

Test report No. FCC_RF_SL16012801-SPC-049_0205 Rev 1.0
Page 73 of 86

TOOK CHOICE FOR TOP	TOD OD THE GITE HOD			
Result	⊠ Pass	☐ Fail		

 $\textbf{Test Data} \hspace{0.3cm} \boxtimes \hspace{0.1cm} \textbf{Yes (See below)} \hspace{1cm} \square \hspace{0.1cm} \textbf{N/A}$

Test Plot ⊠ Yes (See below) □ N/A

Test was done by Gary Chou at 10m chamber.

Test report No.	FCC_RF_SL16012801-SPC-049_0205 Rev 1.0
Page	74 of 86

Radiated Emission Test Results for LTE band 2

Test specification	below 1GH:	Z			
	Temp (°C):	24			
Environmental Conditions:	Humidity (%)	39			
	Atmospheric (mbar):	1012	Result	Pass	
Mains Power:	48VDC	48VDC		1 833	
Tested by:	Chen Ge				
Test Date:	10/26/2015 – 11/02/2015				
Remarks:	LTE band2-Mid CH-20MF	łz BW, QPSK			

Frequency MHz	SG Level dBm	Cable Loss dB	Antenna Gain dBd	Substituted Level dBm	Measurem ent Type	Pol	Hgt cm	Azt Deg	Limit dBm	Margin dB	Pass /Fail
750.05	-49.23	0.29	0	-49.52	RMS Max	Н	109	27	-13	-36.52	Pass
454.18	-50.19	0.21	0	-50.40	RMS Max	V	178	29	-13	-37.4	Pass
456.81	-51.84	0.21	0	-52.05	RMS Max	V	100	228	-13	-39.05	Pass
444.73	-50.38	0.21	0	-50.59	RMS Max	V	170	302	-13	-37.59	Pass
448.66	-51.86	0.21	0	-52.07	RMS Max	V	196	269	-13	-39.07	Pass
463.42	-51.86	0.21	0	-52.07	RMS Max	V	154	260	-13	-39.07	Pass

Note: Dipole antenna was used for substitution method.

Test report No.	FCC_RF_SL16012801-SPC-049_0205 Rev 1.0
Page	75 of 86

Radiated Emission Test Results for LTE band 5

Test specification	below 1GH	Z		
	Temp (°C):	24		
Environmental Conditions:	Humidity (%)	39		
	Atmospheric (mbar):	1012	Result	Pass
Mains Power:	48VDC	48VDC		F 455
Tested by:	Gary Chou			
Test Date:	02/23/2016			
Remarks:	LTE band5-Mid CH-20MH	Hz BW, QPSK		

Frequency MHz	SG Level dBm	Cable Loss dB	Antenna Gain dBd	Substituted Level dBm	Measurem ent Type	Pol	Hgt cm	Azt Deg	Limit dBm	Margin dB	Pass /Fail
745	-61.08	0.29	0	-61.37	RMS Max	٧	163	242	-13	-48.37	Pass
745	-64.12	0.29	0	-64.41	RMS Max	Н	183	146	-13	-51.41	Pass
620	-62.95	0.31	0	-63.26	RMS Max	V	149	253	-13	-50.26	Pass
620	-65.22	0.31	0	-65.53	RMS Max	Н	186	106	-13	-52.53	Pass
750	-64.06	0.33	0	-64.39	RMS Max	V	132	248	-13	-51.39	Pass
750	-65.15	0.33	0	-65.48	RMS Max	Н	153	165	-13	-52.48	Pass

Note: Dipole antenna was used for substitution method.

