

Московский институт электроники и математики им. А.Н. Тихонова Департамент прикладной математики

СТОХАСТИЧЕСКИЕ ОЦЕНКИ И УПРАВЛЕНИЕ

Дмитриев Андрей Викторович

доктор физ.-мат. наук, проф. профессор МИЭМ ВШЭ ведущий научный сотрудник ФКН ВШЭ

Москва, 2022

Повестка

- Немного необходимого из прошлой лекции (критические переходы и скользящие окна)
- Самоорганизованная критичность в теории среднего поля
- Тестовые модели для самоорганизации в критическое и бистабильное состояние
- Визуальные особенности распределения вероятностей при приближении системы к точке критического перехода
- Моменты распределения вероятностей и автокорреляционная функция (лаг-1) как меры раннего предупреждения критического перехода

Критические явления в сложных системах: универсальность внешних проявлений

Самоорганизовнная критичность (SOC) = критический переход второго рода

Самоорганизовнная бистабильность (SOB) = критический переход первого рода

Виды критических переходов и их особенности

SubC

SOC

Время

Самоорганизованная бистабильность

Управляющий параметр

Самоорганизация в критическое состояние (SOC) в теории среднего поля

- η параметр накачки
- θ наклон кучи песка (управляющий параметр)
- S ток песка по поверхности кучи (параметр порядка)
- $\theta < \theta_C$ неупорядоченная фаза с S = 0 (результат множества хаотически направленных микротоков, которые взаимно уравновешиваются)
- $\theta > \theta_C$ упорядоченная фаза с $S \neq 0$ (появлении выделенного направления тока)

При токе $S=0^+$, соответствующем добавлению <u>как минимум</u> одной песчинки за один шаг, система <u>самоорганизуется</u> в состояние (неустойчивое) с критическим наклоном $\theta=\theta_C$

Имеет место <u>отрицательная обратная связь</u>, вынуждающая наклон принять со временем значение $\theta = \theta_C$ вне зависимости от начального профиля поверхности:

на любое возмущение при очень большом наклоне система ответит глобальным событием, в результате которого большое количества песка покинет систему и наклон уменьшится

Скользящее окно с левой фиксированной границей для идентификации предвестников критических переходов

 $\{\xi_t, t=\overline{0,N}\}$ – наблюдаемый дискретный ряд

 $\{m_t, t = \overline{n_0, N}\}$ – ряд мер раннего предупреждения

$$\xi_t \to m_t$$

Окно с фиксированной левой границей и скользящей правой границей

Скользящее окно с левой фиксированной границей для идентификации предвестников критических переходов

 $\{\xi_t, t=\overline{0,N}\}$ – наблюдаемый дискретный ряд

 $\{m_t, t = \overline{n_0, N}\}$ – ряд мер раннего предупреждения

$$\xi_t \to m_t$$

Окно с фиксированной левой границей и скользящей правой границей

Скользящее окно с левой фиксированной границей для идентификации предвестников критических переходов

 $\{\xi_t, t=\overline{0,N}\}$ – наблюдаемый дискретный ряд

 $\{m_t, t = \overline{n_0, N}\}$ – ряд мер раннего предупреждения

$$\xi_t \to m_t$$

Окно с фиксированной левой границей и скользящей правой границей

Скользящее окно с левой фиксированной границей для идентификации предвестников критических переходов

 $\{\xi_t, t=\overline{0,N}\}$ – наблюдаемый дискретный ряд

 $\{m_t, t = \overline{n_0, N}\}$ – ряд мер раннего предупреждения

$$\xi_t \to m_t$$

Окно с фиксированной левой границей и скользящей правой границей

Скользящее окно с левой фиксированной границей для идентификации предвестников критических переходов

 $\{\xi_t, t=\overline{0,N}\}$ – наблюдаемый дискретный ряд

 $\{m_t, t = \overline{n_0, N}\}$ – ряд мер раннего предупреждения

$$\xi_t \to m_t$$

Окно с фиксированной левой границей и скользящей правой границей

Скользящее окно с левой фиксированной границей для идентификации предвестников критических переходов

 $\{\xi_t, t=\overline{0,N}\}$ – наблюдаемый дискретный ряд

 $\{m_t, t = \overline{n_0, N}\}$ – ряд мер раннего предупреждения

$$\xi_t \to m_t$$

Окно с фиксированной левой границей и скользящей правой границей

Скользящее окно с левой фиксированной границей для идентификации предвестников критических переходов

