

# Matemática Computacional

Departamento de Matemática Instituto Superior de Engenharia do Porto

2° Semestre 20-21

- 2 Tipos de Erro
- Testes de hipóteses para a média
- 4 Teste de hipóteses para a diferença de médias
- 5 Testes de hipóteses para a proporção
- 6 Testes de hipóteses para a diferença de proporções

## Teste de Hipóteses

O objetivo dos testes de hipóteses estatísticas é determinar se certas afirmações sobre uma população são suportadas pelos dados da amostra. Portanto apresenta procedimentos adequados para pôr à prova ideias que formulamos sobre factos desconhecidos. No caso particular dos *testes de hipóteses paramétricos* a validação apenas é aplicada aos *parâmetros da população*.

## Exemplos

- Teste à média de eficácia de uma nova app em relação a uma concorrente
- Testar se mais de metade dos eleitores votam a favor da saída do euro
- Testar se uma nova forma de publicidade conduz a um aumento de produtos vendidos

## Hipótese estatística

Uma hipótese estatística é uma conjectura sobre:

- um parâmetro desconhecido da população
- a forma da distribuição de uma característica em estudo na população.

## Teste de hipóteses

Um teste de hipóteses (ou teste de significância) é um procedimento padrão para testar uma afirmação sobre uma propriedade da população.

A teoria de Neyman-Pearson sobre testes de hipóteses estabelece uma dicotomia no espaço,  $\Theta$ , do parâmetro (conjunto de valores possíveis para o parâmetro desconhecido), i.e.,  $\Theta=\Theta_0\cup\Theta_1$  e  $\Theta_0\cap\Theta_1=\varnothing$ . Esta dicotomia consiste na formulação de duas hipóteses alternativas, usualmente designadas de

- H<sub>0</sub> hipótese nula
- H<sub>1</sub> hipótese alternativa

que matematicamente se formula:

$$H_0: \theta \in \Theta_0$$

$$H_1:\theta\in\Theta_1$$

## Hipótese nula

Hipótese nula é a que se assume como correta até prova em contrário, i.e., assume-se como verdadeira durante a realização do teste. Normalmente é escrita sob a forma de uma igualdade (=).

## Hipótese alternativa

Hipótese alternativa é a que se pretende verificar. Normalmente é escrita sob a forma de uma desigualdade (<,> ou  $\neq$ ).

## Exemplo

Identifique as hipóteses nula e alternativa em cada uma das situações que se seguem. Escreva as hipóteses referidas numa forma simbólica.

- A proporção de condutores que admitem "passar no vermelho" é maior do que 0.5.
- A altura média dos jogadores profissionais de basquetebol é no máximo 2m.

#### Decisão

- Rejeitar a hipótese nula  $(H_0)$ , o teste é **conclusivo**, isto é, não se rejeita a hipótese alternativa  $(H_1)$ .
- Não rejeitar a hipótese nula  $(H_0)$ , o teste é inconclusivo, não se conseguiu provar a veracidade da hipótese alternativa  $(H_1)$ .

## Região de rejeição

Para podermos tomar uma decisão na realização de um teste de hipóteses, há que, quantificar a informação contida na amostra. Para isso, calculamos o valor observado da estatística de teste.

#### Estatística de teste

Uma estatística de teste é uma função da amostra aleatória cuja distribuição de probabilidade é conhecida sob o pressuposto de  ${\cal H}_0$  ser verdadeira

## Região de rejeição

A região de rejeição ou região crítica  $\left(R_c\right)$  é o subconjunto do espaço amostral que permite decidir sobre a rejeição ou não da hipótese nula  $H_0$ 

## **Frros**

Um teste de hipóteses é um procedimento no âmbito da inferência estatística e por isso sujeito a erros de inferência. Num teste de hipóteses podem cometer-se dois tipos de erros.

## Erro tipo I

O erro de tipo I, ou de 1ª espécie consiste em rejeitar a hipótese nula quando esta é verdadeira.

## Erro tipo II

O erro de tipo II, ou de 2ª espécie consiste em não rejeitar a hipótese nula sendo esta é falsa

## **Erros**

Aos erros de inferência cometidos na realização de um teste de hipóteses, estão associadas probabilidades.

## Nível de significância $\alpha$

O nível de significância  $\alpha$  do teste de hipóteses é a probabilidade de **ocorrência** de um erro do tipo I.

$$P(\text{erro tipo I}) = P(\text{rejeitar } H_0|H_0 \text{ \'e verdadeira}) = \alpha$$

## Potência do teste $1 - \beta$

A potência do teste é a probabilidade da **não ocorrência** de um erro de tipo II.

$$P(\text{erro tipo II}) = P(\text{não rejeitar } H_0|H_0 \text{ é falsa}) = \beta$$

## Valor p

O valor p (usualmente designado por p-value) é o menor nível de significância, a partir do qual se deve rejeitar a hipótese nula  $H_0$ , isto é, se  $p<\alpha$  rejeita-se  $H_0$ .

