

Kap. 2: Grundbegriffe

- 2.1 Begriffe der Mathematik (nur Wiederholung)
- 2.2 System, Abstraktion und Modell
- 2.3 Information und ihre Repräsentation
- 2.4 Formale Sprachen
- 2.5 Graphen und Bäume
- 2.6 Algorithmen

X Quellen

- M. Broy: "Informatik Eine grundlegende Einführung", Teil 1, Springer-Verlag, 1992 (Kap. 1, 2)
- U. Rembold, P. Levi: "Einführung in die Informatik für Naturwissenschaftler und Ingenieure", 3. Auflage, Hanser-Verlag, 1999 (Kap. 2.2.1, 2.7)
- D. Werner u.a.: "Taschenbuch der Informatik", Fachbuchverlag Leipzig, 1995 (Kap. 2.3.1)
- U. Schöning: "Theoretische Informatik kurz gefasst", Spektrum-Verlag, 1997

2.1 Begriffe der Mathematik

 Bemerkung: Die in diesem Abschnitt besprochenen Begriffe sind entweder bereits aus der Schule bekannt oder werden in den Mathematik-Vorlesungen besprochen. Sie werden im weiteren als bekannt vorausgesetzt.

Symbole in Aussagen

∃ x	es existiert ein x, es gibt ein x (Existenz-Quantor)		
∃! x , ∄ x	Varianten: es existiert genau ein x , es gibt kein x		
⊬ x	für alle x	(All-Quantor)	
$p \wedge q$	Aussage p und Aussage d	9	
$p \vee q$	Aussage p oder Aussage	q	
$\neg p$	nicht <i>p,</i> Verneinung der A	ussage <i>p</i>	
$p \Rightarrow q$	wenn <i>p,</i> dann <i>q</i>		
$p \Leftrightarrow q$	<i>p</i> genau dann, wenn <i>q</i>		
<i>p</i> :⇔ <i>q</i>	definitionsgemäß genau o	dann, wenn <i>q</i>	

*

Mengen

Die Menge mit den Elementen a und k
Menge aller x, für die die Aussage p(x) gilt
die leere Menge
a ist Element der Menge A
Teilmengenbeziehung
echte Teilmengenbeziehung
Durchschnitt
Vereinigung
Differenz
Disjunkte Vereinigung, A∪B \ (A∩B)
Kardinalität oder Mächtigkeit der Menge <i>A.</i> Bei endlichen Mengen: Anzahl der Elemente

06.11.2019

Mengen (2)

Übliche Notationen für Zahlenmengen in der Mathematik

```
    Die Menge der natürlichen Zahlen, {0, 1, 2, 3, ...}
    N⁺ Die natürlichen Zahlen ohne die Null, {1, 2, 3, ...}, N \ { 0 }
        Bemerkung: Manchmal wird N auch ohne Null definiert: N, N₀

    Die Menge der ganzen Zahlen, {..., -2, -1, 0, 1, 2, ...}
    Q Die Menge der rationalen Zahlen, {x = p / q | p ∈ Z ∧ q ∈ Z⁺}
    R Die Menge der reellen Zahlen
    C Die Menge der komplexen Zahlen
    Z⁺, Q⁺, R⁺, C⁺ analog N⁺ (Die Null ist "ausgestochen")
```


Potenzmenge, Produkt

Die *Potenzmenge* P(A) einer Menge A ist die Menge aller Teilmengen von A, d.h. $P(A) = \{B \mid B \subseteq A\}$

- Beispiel: $P(\{a,b\}) = \{ \{\}, \{a\}, \{b\}, \{a,b\} \}$
- Falls $|A| < \infty$, dann gilt $|P(A)| = 2^{|A|}$
 - Selbst-Test: Wie beweist man dies?

Das (*kartesische*) *Produkt* $A \times B$ der Mengen A und B ist die Menge aller geordneten Paare (a,b) mit $a \in A$ und $b \in B$.

- Beispiel: $A=\{m,n\}, B=\{r,s,t\} \Rightarrow$ $A \times B = \{ (m,r), (m,s), (m,t), (n,r), (n,s), (n,t) \}$
- Notation: Man schreibt statt A×A auch A².
- Für endliche Mengen A und B gilt für die Kardinalitäten: $|A \times B| = |A|^*/B|$.

Eine Teilmenge $R \subseteq A \times B$ des Produkts zweier Mengen A und B heißt (zweistellige oder binäre) R

- Notation: statt (a,b)∈R auch R(a,b) oder Infix-Notation: a R b
- Beispiel:

A: Menge der Personalausweisnummern aller Wiesbadener,

B: Menge der vergebenen Autokennzeichen beginnend mit WI $f\ddot{a}hrt \subseteq A \times B$ ist eine binäre Relation zwischen A und B.


```
fährt = {
  (113123, WI-AS 30),
  (157373, WI-AS 30),
  (247903, WI-TT 2),
  (247903, WI-GT 777),
  (479969, WI-HH 89) }
  fährt(113123, WI-AS 30)
  oder 113123 fährt WI-AS 30
```


Relation (2)

Eine Teilmenge R AXA heißt Relation R auf der Menge A.

– Beispiel:

A: Menge der Personalausweisnummern (IDs) aller Wiesbadener, $R = \{ (x,y) \in A \times A \mid Person mit ID \ x \ ist \ verwandt \ mit \ Person mit ID \ y \}.$

Relationen besitzen spezielle Eigenschaften

hier z.B.: Transitivität

Eigenschaften von Relationen

- Sei R⊆A×A eine binäre Relation auf A. Dann heißt R
 - reflexiv :⇔ ∀ a∈A: a R a
 - Beispiele: Relationen = und ≤ auf N, ⊆ auf Mengen
 - irreflexiv :⇔ ∄ a∈A: a R a
 - Beispiele: Relationen ≠ und < auf N
 - Hinweis: "irreflexiv" ≠ "nicht reflexiv" (warum?)
 - symmetrisch : $\Leftrightarrow \forall a,b \in A$: $a R b \Rightarrow b R a$
 - Lies: "Für alle a und b aus A gilt: Aus a Relation b folgt b Relation a"
 - Beispiele: Relationen = und ≠ auf N
 - antisymmetrisch : $\Leftrightarrow \forall a,b \in A$: a R b ∧ b R a \Rightarrow a = b
 - Beispiel: Relation ≤ auf N, ⊆ auf Mengen.

