Spanning, Linear Independence, and Bases

July 14, 2020

Question 1

a) Is the vector
$$\begin{pmatrix} 2\\4 \end{pmatrix}$$
 a linear combination of the vectors $\begin{pmatrix} 1\\1 \end{pmatrix}$, $\begin{pmatrix} 1\\-3 \end{pmatrix}$ b) Is the vector $\begin{pmatrix} 2\\8\\11 \end{pmatrix}$ a linear combination of the vectors $\begin{pmatrix} 1\\4\\0 \end{pmatrix}$, $\begin{pmatrix} 1\\8\\6 \end{pmatrix}$, $\begin{pmatrix} -1\\-12\\-1 \end{pmatrix}$ c) Is the vector $\begin{pmatrix} 1\\-1\\-8 \end{pmatrix}$ a linear combination of the vectors $\begin{pmatrix} 1\\0\\0 \end{pmatrix}$, $\begin{pmatrix} 1\\1\\4 \end{pmatrix}$, $\begin{pmatrix} 0\\-1\\-4 \end{pmatrix}$)

Question 2

Answer the Challenge question from HW 1. (You can now answer it quickly, once you rephrase it in terms of spanning vectors)

Question 3

For the following, give an example if one exists, or state it is not possible. If it is not possible, explain why.

- a) A sequence of 3 vectors in \mathbb{R}^3 that are LI.
- b) A sequence of 2 vectors in \mathbb{R}^3 that are spanning vectors.

- c) A sequence of 4 vectors in \mathbb{R}^2 that are spanning vectors.
- d) A sequence of 3 vectors that are a basis for \mathbb{R}^3
- e) A sequence of 3 vectors that are a basis for \mathbb{R}^4

Question 4

State whether the following are true or false. For those that are false, give a counter example.

- a) Every list of two vectors in \mathbb{R}^3 are LI.
- b) Every list of four vectors in \mathbb{R}^3 are spanning.
- c) Every list of four linearly independent vectors in \mathbb{R}^4 are a basis.
- d) Every list of five vectors in \mathbb{R}^5 that span \mathbb{R}^5 are a basis.