	1/6	1/6	1/6
$S_2 = L$	1/10	1/10	1/10	1/10	1/10	1/2

idea: 1) forward, we follow the most likely path

observation

4

1

3

5

)

6

6

6

predicted state

?

rolling dice with two states (fair = F, loaded = F)

$$V = \{1,2,3,4,5,6\} \quad \pi = \{0.5,0.5\}$$

$$A = \begin{pmatrix} a_{FF} = 0.9 & a_{LF} = 0.1 \\ a_{FL} = 0.1 & a_{LL} = 0.9 \end{pmatrix}$$

	$b_j(m=1)$	$b_j(m=2)$	$b_j(m=3)$	$b_j(m=2)$	$b_j(m=5)$	$b_j(m=6)$
$S_1 = F$	1/6	1/6	1/6	1/6	1/6	1/6
$S_2 = L$	1/10	1/10	1/10	1/10	1/10	1/2

idea: 1) forward, we follow the most likely path

observation

4

1

3

5

6

6

predicted state

rolling dice with two states (fair = F, loaded = F)

$$V = \{1,2,3,4,5,6\} \quad \pi = \{0.5,0.5\}$$

$$A = \begin{pmatrix} a_{FF} = 0.9 & a_{LF} = 0.1 \\ a_{FL} = 0.1 & a_{LL} = 0.9 \end{pmatrix}$$

	$b_j(m=1)$	$b_j(m=2)$	$b_j(m=3)$	$b_j(m=2)$	$b_j(m=5)$	$b_j(m=6)$
$S_1 = F$	1/6	1/6	1/6	1/6	1/6	1/6
$S_2 = L$	1/10	1/10	1/10	1/10	1/10	1/2

idea: 1) forward, we follow the most likely path

observation

4

5

6

6

6

predicted state

7

rolling dice with two states (fair = F, loaded = F)

$$V = \{1,2,3,4,5,6\}$$
 $\pi = \{0.5,0.5\}$

$$A = \begin{pmatrix} a_{FF} = 0.9 & a_{LF} = 0.1 \\ a_{FL} = 0.1 & a_{LL} = 0.9 \end{pmatrix}$$

	$b_j(m=1)$	$b_j(m=2)$	$b_j(m=3)$	$b_j(m=2)$	$b_j(m=5)$	$b_j(m=6)$
$S_1 = F$	1/6	1/6	1/6	1/6	1/6	1/6
$S_2 = L$	1/10	1/10	1/10	1/10	1/10	1/2

idea: 1) forward, we follow the most likely path

observation

4

1

5

2

6

6

6

predicted state

?

rolling dice with two states (fair = F, loaded = F)

$$V = \{1,2,3,4,5,6\}$$
 $\pi = \{0.5,0.5\}$

$$A = \begin{pmatrix} a_{FF} = 0.9 & a_{LF} = 0.1 \\ a_{FL} = 0.1 & a_{LL} = 0.9 \end{pmatrix}$$

	$b_j(m=1)$	$b_j(m=2)$	$b_j(m=3)$	$b_j(m=2)$	$b_j(m=5)$	$b_j(m=6)$
$S_1 = F$	1/6	1/6	1/6	1/6	1/6	1/6
$S_2 = L$	1/10	1/10	1/10	1/10	1/10	1/2

idea: 1) forward, we follow the most likely path and store the path where each maximum came from

observation

4

1

5

6

6

predicted state

7

rolling dice with two states (fair = F, loaded = F)

$$V = \{1,2,3,4,5,6\}$$
 $\pi = \{0.5,0.5\}$

$$A = \begin{pmatrix} a_{FF} = 0.9 & a_{LF} = 0.1 \\ a_{FL} = 0.1 & a_{LL} = 0.9 \end{pmatrix}$$

