Weather Phenomenon and Fire Outbreaks

DSC 530 Data Exploration and Analysis

Gabriel Valenzuela

Statistical Question / Hypothesis

 The weather phenomenon known as La Nina that occurs in the Pacific Ocean will cause more fire outbreaks in the Amazon due to the wind direction causing a dryer season in the area

Variables within Analysis

- def_area_2004_2019.csv
 - PA
 - AMZ LEGAL
- el_nino_la_nina_1999_2019.csv
 - Start year
 - End year
 - Severity
- inpe_brazilian_amazon_fires_1999_2019.csv
 - Year
 - Fire spots
 - Latitude
 - Longitude

Description of Variables

- def_area_2004_2019.csv
 - PA deforested area in Para
 - AMZ LEGAL sum of deforested area in Brazil
- el_nino_la_nina_1999_2019.csv
 - Start year year of the start of the phenomenon
 - End year year of the end of the phenomenon
 - Severity weak / moderate / strong / very strong
- inpe_brazilian_amazon_fires_1999_2019.csv
 - Year year of occurrence
 - Fire spots number of forest fire outbreaks
 - Latitude average latitude of all occurrences
 - Longitude average longitude of all occurrences

Histogram & Outliers

Outliers

- Fire Spots in Amazon Fire Outbreak Data Set
 - Values begin to taper off as the number of fire outbreaks increase
 - Removal: It is important to understand the years that had an enormous amounts of fire out breaks but should not be included within the general data since it does not occur often enough
- Sum of Deforestation and State of PA in Deforestation Data Set
 - Values begin to taper off in the higher numbers for amount of desforestation in the state and overall
 - Removal: Like before, with keeping all the information together it should be exlcuded, but it is important to note that it does occur

Descriptive Characteristics

• Summary of descriptive characteristics including median, mode, and spread

```
Sum of Deforestation Descriptive Characteristics
            16.000000
         10020.937500
std
         6112.467134
min
         4571.000000
25%
          6365.250000
50%
         7500.000000
75%
         11966.000000
         27772.000000
Name: AMZ LEGAL, dtype: float64
Median: 7500.0
Mode: ModeResult(mode=array([4571], dtype=int64), count=array([1]))
Spread: 23201
```

```
Longitude of Fire Outbreaks Descriptive Characteristics count 2104.000000 mean -56.510314 std 7.382619 min -73.085000 25% -62.376004 50% -55.876480 75% -50.396154 max -44.188000 Name: longitude, dtype: float64

Median: -55.876479764783525 Mode: ModeResult(mode=array([-48.649]), count=array([2])) Spread: 28.8969999999999
```

```
Fire Spots Descriptive Characteristics
          2104.000000
         1167.417776
         2959.558714
            1.000000
min
25%
           16.000000
          121.000000
75%
          755.000000
        37926.000000
Name: firespots, dtype: float64
Median: 121.0
Mode: ModeResult(mode=array([1], dtype=int64), count=array([93]))
Spread: 37925
```

```
State of PA Descriptive Characteristics
count 16.000000
mean 3923.625000
std 1945.802487
min 1741.000000
25% 2411.250000
50% 3389.000000
75% 5546.250000
max 8870.000000
Name: PA, dtype: float64

Median: 3389.0
Mode: ModeResult(mode=array([1741], dtype=int64), count=array([1]))
Spread: 7129
```

```
Latitude of Fire Outbreaks Descriptive Characteristics
        2104.000000
          -5.439282
           4.852439
std
         -14.431908
          -9.946974
50%
          -5.808292
75%
          -2.595169
           4.151000
Name: latitude, dtype: float64
Median: -5.808291666666666
Mode: ModeResult(mode=array([-7.632]), count=array([2]))
Spread: 18.582908
```

Probability Mass Function

Weather Phenomenon El Nino and La Nina

Weather Phenomenon Severity

Cumulative Distribution Function

- ECDF of Severity of the Weather Phenomenon Data Set
 - 50% of occurrences are a weak storm
 - 45% of occurrences are a very strong storm
 - 35% of occurrences are a strong storm
 - 20% of occurrences are a moderate storm
- By determining the likelihood of the severity of the storms, I can then look back towards the years of the fire outbreaks and the storms to determine if there were more outbreaks and which phenomenon it was that year

Exponential Distribution

 With fire outbreaks, we can see the time it takes for a fire spot to occur in any of the several states is not long and occur at a rate that is almost continuous

Correlation and Causation

Scatter Plot of fire Spots the start year and the end year

Correlation and Causation

- Correlation and Covariance of fire spots for the start year of La Nina
 - Weak negative relationship

Correlation and Causation

Correlation and Covariance of fire spots for the end year of La Nina

End Year

Fire Spots

Weak negative relationship

<u>Covariance</u> End Year Fire Spots [[3.34075319e+01 -4.43724198e+01]

-4.43724198e+01 4.00701066e+06]]

Hypothesis Test - Difference of Means

- T-Value: 0.333
 - Indicates that the two groups(fire spots in start year & fire spots in end year) are similar
- P-Value: 0.741
 - Indicates that these occurrences happened by chance and could not easily be reproduced

```
t = 0.3333437465572071

p = 0.740707199845082
```

Linear Regression Analysis

- Dependent variable: Years that La Nina started
- Explanatory variable: Fire out breaks during the years that La Nina started
- Prediction for years 2020 2025 of fire outbreaks based on model:
 - 2020 1083
 - 2021 1079
 - 2022 1075
 - 2023 1072
 - 2024 1068
 - 2025 1064

Conclusion

- La Nina does have a strong correlation for fire outbreaks in the amazon
 - Even when the severity of the storm was the highest, the fire outbreaks were much on the higher side
- Based on the model:
 - Fire outbreaks from the storms will continue with the possibility of increasing