Práctica 1: Clasificación de imágenes. Arquitecturas CNN. *Transfer Learning*

Esta práctica se implementa en Google Colab, un entorno que permite desarrollar código Python en Python Notebooks y utilizar aceleración GPU para entrenar modelos de Aprendizaje Profundo. Para usarlo, tendrá que crear una cuenta personal de Google. Para trabajar en Google Colab, siga estas instrucciones:

- Cree una carpeta para las prácticas del curso en su Google Drive personal.
- Abra los enlaces de Colab incluidos en este guion
- Guarde una copia de los notebooks en su carpeta de Google Drive
- Cada notebook de Colab (es decir, los archivos que terminan en .ipynb) corresponde a una parte de la práctica. En Google Drive, haga doble clic en el notebook y seleccione Abrir con Colab.
- Una vez que haya completado la práctica (es decir, ha llegado al final del notebook), puede guardar el archivo editado y pasar al siguiente bloc de notas.
- Asegúrese de guardar periódicamente el notebook (Guardar archivo), para no perder el progreso si la máquina virtual de Colab se desconecta. →

El objetivo de esta práctica es presentar al estudiante el problema de clasificación de imágenes, los conceptos básicos de varias arquitecturas CNN, el manejo de datasets de imágenes con PyTorch, y la utilización de estrategias de *Transfer Learning*. Para completar esta práctica, deberá leer la documentación de Pytorch. Puede encontrarla aquí.

Debe completar el código de los notebooks de Colab, y completar un informe de práctica con las respuestas a las preguntas que se incluyen en las secciones siguientes. Una vez haya terminado, debe subir a Moodle una copia de los notebooks completados (archivos .ipynb) y el informe de práctica, combinados en un solo archivo zip. IMPORTANTE: Tanto el archivo del informe como el archivo zip deben tener el siguiente nombre: 'APELLIDO(s)_NOMBRE'

Puedes encontrar <u>aquí el primer notebook.</u> Debe completar el código en el notebook y responder a las preguntas de la Sección 1.1.

1.1 Simple CNN

Tamaños de los conjuntos de entrenamiento y validación descargados del dataset MNIST

	Alto imagen	de	Ancho imagen	de	N.º canales de imagen	N.º muestras
Entrenamiento						
Validación						

Número de parámetros del modelo Simple CNN

	N.º parámetros entrenables
Simple CNN	

• Incluya las curvas de entrenamiento y validación para 10 épocas. Indique también la mejor precisión obtenida, y en qué época se logra este resultado

	Mejor precisión (validación)	Época con mejor precisión	
Simple CNN			

Comentar las conclusiones sobre la evolución de la *loss* de entrenamiento y validación, con respecto a posibles problemas de sesgo (*high-bias*) o sobreajuste (*overfitting*). Indique si considera que continuar con más épocas de entrenamiento mejoraría el rendimiento del modelo

- Incluir la matriz de confusión obtenida. Dada esta matriz de confusión, informe de los 2 casos de confusión entre clases que ocurren con más frecuencia.
- Comente las diferencias entre el gráfico t-SNE de la representación de las capas final e
 intermedia de la CNN, aplicado a las imágenes del conjunto de validación. Para ello, considere
 la proximidad y la dispersión entre los clústeres en ambas representaciones, y su relación con
 la capacidad de realizar una correcta clasificación de las muestras.
- Dadas las diferencias entre la representación t-SNE de ambas capas, y dada la arquitectura de la red implementada, identifique en qué capa de la red se extraen las características, y proponga una forma de reducir la complejidad de la red, con una penalización baja en la precisión de la clasificación.

Puede encontrar <u>aquí el segundo notebook.</u> Debe completar el código en el notebook y responder a las preguntas de las Secciones 6.2 y 6.3.

1.2 AlexNet

- Incluya el código que ha utilizado para definir la clase Alexnet
- Número de parámetros del modelo AlexNet

	N° parámetros entrenables
AlexNet	

 Incluya las curvas de entrenamiento y validación para 15 épocas. Indique también la mejor precisión obtenida, y en qué época se logra este resultado

	Mejor precisión (validación)	Época con mejor precisión	
AlexNet			

Comentar las conclusiones sobre la evolución de la *loss* de entrenamiento y validación, y comentar lo que posiblemente está sucediendo después de la época 10. Indique si considera

que continuar con más épocas de entrenamiento mejoraría el rendimiento del modelo

- Incluir la matriz de confusión. Comentar los resultados obtenidos atendiendo a las características de las imágenes de cada clase
- Incluya los resultados t-SNE para la capa última capa de la red: analice estos resultados (proximidad, dispersión, agrupación de clústeres) teniendo en cuenta la apariencia de las imágenes de las diferentes clases, sus características típicas y compare los resultados con los resultados t-SNE en el dataset MNIST.

Puedes encontrar <u>aquí el tercer notebook.</u> Debe completar el código en el *notebook* y responder a las preguntas de la Sección 2.1.1.

1.3 Transfer Learning

Precisiones obtenidas para las diferentes alternativas analizadas:

	Entrenado desde cero	Pre-entrenamiento + SVM	Ajuste fino (sin data augmentation)	Ajuste fino (con data augmentation)
Precisión				

• Compare las representaciones t-SNE de las diferentes alternativas: entrenamiento desde cero, pre-entrenamiento + SVM, ajuste fino (sin *data augmentation*) y ajuste fino (con *data augmentation*) A partir de las diferentes representaciones obtenidas, en las cuatro alternativas analizadas., comente sus diferencias en cuanto a la capacidad de separar linealmente ambas clases, y el nivel de muestras clasificadas erróneamente dada esta separación lineal.