Domande Analisi II

D'Agosta Nicola Gennaio 2023

Risposte all'elenco di domande del file "Analisi - Theory Exam questions-1", dovrebbero mancare solamente i disegni e le dimostrazioni non fatte a lezione. Le risposte sono principalmente frutto di appunti, lavagne dell'Abenda e del libro "Lezioni di analisi matematica due" di Fusco-Marcellini-Sbordone, Zanichelli Editore. Per qualsiasi domanda/errore non esitare a contattarmi, spero questo file possa essere utile.

Nel caso vogliate offrire un caffè paypal.me/TrinitySlifer

Indice

1	Topologia degli spazi metrici	3
2	Spazi metrici completi	4
3	Funzione continue tra spazi metrici	4
4	Calcolo differenziale a più variabili	5
5	Calcolo differenziale a più variabili II	7
6	Massimi e minimi locali	8
7	Varietà regolari e Dini	9
8	Estremanti condizionati	11
9	Misura di Peano-Jordan e integrale multiplo di Riemann	12
10	Teoremi di riduzione degli integrali multipli	13
11	Teorema di cambiamento di variabile nell'integrale multiplo	14
12	Campi conservativi	16
13	Aperti regolari	18
14	Teorema di Stokes	19
15	Teorema della divergenza	20

1 Topologia degli spazi metrici

Definizione 1.1 (Spazio metrico). Sia X un insieme e sia $d: X \times X \to [0, +\infty)$ che ad ogni coppia (x, y) di punti di un insieme X associa un numero reale $d(x, y) \ge 0$. Si dice che d é una distanza o metrica su X se sono verificate le seguenti condizioni:

$$d(x,y) = 0 \qquad \Leftrightarrow x = y, \qquad \forall x, y \in X;$$

$$d(x,y) = d(y,x) \qquad \forall x, y \in X;$$

$$d(x,y) \le d(x,z) + d(z,y) \qquad \forall x, y, z \in X;$$

Allora se d è una distanza sull'insieme X, si dice che (X,d) è uno spazio metrico. Esempi di s.m. possono essere lo spazio euclideo con la distanza d_2 , lo spazio delle funzioni continue e di quelle limitate con la distanza d_{∞} , un insieme qualsiasi con la metrica delta.

Definizione 1.2 (Intorno circolare aperto). Per ogni $x_0 \in X$ e per ogni r > 0, si chiama intorno circolare aperto (o palla aperta) di centro x_0 e raggio r, l'insieme

$$(1.2) B(x_0, r) = \{x \in X : d(x_0, x) < r\}.$$

Definizione 1.3 (Insieme aperto in uno s.m.). Un insieme $A \subseteq X$ si dice aperto se ogni suo punto é centro di un intorno circolare contenuto in A, in altre parole $\forall x_0 \in X \quad \exists B(x_0, r) \subseteq A$.

Definizione 1.4 (Proprietà degli aperti). Sia (X, d) uno s.m.:

- 1. X, \emptyset sono aperti.
- 2. Unione arbitraria di aperti è un aperto.
- 3. Intersezione finita di aperti è un aperto.

Definizione 1.5 (Insieme chiuso). Un insieme $C \subseteq X$ si dice chiuso se il suo complementare $X \setminus C$ è aperto.

Definizione 1.6 (Proprietà dei chiusi). Sia (X, d) uno s.m.:

- 1. X, \emptyset sono chiusi.
- 2. Intersezione arbitraria di chiusi è un chiuso.
- 3. Unione finita di chiusi è un chiuso.

Definizione 1.7 (Punto interno). Un punto x_0 si dice interno all'insieme $I \subseteq X$ se esiste un intorno circolare aperto di x_0 totalmente contenuto in I, in altre parole x_0 é detto interno a I se $\exists r > 0 : B(x_0, r) \subseteq I$.

Definizione 1.8 (Punto di aderenza). Un punto x_0 si dice aderente all'insieme $I \subseteq X$ se ogni suo intorno ha una intersezione non nulla con l'insieme, in altre parole x_0 si dice aderente a I se $\forall r > 0$ $B(x_0, r) \cap I \neq \emptyset$.

Definizione 1.9 (Punto di frontiera). Un punto x_0 si dice di frontiera per l'insieme $I \subseteq X$ se ogni suo punto ha intersezione non nulla con I e il suo complementare, in altre parole x_0 punto di frontiera per I se $\forall r > 0$ $B(x_0, r) \cap I \neq \emptyset, B(x_0, r) \cap X \setminus I \neq \emptyset$.

Definizione 1.10 (Punto di accumulazione). Un punto x_0 si dice di accumulazione per l'insieme $I \subseteq X$ se ogni intorno di x_0 con x_0 escluso ha intersezione non nulla con l'insieme, in altre parole x_0 si dice di accumulazione per I se $\forall r > 0$ $B(x_0, r) \cap (I - x) \neq \emptyset$.

Definizione 1.11 (Interno). L'insieme dei punti interni a $I \subseteq X$ si chiama interno di I e si indica con int(I). L'interno di un insieme può anche essere visto come l'unione di tutti gli aperti contenuti nell'insieme.

Definizione 1.12 (Frontiera). L'insieme dei punti di frontiera di $I \subseteq X$ è detto frontiera di I e si indica con ∂I

Definizione 1.13 (Chiusura). L'unione di un insieme $I \subseteq X$ con la sua frontiera è detta chiusura dello stesso e si indica con cl(I). (cl(I) = $I \cup \partial I$)

2 Spazi metrici completi

Definizione 2.1 (Spazio metrico). Sia X un insieme e sia $d: X \times X \to [0, +\infty)$ che ad ogni coppia (x, y) di punti di un insieme X associa un numero reale $d(x, y) \ge 0$. Si dice che d é una distanza o metrica su X se sono verificate le seguenti condizioni:

$$d(x,y) = 0 \qquad \Leftrightarrow x = y, \qquad \forall x, y \in X;$$

$$(2.1) \qquad d(x,y) = d(y,x) \qquad \qquad \forall x, y \in X;$$

$$d(x,y) \le d(x,z) + d(z,y) \qquad \forall x, y, z \in X;$$

Allora se d è una distanza sull'insieme X, si dice che (X,d) è uno spazio metrico.

Definizione 2.2 (Successione). Sia (X,d) uno spazio metrico una funzione $f: \mathbb{N} \to X$ è detta successione di punti su X.

Definizione 2.3 (Successione convergente). Sia (X, d) uno spazio metrico, sia $\{x_k\}_{k \in \mathbb{N}}$ una successione in X, si dice che x_k converge verso x_0 se $\forall \varepsilon \in \mathbb{R}, \ \exists \nu \in \mathbb{N}$ tale che:

$$(2.2) d(x_k, x_0) < \varepsilon \forall k \ge \nu.$$

Definizione 2.4 (Successione di Cauchy). Sia (X, d) uno spazio metrico, sia $\{x_k\}_{k\in\mathbb{N}}$ una successione in X, si dice che x_k è di Cauchy se $\forall \varepsilon \in \mathbb{R}, \exists \nu \in \mathbb{N}$ tale che:

$$(2.3) d(x_m, x_n) < \varepsilon \forall m, n \ge \nu.$$

Definizione 2.5 (Spazio metrico completo). Sia (X,d) uno spazio metrico, è detto completo se ogni successione di Cauchy è convergente in un punto $x_0 \in X$.

Teorema 2.1 (Principio di Cantor). Sia (X, d) uno spazio metrico è completo se e solo se per ogni successione di insiemi chiusi non vuoti tali che $F_k \in X$, $F_{k+1} \subseteq F_k$ si ha che $\bigcap_{k \in \mathbb{N}} F_k \neq \emptyset$.

Teorema 2.2 (Completamento di uno s.m.). Sia (X, d) uno spazio metrico, un completamento di X è una coppia (Y, ϕ) tale che Y è uno spazio metrico completo, ϕ una isometria tra X tale che $\phi(X)$ è denso in Y.

3 Funzione continue tra spazi metrici

Definizione 3.1 (Spazio metrico). Sia X un insieme e sia $d: X \times X \to [0, +\infty)$ che ad ogni coppia (x, y) di punti di un insieme X associa un numero reale $d(x, y) \ge 0$. Si dice che d é una distanza o metrica su X se sono verificate le seguenti condizioni:

$$d(x,y) = 0 \qquad \Leftrightarrow x = y, \qquad \forall x, y \in X;$$

$$d(x,y) = d(y,x) \qquad \forall x, y \in X;$$

$$d(x,y) \le d(x,z) + d(z,y) \qquad \forall x, y, z \in X;$$

Allora se d è una distanza sull'insieme X, si dice che (X,d) è uno spazio metrico.

Definizione 3.2 (Spazio metrico completo). Sia (X,d) uno spazio metrico, è detto completo se ogni successione di Cauchy è convergente in un punto $x_0 \in X$.

Definizione 3.3 (Funzioni continue). Siano (X, τ_1) e (Y, τ_2) spazi topologici, sia $f: X \to Y$ una applicazione allora f è detta continua se:

- 1. $\forall A$ aperto in Y $f^{-1}(A)$ è aperto in X.
- 2. $\forall C$ chiuso in Y $f^{-1}(C)$ è chiuso in X. (equivalente a quella sopra per definizione di chiuso)
- 3. $\forall x_0 \in X, \forall V \text{ intorno di } f(x_0), \exists U \text{ intorno di } x_0 : f(U) \subseteq V.$

Inoltre se X, Y sono dotati di metriche rispettivamente d_X, d_y allora f è detta continua se:

- 1. $\forall x_0 \in A \subseteq X, \forall \varepsilon > 0, \exists \delta > 0$ tale che se $d_X(x_0, x) < \delta$ allora $d_Y(f(x_0), f(x)) < \varepsilon$.
- 2. sia E dominio di $f, \forall \varepsilon > 0 \ \exists \delta > 0 : f(E \cap B(x_0, \delta)) \subset B(f(x_0), \varepsilon)$

Definizione 3.4 (Funzione uniformemente continua). Siano (X, d_X) e (Y, d_Y) spazi metrici, sia $f: X \to Y$ una funzione, f è detta uniformemente continua se : $\forall \varepsilon > 0, \exists \delta > 0$ tale che se $d_X(x_0, x) < \delta$ allora $d_Y(f(x_0), f(x)) < \varepsilon$.

