Module 5 Future Directions, Advanced Topics and a Question

What is

"Optical Internet?"

Read the suggested texts and references for this module

What is next?

We asked this in the previous module

On the the capacity limit and research directions

- •Substantially unlimited capacity (Tera Hertz) in the future
 - -Reduce spectral spacing
 - -Optical spread spectrum transmission
 - –Optical Time Division Multiplexing (OTDM)
 - –Optical Code Division Multiplexing (OCDM)
 - -Chirped WDM-TDM
 - -Other
- Bandwidth is no longer the issue
- Bandwidth Management is the challenge

Data Networking Directions

Near-term:

Service layer and transport layer internetworking

- Optical Transport Networking
- More intelligence at the transport layer

Optical Technology Directions?

- Potential commercialization of hi speed optical logic arrays
- Potential development of high speed optical processors

Then in the long-term future

•All-Optical routers?

What Is All-optical Internet? Some Thoughts and Views

Which of the following alternatives do you see?

1. Mimic Electrical Internet

- Needs embedded labels (headers and trailers)
- Needs optical storage (flip-flops) and processors
- Far Future

2. Electronic routers with optical transport

Today

3. Practical Vision

- No O/E/O conversion and electronic processing (except at edges of the Internet)
- Dynamically reconfigurable wavelength-based all-optical network
- Optical signaling
- Near-Term Future

$\sum_{t=1}^{N} \lambda t$

An Optical Barcode Label Is Needed

- So we also need a barcode tag, a barcode reading mechanism, and preferably a barcode writing mechanism on each wavelength package.
- And we want this barcode on the package, not inside the package. This means on the optical channel and not in the electrical bit stream.
- That is the motivation behind the proposed optical wavelength tagging.

© Concept Development Group $\sum_{i=1}^{N} \lambda_i$

Need All-Optical Wavelength Channel Label and Channel Trace means

A Look at the UPS Tracking Mechanism

What Is an Optical Barcode?

• We need:

Payload or content

Label

tag

Label generator/w riting tool

Label reading/writ ing tool

Digital highspeed payload

LF tones

LS digital tag

Low-cost reader/writer

Signaling for Path Setup and Removal

- Labels are effective in carrying optical signaling for wavelength reconfiguration.
 - -Optical labels can be placed in-band (e.g., Digital Wrapper) but would require O/E/O conversion limits transparency.
 - -Other signaling techniques, such as a separate network (e.g., SS7), or a separate wavelength is also possible (cost/speed tradeoff).

Network Architecture Vision for an All-Optical Internet

Kazem Sohraby
Mohammad T. Fatehi
Victor B. Lawrence
Mark R. Wilson

NFOEC paper

A Proposed Optical Label

- Unique LF tone insertion on each wavelength at the edge WSM.
- The tone subcarriers are modulated with low speed signaling information
- At each network element, labels may be:
 - read/written
 - removed
 - replaced
 - regenerated
- Also Needed for OXC Connection Verification

Reference: Read NFOC96 paper

© Concept Development Group

Wavelength Selection/Multiplexing

Ingress/Egress Optical Element

All-Optical Router (OXC)

Implementation of Write Function

Implementation of Read Function

Single- or multi-wavelength optical signal line

Optical Label Replacement

Feed-Forward Implementation

Optical Label Replacement

Feedback Implementation

Signaling for Path Setup/Removal

- Labels are effective in carrying optical signaling for wavelength reconfiguration
 - Optical labels can be placed in-band (e.g., Digital Wrapper) but would require O/E/O conversion - limits transparency.
 - Other signaling techniques, such as a separate network (e.g., SS7) or a separate label-bearing wavelength, are also possible (cost considerations)
- Can be used for network restoration in case of node/link failures (mesh/ring, etc.)
- Reconfiguration/restoration priorities are determined by the QoS carried on the optical label

Signaling for Path Setup/Removal

Path Service Request (PSR)

Source	Destination	λ_1	λ2 At Source WSM/OXC		Path
WSM/OXC	WSM/OXC	At Source			
Address	Address	WSM/OXC			QoS

Pending PSR

O	Destination WSM/OXC Address	U	Path QoS	OXC	At First	Wavelength At Second OXC	• • •
Address	•						

Wavelength Assignment/Allocation

- Traffic observation & wavelength allocation assignment performed over predetermined intervals:
 - **Scheduled:** based on daily/hourly fluctuations
 - Unscheduled: based on parameters such as channel utilization, buffer size, etc. λ_1

Summary

- Practical network architecture for an "all-optical" internet
- Optical labels using subcarrier-modulated low-frequency tones:
 - Feedback architecture for optical label read/write/replace
- Signaling messages for network reconfiguration
 - Wavelength (re-)allocation based on traffic observations