- [4] 'Modellreaktionen', a) K. C. Nicolaou, Y. He, D. Vourloumis, H. Vallberg, Z. Yang, Angew. Chem. 1996, 108, 2554; Angew. Chem. Int. Ed. Engl. 1996, 35, 2399: Totalsynthesen: b) Z. Yang, Y. He, D. Vourloumis, H. Vallberg, K. C. Nicolaou, thid. 1997, 109, 170 bzw. 1997, 36, 166; c) K. C. Nicolaou, F. Sarabia. S. Ninkovic, Z. Yang, ibid. 1997. 109, 539 bzw. 1997. 36, 525; d) K. C. Nicolaou, N. Winssinger, J. Pasto, S. Ninkovic, F. Sarabia, Y. He, D. Vourloumis, Z. Yang, T. Li, P. Glannakakout, E. Hamel, Nature (London) 1997, 387, 268.
- [5] Modellreaktionen: a) D. Schinzer, A. Limberg, O. M. Böhm, Chem. Eur. J. 1996. 2, 1477; Totalsynthese: b) D. Schinzer, A. Limberg, A. Bauer, O. M. Böhm. M. Cordes, Angew. Chem. 1994, 106, 543; Angew. Chem. Int. Ed. Engl. 1997, 36, 523,
- T. Gabriel, L. Wessjohann, Tetrahedron Lett. 1997, 38, 1363.
- [7] E. Claus, A. Pahl, P. G. Jones, H. M. Meyer, M. Kalesse, Tetrahedron Lett. 1997, 38, 1359.
- [8] J. Mulzer, A. Mantoulidis. Tetrahedron Lett. 1996, 37, 9179.
- [9] R. E. Taylor, J. D. Haley, Tetrahedron Lett. 1997, 38, 2061.
- [10] Unveröffentlichte Ergebnisse mit den in Lit. [3a, b] beschriebenen Verbindun-
- [11] A. Balog, P. Bertinato, D.-S. Su, D. Meng, E. Sorensen, S. J. Danishefsky, Y.-H. Zheng, T.-C. Chou, L. He, S. B. Horwitz, Tetrahedron Lett. 1997, 38.
- [12] Mit gleicher Berechtigung könnte man auch von der Entfernung der C10- oder der CII-Methylengruppe beim Übergang zur Nor-Verbindung 18 sprechen; hier betrachten wir diesen Übergang als "C9-Verlust" und damit als Veränderung der Sustituenten an C8.
- [13] a) D. M. Bollag, P. A. McQueney, J. Zhu, O. Hensens, L. Koupai, J. Liesch, M. Goetz, E. Lazarides, C. M. Woods, Cancer Res. 1995, 55, 2325; b) R. J. Kowalski, P. Giannakakou, E. Hamel, J. Biol. Chem. 1997, 272, 2534.
- Alle beschriebenen Analoga wurden auf dem von uns bereits beschriebenen Weg synthetisiert: D. Meng, P. Bertinato, A. Balog, D.-S. Su, T. Kamenecka, E. Sorensen, S. J. Danishefsky, J. Am. Chem. Soc. 1997, im Druck.
- [15] Die an C12 n-Hexyl-substituierte (Z)-Desoxyverbindung weist ebenfalls eine beträchtliche biologische Aktivität auf. Allerdings ist ihre Löslichkeit in DMSO sehr gering, weshalb die Resultate mit dieser Verbindung nicht in Abb. I berücksichtigt wurden.
- [16] Zur Herstellung des trans-Epoxids, dessen biologische Aktivität sehr hoch ist. wurde 9 mit Dimethyldioxiran umgesetzt. Leider konnte die absolute Konfiguration des trans-Epoxids nicht bestimmt werden.
- [17] Das Microtubuli-Protein (MTP) aus Kalbshirnen wurde durch zweisachen temperaturabhängigen Ab- und Aufbau gereinigt [20]. Die Konzentration von Tubulin in MTP wurde zu ca. 85% bestimmt. Der Aufbau wurde mit oder ohne 10 µm Wirkstoff und MTP (1 mgmL-1) in einem Puffer aus 0.1 m 2-(N-Morpholin)ethansulfonsäure (MES), 1 mm 1.2-Di(2-aminoethoxy)ethan-N.N.N'.N'-tetraessigsaure (EGTA), 0.5 mм MgCl, und 3 м Glycerin (pH = 6.6) durchgeführt. Bei dieser Konzentration wird ein Verhältnis von ca. 1:1 von Wirkstoff zu Tubulindimer erreicht. Der Verlauf des Proteinaufbaus wurde spektrophotometrisch bei 350 nm und 35°C über 40 min anhand der Turbiditütsänderung als Maß für die Polymermasse verfolgt [21]. Aus jeder Reaktionsmischung wurde ein Aliquot (200 μL) entnommen, das bei 28 000 Umdrehungen pro Minute und 27°C 30 min zentrifugiert wurde. Die Proteinkonzentration in den Mikrotubuli-Pellets wurde durch Messung der in der überstehenden Phase verbliebenen Proteine bestimmt. Der durch die Behandlung mit 10 µm Epothilon B erhaltene Wert an Mikrotubuli wurde als 100% definiers.
- [18] Die Cytotoxizität der Verbindungen wurde durch das Wachstum von menschlichen lymphoblastischen Leukämiezellen CCRF-CEM oder deren gegenüber Vinblastin und Taxol resisitenten Unterstämmen (CCRF-CEM/VBL) durch XTT-Mikrokultur-Tetrazolium/Fromazan-Tests bestimmt. Der IC30-Wert wurde aus fünf oder sechs Tests (bei unterschiedlichen Konzentrationen) computergestützt ermittelt(23).
- [19] Das mehrfachresistente CCRF-CEM/VBL-Tumorgewebe wurde CB-7-SCID-Mäusen subcutan implantiert, die nach 7, 8, 9, 10, 14 und 15 d mit jeweils 0.7 mg kg-1 Epothilon B intraperitoneal behandelt wurden. Die mittlere Tumorgröße verringerte sich an den Tagen 12. 17 und 22 um 68. 60 bzw. 67%. In parallel durchgeführten Vergleichsexperimenten führten 2 mg kg 1 Paclitaxel zu einer Verringerung der Tumorgröße um 40, 42 bzw. 30%.
- [20] R. C. Weisenberg, Science 1972, 177, 1104.
- [21] F. Gaskin, C. R. Cantor, M. L. Shelanski, J. Mol. Biol. 1974, 89, 737.
- [22] Die Experimente wurden auch mit täglichen (0.7 und 1.0 mg kg-1) und halbtäglichen Gaben (0.15 und 0.25 mg kg-1) von Epothilon B durchgeführt. Die Wirksamkeit war bei täglicher oder halbtäglicher Gabe ähnlich hoch wie bei röchentlicher, jedoch war hier eine etwas höhere Toxizität festzustellen.
- [23] J. Chou, T. C. Chou, IBM-PC Software Manual. Biosoft, Cambridge, 1987.

