Chapitre 1: Introduction

On attend des chercheurs en psychologie, et des psychologues en général, qu'ils soient capables de produire des connaissances fondées sur des preuves scientifiques (et non sur des croyances et opinions), et également de comprendre et évaluer les recherches menées par d'autres [@haslam_research_2014]. Or, dans un domaine dominé par les analyses quantitatives¹ [@counsell_reporting_2017], les connaissances statistiques s'avèrent fondamentales pour comprendre, planifier et analyser une recherche [@howitt_understanding_2017; @everitt_statistics_2001]. C'est la raison pour laquelle les statistiques font partie intégrante du cursus de formation des psychologues et jouent un rôle très important dans leur parcours (Hoekstra et al., 2012). Cependant, des lacunes semblent persister dans la manière dont les statistiques sont enseignées aux futurs psychologues.

Traditionnellement, depuis plus de 50 ans, les tests de comparaison de moyennes (les traditionnels tests t et les ANOVAs) se trouvent au coeur de la grande majorité des programmes dans les domaines des Sciences Psychologiques et de l'Education (Aiken et al., 2008; Curtis & Harwell, 1998; Golinski & Cribbie, 2009) et des livres d'introduction aux statistiques pour psychologues [@field_discovering_2013]. Cela pourrait vraisemblablement expliquer pourquoi ces tests sont si persistants dans la recherche en psychologie [@counsell_reporting_2017].

Les tests t et ANOVAs sont les tests les plus fréquemment cités dans la littérature scientifique depuis plus de 60 ans [@golinski_expanding_2009;@nunnally_place_1960; @byrne_status_1996]. Dans une revue de 486 articles publiés en 2000 dans des journaux populaires en psychologie², Golinski et Cribbie (2009) avaient relevé 140 articles ($\approx 29\%$) au sein desquels les auteurs avaient mené au moins une ANOVA à un ou plusieurs facteurs. Plus récemment, Counsell et Harlow (2017) mentionnaient que parmi un ensemble de 151 études soumises dans 4 revues canadiennes en 2013, environ 40% incluaient un test de comparaison de moyennes.

Peut-être est-ce en raison de leur grande fréquence d'usage, ajoutée à leur apparente simplicité, qu'on tend à croire que la plupart des chercheurs, si pas tous, ont une bonne maîtrise de ces tests (Aiken et al., 2008; Hoekstra et al., 2012). Pourtant, certains indices semblent contredire cette conviction.

Au sein de cette thèse, nous nous focaliserons exclusivement sur le cas des plans expérimentaux de type inter-sujets avec un seul facteur (ceux utilisés lorsque les individus sont répartis aléatoirement au sein des différentes conditions définies par les modalités d'un facteur).

Bien qu'il existe plusieurs types de tests t et d'ANOVAs, les chercheurs en psychologie privilégient souvent par défaut le test t de Student et l'ANOVA de Fisher. Il s'agit de tests paramétriques (soit des tests qui impliquent des conditions relatives aux paramètres des populations étudiées, en vue d'être valides) qui consistent à comparer les scores moyens de deux (ou plusieurs) groupes indépendants de sujets. Ces tests reposent sur les hypothèses que les résidus, indépendants et identiquement distribués soient extraits d'une population qui se distribue normalement, et que tous les groupes soient extraits de populations ayant la même variance (c'est ce qu'on appelle la condition d'homogénéité des variances). Pourtant, on constate que dans les articles publiés, il n'est que rarement fait mention de ces conditions. Osborne et Christianson (2001), par exemple, avaient trouvé que seulement 8% des auteurs reportaient des informations sur les conditions d'application des tests, soit à peine 1% de plus qu'en 1969. Plus récemment, Hoekstra et al. (2012) ont montré que sur 50 articles publiés en 2011 dans Psychological Science utilisant au moins une ANOVA, test t ou régression, seulement trois discutaient des questions de normalité et d'homogénéité des variances. Par ailleurs, les informations reportées sont souvent non exhaustives [@counsell_reporting_2017], et la condition d'homogénéité des variances est encore moins fréquemment citée que celle de normalité. Parmi les 61 articles

 $^{^1\}mathrm{Parmi}$ 68 articles analysés en 2013 par Counsell et al. (2017) dans 4 revues canadiennes, 92.7% incluaient au moins une analyse quantitative.

