# Unidad IV: Inducción Inducción simple.

Clase 11 - Matemáticas Discretas (IIC1253)

Prof. Miguel Romero

#### Inducción simple

#### Principio de inducción (simple):

Sea P(n) una propiedad de los números naturales.

Si la propiedad P cumple lo siguiente:

- Caso base:
  - P(0) es verdadero.
- Paso inductivo: Para todo  $n \in \mathbb{N}$ , si P(n) es verdadero, entonces P(n+1) es verdadero.

Entonces, para todo  $n \in \mathbb{N}$  se tiene que P(n) es verdadero.

En lógica de predicados:

Para todo predicado P sobre  $\mathbb{N}$ , lo siguiente es verdadero:

$$(P(0) \land \forall n(P(n) \rightarrow P(n+1))) \rightarrow \forall n P(n)$$

Demuestre que la siguiente propiedad P(n) se cumple para todo  $n \in \mathbb{N}$ :

$$P(n): \sum_{i=0}^{n} i = \frac{n(n+1)}{2}$$

**Caso base:** P(0) es verdadero:  $\sum_{i=0}^{0} i = 0 = \frac{0(0+1)}{2}$ 

Paso inductivo:  $\forall n (P(n) \rightarrow P(n+1))$ .

Sea  $n \in \mathbb{N}$ . Suponga que P(n) es verdadero:  $\sum_{i=0}^{n} i = \frac{n(n+1)}{2}$ 

(a esto se le llama hipótesis inductiva (HI))

Por demostrar: P(n+1) es verdadero:  $\sum_{i=0}^{n+1} i = \frac{(n+1)(n+2)}{2}$ 

$$\sum_{i=0}^{n+1} i = \sum_{i=0}^{n} i + (n+1) \stackrel{\text{HI}}{=} \frac{n(n+1)}{2} + (n+1)$$
$$= \frac{n(n+1) + 2(n+1)}{2} = \frac{(n+1)(n+2)}{2}$$

Concluimos que P(n) es verdadero para todo  $n \in \mathbb{N}$ .

Demuestre que la siguiente propiedad P(n) se cumple para todo  $n \in \mathbb{N}$ :

$$P(n): n < 2^n$$

Caso base: P(0) es verdadero:  $0 < 1 = 2^0$ 

Paso inductivo:  $\forall n (P(n) \rightarrow P(n+1))$ .

Sea  $n \in \mathbb{N}$ . Suponga que P(n) es verdadero:  $n < 2^n$  (HI)

**Por demostrar:** P(n+1) es verdadero:  $n+1 < 2^{n+1}$ 

$$n+1$$
  $< 2^n + 1$  (HI)  
 $\le 2^n + 2^n$   $(1 \le 2^n, \text{ para todo } n)$   
 $= 2 \cdot 2^n$   
 $= 2^{n+1}$ 

Concluimos que P(n) es verdadero para todo  $n \in \mathbb{N}$ .

#### Notación:

Para un conjunto finito S, denotamos por |S| la cantidad de elementos de S.

Demuestre la siguiente propiedad P(n), para todo  $n \in \mathbb{N}$ :

Si *S* es un conjunto con |S| = n, entonces  $|\mathcal{P}(S)| = 2^n$ .

Caso base: P(0) es verdadero.

La única posibilidad es que  $S = \emptyset$ . En este caso,  $|\mathcal{P}(S)| = 1 = 2^0$ .

Demuestre la siguiente propiedad P(n), para todo  $n \in \mathbb{N}$ :

Si *S* es un conjunto con |S| = n, entonces  $|\mathcal{P}(S)| = 2^n$ .

Paso inductivo:  $\forall n (P(n) \rightarrow P(n+1))$ .

Sea  $n \in \mathbb{N}$ . Suponga que P(n) es verdadero. (HI)

**Por demostrar:** P(n+1) es verdadero.

Sea S un conjunto con |S| = n + 1. Tomemos un elemento  $a \in S$  cualquiera.

