

Faculty of Engineering and the Built Environment Department of Electrical Engineering

EEE4036A

Design Project (Team 14)

Benjamin Scholtz (SCHBEN011)
Jarushen Govender (GVNJAR002)
Isaac Lebogang Khobo (KHBISA001)
Nasko Stavrev (STVATA001)

 4^{th} year BSc. (Eng.) Electrical Engineering Department Lecturer: Riana Geschke 30th March 2016

Contents

1	Pla	Plagiarism Declaration							
2	TAS	SK CLARIFICATION							
	2.1	Backg	round	5					
	2.2	Proble	em Statement	5					
3	CO	NTEX	T OF DESIGN	6					
	3.1	Macro	economic Factors	6					
	3.2	Micro	economic Factors	6					
4	DE	SIGN	SPECIFICATION	7					
	4.1	Scope		7					
	4.2	Applie	cable Documents	7					
	4.3	Chara	cteristics	7					
		4.3.1	Functional Characteristics	7					
		4.3.2	Quality Assurance	8					
		4.3.3	Timescale	9					
		4.3.4	Economic Factors	10					
		4.3.5	Ergonomic Factors	11					
		4.3.6	Life-cycle	11					
	4.4	Accep	tance Test Requirements	11					
5	CO	NCEP	TUAL DESIGN	12					
	5.1	Design	One	12					
		5.1.1	System Diagram	12					
		5.1.2	System Components	12					
		5.1.3	Requirement Satisfaction	13					
		5.1.4	Evaluation	13					

		5.1.5	Risk Assessment	 13
	5.2	Design	Two	 14
		5.2.1	System Diagram	 14
		5.2.2	System Components	 14
		5.2.3	Requirement Satisfaction	 14
		5.2.4	Evaluation	 14
		5.2.5	Risk Assessment	 14
	5.3	Weight	ted Selection	 15
	5.4	Recom	nmendation	 15
6	ЕM	BODIN	MENT DESIGN	16
J	6.1		n Overview	
	0.1	Ť		
		6.1.1	System Description	
		6.1.2	System Diagram	 16
	6.2	System	n Analysis	 16
	6.3	Softwa	are Design	 16
	6.4	Mecha	unical Design	 16
		6.4.1	Mechanical Requirements	 16
		6.4.2	Technical Drawings	 16
	6.5	Electri	ical Design	 16
		6.5.1	Power Requirements	 16
		6.5.2	Schematics	 17
		6.5.3	PCB Design	 19
		6.5.4	RF Design	 20
		6.5.5	Bill of Materials (Tag)	 22
	6.6	Assum	nptions	 22
	6.7	Failure	e Modes	22

Team 14	Design Project
	Ü

6.8	System Lifetime	22
6.9	Worst Case Calculation	22
Refere	ences	24
Apper	ndix A: Contributions	24
Appei	ndix B: Progress Reports	26
Appei	ndix C: Tag Bill of Materials and Unit Cost	40

1 Plagiarism Declaration

DECLARATION:

1. I know that plagiarism is wrong. Plagiarism is to use anothers work and to pretend that it is ones own.

- 2. I have not allowed, and will not allow, anyone to copy my work with the intention of passing it off as his or her own work.
- 3. This assignment is my own work. I have not used the material in this assignment in any of my other assignments.
- 4. I have included internet article, book, or other material references used for this assignment.

Signed: Benjamin Scholtz (SCHBEN011), Jarushen Govender (GVNJAR002), Isaac Lebogang Khobo (KHBISA001), Nasko Stavrev (STVATA001)

Date: 30th March 2016

2 TASK CLARIFICATION

2.1 Background

UCT Upper campus has a number of parking areas for staff, students and visitors using cars to travel to campus. There are red, yellow, blue and unmarked bays on campus. In addition there are disabled and visitor parking bays on campus. These categories are assigned the highest priority.

For every user, a parking category is assigned, and an associated annual fee is charged. The purchase of a parking disk allows the staff member/student/visitor to search for a parking spot in the designated category on campus, but it is not guaranteed that one will be available, since parking bays are oversold. When arriving on campus, a driver of a car may spend some time searching for an available spot in the required category. Parking disks are generally linked to a person and only valid for the specific vehicle for which the disk has been purchased, except for student lift clubs.

The Traffic Department on Upper Campus administrates and manages all aspects related to parking of vehicles. [?]

2.2 Problem Statement

For a driver entering Upper Campus in a car, it is not immediately apparent where there are parking bays available. This is a particular problem during peak times when a large number of cars arrive on campus, looking for parking at the same time. The design assignment is to solve this problem using the electrical engineering skills of each of the team members in your group. [?]

