MULTICLASS CLASSIFICATION

Binary classification

- Example: Use one hyperplane to dichotomize an ddimensional space (only two classes exist)
 - https://www.researchgate.net/figure/Binary-patterns-a-A-simple-pattern-and-b-a-complex-pattern-for-an-input-dimension-N_fig6_287251036

Multiclass classification

- Multiclass or multinomial classification: classifying instances into one of three or more classes
- Ref. https://en.wikipedia.org/wiki/Multiclass_classification

Multiclass classification

- □ To deal with multiclass problems, we have
 - Transformation to binary
 - Extension from binary
 - Hierarchical classification

Transformation to binary

- \square Classes: C_1, C_2, \cdots, C_5
- □ One-vs-all
 - 1st classifier: to distinguish C_1 & $(C_2 \cup C_3 \cup \cdots \cup C_5)$
 - \square 2nd classifier: to distinguish C_2 & ($C_1 \cup C_3 \cup \cdots \cup C_5$)
 - Etc. (Need 5 classifiers)

□ One-vs-one

- lacksquare 1st classifier: to distinguish \mathcal{C}_1 & \mathcal{C}_2
- $lue{}$ 2nd classifier: to distinguish C_1 & C_3
- \blacksquare Etc. (Need 5*4/2 classifiers)
 - Ref: https://medium.com/@chih.sheng.huang821(機器學習:如何在多類別分類問題上使用用二元分類器進行分類)

Extension from binary

- Some algorithms can be easily extend for multiclass classification
- Example 1: K-NN can be extend to deal with multiclass problems
- Example 2: Neural networks can have more than one output node to handle multiclass problems

Hierarchical classification

- \square Classes: C_1, C_2, \cdots, C_5
 - $lue{\Box}$ 1st-level classifier: to distinguish ($C_1 \cup C_2$) & ($C_3 \cup C_4 \cup C_5$)
 - \square 2nd-level classifiers: (1) $C_1 \& C_2$; (2) $C_3 \& (C_4 \cup C_5)$
 - $lue{}$ 3rd-level classifier: $C_4 \& C_5$
- Arranged in tree structure