Analiza statystyczna danych dotyczących systemu wypożyczalni rowerów w rejonie zatoki San Francisco

Marceli Mietła

Spis treści

Wstęp	1
Czyszczenie danych	2
Nieprawidłowy format daty	2
Temperatura podana w skali Fahrenheita	3
Prędkość wiatru w milach na godzinę	3
Przejazdy trwające dłużej niż 24 godziny	3
Analiza eksploracyjna	4
Liczba wypożyczeń z podziałem na poszczególne dni tygodnia	4
Liczba wypożyczeń z podziałem na poszczególne godziny	6
Rozkład długości wypożyczeń według dnia tygodnia	9
Histogram długości wypożyczenia	11
Zależność temepartury od ilośći wypożyczeń	13
Model statystyczny	16
Regresja liniowa	16
Regresja liniowa z regulacją L1	24
Podsumowanie	25

Wstęp

Analiza statystyczna systemu wypożyczalni rowerów w rejonie zatoki San Francisco w latach 2013-2015. Źródło danych: Kaggle - SF Bay Area Bike Share

Czyszczenie danych

Nieprawidłowy format daty

Nieprawidłowy format daty w plikach trip.csv, station.csv, weather.csv.

W SQLite daty muszą być zapisane w formacie YYYY-MM-DD HH:MM. Skrypt napisany w pythonie zamienia wszystkie daty z formatu MM/DD/YYYY HH:MM na przystysowany do SQLite.

```
import re
import os
import csv
def convert_date_format(date_str):
    # Regex pattern to match the date format
   pattern = r"(\d{1,2})/(\d{4})(?: (\d{1,2}))?"
   match = re.match(pattern, date_str)
   if not match:
       print(date_str)
       raise ValueError(f"Invalid date format: {date_str}")
   month, day, year, hours, minutes = match.groups()
    if hours is None or minutes is None:
       hours = "00"
       minutes = "00"
    # Ensure day and month are two digits
   hours = hours.zfill(2)
   minutes = minutes.zfill(2)
   day = day.zfill(2)
   month = month.zfill(2)
    # Return formatted date
   return f"{year}-{month}-{day} {hours}:{minutes}"
def process_csv(file_path, columns_name):
    # Read the CSV file
   with open(file_path, mode='r', newline='') as csvfile:
       reader = csv.DictReader(csvfile)
       fieldnames = reader.fieldnames
       rows = list(reader)
    # Convert the specified column to the correct format
    for row in rows:
        for column_name in columns_name:
            row[column_name] = convert_date_format(row[column_name])
    # Write the updated rows back to the same CSV file
   with open(file_path, mode='w', newline='') as csvfile:
       writer = csv.DictWriter(csvfile, fieldnames=fieldnames)
       writer.writeheader()
```

```
writer.writerows(rows)

def process_multiple_csv(files_columns):
    for file_path, columns_name in files_columns.items():
        process_csv(file_path, columns_name)

files_columns = {
    os.path.join('...', 'data', 'trip.csv'): ['start_date', 'end_date'],
    os.path.join('...', 'data', 'station.csv'): ['installation_date'],
    os.path.join('...', 'data', 'weather.csv'): ['date']
}

process_multiple_csv(files_columns)
```

Temperatura podana w skali Fahrenheita

Dla łatwiejszej analizy wyników zamieniamy temperaturę na skalę Celsjusza

```
update weather
SET

    max_temperature_f = round((max_temperature_f - 32) * 5/9, 2),
    mean_temperature_f = round((mean_temperature_f - 32) * 5/9, 2),
    min_temperature_f = round((min_temperature_f - 32) * 5/9, 2)
```

Prędkość wiatru w milach na godzinę

```
update weather
    set
    mean_wind_speed_mph = mean_wind_speed_mph*1.609344
```

Przejazdy trwające dłużej niż 24 godziny

Usuwamy przejazdy które trwały dłużej niż 24 godziny

```
delete from trip
where duration > 24*60*60;
```

