

Winning Space Race with Data Science

David Heck 3/9/2023

Outline

- Executive Summary
- Introduction
- Methodology
- Results
- Conclusion
- Appendix

Executive Summary

- Based on the analysis of prior SpaceX launch and landing data we are able to run predictive models to tell us which attributes of the process are important to the outcome. We utilized public SpaceX data, Python Visualization tools, and Python Machine Learning algorithms to arrive at our results. While many factors can contribute to a successful launch and landing, we found these to be optimum:
 - Site KSC LC-39A in Florida
 - Payload Mass <= 7000 kg
 - Booster Type FT
 - Low Earth Orbits

Introduction

Project Overview

• As a research effort for prospective aerospace companies interested in developing their space programs, we would like to look at the SpaceX Falcon 9 model. By being able to land and reuse their booster rockets, the cost savings for this venture is a big draw. By analyzing historical launch and landing data from SpaceX, we hope to find which attributes of the process are more likely to lead to a successful landing, and thus cost savings for the prospective aerospace company.

Questions to be Answered

• As mentioned, by analyzing prior launch/landing data we want to know what attributes of the process are likely to contribute to a successful landing. For example, are certain launch locations, payload mass or orbit type likely to lead to a successful landing? Let's find out!

Methodology

Executive Summary

- Data collection methodology:
 - SpaceX launch data pulled from SpaceX API via Python interface
- Perform data wrangling
 - Cleaned data using categorical means to replace missing values
- Perform exploratory data analysis (EDA) using visualization and SQL
 - Utilized data visualization tools and aggregate SQL functions to further analyze data
- Perform interactive visual analytics using Folium and Plotly Dash
 - Performed geographical analytics and interactive dash graphs to investigate data
- Perform predictive analysis using classification models
 - Ran various models to find the most accurate prediction of mission success/failure

Data Collection

- Data was pulled from the SpaceX wiki page which consists of launch and landing data from prior missions. Additional data was pulled using the Python get command, making calls to the following SpaceX API URL's. Once downloaded the JSON objects are converted to usable Pandas data frames.
 - Rockets, Payloads, Launchpads, Outcome data

Data Collection - SpaceX API

 Data was pulled via the SpaceX API engine to gather launch/outcome data. The dataset was further enchance by grabbing data on the Launch Sites, Rockets Types and Payload Types

 https://github.com/dheck500/course ra-data-sciencecapstone/blob/master/labs-01spacex-data-collection-api.ipynb

Data Collection - Scraping

 Falcon 9 SpaceX data was pulled from the SpaceX Wiki page using WGET. Data was then reformatted using BeautifulSoup where HTML items could be parsed into Dataframes.

 https://github.com/dheck500/coursera-datascience-capstone/blob/master/labs-02webscraping.ipynb

Data Wrangling

- Once imported we found that several attributes were blank. These were filled in by:
 - Average Payload Mass
 - Nan Values
- https://github.com/dheck500/courseradata-science-capstone/blob/master/labs-03-spacex-Data%20wrangling.ipynb

EDA with Data Visualization

- To analyze the data we looked at Scatter charts for Payload Mass, Flight Number, Launch Site.
- We also looked at mission success rates by Orbit Type and over time using bar and line graphs.
- https://github.com/dheck500/coursera-datascience-capstone/blob/master/labs-05-edadataviz.ipynb

EDA with SQL

- Further Data Analysis was performed using SQL
 - Unique Names of Launch Sites
 - Average Payload Mass by Booster
 - Distribution of most commonly seen Outcomes
- https://github.com/dheck500/coursera-data-science-capstone/blob/master/labs-04-eda-sql-coursera.ipynb

Build an Interactive Map with Folium

- Markers were added for each launch site. By incorporating the color coded outcomes we are able to see which sites are more successful.
- https://github.com/dheck500/courseradata-science-capstone/blob/master/labs-06-launch-site-location.ipynb

Build a Dashboard with Plotly Dash

 Using Plotly Dash we have an interactive set of graphs that we can further analyze outcome data by site.

 https://github.com/dheck500/courser a-data-sciencecapstone/blob/master/spacex_dash_ app.py

Predictive Analysis (Classification)

- Using the launch data attributes and the binary classification of outcome 0 (failure) or 1 (success), we ran predictions using these models:
 - Logistical Regression
 - SVM
 - Decision Tree
 - K-Nearest Neighbor
- https://github.com/dheck500/coursera-data-sciencecapstone/blob/master/labs-07-SpaceX_Machine%20Learning%20Prediction_Part_5.ipynb

Results

- Based on the analysis we found that results are more favorable for success when:
 - Site KSC LC-39A in Florida
 - Payload Mass <= 7000 kg
 - Booster Type FT
 - Low Earth Orbits
- For the models we analyzed we found the Decision Tree model returned the best accuracy for predicting outcomes.

Flight Number vs. Launch Site

Based on the scatter plot above, we can see that SpaceX launches were more successful the further along in the program they got, regardless of the launch site. We can also see that site CCAFS SLC 40 was the most commonly utilized.

Payload vs. Launch Site

Based on the scatter plot above, we can see that SpaceX launches typically have a payload mass less than 7000 kg. The outcomes under this threshold have shown mixed results. It appears that flights with a higher payload, while not as common, have shown to be more successful, across all launch sites.

Success Rate vs. Orbit Type

Based on the bar graph above, we can see which SpaceX orbit types are more likely to be successful. On average the lower distance orbits tend to be less successful.

Flight Number vs. Orbit Type

Based on the scatter plot above, we can see which SpaceX orbit types are more likely to be successful as the program advanced. We can see most of the earlier mission focused on low earth orbits. More recently many of the missions have been very low earth orbits which have been very successful.