Eigenschaften von Relationen (2)

(Fortsetzung)

- transitiv : $\Leftrightarrow \forall a,b,c \in A$: $a R b \land b R c \Rightarrow a R c$
 - Beispiele: Relationen = < > ≤ auf N, ⊆ auf Mengen
- total :⇔ \forall a,b∈A: a R b \lor b R a
 - Bemerkung: mathematisches "oder"
 d.h.: es kann gleichzeitig a R b und b R a gelten.
 - Beispiel: Relation ≤ auf N

Matrixdarstellung binärer Relationen

- Sei R AXA eine binäre Relation auf A.
- Das kartesische Produkt $A \times A$ lässt sich als Matrix veranschaulichen. Markiert man die Matrixzellen, die Elementen $(a,b) \in R$ entsprechen, erhält man eine Matrixdarstellung von R.
- Mit dieser lassen sich viele Relationseigenschaften visualisieren:

$$R=(\{1,2,3,4\}^2,=)$$

(1,1)	(1,2)	(1,3)	(1,4)
(2,1)			
(3,1)			
(4,1)			(4,4)

 $R=(\{1,2,3,4\}^2,\leq)$

- R reflexiv
 Matrix-Diagonale vollständig gefüllt
- R irreflexiv
 Matrix-Diagonale völlig leer
- R symmetrisch Matrix spiegelsymmetrisch zur Hauptdiagonalen
- R antisymm. Matrix enthält kein spiegelsymmetrisches
 Zellenpaar außerhalb der Hauptdiagonalen

2 - 11

Äquivalenzrelation

Sei $R \subseteq A \times A$ eine Relation. Dann heißt R $\underline{Aquivalenzrelation}$, wenn R reflexiv, transitiv und symmetrisch ist.

 Ist R eine Äquivalenzrelation und ist (a,b)∈R, so heißen a und b äquivalent.

Beispiel:

- Sei $A = \mathbb{N}$, $n \in \mathbb{N}$. Dann ist $R = \{ (x,y) \mid x \mod n = y \mod n \}$ eine Äquivalenzrelation. (x und y haben bei Division durch n denselben Rest)

Partielle und totale Ordnung

Def

Eine <u>reflexive</u>, <u>transitive und <u>antisymmetrische</u> Relation *R* auf einer Menge *A* heißt <u>partielle Ordnung R</u> auf der Menge *A*.</u>

– Beispiel:

Sei $A = \{ \{a\}, \{b\}, \{a,b\}, \{a,b,c\} \}, \subseteq die$ Teilmengenrelation. Dann definiert \subseteq eine partielle Ordnung R auf A:

```
R = \{ (\{a\},\{a,b\}), (\{a\},\{a,b,c\}), (\{b\},\{a,b\}), (\{a,b\},\{a,b,c\}), (\{a\},\{a\}), (\{b\},\{b\}), (\{a,b\},\{a,b\}), (\{a,b,c\},\{a,b,c\}) \}
```


Bemerkung:
 R ist keine totale Relation, z.B. gilt weder {a}⊆{b} noch {b}⊆{a}.

Partielle und totale Ordnung (2)

Eine <u>reflexive</u>, <u>transitive</u>, <u>antisymmetrische und totale</u> Relation *R* auf einer Menge *A* heißt <u>lineare</u> oder <u>totale Ordnung R</u> auf der Menge *A*.

Beispiel: ≤ auf natürlichen Zahlen

– "Beweis" durch Nachprüfen der Eigenschaften:

■ Reflexivität: $\forall a \in \mathbb{N}$: $a \leq a$

■ Transitivität: $\forall a,b,c \in \mathbb{N}$: $a \le b \land b \le c \Rightarrow a \le c$

 \odot

• Antisymmetrie: $\forall a,b \in \mathbb{N}$: $a \le b \land b \le a \Rightarrow a = b$

 \odot

■ Totalität: $\forall a,b \in \mathbb{N}$: $a \leq b \vee b \leq a$

 \odot

06.11.2019

Funktion / Abbildung

Eine Relation $f \subseteq A \times B$ zwischen den Mengen A und B heißt Funktion oder Abbildung aus der Menge A in die Menge B, falls aus $(x,y) \in f$ und $(x,z) \in f$ folgt: y = z.

- Bemerkungen:
 - Funktionen sind also spezielle Relationen.
 - Übliche Notation: $f: A \rightarrow B$ und f(a)=b statt $(a,b) \in f$
 - b heißt das Bild von a unter der Funktion f,
 - a ist ein(!) Urbild von b.

 $Dom(f) := \{a \in A \mid (a,b) \in f\}$ heißt Definitionsbereich von f

 $Rng(f) := \{b \in B \mid (a,b) \in f\}$ heißt Bild- oder Wertebereich von f

— Englische Bezeichnungen: Dom - "domain", Rng - "range"

Funktion / Abbildung (2)

Eine Funktion $f: A \rightarrow B$ heißt $total : \Leftrightarrow Dom(f) = A$.

"Keine Definitionslücken – der Definitionsbereich ist gleich der Ausgangsmenge"

Eine Funktion $f: A \rightarrow B$ heißt surjektiv : $\Leftrightarrow Rng(f) = B$.

