

DIRECCIÓN DE EDUCACIÓN SUPERIOR

PROGRAMA SINTÉTICO

UNIDAD ACADÉMICA: UNIDAD PROFESIONAL INTERDISCIPLINARIA EN INGENIERÍA CAMPUS COAHUILA

ESCUELA SUPERIOR DE CÓMPUTO

UNIDAD PROFESIONAL INTERDISCIPLINARIA EN INGENIERÍA CAMPUS TLAXCALA

PROGRAMA ACADÉMICO: Licenciatura en Ciencia de Datos

UNIDAD DE APRENDIZAJE: Cómputo de alto desempeño SEMESTRE: IV

PROPÓSITO DE LA U Construye sistemas de Paralelismo, Sistemas	cómputo de alto rend		a par	tir de l	os modelos, arquitecturas y a	actividades del	
CONTENIDOS:	II. Cómpu III. Sistem	ıto Paral as Distri	elo buido	os	de Alto Desempeño en Malla (GRID)		
	Métodos de enser	ianza			Estrategias de aprendizaj	е	
ORIENTACIÓN	a) Inductivo			Х	a) Estudio de casos		
DIDÁCTICA:	b) Deductivo				b) Aprendizaje basado en	problemas	
	c) Analógico			Х	c) Aprendizaje orientado	proyectos	Х
	Diagnóstica			Х	Saberes Previamente Add	quiridos	Х
	Solución de casos	6			Organizadores gráficos		Х
	Problemas resueltos				Problemarios		
EVALUACIÓN Y ACREDITACIÓN:	Reporte de proyec	ctos		Х	Exposiciones		
	Reportes de indaç	jación			Otras evidencias a evalua	nr:	
	Reportes de práct	icas		Х			
	Evaluaciones esc	ritas					
	Autor(es)	Año		Tít	ulo del documento	Editorial / IS	BN
	*Tanenbaum, A. & Van Steen, M	2008		temas adigm	Distribuidos .Principios y as	Pearson / 978970261280	03
	*Puder, A., Römer, K. & Pillofer F.	2009	Distributed Systems Architecture		Elsevier/ 9781558606487		
BIBLIOGRAFÍA BÁSICA:	*Silva, V.	2006	Grid	id computing for developers		Charles River Media / 9781584504245	
	*Lin, C. & Snyder, L	2009	Principles of Para		Principles of Parallel Programming		son 02
	Kirk, D; y HWU, W.	2016			ning Massively Parallel rs: A Hands-on Approach	Morgan Kaufm / 97801281198	nann

DIRECCIÓN DE EDUCACIÓN SUPERIOR

PROGRAMA DE ESTUDIOS

UNIDAD DE APRENDIZAJE: Cómputo de alto desempeño HOJA 2 DE 9

UNIDAD ACADÉMICA: UNIDAD PROFESIONAL INTERDISCIPLINARIA EN INGENIERÍA CAMPUS COAHUILA

ESCUELA SUPERIOR DE CÓMPUTO

UNIDAD PROFESIONAL INTERDISCIPLINARIA EN INGENIERÍA CAMPUS TLAXCALA

PROGRAMA ACADÉMICO: Licenciatura en Ciencia de Datos

SEMESTRE: ÁREA DE FORMACIÓN: MODALIDAD:

IV Formación Profesional Escolarizada

TIPO DE UNIDAD DE APRENDIZAJE:

Teórica- práctica/Obligatoria

VIGENTE A PARTIR DE: CRÉDITOS

Agosto, 2021 TEPIC: 9.0 SATCA: 8.4

INTENCIÓN EDUCATIVA

Esta unidad contribuye al perfil de egreso del Licenciado en Ciencia de Datos con el desarrollo de habilidades de diseño, e implementación de sistemas aplicando los modelos de paralelismo, las arquitecturas de alto desempeño y en GRID para construir sistemas de cómputo de alto rendimiento. Asimismo, fomenta el pensamiento crítico, trabajo en equipo, la comunicación efectiva, resolución de problemas, creatividad e ingenio con un alto sentido ético.

La presente unidad de aprendizaje tiene relación de manera antecedente con Algoritmos y estructuras de datos, Bases de datos, Análisis y diseño de Algoritmos y programación para ciencia de datos, de manera lateral con Desarrollo de aplicaciones Web, Desarrollo de aplicaciones para análisis de datos y Bases de datos Avanzadas y de manera consecuente con Minería de datos, aprendizaje de máquina e Inteligencia Artificial.

