COSI 131a: Apperating Systems

https://tutorcs.com

WeCrat.Scheduling (2)

Chapter 6

Agenda

1. Scheduling Overview

- 1. First Example of Resource (CPU) Management (Sharing)
- 2. Non-Preemptive (N) vs. Preemptive Scheduling (P)
- 3. Metrics: Ways to Assess Effectiveness of Scheduling Policies Assignment Project Exam Help

2. Scheduling Policies

https://tutorcs.com

1. First-Come-First-Served (FCFS) (N)

- 2. Shortest-Job-Fivst (SFF) (NeStutores
- 3. Priority (N, P)
- 4. Round-Robin (RR) (P)
- 5. Multilevel Queues (MLQ) (P), Lottery
- 6. Real-time

3. Examples

Review: CPU Scheduler

CPU (Short-Term) Scheduler

- first example of resource <u>manager</u> (manages sharing of CPU)
- applicable to either multiprocessing or multithreading (we'll assume former)
- What? A kernei process that is always active (daemon)
- responsible for chapping progess to sunfrom ready queue

Review: CPU Scheduling

Two Types of Scheduling:

Non-Preemptive: processes only give up CPU voluntarily

- simple As in Jement (hortime einte Erupts) Help
- greedy or buggy process can starve others

Preemptive: processes also may be preempted by an interrupt

- adds complexity

 WeChat: cstutorcs

 adds protection, better at ensuring fairness, as well as doing better in other scheduling metrics

Review: Scheduling Metrics

Can't Meet All Performance Goals With 1 Policy

: Pick 1 or 2 that matter most

Typically Important Metrics:

- 1. Throughput Purnaround Project Exam Help

 Throughput = n processes / sec \Rightarround = 1/n sec per process

 https://tutorcs.com
- 2. <u>Waiting time</u>
- 3. <u>Response time</u>: (especially for highly interactive systems)

Also Care About:

1. <u>Dispatch time</u>:

Time it takes to choose next running process including schedule time + context switch time. If lengthy, effects effectiveness of scheduler

2. <u>Fairness</u>: Want to avoid process starvation

Review: First-Come First-Serve

Non-Preemptive Policy

```
Example
                              CPU Burst Time
                 <u>Process</u>
       Assignment Project Exam Help
Suppose processes arrive in order: P_1; P_2; P_3
                                            \mathbf{P_3}
                                                      (Gantt Chart)
                                24
                                        27
                                               30
            Waiting Time
              \overline{P_1}: 0
                          Average Wait Time = 17
              P_2 : 24
```

 $P_3 : 27$

CPU Scheduling Policies Summary

Policy	Throughput	Waiting	Response	Fairness	Overhead	Comments
FCFS	X	Assig	nment l	Project	Exam l	Help

https://tutorcs.com

WeChat: cstutorcs

Schedule Policy #2: Assignment Project Exam Help SJF: Shortest Job First https://tutorcs.com

WeChat: cstutorcs

2a. Shortest-Job-First (SJF)

Non-Preemptive Policy

Idea: Rank processes by CPU time requests.

Optimizes (minimizes) average waiting time

Example

Assignment Project Exam Help Process CPU Burst

P₁ https://tutorcs.com

P₃ WeChat: cstutorcs

$$\begin{bmatrix} P_2 & P_3 & P_4 & P_1 \\ 0 & 3 & 6 & 13 \end{bmatrix}$$

Average wait =
$$(0 + 3 + 6 + 13) / 4 = 5.5$$

2a. Shortest-Job-First (SJF)

Q: What if processes don't arrive at same time?

A: Whenever process finishes, choose next process with shortest CPU burst

Average wait time: ?

2a. Shortest-Job-First (SJF)

Q: What if processes don't arrive at same time?

A: Whenever process finishes, choose next process with shortest CPU burst

Average wait time: (0+6+3+7)/4 = 4

Preemptive version of SJF does even better ...

Preemptive Version of SJF

Example	ignment Process	Project Exam Arrival Time	CPU Burst
			7
	https://tu	0.0 utorcs.2.0m	4
	P_3	4.0	1
	WeChat	: cstut&fcs	4

Preemptive Version of SJF

Example ASS	ignment Frocess	Project Exam Arrival Time	Help CPU Burst
1			7
	https://tu	0.0 torcs. <u>2.0</u> m	4
	P_3	4.0	1
	WeChat:	cstut&fcs	4

Preemptive Version of SJF

Example ASS	ignment Process P	roject Exam Arrival Time	Help CPU Burst
1			7
	https://tut	torcs.20m	4
	P_3	4.0	1
	WeChat:	cstutéfcs	4

