1. Solution

Let x represent a datum of interest. Let i represent that datum's index. Let ℓ represent that datum's percentile. Let n represent the sample size (number of measurements). In general,

$$\ell = \frac{i}{n}$$

(a) We are given x = 50.917. This means i = 7. We know n = 9. Determine the percentile ℓ .

$$\ell = \frac{7}{9}$$

$$\ell = 0.778$$

So, the percentile rank is 0.778, or 77.8th percentile.

(b) We are given $\ell = 1$. We can use algebra to solve for i.

$$\ell = \frac{i}{n}$$

Multiply both sides by *n*.

$$n \cdot (\ell) = n \cdot \left(\frac{i}{n}\right)$$

Simplify both sides.

$$n\ell = i$$

To make me happy, switch the sides.

$$i = n\ell$$

Now, we can evaluate i.

$$i = (9)(1)$$

$$i = 9$$

Determine the x associated with i = 9.

$$x = 52.05$$

- (c) The mean: $\bar{x} = \frac{457.08}{9} = \boxed{50.787}$
- (d) If n is odd, then median is $x_{i=\frac{n+1}{2}}$, the value of x when $i=\frac{n+1}{2}$. Otherwise, if n is even, the median is mean of $x_{i=\frac{n}{2}}$ and $x_{i=\frac{n}{2}+1}$. In this case, n=9 and so n is odd.

median =
$$x_{(9+1)/2}$$
, = x_5

So, median = 50.686

2. Solution

Let x represent a datum of interest. Let i represent that datum's index. Let ℓ represent that datum's percentile. Let n represent the sample size (number of measurements). In general,

$$\ell = \frac{i}{n}$$

(a) We are given x = 165.293. This means i = 27. We know n = 30. Determine the percentile ℓ .

$$\ell = \frac{27}{30}$$

$$\ell = 0.9$$

So, the percentile rank is $\boxed{0.9}$, or 90th percentile.

(b) We are given $\ell = 0.633$. We can use algebra to solve for *i*.

$$\ell = \frac{i}{n}$$

Multiply both sides by n.

$$n\cdot (\ell)=n\cdot \left(\frac{i}{n}\right)$$

Simplify both sides.

$$n\ell = i$$

To make me happy, switch the sides.

$$i = n\ell$$

Now, we can evaluate i.

$$i = (30)(0.633)$$

$$i = 19$$

Determine the x associated with i = 19.

- (c) The mean: $\bar{x} = \frac{4249.576}{30} = \boxed{141.65}$
- (d) If n is odd, then median is $x_{i=\frac{n+1}{2}}$, the value of x when $i=\frac{n+1}{2}$. Otherwise, if n is even, the median is mean of $x_{i=\frac{n}{2}}$ and $x_{i=\frac{n}{2}+1}$. In this case, n=30 and so n is even.

$$\text{median} = \frac{x_{15} + x_{16}}{2} = \frac{149.057 + 149.401}{2}$$

So, median = 149.229