Sea  $T = S \setminus \{a\}$ . En particular,  $S = T \cup \{a\}$  y |T| = n. Tenemos que:

$$\mathcal{P}(S) = \{X \subseteq S \mid a \in X\} \cup \{X \subseteq S \mid a \notin X\}$$
$$\{X \subseteq S \mid a \in X\} \cap \{X \subseteq S \mid a \notin X\} = \emptyset$$

Luego,  $|\mathcal{P}(S)| = |\{X \subseteq S \mid a \in X\}| + |\{X \subseteq S \mid a \notin X\}|.$ 

Por otra parte:

$$\{X\subseteq S\mid a\notin X\}=\mathcal{P}(T)\qquad \{X\subseteq S\mid a\in X\}=\{Y\cup\{a\}\mid Y\in\mathcal{P}(T)\}.$$

Obtenemos que  $|\{X \subseteq S \mid a \notin X\}| = |\{X \subseteq S \mid a \in X\}| = |\mathcal{P}(T)|$ .

Por **HI**, sabemos que  $|\mathcal{P}(T)| = 2^n$ . Luego,  $|\mathcal{P}(S)| = 2^n + 2^n = 2 \cdot 2^n = 2^{n+1}$ .

Concluimos que P(n) es verdadero para todo  $n \in \mathbb{N}$ .

#### Inducción simple con caso base mayor a 0

La siguiente variante de inducción simple es muy útil:

# Inducción simple (caso base mayor a 0):

Sea P(n) una propiedad de los números naturales y b un natural.

Si la propiedad P cumple lo siguiente:

- Caso base:
  - P(b) es verdadero.
- Paso inductivo: Para todo  $n \ge b$ , si P(n) es verdadero, entonces P(n+1) es verdadero.

Entonces, para todo  $n \ge b$  se tiene que P(n) es verdadero.

#### Inducción simple con caso base mayor a 0: ejemplo

Demuestre que para todo  $n \ge 4$  se cumple que:

$$2^{n} < n!$$

```
Caso base: P(4) es verdadero: 2^4 = 16 < 24 = 4!

Paso inductivo: \forall n \ge 4 \left( P(n) \to P(n+1) \right).

Sea n \ge 4. Suponga que P(n) es verdadero: 2^n < n! (HI)

Por demostrar: P(n+1) es verdadero: 2^{n+1} < (n+1)!

(n+1)! = n! \cdot (n+1)
> 2^n \cdot (n+1) 
> 2^n \cdot 2 
= 2^{n+1}

Concluimos que la propiedad se cumple para todo n \ge 4.
```

7/21

#### Inducción simple con multiples casos bases

La siguiente variante de inducción simple es muy útil:

#### Inducción simple (múltiples casos bases):

Sea P(n) una propiedad de los números naturales y k un natural.

Si la propiedad P cumple lo siguiente:

- Caso base:
  - $P(0), \ldots, P(k)$  son verdaderos.
- Paso inductivo:

Para todo  $n \ge k$ , si P(n) es verdadero, entonces P(n+1) es verdadero.

Entonces, para todo  $n \in \mathbb{N}$  se tiene que P(n) es verdadero.

#### Inducción simple con multiples casos bases: ejemplo

Demuestre que la siguiente propiedad P(n) se cumple para todo  $n \in \mathbb{N}$ :

$$P(n): n < (1.5)^n$$

```
Caso base: P(0) es verdadero: 0 < 1 = (1.5)^0
Paso inductivo: \forall n (P(n) \rightarrow P(n+1)).
Sea n \in \mathbb{N}. Suponga que P(n) es verdadero: n < (1.5)^n (HI)

Por demostrar: P(n+1) es verdadero: n+1 < (1.5)^{n+1}
n+1 < (1.5)^n + 1 \qquad \text{(HI)}
\leq (1.5)^n + 0.5 \cdot (1.5)^n \qquad (1 \leq 0.5 \cdot (1.5)^n, \text{ para todo } n \geq 2)
= 1.5 \cdot (1.5)^n
= (1.5)^{n+1}
Concluimos que P(n) es verdadero para todo n \in \mathbb{N}.
```

¿Algún problema con este argumento?

