Линейная алгебра

Бобень Вячеслав @darkkeks, GitHub

Большую часть исходного кода предоставила Левина Александра. Благодарность выражается Левину Александру за видеозаписи лекций.

2019 - 2020

"К коллоку можете даже не готовиться".

— Роман Сергеевич Авдеев

Содержание

1	Jler	кция 09.09.2019	4
	1.1	Матрицы	4
	1.2	Операции над матрицами	4
	1.3	Пространство \mathbb{R}^n , его отождествление с матрицами-столбцами высоты $n\ldots\ldots\ldots\ldots$	4
	1.4	Транспонирование матриц, его простейшие свойства	Ę
	1.5	Умножение матриц	Ē
2	Лев	кция 12.09.2019	7
_	2.1	Отступление о суммах	7
	2.2	Основные свойства умножения матриц	7
	2.3	Диагональные матрицы	8
	2.4	Единичная матрица и её свойства	8
	2.5	След квадратной матрицы и его свойства	8
	2.6	Системы линейных уравнений.	ç
	2.0	2.6.1 Совместные и несовместные системы	ç
			10
		2.0.2 Marph man popula outhor over	
3	Лег	кция 14.09.2019	11
	3.1	Расширенная матрицы системы линейных уравнений	11
	3.2		11
	3.3	Как решить СЛУ?	11
		3.3.1 Элементарные преобразования СЛУ и соответствующие преобразования строк её расширенной	
		матрицы	11
		3.3.2 Сохранение множества решений системы линейных уравнений при элементарных преобразованиях	12
	3.4	Ступенчатые матрицы	12
		3.4.1 Улучшенный ступенчатый вид матрицы	12
	3.5	Реализация элементарных преобразований строк матрицы при помощи умножения слева на подходящую	
		матрицу	13
4	Пот	кция 19.09.2019	1 4
•	4.1	·	14
	4.2		15
	4.3	Связь между множеством решений системы линейных уравнений и множеством решений соответствую-	10
	1.0		15
	4.4		15
	7.7		15
	4.5		16
	$\frac{4.5}{4.6}$		16
	4.0	The problem in a minorical point $\{1, 2, \dots, h\}$	Τ(

5	Лекция 23.09.2019	17
	5.1 Инверсии в перестановке	 17
	5.2 Знак и чётность перестановки	 17
	5.3 Произведение перестановок	 17
	5.4 Ассоциативность произведения перестановок	 17
	5.5 Тождественная перестановка	 17
	5.6 Обратная перестановка и её знак	 18
	5.7 Теорема о знаке произведения перестановок	
	5.8 Транспозиции, знак транспозиции	
	5.9 Определитель квадратной матрицы	
	5.10 Определители порядков 2 и 3	
6	Лекция 26.09.2019	20
U	6.1 Свойства определителей 6.1 ста определителей	
	6.2 Поведение определителя при элементарных преобразованиях строк (столбцов)	
	0.2 Hobedenie onpederinteria upu siementapinia upeoopasobamiaa etpok (etoslodob)	 22
7	Лекция 30.09.2019	23
	7.1 Определитель с углом нулей	
	7.2 Определитель произведения матриц	
	7.3 Дополнительные миноры и алгебраические дополнения к элементам квадратной матрицы	
	7.4 Лемма об определителе матрицы, содержащей ровно один ненулевой элемент в некоторой строк	
	7.5 Разложение определителя по строке (столбцу)	
	7.6 Лемма о фальшивом разложении определителя	
	7.7 Обратная матрица, её единственность	
	7.8 Невырожденные матрицы	
	7.9 Определитель обратной матрицы	
	7.10 Присоединённая матрица	
	7.11 Критерий обратимости квадратной матрицы, явная формула для обратной матрицы	 26
8	Лекция 2.11.2019	27
	8.1 Следствия из критерия обратимости квадратной матрицы	 27
	8.2 Формулы Крамера	
	8.3 Понятие поля	
	8.4 Простейшие примеры	
	8.5 Построение поля комплексных чисел.	
	$8.5.1$ Формальная конструкция поля $\mathbb C$	
	8.5.2 Проверка аксиом	
	8.6 Алгебраическая форма комплексного числа, его действительная и мнимая части	
	8.7 Комплексное сопряжение	
	8.7.1 Свойства комплексного сопряжения	
	8.8 Геометрическая модель комплексных чисел, интерпретация сложения и сопряжения в этой моде	
9	Лекция 7.11.2019	30
ð	9.1 Модуль комплексного числа, его свойства	
	9.2 Аргумент комплексного числа	
	9.3 Тригонометрическая форма комплексного числа	
	9.4 Умножение и деление комплексных чисел в тригонометрической форме	
	9.5 Возведение в степень комплексных чисел в тригонометрической форме, формула Муавра	
	9.6 Извлечение корней из комплексных чисел	
	9.7 Основная теорема алгебры комплексных чисел (без доказательства)	
	9.8 Деление многочленов с остатком	
	9.9 Teopema Besy	
	9.10 Кратность корня многочлена	32
	корней с учётом кратностей	32
10	Лекция 14.11.2019 10.1 Реуграмма укращения простойную сположения из сменен	33
	10.1 Векторные пространства, простейшие следствия из аксиом	
	10.1.1 Определение векторного пространства	
	10.1.2 Простейшие следствия из аксиом	
	10.2 Подпространства векторных пространств	34
	10.3 Утверждение о том, что множество решений однородной системы линейных уравнений с n неизвеждение подпространством в F^n	9.4
	является подпространством в F	
	тот инионная комоннация констного пасора векторов	 94

10.5 Линейная оболочка подмножества векторного пространства, примеры	34
11 Лекция 21.11.2019	35
11.1 Утверждение о том, что линейная оболочка системы векторов является подпространством объемлющего	
векторного пространства	35
11.2 Линейно зависимые и линейно независимые системы векторов	35
11.3 Критерий линейной зависимости конечного набора векторов	36
11.4 Основная лемма о линейной зависимости	36
11.5 Базис векторного пространства	37
11.6 Конечномерные и бесконечномерные векторные пространства	37
11.7 Независимость числа элементов в базисе векторного пространства от выбора базиса	37
11.8 Размерность конечномерного векторного пространств	

1 Лекция 09.09.2019

1.1 Матрицы

Определение 1. *Матрица размера* $n \times m$ — это прямоугольная таблица высоты m и ширины n.

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix}$$

 a_{ij} – элемент на пересечении i-й строки и j-го столбца

Краткая запись – $A = (a_{ij})$

Множество всех матриц размера $m \times n$ с коэффициентами из \mathbb{R} (множество всех действительных чисел) — $\mathrm{Mat}_{n \times m}(\mathbb{R})$ или $\mathrm{Mat}_{n \times m}$

Определение 2. Две матрицы $A \in \operatorname{Mat}_{n \times m}$ и $B \in \operatorname{Mat}_{p \times q}$ называются *равными*, если m = p, n = q, и соответствующие элементы равны

Пример.
$$\begin{pmatrix} \circ & \circ & \circ \\ \circ & \circ & \circ \end{pmatrix} \neq \begin{pmatrix} \circ & \circ \\ \circ & \circ \\ \circ & \circ \end{pmatrix}$$

1.2 Операции над матрицами

Для любых $A, B \in \mathrm{Mat}_{m \times n}$

- Сложение $A + B := (a_{ij} + b_{ij})$
- Умножение на скаляр $\alpha \in \mathbb{R} \implies \lambda A := (\lambda a_{ij})$

Свойства суммы и произведения на скаляр

 $\forall A, B, C \in \mathrm{Mat}_{m \times n} \quad \forall \lambda, \mu \in \mathbb{R}$

- 1) A + B = B + A (коммутативность)
- 2) (A + B) + C = A + (B + C) (ассоциативность)
- 3) A + 0 = 0 + A = A, где

$$0 = egin{pmatrix} 0 & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 0 \end{pmatrix}$$
 — нулевая матрица.

- 4) A + (-A) = 0 $-A = (-a_{ij})$ – противоположная матрица
- 5) $(\lambda + \mu)A = \lambda A + \mu A$
- 6) $\lambda(A+B) = \lambda A + \lambda B$
- 7) $\lambda(\mu A) = \lambda(\mu A)$
- 8) 1A = A

Упражнение на дом. Доказать эти свойства.

Замечание. Из свойств 1) – 8) следует, что $\mathrm{Mat}_{n\times m}(\mathbb{R})$ является векторным пространством над \mathbb{R}

1.3 Пространство \mathbb{R}^n , его отождествление с матрицами-столбцами высоты n

4

$$\mathbb{R}^n := \{(x_1, \dots, x_n) \mid x_i \in \mathbb{R} \ \forall i = 1, \dots, n\}$$

 \mathbb{R} – числовая прямая

 \mathbb{R}^2 — плоскость

 \mathbb{R}^3 – трехмерное пространство

Договоримся отождествлять \mathbb{R}^n со столбцами высоты n

$$(x_1,\ldots,x_n) \leftrightarrow egin{pmatrix} x_1 \ dots \ x_n \end{pmatrix}$$
 — вектор столбец

$$\mathbb{R}^{n} = \left\{ \begin{pmatrix} x_{1} \\ x_{2} \\ \vdots \\ x_{n} \end{pmatrix} \mid x \in \mathbb{R} \ \forall i = 1, \dots, n \right\} = \operatorname{Mat}_{n \times 1}(\mathbb{R})$$

$$\left[x = \begin{pmatrix} x_{1} \\ \vdots \\ x_{n} \end{pmatrix} \in \mathbb{R}^{n}, y = \begin{pmatrix} y_{1} \\ \vdots \\ y_{n} \end{pmatrix} \in \mathbb{R}^{n} \right] \implies [x = y \iff x_{i} = y_{i} \ \forall i]$$

$$x + y := \begin{pmatrix} x_{1} + y_{1} \\ \vdots \\ x_{n} + y_{n} \end{pmatrix}$$

$$\lambda \in \mathbb{R} \implies \lambda x_{i} := (\lambda x_{1}, \dots, \lambda x_{n})$$

Транспонирование матриц, его простейшие свойства

$$A \in \operatorname{Mat}_{m \times n} = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix} \rightsquigarrow A^T \in \operatorname{Mat}_{n \times m} := \begin{pmatrix} a_{11} & a_{21} & \dots & a_{m1} \\ a_{12} & a_{22} & \dots & a_{m2} \\ \vdots & \vdots & \ddots & \vdots \\ a_{1n} & a_{2n} & \dots & a_{mn} \end{pmatrix}$$

Свойства:

1)
$$(A^T)^T = A^T$$

1)
$$(A^T)^T = A$$

2) $(A+B)^T = A^T + B^T$
3) $(\lambda A)^T = \lambda A^T$

3)
$$(\lambda A)^T = \lambda A^T$$

Пример.
$$(x_1 \dots x_n)^T = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$

Пример.
$$\begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}^T = \begin{pmatrix} x_1 & \dots & x_n \end{pmatrix}$$

Пример.
$$\begin{pmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{pmatrix}^T = \begin{pmatrix} 1 & 3 & 5 \\ 2 & 4 & 6 \end{pmatrix}$$

1.5 Умножение матриц

Пусть
$$A = (a_{ij}) \in \mathrm{Mat}_{m \times n}$$

$$A_{(i)}=ig(a_{i1},a_{i2},\ldots,a_{in}ig)-i$$
-я строка матрицы A / a_{1i} \

$$A^{(j)}=egin{pmatrix} a_{1j}\ a_{2j}\ dots\ a_{mn} \end{pmatrix}-j$$
-й столбец матрицы A

1) Частный случай: умножение строки на столбец той же длинны

$$\underbrace{(x_1,\ldots,x_n)}_{1\times n}\underbrace{\begin{pmatrix}y_1\\\vdots\\y_n\end{pmatrix}}_{n\times 1} = x_1\cdot y_1 + \cdots + x_n\cdot y_n$$

2) Общий случай:

A - матрица размера $m \times n$

B - матрица размера $\underline{n} \times p$

Количество строк матрицы A равно количеству столбцов матрицы B — условие согласованности матриц $AB := C \in \operatorname{Mat}_{m \times p}$, где $C_{ij} = A_{(i)}B^{(j)}$

Пример.
$$\begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} \begin{pmatrix} x_1 & \dots & x_n \end{pmatrix} := \begin{pmatrix} x_1 y_1 & x_2 y_1 & \dots & x_n y_1 \\ x_1 y_2 & x_2 y_2 & \dots & x_n y_2 \\ \vdots & \vdots & \ddots & \vdots \\ x_1 y_n & x_2 y_m & \dots & x_n y_m \end{pmatrix}$$

2 Лекция 12.09.2019

2.1 Отступление о суммах

Пусть S_p, S_{p+1}, \dots, S_q – набор чисел.

Тогда,
$$\sum_{i=p}^q S_i := S_p + S_{p+1} + \cdots + S_q$$
 – сумма по i от p до q

Например,
$$\sum_{i=1}^{100} i^2 = 1^2 + 2^2 + \dots + 100^2$$

Свойства сумм:

1.
$$\lambda \sum_{i=1}^{n} S_i = \sum_{i=1}^{n} \lambda S_i$$

2.
$$\sum_{i=1}^{n} (S_i + T_i) = \sum_{i=1}^{n} S_i + \sum_{i=1}^{n} T_i$$

3.
$$\sum_{i=1}^m \sum_{j=1}^n S_{ij} = \sum_{j=1}^n \sum_{i=1}^m S_{ij}$$
 — сумма всех элементов матрицы $S = (S_{ij})$

2.2 Основные свойства умножения матриц

Пусть $A \in \operatorname{Mat}_{m \times n}, B \in \operatorname{Mat}_{n \times p}$

1.
$$\underline{\underline{A}(B+C)} = \underline{\underline{A}B+\underline{A}C}$$
 — левая дистрибутивность.

