

ZEROS OF RANDOM POLYNOMIALS ON \mathbb{C}^m

THOMAS BLOOM AND BERNARD SHIFFMAN

ABSTRACT. For a regular compact set K in \mathbb{C}^m and a measure μ on K satisfying the Bernstein-Markov inequality, we consider the ensemble \mathcal{P}_N of polynomials of degree N , endowed with the Gaussian probability measure induced by $L^2(\mu)$. We show that for large N , the simultaneous zeros of m polynomials in \mathcal{P}_N tend to concentrate around the Silov boundary of K ; more precisely, their expected distribution is asymptotic to $N^m \mu_{eq}$, where μ_{eq} is the equilibrium measure of K . For the case where K is the unit ball, we give scaling asymptotics for the expected distribution of zeros as $N \rightarrow \infty$.

1. INTRODUCTION

A classical result due to Hammersley [Ha] (see also [SV]), loosely stated, is that the zeros of a random complex polynomial

$$f(z) = \sum_{j=0}^N c_j z^j \quad (1)$$

mostly tend towards the unit circle $|z| = 1$ as the degree $N \rightarrow \infty$, when the coefficients c_j are independent complex Gaussian random variables of mean zero and variance one. In this paper, we will prove a multivariable result (Theorem 3.1), a special case (Example 3.5) of which shows, loosely stated, that the common zeros of m random complex polynomials in \mathbb{C}^m ,

$$f_k(z) = \sum_{|J| \leq N} c_J^k z_1^{j_1} \cdots z_m^{j_m} \quad \text{for } k = 1, \dots, m, \quad (2)$$

tend to concentrate on the product of the unit circles $|z_j| = 1$ ($j = 1, \dots, m$) as $N \rightarrow \infty$, when the coefficients c_J^k are i.i.d. complex Gaussian random variables.

The following is our basic setting: We let K be a compact set in \mathbb{C}^m and let μ be a Borel probability measure on K . We assume that K is non-pluripolar and we let V_K be its pluricomplex Green function. We also assume that K is regular (i.e., $V_K = V_K^*$) and that μ satisfies the Bernstein-Markov inequality (see §2). We give the space \mathcal{P}_N of holomorphic polynomials of degree $\leq N$ on \mathbb{C}^m the Gaussian probability measure γ_N induced by the Hermitian inner product

$$(f, g) = \int_K f \bar{g} d\mu. \quad (3)$$

The Gaussian measure γ_N can be described as follows: We write $f = \sum_{j=1}^{d(N)} c_j p_j$, where $\{p_j\}$ is an orthonormal basis of \mathcal{P}_N with respect to (3) and $d(N) = \dim \mathcal{P}_N = \binom{N+m}{m}$. Identifying

Date: May 27, 2006.

Research partially supported by NSERC (first author) and NSF grant DMS-0100474 (second author).

$f \in \mathcal{P}_N$ with $c = (c_1, \dots, c_{d(N)}) \in \mathbb{C}^{d(N)}$, we have

$$d\gamma_N(s) = \frac{1}{\pi^{d(N)}} e^{-|c|^2} dc.$$

(The measure γ_N is independent of the choice of orthonormal basis $\{p_j\}$.) In other words, a random polynomial in the ensemble $(\mathcal{P}_N, \gamma_N)$ is a polynomial $f = \sum_j c_j p_j$, where the c_j are independent complex Gaussian random variables with mean 0 and variance 1.

Our main result, Theorem 3.1, gives asymptotics for the expected zero current of k i.i.d. random polynomials ($1 \leq k \leq m$). In particular, the expected distribution $\mathbf{E}(Z_{f_1, \dots, f_m})$ of simultaneous zeros of m independent random polynomials in $(\mathcal{P}_N, \gamma_N)$ has the asymptotics

$$\frac{1}{N^m} \mathbf{E}(Z_{f_1, \dots, f_m}) \rightarrow \mu_{eq} \quad \text{weak}^*, \quad (4)$$

where $\mu_{eq} = (\frac{i}{\pi} \partial \bar{\partial} V_K)^m$ is the equilibrium measure of K . Here, $\mathbf{E}(X)$ denotes the expected value of a random variable X .

