

P-ţa Victoriei nr. 2 RO 300006 - Timişoara Tel: +4 0256 403000 Fax: +4 0256 403021 rector@rectorat.upt.ro www.upt.ro

Logică digitală

-Curs 3-

REPREZENTAREA
DATELOR ÎN SISTEME
DE CALCUL

- 2021-

Reprezentarea numerelor în sistemele de calcul

- Sisteme de numerație poziționale (binar, octal, hexazecimal);
- Reprezentarea numerelor în virgulă fixă (SM, C1, C2);
- Reprezentarea numerelor de virgulă flotantă;
- Coduri binare pentru numere zecimale;

Sisteme de numere poziționale

- ☐ **Sistem pozițional** un număr este reprezentat printr-un şir de cifre, unde pt. fiecare poziție a unei cifre este asociată o anumită greutate.
- Valoarea numărului este o sumă a cifrelor înmulţită cu greutatea aferentă:

Ex1:
$$1734 = 1*10^3 + 7*10^2 + 3*10^1 + 4*10^0$$

Fiecare greutate e o putere a lui 10 corespunzătoare poziției numărului. Pentru numere cu virgulă folosim puteri negative a lui 10.

Ex2: $5186.67 = 5*10^3 + 1*10^2 + 8*10^1 + 6*10^0 + 6*10^{-1} + 7*10^{-2}$

Binar, octal, hexazecimal ...

Zecimal	Binar	Octal	Hexazecimal
0	0000	0	0
1	0001	1	1
2	0010	2	2
3	0011	3	3
4	0100	4	4
5	0101	5	5
6	0110	6	6
7	0111	7	7
8	1000	10	8
9	1001	11	9
10	1010	12	Α
11	1011	13	В
12	1100	14	С
13	1101	15	D
14	1110	16	E
15	1111	17	F

Reprezentarea numerelor în virgulă fixă

- Pentru reprezentarea numerelor cu semn, se alocă bitul cel mai semnificativ (cel mai din stânga most significant bit MSB) semnului:
 - "0" numere pozitive,
 - "1" numere negative.
- ☐ Uzual în sistemele de calcul se operează fie cu numere întregi, fie cu numere fracționare;
- Din acest motiv, poziția virgulei este considerată implicit după cum urmează:
 - numere întregi poziția virgulei este la dreapta bitului cel
 - mai puţin semnificativ: $b_{n-1}b_{n-2}...b_0$. numere fracţionare poziţia virgulei este la dreapta bitului cel mai semnificativ, care este şi bitul de semn:

- Pentru reprezentarea numerelor cu semn există trei formate de reprezentare:
 - semn-mărime SM,
 - complement de 1 C1,
 - complement de 2 C2.

Reprezentarea numerelor în virgulă fixă – **C2**

□ Domeniul valoric pentru numere întregi:

$$-2^{n-1}$$
 și $2^{n-1}-1$

- □ reprezentate folosind notaţia ştiinţifică (care nu este poziţională) → un domeniu valoric foarte mare.
- Pentru a reprezenta un număr in virgulă flotantă folosim trei numere conform relaţiei:

$$N = M * B^E$$

M - mantisa. (M poate fi reprezentată în SM sau C2)

B - baza (de obicei e 2 sau o putere a lui 2)

E - exponent. (E este reprezentat în SM sau cod exces)

- M mantisa. (M poate fi reprezentată în SM sau C2)
- B baza (de obicei e 2 sau o putere a lui 2)
- E exponent. (E este reprezentat în SM sau cod exces)

- □ Reprezentarea mantisei:
 - Reprezentarea lui 18:

$$18*10^0 = 1.8*10^1 = 0.18*10^2 = \dots = 0.0\dots018*10^n$$

- Obs.: M, B şi E au o infinitate de valori posibile
- Pentru o tratare unitară şi eficientă prin prisma procesării în sistemele de calcul → o reprezentare unică → normalizarea mantisei M

Reprezentarea numerelor în virgulă flotantă – Normalizarea mantisei

- ☐ M în SM primul bit din dreapta virgulei trebuie să fie 1.
- ☐ *M* în C2 şi M corespunde la o:
 - valoare negativă atunci primul bit din dreapta virgulei trebuie să fie 0.
 - valoare pozitivă, atunci folosim regula de la SM.