"Jedes Element der Zielmenge besitzt (mind.) ein Urbild"

Eine Funktion $f: A \rightarrow B$ heißt $injektiv : \Leftrightarrow f(a)=f(b) \Rightarrow a=b$

"Verschiedene Elemente der Definitionsmenge ergeben stets verschiedene Werte"

Eine Funktion $f: A \rightarrow B$ heißt bijektiv : $\Leftrightarrow f$ ist total, surjektiv und injektiv.

 "Bijektive Funktionen sind umkehrbar. Jede Urbildmenge ist einelementig."

Beispiel

Funktion

Bijektion

2.2 System, Abstraktion und Modelle

- Der Systembegriff wird im täglichen Leben verwendet wie auch in allen wissenschaftlichen Disziplinen.
 - Beispiele:
 - Das politische System der Bundesrepublik Deutschland
 - Der menschliche K\u00f6rper als biologisches System
 - Das Milchstraßensystem

Charakterisierende Merkmale eines *informationstechnischen Systems*:

- Schnittstelle des Systems:
 Grenze zwischen "außerhalb" und "innerhalb"
- Umgebung des Systems:
 der äußere, für die Betrachtung weniger wichtige Teil
- System:
 innere Teil ist der eigentliche Betrachtungsgegenstand mit:
 - Komponenten (des Systems)
 - deren Beziehungen zueinander (Wechselwirkungen)

Graphische Veranschaulichung

zum Systembegriff

Abstraktion und Modelle

- Abstraktion entsteht durch Erkennen von unter einer bestimmten Betrachtungsweise relevanten Gegenständen, Eigenschaften und Beziehungen eines Ausschnitts der realen Welt.
- Modell als Ersatz der Realität
- zusätzliche wünschenswerte Eigenschaften wie z.B.
 - einfacher zu verstehen (z.B. Straßenatlas)
 - billiger oder sicherer (z.B. Fahrsimulator)
 - mathematische Theorie nutzbar machen (z.B. Physik, Baustatik)
- Für denselben Ausschnitt der Realität können verschiedene Modelle existieren.

Abstraktion und Modelle (2)

- Das Studium der Informatik beinhaltet das Kennenlernen einer Vielzahl von Modellen
 - aus der Mathematik
 - aus Ingenieur-Disziplinen
 - durch die Informatik selbst entwickelt (z.B. Graphen, Automaten, ...)
- In der Informatik sind systemorientierte Betrachtungsweisen verbreitet. Ziel oft: Struktur- und Verhaltensmodelle entwickeln.
- Wahl der Abstraktionsebene spielt oft entscheidende Rolle:
 - ⇒ Art und Umfang der Komponenten und ihrer Wechselwirkungen
 - ⇒ Komplexität des Systems.

Hierarchische Abstraktionsebenen

 Vorgehensweise häufig "von oben nach unten" (engl.: top-down)

d.h. Informatiker beginnen oft mit einem Modell der Realität auf einer sehr hohen Abstraktionsebene und konkretisieren dieses Modell schrittweise zu immer detaillierteren Modellen, um sich einer Realisierung zu nähern.

Beispiel

- Ausschnitt aus den üblicherweise betrachteten Abstraktionsebenen eines Rechensystems
- wird im Verlaufe des Studiums konkretisiert

		<u>typiscne iviodelle</u>	<u>in Voriesung</u>
6	Geschäftsprozess	Prozessketten	"E-Biz.", evtl. BWL
5	Anwendungsprogramm	Datenflussdiagramm	Softwaretechnik
4	Betriebssystem	Prozesssysteme	Betriebssysteme
3	Prozessor	Maschinensprache	Rechnerorganisation
2	Funktionsblöcke	Register-Transfer-Sprache	Rechnerorganisation
1	digitale Signale	Gatter	Digitaltechnik
0	elektrische Signale	physikal. Modell	(Elektrotechnik)

tuniacha Madalla

Beispiel: Verfeinerung eines Systems

 Eine Komponente eines Systems kann auf der nächsttieferen Abstraktionsebene selbst wieder als System betrachtet werden.

2.3 Information und ihre Repräsentation

- Information ist einer der zentralen Begriffe der Informatik:
 - "Informatik ist die Wissenschaft von der systematischen Verarbeitung von Information.
 - Sie befasst sich mit Struktur, Eigenschaften und Beschreibungsmitteln von Informationen und informationsverarbeitenden Systemen und deren Betrieb und Anwendung" (vgl. Kap.1).
- Bedeutung des Begriffs "Information" im täglichen Leben:
 - zutreffende Aussagen über bestimmte Gegenstände, Zustände, Ereignisse oder Zusammenhänge in der realen Welt.

2.3 Information und ihre Repräsentation

- Zur Bedeutung des Begriffs "Information" in der Informatik:
 - Unterschied: abstrakt, ohne Bezug zur realen Welt
 - d.h. abstrakter Bedeutungsgehalt von textuellen Ausdrücken, Grafiken, usw.
- Information wird aber erst durch äußere Darstellungen verarbeitbar / kommunizierbar.
- ⇒ Die Informatik trennt strikt zwischen der abstrakten Information und ihren äußeren Darstellungen.

Information und Repräsentation - Definition

Information nennt man den abstrakten Bedeutungsgehalt (Semantik) einer Beschreibung, Aussage, Nachricht, usw.

- Äußere Form der Darstellung heißt Repräsentation.
- Übergang von der Repräsentation zur abstrakten Information heißt *Interpretation*, in umgekehrter Richtung spricht man von *Repräsentierung*.

Anmerkungen

- Typische Repräsentationen:
 - Körperbewegungen (Handzeichen)
 - das gesprochene Wort (akustische Repräsentation)
 - Zeichenfolgen (das geschriebene Wort)
 - grafische Darstellungen (Zeichnungen, Ikonen, ...)
- Festlegung f
 ür die Deutung von Repr
 äsentationen notwendig.
 Durch Bedeutung wird die Repr
 äsentation zu Information.
- Repräsentationen k\u00f6nnen mehrere Bedeutungen besitzen.
 Beispiel: Zeichenfolge "G", "R" "\u00fc" "N":
- Repräsentationssysteme sind i.d.R.
 - unterschiedlich leistungsfähig (mächtig) und
 - abhängig von der darzustellenden Information unterschiedlich zweckmäßig in Hinblick auf die beabsichtigte Verarbeitung.

