

Transmission Model and COVID-19 Variants

Saeedeh Mohammadi Sina Ghafouri Concepción Gamboa Sánchez Amirhossain Pilehvarian Fatemeh Pakpour

April 2020

Background

Approach

Result

Next step

phylogenetic network analysis showed there are three variants of coronavirus 2 (Covid-19), distinguished by amino acid changes named A, B, and C.

The aim of this project is to find a correlation between intrinsic characteristics of Covid-19 and the differences of the structure of transmission model of various countries.

Background

Approach

Result

Next step

- Coronaviruses (SARS-CoV, MERS-CoV, H5N1, H1N1, Covid-19) belong to the Coronaviridae family in the Nidovirales order.
- Covid-19 emerged recently is a highly transmittable and pathogenic viral infection caused by severe acute respiratory syndrome.
- To prevent and implement effective treatment strategies for disease, knowing the origin and transmission mechanisms are very important.

Understanding and Exploring Network Epidemiology

in the Time of Coronavirus

Motivation

Background

Approach

Result

Next step

	Α	В	C	D	E
1	id	age	sex	region	date_report
2	1	55	Male	Toronto	25-01-2020
3	2	55	Female	Toronto	27-01-2020
4	3	45	Male	Vancouver Coastal	28-01-2020
5	4	25	Female	Middlesex-London	31-01-2020
6	5	55	Female	Vancouver Coastal	04-02-2020
7	6	35	Male	Vancouver Coastal	06-02-2020
	_				

worldometer

Lives in city X

Reported in

day 15

https://www.kaggle.com/

Coronavirus Incubation Period:

Last updated: March 12, 15:00 GMT

2 - 14 days

Possible outliers: 0 - 27 days

 $P_{city} = 1/$ number of regions

 $K_{in} = 1$

Background

Approach

Result

Next step

Nodes: 3409 Diameter: 29 Modularity: 0.81 Community Num.: 6

46% with 0 BC 0.1% with BC of

>13000

 $< K_{out} > = 2.00$

Variant B

Nodes: 11033 Diameter: 44

Modularity: 0.89

Community Num.: 10

40% with 0 BC

0.1% with BC of >8000

 $< K_{out} > = 1.00$

Variant B

Indonesia

Nodes: 893

Diameter: 16

Modularity: 0.63

Community Num.: 3

41% with 0 BC

0.5% with BC of >800

 $< K_{out} > = 2.00$

Variant B

Background

Approach

Result

Next step

Modularity Algorithm: Blondel, et al. (2008)
Betweenness centrality: Brandes, et al. (2001)
Force Atlas 2 Algorithm: Jacomy, et al. (2014)

Nodes: 7040

Diameter: 36

Modularity: 0.87

Community Num.: 9

38% with 0 BC

0.1% with BC of >7700

 $< K_{out} > = 1.00$

Variant C

Limitation: We need more data from more countries with specified variant of the virus.

Background

Approach

Result

Next step

Finding the assortativity of nodes with gender and age

 Using multilayer graph with age and gender in other layers

Background

Approach

Result

Next step

Thank you for your attention!