O quadro seguinte resume as situações que podem ocorrer.

| Decisão            | $H_0$ verdadeira             | $H_0$ falsa                |
|--------------------|------------------------------|----------------------------|
| Não rejeitar $H_0$ | Não há erro                  | Erro tipo II               |
|                    | $P(NRH_0 H_0V) = 1 - \alpha$ | $P(NRH_0 H_0F) = \beta$    |
| Rejeitar $H_0$     | Erro tipo I                  | Não há erro                |
|                    | $P(RH_0 H_0V) = \alpha$      | $P(RH_0 H_0F) = 1 - \beta$ |

Passos na formulação de um teste de hipóteses:

- I Formular a hipótese nula  $(H_0)$  e a hipótese alternativa  $(H_1)$
- f 2 Escolher o nível de significância lpha
- 3 Selecionar a estatística de teste e encontrar a sua distribuição de pobabilidade sob o pressuposto de  $H_0$  verdadeira
- 4 Determinar a região de rejeição
- 5 Calcular o valor observado da estatística de teste
- 6 Decisão:
  - Rejeitar H<sub>0</sub> se o valor observado da estatística de teste pertence à região crítica
  - Não rejeitar H<sub>0</sub> se o valor observado da estatística de teste não pertence à região crítica

## Teste unilateral à esquerda

$$H_0: \theta = \theta_0$$
 $H_1: \theta < \theta_0$ 

## Rejeita-se H<sub>0</sub> Não se rejeita H<sub>0</sub>

#### Teste unilateral à direita



## Teste bilateral



## Teste unilateral à esquerda para a média de uma população normal

$$H_0: \mu = \mu_0 \quad v.s. \quad H_1: \mu < \mu_0$$

Sob o pressuposto de  $H_0$  verdadeira

 $\sigma^2$  conhecida e amostra de qualquer dimensão

#### Estatística de teste

$$\overline{X} \sim N\left(\mu_0, \frac{\sigma^2}{n}\right)$$
 ou  $Z = \frac{\overline{X} - \mu_0}{\frac{\sigma}{\sqrt{n}}} \sim N(0, 1)$ 

$$R_c = ]-\infty, -z_c[$$
 onde  $P(Z < -z_c) = \alpha$ 

## Teste unilateral à esquerda para a média de uma população normal

## $\sigma^2$ desconhecida e amostra de pequena dimensão

#### Estatística de teste

$$T = \frac{\overline{X} - \mu_0}{\frac{S}{\sqrt{n}}} \sim t_{n-1}$$

$$R_c = ]-\infty, -t_c[$$
 onde  $P\left(T < -t_c\right) = \alpha$ 

# Teste unilateral à esquerda para a média de uma população qualquer

 $\sigma^2$  desconhecida e amostra de grande dimensão

#### Estatística de teste

$$Z = \frac{\overline{X} - \mu_0}{\frac{S}{\sqrt{n}}} \sim N(0, 1)$$

$$R_c = ]-\infty, -z_c[$$
 onde  $P(Z < -z_c) = \alpha$ 

 $\sigma^2$  conhecida e amostra de grande dimensão

Estatística de teste

$$\overline{X} \sim N\left(\mu_0, \frac{\sigma^2}{n}\right)$$
 ou  $Z = \frac{\overline{X} - \mu_0}{\frac{\sigma}{\sqrt{n}}} \sim N(0, 1)$ 