The reader may notice from (4) that the distributions of zeros for the measures on \mathcal{P}_N considered here are quite different from those of the $SU(m+1)$ ensembles studied, for example, in [SZ1, SZ4, BSZ1, BSZ2, DS]. The Gaussian measure on the $SU(m+1)$ polynomials is based on the inner product

$$\langle f, g \rangle_N = \int_{S^{2m+1}} F_N \overline{G_N},$$

where $F_N, G_N \in \mathbb{C}[z_0, z_1, \dots, z_m]$ denote the degree N homogenizations of f and g respectively. It follows easily from the $SU(m+1)$ -invariance of the inner product that the expected distribution of simultaneous zeros equals $\frac{N^m}{\pi^m} \omega^m$ (exactly), where ω is the Fubini-Study Kähler form (on $\mathbb{C}^m \subset \mathbb{CP}^m$). We note that, unlike (3), this inner product depends on N ; indeed, $\|z^J\|_N^2 = \frac{m!(N-|J|)!j_1! \cdots j_m!}{(N+m)!}$ [SZ1, (30)].

In this paper, we also give scaling limits for the expected zero density in the case of the unit ball in \mathbb{C}^m (Theorem 4.1). The problem of finding scaling limits for more general sets in \mathbb{C}^m remains open. Another open problem is to establish the multivariable version of the following one variable result: For a regular subset $K \subset \mathbb{C}$, it is known (see [SZ1, Bl2]) that with probability one, a sequence $\{f_N\}_{N=1,2,\dots}$ of random polynomials of increasing degree satisfies:

$$\lim_{N \rightarrow \infty} \frac{1}{N} Z_{f_N} = \mu_{eq} \quad \text{weak}^*.$$

2. BACKGROUND

We let \mathcal{L} denote the Lelong class of plurisubharmonic (PSH) functions on \mathbb{C}^m of at most logarithmic growth at ∞ . That is

$$\mathcal{L} := \{u \in \text{PSH}(\mathbb{C}^m) \mid u(z) \leq \log^+ \|z\| + O(1)\} \quad (5)$$

For K a compact subset of \mathbb{C}^m , we define its pluricomplex Green function $V_K(z)$ via

$$V_K(z) = \sup\{u(z) \mid u \in \mathcal{L}, u \leq 0 \text{ on } K\}. \quad (6)$$

We will assume K is regular, that is by definition, V_K is continuous on \mathbb{C}^m (and so $V_K = V_K^*$, its uppersemicontinuous regularization). The function V_K is a locally bounded PSH function

on \mathbb{C}^m and, in fact

$$V_K - \log^+ \|z\| = O(1). \quad (7)$$

By a basic result of Bedford and Taylor [BT1] (see [Kl]), the complex Monge-Ampère operator $(dd^c)^m = (2i\partial\bar{\partial})^m$ is defined on any locally bounded PSH function \mathbb{C}^m and in particular on V_K . The equilibrium measure of K is defined by (see [Kl, Cor. 5.5.3])

$$\mu_{eq}(K) := \left(\frac{i}{\pi} \partial\bar{\partial} V_K \right)^m \quad (8)$$

Since V_K satisfies (7), it is a positive Borel measure, here normalized to have mass 1. The support of the measure $\mu_{eq}(K)$ is the Silov boundary of K for the algebra of entire analytic functions [BT2]. In one variable, i.e. $K \subset \mathbb{C}$, V_K is the Green function of the unbounded component of $\mathbb{C} \setminus K$ with a logarithmic pole at ∞ , and $\mu_{eq}(K) = \frac{1}{2\pi} \Delta V_K$, where Δ is the Laplacian [Ra].

Let μ be a finite positive Borel measure on K . The measure μ is said to satisfy a Bernstein-Markov (BM) inequality, if, for each $\varepsilon > 0$ there is a constant $C = C(\varepsilon) > 0$ such that

$$\|p\|_K \leq C e^{\varepsilon \deg(p)} \|p\|_{L^2(\mu)} \quad (9)$$

for all holomorphic polynomials p . Essentially, the BM inequality says that the L^2 norms and the sup norms of a sequence of holomorphic polynomials of increasing degrees are “asymptotically equivalent”.

The question arises as to which measures actually satisfy the BM inequality. It is a result of Nguyen-Zeriahi [NZ] combined with [Kl, Cor. 5.6.7] that for K regular, $\mu_{eq}(K)$ satisfies BM. This fact is used in Examples 3.5–3.6. In [Bl1, Theorem 2.2], a “mass-density” condition for a measure to satisfy BM was given. (See also [BL].)

