Visual exploration of duplicated genes across the Eukarya tree of life

Fabricio Almeida-Silva¹ and Yves Van de Peer¹

¹VIB-UGent Center for Plant Systems Biology, Ghent University, Ghent, Belgium

9 February 2024

Contents

1	Introduction	2
2	Loading data	3
3	Visualizing the frequency of duplicated genes by mode	3
4	BUSCO scores	11
5	Visualizing substitution rates for selected plant species	12
	Saving objects	14
	Session info	16

1 Introduction

Here, we will describe the code to perform exploratory data analyses on the duplicated gene frequencies in genomes from Ensembl instances.

To start, let's load the required data and packages.

```
set.seed(123) # for reproducibility
# Load required packages
library(doubletrouble)
## Registered S3 method overwritten by 'ggnetwork':
## method
              from
## fortify.igraph ggtree
library(here)
## here() starts at /home/faalm/Dropbox/package_benchmarks/doubletrouble_paper
library(ggtree)
## ggtree v3.10.0 For help: https://yulab-smu.top/treedata-book/
## If you use the ggtree package suite in published research, please cite
## the appropriate paper(s):
## Guangchuang Yu, David Smith, Huachen Zhu, Yi Guan, Tommy Tsan-Yuk Lam.
## ggtree: an R package for visualization and annotation of phylogenetic
## trees with their covariates and other associated data. Methods in
## Ecology and Evolution. 2017, 8(1):28-36. doi:10.1111/2041-210X.12628
## G Yu. Data Integration, Manipulation and Visualization of Phylogenetic
## Trees (1st ed.). Chapman and Hall/CRC. 2022. ISBN: 9781032233574
## Shuangbin Xu, Lin Li, Xiao Luo, Meijun Chen, Wenli Tang, Li Zhan, Zehan
## Dai, Tommy T. Lam, Yi Guan, Guangchuang Yu. Ggtree: A serialized data
## object for visualization of a phylogenetic tree and annotation data.
## iMeta 2022, 1(4):e56. doi:10.1002/imt2.56
library(tidyverse)
## -- Attaching core tidyverse packages ------ tidyverse 2.0.0 --
## v dplyr 1.1.4 v readr 2.1.4
## v forcats 1.0.0 v stringr 1.5.1
## v ggplot2 3.4.4
                     v tibble 3.2.1
## v lubridate 1.9.3
                     v tidyr
                                  1.3.0
## v purrr 1.0.2
## -- Conflicts ------ tidyverse_conflicts() --
## x tidyr::expand() masks ggtree::expand()
## x dplyr::filter() masks stats::filter()
## x dplyr::lag() masks stats::lag()
## i Use the conflicted package (<a href="http://conflicted.r-lib.org/">http://conflicted.r-lib.org/</a>) to force all conflicts to become errors
library(patchwork)
source(here("code", "utils.R"))
source(here("code", "utils_visualization.R"))
```

2 Loading data

First, we will load objects with species trees, duplicates per species, and BUSCO scores.

```
load(here("products", "result_files", "metadata_all.rda"))
# Load BUSCO scores
load(here("products", "result_files", "busco_scores", "fungi_busco_scores.rda"))
load(here("products", "result_files", "busco_scores", "protists_busco_scores.rda"))
load(here("products", "result_files", "busco_scores", "plants_busco_scores.rda"))
load(here("products", "result_files", "busco_scores", "metazoa_busco_scores.rda"))
load(here("products", "result_files", "busco_scores", "vertebrates_busco_scores.rda"))
# Load trees
load(here("products", "result_files", "trees", "fungi_busco_trees.rda"))
load(here("products", "result_files", "trees", "protists_busco_trees.rda"))
load(here("products", "result_files", "trees", "plants_busco_trees.rda"))
load(here("products", "result_files", "trees", "metazoa_busco_trees.rda"))
load(here("products", "result_files", "trees", "vertebrates_busco_trees.rda"))
# Load duplicated genes
load(here("products", "result_files", "fungi_duplicates_unique.rda"))
load(here("products", "result_files", "protists_duplicates_unique.rda"))
load(here("products", "result_files", "plants_duplicates_unique.rda"))
load(here("products", "result_files", "vertebrates_duplicates_unique.rda"))
load(here("products", "result_files", "metazoa_duplicates_unique.rda"))
# Load substitution rates for plants
load(here("products", "result_files", "plants_kaks.rda"))
```

