The Ninth Grade Math Competition Class Quadratic Equations and Vieta Anthony Wang

1. Let a and b denote the solutions of $18x^2 + 3x - 28 = 0$, find the value of (a - 1)(b - 1).

2. Let a and b be the roots of the equation $x^2 - mx + 2 = 0$. Suppose that $a + \frac{1}{b}$ and $b + \frac{1}{a}$ are roots of the equation $x^2 - px + q = 0$, find q.

3. Let p, q and r be constants. One sulution to the equation (x-p)(x-q)=(r-p)(r-q) is x=r. Find the other solution in terms of p, q and r.

4. If m and n are the roots of $x^2 + mx + n = 0$, where $m \neq 0$ and $n \neq 0$, then what number does m + n equal?

5. For what values of k does the equation $\frac{x-1}{x-2} = \frac{x-k}{x-6}$ have no solution for x?

6. Find all solutions to $2w^4 - 5w^2 + 2 = 0$.

7. Find the value of $\sqrt{90 + \sqrt{90 + \sqrt{90 + \cdots}}}$.

- **8.** Let a and b be the roots of $x^2 3x 1 = 0$. Try to solve the following problems without finding a and b, it will be easier that way, anyway.
 - Find a quadratic equations whose roots are a^2 and b^2 .
 - Compute $\frac{1}{a+1} + \frac{1}{b+1}$.

$$x^{2}-3x-(=0)$$

$$a+b=5$$

$$ab=-1$$

$$a_{1}b \quad roots$$

$$y^{2} + cy + d = 0$$
 $a^{2}+b^{2} = -c$
 a^{2},b^{2} $rcols$ $a^{2}b^{2} = d$
 $a^{2}b^{2} = d$
 $a^{2}b^{2} = d$
 $a^{2}b^{2} = 1$
 $a^{2}b^{2} = 1$

$$a+1 + b+1 = \frac{3+2}{(a+1)(b+1)} = \frac{3+2}{-1+3+1} = \frac{3}{3}$$

9. For some integer a, the equation $1988x^2 + ax + 8891 = 0$, and $8891x^2 + ax + 1988 = 0$ share a common root. Find a.

$$6903x^2 - 6903 = 0$$

$$6963(x^2-1)=0$$

$$X=(=) 10879 + 2a + 10879 = 0$$

$$X=(=) 10874 - 2a + 10879 = 0$$

$$=) \alpha = \pm 10879$$

10. The product of the roots of the quadratic $6x^2 + cx + 4$ is 2 greater than the sum of the roots, and c is a constant. What is c?

$$6x^{2} + (x + 4 = 0)$$

Prod. of the roots: $6 = \frac{2}{3}$

Sum of the roots: $-\frac{C}{6}$
 $2 = 2 + (-\frac{C}{6})$
 $4 = \frac{2}{3}$
 $4 = \frac{2}{3}$

11. Let a,b, and c be the roots of $x^3 - 3x^2 + 1$.

• Find a polynomial whose roots are a + 3, b + 3 and c + 3.

• Find a polynomial whose roots are $\frac{1}{a+3}$, $\frac{1}{b+3}$, and $\frac{1}{c+3}$.

• Compute $\frac{1}{a+3} + \frac{1}{b+3} + \frac{1}{c+3}$.

• Find a polynomial whose roots are a^2 , b^2 and c^2 .

• Find a recurrence relation for $x_n = a^n + b^n + c^n$, and use it to compute $a^5 + b^5 + c^5$.