ЛАБОРАТОРНАЯ РАБОТА №4.

«АППРОКСИМАЦИЯ ФУНКЦИИ МЕТОДОМ НАИМЕНЬШИХ КВАДРАТОВ»

Цель лабораторной работы: найти функцию, являющуюся наилучшим приближением заданной табличной функции по методу наименьших квадратов.

Лабораторная работа состоит из двух частей: вычислительной и программной.

№ варианта задания лабораторной работы определяется как номер в списке группы согласно ИСУ.

Порядок выполнения работы

Вычислительная реализация задачи

Вычислительная часть лабораторной работы должна быть представлена только в отчете.

Задание:

- 1. Сформировать таблицу табулирования заданной функции на указанном интервале (см. табл. 1)
- 2. Построить линейное и квадратичное приближения по 11 точкам заданного интервала;
- 3. Найти среднеквадратические отклонения для каждой аппроксимирующей функции. Ответы дать с тремя знаками после запятой;
- 4. Выбрать наилучшее приближение;
- 5. Построить графики заданной функции, а также полученные линейное и квадратичное приближения;
- 6. Привести в отчете подробные вычисления.

Программная реализация задачи

Для исследования использовать:

- линейную функцию,
- полиномиальную функцию 2-й степени,
- полиномиальную функцию 3-й степени,
- экспоненциальную функцию,
- логарифмическую функцию,
- степенную функцию.

Методика проведения исследования:

- 1. Вычислить меру отклонения: $S = \sum_{i=1}^{n} [\varphi(x_i) y_i]^2$ для всех исследуемых функций;
- 2. Уточнить значения коэффициентов эмпирических функций, минимизируя функцию S;
- 3. Сформировать массивы предполагаемых эмпирических зависимостей ($\varphi(x_i), \varepsilon_i$);
- 4. Определить среднеквадратичное отклонение для каждой аппроксимирующей функции. Выбрать наименьшее значение и, следовательно, наилучшее приближение;
- 5. Построить графики полученных эмпирических функций.

Задание:

- 1. Предусмотреть ввод исходных данных из файла/консоли (таблица y = f(x) должна содержать от 8 до 12 точек);
- 2. Реализовать метод наименьших квадратов, исследуя все указанные функции;
- 3. Предусмотреть вывод результатов в файл/консоль: коэффициенты аппроксимирующих функций, среднеквадратичное отклонение, массивы значений $x_i, y_i, \varphi(x_i), \varepsilon_i$;
- 4. Для линейной зависимости вычислить коэффициент корреляции Пирсона;
- 5. Программа должна отображать наилучшую аппроксимирующую функцию;
- 6. Организовать вывод графиков функций, графики должны полностью отображать весь исследуемый интервал (с запасом);
- 7. Программа должна быть протестирована при различных наборах данных, в том числе и некорректных;

Требования и содержание отчета

Отчет должен содержать следующие разделы:

- Цель работы,
- Рабочие формулы метода,
- Вычислительная часть лабораторной работы,
- Листинг программы (по крайней мере, коды используемого метода),
- Графики аппроксимирующих функций,
- Результаты выполнения программы при различных исходных данных (не менее трех),
- Выводы.