- □ Reprezentarea exponentului:
 - Problema reprezentării lui 0 în virgulă mobilă.

$$0 = 0 * B^{E}$$

- mai multe variante de reprezentare
- zero trebuie să fie cât mai uşor de detectat şi testat → (?) şir de biţi de `0'
- Dar... în calcule recurgem la aproximări
 - □ este posibil ca în urma unor calcule (FP), datorită acestor aproximări successive, să obţinem în loc de 0 un număr foarte mic (M≠0).

- □ Pentru a minimiza eroarea→ exponentul aferent lui 0 să fie cel mai mic posibil.
- □ valoarea min. a oricărui exponent să fie 0.
- Toate valorile negative reprezentabile pe N biţi sunt deplasate (devin pozitive) prin adunarea unui bias (unui surplus) = valoarea absolută a celui mai mic număr reprezentabil pe N numărul de biţi exponent.
- □ Pentru exponent reprezentat în:
 - SM pe 8 biţi → valoarea bias-ului este 127
 - C2 pe 8 biţi → valoarea bias-ului este 128

Reprezentarea numerelor în virgulă flotantă – reprezentarea exp.

		Valoare	cu semn
Reprezentare	Valoare	(reală-cea a	
binară	fără semn	repreze	
		Bias = 127	Bias = 128
11111111	255	+128	+127
11111110	254	+127	+126
		1-1	-
		•	
10000001	129	+2	+1
10000000	128	+1	0
01111111	127	0	-1
01111110	126	-1	-2
-		3-1	
00000001	1	-126	-127
00000000	0	-127	-128

Cele mai reprezentative standarde pentru virgula mobilă sunt:

■IEEE 754

■IBM S360/370

- ☐ Standardul IEEE 754/2008- formate:
 - Half precision
 - Simple precision
 - Double precision
 - Duble-extended

- □ Caracteristici:
 - E şi M format SM
 - Exponentul este reprezentat în exces de:
 - □ 127 pentru simplă precizie
 - □1023 pentru dublă precizie.
 - Hidden bit.
 - □ Mantisa are un bit de 1 ascuns.
 - □ bitul la dreapta virgulei care trebuie să fie 1 (din condiţia de normalizare).
 - □ (S.1M) (unde S este semnul iar M este mantisa)
 → virgula a fost mutată la dreapta bit-ului de 1
 cel mai semnificativ: S1.M

Reprezentarea numerelor în virgulă flotantă: IEEE 754 simplă precizie

- □ Simplă precizie: 32 biţi
 - 1 bit de semn
 - 8 biţi de exponent; exponent reprezentat în exces de 127
 - 23 biţi de mantisă (significand)
- □ Formatul de număr este:

	0 1 8 9	31
--	---------	----

	S	Exponent	Magnitudine
--	---	----------	-------------

Ex.: Să se reprezinte în format IEEE 754 SP numărul 4.625

Pasul 1: Se converteşte numărul în baza 2.

$$4.625=100.101*$$
 2^{0}

Pasul 2: Normalizare → 1.M (mutarea virgulei cu ajustarea corespunzătoare a puterii lui 2)

$$100.101=1.00101*2^{2}$$

$$E=2+127(exces)=129=128+1=2^{7}+2^{0}=10000001$$

□ Pasul 3:

S	E (8 biţi)	M (23 biţi)
0	10000001	0010 1000 0000 0000 0000 000

Reprezentarea numerelor în virgulă flotantă: IEEE 754 dublă precizie

- □ Reprezentare pe 64 de biţi:
 - 1 bit de semn
 - 11 biţi de exponent reprezentaţi în exces de 1023
 - 52 biţi de mantisă (significand)

