Tandon Bridge Program - Homework 7

Archana Balachandran (ab
12864) and Rachel Butler (rb
3028)
 November 2024

Question 5

a. **Theorem:** For any positive integer n, 3 divides $n^3 + 2n$ leaving no remainder.

Proof.

By induction on n.

Base case: n = 1.

Plug in 1 for n: $1^3 + 2 * (1) = 3$.

Since 3 evenly divides 3, the theorem holds true for n = 1.

Inductive step: Suppose that for positive integer k, 3 evenly divides $k^3 + 2k$, then we will prove that 3 evenly divides $(k+1)^3 + 2(k+1)$. By the inductive hypothesis, 3 evenly divides $k^3 + 2k$, meaning $k^3 + 2k = 3m$ for some integer m.

We now show that $(k+1)^3 + 2(k+1)$ can be expressed as 3 times an integer.

$$(k+1)^3 + 2(k+1) = k^3 + 1 + 3 * k^2 + 3k + 2k + 2$$
(Using the expansion of $(a+b)^3$)
$$= k^3 + 3 + 3k^2 + 5k$$

$$= k^3 + 2k + 3k^2 + 3k + 3$$
(By the inductive hypothesis)
$$= 3(m+k^2+k+1)$$

Since m and k are integers, $(m+k^2+k+1)$ is also an integer. Therefore $(k+1)^3+2(k+1)$ is equal to 3 times an integer, proving that it is perfectly divisible by 3. \blacksquare

b. **Theorem:** A positive integer n, such that $n \geq 2$, can be written as a product of primes.

Proof.

By strong induction on n.

Inductive step: Assume that for $k \geq 2$, any integer j in the range 2 through k can be expressed as a product of prime numbers. We will prove that k+1 can also be expressed as a product of primes. There are two cases to consider:

i. k+1 is prime

In this case, k+1 is already a product of the prime k+1

ii. k+1 is not a prime

In this case k + 1 can be expressed as a product of two integers a and b that are each at least 2.

For strong induction, we need to prove that both a and b fall within the range from 2 to k, that is $2 \le a \le k$ and $2 \le b \le k$.

Since k+1=a*b by assumption, $a=\frac{k+1}{b}$. Since $b\geq 2$, $a=\frac{k+1}{b}< k+1$. Since a is an integer and is strictly less than k+1, $a\leq k$. Using the same logic, $b\leq k$.

Since both a and b are less than or equal to k and, by the inductive hypothesis, 2 through k can be written as a product of primes:

$$a = p_1.p_2....p_l$$

$$b = q_1.q_2....q_m$$

k+1 can be expressed as the product of primes:

$$k+1 = a.b = p_1.p_2....p_l.q_1.q_2....q_m$$

Question 6

- a. Exercise 7.4.1
 - a. P(n) is the assertion that $\sum_{j=1}^n j^2 = \frac{n(n+1)(2*n+1)}{6}$ P(3) is $\sum_{j=1}^3 j^2 = \frac{3(3+1)(2*3+1)}{6}$ $1^2+2^2+3^2 = \frac{3(3+1)(2*3+1)}{6}$ $1+4+9 = \frac{3(4)(7)}{6}$ 14=14
 - b. P(k) is the expression $\sum_{j=1}^k j^2 = \frac{k(k+1)(2*k+1)}{6}$
 - c. P(k+1) is the expression $\sum_{j=1}^{k+1} j^2 = \frac{(k+1)(k+2)(2*(k+1)+1)}{6}$ $\sum_{j=1}^{k+1} j^2 = \frac{(k+1)(k+2)(2k+3)}{6}$
 - d. In the base case, we prove that P(n) is true for the first relevant value of n. Here that value is 1, so we prove that P(1) or $\sum_{j=1}^{1} j^2 = \frac{1(1+1)(2*1+1)}{6}$ is true.
 - e. In the inductive step, we prove that if P(k) is true, then P(k+1) is true.

Here, that would be the same as proving:

$$P(k+1)$$
, which is $\sum_{j=1}^{k+1} j^2 = \frac{(k+1)(k+2)(2*k+3)}{6}$

using the inductive hypothesis $P(k) = \sum_{j=1}^{k} j^2 = \frac{k(k+1)(2*k+1)}{6}$.

- f. The inductive hypothesis would be that P(k) = $\sum_{j=1}^k j^2 = \frac{k(k+1)(2*k+1)}{6}$ is true
- g. Theorem: $\sum_{j=1}^{n} j^2 = \frac{n(n+1)(2*n+1)}{6}$

By induction on n.

