STAT24510 (F24): Statistical Theory and Methods Ia

Lecturer: Dan L. Nicolae Notes by: Aden Chen

Thursday 16th January, 2025

Contents

1	Probability	3
2	Joint Distribution	8
3	Point Estimates	11
4	Confidence Intervals	19
5	The Bootstrap	21
6	Hypothesis Testing	22
7	Likelihood Ratio Test	24
8	Multiple Testing	26
9	Bayesian Statistic	28
10	Statistical Decision Theory	32

1 Probability

1.1 The Cumulative Distribution Function

Proposition 1.1. *Properties of the CDF:*

- Nondecreasing.
- Right continuous.
- $\lim_{x\to-\infty} F(x) = 0$, $\lim_{x\to\infty} F(x) = 1$.

Definition 1.2. The generalized inverse distribution function is defined as

$$F^{-}(x) := \inf\{u : x \le F(u)\}.$$

Proposition 1.3. Let F be the CDF of X. If F is continuous and strictly increasing, then $Y := F(X) \sim \text{Uniform}[0, 1]$.

Proof. For any $y \in [0, 1]$,

$$\mathbb{P}(F(X) \le y) = F(F^{-1}(y)) = y.$$

Proposition 1.4. Let $U \sim \text{Uniform}[0,1]$ and F be the CDF of X. Then $F^{-1}(U) \sim F$. **Proof.** For any $x \in [0,1]$,

$$\mathbb{P}(F^{-1}(U) \le x) = \mathbb{P}(U \le F(x)) = F(x).$$

Remark 1.5. This is useful for simulation.

1.2 Transformations

For Y := h(X), if h is one-to-one and differentiable, then

$$f_Y(y) = f_X(h^{-1}(y)) \cdot \left| \frac{\mathrm{d}h^{-1}(y)}{\mathrm{d}y} \right|.$$

1.3 Expectation

For an random variable X. We define

$$X^+ = \max\{X, 0\}, \quad X^- = \max\{-X, 0\}.$$

Note that $X \equiv X^+ - X^-$.

Since X^+ is nonnegative, we may define

$$\mathrm{E}(X^+) \coloneqq \int_0^\infty x \, \mathrm{d}F(x)$$

in the Riemann–Stieltjes sense, and similarly $E(X^{-})$.

Definition 1.6. *X* has expected value if at least one of $E(X^+)$ and $E(X^-)$ is finite, and when it does we define

$$E(X) := E(X^+) - E(X^-).$$

Definition 1.7. We say *Y* stochastically dominates $X, Y \succeq X$, if for each *t* we have $\mathbb{P}(X > t) \leq \mathbb{P}(Y > t)$.

Proposition 1.8. *Properties of* E:

- Linearity.
- *If*

 $\int_{\mathbb{R}} |x| f(x) \, \mathrm{d}x < \infty$

then

$$E(X) = \int_{\mathbb{R}} x f(x) \, \mathrm{d}x.$$

- If X is stochastically dominated by Y then $E(X) \leq E(Y)$.
- If X and Y are independent, then E(XY) = E(X) E(Y).
- (Hille) E commutes with closed (in particular, continuous) linear operators.

Definition 1.9. The **variance** of *X* is defined as

$$Var(X) := E[(X - E(X))^2]$$

Proposition 1.10. Properties of Var:

- $Var(X) = E(X^2) (E(X))^2$.
- $Var(cX) = c^2 Var(X)$.
- If X and Y are independent, then Var(X + Y) = Var(X) + Var(Y).

Proposition 1.11. If $X \ge 0$ and there exists an at most countable subset $S = \{x_1, x_2, \dots\}$ of isolated points such that F_X is continuously differentiable on $[0, \infty) \setminus S$, then

$$E(X) = \sum_{x \in S} x \mathbb{P}(X = x) + \int_0^\infty x F_X'(x) \, dx.$$

1.4 Probability Inequalities

Theorem 1.12 (Markov's Inequality). *If* $X \ge 0$ *and* c > 0, *then*

$$\mathbb{P}(X \ge c) \le \frac{\mathrm{E}(X)}{c}.$$

(Equality is attained when $\mathbb{P}(X = 0 \text{ or } X = c) = 1.$)

Proof. Construct

$$Y \coloneqq c \cdot \mathbb{1}_{\{x \ge c\}}(X).$$

Then $Y \leq X$ and

$$E(Y) = c \cdot \mathbb{P}(X \ge c) \le E(X).$$

Theorem 1.13 (Chebychev's Inequality). *If* c > 0, *then for any* μ *we have*

$$\mathbb{P}(|X - \mu| \ge c) \le \frac{\mathrm{E}[(X - \mu)^2]}{c^2}.$$

Proof. Apply Markov's inequality to $(X - \mu)^2$.

Theorem 1.14 (Chernoff's Inequality). *If* $c \in \mathbb{R}$ *and* t > 0, *then*

$$\mathbb{P}(X \ge c) \le e^{-tc} \operatorname{E}(e^{tX}), \quad \mathbb{P}(X \le c) \le e^{tc} \operatorname{E}(e^{-tX}).$$

Proof. Apply Markov's inequality to e^{tX} and e^{-tX} .

Theorem 1.15 (Weak Law of Large Numbers). Let X_1, X_2, \ldots be iid with finite expectation μ and variance σ^2 . Then as n goes to infinity, $\overline{X}_n \to_p \mu$. That is,

$$\mathbb{P}\left[\left|\overline{X_n}-\mu\right|>\epsilon\right]\longrightarrow 0.$$

Proof. Note that $E(\overline{X_n}) = \mu$ and $Var(\overline{X_n}) = \sigma^2/n$. Chebyshev's gives

$$\mathbb{P}\left(\left|\overline{X_n} - \mu\right| > \epsilon\right) \le \frac{\sigma^2}{n \cdot \epsilon^2} \longrightarrow 0.$$

Proposition 1.16 (Large Deviations). Let $X_1, X_2, ...$ be iid with finite expectation μ and variance σ^2 . Let $c > \mu$. Then

$$\lim_{n\to\infty} \frac{1}{n} \log \mathbb{P}(\overline{X_n} > c) = -\sup_{t} [tc - \kappa(t)],$$

where $\kappa(t) = \log E(e^{tX})$.

We do not yet have the tools to prove that this is the limit, but we can use Chernoff's inequality to obtain an upper bound:

Proof. From Chernoff's inequality, for any t we have

$$\mathbb{P}(\overline{X_n} \geq c) = \mathbb{P}\left(\sum X_i \geq c \cdot n\right) \leq e^{-tnc} \operatorname{E}\left[e^{t(\sum X_i)}\right] = e^{-tnc + n\kappa(t)},$$

where $\kappa(t) = \log E(e^{tX})$. Thus we have

$$\frac{1}{n}\log \mathbb{P}(\overline{X_n} \ge c) \le -\sup_t [tc - \kappa(t)].$$

Remark 1.17.

- $E[e^{tX}]$ is the moment generating function.
- $\kappa(t)$ is the cumulant generating function.
- $\sup_{t} [tc \kappa(t)]$ is the **Legendre transform**.

Definition 1.18. A sequence of random variables X_n converges in distribution to X, $X_n \xrightarrow{\mathcal{D}} X$, if their cdfs converge pointwise to the cdf of X. That is, if

$$F_{X_n}(x) \longrightarrow F_X(x), \quad \forall x \in \mathbb{R}.$$

Definition 1.19. The moment generating function of X is

$$M_X : \mathbb{R} \longrightarrow [0, \infty]$$

 $t \longmapsto \mathbb{E}[e^{tX}].$

Proposition 1.20. *Properties of the moment generating function:*

• $E[X^n] = M_X^{(n)}(0)$ when Fubini grants so.

$$\mathrm{E}\left[e^{tX}\right] = \mathrm{E}\left[\sum_{n=0}^{\infty} \frac{(tX)^n}{n!}\right] = \sum_{n=0}^{\infty} \frac{t^n \, \mathrm{E}(X^n)}{n!}.$$

- $M_{cX}(t) = M_X(ct)$.
- If X and Y are independent, then

$$M_{X+Y}(t) = M_X(t) + M_Y(t).$$

• If X_1, X_2, \ldots are iid, then

$$M_{\sum X_i} = \prod M_{X_i}.$$

• $X_n \xrightarrow{\mathcal{D}} X$ if and only if $M_{X_n} \to M_X$ in a neighborhood of 0.

Theorem 1.21 (Central Limit Theorem). *If* $X_1, X_2, ...$ *are iid*, $E(X_i) = \mu$, *and* $Var(X_i) = \sigma^2$, *then*

$$\sqrt{n}(\overline{X}_n - \mu) \xrightarrow{\mathscr{D}} \mathcal{N}(0, \sigma^2).$$

The following proof works only when we have enough regularity; it is meant to provide a certain intuition (the general proof needs complex analysis):

Proof. We assume $\mu = 0$ and consider the mgf.

$$M_{\sum X_i/\sqrt{n}}(t) = M_{\sum X_i}\left(\frac{t}{\sqrt{n}}\right) = \left[M_{X_i}\left(\frac{t}{\sqrt{n}}\right)\right]^n.$$

We obtain an approximation though Taylor:

$$M_X\left(\frac{t}{\sqrt{n}}\right)\approx M_X(0)+\frac{t}{\sqrt{n}}M_X'(0)+\frac{t^2}{n}M_X''(0)$$

Noting that $M_X'(0) = E[X] = 0$ and $M_X''(0) = E[X^2] = \sigma^2$, we have

$$M_{\sum X_i/\sqrt{n}}(t) \approx \left[1 + \frac{t^2\sigma^2}{n}\right]^n \longrightarrow e^{t^2\sigma^2}.$$

The last term is precisely the mgf of $N(0, \sigma^2)$.

