AI빅데이터프로젝트: 캡스톤디자인 I

아무래도 그렇조 | 20172848 이지평 20172853 장성현 20192761 김정하

CONTENTS

Introduction Related Work Proposal Experiment Conclusion

Adaptive Deep Modeling of Users and Items Using Side Information for Recommendation

- → 기존의 Side Information을 활용하는 방법론은 한 유저와 모든 아이템에 대해서 고정된 Representation 값을 학습하게 되어 'Individual Diversity'를 고려하지 못함
- → 유연성 부족, 부정확한 추천을 야기
- → 따라서 User Input과 Item Input의 Attention Score를 활용한 'Individual Diversity'를 반영할 수 있는 방법론 제시

Item Description을 포함한 데이터셋이 굉장히 드물기 때문에
Item Description이 아닌 Item Id를 Input으로 넣으면 일반화 효과,
즉 적용가능한 데이터셋의 범위를 상당히 넓힐 수 있지 않을까 기대.

→ Input으로 Item Description을 넣은 모델과 Item Id를 넣은 모델의 비교

모델의 학습 속도 및 성능을 유지하는 것이 목표

→ 다양한 모델 구조를 여러 데이터셋에 적용하여 실험 진행

02. Related Work

Key Paper: ADLFM(Adaptive Deep Latent Factor Model)

Fig. 2. Comparison between previous models and our model on how to construct users' preference representation. (a) Previous models: without individual diversity. (b) Our model: with individual diversity.

기존 추천 시스템은 사용자 선호도 및 Item Featrures를 모델링하는 데 행렬 분해법(Matrix Factorization)이 널리 적용

- → 등급이 지정되지 않은 항목에 대한 사용자의 선호도가 다른 '개인의 다양성(Individual Diversity)'을 무시
- → 개인의 다양성을 잘 모델링하지 못하여 반복적이고 부정확한 추천을 초래하게 된다.

이를 위해 해당 논문에서는 고려 중인 특정 항목에 따라 사용자의 선호도를 적응적으로 학습하는 ADLFM(Adaptive Deep Latent Factor Model)이라는 새로운 잠재 요인 모델을 제안했다.

02.Related Work

Key Paper: ADLFM(Adaptive Deep Latent Factor Model)

O2. Related Work

성능 향상을 위해 사용된 모델

O2. Related Work

성능 향상을 위해 사용된 모델 1: Self-Attention

→ Embedding 강화시키는 목적

02. Related Work

성능 향상을 위해 사용된 모델 2 : Multi-Head Conv1D

Ex) 그 동물은 길을 건너지 않았다. 왜냐하면 그것은 너무 피곤하였기 때문이다.

Conv1D를 병렬로 수행하여 다른 시각으로 정보들을 수집함으로써 성능 향상 도모

02. Related Work

성능 향상을 위해 사용된 모델 3: Multi-Conv1D

기존 : Conv1D layer에서 Kernel Size가 3인 모델구조를 사용 → 상대적으로 Local적인 정보만을 반영

→ Local + Global 정보를 반영하고자 함

Multi-Conv1D: Kernel Size 3, 5, 7인 Conv1D Layer를 각각 사용함으로써 Local + Global 정보 반영

03. Proposal

Input의 변경(Item Description → Item Id)으로 인한 정보의 손실!!!

우리는 성능 향상과 경량화 둘 다 잡는 것이 목표!

→ 단 하나의 레이어로 성능 향상 시킬 수 있는 모델 구조 선택

04. Experiment

실험환경 : Google Colab(Pro)

Optimizer: Adam

Filter_num: 64 Epochs: 30

Batch_size: 32

DATA PROCESSING

Anime Recommendation Database 2020

	user_id	anime_id	rating
0	0	402	9
1	0	907	5
2	0	2740	7
3	0	534	7
4	0	2539	9

anime

3 - 90408 /3 = 30,136

4 - 119700/4 = 29,925

5 - 151070/5 = 30,214

row: 57,633,278

Amazon - Ratings (Beauty Products)

	Userld	ProductId	Rating	beauty
0	A39HTATAQ9V7YF	0	5.0	2 102000/2 - 44224
1	A3JM6GV9MNOF9X	1	3.0	3 - 193008/3 = 64,336
2	A1Z513UWSAAO0F	1	5.0	4 - 225196/4 = 56,299
3	A1WMRR494NWEWV	2	4.0	5 - 210270/5 = 42,054
4	A3IAAVS479H7M7	3	1.0	

row: 2,023,070

Amazon Fine Food Reviews

	Userld	ProductId	Score
0	A3SGXH7AUHU8GW	27619	5
1	A1D87F6ZCVE5NK	72383	1
2	ABXLMWJIXXAIN	15267	4
3	A395BORC6FGVXV	19718	2
4	A1UQRSCLF8GW1T	69007	5

food

3 - 130524/3 = 43,508

4 - 129796/4 = 32,449

5 - 114450/5 = 22,890

row: 568,454

DATA PROCESSING

Hold-Out Evaluation

- Train, Valid, Test 셋을 구분하여 평가하는 방식(seed 42 고정)
- 구매 이력 Reference_num 미만인 유저 학습 데이터에서 제외.
- 구매 이력 Reference_num 초과인 유저 Reference_num만큼 랜덤 추출

