Enforcing Geometric Constraints of Surface Normal and Pose for Selfsupervised Monocular Depth Estimation on Laparoscopic Images We da Li^{1*}, Yuichiro Hayashi¹, Masahiro Oda^{2,1}, Takayuki Kitasaka³, Kazunari Misawa⁴, Kensaku Mori^{1,2,6}

1 Graduate School of Informatics, Nagoya University 2 Information Technology Center, Nagoya University 3 Faculty of Information Science, Aichi Institute of Technology 4 Aichi Cancer Center Hospital 5 Research Center of Medical Bigdata, National Institute of Informatics

INTRODUCTION

Depth Perception in Minimally Invasive Surgery (MIS)

- Narrow field of view (FoV) with poor depth visualization in MIS [1]
- Two main solutions to view problem [2]
- Robotic-assisted MIS ne
- AR-assisted MIS need dept re automation of the reconstruction
- Depth value is important for the minimally invasive surgeries
- Previous methods for monocular depth estimation
- A self-supervised learning strategy has been a mainstream method [3]
- Leverage adjacent images to estimate relative poses of the camera - Calculate photometric error of matched pixels between adjacent images
- Self-supervised depth estimation is introduced to laparoscopic scenes [3]

PURPOSE

Problems in current methods for laparoscopic images

- Smooth surface of organs and complex rotations of laparoscope lead depth estimation become more difficult
- Previous method (GCDepthL [4]) enforced geometric constraints while overlooking local geometric structures

Purpose

Enforce stronger geometric constraints for depth and pose estimation to predict accurate depths and 3D reconstruction

Contributions

- Propose a feature-matching process by calculating the 4D score volume
- Introduce surface normal estimation and build the depth-normal consistency
- Model an uncertainty map for the depth-normal consistency to alleviate bias

Architecture of network with three branches

- Depth: input target image I_t (t means time t) and output depth map D_t
- Pose: input I_t and source images I_s (s means time t-1 or t+1) to predict relative pose $T_{t\to s}$ (Fig. 1)
- Normal vector: input I_t and I_s and output normal maps N_t and N_s

Self-supervised learning strategy

- Extract feature maps \mathbf{F}_t and \mathbf{F}_s from \mathbf{I}_t and \mathbf{I}_s and construct a 4D score volume by feature-matching to predict poses
- Match 2D locations p_t and p_s by predicted depth value $\mathbf{D}_t^{p_t}$ and generate synthesis images $I_{s \to t}$, then calculate reprojection error as

$$\mathcal{L}_r = \frac{1}{|\mathbf{H}|} \sum_{\mathbf{p} \in \mathbf{H}} \min \frac{\alpha}{2} \left(1 - \text{SSIM}(\mathbf{I}_t, \mathbf{I}_{s \to t}, \mathbf{p}) \right) + (1 - \alpha) ||\mathbf{I}_t^{\mathbf{p}} - \mathbf{I}_{s \to t}^{\mathbf{p}}||_1$$

Depth-normal consistency under distance-based uncertainty

 As shown in Fig. 2, convert back-projected 3D positions P to normal map N_b by surrounding pixels' 2D locations p^i and p^j belonging to Ω as

$$\mathbf{N}_{b}^{p} = \frac{1}{|\Omega|} \sum_{p^{i}, p^{j} \in \Omega} \frac{\left(\mathbf{P}^{p^{i}} - \mathbf{P}^{p}\right) \times \left(\mathbf{P}^{p^{j}} - \mathbf{P}^{p}\right)}{||\left(\mathbf{P}^{p^{i}} - \mathbf{P}^{p}\right) \times \left(\mathbf{P}^{p^{j}} - \mathbf{P}^{p}\right)||_{2}}$$

Model uncertainty map U based on the distances d of points within local region π to the synthesized plane using as surrounding pixels' 2D locations p^k as

 $\mathbf{U}^{p} = \frac{1}{|\Omega|} \sum_{p \in \Omega} ||\mathbf{N}_{b}^{p} \cdot (\mathbf{P}^{p^{k}} - \mathbf{P}^{p})||_{2}$

Construct consistency of converted normal and predicted normal maps as

$$\mathcal{L}_c = \frac{1}{|\mathbf{H}|} \sum_{p \in \mathbf{H}} (1 - \mathbf{U}_t^p) (1 - \mathbf{N}_{b,t}^p \cdot \mathbf{N}_t^p) + (1 - \mathbf{U}_s^p) (1 - \mathbf{N}_{b,s}^p \cdot \mathbf{N}_s^p)$$
truct consistency of adjacent predicted normal maps as

Construct consistency of adjacent predicted normal maps as

$$\mathcal{L}_n = \frac{1}{|\mathbf{H}|} \sum_{p \in \mathbf{H}} (1 - \mathbf{N}_{s \to t}^p \cdot \mathbf{N}_t^p)$$

Fig 1. Overview of the architecture with optimized pose estimation

Fig 2. Consistency of predicted surface normal and depths

Total loss function is combined with smoothness loss L_s and 3D points loss L_p [4] as $\mathcal{L}_f = \mathcal{L}_r + \lambda \mathcal{L}_c + \gamma \mathcal{L}_n + \mu \mathcal{L}_s + \xi \mathcal{L}_p$

EXPERIMENTS & RESULTS

Datasets and evaluation metrics

- Datasets: laparoscopic datasets Hamlyn [5] and SCARED [6]
- Training image size: downsampled to quarter size of original size
- Evaluation metrics: 2D and 3D metrics for predicted depth maps

Implementation details

- In final total loss function, λ , γ , μ are set as 0.01 and λ , ξ are 10⁻³
- ResNet18 with pretrained parameters is adopted as encoder

Decoder has 5 layers as the same as previous methods [3,4,7] Table 1 Quantitative results on Hamlyn for depth estimation								Fig 3. Examples of predicted depth map and error maps on SCARED Table 2 Quantitative results on SCARED datasets for depth estimation				
Metrics		Ours	AF-SfMLearner [3]	GCDepthL [4]	MGMNet [7]	Metrics		Ours	Ours w/o consistency	AF-SfMLearner [3]	GCDepthL [4]	MGMNet [7]
D	Oliver to the last of the last		0.169	0.162	0.159	2D	Abs Rel		0.061	0.066	0.062	0.063
	Abs Rel	0.143					RMSE .		5.136	5.608	5.851	5.696
	RMSE 👃	13.142	15.862	14.762	14.553				2.840	3.234	2.625	2.798
0	Comp.	5.202	6.577	5.881	6.114	3D	Comp.				0.729	0.717
	Recall 1	0.437	0.342	0.399	0.369		Recall 1	0.777	0.738	0.703	0.72	

DISCUSSION

- In Table 1 and Table 2, proposed method has better performance than previous methods on SCARED and Hamlyn datasets
- Proposed method outperformed on two 2D and two 3D metrics
- In Fig. 3, all existing methods output similar predicted depth maps, but proposed methods has lower errors through error maps
- Error maps reveal the error hidden error in the predicted depth maps even the depth maps perform smooth

- We construct a consistency of predicted depth maps and normal maps with an optimized pose estimation process via a novel 4D score volume
- Experiment results show our method has better performance on depth estimation