Definizione 3.5 (Lipschitzianitá). Siano (X, d_X) e (Y, d_Y) spazi metrici, sia $f: X \to Y$ una funzione, f è detta di lipschitz se: $\exists L$ tale che $\forall x, y \in X$, $d_Y(f(x), f(y) < Ld_X(x, y)$.

Definizione 3.6 (Isometria). Siano (X, d_X) e (Y, d_Y) spazi metrici, sia $f: X \to Y$ una funzione, f è detta una isometria se $\forall x, y \in X$, $d_X(x, y) = d_Y(f(x), f(y))$.

Definizione 3.7 (Distanza di un punto da un insieme). Sia (X, d) uno spazio metrico, sia $A \subseteq X$ sottoinsieme non vuoto e $x_0 \in X$ un punto la distanza tra x_0 e A è definita: $d(x_0, A) = inf_{p \in A}d(x_0, p)$

Definizione 3.8 (Contrazione). Siano (X, d_X) e (Y, d_Y) spazi metrici, sia $f: X \to Y$ una funzione, allora f è detta contrazione se è lipschitz con contante L < 1.

4 Calcolo differenziale a più variabili

Definizione 4.1 (Derivata parziale). Sia $f: A \subseteq \mathbb{R}^n \to \mathbb{R}$ funzione definita su un aperto $A, x \in A$ si definisce derivata parziale di f(x) rispetto alla variabile x_j il limite, se esiste finito:

$$(4.1) f_{x_j}(x) = \frac{\partial f}{\partial x_j}(x) = \lim_{t \to 0} \frac{f(x + t\hat{e_j}) - f(x)}{t} = \lim_{t \to 0} \frac{f(x_1, x_2, \dots, x_j + t, \dots, x_n) - f(x_1, x_2, \dots, x_n)}{t}.$$

Definizione 4.2 (Derivata direzionale). Sia $f: A \subseteq \mathbb{R}^n \to \mathbb{R}$ funzione definita su un aperto A, sia $\hat{\nu} \in \mathbb{R}$, $\|\hat{\nu}\| = 1$ è detta derivata direzionale in $x \in A$ rispetto a $\hat{\nu}$ se esiste finito il limite:

(4.2)
$$f_{\hat{\nu}}(x) = \frac{\partial f}{\partial \hat{\nu}}(x) = \lim_{h \to 0} \frac{f(x + h\hat{\nu}) - f(x)}{h}.$$

Definizione 4.3 (Gradiente). Sia $f: A \subseteq \mathbb{R}^n \to \mathbb{R}$ funzione definita su un aperto A, il gradiente di f in $x \in A$ è il vettore le cui componenti, se esistono, sono le derivate parziali di f(x):

(4.3)
$$\nabla f(x) = \operatorname{grad} f(x) = \begin{bmatrix} f_{x_1}(x) \\ f_{x_2}(x) \\ \vdots \\ f_{x_n}(x) \end{bmatrix}$$

Definizione 4.4 (Differenziale). Sia $f:A\subseteq\mathbb{R}^n\to\mathbb{R}$ funzione definita su un aperto $A,\ f$ è detta differenziabile in in $x\in A$ se $\exists m\in\mathbb{R}$ tale che:

$$(4.4) f(x+h) = f(x) + \langle m, h \rangle + o(|h|) h \to 0$$

in tal caso m è detto differenziale di f in x.

Teorema 4.1 (Teoremi sulle relazioni fra derivate parziali, differenziabilità, continuità e derivate direzionali). Sia $f: A \subseteq \mathbb{R}^n \to \mathbb{R}$ funzione definita su un aperto $A, x \in A$.

Proprietà delle funzioni differenziabili: Sia f differenziabile in x allora:

1. f è continua in x.

2. $m = \nabla f(x)$, cioè esistono le derivate di f e $m_i = f_{x_j}(x)$. La differenziabilità implica quindi la derivabilità in un punto, non è vero invece il contrario.

3.
$$\forall \hat{\nu} \in \mathbb{R}^3, \|\hat{\nu}\| \quad \exists \frac{\partial f}{\partial \hat{\nu}}(x).$$

Differenziale totale: Se esistono $f_{x_i}(x)$, $\forall i = 1, ..., n$ in un intorno di x e sono continue in x allora f è differenziabile in x.

Derivate direzionali nel caso delle funzioni differenziabili:

(4.5)
$$\left| \frac{\partial f}{\partial \hat{\nu}}(x) \right| = \left| \langle \nabla f(x), \hat{\nu} \rangle \right| \le \| \nabla f(x) \| \cdot \| \hat{\nu} \| = \| \nabla f(x) \|.$$

Questa formula implica che la direzione del gradiente è quella di massima variazione di f.

Definizione 4.5 (Piano tangente al grafico di una funzione). Siano $f: A \subseteq \mathbb{R}^n \to \mathbb{R}$ funzione definita su un aperto A differenziabile, $x_0 \in A$ definisco come segue la funzione g:

$$(4.6) g(x) = f(x_0) = \langle \nabla f(x_0), x - x_0 \rangle.$$

I grafici di queste due funzioni sono definiti:

(4.7) Grafico di
$$f \Gamma_f = \{(x, y) \in \mathbb{R}^n \times \mathbb{R} : y = f(x)\} \subseteq \mathbb{R}^{n+1}$$
 Grafico di $g \Gamma_g = \{(x, y) \in \mathbb{R}^n \times \mathbb{R} : y = f(x_0) + \langle \nabla f(x_0), x - x_0 \rangle\} \subseteq \mathbb{R}^{n+1}$.

dove Γ_g è un iperpiano n-dimensionale tangente al grafico nel punto $(x_0, f(x_0))$. g approssima la funzione f(x) nel punto $x = x_0$ a meno di infinitesimi di ordine superiore alla distanza $||x - x_0||$.

Definizione 4.6 (Derivata parziale). Sia $f: A \subseteq \mathbb{R}^n \to \mathbb{R}^m$ funzione a valori vettoriali definita su un aperto $A, x \in A$ si definisce derivata parziale di f(x) rispetto alla variabile x_j il limite, se esiste finito:

(4.8)
$$\frac{\partial f_i(x)}{\partial x_i} = \lim_{t \to 0} \frac{f_i(x + t\hat{e_j}) - f(x)}{t} = \lim_{t \to 0} \frac{f_i(x_1, x_2, \dots, x_j + t, \dots, x_n) - f_i(x_1, x_2, \dots, x_n)}{t}.$$

Definizione 4.7 (Jacobiano). Sia $f: A \subseteq \mathbb{R}^n \to \mathbb{R}^m$ funzione a valori vettoriali definita su un aperto A, sia derivabile rispetto a tutte le variabili in $x \in A$ è detto Jacobiano di f in x la matrice $m \times n$:

$$J_f(x) = \left[\frac{\partial f_i}{\partial x_j}(x)\right]_{\substack{i=1,\dots,m\\j=1,\dots,n}}$$

Teorema 4.2 (Jacobiano della funzione composta). Siano $f: A \subseteq \mathbb{R}^n \to B, g: B \subseteq \mathbb{R}^m \to \mathbb{R}^l$ funzioni a valori vettoriali definita sugli aperti A, B tali che siano differenziabili rispettivamente in $x_0 \in A, y_0 = f(x_0) \in B$. Allora $g \circ f: A \to \mathbb{R}^l$ è differenziabile in x_0 e: (4.10)

$$J_{g \circ f}(x_0) = \left[\frac{\partial (g \circ f)}{\partial x_j}(x_0)\right] = J_g(f(x_0))J_f(x_0) = \begin{bmatrix} \langle \nabla g_1(f(x_0)), \frac{\partial f}{\partial x_i}(x_0) \rangle & \dots & \langle \nabla g_1(f(x_0)), \frac{\partial f}{\partial x_n}(x_0) \rangle \\ \vdots & \ddots & \vdots \\ \langle \nabla g_l(f(x_0)), \frac{\partial f}{\partial x_i}(x_0) \rangle & \dots & \langle \nabla g_l(f(x_0)), \frac{\partial f}{\partial x_n}(x_0) \rangle \end{bmatrix}$$

Teorema 4.3 (Jacobiano della funzione inversa). Sia $f: A \subseteq \mathbb{R}^n \to B \subseteq \mathbb{R}^n$ con A, B aperti, di classe C^1 allora:

$$(4.11) J_{f^{-1}}(y) = J_f^{-1}(f^{-1}(y)) \quad \forall y \in B.$$

Dimostrazione. $(f \circ f^{-1})(y) = y$, $\forall x \in B$ per la teorema del Jacobiano della funzione composta si ha:

$$(4.12) I = J_{(f \circ f^{-1})}(y) = J_{f^{-1}}(y)J_f(f^{-1}(y))$$

da cui la tesi. \Box

5 Calcolo differenziale a più variabili II

Definizione 5.1 (Derivata parziale). Sia $f: A \subseteq \mathbb{R}^n \to \mathbb{R}$ funzione definita su un aperto $A, x \in A$ si definisce derivata parziale di f(x) rispetto alla variabile x_i il limite, se esiste finito:

$$(5.1) f_{x_j} = \frac{\partial f}{\partial x_j}(x) = \lim_{t \to 0} \frac{f(x + t\hat{e_j}) - f(x)}{t} = \lim_{t \to 0} \frac{f(x_1, x_2, \dots, x_j + t, \dots, x_n) - f(x_1, x_2, \dots, x_n)}{t}.$$

Definizione 5.2 (Derivata direzionale). Sia $f: A \subseteq \mathbb{R}^n \to \mathbb{R}$ funzione definita su un aperto A, sia $\hat{\nu} \in \mathbb{R}$, $\|\hat{\nu}\| = 1$ è detta derivata direzionale in $x \in A$ rispetto a $\hat{\nu}$ se esiste finito il limite:

(5.2)
$$f_{\hat{\nu}}(x) = \frac{\partial f}{\partial \hat{\nu}}(x) = \lim_{h \to 0} \frac{f(x + h\hat{\nu}) - f(x)}{h}.$$

Definizione 5.3 (Gradiente). Sia $f: A \subseteq \mathbb{R}^n \to \mathbb{R}$ funzione definita su un aperto A, il gradiente di f in $x \in A$ è il vettore le cui componenti, se esistono, sono le derivate parziali di f(x):

(5.3)
$$\nabla f(x) = \operatorname{grad} f(x) = \begin{bmatrix} f_{x_1}(x) \\ f_{x_2}(x) \\ \vdots \\ f_{x_n}(x) \end{bmatrix}$$

Definizione 5.4 (Differenziale). Sia $f:A\subseteq\mathbb{R}^n\to\mathbb{R}$ funzione definita su un aperto $A,\ f$ è detta differenziabile in in $x\in A$ se $\exists m\in\mathbb{R}$ tale che:

$$(5.4) f(x+h) = f(x) + \langle m, h \rangle + o(|h|) h \to 0$$

in tal caso m è detto differenziale di f in x.

