Constraint Satisfaction Problems (CSPs)

CS 221 Section – 11/02/18 Chinmayee Shah and Vivian Hsu

Agenda

- CSP Problem Modeling
- N-ary Constraints
- Elimination Example

- CSP Problem Modeling
- N-ary Constraints
- Elimination Example

Definition: Factor Graph —

Variables:

$$X = (X_1, ..., X_n), X_i \in Domain_i$$
 where Factors:

$$f_1, ..., f_m,$$

with each $f_i(X) \ge 0$

Definition: Constraint Satisfaction Problem (CSP)

A CSP is a factor graph where all factors are **constraints**:

for all
$$j = 1, ..., m$$
.

The constraint is satisfied iff $f_i(x) = 1$.

Definition: Consistent Assignments

An assignment x if Weight(x) = 1 (i.e., all constraints are satisfied.)

Factor Graph and CSP Applications

- Inferring relations from data
- Scheduling problems: event scheduling, resource and assembly scheduling
- Puzzles: sudoku, crosswards
- Satisfiability problems
- Map and graph coloring
- Object tracking
- Decoding noisy signals (images, messages etc.)

Setup:

- Have E events and T time slots
- Each event e must be put in exactly one time slot
- Each time slot t can have at most one event
- Event e only allowed at time slot t if (e, t) in A

Setup:

- Have E events and T time slots
- Each event e must be put in exactly one time slot
- Each time slot t can have at most one event
- Event e only allowed at time slot t if (e, t) in A

Formulation 1a:

• Variables for each event $e, X_e \in \{1,...,T\}$

- Variables for each event $e, X_e \in \{1,...,T\}$
- Constraints (only one event per time slot): for each pair of events e≠e', enforce [X_e ≠ X_{e'}]

- Variables for each event $e, X_e \in \{1,...,T\}$
- Constraints (only one event per time slot): for each pair of events $e \neq e'$, enforce $[X_e \neq X_{e'}]$

- Variables for each event $e, X_e \in \{1,...,T\}$
- Constraints (only one event per time slot): for each pair of events $e \neq e'$, enforce $[X_e \neq X_{e'}]$

- Variables for each event $e, X_e \in \{1,...,T\}$
- Constraints (only one event per time slot): for each pair of events e≠e', enforce [X_e ≠ X_{e'}]
- Constraints (only schedule allowed times): for each event e, enforce [(e, X_e) ∈ A]

- Variables for each event $e, X_e \in \{1,...,T\}$
- Constraints (only one event per time slot): for each pair of events e≠e', enforce [X_e ≠ X_{e'}]
- Constraints (only schedule allowed times): for each event e, enforce [(e, X_e) ∈ A]

- Variables for each event $e, X_e \in \{1,...,T\}$
- Constraints (only one event per time slot): for each pair of events e≠e', enforce [X_e ≠ X_{e'}]
- Constraints (only schedule allowed times): for each event e, enforce [(e, X_e) ∈ A]

- Variables for each event $e, X_e \in \{1,...,T\}$
- Constraints (only one event per time slot): for each pair of events $e \neq e'$, enforce $[X_e \neq X_e']$
- Constraints (only schedule allowed times): for each event e, enforce [(e, X_e) ∈ A]

Formulation 1b:

• Variables for each event $e, X_1, ..., X_E$

Formulation 1b:

• Variables for each event $e, X_1, ..., X_E$

$$Domain_i = \{t : (i, t) \in A\}$$

Formulation 1b:

• Variables for each event $e, X_1, ..., X_E$

$$Domain_i = \{t : (i, t) \in A\}$$

 Constraints (only one event per time slot): for each pair of events e≠e', enforce [X_e≠X_{e'}]

Formulation 2a:

• Variables for each time slot t: $Y_t \in \{1,...,E\} \cup \{\emptyset\}$

- Variables for each time slot $t: Y_t \in \{1,...,E\} \cup \{\emptyset\}$
- Constraints (each event is scheduled exactly once): for each event e, enforce $[Y_t = e$ for exactly one t]

- Variables for each time slot $t: Y_t \in \{1,...,E\} \cup \{\emptyset\}$
- Constraints (each event is scheduled exactly once): for each event e, enforce [Y = e for exactly one t]
- Constraints (only schedule allowed times): for each time slot t, enforce $[Y_t = \emptyset \text{ or } (Y_t, t) \in A]$

