Введение в обучение с подкреплением

Тема 14: Алгоритмы DDPG, TD3, SAC

Лектор: Кривошеин А.В.

Фреймворк stable_baseline3

Реализованные алгоритмы:

Name	Box	Discrete	MultiDiscrete	MultiBinary	Multi Processing
ARS ¹	~	✓	×	×	✓
A2C	✓	✓	✓	✓	✓
CrossQ ¹	✓	×	×	×	✓
DDPG	✓	×	×	×	✓
DQN	×	✓	×	×	✓
HER	✓	✓	×	×	✓
PPO	✓	✓	✓	✓	✓
QR-DQN ¹	×	✓	×	×	✓
RecurrentPPO ¹	✓	✓	✓	✓	✓
SAC	✓	×	×	×	✓
TD3	✓	×	×	×	✓
TQC ¹	✓	×	×	×	✓
TRPO ¹	✓	✓	✓	✓	✓
Maskable PPO ¹	×	✓	✓	✓	✓

О новых методах

Метод DQN является методом обучения с разделённой стратегией (обучение по отложенному опыту). Однако, это метод имеет ряд особенностей и недостатков.

- 1. Метод не всегда позволяет добиться сходимости.
- 2. DQN это не прямой подход к достижению цели агента, он обучается через оптимальную *Q*-функцию.
- 3. DQN подход работает только для сред с дискретным набором действий.

Методы на основе градиента стратегии (REINFORCE, A2C, PPO):

- 1. непосредственным образом занимаются максимизацией дохода, путём изменения вероятностей выбора действий, то есть обучаются хорошей стратегии действий.
 - 2.работают как в средах с дискретным набором действий, так и с непрерывным пространством действий.
 - 3. являются методами обучения по актуальному опыту (прошлый опыт нельзя использовать при обучении).

Ниже рассмотрим три метода обучения агента, которые позволяют совместить подходы с обучением по отложенному опыту и непосредственным обучением стратегии.

Рассмотрим метод DDPG (англ. Deep Deterministic Policy Gradients).

DDPG является развитием DQN, позволяющим использовать DQN подход в средах с непрерывным пространством действий. С другой стороны, DDPG является развитием методов на основе градиента стратегии, добавляя им возможность использовать отложенный опыт для обучения.

Суть DQN: строится приближение оптимальной Q-функции, причём Q-функция реализована как ИНС, принимающая на вход состояния s и формирующая вектор значений Q-функции $(\hat{q}(s, a_1; \theta), ..., \hat{q}(s, a_N; \theta))$ на выходе, где N — это число возможных действий в состоянии s.

DQN является методом обучения по отложенному опыту. Для обновления параметров требуется сделать один шаг по траектории, получить значения (s, a, r, s') и сдвинуть параметры для минимизации функции ошибки

$$J(\theta) = \frac{1}{2} \left(r + \gamma \max_{a'} \hat{q}(s', a'; \theta^{-}) - \hat{q}(s, a; \theta) \right)^{2}.$$

Набор параметров θ^- является "замороженной" на некоторое время копией параметров θ . Эти параметры θ^- обновляются копированием параметров θ раз в некоторое число итераций.

Формула обновления по методу DQN имеет вид:

$$\theta \leftarrow \theta + \alpha \left(r + \gamma \max_{a'} \hat{q}(s', a'; \theta^{-}) - \hat{q}(s, a; \theta) \right) \operatorname{grad}_{\theta} \hat{q}(s, a; \theta).$$

При этом можно использовать буфер памяти для хранения и использования прошлого опыта взаимодействия.

При DQN агент формирует траектории в среде по ε -жадной стратегии относительно текущей Q-функции. Обучается же агент сразу целевой оптимальной стратегии π^* . Хорошо обученная Q-функция близка к оптимальной Q-функции. Связь между оптимальной стратегией и оптимальной Q-функцией имеет вид:

$$\pi^*(s) = \underset{a}{\operatorname{argmax}} Q(s, a).$$

В этом смысле целевое значение для обновления параметров сети имеет вид

$$r + \gamma \max_{a'} \hat{q}(s', a'; \theta^-) = r + \gamma \, \hat{q}(s', \boldsymbol{\pi^*(s')}; \theta^-).$$

Для метода DQN надо уметь **быстро** считать целевые значения, так как обучение проводится часто.

В случае дискретного пространства действий это так:

вычисляется выход ИНС и выбирается максимальное значение.

