Алгебра. Экзамен

Бобень Вячеслав @darkkeks, GitHub

2020

"Какой-то ты слишком идеальный, редуцируем ero!".

— Bottom text

Содержание

1	Бинарные операции. Полугруппы, моноиды и группы. Коммутативные группы. Примеры групп. Порядок группы. Подгруппы. Описание всех подгрупп в группе $(\mathbb{Z},+)$	9
2	Подгруппы. Циклические подгруппы. Циклические группы. Порядок элемента. Связь между порядком элемента и порядком порождаемой им циклической подгруппы	5
3	Смежные классы. Индекс подгруппы. Теорема Лагранжа	6
4	Пять следствий из теоремы Лагранжа	7
5	Нормальные подгруппы и факторгруппы	8
6	Гомоморфизмы групп. Простейшие свойства гомоморфизмов. Изоморфизмы групп. Ядро и образ гомоморфизма групп, их свойства	g
7	Теорема о гомоморфизме для групп	10
8	Классификация циклических групп	11
9	Прямое произведение групп. Разложение конечной циклической группы. Теорема о строении конечных абелевых групп	12
10	Экспонента конечной абелевой группы и критерий цикличности	13
11	Криптография с открытым ключом. Задача дискретного логарифмирования. Система Диффи Хелмана обмена ключами. Криптосистема Эль-Гамаля	л- 14
12	Кольца. Коммутативные кольца. Обратимые элементы, делители нуля и нильпотенты. Примеры колец. Поля. Критерий того, что кольцо вычетов является полем	15
13	Идеалы колец. Факторкольцо кольца по идеалу. Гомоморфизмы и изоморфизмы колец. Ядро и образ гомоморфизма колец. Теорема о гомоморфизме для колец	16
14	Кольцо многочленов от одной переменной над полем: деление с остатком, наибольший общий делитель двух многочленов, теорема о его существовании и линейном выражении	17
15	Теорема о том, что кольцо многочленов от одной переменной над полем является кольцом главных идеалов	18
16	Неприводимые многочлены. Факториальность кольца многочленов от одной переменной над по- лем	19

17 Критерий того, что факторкольцо $\mathbb{K}[x]/(h)$ является полем. Базис и размерность факторкольц $\mathbb{K}[x]/(h)$ как векторного пространства над полем \mathbb{K}	(a 20
18 Лексикографический порядок на множестве одночленов от нескольких переменных. Лемма конечности убывающих цепочек одночленов	o 21
19 Старший член многочлена от нескольких переменных. Элементарная редукция многочлена относительно другого многочлена. Лемма о конечности цепочек элементарных редукций относительн системы многочленов	
20 Остаток многочлена относительно заданной системы многочленов. Системы Грёбнера. Характеризация систем Грёбнера в терминах цепочек элементарных редукций	e- 23
21 S-многочлены. Критерий Бухбергера	24
22 Базис Грёбнера идеала в кольце многочленов от нескольких переменных, теорема о трёх эквива лентных условиях. Решение задачи вхождения многочлена в идеал	a- 25
23 Лемма о конечности цепочек одночленов, в которых каждый следующий одночлен не делится на один из предыдущих. Алгоритм Бухбергера построения базиса Грёбнера идеала	и 26
24 Теорема Гильберта о базисе идеала	27
25 Редуцируемость к нулю S -многочлена двух многочленов с взаимно простыми старшими членами	z 28
26 Характеристика поля. Расширение полей. Конечное расширение и его степень. Степень композиции двух расширений	2 9
27 Присоединение корня неприводимого многочлена. Существование конечного расширения исход ного поля, в котором заданный многочлен (a) имеет корень; (б) разлагается на линейные множи тели	
28 Алгебраические и трансцендентные элементы. Минимальный многочлен алгебраического элемента и его свойства	e- 31
29 Подполе в расширении полей, порождённое алгебраическим элементом	32
30 Порядок конечного поля. Автоморфизм Фробениуса	33
31 Теорема существования для конечных полей	34
32 Цикличность мультипликативной группы конечного поля и неприводимые многочлены над \mathbb{Z}_p	35

1 Бинарные операции. Полугруппы, моноиды и группы. Коммутативные группы. Примеры групп. Порядок группы. Подгруппы. Описание всех подгрупп в группе $(\mathbb{Z},+)$

Определение 1. Mножество c бинарной операцией — это множество M c заданным отображением

$$M \times M \to M$$
, $(a,b) \mapsto a \circ b$.

Множество с бинарной операцией обычно обозначают (M, \circ) .

Определение 2. Множество с бинарной операцией (M, \circ) называется *полугруппой*, если данная бинарная операция *ассоциативна*, то есть

$$a \circ (b \circ c) = (a \circ b) \circ c$$
 для всех $a, b, c \in M$.

Не все естественно возникающие операции ассоциативны. Например, если $M = \mathbb{N}$ и $a \circ b = a^b$, то

$$2^{(1^2)} = 2 \neq (2^1)^2 = 4.$$

Другой пример неассоциативной бинарной операции: $M=\mathbb{Z}$ и $a\circ b:=a-b$.

Полугруппу обычно обозначают (S, \circ) .

Определение 3. Полугруппа (S, \circ) называется моноидом, если в ней есть нейтральный элемент, то есть такое элемент $e \in S$, что $e \circ a = a \circ e = a$ для любого $a \in S$.

Замечание. Если в полугруппе есть нейтральный элемент, то он один. В самом деле, $e_1 \circ e_2 = e_1 = e_2$.

