Prediction Assignment Writeup

Background

Using devices such as Jawbone Up, Nike FuelBand, and Fitbit it is now possible to collect a large amount of data about personal activity relatively inexpensively. These type of devices are part of the quantified self movement – a group of enthusiasts who take measurements about themselves regularly to improve their health, to find patterns in their behavior, or because they are tech geeks. One thing that people regularly do is quantify how much of a particular activity they do, but they rarely quantify how well they do it. In this project, your goal will be to use data from accelerometers on the belt, forearm, arm, and dumbell of 6 participants. They were asked to perform barbell lifts correctly and incorrectly in 5 different ways. More information is available from the website here: http://groupware.les.inf.puc-rio.br/har (see the section on the Weight Lifting Exercise Dataset).

Data

The training data for this project are available here:

https://d396qusza40orc.cloudfront.net/predmachlearn/pml-training.csv

The test data are available here:

https://d396gusza40orc.cloudfront.net/predmachlearn/pml-testing.csv

The data for this project come from this source: http://groupware.les.inf.puc-rio.br/har. If you use the document you create for this class for any purpose please cite them as they have been very generous in allowing their data to be used for this kind of assignment.

```
Environment Setting
## free up memory
rm(list=ls())
## Loading required package
require(data.table)
install.packages('caret', dependencies = TRUE)
install.packages('corrplot', dependencies = TRUE)
## Loading library
library(knitr);
library(caret);
library(rpart);
library(ggplot2);
library(corrplot);
library(randomForest);
Data Preparation
## download data from URL
Url.Train <- "http://d396qusza40orc.cloudfront.net/predmachlearn/pml-training.csv"
Url.Test <- "http://d396qusza40orc.cloudfront.net/predmachlearn/pml-testing.csv"
training <- read.csv(url(Url.Train))
testing <- read.csv(url(Url.Test))
inTrain <- createDataPartition(training$classe, p=0.7, list=FALSE)
```

TrainSet <- training[inTrain,]</pre>

TestSet <- training[-inTrain,]</pre>

Data		
inTrain	int [1:13737, 1] 1 2 4 5 6 7 8 10 12 14	=
<pre>testing</pre>	20 obs. of 160 variables	
TestSet	5885 obs. of 160 variables	
<pre>training</pre>	19622 obs. of 160 variables	
TrainSet	13737 obs. of 160 variables	

View data

View(TrainSet)

View(TestSet)

Data Cleaning

Remove variables with Nearly Zero Variance

NZV <- nearZeroVar(TrainSet)

TrainSet <- TrainSet[, -NZV]</pre>

TestSet <- TestSet[, -NZV]

Remove variables which are mostly NA

AllNA <- sapply(TrainSet, function(x) mean(is.na(x))) > 0.95

TrainSet <- TrainSet[, AllNA==FALSE]</pre>

TestSet <- TestSet[, AllNA==FALSE]

Remove identification only variables (columns 1 to 5)

TrainSet <- TrainSet[, -(1:5)]

TestSet <- TestSet[, -(1:5)]

Data		
inTrain	int [1:13737, 1] 1 2 4 5 6 7 8 10 12 14	1
<pre>0 testing</pre>	20 obs. of 160 variables	•
TestSet	5885 obs. of 54 variables	
<pre>0 training</pre>	19622 obs. of 160 variables	
O TrainSet	13737 obs. of 54 variables	

<mark>## View data</mark>

View(TrainSet)

View(TestSet)

Training, testing & validation data

Data exploration

corMatrix <- cor(TrainSet[,-54])</pre>

corrplot(corMatrix, order = "FPC", method = "color", type = "lower", tl.cex = 0.8, tl.col = rgb(0, 0, 0))

Decision Trees

model_tree <- rpart(classe ~ ., data=TrainSet, method="class")</pre>

prediction_tree <- predict(model_tree, TestSet, type="class")</pre>

class_tree <- confusionMatrix(prediction_tree, TestSet\$classe)</pre>

<mark>class_tree</mark>

Confusion Matrix and Statistics

Reference

```
Prediction A B C D E
A 1529 257 46 96 56
B 45 696 93 78 127
C 9 56 830 111 69
D 87 130 57 632 139
E 4 0 0 47 691
```

Overall Statistics

Accuracy: 0.7439

95% CI: (0.7326, 0.755)

No Information Rate : 0.2845 P-Value [Acc > NIR] : < 2.2e-16

Statistics by Class:

	class: A	class: B	class: c	class: D	class: E
Sensitivity	0.9134	0.6111	0.8090	0.6556	0.6386
Specificity	0.8919	0.9277	0.9496	0.9161	0.9894
Pos Pred Value	0.7707	0.6699	0.7721	0.6048	0.9313
Neg Pred Value	0.9628	0.9086	0.9593	0.9314	0.9240
Prevalence	0.2845	0.1935	0.1743	0.1638	0.1839
Detection Rate	0.2598	0.1183	0.1410	0.1074	0.1174
Detection Prevalence	0.3371	0.1766	0.1827	0.1776	0.1261
Balanced Accuracy	0.9027	0.7694	0.8793	0.7858	0.8140

