Scilab Textbook Companion for Satellite Communications by D. Roddy¹

Created by
Dolar Khachariya
M tech
Electrical Engineering
IIT Bombay
College Teacher
Na
Cross-Checked by
K. V. P. Pradeep

July 2, 2014

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Satellite Communications

Author: D. Roddy

Publisher: McGraw-Hill

Edition: 3

Year: 2001

ISBN: 0070533709

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

Lis	List of Scilab Codes		
2	Orbits and Lauching Methods	7	
3	The Geostationary orbit	24	
4	Radio Wave Propagation	29	
5	Polarization	32	
6	Antennas	34	
9	Analog Siganls	38	
10	Digital Siganls	43	
12	The Space Link	46	
13	Interference	60	
14	Satellite Access	66	
16	Direct Broadcast Satellite Services	73	

List of Scilab Codes

Exa 2.1	Calculate the radius of a circular orbit for which the period is 1 day	7
Exa 2.2	Calculate the semimajor axis for the satellite parameters given	7
Exa 2.3	Calculate the apogee and perigee for the orbital param-	1
	eters given	8
Exa 2.4	calculate the semimajor axis	9
Exa 2.5	Determine the rate of regression of the nodes and the rate of rotation of the line of apsides for the satellite	
	parameters specified	10
Exa 2.6	Calculate the new values for W and w one period after epoch	10
Exa 2.7	Calculate the average length of the civil year in the Gregorian calendar	11
Exa 2.8	Determine which of the following are leap years	12
Exa 2.9	Calculate the time	13
Exa 2.10	Find the Julian day for 13h UT on 18December 2000 .	13
Exa 2.11	Find the time in Julian centuries from the reference time	14
Exa 2.12	Calculate the time of perigee passage for the NASA el-	
	ements	15
Exa 2.13	calculate the eccentric anomaly	15
Exa 2.14	Calculate teh true anomaly and the magnitude of the	
	radius vector	16
Exa 2.15	express r in vector form in the perifocal coordinate sys-	
	tem	17
Exa 2.17	Find the GST for 13h UT on 18December 2000	17
Exa 2.18	Find the LST for Thunder Bay	18

Exa 2.19	Find the components of the radius vector to the earth station at Thunder Bay
Exa 2.20	Calculate the corresponding range and the look angles
Exa 2.20	for an earth station the coordinates
Exa 2.21	
Exa 2.21 Exa 3.1	Determine the subsatellite height latitude and LST.
	Calculate the azimuth angle for an earth station antenna
Exa 3.2	Find the range and antenna elevation angle
Exa 3.3	Determine the angle
Exa 3.4	Determine the limits of visibility
Exa 3.5	calculate the longitude
Exa 4.1	Calculate for the frequency
Exa 4.2	circular polarization
Exa 5.1	Determine the angle of polarization
Exa 6.1	Plot the E Plane and H Plane radiation
Exa 6.2	Plot the magnitue of the array factor as a function of
	phi
Exa 6.3	for phi 90 degrees
Exa 9.1	Calculate the peak deviation and the signal bandwidth
Exa 9.2	Calculate the modulation index and the Bandwidth
Exa 9.3	Recalculate the bandwidths
Exa 9.4	calculate the receiver processing gain and the postde-
	tector
Exa 9.5	Calculate the signal to noise ratio
Exa 9.6	Calculate the carrier to noise ratio required at the input
	to the FM detector
Exa 10.1	determine the bit error rate
Exa 10.2	Calculate the required C N0
Exa 10.3	Calculate the Eb N0 ratio in decibels
Exa 12.1	Calculate the EIRP in dBW
Exa 12.2	Calculate the gain of a 3 m paraboloidal antenna oper-
	ating
Exa 12.3	Calculate the free space loss at a frequency of 6 GHz .
Exa 12.4	Calculate the total link for clear sky conditions
Exa 12.5	Calculate the noise power density and the noise power
	for a bandwidth of 36 MHz
Exa 12.6	Calculate the overall noise temperature referred to the
	LNA input
Exa 12.7	Calculate the noise temperature to the input
	Carcarate the noise temperature to the input

Exa 12.8	Repeat Example 7	50
Exa 12.9	Calculate the carrier to noise spectral density ratio	51
Exa 12.10	Calculate the earth station EIRP required for saturation	51
Exa 12.11	Calculate the carrier to noise density ratio	52
Exa 12.12	calculate the satellite EIRP required	53
Exa 12.13	Calculate the bit rate which can be accommodated and	
	the EIRP required	53
Exa 12.14	Calculate the carrier to noise ratio at the earth station	54
Exa 12.15	Calculate the power output of the TWTA required for	
	full saturated EIRP	55
Exa 12.16	calculate the value	55
Exa 12.17	Calculate the percentage of time the system stays above	
	the threshold	56
Exa 12.18	Calculate the combined C N0 ratio	57
Exa 12.19	Calculate the C N for both links	58
Exa 12.20	Calculate the overall carrier to noise ratio in decibels .	59
Exa 13.1	Determine the carrier to interference ratio at the ground	
	receiving antenna	60
Exa 13.2	Calculate the C I ratio on the uplink	60
Exa 13.3	find the overall ratio	61
Exa 13.4	Determine the degradation in the downlink	62
Exa 13.5	Calculate the protection ratio required to give a quality	
	impairment factor	62
Exa 13.6	Calculate the transmission gain y	63
Exa 14.1	Compare this with when no backoff needed	66
Exa 14.2	Determine the miss probabilty	67
Exa 14.3	Determine the probability of false detection	68
Exa 14.4	Calculate the frame efficiency	68
Exa 14.5	Calculate the voice channel capacity for the INTELSAT	
	frame	69
Exa 14.6	Calculate the maximum transmission rate	69
Exa 14.7	calculate the earth station transmitter power needed for	
	transmission	70
Exa 14.8	Calculate the processing gain in decibels	71
Exa 16.1	Calculate the look angles for the antenna the range and	
	the Eb N0 at the IRD	73
Exa 16.2	Calculate the upper limit	75

Chapter 2

Orbits and Lauching Methods

Scilab code Exa 2.1 Calculate the radius of a circular orbit for which the period is 1 day

Scilab code Exa 2.2 Calculate the semimajor axis for the satellite parameters given

```
1
2 // Variable Declaration
3 NN = 14.22296917
                           //Mean Motion (1/day)
4 u=3.986005*(10**14)
                          //Earth's Gravitational
      COnstant(m^3/sec^2)
6 // Calculation
7 n0 = (NN * 2 * 3.142) / (24 * 60 * 60)
                                                   //Mean
      Motion (rad/sec)
  a=((u/n0**2)**(0.33333))/1000
                                     //Radius of the
      orbit by kepler's 3rd law(km)
9
10
11 //Result
12 printf("The Semimajor axis for given satellite
      parameters is : %.2 f km",a)
```

Scilab code Exa 2.3 Calculate the apogee and perigee for the orbital parameters given

```
//Variable Declaration
3
4 R = 6371
           //Mean Earth's radius(km)
  e=0.0011501 // Eccentricity
                //Semimajor axis(km)
  a = 7192.3
  // Calculation
9
10 \text{ ra=a*(1+e)}
                //Radius Vector at apogee (km)
              //Radius Vector at perigee(km)
11 rp=a*(1-e)
                //Apogee height (km)
12 ha=ra-R
                //Perigee height(km)
13 hp=rp-R
14
15
```

```
16 // Result
17 printf("The Apogee height for given orbital
        parameters is: %.2 f km", ha)
18 printf("The Apogee height for given orbital
        parameters is: %.2 f km", hp)
```

Scilab code Exa 2.4 calculate the semimajor axis

```
1
2 // Variable Declaration
                    //Earth's equitorial radius(km)
3 aE=6378.141
                    // Eccentricity
4 e=0.002
5 p = 12
                    //period from perigee to perigee (
      hours)
6 K1=66063.1704 // Constant (km^2)
7 \quad u=3.986005*(10**14)
                                  //Earth's Gravitational
      constant (m<sup>3</sup>/sec<sup>2</sup>)
8
9
10 // Calculation
11 n=(2*\%pi)/(12*60*60)
                                      //Mean Motion(rad/
      sec)
12 anp=((u/n**2)**(0.3333))/1000
                                          //Radius of the
      orbit by kepler's 3rd law(km)
13 k2=(1-e**2)**1.5
14
15 function [y]=f(a)
16
       y=(n-((u/a**3)**0.5)*(1+K1/a**2*k2))
17 endfunction
18 \quad a=fsolve(2,f)
19 a=a/1000 //Converting a into km
20
21 // Result
22
23 printf ("The nonperturbed value of semimajor axis is
```

```
%.2 f km", anp)
24 printf("\nThe perturbed value of semimajor axis is %
.2 f km", a)
```

