(12)公開特許公報 (A)

(11)特許出願公開番号

特開平10-133131

(43)公開日 平成10年(1998)5月22日

(51)Int.Cl. ⁶ G02B 26/10	識別記号 庁内整理番号		F I 技術表示箇所 GO2B 26/10 B D	
13/00 13/18	102		13/00 13/18 審査請求	(4407)
(21)出願番号	特願平8-292026		(71)出願人	000005496 富士ゼロックス株式会社
(22)出願日	平成8年(1996)11月1日		(72)発明者	東京都港区赤坂二丁目17番22号 丸山 耕司 神奈川県足柄上郡中井町境430 グリーン テクなかい 富士ゼロックス株式会社内
			(72)発明者	増田 晃二 神奈川県足柄上郡中井町境430 グリーン テクなかい 富士ゼロックス株式会社内
			(74)代理人	

(54) 【発明の名称】光走査装置

(57)【要約】

【課題】走査ラインのボウを抑えた、小型かつ低コスト の光走査装置を提供することを目的とする。

【特許請求の範囲】

【請求項1】 複数本の光ビームそれぞれにより複数の 被走査体それぞれを走査する光走査装置において、

前記複数本の光ビームを出射する光源と、

前記光源から出射された複数本の光ビームを共通に偏向 する偏向光学素子を含み、該複数本の光ビームを互いに 平行に導く共通光学系と、

前記共通光学系に導かれた複数本の光ビームを相互に異 なる方向に分離する、前記複数本の光ビームに共通の、 前記共通光学系の歪曲収差を補正する方向に湾曲した分 10 離光学素子を含み、前記複数本の光ピームそれぞれを複 数の被走査体それぞれに導く分離光学系とを備えたこと を特徴とする光走査装置。

【請求項2】 前記分離光学素子が、該分離光学素子を 支持する支持体からの力を受けて湾曲してなるものであ ることを特徴とする請求項1記載の光走査装置。

【請求項3】 前記分離光学素子が、該分離光学素子を 支持する支持体からの力とは無関係に湾曲した形状を有 するものであることを特徴とする請求項1記載の光走査

【請求項4】 複数本の光ビームそれぞれにより複数の 被走査体それぞれを走査する光走査装置において、 前記複数本の光ビームを出射する光源と、

前記光源から出射された複数本の光ビームを共通に偏向 する偏向光学素子を含み、該複数本の光ピームを互いに 平行に導く共通光学系と、

前記共通光学系に導かれた複数本の光ビームを相互に異 なる方向に分離する、前記複数本の光ピームに共通の分 離光学素子と、

前記分離光学素子により分離された複数本の光ピームそ 30 れぞれに対応して備えられ、該複数本の光ピームそれぞ れを複数の被走査体それぞれに導く、前記共通光学系の 歪曲収差を補正する方向に湾曲してなる複数の個別光学 素子とを備えたことを特徴とする光走査装置。

【請求項5】 前記個別光学素子が、該個別光学素子を 支持する支持体からの力を受けて湾曲してなるものであ ることを特徴とする請求項4記載の光走査装置。

【請求項6】 前記個別光学素子が、該個別光学素子を 支持する支持体からの力とは無関係に湾曲した形状を有 するものであることを特徴とする請求項4記載の光走査 40 装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、複数本の光ビーム それぞれにより複数の被走査体それぞれを走査する、例 えば、電子写真方式のカラー画像形成装置などに用いら れる光走査装置に関する。

[0002]

【従来の技術】従来、電子写真方式のカラー複写機やカ ラープリンタなどのカラー画像形成装置において、例え 50 に示した光走査装置103a~103dのうちの光走査

ば、記録紙や中間転写ベルトなどの転写媒体の移動方向 に配列された複数の感光体上にそれぞれ異なる色の画像 情報に対応した光ビームを走査してそれぞれの色に対応 する静電潜像を形成し、それらの静電潜像をそれぞれの 色に対応する現像器で現像して可視画像を形成し、それ らの可視画像を、移動する転写媒体上に順次転写するこ とによりカラー画像を形成する、所謂、タンデム型のカ ラー画像形成装置が広く知られている。

【0003】図9は、従来のタンデム型カラー画像形成 装置の一般的な構成を示す模式図である。図9に示すよ うに、このカラー画像形成装置100には、記録紙10 6の搬送方向に配列されたそれぞれY (イエロー)、M (マゼンタ)、C (シアン)、BK (ブラック)の4色 に対応する感光体ドラム101a~101dと、これら の感光体ドラム101a~101dに対応する、帯電器 102a~102d、光走査装置103a~103d、 シリンドリカルミラー104a~104d、および現像 器105a~105dと、搬送ベルト107と、クリー ナ108a~108dと、定着ロール109とが備えら 20 れている。

【0004】一次帯電器102a~102dは、それぞ れ対応する感光体ドラム101a~101dを一様に一 次帯電させる。光走査装置103a~103dは、R (レッド)、G (グリーン)、B (ブルー)のカラーデ ータに所定の処理を施して得られたY (イエロー)、M (マゼンタ)、C(シアン)、BK(ブラック)の画像 データに基づいて変調されたレーザビームを出射する。 シリンドリカルミラー104a~104dは光走査装置 103a~103dから出射されたレーザビームを感光 体ドラム101a~101dに導く。レーザピームの照 射を受けた感光体ドラム101a~101d表面には静 電潜像が形成される。現像器105a~105dは感光 体ドラム101a~101dに形成された静電潜像をそ れぞれY、M、C、およびBKのトナーで現像して感光 体ドラム101a~101d上に各色のトナー像を形成 する。感光体ドラム101a~101d上に形成された それぞれの色のトナー像は、感光体ドラム101a~1 0 1 dの回転に伴ってそれぞれの転写位置に移動する。 それぞれの色のトナー像が転写位置に移動するタイミン グに合わせて搬送ベルト7は記録紙6を感光体ドラム1 01a~101dの各転写位置に順次搬送し、感光体ド ラム101a~101d上に形成された各色トナー像が 記録紙106上に順次転写される。転写が済んだ記録紙 106は定着ロール109に搬送され、転写像の定着が 行われる。クリーナ108a~108dは転写後の感光 体ドラム101a~101d上に残留したトナーを除去 する。

【0005】図10は、図9のカラー画像形成装置に用 いられる光走査装置の構成図である。図10には、図9

装置103aの構成が示されている。光走査装置103 b~103dは光走査装置103aと同一の構成のた め、説明を省略する。光走査装置103 aは、画像デー 夕に基づき発光時間制御回路110で制御されることに より変調されたレーザピームを出射するレーザダイオー ド111と、レーザダイオード111から出射されたレ ーザピームを集光するコリメータレンズ112と、コリ メータレンズ112で集光され焦点から拡散していくレ ーザビームを集光するシリンドリカルレンズ113とシ リンドリカルレンズ113を通過したレーザビームを反 10 射偏向するポリゴンミラー114と、ポリゴンミラー1 14によって反射偏向したレーザビームを主走査方向に 集束させて感光体ドラム101aの露光ライン上を矢印 A方向に等速度で走査させる f θ レンズ 115とを備え ている。感光体ドラム101aの露光ラインの延長線上 の端部には照射位置検出センサ116が設けられてお り、照射位置検出センサ116の出力に基づいて感光体 ドラム101aへの画像の書込みタイミングが制御され るようになっている。

【0006】このような構成の光走査装置103a~1 20 03 dにより、図9のカラー画像形成装置100の感光 体ドラム101a~101d上に、Y、M、C、BKの 画像データに基づいて変調されたレーザビームが走査さ れ、予め帯電器102a~102dによる一次帯電を受 けて、回転する感光体ドラム101a~101dが露光 されて感光体ドラム101a~101dの表面に静電潜 像が形成される。

【0007】このような一般的なタンデム型のカラー画 像形成装置では、複数の感光体ドラムにそれぞれ対応す る複数の光走査装置によりレーザビームの露光が行われ 30 るため画像形成装置が大型化すると共にコストアップに なるという問題がある。そこで最近では、複数の感光体 ドラムを露光する複数本のレーザビームに関連する光学 部品を共通化することにより、小型化および低コスト化 を図る光走査装置が提案されている。

【0008】図11は、従来の、光学部品を共通化した 光走査装置の構成図である。図11に示すように、この 光走査装置120には、Y、M、C、BKの画像データ にそれぞれ基づいて変調された4本のレーザビームを出 射する半導体レーザアレイ125と、半導体レーザアレ 40 イ125から出射された4本のレーザビームを平行ビー ムにするコリメータレンズ126と、コリメータレンズ 126を通過した4本のレーザビームをそれぞれ副走査 方向に集束させるシリンドリカルレンズ127と、シリ ンドリカルレンズ127を通過した4本のレーザビーム を所定の方向に反射する反射ミラー128と、反射ミラ 一128で反射した4本のレーザビームを共通に反射偏 向するポリゴンミラー129と、ポリゴンミラー129 で反射偏向された4本のレーザビームをそれぞれ主走査 方向、および副走査方向に集束させて感光体ドラム 10-50-13 に示すように重ね合わされることにより、記録紙上

