Motivación Lección 01

Dr. Pablo Alvarado Moya

CE5506 Introducción al reconocimiento de patrones Área de Ingeniería en Computadores Tecnológico de Costa Rica

II Semestre, 2019

AEM, 2016

Contenido

- Definiciones
 - Aprendizaje automático y reconocimiento de patrones

2 Motivación

Definiciones

- Ingeniería: Reconocimiento de patrones PR
- Ciencias de la Computación: Aprendizaje automático ML
- Dos caras de la misma disciplina
- ML: enfatiza el aprendizaje
- PR: enfatiza la detección de estructuras
- Algunos autores consideran ML una subárea de PR:
 - PR cubre métodos "manuales", sin aprendizaje
- Otros autores consideran PR una subárea de ML:
 - PR solo lidia con detectar estructuras en datos o en estímulos sensoriales, pero hay otras tareas

Relación entre áreas afines al Aprendizaje Automático Goodfellow, 2016

Definición de Aprendizaje Automático Arthur Samuel (1901–1990), IBM

Aprendizaje automático según A. Samuel en 1959

El aprendizaje automático es el campo de estudio que otorga a un computador la habilidad de aprender sin ser programado explícitamente.

• 1952: Programa de damas, primero capaz de aprender

6/28

Hitos recientes

1997 IBM DeepBlue

2015 DeepMind AlphaGo

2011 IBM Watson

2017 DeepMind AlphaZero

DeepMind, 2017

Springer Nature, 2018

Definición de Aprendizaje Automático Tom Mitchell (1998), Carnegie-Mellon University

Problema de aprendizaje bien propuesto: Un programa se dice aprende de la experiencia E con respecto a una tarea T y alguna medida de desempeño P, si su desempeño en T medido con P mejora con la experiencia E.

Definición de Aprendizaje Automático Tom Mitchell (1998), Carnegie-Mellon University

Problema de aprendizaje bien propuesto: Un programa se dice aprende de la experiencia E con respecto a una tarea T y alguna medida de desempeño P, si su desempeño en T medido con P mejora con la experiencia E.

Por ejemplo,

- T: juego de Damas
- P: probabilidad de ganar
- E: número de repeticiones del juego

Un programa se dice *aprende* de la experiencia E con respecto a una tarea T y alguna medida de desempeño P, si su desempeño en T medido con P mejora con la experiencia E.

Un cliente de correo-e vigila qué mensajes usted marca como spam y basado en eso aprende cómo filtrar mejor ese spam. ¿Cuál es la tarea T en este contexto?

- Clasificar correos como spam/no-spam
- Vigilar cómo usted marca correos como *spam/no-spam*
- El número o fracción de correos que se clasifican correctamente como spam/no-spam
- Este no es un problema de aprendizaje automático

Un programa se dice *aprende* de la experiencia E con respecto a una tarea T y alguna medida de desempeño P, si su desempeño en T medido con P mejora con la experiencia E.

Un cliente de correo-e vigila qué mensajes usted marca como spam y basado en eso aprende cómo filtrar mejor ese spam. ¿Cuál es la tarea T en este contexto?

- igotimes Clasificar correos como $\mathit{spam}/\mathit{no} ext{-}\mathit{spam} o \mathcal{T}$
- \bigcirc Vigilar cómo usted marca correos como $\mathit{spam/no-spam} \to \mathit{E}$
- \bigcirc El número o fracción de correos que se clasifican correctamente como $spam/no\text{-}spam \rightarrow P$
- Este no es un problema de aprendizaje automático

Tareas comunes en reconocimiento de patrones:

- Clasificación: $f: \mathbb{R}^n \to \{1, \dots, k\}$
- Clasificación con entradas faltantes: vector de entrada incompleto
- Regresión: $f: \mathbb{R}^n \to \mathbb{R}$
- Transcripción: entrada no estructurada (imágenes, sonido), salida textual
- Traducción automática: entradas y salidas son sucesiones de símbolos
- Salida estructurada: salida de proceso es un vector de valores interrelacionados. P.ej. descripción textual de una imagen (o construcción de una estructura semántica de interrelaciones entre objetos)

Tipos de Tareas T

- Detección de anomalías: detección de eventos inusuales o atípicos (uso indebido de tarjetas de crédito, predicción de fallos mecánicos)
- Síntesis y muestreo: generación de datos similares a conjunto de entrenamiento (p.ej. reconstrucción de pinturas, caras, voz)
- Imputación de valores faltantes: reconstrucción de algunos valores faltantes en el vector de entrada.
- Eliminación de ruido: producir una salida igual a la entrada eliminándole el ruido o distorsión
- Estimación [de densidad] de probabilidad: probabilidad de posición un jugador.

