This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problems Mailbox.

PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2000-065199

(43)Date of publication of application: 03.03.2000

(51)Int.CI.

F16H 61/04 B60K 41/06 F02D 29/00 F02D 41/04 // F16H 59:16

(21)Application number: 10-227845

(71)Applicant:

HITACHI LTD

(22)Date of filing:

12.08.1998

(72)Inventor:

ONISHI HIROSHI KAYANO MITSUO **MINOWA TOSHIMICHI**

(54) CONTROL DEVICE AND CONTROL METHOD FOR AUTOMATIC TRANSMISSION

(57)Abstract:

PROBLEM TO BE SOLVED: To smoothly shift up without imparting a sense of incompatibility to an occupant by synchronizing an output shaft rotating speed with an engine speed at the shift-up time by controlling an electronic control throttle valve, and smoothly changing clutch oil pressure of a high speed side shift stage.

SOLUTION: In a transmission, a first speed and a second speed are established by fastening/releasing a driving gear 112 to/from an output shaft 105, and a third speed to a fifth speed are established by fastening/releasing a drive gear to/from an input shaft 104. The first speed to the fourth speed are fastened/ released to a shaft by a synchronizer mechanism 117, and the mechanism 117 is operated by a shift fork 110 controlled by a shift cylinder 108 and a select cylinder 109. In this case, at shift-up time, an output shaft rotating speed and an engine speed are synchronized by control of an electronic control throttle valve 120, and clutch oil pressure of the fifth speed is smoothly changed to high speed side torque from low speed side torque to guarantee a smooth shift.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C): 1998,2000 Japan Patent Office

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2000-65199

(P2000-65199A)

(43)公開日 平成12年3月3日(2000.3.3)

(51) Int.Cl.'		識別記号	— -		
F16H	61/04	HMOOTHIC CA	FI		テーマコード(参考)
B60K 4	-		F16H 61/0	14	3 D 0 4 1
			B60K 41/0	6	3 G O 9 3
F02D 2	-		F02D 29/0	0 н	3G301
	11/04	310	41/0		3 J O 5 2
#F16H 5	59: 16		,-	- 0100	3 J U 5 Z
		Andreas D. Company			

		答金前求	未請求 請求項の数5 OL (全 6 頁)
(21)出願番号	特膜平10-227845	(71)出職人	000005108
(22)出顧日	平成10年8月12日(1998.8.12)	(72)発明者	株式会社日立製作所 東京都千代田区神田駿河台四丁目 6 番地
		(14) 先明有	大西 浩史 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内
		(72)発明者	
		(74)代理人	100068504 弁理士 小川 勝男

最終頁に続く

(54)【発明の名称】 自動変速機の制御装置および制御方法

(57)【要約】

【課題】シフトアップ時に乗員に違和感を感じさせるこ となくスムーズな変速を行うことができる自動変速機の 制御装置および制御方法を提供する。

【解決手段】出力軸回転数とエンジン回転数との同期を 電子制御スロットル弁を制御することで行い、高速側の 変速段のクラッチ油圧を低速側で出力されるトルクから 髙速側で出力されるトルクに沿らかに変化させる構成と した。

【特許請求の範囲】

【請求項1】複数個の歯車の組合せからなる変速段を有する自動変速機のクラッチの締結、解放によってエンジンからの回転川力を変速する自動変速機の制御装置において、

電子制御スロットル弁によって前記エンジンの吸入空気 量を制御して前記自動変速機の出力軸回転数と前記エン ジンの回転数との同期を行う電子制御スロットル介制御 装置と、

高速側の変速段のクラッチの油圧を低速側で出力される クラッチトルクから高速側で出力されるクラッチトルク に沿らかに変化させるクラッチ油圧制御装置とからなる ことを特徴とする自動変速機の制御装置。

【請求項2】請求項1の記載において、

前記クラッチトルクを推定し、その値を用いて前記エンジンの出力トルクの目標値を算出する目標エンジントルク演算装置からなることを特徴とする自動変速機の制御装置。

【請求項3】請求項1の記載において、

前記電子制御スロットル弁制御装置は、一定の変速時間で前記変速が行われるように前記クラッチの油圧と前記電子制御スロットル弁の開度を制御することを特徴とする自動変速機の制御装置。

【請求項4】複数個の歯車の組合せからなる変速段を有する自動変速機のクラッチの締結,解放によってエンジンからの回転出力を変速する自動変速機の制御方法において.

