Weighted Linear Ridge Regression as an Approximation of Kernel Ridge Regression Kernels

MSc. Candidate: Li Huang 10 Dec. 2019

Introduction

Model Types	Interpretable	Flexible	Model Names
Linear Model			{ OLS, ridge regression (RR) }
Nonlinear Model		\odot	{ kernel ridge regression (KRR) }
Linear Approximation	\odot	\odot	{ weighted ridge regression (WRR) }

Interpretable

$$\hat{y} = \alpha + \beta_1 x_1 + \beta_2 x_2$$

 β_1 denotes the marginal effect of the predictor x_1

Source: udiprod (YouTube)

MC = MB

SVM

Erafus,

What is kernel function?

• Construct nonlinearity while saving computational complexity through calculating inner product.

$$a = (a_1 + ... + a_P)$$

$$\varphi(a)=(1,\sqrt{2}a_1,\ldots,\sqrt{2}a_P,\ a_1^2,\ldots,a_P^2,\ \sqrt{2}a_1a_2,\ldots,\sqrt{2}a_{P-1}a_P)'$$
 (infinity: RBF)

Coordinates: $\varphi(a)'\varphi(b)$

$$P^2 + 3P + 1$$
 times

(infinity: RBF)

Inner product:
$$\kappa(a,b) = \varphi(a)'\varphi(b) = (1+a'b)^2$$

2P + 1 times

Sigmoid Kernel

$$K = \phi(X)\phi(X)'$$

reduce computational complexity

Linear Models: OLS and Ridge Regression

1. Ordinary Least Squares (OLS)

$$min \parallel y - X\beta \parallel^2$$

$$\hat{y}_i = x_i'(X'X)^{-1}y$$

2. Ridge Regression (RR)

$$MSE = \sigma^2 + u^2$$

$$min \parallel y - X\beta \parallel^2 + \lambda \parallel \beta \parallel^2$$

$$\hat{y}_i = x_i' (X'X + \lambda I_P)^{-1} X' y$$

Nonlinear Model: Kernel Ridge Regression

3. Kernel Ridge Regression (KRR)

$$\emptyset(X) = Z$$

Ridge regression: $\hat{y}_i = z_i'(Z'Z + \lambda I_M)^{-1}Z'y$ Z'Z is a (M x M) matrix

Duality of ridge regression: $\hat{y}_i = z_i' Z' (ZZ' + \lambda I_N)^{-1} y$ ZZ' is a (N x N) matrix

Kernel trick

$$K = \emptyset(X)\emptyset(X)' = ZZ'$$

$$(N \times N)$$
 matrix

$$k_i = Zz_i$$

 $(N \times 1)$ vector

$$\hat{y}_i = k_i' (K + \lambda I_N)^{-1} y$$

Weighted Ridge Regression

$$Z = \emptyset(X) \approx S = XD_W$$
 (nonlinear \rightarrow linear)

Euclidean distance:
$$\sqrt{(a_1 - b_1)^2 + (a_2 - b_2)^2 + \dots + (a_P - b_P)^2}$$

$$\bullet \quad \delta_{ij} = \sqrt{k_{ii} + k_{jj} - 2k_{ij}}$$

•
$$d_{ij}(w) = \sqrt{\sum_{k=1}^{P} (x_{ik}w_{kk} - x_{jk}w_{kk})^2}$$
 XD_w

$$\pi^{2}(w) = \sum_{i < j} (\delta_{ij} - d_{ij}(w))^{2}$$
 SMACOF algorithm

(Scaling by MAjorizing a COmplicated Function)

Iterative minimization procedure

Weighted Ridge Regression

RR:

min
$$\| y - X\beta \|^2 + \lambda \| \beta \|^2$$

 $\hat{y}_i = x_i'(X'X + \lambda I_P)^{-1}X'y$

$$min \| y - X\beta \|^2 + \lambda D_w^{-2} \| \beta \|^2$$

$$\hat{y}_i = x_i' (X'X + \lambda D_w^{-2})^{-1} X' y$$

Case Study: Ommoord Housing Price

(Source: Google Maps)

