МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

Факультет прикладной математики и инворматики Кафедра вычислительной математики

Отчет по лабораторной работе 1 "Аппроксимация дифференциальных задач разностными операторами" Вариант 5

Выполнил: Карпович Артём Дмитриевич студент 4 курса 7 группы

Преподаватель: Репников Василий Иванович

Постановка задач

1. Построить разностную аппроксимацию оператора Lu методом неопределенных коэффициентов, где

$$Lu = u'(x_1);$$

2. Построить разностную аппроксимацию оператора Lu методом неопределенных коэффициентов, где

$$Lu = \frac{\partial^2 u(x_1, x_2)}{\partial x_1^2};$$

- 3. Аппроксимировать дифференциальную задачу разностной схемой на заданном шаблоне. Опеределить погрешность аппроксимации;
- 4. Повысить порядок аппроксимации разностной схемы на минимальном шаблоне, используя вид дифференциальной задачи.

$$3,4.\begin{cases} \frac{\partial^{2} u}{\partial t^{2}} = \frac{\partial^{2} u}{\partial x^{2}} + q(x,t)u + f(x,t), 0 < x < 1, t > 0, \\ u(x,0) = u_{0}(x), \frac{\partial u(x,0)}{\partial t} = u_{1}(x,t), 0 \le x \le 1, \\ \frac{\partial u(0,t)}{\partial x} = \sigma_{0}u(0,t) - \mu_{0}(t), u(1,t) = \mu_{1}(t), t \ge 0. \end{cases}$$

Постановка задачи. Построить разностную аппроксимацию оператора Lu методом неопределенных коэффициентов, где

$$Lu = u'(x_1);$$

Решение задачи. Рассмотрим равномерную сетку узлов с шагом h. И введем следующие обозначения:

$$x = x_1, \Rightarrow x_0 = x - h, x_2 = x + h, x_3 = x + 2h$$

Тогда наш шаблон примет вид

$$\coprod(x) = \{x - h, x, x + h, x + 2h\}.$$

Разностную аппроксимацию будем искать в виде линейной комбинации значений функции u в точках шаблона, то есть:

$$L_h u(x) = a_0 u(x - h) + a_1 u(x) + a_2 u(x + h) + a_3 u(x + 2h).$$

Выпишем погрешность нашей аппроксимации:

$$\psi(x) = L_h u(x) - Lu(x) = a_0 u(x - h) + a_1 u(x) + a_2 u(x + h) + a_3 u(x + 2h) - u'(x).$$

Разложим правую часть этого выражения в ряд Тейлора в окрестности точки x:

$$\psi(x) = a_0(u - hu' + \frac{h^2}{2}u'' - \frac{h^3}{6}u''') + a_1u + a_2(u + hu' + \frac{h^2}{2}u'' + \frac{h^3}{6}u''') + a_3(u + 2hu' + 2h^2u'' + \frac{4h^3}{3}u''') + O(h^4) - u' = (a_0 + a_1 + a_2 + a_3)u - h(a_0 - a_2 - 2a - 3 + \frac{1}{h})u' + \frac{h^2}{2}(a_0 + a_2 + 4a_3)u'' + \frac{h^3}{6}(-a_0 + a_2 + 8a_3)u''' + O(h^4).$$

Для того, чтобы погрешность аппроксимации была минимальной, необходимо, чтобы коэффициенты при производных должны быть равны нулю, таким образом, мы можем сформировать систему для поиска коэффициентов a_k :

$$\begin{cases} a_0 + a_1 + a_2 + a_3 = 0, \\ a_0 - a_2 - 2a - 3 + \frac{1}{h} = 0, \\ a_0 + a_2 + 4a_3 = 0, \\ -a_0 + a_2 + 8a_3 = 0. \end{cases}$$

Выразим из третьего уравнения a_0 и выполним подстановку во все уравнения:

$$\begin{cases} a_0 = -4a_3 - a_2, \\ a_1 - 3a_3 = 0, \\ a_2 + 3a_3 = \frac{1}{2h}, \\ a_2 + 6a_3 = 0, \end{cases} \Rightarrow \begin{bmatrix} B$$
ыражаем из последнего $a_2 \end{bmatrix} \Rightarrow \begin{cases} a_2 = -6a_3, \\ a_0 = 2a_3, \\ a_1 = 3a_3, \\ 3a_3 = -\frac{1}{2h}, \end{cases} \Rightarrow \begin{cases} a_0 = -\frac{1}{3h}, \\ a_1 = -\frac{1}{2h}, \\ a_2 = \frac{1}{h}, \\ a_3 = -\frac{1}{6h}. \end{cases}$

Таким образом, мы нашли коэффициенты, с помощью которых можем построить разностную аппроксимацию оператора Lu = u'(x):

$$L_h u = -\frac{1}{h} \left(\frac{1}{3} u(x - h) + \frac{1}{2} u(x) - u(x + h) + \frac{1}{6} u(x + 2h) \right).$$