В случае **непрерывного пространства действий** поиск значения $\max_{a'} \hat{q}(s', a'; \theta^-)$ значительно усложняется.

- 1. Нет возможности найти $\hat{q}(s', a'; \theta^-)$ для всех возможных действий a', так как их континуум.
- 2. Нет возможности легко получить жадную стратегию по Q-функции: $\pi^*(s) = \operatorname{argmax} \hat{q}(s, a; \theta)$. Для поиска максимума требуется формально решать некоторую оптимизационную задачу для каждого состояния, что вычислительно затратно.

Идея DDPG (2016): обучать отдельную ИНС со своим набором параметров ω , которая по текущему состоянию s на входе, будет выдавать результат решения оптимизационной задачи:

 $\pi_{\omega}(s) = \operatorname{argmax} \hat{q}(s, a; \theta)$. Задача этой ИНС: формировать жадную относительно Q – функции стратегию.

Таким образом, есть две ИНС, как в методе Актор-Критик. Однако, теперь механизм работы этой пары немного иной.

Актор — это модель для стратегии π_{ω} , которая приближает жадную стратегию относительно текущей Q-функции, $a=\pi_{\omega}(s)$.

Критик — это модель для *Q*-функции, которая приближает оптимальную *Q*-функцию, на вход сети подаётся пара состояние-действие, результатом является число $\hat{q}(s, a; \theta)$.

При обучении методом DQN опыт можно генерировать по любой стратегии, в том числе Актор может генерировать эти стратегии. Если Актор генерирует стратегии, то это должны быть исследовательские стратегии. Чтобы это было так, надо в состоянии s совершать зашумлённое действие $\pi_{\omega}(s) + \xi$, где $\xi \sim \mathcal{N}(0, \sigma)$.

Шаг обучения: чтобы обучить сеть Критика, то есть сеть $\hat{q}(s, a; \theta)$, используется DQN подход и цель обновления формируется по четвёрке (s, a, r, s') с помощью сети Актора

$$r + \gamma \hat{q}(s', \pi_{\omega}(s'); \theta^{-})$$

Формула обновления параметров для Критика по (s, a, r, s') в итоге имеет вид

$$\theta \leftarrow \theta + \alpha (r + \gamma \hat{q}(s', \pi_{\omega}(s'); \theta^{-}) - \hat{q}(s, a; \theta)) \operatorname{grad}_{\theta} \hat{q}(s, a; \theta).$$

"Замороженные" параметры θ^- обновляются по параметрам θ с помощью **soft update** (также polyak averaging или exponential averaging)

 $\theta^- \leftarrow \tau \theta + (1 - \tau) \theta^-$ с некоторым коэффициентом τ .

Для обучения сети Актора π_{ω} решается задача максимизации Q-функции:

$$J^{Q}(\omega) = \max_{\omega} \mathbb{E}[Q(S_t, \pi_{\omega}(S_t))].$$

В нашем случае максимизируется приближение Q – функции в текущей точке на траектории

$$J^{Q}(\omega) \approx \max_{\omega} \hat{q}(s, \pi_{\omega}(s); \theta).$$

Формула обновления параметров будет иметь вид:

$$\omega \leftarrow \omega + \alpha \operatorname{grad}_{\omega} J^{Q}(\omega)$$
, где $\operatorname{grad}_{\omega} J^{Q}(\omega) \approx \operatorname{grad}_{a} \hat{q}(s, a; \theta)|_{a=\pi_{\omega}(s)} \cdot \operatorname{grad}_{\omega} \pi_{\omega}(s)$.

Для сети Актора π_{ω} можно также использовать два набора параметров ω и ω^- .

Параметры ω будут использоваться для формирования траектории и ИНС будет обучаться.

Параметры ω^- будут использоваться при формировании цели обновления для Q-функции, то есть цель обновления имеет вид

$$r + \gamma \hat{q}(s', \pi_{\omega^{-}}(s'); \theta^{-}).$$

Параметры ω^- обновляются по параметрам ω с помощью **soft update**.

Шаг обновления параметров этих двух ИНС можно делать после каждого шага по траектории. Но более эффективно использовать буфер памяти, извлекая оттуда пакет обучающих примеров.