²Les revues analysées étaient les suivantes : "Child Development", "Journal of Abnormal Psychology", "Journal of Consulting and Clinical Psychology", "Journal of Experimental Psychology : General", "Journal of Personality" et "Social Psychology".

³Parfois, ils le font de manière implicite, en indiquant qu'ils réalisent un test t (ou une ANOVA) mais sans préciser duquel (ou de laquelle) il s'agit. Cela arrive même avec des méthodologistes! Dans l'article de M. Tomczak et E. Tomczak (2014), par exemple, ils parlent de l'ANOVA et du test t, sans précision, et ce n'est qu'en lisant l'ensemble de l'article qu'on comprend qu'en réalité, ils font allusion exclusivement au test t de Student et à l'ANOVA de Fisher, entre autres, parce qu'ils proposent d'associer ces tests à des mesures de taille d'effet qui impliquent l'usage du terme de variance poolée, qui sera décrit juste après.

analysés par @keselman_statistical_1998, seulement 5% mentionnaient simultanément les conditions de normalité et d'homogénéité des variances (et en tout, la condition de normalité était mentionnée dans 11% des cas, contre seulement 8% pour la condition d'homogénéité des variances). Golinski et Cribbie (2009) ont fait un constat similaire : parmi les 140 articles qu'ils ont analysés, seulement 11 mentionnaient explicitement la condition de normalité, contre 3 qui mentionnaient celle d'homogénéité des variances.

Bien entendu, la non-mention des conditions d'application dans les articles ne veut pas forcément dire qu'elles n'ont pas été prises en compte dans les analyses. On pourrait imaginer que les auteurs vérifient les conditions d'application des tests mais ne le mentionnent généralement que lorsqu'elles sont violées [@counsell_reporting_2017]. Golinski et Cribbie (2009), par exemple, ont constaté à travers leur revue de littérature que parmi les 11 articles qui mentionnaient la condition de normalité, 10 montraient une violation de cette dernière. Il est possible que motivés par le désir de rentabiliser l'espace disponible dans les manuscrits [@counsell reporting 2017], les auteurs soient tentés de se limiter aux informations explicitement demandées par les éditeurs et les reviewers des journaux [@counsell reporting 2017]. Or, les informations relatives aux conditions d'application des tests en font rarement partie. Par exemple, leur report n'est pas explicitement demandé dans le manuel des normes APA⁴ (Hoekstra et al., 2012). Dans un tel contexte, il n'y a que peu d'intérêt pour les chercheurs à en discuter, si ce n'est pour discuter des violations des conditions (et éventuellement, se servir de cette information pour justifier une décision qui en découle). Néanmoins, même si l'on part du postulat que les conditions ne sont mentionnées que lorsqu'elles sont violées, il est surprenant d'observer que ces discussions apparaissent dans un pourcentage si faible d'articles, puisqu'il a été argumenté à de nombreuses reprises que le respect des conditions de normalité et d'homogénéité des variances est plus l'exception que la norme dans de nombreux domaines de la psychologie (Cain et al., 2017; Erceg-Hurn & Mirosevich, 2008; Grissom, 2000; Micceri, 1989; Yuan et al., 2004).