The design assignment is:

- To provide information in an easily accessible format, to each driver of a car immediately on arrival on campus, on where all the vacant parking bays on campus are. This must be for the specific category of parking for this user.
- To determine whether a vehicle is parked on a bay not designated for this user, for example a yellow disk holder parks on a red bay, or a visitor parks on a disabled parking bay, and make this available to the traffic department in real time.
- To allow electronic reconfiguration of traffic bay allocations on special occasions, for example during the summer school period, when there are many visitors requiring parking on campus.
- To monitor and log the use of parking bays and the percentage of occupation of each parking area and make this available to the traffic department, for the purpose of planning. [?]

3 CONTEXT OF DESIGN

3.1 Macroeconomic Factors

STEEPLE.

3.2 Microeconomic Factors

4 DESIGN SPECIFICATION

4.1 Scope

This specification covers the analysis, design, production timeline and considerations, and lifecycle of the upgraded UCT parking system. The specification is for a parking system on upper campus to be used primarily in allocated parking zones rather than dispersed parking bays. The parking system specifications aim to meet the requirements introduced in the client problem statement.

4.2 Applicable Documents

The following documents are applicable to the project and are of importance to the ultimate specifications of the project:

- Group Allocation
- Group Project Assignment
- Design Notes

4.3 Characteristics

4.3.1 Functional Characteristics

Function 1: User interface

Information must be available in an easily accessible format to indicate to drivers where legal parking bays are located.

Function 2: Vehicle location

Real time location and classification of vehicles in UCT parking areas based on user parking privileges.

Function 3: System back-end

Traffic department should be able to access data about vehicles and users on a database as well as reconfigure traffic bay allocations. The use of parking bays should be monitored and logged to be processed to show percentage occupation of parking area and get historical data.

Interface Characteristics

Function 1, 2 and 3 should be linked with a wireless communication method.

4.3.2 Quality Assurance

Standards and Codes

The design must meet the following standards and codes:

- IEEE Standards.
- SABS Standards.
- ICASA RF Regulations.
- RF PCB Design Standards.

Methods of Testing

The design should be tested using the following method:

- 1. Periodic random parking bay testing.
- 2. HIL system testing.
- 3. Brute force user and operator interface testing.
- 4. Long term power system testing.
- 5. RF propagation testing.

Reliability Issues

Reliability issues will arise in the following forms:

- Component quality standards.
- Supplier reliability (especially for importing).

•

4.3.3 Timescale

Design Schedule

The embodiment design should be completed within the given period of just under two months, in time for hand in after the first UCT term.

Development Schedule

Thereafter the final design should be developed and tested within a period of 4 months; and certified with the relevant organisations within a period of 2 months.

Production Schedule

The final design should be prototyped over a period of 1 month and then any necessary changes completed within 1 month thereafter - a final product will be sent for production over the course of 1 month. The necessary traffic department staff training and student/user familiarisation will be completed during the production time period over a period of 2 months.

Delivery Schedule

The complete system will be installed and in use over the period of 1 month.

Figure 1: Project Gantt Chart.

4.3.4 Economic Factors

Market Analysis

To calculate the upper campus UCT parking cash flow in the table below, a few assumptions were made. Approximately 2.8 parking discs are allocated per bay. Assuming this is true of all parking bay categories, this results in a total cash flow of R13.6 million per year. Assuming that 20% of this cash flow is used for maintenance, and the other 20% for parking staff salaries, we are left with R8.16 million for the project, with possible external funding if necessary.

Table 1:	Upper	Campus	UCT P	arking	Cash Flow
----------	-------	--------	-------	--------	-----------

	Parking Bays	Allocated Bays	Disc Price	Cash Flow
Red	808	2262.4	1524	3447897.6
Yellow	1046	2928.8	960	2811648
Student	2757	7719.6	960	7410816
Total Bays	4611	12910.8		
Discs/bay	2.8			
Total Cash Flow	13670361.6			

Design Costs

The design costs will be kept to a minimum by using UCT Electrical Engineering students to complete the design as a part of their EEE4036A design course.

Development, Manufacturing, Distribution Costs

The main costs incurred will be in contracted manufacturing and distribution.

The following companies will be contracted to:

- 1. Zytek will be used for the manufacturing and assembly of the PCBs.
- 2. Skeg product development will be used for the tag and beacons casing production using injection mould methods.
- 3. Electronic components will be imported from Mouser predominantly.

The costs of development, manufacturing and distribution through the above sources should be kept to a unit cost value of less than R400 per tag. This ensures the cost of a disc will cover the cost of production of the tag.

4.3.5 Ergonomic Factors

User needs Ergonomics Controls

4.3.6 Life-cycle

Distribution Operation Maintenance Disposal

4.4 Acceptance Test Requirements

Function Test Requirements

Test methods: Could be by inspection, theoretical modelling, simulation, laboratory functional demonstration, field trials, in-service measurements, etc.

5 CONCEPTUAL DESIGN

5.1 Design One

Design One (D1) uses a triangulation system to locate the registered vehicle within the parking area. Each registered vehicle has a tag with a unique ID - this ID has the user data linked to it in a database on the server back-end. The location of each parking space is known, and with the knowledge of where the vehicle is located it can be determined whether the vehicle is legally parked or not.

