

Real-time data processing in autonomous vehicles

> Maksim Alehasi

Introduction

Algorithms

Data

processing architecture

Safety challenges

Future direction:

Conclusion

Real-time data processing in autonomous vehicles

Metódy inžinierskej práce 2023/2024

Maksim Alehash

Ústav informatiky, informačných systémov a softvérového inžinierstva Fakulta informatiky a informačných technológií Slovenská technická univerzita v Bratislave

November 26, 2023

Introduction

Real-time data processing in autonomous vehicles

Maksin Alehas

Introduction

Algorithm

Data processing architecture

Safety challenge:

Future directions

Conclusion

What is an autonomous vehicle?

 A self-driving car that uses necessary hardware and Al algorithms to navigate without any human intervention

Why is data processing so important in it?

- Safety and comfort
- Navigation
- Maintenance
- Effiency and effectivity
- Machine learning
- Autonomy

Table of contents I

Real-time data processing in autonomous vehicles

> Maksin Alehas

Introduction

Algorithm:

Data processing

Safety challenges

Future directions

Conclusion

Sensors

2 Algorithms

3 Data processing architecture

Safety challenges

5 Future directions

Sensors

Real-time data processing in autonomous vehicles

> Maksim Alehash

Introduction

Sensors

Algorithm

Data processing

Safety

challenge

direction

Conclusion

¹ https://www.researchgate.net/figure/

Sensors

Real-time data processing in autonomous vehicles

> Maksin Alehasl

Introduction

Sensors

Algorithms

Data

processing architecture

Safety challenge:

Future direction:

Conclusion

Figure: Advantages and disadvantages of sensors

Sensors	Pros	Cons
Cameras	"- best for recognition - less power intensive - high-resolution imagery - cheap - advanced AI and deep learning research"	"- light and visibility dependent - easily affected by shadow or reflection"
Radar	"- captures direct distance and velocity - day and night reliability - weather resilient - long-range detection - cheap"	"- object boundary is not great - limited classification capability - poor resolution - inability to detect small objects"
LiDAR	"- direct 3D mapping of the enviroment - day and night reliability - very high precision - high resolution - advanced AI research"	"- ineffective under rain and fog - lower range compared to radar - very expensive"
Ultrasonic	"- all-material sensing capability - best close-range object detection (parking) - not affected by weather conditions - extremely cheap"	"- can be affected by wind - highly sensitive to vapors - difficulties in distinguishing between soft, curved, thin, and small objects"
GPS	"- provides global coverage - precise location information - adaptable to change - cheap"	"- signal interference in places with signal obstructions (tunnels) - latency issues - dependent on accurate maps and data processing capabilities"

Algorithms

Real-time data processing in autonomous vehicles

Maksin Alehas

minoducii

Algorithms

Data processing architecture

Safety challenge:

Future direction:

Conclusio

AV divides data processing into 4 stages:

- Mapping creating a detailed representation of the environment
- Localization determining the precise position of the vehicle
- Object detection identyfing objects
- Object tracking monitoring objects
- Decision-making utilizing processed data to make adaptive decisions

Algorithms

Real-time data processing in autonomous vehicles

> Maksim Alehasi

....

Algorithms

processing architectur

Safety challenge

Future direction

Conclusion

Figure: Data acquisition and processing scheme

Data processing architecture

Real-time data processing in autonomous vehicles

> Maksin Alehasi

Introductio

Algorithm

Data

processing architecture

challenge

Future direction

Conclusion

Figure: Mobile edge computing and vehicle communication²

ILLUSTRATIVE

Safety challenge

Real-time data processing in autonomous vehicles

> Maksim Alehasi

Introduction

.....

Algorithms

Aigoriums

processing architectur

Safety challenges

Future direction:

Conclusion

Figure: Challenges facing the safety of an AV

Future directions

Real-time data processing in autonomous vehicles

> Maksin Alehas

Introduction

.

Algorithm

Algorium

Data processing architecture

Safety challenge:

Future directions

Conclusion

Efficiency

- Al enhancements
- Edge computing integration
- Advanced sensor fusion

Connection

- V2X communication enhancements
- 5G connectivity

Security

- Cybersecurity measures
- Continuous monitoring

Safety

- Human behavior prediction
- Advanced Driver Assistance Systems (ADAS)
- Predictive analytics

Conclusion

Real-time data processing in autonomous vehicles

> Maksim Alehash

Introduction

Algorithm

Data

architecture

Safety challenge

Future direction

Conclusion

Figure: Levels of automation³

LEVELS OF AUTONOMOUS DRIVING

 $^{^3}$ https:

Real-time data processing in autonomous vehicles

> Maksim Alehash

Introduction

Algorithms

Algorithms

processing

Safety

Future

Conclusion

Thank you for your attention