Artificial Intelligence Algorithms and Mathematics

CSCN 8000

Statistics

- Statistics
 - Descriptive Vs. Inferential statistics
- Population and Sample
- Sampling
- Measure of Central Tendency
- Measure of Dispersion
- Normal Distribution
- Z Score

Statistics

- Science of collecting, organizing and analyzing the data.
- Descriptive Statistics:
 - Used to summarize and describe the main features of a dataset.
 - They provide a clear and concise overview of the data, helping to understand its characteristics.
 - Examples: Mean, median, mode, etc.
- Inferential Statistics:
 - Make inferences or draw conclusions about a population based on a sample of data.
 - Examples: Hypothesis testing, confidence intervals, etc.

Population and Sample

Population – Entire Data (N) Sample – Small set of data (n)

How to generate the samples?

- Simple Random Sampling:
 - Every member of the population has an equal chance of being selected for sample.
 - Best representation of population.
- Stratified Sampling:
 - The population is split into nonoverlapping groups then randomly sample from each group.
 - Beneficial for handling imbalanced datasets.
- Systematic Sampling:
 - From the population, we select the nth individual.
- Convenience Sampling:
 - From the population, we select the sample data that is expertise in the specific domain.

- Central Tendency the measure used to determine the center of distribution of data.
- Mean(μ) is the average of the population (N) or sample(n).

$$\mu = \frac{1}{N} \sum_{i=1}^{N} x_i$$

• Examples:

•
$$S = \{1,1,2,2,3,4,5,1,2,1,3\}, \quad \mu(S) = \frac{25}{11} = 2.3$$

•
$$S = \{1,1,2,2,3,4,5,1,2,1,3,100\}, \quad \mu(S) = \frac{350}{11} = 11.3$$

Drawback: Affected by outliers

Name of the Person	Earning
Sean	30000
Carl	15000
John	20000
Ranny	15250
Dansh	17500
Tony	15500
James	10000
Lisa	15000

Mean: 13,8250

Name of the Person	Earning
Sean	30000
Carl	15000
John	20000
Ranny	15250
Dansh	17500
Tony	15500
James	10000
Lisa	150000
	Mean:

1,638,250

Outlier

- Median: It is the middle value in a sorted dataset.
 - Sort the numbers ascendingly
 - Find the center number
 - If odd number of samples → Take single center number as median.
 - If even number of samples \rightarrow Take average of the two middle numbers.
- Examples:
 - $S = \{1,1,1,1,2,2,2,3,3,4,5\},$
 - median(S) = 2
 - $S = \{1,1,1,1,2,2,2,3,3,4,5,100\},$
 - $median(S) = \frac{2+2}{2} = 2$
- Pros: Not affected by outliers

Name of the Person	Earning
Sean	30000
Carl	15000
John	20000
Ranny	15250
Dansh	17500
Tony	15500
James	10000
Lisa	15000

Name of the Person	Earning
James	10000
Carl	15000
Ranny	15250
Tony	15500
Dansh	17500
John	20000
Sean	30000
Lisa	150000

Median: 16,500

- Mode: the value that occurs most frequently in a dataset.
- Examples:
 - $S = \{1,1,2,7,3,4,5,1,8,1,10\},$
 - $mode(S) = 1 \rightarrow Unimodal$
 - $S = \{1,1,2,2,3,4,5,1,2,1,6\}$
 - $mode(S) = \{1,2\} \rightarrow Multimodal$
- Usage:
 - Could fill the missing values in a column using the mode value.

