2.8 Независимость системы аксиом ИВ

■ Система аксиом формально непротиворечивой теории Т называется независимой, если никакая из аксиом не выводима из остальных по правилам вывода теории Т.

Теорема.

 Система аксиом ИВ независима.

Доказательство.

 Независимость аксиом исчисления высказываний L устанавливается через обращение к многозначным логикам.

- Для доказательства независимости схем аксиом необходимо рассмотреть различные интерпретации связок ¬ и →.
- Покажем независимость схемы аксиом \mathcal{A}_1

Таблица для связки ¬

X	$\neg \chi$
0	1
1	1
2	0

Таблица для связки →

X	У	$x \rightarrow y$	x	У	$x \rightarrow y$	x	У	$x \rightarrow y$
0	0	0	1	0	2	2	0	0
0	1	2	1	1	2	2	1	0
0	2	2	1	2	0	2	2	0

Ŋė.

Всякая аксиома, полученная по схеме \mathcal{A}_2 или \mathcal{A}_3 , принимает значение 0 при предложенной интерпретации логических операций.

Действительно, для аксиомы \mathcal{A}_3 таблица значений выглядит так:

A	В	$\neg B \rightarrow \neg A$	$\neg B \rightarrow A$	$(\neg B \rightarrow A) \rightarrow B$	A_3
0	0	2	2	0	0
0	1	2	2	0	0
0	2	2	0	2	0
1	0	2	2	0	0
1	1	2	2	0	0
1	2	2	2	0	0
2	0	2	0	0	0
2	1	2	0	2	0
2	2	0	2	0	0

- Кроме того, правило вывода modus ponens сохраняет у формул свойство равенства 0 в данной интерпретации.
- Действительно, если формулы А и А→В имеют значение 0, то по таблице значений для импликации в новой интерпретации можно однозначно определить, что формула В также имеет значение 0.

 Следовательно, значение 0 принимает и всякая формула, выводимая из аксиом, полученных по схемам A₂ или A₃.

- Формула ($A \rightarrow (B \rightarrow A)$) не равна тождественно 0
- при A=1,B=2 формула принимает значение 2.
- Таким образом, аксиомы по схеме 1 не могут быть выведены с помощью правила вывода из аксиом, построенных по другим схемам.

2.8 Другие аксиоматизации ИВ

Гильберт и Аккерман, 1938

- Связки ∨, ¬, →
- Аксиомы

$$A \lor A \rightarrow A$$
 $A \rightarrow A \lor B$
 $A \lor B \rightarrow B \lor A$
 $(B \rightarrow C) \rightarrow (A \lor B \rightarrow A \lor C)$

■ Правило Modus ponens

Poccep, 1953

- Связки &, ¬, →
- Аксиомы

$$A \& A \rightarrow A$$
 $A \rightarrow A \& B$
 $(A \rightarrow B) \rightarrow (\neg (B \& C) \rightarrow \neg (C \& A))$

■ Правило Modus ponens

Клини, 1952

- **■** Связки &, ¬, →, ∨
- Аксиомы

A&B
$$\rightarrow$$
A A&B \rightarrow B A \rightarrow A \vee B B \rightarrow A \vee B A \rightarrow (B \rightarrow A) A \rightarrow (B \rightarrow A) A \rightarrow (B \rightarrow C)) \rightarrow ((A \rightarrow B) \rightarrow (A \rightarrow C)) (A \rightarrow C) \rightarrow ((B \rightarrow C) \rightarrow ((A \rightarrow B) \rightarrow C)) (A \rightarrow B)) \rightarrow ((A \rightarrow B)) \rightarrow (A \rightarrow B)

■ Правило Modus ponens

Никод, 1917

- Связка | (A|B:=¬A∨¬В)
- Аксиома
- (A|(B|C))|((D|(D|D)) | ((E|B)|((A|E)|(A|E))))
- Правило A, A|(B|C) C

Различные аксиоматизации ИВ равносильны