Gezielt entworfene Epothilone: kombinatorische Synthese, Induktion der Tubulin-Polymerisation und cytotoxische Wirkung gegen taxolresistente Tumorzellen**

Kyriacos Costa Nicolaou.* Dionisios Vourloumis, Tianhu Li, Joaquin Pastor, Nicolas Winssinger, Yun He, Sacha Ninkovic, Francisco Sarabia. Hans Vallberg, Frank Roschangar, N. Paul King, M. Ray V. Finlay, Pareskevi Giannakakou, Pascal Verdier-Pinard und Ernest Hamel

Die Isolierung von Epothilon A 1 und B 2 aus dem Myxobakterium Sorangium cellulosum (Stamm 90) durch Höfle et. al.[13] und die Entdeckung ihrer cytotoxischen Aktivität gegenüber Tumorzellen lösten intensive Forschungen in Chemie und Biologie aus. Bollag et al. [2] berichteten 1995 über den Wirkungsmechanismus dieser Verbindungen durch Induktion der Tubulin-Polymerisation und Stabilisierung der Mikrotubuli, der dem von Taxol (Paclitaxel) ähnelt. [3] Die Entdeckung ihrer einzigartigen Wirkung gegen taxolresistente Tumorzellinien[4] machen diese neuartigen Substanzen zu interessanten Kandidaten für die Krebs-Chemotherapie. Höfle et al. veröffentlichten 1996 die vollständige Aufklärung der Konfiguration durch spektroskopische Methoden und Röntgenstrukturanalyse. [5] Kurz darauf erschien eine Flut von Zugängen zu^[6] und Totalsynthesen von Epothilon A 1 (7-11, 13) und B 2, (10, 12, 13) Außer den Natur-

[*] Prof. Dr. K. C. Nicolaou, Dr. D. Vourloumis, Dr. T. Li, Dr. J. Pastor, N. Winssinger, Y. He, Dr. S. Ninkovic, Dr. F. Sarabia, Dr. H. Vallberg, Dr. F. Roschangar, Dr. N. P. King, Dr. M. R. V. Finlay

Department of Chemistry and The Skaggs Institute for Chemical Biology The Scripps Research Institute

10550 North Torrey Pines Road, La Jolla, CA 92037 (USA) Telefax: Int. + 619/784-2469

E-mail: kcn@scripps.edu

Department of Chemistry and Biochemistry University of California, San Diego

9500 Gilman Drive, La Jolla, CA 92093 (USA)

Dr. P. Giannakakou

Medicine Branch, Division of Clinical Sciences

National Cancer Institute, National Institutes of Health

Bethesda, MD 20892 (USA)

Dr. P. Verdier-Pinard, Dr. E. Hamel

Laboratory of Drug Discovery Research and Development

Developmental Therapeutics Program, Division of Cancer Treatment Diagnosis and Centers National Cancer Institute

Frederick Cancer Research and Development Center

Frederick, MD 21702 (USA)

[**] Wir danken Dr. D. H. Huang und Dr. G. Siuzdak für ihre Hilfe bei den NMR-spektroskopischen und den massenspektrometrischen Messungen. Diese Arbeit wurde von den National Institutes of Health, vom Skaggs Institute for Chemical Biology, von der CaP CURE Foundation sowie von den firmen Merck, DuPont-Merck, Schering Plough, Hoffmann-La Roche und Amgen gefördert. N.P.K. dankt der George E. Hewitt Foundation. F.R. der Deutschen Forschungsgemeinschaft (DFG), D. V. der Firma Novartis. F.S. der Fundacion Ramon Areces (Spanien) und M. R. V. F. der Fulbright Foundation für ein Postdoktorandenstipendium.

stoffen wurden mehrere Vorstufen und Analoga synthetisiert⁽⁷⁻¹⁷⁾ und auf ihre biologische Wirkung hin untersucht.^(7,10,12,14,17) Unter diesen sind besonders die 12,13-Desoxyanaloga erwähnenswert, die zuerst von Danishefsky et al.^(7,12) und wenig später unabhängig von uns.^(8,10,11,13) Schinzer et al.⁽⁹⁾ sowie Höfle et al.⁽¹⁴⁾ beschrieben wurden. Hier berichten wir über a) die kombinatorische Festphasensynthese von Epothilon-A-Analoga, b) die Tubulin-Polymerisations-Eigenschaften einer großen Verbindungsbibliothek und c) die cytotoxische Wirkung einiger ausgewählter Analoga gegen Brust- und Ovarien(Eierstock)-Carcinome, einschließlich einiger taxolresistente Tumorzellinien. Die Ergebnisse liefern umfassende Informationen über Struktur-Wirkungs-Beziehungen der Epothilone und bilden die Basis für deren Weiterentwicklung.

Die Strukturen der Epothilone sind durch Änderung der Konfiguration einiger spezifischer Stereozentren, der Geometrie der Doppelbindung, der Ringgröße und durch Variation der Substituenten modifizierbar. Unsere Synthesestrategie war daher auf hohe Flexibilität ausgerichtet, um optimale molekulare Vielfalt und eine größtmögliche Bibliothek zu erhalten. Tabelle 1 enthält die Strukturen einer Epothilon-Bibliothek, die durch kombinatorische Methoden in Lösung [6a. 8. 10.11.13. 15. 16. 28] und an fester Phase [10. 28] erhalten wurden. Biologisches Screening dieser Verbindungen sollte genügend Informationen über Struktur-Wirkungs-Beziehungen liefern, um die nächste Phase des Projektes – das Design, die Synthese und die Identifizierung pharmakologisch relevanter Verbindungen – einzuläuten.

