SINFONEIROS

SIQUEIRA, Joaquim Afonso Bacellar Batista de

Universidade de São Paulo, Número USP: 11260912

KOMURA, Leonardo Isao

Universidade de São Paulo, Número USP: 11261656

SANTOS, Vanderson da Silva dos

Universidade de São Paulo, Número USP: 11259715

Professores Responsáveis:

GALEAZZO, Elisabete

Universidade de São Paulo

VERRI, Antonio Sandro

Universidade de São Paulo

RELATÓRIO 2 - ETAPA 2

Data de entrega: 15 de novembro de 2020

1. INTRODUÇÃO

Para a segunda e final etapa do projeto desenvolvido na disciplina de graduação do curso de Engenharia Elétrica PSI3214 - Laboratório de Instrumentação Elétrica (2020), o grupo precisou adicionar ao *Virtual Instrument* (VI) desenvolvido na etapa 1 uma aplicação específica. Esse novo VI contém todas as funcionalidades anteriores mais gráficos, controles e indicadores adicionais para a aplicação escolhida. Dessa forma, o objeto do grupo foi desenvolver um VI capaz de identificar se ave, através de um sinal sonoro de seu canto, é uma calopsita (*Nymphicus hollandicus*) ou não.

Essa aplicação é de grande interesse para a Biologia, especialmente para a Ornitologia, que muitas vezes precisa identificar a espécie de uma ave, tendo apenas seu canto disponível. Esse sistema de classificação automática de pássaros contribui para a conservação das espécies e para a preservação da natureza. Pesquisadores, nesse sentido, monitoram o deslocamento de populações e percebem o início de mutações nas espécies usando tal sistema. Há, por isso, diversos aplicativos que realizam tal função, como o Merlin Bird ID. O grupo, então, resolveu desenvolver uma versão simplificada, tendo uma resposta binária que indica se o som é de uma calopsita ou não. A limitação do projeto dá-se pela grande complexidade envolvida no reconhecimento de voz, que necessita de técnicas de Inteligência Artificial. Assim, por questão de carência técnica e de tempo, o grupo optou por tal simplificação.

Outrossim, o VI desenvolvido reconhece o som de uma calopsita através da frequência, energia e intervalo de notas. Além disso, foi implementado um indicador de ganho de intensidade sonora (em dB), com o limiar da audição humana como referência. É importante ressaltar que, em sistemas de reconhecimento mais elaborados, há um tratamento prévio do som que o filtra, removendo ruídos do ambiente, e que o recorta, mantendo apenas o canto da ave. Essa etapa prévia não foi implementada pelo grupo, ou seja, os áudios testados pelo VI já estão tratados.

2. APLICAÇÃO ESPECÍFICA

Para o desenvolvimento de um VI de reconhecimento automático de uma calopsita através de seu canto, foram extraídos, de uma faixa de áudio, em extensão .wav, a frequência, a intensidade (em dB) e o espaçamento entre notas. Após o desenvolvimento do VI, recolheu-se, da internet, cinco amostras de cantos de calopsita para determinação estatística das variáveis supracitadas, anotando respectivo intervalo de confiança. Assim, basta inserir um novo arquivo de som que o VI indicará se é o canto de uma calopsita ou não.

A medida da frequência já fora desenvolvida na etapa 1, não sendo alterada pelo grupo. Já a intensidade foi calculado pelo ganho de amplitude em relação a um valor referência, em decibels. O espaçamento entre notas, por sua vez, deve ser medido pelo próprio usuário através do janelamento. Essa funcionalidade é uma adaptação do que fora realizado na etapa anterior, tendo em vista a utilização dos cursores para criar janelas de análise.

3. DIAGRAMA DE BLOCOS

Figura 1 - Diagrama de Blocos completos

Diagramas desenvolvidos no relatório 1:

a. Sinais completos

Toda informação adquirida no canal 0 é exposta no gráfico "Sinal Completo" no domínio do tempo. A partir da função "Spectral Measurement", todo conteúdo contido no canal 0 é convertido do domínio do tempo para o da frequência e apresentado no gráfico "Espectro Completo". O valor de cada amplitude em função da frequência pode ser vista pelo indicador "FFT completo".

b. Dados Sinal

Todos os dados mensurados nesse bloco não dependem de uma análise espectral ou janelamento de sinal do canal 0.