775 Montague Expressway, Milpitas, CA 95035, USA • Phone: (+1) 408 526 1188 • Facsimile (+1) 408 526 1088

Test report No	o. FCC_RF_SL16012801-SPC-049_0205 Rev 1.0
Page	76 of 86

10.6 Radiated Spurious Emissions above 1GHz

Requirement(s):

Spec	Item	Requirement			Applicable
47CFR27.53	-	operating frequency ranges factor of at least 43 + 10 log		e transmitting power (P) by a	\boxtimes
47CFR24.238	_		power of any emission outsid must be attenuated below the g(P) dB.		
Test Setup		Radio Absorbing Material	Semi Anechoic Chamber 3m Ground Plane	Antenna 1-4m	spectrum Analyzer
Test Procedure	Substit 1. 2. 3. 4.	The test was carried out at the of the emissions, was carried antenna height in the following. a. Vertical or horizon EUT) was chosen b. The EUT was the content of the transmitter and each frequency involved). The as the center of the transmitter each frequency involved and the substitution antening means of a nonradiating call generator tuned to a particular reading at the spectrum and maximum reading for this set.	Intal polarisation (whichever gave in.) In rotated to the direction that gave in a height was adjusted to the height preplace it with a substitution anterned center of the substitution antender. In a at the transmitter end with a sple. With the antennas at both en alar spurious frequency, raise and alyzer. Adjust the level of the signal.	ined from the EUT characterisation the antenna polarization, and a the higher emission level over a feethe maximum emission. In the antenna should be half-wing a should be approximately at the discount of the antenna should be approximately at the discount of the antenna should be approximately at the discount of the antenna should be approximately at the discount of the antenna should be approximately at the discount of the antenna should be approximately at the discount of the antenna should be approximately at the discount of the antenna should be approximately at the discount of the antenna should be approximately at the antenna s	djusting the ull rotation of the sion. vavelength for e same location e antenna by ith the signal n a maximum viously recorded
Test Date		2015 – 11/02/2015 2016 - 02/29/2016	Environmental condition	Temperature Relative Humidity Atmospheric Pressure	23°C 48% 1008mbar
Remark	worst c Limit ca Emission	ase. alculation: on limit = PdBm – [43+ 10 log (l erent modulation and bandw	Both horizontal and vertical polari PW)] = 10log(1000 x PW) - 43 - 43 idth configuration has been vest bandwidth was presented in	ties were investigated. The resulting the second state of the second state of the second seco	dBm
Result	⊠ Pas			гороги	
Teet Data 🖂 Ves					

Test report No.	FCC_RF_SL16012801-SPC-049_0205 Rev 1.0
Page	77 of 86

Test Plot ☐ Yes (See below)

 \bowtie N/A

Test was done by Gary Chou at 3m chamber.

Radiated Emission Test Results (Above 1GHz)

LTE band 2 Low Channel, 20MHz BW, QPSK

Frequency MHz	SG Level dBm	Cable Loss dB	Antenna Gain dBd	Substituted Level dBm	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBm	Margin dB	Pass /Fail
3863.68	-52.02	17.51	15.51	-54.02	Average Max	٧	108	57	-13	-41.02	Pass
7743.91	-48.54	20.44	12.39	-56.59	Average Max	٧	100	283	-13	-43.59	Pass
2395.48	-53.64	16.53	14.27	-55.9	Average Max	٧	166	216	-13	-42.9	Pass

LTE band 2 Mid Channel, 20MHz BW, QPSK

Frequency MHz	SG Level dBm	Cable Loss dB	Antenna Gain dBd	Substituted Level dBm	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBm	Margin dB	Pass /Fail
5292.43	-52.9	18.21	12.63	-58.48	Average Max	Η	126	133	-13	-45.48	Pass
3896.89	-51.79	17.54	15.57	-53.76	Average Max	٧	108	220	-13	-40.76	Pass
7814.57	-48.12	20.45	12.43	-56.14	Average Max	V	118	324	-13	-43.14	Pass

LTE band 2 High Channel, 20MHz BW, QPSK

Frequency MHz	SG Level dBm	Cable Loss dB	Antenna Gain dBd	Substituted Level dBm	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBm	Margin dB	Pass /Fail
5291.34	-52.89	18.21	12.63	-58.47	Average Max	Ι	189	0	-13	-45.47	Pass
7916.86	-42.82	20.46	12.49	-50.79	Average Max	V	125	317	-13	-37.79	Pass
3962.08	-40.16	17.58	15.69	-42.05	Average Max	٧	102	323	-13	-29.05	Pass
2398.59	-53.39	16.54	14.27	-55.66	Average Max	Η	100	103	-13	-42.66	Pass