Preemptive Version of SJF

Example ASS	ignment F	roject Exam Arrival Time	CPU Burst
1	\mathbf{P}_{1}	0.0	7
	https://tu	0.0 torcs. <u>2.0</u> m	4
	P_3	4.0	1
	WeChat:	cstutofcs	4

$$P_1$$
 P_2
 0 2 4
 $P_1 = 5, P_2 = 4$
 $P_1 = 5, P_2 = 2, P_3 = 1$

Preemptive Version of SJF

Example ASS	ignment Process P	roject Exam Arrival Time	Help CPU Burst
•	\mathbf{P}_{1}	0.0	7
	https://tui	torcs.20m	4
	P_3	4.0	1
	WeChat:	cstutofcs	4

$$P_1$$
 P_2 P_3 0 2 4 5 $P_1 = 5$, $P_2 = 4$ $P_1 = 5$, $P_2 = 2$, $P_3 = 1$ $P_1 = 5$, $P_2 = 2$, $P_4 = 4$ COSI 131a

Preemptive Version of SJF

Idea: Currently running process can be preempted if new process arrives with shorter remaining CPU burst

Example ASS	ignment Frocess	roject Exam Arrival Time	CPU Burst
•	\mathbf{P}_{1}	0.0	7
	https://tu	0.0 torcs.2.0m	4
	P_3	4.0	1
	WeChat:	cstut&fcs	4

$$P_1$$
 P_2 P_3 P_2
 0 2 4 5 7
 $P_1 = 5$, $P_2 = 4$
 $P_1 = 5$, $P_2 = 2$, $P_3 = 1$ $P_1 = 5$, $P_2 = 2$, $P_4 = 4$ $P_1 = 5$, $P_4 = 4$

COSI 131a

Preemptive Version of SJF

Example ASS	ignment Frocess	roject Exam Arrival Time	CPU Burst
•	\mathbf{P}_{1}	0.0	7
	https://tu	0.0 torcs.2.0m	4
	P_3	4.0	1
	WeChat:	cstut&fcs	4

Preemptive Version of SJF

Example ASS	ignment P	roject Exam Arrival Time	Help CPU Burst
•			7
	https://tut	torcs.20m	4
	P_3	4.0	1
	WeChat:	cstutofcs	4

Example:

Average wait time:

$$\left. \begin{array}{l} P_1 : 9 \\ P_2 : 1 \\ P_3 : 0 \\ P_4 : 2 \end{array} \right\} \textit{Average} = 3 \\ \textit{(Compare to non-preemptive SJF average} = 4)$$

2a, 2b: SJF

Issue: Predicting how much is next CPU burst

Exponential Averaging

Uses "history" of previous CPU bursts to predict length of next CPU burst

```
t<sub>n</sub>: Actual length of nth EPO burst
```

τ_{n+1}: Predicted length of next CPU burst

α: "Weight":

→ How much emphasis to put on recent past

 $\rightarrow 0 \le \alpha \le 1$

Exponential Averaging

```
\tau_{n+1} = (\alpha \times t_n) + ((1-\alpha) \times \tau_n)
Assignment Project Exam Help
\tau_{n+1} : next guess
https://tutorcs.com
\tau_n : previous guess (history)
WeChat: cstutorcs
t_n : previous actual burst time (most recent information)
\alpha : weighting factor (O \le \alpha \le 1)
```

Example:
$$\alpha = 0.5$$
 $\tau_{n+1} = (\alpha \times t_n) + ((1 - \alpha) \times \tau_n)$

Example:
$$\alpha = 0.5$$
 $\tau_{n+1} = (0.5 \times t_n) + (0.5 \times \tau_n)$

Example:
$$\alpha = 0.5$$
 $\tau_{n+1} = (0.5 \times t_n) + (0.5 \times \tau_n)$

Example:
$$\alpha = 0.5$$
 $\tau_{n+1} = (0.5 \times t_n) + (0.5 \times \tau_n)$

Example:
$$\alpha = 0.5$$
 $\tau_{n+1} = (0.5 \times t_n) + (0.5 \times \tau_n)$

Example:
$$\alpha = 0.5$$
 $\tau_{n+1} = (0.5 \times t_n) + (0.5 \times \tau_n)$

Example:
$$\alpha = 0.5$$
 $\tau_{n+1} = (0.5 \times t_n) + (0.5 \times \tau_n)$

Example:
$$\alpha = 0.5$$
 $\tau_{n+1} = (0.5 \times t_n) + (0.5 \times \tau_n)$

Example:
$$\alpha = 0.5$$
 $\tau_{n+1} = (0.5 \times t_n) + (0.5 \times \tau_n)$

Example:
$$\alpha = 0.5$$
 $\tau_{n+1} = (0.5 \times t_n) + (0.5 \times \tau_n)$

Example:
$$\alpha = 0.5$$
 $\tau_{n+1} = (0.5 \times t_n) + (0.5 \times \tau_n)$

Example:
$$\alpha = 0.5$$
 $\tau_{n+1} = (0.5 \times t_n) + (0.5 \times \tau_n)$

Example:
$$\alpha = 0.5$$
 $\tau_{n+1} = (0.5 \times t_n) + (0.5 \times \tau_n)$

Example:
$$\alpha = 0.5$$
 $\tau_{n+1} = (0.5 \times t_n) + (0.5 \times \tau_n)$

Exponential Averaging (cont.)

