1

CH-10 **Function**

EE24BTECH11041-Mohit

I. C: MCQs with One correct Answer

1) Suppose $f(x) = f(x+1)^2$ for $x \ge -1$. If g(x)is the function whose graph is the reflection of the graph f(x) with respect to the line y = x, then g(x) equal (2002S)

a)
$$-\sqrt{x} - 1, x \ge 0$$

b) $\frac{1}{(x+1)^2}, x > -1$
c) $\sqrt{x+1}, x \ge -1$
d) $\sqrt{x} - 1, x \ge 0$

c)
$$\sqrt{x+1}, x \ge -1$$

b)
$$\frac{1}{(x+1)^2}$$
, $x > -1$

d)
$$\sqrt{x} - 1, x \ge 0$$

- 2) Let function $f: R \rightarrow R$ be defined by $f(x) = 2x + \sin x$ for $x \in R$, then f is (2003S)
 - a) one-to-one and onto
 - b) one-to-one but not onto
 - c) onto but not onto
 - d) neither one-to-one nor onto
- 3) If $f:[0,\infty)\to[0,\infty)$, and $f(x)=\frac{x}{1+x}$ then f is (2003S)
 - a) one-one and onto
 - b) one-one but not onto
 - c) onto but not one-one
 - d) neither one-one nor onto
- 4) Domain of definition of the functions $f(x) = \sqrt{\sin^{-1}(2x) + \frac{\pi}{6}}$ for real valued x, is (2003S)
 - a) $\left[-\frac{1}{4}, \frac{1}{2} \right]$ c) $\left(-\frac{1}{2}, \frac{1}{9} \right)$
 - b) $\left[-\frac{1}{2}, \frac{1}{2} \right]$ d) $\left[-\frac{1}{4}, \frac{1}{4} \right]$
- 5) Range of the function $f(x) = \frac{x^2 + x + 2}{x^2 + x + 1}$; $x \in R$ is (2003S)

a)
$$(1, \infty)$$
 c) $(1, \frac{7}{3}]$ b) $(1, \frac{11}{7}]$ d) $(1, \frac{7}{5}]$

c)
$$(1, \frac{7}{3}]$$

b)
$$(1, \frac{11}{7}]$$

d)
$$(1, \frac{7}{5}]$$

- 6) If $f(x) = x^2 + 2bx + 2c^2$ and $g(x) = -x^2 2cx + b^2$ such that $\min f(x) > \max g(x)$, then the relations between b and c, is (2003S)
 - a) no real value of c) $|c| < |b| \sqrt{2}$ b&c d) $|c| > |b| \sqrt{2}$ d) $|c| > |b| \sqrt{2}$
 - b) $0 < c < b\sqrt{2}$
- 7) If the function $f(x) = \sin x + \cos x, g(x) =$ $x^2 - 1$, then g(f(x)) is invertible in the domain (2004S)

a)
$$\left[0, \frac{\pi}{2}\right]$$

a)
$$[0, \frac{\pi}{2}]$$
 c) $[-\frac{\pi}{2}, \frac{\pi}{2}]$

b)
$$\left[-\frac{\pi}{4}, \frac{\pi}{4}\right]$$

d)
$$[0, \pi]$$

8) If the function f(x) and g(x) are defined on $R \rightarrow R$ such that (2005S)

$$f(x) = \begin{cases} 0, x \in rational \\ x, x \in irrational \end{cases}$$

$$g(x) = \begin{cases} 0, x \in rational \\ x, x \in irratoinal \end{cases}$$
 then $(f - g)(x)$ is

- a) one-one & onto
- b) neither one-one nor onto
- c) one-one but not onto
- d) onto but not one-one
- 9) X and Y are two sets and $f: X \rightarrow Y$. If $\{f(c) = y; c \subset X, y \subset Y\}$ and $\{f^{-1}(d) = X; d \subset Y, x \subset X\}$, then the true statement is (2005S)

- 10) If $F(x) = \left(f\left(\frac{x}{2}\right)\right)^2 + \left(g\left(\frac{x}{2}\right)\right)^2$ where f''(x) = -f(x) and g(x) = f'(x) and given that F(5) = -f(x)
- 5,then F(10) is equal to (2006,-3M,-1)
 - a) 5

c) 0

b) 10

- d) 15
- 11) Let $f(x) = \frac{x}{(1+x^n)^{\frac{1}{n}}}$ for $n \ge 2$ and

$$g(x) = \underbrace{(f \circ f \circ \dots \circ f)(x)}_{\text{f occurs n times}}$$

.Then $\int x^{n-2}g(x)dx$ equals.

(2007-3 marks)

- a) $\frac{1}{n(n-1)}(1+nx^n)^{1-\frac{1}{n}}$ c) $\frac{1}{n+1}(1+nx^n)^{1+\frac{1}{n}}$ b) $\frac{1}{n-1}(1+nx^n)^{1-\frac{1}{n}}$ d) $\frac{1}{n+1}(1+nx^n)^{1+\frac{1}{n}}$

- 12) Let f, g and h be real-valued functions defined on the interval [0, 1] by $f(x) = e^{x^2} + e^{-x^2}$, $g(x) = xe^{x^2} + e^{-x^2}$ and $h(x) = x^2e^{-x^2}$. If a, b and cdenote, respectively, the absolute maximum of f, g and h on [0,1], then (2010)
 - a) a = b and $b \neq c$ c) $a \neq b$ and $c \neq b$ b) a = c and $a \neq b$ d) a = b = c

(2008S)

- 13) Let $f(x) = x^2$ and $g(x) = \sin x$ for all $x \in R$. Then the set of all x satisfying $(f \circ g \circ g \circ f)(x) =$ $(g \circ g \circ f)(x)$, where $(f \circ g)(x) = f(g(x))$, is (2011)
 - a) $\pm \sqrt{n\pi}$, $n \in \{0, 1, 2....\}$
 - b) $\pm \sqrt{n\pi}, n \in \{1, 2,\}$
 - c) $\frac{\pi}{2} + 2n\pi, n \in \{... -2, -1, 0, 1, 2...\}$
 - d) $\bar{2}n\pi$, $n \in \{... -2, -1, 0, 1, 2...\}$
- 14) The function $f:[0,3] \rightarrow [1,29]$, defined by $f(x) = 2x^3 - 15x^2 + 39x + 1$, is (2012)
 - a) one-one and onto
 - b) onto but not one-one
 - c) one-one but not onto
 - d) neither one-one nor onto
- II. D: MCQs with One or More than One Correct
 - 1) If $y = f(x) = \frac{x+2}{x-1}$ then
 - a) x = f(y)
 - b) f(1) = 3
 - c) y increase with x for x < 1
 - d) f is a rational function on x