 $\{\xi_t, t=\overline{0,N}\}$ – наблюдаемый дискретный ряд

 $\{m_t, t = \overline{n_0, N}\}$ – ряд мер раннего предупреждения

$$\xi_t \to m_t$$

Окно с фиксированной левой границей и скользящей правой границей

Самоорганизация в критическое состояние: тестовые модели самоорганизации в критическое и бистабильное состояния

Проблема: в реальных временных рядах заведомо неизвестны особенности поведения мер раннего обнаружения (предвестников) критических переходов и крайне сложно визуально определить критическую точку

Самоорганизация в критическое состояние: тестовые модели самоорганизации в критическое и бистабильное состояния

Два класса тестовых моделей

- 1. Решения (реализации случайного процесса) систем стохастических дифференциальных уравнений, связывающих параметр порядка и управляющий параметр
- 2. Ряды числа неустойчивых вершин песочных клеточных автоматов (sandpile cellular automata)

Клеточные автоматы, порождающие тестовые временные ряды

Модель Бака-Танга-Визенфельда (песочный клеточный автомат с самоорганизованной критичностью)

0	0	0	0
0	4	3	0
0	3	4	0
0	0	3	0

$z_C = 4$

Итерация і

- 1. Случайным образом выбираются ячейки (i,j) на решетке размера L imes L
- 2. В эти ячейки добавляется по одной «песчинке»: $z_{i,j}=z_{i,j}+1$
- 3. Возможно одно из двух состояний системы:
- Устойчивое состояние системы для всех ячеек выполнено неравенство $z_{i,j} < z_C$ (переход к итерации i+1) z_C порог устойчивости, одинаковый для всех ячеек
- Неустойчивое состояние системы $z_{i,j} \ge z_C$
- 4. Возмущение увеличение на 1 значения в соседних ячейках ($z_{i\pm 1,j\pm 1^+}=z_{i\pm 1,j\pm 1^+}+1$)
- 5. Pелаксация до устойчивого состояния опрокидывание неустойчивых ячеек ($z_{i,j^-}=4$)

Итерация i+1

0	1	1	0	
1	2	1	1	
1	5	5	1	
0	2	0	1	
-1				

Визуальная оценка приближения к критической точке по изменению гистограммы для ξ_t в окне [0,t]

• критический переход первого рода

Визуальная оценка приближения к критической точке по изменению гистограммы для ξ_t в окне [0,t]

• критический переход первого рода

Визуальная оценка приближения к критической точке по изменению гистограммы для ξ_t в окне [0,t]

• критический переход первого рода

Визуальная оценка приближения к критической точке по изменению гистограммы для ξ_t в окне [0,t]

• критический переход первого рода

Визуальная оценка приближения к критической точке по изменению гистограммы для ξ_t в окне [0,t]

• критический переход первого рода

Визуальная оценка приближения к критической точке по изменению гистограммы для ξ_t в окне [0,t]

• критический переход первого рода

Визуальная оценка приближения к критической точке по изменению гистограммы для ξ_t в окне [0,t]

• критический переход второго рода

Визуальная оценка приближения к критической точке по изменению гистограммы для ξ_t в окне [0,t]

• критический переход второго рода

Визуальная оценка приближения к критической точке по изменению гистограммы для ξ_t в окне [0,t]

• критический переход второго рода

Визуальная оценка приближения к критической точке по изменению гистограммы для ξ_t в окне [0,t]

• критический переход второго рода

Визуальная оценка приближения к критической точке по изменению гистограммы для ξ_t в окне [0,t]

• критический переход второго рода

Визуальная оценка приближения к критической точке по изменению гистограммы для ξ_t в окне [0,t]

• критический переход второго рода

Проблема подгонки вероятностного распределения под гистограмму для ξ_t в интервале колебаний малых и средних амплитуд

Плотность распределения вероятностей

• обобщенное распределение Парето (тяжелый хвост)

$$p(x|k,\sigma,\theta) = \frac{1}{\sigma} \left(1 + k \frac{x - \theta}{\sigma} \right)^{-1 - \frac{1}{k}}$$

• экспоненциальное распределение (легкий хвост)

$$p(x|0,\sigma,\theta) = \frac{1}{\sigma}e^{-\frac{x-\theta}{\sigma}}$$

Плотность распределения вероятностей в двойном логарифмическом масштабе

• обобщенное распределение Парето (тяжелый хвост)

$$p(x|k,\sigma,\theta) = \frac{1}{\sigma} \left(1 + k \frac{x - \theta}{\sigma} \right)^{-1 - \frac{1}{k}}$$

