Icing Supporting Fast-Math Style Optimizations in a Verified Compiler

Heiko Becker, Eva Darulova, Magnus Myreen, Zachary Tatlock

How we develop programs

readability over performance

How we develop programs

readability over performance

compiler should make program fast

How we develop programs

The need for understandable optimizations

What does gcc's ffast-math actually do?

Ask Question

130

I understand gcc's --ffast-math flag can greatly increase speed for float ops, and goes outside of IEEE standards, but I can't seem to find information on what is really happening when it's on. Can anyone please explain some of the details and maybe give a clear example of how something would change if the flag was on or off?

I did try digging through S.O. for similar questions but couldn't find anything explaining the workings of ffast-math.

performance math gcc floating-point fast-math

The need for understandable optimizations

What does gcc's ffast-math actually do?

Ask Question

130

I understand gcc's --ffast-math flag can greatly increase speed for float ops, and goes outside of IEEE standards, but I can't seem to find information on what is really happening when it's on. Can anyone please explain some of the details and maybe give a clear example of how something would change if the flag was on or off?

I did try digging through S.O. for similar questions but couldn't find anything explaining the workings of ffast-math.

44

performance math gcc floating-point fast-math

asked 7 years, 10 months ago
viewed 41,233 times
active 10 months ago

The need for understandable optimizations

What does gcc's ffast-math actually do?

Ask Question

I understand gcc's --ffast-math flag can greatly increase speed for float ops, and goes outside of IEEE standards, but I can't seem to find information on what is really happening when it's on. Can anyone please explain some of the details and maybe give a clear example of how something would change if the flag was on or off?

130

I did try digging through S.O. for similar questions but couldn't find anything explaining the workings of ffast-math.

44

performance math gcc floating-point fast-math

asked 7 years, 10 months ago
viewed 41,233 times
active 10 months ago

1967: *McCarthy, Painter*;

Correctness of a Compiler for Arithmetic Expressions (Integer's only)

2009: *Leroy*;

Formal Verification of a Realistic Compiler

2019: *Lööw et al*;

Verified Compilation on a Verified Processor

1967: *McCarthy, Painter*;

Correctness of a Compiler for Arithmetic Expressions (Integer's only)

2009: *Leroy*;

← CompCert C compiler

Formal Verification of a Realistic Compiler

2019: *Lööw et al*;

Verified Compilation on a Verified Processor

1967: *McCarthy, Painter*;

Correctness of a Compiler for Arithmetic Expressions (Integer's only)

2009: *Leroy*;

Formal Verification of a Realistic Compiler

CompCert C compiler

2019: *Lööw et al*;

Verified Compilation on a Verified Processor

CakeML & Silver

1967: *McCarthy, Painter*;

Correctness of a Compiler for Arithmetic Expressions (Integer's only)

2009: *Leroy*;

Formal Verification of a R

Where are floating-points?

2019: *Lööw et al*;

Verified Compilation on a Verified Processor

1967: *McCarthy, Painter*;

Correctness of a Compiler for Arithmetic Expressions (Integer's only)

2009: *Leroy*;

Formal Verification of a Realistic Compiler

2015: *Boldo et al.*;

Verified Compilation of Floating-Point Programs

2019: *Lööw et al*;

Verified Compilation on a Verified Processor

Unverified Compilers (gcc, clang,) Verified Compilers (CakeML, ...)

Unverified Compilers (gcc, clang,) Verified Compilers (CakeML, ...)

• apply aggressive optimizations

Unverified Compilers (gcc, clang,) Verified Compilers (CakeML, ...)

- apply aggressive optimizations
- do not preserve IEEE754 semantics

Unverified Compilers (gcc, clang,) Verified Compilers (CakeML, ...)

- apply aggressive optimizations
- do not preserve IEEE754 semantics
- give no guarantees on the result

Unverified Compilers (gcc, clang,)

Verified Compilers (CakeML, ...)

- apply aggressive optimizations
- do not preserve IEEE754 semantics
- give no guarantees on the result

apply no floating-point optimizations

Unverified Compilers (gcc, clang,)

Verified Compilers (CakeML, ...)

- apply aggressive optimizations
- do not preserve IEEE754 semantics
- give no guarantees on the result

- apply no floating-point optimizations
- fully preserve IEEE754 semantics

Unverified Compilers (gcc, clang,)

Verified Compilers (CakeML, ...)

- apply aggressive optimizations
- do not preserve IEEE754 semantics
- give no guarantees on the result

- apply no floating-point optimizations
- fully preserve IEEE754 semantics
- guarantee preserving literal meaning

Unverified Compilers (gcc, clang,) Verified Compilers (CakeML, ...)

