Laplace Examples

Another giant of math, physics and engineering.

The math for this topic is covered in two .mlx files. Here we'll run through several examples

1

Laplace Transform Table

T 1		-	c	T 11
Lan	ace	Trans	torm	Table
		TT COLLO	CLILL	10010

#	f(t)	F(s)	#	f(t)	F(s)
1	$\delta(t)$	1	11	$1 - e^{-at}$	$\frac{a}{s(s+a)}$
2	u_s	$\frac{1}{s}$	12	$\frac{1}{a}(at - 1 + e^{-at})$	$\frac{a}{s^2(s+a)}$
3	t	$\frac{1}{s^2}$	13	$e^{-at} - e^{-bt}$	$\frac{b-a}{(s+a)(s+b)}$
4	t^2	$\frac{2!}{s^3}$	14	$(1-at)e^{-at}$	$\frac{s}{(s+a)^2}$
5	t^3	$\frac{3!}{s^4}$	15	$1 - (1 + at)e^{-at}$	$\frac{a^2}{s(s+a)^2}$
6	t^m	$\frac{m!}{s^{m+1}}$	16	$be^{-bt} - ae^{-at}$	$\frac{(b-a)s}{(s+a)(s+b)}$
7	e^{-at}	$\frac{1}{(s+a)}$	17	$\sin\left(\mathbf{b}t\right)$	$\frac{\mathbf{b}}{s^2+\mathbf{b}^2}$
8	te^{-at}	$\frac{1}{(s+a)^2}$	18	$\cos\left(\mathbf{b}t ight)$	$\frac{s}{s^2+\mathbf{b}^2}$
9	$rac{1}{2!}t^2e^{-at}$	$\frac{1}{(s+a)^3}$	19	$e^{-at}\cos\left(bt\right)$	$\frac{s+a}{(s+a)^2+b^2}$
10	$\frac{1}{(m-1)!}t^{m-1}e^{-at}$	$\frac{1}{(s+a)^m}$	20	$e^{-at}\sin{(bt)}$	$\frac{b}{(s+a)^2+b^2}$

Laplace Properties Table

Laplace	Transform	Properties
---------	-----------	------------

	no process and a separate					
f(t)	F(s)	Property				
$\alpha f_1(t) + \beta f_2(t)$	$\alpha F_1(s) + \beta F_2(s)$	Superposition				
$f(t-\lambda)$	$F(s)e^{-s\lambda}$	Time Delay $(\lambda \geq 0)$				
f(at)	$\frac{1}{ a }F(\frac{s}{a})$	Time Scaling				
$e^{-at}f(t)$	F(s+a)	Shift in Frequency				
$f^{(m)}(t)$	$ s^m F(s) - s^{m-1} f(0) + -s^{m-2} \dot{f}(0) - \dots - f^{(m-1)}(0) $	Differentiation				
$\int f(\zeta)d\zeta$	$\frac{1}{s}F(s)$	Integration				
$f_1(t)*f_2(t)$	$F_1(s)F_2(s)$	Convolution				
f(0)	$\lim_{s \to \infty} sF(s)$	Initial Value Theorem				
$\lim_{t\to\infty}f(t)$	$\lim_{s\to 0} sF(s)$	Final Value Theorem				
tf(t)	$-\frac{d}{ds}F(s)$	Multiplication by Time				

Sketch the function $g(t) = (7 - 3t)u_s(t)$ and create its LT.

$$q = \frac{7}{5} - \frac{3}{5^2} = \frac{75 - 3}{5^2}$$

4

Find the LT of
$$y(t) = 4.2e^{-6t} \sin 7t$$

Find the LT of
$$y(t) = 4.2e^{-6t}\sin 7t$$
 $e^{-at}\sin(bt)$, $\frac{b}{(s+a)^2+b^2}$

$$Y = \frac{4.2 \cdot 7}{(s+6)^2 + 7^2} = \frac{29.4}{s^2 + 12s + 85}$$

Take the ILT of
$$V(s) = \frac{7}{s+5} - \frac{27}{s^2+9}$$
 Sin(bt), $\frac{b}{s^2+b^2}$

$$sin(bt), \frac{b}{s^2+b^2}$$

$$V = \frac{7}{5+5} - \frac{9\cdot 3}{5^2+3^2}$$

Take the LT of the DEQ model:

$$\ddot{y} + 2\dot{y} + 36y = \dot{u} + 5u, \ \dot{y}(0) = y(0) = 0$$

Then form the transfer function.

$$\frac{Y}{U} = \frac{5+5}{5^2+25+36}$$

Take the LT of the function sketched at right..

$$r = 7u_{5}(t-6) - 7u_{5}(t-14) + \frac{7}{4}(t-21)u_{5}(t-21) - \frac{7}{4}(t-25)u_{5}(t-25) - 7u_{5}(t-25)$$

$$R = \frac{7e^{-65}}{5} - \frac{7e^{-145}}{5} + \frac{7}{4} \left[\frac{e^{-215}}{5^{2}} - \frac{e^{-255}}{5^{2}} \right] - \frac{7}{5} e^{-255}$$

$$R = \frac{7}{5} \left(\bar{e}^{65} - \bar{e}^{145} - \bar{e}^{255} \right) + \frac{7}{45^2} \left(\bar{e}^{215} - \bar{e}^{255} \right)$$

Given the transfer function below, create its DEQ model

$$\frac{R}{U} = \frac{s}{s^2 + 5s + 36}$$

Use the FVT to find the steady state value, y_{ss} , when u is a unit step. Reconstitute the DEQ model to check the answer using dc gain.

$$\frac{Y}{U} = \frac{72}{s^2 + 5s + 36}$$

$$Y = \frac{72}{s^2 + 5s + 36}$$

$$U = \frac{1}{5}$$

$$Y = \frac{72}{s(s^2 + 5s + 36)}$$

$$Y_{55} = \lim_{s \to \infty} s Y = Z$$