Доказательство.

$$x_{ij} = A_{(i)}(B+C)^{(j)} = \sum_{k=1}^{n} a_{ik}(b_{kj} + c_{kj})$$

$$= \sum_{k=1}^{n} (a_{ik}b_{kj} + a_{ik}c_{kj})$$

$$= \sum_{k=1}^{n} a_{ik}b_{kj} + \sum_{k=1}^{n} a_{ik}c_{kj}$$

$$= A_{(i)}B^{(j)} + A_{(i)}C^{(j)} = y_{ij}.$$

2.
$$(A + B)C = AC + BC$$
 — правая дистрибутивность, доказывается аналогично.

3.
$$\lambda(AB) = (\lambda A)B = A(\lambda B)$$

4.
$$(AB)C = A(BC)$$
 — ассоциативность.

Доказательство.
$$(AB)C = x, A(BC) = y$$

$$x_{ij} = \sum_{k=1}^{n} u_{ik} \cdot c_{kj} = \sum_{k=1}^{n} \left(\sum_{l=1}^{p} a_{il} b_{lk} \right) c_{kj} = \sum_{k=1}^{n} \sum_{l=1}^{p} \left(a_{il} b_{lk} c_{kj} \right)$$
$$= \sum_{l=1}^{p} \sum_{k=1}^{n} \left(a_{il} b_{lk} c_{kj} \right) = \sum_{l=1}^{p} a_{il} \sum_{k=1}^{n} \left(b_{lk} c_{kj} \right) = \sum_{l=1}^{p} a_{il} v_{lj} = y_{ij}.$$

$$5. \ \underline{(AB)^T} = \underline{B^T A^T}_y$$

Доказательство.
$$x_{ij} = [AB]_{ji} = A_{(j)}B^{(i)} = B_{(i)}^T(A^T)^{(j)} = y_{ij}$$

Умножение матриц не коммутативно

$$A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, B = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$$
$$AB = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, BA = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$

Определение 3. $A \in \mathrm{Mat}_{n \times n}$ называется $\kappa \epsilon a \partial p ma ho \check{u}$ матрицей порядка n

Обозначение
$$M_n := \operatorname{Mat}_{n \times n}$$

 $A \in M_n$

2.3 Диагональные матрицы

Определение 4. Матрица $A \in M_n$ называется *диагональной* если все ее элементы вне главной диагонали равны нулю $(a_{ij} = 0 \text{ при } i \neq j)$

$$A = \begin{pmatrix} a_1 & 0 & \dots & 0 \\ 0 & a_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & a_n \end{pmatrix} \implies A = \operatorname{diag}(a_1, a_2, \dots, a_n).$$

Лемма 2.1. $A = diag(a_1, \ldots, a_n) \in M_n \implies$

1.
$$\forall B \in \operatorname{Mat}_{n \times p} \implies AB = \begin{pmatrix} a_1 B_{(1)} \\ a_2 B_{(2)} \\ \vdots \\ a_n B_{(n)} \end{pmatrix}$$

2.
$$\forall B \in \operatorname{Mat}_{m \times n} \implies BA = \begin{pmatrix} a_1 B^{(1)} & a_2 B^{(2)} & \dots & a_n B^{(n)} \end{pmatrix}$$

Доказательство. 1. $[AB]_{ij} = \begin{pmatrix} 0 & \dots & 0 & a_i & 0 & \dots & 0 \end{pmatrix} \begin{pmatrix} b_{1j} \\ b_{2j} \\ \vdots \\ b_{nj} \end{pmatrix} = a_i b_{ij}$

2.
$$[BA]_{ij} = \begin{pmatrix} b_{i1} & b_{i2} & \dots & b_{im} \end{pmatrix} \begin{pmatrix} \vdots \\ 0 \\ a_j \\ 0 \\ \vdots \end{pmatrix} = b_{ij}a_j$$

2.4 Единичная матрица и её свойства

Определение 5. Матрица $E = E_n = diag(1, 1, ..., 1)$ называется единичной матрицей порядка n.

$$E = \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1 \end{pmatrix}$$

Свойства:

1.
$$EA = A \quad \forall A \in \operatorname{Mat}_{n \times n}$$

$$2. \ AE = A \quad \forall A \in \mathrm{Mat}_{p \times n}$$

3.
$$AE = EA = A \quad \forall A \in M_n$$

2.5 След квадратной матрицы и его свойства

Определение 6. Следом матрицы $A \in M_n$ называется число $trA = a_{11} + a_{22} + \cdots + a_{nn} = \sum_{i=1}^n a_{ii}$

Свойства:

1.
$$\operatorname{tr}(A+B) = \operatorname{tr} A + \operatorname{tr} B$$

2.
$$\operatorname{tr} \lambda A = \lambda \operatorname{tr} A$$

3.
$$\operatorname{tr} A^T = \operatorname{tr} A$$

4.
$$\operatorname{tr}(AB) = \operatorname{tr}(BA)$$

 $\forall A \in \operatorname{Mat}_{m \times n}, B \in \operatorname{Mat}_{n \times m}$

Доказательство. $AB = x \in M_m, BA = y \in M_n$

$$\operatorname{tr} x = \sum_{i=1}^{m} x_{ii} = \sum_{i=1}^{m} \sum_{j=1}^{n} (a_{ij}b_{ji})$$
$$= \sum_{i=1}^{n} \sum_{j=1}^{m} (b_{ji}a_{ij}) = \sum_{i=1}^{n} y_{jj} = \operatorname{tr} y.$$

Пример.
$$A=(1,2,3), B=\begin{pmatrix}4\\5\\6\end{pmatrix}$$

$$tr(AB)=tr(1\cdot 4+2\cdot 5+3\cdot 6)=32$$

$$tr(BA)=tr\begin{pmatrix}4&8&12\\5&10&15\\6&12&18\end{pmatrix}=4+10+18=32$$

2.6 Системы линейных уравнений.

Система линейных уравнений (СЛУ):

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \dots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m \end{cases}$$

т уравнений, п неизвестных

Определение 7.

- 1. Решение одного уравнения это такой набор значений неизвестных x_1, x_2, \dots, x_n , при подстановке которого в уравнение получаем тождество.
- 2. Решение СЛУ такой набор значений неизвестных, который является решением каждого уравнения СЛУ.

Основная задача: решить СЛУ, т.е. найти все решения.

Пример.
$$n=m=1$$
 $ax=b,\ a,b\in\mathbb{R},\ x$ – неизвестная

1.
$$a \neq 0 \implies x = \frac{b}{a}$$
 – единственное

$$2. \ a = 0 \implies 0x = b$$

 $b \neq 0 \implies$ решений нет.

 $b=0 \implies x$ – любое \implies бесконечно много решений.

2.6.1 Совместные и несовместные системы

Определение 8. СЛУ называется

- совместной, если у нее есть хотя бы одно решение
- несовместной, если решений нет

2.6.2 Матричная форма записи СЛУ

$$AX = B$$
.

$$A\in Mat_{m imes n}(R)=egin{pmatrix} a_{11}&a_{12}&\dots&a_{1n}\\ a_{21}&a_{22}&\dots&a_{2n}\\ \vdots&\vdots&\ddots&\vdots\\ a_{m1}&a_{m2}&\dots&a_{mn} \end{pmatrix}$$
 — матрица коэффициентов
$$egin{pmatrix} b_1\\ b_2 \end{pmatrix}$$

$$B\in \mathrm{Mat}_{m imes 1}=egin{pmatrix} b_1\b_2\ dots\b_n \end{pmatrix}$$
 — столбец правых частей $\begin{pmatrix} x_1 \end{pmatrix}$

$$X \in \mathrm{Mat}_{m \times 1} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$$
 — столбец неизвестных

3 Лекция 14.09.2019

3.1 Расширенная матрицы системы линейных уравнений

 $Ax = b, A \in \mathrm{Mat}_{m \times n}, b \in \mathbb{R}^m$

Полная информация о СЛУ содержится в её расширенной матрице.

$$(A \mid b) = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} & b_1 \\ a_{21} & a_{22} & \dots & a_{2n} & b_2 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} & b_m \end{pmatrix}$$

3.2 Эквивалентные системы

Определение 9. Две системы уравнений от одних и тех же неизвестных называются *эквивалентными*, если они имеют одинаковые множества решений.

Пример. Рассмотрим несколько СЛУ

A)
$$\begin{cases} x_1 + x_2 = 1 \\ x_1 - x_2 = 0 \end{cases} \iff \begin{pmatrix} 1 & 1 & 1 \\ 1 & -1 & 0 \end{pmatrix}$$

B)
$$\begin{cases} 2x_1 = 1 \\ 2x_2 = 1 \end{cases} \iff \begin{pmatrix} 2 & 0 & 1 \\ 0 & 2 & 1 \end{pmatrix}$$

C)
$$x_1 + x_2 = 1 \iff (1 \ 1 \mid 1)$$

А и В эквиваленты, так как обе имеют единственное решение $(\frac{1}{2}, \frac{1}{2})$.

А и С не эквивалентны, так как С имеет бесконечно много решений.

3.3 Как решить СЛУ?

Идея: выполнить преобразование СЛУ, сохраняющее множество её решений, и привести её к такому виду, в котором СЛУ легко решается.

Пример.
$$\begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1 \end{pmatrix} \leftrightarrow \begin{cases} x_1 = b_1 \\ x_2 = b_2 \\ \vdots \\ x_n = b_n \end{cases}$$

3.3.1 Элементарные преобразования СЛУ и соответствующие преобразования строк её расширенной матрицы

тип	СЛУ	расширенная матрица
1.	К i -му уравнению прибавить j -ое, умноженное на $\lambda \in \mathbb{R} \ (i \neq j)$	$\Theta_1(i,j,\lambda)$
2.	Переставить <i>i</i> -е и <i>j</i> -е уравнения $(i \neq j)$	$\Im_2(i,j)$
3.	Умножить i -ое уравнение на $\lambda \neq 0$	$\mathfrak{I}_3(i,\lambda)$

1. $\Theta_1(i,j,\lambda)$: к *i*-ой строке прибавить *j*-ую, умноженную на λ (покомпонентно),

$$a_{ik} \mapsto a_{ik} + \lambda a_{jk} \ \forall k = 1, \dots, n,$$

 $b_i \mapsto b_i + \lambda b_i.$

2. $\Theta_2(i,j)$: переставить і-ую и ј-ую строки.

3. $\Theta_3(i, \lambda)$: умножить і-ю строку на λ (покомпонентно).

 $\Theta_1, \Theta_2, \Theta_3$ называются элементарными преобразованиями строк расширенной матрицы.

3.3.2 Сохранение множества решений системы линейных уравнений при элементарных преобразованиях

Лемма 3.1. Элементарные преобразования СЛУ не меняют множество решений

Доказательство. Пусть мы получили СЛУ(★★) из СЛУ(★) путем применения элементарных преобразований.

- 1. Всякое решение системы (\star) является решением ($\star\star$).
- 2. (*) получается из (**) путем элементарных преобразований.

$$\begin{array}{c|cccc} (\star) \rightarrow (\star\star) & (\star\star) \rightarrow (\star) \\ \hline \Theta_1(i,j,\lambda) & \Theta_1(i,j,-\lambda) \\ \hline \Theta_2(i,j) & \Theta_2(i,j) \\ \hline \Theta_3(i,\lambda) & \Theta_3(i,\frac{1}{\lambda}) \\ \end{array}$$

Следовательно, всякое решение (**) является решением (*) \implies множества решений совпадают.

3.4 Ступенчатые матрицы

Определение 10. Строка (a_1, a_2, \dots, a_n) называется *нулевой*, если $a_1 = a_2 = \dots = a_n = 0$ и *ненулевой* иначе $(\exists i : a_i \neq 0)$.

Определение 11. Ведущим элементом ненулевой строки называется первый её ненулевой элемент.

Определение 12. Матрица $M \in \mathrm{Mat}_{m \times n}$ называется *ступенчатой*, или имеет ступенчатый вид, если:

- 1. Номера ведущих элементов её ненулевых строк строго возрастают.
- 2. Все нулевые строки стоят в конце.

$$M = \begin{pmatrix} 0 & \dots & 0 & \diamond & * & * & * & * & * & * \\ 0 & \dots & 0 & 0 & \dots & \diamond & * & * & * & * \\ 0 & \dots & 0 & 0 & \dots & 0 & 0 & \diamond & * & * \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & \dots & 0 & 0 & \dots & 0 & 0 & 0 & \diamond & * \\ 0 & \dots & 0 & 0 & \dots & 0 & 0 & 0 & 0 & \diamond \\ 0 & \dots & 0 & 0 & \dots & 0 & 0 & 0 & 0 & 0 \end{pmatrix},$$

где $\diamond \neq 0$, * – что угодно.

3.4.1 Улучшенный ступенчатый вид матрицы

Определение 13. М имеет улучшенный ступенчатый вид, если:

- 1. М имеет обычный ступенчатый вид.
- 2. Все ведущие элементы равны 1.
- 3. В одном столбце с любым ведущим элементом стоят только нули.

Теорема 3.2. 1) Всякую матрицу элементарными преобразованиями можно привести к ступенчатому виду.

2) Всякую ступенчатую матрицу элементарными преобразованиями строк можно привести к улучшенному ступенчатому виду.

Следствие. Всякую матрицу элементарными преобразованиями строк можно привести к **улучшенному** ступенчатому виду.

Доказательство.

