(12)

DEMANDE DE BREVET EUROPEEN

(43) Date de publication: 17.01.2001 Builetin 2001/03

(51) Int Cl.7: **A61K 7/027**, A61K 7/032, C07D 209/08

(21) Numéro de dépôt: 00401991.5

(22) Date de dépôt: 10.07.2000

(84) Etats contractants désignés:
AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU
MC NL PT SE
Etats d'extension désignés:
AL LT LV MK RO SI

(30) Priorité: 15.07.1999 FR.9909177 24.01.2000 FR 0000921

(71) Demandeur: L'OREAL 75008 Paris (FR)

(72) Inventeurs:
• Ferrari, Véronique
94700 Maison-Alfort (FR)

Simon, Pascal
 94400 Vitry sur Seine (FR)

(74) Mandataire: Brédeville, Odile Marie L'Oreai,
D.P.I.,
6, rue Bertrand Sincholle
92585 Clichy Cédex (FR)

(54) Cosmetic composition sans cire, structurée sous forme rigide par un polymère

(57) L'invention se rapporte à une composition physiologiquement acceptable, notamment cosmétique, contenant au moins une matière colorante et une phase grasse liquide, structurée par au moins un polymère de masse moléculaire moyenne en poids allant de 1000 à 30 000 notamment de 1 000 à 10 000, comportant a) un squelette polymérique, ayant des motifs hydrocarbonés pourvus d'au moins un hétéroatome et b) des chaînes grasses pendantes et/ou terminales ayant de 12 à 120

atomes de carbone, liées à ces motifs, ces chaînes grasses représentant de 40 à 98 % du nombre total des motifs à hétéroatome et des chaînes grasses, la matière colorante, la phase grasse liquide et le polymère formant un milieu physiologiquement acceptable. Ce polymère permet l'obtention d'un stick de rouge à lèvres de dureté allant de 20 à 900 g et par exemple de 20 à 600 g, en l'absence de cires, et dont l'application conduit à un dépôt brillant et non-migrant.

Description

[0001] La présente invention se rapporte à une composition de soin et/ou de traitement et/ou de maquillage de la peau, y compris du cuir chevelu, ét/ou des lèvres des êtres humains, contenant une phase grasse liquide, gélifiée par un polymère particulier se présentant notamment sous forme d'un stick de maquillage comme les rouges à lèvres, dont l'application conduit à un dépôt brillant et non-migrant.

[0002] Dans les produits cosmétiques ou dermatologiques, il est courant de trouver une phase grasse liquide structurée, à savoir gélifiée et/ou rigidifiée; ceci est notamment le cas dans les compositions solides comme les déodorants, les baumes et les rouges à lèvres, les produits anti-cerne et les fonds de teint coulés. Cette structuration est obtenue à l'aide de cires ou de charges. Malheureusement, ces cires et charges ont tendance à matifier la composition, ce qui n'est pas toujours souhaitable en particulier pour un rouge à lèvres; en effet, les femmes sont toujours à la recherche d'un rouge à lèvres sous forme d'un bâton déposant un film de plus en plus brillant.

[0003] Par phase grasse liquide, au sens de la demande, on entend une phase grasse liquide à température ambiante (25°C) et pression atmosphérique (760mm de Hg), composée d'un ou plusieurs corps gras liquides à température ambiante, appelés aussi huiles, compatibles entre eux.

[0004] La structuration de la phase grasse liquide permet en particulier de limiter son exsudation des compositions solides et, en plus, de limiter, après dépôt sur la peau ou les lèvres, la migration de cette phase dans les rides et ridules, ce qui est particulièrement recherché pour un rouge à lèvres. En effet, une migration importante de la phase grasse liquide, chargée de matières colorantes, conduit à un effet inesthétique autour des lèvres, accentuant particulièrement les rides et les ridules. Cette migration est souvent citée par les femmes comme un défaut majeur des rouges à lèvres classiques.

[0005] La brillance est liée pour l'essentiel à la nature de la phase grasse liquide. Ainsi, il est possible de diminuer le taux de cires et de charges de la composition pour augmenter la brillance d'un rouge à lèvres mais alors, la migration de la phase grasse liquide augmente. Autrement dit, les taux de cires et de charges nécessaires à la réalisation d'un stick de dureté convenable sont un frein à la brillance du dépôt.

[0006] Le demandeur a trouvé que la perte de brillance d'un stick contenant des cires était liée à la structure cristalline anisotrope de ces composés. Il a donc envisagé la fabrication d'un stick, sans cire.

[0007] L'invention a justement pour objet une composition de soin et/ou de maquillage et/ou de traitement de la peau et/ou des lèvres du visage permettant de remédier à ces inconvénients.

[0008] De façon surprenante, le demandeur a trouvé que l'utilisation de polymères particuliers permettait de structurer, même en l'absence de cire, les phases grasses liquides sous forme de stick dont l'application sur les lèvres conduisait à un film brillant et non migrant.

[0009] L'invention s'applique non seulement aux produits de maquillage des lèvres comme les rouges à lèvres, les crayons à lèvres, mais aussi aux produits de soin et/ou de traitement de la peau, y compris du cuir chevelu, et des lèvres, comme les produits en stick de protection solaire de la peau du visage ou des lèvres, aux produits de maquillage de la peau, aussi bien du visage que du corps humain, comme les fonds de teints coulés en stick ou en coupelle, les produits anti-ceme et les produits de tatouage éphémère, aux produits d'hygiène corporelle comme les déodorants en stick, et aux produits de maquillage des yeux comme les eye-liners sous forme de crayon et les mascaras pains.

[0010] De façon plus précise, l'invention a pour objet une composition structurée contenant au moins une matière colorante et une phase grasse continue liquide, structurée par au moins un polymère de masse moléculaire moyenne en poids allant de 1000 à 30 000 et mieux de 1 000 à 10 000, comportant a) un squelette polymérique, ayant des motifs de répétition hydrocarbonés pourvus d'au moins un hétéroatome, et b) au moins une chaîne grasse pendante et/ou au moins une chaîne grasse terminale, éventuellement fonctionnalisées, ayant de 12 à 120 atomes de carbone, liées à ces motifs, ces chaînes grasses représentant de 40 à 98 % du nombre total des motifs à hétéroatome et des chaînes grasses, ladite composition se présentant sous forme d'un solide exempt de cire, la matière colorante, la phase grasse liquide et le polymère formant un milieu physiologiquement acceptable.

[0011] "Par au moins une chaîne grasse" composition, on entend une ou plusieurs chaînes grasses.

[0012] Une cire, au sens de la présente invention, est un composé gras lipophile, solide à température ambiante (25°C), à changement d'état solide/liquide réversible, ayant une température de fusion supérieure à 40°C pouvant aller jusqu'à 200°C, et présentant à l'état solide une organisation cristalline anisotrope. La taille des cristaux est telle que les cristaux diffractent et/ou diffusent la lumière, conférant à la composition un aspect trouble, plus ou moins opaque. En portant la cire à sa température de fusion, il est possible de la rendre miscible aux huiles et de former un mélange homogène microscopiquement, mais en ramenant la température du mélange à la température ambiante, on obtient une recristallisation de la cire dans les huiles du mélange. C'est cette recristallisation dans le mélange qui est responsable de la diminution de la brillance dudit mélange.

[0013] Les cires, au sens de la demande, sont celles généralement utilisées dans les domaines cosmétique et dermatologique; elles sont notamment d'origine naturelle comme la cire d'abeilles, la cire de Carnauba, de Candellila, d'Ouricoury, du Japon, de fibres de liège ou de canne à sucre, les cires de paraffine, de lignite, les cires microcristallines,

la cire de lanoline, la cire de Montan, les ozokérites, les huiles hydrogénées comme l'huile de jojoba hydrogénée, mais aussi d'origine synthétique comme les cires de polyéthylène issues de la polymérisation de l'éthylène, les cires obtenues par synthèse de Fischer-Tropsch, les esters d'acides gras et les glycérides concrets à 40°C, les cires de silicone comme les alkyle, alcoxy et/ou esters de poly(di)méthylsiloxane solide à 40°C.

