# Analyse Complexe

Ariane Mézard

6 février 2024



## Table des matières

| Ι        | Fonctions Holomorphes                            |   |
|----------|--------------------------------------------------|---|
| 1        | Fonctions Analytiques                            |   |
|          | 1.1 Séries Entières                              |   |
|          | 1.2 Fonctions Analytiques                        |   |
|          | 1.3 Détermination du Logarithme                  |   |
| <b>2</b> | Théorie de Cauchy                                |   |
|          | 2.1 Homotopie et Simple Connexité                |   |
|          | 2.2 Intégrales sur un Chemin                     |   |
|          | 2.3 Théorème de Cauchy                           |   |
|          | 2.4 Formule de Cauchy                            |   |
|          | 2.5 Inégalités de Cauchy, Premières Applications | - |

# Première partie

# Fonctions Holomorphes

## 1 Fonctions Analytiques

## 1.1 Séries Entières

## Définition 1.1: Série Entière

Une série entière est une série de la forme  $\sum_{n\in\mathbb{N}}a_nz^n$  où  $z\in\mathbb{C}$  et  $a_n\in\mathbb{C}$ . Le domaine de convergence de la série entière est l'ensemble  $\Delta$  des nombres complexes  $z\in\mathbb{C}$  pour lesquels la série converge.

## Proposition 1.1: Critère de Cauchy

Soient  $a_n$  une suite complexe et  $0 < r < r_0$ . S'il existe M > 0 tel que

$$|a_n| r_0^n \le M, n \ge 0$$

alors  $a_n z^n$  converge normalement sur  $\overline{D}(0,r)$ .

#### Corollaire 1.1: Rayon de Convergence

Soit  $\sum_{n\in\mathbb{N}} a_n z^n$  une série entière et  $R\in\mathbb{R}_+\cup\{+\infty\}$  défini par

$$R = \sup \{r \ge 0 \text{ tel que la suite } (|a_n| r^n)_{n \in \mathbb{N}} \text{ soit bornée} \}$$

Alors le domaine de convergence  $\Delta$  de la série vérifie :

$$D(0,R) \subseteq \Delta \subseteq \overline{D}(0,R)$$

#### Définition 1.2: Rayon de Convergence

On appelle le nombre R défini ci-dessus rayon de convergence.

#### Proposition 1.2: Rayon d'Hadamard

Le rayon de convergence est donné par

$$R = \liminf_{n \to \infty} \frac{1}{|a_n|^{1/n}}$$

Avec la convention  $1/0 = \infty$ 

## Lemme 1.1: Lemme d'Abel

Soit  $u_n$  une suite réelle décroissante vers 0 et  $v_n$  une suite complexe telle que les sommes partielles  $s_n = \sum_{k=0}^n v_k$  soient bornées. Alors la série  $\sum u_n v_n$  converge.

#### Proposition 1.3: Principe des Zéros Isolés

Soit  $f(z) = \sum a_n z^n$  la somme d'une série entière de rayon de convergence R > 0. Si au moins un des coefficients  $a_n$  n'est pas nul, il existe  $r \in ]0, +\infty[$  tel que f ne s'annule pas pour  $|z| \in ]0, r[$ .

#### Définition 1.3: Dérivée Complexe

Une fonction  $f:U\to\mathbb{C}$  admet une dérivée par rapport à la variable complexe au point  $z_0$  si

$$\lim_{z \to u} \frac{f(z_0 + u) - f(z_0)}{u}$$

existe. Cette limite est alors appelée dérivée de f en  $z_0$ .

## Proposition 1.4: Dérivée d'une Série Entière

Soit  $f(z) = \sum a_n z^n$  une série entière de rayon de convergence R > 0. Alors, pour tout  $l \in \mathbb{N}^*$ , les dérivées l-ièmes de f ont pour rayon de convergence R et pour expression :

$$f^{(l)}(z) = \sum_{n \in \mathbb{N}} \frac{(n+l)!}{n!} a_{n+l} z^n$$

#### Corollaire 1.2: Primitive

Une série entière  $f(z) = \sum a_n z^n$  de rayon de convergence R > 0 admet sur D(0,R) une primitive complexe

$$F(z) = \sum \frac{a_n}{n+1} z^{n+1}$$

#### Proposition 1.5: S

it  $f(z) = \sum a_n z^n$  une série entière de rayon de convergence R > 0. Soit  $z_0 \in D(0, R)$ . La série entière