- 1. Алгоритм. Если М нулевая, то конец. Иначе:
- Шаг 1: Ищем первый ненулевой столбец, пусть j его номер.
- Шаг 2: Переставляем строки, если нужно, добиваемся того, что $a_{1j} \neq 0$
- Шаг 3: Зануляем элементы в этом столбце используя первую строку $\Theta_1(2,1,-\frac{a_{2j}}{a_{1j}}),\ldots,\Theta_1(m,1,-\frac{a_{mj}}{a_{1j}})$. В результате $a_{ij}=0$ при $i=2,3,\ldots m$.

Дальше повторяем все шаги для подматрицы M' (без первой строки и столбцов $1,\ldots,j$).

- 2. Алгоритм. Пусть $a_{1j_1}, a_{2j_2}, \dots, a_{rj_r}$ ведущие элементы ступенчатой матрицы.
- Шаг 1: Выполняем $\Im_3(1,\frac{1}{a_{1j_1}}),\dots,\Im_3(r,\frac{1}{a_{rj_r}})$, в результате все ведущие элементы равны 1.
- Шаг 2: Выполняем $\mathfrak{I}_1(r-1,r,-a_{r-1,\;j_r}), \mathfrak{I}_1(r-2,r,-a_{r-2,\;j_r}),\ldots,\mathfrak{I}_1(1,r,-a_{1,\;j_r}).$ В результате все элементы над a_{rj_r} равны 0.

Аналогично обнуляем элементы над всеми остальными ведущими.

Итог: матрица имеет улучшенный ступенчатый вид.

3.5 Реализация элементарных преобразований строк матрицы при помощи умножения слева на подходящую матрицу

Всякое элементарное преобразование строк матрицы реализуется умножением как умножение слева на подходящую "элементарную матрицу".

• Э₁ (i, j, λ) : $A \mapsto U_1(i, j, \lambda)A$, где

(на диагонали стоят единицы, на i-м j-м месте стоит λ , остальные элементы нули)

• $\Im_2(i,j)$: $A \mapsto U_2(i,j)A$, где

$$U_2(i,j) = \begin{pmatrix} i & 0 & 0 & \dots & 0 & 0 & 0 \\ 0 & 0 & 0 & \dots & 0 & 1 & 0 \\ 0 & 0 & 1 & \dots & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & 1 & 0 & 0 \\ 0 & 1 & 0 & \dots & 0 & 0 & 0 \\ 0 & 0 & 0 & \dots & 0 & 0 & 1 \end{pmatrix}$$

(на диагонали стоят единицы, кроме i-го и j-го столбца (на i-м j-м и j-м i-м местах стоит 1, остальные нули)

• Э₃ (i, λ) : $A \mapsto U_3(i, \lambda)A$, где

$$U_3(i,\lambda) = \begin{pmatrix} 1 & 0 & 0 & \dots & 0 & 0 & 0 \\ 0 & \lambda & 0 & \dots & 0 & 0 & 0 \\ 0 & 0 & 1 & \dots & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & 1 & 0 & 0 \\ 0 & 0 & 0 & \dots & 0 & 1 & 0 \\ 0 & 0 & 0 & \dots & 0 & 0 & 1 \end{pmatrix}$$

(на диагонали стоят единицы, кроме i-го столбца, там λ , остальные элементы нули)

Элементарные преобразования столбцов — умножение на соответствующую матрицу справа.

Упражнение на дом. Доказательство.

4 Лекция 19.09.2019

Дана СЛУ с расширенной матрицей $(A \mid b)$.

Было: элементарные преобразования строк в $(A \mid b)$ сохраняют множество решений.

4.1 Метод Гаусса решения систем линейных уравнений

Прямой ход метода Гаусса.

Выполняя элементарные преобразования строк в (A|b), приведем A к ступенчатому виду:

$$\begin{pmatrix} 0 & \dots & 0 & a_{ij_1} & * & \dots & \dots & b_1 \\ 0 & \dots & 0 & 0 & a_{2j_2} & * & \dots & b_2 \\ \vdots & \ddots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & \dots & 0 & 0 & 0 & 0 & a_{rj_r} & b_r \\ 0 & \dots & 0 & 0 & 0 & 0 & 0 & b_{r+1} \\ 0 & \dots & 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}.$$

Случай 1 $\exists i \geqslant r+1 : b_i \neq 0$ (в A есть нулевая строка с $b_i \neq 0$)

Тогда в новой СЛУ i-е уравнение $0 \cdot x_1 + \dots + 0 \cdot x_n = b_i$, т.е. $0 = b_i \implies$ СЛУ несовместна.

Случай 2 либо r=m, либо $b_i=0 \quad \forall i\geqslant r+1$

Выполняя элементарные преобразования строк приводим матрицу к улучшенному ступенчатому виду – обратный ход метода Гаусса

$$\begin{pmatrix} 0 & \dots & 0 & 1 & * & 0 & * & 0 & 0 & b_1 \\ 0 & \dots & 0 & 0 & \dots & 1 & * & 0 & 0 & b_2 \\ 0 & \dots & 0 & 0 & \dots & 0 & 0 & 1 & 0 & b_3 \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & \dots & 0 & 0 & \dots & 0 & 0 & 0 & 1 & b_r \\ 0 & \dots & 0 & 0 & \dots & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

Неизвестные $x_{j_1}, x_{j_2}, \ldots, x_{j_r}$ называются главными, а остальные свободными, где j_i – индексы столбцов с ведущими элементами.

Подслучай 2.1 r=n, т.е. все неизвестные – главные

$$\begin{pmatrix} 1 & 0 & \dots & 0 & b_1 \\ 0 & 1 & \dots & 0 & b_2 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & 1 & b_r \\ 0 & 0 & \dots & 0 & 0 \end{pmatrix} \leftrightarrow \begin{cases} x_1 = b_1 \\ x_2 = b_2 \\ \vdots \\ x_r = b_r \end{cases} -$$
единственное решение.

Подслучай 2.2 r < n, т.е. есть хотя бы одна свободная неизвестная

Перенесем в каждом уравнении все члены со свободными неизвестными в правую часть, получаем выражения всех главных неизвестных через свободные, эти выражения называется общим решением исходной CЛУ.

Пример. Улучшенный ступенчатый вид:

$$\begin{pmatrix}
1 & 3 & 0 & 1 & | & -1 \\
0 & 0 & 1 & -2 & | & 4
\end{pmatrix}$$

Главные неизвестные: x_1, x_3 . Свободные неизвестные: x_2, x_4 . $x_2 = t_1, x_4 = t_2$ – параметры.

$$\begin{cases} x_1 = -1 - 3t_1 - t_2 \\ x_2 = t1 \\ x_3 = 4 + 2t_2 \\ x_4 = t_2 \end{cases} \iff \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} -1 - 3t_1 - t_2 \\ t_1 \\ 4 + 2t_2 \\ t_2 \end{pmatrix} = \begin{pmatrix} -1 \\ 0 \\ 4 \\ 0 \end{pmatrix} + t_1 \begin{pmatrix} -3 \\ 1 \\ 0 \\ 0 \end{pmatrix} + t_2 \begin{pmatrix} -1 \\ 0 \\ 2 \\ 1 \end{pmatrix}$$

Общее решение:

$$\begin{cases} x_1 = -1 - 3x_2 - x_4 \\ x_3 = 4 + 2x_4 \end{cases}$$

Следствие. Всякая СЛУ с коэффициентами из \mathbb{R} имеет либо 0 решений, либо одно решение, либо бесконечно много решений.

4.2 Однородные системы линейных уравнений

Определение 14. СЛУ называется однородной (ОСЛУ), если все её правые части равны 0. Расширенная матрица: $(A \mid 0)$

Очевидный факт. Всякая ОСЛУ имеет нулевое решение $(x_1 = x_2 = \cdots = x_n = 0)$.

Следствие. Всякая ОСЛУ либо имеет ровно 1 решение (нулевое), либо бесконечно много решений.

Следствие. Всякая ОСЛУ, у которой число неизвестных больше числа уравнений, имеет ненулевое решение

Доказательство. В ступенчатом виде будет хотя бы одна свободная неизвестная. Придавая ей ненулевое значение, получим ненулевое решение
■

4.3 Связь между множеством решений системы линейных уравнений и множеством решений соответствующей однородной системы.

Пусть дана совместная СЛУ Ax=b

Частное решение СЛУ — это какое-то одно её решение.

Утверждение 4.1. Пусть Ax = b – совместная СЛУ.

 x_0 – частное решение Ax = b

 $S \subset \mathbb{R}^n$ – множество решений ОСЛУ Ax = 0

 $L \subset \mathbb{R}^n$ – множество решений Ax = b.

Тогда, $L = x_0 + S$, где $x_0 + S = \{x_0 + v \mid v \in S\}$

Доказательство.

- 1. Пусть $u \in L$ (u решение Ax = b), положим $v = u x_0$ Тогда, $Av = A(u - x_0) = Au - Ax_0 = b - b = 0 \implies v \in S \implies L \subseteq x_0 + S$
- 2. Пусть $v \in S$ (v решение Ax=0), положим $u=x_0+v$. Тогда, $Au=A(x_0+v)=Ax_0+Av=b+0=b \implies u \in L \implies x_0+S\subseteq L$ Значит, $x_0+S=L$.

4.4 Матричные уравнения вида AX = B и XA = B, общий метод их решения

Два типа матричных уравнений:

1. AX = B

А и В известны, Х – неизвестная матрица

2. XA = C

А и С известны, Х – неизвестная матрица

Из второго типа получается первый транспонированием матриц: $XA = C \iff A^TX^T = B^T$, то есть достаточно уметь решать только уравнения первого типа.

4.4.1 Тип 1

 $\underset{n\times m}{A}\underset{N}{X}=\underset{n\times p}{B}$ – это уравнение равносильно системе

$$\begin{cases} AX^{(1)} = B^{(1)} \\ AX^{(2)} = B^{(2)} \\ \vdots \\ AX^{(p)} = B^{(p)} \end{cases}$$

Этот набор СЛУ надо решать одновременно методом Гаусса.

Записываем матрицу $(A \mid B)$ и элементарными преобразованиями строк с ней приводим A к улучшенному ступенчатому виду.

Получаем $(A' \mid B')$, где A' имеет улучшенный ступенчатый вид.

Остается выписать общее решение для каждой СЛУ

$$\begin{cases} A'x^{(1)} = B'^{(1)} \\ A'x^{(2)} = B'^{(2)} \\ \vdots \\ A'x^{(p)} = B'^{(p)} \end{cases}$$

4.5 Обратные матрицы

Определение 15. Матрица $B \in M_n$ называется *обратной*, к A, если AB = BA = E. Обозначение: $B = A^{-1}$

Факты:

1. Если $\exists A^{-1}$, то она определена однозначно

Доказательство. Пусть B, B' – две матрицы, обратные к A. Тогда B = B(AB') = (BA)B' = B'.

2. Если AB=E для некоторой $B\in M_n,$ то BA=E автоматически и тогда $B=A^{-1}$

Замечание. Доказывается на Лекции 8.

Следствие. A^{-1} является решение матричного уравнения AX = E (если решение существует)

4.6 Перестановки на множестве $\{1, 2, ..., n\}$

Определение 16. Перестановкой множества $\{1, 2, \dots, n\}$ называется упорядоченный набор (i_1, i_2, \dots, i_n) , в котором каждое число от 1 до n встречается ровно один раз.

Обозначение: P_n – множество всех перестановок множества $\{1,2,\ldots,n\}$. Например, $(4,2,1,3) \in P_4$.

Определение 17. Подстановкой на множестве $\{1,2,\ldots,n\}$ называется всякое биективное (взаимно однозначное) отображение множества $\{1,2,\ldots,n\}$ в себя.

$$\sigma: \{1, 2, \dots, n\} \to \{1, 2, \dots, n\}.$$

$$\begin{pmatrix} 1 & 2 & 3 & \dots & n \\ i_1 & i_2 & i_3 & \dots i_n & \end{pmatrix}$$

5 Лекция 23.09.2019

5.1 Инверсии в перестановке

Обозначение: S_n – множество всех подстановок из ${\bf n}$ элементов.

Пусть
$$\sigma \in S_n, i, j \in \{1, 2, ..., n\}, i \neq j$$

Определение 18. Пара $\{i,j\}$ (неупорядоченная) образует *инверсию* в σ , если числа i-j и $\sigma(i)-\sigma(j)$ имеют разный знак (то есть либо i< j и $\sigma(i)>\sigma(j)$, либо i> j и $\sigma(i)<\sigma(j)$).

5.2 Знак и чётность перестановки

Определение 19. Знак подстановки σ – это число $\mathrm{sgn}(\sigma) = (-1)^{<\mathrm{число}}$ инверсий в $\sigma>$.

Определение 20. σ называется четной, если $\text{sgn}(\sigma) = 1$ (четное количество инверсий), и нечетной если $\text{sgn}(\sigma) = -1$ (нечетное количество инверсий).

Примеры.

