Chapter 4 Review

mass

1. How many grams of carbon dioxide should form if a student heats 50.00 grams of Aluminum carbonate and it decomposes?
$Al_2(CO_3)_3$ (s) \rightarrow Al_2O_3 (s) $+$ CO_2 (g)
a. Balance the equation.
b. Find the grams of CO ₂ . # $g CO_2 = 50.00g Al_2 CO_3$] * $\frac{Imol Al_2 (CO_3)_2}{2349}$ * $\frac{3mol CO_2}{Imol Al_2 (CO_2)_3}$ * $\frac{44g CO_2}{Imol Al_2 (CO_2)_3}$ * $\frac{3mol CO_2}{Imol Al_2 (CO_$
25.0 × 100 % = [88,7010]
c. If the actual lab value of CO ₂ is 25.0 grams, what is the %yield? $\frac{25.0}{38.700} \times 100.70 = 88.700$ 2. Pb(NO ₃) _{2(aq)} + $\frac{1}{2}$ NaOH(aq) \Rightarrow $\frac{1}{2}$ NaNO ₃ (aq) + Pb(OH) ₂ (s) $\frac{3439}{809} = 809$ 9. A reaction combines 133.484 g of lead (II) nitrate with 45.010 g of sodium hydroxide.
9. A reaction combines 133.484 g of lead (11) nitrate with 45.010 g of sodium hydroxide.
a. Which reactant is limiting? $(NO_3)_2 = \frac{(NO_3)_2}{(NO_3)_2} = (NO_3)_2$
3. What is the molarity of a solution that contains 8.00 grams of Na ₂ SO ₄ in 500 mL of solution?
What is the molarity of Na ⁺¹ ions in the above solution? $Na SO_4 = 0563 mole Na_2 SO_4 = 1/13 M$ $t male Na_2 SO_4 = 8.00 g Na_2 SO_4 \times \frac{1 mole}{142 g}$ $Na SO_4 = 0563 mole Na_2 SO_4 = 1/13 M$ $Na_2 SO_4 \times \frac{3 Nat}{1 Na_2 SO_4} = \frac{1}{100} \frac{300 L}{100} = \frac{1}{100} \frac{300 L}{100}$ Meantly Na ⁺ 100 = 113 M Na ₂ SO ₄ $\times \frac{3 Nat}{1 Na_2 SO_4} = \frac{1}{100} \frac{300 L}{100} = $
molarity Nation = ,113 M Naz 504 + BNat = [,276M Nations]
4. How would you prepare 150 mL of a 2.00 M of HCl if you have a 12.0 M solution? M. $U_1 = M_2 U_2$ $(12.0)(x) = (3.00)(.150)$ Add .035 L of 12 M 14Cl to $(12.0)(x) = (3.00)(.150)$ 5. How would you prepare 250 mL of a 3.00 M solutions of NaOH? $g = (3.00)(.350)(40) = 30g$ NaOH
5. How would you prepare 250 mL of a 3.00 M solutions of NaOH? $g = (3.00)(.250)(40) = 30g \text{ NaOH}$
40 mL of a .500 M solution of calcium chloride reacts completely with 30.0 mL of a solution of sodium phosphate to form a precipitate of calcium phosphate Stoichiometrically equal
6. Write the balanced equation. 3 Ca Cl 2 + 2Na = PO4 -> Ca 3 (PO4) 2 + 6Na Cl Mare Ca Cl = (.500 M x .040 L) = ,02 moe
7. What is the molarity of the sodium phosphate solution? Note Nag PO4 = , od mil Callzx 2 mol Nag PO4 = , 0133 mol Nag PO4 = , 44M Note Nag PO4 = , od mil Callzx 2 mol Nag PO4 = , 03L
8. What is the number of grams of precipitate formed? Choose either reactant. they both in the Gas(PO4)z=, 07 mal Caclz x Imple Caz(PO4)z x 3109 / Imple Caz(PO4)z 2 2,060 / Caz(PO4)z
1770 B
Concentrated sulfuric acid (18.4-molar H ₂ SO ₄) has a density of 1.84 grams per milliliter. After dilution with water to 5.20-molar, the solution has a density of 1.38 grams per milliliter and can be used as an electrolyte in lead storage batteries for automobiles.
9. (a) Calculate the volume of concentrated acid required to prepare 1.00 liter of 5.20-molar H ₂ SO ₄ .
$M_1 V_1 = M_2 V_2$ (18,4)(x) = (5.20)(1.00) $X = ,283 L 18.4 M 1+250 L$

3Ba(NO₃)₂(aq) + 2H₃PO₄(aq) \Rightarrow Ba₃(PO₄)₃(s) + 6HNO₃(aq)

10. Calculate the mass of Ba₃(PO₄)₂ formed.

Ba(xig_{5})₂

(600 mol Ba(xig_{5})₂ xig_{5} 104. yig_{5} 105 mol Ba(xig_{5})₂ xig_{5} 106 mol Ba(xig_{5})₂ xig_{5} 107. yig_{5} 108. yig_{5} 109. yig_{5} 109. yig_{5} 109. yig_{5} 109. yig_{5} 110. What is the concentration, in mol L⁻¹, of the nitrate ion, NO₃(aq) after the reaction reaches completion?

11. What is the concentration, in mol L⁻¹, of the nitrate ion, NO₃(aq) after the reaction reaches completion?

11. What is the concentration of mass

12. xig_{5} 13. xig_{5} 13. xig_{5} 14. xig_{5} 15. xig_{5} 16. xig_{5} 17. xig_{5} 18. xig_{5} 19. xig_{5} 109. yig_{5} 1109. yig_{5} 1

In a reaction vessel, 0.600 mol of Ba(NO₃)₂ and 0.300 mol of H₃PO₄ (aq) are combined with deionized water to

a final volume of 2.00 L. The reaction represented below occurs.