Introduction to Digital Systems Part I (4 lectures) 2024/2025

Introduction
Number Systems and Codes
Combinational Logic Design Principles

Lecture 2 contents

- Addition and subtraction of unsigned nondecimal numbers
- Representation of negative numbers
- Two's-complement addition and subtraction
- Codes
 - Character codes
 - Binary-coded decimal
 - Gray code

Addition of Binary Numbers

- Addition and subtraction of nondecimal numbers by hand uses the same technique that you know from school for decimal numbers.
- The only catch is that the addition and subtraction tables are different.
- To add two unsigned binary numbers X and Y, we add together the least significant bits with an initial carry (c_{in}) of 0, producing carry (c_{out}) and sum (s) bits according to the table. We continue processing bits from right to left, adding the carry out of each column into the next column's sum.

Example:

	1	1	0	0	0	0	1		
	0	0	1	0	1	1	0	1	
+	0	1	1	0	0	0	0	1	
	1	0	0	0	1	1	1	0	

Cin	Χ	У	Cout	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

Subtraction of Binary Numbers

 Binary subtraction is performed similarly, using borrows (b_{in} and b_{out}) instead of carries between steps, and producing a difference bit d.

Examples:

	0	1	1	1	1	0	0	
	1	1	1	0	0	0	0	1
-	1	0	1	0	1	1	0	1
	0	0	1	1	0	1	0	0

_	0		0	
	0	1	0	1

bin	Χ	У	bout	d
0	0	0	0	0
0	0	1	1	1
0	1	0	0	1
0	1	1	0	0
1	0	0	1	1
1	0	1	1	0
1	1	0	0	0
1	1	1	1	1

Overflow

- With n bits it is possible to represent **unsigned integer numbers** ranging from 0 to 2^n -1.
- If an arithmetic operation produces a result that exceeds the range of the number system, **overflow** is said to occur.
- Overflows can easily be detected by analyzing a carry or borrow from the most significant bit.
 - the carry bit c_{out} or the borrow bit b_{out} out of the MSB = 1

Examples:

n=8: [0..255]

n=4:
$$[0..15]$$

 $4_{10} - 11_{10} = -7_{10}$

overflow

Addition of Octal Numbers

- To add two octal numbers X and Y, we add together the least significant digits with an initial carry (c_{in}) of 0. If the intermediate result is less than or equal to 7, then c_{out} = 0 and sum (s) digit = intermediate result. If the intermediate result is greater than 7, then c_{out} = 1 and sum (s) digit = intermediate result 8.
- We continue processing digits from right to left, adding the carry out of each column into the next column's sum.

Examples (radix 8):

Addition of Hexadecimal Numbers

- To add two hexadecimal numbers X and Y, we add together the least significant digits with an initial carry (c_{in}) of 0. If the intermediate result is less than or equal to 15, then c_{out} = 0 and sum (s) digit = intermediate result. If the intermediate result is greater than 15, then c_{out} = 1 and sum (s) digit = intermediate result 16.
- We continue processing digits from right to left, adding the carry out of each column into the next column's sum.

Examples (radix 16):

Subtraction of Octal and Hexadecimal Numbers

- When subtracting octal numbers, a borrow brings the value 8.
- When subtracting hexadecimal numbers, a borrow brings the value 16.

Examples:

Representation of Negative Numbers

- There are many ways to represent negative numbers.
- In everyday business we use the **signed-magnitude system** (i.e. reserve a special symbol to indicate whether a number is negative).
- However, most computers use two's-complement representation:
 - The most significant bit (MSB) of a number in this system serves as the sign bit;
 a number is negative if and only if its MSB is 1.
 - The weight of the MSB is negative: for an n-bit number the weight is -2^{n-1} .
 - The decimal equivalent for a two's-complement binary number is computed the same way as for an unsigned number, except that the weight of the MSB is negative:
 - D= $d_{n-1}d_{n-2} \dots d_1d_0 = -2^{n-1} + \sum_{i=0}^{n-2} d_i \times 2^i$

Examples:

$$1010_{2} = ???_{10}$$

$$1010_{2} = -2^{3} + 2^{1} = -8 + 2 = -6_{10}$$

$$1111_{2} = ???_{10}$$

$$1111_{2} = -2^{3} + 2^{2} + 2^{1} + 2^{0} = -8 + 4 + 2 + 1 = -1_{10}$$

$$0111_{2} = ???_{10}$$

$$0111_{2} = 2^{2} + 2^{1} + 2^{0} = 4 + 2 + 1 = 7_{10}$$

Two's Complement Representation

- For n bits, the range of representable numbers is $[-2^{n-1}, 2^{n-1}-1]$.
- For *n*=4, the range is [-8, 7]:

