Tsinghua-Berkeley Shenzhen Institute LEARNING FROM DATA Fall 2019

Written Assignment 5

Issued: Saturday 14th December, 2019 Due: Friday 3rd January, 2020

5.1. (2 points) Using the technique of Lagrange multipliers, show that minimization of the regularized error function

$$\frac{1}{2} \sum_{i=1}^{n} (y_i - \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_i)^2 + \frac{\lambda}{2} \sum_{i=1}^{n} |w_i|^q$$

is equivalent to minimizing the unregularized sum-of-squares error

$$\frac{1}{2} \sum_{i=1}^{n} (y_i - \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_i)^2$$

subject to the constraint

$$\sum_{j=1}^{n} \left| w_j \right|^q \le \eta$$

5.2. (2 points) (MAP Estimation) We mentioned that when θ is an isotropic Laplace distribution, MAP corresponds to LASSO (L1-regularization). Now you are maximizing the likelyhood function $\prod_{i=1}^{n} p(x_i|\theta)$ with prior distribution $p(\theta)$.

$$p(\theta) = \frac{1}{2}\lambda \exp(-\lambda|\theta|)$$
 $\lambda > 0$

Please prove that it is equivalent to maximizing

$$\log \prod_{i=1}^{n} p(x_i|\theta) - \lambda |\theta|$$

- 5.3. (2 points) (Mean Square Error) We mentioned Bias-Variance Tradeoff in class. We define the MSE of \hat{X} , an estimator of X as $\text{MSE}(\hat{X}) \triangleq \mathbb{E}[(\hat{X} X)^2]$. The variance of \hat{X} is defined as $\text{Var}(\hat{X}) \triangleq \mathbb{E}[(\hat{X} \mathbb{E}[\hat{X}])^2]$ and the bias is defined as $\text{Bias}(\hat{X}) \triangleq \mathbb{E}[\hat{X}] X$.
 - (a) Please prove that

$$MSE(\hat{X}) = Var(\hat{X}) + (Bias(\hat{X}))^2$$

(b) Our data are added with an independent Gaussian noise, say, X + N, where $\mathbb{E}[N] = 0$ and $\mathbb{E}[N^2] = \sigma^2$ and the estimator is \hat{X} . We define the empirical MSE as $\mathbb{E}[(\hat{X} - X - N)^2]$. Please prove that

$$\mathbb{E}[(\hat{X} - X - N)^2] = \text{MSE}(\hat{X}) + \sigma^2$$

The equation tells us that the empirical error is a good estimation of the true error. Thus, we can minimize the empirical error in order to properly minimize the true error.

- 5.4. (4 points) (VC Dimension) Given some finite domain set, \mathfrak{X} , and a number $k \leq |\mathfrak{X}|$, please figure out the VC-dimension of each of the following classes:
 - (a) (2 points) $\mathcal{H}_k^{\mathcal{X}} = \{h \in \{0,1\}^{\mathcal{X}} : |\{x : h(x) = 1\}| = k\}$. That is, the set of all functions that assign the value 1 to exactly k elements of \mathcal{X} .
 - (b) (2 points) $\mathcal{H}_{\leq k}^{\chi} = \left\{ h \in \{0,1\}^{\chi} : |\{x : h(x) = 1\}| \leq k \text{ or } |\{x : h(x) = 0\}| \leq k \right\}$
- 5.5. (Bonus) Please write down some brief thoughts or summary of the WODS Keynote Speech you listen. Words more than half page are required.