A. HOMOLOGOUS CHROMOSOMES

- Chromosomes are found in pairs inside body cells.
- Humans have 23 pairs of homologous chromosomes.
- In each pair, one chromosome is from mum and the other is from dad.
- Pairs 1-22 are called autosomes as they are non-sex chromosomes.
- Pair 23 is the **sex chromosomes** as they carry genes that determine our sex.

Homologous chromosomes are the same shape and size.

They carry the same genes in the same sequence.

However, they carry different alleles.

B. SEX CHROMOSOMES

The X-chromosome is larger

The sex chromosomes carry **genes** that **determine sex**.

However, they also carry **other genes** that have nothing to do with determining sex.

C. DIPLOID AND HAPLOID CELLS

DIPLOID BODY CELL

HAPLOID SEX CELL (GAMETE)

Nucleus contains:		
Pairs of homologous chromosomes	Unpaired single chromosomes	
2 copies of each chromosome	1 copy of each chromosome	
e.g. liver cells, eye cells, brain cells	e.g. sperm and egg cells only	

D. KARYOTYPES AND KARYOGRAMS

- A karyotype is the number and type of chromosomes present in a cell or organism.
- A karyogram is a photograph or diagram in which the chromosomes of an organism are shown in homologous pairs of decreasing length.

DOWN SYNDROME

TURNER'S SYNDROME

3 copies of chromosome 21 (='Trisomy 21')
This person is male

1 X chromosome and **no** Y chromosome
This person is **female**

- To produce a karyogram, cells are stopped dividing in metaphase of mitosis.
- Chromosomes are shown as **homologous pairs** of **decreasing length**.
- Their length, banding pattern and position of the centromere are used to pair them.

E. GENOMES

The **GENOME** is all the **GENES** in a cell, tissue or organism

The PROTEOME is all the different PROTEINS that can be produced by a cell, tissue or organism

- The **genome** is **fixed** it is the **same** in **every type** of body cell.
- The proteome is variable different cell types produce different proteins.
- The genome size is the total amount of DNA, measured in millions of base pairs.

Organism	Genome size (millions of base pairs of DNA)
T2 phage (virus)	0.18
Escherichia coli (bacterium)	5
Drosophila melanogaster (fruit fly)	140
Homo sapien (human)	3,000
Paris japonica (woodland plant)	150,000

- Viruses and bacteria tend to have very small genomes.
- Prokaryotes typically have smaller genomes than eukaryotes.
- Plant genome sizes can vary dramatically due to plant species being able to self-fertilise and become polyploid.

F. DIPLOID NUMBER OF DIFFERENT SPECIES

Organism	Diploid number of chromosomes
Human	46
Chimpanzee	48
Dog	78
Rice	24
Threadworm	4

- Each species has a specific diploid number of chromosomes.
- This is the **total number** of **chromosomes** in the **body** cells.
- It varies considerably between species.
- It does not tell us the size of the chromosomes or how many genes they contain.

G. PROKARYOTIC AND EUKARYOTIC CHROMOSOMES

Prokaryotic chromosomes	Eukaryotic chromosomes
Circular DNA molecule	Linear (straight) DNA molecule
Not associated with histone proteins	Associated with histone proteins
One chromosome only	Two or more different chromosomes
Plasmids often present	No plasmids
No introns, only exons	Introns and exons
One replication/initiation point	Many replication/initiation points

HL

H. LOCUS

• This is the **position** of a **gene** of a **chromosome**.

I. JOHN CAIRNS AND AUTORADIOGRAPHY

- E. coli bacteria were cultured in a medium containing radioactively-labelled thymine to label its DNA.
- Radioactive cells were placed on a membrane and their cell walls were digested, allowing their DNA to leak out.
- The membrane was coated with a photographic film and left in the dark for two months.
- The film was then developed and lines of black dots showed the position of DNA molecules.
- He showed that the **DNA** molecules were **circular**.
- Using this technique with electron microscopy made it also possible to measure the length of DNA molecules.

J. SPECIES

Organisms of the SAME SPECIES can BREED together to produce FERTILE OFFSPRING

Organisms of the SAME SPECIES have the SAME DIPLOID NUMBER of CHROMOSOMES

• Donkeys and horses can breed together to produce a mule:

