

Différence de marche : (AB)-(AC) = $a/\sin\theta$ - $a\cos 2\theta/\sin\theta$ = $2a\sin\theta$ $\sin\theta = k_{+x}/k_{+} = (m\pi/a)x(\lambda/2\pi) = m\lambda/2a$ donc (AB)-(AC) = $m\lambda$: condition d'interférences constructives Si $a >> \lambda$ il y a beaucoup d'angles θ possibles => nombreux modes guidés Pour avoir un guide monomode il faut $a \sim \lambda$.

Fibres optiques

Atténuation : absorption de la silice

Dispersion pour une fibre monomode :

On la caractérise par le coefficient $D=(1/L)d\tau_g/d\lambda$ où $\tau_g=L/v_g$ est le temps de propagation de groupe.

Deux origines:

- milieu transparent : D_m = 3,3 ps/km/nm

- guidage : $D_a = -2.4 \text{ ps/km/nm}$

Les deux dispersions peuvent se compenser.

Conséquence : après propagation sur L~100 km, une impu

Données numériques tirées de l'épreuve A 2003