$$\sum_{n\in\mathbb{N}} \frac{1}{n!} f^{(n)}(z_0) \omega^n$$

a un rayon de convergence supérieur à  $R-|z_0|$  et pour tout  $z\in D(z_0,R-|z_0|),$ 

$$f(z) = \sum_{n \ge 0} \frac{1}{n!} f^{(n)}(z_0) (z - z_0)^n$$

## 1.2 Fonctions Analytiques

## Définition 1.4: Fonction Analytique

Une fonction  $f:U\to\mathbb{C}$  est dite analytique si elle est DSE au voisinage de chaque point de U.

#### Proposition 1.6: Dérivabilité

Une fonction analytique sur un ouvert U de  $\mathbb{C}$  admet des dérivées de tous ordres qui sont des fonctions analytiques sur U. De plus, pour tout  $z_0 \in U$ , f est somme de sa série de Taylor en  $z_0$  sur un voisinage de  $z_0$ .

## Corollaire 1.3: Unicité du DSE

Une fonction analytique sur U admet un unique développement en série entière au voisinage de chaque point de U.

#### Lemme 1.2: Nullité

Si U est connexe et f est analytique sur U, nulle sur un ouvert non-vide de U, alors f est identiquement nulle sur U.

## Proposition 1.7: Zéros Isolés

oit f une fonction analytique sur un ouvert connexe U. Si f n'est pas identiquement nulle, ses zéros sont isolés, i.e. si  $z_0 \in U$  avec  $f(z_0) = 0$ , alors il existe r > 0 tel que  $z_0$  soit le seul  $z_0$  de f sur  $D(z_0, r)$ 

#### Théorème 1.1: Prolongement Analytique

Soit U un ouvert connexe de  $\mathbb{C}$ , f,g des fonctions analytiques sur U. Si f,g coincident sur une partie  $\Sigma$  de U qui a un point d'accumulation dans U, alors elles coincident sur U.

#### Définition 1.5: Primitive

Etant donnée une fonction analytique f sur U, une fonction analytique F de U dans  $\mathbb{C}$  est dite primitive de f si F'(z) = f(z) sur U.

## 1.3 Détermination du Logarithme

## Définition 1.6: Détermination de l'Argument

Soit  $U \subseteq \mathbb{C}^*$  ouvert. Une fonction continue  $\arg: U \to \mathbb{R}$  est dite détermination continue de l'argument sur U si pour tout  $z \in U$ ,  $\exp(i \arg(z)) = \frac{z}{|z|}$ 

## Définition 1.7: Détermination Principale

La détermination continue de l'argument

$$\begin{array}{ccc} \mathbb{C} - \mathbb{R}_{-} & \longrightarrow & ] - \pi, \pi[ \\ z \mapsto & 2 \arctan\left(\frac{y}{x + \sqrt{x^2 + y^2}}\right) \end{array}$$

en prenant la racine carrée de z appartenant au demi-plan  $\Re z>0$  est appelée détermination principale de l'argument.

## Définition 1.8: Logarithme

Soit  $U\subseteq \mathbb{C}^\star$  ouvert. Une fonction continue  $f:U\to \mathbb{C}$  est dite détermination du logarithme sur U si

$$\forall z \in U, \exp(f(w)) = w$$

#### Définition 1.9: Détermination Principale du Log

On définit pour  $\theta \in \mathbb{R}$  la fonction

$$\log_{\theta} : \mathbb{C} \to \mathbb{R}_{-}e^{i\theta}, \log_{\theta}(w) = \log|w| + i\arg_{\theta}(w)$$

La fonction  $\log_0$  est appelée détermination principale du logarithme et notée  $\log$ .

## Proposition 1.8: DSE du Logarithme

log est DSE sur D(1,1) et sur D(0,1) on a

$$\log(1+z) = \sum \frac{(-1)^{n+1}}{n} z^n$$

Par conséquent, sur  $D(z_0, |z_0|)$ ,

$$g(z) = \log z_0 + i\theta_0 + \sum_{n>1} \frac{(-1)^{n-1}}{n} \left(\frac{z-z_0}{z_0}\right)^n$$

est une détermination analytique du logarithme.