2 Joint Distribution

2.1 Random Vectors and Joint Distributions

Proposition 2.1.

•

$$F(x) = \int_{-\infty}^{x_1} \cdots \int_{-\infty}^{x_n} f(x) \, \mathrm{d}x.$$

• If F is continuous and differentiable, then X has density

$$f(X) = \frac{\partial^n F(x)}{\partial x_1 \dots \partial x_n}.$$

• If X_1, X_2, \ldots, X_n are independent, then

$$F_X(x) = F_{X_1}(x_1) \dots F_{X_n}(x_n).$$

• *If F is differentiable, then*

$$f_X(x) = f_{X_1}(x_1) \dots f_{X_n}(x_n),$$

and conversely!

• If $X = (X_1, X_2, ..., X_n)$ has density f_X , then X_I has density

$$f_I(x_I) = \int_{\mathbb{D}^{n-|I|}} f\left(x_I, x_{S_n \setminus I}\right) \, \mathrm{d}x_{S_n \setminus I},$$

where $S_n := \{1, 2, ..., n\}$ are all the indices. Think "integrating out" the other variables.

2.2 Transformations

Definition 2.2. The **Jacobian** of $g: G \to H \subset \mathbb{R}^n$, where G and H are open, is given by

$$Jg(y) := \det \left[\frac{\partial g_i}{\partial y_i} \right].$$

Proposition 2.3. If $X : \Omega \to H \subset \mathbb{R}^n$ and $h : H \to G \subset \mathbb{R}^n$, where H and G are open, are such that h is one-to-one and differentiable and $h^{-1} : G \to H$ is differentiable. Then Y := h(X) has density

$$f_Y(y) = \begin{cases} f_X(h^{-1}(y)) \cdot \big| Jh^{-1}(y) \big|, & y \in G \\ 0, & y \notin G. \end{cases}$$

Definition 2.4. The Gamma function is given by

$$\Gamma(\lambda) \coloneqq \int_0^\infty e^{-x} x^{\lambda - 1} \, \mathrm{d}x.$$

Proposition 2.5. *Properties:*

- $\Gamma(1) = 1$.
- $\Gamma(1/2) = \sqrt{\pi}$.
- $\Gamma(x+1) = x\Gamma(x)$.
- $\Gamma(n) = (n-1)!$ for any $n \in \mathbb{N}$.

2.3 Conditional distribution

The continuous case:

Definition 2.6. We define the **conditional density** as

$$f_{X|Y}(x|y) \coloneqq \frac{f_{X,Y}(x,y)}{f_Y(y)},$$

2.4 Covariance and Correlation

Definition 2.7. The **covariance** of random variables X and Y is

$$Cov(X,Y) = E((X - \mu_X) \cdot (Y - \mu_Y)).$$

Their correlation is given by

$$Corr(X, Y) = \frac{Cov(X, Y)}{\sigma_X \sigma_Y}.$$

Proposition 2.8. Properties:

- $Var(a + bX) = b^2 Var(X)$.
- Cov(a + bX, c + dY) = bd Cov(X, Y).
- Var(X + Y) = Var(X) + Var(Y) + 2 Cov(X, Y).
- If X and Y are independent, then Cov(X,Y) = 0. But the converse is not true. For example, if $Z \sim N(0,1)$, and S and T are random signs (1 or -1), then Cov(SZ,TZ) = 0.

Theorem 2.9.

• If (X,Y) has density f, then X|Y has density

$$\frac{f(x,y)}{f_Y(y)}.$$

• If (X, Y) has a pmf, then X|Y is discrete with pmf

$$\frac{p(x,y)}{p_Y(y)}$$
.

Note that E(X|Y = y) is a number, and E(X|Y) is a random variable.

Proposition 2.10.

- (i) If X and Y are independent, then we have E(X|Y) = E(X) with probability 1.
- (ii) Law of total expectation / Tower law: E[E[X|Y]] = E[X].
- (iii) With probability 1 we have the following:

$$\mathrm{E}[g(X)h(Y)|Y] = h(Y)\,\mathrm{E}(g(X)|Y),\quad \mathrm{E}[X|T(Y)] = \mathrm{E}[\mathrm{E}[X|T(Y)]|Y].$$

(iv) Law of total variations: we have

$$Var(Y) = E[Var(Y|X)] + Var[E(Y|X)],$$

where

$$Var(Y|X) := E(Y^2|X) - (E(Y|X))^2.$$

2.5 Rejection Sampling

If for some constant c we have

$$h(x) \ge c \cdot f(x), \quad \forall x,$$

then we can obtain a sample from distribution with density f using samples from distribution with density h using **rejection sampling**:

- (1) Sample Y from g and U from Uniform(0, 1), with Y and U independent.
- (2) Set X := Y if

$$U \le \frac{c \cdot f(Y)}{h(Y)}$$

and return to (1) otherwise.

Remark 2.11.

- Think sampling on the area under f (as a subset of the area under g).
- Rejection sampling can also be used if

$$f(x) = \frac{g(x)}{N},$$

where N is an unknown constant (e.g., an integral with numerical approximations but no closed form solutions). We need only find h such that

$$h(x) \ge cN \cdot g(x)$$
.

Think

$$h(x) \gg g(x)$$
.

3 Point Estimates

Example 3.1. Modeling lifetime $T: \Omega \to [0, \infty)$.

Definition 3.2.

• The survival function is defined as

$$S: [0, \infty) \longrightarrow [0, 1]$$
$$x \longmapsto \mathbb{P}(T > x) = 1 - F_Y(x).$$

• The failure rate function is defined as

$$h(x) \coloneqq \frac{f(x)}{S(x)}.$$

Remark 3.3.

$$\mathbb{P}(T \leq x + \Delta x | T > x) = \frac{\mathbb{P}[x < T \leq x + \Delta x]}{\mathbb{P}[T > x]} = \frac{F(x + \Delta x) - F(x)}{S(x)} \approx \Delta x \cdot \frac{f(x)}{S(x)} = \Delta x \cdot h(x).$$

Think of an increasing failure rate as "aging."

Given h we can recover f:

$$h(x) = \frac{f(x)}{1 - F(x)} = -\frac{\partial}{\partial x} \log(1 - F(x)).$$

So,

$$\log(1 - F(x)) = -\int_0^x h(t)\mathrm{d}t + C.$$

Since F(0) = 0 we know C = 0. We have

$$s(x) = \exp\left(-\int_0^x h\right)$$

and

$$f(x) = h(x) \exp\left(-\int_0^x h\right).$$

Example 3.4.

• If $h(x) = \lambda$ is a constant function, we have $T \sim \text{Exponential}(\lambda)$:

$$f(x) = \lambda \exp\left(-\int_0^x \lambda dt\right) = \lambda \exp(-\lambda x), \quad \forall x > 0.$$

- If $h(x) = \alpha + \beta x$ with $\alpha, \beta > 0$, then T follows the Gompertz distribution.
- If $h(x) = \lambda \beta x^{\beta-1}$, then *T* follows the Weibull distribution.

3.1 Estimating parameters

We next assume $T_1, T_2, \dots \stackrel{\text{iid}}{\sim} \text{Exponential}(\lambda)$ and estimate λ .

Remark 3.5. Metrics to evaluate an estimator:

- Bias: $E(\hat{\lambda}) \lambda$.
- Variance: $Var[\hat{\lambda}]$.
- Mean Squared Error: $MSE[\hat{\lambda}] = E[(\hat{\lambda} \lambda)^2] = Bias^2 + Variance$.

Definition 3.6. An estimator $\hat{\theta}_n$ of θ is said to be **consistent** if

$$\hat{\theta}_n \longrightarrow_{p} \theta$$
.

That is, if for any $\epsilon > 0$,

$$\lim_{n\to\infty} \mathbb{P}(\left|\hat{\theta}_n - \theta\right| > \epsilon) = 0.$$

3.1.1 Asymptotic Estimation

Definition 3.7 (Method of Moments). Let $X_1, X_2, \ldots, X_n \stackrel{\text{iid}}{\sim} F$ with n parameters. To estimate the parameters, we equate n (usually the first n) theoretical moments to the n corresponding sample moments:

$$E[X^k] = \frac{1}{n} \sum X_i^k, \quad 1 \le k \le n.$$

Example 3.8. Consider $T_n \stackrel{\text{iid}}{\sim} \text{Exponential}(\lambda)$.