Our proof uses the *probabilistic Poincaré-Lelong formula* for the zeros of random functions (Proposition 2.1 below). Considering a slightly more general situation, we let g_1, \dots, g_d be holomorphic functions with no common zeros on a domain $U \subset \mathbb{C}^m$. (We are interested in the case where $U = \mathbb{C}^m$ and $\{g_j\}$ is an orthonormal basis of \mathcal{P}_N with respect to the inner product (3), as discussed above.) We let \mathcal{F} denote the ensemble of random holomorphic functions of the form $f = \sum c_j g_j$, where the c_j are independent complex Gaussian random variables with mean 0 and variance 1. We consider the *Szegő kernel*

$$S_{\mathcal{F}}(z, w) = \sum_{j=1}^d g_j(z) \overline{g_j(w)}.$$

For the case where the g_j are orthonormal functions with respect to an inner product on $\mathcal{O}(U)$, $S_{\mathcal{F}}(z, w)$ is the kernel for the orthogonal projection onto the span of the g_j .

Under the assumption that the g_j have no common zeros, it is easily shown using Sard’s theorem (or a variation of Bertini’s theorem) that for almost all $f_1, \dots, f_k \in \mathcal{F}$, the differentials df_1, \dots, df_k are linearly independent at all points of the zero set

$$\text{loc}(f_1, \dots, f_k) := \{z \in U : f_1(z) = \dots = f_k(z) = 0\}.$$

This condition implies that the complex hypersurfaces $\text{loc}(f_j)$ are smooth and intersect transversely, and hence $\text{loc}(f_1, \dots, f_k)$ is a codimension k complex submanifold of U . We

then let $Z_{f_1, \dots, f_k} \in \mathcal{D}'^{k,k}(U)$ denote the current of integration over $\text{loc}(f_1, \dots, f_k)$:

$$(Z_{f_1, \dots, f_k}, \varphi) = \int_{\text{loc}(f_1, \dots, f_k)} \varphi, \quad \varphi \in \mathcal{D}^{m-k, m-k}(U).$$

We shall use the following Poincaré-Lelong formula from [SZ3, SZ4]:

PROPOSITION 2.1. *The expected zero current of k independent random functions $f_1, \dots, f_k \in \mathcal{F}$ is given by*

$$\mathbf{E}(Z_{f_1, \dots, f_k}) = \left(\frac{i}{2\pi} \partial \bar{\partial} \log S_{\mathcal{F}}(z, z) \right)^k.$$

The proof follows by a verbatim repetition of the proof of Proposition 5.1 in [SZ3] (which gives the case where the g_j are normalized monomials with exponents in a Newton polytope). The codimension $k = 1$ case was given in [SZ1] (for sections of holomorphic line bundles), and in dimension 1 by Edelman-Kostlan [EK]. (The formula also holds for infinite-dimensional ensembles; see [So, SZ4].) The general case follows from the codimension 1 case together with the fact that

$$\mathbf{E}(Z_{f_1, \dots, f_k}) = \mathbf{E}(Z_{f_1}) \wedge \cdots \wedge \mathbf{E}(Z_{f_k}) = \mathbf{E}(Z_f)^k, \quad (10)$$

which is a consequence of the independence of the f_j . The wedge product of currents is not always defined, but $Z_{f_1} \wedge \cdots \wedge Z_{f_k}$ is almost always defined (and equals Z_{f_1, \dots, f_k} whenever the hypersurfaces $\text{loc}(f_j)$ are smooth and intersect transversely), and a short argument given in [SZ3] yields (10). (In fact, the left equality of (10) holds for independent non-identically-distributed f_j , as proven in [SZ3].) We note that the expectations in (10) are smooth forms.

3. RANDOM POLYNOMIALS ON POLYNOMIALLY CONVEX SETS

THEOREM 3.1. *Let μ be a Borel probability measure on a regular compact set $K \subset \mathbb{C}^m$, and suppose that (K, μ) satisfies the Bernstein-Markov inequality. Let $1 \leq k \leq m$, and let $(\mathcal{P}_N^k, \gamma_N^k)$ denote the ensemble of k -tuples of i.i.d. Gaussian random polynomials of degree $\leq N$ with the Gaussian measure $d\gamma_N$ induced by $L^2(\mu)$. Then*

$$\frac{1}{N^k} \mathbf{E}_{\gamma_N^k}(Z_{f_1, \dots, f_k}) \rightarrow \left(\frac{i}{\pi} \partial \bar{\partial} V_K \right)^k \quad \text{weak}^*, \quad \text{as } N \rightarrow \infty,$$

where V_K is the pluricomplex Green function of K with pole at infinity.

To prove Theorem 3.1, we consider the Szegő kernels

$$S_N(z, w) := S_{(\mathcal{P}_N, \gamma_N)}(z, w) = \sum_{j=1}^{d(N)} p_j(z) \overline{p_j(w)},$$

where $\{p_j\}$ is an $L^2(\mu)$ -orthonormal basis for \mathcal{P}_N . Our proof is based on approximating the extremal function V_K by the (normalized) logarithms of the Szegő kernels $S_N(z, z)$ (Lemma 3.4).

