模块二 三角恒等变换

第1节和差角、辅助角、二倍角公式(★★☆)

强化训练

1.
$$(2022 \cdot 南 充模拟 \cdot ★★) 锐角 α 满足 sin α = $\frac{\sqrt{10}}{10}$, 则 $\cos(2\alpha + \frac{\pi}{6}) = ____.$$$

答案:
$$\frac{4\sqrt{3}-3}{10}$$

解析: 由题意,
$$\cos \alpha = \sqrt{1-\sin^2 \alpha} = \frac{3\sqrt{10}}{10}$$
, 所以 $\sin 2\alpha = 2\sin \alpha \cos \alpha = \frac{3}{5}$, $\cos 2\alpha = 2\cos^2 \alpha - 1 = \frac{4}{5}$,

所以
$$\cos(2\alpha + \frac{\pi}{6}) = \cos 2\alpha \cos \frac{\pi}{6} - \sin 2\alpha \sin \frac{\pi}{6} = \frac{4}{5} \times \frac{\sqrt{3}}{2} - \frac{3}{5} \times \frac{1}{2} = \frac{4\sqrt{3} - 3}{10}$$
.

2.
$$(2022 \cdot 安徽模拟 \cdot ★★) 若 α 是第二象限的角,且 $\sin(\pi - \alpha) = \frac{3}{5}$,则 $\tan 2\alpha =$ ____.$$

答案:
$$-\frac{24}{7}$$

解析:由题意,
$$\sin(\pi-\alpha)=\sin\alpha=\frac{3}{5}$$
,又 α 是第二象限的角,所以 $\cos\alpha=-\sqrt{1-\sin^2\alpha}=-\frac{4}{5}$,

从而
$$\tan \alpha = \frac{\sin \alpha}{\cos \alpha} = -\frac{3}{4}$$
,故 $\tan 2\alpha = \frac{2 \tan \alpha}{1 - \tan^2 \alpha} = -\frac{24}{7}$.

3.
$$(2022 \cdot 北京模拟 \cdot ★★★) 若 \cos(\pi - \alpha) = -\frac{\sqrt{10}}{10}, \ \alpha \in (0, \frac{\pi}{2}), \ \tan(\alpha + \beta) = \frac{1}{2}, \ 则 \beta 可以为_____. (写出 - 个满足条件的 β)$$

答案:
$$-\frac{\pi}{4}$$
 (答案不唯一,满足 $\beta = k\pi - \frac{\pi}{4} (k \in \mathbb{Z})$ 的 β 均可)

解析: 先用诱导公式把
$$\cos(\pi - \alpha)$$
 化简, $\cos(\pi - \alpha) = -\cos\alpha = -\frac{\sqrt{10}}{10}$ $\Rightarrow \cos\alpha = \frac{\sqrt{10}}{10}$,

又
$$\alpha \in (0, \frac{\pi}{2})$$
,所以 $\sin \alpha = \sqrt{1 - \cos^2 \alpha} = \frac{3\sqrt{10}}{10}$,故 $\tan \alpha = \frac{\sin \alpha}{\cos \alpha} = 3$,

我们要写出一个 β ,可以先计算 $\tan \beta$,直接把已知的 $\tan(\alpha+\beta)$ 展开即可,

曲题意,
$$\tan(\alpha+\beta) = \frac{\tan\alpha + \tan\beta}{1-\tan\alpha\tan\beta} = \frac{3+\tan\beta}{1-3\tan\beta} = \frac{1}{2}$$
,解得: $\tan\beta = -1$,所以 $\beta = k\pi - \frac{\pi}{4}(k \in \mathbb{Z})$.

(A)
$$\frac{1}{2}$$
 (B) $\frac{\sqrt{3}}{3}$ (C) $\frac{\sqrt{2}}{2}$ (D) $\frac{\sqrt{3}}{2}$

答案: D

解法1: 两项都有平方,可降次,且降次后恰好都化为特殊角,

曲题意,
$$\cos^2\frac{\pi}{12} - \cos^2\frac{5\pi}{12} = \frac{1 + \cos\frac{\pi}{6}}{2} - \frac{1 + \cos\frac{5\pi}{6}}{2} = \frac{1 + \frac{\sqrt{3}}{2}}{2} - \frac{1 + (-\frac{\sqrt{3}}{2})}{2} = \frac{\sqrt{3}}{2}.$$

解法 2: 注意到 $\frac{\pi}{12} + \frac{5\pi}{12} = \frac{\pi}{2}$,故用诱导公式将角统一成 $\frac{\pi}{12}$,可利用倍角公式求值,

曲题意,
$$\cos^2\frac{\pi}{12} - \cos^2\frac{5\pi}{12} = \cos^2\frac{\pi}{12} - \cos^2(\frac{\pi}{2} - \frac{\pi}{12}) = \cos^2\frac{\pi}{12} - \sin^2\frac{\pi}{12} = \cos\frac{\pi}{6} = \frac{\sqrt{3}}{2}$$
.