Постановка задачи.Построить разностную аппроксимацию оператора Lu методом неопределенных коэффициентов, где

$$Lu = \frac{\partial^2 u(x_1, x_2)}{\partial x_1^2};$$

Решение задачи. Разностную аппроксимацию будем искать в виде линейной комбинации значений функции u в точках шаблона, то есть:

$$L_h u(x) = a_0 u(x_1, x_2) + a_1 u(x_1, x_2 + h_2) + a_2 u(x_1 + h_1, x_2).$$

Выпишем погрешность нашей аппроксимации:

$$\psi(x) = a_0 u(x_1, x_2) + a_1 u(x_1, x_2 + h_2) + a_2 u(x_1 + h_1, x_2) - \frac{\partial^2 u(x_1, x_2)}{\partial x_1^2}.$$

Разложим правую часть этого выражения в ряд Тейлора, используя формулу разложения функции двух переменных:

$$\psi(x) = a_0 u + a_1 \left(u + h_2 \frac{\partial u}{\partial x_2} + \frac{h_2^2}{2} \frac{\partial^2 u}{\partial x_2^2} \right) + a_2 \left(u + h_1 \frac{\partial u}{\partial x_1} + \frac{h_1^2}{2} \frac{\partial^2 u}{\partial x_1^2} \right) + O(h^3) - \frac{\partial^2 u(x_1, x_2)}{\partial x_1^2} = (a_0 + a_1 + a_2)u + h_1 a_2 \frac{\partial u}{\partial x_1} + h_2 a_1 \frac{\partial u}{\partial x_2} + \frac{h_2^2}{2} a_1 \frac{\partial^2 u}{\partial x_2^2} + \frac{h_1^2}{2} (a_2 - \frac{2}{h_1^2}) \frac{\partial^2 u}{\partial x_1^2} + O(h^3).$$

Для того, чтобы погрешность аппроксимации была минимальной, необходимо, чтобы коэффициенты при производных должны быть равны нулю, таким образом, мы можем сформировать систему для поиска коэффициентов a_k :

$$\begin{cases} a_0 + a_1 + a_2 = 0, \\ a_2 = 0, \\ a_1 = 0, \\ a_2 = \frac{2}{h_1^2}. \end{cases}$$

Как можно заметить, мы получили некое противоречие, что можно объяснить тем, что наш шаблон не удовлетворяет нашей задаче, посколько нам для аппроксимации второй производной необходимо по крайней мере три точки, а на даны лишь две точки, помимо центральной.

Таким образом, можно сделать вид, что для нашего оператора на данном шаблоне построить разностную аппроксимацию невозможно.

Постановка задачи. Аппроксимировать дифференциальную задачу разностной схемой на заданном шаблоне. Опеределить погрешность аппроксимации;

$$\begin{cases} \frac{\partial^{2} u}{\partial t^{2}} = \frac{\partial^{2} u}{\partial x^{2}} + q(x,t)u + f(x,t), 0 < x < 1, t > 0, \\ u(x,0) = u_{0}(x), \frac{\partial u(x,0)}{\partial t} = u_{1}(x), 0 \le x \le 1, \\ \frac{\partial u(0,t)}{\partial x} = \sigma_{0}u(0,t) - \mu_{0}(t), u(1,t) = \mu_{1}(t), t \ge 0. \end{cases}$$

Решение. Запишем рассматриваемую задачу в безиндексной форме:

$$\begin{cases} y_{tt} = y_{\overline{x}x} + qy + f, x, t \in \omega_{h\tau}, \\ y(x,0) = u_0(x), \\ y_t(x,0) = u_1(x), \\ y_x(0,t) = \sigma_0 y(0,t) - \mu_0(t), \\ y(1,t) = \mu_1(t), \end{cases}$$

где $\omega_{h au}-$ сетка рассматриваемых узлов.

Построим разностную аппроксимацию для оператора $Lu=\frac{\partial^2 u}{\partial t^2}$ с помощью метода неопределенных коэффициентов аналогично тому, как делали это во втором задании. Для этого воспользуемся представлением в виде линейной комбинации значений функции u в точках шаблона:

$$L_h u(x,t) = a_0 u(x,t) + a_1 u(x,t+\tau) + a_2 u(x,t+2\tau)$$

Выпишем погрешность аппроксимации:

$$\psi(x,t) = L_h u - L u = a_0 u(x,t) + a_1 u(x,t+\tau) + a_2 u(x,t+2\tau) - \frac{\partial^2 u}{\partial t^2}.$$

