

Trabalho Prático 1

Processamento de Imagem e Biometria

Índice

1)	Exercício 1	3
a) .		3
b) .		5
c) .		ε
2)	Exercício 2	6
3)	Exercício 3	7
4)	Exercício 4	<u>c</u>
a) .		<u>c</u>
b) .		<u>c</u>
5)	Exercício 5	10
a) .		10
b) .		10
6)	Exercício 6	11
a) .		11
b) .		11
7)	Exercício 7	12
(i)	Ocultação de Identidade	12
(ii)	Correção Tonal	13
(iii)) Deteção de Pele	14
(iv) Deteção de Contornos	15
(v)	Isolamento da Face (Corte de Imagem)	16
8)	Exercício 8	17
a) .		17
b) .		17
9)	Exercício 9	19
Ad	aptive Histogram Equalization (AHE):	19
Co	ntrast Limited Adaptive Histogram Equalization (CLAHE):	19
Ca	nny edge detection:	19

Trabalho Prático 1 ISEL PIB

1) Exercício 1

Exercício 1 - Guia 1

a)

Matlab1:

read_image.m : Histograma

read_image_color.m : conversão de cores para níveis de cinzento

read_image_color_v2.m:

Figura 1: conversão de cores para níveis de cinzento;

Figura 2: troca das componentes R e B:

Figura 3: mostrar a imagem rgb como imagem de níveis de cinzento:

test_images.m : conversão de cores para níveis de cinzento e transformação para imagem binária

Matlab2:

arithmetic_operations.m:

- Figura 1: adição dos pixéis das imagens
- Figura 2: subtração dos pixéis das imagens
- Figura 3: multiplicação dos pixéis das imagens
- Figura 4: adição de uma constante aos pixéis das imagens
- Figura 5: multiplicação por uma constante aos pixéis das imagens

logical_operations.m:

- Figura 1: junção de duas imagens I1 e I2 (AND)
- Figura 2: uma imagem ou outra l1 ou l2 (OR)
- Figura 3: conversão inversa dos valores das duas imagens I1 xor I2 (XOR)
 - Figura 4: inverso do valor da imagem 11 e 12 NOT

optical_ilusion.m:

Trabalho Prático 1 ISEL PIB

conversão de cores para níveis de cinzento

Matlab4:

image_lut.m:

Figura 1: inverso da imagem (NOT)

Figura 2: conversão para uma imagem de 3 níveis

Figura 3: conversão para uma imagem binária

image_negative.m:

inverso da imagem (NOT)

image_negative_biniarization.m:

conversão para níveis de cinzento e para imagem binária

Matlab5:

hist_processing.m:

Figura 1: ajuste de intensidades da imagem

Figura 3: ajuste de intensidades da imagem

image_contrast.m:

Figura 1 e 2: ajuste de contraste nas imagens

image_hs.m:

ajuste de intensidade de uma imagem com base dos valores de intensidade de outra imagem

image_operations.m:

Figura 1: imagem negativa

Figura 2: soma de constante

Figura 3: subtração de constante

Figura 4: amplificação de imagem

Figura 5: junção de duas imagens 11 e I2 (AND)

Figura 6: Ajuste de intensidade

Figura 7: Ajuste de contraste

b)