- Variables for each time slot $t: Y_t \in \{1,...,E\} \cup \{\emptyset\}$
- Constraints (each event is scheduled exactly once): for each event e, enforce [Y] = e for exactly one t
- Constraints (only schedule allowed times): for each time slot t, enforce $[Y_t = \emptyset \text{ or } (Y_t, t) \in A]$

Formulation 2a:

• Variables for each time slot $t: Y_1,...,Y_T$

Formulation 2a:

• Variables for each time slot $t: Y_1,...,Y_T$

$$Domain_i = \{e : (e, i) \in A\} \cup \{\emptyset\}$$

Formulation 2a:

• Variables for each time slot $t: Y_1, ..., Y_T$

$$Domain_i = \{e : (e, i) \in A\} \cup \{\emptyset\}$$

• Constraints (each event is scheduled exactly once): for each event e, enforce $[Y_t = e \text{ for exactly one } t]$

- CSP Problem Modeling
- N-ary Constraints
- Elimination Example

- From event scheduling:
 - Constraints (each event is scheduled exactly once): for each event e, enforce

 $[Y_t = e \text{ for exactly one } t]$

Key Idea: Auxiliary Variables

Auxiliary Variables hold intermediate computation.

Key Idea: Auxiliary Variables

Auxiliary Variables hold intermediate computation.

Represent "for exactly one" as counting the number of values equal to e and constraining that count to be equal to one.

Key Idea: Auxiliary Variables

Auxiliary Variables hold intermediate computation.

Represent "for exactly one" as counting the number of values equal to e and constraining that count to be equal to one.

Factors:

Initialization: $[A\theta = 0]$

Key Idea: Auxiliary Variables

Auxiliary Variables hold intermediate computation.

Represent "for exactly one" as counting the number of values equal to e and constraining that count to be equal to one.

Factors:

Initialization: [Ao = 0]

Processing: $[A_i = A_{i-1} + 1[Y_i = e]]$

i	0	1	2	3	4
Y_i		3	1	2	1
Ai	0				

Key Idea: Auxiliary Variables

Auxiliary Variables hold intermediate computation.

Represent "for exactly one" as counting the number of values equal to e and constraining that count to be equal to one.

Factors:

Initialization: [Ao = 0]

i	0	1	2	3	4
Y_i		3	1	2	1
Ai	0				

Key Idea: Auxiliary Variables

Auxiliary Variables hold intermediate computation.

Represent "for exactly one" as counting the number of values equal to e and constraining that count to be equal to one.

Factors:

Initialization: [Ao = 0]

i	0	1	2	3	4
Y_i		3	1	2	1
Ai	0	0			

Key Idea: Auxiliary Variables

Auxiliary Variables hold intermediate computation.

Represent "for exactly one" as counting the number of values equal to e and constraining that count to be equal to one.

Factors:

Initialization: [Ao = 0]

i	0	1	2	3	4
Y_i		3	1	2	1
Ai	0	0	1		

Key Idea: Auxiliary Variables

Auxiliary Variables hold intermediate computation.

Represent "for exactly one" as counting the number of values equal to e and constraining that count to be equal to one.

Factors:

Initialization: [Ao = 0]

i	0	1	2	3	4
Yi		3	1	2	1
Ai	0	0	1	1	

Key Idea: Auxiliary Variables

Auxiliary Variables hold intermediate computation.

Represent "for exactly one" as counting the number of values equal to e and constraining that count to be equal to one.

Factors:

Initialization: [Ao = 0]

Processing: $[A_i = \min(A_{i-1} + 1[Y_i = e], 2)]$

i	0	1	2	3	4
Yi		3	1	2	1
Ai	0	0	1	1	2

Key Idea: Auxiliary Variables

Auxiliary Variables hold intermediate computation.

Represent "for exactly one" as counting the number of values equal to e and constraining that count to be equal to one.

Factors:

Initialization: [Ao = 0]

Processing: $[A_i = \min(A_{i-1} + 1[Y_i = e], 2)]$

Final Output: 1[AT = 1]

i	0	1	2	3	4
Yi		3	1	2	1
Ai	0	0	1	1	2

Key Idea: Auxiliary Variables

Auxiliary Variables hold intermediate computation.

Represent "for exactly one" as counting the number of values equal to e and constraining that count to be equal to one.

Factors:

Initialization: [Ao = 0]

Processing: $[A_i = \min(A_{i-1} + 1[Y_i = e], 2)]$

Final Output: 1[AT = 1]

i	0	1	2	3	4
Y_i		3	1	2	1
Ai	0	0	1	1	2

Still have factors with three variables...