σ	$\begin{pmatrix} 1 & 2 \\ 1 & 2 \end{pmatrix}$	$\begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$	
число инверсий	0	1	
$sgn(\sigma)$	1	-1	
четность	четная	нечетная	

σ	$ \left \begin{array}{ccc} 1 & 2 & 3 \\ 1 & 2 & 3 \end{array} \right $	$\left \begin{array}{ccc} 1 & 2 & 3 \\ 2 & 1 & 3 \end{array} \right $	$\left \begin{array}{ccc} 1 & 2 & 3 \\ 2 & 3 & 1 \end{array} \right $	$\left \begin{array}{ccc} 1 & 2 & 3 \\ 3 & 2 & 1 \end{array} \right $	$\left \begin{array}{ccc} 1 & 2 & 3 \\ 3 & 1 & 2 \end{array} \right $	$\left \begin{array}{ccc} 1 & 2 & 3 \\ 1 & 3 & 2 \end{array} \right $
число инверсий	0	1	2	3	2	1
$sgn(\sigma)$	1	-1	1	-1	1	-1
четность	четная	нечетная	четная	нечетная	четная	нечетная

Замечание. число инверсий в $\sigma \in S_n \leqslant \binom{n}{2} = \frac{n(n-1)}{2}$, равенство достигается при $\sigma = \begin{pmatrix} 1 & 2 & \dots & n \\ n & n-1 & \dots & 1 \end{pmatrix}$

5.3 Произведение перестановок

Определение 21. Произведением (или композицией) двух подстановок $\sigma, \rho \in S_n$ называется такая постановка $\sigma \rho \in S_n$, что $(\sigma \rho)(x) := \sigma(\rho(x)) \ \forall x \in \{1, \dots, n\}.$

Пример.

$$\frac{11\rho \text{max}\rho}{\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1 \end{pmatrix}}, \rho = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 1 & 2 \end{pmatrix}$$

$$\sigma \rho = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix}$$

$$\rho \sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 3 & 4 \end{pmatrix}$$
Proved the second of the province of

Видно, что $\sigma \rho \neq \rho \sigma \implies$ произведение подстановок не обладает свойством коммутативности.

5.4 Ассоциативность произведения перестановок

Утверждение 5.1. Умножение подстановок ассоциативно, то есть $\sigma(\tau\pi) = (\sigma\tau)\pi \ \forall \sigma, \tau, \pi \in S_n$.

Доказательство.
$$\forall i \in \{1, 2, \dots, n\}$$
 имеем
$$[\sigma(\tau\pi)](i) = \sigma((\tau\pi)(i)) = \sigma(\tau(\pi(i)))$$

$$[(\sigma\tau)\pi](i) = (\sigma\tau)(\pi(i)) = \sigma(\tau(\pi(i)))$$

5.5 Тождественная перестановка

Определение 22. Подстановка $id = \begin{pmatrix} 1 & 2 & \dots & n \\ 1 & 2 & \dots & n \end{pmatrix} \in S_n$ называется $mondecmbe nho \ddot{u}$ перестановкой.

Свойства:

$$\forall \sigma \in S_n \quad id \cdot \sigma = \sigma \cdot id = \sigma.$$

 $\operatorname{sgn}(id) = 1.$

5.6 Обратная перестановка и её знак

Определение 23. $\sigma \in S_n, \ \sigma = \begin{pmatrix} 1 & 2 & \dots & n \\ \sigma(1) & \sigma(2) & \dots & \sigma(n) \end{pmatrix} \implies$ подстановка $\sigma^{-1} := \begin{pmatrix} \sigma(1) & \sigma(2) & \dots & \sigma(n) \\ 1 & 2 & \dots & n \end{pmatrix}$ называ-

Свойства: $\sigma \cdot \sigma^{-1} = id = \sigma^{-1} \cdot \sigma$

5.7 Теорема о знаке произведения перестановок

Теорема 5.2. $\sigma, \rho \in S_n \implies \operatorname{sgn}(\sigma \rho) = \operatorname{sgn} \sigma \cdot \operatorname{sgn} \rho$.

Доказательство. Для каждой пары i < j введем следующие числа:

$$lpha(i,j) = egin{cases} 1, & \text{если } \{i,j\} \ \text{образует инверсию в }
ho \ 0, & \text{иначе} \end{cases}$$

$$eta(i,j) = egin{cases} 1, & \text{если } \{
ho(i),
ho(j) \} \ \text{образует инверсию в } \sigma \ 0, & \text{иначе} \end{cases}$$

$$\gamma(i,j) = \begin{cases} 1, & \text{если } \{i,j\} \text{ образует инверсию в } \sigma \rho \\ 0, & \text{иначе} \end{cases}$$

"число инверсий в ρ " = $\sum_{1\leqslant i < j\leqslant n} \alpha(i,j)$ "число инверсий в $\sigma \rho$ " = $\sum_{1\leqslant i < j\leqslant n} \gamma(i,j)$ "число инверсий в σ " = $\sum_{1\leqslant i < j\leqslant n} \beta(i,j)$ – Почему?

Когда $\{i,j\}$ пробегает все неупорядоченные пары в $\{1,2,\ldots,n\}$, пара $\{\rho(i),\rho(j)\}$ тоже пробегает все неупорядоченные пары в $\{1, 2, \ldots, n\}$.

Зависимость $\gamma(i,j)$ от $\alpha(i,j)$ и $\beta(i,j)$:

Вывод: $\alpha(i, j) + \beta(i, j) \equiv \gamma(i, j) \pmod{2}$.

Тогда
$$\operatorname{sgn}(\sigma\rho) = (-1)^{\sum \gamma(i,j)} = (-1)^{\sum \beta(i,j) + \sum \alpha(i,j)} = (-1)^{\sum \alpha(i,j)} \cdot (-1)^{\sum \beta(i,j)} = \operatorname{sgn}\sigma \cdot \operatorname{sgn}\rho.$$

Следствие. $\sigma \in S_n \implies \operatorname{sgn}(\sigma^{-1}) = \operatorname{sgn}(\sigma)$.

Доказательство.
$$\sigma \sigma^{-1} = id \implies \operatorname{sgn}(\sigma \sigma^{-1}) = \operatorname{sgn}(id) \implies \operatorname{sgn} \sigma \operatorname{sgn} \sigma^{-1} \implies \operatorname{sgn} \sigma = \operatorname{sgn} \sigma^{-1}.$$

Упражнение на дом: Показать, что число инверсий в σ^{-1} такое же, как в σ .

5.8 Транспозиции, знак транспозиции

Пусть $i, j \in \{1, 2, \dots, n\}, i \neq j$.

Рассмотрим перестановку $\tau_{ij} \in S_n$, такую что

 $\tau_{ij}(j) = i.$

 $\tau_{i,i}(k) = k \quad \forall k \neq i, j.$

Определение 24. Подстановки вида au_{ij} называются *танспозициями*.

Замечание. τ – траспозиция $\implies \tau^2 = id, \tau^{-1} = \tau$.

Определение 25. Подстановки вида $au_{i,i+1}$ называются элементарными траспозициями.

Лемма 5.3. $\tau \in S_n$ – транспозиция \implies $sgn(\tau) = -1$.

Доказательство. Пусть $\tau = \tau_{ij}$, можем считать, что i < j.

$$\tau := \begin{pmatrix} 1 & \dots & i-1 & i & i+1 & \dots & j-1 & j & j+1 & \dots & n \\ 1 & \dots & i-1 & j & i+1 & \dots & j-1 & i & j+1 & \dots & n \end{pmatrix}$$

Посчитаем инверсии:

 $\{i, j\}$

 $\{i, k\}$ при $i + 1 \le k \le j - 1$, всего = j - i - 1

 $\{k,j\}$ при $i+1\leqslant k\leqslant j-1,$ всего =j-i-1

Значит, всего инверсий $2(j-i-1)+1\equiv 1\pmod 2\implies \operatorname{sgn}(\tau)=-1.$

Следствие. При $n\geqslant 2$ отображение $\sigma\to\sigma\tau_{12}$ является биекцией между множеством четных подстановок в S_n и множеством нечетных подстановок в S_n .

Следствие. При $n \ge 2$ количество нечетных подстановок в S_n равно количеству четных подстановок в S_n и равно $\frac{n!}{2}$.

Теорема 5.4. Всякая подстановка $\sigma \in S_n$ может быть разложена в произведение конечного числа элементарных транспозиций.

Доказательство.

$$\sigma \in S_n := \begin{pmatrix} 1 & 2 & \dots & n \\ \sigma(1) & \sigma(2) & \dots & \sigma(n) \end{pmatrix}$$

Тогда

$$\sigma \tau_{i,i+1} = \begin{pmatrix} 1 & 2 & \dots & i & i+1 & \dots & n \\ \sigma(1) & \sigma(2) & \dots & \sigma(i+1) & \sigma(i) & \dots & \sigma(n) \end{pmatrix}$$

При умножении справа на $\tau_{i,i+1}$ в нижней строке меняются местами i-ый и (i+1)-ый элементы.

Тогда, домножив σ на подходящее произведение $\tau_1 \cdot \tau_2 \cdot \dots \cdot \tau_k$ элементарных траспозиций, можем добиться, что нижняя строка есть $(1, 2, \dots, n) \implies \sigma \tau_1 \tau_2 \dots \tau_k = id$.

Теперь, домножая справа на $\tau_k \tau_{k-1} \dots \tau_1$, получим $\sigma = \tau_k \tau_{k-1} \dots \tau_1$.

5.9 Определитель квадратной матрицы

Определение 26. Определителем матрицы $A \in M_n$ называется число

$$\det A = \sum_{\sigma \in S_{-}} \operatorname{sgn}(\sigma) a_{1\sigma(1)} a_{2\sigma(2)} \dots a_{n\sigma(n)}.$$

 $(\sum_{\sigma \in S_n}$ – сумма по всем перестановкам)

Другие обозначения: $|A|, \begin{vmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{vmatrix}$

5.10 Определители порядков 2 и 3

•
$$n = 2$$

$$S_2 = \left\{ \begin{pmatrix} 1 & 2 \\ 1 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} \right\}$$

$$\det A = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11}a_{22} - a_{12}a_{21}$$

$$n = 3$$

$$S_3 = \left\{ \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix} \right\}$$

$$\det A = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32} - a_{13}a_{22}a_{31} - a_{12}a_{21}a_{33} - a_{11}a_{23}a_{32}.$$

6 Лекция 26.09.2019

Напомним что такое определитель:

$$\sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) a_{1\sigma(1)} a_{2\sigma(2)} \dots a_{n\sigma(n)}. \tag{*}$$

Замечание. Каждое слагаемое содержит ровно 1 элемент из каждой строки и ровно 1 элемент из каждого столбца.

6.1 Свойства определителей

Свойство $\mathbf{T} \det A = \det A^T$.

Доказательство. Пусть $B = A^T$, тогда $b_{ij} = a_{ji}$.

$$\det A^T = \det B = \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) b_{1\sigma(1)} b_{2\sigma(2)} \dots b_{n\sigma(n)} = \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) a_{\sigma(1)1} a_{\sigma(2)2} \dots a_{\sigma(n)}$$

$$= \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) a_{1\sigma(1)^{-1}} a_{2\sigma(2)^{-1}} \dots a_{n\sigma(n)^{-1}} \quad /\!/ \text{ замена } \sigma^{-1} = p \ /\!/$$

$$= \sum_{p \in S_n} a_{1p(1)} a_{2p(2)} \dots a_{np(n)} = \det A.$$

Свойство 0 Если в A есть нулевая строка или нулевой столбец, то $\det A = 0$.

Доказательство. В связи со свойством Т можно доказать только для строк.

Так как в каждом слагаемом (\star) присутствует элемент из каждой строки, то все слагаемые в (\star) равны 0 \Longrightarrow det A=0.

Свойство 1 Если в A все элементы одной строки или одного столбца домножить на одно и то же число λ , то det A тоже умножается на λ .

$$\begin{vmatrix} * & * & \dots & * \\ \dots & \dots & \dots & \dots \\ \lambda * & \lambda * & \lambda * & \lambda * \\ \dots & \dots & \dots & \dots \\ * & * & \dots & * \end{vmatrix} = \lambda \begin{vmatrix} * & * & \dots & * \\ \dots & \dots & \dots & \dots \\ * & * & * & * \\ \dots & \dots & \dots & \dots \\ * & * & \dots & * \end{vmatrix}$$

Доказательство. В связи со свойством Т можно доказать только для строк.

 $A_{(i)} o \lambda A_{(i)} \implies a_{ij} o \lambda a_{ij} \ \forall j \implies$ в (*) каждое слагаемое умножается на $\lambda \implies \det A$ умножается на λ .

Свойство 2 Если
$$A_{(i)} = A_{(i)}^1 + A_{(i)}^2$$
, то $\det A = \det \begin{pmatrix} A_{(1)} \\ \vdots \\ A_{(i)}^1 \\ \vdots \\ A_{(n)} \end{pmatrix} + \det \begin{pmatrix} A_{(1)} \\ \vdots \\ A_{(i)}^2 \\ \vdots \\ A_{(n)} \end{pmatrix}$.

Пример:

$$\begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 + c_1 & b_2 + c_2 & b_3 + c_3 \\ d_1 & d_2 & d_3 \end{vmatrix} = \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ d_1 & d_2 & d_3 \end{vmatrix} + \begin{vmatrix} a_1 & a_2 & a_3 \\ c_1 & c_2 & c_3 \\ d_1 & d_2 & d_3 \end{vmatrix}$$

Аналогично, если $A^{(j)}=A_1^{(j)}+A_2^{(j)}$, то $\det A=\det(A^{(1)}\cdots A_1^{(j)}\cdots A^{(n)})+\det(A^{(1)}\cdots A_2^{(j)}\cdots A^{(n)}).$

Доказательство. В связи со свойством Т можно доказать только для строк.

