Mice in the Manhattan Maze:

Rapid learning, flexible routing and generalization,

with and without cortex

Aug. 9th CCN 2024

Jieyu Zheng, PhD. Candidate, Meister Lab, California Institute of Technology

A Complex Navigation Task for Cognitive flexibility

Vera Domingues/Hopi Hoekstra

David Rumsey

The Manhattan Maze

Side View (x2 speed)

The Manhattan Maze design

9-hole Mask A

Easy Reconfiguration

Learning a 9-hole mask

Optimal solution

Mouse Trajectory

Day 1: Rapid learning in Mask A

Phase 1: 2x
 improvement by the first homebound traverse

Day2: Three masks introduced

Traverse

Overnight memory

Day2: Three masks introduced

Traverse

Old-Day1

New Mask 1

New Mask 2

Day2: Generalization and Memory

Flexible routing in a complex Mask

Two all-to-all connected areas with a bottleneck

- Many loops
- Redundant paths

The role of cortex

What is the role of mouse cortex in complex cognitive tasks like the Manhattan Maze?

Structural Mutant: Emx1-Cre+ x Pals 1 flox/flox, born without neocortex or hippocampus

C57BL6/J Wildtype

Emx1-Cre+ x Pals1 flox/flox

Kim et Walsh, 2010

Acortical mouse took 3x time to solve the first mask

Acortical mouse learning the first mask

4x speed

Learning multiple masks

Long-term memory in an acortical mouse

Summary

- Rapid learning (1 map of 9 decisions):
 - First homing: 2x difference
 - ~20 rewards (10x round trips) to reach optimal: 5x difference
- Overnight memory in early Day 2: starting with the same performance as late Day 1
- Meta-learning over 2 days: 2 new maps
- Acortical mice:
 - 3x longer for the first traverse
 - Preserves rapid learning, generalization and long-term memory

Acknowledgement

- The Manhattan Maze:
 - **Markus Meister, Pietro Perona**
 - Rogério Guimarães
 - Jen Hu, Anwesha Das
- The Acortical Mice: **Zeynep Turan**
- Meister Lab at Caltech:
 - Daniel Deng
 - Yingxi Jin
 - Zeyu Jing
 - Leo Li
 - Dan Pollak
 - Jiang Wu

Rogério Guimarães

Zeynep Turan

These projects were funded by Simons Collaboration on the Global Brain (SCGB 543015 and 543025).

Scan for the slides

and poster:

Supplementary materials

Day 2 – experiment plan

Session

- Six groups of mask orders (XYXZ)
- Session 1, 2, 4:
 - Each column compares 3 maps
 - New maps (B and C) vs. old
- Session 3: repeat of Session 1
 - Mask A: overnight repeat
 - Mask B and C: same day repeat
- Mask B vs. Mask C: same turn sequence vs. Different turn sequence

Sequence learning

Mask Designs:

- The 9-hole mask features a sequence of 9 turns (from Home to Out)
- We did a numerical search of the space to select two different new masks

Learning was not facilitated by the sameturn sequence

Duration: Mask C > Mask B

Turn errors: Not significant

Role of olfaction in homing

Experiment 1: swap the trays (disturb external cues)

Experiment 2: Olfactory ablation

