Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики

Учебный центр общей физики ФТФ

 Группа:
 Group
 К работе допущен:

 Студент:
 sltKaguya
 Работа выполнена:

 Преподаватель:
 Теаcher
 Отчёт принят:

Рабочий протокол и отчёт по лабораторной работе №1.01

Исследование распределения случайной величины

1. Цель работы:

Исследование распределения случайной величины.

- 2. Задачи, решаемые при выполнении работы:
 - (а) Провести многократные измерения определённого интервала времени.
 - (b) Построить гистограмму распределения результатов измерения.
 - (с) Вычислить среднее значение и дисперсию полученной выборки.
 - (d) Сравнить гистограмму с графиком функции Гаусса с такими же как и у экспериментального распределения средним значением и дисперсией.

3. Объект исследования:

Случайная величина.

4. Метод экспериментального исследования:

Прямое измерение (времени).

5. Рабочие формулы и исходные данные:

N – полное количество измерений.

$$\langle t \rangle = \frac{1}{N}(t_1 + t_2 + \dots + t_N) = \frac{1}{N}\sum_{i=1}^N t_i$$
 – среднее арифметическое всех измерений.

 ΔN — количество результатов, попавших в интервал $[t;t+\Delta t].$

$$\sigma_N = \sqrt{\frac{1}{N-1}} \sum_{i=1}^N (t_i - \langle t \rangle_N)^2$$
 – выборочное среднеквадратичное отклонение.

$$\rho(t)=\frac{1}{\sigma\sqrt{2\pi}}\exp\left(-\frac{(t-\langle t\rangle)^2}{2\sigma^2}\right)$$
 — функция Гаусса, описывает нормальное распределение.

 $ho_{max}=rac{1}{\sigma\sqrt{2\pi}}$ — максимальное значение плотности распределения.

 $\Delta \langle t \rangle = t_{\alpha,N} \cdot \sigma_{\langle t \rangle}$ – расчёт доверительного интервала.

 $\alpha = 0.95$ – доверительная вероятность.

 $t_{\alpha,N} = 2.0086$ – коэффициент Стьюдента (табличный).

$$\sigma_{\langle t \rangle} = \sqrt{\frac{1}{N(N-1)} \sum_{i=1}^{N} \left(t_i - \langle t \rangle_N\right)^2} - \text{среднеквадратичное отклонение среднего значения.}$$

$$\Delta t = \sqrt{\theta_{\text{приб.}}^2 + \Delta^2 \langle t \rangle} - \text{расчёт абсолютной погрешности.}$$

$$\delta = \frac{\Delta t}{\langle t \rangle} 100\% - \text{расчёт относительной погрешности.}$$

$$t \in [\langle t \rangle - \sigma, \langle t \rangle + \sigma], \quad P_{\sigma} = 0.683$$

$$t \in [\langle t \rangle - 2\sigma, \langle t \rangle + 2\sigma], \quad P_{\sigma} = 0.954$$

$$t \in [\langle t \rangle - 3\sigma, \langle t \rangle + 3\sigma], \quad P_{\sigma} = 0.997$$
 случае стандартных интервалов.

6. Измерительные приборы:

№ п/п	Наименование	Тип прибора	Используемый	Погрешность
,			диапазон	прибора
1	Секундомер	Электронный	От 0 до 6 с	0.01 c

7. Схема установки:

8. Результаты прямых измерений и их обработки:

No	t_i , c	$t_i - \langle t \rangle_N$, c	$(t_i - \langle t \rangle_N)^2$, c ²
1	5.110	0.0112	0.00012544
2	5.090	-0.0088	0.00007744
3	5.090	-0.0088	0.00007744
4	5.060	-0.0388	0.00150544
5	5.030	-0.0688	0.00473344
6	5.260	0.1612	0.02598544
7	5.200	0.1012	0.01024144
8	5.270	0.1712	0.02930944
9	4.980	-0.1188	0.01411344
10	5.010	-0.0888	0.00788544
11	5.090	-0.0088	0.00007744
12	5.090	-0.0088	0.00007744
13	5.160	0.0612	0.00374544
14	5.060	-0.0388	0.00150544
15	5.480	0.3812	0.14531344
16	5.170	0.0712	0.00506944
17	5.090	-0.0088	0.00007744
18	5.130	0.0312	0.00097344
19	5.110	0.0112	0.00012544
20	5.040	-0.0588	0.00345744
21	5.060	-0.0388	0.00150544
22	5.060	-0.0388	0.00150544
23	4.980	-0.1188	0.01411344
24	5.180	0.0812	0.00659344
25	5.030	-0.0688	0.00473344
26	5.240	0.1412	0.01993744
27	5.140	0.0412	0.00169744
28	5.180	0.0812	0.00659344