Определение 4. Моноид (S, \circ) называется *группой*, если для каждого элемента $a \in S$ найдется *обратный элемент*, то есть такой $b \in S$, что $a \circ b = b \circ a = e$.

Обратный элемент обозначается a^{-1} .

Группу принято обозначать (G, \circ) или просто G, когда понятно, о какой операции идёт речь. Обычно символ \circ обозначения операции опускают и пишут просто ab.

Определение 5. Группа G называется коммутативной или абелевой, если групповая операция коммутативна, то есть ab = ba для любых $a, b \in G$.

Если в случае произвольной группы G принято использовать мультипликативные обозначения для групповой операции $-gh, e, g^{-1}$, то в теории абелевых групп чаще используют аддитивные обозначения, то есть a+b, 0, -a.

Определение 6. *Порядок* группы G — это число элементов в G. Группа называется *конечной*, если её порядок конечен, и *бесконечной* иначе.

Порядок группы G обозначается |G|.

Приведем несколько серий примеров групп.

1. Числовые аддитивные группы:

$$(\mathbb{Z}, +), (\mathbb{Q}, +), (\mathbb{R}, +), (\mathbb{C}, +), (\mathbb{Z}_n, +).$$

2. Числовые мультипликативные группы:

$$(\mathbb{Q}\setminus\{0\},\times), (\mathbb{R}\setminus\{0\},\times), (\mathbb{C}\setminus\{0\},\times), (\mathbb{Z}_p\setminus\{\overline{0}\},\times), p$$
— простое.

3. Группы матриц:

$$\mathrm{GL}_n(\mathbb{R}) = \{A \in \mathrm{Mat}_{n \times n}(\mathbb{R}) \mid \det A \neq 0\}$$
 — полная линейная группа;

$$\mathrm{SL}_n(\mathbb{R}) = \{A \in \mathrm{Mat}_{n \times n}(\mathbb{R}) \mid \det A = 1\}$$
 — специальная линейная группа.

4. Группы перестановок (с операцией композиции):

симметрическая группа S_n — все перестановки длины $n, |S_n| = n!;$

знакопеременная группа A_n — чётные подстановки длины $n, |A_n| = \frac{n!}{2}$.

5. Группы преобразований: симметрия, движение.

Определение 7. Подмножество H группы G называется noderpynnoù, если выполнены следующие три условия:

- 1. $e \in H$;
- $2. \ ab \in H$ для любых $a,b \in H$;
- 3. $a^{-1} \in H$ для любого $a \in H$.

В каждой группе G есть несобственные подгруппы $H = \{e\}$ и H = G. Все прочие подгруппы называются собственными. Например, чётные числа $2\mathbb{Z}$ образуют собственную подгруппу в $(\mathbb{Z}, +)$.

Предложение. Всякая подгруппа в $(\mathbb{Z},+)$ имеет вид $k\mathbb{Z}$ для некоторого целого неотрицательного k.

Доказательство. Очевидно, что все подмножества вида $k\mathbb{Z}$ являются подгруппами в \mathbb{Z} .

Пусть $H \subseteq \mathbb{Z}$ — подгруппа. Если $H = \{0\}$, то $H = 0\mathbb{Z}$.

Иначе положим $k = \min(H \cap \mathbb{N}) \neq 0$. (это множество непусто, так как $\forall x \implies -x \in H$)

Тогда $k\mathbb{Z} \subseteq H$.

Покажем, что $k\mathbb{Z}=H.$ Пусть $a\in H$ — произвольный элемент. Поделим его на k с остатком.

a=qk+r, где $q\in H,\, 0\leqslant r\leqslant k\implies r=a-qk\in H.$

В силу выбора k получаем $r=0 \implies a=qk \in k\mathbb{Z}$.

2 Подгруппы. Циклические подгруппы. Циклические группы. Порядок элемента. Связь между порядком элемента и порядком порождаемой им циклической подгруппы

Пусть G — группа, $g \in G$ и $n \in \mathbb{Z}$. Определим степень следующим образом:

$$g^{n} = \begin{cases} \underbrace{g \cdots g}_{n}, & n > 0, \\ e, & n = 0 \\ \underbrace{g^{-1} \cdots g^{-1}}_{n}, & n < 0. \end{cases}$$

Свойства:

1.
$$g^m \cdot g^n = g^{m+n}, \forall n, m \in \mathbb{Z};$$

2.
$$(g^k)^{-1} = g^{-k}, \forall k \in \mathbb{Z};$$

3.
$$(q^n)^m = q^{nm}, \forall n, m \in \mathbb{Z}.$$

Определение 8. Пусть G — группа и $g \in G$. *Циклической подгруппой*, порожденной элементом g, называется подмножество $\{g^n \mid n \in \mathbb{Z}\}$ в G.

Циклическая подгруппа, порождённая элементом g, обозначается $\langle g \rangle$. Элемент g называется nopoждающим или образующим для подгруппы $\langle g \rangle$.

Например, подгруппа $2\mathbb{Z}$ в $(\mathbb{Z},+)$ является циклической, и в качестве порождающего элемента в ней можно взять g=2 или g=-2. Другими словами, $2\mathbb{Z}=\langle 2\rangle=\langle -2\rangle$.

Определение 9. Группа G называется $uu\kappa nuveckou$, если найдется такой элемент $g \in G$, что $G = \langle g \rangle$.