Die Strategie für die Konstruktion einer Bibliothek aus Epothilon-A-Analoga basierte auf unserer kürzlich veröffentlichten Festphasensynthese[10] von Epothilon A und Radiofrequenzverschlüsselter kombinatorischer Chemie (Radiofrequency Encoded Combinatorial Chemistry, REC-Chemie).[18] Schema 1 faßt die Synthese der 12.13-Desoxyepothilon-A-Bibliothek aus den Schlüsselbausteinen A, B und C zusammen. [19] Merrifield-Harz enthaltende SMART-Mikroreaktoren [20] wurden durch Kettenverlängerung und Bildung der Phosphoniumsalze glatt in die Mikroreaktoren I überführt (SMART = Single or Multiple Addressable Radiofrequency Tag). Diese wurden gemäß ihrer Radiofrequenz-Markierung sortiert und mit Natriumhexamethyldisilanzanid (NaHMDS) in die entsprechenden Ylide überführt, die mit den Aldehyden A umgesetzt wurden. Die SMART-Mikroreaktoren II wurden zum Waschen und für das anschließende Entschützen und die Oxidation zu den polymergebundenen Aldehyden III vereint. Erneutes Sortieren und Reaktion mit dem Dianion der Oxosäure B lieferte die polymergebundenen Carbonsäuren IV als Diastereomerengemische. Umsortieren und Verestern mit den Alkoholen C lieferte die Diene V. Durch Umsetzung an den einzelnen SMART-Mikroreaktoren mit [RuCl₂(=CHPh)(PCy₃)₂] wurden nach Cyclisierung und gleichzeitiger Abspaltung vom Harz durch Olefin-Metathese^[6a, 7a, 8a, 9-11, 15, 21, 22] eine Mischung aus den 12,13-Desoxyepothilonen A VII, VIII, IX und X erhalten. Jede Mischung wurde identifiziert und durch präparative Dünnschichtchromatographie gereinigt. Die reinen Verbindungen wurden einzeln mit Trifluoressigsäure (TFA) in Dichlormethan ent-

schützt und anschließend epoxidiert. (68. 76.8-11. 13. 15-17)

Die Epothilon-Bibliothek (Tabelle 1) wurde im Hinblick auf die Induktion der Tubulin-Polymerisation mit 5 µm Verbindung bei 37 °C dem Screening unterworfen. [2] Zuvor getestete Verbindungen (siehe Lit. in Tabelle 1) wurden zu Vergleichszwecken in das Screening einbezogen. Die meisten Analoga wurden detaillierteren Untersuchungen in Cytotoxizitätsstudien mit menschlichen Ovarien- und Brustkrebszellen einschließlich taxolresi-

stenter Linien^[23] und einem quantitativen Tubulin-Polymerisations-Assay unterworfen, der zwischen wirksamen taxoiden Verbindungen differenziert (Tabelle 2).^[24] Es wurde schnell deutlich, daß Verbindungen mit Polymerisationswerten unter 40% im Screening hohe EC₅₀-Werte im quantitiven Assay gaben und zu einer geringen Inhibierung des Zellwachstums führten (Tabelle 2 enthält nur positive Ergebnisse).

Der Glutamat-Assay wurde zur Überprüfung der Hypothese entwickelt, daß Taxoide, die hinsichtlich der Tubulin-Polymerisation aktiver sind als Taxol, auch cytotoxischer sind, [24] was mit über 50 Analoga bestätigt wurde. [33] Mit den Epothilonen war der quantitative Assay weniger erfolgreich: Eine niedrige Glutamatkonzentration führte zu einer hohen falsch-negativen Rate in der Vorhersage der Cytotoxizität (Ergebnisse nicht gezeigt), wohingegen höhere Glutamatkonzentrationen (z. B. 0.7 M, Tabelle 2) ähnliche Aussagen wie der Screening-Assay lieferten. Definiert man "signifikante" Cytotoxizität über einen IC 30-Wert unter 10 пм, so haben wir neun Analoga mit Aktivität gegen Brust- und Ovarienzellinien identifiziert (3, 6, 14-16, 19, 20, 23 und 25). Im Screening-Assay waren unter den untersuchten Verbindungen keine falsch-negativen, dafür aber sieben falsch-positive Ergebnisse (Verbindungen mit begrenzter Cytotoxizität, die zu >40% Polymerisation führten). Die gleichen Ergebnisse wurden im Glutamat-Assay erhalten. Die EC50-Werte der neun cytotoxischen Analoga betrugen zwischen 3.3 und 13 µM, die von neun weiteren Analoga zwischen 6.0 und

Zwei taxolresistente Linien wurden aus 1A9-Ovarienzellen erhalten, wobei die Resistenz aus Mutationen im M40-Gen resultierte, das einen hochexprimierten β_1 -Isotyp in den parentalen und resistenten Zellinien kodiert. [23] Die veränderten Aminosäuren waren der Rest 270 in der 1A9PTX10-Linie (Phe → Val) und der Rest 364 in 1A9PTX22 (Ala → Thr). Dies stimmte mit der Beobachtung überein, daß sich die Taxol-Bindungsstelle auf β-Tubulin befindet. (25-27) Vorläufige Ergebnisse [10] mit 1 und einigen Analoga, nach denen 1A9PTX22-Zellen nahezu vollständige Empfindlichkeit gegenüber Epothilonen beibehielten und 1A9PTX10-Zellen teilweise resistent blieben. wurden somit bestätigt (Tabelle 2). Die relative Resistenz der IA9PTX22-Zellen betrug mit Taxol 27 und mit den elf cytotoxischen Epothilonen 1.0 bis 4.5, die der 1A9PTX10-Zellen 23 bzw. 3.5 bis 9.1. Die Tatsache, daß 1 und 2 die Bindung von Taxol an das Tubulin-Polymer kompetitiv inhibieren, ist ein Indiz dafür, daß die Taxol- und die Epothilon-Bindungsstellen überlappen. [4] Unter der Annahme, daß Phe 270 und Ala 364 direkt mit Taxol wechselwirken, deuten die Resultate mit den resistenten Zellen an, daß Phe 270 hinsichlich der Wechselwirkung von Epothilonen an der Taxol-Bindungsstelle wichtiger als Ala 364 ist.

Die in Tabelle 1 und 2 gezeigten Daten und die zuvor beschriebenen Ergebnisse^[1, 2, 7, 10, 12, 17] liefern wichtige Informationen über die Struktur-Wirkungs-Beziehungen für die In-vitro-Tubulin-Polymerisation sowie für die In-vitro-Cytotoxizität und führten zu mehreren Schlußfolgerungen: Die Bedeutung des Makrocyclus wurde durch das Fehlen signifikanter Tubulin-Polymerisations-Aktivität der offenkettigen Olefin-Metathese-Vorstufe 61 untermauert. Zu diesem Ergebnis kamen auch Höfle et al. [14] mit einem Abbauprodukt von Epothilon A. Die Inversion der Konfiguration an C3 resultierte in einer verringerten Tubulin-Polymerisations-Aktivität. Interessanterweise weisen die $\alpha.\beta$ -ungesättigten Lactone (z. B. 107 und 110) bemerkenswert hohe Tubulin-Polymerisations-Aktivitäten auf (Tabelle 1), was eher einen konformativen Effekt der 3-OH-Gruppe nahelegt und weniger auf deren direkte Bindung zurückzuführen ist. Eine weitere Funktion der 3-OH-Gruppe wird durch die