1a~101dの露光ライン上を等速度で走査させるf θ レンズ130と、 $f\theta$ レンズ130を通過した4本の レーザビームを所定の方向に反射する反射ミラー131 と、反射ミラー131で反射した4本のレーザビームを 異なった角度の4つの入射面を有する4枚のミラーを組 み合せて成り4本のレーザビームを感光体ドラム101 a~101dの配列位置に応じた方向に分離する分離多 面鏡132と、分離多面鏡132で分離された4本のレ ーザピームをそれぞれ対応する感光体ドラム101a~ 101dに導く最終ミラー133a~133dと、最終 ミラー133a~133dで反射したレーザビームをそ れぞれ副走査方向に集束させるシリンドリカルレンズ1 34a~134dとが備えられている。

【0009】このような構成の光走査装置120におい て、半導体レーザアレイ125からY、M、C、BKの 画像データに基づいて変調された4本のレーザビームが 出射されると、それら4本のレーザビームはポリゴンミ ラー129で共通に反射偏向されf $\, heta$ レンズ130およ び反射ミラー131を介して分離多面鏡132に入射 し、分離多面鏡132により感光体ドラム101a~1 01 d の配列位置に応じた方向に分離される。分離され た4本のレーザビームはそれぞれ対応する感光体ドラム 101a~101dに導く最終ミラー133a~133 dで反射され、予め一次帯電され回転する感光体ドラム 1 a~1 dを露光し、感光体ドラム1a~1 d表面に静 電潜像を形成する。

[0010]

【発明が解決しようとする課題】しかし、このような構 成の光走査装置では、4本のレーザビームの全て、ある いは少なくとも3本のレーザビームは光学系の光軸から 外れた位置を通るため、これらのレーザビームが感光体 ドラム101a~101d上を走査して感光体ドラム1 01a~101d上に描く主走査ラインは、光学系の歪 曲収差により、ボウ(bow)とよばれる弓状に歪んだ 形状となる。各色画像の書き出しタイミングなどを制御 することによって、できるかぎり4色分の主走査ライン が重なり合うように調整しても各色毎のボウの差のため に副走査方向の色ずれの発生が避けられずカラー画像の 画質を低下させる結果となる。

【0011】図12は、光学系の歪曲収差により生じる 感光体ドラム上の主走査ラインのボウを模式的に示す図 である。図12に示すように、感光体ドラム101a~ 101d上に描かれる主走査ライン117a~117d はそれぞれ副走査方向に弓状に歪んだ形状をしており、 互いに異なる曲率を持つボウが形成されている。

【0012】図13は、各色毎の主走査ラインのボウの 差により記録紙上に副走査方向の色ずれが生じる様子を 示す模式図である。図12に示した各色毎に曲率の異な るボウを有する主走査ライン117a~117dが、図 に副走査方向の色ずれが生じる。図14は、図12に示 したボウとは反対の方向に湾曲した主走査ラインのボウ を模式的に示す図である。

【0013】図14に示すように、感光体ドラム101 a~101d上に描かれる主走査ライン118a~11 8dはそれぞれ、図12における主走査ライン117a ~117dと反対の方向に湾曲している。光学系によっ ては、このように、図12に示したボウと反対の方向に 湾曲したボウを示すものもある。

【0014】なお、図12、図13、および図14はい 10 ずれも説明の都合上、ボウの曲率は誇張して描かれてい る。このようなボウを補正するための技術として、特開 平6-286226号公報には、走査光を平行平板ガラ スに斜めに入射すると走査光の軌跡が弓状に曲がること を利用し、レーザビームの光軸に対し斜めに配置した平 行平板ガラスを用いることにより、光学系で生じるボウ を相殺するようにした光走査装置が開示されている。

【0015】しかしながら、このように各レーザビーム の光路中に平行平板ガラスを挿入することは光走査装置 の小型化、低コスト化を図る上での障害となりやすい。 すなわち、小型化すべき光走査装置内に4本の平行平板 ガラスを互いに他の光路と干渉させずに設置するための スペースを確保することが難しく、また、4本の平行平 板ガラスをそれぞれ独立に支持するための部品点数の増 加がコストの増加を招きやすい。

【0016】本発明は、上記の事情に鑑み、走査ライン のボウを抑えた、小型かつ低コストの光走査装置を提供 することを目的とする。

[0017]

【課題を解決するための手段】上記の目的を達成する本 30 発明の第1の光走査装置は、複数本の光ピームそれぞれ により複数の被走査体それぞれを走査する光走査装置に おいて、上記複数本の光ビームを出射する光源と、上記 光源から出射された複数本の光ビームを共通に偏向する 偏向光学素子を含み、複数本の光ビームを互いに平行に 導く共通光学系と、上記共通光学系に導かれた複数本の 光ビームを相互に異なる方向に分離する、上記複数本の 光ビームに共通の、上記共通光学系の歪曲収差を補正す る方向に湾曲した分離光学素子を含み、上記複数本の光 ビームそれぞれを複数の被走査体それぞれに導く分離光 40 学系とを備えたことを特徴とする。

【0018】ここで、上記分離光学素子が、その分離光 学素子を支持する支持体からの力を受けて湾曲してなる ものであってもよく、また、上記分離光学素子が、その 分離光学素子を支持する支持体からの力とは無関係に湾 曲した形状を有するものであってもよい。また、上記の 目的を達成する本発明の第2の光走査装置は、複数本の 光ピームそれぞれにより複数の被走査体それぞれを走査 する光走査装置において、上記複数本の光ビームを出射 する光源と、上記光源から出射された複数本の光ピーム 50 に入射する4本のレーザビームの中心を通りそれらのレ

を共通に偏向する偏向光学素子を含み、複数本の光ビー ムを互いに平行に導く共通光学系と、上記共通光学系に 導かれた複数本の光ビームを相互に異なる方向に分離す る、上記複数本の光ビームに共通の分離光学素子と、上 記分離光学素子により分離された複数本の光ビームそれ それに対応して備えられ、複数本の光ピームそれぞれを 複数の被走査体それぞれに導く、上記共通光学系の歪曲 収差を補正する方向に湾曲してなる複数の個別光学素子 とを備えたことを特徴とする。

【0019】ここで、上記個別光学素子が、その個別光 学素子を支持する支持体からの力を受けて湾曲してなる ものであってもよく、また、上記個別光学素子が、その 個別光学素子を支持する支持体からの力とは無関係に湾 曲した形状を有するものであってもよい。

[0020]

【発明の実施の形態】以下、本発明の実施形態について 説明する。図1は、本発明の各実施形態に共通な光走査 装置の概要図である。この光走査装置20は、従来技術 の説明の項で説明したカラー画像形成装置100の各光 走査装置103a~103d、シリンドリカルミラー1 04 a~104 dに代わってカラー画像形成装置100 に組み込まれて使用される。

【0021】図1に示すように、この光走査装置20に は、Y、M、C、BKの画像データに基づいて変調され た4本のレーザビームを出射する半導体レーザアレイ2 5と、半導体レーザアレイ25から出射された拡散する 4本のレーザビームをそれぞれ平行ビームにするコリメ ータレンズ26と、コリメータレンズ26を通過した4 本のレーザビームをそれぞれ副走査方向に集束させるシ リンドリカルレンズ27と、シリンドリカルレンズ27 を通過した4本のレーザビームを所定の方向に反射する 反射ミラー28と、反射ミラー28で反射した4本のレ ーザビームを反射偏向するポリゴンミラー29と、ポリ ゴンミラー29で反射偏向した4本のレーザビームをそ れそれ主走査方向および副走査方向に集束させて感光体 ドラム24a~24dの露光ライン上を等速度で走査さ せる2枚以上のレンズで構成されたfhetaレンズ30と、 $f \theta$ レンズ30を通過した4本のレーザピームを所定の 方向に反射する反射ミラー31と、反射ミラー31で反 射した4本のレーザビームを感光体ドラム24a~24 dの配列位置に応じた方向に分離する分離多面鏡32 と、分離多面鏡32で分離された4本のレーザビームを それぞれ対応する感光体ドラム24a~24dに導く最 終ミラー33a~33dと、最終ミラー33a~33d で反射したレーザビームをそれぞれ副走査方向に集束さ せるシリンドリカルレンズ34a~34dとが備えられ ている。

【0022】なお、分離多面鏡32の詳細については後 述する。最終ミラー33a~33dは、分離多面鏡32

ーザビームの光軸に平行な面に関して対称で、かつ、感 光体ドラム24 a~24 dの配列位置に応じて分離多面 鏡32の反射面32a~32dの反射角との関係を含め 半導体レーザアレイ25から感光体ドラム24a~24 dまでのそれぞれの光路長が全て等しくなるように設定 された位置に配置されている。

