Week 8: Theory Solutions

Question 1

The polynomial $p(x) = (x_1 + x_2 + x_3)/3$ represents the function in question.

Question 2

The given function is $f(x) = x_1 \cdot x_2$. Now we can see that for x = 11 and $B_1 = 1, B_2 = 2$, $f(x) \neq f(x^B)$. So since we have 2 disjoint subset if indices such that f is sensitive on x, the block sensitivity bs(f) = 2.

Question 3

The output string f_s of the function f is a 2^n bit Boolean string. If there is no solution then the f(x)=0 for all $x\in\{0,1\}^n$ and $f_s=0^{\otimes n}$. If there is exactly one solution then f(x)=1 for just one $x\in\{0,1\}^n$ and f(x)=0 else and $wt(f_s)=1$ where wt() is the Hamming weight. Let $N=2^n$. Let X be the set containing only $0^{\otimes N}$ and let Y be the set containing all N-bit strings of hamming weight 1. Let us define a relation $R=X\times Y$. Then we get $m=2^N$ and m'=1. Now, for any $i\in\{0,...,N-1\}$, we can see that there is exactly one string $y\in Y$ such that $x_i=0\neq y_i$ and $(x,y)\in R$. So l=1. Since we have exactly one string in X, we can have at most 1 string $x\in X$ for any $y\in Y$ such that $x_i=0\neq y_i$ and $(x,y)\in R$. Hence l'=1. So, the minimum number of queries required to decide if $wt(f_s)=0$ or $wt(f_s)=1$ is $\Omega\left(\sqrt{\frac{m\cdot m'}{l\cdot l'}}\right)=\Omega\left(\sqrt{2^N}\right)$.

Question 4

The approach to this question is very similar to the previous question. Let $N=2^n$. Let X be the set containing only the string $0^{\otimes N}$ and let Y is the set containing all N-bit strings of Hamming weight k. Define the relation $R=X\times Y$. It is obvious that $m=\binom{N}{k}$ and m'=1. Now, for each any $i\in\{0,...,N-1\}$, we see that there are exactly $\binom{2^N-1}{k-1}$ strings $y\in Y$ such that $x_i=0\neq y_i$ where $x=0^{\otimes N}$ and $(x,y)\in R$. Again since we have exactly 1 string in X, we have l'=1. Therefore, the minimum number of queries required to decide if $wt(f_s)=0$ or $wt(f_s)=k$ is $\Omega\left(\sqrt{\frac{m\cdot m'}{l\cdot l'}}\right)=\Omega\left(\sqrt{2^N/k}\right)$.