3 Visualizing the frequency of duplicated genes by mode

Now, we will visualize the frequency of duplicated genes by mode for each species. For that, we will first convert the list of duplicates into a long-formatted data frame, and clean tip labels in our species trees.

```
# Rename tip labels of trees
tree_fungi <- fungi_busco_trees$conc
tree_fungi$tip.label <- gsub("\\.", "_", tree_fungi$tip.label)

tree_protists <- protists_busco_trees$conc
tree_protists$tip.label <- gsub("\\.", "_", tree_protists$tip.label)

tree_plants <- plants_busco_trees$conc
tree_plants$tip.label <- gsub("\\.", "_", tree_plants$tip.label)</pre>

tree_metazoa <- metazoa_busco_trees$conc
```

```
tree_metazoa$tip.label <- gsub("\\.", "_", tree_metazoa$tip.label)

tree_vertebrates <- vertebrates_busco_trees$conc
tree_vertebrates$tip.label <- gsub("\\.", "_", tree_vertebrates$tip.label)

# Get count tables
counts_fungi <- duplicates2counts(fungi_duplicates_unique)
counts_protists <- duplicates2counts(protists_duplicates_unique)
counts_plants <- duplicates2counts(plants_duplicates_unique)
counts_vertebrates <- duplicates2counts(vertebrates_duplicates_unique)
counts_metazoa <- duplicates2counts(metazoa_duplicates_unique)</pre>
```

Now, we will plot the trees with data for each Ensembl instance.

```
# Fungi
p_fungi_tree <- plot_tree_taxa(</pre>
    tree = tree_fungi,
    metadata = metadata_all$fungi,
    taxon = "phylum",
    text_size = 2.5
p_fungi <- wrap_plots(</pre>
    # Plot 1: Species tree
    p_fungi_tree,
    # Plot 2: Duplicate relative frequency by mode
    plot_duplicate_freqs(
        counts_fungi |>
            mutate(
                species = factor(species, levels = rev(get_taxa_name(p_fungi_tree)))
            ),
        plot_type = "stack_percent"
        theme(
            axis.text.y = element_blank(),
            axis.ticks.y = element_blank()
        ) +
        labs(y = NULL),
   widths = c(1, 4)
    plot_annotation(title = "Fungi") &
    theme(plot.margin = margin(2, 0, 0, 2))
# Protists
p_protists_tree <- plot_tree_taxa(</pre>
    tree = tree_protists,
    metadata = metadata_all$protists |>
        filter(phylum != "Evosea"),
    taxon = "phylum",
    min_n_lab = 2,
    padding_text = 0.2,
```

```
text_size = 2.5
)
p_protists <- wrap_plots(</pre>
    # Plot 1: Species tree
    p_protists_tree,
    # Plot 2: Duplicate relative frequency by mode
    plot_duplicate_freqs(
        counts_protists |>
            mutate(
                species = factor(species, levels = rev(get_taxa_name(p_protists_tree)))
            ),
        plot_type = "stack_percent") +
            axis.text.y = element_blank(),
            axis.ticks.y = element_blank()
        labs(y = NULL),
    widths = c(1, 4)
) +
    plot_annotation(title = "Protists") &
    theme(plot.margin = margin(2, 0, 0, 2))
# Plants
p_plants_tree <- plot_tree_taxa(</pre>
    tree = tree_plants,
    metadata = metadata_all$plants,
    taxon = "order",
    min_n_lab = 3,
    text_size = 2.5
p_plants <- wrap_plots(</pre>
    # Plot 1: Species tree
    p_plants_tree,
    # Plot 2: Duplicate relative frequency by mode
    plot_duplicate_freqs(
        counts_plants |>
            mutate(
                species = factor(species, levels = rev(get_taxa_name(p_plants_tree)))
            ),
        plot_type = "stack_percent") +
        theme(
            axis.text.y = element_blank(),
            axis.ticks.y = element_blank()
        labs(y = NULL),
    widths = c(1, 4)
) +
    plot_annotation(title = "Plants") &
    theme(plot.margin = margin(2, 0, 0, 2))
```

```
# Metazoa
p_metazoa_tree <- plot_tree_taxa(</pre>
    tree = tree_metazoa,
    metadata = metadata_all$metazoa |>
        filter(class != "Myxozoa"),
    taxon = "phylum",
    min_n = 2,
    text_size = 2.2,
    padding_text = 2
p_metazoa <- wrap_plots(</pre>
    # Plot 1: Species tree
    p_metazoa_tree,
    # Plot 2: Duplicate relative frequency by mode
    plot_duplicate_freqs(
        counts_metazoa |>
            mutate(
                species = factor(species, levels = rev(get_taxa_name(p_metazoa_tree)))
            ),
        plot_type = "stack_percent") +
        theme(
            axis.text.y = element_blank(),
            axis.ticks.y = element_blank()
        labs(y = NULL),
    widths = c(1, 4)
) +
    plot_annotation(title = "Metazoa") &
    theme(plot.margin = margin(2, 0, 0, 2))
# Vertebrates
p_vertebrates_tree <- plot_tree_taxa(</pre>
    tree = tree_vertebrates,
    metadata = metadata_all$ensembl |>
        mutate(class = replace_na(class, "Other")),
    taxon = "class",
    min_n = 2,
    text_size = 2.5
p_vertebrates <- wrap_plots(</pre>
    # Plot 1: Species tree
    p_vertebrates_tree,
    # Plot 2: Duplicate relative frequency by mode
    plot_duplicate_freqs(
        counts_vertebrates |>
            mutate(
                species = factor(species, levels = rev(get_taxa_name(p_vertebrates_tree)))
            ),
        plot_type = "stack_percent") +
        theme(
            axis.text.y = element_blank(),
```

```
axis.ticks.y = element_blank()
        ) +
        labs(y = NULL),
    widths = c(1, 4)
) +
    plot_annotation(title = "Vertebrates") &
    theme(plot.margin = margin(2, 0, 0, 2))
# Combining all figures into one
p_duplicates_all_ensembl <- wrap_plots(</pre>
    wrap_plots(
        p_protists +
            theme(legend.position = "none") +
            labs(title = "Protists", x = NULL),
        p_fungi +
            theme(legend.position = "none") +
            ggtitle("Fungi"),
        nrow = 2, heights = c(1, 2)
    ),
    p_plants + theme(legend.position = "none") + ggtitle("Plants"),
    p_metazoa + theme(legend.position = "none") + ggtitle("Metazoa (Invertebrates)"),
    p_vertebrates + ggtitle("Ensembl (Vertebrates)"),
    nrow = 1
    plot_layout(axis_titles = "collect")
```