Key idea: Combine A_{i-1} and A_i into one variable B_i

Key idea: Combine A_{i-1} and A_i into one variable B_i

Key idea: Combine A_{i-1} and A_i into one variable B_i

Factors:

Initialization: $[B_I[0] = 0]$

Key idea: Combine A_{i-1} and A_i into one variable B_i

Factors:

Initialization: $[B_1[0] = 0]$

Processing: $[B_i[1] = \min(B_i[0] + 1[Y_i = e], 2)]$

Key idea: Combine A_{i-1} and A_i into one variable B_i

Factors:

Initialization: $[B_1[0] = 0]$

Processing: $[B_i[1] = \min(B_i[0] + 1[Y_i = e], 2)]$

Consistency: $[B_{i-1}[1] = B_i[0]]$

Key idea: Combine A_{i-1} and A_i into one variable B_i

Factors:

Initialization: $[B_1[0] = 0]$

Processing: $[B_i[1] = \min(B_i[0] + 1[Y_i = e], 2)]$

Consistency: $[B_{i-1}[1] = B_{i}[0]]$

Final Output: $1[B_T[1] = 1]$

- CSP Problem Modeling
- N-ary Constraints
- Elimination Example

Object Tracking

- Sensors provide noisy information about an object's location (e.g., video frames)
- Want to infer object's true location

• Variables X_i : Location of object at position i

- Variables Xi: Location of object at position i
- Transition Factors $ti(x_i, x_{i+1})$: object positions can't change too much

- Variables Xi: Location of object at position i
- Transition Factors $ti(x_i, x_{i+1})$: object positions can't change too much
- Observation Factors oi(xi): noisy information compatible with position

- Variables Xi: Location of object at position i
- Transition Factors $ti(x_i, x_{i+1})$: object positions can't change too much
- Observation Factors oi(xi): noisy information compatible with position

```
def t(x, y):
    if x == y: return 2
    if abs(x - y) == 1: return 1
    return 0
```


- Variables Xi: Location of object at position i
- Transition Factors $ti(x_i, x_{i+1})$: object positions can't change too much
- Observation Factors oi(xi): noisy information compatible with position

```
def t(x, y): \\ if x == y: return 2 \\ if abs(x - y) == 1: return 1 \\ return 0
def o1(x): return t(x, 0) \\ def o2(x): return t(x, 2) \\ def o3(x): return t(x, 2)
```

Variable Elimination

Definition: Elimination

- To **eliminate** a variable X_i , consider all factors f_1 , ..., f_k , that depend on X_i
- Remove X_i and f_l , ..., f_k

• Add
$$f_{new}(x) = \max_{x_i} \prod_{j=1}^k f_j(x)$$

• Eliminate X_1

- Eliminate X_I
- Factors that depend on X_1 :
 - *O1, t1*

- Eliminate X_I
- Factors that depend on X_{I} :
 - *O1, t1*
- Add $f_{new}(x) = \max_{x_i} \prod_{j=1}^k f_j(x)$

- Eliminate X_1
- Factors that depend on X_1 :
 - 01, t1
- Add $f_{new}(x) = \max_{x_i} \prod_{j=1}^k f_j(x)$
- $g_1(x_2) = \max_{x_1 \in \{0,1,2\}} o_1(x_1) \cdot t_1(x_1, x_2)$

- Eliminate X_1
- Factors that depend on X_1 :
 - 01, t1
- Add $f_{new}(x) = \max_{x_i} \prod_{j=1}^k f_j(x)$
- $g_1(x_2) = \max_{x_1 \in \{0,1,2\}} o_1(x_1) \cdot t_1(x_1, x_2)$

<i>x</i> 2	x1	01(x1)	t1(x1, x2)	$01(x1)\ t1(x1,x2)$	g1(x2)
0	0				
0	1				
0	2				
1	0				
1	1				
1	2				
2	0				
2	1				
2	2				

deft(x, y):

if x == y: return 2 if abs(x - y) == 1: return 1

return 0

def o1(x): return t(x, 0)def o2(x): return t(x, 2)def o3(x): return t(x, 2)

