Theoretical Guide

Miguel Nogueira

1 Math

$$MOD = 998'244'353$$

1.1 Logarithm

 $PI = a\cos(-1)$

$$\log_b mn = \log_b m + \log_b n \qquad \log_b \frac{m}{n} = \log_b m - \log_n n \qquad \log_b n^p = p \log_b n$$

$$\log_b \sqrt[q]{n} = \frac{1}{q} \log_b n \qquad \log_b n = \log_a n \log_b a \qquad b^{\log_b k} = k$$

$$\log_b a = \frac{\log_c a}{\log_c b} \qquad \log_b a = \frac{1}{\log_a b} \qquad \log_b a \ \log_a c = \log_b c$$

$$\log_b 1 = 0 \qquad \log_b b = 1$$

2 Identities

$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2} \qquad \sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6} \qquad \sum_{i=1}^{n} i^3 = \left(\frac{n(n+1)}{2}\right)^2$$
$$\sum_{i=1}^{n} \frac{1}{i} \approx \log n \qquad \sum_{i=0}^{\infty} \frac{1}{2^i} = 2$$

3 Number Theory

$$(a+b) \mod m = (a \mod m + b \mod m) \mod m$$

 $(a-b) \mod m = (a \mod m - b \mod m) \mod m$
 $(a \times b) \mod m = ((a \mod m) \times (b \mod m)) \mod m$
 $a^b \mod m = (a \mod m)^b \mod m$
 $a \equiv b \pmod m \iff (b-a)|m$

$$\gcd(a_1, a_2, a_3, a_4) = \gcd(a_1, \gcd(a_2, \gcd(a_3, a_4)))$$
$$\operatorname{lcm}(a, b) \times \gcd(a, b) = a \times b$$
$$\operatorname{lcm}(a, b) = \frac{a \times b}{\gcd(a, b)} = \frac{a}{\gcd(a, b)} \times b$$

3.1 Some Primes

999999937	1000000007	1000000009	1000000021	1000000033
$10^{18} - 11$	$10^{18} + 3$	230584300921369	$93951 = 2^{61} - 1$	
998244353 =	$119 \times 2^{23} + 1$	$10^6 + 3$		
10552444859	5307659 1392	18122939170727	11789706629723344	41
25790025798	1 5845989512	47 98950993000	63 105539556781	
998244353	754974721 16	67772161 18824	4827 205587737	
555130769	809747989 57	72255561 39658	38799 327208423	
773840099	207936359 95	52818871 93545	66867 670948771	

3.2 Number of Divisors

The number of divisors of n is about $\sqrt[3]{n}$.

n	6	60	360	5040	55440	720720	4324320	21621600
d(n)	4	12	24	60	120	240	384	576

Given the prime factorization of some number n:

$$n = p_1^{a_1} \cdot p_2^{a_2} \cdot p_3^{a_3}$$

The number of divisors will be $(a_1 + 1)(a_2 + 1)(a_3 + 1)$.

3.3 Large Prime Gaps

For numbers until 10^9 the largest gap is 400. For numbers until 10^{18} the largest gap is 1500.

3.4 Fermat's Theorems

Let P be a prime number and a an integer, then:

$$a^p \equiv a \pmod{p}$$

$$a^{p-1} \equiv 1 \pmod{p}$$

Lemma: Let p be a prime number and a and b integers, then:

$$(a+b)^p \equiv a^p + b^p \pmod{p}$$

Lemma: Let p be a prime number and a an integer. The inverse of a modulo p is a^{p-2} :

$$a^{-1} \equiv a^{p-2} \pmod{p}$$

3.5 Chicken McNugget Theorem

The Chicken McNugget Theorem states that for any two relatively prime positive integers m, n, the greatest integer that cannot be written in the form am + bn for nonnegative integers a, b is mn - m - n.

A consequence of the theorem is that there are exactly $\frac{(m-1)(n-1)}{2}$ positive integers which cannot be expressed in the form am + bn. The proof is based on the fact that in each pair of the form (k, mn - m - n - k), exactly one element is expressible.

4 Counting Problems

4.1 Counting

Combinatorics and counting principles:

• Stars and Bars:

Number of ways to distribute n identical items into k distinct bins = $\binom{n+k-1}{k-1}$

• Vandermonde's Identity:

$$\sum_{k=0}^{r} \binom{m}{k} \binom{n}{r-k} = \binom{m+n}{r}$$

• Catalan Numbers:

$$C_n = \frac{1}{n+1} \binom{2n}{n}$$

Applications: Valid parentheses, binary trees, Dyck paths.

• Inclusion-Exclusion Principle:

$$|A \cup B| = |A| + |B| - |A \cap B|$$

• Pigeonhole Principle:

If more than k items are put into k bins, then at least one bin must contain more than k

• Permutations with Repetitions:

Number of ways to arrange n objects where there are k_1 objects of one kind, k_2 of another

• r-Permutations:

 $P(n,r) = \frac{n!}{(n-r)!}$ for the number of ways to arrange r items out of n distinct items.