

Cálculo Numérico A

Ficha 4 - Resolução de Equações Não Lineares

- 1. Considere a equação $x^3 + \frac{1}{x} 3 = 0$.
 - a) Mostre que esta equação tem uma única raiz real, α , no intervalo [1, 2].
 - **b)** Calcule o termo x_3 da sucessão obtida a partir do método da bissecção. Estime o erro absoluto desta aproximação.
 - c) Quantas iteradas desta sucessão teria que calcular se pretendesse uma aproximação $\hat{\alpha}$ com erro absoluto inferior a 10^{-6} ?

 Justifique.
- 2. Considere a equação

$$\sin(x) = 2\cos(x).$$

- a) Prove, analiticamente que, no intervalo [1, 1.5], a equação tem uma única raiz real x^* .
- b) Determine a aproximação x_2 de x^* , calculada pelo método da bissecção e indique um novo intervalo que contenha x^* .
- c) Quantas iteradas deveria calcular, pelo método da bissecção, de modo a obter uma aproximação de x^* com, pelo menos, 5 casas decimais significativas?
- d) Sem calcular x_{15} , determine um majorante do erro relativo associado a esta aproximação de x^* , calculada pelo mesmo método.
- 3. Considere a equação

$$e^x - 2x - 4 = 0.$$

- a) Mostre que esta equação tem uma única raiz real, γ , em I = [2, 3].
- b) Verifique que γ é ponto fixo da função $\phi(x) = \ln(2x+4)$ em I.
- c) Mostre que a sucessão

$$\begin{cases} x_0 = 3 \\ x_n = \phi(x_{n-1}) , n \in \mathbb{N} \end{cases}$$

converge para γ e calcule a sua ordem de convergência.

- d) Considerando $x_0 = 3$, calcule x_4 e indique um majorante do módulo do erro absoluto $|\gamma x_4|$.
- e) Quantas iteradas, j, seria necessário calcular de modo a verificar-se $|\gamma x_j| \le 10^{-4}$?

 Justifique.

4. Exercício computacional (R ou Phyton)

A equação $(x-1)e^x - x = 0$ tem duas raízes $\alpha_0 \in [-1, 0]$ e $\alpha_1 \in [1, 2]$.

- a) Verifique que α_0 e α_1 s \tilde{a} o pontos fixos de $F(x) = (x-1)e^x$.
- b) Mostre que α_0 é um ponto fixo atrator de F(x) em [-1, 0] e α_1 é um ponto fixo repulsor de F(x) em [1, 2].
- c) Utilizando o R/Phyton, construa uma tabela com os valores de $x_n = F(x_{n-1})$. Teste-a, partindo de $x_0 = 0$ e depois de $x_0 = 1.5$. Sabendo que $\alpha_0 \approx -0.80646599$ e $\alpha_1 \approx 1.34997649$ comente os resultados obtidos.
- 5. Considere a equação $x^5 1 = 2 x^3$.
 - a) Prove, analiticamente, que no i ntervalo [1, 2] a equação tem apenas uma raiz real.
 - b) Verifique que a sucessão definida por

$$\begin{cases} x_0 = 2.0 \\ x_{n+1} = x_n - \frac{g(x_n)}{g'(x_n)}, & n \ge 0 \end{cases}$$

onde $g(x) = x^5 + x^3 - 3$, converge para a única raiz real, α , da equação g(x) = 0, pertencente ao intervalo [1, 2].

- c) Determine x_2 e um majorante do módulo do erro absoluto cometido.
- 6. A equação $x^2 1 \cos x = 0$ tem uma única raiz real α em [1, 1.3]. Para determinar uma aproximação de α , considere as seguintes sucessões

$$x_{n+1} = F(x_n)$$
 , $y_{n+1} = G(y_n)$, $n = 0, 1, \dots$

onde
$$F(x) = \sqrt{1 + \cos x}$$
 e $G(x) = x + x^2 - 1 - \cos x$.