【0023】筐体35は、レーザビームを筐体35外に 出射する出射窓43 aが開口された出射窓支持部43を 有している。分離多面鏡32はこの出射窓支持部43で 筐体35に支持されているほか、他の光学部品も筐体3 10 5内に収容され筐体35に一体的に支持されている。上 記の光学部品のうち、光源である半導体レーザアレイ 2 5から出射された4本のレーザビームを共通に偏向する 偏向光学素子 (ポリゴンミラー29) を含み、これら4 本のレーザビームを互いに平行に導くコリメータレンズ 26、シリンドリカルレンズ27、反射ミラー28、f θ レンズ30、および反射ミラー31が本発明にいう共 通光学系に相当する。また、上記の共通光学系に導かれ た4本のレーザビームを相互に異なる方向に分離する、 上記4本のレーザビームに共通の、上記4本のレーザビ ームそれぞれを4つの被走査体(感光体ドラム24a~ 24d) それぞれに導く、分離多面鏡32、最終ミラー 33a~33d、およびシリンドリカルレンズ34a~ 34 dが本発明にいう分離光学系に相当する。また、分 離多面鏡32が本発明にいう分離光学素子に相当する。 【0024】なお、上記の実施形態においては、シリン ドリカルレンズ34a~34dが用いられているが、シ リンドリカルレンズ34a~34dを用いる代わりに、 最終ミラー33a~33dとしてシリンドリカルミラー を用いてレーザビームを副走査方向に集束させるような 30 構成としてもよい。これは後述する他の実施形態におい ても同様である。

【0025】次に、分離多面鏡32についてさらに詳し く説明する。図2は、本発明の各実施形態に共通に用い られる分離多面鏡の概要図である。図2に示すように、 分離多面鏡32は4つの反射面32a~32dを有して おり、これらの各反射面32a~32dがレーザビーム の主走査方向 (紙面に垂直な方向) に長く延びた形状を している。各反射面32a~32dは、入射する4本の レーザビームがそれぞれの反射面の中心を通って上記主 40 走査方向に走査されるような位置に互いに並列に配列さ れており、各反射面32a~32dの反射角は、感光体 ドラム24a~24d (図1参照) の配列位置に応じ て、最終ミラー33a~33dの位置を含め半導体レー ザアレイ25から感光体ドラム24a~24dまでの各 レーザビームの光路長が互いに等しくなるように設定さ れている。

【0026】この分離多面鏡は、各レーザビームを相互 に異なる方向に分離する、共通共通光学系の歪曲収差を 補正する方向に湾曲した状態で支持されている。分離多 50 た形状を有する分離多面鏡の態様について説明する。図

面鏡を、湾曲した状態で支持されている態様としては、 分離多面鏡を支持する支持体からの力を受けて分離多面 鏡が湾曲してなる態様と、分離多面鏡を支持する支持体 からの力とは無関係に湾曲した形状を有する分離多面鏡 の態様とに大別することができる。

【0027】以下に、先ず、支持体からの力を受けて分 離多面鏡が湾曲してなる態様について説明する。図3 は、本発明の第1の光走査装置における分離多面鏡の第 1の実施形態を示す図であり、図3 (a) はその正面 図、図3 (b) および図3 (c) は、図3 (a) のA-A'断面図およびB-B'断面図である。なお、説明の 都合上、図3以降の図面におけるボウの曲率は誇張して 描かれている。

【0028】図3 (a)、図3 (b)、および図3 (c) に示すように、第1の実施形態は、分離多面鏡3 2の両端部を紙面に向かって上方に凹状に湾曲させるこ とによって共通光学系の歪曲収差を補正する場合に適用 される。そのため、本実施形態では、分離多面鏡支持体 を、分離多面鏡32の中央部を筐体35あるいは筐体3 5の出射窓支持部43に固定する中央部支持体41b と、分離多面鏡32の両端部を上下動自在に支持する端 部支持体41a,41aとの3部材により構成する。管 体35の端部支持体41a,41aの直下には分離多面 鏡32の各端部を上下動させるためのボルト44が設け られている。本実施形態では、分離多面鏡32を光走査 装置に取り付けた後、ポルト44により端部支持体41 a,41aを押し上げることにより分離多面鏡32を光 路の上流側に向かって凹状に湾曲させて共通光学系の歪 曲収差を補正する。

【0029】図4は、本発明の第1の光走査装置におけ る分離多面鏡の第2の実施形態を示す図であり、図4 (a) はその正面図、図4 (b) および図4 (c) は、 図4 (a) のA-A, 断面図およびB-B, 断面図であ る。図4(a)、図4(b)、図4(c)に示すよう に、第2の実施形態は、分離多面鏡32の両端部を紙面 に向かって上方に凸状に湾曲させることによって共通光 学系の歪曲収差を補正する場合に適用される。そのた め、本実施形態では、分離多面鏡支持体を、分離多面鏡 32の両端部を筐体35あるいは筐体35の出射窓支持 部43に固定する端部支持体46a,46aと、分離多 面鏡32の中央部を上下動自在に支持する中央部支持体 46 bとの3部材により構成する。筐体35の中央部支 持体46 bの直下には分離多面鏡32の中央部を上下動 させるためのポルト44が設けられている。本実施形態 では、分離多面鏡32を光走査装置に取り付けた後、ボ ルト44により中央部支持体46bを押し上げることに より分離多面鏡32を光路の上流側に向かって凸状に湾 曲させて共通光学系の歪曲収差を補正する。

【0030】次に、支持体からの力とは無関係に湾曲し

5は、本発明の第1の光走査装置における分離多面鏡の 第3および第4の実施形態を示す図である。図5 (a) に示すように、第3の実施形態では、予め研磨段階で、 上方に凹状に湾曲した鏡面32)aを有する形状に形成 された分離多面鏡32,が用いられ、この分離多面鏡3 2'の鏡面32'aによって共通光学系の歪曲収差が補 正される。分離多面鏡32'は、分離多面鏡32'の両 端を支持する端部支持体47により筐体35上に固定さ れる。

【0031】一方、図5(b)に示すように、第4の実 10 施形態では、予め研磨段階で、上方に凸状に湾曲した鏡 面32" aを有する形状に形成された分離多面鏡32" が用いられ、この分離多面鏡32"の鏡面32" aによ って共通光学系の歪曲収差が補正される。分離多面鏡3 2"もまた、分離多面鏡32"の両端を支持する端部支 持体47により筺体35上に固定される。

【0032】図6は、本発明の第1の光走査装置におけ る分離多面鏡の第5および第6の実施形態を示す図であ る。図6 (a) および図6 (b) に示すように、第5ま たは第6の実施形態では、予め研磨段階で、上方に凹状 に湾曲した鏡面32,aあるいは上方に凸状に湾曲した 鏡面32"aを有する形状に形成された分離多面鏡3 2' あるいは分離多面鏡32"が用いられるが、分離多 面鏡32、あるいは分離多面鏡32"は、筐体35の出 射窓支持部43に直接支持されずに、筐体35に取り付 けられた端部支持体48のみにより筐体35に固定され ている。

【0033】光走査装置の設計上、あるいはユニット組 立手順の都合上、筐体の出射窓支持部部分で分離多面鏡 を直接支持するよりも、分離多面鏡の両端部のみで分離 多面鏡を支持するほうが望ましく、前述の第3および第 4の実施形態のように分離多面鏡の両端部と中央部とを 同時に支持することが困難なような場合には、上述の第 5または第6の実施形態に示すように端部支持体48の みにより分離多面鏡を支持することができる。

【0034】さらに、上記第1の実施形態から第6の実 施形態までをくみ合わせることによって、予め研磨段階 で、上方に凹状あるいは凸状に湾曲した鏡面に研磨され た分離多面鏡を、湾曲度を上下に調製可能な支持機構と 組み合わせて用いることも有効である。図7は、本発明 40 の光走査装置の走査光学系の光軸を含む平面における展 開図である。図7(a)は、副走査方向の展開図であ り、図7 (b) は、主走査方向の展開図である。

【0035】図7 (a) に示すように、副走査方向で は、半導体レーザアレイ25から出射されたレーザビー **ムは、コリメータレンズ26およびシリンドリカルレン** ズ27によりポリゴンミラー29上で集束し、次いで f θレンズ30により分離多面鏡32の反射面32a~3 2 d上で集束し、最終ミラー33 aを経てシリンドリカ ルレンズ34aにより感光体ドラム24a上で集束す

る。すなわち、副走査方向では、半導体レーザアレイ2 5の出射面とポリゴンミラー29、また、ポリゴンミラ ー29と分離多面鏡32、さらに、分離多面鏡32と感 光体ドラム24aのドラム面が互いに光学的に共役関係 になっている。

10

【0036】一方、図7(b)に示すように、主走査方 向では、半導体レーザアレイ25から出射されたレーザ ビームは、コリメータレンズ26により平行ビームにさ れ、次いでfhetaレンズ3hetaにより感光体ドラム2heta名上 に結像される。このような構成の走査光学系において、 Y、M、C、BKの画像データに基づいて変調された4 本のレーザビームが半導体レーザアレイ25から出射さ れると、コリメータレンズ26により平行ビームにされ た後、シリンドリンカルレンズ27により副走査方向に 集束され、さらにポリゴンミラー29で反射偏向され る。反射偏向された4本の偏向ビームはf θ レンズ30により主走査方向、および副走査方向にそれぞれ集束さ れ、反射ミラー31により分離多面鏡32に導かれ、そ こで感光体ドラム24a~24dの配列位置に応じた方 向に分離される。分離された4本の光ビームはそれぞれ 対応する感光体ドラム24a~24dに導く反射ミラー 33a~33dで反射され、シリンドリカルレンズ34 a~34dを経て予め一次帯電を受けて回転する感光体 ドラム24a~24dを露光し、感光体ドラム24a~ 24dの表面に静電潜像を形成する。