1. Инициализировать γ , λ , ИНС $\hat{q}(s, a; \theta)$, $\pi_{\omega}(s)$, $\theta^- = \theta$, $\omega^- = \omega$, буфер памяти D 2. Q-learning

Повторять для каждого эпизода:

Выбрать начальное состояние 5 Повторять:

Выбрать
$$a = \pi_{\omega}(s) + \xi$$
, $\xi \sim \mathcal{N}(0, \sigma)$
Наблюдать r, s' и сохранить в буфер (s,a,r,s')
Выбрать батч из буфера памяти D $(s,a,r,s') \sim D$ $a' = \pi_{\omega'}(s')$ $\theta \leftarrow \theta + \alpha (r + \gamma \, \hat{q}(s', a'; \theta^-) - \hat{q}(s, a; \theta)) \operatorname{grad}_{\theta} \hat{q}(s, a; \theta)$ $\omega \leftarrow \omega + \alpha \operatorname{grad}_a \hat{q}(s, a; \theta) \big|_{a=\pi_{\omega}(s)} \cdot \operatorname{grad}_{\omega} \pi_{\omega}(s)$ Обновить θ^- , $\omega^ s := s'$

Если 5 заключительное состояние, то выйти из цикла.

С течением времени можно снижать шум.

Метод TD3

Метод DDPG часто может достигать отличной производительности, но он требует тонкой настройки гиперпараметров.

Одной из проблем для DDPG является то, что обучаемая Q-функция может сильно завышать значения Q-функции, что приводит к изменениям стратегии, которая использует эти завышенные значения в Q-функции.

Модификацией DDPG является метод **TD3** или **Twin Delayed DDPG**.

Алгоритм TD3 решает указанную выше проблему, вводя три приёма:

- 1. Алгоритм ТD3 обучает двух Критиков вместо одного и для формирования целевого значения используется меньшее из двух значений от критиков.
- 2. Уменьшенная скорость обновления стратегии (например, одно обновление стратегии на два обновления Q-функции).
- 3. ТD3 добавляет шум к действию, которое выбирается для формирования цели обновления. Например,

$$a'(s') = \text{clip}(\pi_{\omega}(s') + \text{clip}(\nu, -c, c), a_{\text{Low}}, a_{\text{High}}), \quad \nu \sim \mathcal{N}(0, \sigma),$$
если действие должно быть в интервале [$a_{\text{Low}}, a_{\text{High}}$].

Метод TD3

Веса Критиков будем обозначать θ_1 , θ_2 и для формирования целевых значений используются веса θ_1^- , θ_2^- . Веса Актора — это ω и для целевых значений используются веса ω^- .

При обучении сетей Критиков формируется единое целевое значение для обновления в виде

$$r + \gamma \min_{i=1,2} \hat{q}(s', a'(s'); \theta_i^-)$$
, где $a'(s') = \text{clip}(\pi_{\omega^-}(s') + \text{clip}(\nu, -c, c), a_{\text{Low}}, a_{\text{High}})$, $\nu \sim \mathcal{N}(0, \sigma)$,

и обе сети сдвигают свои значения в сторону этой цели минимизируя разность:

$$J(\theta_i) = \left(r + \gamma \min_{i=1,2} \hat{q}(s', a'(s'); \theta_i^-) - \hat{q}(s, a; \theta_i)\right)^2, \quad i = 1, 2.$$

При обучении Актора всё также требуется максимизация

$$J^Q(\omega) \approx \max_{\omega} \hat{q}(s, \pi_{\omega}(s); \theta_1).$$

Параметры ω^- , θ_1^- , θ_2^- обновляются по параметрам ω , θ_1 , θ_2 с помощью soft update.

Указанные улучшения значительно повышают эффективность обучения.

Метод TD3 всё также является методом обучения по отложенному опыту и используется для сред с непрерывным пространством действий.