p_duplicates_all_ensembl

By visually comparing the Ensembl instances, we can see that plant genomes have a much greater abundance of segmental duplicates, possibly due to pervasive whole-genome duplication events. However, other major branches of the Eukarya tree of life also have particular species with a high proportion of SD-derived genes. Notably, while SD events are widespread in plants,

vertebrate species with high proportions of SD-derived genes are concentrated in a particular branch (teleost fishes). To investigate that, we will highlight species for which at least 20% of the duplicated genes derived from segmental duplications.

```
# For each Ensembl instance, show species with >=20% of genes derived from SD
## Define helper function
sd_abundant <- function(count_table, min = 20) {</pre>
    perc_table <- count_table |>
        group_by(species) |>
        mutate(percentage = (n / sum(n)) * 100) | >
        ungroup() |>
        filter(type == "SD", percentage >= min)
    return(perc_table)
}
# Get a table of SD-abundant species for each instance
sd_abundant_spp <- bind_rows(</pre>
    sd_abundant(counts_fungi) |> mutate(instance = "fungi"),
    sd_abundant(counts_protists) |> mutate(instance = "protists"),
    sd_abundant(counts_plants) |> mutate(instance = "plants"),
    sd_abundant(counts_vertebrates) |> mutate(instance = "vertebrates"),
    sd_abundant(counts_metazoa) |> mutate(instance = "metazoa")
) |>
    as.data.frame()
```

Then, let's summarize the frequencies (absolute and relative) in a table.

```
# How many species per instance?
sd_abundant_spp |>
    count(instance) |>
   mutate(
        percentage = n / c(
           nrow(metadata_all$fungi),
           nrow(metadata_all$metazoa),
           nrow(metadata_all$plants),
           nrow(metadata_all$protists),
           nrow(metadata_all$ensembl)
       ) * 100
##
       instance n percentage
## 1
        fungi 2 2.857143
        metazoa 7 2.766798
         plants 94 63.087248
## 3
## 4
       protists 2 6.060606
## 5 vertebrates 21 6.624606
```

Once again, our findings highlight the abundance of large-scale duplications in plant genomes, as segmental duplications contributed to 20% of the duplicated genes in 94 species (63%). Next, let's print all SD-abundant species.