Teorema 5.1 (Teoremi sulle relazioni fra derivate parziali, differenziabilità, continuità e derivate direzionali). Sia $f: A \subseteq \mathbb{R}^n \to \mathbb{R}$ funzione definita su un aperto $A, x \in A$.

Proprietà delle funzioni differenziabili: Sia f differenziabile in x allora:

- 1. f è continua in x.
- 2. $m = \nabla f(x)$, cioè esistono le derivate di f e $m_i = f_{x_j}(x)$. La differenziabilità implica quindi la derivabilità in un punto, non è vero invece il contrario.
- 3. $\forall \hat{\nu} \in \mathbb{R}^3, \|\hat{\nu}\| \exists \frac{\partial f}{\partial \hat{\nu}}(x)$

Differenziale totale: Se esistono $f_{x_i}(x)$, $\forall i = 1, ..., n$ in un intorno di x e sono continue in x allora f è differenziabile in x.

Derivate direzionali nel caso delle funzioni differenziabili:

(5.5)
$$\left| \frac{\partial f}{\partial \hat{\nu}}(x) \right| = \left| \langle \nabla f(x), \hat{\nu} \rangle \right| \le \| \nabla f(x) \| \cdot \| \hat{\nu} \| = \| \nabla f(x) \|.$$

Questa formula implica che la direzione del gradiente è quella di massima variazione di f.

Definizione 5.5 (Piano tangente al grafico di una funzione). Siano $f: A \subseteq \mathbb{R}^n \to \mathbb{R}$ funzione definita su un aperto A differenziabile, $x_0 \in A$ definisco come segue la funzione g:

$$(5.6) g(x) = f(x_0) + \langle \nabla f(x_0), x - x_0 \rangle.$$

I grafici di queste due funzioni sono definiti:

(5.7) Grafico di
$$f$$
 $\Gamma_f = \{(x, y) \in \mathbb{R}^n \times \mathbb{R} : y = f(x)\} \subseteq \mathbb{R}^{n+1}$ Grafico di g $\Gamma_g = \{(x, y) \in \mathbb{R}^n \times \mathbb{R} : y = f(x_0) + \langle \nabla f(x_0), x - x_0 \rangle\} \subseteq \mathbb{R}^{n+1}$.

dove Γ_g è un iperpiano n-dimensionale tangente al grafico nel punto $(x_0, f(x_0))$. g approssima la funzione f(x) nel punto $x = x_0$ a meno di infinitesimi di ordine superiore alla distanza $||x - x_0||$.

Definizione 5.6 (Derivate di ordine superiore). Supponendo $f: A \subseteq \mathbb{R}^n \to \mathbb{R}$ funzione definita su un aperto A derivabile in $x \in A$ rispetto a tutte le variabili, definisco la derivata parziale rispetto a x_i, x_j se esiste finito il limite :

(5.8)
$$f_{x_i x_j} = \frac{\partial}{\partial x_i} \left(\frac{\partial f}{\partial x_j} \right) (x) = \lim_{t \to 0} \frac{\frac{\partial f}{\partial x_j} (x + t\hat{e}_i) - \frac{\partial f}{\partial x_j} (x)}{t}$$

Definizione 5.7 (Matrice Hessiana). Supponendo $f:A\subseteq\mathbb{R}^n\to\mathbb{R}$ funzione definita su un aperto A derivabile due volte in x rispetto a tutte le variabili, è detta matrice Hessiana o matrice delle derivate seconde la matrice $n\times n$:

(5.9)
$$H_f(x) = [f_{x_i x_j}(x)] = \begin{bmatrix} f_{x_1 x_1}(x) & \dots & f_{x_1 x_n}(x) \\ \vdots & \ddots & \vdots \\ f_{x_n x_1}(x) & \dots & f_{x_n x_n}(x) \end{bmatrix}.$$

Teorema 5.2 (Lemma di Schwartz v.1). Supponendo $f: A \subseteq \mathbb{R}^n \to \mathbb{R}$ funzione definita su un aperto A derivabile due volte in $x \in A$ rispetto a tutte le variabili con tutte le derivate seconde continue allora $H_f(x)$ è simmetrica.

Definizione 5.8 (Funzione differenziabile due volte). Sia $f: A \subseteq \mathbb{R}^n \to \mathbb{R}$ funzione definita su un aperto $A, x \in A$ allora f è detta differenziabile due volte se f è differenziabile in un intorno aperto di x e $f_{x_j}(x)$ sono funzioni differenziabili in x.

Teorema 5.3 (Lemma di Schwartz v.2). Supponendo $f:A\subseteq\mathbb{R}^n\to\mathbb{R}$ funzione definita su un aperto A differenziabile due volte in x allora $H_f(x)$ è simmetrica.

Teorema 5.4 (Formula di Taylor al secondo ordine). Sia $f \in C^2(A, \mathbb{R})$ con $A \in \mathbb{R}^n$ aperto connesso allora $\forall x_0 \in A$:

(5.10)
$$f(x) = f(x_0) + \langle \nabla f(x_0), x - x_0 \rangle + \frac{1}{2} \langle H_f(x_0)(x - x_0), x - x_0 \rangle + o(\|x - x_0\|^2)$$

6 Massimi e minimi locali

Definizione 6.1 (Massimo locale). Sia $f: A \subseteq \mathbb{R}^n \to \mathbb{R}$ funzione definita su un aperto A, il punto $x_0 \in A$ è detto di massimo locale se $\exists B(x_0, r): f(x_0) \geq f(x) \quad \forall x \in B(x_0, r).$

Definizione 6.2 (Minimo locale). Sia $f: A \subseteq \mathbb{R}^n \to \mathbb{R}$ funzione definita su un aperto A, il punto $x_0 \in A$ è detto di minimo locale se $\exists B(x_0, r): f(x_0) \leq f(x) \quad \forall x \in B(x_0, r).$

Teorema 6.1 (Teorema di Fermat). Sia $f: A \subseteq \mathbb{R}^n \to \mathbb{R}$ funzione definita su un aperto A, se il punto $x_0 \in A$ è un estremante relativo e f è derivabile allora $\nabla f(x_0) = 0$.

Dimostrazione. Essendo x_0 punto di massimo locale in A la funzione ad una variabile $F(t) = f(x_0 + e_i t)$ definita in $]t - \delta, t + \delta[$ e derivabile nel dominio ha massimo relativo per t = 0 da cui si ha $F'(0) = f_{x_i}(x_0) = 0$. Il procedimento è uguale nel caso x_0 minimo locale.

Definizione 6.3 (Forma quadratica). Ad ogni $A \in M_{n \times n}(\mathbb{R})$ è associata una funzione $F : \mathbb{R}^n \to \mathbb{R}$ definita:

(6.1)
$$F(\lambda) = \langle A \cdot \lambda, \lambda \rangle = a_{ij} \lambda_i \lambda_j \qquad \lambda \in \mathbb{R}^n.$$

 $F(\lambda)$ è quindi un polinomio omogeneo di secondo grado in λ ed è chiamata forma quadratica associata ad A. A è detta:

- Definita positiva se $F(\lambda) > 0 \quad \forall \lambda \in \mathbb{R}^n$.
- Semidefinita positiva se $F(\lambda) \geq 0 \quad \forall \lambda \in \mathbb{R}^n, \ \exists \overline{\lambda} \in \mathbb{R}^n \ \text{t.c.} \ F(\overline{\lambda}) = 0.$

- Definita negativa se $F(\lambda) < 0 \quad \forall \lambda \in \mathbb{R}^n$.
- Semidefinita negativa se $F(\lambda) \leq 0 \quad \forall \lambda \in \mathbb{R}^n, \ \exists \overline{\lambda} \in \mathbb{R}^n \ \text{t.c.} \ F(\overline{\lambda}) = 0.$
- Indefinita se $\exists \lambda, \mu \in \mathbb{R}^n : F(\lambda) < 0, F(\mu) > 0.$

Definizione 6.4 (Classificazione dei punti critici per funzioni C^2).

Teorema 6.2 (Condizione sufficiente). Sia $f: A \subseteq \mathbb{R}^n \to \mathbb{R}$ funzione definita su un aperto A di classe C^2 , $x_0 \in A$:

- Se $\nabla f(x_0) = (0, \dots, 0)$ e $H_f(x_0)$ definita positiva allora x_0 è punto di minimo relativo per f in A.
- Se $\nabla f(x_0) = (0, \dots, 0)$ e $H_f(x_0)$ definita negativa allora x_0 è punto di massimo relativo per f in A.
- Se $\nabla f(x_0) = (0, \dots, 0)$ e $H_f(x_0)$ indefinita allora x_0 è punto di sella per f in A.

7 Varietà regolari e Dini

Definizione 7.1 (Varietà regolare). Sia $f: A \subseteq \mathbb{R}^n \to \mathbb{R}^k$ funzione definita su un aperto A di classe C^1 . Diremo che $\Gamma = \{x \in A \mid f(x) = (0, \dots, 0)\}$ è una varietà regolare di \mathbb{R}^n se $\forall x \in \Gamma$ $rk(J_f(x))$ ha rango massimo cioè k.

Definizione 7.2 (Spazio tangente). Sia $f: A \subseteq \mathbb{R}^n \to \mathbb{R}^k$ funzione definita su un aperto A di classe C^1 , $\Gamma = \{x \in A \mid f(x) = (0, \dots, 0)\}$ varietà regolare, $x_0 \in \Gamma$ allora

(7.1)
$$T_{x_0}\Gamma = \{h \in \mathbb{R}^n | \langle \nabla f_i(x_0), h \rangle = 0\}$$

è detto spazio tangente a Γ in x_0 .

Definizione 7.3 (Spazio normale). Sia $f: A \subseteq \mathbb{R}^n \to \mathbb{R}^k$ funzione definita su un aperto A di classe C^1 , $\Gamma = \{x \in A \mid f(x) = (0, \dots, 0)\}$ varietà regolare, $x_0 \in \Gamma$ allora

$$(7.2) N_{x_0}\Gamma = Span\{\nabla f_i(x_0)\}\$$

è detto spazio normale a Γ in x_0 .