## Inducción simple con multiples casos bases: ejemplo

Demuestre que la siguiente propiedad P(n) se cumple para todo  $n \in \mathbb{N}$ :

$$P(n): n < (1.5)^n$$

Caso base: P(0), P(1), P(2) son verdaderos:

$$0 < 1 = (1.5)^0$$
  $1 < 1.5 = (1.5)^1$   $2 < 2.25 = (1.5)^2$ 

**Paso inductivo:**  $\forall n \ge 2 (P(n) \rightarrow P(n+1)).$ 

Sea  $n \ge 2$ . Suponga que P(n) es verdadero:  $n < (1.5)^n$  (HI)

**Por demostrar:** P(n+1) es verdadero:  $n+1 < (1.5)^{n+1}$ 

$$\begin{array}{ll} n+1 & < (1.5)^n + 1 & \qquad \text{(HI)} \\ & \leq (1.5)^n + 0.5 \cdot (1.5)^n & \qquad (1 \leq 0.5 \cdot (1.5)^n, \text{ para todo } n \geq 2) \\ & = 1.5 \cdot (1.5)^n \\ & = (1.5)^{n+1} \end{array}$$

Concluimos que P(n) es verdadero para todo  $n \in \mathbb{N}$ .

El argumento del paso inductivo **sólo** funciona cuando  $n \ge 2$ . Luego, necesitamos probar por separado los casos bases 0, 1 y 2.

#### Otra variante más general

Podemos combinar ambas variantes previas:

#### Inducción simple (variante general):

Sea P(n) una propiedad de los números naturales y  $b \le k$  dos naturales.

Si la propiedad P cumple lo siguiente:

- Caso base:
  - $P(b), \ldots, P(k)$  son verdaderos.
- Paso inductivo:

Para todo  $n \ge k$ , si P(n) es verdadero, entonces P(n+1) es verdadero.

Entonces, para todo  $n \ge b$  se tiene que P(n) es verdadero.

#### Ojo con el principio de inducción

Suponga que queremos demostrar la siguiente propiedad para todo  $n \ge 1$ :

P(n): En cada conjunto de n caballos, todos tienen el mismo color.

#### Demostración por inducción:

Caso base P(1): En un conjunto de 1 caballo, todos tienen el mismo color.

Paso inductivo: Suponga que P(n) es cierto y demostremos P(n+1).

Sea  $\{c_1, \ldots, c_{n+1}\}$  un conjunto de n+1 caballos.

- Como  $\{c_1, \ldots, c_n\}$  tiene n caballos, entonces por **HI** todos los caballos  $c_1, \ldots, c_n$  tienen el **mismo color**.
- Como  $\{c_2, \ldots, c_{n+1}\}$  también tiene n caballos, entonces por **HI** todos los caballos  $c_2, \ldots, c_{n+1}$  tienen el **mismo color**.
- Como  $\{c_1, \ldots, c_n\}$  y  $\{c_2, \ldots, c_{n+1}\}$  tienen caballos en común  $(\{c_1, \ldots, c_n\} \cap \{c_2, \ldots, c_{n+1}\} = \{c_2, \ldots, c_n\})$ , entonces **todos los caballos**  $c_1, \ldots, c_{n+1}$  tienen el mismo color.

#### ¿Dónde está el error?

Un **triomino** es una pieza en forma de L como sigue:



Demuestre que para todo  $n \ge 1$  lo siguiente se cumple:

Cada tablero de  $2^n \times 2^n$  cuadrados que tiene un cuadrado ocupado, puede ser cubierto completamante usando triominos. (rotar triominos está permitido.)

Caso base: P(1) es verdadero.

Cada tablero de  $2 \times 2$  que tiene un cuadrado ocupado, puede ser cubierto con triominos:



**Paso inductivo:**  $\forall n \ge 1 (P(n) \rightarrow P(n+1)).$ 

Sea  $n \ge 1$ . Supongamos que P(n) es verdadero:

Cada tablero de  $2^n \times 2^n$  que tiene un cuadrado ocupado, puede ser cubierto con triominos (HI)

**Por demostrar:** P(n+1) es verdadero.

Sea un tablero T de  $2^{n+1} \times 2^{n+1}$  que tiene un cuadrado ocupado.

Podemos dividir el tablero T en 4 tableros  $T_1, \ldots, T_4$  de  $2^n \times 2^n$ .

El cuadrado ocupado en T debe estar en alguno de estos 4 tableros, digamos  $T_i$ .

Podemos poner un triomino en el centro del tablero T de manera que toque a todos los tableros  $T_1, \ldots, T_4$  menos a  $T_i$ .