Определение 10. Пусть G — группа и $g \in G$. Порядком элемента g называется такое наименьшее натуральное число m, что $g^m = e$. Если такого натурального числа m не существует, говорят, что порядок элемента g равен бесконечности.

Порядок элемента обозначается $\operatorname{ord}(g)$. Заметим, что $\operatorname{ord}(g)=1$ тогда и только тогда, когда g=e.

Предложение. Пусть G — группа и $g \in G$. Тогда $\operatorname{ord}(g) = |\langle g \rangle|$.

Доказательство. Заметим, что если $g^k=g^s$, то $g^{k-s}=e$. Поэтому если элемент g имеет бесконечный порядок, то все элементы $g^n, n \in \mathbb{Z}$, попарно различны, и подгруппа $\langle g \rangle$ содержит бесконечно много элементов. Если же порядок элемента g равен m, то из минимальности числа m следует, что элементы $e=g^0, g=g^1, g^2, \ldots, g^{m-1}$ попарно различны. Далее, для всякого $n \in \mathbb{Z}$ мы имеем n=mq+r, где $0 \leqslant r \leqslant m-1$, и

$$g^n = g^{mq+r} = (g^m)^q g^r = e^q g^r = g^r.$$

Следовательно, $\langle g \rangle = \{e, g, g^2, \dots, g^{m-1}\}$ и $|\langle g \rangle| = m$.

Ясно, что всякая циклическая группа коммутативна и не более чем счётна. Примерами циклических группа являются группы $(\mathbb{Z}, +)$ и $(\mathbb{Z}_n, +)$, $n \geqslant 1$.

Смежные классы. Индекс подгруппы. Теорема Лагранжа 3

Пусть G — группа, $H \subseteq G$ — подгруппа. Определим отношение L_H следующим образом: $(a,b) \in L_H \iff a^{-1}b \in H$.

Предложение. L_H — отношение эквивалентности.

Доказательство.

- 1. $a^{-1}a = e \in H$;
- 2. $a^{-1}b \in H \implies b^{-1}a = (a^{-1}b)^{-1} \in H;$ 3. $a^{-1}b \in H, b^{-1}c \in H \implies a^{-1}c = (a^{-1}b)(b^{-1}c) \in H.$

Заметим, что $a^{-1}b \in H \iff b \in aH$, поэтому класс эквивалентности элемента $a \in G$ совпадает с множеством aH.

Определение 11. Левым смежным классом элемента q группы G по подгруппе H называется подмножество

$$gH = \{gh \mid h \in H\}.$$

Наряду с левым смежным классом можно определить правый смежный класс элемента g:

$$Hq = \{hq \mid h \in H\}.$$

Все дальнейшие доказательства для правых смежный классов формулируются и доказываются аналогично.

Лемма 3.1. Пусть G — конечная группа и $H \subseteq G$ — конечная подгруппа. Тогда |gH| = |H| для любого $g \in G$.

Доказательство. Поскольку $gH = \{gh \mid h \in H\}$, в gH элементов не больше, чем в H. Если $gh_1 = gh_2$, то домножаем слева на g^{-1} и получаем $h_1 = h_2$. Значит, все элементы вида gh, где $h \in H$, попарно различны, откуда |gH| = |H|.

Определение 12. Пусть G — группа и $H \subseteq G$ — подгруппа. Индексом подгруппы H в группе G называется число левых смежных классов G по H.

Индекс группы G по подгруппе H обозначается [G:H].

Теорема 3.2 (Теорема Лагранжа). Пусть $G - \kappa$ онечная группа и $H \subseteq G - n$ одгруппа. Тогда

$$|G| = |H| \cdot [G:H].$$

Доказательство. Каждый элемент группы G лежит в (своём) левом смежном классе по подгруппе H, разные смежные классы не пересекаются (лемма 1) и каждый из них содержит по |H| элементов (лемма 2).

4 Пять следствий из теоремы Лагранжа

Теорема 4.1 (Теорема лагранжа). Пусть G- конечная группа и $H\subseteq G-$ подгруппа. Тогда

$$|G| = |H| \cdot [G:H].$$

Рассмотрим некоторые следствия из теоремы Лагранжа.

Следствие. Пусть G — конечная группа и $H \subseteq G$ — подгруппа. Тогда |H| делит |G|.

Следствие. Пусть G — конечная группа и $g \in G$. Тогда $\operatorname{ord}(g)$ делит |G|.

Доказательство. Вытекает из следствия 1 и факта, что $\operatorname{ord}(g) = |\langle g \rangle|$.

Следствие. Пусть G — конечная группа и $g \in G$. Тогда $g^{|G|} = e$.

 \mathcal{A} оказательство. Согласно следствию 2, мы имеем $|G|=\operatorname{ord}(g)\cdot s$, откуда $g^{|G|}=\left(g^{\operatorname{ord}(g)}\right)^s=e^s=e$.

Следствие (малая теорема Ферма). Пусть \bar{a} — ненулевой вычет по простому модулю p. Тогда $\bar{a}^{p-1}=1$.

Доказательство. Применим следствие 3 к группе ($\mathbb{Z}_p \setminus \{0\}, \times$).

Следствие. Пусть G — группа. Предположим, что |G| — простое число. Тогда G — циклическая группа, порождаемая любым своим неединичным элементов.

