	What is claimed is:			
1	1.	A method for identifying music, comprising the steps of:		
2		(a) recording a sample of audio data;		
3		(b) deriving a sample time signal from the audio data;		
4		(c) sorting a plurality of songs, wherein each song is represented by a time signal;		
5	and			
6		(d) matching the sample time signal with the time signal of a song in the plurality		
7	of song	ongs.		
8	2.	The method of claim 1, where the sorting step further comprises:		
9		generating a sample feature vector for the sample time signal;		
10		generating a feature vector for each time signal of the songs; and		
11		sorting the songs in an ascending order based on feature space distance between		
12	the san	e sample feature vector and respective feature vectors for each time signal of the songs		
13	3.	The method of claim 2, where the generating steps further comprise extracting		
14	features from the sample time signal and the time signals of the songs.			
15	4.	The method of claim 3, where the features comprise beat, noise, tone, pitch,		
16	loudne	ss and tempo.		
17	5.	The method of claim 1, where the sorting step further comprises:		
18		generating a sample feature vector for the sample time signal;		
19		generating a plurality of feature vectors for one or more time signals of the songs,		
20	wherei	n each feature vector of the plurality of feature vectors for a time signal is		
21	genera	ted from a different segment of the song corresponding to the time signal;		
22		separating the plurality of feature vectors for each time signal as distinct entries;		
23	and			
24		sorting the entries in an ascending order based on feature space distance between		
25	the san	nple feature vector and respective feature vectors for the entries.		
26	6.	The method of claim 2, where the matching step further comprises:		
27		comparing the sample time signal to a first time signal in the ascending order;		
28		computing a signal match waveform for the first time signal in relation to the		
29	sample	e time signal;		
30		playing the song corresponding to the first time signal if the signal match		
31	waveform satisfies a decision rule;			
32		indicating by a user whether the played song matches the sample of audio data;		

and

32 33

1	presenting to the user song information corresponding	g to the first	time signal i	if the
2	user indicates a match.			

- The method of claim 6, where the signal match waveform is computed by
- 4 calculating a cross-correlation of the first time signal in relation to the sample time signal.
- 5 8. The method of claim 7, where the decision rule is satisfied if an overall absolute
- 6 maximum of the cross-correlation computed for the first time signal is greater than an
- 7 average cross-correlation by a predetermined factor.
- 8 9. The method of claim 7, where the decision rule is satisfied if an overall absolute
- 9 maximum of the cross-correlation computed for the first time signal is greater than an
- average cross-correlation by a predetermined factor, and no incorrect songs have been
- 11 presented to the user.
- 12 10. The method of claim 6, where the song information comprises song title, artist and
- 13 performance.
- 14 11. The method of claim 6, further comprising, after the computing step, the step of:
- 15 comparing the sample time signal to a next time signal in the ascending order, and
- subsequently repeating the computing step with respect to the next time signal, if the
- signal match waveform does not satisfy the decision rule for the first time signal.
- 18 12. The method of claim/6, further comprising the step of:
- comparing the sample time signal to a next time signal in the ascending order, and
- subsequently repeating the computing, playing, indicating and presenting steps with
- 21 respect to the next time signal, if the user indicates that the played song does not match
- 22 the sample of audio data.
- 23 13. A system for identifying music, comprising:
- 24 a means for recording a sample of audio data;
- a mean's for deriving a sample time signal from the audio data;
- a means for sorting a plurality of songs, wherein each song is represented by a
- 27 time signal; and
- 28 a/means for matching the sample time signal with the time signal of a song in the
- 29 plurality of songs.
- 30 14. The system of claim 13, where the means for sorting further comprises:
- a means for generating a sample feature vector for the sample time signal;
- a means for generating a feature vector for each time signal of the songs; and

