MTAF – Imagerie Couleur et Multispectrale TP n° 4

Objectif:

A travers ce TP, vous allez mettre en œuvre quelques méthodes d'estimation de la réflectance à partir d'images multispectrales ainsi que la conversion de la réflectance en couleur. Vous allez ensuite comparer leurs performances.

Livrable: Un compte-rendu descriptif et explicatif + les codes sources commentées + les images résultats, le tout compacté dans un dossier numérique compressé portant les noms de famille du binôme.

Commencez par copier les images de test dans votre répertoire de travail.

Estimation de la réflectance et simulation de la couleur

Données

Vous disposez de:

- Une image multispectrale « flowers_7 » à 7 bandes. Les 7 bandes correspondent à des filtres centrés sur les longueurs d'ondes de 400 à 700 par pas de 50.
- Une image multispectrale « macbeth_7 » (7 bandes) représentant la mire de Macbeth acquise avec un système multispectral possédant 7 filtres. Les filtres sont centrés sur les longueurs d'ondes de 400 à 700 par pas de 50.
- Pour chacun des patchs de la mire de Macbeth (24), on dispose des réflectances acquises à l'aide d'un spectrophotomètre, contenu dans le fichier « Macbeth_31_24 ». Le spectrophotomètre acquiert des réflectances qui s'étalent de 400nm à 700nm par pas de 10, ce qui donne un vecteur de réflectance de 31 valeurs pour chaque patch.
- Dans le fichier « CMF » se trouve l'illuminant D65 multiplié par les fonctions colorimétriques de l'espace XYZ, c'est pour cette raison que le fichier est de dimension 31x3. Ce fichier vous servira à générer une image couleur à partir des réflectances estimées.

Quelques fonctions Matlab utiles : *load, reshape, interp1, getrect, drawrectangle, mldivide, squeeze*

Manip n° 1:

Créer une fonction Matlab qui a pour but d'estimer la réflectance en chaque pixel de l'image multispectrale fournie en utilisant la méthode d'interpolation par spline.

L'usage de cette fonction est le suivant :

Image reflectance1 = interpolation (Image multispectrale)

Où *Image_multispectrale* est l'image flowers et *Image_reflectance1* est une image de mêmes dimensions spatiales que l'image en entrée mais pour laquelle chaque pixel comporte un vecteur de réflectance de dimension 31.

L'interpolation vise à transformer le vecteur *d* de dimension 7 en chaque pixel en un vecteur *r* de dimension 31 représentant la réflectance du pixel. Les 31 bandes correspondent à des filtres entre 400 et 700 nm espacés de 10 nm. Sauvegarder votre résultat « Image reflectance »

-Faire autant pour l'image macbeth_7, sauvegarder votre résultat « Image reflectance1 »

Manip n° 2:

Créer une fonction Matlab qui a pour but d'estimer la réflectance en chaque pixel de l'image multispectrale fournie en utilisant la méthode d'inversion indirecte.

L'usage de cette fonction est le suivant :

Image_reflectance = invers_indirecte (Image_multispectrale)

Où Image_multispectrale est l'image *macbeth_7* et Image_reflectance est une image de mêmes dimensions spatiales que l'image en entrée mais pour laquelle chaque pixel comporte un vecteur de réflectance de dimension 31.

Pour ce faire, vous devez:

- Construire d'abord la matrice **D** contenant dans ses lignes les 24 vecteurs **d**, chacun de dimension 7. Pour y parvenir, calculer, dans la zone centrale de chaque patch de l'image multispectrale, le spectre moyen de cette zone.
- Calculer l'opérateur Q qui transforme chacun des vecteurs d contenus dans D en un vecteur r en résolvant l'équation DQ = R où R est la matrice qui correspond aux données du fichier « Macbeth_31_24 » contenant les reflectances théoriques des 24 patchs de la mire de Macbeth.
- Faîtes agir l'opérateur Q obtenu sur l'image multispectrale $macbeth_7$ (par multiplication matricielle).

- Sauvegarder votre résultat « Image reflectance2 ».

Manip n° 3:

- 1. Générer une image « couleur » par sélection de trois bandes parmi les 7 de l'image multispectrale que vous affecterez aux canaux Rouge, Vert et Bleu. Quel choix de bandes donnent l'image couleur la plus naturelle pour l'œil humain ? (images macbeth 7 et flowers)
- 2. Reconstruire une image couleur à partir des images « Image_reflectance1 » et « Image_reflectance2 ».

Pour ce faire, servez-vous du fichier CMF ainsi que la matrice de passage XYZ RVB.

Note : Pour obtenir la couleur d'un pixel à partir de son vecteur de réflectance, il faut multiplier le vecteur de réflectance par la matrice de lumière et la matrice de passage de XYZ vers RGB comme suit :

ImageCouleur = |(Image_reflectance*CMF*0.00169)* (XYZ_RVB')|; Voici les matrices (3*3) de passage entre RVB et XYZ et vice versa : % RVB ==> XYZ

RVB_XYZ = [0.429 0.343 0.178;0.222 0.7070 0.071;0.0190 0.132 0.939]; % XYZ ==> RVB

 $XYZ_RVB = inv(RVB_XYZ);$

N'oubliez pas de transformer vos images en uint8 pour l'affichage!

Manip n° 4:

- 1. Donnez, pour chacun des patchs, la courbe de réflectance mesurée avec le spectrophotomètre Rm et la courbe de réflectance reconstruite avec vos algorithmes Rr.
- 2. Calculer le GFC (moyenne, min, max) entre ces différentes courbes selon la formule :

$$\mathrm{GFC} = \frac{\left|\sum_{j} Rm(\lambda_{j})Rr(\lambda_{j})\right|}{\sqrt{\sum_{j} Rm(\lambda_{j})^{2} \sum_{j} Rr(\lambda_{j})^{2}}}$$

Où *R*m est la réflectance mesurée avec le spectrophotomètre et *R*r la réflectance reconstruite avec vos algorithmes.

- 3. Calculer également le ΔE pour chacun patchs en sélectionnant une zone autour du centre du patch
- 4. Comparez les méthodes et discutez leurs résultats.