775 Montague Expressway, Milpitas, CA 95035, USA • Phone: (+1) 408 526 1188 • Facsimile (+1) 408 526 1088

Test report No.	FCC_RF_SL16012801-SPC-049_0205 Rev 1.0
Page	78 of 86

UMTS band 2 Low Channel, QPSK

Frequency MHz	SG Level dBm	Cable Loss dB	Antenna Gain dBd	Substituted Level dBm	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBm	Margin dB	Pass /Fail
12697.50	-47.33	16.27	9.76	-53.84	RMS Max	Н	223	307	-13	-40.84	Pass
4090.16	-55.86	14.11	7.99	-61.98	RMS Max	Н	113	57	-13	-48.98	Pass
2044.78	-50.09	13.32	6.08	-57.33	RMS Max	Н	178	274	-13	-44.33	Pass

UMTS band 2 Middle Channel, QPSK

Frequency MHz	SG Level dBm	Cable Loss dB	Antenna Gain dBd	Substituted Level dBm	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBm	Margin dB	Pass /Fail
12572.70	-46.32	16.28	9.76	-52.83	RMS Max	Н	127	94	-13	-39.83	Pass
4080.32	-54.21	15.42	7.99	-60.33	RMS Max	Н	168	287	-13	-47.33	Pass
2038.82	-57.75	12.54	6.08	-64.99	RMS Max	Н	239	145	-13	-51.99	Pass

UMTS band 2 High Channel, QPSK

Frequency MHz	SG Level dBm	Cable Loss dB	Antenna Gain dBd	Substituted Level dBm	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBm	Margin dB	Pass /Fail
12715.39	-49.41	14.97	9.76	-55.92	RMS Max	Н	197	130	-13	-42.92	Pass
6961.19	-57.70	14.17	7.99	-63.82	RMS Max	V	281	348	-13	-50.82	Pass
1033.11	-53.58	12.51	6.08	-60.82	RMS Max	Н	237	63	-13	-47.82	Pass

775 Montague Expressway, Milpitas, CA 95035, USA • Phone: (+1) 408 526 1188 • Facsimile (+1) 408 526 1088

Test report No.	FCC_RF_SL16012801-SPC-049_0205 Rev 1.0
Page	79 of 86

LTE band 5 Low Channel, 20MHz BW, QPSK

Frequency MHz	SG Level dBm	Cable Loss dB	Antenna Gain dBd	Substituted Level dBm	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBm	Margin dB	Pass /Fail
2204.53	-57.36	0.72	8.55	-49.53	Average Max	V	150	30	-13	-36.53	Pass
2204.53	-59.29	0.72	8.55	-51.46	Average Max	Н	153	25	-13	-38.46	Pass
3901.51	-50.93	0.78	9.44	-42.27	Average Max	V	150	29	-13	-29.27	Pass
3901.51	-61.29	0.78	9.44	-52.63	Average Max	Н	149	27	-13	-39.63	Pass

LTE band 5 Mid Channel, 20MHz BW, QPSK

Frequency MHz	SG Level dBm	Cable Loss dB	Antenna Gain dBd	Substituted Level dBm	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBm	Margin dB	Pass /Fail
1995.3	-56.66	0.72	8.023	-49.36	Average Max	V	150	30	-13	-36.36	Pass
1995.3	-57.78	0.72	8.023	-50.48	Average Max	Η	153	25	-13	-37.48	Pass
5134.33	-59.97	0.78	11.48	-49.27	Average Max	V	150	29	-13	-36.27	Pass
5134.33	-62.13	0.78	11.48	-51.43	Average Max	Н	149	27	-13	-38.43	Pass

