

Vision-based Human Activity

Recognition (HAR) using Transfer

Learning Approach for Internet-of
Things (IoT) Applications

Team Introduction

Will Downey
M.Eng Student
Computer Science

Srijeet Halder Ph.D. Candidate School of Construction

Ashit Harode
Ph.D. Candidate
School of Construction

Nikitha Chandrashekar Ph.D. Student Computer Science

Problem Description

- Smart Homes and Buildings (SHaB) improve the user's quality of life and resource usage.
- Kind of activity influence thermal behaviour of the space.
- Strong autonomous HVAC system considers this as a factor.
- Use a vision-based machine learning model to classify images as active or passive

Dataset

• 12,000+ labeled images featuring 15 different classes of human activities.

Pre-Processing

- Mapped 15 classes into 2 classes
- Convert the multi-class classification problem to binary classification.

Mediapipe Pose

- ML solution for high-fidelity body pose tracking.
- Infers 33 3D landmarks from RGB video frames.
- Locates person/pose ROI in the frame.
- Predicts pose landmarks within ROI.

Data Augmentation

Model Training

Model Training

- Training framework = Tensorflow + Keras
- Loss function = Binary Cross-Entropy
- Optimizer = Adam
- Batch size = 32
- Epochs = 22 (early stopping)
- Train/Test split = 80/20

Training Results

Results after running for 22 epochs:

o Precision: 0.79

• Recall: 0.79

• F1-Score: 0.79

Accuracy: 0.79

•	51/51 [=====	precision		===] - 0s f1-score	2ms/step support	
	0	0.74	0.75	0.74	658	
	1	0.83	0.82	0.82	972	
	accuracy			0.79	1630	
	macro avg	0.78	0.78	0.78	1630	
	weighted avg	0.79	0.79	0.79	1630	
	accuracy: 0.7					

Evaluation on External Video

- Testing on shown video outside of data set
- Results:

8/8 [=====		=======	=] - 0s 9ms	s/step				
	precision	recall	f1-score	support				
0	1.00	0.97	0.98	242				
1	0.00	0.00	0.00	1				
accuracy			0.96	243				
macro avg	0.50	0.48	0.49	243				
weighted avg	0.99	0.96	0.98	243				
accuracy: 0.9629629629629								

Evaluation on External Video

Lessons Learned

- Neural Networks are powerful ML techniques that can extract hidden patterns
- More data = improved accuracy = more training time
- Al models require extremely large amounts of data to be effective
- Data augmentation can be a useful technique to increase size of training dataset

Future work

 An input-action mapping needs to be created that performs certain action on the HVAC system based on the recognized human activity