1	a means for sorting the songs in an ascending order based on feature space		
2	distance between the sample feature vector and respective feature vectors for each time		
3	signal of the songs.		
4	15. The system of claim 14, where the means for generating a sample feature vector		
5	and the means for generating a feature vector for each time signal of the songs further		
6	comprise a means for extracting features from the sample time signal and the time signal		
7	of the songs.		
8	16. The system of claim 15, where the features comprise beat, noise, tone, pitch,		
9	loudness and tempo.		
10	17. The system of claim 13, where the means for sorting further comprises:		
11	a means for generating a sample feature vector for the sample time signal;		
12	a means for generating a plurality of feature vectors for one or more time signals		
13	of the songs, wherein each feature vector of the plurality of feature vectors for a time		
14	signal is generated from a different segment of the song corresponding to the time signal;		
15	a means for separating the plurality of feature vectors for each time signal as		
16	distinct entries; and		
17	a means for sorting the entries in an ascending order based on feature space		
18	distance between the sample feature vector and respective feature vectors for the entries.		
19	18. The system of claim 14, where the means for matching further comprises:		
20	a means for comparing the sample time signal to a first time signal in the		
21	ascending order;		
22	a means for computing a signal match waveform for the first time signal in		
23	relation to the sample time signal;		
24	a means for playing the song corresponding to the first time signal if the signal		
25	match waveform satisfies a decision rule;		
26	a means for indicating by a user whether the played song matches the sample of		
27	audio data; and		
28	a means for presenting to the user song information corresponding to the first time		
29	signal if the user indicates a match.		
30	19. The system of claim 18, where the signal match waveform is computed by		
31	calculating a cross-correlation of the first time signal in relation to the sample time signal		
32	The system of claim 19, where the decision rule is satisfied if an overall absolute		
33	maximum of the cross-correlation computed for the first time signal is greater than an		
34	average cross-correlation by a predetermined factor.		

HP 10014315-1

- 1 21. The system of claim 19, where the decision rule is satisfied if an overall absolute
- 2 maximum of the cross-correlation computed for the first time signal is greater than an
- 3 average cross-correlation by a predetermined factor, and no incorrect songs have been
- 4 presented to the user.
- 5 22. The system of claim 18, where the song information comprises song title, artist
- 6 and performance.
- 7 23. A method for identifying music, comprising the steps of:
- 8 (a) recording a sample of audio data;
- 9 (b) deriving a sample time signal from the audio data; and
- 10 (c) matching the sample time signal with a time signal of a plurality of time 11 signals in a database, wherein each of the plurality of times signals represents a song in
- 12 the database.
- 13 24. The method of claim 23, where the matching step further comprises:
- 14 computing a signal match intensity for the plurality of time signals in the database
- in relation to the sample time signal;
- selecting a time signal of the plurality of time signals having a maximum signal
- 17 match intensity; and
- presenting to a user song information corresponding to the selected time signal.
- 19 25. The method of claim 24, where the song information comprises song title, artist
- and performance.
- 21 26. A system for identifying music, comprising:
- 22 a means for recording a sample of audio data;
- a means for deriving a sample time signal from the audio data; and
- a means for matching the sample time signal with a time signal of a plurality of
- 25 time signals in a database, wherein each of the plurality of time signals represents a song
- in the database.
- 27 27. The system/of claim 26, where the means for matching further comprises:
- a means for computing a signal match intensity for the plurality of time signals in
- 29 the database in relation to the sample time signal;
- a means for selecting a time signal of the plurality of time signals having a
- 31 maximum signal match intensity; and
- 32 a/means for presenting to a user song information corresponding to the selected
- 33 time signal.

3

5

6

7

8 9

1	28.	The method of claim 27, where the song information of	comprises song title, artis
2	and pe	rformance.	

- 29. A method for identifying music, comprising the steps of:
 - (a) recording a sample of audio data;
- (b) generating a first plurality of time signals from the sample of audio data, wherein the first plurality of time signals are generated in distinct frequency bands;
- (c) generating a second plurality of time signals from songs in a database, wherein the second plurality of time signals are generated in the same distinct frequency bands as the first plurality of time signals; and
- 10 (d) matching the first plurality of time signals with the second plurality of time 11 signals.