UNFOLDING

On note H l'ensemble des matrices de la forme $\sigma\begin{pmatrix} 1 & X \\ 0 & 1 \end{pmatrix}\begin{pmatrix} g & 0 \\ 0 & g \end{pmatrix}\sigma^{-1}$ oÃź X est dans M_n et g dans G_n et $H_P = H \cap P_{2n}$. On note θ le caractÃÍre sur H dÃl'fini par $\psi(Tr(X))$.

Proposition 0.1. Soit $f \in S(G_{2n})$, alors on a

$$(1) \quad \int_{H}f(s)\theta(s)^{-1}ds=\int_{H_{P}\cap N_{2\pi}\backslash H_{P}}\int_{H\cap N_{2\pi}\backslash H}W_{f}(\xi_{p},\xi)\theta(\xi)^{-1}\theta(\xi_{p})^{-1}d\xi d\xi_{p}.$$

Démonstration. On montre la proposition par rÃl'currence sur n. Pour n=1, H_P est trivial, σ est trivial et $H \simeq N_2 Z(G_2)$. Le membre de droite est alors

(2)
$$\int_{\mathsf{F}^*} W_{\mathsf{f}} \left(1, \begin{pmatrix} z & 0 \\ 0 & z \end{pmatrix} \right) dz = \int_{\mathsf{F}^*} \int_{\mathsf{N}_2} \mathsf{f} \left(\mathfrak{u} \begin{pmatrix} z & 0 \\ 0 & z \end{pmatrix} \right) \psi(\mathfrak{u})^{-1} d\mathfrak{u} dz.$$

Ce qui est bien l'AfgalitAf voulue. Supposons maintenant que n > 1 et que la proposition soit vrai au rang n - 1.

Le groupe $H \cap N_{2n} \setminus H$ est isomorphe \tilde{A} ă l'ensemble des matrices de la forme $\sigma\begin{pmatrix}1&Y\\0&1\end{pmatrix}\begin{pmatrix}h&0\\0&h\end{pmatrix}\sigma^{-1}$ o \tilde{A} ź Y est une matrice triangulaire inf \tilde{A} l'rieure stricte de taille n et h dans $N_n \setminus G_n$. On note H' le groupe $H \cap N_{2n} \setminus H$ au rang n-1, c'est l'ensemble des matrices de la forme de la forme $\sigma\begin{pmatrix}1&Y'\\0&1\end{pmatrix}\begin{pmatrix}h'&0\\0&h'\end{pmatrix}\sigma^{-1}$ o \tilde{A} ź Y' est une matrice triangulaire inf \tilde{A} l'rieure stricte de taille n-1 et h' dans $N_{n-1} \setminus G_{n-1}$. On note \tilde{H} l'ensemble des matrices de la forme $\sigma\begin{pmatrix}1&\tilde{Y}\\0&1\end{pmatrix}\begin{pmatrix}\tilde{h}&0\\0&\tilde{h}\end{pmatrix}\sigma^{-1}$ o \tilde{A} ź \tilde{Y} est de la forme $\begin{pmatrix}0_{n-1}&0\\\tilde{y}&0\end{pmatrix}$ avec $\tilde{y}\in F^{n-1}$ et \tilde{h} est dans $P_n \setminus G_n$. On voit le groupe H' comme sous-groupe de $H \cap N_{2n} \setminus H$, en rajoutant des 0 sur la derni \tilde{A} l're ligne et colonne de Y' et voyant h' comme un \tilde{A} l'l \tilde{A} l'ment de $N_n \setminus G_n$. On en d \tilde{A} l'duit que $H \cap N_{2n} \setminus H = \tilde{H}H'$.

De mÅlme, on dispose d'une dÃl'composition, $H_P \cap N_{2n} \setminus H_P = \tilde{H}_P H'_{P'}$, oÃź $H'_{P'}$ est le groupe $H_P \cap N_{2n} \setminus H_P$ au rang n-1 et \tilde{H}_P est l'ensemble des matrices de la forme $\sigma \begin{pmatrix} 1 & \tilde{Z} \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \tilde{p} & 0 \\ 0 & \tilde{p} \end{pmatrix} \sigma^{-1}$ oÃź \tilde{Z} est une matrice de la forme $\begin{pmatrix} 0_{n-1} & 0 \\ \tilde{z} & 0 \end{pmatrix}$ avec $\tilde{z} \in F^{n-1}$ et \tilde{p} est dans $P_{n-1}U_n \setminus P_n$.