5.1.1 System Diagram

5.1.2 System Components

Tags and Beacons

Due to a triangulation system being used, in every parking area there are at least three beacons - with four being used to try to eliminate signal propagation issues. The tags and beacons make use of a Decawave DW1000 ultra-wideband transceiver chip that is controlled via SPI from a Atmel micro-controller.

The master beacon sends a signal out to synchronise all the beacons to the same time reference. Each tag sends a signal periodically with the unique user ID, transmit time and battery level which is received by each of the beacons. The beacons all relay time of flight data back to the master beacon which performs a time difference of arrival (TDOA) calculation to determine where the tag is located. [?]

The tags transmit with a period of 5-10 minutes. This reduces power consumption and signal noise level interference with other tags. The tags do not receive data. The tags will be accurate to within 10cm giving more than enough accuracy for the application. The initial conservative battery life estimate is 5 years with proper power management in software. They will be powered with a LiPo battery that will need to be replaced or charged when discharged.

The beacons will use the same circuitry, but with different software running on the Atmel microcontroller. They will be required to both transmit and receive. The beacons will be mounted on poles (both light and installed) distributed across the UCT campus - this will allow the location of vehicles in any area. They will be powered with LiPo batteries which will be charged with solar panels - or wired in cases where this is not practical.

Server Back-end

The server back-end connects with the master beacon via WiFi and receives the tag location, unique ID and battery level for every new vehicle. This is updated on a database every 5-10 minutes. Further calculations and visualizations are performed and stored in the database to send to the end user. The following data will be available for each unique ID:

- User privileges.
- Tag location (updated periodically).
- Tag battery level (updated periodically).

User Interface

The user interface will connect with the server back-end to access the database and will relay the following data to the end user via a smart phone application or web application:

- Indication of privilege level and violations.
- Tag battery level.
- Vehicle location.
- Location of open parking bays.
- Recommended parking area.
- Number of free parking bays in parking area.
- Traffic heat-map on campus.

5.1.3 Requirement Satisfaction

5.1.4 Evaluation

Cost

(implementation, maintenance, energy consumption)

Strong/weak Points

5.1.5 Risk Assessment

External Causes

(weather, vehicle impact, human interference) risk of failure during intended life

Internal Causes

(Failure to recognize long-term design flaws) Mitigation mitigation (steps you will take to reduce the risk)

5.2 Design Two

5.2.1 System Diagram

5.2.2 System Components

5.2.3 Requirement Satisfaction

5.2.4 Evaluation

Cost

(implementation, maintenance, energy consumption) Strong/weak Points

5.2.5 Risk Assessment

External Causes

(weather, vehicle impact, human interference) risk of failure during intended life

Internal Causes

(Failure to recognize long-term design flaws) Mitigation mitigation (steps you will take to reduce the risk)

5.3 Weighted Selection

The following weighted selection tables were formed and weights given to each aspect of the system design in order to determine which design meets the requirements outlined in the design specification:

Table 2: Weighted selection: Design One [?]

Aspect	Score (1-5)	Weight	Total
Functionality / User satisfaction	5	20	20
Cost of implementation / Maintenance	5	40	40
Reliability / Safety	4	10	8
Ease of installation / Maintenance	5	20	20
Life span	3	10	6
Total score (100):			94

Table 3: Weighted selection: Design Two [?]

Aspect	Score (1-5)	Weight	Total
Functionality / User satisfaction	3	20	12
Cost of implementation / Maintenance	3	40	24
Reliability / Safety	4	10	8
Ease of installation / Maintenance	4	20	16
Life span	4	10	8
Total score (100):			68

5.4 Recommendation

Based on the weighted selection and evaluation above, Design One should be further developed as a viable parking system solution for UCT upper campus. The embodiment design should be completed along with the necessary analysis and system testing.

6 EMBODIMENT DESIGN

0 1	α	\sim .
K I	Systom	LIMORIA
6.1	DASCEIII	Overview
_		

- 6.1.1 System Description
- 6.1.2 System Diagram

6.2 System Analysis

Analysis of system operation, interfaces, use etc.

6.3 Software Design

6.4 Mechanical Design

6.4.1 Mechanical Requirements

Durability, forces, dynamics.

6.4.2 Technical Drawings

6.5 Electrical Design

6.5.1 Power Requirements

Battery life etc.

6.5.2 Schematics

The following diagrams cover the design of the tag; where the beacon makes a few changes to the circuitry and adds a WiFi module, seen in Figure 5.

Figure 2: Parking system tag schematic diagram: interface connections.

Figure 3: Parking system tag schematic diagram: transceiver chip.

Figure 4: Parking system tag schematic diagram: micro-controller.

Figure 5: Parking system beacon schematic diagram: WiFi module.