Como cada uno de los tableros  $T_1, \ldots, T_4$  tiene un cuadrado ocupado, podemos aplicar la HI en cada uno de estos tableros, y así podemos cubrir **todo** el tablero T con triominos.

Ilustración del argumento:





En este ejemplo,  $T_i = T_4$ .

Sea  $r \in \mathbb{R}$  tal que 0 < r < 1. Demuestre que para todo  $n \in \mathbb{N}$  se cumple:

$$\sum_{i=0}^n r^i \leq \frac{1}{1-r}$$

Caso base: P(0) es verdadero.

Como 0 < r < 1, tenemos que 0 < 1 - r < 1. Esto implica que:

$$1 < \frac{1}{1-r}$$

Concluimos que:

$$\sum_{i=0}^{0} r^{i} \ = \ 1 \ \leq \ \frac{1}{1-r}$$

Sea  $r \in \mathbb{R}$  tal que 0 < r < 1. Demuestre que para todo  $n \in \mathbb{N}$  se cumple:

$$\sum_{i=0}^n r^i \leq \frac{1}{1-r}$$

#### Paso inductivo:

Sea  $n \in \mathbb{N}$  y suponga que P(n) es verdadero:

$$\sum_{i=0}^{n} r^{i} \leq \frac{1}{1-r} \quad (HI)$$

**Por demostrar:** P(n+1) es verdadero.

$$\sum_{i=0}^{n+1} r^i \quad = \quad \sum_{i=0}^n r^i \, + \, r^{n+1} \quad \overset{\mathsf{HI}}{\leq} \quad \frac{1}{1-r} \, + \, r^{n+1}$$

Necesitamos probar que:  $\frac{1}{1-r} + r^{n+1} \le \frac{1}{1-r}$ 

#### ¿Podemos terminar el paso inductivo?

A veces, cuando no encontramos una forma de demostrar el paso inductivo, puede ser conveniente **fortalecer la hipótesis inductiva**:

- Tratamos de demostrar por inducción una propiedad más fuerte.
- Esto hace que el paso inductivo sea más fácil de demostrar, ya que la hipótesis inductiva es más fuerte.

En el ejemplo anterior, podemos tratar de demostrar lo siguiente.

Sea  $r \in \mathbb{R}$  tal que 0 < r < 1. Demuestre que para todo  $n \in \mathbb{N}$  se cumple:

$$\sum_{i=0}^{n} r^{i} \leq \frac{1 - r^{n+1}}{1 - r}$$

Notar que para todo  $n \in \mathbb{N}$  se cumple que:

$$\frac{1-r^{n+1}}{1-r} \leq \frac{1}{1-r}$$

Luego esta propiedad es más fuerte (implica a la anterior).

Sea  $r \in \mathbb{R}$  tal que 0 < r < 1. Demuestre que para todo  $n \in \mathbb{N}$  se cumple:

$$\sum_{i=0}^{n} r^{i} \leq \frac{1 - r^{n+1}}{1 - r}$$

Caso base: P(0) es verdadero.

$$\sum_{i=0}^{0} r^{i} = 1 \leq \frac{1 - r^{0+1}}{1 - r}$$

Sea  $r \in \mathbb{R}$  tal que 0 < r < 1. Demuestre que para todo  $n \in \mathbb{N}$  se cumple:

$$\sum_{i=0}^{n} r^{i} \leq \frac{1 - r^{n+1}}{1 - r}$$

#### Paso inductivo:

Sea  $n \in \mathbb{N}$  y suponga que P(n) es verdadero:

$$\sum_{i=0}^{n} r^{i} \leq \frac{1-r^{n+1}}{1-r} \quad \text{(HI)}$$

Por demostrar: P(n+1) es verdadero:  $\sum_{i=0}^{n+1} r^i \le \frac{1-r^{n+2}}{1-r}$ 

$$\sum_{i=0}^{n+1} r^i = \sum_{i=0}^n r^i + r^{n+1} \stackrel{\text{HI}}{\leq} \frac{1 - r^{n+1}}{1 - r} + r^{n+1} = \frac{1 - r^{n+1} + r^{n+1}(1 - r)}{1 - r}$$

$$= \frac{1 - r^{n+1} + r^{n+1} - r^{n+2}}{1 - r}$$

$$= \frac{1 - r^{n+2}}{1 - r}$$