Com auxílio da função "Amplitude and level Measurements" é calculado o valor RMS médio da onda e o maior valor pico a pico da amplitude. Ambos os sinais são expostos pelos Indicadores "RMS" e "Valor PP", respectivamente.

Com suporte da função "*Tone Measurement*" encontrou-se o valor médio da frequência, que é exposta no painel frontal pelo indicador "Frequência".

Utilizando a função "Get Waveform Components" adquire-se todos componentes Y do sinal, o que possibilita mensurar o valor de maior e menor amplitude, que são expostos no painel frontal pelos indicadores "Maior amplitude" e "Menor amplitude", respectivamente. Usando a mesma função, calculou-se a derivada da onda do canal. Por se tratar de um sinal digital, a derivada é equivalente ao período de amostragem, que é exposto no painel frontal pelo indicador "Período de amostragem(Td)". Para encontrar a frequência de amostragem, basta calcular o recíproco do período de amostragem. A frequência de amostragem é exposta no painel frontal pelo indicador "Taxa de amostragem(Fs)".

c. Seleção do pedaço do sinal, cursores e dados do janelamento

Logo após entrar no *looping* "Janelamento de sinal", com auxílio da função "Get Waveform Subset", a informação contida no canal 0 será selecionada conforme desejado (janelamento). A princípio, indica-se o valor de início e duração do janelamento. Para selecionar os valores de início e duração, é possível usar os sliders "Início" e "Duração" indicados no painel frontal. Mesmo não sendo solicitado, mas com intuito de facilitar a análise e melhor a precisão, os valores dos dois slider são mostrados também no painel frontal pelos indicadores "Inicio" e "duração".

Ainda com intuito de facilitar a análise do sinal, os cursores do "Sinal Completo" foram programados para estarem no exato local indicado pelos sliders do janelamento. Para fazer isso, utiliza-se as "*property node*" "ActCrsr" para selecionar o cursor e "Cursor.PosX" para escolher o valor da posição X do cursor desejado.

Com auxílio da função "Waveform Duration", calculou-se o período de janelamento do sinal seccionado, que é indicado por "Td". A frequência de Janelamento é o recíproco do período de janelamento, que é exposta no painel frontal pelo indicador "Fd".

O número de amostras do janelamento é calculado pela função "*Number of Waveform*" e é exposto no painel frontal pela indicador "n° de amostras(janela)".

d. Janela espectral do janelamento

O sinal seccionado pela função "Get Waveform Subset", utilizando a função "Spectral Measurement", é convertido do domínio do tempo para o da frequência e apresentada no gráfico "Janela espectral". O valor de cada amplitude em função da frequência pode ser vista pelo indicador "FFT janelamento".

e. Intervalos dos Sliders

Os slider precisam ter seus intervalos de tempo compatíveis com a duração do canal 0, por conta disso, é necessário ajustar o valor máximo e mínimo de cada *slider* conforme o sinal de entrada é alterado.

Para selecionar-se o valor inicial e final de cada *slider*, é necessário usar as "*property node*", "Scale.Maximum" e "Scale.Minimum". O *slider* "Início" tem "Scale.Maximum" setado com duração completa do sinal do canal 0 e "Scale.Minimum" como zero. Enquanto, para o *slider* "duração", "Scale.Maximum" recebe a duração completa do sinal menos o valor atual do slider "início" e "Scale.Minimum" recebe zero.

f. Maiores Amplitudes

Após se obter o espectro do sinal janelado, a função "Unbundle By Name" é utilizada para poder obter a matriz de todas as magnitudes e a derivada na frequência desse sinal. A maior amplitude é obtida conectando a matriz de magnitudes à função "Array Max & Min" e a frequência de maior amplitude é obtida multiplicando a derivada na frequência do sinal (equivalente a Fd) pelo *index* da maior amplitude. O valor de máxima amplitude e frequência correspondente estão expostas no painel frontal pelo indicadores "1° freq" e "1° maior amplitude".

