## HW#7

1.

## **Product Rule**

1.  $Pr(A,B \mid K) = Pr(A \mid B,K)Pr(B \mid K)$  Given

2. Pr(A,B,K) / Pr(K) = (Pr(A,B,K) / Pr(B,K)) \* (Pr(B,K) / Pr(K)) Convert

using conditional probability eq. in textbook pg. 485

3. Pr(A,B,K) / Pr(K) = Pr(A,B,K) / Pr(K) Simplify #2

## Bayes' Rule

1. Pr(A | B,K) = Pr(B | A,K)Pr(A | K) / Pr(B | K) Given

2. Pr(A,B,K) / Pr(B,K) = ((Pr(A,B,K) / Pr(A,K)) \* (Pr(A,K) / Pr(K))) / (Pr(B,K) / Pr(K))Convert using conditional probability eq. in textbook pg. 485

3. Pr(A,B,K) / Pr(B,K) = (Pr(A,B,K) / Pr(K)) / (Pr(B,K) / Pr(K)) Simplify #2

4. Pr(A,B,K) / Pr(B,K) = (Pr(A,B,K) / Pr(K)) \* (Pr(K) / Pr(B,K)) Invert the denominator in #3

5. Pr(A,B,K) / Pr(B,K) = Pr(A,B,K) / Pr(B,K) Simplify #4

2.



| С |       |  |  |  |
|---|-------|--|--|--|
| С | Pr(C) |  |  |  |
| а | 1/3   |  |  |  |
| b | 1/3   |  |  |  |
| С | 1/3   |  |  |  |

X<sub>1</sub>

| С | Pr(H) | Pr(T) |  |  |  |  |
|---|-------|-------|--|--|--|--|
| а | 0.2   | 0.8   |  |  |  |  |
| b | 0.6   | 0.4   |  |  |  |  |
| С | 0.8   | 0.2   |  |  |  |  |

 $X_2$ 

| С | Pr(H) | Pr(T) |
|---|-------|-------|
| а | 0.2   | 0.8   |
| b | 0.6   | 0.4   |
| С | 0.8   | 0.2   |

 $X_3$ 

| С | Pr(H) | Pr(T) |
|---|-------|-------|
| а | 0.2   | 0.8   |
| b | 0.6   | 0.4   |
| С | 0.8   | 0.2   |

3.

|        | Square | Square | !Square | !Square |
|--------|--------|--------|---------|---------|
|        | One    | !One   | One     | !One    |
| Black  | 2/13   | 4/13   | 1/13    | 2/13    |
| !Black | 1/13   | 1/13   | 1/13    | 1/13    |

a1 = object is black

$$Pr(a1) = 2/13 + 4/13 + 1/13 + 2/13 = 9/13$$

a2 = object is square

$$Pr(a2) = 2/13 + 4/13 + 1/13 + 1/13 = 8/13$$

a3 = if the object is one or black, then it is also a square

a3 = square | one OR black

$$= (2/13 + 4/13 + 1/13) / (2/13 + 4/13 + 1/13 + 1/13 + 2/13 + 1/13)$$

= (7/13) / (11/13)

= 7/13 \* 13/11

= 7/11

## **Independent Sets**

Alpha: !Square Beta: Black Gamma: One Alpha: !Square Beta: !Black Gamma: One

4.

b) Source: http://bayes.cs.ucla.edu/BOOK-2K/d-sep.html

d\_separated (A, BH, E)

False, Path ADFHE is not blocked. The path does not have to go through B. In addition, the H node is opened because it is a collider in the set {B,H}.

d separated (G, D, E)

True, The path from A to E has to either go through D or H. D is blocked due to it being in the set {D}. H is blocked because it is a collider.

d separated (AB, F, GH)

False, The paths ADBEH and BEH are not blocked. The paths from A to G and the path from B to G is blocked because they have to go through the node F which is in set {F}.

- c) Pr(a, b, c, de, f, g, h) = Pr(a) \* Pr(b) \* Pr(c | a) \* Pr(d | a,b) \* Pr(e | b) \* Pr(f | c, d)\* Pr(g | f) \* Pr(h | e, f)
- d) Pr(A = 0, B = 0) = Pr(A = 0) \* Pr(B = 0)= 0.8 \* 0.3 = **0.24**

 $Pr(E = 1 \mid A = 1) = P(E = 1) \text{ since E and A are independent according to the tables.} \\ Pr(E = 1) = Pr(E = 1 \mid B = 0) + Pr(E = 1 \mid B = 1) \\ = Pr(E = 1 \mid B = 0) * Pr(B = 0) + Pr(E = 1 \mid B = 1) * Pr(B = 1) \\ = (0.9 * 0.3) + (0.1 * 0.7) \\ = \textbf{0.34}$