#### Proposition 1.9: Analycité des Déterminations

Il y a équivalence sur un ouvert connexe U de  $\mathbb{C}^*$  pour une application continue l entre :

- $\bullet \ l$  est une détermination du logarithme à l'addition d'une constante près
- l est une primitive analytique de  $\frac{1}{z}$  sur U.

#### Définition 1.10: Détermination

Soit  $U \subseteq \mathbb{C}^*$  et  $\alpha \in \mathbb{C}$ . Une détermination continue de  $z^{\alpha}$  est une application continue g de U dans  $\mathbb{C}$  telle qu'il existe une détermination du logarithme l(z) de z telle que  $g(z) = \exp^{\alpha l(z)}$ .

## 2 Théorie de Cauchy

## 2.1 Homotopie et Simple Connexité

#### Définition 2.1: Chemin

Soit [a, b] un intervalle de  $\mathbb{R}$ . Un chemin  $\gamma : [a, b] \to \mathbb{C}$  est une application continue. Le point  $\gamma(a)$  est appelé origine et le point  $\gamma(b)$  est dit extrémité. On orientera par défaut un chemin dans le sens des paramètres croissants. Si  $\gamma(a) = \gamma(b)$ , le chemin est dit lacet d'origine  $\gamma(a)$ .

## Définition 2.2: Opérations

- 1. Si  $\gamma$  est constant, son image est réduite à un point. Il est alors appelé chemin (ou lacet) constant.
- 2. Soit  $\alpha \in \mathbb{R}^*$ ,  $\gamma : t \in [0,1] \mapsto e^{2i\pi\alpha t}$  est un chemin dont l'image est une partie du cercle unité  $\partial D(0,1)$ . Si  $\alpha = n \in \mathbb{Z}^*$ ,  $\gamma ([0,1])$  est le cercle tout entier parcouru n fois.
- 3. Si  $\gamma:[a,b]\to\mathbb{C}$  est un chemin, le chemin opposé

$$\gamma^0: t \in [a,b] \mapsto \gamma(a+b-t)$$

est  $\gamma$  parcouru en sens inverse.

4. La juxta position de  $\gamma_1,\gamma_2$  tels que  $\gamma_1(b)=\gamma_2(c)$  est le chemin  $\gamma=\gamma_1\wedge\gamma_2:[a,d+b-c]\to\mathbb{C}$ 

$$\gamma(t) = \begin{cases} \gamma_1(t) & \text{pour } a \le t \le b \\ \gamma_2(t - b + c) & \text{pour } b \le t \le d + b - c \end{cases}$$

5

## Définition 2.3: Homotopie

Soit U un ouvert de  $\mathbb{C}$ ,  $\gamma_i:I\to U,\ i\in\{1,2\}$  deux chemins. Une homotopie de  $\gamma_1$  à  $\gamma_2$  dans U est une application continue  $\varphi$  de  $I\times J$  dans U où I=[a,b] et J=[c,d] sont deux intervalles de  $\mathbb{R}$  telle que :

$$\varphi(t,c) = \gamma_1(t)$$
 et  $\varphi(t,d) = \gamma_2(t), t \in I$ 

## Définition 2.4: Simple Connexité

Un espace topologique X connexe par arcs est dit simplement connexe si tout lacet dans X est homotope à un point dans X.

#### Proposition 2.1

- Un espace topologique est simplement connexe si et seulement si tous les chemins de même extrémités sont homotopes.
- Un ouvert étoilé par rapport à un point est simplement connexe. En particulier, dans  $\mathbb{C}$ , le plan, un demi-plan, un disque ouvert, l'intérieur d'un rectangle ou d'un triangle sont simplement connexes.
- Le demi-plan ouvert  $\Im z > 0$  auquel nous ôtons un nombre fini de demi-droites fermées  $z = t + i\beta_k, \ t \in ]-\infty, \alpha_k]$  est simplement connexe non étoilé.
- $\bullet \ \mathbb{C}^{\star}$  n'est pas simplement connexe car le cercle unité n'est pas homotope à un chemin constant.

## 2.2 Intégrales sur un Chemin

Dorénavant, les chemins sont supposés  $C^1$  par morceaux.