Scilab code Exa 2.5 Determine the rate of regression of the nodes and the rate of rotation of the line of apsides for the satellite parameters specified

```
1
2 // Variable Declaration
3 i = 98.6328
                    //Angle (degrees)
4 e=0.0011501
                    //eccentricity
                    //Mean Motion(1/day)
5 n=14.23304826
                    //Semimajor axis (km)
6 a = 7192.3
7 \text{ K1} = 66063.1704
                   //Known constant (km<sup>2</sup>)
  // Calculation
10
11 n0 = (2*180*n)
                  //Mean Motion (deg/sec)
12 K=(n0*K1)/((a**2)*((1-e**2)**2)) // Constant (deg/
      day)
13 w = -K * \cos(i * 3.142/180)
                               //Rate of regression of
      nodes (deg/day)
14 W=K*(2-2.5*(sin(i*3.142/180))**2)
                                           //Rate of
      rotation of line of apsides (deg/day)
15
16 // Results
17 printf ("The rate of regression of nodes is: %.3f deg
      /day", w)
18 printf("\nThe rate of rotation of line of apsides is
       : \%.3 f \deg/\deg, W)
```

Scilab code Exa 2.6 Calculate the new values for W and w one period after epoch

```
1
2 // Variable Declaration
            //rate of regression of nodes from Example
3 \text{ w} = 0.982
      2.5(\deg/\deg)
4 W=-2.903 //rate of rotation of line of apsides from
      Example 2.5) deg/day)
5 n=14.23304826 / Mean Motion (1/day)
                  //Argument of perigee (deg)
6 \quad W0 = 113.5534
                  //Right ascension of the ascending
7 w0 = 251.5324
      node (deg)
8
9 // Calculation
           //Period
10 \text{ PA}=1/n
11 w=w0+w*PA //New value of rate of regression of
      nodes (deg)
              //New Value of rate of rotation of line
12 \quad W = WO + W * PA
      of apsides (deg)
13
14 //Result
15 printf("New value of rate of regression of nodes is:
       \%.3 f deg", w)
16 printf("\nNew value of rate of rotation of line of
      apsides is : %.3f deg", W)
```

Scilab code Exa 2.7 Calculate the average length of the civil year in the Gregorian calendar

years of Gregorian calendar 7 8 //Result 9 disp (gregoriandays) 10 printf("The average length of the civil year in gregorian calender is: %.4f days",gregavg)

Scilab code Exa 2.8 Determine which of the following are leap years

```
1
2 // Calculation and Results
3
4
  if ( modulo(1987, 4) == 0. ) then
       disp("1987 is a leap year");
6
7
  else
       disp("1987 is not a leap year");
9
   end
10
11
12 \text{ if } (\text{modulo}(1988,4) == 0.) \text{ then}
       disp("1988 is a leap year");
13
14 else
15
       disp("1988 is not a leap year");
16 \, \text{end}
17
18 if (\text{modulo}(2000, 400) == 0.) then
19
       disp("2000 is a leap year");
20 else
       disp("2000 is not a leap year");
21
22 \text{ end}
23
24 \text{ if } (\text{modulo}(2100,400) == 0.) \text{ then}
       disp("2100 is a leap year");
25
26 else
```

```
27 disp("2100 is not a leap year");
28 end
```

Scilab code Exa 2.9 Calculate the time

```
1
2
3 // Calculation
4 \text{ days} = 324
            //Number of days
5 hours=floor(24*0.95616765) // Number of hours
6 decimalfraction1=24*0.95616765-hours
7 minutes=floor(60*decimalfraction1) // Number of
     minutes
8 decimalfraction2=60*decimalfraction1-minutes
9 seconds=60*decimalfraction2 // Number of seconds
10
11 //Result
12
13 disp(decimalfraction1)
14 disp(decimalfraction2)
15 printf ("An Epoch day has %.2f days %.2f hours %.2f
     minutes %.2 f seconds", days, hours, minutes, seconds)
```

Scilab code Exa 2.10 Find the Julian day for 13h UT on 18December 2000

```
1
2
3 // Variable Declaration
4
5 y=2000 // year
6 mon=12 // month
7 dy=18 // day
8 hours=13 // hours of the day
```

```
//Minutes of the day
9 minutes=0
                //Seconds of the day
10 \text{ seconds} = 0
11
12
13 // Calculation
14 \text{ d=dy+(hours/24)+(minutes/(24*60))+seconds}
                                                 //Days in
       December
15
  if mon <= 2 then
16
      y = y - 1
17
      mon=mon+12
18 else
19
      y = y
20
      mon = mon
21 end
22
                         //Converting years to days
23 A = floor(y/100)
24 B=2-A+floor(A/4)
                         //Converting years to days
                         //rounding the days
25 C=floor(365.25*y)
26 D=floor(30.6001*(mon+1)) //Converting months to days
27 JD=B+C+D+d+1720994.5
                              //Adding reeference to
      number of days
28
29
30 //Result
31
32 printf("The Julian day of given day is: %.4f Days",
      JD)
```

Scilab code Exa 2.11 Find the time in Julian centuries from the reference time

```
1
2 // Variable Declaration
3
4 JDref=2415020 // Reference Julian days
```

Scilab code Exa 2.12 Calculate the time of perigee passage for the NASA elements

```
//Variable Declaration

//Variable Declaration

// In the state of perigee passage

// Calculation

// Calculation

// Result

// Result

// Result

// Result

// Calculation of perigee passage for NASA elements is : %.4 f days", T)
```

Scilab code Exa 2.13 calculate the eccentric anomaly

```
1
2 //Variable Declaration
3 M=205 //Mean anomaly(degrees)
4 e=0.0025 //Eccentricity
5 E=%pi //Initial guess value for eccentric anomaly
6
7 //Calculation
8
9 function [y] = f(E)
10     y=M-E+e*sin(E)
11 endfunction
12 E=fsolve(3.142,f)
13
14 printf("The Eccentric anomaly is: %.4f degrees",E)
```

Scilab code Exa 2.14 Calculate teh true anomaly and the magnitude of the radius vector

Scilab code Exa 2.15 express r in vector form in the perifocal coordinate system

Scilab code Exa 2.17 Find the GST for 13h UT on 18December 2000

Scilab code Exa 2.18 Find the LST for Thunder Bay

```
1
2 // Variable Declaration
3 pi = %pi
             //Expressing the longitude in degrees
4 \text{ WL} = -89.26
     west
  GST=282.449 //GST from Example 2.17 (degrees)
7 // Calculation
9 EL=2*pi+WL //Longitude in degrees East
10 LST=(GST+EL)*pi/180
                              //LST (radians)
11 LST=(modulo(LST,2*pi))*180/pi
                                    //fmod removes
      multiple revolutions (Degrees)
12
13 // Results
14 printf ("LST for Thunder Bay on given day is: %.2 f
```

Scilab code Exa 2.19 Find the components of the radius vector to the earth station at Thunder Bay

```
1
  //Variable Declaration
4 LST=167.475 //LST(degrees)
5 LE=48.42
                //Latitude at thunder bay(degrees)
                //Height above sea level (metres)
6 H = 200
7 aE=6378.1414 //Semimajor axis (km)
8 \text{ eE} = 0.08182
                 // Eccentricity
9
10 // Calculation
12 l=(aE/sqrt(1-eE**2*sin(LE*3.142/180)**2)+H/1000)*cos
      (LE*3.142/180)
  z = ((aE*(1-eE**2))/sqrt(1-eE**2*sin(LE*3.142/180)**2)
      +H/1000) *sin(LE*3.142/180)
14 RI=1*\cos(LST*3.142/180) //I component of radius
      vector at thunder bay(km)
  RJ=1*sin(LST*3.142/180) //J component of radius
      vector at thunder bay(km)
                           //Z component of radius vector
16 \text{ RK} = z
       at thunder bay (km)
17
18 R = sqrt(RI **2 + RJ **2 + RK **2)
19
20
21 //Results
22 printf ("The Radius vector components are \%.2 \,\mathrm{f} ikm+ \%
      .2 f jkm + \%.2 f kkm, RI, RJ, RK)
23 printf("\nThe Magnitude of radius component is \%.2 f
      km", R)
```

