STAT3017 Homework 4 Page 1 of 1

Homework 4

Due by Wednesday 11 October 2017 17:00

Consider the paper "Testing linear hypotheses in high-dimensional regressions" (2013) by Bai, Jiang, Yao and Zheng that we studied in Lecture 9.

Question 1 [2 marks]

Let S_1 and S_2 be sample covariance matrices for p-dimensional observations of size n_1 and n_2 , respectively. Let $V_n = S_1 S_2^{-1}$ where $n = (n_1, n_2)$ and assume $n_2 > p$. Make an appropriate choice of parameters, sample from V_n and produce a plot showing the histogram of eigenvalues of V_n compared to the LSD F_{y_1,y_2} given by equation (14) in the paper.

Hint: See pages 1210 and 1211 of the paper (above) and Workshop 2, Section 2.2. You can either simulate the data matrix **X** using rnorm (and then construct the sample covariances) or draw the sample covariances directly using rWishart.

Question 2 [3 marks]

In the paper, Theorem 3.1, it is proved that under the null hypothesis

$$T_n = v(f)^{-1/2} [-\log \Lambda_n - p F_{V_1, V_2}(f) - m(f)] \Rightarrow \mathcal{N}(0, 1)$$

where m(f), v(f) and $F_{y_1,y_2}(f)$ are given in the paper in equations (26), (27), and (29), respectively. Demonstrate numerically that this theorem works by making an appropriate choice of parameters, sampling a large number of T_n , and comparing the histogram of values of T_n against the density of a standard normal.

Hint: See page 1212 and notice that Λ_n is given in terms of \mathbf{F} and the quantity \mathbf{F} is given in terms of the ratio of two Wishart matrices. Therefore, for this task, sample \mathbf{F} by posing

$$\mathbf{F} = \frac{n-q}{q_1} S_1^{-1} S_2, \qquad S_1 \sim W_p(\Sigma, n-q), \quad S_2 \sim W_p(\Sigma, q_1),$$

and using the rWishart function in R. Now from \mathbf{F} it should be straightforward to generate Λ_n . See Workshops 5, 6, and 7 where we have done similar CLT checks.