04. Experiment

MODELING

1. Side Information → Item Id

(Item Description → Item Id)

- 2. New Architecture
 - 2-1) Self-Attention
 - 2-2) Multi-Head Conv1D
 - 2-3) Multi Conv1D

O4. Experiment

MODELING 1

04. Experiment

MODELING 2-1)

"Self-Attention"

04. Experiment

MODELING 2-2)

" Multi-Head Conv1D "

Experiment

MODELING 2-3)

" Multi Conv1D "

EXPERIMENTS

Side Information → Item Id
 (Item Description → Item Id)

1. Input을 Item Description에서 Item Id로 바꿔서 적용했을 때의 경량화 효과 및 일반화 확인

- 2. New Architecture
 - 2-1) Self-Attention

2-2) Multi-Head Conv1D

- , 3311 , 11131111311
- 2-3) Multi Conv1D

- 2. 다양한 모델 구조의 성능 향상 효과 검증
- 3. 다양한 데이터셋에 대한 일반화 효과 검증

04. Experiment

EXPERIMENTS 1

기존 ADLFM

(MAE)

Reference_num	Item Description(A)	Item Id(B)	diff(B-A)
5	1.1330 (157s)	1.2093 (2s)	0.0763
4	1.1166 (92s)	1.1918 (2s)	0.0752
3	1.1067 (49s)	1.1972 (2s)	0.0905

- → 학습속도 감소(경량화) 확인
- → Input 변화로 인한 성능 감소폭 미미(MAE 기준 평균 0.0806) → 일반화 확인

O4. Experiment

EXPERIMENTS 2

(num) : Reference_num / (평가지표 : MAE)

Anime	Item Id (3)	Item Id (4)	Item Id (5)
기존 ADLFM	1.1972 (3.1s)	1.1918 (2.8s)	1.2093 (2.7s)
Self-Attention	1.1941 (3.1s)	1.1905 (3.1s)	1.2219 (2.8s)
Multi-Head Conv1D	1.1822 (3.1s)	1.1847 (2.9s)	1.2147 (2.9s)
Multi Conv1D	1.1102 (3.1s)	1.1045 (3.1s)	1.1390 (3.1s)

- → 다양한 모델구조에 대한 성능 향상 확인
- → Multi Conv1D 구조에서 제일 좋은 성능 보임 확인

(num) : Reference_num / (평가지표 : MAE)

EXPERIMENTS 3

→ 다양한 데이터셋에 대한 성능 차이 미미

→ 일반화 효과 검증

[데이터셋 - 평균 성능]

Anime: 1.17834 Beauty: 1.0274 Food: 0.91873

Beauty	Item Id (3)	Item Id (4)	Item Id (5)
기존 ADLFM	1.0522 (4.5s)	1.0514 (3.1s)	1.0546 (3.1s)
Self-Attention	1.0595 (4.5s)	1.0535 (3.5s)	1.0407 (3.1s)
Multi-Head Conv1D	1.0137 (4.5s)	1.0083 (3.1s)	1.0069 (3.1s)
Multi Conv1D	1.0063 (5.2s)	0.9745 (3.5s)	1.0072 (3.1s)

Food	Item Id (3)	Item Id (4)	Item Id (5)
기존 ADLFM	0.9133 (3.1s)	0.8946 (2.7s)	0.9393 (2.6s)
Self-Attention	0.9202 (3.5s)	0.8951 (2.8s)	0.9401 (2.7s)
Multi-Head Conv1D	0.9168 (3.1s)	0.8911 (2.9s)	0.9391 (2.7s)
Multi Conv1D	0.9195 (3.5s)	0.8994 (2.9s)	0.9563 (3.1s)

05. Conclusion

1. 일반화 & 경량화

- 1.1) Input의 일반화
- Item Description 대신 Id값을 Input으로 사용해 Input에 제한을 받지 않는 더 광범위한 데이터셋에 적용 가능
- 1.2) Domain의 일반화
- 다양한 도메인의 데이터셋(Anime, beauty, food)에서 비슷한 성능이 도출되어 데이터셋 일반화가 가능함을 확인
- 1.3) Model의 경량화
- Input의 크기(용량)가 1로 줄어듦과 동시에 최소한의 모델 구조 수정을 통해 경량화 효과 도모
- 2. 일반화로 저하된 성능을 완화시켜주는 모델 구조 제안

Self-Attention

Multi-Head Conv1D

Multi-Conv1D

REFERENCE

[ADLFM]

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8736041&tag=1

[Self-Attention]

https://arxiv.org/abs/1706.03762

[Multi-head]

https://pypi.org/project/keras-multi-head/

[Data]

https://www.kaggle.com/datasets/CooperUnion/anime-recommendations-database

https://www.kaggle.com/datasets/skillsmuggler/amazon-ratings

https://www.kaggle.com/datasets/snap/amazon-fine-food-reviews

AI빅데이터프로젝트: 캡스톤디자인 I

아무래도 그렇조 20172848 이지평 20172853 장성현 20192761 김정하