Example:
$$\alpha = 0.5$$
 $\tau_{n+1} = (0.5 \times t_n) + (0.5 \times \tau_n)$

Exponential Averaging (cont.)

Example:
$$\alpha = 0.5$$
 $\tau_{n+1} = (0.5 \times t_n) + (0.5 \times \tau_n)$

Exponential Averaging (cont.)

Example:
$$\alpha = 0.5$$
 $\tau_{n+1} = (0.5 \times t_n) + (0.5 \times \tau_n)$

Exponential Average:

$$\tau_{n+1} = (\alpha \times t_n) + ((1-\alpha) \times \tau_n)$$

Choosing α :

Only most recent burst counts

WeChat: cstutorcs
3. In general: $\tau_{n+1} = (\alpha \times t_n) + t_n$

Weights decrease since
$$(1 - \alpha) \le 1$$

$$\frac{(1 - \alpha) \times \alpha}{(1 - \alpha)^2 \times \alpha} t_{n-1} + \frac{(1 - \alpha)^2 \times \alpha}{(1 - \alpha)^3 \times \alpha} t_{n-2} + \frac{(1 - \alpha)^3 \times \alpha}{(1 - \alpha)^n \times \alpha} t_{n-3} + \cdots$$

$$\frac{(1 - \alpha)^n \times \alpha}{(1 - \alpha)^n \times \alpha} t_0 + \frac{(1 - \alpha)^n \times \alpha}{(1 - \alpha)^n \times \alpha} t_0 + \frac{(1 - \alpha)^n \times \alpha}{(1 - \alpha)^n \times \alpha} t_0 + \frac{(1 - \alpha)^n \times \alpha}{(1 - \alpha)^n \times \alpha} t_0 + \frac{(1 - \alpha)^n \times \alpha}{(1 - \alpha)^n \times \alpha} t_0 + \frac{(1 - \alpha)^n \times \alpha}{(1 - \alpha)^n \times \alpha} t_0 + \frac{(1 - \alpha)^n \times \alpha}{(1 - \alpha)^n \times \alpha} t_0 + \frac{(1 - \alpha)^n \times \alpha}{(1 - \alpha)^n \times \alpha} t_0 + \frac{(1 - \alpha)^n \times \alpha}{(1 - \alpha)^n \times \alpha} t_0 + \frac{(1 - \alpha)^n \times \alpha}{(1 - \alpha)^n \times \alpha} t_0 + \frac{(1 - \alpha)^n \times \alpha}{(1 - \alpha)^n \times \alpha} t_0 + \frac{(1 - \alpha)^n \times \alpha}{(1 - \alpha)^n \times \alpha} t_0 + \frac{(1 - \alpha)^n \times \alpha}{(1 - \alpha)^n \times \alpha} t_0 + \frac{(1 - \alpha)^n \times \alpha}{(1 - \alpha)^n \times \alpha} t_0 + \frac{(1 - \alpha)^n \times \alpha}{(1 - \alpha)^n \times \alpha} t_0 + \frac{(1 - \alpha)^n \times \alpha}{(1 - \alpha)^n \times \alpha} t_0 + \frac{(1 - \alpha)^n \times \alpha}{(1 - \alpha)^n \times \alpha} t_0 + \frac{(1 - \alpha)^n \times \alpha}{(1 - \alpha)^n \times \alpha} t_0 + \frac{(1 - \alpha)^n \times \alpha}{(1 - \alpha)^n \times \alpha} t_0 + \frac{(1 - \alpha)^n \times \alpha}{(1 - \alpha)^n \times \alpha} t_0 + \frac{(1 - \alpha)^n \times \alpha}{(1 - \alpha)^n \times \alpha} t_0 + \frac{(1 - \alpha)^n \times \alpha}{(1 - \alpha)^n \times \alpha} t_0 + \frac{(1 - \alpha)^n \times \alpha}{(1 - \alpha)^n \times \alpha} t_0 + \frac{(1 - \alpha)^n \times \alpha}{(1 - \alpha)^n \times \alpha} t_0 + \frac{(1 - \alpha)^n \times \alpha}{(1 - \alpha)^n \times \alpha} t_0 + \frac{(1 - \alpha)^n \times \alpha}{(1 - \alpha)^n \times \alpha} t_0 + \frac{(1 - \alpha)^n \times \alpha}{(1 - \alpha)^n \times \alpha} t_0 + \frac{(1 - \alpha)^n \times \alpha}{(1 - \alpha)^n \times \alpha} t_0 + \frac{(1 - \alpha)^n \times \alpha}{(1 - \alpha)^n \times \alpha} t_0 + \frac{(1 - \alpha)^n \times \alpha}{(1 - \alpha)^n \times \alpha} t_0 + \frac{(1 - \alpha)^n \times \alpha}{(1 - \alpha)^n \times \alpha} t_0 + \frac{(1 - \alpha)^n \times \alpha}{(1 - \alpha)^n \times \alpha} t_0 + \frac{(1 - \alpha)^n \times \alpha}{(1 - \alpha)^n \times \alpha} t_0 + \frac{(1 - \alpha)^n \times \alpha}{(1 - \alpha)^n \times \alpha} t_0 + \frac{(1 - \alpha)^n \times \alpha}{(1 - \alpha)^n \times \alpha} t_0 + \frac{(1 - \alpha)^n \times \alpha}{(1 - \alpha)^n \times \alpha} t_0 + \frac{(1 - \alpha)^n \times \alpha}{(1 - \alpha)^n \times \alpha} t_0 + \frac{(1 - \alpha)^n \times \alpha}{(1 - \alpha)^n \times \alpha} t_0 + \frac{(1 - \alpha)^n \times \alpha}{(1 - \alpha)^n \times \alpha} t_0 + \frac{(1 - \alpha)^n \times \alpha}{(1 - \alpha)^n \times \alpha} t_0 + \frac{(1 - \alpha)^n \times \alpha}{(1 - \alpha)^n \times \alpha} t_0 + \frac{(1 - \alpha)^n \times \alpha}{(1 - \alpha)^n \times \alpha} t_0 + \frac{(1 - \alpha)^n \times \alpha}{(1 - \alpha)^n \times \alpha} t_0 + \frac{(1 - \alpha)^n \times \alpha}{(1 - \alpha)^n \times \alpha} t_0 + \frac{(1 - \alpha)^n \times \alpha}{(1 - \alpha)^n \times \alpha} t_0 + \frac{(1 - \alpha)^n \times \alpha}{(1 - \alpha)^n \times \alpha} t_0 + \frac{(1 - \alpha)^n \times \alpha}{(1 - \alpha)^n \times \alpha} t_0 + \frac{(1 - \alpha)^n \times \alpha}{(1 - \alpha)^n \times \alpha} t_0 + \frac{(1 - \alpha)^n \times \alpha}{(1 - \alpha)^n \times \alpha} t_0 + \frac{(1 - \alpha)^n \times \alpha}{(1 - \alpha)^n \times \alpha} t_0 + \frac{(1 - \alpha)^n \times \alpha}$$

