Ejercicios Semana I

Víctor H. Cárdenas

August 19, 2024

Instrucciones: Plazo de entrega: lunes 30 de agosto (antes de la clase).

1. Mostrar que $\nabla \times (\phi \vec{A}) = \phi(\nabla \times \vec{A}) - \vec{A} \times \nabla(\phi)$.

2. Mostrar que $\nabla \cdot (\vec{A} \times \vec{B}) = \vec{B} \cdot (\nabla \times \vec{A}) - \vec{A} \cdot (\nabla \times \vec{B})$

3. Si $\vec{r} = \hat{x}x + \hat{y}y + \hat{z}z$ calcule $\nabla r = ?$

4. Mostrar que $\nabla \times (\nabla \times \vec{A}) = \nabla (\nabla \cdot \vec{A}) - \nabla^2 \vec{A}$

5. Si $r = |\vec{x}|$ y $\vec{n} = \vec{x}/r$ y f(r) es una función bien comportada de r, entonces muestre que $\nabla \cdot (\vec{n}f(r)) = 2f/r + \partial f/\partial r$.

6. Ponga a prueba el Teorema de Stokes para el campo vectorial $\vec{A} = xy\hat{x} + 2yz\hat{y} + 3zx\hat{z}$ usando el área triangular de la figura.

7. Demuestre que

$$x\frac{d}{dx}\delta(x) = -\delta(x)$$

8. Sea $\vec{H} = x^2y\hat{x} + y^2z\hat{y} + z^2x\hat{z}$. Encuentre una función $\vec{F}(\vec{x})$ irrotacional (o sea que $\vec{F} = -\nabla\psi$) y una función solenoidal $\vec{G}(\vec{x})$ (o sea que $\vec{G} = \nabla \times \vec{A}$) tal que $\vec{H} = \vec{F} + \vec{G}$.

9. Considere la función vectorial $\vec{F}(\vec{x}) = \vec{x}/r^3$ (donde $r = |\vec{x}|$). Calcule el flujo de \vec{F} a través de una esfera de radio a centrado en el origen.

1