Appendix

Michail Belias 7/23/2019

A spline function is a piecewise polynomial function joined together with certain continuity conditions satisfied.

Polynomial splines

Linear Spline

For a set of data points usually termed knots: , the linear spline is $x_i, y_i, i = 1, 2, ..., \kappa$ the linear spline is defined as $S_i(x) = \alpha + \beta \times x$ for $x \in [x_i, x_{i+1}], i = 1, 2, ...\kappa$. Since the spline has to be continuous (C^0) , $s_i(x_i) = y_i = s_{i+1}(x_i)$. This yields $2(\kappa-2)$ equations to solve at the interior points. Linear splines are often called minimum-maximum functions.

an example

Cubic splines are smoothest interpolators

If we consider a set of points $x_i, y_i : i = 1, 2, ..., \kappa$, where $x_i < x_{i+1}$. The cubic spline g(x) is a function made up of sections of cubic polynomial derived within the intervals $[x_i, x_{i+1}]$, with the following properties:

- $g(x_i) = y_i$ $g^{'}(x_1) = g^{'}(x_n)$ \$

Figure 1: two plots