

Mestrado em Telecomunicações Igor Gonçalves | 931

Problemática: imprudência ao volante e acidentes no trânsito

- Mortes por acidentes de trânsito no Brasil e no mundo;
- Imprudências por excesso de velocidade, direção sob efeito de álcool e ultrapassagens em locais indevidos;
- Falta de infraestrutura rodoviária adequada;
- Princípios de Condução autônoma e cooperativa:
 - reduzir erros humanos;
 - otimizar infraestruturas rodoviárias, consumo de combustível e a emissão de gases poluentes;
 - o utilização de sistemas de navegação, sensores, algoritmos e comunicação veicular.

Princípios de Condução autônoma e Redes de Pelotão

• Pelotão formado por veículos seguidores de um líder;

- Mais segurança, sem ultrapassagens perigosas e distância segura entre os veículos:
 - redução do consumo de combustível;
 - eficiência do tráfego;

Trabalhos Relacionados: condução autônoma, gerenciamento e eventos de manobras

- Michaud et al. exploram estratégias de coordenação realizar manobras seguras, distribuindo os processos de forma local;
- Milanés et. al. apresentam o desenvolvimento de um sistema CACC combinando comunicação V2V com sensores com dois controladores, um para aproximação ao pelotão e outro para regular o acompanhamento;
- Santini et al. propõe o controlador longitudinal distribuído como um único algoritmo que gerencia o pelotão e define a dinâmica dos veículos;
- Manobras de mudança de faixa e fusão para veículos conectados e automatizados: uma pesquisa.

Fundamentos de Controle e estratégias de comunicação veicular: comunicação IVC

- Comunicação sem fio de nós móveis com sistemas vizinhos;
- Troca de informações, como dados de movimento e estado;
- Formato um-para-muitos, veículo líder emite comandos para o pelotão;
 - veículo líder define o ritmo do pelotão;
 - seguidores ajustam os movimentos para manter uma distância constante;
 - o dados coletados por meio de sensores e processados por algoritmos.

Fundamentos de Controle e estratégias de comunicação veicular: sensores em veículos

- Sensores mapeiam o ambiente rodoviário e as condições de tráfego:
 - segurança: distância, visão noturna, velocidade em funções como suporte à mudança de faixa e alertas de colisão frontal;
 - diagnóstico: mau funcionamento de componentes, alertas e otimização de manutenções;
 - monitoramento ambiental: condições climáticas, como temperatura e pressão, para ajuste de sistemas internos.

Fundamentos de Controle e estratégias de comunicação veicular: sensores em veículos

- Sensores LiDAR para medida de distância entre veículos:
 - o funcionamento pela reflexão de raio laser a partir do contato com a superfície;
 - Distância e ângulo de obstáculos próximos;
 - Auxílio de câmeras e processamento de imagens.
- Sensores Radar para medições de velocidade.

Fundamentos de Controle e estratégias de comunicação veicular: CACC

- Extensão avançada do sistema de Controle de Cruzeiro Adaptativo ACC, que utiliza sensores locais;
- CACC introduz IVC para compartilhar informações em tempo real entre veículos próximos;
- Permite que o veículo líder transmita comandos e informações (velocidade, aceleração, mudanças de trajetória etc.), para os seguidores e reduz a distância para poucos metros;
- Melhora a fluidez do tráfego sem a necessidade de novas infraestruturas rodoviárias;

Fundamentos de Controle e estratégias de comunicação veicular: longitudinal e direção

- Controle Longitudinal:
 - Distância entre os veículos;
 - Controle de aceleração e desaceleração para evitar colisões;
 - Estabilidade de corda prevenção de amplificação de erros;
 - Dificuldades de tráfego e dependência de boa comunicação e conectividade dos sistemas.
- Controle lateral:
 - Posicionamento correto dos veículos dentro da faixa;
 - Processamento computacional avançado e limitações em ambientes densos ou com interferências;

Cruise Control Adaptativo em Situações Reais de Trânsito: proposta

- Solução baseada em CACC, voltada para melhorar a segurança, a eficiência e a estabilidade no tráfego;
- Abordagem de separação segura e constante entre os veículos em movimento;
- Resposta eficiente em condições de aceleração e frenagem simultâneas;
- Combinação de controladores PID otimizados com IVC via DSRC (Comunicação Dedicada de Curto Alcance) para interações rápidas e precisas.

Cruise Control Adaptativo em Situações Reais de Trânsito: demonstração 1

- Veículo líder e um seguidor executando o controle CACC para manter distância constante;
- Alteração nos comportamentos de aceleração e velocidade do veículo seguidor no instante de mudança da distância;

Cruise Control Adaptativo em Situações Reais de Trânsito: demonstração 2

- Manobra cut-in: veículo externo entra na faixa de tráfego ocupada pelos veículos conectados.
 - Controle de espaçamento adequado sem flutuações ou oscilações;
 - Reduz a velocidade do veículo seguidor;
- Manobra de cut-out: veículo conectado sai do pelotão;
 - Controle de distância para aproximação do veículo seguidor;
 - o Reduz a velocidade do veículo líder.