- Since $E(\overline{T}_n) = 1/\lambda$, we may use $\hat{\lambda} := 1/\overline{T}_n$ as an estimator for λ .
- Since

$$\mathrm{E}\left[\sum T_i^2/n\right] = \frac{2}{\lambda^2},$$

we may also use

$$\hat{\lambda}_2 = \sqrt{\frac{2n}{\sum T_i^2}}$$

as an estimator.

Example 3.9.

• Consider $X_1, X_2, \dots, X_n \stackrel{\text{iid}}{\sim} \text{Uniform}[0, \theta]$. We have $E[X] = \theta/2$.

$$\hat{\theta} \coloneqq 2\hat{X}$$
.

• Consider $X_1, X_2, \ldots, X_n \stackrel{\text{iid}}{\sim} \text{Gamma}(\alpha, \beta)$. We have $E[X] = \alpha/\beta$ and $E[X^2] = \alpha/\beta^2 + (\alpha/\beta)^2$. Thus we solve

$$\frac{\hat{\alpha}}{\hat{\beta}} = \overline{X}, \quad \frac{\hat{\alpha}}{\hat{\beta}^2} + \frac{\hat{\alpha}^2}{\hat{\beta}^2} = \frac{\sum X_i^2}{n}.$$

The following theorems help us characterize these estimators.

Theorem 3.10 (Continuous Mapping Theorem).

- (i) if $X_n \to_p X$ and g is continuous, then $g(X_n) \to_p g(X)$.
- (ii) If $X_n \xrightarrow{\mathcal{D}} X$ and g is continuous, then $g(X_n) \xrightarrow{\mathcal{D}} g(X)$.

Lemma 3.11 (Slutsky). If $X_n \xrightarrow{\mathfrak{D}} X$ and $Y_n \to_{\mathfrak{p}} c$, where c is a constant, then

$$X_n + Y_n \xrightarrow{\mathcal{D}} X + c$$
, $X_n Y_n \xrightarrow{\mathcal{D}} cX$.

Theorem 3.12 (Delta Method). If X_n is such that

$$\sqrt{n}(X_n - \theta) \xrightarrow{\mathcal{D}} \mathcal{N}(0, \sigma^2)$$

and g is continuously differentiable, then

$$\sqrt{n}(g(X_n) - g(\theta)) \xrightarrow{\mathcal{D}} \mathcal{N}(0, \sigma^2[g'(\theta)]^2).$$

Remark 3.13. Intuition: We can write

$$\sqrt{n}(g(X_n) - g(\theta)) = g'(\tilde{\theta}_n)\sqrt{n}(X_n - \theta), \quad \tilde{\theta}_n \in (x_n, \theta).$$

We know that $g'(\tilde{\theta}_n) \to_p g'(\theta)$ and $\sqrt{n}(X_n - \theta) \xrightarrow{\mathcal{D}} \mathcal{N}(0, \sigma^2)$, so Slutsky's gives the desired result.

We can now characterize estimators obtained from the method of moments:

Proposition 3.14.

- Non-uniqueness: we can obtain multiple estimators.
- Consistency: Law of Large Numbers gives

$$\overline{X} \longrightarrow_{\mathbf{p}} \mathbf{E}[X],$$

and the continuous mapping theorem then gives consistency (under certain conditions).

• Asymptotic normality: the Delta Method gives normality (under certain conditions).

3.1.2 Estimators for Smaller n

We can obtain the exact distribution of \overline{T}_n . Since

$$T_i \stackrel{\text{iid}}{\sim} \text{Exponential}(\lambda) = \text{Gamma}(1, \lambda),$$

we know by the properties of gamma distributions that

$$\sum T_i \sim \text{Gamma}(n, \lambda).$$

Again by properties of gamma distributions, we know that the estimator $\hat{\lambda}_1 := 1/\overline{T}_n$ is biased for small n:

 $\mathrm{E}[\hat{\lambda}_1] = n \cdot \mathrm{E}\left[\frac{1}{\sum T_i}\right] = \frac{n\lambda}{n-1}.$

The estimator

$$\hat{\lambda}_3 \coloneqq \frac{n-1}{n}\hat{\lambda}_1,$$

then, is unbiased and has smaller variance.

Remark 3.15. This is a rare case. Oftentimes, we have instead a tread off between bias and variance.

3.2 Maximum Likelihood Estimator

The above may be summed up as the following steps:

- Estimators
- Evaluations
- Distribution for estimators (which allows for the construction of probabilistic statements)

Maximum Likelihood estimator accomplishes all the above in a streamlined fashion.

Definition 3.16. Let $X_1, X_2, \ldots, X_n \stackrel{\text{iid}}{\sim} F_{\theta}$, where $\theta \in \mathbb{R}^k$ is a parameter for the distribution. Let $f(x, \theta)^1$ be the density or pmf of F_{θ} . The **Likelihood** of θ given observations X_1, X_2, \ldots, X_n is

$$L(\theta) = L_n(\theta) := \prod_{i=1}^n f(X_i, \theta).$$

The **maximum likelihood estimator** is the value at which L obtains its maximum:

$$\hat{\theta} = \hat{\theta}_n := \arg\max_{\theta} L(\theta).$$

Remark 3.17. It is often easier to work with the log likelihood:

$$\ell(\theta) = \ell_n(\theta) := \log L(\theta).$$

Remark 3.18.

• Might be non-unique. Consider $X_1, X_2, \dots, X_n \stackrel{\text{iid}}{\sim} \text{Uniform}(\theta, \theta + 1)$.

¹Some also write $f_{\theta}(x)$ or $f(x|\theta)$.

• Might not exist. Consider X_1, X_2, \dots, X_n iid with density

$$f(x, \mu, \sigma^2) = \frac{1}{2} \left[\frac{1}{\sqrt{2\pi}} e^{-x^2/2} + \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}} \right].$$

Think $X \sim \mathcal{N}(0,1)$ with probability 1/2 and $X \sim \mathcal{N}(\mu, \sigma^2)$ with probability 1/2. The likelihood function is unbounded:

$$\max_{\mu,\sigma^2} L(\mu,\sigma^2) \ge \max_{\sigma} L(X_1,\sigma^2) \ge \frac{1}{2^n} \left[\frac{1}{\sqrt{2\pi}\sigma} \right] \prod_{k=1}^n e^{-X_1^2/2}.$$

3.3 Likelihood Theory

Definition 3.19. The score function is defined as

$$\dot{\ell}_n(\theta) := \frac{\partial}{\partial \theta} \ell_n(\theta) = \sum_{i=1}^n \frac{\frac{\partial f}{\partial \theta}(x_i, \theta)}{f(x_i, \theta)} = \sum_{i=1}^n \frac{f'(x_i, \theta)}{f(x_i, \theta)}.$$

Remark 3.20. We find the MLE by setting the score function to 0.

Proposition 3.21. *If* $f(x, \theta)$ *has common support, that is, if* $\{x : f(x, \theta) > 0\}$ *does not depend on* θ *, then*

$$E_{\theta_0} \left[\frac{L_n(\theta)}{L_n(\theta_0)} \right] = 1.$$

Equivalently,

$$E\left[\exp\left(\ell_n(\theta) - \ell_n(\theta_0)\right)\right] = 1.$$

Proposition 3.22. If the density functions are smooth, then

(a)
$$E_{\theta} \left[\dot{\ell}_n(\theta) \right] = 0$$
.

(b)
$$-\mathbf{E}_{\theta} \left[\dot{\ell}_n(\theta) \right] = \mathbf{E} \left[\dot{\ell}_n(\theta)^2 \right].$$

Definition 3.23 (Fisher Information).

$$I(\theta) := \mathbf{E}_{\theta} [\dot{\ell}(\theta)^2] = \mathbf{E}_{\theta} [-\ddot{\ell}(\theta)].$$

That is,

$$I(\theta) \coloneqq \mathrm{E}\left[\left(\frac{\partial}{\partial \theta} \log f(X, \theta)\right)^2\right] = -\,\mathrm{E}\left[\frac{\partial^2}{\partial \theta^2} \log f(X, \theta)\right],$$

where the expectation is taken with respect to $X \sim f(x, \theta)$.

Remark 3.24. Intuitively, the more variation there is in the density functions $f(x, \theta)$ as we vary θ , the more information we can get from data. Fisher information measures the variation in density functions by looking at its derivative.

Theorem 3.25 (Cramér–Rao Inequality). Let $T(X_n)$ be any unbiased estimator for $g(\theta)$. Then,

$$\operatorname{Var}[T(X_n)] \ge \frac{[g'(\theta)]^2}{nI(\theta)}.$$

Remark 3.26. The Cramér-Rao lower bound is attained if and only if

$$Corr(\hat{\theta}(X), \dot{\ell}(X)) = 1.$$

By Cauchy-Schwarz inequality, this is equivalent to $\hat{\theta}(X)$ and $\dot{\ell}(X)$ being linearly related random variables. That is,

$$\dot{\ell}(\theta) = \alpha(\theta)\hat{\theta}(X) + \beta(\theta)$$

for functions α and β that do not depend on X.