[0014] La composition de l'invention est avantageusement autoportée et peut se présenter sous forme de stick ou de coupelle. Elle se présente en particulier sous forme d'un gel rigide anhydre transparent, et plus spécialement sous forme de stick anhydre transparent, la phase grasse liquide formant la phase continue:

[0015] La structure ou gélification de la phase grasse liquide (ou huile), qui est modulable par la nature du polymère à hétéroatome utilisé, est telle que l'on obtienne une structure rigide sous forme d'un bâton ou d'un stick. Ces bâtons lorsqu'ils sont colorés permettent, après application, d'obtenir un dépôt brillant, homogène en couleur et ne migrant pas dans les rides et ridules de la peau, entourant en particulier les lèvres, mais aussi les yeux. Les polymères, objets de l'invention sont solubles dans une grande diversité d'huiles.

[0016] L'invention a aussi pour objet une composition structurée de maquillage de la peau, des lèvres et/ou des phanères, contenant au moins un pigment en quantité suffisante pour maquiller la peau, les lèvres et/ou les phanères et une phase grasse continue liquide, structurée par au moins un polymère de masse moléculaire moyenne en poids allant de 1 000 à 30 000, comportant a) un squelette polymérique, ayant des motifs de répétition hydrocarbonés pourvus d'au moins un hétéroatome, et b) au moins une chaîne grasse pendante et/ou au moins une chaîne grasse terminale ayant de 12 à 120 atomes de carbone, liées à ces motifs, les chaînes grasses représentant de 40 à 98 % du nombre total des motifs à hétéroatome et des chaînes grasses, ladite composition se présentant sous forme d'un solide en particulier autoporté et présentant notamment une dureté allant de 20 à 2 000 g et de préférence de 20 à 900 g et par exemple de 20 à 600 g, le pigment, la phase grasse liquide et le polymère formant un milieu physiologiquement acceptable.

[0017] En particulier, cette composition est une composition de rouge à lèvres.

[0018] "Par pigment", il faut comprendre toute particule solide insoluble dans le milieu servant à donner et/ou modifier une couleur et/ou un aspect irisé.

[0019] De façon avantageuse, le polymère de la composition de l'invention comprend une masse moléculaire moyenne en poids allant de 1 000 à 10 000 et mieux de 2000 à 8000.

[0020] Le polymère structurant de la composition de l'invention est un solide non déformable à température ambiante .(25°C) et pression atmosphérique (760mm de Hg). Il est capable de structurer la composition sans l'opacifier.

[0021] Par "chaîne fonctionnalisée" au sens de l'invention, on entend une chaîne alkyle comportant un ou plusieurs groupes fonctionnels ou réactifs notamment choisis parmi les groupes hydroxyle, éther, oxyalkylène ou polyoxyalkylène, acide carboxylique, amine, halogène, dont les groupes fluorés ou perfluorés, ester, siloxane, polysiloxane. En outre, les atomes d'hydrogène d'une ou plusieurs chaînes grasses peuvent être substitués au moins partiellement par des atomes de fluor.

[0022] Par "polymère", on entend au sens de l'invention un composé ayant au moins 2 motifs de répétition.

[0023] Par "motifs de répétitions"chaînon hydrocarbonés, on entend au sens de l'invention un motif ou chaînon comportant de 2 à 80 atomes de carbone, et de préférence de 2 à 60 atomes de carbone, portant des atomes d'hydrogène et éventuellement des atomes d'oxygène, qui peut être linéaire, ramifié ou cyclique, saturé ou insaturé. Ces motifs ou chaînons comprennent, en outre, chacun de un à plusieurs hétéroatomes non pendants et se trouvant dans le squelette polymérique.

[0024] En outre, le polymère de la composition de l'invention comprend avantageusement de 40 à 98 % de chaînes grasses par rapport au nombre total des chaînens à hétéroatome et des chaînes grasses et mieux de 50 à 95 %. La nature et la proportion des chaînens à hétéroatome est fonction de la nature de la phase grasse liquide et est en particulier similaire à la nature de la phase grasse. Ainsi, plus les chaînens à hétéroatome sont polaires et en proportion élevée dans le polymère, ce qui correspond à la présence de plusieurs hétéroatomes, plus le polymère a de l'affinité avec les huiles polaires. En revanche, plus les chaînens à hétéroatome sont peu polaires voire apolaires ou en proportion faible, plus le polymère a de l'affinité avec les huiles apolaires.

[0025] Les chaînons ou motifs à hétéroatome comprennent chacun de un à plusieurs hétéroatomes choisis en particulier parmi les atomes d'azote, de soufre, de phosphore et leurs associations, associés éventuellement à un ou plusieurs atome d'oxygène. Ces motifs peuvent, en outre, comprendre un groupement polaire du type carbonyle.

[0025] Les chaînons ou motifs à hétéroatome sont en particulier des chaînons comportant des chaînons hydrocarbonés et des chaînons siliconés formant un squelette organopolysiloxane, des chaînons amide formant un squelette du type polyamide, des chaînons "isocianates" ou mieux carbamate et/ou urée formant un squelette polyuréthane, polyurée et/ou polyurée-uréthane. De préférence, ces chaînons sont des chaînons amide. Avantageusement, les chaînes pendantes sont liées directement à l'un au moins des hétéroatomes du squelette polymérique.

[0027] Entre les motifs hydrocarbonés, le polymère peut comprendre des motifs oxyalkylénés.

[0028] Comme polymères structurant préférés utilisables dans l'invention, on peut citer les polyamides ramifiés par des chaînes grasses pendantes et/ou terminales ayant de 12 à 120 atomes de carbone et notamment de 12 à 68

atomes de carbone, les chaînes grasses terminales étant liées au squelette polyamide par des fonctions ester.

[0029] Ces polymères sont de préférence des polymères résultant d'une polycondensation entre un diacide carboxylique à au moins 32 atomes de carbone (ayant notamment de 32 à 44 atomes de carbone) avec une diamine ayant
au moins 2 atomes de carbone (ayant notamment de 2 à 36 atomes de carbone). Le diacide est de préférence un
dimère d'acide gras ayant au moins 16 atomes de carbone comme l'acide oléique, linoléique, linolénique. La diamine
est de préférence l'éthylène diamine, l'hexylène diamine, l'hexaméthylène diamine, le phénylène diamine, l'éthylène
triamine et encore mieux l'éthylène diamine. Pour les polymères comportant un ou 2 groupements d'acide carboxylique
terminaux, il est avantageux de les estérifier par un monoalcool ayant au moins 4 atomes de carbone, de préférence
de 10 à 36 atomes de carbone et mieux de 12 à 24 et encore mieux de 16 à 24, par exemple à 18 atomes de carbone.

[0030] Ces polymères sont plus spécialement ceux décrits dans le document US-A-5783657 de la société Union
Camp. Chacun de ces polymères satisfait notamment à la fomule (I) suivante:

20

dans laquelle n désigne un nombre entier de motifs amide tel que le nombre de groupes ester représente de 10 % à 50 % du nombre total des groupes ester et amide ; R¹ est à chaque occurrence indépendamment un groupe alkyle ou alcényle ayant au moins 4 atomes de carbone et notamment de 4 à 24 atomes de carbone ; R² représente à chaque occurrence indépendamment un groupe hydrocarboné en C₄ à C₄₂ à condition que 50 % au moins des groupes R² représentent un groupe hydrocarboné en C₃₀ à C₄₂; R³ représente à chaque occurrence indépendamment un groupe organique pourvu d'au moins 2 atomes de carbone, d'atomes d'hydrogène et optionnellement d'un ou plusieurs atomes d'oxygène ou d'azote ; et R⁴ représente à chaque occurrence indépendamment un atome d'hydrogène, un groupe alkyle en C₁ à C₁₀ ou une liaison directe à R³ ou à un autre R⁴ de sorte que l'atome d'azote auquel sont liés à la fois R³ et R⁴ fasse partie d'une structure hétérocyclique définie par R⁴-N-R³, avec au moins 50 % des R⁴ représentant un atome d'hydrogène.

[0031] Dans le cas particulier de la formule (I), les chaînes grasses terminales éventuellement fonctionnalisées au sens de l'invention sont les chaînes terminales liées au dernier hétéroatome, ici azote, du squelette polyamide.