Разложим данное выражение в ряд Тейлора, сразу приводя подобные:

$$\psi(x,t) = (a_0 + a_1 + a_2)u + \tau(a_1 + 2a_2)\frac{\partial u}{\partial t} + \tau^2(\frac{a_1}{2} + 2a_2 - \frac{1}{\tau^2})\frac{\partial^2 u}{\partial \tau^2} + O(\tau^3).$$

Аналогично первым двум заданиям, строим систему для зануления коэффициентов:

$$\begin{cases} a_0 + a_1 + a_2 = 0, \\ a_1 + 2a_2 = 0, \\ \frac{a_1}{2} + 2a_2 - \frac{1}{\tau^2} = 0, \end{cases} \Rightarrow \begin{cases} a_0 = \frac{1}{\tau^2}, \\ a_1 = -\frac{2}{\tau^2}, \\ a_2 = \frac{1}{\tau^2}. \end{cases}$$

Таким образом, вторая разностная производная принимает вид:

$$L_h u(x,t) = \frac{u(x,t) - 2u(x,t+\tau) + u(x,t+2\tau)}{\tau^2}.$$

Используя получившееся выражение, запишем нашу задачу в индексной форме:

$$\begin{cases} \frac{y_i^{j+2} - 2y_i^{j+1} + y_i^j}{\tau^2} = \frac{y_{i+1}^j - 2y_i^j + y_{i-1}^j}{h^2} + q(x_i, t_j) y_i^j + f(x_i, t_j), i = \overline{1, N-1}, \\ y_i^0 = u_0(x_i), \\ \frac{y_{i+1}^1 - y_{i+1}^0}{h} = u_1(x), \\ \frac{y_{i+1}^{j+1} - y_{0}^{j+1}}{h} = \sigma_0 y_0^j - \mu_0(t_j), \\ y_1^{j+1} = \mu_1(t_j) \end{cases}$$

Таким образом, мы получили разностную схему данной задачи. Перейдем к определению погрешности аппроксимации.

$$\psi(x,t) = \frac{u(x,t) - 2u(x,t+\tau) + u(x,t+2\tau)}{\tau^2} - u_{\overline{x}x} - q(x,t)u - f(x,t).$$

Разложим в ряд Тейлора почленно:

$$\frac{u(x,t)-2u(x,t+\tau)+u(x,t+2\tau)}{\tau^2}=\frac{1}{\tau^2}(u-2(u+\tau\frac{\partial u}{\partial t}+\frac{\tau^2}{2}\frac{\partial^2 u}{\partial t^2}+\frac{\tau^3}{6}\frac{\partial^3 u}{\partial t^3})+u+2\tau\frac{\partial u}{\partial t}+2\tau^2\frac{\partial^2 u}{\partial t^2}+\frac{4\tau^3}{3}\frac{\partial^3 u}{\partial t^3}+\\ +O(\tau^4))=\frac{1}{\tau^2}(\tau^3\frac{\partial^3 u}{\partial t^3}+O(\tau^4))=O(\tau).$$

$$u_{\overline{x}x}=[\text{выводили на парe}]=\frac{\partial^2 u}{\partial x^2}+\frac{h^2}{12}\frac{\partial^4 u}{\partial x^4}+\frac{h^4}{360}\frac{\partial^6 u}{\partial x^6}+O(h^7)=O(h^2).$$

Подставляем:

$$\psi(x,t) = O(\tau) + O(h^2) = O(\tau + h^2).$$

Таким образом, получаем, что аппроксимации для t имеет первый порядок, для x-2й порядок. Найдем погрешность аппроксимации для граничных условий:

$$\begin{cases} \nu(0,t) = u_x(0,t) - \sigma_0 u(0,t) + \mu_0(t) = u_x(0,t) + \frac{h}{2} u_{xx}(0,t) + O(h^2) - \sigma_0 u(0,t) + \mu_0(t) = O(h), \\ \nu(1,t) = 0. \end{cases}$$

Таким образом, правое граничное условие аппроксимируется с первым порядком по x, второе аппроксимируется точно.

Рассмотрим теперь начальные условия. Первое начальное условие аппроксимируется точно, поэтому рассмотрим второе:

$$\nu(x,0) = \frac{\partial u(x,0)}{\partial t} - u_1(x) = \frac{\partial u(x,0)}{\partial t} + \frac{\tau}{2} \frac{\partial^2 u(x,0)}{\partial t^2} + O(\tau^2) - u_1(x) = O(\tau^2).$$

Таким образщом, второе начальное условие имеет первый порядок аппроксимации по t.

Итак, получаем, что построенная разностаня схема имеет первый порядок аппроксимации как по x, так и по t.