Schema 1. Kombinatorische Festphasensynthese von Epothilon-A-Analoga. a) 1. 1,4-Butandiol (5.0 Äquiv.), NaH (5.0 Äquiv.), nBu₄NI (0.1 Äquiv.), DMF, 25°C, 12 h: 2. Ph₂P (4.0 Äquiv.), I₄ (4.0 Äquiv.), Imidazol (4.0 Äquiv.), CH₂Cl₂, 25°C, 3 h: 3. Ph₃P (10 Äquiv.), 90°C, 12 h: b) 1. sortieren der SMART-Mikroreaktoren (mtt einem AccuTag-100-Gerät); 2. NaHMDS (3.0 Äquiv.), THF DMSO (1/1), 25°C, 12 h: 3. A (2.0 Äquiv.), THF, 0°C, 3 h (≥75% der Chlormethylpolystyrol-Beladung, basierend auf dem nach der Ozonolyse zurückgewonnenen Aldehyd); 4. vereinigen: c) 0.2M HCl in THF, 25°C, 12 h: d) (COCl), (4.0 Äquiv.), DMSO (8.0 Äquiv.), Et₃N (12.5 Äquiv.), −73 → 25°C (≥95% über zwei Stufen: die Reaktionen wurden duch 1R-spektroskopische Untersuchung des polymergebundenen Materials und dünnschlicht-chromatographische Analyse der durch Ozonolyse erhaltenen Produkte verfolgt); e) 1. sortieren: 2. B (2.0 Äquiv.), LDA (2.2 Äquiv.), THF, −78 → −40°C, 1 h: dann Zugabe des resultierenden Enolats zu einer Suspension aus Harz und ZnCl₂ (2.0 Äquiv.) in THF, −78 → −40°C, 2.0 h (≥90%, bezogen auf den nach der Ozonolyse zurückgewonnenen Aldehyd); 3. vereinigen: f) 1. sortieren: 2. C (5.0 Äquiv.), DCC: 5.0 Äquiv.), 4-DMAP: 5.0 Äquiv.), 25°C, 15 h (≥85% Ausbeute, bezogen auf den nach dumstzung mit NaOMe wiedergewonnenen Heterocyclus); g) 1. trennen der SMART-Mikroreaktoren: 2. [RuCl₂(=CHPhyPCy₃)₃] (0.20 Äquiv.), CH₂Cl₃, 25°C, 48 h: h) automatisierte HPLC (SiO₂, EtOAc/Hexan, oder C₁₈, H₂O/THF) oder präparative Dünnschichtchromatographie (EtOAc/Hexan); die Kontigurationen an C-6 und C-7 sowie die Geometrie des Olefins wurden durch ¹H-NMR-Spektroskopie vorläufig zugeordnet: i) 20proz. TFA in CH₂Cl₂ (viv.), 25°C, 2-12 h. Die Reinheit der Verbindungen wurde durch ¹H-NMR-Spektroskopie vorläufig zugeordnet: i) 20proz. TFA in CH₂Cl₂ (viv.), 25°C, 2-12 h. Die Reinheit der Verbindungen wurde durch ¹H-NMR-Spektroskopie vorläufig zugeordnet: i) 20proz. TFA in CH₂Cl₂ (viv.), 25°C, 2-12 h. Die Reinheit der Verbin

fehlende Cytotoxizität von 107 und 110 deutlich. Substitution der 4-gem-Dimethylfunktionalität gegen eine 4,4-Ethanogruppe (siehe z. B. 69 und 70) führte in allen Fällen zum Verlust der Tubulin-Polymerisations-Aktivität, was auf die essentielle Be-

deutung der passenden Konformation der Epothilone für die biologische Aktivität hindeutet. Offensichtlich führt der partielle sp²-Charakter und die damit verbundene Aufweitung des C3-C4-C5-Bindungswinkels zu ungünstigen konformativen Än-

给

Tabelle 1. Strukturen und Tubulin-Polymerisations-Aktivitäten von Epithilon-Analoga. Die Fußnoten [a]-[i] sind auf S. 2186 zu finden.

Lit.	Struktur	Tubulin-Polymerisat Tubulin-Polymerisation [%][a]		Lit.	Struktur	Tubulin-Poly- merisation [%]		Lit.	Struktur	Tubulin-Poly- merisation [%][a]	
нс	Y_{λ}			но,		So N		н	O. R ²	, I'N	
[7-13] [10, 12, 1: [15] [16]	\sim $^{"}$	1: R = Me, X = S 2: R = Me, X = S 3: R = M, X = O 4: R = Me, X = O Taxol	% (b) 98 (b) 58 93 50	(11)	, oh o	21	12	[11] [15] [26] [28] [28]	HO. AT	28: R ¹ = H, R ² = Me, X = 5 39: R ¹ = H, R ² = Me, X = 6 40: R ¹ = Me, R ² = H, X = 5 41: R ¹ = R ² = H, X = 5 42: R ¹ = R ² = Me, X = S	18
(11, 13) [16] [15]		5: R=H, X=S 6: R=Me, X=O 7: R=H, X=O	17 71 24	(7-13) (10, 12, 13 (15) (16)	, о он о	22: R = H, X = S 23: R = Me, X = S 24: R = H, X = O 25: R = Me, X = O	72 (d) 94 (d) 75 93	(11) (15) (28) (28) (28)	H O	43: R ¹ = H, R ² = Me, X = S 44: R ¹ = H, R ² = Me, X = C 45: R ¹ = Me, R ² = H, X = C	i 13) 20 i 11
но	, , , , ,	↓ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		}i6 HO		25: R = Me, X = 0	93	[28] [28]		46: A1 = R2 = H, X = S	21 4
[11]		•	16	[7, 10-13] (10, 12, 13 (15) (16)		26: R = H, X = S 27: R = Ma, X = S 26: R = H, X = O 29: R = Ma, X = O	76 (e) 64 (d) 43 54	(28)		0 48	25
HO (11)	OH OH	, S	14	HO. [11] [11]		30: R = H 31: R = TBS	25 6	HC [7] [28]	R' R' OH	49: R ¹ = H, R ² = Me 50: R ¹ = R ² = Me	16 [ſ] 3
HO.) S N	26	HO.)	20	(28)	P P	51: R' = M. R ² = Me	21
но		⊥ Г⁵⊱		но	~~°			[28] [28] [28]	он о	51: R ¹ = H, R ² = Me 52: R ¹ = Me, R ² = H 53: R ¹ = R ² = Me	21 3 4
(8, 11)		11	20	[11]	OH O)))	7	HC (28)	D. OH	54	7
HO.		S N	9	HO.		5 10 34	23	HO. (28) (28) (28)	n'n' N	S5: R ¹ = H, R ² = Me S6: R ¹ = Me, R ² = H S7: R ¹ = R ² = Me	23 5 1
HO.	₩ N	13 °°	22	HO.		↓ √ S N →	19	нс		√s N	24 7
нс		I,		HO.		L Ts		(28) (28) (28)		S8: R ¹ = H, R ² = Me 59: R ¹ = Ma, R ² = H 80: R = R ² = Me	7 5
10, 11, 13] (10, 13] (15] (16]	on o	14: R = H, X = S 15: R = Me, X = S 16: R = H, X = O 17: R = Me, X = O	92 84 (c) 64 95	(11)	-/- on 0	38	16	(28)		61	18
но		I,		но		T _N		но		S N	
[11, 13] [10, 13] [15]	Он 0	18: R=H,X=S 19: R=Me,X=S 20: R=H,X=O	17 63 46	[11]	j OH O	37	22	[28]	OH O	62	21

