1 Problem 1

a) True

Using the limit method and algebra we can see that the limit evaluates to a constant.

$$\lim_{n \to \infty} \left(\frac{2^{n+1}}{2^n}\right) = \lim_{n \to \infty} \left(2^{(n+1)-(n)}\right) = \lim_{n \to \infty} \left(2^1\right) = 2$$

Therefore, it must be true that $2^{n+1} = O(2^n)$.

b) False

Using the limit method and algebra we can see that the limit evaluates to infinity.

$$\lim_{n \to \infty} \left(\frac{2^{2n}}{2^n}\right) = \lim_{n \to \infty} \left(2^{(2n)-(n)}\right) = \lim_{n \to \infty} \left(2^{n(2-1)}\right) = \lim_{n \to \infty} \left(2^n\right) = \infty$$

Therefore, it must not be true that $2^{2n} = O(2^n)$.

2 Problem 2

Proof. Direct proof. Assume for functions f, g, and h that f(n) = O(g(n)) and g(n) = O(h(n)). Therefore it must be true that for constants c and d, that $f(n) \le c * g(n)$ and $g(n) \le d * h(n)$. Substituting in g(n), you get $f(n) \le c(d * h(n))$. This is the same as $f(n) \le (c * d)h(n)$. Because c * d is a constant we have shown that f(n) = O(h(n)) for sufficiently large n.

3 Problem 3

a) Yes

This is true because the time required to read in the entire array input is $\Omega(n)$ and its impossible to make an algorithm that is faster than being able to see every item in the list.

b) $O(n \log n)$

The overall complexity is $O(n \log n)$ because the two pieces of code run sequentially which means their runtime is added together. So in this case $(n \log n) + n = O(n \log n)$.

c) $O(n^2)$

The two different parts are also run sequentially, so their complexities add together as well. This means the overall complexity looks like $(n * \log n) + (n * n) = (n \log n) + (n^2)$. This time complexity is bounded by the polynomial which makes the overall complexity $O(n^2)$.

d)
$$O(a*b)$$

Starting with the inner for-loop, it is run b times in all cases. Then the outer for-loop is also run a times in every case. Since they are nested for loops, the complexities multiply. Therefore the overall complexity is O(a * b).

4 Problem 4

Proof. In order to prove $(n+a)^d = \Theta(n^d)$ we can prove $(n+a)^d = O(n^d)$ and $(n+a)^d = \Omega(n^d)$. first distribute the constant power.

$$(n+a)^d = n^d + dan + a^d$$

Now start with proving big O.

$$n^{d} + dan + a^{d} \le n^{d} + dan^{d} + a^{d}n^{d}$$
$$\le n^{d}(1 + da + a^{d})$$

Because $(1 + da + a^d)$ is just a constant, this shows that $(n + a)^d = O(n^d)$. Now we can prove big Omega.

$$n^d + dan + a^d \ge n^d - dan^d - a^d n^d$$

$$\ge n^d (1 - da - a^d)$$

Because $(1 - da - a^d)$ is just a constant, this shows that $(n + a)^d = \Omega(n^d)$. Therefore, $(n + a)^d = \Theta(n^d)$