```
#1.Download the dataset
#2.Load the dataset into the tool
from google.colab import files
uploaded=files.upload()
      Choose Files No file chosen
                                        Upload widget is only available when the cell has been
     executed in the current browser session. Please rerun this cell to enable.
     Caving ahalone cev to ahalone cev
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import io
df = pd.read_csv(io.BytesIO(uploaded['abalone.csv']))
print(df)
                                  Height Whole weight
                                                          Shucked weight
\Box
          Sex
               Length
                        Diameter
     0
            Μ
                0.455
                           0.365
                                    0.095
                                                  0.5140
                                                                   0.2245
     1
            Μ
                 0.350
                           0.265
                                    0.090
                                                 0.2255
                                                                   0.0995
     2
            F
                           0.420
                                                 0.6770
                0.530
                                   0.135
                                                                   0.2565
     3
            Μ
                0.440
                           0.365
                                   0.125
                                                 0.5160
                                                                   0.2155
     4
            Ι
                0.330
                           0.255
                                    0.080
                                                  0.2050
                                                                   0.0895
                   . . .
                                      . . .
     4172
            F
                0.565
                           0.450
                                   0.165
                                                 0.8870
                                                                   0.3700
     4173
            М
                0.590
                           0.440
                                   0.135
                                                 0.9660
                                                                   0.4390
     4174
                0.600
                           0.475
                                   0.205
                                                 1.1760
                                                                   0.5255
            Μ
     4175
            F
                0.625
                           0.485
                                    0.150
                                                 1.0945
                                                                   0.5310
     4176
                0.710
                           0.555
                                    0.195
                                                 1.9485
                                                                   0.9455
            Μ
           Viscera weight Shell weight Rings
     0
                    0.1010
                                  0.1500
                                              15
     1
                    0.0485
                                   0.0700
                                               7
     2
                    0.1415
                                  0.2100
                                               9
     3
                    0.1140
                                  0.1550
                                              10
     4
                    0.0395
                                   0.0550
                                               7
     . . .
                       . . .
                                      . . .
                                              . . .
     4172
                    0.2390
                                   0.2490
                                              11
     4173
                    0.2145
                                   0.2605
                                              10
     4174
                    0.2875
                                   0.3080
                                               9
     4175
                    0.2610
                                  0.2960
                                              10
     4176
                    0.3765
                                   0.4950
                                              12
     [4177 rows x 9 columns]
from sklearn.preprocessing import LabelEncoder
le = LabelEncoder()
df['Sex'] = le.fit_transform(df['Sex'])
df
```

https://colab.research.google.com/drive/14hSTHPunXIQeoqQw-Jx-K9LgWMuQB7vW#scrollTo=WpvNaAXuG1-u&printMode=true

	Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings
0	2	0.455	0.365	0.095	0.5140	0.2245	0.1010	0.1500	15
1	2	0.350	0.265	0.090	0.2255	0.0995	0.0485	0.0700	7
2	0	0.530	0.420	0.135	0.6770	0.2565	0.1415	0.2100	9
3	2	0.440	0.365	0.125	0.5160	0.2155	0.1140	0.1550	10
4	1	0.330	0.255	0.080	0.2050	0.0895	0.0395	0.0550	7
4172	0	0.565	0.450	0.165	0.8870	0.3700	0.2390	0.2490	11
4173	2	0.590	0.440	0.135	0.9660	0.4390	0.2145	0.2605	10
4174	2	0.600	0.475	0.205	1.1760	0.5255	0.2875	0.3080	9
4175	0	0.625	0.485	0.150	1.0945	0.5310	0.2610	0.2960	10
4176	2	0.710	0.555	0.195	1.9485	0.9455	0.3765	0.4950	12

3. VISUALIZATIONS

Univariate Analysis

```
plt.hist(df['Length'])
```


plt.hist(df['Diameter'])

plt.hist(df['Height'])

plt.hist(df['Whole weight'])

```
(array([632., 783., 827., 824., 616., 286., 129., 58., 16., 6.]),
    arrav([2.00000e-03, 2.84350e-01, 5.66700e-01, 8.49050e-01, 1.13140e+00,
plt.hist(df['Shucked weight'])
```

<a list of 10 Patch objects>)

plt.hist(df['Viscera weight'])

plt.hist(df['Shell weight'])

plt.hist(df['Rings'])

sns.countplot(df['Sex'])

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass FutureWarning

Bivariate Analysis

sns.scatterplot(df['Sex'], df['Length'])