Visual exploration of duplicated genes across the Eukarya tree of life

Show all species

knitr::kable(sd_abundant_spp)

		Pauluku:		turas
type	n 2120	species	percentage	instance
SD	2138	fusarium_oxysporum	20.16030	fungi
SD	683	saccharomyces_cerevisiae	26.16858	fungi
SD	14351	emiliania_huxleyi	43.78509	protists
SD	27661	paramecium_tetraurelia	79.03369	protists
SD	22430	actinidia_chinensis	72.54908	plants
SD	4357	ananas_comosus	22.15048	plants
SD	5885	arabidopsis_halleri	21.37202	plants
SD	7530	arabidopsis_thaliana	33.29796	plants
SD	42997	avena_sativa_ot3098	74.43306	plants
SD	63492	avena_sativa_sang	79.22833	plants
SD	7461	brachypodium_distachyon	27.24285	plants
SD	48381	brassica_juncea	69.66407	plants
SD	59918	brassica_napus	63.31417	plants
SD	24314	brassica_oleracea	44.30232	plants
SD	23541	brassica_rapa	62.58907	plants
SD	19282	brassica_rapa_ro18	49.29567	plants
SD	69355	camelina_sativa	79.45628	plants
SD	15785	chenopodium_quinoa	48.57371	plants
SD	3600	citrullus_lanatus	22.76608	plants
SD	4084	coffea_canephora	20.60545	plants
SD	3317	cynara_cardunculus	20.20959	plants
SD	41246	digitaria_exilis	75.51999	plants
SD	8809	dioscorea_rotundata	32.30764	plants
SD	66262	echinochloa_crusgalli	70.97016	plants
SD	13447	eragrostis_curvula	27.40650	plants
SD	46488	eucalyptus_grandis	75.45773	plants
SD	6846	ficus_carica	30.61580	plants
SD	6747	galdieria_sulphuraria	25.40573	plants
SD	36994	glycine_max	72.19468	plants
SD	16290	gossypium_raimondii	48.65882	plants
SD	13432	helianthus annuus	23.21425	plants
SD	9537	ipomoea_triloba	35.65100	plants
SD	13096	juglans_regia	34.16556	plants
SD	7374	kalanchoe_fedtschenkoi	28.37900	plants
SD	6757	lactuca_sativa	20.52178	plants
SD	5758		25.97321	·
SD		leersia_perrieri	54.14448	plants
	16167	lupinus_angustifolius		plants
SD	22987	malus_domestica_golden	62.58031	plants
SD	14278	manihot_esculenta	52.81693	plants
SD	16170	musa_acuminata	54.10017	plants
SD	4586	nymphaea_colorata	20.98472	plants
SD	5092	oryza_barthii	20.55464	plants
SD	5078	oryza_brachyantha	23.83366	plants
SD	6054	oryza_glaberrima	23.77567	plants
SD	5454	oryza_glumipatula	21.46484	plants
SD	5847	oryza_punctata	24.25437	plants
SD	5587	oryza_rufipogon	21.24335	plants
SD	6096	oryza_sativa	23.94344	plants
SD	6136	oryza_sativa_arc	22.25769	plants
SD	6139	oryza_sativa_azucena	22.19370	plants
SD	6186	oryza_sativa_chaomeo	22.05583	plants
SD	6125	oryza_sativa_gobolsailbalam	22.38506	plants
SD	6207	oryza_sativa_ir64	22.73876	plants
SD	6131	oryza_sativa_ketannangka	22.16238	plants
SD	6479	oryza_sativa_khaoyaiguang	23.36964	plants
SD	6144	oryza_sativa_larhamugad	22.46107	plants

4 BUSCO scores

Next, we will test whether the percentage of segmental duplicates in genomes is associated with the percentage of complete BUSCOs. In other words, we want to find out whether the low percentages of SD gene pairs is due to genome fragmentation.

```
# Define function to plot association between % SD and % complete BUSCOs
plot_busco_sd_assoc <- function(busco_df, counts_table) {</pre>
    p <- busco_df |>
        filter(Class %in% c("Complete_SC", "Complete_duplicate")) |>
        mutate(species = str_replace_all(File, "\\.fa", "")) |>
        mutate(species = str_replace_all(species, "\\.", "_")) |>
        group_by(species) |>
        summarise(complete_BUSCOs = sum(Frequency)) |>
        inner_join(sd_abundant(counts_table, min = 0)) |>
        ggpubr::ggscatter(
            x = "complete_BUSCOs", y = "percentage",
            color = "deepskyblue4", alpha = 0.4,
            add = "reg.line", add.params = list(
                color = "black", fill = "lightgray"
            ),
            conf.int = TRUE,
            cor.coef = TRUE,
            cor.coeff.args = list(
                method = "pearson", label.x = 3, label.sep = "\n"
        ) +
        labs(x = "% complete BUSCOs", y = "% SD duplicates")
    return(p)
}
# Fungi
p_busco_association <- patchwork::wrap_plots(</pre>
    plot_busco_sd_assoc(fungi_busco_scores, counts_fungi) +
        labs(title = "Fungi"),
    plot_busco_sd_assoc(plants_busco_scores, counts_plants) +
        labs(title = "Plants"),
    plot_busco_sd_assoc(protists_busco_scores, counts_protists) +
        labs(title = "Protists"),
    plot_busco_sd_assoc(metazoa_busco_scores, counts_metazoa) +
        labs(title = "Metazoa"),
    plot_busco_sd_assoc(vertebrates_busco_scores, counts_vertebrates) +
        labs(title = "Vertebrates"),
    nrow = 1
```