【0037】次に、上記の各実施形態における実際の寸 法例について説明する。半導体レーザアレイ25のアレ イ間隔は250μm、コリメータレンズ26の焦点距離 は28.2mm、シリンドリカルレンズ27の焦点距離 は225.2mm、f θレンズ30から分離多面鏡32 までの距離は100mm、分離多面鏡32からシリンド リカルレンズ34a~34dまでの距離は85mm、シ リンドリカルレンズ34a~34dから感光体ドラム2 4 a~2 4 dまでの距離は106 mm、感光体ドラム2 $4a\sim24d$ 上のレーザビーム径は 50μ mである。ま た、感光体ドラム24a~24dの各中心間の距離は5 0 mm、走査幅は297 mmである。

【0038】図8は、本発明の上記各実施形態における 走査ラインのボウの様子を示す模式図である。図8

(a) は分離多面鏡32を湾曲させない場合、図8 (b) は分離多面鏡32を湾曲させた場合をそれぞれ示 す。図8 (a) に示すように、分離多面鏡32を湾曲さ せないときは、各色の走査ライン21a~21dは光軸 の外側に凸のボウを有しているが、分離多面鏡32を湾 曲させたときは、図8(b)に示すように、Y、M、 C、BKの4色分の画像を重ねた場合の色ずれは、分離 多面鏡32を湾曲させないときの210μmに比べて約 5分の1に減少しており、出力画像の画質が大幅に向上 している。これは、光路の上流側に凸に湾曲した分離多 面鏡32による像面湾曲の効果が、光軸の外側に凸のボ

高解像度化を図るようにしてもよい。

ウを打ち消す作用をするためである。ところで、分離多面鏡32を湾曲させると、外側の反射面32a,32dの、水平面に対する傾きが内側の反射面32b,32cのそれに比べて大きくなるため、外側の反射面32b,32dにおける像面湾曲の効果は内側の反射面32b,32cよりも大きくなる。しかし、ボウは光軸から離れるほど大きく生じるため、外側で像面湾曲の効果が大きくなるのはボウ補正には都合がよく、各色の走査ライン22a~22dが一様に直線に近くなるという効果を有する。

【0039】次に、本発明の第2の光走査装置の実施形態について説明する。本発明の第2の光走査装置の全体の構成は図1に示した本発明の第1の光走査装置の実施形態と同一なので全体の構成についての説明は省略する。第2の光走査装置の、第1の光走査装置との相違点は、第2の光走査装置においては分離多面鏡32によるボウ補正は行わずに、最終ミラー33a~33dを湾曲させることによりボウ補正を行う点にある。

【0040】ここで、本実施形態における最終ミラー3 3a~33dは、本発明にいう個別光学素子に相当し、 最終ミラー支持体42a~42dは、本発明にいう個別 光学素子を支持する支持体に相当する。最終ミラー33 $a\sim33d$ を湾曲させるには、本発明の第1の光走査装 置の第1あるいは第2の実施形態(図3、図4参照)に おいて説明した分離多面鏡の湾曲の方法を、最終ミラー 33 a~33d (図1参照) およびそれらを支持する最 終ミラー支持体42a~42dに適用すればよい。最終 ミラー33a~33dを湾曲させることによっても分離 多面鏡32を湾曲させるのと同様、像面湾曲の効果が得 られるので、最終ミラー33a~33dのそれぞれの湾 曲度合いを個別に調整することにより各走査ラインのボ ウを低減することができる。また、本発明の第1の光走 査装置の第5あるいは第6の実施形態(図6参照)と同 様、最終ミラー33a~33dを予め研磨段階で凹状あ るいは凸状に湾曲した鏡面に研磨された形状としたもの をそのまま光走査装置に取り付けるようにしてもよい。 その場合は、最終ミラー33a~33dを両端部のみで 支持することによりミラー面湾曲の効果を得ることがで きる。本実施形態においても、分離多面鏡湾曲の場合と 同様、210 μ mの色ずれを35 μ m程度まで小さくす 40 ることができ、カラー出力画像の品質を向上させること ができる。

【0041】なお、上記の各実施形態では、4本のレーサビームを感光体ドラム24a~24d(図1参照)の配列位置に対応した方向に分離する手段として分離多面鏡を用いているが、上記手段は分離多面鏡のみに限定されるものではなく、回折格子アレイ、レンズアレイ、あるいは凹面鏡アレイなどを用いてもよい。また、各感光体ドラム24a~24dを、互いに近接する複数のレーザビームで走査することにより走査速度の高速化および 50 20

[0042]

【発明の効果】以上説明したように、本発明の第1の光 走査装置によれば、複数本の光ピームを相互に異なる方 向に分離する分離光学素子が、共通光学系の歪曲収差を 補正する方向に湾曲してなるものであるため、被走査体 の走査ラインのボウの曲率が軽減される。従ってこの光 走査装置を例えばカラー画像形成装置に用いた場合は、 歪曲収差に基づく各色間の色ずれを抑えて出力カラー画 像の画質を向上させることができる。

【0043】また、本発明の第2の光走査装置によれば、分離光学素子により分離された複数本の光ビームそれぞれに対応して備えられ、該複数本の光ビームそれぞれを、複数の被走査体それぞれに導く複数の個別光学素子が、共通光学系の歪曲収差を補正する方向に湾曲してなるものであるため、上記第1の光走査装置と同様、被走査体の走査ラインのボウの曲率を軽減させることができる。

【図面の簡単な説明】

【図1】本発明の各実施形態に共通な光走査装置の概要 図である。

【図2】本発明の各実施形態に共通に用いられる分離多 面鏡の概要図である。

【図3】本発明の第1の光走査装置における分離多面鏡 の第1の実施形態を示す図である。

【図4】本発明の第1の光走査装置における分離多面鏡の第2の実施形態を示す図である。

【図5】本発明の第1の光走査装置における分離多面鏡の第3および第4の実施形態を示す図である。

) 【図6】本発明の第1の光走査装置における分離多面鏡 の第5および第6の実施形態を示す図である。

【図7】本発明の光走査装置の走査光学系の光軸を含む 平面における展開図である。

【図8】本発明の各実施形態における走査ラインのボウの様子を示す模式図である。

【図9】従来のタンデム型カラー画像形成装置の一般的 な構成を示す模式図である。

【図10】図9のカラー画像形成装置に用いられる光走 査装置の構成図である。

10 【図11】従来の、光学部品を共通化した光走査装置の 構成図である。

【図12】光学系の歪曲収差により生じる感光体ドラム 上の主走査ラインのボウを模式的に示す図である。

【図13】各色毎の主走査ラインのボウの差により記録 紙上に副走査方向の色ずれが生じる様子を示す模式図で ある。

【図14】図12に示したボウとは反対の方向に湾曲した主走査ラインのボウを模式的に示す図である。

【符号の説明】

0 2 0 光走査装置

感光体ドラム 24, 24a~24d

13

半導体レーザアレイ 2 5

26 コリメータレンズ

シリンドリカルレンズ 27

反射ミラー 28

ポリゴンミラー 29

fθレンズ 3.0

反射ミラー 3 1

分離多面鏡 3 2

 $32a\sim32d$ 反射面

32', 32" 分離多面鏡

32'a.32"a 鏡面

33a~33d 最終ミラー

シリンドリカルレンズ $34a\sim34d$

筐体 3 5

端部支持体 41a

中央部支持体 41b

42a~42d 最終ミラー支持体

出射窓支持部 43

出射窓 43a

ボルト 44

端部支持体 46a

中央部支持体 46b

カラー画像形成装置 100

101a~101d 感光体ドラム

102a~102d 帯電器

103a~103d 光走査装置

【図13】

シリンドリカルミラー 104a~104d 現像器

105a~105d 記録紙

106

搬送ベルト 107 クリーナ 108a~108d

定着ロール 109

発光時間制御回路 1 1 0

レーザダイオード 111

コリメータレンズ 112

シリンドリカルレンズ 10 1 1 3

> ポリゴンミラー 114

fθレンズ 115

照射位置検出センサ 116

117a~117d, 118a~118d 主走査ラ

イン

光走査装置 120

半導体レーザアレイ 1 2 5

コリメータレンズ 126

シリンドリカルレンズ 127

反射ミラー 20 128

> ポリゴンミラー 129

fθレンズ 130

反射ミラー 131

分離多面鏡 132

最終ミラー 133

134a~134d シリンドリカルレンズ

[図2]

OPTICAL SCANNING DEVICE

Japanese Laid-open Patent No. Hei-10-133131

Laid open on: May 22, 1998

Application No. Hei-8-292026

Filed on: November 1, 1996

Inventor: Koji MARUYAMA,

Koji MASUDA

Applicant: FUJI XEROX Co., Ltd.

Patent attorney: Masaki YAMADA, et al.