Analiza eksploracyjna

Liczba wypożyczeń z podziałem na poszczególne dni tygodnia

```
query <- "
select case cast (strftime('%w', trip.start_date) as integer)
 when 0 then 'Niedziela'
 when 1 then 'Poniedzialek'
 when 2 then 'Wtorek'
 when 3 then 'Sroda'
 when 4 then 'Czwartek'
 when 5 then 'Piatek'
 else 'Sobota' end as weekday,
 count(*) as trip_count
from trip
group by strftime('%u', start_date)"
trip_day_week <- dbGetQuery(con, query)</pre>
trip_day_week[,1] <- factor(trip_day_week[,1], levels = trip_day_week[,1])</pre>
ggplot(data=trip_day_week, aes(x = weekday, y= trip_count)) +
 geom_bar(stat = "identity", fill="darkblue") +
  geom_text(aes(label = trip_count), vjust = 2, color="white") +
 labs(title = "Liczba wypożyczeń z podziałem na poszczególne dni tygodnia", x="Dzień tygodnia", y="Ilo
 theme_minimal()
```


Wskaźniki:

Wnioski:

[1] 37254.51

- Najwięcej wypożyczeń odbywa się od poniedziałku do piątku, co sugeruje, że system wypożyczalni jest intensywnie wykorzystywany w dni robocze.
- Wtorek jest dniem o najwyższej liczbie wypożyczeń (122 235), natomiast niedziela to dzień o najmniejszej liczbie wypożyczeń (38 345).
- Wykres wskazuje na użytkowanie głównie przez osoby dojeżdżające do pracy lub szkoły.

Liczba wypożyczeń z podziałem na poszczególne godziny

```
query <- "
select
    strftime('%H', trip.start_date) as hour,
    count(*) as trip_count
from trip
group by hour"

trip_hours <- dbGetQuery(con,query)

ggplot(data=trip_hours, aes(x = hour, y=trip_count)) +
    geom_bar(stat = "identity", fill="darkblue") +
    geom_text(aes(label = trip_count), vjust = -0.5, color = "black", size = 2) +
    labs(
        title = "Liczba wypożyczeń z podziałem na poszczególne godziny",
        x="Godzina", y="Ilosc wypożyczeń") +
    theme_minimal()</pre>
```

Liczba wypo ycze z podziałem na poszczególne godziny


```
summary(trip_hours[,2])
```

```
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 334 4194 28129 27903 36759 85846
```

```
var(trip_hours[,2])
## [1] 675907042
sd(trip_hours[,2])
```

[1] 25998.21

Wnioski:

- Szczytowe godziny (poranna i popołudniowa) odpowiadają typowym godzinom dojazdów do pracy i z pracy.
- W nocy i bardzo wczesnym rankiem liczba wypożyczeń jest znikoma.

```
df <- dbGetQuery(con,"</pre>
select
   strftime('%H', start_date) AS hour,
   strftime('%u', trip.start date) as day of week number,
   case cast (strftime('%u', trip.start_date) as integer)
   when 1 then 'Poniedzialek'
   when 2 then 'Wtorek'
   when 3 then 'Sroda'
   when 4 then 'Czwartek'
   when 5 then 'Piatek'
   when 6 then 'Sobota'
   else 'Niedziela' end as day_of_week,
   COUNT(*) AS trip_count
from trip
group by hour, day_of_week"
df$day_of_week_number <- as.numeric(df$day_of_week_number)</pre>
df$day_of_week <- reorder(df$day_of_week, df$day_of_week_number)
ggplot(data=df, aes(x = as.numeric(hour), y = trip_count)) +
  geom_bar(stat = "identity", fill="darkblue") +
  facet_wrap(~ day_of_week, ncol=1, scales="free_y") +
 labs(title = "Ilość wypożyczeń w zależności od godziny",
       x = "Godzina",
       y = "Ilość wypożyczeń") +
  scale_x_continuous(breaks = seq(0, 23, by = 2), labels = seq(0, 23, by = 2)) +
  theme_minimal()
```