$$R_c = ]-\infty, -z_c[$$
 onde  $P(Z < -z_c) = \alpha$ 

## Teste unilateral à direita para a média de uma população normal

$$H_0: \mu = \mu_0 \quad v.s. \quad H_1: \mu > \mu_0$$

Sob o pressuposto de  $H_0$  verdadeira

 $\sigma^2$ conhecida e amostra de qualquer dimensão

Estatística de teste

$$Z = \frac{\overline{X} - \mu_0}{\frac{\sigma}{\sqrt{n}}} \sim N(0, 1)$$

$$R_c = |z_c, +\infty|$$
 onde  $P(Z > z_c) = \alpha$ 

## $\sigma^2$ desconhecida e amostra de pequena dimensão

#### Estatística de teste

$$T = \frac{\overline{X} - \mu_0}{\frac{S}{\sqrt{n}}} \sim t_{n-1}$$

$$R_c = |t_c, +\infty|$$
 onde  $P(T > t_c) = \alpha$ 

## $\sigma^2$ desconhecida e amostra de grande dimensão

#### Estatística de teste

$$Z = \frac{\overline{X} - \mu_0}{\frac{S}{\sqrt{n}}} \sim N(0, 1)$$

$$R_c = |z_c, +\infty|$$
 onde  $P(Z > z_c) = \alpha$ 

## $\sigma^2$ conhecida e amostra de grande dimensão

#### Estatística de teste

$$Z = \frac{\overline{X} - \mu_0}{\frac{\sigma}{\sqrt{n}}} \sim N(0, 1)$$

$$R_c = ]z_c, +\infty[$$
 onde  $P(Z > z_c) = \alpha$ 

## Teste bilateral para a média de uma população normal

$$H_0: \mu = \mu_0 \quad v.s. \quad H_1: \mu \neq \mu_0$$

Sob o pressuposto de  $H_0$  verdadeira

 $\sigma^2$  conhecida e amostra de qualquer dimensão

#### Estatística de teste

$$Z = \frac{\overline{X} - \mu_0}{\frac{\sigma}{\sqrt{n}}} \sim N(0, 1)$$

$$R_c = ]-\infty, -z_c[\ \cup\ ]z_c, +\infty[$$
 onde  $P\left(Z<-z_c\right) = P\left(Z>z_c\right) = \frac{\alpha}{2}$ 

## $\sigma^2$ desconhecida e amostra de pequena dimensão

#### Estatística de teste

$$T = \frac{\overline{X} - \mu_0}{\frac{S}{\sqrt{n}}} \sim t_{n-1}$$

$$R_c=]-\infty,-t_c[\ \cup\ ]t_c,+\infty[$$
 onde  $P\left(t<-t_c\right)=\frac{\alpha}{2}$  e  $P\left(t>t_c\right)=\frac{\alpha}{2}$ 

## $\sigma^2$ desconhecida e amostra de grande dimensão

#### Estatística de teste

$$Z = \frac{\overline{X} - \mu_0}{\frac{S}{\sqrt{n}}} \sim N(0, 1)$$

$$R_c = ]-\infty, -z_c[\ \cup\ ]z_c, +\infty[$$
 onde  $P\left(Z<-z_c\right) = P\left(Z>z_c\right) = \frac{\alpha}{2}$ 

## $\sigma^2$ desconhecida e amostra de grande dimensão

#### Estatística de teste

$$Z = \frac{\overline{X} - \mu_0}{\frac{\sigma}{\sqrt{n}}} \sim N(0, 1)$$

$$R_c = ]-\infty, -z_c[\ \cup\ ]z_c, +\infty[$$
 onde  $P\left(Z<-z_c\right) = P\left(Z>z_c\right) = \frac{\alpha}{2}$ 

#### Exemplo

Um fornecedor de uma app para smarthphones pretende controlar o seu tempo médio de utilização no período das 20h às 24h. Para tal selecionou 130 utentes que revelaram um tempo médio de utilização de 1,15 minutos. Suponha que o tempo de utilização desta app é uma variável com uma distribuição normal com desvio padrão de 1 minuto. Teste, ao nível de significância de 1%, a hipótese do tempo médio de utilização ser superior a 1 minuto:

#### Resolução:

 $X_{i^-}$  v.a. que representa o tempo, em minutos, de utilização da app pelo utente i.

$$X_i \sim N\left(\mu, 1^2\right)$$

Amostra:  $n = 130 \text{ e } \overline{x} = 1.15$ 

 $\overline{X}$  - v.a. que representa o tempo médio de utilização da app quando considerada uma amostra aleatória de 130 utentes.

$$\overline{X} = \frac{1}{130} \sum_{i=1}^{130} X_i \sim N\left(\mu, \frac{1^2}{130}\right) \Leftrightarrow Z = \frac{\overline{X} - \mu}{1/\sqrt{130}} \sim N(0, 1)$$

#### Exemplo cont.

Teste de hipóteses unilateral à direita para a média

$$H_0: \mu = 1$$
 v.s.  $H_1: \mu > 1$ 

Estatística de teste:

Sob o pressuposto de  $H_0$  ser verdadeira,  $\mu=1$ , a estatística de teste é

$$\overline{X} \sim N\left(1, \frac{1^2}{130}\right)$$
 ou  $Z = \frac{\overline{X}-1}{1/\sqrt{130}} \sim N\left(0, 1\right)$ 

#### Região crítica:

Como o nível de significância é  $\alpha=0.01$ ,logo

$$P(Z > z_c) = 0.01 \Leftrightarrow P(Z \le z_c) = 0.99 \Leftrightarrow z_c = 2.33$$

$$R_c = ]2.33, +\infty[$$

Valor observado da estatística de teste:

$$z_{obs} = \frac{1.15-1}{1/\sqrt{130}} = 1.71$$

#### Decisão:

$$z_{obs} = 1.71 < 2.33, z_{obs} \notin R_c$$

Logo, não se deve rejeitar  $H_0$ . Ao nível de significância de 1%, não existe evidência estatística de que o tempo médio de utilização da app seja superior a 1 minuto.

