ImageRecognition aihemäärittely

Simo Korkolainen

12. kesäkuuta 2016

Projektin tarkoituksena on tehdä ohjelma, joka opettaa neuroverkon tunnistamaan kuvia backpropagation-algoritmin avulla. Neuroverkon opetuksessa verkon painoja muutetaan liikuttamalla niitä virhefunktion gradientin vastaiseen suuntaan, kunnes virhefunktio on minimoitunut ja neuroverkon oppinut tunnistamaan kuvat. Derivoinnin ketjusääntöön perustuva backpropagation-algoritmi mahdollistaa gradientin nopean laskemisen. Ohjelman toiminnasta on kirjoitetu tarkemmin toteutusdokumenttiin.

Aikavaativuus

Neuroverkoon liittyvät aikavaativuudet riippuvat paljon neuroverkon rakenteesta Ohjelmassa käytetään vain eteenpäin kytkettyjä neuroverkkoja. Neuroneiden aktivaatio z_k kerroksessa k lasketaan täsmälleen edellisen kerroksen aktivaatioiden perusteella eli $z_k = f(z_{k-1}, a_k)$ missä f on aktivaatiofunktio. Olkoon L neuroverkon kerroksien lukumäärä ja olkoon l_k kerroksen k = 1, ..., L neuronien lukumäärä. Jos jokainen kerroksen k neuroni on kytketty kaikkiin edellisen kerroksen solmuihin ja neuronipariin liittyvän laskennan aikavaativuus on luokkaa O(1), yhden kerroksen k neuronin aktivaation laskemisen aikavaativuus on luokkaa $O(l_{k-1})$. Koska kerroksessa k on l_k neuronia, koko kerrokseen liittyvän laskennan aikavaativuus on $O(l_{k-1}l_k)$. Ensimmäisen kerroksen eli syötekerroksen aktivaatioden asettamisen aikavaativuus on $O(l_1)$.

Koko neuroverkon aktivaatioden laskennan aikavaativuus T_{act} on kerrosten aikavaativuuksien summa eli

$$T_{act} = O(l_1 + \sum_{k=2}^{L} l_{k-1} l_k)$$

Tarkastellaan tapausta, jossa kerrosten neuronien lukumäärä pienee eksponentiaalisesti eli $l_k=\alpha^{k-1}l_1$, missä $0<\alpha<1$. Tällöin

$$l_1 + \sum_{k=2}^{L} l_{k-1} l_k = l_1 + \sum_{k=2}^{L} \alpha^{k-2} l_1 \alpha^{k-1} l_0$$

$$= l_1 + l_1^2 \sum_{k=2}^{L} \alpha^{2k-3}$$

$$= l_1 + l_1^2 \alpha \sum_{k=0}^{L-2} (\alpha^2)^k$$

$$\leq l_1 + l_1^2 \alpha \sum_{k=0}^{\infty} (\alpha^2)^k$$

$$= l_1 + l_1^2 \frac{\alpha}{1 - \alpha^2}$$

Saamme, että $T_{act} = O(l_1^2)$, koska $\frac{\alpha}{1-\alpha^2}$ on positiivinen vakio.