Bien que l'on ne puisse totalement écarter la possibilité que certains chercheurs prennent des décisions inhérentes aux violations des conditions d'application sans le mentionner dans leur article, l'hypothèse privilégiée par @keselman_statistical_1998 est que pour la majorité des chercheurs, le choix d'opter pour un test paramétrique se fait généralement indépendamment du fait que les conditions dont ce type de test dépend soient ou non respectées. Une expérience menée par Hoekstra et al. (2012) semble aller dans le même sens : afin d'étudier les pratiques des chercheurs lorsqu'ils étaient confrontés à un scénario qui suggérait la réalisation d'un test t, d'une ANOVA, d'une régression linéaire ou d'une alternative non paramétrique à ces tests, ils ont observé 30 doctorants qui travaillaient depuis au moins deux ans dans des départements de psychologie aux Pays-Bas et qui avaient dû pratiquer tous ces tests au moins une fois. Ils ont constaté que tous les doctorants ont opté pour des tests paramétriques et pourtant, les conditions d'application de ces tests n'ont été testées que dans un faible pourcentage de cas. Après l'expérience, les 30 doctorants ont été soumis à un questionnaire. Celui-ci a révélé que la non-vérification des conditions d'application des tests était due à leur manque de familiarité avec les conditions d'application des tests paramétriques, plutôt qu'à un choix délibéré de leur part.

Il est à noter qu'en réalité, vérifier les conditions d'application des tests est bien plus complexe qu'il n'y paraît, et tout chercheur désireux d'améliorer la transparence dans la transmission des analyses de données resterait confronté à un problème majeur : les conditions d'homogénéité des variances et de normalité reposent sur les paramètres de population et non sur les paramètres des échantillons. Comme ces paramètres de population ne sont pas connus (Hoekstra et al., 2012), on doit utiliser les paramètres des échantillons pour tenter d'inférer sur le respect des conditions d'application. Souvent, les chercheurs font cette inférence en utilisant des tests d'hypothèse, mais il a été démontré qu'un test appliqué conditionnellement aux résultats d'un test statistique préliminaire sera généralement associé à des taux inadéquats d'erreur de type I et II [@zimmerman_note_2004].

La difficulté que représente la vérification des conditions d'application ne constituerait pas réellement un problème, en soi, si les tests t de Student et F de Fisher étaient susceptibles de fournir des conclusions non biaisées et fiables même en cas d'écart à ces conditions, or ce n'est malheureusement pas toujours le cas. Ces tests sont sensibles aux violations de ces conditions, particulièrement à celles de la condition

⁴Depuis l'article de Hoekstra et al. (2012), la septième édition du manuel des normes APA est parue. Cependant, la mention explicite des conditions d'application ne fait pas partie des mises à jour proposées dans cette nouvelle édition.

d'homogénéité des variances, et cette sensibilité est accentuée lorsque les échantillons n'ont pas tous la même taille [@keselman statistical 1998].

Compte tenu de tous les éléments précités, il semblerait donc qu'une solution viable serait d'utiliser des tests qui ne reposent pas sur les conditions de normalité et d'homogénéité des variances. Il existe, par exemple, des tests qui reposent sur la comparaison d'autres indicateurs de tendance centrale que la moyenne (comme la moyenne trimmée), mais ces derniers font très souvent face à une forte résistance de la part des chercheurs, qui persistent à vouloir comparer les moyennes [@wilcox_how_1998; @erceg-hurn_modern_2008;@keselman_statistical_1998].

Dans la mesure où une revue approfondie de la littérature démontre que les taux d'erreur de type I et II des tests t de Student et F de Fisher sont bien plus affectés par le non-respect de la condition d'homogénéité des variances que par le non-respect de la condition de normalité (Erceg-Hurn & Mirosevich, 2008; Grissom, 2000; Hoekstra et al., 2012), nous recommandons aux psychologues de remplacer les tests t de Student et F de Fisher par le test de Welch, un test de comparaison de moyennes qui ne requiert pas la condition d'homogénéité des variances. Cette solution a été suggérée par de nombreux auteurs avant nous (voir, par exemple Rasch et al., 2011; Ruxton, 2006; Zimmerman, 2004), pourtant, cela semble avoir eu un impact limité sur les pratiques des chercheurs en psychologie.

