Linear Algebra for Machine Learning
Scaler Quantities Vector Quantities
Mass
· Duration
· length
They just have Magnitude (They have both
magnitude and lirection)
Alte gitgi vektor olduğunu
bellieden notation landon sadece bir
tanes! (a = (2,1,3) veya a = (2,1,3) ?le de
gostecilebilic. 3 begutte (x,y, 2)
OR <4,5> → 2 bogutlu(x, y)

- 3x3 determinant is evaluated by breaking it into
- Several 2×2 Determinants
Bu ornekte bu satırı Bu ornekte bu satırı Seqmir olalım. (Hertoni bir sutun, satır olabili Tayını sanıra verir) de f ale f b q i t e q h
= a(ei-fh) - b(di-gf) + c(dh-ge)
What is Determinant for? Help us to find the inverse of a Matrix, tells us things
about the Matrix that are useful in Systems of linear
equations, calculus and more
A: V = D. V sabit says = (3.5) A: V = D. V sabit says = (3.5) Bu Tive V Rare suture Martis matris A matrisian of deger ve matris A: V = D. V = D. V = O = (A = 7) V = O
motrister sobit says filmat. But yilled sobit says gue metris yopmaniz lazim.
Bion potris [1-4]
* A->I =0 =) Bu determinante Q y opan dejecter- "Otdegerlerdic
* (A-7,I): V = 0 = Bu exit ligi saglayor V'ler ise

matrisiain - 0'adegeclerini ve bayektor. lecini bulalin. = IK-A [[] = IK 02deperter 2. Adm (Her Digia V (besto) bu - X1-4 x2 = 0 -> , x2 = a ; X1 = -4a * Ayne islemi >=-2 i sin de yopariz. Özellikler 1) det A = 71. 72. 75 2) A.V = A.V 3) Ozdeger lerin toplani Matrisin karegendeki elemos lares toplamina esittic.

1. advos: Genisle tilmis Katsayılar Matrisi Dlustur. 2. olarak 1 yapılmalılar A = [12] alsun = [34] olun Genisle tilmis Katsayılar Matrist Burayı (A-1 olussun. 1 olarık I yapınalıyız ki O yapılmalı
2. Adim: $ \begin{bmatrix} 1 & 2 & & 1 & 0 \\ 3 & 4 & & 0 & 1 \end{bmatrix} $ $ \begin{bmatrix} 1 & 2 & & 1 & 0 \\ 3 & 4 & & 0 & 1 \end{bmatrix} $ $ \begin{bmatrix} 1 & 2 & & 1 & 0 \\ 0 & -2 & & -3 & 1 \end{bmatrix} $ $ \begin{bmatrix} 1 & 2 & & 1 & 0 \\ 0 & -2 & & -3 & 1 \end{bmatrix} $ $ \begin{bmatrix} 1 & 2 & & 1 & 0 \\ 0 & -2 & & -3 & 1 \end{bmatrix} $ $ \begin{bmatrix} 1 & 0 & & -2 & & 4 \\ 0 & 1 & & 3/2 & -1/2 \end{bmatrix} $
$A^{-1} = \begin{bmatrix} \frac{1}{3} & \frac{1}{2} & \frac{1}{2} \end{bmatrix}$ Devom: $A^{-1} = \begin{bmatrix} \frac{1}{3} & \frac{1}{2} & \frac{1}{2} \end{bmatrix}$ $A^{-1} = \begin{bmatrix} \frac{1}{3} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{3} & \frac{1}{2} & \frac{1}{2} \end{bmatrix} = \begin{bmatrix} \frac{1}{3} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{2} & \frac{1}{3} & \frac{1}{3$
2x2 matriste Tecsini [a b] 1 [d -b] alma Kolay yol; Unutaral AxA-1 = I
Peden Ters alma izlemine gerek duyduk? Matrislerde bälüm yapamayıt. Yani XA = B iken 2 tarafıda A'ya bölüp X = B/A Yapamayız. Burun yerine; XAA-1 = BA-1 = XI = BA-1 = X= BA-1 olu
$(A^{T}A)^{-1}(A^{T}g) = [\tilde{B}]$

$-\overset{\circ}{\mathbb{C}}_{R}^{3} \to R \longrightarrow T(x_{1}, x_{2}, x_{3}) = (x_{1}, x_{2}, x_{3})$
$T: \mathbb{R}^2 \to \mathbb{R}^3 \longrightarrow T(x_1, x_2) = (x_{1+}x_2, x_1-x_2, x_1 \cdot x_2)$
Bir donusum fonk. Dogrusal
donusum fork alabilmesi için;
1) T(u+v) = T(u) + T(v)
2) CERigin; T(cu) = c T(u)
_UEV
V & V