Варианты задания

Таблица 1. Варианты задания для вычислительной реализации задачи

3.0			10		
№ вариа нта	Функция	Исследуемый интервал	№ вариан та	Функция	Исследуемый интервал
1	$y = \frac{12x}{x^4 + 1}$	$x \in [0,2]$ $h = 0,2$	21	$y = \frac{14x}{x^4 + 21}$	$x \in [-4, 0]$ $h = 0,4$
2	$y = \frac{15x}{x^4 + 2}$	$x \in [0,4]$ $h = 0,4$	22	$y = \frac{5x}{x^4 + 22}$	$x \in [-2, 0]$ $h = 0,2$
3	$y = \frac{4x}{x^4 + 3}$	$x \in [-2, 0]$ $h = 0,2$	23	$y = \frac{16x}{x^4 + 23}$	$x \in [0,4]$ $h = 0,4$
4	$y = \frac{15x}{x^4 + 4}$	$x \in [-4, 0]$ $h = 0,4$	24	$y = \frac{7x}{x^4 + 24}$	$x \in [-4, 0]$ $h = 0,4$
5	$y = \frac{6x}{x^4 + 5}$	$x \in [0,2]$ $h = 0,2$	25	$y = \frac{28x}{x^4 + 25}$	$x \in [0,4]$ $h = 0,4$
6	$y = \frac{12x}{x^4 + 6}$	$x \in [0,2]$ $h = 0,2$	26	$y = \frac{7x}{x^4 + 26}$	$x \in [0,4]$ $h = 0,4$
7	$y = \frac{23x}{x^4 + 7}$	$x \in [-2, 0]$ $h = 0,2$	27	$y = \frac{18x}{x^4 + 27}$	$x \in [0,2]$ $h = 0,2$
8	$y = \frac{3x}{x^4 + 8}$	$x \in [-2, 0]$ $h = 0,2$	28	$y = \frac{21x}{x^4 + 28}$	$x \in [-4,0]$ $h = 0,4$
9	$y = \frac{4x}{x^4 + 9}$	$x \in [0, 2]$ $h = 0.2$	29	$y = \frac{15x}{x^4 + 29}$	$x \in [0,4]$ $h = 0,4$
10	$y = \frac{18x}{x^4 + 10}$	$x \in [0,4]$ $h = 0,4$	30	$y = \frac{16x}{x^4 + 30}$	$x \in [-4,0]$ $h = 0,4$
11	$y = \frac{5x}{x^4 + 11}$	$x \in [-2,0]$ $h = 0,2$	31	$y = \frac{15x}{x^4 + 31}$	$x \in [-4,0]$ $h = 0,4$
12	$y = \frac{4x}{x^4 + 12}$	$x \in [-2, 0]$ $h = 0,2$	32	$y = \frac{25x}{x^4 + 32}$	$x \in [0,4]$ $h = 0,4$
13	$y = \frac{31x}{x^4 + 13}$	$x \in [0, 4]$ $h = 0,4$	33	$y = \frac{26x}{x^4 + 33}$	$x \in [-2,0]$ $h = 0,2$
14	$y = \frac{25x}{x^4 + 14}$	$x \in [0,4]$ $h = 0,4$	34	$y = \frac{22x}{x^4 + 34}$	$x \in [-4,0]$ $h = 0,4$

15	$y = \frac{4x}{x^4 + 15}$	$x \in [-2,0]$ $h = 0,2$	35	$y = \frac{19x}{x^4 + 35}$	$x \in [0,4]$ $h = 0,4$
16	$y = \frac{17x}{x^4 + 16}$	$x \in [-4, 0]$ $h = 0,4$	36	$y = \frac{47x}{x^4 + 36}$	$x \in [-2,2]$ $h = 0,4$
17	$y = \frac{2x}{x^4 + 17}$	$x \in [0,2]$ $h = 0,2$	37	$y = \frac{23x}{x^4 + 37}$	$x \in [-2, 0]$ $h = 0,2$
18	$y = \frac{30x}{x^4 + 18}$	$x \in [0,4]$ $h = 0,4$	38	$y = \frac{14x}{x^4 + 38}$	$x \in [0,2]$ $h = 0,2$
19	$y = \frac{5x}{x^4 + 19}$	$x \in [0,2]$ $h = 0,2$	39	$y = \frac{20x}{x^4 + 39}$	$x \in [0,4]$ $h = 0,4$
20	$y = \frac{11x}{x^4 + 20}$	$x \in [0, 4]$ $h = 0,4$	40	$y = \frac{5x}{x^4 + 40}$	$x \in [-2, 0]$ $h = 0,2$

Контрольные вопросы

- 1. Чем вызвана необходимость аппроксимирования табличных функций?
 - 2. Чем отличается аппроксимации от интерполяции?
 - 3. Сформулируйте задачу аппроксимации.
 - 4. Как выбирается вид аппроксимирующего уравнения?
 - 5. Объясните суть метода наименьших квадратов (МНК).
 - 6. Что такое мера отклонения и как ее вычислить?
 - 7. К решению какой задачи сводится МНК?
 - 8. Сформулируйте задачу полиномиальной аппроксимации МНК.
 - 9. Что такое линейная и квадратичная аппроксимация?
- 10. Приведите графическую интерпретацию линейной и квадратичной аппроксимаций?
 - 11. Что такое среднеквадратическое отклонение?
- 12. Как выполняется аппроксимации данных неполиномиальными функциями?
 - 13. Как оценить качество полученной аппроксимации?
 - 14. Как выбирается наилучшая аппроксимирующая функция?
- 15. Корректно ли применять аппроксимирующие уравнения за пределами исследуемого диапазона?