

C basic language

임베디드스쿨 2기 Lv1과정 2021. 06. 18 김효창

DC 모터는 큰 전류가 필요하다 (노트북으로 하면 공급 전류량이 작다, USB로 직접 구동 어려움)

정회전: Vin(1) = PWM, Vin(2) = 0V

역회전: Vin(1) = 0V, Vin(2) = PWM

1	Pin number	name	note
	1	Vin (1)	PWM
2 7	2	GND	전원
The second secon	3	Vcont	
2	4	Vin (2)	PWM
<u> </u>	5	Vout (2)	모터
	6	NC	
4 5	7	VCC	전원
	8	Vout (1)	모터

IN1	IN2	OUT1	OUT2	MOTOR
H	L	H	L	Forward
L	H	L	H	Reverse
H	H	off	off	Standby
L	L	off	off	Standby


```
PCINT16 (PCMSK2 / PCIF2 / PCIE2)
D0
D1
     PCINT17 (PCMSK2 / PCIF2 / PCIE2)
     PCINT18 (PCMSK2 / PCIF2 / PCIE2)
D2
     PCINT19 (PCMSK2 / PCIF2 / PCIE2)
D3
     PCINT20 (PCMSK2 / PCIF2 / PCIE2)
D4
     PCINT21 (PCMSK2 / PCIF2 / PCIE2)
D5
D6
     PCINT22 (PCMSK2 / PCIF2 / PCIE2)
D7
     PCINT23 (PCMSK2 / PCIF2 / PCIE2)
D8
             (PCMSK0 / PCIF0 / PCIE0)
D9
             (PCMSK0 / PCIF0 / PCIE0)
D10
             (PCMSK0 / PCIF0 / PCIE0)
D11
     PCINT3 (PCMSK0 / PCIF0 / PCIE0)
             (PCMSK0 / PCIF0 / PCIE0)
D12
D13
             (PCMSK0 / PCIF0 / PCIE0)
A0
             (PCMSK1 / PCIF1 / PCIE1)
A 1
     PCINT9 (PCMSK1 / PCIF1 / PCIE1)
A2
     PCINT10 (PCMSK1 / PCIF1 / PCIE1)
A 3
     PCINT11 (PCMSK1 / PCIF1 / PCIE1)
     PCINT12 (PCMSK1 / PCIF1 / PCIE1)
A4
A 5
     PCINT13 (PCMSK1 / PCIF1 / PCIE1).
```


Num	Related Pins	Definition
1		External Pin, Power-on Reset, Brown-out Reset and Watchdog System Reset
2	PD2	External Interrupt Request 0
3	PD3	External Interrupt Request 1
4	PB0 ~ PB7	Pin Change Interrupt Request 0
5	PC0 ~ PC6	Pin Change Interrupt Request 1
6	PD0 ~ PD7	Pin Change Interrupt Request 2
7		Watchdog Time-out Interrupt
8	OC2A(PB3)	Timer/Counter2 Compare Match A
9	OC2B(PD3)	Timer/Counter2 Compare Match B
10		Timer/Counter2 Overflow
11		Timer/Counter1 Capture Event
12	OC1A(PB1)	Timer/Counter1 Compare Match A
13	OC1B(PB2)	Timer/Counter1 Compare Match B
14		Timer/Counter1 Overflow
15	OC0A(PD6)	Timer/Counter0 Compare Match A
16	OC0B(PB5)	Timer/Counter0 Compare Match B
17		Timer/Counter0 Overflow
18	PB2,PB3,PB4,PB5	SPI Serial Transfer Complete
19	PD0,PD1	USART Rx Complete
20		USART Data Register Empty
21		USART Tx Complete
22	PC0 ~ PC5	ADC Conversion Complete
23		EEPROM Ready
24		Analog Comparator
25	PC4,PC5	2-wire Serial Interface
26		Store Program Memory Ready

PCICR - Pin Change Interrupt Control Register

Bit	7	6	5	4	3	2	1	0	_
(0x68)	-	-	-	-	-	PCIE2	PCIE1	PCIE0	PCICR
Read/Write	R	R	R	R	R	R/W	R/W	R/W	
Initial Value	0	0	0	0	0	0	0	0	

PCIEO 가 설정되고, SREG 의 I- 비트가 설정되면 핀 변경 인터럽트 0이 활성화 된다. 활성화 된 PCINTO ~ 7 핀의 변경은 인터럽트가 발생한다. 핀 변경 인터럽트 요청의 해당 인터럽트는 PCINTO_vect 에서 실행된다. PCINTO ~ 7 핀은 PCMSKO 에 의해 개별적으로 활성화된다.