- a) Verifique que $F(\alpha) = G(\alpha) = \alpha$ e mostre que a sucessão x_n converge para α , qualquer que seja $x_0 \in [1, 1.3]$.
- b) Indique a ordem de convergência desta sucessão.
- c) Partindo de $x_0 = 1.0$, determine uma aproximação de α com um erro absoluto que não exceda 10^{-2} .
- d) Supondo que $y_0 \neq \alpha$, estude y_n quanto à convergência.
- e) Verifique que o método de Newton é convergente (para uma escolha adequada da aproximação inicial x_0) e calcule duas iteradas.

7. Ao aproximar α , zero de uma função f em [a,b], usando um método iterativo convergente do tipo ponto fixo

$$\begin{cases} x_0 \in [a, b] \\ x_{n+1} = G(x_n), \ n = 0, 1, \dots \end{cases},$$

com $G \in C^1([a, b])$, obteve-se a seguinte tabela:

i	x_i	$ \alpha - x_i $
3	1.73913	0.0521574
4	1.8254	0.034109
5	1.769665	0.0216249
6	1.80527	0.013986
7	1.78236	0.00893065
8	1.79704	0.00574957
9	1.78761	0.00368216

a) Qual a ordem de convergência do método usado? Dada uma constante $\lambda \neq -1$ considere a função iteradora

$$G_{\lambda}(x) = \frac{\lambda}{1+\lambda}x + \frac{1}{1+\lambda}G(x)$$

- b) Justifique que a equação x = G(x) é equivalente a $x = G_{\lambda}(x)$.
- c) Para que valor λ^* , o método $x_{n+1} = G_{\lambda^*}(x_n)$ é pelo menos de segunda ordem?
- d) A partir da tabela anterior, determine quais os valores possíveis para λ^* .

8. Exercício computacional (R ou Phyton)

Considere a função iteradora

$$F_{\omega}(x) = x\left(1 - \frac{\omega}{3}\right) + x^3(1 - \omega) + \frac{2\omega}{3x^2} + 2(\omega - 1), \quad \omega \in \mathbb{R}.$$

- a) Verifique que $\alpha = \sqrt[3]{2}$ é ponto fixo de F_{ω} .
- **b)** Utilizando o wxMaxima e considerando $x_0 = 1.5$, construa uma tabela com os termos $x_n = F_{\omega}(x_{n-1})$ e com os respetivos erros absolutos $|\sqrt[3]{2} x_n|$.
- c) Teste o programa e compare os resultados para $\omega=1,~\omega=1.1$ e $\omega=2.$
- d) Justifique analiticamente os resultados obtidos na alínea anterior.

9. Seja f uma função diferenciável tal que

$$f'(x) \ge M > 0, \ \forall x \in \mathbb{R}.$$

- a) Mostre que a equação f(x) = 0 tem uma única raiz α e que esta se encontra compreendida entre 0 = -f(0)/M.
- b) Verifique que a equação f(x) = 0 é equivalente à equação x = F(x) com

$$F(x) = x + cf(x),$$

onde c é uma constante não nula.

- c) Indique para que valores de c, a sucessão definida por $x_{n+1} = F(x_n)$ converge para α (tomando x_0 suficientemente próximo de α).
- d) Para os valores de c obtidos na alínea anterior, determine a ordem de convergência do método.
- 10. Considere a função $g(x) = 10x^3 8x + 3$ que tem, em I = [-2, -1], um único zero real, α .
 - a) Verifique que a sucessão definida por $x_0=-2$ e $x_n=x_{n-1}-\frac{10x_{n-1}^3-8x_{n-1}+3}{30x_{n-1}^2-8}$, $n\in\mathbb{N}$, converge para α .
 - **b)** Calcule x_2 e indique, justificando, quantas casas decimais significativas pode garantir para esta aproximação.
- 11. Considere o método do ponto fixo, a função iteradora $\Psi(x) = \cos(3x)$ e o intervalo [-1.3, -0.9].