On utilise ces d $\tilde{\mathbf{A}}$ l'compositions pour $\tilde{\mathbf{A}}$ l'crire le membre de droite de la proposition sous la forme

$$(3) \qquad \int_{\tilde{H}_{\mathbb{P}}} \int_{H'} \int_{\tilde{H}} \int_{H'} W_{f}(\tilde{\xi}_{\mathfrak{p}} \xi_{\mathfrak{p}}', \tilde{\xi} \xi') |\det \xi_{\mathfrak{p}}' \xi'|^{-1/2} d\xi' d\tilde{\xi} d\xi_{\mathfrak{p}}' d\tilde{\xi}_{\mathfrak{p}},$$

on a choisi les repr \tilde{A} l'sentants des matrices Y, \tilde{Y} , Z et \tilde{Z} de sorte que le caract \tilde{A} lre θ soit trivial.

1

On fixe $\tilde{\xi}_p \in \tilde{H}_P$ et $\tilde{\xi} \in \tilde{H}$. On pose $f' = L(\tilde{\xi}_p)R(\tilde{\xi})f$, on a alors

De plus,

(5)
$$W_{f'}(\xi_p', \xi') = \int_{N_{2n-2}} \int_V f'(\xi_p'^{-1} v u \xi') \psi(u)^{-1} \psi(v)^{-1} dv du,$$

oÃź V est l'ensemble des matrices de N_{2n} avec seulement les deux derniÃÍres colonnes non triviales, on dispose donc d'une dÃľcomposition $N_{2n} = N_{2n-2}V$. On effectue le changement de variable $\nu \mapsto \xi'_p \nu \xi'_p^{-1}$, ce qui donne

(6)
$$W_{f'}(\xi_p', \xi') = |\det \xi_p'|^2 \int_{N_{2n-2}} \int_{V} f'(\nu \xi_p'^{-1} u \xi') \psi(u)^{-1} \psi(\nu)^{-1} d\nu du.$$

On note $\tilde{f}'(g) = |\det g|^{-1} \int_V f'(\nu g) \psi(\nu)^{-1} d\nu$ pour $g \in G_{2n-2}$; alors $\tilde{f}' \in \mathcal{S}(G_{2n-2})$. On obtient ainsi l' \tilde{A} l'galit \tilde{A} l'

(7)
$$W_{f'}(\xi_{\mathfrak{p}}', \xi') = |\det \xi_{\mathfrak{p}}' \xi'| W_{\tilde{f}'}(\xi_{\mathfrak{p}}', \xi').$$

Appliquons l'hypothÃÍse de rÃľcurrence,

$$\begin{split} \int_{H'_{p'}} \int_{H'} W_{f'}(\xi'_p, \xi') |\det \xi'_p \xi'|^{-1} d\xi' d\xi'_p = \\ \int_{H'_{p'}} \int_{H'} W_{\bar{f'}}(\xi'_p, \xi') d\xi' d\xi'_p = \int_{H_{n-1}} \tilde{f}'(s) \theta(s)^{-1} ds = \\ \int_{H_{n-1}} |\det s|^{-1} \int_{V} f(\tilde{\xi}_p^{-1} v s \tilde{\xi}) \theta(s)^{-1} \psi(v)^{-1} dv ds, \end{split}$$

o \tilde{A} ź l'on note H_{n-1} le groupe H au rang n-1.

Il nous faut maintenant int \tilde{A} l'grer sur $\tilde{\xi}_p$ et $\tilde{\xi}$ pour revenir \tilde{A} ă notre membre de droite. Explicitons l'int \tilde{A} l'grale sur $\tilde{\xi}_p$ en le d \tilde{A} l'composant sous la forme $\sigma \begin{pmatrix} 1 & \tilde{Z} \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \tilde{p} & 0 \\ 0 & \tilde{p} \end{pmatrix} \sigma^{-1}$. On obtient alors

$$\int_{P_{n-1}U_n\setminus P_n}\int_{F^{n-1}}\int_{\tilde{H}}\int_{H_{n-1}}|\det s|^{-1}\int_V f\left(\sigma\begin{pmatrix}\tilde{\mathfrak{p}}^{-1}&0\\0&\tilde{\mathfrak{p}}^{-1}\end{pmatrix}\begin{pmatrix}1&-\tilde{Z}\\0&1\end{pmatrix}\sigma^{-1}\nu s\tilde{\xi}\right)\theta(s)^{-1}\psi(\nu)^{-1}d\nu dsd\tilde{\xi}d\tilde{Z}d\tilde{\mathfrak{p}}.$$