Proposition 3.27. Under the regularity conditions in the Cramér–Rao inequality, there exists an unbiased estimator $\hat{\theta}(X)$ of θ whose variance attains the Cramér–Rao lower bound if and only if the score can be expressed in the form

$$\dot{\ell}(\theta) = I(\theta) \left\{ \hat{\theta}(X) - \theta \right\},\,$$

or, equivalently, if and only if the function

$$\frac{\dot{\ell}(\theta)}{I(\theta)} + \theta$$

does not depend on θ .

Theorem 3.28 (Fisher). Let $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} f(x|\theta_0)$, with f satisfying certain smoothness conditions. As $n \to \infty$, we have

$$\sqrt{nI(\theta_0)} \cdot (\hat{\theta} - \theta_0) \xrightarrow{\mathcal{D}} \mathcal{N}(0, 1)$$

and

$$\sqrt{nI(\hat{\theta})} \cdot (\hat{\theta} - \theta_0) \xrightarrow{\mathscr{D}} \mathcal{N}(0, 1)$$

Remark 3.29. One may also think

$$\hat{\theta} \approx \mathcal{N}\left(\theta_0, \frac{1}{nI(\theta_0)}\right).$$

Proposition 3.30. Assumptions:

- Common support.
- Smoothness of densities.
- Distinct densities: if $\theta_1 \neq \theta_2$ then $f(x, \theta_1) \neq f(x, \theta_2)$.

Properties of maximal likelihood estimators under the above assumptions:

- consistency,
- asymptotic normality,
- has known and optimal asymptotic variance (efficiency). That is, it attains the Cramér–Rao bound.
- Invariance in the following sense:

Theorem 3.31. If $\hat{\theta}_n$ is an MLE of θ , then $\hat{\tau}_n := g(\hat{\theta}_n)$ is an MLE of $g(\theta)$.

3.4 Jensen Inequality

Theorem 3.32. If $f : \mathbb{R} \to \mathbb{R}$ is convex and X is a random variable such that $E|X| < \infty$, then

$$f(E X) \le E f(X)$$
.

Proof. From the convexity of f we know $f(x) \ge f(y) + f'(y)(x - y)$ for any x and y. Setting $y = \mu =: E X$ gives

$$f(X) \ge f(\mu) + f'(\mu)(X - \mu), \quad \forall x, y.$$

Taking expectation on both sides gives the desired result.

3.4.1 Applications of Jensen Inequality

- If f is concave, then $f(E X) \ge E f(X)$.
- The convex function $x \mapsto x^2$ and the concave function $x \mapsto \log x$ give two special cases:

$$(E X)^2 \le E X^2$$
, $\log E X \ge E \log X$.

• If $x_1, x_2, \dots, x_n > 0$ and $p_i \ge 0$ such that $\sum p_i = 1$, then

$$\prod x_i^{p_i} \le \sum p_i x_i.$$

Remark 3.33. When $p_i = 1/n$, this result reduces to the geometric mean-arithmetic mean inequality.

Proof. Let *X* be a discrete variable such that $\mathbb{P}(X = x_i) = p_i$. Then

$$\sum p_i \log x_i = \operatorname{E} \log X \leq \log \operatorname{E} X \leq \sum p_i x_i.$$

Taking exp on both sides gives the desired result.

• Hölder's inequality: If $X, Y \ge 0$ are random variables and p, q > 0 are such that 1/p + 1/q = 1, then

$$\mathsf{E}(XY) \le (\mathsf{E}\,X^p)^{1/p} \cdot (\mathsf{E}\,Y^q)^{1/q} \,.$$

Proof. If $E X^p = E X^q = 1$, then

$$XY = (X^p)^{1/p} (Y^q)^{1/q} \le \frac{1}{p} X^p + \frac{1}{q} X^q,$$

where the last inequality follows from the previous result. Taking expectation on both sides then gives $E[XY] \le EX^p EY^q$.

For the general case, normalize by setting

$$\tilde{X} \coloneqq \frac{X}{(\operatorname{E} X)^{1/p}}, \quad \tilde{Y} \coloneqq \frac{Y}{(\operatorname{E} Y)^{1/q}}.$$

• Cauchy Inequality: Taking p = q = 2 in Hölder gives

$$E|XY| < \sqrt{EX^2}\sqrt{EY^2}$$
.

• The consistency of likelihood.

3.5 Multivariate Normal

Definition 3.34. The random vector $X = (X_1, X_2, ..., X_k)$ is said to follow a **multivariate normal distribution** if for each $a \in \mathbb{R}^k$, $a^{\mathsf{T}}x$ is normal. We write

- $\mu = \mathbf{E} X \in \mathbb{R}^k$.
- $\Sigma = \operatorname{Var}(X) = \operatorname{E}\left[(X \mu)(X \mu)^{\mathsf{T}}\right] \in \mathbb{R}^{2k}$.

Proposition 3.35.

• If Σ is positive definite, then X has density

$$f(X) = \frac{1}{(2\pi)^{k/2} \det(\Sigma)} \exp\left(-\frac{1}{2}(X - \mu)^{\mathsf{T}} \Sigma^{-1} (X - \mu)\right).$$

- If (X_1, X_2) is bivariate normal and $Cov(X_1, X_2) = 0$, then X_1 and X_2 are independent.
- If $U \sim N_k(\mu, \Sigma)$, $a \in \mathbb{R}^p$, and B is a $p \times k$ matrix, then

$$V = a + BU \sim N_p(a + B\mu, B\Sigma B^{\mathsf{T}}).$$

4 Confidence Intervals

Definition 4.1. Suppose $X_1, X_2, \ldots, X_n \stackrel{\text{iid}}{\sim} F_{\theta}$. Confidence intervals (CIs) are probabilistic statements on data of the form

$$\mathbb{P}_{\theta}\left[A(X_1,\ldots,X_n)\leq\theta\leq B(X_1,\ldots,X_n)\right]=\alpha.$$

The interval

$$[A(X_1,\ldots,X_n),B(X_1,\ldots,X_n)]$$

is called a $\alpha \cdot 100\%$ confidence interval.

Remark 4.2. We are typically interested in $\alpha = 0.95$ or $\alpha = 0.99$.

Remark 4.3.

- The probabilistic statement concerns the interval ends, not θ, which is fixed. The
 interval ends are random variables.
- Interpretation (frequentest): the long run frequency of the CI covering θ is α .

Definition 4.4. The α quantile of $X \sim F$, q_{α} , is such that

$$\mathbb{P}[X \le q_{\alpha}] = \alpha.$$

Example 4.5. Let $X_1, X_2, \ldots, X_n \stackrel{\text{iid}}{\sim} \text{Exponential}(\lambda) = \text{Gamma}(1, \lambda)$. Then $\sum X_i \sim \text{Gamma}(n, \lambda)$ and $\lambda \sum X_i \sim \text{Gamma}(n, 1)$. Note that the distribution of $\lambda \sum X_i$ does not depend on λ . We then have

$$\left[\frac{q_{0.025}}{\sum X_i}, \frac{q_{0.975}}{\sum X_i}\right],$$

where q refers to the quantile of Gamma(n, 1), is a 95% CI.

Definition 4.6. Let $X_1, X_2, \ldots, X_n \stackrel{\text{iid}}{\sim} F_{\theta}$. The function

$$g(X_1,\ldots,X_n,\theta)$$

is called a **pivot** if its distribution does not depend on θ .

Remark 4.7. One may use the distribution of the pivot $g(X_1, ..., X_n, \theta) \sim F^*$ to build CIs. Let L and U be the $(1 - \alpha)/2$ and $1 - (1 - \alpha)/2$ quantiles for F^* . Then

$$\alpha = \mathbb{P}\left[L \leq g(X_1, \dots, X_n, \theta) \leq U\right] = \mathbb{P}\left[\theta \in S(X_1, \dots, X_n, L, U)\right]$$

for some set S. If S is an interval, it is a CI.

Theorem 4.8. Let $X_1, X_2, \ldots, X_n \stackrel{\text{iid}}{\sim} \mathcal{N}(\mu, \sigma^2)$. Let

$$\overline{X_n} \sim \mathcal{N}\left(\mu, \frac{\sigma^2}{n}\right), \quad S^2 \coloneqq \frac{1}{n-1} \sum (X_i - \overline{X})^2.$$

Then

$$\sqrt{n} \cdot \frac{\overline{X} - \mu}{S} \sim t_{n-1}, \quad (n-1) \frac{S^2}{\sigma^2} \sim \chi_{n-1}^2.$$

Remark 4.9. Thus $\sqrt{n} \cdot \frac{\overline{X} - \mu}{S}$ is a pivot estimator for μ and $(n-1)\frac{S^2}{\sigma^2}$ is a pivot estimator for σ .

Remark 4.10. We may use the central limit theorem and the above results to obtain approximate CIs for large samples. Let $X_1, X_2, \ldots, X_n \stackrel{\text{iid}}{\sim} F$ with $E[X] = \mu$ and $Var[X] = \sigma^2$. The central limit theorem gives

$$\sqrt{n} \cdot \frac{\overline{X} - \mu}{\sigma} \approx \mathcal{N}(0, 1).$$

Thus

$$\left[\overline{X} - q_{\alpha/2} \frac{\sigma}{\sqrt{n}}, \overline{X} + q_{\alpha/2} \frac{\sigma}{\sqrt{n}}\right],\,$$

where q is the quantiles on $\mathcal{N}(0, 1)$ contains μ with probability α . We can approximate σ using S to obtain the following CI:

$$\left[\overline{X} - q_{\alpha/2} \frac{S}{\sqrt{n}}, \overline{X} + q_{\alpha/2} \frac{S}{\sqrt{n}}\right].$$

Note that we used two approximations: central limit theorem and using S to approximate σ .