Measures of Dispersion

- Dispersion How well spread the data points are?
 - Variance
 - Standard Deviation

Measures of Dispersion

- Variance: Variance is the average of the squared differences from the Mean.
 - Population Variance $\sigma^2 = \frac{1}{N} \sum_{i=1}^{N} (x_i \mu)^2$
 - Sample Variance $s^2 = \frac{1}{N-1} \sum_{i=1}^{N} (x_i \mu)^2 \rightarrow$ Bessel's Correction
- Example:
 - $S = \{1,2,2,3,4,6\}$
 - $\mu = 3$
 - $s^2 = \frac{(1-3)^2}{5} + \frac{(2-3)^2}{5} + \dots = 3.2$

Measures of Dispersion

 Standard Deviation: the square root of the variance. It provides a measure of the average distance between each data point and the mean.

$$\sigma = \sqrt{\sigma^2}$$

Example:

$$S = \{1,2,2,3,4,6\}$$

•
$$\mu = 3$$

$$s^2 = \frac{(1-3)^2}{5} + \frac{(2-3)^2}{5} + \dots = 3.2$$

•
$$\sigma = \sqrt{3.2} = 1.78$$

What if we want to study how <u>two</u> variables vary compared to each other?

Covariance

- Covariance: It indicates the direction of the <u>linear</u> <u>relationship</u> between two variables. It tells us whether both variables tend to increase or decrease at the same time.
 - Positive Covariance: the two variables tend to move in the same direction: as one increases, the other tends to increase, and vice-versa.
 - Negative Covariance: the two variables tend to move in opposite directions: as one increases, the other tends to decrease, and vice versa.
 - Zero Covariance: No linear relationship exists.
- Main Drawback:
 - It can range from negative infinity to positive infinity.
 - The magnitude (how large the relationship is) is hard to interpret because it depends on the units of the variables.

Large Negative Covariance

Nearly Zero Covariance

Large Positive Covariance

$$Cov(x,y) = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})$$

Correlation

- Correlation: is a standardized version of covariance that measures the <u>strength</u> and <u>direction</u> of the linear relationship between two variables. It provides a value between -1 and 1:
 - A correlation of 1 means there's a perfect positive linear relationship (as one variable increases, the other does too).
 - A correlation of -1 means there's a perfect negative linear relationship (as one variable increases, the other decreases).
 - A correlation of o means there is no linear relationship between the variable.
- Formulation:

•
$$Corr(x, y) = \frac{Cov(x, y)}{\sigma_x \sigma_y}$$

Hours Studied (x)	Exam Score (y)
1	2
2	4
3	5
4	4
5	5

$$Cov(x, y) = ?$$

 $Corr(x, y) = ?$
 $Cov(x, y) = -0.5$
 $Corr(x, y) = -0.28$

Example

You and your friends have just measured the heights of your dogs (in millimeters). The heights (at the shoulders) are: H = [600 mm, 470 mm, 170 mm, 430 mm and 300 mm]

 Find out the Mean, the Variance, and the Standard Deviation.

Example: Mean

$$\mu(H) = \frac{600 + 470 + 170 + 430 + 300}{5}$$

$$\mu(H) = \frac{1970}{5} = 394$$

$$\mu(H) = \frac{1970}{5} = 394$$

Example: Variance

$$\sigma^{2} = \frac{206^{2} + 76^{2} + (-224)^{2} + 36^{2} + (-94)^{2}}{5}$$

$$\sigma^{2} = \frac{42436 + 5776 + 50176 + 1296 + 8836}{5}$$

$$\sigma^{2} = \frac{108520}{5} = 21704$$

$$\sigma^{2} = \frac{108520}{5} = 21704$$

$$\sigma^{2} = \frac{108520}{5} = 21704$$

Example: Standard Deviation

$$\sigma = \sqrt{\sigma^2} = \sqrt{21704} = 147 \ mm$$

Normal distribution

Data tends to be around a central value with no bias left or right, and it gets close to a "Normal Distribution" like this:

The blue curve is a Normal Distribution. The yellow histogram shows some data that follows it closely, but not perfectly. It is often called a "Bell Curve"

Normal Distribution

The Normal Distribution has:

- mean = median = mode
- symmetry about the center
- 50% of values less than the mean
- and 50% greater than the mean

Normal vs Skewed Distributions

 In Skewed distributions the median is usually utilized instead of the mean as a representative center of tendency.