Deve-se conectar a matriz de magnitudes e o index correspondente pela função "Replace Array Subset" e logo em seguida conectar à função a entrada do "Array Max & Min". A segunda maior amplitude é obtida conectando a matriz de magnitudes de saída da função "Replace Array Subset" à função "Array Max & Min" e frequência de maior amplitude é obtida multiplicando a derivada na frequência do sinal (equivalente a Fd) pelo *index* da segunda maior amplitude. O valor de máxima amplitude e frequência correspondente estão expostas no painel frontal pelo indicadores "2° freq" e "2° maior amplitude".

Diagramas desenvolvidos para o projeto atual:

Para o continuidade do projeto, a ideia do projeto foi bastante expandida. A princípio, o diagrama de blocos foi subdivido em três grandes demonstrados por cores: azul demonstra dados relacionados ao **sinal completo** sem janelamento; rosa demonstra os códigos relacionados ao **janelamento do sinal** coletado e verde é relacionado a tudo dos **testes de hipótese**;

para fins de simplicidade e evitar redundância no relatório, não será repetido os diagramas já descritos na primeiro relatório.

1° Grande bloco - Sinal completo:

a. Sinal completo em dB

Esse bloco transforma o sinal em volts para decibéis a partir da fórmula dB = 20*log(A/A0). A princípio o sinal completo passa pela função "Get Waveform Components" para adquirir todos as componentes y (amplitudes). a função log utilizada neste pequeno bloco foi a "Logarithm Base 10". Após a transformação da amplitude para decibéis, o sinal é reconstruído pela função "Build Waveform" e é indicada pela gráfico "Sinal Completo(dB)". o Valor máximo do decibel é exposto pelo indicador "dB max".

b. Sinal Espectral completo em dB

Obtemos as componentes do sinal espectral oriundo do sinal completo a partir da função "Unbundle By Name". O restante do sinal espectral em decibéis é calculado de forma equivalente ao bloco anterior. O sinal completo espectral é indicado pelo gráfico "Espectro Completo (dB)".

2° Grande Bloco - Janelamento do Sinal:

a. Maiores Amplitudes

Assim como no primeiro relatório, é calculado as frequências predominantes, porém neste relatório no lugar de só haver 2 frequências predominantes, foi expandido para 4 frequências maiores. As frequências novas são expostas no painel principal pelos indicadores "3° maior amplitude" e "4° maior amplitude".

b. Frequências Predominantes

A função desse pequeno bloco é de indicar as 4 principais frequências predominantes (4° maiores amplitudes) no "painel de teste de hipótese".

c. Amplitudes e Espaçamentos do janelamento

O espaçamento e a amplitude pico a pico é calculado é mensurada pelas funções "Waveform Duration.vi" e "Waveform Min Max", respectivamente. Os valores são exposto no painel frontal pelos indicadores "espaçamentos" e "Amplitude PP".

d. dB janelado domínio tempo

Esse bloco transforma o sinal janelado em volts para decibéis a partir da fórmula dB = 20*log(A/A0). A princípio o sinal completo janelado passa pela função "Get Waveform Components" para adquirir todos as componentes y (amplitudes). a função log utilizada neste pequeno bloco foi a "Logarithm Base 10". Após a transformação da amplitude para decibéis, o sinal é reconstruído pela função "Build Waveform" e é indicada pela gráfico "Janela no tempo(dB)".

e. Dados mensurados(dB)

O Valor máximo do decibel é exposto pelo indicador "dB janelado max".

f. dB janelado espectral

Obtemos as componentes do sinal espectral oriundo do sinal completo a partir da função "Unbundle By Name". O restante do sinal espectral em decibéis é calculado de forma equivalente ao bloco "dB janelado domínio tempo". O sinal completo espectral janelado é indicado pelo gráfico "Janelado Espectral (dB)".

