Simplex algorithm (2/2)

15.093: Optimization

Dimitris Bertsimas Alexandre Jacquillat

Sloan School of Management Massachusetts Institute of Technology

Reminder: The simplex algorithm

Algorithm

- 1. Start with basis $B = [A_{B(1)}, \cdots, A_{B(m)}]$ and BFS x.
- 2. Compute $\bar{c}_j = c_j \boldsymbol{c}_B^{\top} \boldsymbol{B}^{-1} \boldsymbol{A}_j$
 - If $\bar{c}_j \geq 0$ for all non-basic variables j, then x is optimal; STOP.
 - Else select non-basic variable j such that $\bar{c}_j < 0$; PROCEED.
- 3. Compute $u = B^{-1}A_j$.
 - ullet If $u \leq 0$, then the cost is unbounded; STOP. Else, PROCEED.
- 4. $\theta^* = \min_{i=1,\cdots,m,u_i>0} \frac{x_{B(i)}}{u_{B(i)}}$. Let l be such that $\theta^* = \frac{x_{B(l)}}{u_{B(l)}}$
- 5. Form new basis: $[m{A}_{B(1)}\cdotsm{A}_{B(l-1)}m{A}_{j}m{A}_{B(l+1)}\cdotsm{A}_{B(m)}]$
- 6. Get new BFS: $y_j = \theta^*$, $y_{B(i)} = x_{B(i)} \theta^* u_i$ for all i
- 7. Go back to Step 2.
- → The simplex algorithm proceeds iteratively, moving from one extreme point to an adjacent one until all reduced costs become non-negative

Simplex algorithm (2/2) The revised simplex method

The revised simplex method

Motivation

- Core operations at each simplex iteration
 - Matrix inversion B^{-1} : $\mathcal{O}(m^3)$ operations
 - Computing reduced costs $\boldsymbol{c}_B^{\top} \boldsymbol{B}^{-1} \boldsymbol{A}_j$, $j=1,\cdots,n$: $\mathcal{O}(mn)$ operations
- Intuition underlying practical simplex implementations:
 - ullet Start with basis $oldsymbol{B} = [oldsymbol{A}_{B(1)} \cdots oldsymbol{A}_{B(m)}]$ and its inverse

$$\boldsymbol{B}^{-1}\boldsymbol{B} = \boldsymbol{I} = [\boldsymbol{e}_1 \ \cdots \ \boldsymbol{e}_m]$$

The new basis is "not too far" from the old one:

$$\overline{\boldsymbol{B}} = [\boldsymbol{A}_{B(1)} \cdots \boldsymbol{A}_{B(l-1)} \boldsymbol{A}_{j} \boldsymbol{A}_{B(l+1)} \cdots \boldsymbol{A}_{B(m)}]$$

ightarrow The inverse of the new basis should be "not too far" from the old one

$$oldsymbol{B}^{-1}\overline{oldsymbol{B}}=[oldsymbol{e}_1 \ \cdots \ oldsymbol{e}_{l-1} \ oldsymbol{u} \ oldsymbol{e}_{l+1} \ \cdots \ oldsymbol{e}_m]$$
 with $oldsymbol{u}=oldsymbol{B}^{-1}oldsymbol{A}_j$

 $ightarrow \overline{B}^{-1}$ by transforming u into e_l through **elementary row operations**, i.e., by adding a multiple of one row to the same or another row

$$QB^{-1}\overline{B} = I = [e_1 \cdots e_m] \implies \overline{B}^{-1} = QB^{-1}$$

Reminder: Example of a simplex iteration

$$\min_{x,s \ge 0} x_1 + 5x_2 - 2x_3 \qquad x = (2,0,2,0,0,1,4)^{\top}$$
s.t. $x_1 + x_2 + x_3 + s_1 = 4$

$$x_1 + s_2 = 2$$

$$x_3 + s_3 = 3$$

$$3x_2 + x_3 + s_4 = 6$$

$$\Rightarrow \overline{c} = (0,7,0,2,-3,0,0)^{\top}$$

$$\Rightarrow \begin{cases} d_5 = 1 \\ d_2 = d_4 = 0 \\ d_B = -B^{-1}A_5 = (-1,1,-1,-1)^{\top} \\ \Rightarrow y = (2 - \theta,0,2 + \theta,0,\theta,1 - \theta,4 - \theta)^{\top} \\ \Rightarrow \theta = 1 \Rightarrow y = (1,0,3,0,1,0,3)^{\top}$$

$$(0,3,0)$$

$$x_2$$

$$(0,3,0)$$

$$x_3$$

$$\Rightarrow \overline{B} = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix}, \overline{B}^{-1} = ??$$

