复习

解非齐次方程
$$\frac{\mathrm{d}y}{\mathrm{d}x} + P(x)y = Q(x)$$

对应齐次方程通解 $y = Ce^{-\int P(x)dx}$

原方程的通解

$$y = e^{-\int P(x) dx} \left[\int Q(x) e^{\int P(x) dx} dx + C \right]$$

伯努利 (Bernoulli)方程

$$\frac{\mathrm{d}y}{\mathrm{d}x} + P(x)y = Q(x)y^n \quad (n \neq 0,1)$$

解法: ① 方程两边同除yn,得

$$y^{-n} \frac{dy}{dx} + P(x)y^{1-n} = Q(x)$$

$$\frac{1}{1-n} \frac{dz}{dx} + P(x)z = Q(x)$$

$$2 \Leftrightarrow z = y^{1-n}$$

$$\frac{\mathrm{d}z}{\mathrm{d}x} + (1-n)P(x)z = (1-n)Q(x)$$
(线性方程)

- ③ 求出此方程通解
- ④ 换回原变量即得伯努利方程的通解.

第三节 可降阶的高阶微分方程

全微分方程

$$y^{(n)} = f(x)$$
 型的微分方程

$$y'' = f(x, y')$$
 型的微分方程

$$y'' = f(y, y')$$
 型的微分方程

全微分方程

若存在 u(x, y) 使 du(x, y) = P(x, y)dx + Q(x, y)dy **则称** P(x, y)dx + Q(x, y)dy = 0 ①

为全微分方程(又叫做恰当方程).

判别: P,Q 在某单连通域D内有连续一阶偏导数,则

① 为全微分方程
$$\longrightarrow$$
 $\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}, (x, y) \in D$

求解步骤:

- 1. 求原函数 u(x,y) 方法1 凑微分法; 方法2 利用积分与路径无关的条件.
- 2. 由 du = 0 知通解为 u(x, y) = C.

例5. 求解

$$(5x^4 + 3xy^2 - y^3) dx + (3x^2y - 3xy^2 + y^2) dy = 0$$

解: 因为 $\frac{\partial P}{\partial y} = 6xy - 3y^2 = \frac{\partial Q}{\partial x}$, 故这是全微分方程.

取 $x_0 = 0$, $y_0 = 0$, 则有

$$u(x,y) = \int_0^x 5x^4 dx + \int_0^y (3x^2y - 3xy^2 + y^2) dy$$

$$= x^{5} + \frac{3}{2}x^{2}y^{2} - xy^{3} + \frac{1}{3}y^{3}$$

$$(x, y)$$

因此方程的通解为

$$x^{5} + \frac{3}{2}x^{2}y^{2} - xy^{3} + \frac{1}{3}y^{3} = C \qquad (x,0)^{x}$$

(C为任意常数)

例6. 求解
$$(x + \frac{y}{x^2}) dx - \frac{1}{x} dy = 0$$

解:
$$\because \frac{\partial P}{\partial y} = \frac{1}{x^2} = \frac{\partial Q}{\partial x}$$
,

: 这是一个全微分方程。

用凑微分法求通解。

将方程改写为

$$x \, \mathrm{d}x - \frac{x \, \mathrm{d}y - y \, \mathrm{d}x}{x^2} = 0$$

 $\mathbb{P} \quad d\left(\frac{1}{2}x^2\right) - d\left(\frac{y}{x}\right) = 0,$

或d
$$\left(\frac{1}{2}x^2 - \frac{y}{x}\right) = 0$$

思考: 如何解方程

$$(x^3 + y) dx - x dy = 0?$$

这不是一个全微分方程,

但若在方程两边同乘 1/2,

就化成全微分方程.

故原方程的通解为
$$\frac{1}{2}x^2 - \frac{y}{x} = C$$
 (C为任意常数)

积分因子法

对于微分方程

$$P(x, y) dx + Q(x, y) dy = 0$$

当
$$\frac{\partial P}{\partial y} \neq \frac{\partial Q}{\partial x}$$
时,它不是全微分方程.

