

Multi-Agent Systems

Assignment Project Exam Help

https://eduassistpro.github.io/ Dr. Nestor eo,

Add WeChat edu_assist_pro

- Researcher CONSUS (Crop Optimisation through Sensing, Understanding & viSualisation),
- School of Computer Science
- University College Dublin (UCD)

Commitment Management

- It is formed from a number of sub-processes which implement a set of strategies that specify how an agent:
 - Adopts new commitments.
 - Maintains its existing conomit Project Exam Help
 - Refines commitment nal commitments.

 Realises commitme https://eduassistpro.github.io/

 - Handles failed commande We Chat edu assist pro
- A Commitment Management Strategy is a specific set of strategies that can be employed by an agent.
 - e.g. blind commitment, single-minded commitment, social-minded commitment.
- The default strategy in Agent Factory is single-minded commitment.
- An agent maintains a commitment so long as it believes it is still acheivable.

Commitment Maintenance

•Commitments are maintained using a maintenance condition that is associated with each commitment.

BELIEF(has(?food)) SSI SCOMMIP (Site; thew, nB Fielp F(true), eat(?food))

- This condition outlines w https://eduassistpro.github.io/ for the agent to keep the commitment (like terms and do Wittelms edu_assist pact).
 - In the above example, the maintenance condition will always be true. This is sometimes known as blind commitment.
 - The maintenance condition is evaluated at each time point.
 - If the condition becomes false at any time point, then the commitment is said to have "failed".

Key AF-APL Agent Concepts

- Agent = Mental State + Commitment Rules + Embodiment Config.
- Mental State:
 - Beliefs. Subjective knowledge about the current state of the environment. Assignment Project Exam Help
 - Commitments. Mental co ich activity, at what time, for whom, and under what chttps://eduassistpro.github.io/
 - Activities may be either primitive act edu_assist nsr(SEQ, OR, PAR).
- Commitment Rules:
 - Map situations (possible environment states) to commitments that should be adopted should the situation arise.
- Embodiment Configuration
 - Perceptors. Computational units that convert raw data into beliefs.
 - Actuators. Computational units that define how to realise primitive actions.

Representing Activities

- Activities describe what the agent can do:
 - Actions. Primitive abilities that are directly executable by the agent.
 - Plans. A recipe that consists of a partially ordered set of activities.
- AF-APL supports the definition cont actions Fandhet plicit plans.
 - Actions are defined in he associated actuator unit. The definition consistshttps://eduassistpro.github.io/

Unique identifier eat(?foed) Chat edu_assist_pro BELIEF(has(?f

Post-condition (not used).

• Explicit plans are defined within the activity field of a commitment. They take the form of a plan operator (SEQ or PAR for AF-APL) together with a list of activities that may be either additional plan operators or actions.

SEQ(PAR(boilWater, addCoffee), pourWater, PAR(addSugar, addMilk))

Assignment Project Exam Help

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

Commitment Realisation & Refinement

- •At some point in time, the agent will try to fulfill its commitments.
 - Commitments to action are fulfilled through actuator activation.
 The agent finds the corresponding actuator activates it.
 - If not corresponding actua mitment fails.
 Commitments to plans https://eduassistpro.github.io/h commitment refinement.
 - The agent adopts a set and second at edu_assistents that correspond to the activities specified in the plan.
 - Plan operators may be used to place an order on the achievement of these commitments.
- The set of commitments adopted when fulfilling a primary commitment to be a commitment structure.

Gregory,
2005/01/20-8:00:00,
BELIEF(true),
Assignment Project Exam Help

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

Commitment Adoption

- Commitments are adopted as a result of the triggering of Commitment Rules.
- A commitment rule defines a situation in which the agent should adopt a commitment.