Пусть
$$A_{(i)}^1 = (a'_{i1}a'_{i2} \cdots a'_{in}), \ A_{(i)}^2 = (a''_{i1}a''_{i2} \dots a''_{in}) \implies a_{ij} = a'_{ij} + a''_{ij}.$$

$$\det A = \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) a_{1\sigma(1)} a_{2\sigma(2)} \dots a_{n\sigma(n)}$$

$$= \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) a_{1\sigma(1)} a_{2\sigma(2)} \dots (a'_{i\sigma(i)} + a''_{i\sigma(i)}) \dots a_{n\sigma(n)}$$

$$= \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) a_{1\sigma(1)} a_{2\sigma(2)} \dots a'_{i\sigma(i)} \dots a_{n\sigma(n)} + \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) a_{1\sigma(1)} a_{2\sigma(2)} \dots a''_{i\sigma(i)} \dots a_{n\sigma(n)}$$

$$= \det A_1 + \det A_2$$

Свойство 3 Если в A поменять местами две строки или два столбца, то $\det A$ поменяет знак.

Доказательство. В связи со свойством Т можно доказать только для строк.

Пусть $A = (a_{ij}) \in M_n$, $B = (b_{ij}) \in M_n$ – матрица, полученная из A перестановкой p-ой и q-ой строк. Пусть $\tau = \tau_{pq}$.

$$b(i,j) = a_{\tau(i)j} = \begin{cases} a_{ij}, & \text{если } i \neq p, q \\ a_{qj}, & \text{если } i = p \\ a_{pj}, & \text{если } i = q \end{cases}$$

$$b_{ij} = a_{\tau(i)j} \ \forall i, j \implies a_{\tau(i)\sigma(i)} = a_{\tau(i),(\sigma\tau)(\tau(i))}$$

$$\det B = \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) b_{1\sigma(1)} b_{2\sigma(2)} \dots b_{n\sigma(n)}$$

$$= \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) a_{\tau(1),\sigma(1)} a_{\tau(2),\sigma(2)} \dots a_{\tau(n),\sigma(n)}$$

$$= \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) a_{\tau(1),(\sigma\tau)(\tau(1))} a_{\tau(2),(\sigma\tau)(\tau(2))} \dots a_{\tau(n),(\sigma\tau)(\tau(n))}$$

$$= \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) a_{1,(\sigma\tau(1))} a_{2,(\sigma\tau(2))} \dots a_{n,(\sigma\tau(n))}$$

$$= -\sum_{\sigma \in S_n} \operatorname{sgn}(\sigma\tau) a_{1,(\sigma\tau(1))} a_{2,(\sigma\tau(2))} \dots a_{n,(\sigma\tau(n))} \quad // \text{ замена } \rho = \sigma\tau \text{ } //$$

$$= -\sum_{\rho \in S_n} \operatorname{sgn}(p) a_{1,\rho(1)} a_{2,\rho(2)} \dots a_{n,\rho(n)}$$

$$= -\det A.$$

Свойство 4 Если к строке (столбцу) прибавить другую строку (столбец), умноженный на скаляр, то $\det A$ не изменится.

Доказательство. В связи со свойством Т можно доказать только для строк.

$$A \to A' = \begin{pmatrix} \dots \\ A_{(i)} + \lambda A_{(j)} \\ \dots \\ A_{(j)} \\ \dots \end{pmatrix}$$

$$|A'| = \begin{vmatrix} \dots \\ A_{(i)} \\ \dots \\ A_{(j)} \\ \dots \end{vmatrix} + \begin{vmatrix} \dots \\ \lambda A_{(j)} \\ \dots \\ A_{(j)} \\ \dots \end{vmatrix} = |A| + \lambda \begin{vmatrix} \dots \\ A_{(j)} \\ \dots \\ A_{(j)} \\ \dots \end{vmatrix} = |A| + \lambda 0 = |A|$$

.

Свойство 5 Если в A есть две одинаковые строки (столбца), то $\det A = 0$.

Доказательство. В связи со свойством Т можно доказать только для строк.

При перестановке двух одинаковых строк (столбцов):

- A не изменится \implies det A не изменится
- по свойству 3: $\det A$ меняет знак

Значит, $\det A = -\det A \implies \det A = 0$.

Определение 27. Матрица называется верхнетреугольной, если $a_{ij} = 0$ при i > j, нижнетреугольной, если $a_{ij} = 0$ i < j.

$$\begin{pmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1n} \\ 0 & a_{22} & a_{23} & \dots & a_{2n} \\ 0 & 0 & a_{33} & \dots & a_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & a_{mn} \end{pmatrix} - \text{верхнетреугольная}$$

$$\begin{pmatrix} a_{11} & 0 & 0 & \dots & 0 \\ a_{21} & a_{22} & 0 & \dots & 0 \\ a_{31} & a_{32} & a_{33} & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & a_{m3} & \dots & a_{mn} \end{pmatrix} - \text{нижнетреугольная}$$

Замечание. Всякая ступенчатая квадратная матрица верхнетреугольна.

Свойство 6 Если A верхнетреугольная или нижнетреугольная, то $\det A = a_{11}a_{22}\dots a_{nn}$.

Выделим в (\star) слагаемые, которые могут быть отличны от нуля.

$$a_{1,\sigma(1)} \dots a_{n-1,\sigma(n-1)} a_{n,\sigma(n)} \neq 0$$

$$\implies a_{n\sigma(n)\neq 0} \implies \sigma(n) = n.$$

$$\implies a_{n-1,\sigma(n-1)} \neq 0 \implies \sigma(n-1) \in \{n-1,n\},$$

но n уже занято, значит $\sigma(n-1) = n-1$, и так далее.

Рассуждая аналогично, получаем $\sigma(k) = k \ \forall k \implies \sigma = id$ – это единственное слагаемое в (*), которое может быть не равно 0.

$$\operatorname{sgn}(id) = +1 \implies \det A = a_{11}a_{22}\dots a_{nn}.$$

Следствие. det diag $(a_1, a_2, \dots, a_n) = a_1 a_2 \dots a_4$.

Следствие. $\det E = 1$

6.2 Поведение определителя при элементарных преобразованиях строк (столбцов)

 $\Theta_1(i,j,\lambda)$: det A не меняется.

 $\Theta_2(i,j)$: det A меняет знак.

 $\Theta_3(i,\lambda)$: det A умножается на λ .

Aлгоритм. Элементарными преобразованиями строк A приводится к ступенчатому (\rightarrow верхнетреугольному) виду, в котором $\det A$ легко считается.

7 Лекция 30.09.2019

7.1 Определитель с углом нулей

Предложение.

$$A = \left(\begin{array}{c|c} P & Q \\ \hline 0 & R \end{array} \right)$$
 или $A = \left(\begin{array}{c|c} P & 0 \\ \hline Q & R \end{array} \right), \ P \in M_k, \ R \in M_{n-k} \implies \det A = \det P \det R.$

Матрица с углом нулей:

$$\left(\begin{array}{c|cccc}
 & * & * & * \\
\hline
0 & * & * & * \\
0 & * & * & * \\
0 & * & * & *
\end{array}\right)$$

НЕ матрица с углом нулей:

$$\begin{pmatrix}
* & * & * & * \\
* & * & * & * \\
\hline
0 & * & * & * \\
0 & * & * & *
\end{pmatrix}$$

Доказательство. В силу свойства Т достаточно доказать для строк.

- 1. Элементарными преобразованиями строк в A, приведем $(P \mid Q)$ к виду $(P' \mid Q')$, в котором P' имеет ступенчатый вид. При этом $\det A$ и $\det P$ умножаются на один и тот же скаляр $\alpha \neq 0$.
- 2. Элементарными преобразованиями строк в A, приведем $(0 \mid R)$ к виду $(0 \mid R')$, в котором R' имеет ступенчатый вид. При этом $\det A$ и $\det R$ умножаются на один и тот же скаляр $\beta \neq 0$.

$$\begin{pmatrix} P' & Q' \\ 0 & R' \end{pmatrix} - \text{верхнетреугольная} \implies \det \begin{pmatrix} P' & Q' \\ 0 & R' \end{pmatrix} = \det P' \det R'.$$

$$\alpha\beta \det A = \det \begin{pmatrix} P' & Q' \\ 0 & R' \end{pmatrix} = \det P' \det R' = (\alpha \det P)(\beta \det R) = \alpha\beta \det P \det R.$$

7.2 Определитель произведения матриц

Теорема 7.1. $A, B \in M_n \implies \det(AB) = \det A \det B$.

Доказательство. Выполним с матрицей A одно элементарное преобразование строк, получим матрицу A'.

$$A \rightsquigarrow A' = UA$$
.

Такое же преобразование строк с AB.

$$AB \rightsquigarrow U(AB) = (UA)B = A'B.$$

Таким образом, сначала выполнив элементарное преобразование и домножив на матрицу B, либо домножив на B и затем применив элементарное преобразование, получим тот же результат.

Тогда, цепочка элементарных преобразований строк:

 $A \leadsto C$ – улучшенный ступенчатый вид.

Так же цепочка для AB:

$$AB \leadsto CB$$
.

При этом, $\det A$ и $\det AB$ умножились на один и тот же скаляр $\alpha \neq 0$

$$\det C = \alpha \det A$$
.

$$\det CB = \alpha \det AB.$$

Случай 1 Последняя строка состоит из нулей:

$$C_{(n)} = (0 \dots 0)$$

$$\implies [CB]_{(n)} = C_{(n)}B = (0 \dots 0)$$

$$\implies \det CB = 0 = 0 \cdot \det B = \det C \det B.$$

$$C_{(n)} \implies C = E,$$

так как матрица C имеет улучшенный ступенчатый вид.

Значит,

$$\det CB = \det B = 1 \cdot \det B = \det C \cdot \det B.$$

Из этих двух случаем следует, что $\det CB = \det C \det B$.

Сокращая α получаем,

$$\det CB = \det C \det B \implies \det AB = \det A \det B.$$

Замечание. Пусть $A \in M_n$, $A_{y\pi}$ – её улучшенный ступенчатый вид.

$$\det A \neq 0 \iff A_{y\pi} = E.$$

7.3 Дополнительные миноры и алгебраические дополнения к элементам квадратной матрицы

Определение 28. Дополнительным минором к элементу a_{ij} называется определитель $(n-1) \times (n-1)$ матрицы, получающейся из вычеркиванием i-ой строки и j-го столбца.

Обозначение: \overline{M}_{ij} .

Определение 29. Алгебраическим дополнением κ элементу a_{ij} называется число $A_{ij} = (-1)^{i+j} \overline{M}_{ij}$.

7.4 Лемма об определителе матрицы, содержащей ровно один ненулевой элемент в некоторой строке

Лемма 7.2. Пусть $a_{ik}=0$ при всех $k\neq j$. Тогда $\det A=a_{ij}\cdot A_{ij}$.

Доказательство.

$$A = \begin{pmatrix} P & U & Q \\ \hline 0 \dots 0 & a_{ij} & 0 \dots 0 \\ \hline R & V & S \end{pmatrix}.$$

Переставляя соседние строки i-1 раз, вытолкнем i-ю строку наверх.

$$A' = \begin{pmatrix} 0 \dots 0 & a_{ij} & 0 \dots 0 \\ \hline P & U & Q \\ \hline R & V & S \end{pmatrix}$$

Переставляя соседние столбцы j-1 раз, переместим j-й столбец на первое место.

$$A'' = \begin{pmatrix} a_{ij} & 0 \dots 0 & 0 \dots 0 \\ \hline U & P & Q \\ \hline V & R & S \end{pmatrix}$$

$$\det A'' = a_{ij} \det \left(\frac{P \mid Q}{R \mid S} \right) = a_{ij} \overline{M}_{ij}.$$

$$\implies det A = (-1)^{i-1+j-1} \det A'' = (-1)^{i+j} a_{ij} \overline{M}_{ij} = a_{ij} A_{ij}.$$

7.5 Разложение определителя по строке (столбцу)

Теорема 7.3. При любом фиксированном $i \in \{1, 2, ..., n\}$,

$$\det A = a_{i1}A_{i1} + a_{i2}A_{i2} + \dots + a_{in}A_{in} = \sum_{i=1}^{n} a_{ij}A_{ij}$$
 – разложение по i-й строке.

Аналогично, для любого фиксированного $j \in \{1, 2, ..., n\}$,

$$\det A = a_{1j}A_{1j} + a_{2j}A_{2j} + \dots + a_{nj}A_{nj} = \sum_{i=1}^n a_{ij}A_{ij}$$
 – разложение по j-у столбцу.

Доказательство. В силу свойства Т достаточно доказать для строк.

$$A_{(i)} = (a_{i1}, 0, \dots, 0) + (0, a_{i2}, 0, \dots, 0) + \dots + (0, \dots, 0, a_{in}).$$

Требуемое следует из свойства 2 определителей и леммы.

7.6 Лемма о фальшивом разложении определителя

Лемма 7.4.

1. При любых $i, k \in \{1, 2, \dots, n\} : i \neq k \implies \sum_{j=1}^{n} a_{ij} A_{kj} = 0.$

2. При любых $j,k \in \{1,2,\ldots,n\}: j \neq k \implies \sum_{i=1}^n a_{ij}A_{ik} = 0$

Доказательство. В силу свойства Т достаточно доказать для строк.

Пусть $B \in M_n$ – матрица, полученная из A заменой k-й строки на i-ю.

$$B = \begin{pmatrix} A_{(1)} \\ \vdots \\ A_{(i)} \\ \vdots \\ A_{(i)} \\ \vdots \\ A_{(n)} \end{pmatrix}$$

В B есть две одинаковые строки $\implies \det B = 0$.

Разлагая $\det B$ по k-й строке, получаем

$$\det B = \sum_{j=1}^{n} b_{kj} B_{kj} = \sum_{j=1}^{n} a_{ij} A_{kj}.$$

7.7 Обратная матрица, её единственность

Пусть дана $A \in M_n$.

