Théorème 0.0.1:

Soit $u_0 \in C^{\infty}([0,2\pi];\mathbb{C})$ périodique. On considère l'équation de Schrodinger :

$$\begin{cases}
i\partial_t u = \partial_{xx}^2 u & \text{sur } \mathbb{R}_+ \times [0, 2\pi] \\
u_{|t=0} = u_0 & \text{sur } [0, 2\pi]
\end{cases}$$
(1)

Alors (1) possède une unique solution u dans $C^{\infty}(\mathbb{R}_+^* \times (0, 2\pi); \mathbb{C})$. De plus, — $\forall t > 0$, $||u(t,.)||_{L^2(0,2\pi)} = ||u_0||_{L^2(0,2\pi)}$ — $\forall k \in \mathbb{N}$, $u(2k\pi,.) = u_0$ — $u(t,.) \xrightarrow{CVU} u_0$

Pour l'existence et l'unicité d'une solution, on procède par analyse-synthèse.

Analyse:

Supposons qu'il existe $u \in C^{\infty}(\mathbb{R}_{+}^{*} \times [0, 2\pi]; \mathbb{C})$ solution de (1). On peut développer u en série de fourier dans $L^2(0,2\pi): u(t,x) = \sum_{n=-\infty}^{+\infty} c_n(t)e^{inx}$, avec convergence uniforme. On remarque que les c_n sont C^{∞} . En effet, pour tout $k \in \mathbb{N}$, $\partial_t^k u$ est C^{∞} et donc intégrable en espace sur $[0,2\pi]$. On peut donc appliquer le théorème de dérivation sous l'intégrale dans $c_n(t) = (2\pi)^{-1} \int u(t,x)e^{-inx}dx$.

On peut ainsi en déduire les développement en série de Fourier des dérivées de $u: \partial_t u(t,x) = \sum_{n=-\infty}^{+\infty} ic'_n(t)e^{inx}$ et $\partial_{xx}^{2}u(t,x) = -\sum_{n=-\infty}^{+\infty} n^{2}c_{n}(t)e^{inx}.$

L'équation (1) donne alors la relation $ic'_n(t) = -n^2c_n(t)$, i.e. $c_n(t) = e^{in^2t}c_n(0)$ (IPP pour ces coeff). On a donc

$$u(t,x) = \sum_{n=-\infty}^{+\infty} c_n(0)e^{in(x+nt)}$$

En particulier, on peut dominer chaque coefficient (à constante près) par $c_n(0)$. On a $\sum_n |c_n(0)| < +\infty$ $(c_n(u_0) \le (1/n)^2 + c_n(u'_0)^2$ qui est sommable car $u'_0 \in L^2$). Donc comme chaque $(x,t) \mapsto c_n(0)e^{in(x+nt)}$ est C^{∞} , u est C^{∞} .

Synthèse:

On vient de voir que $u:(t,x)\mapsto \sum_{n=-\infty}^{+\infty}c_n(0)e^{in(x+nt)}$ est C^{∞} . On peut dériver :

$$\forall (t,x) \in \mathbb{R}_+^* \times [0,2\pi], \quad \partial_t u(t,x) = \sum_{n \in \mathbb{Z}} i n^2 c_n(0) e^{in(x+nt)} = -i \partial_{xx}^2 u(t,x)$$

Avec $u(0,x) = \sum_{n \in \mathbb{Z}} c_n(0)e^{inx} = u_0(x)$. Donc u est bien solution de (1).

On vérifie maintenant les derniers points :

$$\forall t > 0, \quad \frac{1}{2\pi} \int_0^{2\pi} |u(t,x)|^2 dx = \sum_{n \in \mathbb{Z}} |c_n(t)|^2 = \sum_{n \in \mathbb{Z}} |c_n(0)|^2 = \frac{1}{2\pi} \int_0^{2\pi} |u_0(x)|^2 dx \quad \text{ par Plancherely }$$

$$\forall x \in [0,2\pi], \ \forall k \in \mathbb{N} \quad u(2k\pi,x) = \sum_{k \in \mathbb{Z}} c_n(0) e^{in(x+2kn\pi)} = \sum_{k \in \mathbb{Z}} c_n(0) e^{inx} = u_0(x)$$

$$||u(t,.) - u_0||_{L^{\infty}(0,2\pi)} \leq \sum_{n \in \mathbb{Z}} |c_n(0) \left(1 - e^{in^2 t}\right)| \xrightarrow[t \to 0]{}$$
 par convergence dominée