Teorema 7.1 (Teorema del Dini a due dimensioni). Sia $g:A\subset\mathbb{R}^2\to\mathbb{R}$ funzione definita su un aperto A di classe C^1 , e sia $(x_0,y_0)\in A$ tale che:

$$(7.3) g(x_0, y_0) = 0, g_y(x_0, y_0) \neq 0.$$

Allora esistono un intervallo reale aperto I, con $x_0 \in I$, un intervallo reale aperto J, con $y_0 \in J$, ed una funzione $f(x): I \to J$ di classe C^1 tali che:

(7.4)
$$f'(x_0) = -\left(\frac{g_x(x_0, y_0)}{g_y(x_0, y_0)}\right) \quad x \in I$$

e

(7.5)
$$g(x,y) = 0 \quad \stackrel{(x,y) \in I \times J}{\longleftrightarrow} \quad y = f(x)$$

Dimostrazione. Esistenza di f(x): Per il teorema di permanenza del segno, esiste un rettangolo $R = [x_0 - \delta, x_0 + \delta] \times [y_0 - \sigma, y_0 + \sigma]$, tale che $g_y(x,y) \neq 0, \forall (x,y) \in R$ (per comodità supponiamo il segno della derivata crescente). Per costruzione la funzione $h(y) = g(x_0,y)$ è strettamente crescente e continua per $y \in J$ e pertanto $g(x_0, y_0 + \sigma) > 0 > g(x_0, y_0 - \sigma)$. Per il teorema del segno poiché g è continua esiste $0 < \delta_1 < \delta$ date che $g(x, y_0 + \sigma) > 0 > g(x, y_0 - \sigma), \forall \overline{x} \in [x_0 - \delta_1, x_0 + \delta_1]$. Pertanto $\forall x$ fissato la funzione $\overline{h} = g(\overline{x}, y)$ è strettamente crescente e continua nell'intervallo $\overline{y} \in [y_0 - \sigma, y_0 + \sigma]$ ed esiste un unico $\overline{y} : g(\overline{x}, \overline{y}) = 0$.

Continuità di f(x): Verifichiamo che il $\lim_{x\to \overline{x}} f(x) = f(\overline{x})$ per ogni $\overline{x} \in]x_0 - \delta_1, x_0 + \delta_1[$. Dobbiamo dunque verificare che $\forall \varepsilon > 0 \ \exists \delta > 0$ tale che $|f(x) - f(\overline{x})| < \varepsilon$ per ogni $x \in]\overline{x} - \delta, \overline{x} + \delta[\cap]x_0 - \delta_1, x_0 + \delta_1[$. Si ha $g(\overline{x}, f(\overline{x}) - \varepsilon) < 0 < g(\overline{x}, f(\overline{x}) - \varepsilon)$. Per la continuità di g e il teorema di permanenza del segno, per ogni $x \in]\overline{x} - \delta, \overline{x} + \delta[$ si ha:

$$(7.6) g(x, f(\overline{x}) - \varepsilon) < 0 < g(x, f(\overline{x}) + \varepsilon)$$

Poiché g(x,y) è strettamente monotona e continua in $y \in [f(\overline{x}) - \varepsilon, f(\overline{x}) + \varepsilon]$ esiste un unico $y = f(x) \in [f(\overline{x}) - \varepsilon, f(\overline{x}) + \varepsilon]$ tale che g(x, f(x)) = 0.

Differenziabilità di f(x): Siano $(x_1, f(x_1), x_2, f(x_2)) \in I \times J$ e $\phi = (\phi_1, \phi_2) : [0, 1] \to I \times J$ la funzione

$$x = \phi_1(t) = x_1 + t(x_2 - x_1), \quad y = \phi_2(t) = f(x_1) + t(f(x_2) - f(x_1))$$

la cui immagine è il segmento di retta passante per i punti $(x_1, f(x_1)), (x_2, f(x_2)) \in I \times J$. Per costuzione la funzione

$$(7.7) h(t) = (g \circ \phi)(t) = g(x_1 + t(x_2 - x_1), f(x_1) + t(f(x_2) - f(x_1)))$$

è di classe $C^1([0,1],\mathbb{R})$ e per il teorema del valor medio di Lagrange, esiste $c \in]1,0[$ tale che h'(c)=0, usando il teorema della funzione composta si ha:

$$(7.8) 0 = h'(c) = q_x(\phi_1(c), \phi_2(c))(x_2 - x_1) + q_y(\phi_1(c), \phi_2(c))(f(x_2) - f(x_1))$$

da cui si ricava che:

(7.9)
$$\frac{f(x_2) - f(x_1)}{x_2 - x_1} = -\frac{g_x(\phi_1(c), \phi_2(c))}{g_y(\phi_1(c), \phi_2(c))}$$

Adesso se facciamo tendere x_2 a x_1 , per la conitnuità della funzione f, $f(x_2)$ tende a $f(x_1)$. Pertanto $\phi_1(c)$ tende a x_1 e $\phi_2(c)$ tende a $f(x_1)$. Per continuità di g_x e g_y si ha infine che:

(7.10)
$$f'(x_1) = \lim_{x_2 \to x_1} \frac{f(x_2) - f(x_1)}{x_2 - x_1} = -\frac{g_x(x_1, f(x_1))}{g_y(x_1, f(x_1))}.$$

Teorema 7.2 (Teorema del Dini a piú dimensioni). Sia $f:A\subseteq\mathbb{R}^n\to\mathbb{R}^k$ funzione definita su un aperto A di classe C^1 . Sia $(x^0,y^0)=(x_1^0,\ldots,x_{n-k}^0,y_1^0,\ldots,y_k^0)\in A$ soluzione del sistema g(x,y)=0, se la jacobiana:

(7.11)
$$J_{g,y}(x^0, y^0) = \frac{\partial g_i}{\partial y_i}(x^0, y^0)$$

è invertibile $(\det J_{g,y}(x^0,y^0\neq 0)$ allora esistono intorni aperti $I\subseteq\mathbb{R}^{n-k},\,J\subseteq\mathbb{R}^k$ tali che $(x^0,y^0)\in I\times J\in A$ e $f:I\to J$ funzione di classe C^1 tale che :

(7.12)
$$\begin{cases} g_1(x_1, \dots, x_{n-k}, y_1, \dots, y_k) = 0 \\ \vdots \\ g_k(x_1, \dots, x_{n-k}, y_1, \dots, y_k) = 0 \end{cases} \xrightarrow{I \times J} \begin{cases} y_1 = f(x_1, \dots, x_{n-k}) \\ \vdots \\ y_k = f(x_1, \dots, x_{n-k}) \end{cases}$$

e

(7.13)
$$\frac{\partial f_i}{\partial x_j}(x_1, \dots, x_k) = -\frac{\left|\frac{\partial (g_1, \dots, g_k)}{\partial (y_1, \dots, y_{i-1}, x_j, y_{i+1}, \dots, y_k)}(x_1, \dots, x_{n-k}, f_1(x), \dots, f_k(x))\right|}{\left|\frac{\partial (g_1, \dots, g_k)}{\partial (y_1, \dots, y_k)}(x_1, \dots, x_{n-k}, f_1(x), \dots, f_k(x))\right|}$$

8 Estremanti condizionati

Definizione 8.1 (Varietà regolare). Sia $f: A \subseteq \mathbb{R}^n \to \mathbb{R}^k$ funzione definita su un aperto A di classe C^1 . Diremo che $\Gamma = \{x \in A \mid f(x) = (0, \dots, 0)\}$ è una varietà regolare di \mathbb{R}^n se $\forall x \in \Gamma$ $rk(J_f(x))$ ha rango massimo cioè k.

Definizione 8.2 (Spazio tangente). Sia $f: A \subseteq \mathbb{R}^n \to \mathbb{R}^k$ funzione definita su un aperto A di classe C^1 , $\Gamma = \{x \in A \mid f(x) = (0, \dots, 0)\}$ varietà regolare, $x_0 \in \Gamma$ allora

(8.1)
$$T_{x_0}\Gamma = \{h \in \mathbb{R}^n | \langle \nabla f_i(x_0), h \rangle = 0\}$$

è detto spazio tangente a Γ in x_0 .

Definizione 8.3 (Spazio normale). Sia $f: A \subseteq \mathbb{R}^n \to \mathbb{R}^k$ funzione definita su un aperto A di classe C^1 , $\Gamma = \{x \in A \mid f(x) = (0, \dots, 0)\}$ varietà regolare, $x_0 \in \Gamma$ allora

$$(8.2) N_{x_0}\Gamma = Span\{\nabla f_i(x_0)\}$$

è detto spazio normale a Γ in x_0 .

Definizione 8.4 (Massimo locale su Γ). Sia $f: A \subseteq \mathbb{R}^n \to \mathbb{R}$ funzione definita su un aperto A, sia $\Gamma \subseteq A$ una varietà regolare il punto $x_0 \in \Gamma$ è detto di massimo locale per f ristretta a Γ se $\exists B(x_0, r): f(x_0) \geq f(x) \quad \forall x \in \Gamma \cap B(x_0, r).$

Definizione 8.5 (Minimo locale su Γ). Sia $f: A \subseteq \mathbb{R}^n \to \mathbb{R}$ funzione definita su un aperto A, sia $\Gamma \subseteq A$ una varietà regolare il punto $x_0 \in \Gamma$ è detto di minimo locale per f ristretta a Γ se $\exists B(x_0, r): f(x_0) \leq f(x) \quad \forall x \in \Gamma \cap B(x_0, r).$

Teorema 8.1 (Teorema di Fermat per estremanti condizionati). Sia $g: A \subseteq \mathbb{R}^n \to \mathbb{R}$ funzione definita su un aperto A, sia $\Gamma \subseteq A$ una varietà regolare. Sia $x_0 \in \Gamma$ punto di massimo oppure minimo locale di g ristretta a Γ allora:

(8.3)
$$\forall \hat{\nu} \in T_{x_0} \Gamma \qquad \frac{\partial g}{\partial \hat{\nu}}(x_0) = 0$$

Osservazione 8.2. Dal punto di vista geometrico il teorema di Fermat per estremanti condizionati ci dice che il gradiente della funzione in un punto estremante condizionato è ortogonale a $T_{x_0}\Gamma$ per cui appartiene a $N_{x_0}\Gamma$ per cui $\nabla g(x_0) \in span\{\nabla f(x_0)\}$ (con f funzione che definisce Γ).

Teorema 8.3 (Teorema dei moltiplicatori di Lagrange). Sia $g:A\subseteq\mathbb{R}^n\to\mathbb{R}$ funzione definita su un aperto A, sia $\Gamma\subseteq A$ una varietà regolare n-k dimensionale e supponiamo che $x_0\in\Gamma$ sia punto estremante condizionato di f ristretta a Γ . Detta funzione lagrangiana:

(8.4)
$$F(x_1, \dots, x_n, \lambda_1, \dots, \lambda_k) = g(x_1, \dots, x_n) - \lambda_i f_i(x_1, \dots, x_n)$$

allora $\exists \overline{\lambda}_1, \dots, \overline{\lambda}_k \in \mathbb{R}$ tali che: $(x_0, \overline{\lambda}_1, \dots, \overline{\lambda}_k) \in \mathbb{R}^{n+k}$ è punto critico di F.

Teorema 8.4. Sia $g: A \subseteq \mathbb{R}^n \to \mathbb{R}$ funzione definita su un aperto A di classe C^2 , sia $\Gamma = \{x \in A \mid f(x) = (0, \dots, 0)\}$ una varietà regolare n - k dimensionale con $f_i \in C^2(A, \mathbb{R})$ e supponiamo che $x_0 \in \Gamma$, sia F la funzione lagrangiana associata:

- 1. Se x_0 è punto di minimo locale (rispettivamente massimo locale) di f ristretta a Γ allora $\exists \overline{\lambda}_1, \dots, \overline{\lambda}_k \in \mathbb{R}$ tali che $\nabla F(x_0, \overline{\lambda}_1, \dots, \overline{\lambda}_k) = 0$ e la forma quadratica $H_F(x_0, \overline{\lambda}_1, \dots, \overline{\lambda}_k)$ ristretta ad $(h, \mu) \in T_{x_0} \Gamma \times \mathbb{R}^k$ è semidefinita positiva o definita positiva (rispettivamente semidefinita negativa o definita negativa)
- 2. Se $\exists \overline{\lambda}_1, \dots, \overline{\lambda}_k \in \mathbb{R}$ tali che $\nabla F(x_0, \overline{\lambda}_1, \dots, \overline{\lambda}_k) = 0$ e $H_F(x_0, \overline{\lambda}_1, \dots, \overline{\lambda}_k)$ ristretta ad $(h, \mu) \in T_{x_0} \Gamma \times \mathbb{R}^k$ è definita positiva (rispettivamente definita negativa) allora x_0 è punto di minimo locale (rispettivamente massimo locale) per f ristretta a Γ .

9 Misura di Peano-Jordan e integrale multiplo di Riemann

Definizione 9.1 (Intervallo superiormente semiaperto (i.s.s) e la sua misura). $I = [a_1, b_1] \times [a_n, b_n]$ con $a_i \leq b_i \ \forall i = 1, \ldots, n$ è detto insieme superiormente semiaperto. Si chiama misura elementare di I e si indica con $\mu_n(I)$ il numero positivo

$$\mu_n(I) = \prod_{j=1}^n (b_j - a_j).$$

Definizione 9.2 (Plurintervallo e la sua misura). Si chiama plurintervallo P l'unione finita e disgiunta di i.s.s. Si chiama misura elementare di P e si indica con $\mu_n(P)$ il numero positivo

$$\mu_n(P) = \sum_{k=1}^q \mu_n(I_k).$$

Osservazione: esistono infinite decomposizioni di P come unione disgiunta di i.s.s ma la misura non dipende da esse.

Teorema 9.1 (Proprietà delle misure dei plurintervalli). Sia $\mathbb{P} = \{P \subseteq \mathbb{R} : P \text{ plurintervallo}\}\$

- 1) Finita additività Se $P,Q \in \mathbb{P}$ e $P \cap Q = \emptyset$ allora $\mu_n(P \cup P') = \mu_n(P) + \mu_n(Q)$
- 2) Monotonia Se $P, Q \in \mathbb{P}$ e $P \subseteq Q$ allora $\mu_n(P) \leq \mu_n(Q)$
- 3) Modularità Se $P,Q \in \mathbb{P}$ allora $\mu_n(P \cup Q) + \mu_n(P \cap Q) = \mu_n(P) + \mu_n(Q)$
- **4)** Se $P, Q \in \mathbb{P}$ allora $\mu_n(P \setminus Q) = \mu_n(P) \mu_n(P \cap Q)$
- 5) Corollario 3) Se $P_1, \ldots, P_k \in \mathbb{P}$ allora $\mu_n \left(\bigcup_{i=1}^k P_i \right) \leq \sum_{i=1}^k \mu_n(P_i)$

Definizione 9.3 (Misura interna ed esterna di un insieme limitato di \mathbb{R}^n). Sia X un insieme limitato di \mathbb{R}^n . La misura interna I(X) e la misura esterna E(X) secondo Peano-Jordan di X sono definite rispettivamente da:

$$I(X) = \sup\{\mu_n(P) : P \in \mathbb{P}, P \subseteq X\};$$

$$E(X) = \inf\{\mu_n(P) : P \in \mathbb{P}, P \supseteq X\}.$$

Definizione 9.4 (Insieme limitato misurabile secondo P-J). Sia X un insieme limitato di \mathbb{R}^n , è detto misurabile secondo P-J se I(X) = E(X) e in tal caso chiamiamo misura n-dimensionale di X tale valore, $\mu_n(X) = I(X) = E(X)$. Denoteremo con $J_b(\mathbb{R}^n)$ l'insieme delle parti di \mathbb{R}^n limitate e misurabili secondo P-J.

Teorema 9.2 (Proprietà della misura). Proprietà della misura di P-J di un insieme limitato:

- 1) Finita additività Se $X, Y \in J_b(\mathbb{R}^n), X \cap Y = \emptyset$ allora $X \cap Y$ è misurabile e $\mu_n(X \cap Y) = \mu_n(X) + \mu_n(Y)$
- **2)** Monotonia Se $X, Y \in J_b(\mathbb{R}^n), X \subseteq Y$ allora $\mu_n(X) \leq \mu_n(Y)$
- 3) Modularità Se $X, \in J_b(\mathbb{R}^n)$ allora $\mu_n(X \cup Y) + \mu_n(X \cap Y) = \mu_n(X) + \mu_n(Y)$
- **4)** Se $X, Y \in J_b(\mathbb{R}^n)$ allora $\mu_n(X \setminus Y) = \mu_n(X) \mu_n(X \cap Y)$
- 5) Corollario 3) Se $X_1, \ldots, X_k \in J_b(\mathbb{R}^n)$ allora $\mu_n\left(\bigcup_{i=1}^k X_i\right) \leq \sum_{i=1}^k \mu_n(X_i)$
- **6)** Se $X, Y \in J_b(\mathbb{R}^n)$ allora $int(X), cl(X) \in J_b(\mathbb{R}^n)$ e $\mu_n(X) = \mu_n(int(X)) = \mu_n(cl(X))$

Teorema 9.3 (Caraterizzazione degli insiemi a misura nulla). Insiemi limitati a misura nulla secondo P-J, sia X limitato:

- 1) $int(X) = \emptyset \Leftrightarrow I(X) = 0$.
- 2) $X \in J_b(\mathbb{R}^n)$ e $\mu_n(X) = 0 \Leftrightarrow \forall \varepsilon > 0 \; \exists P' \in \mathbb{P}, X \subseteq P' : \mu_n(P) < \varepsilon$.
- **3)** Se $X \in J_b(\mathbb{R}^n)$ allora $int(X) = \emptyset \Leftrightarrow \mu_n(X) = 0$

Definizione 9.5 (Misura di un insieme). Sia $X \subseteq \mathbb{R}^n$. Diremo che X è misurabile secondo P-J se $\forall Y \in J_b(\mathbb{R}^n)$ si ha $X \cap Y \in J_b(\mathbb{R}^n)$ allora:

(9.1)
$$\mu_n(X) = \sup_{Y \in J_b(\mathbb{R}^n)} \mu_n(X \cap Y)$$

Definizione 9.6 (Integrale secondo Riemann). Sia $f:A\subseteq J(\mathbb{R}^n)\to\mathbb{R}$ limitata e $f(x)\geq 0, \forall x\in A,$ sia $R(f)=\{(x,y)\in A\times\mathbb{R}:0\leq y\leq f(x)\}$ il sottografico di f. Allora diciamo che f è integrabile secondo Riemann in A se R(f) è misurabile come sottoinsieme di \mathbb{R}^{n+1} secondo P-J e in tal caso

(9.2)
$$\int \cdots \int_{A} f(x_1, \dots, x_n) dx_1 \dots dx_n = \mu_{n+1} R(f)$$

inoltre se $\int \cdots \int_A f(x_1, \ldots, x_n) dx_1 \ldots dx_n \leq +\infty$ diremo f sommabile secondo Reimann in A.

Definizione 9.7 (Integrale secondo Riemann per funzioni a segno variabile). Sia $f: A \in J(\mathbb{R}^n) \to \mathbb{R}$ allora definisco due funzioni come segue $f_+, f_-: A \to \mathbb{R}$ tali che $f_+(x) = max\{f(x), 0\}$ e $f_-(x) = max\{-f(x), 0\}$. Se f_+ e f_- sono integrabili secondo Riemann e almeno uno fra $\int_A f_+$ e $\int_A f_-$ è finito allora definiamo integrale di f in A:

$$(9.3) \qquad \int_{A} f(x_1, \dots, x_n) dx_1 \dots dx_n = \int_{A} f_+(x_1, \dots, x_n) dx_1 \dots dx_n - \int_{A} f_-(x_1, \dots, x_n) dx_1 \dots dx_n$$

Inoltre se $\int_A f_+, \int_A f_- < +\infty$ allora diremo che f è sommabile in A.

Teorema 9.4. Sia $A \in J(\mathbb{R}^n)$:

- 1) Linearità Siano $f, g: A \to \mathbb{R}$ sommabili allora $\forall c_1, c_2 \in \mathbb{R}$ $c_1 f + c_2 g$ è sommabile e (9.4) $\int_A [c_1 f(x_1, \dots, x_n) + c_2 g(x_1, \dots, x_n)] dx_1 \dots dx_n = c_1 \int_A f(x_1, \dots, x_n) dx_1 \dots dx_n + c_2 \int_A g(x_1, \dots, x_n) dx_1 \dots dx_n$
- **2)** Additività Sia $\mu_n(A) < \infty$, $A_1, A_2 \subseteq A$ tali che $A_1 \cup A_2 = A$, $A_1, A_1 \in J(\mathbb{R}^n)$ e $\mu_n(A_1 \cap A_2) = 0$ se $f: A \to \mathbb{R}$ è sommabile allora:

$$\exists \int_{A_1} f, \int_{A_2} f \quad e$$

$$\int_{A} f(x_1, \dots, x_n) dx_1 \dots dx_n = \int_{A_1} f(x_1, \dots, x_n) dx_1 \dots dx_n + \int_{A_2} f(x_1, \dots, x_n) dx_1 \dots dx_n.$$

10 Teoremi di riduzione degli integrali multipli

Definizione 10.1 (Dominio normale rispetto ad un asse). Siano $\psi, \phi: [a,b] \to \mathbb{R}$ continue e tali che $\phi(x) \le \psi(x) \ \forall x \in [a,b]$ allora $A = \{(x,y) \in [a,b] \times \mathbb{R} : \phi(x) \le y \le \psi(x)\}$ si chiama dominio normale rispetto all'asse $y, A \in J(\mathbb{R})$ e

(10.1)
$$\mu_2(A) = \int_a^b [\psi(x) - \phi(x)] dx = \int_a^b \psi(x) dx - \int_a^b \phi(x) dx$$

Teorema 10.1 (Riduzione per integrali doppi su domini normali rispetto ad un asse). Siano $\psi, \phi : [a, b] \to \mathbb{R}$ continue e tali che $\phi(x) \le \psi(x) \ \forall x \in [a, b], A = \{(x, y) \in [a, b] \times \mathbb{R} : \phi(x) \le y \le \psi(x)\}$ e $f : A \to \mathbb{R}$ allora :

(10.2)
$$\iint_A f(x,y)dxdy = \int_c^d \left[\int_{\phi(x)}^{\psi(x)} f(x,y)dy \right] dx$$

Definizione 10.2 (Solido di Cavalieri). Sia $A \subseteq \mathbb{R}^3$, $A \in J_b(\mathbb{R}^3)$ diremo che A è un solido di Cavalieri se esiste un asse λ tale che le sezioni di livello $\overline{\lambda}$ di A sono misurabili $\forall \overline{\lambda} \in [a, b]$ e vuote se $\overline{\lambda} < a, \overline{\lambda} > b$.

Teorema 10.2 (Riduzione per i solidi di Cavalieri). Sia $A \in J_b(\mathbb{R}^3)$ solido di Cavalieri rispetto all'asse z e tale che $sez_z(A) \in J_b(\mathbb{R}^2), \ \forall z \in [a,b]; \ sez_z(A) = \emptyset \quad \forall z < a,z > b \ allora$:

(10.3)
$$\mu_3(A) = \int_a^b \mu_2(sez_z(A))dz$$

Inoltre se $f: A \to \mathbb{R}$ è continua:

(10.4)
$$\iiint_A f(x,y,z) dx dy dz = \int_a^b dz \left[\iint_{sez_z(A)} f(x,y,z) dx dy \right]$$

Definizione 10.3 (Dominio normale in \mathbb{R}^3). Siano $\alpha, \beta \in C^0(K \subseteq \mathbb{R}^2, \mathbb{R})$ con $K \in J_b(\mathbb{R}^2)$ e sia $\alpha(x, y) \le \beta(x, y) \quad \forall x, y \in K$ allora A definito $A = \{(x, y, z) \in K \times \mathbb{R} : \alpha(x, y) \le z \le \beta(x, y)\}$ è detto dominio normale rispetto all'asse z.

Teorema 10.3 (Riduzione di integrali tripli su domini normali rispetto ad un asse). Siano $\alpha, \beta \in C^0(K \subseteq \mathbb{R}^2, \mathbb{R})$ con $K \in J_b(\mathbb{R}^2)$ e sia $\alpha(x,y) \leq \beta(x,y)$ $\forall x,y \in K, A = \{(x,y,z) \in K \times \mathbb{R} : \alpha(x,y) \leq z \leq \beta(x,y)\}$ allora:

1.

(10.5)
$$A \in J_b(\mathbb{R}^3) \quad \text{e} \quad \mu_3(A) = \iint_K dx dy \int_{\alpha(x,y)}^{\beta(x,y)} dz = \iint_K dx dy [\beta(x,y) - \alpha(x,y)]$$

2.

(10.6)
$$\iiint_A f(x, y, z) dx dy dz = \iint_K dx dy \left[\int_{\alpha(x, y)}^{\beta(x, y)} f(x, y, z) dz \right]$$

11 Teorema di cambiamento di variabile nell'integrale multiplo

Definizione 11.1 (Trasformazioni lineari $\mathbb{R}^n \to \mathbb{R}^n$). Sia $f : \mathbb{R}^n \to \mathbb{R}^n$ una trasformazione, è detta lineare se:

- $f(u+v) = f(u) + f(v), \quad \forall u, v \in \mathbb{R}^n.$
- $f(cv) = cf(v), \quad \forall u \in \mathbb{R}^n, \forall c \in \mathbb{R}.$

Inoltre sia $A \in M_{n \times n}$ la matrice associata alla trasformazione lineare f allora |det(A)| è il fattore con cui vengono modificati i volumi degli oggetti contenuti negli spazi.

Teorema 11.1 (Teorema di cambiamento di variabile nell'integrale multiplo). Sia $A \subseteq \mathbb{R}^n$ e $\Phi \in C^1(A, \mathbb{R})$ tale che $det J_{\Phi} \neq 0$ e 1-1. Sia $K \subseteq A$, $K \in J_b(\mathbb{R}^n)$ compatto e connesso e $f \in C^0(\Phi(K), \mathbb{R})$. Allora:

1. $\Phi(K)$ è compatto, connesso e in $J_b(\mathbb{R}^n)$:

(11.1)
$$\mu_n(\Phi(K)) = \int \cdots \int_{\Phi(K)} dx_1 \dots dx_n = \int \cdots \int_K |\det J_{\Phi}(u_1, \dots, u_n)| du_1 \dots du_n$$

2. Caso generale del cambiamento di variabile:

$$\int \cdots \int_{\Phi(K)} f(x_1, \dots, x_n) dx_1 \dots dx_n = \int \cdots \int_K (f \circ \Phi)(u_1, \dots, u_n) |\det J_{\Phi}(u_1, \dots, u_n)| du_1 \dots du_n$$

Osservazione 11.2 ($det J_{\Phi} \neq 0$ e 1 – 1). A differenza del caso lineare nel caso lineare $det J_{\Phi} \neq 0$ non garantisce l'iniettività globale della Φ , per questo nelle ipotesi vengono richieste entrambe.

Osservazione 11.3 (q.o.). Il teorema resta valido se $det J_{\Phi} \neq 0$ quasi ovunque in K e Φ è 1-1 quasi ovunque su K.

Teorema 11.4 (Passaggio a coordinate polari nel piano). La trasformazione da coordinate polari (r, φ) a coordinate cartesiani (x, y), è data dalla funzione $\Phi : \mathbb{R}^+ \times [0, 2\pi] \to \mathbb{R}^2$ di componenti:

$$x = r\cos\varphi;$$
$$y = r\sin\varphi.$$

La cui jacobiana è:

(11.3)
$$J_{\Phi}(r,\varphi) = \frac{\partial(x,y)}{\partial(r,\varphi)} = \begin{bmatrix} \cos\varphi & -r\sin\varphi\\ \sin\varphi & r\cos\varphi \end{bmatrix}$$

di determinante r da cui:

(11.4)
$$\iint_{\Phi(A)} f(x,y) \, dx \, dy = \iint_{A} f(r\cos\varphi, r\sin\varphi) \, r \, dr \, d\varphi.$$

Teorema 11.5 (Passaggio a coordinate sferiche in \mathbb{R}^3). La trasformazione da coordinate sferiche (ρ, φ, θ) a coordinate cartesiane (x, y, z), è data dalla funzione $\Phi : \mathbb{R}^+ \times [0, \pi[\times[0, 2\pi[\to \mathbb{R}^3 \text{ di componenti:}]]])$

$$x = \rho \sin \varphi \cos \theta;$$

$$y = \rho \sin \varphi \sin \theta;$$

$$z = \rho \cos \varphi.$$

La cui jacobiana è:

(11.5)
$$J_{\Phi}(\rho,\varphi,\theta) = \frac{\partial(x,y,z)}{\partial(\rho,\varphi,\theta)} = \begin{bmatrix} \sin\varphi\cos\theta & \rho\cos\varphi\cos\theta & -\rho\sin\varphi\sin\theta\\ \sin\varphi\sin\theta & \rho\cos\varphi\sin\theta & \rho\sin\varphi\cos\theta\\ \cos\varphi & -\rho\sin\varphi & 0 \end{bmatrix}.$$

di determinante $\rho^2 \sin(\varphi)$, da cui:

(11.6)
$$\iiint_{\Phi(A)} f(x, y, z) dx dy dz = \iiint_{A} f(\rho \sin \varphi \cos \theta, \rho \sin \varphi \sin \theta, \rho \cos \varphi) \rho^{2} \sin \varphi d\rho d\varphi d\theta.$$

Teorema 11.6 (Passaggio a coordinate cilindriche in \mathbb{R}^3). La trasformazione da coordinate cilindriche (r, h, θ) a coordinate cartesiane (x, y, z), è data dalle funzione $\Phi : \mathbb{R} \times \mathbb{R}^+ \times [0, 2\pi[\to \mathbb{R}^3 \text{ di componenti:}]$

$$x = r \cos \theta$$
$$y = r \sin \theta$$
$$z = h$$

La cui jacobiana è:

(11.7)
$$J_{\Phi}(r,\theta,h) = \frac{\partial(x,y,z)}{\partial(r,\theta,h)} = \begin{bmatrix} \cos\theta & -r\sin\theta & 0\\ \sin\theta & r\cos\theta & 0\\ 0 & 0 & 1 \end{bmatrix}$$

di determinante r, da cui:

(11.8)
$$\iiint_{\Phi(A)} f(x, y, z) dx dy dz = \iint_{A} f(r \cos \theta, r \sin \theta, h) r dr d\theta dh.$$

Osservazione 11.7. Mancano le dimostrazioni che insiemi di misura nulla vanno in insiemi di misura nulla, le spiegazioni vengono bene anche con i disegni.

12 Campi conservativi

Definizione 12.1 (Campo vettoriale). Sia $X \subseteq \mathbb{R}^n$ insieme aperto e connesso un campo vettoriale è una funzione $F: X \to \mathbb{R}^n$.

Definizione 12.2 (Curva). È detta curva un'applicazione $\varphi: I \subseteq \mathbb{R} \to \mathbb{R}^n$. Le equazioni:

(12.1)
$$\begin{cases} x_1 = \varphi_1(t) \\ x_2 = \varphi_2(t) \\ \dots \\ x_n = \varphi_n(t) \end{cases} t \in I.$$

sono dette equazioni parametriche della curva di parametro t.

Definizione 12.3 (Curva semplice). Una curva $\varphi: I \to \mathbb{R}^n$ è detta semplice se presi due punti qualsiasi distinti t_1, t_2 in I di cui almeno uno interno a I è vero $\varphi(t_1) \neq \varphi(t_2)$.

Definizione 12.4 (Curva chiusa). Una curva $\varphi: I \to \mathbb{R}^n$ definita su I = [a, b] chiuso e limitato è detta chiusa se $\varphi(a) = \varphi(b)$.

Definizione 12.5 (Curva regolare). Una curva $\varphi: I \to \mathbb{R}$ è detta regolare se $\varphi \in C^1(I, \mathbb{R})$ e $\varphi'(t) \neq 0 \quad \forall t \in I$

Definizione 12.6 (Cambiamento di parametrizzazione di una curva). Sia $\varphi : [a, b] \to \mathbb{R}^n$ di classe C^1 , sia $\psi : [\alpha, \beta] \to [a, b]$ un diffeo C^1 :

$$[\alpha, \beta] \xrightarrow{\psi} [a, b] \xrightarrow{\varphi} \gamma = \varphi[a, b]$$

allora $(\varphi \circ \psi)[\alpha, \beta] = \gamma$ (il sostegno della curva è invariato) e $(\varphi \circ \psi) \in C^1$ inoltre:

- se φ è semplice aperta allora che $(\varphi \circ \psi)$ è semplice aperta.
- se φ è semplice chiusa allora che $(\varphi \circ \psi)$ è semplice chiusa, inoltre se ψ è un diffeo crescente allora $a = \psi(\alpha)$ e $b = \psi(\beta)$ se è un diffeo decrescente allora $a = \psi(\beta)$ e $b = \psi(\alpha)$.
- se $\rho: [\alpha, \beta] \to \gamma$ e $\varphi: [a, b] \to \gamma$ allora $\exists \psi: [\alpha, \beta] \to [a, b]$ diffeo C^1 tale che:

Osservazione 12.1. γ ha quindi infinite parametrizzazioni equivalenti per diffeo C^1 avremmo quindi una classe di equivalenza delle parametrizzazioni C^1 che hanno come immagine γ :

(12.4)
$$\varphi \sim \rho \text{ se } \exists \psi : [\alpha, \beta] \to [a, b] \text{ diffeo } C^1 : \rho = \varphi \circ \psi, \ \varphi = \rho \circ \psi^{-1}.$$

Definizione 12.7 (Orientamento del sostegno di una curva). Diremo che γ è orientata con orientamento T se $\exists T: \gamma \to \mathbb{R}^n$ continua tale che: $\forall x \in T \mid T(x) \in T_x \gamma, ||T(x)|| = 1$.

Definizione 12.8 (Effetto sull'orientamento del cambiamento di parametrizzazione). Sia $\varphi : [a,b] \to \gamma$ con γ orientabile $(\varphi'(t) \in T_{\varphi(t)}), \psi : [\alpha, \beta]$ diffeo C_1 allora $\rho(\tau) = (\varphi \circ \psi)(\tau)$ è una parametrizzazione equivalente a φ . Orientamento indotto dalla parametrizzazione ρ :

(12.5)
$$\frac{\frac{d\rho}{d\tau}(\tau)}{\|\frac{d\rho}{d\tau}(\tau)\|} = \frac{\frac{d\varphi}{dt}(\psi(\tau)) \cdot \frac{d\psi}{d\tau}(\tau)}{\|\frac{d\varphi}{dt}(\psi(\tau)) \cdot \frac{d\psi}{d\tau}(\tau)\|} = \operatorname{sgn}\left(\frac{d\psi}{d\tau}(\tau)\right) \cdot \frac{\frac{d\varphi}{dt}(\psi(\tau))}{\|\frac{d\varphi}{dt}(\psi(\tau))\|}$$

Definizione 12.9 (Lunghezza di una curva). Sia $\varphi : [a,b] \to \mathbb{R}^n$ una curva, ad ogni partizione $a = t_0 < t_1 < \cdots < t_p = b$ possiamo associare la spezzata Π definendone la lunghezza $l(\Pi) = \sum \|\varphi(t_j) - \varphi(t_{j-1})\|$. Definiamo ora la lunghezza ella curva $L(\varphi) = \sup\{l(\Pi)\}$. Sia φ regolare allora:

(12.6)
$$L_{\gamma} = \int_{a}^{b} \|\varphi'(t)\| dt.$$

Teorema 12.2 (Invarianza della lunghezza di una curva rispetto a parametrizzazioni equivalenti). Siano $\varphi: [a,b] \to \gamma$ una curva regolare e $\psi: [\alpha,\beta] \to [a,b]$ diffeo C^1 , $\rho: [\alpha,\beta] \to \gamma$ tale che $\rho(\tau) = (\varphi \circ \psi)(\tau)$ allora:

(12.7)
$$L_{p} = \int_{\alpha}^{\beta} \left\| \frac{d\rho}{d\tau}(\tau) \right\| d\tau = \int_{\alpha}^{\beta} \left\| \frac{d\varphi}{dt}(\psi(\tau)) \cdot \frac{d\psi}{d\tau}(\tau) \right\| d\tau = \int_{\alpha}^{\beta} \operatorname{sgn}\left(\frac{d\psi}{d\tau}(\tau)\right) \cdot \frac{d\psi}{d\tau}(\tau) \cdot \left\| \frac{d\varphi}{dt}(\psi(\tau)) \right\| \tau = \int_{\psi(\alpha)}^{\psi(\beta)} \left\| \frac{d\varphi}{dt}(t) \right\| \cdot \operatorname{sgn}\left(\frac{d\psi}{dt}(\psi^{-1}(\tau))\right) dt$$

Definizione 12.10 (Ascissa curvlinea). Sia $\varphi : [a, b] \to \mathbb{R}^n$ una generica rappresentazione parametrica della curva γ e fissato un $t_0 \in [a, b]$ la funzione:

(12.8)
$$s(t) = \int_{t_0}^t \|\varphi'(\tau)\| d\tau, \quad \forall t \in [a, b]$$

è strettamente crescente, derivabile e di derivata positiva per ogni t, s(t) è quindi un cambiamento di parametro ammissibile e il parametro s è detto ascissa curvilinea.

Definizione 12.11 (Campo vettoriale). Sia $X \subseteq \mathbb{R}^n$ insieme aperto e connesso un campo vettoriale è una funzione $F: X \to \mathbb{R}^n$.

Definizione 12.12 (Lavoro). Sia $f: A \subseteq \mathbb{R}^n \to \mathbb{R}^n$ continua con $\gamma \subset A$ di orientamento $\hat{\tau}$, sia inoltre detta una 1-forma differenziale un'applicazione $\omega: A \to (\mathbb{R}^n)^*$ che associa ogni elemento al suo funzionale lineare $\omega = \langle f(x), dx \rangle$. È definito lavoro l'integrale:

(12.9)
$$L = \int_{\mathcal{X}} \omega = \int_{\mathcal{X}} \langle f(x), dx \rangle = \int_{\mathcal{X}} \langle f(x), \tau(x) \rangle ds$$

(con x = u(s), s ascissa curvilinea associata all'orientamento $\hat{\tau}$)

Osservazione 12.3. L'è invariante rispetto a un cambiamento di parametrizzazione associati a diffeo crescenti. Invece sia $-\gamma$ una curva equivalente a γ ma orientata in verso opposto (cambiamento di parametrizzazione per diffeo decrescente)

$$(12.10) \qquad \qquad \int_{-\infty} \omega = -\int_{\infty} \omega.$$

Osservazione 12.4 (Campi conservativi). Sia f un campo vettoriale definito su $A \subseteq \mathbb{R}^n$ è detto conservativo se $\exists U \in C^1(A,\mathbb{R})$ tale che:

$$(12.11) f(x) = \nabla U(x) \forall x \in A.$$

Teorema 12.5 (Caratterizzazione dei campi conservativi). Sia $f \in C^0(A, \mathbb{R}^n)$ campo vettoriale allora le seguenti affermazioni sono equivalenti:

- 1. f è conservativo.
- 2. Il lavoro su ogni coppia di curve regolari a tratti orientabili con estremi coincidenti è tra loro uguale.
- 3. Il lavoro su ogni curva regolare a tratti orientabile e chiusa è nullo.

Teorema 12.6. Sia f un campo vettoriale definito su $A \subseteq \mathbb{R}^n$:

• Se f conservativo allora:

(12.12)
$$\omega = \langle f(x), dx \rangle = \sum_{i} f_j(x) dx_j = \sum_{i} \frac{\partial U}{\partial x_i}(x) dx_j = dU(x)$$

quindi se f è un campo vettoriale conservativo ω è una 1-forma differenziale esatta. E inoltre per ogni curva orientabile orientata $(\gamma, \hat{\tau})$ di estremi P_1, P_2 si ha:

(12.13)
$$\int_{\gamma,\tau} \omega = U(P_2) - U(P_1).$$

- La condizione di irrotazionalità di f è necessaria per la sua conservatività. Inoltre se f è irrotazionale ω è una 1-forma chiusa.
- ullet (Lemma di Poincaré) Se A è semplicemente connesso e f è irrotazionale allora è anche conservativo.
- \bullet Se f è irrotazionale allora è localmente conservativo per lemma di Poincaré.

