第10章 高速串行总线

计算机系统通常包含不同种类的总线,在不同层次上为计算机组件之间提供通信通路

- 性能指标:
 - 1) 总线宽度 总线宽度指总线一次能同时传送的数据位数,即我们常说的32位、 64位等总线宽度的概念。
 - 2) 总线频率总线工作时每秒钟能传输数据的次数。总线频率越高,传输的速度 越快。
 - 3) 总线传输率 (带宽) 传输率指总线工作时每秒钟可传送的数据量,用MB/s表示。

计算机系统的四层总线结构

微机系统中的局部总线

微机系统中的外总线

USB 通用串行总线(Universal Serial Bus)

USB是一个外部总线标准,用于规范电脑与外部设备的连接和通讯。USB是在1994年底由英特尔、康柏、IBM、Microsoft等多家公司联合提出的,自1996年推出后,已成功替代串口和并口,并成为当今个人电脑和大量智能设备的必配的接口之一。从1994年11月11日发表了USB V0.7版本以后,到现在已经发展为3.1版本。

USB接口可连接多达127种外设,如鼠标、调制解调器和键盘等。

1. 传输速度快

- USB 1.x 提供了两种速度:
 - 数据传输率为1.5Mbps,低速的USB支持低速设备,例如,调制解调器、键盘、鼠标等;
 - 数据传输率全速12Mbps,数据传输速度比RS-232C串口的 20kbps快1000多倍,它用于大范围的多媒体设备。
- USB 2.0的数据传输速度可以高达480Mbps
- USB 3.0的数据传输率最高达5Gbps
- USB 3.1的数据传输率10Gbps

2. 连接简单快捷,实现"热插拔"和"即插即用"

- 热插拔,设备连到USB时,不必打开机箱,也不必关闭主机电源; 这就让用户在使用外接设备时,不需要重复"关机将并口或串口电 缆接上再开机"这样的动作,而是直接在电脑工作时,就可以将 USB电缆插上使用。
- 即插即用(Plug & Play),并能自动侦测与配置系统的资源。再者, 无须系统资源的需求。也即是,USB装置不需要另外设定IRQ中断、 I/O位址,以及DMA等的系统资源。

3. 连接灵活,一个连接器类型可以连接多种外设

- USB用一种通用的连接器可以连接多种类型的外设,其外型大多为4针或9针插头
- 应用外设统统可以用同样的标准与个人电脑连接。计算机为USB主控制器分配一根IRQ线和一些I/O地址,USB主控制器再为外设分配唯一地址,节省硬件资源。
- USB采用星形层式结构和Hub技术,允许一个USB主控机可以连接多达 127个外设(理论上),用户不用担心要连接的设备数目会受到限制, 两个外设间的距离可达5米,扩充方便。

4. 无须外接电源,携带方便

■ 由USB总线提供电源到外部设备,USB能提供+5V/500mA(3.0标准 要求1A)的电源,供低功耗USB设备如USB键盘、USB鼠标、优盘 等作电源使用;但需高功耗的USB设备,如扫描仪等仍需自带电源。

■ USB的物理接口和电气特性

· 接口分两类: 标准口和Mini口

图中从左往右依次是: MiniUSB A型插头、MiniUSB B型插头、USB B型插头、USB A型插座、USB A型插头

USB C型

USB Ports

Type A

Type B

针脚	名称	说明	接线颜色
1	VCC	+5V电压	红色
2	D-	数据线负极	白色
3	D+	数据线正极	绿色
4	GND	接地	黑色

miniUSB Ports

Mini-A

Mini-B

www.dianziaihaozhe.com

针脚	名称	说明	接线颜色
1	VCC	+5V电压	红色
2	D-	数据线负极	白色
3	D+	数据线正极	绿色
4	ID	permits distinction of Micro-A- and Micro-B-Plug Type A:connected to Ground Type B:not connected	none
5	GND	接地	黑色

■ USB体系结构

USB的硬件

- USB主控制器/根集线器
- USB集线器(USB Hub)
- USB设备以及电缆

USB的软件

- USB主控制器驱动程序 安排所有USB处理动作顺序
- USB驱动程序 检测USB设备的特性
- USB设备驱动程序 通过总线将请求传送到USB驱动程序,建立与目标设备间的传输动作