	$b_j(m=1)$	$b_j(m=2)$	$b_j(m=3)$	$b_j(m=2)$	$b_j(m=5)$	$b_j(m=6)$
$S_1 = F$	1/6	1/6	1/6	1/6	1/6	1/6
$S_2 = L$	1/10	1/10	1/10	1/10	1/10	1/2

idea: 1) forward, we follow the most likely path *and* store the path where each maximum came from

observation

4

1

5

)

6

6

6

predicted state

7

rolling dice with two states (fair = F, loaded = F)

$$V = \{1,2,3,4,5,6\}$$
 $\pi = \{0.5,0.5\}$

$$A = \begin{pmatrix} a_{FF} = 0.9 & a_{LF} = 0.1 \\ a_{FL} = 0.1 & a_{LL} = 0.9 \end{pmatrix}$$

	$b_j(m=1)$	$b_j(m=2)$	$b_j(m=3)$	$b_j(m=2)$	$b_j(m=5)$	$b_j(m=6)$
$S_1 = F$	1/6	1/6	1/6	1/6	1/6	1/6
$S_2 = L$	1/10	1/10	1/10	1/10	1/10	1/2

idea: 1) forward, we follow the most likely path and store the path where each maximum came from

observation 4 1 3 5 2 6 6 6 predicted state ?

2) backward, we follow the path where each maximum came from

rolling dice with two states (fair = F, loaded = F)

$$V = \{1,2,3,4,5,6\}$$
 $\pi = \{0.5,0.5\}$

$$A = \begin{pmatrix} a_{FF} = 0.9 & a_{LF} = 0.1 \\ a_{FL} = 0.1 & a_{LL} = 0.9 \end{pmatrix}$$

	$b_j(m=1)$	$b_j(m=2)$	$b_j(m=3)$	$b_j(m=2)$	$b_j(m=5)$	$b_j(m=6)$
$S_1 = F$	1/6	1/6	1/6	1/6	1/6	1/6
$S_2 = L$	1/10	1/10	1/10	1/10	1/10	1/2

idea: 1) forward, we follow the most likely path *and* store the path where each maximum came from

observation	4 1	3	5	2	6	6	6
predicted state	?			F		L	L

2) backward, we follow the path where each maximum came from

rolling dice with two states (fair = F, loaded = F)

$$V = \{1,2,3,4,5,6\}$$
 $\pi = \{0.5,0.5\}$

$$A = \begin{pmatrix} a_{FF} = 0.9 & a_{LF} = 0.1 \\ a_{FL} = 0.1 & a_{LL} = 0.9 \end{pmatrix}$$

	$b_j(m=1)$	$b_j(m=2)$	$b_j(m=3)$	$b_j(m=2)$	$b_j(m=5)$	$b_j(m=6)$
$S_1 = F$	1/6	1/6	1/6	1/6	1/6	1/6
$S_2 = L$	1/10	1/10	1/10	1/10	1/10	1/2

idea: 1) forward, we follow the most likely path *and* store the path where each maximum came from

observation	4	1	3	5	2	6	6	6
predicted state	F	F	F	F	F	L	L	L

2) backward, we follow the path where each maximum came from

$$P(O|\lambda) = \sum_{\Omega} \left\{ \prod_{t=1}^{T} b_{q_t}(O_t) \pi_{q_1} \prod_{t=1}^{T-1} a_{q_t q_{t+1}} \right\}$$

$$(2T-1)N^T$$
 multiplications N^T-1 additions

Viterbi:

$$N(N+1)(T-1)+N$$
 multiplications $N(N-1)(T-1)$ additions

 $\begin{array}{lll} \textit{N}: & \text{number of states } s_n \\ \textit{t}: & \text{time} \\ \textit{q}_t: & \text{actual state at } t \\ \textit{\pi}_i: & \textit{P}(q_1 = s_i) \\ \textit{V} = \{V_1, \dots, V_m, \dots, V_M\}: & \text{alphabet} \\ \textit{b}_j(m): & \textit{P}(V_m, t | q_t = s_j) \\ \textit{\lambda}: & \text{model} \\ \textit{O} = (\textit{O}_1, \dots \textit{O}_t, \dots \textit{O}_T): & \text{observations} \\ \textit{a}_{ij}: & \textit{P}(q_t = s_j | q_{t-1} = s_i) \end{array}$