Remark 4.11. For a MLE $\hat{\theta}$, we can use the following two results to construct approximate CIs:

$$\sqrt{n}(\hat{\theta} - \theta) \approx \mathcal{N}\left(0, \frac{1}{I(\theta)}\right), \sqrt{nI(\theta)}(\hat{\theta} - \theta) \approx \mathcal{N}(0, 1).$$

Remark 4.12. The above cases fail, however, if either the distribution of the pivot or the variance of the estimators is unknown.

5 The Bootstrap

Definition 5.1. Let $X_1, X_2, \ldots, X_n \stackrel{\text{iid}}{\sim} F$. The **empirical distribution function (edf)**, \hat{F}_n , is the CDF that puts probability 1/n at each X_i .

$$\hat{F}_n(x) \coloneqq \frac{1}{n} \sum \mathbb{1}_{\{X_i \le x\}}.$$

Remark 5.2. Note that $\mathbb{1}_{\{X_i \le x\}} \sim \text{Bernoulli}(F(x))$. This gives the following properties:

Proposition 5.3.

• $\hat{F}(x)$ is an unbiased estimator for F(x):

$$E[\hat{F}(x)] = F(x).$$

• $\hat{F}(x)$ has variance:

$$\operatorname{Var}(\hat{F}(x)) = \frac{F(x)(1 - F(x))}{n}.$$

• By the law of large numbers,

$$\hat{F}(x) \longrightarrow_{\mathbf{p}} F(x)$$
.

Moreover, $\hat{F}_n(x) \to F(x)$ uniformly. That is:

Theorem 5.4 (Glivenko-Cantelli). *If* $X_1, X_2, \ldots, X_n \stackrel{\text{iid}}{\sim} F$, then as $n \to \infty$ we have

$$\sup_{x} \left| \hat{F}_n(x) - F(x) \right| \longrightarrow 0.$$

Remark 5.5. For variable $\theta := T(F)$, we can thus construct estimator $\hat{T} := T(\hat{F})$.

Example 5.6. For $T = \int x \, dF(x)$, θ is the mean. For $T = \int (x - \mu)^2 \, dF(x)$, θ is the variance. For $T = F^{-1}(1/2)$, θ is the median.

Remark 5.7. Let $X_1, X_2, ..., X_n \stackrel{\text{iid}}{\sim} F$ and $T_n := g(X_1, ..., X_n)$. We want to find $\text{Var}(T_n)$. If it is possible to sample from F, then we may repeated the following procedure

- Take repeated samples of size n.
- Calculate T_n for each sample.

to obtain k samples of $T_n, T_{n,1}, \ldots, T_{n,k}$. We may use

$$\frac{1}{k} \sum \left(T_{n,j} - \overline{T}_n \right)^2$$

as an estimator for the variance of T_n , $Var_F(T_n)$.

Remark 5.8. If we cannot directly sample from F, we may use \hat{F} as an approximation. That is, given a sample of size n, we sample repeatedly with replacement k samples also of size n from the given sample, and calculate the statistic of interest for each sample to estimate the distribution of T_n . This procedure is called **bootstrapping**, and each sample is called a **bootstrap sample**.

6 Hypothesis Testing

We want to test whether a set of given data is generated by a certain data generating model.

The idea: we use a certain distance between the ecdf and the theoretical cdf in the density space as a test statistic.

Example 6.1. Given $X_i \stackrel{\text{iid}}{\sim} F$, we want to test if F is the cdf of a normal distribution. Test statistic:

- Kolmogorov–Smirnov: $S := \sup_{x} |F(x) \hat{F}(x)|$
- Quantiles: e.g., compare $Q_3 Q_1$ with $X_{(\lfloor 3N/4 \rfloor)} X_{(\lfloor N/4 \rfloor)}$.
- · Shapiro-wilk:

$$W \coloneqq \frac{\left(\sum a_i x_{(i)}\right)^2}{\sum (x - \overline{x})^2}.$$

6.1 Hypothesis Testing for Parametric Models

Let $X_i \stackrel{\text{iid}}{\sim} F_{\theta}$ with $\theta \in \Omega$. The **null hypothesis**:

$$H_0: \theta \in \Omega_0 \subset \Omega$$
.

The alternative hypothesis:

$$H_A: \theta \in \Omega_1$$
.

We often have $\Omega_1 = \Omega \setminus \Omega_0$.

Remark 6.2. Note a certain asymmetry: we usually know a lot more about H_0 (the "status quo") than H_1 .

Definition 6.3. Let S be the set of all possible values for $X = (X_1, ..., X_n)$. The values for which we do not reject H_0 , S_0 , is called the **acceptance region**. The values for which we reject H_0 , S_1 , is called the **rejection region**. Note that we require $S = S_0 \cup S_1$.

Definition 6.4. T = T(X) is called a **test statistic** if

$$S_1 = \{x : T(x) \in R_1\}$$

for some $R_1 \subset \mathbb{R}$.

Definition 6.5. A **type I error**, or a false positive, is the rejection of the null hypothesis when it is actually true. A **type II error**, or a false negative, is the failure to reject a null hypothesis that is actually false.

Definition 6.6. The function

$$\pi: \Omega \longrightarrow [0,1], \quad \pi(\theta) := \mathbb{P}_{\theta}(x \in S_1)$$

is called the **power function**.

Remark 6.7. Note we can represent type I errors as $\pi(\theta)$ with $\theta \in \Omega_0$; and type II errors as $1 - \pi(\theta)$ with $\theta \in \Omega_1$. Ideally, we want π to be small on Ω_0 and large on Ω_1 . We often find S_1 such that π is low on Ω_0 and hope for the best for Ω_1 .

Definition 6.8. The size of the test is $\sup_{\theta \in \Omega_0} \pi(\theta)$.

Definition 6.9. A test is a **level** α **test** if it has size $\leq \alpha$.

Remark 6.10. For convenience of calculating size, we often want either simple H_0 such that $\theta = \theta_0$, or the power function to be constant on Ω_0 .

Example 6.11. Let $X_i \stackrel{\text{iid}}{\sim} F$ such that $E[X_i] = \mu$ with known variance $Var[X_i] = \sigma^2$. Let

$$H_0: \mu = \mu_0, \quad H_A: \mu > \mu_0.$$

Under H_0 , the CLT gives

$$T(X) := \sqrt{n} \cdot \frac{\overline{X} - \mu_0}{\sigma} \approx \mathcal{N}(0, 1).$$

Then, we may set the rejection region by picking c such that

$$\mathbb{P}_{\mu}\left(\left\{T(X)\geq c\right\}\right)=\alpha.$$

Example 6.12. Same set up as above, with

$$H_0: \mu = \mu_0, \quad H_A: \mu \neq \mu_0.$$

We may set

$$S_1 := \{X : |T(X)| > c_2\}$$

to be such that $\mathbb{P}_{\mu}(X \in S_1) \approx \alpha$.

Remark 6.13. If σ is unknown, we may use the fact that under H_0 ,

$$\sqrt{n}\cdot \frac{\overline{X}-\mu_0}{S}\sim t_{n-1}.$$

6.2 *p*-value

Definition 6.14. The *p*-value is the smallest level α for which we reject H_0 with the observed data.

Proposition 6.15. *If under H*₀, $T \sim F$, then $p = \mathbb{P}(T \geq T_{obs})$. *Moreover, F*(p) ~ Uniform[0, 1].

7 Likelihood Ratio Test

Let H_0 and H_1 be simple hypotheses (that is, are of the form $\theta = \theta_i$). We may define the test statistic using the Likelihood ratio

$$LR(X) := \frac{L(\theta_0|X)}{L(\theta_1|X)} = \frac{\prod f(X_i|\theta_0)}{\prod f(X_i|\theta_1)}$$

and the rejection region as

$$S_1 := \{X : LR(X) \le c\}.$$

We know that this test is the most powerful test (with fixed level) with the following result:

Theorem 7.1 (Neyman-Pearson Lemma). With LR and S_1 as above, if the type I and type II errors are α and β , then any other test with α type I error has a type II error larger than β .

More generally, we have the following:

Definition 7.2. For $H_0: \theta \in \Omega_0$ and $H_A: \theta \in \Omega_1$, we can define the **likelihood ratio** as follows:

$$\Lambda(X) := \frac{\sup_{\theta \in \Omega_0} L(\theta|X)}{\sup_{\theta \in \Omega} L(\theta|X)}.$$

Theorem 7.3. If $\Omega \subset \mathbb{R}^p$ is open and Ω_0 is obtained by fixing k coordinates of θ and if the assumptions of the MLE hold, then under H_0 we have

$$-2\log\Lambda(X) \xrightarrow{\mathcal{D}} \chi_k^2$$
.