#### Exemplo cont.

#### Resolução alternativa:

Podemos determinar a região crítica a partir dos valores originais.

$$\begin{split} R_c &= ]\overline{x}_c, +\infty [ \text{ onde } \overline{x}_c \text{ \'e tal que } P\left(\overline{X} > \overline{x}_c\right) = 0.01 \\ P\left(\overline{X} > \overline{x}_c\right) &= 0.01 \Leftrightarrow P\left(\overline{X} \leq \overline{x}_c\right) = 0.99 \\ &\Leftrightarrow \Phi\left(\frac{\overline{x}_c - 1}{\sqrt{130}}\right) = 0.99 \Leftrightarrow \frac{\overline{x}_c - 1}{\sqrt{130}} = \Phi^{-1}(0.99) \Leftrightarrow \overline{x}_c = 1.20 \\ R_c &= ]1.20, +\infty [ \end{split}$$

Decisão: média da amostra:  $\overline{x} = 1.15 \notin R_c$ , logo não se rejeita  $H_0$ 

# Teste unilateral à esquerda para a diferença de médias de duas populações normais

Pretendemos comparar as médias de duas populações  $\mu_1$  e  $\mu_2$ . Consideramos duas amostras aleatórias **independentes** de cada população de tamanhos  $n_1$  e  $n_2$ .

$$H_0: \mu_1 - \mu_2 = k$$
 v.s.  $H_1: \mu_1 - \mu_2 < k$ 

Supondo  $H_0$  verdadeira:

## $\sigma_1^2$ e $\sigma_2^2$ conhecidas

Estatística de teste

$$Z = \frac{\bar{X}_1 - \bar{X}_2 - k}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}} \sim N(0, 1)$$

$$R_c = ]-\infty, -z_c[$$
 onde  $P\left(Z < -z_c\right) = \alpha$ 

## $\sigma_1^2 = \sigma_2^2$ desconhecidas e amostras de pequena dimensão

#### Estatística de teste

$$T = \frac{\bar{X}_1 - \bar{X}_2 - k}{\sqrt{\frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}} \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \sim t_{n_1 + n_2 - 2}$$

$$R_c = \left] - \infty, -t_c \right[ \text{ onde } P\left(t < -t_c \right) = \alpha$$

## $\sigma_1^2 = \sigma_2^2$ desconhecidas e amostras de grande dimensão

#### Estatística de teste

$$Z = \frac{\bar{X}_1 - \bar{X}_2 - k}{\sqrt{\frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}} \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \sim N(0, 1)$$

$$R_c = ]-\infty, -z_c[$$
 onde  $P(Z < -z_c) = \alpha$ 

# Teste unilateral à esquerda para a diferença de médias de duas populações normais

 $\sigma_1^2 \neq \sigma_2^2$  desconhecidas e amostras de pequena dimensão

#### Estatística de teste

$$T = \frac{\bar{X}_1 - \bar{X}_2 - k}{\sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}} \sim t_v \text{ com } v = \frac{\left(\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}\right)^2}{\left(\frac{S_1^2}{n_1}\right)^2 + \left(\frac{S_2^2}{n_2}\right)^2} \frac{\left(\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}\right)^2}{n_1 - 1} + \frac{\left(\frac{S_2^2}{n_2}\right)^2}{n_2 - 1}$$

$$R_c = ]-\infty, -t_c[$$
 onde  $P\left(t < -t_c\right) = \alpha$ 

 $\sigma_1^2 \neq \sigma_2^2$  desconhecidas e amostras de grande dimensão

#### Estatística de teste

$$Z = \frac{\bar{X}_1 - \bar{X}_2 - k}{\sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}} \sim N(0, 1)$$

$$R_c = ]-\infty, -z_c[$$
 onde  $P\left(Z < -z_c
ight) = \alpha$ 

## $\sigma_1^2$ e $\sigma_2^2$ conhecidas e amostras de grande dimensão

Estatística de teste

$$Z = \frac{\bar{X}_1 - \bar{X}_2 - k}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}} \sim N(0, 1)$$

