OPTIMIZACIÓN

Primer Cuatrimestre 2025

Práctica N° 6: Subgradientes y Método proximal.

Ejercicio 1 Para las siguientes funciones, encuentre el conjunto de subgradientes $\partial f(x)$ en los puntos indicados:

- (a) f(x) = |x|. Encuentre $\partial f(0)$ y $\partial f(2)$.
- (b) $f(x) = \max(x, 0)$. Encuentre $\partial f(0)$ y $\partial f(3)$.
- (c) f(x) = |x-1| + |x+1|. Encuentre $\partial f(1)$, $\partial f(-1)$ y $\partial f(0)$.

Ejercicio 2 Sean f(x) y g(x) funciones convexas. Demuestre las siguientes propiedades:

- (a) Si $f(x) = c \cdot h(x)$ donde c > 0, entonces $\partial f(x) = c \cdot \partial h(x)$.
- (b) Si $f(x) = \max(h_1(x), h_2(x))$, entonces $\partial f(x)$ en un punto x donde $h_1(x) > h_2(x)$ es $\partial h_1(x)$. ¿Qué ocurre si $h_1(x) = h_2(x)$?

Ejercicio 3 Considere la función $f(x) = ||x||_1 = \sum_{i=1}^n |x_i|$.

- (a) Encuentre el conjunto de subgradientes $\partial f(x)$ para $x \in \mathbb{R}^n$.
- (b) Demuestre que $x^* = 0$ es un minimizador de f(x) utilizando la condición de optimalidad del subgradiente.

Ejercicio 4 Considere un conjunto de datos unidimensional y_1, y_2, \ldots, y_n . Queremos encontrar un valor x que minimice la suma de las distancias absolutas a estos puntos:

$$f(x) = \sum_{i=1}^{n} |x - y_i|$$

- (a) Demuestre que f(x) es una función convexa.
- (b) Encuentre el conjunto de subgradientes $\partial f(x)$. (Sugerencia: Utilice la regla de suma de subgradientes y la definición de $\partial |z|$).
- (c) Utilice la condición de optimalidad del subgradiente $(0 \in \partial f(x^*))$ para demostrar que cualquier mediana de los datos y_i es un minimizador de f(x).

Ejercicio 5 (El Operador de Soft-Thresholding). Considere el problema de minimizar una función cuadrática con un término de regularización ℓ_1 :

$$f(x) = \frac{1}{2}(x-a)^2 + \lambda |x|$$

donde $a \in \mathbb{R}$ es un escalar dado y $\lambda > 0$ es un parámetro de regularización.

- (a) Encuentre el conjunto de subgradientes $\partial f(x)$.
- (b) Utilice la condición de optimalidad del subgradiente $(0 \in \partial f(x^*))$ para encontrar la solución analítica x^* . Demuestre que x^* puede expresarse como el operador de soft-thresholding, definido como:

$$x^* = \operatorname{soft}(a, \lambda) = \begin{cases} a - \lambda & \text{si } a > \lambda \\ a + \lambda & \text{si } a < -\lambda \\ 0 & \text{si } |a| \le \lambda \end{cases}$$

(c) Explique intuitivamente cómo el operador de soft-thresholding promueve soluciones ralas (es decir, tiende a forzar a los valores de x a valer exactamente cero) cuando λ es suficientemente grande.

Ejercicio 6 Considere la función f(x) = |x - 5|.

- (a) Realice 3 iteraciones del algoritmo de subgradiente comenzando desde $x^{(0)} = 0$ con un tamaño de paso fijo $\alpha_k = 0.5$. En cada iteración, elija un subgradiente.
- (b) Repita el inciso a) pero con una regla de paso decreciente, por ejemplo, $\alpha_k = 1/k$.
- (c) ¿Qué observa sobre la convergencia en ambos casos?

Ejercicio 7 Demuestre que el algoritmo de descenso de subgradiente no garantiza un descenso estricto del valor de la función objetivo en cada paso, incluso para tamaños de paso α_0 arbitrariamente pequeños. Para ello:

- (a) Considere la función $f(x) = ||x||_1$ (norma L_1) en \mathbb{R}^2 .
- (b) Elija un punto inicial $x^{(0)} \in \mathbb{R}^2$ (no nulo) y un subgradiente $g^{(0)} \in \partial f(x^{(0)})$ adecuado.
- (c) Muestre mediante el cálculo de $f(x^{(1)})$ que $f(x^{(1)}) \ge f(x^{(0)})$ para todo $\alpha_0 > 0$.

Ejercicio 8 Considere la función f(x) = |x|. Aplique el algoritmo de descenso de subgradiente con un punto inicial $x^{(0)} > 0$ y una regla de paso $\alpha_k = \frac{C}{\sqrt{k+1}}$ para una constante C > 0. Asumiendo que el subgradiente elegido es $g^{(k)} = 1$ mientras $x^{(k)} > 0$:

- (a) Derive una expresión analítica para $x^{(k)}$ en función de $x^{(0)}$ y de los tamaños de paso α_j para $j = 0, \dots, k-1$.
- (b) Utilice la aproximación $\sum_{j=1}^k \frac{1}{\sqrt{j}} \approx 2\sqrt{k}$ para argumentar que el valor de la función objetivo $f(x^{(k)})$ converge al óptimo $f(x^*) = 0$ con una tasa de convergencia sublineal del orden $O(1/\sqrt{k})$.

Ejercicio 9 Sea $f(x) = \lambda ||x||_1$. Calcular $\operatorname{prox}_{\gamma f}(x)$, donde

$$\operatorname{prox}_{\gamma f}(x) = \operatorname{argmin}_{y} \{ f(y) + \frac{1}{2\gamma} \|y - x\|_{2}^{2} \}$$

La solución corresponde al operador soft-thresholding.

Ejercicio 10 Sea $f(x) = \frac{1}{2} ||Ax - b||_2^2$. Calcular $\operatorname{prox}_{\gamma f}(x)$.

Ejercicio 11 Sea $f(x) = \delta_B(x)$, donde $B = \{x : ||x||_2 \le 1\}$. Calcular $\operatorname{prox}_{\gamma f}(x)$.

Ejercicio 12 Sea $f(x) = \lambda ||x||_2$. Calcular $\text{prox}_{\gamma f}(x)$.

Ejercicio 13 Dada $f(x) = \sum_i f_i(x)$. Probar que $\text{proy}_f(x) = (\text{proy}_{f_1}(x_1), ..., \text{proy}_{f_n}(x_n))$

Ejercicio 14 Sea f(x) = g(Ax), con $A \in \mathbb{R}^{m \times n}$ y $g(x) = \|x\|_1$. Calcular $\operatorname{prox}_{\gamma f}(x)$ asumiendo que $AA^t = I$. Sugerencia: Usar el resultado $\operatorname{proy}_{\gamma goA}(x) = x + A^t(\operatorname{proy}_{\gamma g}(Ax) - Ax)$.