- 1. For a maximisation problem using a Simplex table, we know we have reached the optimal solution when the z_i c_i row has
- a) No positive numbers in it
- b) No numbers in it.
- c) No non zero numbers in it.
- d) No negative numbers in it.
- 2. When we are solving a simplex table to solve a maximisation problem, we find that the ratios for determining the pivot row are all negative, then we know that the solution is
- a) Unbounded
- b) Infeasible
- c) Optimal
- d) Degenerate
- 3. The standard form of

$$Max z = 3x_1 - 8x_2$$

$$x_1 - x_2 \le 2$$

$$x_1 + x_2 \ge 5$$

$$x_1, x_2 \ge 0$$
 is

a) Max
$$z = 3x_1 - 8x_2$$

$$x_1 - x_2 \le 2$$

$$-x_1 - x_2 \le -5$$

$$x_1, x_2 \ge 0$$

b) Max
$$z = 3x_1 - 8x_2$$

$$x_1 - x_2 + s_1 = 2$$

$$x_1 + x_2 - s_2 = 5$$

$$x_1, x_2 \ge 0$$

c) Max
$$z = 3x_1 - 8x_2$$

$$x_1 - x_2 - s_1 = 2$$

$$x_1 + x_2 + s_2 = 5$$

$$x_1, x_2, s_1, s_2 \ge 0$$

d) Max
$$z = 3x_1 - 8x_2$$

$$x_1 - x_2 + s_1 = 2$$

$$x_1 + x_2 - s_2 = 5$$

$$x_1, x_2, s_1, s_2 \ge 0$$

4. For a system with 3 constraints and 5 variables, the solution given

by (0, 2, 0, -1, 0) can be a

- a) Basic infeasible solution
- b) Basic infeasible degenerate solution
- c) Basic feasible solution
- d) Basic infeasible non degenerate solution
- 5. From the following table, answer the questions that follow:

	C _j	4	3	6	0	0	0	
CB	Basis	X ₁	X ₂	X ₃	S ₁	S ₂	S ₃	b
0	S ₁	-2/3	3	0		-2/3	0	380/3
6	X ₃	4/3	0	1		1/3	0	470/3
0	S ₃	2	5	0		0	1	430

- A) What will be the entries in the missing column?
- B) Which are the basic variables corresponding to the given table?
- C) What is the corresponding solution for the system?
- D) Which is the incoming variable?
- E) Which is the outgoing variable?
- F) What will be the basic variables in the next simplex table?
- 6. The dual of

Min Z =
$$2x_1 + 4x_2$$

 $x_1 + x_2 \ge 2$

$$-x_1 + x_2 \ge -3$$

x₁≥0, x₂ unrestricted is

a) Max W =
$$2y_1 - 3y_2$$

$$y_1 - y_2 \le 2$$

$$y_1 + y_2 = 4$$

$$y_1, y_2 \ge 0$$
 is

b) Max W =
$$2y_1 - 3y_2$$

$$y_1 - y_2 \le 2$$

$$y_1 + y_2 \le 4$$

$$y_1, y_2 \ge 0$$
 is

c) Max W = $2y_1 - 3y_2$

$$y_1 - y_2 \le 2$$

$$y_1 + y_2 = 4$$

y₁, y₂ unrestricted

d) Max W = $2y_1 - 3y_2$

$$y_1 - y_2 \le 2$$

$$y_1 + y_2 \le 4$$

y₁, y₂ unrestricted

- 7. Which one of the following is true?
- a) Optimal solution ⇔ feasible solution
- b) No solution ⇔ No optimal solution
- c) Solution \Rightarrow Feasible solution
- d) No solution \Rightarrow No feasible solution
- 8. The right hand side constant in the ith constraint in primal must be equal to objective coefficient for
- a) jth primal variable
- b) ith dual variable
- c) ith primal variable
- d) jth dual variable