Hands-on Lab 5: Sensing Part 2

EECS 16B Fall 2022

Slides: http://links.eecs16b.org/lab5-slides

Administrivia (Lab Reports)

- Midterm Lab Report will be released by October 2nd
- Everyone should have their sid.txt submitted on the Gradescope assignment. Instructions copied below
 - Lab computers: open "Git Bash" and run "cd \$USERPROFILE/Desktop && echo SID > sid.txt"
 - o macOS/Linux: open "Terminal" and run "cd \$HOME/Desktop && echo SID > sid.txt"
 - General Windows: open "Command Prompt" and run "cd %userprofile%\Desktop;
 echo SID > sid.txt"
 - Replace SID with your unique Berkeley Student ID
- The following week is a buffer week (lab makeups + lab report help)

Lab 5 Overview

- Re-tune your mic board
- Implement the following:
 - Low Pass Filter (LPF)
 - High Pass Filter (HPF)
 - Chain LPF and HPF together -> Band Pass Filter
- Build the HPF on some randomly empty space will be discarded after lab
- Reminder: do NOT use the prestripped jumper wires within your breadboard

BREADBOARD LAYOUT

Filters

Filters

- Cutoff frequency (f_c) is where signal has attenuated by 1/2 power (3dB)
- Recall:

$$P = IV = \frac{V^2}{R}$$

$$\frac{P}{2} = \frac{1}{2} \cdot \frac{V^2}{R} = \frac{1}{R} \left(\frac{V}{\sqrt{2}}\right)^2$$

- We can find the cutoff frequency by finding the frequency that causes the voltage to drop to $(1/\sqrt{2})V_0 \approx 0.707V_0$
- For RC circuits, the cutoff frequency is given by: $f_c = \frac{1}{2\pi RC}$ [Hz]

Low-pass Filter Cutoff Derivation

Everything that is less than to gets through. Note that our cutoff isn't clean a perfect because the attenuation is gradual.

High-pass Filter Cutoff Derivation

High Pass Filter

Think: the "gate" is higher.

High Pass Frequency Response

$$V_{out} = V_{in} \cdot \frac{Z_R}{Z_R + Z_c} = V_{in} \frac{R}{\frac{1}{jwc} + R}$$

$$|H(jw)| = \frac{|V_{ovt}|}{|V_{in}|} = \frac{1}{\sqrt{2}} = \frac{\sqrt{R^2}}{\sqrt{\frac{1}{wc}^2 + R^2}}$$

$$\frac{1}{2} = \frac{R^2}{(\frac{1}{wc})^2 + R^2}$$

$$\left(\frac{1}{wc}\right)^2 + R^2 = 2R^2$$

$$\left(\frac{1}{WC}\right)^2 = R^2$$

$$W = \frac{1}{RC}$$
 angular

angular cutoff frequency

Conceptually: as w→co, IH(jw)1→1

as w→o, IH(jw) I→ O

Review: Mic Board Schematic

1. Mic Gain

- Mic is a variable current source,
- Convert it to a voltage signal

2. Buffer

Prevent Loading

3. Removing Mic Drift

- The 1µF capacitor is a coupling capacitor, meaning it serves as a short to AC voltage but blocks DC voltage
- **OS1** centers signal at 1.65V. Connected through a $100k\Omega$ resistor, since OS1's voltage isn't equal to our signal.
- NEW: This creates a high pass filter, but its cutoff frequency is 1.59Hz, so nearly all the signal passes

4. Non-inverting amplifier

- Uses a potentiometer for variable gain
- OS2 serves as a virtual ground so we don't amplify the 1.65V offset

Concept Check!

What happens if we put a DC voltage through a high pass filter?

• Our cutoff is kinda WEAK. How can we make it sharper?

Concept Check!

- What happens if we put a DC voltage through a high pass filter?
 It gets destroyed. w = 0Hz. Centers signal at 0V.
- Our cutoff is kinda WEAK. How can we make it sharper?

Cascade filters!

But careful about loading.

Why Can't I Chain Passive Filters?!

•Sometimes we need to filter more than once (ie: band-pass, 2nd order filter, etc.)

- For low pass filter, expect output of first filter V1 = Vin $\frac{1}{i\omega RC + 1}$
 - But now, we have a second filter loading the output
- Note that R2 and C2 are in series:

$$Z_2 = Z_{R2} + Z_{C2} = R_2 + \frac{1}{j\omega C_2}$$
 $Z_2 = \frac{j\omega R_2 C_2 + 1}{j\omega C_2}$

- Note that C1 and Z2 are in Parallel: $Z_{tot} = Z_{c1} || Z_2 = \left[\frac{1}{Z_{c1}} + \frac{1}{Z_2} \right]^{-1}$
- Using Voltage Divider Formula: $V_1 = V_{in} \frac{Z_{tot}}{Z_{tot} + Z_{R1}}$

Why Can't I Chain (continued)

- The voltages at V1 after the first filter isn't the same as with just one low pass filter! Why?
 - We changed the cutoff frequency!
- Normal filter calculations falsely assume:
 - High output impedance (output draws no current)
 - Low input impedance (input provides as much current as needed)
- Instead, we need to add a buffer in between the filters

Band-pass Filters

- Band-pass Filter
 - Allows a range of frequencies to pass
 - Requires two cutoff frequencies
- We can make a band-pass from a high and low-pass filter: $(f_L < f_H)$
 - f_L: lower cutoff frequency
 - f_H: higher cutoff frequency

Important Forms/Links

- Help request form: https://eecs16b.org/lab-help
- Checkoff request form: https://eecs16b.org/lab-checkoff
- Extension Requests: https://eecs16b.org/extensions
- Makeup Lab: https://makeup.eecs16b.org
- Slides: <u>links.eecs16b.org/lab5-slides</u>
- Anon Feedback: https://eecs16b.org/lab-anon-feedback