- +: Approximates optimal schedule for
 - Average wait time
 - Average turnaround time

Assignment Project Exam Help

-: Fairness https://tutorcs.com

• Starves processes with expected long CPU bursts

WeChat: cstutorcs

CPU Scheduling Policies Summary

Policy	Throughput	Waiting	Response	Fairness	Overhead	Comments
FCFS	X	Assig	nment l	Project	Exam 1	+ easy implementation

https://tutorcs.com

WeChat: cstutorcs

CPU Scheduling Policies Summary

Policy	Throughput	Waiting	Response	Fairness	Overhead	Comments
FCFS	X	Assig	nment l	Project	Exam 1	+ easy implementation
SJF			ttps://tu / VeChat:			 + waiting turnaround time starvation hard to predict CPU time

Assignment Project Exam Help Schedule Policy #3: Priority-Based

WeChat: cstutorcs

Scheduling the Ready Queue

Processes Not Always Running

<u>New:</u> Process is being created

<u>Running</u>: Instructions are being executed

<u>Waiting</u>: Process is waiting for some event to occur

<u>Ready</u>: Process is waiting to be assigned the CPU

Terminated: Process has finished execution

Policies # 3a,3b: Priority

Idea:

- Priority Number (Integer) Associated With Each Process lacksquare
- CPU Allocated to Process With Highest Prior ty Lowest Priority Number)...

https://tutorcs.com 3a. Non-preemptive:

Whenever running process blocks or terminates

3b. Preemptive:

Whenever new process arrives or running process blocks or terminates

Example ...

Policies # 3a,3b: Priority

Example

<u>Process</u>	Arrival Time	Burst	Priority
\mathbf{P}_1	0.0	7	2
P_2	2.0	4	0
P_3	4.0	_ 1	3
Assignn	nent Project	Exam L	lelp 1

Non-preemptive

Preemptive

Q: How does priority scheduling generalize SJF scheduling?