Доказательство. Пусть $g \in G$ — произвольный неединичный элемент. Тогда циклическая подгруппа $\langle g \rangle$ содержит более одного элемента и $|\langle g \rangle|$ делит |G| по следствию 1. Значит, $|\langle g \rangle| = |G|$, откуда $G = \langle g \rangle$.

5 Нормальные подгруппы и факторгруппы

Определение 13. Подгруппа H группы G называется *нормальной*, если gH = Hg для любого $g \in G$.

Пример.

- 1. G абелева. Тогда любая подгруппа H нормальная.
- 2. $G = S_3, G = \{ \mathrm{Id}, (12) \}$. Тогда H не является нормальной.
- 3. Несобственные подгруппы H = G и $H = \{0\}$ нормальны.

Предложение. Для подгруппы $H \subseteq G$ следующие условия эквивалентны:

- 1. H нормальна;
- 2. $gHg^{-1} = H$ для любого $g \in G$;
- 3. $gHg^{-1} \subseteq H$ для любого $g \in G$.

Доказательство.

- $(1) \implies (2) gH = Hg \implies gHg^{-1} = H.$
- $(2) \implies (3)$ Очев.
- $(3) \implies (1) \ gHg^{-1} \subseteq H \implies gH \subseteq Hg. \ \text{Теперь возьмем} \ g = g^{-1}. \ \text{Тогда} \ g^{-1}Hg \subseteq H \implies Hg \subseteq gH \implies gh = Hg. \quad \blacksquare$

Рассмотрим множество смежных классов по нормальной подгруппе G/H.

Определим на G/H бинарную операцию, полагая $(g_1H)(g_2H) = (g_1g_2)H$.

Корректность Пусть $g_1'H = g_1H$ и $g_2'H = g_2H$. Тогда $g_1' = g_1h_1$, $g_2' = g_2h_2$, где $h_1, h_2 \in H$.

$$(g_1'H)(g_2'H) = (g_1'g_2')H = (g_1h_1g_2h_2)H = (g_1g_2\underbrace{g_2^{-1}h_1g_2}_{\in H})h_2H \subseteq (g_1g_2)H \implies (g_1'g_2')H = (g_1g_2)H.$$

Структура группы G/H.

- 1. Ассоциативность очевидна.
- 2. Нейтральный элемент eH.
- 3. Обратный к $gH g^{-1}H$.

Определение 14. Множество G/H с указанной операцией называется факторгруппой группы G по нормальной подгруппе H.

 Π ример. Если $G=(\mathbb{Z},+)$ и $H=n\mathbb{Z}$, то G/H — это в точности группа вычетов $(\mathbb{Z}_n,+)$.

Гомоморфизмы групп. Простейшие свойства гомоморфизмов. Изоморфизмы групп. Ядро и образ гомоморфизма групп, их свойства

Определение 15. Пусть (G, \circ) и (F, \cdot) — две группы.

Отображение $\varphi \colon G \to F$ называется гомоморфизмом, если

$$\varphi(g_1 \circ g_2) = \varphi(g_1) \cdot \varphi(g_2), \quad \forall g_1, g_2 \in G.$$

Замечание. Пусть $\varphi \colon G \to F$ — гомоморфизм групп, и пусть e_G и e_F — нейтральные элементы группы G и Fсоответственно. Тогда:

- 1. $\varphi(e_G) = e_F$.
- 2. $\varphi(a^{-1}) = \varphi(a)^{-1}$ для любого $a \in G$.

Доказательство.

- 1. Имеем $\varphi(e_G) = \varphi(e_G e_G) = \varphi(e_G)\varphi(e_G)$. Теперь умножая крайние части этого равенства на $\varphi(e_G)^{-1}$, получим $e_F = \varphi(e_G)$.
- 2. $\varphi(g \cdot g^{-1}) = e_F = \varphi(g)\varphi(g^{-1})$. Умножив обе части на $\varphi(g)^{-1}$ получаем необходимое.

Определение 16. Гомоморфизм групп $\varphi \colon G \to F$ называется *изоморфизмом*, если отображение φ биективно.

Определение 17. Группы G и F называет u зоморфными, если между ними существует изоморфизм. Обозначение: $G \simeq F$.

В алгебре рассматривают с точностью до изоморфизма: изоморфные группы считаются «одинаковыми».

Определение 18. С каждым гомоморфизмом групп $\varphi \colon G \to F$ связаны его ядро

$$\ker \varphi = \{ g \in G \mid \varphi(g)e_f \},\$$

и образ

$$\operatorname{Im} \varphi = \varphi(G) = \{ a \in F \mid \exists g \in G : \varphi(g) = a \}.$$

Ясно, что $\ker \varphi \subseteq G$ и $\operatorname{Im} \varphi \subseteq F$ — подгруппы.

Лемма 6.1. Гомоморфизм групп $\varphi: G \to F$ инъективен тогда и только тогда, когда $\ker \varphi = \{e_G\}$.

Доказательство. Ясно, что если
$$\varphi$$
 инъективен то $\ker \varphi = \{e_G\}$. Обратно, пусть $g_1, g_2 \in G$ и $\varphi(g_1) = \varphi(g_2)$. Тогда $g_1^{-1}g_2 \in \ker \varphi$, поскольку $\varphi(g_1^{-1}g_2) = \varphi(g_1^{-1})\varphi(g_2) = \varphi(g_1)^{-1}\varphi(g_2) = e_F$. Отсюда $g_1^{-1}g_2 = e_G$ и $g_1 = g_2$.

