## PROPOSED MARKING GUIDE

## CHEMISTRY DEPARTMENT 2023 S.6 BRAINSTORMING TEST TEST ON: DISTINGUISHING SPECIES

| 1001 011, <u>0101111001011110001</u>                  | <u> </u>               |
|-------------------------------------------------------|------------------------|
| NAME INDEX Signature expected so                      | ore(%)/                |
| Instructions; Attempt all questions in th             |                        |
| 1. (a) Name one reagent that can be used to distingui |                        |
| of the following pairs of compounds. In each case s   |                        |
| observed when each member of the pair (s) is separe   | ately treated with the |
| reagent you have named;                               | 74. 1 L. A             |
| (i) HCOOH and CH₃COOH                                 | (1 ½ marks)            |
| Reagent Ammonia cal vilve/nitrate volution and        | Hisavm                 |
| Observations; with HCOOH : Gilver mirror deposit L    | / (NO)                 |
| with CH3COOH: No observable change                    |                        |
| (ii) CH3OH and CH3CH2OH                               | (1 ½ marks)            |
| Reagent Loding volution and rodium hijdro             | enaitular elixe        |
| Observations; with CH2CH2OH = Tellow procipitate for  | imed (vu)              |
| with CH3OH: No observable cha                         | 1000                   |
| (iii) COO-<br>and HCOO-                               | (03 marks)             |
| <i>coo-</i>                                           |                        |
| Reagent Hot acidified patamium manganate (un)         | abition.               |
| Observations: A purple solution turns to              | a coloures rolution.   |
| coo No observable change                              |                        |
| WITH HCOO                                             |                        |
| KIBUGO                                                | Page 1                 |

06

| (iv) $(CH_3CH_2)_2NH$ and $C$                                                                   | CH <sub>3</sub> CH <sub>2</sub> NH <sub>2</sub> (03 marks) |
|-------------------------------------------------------------------------------------------------|------------------------------------------------------------|
| Reagent Lodiumnitrite colution and                                                              | concentrated hydrochloric acid at O'C                      |
| Observations;<br>with (CH3CH2)NH : Yellow<br>with CH3CH2NH2 : Bubbl                             | eily hazurd                                                |
| With CH3CH2NH2: Bubbl                                                                           | a of a colouress cas: (03)                                 |
| .2. (a) State what is observed what is observed what treated with ammoniacal silver nitrate     | nen each of the following compounds is                     |
| (i) $CH_3CH_2C \equiv CH$                                                                       | (1 mark)                                                   |
| observations White procipitate                                                                  | ×                                                          |
| Lauation                                                                                        | 674                                                        |
| CH3 CH2 C= CH (g) + AgNO3(ag)                                                                   | + NH3 cap -> CH3 CH2 C= CAgco + NH4NO3007                  |
| (ii) CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> CHO                                        | (1 mark)                                                   |
| observations                                                                                    |                                                            |
| Silver mirror deposit                                                                           |                                                            |
| •                                                                                               | XX CV2                                                     |
|                                                                                                 | distinguish between each of the 2Htm.                      |
| <ol><li>Name a reagent that can be used to<br/>following pairs of substances. In each</li></ol> |                                                            |
| when the reagent is treated with each                                                           |                                                            |
| (a) propan-2-ol and ethanol                                                                     | ( <u>1</u> mark)                                           |
| Reagent:                                                                                        | · ·                                                        |
| (c) Anhydrous zinc Chloride and                                                                 | concentrated hydrochloric acid.                            |
| Observation:                                                                                    | formed within 5210 minutos.                                |
| ,                                                                                               | $\sim \Lambda h$                                           |
| with ethanol: No observable                                                                     | change at room tousporature-                               |
|                                                                                                 |                                                            |
| KIBUGO                                                                                          | Page 2                                                     |

An Bu

| (b) $\langle NH_2 \rangle$ and $\langle NH_2 \rangle$ $\langle CH_2 \rangle NH_2$                                          |                                |
|----------------------------------------------------------------------------------------------------------------------------|--------------------------------|
|                                                                                                                            | (1 mark)                       |
| Reagent:                                                                                                                   | - 0                            |
| Sodiumnitrate colution and concentrated hydrochteric acid                                                                  | <u>at 0°C.</u><br>(1½ marks))  |
| Observation:                                                                                                               | •                              |
| with NH2: No observable change                                                                                             | 64                             |
| with EHZNHZ: Bubblas of a colourlessigns.                                                                                  | (and                           |
| (c) HCHO and CHO                                                                                                           |                                |
|                                                                                                                            | (1 mark)                       |
| Reagent: Hot Fehling's solution  Observation:                                                                              | (1½ marks))                    |
|                                                                                                                            |                                |
| with HCHO: Roddith-brown procipitate                                                                                       | (214)                          |
| with (T) CHO: No observable change                                                                                         |                                |
| 4. Name one reagent that can be used to distinguish between following pairs of compounds and state what would be observed. | n each of the<br>erved in each |
| case if the reagent is reacted with the compounds                                                                          |                                |
| (a) C6H5COOH and C6H5OH                                                                                                    |                                |
| Reagent Codium carbonato solution                                                                                          |                                |
| Observations; Bubbles of a colourbass gas:                                                                                 | (02)                           |
| with CaHOH: No observable change                                                                                           |                                |