0	0	0	0	0
1	0	0	0	1
2	0	0	1	0
3	0	0	1	1
4	0	1	0	0
5	0	1	0	1
6	0	1	1	0
7	0	1	1	1
-8	1	0	0	0
-7	1	0	0	1
-6	1	0	1	0
-5	1	0	1	1
-4	1	1	0	0
-4 -3 -2	1	1	0	1
	1	1	1	0
-1	1	1	1	1

Conversion between Decimal and Two's Complement

- The decimal value of the number expressed in two's complement can be found by expanding the formula (D= $d_{n-1}d_{n-2}$... $d_1d_0=-2^{n-1}+\sum_{i=0}^{n-2}d_i\times 2^i$) using radix-10 arithmetic.
- The integer number D expressed in decimal can be converted to n-bit two's complement by successful division of D by 2 (using radix-10 arithmetic, until the result is 0) with reverse recording of all the obtained remainders.
 - If there are empty bit positions left, fill them with 0s.
 - **Do not exceed** the allowed **range** of representable numbers: $[-2^{n-1}, 2^{n-1}-1]$.
 - If the number is negative, the result must be **negated**:
 - Invert all the bits individually and add 1 or
 - Copy all the bits starting from the least significant until the first 1 is copied, then invert all the remaining bits.

Examples (with n=8):

Changing the Number of Bits

- We can convert an n-bit two's-complement number into an m-bit one.
- If m > n, perform sign extension:
 - append m n copies of the sign bit to the left
- If m < n, discard n m leftmost bits; however, the result is valid only if all of the discarded bits are the same as the sign bit of the result.

Examples:

$$n = 5$$

 $m = 3$

Two's-Complement Addition

- Addition is performed in the same way as for nonnegative numbers.
- Carries beyond the MSB are ignored.
- The result will always be the correct sum as long as the range of the number system is not exceeded.
- If an addition operation produces a result that exceeds the range of the number system, **overflow** is said to occur.
- Addition of two numbers with different signs can never produce overflow.
- Addition of two numbers of like sign can produce overflow if
 - the addends' signs are the same but the sum's sign is different from the addends'
 - the carry bits c_{in} into and c_{out} out of the sign position are different

Examples (n=4):

overflow

Two's-Complement Subtraction

- Two's-complement numbers may be subtracted as if they were ordinary unsigned binary numbers.
- However, most subtraction circuits for two's-complement numbers do not perform subtraction directly.
- Rather, they **negate the subtrahend** by taking its two's complement, and then **add** it to the minuend using the normal rules for addition (X-Y=X+(-Y)).
- Overflow in subtraction can be detected using the same rule as in addition.
- Negating the subtrahend and adding the minuend can be accomplished with only one addition operation:
 - Perform a bit-by-bit complement of the subtrahend and add the complemented subtrahend to the minuend with an initial carry (c_{in}) of 1 instead of 0.

Examples (n=4):

overflow

Information Encoding

- Digital systems are built from circuits that process binary digits
- Very few real-life problems are based on binary numbers or any numbers at all
- Some correspondence must be established between the binary digits processed by digital circuits and real-life numbers, events, and conditions
 - How to represent familiar numeric quantities? ✓
 - number systems: binary, octal, and hexadecimal
 - How to represent nonnumeric data?

Codes

- A **code** is a set of *n*-bit strings in which different bit strings represent different numbers or other things.
- A code word is a particular combination of n bit-values.
- To code m values, the code length n must respect the following equation: $n \ge \lceil log_2 m \rceil$.

floor	encoding	encoding	encoding
basement	000	000	000001
ground floor	001	001	000010
1 st floor	010	011	000100
2 nd floor	011	010	001000
3 rd floor	100	110	010000
4 th floor	101	111	100000

Character Codes

- The most common type of nonnumeric data is text, strings of characters from some character set.
- Each character is represented in the digital system by a bit string according to an established convention.
- The most commonly used character code is **ASCII** (American Standard Code for Information Interchange).
 - ASCII represents each character with a 7-bit string, yielding a total of 128 different characters.