A: $SJF = Priority\ scheduling\ where\ shortest\ CPU\ burst = highest\ priority$

Policies # 3a,3b: Priority

Assessing Priority Scheduling

+:

Reflects relative importance of processes (e.g.: kernel > user)

: Assignment Project Exam Help

Turnaround, wait times (process burst length ignored)

https://tutorcs.com
Starvation of low-priority processes

→ Can counter with "aging" (process gets increasing priority the more it waits)

CPU Scheduling Policies Summary

Throughput	Waiting	Response	Fairness	Overhead	Comments
			. /	. /	+ easy implementation
	Assig	nment l	Project	Exam 1	-convoy effect
			J		+ waiting
		ttpg.//tu	totag	0120	turnaround time
		ups://tu	ILONGS.C	OIII	
			·		starvation
		ZoCloati	actuto	1400	hard to predict CPU time
	V	X	X Assignment I	Assignment Project	Throughput Waiting Response Fairness Overhead Assignment Project Exam https://tutoxcs.com

CPU Scheduling Policies Summary

Policy	Throughput	Waiting	Response	Fairness	Overhead	Comments
FCFS	X	Assign	nment l	Project	Evam l	+ easy implementation
SJF		\/h	ttps://tu	itoxcs.c		 + waiting turnaround time starvation hard to predict CPU time
Priority		V		CSTUTO	ics	

Assignment Project Exam Help Schedule Policy #4: Round-Robin

WeChat: cstutorcs

Idea:

- Each process gets small unit of CPU time (time quantum).
- After time quantum has elapsed, process is preempted and added to end of ready queue Help
- Preemptive only: Process switch based on timer interrupts

Goal: Fairness and Respanse Times

Suppose Time Quantum = q, & n Processes in Ready Queue Each process gets 1/n of CPU time in chunks of qNo process waits more than $(n-1) \times q$ time units

Example:
$$Time\ Quantum = 20$$

Waiting time:
$$P_1: 17 + 20 + 20 + 20 + 4 = 81$$

 $P_2 : 20$

 P_3 : 20 + 17 + 20 + 20 + 4 + 13 = 94

 P_4 : 20 + 17 + 20 + 20 + 20 = 97

Average: 73

+: Fairness
Response time

Assignment Project Exam Help

-: Turnaround time https://tutorcs.com
Cost of context switches (Must choose quantum carefully)
WeChat: cstutorcs

Choosing a Time Quantum, q:

- 1. Large $q \Rightarrow few$ context switches. $q > all \ CPU \ bursts = FIFO$
- 2. Small $q \Rightarrow \overline{many\ context\ switches}$.

 Too small \Rightarrow overhead can compromise performance

Choosing a Time Quantum, q

Should be large with respect to context switch time

```
context-switch-time

Assignment Project Example switching context-switch-time + q
```

Should also consider process performance (e.g.: Average turnaround time)

Q: Given:

```
        Process
        CPU Burst

        P1
        6

        P2
        3

        P3
        1

        P4
        7
```

What is Average Turnaround Time Assuming q = 2?

$$\begin{array}{cccc} q = 2: & & \underline{\text{Process}} & \underline{\text{CPU Burst}} \\ & & P_1 & 0 \\ & & P_2 & 0 \\ & & P_3 \\ & & & P_4 \\ & & & & P_4 \\ \end{array}$$

Turnaround time:
$$\begin{array}{c} P_1: 14 \\ P_2: 10 \\ P_3: 5 \\ P_4: 17 \end{array} \right\} \ \textit{Average} = 11.5$$

- Determine the Average Turnaround Time Assuming q = ...*Q*:
 - a) 3 b) 5 c) 6 d) 7

q = 3, 5, 6, 7:

```
Process CPU Burst

Assignment Project Exam Help

P<sub>3</sub> 1

https://tutorcs.com
```

WeChat: cstutorcs
Turnaround time?

$$\begin{array}{ccc} q=3: & & \underline{\text{Process}} & \underline{\text{CPU Burst}} \\ & P_1 & 6 \\ & P_2 & 3 \\ & \underline{\text{Passign hent Project Exam Help}} \\ & P_4 & 7 \end{array}$$

$$\left. \begin{array}{l} P_1 \ : \ 13 \\ P_2 \ : \ 6 \\ P_3 \ : \ 7 \\ P_4 \ : \ 17 \end{array} \right\} \ \textit{Average} = 10.75$$

Turnaround time:
$$P_1 : 15 \\ P_2 : 8 \\ P_3 : 9 \\ P_4 : 17$$
 Average = 12.25

$$q = 6,$$

$$q = 7$$

Turnaround time:

$$\left. \begin{array}{l} P_1 : 6 \\ P_2 : 9 \\ P_3 : 10 \\ P_4 : 17 \end{array} \right\} \ \textit{Average} = 10.5$$

CPU Scheduling Policies Summary

Policy	Throughput	Waiting	Response	Fairness	Overhead	Comments
FCFS						+ easy implementation
		Assig	nment l	Project	Exam 1	- convoy effect
SJF						+ waiting
			ttps://tu	torce c	om	turnaround time
			ups.//tu		OIII	starvation
		T	In Class	activita	44.0.0	hard to predict CPU time
Priority		V		CSULO	ICS	+ importance considered
						poor metrics for low priority

