Algoritmos y Estructuras de Datos I Practico 3

(Suma anteriores)

Damián Barsotti

Fa.M.A.F., Universidad Nacional de Córdoba, Argentina

Cantidad de elementos pares en un arreglo

Problema

Dado un arreglo de números determinar si alguno de sus elementos es igual a la suma de los anteriores.

Cantidad de elementos pares en un arreglo

Problema

Dado un arreglo de números determinar si alguno de sus elementos es igual a la suma de los anteriores.

Especificación

```
Const N: Int; a: array[0, N) of Int;

Var r: Bool;

\{P: N \ge 0\}

S

\{Q: r = \langle \exists i: 0 \le i < N: a.i = sum.i \rangle\}

[sum.i = \langle \sum j: 0 \le j < i: a.j \rangle]
```

Ver doc "Pasos Sugeridos para Derivar una Repetición"

1. Encontrar invariante candidato /.

- 1. Encontrar invariante candidato /.
- 2. Inicialización.

- 1. Encontrar invariante candidato /.
- 2. Inicialización.
- 3. Finalización $I \wedge \neg B \Rightarrow Q$.

- 1. Encontrar invariante candidato /.
- 2. Inicialización.
- 3. Finalización $I \wedge \neg B \Rightarrow Q$.
- 4. Encontrar cota candidata t.

- 1. Encontrar invariante candidato /.
- 2. Inicialización.
- 3. Finalización $I \wedge \neg B \Rightarrow Q$.
- 4. Encontrar cota candidata t.
- 5. Cuerpo del bucle $\{I \land B\} S \{I\}$.

- 1. Encontrar invariante candidato /.
- 2. Inicialización.
- 3. Finalización $I \wedge \neg B \Rightarrow Q$.
- 4. Encontrar cota candidata t.
- 5. Cuerpo del bucle $\{I \land B\} S \{I\}$.
- 6. Cota positiva $I \wedge B \Rightarrow t \geq 0$.

- 1. Encontrar invariante candidato /.
- 2. Inicialización.
- 3. Finalización $I \wedge \neg B \Rightarrow Q$.
- 4. Encontrar cota candidata t.
- 5. Cuerpo del bucle $\{I \land B\} S \{I\}$.
- 6. Cota positiva $I \wedge B \Rightarrow t \geq 0$.
- 7. Cota disminuye $\{I \land B \land t = T\}$ $S \{t < T\}$.

Técnica reemplazo de constante por variable

Técnica reemplazo de constante por variable

• Por paso 3 (finalizacion) debería $I \land \neg B \Rightarrow Q$

Reemplazo de N por n

```
Const N: Int; a: array[0, N) of Int;

Var \ r: Bool; n: Int;

\{P: N \ge 0\}

S

\{Q: r = \langle \exists i: 0 \le i < N: a.i = sum.i \rangle\}
[sum.i = \langle \sum j: 0 \le j < i: a.j \rangle]
```

Técnica reemplazo de constante por variable

- Por paso 3 (finalizacion) debería $I \land \neg B \Rightarrow Q$
- Fortalecemos Q reemplazando N por n y poniéndole limites:

Reemplazo de N por n

```
Const N:Int; a: array[0, N) of Int;

Var \ r: Bool; n:Int;

\{P: N \geq 0\}

S

\{Q': r = \langle \exists i: 0 \leq i < n: a.i = sum.i \rangle \land 0 \leq n \leq N \land n = N\}

\{Q: r = \langle \exists i: 0 \leq i < N: a.i = sum.i \rangle\}

[sum.i = \langle \sum j: 0 \leq j < i: a.j \rangle]
```

Técnica reemplazo de constante por variable

- Por paso 3 (finalizacion) debería $I \land \neg B \Rightarrow Q$
- Fortalecemos Q reemplazando N por n y poniéndole limites:

Reemplazo de N por n

```
Const N:Int; a: array[0, N) of Int;

Var \ r: Bool; n:Int;

\{P: N \geq 0\}

S

\{Q': r = \langle \exists i: 0 \leq i < n: a.i = sum.i \rangle \land 0 \leq n \leq N \land n = N\}

\{Q: r = \langle \exists i: 0 \leq i < N: a.i = sum.i \rangle\}

[sum.i = \langle \sum j: 0 \leq j < i: a.j \rangle]
```

Técnica de termino de la conjunción sobre Q'

Técnica reemplazo de constante por variable

- Por paso 3 (finalizacion) debería $I \land \neg B \Rightarrow Q$
- Fortalecemos Q reemplazando N por n y poniéndole limites:

Reemplazo de N por n

```
Const N: Int; a: array[0, N) of Int;

Var r: Bool; n: Int;

\{P: N \ge 0\}

S

\{Q': r = \langle \exists i: 0 \le i < n: a.i = sum.i \rangle \land 0 \le n \le N \land n = N\}

\{Q: r = \langle \exists i: 0 \le i < N: a.i = sum.i \rangle\}

[sum.i = \langle \sum j: 0 \le j < i: a.j \rangle]
```

Técnica de termino de la conjunción sobre Q'

```
I: r = \langle \exists i : 0 \le i < n : a.i = sum.i \rangle \land 0 \le n \le N
```

Técnica reemplazo de constante por variable

- Por paso 3 (finalizacion) debería $I \land \neg B \Rightarrow Q$
- Fortalecemos Q reemplazando N por n y poniéndole limites:

Reemplazo de N por n

```
Const N: Int; a: array[0, N) of Int;

Var \ r: Bool; n: Int;

\{P: N \geq 0\}

S

\{Q': r = \langle \exists i: 0 \leq i < n: \ a.i = sum.i \rangle \land 0 \leq n \leq N \land n = N\}

\{Q: r = \langle \exists i: 0 \leq i < N: \ a.i = sum.i \rangle\}

[sum.i = \langle \sum j: 0 \leq j < i: \ a.j \rangle]
```

Técnica de termino de la conjunción sobre Q'

```
I: r = \langle \exists i : 0 \le i < n : a.i = sum.i \rangle \land 0 \le n \le N

B: n \ne N
```

Invariante candidato y guarda

Programa hasta ahora:

```
Const N:Int; a: array[0, N) of Int;  
Var r: Bool; n: Int;  
\{P: N \geq 0\}  
\{I: r = \langle \exists i: 0 \leq i < n: a.i = sum.i \rangle \land 0 \leq n \leq N\}  
do n \neq N \rightarrow  
S  
od  
\{I \land \neg B: r = \langle \exists i: 0 \leq i < n: a.i = sum.i \rangle \land 0 \leq n \leq N \land n = N\} ? 
\{Q: r = \langle \exists i: 0 \leq i < N: a.i = sum.i \rangle\}  
[sum.i = \langle \sum j: 0 \leq j < i: a.j \rangle]
```

Invariante candidato y guarda

Programa hasta ahora:

```
Const N:Int; a:array[0,N) of Int; Var \ r:Bool; n:Int; \{P:N\geq 0\} (inicialización) ? \{I:r=\langle\exists i:0\leq i< n: a.i=sum.i\,\rangle \land 0\leq n\leq N\} do n\neq N\rightarrow S ? od \{I\wedge \neg B:r=\langle\exists i:0\leq i< n: a.i=sum.i\,\rangle \land 0\leq n\leq N \land n=N\} ? \{Q:r=\langle\exists i:0\leq i< N: a.i=sum.i\,\rangle\} [sum.i=\langle\sum j:0\leq j< i: a.j\,\rangle]
```

No se cumple

 $P: N \ge 0 \Rightarrow I: r = \langle \exists i : 0 \le i < n : a.i = sum.i \rangle \land 0 \le n \le N$

No se cumple

$$P: N \geq 0 \ \Rightarrow \ I: r = \langle \, \exists \, i \, : 0 \leq i < n \, : \, \text{a.} i = \text{sum.} i \, \rangle \, \wedge \, 0 \leq n \leq N$$

Agrego inicialización:

No se cumple

$$P: N \geq 0 \ \Rightarrow \ I: r = \left\langle \, \exists \, i \, : 0 \leq i < n \, : \, \text{a.} i = \text{sum.} i \, \right\rangle \, \wedge \, 0 \leq n \leq N$$

Agrego inicialización:

Despejar E y F de

$$P$$
 $r, n := \mathbf{E}, \mathbf{F}$
 $\{I\}$

No se cumple

$$P: N \ge 0 \Rightarrow I: r = \langle \exists i : 0 \le i < n : a.i = sum.i \rangle \land 0 \le n \le N$$

Agrego inicialización:

• Despejar **E** y **F** de

$$P$$
 $r, n := \mathbf{E}, \mathbf{F}$
 $\{I\}$

= Encontrar **E** y **F** tal que

$$P \Rightarrow wp.(r, n := E, F).I$$

sea verdadera.

