ETL from InCor ePR to OMOP CDM

Daniel Mário de Lima

2019-05-02

Summary

- Introduction
 - Motivation
 - Objectives
- Concepts
 - Health Information Systems
 - Clinical Research
 - KDD
 - OMOP CDM
- Method
 - Evaluation and Results
- Conclusion

Introduction

- 2010 -- 2020
- Web 2.0 ---> 3.0
- Parallel/Distributed
- Cloud Computing
- Social Networks
- Big Data
- Large-Scale KDD
- Machine Learning

Introduction

- 2010 -- 2020
- Web 2.0 ---> 3.0
- Parallel/Distributed
- Cloud Computing
- Social Networks
- Big Data
- Large-Scale KDD
- Machine Learning

- Volume
- Velocity
- Variety
- Veracity
- Value

(Gudivada, Baeza-Yates, Raghavan, 2015)

Objectives

Prepare a new ETL (extract-transform-and-load) layer for InCor's ePR;

 Curate a anonymized database following an international standardized data model for clinical research (OMOP CDM);

 Evaluate the new database quality at recreating patient cohorts of a previous reference study.

Concepts

Healthcare Information Systems

Hospital-centric

- HIS (Hospital Information System)
- Registers all hospital activities
- Patients, Materials, Nursery, Administrative, Billing, Pharmacy...

Patient-centric

- ePR (electronic patient records)
- Registers interactions between patients and providers
- Visits, Hospitalization, Medication, Tests, Procedures...

Clinical Research

Evidence-based diagnosis (Cruz e Pimenta, 2005)

- V. expert opinions, case reports, descriptive studies
- IV. non-experimental studies from several sources
- III. non-randomized trials, cohorts, time series, case-control studies
- II. randomized controlled trials (RCT)
- I. systematic reviews of RCTs

Clinical Research

Evidence-based diagnosis (Cruz e Pimenta, 2005)

- I. systematic reviews of RCTs
- II. randomized controlled trials (RCT)
- III. non-randomized trials, cohorts, time series, case-control studies
- IV. non-experimental studies from several sources
- V. expert opinions, case reports, descriptive studies

"5S" Model

(Haynes, 2007)

Micromedex, Facts & Comparisons, ePocrates,

MedCalc 3000, Diagnosasurus, Mobile Apps

Clinical Key, AccessMedicine, STAT!Ref, UptoDate,

PubMed (Review limit)

retrieved 2019-03-15)

KDD

Knowledge Discovery in Databases

Clinical Data Acquisition

Ethics

- Morals, legal codes, Ethos, Hippocrates, Spinoza
- Nuremberg Trials (1945-49)
- Belmont Report (1979)
 - Respect for Persons, Beneficence, Justice
- Health Insurance Portability and Accountability Act (HIPAA)
 - Protected Health Information (PHI)
 - name, address, birth date, Social Security Number, etc.
 - De-Identified Health Information
 - Research clause

OLTP vs OLAP

On-Line Transaction Processing

- Stores an Information System's data
- ACID protocol (atomicity, consistency, isolation, durability)
- Performance e scalability
- Relational Model

On-Line Analytical Processing

- Retrieval and interpretation of data in a DB
- Organization, aggregation and summarization of values
- Dimensional Modelling (via OLAP cubes)
- Execution over Relational DBs (ROLAP)

ETL

Extract, Transform & Load

Usage of data definition and manipulation languages (DDL/DML) to transport data acquired from several DBs to a **data mart** for analysis.

OMOP ---> OHDSI

Observational Medical Outcomes Partnership

Observational Health Data Sciences and Informatics

Common Data Model (CDM)

CDM Metadada

Example

Person

person_id	year_of_birth	gender_concept_id
128172	1985	8205

Condition_Occurrence

condition_occurrence_id	person_id	condition_concept_id	start_date	end_date
8127	128172	812739	2015-01-02	2017-01-01

Concept

concept_id	concept_name	vocabulary_id	
812739	PNEUMONIA	InCor	

Example

Concept

concept_id	concept_name	vocabulary_id
812739	PNEUMONIA	InCor
53084003	Bacterial pneumonia	SNOMED-CT
8783836492	J15 - Pneumonia bacteriana não classificada em outra parte	CID-10

Concept_Relationship

concept_id_1	concept_id_2	relationship_id
812739	53084003	Maps to
812739	8783836492	Subsumes
53084003	8783836492	Subsumes

Standard CDM Vocabularies

Data Mining

Exploratory Data Analysis, using computable [mathematical and statistical] properties of objects under study.

