UNSUPERVISED **MACHINE LEARNING:** Análise de Correspondência Simples e Múltipla

Prof. Dr. Wilson Tarantin Junior

*A responsabilidade pela idoneidade, originalidade e licitude dos conteúdos didáticos apresentados é do professor.

Proibida a reprodução, total ou parcial, sem autorização. Lei nº 9610/98

- Quando aplicar a análise de correspondência?
 - Técnica adequada para a análise de variáveis categóricas (qualitativas)
 - O objetivo é verificar se existe associação estatisticamente significativa entre as variáveis e suas categorias, criando o mapa perceptual para visualizar as associações
 - Caso exista uma variável quantitativa, é necessário que ela passe por um processo de categorização previamente
 - Exemplo: a idade é uma variável quantitativa (25, 42, 73, 81 anos) e poderia ser categorizada como: 0-30 anos é a categoria 1, 31-60 anos é categoria 2, 61-90 anos é categoria 3...

- Trata-se de técnica exploratória (não supervisionada)
 - Para avaliar a relação conjunta entre as variáveis (interdependência)
 - Não há modelos do tipo "y_i = x_{1i} + x_{2i} + ... + u_i"
 - Não são adequadas para fins de inferência
 - Se novas observações forem adicionadas ao banco de dados, é adequado refazer a análise

- Exemplos de aplicação
 - Faixa de renda e status na aprovação de crédito
 - Nível de escolaridade e cargo ocupado em empresas
 - Tipo de solo e cultura implementada
 - Gravidade dos sintomas da doença e comorbidades
 - Outros...

1.440.268-3

- Análise de variáveis geradas por escala Likert
 - Exemplos: concordo plenamente; concordo parcialmente; não concordo, nem discordo; discordo parcialmente; discordo plenamente
 - Evita o problema da ponderação arbitrária
 - Cada ponto da escala Likert torna-se uma categoria da variável na análise de correspondência simples ou múltipla

Implementação Análise de Correspondência Simples

- Também conhecida como Anacor
 - Quando o objetivo é estudar a associação entre duas variáveis e suas categorias
 - É possível separar a Anacor em duas partes:
 - 1. Análise da significância estatística da associação entre as variáveis e suas categorias por meio do teste qui-quadrado (χ^2)
 - 2. Elaboração e interpretação do mapa perceptual

Teste qui-quadrado para associação

1. Tabela de contingência

• Contém as frequências absolutas observadas para cada par de categorias das variáveis: trata-se de uma tabela de classificação cruzada (*cross-tabulation*)

		Variável B							
		Categoria 1	Categoria 2	Categoria 3		Categoria J	Total		
Variável A	Categoria 1	n ₁₁	n ₁₂	n ₁₃		n _{1J}	Σ_{L1}		
	Categoria 2	n ₂₁	n ₂₂	n ₂₃		n _{2J}	Σ_{L2}		
	Categoria 3	n ₃₁	n ₃₂	n ₃₃		n _{3J}	Σ_{L3}		
	1	•••							
	Categoria I	n ₁₁	n ₁₂	n _{I3}		n _{IJ}	Σ_{LI}		
	Total	Σ _{C1}	Σ _{C2}	Σ _{C3}		Σ _C	N		

2. Tabela de frequências absolutas esperadas

 Para a célula referente às categorias 1 das duas variáveis, a frequência absoluta esperada é:

Freq. absoluta esperada₁₁ =
$$\frac{(\Sigma_{L1} \times \Sigma_{C1})}{N}$$

• Este mesmo cálculo deve ser realizado para cada par de categorias das variáveis, alterando-se apenas o numerador

3. Tabela de resíduos

• Para a célula referente às categorias 1 das duas variáveis, o valor do resíduo é:

$$Residuo_{11} = n_{11} - \frac{(\Sigma_{L1} \times \Sigma_{C1})}{N}$$

- Ou seja, resíduo = frequência absoluta observada frequência absoluta esperada
- O mesmo cálculo é realizado para cada par de categorias

4. Tabela com os valores χ^2

• Para a célula referente às categorias 1 das duas variáveis, o valor da estatística χ^2 é:

$$\chi^2_{11} = \frac{(residuo_{11})^2}{(freq. absoluta esperada_{11})}$$

- O mesmo cálculo é realizado para cada par de categorias
- Em seguida, os valores de todas as células são somados para obter o valor χ^2 total

4. Tabela com os valores χ^2

- O objetivo é verificar se há associação estatisticamente significante entre as variáveis (utilizando a soma do χ^2)
 - H0: as variáveis se associam de forma aleatória.
 - H1: a associação entre as variáveis não se dá de forma aleatória.
- Dados o nível de significância e os graus de liberdade, se o valor da estatística χ^2 for maior do que seu valor crítico, há associação significante entre as duas variáveis (H1)
 - Graus de liberdade = $(I 1) \times (J 1)$