No se cumple

$$P: N \ge 0 \Rightarrow I: r = \langle \exists i : 0 \le i < n : a.i = sum.i \rangle \land 0 \le n \le N$$

Agrego inicialización:

• Despejar **E** y **F** de

$$P$$
 $r, n := \mathbf{E}, \mathbf{F}$
 $\{I\}$

= Encontrar **E** y **F** tal que

$$P \Rightarrow wp.(r, n := \mathbf{E}, \mathbf{F}).I$$

sea verdadera.

= Suponer P y encontrar E y F tal que

$$wp.(r, n := \mathbf{E}, \mathbf{F}).I$$

sea verdadera.

Programa anotado a derivar

```
Const N:Int; a: array[0, N) of Int;

Var \ r: Bool; n: Int;

\{P: N \ge 0\} ?

r, n:= E, F;

\{I: r = \langle \exists i: 0 \le i < n: a.i = sum.i \rangle \land 0 \le n \le N\}

do \ n \ne N \rightarrow $

od \ \{I \land \neg B: r = \langle \exists i: 0 \le i < n: a.i = sum.i \rangle \land 0 \le n \le N \land n = N\} ?

\{Q: r = \langle \exists i: 0 \le i < N: a.i = sum.i \rangle \}

[sum.i = \langle \sum j: 0 \le j < i: a.j \rangle]
```

Derivación

Sup $P: N \geq 0$

 $\textit{wp.}(\textit{r},\textit{n} := \textbf{E},\textbf{F}).(\textit{r} = \langle \, \exists \, \textit{i} \, : 0 \leq \textit{i} < \textit{n} : \, \textit{a.i} = \textit{sum.i} \, \rangle \, \land \, 0 \leq \textit{n} \leq \textit{N})$

```
\begin{aligned} & \textbf{Sup } P: N \geq 0 \\ & wp.(r,n:=\textbf{E},\textbf{F}).(r=\langle\,\exists\,i\,:0\leq i< n:\,\,a.i=sum.i\,\rangle\,\,\wedge\,\,0\leq n\leq N) \\ & \equiv \, \{\,\,\mathsf{Def}\,\,wp\,\,\} \\ & \textbf{E}=\langle\,\exists\,i\,:0\leq i<\textbf{F}:\,\,a.i=sum.i\,\rangle\,\,\wedge\,\,0\leq \textbf{F}\leq N \end{aligned}
```

```
\begin{aligned} & \text{Sup } P: N \geq 0 \\ & \quad \textit{wp.}(r, n := \mathsf{E}, \mathsf{F}).(r = \langle \, \exists \, i \, : \, 0 \leq i < n \, : \, \, a.i = sum.i \, \rangle \, \wedge \, 0 \leq n \leq N) \\ & \equiv \left\{ \begin{array}{l} \mathsf{Def } \, \textit{wp} \, \right\} \\ & \mathsf{E} = \langle \, \exists \, i \, : \, 0 \leq i < \mathsf{F} \, : \, \, a.i = sum.i \, \rangle \, \wedge \, 0 \leq \mathsf{F} \leq N \\ & \equiv \left\{ \begin{array}{l} \mathsf{Hacemos} \, \mathsf{F} \leftarrow 0 \, \right\} \\ & \mathsf{E} = \langle \, \exists \, i \, : \, 0 \leq i < 0 \, : \, \, a.i = sum.i \, \rangle \, \wedge \, 0 \leq 0 \leq N \\ \end{aligned} \end{aligned}
```

```
Sup P: N \ge 0

wp.(r, n := E, F).(r = \langle \exists i : 0 \le i < n : a.i = sum.i \rangle \land 0 \le n \le N)

\equiv \{ \text{ Def } wp \}

E = \langle \exists i : 0 \le i < F : a.i = sum.i \rangle \land 0 \le F \le N

\equiv \{ \text{ Hacemos } F \leftarrow 0 \}

E = \langle \exists i : 0 \le i < 0 : a.i = sum.i \rangle \land 0 \le 0 \le N

\equiv \{ \text{ Aritmética, absorbente } \land, \text{ neutro } \land \}

E = \langle \exists i : False : a.i = sum.i \rangle \land 0 \le N
```

```
 \begin{aligned}  & \text{Sup } P : N \geq 0 \\ & wp.(r,n := \textbf{E},\textbf{F}).(r = \langle \, \exists \, i \, : \, 0 \leq i < n \, : \, a.i = sum.i \, \rangle \, \wedge \, 0 \leq n \leq N) \\ & \equiv \{ \, \, \text{Def } wp \, \} \\ & = \{ \, \, \exists \, i \, : \, 0 \leq i < \textbf{F} \, : \, a.i = sum.i \, \rangle \, \wedge \, 0 \leq \textbf{F} \leq N \\ & \equiv \{ \, \, \text{Hacemos } \textbf{F} \leftarrow 0 \, \} \\ & = \{ \, \, \exists \, i \, : \, 0 \leq i < 0 \, : \, a.i = sum.i \, \rangle \, \wedge \, 0 \leq 0 \leq N \\ & \equiv \{ \, \, \text{Aritmética, absorbente} \, \, \wedge \, , \, \text{neutro} \, \wedge \, \frac{1}{3} \\ & = \{ \, \, \exists \, i \, : \, False : \, a.i = sum.i \, \rangle \, \wedge \, 0 \leq N \\ & \equiv \{ \, \, \text{R.V., Sup.} \, \} \\ & = False \, \wedge \, True \end{aligned}
```

```
Sup P: N \ge 0

wp.(r, n := E, F).(r = \langle \exists i : 0 \le i < n : a.i = sum.i \rangle \land 0 \le n \le N)

≡ { Def wp }

E = \langle \exists i : 0 \le i < F : a.i = sum.i \rangle \land 0 \le F \le N

≡ { Hacemos F \leftarrow 0 }

E = \langle \exists i : 0 \le i < 0 : a.i = sum.i \rangle \land 0 \le 0 \le N

≡ { Aritmética, absorbente \land, neutro \land }

E = \langle \exists i : False : a.i = sum.i \rangle \land 0 \le N

≡ { R.V., Sup. }

E = False \land True

≡ { Hacemos E \leftarrow False }

False = False \land True
```

```
Sup P : N > 0
     wp.(r, n := \mathbf{E}, \mathbf{F}).(r = \langle \exists i : 0 < i < n : a.i = sum.i \rangle \land 0 < n < N)
\equiv \{ \text{ Def } wp \}
    \mathbf{E} = \langle \exists i : 0 \leq i < \mathbf{F} : a.i = sum.i \rangle \land 0 < \mathbf{F} < N
\equiv { Hacemos \mathbf{F} \leftarrow 0 }
    \mathbf{E} = \langle \exists i : 0 \leq i < 0 : a.i = sum.i \rangle \land 0 \leq 0 \leq N
\equiv { Aritmética, absorbente \land, neutro \land }
    \mathbf{E} = \langle \exists i : False : a.i = sum.i \rangle \land 0 < N
\equiv { R.V., Sup. }
    \mathbf{E} = False \wedge True
\equiv { Hacemos E \leftarrow False }
    False = False \land True
\equiv { Aritmética, neutro \land }
     True
```