[0032] En particulier, les groupes ester de la formule (I), qui font partie des chaînes grasses terminales et/ou pendantes au sens de l'invention, représentent de 15 à 40 % du nombre total des groupes ester et amide et mieux de 20 à 35 %. De plus, n représente avantageusement un nombre entier allant de 1 à 5. De préférence, R¹ est un groupe alkyle en C₁₂ à C₂₂ et de préférence en C₁₆ à C₂₂. Avantageusement, R² peut être un groupe hydrocarboné (alkylène) en C₁₀ à C₄₂. De préférence, 50 % au moins et mieux 75 % au moins des R² sont des groupes ayant de 30 à 42 atomes de carbone. Les autres R² sont des groupes hydrogénés en C₄ à C₁₉ et même en C₄ à C₁₂. De préférence, R³ représente un groupe hydrocarboné en C₂ à C₃₆ ou un groupe polyoxyalkyléné et R⁴ représente un atome d'hydrogène. De préférence, R³ représente un groupe hydrocarboné en C₂ à C₁₂.

[0033] Les groupes hydrocarbonés peuvent être des groupes linéaires, cycliques ou ramifiés, saturés ou insaturés. Par ailleurs, les groupes alkyle et alkylène peuvent être des groupes linéaires ou ramifiés, saturés ou non.

[0034] Selon l'invention, la structuration de la phase grasse liquide est obtenue à l'aide d'un ou plusieurs polymères de formule (I). En général, les polymères de formule (I) se présentent sous forme de mélanges de polymères, ces mélanges pouvant en outre contenir un produit de synthèse correspondant à un composé de formule (I) avec n valant 0, c'est-à-dire un diester.

[0035] A titre d'exemple de polymères structurant utilisables dans la composition selon l'invention, on peut citer les produits commerciaux vendu par la société Bush Boake Allen sous les noms Uniclear 80 et Uniclear 100. Ils sont vendus respectivement sous forme de gel à 80 % (en matière active) dans une huile minérale et à 100 % (en matière active). Ils ont un point de ramollissement de 88 à 94°C. Ces produits commerciaux sont un mélange de copolymère d'un diacide en C₃₆ condensé sur l'éthylène diamine, de masse moléculaire moyenne d'environ 6000. Les groupes ester terminaux résultent de l'estérification des terminaisons d'acide restantes par l'alcool cétylique, stéarylique ou leurs mélanges (appelés aussi alcool cétylstéarylique).

[0036] Les polymères structurant de la composition de l'invention ont avantageusement une température de ramollissement supérieure à 70°C et pouvant aller jusqu'à 190°C. De préférence, ils présentent une température de ramollissement allant de 80 à 130°C et mieux de 80°C à 105°C. Cette température de ramollissement est plus basse que celle des polymères structurant connus, ce qui facilite la mise en oeuvre des polymères objet de l'invention et limite les détériorations de la phase grasse liquide.

[0037] Les polymères objet de l'invention présentent du fait de leur chaîne grasse, une bonne solubilité dans les huiles (à savoir composés liquides, non miscibles à l'eau) et donc conduisent à des compositions macroscopiquement homogènes même avec un taux élevé (au moins 25%) de polymère, contrairement aux polymères de l'art antérieur exempts de chaîne grasse.

[0038] Avantageusement, le polymère est associé à au moins un composé amphiphile liquide à température ambiante, de valeur de balance hydrophile/lipophile (HLB) inférieure à 12 et notamment allant de 1 à 7 et de préférence de 1 à 5 et mieux de 3 à 5. Selon l'invention, on peut utiliser un ou plusieurs composés amphiphiles. Ces composés amphiphiles ont pour but de renforcer les propriétés structurantes du polymère à hétéroatome, de faciliter la mise en oeuvre du polymère et d'améliorer la capacité à déposer du stick.

[0039] Selon l'invention, la composition doit avoir une dureté allant de 20 à 2 000 g et mieux de 20 à 900 g, notamment de 20 à 600 g et par exemple de 150 à 450 g. Cette dureté peut être mesurée selon une méthode de pénétration d'une sonde dans ladite composition et en particulier à l'aide d'un analyseur de texture (par exemple TA-XT2 de chez Rhéo) équipé d'un cylindre en ébonite de 25 mm de haut et 8 mm de diamètre. La mesure de dureté est effectuée à 20°C au centre de 5 échantillons de la dite composition. Le cylindre est introduit dans chaque échantillon de composition à une pré-vitesse de 2mm/s puis à une vitesse de 0,5 mm/s et enfin à une post-vitesse de 2mm/s, le déplacement total étant de 1mm. La valeur relevée de la dureté est celle du pic maximum. L'erreur de mesure est de +/- 50 g.

[0040] La dureté peut aussi être mesurée par la méthode dite du fil à couper le beurre, qui consiste à couper un bâton de rouge à lèvres de 8,1 mm et à mesurer la dureté à 20°C, au moyen d'un dynamomètre DFGHS 2 de la société Indelco-Chatillon se déplaçant à une vitesse de 100mm/minute. Elle est exprimée comme la force de cisaillement (exprimée en gramme) nécessaire pour couper un stick dans ces conditions. Selon cette méthode la dureté d'une composition en stick selon l'invention va de 30 à 150 g, de préférence de 30 à 120 g et par exemple de 30 à 50 g.

[0041] La dureté de la composition selon l'invention est telle que la composition est autoportée et peut se déliter aisément pour former un dépôt satisfaisant sur la peau et les lèvres. En outre, avec cette dureté, la composition de l'invention résiste bien aux chocs.

[0042] Selon l'invention, la composition sous forme de stick a le comportement d'un solide élastique déformable et souple, conférant à l'application une douceur élastique remarquable. Les compositions en stick de l'art antérieur n'ont pas cette propriété d'élasticité et de souplesse.

[0043] Le ou les composés amphiphiles utilisables dans la composition de l'invention comprennent une partie lipophile liée à une partie polaire, la partie lipophile comportant une chaîne carbonée ayant au moins 8 atomes de carbone notamment, de 18 à 32 atomes de carbone et mieux de 18 à 28 atomes de carbone. De préférence, la partie polaire de ce ou ces composés amphiphiles est le reste d'un composé choisi parmi les alcools et les polyols ayant de 1 à 12 groupements hydroxyle, les polyoxyalkylènes comportant au moins 2 motifs oxyalkylénés et ayant de 0 à 20 motifs oxypropylénés et/ou de 0 à 20 motifs oxyéthylénés. En particulier, le composé amphiphile est un ester choisi parmi les hydroxystéarates, les oléates, les isostéarates du glycérol, du sorbitan ou du méthylglucose, ou encore les alcools gras ramifiés en C₁₂ à C₂₆ comme l'octyldodécanol et leurs mélanges. Parmi ces esters, on préfère les monoesters et les mélanges de mono- et de di-esters.

[0044] Le taux de composé amphiphile et celui du polymère à hétéroatome sont choisis selon la dureté de gel désirée et en fonction de l'application particulière envisagée. Les quantités respectives de polymère et de composé amphiphile doivent être telles qu'elles permettent l'obtention d'un stick délitable. En pratique, la quantité de polymère (en matière active) représente de 0,5 à 80 % du poids total de la composition et mieux de 5 à 40 %. La quantité de composé amphiphile représente en pratique de 0,1 % à 35 % du poids total de la composition et mieux de 2 % à 15 %.

[0045] Avantageusement, la phase grasse liquide de la composition contient plus de 40 % et mieux plus de 50 % d'huile(s) liquide(s) ayant un groupement similaire à celui des chaînons à hétéroatome. En particulier, la phase grasse liquide structurée par un squelette de type polyamide contient une quantité majoritaire, à savoir supérieure à 50 % du poids total de la phase grasse liquide, d'huile ou mélange d'huiles liquides apolaires notamment hydrocarbonées.

[0046] Pour une phase grasse liquide structurée par un polymère à squelette partiellement siliconé, cette phase grasse contient, de préférence, plus de 40 % et mieux plus de 50 % en poids, d'huile ou mélange d'huiles liquides siliconées, par rapport au poids total de la phase grasse liquide.

