

High Voltage, **High speed IGBT**

IXSH 35N120A

V_{CES} 1200 V

Short Circuit SOA Capability

Symbol	Test Conditions	Maximum	Ratings
V _{CES}	T _J = 25°C to 150°C	1200	V
V _{CGR}	$T_J = 25^{\circ}C$ to $150^{\circ}C$; $R_{GE} = 1 M\Omega$	1200	V
V _{GES}	Continuous	±20	V
\mathbf{V}_{GEM}	Transient	±30	V
I _{C25}	T _c = 25°C	70	A
I _{C90}	$T_{\rm C} = 90^{\circ} \rm C$	35	Α
I _{CM}	$T_{\rm C} = 25^{\circ} \rm C, 1 \ ms$	140	Α
SSOA (RBSOA)	V_{GE} = 15 V, T_J = 125°C, R_G = 22 Ω Clamped inductive load, L = 30 μ H	I _{CM} = 70 @ 0.8 V _{CES}	А
t _{sc} (SCSOA)	$V_{GE} = 15 \text{ V}, V_{CE} = 0.6 \bullet V_{CES}, T_{J} = 125^{\circ}\text{C}$ $R_{G} = 22 \Omega$, non repetitive	10	μS
P _c	T _C = 25°C	300	W
T _J		-55 +150	°C
T _{JM}		150	°C
T _{stg}		-55 + 150	°C
M _d	Mountingtorque	1.13/10	Nm/lb.in.
Weight		6	g
	ad temperature for soldering 62 in.) from case for 10 s	300	°C

		_	_
$T \cap$	217	Λ	г
	-/4/	м	

G = Gate, C = Collector, E = Emitter,TAB = Collector

Features

- · International standard package JEDEC TO-247
- High frequency IGBT with guaranteed Short Circuit SOA capability
- · Fast Fall Time for switching speeds up to 20 kHz
- 2nd generation HDMOS[™] process
- Low $V_{CE(sat)}$ for minimum on-state conduction losses
- · MOS Gate turn-on
- drive simplicity

Symbol Test Conditions Characteristic Values (T₁ = 25°C, unless otherwise specified)

			min.	typ.	max.	
BV _{CES}	$I_{\rm C}=3$ mA, $V_{\rm GE}=0$ V		1200			V
$V_{\text{GE(th)}}$	$I_{\rm C}$ = 4 mA, $V_{\rm CE} = V_{\rm GE}$		4	6	8	V
I _{CES}	$V_{CE} = 0.8 \bullet V_{CES}$ $V_{GE} = 0 V$	$T_J = 25^{\circ}C$ $T_J = 125^{\circ}C$			400 1.2	μA mA
I _{GES}	$V_{CE} = 0 \text{ V}, V_{GE} = \pm 20 \text{ V}$				±100	nA
V _{CE(sat)}	$I_{\rm C} = I_{\rm C90}, V_{\rm GE} = 15 \text{ V}$				4	V

Applications

- · AC motor speed control
- · DC servo and robot drive
- Uninterruptible power supplies (UPS)
- Switch-mode and resonant-mode power supplies
- Welding

Advantages

- Easy to mount with 1 screw (TO-247) (isolated mounting screw hole)
- · High power density

Symbol	Test Conditions Character $(T_J = 25^{\circ}C, \text{ unless of } min.$		istic Va se speci max.	
g_{fs}	$I_{C} = I_{C90}$; $V_{CE} = 10 \text{ V}$, 20 Pulse test, $t \le 300 \mu\text{s}$, duty cycle d $\le 2 \%$	26		S
I _{C(on)}	V _{GE} = 15 V, V _{CE} = 10 V	170		Α
C _{ies} C _{oes} C _{res}	$ V_{CE} = 25 \text{ V}, V_{GE} = 0 \text{ V}, f = 1 \text{ MHz} $	3750 235 60		pF pF pF
Q _g Q _{ge} Q _{gc}		150 40 70	190 60 100	nC nC nC
t _{d(on)} t _{ri} t _{d(off)} t _{fi} E _{off}	Inductive load, T_J = 25°C $I_C = I_{C90}, V_{GE} = 15 \text{ V}, L = 100 \mu\text{H}$ $V_{CE} = 0.8 V_{CES}, R_G = 2.7 \Omega$ Remarks: Switching times may increase for V_{CE} (Clamp) > 0.8 • V_{CES} , higher T_J or increased R_G	80 150 400 500	900 700	ns ns ns ns mJ
$\mathbf{t}_{d(on)}$ \mathbf{t}_{ri} \mathbf{E}_{on} $\mathbf{t}_{d(off)}$ \mathbf{t}_{fi} \mathbf{E}_{off}	Inductive load, T_J = 125°C $I_C = I_{C90}, V_{GE} = 15 \text{ V}, L = 100 \mu\text{H}$ $V_{CE} = 0.8 V_{CES}, R_G = 2.7 \Omega$ Remarks: Switching times may increase for V_{CE} (Clamp) > 0.8 • V_{CES} , higher T_J or increased R_G	80 150 2.5 400 700 15		ns ns mJ ns ns
R _{thJC}		0.25	0.42	K/W K/W

Dim.	willimeter		inches		
	Min.	Max.	Min.	Max.	
		20.32 21.46	0.780 0.819		
C D		16.26 3.65	0.610 0.140		
E F	4.32 5.4	5.49 6.2	-	0.216 0.244	
G H	1.65	2.13 4.5	0.065	0.084 0.177	
J K	1.0 10.8	1.4 11.0	0.040 0.426	0.055 0.433	
L M	4.7 0.4	5.3 0.8	0.185 0.016		
N	1.5	2.49	0.087	0.102	

Fig.1 Saturation Characteristics

Fig.3 Collector-Emitter Voltage vs. Gate-Emitter Voltage

Fig.5 Input Admittance

Fig.2 Output Characterstics

Fig.4 Temperature Dependence of Output Saturation Voltage

Fig.6 Temperature Dependence of Breakdown and Threshold Voltage

Fig.8 Dependence of Turn-Off Energy Per Pulse and Fall Time on R_G 1250 18 $T_{J} = 125^{\circ}C$ I_C = 35A 1000 17 t, - nanoseconds \mathbf{t}_{fi} 750 500 250 0 10 20 30 40 50 $\rm R_{\rm G}$ - Ohms

Fig.9 Gate Charge Characteristic Curve

Fig.10 Turn-Off Safe Operating Area

Fig.11 Transient Thermal Impedance

© 2000 IXYS All rights reserved