We begin by considering the polynomial suprema

$$\Phi_N^K(z) = \sup\{|f(z)| : f \in \mathcal{P}_N, \|f\|_K \leq 1\}. \quad (11)$$

Since $\frac{1}{N} \log f \in \mathcal{L}$, for $f \in \mathcal{P}_N$, it is clear that $\frac{1}{N} \log \Phi_N^K \leq V_K$, for all N . Pioneering work of Zaharjuta [Za] and Siciak [Si1, Si2] established the convergence of $\frac{1}{N} \log \Phi_N^K$ to V_K . The

uniform convergence when K is regular seems not to have been explicitly stated and we give the proof below.

LEMMA 3.2. *Let K be a regular compact set in \mathbb{C}^m . Then*

$$\frac{1}{N} \log \Phi_N^K(z) \rightarrow V_K(z)$$

uniformly on compact subsets of \mathbb{C}^m .

Proof. We first note that $1 \leq \Phi_j \leq \Phi_j \Phi_k \leq \Phi_{j+k}$, for $j, k \geq 0$. By a result of Siciak [Si1] and Zaharjuta [Za] (see [Kl, Theorem 5.1.7]),

$$V_K(z) = \lim_{N \rightarrow \infty} \frac{1}{N} \log \Phi_N^K(z) = \sup_N \frac{1}{N} \log \Phi_N^K(z), \quad (12)$$

for all $z \in \mathbb{C}^m$.

We use the regularity of K to show that the convergence is uniform: let

$$\psi_N = \frac{1}{N} \log \Phi_N^K \geq 0.$$

Thus for $N, k \geq 1, j \geq 0$, we have

$$Nk \psi_{Nk} + j \psi_j \leq (Nk + j) \psi_{Nk+j}.$$

Since $\psi_N \leq \psi_{Nk}$, we then obtain the inequality

$$\psi_{Nk+j} \geq \frac{Nk}{Nk+j} \psi_N + \frac{j}{Nk+j} \psi_j \geq \frac{Nk}{Nk+j} \psi_N. \quad (13)$$

Fix $\varepsilon > 0$. For each $a \in \mathbb{C}^m$, we choose $N_a \in \mathbb{Z}^+$ such that

$$V_K(a) - \psi_{N_a}(a) < \varepsilon \quad \text{and} \quad \frac{V_K(a)}{N_a} < \varepsilon,$$

and then choose a neighborhood U_a of a such that

$$|V_K(z) - V_K(a)| < \varepsilon, \quad \psi_{N_a}(z) \geq \psi_{N_a}(a) - \varepsilon, \quad \frac{V_K(z)}{N_a} < \varepsilon, \quad \text{for } z \in U_a.$$

Now let $N \geq N_a^2$, and write $N = N_a k + j$, where $k \geq N_a$, $0 \leq j < N_a$. By (12)–(13), we have

$$0 \leq V_K - \psi_N \leq V_K - \frac{N_a k}{N_a k + j} \psi_{N_a} \leq V_K - \frac{N_a}{N_a + 1} \psi_{N_a} \leq V_K - \psi_{N_a} + \frac{1}{N_a + 1} V_K. \quad (14)$$

Hence, for all $N \geq N_a^2$ and for all $z \in U_a$, we have

$$\begin{aligned} 0 &\leq V_K(z) - \psi_N(z) < V_K(z) - \psi_{N_a}(z) + \varepsilon \\ &= [V_K(a) - \psi_{N_a}(a)] + [V_K(z) - V_K(a)] + [\psi_{N_a}(a) - \psi_{N_a}(z)] + \varepsilon \\ &< 4\varepsilon. \end{aligned} \quad (15)$$

Hence for each compact $A \subset \mathbb{C}^m$, we can cover A with finitely many U_{a_i} , so that we have by (15),

$$\|V_K - \psi_N\|_A \leq 4\varepsilon \quad \forall N \geq \max_i N_{a_i}^2.$$

□

LEMMA 3.3. *For all $\varepsilon > 0$, there exists $C = C_\varepsilon > 0$ such that*

$$\frac{1}{d(N)} \leq \frac{S_N(z, z)}{\Phi_N^K(z)^2} \leq C e^{\varepsilon N} d(N).$$