Cruise Control Adaptativo em Situações Reais de Trânsito: resultados e conclusões

	Controle Convencional	ACC Tradicional	Proposta CACC
Eficiência de recursos	Médio	Médio	Alto (15% menor)
Estabilidade no sistema	Baixa	Média	Alta (40% menos oscilações)
Facilidade de integração	Alta	Média	Alta

O Impacto CACC nas Características do Fluxo de Tráfego: proposta

- MIXIC integra Controle Lateral e Longitudinal e simula interações entre veículos;
- Proposta de direção autônoma e CACC por um modelo de simulação MIXIC;
- Veículos convencionais: controle longitudinal;
- Veículos automatizados: controle por algoritmo CACC;

O Impacto CACC nas Características do Fluxo de Tráfego: modelo CACC

- Conjunto de parâmetros Kd, Kv e Ka que regem a dinâmica do controlador;
- Velocidade resultante por uma aceleração definida pelos parâmetros;
- Parâmetros de teste: Kd = 0.1, Kv = 0.58 e Ka = 1.0, configuração mais suave e rápida do controlador sem levar a situações inseguras;
- Pelotão com um líder a velocidade de 80 [km/h] e quatro seguidores.

O Impacto CACC nas Características do Fluxo de Tráfego: resultados e conclusão

- Reação mais rápida dos veículos com CACC;
- Tempo entre aceleração ou desaceleração de veículos vizinhos é menor com CACC;
- As curvas do pelotão equipado com CACC são mais suaves, indicando menos flutuações de velocidade e mantendo distâncias seguras entre veículos, capazes de se recuperar mais rapidamente de situações de desaceleração súbita e minimizar perturbações no fluxo de tráfego;
- Dependência dos parâmetros Kd, Kv e Ka;

Projeto PATH - Partners for Advanced Transit and Highways (Parceiros para Transporte e Rodovias Avançado)

- Integração de veículos automatizados com infraestrutura inteligente para sistemas de transporte mais eficientes, seguros e sustentáveis;
- Congestionamentos, acidentes de trânsito e impactos ambientais;
- Operação do pelotão em espaçamentos reduzidos, seguindo o veículo líder;

Projeto PATH - Partners for Advanced Transit and Highways (Parceiros para Transporte e Rodovias Avançado)

• Sensores embarcados, como radares, câmeras e sistemas de proximidade em comunicação V2V e V2I;

Projeto *PATH - Partners for Advanced Transit and Highways* (Parceiros para Transporte e Rodovias Avançado)

- Veículos em operação até 100 [km/h] com distâncias inferiores a 2 [m];
- Operação suave, resposta coordenada a eventos críticos, como frenagens repentinas ou mudanças de densidade no tráfego.

	PATH	Outros modelos
Tecnologia utilizada	Comunicação V2V Infraestrutura adaptada	Sensores locais
Estabilidade do sistema	Alta Infraestrutura dedicada	Condições externas
Implementação	Custos elevados Infraestrutura avançada	Custos menores Menos robusto

Projeto SARTRE - Safe Road Trains for the Environment (Trens Rodoviários Seguros para o Meio Ambiente)

- Estratégias e tecnologias para pelotões de veículos em vias públicas normais;
- Benefícios ambientais, de segurança e conforto;
- Veículo líder conduzido manualmente e os seguidores operados de forma totalmente automatizada, com pequenas distâncias;
- Sistema de um caminhão líder, um caminhão e três carros seguidores;
- Comunicação V2V, com informações em tempo real;
- Dependência de sistemas confiáveis sujeitos a falhas técnicas ou interferências externas.

Projeto SARTRE - Safe Road Trains for the Environment (Trens Rodoviários Seguros para o Meio Ambiente)

	Projeto	CACC	Platooning
	SARTRE	Tradicional	MIXIC
Eficiência de recursos	Alta Menos combustível	Média Cenário Controle	Alta Menos combustível
Estabilidade	Boa	Boa	Alta
no sistema	V2V robusta	Sensível a falhas	Maior estabilidade
Facilidade de integração	Alta	Alta Maior compatibilidade	Média Cenários simulados

Princípios de Condução autônoma e Redes de Pelotão

- ✓ Tecnologias desenvolvidas com eficácia na solução de problemas em sistemas de transporte;
- Impactos positivos na eficiência e segurança das rodovias;
- X Pesquisas para consolidar as aplicações em ambientes reais;
- X Robustez e confiabilidade;
- Integração com infraestruturas rodoviárias inteligentes, sensores e sistemas de monitoramento;
- Padrões globais para comunicação V2V e IVC.

Obrigado!!!

