## Hierarchical clustering: start

Watch video "Hierarchical Clustering - Fun and Easy Machine Learning" (10min) by Augmented Startups

https://www.youtube.com/watch?v=EUQY3hL38cw
(link in MyCourses)

### Questions:

- Which linkage metric to use?
- What kinds of clusters can you find?
- Is there anything equivalent to large data?

### Generic agglomerative hierarchical clustering

given D = intercluster distance ("linkage metric")

Initialize distance matrix M Repeat until termination:

- 1. pick closest pair of clusters  $C_i$  and  $C_j$  ( $D(C_i, C_j)$  minimal)
- 2. merge clusters:  $C_{ij} = C_i \cup C_j$
- 3. update M
  - remove rows and cols of  $C_i$  and  $C_j$
  - add a new row and col for  $C_{ij}$  + their entries (distances to  $C_{ij}$ )

# Famous linkage metrics

| Single      | $\min_{\mathbf{x_1} \in C_1, \mathbf{x_2} \in C_2} \{d(\mathbf{x_1}, \mathbf{x_2})\}$       | elongated, straggly, also                     |
|-------------|---------------------------------------------------------------------------------------------|-----------------------------------------------|
|             |                                                                                             | concentric clusters                           |
| Complete    | $\max_{\mathbf{x_1} \in C_1, \mathbf{x_2} \in C_2} \{d(\mathbf{x_1}, \mathbf{x_2})\}$       | small, compact, hyper-                        |
|             |                                                                                             | spherical, equal-sized                        |
| Average     | $\frac{\sum_{\mathbf{x_1} \in C_1, \mathbf{x_2} \in C_2} d(\mathbf{x_1, x_2})}{ C_1  C_2 }$ | quite compact; allows                         |
|             |                                                                                             | different sizes and densities                 |
| Minimum     | $SSE(C_1 \cup C_2) - SSE(C_1)$                                                              | compact, quite well-separated,                |
| variance    | $-SSE(C_2)$                                                                                 | hyperspherical; not elongated                 |
| (Ward)      |                                                                                             | or very different sized                       |
| Distance of | $d(\mathbf{c_1}, \mathbf{c_2})$                                                             | hyperspherical, equal-sized;                  |
| centroids   |                                                                                             | not elongated  MDM course Aalto 2023 – p.3/19 |

### Famous linkage metrics

- linkage metric has a strong effect on results!
- Warning: most linkage metrics are sensitive to data order! ⇒ results may change if you shuffle data
- single linkage is not, but it is prone to "chaining effect"



Figure 12. A single-link clustering of a pattern set containing two classes (1 and 2) connected by a chain of noisy patterns (\*).

Figure 13. A complete-link clustering of a pattern set containing two classes (1 and 2) connected by a chain of noisy patterns (\*).

image source https://www.slideshare.net/KalpaGunaratna/incremental-concpetual-clustering-reading-group-discussion

## Example (Old Faithful data)



image source: Sungkyu Jung (2013) slides on clustering (STAT2221, Univ. of Pittsburgh)
https://www.stat.pitt.edu/sungkyu/course/2221Fall13/lec7\_clustering.pdf

### Connection to graph theory

Single linkage is related to connected components and complete linkage to cliques

Let  $e_1, \ldots, e_m$  be edges of complete distance graph with weights  $d_1 < d_2 < \ldots < d_m$ .  $(m = \frac{n(n-1)}{2}, n \text{ data points})$ 

### Single linkage

- 1. Initialize: Create graph G without edges
  - i.e., n connected components and all data points in their own clusters
- 2. Repeat until one connected component
  - lacktriangle add new edge  $e_i$  with smallest  $d_i$  to  ${f G}$
  - form clusters from connected components of G

### Connection to graph theory

### Complete linkage

- 1. Initialize: Create graph G without edges
  - all data points in their own clusters
- 2. Repeat until G complete
  - lacktriangle add new edge  $e_i$  with smallest  $d_i$  to  ${f G}$
  - if two of the current clusters form a clique in G, merge them

Note: You are not allowed to break existing clusters, even if you would find alternative cliques

### Task: graph-based single linkage clustering

#### Distance matrix:

|    | v1 | v2 | v3 | v4 | v5 |
|----|----|----|----|----|----|
| v1 | 0  | 6  | 8  | 2  | 7  |
| v2 | 6  | 0  | 1  | 5  | 3  |
| v3 | 8  | 1  | 0  | 10 | 9  |
| v4 | 2  | 5  | 10 | 0  | 4  |
| v5 | 7  | 3  | 9  | 4  | 0  |



Add edges in the increasing order of weights (2, 3, ..., 7). What are the corresponding single linkage clusters? Complete linkage clusters? (hometask)

## Task

# \*Extra: single linkage clustering from minimum spanning trees

Begin from complete distance graph **G** and search its minimum spanning tree (MST)

Repeat until all objects belong to one cluster:

- Merge two clusters that are connected in the MST and have the smallest edge weight
- 2. Set the edge weight as  $\infty$

### Notes:

- The same can be done in a divisive manner: cut the MST edges in the descending order by weight.
- If there are no proximity ties, the result is the same as normal single likage clustering

### \*Example (Jain and Dubes 1988, Fig 3.6)



### Agglomerative or divisive?

- Agglomerative = bottom-up
  - cheaper and easier to implement
  - still slow, at least  $O(n^2)$
  - early decisions based on local patterns, cannot cancel later
- Divisive = top-down
  - often better quality clustering
     = large clusters created early, based on global distribution
  - fastest  $O(n^2 \log(n))$

### Bisecting K-means

Idea: combine divisive hierarchical and K-means. Given K and q=number of iterations

- 1. Initialization: put all data points into one cluster
- 2. Repeat until *K* clusters:
  - choose cluster C to split (with largest SSE)
  - split C q times with 2-means
  - keep the best split (two new clusters)
- + efficient (like *K*-means)
- good results (comparable to hierarchical)

## On dendrograms

- Threshold dendrograms: in which order the clusters were formed
- Proximity dendograms: at which proximities they were formed



image source Jain & Dubes 1988 Fig 3.5

### Dendrogram example

Here real (biological) classes of data points are shown under the dendrogram



image author Lehtiniemi 2020

### Another dendrogram example



image source

https://www.instituteofcaninebiology.org/how-to-read-a-dendrogram.html

### Summary

- useful information on clustering structure
  - dendrograms!
- linkage metrics have a strong effect
  - Beware: most metrics sensitive to data order!
- connections to graph theory (single ↔ connected components, complete ↔ cliques)
- inefficient for really large data (at least  $O(n^2)$  time and space)

## Voluntary task: Fill a summary table!

| method             | data type | cluster type | benefits | drawbacks |
|--------------------|-----------|--------------|----------|-----------|
| K-representatives  |           |              |          |           |
| K-means            |           |              |          |           |
| K-medoids          |           |              |          |           |
|                    |           |              |          |           |
| Hierarchical       |           |              |          |           |
| singe-link         |           |              |          |           |
| •••                |           |              |          |           |
| <b>Graph-based</b> |           |              |          |           |
| Density-based      |           |              |          |           |
| Probabilistic      |           |              |          |           |

### Further reading

- Gan, Ma, Wu: Data clustering theory, algorithms, and applications. SIAM 2007.
- Jain and Dubes: Algorithms for clustering data.
   Prentice-Hall 1988.