Ilo wypo ycze w zale no ci od godziny

Wnioski:

- W dni powszednie występują dwa wyraźne szczyty: o godzinie 8:00 i 17:00.
- W weekendy liczba wypożyczeń jest równomiernie rozłożona w ciągu dnia, bez dużych szczytów.
- W weekendy rowery są wykorzystywane bardziej równomiernie przez cały dzień, co może sugerować ich używanie rekreacyjne lub do celów turystycznych.

Rozkład długości wypożyczeń według dnia tygodnia

```
query <- "
select
    duration,
    strftime('%u', trip.start_date) as day_of_week_number,
  case cast (strftime('%u', trip.start_date) as integer)
    when 1 then 'Poniedzialek'
   when 2 then 'Wtorek'
   when 3 then 'Sroda'
   when 4 then 'Czwartek'
   when 5 then 'Piatek'
   when 6 then 'Sobota'
   else 'Niedziela' end as day_of_week
from trip
where duration < 2*60*60"
trip_data <- dbGetQuery(con, query)</pre>
trip_data$day_of_week_number <- as.numeric(trip_data$day_of_week_number)</pre>
trip_data$day_of_week <- reorder(trip_data$day_of_week, trip_data$day_of_week_number)</pre>
ggplot(trip_data, aes(x = duration, color = day_of_week)) +
  geom_density() +
  facet_wrap(~ day_of_week, ncol=1) +
 labs(title = "Rozkład długości wypożyczeń według dnia tygodnia", x = "Czas trwania (s)", y = "Gęstość
```

Rozkład długo ci wypo ycze według dnia tygodnia

Wnioski:

- Kształt rozkładu: Zarówno dla dni powszednich, jak i weekendów, większość wypożyczeń trwa krótko. Krzywa gestości maleje szybko po osiągnięciu szczytu.
- Większość wypożyczeń jest bardzo krótka, niezależnie od dnia tygodnia.
- W dni robocze rozkład jest bardziej stromy, co oznacza, że wypożyczenia są krótsze i bardziej skoncentrowane w czasie.
- W weekendy (Sobota, Niedziela) rozkład jest nieco bardziej spłaszczony, co sugeruje większą różnorodność długości wypożyczenia, prawdopodobnie z powodu większej liczby przejazdów rekreacyjnych.

Histogram długości wypożyczenia

Histogram długości wypożyczenia dla krótszych niz 6 godziń

```
query <- "
select
  duration / 60 as 'duration_min'
from trip
where duration < 6*60*60"

trips_duration <- dbGetQuery(con, query)

ggplot(trips_duration, aes(x = duration_min)) +
  geom_histogram(binwidth = 2, fill = "blue", color = "white") +
  labs(
    title = "Długości wypożyczenia",
    x = "Czas trwania (minuty)", y = "Liczba wypożyczeń") +
  theme_minimal()</pre>
```

Długo ci wypo yczenia

Histogram długości wypożyczenia dla krótszych niz 16 godziń (skala logarytmiczna)

```
query <- "
select
  duration / 60 as 'duration_min'
from trip
where duration < 16*60*60
"

trips_duration <- dbGetQuery(con, query)

ggplot(trips_duration, aes(x = duration_min)) +
  geom_histogram(binwidth = 7, fill = "blue", color = "white") +
  labs(title = "Długości wypożyczenia", x = "Czas trwania (minuty)", y = "Liczba") +
  scale_y_log10(labels = label_number(scale = 1, big.mark = ",")) +
  theme_minimal()</pre>
```

Długo ci wypo yczenia

Wnioski:

- Spadek liczby wypożyczeń jest stopniowy. Wypożyczenia trwające dłużej niż 60 minut nadal występują, choć rzadko.
- Długi ogon rozkładu jest wyraźniej widoczny.