- Eliminate X_1
- Factors that depend on X_{I} :
 - 01, t1

• Add
$$f_{new}(x) = \max_{x_i} \prod_{j=1}^k f_j(x)$$

•
$$g_1(x_2) = \max_{x_1 \in \{0,1,2\}} o_1(x_1) \cdot t_1(x_1, x_2)$$

<i>x</i> 2	x1	01(x1)	t1(x1, x2)	$01(x1)\ t1(x1,x2)$	g1(x2)
0	0	2			
0	1	1			
0	2	0			
1	0	2			
1	1	1			
1	2	0			
2	0	2			
2	1	1			
2	2	0			

def t(x, y):
 if x == v: return

if x == y: return 2

if abs(x - y) == 1: return 1 return 0

def o1(x): return t(x, 0)def o2(x): return t(x, 2)

defo3(x): return t(x, 2)

- Eliminate X_1
- Factors that depend on X_{I} :
 - 01, t1

• Add
$$f_{new}(x) = \max_{x_i} \prod_{j=1}^k f_j(x)$$

•
$$g_1(x_2) = \max_{x_1 \in \{0,1,2\}} o_1(x_1) \cdot t_1(x_1, x_2)$$

<i>x</i> 2	x1	<i>01(x1)</i>	t1(x1, x2)	$01(x1)\ t1(x1,x2)$	g1(x2)
0	0	2	2		
0	1	1	1		
0	2	0	0		
1	0	2	1		
1	1	1	2		
1	2	0	1		
2	0	2	0		
2	1	1	1		
2	2	0	2		

def t(x, y):
 if x == y: return 2
 if abs(x - y) == 1: return 1
 return 0

def o1(x): return t(x, 0)def o2(x): return t(x, 2)def o3(x): return t(x, 2)

- Eliminate X_1
- Factors that depend on X_{I} :
 - 01, t1

• Add
$$f_{new}(x) = \max_{x_i} \prod_{j=1}^k f_j(x)$$

•
$$g_1(x_2) = \max_{x_1 \in \{0,1,2\}} o_1(x_1) \cdot t_1(x_1, x_2)$$

<i>x</i> 2	x1	<i>01(x1)</i>	tI(x1, x2)	$o1(x1)\ t1(x1,x2)$	g1(x2)
0	0	2	2	4	
0	1	1	1	1	
0	2	0	0	0	
1	0	2	1	2	
1	1	1	2	2	
1	2	0	1	0	
2	0	2	0	0	
2	1	1	1	1	
2	2	0	2	0	

def t(x, y):

if x == y: return 2

if abs(x - y) == 1: return 1

return 0

def o1(x): return t(x, 0)

def o2(x): return t(x, 2)

defo3(x): return t(x, 2)

- Eliminate X_1
- Factors that depend on X_{I} :
 - 01, t1

• Add
$$f_{new}(x) = \max_{x_i} \prod_{j=1}^k f_j(x)$$

•
$$g_1(x_2) = \max_{x_1 \in \{0,1,2\}} o_1(x_1) \cdot t_1(x_1, x_2)$$

<i>x</i> 2	x1	01(x1)	t1(x1, x2)	$o1(x1)\ t1(x1,x2)$	g1(x2)
0	0	2	2	4	
0	1	1	1	1	4: { <i>x1:0</i> }
0	2	0	0	0	
1	0	2	1	2	
1	1	1	2	2	2: { <i>x1: 1</i> }
1	2	0	1	0	
2	0	2	0	0	
2	1	1	1	1	1: { <i>x1: 1</i> }
2	2	0	2	0	

def t(x, y):
 if x == y: return 2
 if abs(x - y) == 1: return 1
 return 0

def o1(x): return t(x, 0)
def o2(x): return t(x, 2)
def o3(x): return t(x, 2)

• Eliminate X₂

- Eliminate X₂
- Factors that depend on X_2 :
 - 02, t2, g1

- Eliminate X₂
- Factors that depend on X_2 :
 - *O2*, *t2*, *g1*
- Add $f_{new}(x) = \max_{x_i} \prod_{j=1}^k f_j(x)$

- Eliminate X₂
- Factors that depend on *X*₂:
 - *O2*, *t2*, *g1*
- Add $f_{new}(x) = \max_{x_i} \prod_{j=1}^k f_j(x)$
- $g_2(x_3) = \max_{x_2 \in \{0,1,2\}} g_1(x_2) \cdot o_2(x_2) \cdot t_2(x_2, x_3)$