PROPÓSITO DE LA UNIDAD DE APRENDIZAJE

Construye sistemas de cómputo de alto rendimiento a partir de los modelos, estructuras, arquitecturas y actividades del Paralelismo, Sistemas distribuidos y arquitecturas GRID

TIEMPOS ASIGNADOS

HORAS TEORÍA/SEMANA: 3.0

HORAS PRÁCTICA/SEMANA: 3.0

HORAS TEORÍA/SEMESTRE: 54.0

HORAS PRÁCTICA/SEMESTRE:

54.0

HORAS APRENDIZAJE AUTÓNOMO: 32.0

HORAS TOTALES/SEMESTRE:

108.0

UNIDAD DE APRENDIZAJE DISEÑADA POR:

Comisión de Diseño del Programa Académico.

APROBADO POR:

Comisión de Programas Académicos del H. Consejo General Consultivo del IPN.

22/10/2020

AUTORIZADO Y VALIDADO POR:

Ing. Juan Manuel Velázquez Peto Director de Educación

Director de Educación Superior

DIRECCIÓN DE EDUCACIÓN SUPERIOR

UNIDAD DE APRENDIZAJE: Cómputo de alto desempeño HOJA 3 DE 9

UNIDAD TEMÁTICA I Arquitecturas de cómputo de	CONTENIDO	HORAS DOCE		HR S
alto desempeño		Т	Р	AA
UNIDAD DE COMPETENCIA Analiza los tipos de	1.1 Fundamentos de las Arquitecturas de Cómputo de Alto Desempeño	0.75		0.75
arquitecturas de cómputo y sistemas de procesamiento de alto desempeño con base en sus características,	1.2 Sistemas de Procesamiento Paralelo1.2.1 Características y limitantes1.2.2 Aplicaciones	0.75		0.75
limitantes y aplicaciones.	1.3 Sistemas de Procesamiento Distribuido1.3.1 Características y limitantes1.3.2 Aplicaciones	0.75		0.75
	1.4 Arquitecturas basadas en servicios1.4.1 Características y limitantes1.4.2 Aplicaciones	0.75		0.75
	1.5 Arquitectura GRID1.5.1 Características y limitantes1.5.2 Aplicaciones	0.75		0.75
	 1.6 Otros Ejemplos de cómputo de alto desempeño 1.6.1 Sistemas Multiagentes 1.6.2 Cómputo en Nube 1.6.3 Sistemas de Bases de Datos Masivas 	2.25		2.25
	Subtotal	6.0	0.0	6.0

DIRECCIÓN DE EDUCACIÓN SUPERIOR

UNIDAD DE APRENDIZAJE: Cómputo de alto desempeño HOJA 4 DE 9

UNIDAD TEMÁTICA II	CONTENIDO	HORA DOC		HR S
Cómputo Paralelo	CONTENIDO	Т	Р	AA
UNIDAD DE COMPETENCIA	2.1. Paralelismo y Concurrencia	1.5		
Construye sistemas en paralelo				
a partir de la planificación de	2.2. Arquitecturas Paralelas	3.0	1.5	2.0
procesos, asignación de datos,	2.2.1. Multiprocesadores			
balanceo de cargas, manejo de	2.2.2. Multicomputadoras			
memoria, partición de programas	2.2.3. Redes de Interconexión (Estáticas y Dinámicas)			
y datos.	2.2.4. Algoritmos Paralelos			
	2.2.5. Lenguajes y Librerías de Paralelismo (HPF, OpenMP, PVM, MPI)			
	2.2.6. Aplicaciones			
	2.2.0. Apricaciones			
	2.3. Actividades para conseguir el Paralelismo	6.0	10.5	6.0
	2.3.1. Planificación de procesos, tareas, hilos y			
	operaciones entrada/salida			
	2.3.2. Asignación de Datos			
	2.3.3. Balanceo de Cargas de Trabajo			
	2.3.4. Partición de Datos/Programas			
	2.4. Mecanismo de Migración	1.5	1.5	1.0
	O.F. Marrier In In Marrier	4 -	4 -	4.0
	2.5. Manejo de la Memoria	1.5	1.5	1.0
	2.6. Tolerancia a Fallas	1.5	1.5	1.0
	2.0. TOIGIAITOIA AT AIIAS	1.5	1.5	1.0
	2.7. Métricas de Rendimiento y Disponibilidad	1.5	1.5	1.0
	Subtotal	16.5	18.0	12.0