Pesquise a existência de pontos fixos de Ψ em [-1.3, -0.9] e, em caso afirmativo, qual a sua natureza.

12. Considere a função $f(x) = 2x^5 - x^3 - x - 3$ que tem, no intervalo I = [1, 2], um único zero real, β .

Considere também as funções $\Psi_1(x)=2x^5-x^3-3, \ \Psi_2(x)=\frac{2x^5+3}{x^2+1}, \ \Psi_3(x)=\frac{x^3+3}{2x^4-1}$ e $\Psi_4(x)=\frac{3}{2x^4-x^3-1}$.

Investigue para quais das funções o ponto β é ponto fixo, em I.

13. Considere a função iteradora $\Gamma(x) = x^2 + k \text{ com } k > 0.$

Seja
$$I = [0, 1].$$

Demonstre que, se $k < \frac{1}{4}$, então $\Gamma(x)$ tem dois pontos fixos em I, sendo um repulsor e o outro atrator.

- **14.** Considere a função $g(x) = 2^{-x}$ com um único ponto fixo p em $\left[\frac{1}{3}, 1\right]$.
 - a) Obtenha a função f(x) tal que $f(x) = 0 \Leftrightarrow g(x) = x$.
 - b) Verifique que a sucessão

$$\begin{cases} x_0 = \frac{1}{3} \\ x_n = g(x_{n-1}), n = 1, 2, \dots \end{cases}$$

converge para o único ponto fixo $p \in [\frac{1}{3}, 1]$.

- c) Calcule o nº mínimo de iteradas, n, que seria necessário calcular de forma a obter uma aproximação de p com, pelo menos, 3 casas decimais significativas. Considere nos cálculos 4 casas decimais devidamente arredondadas.
- **15.** Considere a equação $x^2 \cos^2(x) = 0$ que tem uma única solução α em I = [0.5, 1].
 - a) Supondo que a sucessão obtida pelo método de Newton, com $x_0 = 1$, converge para a única solução α em I obtenha x_1 e diga quantas casas decimais significativas pode garantir para esta iterada.
 - b) Encontre g(x) tal que α é ponto fixo de g(x) no intervalo I. Prove que α é único e que a sucessão gerada pelo método do ponto fixo com $x_0 \in I$ converge para α . Classifique α .
- **16.** Considere a função $f(x) = x^4 4x^3 + 8x + 1$ e o intervalo I = [3, 4].
 - a) Verifique que existe um único zero α de f(x) em I.
 - b) Verifique que se pode utilizar o método de Newton para obter uma aproximação $\widehat{\alpha}$, de α , no intervalo I.
 - c) Calcule a iterada x_2 .
 - d) Determine uma estimativa para o erro absoluto associado a x_2 .
- 17. Seja α o único ponto fixo de $\varphi(x) = \ln(x^2 + 2x + 1)$ em I = [2, 3].

Determine uma aproximação $\hat{\alpha}$ de α , obtida pelo método da bisseção, para a qual se garante, pelo menos, uma casa decimal significativa.

- 18. Seja α a única raiz da equação $\ln(3x^2) x = 0$ em I = [0, 1].
 - a) Prove analiticamente que α é ponto fixo da função iteradora $\varphi(x) = \sqrt{\frac{e^x}{3}}$.
 - b) Verifique se a sucessão definida pelo método do ponto fixo, $x_0 = 1.0$ e $x_k = \varphi(x_{k-1})$, $k = 1, 2, \ldots$, converge para α em I. Qual a ordem de convergência desta sucessão? Justifique.
 - c) Obtenha a iterada x_k , com 6 casas decimais devidamente arredondadas, que permita aproximar α , com pelo menos 1 casa decimal significativa.
 - d) Se tivesse considerado uma função iteradora $\psi(x) = \ln(3x^2)$, como classificaria o ponto fixo α em relação a $\psi(x)$ e a sucessão $v_{k+1} = \psi(v_k)$, $k = 0, 1, ...(v_0 = 1.0)$ em termos de convergência? Justifique.