Medida de desempeño P

- Precisión: cuántas respuestas son correctas
- Tasa de error: cuántas respuestas son incorrectas
- Se miden con respecto a un "conjunto de prueba" (test set)

Supervisado

Existen etiquetas para los datos

SupervisadoSVM

Existen etiquetas para los datos

- Supervisado
 - SVM
- No supervisado

Existen etiquetas para los datos

No existen etiquetas para los datos

- Supervisado
 - SVM
- No supervisado
 - ICA

Existen etiquetas para los datos

No existen etiquetas para los datos

Supervisado

Existen etiquetas para los datos

- SVM
- No supervisado

No existen etiquetas para los datos

- ICA
- Aglomeración de noticias

Supervisado

Existen etiquetas para los datos

- SVM
- No supervisado
 No existen etiquetas para los datos
 - ICA
 - Aglomeración de noticias
- De reforzamiento
 Solo se sabe bueno o malo

Supervisado

Existen etiquetas para los datos

- SVM
- No supervisado
 No existen etiquetas para los datos
 - ICA
 - Aglomeración de noticias
- De reforzamiento

Solo se sabe bueno o malo

Q-Learning 1

- Supervisado
 - SVM
- No supervisado
 - ICA Aglomeración de noticias
- De reforzamiento
 - Q-Learning 1
 - Q-Learning 2

Existen etiquetas para los datos

No existen etiquetas para los datos

Solo se sabe bueno o malo

- Supervisado
 - SVM
- No supervisado
 - ICA
 - Aglomeración de noticias
- De reforzamiento
 - Q-Learning 1
 - Q-Learning 2
 - Q-Learning 3

Existen etiquetas para los datos

No existen etiquetas para los datos

Solo se sabe bueno o malo

Supervisado

Existen etiquetas para los datos

- SVM
- No supervisado

No existen etiquetas para los datos

- ICA
- Aglomeración de noticias
- De reforzamiento

Solo se sabe bueno o malo

- Q-Learning 1
- Q-Learning 2
- Q-Learning 3
- De recomendación

Predictores de preferencias

Supervisado

Existen etiquetas para los datos

- SVM
- No supervisado
 No existen etiquetas para los datos
 - ICA
 - Aglomeración de noticias
- De reforzamiento

Solo se sabe bueno o malo

- Q-Learning 1
- Q-Learning 2
- Q-Learning 3
- De recomendación

Predictores de preferencias

Amazon

Componentes de un sistema típico de reconocimiento de patrones

Sensado

- Sensado
- Preprocesamiento

- Sensado
- Preprocesamiento
 - Reducción de ruido

- Sensado
- Preprocesamiento
 - Reducción de ruido
 - Segmentación y agrupamiento

- Sensado
- Preprocesamiento
 - Reducción de ruido
 - Segmentación y agrupamiento
- Extracción de características

- Sensado
- Preprocesamiento
 - Reducción de ruido
 - Segmentación y agrupamiento
- Extracción de características
- Reconocimiento de patrones

- Sensado
- Preprocesamiento
 - Reducción de ruido
 - Segmentación y agrupamiento
- Extracción de características
- Reconocimiento de patrones
- Ost-procesamiento

Ciclo de diseño

Fases en el diseño de un sistema de reconocimiento de patrones

Recolección de datos

Ciclo de diseño

Fases en el diseño de un sistema de reconocimiento de patrones

- Recolección de datos
- ② Elección de características

Ciclo de diseño

Fases en el diseño de un sistema de reconocimiento de patrones

- Recolección de datos
- Elección de características
- Elección del modelo

Ciclo de diseño

Fases en el diseño de un sistema de reconocimiento de patrones

- Recolección de datos
- ② Elección de características
- 3 Elección del modelo
- 4 Entrenamiento

Ciclo de diseño

Fases en el diseño de un sistema de reconocimiento de patrones

- Recolección de datos
- ② Elección de características
- Elección del modelo
- 4 Entrenamiento
- Evaluación

¿Qué se aprende?

Because we can...

- Because we can...
- Para contestar ¿cómo pensamos?, ¿cómo aprendemos?

- Because we can...
- Para contestar ¿cómo pensamos?, ¿cómo aprendemos?
- Para colaborar en proyectos que involucren inteligencia artificial

- Because we can...
- Para contestar ¿cómo pensamos?, ¿cómo aprendemos?
- Para colaborar en proyectos que involucren inteligencia artificial
- Para insertarse en uno de los mercados de más rápido crecimiento...

Crecimiento del sector Al Tractica, Marzo 2017

Chart 1.1 Artificial Intelligence Revenue, World Markets: 2016-2025

Crecimiento del sector Al

Tractica, Diciembre 2017

Crecimiento del hardware especializado para Al Tractica, Marzo 2017

Ejemplos de productos de IA

- Software
 - Microsoft
 - Amazon Al
 - Google
- Hardware
 - Movidius
 - NVIDIA
 - Google TPU

Aplicaciones en voga

- Reconocimiento de voz
 - Amazon: Alexa
 - Google: Google Voice, Google Assistant, etc.
 - Apple: Siri
 - Microsoft: Cortana
- Piloto automático en automóbiles/puertos/camiones/trenes/aviones/...
- Sistemas de asistencia
- Análisis de datos financieros
- Análisis de datos de clientes (recomendación)
- Análisis de datos médicos
- Aplicaciones en ciencia e ingeniería

Congresos académicos

Lista de conferencias de mayor impacto:

- CVPR
- NIPS
- ECCV
- ICML
- ICCV

Resumen

- Definiciones
 - Aprendizaje automático y reconocimiento de patrones

2 Motivación

Este documento ha sido elaborado con software libre incluyendo LATEX, Beamer, GNUPlot, GNU/Octave, XFig, Inkscape, GNU-Make y Subversion en GNU/Linux

Este trabajo se encuentra bajo una Licencia Creative Commons Atribución-NoComercial-LicenciarIgual 3.0 Unported. Para ver una copia de esta Licencia, visite http://creativecommons.org/licenses/by-nc-sa/3.0/ o envíe una carta a Creative Commons, 444 Castro Street, Suite 900, Mountain View, California, 94041, USA.

© 2017-2019 Pablo Alvarado-Moya Área de Ingeniería en Computadores Instituto Tecnológico de Costa Rica