LTE band 5 High Channel, 20MHz BW, QPSK

Frequency MHz	SG Level dBm	Cable Loss dB	Antenna Gain dBd	Substituted Level dBm	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBm	Margin dB	Pass /Fail
1342.88	-54.16	0.72	6.23	-48.65	Average Max	V	150	30	-13	-35.65	Pass
1342.88	-56.93	0.72	6.23	-51.42	Average Max	Н	153	25	-13	-38.42	Pass
4127.72	-58.36	0.78	9.97	-49.17	Average Max	V	150	29	-13	-36.17	Pass
4127.72	-61.58	0.78	9.97	-52.39	Average Max	Н	149	27	-13	-39.39	Pass

775 Montague Expressway, Milpitas, CA 95035, USA • Phone: (+1) 408 526 1188 • Facsimile (+1) 408 526 1088

Test report No.	FCC_RF_SL16012801-SPC-049_0205 Rev 1.0
Page	80 of 86

UMTS band 5 Low Channel, QPSK

Frequency MHz	SG Level dBm	Cable Loss dB	Antenna Gain dBd	Substituted Level dBm	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBm	Margin dB	Pass /Fail
2048.25	-56.70	0.72	8.17	-49.25	Average Max	V	150	30	-13	-36.25	Pass
2048.25	-57.89	0.72	8.17	-50.44	Average Max	Н	153	25	-13	-37.44	Pass
3192.38	-58.10	0.78	9.42	-49.46	Average Max	V	150	29	-13	-36.46	Pass
3192.38	-59.91	0.78	9.42	-51.27	Average Max	Н	149	27	-13	-38.27	Pass

UMTS band 5 Mid Channel, QPSK

Frequency MHz	SG Level dBm	Cable Loss dB	Antenna Gain dBd	Substituted Level dBm	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBm	Margin dB	Pass /Fail
4936.24	-61.97	0.72	11.34	-51.35	Average Max	V	150	30	-13	-38.35	Pass
4936.24	-64.10	0.72	11.34	-53.48	Average Max	Н	153	25	-13	-40.48	Pass
7431.32	-59.95	0.78	11.22	-49.51	Average Max	V	150	29	-13	-36.51	Pass
7431.32	-62.08	0.78	11.22	-51.64	Average Max	Н	149	27	-13	-38.64	Pass

UMTS band 5 High Channel, QPSK

Frequency MHz	SG Level dBm	Cable Loss dB	Antenna Gain dBd	Substituted Level dBm	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBm	Margin dB	Pass /Fail
4032.48	-58.50	0.72	9.76	-49.46	Average Max	V	150	30	-13	-36.46	Pass
4032.48	-59.13	0.72	9.76	-50.09	Average Max	Н	153	25	-13	-37.09	Pass
7964.88	-60.84	0.78	12.25	-49.37	Average Max	V	150	29	-13	-36.37	Pass
7964.88	-62.99	0.78	12.25	-51.52	Average Max	Н	149	27	-13	-38.52	Pass

775 Montague Expressway, Milpitas, CA 95035, USA • Phone: (+1) 408 526 1188 • Facsimile (+1) 408 526 1088

Test report No.	FCC_RF_SL16012801-SPC-049_0205 Rev 1.0
Page	81 of 86

10.7 Frequency Stability

Requirement(s):

Spec	Item	Requirement				
47 CFR 2.1055, 47 CFR	ı	The frequency stability percent (±1 ppm) of th °Celsius to +50 °Celsi primary supply voltage temperature of 20 °Ce				
					quency of each transmitter the tolerances given in	
		Frequency range (MHz)	Base, fixed (ppm)	Mobile ≤3 wa (ppm)	Mobile ≤3 watts (ppm)	
47 CFR 2.1055,	_	25 to 50	20	20	50	\boxtimes
47 CFR 24.135(a),		50 to 450	5	5	50	
		450 to 512	2.5	5	5	
l		821 to 896	1.5	2.5	2.5	
		928 to 929	5	n/a	n/a	
		929 to 960	1.5	n/a	n/a	
		2110 to 2220	10	n/a	n/a	
47 CFR 2.1055, 47 CFR 27.54	-	The frequency stability shall be sufficient to ensure that the fundamental emissions stay within the authorized bands of operation.				
Test Setup				_	EUT	
		Spectrum Analyzer				
Test Procedure	The ca	The equipment is turn transmitter. Measure applying power to the Frequency measurer	ned on in a "standt ment of the carrier e transmitter. ments are made at	by" condition for of frequency of the	erature (20°C to provide a reformed minute before applying post transmitter is made within on anging from -30°C to +50°C. e equipment at each tempera	ower to the ne minute after A period of at nture level.
Test Date		2015 – 11/02/2015 2016 - 02/29/2016	Environmer	ital condition	Temperature Relative Humidity Atmospheric Pressure	23°C 48% 1008mbar
Remark	NONE					
Result	⊠ Pas	ss 🗆 Fail				

