Нелинейные методы строительной механики

Расчёт методом линейного программирования

СМиМ ЗабГУ

2019

Введение

Линейное программирование

Расчёт балки методом линейного программирования

Введение

- Определение предельной силы подразумевает рассмотрение нескольких схем образования пластических шарниров.
- В сложных схемах, не всегда возможно определить направление предельных моментов в пластических шарнирах.
- Поэтому для каждой схемы образования пластических шарниров нужно рассматривать различные варианты направления предельных моментов в пластических шарнирах.
- Это увеличивает число рассматриваемых схем.

Введение

- Однако задачу определения предельной нагрузки можно переформулировать в задачу поиска максимума нагрузки.
- При этом должны выполнятся ограничения: ни один момент не может превышать предельного значения.

Введение

- Однако задачу определения предельной нагрузки можно переформулировать в задачу поиска максимума нагрузки.
- При этом должны выполнятся ограничения: ни один момент не может превышать предельного значения.
- Задачи такого характера решаются методами линейного программирования.

Введение

Линейное программирование

Расчёт балки методом линейного программирования

Линейное программирование — математическая дисциплина, посвящённая теории и методам решения экстремальных задач на множествах п-мерного векторного пространства, задаваемых системами линейных уравнений и неравенств.

Задача

Найти минимум (максимум) линейной функции (целевой функции)

$$f(x) = \sum_{j=1}^{n} c_j x_j = c_1 x_1 + c_2 x_2 + \ldots + c_n x_n \to min$$

При заданных линейных ограничениях

$$\begin{aligned} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n &\geq b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n &\geq b_2 \\ \dots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n &\geq b_m \end{aligned}$$

В дополнение (или вместо) неравенств могут использоваться и ограничения-равенства.

Решение задачи – минимальное (максимальное) значение целевой функции и набор значений $x_1, x_2, ..., x_n$

Пример 1

- Чёрные линии ограничения-неравенства (точка должна лежать ниже или выше этих линий)
- ▶ Область допускаемых значений x_1x_2 закрашена синим.
- Значения целевой функции отмечены оттенками синего

Пример 2

- Для откорма животных на ферме в их еженедельный рацион необходимо включать не менее 33 ед. питательного вещества A, 23 ед. питательного вещества B и 12 ед. питательного вещества C.
- Разные корма содержат разное количество питательных веществ
- Используется 3 вида кормов
- Содержание питательных веществ и стоимость одной весовой единицы каждого из кормов известны
- Составить наиболее дешёвый рацион, при котором каждое животное получало бы необходимые количества питательных веществ A, B, C

Пример 2

Таблица с ценами за корм и содержанием питательных веществ

	Α	В	С	Стоимость 1 ед.
В 1 ед. корма 1	4 ед.	3 ед.	1 ед.	20 руб.
В 1 ед. корма 2	3 ед.	2 ед.	1 ед.	20 руб
В 1 ед. корма 3	2 ед.	1 ед.	2 ед.	10 руб

Пример 2

Таблица с ценами за корм и содержанием питательных веществ

	Α	В	С	Стоимость 1 ед.		
В 1 ед. корма 1	4 ед.	3 ед.	1 ед.	20 руб.		
В 1 ед. корма 2	3 ед.	2 ед.	1 ед.	20 руб		
В 1 ед. корма 3	2 ед.	1 ед.	2 ед.	10 руб		

Как формализовать задачу?

- x_1 , x_2 и x_3 количество закупаемых кормов 1, 2 и 3 соответственно. Это искомые переменные
- $ightharpoonup c_1, c_2$ и c_3 стоимость кормов 1, 2 и 3 соответственно.
- Цена закупаемого корма должна быть минимальна:

$$x_1c_1 + x_2c_2 + x_3c_3 \rightarrow min$$

$$x_1c_1 + x_2c_2 + x_3c_3 \rightarrow min$$

Как учесть ограничения на количество питательных веществ?

$$x_1c_1 + x_2c_2 + x_3c_3 \rightarrow min$$

Как учесть ограничения на количество питательных веществ?

$$4x_1 + 3x_2 + 2x_3 \ge 33$$
$$3x_1 + 2x_2 + x_3 \ge 23$$
$$x_1 + x_2 + 2x_3 \ge 12$$

Таким образом нужно минимизировать значение линейной функции, при заданных линейных ограничениях для переменных.

Введение

Линейное программирование

Расчёт балки методом линейного программирования

Расчёт рамы методом линейного программирования Пример 3

Неизвестные - силы и моменты

Расчёт рамы методом линейного программирования Пример 3

- Неизвестные силы и моменты
- Целевая функция максимум активной силы
- Ограничения
 - Уравнения равновесия
 - Уравнения состояния
 - Ограничения вида $N \leq N_{max}$ для искомых сил и моментов

Линейное программирование Пример 3

Пример решения задачи линейного программирования на языке Python ссылка

Введение

Линейное программирование

Расчёт балки методом линейного программирования