 Ω : over all combinations of Q, $\Omega = N^T$

note:

- we solved problem 2)
- equivalent to Needleman-Wunsch (sequence alignment)
- general: forward-backward-algorithm, many extensions/variations ("Lazy" Viterbi, Smith-Waterman, repeated matches, etc)
- solution is **global**

<u>Outline</u>

Introduction

HMMs as Markov Chains

Viterbi-Algorithm

EM (again)

Examples

$$P(O|\lambda) = \sum_{\Omega} \left\{ \prod_{t=1}^{T} b_{q_t}(O_t) \pi_{q_1} \prod_{t=1}^{T-1} a_{q_t q_{t+1}} \right\}$$

$$N$$
: number of states s_n t : time q_t : actual state at t π_i : $P(q_1 = s_i)$ $V = \{V_1, \dots, V_m, \dots, V_M\}$: alphabet $b_j(m)$: $P(V_m, t | q_t = s_j)$ λ : model $O = (O_1, \dots O_t, \dots O_T)$: observations a_{ij} : $P(q_t = s_j | q_{t-1} = s_i)$

We could start with maximizing $P(O|\bar{\lambda})$ for the estimated model $\bar{\lambda}$ subject to the constrains

$$\sum_{i=1}^{N} \bar{a}_{i} = 1 \qquad \sum_{i=1}^{N} \bar{a}_{ij} = 1 \qquad \sum_{m=1}^{M} \bar{b}_{i}(m) = 1 \qquad \Rightarrow \text{variational calculus}$$

main difference:

GMMs, K—means etc., the actual sequence did not matter now: sequence (direction imposed by *t*) does matter!

N: number of states S_n *t*: time actual state at t q_t : $P(q_1 = s_i)$ π_i : $V = \{V_1, ..., V_m, ..., V_M\}$: alphabet $b_j(m)$: $P(V_m, t|q_t = s_i)$ model $0 = (0_1, ... 0_t, ... 0_T)$: observations $P(q_t = s_j | q_{t-1} = s_i)$ a_{ii} :

probability $\alpha_t(i)$ of the partial observation sequence *until* time t and state s_i at time t

$$\alpha_t(i) = P(O_1, \dots O_t, q_t = s_i | \lambda)$$

probability $\beta_t(i)$ of the partial observation sequence from time t+1 **given** state s_i at time t

$$\beta_t(i) = P(O_{t+1}, ... O_T | q_t = s_i, \lambda)$$

marginalization over the previous state sequences for $\alpha_t(i)$ and the subsequent sequences for $\beta_t(i)$

probability $\xi_t(i,j)$ that system was in state s_i at time t and switched to state s_j at t+1

$$\xi_t(i,j) = P(q_t = s_i; q_{t+1} = s_i | 0, \lambda)$$

$$\begin{array}{lll} N: & \text{number of states } s_n \\ t: & \text{time} \\ q_t: & \text{actual state at } t \\ \pi_i: & P(q_1 = s_i) \\ V = \{V_1, \dots, V_m, \dots, V_M\}: & \text{alphabet} \\ b_j(m): & P(V_m, t | q_t = s_j) \\ \lambda: & \text{model} \\ O = (O_1, \dots O_t, \dots O_T): & \text{observations} \\ a_{ij}: & P(q_t = s_j | q_{t-1} = s_i) \end{array}$$