Tabelas de resíduos padronizados e resíduos padronizados ajustados

- Enquanto a análise do χ^2 permite verificar se há ou não a dependência entre as duas variáveis, a análise de resíduos padronizados ajustados permite aprofundar a análise com foco nas categorias das variáveis
- Como as categorias de uma variável se relacionam com as categorias da outra variável?
 - Observa-se o excesso ou falta de ocorrências de casos nas categorias das duas variáveis

5. Tabela de resíduos padronizados

 Para a célula referente às categorias 1 das duas variáveis, o valor do resíduo padronizado é:

$$Residuo \ Padronizado_{11} = \frac{residuo_{11}}{\sqrt{freq. \ absoluta \ esperada_{11}}}$$

• O mesmo cálculo é realizado para cada par de categorias

- 6. Tabela de resíduos padronizados ajustados
 - Para a célula referente às categorias 1 das duas variáveis, o valor do resíduo padronizado ajustado é:

Resíduo Padronizado Ajustado₁₁ =

resíduo padronizado₁₁

$$\sqrt{\left[\left(1-\frac{\Sigma_{c1}}{N}\right)x\left(1-\frac{\Sigma_{l1}}{N}\right)\right]}$$

O mesmo cálculo é realizado para cada par de categorias

- 6. Tabela de resíduos padronizados ajustados
 - Se o valor do resíduo padronizado ajustado em certa célula for maior do que 1,96, interpreta-se que existe associação significativa, ao nível de significância de 5%, entre as duas categorias que interagem na célula; se for menor do que 1,96, não há associação estatisticamente significativa
 - 1,96 é o valor crítico da normal padrão para o nível de significância de 5%

Elaboração do mapa perceptual

- 1. Determinar os autovalores (λ^2)
 - A quantidade (m) de autovalores depende da quantidade de categorias nas variáveis: m = min(I 1, J 1)
 - Na Anacor, os autovalores referem-se às inércias principais parciais e são base para determinar a inércia principal total e o percentual da inércia principal total em cada dimensão do mapa perceptual

- 1. Determinar os autovalores (λ^2)
 - Como base para o cálculo dos autovalores, inicialmente, define-se uma matriz A
 - Um modo de obter a matiz A, baseando-se nas etapas anteriores, é fazer para cada célula da matriz de resíduos padronizados o seguinte cálculo:

$$Matriz A_{11} = \frac{resíduo padronizado_{11}}{\sqrt{N}}$$

Com base na matriz A, obtém-se a matriz W: W = A' . A

- 1. Determinar os autovalores (λ^2)
 - Identificando W, os autovalores são obtidos pela solução da seguinte expressão: det(λ². I – W) = 0

$$\begin{vmatrix} \lambda^2 - w_{11} & - w_{12} & - w_{13} \\ - w_{21} & \lambda^2 - w_{22} & - w_{23} \\ - w_{31} & - w_{32} & \lambda^2 - w_{33} \end{vmatrix} = 0$$

I é a matriz identidade

1. Determinar os autovalores (λ^2)

 Com base nos autovalores (λ²), encontra-se o percentual da inércia principal total de cada dimensão

• Quanto maior a inércia principal total (e o χ^2), mais forte será a associação entre as variáveis em análise

2. Determinar as massas das variáveis em linha e em coluna

- As massas representam a influência que cada categoria exerce sobre as demais categorias de sua variável
- Com base nos "totais" da tabela de contingência, para a categoria 1 das variáveis, obtém-se as massas:

$$Massa \ Linha_{Categ1} = \frac{\Sigma_{L1}}{N} \qquad Massa \ Coluna_{Categ1} = \frac{\Sigma_{C1}}{N}$$

O mesmo cálculo é realizado para as demais categorias das variáveis

3. Determinar os autovetores

- É possível encontrar os autovetores a partir dos autovalores (λ^2) calculados
 - Cada autovalor gera seus autovetores
- Para cada um dos *m* autovalores:
- Substitui o autovalor na matriz (λ². I W), multiplica por um vetor coluna e iguala a zero. Resolvendo o sistema de equações gerado, é possível encontrar o autovetor da coluna (V). Com base nele, encontra-se o autovetor da linha (U):

$$u_k = Matriz A \cdot \left(\frac{v_k}{\lambda_k}\right)$$

4. Obter as coordenadas das categorias: variável em linha na tabela

• Coordenadas das abscissas (X)

