Verification : Summary

Marius

07/01

LTL and FOL

Definition

TL(AP,SU,SS) is a temporal logic with all the past and future quantifiers. **FO(AP,i)** is the first-order logic.

Intuition

 $w, i \models \phi \mathbf{SS} \psi \Leftrightarrow \mathsf{II}$ y a eu un instant passé auquel ψ était vrai et après lequel ϕ était vrai jusqu'à aujourd'hui.

 $w, i \models \phi \mathbf{SU} \psi \Leftrightarrow \mathsf{II}$ y aura un instant futur auquel ψ sera vrai et jusqu'auquel ϕ sera vrai.

Les operateurs **SS** and **SU** permettent de recréer tout les quantificateurs usuels.

Theorems

 $\mathsf{TL} \subseteq \mathsf{FO}$ [Using the model \mathbb{N}]

CTL and MSO

Definition

 $\mathsf{CTL}^*(\mathsf{AP},\mathsf{SU})$ is a temporal logic enabling path quantifiers E and A . $\mathsf{CTL}(\mathsf{AP},\mathsf{SU})$ is a temporal logic resticting CTL^* where all path quantifiers are followed by exactly one temporal operator.

MSO(AP,i) is the monadic second-order logic [enabling quantifying over sets]

Intuition

 $\mathcal{M}, \lambda \models \phi \Leftrightarrow \phi$ est vrai dans le chemin λ .

Theorems

 $CTL \subseteq MSO$ [Using the model \mathbb{N}] $CTL^* \subseteq MSO$ [Using the model \mathbb{N}]

Buchi Automata

Definition

Büchi-automaton is NFA where a ω -word is recognized if it goes infinitely many times through F.

General Büchi-automaton is a BA where a ω -word is recognized if it goes infinitely many times through all the F_i .

Some properties

Büchi-automata are closed under boolean operations.

[intersection : go from a copy of the cartesian product to another when meeting a target state]

$$LTL \subseteq L(BA)$$

Büchi-automata and General Büchi-automata where are the same Büchi-automata and Deterministic Büchi-automata are NOT the same

 $\mathsf{CTL}^*\subseteq\mathsf{MSO}\;[\mathsf{Using}\;\mathsf{the}\;\mathsf{model}\;\mathbb{N}]$

Partial Order Reduction: Definition

Definition

A labelled Kripke structure is extended with actions.

An **independence relation** over actions is irreflexive, symmetric and confluent [if both actions can be chosen, they can be done in both orders] A set of actions is**invisible** if it never change the truth of a AP.

The **stuterring-equivalence** of sequences is "equality modulo multiplicity"

Some properties

Any LTL without **X** is invariant under stuterring.

Partial Order Reduction: General Idea

Ample set method

Idea : build a set of explored actions red(s) following conditions :

- 1. Keep at least one action by state when possible [Avoid adding deadlocks]
- 2. Actions depending on red(s) occurs after red(s) in a concrete path starting with s.
- 2bis. In particular, all actions not from red(s) are independent with all actions from red(s)
- 3. Keep all actions or only an invisible subset [Preserve stuttering equivalence].
- 4. An abstract action in a state s in a cycle is in red(cycle) [No starving].

Fair Kripke structure and complexity

Definition

A fair kripke structure is extended states set visited infinitely often.

Can be simulated in CTL* with $\bigwedge GFF_i$

Cannot be simulated in CTL.

Complexity

LTL satisfiability is **PSPACE**-complete.

CTL* model checking is **PSPACE**-complete.

CTL model checking is decidable in time $O(|M|\cdot|\phi|)$ CTL model checking is decidable in time $O(|M|\cdot|\phi|)$

Binary Decision Diagrams

Definition

A **Binary Decision Graph** is a DAG labelling by variables and stricty ordering them. Leaves are labelled 0 and 1.

A **Binary Decision Diagram** is a BDG with no subgraphs isomorphic and no redundant nodes.

A Binary Decision Diagram with complement arcs is a BDD with potential filled circle on edges inverting the meaning

Simplification

One can merge nodes with the same successors and neglect the leaf labelled 0.

Theorem

Given a function $\mathcal{V} \to \mathbb{B}^n$, there is an unique BDD up to isomorphism.

Binary Decision Diagrams : Operations

F

quivalence problem can be solved through isomorphic test Negation can be solved through exchange of leaves Conjonction can be solved through the following formula : $ite(x, F[x:=1] \wedge G[x:=1], F[x:=0] \wedge G[x:=0])$ Disjonction can be solved in the same way CBDD are unique only if we prohibit negated 0-labelled edges

Pushdown Systems

Definition

A **Pushdown system** is basically the transition system of a nested stack automaton without any input.

The **P-Automaton** is the true notion of automaton with qw as inputs.

Intuition

Replacing the last item pushed \sim classical instruction

Pushing a new item \sim procedure call

Poping the last item \sim return

Property

Reachability from a configuration to another is decidable

Petri Nets

Definition

A **Petri Net** is a tuple P, T, F, W, wm_0 , where :

- P is the set of places
- ullet T is the set of transitions
- $F \subseteq P \times T \cup T \times P$ is the flow relations
- ullet T is the set of transitions

The **P-Automaton** is the true notion of automaton with qw as inputs.

Intuition

Replacing the last item pushed \sim classical instruction

Pushing a new item \sim procedure call

Poping the last item \sim return

Property

Reachability from a configuration to another is decidable