		$b_6b_5b_4$ (column)							
$b_3b_2b_1b_0$	Row (hex)	000	001 1	010 2	011 3	100 4	101 5	110 6	111 7
0000	0	NUL	DLE	SP	0	@	Р	ć	р
0001	1	SOH	DC1	!	1	A	Q	a	q
0010	2	STX	DC2	11	2	В	R	Ъ	r
0011	3	ETX	DC3	#	3	C	S	С	s
0100	4	EOT	DC4	\$	4	D	T	d	t
0101	5	ENQ	NAK	%	5	E	U	e	u
0110	6	ACK	SYN	&	6	F	V	f	v
0111	7	BEL	ETB	,	7	G	W	g	W
1000	8	BS	CAN	(8	H	X	h	x
1001	9	HT	EM)	9	I	Y	i	У
1010	A	LF	SUB	*	:	J	Z	j	z
1011	В	VT	ESC	+	;	K	. [k	-{
1100	C	FF	FS	,	<	L	\	1	1.
1101	D	CR	GS	-	=	M]	m	}
1110	E	SO	RS		>	N	^	n	~
1111	F	SI	US	/	?	0	_	0	DEL

Binary Codes for Decimal Numbers

- Even though binary numbers are the most appropriate for the internal computations of a digital system, most people still prefer to deal with decimal numbers.
- As a result, the external interfaces of a digital system may read or display decimal numbers, and some digital devices actually process decimal numbers directly.
- A decimal number is represented in a digital system by a string of bits, where different combinations of bit values in the string represent different decimal numbers.
- To code m = 10 decimal digits, at least $\lceil log_2 10 \rceil = 4$ bits are required.
- Is the maximum number of bits limited?
- Is the number of possible codes limited?

Binary-Coded Decimal (BCD)

- Perhaps the most "natural" decimal code is binary-coded decimal (BCD), which encodes the digits 0 through 9 by their 4-bit unsigned binary representations, 0000 through 1001.
- The code words 1010 through 1111 are not used.
- Conversions between BCD and decimal representations are trivial, a direct substitution of four bits for each decimal digit.

Example:

 $25_{10} = 11001_2$

 $25_{10} = 00100101_{BCD}$

decimal digit	BCD (8421)
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
8	1000
9	1001

Gray Code

- Sometimes, it is required to code values so that only **one bit changes** between each pair of successive code words.
- Such a code is called a **Gray code**.

There are two convenient ways to construct a Gray code with any

desired number of bits.

1 bit	2 bits	3 bits	4 bits
0	00	000	0000
1	01	001	0001
	11	011	0011
	10	010	0010
		110	0110
		111	0111
		101	0101
		100	0100
			1100
			1101
			1111
			1110
			1010
			1011
			1001
			1000

Constructing Gray Code

- The first method is based on the fact that Gray code is a reflected code; it can be defined (and constructed) recursively using the following rules:
 - A 1-bit Gray code has two code words, 0 and 1.
 - The first 2^n code words of an (n + 1)-bit Gray code equal the code words of an n-bit Gray code, written in order with a leading 0 appended.
 - The last 2^n code words of an (n + 1)-bit Gray code equal the code words of an n-bit Gray code, but written in reverse order with a leading 1 appended.

Constructing Gray Code (cont.)

- The second method allows us to derive an n-bit Gray-code code word directly from the corresponding n-bit binary code word:
 - The bits of an n-bit binary or Gray-code code word are numbered from right to left, from 0 to n 1.
 - Bit i of a Gray-code code word is 0 if bits i and i + 1 of the corresponding binary code word are the same, else bit i is 1.
 - When i + 1 = n, bit n of the binary code word is considered to be 0
- Similarly, an n-bit Gray-code code word can be converted to the corresponding n-bit binary code word:
 - The bits of an *n*-bit Gray-code code word are numbered from right to left, from 0 to *n* 1.
 - Bit n 1 of a binary code word is equal to bit n 1 of a Gray-code code word.
 - Bit i (i = n-2, n-3,..., 1, 0) of a binary code word is 0 if bits i of the corresponding Gray-code code word and i + 1 of the corresponding binary code word are the same, else bit i is 1.

Example: $11001_2 = 10101_{GRAY}$

Converting Binary to Gray Code

- The bits of an n-bit binary or Gray-code code word are numbered from right to left, from 0 to n 1.
- Bit *i* of a Gray-code code word is 0 if bits *i* and *i* + 1 of the corresponding binary code word are the same, else bit *i* is 1.
- When i + 1 = n, bit n of the binary code word is considered to be 0

Converting Gray Code to Binary

- The bits of an *n*-bit Gray-code code word are numbered from right to left, from 0 to n - 1.
- Bit n-1 of a binary code word is equal to bit n-1 of a Gray-code code word.
- Bit i (i = n-2, n-3, ..., 1, 0) of a binary code word is 0 if bits i of the corresponding Gray-code code word and i + 1 of the corresponding binary code word are the same, else bit i is 1.