Следствие. Гомоморфизм групп $\varphi \colon G \to F$ является изоморфизмом тогда и только тогда, когда $\ker \varphi = \{e_G\}$ и

Предложение. Пусть $\varphi \colon G \to F$ — гомоморфизм групп. Тогда подгруппа $\ker \varphi$ нормальна в G.

Доказательство. Достаточно проверить, что $g^{-1}hg\in\kerarphi$ для любых $g\in G$ и $h\in\kerarphi$. Это следует из цепочки равенств

$$\varphi(g^{-1}hg) = \varphi(g^{-1})\varphi(h)\varphi(g) = \varphi(g^{-1})e_F\varphi(g) = \varphi(g^{-1})\varphi(g) = \varphi(g)^{-1}\varphi(g) = e_F.$$

7 Теорема о гомоморфизме для групп

Теорема 7.1 (Теорема о гомоморфизме). Пусть $\varphi \colon G \to F$ — гомоморфизм групп. Тогда группа $\operatorname{Im} \varphi$ изоморфна факторгруппе $G/\ker \varphi$.

Доказательство. Рассмотрим отображение $\psi \colon G/\ker \varphi \to \operatorname{Im} \varphi$, заданное формулой $\psi(g\ker \varphi) = \varphi(g)$.

1. Корректность.

$$g_1 \ker \varphi = g_2 \ker \varphi \implies g_1 h_1 = g_2 h_2$$
 для некоторых $h_1, h_2 \in \ker \varphi$. $\psi(g_1 \ker \varphi) = \varphi(g_1) = \varphi(g_1 h_1) = \varphi(g_2 h_2) = \varphi(g_2) = \psi(g_2 \ker \varphi)$.

2. ψ — гомоморфизм.

$$\psi\left((g_1 \ker \varphi)(g_2 \ker \varphi)\right) = \psi((g_1 g_2) \ker \varphi) = \varphi(g_1 g_2) = \varphi(g_1)\varphi(g_2) = \psi(g_1 \ker \varphi)\psi(g_2 \ker \varphi).$$

- 3. Сюръектинвость из построения.
- 4. Инъективность.

$$\psi(g_1 \ker \varphi) = \psi(g_2 \ker \varphi) \implies \varphi(g_1) = \varphi(g_2) \implies \varphi(g_1)\varphi(g_2)^{-1} = e_F \implies \varphi(g_1g_2^{-1}) = e_F \implies g_1g_2^{-1} \in \ker \varphi \implies g_1 \ker \varphi = g_2 \ker \varphi.$$

Тем самым, чтобы удобно реализовать факторгруппу G/H, можно найти такой гомоморфизм $\varphi \colon G \to F$ в некоторую группу F, что $H = \ker \varphi$, и тогда $G/H \simeq \operatorname{Im} \varphi$.

 Π ример. Пусть $G=(\mathbb{R},+)$ и $H=(\mathbb{Z},+)$. Рассмотрим группу $F=(\mathbb{C}\setminus\{0\},\times)$ и гомоморфизм

$$\varphi \colon G \to F, \quad a \mapsto e^{2\pi i a} = \cos(2\pi a) + i\sin(2\pi a).$$

Тогда $\ker \varphi = H$ и факторгруппа G/H изоморфна окружности S^1 , рассматриваемой как подгруппа в F, состоящая из комплексных чисел с модулем 1.

Классификация циклических групп 8

Пусть G — циклическая группа. Тогда

- 1. Если $|G| = \infty$, то $G \simeq (\mathbb{Z}, +)$,
- 2. Если $|G| = n < \infty$, то $G \simeq (\mathbb{Z}_n, +)$.

Доказательство. Пусть $G=\langle g \rangle$. Рассмотрим отображение $\varphi\colon \mathbb{Z} \to G, \ k\mapsto g^k$. Тогда $\varphi(k+l)=g^{k+l}=g^kg^l=\varphi(k)\varphi(l),$ поэтому φ — гомоморфизм. Из определения циклической группы следует, что φ сюръективет, то есть $\operatorname{Im} \varphi=G.$ Тогда по теореме о гомоморфизме мы получаем $G\simeq \mathbb{Z}/\ker \varphi$. Так как $\ker \varphi$ подгруппа в \mathbb{Z} , то получаем $\ker \varphi = m\mathbb{Z}$ для некоторого $m \geqslant 0$. (так как любая подгруппа \mathbb{Z} имеет вид $k\mathbb{Z}$) Если m = 0, то $\ker \varphi = \{0\}$, откуда $G \simeq \mathbb{Z}/\{0\} \simeq \mathbb{Z}$. Если m > 0, то $G \simeq \mathbb{Z}/m\mathbb{Z} = \mathbb{Z}_m$.

9 Прямое произведение групп. Разложение конечной циклической группы. Теорема о строении конечных абелевых групп

Определение 19. *Прямым произведением* групп G_1, \ldots, G_m называется множество

$$G_1 \times \cdots \times G_m = \{(g_1, \dots, g_m) \mid g_1 \in G_1, \dots, g_m \in G_m\}$$

с операцией $(g_1,\ldots,g_m)(g_1',\ldots,g_m')=(g_1g_1',\ldots,g_mg_m').$

Ясно, что эта операция ассоциативна, обладает нейтральным элементом $(e_{G_1}, \ldots, e_{G_m})$ и для каждого элемента (g_1, \ldots, g_m) есть обратный элемент $(g_1^{-1}, \ldots, g_m^{-1})$.

