SERVIÇO BASEADO EM LOCALIZAÇÃO GEOGRÁFICA PARA MELHORIA DO ATENDIMENTO DE TAXIS

Autor: Felipe A. L. Reis

Orientação: Prof. Dr. Marconi de Arruda Pereira

Co-orientação: Prof. Dr. Paulo Eduardo Maciel Almeida

INTRODUÇÃO

- Taxi é uma alternativa ao sistema de transporte público;
- Provê agilidade e conforto no atendimento;
- No entanto, há escassez do serviço, devido às condições de trânsito e ao aumento da demanda.

INTRODUÇÃO

- Sistemas de taxi são, em geral, pouco satisfatórios quanto à sua eficiência operacional
 - Devido a sua própria organização;
 - Devido aos métodos de buscas por passageiros;
 - Devido ao tempo vago dos taxistas 50% (CHENG e QU, 2009);
- Há ainda variações de demanda, causando piora no atendimento;

MOTIVAÇÃO

- Tentativa de melhorar os serviços de taxi;
- Custos causados pelo tempo perdido pela ineficiência do sistema atual;
- Demanda crescente pelos serviços;

SOLUÇÃO

- Rastreamento de taxis através de GPS, integrado a tecnologia 3G;
- Criação de um software para requisição de taxis através de dispositivos móveis;
- Criação de software para os taxistas aceitarem ou recusarem pedidos de taxi, de acordo com sua disponibilidade;
- Sistema de controle de frota (OFMS *Order Fleet* and *Management System*), que escolha o melhor taxista responsável por uma requisição.

OBJETIVOS

 Propor um sistema de requisição de taxis utilizando dispositivos móveis que permita, por meio de serviços baseados em localização, diminuição do tempo de espera em no mínimo 20%.

OBJETIVOS

- Objetivos específicos:
 - Diminuir o tempo médio de espera dos clientes por serviços de taxi e reduzir o deslocamento dos taxistas para atendimento de requisições;
 - Integrar diferentes serviços de requisição de taxi;
 - Realizar rastreamento dos veículos, aumentando a segurança de passageiros e motoristas;

TRABALHOS RELACIONADOS

- Observa-se, quando há utilização de métodos baseados em GPS, melhoria nos serviços de taxi, com diminuição do tempo de espera e da distância percorrida pelos taxistas (XU, YUAN, et al., 2005; LIAO, 2009);
- Já existem sistemas que realização requisições de taxis por meio de dispositivos móveis;

SOLUÇÃO

SOLUÇÃO

- O sistema contém todo o fluxo de requisição de taxis;
- A medida em que um usuário ou taxista interage com o sistema, o estado da requisição é alterado;
- A requisição é
 processada até sua
 conclusão ou caso
 um usuário cancele a
 solicitação.

ALGORITMOS

- Após a definição do fluxo de requisição, implementou-se o mecanismo de escolha do melhor taxi disponível;
- Três métodos foram avaliados pelo software:
 - GPS com Estimativa do Menor Tempo Estimado de Atendimento;
 - GPS com Distância Euclidiana;
 - Broadcasting;

ALGORITMOS

 O método GPS com Estimativa do Menor Tempo Estimado de Atendimento busca corrigir situações como as existentes na figura abaixo.

TESTES – DEFINIÇÃO

- Simulação a Eventos Discretos;
- Sistema Estacionário;
- Método de definição das distâncias reais, a partir do posicionamento geográfico: Google Maps API;
- Tempo estimado de atendimento: Google Maps API;
- Não foi avaliada a influência de condições de tráfego;

TESTES

O algoritmo utilizado nos testes segue a seguinte sequência:

- a) O sistema define um número N de taxis e os coloca de modo aleatório na cidade;
- b) Cerca de metade dos taxis são marcados como ocupados;
- c) Os taxistas movem-se aleatoriamente pela cidade, em eventos discretos sem alterar consideravelmente sua posição atual;
- d) Alguns taxistas têm seu status alterado de "Ocupado" para "Livre" e viceversa, simulando o início/final de atendimentos;
- e) O algoritmo de teste simula uma requisição de um passageiro;
- f) O sistema de despacho de veículos escolhe o melhor taxista de acordo com o algoritmo utilizado.
- g) O sistema marca o taxista como ocupado, evitando que ele seja responsável por outros atendimentos;
- h) Se o número de requisições propostas no teste ainda não tiver sido atingido, o sistema volta ao passo (c). Caso contrário, o sistema contabiliza os tempos médios para atendimento e o tempo de processamento de cada um dos algoritmos, e exibe os resultados no console.

