Measuring and optimizing machine learning interpretability

Christoph Molnar, Giuseppe Casalicchio, Bernd Bischl

LMU Munich

Sommerklausur 2019-05-24

Outline

- Why measure interpretability?
- ► Functional Decomposition with Accumulated Local Effects
- Measures
- Application

Black Box Problem

Solution: Interpretable Models?

⇒ Pay with loss in performance; Unclear how to compare models

Solution: Post-hoc Interpretation?

 \Rightarrow Post-hoc interpretation (e.g. feature importance, partial dependence plots) works better for less complex models.

Is Interpretability Unscientific?

We Propose Measures of Model Complexity

Measure model complexity in a model-agnostic way: number of features, interaction strength, main effect complexity

- \Rightarrow Allows model comparison
- ⇒ Allows direct optimization for interpretability
- \Rightarrow Makes claims of interpretability more explicit ("Model A uses less features than B and has less interactions")

Functional Decomposition

$$f(x) = \overbrace{f_0}^{\text{Intercept}} + \underbrace{\sum_{j=1}^{p} f_j(x_j)}^{\text{1st order effects}} + \underbrace{\sum_{j\neq k}^{\text{2nd order effects}} f_{jk}(x_j, x_k) + \ldots + \underbrace{f_{1, \dots, p}(x_1, \dots, x_p)}_{\text{p-th order effect}}$$

Functional Decomposition

$$f(x) = \overbrace{f_0}^{ ext{Intercept}} + \sum_{j=1}^{ ext{Ist order effects}} \underbrace{\sum_{S \subseteq \{1,\dots,p\},|S| \geq 2}}_{ ext{Higher order effects}}$$

Functional Decomposition

$$f(x) = f_0 + \sum_{j=1}^{p} \underbrace{f_j(x_j)}_{\text{How many feature used?}}^{\text{How much interaction?}}$$

Main effect complexity

- Approximate ALE plot with linear segments
- ► Count number of non-zero coefficients
- ► Average over all features, weight with variance

Interaction Strength

Measure main effect model with proportion of error explained:

Interaction Strength
$$= \frac{\mathbb{E}(L(\hat{f}, f_0 + \sum_{j=1}^p f_j))}{\mathbb{E}(L(\hat{f}, c))}$$

Application: Multi-Objective Optimization

- ▶ Predict wine quality from physicochemical properties
- Minimize MAE, number of features, interaction strength, main effect complexity
- Search across different model classes and hyperparameter settings

Application: Multi-Objective Optimization

Application: Multi-Objective Optimization

	xgboost	ksvm (C:0.79)	xgboost	rpart
	(max_depth:		(max_depth:	(maxdepth:
	9,nrounds:913)		1,nrounds:141)	3)
MAE	0.47	0.53	0.57	0.61
NF	11	11	11	3
IA	0.64	0.27	0.02	0.14
MEC	4.12	1.99	2.90	1.81
fixed.acidity				
volatile.acidity			~	
citric.acid				
residual.sugar				
chlorides			~	
free.sulfur.dioxide			$\overline{}$	
total.sulfur.dioxide				
density				
pН				
sulphates				
alcohol				

Table 3. A selection of 4 models from the Pareto optimal set. From left to right, the models with best MAE, best MAE when $MEC \le 2$, best MAE when $IA = \le 0.1$, best MAE with $NF \le 7$.

Summary

- ► Model-agnostic interpretability measures: number of features, interaction strength, main effect complexity
- Use: model comparison and optimization metric
- Implementation: https://github.com/compstatlmu/paper_2019_iml_measures
- Paper:https://arxiv.org/abs/1904.03867

The End

Why not GAM?

```
library("mgcv")
library("iml")
set.seed(42)
X = data.frame(x1 = rnorm(100), x2 = rnorm(100))
f = function(model = NULL, newdata) {
    1 * (newdata[,1] > 0)
y = f(newdata = X)
dat = cbind(y, X)
mod.gam = gam(y \sim s(x1) + s(x2), data = dat)
```

Why not GAM?

x2

Why not GAM?

