Introduction to PhasicFlow

Toward DEM at industrial scale

- Obstacles
 - Large data sets → limitations on memory and disk
 - Very long computation time → limitation on available flops
- What is the opportunity here?
 - The hardware is growing at a fast pace due to Gaming industry and Al investments:
 - GPU
 - Multi-core CPU
 - Faster memory with higher bandwidth
- What is missing?
 - Software to exploit the maximum available computational power

The philosophy behind PhasicFlow

- To have a parallel, efficient code for DEM and CFD-DEM simulations
- To be executed on different hardware
 - CPUs, GPUs
- The design should be flexible for future extensions
 - It is completely open for addition of new models
- Everyone can have access to it with no charge
 - open-source
- Provide support for users
 - Documentation and tutorials
 - Workshops
 - Github issues

Computer Physics Communications 291 (2023) 108821

Contents lists available at ScienceDirect

Computer Physics Communications

journal homepage: www.elsevier.com/locate/cpc

Computer Programs in Physics

PhasicFlow: A parallel, multi-architecture open-source code for DEM simulations **,***

- Spherical particles with various contact force models
 - Linear models
 - Non-linear models
- Geometry
 - Built-in: for simple geometries
 - CAD drawing: for complex geometries
 - Motion models: stationary, rotating axis, conveyor, vibration, multirotating axis
- Coarse-graining
 - With models to perform coarse-graining simulations

- Post-processing tools
 - pFlowToVTK
 - postprocessData
 - In-simulation
 - Post-simulation
- Parallelization
 - OpenMP parallelization for shared-memory execution on CPUs
 - CUDA parallelization for execution on GPUs
 - MPI parallelization for cluster and multi-GPU execution (this feature has not officially finalized)

What we have planned?

Chemical Reaction and heat transfer

Non-spherical particles

Additional geometry motion models

- Number of particles
 - 250 Kilo to 80 Million particles

- Geometry of system
 - Simple: rotating drum with 52 triangles on the surface
 - Complex: helical ribbon mixer with 5916 triangles on the surface

120 min: rotating drum (double) **180 min:** helical mixer (double)

22 min: rotating drum (double) **10 min:** rotating drum (float)

How Is the Performance?

CFD-DEM with PhasicFlow

PhasicFlow vs. well-established commercial DEM software

PhasicFlow is **20**% faster
PhasicFlow uses **42**% lower RAM

PhasicFlow has **similar** performance PhasicFlow uses **50**% lower RAM

How to get and install?

Download the source code from its official repository

- Install
 - On YouTube: search for "install phasicFlow"
 - On repository: got to wiki pages, on the build section
 - https://github.com/PhasicFlow/phasicFlow/wiki/How-to-build-PhasicFlow%E2%80%90v%E2%80%901.0