Código:

```
function read image()
% Fechar todas as janelas de figuras.
close all;
% Limpar a consola.
% Ler a imagem a partir do ficheiro.
I = imread('camera.gif');
%I = imread('bird.gif');
%I = imread('squares.gif');
% Obter as dimensões (resolução da imagem).
[M, N] = size(I);
[pixelCounts, greyLevels] = imhist(I);
numberOfPixels = sum(pixelCounts);
% Imprimir mensagem com as dimensões e resolução da imagem.
fprintf('Image with resolution %d x %d = %d pixels\n', M, N, numberOfPixels);
fprintf ('(i) Numero de Pixeis distintos: ');
fprintf ('%d ',pixelCounts);
H = entropy(I)
% Lançar nova janela de figura e mostrar a imagem em níveis de cinzento
% e o respetivo histograma.
figure(1);
subplot(121); imshow(I); colorbar; title('Image');
subplot(122); imhist(I); title(sprintf('Histogram. H=%.2f\n',H));
impixelinfo;
% Escrever a imagem em níveis de cinzento como ficheiro PNG.
imwrite( I, 'out.png' );
% Calcular a energia da imagem.
E = sum(sum(I.^2));
% Calcular a potência da imagem.
\underline{\underline{P}} = \underline{E} / (M*N);
% Calcular o valor médio da imagem.
m = sum(sum(I)) / (M*N);
C = \max(\max(I)) - \min(\min(I));
mi = min(min(I));
mx = max(max(I));
[maxOc,ind] = max(pixelCounts);
fprintf('(ii) O pixel que ocorre o maior número de vezes é de intensidade % d e occore % d vezes.\n',ind-l,maxOc);
fprintf('(iii) Pixel com maior valor de intensidade: %d\n', mx );
fprintf('(iv) Valor Médio: %.2f, Contraste: %d, Entropia: %.2f\n',m, C, H);
```

c)

camera.gif

bird.gif

```
Image with resolution 256 x 256 = 65536 pixels
(i) Numero de Pixeis distintos: 0 0 0 0 0 0 0 0 0 0 0 0 10 22 0 87 196 282 0 259 206 0 186 186 160 0 150 121 0 145 137 121 0 131 144 0
H =
6.7744

(ii) O pixel que ocorre o maior número de vezes é de intensidade 147 e occore 2049 vezes.
(iii) Pixel com maior valor de intensidade: 212
(iv) Valor Médio: 125.39, Contraste: 201, Entropia: 6.77
```

squares.gif

2) Exercício 2

Exercício 2 - Guia 1

Exercício 3 - Guia 2

a)

Ajuste de brilho:

Resultado:

Ajuste de Contraste:

Resultado:

Exercício 4 - Guia 2

a)

Função:

b)

Resultado:

Trabalho Prático 1 ISEL PIB

5) Exercício 5

Exercício 5 - Guia 3

a)

Função:

```
import cv2 as cv
import numpy as np

# Open the Image
img = cv.imread('C:\\Users\\duart\\Desktop\\ISEL\\PIB\\MatLab\\out.png')

# Apply intencity transformation.
c = 255/(np.log(1 + np.max(img)))
log_transformed = c * np.log(1 + img)

# Specify the data type.
log_transformed = np.array(log_transformed, dtype = np.uint8)

# Save the output.
cv.imwrite('intensity_transformation.jpg', log_transformed)
```

b)

Resultado:

Original

Transformada

Exercício 6 Guia 3

a)

Função:

```
import cv2
import matplotlib.pyplot as plt
import numpy as np
img = cv2.imread('C:\\Users\\duart\\Desktop\\ISEL\\PIB\\Python\\camera.png')
#plot da imagem
plt.subplot(1,2,1)
plt.imshow(img,cmap='gray')
plt.title('image')
plt.xticks([])
plt.yticks([])
#plot do histograma da imagem
plt.subplot(1,2,2)
hist, bin = np.histogram(img.ravel(), 256, [0, 255])
plt.xlim([0,255])
plt.plot(hist)
plt.title('histogram')
plt.show()
```

b)

Resultados:

(i) Ocultação de Identidade

Procedimentos:

- 1º Input da imagem;
- **2º** Histograma da imagem de entrada;
- **3º** Verificar se é uma imagem rgb ou em níveis de cinzento;
- **4º** Se for RGB transformar em Grayscale;

```
if size(I,3)==3
I = rgb2gray(I);
```

5º Aplicar um filtro gaussiano causando um efeito de desfoque na imagem;

```
H = fspecial('gaussian',8,10);
out = imfilter(I,H);
```

6º Mostrar a imagem ajustada e o seu histograma.