Определение 30. Матрица $B \in M_n$ называется *обратной* к A, если AB = BA = E. Обозначение: A^{-1} .

Лемма 7.5. Если $\exists A^{-1}$, то она единственна.

Доказательство. Пусть $B, C \in M_n$ такие, что AB = BA = E и AC = CA = E. Тогда,

$$B = BE = B(AC) = (BA)C = EC = C \Rightarrow B = B'.$$

7.8 Невырожденные матрицы

Определение 31. Матрица $A \in M_n$ называется невырожденной, если $\det A \neq 0$, и вырожденной иначе (то есть $\det A = 0$).

7.9 Определитель обратной матрицы

Лемма 7.6. Если $\exists A^{-1}$, то det $A \neq 0$.

Доказательство.
$$AA^{-1} = E \implies \det(AA^{-1}) = \det E \implies \det A \det(A^{-1}) = 1$$
.

7.10 Присоединённая матрица

Определение 32. Присоединенной к A матрицей называется матрица $\widehat{A} = (A_{ij})^T$.

$$\hat{A} = \begin{pmatrix} A_{11} & A_{21} & \dots & A_{n1} \\ A_{12} & A_{22} & \dots & A_{n2} \\ \vdots & \vdots & \ddots & \vdots \\ A_{1n} & A_{2n} & \dots & A_{nn} \end{pmatrix}$$

7.11 Критерий обратимости квадратной матрицы, явная формула для обратной матрицы

Теорема 7.7. A обратима (то есть $\exists A^{-1}$) \iff A невырождена ($\det A \neq 0$), при этом $A^{-1} = \frac{1}{\det A} \widehat{A}$.

Доказательство. Утверждение в одну сторону следует из леммы 2.

Пусть $\det A \neq 0$. Покажем, что $\frac{1}{\det A} \widehat{A} = A^{-1}$. Для этого достаточно доказать, что $A\widehat{A} = \widehat{A}A = \det(A) \cdot E$. Для $X = A\widehat{A}$ имеем

$$x_{ij} = \sum_{k=1}^n a_{ik} [\widehat{A}]_{kj} = \sum_{k=1}^n a_{ik} A_{jk} = \begin{cases} \det A, & \text{при } i = j \\ 0, & \text{при } i \neq j \end{cases}.$$

Для $Y = \widehat{A}A$ имеем

$$y_{ij} = \sum_{k=1}^n [\widehat{A}]_{ik} a_{kj} = \sum_{k=1}^n A_{ki} a_{kj} = \begin{cases} det A, & \text{при } i = j \\ 0, & \text{при } i \neq j \end{cases}.$$

8 Лекция 2.11.2019

8.1 Следствия из критерия обратимости квадратной матрицы

Следствие. Если AB = E, то BA = E (и тогда $A = B^{-1}$, $B = A^{-1}$).

Доказательство.

$$AB = E \implies \det A \det B = 1 \implies \det A \neq 0 \implies \exists A^{-1}.$$

 $BA = EBA = (A^{-1}A)BA = A^{-1}(AB)A = A^{-1}A = E.$

Следствие. $A,B\in M_n \implies AB$ обратима \iff обе A,B обратимы. При этом $(AB)^{-1}=B^{-1}A^{-1}$.

Доказательство. Эквивалентность (\iff) следует из условия $\det AB = \det A \det B$.

$$(AB)(B^{-1}A^{-1}) = A(BB^{-1})A^{-1} = AA^{-1} = E.$$

8.2 Формулы Крамера

Пусть есть СЛУ
$$Ax = b(\star), A \in M_n, x = \begin{pmatrix} x_1 \\ \dots \\ x_n \end{pmatrix} \in \mathbb{R}^n, b = \begin{pmatrix} b_1 \\ \dots \\ b_n \end{pmatrix} \in \mathbb{R}^n.$$
 Также, $\forall i \in \{1, 2, \dots, n\}, A_i = (A^{(1)}, \dots, A^{(i-1)}, b, A^{(i+1)}, \dots, A^{(n)}).$

Теорема 8.1. Если $\det A \neq 0$, то СЛУ (*) имеет единственное решение и его можно найти по формулам:

$$x_i = \frac{\det A_i}{\det A}.$$

Доказательство. $\det A \neq 0 \implies \exists A^{-1} \implies (\star) \iff x = A^{-1}b$ – единственное решение.

$$b = A \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = x_1 A^{(1)} + x_2 A^{(2)} + \dots + x_n A^{(n)}.$$

$$\det A_i = \det \left(A^{(1)}, \dots, A^{(i-1)}, x_1 A^{(1)} + \dots + x_n A^{(n)}, A^{(i+1)}, \dots, A^{(n)}\right)$$

$$= x_1 \det \left(A^{(1)}, \dots, A^{(i-1)}, A^{(1)}, A^{(i+1)}, \dots, A^{(n)}\right)$$

$$+ x_2 \det \left(A^{(1)}, \dots, A^{(i-1)}, A^{(2)}, A^{(i+1)}, \dots, A^{(n)}\right)$$

$$+ \dots +$$

$$+ x_n \det \left(A^{(1)}, \dots, A^{(i-1)}, A^{(n)}, A^{(i+1)}, \dots, A^{(n)}\right)$$

$$= x_i \det A \quad // \text{ Все слагаемые кроме i-го равны 0.}$$

8.3 Понятие поля.

Определение 33. Полем называется множество F, на котором заданы две операции "сложение" $((a,b) \to a+b)$ и "умножение" $((a,b) \to a \cdot b)$, причем $\forall a,b,c \in F$ выполнены следующие условия:

- 1. a + b = b + a (коммутативность сложения)
- 2. (a+b)+c=a+(b+c) (ассоциативность сложения)
- 3. $\exists 0 \in F : 0 + a = a + 0 = a$ (нулевой элемент)
- 4. $\exists (-a) \in F : a + (-a) = (-a) + a = 0$ (противоположный элемент) \uparrow абелева группа \uparrow
- 5. a(b+c) = ab + ac (дистрибутивность)
- 6. ab = ba (коммутативность умножения)
- 7. (ab)c = a(bc) (ассоциативность умножения)
- 8. $\exists 1 \in F \setminus \{0\} : 1a = a1 = a$ (единица)
- 9. Если $a \neq 0$, $\exists a^{-1} \in F : aa^{-1} = a^{-1}a = 1$ (обратный элемент)

8.4 Простейшие примеры.

О – Рациональные числа.

 \mathbb{R} – Действительные числа.

 $F_2 = \{0, 1\}$, сложение и умножение по модулю 2.

8.5 Построение поля комплексных чисел.

Ближайшая цель — построить поле $\mathbb C$ комплексных чисел.

Неформально, С − это наименьшее поле со следующими свойставми:

- 1. $\mathbb{C} \supset \mathbb{R}$.
- 2. Многочлен $x^2 + 1$ имеет корень, то есть $\exists i : i^2 = -1$.

8.5.1 Формальная конструкция поля $\mathbb C$

$$\mathbb{C} = \mathbb{R}^2 = \{(a, b) \mid a, b \in \mathbb{R}\}.$$

- $(a_1, b_1) + (a_2, b_2) = (a_1 + a_2, b_1 + b_2)$
- $(a_1,b_1)(a_2,b_2) = (a_1a_2 b_1b_2, a_1b_2 + a_2b_1)$

Неформально, каждой такой паре (a,b) соответствует комплексное число a+bi:

- $(a,b) \iff a+bi$
- $(a_1 + b_1 i) + (a_2 + b_2 i) = (a_1 + a_2) + (b_1 + b_2)i$

•
$$(a_1 + b_1 i)(a_2 + b_2 i) = a_1 a_2 + a_1 b_2 i + a_2 b_1 i + b_1 b_2 \underbrace{i^2}_{=-1} = (a_1 a_2 - b_1 b_2) + (a_1 b_2 + a_2 b_1) i$$

8.5.2 Проверка аксиом

- 1, 2. Очевидны.
 - 3. 0 = (0,0).
 - 4. -(a,b) = (-a,-b).
 - 5. Дистрибутивность Упраженение на дом.
 - 6. Из явного вида формулы для умножения.

7.

$$(a_1, b_1)(a_2, b_2)(a_3, b_3) = (a_1a_2 - b_1b_2, a_1b_2 + a_2b_1)(a_3, b_3)$$

$$= (a_1a_2a_3 - b_1b_2a_3 - a_1b_2b_3 - b_1a_2b_3, a_1a_2b_3 - b_1b_2b_3 + a_1b_2a_3 + b_1a_2a_3)$$

$$= (a_1, b_1)(a_2a_3 - b_2b_3, a_2b_3 + b_2a_3)$$

$$= (a_1, b_1)(a_2, b_2)(a_3, b_3).$$

8. 1 = (1,0).

9.
$$(a,b) \neq 0 \implies a^2 + b^2 \neq 0$$
. Тогда, $(a,b)^{-1} = \left(\frac{a}{a^2 + b^2}, -\frac{b}{a^2 + b^2}\right)$. $(a,b)\left(\frac{a}{a^2 + b^2}, \frac{-b}{a^2 + b^2}\right) = \left(\frac{a^2}{a^2 + b^2} + \frac{b^2}{a^2 + b^2}, \frac{-ab}{a^2 + b^2} + \frac{ba}{a^2 + b^2}\right) = (1,0)$.

Итак, \mathbb{C} – поле.

Проверка свойств:

1.
$$a \in \mathbb{R} \leftrightarrow (a,0) \in \mathbb{C}$$
.
 $a + b \leftrightarrow (a,0) + (b,0) = (a+b,0)$.
 $ab \leftrightarrow (a,0)(b,0) = (ab,0)$

Значит, \mathbb{R} отождествляется в \mathbb{C} .

2.
$$i = (0,1) \implies i^2 = (0,1)(0,1) = (-1,0) = -1$$
.

8.6 Алгебраическая форма комплексного числа, его действительная и мнимая части.

Определение 34. Представление числа $z \in \mathbb{C}$ в виде a+bi, где $a,b \in \mathbb{R}$ называется его *алгебраической формой*. Число i называется мнимой единицей.

 $a =: Re(z) - \partial e$ йствительная часть числа $z.\ b =: Im(z) -$ мнимая часть числа z.

Числа вида bi, где $b \in \mathbb{R} \setminus \{0\}$, называются чисто мнимыми.

8.7 Комплексное сопряжение.

Определение 35. Число $\overline{z} := a - bi$ называется комплексно сопряженным к числу z = a + bi.

Операция $z \to \overline{z}$ называется комплексным сопряжением.

8.7.1 Свойства комплексного сопряжения

- $\bullet \ \overline{\overline{z}} = z.$
- $\bullet \ \overline{z+w} = \overline{z} + \overline{w}.$
- $\bullet \ \overline{zw} = \overline{z} \cdot \overline{w}.$

Доказательство – прямая проверка (упражнение на дом).

8.8 Геометрическая модель комплексных чисел, интерпретация сложения и сопряжения в этой модели.

Числу z=a+bi соответствует точка (или вектор) на плоскости \mathbb{R}^2 с координатами (a,b). Сумме z+w соответствует сумма соответствующих векторов. Сопряжение $z\to \overline{z}$ – это отражение z относительно действительной оси.

9 Лекция 7.11.2019

Модуль комплексного числа, его свойства

Определение 36. Число $|z| = \sqrt{a^2 + b^2}$ называется *модулем числа* $z = a + bi \in \mathbb{C}$ (то есть длина соответствующего вектора).

Свойства

- 1. $|z| \ge 0$, причем $|z| = 0 \iff z = 0$.
- 2. $|z + w| \le |z| + |w|$ (неравенство треугольника).
- 3. $z\overline{z} = |z|^2$. $z\overline{z} = (a+bi)(a-bi) = a^2 - b^2i = a^2 + b^2 = |z|^2$
- 4. |zw| = |z||w| $|zw|^2 = (zw) \cdot (\overline{zw}) = z \cdot w \cdot \overline{z} \cdot \overline{w} = |z|^2 |w|^2$

Замечание. Из 3) следует, что для $\forall z \neq 0, z^{-1} = \frac{\overline{z}}{|z|^2}$, то есть $(a+bi)^{-1} = \frac{a-bi}{a^2+b^2}$

9.2 Аргумент комплексного числа

Пусть $z = a + bi \in \mathbb{C}, z \neq 0.$

Тогда,
$$z=|z|\left(\frac{a}{|z|}+\frac{b}{|z|}i\right)$$
, при этом $\left(\frac{a}{|z|}\right)^2+\left(\frac{b}{|z|}i\right)^2=1$ Значит, $\frac{a}{|z|}$ и $\frac{b}{|z|}$ являются синусом и косинусом некоторого угла.

Определение 37. Аргументом числа $z=a+bi\in\mathbb{C}\setminus\{0\}$ называется число $\varphi\in\mathbb{R}$, такое что

$$\cos \varphi = \frac{a}{|z|} = \frac{a}{\sqrt{a^2 + b^2}}.$$

$$\sin \varphi = \frac{b}{|z|} = \frac{b}{\sqrt{a^2 + b^2}}.$$

В геометрических терминах, φ есть угол между осью Ox и соответствующим вектором.

Замечание. При $z \neq 0$, аргумент определен с точностью до $2\pi k, k \in \mathbb{Z}$.

Замечание. При z=0, удобно считать что любое φ является аргументом.

9.3Тригонометрическая форма комплексного числа

Arg(z) := множество всех аргументов числа z.

arg(z) := единственное значение из Arg(z), лежащее в $[0; 2\pi)$.