Zależność temepartury od ilośći wypożyczeń

Liczba wypożyczeń dla danych tempeartur

```
query <- "
select
       SELECT w.mean_temperature_f
       from weather w
      where strftime('%Y-%m-%d', w.date) = strftime('%Y-%m-%d', t.start_date)
       ) as mean temperature,
    t.id,
    case
        when cast(strftime('%u', t.start_date)) as integer) in (6, 7) then 'Weekend'
        else 'Dzień powszedni'
   end as day_type
from trip t
temperature_trips <- dbGetQuery(con, query)</pre>
ggplot(temperature_trips, aes(x=mean_temperature)) +
  geom_bar(stat = "count", fill="darkblue") +
    labs(title = "Liczba wypożyczeń dla danych temperatur",
       y = "Ilości wypożyczeń",
       x = "Średnia temperatura (°C)",
       color = "Temperatura") +
  facet_wrap(~ day_type, ncol=1, scales="free") +
  theme_minimal()
```

Liczba wypo ycze dla danych temperatur

Wnioski:

- Najwięcej wypożyczeń występuje w temperaturach (10-20°C)
- Ilość wypożyczeń w weekendy jest mniejsza niz w tygodniu co potwierdza poprzednie wnioski

Wykres punktowy (scatter plot) – zależność temperatury od ilości wypożyczeń

```
w.mean_temperature_f as mean_temperature,
    w.mean_humidity,
    w.mean_wind_speed_mph,
    CASE
        WHEN LOWER(w.events) LIKE '%rain%' THEN 'rain'
       ELSE 'no rain'
       END AS rain
FROM weather w
WHERE w.mean_temperature_f IS NOT NULL;
trips_grouped <- dbGetQuery(con, query)</pre>
summary(trips_grouped['trip_count'])
##
      trip_count
## Min. : 41.0
## 1st Qu.: 209.0
## Median: 835.0
## Mean : 696.5
## 3rd Qu.:1049.0
## Max. :1245.0
var(trips_grouped['trip_count'])
              trip_count
## trip_count
              155753.8
ggplot(trips_grouped, aes(y = trip_count, x = mean_temperature, color = mean_temperature)) +
  geom_point(alpha = 0.5) +
  scale_color_gradient(low = "blue", high = "red") +
    labs(title = "Zależność temperatury od ilości wypożyczeń",
       y = "Ilości wypożyczeń",
       x = "Średnia temperatura (°C)",
       color = "Temperatura") +
  facet_wrap(~ day_type, ncol=1, scales="free") +
  theme_minimal()
```

Zale no temperatury od ilo ci wypo ycze

Wnioski:

- W niższych temperaturach (5-15 C) wypożyczenia są mniej liczne, a wraz ze wzrostem temperatury do około 20-25 C następuje znaczny wzrost wypożyczeń.
- W bardzo wysokich temperaturach (powyżej 25 C) widać tendencję do spadku wypożyczeń, co może sugerować, że zbyt wysoka temperatura wpływa negatywnie na korzystanie z rowerów.
- W dni powszednie liczba wypożyczeń często przekracza 1000, podczas gdy w weekendy liczba wypożyczeń rzadko przekracza 250.