Base case: n = 1

 $1^2 = \frac{1(2)(3)}{6}$

1 = 1 Therefore for n = 1, $\sum_{j=1}^{n} j^2 = \frac{n(n+1)(2*n+1)}{6}$

Inductive step: Suppose that for any integer $k \geq 1$, $\sum_{j=1}^{k} j^2 = \frac{k(k+1)(2*k+1)}{6}$, then we will show that

$$\sum_{j=1}^{k+1} j^2 = \frac{(k+1)(k+2)(2*k+3)}{6}$$

$$\sum_{j=1}^{k+1} j^2 = \sum_{j=1}^k j^2 + (k+1)^2$$
(Separating out the last term)
$$= \frac{k(k+1)(2*k+1)}{6} + (k+1)^2$$
(By the inductive hypothesis)
$$= (k+1)(\frac{k(2k+1)+6(k+1)}{6})$$

$$= \frac{(k+1)(2*k^2+k+6k+6)}{6}$$

$$= \frac{(k+1)(2*k^2+7k+6)}{6}$$

$$= \frac{(k+1)(2*k^2+4k+3k+6)}{6}$$

$$= \frac{(k+1)(2k(k+2)+3(k+2))}{6}$$

$$= \frac{(k+1)(2k(k+2)+3(k+2))}{6}$$

Therefore $\sum_{j=1}^{k+1} j^2 = \frac{(k+1)(k+2)(2*k+3)}{6} \blacksquare$

b. Exercise 7.4.3

c. **Theorem:** For $n \ge 1$, $\sum_{j=1}^{n} \frac{1}{j^2} \le 2 - \frac{1}{n}$ Proof.

By induction on n.

Base case: n=1

 $\sum_{j=1}^{n} \frac{1}{j^2} \le 2 - \frac{1}{n} \text{ is } \sum_{j=1}^{1} \frac{1}{j^2} \le 2 - \frac{1}{1}.$ This is equivalent to $\frac{1}{1^2} \le 2 - \frac{1}{1}$

Therefore, for n = 1, $\sum_{j=1}^{n} \frac{1}{j^2} \le 2 - \frac{1}{n}$.

Inductive step: Suppose that for any integer $k \geq 1$, $\sum_{j=1}^{k} \frac{1}{j^2} \leq 2 - \frac{1}{k}$, we will prove that $\sum_{j=1}^{k+1} \frac{1}{j^2} \leq 2 - \frac{1}{k+1}$.

$$\sum_{j=1}^{k+1} \frac{1}{j^2} = \sum_{j=1}^k \frac{1}{j^2} + \frac{1}{(j+1)^2}$$
(Separating out the last term)
$$\leq 2 - \frac{1}{k} + \frac{1}{(k+1)^2}$$
(By the inductive hypothesis)
$$\leq 2 - \frac{1}{k} + \frac{1}{(k+1)k}$$

$$\leq 2 + \frac{1}{k} (\frac{1 - (k+1)}{k+1})$$

$$\leq 2 - \frac{1}{k+1}$$

Therefore, $\sum_{j=1}^{k+1} \frac{1}{j^2} \le 2 - \frac{1}{k+1}$.

- c. Exercise 7.5.1
 - a. **Theorem:** For any positive integer n, 4 evenly divides $3^{2n} 1$. **Proof.**

By induction on n.

Base case: n = 1.

 $3^{2*1} - 1 = 3^2 - 1 = 8$. Since 4 evenly divides 8 into 4 and 2, the theorem holds for n = 1.

Inductive step: Suppose that for positive integer k, 4 evenly divides $3^{2k}-1$. Then we will show that 4 evenly divides $3^{2(k+1)}-1$. By the inductive hypothesis, 4 evenly divides $3^{2k}-1$, which means $3^{2k}-1=4m$ for some integer m. This is equivalent to $3^{2k}=4m+1$. We will show that $3^{2(k+1)}-1$ can be expressed as 4 times an integer.

$$3^{2(k+1)} - 1 = 3^{2k+2} - 1$$

$$= 3^{2k} * 3^2 - 1$$

$$= (4m+1) * 3^2 - 1$$
(By the inductive hypothesis)
$$= (4m+1) * 9 - 1$$

$$= 36m + 9 - 1$$

$$= 36m + 8$$

$$= 4(9m+2)$$
(4)

Since m is an integer, (9m+2) is also an integer. Therefore, $3^{2(k+1)}-1$ can be perfectly divided by 4.