$$R_c = ]-\infty, -z_c[$$
 onde  $P\left(Z < -z_c\right) = \alpha$ 

# $\sigma_1^2 = \sigma_2^2$ desconhecidas e amostras de grande dimensão

# Estatística de teste

$$Z = \frac{\bar{X}_1 - \bar{X}_2 - k}{\sqrt{\frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}} \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \sim N(0, 1)$$

$$R_c = ]-\infty, -z_c[$$
 onde  $P(Z < -z_c) = \alpha$ 

# $\sigma_1^2 \neq \sigma_2^2$ desconhecidas e amostras de grande dimensão

# Estatística de teste

$$Z = \frac{\bar{X}_1 - \bar{X}_2 - k}{\sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}} \sim N(0, 1)$$

$$R_c = ]-\infty, -z_c[$$
 onde  $P\left(Z < -z_c
ight) = \alpha$ 

# Teste unilateral à direita para a diferença de médias de duas populações

$$H_0: \mu_1 - \mu_2 = k$$
 v.s.  $H_1: \mu_1 - \mu_2 > k$ 

Supondo  $H_0$  verdadeira:

Todas as estatísticas de teste anteriormente apresentadas para a diferença de médias são aplicáveis.

$$R_c = ]z_c, +\infty[$$
 onde  $P\left(Z>z_c
ight) = \alpha$ 

$$R_c = ]t_c, +\infty[$$
 onde  $P(t > t_c) = \alpha$ 

# Teste bilateral para a diferença de médias de duas populações

$$H_0: \mu_1 - \mu_2 = k$$
 v.s.  $H_1: \mu_1 - \mu_2 \neq k$ 

Todas as estatísticas de teste anteriormente apresentadas para a diferença de médias são aplicáveis.

# Região crítica

$$R_c = ]-\infty, -z_c[ \cup ]z_c, +\infty[$$
 onde  $P\left(Z<-z_c\right) = P\left(Z>z_c\right) = \frac{\alpha}{2}$ 

οι

$$R_c=]-\infty,-t_c[\ \cup\ ]t_c,+\infty[$$
 onde  $P\left(t<-t_c\right)=\frac{\alpha}{2}$  e  $P\left(t>t_c\right)=\frac{\alpha}{2}$ 

# Teste bilateral para a diferença de médias

### Exemplo

Tendo como objetivo averiguar a existência de diferenças significativas entre os tempos médios de utilização de duas apps concorrentes A e B em smarthphones, no período das 20h às 24h, foram selecionados duas amostras aleatórias e independentes de 130 utilizadores da app A e 140 da app B. A amostra da app A revelou um tempo médio de utilização 1,15 minutos enquanto na amostra da app B foi de 1,20. Suponha que os tempo de utilização de cada uma das apps são variáveis aleatórias distribuições normais com desvios padrão de 1 minuto e 1,2 minutos, repetivamente. Teste, ao nível de significância de 1%, a hipótese de igualdade dos respetivos tempos médios.

#### Resolução:

 $X_{iA}$ - v.a. que representa o tempo, em minutos, de utilização da app A.  $X_{iB}$ - v.a. que representa o tempo, em minutos, de utilização da app B.

$$X_{iA} \sim N(\mu_A, 1^2) e X_{iB} \sim N(\mu_B, 1.2^2)$$

Amostras:  $n_A = 130$ ,  $\overline{x}_A = 1.15$ ,  $n_B = 140$  e  $\overline{x}_B = 1.20$ 

### Exemplo cont.

 $\overline{X}_A$  - v.a. que representa o tempo médio de utilização da app A quando considerada uma amostra aleatória de 130 utentes.

$$\overline{X}_A = \frac{1}{130} \sum_{i=1}^{130} X_i \sim N\left(\mu_A, \frac{1^2}{130}\right) \Leftrightarrow Z = \frac{\overline{X}_A - \mu_A}{1/\sqrt{130}} \sim N\left(0, 1\right)$$

 $\overline{X}_B$  - v.a. que representa o tempo médio de utilização da app B quando considerada uma amostra aleatória de 140 utentes.

