Particle System

HW1
2025 Computer Animation and Special Effects

Outline

- Overview
- Environment Setup
- Objective
- Report
- Scoring
- Submission
- Note

Overview

Use scene panel to switch between

- Slope
- Elevator

https://www.youtube.com/watch?v=8Hau5E7rmVw

Overview (cont.)

- IDE: Visual studio 2019 / Visual studio 2022
- Graphics API: OpenGL
- Dependencies
 - Eigen
 - o glfw
 - o glad
 - Dear ImGui

Environment Setup

Download <u>Visual Studio 2019 – Community</u> or <u>Visual Studio 2022 - Community</u>

Visual Studio Community 2019 (version 16.11)

Environment Setup (cont.)

Launch Visual Studio Installer

Environment Setup (cont.)

- Download HW1.zip and unzip
- Open SoftSim.sln

assets	2025/3/4 上午 03:49	檔案資料夾	
i bin	2025/3/9 上午 08:24	檔案資料夾	
■ SoftSim	2025/3/4 上午 03:49	檔案資料夾	
== src	2025/3/6 下午 07:22	檔案資料夾	
utility	2025/3/4 上午 03:49	檔案資料夾	
vendor vendor	2025/3/4 上午 03:50	檔案資料夾	
clang-format	2025/3/4 上午 03:49	CLANG-FORMAT 檔	1 KB
CMakeLists.txt	2025/3/4 上午 03:49	Text Document	5 KB
a main.cpp	2025/3/9 上午 10:54	C++ 來源檔案	31 KB
README.md	2025/3/4 上午 03:49	Markdown 來源檔案	2 KB
SoftSim.sln	2025/3/4 上午 03:49	Visual Studio Soluti	1 KB

Environment Setup (cont.)

Run the project

- Select config then build (CTRL+SHIFT+B)
- Use F5 to debug or CTRL+F5 to run
 - It will spend a lot of time to debug so release is recommended unless you need debugger

Objective

- src
 - o main.cpp
 - change your studentID
 - o jelly.cpp
 - void Jelly::initializeSpring()
 - Eigen::Vector3f Jelly::computeSpringForce(...)
 - Eigen::Vector3f Jelly::computeDamperForce(...)
 - void Jelly::computeInternalForce()
 - o terrain.cpp
 - void PlaneTerrain::handleCollision(...)
 - void ElevatorTerrain::handleCollision(...)
 - integrator.cpp
 - void ExplicitEulerIntegrator::integrate(...)
 - void ImplicitEulerIntegrator::integrate(...)
 - void MidpointEulerIntegrator::integrate(...)
 - void RungeKuttaFourthIntegrator::integrate(...)

- void Jelly::initializeSpring()
 - O Construct the connection of springs
 - three types of spring
 - struct, shear and bending

- void Jelly::initializeSpring()
 - Take a 3x3x3 jelly (27 particles) for example and observe the center particle
 - struct / bending: 3 directions
 - Total 6 directions: up, down, left, right, front and back. But if each particle is responsible for all 6 directions, there will be duplicate connections. Thus, each particle will be responsible only for 3 directions.
 - shear: 10 directions
 - Center particle is surrounded by 26 particles. 26 6 (up, down, left, right, front and back) = 20, and each particle will be responsible only for half part of directions.

- void Jelly::initializeSpring()
 - Put all springs in std::vector<Spring> springs, which is a class member in class Jelly
 - You can also check class Spring in spring.h
 - "springStartID" and "springEndID" are the index in the std::vector<Particle> particles, a class member in class Jelly

```
Spring(
    int springStartID,
    int springEndID,
    float restLength,
    float springCoef,
    float damperCoef,
    SpringType type
);
```

- void Jelly::computeInternalForce()
 - Trace every spring and apply the force accordingly
 - Eigen:: Jelly::computeSpringForce()
 - compute spring forces
 - Eigen:: Jelly::computeDamperForce()
 - compute damper forces
 - The values of parameter springCoef and damperCoef are defined in massSpringSystem.cpp
 - O Hint: review "particles.pptx" from p.9 p.13

- void PlaneTerrain::handleCollision(...)/void ElevatorTerrain::handleCollision(...)
 - Handle collision between plane and jelly / elevator and jelly
 - O Hint: review "particles.pptx" from p.14 p.19

- To compute the velocity after collision
- You can refer to this website for more information

$$v_{\mathrm{a}} = rac{m_{\mathrm{a}}u_{\mathrm{a}} + m_{\mathrm{b}}u_{\mathrm{b}} + m_{\mathrm{b}}e(u_{\mathrm{b}} - u_{\mathrm{a}})}{m_{\mathrm{a}} + m_{\mathrm{b}}}$$

and

$$v_\mathrm{b} = rac{m_\mathrm{a} u_\mathrm{a} + m_\mathrm{b} u_\mathrm{b} + m_\mathrm{a} e (u_\mathrm{a} - u_\mathrm{b})}{m_\mathrm{a} + m_\mathrm{b}}$$

- Integrator
 - Update particles' position and velocity
 - Update elevator' position and velocity
 - void ExplicitEulerIntegrator::integrate(...)
 - Hint: review "ODE_basics.pptx" from p.15 p.16
 - o void ImplicitEulerIntegrator::integrate(...)
 - Hint: review "ODE_implicit.pptx" from p.18 p.19
 - void MidpointEulerIntegrator::integrate(...)
 - Hint: review "ODE_basics.pptx" from p.18 p.19
 - o void RungeKuttaFourthIntegrator::integrate(...)
 - Hint: review "ODE_basics.pptx" p.21

- Bonus
 - Any creativity
 - For example
 - Improve graphic
 - Change jelly's shape
 - Other type of terrain
 - **...**
 - O Don't break original requirements (if it does, make a toggle or another scene for switching between requirement parts and bonus parts)
 - Mention it in your report

Report

- Suggested outline
 - Implementation
 - Result and Discussion
 - The difference between integrators
 - Effect of parameters (springCoef, damperCoef, coefResist, coefFriction, etc.)
 - O Bonus (Optional)
 - Conclusion

Scoring

- Change window title to "Soft-body Simulation STUDENT_ID" (0%)
 - O -10% if title is wrong
- Construct the connection of springs 15%
- Compute internal forces 20%
- Handle Collision 20%
 - O plane 10%
 - O elevator- 10%
- Integrator 25%
 - O Explicit Euler 5%
 - O Implicit and Midpoint Euler 5%
 - O Runge-Kutta 4th 15%
- Report 20%
- Bonus up to 15%

Submission

- Please upload hw1_<your student ID>.zip and report_< your student ID>.pdf respectively
- hw1_<your student ID>.zip (root)
 - O src
 - o main.cpp
- Late policies
 - Penalty of 10 points on each day after deadline
- Cheating policies
 - O points for any cheating on assignments
- Deadline
 - o Monday, 2025/04/04, 23:59

Note

Read TODOs in the template and follow TODOs' order

- How to contact TAs?
 - o please ask your questions on new E3 forum or send email to ALL TAs via new E3
 - o if you need to ask questions face-to-face, please send an email for appointment