Analysis of NN (Q 5&6)

Q 5:

Testing on Pen Dataset

Maximum Accuracy: 0.908805031447 Average Accuracy: 0.899828473413 Standard Deviation: 0.0083593673562

Testing on Car Dataset

Maximum Accuracy: 0.884816753927 Average Accuracy: 0.868979057592 Standard Deviation: 0.0116293436027

Q 6:

Pen Dataset				
Number of Perceptrons	Maximum Accuracy	Average Accuracy	Standard Deviation	
0	0	0	0	
5	0.85849	0.838879	0.01395434	
10	0.903659	0.893367	0.01112354	
15	0.908805	0.8968553	0.0080339	
20	0.906518	0.90125786	0.0049336	
25	0.907947	0.901658	0.006801244	
30	0.9096626	0.90680388	0.002258252	
35	0.90594624	0.9006861	0.0059794	
40	0.90365923	0.901658	0.002146939	

The neural network can't make any right prediction with 0 perceptrons. And the accuracy increases with increasing number of perceptrons. I don't see the test accuracy go down considerably anywhere on this plot, so there is no overfitting. Also, we should use a simpler model to explain our data rather than a complex model.

Car Dataset				
Number of Perceptrons	Maximum Accuracy	Average Accuracy	Standard Deviation	
0	0.7009162	0.70091623	0	
5	0.8887434	0.85589	0.0214412	
10	0.861256544	0.8574607	0.003024664	
15	0.8651832	0.854712	0.00759839	
20	0.876963351	0.84790575	0.0190245	
25	0.862565	0.8458115	0.0168974	
30	0.87172774	0.855104712	0.00943498	
35	0.86191099	0.853272251	0.008813479	
40	0.85929319	0.846989529	0.00644425	

The neural network can still make decent predictions with 0 perceptrons. And the accuracy increases with increasing number of perceptrons. I don't see the test accuracy go down considerably anywhere on this plot, so there is no overfitting. Also, we should use a simpler model to explain our data rather than a complex model.