電子制御スロットル弁によって前記エンジンの吸人空気量を制御して前記自動変速機の出力軸回転数と前記エンジンの回転数との同期を行うとともに、

高速側の変速段のクラッチの油圧を低速側で出力される クラッチトルクから高速側で出力されるクラッチトルク に滑らかに変化させることを特徴とする自動変速機の制 御方法。

【請求項5】請求項4の記載において、

一定の変速時間で前記変速が行われるように前記クラッチの油圧と前記電子制御スロットル弁の開度を制御することを特徴とする自動変速機の制御方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は自動車の自動変速機の制御装置および制御方法に係り、特に、手動変速機の機構を用いた自動変速機を制御する制御装置および制御 力法に関する。

[0002]

【従来の技術】于動変速機の機構を用いた自動変連機の 従来技術の例として特開昭61-45163号公報に記載され たものがある。この文献には于動変速機の一番高速側の ギアを油圧クラッチを用いて締結解放を行い、変速時に はその変速段の油圧クラッチを滑らせてエンジン回転数 を制御して出力軸回転数と同期させて変速を行うことにより、エンジンのスロットル弁を操作することなく変速できることが記載されている。

[00003]

【発明が解決しようとする課題】しかし、上記従来技術に記載のもののように、シフトアップ時に油圧クラッチを滑らせてエンジンの回転数との同期を行うと、クラッチで発生する摩擦トルクの変化が出力軸に伝わり、乗員に違和感として感じられるという問題があった。 本発明は、シフトアップ時に乗員に違和感を感じさせることなくスムーズな変速を行うことができる自動変速機の制御装置を提供することを目的とする。

[0004]

【課題を解決するための手段】本発明は、上記の課題を解決するために、シフトアップの際に、出力軸回転数とエンジン回転数との同期を電子制御スロットル介120を制御することで行い、高速側の変速段のクラッチ油圧は低速側で出力されるトルクから高速側で出力されるトルクに滑らかに変化させる構成とした。

[0005]

【発明の実施の形態】以下本発明の第一実施例を、図面を用いて説明する。図1は本発明で用いられる変速機及びエンジンを含むパワートレインの構成図である。変速機は前進側5個の変速段を有し、後退側は省略してある。各変速段には、1 s t, 2 n d, 3 r d, 4 t h, 5 t h の記号を付してある。

【0006】エンジン101は電子制御スロットル弁120によって吸人空気量が制御される。このエンジン101は吸人空気量によって発生トルクの制御が行われる種類のエンジンである。エンジン101の発生トルクは、発進クラッチ103、エンジン101と川力軸105との間に設けられた変速機を経て川力軸105に伝わる。発進クラッチ103は発進シリンダ106の油圧によって締結解放が行われる。発進シリンダ106の油圧はワイヤ107を経て発進クラッチ103に伝わる。発進クラッチ103はエンジン側のフライホイール102に押しつけられることによって締結される。

【0007】歯車の噛み合い式の変速機構は、図1の1速から4速までの変速段で用いられる変速機構である。変速機の基本構成は、入力軸104と川力軸105、および、変速段を構成するそれぞれの軸に取り付けられた複数個の歯車である。エンジン101からのトルクは、人力軸104から変速及ごとに用いられる歯車を経て出力軸105に伝達される。歯車のうち、人力軸104に取り付けられたドライブギア112とが噛み合っており、この組み合わせが変速段に応じて用いられる。選択されていない変速段では、ドライブギア111またはドリブンギア112が軸に対して空転している。選択されている変速段で用いられる衛中は、ドライブギア111、ド

リブンギア112のいずれもが軸に固定されてトルクが 伝わる。

【0008】図1に示された変速機では1速,2速はドリブンギアが川力軸105に対して締結,解放され、3速,4速,5速ではドライブギアが入力軸104に対して締結,解放される。1速から4速まではシンクロナイザ機構117によって軸に対して締結,解放される。シンクロナイザ機構117はクラッチハブ113,スリーブ114,シンクロナイザリング115,ギアスプライン116からなっている。このシンクロナイザ機構117はシフトフォーク110によって動かされ、歯車が締結,解放される。シフトフォーク110は、クラッチ油圧制御装置122によってシフトシリンダ108とセレクトシリンダ109が動作することによって動作する。