SPECIFICATION

[TITLE OF THE INVENTION] Optical Scanning Device

[ABSTRACT]

[Theme] To provide a compact and yet low-cost optical scanning device, with which the bow of the scanning line is restricted. [Solution Means] An optical scanning device 20 is equipped with a semiconductor laser array 25, which emits four laser beams that are modulated based on Y, M, C, and BK image data, a separating polygon mirror 32, which is curved in the direction of correcting the distortion of a common optical system, comprised of a collimator lens 26, a cylindrical lens 27, a reflecting mirror 28, a polygon mirror 29, an $f\theta$ lens 30, and

a reflecting mirror 31, final mirrors 33a to 33d, and cylindrical lenses 34a to 34d.

[WHAT IS CLAIMED IS:]

[Claim 1] An optical scanning device, which scans a plurality of scanned objects respectively by means of a plurality of light beams, said optical scanning device comprising

a light source, which emits said plurality of light beams, a common optical system, which contains a deflecting optical element that deflects in common the plurality of light beams that have been emitted from said light source and guides said plurality of light beams in a mutually parallel manner, and a separating optical system, which guides the plurality of light beams respectively to the plurality of scanned objects and contains a separating optical element, which separates the plurality of light beams that have been guided by said common optical system into mutually different directions, is provided in common for said plurality of light beams, and is curved in the direction of correction of distortion due to said common optical system.

[Claim 2] An optical scanning device as set forth in Claim 1, wherein said separating optical element is curved by receiving a force from a supporting member that supports said separating optical element.

[Claim 3] An optical scanning device as set forth in Claim 1, wherein said separating optical element has a shape that is curved with no relation to the force from a supporting member that supports said separating optical element.

[Claim 4] An optical scanning device, which scans a plurality of scanned objects respectively by means of a plurality of light beams, said optical scanning device comprising

a light source, which emits said plurality of light beams, a common optical system, which contains a deflecting optical element that deflects in common the plurality of light beams that have been emitted from said light source and guides said plurality of light beams in a mutually parallel manner,

a separating optical element, which separates the plurality of light beams that have been guided by said common optical system into mutually different directions and is provided in common for said plurality of light beams, and

a plurality of individual optical elements, which are provided to correspond respectively to said plurality of light beams that have been separated by said separating optical element, guide the plurality of light beams respectively to the plurality of scanned objects, and are curved in the direction of correction of distortion due to said common optical system.

[Claim 5] An optical scanning device as set forth in Claim

4, wherein said individual optical elements are curved by receiving a force from supporting members that support said individual optical elements.

[Claim 6] An optical scanning device as set forth in Claim 4, wherein said individual optical elements have shapes that are curved with no relation to the force from supporting members that support said individual optical elements.

[DETAILED DESCRIPTION OF THE INVENTION]

[Field of the Art] This invention concerns an optical scanning device, which scans a plurality of scanned objects respectively by means of a plurality of light beams and is used for example in an electrophotographic type color image forming device, etc. [0002]

[Prior Arts] So-called tandem type color image forming devices, which scan light beams, each of which corresponds to image information of different colors, along a plurality of photoconductor members aligned in the direction of movement of a recording paper, intermediate transfer belt, or other transfer medium to form electrostatic latent images, which correspond respectively to the colors, develop these electrostatic latent images by means of developers, corresponding respectively to the colors, to form visible images,

and successively transfer these visible images onto the moving transfer medium to form color images, have been widely known priorly among electrophotographic type color copiers, color printers, and other color image forming devices.

[0003] Fig. 9 is a schematic view, which shows the general arrangement of a prior-art tandem type color image forming device. As shown in Fig. 9, this color image forming device 100 is equipped with photoconductor drums 101a to 101d, which are aligned in the direction in which recording paper 106 is conveyed and respectively correspond to the four colors of Y (yellow), M (magenta), C (cyan), and BK (black), and chargers 102a to 102d, optical scanning devices 103a to 103d, cylindrical mirrors 104a to 104d, and developers 105a to 105d, which respectively correspond to photoconductor drums 101a to 101d. Color image forming device 100 is also equipped with conveyor belt 107, cleaners 108a to 108d, and fixing roller 109.

[0004] The primary chargers 102a to 102d respectively perform uniform primary charging of the corresponding photoconductor drums 101a to 101d. Optical scanning devices 103a to 103d emit laser beams that have been modulated based on Y (yellow), M (magenta), C (cyan), and BK (black) image data obtained by performing predetermined processes on R (red), G (green), and B (blue) color data. Cylindrical mirrors 104a to 104d guide

the laser beams emitted from optical scanning devices 103a to 103d to photoconductor drums 101a to 101d. Electrostatic latent images are formed on the surfaces of photoconductor drums 101a to 101d, which have been illuminated by the laser beams. Developers 105a to 105d uses the Y, M, C, and BK toners respectively to develop the electrostatic latent images that have been formed on photoconductor drums 101a to 101d to form toner images of the respective colors on photoconductor drums 101a to 101d. The toner images of the respective colors that have been formed on photoconductor drums 101a to 101d are moved to the respective transfer positions in accompaniment with the rotation of photoconductor drums 101a to 101d. Conveyor belt 7 conveys recording paper 6 to the respective transfer positions of photoconductor drums 101a to 101d successively synchronic with the movement of the toner images of the respective colors to the transfer positions, and the toner images of the respective colors that have been formed on photoconductor drums 101a to 101d are successively transferred onto recording paper 106. When the transfer has been completed, recording paper 106 is conveyed to fixing roller 109 to fix the transferred image. Cleaners 108a to 108d remove the residual toner on photoconductor drums 101a to 101d after the transfer process.

[0005] Fig. 10 is a block diagram of the optical scanning device

used in the color image forming device of Fig. 9. The arrangement of optical scanning device 103a, among the optical scanning devices 103a to 103d shown in Fig. 9, is shown in Fig. 10. Descriptions of optical scanning devices 103b to 103d shall be omitted as these have the same arrangement as optical scanning device 103a. Optical scanning device 103a is equipped with a laser diode 111, which emits a laser beam that is modulated by control by an emission duration control circuit 110 based on the image data, a collimator lens 112, which converges the laser beam emitted from laser diode 111, a cylindrical lens 113, which converges the laser beam that has been converged by collimator lens 112 and has diverged from the focal point onwards, a polygon mirror 114, which reflects and deflects the laser beam that has passed through cylindrical lens 113, and an fheta lens 115, which converges the laser beam, which has been reflected and deflected by polygon mirror 14, in the main scanning direction and causes the laser beam to scan along the exposure line of photoconductor drum 101a at a uniform speed in the direction of arrow A. An illumination position detection sensor 116 is provided at the end of the extension of the exposure line of photoconductor drum 101a, and the timing of the writing of the image onto photoconductor drum 101a is controlled based on the output of this illumination position detection sensor

116.

[0006] By means of optical scanning devices 103a to 103d with arrangements such as those described above, laser beams, which have been modulated based on Y, M, C, and BK image data, are scanned across photoconductor drums 101a to 101d of the color image forming device 100 of Fig. 9, and the rotating photoconductor drums 101a to 101d, which had been priorly subjected to primary charging by chargers 102a to 102d, are exposed so that electrostatic latent images are formed on the surfaces of photoconductor drums 101a to 101d.

[0007] Such a general, tandem-type color image forming device has the problem that the image forming device becomes large and high in cost since exposure by the laser beams is carried out by a plurality of optical scanning devices that respectively correspond to a plurality of photoconductor drums. Thus recently, optical scanning devices have been proposed with which compact size and lower cost are achieved by common use of optical parts related to the plurality of laser beams that expose the plurality of photoconductor drums.

[0008] Fig. 11 is ablock diagram of a prior-art optical scanning device, with which optical parts are put to use in common. As shown in Fig. 11, this optical scanning device 120 is equipped with a semiconductor laser array 125, which emits four laser

beams, which have been modulated based on Y, M, C, and BK image data respectively, a collimator lens 126, which converts the four laser beams emitted from semiconductor laser array 125 into parallel beams, a cylindrical lens 127, which converges each of the four laser beams, which has passed through collimator lens 126, in the subscanning direction, a reflecting mirror 128, which reflects the four laser beams, which have passed through cylindrical lens 127, towards a predetermined direction, a polygon mirror 129, which reflects and deflects in common the four laser beams that have been reflected by reflecting mirror 128, an fheta lens 130, which causes the four laser beams, which have been reflected and deflected by polygon mirror 129, to be converged in the main scanning direction and subscanning direction and respectively scan along the exposure lines of photoconductor drums 101a to 101d at a uniform speed, a reflecting mirror 131, which reflects the four laser beams, which have passed through fheta lens 130, towards a predetermined direction, a separating polygon mirror 132, which is comprised of a combination of four mirrors, having four incident surfaces of different angles for the four laser beams reflected by reflecting mirror 131 and separates the four laser beams into directions corresponding to the alignment positions of photoconductor drums 101a to 101d, final mirrors 133a to 133d,

which guide the four laser beams, separated by separating polygon mirror 132, to the corresponding photoconductor drums 101a to 101d, and cylindrical lenses 134a to 134d, which respectively converge the laser beams, reflected by final mirrors 133a to 133d, in the subscanning direction.