Постановка задачи. Повысить порядок аппроксимации разностной схемы на минимальном шаблоне, используя вид дифференциальной задачи.

$$\begin{cases} \frac{\partial^2 u}{\partial t^2} = \frac{\partial^2 u}{\partial x^2} + q(x,t)u + f(x,t), 0 < x < 1, t > 0, \\ u(x,0) = u_0(x), \frac{\partial u(x,0)}{\partial t} = u_1(x), 0 \le x \le 1, \\ \frac{\partial u(0,t)}{\partial x} = \sigma_0 u(0,t) - \mu_0(t), u(1,t) = \mu_1(t), t \ge 0. \end{cases}$$

Решение задачи. Из предыдущего задани мы выяснили, что наша задача аппроксимируется разностной схемой с погрешностью $O(h+\tau^2)$ для самого уравнения и $O(\tau)$, O(h) для начального и краевого условий соответственно. Нам необходимо за счет повышение порядка аппроксимации начального и краевого условий повысить порядок аппроксимации разностной схемы с $O(h+\tau)$ до $O(h^2+\tau^2)$.

Для повышения порядка аппроксимации по времени, поднимем порядок аппроксимации второго начального условия, не расширяя шаблона, для этого будем искать новое разностное условие в следующем виде:

$$u_t(x,0) = \overline{u_1(x)},$$

Опеределим погрешность аппроксимации начального условия:

$$\nu(x,0) = u_t(x,0) - \overline{u_1(x)} = \frac{\partial u(x,0)}{\partial t} + \frac{\tau}{2} \frac{\partial^2 u(x,0)}{\partial t^2} + O(\tau^2) - \overline{u_1(x)} = u_1(x) + \frac{\tau}{2} \frac{\partial^2 u(x,0)}{\partial t^2} + O(\tau^2) - \overline{u_1(x)}.$$

Таким образом, в качестве $u_0(x)$ можно взять, например,

$$\overline{u_1(x)} = u_1(x) + \frac{\tau}{2} \frac{\partial^2 u(x,0)}{\partial t^2}.$$

Для повышения порядка аппроксимации по x, поднимем порядок аппроксимации первого граничного условия, не расширяя шаблона, для этого будем искать новое разностное условие в следующем виде:

$$u_x(0,t) = \overline{\sigma_0}u(0,t) - \overline{\mu_0(t)}.$$

Определим погрешность аппроксимации:

$$\nu(0,t) = u_x(0,t) - \overline{\sigma_0}u(0,t) + \overline{\mu_0(t)} = \frac{\partial u(0,t)}{\partial x} + \frac{h}{2}\frac{\partial^2 u(0,t)}{\partial x^2} + O(h^2) - \overline{\sigma_0}u(0,t) + \overline{\mu_0(t)} =$$

$$= \sigma_0 u(0,t) - \mu_0(t) + \frac{h}{2}\frac{\partial^2 u(0,t)}{\partial x^2} + O(h^2) - \overline{\sigma_0}u(0,t) + \overline{\mu_0(t)}.$$

Таким образом, в качестве $\overline{\sigma_0}u(0,t) - \overline{\mu_0(t)}$ можно взять, например

$$\overline{\sigma_0}u(0,t) - \overline{\mu_0(t)} = \sigma_0 u(0,t) - \mu_0(t) + \frac{h}{2} \frac{\partial^2 u(0,t)}{\partial x^2}.$$

Выразим из уравнения исходной задачи

$$\frac{\partial^2 u(0,t)}{\partial x^2} = \frac{\partial^2 u(0,t)}{\partial t^2} - q(x,0)u(x,0) - f(x,0) = \frac{\partial^2 u(0,t)}{\partial t^2} - q(x,0)u_0(x) - f(x,0) = -q(x,0)u_0(x) - f(x,0).$$

Тогда получим:

$$\overline{\sigma_0}u(0,t) - \overline{\mu_0(t)} = \sigma_0 u(0,t) - \mu_0(t) + \frac{h}{2} (\frac{\partial^2 u(0,t)}{\partial t^2} - q(x,0)u_0(x) - f(x,0)).$$

Таким образом, разностная схема второго порядка по x и второго порядка по времени в индексной форме будет иметь вид:

$$\begin{cases} \frac{y_i^{j+2}-2y_i^{j+1}+y_i^j}{\tau^2} = \frac{y_{i+1}^j-2y_i^j+y_{i-1}^j}{h^2} + q(x_i,t_j)y_i^j + f(x_i,t_j), i = \overline{1,N-1}, \\ y_i^0 = u_0(x_i), \\ \frac{y_{i+1}^1-y_{i+1}^0}{h} = u_1(x) + \frac{y_i^2-2y_i^1+y_i^0}{2\tau}, \\ \frac{y_1^{j+1}-y_0^{j+1}}{h} = \sigma_0 y_0^j - \mu_0(t_j) + \frac{h}{2}(\frac{y_0^{j+2}-2y_0^{j+1}+y_0^j}{\tau^2} - q(x_i,0)u_0(x_i) - f(x_i,0)), \\ y_1^{j+1} = \mu_1(t_j) \end{cases}$$