• экспоненциальное распределение (легкий хвост)

$$p(x|0,\sigma,\theta) = \frac{1}{\sigma}e^{-\frac{x-\theta}{\sigma}}$$

Проблема подгонки вероятностного распределения под гистограмму для ξ_t в интервале колебаний малых и средних амплитуд

Плотность распределения вероятностей

• экспоненциальное распределение (легкий хвост)

$$p(x|0,\sigma,\theta) = \frac{1}{\sigma}e^{-\frac{x-\theta}{\sigma}}$$

• логнормальное распределение (длинный хвост)

$$p(x|\mu,\sigma) = \frac{1}{x\sigma\sqrt{2\pi}} \exp\left\{-\frac{(\log x - \mu)^2}{2\sigma^2}\right\}$$

Плотность распределения вероятностей в двойном логарифмическом масштабе

• экспоненциальное распределение (легкий хвост)

$$p(x|0,\sigma,\theta) = \frac{1}{\sigma}e^{-\frac{x-\theta}{\sigma}}$$

• логнормальное распределение (длинный хвост)

$$p(x|\mu,\sigma) = \frac{1}{x\sigma\sqrt{2\pi}} \exp\left\{-\frac{(\log x - \mu)^2}{2\sigma^2}\right\}$$

Моменты распределения как меры раннего предупреждения

• Математическое ожидание $(m_{t'} \equiv \mu_{t'})$

$$m_{t^{\prime}}$$
, соответствующий критическому переходу второго рода

$$m_{t'} \equiv \mu_{t'} = \frac{1}{t'} \sum_{t=t_0}^{t'} \xi_t$$

 $m_{t^{\prime}}$, соответствующий критическому переходу первого рода

Моменты распределения как меры раннего предупреждения

• Дисперсия ($m_{t'} \equiv \sigma_{t'}^2$)

 $m_{t^{\prime}}$, соответствующий критическому переходу второго рода

 $m_{t^{\prime}}$, соответствующий критическому переходу первого рода

Моменты распределения как меры раннего предупреждения

• Коэффициент эксцесса $(m_{t'} \equiv \kappa_{t'})$

$$m_{t'} \equiv \kappa_{t'} = \frac{(t' - t_0) \sum_{t=t_0}^{t'} |\xi_t - \mu_{t'}|^4}{\left(\sum_{t=t_0}^{t'} |\xi_t - \mu_{t'}|^2\right)^2} - 3$$

Positive Kurtosis (K > 0)

Моменты распределения как меры раннего предупреждения

• Коэффициент эксцесса $(m_{t'} \equiv \kappa_{t'})$

$$m_{t'} \equiv \kappa_{t'}$$

 $m_{t^{\prime}}$, соответствующий критическому переходу второго рода

 $m_{t^{\prime}}$, соответствующий критическому переходу первого рода

Моменты распределения как меры раннего предупреждения

• Коэффициент асимметрии $(m_{t'} \equiv s_{t'})$

$$m_{t'} \equiv s_{t'} = \frac{\frac{1}{(t'-t_0)} \sum_{t=t_0}^{t'} |\xi_t - \mu_{t'}|^3}{\left(\sqrt{\frac{1}{(t'-t_0)} \sum_{t=t_0}^{t'} |\xi_t - \mu_{t'}|^2}\right)^3}$$
3.5
2.5
2
1.5
1
0.5
0
0
0.5
1
1.5
2
2.5
3

Моменты распределения как меры раннего предупреждения

• Коэффициент асимметрии $(m_{t'} \equiv s_{t'})$

$$m_{t'} \equiv s_{t'}$$

 $m_{t^{\prime}}$, соответствующий критическому переходу второго рода

 $m_{t^{\prime}}$, соответствующий критическому переходу первого рода

Визуальная оценка приближения к критической точке по изменению автокорреляционной функции для ξ_t в окне [0,t]

• Автокорреляционная функция $(m_{t'} \equiv c_{t'}(\tau))$

$$m_{t'} \equiv c_{t'}(\tau) = \frac{1}{\sigma_{t'}^2 t'} \sum_{t=t_0}^{t'-\tau} (\xi_t - \mu_{t'})(\xi_{t+\tau} - \mu_{t'})$$

 τ – временная задержка (лаг)

Автокорреляционная функция измеряет корреляцию между $\xi_{[0,t]}$ и $\xi_{[0,t+ au]}$