Замечание. Группа $G_1 \times \cdots \times G_m$ коммутативна в точности тогда, когда коммутативна каждая из групп G_1, \ldots, G_m .

Замечание. Если все группы G_1, \ldots, G_m конечны, то $|G_1 \times \cdots \times G_m| = |G_1| \cdots |G_m|$.

Определение 20. Группа G раскладывается в прямое произведение своих подгрупп H_1, \ldots, H_m если отображение $H_1 \times \cdots \times H_m \to G, (h_1, \ldots, h_m) \mapsto h_1 \cdots h_m$, является изоморфизмом.

Теорема 9.1. Пусть n = ml - pазложение натурального числа n на два взаимно простых сомножителя. Тогда имеет место изоморфизм групп

$$\mathbb{Z}_n \simeq \mathbb{Z}_m \times \mathbb{Z}_l$$
.

Доказательство. Рассмотрим отображение

$$\varphi \colon \mathbb{Z}_n \to \mathbb{Z}_m \times \mathbb{Z}_l, \quad (k \bmod n) \mapsto (k \bmod m, k \bmod l).$$

Поскольку m и l делят n, отображение φ определено корректно. Ясно, что φ — гомоморфизм. Далее, $a \bmod n \in \ker \varphi \implies a \bmod m = 0, a \bmod l = 0 \implies a \vdots m, a \vdots l$.

Так как HOД(m, l) = 1, то $a : n \implies a \mod n = 0 \implies \ker \varphi = \{0\}.$

Отсюда следует, что гомоморфизм φ инъективен. Поскольку множества \mathbb{Z}_n и $\mathbb{Z}_m \times \mathbb{Z}_l$ содержат одинаковое число элементов, отображение φ биективно.

Следствие. Пусть $n \geqslant 2$ — натуральное число и $n = p_1^{k_1} \cdots p_s^{k_s}$ — его разложение в произведение простых множителей (где $p_i \neq p_j$ при $i \neq j$). Тогда имеет место изоморфизм групп

$$\mathbb{Z}_n \simeq \mathbb{Z}_{p_1^{k_1}} \times \cdots \times \mathbb{Z}_{p_s^{k_s}}.$$

Определение 21. Конечная абелева группа A называется npumaphoй, если $|A| = p^k$, где p — простое и $k \in \mathbb{N}$.

Теорема 9.2. Пусть A- конечная абелева группа. Тогда $A\simeq \mathbb{Z}_{p_1^{k_1}}\times \cdots \times \mathbb{Z}_{p_t^{k_t}},$ где p_1,\ldots,p_t- простые числа (не обязательно различные!) и $k_1,\ldots,k_t\in \mathbb{N}$. Более того, набор примарных циклических множителей $\mathbb{Z}_{p_1^{k_1}},\ldots,\mathbb{Z}_{p_t^{k_t}}$ определен однозначно с точностью до перестановки (в частности, число этих множителей определено однозначно).

10 Экспонента конечной абелевой группы и критерий цикличности

Определение 22. Экспонентой конечной абелевой группы A называется число

$$\exp A := \min\{m \in \mathbb{N} \mid ma = 0 \ \forall a \in A\}.$$

Замечание.

- 1. Так как $ma=0\iff m$: $\mathrm{ord}(a)\ \forall a\in A$ и $m\in\mathbb{Z}$, то определение экспоненты можно переписать ещё в виде $\exp A=\mathrm{HO}\mathbb{Z}\{\mathrm{ord}(a)\mid a\in A\}.$
- 2. Так как |A| \vdots ord(a) $\forall a \in A$, то |A| общее кратное множества $\{ \operatorname{ord}(a) \mid a \in A \}$, а значит, |A| \vdots exp A. В частности, exp $A \leq |A|$.

Предложение. $\exp A = |A| \iff A$ — циклическая группа.

Доказательство. Пусть $|A|=n=p_1^{k_1}\cdot\ldots\cdot p_s^{k_s}$ — разложение на простые множители, где p_i — простое и $k_s\in\mathbb{N}$. $(p_i\neq p_j$ при $i\neq j)$

- \longleftarrow Если $A=\langle a \rangle$, то ord a=n, откуда сразу получаем $\exp A=n$.
- Если $\exp A = n$, то для $i = 1, \ldots, s$ существует элемент $c_i \in A$, такой что $\operatorname{ord} c_i = p_i^{k_i} m_i$, где $m_i \in \mathbb{N}$. Для каждого $i = 1, \ldots, s$ положим $a_i = m_i c_i$, тогда $\operatorname{ord}(a_i) = p_i^{k_i}$. Теперь рассмотрим элемент $a = a_1 + \cdots + a_s$ и покажем, что $\operatorname{ord}(a) = n$. Пусть ma = 0 для некоторого $m \in \mathbb{N}$, то есть $ma_1 + \cdots + ma_s = 0$. При фиксированном $i \in \{1, \ldots, s\}$ умножим обе части последнего равенства на $n_i := n/p_i^{k_i}$. Легко видеть, что $mn_i a_j = 0$ при всех $i \neq j$, поэтому в левой части выживет только слагаемое $mn_i a_i$, откуда получаем $mn_i a_i = 0$. Следовательно, $mn_i : p_i^{k_i}$, а так как n_i не делится на p_i , то $m : p_i^{k_i}$. В силу произвольности выбора i отсюда вытекает, что m : n. Так как na = 0, то мы окончательно получаем $\operatorname{ord}(a) = n$. Значит, $A = \langle a \rangle$ циклическая группа.