1

0

0

Gray: 1=1 0≠1 0 = 0**Binary:**

XOR and XNOR Gates

AND

$$x \oplus y$$

X	У	x XOR y
0	0	0
0	1	1
1	0	1
1	1	0

XNOR

$\frac{-}{x}$	\bigoplus	\overline{v}
•	_	1

Х	У	x XNOR y
0	0	1
0	1	0
1	0	0
1	1	1

7-segment Display Codes

- 7-segment displays are used in watches, calculators, and instruments to display decimal data.
- A digit is displayed by illuminating a subset of the seven line segments.

BCD	digit	individual segments						
		a	b	С	d	е	f	g
0000	0	1	1	1	1	1	1	0
0001	1	0	1	1	0	0	0	0
0010	2	1	1	0	1	1	0	1
0011	3	1	1	1	1	0	0	1
0100	4	0	1	1	0	0	1	1
0101	5	1	0	1	1	0	1	1
0110	6	1	0	1	1	1	1	1
0111	7	1	1	1	0	0	0	0
1000	8	1	1	1	1	1	1	1
1001	9	1	1	1	1	0	1	1

Hamming Distance

- The **Hamming distance** between two *n*-bit strings is the number of bit positions in which they differ.
- In the Gray code, the Hamming distance between each pair of successive code words is 1.

Example:

Hamming distance = 4

Bits, Bytes, Words, etc.

- The prefixes K (kilo-), M (mega-), G (giga-), and T (tera-) mean 10³, 10⁶, 10⁹, and 10¹², respectively, when referring to bps, hertz, ohms, watts, and most other engineering quantities.
- However, when referring to memory sizes, the prefixes mean 2^{10} , 2^{20} , 2^{30} , and 2^{40} .

```
Bit
           b 0 or 1
                                                      1 K/k
                                                                 10^3 \approx 2^{10} \ (kilo)
                                                                 10^6 \approx 2^{20} \ (mega)
Byte
           B 8 bits
                                                      1 M
Nibble
               4 bits
                                                                 10^9 \approx 2^{30} (giga)
                                                      1 G
Word
              8, 16, 32, 64 ... bits
                                                                 10^{12} \approx 2^{40} (tera)
                                                      1 T
              (depends on the context)
```

IEEE 1541-2002:

Ki	$2^{10} = 1\ 024$	(kibi)
Mi	2 ²⁰ = 1 048 576	(mebi)
Gi	2 ³⁰ = 1 073 741 824	(gibi)
Ti	2 ⁴⁰ = 1 099 511 627 776	(tebi)
Pi	2 ⁵⁰ = 1 125 899 906 842 624	(pebi)
Ei	2 ⁶⁰ = 1 152 921 504 606 846 976	(exbi)

Exercises

- Represent the following numbers in two's complement with 8 bits: 39_{10} , -22_{10} .
- Calculate the results of the following operations in two's complement with 8 bits.
 Detect overflows if any.

Add the following pairs of octal numbers:

Add the following pairs of hexadecimal numbers:

 Each of the following arithmetic operations is correct in at least one number system. Determine possible radices of the numbers in each operation.

$$-1234 + 5432 = 6666$$

$$-\sqrt[2]{41} = 5$$

- How many bits of information can be stored on a 16 GB pen?
- How many digital photos is it be possible to store on an 8 GiB pen assuming that each photo has 4000 x 3000 pixels and each pixel is coded with 24 bits?
- Express in decimal, binary, and hexadecimal systems the value of the largest non-negative integer you can represent in a register with a storage capacity of 2 octal digits.

- How many bits are required to code in BCD the number 12345610?
- Represent the following values in binary and in BCD and Gray codes.

- Prove that a two's-complement number can be converted to a representation with more bits by sign extension.
- Determine the Hamming distance between the following code words:

```
011010101011
000010101011 = 2
```

- Airport names are encoded by sequences of three capital letters of English alphabet (having 26 letters).
- How many airports can be coded this way?
- How many bits will be required in ASCII code to binary encode the airport codes?
- And if you use the most efficient code possible to encode only uppercase letters?