做在主板上或作为适配卡安装在 计算机上, 主机包含有主控制器 ■ USB系统体系结构 和根集线器,控制着USB总线上 的数据和控制信息的流动,每个 主机 USB系统只能有一个根集线器, 它连接在主控制器上。 根Hub 设备 •集线器提供端口,将设备连接到 Hub Hub USB总线上,同时检测连接在总线 上的设备,并为这些设备提供电 设备 USB设备和主机的数据流传输由主控制器负责。 设备 每个设备提供了一个或多个可以与客户程序通 信的接口,每个接口由0个或多个管道组成,它 们分别独立地在客户程序和设备的特定终端间 Hub 传输数据。USB驱动程序(USBD)为主机软件 建立了接口和管道,当提出配置请求时,主控 制器根据主机软件提供的参数进行服务。 以又何处处约门则物口丁。 图9-14 USB总线及集线器拓扑结构

● USB主机

USB主机通过主机控制器与USB设备进行数据传输。

功能:

- > 检测USB设备的插拔动作(根集线器)
- > 管理USB主机与USB设备之间的控制流
- > 管理USB主机与USB设备之间的数据流
- > 收集USB主机的状态和USB设备的动作信息

● USB集线器

给所有USB设备提供端口,是USB所有动作的分配者,采用一对多的方式连接外设,最多连接127个USB设备。

- > USB集线器串接在USB总线上。
- 提供比主机能够提供的更多的连接点,将来自上游端口的业务流重播到下游的端口上。
- 检测下游端口的连接和断开,并上报主机。
- > 支持下游端口所连接的USB外设的各种不同速率,并检测和恢复连接中的总线故障。
- 为下游端口提供电源,并将与此相关的任何问题报告给主机。

■ USB设备

以从属的方式与USB主机进行通信,受USB主机的控制,在总线上发送和接收数据和控制信息。根据数据传输率不同,分为低速设备、全速设备、高速设备和超高速设备。

- 总线接口单元 以USB接口控制器为核心,串行数据到并行数据的转换
- 逻辑设备 USB协议主体,处理接口和不同端点之间的数据,实现USB基本行为
- 功能单元 提供不同USB设备各自的特点

● USB设备的属性

> 描述符

提供设备属性和特点信息,USB主机通过描述符区分不同类型的设备

> 类

设备按照功能相近原则归纳为几种不同的类,音频类、人机接口类等

▶ 功能/接口 USB设备的使用功能,设备硬件角度又称为接口

> 端点

与USB主机进行通信的基本单元,一个设备允许多个端点,一个端点只支持一种数据传输方式

- ➤ 管道 USB设备和USB主机进行数据通信的逻辑通道
- ▶ 设备地址 USB主机控制器通过设备地址区分USB设备,设备地址7位,理论上可以连接 127个USB设备

■ USB通信协议

● USB的通信模型

■USB包的类型与格式

USB总线的数据传输由包组成的,包是USB交换的基本单位

8位	8位			
SYNC	PID	DATA	CRC	EOP

- SYNC 同步字段,用于位同步
- PID 包标识字段,标识不同类型的包
- DATA 携带主机与设备之间要传递的信息,其内容和长度根据包标识符、传输类型的不同而各不相同,握手包、专用包等没有数据字段
- CRC 检测包中数据错误,只存在于令牌包和数据包
- EOP 包的结束标志

1) 令牌包(Token)

USB总线是一种基于令牌的总线协议,所有的事务处理都以令牌包开始。

格式如下:

SYNC: 同步域,所有包都必须有,8位

PID:包类型域,token有4种,OUT、IN、Setup和SOF

ADDR:设备地址域,包的传输目的地,7位(128个地址)

ENDP; 端点域,确定传到设备哪个端点,4位(一个设备可以有16个)

CRC: 检查域,用于地址域和端点域的校验

8位	8位	7位	4位	5位	2~3位
SYNC	PID	ADDR	ENDP	CRC	EOP

令牌包有4种类型,分别是帧开始包、接收包、发送包和设置包

帧开始包(SOF) 6位 8位 8位 5位 FRAME NUMBER **SYNC CRC** PID 0 0 0 0 0 0 11 0 1 0 0 1 0 1 数据TTL USB编码 说明: 串行通信中自左到右是低位到高位 低四位的反码 21

●接受包(IN)