11	ого логарифми- Криптосистема		
	Эль-Гамаля		
		14	
		14	

12 Кольца. Коммутативные кольца. Обратимые элементы, делители нуля и нильпотенты. Примеры колец. Поля. Критерий того, что кольцо вычетов является полем

Определение 23. *Кольцо* — это множество R, на котором заданы две бинарные операции «+» (сложение) и «·» (умножение), удовлетворяющее следующим условиям:

- 1. (R, +) абелева группа;
- 2. $\forall a, b, c \in R$ a(b+c) = ab + ac и (a+b)c = ac + bc;
- 3. $\forall a, b, c \in R \quad (ab)c = a(bc)$.
- 4. $\exists 1 \in R$, такой что $1 \cdot a = a \cdot 1 = a \quad \forall a \in R$.

Замечание.

- 1. $0 \cdot a = a \cdot 0 = 0 \quad \forall a \in R;$
- 2. Если |R| > 1, то $1 \neq 0$.

Доказательство.

- 1. a0 = a(0+0) = a0 + a0, откуда 0 = a0.
- 2. Следует из условий выше.

Пример.

- 1. числовые кольца $\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$;
- 2. кольцо \mathbb{Z}_n вычетов по модулю n;
- 3. кольцо матриц $\operatorname{Mat}_{n\times n}(\mathbb{R})$;
- 4. $\mathbb{R}[x]$ кольцо многочленов от переменной x с коэффициентами из \mathbb{R} ;
- 5. $\mathbb{R}[x_1, \dots, x_n]$ кольцо многочленов от нескольких переменных x_1, \dots, x_n с коэффициентами из \mathbb{R} ;
- 6. $F(M,\mathbb{R})$ кольцо функций из множества M в \mathbb{R} (с поточечными операциями сложения и умножения): $(f_1+f_2)(m):=f_1(m)+f_2(m), \quad (f_1\cdot f_2)(m):=f_1(m)\cdot f_2(m).$

Определение 24. Кольцо R называется коммутативным, если ab = ba для всех $a, b \in RR$.

Определение 25. Элемент $a \in R$ называется *обратимым*, если найдется такой $b \in R$, что ab = ba = 1.

Замечание. Все обратимые элементы кольца R образуют группу по умножению.

Определение 26. Элемент $a \in R$ называется левым (соответственно правым) делителем нуля, если $a \neq 0$ и $\exists b \in R$, $b \neq 0$, такой что ab = 0 (соответственно ba = 0).

Замечание. Если R коммутативно, то множества левых и правых делителей нуля совпадают. Тогда левые и правые делители нуля называются просто «делителями нуля».

Замечание. Все делители нуля в R необратимы. Если $ab=0, a\neq 0, b\neq 0$ и существует a^{-1} , то получаем $a^{-1}ab=a^{-1}0$, откуда b=0 — противоречние.

Определение 27. Элемент $a \in R$ называется *нильпотентным* (*нильпотентом*), если $a \neq 0$ и найдется такое $n \in \mathbb{N}$, что $a^n = 0$.

Замечание. Всякий нильпотент является делителем нуля: если $a \neq 0$ и n минимально, то $a = a^{n-1} = 0$.

Определение 28. Кольцо R называется *полем*, если оно коммутативно (ассоциативно с 1), $0 \neq 1$ и любой ненулевой элемент обратим.

 $\Pi p u м e p. \mathbb{Q}, \mathbb{R}, \mathbb{C}, \mathbb{Z}_2.$

Предложение. Кольцо вычетов \mathbb{Z}_n является полем $\iff n$ — простое число.

Доказательство. Соглашение: $a \in \mathbb{Z} \leadsto \overline{a} \in \mathbb{Z}_n$ — вычет $a \mod n$.

- \implies Если n=1, то $\mathbb{Z}_n=\{0\}$ не поле.
 - Если n>1 и $n=m\cdot k$, где 1< m,k< n, то $\overline{m}\cdot \overline{k}=\overline{0}$ \Longrightarrow в \mathbb{Z}_n есть делитель нуля \Longrightarrow \mathbb{Z}_n не поле.
- \longleftarrow n = p простое. Пусть $\overline{a} \in \mathbb{Z}_p \setminus \{\overline{0}\}$.

Тогда $HOД(a, p) = 1 \implies \exists k, l \in \mathbb{Z}$, такие что ak + pl = 1.

Значит, $\overline{a} \cdot \overline{k} + \overline{p} \cdot \overline{l} = \overline{1} \implies \overline{a} \cdot \overline{k} = \overline{1} \implies \overline{a}$ обратим.

13 Идеалы колец. Факторкольцо кольца по идеалу. Гомоморфизмы и изоморфизмы колец. Ядро и образ гомоморфизма колец. Теорема о гомоморфизме для колец

Определение 29. Подмножество $I \subseteq R$ называется (двусторонним) идеалом, если

- 1. I подгруппа по сложению;
- $2. \ \forall \in I \ \forall r \in R \quad ar \in I, ra \in I.$

Обозначение $I \lhd R$.

Пример. Несобственные идеалы $\{0\}$, R. Остальные называются собственными.

Определение 30. Множество $(a) := \{ra \mid r \in R\}$ называется главным идеалом, порождаемым элементом a.

 Π ример. $(k) = k\mathbb{Z}$ — главный идеал в \mathbb{Z} .