5. (2022 • 黑龙江模拟 • ★★) 数学家华罗庚倡导的"0.618 优选法"在各领域都有广泛应用, 0.618 就是

黄金分割比 $m = \frac{\sqrt{5-1}}{2}$ 的近似值,黄金分割比还可以表示成 $2\sin 18^\circ$,则 $\frac{2m\sqrt{4-m^2}}{2\cos^2 27^\circ - 1} = ($)

(B)
$$\sqrt{5} + 1$$

$$(C)$$
 2

(A) 4 (B)
$$\sqrt{5}+1$$
 (C) 2 (D) $\sqrt{5}-1$

答案: A

解析: 由题意,
$$\frac{2m\sqrt{4-m^2}}{2\cos^2 27^\circ - 1} = \frac{4\sin 18^\circ \sqrt{4-4\sin^2 18^\circ}}{\cos 54^\circ} = \frac{4\sin 18^\circ \sqrt{4\cos^2 18}}{\cos 54^\circ} = \frac{8\sin 18^\circ \cos 18^\circ}{\cos 54^\circ}$$

$$= \frac{4\sin 36^{\circ}}{\cos 54^{\circ}} = \frac{4\sin(90^{\circ} - 54^{\circ})}{\cos 54^{\circ}} = \frac{4\cos 54^{\circ}}{\cos 54^{\circ}} = 4.$$

6.
$$(2023 \cdot 新高考 I 卷 \cdot \star \star \star)$$
 已知 $\sin(\alpha - \beta) = \frac{1}{3}$, $\cos \alpha \sin \beta = \frac{1}{6}$, 则 $\cos(2\alpha + 2\beta) = ($

$$(A) \frac{7}{9}$$

$$(B) \frac{1}{9}$$

$$(C) -\frac{1}{9}$$

(A)
$$\frac{7}{9}$$
 (B) $\frac{1}{9}$ (C) $-\frac{1}{9}$ (D) $-\frac{7}{9}$

答案: B

解析:只要求出 $\cos(\alpha+\beta)$ 或 $\sin(\alpha+\beta)$,就能用二倍角公式算 $\cos(2\alpha+2\beta)$. 而对于条件的处理,要么展开, 要么整体分析角的关系,此处由于有 $\cos \alpha \sin \beta$,故展开,

由题意, $\sin(\alpha - \beta) = \sin \alpha \cos \beta - \cos \alpha \sin \beta = \frac{1}{3}$ ①,

又 $\cos \alpha \sin \beta = \frac{1}{6}$,代入①可求得 $\sin \alpha \cos \beta = \frac{1}{2}$,

所以 $\sin(\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta = \frac{1}{2} + \frac{1}{6} = \frac{2}{3}$

故 $\cos(2\alpha + 2\beta) = 1 - 2\sin^2(\alpha + \beta) = 1 - 2 \times (\frac{2}{2})^2 = \frac{1}{2}$.

7.
$$(2022 \, \circ 常州模拟 \, \bullet \star \star \star)$$
已知 $a = \frac{\sqrt{2}}{2} (\cos 1^{\circ} - \sin 1^{\circ})$, $b = \frac{1 - \tan^{2} 22.5^{\circ}}{1 + \tan^{2} 22.5^{\circ}}$, $c = \sin 22^{\circ} \cos 24^{\circ} + \cos 22^{\circ} \sin 24^{\circ}$,

则 $a \times b \times c$ 的大小关系为()

(A)
$$b > a > c$$
 (B) $c > b > a$ (C) $c > a > b$ (D) $b > c > a$

(B)
$$c > b > a$$

$$(C)$$
 $c > a > b$

(D)
$$b > c > a$$

答案: B

解析:观察发现 a, b, c 的式子都可化简,故先化简,

由题意,
$$a = \frac{\sqrt{2}}{2}(\cos 1^\circ - \sin 1^\circ) = \sin 45^\circ \cos 1^\circ - \cos 45^\circ \sin 1^\circ = \sin(45^\circ - 1^\circ) = \sin 44^\circ$$
,

$$b = \frac{1 - \tan^2 22.5^{\circ}}{1 + \tan^2 22.5^{\circ}} = \frac{1 - \frac{\sin^2 22.5^{\circ}}{\cos^2 22.5^{\circ}}}{1 + \frac{\sin^2 22.5^{\circ}}{\cos^2 22.5^{\circ}}} = \frac{\cos^2 22.5^{\circ} - \sin^2 22.5^{\circ}}{\cos^2 22.5^{\circ} + \sin^2 22.5^{\circ}} = \cos^2 22.5^{\circ} - \sin^2 22.5^{\circ} = \cos 45^{\circ} = \sin 45^{\circ},$$

 $c = \sin 22^{\circ} \cos 24^{\circ} + \cos 22^{\circ} \sin 24^{\circ} = \sin(22^{\circ} + 24^{\circ}) = \sin 46^{\circ}$

因为 $y = \sin x$ 在 $(0, \frac{\pi}{2})$ 上之,所以 $\sin 46^{\circ} > \sin 45^{\circ} > \sin 44^{\circ}$,故c > b > a.

8. $(\bigstar \star \star \star)$ 设当 $x = \theta$ 时,函数 $f(x) = \sin x - 2\cos x$ 取得最大值,则 $\cos \theta =$ _____.

答案: $-\frac{2\sqrt{5}}{5}$

解析: 先用辅助角公式,将f(x)合并,求出其最大值, $f(x) = \sqrt{5}\sin(x+\varphi)$,所以 $f(x)_{max} = \sqrt{5}$,

由题意, $f(\theta) = \sqrt{5}\sin(\theta + \varphi) = \sqrt{5}$,所以 $\sin(\theta + \varphi) = 1$,要求 $\cos\theta$,可先由此式将 θ 求出来,

从而 $\theta + \varphi = 2k\pi + \frac{\pi}{2}$, 故 $\theta = 2k\pi + \frac{\pi}{2} - \varphi(k \in \mathbf{Z})$, 所以 $\cos \theta = \cos(2k\pi + \frac{\pi}{2} - \varphi) = \sin \varphi$,

由辅助角公式, $\sin \varphi = \frac{-2}{\sqrt{5}} = -\frac{2\sqrt{5}}{5}$,故 $\cos \theta = -\frac{2\sqrt{5}}{5}$.

《一数•高考数学核心方法》