[0009] With optical scanning device 120 of the above-described arrangement, when the four laser beams, that had been modulated based on Y, M, C, and BK image data, are emitted from semiconductor laser array 125, the four laser beams are reflected and deflected in common by polygon mirror 129, made incident on separating polygon mirror 132 via $f\theta$ lens 130 and reflecting mirror 131, and separated by separating polygon mirror 132 into directions corresponding to the alignment positions of photoconductor drums 101a to 101d. The four separated laser beams are reflected respectively by final mirrors 133a to 133d, which guide the laser beams respectively to the corresponding photoconductor drums 101a to 101d, and expose the rotating photoconductor drums 1a to 1d, which have been priorly subject to primary charging, to form electrostatic latent images on the surfaces of photoconductor drums 1a to 1d.

[0010]

[Themes Intended to be Solved by the Invention] However with an optical scanning device of such an arrangement, since all

of the four laser beams or at least three of the laser beams pass through positions that are shifted from the optical axis of the optical system, the main scanning lines, which are drawn on photoconductor drums 101a to 101d by the scanning of the surfaces of photoconductor drums 101a to 101dby the laser beams, take on a so-called bow shape, which is distorted in a bow-like manner due to distortion of the optical system. Even when the main scanning lines for the four colors are adjusted so as to overlap as much as possible by controlling the timing of writing of the images of the respective colors, the occurrence of color drift in the subscanning direction cannot be avoided due to differences in the bow according to each color, and as a result, the picture quality of the color image is made low.

[0011] Fig. 12 is a diagram, which schematically illustrates the bows of the main scanning lines on the photoconductor drums, which arise as a result of distortion of the optical system. As shown in Fig. 12, the main scanning lines 117a to 117d, which are drawn on photoconductor drums 101a to 101d, respectively have shapes that are distorted in a bow-like manner in the subscanning direction and bows of mutually different curvature are formed.

[0012] Fig. 13 is a schematic view, which shows the manner in which color drift occurs in the subscanning direction on

the recording paper as a result of the differences in the bows of the main scanning lines of the respective colors. Color drift occurs in the subscanning direction on the recording paper since main scanning lines 117a to 117d, which have bows that differ in curvature according to the respective colors as shown in Fig. 12, overlap in the manner shown in Fig. 13. Fig. 14 is a drawing, which schematically shows the bows of main scanning lines that are curved in directions opposite those of the bows shown in Fig. 12.

[0013] As shown in Fig. 14, the respective main scanning lines 118a to 118d drawn across photoconductor drums 101a to 101d are curved in directions opposite those of the main scanning lines 117a to 117d shown in Fig. 12. Thus depending on the optical system, the bows may be curved in directions opposite those of the bows shown in Fig. 12.

[0014] For the sake of explanation, the curvatures of the bows are drawn in an exaggerated manner in Figs. 12, 13, and 14. As an art for correcting such bows, Japanese Laid-open Patent Publication No. Hei 6-286226 discloses an optical scanning device, which makes use of the bending of the locus of scanned light when the scanned light is obliquely made incident on a plane-parallel glass plate and uses a plane-parallel glass plate disposed obliquely with respect to the optical axis of a laser

beam to cancel out the bow that arises due to the optical system. [0015] However, such insertion of a plane-parallel glass plate in the optical path of each laser beam tends to become an obstruction in making an optical scanning device compact and low in cost. That is, it is difficult to secure space for installing four plane-parallel glass plates without causing interference on each other's optical path within an optical scanning device that is to be made compact, and the increase of the number parts for independently supporting each of the four plane-parallel glass plates will tend to invite higher costs.

[0016] The present invention has been made in view of the above circumstances and an object thereof is to provide a compact and low-cost optical scanning device with which the bows of the scanning lines are restricted.

[0017]

[Means to Solve Themes] The first optical scanning device of this invention that meets the above object is an optical scanning device, which scans a plurality of scanned objects respectively by means of a plurality of light beams and is comprised of a light source, which emits the abovementioned plurality of light beams, a common optical system, which contains a deflecting optical element that deflects in common the plurality of light

beams that have been emitted from the abovementioned light source and guides the plurality of light beams in a mutually parallel manner, and a separating optical system, which guides the plurality of light beams respectively to the plurality of scanned objects and contains a separating optical element, which separates the plurality of light beams that have been guided by the abovementioned common optical system into mutually different directions, is provided in common for the abovementioned plurality of light beams, and is curved in the direction of correction of distortion due to the common optical system.

[0018] Here, the abovementioned separating optical element may be curved by a force received from a supporting member that supports the separating optical element or the abovementioned separating optical element may have a shape that is curved with no relation to the force from a supporting member that supports the separating optical element. The second optical scanning device of this invention that meets the above object is an optical scanning device, which scans a plurality of scanned objects respectively by means of a plurality of light beams and is comprised of a light source, which emits the abovementioned plurality of light beams, a common optical system, which contains a deflecting optical element that deflects in common the

plurality of light beams that have been emitted from the abovementioned light source and guides the abovementioned plurality of light beams in a mutually parallel manner, a separating optical element, which separates the abovementioned plurality of light beams that have been guided by the abovementioned common optical system into mutually different directions and is provided in common for the plurality of light beams, and a plurality of individual optical elements, which are provided to correspond respectively to the abovementioned plurality of light beams that have been separated by said separating optical element, guide the plurality of light beams respectively to the plurality of scanned objects, and are curved in the direction of correction of distortion due to the abovementioned common optical system.

[0019] Here, the abovementioned individual optical elements may be curved by a force received from supporting members that support the individual optical elements or the abovementioned individual optical elements may have shapes that are curved with no relation to the force from supporting members that support the abovementioned individual optical elements.

[0020]

[Preferred Embodiments of the Invention] Embodiments of this invention shall now be described. Fig. 1 is an outline view

of an optical scanning device that is provided in common to the respective embodiments of this invention. This optical scanning device 20 is used upon incorporation in a color image forming device 100 in place of the respective optical scanning devices 103a to 103d and cylindrical mirrors 104a to 104d of the color image forming device 100, which was described in the above section on prior arts.

[0021] As shown in Fig. 1, this optical scanning device 20 is equipped with a semiconductor laser array 25, which emits four laser beams that have been modulated based on Y, M, C, and BK image data, a collimator lens 26, which makes the four divergent laser beams emitted from semiconductor laser array 25 into parallel beams respectively, a cylindrical lens 27, which converges each of the four laser beams that have passed through collimator lens 26 in the subscanning direction, a reflecting mirror 28, which reflects the four laser beams that have passed through cylindrical lens 27 towards a predetermined direction, a polygon mirror 29, which reflects and deflects the four laser beams that have been reflected by reflecting mirror 28, an fheta lens 30, which is arranged with two or more lenses and causes each of the four laser beams, which have been reflected and deflected by polygon mirror 29, to converge in the main scanning direction and subscanning direction and scan

along the exposure lines of photoconductor drums 24a to 24d at a uniform speed, a reflecting mirror 31, which reflects the four laser beams, which have passed through $f\theta$ lens 30, towards a predetermined direction, a separating polygon mirror 32, which separates the four laser beams, which have been reflected by reflecting mirror 31, in directions corresponding to the alignment positions of photoconductor drums 24a to 24d, final mirrors 33a to 33d, which guide the four laser beams, which have been separated by separating polygon mirror 32, towards the respectively corresponding photoconductor drums 24a to 24d, and cylindrical lenses 34a to 34d, which cause the respective laser beams, which have been reflected by final mirrors 33a to 33d, to converge in the subscanning direction.

[0022] The details of the separating polygon mirror 32 shall be given later. Final mirrors 33a to 33d are symmetric with respect to a plane, which passes through the centers of the four laser beams incident on separating polygon mirror 32 and is parallel to the optical axes of these laser beams, and are disposed in accordance with the alignment positions of photoconductor drums 24a to 24d so that the respective optical path lengths from semiconductor laser array 25 to photoconductor drums 24a to 24d will all be equal to each other, with the relationships of the angles of reflection of reflecting surfaces

32a to 32d of separating polygon mirror 32 being taken in consideration.

