Exam 2 November 21, 2020

Name:	UID:

- The exam consists of FIVE problems.
- Unsupported answers will receive little or no credit.
- Anyone caught writing after time has expired will be given a mark of zero.
- Time: 90 minutes.

Problem	Score	Points
1		10
2		11
3		8
4		8
5		16
Total		53

Problem 1. Let W be the subspace of \mathbb{R}^4 spanned by

$$S = \{(4, 3, 0, 0), (0, 5, 0, 4), (3, 1, 0, -1), (0, 0, 6, 0)\}$$

(i) (5 points) Find an orthogonal basis for W.

(ii) (2 points) Determine, with justification, whether $W = \mathbb{R}^4$ or not.

(iii) (3 points) Express (8, 1, 3, -4) as a linear combination of a basis of W.

Problem 2. Consider the row equivalent matrices A and B given by

$$A = \begin{pmatrix} 1 & 1 & 2 & 3 & 12 \\ 2 & 2 & 5 & 8 & 127 \\ 3 & 3 & 6 & 10 & 38 \\ 1 & 1 & 1 & 2 & 11 \end{pmatrix}, B = \begin{pmatrix} 1 & 1 & 0 & 0 & 8 \\ 0 & 0 & 1 & 0 & -1 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}.$$

(i) (4 points) Find a basis for Nul(A), the null space of A.

(ii) (2 points) Find a basis for Row(A), the row space of A.

(iii) (2 points) Find a basis for Col(A), the column space of A.

(iv) (3 points) Is Col(A) = Col(B)? Justify.

Problem 3. Let $T: \mathcal{P}_2 \to \mathbb{R}$ be the transformation

$$T(a_0 + a_1 x + a_2 x^2) = 3 a_0 - a_1 + a_2.$$

(i) (3 points) Show that T is a linear transformation.

(ii) (3 points) Find a basis for Ker(T), the kernel of T.

(iii) (2 points) Is T onto? Justify.

Problem 4. Let \mathcal{P}_2 be the set of all polynomials of degree ≤ 2 . The set \mathcal{P}_2 with the operations of vectors addition and scaler multiplication defined below is a vector space.

For
$$\underline{\mathbf{u}} = a_0 + a_1 x + a_2 x^2$$
 and $\underline{\mathbf{v}} = b_0 + b_1 x + b_2 x^2$ in \mathcal{P}_2 :

$$\underline{\mathbf{u}} \oplus \underline{\mathbf{v}} = (a_0 + b_0) + (a_1 + b_1 - 3) x + (a_2 + b_2 - 7) x^2,$$

$$\lambda \odot \underline{\mathbf{u}} = (\lambda a_0) + (\lambda a_1 - 3\lambda + 3) x + (\lambda a_2 - 7\lambda + 7) x^2.$$

(i) (2 points) What is the additive identity $\underline{\mathbf{0}}$ for this vector space? Explain your answer.

(ii) (2 pts) What is the additive inverse $-\underline{\mathbf{u}}$? Explain your answer.

(iii) (4 pts) Verify the axiom: For any $\underline{\mathbf{u}}$, $\underline{\mathbf{v}} \in \mathcal{P}_2$ and $\lambda \in \mathbb{R}$

$$\lambda \odot (\underline{\mathbf{u}} \oplus \underline{\mathbf{v}}) = (\lambda \odot \underline{\mathbf{u}}) \oplus (\lambda \odot \underline{\mathbf{v}}).$$

Problem 5. (4 points each) Determine whether the following statements are true or false. Proved justification if the statement is true and a counter-example if it is false.

(i) The set $W = \{(0, a^2, a^3) : a \in \mathbb{R}\}$ is a subspace of \mathbb{R}	(i) '	The set	$W = \{$	$(0, a^2,$	a^3): a^3	$a \in \mathbb{R}$	is a	subspace	of \mathbb{R}
--	-------	---------	----------	------------	----------------	--------------------	------	----------	-----------------

Reason: True False

(ii) A linear transformation $T: M_{2,4} \longrightarrow M_{3,3}$ is never onto.

Reason: True False

(iii) Let $T: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ be a linear transformation. If $\{\mathbf{v_1}, \mathbf{v_2}, \mathbf{v_3}\}$ is linearly independent, then so is $\{T(\mathbf{v_1}), T(\mathbf{v_2}), T(\mathbf{v_3})\}$.

Reason: True False

(iv)	It is possible to w	vrite a linearly in	dependent set	containing three	polynomials
	all of degree 2 in	\mathcal{P}_3 . (Provide an	example if the	e statement is tru	le).

Reason: True False

Draft: