Московский Физико-Технический Институт

(ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ)

КАФЕДРА ОБЩЕЙ ФИЗИКИ Лабораторная работа № 10.4

Магнитные моменты легких ядер

Студент Ришат ИСХАКОВ 512 группа Преподаватель Лев Владиславович Инжечик

Цель работы: Вычислить магнитные моменты протона, дейтрона и ядра фтора на основе измерения их g—факторов методом ядерного магнитного резонанса (ЯМР). Полученные данные сравнить с вычислениями магнитных моментов на основе кварковой модели адронов и одночастичной оболочечной модели ядер.

1. Теория

Отношение γ магнитного момента к механическому называется гиромагнитным отношением:

$$\vec{\mu} = \gamma \vec{M}.\tag{1}$$

Зачастую, вместо γ используют более простую величину - g-фактор. Он также является отношением магнитного момента к механическому, но при этом магнитный момент измеряется в ядерных магнетонах Бора ($\mu_{\rm g}=e\hbar/2m_pc$), а механический момент – в единицах \hbar :

$$g = \frac{\mu/\mu_{\mathfrak{A}}}{M/\hbar} = \frac{\mu}{\mu_{\mathfrak{A}}} \frac{\hbar}{M} = \frac{\hbar}{\mu_{\mathfrak{A}}} \gamma. \tag{2}$$

Отсюда

$$\vec{\mu} = \frac{\mu_{\text{\tiny H}}}{\hbar} g \vec{M}. \tag{3}$$

Проецируя M и μ на направление вектора B, получаем:

$$\vec{\mu_B} = \frac{\mu_{\mathfrak{R}}}{\hbar} g \vec{M_B} = \mu_{\mathfrak{R}} g m. \tag{4}$$

Наибольшее значение μ_B равно $\mu_{\rm g} g I$. Его принято называть магнитным моментом ядра.

Расстояние между двумя соседними компонентами расщепившегося в магнитном поле уровня:

$$\Delta E = B\Delta \mu_B = B\mu_{\pi}g\Delta m = B\mu_{\pi}g. \tag{5}$$

Между компонентами расщепившегося уровня могут происходить электромагнитные переходы. Энергия квантов при этом определяется выражением (5), и явление носит резонансный характер. Частота излучения:

$$\nu = \frac{\Delta E}{h} = \frac{B\mu_{\pi}g}{h}.\tag{6}$$

Возбуждение переходов между компонентами расщепившегося ядерного уровня — ядерный магнитный резонанс (ЯМР).

В данной работе g-фактор определяется с помощью явления ЯМР. Изменяя частоту переменного магнитного поля, мы можем найти положение максимума поглощения, т.е. частоту резонанса. По этому максимуму определяется g-фактор из соотношения (6).

2. Экспериментальная установка

Рис. 1: Схема установки: 1 - часть индикаторной установки, исследуемый образец, 3 - трансформатор, 4 - электромагнит, 5 - катушки, 6 - модулирующие катушки, 8 - потенциометр

3. Ход работы

Помещая разные образцы между полюсами электромагнита и устанавливая частоту f_0 индикаторной установки в диапазоне $1 \div 20$ МГц, плавно меняли магнитное поле в зазоре электромагнита, пока не обнаруживали сигнал ЯМР.

Полученные данные приведены в таблице:

Таблица 1: Полученные данные для разных образцов

Образец №	1	2	3	5	
f, МГц	9,85	9,99	9,68	3,4	
В, мТл	231	243	227	520	

По полученным данным определили g-факторы исследуемых ядер по формуле:

$$g_{\rm s} = \frac{\hbar\omega_0}{\mu_{\rm s}B_0} = \frac{hf_0}{\mu_{\rm s}B_0} \tag{7}$$

Учитывая, что угловой момент протона определяется только его спином, рассчитали магнитный момент протона по формуле:

$$\mu = g_{\mathsf{R}}\mu_{\mathsf{R}}I\tag{8}$$

Предполагая, что угловой момент внешнего протона в ядре фтора определяется только его собственным моментом (спином), рассчитали магнитный момент ядра фтора.

Рассчитанные данные свели в таблицу:

Таблица 2: Обработанные данные

Образец	I	$g_{\scriptscriptstyle \mathrm{Я}}$	$g_{\mathrm{я, \ табл.}}$	μ (в $\mu_{\rm s}$)	$\mu_{ ext{табл.}}, \mu_{ ext{я}}$		
1. Протон (резина)	0,5	5,601	5,58	2,8	2,79		
2. Ядро фтора	0,5	5,401	5,26	2,7	2,63		
3. Протон (вода)	0,5	5,603	5,58	2,801	2,79		
5. Дейтрон	1	0,860	0,86	0,86	0,86		

4. Вывод

Вычислили магнитные моменты протона, дейтрона и ядра фтора, измерив их g—факторы методом ЯМР. Полученные данные оказались близки к табличным.