

Hrvatsko otvoreno natjecanje u informatici

2. kolo, 16. studenog 2019.

Zadaci

Zadatak	Vremensko ograničenje	Memorijsko ograničenje	Bodovi
Osijek	1 sekunda	$512~\mathrm{MiB}$	20
Radio	1 sekunda	$512~\mathrm{MiB}$	30
Slagalica	1 sekunda	$512~\mathrm{MiB}$	70
${\bf Checker}$	1 sekund1	$512~\mathrm{MiB}$	110
Ukupno			230

Zadatak Osijek

Morao je doći i taj dan. Lega, vatreni navijač Osijeka, navijač koji nikad nije propustio nijednu Osijekovu prvenstvenu utakmicu, izgubio je dobar glas i po preporuci liječnika ne smije na veliki derbi. Zato Lega, umjesto da je u Gradskom Vrtu, sjedi ispred televizora i gleda utakmicu. Utjehu je pronašao u kutiji čipsa. Dok je u kutiji bilo čipsa, Lega bi izvadio točno K komada (ako ih je nema toliko, izvadio bi koliko ima), pojeo ih i šaptom uzviknuo: "Ajmo Bijelo-plavi!".

Ako znamo da je u kutiji bilo N komada čipsa, koliko je puta Lega prošaputao navijački poklič?

Ulazni podaci

U prvom je retku cijeli broj N (0 $\leq N \leq$ 100) iz teksta zadatka. U drugom je retku prirodan broj K (1 $\leq K \leq$ 100) iz teksta zadatka.

Izlazni podaci

U jedini redak ispišite traženi broj iz teksta zadatka

Probni primjeri

ulaz	ulaz	ulaz
10 2	15 7	0 10
		l
izlaz	izlaz	izlaz
izlaz 5	izlaz 3	izlaz 0

Pojašnjenje prvog probnog primjera: U kutiji je bilo 10 komada čipsa. Lega je 5 puta uzimao po 2 komada i uzvikivao navijački slogan.

Zadatak Radio

Stjepan je, nakon godinu dana rada u poznatoj hrvatskoj firmi, kupio polovni BMW. Na putu od Zagreba do Belice (malog mjesta pored Pribislavca) Stjepan je glasno puštao glazbu i nakon ${\bf dugo}~{\bf dugo}$ trpljenja te buke njegova cura Ana mu je uputila N pritužbi.

Svaka pritužba je bila oblika: "Sjepane, molim te stišaj glazbu za A_i jedinica". Stjepan bi rado poslušao svoju curu, ali također bi htio održati visoku razinu glasnoće glazbe. Kako bi pomirio svoje dvojbe Stjepan je odlučio povećati

jačinu glazbe za B_i jedinica svaki put kad bi mu Ana uputila pritužbu, a zatim ispuniti želju svojoj djevojci i smanjiti jačinu glazbe za A_i jedinica.

Ako znamo da je jačina glazbe na početku puta bila X jedinica, pitamo se kolika je bila na kraju puta?

Ulazni podaci

U prvom su retku dva prirodna broja N i X $(1 \le N, X \le 10^5)$ iz teksta zadatka. U sljedećih su N redaka dva prirodna broja A_i i B_i $(1 \le A_i, B_i \le 10^5)$ iz teksta zadatka.

Jačina glazbe tokom puta nikada neće biti negativna.

Izlazni podaci

U jedini redak ispišite jačinu glazbe na kraju puta.

Bodovanje

U test podacima ukupno vrijednima 15 bodova vrijedit će da je N=1.

Probni primjeri

ulaz	ulaz	ulaz
1 10 1 5 izlaz 14	2 7 4 1 3 1 izlaz 2	3 500 400 200 100 50 100 20 izlaz 170

Pojašnjenje prvog probnog primjera: Na početku vožnje jačina glazbe je 10 jedinica. Nakon što Ana uputi prvu i jedinu pritužbu, Stjepan pojača radio za pet jedinica na 15, a zatim ga smanji za jednu jedinicu na 14.

Pojašnjenje drugog probnog primjera: Na početku vožnje jačina glazbe je 7 jedinica, nakon prve pritužbe jačina je 4 jedinice, a nakon druge i posljednje pritužbe jačina glazbe iznosi 2 jedinice.

Zadatak Slagalica

Mali Fabijan je za rođendan dobio jednodimenzionalnu slagalicu koja se sastoji od N komadića. Primijetio je da svaki komadić ima jedan od sljedećih oblika:

Dodatno, poznato je da se među tih N komadića nalazi točno jedan komadić oblika 5 ili 6 te točno jedan komadić oblika 7 ili 8.

Fabijan želi složiti sve komadiće u jednodimenzionalni slijed tako da prvi komadić u slijedu bude oblika 5 ili 6, a zadnji oblika 7 ili 8. Dva komadića može spojiti samo ako na rubu na kojem se dodiruju imaju suprotne oblike, dakle jedan ima udubinu, a drugi izbočinu.

