Lemma: A Fuchsian group has no ZOZ-susgroup.

Po: The elements of such a subgroup commente so all the elements have the some fined point set.

Hyperbolic case: WLOG the fined points can be 0,00 so these can be mays of the form Z->>Z, X20.

This is atten group R. The only subgroups have in in

· Parabolic case: NLOG & so is the give point and
the maps are Z -> Z +a, a e M.
Angue as signer

· Elliptic cose: I will be a discrete subgroup of SO(2) which is finite

Defor.

Lemma: A subgroup & of PSLZR is Frehsion (=) it acts properly disortimously on H2.

7: (E) Let 7k -> Id then TkZ -> Z Properly distortionous action will imply Tn=Id NKIN for some large N.

(=) H 2.EH and KEH a cpt set. It is exough to probe that the set {TEPSL_2(R): T(Zo)EK} is CPT. The explication map fz: PSLz(R) -> H

So Yz (k) is closed. We need to proce it is Sourced too.

127. +6 < M. de some M. 10 Kis GT, hence

and In (ato+5) >M2>0 for some M2>0 : a, b, c, I are bild

Fundamental Domain

Defn: For any group Γ acting peopled discontinuously on a metric space X, o fundamental domain is a closed set $C \subseteq X$, ST

1. the interior C° + \$

2. T = Id => T(c°)(1c° = p

3. Γ -translates of C tessellates X, i.e. U T(c) = X.

Eg: Fa [: < Z ->Z+1)

Disichlet Domain

Lt Γ be a Fuchsian group the Dirichlet Domain g Γ certexed at $t_0 \in H^2$ is

 $D_{\Gamma}(z_{0}) = \{z \in H^{2} : d(x, z_{0}) \in d(x, Tz_{0}) \neq T \in \Gamma\}$ $= \{z \in H^{2} : d(x, z_{0}) \in d(x, Tz_{0}) \neq T \in \Gamma\}$ $= \{z \in H^{2} : d(x, z_{0}) \in d(x, Tz_{0}) \neq T \in \Gamma\}$ $= \{z \in H^{2} : d(x, z_{0}) \in d(x, Tz_{0}) \neq T \in \Gamma\}$ $= \{z \in H^{2} : d(x, z_{0}) \in d(x, Tz_{0}) \neq T \in \Gamma\}$ $= \{z \in H^{2} : d(x, z_{0}) \in d(x, Tz_{0}) \neq T \in \Gamma\}$ $= \{z \in H^{2} : d(x, z_{0}) \in d(x, Tz_{0}) \neq T \in \Gamma\}$ $= \{z \in H^{2} : d(x, z_{0}) \in d(x, Tz_{0}) \neq T \in \Gamma\}$ $= \{z \in H^{2} : d(x, z_{0}) \in d(x, Tz_{0}) \neq T \in \Gamma\}$ $= \{z \in H^{2} : d(x, z_{0}) \in d(x, Tz_{0}) \neq T \in \Gamma\}$ $= \{z \in H^{2} : d(x, z_{0}) \in d(x, Tz_{0}) \neq T \in \Gamma\}$ $= \{z \in H^{2} : d(x, z_{0}) \in d(x, Tz_{0}) \neq T \in \Gamma\}$ $= \{z \in H^{2} : d(x, z_{0}) \in d(x, Tz_{0}) \neq T \in \Gamma\}$ $= \{z \in H^{2} : d(x, z_{0}) \in d(x, Tz_{0}) \neq T \in \Gamma\}$ $= \{z \in H^{2} : d(x, z_{0}) \in d(x, Tz_{0}) \neq T \in \Gamma\}$ $= \{z \in H^{2} : d(x, z_{0}) \in d(x, Tz_{0}) \neq T \in \Gamma\}$ $= \{z \in H^{2} : d(x, z_{0}) \in d(x, Tz_{0}) \neq T \in \Gamma\}$ $= \{z \in H^{2} : d(x, z_{0}) \in d(x, z_{0}) \neq T \in \Gamma\}$ $= \{z \in H^{2} : d(x, z_{0}) \in d(x, z_{0}) \neq T \in \Gamma\}$ $= \{z \in H^{2} : d(x, z_{0}) \in d(x, z_{0}) \neq T \in \Gamma\}$ $= \{z \in H^{2} : d(x, z_{0}) \in d(x, z_{0}) \neq T \in \Gamma\}$ $= \{z \in H^{2} : d(x, z_{0}) \in d(x, z_{0}) \neq T \in \Gamma\}$ $= \{z \in H^{2} : d(x, z_{0}) \in d(x, z_{0}) \neq T \in \Gamma\}$ $= \{z \in H^{2} : d(x, z_{0}) \in d(x, z_{0}) \neq T \in \Gamma\}$

Lema: the Dividlet domain $D_{\Gamma}(z_0)$ is a conven fundamental domain for the action of Γ on H^2 .

Eg: D (2i) = 2 2 3 is

