ROBEM I Let $S = (S_n : n \ge 0)$ be the one-dimensional symmetry simple random walk with $S_0 = c \ge 0$. Let $k \ge 1$ and τ be the time of the k-th downcrossing 0. X_b is the times of $(S_{n \land \tau} : n \ge 0)$ downcrossing b. Prove:

- 1. $(X_b:b\geq c-1)$ is branch process. And offspring distribution has $Geo(\frac{1}{2})$.
- 2. $(X_{-a}: a \ge 1)$ is branch process. And offspring distribution has $Geo(\frac{1}{2})$.
- 3. $(X_b: 0 \le b \le c-1)$ is migrating branch process. And offspring distribution has $Geo(\frac{1}{2})$. And the migrating distribution is concentrating on 1.

SOLTION.

ROBEM II $c < b \in \mathbb{Z}_+$. Let $W = (W_n : n \ge 0)$ be the one-dimensional reflecting symmetry simple random walk with $W_0 = c \ge 0$ on $\mathbb{Z}^{0,b}$, whose transition matrix is $P^{0,b}$, where a = 0, p, q > 0, p + q = 1. Let $k \ge 1$ and τ is the time of the k-th downcrossing 0 on (W_n) . $0 \le a \le b$, X_a is the times of $(S_{n \land \tau} : n \ge 0)$ downcrossing a. Prove:

- 1. $(X_b: c-1 \le a \ge b-1)$ is branch process. And offspring distribution is presented by equation (6.3.1) on textbook.
- 2. $(X_b: 0 \le b \le c-1)$ is migrating branch process. And offspring distribution is presented by equation (6.3.1) on textbook. And the migrating distribution is concentrating on 1.

SOLTION.

ROBEM III Let $W = (W_n : n \ge 0)$ be the one-dimensional simple random walk with $W_0 = 0$, whose transition matrix P given by equation (4.4.3) on textbook, $0 . <math>X_a$ is the times of $(W_{n \land \tau} : n \ge 0)$ downcrossing a. $r = \frac{p}{q}$. Prove:

- 1. $\mathbb{P}(X_0 = i) = r^i(1 r), i \ge 0;$
- 2. $a \ge 0$, $\mathbb{P}(X_a = 0) = 1 r^{a+1}$, $\mathbb{P}(X_a = i) = r^{a+1}(1 r)$, $i \ge 1$.

SOUTION. 1. Since p < q, then $W_n \to -\infty, n \to \infty$. Let $\tau_0 = 0, \forall k \ge 1, \ \sigma_k = \inf\{n \ge \tau_{k-1} : W_n = 1\}, \tau_k = \inf\{n \ge \sigma_k : W_n = 0\}.$

- (a) If i = 0, then $\{X_0 = i\} \stackrel{\text{a.s.}}{=} \{\sigma_1 = \infty\}$. Then $\mathbb{P}(X_0 = i) = \mathbb{P}(\sigma_1 = \infty) = r$.
- (b) If $i \geq 1$, then $\{X_0 = i\} \stackrel{\text{a.s.}}{=} \{\sigma_i < \infty, \sigma_{i+1} = \infty\}$. Since $\{\tau_i < \infty\} \subset \{\sigma_i \infty\}, \mathbb{P}(\sigma_i < \infty, \tau_i = \infty) = 0$, then by strong markov property,

$$\mathbb{P}(\sigma_{i+1} < \infty \mid \sigma_i < \infty) = \mathbb{P}(\sigma_{i+1} < \infty \mid \sigma_i < \infty, \tau_i < \infty)$$

$$= \mathbb{P}(\sigma_{i+1} < \infty \mid \tau_i < \infty)$$

$$= \mathbb{P}(\sigma_{i+1} < \infty \mid \tau_i < \infty, W_{\tau_i} = 0)$$

$$= \mathbb{P}(\sigma_1 < \infty) = r$$

Therefore,

$$\mathbb{P}(\sigma_{i+1} < \infty) = \mathbb{P}(\sigma_{i+1} < \infty \mid \sigma_i < \infty) \mathbb{P}(\sigma_i < \infty)$$

Then $\mathbb{P}(\sigma_i < \infty) = r^i$. Therefore, $\mathbb{P}(X_0 = i) = \mathbb{P}(\sigma_i < \infty, \sigma_{i+1} = \infty) = \mathbb{P}(\sigma_i < \infty)$ $\mathbb{P}(\sigma_{i+1} = \infty \mid \sigma_i < \infty) = r^i(1-r)$.

2. Let $D_a = \inf(n \geq 0 : W_n = a)$, then $\mathbb{P}(D_a < \infty) = r^a$. By strong markov property, $(W_{D_a+n-a:n\geq 0})$ is a random walk starting from 0 under $\mathbb{P}(\cdot \mid D_a < \infty) = \mathbb{P}(\cdot \mid D_a < \infty, W_{D_a} = a)$. By the conclusion in ??, $\mathbb{P}(X_a = i \mid D_a < \infty) = r^i(1-r), i \geq 0$. Then

$$\mathbb{P}(X_a = 0) = \mathbb{P}(D_a = \infty) + \mathbb{P}(D_a < \infty, X_a = 0)$$

$$= 1 - r^a + \mathbb{P}(D_a < \infty)\mathbb{P}(X_a = 0 \mid D_a < \infty)$$

$$= 1 - r^a + r^a(1 - r) = 1 - r^{a+1}$$

 $\forall i \geq 1$,

$$\mathbb{P}(X_a = i) = \mathbb{P}(D_a < \infty, X_a = i)$$

$$= \mathbb{P}(D_a < \infty)\mathbb{P}(X_a = i \mid D_a < \infty)$$

$$= r^a r^i (1 - r) = r^{a+i} (1 - r)$$

ROBEM IV Let $W=(W_n:n\geq 0)$ be the one-dimensional simple random walk with $W_0=0$, whose transition matrix P given by equation (4.4.3) on textbook, 0< p< q<1. X_a is the times of $(W_{n\wedge\tau}:n\geq 0)$ downcrossing a. $r=\frac{p}{q}$. Prove: if $a\leq -1$, then $X_a\sim G(1-r)$, i.e. $\mathbb{P}(X_a=i)=r^{i-1}(1-r), i\geq 1$.

SOUTHON.
$$D_a = \inf\{\}$$