【0009】シンクロナイザ機構117は通常の手動変 速機で用いられるものである。従って1速から4速まで の変速では、いったんどのギアも選択されていない中立 状態が現れる。この中立状態ではスロットル弁が開いて いると、エンジンがふけ上がってしまうという問題があ る。それに対し5速のギアの締結、解放には自動変速機 で用いられるような油圧で制御される変速クラッチ11 8が用いられている。この変速クラッチ118は変速シ リンダ119で発生した油圧で制御される。この5速の クラッチは1速から4速までの変速の際に締結しない程 度の弱い油圧が与えられる。そのためにクラッチが滑 り、その摩擦力により変速の際にエンジンがふけ上がら ないようになっている。なお電子制御スロットル弁12 0 は電子制御スロットル弁制御装置 1 2 1 で制御され、 油圧の制御はクラッチ油圧制御装置122で制御され る。

【0010】上記構成の本発明では、シフトアップの際に、エンジン回転数との同期を電子制御スロットル弁120を制御することで行い、5速のクラッチ油圧は低速側で出力されるトルクから高速側で出力されるトルクに滑らかに変化させることによって乗員に違和感を感じさせず、スムーズな変速を行うことができる。

【0011】図2にシフトアップ時のタイムチャートを示す。変速が開始されると低速側のクラッチは解放され、5速のクラッチ圧が上昇する。またスロットル開度は小さくなる。変速の間エンジン回転数は高速側の回転数に同期するまで低下し、また出力トルクも低速側のトルクから低速側のトルクに滑らかに変化する。エンジン回転数が同期すると高速側のクラッチが締結され、5速のクラッチは解放される。またスロットルも通常の制御に復帰し変速が終了する。なお変速開始から変速終了までの時間を以下の説明ではTとする。

【0012】図3に5速クラッチ油圧の制御装置の構成のプロック図を、図4に出力トルクと5速クラッチ圧のタイムチャートを、図5にエンジントルク特性マップの例を示す。図5に示したエンジントルク特性マップは、

自動変速機の制御装置 (図示せず) 内の記憶素子に記憶されている。

【0013】図3において、はじめに、シフトアップ前 川力トルク推定装置301でシフトアップ前の川力トル クが推定される。シフトアップ後川カトルク推定装置3 02でシフトアップ後の出力トルクが推定される。出力 トルクの推定は、図5に示すようなエンジントルク特性 マップによって、エンジン回転数とスロットル開度とか らエンジントルクを推定し、それにギア比をかけること により、出力トルクを推定する。シフトアップ前出力ト ルク推定装置301とシフトアップ後川力トルク推定装 置302で推定された出力トルクは、5速クラッチ圧設 定装置303に入力され、5速クラッチ圧の設定が行わ れる。5速クラッチ圧設定装置303では、出カトルク が低速側から高速側に滑らかに変化するように5速クラ ッチ圧の設定が行われる。出力トルクと5速クラッチ圧 の変速時の時間変化は図4に示すようになる。このよう に、本実施例によれば、川力トルクがなめらかに変化す るように5速クラッチ圧を変化させることができる。そ して、実際の5速クラッチ圧が5速クラッチ圧設定装置 303で設定されたクラッチ圧になるように、油圧弁3 04で油圧が制御される。

【0014】図6に電子制御スロットル介制御装置12 1の構成のプロック図を示す。クラッチ油圧検用装置6 01で5速クラッチ油圧を検出する。検出されたクラッ チ油圧はクラッチトルク推定装置603に入力され、5 速クラッチで発生するトルクが推定される。また、目標 減速度設定装置602で設定された目標減速度に慣性モ ーメント604が乗算される。推定された5速クラッチ トルクから目標減速度に慣性モーメントが乗算されたも のを引いて、日標エンジントルクが計算される。日標エ ンジントルクはスロットル開度設定装置605に入力さ れ、図5に示したようなマップを用いてスロットル弁の 目標開度が計算される。設定された目標開度はアクチュ エータに送られ、スロットル弁が開き、吸入空気量が増 加する。図7にシフトアップ時のエンジン回転数とスロ ットル弁開度のタイムチャートを示す。変速開始と同時 にスロットル弁開度が小さくなり、エンジン回転数も減 少する。変速が終了すると、スロットル弁の開度制御は 通常運転時の制御に復帰し、スロットル弁開度は元の値 に戻る。