与原方程同解? 会丢掉使积分因 子为0或无意义的 解,不影响通解

若存在连续可微函数 $\mu = \mu(x, y) \neq 0$, 使

$$\mu(x, y)P(x, y) dx + \mu(x, y)Q(x, y) dy = 0$$

为全微分方程,则称 $\mu(x,y)$ 为原方程的积分因子.

在简单情况下,可凭观察和经验根据微分倒推式得到积分因子.

常用微分倒推公式:

1)
$$dx \pm dy = d(x \pm y)$$

$$2) xdy + ydx = d(xy)$$

3)
$$xdx + ydy = d(\frac{1}{2}(x^2 + y^2))$$

4)
$$\frac{ydx - xdy}{y^2} = d\left(\frac{x}{y}\right)$$

5)
$$\frac{ydx - xdy}{x^2} = d\left(\frac{-y}{x}\right)$$

6)
$$\frac{y dx - x dy}{xy} = d\left(\ln \frac{x}{y}\right)$$

7)
$$\frac{y dx - x dy}{x^2 + y^2} = d \left(\arctan \frac{x}{y} \right)$$

例如,对
$$ydx - xdy = 0$$

8)
$$\frac{xdx + ydy}{\sqrt{x^2 + y^2}} = d(\sqrt{x^2 + y^2})$$

可取
$$\mu = \frac{1}{y^2}, \quad \mu = \frac{1}{x^2},$$

$$\mu = \frac{1}{xy}, \quad \mu = \frac{1}{x^2 + y^2}$$

一、 $y^{(n)} = f(x)$ 型的微分方程

$$y^{(n-1)} = \int f(x) dx + C_1$$
$$y^{(n-2)} = \int \left[\int f(x) dx + C_1 \right] dx + C_2$$
$$= \int \left[\int f(x) dx \right] dx + C_1 x + C_2$$

依次通过n次积分,可得含n个任意常数的通解.

例1. 求解 $y'' = e^{2x} - \cos x$.

解:
$$y' = \int (e^{2x} - \cos x) dx + C_1$$

 $= \frac{1}{2}e^{2x} - \sin x + C_1$
 $y = \frac{1}{4}e^{2x} + \cos x + C_1x + C_2$

(C1和C2为任意常数)

二、y'' = f(x, y') 型的微分方程

设 y' = p(x), 则 y'' = p', 原方程化为一阶方程

$$p' = f(x, p)$$

设其通解为 $p = \varphi(x, C_1)$

则得 $y' = \varphi(x, C_1)$

再一次积分,得原方程的通解

$$y = \int \varphi(x, C_1) \, \mathrm{d}x + C_2$$

 $(C_1 和 C_2 为任意常数)$

例2.求解方程 xy'' + 2y' = 0

解法一 设
$$y' = p(x)$$
, 则 $y'' = p'$,

原方程化为一阶方程

$$xp' + 2p = 0$$
 可分离变量

$$\Rightarrow \frac{dp}{dx} = -\frac{2}{x}p \Rightarrow \frac{dp}{p} = -\frac{2}{x}dx$$

$$\Rightarrow \ln p = -2\ln x + \ln C_1 \Rightarrow p = C_1 \frac{1}{x^2}$$

$$\Rightarrow y' = C_1 \frac{1}{x^2} \Rightarrow y = -\frac{C_1}{x} + C_2$$

$$(C_1 \Rightarrow C_2 \Rightarrow C_2 \Rightarrow C_3 \Rightarrow C_4 \Rightarrow C_5 \Rightarrow C_6 \Rightarrow C_6 \Rightarrow C_7 \Rightarrow C_8 \Rightarrow$$