Метод TD3

1. Инициализировать

$$\gamma$$
, λ , ИНС $\hat{q}(s, a; \theta_i)$, $\pi_{\omega}(s)$, $\theta_i^- = \theta_i$, $i=1,2$, $\omega^- = \omega$, буфер памяти D, N — насколько часто обновлять стратегию

2. Q-learning

Повторять для каждого эпизода:

Выбрать начальное состояние 5

Повторять:

орять:
Выбрать
$$a = \pi_{\omega}(s) + \xi$$
, $\xi \sim \mathcal{N}(0, \sigma)$
Наблюдать r , s' и сохранить в буфер (s,a,r,s')
Выбрать батч из буфера памяти D
 $(s,a,r,s') \sim D$
 $a' = \text{clip}(\pi_{\omega^-}(s') + \text{clip}(v, -c, c), a_{\text{Low}}, a_{\text{High}}), v \sim \mathcal{N}(0, \sigma)$
 $\theta_i \leftarrow \theta_i + \alpha \Big(r + \gamma \min_{i=1,2} \hat{q}(s', a'(s'); \theta_i^-) - \hat{q}(s, a; \theta_i)\Big) \text{grad}_{\theta_i} \hat{q}(s, a; \theta_i)$
Для каждого N-го эпизода
 $\omega \leftarrow \omega + \alpha \text{grad}_a \hat{q}(s, a; \theta_1) \big|_{a=\pi_{\omega}(s)} \cdot \text{grad}_{\omega} \pi_{\omega}(s)$
Обновить θ_i^- , $\omega^ s \coloneqq s'$

Если 5 заключительное состояние, то выйти из цикла.

Обсудим метод **Soft Actor-Critic**. Слово "soft" значит, что в формулах применяется регуляризации энтропии.

Для пояснения базовой идеи обсудим подход к формированию основных понятий **RL с регуляризацией энтропии.**

Энтропия случайной величины с плотностью распределения P равна

$$H(P) = \mathbb{E}_{x \sim P} [-\ln P(x)].$$

RL с регуляризацией энтропии означает, что агент получает дополнительное вознаграждение за каждый шаг, пропорциональный величине энтропии стохастической стратегии агента в этот шаг.

То есть цель агента в построении стратегии

$$\pi^* = \underset{\pi}{\operatorname{argmax}} \mathbb{E}_{\pi} \Big[\sum_{t=0}^{T} \gamma^t \Big(R_{t+1} + \alpha H(\pi(\cdot \mid S_t)) \Big) \Big] = \underset{\pi}{\operatorname{argmax}} \mathbb{E}_{\pi} \Big[G_0 + \alpha \sum_{t=0}^{T} \gamma^t H(\pi(\cdot \mid S_t)) \Big].$$

Регуляризация энтропии нужна затем, чтобы стимулировать агента совершать исследования.

Функция ценности состояний также включает энтропию:

$$v_{\pi}(s) = \mathbb{E}_{\pi} \Big[\sum_{t=0}^{T} \gamma^{t} (R_{t+1} + \alpha H(\pi(\cdot \mid S_{t}))) \, \Big| \, S_{o} = s \Big]$$

Аналогичным образом меняется функция ценности пар состояние-действие:

$$q_{\pi}(s, a) = \mathbb{E}_{\pi} \left[R_1 + \sum_{t=1}^{T} \gamma^t (R_{t+1} + \alpha H(\pi(\cdot \mid S_t))) \mid S_0 = s, A_0 = a \right]$$

Можно выписать уравнение Беллмана для изменённой О-функции:

$$q_{\pi}(s, a) = \underset{\substack{r' s \sim \text{Model} \\ a' \sim \pi}}{\mathbb{E}} \left[r + \gamma \left(q_{\pi}(s', a') + \alpha H(\pi(\cdot \mid s')) \right) \middle| S_0 = s, A_0 = a \right] = 0$$

$$\mathbb{E}_{\substack{r' \text{ s\sim} \text{Model} \\ a' \sim \pi}} \left[r + \gamma \left(q_{\pi}(s', a') - \alpha \ln(\pi(a' \mid s')) \right) \middle| S_0 = s, A_0 = a \right].$$

Для четвёрки значений (s, a, r, s') оценку математического ожидания можно получить в виде

$$Q(s,a) \approx r + \gamma \left(Q(s',a') - \alpha \ln \pi(a'|s') \right)$$
, где $a' \sim \pi(\cdot |s')$

Далее, по аналогии с методом Q-learning можно сформулировать, например, метод soft Q-learning.

Метод SAC является по сути добавлением в метод TD3 регуляризации энтропии.

Ранее, в методах А2С мы добавляли слагаемое с энтропией в функцию ошибки для поощрения исследования.

Теперь регуляризация энтропии введена в формулы для МППР. Классические алгоритмы и soft алгоритмы могут сходиться к разным решениям.