- apply aggressive o
- do not preserve IE
- give no guarantees

We need a semantics to handle fast-math optimizations in verified compilers

oint optimizations

754 semantics

ing literal meaning

Contributions

Icing, a nondeterministic semantics for floating-points:

- Support for subset of gcc's fast-math optimizations
- Optimization with fine-grained control
- Implementation of three optimizers
- Verification in HOL4
- Connection to CakeML

$$a + b \longrightarrow b + a$$

$$a \times b \longrightarrow b \times a$$

$$a + (b + c) \longrightarrow (a + b) + c$$

$$a \times (b \times c) \longrightarrow (a \times b) \times c$$

$$a \times b + c \longrightarrow FMA(a, b, c)$$

Example Optimizations:

$$a + b \longrightarrow b + a$$

$$a \times b \longrightarrow b \times a$$

$$a + (b + c) \longrightarrow (a + b) + c$$

$$a \times (b \times c) \longrightarrow (a \times b) \times c$$

$$a \times b + c \longrightarrow FMA(a, b, c)$$

$$a + b \longrightarrow b + a$$

$$a \times b \longrightarrow b \times a$$

$$a + (b + c) \longrightarrow (a + b) + c$$

$$a \times (b \times c) \longrightarrow (a \times b) \times c$$

$$a \times b + c \longrightarrow FMA(a, b, c)$$

$$a + b \longrightarrow b + a$$

$$a \times b \longrightarrow b \times a$$

$$a + (b + c) \longrightarrow (a + b) + c$$

$$a \times (b \times c) \longrightarrow (a \times b) \times c$$

$$a \times b + c \longrightarrow FMA(a, b, c)$$

IEEE754: Icing:

3.5 + 2.0 = 5.5

IEEE754: Icing:

 $3.5 + 2.0 = 5.5 \leftarrow$ floating-point word

IEEE754: Icing:

$$3.5 + 2.0 = 5.5$$
 floating-point word $3.5 + 2.0 =$

IEEE754:

$$3.5 + 2.0 = 5.5 \leftarrow$$
 floating-point word

Icing:

$$3.5 + 2.0 =$$

$$3.5 + 2.0 =$$

IEEE754:

$$3.5 + 2.0 = 5.5 \leftarrow$$
 floating-point word

Icing:

$$3.5 + 2.0 =$$

$$3.5 + 2.0 =$$

$$3.5 + 2.0$$

IEEE754:

$$3.5 + 2.0 = 5.5 \leftarrow$$
 floating-point word

Icing:

$$3.5 + 2.0 =$$

$$3.5 + 2.0 =$$

$$3.5 + (2.0 + 1.5) = 12.25$$

IEEE754:

$$3.5 + 2.0 = 5.5 \leftarrow$$
 floating-point word

Icing:

$$3.5 + 2.0 =$$

$$3.5 + 2.0 =$$

$$3.5 + (2.0 + 1.5) = 12.25$$

$$3.5 + (2.0 + 1.5) =$$

IEEE754:

$$3.5 + 2.0 = 5.5 \leftarrow$$
 floating-point word

Icing:

$$3.5 + 2.0 =$$

$$3.5 + 2.0 =$$

$$3.5 + 2.0$$

$$3.5 + (2.0 + 1.5) = 12.25$$

IEEE754:

$$3.5 + 2.0 = 5.5 \leftarrow \text{flo}$$

$$3.5 + (2.0 + 1.5) = 12.$$

Icing:

Icing's semantics

Allowed Optimization:

$$a \times b + c \longrightarrow FMA(a, b, c)$$

 $a \times b \longrightarrow b \times a$

opt:
$$(x * 2.4 + y)$$

lcing's semantics

Allowed Optimization:

$$a \times b + c \longrightarrow FMA(a, b, c)$$

 $a \times b \longrightarrow b \times a$

opt:
$$(x * 2.4 + y)$$

lcing's semantics

Allowed Optimization:

$$a \times b + c \longrightarrow FMA(a,b,c)$$

 $a \times b \longrightarrow b \times a$

fine-grained control
$$\longrightarrow$$
 opt: $(x * 2.4 + y)$

Icing's semantics

Allowed Optimization:

$$a \times b + c \longrightarrow FMA(a, b, c)$$

 $a \times b \longrightarrow b \times a$

Icing's semantics

Allowed Optimization: $a \times b + c \longrightarrow FMA(a, b, c)$

Icing's semantics

Modelling the state-of-the-art

Unverified Compilers (gcc, clang,)

Verified Compilers (CakeML, ...)

