

Goal?

Prevent an adversary from learning information about a single individual

How?

Identify and minimize the number of observable variables and then obfuscate these with differential privacy.

Pathway to Metadata Anonymous Communication

Dialing Protocol

Threat Model Recap & Analysis

Results

Problem Setup

The Intercept_

Tor is in style! Let's use it!

Attempt #1: Single Server

Attempt #2: Dead Drops

ROUND 1

Attempt #2: Dead Drops

ROUND 1

Attempt #2: Dead Drops

ROUND 1

Attempt #4: Noise

Attempt #4: Noise

Let $d_2 = \#$ dead drops with two accesses in a single round. Then,

 $\Pr[d_2 = x \mid Alice \ talked \ to \ Bob] \approx \Pr[d_2 = x \mid Alice \ did \ not \ talk \ to \ Bob]$

Attempt #4: Noise

We achieve differential privacy through the addition of noise.

$$\Pr[d_2 = x \mid Alice \ talked \ to \ Bob] \approx \Pr[d_2 = x \mid Alice \ did \ not \ talk \ to \ Bob]$$

Dead drops with two messages

Attempt #4: Noise

Scenario:

- Assume Eve is Evil
- Alice talks to Eve through Vuvuzela
- The NSA arrests Alice for being an accomplice to Eve
- Will a jury convict Alice?

$$\mu = 300,000$$
 $\mu = 450,000$

Pathway to Metadata Anonymous Communication

Dialing Protocol

Threat Model Recap & Analysis

Results

The Last Piece: The Dialing Protocol

Communication Protocol	Dialing Protocol
Conversation Dead Drops	Invitation Dead Drops (much larger)
Conversation Round < 1 Minute	Dialing Round = 10 Minutes
1 Message = 240 Bytes	Invitation Download = Variable Size
Responses Travel through Mixnet	Invitations Downloaded Directly

Pathway to Metadata Anonymous Communication

Dialing Protocol

Threat Model Recap & Analysis

Results

Threat Model

- N 1 Servers Compromised
- Complete Network Surveillance
- X Sybil Clients
- Interference over Multiple Rounds

Trust Model

- 1 Honest Server
- You and Your Friend are Honest
- Honest Client/Server Runs Bug-Free Code

Goal Reminder: Prevent an adversary from learning information about a single individual

Pathway to Metadata Anonymous Communication

Dialing Protocol

Threat Model Recap

Results

Figure 9: Performance of Vuvuzela's conversation protocol when varying the number of users online. Every user sends a message every round.

Figure 11: Performance of Vuvuzela's conversation protocol when varying the number of servers with 1 million active users and μ =300,000.

Results

Pros	Cons
Constant bandwidth cost for client (in convo protocol)	Dialing protocol is expensive for clients
Protection against a strong adversary	Dialing protocol is not forwardly secret
System can be abstracted, leaving a clean messaging UI	Bandwidth cost incurred by servers
More users = more traffic = more privacy	Does not guarantee group privacy
Security guarantee holds with many or few users	Sending tons of messages degrades privacy
	Fixed message size, roughly as big as a tweet
	Infrequent dialing rounds

Pathway to Metadata Anonymous Communication

Dialing Protocol

Threat Model Recap & Analysis

Results

Group chat?

Improve scalability while maintaining privacy?

Can the dialing and conversation protocols happen at the same time?

If dead drops are erased each round, how does retransmission work?

Would adding random delays to messages (stall message passing) give the same guarantees as shuffling messages?