

ROTEIRO DE AULA PRÁTICA

Aluno: Willian Souza Vieira

Título: Neste local o professor identificará o experimento com um título;

Multiplexador e demultiplexador	

Objetivo(s): Neste local o professor descreve quais são os objetivos a serem alcançados na realização desta aula prática;

Conhecer a tecnologia e os componentes eletrônicos práticos

Conteúdo (os) envolvido(s): Neste local o professor descreve quais os conteúdos/conhecimentos serão utilizados para a realização da atividade.

Circuitos combinacionais Multiplexador Demultiplexados

Descrição da atividade: Neste local o professor descreve a atividade aos alunos, inserindo quando for o caso, diagramas, fotos, imagens, etc.

1. Ler e estudar os datasheet do CI 74LS151 e 74LS155, analisando a função de cada pino e a TV de funcionamento.

74LS155: demultiplexador(demux) é um CI que consiste em uma entrada e algumas saídas, exemplo um demux de 1 para 8 O demux também tem duas variáveis de seleção, essas variáveis é que serão responsáveis por designar para qual saída irá o dado de entrada. Exemplo: passar o dado da entrada para a saída 1 Para isso necessitamos colocar nossas variáveis em 00, assim o circuito ira ativar a porta 1 e as outras saídas ficarão em nível baixo, para um circuito que funcione em nível alto.

74LS1551multiplexador(mux)é um CI com algumas entradas e apenas uma saída. Contem também duas variáveis de seleção, que serão responsáveis por habilitar qual das entradas passara seu valor para a saída. Exemplo: quero mandar o dado da entrada 4 para a saída, nas variáveis de seleção coloco 11,a entrada 4 transmitira seu dado para a saída enquanto as outras entradas serão desabilitadas.

- 2. Montar um circuito MUX e DEMUX para este dois Cl's.
 - 2.1 MUX de 8 para 1 e o DEMUX de 1 para 4
 - 2.2 Fixar os valores nas entradas do MUX de foram aleatória
 - 2.3 Variar as entradas de seleção manualmente e verificar saídas do DEMUX
 - 2.4 Analisar o funcionamento.

3. Montar um circuito MUX e DEMUX de 8 para 1 e 1 para 8 com os dois componentes usados acima

- 3.2 As entradas do MUX devem possuir valores aleatórios
- 3.3 Colocar led's na saída
- 3.4 Analisar os sinais com o osciloscópio
- 3.5 Analisar o funcionamento e escrever um resumo.

Alteração da Atividade: Neste local o aluno irá descrever e justificar, quando houver mudanças que alterem a descrição da atividade fornecida pelo professor.

Relação de materiais utilizados: Neste local os alunos transcrevem todos os componentes e materiais utilizados durante a realização da atividade:

LED,fios de telefone,resistores 220ohm,CI 74LS151,CI 74LS155

Relação de ferramentas utilizadas: Neste local os alunos transcrevem todas as ferramentas e materiais utilizados durante a realização da atividade:

Kit leadership, Osciloscópio tektromix TDS 1001-EDU, Modulo de eletrônica básica ZLPF-02 Multímetro Fluke

Coleta de dados: Neste local o aluno transcreve os dados obtidos durante a execução prática da atividade.

2. MUX 8 PARA 1

É como já vimos contem 8 entradas e uma saída, representada nesse circuito por um LED Também vimos que quando as chaves seletoras selecionam uma entrada, as outras entradas ficam em nível baixo como veremos a seguir a tabela verdade do demux

FUNCTION TABLE

	INPUTS				CUTRUT
	SELECT			STROBE	OUTPUT
D	С	В	_A	Ğ	"
×	×	×	×	н	н
l L	L	L	L	L	ΕÖ
L	L	L	н	L	<u> </u>
L	L	H	L	L	E2
l L	L	Н	н	L	Ē3
L	н	L	L	L	Ē4
L	Н	L	H	L	E5
L	н	н	Ļ	L	E6
L	н	н	н	L	E7
ļΗ	L	L	L	L	€8
H	L	Ļ	н	L	Ē9
н	L	н	L	L	E10
lн	L	н	н	L.	Ē11
н	н	L	L	L	E12
н	н	L	н	L	E13
н	н	н	L,	L	E14
н	н	н	н	ı.	F15

 $\frac{H}{E0} = \frac{high \ level}{E1}$, $L = iow \ level$, X = irrelevant $\frac{E0}{E0}$, $\frac{E1}{E1}$ $\frac{E1}{E1}$ = the complement of the level of the DO, D1 . . . D7 = the level of the D respective input

Strobe é o enable e funciona em nível baixo como vimos na tabela.

2. DEMUX 1 PARA 4

Vimos que esse demutiplexador contém 1 entrada e 4 saídas nesse experimento representada por 4 leds. Também contém 2 seletores para escolher qual saída recebera o dado da entrada

Vemos abaixo a tabela verdade de um demux 74LS155

FUNCTION TABLES 2-LINE-TO-4-LINE DECODER OR 1-LINE-TO-4-LINE DEMULTIPLEXER

INPUTS			OUTPUTS				
SELECT		STROBE	DATA	110	111	112	173
В	Α	1Ğ	1C	110		1112	113
х	×	н	х	н	н	н	н
L	L	Ł	н	L	н	н	н
L	н	L	н	н	L	н	н
н	L	L	н	н	н	L	н
н	н	L	н	н	н	н	L
×	x	l x	lι	Н.	н	н	н

Strobe ativo em baixo nível, ou seja quando estiver ligado no +5Vcc nada ocorrera. Quando estiver em GND vemos como selecionar cada uma das saídas

ais informações: Neste local os alunos descrevem informações adicionais. Estas informaç	ções
icionais podem ser dificuldades encontradas, acontecimentos inesperados ou qualquer o	utra
ormação que seja relevante.	

Análise dos resultados: Neste local os alunos descrevem sua análise baseada no consenso do grupo relacionando teoria e prática.

3. Como já temos um mux de 8 pra 1, interligamos as entradas 1C e 2C de nosso demux 1 pra 4, assim teremos um demux de 1 pra 8. Agora basta ligar a saída do mux na única entrada do demux com isso quando por exemplo tivermos no nosso mux a entrada 1 em Vcc e com nossas seletoras em 00 o dado da entrada 1 será enviado a entrada de nosso demux, podemos escolher qual saída irá receber o dado e então acender o led.