CPU Scheduling Policies Summary

Policy	Throughput	Waiting	Response	Fairness	Overhead	Comments
FCFS				. /	. /	+ easy implementation
		Assig	nment l	Project	Exam 1	Hegonvoy effect
SJF	,,			J		+ waiting
	\X/	$\sqrt{x/h}$	ttps://tu	tocs.c	om	turnaround time
	VV	VV	1			starvation
		ZX	Ja Clast		#0C	hard to predict CPU time
Priority		V	vecnat.	Cstuto	ICS	+ importance considered
						poor metrics for low priority
Round-			. /			
Robin						•

Revise: Throughput vs Turnaround

Analogy: Plane vs Train for Shipping Tables (MA-CA)

Plane: 6 hours of travel each way, 48 tables per trip

Train: 2 days of travel each way, $60 \times 96 = 5760$ tables per trip

Processing. Schmassemble Grables a mourelp

Turnaround Timettomaxutimesto "process" a table

lowest Plane: $12 \text{ (wait)} + 6 \text{ (travel)} + 0.8 \text{ hrs (assembling)} \sim 19 \text{ hrs}$

Train: 96 (wait) + 48 (travet) + 60 (processing) = 10 days

Throughput = number of tables processed / day

	Day 1	Day 2	Day 3	Day 4	Day 5	Day 6	Throughput
Plane	96	96	96	96	96	96	96 / day
Train	0	0	1440	1440	1440	1440	~1440 / day

highest

Assignment Project Exam Help Schedule Policy/#5: Multilevel Queues

WeChat: cstutorcs

Policy #5: Multilevel Queues

Idea:

- Ready queue is partitioned into separate queues, each with own scheduling algorithm
 - 2 etg. Queuer effor Interactive processes Leffor Queue 2 (for others): FCFS

Requires Interqueue Scheduling foo (Scheduling of Queues)

- 1. <u>Fixed Priority</u>: **WeChat: cstutorcs**Serve all from high-priority queue before servicing lower-priority queue (–: starvation)
- 2. <u>Time-slice</u>: Each queue gets reserved slice of CPU time to schedule amongst its processes (e.g.: 80% for hi-priority, 20% low)

Policy #5: Multilevel Queues

An Example:

Policy #5: Multilevel Queues

In UNIX:

32 queues

- → 0...7: Assignment Project Exam Help

 (e.g.: 0 reserved for swapper)

 https://tutorcs.com
- → 8...31: Vser-level queues

 Processes move from queue to queue

 1. Nice: Downward

 2. Aging: Upward

Variation: "Multilevel Feedback Queue"

• Process can move between queues

MFQ Schedulers Must Have Following Parameters:

- 1. Number of queues //tutorcs.com
- 2. Scheduling algorithms for each queue WeChat: cstutorcs
- 3. Scheduling algorithm between queues (or CPU time-slices)
- 4. Upgrade process (e.g.: Aging)
- 5. Downgrade process
- 6. Initial queue determination process

Scheduling Design 101

Suppose Scheduling Goal Is: Fairness

(i.e.: Want to turnaround time to be proportional to burst time)

Accomplished Using MFQ's instead of Burst Prediction

A: Queues https://tutorcs.com

"Reverse aging"

1. High priority: RR with low quantum

2. Low priority: RR with high quantum

Process gets one go on each queue, getting lower priority as it gets older

An Example of MFQ:

```
Q_0^{75}: RR, quantum = 75; initial queue of entering process
```

```
Q_1^{150}: RR, quantum = 150; process ages to Q_1 after Q_0
```

Q₂: Assignment Project Exam Help

Fixed priority https://tutorcs.com

Interqueue Scheduling: FCFS (Serve Q_i when $Q_0...Q_{i-1}$ empty)

	ai. Ostutoi	
<u>Process</u>	Burst time	Arrival time
\mathbf{P}_1	125	0
\mathbf{P}_2	50	0
\mathbf{P}_3	500	0
P_4	175	0
\mathbf{P}_5	200	250
P_6	50	250

		<u>Process</u>	Burst time	Arrival time
O.75.	RR, $quantum = 75$;	\mathbf{P}_{1}	125	0
\sim \circ	1	P_2	50	0
Q_I^{150} :	RR, quantum = 150;	P_3	500	0
Q_2 :	FCFS ssignment Pro	jectpExan	n Help	0
22.		P_5	200	250
	https://tutor	cs.com	50	250

Time = 0:

$$Q_0^{75}$$
: $P_1^{125} \to P_2^{50} \to P_3^{500} \to P_4^{175}$

$$Q_1^{150}$$
: -

$$Q_2$$
: -

		<u>Process</u>	Burst time	Arrival time
O_{2}^{75} .	RR, quantum = 75;	P_1	50	0
\mathcal{Q}_0 .	iat, quantum 75,	P_2	0	0
Q_I^{150} :	RR, $quantum = 150$;	\mathbf{P}_3	425	0
Q_2 :	FCFS ssignment Pro	jectpExan	n Hedp	0
22		P_5	200	250
	https://tutoi	cs.com	50	250