#### Définition 2.5: Equivalence de Chemins

Deux chemins  $\gamma_i: I_i \to \mathbb{C}$  sont dits équivalents s'il existe une bijection croissante  $\varphi: I_2 \to I_1$  continue de réciproque continue et  $\mathcal{C}^1$  par morceaux telle que :

$$\gamma_2(t) = \gamma_1(\varphi(t)), t \in I_2$$

#### Définition 2.6: Intégrale le long d'un Chemin

Soit  $f: U \to \mathbb{C}$  continue et  $\gamma: I = [a, b] \to \mathbb{C}$  un chemin avec  $\gamma(I) \subseteq U$ . Alors, la fonction  $t: f(\gamma(t))\gamma'(t)$  est continue par morceaux dans [a, b]. On appelle intégrale de f le long du chemin  $\gamma:$ 

$$\int_{\gamma} f(z) dz = \int_{a}^{b} f(\gamma(t)) \gamma'(t) dt$$

#### Définition 2.7: Longueur

La longueur d'un chemin est le réel :

$$long(\gamma) = \int_{a}^{b} \left| \gamma'(t) \right| dt$$

6

## Proposition 2.2: Propriétés

• Si F est une primitive de f, pour tout chemin  $\gamma$ :

$$\int_{\gamma} f(z) dz = F(\gamma(b)) - F(\gamma(a))$$

• Si  $\gamma_1 \sim \gamma_2$  alors

$$\int_{\gamma_1} f = \int_{\gamma_2} f$$

- Si  $[Z_0, z_1] \subseteq U$ , nous notons  $\int_{[z_0, z_1]} f(z) dz = \int_{\gamma} f(z) dz$  où  $\gamma : t \in [0, 1] \mapsto (1 t)z_0 + tz_1$ .
- Si  $\partial D(z_0,r) \subseteq U$ , soit le lacet  $\gamma: \theta \in [0,2\pi] \mapsto z_0 + re^{i\theta}$ . On a :

$$\int_{\gamma} f(z) dz = \int_{\partial D(z_0, r)} f(z) dz = \int_{0}^{2\pi} f(z_0 + re^{i\theta}) i r e^{i\theta} d\theta$$

• En séparant parties réelles et imaginaires, f = P + iQ et  $\gamma = u + iv$ , on a :

$$\int_{\gamma} f(z) dz = \int_{a}^{b} ((P \circ \gamma) u' - (Q \circ \gamma) v') dt + i \int_{a}^{b} ((Q \circ \gamma) u' + (P \circ \gamma) u') dt$$
$$= \int_{\gamma} (P dx - Q dy) + i \int_{\gamma} (P dy + Q dx)$$

• On a:

$$\int_{\gamma} f(z) dz = -\int_{\gamma^0} f(z) dz$$

• On a :

$$\left| \int_{\gamma} f(z) \, \mathrm{d}z \right| \le long(\gamma) \max_{\gamma} |f|$$

#### 2.3 Théorème de Cauchy

#### Théorème 2.1: de Cauchy

Soit  $U \subseteq \mathbb{C}$  un ouvert connexe et f une fonction analytique dans U. Si  $\gamma_1, \gamma_2$  sont deux lacets homotopes dans U, alors

$$\int_{\gamma_1} f(z) \, \mathrm{d}z = \int_{\gamma_2} f(z) \, \mathrm{d}z$$

En particulier, si U est simplement connexe, l'intégrale sur un lacet de f est nulle.

## Théorème 2.2

Soit  $U \subseteq \mathbb{C}$  un ouvert simplement connexe.

- 1. Toute fonction analytique dans U admet une primitive.
- 2. Si  $f:U\to\mathbb{C}^*$  est analytique, alors il existe  $g:U\to\mathbb{C}$  analytique tel que  $\exp(g)=f$  sur U.

## 2.4 Formule de Cauchy

## Lemme 2.1: Intégrité de l'Indice

Soit  $\gamma: I = [c, d] \to \mathbb{C}$  un lacet et  $a \notin \gamma(I)$ . Alors

$$j(a,\gamma) = \frac{1}{2i\pi} \int_{\gamma} \frac{\mathrm{d}z}{z-a} \in \mathbb{Z}$$

Démonstration. Pour  $t \in [c, d]$  on pose

$$h(t) = \int_{c}^{t} \frac{\gamma'(s) \, \mathrm{d}s}{\gamma(s) - a}$$

On a  $h'(t) = \frac{\gamma'(t)}{\gamma(t) - a}$ , sauf en un nombre fini de points de I.