Pour s'assurer de faire passer notre message, nous nous appliquerons particulièrement, au sein des articles présentés dans les chapitres 2 à 3, à nous adresser directement à ce public de chercheurs. Pour ce faire, nous tenterons (1) d'expliquer concrètement pourquoi selon nous, la condition d'homogénéité des variances n'est pas réaliste, en nous appuyant sur des exemples directement issus de la recherche en Psychologie, (2) de définir certaines notions statistiques de la manière la plus simple possible, en limitant les explications mathématiques et (3) d'illustrer graphiquement l'impact des violations de la condition d'homogénéité des variances, plutôt que de fournir des tableaux de chiffres lourds et complexes. De plus, nous conclurons ces articles par des recommandations concrètes, afin d'aider les chercheurs à extraire le message clé de ces articles.

Au delà des tests d'hypothèse, de nombreux journaux de psychologie encouragent (voire même requièrent) de quantifier la taille des effets étudiés et de fournir un intervalle de confiance autour des estimations de taille d'effet (Cumming et al., 2012). L'année 1999 a joué un rôle clé dans la mise en oeuvre de ces recommandations, puisque l'APA Task Force a publié un rapport dans lequel elle soulignait l'importance de reporter des mesures de taille d'effet. Ce rapport a été suivi de recommandations précises de la part de l'American Psychological Association (APA) et de l'American Educational Research Association (AERA) quant à la manière de reporter ces mesures (Peng et al., 2013). Or, il semblerait que ces diverses recommandations aient été associées à des modifications dans les pratiques des chercheurs. Peng et al. (2013) ont étudié l'évolution du taux moyen de report des mesures de taille d'effet en comparant ce taux moyen avant et après 1999, distinctement dans 19 revues consacrées à la recherche dans les domaines de la Psychologie et de l'Education. Ils ont noté une augmentation du taux variant de 5.2 % à 96.3 % dans chacun de ces journaux. Ils ont cependant également noté la persistance de pratiques inadéquates, telles que la dominance de la mesure du traditionnel d de Cohen.

Le d de Cohen est une mesure de taille d'effet standardisée qui appartient à la famille d et qui entretient une relation mathématique directe avec le t de Student. Par conséquent, il dépend des mêmes conditions d'application que le test t de Student, c'est donc sans surprise qu'en cas de violation de ces conditions, son usage peut amener à une sous-représentation (ou au contraire à une sur-représentation) de la taille d'effet [@grissom_review_2001]. De même que pour le test t de Student, il semblerait que ce soit essentiellement la violation de la condition d'homogénéité des variances qui soit problématique.

De nombreux auteurs se sont demandés si le d de Cohen pourrait être remplacé par une autre mesure de la même famille lorsque les variances diffèrent d'une population à l'autre, mais ils n'ont pas trouvé de consensus quant à la solution la plus appropriée [@shieh_confidence_2013]. Pour répondre à cette problématique, nous présenterons, dans le chapitre 4, des simulations Monte Carlo pour comparer le traditionnel d de cohen aux mesures de la famille d les plus communément proposées pour le remplacer lorsque la condition d'homogénéité des variances n'est pas respectée. Nous tenterons de comparer l'efficacité des différents estimateurs sous des déviations réalistes de la condition de normalité, en nous appuyant sur l'investigation de Cain et al. (2017),

qui avaient calculé les indicateurs d'asymétrie et d'aplatissement⁵ de 1567 distributions univariées provenant de 194 articles publiés dans *Psychological Science* (de Janvier 2013 à juin 2014) et *American Education Research Journal* (de janvier 2010 à juin 2014).

Notons que notre choix de nous focaliser exclusivement sur les mesures de la famille d dans ce chapitre s'explique par le fait que les chercheurs utilisent très fréquemment le d de Cohen lorsqu'ils réalisent un test t. La non-prise en compte des mesures non standardisées ne doit nullement être interprété comme un déni de leur intérêt⁶ (pour une discussion intéressante sur l'intérêt des mesures non standardisées, nous recommandons l'article de Pek et Flora, 2018).