例2.求解方程 xy'' + 2y' = 0

解法二
$$x xy'' + 2 x y' = 0$$

$$x^2 y'' + 2xy' = 0$$

$$(x^2 y')' = 0 \Rightarrow x^2 y' = C_1$$

$$y' = \frac{C_1}{2}$$

$$y' = \frac{C_1}{x^2}$$

$$y = -\frac{C_1}{x} + C_2$$

 $(C_1 和 C_2 为任意常数)$

三、y'' = f(y, y')型的微分方程

故方程化为 $p\frac{\mathrm{d}p}{\mathrm{d}y} = f(y,p)$

设其通解为 $p = \varphi(y, C_1)$, 即得

$$y' = \varphi(y, C_1)$$

分离变量后积分,得原方程的通解

$$\int \frac{\mathrm{d}y}{\varphi\left(y, C_1\right)} = x + C_2$$

例4 求解 $yy'' - y'^2 = 0$.

解: 设
$$y' = p(y)$$
, 则 $y'' = \frac{dp}{dx} = \frac{dp}{dy} \frac{dy}{dx} = p\frac{dp}{dy}$

代入方程得
$$yp\frac{dp}{dy} - p^2 = 0$$
, $\frac{dp}{dy} = \frac{p}{y}$ 即 $\frac{dp}{p} = \frac{dy}{y}$

两端积分得 $\ln p = \ln y + \ln C_1$,

$$y' - C_1 y = 0 \qquad \frac{dy}{v} = C_1 dx$$

$$\frac{dy}{y} = C_1 \, \mathrm{d}x$$

(一阶线性齐次方程)

(分离变量)

故所求通解为 $y = C_2 e^{C_1 x} (C_1 \rightarrow C_2)$ 任意常数)

例5. 解初值问题
$$\begin{cases} y'' - e^{2y} = 0 \\ y|_{x=0} = 0, \quad y'|_{x=0} = 1 \end{cases}$$

解: 令
$$y' = p(y)$$
, 则 $y'' = p \frac{dp}{dy}$, 代入方程得
$$p dp = e^{2y} dy$$

积分得
$$\frac{1}{2}p^2 = \frac{1}{2}e^{2y} + C_1$$

利用初始条件,得 $C_1 = 0$,根据 $p|_{y=0} = y'|_{x=0} = 1 > 0$,得

$$\frac{\mathrm{d}y}{\mathrm{d}x} = p = e^y \Longrightarrow \frac{\mathrm{d}y}{e^y} = \mathrm{d}x$$

积分得 $-e^{-y} = x + C_2$, 再由 $y|_{x=0} = 0$, 得 $C_2 = -1$

故所求特解为
$$1-e^{-y}=x$$

内容小结

可降阶微分方程的解法 —— 降阶法

$$1. \quad y^{(n)} = f(x)$$
 逐次积分

3.
$$y'' = f(y, y')$$

$$\Leftrightarrow y' = p(y), \quad \text{if } y'' = p \frac{dp}{dy}$$

第四节

高阶线性微分方程

- 一、高阶线性微分方程解的结构
- 二、二阶常系数齐次线性微分方程
- 三、二阶常系数非齐次线性微分方程

一、n 阶线性微分方程解的结构

n阶线性微分方程的一般形式为

$$y^{(n)} + a_1(x)y^{(n-1)} + \dots + a_{n-1}(x)y' + a_n(x)y = f(x)$$

$$\begin{cases} f(x) \neq 0 & \text{时, 称为非齐次方程;} \\ f(x) \equiv 0 & \text{时, 称为齐次方程.} \end{cases}$$

复习: 一阶线性方程 y' + P(x)y = Q(x)

