Guidea

Introduction

- Automatic Speech Recognition And Classification
- Significant For Deaf and Introvert People
- DeepSpeech 2 & Classification With Warp CTC
- DeepRNNs For Speech & DeepCNNs for classes
- Evaluation With AN4 and Librispeech Datasets
- Test With Librispeech Model and AGnews get 48% accuracy

= Automatic Speech Recognition

softmax

affine

conv

biRNN m

- Based On Deep Speech 2 Model
- Firstly Process the Input Audio With Frequency Convolutions In The first layer
- It can slightly improve the ASR Performance
- Then Put the Sequence Into Bi-Directional RNNs with GRU or LSTM
- $\overrightarrow{h}_t^l = f(\mathcal{B}(W^l h_t^{l-1}) + \overrightarrow{U}^l \overrightarrow{h}_{t-1}^l)$
- $\overrightarrow{h}_t^l = f(W^l h_t^{l-1} + \overrightarrow{U}^l \overrightarrow{h}_{t-1}^l + b^l)$
- We use the Batch-Normalization To Accelerate training For Multi-Layer Network.(Increasing Depth would reduce the performance) To Improve Final Generation Error

$$\overrightarrow{h}_t^l = f(\mathcal{B}(W^l h_t^{l-1}) + \overrightarrow{U}^l \overrightarrow{h}_{t-1}^l)$$

 Finally We used the Row Convolution With-Baidu Warp_CTC to speech recognition. It need only little future Information To Accurate Prediction at The Current Time-Step.

Convert The Voice To Text Scripts And Stored

= Natural Language Processing =

- Presentation Layer
- Convolutional Layer
- Max-Over-Time Pooling Fully Connected Layer
- Weights Initialization & Word Embedding:
 - Utilize the pre-trained model from google news to help initialize the weight. Using "nn.embedding" from torch.nn api to convert word from the text into word vector as inputs to the network.
- CNNs Convolution Operations:

w: a filter; x: concatenation words; b: bias term; f: non-linear function (ReLU)

- Max Pooling: $\hat{c} = \max\{\mathbf{c}\}$
 - Down-sampling
 - Won't damage the recognition result
 - Keep The Important Features
- Fully Connected (SoftMax, Cross Entropy and Dropout)
 - Computing the gap between the sample and the label Very computationally convenient Regularization
 - (Reduce Overfitting) $L_i = -log(\frac{\mathbf{z}}{\mathbf{x}})$ $y = \mathbf{w} \cdot (\mathbf{z} \circ \mathbf{r}) + b$

Experiments

- The Experiments Processed By the Upper Architecture
- The Whole Part Of Experiment Could Be Seen As Two Parts
- The Audio Data-Sets: AN4; Librispeech; Tedlium AN4: Focuses On Numbers And Alphabets
- Training Size: 50 minutes Testing Size: 8 minutes
- Librispeech: Focuses On Normal English Speech Training Size: 1000 hours Testing Size: 20 hours
- Tedlium: Real TED Speech On Special Topics Training Size: 216 hours Testing Size: 4 hours
- The News Data-Sets: AGnews, Sogou News, Yahoo answers
- AGnews: 4 classes Sogou News: 5 classes Yahoo News: 10 classes

Classification: "Sports"

- Since The Experiments Done Separated, The Total Result Will Be Effected Negatively
- Experiment Example: Input Voice: "Tomorrow There is a NBA game." Voice Recognition: "tomorow there is a nba game"

Evaluation Results

Improvements During Experiments:

With AN4 model, the translation rate is low and the transcripts are hard to read with

repeated words, Then we delete the repeated words. The translation rate is still low.

- fivf ty f fourf fnty f of fo foistiftyn feo feven tfen thrs
- Then we change to the Librispeech Model and found a better result

Improvements With Models:

Hidden Layers	Hidden Layer Units	WER	CER
5	200	78.54	30.16
5	400	68.43	28.47
5	600	56.936	26.250
5	800	41.32	22.53

Hidden Layers With 600 Units Each	Epoche	WER	CER
5	5	57.324	25.321
5	10	48.304	22.452
5	30	36.532	16.783
5	70	10.689	4.942

Speech Model Evaluation:

Dataset	WER	CER
AN4 test	10.58	4.88
Librispeech test clean	10.239	2.965
Librispeech test other	28.008	9.791
TED test	31.04	10.00

Text Model Evaluation:

len is : 206 ofts seveno fife fiven ioen is olv f fv

	AG News	Sogou News	Yahoo anwsers
Training Rate	98.30	97.00	95.16
Validate Rate	85.18	92.45	76.54
Test Rate	67.78	20.99	51.67
Number of class	4	5	10

Combination Model Evaluation:

Times	Accuracy
1	30.00
2	48.00

Analysis & Conclusion

- Since The Two Models Are Tested Individually, The Total Result Was Effected Negatively
- The Deepspeech 2 Model Applied The Greedy Searching.Beam Search May Get Better Results
- The Experiments Applied The Clean Voice To Test, We also Need To Consider The Noise.
- Since The News Contain Key Words, We May Try With "Attention" To Get A Better Feature Map.
- Basically, The Whole Model Could Classify The Audio News