- Factors that depend on *X*₂:
 - *O2*, *t2*, *g1*

• Add
$$f_{new}(x) = \max_{x_i} \prod_{j=1}^{k} f_j(x)$$

•
$$g_2(x_3) = \max_{x_2 \in \{0,1,2\}} g_1(x_2) \cdot o_2(x_2) \cdot t_2(x_2, x_3)$$

	<i>O</i> 2	03
	g_2	-(X3)
02(x2) t2(x2, x3)	g2(x3)	03
		67

<i>x</i> 3	<i>x</i> 2	g1(x2)	o2(x2)	t2(x2, x3)	g1(x2) o2(x2) t2(x2, x3)	g2(x3)
0	0					
0	1					
0	2					
1	0					
1	1					
1	2					
2	0					
2	1					
2	2					

- Eliminate X₂
- Factors that depend on X_2 :
 - *O2*, *t2*, *g1*

• Add
$$f_{new}(x) = \max_{x_i} \prod_{j=1}^{k} f_j(x)$$

$$g_2(x_3) = \max_{x_2 \in \{0,1,2\}} g_1(x_2) \cdot o_2(x_2) \cdot t_2(x_2, x_3)$$

•	• $g_2(x_3) = \max_{x_2 \in \{0,1,2\}} g_1(x_2) \cdot o_2(x_2) \cdot t_2(x_2, x_3)$						
х3	<i>x</i> 2	g1(x2)	o2(x2)	t2(x2, x3)	g1(x2) o2(x2) t2(x2, x3)	g2(x3)	
0	0	4: { <i>x1:0</i> }					
0	1	2: { <i>x1: 1</i> }					
0	2	1: { <i>x1: 1</i> }					
1	0	4: { <i>x1:0</i> }					
1	1	2: { <i>x1: 1</i> }					
1	2	1: { <i>x1: 1</i> }					
2	0	4: { <i>x1:0</i> }					
2	1	2: { <i>x1: 1</i> }					
2	2	1: { <i>x1: 1</i> }					

g_{I}	$-(X_2)$ t_2	2 X_3
	<i>O</i> 2	03

- Eliminate X₂
- Factors that depend on X_2 :
 - *O2*, *t2*, *g1*

• Add
$$f_{new}(x) = \max_{x_i} \prod_{j=1}^k f_j(x)$$

•
$$g_2(x_3) = \max_{x_2 \in \{0,1,2\}} g_1(x_2) \cdot o_2(x_2) \cdot t_2(x_2, x_3)$$

$g_2(x_3) = \max_{x_2 \in \{0,1,2\}} g_1(x_2) \cdot o_2(x_2) \cdot i_2(x_2, x_3)$						
х3	<i>x</i> 2	g1(x2)	o2(x2)	t2(x2, x3)	g1(x2) o2(x2) t2(x2, x3)	g2(x3)
0	0	4: { <i>x1:0</i> }	0			
0	1	2: { <i>x</i> 1: 1}	1			
0	2	1: { <i>x1: 1</i> }	2			
1	0	4: { <i>x1:0</i> }	0			
1	1	2: { <i>x1: 1</i> }	1			
1	2	1: { <i>x1: 1</i> }	2			
2	0	4: { <i>x1:0</i> }	0			
2	1	2: { <i>x1: 1</i> }	1			
2	2	1: { <i>x1: 1</i> }	2			

g_I	$-(X_2)$	X_3
	02	03

- Eliminate X₂
- Factors that depend on X_2 :
 - *O2*, *t2*, *g1*
- Add $f_{new}(x) = \max_{x_i} \prod_{j=1}^k f_j(x)$
- $g_2(x_3) = \max g_1(x_2) \cdot o_2(x_2) \cdot t_2(x_2, x_3)$

	021	$x_2 \in \{0,1,2\}$	` 2/ 2	2 2 2 2 2 1	2, 3,	
х3	<i>x</i> 2	g1(x2)	o2(x2)	t2(x2, x3)	g1(x2) o2(x2) t2(x2, x3)	g2(x3)
0	0	4: { <i>x1:0</i> }	0	2		
0	1	2: { <i>x1: 1</i> }	1	1		
0	2	1: { <i>x1: 1</i> }	2	0		
1	0	4: { <i>x1:0</i> }	0	1		
1	1	2: { <i>x1: 1</i> }	1	2		
1	2	1: { <i>x1: 1</i> }	2	1		
2	0	4: { <i>x1:0</i> }	0	0		
2	1	2: { <i>x1: 1</i> }	1	1		
2	2	1: { <i>x1: 1</i> }	2	2		