通解:
$$y = Ce^{-\int P(x)dx} + e^{-\int P(x)dx} \int Q(x)e^{\int P(x)dx} dx$$

齐次方程通解Y 非齐次方程特解Y

4.1 高阶线性微分方程解的结构

定理1. 若函数
$$y_1(x)$$
, $y_2(x)$ 是二阶线性齐次方程 $y'' + P(x)y' + Q(x)y = 0$

的两个解,则 $y = C_1 y_1(x) + C_2 y_2(x) (C_1, C_2)$ 为任意常数) 也是该方程的解.(叠加原理)

证:将
$$y = C_1 y_1(x) + C_2 y_2(x)$$
代入方程左边,得
$$[C_1 y_1'' + C_2 y_2''] + P(x)[C_1 y_1' + C_2 y_2']$$

$$+ Q(x)[C_1 y_1 + C_2 y_2]$$

$$= C_1[y_1'' + P(x)y_1' + Q(x)y_1]$$

$$+ C_2[y_2'' + P(x)y_2' + Q(x)y_2] = 0$$
 证毕

说明:

1. 定理对n阶方程同样适用

$$y^{(n)} + a_1(x)y^{(n-1)} + \dots + a_{n-1}(x)y' + a_n(x)y = 0$$

$$2. y = C_1 y_1(x) + C_2 y_2(x)$$
 不一定是所给二阶方程的通解.

例如, y₁(x) 是某二阶齐次方程的解,则

$$y_2(x) = 2y_1(x)$$
 也是齐次方程的解

但是
$$C_1y_1(x) + C_2y_2(x) = (C_1 + 2C_2)y_1(x)$$

并不是通解

为解决通解的判别问题,下面引入函数的线性相关与线性无关概念.

24

定义: 设 $y_1(x)$, $y_2(x)$, ..., $y_n(x)$ 是定义在区间 I 上的 n 个函数, 若存在不全为 0 的常数 k_1 , k_2 , ..., k_n , 使得 $k_1y_1(x) + k_2y_2(x) + \cdots + k_ny_n(x) \ge 0$, $x \in I$

则称这n个函数在I上线性相关,否则称为线性无关。 例如, $1,\cos^2 x,\sin^2 x$,在 $(-\infty,+\infty)$ 上都有 $1-\cos^2 x-\sin^2 x \equiv 0$

故它们在任何区间 I 上都线性相关;

又如, $1, x, x^2$,若在某区间 $I \perp k_1 + k_2 x + k_3 x^2 \equiv 0$,则根据二次多项式至多只有两个零点,可见 k_1, k_2, k_3 必需全为 0,故 $1, x, x^2$ 在任何区间 I 上都 线性无关.

两个函数在区间 / 上线性相关与线性无关的充要条件:

$$\frac{y_1(x)}{y_2(x)} \equiv -\frac{k_2}{k_1} \qquad (无妨设 k_1 \neq 0)$$

$$y_1(x), y_2(x)$$
 线性无关 $\longrightarrow \frac{y_1(x)}{y_2(x)}$ \ \ \ \ 常数

可微函数 y_1, y_2 线性无关

$$\begin{array}{c|cccc} & y_1(x) & y_2(x) \\ \hline & y_1'(x) & y_2'(x) \end{array} \neq 0 \text{ (证明略)}$$

思考: 若 $y_1(x)$, $y_2(x)$ 中有一个恒为0, 则 $y_1(x)$, $y_2(x)$ 必线性 相关

定理 2. 若 $y_1(x)$, $y_2(x)$ 是二阶线性齐次方程的两个线性无关特解,则 $y = C_1 y_1(x) + C_2 y_2(x)$ (C_1 , C_2 为任意常数) 是该方程的通解. (自证)

例如,方程 y'' + y = 0有特解 $y_1 = \cos x, y_2 = \sin x$, 且 $\frac{y_2}{y_1} = \tan x$ \neq 常数, 故方程的通解为

$$y = C_1 \cos x + C_2 \sin x$$

推论. 若 $y_1, y_2, ..., y_n$ 是n阶齐次方程

$$y^{(n)} + a_1(x)y^{(n-1)} + \dots + a_{n-1}(x)y' + a_n(x)y = 0$$

的n个线性无关解,则方程的通解为

$$y = C_1 y_1 + \dots + C_n y_n$$
 (C_k 为任意常数)

2. 线性非齐次方程解的结构

定理4 若 y_1^* , y_2^* 是非齐次线性微分方程的任意 两个解,则它们的差 $y_1^* - y_2^*$ 是对应齐次方程的解.