Anmerkungen (2)

- Dieselbe Information kann mehrere unterschiedliche (aber semantisch gleichwertige) Repräsentierungen besitzen.
- Beispiel: Die natürlichen Zahlen
 - Repräsentationssystem 1:
 Notation üblicher Dezimalzahlen: 0, 1, 2, 3, 4, 5, ...
 - Repräsentationssystem 2:
 Strichfolgen: leere Folge ε, I, II, III, IIII, IIII, ...

Verstehen

- Herstellen von Beziehungen zwischen der in Repräsentationen enthaltenen abstrakten Information und der realen Welt wird *Verstehen* genannt.
- Verstehen einer Nachricht beinhaltet damit
 - Erkennen der Bedeutung der Nachricht (abstrakte Information) und
 - Herstellen des Bezugs zur realen Welt.
- Verstehen ist ein <u>subjektiver</u> Prozess und nicht formalisierbar.

Hierarchische Repräsentierungsebenen

 Vorgang der Repräsentierung / Interpretation kann wiederholt über mehrere Abstraktionsebenen erfolgen.

 \Rightarrow

hierarchisch angelegte Repräsentierungssysteme für Information auf verschiedenen Abstraktionsstufen.

 Dieser Ansatz wird z.B. im Rahmen der Betrachtung von Datenstrukturen und der Programmierung eine große Rolle spielen.

Beispiel: Hierarchie abstrakter Maschinen

Repräsentationssystem jeder Ebene: abstrakte Maschine

Hierarchiebildung

Implementierung in der nächst tieferen Ebene

Im Folgenden:

- In den folgenden beiden Abschnitten werden zwei in der Informatik häufig eingesetzte Repräsentationssysteme vorgestellt:
 - (textuelle) formale Sprachen
 - Graphen
- Diese werden detailliert im weiteren Informatikstudium behandelt.

2.4 Formale Sprachen

- Für die automatisierte Informationsverarbeitung mit Rechensystemen sind textuelle Darstellungen immer noch am weitesten verbreitet:
 - für menschliche Benutzer lesbare Ein- /Ausgabe
 - Kommandosprachen (z.B. UNIX shell)
 - Programmiersprachen f
 ür Informatiker: C/C++, Java, ...
 - Auszeichnungssprachen: SGML, HTML, XML, ...
- In diesem Abschnitt:
 Einführung des Begriffs der formalen Sprache

Zeichen, Zeichenvorrat

Ein Zeichen (engl. character) ist ein Element einer vereinbarten endlichen, nicht-leeren Menge, die als Zeichenvorrat bezeichnet wird.

- Zeichenvorrat aus genau zwei verschiedenen Zeichen heißt binärer Zeichenvorrat.
- Bit (Abk. für <u>binary digit</u>)
 bezeichnet jedes Zeichen aus einem binären Zeichenvorrat.
- Symbol: (streng genommen) ein Zeichen zusammen mit einer vereinbarten Bedeutung. Häufig werden aber Zeichen und Symbol gleichwertig benutzt.

Beispiele:

```
{+,-,*,/}
{Mo, Di, Mi, Do, Fr, Sa, So}
```

{0,1}, {dunkel, hell}, {0V, +5V}, {falsch, wahr}, {ja, nein}

i.d.R. *{0,1}*.

Alphabet

Ein Alphabet Σ ist ein Zeichenvorrat, auf dem eine lineare Ordnung (Reihenfolge) für die Zeichen definiert ist.

Beispiele:

- **–** {0,1}, 0<1
- **—** {0,1,2,3,4,5,6,7,8,9}, 0<1<2<3<4<5<6<7<8<9
- {A,B,C, ...,Z,a,b,c, ...,z}, A<B<C< ...<Z<a<b<c< ...<z.

Zeichenketten

- Eine endliche Folge $w=a_1...a_n$ von Zeichen eines Alphabets Σ heißt Wort oder Zeichenkette (engl.: string) über Σ .
- Sei $w=a_1...a_n$ Zeichenkette über Σ , |w|=n bezeichnet die Länge der Zeichenkette.
- Das leere Wort wird durch ε bezeichnet (auch als ""
 geschrieben), besitzt Länge 0.


```
\Sigma^*: \Leftrightarrow Menge aller Zeichenketten über \Sigma
\Sigma^*: \Leftrightarrow Menge aller nicht-leeren Zeichenketten über \Sigma
\Sigma^n: \Leftrightarrow Menge aller Zeichenketten der Länge n über \Sigma.

- Beispiel: \Sigma = \{0,1\}, \ \Sigma^* = \{0,1\}^* = \{\epsilon, 0, 1, 00, 01, 10, 11, 000, 001, ...\}
```

• $\sum^* = \{0,1\}^*$ heißt die <u>Menge der *Binärwörter*</u>, Elemente von \sum^n heißen auch <u>n-Bit-Wörter</u> oder <u>Binärwörter</u> der <u>Länge</u> n.

Konkatenation von Zeichenketten

Seien Σ ein Alphabet, u = $a_1...a_m$ und v = $b_1...b_n$ Wörter über Σ . Das Wort

$$w = uv = u/|v = a_1...a_mb_1...b_n$$

das durch Anfügen des Worts *v* an *u* entsteht, heißt *Konkatenation* oder *Verkettung von u und v*.

Es gilt:
$$|uv| = |u| + |v|$$
.

