Introducción a quantmod

Aplicaciones y usos en R

Gabriel Cabrera

26 de julio de 2018

- 1 Introducción a Quantmod
- 2 Manos a la Obra: Obtención de Datos
- Gráficos usando Quantmod
- Trabajando con múltiples datos
- **5** Estadística Descriptiva

Información de Conctacto

- ✓ gcabrerag@fen.uchile.cl⋄ gcabrerag.netlify.comʹ @GaboC_g
 - **?** @GaboCg
- ♥ Facultad de Economía & Negocios, Universidad de Chile

Introducción a Quantmod

¿Qué es Quantmod?

- Es un paquete/librería diseñado para desarrollar, testear e implementar modelos estadísticos financieros.
- ② A través de la función getsymbols podemos extraer datos financieros desde varias fuentes: Google Finance, Yahoo Finance, Federal Reserve Bank of St. Louis FRED (más de 11,000 series !!!) y Oanda. Incluso desde fuentes propias: MySQL, R (Rdata) y Comma Separated Value files (csv).
- Tiene herramientas para realizar análisis técnico.
- On chartSeries se puede graficar, al más puro estilo de los terminales de Bloomberg y/o Reuters, genial no. No obstante... nunca está demás ggplot2 o plotly (Tufte's Principles).

Manos a la Obra: Obtención de Datos

Comencemos: Preambulo

Como todo paquete se debe instalar:

```
# Instalación package
install.packages("quantmod")
```

y posteriormente lo agregamos a nuestro script:

```
# Cargamos "quantmod"
library("quantmod")
```

HINT: con ctrl + R en windows/linux y cmd + R en MAC OS agregamos más rapido comentarios (sección) en Rstudio.

Función getSymbols

La función se compone principalmente de 5 elementos:

- Nombre del la serie (ticker o nemotecnico).
- Fuente/source (src), e.g: src="google", src="yahoo", src="FRED"
- Inicio de la serie (from), e.g. as.Date("1990-01-01").
- Fin de la serie (to), e.g. as.Date("1990-01-01").
- periodicity, esta puede ser daily, monthly o yearly.

```
# Estructura de la función getSymbols
getSymbols(" ", src = , from = as.Date(" "), to = as.Date(" "), periodicity = )
```

Obtención de Datos

A continuación obtendremos los datos del S&P 500 (**Standard & Poor 500**), aquí necesitamos saber el **ticker** o nemotécnico de la acción (**stock**) que vamos a trabajar, para *Yahoo* es **GSPC**. Si se desea buscar otra acción basta con ir a https://finance.yahoo.com y extraerlo.

```
getSymbols("^GSPC", src = "yahoo", from = "2010-01-01", to = "2018-07-30", periodicity = "daily")
## [1] "GSPC"
```

Gabriel Cabrera

¿Como son los datos?

Primera 1 observaciones con las 5 primeras columnas head(GSPC[,1:5],5)

GSPC.Open	GSPC.High	GSPC.Low	GSPC.Close	GSPC.Volume
1116.56	1133.87	1116.56	1132.99	3991400000
1132.66	1136.63	1129.66	1136.52	2491020000
1135.71	1139.19	1133.95	1137.14	4972660000
1136.27	1142.46	1131.32	1141.69	5270680000
1140.52	1145.39	1136.22	1144.98	4389590000

Gráficos usando Quantmod

Función chartSeries

Graficamos usando chartSeries sin análisis técnico chartSeries(GSPC, TA=NULL)

Función chartSeries

Como se ve, en el eje de las x muestra el periodo y en el eje de las ordenadas el precio. La opción TA implica que no hay ningún análisis técnico. sin TA aparecen el volumen.

```
# Graficamos usando chartSeries con volume
chartSeries(GSPC)
```

Pero cuando las series son muy largas, podemos ver tendencias pero dificulta ver cambios importantes a nivel de análisis técnico.

```
# Graficando S&P 500 con Valume y los tres últimos meses
chartSeries(GSPC, subset = "last 3 months")
```

Con el código anterior nos enfocamos solo en los tres meses anteriores.

Gráfico con ggplot2

Debemos cargar ggplot2, pero para esto usamos **tidyverse** luego graficamos

```
# Usando ggplot2
g1 <- ggplot(gspc) + geom_line(mapping = aes(index(gspc),GSPC.Adjusted))
g1 <- g1 + labs(title = "S&P 500", subtitle = "Desde Enero 2010 a 2018") + xlab("Fecha") + ylab("")
g1 <- g1 + theme_bw()
g1</pre>
```

¿Observan algo que está mal?

Trabajando con múltiples datos

Oracle, Nvidia, IBM y AMD

A continuación trabajaremos con las acciones de Oracle, Nvidia, IBM y AMD, comenzamos con crear un objeto con los nombres de los tickers

```
# Nuevos tickers
tickers <- c("ORCL","AMD","IBM","NVDA")</pre>
```

descargamos los datos con las características requeridas, que son las mismas que usamos anteriormente con S&P 500

```
# descargamos los tickers
getSymbols(tickers, src = "yahoo", from = "2010-01-01", to = "2018-07-30", periodicity = "daily")
```

Acá deben tener mucha atención:

```
# Precio de cierre
list <- lapply(tickers, function(x) Cl(get(x)))
precio.cierre <- do.call(merge,list)</pre>
```

Cálculo de los retornos

La formula para calcular (log) retornos es:

$$r_t = log(1 + R_t) = log(\frac{P_t}{P_{t-1}}) = p_t - p_{t-1}$$

donde $p_t = log(P_t)$ es llamado "log price".

A veces nos puede molestar tener tanta objetos que no vamos a utilizar:

```
# removemos los objetos que no vamos a usar
rm(tickers, AMD, IBM, NVDA, ORCL, list)
```

Ahora pasamos a construir el retorno

Cálculo de los retornos acumulados

Si graficamos los retornos no será muy descriptivo, una forma es trabajar con su acumulado. Con la misma lógica usamos la función cumsum().

```
# calculamos los retornos acumulados
acumulados <- data.frame(apply(retornos[1:4], 2, function(x) cumsum(x)), fecha = index(precio.cierre[-1])</pre>
```

Gráfico retornos acumulados

La librería ggplot2 trabaja por "capas":

- Base de datos
- Tipo de gráfico: geom_line, geom_point, entre otros.
- Todo lo extra, que sería título, subtítulo, nombre de los ejes, etc.

```
# Cambiamos la forma de los datos
reshape <- melt(acumulados, id.vars = "fecha")

# graficamos los retornos acumulados forma 2
g3 <- ggplot(reshape) + geom_line(mapping = aes(fecha,value, color = variable))
g3 <- g3 + labs(title = "Retornos Acumulados", subtitle = "Oracle, AMD, IBM y Nvidia")
g3 <- g3 + theme_bw() + xlab("Fecha") + ylab("Retornos Acumulados")
g3 <- g3 + scale_color_manual("Tickers", values = c("red","blue","green","orange"))
g3 <- g3 + theme(legend.position = "bottom")
g3</pre>
```

Estadística Descriptiva

Estadística Descriptiva

Existe muchas formas de obtener la estadística descriptiva en R, un librería es fBasics, la que a su vez contiene test de normalidad.

Apunte del curso

Este semestre para complementar su camino en aprender R es que podran acceder a un apunte en construcción:

• Apunte curso Finanzas I: https://finance-r.netlify.com/