Minsterul Educației, Cercetării și Inovării Societatea de Științe Matematice din România Inspectoratul Școlar Județean Constanța

A 60-a Olimpiadă Națională de Matematică Mangalia - 13 aprilie 2009

CLASA a XI-a – SOLUŢII ŞI BAREMURI DE CORECTARE

Problema 1. Fie $(t_n)_n$ un şir convergent de numere reale, $t_n \in (0,1)$ pentru orice $n \in \mathbb{N}$ şi $\lim_{n \to \infty} t_n \in (0,1)$. Definim şirurile $(x_n)_n$ şi $(y_n)_n$ prin relaţiile

$$x_{n+1} = t_n x_n + (1 - t_n) y_n, \ y_{n+1} = (1 - t_n) x_n + t_n y_n,$$

pentru orice și $n \in \mathbb{N}$ și x_0, y_0 numere reale fixate.

- a) Să se arate că șirurile $(x_n)_n$ și $(y_n)_n$ sunt convergente și au aceeași limită.
 - b) Arătați că dacă $\lim_{n\to\infty}t_n\in\{0,1\}$ concluzia nu mai este adevărată.

Soluție și barem. a) Fie I_n intervalul închis cu capetele x_n, y_n . Rezultă imediat că $\cdots \subset I_n \subset I_{n-1} \subset \cdots \subset I_1 \subset I_0$, incluziunile fiind stricte $\ldots 2$ puncte

Notând cu l_n lungimea intervalului I_n , avem $l_n = |x_n - y_n| \dots 1$ punct Prin inducție deducem $l_n = |(2t_0 - 1)(2t_1 - 1) \cdots (2t_n - 1)||x_0 - y_0||$

Dacă există n_0 cu $t_{n_0} = 1/2$ avem $l_n = 0$ pentru $n \ge n_0$. Altfel avem $\frac{l_{n+1}}{l_n} = |2t_{n+1} - 1| \in (0,1)$ și criteriul raportului ne dă $\lim l_n = 0$. Conform axiomei lui Cantor există unic $a_0 \in \cap_{n \in \mathbb{N}} I_n$. Cum x_n și y_n sunt, pentru fiecare n simetrice față de mijlocul intervalului I_0 , rezultă că $a_0 = \frac{x_0 + y_0}{2}$ este limita comună a sirurilor (x_n) si (y_n)

Soluţie alternativă. Notăm $A_n = \begin{pmatrix} t_n & 1 - t_n \\ 1 - t_n & t_n \end{pmatrix}, P = \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}$ şi

deci $U_n = P\begin{pmatrix} 1 & 0 \\ 0 & z_n \end{pmatrix} P^{-1}U_0$ unde $z_n = (2t_0 - 1)\cdots(2t_n - 1)$. Ca în soluția precedentă se arată că $\lim z_n = 0$ de unde se deduce concluzia 2 puncte

Problema 2. Fie $f:\mathbb{R}\to\mathbb{R}$ o funcție continuă cu proprietatea că pentru orice $x\in\mathbb{R},$ limita

$$\lim_{h \to 0} \left| \frac{f(x+h) - f(x)}{h} \right|$$

există și este finită.

Arătați că în orice punct din \mathbb{R} f este derivabilă sau admite derivate laterale finite, de același modul și semn contrar..

$$\lim_{n \to \infty} \frac{f(x + u_n) - f(x)}{u_n} = -l_x \lim_{n \to \infty} \frac{f(x + v_n) - f(x)}{v_n} = l_x,$$

Din proprietatea valorii intermediare, φ este continuă, rezultă că există un şir $(h_n)_n$ cu termeni pozitivi, convergent la 0, cu $f(x+h_n)-f(x)=0$, în contradicție cu ipoteza.

Problema 3. Fie $A, B \in \mathcal{M}_n(\mathbb{C})$, cu AB = BA și $\det B \neq 0$.

- a) Arătați că dacă $|\det(A+zB)|=1$ pentru orice $z\in\mathbb{C}$ cu |z|=1, atunci $A^n=0_n$.
 - b) Rămâne adevarată concluzia dacă eliminăm condiția AB = BA?

Soluţie şi barem. a) Funcţia $f(z) = \det(A + zB) = a_0 + a_1z + a_2z^2 + \cdots + a_nz^n$ este polinomială de grad n $(a_n = \det B \neq 0)$.

$$(a_0 + a_1 z + a_2 z^2 + \dots + a_n z^n)(\overline{a}_0 + \overline{a}_1 \cdot \overline{z} + \overline{a}_2 \cdot \overline{z}^2 + \dots + \overline{a}_n \cdot \overline{z}^n) = 1 \iff$$

$$(a_0 + a_1 z + a_2 z^2 + \dots + a_n z^n)(\overline{a}_0 \cdot z^n + \overline{a}_1 \cdot z^{n-1} + \overline{a}_2 \cdot z^{n-2} + \dots + \overline{a}_n) = z^n.$$

Ultima egalitate având loc pentru o infinitate de valori ale lui z, ea este identitate de polinoame. Prin identificarea coeficienților obținem succesiv:

$$a_0 \cdot \overline{a}_n = 0, a_1 \cdot \overline{a}_n = 0, a_2 \cdot \overline{a}_n = 0, \dots, a_{n-1} \cdot \overline{a}_n = 0$$

b) Condiția $A \cdot B = B \cdot A$ este necesară după cum se vede din următorul exemplu:

$$A = \begin{bmatrix} 0 & & & 0 \\ & 1 & & \\ & & & 1 \end{bmatrix}, \quad B = \begin{bmatrix} 0 & & 1 \\ 1 & & 0 \\ & & & \ddots \\ 0 & & 1 & 0 \end{bmatrix}$$

$$A \cdot B \neq B \cdot A$$

Problema 4. Fie funcțiile $f, g, h : \mathbb{R} \to \mathbb{R}$, unde f este derivabilă, g și h sunt monotone iar f' = f + g + h.

Demonstrați că mulțimea punctelor de discontinuitate ale funției g coincide cu mulțimea punctelor de discontinuitate ale funcției h.

Soluție și barem. Prin înmulțire cu e^{-x} relația dată se scrie

$$(e^{-x}f(x))' = e^{-x}g(x) + e^{-x}h(x).$$