Exemplos:

12

(ii)Correção Tonal

Procedimentos:

- **1º** Input da imagem;
- **2º** Histograma da imagem de entrada;
- **3º** Verificar se é uma imagem rgb ou em níveis de cinzento;
- **4º** Se for RGB transformar em Grayscale;

```
if size(I,3)==3
I = rgb2gray(I);
end
```

5º Ajuste de imagem a traves da função iamadjust do matlab;

```
I_imadjust = imadjust(I);
```

6º Mostrar a imagem ajustada e o seu histograma.

Exemplos:

(iii) Deteção de Pele

Procedimentos:

- **1º** Input da imagem;
- 2º Histograma da imagem de entrada;
- **3º** Verificar se é uma imagem rgb ou em níveis de cinzento;
- **4º** Se for RGB transformar em Grayscale;

```
if size(I,3)==3
I = rgb2gray(I);
end
```

5º Transformação da imagem para imagem binária;

```
BW = im2bw(I,0.3);
```

6º Mostrar a imagem ajustada e o seu histograma;

Exemplos:

(iv) Deteção de Contornos

Procedimentos:

- **1º** Input da imagem;
- 2º Histograma da imagem de entrada;
- **3º** Verificar se é uma imagem rgb ou em níveis de cinzento;
- **4º** Se for RGB transformar em Grayscale;

```
if size(I,3)==3
I = rgb2gray(I);
end
```

5º Fazer a deteção de contornos da imagem através da função edge(canny) do matlab;

```
BW2 = edge(I,'canny');
axes(handles.axes3);
imshow(BW2);
```

6º Mostra a imagem e o seu histograma;

Exemplos:

(v) Isolamento da Face (Corte de Imagem)

Procedimentos:

- **1º** Input da imagem;
- 2º Histograma da imagem de entrada;
- **3º** Detetar a face presente na imagem;

```
FaceDetect = vision.CascadeObjectDetector;
FaceDetect.MergeThreshold = 7;
```

 $oldsymbol{4^o}$ Detetar o local da face presente na imagem;

```
BB = step(FaceDetect, I);
```

5° Recortar a face presente na imagem;

```
for i = 1 : size(BB, 1)
   J = imcrop(I, BB(i, :));
end
```

6º Mostra a imagem recortada e o seu histograma;

Exemplos:

a)

Imagens geradas do tipo captativo:

Imagens geradas do tipo ótico:

b)

Procedimento:

1º Aplicar um ajuste de contraste na imagem original;

2º Gerar uma imagem binária a partir da nova imagem de contraste ajustado;

$$BW = im2bw(IB, 0.4);$$

Exemplos:

Imagens do tipo captativo:

Imagens do tipo ótico:

Adaptive Histogram Equalization (AHE):

- É uma técnica de processamento de imagem digital usada para melhorar o contraste das imagens. Comparado com a Histogram equalization é diferente tendo em conta que a Adaptive Histogram Equalization calcula vários histogramas, cada um correspondendo a diferentes secções da imagem, e usa-as para redistribuir os valores de intensidade da imagem. Sendo então utilizado para melhorar contrastes e contornos de bordas em cada região da imagem. Tendo como desvantagem o facto de amplificar o ruído em regiões relativamente homogéneas da imagem.

Contrast Limited Adaptive Histogram Equalization (CLAHE):

- Para prevenir o problema de amplificação de ruído existe a Contrast Limited Adaptive Histogram Equalization (CLAHE) que é uma variante da AHE, na qual a amplificação de ruído é limitada, com o propósito de reduzir a mesma.

Canny edge detection:

- Canny edge detection é um detetor de bordas/contornos, que faz a extração de informação de diferentes objetos de visão e reduz acentuadamente a quantidade de dados a serem processados.
 - Critérios para a aplicação deste método:
 - Deteção de erro com taxa de erro baixa, significa que a deteção deve conseguir obter o maior número de bordas demonstradas na imagem possível eficazmente.
 - Uma borda na imagem deve ser marcada apenas uma vez, e se possível o ruido da imagem não deverá criar novas bordas.