Proof. Let $f \in \mathcal{P}_N$ with $\|f\|_K \leq 1$. Then

$$\begin{aligned} |f(z)| &= \left| \int_K S_N(z, w) f(w) d\mu(w) \right| \leq \int_K |S_N(z, w)| d\mu(w) \\ &\leq \int_K S_N(z, z)^{\frac{1}{2}} S_N(w, w)^{\frac{1}{2}} d\mu(w) = S_N(z, z)^{\frac{1}{2}} \|S_N(w, w)^{\frac{1}{2}}\|_{L^1(\mu)} \\ &\leq S_N(z, z)^{\frac{1}{2}} \|1\|_{L^2(\mu)} \|S_N(w, w)^{\frac{1}{2}}\|_{L^2(\mu)} = S_N(z, z)^{\frac{1}{2}} d(N)^{\frac{1}{2}}. \end{aligned}$$

Taking the supremum over $f \in \mathcal{P}_N$ with $\|f\|_K \leq 1$, we obtain the left inequality of the lemma.

To verify the right inequality, we let $\{p_j\}$ be a sequence of $L^2(\mu)$ -orthonormal polynomials, obtained by applying Gram-Schmid to a sequence of monomials of non-decreasing degree, so that $\{p_1, \dots, p_{d(N)}\}$ is an orthonormal basis of \mathcal{P}_N (for each $N \in \mathbb{Z}^+$). By the Bernstein-Markov inequality (9), we have

$$\|p_j\|_K \leq C e^{\varepsilon \deg p_j}$$

and hence

$$|p_j(z)| \leq \|p_j\|_K \Phi_{\deg p_j}^K(z) \leq C e^{\varepsilon \deg p_j} \Phi_{\deg p_j}^K(z) \leq C e^{\varepsilon N} \Phi_N^K(z), \quad \text{for } j \leq d(N).$$

Therefore,

$$S_N(z, z) = \sum_{j=1}^{d(N)} |p_j(z)|^2 \leq d(N) C^2 e^{2\varepsilon N} \Phi_N^K(z)^2.$$

□

LEMMA 3.4. *Under the hypotheses of Theorem 3.1, we have*

$$\frac{1}{2N} \log S_N(z, z) \rightarrow V_K(z)$$

uniformly on compact subsets of \mathbb{C}^m .

Proof. Let $\varepsilon > 0$ be arbitrary. Recalling that $d(N) = \binom{N+m}{m}$, we have by Lemma 3.3,

$$-\frac{m}{N} \log(N+m) \leq \frac{1}{N} \log \left(\frac{S_N(z, z)}{\Phi_N^K(z)^2} \right) \leq \frac{\log C}{N} + \varepsilon + \frac{m}{N} \log(N+m).$$

Since $\varepsilon > 0$ is arbitrary, we then have

$$\frac{1}{N} \log \left(\frac{S_N(z, z)}{\Phi_N^K(z)^2} \right) \rightarrow 0. \tag{16}$$

The conclusion follows from Lemma 3.2 and (16). □

Proof of Theorem 3.1: It follows from Lemma 3.4 and the fact that the complex Monge-Àmpere operator is continuous under uniform limits [BT1],

$$\left(\frac{i}{2\pi N} \partial \bar{\partial} \log S_N(z, z) \right)^k \rightarrow \left(\frac{i}{\pi} \partial \bar{\partial} V_K(z) \right)^k \quad \text{weak*}.$$

The conclusion then follows from Proposition 2.1. \square

EXAMPLE 3.5. Let K be the unit polydisk in \mathbb{C}^m . Then $V_K = \max_{j=1}^m \log^+ |z_j|$, the Silov boundary of K is the product of the circles $|z_j| = 1$ ($j = 1, \dots, m$), and $d\mu_{eq} = (\frac{1}{2\pi})^m d\theta_1 \cdots d\theta_m$ where $d\theta_j$ is the angular measure on the circle $|z_j| = 1$.

The monomials $z^J := z_1^{j_1} \cdots z_m^{j_m}$, for $|J| \leq N$, form an orthonormal basis for \mathcal{P}_N . A random polynomial in the ensemble is of the form

$$f(z) = \sum_{|J| \leq N} c_J z^J$$

where the c_J are independent complex Gaussian random variables of mean zero and variance one. By Theorem 3.1, $\mathbf{E}_{\gamma_N^m}(Z_{f_1, \dots, f_m}) \rightarrow (\frac{1}{2\pi})^m d\theta_1 \cdots d\theta_m$ weak*, as $N \rightarrow \infty$. In particular, the common zeros of m random polynomials tend to the product of the unit circles $|z_j| = 1$ for $j = 1, \dots, m$.