Example of the revised simplex method

$$\min_{\mathbf{x}, s \geq \mathbf{0}} \quad x_1 + 5x_2 - 2x_3 \\ \text{s.t.} \quad x_1 + x_2 + x_3 + s_1 = 4 \\ x_1 + s_2 = 2 \\ x_3 + s_3 = 3 \\ 3x_2 + x_3 + s_4 = 6 \\ & \Longrightarrow M = \begin{bmatrix} \mathbf{0} & \mathbf{1} & \mathbf{0} & \mathbf{0} \\ \mathbf{1} & -\mathbf{1} & \mathbf{0} & \mathbf{0} \\ -\mathbf{1} & \mathbf{1} & \mathbf{0} & \mathbf{1} \\ -\mathbf{1} & \mathbf{1} & \mathbf{0} & \mathbf{1} \\ \mathbf{1} & -\mathbf{1} & \mathbf{0} & \mathbf{0} & \mathbf{1} \\ -\mathbf{1} & \mathbf{1} & \mathbf{0} & \mathbf{0} & \mathbf{1} \\ -\mathbf{1} & \mathbf{1} & \mathbf{0} & \mathbf{0} & \mathbf{1} \\ -\mathbf{1} & \mathbf{1} & \mathbf{0} & \mathbf{0} & \mathbf{1} \\ -\mathbf{1} & \mathbf{1} & \mathbf{0} & \mathbf{0} & \mathbf{1} \\ -\mathbf{1} & \mathbf{1} & \mathbf{0} & \mathbf{1} & \mathbf{1} \\ -\mathbf{1} & \mathbf{1} & \mathbf{0} & \mathbf{1} & \mathbf{1} \\ 0 & \mathbf{0} & \mathbf{1} & \mathbf{0} & \mathbf{0} \\ -\mathbf{1} & \mathbf{1} & \mathbf{1} & \mathbf{0} & \mathbf{1} \\ 0 & \mathbf{0} & -\mathbf{1} & \mathbf{1} & \mathbf{0} \\ 0 & \mathbf{0} & -\mathbf{1} & \mathbf{1} & \mathbf{0} \\ 0 & \mathbf{0} & -\mathbf{1} & \mathbf{1} & \mathbf{0} \\ 0 & \mathbf{0} & -\mathbf{1} & \mathbf{1} & \mathbf{0} \\ 0 & \mathbf{0} & -\mathbf{1} & \mathbf{1} & \mathbf{0} \\ 0 & \mathbf{0} & -\mathbf{1} & \mathbf{1} & \mathbf{0} \\ 0 & \mathbf{0} & -\mathbf{1} & \mathbf{1} & \mathbf{0} \\ 0 & \mathbf{0} & -\mathbf{1} & \mathbf{1} & \mathbf{0} \\ 0 & \mathbf{0} & -\mathbf{1} & \mathbf{1} & \mathbf{0} \\ 0 & \mathbf{0} & -\mathbf{1} & \mathbf{1} & \mathbf{0} \\ 0 & \mathbf{0} & -\mathbf{1} & \mathbf{1} & \mathbf{0} \\ 0 & \mathbf{0} & -\mathbf{1} & \mathbf{1} \end{bmatrix}$$

Revised simplex algorithm

Algorithm

- 1. Start with basis $B = [A_{B(1)}, \cdots, A_{B(m)}]$, BFS x, and B^{-1} .
- 2. Compute $\overline{c}_j = c_j \boldsymbol{c}_B^{\top} \boldsymbol{B}^{-1} \boldsymbol{A}_j$
 - If $\bar{c}_j \geq 0$ for all non-basic variables j, then x is optimal; STOP.
 - Else select non-basic variable j such that $\overline{c}_j < 0$; PROCEED.
- 3. Compute $u = B^{-1}A_j$.
 - If $u \leq 0 \Rightarrow$ cost unbounded; STOP. Else, PROCEED.