6.5.3 PCB Design

EMF and RF mitigation techniques have to be considered when designing the PCBs in order to make them compliant with the ICASA regulations. This involved using a ground plane and ensuring the antennas are correctly matched (100ω traces) to reduce RF harmonic signals.

Figure 6: Parking system tag PCB layout.

Figure 7: Parking system beacon PCB layout.

6.5.4 RF Design

Antenna Specifications: [?]

Friss's Transmission Equation states the following:

$$P_{RX} = \frac{P_{TX}G_{TX}G_{RX}\lambda^2}{(4\pi r)^2}$$

There is a quadratic relationship between the received power (P_{RX}) and the distance r from the tag to the beacon. This means we need to optimize the received power in another way, as the distance r can not be optimized except by having a dense beacon installation. The transmit power (P_{TX}) needs to be kept as low as possible, to optimize battery usage - this means the transmit and received antenna gain need to be made as high as is possible. The tag has a limited space profile, which means the beacon antenna needs to be as large as possible. Unfortunately the beacon antenna needs to be fairly omni-directional in order to pick up all the tags, as will be explained below, this further limits the possible receiver gain.

Because the antenna gains are measured using decibels which are on a logarithmic scale, the following changes in the equation need to be made:

$$P_{RX} = P_{TX} + G_{TX} + G_R + 20log_{10}(\frac{\lambda}{4\pi R})$$

We would like to achieve at least a 60 percent transmission efficiency (this means 60 percent of the transmitted power is received) with a target of 90 percent efficiency. Designing for a 75 percent efficiency will help us achieve this target:

$$\lambda = \frac{300e6}{f} = \frac{300e6}{3GHz} = 0.1m$$

$$EIRP(f) = P_{TX}G_{TX} = -41.3dBm/MHz$$

value as mentioned below in regulations. This means the peak transmitter power and peak transmitter antenna gain must give a product within the regulations.

$$\frac{P_{RX}}{P_{TX}} = 0.75 = \frac{G_{TX}G_{RX} \times 0.1}{(4\pi \times 200)^2} =$$

$$0.75 = 1 + G_{TX}$$

Table 4: Antenna specifications: tag and beacon

Aspect	Tag	Beacon
Radiation Pattern	Isotropic	Dipole
Power Output	5	40
Gain	2.6 dBi	10
Physical Area	$8\mathrm{mm}$	$1m^2$
Location	Mobile	Fixed

The tag antenna specifications are based on the calculations above and using the AH086M555003 PCB chip antenna from Mouser which has a wide operating range from 3100MHz to 8000MHz.

ICASA National Radio Frequency Plan: [?] [?]

The ICASA 2013 NRFP for ITU Region 1 allocates the frequency range from 3.3GHz to 3.4GHz to radio-location with a typical application of government services. In South Africa there are no specific regulations for UWB signals. The Decawave technology is ETSI compliant and will generally be accepted by ICASA so long as EMF and RF mitigation techniques are used. The regulations permit outdoor use on the frequency range 3.1-4.8GHz with an EIRP of -41.3dBm/MHz. The ETSI regulations permit the use of the Decawave chips in an indoor and outdoor environment.

DW1000 Frequency Channels: [?]

The DW1000 can be programmed to use specific frequency channels (defined by the IEEE 802.15.4a-2011 standard) with corresponding bandwidth. Based on the ICASA regulations above, Channel 1 would be used with a Centre Frequency of 3493.4MHz and an operational bandwidth of 500MHz. This falls within the informal regulations mentioned above.

6.5.5 Bill of Materials (Tag)

The bill of materials as well as unit pricing for the tag can be found in Appendix C. Where parts with specific tolerance, such as for the RF circuitry, are needed they have been ordered specifically. The non-critical parts were chosen to optimize the end unit price.

All parts were ordered from Mouser except if specified otherwise. They offer international shipping and are a reliable source of components to minimize risk. The LiPo batteries were ordered from a chinese source, as stated in the BOM, and the supplier will need to be managed properly to reduce risk.

The result of the BOM and Unit Cost analysis is the following:

```
Total Capital Outlay (ZAR):
Unit Cost (ZAR):
```

It was decided not to include the BOM and Unit Cost analysis for the beacons, as their costs will be minimal when compared with the 15000 tags needed for the system. In terms of circuitry, the beacons will work out to the same price as a tag - adding WiFi but not using LiPo batteries. There will be the additional expense of the following:

- WiFi chips
- Beacon platform
- Beacon power supplies
- Antenna

6.6 Assumptions

Identify and show that checked validity.

6.7 Failure Modes

Probabilities, Consequences, Mitigation

6.8 System Lifetime

A statement of the design life time, with explanation of what (if anything) will limit it.

6.9 Worst Case Calculation

For at least one component / sub-system

Report structure compiled from class notes. \cite{black} [?]

Appendix A: Contributions

Jarushen Govender (GVNJAR002)

Isaac Lebogang Khobo (KHBISA001)

Benjamin Scholtz (SCHBEN011)

LATEX Formatting/Template.

