COURS 8 - Interpolations spatiales déterministes Statistiques spatiales et SIG

Arlette Antoni

Université de Bretagne Sud

Année Universitaire 2021 -2022

interpolation spatiale

Objectif est d'estimer la valeur d'une variable, en un point non observé en fonction des points observés. afin de générer une carte continue

Combinaison linéaire pondérée des observations

$$\hat{z_{s_0}} = \sum_{r=1}^n w_{s_0} z_r$$

- plus le poids est élevé plus l'interpolation dépendra de l'observation r.
- Calcul des poids w_{s0}
- différent pour chaque nouveau site s₀
 - soit de façon géométrique ou déterministe
 - soit de façon probabiliste

Grille

Le calcul ne se fait par en tout point ! création d'une grille plus ou moins serrée

Pavage

à partir des sites s_r

pavage par les médiatrices

Plus proche voisin

interpolation en un nouveau point

Soit les Polygones de Vorono $\ddot{}$: il y en a 1 par point r P(r) est le polygone contenant r

poids des voisins

$$\hat{z_{s_0}} = z_r \text{ si } s_0 \in P(r)$$

Méthode des Voisins naturels NN

interpolation en un nouveau point

poids des voisins dit poids de Sipson

$$\hat{z_{s_0}} = \sum_{r=1}^n w_{s_0,r} z_r$$

un nouveau polygone est créé, chaque point r participe proportionnellement à la surface recouverte par son polynôme .

NN suite

Calcul de poids proportionnels à la surface d'intersection:

résultat visuel

TIN Triangulated Irregular Network

Triangulation irrégulière s'appuie sur celle de Delauney : une expression polynomiale lisse alors surface du triangle suivant les X et les Y :

- l'option « solution linéaire », passe par l'équation linéaire du plan du triangle
- l'option polynomiale (5 ieme ordre) permet un meilleur lissage

TIN

- la triangularisation est simplifiée
- si les points sont irrégulièrement espacés, tendance à former de grands triangles

IDW

Pondération par l'inverse des distances

- participation des points définir un rayon d'action R : seuls les points à l'intérieur du cercle *Vr* de rayon R auront un poids non nul
- ce poids est l'inverse de la distance
 - chaque point r participe proportionnellement à sa distance avec le site à interpolé
 - cette distance est élevée à la puissance p (> 1)
 - plus la distance est grande moins le point a d'importance
 - plus la puissance est grande plus c'est accentué
- poids des voisins

$$\hat{z_{s_0}} = \sum_{r \in Vr} \frac{1}{d(0,r)}^p z_r$$

en prenant la puissance classique p=2

tendance à former de petits cercles

Validation des méthodes

Validation croisée

- Les 2 méthodes déterministes passent exactement par les points observés
- aucune comparaison possible entre les valeurs observées et estimées
- On échantillonne un certain nombre de points
- on interpole
- on compare sur les points non échantillonnés l'observé et l'estimé