This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

§ I nt. Cl².

62日本分類

19日本国特許庁

①特許出願公告

H 03 K 19/14 G 01 S 3/098 G 01 S 3/19 98(5)G 292 99(5)J4

-昭51一25710 ❸公告 昭和 51 年(1976) 8 月 2 日

庁内整理番号

発明の数 1

(全 6 頁)

❷レーザー・ダイオードの発掘モード変換を利用 する光結合装置

判 昭43-3955

②特 昭39-64199

❷出 顧 昭39(1964)11月13日

砂発 者 西沢潤一

仙台市米ケ袋中丁5 6

同 佐々木市右エ門

同 石田勝彦

仙台市長町越路3富沢方

切出 願 人 財団法人半導体研究振興会 仙台市川内

図面の簡単な説明

図は本発明の実施例で、第1図aは本発明の原 理を構成的に示したものであり、第1図bは外部 からの刺激による発振モードの変化を示している。 第2回はレーザー・ダイオードの電流ー発光特性 20 例の説明と合せて述べる。 を示す。第3四、第4四、第5四、第6回は本発 明の具体的実施例である。

発明の詳細な説明

本発明はレーザー・ダイオートからの発光波長 の光により制御して光論理装置をつくることに係 る。

従来のレーザー光の相互作用を用いた光増巾及 び光制御の方法は発光していない向きから光を当 光を当てて、発光しているレーザー光を増倍する ことによつて、光の強くなつたり、弱くなつたり することを利用するものであつた。しかし本発明 は、レーザー発光しているレーザー・ダイオード に外部からレーザー光を入射することによつて、 35 に対しても強い光論理装置ができる。. 該レーザー・ダイオードのレーザー・発振モード のうち、あるモードの発振を励起したり、あるい

は、ある特定のモードの発振を消滅したりするこ とによつて、レーザー・ダイオードを用いた光論 理装置を提供するものである。即ち、レーザー・ ダイオードに入射するレーザー光によつて、該レ 5 ーザー・ダイオートの発掘モードを制御し、該レ ーザー・ダイオードの特定のモードのオン、オフ を検出して、光一光制御の論理案子をつくるもの である。従来のレーザー・ダイオートを用いた光 論理素子は電流を入力信号としているので、動作 官城県官城郡多賀城町八幡沖ノ井 10 時間は電流信号の伝搬速度で制限され、1000 ~ 5 × 1 0 -10 秒の動作速度が限度であるう。 し かし、本発明の光論理案子は光信号を入力とする ので、動作速度はレーザー・ダイオードの動作束 度で限定され、10-12秒程度になると考えられ 15 る。 1つの光入力信号で、多数の出力信号(レー ザー・ダイオードの祭光モード)を制御すること が出来ること、及びオン、オフ動作であるので、 外部からの雑音に対して強い論理素子ができるこ と等の特徴がある。これについては、具体的実施

一般に一つのシーザー・ダイオートの発振モー ドは複数個あり、外部からあるモードの光を当て ると、それと結合し易い発振モー トタは強められる が、反対に結合し難いモートのものは弱められる。 及び発光強度を、他のレーザー・ダイオードから 25 このように入射する1つのモードの光によつて視 数個の出力を制御することができる。レーザー・ ダイオードは非面線性素子であつて、光を強める ことは弱めることに比べると少いパワーですむ。 入射するモードの光を強くするならば、入射光の ててレーザー光を消すか、発光している向きから 30 ない場合には検出の難かしかつたモードの発振を 生ずることもある。このモートを用いるとか、光 検出部にモノクロ・メーターを入れる等すれば、 外部に得られる変化はモードの強弱ではなく、完 全なオン、オフとなり、雑音も少なく、且つ雑音

