

ETRS302_ETRS «Fonctionnement des ordinateurs»

Les mémoires

Définition

- Une mémoire est un dispositif de stockage dans lequel on peut :
 - Enregistrer de l'information (Ecriture)
 - Restituer une information (Lecture)
- Différentes formes de mémoire
 - A semi-conducteur (RAM, ROM, flash...)
 - Optique (DVD, CD)
 - Magnétique (Disque dur)
- Dans ce cours on utilise unique des mémoires à semi-conducteur

Modèle d'une mémoire

Adresses 0x000000 0000 0x01 0000 0001 0000 0010 0000 0011 0000 0100 0111 1011 0111 1100 0111 1101 0111 1110

0111 1111

0x7F

Contenu (données)

Taille: 2^{nbr bits d'adresse} X nbr bits de données

Interconnexion entre le processeur et la mémoire

Symbol d'un composant mémoire

Adresses	Données
0	0110 1101
1	0100 0101
2	0010 1111
3	1101 0101
4	0110 1001
5	1010 1101
6	0011 1000
7	1100 0101
8	0111 1010
9	1010 1001
A	0000 0000
В	1111 1111
С	0111 1010
D	0100 0101
E	1100 0101
F	0111 1010

Symbol d'un composant mémoire

Bus d'adresse

Ici, le bus d'adresse a 4 bits : A0, A1, A2 et A3 Sur ces 4 bits, on peut coder 2⁴=16 adresses La première adresse est 0, la dernière est 15 Comme on écrit les adresses en hexadécimal, la dernière adresse s'écrit F ou 0xF (0x=hexadécimal)

Symbol d'un composant mémoire

Ici, le bus d'adresse a 8 bits de D0 à D7 L'ensemble des 8 bits forment un mot Chaque mot est associé à 1 adresse Contenu de la mémoire Do

D7

Symbol d'un composant mémoire

Signal d'activation de la mémoire

Le signal CS (Chip Select) permet d'activer la mémoire ou de la mettre en veille :

- Si CS=0, la mémoire est active
- Si CS=1, la mémoire est en veille, les données sont à l'état Z (haute impédance = déconnecté)

1 01 2 00 3 11 4 01 5 10 6 00 7 11 8 01	110 1101 100 0101 010 1111 101 0101
2 00 3 11 4 01 5 10 6 00 7 11 8 01	010 1111
3 11 4 01 5 10 6 00 7 11 8 01	101 0101
4 01 5 10 6 00 7 11 8 01	
5 10 6 00 7 11 8 01	110 1001
6 00 7 11 8 01	
7 11 8 01	010 1101
8 01	11 1000
0	100 0101
9 10	111 1010
	010 1001
A 0 0	0000000
B 11	111 1111
C 01	111 1010
D 01	
E 11	100 0101
F 01	100 0101

Symbol d'un composant mémoire

Signal lecture/écriture

Le signal Rd permet de choisir entre lecture et écritu<u>re</u> (Rd = read = lecture)

- Si Rd=0, la mémoire est mode lecture
- Si Rd=1, la mémoire est en mode écriture

Adresses	Données
0	0110 1101
1	0100 0101
2	0010 1111
3	1101 0101
4	0110 1001
5	1010 1101
6	0011 1000
7	1100 0101
8	0111 1010
9	1010 1001
Α	0000 0000
В	1111 1111
С	0111 1010
D	0100 0101
Е	1100 0101
F	0111 1010

Mode lecture

Si je veux lire le mot enregistré à l'adresse 0xA :

- Je dois demander l'adresse 0xA en envoyant A en héxa, c'est-à-dire 1010 en binaire sur le bus d'adresse
- Je dois mettre en mode lecture : Rd = 0
- Je dois activer la mémoire : CS = 0
- La mémoire envoie sur le bus de donnée
 0010 0100 en binaire = 0x24 en héxa

Adresses	Données	
0	0110 1101	
1	0100 0101	
2	0010 1111	
3	1101 0101	
4	0110 1001	
5	1010 1101	
6	0011 1000	
7	1100 0101	
8	0111 1010	
9	1010 1001	
A	0010 0100	
В	1111 1111	
С	0111 1010	
D	0100 0101	
E	1100 0101	
F	0111 1010	

Mode écriture

Si je veux écrire le mot 0xF1 à l'adresse 0x5 :

- Je dois demander l'adresse 0x5 en envoyant 5 en héxa, c'est-à-dire 0101 en binaire sur le bus d'adresse
- Je dois envoyer 0xF1 sur le bus de donnée, c'est à dire 1111 0001 en binaire
- Je dois mettre en mode écriture : Rd = 1
- Je dois activer la mémoire : CS = 0
- La mémoire enregistre 0xF1 à l'adresse 0x5

Taille de la mémoire

Cette mémoire a 8 bits de donnée

Elle a 4 bits d'adresse

Elle a donc 2⁴ = 16 adresses

A chaque adresse on enregistre 1 donnée de 8 bits

La mémoire contient donc $16 \times 8 = 128$ bits

Sa taille est donc 128 bits

Comme 1 octet = 8 bits, on peut aussi dire que sa taille est de 128 / 8 = 16 octets

Adresses	Données
0	0110 1101
1	0100 0101
2	0010 1111
3	1101 0101
4	0110 1001
5	1111 0001
6	0011 1000
7	1100 0101
8	0111 1010
9	1010 1001
A	0010 0100
В	1111 1111
С	0111 1010
D	0100 0101
E	1100 0101
F	0111 1010

Caractéristique des mémoires

- La capacité = sa taille
- Le **temps d'accès** = intervalle de temps entre la demande de lecture/écriture et la disponibilité de la donnée.
- Le temps de cycle = intervalle de temps minimum entre deux accès successifs
- La non volatilité: une mémoire volatile perd son contenu si on coupe son alimentation électrique. La RAM est volatile.

Les types de mémoires

Les mémoires vives

Ce sont des mémoires volatiles accessible en Lecture/ Ecriture On distingues 2 catégories :

- SRAM = Static RAM
 - L'information maintenue spontanément sous tension
- DRAM = Dynamique RAM
 - L'information maintenue par rafraîchissement (balayage régulier de toutes les cases mémoires)
 - SDRAM : Synchronous DRAM
 - Synchronisation sur l'horloge de la carte mère
 - DDR SDRAM : Double Data Rate Synchronous SDRAM
 - Synchronisation sur l'horloge de la carte mère

Les mémoires mortes

- La mémoire morte, est un type de mémoire permettant de conserver les informations qui y sont contenues même lorsque la mémoire n'est plus alimentée électriquement. On distingue plusieurs types :
 - Les ROM (Read Only Memory): Le contenu est défini lors de la fabrication.
 - Les PROM (Programmable Read Only Memory): Elles sont programmables par l'utilisateur, mais une seule fois.
 - Les EPROM (Erasable Programmable Read Only Memory): Elles sont effaçables et programmables par l'utilisateur par bombardement d'ultra violet
 - Les EEPROM (Erasable Programmable Read Only Memory): Elles sont effaçables et programmables électriquement par l'utilisateur
 - Les mémoires flash

Activité moodle

Faire le test moodle sur les mémoires