Linear Regression(Multiple Variable) - From Scratch

Cost Function: Mean Squared Error(MSE)

Algorithm: Gradient Descent

```
In [1]: # Importing dependencies and dataset
   import numpy as np
   import pandas as pd
   import matplotlib.pyplot as plt
   from sklearn.datasets import load_boston
   from sklearn.model_selection import train_test_split
   from sklearn import preprocessing
   from mpl_toolkits.mplot3d import Axes3D
```

```
In [2]: boston = load_boston()
    df = pd.DataFrame(data = boston['data'], columns = boston['feature_names'])
    df['PRICE'] = boston['target']
    df.head()
```

Out[2]:

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	В	LSTAT
0	0.00632	18.0	2.31	0.0	0.538	6.575	65.2	4.0900	1.0	296.0	15.3	396.90	4.98
1	0.02731	0.0	7.07	0.0	0.469	6.421	78.9	4.9671	2.0	242.0	17.8	396.90	9.14
2	0.02729	0.0	7.07	0.0	0.469	7.185	61.1	4.9671	2.0	242.0	17.8	392.83	4.03
3	0.03237	0.0	2.18	0.0	0.458	6.998	45.8	6.0622	3.0	222.0	18.7	394.63	2.94
4	0.06905	0.0	2.18	0.0	0.458	7.147	54.2	6.0622	3.0	222.0	18.7	396.90	5.33

In [3]: #Data statistics df.describe()

Out[3]:

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	
count	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	506.000
mean	3.613524	11.363636	11.136779	0.069170	0.554695	6.284634	68.574901	3.795
std	8.601545	23.322453	6.860353	0.253994	0.115878	0.702617	28.148861	2.105
min	0.006320	0.000000	0.460000	0.000000	0.385000	3.561000	2.900000	1.129
25%	0.082045	0.000000	5.190000	0.000000	0.449000	5.885500	45.025000	2.100
50%	0.256510	0.000000	9.690000	0.000000	0.538000	6.208500	77.500000	3.207
75%	3.677083	12.500000	18.100000	0.000000	0.624000	6.623500	94.075000	5.188
max	88.976200	100.000000	27.740000	1.000000	0.871000	8.780000	100.000000	12.126

```
In [4]: corr = df.corr()
        corr['PRICE'].sort values(ascending = False)
        #Data below shows that RM is most positively correlated to price and LSTAT
Out[4]: PRICE
                    1.000000
                    0.695360
        RM
        zn
                    0.360445
        В
                    0.333461
        DIS
                    0.249929
        CHAS
                    0.175260
        AGE
                   -0.376955
        RAD
                  -0.381626
        CRIM
                  -0.388305
        NOX
                  -0.427321
        TAX
                  -0.468536
        INDUS
                   -0.483725
        PTRATIO
                  -0.507787
                  -0.737663
        LSTAT
        Name: PRICE, dtype: float64
        Feature Scaling
In [5]: #Need to scale feature. Standard Scaling(use with normally distributed dat
        X = df.drop(['PRICE'], axis = 1)
        X = preprocessing.scale(X)
        X = np.c [np.ones(df.shape[0]),X]
        Х
                            , -0.41978194, 0.28482986, ..., -1.45900038,
Out[5]: array([[ 1.
                  0.44105193, -1.0755623 ],
                            , -0.41733926, -0.48772236, \ldots, -0.30309415,
                  0.44105193, -0.49243937],
                            , -0.41734159, -0.48772236, \ldots, -0.30309415,
                  0.39642699, -1.2087274 ],
               . . . ,
                            , -0.41344658, -0.48772236, \ldots, 1.17646583,
                  0.44105193, -0.98304761],
                            , -0.40776407, -0.48772236, \ldots, 1.17646583,
                  0.4032249 , -0.86530163],
                            , -0.41500016, -0.48772236, ..., 1.17646583,
                  0.44105193, -0.66905833]])
In [6]: y = df['PRICE']
        y = preprocessing.scale(df['PRICE'])
In [7]: #Splitting Data Set into Training and Testing Data Sets
        X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = .80,
```

CREATING COST FUNCTION AND GRADIENT DESCENT ALGORITHM

```
In [8]: #Cost Function(Mean Squared Error)/Calculates MSE for at given point
def cost_function(X_train, y_train, thetas_array, n):
    cost = np.sum((np.dot(X_train,np.transpose(thetas_array)) - y_train)**2
    return cost
```

```
In [9]: #Setting Up Gradient Descent Algorithm
def gradient_descent(X_train, y_train, alpha, thetas_array, n):
    thetas = thetas_array - (alpha * ((np.sum((np.dot(X_train,np.transpose(
    return thetas
```

TRAINING THE DATA SET

```
In [10]: def training(X train, y train, alpha, iters):
             n = len(X_train)
             #initializing optimization parameter
             thetas_array = np.zeros(14)
             #new thetas = []
             mse_values = []
             for i in range(iters):
                 thetas array = gradient descent(X train, y train, alpha, thetas arr
                 #new thetas.append(thetas array)
                 mse_values.append(cost_function(X_train, y_train, thetas_array, n))
             #Plot cost function error per iteration
             x = np.arange(0, len(mse values), step=1)
             plt.plot(x, mse values, "-b", label="Cost Function Curve")
             plt.title("Learning Curve")
             plt.xlabel("Number Of Iterations")
             plt.ylabel("Cost Function Value")
             plt.legend()
             plt.show()
             return thetas_array
```

In [11]: training(np.array(X_train), np.array(y_train), .03, 400)


```
Out[11]: array([ 0.0372569 , -0.09031931, 0.10662716, 0.04688386, 0.04670029, -0.27124515, 0.2855625 , 0.08612669, -0.28095601, 0.16667364, -0.10112596, -0.27535978, 0.05474949, -0.43123812])
```

```
In [12]: def testing(X_test, y_test, thetas_array):
             n = len(X test)
             SSTO = [] # total sum of squares
             SSR = [] # regression sum of squares
             SSE = []
                       # error sum of squares
             y_mean = np.mean(y_train)
             #prediction = []
             for i in range(n):
                 predict = np.dot(X_test[i],thetas_array)
                 #prediction.append(predict)
                 SSE.append((predict - y_test[i])**2)
                 SSR.append((predict - y_mean)**2)
                 SSTO.append((y_test[i] - y_mean)**2)
             print('\naverage error is : ', round(sum(SSE)/len(SSE),4))
             print('\nsum of squares of error (SSE) : ', round(sum(SSE),4))
             print('\nregression sum of squares (SSR) : ', round(sum(SSR),4))
             print('\ntotal sum of squares (SSTO) : ', round(sum(SSTO), 4))
             print('\nThe Coefficient Of Determination R-squared is: ', (round(sum(
In [13]: testing(np.array(X_test), np.array(y_test), [ 0.03793393, -0.08794142,
                -0.25369856, 0.29775376, 0.07859893, -0.26907797, 0.15042058,
                -0.08865473, -0.2695052, 0.05265216, -0.42111509])
         average error is: 0.2719
         sum of squares of error (SSE): 110.1104
         regression sum of squares (SSR): 293.4558
         total sum of squares (SSTO): 401.7879
         The Coefficient Of Determination R-squared is: 73.0375 %
 In [ ]:
```