Scilab code Exa 2.20 Calculate the corresponding range and the look angles for an earth station the coordinates

```
2 //Variable Declaration
4 \text{ PI} = -1280
              //I component of range vector for a
      satellite (km)
             //J component of range vector for a
  PJ = -1278
      satellite (km)
6 \text{ PK} = 66
              //K component of range vector for a
      satellite (km)
7 \text{ GST} = 240
             //GST(degrees)
             //Latitude (Degrees)
8 LE=48.42
9 PE=-89.26 //Longitude(Degrees)
10 H=200
              //Height above mean sea level (metres)
11 aE=6378.1414 //Semimajor axis (km)
               // Eccentricity
12 eE=0.08182
13
14
15 // Calculation
16
17
  1 = (aE/sqrt(1-eE**2*sin(LE*3.142/180)**2)+H/1000)*cos
      (LE*3.142/180)
18 z=((aE*(1-eE**2))/sqrt(1-eE**2*sin(LE*3.142/180)**2)
      +H/1000)*sin(LE*3.142/180)
19
  SE=(atan(z/1))*180/3.142 // Geocentric latitude angle
       (degrees)
20 LST=240+PE
21
22
23 a=sin(SE*3.142/180)*cos(LST*3.142/180)
24 b = \sin(SE*3.142/180)*\sin(LST*3.142/180)
25 c = -\cos(SE*3.142/180)
```

```
26 d = -\sin(LST*3.142/180)
27 e = \cos(LST*3.142/180)
28 f = 0
29 g = \cos(SE * 3.142/180) * \cos(LST * 3.142/180)
30 h = cos(SE*3.142/180)*sin(LST*3.142/180)
31 i = sin(SE*3.142/180)
32
33 D = [a,b,c;d,e,f;g,h,i]
34
35 P = [PI; PJ; PK]
36
37 R=D*P //Components of range of earth station
38 Ro=sqrt(R(1,1)**2+R(2,1)**2+R(3,1)**2) // Magnitude
      of range of earth station (km)
39 El=asin(R(3,1)/Ro) //Antenna elevation angle for the
       earth station (radians)
40 El= El*180/3.142 //Converting El to degrees
41 alpha=(atan(R(2,1)/R(3,1)))*180/3.142
42
43 if ( R(1,1) < 0 & R(2,1) > 0 ) then
      Aza=alpha
44
45 else
46
      Aza=0
47 end
48 if (R(1,1)>0 & R(2,1)>0) then
49
      Azb=180-alpha
50 else:
      Azb=0
51
52 end
53
54 if (R(1,1)>0 & R(2,1)<0) then
55
      Azc=180+alpha
56 else
57
      Azc=0
58 end
59 if (R(1,1)<0 & R(2,1)<0) then
      Azd=360-alpha
60
61 else
```

Scilab code Exa 2.21 Determine the subsatellite height latitude and LST

```
2 // Variable Declaration
4 rI=-4685.3 //I component of radius vector from
     Example 2.16(km)
  rJ=5047.7 // J component of radius vector from
     Example 2.16(km)
6 rK=-3289.1 //K component of radius vector from
     Example 2.16 (km)
7 aE=6378.1414 //Semimajor axis (km)
  eE=0.08182 // Eccentricity
8
9
10 // Calculation
12 r = sqrt(rI**2+rJ**2+rK**2)
13 a=%pi //Guess value for LST(radians)
14 b=atan(rK/rI) //Guess Value for latitude(radians)
          //Guess value for height (km)
15 c=r-aE
16
17 function [ans] = equations(p)
       L = p(1)
18
19
      h = p(2)
```

```
20
       LST = p(3)
21
       a = rI - ((aE/sqrt(1-eE**2*sin(L)**2))+h)*cos(L)*
          cos(LST)
       b = rJ - ((aE/sqrt(1-eE**2*sin(L)**2))+h)*cos(L)*
22
          sin(LST)
23
       c = rK - ((aE*(1-eE**2)/sqrt(1-eE**2*sin(L)**2))+h
          )*sin(L)
       ans = [a;b;c]
24
25 endfunction
26
27 ans = fsolve([b;c;a],equations)
28 L = ans(1)
29 h = ans(2)
30 \text{ LST} = ans(3)
31 L = L*180/3.142
                  //Converting L into degrees
32 h = round(h)
33 LST=LST*180/3.142 //Converting LST into degrees
34
35 printf("The latitude of subsatellite is \%.2f degrees
     ",L)
36 printf("\nThe height of subsatellite is %.2 f km",h)
37 printf("\nThe LST of subsatellite is %.1f degrees",
     LST)
```

Chapter 3

The Geostationary orbit

Scilab code Exa 3.1 Calculate the azimuth angle for an earth station antenna

```
2 // Variable Declaration
4 Pss=-90 //Location of geostationary satellite(
     degrees)
  PE = -100
             //Longitude of the earth station antenna (
     degrees)
             //Latitude of the earth station antenna (
6 LE=35
     degrees)
8 // Calculation
             //Angle between planes containing a and c
10 B=PE-Pss
     (degrees)
11 b=acos(cos(B)*cos(LE)) //Angle of plane containing b
     (radians)
12 A=asin(sin(abs(B*3.142/180))/sin(b)) // Angle between
      planes containing b and c (radians)
13
14 A=A*180/3.142 // Converting A into degrees
```

```
15 //LE>0 and B<0 by observation
16 Az= 180-A //Azimuth angle(degrees)
17
18 //Result
19
20 printf("The azimuth angle for the given earth station antenna is %.2f degrees", Az)</pre>
```

Scilab code Exa 3.2 Find the range and antenna elevation angle

```
1
2 //Variable Declaration
3
4 R=6371 //Radius of earth (km)
5 aGS0= 42164 //Circumference of earth (km)
6 b=0.632 //values of b from Example 3.1 (radians)
7 //Calculation
8
9 d=sqrt(R**2+aGS0**2-2*R*aGS0*cos(b)) //Range of earth station antenna (km)
10 El=acos(aGS0*sin(b)/d)*180/%pi //Elevation angle(degrees)
11
12 //Results
13
14 printf("The range of earth station antenna is %.0fkm",d)
15 printf("Elevation angle is %.0f degrees",El)
```

Scilab code Exa 3.3 Determine the angle

```
1 2 // Variable Declaration
```

```
3
4 LE=49 //Latitude of earth station (degrees)
5 aGSO=42164 // Circumference of earth (km)
6 R=6371 //Radius of earth(km)
7
8 // Calculation
9 d=(R**2+aGSO**2-2*R*aGSO*cos(LE*3.142/180))**0.5
     Range of earth station antenna
10 El0=acos(aGSO*sin(LE*3.142/180)/d)
                                       //Elevation
     angle (radians)
11 El0=El0*180/3.142 //Converting El0 to degrees
12 delta=round(90-E10-LE) //Angle of tilt required for
      polar mount
13
14 //Results
15 printf ("The Angle of tilt required for polar mount
     is %d degrees", delta)
```

Scilab code Exa 3.4 Determine the limits of visibility

```
// Variable Declaration

LE=48.42 // Latitude of earth station (degrees)

PE=-89.26 // Longitute of earth station (degrees)

Elmin=5 // Minimum angle of elevation (degrees)

aGS0=42164 // Circumference of earth (km)

R=6371 // Radius of earth (km)

// Calculation

Smin=90+Elmin

S=asin(R*sin(Smin*3.142/180)/aGS0)*180/%pi // Angle subtended at the satellite (degrees)
```

Scilab code Exa 3.5 calculate the longitude

```
1
2 // Variable Declaration
3 y = 2000
                //year
                 //day
4 d=223.153
               //\text{mean motion}(1/\text{day})
5 n=1.002716
                //rate of regression of nodes(degrees)
6 \quad w = 272.5299
7 e=0.000352
                // Eccentricity
8 W = 247.9161
                //Rate of regression of line of apsides
      (degrees)
9 M = 158.0516
                //Mean Anomaly at given time
10 JD00=2451543.5 //Julian days for Jan 0.0 2000
11
12 // Calculation
13
14 JD=JD00+d //Julian days for given day
15 JDref=2415020 //Reference Julian days
16 JC=36525
```

```
17 T=(JD-JDref)/JC //Time in julian Centuries
18 UT=d-223
             //Universal Time, fraction of the day
19 GST=(99.6910+36000.7689*T+0.004*T**2)*3.142/180
     GST (radians)
20 UT=2*%pi*UT //Universal time converted to fraction
      of earth rotation (radians)
21
22 \text{ GST} = (\text{GST} + \text{UT}) * 180/3.1421
23 GST=(modulo(GST, 360))//using fmod multiplr
      revolutions are removed (degrees)
24
25 v=M+2*e*M //True Anomaly(degrees)
26
27 Pssmean=W+w+M-GST //longitude for INTELSAT(degrees)
28 Pssmean=modulo(Pssmean, 360) //fmod removes multiple
      revolutions
29 Pss=w+W+v-GST//longitude for INTELSAT(degrees)
30 Pss=modulo(Pss, 360)//fmod removes multiple
      revolutions
31
32 //Results
33 printf ("The longitude of INTELSAT 805 is %.3 f
      Degrees", Pss)
34
35 printf("The average longitude of INTELSAT 805 is %.3
      f Degrees", Pssmean)
36
37 // Note: Answers may be different because of
      rounding error. Please check by calculating all
      variables.
```

Chapter 4

Radio Wave Propagation

Scilab code Exa 4.1 Calculate for the frequency

```
//Variable Declaration
3
4 El=50 //Elevation Angle (degrees)
5 h0=0.6 //Earth station altitude (km)
6 hr=3 //Rain height (km)
7 R01=10 // Point Rain Rate (mm/hr)
8 f = 12
         //frequency (GHz)
9 \text{ ah} = 0.0188
10 bh=1.217
11 \text{ av} = 0.0168
12 \text{ bv} = 1.2
13
14 // Calculation
15 Ls=(hr-h0)/sin(El*3.142/180) //Slant path length (km)
                                    // Horizontal projection
16 \quad LG = Ls * cos (E1 * 3.142/180)
      (km)
17 r01=90/(90+4*LG) //Reduction factor
                           //Effective path length(km)
18 L=Ls*r01
19 alphah=ah*R01**bh //Specific Attenuation
                            //Rain Attenuation for
20 \text{ AdBh=alphah*L}
```

```
horizontal polarization

21 alphav=av*R01**bv  //Specific Attenuation

22 AdBv= alphav*L  //Rain Attenuation for vertical polarization

23 
24 //Results

25 printf("Rain Attenuation for given conditions and horizontal polarization is %.2 f dB", AdBh)

26 
27 printf("Rain Attenuation for given conditions and vertical polarization is %.2 f dB", AdBv)
```

