A FIRST COURSE IN

ABSTRACT ALGEBRA

A FIRST COURSE

IN

ABSTRACT ALGEBRA

MAT3004 Notebook

Dr. Guang Rao

The Chinese University of Hongkong, Shenzhen

Contents

Ackn	owledgments	vii
Notat	tions	ix
1	Week1	 1
1.1	Monday	1
1.1.1	Introduction to Abstract Algebra	 1
1.1.2	Group	 1
2	Week2	 . 11
2.1	Tuesday	11
2.1.1	Review	 11
2.1.2	Cyclic groups	 11
3	Week3	 . 17
3.1	Tuesday	17

Acknowledgments

This book is from the MAT3004 in fall semester, 2018.

CUHK(SZ)

Notations and Conventions

 \mathbb{R}^n *n*-dimensional real space \mathbb{C}^n *n*-dimensional complex space $\mathbb{R}^{m \times n}$ set of all $m \times n$ real-valued matrices $\mathbb{C}^{m \times n}$ set of all $m \times n$ complex-valued matrices *i*th entry of column vector \boldsymbol{x} x_i (i,j)th entry of matrix \boldsymbol{A} a_{ij} *i*th column of matrix *A* \boldsymbol{a}_i $\boldsymbol{a}_{i}^{\mathrm{T}}$ *i*th row of matrix **A** set of all $n \times n$ real symmetric matrices, i.e., $\mathbf{A} \in \mathbb{R}^{n \times n}$ and $a_{ij} = a_{ji}$ \mathbb{S}^n for all *i*, *j* \mathbb{H}^n set of all $n \times n$ complex Hermitian matrices, i.e., $\mathbf{A} \in \mathbb{C}^{n \times n}$ and $\bar{a}_{ij} = a_{ji}$ for all i, j $\boldsymbol{A}^{\mathrm{T}}$ transpose of \boldsymbol{A} , i.e, $\boldsymbol{B} = \boldsymbol{A}^{\mathrm{T}}$ means $b_{ji} = a_{ij}$ for all i,jHermitian transpose of \boldsymbol{A} , i.e, $\boldsymbol{B} = \boldsymbol{A}^{H}$ means $b_{ji} = \bar{a}_{ij}$ for all i,j A^{H} trace(A)sum of diagonal entries of square matrix A1 A vector with all 1 entries 0 either a vector of all zeros, or a matrix of all zeros a unit vector with the nonzero element at the *i*th entry e_i C(A)the column space of \boldsymbol{A} $\mathcal{R}(\boldsymbol{A})$ the row space of \boldsymbol{A} $\mathcal{N}(\boldsymbol{A})$ the null space of \boldsymbol{A}

 $\operatorname{Proj}_{\mathcal{M}}(\mathbf{A})$ the projection of \mathbf{A} onto the set \mathcal{M}

Chapter 3

Week3

3.1. Tuesday

Definition 3.1 [Cartesian Product]

$$\prod_{i=1}^{n} S_{i} = S_{1} \times S_{2} \times \cdots \times S_{n} = \{(a_{1}, a_{2}, \dots, a_{n}) \mid a_{i} \in S_{i}\}$$

Theorem 3.1 $\prod_{i=1}^{n} G_i$ is a group under the operation

$$(g_1,...,g_n)(h_1,...,h_n)=(g_1h_1,...,g_nh_n)$$

Proof. • It's obvious that the operation is closed.

• Check inverse and identity.

identity =
$$(e_1, e_2, \dots, e_n)$$

• Check the operation is associate:

$$[(g_1,...,g_n)(h_1,...,h_n)] (k_1,...,k_n) = (g_1h_1,...,g_nh_n)(k_1,...,k_n)$$

$$= (g_1h_1k_1,...,g_nh_nk_n)$$

$$= (g_1,...,g_n)(h_1k_1,...,h_nk_n)$$

$$= (g_1,...,g_n)[(h_1,...,h_n)(k_1,...,k_n)]$$

If the operation of each G_i is the **addition**, then

$$\prod_{i=1}^n G_i := \bigoplus_{i=1}^n G_i$$

Example 3.1 1. $G=(S_3\times\mathbb{Z}_2,\cdot)$ is not abelian, e.g., $((12),0)\cdot((23),0)$ 2. $G=(\mathbb{Z}_2\times\mathbb{Z}_3,+)=\mathbb{Z}_2\oplus\mathbb{Z}_3$ is cyclic $d(1,1)=(0,0) \longrightarrow \mathcal{A}_{-1}(1,1)$

$$((12),0)\cdot((23),0)$$

$$d(1,1) = (0,0) \implies d = 6k$$

3. The Klein 4-group $V=\mathbb{Z}_2 imes\mathbb{Z}_2$ is not cyclic

$$d(x,y) = (0,0)$$

 $G = \mathbb{Z}_m \times \mathbb{Z}_n$ is **cyclic** iff gcd(m,n) = 1. Theorem 3.2

