BOOTSTRAP CONTINUED

10.17.2018

OFFICE HOURS

* **Today only:** my office hours will be 2-3pm instead of 1:30-3pm

RECAP

* Bootstrap: generating fake datasets out of your real dataset

BOOTSTRAP EXAMPLE

- * we have a dataset: an
 electrophysiological recording from a
 spiking neuron
- * we want to estimate the mean background spike rate of the neuron
- * but we have a limited sample of data!

BOOTSTRAP EXAMPLE

- * we want to know the **standard error** of the **mean** firing rate
- * let's estimate it using a bootstrap!

STANDARD ERROR

- * sometimes there are analytic solutions to finding the standard error
- * in the neuron example our data acts like a Bernoulli random variable where we're trying to estimate the parameter q

STANDARD ERROR

* it turns out the standard error for q in a Bernoulli random variable has an analytic form:

$$\sigma_{error} = \sqrt{\frac{q(1-q)}{n}}$$

- * you might have noticed that the distribution of bootstrap means tends to look pretty consistently like a bell curve
- * even though the underlying distribution we're picking from can be super weird

* this is because of the central limit theorem, which says that the sum of a large number of independent, identicallydistributed (iid) random variables will tend to a Gaussian distribution

- * one consequence of the CLT is that Gaussian distributions appear everywhere
- * this is because many interesting things are the the result of complex processes where, effectively, many small independent contributions are summed

- * DEMO: let's take a bunch of random values (from the same distribution)
- * and take their average
- * let's do this many times

- * as the number of samples we take increases, the distribution of their averages converges to..
- * a Gaussian distribution!

END