$$\overline{X}_{B} = \frac{1}{140} \sum_{i=1}^{140} X_{iA} \sim N\left(\mu_{B}, \frac{1.2^{2}}{140}\right) \Leftrightarrow Z = \frac{\overline{X}_{B} - \mu_{B}}{1/\sqrt{140}} \sim N\left(0, 1\right) \text{ Teste de}$$

hipóteses bilateral para a diferença de médias

$$H_0: \mu_A - \mu_B = 0$$
 v.s.  $H_1: \mu_A - \mu_B \neq 0$ 

$$H_0: \mu_A = \mu_B \quad v.s. \quad H_1: \mu_A \neq \mu_B$$

### Exemplo cont.

Estatística de teste:

$$\bar{X}_A - \bar{X}_B \sim N\left(0, \frac{1.1^2}{n_A} + \frac{1.2^2}{n_B}\right) \text{ ou } Z = \frac{\bar{X}_A - \bar{X}_B - 0}{\sqrt{\frac{1.1^2}{n_A} + \frac{1.2^2}{n_B}}} \sim N\left(0, 1\right)$$

Sob o pressuposto de  $H_0$  ser verdadeira,  $\mu_A = \mu_B$ , a estatística de teste é

$$Z = \frac{\overline{X}_A - \overline{X}_B}{\sqrt{\frac{1.1^2}{130} + \frac{1.2^2}{140}}} \sim N(0, 1)$$

### Região crítica

Como o nível de significância é  $\alpha=0.01$ ,logo

$$P(Z > z_c) = \frac{0.1}{2} \Leftrightarrow P(Z \le z_c) = 0.995 \Leftrightarrow z_c = 2.58$$
  
 $R_c = ]-\infty, -2.58[ \cup ]2.58, +\infty[$ 

Valor observado da estatística de teste:

$$z_{obs} = \frac{1.15 - 1.20}{\sqrt{\frac{1.1^2}{130} + \frac{1.2^2}{140}}} = -0.35$$

#### Decisão:

$$z_{obs} = -0.35 > -2.58$$
,  $z_{obs} \notin R_c$ 

Logo, não se deve rejeitar  $H_0$ . Ao nível de significância de 1%, não existe evidência estatística de que os tempo médios de utilização das duas apps sejam diferentes.

Queremos efetuar testes sobre a proporção de elementos da população com uma determinada característica.

Seja  $X_1,X_2,\dots,X_n$  uma amostra aleatória de uma população de Bernoulli numerosa ou infinita, com  $X_i\sim B_e(p)$  .

O número de sucessos na amostra é  $\sum_{i=1}^{n} X_i = n\hat{P}$ 

Sendo uma amostra suficientemente grande ( $n \ge 30$ ), tem-se

$$\hat{P} \sim N\left(p, \frac{pq}{n}\right)$$

$$H_0: p = p_0 \quad v.s. \quad H_1: p < p_0$$

Sob o pressuposto de  $H_0$  verdadeira,

# Estatística de teste

$$Z = \frac{\hat{P} - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}} \sim N(0, 1)$$

$$R_c = \left] - \infty, -z_c \right[ \text{ onde } P\left(Z < -z_c 
ight) = \alpha$$

# Teste unilateral à direita para a proporção

$$H_0: p = p_0 \quad v.s. \quad H_1: p > p_0$$

Sob o pressuposto de  $H_0$  verdadeira,

# Estatística de teste

$$Z = \frac{\hat{P} - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}} \sim N(0, 1)$$

$$R_c = ]z_c, +\infty[$$
 onde  $P(Z > z_c) = \alpha$ 

$$H_0: p = p_0 \quad v.s. \quad H_1: p \neq p_0$$

Sob o pressuposto de  $H_0$  verdadeira,

#### Estatística de teste

$$Z = \frac{\hat{P} - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}} \sim N(0, 1)$$

$$R_c = ]-\infty, -z_c[ \cup ]z_c, +\infty[$$
 onde  $P\left(Z<-z_c\right) = P\left(Z>z_c\right) = \frac{\alpha}{2}$ 

### Exemplo

Numa determinada cidade recolheu-se uma amostra aleatória de 120 homens tendo 50 afirmado que se barbeavam todos os dias. Teste a hipótese, ao nível de significância de 5%, da proporção de homens, daquela cidade, que se barbeiam todos os dias ser superior a 37%.

### Resolução:

X- v.a. que representa o n° de homens que afirmam que se barbeiam todos os dias, em 120.