Scilab code Exa 4.2 circular polarization

```
2 // Variable Declaration
3 \text{ ah} = 0.0188
4 bh=1.217
5 \text{ av} = 0.0168
6 \text{ bv} = 1.2
          //\operatorname{Point} Rain Rate (mm/hr)
7 R01=10
8 L=2.8753812 //Effective path length calculated in
      Example 4.1(km)
10 // Calculation
11 // Factors depending on frequency and polarization
12 ac=(ah+av)/2 //a for circular polarization
13 bc=(ah*bh+av*bv)/(2*ac) //b for circular
      polarization
14 alpha=ac*R01**bc //Specific Attenuation (dB)
15 AdB= alpha*L //Rain Attenuation(dB)
16
17
18 //Results
19 printf ("The Rain Attenuation for circular
```

Chapter 5

Polarization

Scilab code Exa 5.1 Determine the angle of polarization

```
//Variable Declaration
3
           //Latitude of earth station (degrees)
4 L=18
          //Longitude of earth station (degrees)
6 Pss=-105 // Satellite location (degrees)
7 aGSO=42164 //Circumference of earth (km)
8 R=6371 //Radius of earth(km)
9
10
11 // Calculation
12
13 function [ans] = mycross(A,B)
14
       i = A(2)*B(3) - B(2)*A(3)
15
       j = A(1)*B(3) - B(1)*A(3)
16
       k = A(1)*B(2) - B(1)*A(2)
17
       ans = [i,j,k]
18 endfunction
19
20 B=PE-Pss
            //Angle between the planes containing a
     and c (degrees)
```

```
21 Rx=R*cos(L*3.142/180)*cos(B*3.142/180) // Geocentric –
      equitorial coordinate (km)
22 Ry=R*\cos(L*3.142/180)*\sin(B*3.142/180) //Geocentric-
      equitorial coordinate(km)
23 Rz=R*\sin(L*3.142/180) // Geocentric-equitorial
      coordinate (km)
24
25 \text{ r= } [Rx,Ry,Rz]
                         //Coordinates for local gravity
       direction
26 k=[Rx-aGSO,Ry,Rz] // geocentric-equitorial
      coordinates for propagation direction
27 e = [0, 0, 1]
                         //geocentric-equitorial
      coordinates for polarization vector
28
29 f=mycross(k,r) // Direction of normal to reference
      plane
30 modf = (f(1)**2+f(2)**2+f(3)**2)**0.5
31 g = mycross(k,e)// Direction of normal to plane
      contaning e and k
32 h=mycross(g,k) // Direction of polarization of the
      plane
33 modh = (h(1) **2 + h(2) **2 + h(3) **2) **0.5
34 p = (h/modh)
35
36 E = asin((p.*f)/modf)*180/3.142
37
38 printf ("The Angle of polarization at given location
      is \%.2 f degrees", E(3))
39
40
41
42 // Note: cross() function did not work, so i have
      wrote mycross() function. Answers would be differ
       because of rounding error.
```

Chapter 6

Antennas

Scilab code Exa 6.1 Plot the E Plane and H Plane radiation

```
1 // Variable Decalration
2 a=3
3 b=2
4 dB=1
6 // Calculation
7 // Initializations
8 tita= -90:2:91
9 \text{ tita}(46) = 1
10 tita1= -90:2:91
11 Y=linspace(0,0,91)
12 E=linspace(0,0,91)
13 gE=linspace(0,0,91)
14 GE=linspace(0,0,91)
15 X=linspace(0,0,91)
16 E1=linspace(0,0,91)
17 gH=linspace (0,0,91)
18 GH=linspace(0,0,91)
19
20 for i = 1:length(Y)-1
      Y(i) = \%pi*b*sin(tita(i)*3.142/180)
```

```
22
      X(i) = \%pi*a*sin(tita(i)*3.142/180)
23
      E(i) = (sin(Y(i)))/Y(i)
      E1(i) = cos(tita1(i)*3.142/180)*(sin(X(i)))/X(i)
24
25
      gE(i)=(E(i))**2 //Raiation pattern in E-Plane
      gH(i)=E1(i)**2 // Raiation pattern in H-Plane
26
27
      GE(i)=10*log10(gE(i)) //Raiation pattern in E-
         Plane (dB)
      GH(i)=10*log10(gH(i)) //Raiation pattern in H-
28
         Plane (dB)
29 end;
30
31 // Results
32
33 subplot (211)
34 plot(tita,GE) //Plotting E-Plane radiation pattern
35 xtitle('', 'tita degrees', "GE(tita)")
36 subplot (212)
37 plot(tita1,GH) //Plotting H-Plane radiation pattern
38 xtitle('', 'tita degrees', 'GH(tita)')
```

Scilab code Exa 6.2 Plot the magnitue of the array factor as a function of phi

```
1
2 //Varable Declaration
3
4 N=5 //Number of elements of dipole
5 s=0.25 //Space between dipole elements(wavelengths)
6 phi0=0//Angle between array factor and array(degrees
)
7
8 //Calculation
9
10 alpha=-2*3.142*s*cos(phi0) //Current phase(radians)
11 phi= -180:2:182
```

```
12 \text{ for } k = 1:180
13
        Si(k) = alpha + 2*3.142*s*cos(phi(k)*3.142/180)
14 end;
15 AFR=linspace(0,0,181)
16 AFI=linspace (0,0,181)
17 \text{ for } i = 1:180
18 for j = 1:N-1
         AFR(i) = AFR(i) + \cos(j*Si(i)) //Real part of
19
            Array factor
         AFI(i)=AFI(i)+sin(j*Si(i))//Imaginary part of
20
            Array factor
21 end
22 \text{ end}
23
24 teta= linspace (-3.142,3.142,181)
25 for k = 1:length(teta)
      AF(k) = (AFR(k) **2 + AFI(k) **2) **0.5
26
27 end
28 // Result
29 polarplot(teta,AF)
```

Scilab code Exa 6.3 for phi 90 degrees

```
//Varable Declaration
// Varable Declaration
// Varable Declaration
// Varable Declaration
// Number of elements of dipole
// Space between dipole elements (wavelengths)
// Parable Declaration
// Space between dipole elements (wavelengths)
// Angle between array factor and array (radians)
// Calculation
// Calculation
// Calculation
// Current phase (radians)
// phi= -180:2:182
// for k = 1:180
```

```
Si(k) = alpha + 2*3.142*s*cos(phi(k)*3.142/180)
12
13 end
14 AFR = linspace (0,0,180)
15 AFI = linspace(0,0,180)
16 \text{ for } i = 1:180
17 for j = 1:N-1
         AFR(i) = AFR(i) + \cos(j*Si(i)) //Real part of
18
            Array factor
         AFI(i)=AFI(i)+sin(j*Si(i))//Imaginary part of
19
            Array factor
20 \, \text{end}
21 end;
22
23 teta=linspace(-3.142,3.142,180)
24 \text{ AF} = linspace(0,0,180)
25 \text{ for } k = 1:180
       AF(k) = AF(k) + (AFR(k) **2 + AFI(k) **2) **0.5
26
27 \text{ end}
28 //Result
29
30 polarplot(teta,AF)
```

Chapter 9

Analog Siganls

Scilab code Exa 9.1 Calculate the peak deviation and the signal bandwidth

```
// Variable Declaration

Bs=4.2 // Signal Bandwidth (MHz)

delf=2.56 // Deviation Ratio

// Calculation

delF=Bs*delf // Peak Deviation (MHz)

BIF=2*(delF+Bs) // Signal Bandwidth (MHz)

BIF=BIF

// Results

printf ("The peak deviation is: %.3 f MHz", delF)

printf ("Signal Bandwidth is: %.1 f MHz", BIF)
```

Scilab code Exa 9.2 Calculate the modulation index and the Bandwidth

```
// Variable Declaration

delF=200 // Peak Deviation(kHz)

f=0.8 // Test tone frequency (kHz)

// Calculation
m=delF/f // Modualtion index

B=2*(delF+f) // Bandwidth of the signal(kHz)

// Results
printf("The modulation index is %.f", m)
printf("Bandwidth of the signal is %.1f kHz", B)
```

Scilab code Exa 9.3 Recalculate the bandwidths

```
1
2 // Variable Declaration
4 Bs1=4.2 //Signal Bandwidth (MHz) of Example 9.1
5 delf=2.56 // Deviation Ratio of Example 9.1
  delF2=200 //Peak Deviation(kHz) of Example 9.2
            //Test tone frequency (kHz) of Example
  Bs2=0.8
     9.2
9
10 // Calculation
11 delF1=Bs1*delf //Peak Deviation (MHz) of Example 9.1
                        //Signal Bandwidth (MHz) of
12 BIF1=2*(delF1+2*Bs1)
     Example 9.1 according to Carson's rule
13 BIF2=2*(delF2+2*Bs2) //Signal Bandwidth(kHz) of
     Example 9.2 according to Carson's rule.
14
15 // Results
16
17 printf ("Signal Bandwidth of Example 9.1 by Carsons
```

```
rule is %.1f MHz",BIF1)
18 printf("\nSignal Bandwidth of Example 9.2 by Carsons
rule is %.1f kHz",BIF2)
```