Remarquons que  $g(t) = e^{-h(t)} (\gamma(t) - a)$  a pour dérivée

$$g'(t) = -h'(t)e^{-h(t)} (\gamma(t) - a) + \gamma'(t)e^{-h(t)} = 0$$

sauf en un nombre fini de points de I. Comme g est continue, elle est constante et g(c) = g(d). Or, h(c) = 0 donc  $g(c) = \gamma(c) - a = g(d) = e^{-h(d)}(\gamma(d) - a)$ . Mais  $\gamma$  est un lacet, donc  $\gamma(c) = \gamma(d)$ . Donc  $h(d) = 2in\pi$ . Donc  $j(a, \gamma) = n \in \mathbb{Z}$ .

#### Définition 2.8: Indice

L'entier  $j(a, \gamma)$  est appelé indice de a par rapport au lacet  $\gamma$  et s'interprète comme le nombre de fois que le lacet tourne autour de a lorsque a est intérieur au lacet.

#### Proposition 2.3: Propriétés

1. Soit  $\gamma, \gamma_1, \gamma_2$  des lacets de même origine dont les lacets ne contiennent pas a. Alors,

$$j(a,\gamma^0) = -j(a,\gamma)$$
 et  $j(a,\gamma_1 \wedge \gamma_2) = j(a,\gamma_1) + j(a,\gamma_2)$ 

- 2. En appliquant le théorème de Cauchy à la fonction analytique 1/(z-a) dans  $\mathbb{C} \{a\}$ , nous obtenons  $j(a, \gamma_1) = j(a, \gamma_2)$  si  $\gamma_1, \gamma_2$  sont homotopes dans  $\mathbb{C} \{a\}$ .
- 3. Soit  $U \subset \mathbb{C}$  un ouvert simplement connexe et  $\gamma \subset U$ . Si  $a \notin U$ , alors  $j(a, \gamma) = 0$ .
- 4. Si  $\gamma$  set un lacet dans  $\mathbb{C}$ , pour tout ouvert connexe U de  $\mathbb{C} \gamma(I)$ , la fonction  $z \mapsto j(z,\gamma)$  est constante dans U.
- 5. Soit  $\gamma_n: t \mapsto e^{int}$ , on a:

$$j(z_0, \gamma_n) = \begin{cases} n & si |z_0| < 1\\ 0 & si |z_0| > 1 \end{cases}$$

Démonstration du point iv. Soit  $z \in D(z_0, r) \subseteq U$ ,

$$j(z,\gamma) = \frac{1}{2i\pi} \int_{\gamma} \frac{\mathrm{d}u}{u-z} = \frac{1}{2i\pi} \int_{\gamma_1} \frac{\mathrm{d}u}{u-z} = \frac{1}{2i\pi} \int_{\gamma} \frac{\mathrm{d}u}{u-z_0} = j(z_0,\gamma)$$

pour  $\gamma_1: t \mapsto \gamma(t) + (z - z_0)$  qui est homotopie à  $\gamma$  via

$$\varphi(t,s) = \gamma(t) + s(z - z_0), 0 \le s \le 1$$

Donc  $j(\cdot, \gamma)$  est localement constante donc constante sur U connexe.

## Théorème 2.3: Formule de Cauchy

Soit  $U\subseteq\mathbb{C}$  un ouvert simplement connexe,  $\gamma:I\to U$  un lacet dans U. Soit f analytique sur U. Pour tout  $w\in U\setminus\gamma(I)$ 

$$j(w,\gamma)f(w) = \frac{1}{2i\pi} \int_{\gamma} \frac{f(z)}{z-w} dz$$

Démonstration. La fonction

$$g: z \in U \mapsto \begin{cases} \frac{f(z) - f(w)}{z - w} & \text{si } z \neq w \\ f'(w) & \text{si } z = w \end{cases}$$

est analytique sur U. En effet pour r>0 assez petit, f admet un développement de Taylor sur  $D(w,r)\subseteq U$  et donc pour  $z\in D(w,r)$ :

$$g(z) = f'(w) + \frac{f''(w)}{2!}(z - w) + \dots + \frac{f^{(n)}(w)}{n!}(z - w)^{n-1} + \dots$$

