BODY FAT STUDY SUMMARY

Introduction

Using a multiple linear regression model with a real dataset of 252 men to predict body fat.

Data Cleaning

- 1. View the characteristics of variables, including mean, max, min, median, and quartiles.
 - a) Bodyfat(DV): has two values(ID 172, 182) less than 2%(Essential fat).
 - b) Independent Variable: the minimum of *height* is abnormal(ID 42). *adiposity* can be calculated from *height* and *weight*.
 - c) Measurements: weight and height are in non-metric units.
- 2. Convert units and impute outliers.
 - a) Convert weight and height to metric units.
 - b) Cross-validate *adiposity*, *height*, and *weight*. Replace abnormally low *height*(ID 42) with calculated results from *weight* and *adiposity*; substitute significantly differing *adiposity* results with those calculated from *height* and *weight*(ID 163, 211).
 - c) Exclude two abnormal values, fit a linear model using *density* and *bodyfat* to identify outliers(ID 48, 76). Impute these two data points using the linear fit results.
 - d) Impute the two abnormally low *bodyfat* values(ID 172, 182) using KNN.

Figure 1 Before Imputation

Figure 2 After Imputation

Motivation for Model

1. Final Model:

 $body fat = -25.02 + 0.92 abdomen - 0.25 weight_{inkg} - 1.16 wrist + 0.47 for earm - 0.36 neck + \epsilon the second se$

- 2. Example Usage: A man with 88.6cm *abdomen*, 89.92kg, 19.2cm *wrist*, 30cm *forearm* and 42.1cm *neck* is expected to have a body fat % of 11.23%, while the real data is 12%. His 95% prediction interval is between 9.62% and 12.84%.
- 3. Interpret Model: Our estimated coefficients are -25.02, 0.92, -0.25, -1.16, 0.47, and -0.36, in the units of %, cm, kg, cm, cm, and cm. For instance, the coefficient for wrist is -1.16, meaning that for every 1 cm increase in wrist circumference, body fat percentage is predicted to decrease by 1.16 percentage points, holding other variables constant.
- 4. Choose Model:
 - a) We use model selection(Forward selection, Backward selection, Stepwise selection).
 - b) We use lasso regression.
 - c) Due to the low rate in some age groups, we used weighted least squares, adjusting weights based on 2024 global male age distribution. We grouped the data in 5-year interval and calculated the proportion of each group within the 20-85 range for the sample and real data. The ratio of true to sample proportions was used as weights.
 - d) Use leave-one-out cross-validation to calculate the average MSE, and select the model with the smallest MSE based on the checking model assumptions.

Table 1 Choose Model

Model	MSE(LOOCV)	AIC	BIC
LASSO	17.9561	717.5898	738.7663
OLS (Backward)	15.9935	1412.9470	1455.3002
OLS (Forward)	16.0438	1414.0327	1438.7387
OLS (Stepwise)	15.9935	1414.0327	1438.7387
Weighted(Backward)	16.2674	1459.9384	1484.6444
Weighted (Forward)	16.6847	1459.3374	1484.0434
Weighted (Stepwise)	16.2674	1459.3374	1484.0434

Hypothesis Testing

- 1. We use the t-test to assess the significance of each independent variable and the F-test to evaluate the significance of the model. Detailed values are showed in Table 2.
- 2. We found our R^2 is 0.7375, adjusted R^2 is 0.7321. The model explains approximately 73.75% of the variability in the dependent variable.
- 3. We calculate the CI, detailed values are showed in Table 2.

Table 2 Hypothesis Testing Results

		• 1		U				
	Estimate	Std.Error	t value	2.5%	97.5%	P-value		
(Intercept)	-25.01713	6.96761	-3.59	-38.7409	-11.2933	0.000398	***	
ABDOMEN	0.92274	0.05129	17.991	0.8217	1.0238	< 2E-16	***	
WEIGHT_inkg	-0.24749	0.05189	-4.77	-0.3497	-0.1453	3.16E-06	***	
WRIST	-1.15995	0.4262	-2.722	-1.9994	-0.3205	0.006961	**	
FOREARM	0.46668	0.16745	2.787	0.1369	0.7965	0.005737	**	
NECK	-0.35585	0.20157	-1.765	-0.7529	0.0412	0.078747		
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1								
F-statistic: 138.2 on 5 and 246 DF, p-value: < 2.2e-16								

Model Diagnostics

1. Residuals: Our model satisfies the assumptions of MLR as the residuals plot confirmed both linearity and homoscedasticity, the Q-Q plot validated the normality of residuals.

Figure 3 Residual plot

Figure 4 Residual QQ plot

2. Collinearity: The VIF test showed no multicollinearity problem among the variables. The biggest VIF is 7.7398, which is smaller than 10.

Model Strengths and Weakness

- 1. Strengths: Our model includes five easily measurable variables, making it simple and interpretable. It satisfies the assumptions of homoscedasticity and no multicollinearity, supporting the validity of our results in predicting body fat.
- 2. Weaknesses: Our model may overfit, relies on linear relationships, and struggles with extreme low body fat values.

Future Work

Handling Extreme Body Fat Values: We will explore local regression for better handling.

Conclusion

Based on data cleaning, we choose to perform multiple linear regression with forward selection to obtain a simple and effective model that includes five independent variables.

References

Neter, John, William Wasserman, and Michael H. Kutner. *Applied Linear Regression Models*. 4th ed., McGraw-Hill, 1996.

Johnson, Roger W. "Fitting Percentage of Body Fat to Simple Body Measurements." Journal of Statistics Education, Mar. 1996, https://doi.org/10.1080/10691898.1996.119105.

"Population Pyramids of the Nations of the World 2024 - Population Pyramids." *Population Pyramids of the Nations of the World 2024 - Population Pyramids*, population-pyramid.net/. Accessed 14 Oct. 2024.

Contributions

Contributions	Minyuan Zhao	Meiyi Yan	Siyu Wang	
Presentation	1) Responsible for	1) Responsible for	1) Responsible for	
	slide 10-15	slide 1-6	slide 7-9	
	presentation.	presentation.	presentation.	
	2) Responsible for	2) Responsible for	2) Responsible for	
	feedback.	feedback.	design the slides.	
	1) Responsible for	1) Responsible for	1) Responsible for	
Summary	ideas of the whole	Data visualization	ideas of the whole	
	summary.	and tables.	summary.	
	2) Responsible for	2) Responsible for	2) Responsible for	
	Checking errors.	Model Diagnostics,	page 1-3, except	
		Model Strengths	from Model to	
		and Weakness,	Future Work.	
		Future Work.	3) Responsible for	
			typesetting.	
	1) Responsible for	1) Responsible for	1) Responsible for	
	model selection	data cleaning.	weighted least squares.	
	(forward-selection,	2) Responsible for	2) Responsible for	
Code	backward-elimination,	code merge.	model selection	
Code	stepwise).	3) Responsible for	(forward-selection,	
	2) Responsible for	model picking.	backward-elimination,	
	lasso regression.	4) Responsible for	stepwise).	
		LOOCV.		
Shiny App	1) Responsible for	1) Reviewed/edited	1) Reviewed/edited	
	building a	and provided	and provided	
	framework.	feedback on Shiny	feedback on Shiny	
	2) Responsible for	app.	app.	
	Beautification and	2) Responsible for	2) Responsible for	
	interface design.	Checking errors.	Checking errors.	
	3) Responsible for			
	testing results.			