3°Grande Bloco - Teste de Hipótese

a. Constantes

A média e o desvio padrão dos dados coletado das calopsitas são colocados aqui e são exposto no painel central por 16 indicadores. Como no projeto foi decidido usar utilizar uma significância de 5%, os valores limites na tabela t-student foi de 2,776 e -2,776, o qual foi indicado nesse pequeno bloco de constantes.

b. Teste de freq 1 à 4

Fórmula:

$$T_{calc} = \frac{\mu - \bar{X}}{S / \sqrt{n}}$$

Tcal é equivalente ao valor que a frequência predominante da onda ocuparia na onda normal de t-student. u é média obtida pela análise estatística, X é o valor da frequência predominante da onda analisada, s é o desvio padrão obtida pela análise estatística e n é o número de amostras(nesse projeto foi n = 5).

O teste de frequência para as frequências predominantes 1 à 4 são muito similares, por isso seria redundante haver um tópico no relatório para cada frequência predominante.

c. Teste amplitude

O teste de hipótese foi realizado da mesma forma que o teste do item anterior, porém com os dados estatístico foram adaptados para a amplitude.

d. Teste de espaçamentos

O teste de hipótese foi realizado da mesma forma que o teste do item "teste de freq 1 à 4", porém com os dados estatístico foram adaptados para os espaçamentos.

e. Teste intensidade

O teste de hipótese foi realizado da mesma forma que o teste do item "teste de freq 1 à 4", porém com os dados estatístico foram adaptados para os dados da intensidade.

f. Teste de freq 1[text] à 4[text]

Se o valor dos Tcal calculado do tópico "Teste de freq 1 à 4" estiverem entre 2,776 e -2,776, o indicado pela string "String" como "Teste Aceito", caso não esteja neste intervalo, estará escrito na string "Teste rejeitado".

g. Teste amplitude[text]

Se o valor dos Tcal calculado do tópico "Teste amplitude" estiver entre 2,776 e -2,776, o indicado pela string "String5" como "Teste Aceito", caso não esteja neste intervalo, estará escrito na string "Teste rejeitado".

h. Teste espaçamentos[text]

Se o valor dos Tcal calculado do tópico "Teste espaçamentos" estiver entre 2,776 e -2,776, o indicado pela string "String6" como "Teste Aceito", caso não esteja neste intervalo, estará escrito na string "Teste rejeitado".

Teste intensidade[text]

Se o valor dos Tcal calculado do tópico "Teste intensidade" estiver entre 2,776 e -2,776, o indicado pela string "String7" como "Teste Aceito", caso não esteja neste intervalo, estará escrito na string "Teste rejeitado".

4. PAINEL FRONTAL

Figura 1 - Painel frontal (Ideia do Projeto)

PSI3214 ório de Instrumenta Joaquim Afonso Bacellar Batista de Sigueira Alunos: Leonardo Isao Komura Vanderson da Silva dos Santos Turma 3 - 2020 Sinal completo Tensão[V] | Sinal Completo Decibeis[dB] 0,02 -0.02 -0,04 0.0006 Dados Sinal [V] 0,0005 € 0,0004 0[Hz] 0[V] 0,0003 0,0001 0.0000 IVI 0.0000 IVI 1[s] Frequency [Hz]

Figura 2 - Painel Frontal (Sinal completo Tensão [V])

Em comparação ao painel frontal da etapa 1, o da segunda fase do projeto é mais completo e bem estruturado com ênfase na organização e praticidade, entretanto, é maior, visto que, há mais dados a apresentar. Para isso, a divisão em diferente abas dos gráficos em volts e decibels foi fundamental, assim, tornando a interface limpa e intuitiva.

Pode-se dizer que o novo painel frontal do programa consiste em 3 partes: a superior, onde é apresentada a análise do sinal de entrada por toda sua extensão. A central, onde o usuário pode selecionar qual período do sinal ocorrerá a análise por meio dos sliders "Início" e "Duração". E, finalmente, a inferior, onde é retratado o reconhecimento da janela de tempo especificada pelos sliders.

