数据科学与工程数学基础 作业提交规范及第7次作业

教师: 黄定江

助教: 陈诺、刘文辉

2022年11月18日

作业提交规范

- 1. 作业提交形式: 使用 Word 或 LATEX 编写所得到的电子文档。 若使用 Word 编写,将其另 存为 PDF 形式, 然后提交 PDF 文档。若使用 LATEX 编写, 将其编译成 PDF 形式, 然后提 交 Tex 和 PDF 两个文档。
- 2. 作业命名规范: 提交的电子文档必须命名为: "**学号_姓名**"。命名示例: 50000000000_刘 某某。
- 3. 作业提交途径: 点击打开每次作业的传送门网址: 第7次作业提交传送门, 无需注册和登 录,直接上传作业文档即可。注意:传送门将会在截至时间点到达后自动关闭。
- 4. 作业更改说明:如果需要修改已经提交的作业、只要在截至日期前,再次上传更改后的作 业(切记保持同名),即可覆盖已有作业。
- 5. 作业评分说明:正常提交作业的按照实际评分记录; 逾期补交作业的根据逾期情况在实际 评分基础上酌情扣分;未交作业的当次作业记为0分。

第7次作业

! 提交截至时间: 2022/11/25 周五 12:00 (中午)

理论部分

习题 1. 构建模型使得预测值与真实值的误差最小常用向量 2-范数度量, 求解模型过程中需 要计算梯度, 求梯度:

- $f(A) = \frac{1}{2} ||Ax + b y||_2^2$, $x \frac{\partial f}{\partial A}$
- $f(x) = \frac{1}{2} ||Ax + b y||_2^2$, $x \frac{\partial f}{\partial x}$

其中 $A \in \mathbb{R}^{m \times n}$, $x \in \mathbb{R}^n$, $b, y \in \mathbb{R}^m$

习题 2. 二次型是数据分析中常用函数,求 $\frac{\partial x^T A x}{\partial x}$, $\frac{\partial x^T A x}{\partial A}$, 其中 $A \in R^{m \times m}$, $x \in R^m$

习题 3. 利用迹微分法求解 $\frac{\partial Tr(W^{-1})}{\partial W}$, 其中 $W \in \mathbb{R}^{m \times m}$

习题 4. $(\exp(z))_i = \exp(z_i)$, $(\log(z))_i = \log(z_i)$ $f(z) = \frac{\exp(z)}{\mathbf{1}^T \exp(z)}$ 称为 softmax 函数 , ,如果 q = f(z), $J = -\mathbf{p}^T \log(q)$,其中 \mathbf{p} , q, $z \in \mathbb{R}^n$,并且 $\mathbf{1}^T \mathbf{p} = 1$,

- i.e.: $\frac{\partial J}{\partial z} = q p$
- 若z = Wx, 其中 $W \in \mathbb{R}^{n \times m}, x \in \mathbb{R}^m$, $\frac{\partial J}{\partial W} = (q p)x^T$ 是否成立。

习题 5. 以下内容是利用极大似然估计求解多元正态分布模型的关键步骤: $L = -\frac{Nd}{2}ln(2\pi) - \frac{N}{2}ln|\Sigma| - \frac{1}{2}\sum_t (\mathbf{x}_t - \boldsymbol{\mu})^T \Sigma^{-1}(\mathbf{x}_t - \boldsymbol{\mu})$, L 是对数似然, N 为样本数, d 为样本维数, $\Sigma \in \mathbb{R}^{d \times d}$ 为协方差矩阵, $\mu \in \mathbb{R}^d$ 为期望向量。

- 1) $\stackrel{\partial L}{\partial u}$
- 2) 当 $\mu = \frac{1}{N} \sum_t x_t$ 时, 求 $\frac{\partial L}{\partial \Sigma}$, 并求使 $\frac{\partial L}{\partial \Sigma} = 0$ 成立的 Σ 。

习题 6. 求 $\frac{\partial |X^k|}{\partial X}$, 其中 $X \in \mathbb{R}^{m \times m}$ 为可逆矩阵。

习题 7. 求 $\frac{\partial \operatorname{Tr}(AXBX^TC)}{\partial X}$, 其中 $A \in \mathbb{R}^{m \times n}, X \in \mathbb{R}^{n \times k}, B \in \mathbb{R}^{k \times k}, C \in \mathbb{R}^{n \times m}$