[0047] Pour une phase grasse liquide structurée par un polymère apolaire du type hydrocarboné, cette phase grasse contient avantageusement plus de 40 % et mieux plus de 50 % en poids, d'huile ou mélange d'huiles apolaires liquides, notamment hydrocarbonées, par rapport au poids total de la phase grasse liquide.

[0048] En particulier, les huiles polaires de l'invention sont :

les huiles végétales hydrocarbonées à forte teneur en triglycérides constitués d'esters d'acides gras et de glycérol
dont les acides gras peuvent avoir des longueurs de chaînes variées, ces demières pouvant être linéaires ou
ramifiées, saturées ou insaturées; ces huiles sont notamment les huiles de germe de blé, de maïs, de tournesol,
de karité, de ricin, d'amandes douces, de macadamia, d'abricot, de soja, de colza, de coton, de luzerne, de pavot,

de potimarron, de sésame, de courge, d'avocat, de noisette, de pépins de raisin ou de cassis, d'onagre, de millet, d'orge, de quinoa, d'olive, de seigle, de carthame, de bancoulier, de passiflore, de rosier muscat : ou encore les triglycérides des acides caprylique/caprique comme ceux vendus par la société Stearineries Dubois ou ceux vendus sous les dénominations Miglyol 810, 812 et 818 par la société Dynamit Nobel ;

- les huiles ou esters de synthèse de formule R₅COOR₆ dans laquelle R₅ représente le reste d'un acide gras supérieur linéaire ou ramifié comportant de 1 à 40 et mieux de 7 à 19 atomes de carbone et R₆ représente une chaîne hydrocarbonée ramifiée contenant de 1 à 40 et mieux 3 à 20 atomes de carbone, avec R₅ + R₆ ≥ 10 comme par exemple l'huile de Purcellin (octanoate de cétostéaryle), l'isononanoate d'isononyle, le benzoate d'alcool en C₁₂ à C₁₅, le myristate d'isopropyle, le palmitate d'éthyl-2-hexyle, des octanoates, décanoates ou ricinoléates d'alcools ou de polyalcools ; les esters hydroxylés comme le lactate d'isostéaryle, le malate de di-isostéaryle ; et les esters du pentaérythritol ;
 - les éthers de synthèse ayant de 10 à 40 atomes de carbone;
- les alcools gras en C₈ à C₂₆ comme l'alcool oléique ;
- leurs mélanges.

15

10

[0049] Les huiles apolaires selon l'invention sont en particulier les huiles siliconées telles que les polydiméthylsiloxanes (PDMS) volatils ou non, linéaires ou cycliques, liquides à température ambiante; les polydiméthylsiloxanes comportant des groupements alkyle, alcoxy ou phényle, pendant et/ou en bout de chaîne siliconée, groupements ayant chacun de 2 à 24 atomes de carbone; les silicones phénylées comme les phényl triméthicones, les phényl diméthicones, les phényl triméthylsiloxy diphénylsiloxanes, des diphényl diméthicones, les diphényl méthyldiphényl trisiloxanes, les 2-phényléthyl triméthylsiloxysilicates; les hydrocarbures ou fluorocarbures linéaires ou ramifiés d'origine synthétique ou minérale, volatils ou non comme les huiles de paraffine volatiles (telles que les isoparaffines, l'isododécane) ou non volatiles et ses dérivés, la vaseline, les polydécènes, le polyisobutène hydrogéné tel que le parléam, le squalane, et leurs mélanges. De préférence, les huiles structurées, et plus spécialement celles structurées par les polyamides et en particulier ceux de formules (I) ou les polyuréthanes ou les polyurées ou les polyuré-polyuréthanes, sont des huiles apolaires du type hydrocarboné d'origine minérale ou synthétique, choisies en particulier parmi les hydrocarbures notamment les alcanes comme l'huile de parléam, les isoparaffines dont l'isododécane, le squalane et leurs mélanges.

[0050] La phase grasse liquide représente, en pratique, de 5 à 99 % du poids total de la composition, de préférence de 20 à 75 %.

[0051] La composition de l'invention peut comprendre, en outre, tout additif usuellement utilisé dans le domaine concerné, choisi notamment parmi l'eau éventuellement épaissie ou gélifiée par un épaississant ou un gélifiant de phase aqueuse, les antioxydants, les huiles essentielles, les conservateurs, des parfums, des neutralisants, des polymères liposolubles, des actifs cosmétiques ou dermatologiques comme par exemple des émollients, des hydratants, des vitamines, des acides gras essentiels, des filtres solaires, et leurs mélanges. Ces additifs peuvent être présents dans la composition à raison de 0 à 20% du poids total de la composition et mieux de 0 à 10%. Avantageusement, la composition contient au moins un actif cosmétique ou dermatologique.

[0052] Bien entendu l'homme du métier veillera à choisir les éventuels additifs complémentaires et/ou leur quantité de telle manière que les propriétés avantageuses de la composition selon l'invention ne soient pas ou substantiellement pas, altérées par l'adjonction envisagée.

[0053] La composition selon l'invention peut se présenter sous la forme d'une composition teintée dermatologique ou de soin des matières kératiniques comme la peau, les lèvres et/ou les phanères, sous forme d'une composition de protection solaire ou d'hygiène corporelle notamment sous forme de produit déodorant ou démaquillant sous forme de stick. Elle peut notamment être utilisée comme base de soin pour la peau, les phanères ou les lèvres (baumes à lèvres, protégeant les lèvres du froid et/ou du soleil et/ou du vent, crème de soin pour la peau, les ongles ou les chèveux).

[0054] La composition de l'invention peut également se présenter sous la forme d'un produit coloré de maquillage de la peau, en particulier un fond de teint, présentant éventuellement des propriétés de soin ou de traitement, un blush, un fard à joues où à paupières, un produit anti-ceme, un eye-liner, un produit de maquillage du corps ; de maquillage des lèvres comme un rouge à lèvres, présentant éventuellement des propriétés de soin ou de traitement ; de maquillage des phanères comme les ongles, les cils en particulier sous forme d'un mascara pain, les sourcils et les cheveux notamment sous forme de crayon. En particulier, la composition de l'invention peut être un produit cosmétique contenant des actifs cosmétiques et/ou dermatologiques.

[0055] Bien entendu la composition de l'invention doit être cosmétiquement ou dermatologiquement acceptable, à savoir contenir un milieu physiologiquement acceptable non toxique et susceptible d'être appliquée sur la peau, les phanères ou les lèvres d'êtres humains. Par cosmétiquement acceptable, on entend au sens de l'invention une composition d'aspect, d'odeur et de toucher agréables.

[0056] Selon l'invention, la composition contient une matière colorante qui peut être choisie parmi les colorants

lipophiles, les colorants hydrophiles, les pigments et les nacres habituellement utilisés dans les compositions cosmétiques ou dermatologiques, et leurs mélanges. Cette matière colorante est généralement présente à raison de 0.01 à 40 % du poids total de la composition, de préférence de 1 à 35 % et mieux de 5 à 25 %.

[0057] De préférence, la matière colorante contient essentiellement des pigments et/ou des nacres en vue d'obtenir un maquillage couvrant, c'est-à-dire ne laissant pas voir la peau, les lèvres ou les phanères. Les pigments permettent, en outre, de réduire le toucher collant des compositions, contrairement à des colorants solubles.

[0058] Les colorants liposolubles sont par exemple le rouge Soudan, le DC Red 17, le DC Green 6, le β-carotène, l'huile de soja, le brun Soudan, le DC Yellow 11, le DC Violet 2, le DC orange 5, le jaune quinoléine. Ils peuvent représenter de 0 à 20 % du poids de la compositions et mieux de 0,1 à 6 % (si présents).

[0059] Les pigments peuvent être blancs ou colorés, minéraux et/ou organiques, enrobés ou non. On peut citer, parmi les pigments minéraux, le dioxyde de titane, éventuellement traité en surface, les oxydes de zirconium ou de cérium, ainsi que les oxydes de fer ou de chrome, le violet de manganèse, le bleu outremer, l'hydrate de chrome et le bleu ferrique. Parmi les pigments organiques, on peut citer le noir de carbone, les pigments de type D & C, et les laques à base de carmin de cochenille, de baryum, strontium, calcium, aluminium. Les pigments peuvent représenter de 0 à 40 %, de préférence de 1 à 35 %, et mieux de 2 à 25 % du poids total de la composition.