• Ist $w \in \sum^*$ und n eine natürliche Zahl, dann bezeichnet w^n mit

$$\mathbf{W}^0 := \varepsilon$$

$$W^{n+1} := W^n W$$

das Wort, das aus *n* aneinandergefügten Kopien von *w* besteht,

w* bezeichnet ein beliebiges solches Wort(n-fache Wiederholung von w für irgendein n),

w⁺ ein nicht-leeres solches Wort.

Präfix / Suffix

Sind $x, y, z \in \Sigma^*$ (leere Wörter eingeschlossen) und ist

$$W = XYZ = X/|Y|/Z$$

dann heißt

x ein Präfix (Anfangsstück) von w

y ein Teilwort von w und

z ein Suffix (Endstück) von w.

Lexikographische Ordnung

Sei Σ ein Alphabet und \leq die lineare Ordnung auf Σ .

Für Wörter $w_1, w_2 \in \sum^*$ wird nun ebenfalls eine Ordnung \leq_{lex} , die *lexikographische Ordnung*, <u>induktiv</u> durch folgende Festlegungen definiert:

$$\forall w \in \Sigma^* : \varepsilon \leq_{lex} w$$

$$\forall a_1, a_2 \in \Sigma :$$

$$a_1/|w_1 \leq_{lex} a_2/|w_2| :\Leftrightarrow a_1 < a_2 \text{ oder } (a_1 = a_2 \text{ und } w_1 \leq_{lex} w_2)$$

- Die lexikographische Ordnung definiert eine lineare Ordnung auf Σ^* .
 - Beispiele:

$$\Sigma = \{0,1\}, 0 < 1$$

 $\varepsilon \leq_{\text{lex}} 0, 0 \leq_{\text{lex}} 1, 0 \leq_{\text{lex}} 10, 0 \leq_{\text{lex}} 0 \leq_{\text{lex}}$

Formale Sprache

- Sei Σ ein Alphabet. Eine <u>Teilmenge</u> $L \subseteq \Sigma^*$ heißt *(formale)* Sprache, $x \in L$ heißt Wort der Sprache L.
- Beispiel:

$$\Sigma = \{0,1\}, L = \{1, 01, 001, 0001, 00001, ...\} \subseteq \Sigma^*.$$

(Man kann L auch durch den Ausdruck 0*1 charakterisieren).

Operationen auf formalen Sprachen

- Sei Σ ein Alphabet und seien L, $M \subseteq \Sigma^*$ formale Sprachen.
 - L ∪ M bzw. L ∩ M bezeichnen (wie allg. für Mengen)
 die Vereinigung bzw. den Durchschnitt der beiden Sprachen L und M.
 - $LM = \{ uv \mid u \in L \text{ und } v \in M \}$ bezeichnet die Konkatenation der Sprachen L und M. Kurzschreibweisen: $L^2 = LL$, $L^n = LL...L$
 - L^* definiert durch $L_0=\varepsilon$, $L_{n+1}=L_nL$, $L^*=UL_n$ beinhaltet die Menge aller Wörter, die durch Verkettung einer beliebigen Anzahl von Wörtern aus L entstehen (sog. *abgeschlossene* oder *Kleene'sche Hülle*).
 - $L^+ = L^* \setminus \{\varepsilon\}$

Beispiel:

$$\Sigma = \{0,1\}, \ L = \{01,0001\} \subseteq \Sigma^*$$

 $L^* = \{\varepsilon, 01, 0101, 0001, 010101, 010001, 000101, \dots\}$

Codes

Seien A und B Zeichenvorräte. Ein *Code* oder eine *Codierung* ist eine Abbildung

$$c:A \rightarrow B$$
 oder $c:A^* \rightarrow B^*$.

(d.h. zwischen Zeichenvorräten A und B und auch zwischen Wörtern über Zeichenvorräten).

- Die Bildmenge {b∈B | b=c(a), a∈A} unter c, d.h. die Menge der Codewörter von c, wird ebenfalls Code genannt.
- Die Elemente von A werden auch Klarzeichen genannt, die Elemente von B auch Codezeichen.
- Die Abbildung eines Codes kann partiell sein, d.h. nicht für jedes Wort aus A* muss eine Darstellung existieren.

Decodierung

 In der Regel ist die Abbildung eines Codes injektiv, d.h. verschiedene Zeichen oder Wörter werden auf verschiedene Codewörter abgebildet.

Dann ist auf der Bildmenge eine umkehrbare Codierung beschrieben durch eine Abbildung

$$d: \{b \in B \mid b = c(a), a \in A\} \rightarrow A$$

die *Decodierung* genannt wird.

Binär-Codierung

Für die Informationsdarstellung in Rechensystemen werden fast ausschließlich *Binär-Codierungen (Binär-Codes) von Alphabeten* betrachtet.

Dies sind Codierungen der Form

$$c:A \to \{0,1\}^*$$

wobei A ein vorgegebenes Alphabet ist.

2.5 Graphen und Bäume

- Graphen: strukturelle Modelle
 d.h. mit ihnen können identifizierte Objekte und ihre Beziehungen zueinander beschrieben werden.
- Graphen werden in der Informatik oft verwendet.
- Hier:
 - als formales Modell des intuitiven Systembegriffs
 - als weiteres konkretes Repräsentierungssystem für Information
- Bäume: spezielle Arten von Graphen.

+ Graph

Ein *gerichteter Graph* (engl. *graph*) G = (V,E) ist ein Paar, bestehend aus einer endlichen, nichtleeren Menge V zusammen mit einer Relation $E \subset V \times V$.

- V heißt die Menge der Knoten (engl.: vertices) des Graphen G.
- E heißt die Menge der Kanten (engl.: edges) von G.
- Notation: Eine Kante (a,b)∈E wird graphisch durch einen Pfeil von Knoten a zu Knoten b dargestellt.

Beispiel:

- G = (V,E) mit $V = \{ init, working, finished, error \}$ und

Graph (2)

Ungerichtete Graphen:
 Bei Kanten werden Richtungen nicht angenommen,
 d.h. die Reihenfolge der Knoten zur Bezeichnung einer Kante ist unerheblich.