Дальние корреляции характеризуются степенным законом убывание (или медленнее)

$$c_{t'}(\tau) \propto \tau^{-\alpha}, \alpha \in (0,1)$$

Ближние корреляции характеризуются степенным законом убывание (или быстрее)

$$c_{t'}(\tau) \propto \exp\left(-\frac{\tau}{\tau_0}\right)$$

Визуальная оценка приближения к критической точке по изменению автокорреляционной функции для ξ_t в окне [0,t]

$$m_{t'} \equiv c_{t'}(\tau)$$

Временной ряд, соответствующий критическому переходу второго рода (слева) и автокорреляция при $t^\prime=4500$

Визуальная оценка приближения к критической точке по изменению автокорреляционной функции для ξ_t в окне [0,t]

$$m_{t'} \equiv c_{t'}(\tau)$$

Временной ряд, соответствующий критическому переходу второго рода (слева) и автокорреляция при t'=4700

Визуальная оценка приближения к критической точке по изменению автокорреляционной функции для ξ_t в окне [0,t]

• Автокорреляционная функция $(m_{t'} \equiv c_{t'}(\tau))$

$$m_{t'} \equiv c_{t'}(\tau)$$

Временной ряд, соответствующий критическому переходу второго рода (слева) и автокорреляция при t'=4900

Визуальная оценка приближения к критической точке по изменению автокорреляционной функции для ξ_t в окне [0,t]

$$m_{t'} \equiv c_{t'}(\tau)$$

Временной ряд, соответствующий критическому переходу второго рода (слева) и автокорреляция при $t'=5100\,$

Визуальная оценка приближения к критической точке по изменению автокорреляционной функции для ξ_t в окне [0,t]

$$m_{t'} \equiv c_{t'}(\tau)$$

Временной ряд, соответствующий критическому переходу второго рода (слева) и автокорреляция при $t'=5300\,$

Визуальная оценка приближения к критической точке по изменению автокорреляционной функции для ξ_t в окне [0,t]

$$m_{t'} \equiv c_{t'}(\tau)$$

Временной ряд, соответствующий критическому переходу второго рода (слева) и автокорреляция при $t'=5500\,$

Визуальная оценка приближения к критической точке по изменению автокорреляционной функции для ξ_t в окне [0,t]

$$m_{t'} \equiv c_{t'}(\tau)$$

Временной ряд, соответствующий критическому переходу второго рода (слева) и автокорреляция при $t^\prime=4000$

Визуальная оценка приближения к критической точке по изменению автокорреляционной функции для ξ_t в окне [0,t]

• Автокорреляционная функция $(m_{t'} \equiv c_{t'}(\tau))$

$$m_{t'} \equiv c_{t'}(\tau)$$

Временной ряд, соответствующий критическому переходу второго рода (слева) и автокорреляция при $t^\prime=4100$

Визуальная оценка приближения к критической точке по изменению автокорреляционной функции для ξ_t в окне [0,t]

$$m_{t'} \equiv c_{t'}(\tau)$$

Временной ряд, соответствующий критическому переходу второго рода (слева) и автокорреляция при $t^\prime=4200$

Визуальная оценка приближения к критической точке по изменению автокорреляционной функции для ξ_t в окне [0,t]

$$m_{t'} \equiv c_{t'}(\tau)$$

Временной ряд, соответствующий критическому переходу второго рода (слева) и автокорреляция при t'=4300

Визуальная оценка приближения к критической точке по изменению автокорреляционной функции для ξ_t в окне [0,t]

$$m_{t'} \equiv c_{t'}(\tau)$$

Временной ряд, соответствующий критическому переходу второго рода (слева) и автокорреляция при $t^\prime=4400$

Визуальная оценка приближения к критической точке по изменению автокорреляционной функции для ξ_t в окне [0,t]

$$m_{t'} \equiv c_{t'}(\tau)$$

Временной ряд, соответствующий критическому переходу второго рода (слева) и автокорреляция при t'=4500

Автокорреляция лаг-1 как мера раннего предупреждения

$$c_{t'}(1) = \frac{1}{\sigma_{t'}^2 t'} \sum_{t=t_0}^{t'-1} (\xi_t - \mu_{t'})(\xi_{t+1} - \mu_{t'})$$

 $m_{t^{\prime}}$, соответствующий критическому переходу второго рода

 $m_{t^{\prime}}$, соответствующий критическому переходу первого рода

Стохастическая динамика числа первичных источников (пользователей) цепочек ретвитов, соответствующая первым дебатам предвыборной гонки Президентских Выборов 2016 года в США

Автокорреляция лаг-1 как мера раннего предупреждения

НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