Remark 7.4. More generally,

$$-2\log\Lambda(X)\xrightarrow{\mathscr{D}}\chi^2_{\dim H_A-\dim H_0}.$$

The below proof is meant to provide a certain intuition. It deals only with the case p = k = 1.

Proof. Let p = k = 1 and $H_0: \theta = \theta_0$. Let $\hat{\theta}$ be the MLE. We have

$$\Lambda(X) = \frac{L(\theta_0|X)}{L(\hat{\theta}|X)}$$

and thus

$$-2\log\Lambda(X) = 2(\ell(\hat{\theta}) - \ell(\theta_0)).$$

Taylor gives

$$\ell(\theta_0) \approx \ell(\hat{\theta}) + \dot{\ell}(\hat{\theta})(\theta_0 - \hat{\theta}) + \frac{1}{2} \ddot{\ell}(\hat{\theta})(\theta_0 - \hat{\theta})^2.$$

Under certain regularities we have $\dot{\ell}(\hat{\theta}) = 0$. Thus rearranging gives

$$2\left[\ell(\hat{\theta}) - \ell(\theta_0)\right] = \left[\sqrt{n}\left(\hat{\theta} - \theta_0\right)\right]^2 \left[-\frac{1}{n}\ddot{\ell}(\hat{\theta})\right].$$

We complete the proof by noting that under H_0 , by Fisher's theorem we have $\sqrt{(\hat{\theta} - \theta_0)} \xrightarrow{\mathcal{D}} \mathcal{N}(0, 1/I(\theta_0))$, and by the law of large numbers we have $-1/n \cdot \ddot{\ell}(\hat{\theta}) \rightarrow_p I(\theta_0)$.

7.1 Hypothesis Testing and Confidence Intervals

Let $X_i \stackrel{\text{iid}}{\sim} F_{\theta}$ and $A(\theta_0)$ be the acceptance region for a test with $H_0: \theta = \theta_0$ at level α . We have that

Proposition 7.5. Let $S(X) = \{\theta_0, X \in A(\theta_0)\}$ be the set of parameters rejected by data X. Then S(X) is a $1 - \alpha$ confidence set.

Proof.

$$P_{\theta}(\theta \in S(X)) = \mathbb{P}_{\theta}(X \in A(\theta)) \ge 1 - \alpha.$$

The converse of the above theorem is also true:

Proposition 7.6. Let S(X) be a $1 - \alpha$ confidence set and define

$$A(\theta_0) := \{X : \theta_0 \in S(X)\}.$$

Then $A(\theta_0)$ is the acceptance region of a level α test of $H_0: \theta = \theta_0$ and $H_A: \theta \neq \theta_0$.

Proof.

$$\mathbb{P}_{\theta_0}(X \notin A(\theta_0)) = \mathbb{P}_{\theta_0} (\theta_0 \notin S(X)) \le \alpha.$$

8 Multiple Testing

	Not rejected	rejected	
H_0 true	U	V	m_0
H_A true	T	S	$m-m_0$
	m-R	R	m

- R is the number of discoveries, V the number of false discoveries.
- We want *U* and *S* to be large, and *V* and *T* to be small.

The error rates can be measured by the following:

- Family-wise error rate (FWER): P[V > 0].
- Per-family error rate (PFER): EV.
- False discovery rate (FDR): E[V/R].

We discuss first the case of controlling FWER:

Proposition 8.1. For m independent tests, to obtain $\mathbb{P}[V] < \alpha$ for some $\alpha > 0$, we may reject when $p < \gamma$ for

$$\gamma \coloneqq 1 - (1 - \alpha)^{1/m}.$$

This is the **Sidak** correction.

Proof. Noting that under H_0 we have $p \sim \text{Uniform}[0, 1]$, we obtain

$$\mathbb{P}[V > 0] = \mathbb{P}[p_{(1)} < \gamma] = 1 - \mathbb{P}[p_{(1)} \ge \gamma] = 1 - (1 - \gamma)^m.$$

For

$$\gamma := 1 - (1 - \alpha)^{1/m},$$

we get $1 - (1 - \gamma)^m < \alpha$.

Remark 8.2. Using the approximation $\exp x \approx 1 + x$ for small x, we have

$$1 - (1 - \alpha)^{1/m} \approx 1 - e^{-\alpha/m} \approx 1 - \left(1 - \frac{\alpha}{m}\right) = \frac{\alpha}{m}.$$

Thus we may also set $\gamma := \alpha/m$. This is the **Bonferroni** correction.

To control FDR (and the PFER), we use the following result:

Algorithm 8.3 (Benjamini Hochberg procedure, 1985).

- Sort all p-values in ascending order. $p_{(1)} \leq \cdots \leq p_{(m)}$.
- Find the largest j such that

$$p_{(j)} \le \frac{\alpha j}{m}.$$

• Reject the tests with the j smallest p-values.

Proof. Let $N \subset \{1, 2, ..., m\}$ be the indices of the tests when H_0 is true. Note that $|N| = m_0$. Define

$$\alpha_r := \frac{\alpha r}{m}, \quad \forall r = 1, 2, \dots, m.$$

Note that α_R is the *p*-value threshold. We have

$$\mathrm{E}\left[\frac{V}{R}\right] = \mathrm{E}\left[\frac{1}{R}\sum_{k\in N}\mathbb{1}_{\{p_k\leq \alpha_R\}}\right] = \sum_{k\in N}\sum_{r=1}^{m}\frac{1}{r}\mathbb{P}\left[p_r\leq \alpha_R, R=r\right].$$

Now, define R_k to be the number of false discoveries when doing the BH producedure at α with the kth p-value p_k replaced by 0. Note that

$$\mathbb{P}\left[p_k \leq \alpha_R, R = r\right] = \mathbb{P}\left[p_k \leq \alpha_r, R_k = r\right] = \mathbb{P}\left[p_k \leq \alpha_r\right] \cdot \mathbb{P}\left[R_k = r\right].$$

We thus have

$$E\left[\frac{V}{R}\right] = \sum_{k \in N} \sum_{r=1}^{m} \frac{1}{r} \alpha_r \cdot \mathbb{P}[R_k = r]$$
$$= \frac{\alpha}{m} \sum_{k \in N} \sum_{r=1}^{R} \mathbb{P}[R_k = r]$$
$$= \frac{\alpha m_0}{m} \le \alpha.$$

Note that this is a very conservative estimate if $m_0 \ll m$.

If, on the other hand, we want to find the FDR for the rejection region $[0, \gamma]$, we may note that

$$\frac{V}{R} pprox \frac{m_0 \cdot \gamma}{R}$$
.

Thus we need only estimate m_0 . To do so we note that for $\lambda \in [0, 1]$ we have

of *p*-values
$$> \lambda \approx m_0(1 - \lambda)$$
.

Note however that there is a bias-variance trade-off: for small λ this estimator is more biases, since it might include p-values generated by H_A ; for large λ , on the other hand, fewer tests will have p-values larger than λ , and the estimator has more noise.

9 Bayesian Statistic

Recall Bayes' formula:

$$\mathbb{P}\left[A|B\right] = \frac{\mathbb{P}[B|A]\mathbb{P}[A]}{\mathbb{P}[B]}$$

and its generalization: If H_1, \ldots, H_k is a partition of the sample space Ω and D is an event with $\mathbb{P}[D] > 0$, then

$$P[H_i|D] = \frac{\mathbb{P}[H_i]\mathbb{P}[D|H_i]}{\sum_j \mathbb{P}[H_j]\mathbb{P}[D|H_j]}.$$

We call

- $\mathbb{P}[H_i]$ the **prior**, probabilities
- $\mathbb{P}[D|H_i]$ the likelihood,
- $\mathbb{P}[H_i|D]$ the **posterior** probabilities.

In hypothesis testing, we view θ as a random variable. Given a prior $f(\theta)$ and a model for data $f(X|\theta)$, we can then obtain the posterior $f(\theta|X)$ by

$$f(\theta|X) \coloneqq \frac{f(X|\theta)f(\theta)}{f(X)},$$

where f(X) is defined as

$$f(X) := \int f(X|\theta)f(\theta) d\theta$$

so that $f(\theta|X)$ is a valid density function.

9.1 Credible Intervals

• Equal tailed $1 - \alpha$ credible interval:

$$\left[F_{\theta|X}^{-1}(\alpha/2), F_{\theta|X}^{-1}(1-\alpha/2)\right].$$

• High posterior density interval

$$I = \{\theta : f(\theta|X) \ge c\}$$
 s.t. $\mathbb{P}_{\theta|X}(I) = 1 - \alpha$.

Remark 9.1.

- In credible intervals, θ is the random variable, not the interval ends.
- The high posterior density interval might be the union of several intervals.
- The interval lengths of high posterior density intervals are always no longer than those of the corresponding equal tailed credible intervals.

9.2 Hypothesis Testing

We use

$$\frac{\mathbb{P}_{\theta|X}(\theta \in \Omega_0)}{\mathbb{P}_{\theta|X}(\theta \in \Omega_1)}$$

Example 9.2. Let θ be the probability of obtaining heads. Let $X_i \stackrel{\text{iid}}{\sim} \text{Bernoulli}(\theta)$ and let $X := \sum_i X_i$.

