

Test 4

Logarithmic Functions

PERTH MODERN SCHOOL Exceptional schooling. Exceptional students. Semester One 2018 Year 12 Mathematics Methods Calculator Assumed

	Name:		
]
	Date: 29/06/2018 7.45am		
You may have test.	a calculator, a single-sided page of notes	and a formula	sheet for the
40 Minutes		Total	$/35~\mathrm{marks}$

<u>Teacher:</u>	
Mr McClelland	
Mrs.Carter	
Mr Gannon	
Ms Cheng	
Mr Staffe	
Mr Strain	

Questions 1 (7 marks)

Find the derivatives of the following. Do not simplify your answer.

(a)
$$\ln \left(2 x^3 - 3 x^2 + 4 x - 1\right)^3$$

(2 marks)

(b)
$$e^x \ln(x)$$

(2 marks)

(c)
$$\ln(x)\cos(x) + \frac{\sin(x)}{x}$$

(3 marks)

Question 2

(5 marks)

(a) Use Polynomial Long division to simplify
$$\frac{x^2-2x+5}{x-3}$$
.

(3 marks)

(b) Hence find
$$\int \frac{x^2 - 2x + 5}{x - 3} dx$$
.

(2 marks)

Question 3 (5 marks)

(a) Find the constants
$$a$$
 and b given that for $\{x \in R: x \neq 2, x \neq -3\}$. (3 marks)
$$\frac{a}{x-2} + \frac{b}{x+3} = \frac{x+8}{x^2+x-6}$$

(b) Hence find
$$\int \frac{x+8}{x^2+x-6} dx$$
. (2 marks)

Question 4 (2 marks)

The rule for the function shown is $y = \ln(x-m) + n$. Find the values of m and n.

Question 5 (3 marks)

Solve the following equations for x. Show full algebraic reasoning.

$$3e^{2x}-5e^x-2=0$$

Question 6 (5 marks)

The graph of the function with the rule $y=3\log(x+1)+2$ intersects the axes at the point (a,0) and &). Find the exact values of a and b. Show full algebraic reasoning.

Question 7 (8 marks)

There are two species of insects living in a suburb: the *Asla bibla* and the *Cutus pius*. The number of *Ala bibla* alive at time t days after 1 January 2000 is given by

$$N_A(t) = 10\,000 + 1000\,t$$
, $0 \le t \le 15$

The number of *Cutus pius* alive at time *t* days after 1 January 2000 is given by

$$N_C(t) = 8000 + 3 \times 2^t, 0 \le t \le 15$$

(a) (i) Show full reasoning that
$$N_A(t) = N_C(t)$$
 if and only if $t = 3\log_2 10 + \log_2 \left(\frac{2+t}{3}\right)$. (4 marks)

(ii) Solve the value for t if $t = 3\log_2 10 + \log_2 \left(\frac{2+t}{3}\right)$. (2 marks)

(b) It is found by observation that the model for *Cutus pius* does not quite work. It is known that the model for the population of *Asla bible* is satisfactory. The form of the model for *Cutus pius* is $N_C(t) = 8000 + c \times 2^t$. Find the value of c, correct to two decimal places, if it is known that $N_A(15) = N_C(15)$. (2 marks)

End of Test