No bloco superior há 3 janelas distintas na qual o utilizador pode navegar ao clicar em cada aba. A primeira aba ("Ideia do projeto"), Figura 1, apresenta uma pequena introdução ao

programa e ao projeto. A segunda aba ("Sinal completo tensão [V]"), Figura 2, apresenta um gráfico com o sinal completo sob o tempo e a amplitude medida na forma de tensão, além de informações adicionais relevantes no bloco "Dados Sinal (V)". A terceira, e última aba, ("Sinal completo Decibel [dB]"), Figura 3, mostra o sinal completo sob o tempo, mas, com a amplitude medida em decibels e, também, um bloco com informações relevantes chamado "Dados Sinal (dB)".

No bloco central há, primeiramente, os sliders que são utilizados para a seleção de uma janela de tempo específica do sinal. Abaixo, no bloco inferior, existem 3 janelas distintas que apresentam diferentes dados: Na primeira aba são apresentadas as informações do teste de hipótese e dados relevantes sobre o período selecionado pelos sliders. A segunda aba apresenta um gráfico e dados sobre a janela de sinal com a amplitude em tensão, enquanto, a terceira aba mostra um material equivalente mas sob a perspectiva de decibels.

5. MEDIDAS DOS SINAIS

Os sinais testados primeiramente vieram de cinco amostras diferentes do canto de uma calopsita. Para efetuar a classificação binária da calopsita, tais amostras serviram como base para criação de um Teste de Hipótese. Avaliando, então, a frequência dominante, a intensidade e o janelamento, calculou-se os valores críticos para o Teste, levando em conta uma incerteza, ou significância, de 5%. Após isso, o usuário, inserindo um arquivo de áudio de um canto qualquer, obterá as estatísticas calculadas para tal canto e, se estiverem dentro do limite crítico, a hipótese nula não é rejeitada, ou seja, não há evidências que indiquem que não se trata de uma calopsita. Caso contrário, a hipótese nula é rejeitada.

A medida da frequência predominante foi realizada da mesma forma que na etapa 1, através da análise espectral. As amplitudes de pico também já eram calculadas pelo VI anterior. O espaçamento, por sua vez, definido através dos cursores pelo usuário, também já fora calculado, funcionando de forma análoga ao janelamento. Já para a medida da intensidade em decibéis (dB), calculado através de dez vezes o logaritmo na base dez da razão entre a amplitude do sinal e uma amplitude referência. Tal valor referência foi encontrado através de um aplicativo para celular de um decibelímetro. Assim, com tal aplicativo, gravou-se um áudio, com um som de fundo, anotou-se a intensidade, em decibéis, e usou-se o VI para calcular as amplitudes. Dessa forma, pode-se chegar no valor de referência.

6. RESULTADOS

Figura 1 - Sinal e Espectro completos em volts

Para um teste final foi escolhido o canto de uma calopsita qualquer com o mínimo de ruído e o mais consistente possível. É possível observar na Figura 1 a representação gráfica do sinal em volts, assim como seu espectro completo e dados relevantes.

Figura 2 - Sinal e Espectro completos em decibels

É possível notar o funcionamento correto do decibelímetro ao visualizar suas informações em sua devida aba na qual é mostrado o gráfico do sinal completo em decibels e a intensidade sonora máxima.

Figura 3 - Sinal janelado em volts

O janelamento do sinal é realizado por meio dos sliders "Início" e "Duração". A seleção do período a ser analisado deve ser feita por meio da aba "Tensão [V]" e deve-se ajustar para que a janela contenha apenas um piado do pássaro. Após, além do gráfico, será possível observar informações relevantes específicas do sinal selecionado em "Dados janelamento".

Figura 4 - Sinal janelado em decibels

A análise em decibels do sinal janelado está correta depois da seleção do período realizada anteriormente. Nessa janela é possível observar o gráfico janelado em decibels, assim como a intensidade sonora máxima numericamente em "Dados Janelamento (dB)".