• Case 1: Let the prior be $\theta \sim \text{Uniform}[0, 1]$. Then

$$f_{\theta|X} \propto \theta^X (1-\theta)^{n-X}, \quad 0 < \theta < 1$$

and we have

$$f_{\theta|X} \sim \text{Beta}(X+1, n-X+1).$$

We have the posterior mean (X + 1)/(n - X + 1), which we may think of this as the frequentest estimator with two extra flips, one heads and one tails.

• Case 2: Let the prior be $\theta \sim \text{Beta}(\alpha, \beta)$. We have

$$f_{\theta|X} \propto \theta^{\alpha+X-1} (1-\theta)^{\beta+n-X-1}$$
.

So

$$f(\theta|X) \sim \text{Beta}(\alpha + X, \beta + n - X).$$

Note that the posterior mean

$$\frac{X+\alpha}{n+\alpha+\beta} = \frac{\alpha}{\alpha+\beta} \frac{\alpha+\beta}{\alpha+\beta+n} + \frac{X}{n} \frac{n}{\alpha+\beta+n}$$

is a convex combination of the prior mean $\alpha/(\alpha+\beta)$ and the data mean X/n, and converges to the data mean as $n \to \infty$.

Remark 9.3. In case two, we have a family of distribution which when updated results in posterior distributions in the same family. Prior distributions like this are called **conjugate priors**.

Example 9.4. Travel to a city; saw a train with number T. Suppose trains are numbered $1 \dots N$. What do we know about N? Frequentist's solution: MoM gives $\overline{N} = 2T - 1$. Bayesian: let's assume the prior distribution

$$\theta(N) \propto 1/N$$
.

Note that this an **improper prior** since it does not have a density. We have then that

$$\Theta(N|T) \rightarrow_{\mathrm{p}} \frac{1}{N^2}, \quad N \ge T$$

and

$$\mathbb{P}[N \ge x | T] = \frac{\sum_{n \ge x} \frac{1}{n^2}}{\sum_{n \ge 1} \frac{1}{n^2}} \approx \frac{\int_x^{\infty} \frac{1}{y^2} \, \mathrm{d}y}{\int_1^{\infty} \frac{1}{y^2} \, \mathrm{d}y} = \frac{T}{x}.$$

Remark 9.5.

- $\mathbb{P}[N \ge 2T|T] \approx 1/2$. So the posterior median is $\approx 2T$.
- The posterior mean is ∞ .

Example 9.6 (Exponential Rate). Let $X_i \stackrel{\text{iid}}{\sim} \text{Exponential}(\lambda)$ and let $\lambda \sim \text{Gamma}(\alpha, \beta)$. We have

$$\begin{split} f(\lambda|X) &\propto f(\lambda)f(X|\lambda) = \lambda^{\alpha-1}e^{-\lambda\beta} \prod_{i=1}^n \lambda e^{-\lambda X_i} \\ &= \lambda^{\alpha+n-1}e^{-\lambda(\beta+\sum X_i)}. \end{split}$$

Thus

$$f(\lambda|X) \sim \text{Gamma}\left(n + \alpha, \beta + \sum X_i\right)$$
.

We have the posterior mean

$$\frac{n+\alpha}{\beta+\sum X_i} = \frac{1+\frac{\alpha}{n}}{\overline{X}+\frac{\beta}{n}}$$

Recall that the MLE is \overline{X} .

Example 9.7 (Normal Mean). Let $X_i \stackrel{\text{iid}}{\sim} \mathcal{N}(\mu, \sigma^2)$ with known σ^2 . Let $\mu \sim \mathcal{N}(\mu_0, \nu^2)$. We have then the posterior

$$\mu|X \sim \mathcal{N}\left(\frac{\frac{\mu_0}{v^2} + \frac{n\overline{X}}{\sigma^2}}{\frac{1}{v^2} + \frac{n}{\sigma^2}}, \frac{1}{\frac{1}{v^2} + \frac{n}{\sigma^2}}\right).$$

Note that the posterior is a weighted average of the prior mean and the sample mean. One may think of the weights $(n/\sigma^2$ and $1/v^2)$ as the information contained in the data.

9.3 Selecting Prior Distributions

Most critical (and criticized) part of Bayesian statistics.

For discrete and finite sample space Ω , we may use past experience to determine a prior. When Ω is an interval, we may discretize it and use the above method.

9.3.1 Conjugate Priors

Definition 9.8. A family \mathcal{F} of distributions is said to be **closed under sampling** from a model $f(X|\theta)$ if for each prior $f \in \mathcal{F}$, the posterior $f(\theta|X) \in \mathcal{F}$.

${\cal F}$	$f(X \theta)$	
Beta	Bernoulli or Binomial	
Gamma	Exponential	
$\mathcal N$	\mathcal{N} (with fixed variance)	
Gamma	Poisson	

Example 9.9.

9.3.2 Uninformative Priors

- If $\boldsymbol{\Omega}$ is discrete and finite, we may use the uniform prior.
- If Ω is an interval, we may use the uniform prior. Note that the uniform prior is not invariant under reparameterization.
- $\Omega = \mathbb{R}$. Flat (improper) prior.

Definition 9.10. If $X_i \stackrel{\text{iid}}{\sim} f(X|\theta)$ with fisher information $I(\theta)$. The **Jeffreys** prior is defined as

$$\pi_J(\theta) \propto \sqrt{I(\theta)}$$
.

Theorem 9.11. The Jeffreys prior is invariant under reparameterization.

10 Statistical Decision Theory

We have $X_i \stackrel{\text{iid}}{\sim} f(X|\theta)$ with $\theta \in \Omega$. $\pi(\theta)$ is a prior on θ . We are interested in estimating θ . A "decision" is an estimator $\hat{\theta} = \hat{\theta}(X_i, \dots, X_n)$.

Definition 10.1. A loss function is a function $L: \Omega \times \Omega \to [0, \infty)$.

Example 10.2. Common loss functions:

- Squared error loss: $L(\theta, \hat{\theta}) = (\theta \hat{\theta})^2$.
- Absolute error loss: $L(\theta, \hat{\theta}) = |\theta \hat{\theta}|$.
- Zero-one loss: $L(\theta, \hat{\theta}) = \mathbb{1}_{\{\theta \neq \hat{\theta}\}}$.

Definition 10.3. The frequentist risk of $\hat{\theta}$ is

$$R(\theta, \hat{\theta}) := \mathbb{E}_{\theta} L(\theta, \hat{\theta}) = \int L(\theta, \hat{\theta}) f(X|\theta) dX.$$

Remark 10.4.

- The risk function does not depend on the data. It is a "pre-data" measure of performance.
- If L is squared loss, then $R(\theta, \hat{\theta}) = MSE(\hat{\theta})$.
- $R(\theta, \hat{\theta})$ is a function of θ which θ to choose to make the comparison?

Example 10.5 (Two estimators with the same risk). Suppose

$$X_1, X_2 \stackrel{\text{iid}}{\sim} \begin{cases} \theta - 1, & \text{with probability } \frac{1}{2}, \\ \theta + 1, & \text{with probability } \frac{1}{2}. \end{cases}$$

Consider the estimators $\hat{\theta}_1 = (X_1 + X_2)/2$ and $\hat{\theta}_2 = X_1 + 1$. Using the zero-one loss function, we have

$$R(\theta, \hat{\theta}_1) = \mathbb{P}_{\theta} [X_1 = X_2] = \frac{1}{2},$$

$$R(\theta, \hat{\theta}_2) = \mathbb{P}_{\theta} [X_1 = \theta + 1] = \frac{1}{2}.$$

We cannot compare $\hat{\theta}_1$ and $\hat{\theta}_2$.

Example 10.6. Suppose $X \sim \mathcal{N}(\theta, 1)$ with $\theta \in \Omega = (0, 10)$. Consider estimators $\hat{\theta}_1 = X$ and $\hat{\theta}_2 = 5$. Using the squared error loss, we have

$$R(\theta, \hat{\theta}_1) = \mathbf{E}_{\theta}[(\theta - X)^2] = \text{Var } X = 1,$$

$$R(\theta, \hat{\theta}_2) = \mathbf{E}_{\theta}[(\theta - 5)^2] = (5 - \theta)^2.$$

Neither estimator is uniformly better.