Ein Graph G = (V,E) heißt markiert (bewertet, attributiert), wenn jedem Knoten (knotenmarkiert) oder jeder Kante (kantenmarkiert) (oder beiden) durch eine Abbildung weitere Größen (Werte des Bildbereichs der Abbildung) zugeordnet sind.

Beispiel

- G = (V, E) mit
 - V = { init, working, finished, error } und

 - Kantenbewertung action: $E \rightarrow \{go, halt, fault\}$

Gerichteter Kantenzug, gerichteter Weg

Sei G = (V, E) ein gerichteter Graph. Sei $z = (v_0, ..., v_n)$ eine Folge von n+1 Knoten des Graphen mit $(v_0, v_1), ..., (v_{n-1}, v_n) \in E$; dann heißt z gerichteter Kantenzug in G der Länge n. (Die Folge der Knoten ist durch Kanten verbunden, mehrfaches Durchlaufen von Knoten ist erlaubt).

Sei G = (V,E) ein gerichteter Graph. Ein gerichteter Kantenzug w=(v₀, ..., v_n) in G heißt gerichteter Weg in G, wenn alle Knoten verschieden sind.

- Beispiele:
 - (3, 5, 6, 2, 3, 4) ist ein gerichteter Kantenzug
 - Wege sind z.B.
 (1, 2, 3, 7, 4) und (2, 3, 5, 6)

06.11.2019

X Zyklus

- Sei G = (V, E) ein gerichteter Graph und $w = (v_0, ..., v_n)$ ein gerichteter Weg in G. Dann heißt $c = (v_0, ..., v_n, v_{n+1})$ Zyklus, wenn $(v_n, v_{n+1}) \in E$ und $v_{n+1} = v_0$ (d.h. Anfangs- und Endknoten stimmen überein).
- Ein entarteter Zyklus (v_i, v_i)∈E heißt Schlinge (von einem Knoten unmittelbar in ihn zurück).
- Ein Graph heißt zyklenfrei, wenn er keinen Zyklus enthält.

Beispiel:

$$- G = (V,E), V = \{1,2,3,4,5,6,7\}, \\ E = \{ (1,2), (2,3), (3,4), (3,5), \\ (5,6), (6,2), (3,7), (7,4) \}$$

- (2, 3, 5, 6, 2) ist ein Zyklus.

06.11.2019

Zusammenhängender Graph

- Ein gerichteter Graph G = (V,E) heißt zusammenhängend, wenn es für je zwei Knoten $v_1, v_2 \in V$ mindestens einen gerichteten Weg zwischen ihnen in G gibt.
- Der Graph heißt streng zusammenhängend, wenn es für je zwei Knoten $v_1, v_2 \in V$ einen Weg von v_1 nach v_2 und umgekehrt gibt (d.h. jeder Knoten kann von jedem anderen aus erreicht werden).
- Beispiele:

Zusammenhängender Graph (2)

- Ergänzung: Ein ungerichteter Graph heißt zusammenhängend, wenn es für je zwei Knoten $v_1, v_2 \in V$ mindestens einen ungerichteten Weg zwischen ihnen gibt.
- Beispiel:

zusammenhängend

nicht zusammenhängend

Gerichteter Baum

Sei *B* = (*V*,*E*) ein gerichteter Graph. *B* heißt *baumartig* oder kurz *Baum* (engl.: *tree*), wenn gilt:

- B ist zusammenhängend und zyklenfrei.
- Es gibt genau einen Knoten $v_w \in V$, in den keine Kante mündet. Dieser Knoten heißt *Wurzel* des Baumes.
- Von der Wurzel v_w des Baumes gibt es zu jedem anderen Knoten $v \in V$, $v \neq v_w$ genau einen gerichteten Weg.
- Ein Knoten v heißt Blatt oder Endknoten, wenn er keine ausgehende Kante besitzt, d.h. wenn kein v'existiert mit (v,v')∈E.

Beispiel:

$$B = (V,E)$$

$$V = \{1,2,3,4,5,6,7\}$$

$$E = \{ (1,2), (1,3), (3,4), (3,5), (3,6), (6,7) \}$$

Die Knoten 2, 4, 5 und 7 sind die Blätter von B.

Gerichteter Baum (2)

Die Knoten $v' \in V$, die von einem Knoten v durch eine einzige Kante $(v,v') \in E$ erreicht werden, heißen Söhne oder Kinder von v (umgekehrt Vater).

- Die Gesamtheit aller von v (auch über Zwischenknoten) erreichbaren Knoten heißen die Nachfahren von v. Diese bilden wiederum einen Baum, für den v die Wurzel ist. Dieser Baum heißt auch der von vaufgespannte Unterbaum.
- Die Knoten auf dem Weg von der Wurzel bis vor v heißen die Vorfahren von v.

- Die Knoten 2 und 3 sind die Söhne von 1.
- 4, 5, 6, 7 sind die Nachfahren von 3.
- 1 und 3 sind die Vorfahren von 5.

Binärer Baum

Sei *B* = (*V*,*E*) ein gerichteter Baum. *B* heißt binärer Baum oder Binärbaum, wenn jeder Knoten höchstens zwei Söhne hat und zwischen dem linken Unterbaum und dem rechten Unterbaum unterschieden wird.