0	1 12	13 63	
S	Exponent	Magnitudine]

Reprezentarea numerelor în virgulă flotantă: IEEE 754 valori speciale

Nr.	Exponent	Mantisa (M)	Valoare speciala
	(E)		
1.	0	0	±0
2.	0	≠ 0	Denormalized
			numbers
3.	255	0	$\pm \infty$
4.	255	≠ 0	NaN

- Nr. denormalizate: rezultat care este mai mic decât valoarea minimă reprezentabilă
- Infinit: situaţia în care rezultatul intermediar este infinit sau avem overflow
- □ 0/0 sau radical din nr. negativ

(!) Cod (code),	O colecție de șiruri diferite pe n biți, iar fiecare dintre aceste șiruri are o semnificatie (reprezintă un număr, caracter, etc.) poartă denumirea de cod (code). Numărul maxim de cuvinte ale unui cod pe n biți este 2^n . Nu întotdeauna însă, toate aceste combinații posibile pe n biți sunt folosite (fac parte din colecția de șiruri care alcătuiesc codul).
Cuvânt al unui cod (code word)	Un şir al colecției care reprezintă o combinație de n valori de θ sau I se numește cuvânt de cod (code word).

- există situaţii cand se doreşte afişarea rezultatelor de către interfeţele externe ale dispozitivului de calcul într-un format uşor de înţeles (decodificat) de către utilizator – şi anume mult întrebuinţatul format zecimal;
- cel mai la îndemână cod zecimal este BCD (binary-code decimal):
 - reprezentarea unei cifre BCD → înlocuirea cu reprezentarea în binar care îi corespunde→ cu un nr. pe 4 biţi

Cifră	Corespondent
zecimală	BCD
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
8	1000
9	1001

conversia unui număr zecimal în BCD prin înlocuirea succesivă a cifrelor zecimale cu tetradele corespunzătoare

 operaţia inversă de transformare a unui număr reprezentat în BCD în omologul zecimal

$$N_2 = 1000 \ 0111 \ 0000 \ 0010_{BCD} = 87 \ 02_{10}$$

- Avantaje:
 - simplitate
 - este un cod poziţional, ponderea fiecărei cifre fiind 10^{j*}2ⁱ, unde j reprezintă poziţia tetradei zecimale, iar i poziţia bitului în cadrul tetradei
- Dezavantaje:
 - utlizează un număr mai mare de biţi faţă de reprezentarea binară a numărului respectiv;
 - □ Fol. 3 cifre BCD 12 biţi (3 cifre zecimale * 4 biţi/cifră) se pot reprezenta 10³ =1000 de numere;
 - □ folosind reprezentarea binară, pe 12 biţi se pot reprezenta 2¹² =4096 de numere;
 - implementare anevoiasă a operaţiei de adunare

Coduri binare pentru numere zecimale – Exces de 3

- Exces de 3 se obţine din codul BCD astfel:
 - la fiecare cifră reprezentată în cod BCD se adună valoarea 3 (0011 în binar).
 - fiecare cifră zecimale se reprezintă cu ajutorul unei combinaţii de 4 biţi (o tetradă de biţi)

Coduri binare pentru numere zecimale – Exces de 3

Cifră	Corespondent
zecimală	exces de 3
0	0011
1	0100
2	0101
3	0110
4	0111
5	1000
6	1001
7	1010
8	1011
9	1100

