1

SEQUENCE LISTING

10

:110>	Medvet Science Pty Ltd
:120>	A Method of Modulating Cellular Activity
:130>	12185280/TDO
:150>	2003900230
<151>	2003-01-21
<150>	2002951668
	2002-09-19
<150>	PS1448
<151>	2002-03-28
<150>	PS1538 ·
<151>	2002-04-05
-150>	PS1621
	2002-04-08
<160>	14
<170>	PatentIn version 3.1
<210>	1
<211>	10
<212>	PRT
<213>	mammalian
<400>	1
Lys Th	nr Pro Ala Ser Pro Val Val Val Gln

```
<210> 2
<211> 14
<212> PRT
<213> mammalian
<400> 2
Cys Gly Ser Lys Thr Pro Ala Ser Pro Val Val Val Gln Gln
                                   10
1
               5
<210> 3
<211> 11
<212> PRT
<213> mammalian
<400> 3
Ser Lys Thr Pro Ala Ser Pro Val Val Val Gln
                                   10
               5
<210> 4
<211> 21
<212> DNA
<213> mammalian
<400> 4
cggctgctgg cgcccatgaa c
```

21

<210> 5
<211> 24
<212> DNA
<213> mammalian
<400> 5
tgtggacctc gaggctgaga agta

3/6

<210>	6	
<211>	27	
<212>	DNA	
<213>	mammalian	
•		
<400>	6	
agtgag	aagg ctcggcgcct gggggag	27
<210>	7	
<211>	20	
<212>		
<213>	mammalian	
<400>	7	
aagagt	gggc gccaagacac	20
<210>	8	
<211>	28	
<212>	DNA	
<213>	mammalian	
<400>	8	
aagagt	ggga tecaaggege etgeetee	28
<210>	9	
<211>	24	
<212>	DNA	
<213>	mammalian	
<400>	9	
aagaca	ccta caacaccat tata	24

<210> 10

<211> 24

<212> DNA

<213> mammalian

<400> 10

acacctgccg aaccggttgt ggtc

24

<210> 11

<211> 19

<212> DNA

<213> mammalian

<400> 11

tctcactggg cagtggtgc

19

<210> 12

<211> 384

<212> PRT

<213> mammalian

<400> 12

Met Asp Pro Ala Gly Gly Pro Arg Gly Val Leu Pro Arg Pro Cys Arg

1 5 10 15

Val Leu Val Leu Leu Asn Pro Arg Gly Gly Lys Gly Lys Ala Leu Gln
20 25 30

Leu Phe Arg Ser His Val Gln Pro Leu Leu Ala Glu Ala Glu Ile Ser 35 40 45

Phe Thr Leu Met Leu Thr Glu Arg Arg Asn His Ala Arg Glu Leu Val 50 55 60

Arg Ser Glu Glu Leu Gly Arg Trp Asp Ala Leu Val Val Met Ser Gly

65					70					75					80
Asp	Gly	Leu 	Met	His 85	Glu	Val	Val	Asn	Gly 90	Leu	Met	Glu	Arg	Pro 95	Asţ
Trp	Glu	Thr	Ala 100	Ile	Gln	Lys	Pro	Leu 105	Cys	Ser	Leu	Pro	Ala 110	Gly	Sei
Gly	Asn	Ala 115	Leu	Ala	Ala	Ser	Leu 120	Asn	His	Tyr	Ala	Gly 125	Tyr	Glu	Glr
Val	Thr 130	Asn	Glu	Asp	Leu	Leu 135	Thr	Asn	Cys	Thr	Leu 140	Leu	Leu	Cys	Arg
Arg 145	Leu	Leu	Ser	Pro	Met 150	Asn	Leu	Leu	Ser	Leu 155	His	Thr	Ala	Ser	Gl ₃
Leu	Arg	Leu	Phe	Ser 165	Val	Leu	Ser	Leu	Ala 170	Trp	Gly	Phe	Ile	Ala 175	Ası
Val	Asp	Leu	Glu 180	Ser	Glu	Lys	Tyr	Arg 185	Arg	Leu	Gly	Glu	Met 190	Arg	Pho
Thr	Leu	Gly 195	Thr	Phe	Leu	Arg	Leu 200	Ala	Ala	Leu	Arg	Thr 205	Tyr	Arg	Gl
Arg	Leu 210	Ala	Tyr	Leu	Pro	Val 215	Gly	Arg	Val	Gly	Ser 220	Lys	Thr	Pro	Ala
Ser 225	Pro	Val	Val	Val	Gln 230	Gln	Gly	Pro	Val	Asp 235	Ala	His	Leu	Val	Pro
Leu	Glu	Glu	Pro	Val 245	Pro	Ser	His	Trp	Thr 250	Val	Val	Pro	Asp	Glu 255	As
Phe	Val	Leu	Val 260	Leu	Ala	Leu	Leu	His 265	Ser	His	Leu	Gly	Ser 270	Glu	Me

Phe	Ala	Ala	Pro	Met	Gly	Arg	Cys	Ala	Ala	Gly	Val	Met	His	Leu	Phe
		275					280					285			

Tyr Val Arg Ala Gly Val Ser Arg Ala Met Leu Leu Arg Leu Phe Leu 290 295 300

Ala Met Glu Lys Gly Arg His Met Glu Tyr Glu Cys Pro Tyr Leu Val 305 310 315 320

Tyr Val Pro Val Val Ala Phe Arg Leu Glu Pro Lys Asp Gly Lys Gly 325 330 335

Met Phe Ala Val Asp Gly Glu Leu Met Val Ser Glu Ala Val Gln Gly 340 345 350

Gln Val His Pro Asn Tyr Phe Trp Met Val Ser Gly Cys Val Glu Pro 355 360 365

Pro Pro Ser Trp Lys Pro Gln Gln Met Pro Pro Pro Glu Glu Pro Leu 370 375 380

<210> 13

<211> 26

<212> DNA

<213> primers

<400> 13

taaagcttgc caccatggtg agcaag

26

<210> 14

<211> 29

<212> DNA

<213> primers

<400> 14

atggatccat cttgtacagc tcgtccatg