 $Arg(z) = arg(z) + 2\pi k, \ k \in \mathbb{Z}$

$$Arg(z) = \{ \varphi \in \mathbb{R} \mid \cos \varphi = \frac{a}{|z|}, \sin \varphi = \frac{b}{|z|} \}$$

Тогда, $\forall z \in \mathbb{C}, \ z = |z| \left(\frac{a}{|z|} + \frac{b}{|z|} i \right) = |z| (\cos \varphi + i \sin \varphi)$, где $\varphi \in Arg(z)$.

Определение 38. Представление числа $z \in \mathbb{C}$ в виде $z = |z|(\cos \varphi + i \sin \varphi)$ называется его тригонометрической формой.

Умножение и деление комплексных чисел в тригонометрической форме

Предложение. Пусть $z_1 = |z_1|(\cos \varphi_1 + i \sin \varphi_1)$ и $z_2 = |z_2|(\cos \varphi_2 + i \sin \varphi_2)$, тогда

$$z_1 z_2 = |z_1||z_2|(\cos(\varphi_1 + \varphi_2) + i\sin(\varphi_1 + \varphi_2)).$$

Доказательство.

$$z_1 z_2 = |z_1||z_2|(\cos\varphi_1 + i\sin\varphi_1)(\cos\varphi_2 + i\sin\varphi_2)$$

= $|z_1||z_2|((\cos\varphi_1\cos\varphi_2 - \sin\varphi_1\sin\varphi_2) + i(\cos\varphi_1\sin\varphi_2 + \sin\varphi_1\cos\varphi_2))$
= $|z_1||z_2|(\cos(\varphi_1 + \varphi_2) + i\sin(\varphi_1 + \varphi_2)).$

Тогда
$$\frac{z_1}{z_2} = \frac{|z_1|}{|z_2|} (\cos(\varphi_1 - \varphi_2) + i\sin(\varphi_1 - \varphi_2))$$

Следствие. В условиях предложения, предположим, что
$$z_2 \neq 0$$
. Тогда $\frac{z_1}{z_2} = \frac{|z_1|}{|z_2|} (\cos(\varphi_1 - \varphi_2) + i\sin(\varphi_1 - \varphi_2))$. В частности, $\frac{1}{|z_2|} (\cos(-\varphi_2) + i\sin(-\varphi_2)) = \frac{1}{|z_2|} (\cos\varphi_2 - i\sin\varphi_2) = \frac{\overline{z}_2}{|z_2|^2}$.

9.5 Возведение в степень комплексных чисел в тригонометрической форме, формула Муавра

Следствие. Пусть $z = |z|(\cos \varphi + i \sin \varphi)$. Тогда $\forall n \in \mathbb{Z}$,

$$z^n = |z|^n(\cos(n\varphi) + i\sin(n\varphi))$$
 – формула Муавра.

Замечание. В комплексном анализе функция $\exp: \mathbb{R} \to \mathbb{R}, x \to e^x$, доопределяется до функции $\exp: \mathbb{C} \to \mathbb{C}, z \to e^z$ с сохранением всех привычных свойств.

Доказывается $e^{i\varphi}=\cos\varphi+i\sin\varphi,\,\forall \varphi\in\mathbb{C}$ – формула Эйлера.

Тогда $\forall z \in \mathbb{C}$ представляется в виде $z = |z|e^{i\varphi}$, где $\varphi \in Arg(z)$ – показательная форма.

9.6 Извлечение корней из комплексных чисел

Пусть $z \in \mathbb{C}$, $n \in \mathbb{N}$, $n \geqslant 2$.

Определение 39. Корнем степени n (или корнем n-й степени) из числа z называется всякое число $w \in \mathbb{C}$, что $w^n = z$.

Положим $\sqrt[n]{z} := \{ w \in \mathbb{C} \mid w^n = z \}.$

Опишем множество $\sqrt[n]{z}$.

$$w = \sqrt[n]{z} \implies w^n = z \implies |w|^n = |z|.$$

Если
$$z=0$$
, то $|z|=0 \implies |w|=0 \implies w=0 \implies \sqrt[n]{0}=\{0\}.$

Далее считаем, что $z \neq 0$.

$$z = |z|(\cos\varphi + i\sin\varphi)$$

$$w = |w|(\cos\psi + i\sin\psi)$$

$$z = w^n = |w|^n (\cos(n\psi) + i\sin(n\psi))$$

Отсюда,

$$z=w^n\iff \begin{cases} |z|=|w|^n\\ n\psi=\varphi+2\pi k, \text{ для некоторого }k\in\mathbb{Z} \end{cases} \iff \begin{cases} |w|=\sqrt[n]{|z|}\\ \psi=\frac{\varphi+2\pi k}{n}, \text{ для некоторого }k\in\mathbb{Z} \end{cases}$$

C точностью до $2\pi l,\ l\in\mathbb{Z},$ получается ровно n различных значений для $\psi,$ при $k=0,1,\dots,n-1.$

В результате
$$\sqrt[n]{z} = \{w_0, w_1, \dots, w_{n-1}\}$$
, где $w_m = \sqrt[n]{|z|} \left(\cos \frac{\varphi + 2\pi k}{n} + i \sin \frac{\varphi + 2\pi k}{n}\right)$

Замечание. Числа w_0, w_1, \dots, w_{n-1} лежат в вершинах правильного n-угольника с центром в начале координат.

Примеры.

$$\sqrt{1} = \{\pm 1\}$$

$$\sqrt{-1} = \{\pm i\}$$

$$\sqrt[3]{1} = \{1, -\frac{1}{2} \pm i\frac{\sqrt{3}}{2}\}$$

$$\sqrt[4]{1} = \{\pm 1, \pm i\}$$

9.7 Основная теорема алгебры комплексных чисел (без доказательства)

 $\sqrt[n]{z} = \{$ корни многочлена $x^n - z\}.$

Теорема 9.1. Всякий многочлен степени $\geqslant 1$ с комплексными коэффициентами имеет комплексный корень.

Пусть
$$f = a_n z^n + a_{n-1} z^{n-1} + \dots + a_1 z_1 + a_0, n \geqslant 1, a_n \neq 0, a_i \in \mathbb{C},$$
 тогда $\exists c \in \mathbb{C} : f(c) = 0.$

Замечание. Свойство поля \mathbb{C} , сформулированное в теореме, называется *алгебраической замкнутостью*.

9.8 Деление многочленов с остатком

Пусть \mathbb{F} – поле.

 $\mathbb{F}[x] :=$ все многочлены от переменной x с коэффициентами из \mathbb{F} .

$$f(x) = a_n x^n + \dots + a_1 x + a_0, a_n \neq 0 \implies \deg f = n.$$

$$\deg(f \cdot g) = \deg f + \deg g.$$

Определение 40. Многочлен $f(x) \in F[x]$ делится на $g(x) \in F[x]$, если $\exists h(x) \in F[x]$, такой что f(x) = g(x)h(x).

Если f(x) не делится на g(x), то можно поделить с остатком.

Предложение (деление с остатком). Если $f(x), g(x) \in F[x], g(x) \neq 0$, то $\exists ! g(x), r(x) \in F[x]$, такие что

$$\begin{cases} f(x) = q(x)g(x) + r(x) \\ \text{либо } r(x) = 0, \text{ либо } \deg r(x) < \deg g(x) \end{cases}$$

Пример. $f(x) = x^3 - 2x$, g(x) = x + 1.

$$f(x) = (x^2 - x - 1)(x + 1) + 1, q(x) = (x^2 - x - 1), r(x) = 1.$$

9.9 Теорема Безу

Частный случай: g(x)=x-c, $\deg g(x)=1$: f(x)=q(x)(x-c)+r(x), где либо r(x)=0, либо $\deg r(x)< g(x)=1$ Значит, $r(x)\equiv r=const\in F$.

Теорема 9.2. r = f(c).

Доказательство. Подставить x = c в f(x) = (x - c)g(x) + r(x).

Следствие. Элемент $c \in F$ является корнем многочлена $f(x) \in F[x]$ тогда и только тогда, когда f(x) делится на (x-c).

9.10 Кратность корня многочлена

Определение 41. *Кратностью* корня $c \in F$ многочлена f(x) называется наибольшее целое k такое что, f(x) делится на $(x-c)^k$.

9.11 Утверждение о том, что всякий многочлен степени n с комплексными коэффициентами имеет ровно n корней с учётом кратностей

Следствие. Пусть $f(z) \in F[z], \deg f = n \geqslant 1.$

$$f(x) = a_n z^n + \dots + a_1 z + a_0.$$

 $c_1, \ldots c_s$ – корни f, k_1, \ldots, k_s – их кратности.

Любой многочлен с комплексными коэффициентами разлагается в произведение линейных множителей:

$$f(x) = a_n(x - c_1)^{k_1}(x - c_2)^{k_2} \dots (x - c_s)^{k_s}.$$

Иными словами, f(z) имеет ровно n корней с учетом кратностей.

10 Лекция 14.11.2019

10.1 Векторные пространства, простейшие следствия из аксиом

10.1.1 Определение векторного пространства

Фиксируем поле F (можно считать, что $F = \mathbb{R}$ или \mathbb{C})

Определение 42. Множество V называется векторным (линейным) пространством над полем F, если на V заданы две операции

- "сложение": $V \times V \to V, \, (x,y) \mapsto x+y.$
- "умножение на скаляр": $F \times V$, $(\alpha \in F, x \in V) \mapsto \alpha x$.

а также, $\forall x, y, z \in V$ и $\alpha, \beta \in F$ выполнены следующие условия (называются аксиомами векторного пространства):

- 1. x + y = y + x.
- 2. (x+y) + z = x + (y+z).
- $3. \ \exists \overrightarrow{0} \in V : x + \overrightarrow{0} = \overrightarrow{0} + x = x$ (нулевой элемент).
- 4. $\exists -x : -x + x = x + (-x) = \overrightarrow{0}$ (противоположный элемент).
- 5. $\alpha(x+y) = \alpha x + \alpha y$.
- 6. $(\alpha + \beta)x = \alpha x + \beta x$.
- 7. $(\alpha\beta)x = \alpha(\beta x)$.
- 8. $1 \cdot x = x$.

Определение 43. Элементы векторного пространства называются (абстрактными) векторами.

Пример.

- 1. \mathbb{R} над \mathbb{R} (или F над F).
- 2. Пространство \mathbb{R}^n над \mathbb{R} (или F^n над F) реализованное как пространство столбцов или строк длины n.
- 3. $\operatorname{Mat}_{m \times n}(F)$.
- 4. F[x] многочлены то переменной x с коэффициентами в \mathbb{R} .
- 5. Пространство функций на множестве M с значениями в F:

 $f: M \to \mathbb{R}$

- сложение $(f_1 + f_2)(x) := f_1(x) + f_2(x)$.
- умножение на скаляр $(\alpha f)(x) := \alpha f(x)$.
- это векторное пространство над F.

Например, множество всех функций $[0,1] \to R$.

10.1.2 Простейшие следствия из аксиом

 $\forall \alpha \in F, x \in V.$

1. Элемент $\overrightarrow{0}$ единственный.

Если $\overrightarrow{0}'$ – другой такой ноль, то $\overrightarrow{0}' = \overrightarrow{0}' + \overrightarrow{0} = \overrightarrow{0}$.

2. Элемент -x единственный.

Если (-x)' – другой такой противоположный элемент, то

$$(-x)' = (-x)' + \overrightarrow{0} = (-x)' + (x + (-x)) = ((-x)' + x) + (-x) = \overrightarrow{0} + (-x) = -x.$$

- 3. $\alpha \overrightarrow{0} = \overrightarrow{0}$.
- 4. $\alpha(-x) = -(\alpha x)$.
- 5. $0 \cdot x = \overrightarrow{0}$.
- 6. $(-1) \cdot x = -x$.

10.2 Подпространства векторных пространств

Пусть V – векторное пространство над F.

Определение 44. Подмножество $U \subseteq V$ называется *подпространством* (в V), если

- 1. $\overrightarrow{0} \in U$
- $2. \ x,y \in U \implies x+y \in U.$
- 3. $x \in U, \alpha \in F \implies \alpha x \in U$.

Замечание. Всякое подпространство само является векторным пространством относительно тех же операций.

Пример.

- 1. $\{\overrightarrow{0}\}$ и V всегда подпространства в V. они называются neco6cm6ennumu подпространствами, остальные называются co6cm6ennumu.
- 2. Множество всех верхнетреугольных, нижнетреугольных, диагональных матриц в $M_n(F)$.
- 3. $F[x]_{\leq n}$ все многочлены в F[x] степени $\leq n$ подпространство в F[x].

10.3 Утверждение о том, что множество решений однородной системы линейных уравнений с ${\bf n}$ неизвестными является подпространством в F^n

Предложение. Множество решений любой ОСЛУ Ax = 0 ($A \in \mathrm{Mat}_{m \times n}(F), x \in F^n$) является подпространством в F^n .

Доказательство. Пусть S – множество решений ОСЛУ $A\mathbf{x}=0$.

1.
$$\overrightarrow{0} = \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix} \in S$$
.

2.
$$x, y \in S \implies Ax = \overrightarrow{0} \text{ if } Ay = \overrightarrow{0} \implies A(x+y) = Ax + Ay = \overrightarrow{0} + \overrightarrow{0} = \overrightarrow{0} \implies x+y \in S.$$

3.
$$x \in S, \alpha \in F \implies Ax = \overrightarrow{0} \implies A(\alpha x) = \alpha(Ax) = \alpha \overrightarrow{0} = \overrightarrow{0} \implies \alpha x \in S$$
.

10.4 Линейная комбинация конечного набора векторов

Пусть V – векторное пространство над F и $v_1, \ldots, v_k \in V$ – набор векторов.

