$$I = \frac{(a - b_{1})}{a^{2} + b^{2}} \left(e^{(a + b_{1})x} - 1 \right)$$

$$= \frac{(a - b_{1})}{a^{2} + b^{2}} \left(e^{x} \left(\cos \left(bx \right) + i \sin \left(b_{x} \right) \right) - 1 \right)$$

$$= \frac{(a - b_{1})}{a^{2} + b^{2}} \left(e^{x} \left(\cos \left(bx \right) + i \sin \left(b_{x} \right) \right) - 1 \right)$$

$$= \frac{(a - b_{1})}{a^{2} + b^{2}} \left(e^{x} \cos \left(bx \right) + i e^{ax} \sin \left(bx \right) - 1 \right)$$

$$= \frac{a^{2} \cos \left(bx \right) \cdot a \cdot e^{ax} \sin \left(bx \right) - b \cdot e^{ax} \cos \left(bx \right) + b}{a^{2} + b^{2}}$$

$$= \frac{e^{ax} \left(b \sin \left(bx \right) + a \cos \left(bx \right) \right) + a}{a^{2} + b^{2}}$$

$$= \frac{e^{ax} \left(a \sin \left(bx \right) - b \cos \left(bx \right) \right) + b}{a^{2} + b^{2}}$$

$$= \frac{e^{ax} \left(a \sin \left(bx \right) - b \cos \left(bx \right) \right) + b}{a^{2} + b^{2}}$$

$$= \frac{e^{ax} \left(a \sin \left(bx \right) - b \cos \left(bx \right) \right) + b}{a^{2} + b^{2}}$$

$$= \frac{e^{ax} \left(a \sin \left(bx \right) - b \cos \left(bx \right) \right) + b}{a^{2} + b^{2}}$$

$$= \frac{e^{ax} \left(a \sin \left(bx \right) - b \cos \left(bx \right) \right) + b}{a^{2} + b^{2}}$$

$$= \frac{e^{ax} \left(a \sin \left(bx \right) - b \cos \left(bx \right) \right) + b}{a^{2} + b^{2}}$$

$$= \frac{e^{ax} \left(a \sin \left(bx \right) - b \cos \left(bx \right) \right) + b}{a^{2} + b^{2}}$$

$$= \frac{e^{ax} \left(a \sin \left(bx \right) - b \cos \left(bx \right) \right) + b}{a^{2} + b^{2}}$$

$$= \frac{e^{ax} \left(a \sin \left(bx \right) - b \cos \left(bx \right) \right) + b}{a^{2} + b^{2}}$$

$$= \frac{e^{ax} \left(a \sin \left(bx \right) - b \cos \left(bx \right) \right) + b}{a^{2} + b^{2}}$$

$$= \frac{e^{ax} \left(a \sin \left(bx \right) - b \cos \left(bx \right) \right) + b}{a^{2} + b^{2}}$$

$$= \frac{e^{ax} \left(a \sin \left(bx \right) - b \cos \left(bx \right) \right) + b}{a^{2} + b^{2}}$$

$$= \frac{e^{ax} \left(a \sin \left(bx \right) - b \cos \left(bx \right) \right) + b}{a^{2} + b^{2}}$$

$$= \frac{e^{ax} \left(a \sin \left(bx \right) - b \cos \left(bx \right) \right) + b}{a^{2} + b^{2}}$$

$$= \frac{e^{ax} \left(a \sin \left(bx \right) - b \cos \left(bx \right) \right) + b}{a^{2} + b^{2}}$$

$$= \frac{e^{ax} \left(a \sin \left(bx \right) - b \cos \left(bx \right) \right) + b}{a^{2} + b^{2}}$$

$$= \frac{e^{ax} \left(a \sin \left(bx \right) - b \cos \left(bx \right) \right) + b}{a^{2} + b^{2}}$$

$$= \frac{e^{ax} \left(a \sin \left(bx \right) - b \cos \left(bx \right) \right) + b}{a^{2} + b^{2}}$$

$$= \frac{e^{ax} \left(a \sin \left(bx \right) - b \cos \left(bx \right) - b \cos \left(bx \right) \right) + b}{a^{2} + b^{2}}$$

$$= \frac{e^{ax} \left(a \sin \left(bx \right) - b \cos \left(bx \right) - b \cos \left(bx \right) \right) + b}{a^{2} + b^{2}}$$

$$= \frac{e^{ax} \left(a \sin \left(bx \right) - b \cos \left(bx \right) - b \cos \left(bx \right) - b}{a^{2} + b^{2}}$$

$$= \frac{e^{ax} \left(a \sin \left(bx \right) - b \cos \left(bx \right) - b}{a^{2} + b^{2}}$$

$$= \frac{e^{ax} \left(a \sin \left(bx \right) - b \cos \left(bx \right) - b}{a^{2} + b^$$