Question 3

4.1.3 Which of the following are functions from \mathbb{R} to \mathbb{R} ? If f is a function, give its range.

b)
$$f(x) = \frac{1}{x^2 - 4}$$

f is not well defined when $x = \pm 2$

c)
$$f(x) = \sqrt{x^2}$$

f is well defined; range: all non – negative real numbers

4.1.5 Express the range of each function using roster notation.

b) Let
$$A = \{2, 3, 4, 5\}$$
, $f: A \to \mathbb{Z}$, such that $f(x) = x^2$ $\{4, 9, 16, 25\}$

d) $f: \{0,1\}^5 \to \mathbb{Z}$. For $x \in \{0,1\}^5$, f(x) is the number of 1's that occur in x. For example, f(01101) = 3 because there are three 1's in the string "01101".

$$\{0, 1, 2, 3, 4, 5\}$$

h) Let
$$A = \{1, 2, 3\}$$
. $f: A \times A \to \mathbb{Z} \times \mathbb{Z}$, where $f(x, y) = (y, x)$.
$$\{(1, 2), (1, 3), (2, 3), (2, 1), (3, 1), (3, 2), (1, 1), (2, 2), (3, 3)\}$$

i) Let
$$A = \{1, 2, 3\}$$
. $f = A \times A \rightarrow \mathbb{Z} \times \mathbb{Z}$, where $f(x, y) = (x, y + 1)$.
$$\{(1, 2), (1, 3), (1, 4), (2, 2), (2, 3), (2, 4), (3, 2), (3, 3), (3, 4)\}$$

l) Let
$$A = \{1,2,3\}$$
. $f: P(A) \to P(A)$. For $X \subseteq A, f(X) = X - \{1\}$
$$\{\emptyset, \{2\}, \{3\}, \{2,3\}\}$$

Question 4

 a) 4.2.2 For each of the functions below, indicate whether the function is onto, one-to-one, neither or both. If the function is not onto or not one-to-one, give an example showing why.

c.
$$h: \mathbb{Z} \to \mathbb{Z}$$
, $h(x) = x^3$

Not onto; no $x \in \mathbb{Z}$ *maps to 10.*

One-to-one

g.
$$f: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z} \times \mathbb{Z}$$
, $f(x, y) = (x + 1, 2y)$

Not onto; no $(x, y) \in (\mathbb{Z}^+ \times \mathbb{Z}^+)$ *maps to (0, 11).*

One to one

k.
$$f: \mathbb{Z}^+ \times \mathbb{Z}^+ \to \mathbb{Z}^+$$
, $f(x, y) = 2^x + y$

Not onto; no $(x, y) \in (\mathbb{Z}^+ \times \mathbb{Z}^+)$ *maps to 1.*

Not one to one; f(4,2) = 18 and f(3,10) = 18

b) **4.2.4** For each of the functions below, indicate whether the function is onto, one-to-one, neither or both. If the function is not onto or not one-to-one, give an example showing why.

b. $f: \{0,1\}^3 \to \{0,1\}^3$. The output of f is obtained by taking the input string and replacing the first bit by $\mathbf{1}$, regardless of whether the first bit is $\mathbf{0}$ or $\mathbf{1}$. For example, $f(\mathbf{001}) = \mathbf{101}$ and $f(\mathbf{110}) = \mathbf{110}$

Not onto; no $x \in \{0, 1\}^3$ *maps to 011.*

Not one to one; f(001) = 101 *and* f(101) = 101.

c. $f: \{0, 1\}^3 \to \{0, 1\}^3$. The output of f is obtained by taking the input string and reversing the bits. For example, f(011) = 110.

Onto and one-to-one

d. $f: \{0, 1\}^3 \to \{0, 1\}^4$. The output of f is obtained by taking the input string and adding an extra copy of the first bit to the end of the string. For example, f(100) = 1001.

Onto and one-to-one

g. Let A be defined to be the set $\{1, 2, 3, 4, 5, 6, 7, 8\}$ and let $B = \{1\}$. $f: P(A) \rightarrow P(A)$. For $X \subseteq A$, f(X) = X - B. Recall that for a finite set A, P(A) denotes the power set of A which is the set of all subsets of A.