13 Aperti regolari

Definizione 13.1 (Superficie). $\Sigma \in \mathbb{R}^3$ è detta superficie se $\exists r : \overline{\Omega} \to \Sigma$ di classe C^1 tale che:

(13.1)
$$(x, y, z) \in \Sigma \qquad \begin{cases} x = r_1(u, v) \\ y = r_2(u, v) \\ z = r_3(u, v) \end{cases}$$

Definizione 13.2 (Superficie regolare). Σ è detta superficie regolare se esiste $r \in C^1(\overline{\Omega}, \mathbb{R}^3)$ con $\Omega \subseteq \mathbb{R}^2$ aperto regolare tale che:

- $r(\overline{\Omega}) = \Sigma$
- $J_r(u,v)$ ha rango massimo $\forall (u,v) \in \Omega$

Definizione 13.3 (Superficie semplice). Σ è detta superficie semplice se esiste $\Omega \in \mathbb{R}^2$ e $r \in C^1(\overline{\Omega}, \mathbb{R}^3)$ tale che:

- $r(\overline{\Omega}) = \Sigma$
- $r: \Omega \xrightarrow{1-1} \Sigma$

Definizione 13.4 (Superficie orientabile). Sia $\Sigma \in \mathbb{R}^3$ una superficie. Diremo che è orientabile se esiste $N: \Sigma \to \mathbb{R}^3$ tale che :

(13.2)
$$\forall (x, y, z) \in \Sigma : N(x, y, z) \in N_{(x, y, z)} \Sigma \quad \text{e} \quad ||N(x, y, z)|| = 1$$

in tal caso N è detto orientamento di Σ .

Definizione 13.5 (Superficie regolare con bordo). Σ è detta superficie regolare con bordo se esiste $r \in C^1(\overline{\Omega}, \mathbb{R}^3)$ con $\Omega \subseteq \mathbb{R}^2$ aperto regolare tale che:

- $r(\overline{\Omega}) \xrightarrow{1-1} \Sigma$
- $J_r(u,v)$ ha rango massimo $\forall (u,v) \in \overline{\Omega}$

Osservazione 13.1 (Orientamento indotto del bordo). L'orientamento $\hat{\nu}$ di Σ induce un orientamento naturale del bordo $\partial \Sigma$ con il versore $\hat{\tau}$ e l'orientamento $\hat{\tau}$ è quello con il quale si gira in senso antiorario $\partial \Sigma$ rispetto ad un osservatore in piedi sulla superficie rispetto all'orientamento $\hat{\tau}$.

Definizione 13.6. Area di una superficie Se Σ è una superficie regolare e $r: \overline{\Omega} \xrightarrow{su} \Sigma$ è una parametrizzazione regolare definisco la quantità area della superficie:

(13.3)
$$A(\Sigma) = \int_{\Sigma} d\sigma = \iint_{\overline{\Omega}} \|\frac{\partial r}{\partial u} \wedge \frac{\partial r}{\partial v}(u, v)\| du dv.$$

Definizione 13.7 (Flusso di un campo vettoriale attraverso una superficie). Sian Σ una superficie regolare, $r: \overline{\Omega} \xrightarrow{su} \Sigma$ una parametrizzazione regolare, $F \in C^1(A \in \mathbb{R}^3, \mathbb{R}^3 \in \hat{\nu}$ l'orientamento di Σ definisco il flusso di F attraverso Σ come l'integrale:

(13.4)
$$\int_{\Sigma} \langle F, \hat{\nu} \rangle d\sigma = \iint_{\overline{\Omega}} \langle (F \circ r) (u, v), \frac{\frac{\partial r}{\partial u} \wedge \frac{\partial r}{\partial v} (u, v)}{\|\frac{\partial r}{\partial u} \wedge \frac{\partial r}{\partial v} (u, v)\|} \rangle \cdot \|\frac{\partial r}{\partial u} \wedge \frac{\partial r}{\partial v} (u, v)\| du dv$$

$$= \iint_{\overline{\Omega}} \langle (F \circ r) (u, v), \frac{\partial r}{\partial u} \wedge \frac{\partial r}{\partial v} (u, v) \rangle du dv$$

14 Teorema di Stokes

Definizione 14.1 (Campo vettoriale). Sia $X \subseteq \mathbb{R}^n$ insieme aperto e connesso un campo vettoriale è una funzione $F: X \to \mathbb{R}^n$.

Definizione 14.2 (Rotore). Sia $X \subseteq \mathbb{R}^n$ insieme aperto e connesso, un campo vettoriale $F: X \to \mathbb{R}^n$ è detto rotore di F:

(14.1)
$$\nabla \wedge F = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ F_x & F_y & F_z \end{vmatrix} = \hat{i} \left(\frac{\partial F_z}{\partial y} - \frac{\partial F_y}{\partial z} \right) + \hat{j} \left(\frac{\partial F_x}{\partial z} - \frac{\partial F_z}{\partial x} \right) + \hat{k} \left(\frac{\partial F_y}{\partial x} - \frac{\partial F_x}{\partial y} \right).$$

Definizione 14.3 (Superficie orientabile). Sia $\Sigma \in \mathbb{R}^3$ una superficie. Diremo che è orientabile se esiste $N: \Sigma \to \mathbb{R}^3$ tale che :

(14.2)
$$\forall (x, y, z) \in \Sigma : N(x, y, z) \in N_{(x, y, z)} \Sigma \quad \text{e} \quad ||N(x, y, z)|| = 1$$

in tal caso N è detto orientamento di Σ .

Definizione 14.4 (Superficie regolare con bordo). Σ è detta superficie regolare con bordo se esiste $r \in C^1(\overline{\Omega}, \mathbb{R}^3)$ con $\Omega \subseteq \mathbb{R}^2$ aperto regolare tale che:

- $r(\overline{\Omega}) \xrightarrow{1-1} \Sigma$
- $J_r(u,v)$ ha rango massimo $\forall (u,v) \in \overline{\Omega}$

Osservazione 14.1 (Orientamento indotto del bordo). L'orientamento $\hat{\nu}$ di Σ induce un orientamento naturale del bordo $\partial \Sigma$ con il versore $\hat{\tau}$ e l'orientamento $\hat{\tau}$ è quello con il quale si gira in senso antiorario $\partial \Sigma$ rispetto ad un osservatore in piedi sulla superficie rispetto all'orientamento $\hat{\tau}$.

Teorema 14.2. Sia $A \subseteq \mathbb{R}^3$ aperto, $F \in C^1(A, \mathbb{R}^3)$, $(\Sigma, \hat{\nu})$ superficie regolare orientabile, $\Sigma \subseteq A$ e sia $(\partial \Sigma, \hat{\tau})$ il suo bordo canonicamente orientato allora:

(14.3)
$$\iint_{\Sigma} \langle \nabla \wedge F, \hat{\nu} \rangle d\sigma = \int_{\partial \Sigma} \langle F, \hat{\tau} \rangle ds$$

15 Teorema della divergenza

Definizione 15.1 (Campo vettoriale). Sia $X \subseteq \mathbb{R}^n$ insieme aperto e connesso un campo vettoriale è una funzione $F: X \to \mathbb{R}^n$.

Definizione 15.2 (Divergenza). Sia $X \subseteq \mathbb{R}^n$ insieme aperto e connesso, un campo vettoriale $F: X \to \mathbb{R}^n$ è detta divergenza di F:

(15.1)
$$\langle \nabla, F \rangle = \frac{\partial F_1}{\partial x} + \frac{\partial F_2}{\partial y} + \frac{\partial F_3}{\partial z} = Tr J_F(x, y, z)$$

Definizione 15.3 (Aperto regolare). $A \subseteq \mathbb{R}^3$ è un aperto regolare se è un insieme aperto, limitato, connesso e int(cl(A)) = A. E se ∂A è unione disgiunta di superfici regolari a tratti chiuse e orientabili. Inoltre ∂A è orientato canonicamente dal campo vettoriale $\hat{\nu}: \partial A \to \mathbb{R}^3$ inoltre se ∂A ha normale esterna allora $\forall P \in \partial A \; \exists \delta > 0$ tale che:

(15.2)
$$P + \lambda(\hat{\nu}) \notin \overline{A} \\ P - \lambda(\hat{\nu}) \in \overline{A} \qquad \forall 0 < \lambda < \delta.$$

Definizione 15.4 (Superficie regolare con bordo). Σ è detta superficie regolare con bordo se esiste $r \in C^1(\overline{\Omega}, \mathbb{R}^3)$ con $\Omega \subseteq \mathbb{R}^2$ aperto regolare tale che:

- $r(\overline{\Omega}) \xrightarrow{1-1} \Sigma$
- $J_r(u,v)$ ha rango massimo $\forall (u,v) \in \overline{\Omega}$

Definizione 15.5 (Superficie orientabile). Sia $\Sigma \in \mathbb{R}^3$ una superficie. Diremo che è orientabile se esiste $N: \Sigma \to \mathbb{R}^3$ tale che :

(15.3)
$$\forall (x, y, z) \in \Sigma : N(x, y, z) \in N_{(x,y,z)} \Sigma \quad e \quad ||N(x, y, z)|| = 1$$

in tal caso N è detto orientamento di Σ .

Definizione 15.6 (Flusso di un campo vettoriale attraverso una superficie). Sian Σ una superficie regolare, $r: \overline{\Omega} \xrightarrow{su} \Sigma$ una parametrizzazione regolare, $F \in C^1(A \in \mathbb{R}^3, \mathbb{R}^3 \in \hat{\nu}$ l'orientamento di Σ definisco il flusso di F attraverso Σ come l'integrale:

(15.4)
$$\int_{\Sigma} \langle F, \hat{\nu} \rangle d\sigma = \iint_{\overline{\Omega}} \langle (F \circ r) (u, v), \frac{\frac{\partial r}{\partial u} \wedge \frac{\partial r}{\partial v} (u, v)}{\| \frac{\partial r}{\partial u} \wedge \frac{\partial r}{\partial v} (u, v) \|} \rangle \cdot \| \frac{\partial r}{\partial u} \wedge \frac{\partial r}{\partial v} (u, v) \| du dv$$
$$= \iint_{\overline{\Omega}} \langle (F \circ r) (u, v), \frac{\partial r}{\partial u} \wedge \frac{\partial r}{\partial v} (u, v) \rangle du dv$$

Teorema 15.1 (Teorema della divergenza). Sia $F \in C^2(cl(A), \mathbb{R}^3)$, A aperto regolare in \mathbb{R}^3 , $(A \in J_b(\mathbb{R}^3), (\partial A, \hat{\nu})$ frontiera di A con $\hat{\nu}$ orientamento esterno allora:

(15.5)
$$\iiint_{A} \nabla \cdot F dx dy dz = \iint_{\partial A} \langle F, \hat{\nu} \rangle d\sigma$$