Random Forest

forest model <- randomForest(classe ~ ., data=TrainSet, method="class")

prediction_forest <- predict(forest_model, TestSet, type="class")</pre>

random_forest <- confusionMatrix(prediction_forest, TestSet\$classe)

random forest

Confusion Matrix and Statistics

Reference

Prediction	Α	В	C	D	E
Α	1674	1	0	0	0
В	0	1137	4	0	0
C	0	1	1022	3	0
D	0	0	0	961	3
E	0	0	0	0	1079

Overall Statistics

Accuracy: 0.998

95% CI: (0.9964, 0.9989)

No Information Rate : 0.2845 P-Value [Acc > NIR] : < 2.2e-16

Карра : 0.9974

Mcnemar's Test P-Value : NA

Statistics by Class:

	class: A	class: B	class: c	class: D	class: E
Sensitivity	1.0000	0.9982	0.9961	0.9969	0.9972
Specificity	0.9998	0.9992	0.9992	0.9994	1.0000
Pos Pred Value	0.9994	0.9965	0.9961	0.9969	1.0000
Neg Pred Value	1.0000	0.9996	0.9992	0.9994	0.9994
Prevalence	0.2845	0.1935	0.1743	0.1638	0.1839
Detection Rate	0.2845	0.1932	0.1737	0.1633	0.1833
Detection Prevalence	0.2846	0.1939	0.1743	0.1638	0.1833
Balanced Accuracy	0.9999	0.9987	0.9976	0.9981	0.9986

Data Prediction

Using Random Forest

prediction <- predict(forest_model, newdata=TestSet)</pre>

confusionMatrix(prediction, TestSet\$classe)

Confusion Matrix and Statistics

Reference

Prediction	Α	В	C	D	E
Α	1674	1	0	0	0
В	0	1137	4	0	0
C	0	1	1022	3	0
D	0	0	0	961	3
E	0	0	0	0	1079

Overall Statistics

Accuracy : 0.998 95% CI : (0.9964, 0.9989)

No Information Rate: 0.2845 P-Value [Acc > NIR] : < 2.2e-16

Карра: 0.9974

Mcnemar's Test P-Value : NA

Statistics by Class:

	class: A	Class: B	Class: C	Class: D	Class: E
Sensitivity	1.0000	0.9982	0.9961	0.9969	0.9972
Specificity	0.9998	0.9992	0.9992	0.9994	1.0000
Pos Pred Value	0.9994	0.9965	0.9961	0.9969	1.0000
Neg Pred Value	1.0000	0.9996	0.9992	0.9994	0.9994
Prevalence	0.2845	0.1935	0.1743	0.1638	0.1839
Detection Rate	0.2845	0.1932	0.1737	0.1633	0.1833
Detection Prevalence	0.2846	0.1939	0.1743	0.1638	0.1833
Balanced Accuracy	0.9999	0.9987	0.9976	0.9981	0.9986

prediction

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 B A B A A E D B A A B C B A E E A B B B Levels: A B C D E

Other

sessionInfo()

R version 3.3.2 (2016-10-31) Platform: x86_64-w64-mingw32/x64 (64-bit) Running under: Windows 7 x64 (build 7601) Service Pack 1 [1] LC_COLLATE=English_United States.1252 LC_CTYPE=English_United States.1252 [3] LC_MONETARY=English_United States.1252 LC_NUMERIC=C [5] LC_TIME=English_United States.1252 attached base packages: graphics grDevices utils datasets methods base [1] stats other attached packages: data.table_1.10.4 randomForest_4.6-12 caret_6.0-76 lattice_0.20-34 [1] corrplot_0.77 [6] ggplot2_2.2.1 rpart_4.1-10 knitr_1.15.1 loaded via a namespace (and not attached): splines_3.3.2 [1] Rcpp_0.12.10 magrittr_1.5 [6] colorspace_1.3-2 foreach_1.4.3 MASS_7.3-45 munsell_0.4.3 car_2.1-4 nnet_7.3-12 minqa_1.2.4 stringr_1.1.0 [11] plyr_1.8.4 [16] grid_3.3.2 tools_3.3.2 parallel_3.3.2 pbkrtest_0.4-7 gtable_0.2.0 mgcv_1.8-15 quantreg_5.29

tibble_1.2

ModelMetrics_1.1.0 codetools_0.2-15 stringi_1.1.2

MatrixModels_0.4-1 iterators_1.0.8

Matrix_1.2-7.1

lme4_1.1-13

nloptr_1.0.4

scales_0.4.1

[21] e1071_1.6-8 [26] lazyeval_0.2.0

[36] stats4_3.3.2

[31] reshape2_1.4.2

class_7.3-14

SparseM_1.76

assertthat_0.1