

## **Art of Problem Solving** 2015 Cono Sur Olympiad

Cono Sur Olympiad 2015

| _ | Day 1                                                                                                                                                                                                                                                                                                                                                                   |
|---|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1 | Show that, for any integer n, the number $n^3 - 9n + 27$ is not divisible by 81.                                                                                                                                                                                                                                                                                        |
| 2 | 3n lines are drawn on the plane $(n > 1)$ , such that no two of them are parallel and no three of them are concurrent. Prove that, if $2n$ of the lines are coloured red and the other $n$ lines blue, there are at least two regions of the plane such that all of their borders are red.                                                                              |
|   | Note: for each region, all of its borders are contained in the original set of lines, and no line passes through the region.                                                                                                                                                                                                                                            |
| 3 | Given a acute triangle $PA_1B_1$ is inscribed in the circle $\Gamma$ with radius 1. for all integers $n \geq 1$ are defined: $C_n$ the foot of the perpendicular from $P$ to $A_nB_n$ $O_n$ is the center of $\odot(PA_nB_n)$ $A_{n+1}$ is the foot of the perpendicular from $C_n$ to $PA_n$ $B_{n+1} \equiv PB_n \cap O_nA_{n+1}$                                     |
|   | If $PC_1 = \sqrt{2}$ , find the length of $PO_{2015}$                                                                                                                                                                                                                                                                                                                   |
|   | Cono Sur Olympiad - 2015 - Day 1 - Problem 3                                                                                                                                                                                                                                                                                                                            |
| _ | Day 2                                                                                                                                                                                                                                                                                                                                                                   |
| 4 | Let $ABCD$ be a convex quadrilateral such that $\angle BAD = 90^{\circ}$ and its diagonals $AC$ and $BD$ are perpendicular. Let $M$ be the midpoint of side $CD$ , and $E$ be the intersection of $BM$ and $AC$ . Let $F$ be a point on side $AD$ such that $BM$ and $EF$ are perpendicular. If $CE = AF\sqrt{2}$ and $FD = CE\sqrt{2}$ , show that $ABCD$ is a square. |
| 5 | Determine if there exists an infinite sequence of not necessarily distinct positive                                                                                                                                                                                                                                                                                     |
|   | integers $a_1, a_2, a_3, \ldots$ such that for any positive integers $m$ and $n$ where $1 \le m < n$ , the number $a_{m+1} + a_{m+2} + \ldots + a_n$ is not divisible by $a_1 + a_2 + \ldots + a_m$ .                                                                                                                                                                   |
| 6 | integers $a_1, a_2, a_3, \ldots$ such that for any positive integers m and n where $1 \leq n$                                                                                                                                                                                                                                                                           |

Contributors: Leicich, drmzjoseph



## **Art of Problem Solving** 2015 Cono Sur Olympiad

- The product of all elements from A equals the product of all elements from

Prove that there are two subsets of S that are friends such that each one of them contains at least 738 elements.

www.artofproblemsolving.com/community/c79279

Contributors: Leicich, drmzjoseph