 $\hat{P}$ -v.a. que representa a proporção de homens que afirmam que se barbeiam todos os dias, quando considerada uma amostra aleatória de 120

 $\hat{P} \sim N\left(p, \frac{pq}{n}\right)$ 

Teste de hipóteses unilateral à direita para a proporção

 $H_0: p = 0.37$  v.s.  $H_1: p > 0.37$ 

Amostra: n = 120,  $\hat{p} = 0.42$ 

#### Exemplo cont.

#### Estatística de teste:

$$Z=rac{ ilde{P}-p_0}{\sqrt{p_0(1-p_0)}}\sim N\left(0,1
ight)$$
 Sob o pressuposto de  $H_0$  ser verdadeira,  $p_0=0.37$ ,

a estatística de teste é

$$Z = \frac{\hat{P} - 0.37}{\sqrt{\frac{0.37 \times 0.63}{120}}} \sim N(0, 1)$$

### Região crítica:

Como o nível de significância é  $\alpha = 0.05$ , logo

$$P\left(Z>z_{c}\right)=0.05\Leftrightarrow P\left(Z\leq z_{c}\right)=0.95\Leftrightarrow z_{c}=1.645$$
  $R_{c}=|1.645,+\infty[$ 

Valor observado da estatística de teste:

$$z_{obs} = \frac{0.42 - 0.37}{\sqrt{\frac{0.37 \times 0.63}{120}}} = 1.13$$

#### Decisão:

$$z_{obs} = 1.13 < 1.645$$
,  $z_{obs} \notin R_c$ 

Logo, não se deve rejeitar  $H_0$ . Ao nível de significância de 5%, não existe evidência estatística de que a proporção de homens que se barbeiam todos seja superior a 37%.

# Testes de hipóteses para a diferença de proporções

Sejam  $X_{1_1}, X_{2_1}, \ldots, X_{n_1}$  e  $X_{2_1}, X_{2_2}, \ldots, X_{n_2}$  duas amostras aleatórias independentes de duas populações de Bernoulli, com  $X_{i_1} \sim B_e(p_1)$  e  $X_{i_2} \sim B_e(p_2)$ .

Sendo duas amostras suficientemente grandes ( $n_1 \geq 30$  e  $n_2 \geq 30$ ), tem-se  $\hat{P}_1 \sim N\left(p_1, \frac{p_1q_1}{n_1}\right)$  e  $\hat{P}_2 \sim N\left(p_2, \frac{p_2q_2}{n_2}\right)$ 

A distribuição da diferença entre as duas proporções é tal que:

$$Z=\frac{\left(\hat{P}_1-\hat{P}_2\right)-k}{\sqrt{\frac{p_1(1-p_1)}{n_1}+\frac{p_2(1-p_2)}{n_2}}}\sim N(0,1) \text{ ,sob o pressuposto de}$$
 
$$H_0:p_1-p_2=k,k\in\mathbb{R} \text{ verdadeira}.$$

# Teste unilateral à esquerda para a diferença de proporções

$$H_0: p_1 - p_2 = k \neq 0$$
 v.s.  $H_1: p_1 - p_2 < k$ 

# Estatística de teste

$$Z = \frac{(\hat{P}_1 - \hat{P}_2) - k}{\sqrt{\frac{\hat{P}_1(1 - \hat{P}_1)}{n_1} + \frac{\hat{P}_2(1 - \hat{P}_2)}{n_2}}} \sim N(0, 1)$$

$$R_c = ]-\infty, -z_c[$$
 onde  $P\left(Z < -z_c\right) = \alpha$ 

$$H_0: p_1 - p_2 = k \neq 0$$
 v.s.  $H_1: p_1 - p_2 > k$ 

# Estatística de teste

$$Z = \frac{(\hat{P}_1 - \hat{P}_2) - k}{\sqrt{\frac{\hat{P}_1(1 - \hat{P}_1)}{n_1} + \frac{\hat{P}_2(1 - \hat{P}_2)}{n_2}}} \sim N(0, 1)$$

$$R_c = ]z_c, +\infty[$$
 onde  $P\left(Z>z_c
ight) = \alpha$ 

$$H_0: p_1 - p_2 = k \neq 0$$
 v.s.  $H_1: p_1 - p_2 \neq k$ 

# Estatística de teste

$$Z = \frac{(\hat{P}_1 - \hat{P}_2) - k}{\sqrt{\frac{\hat{P}_1(1 - \hat{P}_1)}{n_1} + \frac{\hat{P}_2(1 - \hat{P}_2)}{n_2}}} \sim N(0, 1)$$

$$R_c = ]-\infty, -z_c[ \cup ]z_c, +\infty[$$
 onde  $P\left(Z<-z_c\right) = P\left(Z>z_c\right) = \frac{\alpha}{2}$ 

# Teste unilateral à esquerda para a diferença de proporções

$$H_0: p_1 - p_2 = 0$$
 v.s.  $H_1: p_1 - p_2 < 0$ 

As proporções populacionais  $p_1$  e  $p_2$  são desconhecidas, sendo k=0, consideramos uma média ponderada de  $\hat{p}_1$  e  $\hat{p}_2$ , definida por  $\hat{p}=\frac{n_1\hat{p}_1+n_2\hat{p}_2}{n_1+n_2}$ 