Test Data $\ oxdots$ Yes $\ oxdots$ N/A

Test report No.	FCC_RF_SL16012801-SPC-049_0205 Rev 1.0
Page	82 of 86

Test Plot ☐ Yes (See below)

 \bowtie N/A

Test was done by Chen Ge at RF test site.

775 Montague Expressway, Milpitas, CA 95035, USA • Phone: (+1) 408 526 1188 • Facsimile (+1) 408 526 1088

Test report No.	FCC_RF_SL16012801-SPC-049_0205 Rev 1.0
Page	83 of 86

Test Data for Band 2:

Voltage (%)	Power (VDC)	Temp. (°)	Frequency (KHz)	Frequency Error (Hz)	Deviation (ppm)
100%		20 (ref)	1960000.016	0	0.000
100%		0	1960000.022	6	0.003
100%	48	10	1960000.023	7	0.004
100%		30	1960000.018	2	0.001
100%		40	1960000.026	10	0.005
115%	55.2	20	1960000.026	10	0.005
85%	40.8	20	1960000.025	9	0.005

Test Data for Band 5:

Voltage (%)	Power (VDC)	Temp. (°)	Frequency (KHz)	Frequency Error (Hz)	Deviation (ppm)
100%		20 (ref)	881500.013	0	0.000
100%		0	881500.051	38	0.043
100%	48	10	881500.021	8	0.009
100%		30	881500.020	7	0.008
100%		40	881500.041	28	0.032
115%	55.2	20	881500.021	8	0.009
85%	40.8	20	881500.025	12	0.014

Test report No.	FCC_RF_SL16012801-SPC-049_0205 Rev 1.0
Page	84 of 86

Annex A. TEST INSTRUMENT

Instrument	Model	Serial #	Cal Date	Cal Cycle	Cal Due	In use
Radiated Emissions			,	,	,	
EMI Test Receiver	ESIB 40	100179	06/03/2015	1 Year	06/03/2016	<u><</u>
Bi-Log antenna (30MHz~2GHz)	JB1	A030702	08/15/2015	1 Year	08/15/2016	<u><</u>
Horn Antenna (1-18GHz)	3115	10SL0059	08/25/2015	1 Year	08/25/2016	<u><</u>
Horn Antenna (18-40 GHz)	AH-840	101013	08/28/2015	1 Year	08/28/2016	<u><</u>
Tuned Dipole Antenna Set	AD-100	40133:40149	10/02/2015	1 Year	10/01/2016	<u><</u>
Pre-Amplifier	LPA-6-30	11140711	02/08/2016	1 Year	02/10/2017	<u><</u>
Pre-Amplifier (1-26.5GHz)	8449B	3008A00715	05/30/2015	1 Year	05/30/2016	<u><</u>
3 Meters SAC	3M	N/A	08/08/2015	1 Year	08/08/2016	₹
10 Meters SAC	10M	N/A	09/05/2015	1 Year	09/05/2016	~
Agilent Signal Generator	MXG N5182A	MY47071065	04/06/2015	1 Year	04/06/2016	>
RF Conducted Measurement						
Spectrum Analyzer	N9010A	MY51440112	08/20/2015	1 Year	08/20/2016	>