DIRECCIÓN DE EDUCACIÓN SUPERIOR

UNIDAD DE APRENDIZAJE: Cómputo de alto desempeño HOJA 5 DE 9

UNIDAD TEMÁTICA III Sistemas distribuidos	CONTENIDO	HORA: DOCI	S CON ENTE	HR S
Oisternas distribuidos		Т	Р	AA
UNIDAD DE COMPETENCIA Construye sistemas distribuidos a partir de los modelos de sistema, transacciones distribuidas, control de	3.1. Caracterización de los Sistemas distribuidos3.1.1.Internet e intranets3.1.2.Recursos compartidos3.1.3.Desafíos de los sistemas Distribuidos	1.5		1.0
concurrencia, replicación.	3.2. Modelos de Sistema3.2.1.Modelos arquitectónicos3.2.2.Modelos de interacción, fallo y seguridad	3.0	3.0	1.0
	 3.3. Comunicación entre procesos 3.3.1.API Y Protocolos de Internet 3.3.2.Representación externa de datos y empaquetado 3.3.3.Comunicación cliente servidor 3.3.4.Control de concurrencia 	1.5	4.5	1.0
	3.4. Transacciones distribuidas	3.0	4.5	1.0
	3.5. Replicación	1.5	3.0	1.0
	Servicios tolerantes a fallos y de alta disponibilidad	3.0	3.0	2.0
	Subtotal	13.5	18.0	7.0

DIRECCIÓN DE EDUCACIÓN SUPERIOR

UNIDAD DE APRENDIZAJE: Cómputo de alto desempeño HOJA 6 DE 9

UNIDAD TEMÁTICA IV Arquitecturas de cómputo en	CONTENIDO	HORA: DOCI	S CON ENTE	HR S
Malla (Grid)		Т	Р	AA
UNIDAD DE COMPETENCIA Construye sistemas malla a partir de sus recursos, Nodos de control, estándares y arquitecturas Grid específicas.	 4.1. Arquitecturas de computación en malla (Grid) y sus Características 4.1.1.Recursos y Organizaciones Virtuales Cooperantes 4.1.2.Poder de Cómputo y de Almacenamiento de Datos 4.1.3.Acceso a las Grid 4.1.4.Balanceo de Asignación de Recursos 4.1.5.Confiabilidad 4.1.6.Administración 	3.0	3.0	4.0
	4.2. Sistemas Operativos y Software de Soporte GRID4.2.1.Linux4.2.2. Globus	3.0	3.0	4.0
	 4.3. Componentes GRID 4.3.1.Nodo de Control GRID 4.3.2.Nodo GRID 4.3.3.Nodo de Datos 4.3.4.Servidores GRID 4.3.5.Nodos Administradores 	6.0	6.0	4.0
	 4.4. Estándares GRID 4.4.1.Arquitectura de servicios de red abierta (OGSA) 4.4.2.Infraestructura de Servicios de red abierta (OGSI) 4.4.3. Arquitectura de servicios de red abierta y la Integración de acceso de datos (OGSA-DAI) 4.4.4.Grid- FTP 4.4.5.WSRF 4.4.6.Servicios de GRID 	6.0	6.0	4.0
	Subtotal	18.0	18.0	16.0

DIRECCIÓN DE EDUCACIÓN SUPERIOR

UNIDAD DE APRENDIZAJE: Cómputo de alto desempeño HOJA 7 DE 9

ESTRATEGIAS DE APRENDIZAJE	EVALUACIÓN DE LOS APRENDIZAJES
Aprendizaje Basado en Proyectos.	
El estudiante desarrollará las siguientes actividades:	Evaluación diagnóstica. Portafolio de evidencias
 Indagación documental de diferentes temas del programa con lo que elaborarán un mapa conceptual o mental. Se realizarán discusiones dirigidas de lo que obtendrán conclusiones. Análisis de casos específicos de los temas vistos 4. Elaboración de proyectos Elaboración de prácticas 	Mapas mentales/conceptual Conclusión de discusión Solución de casos Reporte de Proyecto con los resultados y documentación del trabajo realizado Reportes de práctica

	RELACIÓN DE PRÁCTICAS	3	
PRÁCTICA No.	NOMBRE DE LA PRÁCTICA	UNIDADES TEMÁTICAS	LUGAR DE REALIZACIÓN
1	Arquitecturas en paralelo	ll l	
2	Actividades para conseguir el paralelismo	II	
3	Mecanismos de migración	II	
4	Manejo de Memoria	II	
5	Tolerancia a Fallas	II	
6	Métricas de rendimiento y disponibilidad	II	
7	Modelos de Sistemas Distribuidos	III	Laboratorio de
8	Comunicación entre procesos	III	
9	Transacciones Distribuidas	III	Cómputo
10	Replicación	III	
11	Servicios Tolerantes a fallos y de alta disponibilidad	III	
12	Arquitecturas GRID	IV	
13	Software de soporte GRID	IV	
14	Componentes GRID	IV	
15	Estándares GRID	IV	
		TOTAL DE HORAS: 54.0	