El programa queda por ahora

```
Const N:Int; a: array[0, N) of Int;

Var \ r: Bool; n: Int;

\{P: N \ge 0\} \heartsuit

r, n:= False, 0;

\{I: r = \langle \exists i: 0 \le i < n: a.i = sum.i \rangle \land 0 \le n \le N\}

do \ n \ne N \rightarrow ?

od

\{I \land \neg B: r = \langle \exists i: 0 \le i < n: a.i = sum.i \rangle \land 0 \le n \le N \land n = N\} ?

\{Q: r = \langle \exists i: 0 \le i < N: a.i = sum.i \rangle\}

[sum.i = \langle \sum j: 0 \le j < i: a.j \rangle]
```

3. Finalización

Hay que demostrar $I \wedge \neg B \Rightarrow Q$

3. Finalización

```
Hay que demostrar I \wedge \neg B \Rightarrow Q
```

```
Const N:Int; a: array[0, N) of Int;

Var \ r: Bool; n: Int;

\{P: N \geq 0\}

r, n:= False, 0; \heartsuit

\{I: r = \langle \exists i: 0 \leq i < n: a.i = sum.i \rangle \land 0 \leq n \leq N\}

do n \neq N \rightarrow \bigcirc ?

od

\{I \land \neg B: r = \langle \exists i: 0 \leq i < n: a.i = sum.i \rangle \land 0 \leq n \leq N \land n = N\} ?

\{Q: r = \langle \exists i: 0 \leq i < N: a.i = sum.i \rangle\}

[sum.i = \langle \sum j: 0 \leq j < i: a.j \rangle]
```

3. Finalización

```
Hay que demostrar I \wedge \neg B \Rightarrow Q
Const N: Int; a: array[0, N) of Int;
Var r : Bool; n : Int;
\{P: N > 0\}
r, n := False, 0;
r, n := False, 0;
\{l : r = \langle \exists i : 0 \le i < n : a.i = sum.i \rangle \land 0 \le n \le N\}
do n \neq N \rightarrow
od
\{I \land \neg B : r = \langle \exists i : 0 \leq i < n : a.i = sum.i \rangle \land 0 \leq n \leq N \land n = N \}?
\{Q: r = \langle \exists i : 0 \leq i < N : a.i = sum.i \rangle \}
        \llbracket sum.i = \langle \sum_{i} j : 0 \leq j < i : a.j \rangle \rrbracket
Eiercicio
       Sup I \wedge \neg B
      ≣ { · · · }
```

• Se tiene que cumplir

$$I \wedge B : r = \langle \exists i : 0 \le i < n : a.i = sum.i \rangle \wedge 0 \le n \le N$$

 $\wedge n \ne N \Rightarrow t \ge 0$

• Se tiene que cumplir

$$I \wedge B : r = \langle \exists i : 0 \le i < n : a.i = sum.i \rangle \wedge 0 \le n \le N$$

 $\wedge n \ne N \Rightarrow t \ge 0$

• En / se cumple $N - n \ge 0$

Se tiene que cumplir

$$\begin{array}{c} I \wedge B : r = \left\langle \exists \, i \, : 0 \leq i < n \, : \, a.i = sum.i \, \right\rangle \, \wedge \, 0 \leq n \leq N \\ \wedge \, n \neq N \, \Rightarrow \, t \geq 0 \end{array}$$

- En / se cumple $N n \ge 0$
- n comienza en 0 en inicialización.

Se tiene que cumplir

$$I \wedge B : r = \langle \exists i : 0 \le i < n : a.i = sum.i \rangle \wedge 0 \le n \le N$$

 $\wedge n \ne N \Rightarrow t \ge 0$

- En / se cumple $N n \ge 0$
- n comienza en 0 en inicialización.
- Para terminar se debe falsificar $B: n \neq N$ (cota disminuye) do $n \neq N \rightarrow S$ od

Se tiene que cumplir

$$I \wedge B : r = \langle \exists i : 0 \le i < n : a.i = sum.i \rangle \wedge 0 \le n \le N$$

 $\wedge n \ne N \Rightarrow t \ge 0$

- En / se cumple $N n \ge 0$
- n comienza en 0 en inicialización.
- Para terminar se debe falsificar $B: n \neq N$ (cota disminuye) do $n \neq N \rightarrow S$ od
- Probemos con

$$t: N-n$$

Pruebo con asignación

• t: N-n debe disminuir $\Rightarrow n$ debe aumentar.

- t: N-n debe disminuir $\Rightarrow n$ debe aumentar.
- n comienza en 0 (inicialización).

- t: N-n debe disminuir $\Rightarrow n$ debe aumentar.
- *n* comienza en 0 (inicialización).
- *n* aumenta de a 1 ya que debo recorrer todo el arreglo.

- t: N-n debe disminuir $\Rightarrow n$ debe aumentar.
- n comienza en 0 (inicialización).
- n aumenta de a 1 ya que debo recorrer todo el arreglo.
- ⇒ Despejar E de

$$\begin{cases}
I \land B \\
r, n := \mathbf{E}, n+1 \\
\{I\}
\end{cases}$$

Pruebo con asignación

- t: N-n debe disminuir $\Rightarrow n$ debe aumentar.
- *n* comienza en 0 (inicialización).
- n aumenta de a 1 ya que debo recorrer todo el arreglo.
- ⇒ Despejar **E** de

$$\begin{cases}
I \wedge B \\
r, n := \mathbf{E}, n+1 \\
\{I\}
\end{cases}$$

= Encontrar **E** tal que

$$I \wedge B \Rightarrow wp.(r, n := \mathbf{E}, n + 1).I$$
 sea verdadera.

Pruebo con asignación

- t: N-n debe disminuir $\Rightarrow n$ debe aumentar.
- *n* comienza en 0 (inicialización).
- *n* aumenta de a 1 ya que debo recorrer todo el arreglo.
- ⇒ Despejar **E** de

$$\begin{cases}
I \wedge B \\
r, n := \mathbf{E}, n+1 \\
\{I\}
\end{cases}$$

= Encontrar **E** tal que

$$I \wedge B \Rightarrow wp.(r, n := \mathbf{E}, n+1).I$$
 sea verdadera.

= Suponer $I \wedge B$ y encontrar **E** tal que

$$wp.(r, n := \mathbf{E}, n+1).$$
 sea verdadera.