p_busco_association

There is weak or no association between the percentage of complete BUSCOs and the percentage of SD-derived genes.

Visualizing substitution rates for selected plant species

Here, we will first visualize K_s distributions for *Glycine max* and *Phaseolus vulgaris* by mode of duplication.

```
# G. max
gmax_ks_distro <- plot_ks_distro(</pre>
    plants_kaks$glycine_max, max_ks = 2, bytype = TRUE, binwidth = 0.03
    labs(title = NULL, y = NULL)
# P. vulgaris
pvu_ks_distro <- plot_ks_distro(</pre>
    plants_kaks$phaseolus_vulgaris, max_ks = 2, bytype = TRUE, binwidth = 0.03
    labs(title = NULL, y = NULL)
# Combining plots
p_ks_legumes <- wrap_plots(</pre>
    gmax_ks_distro +
        labs(title = "Glycine max") +
        theme(plot.title = element_text(face = "italic")),
    pvu_ks_distro +
        labs(title = "Phaseolus vulgaris") +
        theme(plot.title = element_text(face = "italic")),
    nrow = 1
```

p_ks_legumes

The plot shows the importance of visualizing Ks distributions by mode. When visualizing the whole-paranome distribution, detection of peaks is not trivial, and potential whole-genome duplication events might be masked. When we split the distribution by mode of duplication, we can more easily observe segmental duplicates that cluster together, providing strong evidence for whole-genome duplication events (2 events for *G. max*, and 1 events for *P. vulgaris*).

Next, we will plot the distributions of K_a , K_s , and K_a/K_s values for selected plant species with phylogenetic context.

```
# Subset plant tree to get selected species only
tree_subset <- ape::keep.tip(tree_plants, names(plants_kaks))</pre>
# Clean names
names(plants_kaks) <- gsub("_", " ", str_to_title(names(plants_kaks)))</pre>
tree_subset$tip.label <- gsub("_", " ", str_to_title(tree_subset$tip.label))</pre>
# Plot tree
p_tree_selected <- ggtree(tree_subset, branch.length = "none") +</pre>
    geom_tiplab(fontface = "italic", size = 3)
# Reoder rates list based on tree topology
ord <- rev(ggtree::get_taxa_name(p_tree_selected))</pre>
rl <- plants_kaks[ord]</pre>
# Plot rates by species with tree on the left
p_rates_phylogeny <- wrap_plots(</pre>
    p_{\text{tree}} selected + x \lim(0, 10),
    plot_rates_by_species(rl, rate_column = "Ks", range = c(0, 2)) +
             axis.text.y = element_blank(),
             axis.ticks.y = element_blank()
```

```
),
    plot_rates_by_species(
        rl, rate_column = "Ka", range = c(0, 2),
        fill = "mediumseagreen", color = "seagreen"
    ) +
        theme(
            axis.text.y = element_blank(),
            axis.ticks.y = element_blank()
       ),
    plot_rates_by_species(
        rl, rate_column = "Ka_Ks", range = c(0, 2),
        fill = "darkorange2", color = "darkorange3"
        theme(
            axis.text.y = element_blank(),
            axis.ticks.y = element_blank()
       ),
    nrow = 1
) +
    plot_annotation(title = "Substitution rates in a phylogenetic context")
```

