

Análisis de Circuitos

[AdC-86.04/66.06]

Teoremas de circuitos

Docentes de Análisis de Circuitos

Segundo cuatrimestre 2022

Propiedad de "linealidad":

Matemáticamente una función f(x) es lineal si cumple con:

- ullet Propiedad aditiva: f(x+y)=f(x)+f(y)
- ullet Propiedad homogénea: f(ax)=af(x)

O de manera resumida:

$$f(ax + by) = af(x) + bf(y)$$

$$egin{aligned} f(x+y) &= f(x) + f(y) \ f(ax) &= af(x) \ f(ax+by) &= af(x) + bf(y) \end{aligned}$$

Para el caso de los circuitos, se define:

Un circuito lineal es aquel cuya salida se relaciona linealmente con (o es directamente proporcional a) su entrada.

¿Qué son la entrada y la salida de un circuito?

Por ejemplo:

• Si tenemos v = iR e incrementamos la corriente k veces $\Rightarrow kiR = kv$

• Si tenemos $v_1 = i_1 R$ $v_2 = i_2 R$ y aplicamos ambas corrientes sobre la resistencia de manera simultánea \Rightarrow $v_1 = i_1 R$ $v_2 = i_2 R$ y aplicamos ambas corrientes sobre la

$$f(x+y)=f(x)+f(y) \ f(ax)=af(x) \ f(ax+by)=af(x)+bf(y)$$

Al considerar la potencia de un circuito podemos escribirla como:

$$p = i^2 R = v^2 / R$$

Se ve claramente que la potencia no es lineal con la tensión ni la corriente. Los teoremas que vamos a ver no sirven para el caso de la potencia.

¿y qué sucede con la resistencia?

$$egin{aligned} f(x+y) &= f(x) + f(y) \ f(ax) &= af(x) \ f(ax+by) &= af(x) + bf(y) \end{aligned}$$

Veamos un ejemplo:

Se sabe que cuando $v_s = 1$ V, la corriente i = 10 mA. Entonces:

- ¿Qué sucede si $v_s = 10 \text{ V}$?
- ¿Qué sabemos si *i* = 1 mA?

Superposición

El principio de **superposición** establece que la tensión entre los extremos (o la corriente a través) de un elemento en un circuito lineal es la suma algebraica de las tensiones (o corrientes) a través de ese elemento debido a que cada fuente independiente actúa sola.

Para resolver un circuito utilizando el principio:

- 1. Pasivar todas las fuentes **independientes!** menos una de ellas (la fuente k)
- 2. Encontrar la salida del circuito (hallar v_k o i_k)
- 3. Repetir los puntos 1 y 2 para cada fuente independiente.
- 4. Sumar los efectos de cada una de ellas: $v = v_1 + ... + v_n$ o $i = i_1 + ... + i_n$

Superposición

Transformaciones de fuentes

Una transformación de fuentes es el proceso de reemplazar una fuente de tensión v_s en serie con un resistor R por una fuente de corriente i_s en paralelo con un resistor R o viceversa.

¿y qué sucede cuando tenemos una fuente controlada?

Transformaciones de fuentes

Una transformación de fuentes es el proceso de reemplazar una fuente de tensión v_s en serie con un resistor R por una fuente de corriente i_s en paralelo con un resistor R o viceversa.

¿y qué sucede cuando tenemos una fuente controlada?

Sigue valiendo, solo hay que tener cuidado con la variable dependiente.

Transformaciones de fuentes

Ejemplo:

El **teorema de Thevenin** establece que un circuito lineal de dos terminales puede reemplazarse por un circuito equivalente que consta de una fuente de tensión $V_{\rm Th}$ en serie con un resistor $R_{\rm Th}$, donde $V_{\rm Th}$ es la tensión de circuito abierto en las terminales y $R_{\rm Th}$ es la entrada o resistencia equivalente en las terminales cuando las fuentes independientes se apagan.

El **teorema de Norton** establece que un circuito lineal de dos terminales puede reemplazarse por un circuito equivalente que consta de una fuente de corriente $I_{\rm N}$ en paralelo con un resistor $R_{\rm N}$, donde $I_{\rm N}$ es la corriente de cortocircuito a través de las terminales y $R_{\rm N}$ es la resistencia de entrada o resistencia equivalente en las terminales cuando las fuentes independientes están desactivadas

- Los teoremas de Thevenin y Norton son muy útiles a la hora de resolver circuitos, ya que nos permite transformar circuitos complejos en circuitos más simples.
- Hay que tener especial cuidado con las variables dependientes e independientes de fuentes controladas. No se deben perder las referencias.
- Ambos modelos son equivalentes:

$$R_N = R_{\mathrm{Th}}$$

$$I_N = \frac{V_{\rm Th}}{R_{\rm Th}}$$

Ejemplo integrador:

Dado el circuito de la figura encontrar los equivalentes de Thevenin y Norton entre los terminales a y b. Verificar su equivalencia.

Solución:

$$R_{Th} = R_N = 6 \Omega$$
, $V_{Th} = 20 V$, $I_N = 3.33 A$

Transformaciones de fuentes (cont.)

Otras herramientas útiles de transformaciones de fuentes:

Fuentes de tensión en paralelo: Fuentes de corriente en serie:

Transformaciones de fuentes (cont.)

Ejemplo: Verificar la equivalencia entre los dos circuitos (Ejercicio A9):

T. de máxima transferencia de potencia

La **máxima potencia** se transfiere a la carga cuando la resistencia de la carga es igual a la resistencia de Thevenin vista desde la carga ($R_L = R_{Th}$).

Problema:

Análisis:

- La potencia en R_L es $P_{RL} = i_{RL} * v_{RL}$
- ¿Qué sucede si $R_1 = 0$?
- ¿Qué sucede si $R_1 \rightarrow \infty$?

Simulaciones en LTSpice

Simularemos los siguientes circuitos:

- 1. Circuito lineal variando valor de la fuente.
- 2. Superposición.
- 3. Ejemplo de Thevenin y Norton.
- 4. Circuito lineal variando valor de una resistencia: Máxima transferencia de potencia.

www.ingenieria.uba.ar

/FIUBAoficial