Programa anotado a derivar

```
Const N:Int; a: array[0, N) of Int;

Var \ r: Bool; n: Int;

\{P: N \geq 0\}

r, n:= False, 0; \heartsuit

\{I: r = \langle \exists i: 0 \leq i < n: a.i = sum.i \rangle \land 0 \leq n \leq N\}

do \ n \neq N \rightarrow \{I \land B\}

r, n:= E, n+1 ?

\{I\}

od

\{I \land \neg B: r = \langle \exists i: 0 \leq i < n: a.i = sum.i \rangle \land 0 \leq n \leq N \land n = N\} \heartsuit

\{Q: r = \langle \exists i: 0 \leq i < N: a.i = sum.i \rangle\}

[sum.i = \langle \sum j: 0 \leq j < i: a.j \rangle]
```

```
Sup I \wedge B : r = \langle \exists i : 0 \le i < n : a.i = sum.i \rangle \wedge 0 \le n \le N \wedge n \ne N

wp.(r, n := E, n + 1).(r = \langle \exists i : 0 \le i < n : a.i = sum.i \rangle \wedge 0 \le n \le N)
```

```
 \begin{aligned}  & \textbf{Sup } I \wedge B : r = \left\langle \exists \, i : 0 \leq i < n : \, a.i = \textbf{sum}.i \,\right\rangle \wedge 0 \leq n \leq N \wedge n \neq N \\ & \quad \textit{wp.}(r, n := \textbf{E}, n+1).(r = \left\langle \, \exists \, i : 0 \leq i < n : \, a.i = \textbf{sum}.i \,\right\rangle \wedge 0 \leq n \leq N) \\ & \equiv \left\{ \, \mathsf{Def } \, \textit{wp} \,\right\} \\ & \quad \textbf{E} = \left\langle \, \exists \, i : 0 \leq i < n+1 : \, a.i = \textbf{sum}.i \,\right\rangle \wedge \underbrace{0 \leq n+1 \leq N} \end{aligned}
```

```
 \begin{aligned} & \textbf{Sup } I \wedge B : r = \langle \exists i : 0 \leq i < n : \ \textit{a.i} = \textbf{sum.} i \rangle \wedge 0 \leq n \leq \textit{N} \wedge \textit{n} \neq \textit{N} \\ & \textit{wp.}(r, n := \textbf{E}, n+1).(r = \langle \exists i : 0 \leq i < n : \ \textit{a.i} = \textit{sum.} i \rangle \wedge 0 \leq n \leq \textit{N}) \\ & \equiv \{ \ \mathsf{Def } \textit{wp} \ \} \\ & \quad \textbf{E} = \langle \exists i : 0 \leq i < n+1 : \ \textit{a.i} = \textit{sum.} i \rangle \wedge \underbrace{0 \leq n+1 \leq \textit{N}} \\ & \equiv \{ \ \mathsf{Aritm\'etica}, \ \mathsf{Sup.} \ 0 \leq n \leq \textit{N} \wedge \textit{n} \neq \textit{N} \ \} \\ & \quad \textbf{E} = \langle \exists i : 0 \leq i < n+1 : \ \textit{a.i} = \textit{sum.} i \rangle \end{aligned}
```

```
 \begin{aligned} & \textbf{Sup } I \wedge B : r = \langle \exists i : 0 \leq i < n : \ a.i = \textbf{sum}.i \rangle \wedge 0 \leq n \leq N \wedge n \neq N \\ & wp.(r,n:=\textbf{E},n+1).(r=\langle \exists i : 0 \leq i < n : \ a.i = sum.i \rangle \wedge 0 \leq n \leq N) \\ & \equiv \{ \text{ Def } wp \} \\ & \textbf{E} = \langle \exists i : 0 \leq i < n+1 : \ a.i = sum.i \rangle \wedge \underbrace{0 \leq n+1 \leq N} \\ & \equiv \{ \text{ Aritmética, Sup. } 0 \leq n \leq N \wedge n \neq N \} \\ & \textbf{E} = \langle \exists i : 0 \leq i < n+1 : \ a.i = sum.i \rangle \\ & \equiv \{ \text{ Separación de Término } \} \\ & \textbf{E} = \langle \exists i : 0 \leq i < n : \ a.i = sum.i \rangle \vee a.n = sum.n \end{aligned}
```

```
 \begin{aligned} & \mathbf{Sup} \ I \wedge B : r = \langle \exists i : 0 \leq i < n : \ a.i = \mathbf{sum}.i \rangle \wedge 0 \leq n \leq N \wedge n \neq N \\ & wp.(r,n:=\mathbf{E},n+1).(r=\langle \exists i : 0 \leq i < n : \ a.i = sum.i \rangle \wedge 0 \leq n \leq N) \\ & \equiv \{ \text{ Def } wp \} \\ & = \{ \exists i : 0 \leq i < n+1 : \ a.i = sum.i \rangle \wedge 0 \leq n+1 \leq N \\ & \equiv \{ \text{ Aritmética, Sup. } 0 \leq n \leq N \wedge n \neq N \} \\ & = \{ \exists i : 0 \leq i < n+1 : \ a.i = sum.i \rangle \\ & \equiv \{ \text{ Separación de Término } \} \\ & = \{ \exists i : 0 \leq i < n : \ a.i = sum.i \rangle \vee a.n = sum.n \\ & \equiv \{ \text{ Sup } r = \langle \exists i : 0 \leq i < n : \ a.i = sum.i \rangle \} \\ & = r \vee a.n = sum.n \end{aligned}
```

Derivación

```
 \begin{aligned} & \mathbf{Sup} \ I \wedge B : r = \langle \exists i : 0 \leq i < n : \ a.i = \mathbf{sum}.i \rangle \wedge 0 \leq n \leq N \wedge n \neq N \\ & wp.(r,n:=\mathbf{E},n+1).(r=\langle \exists i : 0 \leq i < n : \ a.i = sum.i \rangle \wedge 0 \leq n \leq N) \\ & \equiv \{ \ \mathsf{Def} \ wp \} \\ & = \{ \exists i : 0 \leq i < n+1 : \ a.i = sum.i \rangle \wedge \underbrace{0 \leq n+1 \leq N} \\ & \equiv \{ \ \mathsf{Aritm\'etica}, \ \mathsf{Sup}. \ 0 \leq n \leq N \wedge n \neq N \} \\ & = \{ \exists i : 0 \leq i < n+1 : \ a.i = sum.i \rangle \\ & \equiv \{ \ \mathsf{Separaci\'on} \ de \ \mathsf{T\'ermino} \ \} \\ & = \{ \ \mathsf{Sup} \ r = \langle \exists i : 0 \leq i < n : \ a.i = sum.i \rangle \vee a.n = sum.n \\ & \equiv \{ \ \mathsf{Sup} \ r = \langle \exists i : 0 \leq i < n : \ a.i = sum.i \rangle \} \\ & = r \vee a.n = \underbrace{sum.n} \end{aligned}
```

No puedo $\mathbf{E} \leftarrow r \lor a.n = sum.n$ sum.n no es programa.

Derivación

```
 \begin{aligned} & \text{Sup } I \land B : r = \langle \exists i : 0 \leq i < n : \ a.i = \text{sum.} i \rangle \land 0 \leq n \leq N \land n \neq N \\ & wp.(r,n:=\textbf{E},n+1).(r=\langle \exists i : 0 \leq i < n : \ a.i = \text{sum.} i \rangle \land 0 \leq n \leq N) \\ & \equiv \{ \text{ Def } wp \} \\ & \equiv \{ \exists i : 0 \leq i < n+1 : \ a.i = \text{sum.} i \rangle \land 0 \leq n+1 \leq N \\ & \equiv \{ \text{ Aritmética, Sup. } 0 \leq n \leq N \land n \neq N \} \\ & \equiv \{ \text{ Aritmética, Sup. } 0 \leq n \leq N \land n \neq N \} \\ & \equiv \{ \exists i : 0 \leq i < n+1 : \ a.i = \text{sum.} i \rangle \\ & \equiv \{ \text{ Separación de Término } \} \\ & \equiv \{ \exists i : 0 \leq i < n : \ a.i = \text{sum.} i \rangle \lor \ a.n = \text{sum.} n \\ & \equiv \{ \text{ Sup } r = \langle \exists i : 0 \leq i < n : \ a.i = \text{sum.} i \rangle \} \\ & \equiv r \lor a.n = \text{sum.} n \end{aligned}
```

No puedo $\mathbf{E} \leftarrow r \lor a.n = sum.n$ sum.n no es programa.

Solución:

Fortalezco / para que tener sum.n en Sup.

Nuevo invariante candidato

Variable con la subexpresión no programable mas chica en

```
\equiv \left\{ \begin{array}{l} \cdots \\ \mathbf{E} = r \lor a.n = sum.n \end{array} \right.
```

Nuevo invariante candidato

Variable con la subexpresión no programable mas chica en

```
\equiv \{ \cdots \}
\mathbf{E} = r \lor a.n = \underline{sum.n}
```

```
I': r = \langle \exists i : 0 \le i < n : a.i = sum.i \rangle \land s = sum.n \land 0 \le n \le N
```

Cambia invariante candidato

Hay que hacer de nuevo

- Inicialización,
- Finalización y
- Cuerpo del bucle:

Cambia invariante candidato

Hay que hacer de nuevo

- Inicialización,
- Finalización y
- Cuerpo del bucle:

No se cumple

```
P: N \ge 0 \Rightarrow I': r = \langle \exists i : 0 \le i < n : a.i = sum.i \rangle \land s = sum.n \land 0 \le n \le N
```

No se cumple

$$P: N \ge 0 \Rightarrow I': r = \langle \exists i : 0 \le i < n : a.i = sum.i \rangle \land s = sum.n \land 0 \le n \le N$$

Agrego inicialización:

No se cumple

$$P: N \ge 0 \Rightarrow I': r = \langle \exists i : 0 \le i < n : a.i = sum.i \rangle \land s = sum.n \land 0 \le n \le N$$

Agrego inicialización:

• Despejar **E**, **F** y **G** de

```
r, s, n := \mathbf{E}, \mathbf{F}, \mathbf{G}
\{l'\}
```

No se cumple

$$P: N \ge 0 \Rightarrow I': r = \langle \exists i : 0 \le i < n : a.i = sum.i \rangle \land s = sum.n \land 0 \le n \le N$$

Agrego inicialización:

• Despejar **E**, **F** y **G** de

$$r, s, n := \mathbf{E}, \mathbf{F}, \mathbf{G}$$

$$\{ \mathbf{I}' \}$$

= Encontrar **E**, **F** y **G** tal que

$$P \Rightarrow wp.(r, s, n := \mathbf{E}, \mathbf{F}, \mathbf{G}).I'$$

sea verdadera.

No se cumple

$$P: N \ge 0 \Rightarrow I': r = \langle \exists i : 0 \le i < n : a.i = sum.i \rangle \land s = sum.n \land 0 \le n \le N$$

Agrego inicialización:

• Despejar **E**, **F** y **G** de

$$r, s, n := \mathbf{E}, \mathbf{F}, \mathbf{G}$$

$$\{l'\}$$

= Encontrar **E**, **F** y **G** tal que

$$P \Rightarrow wp.(r, s, n := \mathbf{E}, \mathbf{F}, \mathbf{G}).I'$$

sea verdadera.

= Suponer *P* y encontrar **E**, **F** y **G** tal que

$$wp.(r, s, n := \mathbf{E}, \mathbf{F}, \mathbf{G}).I'$$

sea verdadera.

Programa anotado a derivar

```
Const N:Int; a: array[0, N) of Int;

Var \ r: Bool; s, n: Int;

\{P: N \geq 0\} ?

r, s, n:= E, F, G;

\{I': r = \langle \exists i: 0 \leq i < n: a.i = sum.i \rangle \land s = sum.n \land 0 \leq n \leq N\}

do n \neq N \rightarrow S ?

od

\{I' \land \neg B: r = \langle \exists i: 0 \leq i < n: a.i = sum.i \rangle \land s = sum.n \land 0 \leq n \leq N \land n = N\} ?

\{Q: r = \langle \exists i: 0 \leq i < N: a.i = sum.i \rangle\}

\{sum.i = \langle \sum j: 0 \leq j < i: a.j \rangle\}
```

```
Sup P: N \ge 0

wp.(r, s, n := \mathbf{E}, \mathbf{F}, \mathbf{G}).(r = \langle \exists i : 0 \le i < n : a.i = sum.i \rangle

\wedge s = sum.n \wedge 0 \le n \le N)
```

```
 \begin{aligned}  & \mathbf{Sup} \ P : N \geq 0 \\ & wp.(r,s,n:=\mathbf{E},\mathbf{F},\mathbf{G}).(r=\langle \exists \ i : 0 \leq i < n: \ a.i = sum.i \, \rangle \\ & \wedge \ s = sum.n \, \wedge \ 0 \leq n \leq N) \\ & \equiv \left\{ \begin{array}{l} \mathsf{Def} \ wp \ \right\} \\ & \mathbf{E} = \langle \exists \ i : 0 \leq i < \mathbf{G}: \ a.i = sum.i \, \rangle \, \wedge \, \mathbf{F} = sum.\mathbf{G} \, \wedge \, 0 \leq \mathbf{G} \leq N \\ & \equiv \left\{ \begin{array}{l} \mathsf{Hacemos} \ \mathbf{G} \leftarrow 0 \ \right\} \\ & \mathbf{E} = \langle \exists \ i : 0 \leq i < 0: \ a.i = sum.i \, \rangle \, \wedge \, \mathbf{F} = sum.0 \, \wedge \, 0 \leq 0 \leq N \\ \end{aligned}
```

```
Sup P : N > 0
     wp.(r, s, n := \mathbf{E}, \mathbf{F}, \mathbf{G}).(r = \langle \exists i : 0 < i < n : a.i = sum.i \rangle
      \wedge s = sum.n \wedge 0 \leq n \leq N
\equiv \{ \text{ Def } wp \}
     \mathbf{E} = \langle \exists i : 0 < i < \mathbf{G} : a.i = sum.i \rangle \land \mathbf{F} = sum.\mathbf{G} \land 0 < \mathbf{G} < N
\equiv { Hacemos \mathbf{G} \leftarrow 0 }
     \mathbf{E} = \langle \exists i : 0 \leq i < 0 : a.i = sum.i \rangle \land \mathbf{F} = sum.0 \land 0 \leq 0 \leq N
\equiv { Aritmética, absorbente \land, neutro \land }
     \mathbf{E} = \langle \exists i : False : a.i = sum.i \rangle \land \mathbf{F} = sum.0 \land 0 < N
\equiv { R.V., Sup. }
     \mathbf{E} = False \wedge \mathbf{F} = sum.0 \wedge True
\equiv { Hacemos E \leftarrow False, aritmética, neutro \land }
     \mathbf{F} = sum.0
```

```
Sup P: N > 0
     wp.(r, s, n := \mathbf{E}, \mathbf{F}, \mathbf{G}).(r = \langle \exists i : 0 < i < n : a.i = sum.i \rangle
      \land s = sum.n \land 0 \le n \le N)
\equiv \{ \text{ Def } wp \}
     \mathbf{E} = \langle \exists i : 0 < i < \mathbf{G} : a.i = sum.i \rangle \land \mathbf{F} = sum.\mathbf{G} \land 0 < \mathbf{G} < N
\equiv { Hacemos \mathbf{G} \leftarrow 0 }
     \mathbf{E} = \langle \exists i : 0 \leq i < 0 : a.i = sum.i \rangle \land \mathbf{F} = sum.0 \land 0 \leq 0 \leq N
\equiv { Aritmética, absorbente \land, neutro \land }
     \mathbf{E} = \langle \exists i : False : a.i = sum.i \rangle \land \mathbf{F} = sum.0 \land 0 < N
≡ { R.V., Sup. }
     \mathbf{E} = False \wedge \mathbf{F} = sum.0 \wedge True
\equiv { Hacemos E \leftarrow False, aritmética, neutro \land }
     \mathbf{F} = sum.0
\equiv { Abreviacion sum }
    \mathbf{F} = \langle \sum_{i} j : 0 < j < 0 : a.j \rangle
```

```
Sup P: N > 0
     wp.(r, s, n := \mathbf{E}, \mathbf{F}, \mathbf{G}).(r = \langle \exists i : 0 < i < n : a.i = sum.i \rangle
      \wedge s = sum.n \wedge 0 \leq n \leq N
\equiv \{ \text{ Def } wp \}
     \mathbf{E} = \langle \exists i : 0 < i < \mathbf{G} : a.i = sum.i \rangle \land \mathbf{F} = sum.\mathbf{G} \land 0 < \mathbf{G} < N
\equiv { Hacemos \mathbf{G} \leftarrow 0 }
     \mathbf{E} = \langle \exists i : 0 \leq i < 0 : a.i = sum.i \rangle \land \mathbf{F} = sum.0 \land 0 \leq 0 \leq N
\equiv { Aritmética, absorbente \land, neutro \land }
     \mathbf{E} = \langle \exists i : False : a.i = sum.i \rangle \land \mathbf{F} = sum.0 \land 0 < N
≡ { R.V., Sup. }
     \mathbf{E} = False \wedge \mathbf{F} = sum.0 \wedge True
\equiv { Hacemos E \leftarrow False, aritmética, neutro \land }
     \mathbf{F} = sum.0
\equiv { Abreviacion sum }
     \mathbf{F} = \langle \sum j : 0 \le j < 0 : a.j \rangle
\equiv \{ RV \}
    \mathbf{F} = 0
```

```
Sup P: N > 0
     wp.(r, s, n := \mathbf{E}, \mathbf{F}, \mathbf{G}).(r = \langle \exists i : 0 < i < n : a.i = sum.i \rangle
     \wedge s = sum.n \wedge 0 \leq n \leq N
\equiv \{ \text{ Def } wp \}
     \mathbf{E} = \langle \exists i : 0 < i < \mathbf{G} : a.i = sum.i \rangle \land \mathbf{F} = sum.\mathbf{G} \land 0 < \mathbf{G} < N
\equiv { Hacemos \mathbf{G} \leftarrow 0 }
     \mathbf{E} = \langle \exists i : 0 \leq i < 0 : a.i = sum.i \rangle \land \mathbf{F} = sum.0 \land 0 \leq 0 \leq N
\equiv { Aritmética, absorbente \land, neutro \land }
     \mathbf{E} = \langle \exists i : False : a.i = sum.i \rangle \land \mathbf{F} = sum.0 \land 0 < N
≡ { R.V., Sup. }
     \mathbf{E} = False \wedge \mathbf{F} = sum.0 \wedge True
\equiv { Hacemos E \leftarrow False, aritmética, neutro \land }
     \mathbf{F} = sum.0
\equiv { Abreviacion sum }
     \mathbf{F} = \langle \sum_i j : 0 < j < 0 : a.j \rangle
\equiv \{ RV \}
     \mathbf{F} - 0
\equiv { Hacemos F \leftarrow 0, Aritmética }
     True
```

El programa queda por ahora

```
Const N:Int; a: array[0, N) of Int;

Var \ r: Bool; s, n:Int;

\{P: N \geq 0\} \heartsuit

r, s, n:= False, 0, 0;

\{I': r=\langle \exists i: 0 \leq i < n: a.i = sum.i \rangle \land s = sum.n \land 0 \leq n \leq N\}

do n \neq N \rightarrow \S

od

\{I' \land \neg B: r=\langle \exists i: 0 \leq i < n: a.i = sum.i \rangle ?

\land s = sum.n \land 0 \leq n \leq N \land n = N\}

\{Q: r=\langle \exists i: 0 \leq i < N: a.i = sum.i \rangle\}

[sum.i=\langle \sum j: 0 \leq j < i: a.j \rangle]
```

3. Finalización (nueva)

Hay que demostrar $I' \wedge \neg B \Rightarrow Q$

3. Finalización (nueva)

```
Hav que demostrar I' \wedge \neg B \Rightarrow Q
Const N: Int; a: array[0, N) of Int;
Var r : Bool; s, n : Int;
\{P: N > 0\}
r, s, n := False, 0, 0;
\{I': r = \langle \exists i : 0 < i < n : a.i = sum.i \rangle \land s = sum.n \land 0 < n < N \}
do n \neq N \rightarrow
od
\{I' \land \neg B : r = \langle \exists i : 0 < i < n : a.i = sum.i \rangle ?
\land s = sum.n \land 0 \le n \le N \land n = N
\{Q: r = \langle \exists i : 0 \leq i < N: a.i = sum.i \rangle \}
       \llbracket sum.i = \langle \sum j : 0 < j < i : a.j \rangle \rrbracket
```

3. Finalización (nueva)

```
Hav que demostrar I' \wedge \neg B \Rightarrow Q
Const N: Int; a: array[0, N) of Int;
Var \ r : Bool: s, n : Int:
\{P: N > 0\}
r, s, n := False, 0, 0:
\{I': r = \langle \exists i : 0 < i < n : a.i = sum.i \rangle \land s = sum.n \land 0 < n < N \}
do n \neq N \rightarrow
od
\{I' \land \neg B : r = \langle \exists i : 0 < i < n : a.i = sum.i \rangle ?
\land s = sum.n \land 0 \le n \le N \land n = N
\{Q: r = \langle \exists i : 0 < i < N : a.i = sum.i \rangle\}
       \llbracket sum.i = \langle \sum i : 0 < i < i : a.i \rangle \rrbracket
```

Ejercicio

Ayuda: Por construcción $I' \Rightarrow I$ y usar transitividad de \Rightarrow .

Pruebo con asignación

• t: N-n debe disminuir $\Rightarrow n$ debe aumentar.

- t: N-n debe disminuir $\Rightarrow n$ debe aumentar.
- *n* comienza en 0 (inicialización).

- t: N-n debe disminuir $\Rightarrow n$ debe aumentar.
- *n* comienza en 0 (inicialización).
- *n* aumenta de a 1 ya que debo recorrer todo el arreglo.

- t: N-n debe disminuir $\Rightarrow n$ debe aumentar.
- n comienza en 0 (inicialización).
- *n* aumenta de a 1 ya que debo recorrer todo el arreglo.
- ⇒ Despejar **E**, **F** de

```
\begin{cases}
I' \wedge B \\
r, s, n := \mathbf{E}, \mathbf{F}, n + 1 \\
\{I'\}
\end{cases}
```

Pruebo con asignación

- t: N-n debe disminuir $\Rightarrow n$ debe aumentar.
- n comienza en 0 (inicialización).
- *n* aumenta de a 1 ya que debo recorrer todo el arreglo.
- ⇒ Despejar **E**, **F** de

$$\begin{cases}
I' \wedge B \\
r, s, n := \mathbf{E}, \mathbf{F}, n+1 \\
\{I'\}
\end{cases}$$

= Encontrar **E**, **F** tal que

$$I' \wedge B \Rightarrow wp.(r, s, n := \mathbf{E}, \mathbf{F}, n+1).I'$$
 sea verdadera.

Pruebo con asignación

- t: N-n debe disminuir $\Rightarrow n$ debe aumentar.
- n comienza en 0 (inicialización).
- *n* aumenta de a 1 ya que debo recorrer todo el arreglo.
- ⇒ Despejar **E**, **F** de

$$\{I' \wedge B\}$$

 $r, s, n := \mathbf{E}, \mathbf{F}, n + 1$
 $\{I'\}$

= Encontrar **E**, **F** tal que

$$I' \wedge B \Rightarrow wp.(r, s, n := \mathbf{E}, \mathbf{F}, n + 1).I'$$
 sea verdadera.

= Suponer $I' \wedge B$ y encontrar **E**, **F** tal que

$$wp.(r, s, n := \mathbf{E}, \mathbf{F}, n + 1).I'$$
 sea verdadera.

Programa anotado a derivar

```
Const N: Int; a: array[0, N) of Int;
Var r : Bool; s, n : Int;
\{P: N > 0\}
r,s,n := False, 0, 0;
\{I': r = \langle \exists i : 0 < i < n : a.i = sum.i \rangle \land s = sum.n \land 0 < n < N \}
do n \neq N \rightarrow
  \{I' \wedge B\}
  r, s, n := \mathbf{E}, \mathbf{F}, n + 1
\{I' \land \neg B : r = \langle \exists i : 0 \leq i < n : a.i = sum.i \rangle \heartsuit
\land s = sum.n \land 0 \le n \le N \land n = N
\{Q: r = \langle \exists i : 0 < i < N : a.i = sum.i \rangle\}
        \llbracket sum.i = \langle \sum_{i=1}^{n} i : 0 < i < i : a.i \rangle \rrbracket
```

```
Sup r = \langle \exists i : 0 \le i < n : a.i = \operatorname{sum}.i \rangle \land s = \operatorname{sum}.n \land 0 \le n \le N \land n \ne N

wp.(r, s, n := \mathbf{E}, \mathbf{F}, n + 1).(r = \langle \exists i : 0 \le i < n : a.i = \operatorname{sum}.i \rangle

\wedge s = \operatorname{sum}.n \land 0 \le n \le N)
```

```
 \begin{aligned} & \text{Sup } r = \langle \, \exists \, i \, : \, 0 \leq i < n \, : \, \, a.i = \text{sum}.i \, \rangle \, \wedge \, s = \text{sum}.n \, \wedge \, 0 \leq n \leq N \, \wedge \, n \neq N \\ & wp.(r,s,n:=\textbf{E},\textbf{F},n+1).(r=\langle \, \exists \, i \, : \, 0 \leq i < n \, : \, \, a.i = \text{sum}.i \, \rangle \\ & \wedge \, s = \text{sum}.n \, \wedge \, 0 \leq n \leq N ) \\ & \equiv \, \big\{ \, \text{Def } wp \, \big\} \\ & \textbf{E} = \langle \, \exists \, i \, : \, 0 \leq i < n+1 \, : \, a.i = \text{sum}.i \, \rangle \, \wedge \, \textbf{F} = \text{sum}.(n+1) \, \wedge \, \underbrace{0 \leq n+1 \leq N} \\ & \equiv \, \big\{ \, \text{Aritmética, Sup. } 0 \leq n \leq N \, \wedge \, n \neq N \, \big\} \\ & \textbf{E} = \langle \, \exists \, i \, : \, 0 \leq i < n+1 \, : \, a.i = \text{sum}.i \, \rangle \, \wedge \, \textbf{F} = \text{sum}.(n+1) \end{aligned}
```

```
 \begin{aligned} & \mathbf{Sup} \ r = \langle \, \exists \, i \, : \, 0 \leq i < n \, : \, a.i = \mathbf{sum}.i \, \rangle \, \wedge \, s = \mathbf{sum}.n \, \wedge \, 0 \leq n \leq N \, \wedge \, n \neq N \\ & wp.(r,s,n:=\mathbf{E},\mathbf{F},n+1).(r=\langle \, \exists \, i \, : \, 0 \leq i < n \, : \, a.i = sum.i \, \rangle \\ & \wedge \, s = sum.n \, \wedge \, 0 \leq n \leq N ) \\ & \equiv \left\{ \, \mathsf{Def} \ wp \, \right\} \\ & \mathbf{E} = \langle \, \exists \, i \, : \, 0 \leq i < n+1 \, : \, a.i = sum.i \, \rangle \, \wedge \, \mathbf{F} = sum.(n+1) \, \wedge \, \underbrace{0 \leq n+1 \leq N} \\ & \equiv \left\{ \, \mathsf{Aritmética}, \, \mathsf{Sup}. \, 0 \leq n \leq N \, \wedge \, n \neq N \, \right\} \\ & \mathbf{E} = \langle \, \exists \, i \, : \, 0 \leq i < n+1 \, : \, a.i = sum.i \, \rangle \, \wedge \, \mathbf{F} = sum.(n+1) \\ & \equiv \left\{ \, \mathsf{Separación} \ de \ \mathsf{T\acute{e}rmino} \, \right\} \\ & \mathbf{E} = \langle \, \exists \, i \, : \, 0 \leq i < n \, : \, a.i = sum.i \, \rangle \, \vee \, a.n = sum.n \, \wedge \, \mathbf{F} = sum.(n+1) \end{aligned}
```

```
 \begin{aligned} & \text{Sup } r = \left\langle \exists \, i : 0 \leq i < n : \, a.i = \text{sum}.i \right\rangle \wedge s = \text{sum}.n \wedge 0 \leq n \leq N \wedge n \neq N \\ & wp.(r,s,n:=\textbf{E},\textbf{F},n+1).(r = \left\langle \exists \, i : 0 \leq i < n : \, a.i = \text{sum}.i \right\rangle \\ & \wedge s = \text{sum}.n \wedge 0 \leq n \leq N) \end{aligned} \\ & \equiv \left\{ \begin{array}{l} \text{Def } wp \right\} \\ & = \left\langle \exists \, i : 0 \leq i < n+1 : \, a.i = \text{sum}.i \right\rangle \wedge \textbf{F} = \text{sum}.(n+1) \wedge \underbrace{0 \leq n+1 \leq N} \end{aligned} \\ & \equiv \left\{ \begin{array}{l} \text{Aritmética, Sup. } 0 \leq n \leq N \wedge n \neq N \right\} \\ & = \left\langle \exists \, i : 0 \leq i < n+1 : \, a.i = \text{sum}.i \right\rangle \wedge \textbf{F} = \text{sum}.(n+1) \end{aligned} \\ & \equiv \left\{ \begin{array}{l} \text{Separación de Término} \right\} \\ & = \left\langle \exists \, i : 0 \leq i < n : \, a.i = \text{sum}.i \right\rangle \vee a.n = \text{sum}.n \wedge \textbf{F} = \text{sum}.(n+1) \end{aligned} \\ & \equiv \left\{ \begin{array}{l} \text{Sup } r = \left\langle \exists \, i : 0 \leq i < n : \, a.i = \text{sum}.i \right\rangle \right\} \\ & = r \vee a.n = \text{sum}.n \wedge \textbf{F} = \text{sum}.(n+1) \end{aligned}
```

```
 \begin{aligned} & \text{Sup } r = \langle \exists i : 0 \leq i < n : \ a.i = \text{sum}.i \rangle \wedge s = \text{sum}.n \wedge 0 \leq n \leq N \wedge n \neq N \\ & wp.(r,s,n:=\textbf{E},\textbf{F},n+1).(r = \langle \exists i : 0 \leq i < n : \ a.i = \text{sum}.i \rangle \\ & \wedge s = \text{sum}.n \wedge 0 \leq n \leq N ) \end{aligned} \\ & \equiv \{ \text{ Def } wp \} \\ & = \{ \exists i : 0 \leq i < n+1 : \ a.i = \text{sum}.i \rangle \wedge \textbf{F} = \text{sum}.(n+1) \wedge \underbrace{0 \leq n+1 \leq N} \\ & = \{ \text{ Aritmética, Sup. } 0 \leq n \leq N \wedge n \neq N \} \\ & = \{ \exists i : 0 \leq i < n+1 : \ a.i = \text{sum}.i \rangle \wedge \textbf{F} = \text{sum}.(n+1) \end{aligned} \\ & \equiv \{ \text{ Separación de Término } \} \\ & = \{ \exists i : 0 \leq i < n : \ a.i = \text{sum}.i \rangle \vee a.n = \text{sum}.n \wedge \textbf{F} = \text{sum}.(n+1) \end{aligned} \\ & \equiv \{ \text{ Sup } r = \langle \exists i : 0 \leq i < n : \ a.i = \text{sum}.i \rangle \vee a.n = \text{sum}.n \wedge \textbf{F} = \text{sum}.(n+1) \end{aligned} \\ & \equiv \{ \text{ Sup } r = \langle \exists i : 0 \leq i < n : \ a.i = \text{sum}.i \rangle \} \\ & = r \vee a.n = \text{sum}.n \wedge \textbf{F} = \text{sum}.(n+1) \end{aligned} \\ & \equiv \{ \text{ Sup } s = \text{sum}.n \} \\ & = r \vee a.n = s \wedge \textbf{F} = \text{sum}.(n+1) \end{aligned}
```

```
Sup r = \langle \exists i : 0 \le i < n : a.i = \text{sum}.i \rangle \land s = \text{sum}.n \land 0 \le n \le N \land n \ne N
    wp.(r, s, n := \mathbf{E}, \mathbf{F}, n + 1).(r = \langle \exists i : 0 \le i < n : a.i = sum.i \rangle
     \wedge s = sum.n \wedge 0 < n < N
\equiv \{ \text{ Def } wp \}
    \mathbf{E} = \langle \exists i : 0 \le i < n+1 : a.i = sum.i \rangle \land \mathbf{F} = sum.(n+1) \land 0 \le n+1 \le N
\equiv { Aritmética, Sup. 0 < n < N \land n \neq N }
    \mathbf{E} = \langle \exists i : 0 < i < n+1 : a.i = sum.i \rangle \land \mathbf{F} = sum.(n+1)
\mathbf{E} = \langle \exists i : 0 < i < n : a.i = sum.i \rangle \lor a.n = sum.n \land \mathbf{F} = sum.(n+1)
\equiv \{ \text{Sup } r = \langle \exists i : 0 \leq i < n : a.i = sum.i \rangle \}
    \mathbf{E} = r \vee a.n = sum.n \wedge \mathbf{F} = sum.(n+1)
\equiv \{ Sup s = sum.n \}
    \mathbf{E} = r \vee a.n = s \wedge \mathbf{F} = sum.(n+1)
\equiv { Abreviación sum }
    \mathbf{E} = r \vee a.n = s \wedge \mathbf{F} = \langle \sum_{i} : 0 < i < n+1 : a.i \rangle
```

```
Sup r = \langle \exists i : 0 \le i < n : a.i = \text{sum}.i \rangle \land s = \text{sum}.n \land 0 \le n \le N \land n \ne N
     wp.(r, s, n := \mathbf{E}, \mathbf{F}, n + 1).(r = \langle \exists i : 0 \le i < n : a.i = sum.i \rangle
      \wedge s = sum.n \wedge 0 < n < N
\equiv \{ \text{ Def } wp \}
     \mathbf{E} = \langle \exists i : 0 \le i < n+1 : a.i = sum.i \rangle \land \mathbf{F} = sum.(n+1) \land 0 \le n+1 \le N
\equiv { Aritmética, Sup. 0 < n < N \land n \neq N }
     \mathbf{E} = \langle \exists i : 0 < i < n+1 : a.i = sum.i \rangle \land \mathbf{F} = sum.(n+1)

≡ { Separación de Término }
     \mathbf{E} = \langle \exists i : 0 < i < n : a.i = sum.i \rangle \vee a.n = sum.n \wedge \mathbf{F} = sum.(n+1)
\equiv \{ \text{Sup } r = \langle \exists i : 0 \leq i < n : a.i = sum.i \rangle \}
     \mathbf{E} = r \vee a.n = sum.n \wedge \mathbf{F} = sum.(n+1)
\equiv \{ Sup s = sum.n \}
     \mathbf{E} = r \vee a.n = s \wedge \mathbf{F} = sum.(n+1)
\equiv { Abreviación sum }
     \mathbf{E} = r \vee a.n = s \wedge \mathbf{F} = \langle \sum_{i} : 0 < i < n+1 : a.i \rangle
\equiv { Separación de Término }
     \dot{\mathbf{E}} = r \vee a.n = s \wedge \mathbf{F} = \langle \sum_{i} j : 0 < j < n : a.j \rangle + a.n
```

```
Sup r = \langle \exists i : 0 \le i < n : a.i = \text{sum}.i \rangle \land s = \text{sum}.n \land 0 \le n \le N \land n \ne N
     wp.(r, s, n := \mathbf{E}, \mathbf{F}, n + 1).(r = \langle \exists i : 0 \le i < n : a.i = sum.i \rangle
      \wedge s = sum.n \wedge 0 < n < N
\equiv \{ \text{ Def } wp \}
     \mathbf{E} = \langle \exists i : 0 \le i < n+1 : a.i = sum.i \rangle \land \mathbf{F} = sum.(n+1) \land 0 \le n+1 \le N
\equiv { Aritmética, Sup. 0 < n < N \land n \neq N }
     \mathbf{E} = \langle \exists i : 0 < i < n+1 : a.i = sum.i \rangle \land \mathbf{F} = sum.(n+1)

≡ { Separación de Término }
     \mathbf{E} = \langle \exists i : 0 < i < n : a.i = sum.i \rangle \vee a.n = sum.n \wedge \mathbf{F} = sum.(n+1)
\equiv \{ \text{Sup } r = \langle \exists i : 0 \leq i < n : a.i = sum.i \rangle \}
     \mathbf{E} = r \vee a.n = sum.n \wedge \mathbf{F} = sum.(n+1)
\equiv \{ Sup s = sum.n \}
     \mathbf{E} = r \vee a.n = s \wedge \mathbf{F} = sum.(n+1)
\equiv { Abreviación sum }
     \mathbf{E} = r \vee a.n = s \wedge \mathbf{F} = \langle \sum_{i} : 0 < i < n+1 : a.i \rangle
\equiv { Separación de Término }
     \dot{\mathbf{E}} = r \vee a.n = s \wedge \mathbf{F} = \langle \sum_{i} j : 0 < j < n : a.j \rangle + a.n
≡ { Desabreviacion }
     \mathbf{E} = r \vee a.n = s \wedge \mathbf{F} = sum.n + a.n
```

```
Sup r = \langle \exists i : 0 \le i < n : a.i = \text{sum}.i \rangle \land s = \text{sum}.n \land 0 \le n \le N \land n \ne N
     wp.(r, s, n := \mathbf{E}, \mathbf{F}, n + 1).(r = \langle \exists i : 0 \le i < n : a.i = sum.i \rangle
      \wedge s = sum.n \wedge 0 < n < N
\equiv \{ \text{ Def } wp \}
     \mathbf{E} = \langle \exists i : 0 \le i < n+1 : a.i = sum.i \rangle \land \mathbf{F} = sum.(n+1) \land 0 \le n+1 \le N
\equiv { Aritmética, Sup. 0 < n < N \land n \neq N }
     \mathbf{E} = \langle \exists i : 0 < i < n+1 : a.i = sum.i \rangle \land \mathbf{F} = sum.(n+1)

≡ { Separación de Término }
     \dot{\mathbf{E}} = \langle \exists i : 0 < i < n : a.i = sum.i \rangle \lor a.n = sum.n \land \mathbf{F} = sum.(n+1)
\equiv \{ \text{Sup } r = \langle \exists i : 0 \leq i < n : a.i = sum.i \rangle \}
     \mathbf{E} = r \vee a.n = sum.n \wedge \mathbf{F} = sum.(n+1)
\equiv \{ Sup s = sum.n \}
     \mathbf{E} = r \vee a.n = s \wedge \mathbf{F} = sum.(n+1)
\equiv { Abreviación sum }
     \mathbf{E} = r \vee a.n = s \wedge \mathbf{F} = \langle \sum_{i} : 0 < i < n+1 : a.i \rangle
\equiv { Separación de Término }
     \dot{\mathbf{E}} = r \vee a.n = s \wedge \mathbf{F} = \langle \sum_{i} j : 0 < j < n : a.j \rangle + a.n
≡ { Desabreviacion }
     \mathbf{E} = r \vee a.n = s \wedge \mathbf{F} = sum.n + a.n
\equiv \{ Sup s = sum.n \}
     \mathbf{E} = r \vee a.n = s \wedge \mathbf{F} = s + a.n
```

```
Sup r = \langle \exists i : 0 \le i < n : a.i = \text{sum}.i \rangle \land s = \text{sum}.n \land 0 \le n \le N \land n \ne N
     wp.(r, s, n := \mathbf{E}, \mathbf{F}, n + 1).(r = \langle \exists i : 0 \le i < n : a.i = sum.i \rangle
      \wedge s = sum.n \wedge 0 < n < N
\equiv \{ \text{ Def } wp \}
     \mathbf{E} = \langle \exists i : 0 \le i < n+1 : a.i = sum.i \rangle \land \mathbf{F} = sum.(n+1) \land 0 \le n+1 \le N
\equiv { Aritmética, Sup. 0 < n < N \land n \neq N }
     \mathbf{E} = \langle \exists i : 0 < i < n+1 : a.i = sum.i \rangle \land \mathbf{F} = sum.(n+1)

≡ { Separación de Término }
     \mathbf{E} = \langle \exists i : 0 \leq i < n : a.i = sum.i \rangle \lor a.n = sum.n \land \mathbf{F} = sum.(n+1)
\equiv \{ \text{Sup } r = \langle \exists i : 0 \leq i < n : a.i = sum.i \rangle \}
     \mathbf{E} = r \vee a.n = sum.n \wedge \mathbf{F} = sum.(n+1)
\equiv \{ Sup s = sum.n \}
    \mathbf{E} = r \vee a.n = s \wedge \mathbf{F} = sum.(n+1)
\equiv { Abreviación sum }
     \mathbf{E} = r \vee a.n = s \wedge \mathbf{F} = \langle \sum_{i} : 0 < i < n+1 : a.i \rangle
\equiv { Separación de Término }
     \dot{\mathbf{E}} = r \vee a.n = s \wedge \mathbf{F} = \langle \sum_{i} j : 0 < j < n : a.j \rangle + a.n
\equiv { Desabreviacion }
     \mathbf{E} = r \vee a.n = s \wedge \mathbf{F} = sum.n + a.n
\equiv \{ Sup s = sum.n \}
     \mathbf{E} = r \lor a.n = s \land \mathbf{F} = s + a.n
\equiv { Hacemos \mathbf{E} \leftarrow r \lor a.n = s \lor \mathbf{F} \leftarrow s + a.n }
     True
```

Programa final

Programa

```
Const N: Int; a: array[0, N) of Int;

Var r: Bool; s, n: Int;

r,s, n:= False, 0, 0;

do n \neq N \rightarrow

r, s, n:= r \lor a.n = s , s + a.n , n + 1

od
```