Budući da mu je to prelagano, Fabijan je na svaki komadić napisao različit prirodan broj te se nakon toga zapitao kako bi trebao posložiti komadiće ako želi da niz što ga redom čine brojevi zapisani na komadićima nakon slaganja bude što manji. Niz A je manji od niza B ako za prvu poziciju i na kojoj se njihovi elementi razlikuju vrijedi $A_i < B_i$.

Napomena: Komadići se ne smiju rotirati.

Ulazni podaci

U prvom je retku prirodan broj N ($2 \le N \le 10^5$) iz teksta zadatka.

U sljedećih su N redaka dva prirodna broja X_i ($1 \le X_i \le 8$) i A_i ($1 \le A_i \le 10^9$), oblik i-tog komadića i broj koji je Fabijan napisao na njega. Brojevi A_i će biti međusobno različiti.

Izlazni podaci

Ako Fabijan može složiti slagalicu, potrebno je ispisati redom brojeve na komadićima u složenoj slagalici koji tvore najmanji niz.

Ako Fabijan ne može složiti slagalicu, potrebno je ispisati -1.

Bodovanje

U test podacima ukupno vrijednima 5 bodova vrijedi $N \leq 10$.

U test podacima vrijednima dodatnih 10 bodova neće se pojaviti komadići oblika 2 i 3.

U test podacima vrijednima dodatnih 20 bodova bit će najviše jedan komadić oblika 1 ili 4.

Ako za neki testni primjer ispišete ispravno slaganje, ali niz nije najmanji, ostvarit ćete 40% predviđenih bodova za taj test podatak.

Probni primjeri

ulaz	ulaz	ulaz
5 1 5 2 7 2 3 8 4 6 1	3 5 1 7 2 4 3 izlaz	5 2 5 2 7 2 3 8 4 6 1
izlaz 1 3 7 5 4	1 3 2	izlaz -1

Pojašnjenje prvog probnog primjera:

Fabijan komadiće slagalice može složiti na dva različita načina:

Vidimo da drugo slaganje na drugom komadiću slagalice ima manji broj pa je to rješenje.

Zadatak Checker

...fool me once, shame on — shame on you. Fool me — you can't get fooled again." – W.

U ovom zadatku promatramo pravilne N-terokute kojima su stranice obojene u tri boje, a vrhovi označeni prirodnim brojevima u smjeru kazaljke na satu. Triangulacija je podjela mnogokuta na trokute unutarnjim dijagonalama takva da dijagonale nemaju zajedničkih točaka osim vrhova mnogokuta te ne sijeku stranice mnogokuta osim u vrhovima mnogokuta. Naravno, u ovom zadatku i svaka će dijagonala biti obojena u jednu od tri boje.

Triangulacija je domoljubna ako za svaki od N-2 trokuta vrijedi da su mu sve tri stranice različite boje. Vaš je zadatak odrediti čine li dijagonale triangulaciju, te je li ta triangulacija domoljubna.

Ulazni podaci

U prvom je retku redni broj podzadatka kojem pripada testni primjer (vidi tablicu u poglavlju o bodovanju). Ako vaše rješenje ne mari za podzadatke, samo ga učitajte i ignorirajte.

U drugom je retku prirodan broj N iz teksta zadatka.

U trećem je retku N-teroznamenkasti broj čije znamenke predstavljaju boje stranica N-terokuta u smjeru kazaljke na satu. Odnosno, prva znamenka predstavlja boju stranice (1,2), druga znamenka boju stranice (2,3) i tako sve do N-te znamenke koja predstavlja boju stranice (N,1). Dakako, boje su označene znamenkama 1,2 i 3.

U svakom od sljedećih N-3 redaka nalazi se po jedna dijagonala u obliku X Y C, gdje su X i Y vrhovi dijagonale, a C boja $(1 \le X, Y \le N, 1 \le C \le 3)$. Svaki redak će opisivati validnu dijagonalu, odnosno vrhovi X i Y neće biti ni isti ni susjedni.

Izlazni podaci

Ako zadane dijagonale ne čine triangulaciju, ispišite "neispravna triangulacija" (bez navodnika).

Ako pak dijagonale čine triangulaciju, no ona nije domoljubna, ispišite "neispravno bojenje" (bez navodnika).

Ako dijagonale čine domoljubnu triangulaciju, ispišite "tocno" (bez navodnika).

Bodovanje

Podzadatak	Broj bodova	Ograničenja
1	12	$4 \le N \le 300$
2	17	$4 \le N \le 2000$
3	23	$4 \leq N \leq 2 \cdot 10^5, \mathrm{odgovor}$ je neispravna triangulacija ili tocno
4	23	$4 \leq N \leq 2 \cdot 10^5, \mathrm{odgovor}$ je neispravno bojenje ili tocno
5	35	$4 \le N \le 2 \cdot 10^5$

Za razliku od zadatka "Trobojnica", ako vaš program točno ispisuje prvi redak u svakom testnom primjeru nekog podzadatka, osvojit će 100% bodova predviđenih za taj podzadatak.

Probni primjeri

TODO