Campaign Response Model

To train and test the campaign response model by using last 2 years data and comparing 2 model methods; Logistic Regression and XGBoost

CS1112

CS1113

CS1114

CS1115

CS1116

62.0

36.0

33.0

12.0

204.0

11

11

Data Preparation

• RFM model will be used to predict campaign response. Recency is calculated and create data set with RFM variables

```
campaign_date = dt.datetime(2015,3,17)
df_transactions['recent'] = campaign_date - df_transactions['trans_date']
df_transactions['recent'].astype('timedelta64[D]')
df_transactions['recent'] = df_transactions['recent'] / np.timedelta64(1, 'D')
df_transactions.head()
```

	customer_id	trans_date	tran_amount	recent
0	CS5295	2013-02-11	35	764.0
1	CS4768	2015-03-15	39	2.0
2	CS2122	2013-02-26	52	749.0
3	CS1217	2011-11-16	99	1217.0
4	CS1850	2013-11-20	78	482.0

358

775

804

831

333

Calculating response rate

Found out that data is imbalanced

Creating train and test dataset

• Splitting data frame into X and y, using scatterplot to see the spread of data by recency, monetary value, and response

```
sns.scatterplot(data=df_modeling, x='recency', y='monetary_value', hue='response')
sns.despine()
plt.title("Imbalanced Data")
```

Text(0.5, 1.0, 'Imbalanced Data')

Fixing imbalanced with Undersampling

• Using the fixed data to training 2 models methods: Logistic Regression and XGBoost.

gistic Regression

Stopping. Best iteration: [16] validation 0-auc:0.803493

training set				
	precision	recall	f1-score	support
0	0.82	0.68	0.74	429
1	0.73	0.85	0.78	429
accuracy			0.76	858
macro avg	0.77	0.76	0.76	858
weighted avg	0.77	0.76	0.76	858
test set				
test set	precision	recall	f1-score	support
test set	precision	recall	f1-score	support
test set	precision 0.97	recall 0.65	f1-score 0.78	support 1848
	•			
0	0.97	0.65	0.78	1848
0	0.97	0.65	0.78	1848
0	0.97	0.65	0.78 0.35	1848 218

Fixing imbalanced with Oversampling

• Using the fixed data to training 2 models methods: Logistic Regression and XGBoost.

gistic Regression

	z. Best iteration: validation 0-auc:0.800103
[-]	.011000100

training set				
	precision	recall	f1-score	support
0	0.80	0.66	0.72	4389
1	0.71	0.83	0.77	4389
accuracy			0.75	8778
macro avg	0.76	0.75	0.75	8778
weighted avg	0.76	0.75	0.75	8778
test set				
test set	precision	recall	f1-score	support
t <u>est se</u> t 0	precision 0.97	recall 0.66	f1-score 0.79	support 1848
0	0.97	0.66	0.79	1848
9	0.97	0.66	0.79 0.35	1848 218

Fixing imbalanced with SMOTE

• Using the fixed data to training 2 models methods: Logistic Regression and XGBoost.

ogistic Regression

Stopping	. Best	ite	ration:
[28]	validat	ion	0-auc:0.803673

training set				
· ·	precision	recall	f1-score	support
0	0.86	0.74	0.80	4389
1	0.77	0.87	0.82	4389
accuracy			0.81	8778
macro avg	0.82	0.81	0.81	8778
weighted avg	0.82	0.81	0.81	8778
test set				
	precision	recall	f1-score	support
0	0.95	0.74	0.83	1848
1	0.24	0.68	0.35	218
accuracy			0.73	2066
macro avg	0.59	0.71	0.59	2066
weighted avg	0.88	0.73	0.78	2066

Conclusion

The highest accuracy test set and highest AUC are XGBoost model with SMOTE data

Logistic Regression

Modeling from last 2 years data	Undersampling	Oversampling	SMOTE
Test Set Accuracy	0.69	0.70	0.70
Test Set AUC	0.788	0.794	0.793

XGBoost

Modeling from last 2 years data	Undersampling	Oversampling	SMOTE
Test Set Accuracy	0.67	0.68	0.73
Test Set AUC	0.803	0.800	0.803