> ・ 次に図面によつて詳細に説明する。第1図2は 本発明の原理を説明するものであり、入射光入を

出すレーザー・ダイオード1、その光を受けモー ドの変化をするレーザー・ダイオード2ょりなる。 レーザー・ダイオード2より出る光は入射光 👢 に平行なレーザー・ダイオード2の出力光12と 垂直な出力光ス~であらわされる。今レーザー・ 5 動作をする光論理装置ができる。また一度発振し ダイオード2は入射光 1,のない時、それ自体の 構造及び材料によつて定まる安定な発掘モード 入21,人22,人23,人2を持つとする。一般には ダイオートに固有な発振モートの数はダイオート の材料、構造、及び電流によつて定まる。今、簡 10 論理装置について説明する。 単のため4個の発振モードがあると考える。また 説明では長方形のレーザー・ダイォードを用いて いるが、長方形に限られるものでなく、三角形、 五角形等種々の形状のものについて同じである。 ギーを一定に保つ場合について述べると、このレ ーザー・ダイオード2に入射光1、が入ると、入 射光ス、と一致またはそれに近いモードスネェは強 められるが、入力エネルギー一定の条件から他の モード / 22 /23 は却つて減少する。垂直なモード 20 ード 2に入射光 / が入つていない時には増巾レ 1~ は一層減少が強く、入射光1、が非常に強く なると殆んど消失してしまう。この状態は第1図 b に示されている。実線はレーザー・ダイオード 2に安定な発振モードル21 , 人22 , 人23 , 人2 を 示し、点線は入射光 λ_1 が入つた場合のそれらの 25 められる (オン)が、他は弱められるからオフの モードの発光強度の変化する様子を示す。破験は 入射光ス、が非常に強くなり、レーザー・ダイオ 一 ド2では元来不安定であつたモード 124が発振 することを示している。このモードス24はレーザ ー・ダイオード1と関係のあるものである。この 30 1, のない時をモード121はオフ状態、入射光 ようにレーザー・タイオード 2が入射光 スィ を受 けると、それ自体で安定なモートのあるものは増 倍され、他は減少される。またはそれ自体では不 安定で発振しなかつたモードの発振が生じること もある。上の説明でわかる通りモードの変化によ 35 れるために、半透明面を持つ直角プリズムを用い つて得られる出力は複数個である。レーザー・ダ イオードの出力光の強さしと入力電流Ⅰの関係は、 非直線性となる。その関係は第2図に示す。従つ てレーザー・ダイオードを図中B点にパイアスし、 これに入力信号を入れる場合、入力の微少な増加 40 入射光 スィ がなくなると、モード ス ュ ももとの状 によつて得られる出力光の増加は大きいが、同じ だけ入力を減少させても出力光の減少はそれ程大 きくない。

このようにモードを強めることは簡単であるが、

弱めるためには大きな入力変化が必要となる。こ のことは入射光1,の中に増倍されるモード121 を弱めるようなモードが含まれていてもその効果 は小さいことになる。従つて雑音にも強い安定な 始めたモードは安定な発振を続けることを意味す るが、内部損失、屈折損失のためにそのようにな らないことが多い。

次に上の原理を用いた本発明による具体的な光

第3回は、1つの光入力信号で、複数個の出力 信号を制御する装置を示すものである。レーザー・ ダイオード1及び2、斜面の部分が半透明になつ た直角プリズム3,4,5、モノクロ・メータ或 レーザー・ダイオート2に加えられているエネル 15 いは干渉フイルター等の特定の波長の光だけを選 別できる装置からなるモード選別装置によつて選 別されたノスェ・ノスス・ノススの波長の光だけの夫々 の出力光を増巾するレーザー・ダイオード9, 10,11及び12よりなる。レーザー・ダイオ ーザー・ダイオート9,10,11,12から出 てくる波長は夫々異なり、しかもすべて強い光 (オンの状態)である。しかし、入射光ス、がレ ーザー・ダイオード2に入ると、モード ネ 21は強 状態となる。レーザー・ダイオード光増幅器 9の 出力に現われるモード λ 21 の光を光電子増倍管、 フォト・ダイオード等の光検知器で検出するがこ れらの検出部のバイアスを適当に選べば入射光 1. のある時をオン状態とすることができる。こ の時の各モードのオン、オフのパルスは第3図b に示すようになり、単安定マルチ・パイプレー タ 一となる。今モード選別装置6,7,8に光を入 たが、波袞を少なくするために、光学レンズ系と分 光器を組み合せて用いるとよい。

第3図の具体的実施例では外部より入射光 1, が入つている間はモードノス」は強められているが、 **態にもとつた。これは自然放出、内部損失、屈折** 損失等によるものである。しかしレーザー・ダイ オード2のP-N接合の不純物優度分布をステッ プにする:内部損失を少なくする;反射面を完全