PCMSK0 - Pin Change Mask Register 0

Bit	7	6	5	4	3	2	1	0	_
(0x6B)	PCINT7	PCINT6	PCINT5	PCINT4	PCINT3	PCINT2	PCINT1	PCINT0	PCMSK0
Read/Write	R/W	•							
Initial Value	0	0	0	0	0	0	0	0	

PCMSKO 에서 PCINTn 인터럽트를 enable 한다. PCINT0~7 은 PORTB 를 사용할 수 있다.

PCMSK0 |= _BV(PCINT0) | _BV(PCINT1); : PB0 , PB1 사용

TCCR2A - Timer/Counter Control Register A

Bit	7	6	5	4	3	2	. 1	0	
(0xB0)	COM2A1	COM2A0	COM2B1	COM2B0	ı	-	WGM21	WGM20	TCCR2A
Read/Write	R/W	R/W	R/W	R/W	R	R	R/W	R/W	
Initial Value	0	0	0	0	0	0	0	0	

TCCR2B - Timer/Counter Control Register B

Bit	7	6	5	4	3	2	1	0	_
(0xB1)	FOC2A	FOC2B	-	-	WGM22	CS22	CS21	CS20	TCCR2B
Read/Write	W	W	R	R	R	R	R/W	R/W	•
Initial Value	0	0	0	0	0	0	0	0	

TCCR2A 의 COM2A1 와 COM2B1 비트는 출력 비교 핀 (OC2A 와 OC2B) 의 상태를 제어합니다. (표 50 참조)

이 때 OC2A 나 OC2B 핀의 DDRx(DDB5) Bit 는 출력으로 설정되어야 한다..

Radian, Degree

 $\pi \text{ radians} = 180^{\circ}$ 1 radian = 180 ° / $\pi = 57.2958^{\circ}$

radians to degrees: multiply by 180, divide by π degrees to radians: multiply by π , divide by 180

라디안은 "원주를 따라 놓이는 반지름" radius 증가하면 원의 크기가 커진다.

Radian and Degrees

$$\theta = \frac{s}{R}$$

$$\theta = \frac{S}{R} = \frac{12cm}{6cm/rad} = 2rad$$

1 radian =
$$\frac{360}{23}$$

= 59.2959951
= 59.3°

$$\frac{R}{R} = \frac{\Theta R}{R}$$

8 = 2 (4)

$$S = \frac{2 \operatorname{rad}}{1} \left(\frac{4 \operatorname{in}}{\operatorname{rad}} \right) = 8 \operatorname{in}$$

1 circle

$$\frac{60^{\circ}}{1} \times \frac{x}{180} = \frac{6x}{18} = \frac{x}{3} \text{ rad}^{\circ}$$

Radians -> Degrees

$$\frac{5x}{6} \times \frac{180^{\circ}}{x} = \frac{5 \cdot 190^{\circ}}{6} = 150^{\circ}$$

$$R = 8 cm$$
 $150^{\circ} \times \frac{x}{180^{\circ}} = \frac{5x}{6}$
 $\theta = 150^{\circ}$

$$=\frac{5x}{6}(8)=\frac{40x}{6}=\frac{20x}{3}$$

$$S = \left(\frac{\theta}{360}\right) 2xR$$

$$5 = \frac{150^{\circ}}{360^{\circ}}$$
 (2x)(8) = 20.944 cm

$$5 = \left(\frac{\theta}{360}\right) 22R$$
 $\theta = degrees$

$$A = \left(\frac{\theta}{360^{\circ}}\right) IR^{2}$$

$$A = \frac{1}{2} \theta R^{2}$$

$$A = \frac{1}{3} \Theta R^2$$

$$S = \Theta R \left(\frac{2x}{360}\right)$$

$$5 = \frac{\theta}{360} 2\pi R$$

$$A = \frac{1}{2} \Theta R^2 \quad \left(\frac{2\pi}{360}\right)$$

$$A = \frac{\theta}{360} \times R^2$$

$$A = \left(\frac{\theta}{360}\right) \times R^{2}$$

$$= \frac{60}{360} \times \times \times (5)^{2} = \frac{25\times}{6} = 13.1 \text{ ft}^{2}$$

