

Prediction of MPE limit at a given distance

Equation from page 18 of OET Bulletin 65, Edition 97-01

$$S = \frac{PG}{4\pi R^2}$$

where: S = power density

P = power input to the antenna

G = power gain of the antenna in the direction of interest relative to isotropic radiator

R = distance to the center of radiation of the antenna

PWR in dBm Maximum peak output power at antenna input terminal:	27.0 dBm
Maximum peak output power at antenna input terminal:	501.2 mW
Ant. gain in dBi Antenna gain(maximum):	3 dBi
Maximum antenna gain:	2.0 numeric
Use the duty cycle from test report or 100% Time Averaging:	100 %
Separation distance from antenna to user in cm. Prediction distance:	20 cm
Freq. in MHz Prediction frequency:	153 MHz
Limit at frequency:	0.20 mW/cm ²

Power density at prediction frequency: 0.20 mW/cm²

This equates to: 1.99 W/m²