Case Study: Ommoord Housing Price

Hedonic Price Function: House characteristics & Environmental factors

House Characteristics	Enviromental Factors	Others
HouseAge	Alexander100m	Term
BckGardenSmt		Index (HPI- NL)
LivingArea		IntRate
CubicMeters	crime rate etc. are	
nRooms	constant in this small	
nResiLayers	area	
Full.ownership		
EnergyLabel		
nBedrooms		
PlotArea		

Source: funda.nl

- √ 48 observations
- √ 13 out of 16 independent variables (AIC)

Predictive Power, NCV, and Significance Test

- Measurement of performance Root Mean Squared Error (RMSE)
- 5-fold Nested Cross-validation
 - ☐ 6 test folds for outer loop
 - ☐ 5 validation fold in each inner loop
- Significance test
 - ☐ T-test for OLS
 - ☐ Permutation test for the rest models

Results - Predictive Performance

Test Set RMSE by Nested 5-fold Cross-validation

KRR-sigmoid (19.39) > WRR-sigmoid (23.04) > RR (24.21) > OLS (25.79); KRR-Laplacian (20.94) > WRR-Laplacian (22.72) > RR > OLS; KRR-polynom2 (21.93) > WRR-polynom2 (24.20) > RR > OLS.

Results - Interpretation of Predictors

	OLS regression				Ridge regression			WRR-sigmoid				WRR-Laplacian			
	coef.	p-value	e (t)	p-value	(p)	coef.	p-value (p)	coef.	p-valu	e (p)	D_w	coef.	p-valu	e (p)	D_w
Index	2.08	0.274		0.109		2.15	0.912	1.99	0.783		0.224	2.03	0.798		0.271
Term	1.03	0.373		0.122		1.35	0.913	0.92	0.428		0.139	1.08	0.672		0.143
HouseAge	-8.14	0.030	**	0.082	*	-7.53	0.906	-4.82	0.910		0.109	-5.18	0.981		0.116
LivingArea	12.25	0.012	**	0.160		9.70	0.926	9.99	0.578		0.202	8.64	0.765		0.162
CubicMeters	9.33	0.031	**	0.409		8.26	0.909	8.41	0.020	**	-0.182	8.99	0.034	**	-0.184
nRooms	-9.72	0.014	**	0.278		-7.36	0.926	-7.35	0.959		0.165	-7.40	0.985		0.180
nResiLayers	1.67	0.331		0.140		1.88	0.908	2.14	0.506		-0.207	2.44	0.681		-0.197
BckGardenSmt	2.90	0.194		0.407		3.22	0.906	3.14	0.084	*	-0.173	3.55	0.172		-0.209
Alexander 100m	8.98	0.030	**	0.054	*	8.42	0.915	10.57	0.004	***	0.242	10.27	0.005	***	0.226
Full.ownership	6.35	0.050	**	0.118		4.62	0.925	5.15	0.631		-0.240	5.10	0.832		-0.228
$EnergyLabel_D$	-18.23	0.034	**	0.244		-9.45	0.930	-8.62	0.443		0.217	-10.01	0.672		0.227
$EnergyLabel_C$	0.18	0.493		0.296		6.95	0.910	8.09	0.622		0.249	6.29	0.804		0.189
$EnergyLabel_B$	-6.42	0.164		0.145		-1.22	0.941	-0.93	0.382		0.124	-1.39	0.598		0.120
						$\lambda = 11.33$		$\lambda = 0.34$			$\lambda = 0.34$	$\lambda = 0.34$			

Conclusion

- KRR > WRR > RR > OLS
- Choice of kernels

Applications in Marketing Analytics:

```
features of a product → popularity features of a customer→ response rate in marketing campaign
```

Applications in Other Fields:

```
corporate finance (e.g. top manager's compensation) healthcare psychology ...
```


Thank You