ESERCIZI TUTORATO ALGEBRA 2 6 DICEMBRE 2019 - LEZIONE 8

MARCO ABBADINI

Esercizio 1 (Seconda prova intermedia, 17 Dicembre 2014, eserc. 4).

Sia G un gruppo di ordine 1000. Si provino le seguenti affermazioni.

- (a) G non è un gruppo semplice.
- (b) Se G ha un sottogruppo ciclico di ordine 5^3 , allora ogni 5-sottogruppo di G è caratteristico in G.
- (c) Se G ha un sottogruppo ciclico di ordine 5^3 , allora G ha elementi di periodo 250.

Esercizio 2 (Seconda prova intermedia, 17 Dicembre 2013, eserc. 3).

Sia G un gruppo di ordine 300. Si provino le seguenti conclusioni.

- (a) G non è semplice.
- (b) Se G ha un sottogruppo normale ciclico di ordine 25, allora G ha un sottogruppo normale di ordine 5.
- (c) Se G ha un sottogruppo normale ciclico di ordine 25, allora G ha un sottogruppo ciclico di ordine 75.

Esercizio 3 (Seconda prova intermedia, 17 Dicembre 2015, eserc. 3).

- (a) Si trovino, a meno di isomorfismi, tutti i gruppi di ordine 2015.
- (b) Sia G un gruppo di ordine 1016. Provare che G ha un elemento di ordine 254. Supponendo poi che G abbia un 2-sottogruppo di Sylow abeliano, si provi che $\mathbf{Z}(G)$ ha ordine divisibile per 4, ma si mostri con un esempio che G non ha necessariamente elementi di ordine 508.

Esercizio 4 (Prova scritta, 28 Gennaio 2019, eserc. 1).

Siano n,m interi positivi. Consideriamo gli insiemi di numeri naturali $Y_m = \{1,2,...,m\}$ e $Y_n = \{1,2,...,n\}$, e definiamo

$$X = \{f \colon Y_m \to Y_n \mid f \text{ applicazione} \}$$
.

Sia inoltre G il prodotto diretto $S_m \times S_n$, e consideriamo l'applicazione $X \times G \to X$ definita da

$$(f,(\sigma,\tau))\mapsto \sigma^{-1}f\tau.$$

- (a) Provare che in tal modo resta definita un'azione di G su X.
- (b) Tale azione è fedele?
- (c) Per n=m=3, calcolare le cardinalità delle orbite in cui l'insieme X viene ripartito mediante tale azione.

Esercizio 5 (Prova scritta, 29 Gennaio 2016, eserc. 2).

Sia G un gruppo, e siano H e K sottogruppi di G tali che G sia prodotto diretto (interno) di H e K. Provare che $\operatorname{Aut}(H) \times \operatorname{Aut}(K)$ è isomorfo ad un sottogruppo di $\operatorname{Aut}(G)$. Provare poi che, se H e K sono sottogruppi caratteristici di G, allora $\operatorname{Aut}(H) \times \operatorname{Aut}(K) \simeq \operatorname{Aut}(G)$.

Esercizio 6 (Prova scritta, 26 Febbraio 2016, eserc. 3).

(a) Siano G_1 , G_2 gruppi, ed N_1 , N_2 sottogruppi normali rispettivamente di G_1 e G_2 . Provare che

$$\frac{G_1\times G_2}{N_1\times N_2}\simeq \frac{G_1}{N_1}\times \frac{G_2}{N_2}.$$

- (b) Trovare tre sottogruppi distinti di indice 2 in $\mathbb{Z} \times \mathbb{Z}$. (Sugg.: si applichi il punto precedente con $N_i = 2\mathbb{Z}$.)
- (c) Si provi che $\mathbb{Z}\times\mathbb{Z}$ ha esattamente tre sottogruppi di indice 2.