DIRECCIÓN DE EDUCACIÓN SUPERIOR

UNIDAD DE APRENDIZAJE: Cómputo de alto desempeño HOJA 8 DE 9

Bibliografía							
Tipo	Autor(es)	Año	Título del documento Editorial/		L i b r	A n t o l o g í a	O t r o s
С	Colouris, G., Dollimor, J. & Kindberg, T.	2001	Sistemas Distribuidos Conceptos y Diseño	Pearson Addison Wesley / 9788478290499	Х		
С	Dongarra, J. et. al.	2002	The Sourcebook of Parallel Computing (The Morgan Kaufmann Series in Computer Architecture and Design)	Morgan Kaufmann / 9781558608719	Х		
В	*Tanenbaum, A. & Van Steen, M	2008	Sistemas Distribuidos .Principios y Paradigmas	Pearson / 9789702612803	Х		
В	*Puder, A., Römer, K. & Pillofer F.	2009	Distributed Systems Architecture	Elsevier/ 9781558606487	Х		
В	*Silva, V.	2006	Grid computing for developers	Charles River Media / 9781584504245	Х		
В	*Lin, C. & Snyder, L	2009	Principles of Parallel Programming	Pearson-Addison Wesley / 9780321487902	Х		
В	Kirk, D; y HWU, W.	2016	Programming Massively Parallel Processors: A Hands-on Approach	Morgan Kaufmann / 9780128119860	Х		

Recursos digitales								
Autor, año, título y Dirección Electrónica	T e x t	Si mulador	l m a g e n	T u t o r i a	V i d e o	Presentación	D i c c i o n a r i o	O t r o
Nvidia. (2020). CUDA Code Samples. Recuperado el 12 septiembre de 2020, de: https://developer.nvidia.com/cuda-code-samples								Х
Nvidia. (2020). CUDA Toolkit. Rcuperado el 12 septiembre de 2020, de: https://developer.nvidia.com/cuda-toolkit								Х
Eijkhout, V. (2020). Introduction to High-Performance Scientific Computing. Recuperado el 12 de septiembre de 2020, de: https://pages.tacc.utexas.edu/~eijkhout/istc/html/index.html	Х							
Lei, K., Fang, J., Xu, K., Matani, A., Naji, H., & Motallebi, H. et al. (2020). Journal of Grid Computing. Recuperado 12 de Septiembre de 2020, de: https://www.springer.com/journal/10723/	х							Х

DIRECCIÓN DE EDUCACIÓN SUPERIOR

UNIDAD DE APRENDIZAJE: Cómputo de alto desempeño

HOJA 9 **DE** 9

PERFIL DOCENTE: Ingeniería en Sistemas Computacionales, Computación o áreas afines con grado de Maestría y/o Doctorado en áreas afines al desarrollo de sistemas computacionales.

EXPERIENCIA PROFESIONAL	CONOCIMIENTOS	HABILIDADES DIDÁCTICAS	ACTITUDES
Preferentemente 2 años en la industria del software y desarrollo de sistemas computacionales. Mínima de 2 años de docencia a Nivel Superior.	En paradigmas de programación, sobre complejidad computacional y algoritmos. En prácticas de programación. En repositorios de códigos de programación Manejo de herramientas y lenguajes para cómputo en paralelo y arquitecturas GRID, En sistemas distribuidos. Del Modelo Educativo Institucional (MEI).	Comunicación efectiva Capacidad de transmitir conocimientos Capacidad de organización y planificación Liderazgo Capacidad para el manejo de grupos Metodologías y estratégicas de evaluación Dirección de proyectos de TI	Ética profesional Respeto Responsabilidad Honestidad Empatía Tolerancia Compromiso social e institucional

ELABORÓ	REVISÓ	AUTORIZÓ
	KEVIOO	AUTONIZO
Dr. Felipe Rolando Menchaca García Profesor Coordinador	M. en C Iván Giovanny Mosso García Subdirección Académica	Ing. Carlos Alberto Paredes Treviño Director UPIIC
M. en C. Chadwick Carreto Arellano Profesor colaborador		M. en C. Andrés Ortigoza Campos Director ESCOM

M. en C. Francisco Javier Cerda Martínez **Profesor colaborador**