

Deep Learning

Subject Code: 22CAP-771

Student Name: Shubham Kumar Dutta UID:22MCI10172

Semester:4th Section/Group:22MAM-1 B

Experiment No. 9

1.) Take NLP set from Kaggle, preprocess data set (cleanse, tokenize, create vocabulary, convert to sequence, pad to fixed length) and Build RNN and LSTM models to demonstrate prediction with keras.

Implementation:

```
In [1]:
          1 import numpy as np
          2 from tensorflow.keras.models import Sequential
          3 from tensorflow.keras.layers import Embedding, LSTM, SimpleRNN, Dense
          4 from tensorflow.keras.preprocessing.text import Tokenizer
          5 | from tensorflow.keras.preprocessing.sequence import pad_sequences
          7 # Sample data
         8 sentences = ['I love coding', 'Machine learning is fascinating']
         10 # Tokenizing the sentences
         11 tokenizer = Tokenizer()
         12 tokenizer.fit_on_texts(sentences)
         13 sequences = tokenizer.texts_to_sequences(sentences)
         14 print(sequences)
        [[1, 2, 3], [4, 5, 6, 7]]
In [2]:
        1 X = []
          2 y = []
          3 for sequence in sequences:
               for i in range(1, len(sequence)):
          5
                    X.append(sequence[:i])
                    y.append(sequence[i])
In [3]:
          1 max_len = max([len(seq) for seq in X])
          2 X = pad_sequences(X, maxlen=max_len, padding='pre')
          3 y = np.array(y)
In [4]:
          1 rnn_model = Sequential([
                Embedding(input_dim=len(tokenizer.word_index)+1, output_dim=50,),
          3
                SimpleRNN(64),
          4
                Dense(len(tokenizer.word_index)+1, activation='softmax')
          5 1)
In [5]:
         1 rnn_model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy'])
          2 rnn_model.fit(X, y, epochs=10, batch_size=32)
        Epoch 1/10
        1/1 -
                                - 3s 3s/step - accuracy: 0.0000e+00 - loss: 2.0580
        Epoch 2/10
        1/1 -
                                 0s 56ms/step - accuracy: 0.2000 - loss: 2.0212
        Epoch 3/10
        1/1 -
                                 0s 48ms/step - accuracy: 0.4000 - loss: 1.9845
        Epoch 4/10
        1/1 -
                                 0s 50ms/step - accuracy: 0.8000 - loss: 1.9477
        Epoch 5/10
        1/1
                                - 0s 49ms/step - accuracy: 0.8000 - loss: 1.9106
```



```
Epoch 6/10
        1/1
                                 Os 54ms/step - accuracy: 0.8000 - loss: 1.8729
        Epoch 7/10
        1/1 .
                                 0s 56ms/step - accuracy: 0.8000 - loss: 1.8347
        Epoch 8/10
                                 0s 55ms/step - accuracy: 0.8000 - loss: 1.7956
        1/1 -
        Epoch 9/10
        1/1
                                  0s 49ms/step - accuracy: 0.8000 - loss: 1.7557
        Epoch 10/10
        1/1
                                 0s 55ms/step - accuracy: 0.8000 - loss: 1.7147
Out[5]: <keras.src.callbacks.history.History at 0x1cf6bf272e0>
In [6]:
         1 # LSTM Model
          2 lstm_model = Sequential([
                Embedding(input_dim=len(tokenizer.word_index)+1, output_dim=50,),
          5
                Dense(len(tokenizer.word index)+1, activation='softmax')
          6])
In [7]:
         1 | lstm_model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy'])
          2 lstm_model.fit(X, y, epochs=10, batch_size=32)
        Epoch 1/10
        1/1
                                - 4s 4s/step - accuracy: 0.2000 - loss: 2.0813
        Epoch 2/10
        1/1 .
                                 0s 67ms/step - accuracy: 0.0000e+00 - loss: 2.0752
        Epoch 3/10
        1/1 ·
                                 0s 57ms/step - accuracy: 0.2000 - loss: 2.0691
        Epoch 4/10
                                 0s 58ms/step - accuracy: 0.2000 - loss: 2.0630
        1/1 -
        Epoch 5/10
        1/1 -
                                 • 0s 65ms/step - accuracy: 0.2000 - loss: 2.0568
        Epoch 6/10
        1/1 .
                                 0s 69ms/step - accuracy: 0.2000 - loss: 2.0505
        Epoch 7/10
                                 0s 80ms/step - accuracy: 0.2000 - loss: 2.0440
        1/1
        Epoch 8/10
        1/1 ·
                                 0s 60ms/step - accuracy: 0.6000 - loss: 2.0374
        Epoch 9/10
                                 0s 59ms/step - accuracy: 0.6000 - loss: 2.0305
        1/1
        Epoch 10/10
                                 • 0s 55ms/step - accuracy: 0.6000 - loss: 2.0234
        1/1
Out[7]: <keras.src.callbacks.history.History at 0x1cf6d9123b0>
```

Learning outcomes (What I have learnt):

- 1. Learned how to import Keras and LSTM.
- **2.** Learned how to Tokenize the sentence.
- **3.** Learned how to build RNN and LSTM models.
- **4.** Understood the concept of sparse_categorical_crossentropy.
- **5.** Understood working of LSTM and RNN.