- 2. Task Clarification.
- 4. Design Specification: Scope, Applicable Documents, Quality Assurance, Timescale, Economic Factors.
- 5. Conceptual Design: Design One, Weighted Selection, Recommendation.
- 6. Embodiment Design: Schematics, PCB Design, RF Design, Bill of Materials (Tag).

Nasko Stavrev (STVATA001)

Appendix B: Progress Reports

Progress Report 1: SCHBEN011

Team 14

GVNJAR002 (Electrical) Govender, Jarushen KHBISA001 (Mech) Khobo, Isaac Lebogang

STVATA001 (ECE) Stavrev, Nasko SCHBEN011 (Mech) Scholtz, Benjamin

Meeting Details

The meeting was arranged via our Whatsapp group. We arranged to meet in Blue Lab at 8AM on Thursday the 25th of February where we brainstormed and wrote down the following ideas (all members available were present, the rest contributed via the internet):

Idea Formulation

Idea 1:

- -Every car has a RFID chip/disk.
- -Users manually enter which parking they have occupied at a terminal.
- -- This means more human work rather than hardware.
- -The parking bays left over will be empty (unlikely) or illegally occupied this allows for parking people to go check those bays.
- -RFID sensor/coil on entrance to double check parking zone occupation user can be told there are x many parking spots open (much like Cavendish).
- -When they exit, scan again to book user out and indicate that bay is open.
- -Manual scanner for checking car disks could be linked via GPS to show zone or manually enter zone.
- -Online database/sign in system for visualizing parking bays (and/or zones?) and booking.
- -Intelligent parking suggestions.

To think about:

-Should every car that enters campus have a RFID disk? Allows to immediately fine vehicles (on student/staff account) who don't sign in at terminal.

Money Issues:

-Day by day or by year as usual?

Alternative:

-RFID coils under each bay (maybe too expensive to install, what about electronics involved etc.?)

Individual Observations (SCHBEN011)

In our group meeting we concentrated on finding a solution that was 1) practical and 2) within budget. Most of the solutions that seem to come up were hardware intensive – we decided it was better to have more human interaction in order to reduce cost and complexity. Even though it is a technology solution, it needs to be practical in a UCT context – complex parking layout and relatively low budget.

Progress Report 1: STVATA001

Team 14

GVNJAR002 (Electrical) Govender, Jarushen KHBISA001 (Mech) Khobo, Isaac Lebogang

STVATA001 (ECE) Stavrev, Nasko SCHBEN011 (Mech) Scholtz, Benjamin

Meeting Details

The meeting was arranged via our Whatsapp group. We arranged to meet in Blue Lab at 8AM on Thursday the 25th of February where we brainstormed and wrote down the following ideas (all members available were present, the rest contributed via the internet):

Idea Formulation

Idea 1:

- -Every car has a RFID chip/disk.
- -Users manually enter which parking they have occupied at a terminal.
- -- This means more human work rather than hardware.
- -The parking bays left over will be empty (unlikely) or illegally occupied this allows for parking people to go check those bays.
- -RFID sensor/coil on entrance to double check parking zone occupation user can be told there are x many parking spots open (much like Cavendish).
- -When they exit, scan again to book user out and indicate that bay is open.
- -Manual scanner for checking car disks could be linked via GPS to show zone or manually enter zone.
- -Online database/sign in system for visualizing parking bays (and/or zones?) and booking.
- -Intelligent parking suggestions.

To think about:

-Should every car that enters campus have a RFID disk? Allows to immediately fine vehicles (on student/staff account) who don't sign in at terminal.

Money Issues:

-Day by day or by year as usual?

Alternative:

-RFID coils under each bay (maybe too expensive to install, what about electronics involved etc.?)

Individual Observations

It seems like detecting which bays are occupied/unoccupied is a real challenge, as even the cheapest system will require hardware at every single bay. With roughly a few thousand bays on upper campus alone, this becomes prohibitively costly.

Progress Report 1: KHBISA001

Team 14

GVNJAR002 (Electrical) Govender, Jarushen KHBISA001 (Mechatronics) Isaac Lebogang Khobo

STVATA001 (ECE) Stavrev, Nasko SCHBEN011 (Mech) Scholtz, Benjamin

Meeting Details

The meeting was arranged via our Whatsapp group. We arranged to meet in Blue Lab at 8AM on Thursday the 25th of February where we brainstormed and wrote down the following ideas (all members available were present, the rest contributed via the internet):

Idea Formulation

Idea1:

- -Every car has a RFID chip/disk.
- -Users manually enter which parking they have occupied at a terminal.
- --This means more human work rather than hardware.
- -The parking bays left over will be empty (unlikely) or illegally occupied this allows for parking people to go check those bays.
- -RFID sensor/coil on entrance to double check parking zone occupation user can be told there are x many parking spots open (much like Cavendish).
- -When they exit, scan again to book user out and indicate that bay is open.
- -Manual scanner for checking car disks could be linked via GPS to show zone or manually enter zone.
- -Online database/sign in system for visualizing parking bays (and/or zones?) and booking.
- -Intelligent parking suggestions.