Lit.	Struktur	Tubulin-Poly- merisation (%)(a)	Lit.	Struktur	Tubulin-Poly- merisation [%][a]	<u> </u>	Lit.	Struktur	Tubulin-Poly- merisation (%) [a]
[28]	- 5 5 5 5 5 5 5 5 5 5 5 5 - 5	S 27	(15) (16) (28) (28)		75: R = R! = H, R ² 76: R = Me, R! = H 77: R = H, R! = Ma 76: R = H, R! = R ²	= Me 17 , R ² = Me 22 , R ² = H 5 = Me 4	HO (28)	OH O	√S. N 18
HC {28}		64 10	(15) (28) (28)	A ² OH O	79: R1 = H, R2 = M 80: R1 = Me, R2 =) 81: R1 = R2 = Me	9 25 1 9 5	(28)	ОН 0 10	√s M 12
(28)	OH O	65 10	H [15] [16]	OH OH	82: R = H 83: R = Me	10 27	HO [28]	₩ 10	5 51
(28)	→ OH OH	S 15	++ 15 16		84: R = H 85: R = Me	9 18	HO.	OH O	S 61
HO_(28](h) **	о оно	5 N 87 12	H (15)	OH O	55 56	3	HO.	107	[N 46
[58][h]	0 0H 0	OH S	(15) (16) (28) (28)	H O O	87: R = R ¹ = M, R ² = 88: R = Me, R ¹ = M, 1 89: R = H, R ¹ = Me, 1 90: R = H, R ¹ = R ² =	Me 13 9 ² = Me 6 9 ² = H 1	HO.	100	S 28
HO.	B O	S N P: R = H 20 D: R = Me 19	(15) (16) (28)	O H O	90: R = H, R ¹ = R ² = S N 91: R ¹ = H, R ² = Me 92: R ¹ = Me, R ² = M 93: R ¹ = R ² = Me	Me 5	HO	1,00	√S
HO 15		S N S S S S S S S S S S S S S S S S S S	(28) (26) (26) (28) (28)	OH O	94: R = H, R ¹ = Me, R 95: R = H, R ¹ = R ² = H 96: R = R ¹ = R ² = H 97: R = Me, R ¹ = H, R	² = H 11 Ne 3 24 ² = Ne 48	HO	70 110	Sa Sa
HO	OH O	5 N 31	(28) [17, 28] (28) (28)	H OH OH	98: R = H, R ¹ = Me, R 99: R = R ¹ + R ² = M 100: R = H, R ¹ = R ² = I 101: R = Me, R ¹ = H, R	² = H 11 No 23 ² = Mo 5(9) 34	HO.		20 20
(16)	OH 0 74		HO_ (28)		102 S	25	(28) (i) —	ОН 0 112	17
Angew. Ci	hem. 199 7, 109, N	r. 19 😗 WILEY-V	CH Verlag	GmbH. D-69451	Weinheim, 1997 ()	044-8249/97/1	0919-2185 \$	17.50 ÷ .50.0	2185

Tabeile 2. Biologische Eigenschaften ausgewählter Epothilon-Analoga.

Induktio	on der Tubulin-P	olymerisation	Inhibierung des Carcinomzellwachstums					
Verb.	Screening-	Glutamat- Assay [b]		Brust (e)				
	Assay(a)		parental 1A9	β-Tubulin-				
	Polymer-			1A9PTX10	MCF7			
	bildung[%]	EC, ₀ [µм]		IC,o[nm][rela				
Taxol	50	4.7	1.4	32 [23]	38 [27]	4.2		
ı	76	4.6	2.2	20 [9.1]	5.9 (2.7)	5.1		
2	98	3.4	0.13	1.0 [7.7]	0.31 [2.4]	1.0		
3	58	5.3	3.0	25 (8.3)	8.0 [2.7]	6.1		
4	93	-	0.2	1.1 [5.5]	0.9 [4.5]			
6	71	6.1	1.5	[7.3]	3.0 [2.0]	6.2		
14	92	6.2	2.0	18 (9.0)	3.0 [1.5]	5.4		
15	84	5.6	1.0	8.5 [8.5]	1.0 [1.0]	1.8		
16	64	7.8	3.5	32 [9.1]	9.5 (2.7)	> 100		
19	63	13	6.0	30 [5.0]	6.5 (1.1)	14		
20	46	3.1	4.8	34 [7.1]	9.0 [1.9]	5.7		
22	72	8.3	32	> 100	100	38		
23	94	3.9	6.5	23 [3.5]	9.0 [1.4]	9.3		
24	75	6.1	68	> 100	90	74		
25	93	3.3	8.0	30 [3.8]	12 [1.5]	> 100		
26	76	9.8	60	> 100	100	> 100		
27	84	7.5	61	> 100	85	75		
28	43	13	> 100	-	-	> 100		
29	54	6.0	32	> 100	> 100	68		
101	34	17	> 100	_	-	> 100		
105	51	7.6	32	> 100	70	57		
106	61	11	82	> 100	> 100	78		
107	46	_	28	> 100	50	76		