Figura 5 - Dados e teste estatístico

Figura 6 - Análise de dados no Excel

Dados coletados das calopsitas							
	1º frequência	2º frequência	3°frequência	4°frequência	amplitude pico a pico	espaçamento	Intensidade max (dB)
1º Amostra	3209,5	3188,4	3214	3204,2	1,0708	0,1894	92,45
2º Amostra	4127,3	3114,2	3115	3112,8	1,2383	0,7195	94,23
3° Amostra	6652,2	3257,5	6649,2	3260	1,1788	0,3428	92,96
4° Amostra	2573,4	2569	2841	2576	1,4727	0,2875	95,36
5° Amostra	3398,1	3401,9	3352	3348,1	1,2	0,2601	93,71
Média	3992,1	3106,2	3834,24	3100,22	1,2321	0,3599	93,74
Desvio Padrão	1586	318,5	1584,7	305,26	0,1481	0,2084	1,13

A análise estatística foi realizada a partir de análise de 5 amostras de sons de calopsita. De cada som foi retirada as 4 maiores frequências predominantes, a amplitude pico a pico do sinal sonoro da calopsita, o espaçamento dos piados do pássaros e a intensidade máxima do som emitido pelo mesmo.

Na linha 1° amostra, há todos os dados citados relacionados a primeira amostra de som de calopsita coletada. Nas linhas seguintes é equivalente para as demais amostras.

A linha "média" representa média aritmética das amostras citadas

A linha "Desvio Padrão" é o desvio padrão amostral das amostras citadas.

A partir da média e do desvio padrão amostral desses dados, podemos mensurar um intervalo de confiança para identificar se um pássaro qualquer se trata ou não de uma calopsita.

7. CONCLUSÃO

Ao final desta segunda e última etapa do trabalho, conseguiu-se desenvolver um programa com um propósito específico: a análise e identificação do canto de um pássaro, especificamente, uma calopsita. Apesar de ele ter sido produzido sobre a base da primeira fase do projeto, o software elaborado sobre a plataforma de programação intuitiva LabView da National Instruments (NI) tornou-se mais complexo e refinado, em comparação ao seu predecessor, para, assim, poder atingir seu propósito final.

Assim sendo, pode-se concluir que os objetivos propostos pela disciplina foram cumpridos, dado que, o programa atingiu as metas ao se tornar uma aplicação prática e útil da Transformada de Fourier para sinais digitais com as características cobradas ainda na primeira etapa do trabalho (gráficos, dados e janelamento especificado pelo usuário), além de uma finalidade específica, sendo essa a análise do canto da calopsita atrelada a um decibelímetro e estudo estatístico.

Para um futuro desenvolvimento do projeto, é importante ressaltar a importância de "machine learning" e de VIs mais complexos para haver uma classificação não binária de pássaros. Assim, será possível analisar melhor uma região e tirar conclusões mais consistentes.

Ademais, é possível dizer que esse projeto como um todo foi de extrema importância para o aprendizado dos participantes, por ter oferecido a oportunidade de estudar e pôr em prática os conceitos dados em aula, em adição do ensinamento do uso do programa LabView da National Instruments (NI), que é uma ferramenta de grande utilidade para alguém que atuará no mercado de tecnologia e engenharia.

8. REFERÊNCIAS

- I. GALEAZZO, Elisabete e SOUZA, Rodrigo Anjos de. Simulador de Conversor AD para Análise de Sinais Elétricos. 2020.
- II. GALEAZZO, Elisabete e SOUZA, Rodrigo Anjos de. Simulador de Filtros para Análise de Sinais. 2020.
- III. SIQUEIRA, Joaquim Afonso Bacellar Batista de; KOMURA, Leonardo Isao; SANTOS, Vanderson da Silva dos. SINFONEIROS (Relatório 1). 2020.
- IV. ROSSINI, Maria Clara. **Sistema de classificação auxilia na identificação de espécies por meio de cantos de pássaros**. Agência Universitária de Notícias (AUN). Universidade de São Paulo. Disponível em: https://paineira.usp.br/aun/index.php/2018/05/16/sistema-de-classificacao-auxilia-na-identificacao-de-especies-por-meio-de-cantos-de-passaros/. Acesso em 11 de nov. de 2020.