Normal vs Skewed Distributions: Example

- For this Height feature in a diagnosis prediction dataset, outliers caused skewness of distribution.
- The median is least affected by this compared to the mean.

Gaussian /Normal Distribution

- In a normal distribution:
 - 68% of all values are within 1 standard deviation from mean
 - 95.5% of all values are within 2 standard deviations from mean
 - 99.7% of all values are within 3 standard deviations from mean

Z-score / Standard Score

- The number of standard deviations from the mean is also called the "Standard Score", "sigma" or "z-score".
- To convert a value to a Standard Score ("z-score"):
 - first subtract the mean,
 - then divide by the Standard Deviation
 - And doing that is called "Standardizing":
- Formula:

$$z = \frac{x - \mu}{\sigma}$$

Z-score: Example

 Convert the following dataset values to Z-score representation.

Name of the Person	Earning
James	10000
Carl	15000
Ranny	15250
Tony	15500
Dansh	17500
John	20000
Sean	30000
Lisa	150000

$$\mu = 34156.25$$
, $\sigma = 44117.55$

Name of the Person	Earning
James	-0.548
Carl	-0.434
Ranny	-0.429
Tony	-0.423
Dansh	-0.378
John	-0.321
Sean	-0.094
Lisa	2.626

Outlier Removal: Z-Score

- Data points that have a z-score above a certain threshold τ could be labeled as outliers.
- Steps:
 - Normalize the feature to Z-score representation.
 - Based on threshold τ , any value larger than τ is an outlier
 - Remove the outliers.
- ullet usually is set to a number between 2 and 3, but it could be any arbitrary value.

Percentiles and Quartiles

- Assume we have a dataset of 20 student exam scores.
 - [75, 80, 65, 90, 85, 70, 88, 92, 78, 68, 95, 60, 72, 82, 98, 76, 84, 62, 79, 87]
- Let's start by sorting the values ascendingly.

Percentiles and Quartiles

- Quartiles divide a dataset into four equal parts. The three quartiles, denoted as Q1, Q2, and Q3, represent the following:
 - Q1 (First Quartile): This is the value below which 25% of the data falls. It is the median of the lower half of the data set.
 - **Q2 (Second Quartile or Median)**: This is the value below which 50% of the data falls. It is the median of the entire dataset.
 - Q3 (Third Quartile): This is the value below which 75% of the data falls. It is the median of the upper half of the data set.
- Percentiles are similar to quartiles but are more general. Quartiles specifically divide data into four parts, while percentiles divide data into n equal parts, where n is any whole number.

Plotting Quartiles: Boxplots

40, 60, 62, 65, 68, **70**, 72, 75, 76, 78, **79**, **80**, 82, 84, 85, 87, **88**, 90, 92, 95, 98, 120

Plotting Quartiles: Boxplots

- Box Plot: is a graphical representation of a dataset's distribution. It displays a summary of a set of data values including the minimum, first quartile, median, third quartile, and maximum.
- Left Whisker: It represents the lower bound of the data within 1.5 times the interquartile range (IQR) below the first quartile (Q1).
- Right Whisker: It represents the upper bound of the data within 1.5 times the IQR above the third quartile (Q3).
- Inter-Quartile Range (IQR): it represents the spread of the middle 50% of the data. It is calculated as the difference between the third quartile (Q3) and the first quartile

Outlier Removal: Boxplots

- Data points that have values x above the right whisker or below the left whisker → labeled as outliers.
- In other words:
 - If $x > Q3 + 1.5 * IQR or x < Q1 1.5 * IQR \rightarrow$ Outlier

References

- https://learning.oreilly.com/library/view/practical-statisticsfor/9781491952955/cho6.html
- https://www.mathsisfun.com/data/standard-deviation.html

Thank you!

Any questions?

Thank You
Youssef Abdelkareem
yabdelkareem@conestogac.on.ca