

激光3D扫描测距仪

海克斯康二组 2015.5.10

研究背景

Hokuyo生产的2D激光雷达

研究背景

3D扫描如何实现?

- 1. 采用线激光器
- 2. 将2D激光雷达绕固定轴旋转

研究背景

项目方案:线激光器

一字线红色激光器

价格高的原因

使用激光相位差测距 高速振镜的高成本 矫正算法 人工成本

低成本方案

舵机 三角测距 Matlab开源工具箱 忽略人工成本

测量范围: 最远6m

测量精度:(测量距离与实际距离的误差)

最远6m处最大80mm误差,近距离(<1m),

误差水平在 5mm以内

扫描范围:180度

扫描速度:30 samples/sec (比如以1度角度

增量扫描180度,耗时6秒)

相机矫正前后的图像


```
Calibration results (with uncertainties):

Focal Length: fc = [935.44200 \ 929.73860]? [11.29945 \ 10.64268]

Principal point: cc = [149.00014 \ 233.25474]? [17.13538 \ 11.11605]

Skew: alpha\_c = [0.00000]? [0.00000] => angle \ of \ pixel \ axes = 90.00000? [0.00000]0.00000 degrees

Distortion: cc = [-0.13196 \ -0.05787 \ -0.00358 \ -0.01149 \ 0.00000]? [0.04542 \ 0.12717 \ 0.00195 \ 0.00565 \ 0.00000]

Pixel error: cc = [0.24198 \ 0.25338]
```

矫正结果

研究内容: 图像获取

OV7725摄像头数据读取与现实

研究内容: 图像获取

OV7725摄像头数据读取与现实

OND	SDA	HREF	NC	D6	D4	D2	D0	NC	PWDN
))	SCL	VSYNC	PCLK	D7	D5	D3	DI	GND	FSIN

引脚	定义			
SCL	I2C			
SDA	I2C			
VSYNC	场信 号 输出			
HREF	行信号输出			
PCLK	单个像素点时钟			
NC	时钟输入			
FSIN	外部帧同步			
PWND	休眠控制			

研究内容: 图像获取

OV7725摄像头数据读取与现实

图像中被红线圈出来的就是电线的图像

研究内容:STM32核心板

总结与展望

Thank You