4.
$$\theta^*=\min_{i=1,\cdots,m,u_i>0} \frac{x_{B(i)}}{u_{B(i)}}.$$
 Let l be such that $\theta^*=\frac{x_{B(l)}}{u_{B(l)}}$

- 5. Form new basis: $[m{A}_{B(1)}\cdotsm{A}_{B(l-1)}m{A}_jm{A}_{B(l+1)}\cdotsm{A}_{B(m)}]$
- 6. Compute \overline{B}^{-1} with elementary row operations and go to Step 2.
 - Get new BFS: $y_j = \theta^*$, $y_{B(i)} = x_{B(i)} \theta^* u_i$ for all i
 - $\bullet \ \ \boldsymbol{M} = [\boldsymbol{B}^{-1} \ \boldsymbol{u}] \in \mathbb{R}^{m \times (m+1)}; \begin{cases} \textit{row } i \leftarrow \textit{row } i \frac{u_i}{u_l} \times \textit{row } l, \forall i \neq l \\ \textit{row } l \leftarrow \frac{1}{u_l} \textit{row } l \end{cases}$
 - o The inverse is in the first m columns: $[m{M}_1 \cdots m{M}_m] = \overline{m{B}}^{-1}$

Revised simplex method: summary

Proposition

The elementary row operations correctly compute \overline{B}^{-1} at each iteration of the revised simplex algorithm

Reminder on the starting point:

$$m{B}^{-1}\overline{m{B}} = [m{e}_1 \ \cdots \ m{e}_{l-1} \ m{u} \ m{e}_{l+1} \ \cdots \ m{e}_m] \quad ext{with} \ m{u} = m{B}^{-1}m{A}_j$$

ullet Q is the matrix associated with elementary row operations:

$$\begin{cases} \text{row } i \leftarrow \text{row } i - \frac{u_i}{u_l} \times \text{row } l, \forall i \neq l \\ \text{row } l \leftarrow \frac{1}{u_l} \text{row } l \end{cases}$$

- ullet By construction: $oldsymbol{Q}oldsymbol{u}=oldsymbol{e}_l$ and $oldsymbol{Q}oldsymbol{e}_j=oldsymbol{e}_j$ for all j
 eq l
- $ightarrow \, QB^{-1}\overline{B} = I$ and $\overline{B}^{-1} = QB^{-1}$
- ightarrow Same progress and same convergence as the simplex method, but relies on elementary row operations vs matrix inversion to compute $m{B}^{-1}$

Simplex algorithm (2/2) $\hfill \hfill \hfi$

Full tableau implementation

The simplex tableau

- Columns $1, \dots, n$: $B^{-1}A_1, \dots B^{-1}A_n$
- Column 0: current solution $B^{-1}b = [x_{B(1)} \cdots x_{B(m)}]$
- Row 0: reduced costs $\overline{c}_1, \dots, \overline{c}_n$
- Cell 0: opposite of current cost $-c_B^{\top}x_B$

$oxed{-c_B^ op B^{-1} b}$	$oldsymbol{c}^ op - oldsymbol{c}_B^ op oldsymbol{B}^{-1} oldsymbol{A}$
$B^{-1}b$	$B^{-1}A$

$-oldsymbol{c}_B^ op oldsymbol{x}_B$	\overline{c}_1	 \overline{c}_n
$x_{B(1)}$		
:	$oxedsymbol{B^{-1}A_1}$	 $\boldsymbol{B}^{-1}\boldsymbol{A}_n$
$x_{B(m)}$		

Example, with three direct variables (x_1, x_2, x_3) and three slack variables (x_4, x_5, x_6) , starting with $x_1 = x_2 = x_3 = 0$

		x_1	x_2	x_3	x_4	x_5	x_6
	0	-10	-12	-12	0	0	0
x_4	20	1	2	2	1	0	0
x_5	20	2	1	2	0	1	0
x_6	20	2	2	1	0	0	1

$$\min_{\mathbf{x} \ge \mathbf{0}} -10x_1 - 12x_2 - 12x_3$$
s.t. $x_1 + 2x_2 + 2x_3 \le 20$
 $2x_1 + x_2 + 2x_3 \le 20$

$$2x_1 + 2x_2 + x_3 \le 20$$

Tableau operations

		x_1	x_2	x_3	x_4	x_5	x_6
	0	-10	-12	-12	0	0	0
x_4	20	1	2	2	1	0	0
x_5	20	2	1	2	0	1	0
x_6	20	2	2	1	0	0	1

- Pivot operations to define the tableau with new basis $[\mathbf{A}_{B(1)}\cdots\mathbf{A}_{B(l-1)}\mathbf{A}_{i}\mathbf{A}_{B(l+1)}\cdots\mathbf{A}_{B(m)}]$
 - Choose entering column j, with $\overline{c}_j < 0$ (column j: $u = B^{-1}A_j$)
 Choose exiting column B(l), with $u_{B(l)} > 0$ and smallest ratio $\frac{x_{B(l)}}{u_{B(l)}}$

 - Scale pivot row (l^{th} row) to leave a "1" at the intersection (j^{th} column)
 - Perform pivot operations:

 $new row = old row - pivot column coefficient \times new pivot row$

→ Application of the elementary row operations:

$$\begin{cases} \text{row } i \leftarrow \text{row } i - \frac{u_i}{u_l} \times \text{row } l, \forall i \neq l \\ \text{row } l \leftarrow \frac{1}{u_l} \text{row } l \end{cases}$$

Extension of elementary row operations to objective and reduced costs

Complete example

		x_1	x_2	x_3	x_4	x_5	x_6
	0	-10	-12	-12	0	0	0
x_4	20	1	2	2	1	0	0
x_5	20	2	1	2	0	1	0
x_6	20	2	2	1	0	0	1

		x_1	x_2	x_3	x_4	x_5	x_6
	100	0	-7	-2	0	5	0
x_4	10	0	1.5	1	1	-0.5	0
x_1	10	1	0.5	1	0	0.5	0
x_6	0	0	1	-1	0	-1	1

		x_1	x_2	x_3	x_4	x_5	x_6
	120	0	-4	0	2	4	0
x_3	10	0	1.5	1	1	-0.5	0
x_1	0	1	-1	0	-1	1	0
x_6	10	0	2.5	0	1	-1.5	1

	x_1	x_2	x_3	x_4	x_5	x_6
136	0	0	0	3.6	1.6	1.6
4	0	0	1	0.4	0.4	-0.6
4	1	0	0	-0.6	0.4	0.4
4	0	1	0	0.4	-0.6	0.4
	136 4 4 4	$\begin{array}{c cc} & x_1 \\ \hline 136 & 0 \\ & 4 & 0 \\ & 4 & 1 \\ & 4 & 0 \\ \end{array}$	136 0 0 4 0 0	136 0 0 0 4 0 0 1	136 0 0 0 3.6 4 0 0 1 0.4 4 1 0 0 -0.6	136 0 0 0 3.6 1.6 4 0 0 1 0.4 0.4 4 1 0 0 -0.6 0.4

$$\min_{\mathbf{x} \ge \mathbf{0}} \quad -10x_1 - 12x_2 - 12x_3$$

s.t.
$$x_1 + 2x_2 + 2x_3 \le 20$$

 $2x_1 + x_2 + 2x_3 \le 20$
 $2x_1 + 2x_2 + x_3 \le 20$

- Entering variable with negative reduced cost
- Leaving variable, which constrains entering variable the most
- Scale pivot row to leave "1" at intersection
- Update tableau through pivot operations
- Repeat, until all reduced costs are non-negative

Benefits of revised simplex and tableau implementation

- Naive implementation of the simplex method involves computing B^{-1} and the reduced costs of all variables at each iteration
 - $\rightarrow \mathcal{O}(m^3 + mn)$ operations at each iteration
- Revised simplex method proceeds exactly like the simplex method at each iteration but derives \overline{B}^{-1} through elementary row operations
 - → Same convergence properties as the simplex method
 - \rightarrow Between $\mathcal{O}(m^2)$ and $\mathcal{O}(mn)$ operations at each iteration
- Full tableau implementation is similar to the revised simplex method, but stores more information than strictly necessary $(B^{-1}A \text{ vs. } B^{-1}u)$
 - → Again, same convergence properties as the simplex method
 - $\rightarrow \mathcal{O}(mn)$ operations at each iteration
 - → Interpretable visualization of simplex operations

Simplex algorithm (2/2) Full simplex algorithm

Full simplex algorithm

How to find an initial solution?

ullet Easy case: $\mathcal{P} = \{oldsymbol{x} \in \mathbb{R}^n_+ : oldsymbol{A} oldsymbol{x} \leq oldsymbol{b}\}$ with $oldsymbol{b} \geq oldsymbol{0}$

$$Ax + s = b, \ x, s \ge 0 \quad \rightarrow \quad x = 0, \ s = b$$

- ullet General case in standard form: $\mathcal{P} = \{ oldsymbol{x} \in \mathbb{R}^n_+ : oldsymbol{A} oldsymbol{x} = oldsymbol{b} \}$
 - 1. Multiply all rows with a negative b_i coefficient by -1, so $b \ge 0$
 - 2. Introduce auxiliary variables y and find minimum slack:

min
$$y_1 + \cdots + y_m$$

s.t. $Ax + y = b$
 $x, y \ge 0$

- If the optimal slack is > 0, STOP: (LO) is infeasible
- If the optimal slack is 0 and the basis comprises no auxiliary variable y, STOP: basic feasible solution for (LO)
- If the optimal slack is 0 and the basis comprises auxiliary variables u. apply the simplex algorithm to eliminate auxiliary variables y[This is called "Phase I" optimization in the simplex algorithm.]

Example

Linear optimization

"Phase I" optimization

$$\min_{\mathbf{x} \ge \mathbf{0}} \quad x_1 + x_2 + x_3$$
s.t.
$$x_1 + 2x_2 + 3x_3 = 3$$

$$-x_1 + 2x_2 + 6x_3 = 2$$

$$4x_2 + 9x_3 = 5$$

$$3x_3 + x_4 = 1$$

$$\min_{x \ge 0} \quad x_5 + x_6 + x_7 + x_8$$
s.t.
$$x_1 + 2x_2 + 3x_3 + x_5 = 3$$

$$-x_1 + 2x_2 + 6x_3 + x_6 = 2$$

$$4x_2 + 9x_3 + x_7 = 5$$
$$3x_3 + x_4 + x_8 = 1$$

$$x_5$$
 x_6
 x_7
 x_8

		x_1	x_2	x_3	x_4	x_5	x_6	x_7	x_8
	-11	0	-8	-21	-1	0	0	0	0
5	3	1	2	3	0	1	0	0	0
6	2	-1	2	6	0	0	1	0	0
7	5	0	4	9	0	0	0	1	0
8	1	0	0	3	1	0	0	0	1

		x_1	x_2	x_3	x_4	x_5	x_6	x_7	x_8
	-10	0	-8	-18	0	0	0	0	1
x_5	3	1	2	3	0	1	0	0	0
x_6	2	-1	2	6	0	0	1	0	0
x_7	5	0	4	9	0	0	0	1	0
x_4	1	0	0	3	1	0	0	0	1

Example (continued)

		x_1	x_2	x_3	x_4	x_5	x_6	x_7	x_8
	-4	0	-8	0	6	0	0	0	7
x_5	2	1	2	0	-1	1	0	0	-1
x_6	0	-1	2	0	-2	0	1	0	-2
x_7	2	0	4	0	-3	0	0	1	-3
x_3	1/3	0	0	1	1/3	0	0	0	1/3
_									

		x_1	x_2	x_3	x_4	x_5	x_6	x_7	x_8
	-4	-4	0	0	-2	0	4	0	-1
x_5	2	2	0	0	1	1	-1	0	1
x_2	0	-1/2	1	0	-1	0	1/2	0	-1
x_7	2	2	0	0	1	0	-2	1	1
x_3	1/3	0	0	1	1/3	0	0	0	1/3

		x_1	x_2	x_3	x_4	x_5	x_6	x_7	x_8
	0	0	0	0	0	2	2	0	1
x_1	1	1	0	0	1/2	1/2	-1/2	0	1/2
x_2	1/2	0	1	0	-3/4	1/4	1/4	0	-3/4
x_7	0	0	0		0			1	0
x_3	1/3	0	0	1	1/3	0	0	0	1/3

- \implies Initial feasible solution: $x_1 = 1, x_2 = 1/2, x_3 = 1/3$
- Initial simplex tableau for the "actual" problem (except reduced costs)

Complete simplex algorithm

$$(LO): \quad \min_{oldsymbol{x} \in \mathcal{P}} \quad oldsymbol{c}^{ op} oldsymbol{x}, \quad \text{where } \mathcal{P} = \{oldsymbol{x} \in \mathbb{R}^n_+ : oldsymbol{A} oldsymbol{x} = oldsymbol{b}\}$$

Algorithm

Phase I

- 1. Multiply all rows with a negative b_i coefficient by -1
- 2. Introduce auxiliary variables y and solve:

$$\min \{y_1 + \dots + y_m : Ax + y = b, x, y \ge 0\}$$

- **Detect infeasibility**: If optimal cost is > 0, (LO) is infeasible
- Apply simplex algorithm to eliminate auxiliary variables from basis

Phase II

- 1. Start with basis $B = [A_{B(1)}, \cdots, A_{B(m)}]$ and BFS x from Phase I.
- 2. Compute $\bar{c}_j = c_j \boldsymbol{c}_B^{\top} \boldsymbol{B}^{-1} \boldsymbol{A}_j$
- 3. Continue with the simplex algorithm until termination
 - **Detect unboundedness**: If $u \leq 0$, cost unbounded
 - **Detect optimality**: If $\overline{c} \geq 0$, x is optimal.

Simplex algorithm (2/2) Advanced topics

Advanced topics

Pivoting rules

- Which variable to choose to enter the basis?
 - Choose the first column A_i with negative reduced cost $\bar{c}_i < 0$?
 - → Little work at each iteration, but progress may be slow
 - Choose a column A_i , with the most negative reduced cost $\bar{c}_i < 0$?
 - → More work at each iteration, but more promising column
 - Choose a column A_i with greatest improvement $\theta^*|\bar{c}_i|$?
 - → Even more work at each iteration, but convergence in fewer iterations
 - ullet Choose a column A_j with steepest edge $rac{\mathbf{c}^{ op}(y-x)}{\|u-x\|}$?
 - → Less work than greatest improvement, strong performance in practice
 - Anything else?
- Which variable to choose to exit the basis?
 - $x_{B(i)}$ • Not much flexibility: $A_{B(l)}$ where $l \in \arg\min$ $i=1,\cdots,m,u_i>0$ $u_{B(i)}$
 - In case of ties, choose the "first" eligible variable
 - Anything else?

Impact of degeneracy

- Recall that simplex terminates in a finite number of iterations if \mathcal{P} admits no degenerate BFS; but what happens with degeneracy?
- 1. The algorithm may stay in the same solution if it is degenerate: y=x
 - Happens if $x_{B(l)} = 0$ and $u_{B(l)} > 0$ for some basic variable l
 - Still, move to new basis $[m{A}_{B(1)}\cdotsm{A}_{B(l-1)}m{A}_{i}m{A}_{B(l+1)}\cdotsm{A}_{B(m)}]$
- 2. The algorithm may lead to a new solution that is degenerate if there is a tie in the smallest ratio rule:

$$\theta^* = \min_{i=1,\cdots,m,u_i>0} \frac{x_{B(i)}}{u_{B(i)}} = \frac{x_{B(l)}}{u_{B(l)}} = \frac{x_{B(l')}}{u_{B(l')}}$$

→ Can lead to **cycling** in the simplex algorithm

Pivoting rules for anticycling

Definition (lexicographic order)

Let $\alpha, \beta \in \mathbb{R}^n$. $\alpha \succ_L \beta$ if first non-zero component of $\alpha - \beta$ is positive.

Definition (lexicographic pivoting rule)

- 1. Choose any A_j with negative reduced cost as entering column.
- 2. For each i such that $u_i > 0$, divide row i of the tableau by u_i and choose the lexicographically smallest row as the exiting variable B(l)

Definition (Bland's rule, or smallest subscript pivoting rule)

- 1. Define A_j as entering column, with j smallest index such that $\overline{c}_j < 0$.
- 2. In case of ties, find exiting variables with the smallest subscript.

Theorem

Under the lexicographic pivoting rule and Bland's rule, cycling never occurs and the simplex method terminates after a finite number of iterations.

Simplex algorithm (2/2) Conclusion

Conclusion

Summary

Takeaway

Simplex method: invented by George Dantzig in 1947, and widely applied to solve linear optimization problems.

Takeaway

Move from one extreme point to another, maintaining feasibility until optimal solution or direction of unboundedness.

Takeaway

Simple algebra, captured by pivot operations in a tableau.

Takeaway

Finite convergence through careful pivoting rules with degeneracy.

Takeaway

Exponential worst-case performance, but excellent performance in practice.