2 MATH 362

Midterm 2

Time: 50 minutes

Friday November 15, 2019

1. [4] Suppose that (a, m) = 1 and $\operatorname{ord}_m a = t$. Prove that $a^n \equiv 1 \pmod{m}$ if and only if $t \mid n$.

If n = tq for some $q \in \mathbb{Z}$, then

$$a^n \equiv a^{tq} \equiv (a^t)^q \equiv 1^q \equiv 1 \pmod{m}.$$

Conversely, suppose $a^n \equiv 1 \pmod{m}$. Since t is the smallest positive integer such that $a^t \equiv 1 \pmod{m}$, we have $n \geq t$. Dividing n by t we get

$$n = tq + r$$
 for some $q \ge 1$ and $0 \le r < t$.

Thus

$$1 \equiv a^n \equiv a^{tq+r} \equiv (a^t)^q a^r \equiv 1^q a^r \equiv a^r \pmod{m}.$$

Since t is the smallest positive integer such that $a^t \equiv 1 \pmod{m}$, $a^r \equiv 1 \pmod{m}$ with $0 \le r < t$ is only possible if r = 0. Thus n = tq and the result follows.

2. [4] Suppose that $\operatorname{ord}_m a = t$. Prove that $a^r \equiv a^s \pmod{m}$ if and only if $r \equiv s \pmod{t}$.

Suppose $a^r \equiv a^s \pmod{m}$. We may assume that $r \geq s$ (for otherwise we just switch r and s). Also, (a, m) = 1 (otherwise $\operatorname{ord}_m a$ is not defined) and so we may divide both sides of the congruence by a^s to get $a^{r-s} \equiv 1 \pmod{m}$. By Q1, $t \mid (r-s)$ and thus $r \equiv s \pmod{t}$.

Conversely, suppose $r \equiv s \pmod{t}$. Then r = kt + s for some integer k, and

$$a^r \equiv a^{kt+s} \equiv (a^t)^k a^s \equiv a^s \pmod{m}$$

because $a^t \equiv 1 \pmod{m}$.

3. [4] Let p be an odd prime. Prove that $\operatorname{ord}_p a = 2$ if and only if $a \equiv -1 \pmod{p}$.

If $a \equiv -1 \pmod{p}$, then $a \not\equiv 1 \pmod{p}$ because p is an odd prime. Also,

$$a^2 \equiv (-1)^2 \equiv 1 \pmod{p},$$

so $\operatorname{ord}_p a = 2$.

Conversely, suppose $\operatorname{ord}_p a = 2$. Then

$$a^2 \equiv 1 \pmod{p}$$
.

But p is an odd prime, so there are only two possible solutions to this congruence: $a \equiv 1$ or $a \equiv p-1 \pmod{p}$. But the ord_p 1=1, so it follows that $a \equiv p-1 \equiv -1 \pmod{p}$.

4. [3] Let $a \in \Phi(36)$ and $\operatorname{ord}_{36} a = 6$. What is the remainder when a^{13} is divided by 36? Explain!

By a theorem, if
$$\operatorname{ord}_m a = t$$
, then $a^r \equiv a^s \pmod{m}$ iff $r \equiv s \pmod{t}$. Since $13 \equiv 1 \pmod{6}$, $a^{13} \equiv a^1 \pmod{36}$.

But a is a least residue of 36, so the remainder is a.

5. [2] Euler's Criterion tells us exactly when the congruence $x^2 \equiv a \pmod{p}$ has a solution in the case where p is an odd prime. State (any form of) Euler's Criterion.

If p is an odd prime and $p \nmid a$, then $(a/p) \equiv a^{(p-1)/2} \pmod{p}$.

6. [4] Let p be an odd prime. State and prove a formula for the Legendre symbol (-1/p).

If p is an odd prime, then

$$(-1/p) = \begin{cases} 1 & \text{if } p \equiv 1 \pmod{4} \\ -1 & \text{if } p \equiv 3 \pmod{4}. \end{cases}$$

Proof. By Euler's criterion,

$$(-1/p) \equiv (-1)^{(p-1)/2} \pmod{p}$$
.

If $p \equiv 1 \pmod{4}$, then $p-1 \equiv 0 \pmod{4}$, hence (p-1)/2 is even and $(-1)^{(p-1)/2} \equiv 1 \pmod{p}$. If $p \equiv 3 \pmod{4}$, then $p-1 \equiv 2 \pmod{4}$, hence $(p-1)/2 \equiv 1 \pmod{2}$, so (p-1)/2 is odd and $(-1)^{(p-1)/2} \equiv -1 \pmod{p}$.

Equality follows because (-1/p) is equal to either 1 or -1.

7. [3] Use Legendre symbols to determine whether the congruence $x^2 \equiv 15 \pmod{43}$ has a solution.

Determine (15/43):

$$(15/43) = (3/43)(5/43)$$

= $-(43/3)(43/5)$ (QRT; $3 \equiv 43 \equiv 3 \pmod{4}$; $5 \equiv 1 \pmod{4}$
= $-(1/3)(3/5)$
= $-(5/3)$ (QRT)
= $-(2/3) = -1(-1) = 1$.

Thus the congruence has a solution.

8. [6] Prove that if p and q = 4p + 1 are both primes, then 2 is a primitive root of q.

Because q is prime, $\phi(q) = q - 1 = 4p$. By a theorem, $\operatorname{ord}_q 2 | 4p$, so $\operatorname{ord}_p 2 \in \{1, 2, 4, p, 2p, 4p\}$. First consider 2p. Note that q = 4p + 1, so $2p = \frac{q-1}{2}$. By Euler's Criterion,

$$2^{2p} \equiv 2^{(q-1)/2} \equiv (2/q) \pmod{q}$$
.

We know p is odd; say p = 2k + 1 for some k. Then 4p = 8k + 4, that is, $4p \equiv 4 \pmod{8}$ and so $q \equiv 4 + 1 \equiv 5 \pmod{8}$. Hence (2/q) = -1 and so

$$2^{2p} \equiv (2/q) \equiv -1 \pmod{q}$$
.

Therefore $\operatorname{ord}_{q} 2 \neq 2p$.

Suppose d|2p. Then $\operatorname{ord}_p 2 \neq d$, otherwise Q1 would imply that $2^{2p} \equiv 1 \pmod{q}$ which is not the case. Therefore $\operatorname{ord}_q 2 \notin \{1, 2, p\}$.

Suppose $\operatorname{ord}_q 2 = 4$. Then

$$1 \equiv 2^4 \equiv 16 \pmod{q}$$

and so q|15. Since q is a prime of the form 4p+1, the only possibility is q=5. But then p=1, which is not the case as p is prime. Hence $\operatorname{ord}_q 2 \neq 4$.

Therefore $\operatorname{ord}_q 2 = 4p$ and 2 is a primitive root of q.

9. [4] Find the period and the length of the non-periodical part of the expansion of 15/756 in base 14.

First write 15/756 in lowest form: 15/756 = 5/252.

Factorize 252: $252 = 2^2 7^1 3^2 = 28 \cdot 9$, where (9, 14) = 1.

The period of the expansion is $\operatorname{ord}_9 14 = \operatorname{ord}_9 5$. Since $\phi(9) = 6$, we determine 5^t , where t = 2, 3, 6:

$$5^{2} \equiv 25 \equiv 7 \pmod{9}$$
$$5^{3} \equiv 35 \equiv -1 \pmod{9}$$
$$5^{6} \equiv 1 \pmod{9}.$$

So the period of the expansion is 6.

The length of the nonperiodical part is $\max\{2,1\}=2$.