Max Wisniewski, Alexander Steen

Tutor: not known

Aufgabe 1: Spezielle gleichmäßige Funktionen

Sei $A \subset \mathbb{R}$. Eine Funktion $f: A \to \mathbb{R}$ heißt Hölder stetig mit Exponent $\alpha \in (0,1]$ wenn es eine Konstante C > 0 gibt, so dass für alle $x, y \in A$ die Ungleichung

$$|f(x) - f(y)| \le C |x - y|^{\alpha}$$

gilt. Ist $\alpha = 1$ so nennt man f Lipschitzstetig

a) Sei $A = \{z \in \mathbb{R} \mid z \ge 0\}$ und $f : A \to \mathbb{R}$ gegeben durch $f(z) = \sqrt{z}$. Zeigen Sie dass f Hölderstetig mit $\alpha = \frac{1}{2}$ ist.

Lösung:

Sei $x, y \in [a, b]$, dann gilt

$$\begin{aligned} |\sqrt{x} - \sqrt{y}| & \leq |\sqrt{x}| - |\sqrt{y}| \leq C \cdot \sqrt{|x - y|} \\ \Leftrightarrow & \left(\sqrt{x} - \sqrt{y}\right)^2 \leq C^2 \cdot |x - y| \\ \Leftrightarrow & x - 2\sqrt{x}\sqrt{y} + y \leq C^2 \cdot |x - y| \leq C^2 \cdot (|x| + |-y|) \\ \Leftrightarrow & -2\sqrt{x}\sqrt{y} \leq (C^2 - 1)(x + y), \end{aligned}$$

Für C>1, da \sqrt{x} und \sqrt{y} beide größer Null sind, ist die linke Seite der Gleichung kleiner Null. Da wir rechts x+y rechnen und beide größer null sind, gilt x+y>0. Wenn nun C>1 belibt die rechte Seite positiv. Für ein C>1 ist die Gleichung erfüllt und damit ist f Hölderstetig mit $\alpha=\frac{1}{2}$

b) Sei $A=\mathbb{R}$ und $f=\arctan$ eingeschränkt auf $\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$. Zeigen Sie, dass f Lipschitzstetig ist.

Lösung:

Es seien $x, y \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$. Da $f = \arctan$ stetig auf Einschränkung, folgt aus dem Mittelwertsatz:

$$\exists \mu \in [x, y] : |f(x) - f(y)| = f'(\mu) |x - y|$$
$$= \frac{1}{\mu^2 + 1} |x - y| \le 1 \cdot |x - y|$$

Also ist $f = \arctan$ eingeschränkt auf $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ Lipschitzstetig mit Konstante C = 1.

c) Sei $f:A\to\mathbb{R}$ Hölderstetig. Zeigen Sie, dass f gleichmäßig stetig ist.

Lösung:

Sei $f: A \to \mathbb{R}$ Hölderstetig $\Rightarrow \exists \alpha \in (0,1] \exists C > 0 \forall x, y \in A: |f(x) - f(y)| \leq C |x - y|^{\alpha}$ Es sei $\varepsilon > 0$ und $|x - y| < \delta$ für ein $\delta > 0 \ \forall x, y \in A$.

Z.z. $|f(x) - f(y)| < \varepsilon$. Wähle $\delta = \left(\frac{\varepsilon}{C}\right)^{\frac{1}{\alpha}}$. Also gilt:

$$|f(x) - f(y)| \le C |x - y|^{\alpha} < C\delta^{\alpha} = C \left(\left(\frac{\varepsilon}{C} \right)^{\frac{1}{\alpha}} \right)^{\alpha} = \varepsilon$$

Aufgabe 2: Hauptsatz der Differential- und Integralrechnung

Finden Sie die Ableitung der Funktion $f:\mathbb{R}\to\mathbb{R}$ definiert durch die folgenden Ausdrücke.

i)
$$F(x) = \int_0^{x^2} \sin t \, dt$$
.

Lösung:

Nach dem Hauptsatz der Differential- und Integralrechnung ist die Ableitung die Umkehrung des Integrals. Die Grenzen werden nach Substitutionsmethode abgeleitet und als Faktor übernommen.

$$F'(x) = \left(\int_0^{x^2} \sin t \, dt\right)'$$
$$= (x^2)' \cdot \sin x^2$$
$$= 2x \cdot \sin x^2$$

ii)
$$F(x) = \exp\left(\int_0^x p(t) dt\right)$$
, wobei $p: \mathbb{R} \to \mathbb{R}$

Lösung:

ACHTUNG : KÖNNTE EINE FALLSE SEIN, DA p NICHT STETIG ODER INTEGRIERBAR IST.

$$F'(x) = \left(\exp\left(\int_0^x p(t) dt\right)\right)'$$

$$= \left(\int_0^x p(t) dt\right)' \cdot \exp\left(\int_0^x p(t) dt\right)$$

$$= p(x) \cdot F(x)$$

iii) Es sei $h: \mathbb{R} \to \mathbb{R}$ stetig und f und g auf ganz \mathbb{R} differenzierbar. Setzten Sie dann

$$F(x) = \int_{f(x)}^{g(x)} h(t) dt$$

und berechnen die Ableitung von F.

Lösung:

$$F'(x) = \left(\int_{f(x)}^{g(x)} h(t) dt\right)'$$

$$= g'(x)h(g(x)) - f'(x)h(f(x))$$

Die Ableitung existiert, da g und f differenzierbar sind. Da h stetig ist, kann der Hauptsatz der Differential- und Integralrechnung verwendet werden.