8位	8位	7位	4位	5位
SYCN	PID	ADDR	ENDP	CRC

接受交换包括了全部4种传输类型。

根Hub广播接受包→目标设备返回数据包→根Hub发握手包

●发送包 (OUT)

接受交换包括了除等时传输外的其他3种传输类型

根Hub广播发送包→根Hub发数据包→目标设备发握手包(批传输才有握手包)

●设置包 (SETUP)

控制传输由主机发设置包,后面可能由一个或多个IN或OUT交换,或只包含一个端点传到主机的状态

2) 数据包

若主机请求设备发送数据,则送一个IN Token到设备某一端点,设备将以数据包形式加以响应,若主机请求目标设备接收数据,则送一个OUT Token到目标设备某一端点,设备将接受数据包

8位	8位	0~1023位	16位	2~3位
SYNC	PID	DATA	CRC	EOP

USB 1.1数据包格式

8位	8位	0~8192位	16位	2~3位
SYNC	PID	DATA	CRC	EOP

USB 2.0数据包格式

发送方: 主机或设备

3) 握手包

设备使用握手包来报告交换的状态,通过不同类型的握手包可以传送不同的结果报告。握手包由数据的接收方(可能是目标设备,也可能是HUB)发往数据的发送方。等时传输没有握手包

类型有ACK(应答包)、NAK(无应答包)、STALL(挂起包)和NYET(接收设备还没有响应)4种类型

8位	8位	2~3位
SYNC	PID	EOP

发送方: 主机或设备, 即数据接受方。

4) 特殊包

- · 只由SYNC和PID组成
- 主机希望与低速设备进行低速传输时发此包
- 低速设备只支持控制传输与中断传输
- 与低速设备交换数据只有8字节

发送方: 主机

PID类型	PID名称	PID[3:0]	描述
Token	OUT	0001b	具有PID、类型检查、设备地址、端点号和CRC域的宿 主到功能设备的发送包
	IN	1001b	功能设备到宿主的接收包,具有和发送包一样的域
	SOF	0101b	帧开始包
	SETUP	1101b	主机发给设备的设置包,用于控制传输的设置。
Data	DATA0	0011b	数据包0
	DATA1	1011b	数据包1
	DATA2	0111b	在微帧中高速、高带宽的等时交换的数据包
	MDATA	1111b	为分离的高速和高带宽等时交换中的数据包
Handshake	ACK	0010b	接收设备发的接受数据正确的应答包
	NAK	1010b	接收设备无法接受数据或没有数据返回个宿主
	STALL	1110b	设备已经被挂起,需要主机插手解决故障
	NYET	0110b	接收器无应答
Special	PRE	1100b	预告包,预告下面将以低速方式和低速设备通信
•	ERR	1100b	分离交换错误的握手信号
	SPLIT	1000b	高速分离交换标志
	PING	0100b	为批或控制端点传输而设置的高速流控制探测
	Reserved	0000b	保留

■ USB的事务处理

> 输入事务处理

USB主机从总线上的某个USB设备接收一个数据包的过程。一般包括: 令牌包,数据包,握手包(ACK/NAK/STALL)。 实时传输中对时间要求高,没有握手包。

> 输出事务处理

USB主机向总线上的某个USB设备发送一个数据包的过程。

一般包括: 令牌包,数据包,握手包(ACK/NAK) 。出现错误时,设备不返回任何握手包,导致主机超时重传。

> 设置事务处理

控制传输中使用,表示USB主机向某个设备发送控制命令。

■ USB的数据传输模式

1. 批量传输

批传输用于传输大批数据,这种数据传输的时间性不强,但要确保数据的正确性。在包的传输过程中,出现错误,则需重新传输。其典型的应用是扫描仪、打印机、数码相机

2. 中断传输

中断传输用于不固定的、少量的数据传输。当设备需要主机为其服务时,向主机发送此类信息以通知主机,像键盘、鼠标之类的输入设备采用这方式。USB的中断传输是Polling(查询)类型,周期性的传输方式。

3. 同步传输

又称等时传输,用于传输连续性、实时的数据。这种方式的特点是要求传输速率固定,时间性强,忽略传输错误,即传输中出错也不重传,因为这样会影响传输速率。需要确定的带宽和间隔时间。视频设备(usb的摄像头)、数字声音设备和数字相机采用这种方式。

4. 控制传输

系统软件用来进行查询、配置和给设备发送通用命令。双向传送, 数据量通常较小。