

4ème Math Classe: (Gr Standard)

Série 28 Devoir de controle2(3)

Prof: Karmous Med

O Sousse (Khezama - Sahloul) Nabeul / Sfax / Bardo / Menzah El Aouina / Ezzahra / CUN / Bizerte / Gafsa / Kairouan / Medenine / Kébili / Monastir / Gabes / Djerba / Jendouba / Sidi Bouzid / Siliana / Béja / Zaghouan

Chimie

Exercice 1

(3)

On considère une solution (S₁) d'acide éthanoïque CH_3CO_2H de concentration initiale $C_1=0,2$ $mol.L^{-1}$ et de $pH = pH_1$. Le taux d'avancement final de la réaction de l'acide éthanoïque avec l'eau dans (S₁) est $\tau_{f_1} = 9.10^{-3}$ et le pK_a ($CH_3CO_2H / CH_3CO_2^-$)= pK_{a1} .

- 1-a-Montrer que ${
 m CH_3\,CO_2\,H}$ est un acide faible . Ecrire l'équation de sa réaction chimique avec l'eau.
- b-Etablir en fonction de τ_{f_1} et de C_1 , l'expression de pH_1 et celle de pK_a , en précisant à chaque fois l'approximation nécessaire .
 - c Calculer pH_1 et pK_{a1} .
- 2-A partir d'un volume V_1 de (S_1) , on réalise une dilution , par l'ajout d'un volume V_{e} d'eau pure de façon que l'acide éthanoïque reste faiblement dissocié .

La solution (S) obtenue est de concentration C et de volume V.

a – Montrer que le taux d'avancement final τf de la réaction de l'acide éthanoïque avec

l'eau dans (S) s'écrit : $\tau_f = \tau_{f_i} \cdot \sqrt{\frac{c_1}{c}}$

b – Montrer que le pH de la solution (S) est donné par l'expression :

$$\mathbf{pH_s} = \mathbf{pH_1} + \frac{1}{2} \cdot \log(\frac{c_1}{c}),$$

calculer pHs et τ_f quand le volume d'eau ajoutée est $V_e = 3V_1$.

- c Préciser l'effet de cette dilution sur :
 - c₋₁: la constante d'acide Ka₁ du couple CH₃ CO₂ H / CH₃ CO₂.
 - c_{-2} : le pH de la solution.
- 3– On dispose d'une solution aqueuse (S_2) , d'acide méthanoïque HCO_2H faiblement dissocié dans l'eau, de concentration molaire initiale $C_2 = 0.1 \text{mol.L}^{-1}$ et ayant un $pH_{s2} = pH_2 = 2.37$.
 - a Déterminer le pK_{a2} du couple HCO₂H / HCO₂.
 - b Comparer les forces de l'ion éthanoate et de l'ion méthanoate

Exercice 2

On dispose de deux solutions aqueuses de deux bases B_1 et B_2 de même concentration molaire $C=0,1mol.L^{-1}$ et de pH respectifs $pH_1=13$ et $pH_2=11,1$.

- 1°) Etablir l'expression du taux d'avancement final τ_f d'une base B.
- **2°)** Montrer que B_1 est une base forte et que B_2 est une base faiblement ionisée.
- 3°) a- Montrer que la constante d'acidité K_a du couple B_2H^+/B_2 s'écrit sous la forme $Ka = \frac{Ke}{c.\tau_f^2}$. b-Déduire l'expression du pH de B_2 en fonction de C, pKe et pKa.

4°) On prépare différentes solutions de la base B_2 dont les concentrations molaires sont inferieures à **0,1mol.L**⁻¹ et supérieures à **6,3.10**⁻³mol.L⁻¹.

On a déterminé le taux d'avancement final τ_f de chaque solution ce qui nous a permis de tracer la courbe cicontre

a-Justifier l'allure de la courbe.

- b- En exploitant cette courbe :
 - *Déterminer le **pKa** du couple B_2H^+/B_2 .
 - *Montrer que la dilution favorise l'ionisation d'une base faible.

Physique

Exercice 3

On dispose d'un générateur de basse fréquence GBF délivrant la tension $u(t) = 15\sqrt{2} \sin{(2\pi Nt + \frac{\pi}{6})}$ de fréquence N réglable, d'un oscilloscope électrique bicourbe, d'un ampèremètre à aiguille A et de trois dipôles électriques D_1 , D_2 et D_3

- + **D**₂ est un conducteur ohmique de résistance **R**=40Ω.
- **♣** Chacun des dipôles **D**₁, **D**₃ peut être constitué de l'un des éléments ou d'une association de deux éléments différents parmi la liste suivants :
- ✓ Conducteur ohmique de résistance R',
- ✓ Condensateur de capacité C
- ✓ Bobine purement inductive d'inductance L.

A l'aide de ces différents dipôles, on réalise le circuit électrique de la figure ci-contre, sur lequel sont indiqués les branchements sur l'oscilloscope.

I/ Dans une première expérience, on fixe la fréquence du GBF à une valeur $N_1=250\ Hz$.

L'intensité du courant traversant le circuit a pour ex-

pression : i(t) = 0, $1\sqrt{2} \sin(2\pi N_1 t)$.

II/ Dans une deuxième expérience,

7 To prendra $R_{Totale} = 130\Omega$, L = 0.15H, $C = 4\mu F$

Pour une fréquence N_2 , on visualise les tensions électriques $\mathbf{u}(t)$ aux bornes du générateur et uE(t) aux bornes de l'un des

Dans ces conditions, la déviation de l'aiguille de l'ampèremètre

indique la valeur la plus élevée. 1°) quel est l'état d'oscillation du circuit?

 2°) Préciser, en le justifiant, aux bornes de quel élément du dipôle D_1 , on a branché l'oscilloscope afin de visualiser $\mathbf{u}_{\mathbf{E}}(\mathbf{t})$.

 3°) Déterminer la fréquence N_2 des oscillations du circuit.

4°) Calculer l'intensité du courant I2 indiquée par l'ampèremètre.

5°) En comparant les amplitudes des deux tensions visualisées, que peut-on conclure

 1°) Préciser la nature du circuit pour la fréquence N_1 .

2°) Sur l'oscilloscope, on obtient l'oscillogramme ci-contre.

 $\Delta \varphi = \varphi_{u_{D1}} - \varphi_{u_{D2}}$ a-Déterminer le déphasage de la tension \mathbf{u}_{D1} par rapport à la tension \mathbf{u}_{D2} .

b-Déterminer les expressions instantanées des tensions u_{D1} et u_{D2}.

Justifier que D_1 est une association résistor-condensacteur (R',C).

3°) a- En appliquant la loi des mailles, écrire l'expression de u(t) en fonction des tensions instantanées aux bornes des trois dipôles D_1 , D_2 et D_3 .

b- Représenter le construction de Fresnel relative aux valeurs maximales de ces tensions à l'échelle :

$$4\sqrt{2} \rightarrow 2cm$$
.

c- En déduire la nature exacte du dipôle D₃.

d- En exploitant la construction de Fresnel, déterminer les valeurs des grandeurs caractéristiques des dipôles D_1 et D_3 .

e- Ecrire l'expression de la tension instantanée aux bornes du dipôle D₃.

f- Calculer la puissance moyenne consommée dans le circuit.