[0023] Housing 35 has an exit window supporting part 43, in which is opened an exit window 43a from which the laser beams are emitted out of housing 35. Separating polygon mirror 32 is supported on housing 35 at this exit window supporting part 43 and the other optical parts are also housed inside housing 35 and integrally supported on housing 35. Of the abovementioned optical parts, the part including the deflecting optical element (polygon mirror 29), which deflects in common the four laser beams emitted from semiconductor laser array 25, which is the light source, and comprised of the collimator lens 26, cylindrical lens 27, reflecting mirror 28, fheta lens 30, and reflecting mirror 31, which guide the four laser beams in mutually parallel manner, corresponds to being the common optical system as referred to in this invention. Together with final mirrors 33a to 33d and cylindrical lenses 34a to 34d, separating polygon mirror 32, which separates the four laser beams, which have been guided by the abovementioned common optical system, into mutually different directions, is used in common for the abovementioned four laser beams, and guides the abovementioned four laser beams to the four scanned objects (photoconductor drums 24a to 24d), corresponds to being the

separating optical system as referred to in this invention. Also, separating polygon mirror 32 corresponds to being the separating optical element as to referred to in this invention. [0024] Though cylindrical lenses 34a to 34d are used in the above-described embodiment, an arrangement is also possible where, in place of using cylindrical lenses 34a to 34d, cylindrical mirrors are used as final mirrors 33a to 33d for converging the laser beam in the subscanning direction. This applies likewise to the other embodiments described below. [0025] Separating polygon mirror 32 shall now be described in more detail. Fig. 2 is an outline view of a separating polygon mirror that is used in common in the respective embodiments of this invention. As shown in Fig. 2, separating polygon mirror 32 has four reflecting surfaces 32a to 32d and each of these reflecting surfaces 32a to 32d has a shape that is extended in the main scanning direction (direction perpendicular to the paper surface) of the laser beams. The respective reflecting surfaces 32a to 32d are aligned in a mutually parallel manner at positions such that the four incident laser beams will pass through the centers of the respective reflecting surfaces and be scanned in the abovementioned main scanning direction, and the reflecting angles of the respective reflecting surfaces 32a to 32d are set in accordance with the alignment positions

of photoconductor drums 24a to 24d (see Fig. 1) so that the optical path lengths of respective laser beams from semiconductor laser array 25 to photoconductor drums 24a to 24d will all be equal to each other, with the positions of final mirrors 33a to 33d being taken into consideration.

[0026] This separating polygon mirror is supported in a manner whereby it will separate the respective laser beams in mutually different directions and whereby it is curved in the direction of correcting distortion due to the common optical system. Embodiments in which the separating polygon mirror is supported in a manner whereby it is curved can be largely classified into embodiments wherein the separating polygon mirror is curved by receiving a force from a supporting member that supports the separating polygon mirror and embodiments wherein the separating polygon mirror has a shape that is curved with no relation to the force from a supporting member that supports the separating polygon mirror.

[0027] An embodiment wherein the separating polygon mirror is curved by receiving a force from a supporting member that supports the separating polygon mirror shall be described first below. Fig. 3 is a diagram, which shows a first embodiment of a separating polygon mirror in the first optical scanning device of this invention, with Fig. 3(a) being a front view and Figs.

3(b) and 3(c) being sectional views along lines A-A' and B-B', respectively, of Fig. 3(a). For the sake of explanation, the curvatures of the bows in the drawings of Fig. 3 onwards are drawn in an exaggerated manner.

[0028] As shown in Figs. 3(a), 3(b), and 3(c), the first embodiment is applied in the case where the distortion of the common optical system is corrected by curving both ends of separating polygon mirror 32 upward with respect to the paper surface so that the mirror takes on a concave form. Thus with this embodiment, the separating polygon mirror supporting member is comprised of three members, that is, a central supporting member 41b, which fixes the central part of separating polygon mirror 32 onto housing 35 or the exit window supporting part 43 of housing 35, and end supporting members 41a, which support the ends of separating polygon mirror 32 in a manner enabling vertical movement. Directly below the end supporting members 41a of housing 35 are provided bolts 44 for moving the respective end parts of separating polygon mirror 32 up and down. With this embodiment, after mounting separating polygon mirror 32 onto the optical scanning device, end supporting members 41a are pushed upwards by means of bolts 44 to cause separating polygon mirror 32 to become curved in a concave manner towards the upstream side of the optical path and thereby correct

the distortion of the common optical system.

[0029] Fig. 4 is a diagram, which shows a second embodiment of a separating polygon mirror in the first optical scanning device of this invention, with Fig. 4(a) being a front view and Figs. 4(b) and 4(c) being sectional views along lines A-A' and B-B', respectively, of Fig. 4(a). As shown in Figs. 4(a), 4(b), and 4(c), this second embodiment is applied in the case where the distortion of the common optical system is corrected by curving the ends of separating polygon mirror 32 upward with respect to the paper surface so that the mirror takes on a convex form. Thus with this embodiment, the separating polygon mirror supporting member is comprised of three members, that is, end supporting members 46a, which fix the ends of separating polygon mirror 32 onto housing 35 or the exit window supporting part 43 of housing 35, and central supporting member 46b, which supports the central part of separating polygon mirror 32 in a manner enabling vertical movement. Directly below the central supporting member 46b of housing 35 is provided a bolt 44 for moving the central part of separating polygon mirror 32 up and down. With this embodiment, after mounting separating polygon mirror 32 onto the optical scanning device, central supporting member 46b is pushed upwards by means of bolt 44 to cause separating polygon mirror 32 to become curved in a convex manner

towards the upstream side of the optical path and thereby correct the distortion of the common optical system.

[0030] An embodiment of a separating polygon mirror having a shape that is curved with no relation to the force from a supporting member shall now be described. Third and fourth embodiments of a separating polygon mirror in the first optical scanning device of this invention are shown in Fig. 5. As shown in Fig. 5(a), with the third embodiment, a separating polygon mirror 32', which has been formed in advance in the polishing stage to take on a shape having a mirror surface 32'a, which is curved upwards to take on a concave form, is used, and the distortion of the common optical system is corrected by this mirror surface 32'a of separating polygon mirror 32'. Separating polygon mirror 32' is fixed onto a housing 35 by means of end supporting members 47, which support the ends of separating polygon mirror 32'.

[0031] Meanwhile as shown in Fig. 5(b), with the fourth embodiment, a separating polygon mirror 32", which has been formed in advance in the polishing stage to take on a shape having a mirror surface 32"a, which is curved upwards to take on a convex form, is used, and the distortion of the common optical system is corrected by this mirror surface 32"a of separating polygon mirror 32". Separating polygon mirror 32"

is also fixed onto housing 35 by means of end supporting members 47, which support the ends of separating polygon mirror 32". [0032] Figs. 6 shows fifth and sixth embodiments of a separating polygon mirror in the first optical scanning device of this invention. As shown in Figs. 6(a) and 6(b), with the fifth or sixth embodiment, though a separating polygon mirror 32' or separating polygon mirror 32", which has been formed in advance in the polishing stage to take on a shape having a mirror surface 32'a, which is curved upwards to take on a concave form, or a mirror surface 32"a, which is curved upwards to take on a convex form, is used, separating polygon mirror 32' or separating polygon mirror 32" is not directly supported on the exit window supporting part 43 of housing 35 but is fixed onto housing 35 by means only of end supporting members 48, which are mounted to housing 35.

[0033] In terms of the design of the optical scanning device or in terms of the unit assembly procedure, it is preferable not to directly support the separating polygon mirror by means of the exit window supporting part of the housing but to support the separating polygon mirror by means only of the ends of the separating polygon mirror. Thus in cases where it is difficult to support the ends and the central part of the separating polygon mirror at the same time as in the above-described third and

fourth embodiments, the separating polygon mirror may be supported by means of just the end supporting members 48 as in the fifth and sixth embodiments described above.

[0034] Furthermore, it is also effective to combine the above-described first to sixth embodiments, that is to use a separating polygon mirror, which has been polished in advance in the polishing stage to have a mirror surface that is curved upwards in a concave or convex form, in combination with a supporting mechanism by which the degree of curvature can be adjusted vertically. Fig. 7 shows developments of the optical scanning device of this invention within the plane that contains the optical axis of the scanning optical system. Fig. 7(a) is a development along the subscanning direction and Fig. 7(b) is a development along the main scanning direction.

[0035] As shown in Fig. 7(a), in the subscanning direction, a laser beam that has been emitted from semiconductor laser array 25 is converged onto polygon mirror 29 by means of collimator lens 26 and cylindrical lens 27, then converged onto the reflecting surfaces 32a to 32d of separating polygon mirror 32 by means of θ lens 30, and converged onto photoconductor drum 24a via final mirror 33a and by means of cylindrical lens 34a. That is, in the subscanning direction, the exit surface of semiconductor laser array 25 and polygon mirror 29, polygon

mirror 29 and separating polygon mirror 32, and separating polygon mirror 32 and the drum surface of photoconductor drum 24a are in optically conjugate mutual relationships.

[0036] Meanwhile as shown in Fig. 7(b), in the main scanning direction, laser beams that have been emitted from semiconductor laser array 25 are made into a parallel beam by collimator lens 26 and imaged onto photoconductor drum 24a by fheta lens 30. With a scanning optical system with such an arrangement, after the four laser beams, which have been modulated based on Y, M, C, and BK image data, are emitted from semiconductor laser array 25 and have been made into parallel beams by collimator lens 26, the laser beams are converged in the subscanning direction by cylindrical lens 27 and then reflected and deflected by polygon mirror 29. The four deflected beams, which have been reflected and deflected, are respectively converged in the main scanning direction and subscanning direction by fheta lens 30, guided to separating polygon mirror 32 by reflecting mirror 31, and separated there into directions corresponding to the alignment positions of photoconductor drums 24a to 24d. The four separated light beams are reflected by reflecting mirrors 33a to 33d, which guide the beams to the respectively corresponding photoconductor drums 24a to 24d, and via cylindrical lenses 34a to expose 34d, the rotating

photoconductor drums 24a to 24d, which have been priorly subject to primary charging, to form electrostatic latent images on the surfaces of photoconductor drums 24a to 24d.

