How to Think About Machine Learning Algorithms

INTRODUCING MACHINE LEARNING

Swetha Kolalapudi CO-FOUNDER, LOONYCORN www.loonycorn.com

Overview

Spot applications of Machine Learning in the real world

Differentiate between the different types of Machine Learning problems

Pick your problem: Classify, Regress, Recommend or Cluster

Machine Learning

is the invisible hand behind so many things we like to take for granted

Services we love to use...

... because they seem to know exactly what we'll like or need

Recommended for you!

Applications that are making themselves indispensable to our daily routine

Fastest route now, avoids road closure

The little details that make every task that much easier and faster

Inbox (11,764)

Starred

Important

Chats

All Mail

Spam (577)

Innovations that are ushering in the future

Inbox (11,764)

Machine Learning is the invisible hand behind all of these

Inbox (11,764)

What is Machine Learning?

What makes it so perfect for such a wide variety of applications?

Let's take an example to help us understand..

Say you're an alien observing a park on Earth

And you want to classify visitors to the park as

If height > 6 ft, Male Else, Female

Rule Based Approach

- A human guide pointing out the gender
- 2. Intuitively learn how to differentiate

Machine Learning Based Approach

Machine Learning Based Approach

The ML based approach is similar to how humans learn

How Humans Learn

Human beings learn to identify patterns when they're exposed to a phenomenon for a prolonged period of time

Human beings learn from "Experience"

Machine Learning

A computer program/system that can learn from "Experience"

Machine Learning

"Experience" Data

As more and more data is captured, Machine learning is finding a wide variety of uses

Recommendation Systems

"Experience"

User Clicks/ Views

Recommended for you!

Siri

"Experience"

Past user questions and answers

Commute Time Calculation

How long will it take to travel from point A to point B?

Two Approaches

Rule Based

Machine Learning Based

A large set of rules defined by Humans

lf	&	&	Then
Day of week	Time of Day	Distance	Commute Time in Mins
Monday	10 AM - 11 AM	2 - 4 KM	40

Day of week	Time of Day	Distance	Commute Time in Mins
Monday	10 AM - 11 AM	2 - 4 KM	40
Sunday	9 AM - 10 AM	4 - 6 KM	20
Tuesday	5 PM - 6 PM	2 - 4 KM	30
Friday	6 PM - 7 PM	4 - 6 KM	60

These rules are identified manually after a lot of research

Day of week	Time of Day	Distance	Commute Time in Mins
Monday	10 AM - 11 AM	2 - 4 KM	40
Sunday	9 AM - 10 AM	4 - 6 KM	20
Tuesday	5 PM - 6 PM	2 - 4 KM	30
Friday	6 PM - 7 PM	4 - 6 KM	60

Rules like this are Static

- They change really slowly over time
- Any changes are made by human analysts

Day of week	Time of Day	Distance	Commute Time in Mins
Monday	10 AM - 11 AM	2 - 4 KM	40
Sunday	9 AM - 10 AM	4 - 6 KM	20
Tuesday	5 PM - 6 PM	2 - 4 KM	30
Friday	6 PM - 7 PM	4 - 6 KM	60

Traffic patterns on the other hand

Two Approaches

Rule Based

Machine Learning Based

Machine Learning Based Approach

- Collect a large amount of traffic data
- Use an algorithm to identify the relationship between the data and commute time
- Update this relationship continuously with new data

Current Context (Source, Dest, Time of day etc)

ML Based Approach

Rules are updated automatically based on data

ML Based Approach

Current Context (Source, Dest, Time of day etc)

When to Use Machine Learning

- Difficult for humans to express rules
- A large amount of historical data is available
- Patterns/Relationships are dynamic

Typical ML Workflow

Pick your Problem

Identify which type of problem we need to solve

Represent Data

Represent data using numeric attributes

Apply an Algorithm

Use a standard algorithm to find a model

Pick your Problem

ML problems generally fall under a broad set of categories

Classification

Regression

Recommendations

Clustering

Pick your Problem

Each type of problem has its own basic workflow

- How to set up the problem statement
- How to represent data

Typical ML Workflow

Pick your Problem

Identify which type of problem we need to solve

Represent Data

Represent data using numeric attributes

Apply an Algorithm

Use a standard algorithm to find a model

Represent Data

Data might be in the form of Unstructured text, Images, Videos

Use meaningful numeric attributes to represent them

Pick your Problem

Identify which type of problem we need to solve

Represent Data

Represent data using numeric attributes

Apply an Algorithm

Use a standard algorithm to find a model

Use an algorithm to find patterns from the historical data

Updated Historical Data

Rules are meant to quantify relationships between variables

Updated Rules

The rules together form something called a Model

A Model can be

- a mathematical equation
- a set of rules (if-then-else statements)

The choice of algorithm depends mainly on the type of problem

Classification

Naive Bayes

Support Vector Machines

The choice of algorithm depends mainly on the type of problem

Clustering

K-Means

Hierarchical Clustering

Pick your Problem

Represent Data

Apply an Algorithm

This is usually plug and play

Pick your Problem

Represent Data

Apply an Algorithm

You need to spend your time and energy here

Pick your Problem

Represent Data

Apply an Algorithm

Picking the problem involves making a number of thoughtful choices

Types of ML Problems

Classification

Regression

Clustering

Recommendations

Spam Detection Is this email Spam or Ham?

Sentiment Analysis Is this tweet positive or negative?

Trading Strategy
Is this trading day going to be an up-day or down-day?

We are given a problem instance

An e-mail

A Tweet

A trading day

We need to assign a category to the problem instance

Spam or Ham? positive or negative? up-day or down-day?

Algorithms which perform classification are known as Classifiers

A Classifier

uses a set of instances for which the correct category membership is known

Training Data

Ex: Tweets which are correctly classified as positive or negative

Types of ML Problems

Classification

Regression

Clustering

Recommenda_' tions

What will be the price of this stock on a given date?

How long will it take to commute from point A to point B?

What will be the sales of this product in a given week?

Compute a continuous value

Stock Price

Commute Time

Sales

You know the value depends on certain inputs

Commute Time

depends on

Time of Day

Distance

Use Regression to identify this function

Like Classification

Regression requires Training Data

Ex: Historical datapoints

Date Time of Day Distance Commute Time

Types of ML Problems

Classification

Regression

Clustering

Recommendations

Clustering

Say you have a large group of users for a Social Network

Divide the users into groups based on some common attributes

Clustering

The key thing here is that...

..the groups to be divided into are unknown beforehand

Clustering

The algorithm divides users into groups

Later, we might realize that these groups represent meaningful divisions

Likes, dislikes Demographics

Types of ML Problems

Classification

Regression

Clustering

Recommendations

Recommendations

What kind of artists will this user like?

What are the top 10 book picks for this user?

If a user buys this phone, what else will they buy?

Recommendations

Based on a user's past behavior

Determine what else they might like or need

Collaborative Filtering

Pick your Problem

Represent Data

Apply an Algorithm

The choice made here will completely determine what happens in the next steps

Summary

Spot applications of Machine Learning in the real world

Differentiate between the different types of Machine Learning problems

Pick your problem: Classify, Regress, Recommend or Cluster