EJERCICIOS correspondientes a los Capítulos 1 y 2 CURSO PROPEDEUTICO DE ANÁLISIS REAL DCA - CINVESTAV, Mayo-Junio 2013

- 1. Para cada una de las siguientes funciones f, determina: su dominio de definición D_f , su dominio de valores V_f , y si la función es sobre / 1-1 / biyección:
 - a) $f(x) = ln(x), x \in \mathbb{R}$
 - b) $f(x) = cos(x), x \in \mathbb{R}$
 - c) $f(x) = x^2, x \in \mathbb{R}$
 - d) $f(x) = x^3 + 2x 3, x \in \mathbb{R}$ e) $f(x) = sen(\frac{1}{x}), x \in \mathbb{R}$
- 2. Demuestra que para cualquier funcón $f: \mathbb{R} \to \mathbb{R}$, y $M, N \subset \mathbb{R}$, la imagen inversa cumple lo siguiente:

$$f^{-1}(M \cup N) = f^{-1}(M) \cup f^{-1}(N);$$

$$f^{-1}(M \cap N) = f^{-1}(M) \cap f^{-1}(N).$$

- 3. Aplicando las propiedades básicas del campo ordenado $(\mathbb{R}, +, \cdot, \leq)$, y el lema de la monotonía de las operaciones $+,\cdot$ (vea clase), demuestra para $a,b,c\in\mathbb{R}$:
- a) $a \le b, c \le d$ implica $a + c \le b + d$ (adición de desigualdades);
- b) $0 \le a \le b, 0 \le c \le d$ implica $a \cdot c \le b \cdot d$ (multiplicación de desigualdades);
- c) $a \le b$ implies $-b \le -a$;
- d) $a \neq 0$ implies $a^2 > 0$.
- 4. Determina min, max (si existen), inf, sup de los siguientes subconjuntos de $I\!\!R$ (recordando denotación de intervalos !):
 - a) $A = [-5, 0] \cup \{10\}$
 - b) $A = (-\infty, 0)$
 - c) $A = (-\infty, 5) \cup [5, 7] \cup (7, 9)$ d) $A = \{2 + \frac{1}{n} : n \in \mathbb{N}\}$
- 5. Aplicando la definición del valor absoluto, demuestra las siguientes propiedades, para cualesquiera $x, y \in \mathbb{R}$:
- a) $|xy| = |x| \cdot |y|$
- b) $|x+y| \le |x| + |y|$ (designaldad del triangulo)
- c) |x| = |-x|
- d) $|xy| = |x| \cdot |y|$
- e) Suponiendo que ya sabemos (!) que $|x+y| \le |x| + |y|$, demuestra por inducción que para $x_1, x_2, \dots, x_n \in \mathbb{R}$ vale que $|x_1 + x_2 + \dots + x_n| \le |x_1| + |x_n|$ $x_2 \mid + \cdots + \mid x_n \mid$.

- **6.** Demuestra que la función $\|\cdot\|$: $I\!\!R \to I\!\!R$, dada para todo $x=(x_1,x_2)\in I\!\!R^2$ por $\|x\|=\sqrt{x_1^2+x_2^2}$, cumple los axiomas de una norma sobre $I\!\!R^2$. Qué significa aquí la norma ("longitud") de un vector de $I\!\!R^2$ geométricamente ?
- 7. Demuestra que la función $\|\cdot\| \mathbb{R} \to \mathbb{R}$, dada para cualesquiera $x=(x_1,x_2)\in \mathbb{R}^2$ por $\|x\|=\max\{|x_1|,|x_2|\}$, cumple los axiomas de una norma sobre \mathbb{R}^2 . Qué significa aquí la norma ("longitud") de un vector de \mathbb{R}^2 geométricamente ?
- **8.** Demuestra que la función d(x,y), dada para cualesquiera $x=(x_1,x_2),y=(y_1,y_2)\in \mathbb{Z}^2$ por $d(x,y)=|x_1-y_1|+|x_2-y_2|$, cumple los axiomas de una métrica sobre \mathbb{Z}^2 . Qué significa aquí la distancia entre dos vectores de \mathbb{Z}^2 geométricamente?