Aufgabe 3: Mittelwertsatz der Integralrechnung

i) Es sei f eine auf dem Interval [a,b] integrierbare Funktion mit $m \leq f(x) \leq M$ für alle $x \in [a,b]$. Dann gibt es ein $\mu \in [m,M]$ mit Eigenschaft

$$\int_a^b f(x) \, dx = (b - a)\mu.$$

Lösung:

Da $m \leq f(x) \leq M$ für alle $x \in [a, b]$ gilt die Abschätzung:

$$(b-a) \cdot m = \int_a^b m \, dx \le \int_a^b f(x) \, dx \le \int_a^b M \, dx = (b-a) \cdot M$$

 $\Rightarrow \exists \mu \in [m, M] \text{ sodass}$

$$\int_{a}^{b} f(x) \, dx = (b - a)\mu$$

ii) Es sei f stetig auf [a, b]. Zeigen Sie, dass gilt

$$\int_{a}^{b} f(x) dx = (b - a)f(\xi)$$

für ein $\xi \in [a, b]$. Begründen Sie anhand eins Gegenbeispiels, dass die Stetigkeit von f notwendig ist.

Lösung:

Es seien m, M wie aus Aufgabe 3 a). Aus Aufgabe 3 a) wissen wir, dass ein $\mu \in [m, M]$ existiert, mit

$$\int_{a}^{b} f(x) \, dx = (b - a)\mu$$

Da $\mu \in [m, M] = [f(\alpha), f(\beta)]$ für ein $\alpha, \beta \in [a, b]$ (eine Funktion nimmt auf einem abgeschlossenem Intervall sein Minimum und Maximum an) und f auf [a, b] stetig, folgt aus dem Zwischenwertsatz: $f(\xi) = \mu$ für ein $\xi \in [a, b]$.

$$\Rightarrow \int_{a}^{b} f(x) \, dx = (b - a) f(\xi)$$

HIER FEHLT GEGENBEISPIEL BZGL. STETIGKEIT

iii) Sei nun f stetig auf [a,b], und g integrierbar und positiv (bzw. negativ) auf [a,b]. Zeigen Sie dass

$$\int_{a}^{b} g(x)f(x) dx = f(\xi) \int_{a}^{b} g(x) dx$$

für ein $\xi \in [a,b]$ gilt. Man nennt dies den Mittelwertsatz der Intergralrechnung . Begründen Sie anhand eines Gegenbeispiels, dass die Vorzeichenbedingung an g notwendig ist.

Aufgabe 4 : Positivitätseigenschaft des Integrals

i) Sei f integrierbar auf [a, b] und $f \ge 0$ für alle $x \in [a, b]$. Zeigen Sie, dass dann gilt

$$\int_{a}^{b} f(x) \, dx \ge 0.$$

Lösung:

Sei $P=a=x_0<...< x_n=b$ Partitionsfolge über n von [a,b], sodass U_n und O_n Unter- und Obersummen konvergieren. Diese Partitonsfolge muss existieren, da die Funktion integrierbar ist (nach der bisher angenommenen definition von integrierbar). Dann gilt für alle $S_i=\sup\{f(y)\mid x_i< y< x_{i+1}\},\ S_i\geq 0$, da jeder Funktionswert des Supremums größer gleich 0.

Nun ist $\int_a^b f(x) dx = \lim_{n \to \infty} O_n = \lim_{n \to \infty} \sum_{i=0}^{n-1} S_i \ge 0$, da jeder Summand, wie gezeigt größer oder gleich 0 ist.

ii) Geben Sie ein Beispiel einer Funktion f mit folgenden Eigenschaften:

$$f(x) \ge 0$$
 für alle $x \in [a, b], f(x_0) > 0$ für ein $x_0 \in [a, b], \int_a^b f(x) dx = 0.$

Lösung

Sei
$$a < b \in \mathbb{R}, \psi = a + \frac{b-a}{2}$$
 und $f: [a,b] \to \mathbb{R}, \ x \mapsto \begin{cases} 1, & \text{wenn } x = \psi \\ 0, & \text{sonst} \end{cases}$.

Wir wählen als Partitionsfolge $\{a, \psi - \frac{b-a}{2^{i+2}}, \psi + \frac{b-a}{2^{i+2}}, b\}$, wobei $i \in \mathbb{N}$ der Index der Folge ist.

Für die Untersumme U_n gilt $U_n = 0$ für alle $n \in \mathbb{N}$. Für die Obersumme O_n gilt $O_n = \psi + \frac{b-a}{2^{n+2}} - (\psi - \frac{b-a}{2^{n+2}}) = \frac{b-a}{2^{n+1}}$.

Nun betrachten wir den Grenzwert der Obersumme:

$$\lim_{n \to \infty} O_n = \lim_{n \to \infty} \frac{b - a}{2^{n+1}} = 0 = \lim_{n \to \infty} U_n$$

Da der Grenzwert existiert und die Differenz von Unter- und Obersumme Null ist, ist das Integral von f definiert und es gilt:

$$\int_{a}^{b} f(x) dx = \lim_{n \to \infty} O_n = \lim_{n \to \infty} U_n = 0$$

iii) Sei $f(x) \ge 0$ für alle $x \in [a, b]$ und f stetig mit $x_0 \in [a, b]$ mit $f(x_0) > 0$. Zeigen Sie, dass dann auch gilt

$$\int_a^b f(x) \, dx > 0.$$

Lösung:

tbd

iv) Sei f stetig auf [a, b]. Es gelte

$$\int_{a}^{b} f(x)g(x) \, dx = 0$$

für alle stetigen Funktionen g auf [a,b]. Zeigen Sie, dass $f\equiv 0$