[0060] Les pigments nacrés (ou nacres) peuvent être choisis parmi les pigments nacrés blancs tels que le mica recouvert de titane, ou d'oxychlorure de bismuth, les pigments nacrés colorés tels que le mica titane avec des oxydes de ter, le mica titane avec notamment du bleu ferrique ou de l'oxyde de chrome, le mica titane avec un pigment organique du type précité ainsi que les pigments nacrés à base d'oxychlorure de bismuth. Ils peuvent représenter de 0 à 20 % du poids total de la composition et mieux de 0,1 à 15 % (si présents).

[0061] La composition selon l'invention peut être fabriquée par les procédés connus, généralement utilisés dans le domaine cosmétique ou dermatologique. Elle peut être fabriquée par le procédé qui consiste à chauffer le polymère au moins à sa température de ramollissement, à y ajouter le ou les composés amphiphiles, les matières colorantes et les additifs puis à mélanger le tout jusqu'à l'obtention d'une solution claire, transparente. Le mélange homogène obtenu peut alors être coulé dans un moule approprié comme un moule de rouge à lèvres ou directement dans les articles de conditionnement (boîtier ou coupelle notamment).

[0062] L'invention a encore pour objet un procédé cosmétique de soin, de maquillage ou de traitement des matières kératiniques des êtres humains et notamment de la peau, des lèvres et des phanères, comprenant l'application sur les matières kératiniques de la composition notamment cosmétique telle que définie ci-dessus.

[0063] L'invention a aussi pour objet l'utilisation d'une quantité suffisante d'au moins un polymère de masse moléculaire moyenne en poids allant de 1 000 à 30 000 et mieux de 1 000 à 10 000, comportant a) un squelette polymérique, ayant des motifs de répétition hydrocarbonés pourvus d'au moins un hétéroatome, et b) au moins une chaîne grasse pendante et/ou au moins une chaîne grasse terminale, éventuellement fonctionnalisées, ayant de 12 à 120 atomes de carbone, liées à ces motifs, ces chaînes grasses représentant de 40 à 98 % du nombre total des motifs à hétéroatome et des chaînes grasses, dans une composition cosmétique ou pour la fabrication d'une composition physiologiquement acceptable, exempte de cire et contenant une phase grasse continue liquide et une matière colorante, pour structurer ladite composition sous forme d'un solide autoporté et en particulier de dureté allant de 20 à 2 000 g et notamment de 20 à 900 g et mieux de 20 à 600 g.

[0064] L'invention a encore pour objet l'utilisation d'une phase grasse continue liquide, structurée essentiellement par une quantité suffisante d'au moins un polymère de masse moléculaire moyenne en poids allant de 1 000 à 30 000 et mieux de 1 000 à 10 000, comportant a) un squelette polymérique, ayant des motifs de répartition hydrocarbonés pourvus d'au moins un hétéroatome, et b) au moins une chaîne grasse pendante et/ou au moins une chaîne grasse terminale éventuellement fonctionnalisées, ayant de 12 à 120 atomes de carbone, liées à ces motifs, ces chaînes grasses représentant de 40 à 98 % du nombre total des motifs à hétéroatome et des chaînes grasses, dans une composition cosmétique ou pour la fabrication d'une composition physiologiquement acceptable, rigide notamment autoportée et ayant par exemple une dureté allant de 20 à 2 000 g et notamment de 20 à 900 g et par exemple de 20 à 600 g, exempte de cire, brillante et/ou non migrante.

[0065] L'invention a encore pour objet l'utilisation d'une quantité suffisante d'au moins un polymère de masse moléculaire moyenne en poids allant de 1000 à 30 000, comportant a) un squelette polymérique ayant des motifs de répétition hydrocarbonés pourvus d'au moins un hétéroatome, et b) au moins une chaîne grasse pendante et/ou au moins une chaîne grasse terminale, éventuellement fonctionnalisées, ayant de 12 à 120 atomes de carbone, liées à ces motifs, ces chaînes grasses représentant de 40 à 98 % du nombre total des motifs à hétéroatome et des chaînes grasses, dans une composition cosmétique ou pour la fabrication d'une composition physiologiquement acceptable, contenant une phase grasse continue liquide et une matière colorante, pour structurer ladite composition sous forme d'un solide autoporté et ayant par exemple une dureté allant de 20 à 2 000 g et notamment de 20 à 900 g et par exemple de 20 à 600 g.

[0066] L'invention a encore pour objet l'utilisation d'une phase grasse liquide continue, structurée essentiellement par une quantité suffisante d'au moins un polymère de masse moléculaire moyenne en poids allant de 1000 à 30 000,

comportant a) un squelette polymérique, ayant des motifs de répétition hydrocarbonés pourvus d'au moins un hétéroatome, et b) au moins une chaîne grasse pendante et/ou au moins une chaîne grasse terminale, éventuellement fonctionnalisées, ayant de 12 à 120 atomes de carbone, liées à ces motifs, les chaînes grasses représentant de 40 à 98 % du nombre total des motifs à hétéroatome et des chaînes grasses, dans une composition cosmétique ou pour la fabrication d'une composition physiologiquement acceptable, comme agent pour limiter la migration de ladite composition.

[0067] L'invention a encore pour objet, un procédé cosmétique pour limiter la migration d'une composition cosmétique contenant une phase grasse liquide, consistant à structurer ladite phase grasse par une quantité suffisante d'au moins un polymère de masse moléculaire moyenne en poids allant de 1000 à 30 000, comportant a) un squelette polymérique, ayant des motifs de répétition hydrocarbonés pourvus d'au moins un hétéroatome; et b) au moins une chaîne grasse pendante et/ou au moins une chaîne grasse terminale, éventuellement fonctionnalisées, ayant de 12 à 120 atomes de carbone, liées à ces motifs, les chaînes grasses représentant de 40 à 98 % du nombre total des motifs à hétéroatome et des chaînes grasses.

[0068] L'invention a encore pour objet un stick de maquillage de la peau, des lèvres et/ou des phanères, et en particulier des lèvres, contenant au moins un pigment en quantité suffisante pour maquiller la peau, les lèvres et/ou les phanères et une phase grasse continue liquide, structurée par au moins un polymère de masse moléculaire moyenne en poids allant de 1 000 à 30 000, comportant a) un squelette polymérique, ayant des motifs de répétition hydrocarbonés pourvus d'au moins un hétéroatome, et b) au moins une chaîne grasse pendante et/ou au moins une chaîne grasse terminale ayant de 12 à 120 atomes de carbone, liées à ces motifs, les chaînes grasses représentant de 40 à 98 % du nombre total des motifs à hétéroatome et des chaînes grasses, le pigment, la phase grasse et le polymère formant un milieu physiologiquement acceptable.

[0069] L'invention est illustrée plus en détail dans les exemples suivants. Les pourcentages sont donnés en poids.

Exemple 1 : Rouge à lèvres

25

[0070]

- Uniclear 80 25,0 %
- Huile de parléam 56,0 %
- Polyglycéryl-2 polyhydroxystéarate 10.0 %
 - Pigments (oxyde de fer brun + oxyde de titane)
 9,0 %

[0071] Préparation: On solubilise (ou dissous) l'Uniclear 80 grâce au polyglycéryl-2 polyhydroxystéarate dans l'huile de parléam, à 100 °C, puis on ajout les pigments. L'ensemble est mélangé à l'aide d'une turbine défloculeuse (Raynerie) puis coulé dans des moules de rouge à lèvres.

[0072] On obtient un stick de rouge à lèvres ayant une dureté de 425 g mesurée à l'aide de l'analyseur de texture TA-XT2 à 20 °C. Le rouge à lèvres obtenu est brillant et non migrant. Ceci a été confirmé par un test sur un panel d'experts en comparaison avec un produit brillant de l'art antérieur Rouge Absolu de Lancôme. Le rouge à lèvres de l'invention a été jugée plus brillant à l'application que celui de l'art antérieur pour l'ensemble des testeurs et moins migrant au bout de 2 heures de port.