Model statystyczny

Regresja liniowa

```
query <- "
SELECT
    strftime('%Y-%m-%d', w.date) as trip_date,
    (SELECT
         count(*)
    from trip t
    join station s on s.id = t.start_station_id
    where strftime('%Y-%m-%d', w.date) = strftime('%Y-%m-%d', t.start date)
    ) as trip count,
   w.mean_temperature_f as mean_temperature,
   w.mean_humidity,
   w.mean_wind_speed_mph as mean_wind_speed,
   CASE
       WHEN LOWER(w.events) LIKE '%rain%' THEN 'rain'
       ELSE 'no rain'
       END AS rain
FROM weather w
WHERE strftime('%u', w.date) NOT IN ('6', '7')
and w.mean_temperature_f IS NOT NULL;
trips <- dbGetQuery(con, query)</pre>
trips <- na.omit(trips)</pre>
trips$rain <- as.factor(trips$rain)</pre>
lm <- lm(trip_count ~ rain + mean_temperature + mean_humidity +</pre>
                  mean_wind_speed, data = trips)
summary(lm)
##
## Call:
## lm(formula = trip_count ~ rain + mean_temperature + mean_humidity +
       mean_wind_speed, data = trips)
##
## Residuals:
      Min
               1Q Median
                                3Q
                                       Max
## -954.64 -80.92 31.61 139.96 596.99
## Coefficients:
                     Estimate Std. Error t value Pr(>|t|)
##
## (Intercept)
                     622.1888
                                35.6213 17.467 < 2e-16 ***
                    -254.5563
                                 16.9499 -15.018 < 2e-16 ***
## rainrain
                                 1.2115 21.465 < 2e-16 ***
## mean_temperature
                     26.0040
                                 0.4237 3.154 0.00163 **
## mean_humidity
                      1.3362
## mean_wind_speed
                       1.3216
                                 0.8967 1.474 0.14065
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 226.3 on 2453 degrees of freedom
## Multiple R-squared: 0.2694, Adjusted R-squared: 0.2682
```

Interpretacja wyników summary(lm)

- Deszcz: współczynnik -254.56 oznacza, że deszcz zmniejsza liczbę wypożyczeń średnio o 254 rowery dziennie, jest istotny statystycznie (p < 0.001)
- Śrdnia temepratura: współczynnik **26.00** wskazuje, że większa tempeartura otoczenia zwiększa liczbę wypożyczeń o około 26, również istotny wpływ (p < 0.001)
- Średnia wilgotność: ma niewielki, ale istotny wpływ (p = 0.00163)
- Średnia prędkość wiatru: nie jest istotny (p = 0.14065), co sugeruje, że prędkość wiatru nie ma dużego wpływu na liczbę wypożyczeń

```
par(mfrow=c(2,2))
termplot(lm)
```


- Deszcz: widać istotny spadek liczby wypożyczeń w dni deszczowe.
- Średnia temperatura: istnieje wyraźny trend wzrostowy, co potwierdza dodatni wpływ temperatury na wypożyczenia.
- Średnia wilgotność: niewielki, ale zauważalny wzrost liczby wypożyczeń przy wzrastającej wilgotności.
- Średnia prędkość wiatru: prawie płaski trend, co potwierdza jego niski wpływ.

```
ggplot(trips, aes(sample = trip_count)) +
  stat_qq() +
  stat_qq_line() +
```

```
labs(title = "QQ-plot dla ilości wypożyczeń") +
theme_minimal()
```


QQ-plot sugeruje, że reszty modelu nie są idealnie normalnie rozłożone – widoczna jest asymetria (dolny lewy róg odchyla się od linii), co sugeruje potencjalne niedopasowanie modelu do danych. Oznacza to, że model może mieć problem z dopasowaniem ekstremalnych wartości (np. bardzo niskich i wysokich liczby wypożyczeń).

```
ggplot(data = trips, aes(mean_temperature, trip_count, color = mean_temperature)) +
    geom_point(alpha=0.5) +
    scale_color_gradient(low = "blue", high = "red") +
    geom_smooth(method = "lm") +
    theme_minimal() +
    labs(title = "Zależność temperatury od ilości wypożyczeń w dni powszednie",
        y = "Ilości wypożyczeń",
        x = "Średnia temperatura (°C)",
        color = "Temperatura")
```



```
ggplot(data = trips, aes(rain, trip_count)) +
    geom_violin(color = "red", fill = "blue") +
    theme_minimal() +
    labs(title = "Zależność deszczu od ilości wypożyczeń w dni powszednie",
    y = "Ilości wypożyczeń",
    x = "Pogoda")
```



```
##
## Welch Two Sample t-test
##
## data: trips_grouped$trip_count[trips_grouped$day_type == "Dzień powszedni"] and trips_grouped$trip_
## t = 142.08, df = 2817.8, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## 723.7741 744.0301
## sample estimates:</pre>
```

1. Hipoteza zerowa:

mean of x mean of y ## 909.7436 175.8415

Średnia liczba wypożyczeń rowerów w dni powszednie i w weekendy jest taka sama.