TESTES - VARIÁVEIS

- Distribuição maior de taxistas na região central da cidade que nas periferias;
- Probabilidade de um taxistas estar ocupado: 0,5
- Distância Euclidiana máxima de um taxista avaliado pelo sistema em relação ao cliente: 1,5km;
- Probabilidade de movimentação de um taxista: 0,9;
- Probabilidade máxima da alteração do status de um taxista ("Livre" para "Ocupado" ou viceversa): 0,1;

TESTES - CARACTERÍSTICAS

- Número total de execuções: 20;
- Número total de requisições por teste: 30;
- Número de taxistas no teste 1: 300;
- Número de taxistas no teste 2: 200;

TESTES - RESULTADOS

RESULTADOS

- A diminuição média obtida para o método GPS com Menor de Tempo Estimado de Atendimento é de 52,8% em relação ao método broadcasting;
- A redução média do método GPS com Distância Euclidiana foi de 26,1%;

TESTES - RESULTADOS

RESULTADO - ANÁLISE

 Como esperado, quando são desconsideradas informações de tráfego, as distâncias percorridas no método *Broadcasting* e GPS com Distância Euclidana foram superiores ao método GPS com Menor de Tempo Estimado de Atendimento;

TESTES - RESULTADOS

00:00:00:00:00:43:00:01:26:00:02:10:00:02:53:00:03:36:00:04:19

Tempo para atendimento

TESTES - ANÁLISE

- Devido a não utilização de informações de tráfego, observa-se correlação entre a distância percorrida e o tempo de atendimento
 - Quando consideradas informações de tráfego, pode ser que essa correlação não seja relevante;
 - Deve-se avaliar no entanto, as condições de tráfego no restante da cidade – trânsito lento em toda a cidade ou apenas em pontos isolados;

TESTES - RESULTADOS

TESTES - ANÁLISE

- Verifica-se que o algoritmo GPS com Distância Euclidiana e o algoritmo Broadcasting possuem tempo de processamento desprezível;
- O algoritmo GPS com Estimativa do Menor Tempo Estimado de Atendimento é muito mais demorado que os anteriores, com tempo de resposta médio em 3,8s.
 - O tempo de processamento, de toda forma, ainda é baixo para alteração do posicionamento dos taxistas;
- Vale lembrar que o método broadcasting não existe na realidade, uma vez que a definição dos taxistas é feita por meio de solicitações via rádio;

TESTES - RESULTADOS

TESTES - ANÁLISE

- Os resultados seguiram o mesmo padrão do primeiro teste – GPS com Menor Distância Estimada é o método mais rápido;
- No entanto, como era esperado, devido menor a disponibilidade de taxistas, os valores do tempo de atendimento foram mais altos.

TESTES - RESULTADOS

TESTES - ANÁLISE

- Pode-se concluir que a distância percorrida pelos taxistas é maior, causando o aumento do tempo até o atendimento;
- O aumento da distância percorrida está relacionada com a distribuição dos taxis pela cidade;

CONCLUSÃO

- O software segue uma tendência mundial de utilização de dispositivos móveis;
- Todo o fluxo de requisição é abordado no sistema;
- Mostrou-se uma melhoria dos métodos baseados em GPS em relação ao método broadcasting;
- Atingiu-se os objetivos do trabalho, ao reduzir em pelo menos 20% o tempo médio de atendimento dos métodos baseados em GPS em relação ao broadcasting;

TRABALHOS FUTUROS

TRABALHOS FUTUROS

- Quanto ao problema estudado:
 - Definir diferentes algoritmos, incluindo rotinas de otimização para solução do problema;
 - Simular diferentes condições de ambiente variações de demanda, disponibilidade de taxi, distância elevada entre taxistas e clientes, horário da requisição, etc.;
 - Adicionar informações de tráfego;
 - Estudar outros tipos de solução para o problema por exemplo, distribuição dos taxista pela cidade