Time = 0:

$$Q_0^{75}$$
: $P_1^{125} \to P_2^{50} \to P_3^{500} \to P_4^{175}$

$$Q_1^{150}$$
: -

$$Q_2$$
: -

		<u>Process</u>	Burst time	Arrival time
O_{2}^{75} .	RR, quantum = 75;	P_1	50	0
\mathcal{Q}_0 .	rat, quantum 75,	P_2	0	0
Q_I^{150} :	RR, quantum = 150;	P_3	425	0
Q_2 :	FCFS ssignment Pro	ject _P Exan	n Hedp	0
£1.		P_5	200	250
	https://tutoi	rcs.qom	50	250

Time = 0:

WeChat: cstutorcs

 Q_0^{75} :

$$Q_1^{150}$$
: $P_1^{50} \to P_3^{425} \to P_4^{100}$

 Q_2 :

		<u>Process</u>	Burst time	Arrival time
O_{\circ}^{75} .	RR, quantum = 75;	\mathbf{P}_1	50	0
\sim \circ	•	P_2	0	0
Q_{I}^{150} :	RR, $quantum = 150$;	P_3	425	0
Q_2 :	FCFS ssignment Pro	ject _P Exar	n Hedo	0
		P_5	200	250
	https://tutoi	cs.com	50	250

$$Q_0^{75}$$
: $P_5^{200} \to P_6^{50}$

$$Q_1^{150}$$
: $P_1^{50} \to P_3^{425} \to P_4^{100}$

$$Q_2$$
: -

		<u>Process</u>	Burst time	Arrival time
O_{2}^{75} .	RR, quantum = 75;	P_1	50	0
\mathcal{Q}_0 .	rat, quantum 75,	P_2	0	0
Q_I^{150} :	RR, quantum = 150;	P_3	425	0
Q_2 :	FCFS ssignment Pro	ject _P Exan	n Hedp	0
£1.		P_5	200	250
	https://tutoi	rcs.qom	50	250

$$Q_0^{75}$$
: $P_5^{200} \to P_6^{50}$

$$Q_1^{150}$$
: $P_1^{50} \to P_3^{425} \to P_4^{100}$

$$Q_2$$
:

		<u>Process</u>	Burst time	Arrival time
O_{2}^{75} .	RR, quantum = 75;	P_1	50	0
\mathcal{Q}_0 .	rat, quantum 75,	P_2	0	0
Q_I^{150} :	RR, quantum = 150;	P_3	425	0
Q_2 :	FCFS ssignment Pro	ject _P Exan	n Hedp	0
£1.		P_5	200	250
	https://tutoi	rcs.qom	50	250

$$Q_0^{75}$$
: $P_5^{200} \to P_6^{50}$

$$Q_1^{150}$$
: $P_1^{50} \to P_3^{425} \to P_4^{100}$

$$Q_2$$
:

		<u>Process</u>	Burst time	Arrival time
O_{2}^{75} .	RR, quantum = 75;	P_1	50	0
\mathcal{Q}_0 .	rat, quantum 75,	P_2	0	0
Q_I^{150} :	RR, quantum = 150;	P_3	425	0
Q_2 :	FCFS ssignment Pro	ojectpExam	n Hede	0
		P_5	125	250
	https://tuto	rcs.qom	0	250

$$Q_0^{75}$$
: $P_5^{200} \to P_6^{50}$

$$Q_1^{150}$$
: $P_1^{50} \to P_3^{425} \to P_4^{100}$

$$Q_2$$
:

		<u>Process</u>	Burst time	Arrival time
O_{2}^{75} .	RR, quantum = 75;	\mathbf{P}_1	50	0
\mathcal{Q}_0 .	iat, quantum 75,	P_2	0	0
Q_I^{150} :	RR, $quantum = 150$;	P_3	425	0
Q_2 :	FCFS ssignment Pro	oject _P Exam	Hedp	0
		P_5	125	250
	https://tuto	rcs.com	0	250

Time = 400:

$$Q_0^{75}$$
: -

$$Q_1^{150}$$
: $P_1^{50} \to P_3^{425} \to P_4^{100} \to P_5^{125}$

$$Q_2$$
:

		<u>Process</u>	Burst time	Arrival time
$O_{2}75.$	RR, quantum = 75;	\mathbf{P}_1	50	0
~ 0	•	P_2	0	0
Q_{I}^{150} :	RR, quantum = 150;	P_3	425	0
Q_2 :	FCFS ssignment Pro	oject _P Exar	n Hedp	0
22.		P_5	125	250
	https://tuto	orcs.qom	0	250