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass FutureWarning

<matplotlib.axes._subplots.AxesSubplot at 0x7febab7e9e90>

sns.scatterplot(df['Height'], df['Whole weight'])

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass FutureWarning

<matplotlib.axes._subplots.AxesSubplot at 0x7febab778390>

sns.scatterplot(df['Shucked weight'], df['Viscera weight'])

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass FutureWarning

<matplotlib.axes._subplots.AxesSubplot at 0x7febab752510>

sns.scatterplot(df['Shell weight'], df['Rings'])

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass FutureWarning

<matplotlib.axes._subplots.AxesSubplot at 0x7febab65a490>

sns.heatmap(df.corr(), annot = True)

<matplotlib.axes. subplots.AxesSubplot at 0x7febab61d310>

Multi Variate Analysis

sns.pairplot(df)

<seaborn.axisgrid.PairGrid at 0x7feba8c52790> 4. Descriptive Statistics df.info() <class 'pandas.core.frame.DataFrame'> RangeIndex: 4177 entries, 0 to 4176 Data columns (total 9 columns): Column Non-Null Count # Dtype _ _ _ ____ ----0 Sex 4177 non-null int64 1 Length 4177 non-null float64 2 Diameter 4177 non-null float64 3 Height 4177 non-null float64 4 float64 Whole weight 4177 non-null float64 5 Shucked weight 4177 non-null float64 6 Viscera weight 4177 non-null Shell weight 4177 non-null float64 7 4177 non-null int64 Rings dtypes: float64(7), int64(2)

df.describe()

memory usage: 293.8 KB

at A

	Sex	Length	Diameter	Height	Whole weight	Shucked weight	
count	4177.000000	4177.000000	4177.000000	4177.000000	4177.000000	4177.000000	41
mean	1.052909	0.523992	0.407881	0.139516	0.828742	0.359367	
std	0.822240	0.120093	0.099240	0.041827	0.490389	0.221963	
min	0.000000	0.075000	0.055000	0.000000	0.002000	0.001000	
25%	0.000000	0.450000	0.350000	0.115000	0.441500	0.186000	
50%	1.000000	0.545000	0.425000	0.140000	0.799500	0.336000	
75%	2.000000	0.615000	0.480000	0.165000	1.153000	0.502000	
4							•

20024

df.skew()

Sex -0.098155 Length -0.639873 Diameter -0.609198 Height 3.128817 Whole weight 0.530959 Shucked weight 0.719098 Viscera weight 0.591852 Shell weight 0.620927 Rings 1.114102

dtype: float64

df.kurt()

Sex	-1.514387
Length	0.064621
Diameter	-0.045476
Height	76.025509
Whole weight	-0.023644
Shucked weight	0.595124
Viscera weight	0.084012
Shell weight	0.531926
Rings	2.330687
dtype: float64	

df.corr()

	Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	V
Sex	1.000000	-0.036066	-0.038874	-0.042077	-0.021391	-0.001373	-0.032067	- 0.C
Length	-0.036066	1.000000	0.986812	0.827554	0.925261	0.897914	0.903018	3.0
Diameter	-0.038874	0.986812	1.000000	0.833684	0.925452	0.893162	0.899724	9.0
Height	-0.042077	0.827554	0.833684	1.000000	0.819221	0.774972	0.798319	3.0
Whole weight	-0.021391	0.925261	0.925452	0.819221	1.000000	0.969405	0.966375	9.0
Shucked weight	-0.001373	0.897914	0.893162	0.774972	0.969405	1.000000	0.931961	3.0
Viscera weight	-0.032067	0.903018	0.899724	0.798319	0.966375	0.931961	1.000000	9.0

df.var()

_	
Sex	0.676079
Length	0.014422
Diameter	0.009849
Height	0.001750
Whole weight	0.240481
Shucked weight	0.049268
Viscera weight	0.012015
Shell weight	0.019377
Rings	10.395266
dtype: float64	

df.std()

Sex	0.822240
Length	0.120093
Diameter	0.099240
Height	0.041827
Whole weight	0.490389
Shucked weight	0.221963

Viscera weight 0.109614 Shell weight 0.139203 Rings 3.224169

dtype: float64

5. Checking for missing values

df.isna().sum()

Sex 0 Length 0 Diameter 0 Height Whole weight Shucked weight 0 Viscera weight 0 Shell weight 0 Rings dtype: int64

df.isna().sum().sum()

0

df.duplicated().sum()