Scilab code Exa 9.4 calculate the receiver processing gain and the post-detector

```
1
2 //Variable Declaration
3
4 delf=5 //Deviation frequency (kHz)
5 Bs=1 //Test Tone Frequency (kHz)
6 CNR=30 //Carrier to noise ration(dB)
7
8 //Calculation
9 m=delf/Bs //Modulation Index
10 Gp=3*(m**2)*(m+1) //Processing gain for sinusoidal modulation
11 Gp=10*log10(Gp) //Converting Gp into dB
12 SNR=CNR+Gp
13
14 //Results
15 printf("The receiver processing gain is %.1f dB",Gp)
16 printf("\nThe Signal to noise ratio is %.1f dB",SNR)
```

Scilab code Exa 9.5 Calculate the signal to noise ratio

```
1
2 // Variable Declaration
3
4 n=24 // Number of channels
5 g=13.57 // Peak/rms factor(dB)
6 b=3.1 // Channel Bandwidth(kHz)
```

```
7 P=4
          //Emphasis improvement (dB)
           //Noise weighting improvement (dB)
8 W = 2.5
9 CNR=25 // Carrier to noise ratio (dB)
10 delFrms=35 //rms value of Peak Deviation(kHz)
11 \text{ fm} = 108
             //Baseband frequency (kHz)
12 // Calculation
13
14 L=10**((-1+4*log10(n))/20)
15 g=10**(g/20) //Converting process gain to ratio
16 delF=g*delFrms*L //Peak Deviation(Hz)
                     //Signal Bandwidth(kHz) by Carson,
17 BIF=2*(delF+fm)
     s rule
18 Gp=(BIF/b)*((delFrms/fm)**2) //Processing Gain
19 Gp=10*log10(Gp) //Converting Gp to dB
20 SNR=CNR+Gp+P+W //Signal to noise ratio for top
     channel in 24-channel FDM basseband signal
21
22 // Results
23 printf ("Signal to noise ratio for top channel in 24-
     channel FDM Baseband signal is %.1f db", SNR)
```

Scilab code Exa 9.6 Calculate the carrier to noise ratio required at the input to the FM detector

```
1
2  // Variable Declaration
3
4  delF=9  // Peak Deviation (MHz)
5  fm=4.2  // Baseband frequency (MHz)
6  SNR=62  // Signal to noise ration (dB)
7  M=11.8  // Noise weighing (P)+emphasis improvement (W)-
        implementation margin (IMP)
8
9  // Calculation
10
```

```
11 D=delF/fm // Modulation Index
12 GPV=12*(D**2)*(D+1) // Processing Gain for TV
13 GPV=10*log10(GPV) // Converting GPV into dB
14 CNR=SNR-GPV-M // carrier to noise ratio(dB)
15
16 // Results
17 printf("The Carrier to noise ratio required at the input of FM detector is %.1 f dB", CNR)
```

Chapter 10

Digital Siganls

Scilab code Exa 10.1 determine the bit error rate

```
1
2 funcprot(0)
3
4 // Variable Declaration
5 PR=0.01 //The Average power received (watts)
6 Tb=0.0001 //Bit period(seconds)
7 N0=10**-7 // Noise power (joule)
9 // Calculations
10 Eb=PR*Tb //Energy per bit received (joule)
11 x = sqrt(Eb/N0)
12
13
14 erf=integrate("\exp(-t^2)","t",0,x)
15 erf1=erf*(2/%pi**0.5)
16 \text{ BER} = (1 - \text{erf1}) * (10 * * 6) / 2
17
18 printf("The Bit error rate is \%.1 \, \mathrm{f} \, * \, 10 \, -6", BER)
```

Scilab code Exa 10.2 Calculate the required C N0

Scilab code Exa 10.3 Calculate the Eb N0 ratio in decibels

```
1 funcprot(0)
2 //Variable Declaration
3 BER=10**-5 //Maximum allowable bit error rate
4
5 //Calculation
6
7 x=linspace(8,10,11) //Eb/N0 ratio represented by x
8 x1=x**0.5
9 for i = 1:11
10    x(i)=10*log10(x(i)) //Converting x into decibels
11 end
12
13 erf=linspace(0,0,11) //Initialization for erf
    function
14 Pe=linspace(0,0,11) //Initialization for
    Probablity of error
```

```
15
16
17 \text{ for } i = 1:10
      k=integrate("exp(-t**2)", 't',0,x1(i))
18
19
      erf(i)=k(1)*(2/\%pi**0.5)
      Pe(i) = (1 - erf(i))/2
20
                                  //Probability of error
21 end
y = linspace(9, 9.59, 5)
23 z=linspace(BER, BER, 5)
24 a=linspace (9.59,9.59,5)
25 b=linspace(0,BER,5)
26 \text{ plot}(x, Pe)
27 plot(y,z)
28 plot(a,b)
29 xlabel(',','xdB','Pe(x)')
30
            //The Eb/NO ratio for Maximum BER(dB) from
31 x = 9.6
      the graph
32 EbN0=x+2 //Eb/N0 ratio with implementation margin
33 //Results
34
35 printf("The Eb/N0 ratio with allowable BER of 10^-5
      and implementation margin of 2dB is %.1f dB", EbNO
      )
```

Chapter 12

The Space Link

Scilab code Exa 12.1 Calculate the EIRP in dBW

```
1
2 //Variable Declaration
3 P=6 //Transmit power(Watts)
4 G=48.2 //Antenna Gain(dB)
5
6 //Calculation
7 EIRP=10*log10(P)+G //Equivalent isotropic radiated power(dB)
8
9 //Result
10 printf("Hence the Equivalent isotropic radiated power is %.0 f dBW", EIRP)
```

Scilab code Exa 12.2 Calculate the gain of a 3 m paraboloidal antenna operating

```
1
2 // Variable Declaration
```

```
3
4 D=3 //Antenna size(m)
5 f=12 //Operating Frequency(GHz)
6 n=0.55 //Aperture efficiency
7
8 //Calculation
9
10 G=n*(10.472*f*D)**2 //Antenna Gain
11 G=10*log10(G) //Converting Antenna gain to dB
12
13 //Result
14 printf("The Antenna gain with given parameters is % .1 f dB", G)
```

Scilab code Exa 12.3 Calculate the free space loss at a frequency of 6 GHz

Scilab code Exa 12.4 Calculate the total link for clear sky conditions

```
1
2 // Variable Declaration
             //Free space loss (dB)
3 FSL=207
             //receiver feeder loss (dB)
4 RFL=1.5
           //Atmospheric Absorption loss (dB)
5 \text{ AA} = 0.5
6 \quad AML = 0.5
             //Antenna Alignment loss (dB)
8 // Calculation
                           //Total link loss (dB)
10 LOSSES=FSL+RFL+AA+AML
11
12 // Results
13
14 printf("The total link loss is %.1f dB", LOSSES)
```

Scilab code Exa 12.5 Calculate the noise power density and the noise power for a bandwidth of 36 MHz

```
2 // Variable Declaration
3
4 TAn = 35
            // Antenna Noise Temperature (Kelvin)
5 TRn=100 // Receiver Noise Temperature (Kelvin)
6 \text{ k=1.38*10**-23} // \text{Boltzman constant (joules)}
7 B=36*10**6 //Bandwidth
9 // Calculation
10 NO = (TAn + TRn) * k
                     // noise power density (10**-21)
      joules)
11 PN = N0 * B / 10 * * -12
                              //Noise power for given
      bandwidth (picoWatts)
12
13
14 //Results
15 printf ("The noise Power density is %.2e Joules", NO)
```

```
16 printf("The noise power for given bandwidth is \%.3\,\mathrm{f} pW", PN)
```

Scilab code Exa 12.6 Calculate the overall noise temperature referred to the LNA input

```
//Variable Declaration
3 TRn = 12
            //Receiver Noise figure (dB)
            //Gain of LNA(dB)
4 G = 40
           //Noise temperature (Kelvin)
  T0 = 120
  // Calculation
                       //Converting noise power to ratio
9 F=10**(TRn/(10))
10 Te=(F-1)*290
                     //Noise Temperature of the
      amplifier
11 G=10**(G/10)
                     //Converting Gain of LNA to ratio
                     //Overall Noise Temperature (Kelvin)
12 \text{ Tn=T0+Te/G}
13
14
15 //Result
16 printf("The overall noise temperature is %.2f Kelvin
      ", Tn)
```