Time = 400:

$$Q_0^{75}$$
: -

$$Q_1^{150}$$
: $P_1^{50} \to P_3^{425} \to P_4^{100} \to P_5^{125}$

$$Q_2$$
: -

		<u>Process</u>	Burst time	Arrival time
O_{2}^{75} .	RR, quantum = 75;	\mathbf{P}_1	0	0
\sim \circ	1	P_2	0	0
Q_I^{150} :	RR, quantum = 150;	P_3	275	0
Q_2 :	FCFS ssignment Pro	oject _P Exar	n Hedp	0
22		P_5	0	250
	https://tuto	rcs.com	0	250

Time = 400:

$$Q_0^{75}$$
: -

$$Q_1^{150}$$
: $P_1^{50} \to P_3^{425} \to P_4^{100} \to P_5^{125}$

$$Q_2$$
: -

		<u>Process</u>	Burst time	Arrival time
O_{2}^{75} .	RR, quantum = 75;	\mathbf{P}_1	0	0
\sim \circ	4	P_2	0	0
Q_I^{150} :	RR, quantum = 150;	\mathbf{P}_3	275	0
Q_2 :	FCFS ssignment Pro	ject _P Exar	n Hedp	0
		P_5	0	250
	https://tuto	rcs.com	0	250

WeChat: cstutorcs

Time = 825:

 Q_0^{75} : ____

 Q_1^{150} : ____

 Q_2 : P_3^{275}

		<u>Process</u>	Burst time	Arrival time
O_{\circ}^{75} .	RR, $quantum = 75$;	\mathbf{P}_1	0	0
~ 0	•	P_2	0	0
Q_I^{150} :	RR, quantum = 150;	P_3	275	0
Q_2 :	FCFS ssignment Pro	ject _P Exar	n Hedp	0
		P_5	0	250
	https://tutor	cs.qqm	0	250

Time = 825:

 Q_0^{75} : -

 Q_1^{150} : -

 Q_2 : P_3^{275}

		<u>Process</u>	Burst time	Arrival time
O_{2}^{75} .	RR, quantum = 75;	\mathbf{P}_1	0	0
~ 0		P_2	0	0
Q_{I}^{150} :	RR, $quantum = 150$;	\mathbf{P}_3	0	0
Q_2 :	FCFS ssignment Pro	ject _P Exar	n Hedp	0
		P_5	0	250
	https://tutoi	cs.com	0	250

Time = 1100:

 Q_0^{75} : -

 Q_1^{150} :

 Q_2 : -

Process	Arrival time	Completion time	Turnaround Time
P_1 (125)	0	450	450
$P_2(50)$	0	125	125
$P_3 (500)$	ssignment	Projet@Exam	Help100
$P_4(175)$	0	700	700
$P_5(200)$	https://t	utorc8280m	575
$P_6(50)$	250	400	150
	vyech a	t. Cstutores	

Observe:

- 1. Average turnaround time: 3100/6 = 516.7
- 2. Shorter jobs tend to have shorter turnaround times

• First Example of Resource Management (Sharing)

Scheduling Metrics

CPU utilization, throughput, turnaround time, wait time, response time

Policy	Туре	https://tutorcs.com	-
<i>FCFS</i>	N	easy implementation CSTULOTCS	• convoy effect

• First Example of Resource Management (Sharing)

Scheduling Metrics

CPU utilization, throughput, turnaround time, wait time, response time

Policy	Туре	https://tutorcs.com	-
FCFS	N	easy implementation (String Control Co	• convoy effect
SJF	N,P	• waiting, turnaround time	 starvation need to predict CPU bursts

• First Example of Resource Management (Sharing)

Scheduling Metrics

• CPU utilization, throughput, turnaround time, wait time, response time

Policy	Туре	https://tuto <u>r</u> cs.com	-
FCFS	N	easy implementation (STILLORGS	• convoy effect
SJF	N,P	• waiting, turnaround time	 starvation need to predict CPU bursts
Priority	N,P	• importance of process considered	waiting, turnaround timestarvation

• First Example of Resource Management (Sharing)

Scheduling Metrics

• CPU utilization, throughput, turnaround time, wait time, response time

Policy	Туре	https://tutorcs.com	-
FCFS	N	easy implementation (State of CS)	• convoy effect
SJF	N,P	• waiting, turnaround time	starvationneed to predict CPU bursts
Priority	N,P	importance of process considered	waiting, turnaround timestarvation
Round- Robin	P	fairnessresponse time	 turnaround time context switch overhead

• First Example of Resource Management (Sharing)

Scheduling Metrics

• CPU utilization, throughput, turnaround time, wait time, response time

Policy	Type	https://tutorcs.com	-
FCFS	N	easy implementation	• convoy effect
SJF	N,P	• waiting, turnaround time	starvationneed to predict CPU bursts
Priority	N,P	importance of process considered	waiting, turnaround timestarvation
Round- Robin	P	fairnessresponse time	turnaround timecontext switch overhead
MLQ	P	 can mix and match priority with other policies 	complex implementationinherits weaknesses of scheduling policies it uses