[a] Aus Tabelle 1. [b] Assay wie in Lit. [24] beschrieben durchgeführt; die Reaktionsmischung enthielt 10 µм gereinigtes Tubulin[29], 0.7 м Mononatrium-Glutamat. 5% DMSO und den Wirkstoff; 20 min Inkubation bei Raumtemperatur und Zentrifugieren der Reaktionsmischung bei 14000 Umin 1: die überstehende Proteinkonzentration wurde gemessen, wobei der EC 50-Wert als die Wirkstoffkonzentration definiert ist, bei der die Konzentration des überstehenden Proteins um 50 % gegenüber dem Kontrollwert verringert ist; die aufgeführten EC 30-Werte sind Mittelwerte (Standardabweichungen ≤ 20%) aus je zwei bis vier unabhängigen Assays. [c] Das Zellwachstum wurde durch Messung der Zunahme von zellulärem Protein bestimmt [30]. [d] Die parentale Ovarienzellinie, die als Klon von Linie A2780 abstammt[31], wurde verwendet, um taxolresistente Zellinien durch Inkubation der Zellen mit steigenden Konzentrationen von Taxol mit Verapamil zu erhalten [23]; die Zellen wurden in Gegenwart des Wirkstoffs in 96 h gezüchtet; die aufgeführten Werte sind Einzelbestimmungen, mit Ausnahme der für Taxol, 1 und 2 angegebenen (Mittel aus jeweils sechs Bestimmungen); die Werte für 1 und 2 sind Mittelwerte der Daten, die sowohl für synthetische als auch natürliche Proben (Spende von Merck Research Laboratories an E. H.) erhalten wurden und nicht signifikant voneinander abwichen. [e] Die MCF7-Zellen wurden vom National Cancer Institute (Drug Screening Program) erhalten [32]; sie wurden in Gegenwart des Wirkstoffs in 48 h gezüchtet; jeder Wert ist der Mittelwert aus zwei Bestimmungen. [f] Die relative Resistenz ist definiert als der IC, o-Wert, der für die β-Tubulin-Mutantenlinie erhalten wird, geteilt durch den für die parentale Zellinie erhaltenen Wert.

derungen im Makrocyclus und verhindert somit eine effektive Wechselwirkung mit Tubulin. Eine andere Voraussetzung für Tubulin-Polymerisations-Aktivität ist die (6R,7S)-Konfiguration, wie daran deutlich wurde, daß das (6S,7R)-Stereoisomer in signifikanten Konzentrationen die Tubulin-Polymerisation nicht induziert (z. B. 30, 47, 54-60, 66, 82-93, 104, 111; Tabelle 1). Ebenso interessant war die bemerkenswerte Schwächung der Wechselwirkung mit Tubulin als Folge der Inversion an C8 (siehe z. B. 98 vs. 22), der Einführung einer zweiten Methylgruppe an C8 (gem-Dimethylgruppe; 100 vs. 22 und 95 vs. 26) und der Entfernung der C8-Methylgruppe (siehe z. B. 99 vs. 22, 96 vs. 26 sowie 62 vs. 14). Letzteres wurde auch unabhängig von Danishefsky et al. [17] beobachtet.

Die Wichtigkeit der natürlichen (12R.13S)-Konfiguration des Epoxids wurde durch den generellen Trend der nichtnatürlichen (12S.13R)-Epoxide demonstriert, geringere Tubulin-Polymerisation zu induzieren (siehe z. B. 5 vs. 1, 6 vs. 4, 7 vs. 3; 6 ist allerdings ähnlich aktiv wie 1, nicht aber wie 2). Interessanterweise waren die Epothilon A und B entsprechenden cis- und trans-Olefine im Tubulin-Polymerisations-Assay aktiv. wobei die Aktivitäten der cis-Olefine denen der Naturstoffe glichen. Ähnliche Beobachtungen wurden unabhängig auch von Danishefsky et al.[76, 12, 17] sowie von Höfle et al.[14] gemacht. Wir stellten allerdings fest, daß die cis- und besonders die trans-Olefine deutlich weniger cytotoxisch waren als die natürlich vorkommenden Epoxide (22 und 26 vs. 1, 23 und 27 vs. 2). Darüber hinaus induzieren die von den (12E)-Olefinen abgeleiteten α - und B-Epoxide die Tubulin-Polymerisation beträchtlich und hemmen das Zellwachstum stark (14, 16 und 20 vs. 1, 15 und 19 vs. 2; Verbindung 15 scheint in der Tat unter den in Tabelle 2 aufgeführten Analoga das mit der höchsten Cytotoxizität zu sein).

Die C12-Methylgruppe verleiht allen untersuchten Epothilonen eine durchweg höhere Wirksamkeit im Vergleich zu den entsprechenden C12-Demethylverbindungen (z. B. 2 vs. 1, 4 vs. 3), mit Ausnahme der Verbindungen 14 und 15, deren Aktivitäten ähnlich waren. Die Inversion der Konfiguration an C15 führte zu einem Verlust der Fähigkeit, die Tubulin-Polymerisation zu induzieren (64 vs. 22, 65 vs. 26). Der Austausch der C16-Methyl- gegen eine Ethylgruppe verringerte ebenfalls die Aktivität im Tubulin-Assay (101 vs. 22, 97 vs. 26), was nahelegt, daß die Methylgruppe dafür sorgt, daß die Seitenkette ihre planare Konformation [51] beibehält.

Diese Schlußfolgerung wird durch die Inaktivität der C16,C17-Epoxide 8, 9, 11 und 12 gestützt. Das Epothilon-Pharmakophor tolerierte unterschiedliche Modifikationen des aromatischen Heterocyclus: Einige Oxazolderivate wiesen ähnliche Aktivitäten wie die entsprechenden Thiazole auf (siehe z. B. 3 vs. 1. 4 vs. 2, 16 vs. 14, 24 vs. 22, 25 vs. 23, 20 vs. 18). Des weiteren führte der Ersatz der Thiazol- durch eine 2-Pyridyleinheit nur zu einer leichten Verringerung der Aktivität (siehe z. B. 105 vs. 22, 106 vs. 26) in den Tubulin-Assays, wohingegen der Austausch der C23-Methyl- gegen eine Phenylgruppe inaktive Verbindungen lieferte (102, 103). Schema 2 faßt die Struktur-Wirkungs-Beziehungen innerhalb der Epothilon-Familie aus diesen und früheren [1, 2, 7, 10, 12, 17] Studien zusammen.

Fußnoten zu Tabelle 1:

[[]a] Die Tubulin-Polymerisation wurde durch Filtrations-Kolonmetrie-Assay nach Bollag et al. [2] bestimmt: Gereinigtes Tubulin [29] (1 mgmL⁻¹) wurde bei 37 °C in Gegenwart der jeweiligen Verbindung (5 µm) in MEM-Puffer (100 mm 2-(N-Morpholino)ethansulfonsäure. pH = 6.75.1 mm Ethylenglycolbis(β-aminoethylether). N.-V. N'-N'-Tetraessigsäure und 1 mm MgCl₃) 30 min inkubiert; die Mischung wurde durch eine hydrophile 96-Weill-Millipore-Multiscreen-Durapore-Filtrationsplatte (Porengio 0.22 µm) filtriert, um nichtpolymensiertes Tubulin zu entfernen; das polymerisierte Tubulin wurde mit Amidschwarz-Lösung angefärbt und durch Messung der Absorption der Lösung auf einem Molecular Devices Microplate Reader quantifiziert; die Polymerisation [%] wurde relativ zur Absorption berechnet, die durch Inkubation mit 0.5 m GTP + 10% Glycerol in MEM-Puffer erhalten wurde (die zu 100% Tubulin-Polymerisation führen sollte); die Werte sind die Mittelwerte aus je drei Experimenten. [b] Lit. [1, 2, 10, 12, 17]. [c] Lit. [10]. [d] Lit. [10, 12, 17]. [e] Lit. [7]. [g] Lit. [7]. [h] Die Verbindungen 67 und 68 wurden durch Reaktion von 22 mit OsO₄/Morpholin-N-oxid (NMO) erhalten. [i] Die Verbindung 112 wurde durch Desilytierung des entsprechenden primären teri-Butyldiphenylsilylethers hergestellt [11].

Schema 2. Struktur-Wirkungs-Beziehungen (Tubulin-Bindungsassay) der Epothilone: A) (35)-Konfiguration ist wichtig; B) 4,4-Ethanogruppe wird nicht toleriert; C) (6R.75)-Konfiguration ist entscheidend: D) (8S)-Konfiguration ist wichtig, 8.3-Dimethylfunktionalität wird nicht toleriert; E) Epoxid ist nicht essentiell für Tubulin-Polymerisations-Aktivität, aber eventuell wichtig für Cytotoxizität; Epoxid-Konfiguration ist möglicherweise wichtig; Rest R ist wichtig; beide Oletin-Geometrien werden toleriert; F) (15S)-Konfiguration ist wichtig; G) sterisch anspruchsvollere Gruppe verringert Aktivität; H) Sauerstoffsubstituent wird toleriert; I) Substituent ist wichtig; J) Heterocyclus ist wichtig.

Die hier beschriebenen Ergebnisse demonstrieren eindrucksvoll die Stärke des Zusammenspiels von kombinatorischer Chemie und chemischer Biologie, das durch die Festphasensynthese, die REC-Chemie und moderne biologische Assays ermöglicht wird. Sie ebnen darüber hinaus den Weg für die Entdeckung von weiteren Wirkstoffen und für Entwicklungen auf dem Gebiet der Chemotherapie.

Eingegangen am 9. Juli 1997 [Z 10666]

Stichworte: Cytostatica · Epothilone · Kombinatorische Chemie · Mikroreaktoren · Struktur-Wirkungs-Beziehungen

- a) G. Höfle, N. Bedorf, K. Gerth, H. Reichenbach (GBF). DE-B 4138042.
 1993 [Chem. Abstr. 1993, 120, 52841]; b) K. Gerth, N. Bedorf, G. Höfle, H. Irschik, H. Reichenbach, J. Antibiot. 1996, 49, 560-563.
- [2] D. M. Bollag, P. A. McQueney, J. Zhu, O. Hensens, L. Koupal, J. Liesch, M. Goetz, E. Lazarides, C. M. Woods, Cancer Res. 1995, 55, 2325-2333.
- [3] S. B. Horwitz, J. Fant, P. B. Schiff, Nature 1979, 277, 665-667.
- [4] R. J. Kowalski, P. Giannakakou, E. Hamel, J. Biol. Chem. 1997, 272, 2534-2541.
- [5] G. Höfle, N. Bedorf, H. Steinmetz, D. Schomburg, K. Gerth, H. Reichenbach, Angew. Chem. 1996, 108, 1671-1673; Angew. Chem. Int. Ed. Engl. 1996, 35, 1567, 1560.
- [6] a) K. C. Nicolaou, Y. He, D. Vourloumis, H. Vallberg, Z. Yang, Angew. Chem. 1996, 108, 2554-2556; Angew. Chem. Int. Ed. Engl. 1996, 35, 2399-2401; b) D. Meng, E. J. Sorensen, P. Bertinato, S. J. Danishefsky, J. Org. Chem. 1996, 61, 7998-7999; c) P. Bertinato, E. J. Sorensen, D. Meng, S. J. Danishefsky, J. Org. Chem. 1996, 61, 8000-8001; d) D. Schinzer, A. Limberg, O. M. Böhm, Chem. Eur. J. 1996, 2, 1477-1482; e) J. Mulzer, A. Mantoulidis, Tetrahedron Lett. 1996, 37, 9179-9182; f) E. Claus, A. Pahl, P. G. Jones, H. M. Meyer, M. Kalesse, ibid. 1997, 38, 1359-1362; g) T. Gabriel, L. Wessjohann, ibid. 1997, 38, 1363-1366; R. E. Taylor, J. D. Haley, ibid. 1997, 38, 2061-2061.
- [7] a) A. Balog, D. Meng, T. Kamenecka, P. Bertinato, D.-S. Su, E. J. Sorensen,
 S. J. Danishefsky, Angew. Chem. 1996, 108, 2976 2978; Angew. Chem. Int. Ed.
 Engl. 1996, 35, 2801 2803; b) D. Meng, D.-S. Su, A. Balog, P. Bertinato, E. J.
 Sorensen, S. J. Danishefsky, Y.-H. Zheng, T.-C. Chou, L. He, S. B. Horwitz,
 J. Am. Chem. Soc. 1997, 119, 2733 2734.
- [8] a) Z. Yang, Y. He, D. Vourloumis, H. Vallberg, K. C. Nicolaou, Angew. Chem. 1997, 109, 170-172; Angew. Chem. Int. Ed. Engl. 1997, 36, 166-168; b) K. C. Nicolaou, F. Sarabia, S. Ninkovic, Z. Yang, ihid. 1997, 109, 539-540 bzw. 1997, 36, 525-526.
- [9] D. Schinzer, A. Limberg, A. Bauer, O. M. Böhm, M. Cordes, Angew. Chem. 1997, 109, 543-544; Angew. Chem. Int. Ed. Engl. 1997, 36, 523-524.
- [10] K. C. Nicolaou, N. Winssinger, J. A. Pastor, S. Ninkovic, F. Sarabia, Y. He, D. Vourloumis, Z. Yang, T. Li, P. Giannakakou, E. Hamel, *Nature* 1997, 387, 268-272.
- [11] K. C. Nicolaou, Y. He, D. Vourloumis, H. Vallberg, F. Roschangar, F. Sarabia, S. Ninkovic, Z. Yang, J. I. Trujillo, J. Am. Chem. Soc. 1997, 119, 7960-7973
- [12] D.-S. Su, D. Meng, P. Bertinato, A. Balog, E. J. Sorensen, S. J. Danishefsky, Y.-H. Zheng, T.-C. Chou, L. He, S. B. Horwitz, Angew. Chem. 1997, 109, 775-777; Angew. Chem. Int. Ed. Engl. 1997, 36, 757-759.