Enfin, malgré les recommandations, il semblerait que les mesures de taille d'effet soient rarement accompagnées d'un intervalle de confiance dans la littérature (Counsell & Harlow, 2017; Peng et al., 2013), même lorsque ces mesures sont utilisées indépendamment d'un test d'hypothèse [@counsell_reporting_2017]. Le calcul des intervalles de confiance n'est pas toujours chose aisée et dans le cas des mesures standardisées, il s'avère particulièrement complexe puisqu'il requiert l'usage des distributions non centrales (Balluerka et al., 2005). C'est pour cette raison qu'au delà des simulations, nous proposerons des outils (package R et applications Shiny pour ceux qui ne sont pas familiers avec R) afin d'aider les chercheurs à calculer différents estimateurs de taille d'effet ainsi que les bornes de l'intervalle de confiance autour de ces estimateurs.

Finalement, les mesures de taille d'effet (qu'elles soient ou non standardisées) et leur intervalle de confiance sont parfois vus comme des outils qui permettent de combler certaines limites des tests d'hypothèse. Une critique fréquemment avancée à l'égard des tests d'hypothèse est le fait qu'un rejet de l'hypothèse nulle ne fournit qu'une idée de la direction de l'effet, sans information relative à son ampleur. Cette critique repose implicitement sur la conception d'après laquelle l'hypothèse nulle doit être définie comme l'absence d'effet (ou l'absence de différence entre les groupes). Il est vrai que c'est l'hypothèse nulle la plus couramment définie par les chercheurs (Lakens et al., 2018; Nickerson, 2000). Pourtant, lorsque c'est pertinent, il est possible d'incorporer la significativité pratique dans les tests d'hypothèse. Cela implique de réfléchir a priori aux effets qui présentent un intérêt pratique aux yeux des chercheurs et des praticiens [@fraas_testing_2000], ce qui peut se faire sur base de diverses considérations, telles que des comparaisons coûts/bénéfices, par exemple [@fraas_testing_2000]. Dans ce contexte, l'hypothèse nulle n'est plus que l'effet soit nul, mais qu'il ne dépasse pas une certaine valeur ou autrement dit, dans le cadre d'un test de comparaison de moyennes, que la différence de moyennes entre les groupes ne dépasse pas une certaine valeur (Newman et al., 2001). Un rejet de l'hypothèse nulle ne constituera alors plus un soutien en faveur de n'importe quel effet non nul, mais plutôt un soutien en faveur d'un effet jugé pertinent.

Il est également possible de montrer un soutien en faveur de l'absence d'un effet jugé pertinent, en définissant comme hypothèse nulle que l'effet dépasse une certaine valeur (Lakens et al., 2018). C'est le principe des tests d'équivalence, qui feront l'objet du cinquième chapitre de cette thèse.

Au sein de ce chapitre, nous commencerons par expliquer l'intérêt des tests d'équivalence avant de nous pencher plus spécifiquement sur le TOST (Two One-Sided Tests) dont nous décrirons le principe. Ensuite, nous présenterons un article coécrit avec Daniël Lakens dans lequel nous comparons le TOST à une technique récemment proposée par Blume et al. (2018), à savoir le SGPV (Second Generation P-Value).

⁵Nous utilisons ce terme "aplatissement" parce que c'est ainsi que l'on traduit communément le terme anglais "kurtosis". Comme nous le préciserons cependant dans le chapitre 3, cette traduction commune ne représente que mal cette mesure, qui nous informe plus sur la densité des distributions, au niveau des extrémités, que sur leur aplatissement.

 $^{^6}$ La notion de taille d'effet est très vaste. Elle englobe toute mesure susceptible de fournir une information relative à l'ampleur d'un effet étudié, que ce soit à travers une mesure non standardisée (moyenne, médiane, coefficient de régression non standardisée...) ou à travers une mesure standardisée (R^2 , coefficient de régression standardisé, différence de moyennes standardisée...; Counsell & Harlow, 2017).