Определение 45. Линейной комбинацией векторов v_1, \ldots, v_k называется всякое выражение вида $\alpha_1 v_1 + \ldots \alpha_k v_k$, где $\alpha_i \in F$.

10.5 Линейная оболочка подмножества векторного пространства, примеры

Пусть $S \subseteq V$ — подмножество векторного пространства.

Определение 46. Линейной оболочкой множества S называются множество всех векторов из V, представимых в виде линейной комбинации какого-то конечного набора векторов из S.

Обозначение: $\langle S \rangle$.

Если $S = \{v_1, \dots, v_k\}$ конечно и состоит из векторов v_1, \dots, v_k , то еще пишут $\langle v_1, \dots, v_k \rangle$ и говорят "линейная оболочка векторов v_1, \dots, v_k ".

Cоглашение: $\langle \varnothing \rangle = \{ \overrightarrow{0} \}.$

Пример.

- 1. $\langle \overrightarrow{0} \rangle = \{ \overrightarrow{0} \}.$
- 2. $V = \mathbb{R}^2, v \neq 0, \langle v \rangle = \{\alpha v \mid \alpha \in \mathbb{R}\}$ прямая.
- 3. $V = \mathbb{R}^3$, v_1, v_2 пара неколлинеарных векторов.

Тогда, $\langle v_1, v_2 \rangle = \{a_1v_1 + a_2v_2 \mid a_1, a_2 \in \mathbb{R}\}$ – плоскость натянутая на v_1, v_2 .

11 Лекция 21.11.2019

Напомним, если V – векторное пространство над полем F, то при $S\subseteq V$, линейная оболочка $\langle S\rangle=\{$ все линейные комбинации конечных наборов векторов из $S\}$

Пример.

4.
$$V = F^n$$
, $S = \{e_1, \ldots, e_n\}$, где

$$e_1 = \begin{pmatrix} 1 \\ 0 \\ \dots \\ 0 \end{pmatrix}, e_2 = \begin{pmatrix} 0 \\ 1 \\ \dots \\ 0 \end{pmatrix}, \dots, e_n = \begin{pmatrix} 0 \\ 0 \\ \dots \\ 1 \end{pmatrix}.$$

Тогда $\langle S \rangle = \langle e_1, \dots, e_n \rangle = F^n$.

Так как для любого
$$x \in F^n \implies x = \begin{pmatrix} x_1 \\ x_2 \\ \dots \\ x_n \end{pmatrix} = x_1 \begin{pmatrix} 1 \\ 0 \\ \dots \\ 0 \end{pmatrix} + x_2 \begin{pmatrix} 0 \\ 1 \\ \dots \\ 0 \end{pmatrix} + \dots + x_n \begin{pmatrix} 0 \\ 0 \\ \dots \\ 1 \end{pmatrix} = x_1e_1 + x_2e_2 + \dots + x_ne_n.$$

11.1 Утверждение о том, что линейная оболочка системы векторов является подпространством объемлющего векторного пространства

Пусть V – векторное пространство, $S \subseteq V$.

Предложение. $\langle S \rangle$ является подпространством в V.

Доказательство.

1. Два случая:

$$\begin{split} S &= \varnothing \implies \langle \varnothing \rangle = \{ \overrightarrow{0} \} \implies \overrightarrow{0} \in \langle S \rangle. \\ S &\neq \varnothing \implies \exists V \in S \implies \underbrace{0V}_{\in \langle S \rangle} = \overrightarrow{0} = \overrightarrow{0} \in \langle S \rangle. \end{split}$$

2. Пусть $v, w \in \langle S \rangle$:

$$\begin{split} v &= \alpha_1 v_1 + \dots + \alpha_m v_m, \\ w &= \beta_1 w_1 + \dots + \beta_n w_n, \text{ где } v_i, w_i \in S, \ \alpha_i, \beta_i \in F. \\ \text{Тогда, } v + w &= \alpha_1 v_1 + \dots + \alpha_m v_m + \beta_1 w_1 + \dots + \beta_n w_n \in \langle S \rangle. \\ \text{(если } v_i &= w_j, \text{ то } \alpha_i v_i + \beta_j w_j = (\alpha_i + \beta_j) w_j) \end{split}$$

3.
$$v \in \langle S \rangle$$
, $\alpha \in F \implies v = \alpha_1 v_1 + \dots + \alpha_m v_m$
 $\implies \alpha v = (\alpha \alpha_1) v_1 + \dots + (\alpha \alpha_m) v_m \in \langle S \rangle$.

11.2 Линейно зависимые и линейно независимые системы векторов

Определение 47. Линейная комбинация $\alpha_1 v_1 + \dots + \alpha_n v_n$ называется тривиальной, если $\alpha_1 = \dots = \alpha_n = 0$ и нетривиальной иначе (то есть $\exists i : a_i \neq 0$ или $(\alpha_1, \dots, \alpha_n) \neq (0, \dots, 0)$).

 $\Pi p u m e p. \ v + (-v)$ — нетривиальная линейная комбинация векторов v и -v.

Определение 48.

- 1. Векторы $v_1, \ldots, v_n \in V$ называются линейно зависимыми если существует их нетривиальная линейная комбинация, равная $\overrightarrow{0}$ (то есть $\exists (\alpha_1, \ldots, \alpha_n) \neq (0, \ldots, 0)$, такие что $\alpha_1 v_1 + \cdots + \alpha_n v_n = \overrightarrow{0}$) и линейно независимыми иначе (то есть из условия $\alpha_1 v_1 + \ldots \alpha_n v_n = \overrightarrow{0}$ следует $\alpha_1 = \cdots = \alpha_n = 0$).
- 2. Множество $S \subseteq V$ (возможно бесконечное, возможно с повторяющимися элементами) называется *линейно зависимым* если существует конечное линейно зависимое подмножество, и *линейно независимым* если любое конечное подмножество линейно независимо.

Соглашение. Система векторов – множество векторов, в котором возможны повторения.

Пример.

1. $S = \{\overrightarrow{0}\}$ 1 · $\overrightarrow{0}$ — нетривиальная линейная комбинация \Longrightarrow $\overrightarrow{0}$ линейно зависимо.

2. $S = \{v\}, v \neq \overrightarrow{0}$ — линейно независимо. Пусть $\lambda v = \overrightarrow{0} \implies \overrightarrow{0} = \lambda^{-1} \overrightarrow{0} = \lambda^{-1} (\lambda v) = (\lambda^{-1} \lambda)v = 1v = v$ — противоречие.

3. $S=\{v_1,v_2\}\implies S$ линейно зависимо тогда и только тогда, когда v_1 и v_2 пропорциональны (то есть либо $v_2=\lambda_1v_1,\,\lambda_1\in F$, либо $v_1=\lambda_2v_2,\,\lambda_2\in F$).

Доказательство.

 $(\Longrightarrow) \ \mu_1 v_1 + \mu_2 v_2 = \overrightarrow{0}, \ (\mu_1, \mu_2) \neq (0, 0).$ Если $\mu_1 \neq 0$, то $v_1 = -\frac{\mu_2}{\mu_1} v_2.$ Аналогично для $\mu_2 \neq 0.$

(\iff) $v_2=\lambda_1v_1 \implies \lambda_1v_1+(-1)v_2=\overrightarrow{0} \implies v_1,v_2$ линейно зависимы. Аналогично для $v_1=\lambda_2v_2.$

4. $V = F^n, S = \{e_1, \dots, e_n\} \implies S$ линейно независимо.

$$\alpha_1 e_1 + \dots + \alpha_n e_n = \overrightarrow{0} \iff \begin{pmatrix} \alpha_1 \\ \dots \\ \alpha_n \end{pmatrix} = \begin{pmatrix} 0 \\ \dots \\ 0 \end{pmatrix} \iff \alpha_1 = \dots = \alpha_n = 0.$$

11.3 Критерий линейной зависимости конечного набора векторов

Предложение. Пусть $v_1, \ldots, v_n \in V$, $i \in \{1, \ldots, n\}$, тогда следующие условия эквивалентны:

1.
$$\exists (\alpha_1, \dots, \alpha_n) \in F^n$$
, такой что $\alpha_1 v_1 + \dots + \alpha_n v_n = \overrightarrow{0}(\star)$ и $\alpha_i \neq 0$.

2.
$$v_i \in \langle v_1, \dots, v_{i-1}, v_{i+1}, \dots, v_n \rangle$$
.

Доказательство.

$$(1) \implies (2) \ \alpha_i \neq 0 \ \mathbf{B} \ (\star) \implies v_i = -\frac{\alpha_1}{\alpha_i} v_1 - \dots - \frac{\alpha_{i-1}}{\alpha_i} v_{i-1} - \frac{\alpha_{i+1}}{\alpha_i} v_{i+1} - \dots - \frac{\alpha_n}{\alpha_i} v_n \in \langle v_1, \dots v_{i-1}, v_{i+1}, \dots, v_n \rangle.$$

$$(2) \implies (1) v_i = \beta_1 v_1 + \dots + \beta_{i-1} v_{i-1} + \beta_{i+1} v_{i+1} + \dots + \beta_n v_n \implies$$

$$b_1 v_1 + \dots + \beta_{i-1} v_{i-1} + \underbrace{(-1)}_{\neq 0} v_i + \beta_{i+1} v_{i+1} + \dots + \beta_n v_n = \overrightarrow{0}.$$

(нетривиальная линейная комбинация с *i*-м скаляром $\neq 0$).

Следствие. Векторы v_1, \ldots, v_n линейно зависимы тогда и только тогда, когда $\exists i \in \{1, \ldots, n\}$, такое что $v_i \in \langle v_1, \ldots, v_{i-1}, v_{i+1}, \ldots, v_n \rangle$.

11.4 Основная лемма о линейной зависимости

Лемма 11.1. Пусть есть две системы векторов v_1, \ldots, v_m и w_1, \ldots, w_n , причем m < n и $w_i \in \langle v_1, \ldots, v_n \rangle$ $\forall i = 1, \ldots, n$. Тогда векторы w_1, \ldots, w_n линейно зависимы.

Доказательство.

$$w_1 = a_{11}v_1 + a_{21}v_2 + \dots + a_{m1}v_m = (v_1, \dots, v_m) \begin{pmatrix} a_{11} \\ a_{21} \\ \dots \\ a_{m1} \end{pmatrix}$$

. . .

$$w_n = a_{1n}v_1 + a_{2n}v_2 + \dots + a_{mn}v_m = (v_1, \dots, v_m) \begin{pmatrix} a_{1n} \\ a_{2n} \\ \dots \\ a_{mn} \end{pmatrix}.$$

$$\implies (w_1, \dots, w_n) = (v_1, \dots, v_m)A,\tag{*}$$

где $A = (a_{ij}) \in \operatorname{Mat}_{m \times n}(F)$.

Так как m < n, то ОСЛУ $Ax = \overrightarrow{0}$ имеет ненулевое решение $z = \begin{pmatrix} z_1 \\ \dots \\ z_n \end{pmatrix} \in F^n$.

Тогда умножим (\star) справа на z:

$$(w_1,\ldots,w_n)\cdot z=(v_1,\ldots,v_m)\cdot\underbrace{A\cdot z}_{=\overrightarrow{0}}=(v_1,\ldots,v_m)\begin{pmatrix}0\\\ldots\\0\end{pmatrix}=\overrightarrow{0}.$$

$$\implies (w_1, \dots, w_n) \begin{pmatrix} z_1 \\ \dots \\ z_n \end{pmatrix} = \overrightarrow{0} \implies z_1 w_1 + \dots z_n w_n = \overrightarrow{0}.$$

Это нетривиальная линейная комбинация, так как $z \neq 0$.

Следовательно, w_1, \dots, w_n линейно зависимы.

Пример. Любые n+1 векторов в F^n линейно зависимы, так как $F^n = \langle e_1, \dots, e_n \rangle$.

11.5 Базис векторного пространства

Определение 49. Подмножество $S \subseteq V$ называется *базисом* пространства V, если

- 1. S линейно независимо,
- 2. $\langle S \rangle = V$.

Пример. e_1, \ldots, e_n – это базис в F^n . Он называется стандартным базисом в F^n .

Замечание. Всякая линейно независимая система векторов является базисом своей линейной оболочки.

11.6 Конечномерные и бесконечномерные векторные пространства

Определение 50. Векторное пространство V называется конечномерным, если в нем есть конечный базис, и бесконечномерным иначе.

11.7 Независимость числа элементов в базисе векторного пространства от выбора базиса

Предложение. V – конечномерное векторное пространство. Тогда, все базисы в V содержат одно и то же количество элементов.

Доказательство. V конечномерно, тогда существует конечный базис e_1, \dots, e_n .

Пусть $S \subseteq V$ – другой базис. Так как $\langle e_1, \dots, e_n \rangle = V$, то $\forall v \in S \implies v \in \langle e_1, \dots, e_n \rangle$. Тогда любые n+1 векторов в S линейно зависимы по основной лемме о линейной зависимости. Но S линейно независимо, значит $|S| \leqslant n$.

Пусть $S = \{e'_1, \dots, e'_m\}$, где $m \leqslant n$. Тогда $\forall i = 1, \dots, n$ $e_i \in \langle e'_1, \dots, e'_m \rangle$, по основной лемме о линейной зависимости получаем $n \leqslant m$.

To есть m=n.

11.8 Размерность конечномерного векторного пространств

Определение 51. *Размерностью* конечномерного векторного пространства называется число элементов в (любом) его базисе.

Обозначение: $\dim V$.

Пример.

- 1. $\dim F^n = n$,
- 2. $V = \{\overrightarrow{0}\} \implies \dim V = 0$ так как базисом V будет \varnothing .