EXAMPLE 3.6. Let K be the unit ball $\{\|z\| \leq 1\}$ in \mathbb{C}^m . Then the Silov boundary of K is its topological boundary $\{\|z\| = 1\}$, $V_K(z) = \log^+ \|z\|$, and μ_{eq} is the invariant hypersurface measure on $\|z\| = 1$ normalized to have total mass one.

4. SCALING LIMIT ZERO DENSITY FOR ORTHOGONAL POLYNOMIALS ON S^{2m-1}

Examples 3.5 and 3.6 both reduce to the unit disk in the one variable case. In that case, detailed scaling limits are known (see, for example, [IZ]). For a more general compact set $K \subset \mathbb{C}$ with an analytic boundary, scaling limits are found in [SZ2].

In this section, we consider the case where $K = \{z \in \mathbb{C}^m : \|z\| \leq 1\}$ is the unit ball and μ is its equilibrium measure, i.e. invariant measure on the unit sphere S^{2m-1} . We have the following scaling asymptotics for the expected distribution of zeros of m random polynomials orthonormalized on the sphere:

THEOREM 4.1. *Let $(\mathcal{P}_N^m, \gamma_N^m)$ denote the ensemble of m -tuples of i.i.d. Gaussian random polynomials of degree $\leq N$ with the Gaussian measure $d\gamma_N$ induced by $L^2(S^{2m-1}, \mu)$, where μ is the invariant measure on the unit sphere $S^{2m-1} \subset \mathbb{C}^m$. Then*

$$\mathbf{E}_{\gamma_N^m}(Z_{f_1, \dots, f_m}) = D_N (\log \|z\|^2) \left(\frac{i}{2} \partial \bar{\partial} \|z\|^2 \right)^m,$$

where

$$\frac{1}{N^{m+1}} D_N \left(\frac{u}{N} \right) = \frac{1}{\pi^m} F_m''(u) F_m'(u)^{m-1} + O \left(\frac{1}{N} \right), \quad F_m(u) = \log \left[\frac{d^{m-1}}{du^{m-1}} \left(\frac{e^u - 1}{u} \right) \right].$$

Proof. We write

$$z^J = z_1^{j_1} \cdots z_m^{j_m}, \quad z = (z_1, \dots, z_m), \quad J = (j_1, \dots, j_m).$$

An easy computation yields

$$\int_{S^{2m-1}} |z^J|^2 d\mu(z) = \frac{(m-1)! j_1! \cdots j_m!}{(|J| + m - 1)!} = \frac{1}{\binom{|J|+m-1}{m-1} \binom{|J|}{m}}, \quad (17)$$

where

$$|J| = j_1 + \cdots + j_m, \quad \binom{|J|}{J} = \frac{|J|!}{j_1! \cdots j_m!}.$$

Thus an orthonormal basis for \mathcal{P}_N on S^{2m-1} is:

$$\varphi_J(z) = \binom{|J| + m - 1}{m - 1}^{\frac{1}{2}} \binom{|J|}{J}^{\frac{1}{2}} z^J, \quad |J| \leq N. \quad (18)$$

We have

$$\begin{aligned} S_N(z, z) = \sum_{|J| \leq N} |\varphi_J(z)|^2 &= \sum_{k=0}^N \binom{k + m - 1}{m - 1} \sum_{|J|=k} \binom{k}{J} |z_1|^{2j_1} \cdots |z_m|^{2j_m} \\ &= \sum_{k=0}^N \binom{k + m - 1}{m - 1} \|z\|^{2k}. \end{aligned}$$

Hence

$$S_N(z, z) = g_N(\|z\|^2), \quad \text{where } g_N(x) = \sum_{k=0}^N \binom{k + m - 1}{m - 1} x^k. \quad (19)$$

We note that

$$g_N = \frac{1}{(m-1)!} G_N^{(m-1)}, \quad \text{where } G_N(x) = \frac{1 - x^{N+m}}{1 - x}.$$

We denote by $O(\frac{1}{N})$ any function $\lambda(N, u) = \lambda_N(u) : \mathbb{Z}^+ \times \mathbb{R} \rightarrow \mathbb{R}$ satisfying:

$$\forall R > 0, \quad \forall j \in \mathbb{N}, \quad \exists C_{Rj} \in \mathbb{R}^+ \quad \text{such that} \quad \sup_{|u| < R} |\lambda_N^{(j)}(u)| < \frac{C_{Rj}}{N}. \quad (20)$$

