

- Standard deviation = $\sigma_X = \sqrt{V(X)}$ 2.6.4 K-th moment of *X*
- **Definition:** $E(X^k)$, use $g(x) = x^k$ in expectation of a fn 2.6.5 Properties of Expectation
- 1. $E(aX + \bar{b}) = aE(X) + \bar{b}$ 2. $V(X) = E(X^2) - [E(X)]^2$ 3. $V(aX + b) = a^2V(X)$
- 2.7 Chebyshev's Inequality
- Let X be an R.V. with $E(X) = \mu$, $V(X) = \sigma^2$ • $\forall k > 0$, $\Pr(|X - \mu| > k\sigma) \le \frac{1}{k^2}$
- Alternatively, $\Pr(|X \mu| \le k\sigma) \ge 1 \frac{1}{L^2}$ Holds for all distributions with finite mean and variance
 Gives a lower bound but not exact probability.
- 3 MA1521 Shit 3.1 Taylor Series of f at a
- $f(x) = \sum_{k=0}^{\infty} \frac{f^{(k)}(a)}{k!} (x a)^k$ **3.2** MacLaurin Series
- Taylor series of f at 0, i.e. $f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n$
- 3.3 List of common MacLaurin Series $\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n, -1 < x < 1, R = 1$
- $\frac{1}{1+x} = \sum_{n=0}^{\infty} (-1)^n x^n, -1 < x < 1, R = 1$ $\frac{1}{1+x^2} = \sum_{n=0}^{\infty} x^2 n, -1 < x < 1, R = 1$
- $ln(1+x) = \sum_{n=1}^{\infty} \frac{(-1)^{n-1} x^n}{n}, -1 < x < 1, R = 1$ $\sin x = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{(2n+1)!}, -\infty < x < \infty, R = \infty$
- $\cos x = \sum_{n=1}^{\infty} \frac{(-1)^n x^2 n}{(2n)!}, -\infty < x < \infty, R = \infty$
- $e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}, -\infty < x < \infty, R = \infty$
- $\tan^{-1} x = \sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1} x^{2n+1}, -1 \le x \le 1, R = 1$ $\frac{1}{(1-x)^2} = \sum_{n=1}^{\infty} nx^{n-1}, -1 < x < 1, R = 1$
- $\left| \bullet \right| \frac{1}{(1-x)^3} = \frac{1}{2} \sum_{n=2}^{\infty} n(n-1)x^{n-2}, -1 < x < 1, R = 1$
- $(1+x)^k = \sum_{n=0}^{\infty} {k \choose n} x^n, -1 < x < 1, R = 1$
- $(1+x)^n = 1 + nx + \frac{n(n-1)}{2!}x^2 + \frac{n(n-1)(n-2)}{3!}x^3 + ..., -1 < x < 1$
- 3.4 Indefinite Integral
- Denoted by $\int f(x)dx = F(x) + C$
- 3.5 Rules of Indefinite Integration
 - 1. $\int kf(x)dx = k \int f(x)dx$ 2. $\int -f(x)dx = -\int f(x)dx$
 - 3. $[f(x) \pm g(x)]dx = [f(x)dx \pm [g(x)dx]$