$$\xi_t(i,j) = P(q_t = s_i; q_{t+1} = s_j | O, \lambda)$$

$$\alpha_t(i) = P(O_1, \dots O_t, q_t = s_i | \lambda)$$

$$\alpha_1(i) = \pi_i b_i(O_1)$$

$$\alpha_2(j) = b_j(O_2) \sum_{i=1}^{N} \pi_i b_i(O_1) a_{ij}$$

$$\alpha_{t+1}(j) = b_j(O_{t+1}) \sum_{i=1}^{N} \alpha_t(i) a_{ij}$$

note:

even tough $\beta_t(i)$ goes back in time we need a_{ij} , not a_{ji} because time still elapses $t \to t+1$

$$\beta_t(i) = P(O_{t+1}, \dots O_T | q_t = s_i, \lambda)$$

$$\beta_T(i) = init$$

$$\beta_{T-1}(i) = \sum_{j=1}^{N} \beta_{T}(j) b_{j}(O_{T}) a_{ij}$$

$$\beta_t(i) = \sum_{j=1}^{N} \beta_{t+1}(j) b_j(O_{t+1}) a_{ij}$$

N: number of states S_n t: time q_t : actual state at t $P(q_1 = s_i)$ π_i : $V = \{V_1, ..., V_m, ..., V_M\}$: alphabet $b_j(m)$: $P(V_m, t|q_t = s_i)$ model $0 = (0_1, ... 0_t, ... 0_T)$: observations $P(q_t = s_j | q_{t-1} = s_i)$ a_{ii} :

$$\alpha_{t}(i) = P(O_{1}, \dots O_{t}, q_{t} = s_{i} | \lambda)$$

$$\alpha_{t+1}(j) = b_{j}(O_{t+1}) \sum_{i=1}^{N} \alpha_{t}(i) a_{ij}$$

$$\xi_t(i,j) = P(q_t = s_i; q_{t+1} = s_j | O, \lambda)$$

$$\beta_t(i) = P(O_{t+1}, \dots O_T | q_t = s_i, \lambda)$$

$$\beta_t(i) = \sum_{j=1}^N \beta_{t+1}(j) b_j(O_{t+1}) a_{ij}$$

$$\xi_{t}(i,j) = \frac{\alpha_{t}(i) \, a_{ij} \, b_{j}(O_{t+1}) \, \beta_{t+1}(j)}{P(O|\lambda)} = \frac{\alpha_{t}(i) \, a_{ij} \, b_{j}(O_{t+1}) \, \beta_{t+1}(j)}{\sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_{t}(i) \, a_{ij} \, b_{j}(O_{t+1}) \, \beta_{t+1}(j)}$$

$$\xi_{t}(i,j) = \frac{\alpha_{t}(i) a_{ij} b_{j}(O_{t+1}) \beta_{t+1}(j)}{P(O|\lambda)}$$

$$= \frac{\alpha_{t}(i) a_{ij} b_{j}(O_{t+1}) \beta_{t+1}(j)}{\sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_{t}(i) a_{ij} b_{j}(O_{t+1}) \beta_{t+1}(j)}$$

$$\gamma_t(i) = \sum_{j=1}^N \xi_t(i,j)$$
 probability that the system is in state s_i at time t

$$\begin{array}{lll} N \colon & & \text{number of states } s_n \\ t \colon & & \text{time} \\ q_t \colon & & \text{actual state at } t \\ \pi_i \colon & & P(q_1 = s_i) \\ V = \{V_1, \dots, V_m, \dots, V_M\} \colon & & \text{alphabet} \\ b_j(m) \colon & & P(V_m, t | q_t = s_j) \\ \lambda \colon & & \text{model} \\ O = (O_1, \dots O_t, \dots O_T) \colon & & \text{observations} \\ a_{ij} \colon & & P(q_t = s_j | q_{t-1} = s_i) \end{array}$$