### Estatística de teste

$$Z = \frac{(\hat{P}_1 - \hat{P}_2) - 0}{\sqrt{\hat{p}\hat{q}(\frac{1}{n_1} + \frac{1}{n_2})}} \sim N(0, 1)$$

$$R_c = ]-\infty, -z_c[$$
 onde  $P\left(Z < -z_c\right) = \alpha$ 

# Teste unilateral à direita para a diferença de proporções

$$H_0: p_1 - p_2 = 0$$
 v.s.  $H_1: p_1 - p_2 > 0$ 

### Estatística de teste

$$Z = \frac{(\hat{P}_1 - \hat{P}_2) - 0}{\sqrt{\hat{p}\hat{q}(\frac{1}{n_1} + \frac{1}{n_2})}} \sim N(0, 1)$$

$$R_c = ]z_c, +\infty[$$
 onde  $P\left(Z>z_c
ight) = \alpha$ 

# Teste bilateral para a diferença de proporções

$$H_0: p_1 - p_2 = 0$$
 v.s.  $H_1: p_1 - p_2 \neq 0$ 

## Estatística de teste

$$Z = \frac{(\hat{P}_1 - \hat{P}_2) - 0}{\sqrt{\hat{p}\hat{q}(\frac{1}{n_1} + \frac{1}{n_2})}} \sim N(0, 1)$$

$$R_c = ]-\infty, -z_c[ \cup ]z_c, +\infty[$$
 onde  $P\left(Z<-z_c\right) = P\left(Z>z_c\right) = \frac{\alpha}{2}$ 

## Exemplo

Realizou-se um estudo em duas cidades, A e B, sobre a percentagem de homens que se barbeiam todos os dias. Na cidade A foram inquiridos aleatoriamente 120 homens tendo 46 afirmado que se barbeavam todos os dias enquanto que na cidade B 78 dos 200 inquiridos afirmaram que se barbeavam todos os dias. Ao nível de significância de 5%, será de admitir que a proporção de homens que se barbeia todos os dias é diferente nas duas cidades?

# Resolução:

 $X_{1}$ - v.a. que representa o n° de homens da cidade A que afirmam que se barbeiam todos os dias, em 120.

 $P_1$ -v.a. que representa a proporção de homens da cidade A que afirmam que se barbeiam todos os dias, quando considerada uma amostra aleatória de 120

$$\hat{P}_1 \sim N\left(p_1, \frac{p_1 q_1}{n_1}\right)$$

 $X_2$ - v.a. que representa o n° de homens da cidade B que afirmam que se barbeiam todos os dias, em 200.

 $P_2$ -v.a. que representa a proporção de homens da cidade A que afirmam que se barbeiam todos os dias, quando considerada uma amostra aleatória de 200

$$\hat{P}_2 \sim N\left(p_2, \frac{p_2 q_2}{n_2}\right)$$

### Exemplo cont.

Teste de hipóteses bilateral para a diferença de proporções

$$H_0: p_1=p_2 \quad v.s. \quad H_1: p_1-p_2 \neq 0$$
 Amostras:  $n_1=120, \; \hat{p}_1=0.38, \; n_2=200, \; \hat{p}_2=0.39,$  Estatística de teste:  $Z=\frac{\left(\hat{p}_1-\hat{p}_2\right)-0}{\sqrt{\hat{p}\hat{q}\left(\frac{1}{n_1}+\frac{1}{n_2}\right)}} \sim N(0,1)$ 

### Região crítica

Como o nível de significância é  $\alpha = 0.05$ , logo

$$P(Z > z_c) = \frac{0.05}{2} \Leftrightarrow P(Z \le z_c) = 0.975 \Leftrightarrow z_c = 1.96$$
  
 $R_c = ]-\infty, -1.96[ \ \ \ ]1.96, +\infty[$ 

Valor observado da estatística de teste:

$$\begin{array}{lll} \hat{p} = \frac{120\times0.38+200\times0.39}{120+200} = 0.3863 & \text{e} & \hat{q} = 0.6137 \\ z_{obs} = \frac{0.38-0.39}{\sqrt{0.3863\times0.6137\times(\frac{1}{120}+\frac{1}{200})}} = -0.18 \end{array}$$

#### Decisão:

$$-1.96 < z_{obs} = -0.18 < 1.96, z_{obs} \notin R_c$$

Logo, não se deve rejeitar  $H_0$ . Ao nível de significância de 5%, não existe evidência estatística de que a proporção de homens que se barbeiam todos os dias é significativamente diferente nas duas cidades.