

Using Generic Data to Establish Dormancy Failure Rates

Bruce Reistle JSC Safety & Mission Assurance

Dormancy Failures

Suppose a probabilistic risk assessment includes some items that are subject to a significant dormant period prior to being operated (e.g., a mission to Mars).

One would expect the failure rate to be lower during a dormant period. But by how much?

An order of magnitude? A factor of 30?

$$d = \frac{f_{Active}}{f_{Dormant}}$$

The goal is to find a data-based source for **dormancy factors**; the dormancy factor is the ratio of the dormant failure rate to the combined active failure rates.

- Non-Operational Databases (NONOP-1, 1987)
- MIL-HDBK 217
- 217Plus
- Various Conversion Factors

Conversion factors are typically intended to be used on electronic piece parts.

NPRD-2011 (Nonelectronic Parts Reliability Database)

- Some items contain the dormant environment
 - About 120, a very small percentage of the total number of items
- Probably not the items you are looking for

Special Selections

Select/Deselect All Data Sheets **Show Database Summay Sheet**

DORMANT GRADS

Generic Risk Analysis Data Set

Version: 1.0 7/31/2013

Organization: JSC S&MA Contact Name: **Bruce Reistle**

bruce.c.reistle@nasa.gov Contact Email:

Show/Hide Data Sheet:	Show	w/Hide	Data	Sheets
-----------------------	------	--------	------	--------

A-C	П
Data Sheet Name	Show
Accelerometer	
Accumulator,Press,Hyd	
Actuator	
Actuator,Hydraulic	
Actuator,Linear	
Actuator,Pneumatic,Linear	
Antenna	
Arrestor,Surge,Spark Gap	
Attenuator	
Bearing	
Bearing,Ball	
Bellows	
Circuit Breaker	
Circuit Card Assembly,Populate	
Circuit Card Assmbly,Pop,Plated	
Connection,Solder	
Connection,Solder,Hand Lap	
Connector,Circular	
Connector,Circular,Multi-Cont	
Connector,Coaxial,FRRF	
Connector,Electrical	
Connector,PCB, Printed Circuit	
Connector,PWB, Printed Wiring	
Connector,Rectangular	
Counter,Timer	
Coupler,Antenna	
Coupler,Directional	
Crystal,Quartz	

D-H	
Data Sheet Name	Show
Disk Drive,Floppy	
Disk Drive,Hard Disk	
Duct	
Duct,Air,Furnace	
Electron Tube	
Electron Tube,CRT	
Electron Tube,Klystron	
Electron Tube,Magnetron	
Engine	
Fan	
Fan,Axial	
Fan,Centrifugal	
Fasteners and Hardware	
Filter,Bandpass	
Filter,Fluid,Pressurized	
Fitting,Hydraulic,QD	
Flight Instrument	
Fuse,Enclosed Link	
Gas Generator	
Gasket	
Generator	
Generator,AC Voltage	
Generator,Gas Turbine	
Generator,Turbine	
Gyroscope	
Gyroscope,Rate	
Heater,Electrical,Resistive	
Hose,Hydraulic	

I-R	
Data Sheet Name	Show
Igniter	
Igniter,Explosive	
Igniter,Explosive,Bolt	
Igniter,Explosive,Solid Prop	
Igniter,Explosive,Squib	
Inductive Device,Inductor,Micr	
Lamp,Neon,Miniature	
Manifold,Fluid	
Motor,AC	
Motor,Sensor	
Motor,Torque	
Motor Generator	
PCB, Printed Circuit Board,Pop	
PCB, Printed Circuit Board,Unp	
Pin,Connector	
Power Transmitter	
Pump,Hydraulic	
Pump,Hydraulic,Centrifugal	
Pump,Hydraulic,Fuel	
Pump,Hydraulic,Gear	
Pump,Hydraulic,Piston	
Pump,Hydraulic,Vane	
Recorder	
Regulator,Pressure,Hydraulic	
Relay,Electromagnetic	
Relay,Electromechanical,Gen	
Relay,Electromechanical,Latch	
Relay,Electromech,Reed,Dry	
Relay,Power	
Relay,Solenoid	

elay,Thermal

s	
Data Sheet Name	Show
Seal	
Seal,O-Ring	
Seal,Packing	
Sensor,Motion,Acc,Angular	
Sensor,Motion,Acc,Linear	
Sensor,Motion,Acc,Pendulum	
Sensor,Pressure	
Sensor,Transducer	
Sensor,Transducer,Motion	
Solenoid	
Spring	
Switch	
Switch,Electronic	
Switch,Inertial	
Switch,Micro	
Switch,Pressure	
Switch,Pushbutton	
Switch,Rotary	
Switch,Rotary,Stepping	
Switch,Sensitive	
Switch,Sensitive,Micro	
Switch,Thermostatic	
Switch,Toggle	
Synchro,Resolver,Low Speed	

T-Z	
Data Sheet Name	Show
Tank,Pressurized,Gas	
Transformer	
Transformer,Power,Single Phase	
Transformer,Power	
Transformer,Pulse	
Transformer,RF, Radio Freq	
Valve,Ball,Hydraulic	
Valve,Bypass,Hydraulic,Fuel	
Valve,Check,Hydraulic	
Valve,Check,Pneumatic	
Valve,Hydraulic,Solenoid	
Valve,Relief,Hydraulic	
Valve,Relief,Pneumatic	
Valve,Shut Off,Hydraulic	
Valve with Actuator,Pneumatic	

