

Module 5: Managing Server Clusters

Goal

Objectives

- Create a new Mule server Cluster
- Add Mule servers to a Cluster
- Deploy Applications to a Cluster
- Test cluster failover behavior

Topics

- Clustered server solutions and architectures:
 - What problem clusters solve
 - What they are and what they do
 - When to use clusters and when not to
- Building a Cluster:
 - From MMC
 - With Multicast enabled or disabled
- Deploying applications to clusters

Clustered Servers Solutions and Architectures

The need for Mule server clusters

So far we have two Mule instances:

- They work independently:
 - They don't communicate with each other or share resources
 - What kind of situations could independent Mule instances get into if they are running the same application?

Common problem: resource contention

May poll the same resource!

Solution: Clustering

 A cluster is a set of 2 or more Mule Servers that act as a single server:

Benefits of Clustering

- Load Balancing:
 - Sometimes you need extra hardware/software (e.g. for webservices)

Benefits of Clustering (2)

High Availability:

 If one node fails, the other node will take the failed node's workload as well as as its own

Benefits of Clustering (3)

Polling shared resources:

- Sharing object stores
- Components that store state:
 - Cache, Idempotent filters (to remove duplicates)

Mule Active/Active Clusters

- All nodes share a common objects repository:
 - Actually, several repositories; one per SEDA Queue
 - All nodes have the same priority when reading/writing
- Shared memory is also distributed:
 - 271 partitions (buckets) for objects
 - Each object is replicated to 1 other node (default)
 - Can be changed up to 6
 - Automatically rebalanced

When would you NOT use clustering?

Don't use clustering if:

- Your load-balancing is done by 3rd party components
 - Or you don't need load balancing and failover at all
- You need to scale up over 8 nodes (Mule supports more, just not officially...)
 - Some customers are successful with many more nodes
- Your nodes are geographically distributed
 - Or there is high latency in the network
- You handle large stream payloads (E.g. videos, large documents)
- All your services are synchronous (E.g. SOAP services)
 - And you don't need failover

Building a Cluster

Managing clusters

- Clusters are managed as if they were one single server
 - Doesn't matter if there are 2, 3 or 4 nodes, you will only see one entity:

Walkthrough 5-1: Create a cluster

- Create a new Mule Server Cluster
- Add Mule servers to a Cluster

Things to keep in mind

- Cluster-wide operations are done sequentially:
 - Deployments
 - Undeployments
 - The more nodes you have, the longer it takes
 - Updating application; first undeploy old, then deploy new
- •The clustering protocol is chatty and operations are synchronous:
 - Make sure that nodes are on a fast LAN
- The Applications tab is populated from MMC's repository:
 - Any application not deployed through MMC will NOT show
 - If you need to see all apps, click on the server name -> applications
 - Applications with the same name will be clustered anyway

The gory details

- What happens to Mules when you cluster them?
 - MMC creates \$MULE_HOME/.mule/mulecluster.properties
 - You can create this file manually, so that you can cluster
 Mules without even using MMC
 - Make sure your license supports clustering

```
#Mule cluster properties
#Fri Jul 19 16:17:52 PST 2014
mule.clusterSize=2
mule.clusterSchema=partitioned-sync2backup
mule.clusterId=5e775a47-f6b9-43da-8e85-31167a86b7b6
mule.clusterPartitioningMode=OPTIMIZE_PERFORMANCE
mule.clusterNodeId=2
```


Multicast (mDNS)

- On startup, nodes find each other using Multicast (mDNS), but after that everything is Unicast
- If you want to disable Multicast:
 - Either tick here when creating a cluster

Or add this to \$MULE_HOME/conf/wrapper.conf

```
wrapper.java.additional.15=-Dmule.cluster.multicastenabled=false
wrapper.java.additional.16=-Dmule.cluster.nodes=a.b.c.d, e.f.g.h
```

- mule.cluster.nodes are TWO nodes that act as LOCATORS
 - Do NOT put all the IPs for all the nodes here.

Walkthrough 5-2: Deploy applications to clusters

- Deploy Applications to a Cluster
- Test cluster fail over behavior

Summary

- Mule Servers can be joined into Clusters
 - Implemented using Hazelcast distributed shared-memory grid
- Applications can be deployed to Clusters
 - Message processing is automatically Load Balanced for Asynchronous flows