La conjugaison de ν par σ^{-1} s'Ãl'crit sous la forme $\begin{pmatrix} n_1 & y \\ t & n_2 \end{pmatrix}$ oÃź n_1, n_2 sont dans U_n , les coefficients de y sont nuls sauf la derniÃlre colonne et t est de la forme $\begin{pmatrix} 0_{n-1} & * \\ 0 & 0 \end{pmatrix}$. Le caractÃlre $\psi(\nu)$ devient aprÃls conjugaison $\psi(\text{Tr}(y)+\text{Ts}(t))$, oÃź $\text{Ts}(t) = t_{n-1,n}$. Les changements de variables $\tilde{Z} \mapsto \tilde{p}\tilde{Z}\tilde{p}^{-1}, \; n_1 \mapsto \tilde{p}n_1\tilde{p}^{-1},$

UNFOLDING 3

 $n_2 \mapsto \tilde{p}n_2\tilde{p}^{-1}$, $t \mapsto \tilde{p}t\tilde{p}^{-1}$ et $y \mapsto \tilde{p}y\tilde{p}^{-1}$ transforme l'intÃl'grale prÃl'cÃl'dente en (10)

$$\begin{split} \int_{P_{n-1}U_n\setminus P_n} \int_{F^{n-1}} \int_{\tilde{H}} \int_{H_{n-1}} |\det s|^{-1} \int_{\sigma^{-1}V\sigma} f\left(\sigma\begin{pmatrix}1 & -\tilde{Z}\\ 0 & 1\end{pmatrix}\begin{pmatrix}n_1 & y\\ t & n_2\end{pmatrix}\begin{pmatrix}\tilde{p}^{-1} & 0\\ 0 & \tilde{p}^{-1}\end{pmatrix}\sigma^{-1}s\tilde{\xi}\right) \\ \theta(s)^{-1} \psi(-\text{Tr}(y)) \psi(-\text{Ts}(\tilde{p}t\tilde{p}^{-1}))^{-1} |\det \tilde{p}|^3 d\begin{pmatrix}n_1 & y\\ t & n_2\end{pmatrix} ds d\tilde{\xi} d\tilde{Z} d\tilde{p}. \end{split}$$

On explicite maintenant l'int \tilde{A} i'grale sur s ce qui donne que $\sigma^{-1}s\sigma$ est de la forme $\begin{pmatrix} 1 & X \\ 0 & 1 \end{pmatrix} \begin{pmatrix} g & 0 \\ 0 & g \end{pmatrix}$ avec X une matrice de taille n dont la derni \tilde{A} i're ligne et derni \tilde{A} i're colonne sont nulles et $g \in G_{n-1}$ vu comme \tilde{A} i'l \tilde{A} i'ment de G_n . Le changement de variable $X \mapsto \tilde{p}X\tilde{p}^{-1}$ donne

$$\begin{split} &\int_{P_{n-1}U_n\backslash P_n}\int_{F^{n-1}}\int_{\tilde{H}}\int_{M_{n-1}}\int_{G_{n-1}}|\det\tilde{p}^{-1}g|^{-2}\int_{\sigma^{-1}V\sigma}\\ (11) &\quad f\left(\sigma\begin{pmatrix}1&-\tilde{Z}\\0&1\end{pmatrix}\begin{pmatrix}n_1&y\\t&n_2\end{pmatrix}\begin{pmatrix}1&X\\0&1\end{pmatrix}\begin{pmatrix}\tilde{p}^{-1}g&0\\0&\tilde{p}^{-1}g\end{pmatrix}\sigma^{-1}\tilde{\xi}\right)\\ &\quad \psi(-\text{Tr}(X))\psi(-\text{Tr}(y))\psi(-\text{Ts}(\tilde{p}t\tilde{p}^{-1}))^{-1}|\det\tilde{p}|d\begin{pmatrix}n_1&y\\t&n_2\end{pmatrix}dgdXd\tilde{\xi}d\tilde{Z}d\tilde{p}. \end{split}$$