[0037] Examples with actual dimensions of the respective embodiments described above shall now be described. In these examples, the array interval of semiconductor laser array 25 is $250\,\mu\text{m}$, the focal length of collimator lens 26 is 28.2mm, the focal length of cylindrical lens 27 is 225.2mm, the distance from f θ lens 30 to separating polygon mirror 32 is 100mm, the distance from separating polygon mirror 32 to cylindrical lenses 34a to 34d is 85mm, the distance from cylindrical lenses 34a to 34d to photoconductor drums 24a to 24d is 106mm, and the laser beam diameter on photoconductor drums 24a to 24d is 50 μ m. Also, the distance between the respective centers of photoconductor drums 24a to 24d is 50mm and the scan width is 297mm.

[0038] Fig. 8 is a schematic view, which shows the conditions of the bows of the scanning lines in the respective embodiments of this invention described above. Fig. 8(a) shows the case where separating polygon mirror 32 is not curved and Fig. 8(b) shows the case where separating polygon mirror 32 is curved. As shown in Fig. 8(a), the scanning lines 21a to 21d of the respective colors have outwardly protruding bows when

separating polygon mirror 32 is not curved. However, as shown in Fig. 8(b), when separating polygon mirror 32 is curved, the color drift in the case where the images of the four colors of Y, M, C, and BK are overlapped is decreased to approximately one-fifth of the drift of 210 μ m when separating polygon mirror 32 is not curved and the picture quality of the output image is greatly improved. This is because the curvature of field effect due to separating polygon mirror 32, which is curved in a convex form towards the upstream side of the optical path, acts to cancel out the bows that protrude outward with respect to the optical axis. When separating polygon mirror 32 is curved, since the inclinations of the outer reflecting surfaces 32a and 32d with respect to the horizontal surface becomes large in comparison to those of the inner reflecting surfaces 32b and 32c, the curvature of field effects due to the outer reflecting surfaces 32a and 32d will be greater than those of the inner reflecting surfaces 32b and 32c. However, since the bow will be greater the further away from the optical axis, that the curvature from the field effect is greater at the outer sides will be convenient for bow correction and will provide the effect that the scanning lines 22a to 22d will be made uniformly close to being straight lines.

[0039] Next, an embodiment of the second optical scanning

device of this invention shall be described. Since the overall arrangement of the second optical scanning device of this invention is the same as that of the embodiments of the first optical scanning device of this invention shown in Fig. 1, a description of the overall arrangement shall be omitted. The difference of the second optical scanning device with respect to the first optical scanning device is that bow correction is not performed by separating polygon mirror 32 in the second optical scanning device but is performed by making final mirrors 33 a to 33d curved.

[0040] Here, the final mirrors 33a to 33d of this embodiment correspond to being the individual optical elements as referred to in this invention, and final mirror supporting members 42a to 42d correspond to being the supporting members that support the individual optical elements as referred to in this invention. To make final mirrors 33a to 33d curved, the methods of curving the separating polygon mirror as explained with the first or second embodiments (see Figs. 3 and 4) of the first optical scanning device of this invention may be applied to the final mirrors 33a to 33d (see Fig. 1) or to the final mirror supporting members 42a to 42d that support the final mirrors. By making final mirrors 33a to 33d curved, since curvature from the field effect of the same form as those obtained by making separating

polygon mirror curved can be obtained, the bows of the respective scanning lines can be reduced by individually adjusting the degree of curvature of each of final mirrors 33a to 33d. Also as in the fifth and sixth embodiments (see Fig. 6) of the first optical scanning device of this invention, final mirrors 33a to 33d, which have been provided with shapes with which the mirror surfaces have been polished to be curved in a concave or convex form in advance in the polishing stage, may be attached as they are to the optical scanning device. In this case, the mirror surface curvature effects can be obtained simply by supporting final mirrors 33a to 33d only at the end parts. As in the case of making the separating polygon mirror curved, a color drift of 210 μ m can be reduced to about 35 μ m and the quality of color output images can thereby be improved with this embodiment as well.

[0041] Though a separating polygon mirror is used as a means of separating the four laser beams into directions corresponding to the alignment positions of photoconductor drums 24a to 24d (see Fig. 1) in the respective embodiments described above, the abovementioned means is not restricted to a separating polygon mirror, and a diffraction grating array, lens array, or concave mirror array, etc. may be used instead. Also, the respective photoconductor drums 24a to 24d may be scanned with

a plurality of mutually close laser beams to achieve higher scanning speeds and higher definition.

[0042]

[Effects of the Invention] As has been described above, with the first optical scanning device of this invention, since the separating optical element, which separates the plurality of light beams into mutually different directions is curved in the direction of correction of the distortion due to the common optical system, the curvatures of the bows of the scanning lines on the scanned object are lessened. Thus when this optical scanning device is used in a color image forming device for example, the color drift among the respective colors due to distortion can be restrained and the picture quality of the output color image can be improved.

[0043] Also with the second optical scanning device of this invention, since the plurality of individual optical elements, which are provided to correspond respectively to the plurality of light beams, which have been separated by the separating optical element, and guide the abovementioned plurality of light beams respectively to the plurality of scanned objects, are curved in the direction of correcting the distortion of the common optical system, the curvatures of the bows of the scanning lines on the scanned objects can be lessened as in the case

of the above-described first optical scanning device.
[BRIEF DESCRIPTION OF THE DRAWINGS]

- [Fig. 1] An outline view of the optical scanning device, which is common to the respective embodiments of this invention.
- [Fig. 2] An outline view of the separating polygon mirror, which is used in common in the respective embodiments of this invention.
- [Fig. 3] A diagram, which shows the first embodiment of the separating polygon mirror in the first optical scanning device of this invention.
- [Fig. 4] A diagram, which shows the second embodiment of the separating polygon mirror in the first optical scanning device of this invention.
- [Fig. 5] Adiagram, which shows the third and fourth embodiments of the separating polygon mirror in the first optical scanning device of this invention.
- [Fig. 6] A diagram, which shows the fifth and sixth embodiments of the separating polygon mirror in the first optical scanning device of this invention.
- [Fig. 7] Developments in a plane containing the optical axes of the scanning optical system of the optical scanning device of this invention.
- [Fig. 8] A schematic view, which shows the conditions of the

bows of the scanning lines in the respective embodiments of this invention.

[Fig. 9] A schematic view, which shows the general arrangement of a prior-art tandem type color image forming device.

[Fig. 10] A block diagram of the optical scanning device used in the color image forming device of Fig. 9.

[Fig. 11] Ablockdiagram of a prior-art optical scanning device in which the optical parts have been made in common.

[Fig. 12] A diagram, which schematically shows the bows of the main scanning lines on the photoconductor drum, which arise as a result of distortion of the optical system.

[Fig. 13] A schematic view, which shows the manner in which color drifts in the subscanning direction occur on the recording paper due to differences in the bows of the main scanning lines of the respective colors.

[Fig. 14] A diagram, which schematically shows the bows of main scanning lines, which are curved in the opposite direction as the bows shown in Fig. 12.

[Description of the Symbols]

20 optical scanning device

24, 24a ~ 24d photoconductor drum

25 semiconductor laser array

26 collimator lens

- 27 cylindrical lens
- 28 reflecting mirror
- 29 polygon mirror
- 30 fheta lens
- 31 reflecting mirror
- 32 separating polygon mirror
- $32a \sim 32d$ reflecting surface
- 32', 32" separating polygon mirror
- 32'a, 32"a mirror surface
- 33a ∼ 33d final mirror
- $34a \sim 34d$ cylindrical lens
- 35 housing
- 41a end supporting member
- 41b central supporting member
- 42a \sim 42d final mirror supporting member
- 43 exit window supporting part
- 43a exit window
- 44 bolt
- 46a end supporting member
- 46b central supporting member
- 100 color image forming device
- 101a \sim 101d photoconductor drum
- 102a ~ 102d charger

- 103a \sim 103d optical scanning device
- $104a \sim 104d$ cylindrical mirror
- 105a ~ 105d developer
- 106 recording paper
- 107 conveyor belt
- 108a ~ 108d cleaner
- 109 fixing roller
- 110 emission duration control circuit
- 111 laser diode
- 112 collimator lens
- 113 cylindrical lens
- 114 polygon mirror
- 115 f θ lens
- 116 illumination position detection sensor
- 117a \sim 117d, 118a \sim 118d main scanning line
- 120 optical scanning device
- 125 semiconductor laser array
- 126 collimator lens
- 127 cylindrical lens
- 128 reflecting mirror
- 129 polygon mirror
- 130 fheta lens
- 131 reflecting mirror

- 132 separating polygon mirror
- 133 final mirror
- 134a \sim 134d cylindrical lens

Fig. 8

Fig. 11

Fig. 8

Fig. 11

Fig. 126 127 128

Fig. 126 127 128

Fig. 9

Fig. 9

Fig. 9

10,50

108¢

1024

1335

108