To think about:

-Should every car that enters campus have a RFID disk? Allows to immediately fine vehicles (on student/staff account) who don't sign in at terminal.

Money Issues:

-Day by day or by year as usual?

Alternative:

-RFID coils under each bay (maybe too expensive to install, what about electronics involved etc.?)

Individual Observations

Daily charging rate will be problematic with regards to fines; as people will opt to still be fined a daily rate, and make repeated offences. The meeting was well organized, and everyone who was there contributed to the ideas in this document.

Progress Report 1: GVNJAR002

Progress Report 2

Design Progress Report 2

Team 14

GVNJAR002 (Electrical) Govender, Jarushen KHBISA001 (Mech) Khobo, Isaac Lebogang

STVATA001 (ECE) Stavrev, Nasko SCHBEN011 (Mech) Scholtz, Benjamin

(All present.)

Meeting Details

The meeting was arranged via our Whatsapp group. We arranged to meet in Blue Lab at 8AM on Thursday the 3rd of March where we confirmed our two design ideas and came up with a rough system diagram for our primary design. We also decided upon the headings/sections for our report.

Design Concept 1:

| A: available | B: Available | B: Available | A | Available | Available | Available | Available | A | Available | Availabl

Possibility: No RFID tag for each car – rather just OCR connection between number plate and student/staff ID.

; all parking spots usually taken - system knows whatever isn't taken is likely illegally parked

Design Concept 2:

Passive RFID for each car, RFID coil pads on each parking spot.

Sections of Report:

#Project Proposal and Task Clarification

Background

Design Context

Specifications

- -Stakeholders
- -Scope of Work (SOW)
- -Phases of Work

(Programme and decision points?)

Design Asessement

#Design Concept

Design One

- -diagrams
- -main components of complete system
- -benefits in terms of meeting requirements
- -evaluation
- --cost (implementation, maintenance, energy consumption)
- --strong/weak points
- --weighted selection
- -recommendation
- -Risk assesment
- --external causes (weather, vehicle impact, human interferance)
- --risk of failure during intended life
- --mitigation (steps you will take to reduce the risk)

Design Two

#Embodiment Design

System

- -Systems Diagram
- -Analysis
- -Software
- -Mechanical Design (Technical drawings)
- -Electrical Design (Circuit diagrams)
- --Power Budget/analysis
- -Assumptions
- --Vailidity
- -Failure modes
- --Probabilities
- --Consequences
- --Mitigation
- -System lifetime, limits
- -Component / sub-system worst case calculation

Next step:

Allocation of tasks.

Progress Report 3

Design Progress Report 2

Team 14

GVNJAR002 (Electrical) Govender, Jarushen

KHBISA001 (Mech) Khobo, Isaac Lebogang

STVATA001 (ECE) Stavrev, Nasko

SCHBEN011 (Mech) Scholtz, Benjamin

(All present.)

Meeting Details

The meeting was arranged via our Whatsapp group as usual. We arranged to meet in Blue Lab at 8AM on Thursday the 10th of March. We unfortunately had to abandon our previous idea of using RFID's after feedback from the course convener. The decision was taken during the meeting on Thursday after a brief discussion.

We managed to come up with a new idea after some brainstorming. The idea was presented by Benjamin Sholtz.

We also allocated tasks to each group member to work on individually.

Idea Formulation

- -Make use a travel triangulation Open RTLS system using Decawave chips.
- -Cheaper than RFID. We decided to make RFID our second option.
- -Cheaper in terms of the readers needed for RFID, difficulty of installing coils and the tags are nearly on par with RFID in terms of expenses.
- -Each bay would be set up using three chips to achieve triangulation.
- -Each driver would receive small device to triangulate with the chips possible problem with determine how big the device should be (small ones easier to lose?)
- -Triangulation works as demonstrated below:

The intersection of the circle would be used for detection.

- -Decawave chosen because of familiarity of use with group members.
- As per official website stats are displayed below:

- -All circuit diagrams, schematics, data regarding the chips are easily available from the website after registering.
- -Our backup idea is RFID.

Allocation of Tasks

Allocation of tasks was decided by program of study of each group member.

Tag case - CAD - Isaac

Tag electronics/PCB - Ben

-chip connections, programming

Tag power electronics - Jarushen

-battery requirements, regulator, lifetime

Beacon construction - sketch - Isaac

Beacon electronics/PCB (WiFi) - block diagram

Report/LaTex - Ben

Software backend + simulation - Nasko

What we need:

Find out about visitors/how to fix system for their use

Decide on beacon size

Possible issue with people who don't buy tags at all using parking

Progress Report 4

Team 14

- 1. Jarushen Govender, GVNJAR002 (EE)
- 2. Isaac Lebogang Khobo, KHBISA001 (ME)
- 3. Nasko Stavrev, STVATA001 (ECE)
- 4. Benjamin Scholtz, SCHBEN011 (ME)

Meetings details

We used the WhatsApp group to arrange the meeting in the usual venue, Blue Lab. It took place on Thursday, March 10th at 8 am.