10.1 Comparing Estimators

10.1.1 The Frequentist Approach

Definition 10.7. The **maximum risk** of an estimator $\hat{\theta}$ is

$$\overline{R}(\hat{\theta}) = \max_{\alpha} R(\theta, \hat{\theta}).$$

Definition 10.8. A minimax estimator is an estimator $\hat{\theta}$ such that

$$\overline{R}(\hat{\theta}) = \inf_{\tilde{\theta}} \overline{R}(\tilde{\theta}).$$

10.1.2 The Bayes Approach

Definition 10.9. With π as the prior, the **Bayes risk** is given by

$$r(\hat{\theta}) = \int R(\theta, \hat{\theta}) \pi(\theta) d\theta.$$

Definition 10.10. A **Bayes estimator** (associated with the loss function L and prior π) is an estimator $\hat{\theta}$ such that

$$r(\hat{\theta}) = \min_{\tilde{\theta}} r(\tilde{\theta}).$$

Example 10.11. Let $X \sim \text{Binomial}(n, \theta)$ with prior $\theta \sim \text{Uniform}(0, 1)$ and squared error loss. Consider the estimators

$$\hat{\theta}_1 = \hat{\theta}_{MLE} = X/n, \quad \hat{\theta}_2^{\alpha,\beta} = \frac{\alpha + X}{\alpha + \beta + n} \quad (\alpha, \beta > 0).$$

(Note that $\hat{\theta}_2^{\alpha,\beta}$ is the posterior mean with a $\mathrm{Beta}(\alpha,\beta)$ prior.) We have

$$R(\theta, \hat{\theta}_1) = \mathbb{E}[(\hat{\theta}_1 - \theta)^2] = \text{Var}[\hat{\theta}_1] = \frac{\theta(1 - \theta)}{n}$$

and

$$R(\theta, \hat{\theta}_2^{\alpha, \beta}) = \frac{n\theta(1-\theta) + [\alpha - (\alpha + \beta)\theta]^2}{(\alpha + \beta + n)^2}.$$

Note that

$$R(\theta, \hat{\theta}_2^{\frac{\sqrt{n}}{2}, \frac{\sqrt{n}}{2}}) = \frac{n}{4(n + \sqrt{n})^2}$$

is constant as a function of θ .

• We first compare the maximum risk:

$$\overline{R}(\hat{\theta}_1) = \frac{1}{4n}, \quad \overline{R}(\hat{\theta}_2^{\frac{\sqrt{n}}{2}, \frac{\sqrt{n}}{2}}) = \frac{1}{4n + 8\sqrt{n} + 4}.$$

So $\hat{\theta}_2^{\frac{\sqrt{n}}{2},\frac{\sqrt{n}}{2}}$ is better estimator.

• Next, we compare the Bayes risk:

$$r(\hat{\theta}_1) = \int_0^1 \frac{\theta(1-\theta)}{n} 1 \, d\theta = \frac{1}{6n}$$

and

$$r(\hat{\theta}_2^{\frac{\sqrt{n}}{2},\frac{\sqrt{n}}{2}}) = \frac{n}{4(n+\sqrt{n})^2}.$$

So $\hat{\theta}_1$ is the batter estimator for large n.

Note that $\hat{\theta}_2^{1,1}$ is the Bayes estimator with risk

$$r(\hat{\theta}_2^{1,1}) = \frac{1}{6(n+2)}.$$

Definition 10.12. The **posterior risk** is the risk calculated using the posterior distribution:

 $r(\hat{\theta}|X) = \int L(\theta, \hat{\theta}) f(\theta|X) d\theta.$

Theorem 10.13. Let $\hat{\theta} = \hat{\theta}(X)$ be the value that minimizes the posterior risk $r(\hat{\theta}|X)$. Then $\hat{\theta}$ is the Bayes estimator.

Proof. Note that

$$\begin{split} r(\hat{\theta}) &= \int R(\theta, \hat{\theta}) \pi(\theta) \; \mathrm{d}\theta \\ &= \int \int L(\theta, \hat{\theta}) f(X|\theta) \; \mathrm{d}x \; \pi(\theta) \; \mathrm{d}\theta \\ &= \int \int L(\theta, \hat{\theta}) f(X|\theta) \pi(\theta) \; \mathrm{d}\theta \; \mathrm{d}x \\ &= \int \int L(\theta, \hat{\theta}) \pi(\theta|X) f(X) \; \mathrm{d}\theta \; \mathrm{d}x \\ &= \int r(\hat{\theta}|X) f(X) \; \mathrm{d}x. \end{split}$$

Theorem 10.14 (Bayes estimators).

- If L is squared error loss, then the Bayes estimator is the posterior mean.
- If L is absolute error loss, then the Bayes estimator is the posterior median.

• If L is zero-one loss, then the Bayes estimator is the posterior mode.

We prove only the first statement.

Proof. Note: if X is a random variable with mean μ , then

$$E[(X-c)^{2}] = E[(X-\mu)^{2} + 2(X-\mu)(\mu-c) + (\mu-c)^{2}]$$
$$= Var[X] + (\mu-c)^{2}$$

is minimized at $c = \mu$.

The posterior risk is

$$r(\hat{\theta}|X) = \int (\theta - \hat{\theta})^2 f(\theta|X) d\theta.$$

We think of $X = \theta$ and $c = \hat{\theta}$. Thus $r(\hat{\theta}|X)$ is minimized at $\hat{\theta} = E[\theta|X]$.

Appendix A: Common Distributions

Distribution	Support PMF		Mean	Variance
Binomial (n, p)	$\{0, 1, 2, \ldots, n\}$	$\binom{n}{x} p^x (1-p)^{n-x}$	np	np(1-p)
Geometric (p)	$\{1,2,3,\dots\}$	$(1-p)^{x-1}p$	$\frac{1}{p}$	$\frac{1-p}{p^2}$
Poisson(λ)	$\{0,1,2,\dots\}$	$\frac{\lambda^x e^{-\lambda}}{x!}$	λ	λ

Table 1: Key Properties of Discrete Distributions

Distribution	Support	PDF	Mean	Variance
Uniform (a, b)	[a,b]	$\frac{1}{b-a}$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$
$\mathcal{N}(\mu, \sigma^2)$	$(-\infty,\infty)$	$\frac{1}{\sqrt{2\pi\sigma^2}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$	μ	σ^2
Exponential(λ)	$[0,\infty)$	$\lambda e^{-\lambda x}$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$
$\operatorname{Gamma}(\alpha, \beta)$	$(0,\infty)$	$\frac{\beta^{\alpha} x^{\alpha - 1} e^{-\beta x}}{\Gamma(\alpha)}$	$\frac{\alpha}{\beta}$	$\frac{lpha}{eta^2}$
$\mathrm{Beta}(\alpha,\beta)$	(0, 1)	$\frac{x^{\alpha-1}(1-x)^{\beta-1}}{B(\alpha,\beta)}$	$\frac{\alpha}{\alpha + \beta}$	$\frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}$

Table 2: Key Properties of Continuous Distributions

10.2 Properties of the normal distribution

Proposition 10.15. Let $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} \mathcal{N}(\mu, \sigma^2)$.

- $E[S^2] = \sigma^2$.
- \overline{X} and S^2 are independent.
- Let $X_1, X_2, \ldots, X_n \stackrel{\text{iid}}{\sim} \mathcal{N}(\mu, \sigma^2)$. Let

$$\overline{X}_n \sim \mathcal{N}\left(\mu, \frac{\sigma^2}{n}\right), \quad S^2 \coloneqq \frac{1}{n-1} \sum (X_i - \overline{X})^2.$$

Then

$$\sqrt{n} \cdot \frac{\overline{X} - \mu}{S} \sim t_{n-1}, \quad (n-1) \frac{S^2}{\sigma^2} \sim \chi_{n-1}^2.$$

10.3 Properties of the exponential distribution

Proposition 10.16.

(i) The "memoryless" property:

$$\mathbb{P}(T \le x + y | T > x) = \mathbb{P}(T \le y).$$

(ii) Exponential(λ) = Gamma(1, λ).

10.4 Properties of the gamma distribution

Proposition 10.17.

(i) If $X_i \stackrel{\text{iid}}{\sim} \text{Gamma}(\alpha_i, \beta)$ for i = 1, 2, ..., N, then

$$\sum X_i \sim \text{Gamma}\left(\sum \alpha_i, \beta\right).$$

(ii) If $X \sim \text{Gamma}(\alpha, \beta)$ and $\alpha > 1$, then

$$E[1/X] = \frac{\beta}{\alpha - 1}.$$

(iii) If $X \sim \text{Gamma}(\alpha, \beta)$, then

$$\beta X \sim \text{Gamma}(\alpha, 1)$$
.

Proof.

(i) Note that

$$\mathrm{E}\left[e^{tX_i}\right] = \left(1 - \frac{t}{\beta}\right)^{-\alpha_i}, \quad \forall t < \beta.$$

We then have

$$M_{\sum X_i}(t) = \prod M_{X_i}(t) = \left(1 - \frac{t}{\beta}\right)^{-\sum \alpha_i}.$$

(ii) We have

$$E[1/X] = \int_0^\infty \frac{1}{x} \cdot \frac{\beta^\alpha}{\Gamma(\alpha)} \cdot x^{\alpha - 1} e^{-\beta x} dx,$$

which we can integrate by reducing to the Γ function.

10.5 Properties of the gamma distribution

Proposition 10.18.

• Beta(1, 1) = Uniform(0, 1).

• If $X \sim \text{Beta}(\alpha, \beta)$, then

$$E[X] = \frac{\alpha}{\alpha + \beta}, \quad Var[X] = \frac{\alpha}{\alpha + \beta} \frac{\beta}{\alpha + \beta} \frac{1}{\alpha + \beta + 1}.$$