Scilab code Exa 12.7 Calculate the noise temperature to the input

```
1
2 //Variable Declaration
3
4 Tant=35 //Antenna noise temperature(kelvin)
5 Te1=150 //Receiver noise temperature(kelvin)
6 L=5 //Cable Loss (dB)
```

```
7 T0 = 290
8 G1 = 10 * * 5
               //LNA Gain
               //Receiver Noise figure (dB)
9 F = 12
10
11 // Calculation
12
13 L=10**(L/10) //Converting L into ratio
14 F=10**(F/10) // Converting F into ratio
15 Ts=Tant+Te1+(L-1)*T0/G1+L*(F-1)*T0/G1
      Temperature referred to the input (Kelvin)
16
17 // Result
18 printf ("The noise temperature referred to the input
      is %.0 f Kelvini", Ts)
```

Scilab code Exa 12.8 Repeat Example 7

```
1
2 // Variable Declaration
3
4 Tant=35
                //Antenna noise temperature(kelvin)
                //Receiver noise temperature(kelvin)
5 Te1=150
6 L=5
                //Cable Loss (dB)
7 T0 = 290
                //LNA Gain
8 G1 = 10 * * 5
                //Receiver Noise figure (dB)
9 F = 12
10
11 // Calculation
12
13 L=10**(L/10) //Converting L into ratio
14 F=10**(F/10) //Converting F into ratio
15 Ts = Tant + (L-1) * T0 + L * Te1 + L * (F-1) * T0/G1 // Noise
      Temperature referred to the input (Kelvin)
16
17
```

```
18 // Result
19 printf("The noise temperature referred to the input
    is %.0 f Kelvin", Ts)
```

Scilab code Exa 12.9 Calculate the carrier to noise spectral density ratio

```
1 // Variable Declaration
3 FSL=206
               //Free space loss (dB)
4 \text{ APL}=1
               //Antenna Pointing loss (dB)
               //Atmospheric Absorption loss (dB)
5 \text{ AAL}=2
6 RFL=1
               //Receiver feeder loss (dB)
               //Equivalent isotropically radiated power
7 EIRP=48
      (dBW)
8 f = 12
               //Frequency (GHz)
               //G/T ratio (dB/K)
9 \text{ GTR} = 19.5
              //Value of k(dB)
10 k = -228.60
11
12 // Calculation
13 LOSSES=FSL+APL+AAL+RFL //Total loss (dB)
14 CNR=EIRP+GTR-LOSSES-k //Carrier to noise ratio (dBHz
15
16 // Result
17 printf("The carrier to noise ratio is %.2 f dB", CNR)
```

Scilab code Exa 12.10 Calculate the earth station EIRP required for saturation

```
1
2 // Variable Declaration
3 f=14 // Frequency (GHz)
```

Scilab code Exa 12.11 Calculate the carrier to noise density ratio

```
2 // Variable Declaration
3
4 Ps = -91.4
                  //saturation flux density (dBW/m2)
                  //uplink frequency (GHz)
5 f = 14
                  //G/T (dB/k)
6 \text{ GTR} = -6.7
                 //Input Back off (dB)
7 B0 = 11
                   //Value of k(dB)
8 k = -228.6
                 //receiver feeder loss
9 RFL=0.6
10
11 // Calculation
12
13 A0=-21.5-20*log10(f) //Effective antenna aperture(
14 CNR=Ps+A0-B0+GTR-k-RFL
                                //carrier to noise ratio (
      dB)
15
```

```
16 //Result
17 disp(AO)
18 printf("The carrier to noise ratio is %.1f dB",CNR)
```

Scilab code Exa 12.12 calculate the satellite EIRP required

```
1
2 // Variable Declaration
3
4 B = 36
            //Transponder Bandwidth (MHz)
5 CNR = 22
           //Carrier to noise ratio (dB)
6 LOSSES=200 //Total transmission losses (dB)
              //Earth station G/T (dB/K)
7 GTR=31
8 k = -228.6
            //Value of k(dB)
10 // Calculation
11 B=10*log10 (B*10**6) // Converting Bandwidth to dB
12 EIRP=CNR-GTR+LOSSES+k+B
                               //Equivalent
      isotropically radiated power(dB)
13
14 //Result
15 printf("Satellite EIRP required is %.0f dB", EIRP)
```

Scilab code Exa 12.13 Calculate the bit rate which can be accommodated and the EIRP required

```
1
2 //Variable Declaration
3
4 B=36*10**6    //Transponder Bandwidth(Hz)
5 R=0.2    //Roll off factor
6 GTR=31    //Earth station G/T(dB/K)
7 LOSSES=200    //Total transmission losses(dB)
```

```
//Value of k(dB)
8 k = -228.6
               //Value of Bit error rate
9 BER=10**-5
               //Value of Eb/N0 from fig.10.17
10 \quad \text{EbNOR} = 9.6
11 // Calculation
12
                      //Bit rate (sec^-1)
13 Rb = 2*B/(1+R)
                     //Converting Rb into decibels
14 Rb = 10 * log 10 (Rb)
                     // Carrier to noise ratio (dB)
15 CNR=EbNOR+Rb
16 EIRP=CNR-GTR+LOSSES+k
                           //Equivalent Isotropically
      radiated power (dBW)
17
18
19 // Results
20 printf("Bit rate that can be accommodated is %.1f dB
     ", Rb)
21 printf("The EIRP required is %.1f dBW", EIRP)
```

Scilab code Exa 12.14 Calculate the carrier to noise ratio at the earth station

```
1
2
  //Variable Declaration
4
               //Satellite saturation value (dBW)
5 EIRP=25
               //Output Backoff loss (dB)
6 B0 = 6
               //Free space loss (dB)
7 FSL=196
8 DL = 1.5
               //Downlink losses (dB)
9 \text{ GTR} = 41
               //Earth station G/T(dB/K)
               //Value of k(dB)
10 k = -228.6
11
12 // Calculation
13 CNR=EIRP-BO+GTR-FSL-DL-k // Carrier to noise ratio (
      dB)
14
```

Scilab code Exa 12.15 Calculate the power output of the TWTA required for full saturated EIRP

```
2 // Variable Declaration
              //Equivalent Isotropically radiated power(
4 EIRP=56
     dBW)
              //Output Backoff (dB)
5 B0 = 6
             //Transmitter feeder loss (dB)
6 TFL=2
              //Antenna gain (dB)
7 \text{ GT} = 50
8
9 // Calculation
                      //Power output of TWTA(dBW)
10 PTWTA = EIRP - GT + TFL
                        //Saturated power output of TWTA
11 PTWTAS=PTWTA+BO
      (dBW)
12
13 //Result
14 printf ("Power output of the TWTA required for full
      saturated EIRP is %.f dBW", PTWTAS)
```

Scilab code Exa 12.16 calculate the value

```
1
2
3 //Variable Declaration
4
5 alpha=1.9 //Rain attenuation(dB)
6 CNR=20 //Downlink carrier to noise ratio(dB)
```

```
//Effective Noise temperature (Kelvin)
7 \text{ Tn} = 400
                //Reference temperature (Kelvin)
  Ta=280
8
10 // Calculation
11 alpha1=10**(alpha/10) //Converting alpha to ratio
12 Trn=Ta*(1-1/alpha1)
                          //Equivalent noise
     temperature of rain(kelvin)
                    //New system noise temperature
13 Ts=Tn+Trn
14 delp=10*log10(Ts/Tn) //Decibel increase in noise
     power
  CNRN=CNR-delp-alpha //Value below which CNR falls (
     dB)
16
17
18 //Result
19 printf ("The value below which C/N falls for 0.1
     percent of time is %.2 f dB", CNRN)
```

Scilab code Exa 12.17 Calculate the percentage of time the system stays above the threshold

```
1
2
3 //Variable Declaration
4
5 CNR=17.4 //Clear sky input C/N (dB)
6 T=10 //Threshold level for FM etector (dB)
7 Ta=272 //Value of Ta(Kelvin)
8 Tscs=544 //Value of Tscs(Kelvin)
9
10 //Calculation
11
12 TM=CNR-T //Threshold margin at FM detector (dB)
13 CNR=10**(CNR/10) //Converting CNR to ratio
14 NCR=1/CNR
```

```
15
16 function [y]=f(A)
       y=0.1-NCR*(A+(A-1)*Ta/Tscs)
17
18 endfunction
19 A=fsolve(2,f)
20
21 A=10*log10(A) //Converting A into decibels
22 \quad A = round(A)
23
24 // Getting the value of probablity of exceeding A
      from the curve
25
26 if (A==6) then
27
      P=2.5*10**-4
28 else
      printf("error")
29
30 end
31 Av=100*(1-P) // Availability (percentage)
32
33 //Result
34
35 printf("The time system stays above threshold is %.3
      f percentage", Av)
```

Scilab code Exa 12.18 Calculate the combined C N0 ratio

```
1
2 //Variable Declaration
3
4 Nu=100 //Noise spectral density for uplink(dBHz)
5 Nd=87 //Noise spectral density for downlink(dBHz)
6
7 //Calculation
8
9 NOCR=10**(-Nu/10)+10**(-Nd/10) //Noise to carrier
```