Comme U est simplement connexe, le théorème de Cauchy donne  $\int_{\gamma} g = 0$  et comme  $w \notin \gamma(I)$ ,  $\int_{\gamma} \frac{f(z) - f(w)}{z - w} \, \mathrm{d}z = 0$  c'est à dire :

$$\int_{\gamma} \frac{f(z) dz}{z - w} = f(w) \int_{\gamma} \frac{dz}{z - w} = 2i\pi j(w, \gamma) f(w)$$

#### Corollaire 2.1: Valeur en un point

On a :

$$f(w) = \frac{1}{2i\pi} \int_{\partial D(z_0, r)} \frac{f(z)}{z - w} \, \mathrm{d}z, w \in D(z_0, r)$$

## Proposition 2.4: Continuité sur un Lacet

Soit  $\gamma:I=[c,d]\to\mathbb{C}$  un lacet et  $g:\gamma(I)\to\mathbb{C}$  une fonction définie et continue sur  $\gamma(I)$ . Alors :

$$f(z) = \int_{\gamma} \frac{g(u) \, \mathrm{d}u}{u - z}$$

est définie et analytique dans  $\mathbb{C} \setminus \gamma(I)$ .

Précisément, pour tout  $w \in \mathbb{C} \setminus \gamma(I)$  pour tout  $n \in \mathbb{N}$  et

$$c_n = \int_{\mathcal{X}} \frac{g(u) \, \mathrm{d}u}{(u-w)^{n+1}}$$

nous avons un développement en série entière convergente

$$f(z) = \sum_{n>0} c_n (z - w)^n$$

dans tout disque ouvert de centre w et de rayon  $r = d(w, \gamma(I))$  et

$$f^{(n)}(w) = n!c_n = n! \int_{\gamma} \frac{g(u) du}{(u - w)^{n+1}}$$

Démonstration. Pour tout  $u \in \gamma(I), z \in D(w,qr), q \in [0,1]$ , la série

$$\frac{1}{u-z} = \frac{1}{u-w} \frac{1}{1 - \frac{z-w}{u-w}} = \sum_{n=0}^{+\infty} \frac{(z-w)^n}{(u-w)^{n+1}}$$

est convergente. Comme  $(g \circ \gamma) \gamma'$  est continue par morceaux sur [c, d] il existe M tel que

$$|g(\gamma(t))\gamma'(t)| \le M$$

Donc:

$$\left| g\left(\gamma(t)\right)\gamma'(t)\frac{(z-w)^n}{\left(\gamma(t)-w\right)^{n+1}} \right| \le M\frac{q^n}{r}, t \in [c,d]$$

Finalement, la série sous l'intégrale est normalement convergente et :

$$f(z) = \int_c^d \frac{g(\gamma(t))\gamma'(t) dt}{\gamma(t) - z} = \int_c^d g(\gamma(t))\gamma'(t) \left( \sum_{n=0}^{+\infty} \frac{(z - w)^n}{(\gamma(t) - w)^{n+1}} \right) dt$$

et donc  $f(z) = \sum_{n=0}^{+\infty} c_n (z-w)^n$ 

#### Proposition 2.5: Dérivée n-ième

Soit f analytique sur U et  $\gamma$  le bord de  $\overline{D}(w,r) \subseteq U$ . D'après la formule de Cauchy :

$$f^{(n)}(w) = \frac{n!}{2\pi r^n} \int_0^{2\pi} \frac{f(w + re^{it})}{e^{nit}} dt$$

#### Corollaire 2.2

- 1. Soit f analytique sur U. Pour tout  $a \in U$ , la série de Taylor de f au voisinage de a est convergente et a pour somme f(z) dans le plus grand disque ouvert de centre a contenu dans U
- 2. Si f est analytique sur  $\mathbb{C}$ , sa série de Taylor en tout point de  $\mathbb{C}$  est convergente sur  $\mathbb{C}$ .

Démonstration. On applique la formule de Cauchy sur le contour  $\gamma$  d'un disque D(a,r) contenu dans U. Pour  $z \in D(a,r), j(z,\gamma) = 1$  et

$$f(z) = \frac{1}{2i\pi} \int_{\gamma} \frac{f(w)}{w - z} dz$$

La proposition 2.4 donne un développement en série entière de f en z-a convergeant sur D(a,r). Par unicité du développement, il s'agit de la série de Taylor. En faisant tendre r vers  $d(a, \mathbb{C} - U)$ , nous obtenons le résultat annoncé.

