Grundlagen der Rechnerarchitektur Blatt 4

Marco Deuscher

Carolin Schindler

18. November 2019

1 Aufgabe: Negativ, Positiv: So viele Möglichkeiten

(a) 11000101010₂

vorzeichenbehaftet: -554_{10}

negative Zahl mit Betrag: $1000101010_2 \rightarrow (2 + 2^3 + 2^5 + 2^9)_{10} = 554_{10}$

b-1-Komplement: -469_{10}

negative Zahl mit Betrag: $00111010101_2 \rightarrow (1+2^2+2^4+2^6+2^7+2^8)_{10} = 469_{10}$

b-Komplement: -470_{10}

"b-1-Komplement -1" : $-469_{10} - 1_{10}$

(b) 01111010₂

vorzeichenbehaftet: 122_{10}

positive Zahl mit Betrag: $1111010_2 \rightarrow (2+2^3+2^4+2^5+2^6)_{10} = 122_{10}$

b-1-Komplement: 122_{10}

positive Zahl mit Betrag: $01111010_2 \rightarrow (2+2^3+2^4+2^5+2^6)_{10} = 122_{10}$

b-Komplement: 121₁₀

"b-1-Komplement -1" : $122_{10} - 1_{10}$

(c) 11111111₂

vorzeichenbehaftet: -63_{10}

negative Zahl mit Betrag: 1111112 \rightarrow $(1+2++2^2+2^3+2^4+2^5)_{10}=63_{10}$

b-1-Komplement: -0_{10}

negative Zahl mit Betrag: $0000000_2 \rightarrow 0_{10}$

b-Komplement: -1_{10}

"b-1-Komplement -1" : $-469_{10} - 1_{10}$

2 Aufgabe: Multiplikation und Division

(a)

XXX

(b)

XXX

3 Keine Brüche, nur Kommas

(a) $1,453125_{10} \rightarrow 000001011101$ (ohne Abschneiden)

0,453125 * 2 = 0,90625

0,90625*2=1,8125

0.8125 * 2 = 1.625

0,625 * 2 = 1,25

0,25*2=0,5

0,5*2=1

(b) $0, \overline{3}_{10} \rightarrow 000000010101_2$ (mit Abschneiden)

 $\frac{1}{-} \cdot 2 = \frac{2}{-}$

 $\frac{2}{3} \cdot 2 = \frac{4}{3}$

 $\frac{2}{3} \cdot 2 = \frac{2}{3}$

 $\frac{1}{3} \cdot 2 = \frac{1}{3}$

 $\frac{2}{3} \cdot 2 = \frac{4}{3}$

. . .

Es gibt (abgesehen von der Einführung eines Periodenzeichens: $0,\overline{3}_{10}\to 000000\overline{01}_2$) keine Möglichkeit die Zahl als 12 Bit Festkommazahl darzustellen.

4 Multiplizieren und Dividieren, aber schnell

- (a) 1001010100_2 (entspricht $\ll 1_{10}$)
- **(b)** 010100_2 (entspricht $\ll 2_{10}$)
- (c) 000000000001_2 (entspricht $\gg 9_{10}$)
- (d) XXX

5 Binär und doch Dezimal

(a)

XXX

(b)

XXX

(c)

XXX

(d)

XXX

6 Was passiert hier?

(a)

XXX

(b)

XXX

7 Knobelaufgabe

Es gibt Zahlen, die im Dezimalsystem weder irrational noch periodisch sind und im Dualsystem nicht durch eine endliche Anzahl an Stellend darstellbar sind. Ein Beispiel hierfür ist die Zahl $0,1_{10} \rightarrow 0,0\overline{00011}_2$:

 $0,1\cdot 2=0,2$

 $0, 2 \cdot 2 = 0, 4$

 $0, 4 \cdot 2 = 0, 8$

 $0, 8 \cdot 2 = 1, 6$

 $0, 6 \cdot 2 = 1, 2$

 $0,2\cdot 2=0,4$

. . .