Fayyad et al, 1996:

- Regression
- Classification
- Cluster analysis
- Summarization, dimensionality reduction
- Dependency modelling
- Anomaly, change and deviation detection

Method

InCor SI³ ---> InCor-CDM

Objective: Prepare a CDM DB for clinical research (InCor-CDM)

Dataset: InCor SI³ (ePR / EHR)

Domínio	SI3-2016	Pauá	SI3-2018	InCor-CDM
Person	1.116	323	1.346	946
Visit Occurrence	6.427	5.686	7.499	7.305
Condition Occurrence	1.205	1.007	1.361	1.324
Procedure Occurrence	45.024	144	53.945	51.479
Drug Exposure	83.283	2.775	100.052	38.962
Measurement	22.025	20.528	31.095	30.177
Death	17	21	18	18

×1000

ETL

1. Pseudonymize Patients

- a. All PKs are reassigned to random new keys
- b. Patient and Visit PKs are stored in a private table, for medical use if needed

2. For each CDM table:

- a. Find source tables in SI³
- b. Join patient id and pseudonym PK
- c. Truncate PHI values -- k-anonimização
- d. Join CDM standard concept
- e. Project to CDM schema

person

person_id year_of_birth month_of_birth gender_concept_id race_concept_id gender_source_val race_source_value

visit

visit_id person_id concept_id start_date end_date

...

ETL

1. Pseudonymize Patients

- a. All PKs are reassigned to random new keys
- b. Patient and Visit PKs are stored in a private table, for medical use if needed

2. For each CDM table:

- a. Find source tables in SI³
- b. Join patient id and pseudonym PK
- c. Truncate PHI values -- k-anonimização
- d. Join CDM standard concept
- e. Project to CDM schema

ETL

Evaluation

OHDSI tools (Achilles Heel):

Referential integrity (FKs)

Consistence

Missing data

Veracity

Visual Analytics

Evaluation

OHDSI tools (Achilles Heel):

Referential integrity (FKs), Consistence, Missing data, Veracity

2. Reselect Abrahao et al (2010) CVD cohort

Patients diagnosed with CardioVascular Disease and under treatment with statins.

CVD cohort

(Abrahao et al, 2010)

Varying parameters / thresholds

Table 5 - Varying condition start periods.

(years) Criteria	2003-2013	2000-2013	2000-2016
Initial		778,015	
Dx, 18+, M/F		303,847	
CVD	45,710	49,942	63,656
People	39,498	43,293	54,126

Table 6 - Varying 2nd visit event start after index.

(days) Criteria	All	365	180	90
Initial		778	,015	
Dx, 18+, M/F		303	,847	
CVD	45,710	44,228	43,950	43,667
People	39,498	35,457	32,767	29,414

Information retrieval statistics

Table 5 - Varying condition start periods.

(years) Criteria	2003-2013	2000-2013	2000-2016
Initial		778,015	
Dx, 18+, M/F		303,847	
CVD	45,710	49,942	63,656
People	39,498	43,293	54,126

Table 6 - Varying 2nd visit event start after index.

(days) Criteria	All	365	180	90
Initial		778	,015	
Dx, 18+, M/F		303	,847	
CVD	45,710	44,228	43,950	43,667
People	39,498	35,457	32,767	29,414

#	TPR	FPR	PPV	NPV	ACC	F1
1	.905	.041	.674	.990	.953	.772
2	.901	.040	.678	.990	.954	.774
3	.903	.040	.677	.990	.954	.774
4	.904	.041	.676	.990	.954	.773
5	.905	.041	.674	.990	.953	.772
6	.907	.052	.623	.990	.944	.738
7	.907	.052	.622	.990	.944	.738
8	.907	.052	.620	.990	.943	.736
9	.889	.040	.680	.990	.954	.775
10	.877	.031	.727	.988	.960	.795
11	.829	.027	.743	.983	.960	.784
12	.754	.023	.752	.976	.957	.753

ROC curve from previous table (AUC=0.938)

#	TPR	FPR	PPV	NPV	ACC	F1
1	.905	.041	.674	.990	.953	.772
2	.901	.040	.678	.990	.954	.774
3	.903	.040	.677	.990	.954	.774
4	.904	.041	.676	.990	.954	.773
5	.905	.041	.674	.990	.953	.772
6	.907	.052	.623	.990	.944	.738
7	.907	.052	.622	.990	.944	.738
8	.907	.052	.620	.990	.943	.736
9	.889	.040	.680	.990	.954	.775
10	.877	.031	.727	.988	.960	.795
11	.829	.027	.743	.983	.960	.784
12	.754	.023	.752	.976	.957	.753

Figure 1 – Empirical ROC curve for Table 8 (AUC = 0.938).

Conclusion

Conclusion

- InCor-CDM allows cohort selection for clinical research
- Data quality can (and should) improve
 - Agreement with Abrahao et al 2012:
 - Precision = 62~75%
 - Recall = 75~91%
 - F1 = 74~80%
 - AUC = 0.938

Future work

Add complex features (e.g. PACS) to InCor-CDM

Evaluate quality at estimating population-level effects

Evaluate quality between different data mining techniques

This project is supported CAPES, CNPq and FAPESP (grant #2018/11424-0).