- aggressive optimizations
- no IEEE754 semantics
- no guarantees on the result

- no floating-point optimizations
- IEEE754 semantics
- introduces no new behaviour

Icing provides:

greedy optimizer

IEEE754 Translator

Modelling the state-of-the-art

Unverified Compilers (gcc, clang,)

Verified Compilers (CakeML, ...)

- aggressive optimizations
- no IEEE754 semantics
- no guarantees on the result

- no floating-point optimizations
- IEEE754 semantics
- introduces no new behaviour

What can we prove about the optimizers

Greedy optimizer:

 \vdash if evaluating the greedily optimized program p returns v then v is a possible result of evaluating p with the optimizations of the greedy optimizer

The greedy optimizer applies optimizations with respect to Icing semantics

IEEE754 translator:

 \vdash after running the IEEE754 translator on program p no optimizations can be applied by Icing semantics

 \vdash after running the IEEE754 translator on program p Icing semantics are deterministic no matter which optimizations are allowed

The IEEE754 translator preserves literal meaning (like CompCert/CakeML)

$$a \times (b+c) \longrightarrow a \times b + a \times c$$

$$a \times (b+c) \longrightarrow a \times b + a \times c$$

$$x * (y + z)$$

$$a \times (b + c)$$
 $x * (y + z)$
Compiler
$$x * y + x * z$$

$$a \times (b + c)$$
 $a \times b + a \times c$
 $x * (y + z)$

Compiler

 $x * y + x * z$

Semantics

 $x1 * y + x2 * z$

$$a \times (b + c)$$
 \rightarrow $a \times b + a \times c$
 $x * (y + z)$ Compiler

 $x * y + x * z$

Semantics

 $x1 * y + x2 * z$

What if these do not match?

Enable fast-math mode. This defines the ___FAST_MATH__ preprocessor maclossy assumptions about floating-point math. These include:

- Floating-point math obeys regular algebraic rules for real numbers (e.g.
 * c == a * c + b * c),
- operands to floating-point operations are not equal to NaN and Inf, and
- +0 and -0 are interchangeable.

Enable fast-math mode. This defines the ___FAST_MATH__ preprocessor maclossy assumptions about floating-point math. These include:

- Floating-point math obeys regular algebraic rules for real numbers (e.g.
 * c == a * c + b * c),
- operands to floating-point operations are not equal to NaN and Inf, and
- +0 and -0 are interchangeable.

Enable fast-math mode. This defines the __FAST_MATH__ preprocessor maclossy assumptions about floating-point math. These include:

- Floating-point math obeys regular algebraic rules for real numbers (e.g.
 * c == a * c + b * c),
- operands to floating-point operations are not equal to NaN and Inf, and
- +0 and -0 are interchangeable.

gcc: isNaN (c) → F

Enable fast-math mode. This defines the __FAST_MATH__ preprocessor maclossy assumptions about floating-point math. These include:

- Floating-point math obeys regular algebraic rules for real numbers (e.g.
 * c == a * c + b * c),
- operands to floating-point operations are not equal to NaN and Inf, and
- +0 and -0 are interchangeable.

Precondition allows to check condition before applying a rewrite

Enable fast-math mode. This defines the __FAST_MATH__ preprocessor maclossy assumptions about floating-point math. These include:

- Floating-point math obeys regular algebraic rules for real numbers (e.g.
 * c == a * c + b * c),
- operands to floating-point operations are not equal to NaN and Inf, and
- +0 and -0 are interchangeable.

gcc: isNaN (c) → F

Precondition allows to check condition before applying a rewrite

Enable fast-math mode. This defines the __FAST_MATH__ preprocessor maclossy assumptions about floating-point math. These include:

- Floating-point math obeys regular algebraic rules for real numbers (e.g.
 * c == a * c + b * c),
- operands to floating-point operations are not equal to NaN and Inf, and
- +0 and -0 are interchangeable.

Precondition allows to check condition before applying a rewrite

Enable fast-math mode. This defines the __FAST_MATH__ preprocessor maclossy assumptions about floating-point math. These include:

- Floating-point math obeys regular algebraic rules for real numbers (e.g.
 * c == a * c + b * c),
- operands to floating-point operations are not equal to NaN and Inf, and
- +0 and -0 are interchangeable.

How can the preconditions be checked

Icings interface to external tools

Discharge checks in-place

⇒ checked before applying optimization

Record assumed proposition

$$c = c \longrightarrow isNaN(c) \longrightarrow False$$

$$\longrightarrow complex global property$$

$$\Longrightarrow checked offline after compiling$$

What does gcc's fast-math actually do?

Nondeterministic Icing (with optimizations) deterministic Icing (without optimizations) CakeML source

Outlook:

- integrate with external tools
- verify larger optimizations
- integrate into CakeML semantics