反射面にする等の方法によつて、入射光は、によ つてレーザー・ダイオード2で発振を始めたモー ドを入射光し、がなくなつた後も持続発振させる ことが可能である。レーザー・ダイオード2はそ ことになるからである。しかし損失を無くするこ とはできないから、永久的に持続発振するもので はなく、時間と共に少しずつ減衰するようになる。

第4図は、本発明を用いた双安定マルチ・バイ ブレーターの機能を持つ光論理装置を示す。

第4図aはレーザー・ダイオート13の側面に 入射光 ス 、 , スイを入れる部分及び出力光 ス ₂ , ス イ を取り出す部分を除いて、他を完全反射面とした 場合の例である。入射光1、によつてレーザー・ ダイオード13はモード 12 で発振を始め、入射 15 光ス,がなくなつた後も持続するが、強い入射光 11 が入つてくると消滅し、代りにモードれんが 発振を始める。この時の光パルスの関係は第4図 b に示される。即ち双安定マルチ・バイプレータ 一ができることになる。

第5図はOR回路の光による実現図である。前 述から明らかなようにいずれかの側から光が入射 する時、レーザー・ダイオートは夫々のモートで オンになるから、この双方のモードの光を検知す るようにすればOR回路ができる訳である。即ち、25 光を当て、前記第1のレーザー・ダイオードを単 レーザー・ダイオート14、反射鏡15、出力光 ^人2 , ^人2 のみを検出する検出装置16より構成さ れる。

第6図はAND回路の実施例を示す。レーザー・ ダイオード18のレーザー発光方向と直交する方 30 的に制御することによる、あるいは、前記第1の 向から、レーザー・ダイオード18に、レーザー・ ダイオード17の出力光を入射し、このレーザー・ ダイオード17の出力光の入射によつて、レーザ ー・ダイオード18のモードの1つであるモード 14 の発振は消滅するように、レーザー・ダイオ 35 ことを特徴とする光結合装置。 ード17,18に流す電流を設定する。レーザー・ ダイオード17に、レーザー・ダイオード17の レーザー発光方向に垂直な方向からモードル。の レーザー光を注入することによつて、レーザー・ グイオード17の発振は消滅するように、モード 40 pp. 2275~2276 l3 の強度を選ぶ。レーザー・ダイオード18は、 外部からの入射光がないときには多くのモードで 発光するが、モードス4 のレーザー光の入射によ つて、モードルの発振が励起、または強められ、

他のモードの発振は消滅または強度の減少を起す ように、入射光のモードル、の波長及び強度を定 める。レーザー・ダイオード18の出力光のうち モードルなだけを検出するように、モード選択装 れ自体の中に上の方法によつて強い正帰還を持つ 5 置、光増巾器及び光電気変換装置よりなる検出装 置19を設定する。このような組合せの装置では、 モードは、の出力が得られるのは、モードは。の レーザー光がレーザー・ダイオード17に、モー ド 14 のレーザー光がレーザー・ダイオード18 10 に夫々入射したときのみである。このようにして ANDの機能が得られる。これらの場合にも検出 装置16,19は特定のモードス。, ス2, ス1, の みを検出することによつて高い利得を得ることが

6

このようにして、本発明の主旨を組み合わせる ことによつてフリップ・フロップ回路、OR回路、 AND回路等を実現することができるから、加算 回路、二進カウンター、二進十進変換器等をつく ることができる。

20 慰特許請求の範囲

でき、雑音も少ない。

1 それぞれに固有な、複数のレーザー・発振モ ードを有する第1および第2のレーザー・ダイオ ートを備え、前記第1のレーザー・ダイオートに 前記第2のレーザー・ダイオードからのレーザー 独で作動させた場合のレーザー光の発光方向と同 じ方向に於けるレーザー発振モードのうち、或る いくつかのモードのものは強め、かつ、その他の モートのものは弱めるようにその発光強度を選択 レーザー・ダイオードの発振モードを前記同一発 光方向における他 の発振モードに変換することに よる。発振モードの変換を利用して、前記第1の レーザー・ダイオードに光論理動作を行なわせる

69引用文献

Journal of Applied Physics , 35 (7) Solid-State Electronics , 7 (10) pp. $707 \sim 716$ IBM Technical Disclosure Bulletin, <u>6</u>[2], p.82

7

IBM Journal of Research and Development $\frac{1}{2}$ (4) pp. 471 \sim 475