On effectue le changement de variables $g \mapsto \tilde{p}g$. En consid \tilde{A} l'rant uniquement l'int \tilde{A} l'gration sur t et sur \tilde{p} et en remarquant que $Ts(\tilde{p}t\tilde{p}^{-1})$ n'est autre que le produit scalaire des vecteurs dans F^{n-1} correspondant \tilde{A} ä \tilde{p} et t, on voit apparaitre une formule d'inversion de Fourier, ce qui nous permet de simplifier notre int \tilde{A} l'grale en

$$\begin{split} \int_{\mathbb{F}^{n-1}} \int_{\bar{\mathbb{H}}} \int_{\mathsf{M}_{n-1}} \int_{\mathsf{G}_{n-1}} |\det \mathsf{g}|^{-2} \int_{\sigma^{-1}\mathsf{V}_0\sigma} \\ & f\left(\sigma\begin{pmatrix}1 & -\tilde{\mathsf{Z}}\\0 & 1\end{pmatrix}\begin{pmatrix}n_1 & \mathsf{y}\\0 & n_2\end{pmatrix}\begin{pmatrix}1 & \mathsf{X}\\0 & 1\end{pmatrix}\begin{pmatrix}\mathsf{g} & 0\\0 & \mathsf{g}\end{pmatrix}\sigma^{-1}\tilde{\xi}\right) \\ & \psi(-\mathsf{Tr}(\mathsf{X}))\psi(-\mathsf{Tr}(\mathsf{y}))d\begin{pmatrix}n_1 & \mathsf{y}\\0 & n_2\end{pmatrix}d\mathsf{g}d\mathsf{X}d\tilde{\xi}d\tilde{\mathsf{Z}}, \end{split}$$

oÃź $\sigma^{-1}V_0\sigma$ est le sous-groupe de $\sigma^{-1}V\sigma$ oÃź t=0. Le changement de variable $n_2\mapsto n_2n_1$ donne

$$\begin{split} \int_{F^{n-1}} \int_{\bar{H}} \int_{M_{n-1}} \int_{G_{n-1}} |\det g|^{-2} \int_{\sigma^{-1}V_0\sigma} f\left(\sigma\begin{pmatrix}1 & -\tilde{Z}\\ 0 & 1\end{pmatrix}\begin{pmatrix}n_1 & y\\ 0 & n_2n_1\end{pmatrix}\begin{pmatrix}1 & X\\ 0 & 1\end{pmatrix}\begin{pmatrix}g & 0\\ 0 & g\end{pmatrix}\sigma^{-1}\tilde{\xi}\right) \\ \psi(-\text{Tr}(X))\psi(-\text{Tr}(y))d\begin{pmatrix}n_1 & y\\ 0 & n_2\end{pmatrix} dg dX d\tilde{\xi} d\tilde{Z}. \end{split}$$

De plus, on a 4) (1 \tilde{Z}) (n \tilde{Z}) (1 \tilde{Z}) (1 \tilde{Z}) (2 \tilde{Z}) (2 \tilde{Z}) (1 \tilde{Z}) (2 \tilde{Z}) (2 \tilde{Z}) (1 \tilde{Z}) (2 \tilde{Z}) (2 \tilde{Z}) (2 \tilde{Z}) (3 \tilde{Z}) (2 \tilde{Z}) (2 \tilde{Z}) (3 \tilde{Z}) (2 \tilde{Z}) (3 \tilde{Z}) (2 \tilde{Z}) (3 \tilde{Z}) (4 \tilde{Z}) (5 \tilde{Z}) (7 \tilde{Z}) (8 \tilde{Z}) (9 \tilde{Z}) (9 \tilde{Z}) (1 \tilde{Z}) (2 \tilde{Z}) (2 \tilde{Z}) (2 \tilde{Z}) (3 \tilde{Z}) (2 \tilde{Z}) (3 \tilde{Z}) (2 \tilde{Z}) (3 \tilde{Z}) (3 \tilde{Z}) (4 \tilde{Z}) (7 \tilde{Z}) (8 \tilde{Z}) (7 \tilde{Z}) (8 \tilde{Z}) (9 \tilde{Z}) (9

$$\begin{pmatrix} 1 & -\tilde{\mathsf{Z}} \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \mathsf{n}_1 & \mathsf{y} \\ 0 & \mathsf{n}_2 \mathsf{n}_1 \end{pmatrix} \begin{pmatrix} 1 & \mathsf{X} \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & \mathsf{y} \mathsf{n}_1^{-1} + \mathsf{n}_1 \mathsf{X} \mathsf{n}_1^{-1} - \tilde{\mathsf{Z}} \mathsf{n}_2 \\ 0 & \mathsf{n}_2 \end{pmatrix} \begin{pmatrix} \mathsf{n}_1 & 0 \\ 0 & \mathsf{n}_1 \end{pmatrix}.$$