Scilab code Exa 12.19 Calculate the C N for both links

```
1
2 // Variable declaration
3 //For uplink
4 Ps = -67.5
              //Saturation flux density (dB)
5 \quad A0 = -37
               //Antenna aperture at 6GHz(dB)
              //Input Backoff(dB)
6 IB0 = -11
7 GTRs=-11.6 // Satellite saturation G/T (dB)
              //Value of k(dB)
8 k = -228.6
9
10 //For Downlink
11 EIRP=26.6
              //Satellite EIRP(dB)
               //output Backoff(dB)
12 \quad OBO = -6
13 FSL = -196.7 //Free Space loss(dB)
14 GTRe=40.7 //Earth station G/T(dB)
15
16 // Calculation
                               //Carrier to noise ratio
17 CNRu=Ps+A0+IB0+GTRs-k
      for uplink (dB)
  CNRd=EIRP+OBO+FSL+GTRe-k//Carrier to noise ratio for
18
       downlink (dB)
  NOCR = 10**(-CNRu/10) + 10**(-CNRd/10)
                                         //Noise to
      carrier ratio
                        //Combined c/N0 ratio (dBHz)
20
  CNR = -10 * log 10 (NOCR)
21
22 / results
23 printf("The Carrier to noise ratio for uplink is %.2
```

Scilab code Exa 12.20 Calculate the overall carrier to noise ratio in decibels

```
1
2 // Variable Declaration
              //carrier to noise ratio for uplink(dB)
4 CNRu=23
              //carrier to noise ratio for downlink(dB)
5 CNRd=20
              //carrier to noise ratio for
6 \, \text{CNRm} = 24
      intermodulation (dB)
8 // Calculation
10 NCR = 10**(-CNRu/10) + 10**(-CNRd/10) + 10**(-CNRm/10)
      Combined Noise to carrier ratio
11 CNR=-10*log10(NCR) //Combined carrier to noise
      ratio (dB)
12
13 //Result
14 printf ("The combined carrier to noise ratio is %.2 f
      \ensuremath{\mathrm{d}} B" , CNR)
```

Chapter 13

Interference

Scilab code Exa 13.1 Determine the carrier to interference ratio at the ground receiving antenna

```
1 // Variable Declaration
                //desired carrier EIRP from satellite(
2 EIRP1=34
     dB)
            // ground station receiving antenna gain(dB
3 G1 = 44
4 G2=24.47 //Gain in desired direction (dB)
5 EIRP2=34
            //EIRP by interfering satellite (dB)
6 \text{ PD}=4
             //Polarization discrimination (dB)
8 // Calculation
9 CIR=EIRP1-EIRP2+G1-G2+PD //Carrier to Interference
      ratio (dB)
10
11 //Result
12 printf ("The Carrier to interfernce ratio at the
     ground receiving antenna is %.2 f dB", CIR)
```

Scilab code Exa 13.2 Calculate the C I ratio on the uplink

```
2 // Variable Decalration
4 PA = 24
          //Transmit power by station A(dBW)
5 G1=54
           //Antenna Gain(dB)
6 PC=30 //Transmit power by station C(dBW)
7 G2=24.47//off-axis gain in the S1 direction (dB)
             //Polarization discrimination(dB)
9
10 // Calculation
11
12 CIR=PA-PC+G1-G2+PD // Carrier to Interference ratio
      (dB)
13
14 // Result
15 printf ("The Carrier to interfernce ratio on uplink
      is \%.2 \, f \, dB", CIR)
```

Scilab code Exa 13.3 find the overall ratio

```
1
2 // Variable Declaration
                // Carrier to interference ratio from
3 CIR1=27.53
     Example 13.1 (dB)
               //Carrier to interference ratio from
4 CIR2=23.53
     Example 13.2(dB)
6 // Calculation
7 ICRu = 10 * * (-CIR1/10)
                        //Interferece to carrier ratio
     for uplink
  ICRd = 10 * * (-CIR2/10)
                        //Interferece to carrier ratio
     for downlink
9
10 ICRant=ICRu+ICRd
                     //Overall Interferece to carrier
     ratio
```

```
11 CIRant=-10*log10(ICRant)//Overall Carrier to
          interference ratio (dB)
12
13 //Result
14 printf("The overall carrier to interference ratio is
          %.2 f dB", CIRant)
```

Scilab code Exa 13.4 Determine the degradation in the downlink

Scilab code Exa 13.5 Calculate the protection ratio required to give a quality impairment factor

```
1
2 //Variable Declaration
3
4 f=4.2 //modulating frequency (MHz)
5 m=2.571 //Modulation index
6 QIF1=4.2 //Quality Impairment factor(a)
```

Scilab code Exa 13.6 Calculate the transmission gain y

```
1
2 // Variable Decalration
3 LU=200
            //Uplink propogation loss (dB)
4 LD=196
            //Downlink propagation loss (dB)
            //Receiving gain of earth station(dB)
5 GE=25
            //Transmit gain of E1 in the direction of S
6 GE1=25
      (dB)
  GS = 9
            //receive gain of S in the direction of E1(
     dB)
  GS1=9
           //Transmit gain of satellite S1 in the
      direction of E(dB)
9 \text{ GTE} = 48
           //Transmit gain of E(dB)
10 GRE=48
           //Receive gain of E(dB)
11 GRS=19
           //Receive gain of S(dB)
12 GTS=19
           //Transmit gain of S(dB)
              //Maximum power spectral density(dBJ)
13 \text{ US} = -60
14 US1=1
           //Maximum power spectral density(uJ)
15 UE1=10
           //Maximum power spectral density transmitted
```

```
by earth station (uJ)
16 UE=-50 //Maximum power spectral density transmitted
       by earth station (dBJ)
17 k = -228.6
18
19 // Calculation
20 URS=UE+GTE+GRS-LU//Received power spectral density
      at satellite S(dB)
21 URE=US+GTS+GRE-LD//Received power spectral density
      at satellite E(dB)
                //Transmission gain for network R(dB)
22 y = URE - URS
23
24 I1=US+GS1+GE-LD
                    //Interference received by earth
      station (dB)
25 I2=UE+GE1+GS-LU
                    //Uplink Interference (dB)
26
27 delTE=I1-k
                //Earth station receiver input (dBK)
28 \text{ delTE=10**(delTE/10)}
                           //Earth station receiver
      input (K)
  delTS=I2-k
                //Noise temperature at satellite
29
      receiver input (dBK)
30
31 delTSE=y+delTS // Noise Temperature rise (dBKelvin)
  delTSE=10**(delTSE/10) //Noise Temperature rise(
      Kelvin)
33 delT=delTSE+delTE //Equivalent noise temperature
      rise
34
35
36 disp(URE)
37 disp(URS)
38
39 //Results
40 printf("The transmission gain is %.f dB",y)
41 printf ("The interference levels I1 an I2 are %.f %.f
       dBJ respectively", I1, I2)
42 printf ("The equivalent temperature rise overall is \%
      .2 f Kelvin", delT)
```

Chapter 14

Satellite Access

Scilab code Exa 14.1 Compare this with when no backoff needed

```
1
  //Variable Declaration
3
4 Btr=36 //Transponder Bandwidth (MHz)
         // Carrier Bandwidth (MHz)
6 EIRP=27 //saturated EIRP(dBW)
        //Back off loss (dB)
8 LOSSES=196 //Combined losses (dB)
          //Earth station G/T ratio (dB)
9 GTR=30
10 k = 228.6 // Value of k(dB)
11 // Calculation
12
13 Btr1=10*log10(Btr*10**6) //Converting transponder
     Bandwidth into decibels
14 B1=10*log10(B*10**6) //Converting carrier Bandwidth
      into decibels
15
16 CNR=EIRP+GTR-LOSSES+k-Btr1 // Carrier to noise ratio
     for single carrier operation (dB)
17 CNR=round (CNR)
18 alpha=-BO
```

Scilab code Exa 14.2 Determine the miss probabilty

```
1
2 // Variable decalration
4 N = 40
             //No. of bits
            //Maximum number of errors allowed
6 p=10**-3 //Average probability of error in
      transmission
  // Calculation
10 \text{ Pmiss=0}
11 for i = E+1:N
12
     Pmiss=Pmiss+(factorial(N)/((factorial(i)*factorial
        (N-i)))*(p**i)*((1-p)**(N-i))
13 end
14
15 Pmiss=Pmiss*10**12
16
17 // Result
```

```
18 printf("The probability of miss is \%.1\,\mathrm{f}*10^-12", Pmiss)
```

Scilab code Exa 14.3 Determine the probability of false detection

```
1
2 // Variable decalration
3 N = 40
             //No. of bits
4 E=5
             //Maximum number of errors allowed
5
6 // Calculation
7 Pfalse=0
8 \text{ for } i = 0:E
     Pfalse=Pfalse+(factorial(N)*2**-N)/((factorial(i)*
         factorial(N-i)))
10 \text{ end}
11
12 Pfalse=Pfalse*10**7
13
14 // Result
15 printf("The probability of miss is \%.1 \, \mathrm{f} * 10^{-7}",
      Pfalse)
```

Scilab code Exa 14.4 Calculate the frame efficiency

```
1
2 //Variable ecalration
3 Lf=120832 //Total frame length
4 Tb=14 //Traffic burts per frame
5 Rb=2 //Reference bursts per frame
6 T=103 //Guard interval(symbols)
7 P=280 //Preamble Symbols
```