p_rates_phylogeny

Substitution rates in a phylogenetic context

Saving objects

Finally, let's save important objects created in this session for further use.

```
# Save plots for each instance
save(
    p_fungi, compress = "xz",
    file = here("products", "plots", "p_fungi.rda")
```

```
save(
    p_metazoa, compress = "xz",
    file = here("products", "plots", "p_metazoa.rda")
save(
    p_protists, compress = "xz",
    file = here("products", "plots", "p_protists.rda")
save(
    p_vertebrates, compress = "xz",
    file = here("products", "plots", "p_vertebrates.rda")
)
save(
    p_plants, compress = "xz",
    file = here("products", "plots", "p_plants.rda")
)
save(
    p_duplicates_all_ensembl, compress = "xz",
   file = here("products", "plots", "p_duplicates_all_ensembl.rda")
)
save(
    p_ks_legumes, compress = "xz",
   file = here("products", "plots", "p_ks_legumes.rda")
)
save(
    p_rates_phylogeny, compress = "xz",
    file = here("products", "plots", "p_rates_phylogeny.rda")
)
save(
    p_busco_association, compress = "xz",
    file = here("products", "plots", "p_busco_association.rda")
# Save tables
save(
    sd_abundant_spp, compress = "xz",
   file = here("products", "result_files", "sd_abundant_spp.rda")
)
```