Beispiel: Arithmetischer Ausdruck (a+b)*c-d/√e

Operanden sind Blätter

- Im Baum werden keine Klammern benötigt
- vgl. Eingabe bei
 Taschenrechnern
 ("Umgekehrte Polnische Notation", etwa bei HP-Modellen)

2.6 Algorithmen

- In diesem Abschnitt soll ein weiterer Aspekt von Informatik angerissen werden:
 - "Informatik ist die Wissenschaft von der systematischen <u>Verarbeitung</u> von Information" (vgl. Kap.1).
- Die automatisierte Verarbeitung verlangt, dass die Verarbeitungsvorschrift
 - in ihrer Bedeutung exakt festgelegt ist,
 - eine geeignete Repräsentation in einer formalen Sprache oder einer graphischen Darstellungsform besitzt
 - und letztlich durch einen Prozessor eines Rechensystems ausführbar ist.
- Der in der Informatik verwendete Begriff für derartige Verarbeitungsvorschriften ist der des *Algorithmus*.

Einordnung

- In der Theoretischen Informatik
 - Algorithmus-Begriff wird exakt über math. Konzepte eingeführt
 - z.B. Markov-Algorithmen, Turing-Maschinen.
- Hier: Intuitiver Algorithmus-Begriff
 - Konkrete Algorithmen (z.B. für Sortierprobleme unter Nutzung bestimmter Datenstrukturen) werden in der Vorlesung "Algorithmen und Datenstrukturen" im 2. Fachsemester behandelt.

Einordnung (2)

- Herkunft des Begriffs Algorithmus (vgl. Kap.1):
 - Rechenbuch von Muhammed ibn Musa Al-Chwarizmi
 - ca. 1750 in Zusammenhang mit den vier Grundrechenarten benutzt
 - Ab Mitte dieses Jahrhunderts zur Bezeichnung einer allgemeinen Handlungs- und Bearbeitungsvorschrift
- Nicht-präzise Verarbeitungsvorschriften aus dem täglichen Leben:
 - Kochrezept
 - Strick- und Häkelmuster
 - Bedienungsanleitung / Gebrauchsanweisung

Intuitiver Algorithmus-Begriff

Ein *Algorithmus* ist ein Verfahren mit einer *präzisen* (d.h. in einer genau festgelegten Sprache abgefassten) *endlichen* Beschreibung unter Verwendung *effektiver* (d.h. tatsächlich ausführbarer) elementarer Verarbeitungsschritte zur Lösung einer Klasse gleichartiger Probleme.

Anmerkungen:

- Unterscheidung zwischen dem Algorithmus und seiner Beschreibung (d.h. Repräsentation).
- Das aus einer Klasse speziell zu bearbeitende Problem wird durch Eingabe-Parameter bestimmt.
- Algorithmen liefern für Eingaben i.d.R. Resultate als Ausgaben.
 Algorithmus entspricht in diesem Sinne einer partiellen Abbildung.
- Zur Lösung einer Problemklasse gibt es i.d.R. verschiedene Algorithmen.
- Abhängig von den zur Verfügung stehenden elementaren Aktionen können Algorithmen zur Lösung derselben Problemklasse sehr unterschiedlich ausfallen.

- Unabhängig von der Beschreibungsform ist es bei Algorithmen wichtig, die folgenden Aspekte zu <u>unterscheiden</u>:
 - die Aufgabenstellung, d.h. die zu lösende Problemklasse.
 - Die <u>Art und Weise</u>, wie die Aufgabe bewältigt wird, unterschieden nach
 - den elementaren Verarbeitungsschritten, die zur Verfügung stehen,
 - der Beschreibung der Auswahl der einzelnen auszuführenden Schritte.

Eigenschaften von Algorithmen

Merkmale eines Algorithmus zu seiner Beurteilung

Ein Algorithmus heißt für eine Eingabe

— terminierend: endet stets nach endlich vielen Schritten

deterministisch: keine Freiheit in der Auswahl der

Verarbeitungsschritte

determiniert: Resultat/Endzustand des Algorithmus eindeutig

bestimmt

korrekt: im Endzustand liegt eine Lösung des

Problems vor

sequenziell: Folge von Verarbeitungsschritten

— parallel: gewisse Verarbeitungsschritte werden

nebeneinander ausgeführt

 Ein Algorithmus heißt <u>insgesamt</u> terminierend (deterministisch, determiniert, korrekt, sequenziell), wenn der Algorithmus diese Eigenschaft <u>für jede zulässige Eingabe</u> besitzt.

Beispiel

- Euklids Algorithmus zur Berechnung des größten gemeinsamen Teilers (ggT).
- Aufgabenstellung: Gegeben seien zwei ganze Zahlen a und b mit a>0 und b>0. Gesucht wird der größte gemeinsame Teiler ggT(a,b) von a und b.
- Algorithmus für ggT(a,b) nach Euklid:
 - (1) falls a=b, dann ist ggT(a,b) = a;
 - (2) falls a < b, dann wende den Algorithmus ggT an auf (a,b-a).
 - (3) falls b < a, dann wende den Algorithmus ggT an auf (a-b,b).

Anmerkungen:

- arithm. Operation "-" und Vergleichsoperationen "<" und "=" werden als die elementaren Verarbeitungsschritte angenommen.
- Lässt man die Einschränkungen a>0 und b>0 weg, so erhält man einen Algorithmus, der für ungleiche negative Zahlen nicht terminiert.
- Der Algorithmus ist
 - sequenziell
 - deterministisch (damit auch determiniert, Umkehrung gilt nicht!)
 - korrekt.

Beobachtung

- Klassische Elemente in der Beschreibung von Algorithmen sind:
 - Ausführung elementarer Schritte
 - Fallunterscheidung über Bedingungen
 - Wiederholung und Rekursion
- Diese Elemente treten in ähnlicher Form in allen Systemen zur Repräsentierung von Algorithmen auf.
- Sie bilden auch die Grundlage jeder Programmierausbildung (vgl. Vorlesung OOSE).

Güte von Algorithmen

 Beim Vergleich von Algorithmen interessieren nicht nur die o.a. Eigenschaften, vielmehr sind auch <u>Maße (Vergleichsmaßstäbe)</u> <u>für ihre Effizienz</u> gefragt.