On effectue les changements de variables $y\mapsto yn_1$ et $X\mapsto n_1^{-1}Xn_1$. Ce qui nous permet de combiner les int \tilde{A} l'grales selon y et X en une int \tilde{A} l'gration sur $M_{n-1}\times F^n$

UNFOLDING

dont on note encore la variable X. On effectue ensuite le changement de variables $X\mapsto X+\tilde Z n_2$ ce qui donne

$$(15) \quad \int_{\mathsf{F}^{\mathfrak{n}-1}} \int_{\tilde{\mathsf{H}}} \int_{\mathsf{G}_{\mathfrak{n}-1}} \int_{\mathsf{M}_{\mathfrak{n}-1} \times \mathsf{F}^{\mathfrak{n}}} |\det g|^{-2} \int_{\mathsf{U}^{2}_{\mathfrak{n}}} \mathsf{f}\left(\sigma\begin{pmatrix}1 & X \\ 0 & n_{2}\end{pmatrix}\begin{pmatrix}n_{1}g & 0 \\ 0 & n_{1}g\end{pmatrix}\sigma^{-1}\tilde{\xi}\right) \\ \psi(-\mathsf{Tr}(X))\psi(-\mathsf{Tr}(\tilde{\mathsf{Z}}n_{2}))d(n_{1},n_{2})dXdgd\tilde{\xi}d\tilde{\mathsf{Z}}.$$

On reconnait une formule d'inversion de Fourier selon les variables \tilde{Z} et n_2 ce qui nous permet de simplifier notre int \tilde{A} l'grale en

$$(16) \qquad \int_{\tilde{H}} \int_{G_{\mathfrak{n}-1}} \int_{M_{\mathfrak{n}-1} \times F^{\mathfrak{n}}} |\det g|^{-2} \int_{\mathfrak{U}_{\mathfrak{n}}} f\left(\sigma\begin{pmatrix}1 & X \\ 0 & 1\end{pmatrix}\begin{pmatrix}\mathfrak{n}_1 g & 0 \\ 0 & \mathfrak{n}_1 g\right) \sigma^{-1} \tilde{\xi}\right) \\ \psi(-Tr(X)) d\mathfrak{n}_1 dX dg d\tilde{\xi}.$$

On explicite l'int \tilde{A} l'gration sur \tilde{xi} de la forme $\sigma\begin{pmatrix} 1 & \tilde{Y} \\ 0 & 1 \end{pmatrix}\begin{pmatrix} \tilde{h} & 0 \\ 0 & \tilde{h} \end{pmatrix}\sigma^{-1}$ o \tilde{A} ź \tilde{Y} est une matrice de la forme $\begin{pmatrix} 0_{n-1} & 0 \\ \tilde{y} & 0 \end{pmatrix}$ avec $\tilde{y} \in F^{n-1}$ et \tilde{h} est dans $P_n \setminus G_n$ et on effectue le changement de variable $\tilde{Y} \mapsto (n_1 g)^{-1} \tilde{Y} n_1 g$, on obtient alors (17)

$$\begin{split} \int_{P_{\mathfrak{n}} \setminus G_{\mathfrak{n}}} \int_{F^{\mathfrak{n}-1}} \int_{G_{\mathfrak{n}-1}} \int_{M_{\mathfrak{n}-1} \times F^{\mathfrak{n}}} |\det g|^{-1} \int_{U_{\mathfrak{n}}} f\left(\sigma\begin{pmatrix} 1 & X+\tilde{Y} \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \mathfrak{n}_{1} g \mathfrak{h} & 0 \\ 0 & \mathfrak{n}_{1} g \mathfrak{h} \end{pmatrix} \sigma^{-1}\right) \\ \psi(-Tr(X)) d\mathfrak{n}_{1} dX dg d\tilde{Y} d\tilde{\mathfrak{h}}. \end{split}$$

 ${\rm Apr}\tilde{\rm A} \acute{\rm ls} \ combinaison \ des \ int}\tilde{\rm A} \'{\rm l'grations} \ en \ X, \ \check{Y} \ et \ des \ int}\tilde{\rm A} \'{\rm l'grations} \ sur \ n_1, \ g, \ h \ ;$ on trouve bien notre membre de gauche

(18)
$$\int_{G_{\sigma}} \int_{M_{\sigma}} f\left(\sigma\begin{pmatrix}1 & X\\ 0 & 1\end{pmatrix}\begin{pmatrix}g & 0\\ 0 & g\end{pmatrix}\sigma^{-1}\right) \psi(-\mathsf{Tr}(X)) dX dg.$$