Как и в TD3, метод SAC использует два Критика. **Единое значение цели обновления** формируется с помощью замороженных на время весов в виде

$$r + \gamma \left(\min_{i=1,2} \hat{q}(s',a'; heta_i^-) - \alpha \ln \pi_\omega(a' \,|\, s')
ight)$$
, где $a' \sim \pi_\omega(\cdot \,|\, s')$

и обе сети сдвигают свои значения в сторону этой цели минимизируя разность:

$$J(\theta_i) = \left(r + \gamma \left(\min_{i=1,2} \hat{q}(s', a'; \theta_i^-) - \alpha \ln \pi_{\omega}(a' \mid s') \right) - \hat{q}(s, a; \theta_i) \right)^2, \quad i = 1, 2.$$

Актор использует стохастическую стратегию для выбора действий π_{ω} . Она же используется для формирования цели обновления. Задача Актора схожа с задачей Актора для ТD3, то есть Актор должен выдавать такое распределение вероятностей выбора действий $\pi_{\omega}(\cdot \mid s)$, которое максимизирует значение soft Q-функции, то есть

$$J^Q(\omega) = \max_{\omega} \, \mathbb{E}_{a \sim \pi_{\omega}(\cdot \mid s)} \big[Q(s, \, a) \, + \alpha \, H(\pi_{\omega}(\, \cdot \mid s)) \, \big]$$

Проблема 1: в ТD3 Актор возвращал сами действия, здесь же требуется возвращать и распределение вероятностей выбора действий, так как нужно искать энтропию этого распределения.

$$J^Q(\omega) = \max_{\omega} \, \mathbb{E}_{a \sim \pi_{\omega}(\cdot \mid s)} \big[Q(s, \, a) \, + \alpha \, H(\pi_{\omega}(\, \cdot \mid s)) \, \big].$$

В дискретном случае Актор может возвращать вероятности выбора действий, а Критик вектор значений Q-функции для различных действий.

В непрерывном же случае, Критик возвращает значение Q-функции для пары (s,a) на входе. А Актор $\pi_{\omega}(s)$ будет возвращать характеристики вероятностного распределения выбора действий. Для SAC используется "сдавленная" гауссиана (squashed Gaussian) $a = \tanh(\xi)$, где $\xi \sim \mathcal{N}(\mu_{\omega}, \sigma_{\omega})$, где $\mu_{\omega}, \sigma_{\omega}$ результат работы Актора.

Использование сдавленной гауссианы удобно ещё в том смысле, что часто действия лежат в некотором интервале, а гауссиана может выдавать формально значения по всей прямой.

Проблема 2. Как искать

$$\max_{\omega} \mathbb{E}_{a \sim \pi_{\omega}(\cdot | s)}[Q(s, a)]$$

В TD3 действие было результатом работы ИНС Актора, и можно было брать градиент от Q(s, a) как от сложной функции.

В SAC ИНС Актора возвращает параметры вероятностного распределения и здесь на ясно, как искать

$$\operatorname{grad}_{\omega} \mathbb{E}_{a \sim \pi_{\omega}(\cdot | s)}[Q(s, a)].$$

В SAC используется ре-параметризация распределения. А именно, действия выбираются по формуле

$$a = \tanh(\mu_{\omega} + \eta \sigma_{\omega}), \text{ где } \eta \sim \mathcal{N}(0, 1).$$

Тогда

$$\mathbb{E}_{a \sim \pi_{\omega}(\cdot | s)}[Q(s, a)] = \mathbb{E}_{\eta \sim \mathcal{N}(0, 1)}[Q(s, \tanh(\mu_{\omega} + \eta \sigma_{\omega}))].$$

Теперь можно искать: $\operatorname{grad}_{\omega} \mathbb{E}_{\eta \sim \mathcal{N}(0,1)}[Q(s, \tanh(\mu_{\omega} + \eta \sigma_{\omega}))] = \mathbb{E}_{\eta \sim \mathcal{N}(0,1)}[\operatorname{grad}_{\omega} Q(s, \tanh(\mu_{\omega} + \eta \sigma_{\omega}))]$

Существует также модификация, которая позволяет автоматически подбирать коэффициент энтропии α в $J^Q(\omega) = \max_{\omega} \, \mathbb{E}_{a \sim \pi_{\omega}(\cdot \mid s)} \big[Q(s, \, a) \, + \alpha \, H(\pi_{\omega}(\, \cdot \mid s)) \, \big].$

Метод SAC часто показывает одни из лучших результатов для различных задач.