定理5(非齐次线性方程的通解)

若 y^* 是非齐次方程线性微分方程的一个解,Y 是相应齐次方程的通解,则 $y = Y + y^*$ 是非齐次方程的通解.

定理6 设 y₁ 与 y₂ 分别为方程

$$y^{(n)} + a_1(x)y^{(n-1)} + \dots + a_{n-1}(x)y' + a_n(x)y = f_1(x)$$
 \Rightarrow $y^{(n)} + a_1(x)y^{(n-1)} + \dots + a_{n-1}(x)y' + a_n(x)y = f_2(x)$

的解,则 $y = y_1^* + y_2^*$ 为

$$y^{(n)} + a_1(x)y^{(n-1)} + \dots + a_{n-1}(x)y' + a_n(x)y = f_1(x) + f_2(x)$$
 in \mathbb{R} .

例1. 设 y_1^* , y_2^* , y_3^* 是 y'' + p(x)y' + q(x)y = f(x) ($\neq 0$)的三个线性无关的解,证明: 该方程的通解为 $y = C_1 y_1^* + C_2 y_2^* + C_3 y_3^*$ 其中 $C_1 + C_2 + C_3 = 1$

解: 由 y_1^* , y_2^* , y_3^* 是 y'' + p(x)y' + q(x)y = f(x) (≠0)

的三个线性无关的解,得:

$$y_1^* - y_3^*, y_2^* - y_3^* \not\equiv y'' + p(x)y' + q(x)y = 0$$

的线性无关的解

通解为
$$C_1(y_1^* - y_3^*) + C_2(y_2^* - y_3^*) + y_3^*$$

= $C_1y_1^* + C_2y_2^* + (C_1 - C_2 + 1)y_3^*$

例2. 设线性无关函数 y_1, y_2, y_3 都是二阶非齐次线性方程 y'' + P(x)y' + Q(x)y = f(x)的解, C_1, C_2 是任意常数,则该方程的通解是(D).

(A)
$$C_1y_1 + C_2y_2 + y_3;$$

(B) $C_1y_1 + C_2y_2 + (C_1 + C_2)y_3;$
(C) $C_1y_1 + C_2y_2 - (1 + C_1 + C_2)y_3;$
(D) $C_1y_1 + C_2y_2 + (1 - C_1 - C_2)y_3.$

提示:
$$(C)$$
 $C_1(y_1 - y_3) + C_2(y_2 - y_3) - y_3$ (D) $C_1(y_1 - y_3) + C_2(y_2 - y_3) + y_3$

 $y_1 - y_3, y_2 - y_3$ 都是对应齐次方程的解,

二者线性无关.(反证法可证)

例3. 已知微分方程 y'' + p(x)y' + q(x)y = f(x) 有三个解 $y_1 = x$, $y_2 = e^x$, $y_3 = e^{2x}$, 求此方程满足初始条件 y(0) = 1, y'(0) = 3 的特解.

解: $y_2 - y_1$ 与 $y_3 - y_1$ 是对应齐次方程的解,且 $\frac{y_2 - y_1}{y_3 - y_1} = \frac{e^x - x}{e^{2x} - x} \neq 常数$

因而线性无关, 故原方程通解为

$$y = C_1(e^x - x) + C_2(e^{2x} - x) + x$$

代入初始条件 y(0) = 1, y'(0) = 3, 得 $C_1 = -1$, $C_2 = 2$, 故所求特解为 $y = 2e^{2x} - e^x$.