One Data Science Programme Week 3

Introduction to statistical models

Nanaki Maitra

Learning outcomes:

- Recap: dataset
- Recap: data wrangling
- Recap: data visualisation
- Introduction simple linear regression models
- Building on data visualisation

Important packages

- > library(RCurl) # http interface
- > library(ggplot2) # data visualisation
- > library(dplyr) # needed for the select() and summarise() functions
- > library(magrittr) # forward pipe operator %>%

Dataset

List of variables:

- House
- Name
- Birthday
- Best hand
- Arithmancy
- Muggle Studies
- Defence Against the Dark Arts

Task #1: Load dataset data <-

read.csv("https://raw.githubusercontent.com/kai-lim/One-Data-Science/main/data/Hogwarts_enrolment_data.csv")

Recap: Data wrangling

Example:

Task #2: Filter by house and subjects

	Charms	Herbology	
1	-246.4272	6.061064	
2	-251.0625	-4.997610	
3	-250.9119	-2.208650	
4	-253.0216	-8.390447	
5	-252.3844	-4,492272	
6	-244.7478	-1.841579	
7	-247,9081	-5.019345	
8	-253.2316	-3,234020	
9	-247.7641	-4.789794	
10	-249.0736	-3.930535	

Slytherin.data <- data %>% filter(Hogwarts.House == "Slytherin") %>% select(Charms, Herbology)

> summary(Slytherin.data)

Charms		Herbology	
Min.	:-259.5		:-10.296
1st Qu.	:-252.1	1st Qu.	: -6.362
Median	:-250.1	Median	: -4.998
Mean	:-249.6	Mean	: -4.658
3rd Qu.	:-247.5	3rd Qu.	: -3.375
Max.	:-225.4	Max.	: 10.297

Recap: Data visualisation

Example:

> ggplot(Slytherin.data, aes(x=Charms, y=Herbology)) + geom_point(colour = "#2a623d")

Using geom_point() from ggplot2 allows us to make a scatter plot

Introduction to simple linear regression

- Establish the relationship between two continuous variables
- Forecast a new observation

$$y = mx + c$$
 $Y = \beta_0 + \beta_1 x$

Y = observed values for dependent variable

 β_0 = y intercept

 β_1 = gradient / slope

x = all observed values for independent variable

Introduction to simple linear regression

How do we interpret our results?

Example

Task #3:

- > slytherin.lm <- lm(formula = Herbology ~ Charms, data = Slytherin.data)
- > summary(slytherin.lm)

Multiple R-squared: 0.434, Adjusted R-squared: 0.4321 F-statistic: 229.3 on 1 and 299 DF, p-value: < 2.2e-16

Coefficients table:

Row 1 "Intercept" - this is the y intercept Row 2 "Charms" - Here we have the slope of the equation and error

$$Y = 107.3 + 0.449x$$
OR
Herbology = $107.3 + 0.449*$ Charms

Introduction to simple linear regression

How good is our linear regression line?

Let's look at the r² value!

r² is the coefficient of determination.

Smaller r² value

```
call:
                                                             lm(formula = Herbology ~ Charms, data = Slytherin.data)
                                                              Residuals:
                                                                                                                                   10 Median
                                                              -5.6678 -1.2214 -0.1992 1.0212 10.8520
                                                              coefficients:
                                                                                                                                    Estimate Std. Error t value Pr(>|t|)
                                                              (Intercept) 107.30465
                                                              charms
                                                             Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
                                                              Residual standard error: 2.129 on 299 degrees of freedom
                                                             Multiple R-squared: 0.434, Adjusted R-squared: 0.4321
                                                              F-statistic: 229.3 on 1 and 299 DF, p-value: < 2.2e-16
A STANSON OF THE PROPERTY OF THE PARTY OF TH
```

Larger r² value

Example

```
call:
lm(formula = Herbology ~ Charms, data = Slytherin.data)
Residuals:
    Min
            10 Median
-5.6678 -1.2214 -0.1992 1.0212 10.8520
coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) 107.30465
                        7.39505
                        0.02962
                                 15.14
charms
             0.44858
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 2.129 on 299 degrees of freedom
Multiple R-squared: 0.434, Adjusted R-squared: 0.4321
F-statistic: 229.3 on 1 and 299 DF, p-value: < 2.2e-16
```

R-squared for our model is 43.3%


```
Task #4: Plot regression line ggplot(Slytherin.data, aes(x=Charms, y=Herbology)) + geom_point(colour = "#2a623d") + = -x + geom_smooth(method = Im, formula = = -x + = -
```

Building on data visualisation

A good graph conveys all required information about the data to the viewer.

Therefore, presentation is key!

A lot of data presentation can come down to personal preferences but including somethings, like chart title and axis labels, is good practice:

Themes

ggplot(Slytherin.data, aes(x=Charms, y=Herbology)) + geom_point(colour = "#2a623d") +

Chart and axis titles

```
ggplot(Slytherin.data, aes(x=Charms, y=Herbology))
+ geom_point(colour = "#2a623d") +
+ theme_classic() +
```

- + ggtitle("Relationship between Herbology points and Charms points in Slytherin House") +
- + xlab("Charms points") + ylab("Herbology points") +
- + geom_smooth(method = lm, formula = y ~ x, se = FALSE, colour = "green")

Changing scales

xlim(min value, max value)

ylim(min value, max value)


```
> ggplot(Slytherin.data, aes(x=Charms, y=Herbology)) + geom_point(colour = "#2a623d") +
```

+ ylim(-15, 10)

⁺ geom_smooth(method = Im, formula = $y \sim x$, se = FALSE, colour = "green") +

⁺ xlab("Charms points") + ylab("Herbology points") +

⁺ ggtitle("Relationship between Herbology points and Charms points in Slytherin House") +

⁺ theme classic() +

⁺ theme(plot.title = element_text(colour = "#2a623d", size = 16)) +

Adding annotations on the graph

+annotate(geom = "text", x axis position, y axis position, colour = , size = , label = "")

Useful if you want to add the regression equation or the r² value

Hogwarts Colors

Griffindor	Slytherin	Ravenclaw	Hufflepuff
Griffindor Dark Red	Slytherin Dark Green	Ravenclaw Dark Blue	Hufflepuff Canary
#740001	#1a472a	#0e1a40	#ecb939
Gryffindor Red	Slytherin Green	Ravenclaw Blue	Hufflepuif Light Canary
#ae0001	#2a623d	#222f5b	#f0c75e
Griffindor Yellow	Slytherin Dark Silver	The Grey Lady	Hufflepuff Light Brown
#eeba30	#5d5d5d	#bebebe	#726255
Griffindor Gold	Slytherin Light Silver	Ravenclaw Gold	Hufflepuff Dark Brown
#d3a625	#азаяяа	#946b2d	#372e29

Introducing Task

Send us an email if you have any questions:

one.data.science.program@gmail.com