Not onto; no $X \in P(A)$ *maps to* $\{1, 2, 3\}$

Not one-to-one;
$$f(\{1,2,3\}) = \{2,3\}$$
 and $f(\{2,3\}) = \{2,3\}$

- ii) Give an example of a function from the set of integers to the set of positive
 - a. One-to-one, but not onto

$$f(x) = \begin{cases} 5x & \text{if } x \ge 0 \\ 5|x| + 1 & \text{if } x < 0 \end{cases}$$

b. Onto, but not one-to-one

$$f(x) = |x|$$

c. One-to-one and onto

$$f(x) = \begin{cases} 2x & \text{if } x \ge 0 \\ 2|x| + 1 & \text{if } x < 0 \end{cases}$$

d. Neither one-to-one nor onto

$$f(x) = x^2$$

Question 5

a) **4.3.2** For each of the following functions, indicate whether the function has a well-defined inverse. If the inverse is well-defined, give the input/output relationship of f^{-1}

c.
$$f: \mathbb{R} \to \mathbb{R}$$
. $f(x) = 2x + 3$

Onto and one-to-one (well-defined inverse).

$$f^{-1}(y) = \frac{y-3}{2}$$

d. Let A be defined to the set $\{1, 2, 3, 4, 5, 6, 7, 8\}$ $f: P(A) \rightarrow \{0, 1, 2, 3, 4, 5, 6, 7, 8\}$. For $X \subseteq A$, f(X) = |X|. Recall that for a finite set A, P(A) denotes the power set of A which is the set of all subsets of A.

Onto but not one-to-one (not well-defined inverse)

g. $f: \{0, 1\}^3 \to \{0, 1\}^3$. The output of f is obtained by taking the input string and reversing the bits. For example, f(011) = 110.

Onto and one-to-one (well-defined inverse)

$$f^{-1}(y) = reversing the bits in y$$

i.
$$f: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z} \times \mathbb{Z}, f(x, y) = (x + 5, y - 2)$$

Onto and one-to-one (well-defined inverse).
$$f^{-1}(x, y) = (x - 5, y + 2)$$

b) 4.4.8

The domain and target set of functions f, g, and h are \mathbb{Z} . The functions are defined as:

- f(x) = 2x + 3
- $h(x) = x^2 + 1$

Give an explicit formula for each function given below.

c. $\mathbf{f} \circ \mathbf{h}$

$$f(h(x)) = 2(x^{2} + 1) + 3$$
$$= 2x^{2} + 2 + 3$$
$$= 2x^{2} + 5$$

 $d. h \circ f$

$$h(f(x)) = (2x + 3)^{2} + 1$$
$$= (4x^{2} + 12x + 9) + 1$$
$$= 4x^{2} + 12x + 10$$

c) 4.4.2 Consider three functions f, g, and h, whose domain and target are \mathbb{Z} . Let

$$f(x) = x^2$$
 $g(x) = 2^x$ $h(x) = \left[\frac{x}{5}\right]$

b. Evaluate $(f \circ h)(52)$

$$h(52) = \left[\frac{52}{5}\right] = 11$$

$$f(11) = 11^2 = 121$$

c. Evaluate $(g \circ h \circ f)(4)$

$$f(4) = 4^2 = 16$$

$$h(16) = \left[\frac{16}{5}\right] = 4$$

$$g(4) = 2^4 = 16$$

d. Give a mathematical expression for $\boldsymbol{h} \circ \boldsymbol{f}$

$$\left[\frac{x^2}{5}\right]$$

- d) 4.4.6 Define the following functions f, g, and h:
 - $f: \{0,1\}^3 \to \{0,1\}^3$. The output of f is obtained by taking the input string and replacing the first bit by 1, regardless of whether the first bit is a 0 or 1. For example, f(001) = 101 and f(110) = 110
 - $g: \{0,1\}^3 \to \{0,1\}^3$. The output of g is obtained by taking the input string and reversing the bits. For example, g(011) = 110.
 - $h: \{0, 1\}^3 \to \{0, 1\}^3$. The output of h is obtained by taking the input string and replacing the last bit with a copy of the first bit. For example, h(011) = 010.

c. What is $(h \circ f)(010)$?

$$f(010) = 110$$

$$h(110) = 111$$

d. What is the range of $\mathbf{h} \circ \mathbf{f}$?

```
\{101,111\}
```

e. What is the range of $g \circ f$?

{001, 011, 101, 111}

Extra credit

4.4.4 Let $f: X \to Y$ and $g: Y \to Z$ be two functions.

c. Is it possible that f is not one-to-one and $g \circ f$ is one-to-one? Justify your answer. If the answer is "yes", give a specific example for f and g.

Yes. Let
$$f: \{-1, 1, 2, 3\} \rightarrow \{1, 4, 9\}, f(x) = x^2$$
 and $g: \{1, 4, 9\} \rightarrow \{2, 5, 10\}, g(x) = x + 1$

d. Is it possible that g is not one-to-one and $g \circ f$ is one-to-one? Justify your answer. If the answer is "yes", give a specific example for f and g.

No