Payload vs. Orbit Type

Based on the scatter plot above, we can see that payloads under 7000 kg and low earth orbits are more frequently used, with mixed outcomes. The higher payloads, while more rarely used do appear to be more successful.

Launch Success Yearly Trend

Based on the line graph above, we can that the success rate of the program has risen over the years, despite a dip in performance in 2018.

All Launch Site Names

Launch Site Names Begin with 'CCA'

	<pre>= "select * from spacextbl where launch_site like 'CCA%' limit 5;" = pd.read_sql(sql, conn)</pre>									
	DATE	TIME_UTC_	BOOSTER_VERSION	LAUNCH_SITE	PAYLOAD	PAYLOAD_MASS_KG_	ORBIT	CUSTOMER	MISSION_OUTCOME	LANDING_OUTCOME
0	2010- 06-04	18:45:00	F9 v1.0 B0003	CCAFS LC-40	Dragon Spacecraft Qualification Unit	0	LEO	SpaceX	Success	Failure (parachute)
1	2010- 12-08	15:43:00	F9 v1.0 B0004	CCAFS LC-40	Dragon demo flight C1, two CubeSats, barrel of	0	LEO (ISS)	NASA (COTS) NRO	Success	Failure (parachute)
2	2012- 05-22	07:44:00	F9 v1.0 B0005	CCAFS LC-40	Dragon demo flight C2	525	LEO (ISS)	NASA (COTS)	Success	No attempt
3	2012- 10-08	00:35:00	F9 v1.0 B0006	CCAFS LC-40	SpaceX CRS-1	500	LEO (ISS)	NASA (CRS)	Success	No attempt
4	2013- 03-01	15:10:00	F9 v1.0 B0007	CCAFS LC-40	SpaceX CRS-2	677	LEO (ISS)	NASA (CRS)	Success	No attempt

Total Payload Mass

```
sql = "select customer,sum(PAYLOAD_MASS__KG_) payload_mass from spacextbl where customer='NASA (CRS)' group by customer"

df = pd.read_sql(sql, conn)

df
```

CUSTOMER PAYLOAD_MASS

0 NASA (CRS)

45596

Average Payload Mass by F9 v1.1

```
sql = """
select booster_version,avg(PAYLOAD_MASS__KG_) payload_mass
from spacextbl where booster_version='F9 v1.1' group by booster_version
"""

df = pd.read_sql(sql, conn)
df

BOOSTER_VERSION PAYLOAD_MASS

0 F9 v1.1 2928
```

First Successful Ground Landing Date

Successful Drone Ship Landing with Payload between 4000 and 6000

Total Number of Successful and Failure Mission Outcomes

```
sql = """
select mission_outcome,count(*)
from spacextbl
group by mission_outcome
"""

df = pd.read_sql(sql, conn)
df

MISSION_OUTCOME 2

Failure (in flight) 1

Success 99

Success (payload status unclear) 1
```

Boosters Carried Maximum Payload

```
sql = """
select distinct booster_version from spacextbl
where PAYLOAD MASS KG in (
select max(PAYLOAD_MASS__KG_)
from spacextbl)
df = pd.read_sql(sql, conn)
    BOOSTER_VERSION
         F9 B5 B1048.4
 1
         F9 B5 B1048.5
 2
         F9 B5 B1049.4
 3
         F9 B5 B1049.5
         F9 B5 B1049.7
         F9 B5 B1051.3
         F9 B5 B1051.4
```

7

8

10

11

F9 B5 B1051.6

F9 B5 B1056.4

F9 B5 B1058.3

F9 B5 B1060.2

F9 B5 B1060.3

2015 Launch Records

Failure (drone ship)

Failure (drone ship)

0

1

```
sql = """
select landing__outcome, booster_version, launch_site, date
from spacextbl
where landing__outcome in ('Failure (drone ship)') and
date between '2015-01-01' and '2015-12-31'
"""

df = pd.read_sql(sql, conn)
df
LANDING_OUTCOME BOOSTER_VERSION LAUNCH_SITE DATE
```

F9 v1.1 B1012

CCAFS LC-40 2015-01-10

F9 v1.1 B1015 CCAFS LC-40 2015-04-14

Rank Landing Outcomes Between 2010-06-04 and 2017-03-20

```
sql = """
select landing_outcome,count(*)
from spacextbl
where date between '2010-06-04' and '2017-03-20'
group by landing outcome
order by count(*) desc
df = pd.read_sql(sql, conn)
df
   LANDING_OUTCOME 2
            No attempt 10
0
      Failure (drone ship) 5
1
     Success (drone ship) 5
3
       Controlled (ocean) 3
    Success (ground pad) 3
       Failure (parachute) 2
5
     Uncontrolled (ocean) 2
   Precluded (drone ship) 1
```


Folium Map of Launch Sites

Folium Interactive Map with Site Outcomes

Folium Map of Launch Sites – Distance to Landmarks

Dash - Distribution of Missions by Launch Site

Dash – Success Rate by Launch Site

Dash - Outcomes by Payload and Booster

Classification Accuracy

Outcomes of the 4 Machine Learning models we tested. All did quite well, but the Decision Tree model was most effective.

Confusion Matrix

The results of running our test set thru the Decision Tree model which was the most effective of the 4 models we analyzed.

Conclusions

- Again while many factors can lead to the success of a mission, we found that results were most favorable with:
 - Site KSC LC-39A in Florida
 - Payload Mass <= 7000 kg
 - Booster Type FT
 - Low Earth Orbits

Appendix

- https://github.com/dheck500/coursera-data-science-capstone
- https://api.spacexdata.com/v4/launches/past
- https://en.wikipedia.org/wiki/List of Falcon 9 and Falcon Heavy launches