KIBUGO

Page 3



KIBUGO Page 4

12

|              | (f)                  | CH3C≡CCH3 and                                           | CH3CH2C≡CH                                       |                                                            | (03 marks)          |    |
|--------------|----------------------|---------------------------------------------------------|--------------------------------------------------|------------------------------------------------------------|---------------------|----|
|              |                      | Reagent                                                 | Ammoniacal                                       | iluoi vitrate io                                           | luther:             |    |
|              | Ωw.                  | ervations;<br>th_CH3C=CC<br>th_CH3CH2C                  | нз : No<br>=ch : M                               | elanor vable chance<br>hite procipitate                    | 1º/ 63              | )  |
|              | Nar<br>owing<br>mber | me a reagent that<br>pairs of ions. I<br>of the pair wa | 'n each case. Sto                                | distinguish betw<br>ate what would be<br>the reagent you h | S ODZEL ASO IL COLL |    |
|              | (a)                  | $C_2 O_4^{2-}$ an                                       | d <i>CH</i> <sub>3</sub> <i>COO</i> <sup>-</sup> |                                                            | (3marks)            |    |
| Reagant:     | He<br>Miens          | ot acidified pat<br>with C202-<br>with C43C01           | A purple solut                                   | ate (un) solution<br>monturus te a c                       | planter relation    | 7  |
|              | (b                   | ) CH3CH2CH2N                                            | _                                                | NHCH₃                                                      | (3 marks)           |    |
| Reac<br>Olso |                      | Sodiumnitrite                                           | colution and C                                   | encentrated hydr<br>Tellow oily la                         | ochlovir agid of (  | 03 |
|              |                      |                                                         |                                                  |                                                            |                     |    |

KIBUGO Page 5

12

| 6. State what would be observed and write equation for the reaction that                                                                                                         |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| would take place if:                                                                                                                                                             |
| a) 2,4-dinitrophenyl hydrazine is added to ethanal. (02 marks)                                                                                                                   |
| Observation  Foliam procepitate  Equation  NHN=CCH3  NHN=CCH3  NHN=CCH3  NHN=CCH3  NHN=CCH3  NO2  NO2  NO2  b) Propene is mixed with alkaline potassium manganate (VII) solution |
| Observation A purple solution turns to agreen solution and finally a bossess will be formed                                                                                      |
| Equation  CH2 C= CH2(g) MnO4 DH(G), CH3 CHCH2OH(L) + MnO2(9002)                                                                                                                  |
| c) Propanone is mixed with sodium hydrogensuphite solution                                                                                                                       |
| Observation White precipitate is formed                                                                                                                                          |
| Equation  CH2 COCH3 11) + NaHSO3 cap CH3 C-802Na CO  CH3  CH3  CH3  CH3  CH3  CH3  CH3  C                                                                                        |
| a) Propyrie is mixed with animoniacal copper()                                                                                                                                   |
| Observation Rod procipitate  Equation  2CH2C=CHG+Cu2Class +2NH2cap +2CH2CCCuco +2NH4Class                                                                                        |
| KIBUGO Page 7                                                                                                                                                                    |

| Propan-1-ol is mixed with iodine solut<br>Observation<br>No observable Cha                                                                                                                                                                                               | inge / A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Equation                                                                                                                                                                                                                                                                 | Marks transfered                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| For each of the following pairs of spesimilar observations if treated with a state what would be observed when the species. state the functional groreaction when the reagent is treated (a) (CH <sub>3</sub> ) <sub>2</sub> C=O and CH <sub>3</sub> CH <sub>2</sub> CHO | ecies,Name a reagent that gives each of the species. In each case the reagent named is treated with up in the species,equation for the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Reagent                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Observations;                                                                                                                                                                                                                                                            | zine colution  HT(CH3)2C=0 and CH2CH2CH0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Functional group                                                                                                                                                                                                                                                         | M. C. C. B. C. H. |
| Carbonyl group                                                                                                                                                                                                                                                           | X 634                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| (CH3)2C=0(1) +ON (O) -NHNH3(12)                                                                                                                                                                                                                                          | $\longrightarrow 0$ $MHN = C(CH^3)(0) + H$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

KIBUGO

Page 8