<u>Progress on the allo</u>cated tasks

We convened to discuss individual progress on tasks allocated in the previous meetings. The following are the progresses or plans presented.

- Ben on electronics/PCB & Report
 - Firstly, the report template compiled with LaTex was discussed; the section already completed (Task clarification) and how to add to the document the information required, that is to modify the code.
 - The PCB construction was presented

- Isaac on tag case, and beacon construction
 - The case was designed with reference to the PCB.

Electrical Engineering Design Final Progress Report

- The chip will be attached to the car by suction; and the case will have a QR code and sticker/slip for identification.
- Beacon construction was discussed

- Small modifications were to be made to the beacon structure; removing some material in order to reduce the costs.

- Nasko on simulations and software back end
 - The simulation and code is going to focus on how the data is sent and received by the transceivers as well as the chips then triangulated.
- Jarushen on power summary
 - Dewave can be powered using Li-poly cells, standard alkaline batteries and Ni-MH rechargeable cell (AAA, AA sizes). The design process requires us a select one. Our internal stipulation is that we want rechargeable batteries which will prove cheaper in the long run.
 - System power consumption can be reduced using DC-DC switching regulators.
 - The use of Buck-Boost converters to allow lower battery voltages to be used while maintaining the minimum supply voltage
 - In order to maximise the amount of time spent in low current states, the following needs to be done
 - ✓ Using the highest data rate possible
 - ✓ Keeping the number of data bytes as long as possible.
 - ✓ Keeping the turnaround time between Transmit and Receive modes as short as possible by ensuring the anchor/tag code is efficiently written

Electrical Engineering Design Final Progress Report

- ✓ Returning to SLEEP/DEEP SLEEP/OFF as quickly as possible after the last ranging exchange is complete.
- For triangulation, the beacon/disc will use more power than the receivers because it needs to function as both a sender and a receiver.

<u>Next step</u>

All members to carry out the plan and schedule the completion of sub-tasks made; and finally incorporate the sections in the final document.