We note that

$$N \log \left(1 + \frac{u}{N}\right) = u + u^2 O\left(\frac{1}{N}\right) \quad (\text{for } |u| < N),$$

and hence

$$\left(1 + \frac{u}{N}\right)^N = e^u + u^2 O\left(\frac{1}{N}\right).$$

Thus we have

$$\frac{1}{N} G_N \left(1 + \frac{u}{N}\right) = \frac{e^u - 1}{u} + O\left(\frac{1}{N}\right). \quad (21)$$

Hence

$$\frac{1}{N^m} g_N \left(1 + \frac{u}{N}\right) = \frac{1}{(m-1)!} \frac{d^{m-1}}{du^{m-1}} \left(\frac{e^u - 1}{u}\right) + O\left(\frac{1}{N}\right). \quad (22)$$

Therefore

$$\log \left[\frac{(m-1)!}{N^m} g_N \left(1 + \frac{u}{N}\right) \right] = F_m(u) + O\left(\frac{1}{N}\right), \quad (23)$$

where F_m is given in the statement of the theorem.

Since the zero distribution is invariant under the $\text{SO}(2m)$ -action on \mathbb{C}^m , we can write

$$\mathbf{E}_{\gamma_N^m}(Z_{f_1, \dots, f_m}) = D_N \left(\log \|z\|^2 \right) \left(\frac{i}{2} \partial \bar{\partial} \|z\|^2 \right)^m. \quad (24)$$

Then $D_N(\frac{u}{N})$ is the density at the point

$$z^N := \left(\frac{1}{\sqrt{m}} e^{u/2N}, \dots, \frac{1}{\sqrt{m}} e^{u/2N} \right) \in \mathbb{C}^m, \quad \|z^N\|^2 = e^{u/N}.$$

We shall compute using the local coordinates $\zeta_j = \rho_j + i\theta_j = \log z_j$. Let

$$\Omega = \left(\frac{i}{2} \partial \bar{\partial} \sum |\zeta_j|^2 \right)^m.$$

By Proposition 2.1 and (19), we have

$$\mathbf{E}_{\gamma_N^m}(Z_{f_1, \dots, f_m}) = \left(\frac{1}{2\pi} \right)^m \det \left(\frac{1}{2} \frac{\partial^2}{\partial \rho_j \partial \rho_k} \log g_N \left(\sum e^{2\rho_j} \right) \right) \Omega. \quad (25)$$

We note that

$$\Omega = m^m \left[1 + O\left(\frac{1}{N}\right) \right] \left(\frac{i}{2} \partial \bar{\partial} \|z\|^2 \right)^m \quad \text{at the point } z^N. \quad (26)$$

We let $\mathbf{1}$ denote the $m \times m$ matrix all of whose entries are equal to 1 (and we let I denote the $m \times m$ identity matrix). By (23) and (25)–(26), we have

$$\begin{aligned} D_N\left(\frac{u}{N}\right) &= \left(\frac{m}{2\pi} \right)^m \left[1 + O\left(\frac{1}{N}\right) \right] \\ &\quad \times \det \left(2m^{-2} e^{2u/N} (\log g_N)''(e^{u/N}) \mathbf{1} + 2m^{-1} e^{u/N} (\log g_N)'(e^{u/N}) I \right) \\ &= \frac{1}{\pi^m} \left[1 + O\left(\frac{1}{N}\right) \right] \det \left(m^{-1} N^2 F_m''(u) \mathbf{1} + N F_m'(u) I \right). \end{aligned}$$

Therefore,

$$\begin{aligned} \frac{1}{N^{m+1}} D_N\left(\frac{u}{N}\right) &= \frac{1}{N^{m+1} \pi^m} \left[1 + O\left(\frac{1}{N}\right) \right] \\ &\quad \times \left\{ [N F_m'(u)]^m + m [m^{-1} N^2 F_m''(u)] [N F_m'(u)]^{m-1} \right\} \\ &= \frac{1}{\pi^m} F_m''(u) F_m'(u)^{m-1} + O\left(\frac{1}{N}\right). \end{aligned}$$

□

Remark: There is a similarity between the scaling asymptotics of Theorem 4.1 and that of the one-dimensional $SU(1, 1)$ ensembles in [BR] with the norms $\|z^j\| = \binom{L-1+j}{j}^{-1/2}$, for $L \in \mathbb{Z}^+$. Then the expected distribution of zeros of random $SU(1, 1)$ polynomials of degree N has the asymptotics [BR, Th. 2.1]:

$$\mathbf{E}_N(Z_f) = \tilde{D}_N(\log |z|^2) \frac{i}{2} dz \wedge d\bar{z},$$

where (in our notation)

$$\frac{1}{N^2} \tilde{D}_N\left(\frac{u}{N}\right) = \frac{1}{\pi} F_{L-1}''(u) + O\left(\frac{1}{N}\right).$$

