

AOT292L/AOB292L/AOTF292L

100V N-Channel AlphaSGT™

General Description

• Trench Power AlphaSGTTM technology

• Low R_{DS(ON)}

• RoHS and Halogen Free Compliant

Product Summary

 V_{DS} 100V I_{D} (at V_{GS} =10V) 105A

$$\begin{split} R_{DS(ON)} & (\text{at V}_{GS} \text{=} 10\text{V}) \\ R_{DS(ON)} & (\text{at V}_{GS} \text{=} 6\text{V}) \\ \end{split} \qquad \begin{array}{l} < 4.5\text{m}\Omega \quad (< 4.1\text{m}\Omega^*) \\ < 5.3\text{m}\Omega \quad (< 4.9\text{m}\Omega^*) \\ \end{array}$$

Applications

• Synchronous Rectification for power supply

Ideal for boost converters

100% UIS Tested 100% Rg Tested

Orderable Part Number	Package Type	Form	Minimum Order Quantity
AOT292L	TO-220	Tube	1000
AOTF292L	TO-220F	Tube	1000
AOB292L	TO-263	Tape & Reel	800

Absolute Maximum Ratings T_A=25°C unless otherwise noted

Parameter	•	Symbol	AOT(B)292L	AOTF292L	Units	
Drain-Source Voltage		V _{DS}	100		V	
Gate-Source Voltage	Э	V_{GS}	±	-20	V	
Continuous Drain	ontinuous Drain T _C =25°C		105	70		
Current G**	T _C =100°C	I _D	82	50	Α	
Pulsed Drain Current ^C		I _{DM}	420			
Continuous Drain	T _A =25°C	I _{DSM}	14.5		Δ.	
Current	T _A =70°C		11.5		Α	
Avalanche Current C	;	I _{AS}	(60	Α	
Avalanche energy	L=0.1mH ^C	E _{AS}	180		mJ	
V _{DS} Spike ¹	10µs	V _{SPIKE}	120		V	
	T _C =25°C	P _D	300	47	107	
Power Dissipation ^B	T _C =100°C		150	23	W	
	T _A =25°C	В	2.1		14/	
Power Dissipation ^A	T _A =70°C	P _{DSM}	1.3		W	
Junction and Storage Temperature Range		T _J , T _{STG}	-55 to 175		°C	

Thermal Characteristics						
Parameter		Symbol	AOT(B)292L	AOTF292L	Units	
Maximum Junction-to-Ambient A	t ≤ 10s	D	15		°C/W	
Maximum Junction-to-Ambient AD	Steady-State	$R_{\theta JA}$	60		°C/W	
Maximum Junction-to-Case	Steady-State	$R_{\theta JC}$	0.5	3.2	°C/W	

^{*} Surface mount package TO263

^{**} Package limited for TO220 & TO263

Electrical Characteristics (T_J=25°C unless otherwise noted)

Symbol	Parameter	Conditions	Min	Тур	Max	Units		
STATIC PARAMETERS								
BV _{DSS}	Drain-Source Breakdown Voltage	$I_D=250\mu A, V_{GS}=0V$	100			V		
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} =100V, V _{GS} =0V			1			
		T _J =55°C			5	μA		
I_{GSS}	Gate-Body leakage current	V_{DS} =0V, V_{GS} =±20V			±100	nA		
$V_{GS(th)}$	Gate Threshold Voltage	$V_{DS}=V_{GS}$, $I_D=250\mu A$	2.3	2.8	3.4	V		
	Static Drain-Source On-Resistance	V _{GS} =10V, I _D =20A		3.7	4.5	mΩ		
		TO220/TO220F T _J =125°C		6.1	7.4	11132		
		V_{GS} =6V, I_D =20A						
R _{DS(ON)}		TO220/TO220F		4.2	5.3	mΩ		
		V_{GS} =10V, I_D =20A						
		TO263		3.3	4.1	mΩ		
		V_{GS} =6V, I_D =20A						
		TO263		3.8	4.9	mΩ		
g _{FS}	Forward Transconductance	$V_{DS}=5V$, $I_{D}=20A$		90		S		
V_{SD}	Diode Forward Voltage	I _S =1A, V _{GS} =0V		0.68	1	V		
I _S	Maximum Body-Diode Continuous Curr	ent(TO220/TO263) G			105	Α		
.5	Maximum Body-Diode Continuous Curr	rent(TO220F)			50	Α		
	PARAMETERS							
C _{iss}	Input Capacitance			6775		pF		
C _{oss}	Output Capacitance	V_{GS} =0V, V_{DS} =50V, f=1MHz		557		pF		
C _{rss}	Reverse Transfer Capacitance			32		pF		
R_g	Gate resistance	f=1MHz	0.4	8.0	1.2	Ω		
SWITCHI	NG PARAMETERS							
Q _g (10V)	Total Gate Charge			90	126	nC		
Q _g (4.5V)	Total Gate Charge	V _{GS} =10V, V _{DS} =50V, I _D =20A		40	60	nC		
Q_{gs}	Gate Source Charge			24		nC		
Q_{gd}	Gate Drain Charge			13.5		nC		
t _{D(on)}	Turn-On DelayTime			20		ns		
t _r	Turn-On Rise Time	V_{GS} =10V, V_{DS} =50V, R_L =2.5 Ω ,		11.5		ns		
t _{D(off)}	Turn-Off DelayTime	$R_{GEN}=3\Omega$		48		ns		
t _f	Turn-Off Fall Time			10		ns		
t _{rr}	Body Diode Reverse Recovery Time	I _F =20A, di/dt=500A/μs		50		ns		
Q_{rr}	Body Diode Reverse Recovery Charge	I _F =20A, di/dt=500A/μs		380		nC		