$$X_I = \left(\lambda_1 \cdot \frac{1}{\sqrt{D_I}}\right) \cdot u_1$$

• Coordenadas das ordenadas (Y)

$$Y_I = \left(\lambda_2 \cdot \frac{1}{\sqrt{D_I}}\right) \cdot u_2$$

Coordenadas da K-ésima dimensão (k = quantidade de autovalores)

$$Z_I = \left(\lambda_k \cdot \frac{1}{\sqrt{D_I}}\right) \cdot u_k$$

4. Obter as coordenadas das categorias: variável em coluna na tabela

• Coordenadas das abscissas (X)

$$X_c = \left(\lambda_1 \cdot \frac{1}{\sqrt{D_c}}\right) \cdot V_1$$

• Coordenadas das ordenadas (Y)

$$Y_c = \left(\lambda_2 \cdot \frac{1}{\sqrt{D_c}}\right) \cdot V_2$$

Coordenadas da K-ésima dimensão (k = quantidade de autovalores)

$$Z_c = \left(\lambda_k \cdot \frac{1}{\sqrt{D_c}}\right) \cdot V_k$$

Implementação Análise de Correspondência Múltipla

- A Análise de Correspondência Múltipla (ACM) tem o objetivo de analisar a associação entre mais de duas variáveis categóricas
 - Só participam da ACM as variáveis que apresentam associação estatisticamente significativa com pelo menos uma outra variável contida na análise
 - Antes de elaborar a ACM, é importante realizar um teste χ^2 para cada par de variáveis
 - Se alguma delas não apresentar associação com outras, então não é incluída na ACM
 - A ACM apresenta a mesma lógica de análise definida na Anacor

- 1º método: matriz binária Z -> coordenadas-padrão
 - A matriz binária é obtida pela transformação das variáveis qualitativas em variáveis binárias, ou seja, valores 0 ou 1
 - Supondo que a matriz binária Z seja a tabela de contingência da Anacor, é possível obter a inércia principal parcial das dimensões, autovalores, autovetores e, portanto, as coordenadas no mapa perceptual dessa matriz
 - Quantidade de dimensões (λ^2) = J Q, em que "J" é a quantidade total de categorias em todas as variáveis e "Q" a quantidade de variáveis

• Matriz binária Z: exemplo com n = 7

ID	Variável A			Variável B		Variável C				
	Categ. 1	Categ. 2	Categ. 1	Categ. 2	Categ. 3	Categ. 1	Categ. 2	Categ. 3	Categ. 4	
1	1	0	0	1	0	1	0	0	0	
2	0	1	0	0	1	0	1	0	0	
3	0	1	10	0	0	0	0	1	0	
4	1	0	0	0	1	0	0	0	1	
5	0	161	0	1	0	0	1	0	0	
6	1 1	0	0	1	0	0	0	1	0	
711	1	0	1	0	0	1	0	0	0	

- 2º método: matriz de Burt -> coordenadas principais
 - A matriz de Burt é definida como: B = Z'.Z
 - É possível combinar em uma única matriz o cruzamento de todos os pares variáveis e suas categorias, obtendo, desta forma, uma matriz que contém as frequências absolutas observadas para todos os cruzamentos
 - Ao considerar a matriz de Burt como uma tabela de contingência, é possível realizar uma Anacor e obter as coordenadas das categorias das variáveis

• Matriz de Burt: obtida com base na matriz Z do exemplo anterior

1.7		Variável A		Variável B			Variável C				
	16	Categ. A1	Categ. A2	Categ. B1	Categ. B2	Categ. B3	Categ. C1	Categ. C2	Categ. C3	Categ. C4	
Variável A	Categ. A1	4	0	1	2	1	2	0	1	1	
	Categ. A2	0	3	1 1 (1	1	0	2	1	0	
Variável B	Categ. B1	1	1	2	0	0	1	0	1	0	
	Categ. B2	2	1	0	3	0	1	1	1	0	
	Categ. B3	1	1	0	0	2	0	1	0	1	
Variável C	Categ. C1	2	0	1	1	0	2	0	0	0	
	Categ. C2	0	2	0	1	1	0	2	0	0	
	Categ. C3	1	1	1	1	0	0	0	2	0	
	Categ. C4	1	0	0	0	1	0	0	0	1	

Referência

Fávero, Luiz Paulo; Belfiore, Patrícia. (2024). Manual de análise de dados: estatística e machine learning com Excel®, SPSS®, Stata®, R® e Python®. 2 ed. Rio de Janeiro: LTC.

OBRIGADO!

<u>linkedin.com/in/wilson-tarantin-junior-359476190</u>