

NOISE POLLUTION MONITORING

GOVERNMENT COLLEGE OF ENGINEERING ERODE

B.E Electronics and Communication Engineering

Name of the Student: R.Lavanya

Naan Mudhalvan Register no: au731121106028

Under the mentor of

Dr. M. Sathyakala

Assistant professor, Dept.of IT

Department of Information Technology(IT)

Department of Electronics and Communication Engineering

Government College of Engineering

Erode ,PO ,near Vasavi College,TamilNadu-638316,

Affiliated to Anna University ,Chennai.

Phase 1:

Problem Definition And Design Thinking

Project definition:

The project involves deploying IOT sensors to measure noise pollution in public areas and providing real time noise level data accessible to the public through a platform or mobile app. The primary objective is to raise awareness about noise pollution and enable informed decision-making. This project includes defining objectives, designing the IOT sensor system, developing the noise pollution information platform and integrating them using technology and python.

Designing Approach

Hardware Approach:

Components required:

- Arduino
- Sound sensor
- Open log
- Groove OLED Display
- Electric lump
- Power from 5V DC to DC setup-2xAA

Software Approach:

Software applications can be used for simulation:

- Cayenne
- Tinker cad
- Arduino IDE
- MQTT
- ThingSpeak

Block Diagram

Objectives

- IoT sensors can be designed to operate efficiently, conserving energy and prolonging the lifespan of batteries or power sources.
- IoT-based noise monitoring systems can engage the community by allowing residents to access noise data and report noise issues through dedicated apps or websites.
- Data collected through IoT-based monitoring can inform the development of noise regulations, zoning decisions, and urban planning to mitigate noise pollution effectively.
- IoT-based monitoring can assess the impact of noise pollution on local ecosystems and wildlife, aiding in conservation efforts.

IoT Sensor Design:

- Deploy IoT sensors equipped with microphones and sound level meters in various locations where noise pollution is a concern. These sensors can continuously measure noise levels and send data to a central database or cloud platform.
- IoT sensors collect noise data, including sound intensity (in decibels), frequency, and duration of noise events. The data is timestamped and geo-tagged to identify where and when noise events occur.
- IoT sensors typically use wireless communication protocols such as Wi-Fi, cellular, or LoRa WAN to transmit data to a central server or cloud-based platform. This enables real-time data collection and analysis.

Elements of the sensor node

Noise pollution information platform

- A web-based platform and mobile app will be designed to monitor the noise level in a locality which can be accessed by the public.
- The app will display the data taken from the sound sensor.
- The app will have various features which includes reading of sound levels in dBA, the level of warning based on the reading of sound intensity.
- There will be different level of warnings which are "low", "normal", "high" and "very high".

Integration Approach

- First layer is the sensing layer which consists of noise sensor (microphone) for receiving the noise level information and the microcontroller.
- Second is the gateway layer that is a local gateway device which is responsible for authentication of sensor nodes and transmission of encrypted data.
- The service layer as third, consists of a cloud server and data storage.
- The application layer provides the interface to the system. End users can monitor the obtained results and control the system on the user interface.

Conclusion

- A low-budget smart sensor unit for environmental noise level measurement is designed using IoT which consist of a microphone, Arduino Uno microcontroller, Lo-Ra click module and antenna for connection and cloud storage to the global TTN platform.
- In general, can be concluded that the system has shown good performance in terms of sustainability, acquisition, transmission and representation of the measured values for the noise level.