Замечание. $(a) = R \iff a$ обратим $(a) = \{0\} \iff a = 0.$

Определение 31. Если $S \subseteq R$ — подмножество, то

$$(S) := \{r_1 s_1 + \dots + r_k s_k \mid r_i \in R, s_i \in S\}$$

называется идеалом, порожденным подмножеством S.

Рассмотрим факторгруппу (R/I, +) и введём на ней операцию умножения, полагая $(a+I) \cdot (b+I) := ab+I$.

Корректность a + I = a' + I, $b + I = b' + I \implies a' = a + x$, b' = b + y, где $x, y \in I$. Тогда,

$$(a'+I)(b'+I) = a'b' + I = (a+x)(b+y) + I = ab + \underbrace{ay + xb + xy}_{\in I} + I = ab + I.$$

Замечание. R/I — кольцо.

Определение 32. R/I называется факторкольцом кольца R по идеалу I.

 $\Pi p u M e p$. $\mathbb{Z}/n\mathbb{Z} = \mathbb{Z}_n$.

Определение 33. Если R,S — два кольца, то отображение $\varphi\colon R\to S$ называется гомоморфизмом колец, если $\varphi(a+b)=\varphi(a)+\varphi(b)$ и $\varphi(ab)=\varphi(a)\cdot\varphi(b)$.

Изоморфизм — биективный гомоморфизм.

Пусть $\varphi \colon R \to R'$ — гомоморфизм колец.

Тогда $\ker \varphi := \{r \in R \mid \varphi(r) = 0\} \subseteq R$

$$\operatorname{Im} \varphi := \varphi(R) \subseteq R$$

Замечание.

- 1. $\ker \varphi \triangleleft R$;
- 2. $\operatorname{Im} \varphi$ подкольцо в R'.

Доказательство.

1. Так как φ — гомоморфизм абелевых групп, то $\ker \varphi$ является подгруппой в R по сложению. Покажем теперь, что $ra \in \ker \varphi$ и $ar \in \ker \varphi$ для произвольных элементов $a \in \ker \varphi$ и $r \in R$.

Имеем $\varphi(ra) = \varphi(r)(\varphi(a) = \varphi(r)0 = 0$, откуда $ra \in \ker \varphi$. Аналогично для $ar \in \ker \varphi$.

Теорема 13.1 (Теорема о гомоморфизме колец). $R/\ker \varphi \simeq \operatorname{Im} \varphi$.

Доказательство. Пусть $I := \ker \varphi$. Тогда из доказательства теоремы о гомоморфизме для групп отображение $\psi \colon R/I \to \operatorname{Im} \varphi, \ \psi(a+I) := \varphi(a)$ является изоморфизмом групп (по сложениею).

Остается проверить, что ψ — гомоморфизм колец.

$$\psi((a+I)(b+I)) = \psi(ab+I) = \varphi(ab) = \varphi(a)\varphi(b) = \psi(a+I)\psi(b+I).$$

Пример. K — поле, $a \in K$, $\varphi \colon K[x] \to K$, $f \mapsto f(a)$.

Это гомоморфизм, он сюръективен $(b = \varphi(b))$.

 $\ker \varphi = (x - a) \implies K[x]/(x - a) \simeq K.$

15	Teopema о том, что кольцо многочленов от одной переменной над полем является кольцом главных идеалов			

16	Неприводимые многочлены. Ф одной переменной над полем	Ракториальность	кольца	многочленов от
	oW-1011 110k 011111011 110W 11001011			
		19		

17 Критерий того, что факторкольцо $\mathbb{K}[x]/(h)$ является полем. Базис и размерность факторкольца $\mathbb{K}[x]/(h)$ как векторного пространства над полем \mathbb{K}

18	Лексикографический порядок на множестве одночленов от нескольких переменных. Лемма о конечности убывающих цепочек одночленов				
	21				

19 Старший член многочлена от нескольких переменных. Элементарная редукция многочлена относительно другого многочлена. Лемма о конечности цепочек элементарных редукций относительно системы многочленов

20	Остаток многочлена относительно заданной системы многочленов. Системы Грёбнера. Характеризация систем Грёбнера в терминах цепочек элементарных редукций

21 S-многочлены. Критерий Бухбергера

22 Базис Грёбнера идеала в кольце многочленов от нескольких переменных, теорема о трёх эквивалентных условиях. Решение задачи вхождения многочлена в идеал

23 Лемма о конечности цепочек одночленов, в которых каждый следующий одночлен не делится ни на один из предыдущих. Алгоритм Бухбергера построения базиса Грёбнера идеала

24	Теорема Гильберта о базисе идеала

25	Редуцируемость	к нулю	S-многочлена	двух	многочленов	с взаимно
	простыми старш	ими член	ами			

26	Характеристика поля. Расширение полей. Конечное расширение и его степень. Степень композиции двух расширений
	29

27 Присоединение корня неприводимого многочлена. Существование конечного расширения исходного поля, в котором заданный многочлен (а) имеет корень; (б) разлагается на линейные множители

28	Алгебраические и трансцендентные элементы. член алгебраического элемента и его свойства	Минимальный	много-

29	Подполе том	В	расширении	полей,	порождённое	алгебраическим	элемен-
					32		

30 Порядок конечного поля. Автоморфизм Фробениуса

Теорема существования для конечных полей

32	Цикличность мультипликативной	группы	конечного	поля	и неприво-
	димые многочлены над \mathbb{Z}_p				
	35				