Methods of Data Analysis II Homework 5

Name:	OSU-ID:

Instructions

- The homework is due on Friday, May 29th (in class). Late homeworks will not be accepted under any circumstances.
- You may work individually or in groups of 2 people. If you work in groups, you must include the names and OSU-ID numbers of all the students in the group and submit only one assignment per group.
- You must provide complete answers in order to receive full credit. The homework is worth 25 points.
- You must clearly indicate the problem that you are working.
- Homeworks must be stapled when submitted (including this sheet as a cover page). Do not use folders, paper clips or any other objects to keep the pages together.

1. Suppose that X_1 , X_2 and X_3 are three explanatory variables in a multiple linear regression model with n=28 observations. The following table shows the residual sum of squares and degrees of freedom for all the possible models:

Model Variables	SS(Residual)	df(Residual)
None	8100	27
X_1	6240	26
X_2	5980	26
X_3	6760	26
X_1, X_2	5500	25
X_1, X_3	5250	25
X_{2}, X_{3}	5750	25
X_1, X_2, X_3	5160	24

- (a) Obtain the estimate of σ^2 for each model.
- (b) Compute R_{adj}^2 for each model.
- (c) Compute the C_p statistic for each model.
- (d) Compute the *BIC* for each model.
- (e) Determine which model gives:
 - i. the smallest estimate of σ^2
 - ii. the largest R_{adi}^2
 - iii. the smallest C_p
 - iv. the smallest BIC

Note: You don't need to do any coding to solve this problem. You can do all the calculations by hand.