$$A = \frac{1}{2} \Theta R^{2}$$

$$A = \frac{1}{2} (2rad) (8cm)^2 = 64cm^2$$

$$\theta_{ref} = \theta_{1}$$
" = 180 - \theta_{1}
" = \theta_{3} - 180
" = 360 - \theta_{4}

\[
\begin{array}{ll}
-\frac{9x}{q} \times \frac{180}{x} = -160
\end{array}
\]
\[
\text{-160} + 360 \cdot = +200 \cdot \rightarrow \theta_{3}
\]
\[
\theta_{ref} = \theta_{3} - 180 \cdot = 200 \cdot -180 \cdot = 20
\end{array}
\]
\[
\text{12} \quad \frac{30}{12} \quad \quad \quad \quad \frac{12}{30} \quad \q

$$a = \lim_{t \to 0} \frac{V_F - V_I}{\Delta t}$$
 $a = 8m/s^2$ 0 0
1 8m/s
2 16 m/s
3 24 m/s

정지 상태에서 5초 안에 최대 30 rad/s 의 속도를 얻을 수 있다 평균 각가속도는?

$$\alpha = \frac{\frac{30}{W_F} - \frac{0}{W_I}}{\Delta t} = \frac{30 \, \text{rad/s}}{55} = 6 \, \text{rad/s}^2$$

4초 안에 85 rad/s 에서 25 rad/s 로 느려진다 평균 각가속도는?

$$\alpha = \frac{w_F - w_I}{\Delta t} = \frac{25 - 95}{4} = \frac{-15 \, \text{rad/s}^2}{4}$$

직명 30cm 의 원은 40 rad/s 의 일정한 속도로 회전한다 가장 자리에 있는 점의 선형 속도는? 반경 방향 가속도느?

반경이 1.5cm 인 원은 2초 안에 20 rad/s 에서 100 rad/s 로 속도가 빨라진다.

- a 펭귄 각가속도는?
- b 각속도가 60 rad/s 일 때 원 가장 자리에 있는 점의 구심 가속도는?
- C (b) 에서 순 가속도는?

$$\alpha = \frac{W_F - W_I}{\Delta t} = \frac{100 - 20}{2} = \frac{100 - 20}{2}$$

$$A_{tan} = \propto R$$

$$= \frac{40 \text{ rad}}{5^2} \times 0.015 = 0.6 \text{ m/s}^2$$

$$\Delta\theta = \theta_0 - \theta_A = rad$$

$$W = \frac{\Delta \theta}{\Delta t} = \frac{rad}{5} , V = \frac{1}{\Delta t} = \frac{m}{5}$$

$$W_A = W_B$$
 R1 V1
V_B > V_A V = WR

원형의 주파수는 30Hz , 원의 지름이 50cm 인 경우 , 각속도는? (초당 라디안) 주기는?

$$f = 30Hz = 30 \text{ rev/s}$$
 | rev = 360° = 2x rad
 $T = \frac{\text{time}}{\text{cycle}} = \frac{1}{30 \text{ rev}} = 0.0335$

10분마다 5000 radians 의 속도로 회전한다

각속도 rad/s 는?

직경 20 cm 인 경우 linear velocity 는 ? m/s

원의 rpm 은? revolution per minute

$$w = \frac{\Delta\theta}{\Delta t} = \frac{5000 \, \text{rad}}{6005} = \frac{8.33 \, \text{rad/s}}{1000 \, \text{rad}}$$

R = 10cm/rad = 0.1m/rad

$$V = WR = \frac{8.33 \text{ rad}}{5} \times \frac{0.1 \text{ m}}{\text{rad}} = 0.833 \text{ m/s}$$

rad/s -> Rev/min

주기 : 1 회전하는 데 소화된 시간

속력 : 이동거리 /시간

$$V = \frac{2XR}{T} = \omega R$$

이동거리: 2x × 반지름

각속도 : 일정한 시간 동안 ~°의 각도를 회전

1초당 몇 rad 움직였는가 w (rad/s) = 그것

특정 속을 기준으로 각이 돌아가는 속력

가속도 : 원의 중심 방향

2.2 rad/s2 (각가속도) = ? rad/s (각속도) / 0.95 (시간)