					$b_6 b$	₅ b ₄				NUL SOH	Null Start of heading	ī
$b_3b_2b_1$	ь.	000	001	010	011	100	101	110	111	STX	Start of text	
030201	0	UUU	001	010	011	100	101	110	1111	ETX	End of text	E
0000		NUL	DLE	SP	0	(a)	P	- 6	р	EOT	End of transmission	
0000		HOL	DLL			· ·			P	ENQ	Enquiry	
0001		SOH	DC1	1.0	1	A	Q	a	q	ACK	Acknowledge	
							_		•	BEL	Bell	
0010		STX	DC2	66	2	В	R	b	r	BS	Backspace	
=										HT	Horizontal tab	
0011		ETX	DC3	#	3	C	S	c	S	LF	Line feed	
0700		гот	DO.			_	_			VT	Vertical tab	
0100	'	EOT	DC4	\$	4	D	T	d	t	FF	Form feed	
0101		ENO	NIATO	0.4		E	U			CR	Carriage return	
0101	.	ENQ	NAK	%	5	E	U	e	u	SO	Shift out	
0110		ACK	SYN	&	6	F	V	f	v	SI	Shift in	
0110	'	ACK	SIN	œ	U	r	v	1	V	SP	Space	
0111		BEL	ETB	,	7	G	W	g	w	DLE	Data link escape	
0111	.	DLL	LID		- 1	•	"	5	**	DC1	Device control 1	
1000		BS	CAN	(8	H	X	h	x	DC2	Device control 2	
2000		2.0			•			-	•	DC3	Device control 3	
1001		HT	EM)	9	I	Y	i	y	DC4	Device control 4	
=							_		*	NAK	Negative acknowledgement	
1010		LF	SUB	±	1.0	J	Z	i	Z	SYN	Synchronize	
										ETB	End transmission block	
1011		VT	ESC	+	;	K	[k	{	CAN	Cancel	
										EM	End of medium	
1100)	FF	FS	,	<	L	- 1	- 1		SUB	Substitute	
1101		c.n	00							ESC	Escape	
1101	.	CR	GS	-	=	M	- 1	m	}	FS	File separator	
1110		so	RS			N	^	_		GS	Group separator	
1110	'	50	KS		>	IN		n	~	RS	Record separator	
1111		SI	US	1	?	0		0	DEL	US	Unit separator	
1111		51	0.3	- /		U	-	0	DEL	DEL	Delete or rubout	
Am	eric	an Star	ndard C	ode for	Inform	ation I	nterchar	ige (AS	SCII)			

				b_6	564				SOH	Start of heading
$b_3b_2b_1b_0$	000	001	010	011	100	101	110	111	STX ETX	Start of text End of text
0000	NUL	DLE	SP	0	(a)	P	6	р	EOT	End of transmission
									ENQ ACK	Enquiry Acknowledge
0001	SOH	DC1		1	A	Q	a	q	BEL	Bell
0010	STX	DC2	**	2	В	R	b	\mathbf{r}	BS HT	Backspace
0011	1:4-			•	1- 2	•	:: (7	C C \		Horizontal tab
			•			•	•	-	ecventa 1	
0100	iar	pe ui	rmat	oarel	e 4 p	ozitii	(43)	21) s	ecventa 0	001. _{etum}
0101	Dec	ci A=	(100	0001) !					etum
0110	ACK	SYN	&	6	F	V	f	v	31	Smith
			-	Ĭ	-				SP DLE	Space Data link escape
0111	BEL	ETB	,	7	G	W	g	w	DC1	Device control 1
1000	BS	CAN	(8	H	X	h	x	DC2 DC3	Device control 2
1001	нт	EM	Α.	9	I	Y	i		DC3 DC4	Device control 3 Device control 4
			,	,				У	NAK	Negative acknowledgeme
1010	LF	SUB	*		J	Z	j	Z	SYN ETB	Synchronize End transmission block
1011	VT	ESC	+		K	- 1	k	- {	CAN	Cancel
1100	TT	TC							EM	End of medium
1100	FF	FS	,	<	L	1	1	- 1	SUB	Substitute Escape
1101	CR	GS	-	=	M	1	m	}	FS	File separator
1110	so	RS		>	N	^	n	~	GS	Group separator
1110					-		-		RS US	Record separator Unit separator
	SI	US	- 1	?	0	_	0	DEL	DEL	Delete or rubout
1111	51									

Întrebări?

Enough Talking Let's Get To It!!Brace Yourselves!!

