Differential Manifolds

José Sá

 $^1DAMTP,\ University\ of\ Cambridge,\ UK$

E-mail: jac295@cam.ac.uk

Abstract test...

Contents

1	Diff	ferential Manifolds and differentiable maps	2
	1.1	Review of General Topology	2
	1.2	Differential Manifolds	

1 Differential Manifolds and differentiable maps

1.1 Review of General Topology

Let S be a set.

Definition 1.1. A topology is a collection \mathcal{T} of subsets of S, called the open sets, such that:

- (i) $\phi, S \in \mathcal{T}$, where $\phi \equiv \{ \}$ is the empty set.
- (ii) if $U_{\alpha} \in \mathcal{T}$, for $\alpha \in A$, then $\bigcup_{\alpha \in A} U_{\alpha} \in \mathcal{T}$
- (iii) if $U_1, \ldots, U_n \in \mathcal{T}$, $n \in \mathbb{N}$, then $\bigcap_{i=1}^n U_i \in \mathcal{T}$

Example 1.1.

- 1) $S = \mathbb{R}^n$, $U \in \mathcal{T}$ iff $U \subseteq S$ is open in the usual sense.
- 2) If (S, d) is a metric space, then it is a topological space.

Definition 1.2. Let (S, \mathcal{T}) be a topological space. A basis for the topology of S if the collection $B \subseteq \mathcal{T}$ so that any $U \in \mathcal{T}$ is the union of sets from B.

Example 1.2.

- 1) $\{B(x;\epsilon) \mid x \in \mathbb{R}^n, \epsilon \in \mathbb{R}^+\}$ is a basis for the usual topology in \mathbb{R}^n .
- 2) $\{B(x;\epsilon) \mid x \in \mathbb{Q}^n, \epsilon \in \mathbb{Q}^+\}$ is a countable basis for \mathbb{R}^n .

Definition 1.3. (S, \mathcal{T}) is second countable if the topology \mathcal{T} has a countable basis.

Definition 1.4. (S, \mathcal{T}) is Hausdorff if for all $x, y \in S$, with $x \neq y$, there are open sets $U, V \subseteq S$ so that $x \in U$, $y \in V$ and $U \cap V = \phi$.

In a Hausdorff space, we can always distinguish two points by enclosing them on open balls that do not intersect.

Let's now define continuity in terms using topology language. Let X, Y be any two topological spaces.

Definition 1.5. $f: X \longrightarrow Y$ is continuous at $x \in X$ if for any open $V \subseteq Y$ containing y, there exists a open $U \subseteq X$ containing x so that $f(U) \subseteq V$.

Definition 1.6. $f: X \longrightarrow Y$ is continuous if it is continuous at all $x \in X$.

Proposition 1.1. $f: X \longrightarrow Y$ is continuous iff for all open $V \subseteq Y$, the preimage $f^{-1}(V) \equiv \{x \in X \mid f(x) \in V\} \subseteq X$ is open in X.

Definition 1.7. $F \subseteq X$ is closed if $X \setminus F \subseteq X$ is open.

Proposition 1.2. $f: X \longrightarrow Y$ is continuous iff $f^{-1}(F) \subseteq X$ is closed in X, for every closed $F \subseteq Y$ in Y.

Definition 1.8. A continuous map $f: X \longrightarrow Y$ is called a homeomorphism iff it has a continuous inverse $g: Y \longrightarrow X$, such that $f \circ g = \operatorname{id}_Y$ and $g \circ f = \operatorname{id}_X$. We say that X and Y are homeomorphic. We write $g = f^{-1}$ and $X \cong Y$.

1.2 Differential Manifolds

Definition 1.9. A topological manifold of dimension m is a second countable, Hausdorff topological space M, so that any $p \in M$ has a open neighborhood $x \ni U \subseteq M$, which is homeomorphic with \mathbb{R}^m .

Remark. We might as well have said homeomorphic with an open subset of \mathbb{R}^m , because $B(0,\epsilon) = \{ x \in \mathbb{R}^m \mid ||x|| < \epsilon \} \cong \mathbb{R}^m$. To see that we can use the function

$$f: B(0, \epsilon) \longrightarrow \mathbb{R}^m$$

$$x \longmapsto \frac{x}{\epsilon - \|x\|}$$

Remark. The Theorem of Invariance of Domain states that if $\phi: \mathbb{R}^m \xrightarrow{\cong} \mathbb{R}^n$, then m = n. Hence the definition is consistent.