Dallas Animal Shelter Analysis

Jack Welsh and Isaac Slagel

May 16, 2019

Introduction

Background

Introduction

- Working with data from DallasOpenData
- 61634 individual observations
- adopted, out_dead, days_in_shelter, chip_status, intake condition, etc

EDA

000

Figure 1: Outcomes for Pitbulls v.s. Non Pitbulls

Quasibinomial Model

Quasibinomial Model

- Modeling the odds of dying at outcome
- Interested in the pitbull coefficient
- Need to control for:
 - season
 - chip status
 - intake condition

Quasibinomial Results

Table 1:

	Dependent variable: Proportion of dogs who died			
	(1)	(2)	(3)	
Intercept	0.116*** (0.069,0.186)	0.111*** (0.069,0.170)	0.552*** (0.454,0.669)	
Pitbull	3.440*** (1.795,6.557)	3.424*** (1.905,6.130)	3.489*** (3.022,4.027)	
Scannable Chip	0.789 (0.377,1.566)	0.799 (0.412,1.483)	0.781*** (0.667,0.911)	
Summer Outcome	1.461 (0.725,2.852)	1.447 (0.771,2.649)	1.478*** (1.271,1.718)	
Contagious		7.286** (1.324,44.137)	3.975*** (2.568,6.168)	
Treatable At Intake			0.161*** (0.133,0.196)	
Overdisperson Parameter Nested F Test	139.72	111.46 F : 5.1142*	6.27 F: 313.62***	
Note:	*p<0.1; **p<0.05; ***p<0.01			

Survival Analysis

Cox Proportional Hazards

- Used for modeling event occurance over time
- Follows the general form $h(t) = h_0(t) * \exp\{b_1 * x_1 + b_2 * x_2 + + b_p * x_p\}$
- Only assumes that the hazards are proportional

Cox Proportional Hazard Results

• Our Model: $h(t) = h_0(t) * \exp\{b_1 * \text{Pitbull}\}$

Table 2: $\exp(b_1)$ Estimates for Each Strata

	Strata					
	Summer and Chip	Summer and No Chip	Not Summer and Chip	Neither Summer or Chip		
pitbull	1.698*** (1.431,2.016)	1.717*** (1.553,1.897)	1.694*** (1.509,1.902)	1.941*** (1.509,1.902)		

Note:

Introduction

*p<0.1; **p<0.05; ***p<0.01

Discussion

Discussion

- Pitbulls have far larger chance of dying in animal shelter than non-pitbuls
 - Quasi-binomial regression
 - Random intercepts approach
 - Cox proportional hazards approach
- What can be done to address this?

Questions?