- Unter der *Komplexität* eines Algorithmus versteht man den Aufwand in Abhängigkeit vom Anfangszustand, der durch die Ausführung des Algorithmus entsteht, gemessen in
 - Speicherbedarf zur Speicherung von internen Zuständen usw.
 - Zeitbedarf, gemessen in der Anzahl der benötigten Schritte

Güte von Algorithmen (2)

I.d.R. besteht Zielkonflikt zw. Speicherbedarf und Zeitbedarf:

 Eine ausführlichere Behandlung der Komplexität von Algorithmen erfolgt in den Vorlesungen "Algorithmen und Datenstrukturen (ADS)" sowie "Automatentheorie und Formale Sprachen (AFS)"

Repräsentierung von Algorithmen

- Die Beschreibung eines Algorithmus erfolgt in einer Sprache. Beispiele sind etwa:
 - natürliche Sprache (Kochrezept: "Man nehme ...")
 - halbformale Sprache(Strickmuster: * 2 re, 2 li; ab * wdh. bis Ende)
 - mathematische Formeln ($f(x)=3x^2+7x+5$)
 - Graphen
 - z.B. Straßenkarte für eine Zielanfahrt,
 - elektrischer Schaltplan,
 - Unified Modeling Language UML, (vgl. Vorlesung Softwaretechnik).

Repräsentierung von Algorithmen (2)

Weitere Beispiele:

- Programmiersprachen verschiedener Abstraktionsebenen und Anwendungsbereiche (vgl. Vorlesung OOSE)
 - programmierbare Taschenrechner,
 - Maschinensprache
 - Assembler,
 - C/C++, Java, Ruby, ... (Universelle Programmiersprachen)
 - APL (Mathematik),
 - XSLT, XQuery (Auszeichnungssprachen)
 - Structured Query Language (SQL, für Datenbanken).
- Hardware-Beschreibungssprachen (vgl. Vorlesung Rechnerorganisation), z.B.
 - VHDL (Beschreibung von Verfahren, die in Hardware ablaufen)

Programmiersprachen, Programme

 Für die Informatik sind nur Sprachen interessant, die eine exakte Festlegung der Algorithmen erlauben, da nur so eine maschinelle Verarbeitung erfolgen kann.

- Syntax einer Sprache: definiert die zulässigen Anordnungen der Sprachelemente auf der Ebene der Repräsentation.
- Semantik einer Sprache: definiert eine Interpretation und legt fest, wie die Sprachelemente in Hinblick auf das Problemlösungsverfahren zu interpretieren sind.
- Programmiersprache: eine formale Sprache zur Repräsentation von Algorithmen. Ein in einer solchen Programmiersprache beschriebener Algorithmus heißt Programm.

Ausführung eines Programms

Prozessor: eine ein Programm ausführende Instanz

Prozess: Ausführung eines Programms für ein konkretes

Problem

- Vorgehensweise: Prozessor liest die Repräsentation des Programms, interpretiert diese in Hinblick auf die Problemlösung.
 Er führt die darin vorgesehenen elementaren Aktionen aus.
- Die Ausführung paralleler Algorithmen führt zu nebenläufigen Prozessen.

Anmerkungen

- Nur wenige Programmiersprachen bieten ein Konzept für Parallelität.
- Nebenläufigkeit ("Quasiparallelität") wird detailliert in der Vorlesung Betriebssysteme (3. Semester) besprochen.
- Betriebssysteme unterstützen mit ihrem Prozesskonzept die nebenläufige Ausführung von Programmen (bei Vorhandensein mehrerer Prozessoren bzw. Prozessorkerne in einem Rechensystem findet die Ausführung tatsächlich parallel statt).

Programme verschiedener Abstraktionsebenen

- Algorithmen sind auf verschiedenen Abstraktionsebenen definierbar. Diese gehen einher mit dem angenommenen Vorrat an elementaren Aktionen.
- Unterschieden mindestens:
 Maschinenebene und
 Anwendungsprogrammebene.
- Übersetzung von Programmen zwischen verschiedenen Abstraktionsebenen:
 - Compiler
 - Interpreter

Beispiel:

Abstraktionsebenen in Anwendungsprogrammen

- Moderne Programmiersprachen (wie C++, Java, Smalltalk, Ruby) unterstützen die Definition problemangepasster (benutzerdefinierter) Abstraktionsebenen.
- Damit ist es Anwendungsprogrammierern möglich, sich im Sinne von abstrakten Maschinen eigene, auf der betrachteten Ebene als elementar angesehene Objekte und Aktionen zu definieren.

Vorteil:

- Übergang zwischen den verschiedenen Arbeitsphasen bei der Realisierung informationstechnischer Systeme wird erleichtert (von Systemanalyse über Systementwurf zur Implementierung; vgl. Vorlesungen <u>Programmiermethoden und -techniken</u> und <u>Softwaretechnik</u>).
- Diese Abstraktionsebenen innerhalb eines Anwendungsprogramms sind auf der Maschinenebene heutiger Prozessoren nicht sichtbar.

Beispiel: Primzahlsuche (einfacher Algorithmus)

a) Lösung in "C"

```
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
int main( int argc, char* argv[])
  int i, imax, n, n1, n2;
  n1 = atoi(argv[1]);
  n2 = atoi(argv[2]);
  for (n=n1; n<=n2; n++) {
    imax = (int) sqrt((double) n);
    for (i=2; i<=imax; i++)</pre>
        if (n%i==0) goto no prime;
    printf("%d\n", n);
no prime:
    continue;
  return 0;
```

b) Lösung in Hochsprache "Ruby"

Der höhere Abstraktionsgrad der Hochsprache

- gestattet die Verwendung kompakter, problemangepasster Sprachelemente
- ermöglicht die Formulierung gut lesbaren und dennoch sehr kurzen Quellcodes
- führt so zu kürzeren Entwicklungszeiten
- erfordert mehr Rechner-Ressourcen zur Laufzeit