A. The value of R_{bJA} is measured with the device mounted on 1in² FR-4 board with 2oz. Copper, in a still air environment with T_A =25° C. The Power dissipation P_{DSM} is based on R _{0JA} I≤ 10s and the maximum allowed junction temperature of 150° C. The value in any given application depends on the user's specific board design, and the maximum temperature of 175° C may be used if the PCB allows it.

- C. Single pulse width limited by junction temperature $T_{J(MAX)}$ =/175° C. D. The R_{0JA} is the sum of the thermal impedance from junction to case R_{0JC} and case to ambient. E. The static characteristics in Figures 1 to 6 are obtained using <300 μ s pulses, duty cycle 0.5% max.
- F. These curves are based on the junction-to-case thermal impedance which is measured with the device mounted to a large heatsink, assuming a maximum junction temperature of T_{J(MAX)}=175° C. The SOA curve provides a single pulse rating.
- G. The maximum current rating is package limited.

 H. These tests are performed with the device mounted on 1 in FR-4 board with 2oz. Copper, in a still air environment with T_A =25° C.
- I. L=100uH, Fsw=1Hz, Tj≤150C by repetitive UIS.

APPLICATIONS OR USES AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO MAKE CHANGES TO PRODUCT SPECIFICATIONS WITHOUT NOTICE. IT IS THE RESPONSIBILITY OF THE CUSTOMER TO EVALUATE SUITABILITY OF THE PRODUCT FOR THEIR INTENDED APPLICATION. CUSTOMER SHALL COMPLY WITH APPLICABLE LEGAL REQUIREMENTS, INCLUDING ALL APPLICABLE EXPORT CONTROL RULES, REGULATIONS AND LIMITATIONS.

AOS' products are provided subject to AOS' terms and conditions of sale which are set forth at: http://www.aosmd.com/terms and conditions of sale

Rev.3.1: May 2024 www.aosmd.com Page 2 of 7

B. The power dissipation P_D is based on T_{J(MAX)}=175° C, using junction-to-case thermal resistance, and is more useful in setting the upper dissipation limit for cases where additional heatsinking is used.

 $V_{\rm DS}$ (Volts) Figure 1: On-Region Characteristics (Note E)

V_{GS} (Volts) Figure 2: Transfer Characteristics (Note E)

 $\label{eq:local_local} \textbf{I}_{\text{D}}\left(\textbf{A}\right)$ Figure 3: On-Resistance vs. Drain Current and Gate Voltage (Note E)

Temperature (°C)
Figure 4: On-Resistance vs. Junction Temperature
(Note E)

V_{GS} (Volts)
Figure 5: On-Resistance vs. Gate-Source Voltage
(Note E)

V_{SD} (Volts) Figure 6: Body-Diode Characteristics (Note E)

 ${\bf Q_g}$ (nC) Figure 7: Gate-Charge Characteristics

 V_{DS} (Volts) Figure 8: Capacitance Characteristics

 $V_{\rm GS}{\!>}$ or equal to 6V Figure 9A: Maximum Forward Biased Safe Operating Area for TO220 & TO263 (Note F)

Figure 10A: Single Pulse Power Rating Junction-to-Case for TO220 & TO263 (Note F)

V_{GS}- or equal to 6V Figure 9B: Maximum Forward Biased Safe Operating Area for TO220F (Note F)

Pulse Width (s)
Figure 10B: Single Pulse Power Rating Junction-toCase for TO220F (Note F)

Rev.3.1: May 2024 **www.aosmd.com** Page 4 of 7

Figure 11A: Power De-rating for TO220 & TO263 (Note F)

T_{CASE} (° C) Figure 12A: Current De-rating for TO220 & TO263 (Note F)

Figure 11B: Power De-rating for TO220F (Note F)

T_{CASE} (° C)
Figure 12B: Current De-rating for TO220F
(Note F)

Pulse Width (s)
Figure 13: Single Pulse Power Rating Junction-to-Ambient (Note H)

Rev.3.1: May 2024 **www.aosmd.com** Page 5 of 7

Pulse Width (s)
Figure 14: Normalized Maximum Transient Thermal Impedance (Note H)

Figure 15A: Normalized Maximum Transient Thermal Impedance for TO220 & TO263 (Note F)

Figure 15B: Normalized Maximum Transient Thermal Impedance for TO220F (Note F)

Rev.3.1: May 2024 **www.aosmd.com** Page 6 of 7

Figure A: Gate Charge Test Circuit & Waveforms

Figure B: Resistive Switching Test Circuit & Waveforms

Figure C: Unclamped Inductive Switching (UIS) Test Circuit & Waveforms

Figure D: Diode Recovery Test Circuit & Waveforms

Rev.3.1: May 2024 **www.aosmd.com** Page 7 of 7