REFERENCES

- [BT1] E. Bedford and B. A. Taylor, A new capacity for plurisubharmonic functions, *Acta Math.* **149** (1982), 1–40.
- [BT2] E. Bedford and B. A. Taylor, Fine topology, Silov boundary and $(dd^c)^n$, *J. Funct. Anal.* **72** (1987), 225–251.
- [BR] P. Bleher and R. Ridzal, SU(1,1) random polynomials, *J. Statist. Phys.* **106** (2002), 147–171.
- [BSZ1] P. Bleher, B. Shiffman and S. Zelditch, Poincaré-Lelong approach to universality and scaling of correlations between zeros, *Comm. Math. Phys.* **208** (2000), 771–785.
- [BSZ2] P. Bleher, B. Shiffman and S. Zelditch, Universality and scaling of correlations between zeros on complex manifolds, *Invent. Math.* **142** (2000), 351–395.
- [Bl1] T. Bloom, Orthogonal polynomials in \mathbb{C}^n , *Indiana Univ. Math. J.* **46** (1997), 427–452.
- [Bl2] T. Bloom, Random polynomials and Green functions, *Int. Math. Res. Not.* **2005** (2005), 1689–1708.
- [BL] T. Bloom and N. Levenberg, Capacity convergence results and applications to a Bernstein-Markov inequality, *Trans. Amer. Math. Soc.* **351** (1999), 4753–4767.
- [DS] T.-C. Dinh and N. Sibony, Distribution des valeurs de transformations méromorphes et applications, *Comment. Math. Helv.* **81** (2006), 221–258.
- [EK] A. Edelman and E. Kostlan, How many zeros of a random polynomial are real? *Bull. Amer. Math. Soc.* **32** (1995), 1–37.
- [Ha] J. H. Hammersley, The zeros of a random polynomial. *Proceedings of the Third Berkeley symposium on Mathematical Statistics and Probability, 1954–55*, vol II, University of California Press, California 1956, pp 89–111.
- [Iz] I. Ibragimov and O. Zeitouni, On roots of random polynomials, *Trans. Amer. Math. Soc.* **349** (1997), 2427–2441.
- [Kl] M. Klimek, *Pluripotential Theory*, London Math. Soc. Monographs, New Series 6, Oxford University Press, New York, 1991.
- [NZ] T. V. Nguyen and A. Zeriahi, Famille de polynômes presque partout bornées, *Bull. Sci. Math., Paris*, **107** (1983), 81–91.
- [Ra] T. Ransford, *Potential Theory in the Complex Plane*, London Mathematical Society Student Texts 28, Cambridge University Press, 1995.
- [SV] L. A. Shepp and R. J. Vanderbei, The Complex zeros of random polynomials, *Trans. Amer. Math. Soc.* **347** (1995), 4365–4384.
- [SZ1] B. Shiffman and S. Zelditch, Distribution of zeros of random and quantum chaotic sections of positive line bundles, *Commun. Math. Phys.* **200** (1999), 661–683.
- [SZ2] B. Shiffman and S. Zelditch, Equilibrium distribution of zeros of random polynomials, *Int. Math. Res. Not.* **2003** (2003), 25–49.
- [SZ3] B. Shiffman and S. Zelditch, Random polynomials with prescribed Newton polytope, *J. Amer. Math. Soc.* **17** (2004), 49–108.
- [SZ4] B. Shiffman and S. Zelditch, Number variance of random zeros, preprint 2005, math.CV/0512652.
- [Si1] J. Siciak, Extremal plurisubharmonic functions in \mathbb{C}^n , *Ann. Polon. Math.* **39** (1981), 175–211.
- [Si2] J. Siciak, *Extremal Plurisubharmonic Functions and Capacities in \mathbb{C}^n* , Sophia Kokyuroku in Mathematics, No. 14, Sophia Univ., Tokyo, 1982.
- [So] M. Sodin, Zeros of Gaussian analytic functions, *Math. Res. Lett.* **7** (2000), 371–381.
- [Za] V. P. Zaharjuta, Extremal plurisubharmonic functions, orthogonal polynomials, and the Bernstein-Walsh theorem for functions of several complex variables (Russian), *Ann. Polon. Math.* **33** (1976/77), 137–148.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF TORONTO, TORONTO, ON, CANADA M5S 3G3
E-mail address: bloom@math.toronto.edu

DEPARTMENT OF MATHEMATICS, JOHNS HOPKINS UNIVERSITY, BALTIMORE, MD 21218, USA
E-mail address: shiffman@math.jhu.edu