Dormant GRADS—Continued

The dormancy factor for the gyroscope is: $d = \frac{2.0 \times 10^{-5}}{2.5 \times 10^{-7}} = 80.0$

Gyroscope

GRADS Rate Based Data Sheet (per hour)

Environment	Count	<u>Parameters for Lognormal(Mean, EF) and Gamma(α, β)</u>					
Livioninent	Count	Mean	Error Factor	α	β	SD	Variance
Overall	1	2.0E-05	9.6	1.8E-01	9.0E+03	4.7E-05	2.2E-09
ARW	1	1.0E-04	3.9	1.0E+00	1.0E+04	1.0E-04	1.0E-08
AUF	1	4.3E-06	5.6	5.0E-01	1.2E+05	6.0E-06	3.7E-11
GF	1	1.8E-05	2.4	3.0E+00	1.6E+05	1.1E-05	1.1E-10
SF	3	5.1E-06	5.9	4.5E-01	8.7E+04	7.7E-06	5.9E-11
A	1	7.8E-06	5.6	5.0E-01	6.4E+04	1.1E-05	1.2E-10
G	1	1.8E-05	5.6	5.0E-01	2.7E+04	2.6E-05	6.7E-10
GB	1	1.5E-05	5.6	5.0E-01	3.3E+04	2.1E-05	4.5E-10
DOR	1	2.5E-07	1.2	1.3E+02	5.2E+08	2.2E-08	4.8E-16
Dormant Environment Records (DOR)	nant Environment Records (DOR) 1 Records Used 9 Failures Used					9.0	
Data Sources							
Name	Quality	Environment	Source	Failures	Hours	Mean	Variance
0	Military	ARW	NIDDD 004	4	40.000	4.05.04	1.0E-08
Gyroscope	wiiitary	ALV	NPRD-091	1	10,000	1.0E-04	1.00-00
Gyroscope Gyroscope	Military	AUF	16953-000	0	10,000 117,000	4.3E-06	3.7E-11
		~~~~~		I			
Gyroscope	Military	AUF	16953-000	0	117,000	4.3E-06	3.7E-11
Gyroscope Gyroscope	Military Military	AUF GF	16953-000 NPRD-061	0 3	117,000 164,000	4.3E-06 1.8E-05	3.7E-11 1.1E-10
Gyroscope Gyroscope Gyroscope	Military Military Military	AUF GF SF	16953-000 NPRD-061 10219-034	0 3 2	117,000 164,000 508,000	4.3E-06 1.8E-05 3.9E-06	3.7E-11 1.1E-10 7.8E-12
Gyroscope Gyroscope Gyroscope Gyroscope	Military Military Military Military	AUF GF SF SF	16953-000 NPRD-061 10219-034 NPRD-077	0 3 2 0	117,000 164,000 508,000 63,000	4.3E-06 1.8E-05 3.9E-06 7.9E-06	3.7E-11 1.1E-10 7.8E-12 1.3E-10
Gyroscope Gyroscope Gyroscope Gyroscope Gyroscope	Military Military Military Military Unknown Unknown Unknown	AUF GF SF SF A	16953-000 NPRD-061 10219-034 NPRD-077 14182-001	0 3 2 0	117,000 164,000 508,000 63,000 63,865	4.3E-06 1.8E-05 3.9E-06 7.9E-06 7.8E-06	3.7E-11 1.1E-10 7.8E-12 1.3E-10 1.2E-10
Gyroscope Gyroscope Gyroscope Gyroscope Gyroscope Gyroscope	Military Military Military Military Unknown Unknown	AUF GF SF SF A G	16953-000 NPRD-061 10219-034 NPRD-077 14182-001 14182-001	0 3 2 0 0	117,000 164,000 508,000 63,000 63,865 27,333	4.3E-06 1.8E-05 3.9E-06 7.9E-06 7.8E-06 1.8E-05	3.7E-11 1.1E-10 7.8E-12 1.3E-10 1.2E-10 6.7E-10



## **Dormancy Factors**

The dormancy factor is the ratio of the dormant failure rate to the combined active failure rates:

$$d = \frac{f_{Active}}{f_{Dormant}}$$

The calculated dormancy factors are then fit to a distribution (in a non-standard way).

To focus on the central tendency of the data, only the 10th to the 90th percentiles are used.







## **Dormancy Factors—Continued**

### **Combined Means by Hardware Type**

Electrical items are more susceptible to dormancy failures.

Hardware Type	Mean Dormancy Factor
Electrical	50
Mechanical	310
Electro-Mechanical	110
Combined	100

#### **Triangular Distribution Details**

#### Recommendation: Include uncertainty in the form of a (right) triangular distribution.

Hardware Type	Minimum	Mode	Mean	Maximum
Electrical	2	2	50	150
Mechanical	10	10	310	900
Electro-Mechanical	10	10	110	300
Combined	5	5	100	300





## **Using the Dormancy Factors**

To model dormant failures using dormancy factor, you need:

- 1. The active failure rate
- 2. The dormant duration

The **dormant failure rate** is the active failure rate divided by the dormancy factor:

$$f_{Dormant} = \frac{f_{Active}}{d}$$

It is important to capture the correct dormant time. In some cases the dormant time could go back as far as the date the item was manufactured. In general, dormant time is months or years.

Also, there might be compounding factors (corrosion, thermal stress, etc.) that would require additional analysis.





### Conclusions

- These factors are ballpark estimates
- If you have better data, use it
- Use a reasonable estimate for the dormant period