Introduction to Computer Graphics

New Technology
——Augmented Reality

Contents

What's AR

Principle

Implementation

What's AR

- AR: Augmented Reality
- 把虚拟场景叠加到真实场景的技术
- HoloLens
- ·任天堂 3DS游戏机
- •AR翻译
- •AR房地产
- •AR明信片

• . . .

What's AR

VR

- All is virtual

•AR

- Integrate virtual objects into reality

• MR

- Integrate real objects into virtual world

Google Glass

AR翻译

伽門

未来的翻译长什么样?

AR房地产

AR明信片

伽語

Mercedes-Benz Intelligent Drive

Microsoft HoloLens

holoportation

holoportation

http://research.microsoft.com/holoportation

Interactive 3D Technologies

http://research.microsoft.com/groups/i3d

Microsoft Research

- •增强现实眼镜
 - Capture-Play

- •增强现实眼镜
 - Capture-Play

- •增强现实眼镜
 - See-Through

- •增强现实眼镜
 - See-Through

- •增强现实眼镜
 - See-Through

Principles(原理)

- Detect Marker/Nature Features
 - Marker
 - Nature Feature (SLAM)
- Recognize the Maker
- Estimate/Track the Scene (usually a plane)
- Render Synthesized Models

SIFT-> Object Detection

Implementation(原理)

 Use OpenCV to Implement the Core Algorithm

OpenCV is a powerful computer vision

library

Implementation(原理)

Read/write image/video

Process images

Analyze images

step0

- Read each image of the video (or from a camera)
- •e.g.

- Detect and Locate markers
 - Find the position of each maker in the image

- 1. Convert the input image to grayscale.
- 2. Perform binary threshold operation.
- 3. Detect contours.
- 4. Search for possible markers.
- 5. Detect and decode markers.

- 1. Convert the input image to grayscale.
 - RGB -> Gray Scale Image
 - The Formula:

Gray = R*0.299 + G*0.587 + B*0.114 cv::cvtColor(bgraMat, grayscale, CV_BGRA2GRAY);

•2. Perform binary threshold operation.

- 3. Detect contours.
 - How to?

Edge Extraction

Gradient Operator

G_{x}	-1	-2	-1	G_{y}	-1	0	1
	0	0	0		-2	0	2
	1	2	1		-1	0	1

Edge Extraction

- 4. Search for possible markers.
 - Extract lines and find their intersection points

- 4. Search for possible markers.
 - Extract lines and find their intersection points

• 5. Detect and decode markers.

- Recognize the Maker
 - Compare the detected marker with templates
 - 4 possible orientations

- Estimate/Track the Scene (usually a plane)
 - According to 3D-2D correspondences
 - Opency solvePnP

- Estimate/Track the Scene (usually a plane)
 - According to 3D-2D correspondences
 - Opency solvePnP

Render Synthesized Models

AR开发工具

- ARKit
 - 苹果
- ARCore
 - Android
- Artoolkit