Exemple 2 : Fard à pauplères anhydre

[0073]

Į,

- Uniclear 80 25,0 %
- Huile de parléam 35,1 %
- Oléate de glycéryle 31.25 %
- Pigments qsp 100 %

0

[0074] Ce fard à paupières sous forme de stick a été réalisé comme dans l'exemple 1. Il est brillant et non migrant.

Exemple 3 : Rouge à lèvres

[0075] Il se différencie de celui de l'exemple 1 par l'emploi de l'Uniclear 100 au lieu de l'Uniclear 80.

Contre exemple

[0076] On a reproduit l'exemple 1 de rouges à lèvres en remplaçant le polyamide Uniclear 80 par le polyamide Versamid® 930 vendu par la société Henkel, puis par le polyamide Macromelt 6212 vendu aussi par la société Henkel, ces deux polyamides étant exempts de groupement terminal à chaîne alkyle ou alcényle à au moins 4 atomes de carbone, lié au squelette polyamide par un groupe ester.

[0077] Les produits obtenus sont totalement hétérogènes et sous forme bi-phasée. Ils n'ont nullement l'aspect et la dureté d'un stick.

Revendications

15

20

25

30

35

- 1. Composition solide structurée contenant au moins une matière colorante et une phase grasse continue liquide, structurée par au moins un polymère de masse moléculaire moyenne en poids allant de 1 000 à 30 000, comportant a) un squelette polymérique, ayant des motifs de répétition hydrocarbonés pourvus d'au moins un hétéroatome, et b) au moins une chaîne grasse pendante et/ou au moins une chaîne grasse terminale, éventuellement fonctionnalisées, ayant de 12 à 120 atomes de carbone, liées à ces motifs, les chaînes grasses représentant de 40 à 98 % du nombre total des motifs à hétéroatome et des chaînes grasses, ladite composition se présentant sous forme d'un solide, exempte de cire, la matière colorante, la phase grasse liquide et le polymère formant un milieu physiologiquement acceptable.
- 2. Composition solide selon la revendication 1, caractérisée en ce qu'elle est autoportée.
- 3. Composition structurée contenant au moins une matière colorante et une phase grasse continue liquide, structurée par au moins un polymère de masse moléculaire moyenne en poids allant de 1 000 à 30 000, comportant a) un squelette polymérique, ayant des motifs de répétition hydrocarbonés pourvus d'au moins un hétéroatome, et b) au moins une chaîne grasse pendante et/ou au moins une chaîne grasse terminale, éventuellement fonctionnalisées, ayant de 12 à 120 atomes de carbone, liées à ces motifs, les chaînes grasses représentant de 40 à 98 % du nombre total des motifs à hétéroatome et des chaînes grasses, ladite composition se présentant sous forme d'un solide de dureté allant de 20 à 2 000 g et de préférence de 20 à 900 g et étant exempte de cire, la matière colorante, la phase grasse liquide et le polymère formant un milieu physiologiquement acceptable.
- 4. Composition selon l'une des revendications précédentes, caractérisée en ce que les chaînes grasses représentent de 50 à 95 % du nombre total des motifs à hétéroatome et des chaînes grasses.
- 5. Composition selon l'une des revendications précédentes, caractérisée en ce que les motifs à hétéroatome sont des amides.
- 6. Composition selon l'une des revendications précédentes, caractérisée en ce que les chaînes grasses pendantes sont liées directement à l'un au moins desdits hétéroatomes.
 - Composition selon l'une des revendications précédentes, caractérisée en ce que les chaînes grasses terminales sont liées au squelette par des groupes ester.
- Composition selon l'une des revendications précédentes, caractérisée en ce que les chaînes grasses ont de 12 à 68 atomes de carbone.
 - 9. Composition selon l'une des revendications précédentes, caractérisée en ce que le polymère est choisi parmi les polymères de formule (I) suivante et leurs mélanges:

dans laquelle n désigne un nombre de motifs amide tel que le nombre de groupes ester représente de 10 % à 50 % du nombre total des groupes ester et amide ; R¹ est à chaque occurrence indépendamment un groupe alkyle ou alcényle ayant au moins 4 atomes de carbone ; R² représente à chaque occurrence indépendamment un groupe hydrocarboné en C₄ à C₄₂ à condition que 50 % au moins des groupes R² représentent un groupe hydrocarboné en C₃₀ à C₄₂; R³ représente à chaque occurrence indépendamment un groupe organique pourvus d'au moins 2 atomes de carbone, d'atomes d'hydrogène et optionnellement d'un ou plusieurs atomes d'oxygène ou d'azote ; et R⁴ représente à chaque occurrence indépendamment un atome d'hydrogène, un groupe alkyle en C₁ à C₁₀ ou une liaison directe à R³ ou un autre R⁴ de sorte que l'atome d'azote auquel sont liés à la fois R³ et R⁴ fasse partie d'une structure hétérocyclique définie par R⁴-N-R³, avec au moins 50 % des R⁴ représentant un atome d'hydrogène.

- 10. Composition selon la revendication précédente, caractérisée en ce que R1 est un groupe alkyle en C₁₂ à C₂₂.
- 11. Composition selon l'une des revendications 9 ou 10, caractérisée en ce que R² sont des groupes ayant de 30 à 42 atomes de carbone.
- 12. Composition selon l'une des revendications précédentes, caractérisée en ce que la composition comprend, en outre, au moins un composé amphiphile liquide à température ambiante, de valeur de HLB inférieur à 12 et notamment allant de 1 à 7 et de préférence de 1 à 5.
- 13. Composition selon la revendication précédente, caractérisée en ce que le composé amphiphile comprend une partie lipophile liée à une partie polaire, la partie lipophile comportant une chaîne carbonée ayant au moins 8 atomes de carbone, de préférence de 16 à 32 atomes de carbone et mieux de 18 à 28 atomes de carbone.
- 14. Composition selon la revendication précédente, caractérisée en ce que la partie polaire est le reste d'un composé choisi parmi les alcools et les polyols ayant de 1 à 12 groupements hydroxyle, les polyoxyalkylènes comportant au moins 2 motifs oxyalkylénés et ayant de 0 à 20 motifs oxypropylénés et/ou de 0 à 20 motifs oxyéthylénés.
- 15. Composition selon l'une des revendications 12 à 14 caractérisée en ce que le composé amphiphile est choisi parmi les hydroxystéarates, les oléates, les isostéarates du glycérol, du sorbitan ou du méthylglucose, l'octyldodécanol.
- 16. Composition selon l'une des revendications 12 à 15, caractérisée en ce que le composé amphiphile représente de 0,1 à 35 % du poids total de la composition et mieux de 2 à 15 %.
- 17. Composition selon l'une des revendications précédentes, caractérisée en ce que le polymère représente de 0,5 à 80 % du poids total de la composition et mieux de 5 à 40 %.
- 18. Composition selon l'une des revendications précédentes, caractérisée en ce que le polymère comprend une masse moléculaire moyenne en poids allant de 1 000 à 10 000 et mieux de 2 000 à 8 000.

40

- 19. Composition selon l'une des revendications précédentes, caractérisée en ce que la phase grasse liquide contient plus de 40 % et mieux plus de 50 % d'huile(s) liquide(s) ayant un groupement similaire à celui des chaînons à hétéroatome.
- 20. Composition selon l'une des revendications 5 à 19, caractérisée en ce que la phase grasse liquide contient plus de 40 % et mieux plus de 50 % d'huile ou mélange d'huiles liquides apolaires.
- 21. Composition selon l'une des revendications précédentes, caractérisée en ce que la phase grasse contient au moins une huile hydrocarbonée d'origine minérale ou synthétique.
- 22. Composition selon l'une des revendications précédentes, caractérisée en ce que la phase grasse contient au moins une huile apolaire choisie parmi l'huile de parléam, les isoparaffines, le squalane et leurs mélanges.
- 23. Composition selon l'une des revendications précédentes, caractérisée en ce que la phase grasse liquide représente de 5 à 99 % du poids total de la composition et mieux de 20 à 75 %.
 - 24. Composition selon l'une des revendications précédentes, caractérisée en ce qu'elle constitue une composition de

soin et/ou de traitement et/ou de maquillage des matières kératiniques.