29	5.110	0.0112	0.00012544
30	5.010	-0.0888	0.00788544
31	5.010	-0.0888	0.00788544
32	5.160	0.0612	0.00374544
33	5.090	-0.0088	0.00007744
34	4.960	-0.1388	0.01926544
35	5.080	-0.0188	0.00035344
36	5.130	0.0312	0.00097344
37	5.140	0.0412	0.00169744
38	4.960	-0.1388	0.01926544
39	5.180	0.0812	0.00659344
40	5.060	-0.0388	0.00150544
41	5.080	-0.0188	0.00035344
42	4.960	-0.1388	0.01926544
43	5.030	-0.0688	0.00473344
44	5.300	0.2012	0.04048144
45	5.110	0.0112	0.00012544
46	4.990	-0.1088	0.01183744
47	5.110	0.0112	0.00012544
48	4.980	-0.1188	0.01411344
49	5.060	-0.0388	0.00150544
50	5.040	-0.0588	0.00345744
	$\langle t \rangle_N = 5.0988 \text{ c}$	$\sum_{i=1}^{N} t_i - \langle t \rangle_N = 0 \text{ c}$	$\sigma_N \approx 0.09861573$
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	$\sum_{i=1}^{\iota_i} \iota_i - \langle \iota/N - 0 \rangle$	$\rho_{max} \approx 4.04542237$

9. Расчёт результатов косвенных измерений:

 $t_{min}=4.96,\;t_{max}=5.48,\;\sqrt{N}\approx7$ К промежутку $[t_{min};t_{max}]$ длиной в 0.52 (c) были добавлены по 0.02 (c) с каждой стороны, таким образом промежуток [4.94; 5.50] делится на 7 равных участков, $\Delta t = 0.08$ (c).

	, , L	, <u>,</u> , ,	1 /	· · · · · · · · · · · · · · · · · · ·
Границы	ΔN	$\frac{\Delta N}{N\Delta t}$, c ⁻¹	t, c	ρ, c^{-1}
интервала		IV \(\Delta \text{t}\)		
4.94	10	2.50	4.98	1.9581
5.02				
5.02	19	4.75	5.06	3.7441
5.10				
5.10	15	3.75	5.14	3.7073
5.18		3.10	0.11	3.1013
5.18	3	0.75	5.22	1.9009
5.26			0.22	1.000
5.26	2	0.5	5.30	0.5047
5.34	_			0.001
5.34	0	0	5.38	0.0694
5.42			0.00	0.0001
5.42	1	0.25	5.46	0.0049
5.50		0.20	0.10	0.0010

Стандартные доверительные интервалы:

	Интервал, с		ΔN	$\frac{\Delta N}{N}$	P
	ОТ	до		14	
$\langle t \rangle \pm \sigma_N$	5.00	5.20	38	0.76	0.683
$\langle t \rangle \pm 2\sigma_N$	4.90	5.30	49	0.98	0.954
$\langle t \rangle \pm 3\sigma_N$	4.80	5.39	50	1	0.997

10. Расчёт погрешностей измерения:

$$\sigma_{\langle t \rangle} = 0.0139$$

Абсолютная погрешность:

$$\Delta \langle t \rangle = 0.198079555278$$

$$\Delta t = \sqrt{0.01^2 + 0.198079555278^2} \approx 0.1983$$
 (c).

Относительная погрешность:

$$\delta_t \approx 3.890\%$$
.

11. Графики: гистограмма и график плотности вероятности измеренного значения:

12. Окончательные результаты:

$$t = \langle t \rangle + \Delta t = 5.0988 \pm 0.1981 \text{ c.}$$

На основе 50 прямых измерений и ещё кучи косвенных была построена гистограмма распределения значений и график нормального распределения для данных значений.

13. Выводы и анализы результатов работы:

Был исселдован закон распределения случайной величины, построена гистограмма и функция Гаусса для сравнения. Гистограмма вполне соответствует графику

14. Дополнительные задания:

15. Выполнение дополнительных заданий:

16. Замечания преподавателя: