Cached quotients and lookups

Ariel Gabizon

31. januar 2023

Constraints vs Lookups

Example: Check $0 \le x \le 2^n - 1$

Constraints vs Lookups

Example: Check $0 \le x \le 2^n - 1$

Constraint approach:

Prover sends b_0, \ldots, b_{n-1} . Shows:

- $ightharpoonup \forall i, b_i \in \{0, 1\}$

Constraints vs Lookups

Example: Check $0 \le x \le 2^n - 1$

Constraint approach:

Prover sends b_0, \ldots, b_{n-1} . Shows:

- $ightharpoonup \forall i, b_i \in \{0, 1\}$

Requires n + 1 constraints.

Lookup approach

Preprocess table $T = \{0, ..., 2^n - 1\}$. Let N := |T|. Devise protocol to check $x \in T$.

Lookup approach

Preprocess table $T = \{0, ..., 2^n - 1\}$. Let N := |T|. Devise protocol to check $x \in T$.

Old results - good when amortized:

Thm[plookup]: Can check m different x's are in T in O(m + N) constraints.

Lookup approach

Preprocess table $T = \{0, ..., 2^n - 1\}$. Let N := |T|. Devise protocol to check $x \in T$.

Old results - good when amortized:

Thm[plookup]: Can check m different x's are in T in O(m + N) constraints.

New results - prover doesn't pay for table size!! Thm [Caulk... \mathfrak{cq}]: After $O(N \log N)$ preprocessing, can check $x \in T$, in O(1) constraints.

Rest of talk: explain main technical component of new works - *cached quotients*

Rest of talk: explain main technical component of new works - *cached quotients*

First - a brief recap of polynomial commitment schemes..

G - generator of pairing friendly elliptic curve group.

srs := $1 \cdot G$, $x \cdot G$, ..., $x^d \cdot G$, for random $x \in \mathbb{F}$.

G - generator of pairing friendly elliptic curve group.

$$srs := 1 \cdot G, x \cdot G, \dots, x^d \cdot G$$
, for random $x \in \mathbb{F}$.

For $f \in \mathbb{F}[X]$ of degree d:

$$cm(f) := f(x) \cdot G$$

G - generator of pairing friendly elliptic curve group.

$$srs := 1 \cdot G, x \cdot G, \dots, x^d \cdot G$$
, for random $x \in \mathbb{F}$.

For $f \in \mathbb{F}[X]$ of degree d:

$$cm(f) := f(x) \cdot G$$

Central Feature: Given cm(f) and any $a \in \mathbb{F}$; there is short proof for correctness of z = f(a).

```
srs := 1 \cdot G, x \cdot G, ..., x^d \cdot G, for random x \in \mathbb{F}.
cm(f) := f(x) \cdot G
```

Nice features:

```
srs := 1 \cdot G, x \cdot G, ..., x^d \cdot G, for random x \in \mathbb{F}.
cm(f) := f(x) \cdot G
```

Nice features:

► Linearity: cm(f + g) = cm(f) + cm(g)

```
srs := 1 \cdot G, x \cdot G, \dots, x^d \cdot G, for random x \in \mathbb{F}.

cm(f) := f(x) \cdot G
```

Nice features:

- ► Linearity: cm(f + g) = cm(f) + cm(g)
- ▶ Product checks: Given $cm(f_1), cm(f_2), cm(g_1), cm(g_2)$ can check $f_1(X)f_2(X) \stackrel{?}{\equiv} g_1(X)g_2(X)$ via pairings. (Secure in the Algebraic Group Model)

 $Z_T(X) = \prod_{\alpha \in T} (X - \alpha)$ a vanishing polynomial of a subset $T \subset \mathbb{F}$.

 $Z_T(X) = \prod_{\alpha \in T} (X - \alpha)$ a vanishing polynomial of a subset $T \subset \mathbb{F}$.

 $cm(Z_T)$, cm(f) given to verifier.

 $Z_T(X) = \prod_{\alpha \in T} (X - \alpha)$ a vanishing polynomial of a subset $T \subset \mathbb{F}$.

 $cm(Z_T)$, cm(f) given to verifier.

Prover wants to show $f = Z_S$ for some $S \subset T$.

 $Z_T(X) = \prod_{\alpha \in T} (X - \alpha)$ a vanishing polynomial of a subset $T \subset \mathbb{F}$.

 $cm(Z_T)$, cm(f) given to verifier. Prover wants to show $f = Z_S$ for some $S \subset T$.

Can we do this in O(|S|) prover operations?(think $|S| \ll |T|$)

Cached quotients idea:

The quotient $Z_{T \setminus S}(X) = \frac{Z_T(X)}{Z_S(X)}$ is a "witness" to $S \subset T$.

Cached quotients idea:

The quotient $Z_{T \setminus S}(X) = \frac{Z_T(X)}{Z_S(X)}$ is a "witness" to $S \subset T$.

▶ Enough to compute **commitment** to $Z_{T\setminus S}$.

Cached quotients idea:

The quotient $Z_{T \setminus S}(X) = \frac{Z_T(X)}{Z_S(X)}$ is a "witness" to $S \subset T$.

- ▶ Enough to compute **commitment** to $Z_{T\setminus S}$.
- ► This commitment is a sparse combination of commitments we can precompute.

details in next slide ...

For each $i \in T$, let $g_i(X) := Z_{T \setminus \{i\}}(X)$.

For each $i \in T$, let $g_i(X) := Z_{T \setminus \{i\}}(X)$.

We have [Tomescu et. al]

$$Z_{T \setminus S}(X) = \sum_{i \in S} c_i \cdot g_i(X)$$

for some $c_i \in \mathbb{F}$.

For each $i \in T$, let $g_i(X) := Z_{T \setminus \{i\}}(X)$.

We have [Tomescu et. al]

$$Z_{T \setminus S}(X) = \sum_{i \in S} c_i \cdot g_i(X)$$

for some $c_i \in \mathbb{F}$.

We precompute $cm(Z_T)$, $\{cm(g_i)\}_{i \in T}$.

Prover then computes in |S| operations:

$$\pi \coloneqq \text{cm}(\textbf{Z}_{T \setminus S}) = \sum c_i \cdot \text{cm}(\textbf{g}_i)$$

Prover then computes in |S| operations:

$$\pi \coloneqq \text{cm}(Z_{T \setminus S}) = \sum_{i \in S} c_i \cdot \text{cm}(g_i)$$

Verifier checks with pairing that:

$$e(cm(f), \pi) = e(cm(Z_T), 1 \cdot G)$$