【0015】図8に5速クラッチ圧制御のフローチャートを示す。ステップ801では、シフトアップ前の現在の出力トルクを推定し、Tosとする。次に、ステップ802では、現在の車速でのシフトアップ後の出力トルクを推定し、Toeとする。ステップ803では、Tsを制御の周期、Tを変速時間として、目標クラッチトルクの刻み値ΔTを決定する。ステップ804では初期値の設定を行う。ここでnは繰り返し回数、Tnは変速開始からの時間、Tcnは目標クラッチトルクである。また

g5は5速のギア比である。ステップ805では、変速開始からの時間が予定の変速時間になったかどうかを調べる。変速開始からの時間が予定の変速時間に到達したら変速終了とみなし、ステップ810に行く。そうでなければステップ806に移る。ステップ806では、変速開始からの時間Tnを更新する。ステップ807では、目標クラッチトルクTcnを更新する。ステップ808では、目標クラッチトルクTcnが発生するようにクラッチ油圧を出力する。ステップ809では、nを更新する。そしてステップ805に戻る。ステップ810では、5速クラッチを解放する。

【0016】図9に電子制御スロットル弁の制御のフロ ーチャートを示す。ステップ901では、エンジン回転 数の目標減速度dNe/dtを計算する。ここで式中の Nesは変速開始前のエンジン回転数、Neeは変速終了 後のエンジン回転数である。ステップ902では、初期 値の設定を行う。ステップ903では、変速開始からの 時間Tnが目標変速時間Tに等しいかどうかを調べる。 等しければステップ910へ、そうでなければステップ 904に進む。ステップ904では、変速開始からの時 間Tnを更新する。ステップ905では、現在のクラッ チトルクをクラッチ油圧から推定し、Tcとする。ステ ップ906では、エンジンの慣性トルクTgapを求め る。ここでKは比例定数、Leはエンジンの慣性モーメ ントである。ステップ907ではクラッチトルクTcか ら慣性トルクTgapを引いて目標エンジントルクTt e を求める。ステップ908ではエンジントルクがTtc となるように、スロットル介開度を、図5に示したよう なマップを用いて設定する。ステップ909ではnを更 新する。そして、ステップ903に戻る。ステップ91

0 では通常のスロットル介の開度制御に復帰する。 【0 0 1 7】

【発明の効果】以上述べたように、本発明によれば、シフトアップ時に、乗員に違和感を感じさせることなくスムーズな変速を行うことができるという効果がある。

【図面の簡単な説明】

【図1】変速機及びエンジンを含むパワートレインの構成図。

【図2】シフトアップ時のタイムチャート。

【図3】5速クラッチ油圧の制御装置の構成のプロック 図

【図 4】出力トルクと 5 速クラッチ圧のタイムチャー ト-

【図5】エンジントルク特性マップ。

【図 6 】電子制御スロットル弁制御装置の構成のブロッ ク図..

【図 7 】シフトアップ時のエンジン回転数とスロットル 弁開度のタイムチャート。

【図8】5速クラッチ圧制御のフローチャート。

【図9】 電子制御スロットル介の制御のフローチャート。

【符号の説明】

101…エンジン、103…発進クラッチ、104…入力軸、105…出力軸、111…ドライブギア、112…ドリプンギア、113…クラッチハブ、114…スリーブ、115…シンクロナイザリング、116…ギアスプライン、117…シンクロナイザ機構、118…変速クラッチ、119…変速シリンダ、120…電子制御スロットル弁、121…電子制御スロットル弁制御装置、122…クラッチ油圧制御装置、304…油圧弁。

[図1] [図5]

フロントページの続き

(72)発明者 箕輪 利通 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 F ターム(参考) 3DO-11 AA32 AA53 AC15 AC18 AC30 AD02 AD04 AD05 AD18 AE03 AE04 AE22 AE23 AE39 AF01 3G093 AA05 BA03 CB06 DA06 DA09 DB11 DB23 EA02 EB03 EB07 EC04 FA04 3G301 JA04 KA12 LA01 NC02 ND01 PA012 PA11A PA112 PE012 PE062 PF062 PF082 3J052 AA01 CA07 CA14 EA03 EA04

FB33 GC13 GC23 GC32 GC43 GC44 HA03 KA01 KA16 LA01

21. 3