- 25. Composition selon l'une des revendications précédentes, caractérisée en ce qu'elle contient, en outre, au moins un actif cosmétique ou dermatologique.
- 26. Composition selon l'une des revendications précédentes, caractérisée en ce qu'elle contient au moins un additif choisi parmi l'eau, les antioxydants, les huiles essentielles, les conservateurs, les neutralisants, les polymères liposolubles, les charges, les parfums et leurs mélanges.
- 27. Composition selon l'une des revendications précédentes, caractérisée en ce qu'elle se présente sous forme d'un gel rigide anhydre transparent, et notamment de stick anhydre transparent.
 - 28. Composition selon l'une des revendications précédentes, caractérisée en ce que la matière colorante est choisie parmi les colorants lipophiles, les colorants hydrophiles, les pigments, les nacres et leurs mélanges.
 - 29. Composition selon l'une des revendications précédentes, caractérisée en ce que la matière colorante est présente à raison de 0.01 à 40 % du poids total de la composition, de préférence de 5 à 25 %.
- 30. Composition solide structurée de maquillage de la peau, des lèvres et/ou des phanères, contenant au moins un pigment en quantité suffisante pour maquiller la peau, les lèvres et/ou les phanères et une phase grasse continue liquide, structurée par au moins un polymère de masse moléculaire moyenne en poids allant de 1 000 à 30 000, comportant a) un squelette polymérique, ayant des motifs de répétition hydrocarbonés pourvus d'au moins un hétéroatome, et b) au moins une chaîne grasse pendante et/ou au moins une chaîne grasse terminale ayant de 12 à 120 atomes de carbone, liées à ces motifs, les chaînes grasses représentant de 40 à 98 % du nombre total des motifs à hétéroatome et des chaînes grasses, ladite composition se présentant sous forme d'un solide, les pigment, la phase grasse liquide et le polymère formant un milieu physiologiquement acceptable.
 - 31. Composition selon la revendication 30, caractérisée en ce qu'elle est autoportée.
- 32. Composition structurée de maquillage de la peau, des lèvres et/ou des phanères, contenant au moins un pigment en quantité suffisante pour maquiller la peau, les lèvres et/ou les phanères et une phase grasse continue liquide, structurée par au moins un polymère de masse moléculaire moyenne en poids allant de 1 000 à 30 000, comportant à) un squelette polymérique, ayant des motifs de répétition hydrocarbonés pourvus d'au moins un hétéroatome, et b) au moins une chaîne grasse pendante et/ou au moins une chaîne grasse terminale ayant de 12 à 120 atomes de carbone, liées à ces motifs, les chaînes grasses représentant de 40 à 98 % du nombre total des motifs à hétéroatome et des chaînes grasses, ladite composition se présentant sous forme d'un solide de dureté allant de 20 à 2 000 g et de préférence de 20 à 900 g et mieux de 20 à 600 g, le pigment, la phase grasse liquide et le polymère formant un milieu physiologiquement acceptable.
- 33. Composition structurée de rouge à lèvres, contenant au moins un pigment en quantité suffisante pour maquiller la peau, les lèvres et/ou les phanères et une phase grasse continue liquide, structurée par au moins un polymère de masse moléculaire moyenne en poids allant de 1 000 à 30 000, comportant a) un squelette polymérique, ayant des motifs de répétition hydrocarbonés pourvus d'au moins un hétéroatome, et b) au moins une chaîne grasse pendante et/ou au moins une chaîne grasse terminale ayant de 12 à 120 atomes de carbone, liées à ces motifs, les chaînes grasses représentant de 40 à 98 % du nombre total des motifs à hétéroatome et des chaînes grasses, ladite composition se présentant sous forme d'un solide par exemple autoporté, le pigment, la phase grasse liquide et le polymère formant un milieu physiologiquement acceptable.
 - 34. Composition selon l'une des revendications 32 et 33, caractérisée en ce que le polymère est un polyamide.
 - 35. Composition selon l'une des revendications 32 à 34, caractérisée en ce que la ou les chaînes grasses terminales sont liées au squelette carboné par des groupes ester.
- 36. Composition selon l'une des revendications 1 à 32, 31 à 35, caractérisée en ce qu'elle se présente sous forme de mascara pain, d'eye liner, de fond de teint, de rouge à lèvres, de blush, de produit déodorant ou démaquillant, de produit de maquillage du corps, de fard à paupières ou à joues, de produit anti-cerne.
 - 37. Stick de maquillage de la peau, des lèvres et/ou des phanères, et en particulier des lèvres, contenant au moins

un pigment en quantité suffisante pour maquiller la peau, les lèvres et/ou les phanères et une phase grasse continue liquide, structurée par au moins un polymère de masse moléculaire moyenne en poids allant de 1 000 à 30 000, comportant a) un squelette polymérique, ayant des motifs de répétition hydrocarbonés pourvus d'au moins un hétéroatome, et b) au moins une chaîne grasse pendante et/ou au moins une chaîne grasse terminale ayant de 12 à 120 atomes de carbone, liées à ces motifs, les chaînes grasses représentant de 40 à 98 % du nombre total des motifs à hétéroatome et des chaînes grasses, le pigment, la phase grasse et le polymère formant un milieu physiologiquement acceptable.

38. Procédé cosmétique de soin, de maquillage ou de traitement des matières kératiniques des êtres humains, comprenant l'application sur les matières kératiniques d'une composition cosmétique conforme à l'une des revendications précédentes.

10

15

20

25

40

- 39. Utilisation d'une quantité suffisante d'au moins un polymère de masse moléculaire moyenne en poids allant de 1000 à 310 000, comportant a) un squelette polymérique ayant des chaînons motifs de répétition hydrocarbonés pourvus d'au moins un hétéroatome, et b) au moins une chaîne grasse pendante et/ou au moins une chaîne grasse terminale, éventuellement fonctionnalisées, ayant de 12 à 120 atomes de carbone, liées à ces motifs, ces chaînes grasses représentant de 40 à 98 % du nombre total des motifs à hétéroatome et des chaînes grasses, dans une composition cosmétique ou pour la fabrication d'une composition physiologiquement acceptable, exempte de cire et contenant une phase grasse continue liquide et une matière colorante, pour structurer ladite composition sous forme d'un solide autoporté de 20 à 2 000 g et de préférence de 20 à 900 g et mieux de 20 à 600 g.
- 40. Utilisation selon la revendication précédente, caractérisée en ce que le polymère est un polyamide comportant des groupements terminaux à fonction ester comportant une chaîne hydrocarbonée ayant de 10 à 42 atomes de carbone.
- 41. Utilisation selon la revendication 34 ou 35, caractérisée en ce que le polymère est associé à un composé amphiphile liquide à température ambiante, de valeur de HLB inférieure à 12 et notamment allant de 1 à 7 et de préférence de 1 à 5.
- 42. Utilisation d'une phase grasse liquide continue, structurée essentiellement par une quantité suffisante d'au moins un polymère de masse moléculaire moyenne en poids allant de 1000 à 30 000, comportant a) un squélette polymérique, ayant des motifs de répétition hydrocarbonés pourvus d'au moins un hétéroatome, et b) au moins une chaîne grasse terminale, éventuellement fonctionnalisées, ayant de 12 à 120 atomes de carbone, liées à ces motifs, les chaînes grasses représentant de 40 à 98 % du nombre total des motifs à hétéroatome et des chaînes grasses, dans une composition cosmétique ou pour la fabrication d'une composition physiologiquement acceptable, rigide autoportée, exempte de cire, brillante et/ou non migrante.
 - 43. Utilisation selon la revendication précédente, dans laquelle le polymère est un polyamide comportant des groupements terminaux à fonction ester comportant une chaîne hydrocarbonée ayant de 10 à 42 atomes de carbone et est associé à un composé amphiphile liquide de valeur de HLB inférieure à 12 et notamment allant de 1 à 7 de préférence de 1 à 5.
 - 44. Utilisation d'une quantité suffisante d'au moins un polymère de masse moléculaire moyenne en poids allant de 1000 à 30 000, comportant a) un squelette polymérique ayant des motifs de répétition hydrocarbonés pourvus d'au moins un hétéroatome, et b) au moins une chaîne grasse pendante et/ou au moins une chaîne grasse terminale, éventuellement fonctionnalisées, ayant de 12 à 120 atomes de carbone, liées à ces motifs, ces chaînes grasses représentant de 40 à 98 % du nombre total des motifs à hétéroatome et des chaînes grasses, dans une composition cosmétique ou pour la fabrication d'une composition physiologiquement acceptable, contenant une phase grasse continue liquide et une matière colorante, pour structurer ladite composition sous forme d'un solide autoporté.
 - 45. Utilisation d'une phase grasse liquide continue, structurée essentiellement par une quantité suffisante d'au moins un polymère de masse moléculaire moyenne en poids allant de 1000 à 30 000, comportant a) un squelette polymérique, ayant des motifs de répétition hydrocarbonés pourvus d'au moins un hétéroatome, et b) au moins une chaîne grasse pendante et/ou au moins une chaîne grasse terminale, éventuellement fonctionnalisées, ayant de 12 à 120 atomes de carbone, liées à ces motifs, les chaînes grasses représentant de 40 à 98 % du nombre total des motifs à hétéroatome et des chaînes grasses, dans une composition cosmétique ou pour la fabrication d'une composition physiologiquement acceptable, comme agent pour limiter la migration de ladite composition.