Proof. Let $k = lcn(m,n) = \frac{mn}{\gcd(m,n)} \le mn$.

Necessity. Consider $(a,b) \in G$:

$$k(a,b) = (ka,kb) := (msa,ntb) = (0,0),$$

i.e., $|(a,b)| \le k$. In particular, $mn \le k$, thus k = mn, i.e., gcd(m,n) = 1.

Sufficiency. Consider $(1,1) \in G$: $d(1,1) = (0,*) \implies d = xm$; and $d(1,1) = (*,0) \implies$ d = yn. Thus |(1,1)| = lcm(m,n) = mn, i.e., this group is cyclic.

Corollary 3.1 $\prod_{i=1}^{n} \mathbb{Z}_{m_i}$ is cyclic iff (m_i, m_j) are mutually coprime.

Definition 3.2 Let G be a group, S a non-empty subset.

$$~~:=\{a_1^{m_1},\dots,a_n^{m_n}\mid n\in\mathbb{Z}^+,m_i\in\mathbb{Z},a_i\in S\}~~$$
 If S is finite, then $$ is **finitely generated**.

Verify that this is a group, i.e., a subgroup of G. Note that a_i 's need not to be distinct. e.g.,

$$S = \{a, b\} \implies a^{-1}bab^2 \in \langle S \rangle$$

Proposition 3.1

$$\langle S \rangle = \bigcap_{\{H \mid S \subseteq H \subseteq G\}} H$$

Q is not finitely generated. **Proposition 3.2**

Theorem 3.3 — Fundamental Theorem of Finitely Generated Abelian Groups. Any finitely generated abelian group (is isomorphic to)

$$\prod_{i=1}^m \mathbb{Z}_{p_i^{r_i}} \times \mathbb{Z}^n,$$

 $r_i, n \in \mathbb{N}$.

Example 3.3 abelian group of order $360 = 2^3 3^2 5$:

$$G_2 \times G_3 \times G_5$$

$$G_5 = \mathbb{Z}_5, \ G_3 = \mathbb{Z}_3 \times \mathbb{Z}_3, \mathbb{Z}_9, \ G_2 = \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2, \mathbb{Z}_2 \times \mathbb{Z}_4, \mathbb{Z}_8.$$

Thus there are 6 possible abelian groups of order 360.

How about abelian group of order 7⁵?

Definition 3.3 [Partition] Let $S \neq \emptyset$. A partition P of S is $\{S_i \mid i \in I\}$ such that

1. $S_i \neq \emptyset, \forall i \in I$ 2. $S_i \cap S_j = \emptyset, \forall i \neq j$ 3. $\bigcup_{i \in I} S_i = S$ Also, we denote $S = \bigsqcup_{i \in I} S_i$

[Equivalence Relation] An equivalence relation on S is a relation \sim such that

- 1. Reflexive: $a \sim a, \forall a \in S$ 2. Symmetric: $a \sim b$ implies $b \sim a$
- 3. Transitive: $a \sim b$, $b \sim c$ implies $a \sim c$.

Equivalence relation is essentially the same meaning of partition:

- Partition implies equivalence relation: Define $a \sim b$ if $a, b \in S_i$
- Equivalence relation implies partition: Define $C_a := \{b \in S \mid b \sim a\}$. (For the symmetricity part, show that $C_a \cap C_b \neq \emptyset$ implies $C_a = C_b$.)

We call C_a the **equivalence class** with the representative a. If $b \in C_a$, then $C_b = C_a$, so any element in an equivalence class can be its representative.

Proposition 3.3 Any $\sigma \in S_n$ is a product of disjoint cycles.

Proof. Given $a, b \in X = \{1, 2, ..., n\}$, define $a \sim b$ if $b = \sigma^k(a)$ for some $k \in \mathbb{Z}$.