Test report No.	FCC_RF_SL16012801-SPC-049_0205 Rev 1.0
Page	85 of 86

Annex B. SIEMIC Accreditation

Accreditations	Document	Scope / Remark
ISO 17025 (A2LA)	7	Please see the documents for the detailed scope
ISO Guide 65 (A2LA)	Z	Please see the documents for the detailed scope
TCB Designation		A1, A2, A3, A4, B1, B2, B3, B4, C
FCC DoC Accreditation	Z	FCC Declaration of Conformity Accreditation
FCC Site Registration	7	3 meter site
FCC Site Registration	7	10 meter site
IC Site Registration	7	3 meter site
IC Site Registration		10 meter site
	Ī.	Radio & Telecommunications Terminal Equipment: EN45001 – EN ISO/IEC 17025
EU NB	ħ	Electromagnetic Compatibility: EN45001 – EN ISO/IEC 17025
Singapore iDA CB(Certification Body)	22	Phase I, Phase II
Vietnam MIC CAB Accreditation		Please see the document for the detailed scope
	7	(Phase II) OFCA Foreign Certification Body for Radio and Telecom
HongKong OFCA	7	(Phase I) Conformity Assessment Body for Radio and Telecom
	7	Radio: Scope A – All Radio Standard Specification in Category I
Industry Canada CAB		Telecom: CS-03 Part I, II, V, VI, VII, VIII

Test report No.	FCC_RF_SL16012801-SPC-049_0205 Rev 1.0
Page	86 of 86

Japan Recognized Certification Body Designation	包包	Radio: A1. Terminal equipment for purpose of calling Telecom: B1. Specified radio equipment specified in Article 38-2, Paragraph 1, Item 1 of the Radio Law
Korea CAB Accreditation		EMI: KCC Notice 2008-39, RRL Notice 2008-3: CA Procedures for EMI KN22: Test Method for EMIEMS: KCC Notice 2008-38, RRL Notice 2008-4: CA Procedures for EMS KN24, KN61000-4-2, -4-3, -4-4, -4-5, -4-6, -4-8, -4-11: Test Method for EMS
		Radio: RRL Notice 2008-26, RRL Notice 2008-2, RRL Notice 2008-10, RRL Notice 2007-49, RRL Notice 2007-20, RRL Notice 2007-21, RRL Notice 2007-80, RRL Notice 2004-68
		Telecom: President Notice 20664, RRL Notice 2007-30, RRL Notice 2008-7 with attachments 1, 3, 5, 6; President Notice 20664, RRL Notice 2008-7 with attachment 4
Taiwan NCC CAB Recognition		LP0002, PSTN01, ADSL01, ID0002, IS6100, CNS14336, PLMN07, PLMN01, PLMN08
Taiwan BSMI CAB Recognition	7	CNS 13438
Japan VCCI	™	R-3083: Radiation 3 meter site C-3421: Main Ports Conducted Interference Measurement T-1597: Telecommunication Ports Conducted Interference Measuremet
Australia CAB Regocnition	Ē.	EMC: AS/NZS CISPR 11, AS/NZS CISPR 14.1, AS/NZS CISPR22, AS/NZS 61000.6.3, AS/NZS 61000.6.4
		Radiocommunications: AS/NZS 4281, AS/NZS 4268, AS/NZS 4280.1, AS/NZS 4280.2, AS/NZS 4295, AS/NZS 4582, AS/NZS 4583, AS/NZS 4769.1, AS/NZS 4769.2, AS/NZS 4770, AS/NZS 4771
		Telecommunications: AS/ACIF S002:05, AS/ACIF S003:06, AS/ACIF S004:06 AS/ACIF S006:01, AS/ACIF S016:01, AS/ACIF S031:01, AS/ACIF S038:01, AS/ACIF S040:01, AS/ACIF S041:05, AS/ACIF S043:2:06, AS/ACIF S60950.1
Australia NATA Recognition		AS/ACIF S002, AS/ACIF S003, AS/ACIF S004, AS/ACIF S006, AS/ACIF S016, AS/ACIF S031, AS/ACIF S038, AS/ACIF S040, AS/ACIF S041, AS/ACIF S043.2