0.8초 후의 각속도는 1.98 rad/s

라디안에서 나 각도로 변경 × 5기.3° = 113.4°/s

1 Radian = 180°/x = 57.2958 ... °

북쪽으로 2m/5 이동하는 항공기가 10m/s² 가속한다 5초 동안 속도 증가량은 7

a = 10 m/s2 , t = 5 s

속도변화량 (axt) = 50 m/s 만큼 속도가 증가

VF = VI + at = 52 m/s

방향 변화 없으므로 기나중속도

기차가 4초동안 기m/s²로 가속하고 35m/s 속도에 도달했을 때 멈춘다면 초기속도는 ?

$$35 \, \text{m/s} = V_{\text{I}} + (\eta \, \text{m/s}^2) (4s)$$

= $V_{\text{I}} + 28 \, \text{m/s}$

속력 Speed

1초 동안에 거리 몇 m 를 이동했는가?

스칼라: 방향 X , 크기 O

속도 Velocity

1초 동안에 처음 위치에서 얼마의 변화가 있느냐 (거리, 시간, 방향)

벡터: 방향, 크기 〇

속력은 속도의 크기 (속도의 절댓값)

일정한 속력으로 직선을 달릴 때 속도는 일정 구불구불한 도로를 달릴 때 속력은 일정해도 방향이 바뀌기 때문에 속도는 일정하지 않다

명이 동시에 출발해서 도착까지 이동한 시간이 모두 같다. (이동 속도는 같다.) 이동한 거리는 3명 모두 다르기 때문에 속력은 같지 않고, 먼 거리를 이동한 사람이 빠르다.

rpm: 장치가 1분 동안 몇 번의 회전을 하는가

 $1Hz = 2\pi \text{ rad / sec} = 6.2831853 \text{ rad / sec}$ $1 \text{rad} / \text{sec} = 1 / 2 \pi \text{ Hz} = 0.1591549 \text{ Hz}$

 ω (rad / s) = $2\pi \times 300$ Hz = 1884.956 rad / s $f(Hz) = 300 \text{ rad } / \text{ s } / 2\pi = 47.75 \text{Hz}$

1 rad/s = 0.16 Hz← 1 라디안/분 = 2.65×10-3 Hz←

1 Hz = 6.28 rad/s←

1 rpm = 0.02 Hz←

1 라디안/분 = 2.65×10-3 cps←

1 Hz = 376.99 rad/min←

1 rad/s = 9.55 rpm← 1 라디안/분 = 0.16 rpm←

1 Hz = 1 cps (사이클 초)↩

1 Hz = 60 rpm (분 당 회전수)←

$$1 \, \mathrm{rad/s} \quad = \quad \frac{1}{2\pi} \, \mathrm{Hz} \quad = \quad \frac{60}{2\pi} \, \mathrm{rpm}$$

$$2\pi \, \mathrm{rad/s} \quad = \quad 1 \, \mathrm{Hz} \quad = \quad 60 \, \mathrm{rpm}$$

$$\frac{2\pi}{60} \, \mathrm{rad/s} = \frac{1}{60} \, \mathrm{Hz} = 1 \, \mathrm{rpm}$$

Radian, Degree

질의응답

A1: radian 값이므로 계속 증가하고 오버플로우가 나도 상관없다. 오버플로우가 나는 부분에서 매끄러운 사인파가 안나오긴 할겁니다 count 최대치 / 360 으로 판정해야해서 매끄러운 사인파는 안나옵니다. count는 사인파형의 라디안 조정용 그 이상도 이하도 아닙니다. 328이 연산자가 16비트 계산까지 도와준다고 하셨어서 -255 ~ +255 범위지만 sin계산이 -1 ~1 이므로 그 계산 범위를 나타낸 것 같습니다. 예를 들어 8비트 연산자 였으면 127이 들어 갔을 것 이거 땜시 스피드가 x에서 x, x + 1, x - 1이 아닌 매끄럽지 못하게 0이 되는 구간이 발생합니다.

A2: velocity 값은 fabs 함수를 써서 절대값으로 전환 방향성 있는 것을 (unsigned int)fabs(speed); 대입

End of Document