0

6. Finding & Handling Ouliers

quantile = df.quantile(q = [0.25, 0.75])
quantile

	Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings	
0.25	0.0	0.450	0.35	0.115	0.4415	0.186	0.0935	0.130	8.0	
0.75	2.0	0.615	0.48	0.165	1.1530	0.502	0.2530	0.329	11.0	

IQR = quantile.iloc[1] - quantile.iloc[0]
IQR

Sex	2.0000
Length	0.1650
Diameter	0.1300
Height	0.0500
Whole weight	0.7115
Shucked weight	0.3160
Viscera weight	0.1595
Shell weight	0.1990
Rings	3.0000
J4 C1 4 C A	

dtype: float64

```
upper = quantile.iloc[1] + (1.5 *IQR)
upper
                        5.00000
     Sex
     Length
                        0.86250
     Diameter
                        0.67500
     Height
                        0.24000
     Whole weight
                        2.22025
     Shucked weight
                        0.97600
     Viscera weight
                        0.49225
     Shell weight
                        0.62750
     Rings
                       15.50000
     dtype: float64
lower = quantile.iloc[0] - (1.5* IQR)
lower
     Sex
                      -3.00000
     Length
                       0.20250
     Diameter
                       0.15500
     Height
                       0.04000
     Whole weight
                      -0.62575
     Shucked weight
                      -0.28800
     Viscera weight
                      -0.14575
     Shell weight
                      -0.16850
     Rings
                       3.50000
     dtype: float64
df.mean()
     Sex
                       1.052909
     Length
                       0.523992
     Diameter
                       0.407881
     Height
                       0.139516
     Whole weight
                       0.828742
     Shucked weight
                       0.359367
     Viscera weight
                       0.180594
     Shell weight
                       0.238831
     Rings
                       9.933684
     dtype: float64
df['Length'].max()
     0.815
sns.boxplot(df['Rings'])
```

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass FutureWarning

<matplotlib.axes._subplots.AxesSubplot at 0x7feba6ad2ad0>

sns.boxplot(df['Length'])

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass FutureWarning

<matplotlib.axes._subplots.AxesSubplot at 0x7feba69a4810>

sns.boxplot(df['Diameter'])

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass FutureWarning

<matplotlib.axes._subplots.AxesSubplot at 0x7feba4e3f5d0>

sns.boxplot(df['Height'])

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass FutureWarning

<matplotlib.axes._subplots.AxesSubplot at 0x7feba4e076d0>

sns.boxplot(df['Whole weight'])

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass FutureWarning

<matplotlib.axes._subplots.AxesSubplot at 0x7feba4d77f10>

sns.boxplot(df['Shucked weight'])

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass FutureWarning

<matplotlib.axes._subplots.AxesSubplot at 0x7feba4cd1750>

sns.boxplot(df['Viscera weight'])

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass FutureWarning

<matplotlib.axes._subplots.AxesSubplot at 0x7feba4cd1810>

sns.boxplot(df['Shell weight'])

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass FutureWarning

<matplotlib.axes._subplots.AxesSubplot at 0x7feba4c41d50>

7. Check for categorical column and perform encoding

from sklearn.preprocessing import LabelEncoder

```
le=LabelEncoder()
print(df.Sex.value counts())
df.Sex=le.fit_transform(df.Sex)
print(df.Sex.value_counts())
     2
          1528
     1
          1342
         1307
     Name: Sex, dtype: int64
         1528
     1
         1342
     0
         1307
     Name: Sex, dtype: int64
```

8. Split the data into dependent and independent variables

9. Scale the independent variables

10. Split the data intp training and testing

```
from sklearn.model_selection import train_test_split
```

```
Assignment4.ipynb - Colaboratory
x_train,x_test,y_train,y_test,=train_test_split(x,y,test_size=0.2,random_state=0)
print(x_train.shape)
print(x_test.shape)
print(y_train.shape)
print(y_test.shape)
     (3341, 2)
     (836, 2)
     (3341,)
     (836,)
11. Build the model 12. Train the model
from sklearn.linear_model import LinearRegression
mlr=LinearRegression()
mlr.fit(x_train,y_train)
     LinearRegression()
13.Test the model
mlr.predict(x_test[0:5])
     array([11.2719321 , 9.27390152, 11.02122356, 6.78830546, 11.88079569])
14. Measure the performance using metrics
from sklearn.metrics import r2_score
r2_score(mlr.predict(x_test),y_test)
```

```
-0.696307580804389
```

Colab paid products - Cancel contracts here

✓ 0s completed at 6:18 PM

×