- [13] K. C. Nicolaou, S. Ninkovic, F. Sarabia, D. Vourloumis, Y. He, H. Vallberg, M. R.-V. Einlay, Z. Yang, J. Am. Chem. Soc. 1997, 119, 7974-2991.
- [14] G. Höfle, persönliche Mitteilung.
- [15] K. C. Nicolaou, H. Vallberg, N. P. King, F. Roschangar, Y. He, D. Vourloumis, C. G. Nicolaou, Chem. Eur. J. 1997, 3, Nr. 12.
- [16] K. C. Nicolaou, F. Sarubia, M. R. V. Finluy, S. Ninkovic, N. P. King, D. Vourloumis, Y. He, Chem. Eur. J. 1997, J. Nr. 12.
- [17] A. Balog, P. Bertinato, D.-S. Su, D. Meng, E. J. Sorensen, S. J. Dunishersky, Y.-H. Zheng, T.-C. Chou, L. He, S. B. Horwitz, Tetrahedron Lett. 1997, 38, 4529-4532.
- [18] a) K. C. Nicolaou, X.-Y. Xiao, Z. Parandoosh, A. Senyei, M. P. Nova, Angew Chem. 1995, 107, 2476-2479; Angew. Chem. Int. Ed. Engl. 1995, 34, 2289-2291; b) E. J. Moran, S. Sarshar, J. F. Cargill, M. M. Shahbaz, A. Lio, A. M. M. Mjalli, R. W. Armstrong, J. Am. Chem. Soc. 1995, 117, 10787-10788
- [19] Diese Fragmente wurden durch synthetische Standardverfahren und gemäß ähnlicher bekannter Synthesesequenzen hergestellt [11, 13, 15, 16].
- [20] Wir danken Dr. M. P. Nova von IRORI Quantum Microchemistry. San Diego, CA (USA), für ein AccuTag-100-Gerät und für SMART-Mikroreaktoren (MicroKans und MicroTubes). Die beschriebenen Versuche zur kombinatorischen Synthese wurde mit MicroKans durchgeführt, wohingegen jeweils nur ein MicroTube für die Synthese eines Satzes von vier Epothilonen A (z. B. 42, 47, 95 und 100. Tabelle 1) verwendet wurde. K. C. N. ist Berater der Firma IRORI Quantum Microchemistry.
- [21] Zur Entwicklung der Ringschluß-Olefin-Metathese siehe: a) W. J. Zuercher, M. Hashimoto, R. H. Grubbs, J. Am. Chem. Soc. 1996, 118, 6634-6640; b) P. R. Schwab, H. Grubbs, J. W. Ziller, ibid. 1996, 118, 100-110; c) R. H. Grubbs, S. J. Miller, G. C. Fu. Acc. Chem. Res. 1995, 23, 446-452, zit. Lit.; d) J. Tsuji, S. Hashiguchi. Tetrahedron Lett. 1980, 21, 2955-2959; für Pionierarbeiten auf diesem Gebiet siehe: e) T. J. Katz, S. J. Lee, N. Acton, ibid. 1976, 4247-4250; f) T. J. Katz, N. Acton, ibid. 1976, 4241-4254; g) T. J. Katz, J. McGinnis, C. Altus, J. Am. Chem. Soc. 1976, 98, 606-608; h) T. J. Katz, Adv. Organomet. Chem. 1977, 16, 283-317.
- [22] Für Anwendungen der Olefin-Metathese in der Synthese mittlerer und großer Ringe siehe: a) B. C. Borer. S. Deerenberg, H. Bieräugel, U. K. Pandit. Tetrahedron Lett. 1994, 35, 3191-3194; b) T. D. Clark, M. R. Ghadiri, J. Am. Chem. Soc. 1995, 117, 12364-12365; c) A. F. Houri, Z. Xu, D. A. Cogan, A. H. Hoveyda, thid. 1995, 117, 2943-2944; d) A. Fürstner, K. Langemann, J. Org. Chem. 1996, 61, 3942-3943; e) S. F. Martin, H.-J. Chen, A. K. Courtney, Y. Liao, M. Pätzel, M. N. Ramser, A. S. Wagman, Tetrahedron 1996, 52, 7251-7264; f) Z. Xu, C. W. Johannes, S. S. Salman, A. H. Hoveyda, J. Am. Chem. Soc. 1996, 118, 10926-10927.
- [23] P. Giannakakou, D. L. Sackett, Y.-K. Kang, Z. Zhan, J. T. M. Buters, T. Fojo, M. S. Poruchynsky, J. Biol. Chem. 1995, 272, 17118-17125.
- [24] C. M. Lin, Y. Q. Jiang, A. G. Chaudhary, J. M. Rimoldi, D. G. I. Kingston, E. Hamel, Cancer Chemother. Pharmacol. 1996, 38, 136-140.
- [25] S. Rao, N. E. Krauss, J. M. Heerding, C. S. Swindell, I. Ringel, G. A. Orr, S. B. Horwitz, J. Biol. Chem. 1994, 269, 3132-3134.
- [26] S. Rao, G. A. Orr, A. G. Chaudhary, D. G. I. Kingston, S. B. Horwitz, J. Biol. Chem. 1995, 270, 20235-20238.
- [27] E. Nogales, S. G. Wolf, I. A. Khan, R. F. Luduena, K. H. Downing, *Nature* 1995, 375, 424-427.
- [28] Diese Arbeit
- [29] E. Hamel, C. M. Lin, Biochemistry 1984, 23, 4173-4184.
- [30] P. Skehan, R. Storeng, D. Scudiero, A. Monks, J. McMahon, D. Vistica, J. T. Warren, H. Bokesh, S. Kenney, M. R. Boyd, J. Natl. Cancer Inst. 1990, 82, 1107-1112.
- [31] B. C. Behrens, T. C. Hamilton, H. Masuda, K. R. Grotzinger, J. Whang-Peng, K. G. Louie, T. Knutsen, W. M. McKoy, R. C. Young, R. F. Ozols, Cancer Res. 1987, 47, 414-418.
- [32] A. Monks, D. Scudiero, P. Skehan, R. Shoemaker, K. Paull, D. Vistica, C. Hose, J. Langley, P. Cronise, A. Vaigro-Wolff, M. Gray-Goodneh, H. Campbell, J. Mayo, M. Boyd, J. Natl. Cancer Inst. 1991, 33, 757-766.
- [33] E. Hamel, P. Giannakakou, D. G. I. Kingston, unveröffentlichte Ergebnisse.

THIS PAGE BLANK (USPTO)