g_{I}	$-(X_2)$	$2X_3$
	<i>O</i> 2	03

- Eliminate X₂
- Factors that depend on *X*₂:
 - *02, t2, g1*

• Add
$$f_{new}(x) = \max_{x_i} \prod_{j=1}^k f_j(x)$$

•
$$g_2(x_3) = \max_{x_2 \in \{0,1,2\}} g_1(x_2) \cdot o_2(x_2) \cdot t_2(x_2, x_3)$$

x 3	<i>x</i> 2	g1(x2)	o2(x2)	t2(x2, x3)	g1(x2) o2(x2) t2(x2, x3)	g2(x3)
0	0	4: { <i>x1:0</i> }	0	2	0	
0	1	2: { <i>x1: 1</i> }	1	1	2	
0	2	1: { <i>x1: 1</i> }	2	0	0	
1	0	4: { <i>x1:0</i> }	0	1	0	
1	1	2: { <i>x</i> 1: 1}	1	2	4	
1	2	1: { <i>x1: 1</i> }	2	1	2	
2	0	4: { <i>x1:0</i> }	0	0	0	
2	1	2: { <i>x</i> 1: 1}	1	1	2	
2	2	1: { <i>x1: 1</i> }	2	2	4	

71

- Eliminate X₂
- Factors that depend on X_2 :
 - 02, t2, g1

• Add
$$f_{new}(x) = \max_{x_i} \prod_{j=1}^k f_j(x)$$

•	$g_2(x)$	<i>g</i> 2				
х3	<i>x</i> 2	g1(x2)	o2(x2)	t2(x2, x3)	g1(x2) o2(x2) t2(x2, x3)	g2(x3)
0	0	4: { <i>x1:0</i> }	0	2	0	
0	1	2: { <i>x1: 1</i> }	1	1	2	$2: \{x_1: 1, x_2: 1\}$
0	2	1: { <i>x1: 1</i> }	2	0	0	
1	0	4: { <i>x1:0</i> }	0	1	0	
1	1	2: { <i>x</i> 1: 1}	1	2	4	$4: \{x_1: 1, x_2: 1\}$
1	2	1: { <i>x1: 1</i> }	2	1	2	
2	0	4: { <i>x1:0</i> }	0	0	0	
2	1	2: { <i>x1: 1</i> }	1	1	2	$4: \{x_1: 1, x_2: 2\}$
2	2	1: { <i>x1: 1</i> }	2	2	4	

$$\max_{x_3 \in \{0,1,2\}} g_2(x_3) \cdot o_3(x_3)$$

$$\max_{x_3 \in \{0,1,2\}} g_2(x_3) \cdot o_3(x_3)$$

х3	g2(x3)	03(x3)	$g2(x3) \ o3(x3)$	Optimal Weight
0				
1				
2				

$$\max_{x_3 \in \{0,1,2\}} g_2(x_3) \cdot o_3(x_3)$$

х3	g2(x3)	03(x3)	$g2(x3) \ o3(x3)$	Optimal Weight
0	$2: \{x_1: 1, x_2: 1\}$	0		
1	4: { <i>x</i> 1 : 1, <i>x</i> 2 : 1}	1		
2	4: { <i>x</i> 1 : 1, <i>x</i> 2 : 2}	2		

$$\max_{x_3 \in \{0,1,2\}} g_2(x_3) \cdot o_3(x_3)$$

<i>x</i> 3	g2(x3)	03(x3)	$g2(x3) \ o3(x3)$	Optimal Weight
0	2: { <i>x</i> 1 : 1, <i>x</i> 2 : 1}	0	0	
1	4: { <i>x</i> 1 : 1, <i>x</i> 2 : 1}	1	4	
2	4: { <i>x</i> 1 : 1, <i>x</i> 2 : 2}	2	8	

$$\max_{x_3 \in \{0,1,2\}} g_2(x_3) \cdot o_3(x_3)$$

х3	g2(x3)	03(x3)	g2(x3) o3(x3)	Optimal Weight
0	2: { <i>x</i> 1 : 1, <i>x</i> 2 : 1}	0	0	
1	4: { <i>x</i> 1 : 1, <i>x</i> 2 : 1}	1	4	8: { <i>x</i> 1 : 1, <i>x</i> 2 : 2, <i>x</i> 3 : 2}
2	4: { <i>x</i> 1 : 1, <i>x</i> 2 : 2}	2	8	