Session info

This document was created under the following conditions:

```
## - Session info ------
 ## setting value
 ## version R version 4.3.2 (2023-10-31)
 ## os Ubuntu 22.04.3 LTS
 ## system x86_64, linux-gnu
 ## ui X11
 ## language (EN)
 ## collate en_US.UTF-8
 ## ctype en_US.UTF-8
              Europe/Brussels
 ## tz
 ## date 2024-02-09
 ## pandoc 3.1.1 @ /usr/lib/rstudio/resources/app/bin/quarto/bin/tools/ (via rmarkdown)
 ##
 ## - Packages ------
 \#\# package * version date (UTC) lib source
 ## abind
                            1.4-5 2016-07-21 [1] CRAN (R 4.3.2)
                               1.7-22 2023-02-06 [1] CRAN (R 4.3.2)
 ## ade4
## AnnotationDbi 1.64.1 2023-11-03 [1] Bioconductor ## ape 5.7-1 2023-03-13 [1] CRAN (R 4.3.2)
2.58.0 2023-10-24 [1] Bioconductor 2.70.1 2023-10-25 [1] Bioconductor
 ## Biostrings
                  4.0.5 2022-11-15 [1] CRAN (R 4.3.2)
4.0.5 2020-08-30 [1] CRAN (R 4.3.2)
1.0-7 2021-04-24 [1] CRAN (R 4.3.2)
1.2.4 2023-03-17 [1] CRAN (R 4.3.2)
0.37 2023-12-01 [1] CRAN (R 4.3.2)
1.0.5 2023-06-09 [1] CRAN (R 4.3.2)
1.0.8 2023-05-01 [1] CRAN (R 4.3.2)
3.1-2 2023-03-30 [1] CRAN (R 4.3.2)
3.0-5 2022-01-06 [1] CRAN (R 4.3.2)
3.6.2 2023-12-11 [1] CRAN (R 4.3.2)
0.19-4 2020-09-30 [1] CRAN (R 4.3.2)
0.2-19 2023-02-01 [4] CRAN (R 4.3.2)
0.2-19 2023-02-01 [4] CRAN (R 4.3.2)
1.5.2 2022-09-29 [1] CRAN (R 4.3.2)
5.2.0 2023-12-08 [1] CRAN (R 4.3.2)
1.1.3 2022-06-18 [1] CRAN (R 4.3.2)
 ## bit
                              4.0.5 2022-11-15 [1] CRAN (R 4.3.2)
 ## bit64
 ## bitops
 ## blob
 ## bookdown
 ## broom
 ## cachem
 ## car
 ## carData
 ## cli
 ## coda
 ## codetools
 ## colorspace
 ## crayon
 ## curl
                    1.1.3 2022-06-18 [1] CRAN (R 4.3.2)
2.4.0 2023-10-26 [1] CRAN (R 4.3.2)
 ## DBI
 ## dbplyr
```

```
DelayedArray
                        0.28.0
                                 2023-10-24 [1] Bioconductor
## digest
                        0.6.33
                                 2023-07-07 [1] CRAN (R 4.3.2)
## doParallel
                        1.0.17
                                 2022-02-07 [1] CRAN (R 4.3.2)
## doubletrouble
                    * 1.3.4 2024-02-05 [1] Bioconductor
## dplyr
                      * 1.1.4 2023-11-17 [1] CRAN (R 4.3.2)
                      0.23 2023-11-01 [1] CRAN (R 4.3.2)
## evaluate
                       1.0.6 2023-12-08 [1] CRAN (R 4.3.2)
## fansi
## farver
                      2.1.1 2022-07-06 [1] CRAN (R 4.3.2)
## fastmap
                      1.1.1 2023-02-24 [1] CRAN (R 4.3.2)
                      1.0.3 2023-12-11 [1] CRAN (R 4.3.2)
## filelock
## forcats
                     * 1.0.0 2023-01-29 [1] CRAN (R 4.3.2)
                     1.5.2 2022-02-02 [1] CRAN (R 4.3.2)
## foreach
                       1.6.3 2023-07-20 [1] CRAN (R 4.3.2)
## fs
                      0.1.3 2022-07-05 [1] CRAN (R 4.3.2)
## generics
                      1.38.2 2023-12-13 [1] Bioconductor 3.18 (R 4.3.2)
1.2.11 2023-12-21 [1] Bioconductor
## GenomeInfoDb
## GenomeInfoDbData
## GenomicAlignments
                       1.38.0 2023-10-24 [1] Bioconductor
                        1.54.1 2023-10-29 [1] Bioconductor
## GenomicFeatures
## GenomicRanges
                        1.54.1 2023-10-29 [1] Bioconductor
## ggfun
                      0.1.3 2023-09-15 [1] CRAN (R 4.3.2)
## ggnetwork
                      0.5.12 2023-03-06 [1] CRAN (R 4.3.2)
                      * 3.4.4
0.1.2
##
   ggplot2
                                 2023-10-12 [1] CRAN (R 4.3.2)
## ggplotify
                                 2023-08-09 [1] CRAN (R 4.3.2)
## ggpubr
                      0.6.0.999 2024-02-09 [1] Github (kassambara/ggpubr@6aeb4f7)
## ggsignif
                      0.6.4 2022-10-13 [1] CRAN (R 4.3.2)
                     * 3.10.0
                                 2023-10-24 [1] Bioconductor
   ggtree
## glue
                       1.6.2 2022-02-24 [1] CRAN (R 4.3.2)
## gridGraphics
                      0.5-1 2020-12-13 [1] CRAN (R 4.3.2)
                      0.3.4 2023-08-21 [1] CRAN (R 4.3.2)
## gtable
                     * 1.0.1 2020-12-13 [1] CRAN (R 4.3.2)
##
   here
## hms
                      1.1.3 2023-03-21 [1] CRAN (R 4.3.2)
## htmltools
                      0.5.7 2023-11-03 [1] CRAN (R 4.3.2)
                      1.6.4 2023-12-06 [1] CRAN (R 4.3.2)
1.4.7 2023-08-15 [1] CRAN (R 4.3.2)
## htmlwidgets
## httr
## igraph
                      2.0.1.1 2024-01-30 [1] CRAN (R 4.3.2)
## intergraph
                      2.0-3 2023-08-20 [1] CRAN (R 4.3.2)
                       2.36.0
## IRanges
                                 2023-10-24 [1] Bioconductor
## iterators
                      1.0.14 2022-02-05 [1] CRAN (R 4.3.2)
## jsonlite
                       1.8.8
                                 2023-12-04 [1] CRAN (R 4.3.2)
