人工智能原理 HW2

Prob 1

a)

变量: X = { X₁, X₂, X₃, X₄, X₅} X₁... X₃ 分别表示国家A~E的颜色.

值域: D={D1. D2, D3, D4. D5}, XieDi={1,2,3,4}

约束i Xi≠Xj if aij=|

b) 按 C→B→D→A→E 创顺序进行赋值.

可行的 信果有:

Prob 2

- a) 变量; S={S1,S2,S3,S4,S3,S6},Si表示第i个区域的基站类型, 值域; D={D1,D2,D3,D4,D5,D6},SieDi={X,Y.Z}
 - b) -元约束; S1 # X , S2 # X , S4 # X , S5 = Z , S6 = Z , 二元约束; S1 和 S2 至少有一个为 Y ; S2 和 S3 至少有一个为 X ; S3 和 S4 至少有一个为 X ; S4 和 S5 至少有一个为 Y
 - c) $S_6 = Z$, $S_5 = Z$, $S_4 = \Upsilon$, $S_3 = X$, $S_2 \in \{\Upsilon, Z\}$ $S_1 \in \{\Upsilon, Z\}$
 - d) $S_1 = \{ Y, Y, X, Y, Z, Z \}$ $S_2 = \{ Z, Y, X, Y, Z, Z \}$ $S_3 = \{ Y, Z, X, Y, Z, Z \}$

Prob 3

a) 变量; X={X1,...,X8} 值城: D={D1,...,D2}, X16D1={1,2,3,4}

1	2	4	Xı		
χ2	χ3	× 4	2		
2	χ ²	X6	1		
3	χ,	2	Xε		

约束: $X_1=3$; $X_2=4$; $X_3 \neq 1\cdot 2$; $X_4 \neq 2\cdot 4$; $X_5=4$; $X_6=3$; $X_7 \neq 2\cdot 3$; $X_8=4$.

同框: X2 = X3; X1 = X4; X5 = X7; X6 = X8

同行: メラキメ4; メ5キメ6: メ7≠メ8.

同列: X3 = X5; X4 = X6; X1 = X8

b)	1	2	4	Xı	1	2	4	3	1	2	4	3
	χ2	χ ₅	×4	2	 4	X3	×4	2	 4	3	_	2
	2	Κ ²	Х6	1	 2	4	3	1	 2	4	3	1
	3	χ,	2	X ₈	3	χ,	2	4	3	1	2	4