Devoir Commun de Mathématiques SECONDES

Durée 2 heures. Calculatrice autorisée.

Attention!

- > Toute réponse doit être justifiée.
- La rédaction et la présentation seront pris en compte.

EXERCICE 1: question sur la leçon (2 points)

- 1. Donner la définition d'une fonction décroissante sur un intervalle I.
- 2. Montrer que la fonction f définie par $f(x) = x^2$ est décroissante sur l'intervalle $]-\infty; 0]$.

EXERCICE 2: Vrai ou Faux ? (3 points)

Les propositions suivantes sont elles vraies ou fausses ? Justifier.

Proposition 1 : « Si $\overrightarrow{AB} = \overrightarrow{DC}$ alors $\overrightarrow{AD} = \overrightarrow{BC}$ »

Proposition 2 : « Si $x \ge -1$ alors $x^2 \ge 1$.»

Proposition 3 : « Soit f une fonction définie sur [0;2]. Si f(2) > f(0) alors f est croissante sur [0;2].»

EXERCICE 3: Un peu de géométrie (4 points)

Dans un repère (O;I,J), on considère les points A(2;-3), B(3,5;5), C(-2;-1) et F(7,5;3)

- 1. Déterminer par un calcul les coordonnées de D tel que ABCD est un parallélogramme.
- 2. Déterminer les coordonnées de E tel que A est le milieu de [CE]
- 3. Pour cette question, on suppose que E(6;-5). Calculer les coordonnées des vecteurs $\overline{\mathbf{AB}}$ et $\overline{\mathbf{EF}}$. Que peut on en déduire pour les droites (AB) et (EF) ?

EXERCICE 4: Un problème d'échantillonnage (2 points)

Habituellement pour 205 naissances, il naît 105 garçons.

1. Calculer la proportion p de garçons . p sera arrondi au centième.

A Ufa, en Russie, dans les années 1980, parmi les 227 naissances des personnes exposées à des pesticides dans une usine d'engrais, 91 sont des garçons.

- 2. Calculer la fréquence f de garçons qui sont nés à Ufa.
- 3. Pensez vous que l'on puisse parler d'influence des pesticides sur la naissance des garçons ?

EXERCICE 5: Deux algorithmes (2 points)

Algorithme1:

Compléter cet algorithme pour qu'il calcule les coordonnées du vecteur \overrightarrow{AB}

Variables: x_A ; x_B ; y_A ; y_B ; X ; Y				
Entrée : Saisir x_A Saisir x_B				
$\frac{\text{Traitement}}{\text{X prend la valeur } \boldsymbol{x}_{\text{B}} - \boldsymbol{x}_{\text{A}}}$				
Sortie: Afficher X				
I				

Algorithme 2:

Cet algorithme permet de vérifier si les vecteurs $\vec{u} \begin{pmatrix} a \\ b \end{pmatrix}$

et $\vec{v} \begin{pmatrix} x \\ y \end{pmatrix}$ sont colinéaires. Compléter le.

<u>Variables</u> : a;b;x;y
Entrée: Saisir a Saisir b Saisir x Saisir y Traitement
Si
Alors afficher «
Sinon afficher «

EXERCICE 6: Problème ouvert (3 points)

ABCD est un trapèze et M est un point du segment [AB]. On note x la distance AM.

Le graphique représente les aires du triangle CBM et du trapèze AMCD.

Déterminer les distances AB; AD et DC

EXERCICE 7: Les fonctions (4 points)

Le martin pêcheur est un oiseau qui se nourrit de poissons qu'il pêche : Il plonge dans l'eau sur de petits poissons.

On a schématisé son plongeon par la fonction f définie par $f(t)=(t-4)^2-1$ la variable t représente le temps en seconde, f(t) donne la position de l'oiseau en dm. L'axe des abscisses représente le niveau de l'eau.

Partie A : Lecture graphique : Conjectures

Compléter les tableaux suivants

Valeurs de <i>t</i>	2	6
Signe de $f(t)$		

Valeurs de <i>t</i>	2	6
Variations de $f(t)$		

Partie B : Toutes les réponses doivent être justifiées par un calcul (une lecture graphique ne rapportera pas de point)

- 1. a). Montrer que (t-5)(t-3)=f(t)
 - b). Justifier le premier tableau en étudiant le signe de f.
- 2. On admet que f est décroissante sur [2;4].
 - Si t appartient à l'intervalle [2; 3,5], donner un encadrement de f(t).
- 3. Montrer que -1 est le minimum de la fonction f.

Partie C:

- 1. Quelle est la position de l'oiseau pour un temps compris entre 2 et 3,5 secondes?
- 2. L'oiseau ne descend pas plus bas que 10 cm sous l'eau. Vrai ou Faux ? Justifier.