BELIEF(has(?food)) Assignment (Spitf) (Nown Bitelie F(true), eat(?food))

- Each of the commitment rul https://eduassistpro.github.io/
 - If the situation (left-hand side) of lan edu_assist phoated to true, then the rule is said to have been triggered.
 - Whenever a rule is triggered, there exists (at least one) set of variable bindings.
 - Each set of bindings is applied to the commitment construct on the right-hand side of the commitment rule, and the corresponding primary commitment is adopted by the agent.


```
Gregory,
                2005/01/20-8:00:00,
          Assignment Project Exam Help
              https://eduassistpro.github.io/
               Add WeChat edu assist pro
Gregory,
2005/01/20-8:00:00,
                                2005/01/20-8:00:00,
BELIEF(true),
                                BELIEF(true),
doA,
                                doB,
INACTIVE
                                WAITING
```



```
Gregory,
                2005/01/20-8:00:00,
         Assignment Project Exam Help
              https://eduassistpro.github.io/
              Add WeChat edu assist pro
Gregory,
                               2005/01/20-8:00:00,
2005/01/20-8:00:00,
                               BELIEF(true),
BELIEF(true),
                               doB,
doA.
                                WAITING
ACTIVE
```



```
Gregory,
                                                                                                                                                                       2005/01/20-8:00:00,
                                                                                                   Assignment 
                                                                                                                                                     https://eduassistpro.github.io/
                                                                                                                                                      Add WeChat edu assist pro
Gregory,
2005/01/20-8:00:00,
                                                                                                                                                                                                                                                                                                                                   2005/01/20-8:00:00,
                                                                                                                                                                                                                                                                                                                                   BELIEF(true),
BELIEF(true),
doA,
                                                                                                                                                                                                                                                                                                                                   doB,
SUCCEEDED
                                                                                                                                                                                                                                                                                                                                    WAITING
```



```
Gregory,
      2005/01/20-8:00:00,
Assignment A. Help
    https://eduassistpro.github.io/
    Add WeChat edu assist pro
                    2005/01/20-8:00:00,
                    BELIEF(true),
                    doB,
                    INACTIVE
```



```
Gregory,
      2005/01/20-8:00:00,
Assignment A. Help
    https://eduassistpro.github.io/
    Add WeChat edu assist pro
                    2005/01/20-8:00:00,
                    BELIEF(true),
                    doB,
                    ACTIVE
```



```
Gregory,
      2005/01/20-8:00:00,
Assignment A. Help
    https://eduassistpro.github.io/
    Add WeChat edu assist pro
                   2005/01/20-8:00:00,
                    BELIEF(true),
                   doB,
                    SUCCEEDED
```


Gregory,
2005/01/20-8:00:00,
BELIEF(true),
Assignment Project Exam Help

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

Commitment Failure Handling

- •If any commitment fails, the failure handling strategy defines how the agent should respond to the failure.
 - •In AF-APL, the strategy is simple:
 - •The failure of a decignment Project Item Help passed to the parent commitment. The imp seessed with respect to the parent commitment. https://eduassistpro.github.io/
 - The failure of a commitment that edu_assist_proauses the children to fail. There is no assessment here!
 - •During the failure handling process, this strategy is applied recursively through the commitment structure.
 - This recursive process, while potentially computationally expensive, is essential to ensure the agent does not continue to try and fulfil commitments that are now redundant.

Gregory,

doA,

ACTIVE

Failure Example

```
Gregory,
                2005/01/20-8:00:00,
         Assignment Project Exam Help
              https://eduassistpro.github.io/
              Add WeChat edu assist pro
2005/01/20-8:00:00,
                               2005/01/20-8:00:00,
BELIEF(true),
                               BELIEF(true),
                               doB,
                               WAITING
```


Gregory,

doA,

FAILED

Failure Example

```
Gregory,
                2005/01/20-8:00:00,
         Assignment Project Exam Help
              https://eduassistpro.github.io/
              Add WeChat edu assist pro
2005/01/20-8:00:00,
                               2005/01/20-8:00:00,
BELIEF(true),
                               BELIEF(true),
                               doB,
                               WAITING
```


Failure Example

```
Gregory,
      2005/01/20-8:00:00,
Assignment A. Help
    https://eduassistpro.github.io/
    Add WeChat edu assist pro
                    2005/01/20-8:00:00,
                    BELIEF(true),
                    doB,
                    FAILED
```


Agent Factory in Context I

- A number of other Agent Development Tools exist:
 - •LEAP (LEAP Consortium). Integration of JADE and ZEUS that is compliant with J2ME.
 - JADE (TILAB). FIPA-coimpliant BaviacA Pranal Supports the fabrication of reactive agents.
 - •**ZEUS (BT Labs)**. A g https://eduassistpro.github.io/eating deliberative agent designs, which when Acoumyletted; edu_assistn_piled into Java code, customised and finally, executed.
 - JACK (Agent-Oriented Software). Extends Java with agent-based concepts. JACK code is compiled into Java code and executed.
 - •FIPA-OS (Emorphia). The first FIPA-compliant agent platform. Similar to JADE.

Agent Factory in Context II

	AF	LEAP	JACK	ZEUS	JADE	FIPA-OS
BDI	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	V		
Mobility	Assig	nment Pro	ject Exam	Help	\checkmark	$\sqrt{}$
White Pages	$\sqrt{}$			$\overline{}$	\checkmark	$\sqrt{}$
Yellow Pages	V	nttps://edua		V	\checkmark	$\sqrt{}$
FIPA Compliance	$\sqrt{}$	Add WeCh	at edu_ass	sist_pro	$\sqrt{}$	
Fabrication Mode	Design	Instance	Design	Instance	Design	Design
Inheritance	\checkmark		$\sqrt{}$		\checkmark	$\sqrt{}$
Construction	Graphical	Graphical	Graphical	Graphical	None	None
Visualization	Graphical	Graphical	None	Graphical	None	None
Integrated Methodology	$\sqrt{}$	√		$\sqrt{}$		

Lecture V Learning Objectives

- ☐ Review the characteristics and elements of Agent Oriented
- **Programming and Object Oriented Programming**

Assignment Project Exam Help

- □ Review the differenc ent and an Object
 - https://eduassistpro.github.io/
- ☐ Understand the elem Add WeChat edu_assist_pro
- **Programming Language**
- □Understand how Belief Management occurs on a MAS and the
- temporality of Beliefs
- ☐ Understand and identify the different Commitment States

Things to Do!

Agent Oriented Programming

de Moraes Batista, A. F., dos Passos Alves, B., Kobayashi, G., Marietto, M. D. G. B., de Castro, S., Ruas, T. L., & Botelho, W. T. (2011). *Principles of agent-oriented programming*. INTECH Open Access Publisher.

AgentFactory:

Assignment Project Exam Help

- Russell, S., Jordan, H., O'Hare, G. Agent factory: a framework for prot https://eduassistpro.github.io/in *German Conference on Multiagent System Techn*Springer, Berlin, Heidelberg.

 Russell, S., Jordan, H., O'Hare, G. https://eduassistpro.github.io/in *German Conference on Multiagent System Techn*Springer, Berlin, Heidelberg.
- Collier, R., & O'Hare, G. M. (2009). Modeling and Programming by Commitment Rules in Agent Factory. In *Handbook of Research on Emerging Rule-Based Languages and Technologies: Open Solutions and Approaches* (pp. 393-421). IGI Global.
- Ross, R., Collier, R. W., & O'Hare, G. (2004). Af-apl: Bridging principles & practices in agent oriented languages. Programming Multi-Agent Systems. *Lecture Notes in Computer Science (LNAI)*, 3346.

Things to Do!

AgentFactory

https://sourceforge.net/projects/agentfactory/files/

• JAVA Agent DEvelopmenten Frameworkm (LADE)

https://jade.tilab.com/

•ZEUS

https://eduassistpro.github.io/

Agents

Nwana, H. S., Ndumu, D. T., Let Lwe Mated assist 1999). ZEUS: a toolkit for building distributed m stems. *Applied Artificial Intelligence*, 13(1-2), 129-185.

• JACK Intelligent http://aosgrp.com/products/jack/

•FIPA-OS http://fipa-os.sourceforge.net/index.htm