## KEGGREST
                       1.42.0 2023-10-24 [1] Bioconductor
## knitr
                       1.45
                                 2023-10-30 [1] CRAN (R 4.3.2)
## labeling
                      0.4.3 2023-08-29 [1] CRAN (R 4.3.2)
## lattice
                      0.22-5 2023-10-24 [4] CRAN (R 4.3.1)
                      0.2.2 2019-03-15 [1] CRAN (R 4.3.2)
## lazyeval
## lifecycle
                       1.0.4
                                 2023-11-07 [1] CRAN (R 4.3.2)
## lubridate
                     * 1.9.3 2023-09-27 [1] CRAN (R 4.3.2)
                       2.0.3 2022-03-30 [1] CRAN (R 4.3.2)
## magrittr
                       7.3-60 2023-05-04 [4] CRAN (R 4.3.1)
## MASS
                       1.6-3
## Matrix
                                 2023-11-14 [4] CRAN (R 4.3.2)
                     1.14.0 2023-10-24 [1] Bioconductor
## MatrixGenerics
                        1.2.0
## matrixStats
                                 2023-12-11 [1] CRAN (R 4.3.2)
```

```
6.0.1
                                    2023-11-15 [1] CRAN (R 4.3.2)
   mclust
## memoise
                          2.0.1 2021-11-26 [1] CRAN (R 4.3.2)
                         1.9-0
                                    2023-07-11 [4] CRAN (R 4.3.1)
##
   mgcv
                       1.6.0 2023-10-24 [1] Bioconductor
## MSA2dist
                        0.5.0 2018-06-12 [1] CRAN (R 4.3.2)
## munsell
                        1.18.2 2023-12-05 [1] CRAN (R 4.3.2)
## network
                        0.4
##
    networkD3
                                    2017-03-18 [1] CRAN (R 4.3.2)
##
   nlme
                        3.1-163 2023-08-09 [4] CRAN (R 4.3.1)
## patchwork
                      * 1.2.0 2024-01-08 [1] CRAN (R 4.3.2)
                         1.0.12 2019-01-04 [1] CRAN (R 4.3.2)
## pheatmap
                         1.9.0
    pillar
                                   2023-03-22 [1] CRAN (R 4.3.2)
                       2.0.3 2019-09-22 [1] CRAN (R 4.3.2)
##
    pkgconfig
                        0.1-8 2022-11-29 [1] CRAN (R 4.3.2)
   pnq
                     1.2.0 2023-09-24 [1] CRAN (R 4.3.2)
1.2.3 2023-12-06 [1] CRAN (R 4.3.2)
## prettyunits
##
   progress
                      * 1.0.2 2023-08-10 [1] CRAN (R 4.3.2)
## purrr
## R6
                        2.5.1 2021-08-19 [1] CRAN (R 4.3.2)
                        0.3.3 2021-01-31 [1] CRAN (R 4.3.2)
   rappdirs
##
## RColorBrewer 1.1-3 2022-04-03 [1] CRAN (R 4.3.2)
## Rcpp 1.0.11 2023-07-06 [1] CRAN (R 4.3.2)
                      1.98-1.13 2023-11-02 [1] CRAN (R 4.3.2)
* 2.1.4 2023-02-10 [1] CRAN (R 4.3.2)
## RCurl
## readr
                     0.0.15 2022-06-16 [1] CRAN (R 4.3.2)
## restfulr
## rjson
                        0.2.21 2022-01-09 [1] CRAN (R 4.3.2)
                        1.1.2 2023-11-04 [1] CRAN (R 4.3.2)
## rlang
                       2.25 2023-09-18 [1] CRAN (R 4.3.2)
2.0.4 2023-11-05 [1] CRAN (R 4.3.2)
## rmarkdown
## rprojroot
                        2.18.0 2023-10-24 [1] Bioconductor
## Rsamtools
                        2.3.4 2023-12-08 [1] CRAN (R 4.3.2)
0.7.2 2023-02-01 [1] CRAN (R 4.3.2)
## RSQLite
## rstatix
## rstudioapi
                        0.15.0 2023-07-07 [1] CRAN (R 4.3.2)
## rtracklayer
                        1.62.0 2023-10-24 [1] Bioconductor
                        1.2.0
                                   2023-10-24 [1] Bioconductor
## S4Arrays
                       0.40.2 2023-11-23 [1] Bioconductor 3.18 (R 4.3.2)
1.3.0 2023-11-28 [1] CRAN (R 4.3.2)
## S4Vectors
## scales
## seginr
                        4.2-36 2023-12-08 [1] CRAN (R 4.3.2)
                       1.2.2 2021-12-06 [1] CRAN (R 4.3.2)
1.2.2 2023-11-07 [1] Bioconductor
## sessioninfo
## SparseArray
## statnet.common
                        4.9.0 2023-05-24 [1] CRAN (R 4.3.2)
                        1.8.3 2023-12-11 [1] CRAN (R 4.3.2)
## stringi
## stringr
                        * 1.5.1
                                    2023-11-14 [1] CRAN (R 4.3.2)
## SummarizedExperiment 1.32.0 2023-10-24 [1] Bioconductor
## syntenet
                        1.4.0 2023-10-24 [1] Bioconductor
                      * 3.2.1 2023-03-20 [1] CRAN (R 4.3.2)
* 1.3.0 2023-01-24 [1] CRAN (R 4.3.2)
## tibble
## tidyr
                       1.2.0 2022-10-10 [1] CRAN (R 4.3.2)
## tidyselect
## tidytree
                        0.4.6 2023-12-12 [1] CRAN (R 4.3.2)
## tidyverse
                      * 2.0.0 2023-02-22 [1] CRAN (R 4.3.2)
                        0.2.0 2023-01-11 [1] CRAN (R 4.3.2)
## timechange
## treeio
                         1.26.0 2023-10-24 [1] Bioconductor
## tzdb
                         0.4.0
                                    2023-05-12 [1] CRAN (R 4.3.2)
```

Visual exploration of duplicated genes across the Eukarya tree of life