Scilab code Exa 14.5 Calculate the voice channel capacity for the INTEL-SAT frame

```
2 // Variable Declaration
               //Number of symbols per frame
4 Lf=120832
               //Frame period (ms)
5 \text{ Tf} = 2
6 \text{ nF} = 0.949
               //INTELSAT fram efficiency from Example
      14.4
  // Calculation
9 Rs=(Lf/(Tf))*10**-3 //Symbol rate(megasymbol/s)
            //Transmission Rate
10 Rt = Rs * 2
11 n=nF*Rt*10**3/64 //Voice channel capacity
12 n = round(n)
13 //Result
14
15 printf (" The voice channel capacity for the INTELSAT
       frame is %.0f Channels",n)
```

Scilab code Exa 14.6 Calculate the maximum transmission rate

```
//Variable Declaration

//Variable Declaration

CNR=87.3 //Downlink Carrier to noise ratio (dBHz)

BER=10**-5 //Bit Error Rate Required

R=0.2 //Roll off factor

EbNOR=9.5 //Eb/N0 ratio (dB)

//Calculation

Rb=CNR-EbNOR //Maximum Transmission Rate (dBb/s)

Rb1=10**(Rb/10) //Maximum Transmission Rate (b/s)

BIF=Rb1*1.2*10**-6/2 //IF Bandwith required

//Result

printf("The Maximum Transmission rate is %.2f dBb/s", Rb)

printf("The IF bandwidth required is %.2f MHz", BIF)
```

Scilab code Exa 14.7 calculate the earth station transmitter power needed for transmission

```
1
2 // Variable Declaration
3
4 T1=1.544 //Bit rate from sec.10.4 (Mb/s)
            //Bit rate from sec.10.4(dBMb/s)
5 R = 62
6 EbNOR=12 //Required Eb/NO ratio for uplink (dB)
7 LOSSES=212 //Transmission losses of uplink (dB)
          //G/T ratio for earth station (dB/K)
8 GTR=10
           //Uplink antenna gain (dB)
9 G1 = 46
10 \text{ Rd} = 74
           //Downlink Transmission Rate(dBb/s)
11 // Calculation
12 CNR=EbNOR+R // Carrier to noise ratio for uplink (dB)
13 EIRP=CNR-GTR+LOSSES-228.6 //EIRP of earth station
     antenna
```

Scilab code Exa 14.8 Calculate the processing gain in decibels

```
1
2 // Variable Declaration
3
4 BIF=36
          //Bandwidth of channel over which carriers
     are spread (MHz)
         //Rolloff factor for filtering
5 R = 0.4
6 Rb=64 //Information bit rate(kb/s)
7 BER=10**-5 //Bit error rate required
8 EbNOR=9.6 //Eb/NO ratio for BER given from Fig.10.18
10 // Calculation
11
12 Rch=BIF*10**6/(1+R) //Rate of unspreaded signal (
     chips/s)
13 Gp=Rch/(Rb*10**3) // Processing gain
14 Gp1=round(10*log10(Gp)) //Processing gain(dB)
15 EbNOR1 = 10 ** (EbNOR / (10))
                            //Converting Eb/N0 into
     ratio
```

Chapter 16

Direct Broadcast Satellite Services

Scilab code Exa 16.1 Calculate the look angles for the antenna the range and the Eb N0 at the IRD

```
2 // Varaible Declaration
4 EIRP=55 //EIRP for satellite (dBW)
5 fD=12.5 // Downlink frequency (GHz)
6 Pss=-101 //Receiving at ground station direction (
     degrees west)
7 Rb=40*10**6 // Transmission Rate (Hz)
        //Diameter of antenna (inches)
9 n=0.55 // Efficiency of antenna
10 Tant=70 //Antenna noise (Kelvin)
11 Teq=100 // Equivalent noise temperature at LNA(Kelvin
12 R=6371
           //Radius of earth (Km)
        //Transmission losses (dB)
13 L=2
14 aGSO = 42164 // Circumference of earth (km)
15 k=-228.6 //Boltzmann's constant (dB)
16 PE=-90 //Longitude of Earth station (degrees west)
```

```
//Latitude of Earth station (degrees north)
17 LE=45
           //Frequency (GHz)
18 f=14
19 // Calculation
20 B=PE-Pss
b = a\cos(\cos(B*3.142/180)*\cos(LE*3.142/180))
22 b=b*180/3.142
23 A = a sin(sin(abs(B)*3.142/180)/sin(b*3.142/180))
24 \quad A = A * 180/3.142
25 Az=180+A //Azimuth angle of antenna (degrees)
d = (R**2+aGSO**2-2*R*aGSO*cos(b*3.142/180))**0.5
      Range of antenna(km)
27 El=acos(aGS0*sin(b*3.142/180)/d) //Elevation angle
      of antenna (radians)
28 El=El*180/3.142 //Elevation angle of antenna(
     degrees)
29 \quad \text{El=round}(El)
30 d=round(d)
31 FSL=32.4+20*log10(d)+20*log10(f*10**3) //Free space
       loss (dB)
32 LOSSES=FSL+L //Total Transmission Losses
33 Ts=Teq+Tant //Total system noise temperature(
      Kelvin)
34 T=10*log10(Ts) //Total system noise temperature(dBK
35 G=n*(3.192*f*(D/(12)))**2
36 \text{ G=10*log10(G)} // \text{Antenna Gain(dB)}
37 GTR=G-T //G/T ratio (dB)
38 CNR=EIRP+GTR-LOSSES-k // Carrier to noise ratio (dB)
39 Rb=10*log10(Rb) //Transmission Rate(dBHz)
40 EbNOR=CNR-Rb //Eb/N0 ratio at IRD(dB)
41
42 // Results
43 printf("The Azimuth angle of antenna is %.1f degrees
     ", Az)
44 printf ("The Elevaation Angle of Antenna is %.f.
      degrees", El)
45 printf("The Range of Antenna is %.f km",d)
46 printf("The Eb/NO ratio at IRD is %.1f dB", EbNOR)
```

Scilab code Exa 16.2 Calculate the upper limit

```
1
2 // Varaible Declaration
4 R01 = 42
          //Rainfall at earth station (mm/hr)
5 p = 0.01
          //Percentage of time for which rain exceeds
6 LE=45
           //Latitue of earth station (degrees)
7 hR = 3.5
            //Rain Height (km)
8 h0 = 0
            //Mean Sea level(km)
9 Ta = 272
           //Elevation angle of the antenna (degrees)
10 E1=37
           //Total system noise temperature (Kelvin)
11 \text{ Ts} = 170
12 NCR=2.3*10**-9 // Carrier to noise ratio
13 fD=12.5 //Frequency of operation (GHz)
14 f12=12
             //Frequency 12GHz(GHz)
            //Frequency 15GHz(GHz)
15 f15=15
16 // Coefficients for horizontal and vertical
      polarizations at 12GHz and 15GHz as given in
      Table 4.2
17
18 ah12=0.0188
19 av12=0.0168
20 bh12=1.217
21 \text{ bv} 12 = 1.2
22
23 ah15=0.0367
24 av15=0.0335
25 bh15=1.154
26 bv15=1.128
27
28 // Calculation
29
30 //Using Interpolation to find coefficients at 12.5
```

```
GHz
31 \text{ ah} = \text{ah}12 + (\text{ah}15 - \text{ah}12) * (\text{fD} - \text{f}12) / (\text{f}15 - \text{f}12)
32 bh = bh12+(bh15-bh12)*(fD-f12)/(f15-f12)
33 av=av12+(av15-av12)*(fD-f12)/(f15-f12)
34 \text{ bv = } \text{bv12+(bv15-bv12)*(fD-f12)/(f15-f12)}
35
36 // Coefficients for circular polarization
37 \text{ ac}=(ah+av)/2
38 \text{ bc} = (ah*bh+av*bv)/(2*ac)
39 Ls1=(hR-h0)/\sin(El*3.142/180)
                                           //Slant Path
      Length (km)
40 Ls= Ls1
                                         //Slant Path Length(
      km)
41 LG= Ls*\cos(E1*3.142/180)
                                       //Horizontal
      projection of slant path length (km)
42 \text{ r011=90/(90+4*LG)}
                                                 //Reduction
      Factor
43 r01= r011
                                          //Reduction Factor
44 L = Ls1*r01
                                       //Effective path
      length (km)
45 alpha= ac*R01**bc
                                       //Specific
      attenuation (dB/km)
                                //Total Attenuation (dB)
46 \text{ A= } 10**(alpha*L/(10))
47 Trn=Ta*(1-1/A) // noise temperature with effect of
      rain
48 Tscs=Ts
49 NCrain=NCR*(A+(A-1)*Ta/Tscs) // Noise to carrier
      ratio due to rain
50 CNrain=-10*log10(NCrain)//Noise to carrier ratio due
       to rain (dB)
51 Rb=10*log10 (40*10**6) // Transmission rate (dB)
                           //Upper limit of Eb/N0 ratio
52 EbNOrain= CNrain-Rb
      in prescence of rain (dB)
53
54 // Result
55 printf("Hence the upper limit for Eb/N0 for given
      conditions is %.1f dB", EbNOrain)
```