Challenge #3 Report

Identifying a Physical System that Inherently Solves Differential Equations

In this challenge, we were tasked with using online resources and the capabilities of large language models

(LLMs) to identify a physical system that inherently solves differential equations, not by executing instructions

in a sequential manner like a traditional processor, but by virtue of its physical properties and behavior.

Physical Analog Computers as Natural Solvers of Differential Equations

One prime example of such a system is the **analog computer** based on **operational amplifiers

(op-amps)**, resistors, and capacitors. These systems, popular in the mid-20th century, were widely used to

solve ordinary differential equations (ODEs) in real-time. They work inherently by representing mathematical

operations-such as integration and differentiation-through electrical properties.

Key Properties:

- **Capacitors perform integration**: When current flows into a capacitor, the voltage across it increases over

time, naturally mimicking the process of integration.

- **Resistors model linear proportionalities**: Voltage drops across resistors are directly proportional to the

current through them, modeling scalar multiplication.

- **Operational amplifiers configure operations**: Using appropriate feedback circuits, op-amps can perform

addition, subtraction, inversion, and even differentiation when configured with resistors and capacitors.

Example System: Analog Integrator Circuit

An integrator circuit using an op-amp and a capacitor integrates an input signal over time. This setup

naturally solves the integral part of a differential equation. When multiple such components are connected,

they can simulate entire systems of ODEs, such as those describing physical phenomena like oscillations,

control systems, and mechanical vibrations.

Real-World Application: Mechanical Differential Analyzers

Mechanical systems, such as the **differential analyzer** (developed by Vannevar Bush in the 1930s), also

Page 1

Challenge #3 Report

inherently solve differential equations using mechanical components. These systems consist of rotating disks, gears, and shafts, translating motion in a way that naturally models mathematical operations like integration and multiplication.

Conclusion

Physical systems such as analog electronic circuits and mechanical analyzers solve differential equations inherently due to their design and physical characteristics. These systems highlight a fascinating aspect of computation that predates and complements digital processors, showcasing how physics itself can be a computing engine.

This report summarizes one such approach-analog computation-as a natural, instruction-free differential equation solver.