	EMP					ASG				
	ENO	ENAME	TITL		ENO	PNO	RESP		DUR	
	E1	J. Doe	Elect. Eng			E1	P1	Manager		12
	E2	M. Smith	Syst. A	nal.		E2	P1	Analyst		24
	E3	A. Lee	Mech. Eng. Programmer Syst. Anal.			E2	P2	Analyst		6
	E4	J. Miller				E3	P3	Consultant		10
	E5	B. Casey				E3	P4	Engineer		48
	E6	L. Chu	Elect. Eng.			E4	P2	Programmer		18
	E7	R. Davis	Mech. Eng.			E5	P2	Manager		24
	E8	J. Jones	Syst. Anal.			E6	P4	Manager		48
						E7	P3	Engineer		36
						E8	P3	Manager		40
PROJ PAY										
	PNO	NO PNAME BUDG		βE'	Г С	С	TITLE		SAL	
1										

Instrumentation 150000 Montreal Elect. Eng. 40000 P2 Database Develop. 135000 New York Syst. Anal. 34000 P3 CAD/CAM 250000 Mech. Eng. 27000 New York 310000 Paris Programmer 24000 Maintenance

Fig. 3.3 Modified Example Database

budgets are less than \$200,000, whereas PROJ₂ stores information about projects with larger budgets.

Example 3.2. Figure 3.5 shows the PROJ relation of Figure 3.3 partitioned vertically into two subrelations, PROJ₁ and PROJ₂. PROJ₁ contains only the information about project budgets, whereas PROJ₂ contains project names and locations. It is important to notice that the primary key to the relation (PNO) is included in both fragments. ◆

The fragmentation may, of course, be nested. If the nestings are of different types, one gets *hybrid fragmentation*. Even though we do not treat hybrid fragmentation as a primitive fragmentation strategy, many real-life partitionings may be hybrid.

3.2.3 Degree of Fragmentation

The extent to which the database should be fragmented is an important decision that affects the performance of query execution. In fact, the issues in Section 3.2.1 concerning the reasons for fragmentation constitute a subset of the answers to the question we are addressing here. The degree of fragmentation goes from one extreme, that is, not to fragment at all, to the other extreme, to fragment to the level of