$$\bar{\pi}_i = \gamma_1(i)$$

$$\bar{a}_{ij} = \frac{\sum_{t=1}^{T-1} \xi_t(i,j)}{\sum_{t=1}^{T-1} \sum_{j=1}^{N} \xi_t(i,j)} = \frac{\sum_{t=1}^{T-1} \xi_t(i,j)}{\sum_{t=1}^{T-1} \gamma_t(i)} = \frac{expected numer of times \mathbf{s}_i \to \mathbf{s}_j}{expected numer of times in \mathbf{s}_i}$$

$$\bar{b}_{j}(m) = \frac{\sum_{t=1}^{T} \chi \sum_{i=1}^{N} \xi_{t}(i,j)}{\sum_{t=1}^{T} \sum_{i=1}^{N} \xi_{t}(i,j)} = \frac{\sum_{t=1}^{T} \chi \gamma_{t}(j)}{\sum_{t=1}^{T} \gamma_{t}(j)} = \frac{expected numer of times we observe V_{m} in \mathbf{s}_{j}}{expected numer of times in \mathbf{s}_{j}}$$

$$\chi = \begin{cases} 1 & if \ O_t = V_m \\ 0 & else \end{cases}$$

the **model**
$$\lambda = (A, B, \Pi) = (\{a_{ij}\}, \{b_j(m)\}, \{\pi_i\})$$

ergodic (aka fully connected)

$$A = \{a_{ij}\} \neq 0 \ \forall i, j$$

N: number of states s_n t: time actual state at t q_t : $P(q_1 = s_i)$ π_i : $V = \{V_1, \dots, V_m, \dots, V_M\}:$ alphabet $b_j(m)$: $P(V_m, t|q_t = s_j)$ model $\mathbf{0} = (\mathbf{0}_1, \dots \mathbf{0}_t, \dots \mathbf{0}_T)$: observations $P(q_t = s_j | q_{t-1} = s_i)$ a_{ij} :

left/right:

left/right:

silent states ϕ (null output)

Berkeley Hidden Markov Models

<u>Outline</u>

Introduction

HMMs as Markov Chains

Viterbi-Algorithm

EM (again)

Examples

Extracting intracellular diffusive states and transition rates from single-molecule tracking data

Fredrik Persson^{1,3}, Martin Lindén^{2,3}, Cecilia Unoson¹ & Johan Elf¹

We provide an analytical tool based on a variational Bayesian treatment of hidden Markov models to combine the information from thousands of short single-molecule trajectories of intracellularly diffusing proteins. The method identifies the number of diffusive states and the state transition rates. Using this method we have created an objective interaction map for Hfq, a protein that mediates interactions between small regulatory RNAs and their mRNA targets.

(fewer than \sim 20 steps) instead of following a few long trajectories with multiple state transitions.

RESULTS

vbSPT for single-molecule tracking data

We provide an analytical tool, variational Bayes SPT (vbSPT), based on a variational Bayesian treatment of a hidden Markov model (HMM)^{5,6} that describes diffusing particles making

Extracting intracellular diffusive states and transition rates from single-molecule tracking data

Fredrik Persson^{1,3}, Martin Lindén^{2,3}, Cecilia Unoson¹ & Johan Elf¹

We provide an analytical tool based on a variational Bayesian treatment of hidden Markov models to combine the information from thousands of short single-molecule trajectories of intracellularly diffusing proteins. The method identifies the number of diffusive states and the state transition rates. Using this method we have created an objective interaction map for Hfq, a protein that mediates interactions between small regulatory RNAs and their mRNA targets.

(fewer than \sim 20 steps) instead of following a few long trajectories with multiple state transitions.

RESULTS

vbSPT for single-molecule tracking data

We provide an analytical tool, variational Bayes SPT (vbSPT), based on a variational Bayesian treatment of a hidden Markov model (HMM)^{5,6} that describes diffusing particles making

bound/unbound?

two states: S={bound, unbound} $S=\{D_1, D_2\}$

emission probabilities $P(\Delta x) \sim \exp\left(-\frac{\Delta x^2}{4\pi D_s \Delta t}\right)$ for letters $V = \{\Delta x\}$

bound/unbound?