Appendix C: Tag Bill of Materials and Unit Cost

Table 5: Tag Bill of Materials and Unit Cost Analysis

				and One Cost Marys			
Ref	Type	Value	Footprint	Part No. (Mouser default)	Cost (US\$)	Outlay	Cost Outlay
C4	Capacitor	$0.1 \mathrm{uF}$	Capacitors_SMD:C_0201	81-GRM033R60J104KE19	0.005	15000	75
C6	Capacitor	$0.1 \mathrm{uF}$	Capacitors_SMD:C_0201	81-GRM033R60J104KE19	0.005	15000	75
R2	Resistor	100K	Resistors_SMD:R_0201	660-RK73H1HTTC1003F	0.01	15000	150
C31	Capacitor	$0.1 \mathrm{uF}$	Capacitors_SMD:C_0201	81-GRM033R60J104KE19	0.005	15000	75
C30	Capacitor	4.7uF	Capacitors_SMD:C_0201	963-JMK063BJ474KP-F	0.041	15000	615
C29	Capacitor	$0.1 \mathrm{uF}$	Capacitors_SMD:C_0201	81-GRM033R60J104KE19	0.005	15000	75
C28	Capacitor	0.1uF	Capacitors_SMD:C_0201	81-GRM033R60J104KE19	0.005	15000	75
C27	Capacitor	0.1uF	Capacitors_SMD:C_0201	81-GRM033R60J104KE19	0.005	15000	75
C26	Capacitor	0.1uF	Capacitors_SMD:C_0201	81-GRM033R60J104KE19	0.005	15000	75
C25	Capacitor	1000pF	Capacitors_SMD:C_0201	81-GRM033R71E102KA1D	0.004	15000	60
C24	Capacitor	330pF	Capacitors_SMD:C_0201	81-GRM033R71E331KA1D	0.004	15000	60
C23	Capacitor	10pF	Capacitors_SMD:C_0201	81-GRM0335C1E100JA1D	0.003	15000	45
C22	Capacitor	0.1uF	Capacitors_SMD:C_0201	81-GRM033R60J104KE19	0.005	15000	75
C21	Capacitor	330pF	Capacitors_SMD:C_0201	81-GRM033R71E331KA1D	0.004	15000	60
C20	Capacitor	10pF	Capacitors_SMD:C_0201	81-GRM0335C1E100JA1D	0.003	15000	45
C19	Capacitor	0.1uF	Capacitors_SMD:C_0201	81-GRM033R60J104KE19	0.005	15000	75
C18	Capacitor	47uF	Capacitors_SMD:C_0201	581-TPSC476K016R0350	0.206	15000	3090
C15	Capacitor	0.1uF	Capacitors_SMD:C_0201	81-GRM033R60J104KE19	0.005	15000	75
C17	Capacitor	0.1uF	Capacitors_SMD:C_0201	81-GRM033R60J104KE19	0.005	15000	75
C16	Capacitor	0.1uF	Capacitors_SMD:C_0201	81-GRM033R60J104KE19	0.005	15000	75
T1	Transformer	TRANSFO4	footprints:HHM1595A1	810-HHM1595A1	0.362	15000	5430
C14	Capacitor	0.1uF	Capacitors_SMD:C_0201	81-GRM033R60J104KE19	0.005	15000	75
R6	Resistor	270	Resistors_SMD:R_0201	667-ERJ-1GNF2700C	0.005	15000	75
C12	Capacitor	820pF	Capacitors_SMD:C_0201	81-GRM033R71E821KA1D	0.004	15000	60
C13	Capacitor	18pF	Capacitors_SMD:C_0201	581-02013A180GAT2A	0.099	15000	1485
C11	Capacitor	0.1uF	Capacitors_SMD:C_0201	81-GRM033R60J104KE19	0.005	15000	75
C9	Capacitor	1.2pF	Capacitors_SMD:C_0201	810-C0603C0G1E1R2BTQ	0.02	15000	300
R3	Resistor	16k	Resistors_SMD:R_0201	667-ERJ-1GEJ163C	0.004	15000	60
C8	Capacitor	27pF	Capacitors_SMD:C_0201	81-GRM0335C1E270JA1D	0.004	15000	60
C7 R1	Capacitor	0.1uF 11k 1%	Capacitors_SMD:C_0201	81-GRM033R60J104KE19	0.005	15000	75 390
	Resistor		Resistors_SMD:R_0201	71-CRCW020111K0FKED	0.026	15000	
C5 C3	Capacitor Capacitor	0.1uF 0.1uF	Capacitors_SMD:C_0201 Capacitors_SMD:C_0201	81-GRM033R60J104KE19 81-GRM033R60J104KE19	0.005 0.005	15000 15000	75 75
R4	Resistor	10k	Resistors_SMD:R_0201		0.003	15000	60
R5	Resistor	10k 10k	Resistors_SMD:R_0201 Resistors_SMD:R_0201	603-RC0201FR-0710KL 603-RC0201FR-0710KL	0.004	15000	60
C2	Capacitor	10pF	Capacitors_SMD:C_0201	81-GRM0335C1E100JA1D	0.004	15000	45
C1	Capacitor	10pF	Capacitors_SMD:C_0201 Capacitors_SMD:C_0201	81-GRM0335C1E100JA1D	0.003	15000	45
Y1	Crystal	38.4MHz	Crystals:FA238-TSX3225	ABM10-165-38.400MHz-T3	0.667	15000	10005
C10	Capacitor	0.1uF	Capacitors_SMD:C_0201	81-GRM033R60J104KE19	0.007	15000	75
U1	Transciever	DW1000	Housings_DFN_QFN:QFN-48	1479-1001-2-ND	8.8726	15000	133089
U2	DC-DC	TPS62203DBV	SMD:SOT-23-5	595-TPS62203DBVR	0.542	15000	8130
U3	DC-DC	TPS62203DBV	SMD:SOT-23-5	595-TPS62203DBVR	0.542	15000	8130
C34	Capacitor Capacitor	4.7uF	Capacitors_SMD:C_0201	963-JMK063BJ474KP-F	0.041	15000	615
L1	Inductor	10uH	Inductors:Inductor_1212	81-LQH3NPN100MM0L	0.132	15000	1980
C35	Capacitor	10uF	Capacitors_SMD:C_0201	80-T491C106K016	0.102	15000	1530
P1	Connector	CONN_01X02	Connectors_Molex	See note.	0.5	15000	7500
P2	Antenna	Antenna	PCB Chip Antenna	963-AH086M555003-T	0.803	15000	12045
IC1	Micro.	ATMEGA328P-MM	DFN_QFN:QFN-28	556-ATMEGA328P-MMH	1.89	15000	28350
R7	Resistor	10k	Resistors_SMD:R_0201	603-RC0201FR-0710KL	0.004	15000	60
Y2	Crystal	16MHz	Crystals:crystal_FA238-TSX3225	732-TX325-16F09Z-AC3	0.278	15000	4170
C32	Capacitor	22pF	Capacitors_SMD:C_0201	810-C0603C0G1H220J	0.004	15000	60
C33	Capacitor	22pF	Capacitors_SMD:C_0201	810-C0603C0G1H220J	0.004	15000	60
		r		Total Capital Outlay (ZAR):			3558254.88
				Unit Cost (ZAR):			237.216992
				` '			

Notes P1 C35 U1 ${\bf Connector}$ Part No.: Diff. Footprint. Capacitor Footprint: 2412 Supplier: Digikey Transciever