#### Corollaire 2.3: Constance Locale

Supposons U connexe,  $a \in U$  et  $f: U \to \mathbb{C}$  analytique. Si pour tout  $k > 0, f^{(k)}(a) = 0$ , alors f est constante sur U.

Démonstration. D'après le corollaire 2.4, f est localement somme de sa série de Taylor. Donc f est constante sur un ouvert contenant a. Soit  $\Omega = \{w \in U, \forall k > 0, f^{(k)}(w) = 0\}$ . Cet ensemble est ouvert, non vide, et fermé. Par connexité de U,  $\Omega = U$ , f' = 0 sur U et f est constante sur U.

## Théorème 2.4: Multiplicité

Soit  $f:U\to\mathbb{C}$  analytique non constante au voisinage de  $a\in U$ . Si f(a)=0, il existe un unique entier  $m\geq 1$  et  $g:V\to\mathbb{C}$  analytique sur un voisinage V de a tels que

$$f(z) = (z - a)^m g(z), g(a) \neq 0, z \in V$$

En particulier, le point a possède un voisinage dans lequel il est l'unique zéro de f.

Démonstration. D'après le corollaire 2.4, si f n'est pas constante dans un voisinage de a, il existe  $m \ge 1$  tel  $f^{(m)}(a) \ne 0$  et  $f'(a) = \ldots = f^{(m-1)}(a) = 0$ .

Comme f(a) = 0, on peut alors factoriser  $(z - a)^m$  dans le développement en série de Taylor de f

## Définition 2.9: Ordre

L'entier m du théorème précédent est dit ordre de f en a, noté ord(f,a).

## 2.5 Inégalités de Cauchy, Premières Applications

## Proposition 2.6: Inégalités de Cauchy

Soit  $f:U\to\mathbb{C}$  analytique,  $\overline{D}(w,r)\subset U, r>0$ . On a, pour  $n\in\mathbb{N}$ :

$$\left| f^{(n)}(w) \right| \le \frac{n!}{r^n} \sup_{z \in \partial D(w,r)} |f(z)|$$

Démonstration. On a :

$$f^{(n)}(w) = \frac{n!}{2\pi r^n} \int_0^{2\pi} \frac{f(w + re^{it})}{e^{nit}} dt$$

On en déduit immédiatement le résultat.

#### Lemme 2.2: Bornitude et Polynomialité

Soit f analytique sur  $\mathbb{C}$ . Supposons qu'il existe  $A, B \geq 0$  tels que

$$\forall z \in \mathbb{C}, |f(z)| \leq A (1+|z|)^B$$

Alors f est un polynôme de degré  $\leq B$ .

Démonstration. Soit  $n \ge \lfloor B \rfloor + 1 > B$ . Par les inégalités de Cauchy, puisque

$$\sup_{\partial D(z,r)} |f(z)| \le A (1 + |z| + r)^B$$

on a:

$$\left|f^{(n)}(z)\right| \leq \frac{n!}{r^n} A(1+|z|+r)^B$$

En faisant tendre r vers  $+\infty$ , par croissance comparée,  $f^{(n)}(w) = 0$  pour  $n \geq B$ . Localement, f étant somme de sa série de Taylor, c'est localement un polynôme de degré au plus B, ce qui est donc le résultat.

#### Théorème 2.5: Liouville

Une fonction analytique bornée sur  $\mathbb{C}$  est constante.

## Théorème 2.6: d'Alembert-Gauss

Tout polynôme  $P \in \mathbb{C}[z]$  de degré  $\geq 1$  admet une racine dans  $\mathbb{C}$ .

Démonstration. Par l'absurde, si  $P(z) = \sum_{i=0}^d a_i z^i$  ne s'annule pas, f = 1/P est analytique sur  $\mathbb C$  et  $|f(z)| \sim \frac{1}{|a_d||z|^d}$  tend vers 0 quand |z| tend vers  $+\infty$ . En particulier, f est bornée sur  $\mathbb C$  donc constante d'après le théorème de Liouville. Ainsi, P = 1/f est constant, ce uqui est absurde.

## Théorème 2.7: Topologie

Les ouverts  $\mathbb{C}$  et D(0,1) sont homéomorphes mais pas isomorphes.

Démonstration. Oui.