Efficienza Sperimentale

Informatica@SEFA 2018/2019 - Laboratorio 5

Massimo Lauria < massimo.lauria@uniroma1.it>
http://massimolauria.net/courses/infosefa2018/

Lunedì,19 Novembre 2018

Efficienza teorica vs sperimentale

Operazioni elementari su una macchina astratta

vs

Tempo di esecuzione in un ambiente operativo reale

Ambiente operativo

Molte cose possono influire sul tempo di esecuzione di un programma.

- algoritmo
- implementazione dell'algoritmo
- linguaggio compilato/interpretato
- compilatore/interprete
- velocità della CPU/RAM/Disco/...
- memoria libera

Eseguite i vostri programmi

Non limitatevi a scrivere i programmi e sperare che siano corretti come se steste facendo un compito in classe.

- la programmazione è la creazione di un artefatto
- eseguite i vostri programmi
- eseguiteli anche quando siete convinti che siano corretti
- testali su inout sempre più grandi

Esercizio

Provate ad implementare

- ricerca lineare
- ricerca binaria
- ▶ i vari algoritmi di ordinamento

e provatene l'efficienza sottoponendo input sempre più grandi.

Grafici dei tempi di esecuzione

Vogliamo fare un plot comparativo del tempo di esecuzione di vari algoritmi.

- ricerca sequenziale vs ricerca binaria
- insertion sort vs bubble sort

Ingredienti necessari

- 1. implementazioni degli algoritmi
- 2. dati di test
- 3. misurare i tempi
- 4. fare il plot

1. Implementazione degli algoritmi

Datevi da fare!

2. Dati di test

Nel modulo infosefa.py troverete una funzione numeriacaso per produrre una lista di numeri a caso, così da poter testare le vostre funzioni.

```
from infosefa import numeriacaso

lista = numeriacaso(10,-5,5)

lista_ordinata = numeriacaso(10,0,15,ordinati=True)

print(lista)
print(lista_ordinata)

8
```

```
[-1, 2, -4, 2, 0, -4, 5, 0, -4, 4]
[0, 3, 3, 5, 5, 7, 7, 10, 10, 14]
```

Come usare numeriacaso

Importando il modulo

oppure importando solo la funzione

```
from infosefa import numeriacaso 1
numeriacaso(100,0,1) 2
```

Documentazione di numeriacaso

from infosefa import numeriacaso 1
help(numeriacaso) 2

Help on function numeriacaso in module infosefa:

numeriacaso(N, minimo, massimo, ordinati=False)
Produce una lista di numeri generati a caso.

Produce una lista di N elementi, ognuno dei quali preso a caso (con uguale probabilità) tra tutti i numeri interi compresi tra 'minimo' e 'massimo', estremi inclusi.

Se N<O o minimo>massimo la funzione solleva un ValueError.

Se 'ordinati' è vero la lista restituita è ordinata.

3. Misurare i tempi di esecuzione

Se volete misurare tempi di esecuzione:

- dati omogenei
- dovete ripetere diverse volte e fare una media
- ► se i tempi sono piccoli ripetete molte volte
- non contate il tempo necessario a generare i dati

3. Esempio - Fibonacci

```
def fib(n):
    if n <= 2:
        return 1
    else:
        return fib(n-1)+fib(n-2)

def ifib(n):
    cur,prev=1,1
    if n <= 2:
        return 1
    for i in range(3,n+1):
        cur,prev = cur+prev,cur
    return cur</pre>
11
12
13
```

3. Esempio (II) - Fibonacci

```
from time import process_time
start = process_time()
for i in range(100):
    fib(25)
end = process_time()
                                                                6
print("Induttivo: {}".format((end-start)/100))
start = process_time()
for i in range(1000):
    ifib(25)
end = process_time()
print("Iterativo: {}".format((end-start)/1000))
```

```
Induttivo: 0.02093623
Iterativo: 1.656000000001018e-06
```

4. Grafici

4. Grafici (codice sorgente)

- ▶ plot inserisce un grafico nella figura
- potete mettere più grafici nella stessa figura
- savefig salva la figura in un file a vostra scelta

plot(x,y)

Plot di più funzioni

Un esempio di plot di runtime