Berkeley Hidden Markov Models:

b a **Native** Rifampicin treated $D_1 = 0.24 \, \mu \text{m}^2 \, \text{s}^{-1}$ $[\Delta t^{-1}]$ $[\Delta t^{-1}]$ $\tau_1 = 27 \Delta t$ 0.03 $D_2 = 3.1 \ \mu \text{m}^2 \text{ s}^{-1}$ $D_1 = 0.71 \ \mu \text{m}^2 \ \text{s}^{-1}$

 $\tau_1 = 32 \Delta t$

 $\tau_2 = 38 \Delta t$

 $D_3 = 2.6 \, \mu \text{m}^2 \, \text{s}^{-1}$

 $\tau_3 = 19 \ \Delta t$

 $D_2 = 0.75 \, \mu \text{m}^2 \, \text{s}^{-1}$

 $\tau_2 = 14 \Delta t$

Bayesian Markov models consistently outperform PWMs at predicting motifs in nucleotide sequences

Matthias Siebert^{1,2} and Johannes Söding^{1,*}

¹Quantitative and Computational Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany and ²Gene Center, Ludwig-Maximilians-Universität München, Feodor-Lynen-Strasse 25, 81377 Munich, Germany

n-th order HMM instead of PWM (Position Weight Matrices)

best algorithm before (vision) transformers were available!

motif finding:

expression values expression levels

 \rightarrow sequence o

→ alphabet **V**

A, B, $\Pi \rightarrow$ has to be fitted

→ sequence of states (motifs)

Bayesian Markov models consisten A PWMs at predicting motifs in nucle

Matthias Siebert^{1,2} and Johannes Söding^{1,*}

¹Quantitative and Computational Biology, Max Planck Institute for Biophysic Göttingen, Germany and ²Gene Center, Ludwig-Maximilians-Universität Mü Munich, Germany

motif finding:

expression values expression levels

 \rightarrow sequence o

→ alphabet **V**

A, B, $\Pi \rightarrow$ has to be fitted

→ sequence of state


```
import numpy as np
import matplotlib.pyplot as plt
```

HMM tools are not available in sklearn anymore → hmmlearn

#pip install --upgrade --user hmmlearn
from hmmlearn import hmm

$$P(\Delta x) \sim \exp\left(-\frac{\Delta x^2}{4\pi D_s \Delta t}\right)$$

Berkeley Hidden Markov Models:


```
fair vs loaded
                         = hmm.CategoricalHMM(n_components = 2)
model
                        = np.array([0.5, 0.5]) \pi = {\pi(f), \pi(I)} = {0.5, 0.5}
model.startprob
                        = np.array([[0.90, 0.10], [0.05, 0.95]])
model.transmat_
model.emissionprob_
                        = np.array(\
                                   [[1/6, 1/6, 1/6, 1/6, 1/6, 1/6], \]
                                    [1/10, 1/10, 1/10, 1/10, 1/10, 1/2]]
                           b_f = \{1/6, 1/6, 1/6, 1/6, 1/6, 1/6\}
                           b_l = \{1/10, 1/10, 1/10, 1/10, 1/10, 1/2\}
```



```
model
                         = hmm.CategoricalHMM(n_components = 2)
model.startprob_
                         = np.array([0.5, 0.5])
                         = np.array([[0.90, 0.10], [0.05, 0.95]])
model.transmat
model.emissionprob_
                         = np.array([[1/6, 1/6, 1/6, 1/6, 1/6, 1/6],\
                                     [1/10, 1/10, 1/10, 1/10, 1/10, 1/2]])
```

```
N = 40
[X, S] = model.sample(N)
```

generating the observations X based on the model. S are the true states.


```
[X, S] = model.sample(N)
```

Probs = model.predict_proba(X)

Berkeley Hidden Markov Models

Thank you very much for your attention!

