### Complexity Theory I

Jan - May, 2023

## Lecture 3: Time Hierarchy Theorem

Lecturer: Partha Mukhopadhyay Scribe: Soham Chatterjee

## 1 Diagonalization

TMs can be encoded efficiently

Theorem 1 Cantor's Idea

Reals in (0,1) are uncountable

*Proof.* Otherwise let  $r_1, r_2, r_3, \ldots$  be an enumeration of the reals in (0, 1).

$$r_i = \sum_{j>1} r_i[j] 2^{-j}$$

where  $r_i[j] \in \{0, 1\}.$ 

Define r such that  $r[j] = 1 - r_j[j]$ . So,

$$r = \sum_{j>1} r[j]2^{-j}$$

r is not in the enumeration list. Otherwise let  $r = r_k$  for some  $k \in \mathbb{N}$ . But by construction  $r[k] = 1 - r_k[k]$ .

## 2 Time Hierarchy Theorem

 $TIME(n^3) :=$ Set of problems which can be solved by a DTM in time  $O(n^3)$  where the input length = n. Time Hierarchy Theorem says that

$$TIME(n^2) \subseteq TIME(n^3)$$

$$TIME(g(n)) \subseteq TIME(f(n))$$

where  $g(n) \approx o(f(n))$ 

#### **Definition 1: Time Constructible Function**

Let  $t: \mathbb{N} \to \mathbb{N}$  and  $\exists n_0$  such that  $t(n) \ge n \log n$  for  $n \ge n_0$ . Then we say that t is time constructible if on input  $1^n$  the binary value of t(n) can be computed in O(t(n)) time using a DTM Example:  $n \log n$ ,  $n^2$ ,  $n^3$ ,  $n\sqrt{n}$ ,  $2^n$ 

Т

Example 1 (Non-Time Constructible Function)

 $f: \mathbb{N} \to \mathbb{N}$ .

$$f(n) = \begin{cases} n^2 & \text{if } n \text{ encoded in binary a TMM which halts on all inputs} \\ n^2 + 1 & \text{otherwise} \end{cases}$$

#### **Theorem 2** Time Hierarchy Theorem [Sip13]

Let  $t: \mathbb{N} \to \mathbb{N}$  be a time constructible function. Then there exists a language  $L \in TIME(t(n))$  such that  $L \notin TIME\left(o\left(\frac{t(n)}{\log(t(n))}\right)\right)$ 

**Idea:** We construct a TM D that decides a language A in time O(t(n)), whereby A cannot be decided in  $o(t(n)/\log t(n))$  time. Here, D takes an input w of the form  $\langle M \rangle 10^*$  and simulates M on input w, making sure not to use more than t(n) time. If M halts within that much time, D gives the opposite output.

The important difference in the proof concerns the cost of simulating M while, at the same time, counting the number of steps that the simulation is using. Machine D must perform this timed simulation efficiently so that D runs in O(t(n)) time while accomplishing the goal of avoiding all languages decidable in  $o(t(n)/\log t(n))$  time. For space complexity, the simulation introduced a constant factor overhead, as we observed in the proof of Theorem 9.3. For time complexity, the simulation introduces a logarithmic factor overhead. The larger overhead for time is the reason for the appearance of the  $1/\log t(n)$  factor in the statement of this theorem. If we had a way of simulating a single-tape TM by another single-tape TM for a prespecified number of steps, using only a constant factor overhead in time, we would be able to strengthen this theorem by changing  $o(t(n)/\log t(n))$  to o(t(n)). No such efficient simulation is known.

*Proof.* The following O(t(n)) time algorithm D decides a language A that is not decidable in  $o(t(n)/\log t(n))$  time.

#### Turing Machine B

- 1. Input w of length |w| = n
- 2. Compute  $\frac{t(n)}{\log n}$  and make a counter for  $\frac{t(n)}{\log n}$  using  $\log\left(\frac{t(n)}{\log n}\right) \approx \log(t(n))$  bits.

Decrement the clock in every step

- 3. Check if  $w = \langle M \rangle 10^*$  where M is an encoding of a Turing Machine, else reject.
- 4. Simulate M on w. If M halts within the clock, B does opposite to M
- 5. Halts and reject.



# References

[Sip13] Michael Sipser. Introduction to the Theory of Computation. Cengage India Private Limited, third edition, 2013.