Profesor: Dr. Oldemar Rodríguez Rojas

Análisis de Datos 1

Fecha de Entrega: Viernes 14 de junio - 8 a.m.

Instrucciones:

- Las tareas deben ser subida la Aula Virtual antes de las 8:00 a.m. Luego de esta hora pierde 10 puntos y cada día de retraso adicional perderá 10 puntos más.
- Las tareas son estrictamente individuales.
- Tareas idénticas se les asignará cero puntos.
- Todas las tareas tienen el mismo valor en la nota final del curso.
- Cada día de entrega tardía tendrá un rebajo de 10 puntos.

Tarea Número 11

- Pregunta 1: [25 puntos] Complete las demostraciones de los Teoremas 2 y 4 de la presentación de la clase.
- Pregunta 2: [25 puntos] Diseñe un algoritmo en pseudocódigo para el Método del Análisis Discriminante Lineal según la teoría vista en clase.
- Pregunta 3: [25 puntos] Programa en R el algoritmo diseñando en el ejercicio anterior, incluya el gráfico del plano principal y el círculo de correlaciones. Compare los resultados con respecto a la función train.lda(...) el paquete traineR, para esto use los archivos de datos Ejemplo_AD.csv y tumores.csv ¿Se obtienen los mismos resultados?
- Pregunta 4: [25 puntos] En este ejercicio se generalizan los conceptos de Inercia Total, Inercia Inter-Clases e Inercia Intra-Clases presentados en el curso al caso matricial (en el curso se presentan para el caso de un vector).

Se consideran p variables continuas (variables explicativas) $\mathbf{x}^1, \dots, \mathbf{x}^p$ observadas en una muestra Ω de n individuos. Cada individuo $i \in E$ se identifica con su vector (fila) de mediciones en $\mathbb{R}^p, \mathbf{x}_i^t = (x_{i1}, \dots, x_{ip})$ y cada variable \mathbf{x}^j con su vector (columna) de valores asumidos $\mathbf{x}^j = (x_{1j}, x_{2j}, \dots, x_{nj})^t$. La variable cualitativa \mathbf{y} (a explicar) determina una partición $P = \{C_1, \dots, C_r\}$, del conjunto de individuos Ω en r grupos.

Se denota como:

- X la matriz de tamaño $n \times p$ la cual se supone centrada en sus columnas. Como es usual sus columnas son las variables explicativas \mathbf{x}^j (previamente centradas) y los individuos \mathbf{x}_i^t son sus filas.
- $\mathbf{D} = \operatorname{diag}(p_i)$ es la matriz de pesos del conjunto de individuos Ω .
- A cada clase C_s se le asigna el peso q_s y centro de gravedad \mathbf{g}_s para $s=1,\ldots,r$ donde:

$$q_s = \sum_{i \in C_s} p_i$$
 y $\mathbf{g}_s = \frac{1}{q_s} \sum_{i \in C_s} p_i \mathbf{x}_i$.

Se escribe $\mathbf{D}_q = \mathrm{diag}\left(q_j\right)$ la matriz diagonal de los pesos de las r clases.

• Se denota como \mathbf{C}_q la matriz cuyas filas son los centros de gravedad \mathbf{g}_s^t .

Como se supone que las variables son centradas entonces el centro de gravedad del conjunto de todos los individuos Ω es $\mathbf{g} = \mathbf{0}$ y la matriz de covarianza (total) \mathbf{V} , de las p variables calculadas sobre Ω es:

$$\mathbf{V} = \mathbf{X}^t \mathbf{D} \mathbf{X} = \sum_{i=1}^n p_i \mathbf{x}_i \mathbf{x}_i^t = \sum_{s=1}^r \sum_{i \in C_s} p_i \mathbf{x}_i \mathbf{x}_i^t$$

Sea V_s la matriz de covarianza de las p variables, calculada sobre los individuos de la s-ésima clase:

$$\mathbf{V}_{s} = \frac{1}{q_{s}} \sum_{i \in C_{s}} p_{i} \left(\mathbf{x}_{i} - \mathbf{g}_{s} \right) \left(\mathbf{x}_{i} - \mathbf{g}_{s} \right)^{t}.$$

El promedio de estas matrices se define como la matriz de covarianza de todas las clases y se denomina matriz de covarianza intra-clase y se denota como V_W :

$$\mathbf{V}_{W} = \sum_{s=1}^{r} q_{s} \mathbf{V}_{s} = \sum_{s=1}^{r} \sum_{i \in C_{s}} p_{i} \left(\mathbf{x}_{i} - \mathbf{g}_{s} \right) \left(\mathbf{x}_{i} - \mathbf{g}_{s} \right)^{t}.$$

Finalmente la matriz V_B de covarianza correspondiente a las p variables calculadas sobre los centros de gravedad, se denomina matriz de covarianza inter-clase, la cual es igual a:

$$\mathbf{V}_B = \sum_{s=1}^r q_s \mathbf{g}_s \mathbf{g}_s^t = \mathbf{C}_g^t \mathbf{D}_q \mathbf{C}_g.$$

Con las definiciones anteriores pruebe lo siguiente: Si \mathbf{V} , \mathbf{V}_B , \mathbf{V}_W son las matrices de covarianza total, inter-clase intra-clase, respectivamente, entonces:

- 1. $\mathbf{V} = \mathbf{V}_B + \mathbf{V}_W$
- 2. $\sum_{s=1}^{r} q_s \mathbf{g}_s = 0. \text{ Es decir, rang } (\mathbf{C}_{\mathbf{g}}) \le r 1$
- 3. rang $(\mathbf{C}_{g}) = \text{rang}(\mathbf{V}_{B})$

Además, para la tabla de datos Ejemplo_AD.csv calcule: \mathbf{g}_A , \mathbf{g}_B , \mathbf{g}_C , \mathbf{V} , \mathbf{V}_B , \mathbf{V}_W y verifique que $\mathbf{V} = \mathbf{V}_B + \mathbf{V}_W$.