- **46.** Utilisation selon l'une des revendications 39 à 45, dans laquelle la composition a une dureté de 20 à 2 000 g, de préférence de 20 à 900 g et mieux de 20 à 600 g.
- 47. Procédé cosmétique pour limiter la migration d'une composition cosmétique contenant une phase grasse liquide, consistant à structurer ladite phase grasse par une quantité suffisante d'au moins un polymère de masse moléculaire moyenne en poids allant de 1000 à 30 000, comportant a) un squelette polymérique, ayant des motifs de répétition hydrocarbonés pourvus d'au moins un hétéroatome, et b) au moins une chaîne grasse pendante et/ou au moins une chaîne grasse terminale, éventuellement fonctionnalisées, ayant de 12 à 120 atomes de carbone, liées à ces motifs, les chaînes grasses représentant de 40 à 98 % du nombre total des motifs à hétéroatome et des chaînes grasses.

Office européen RAPPORT DE RECHERCHE EUROPEENNE des brevels

EP 00 40 1991

tégorie	Citation du document avec indication, en cas de besoin, des parties pertinentes	Revendication concernee	CLASSEMENT DE LA DEMANDE (Int.CL7) A61K7/027 A61K7/032 C07D209/08		
	WO 98 17705 A (UNION CAMP CORPORATION) 30 avril 1998 (1998-04-30) * revendications 1-7,23-29 *	1,3-11, 17,21, 23, 25-28,40			
· .	* page 21, ligne 19 - ligne 29 * * page 23, ligne 1 - ligne 4 * & US 5 783 657 A 21 juillet 1998 (1998-07-21)				
		1.			
	>				
	•				
		·			
			DOMAINES TECHNIQUES		
			RECHERCHES (Int.CL7)		
	and the grant Market and the second s	•	MOTK		
	•				
ĺ			•		
i					
		_	,		
Le pre	sent rapport a été établi pour toutes les revendications				
	ieu de la recherche Date d'inchevement de la recherche		Examinatour		
	BERLIN 7 novembre 2000		Alvarez Alvarez, C		
X:parti	E : document de b	spe à la base de l'in revel anténeur, mai su après cette date mande	iversion is publié à la		

ANNEXE AU RAPPORT DE RECHERCHE EUROPEENNE RELATIF A LA DEMANDE DE BREVET EUROPEEN NO.

EP 00 40 1991

La présente annexe indique les membres de la famille de brevets relatifs aux documents brevets crés dans le rapport de recherche européenne visé ci-dessus.

Lesdits members sont contenus au fichier informatique de l'Office européen des brevets à la daté du Les renseignements fournis sont donnés à titre indicatif et n'engagent pas la responsabilité de l'Office européen des brevets.

07-11-2000

Document brevet cité au rapport de recherche	Date de publication	Membre(s) de la famille de brevet(s)	Date de publication	
WO 9817705 A	30-04-1998	US 5783657 A AU 5091998 A	21-07-1998 15-05-1998	
	* ** • •	AU 5147098 A CN 1238678 A EP 0939782 A	15-05-1998 15-12-1999	
•		EP 1027032 A US 5998570 A	08-09-1999 16-08-2000 07-12-1999	
		WO 9817243 A US 6111055 A	30-04-1998 29-08-2006	
-	,			
			•	
•				
	•		. 5	
			•	
		e e e e e e e e e e e e e e e e e e e		
			•	
	*	-	·	
		•		
•	•			

Pour tout renseignement concernant cette annexe : voir Journal Officiel de l'Office européen des brevets, No.12/82

DIALOG(R) File 351:Derwent WPI

(c) 2001 Derwent Info Ltd. All rts. reserv.

013708858

WPI Acc No: 2001-193082/*200120*

XRAM Acc No: C01-058040

Structurized oil composition, used in cosmetics, comprises a liquid oil phase structurized by a polyamide backbone polymer including heteroatom containing hydrocarbon repeat units a and 12-120C terminal or pendant fatty chain(s)

Patent Assignee: L'OREAL SA (OREA)

Inventor: FERRARI V; SIMON P

Number of Countries: 028 Number of Patents: 006

Patent Family:

Patent No	Kind	Date	Applicat No	Kind	Date	Week	
EP 1068856	A1	20010117	EP 2000401991	Α	20000710	200120	В
BR 200003279	Α	20010313	BR 20003279	A	20000714	200120	
FR 2796271	A1	20010119	FR 999177	Α	19990715	200120	
FR 2796272	. A1	20010119	FR 2000921	Α	20000124	200120	
JP 2001064514	Α	20010313	JP 2000216718	Α.	20000717	200130	
CN 1295829	Α	20010523	CN 2000128517	A	20000714	200154	

Priority Applications (No Type Date): FR 2000921 A 20000124; FR 999177 A 19990715

Patent Details:

Patent No Kind Lan Pg Main IPC Filing Notes

EP 1068856 A1 F 15 A61K-007/027

Designated States (Regional): AL AT BE CH CY DE DK ES FI FR GB GR IE IT LI LT LU LV MC MK NL PT RO SE SI

BR 200003279 A A61K-007/027

FR 2796271 A1 A61K-007/027

FR 2796272 A1 A61K-007/027

JP 2001064514 A 11 C08L-101/00

CN 1295829 A A61K-007/00

Abstract (Basic): *EP 1068856* A1

NOVELTY - Structurized composition comprises a colorant and a liquid oil phase structurized by a polymer of mol. wt. 1000-30,000, with a polyamide backbone comprising hydrocarbon repeating units containing a heteroatom(s) and a 12-120C terminal or pendant fatty chain(s) joined to the backbone via the heteroatoms, the chains forming 40-98% of the number of heteroatoms and chains.

USE - The polyamide is used to form an oil phase and this in turn is used in cosmetic composition (claimed), particularly for the care, treatment or making up of skin, long-haired leather and lips, specifically a lipstick (claimed).

ADVANTAGE - The composition has a good gloss and does not migrate and can be formed as a solid without the use of wax.

pp; 15 DwgNo 0/0

Title Terms: OIL; COMPOSITION; COSMETIC; COMPRISE; LIQUID; OIL; PHASE; POLYAMIDE; BACKBONE; POLYMER; CONTAIN; HYDROCARBON; REPEAT; UNIT; TERMINAL; PENDANT; FATTY; CHAIN

Derwent Class: A23; A96; D21

International Patent Class (Main): A61K-007/00; A61K-007/027; C08L-101/00

International Patent Class (Additional): A61K-007/02; A61K-007/021;
 A61K-007/031; A61K-007/032; A61K-007/06; A61K-007/32; A61K-007/48;
 C07D-209/08; C08G-069/44; C08G-069/48; C08K-003/00; C08K-005/00;
 C08K-005/053; C08K-005/103; C08L-077/00; C08L-091/00
File Segment: CPI