2. Hipoteza alternatywna:

- Średnia liczba wypożyczeń rowerów w dni powszednie różni się od tej w weekendy.
- Wartość t-testu jest bardzo wysoka, co pokazuje istotną różnicę między średnimi.
- Bardzo niska wartość p, oznacza, że istnieją bardzo silne dowody przeciwko hipotezie zerowej.

Regresja liniowa z regulacją L1

```
X <- model.matrix(trip_count ~ rain + mean_temperature + mean_humidity + mean_wind_speed, data = trips)
y <- trips$trip_count
lasso_model <- glmnet(X, y, alpha = 1)</pre>
cv_lasso <- cv.glmnet(X, y, alpha = 1, nfolds = 10)</pre>
best lambda <- cv lasso$lambda.min
lasso_final_model <- glmnet(X, y, alpha = 1, lambda = best_lambda)</pre>
coef(lasso_final_model)
## 5 x 1 sparse Matrix of class "dgCMatrix"
##
## (Intercept)
                     627.504502
## rainrain
                     -252.507461
## mean_temperature 25.935626
## mean_humidity
                      1.280861
## mean_wind_speed
                        1.248064
predictions <- predict(lasso_final_model, newx = X)</pre>
predictions <- predict(lasso final model, newx = X)</pre>
```

Wykres rzeczywistych vs przewidywanych wartości

- Są widoczne rozproszenia danych wokół linii idealnego dopasowania, szczególnie dla mniejszych wartości (np. poniżej 800). Pokazuje to, że model może mieć trudności z dokładnym przewidywaniem niższych liczb wypożyczeń.
- Większych wartości (powyżej 1000) są bardziej przewidywane przez model są bardziej zgodne z rzeczywistościa, choć występuje nadal pewne odchylenie.
- Istnieją wartości, gdzie model znacząco różni się od rzeczywistości, co sugeruje, że mogą występować jeszcze inne czynniki wpływające na liczbę wypożyczeń (np. sezonowość, specjalne wydażenia)

Podsumowanie

Analiza statystyczna danych dotyczących wypożyczeń rowerów wykazała istotne zależności pomiędzy liczbą wypożyczeń a czynnikami pogodowymi.

- Temperatura: Wzrost temperatury do 20-20 C sprzyja wypożyczeniom, natomiast w niskich (<15 C) i bardzo wysokich temperaturach (>25 C) liczba wypożyczeń spada.
- Dzień tygodnia: W dni powszednie liczba wypożyczeń jest znacznie wyższa niż w weekendy, co potwierdził test t-Studenta (p < 0.001). Średnia liczba wypożyczeń wynosi ok. 910 w dni robocze i 176 w weekendy.
- Długość wypożyczeń: Większość wypożyczeń jest krótka, szczególnie w dni robocze, gdzie są bardziej skoncentrowane czasowo. W weekendy długości wypożyczeń są bardziej zróżnicowane, co sugeruje użytkowanie rekreacyjne.
- Godziny szczytu: W dni robocze występują dwa wyraźne szczyty o godzinie 8:00 i 17:00, zgodne z typowymi godzinami szczytu. W weekendy rozkład wypożyczeń jest bardziej równomierny.

• Najwyższa aktywność: Najwięcej wypożyczeń odnotowano w dni powszednie , a najmniej w weekendy, co sugeruje, że system jest wykorzystywany głównie do codziennych dojazdów.