A Set of Fortran 90 and Python Routines for Solving Linear Equations with IDR(s)

R. Astudillo^{*}, M. Baumann^{®*}, M. B. van Gijzen^{*}

[®]M.M.Baumann@tudelft.nl, *Delft Institute of Applied Mathematics, TU Delft

Induced Dimension Reduction (IDR) method

 $\mathsf{IDR}(s)$ is a Krylov subspace method originally proposed to solve system of linear equations,

$$A\mathbf{x} = \mathbf{b}$$

where the coefficient matrix A is large, sparse, and non-symmetric. IDR(s) is a short-recurrence method which has obtained attention for its rapid convergence and computational efficiency.

[1] P. Sonneveld and M. B. van Gijzen. *IDR(s): A Family of Simple and Fast Algorithms for Solving Large Nonsymmetric Systems of Linear Equations*, SIAM J. Sci. Comput., 31(2), 1035–1062, 2008

IDR(s) for linear matrix equations

Generalization of the IDR theorem. Let \mathcal{A} be a linear operator over a finite dimensional subspace \mathcal{D} and \mathcal{I} be the identity operator over the same subspace. Let \mathcal{S} be any (proper) subspace of \mathcal{D} . Define $\mathcal{G}_0 \equiv \mathcal{D}$. If \mathcal{S} and \mathcal{G}_0 do not share a nontrivial invariant subspace of the operator \mathcal{A} , then the sequence of subspaces \mathcal{G}_j , defined as

$$\mathcal{G}_j \equiv (\mathcal{I} - \omega_j \mathcal{A})(\mathcal{G}_{j-1} \cap \mathcal{S}), \quad j = 1, 2 \dots, \quad \omega_j \neq 0,$$
 has the following properties for $j \geq 0$:

(1)
$$\mathcal{G}_{j+1} \subset \mathcal{G}_j$$
, and (2) $\dim(\mathcal{G}_{j+1}) < \dim(\mathcal{G}_j)$ unless $\mathcal{G}_j = \{0\}$.

Using this generalization, we develop an IDR-algorithm for solving linear matrix equations of the form,

$$\sum_{j=1}^{\kappa} A_j \mathbf{X} B_j^{\mathsf{T}} = C.$$

[2] R. Astudillo and M. B. van Gijzen. *Induced Dimension Reduction method for solving linear matrix equations*, Delft University of Technology, TR-05, 2015

IDR(s) for shifted linear systems

For the efficient solution of shifted linear systems,

$$(A - \sigma_k I)\mathbf{x}_k = \mathbf{b}, \quad k = 1, 2, ...,$$

two IDR variants have recently been developed:

- Multi-shift QMRIDR(s) relies on a generalized Hessenberg decomposition, cf. [4],
- MSIDR(s) generates collinear residuals such that $\mathbf{r}_{j}^{(\sigma_{k})} \in \mathcal{G}_{j}, \forall k$, cf. [3].

The latter can be used as a preconditioner in a nested algorithm.

- [3] M. Baumann and M. B. van Gijzen. *Nested Krylov methods for shifted linear systems*, SIAM J. Sci. Comput. Copper Mountain Special Issue, 2014 [in press]
- [4] M. B. van Gijzen, G. L. G. Sleijpen, and J.-P. M. Zemke. Flexible and multi-shift induced dimension reduction algorithms for solving large sparse linear systems, Numer. Linear Algebra Appl. 22(1), 2015, 1-25

Software features

IDR implementation developed at TU Delft:

- Standalone implementation in Fortran 90 and Python
- Flexible user interface via types
- Advanced features, e.g. subspace recycling, Ritz values
- Solving matrix equations and multiple right-hand sides:

