Linear Algebra

Chapter 4: Eigenvalues and Eigenvectors

University of Seoul School of Computer Science Minho Kim

Table of contents

Introduction: A Dynamical System on Graphs

Introduction to Eigenvalues and Eigenvectors

Determinants

Eigenvalues and Eigenvectors of $n \times n$ Matrices

Similarity and Diagonalization

Iterative Methods for Computing Eigenvalues

Applications and the Perron-Frobenius Theorem

Outline

Introduction: A Dynamical System on Graphs

Introduction to Eigenvalues and Eigenvectors

Determinants

Eigenvalues and Eigenvectors of $n \times n$ Matrices

Similarity and Diagonalization

Iterative Methods for Computing Eigenvalues

Applications and the Perron-Frobenius Theorem

Dynamical System

- For $A \in \mathbb{R}^{n \times n}$, $\lim_{k \to \infty} A^k = ?$
- Try the Octave demos yourselves!
- 1. Complete graphs (K4.m)
- 2. Petersen graph (Petersen.m)
- 3. Cyclic graphs
 - 3.1 Odd number of nodes (C5.m)
 - 3.2 Even number of nodes (C6.m)
- Complete bipartite graphs (K3_3.m)
 - Steady state vector

Outline

Introduction: A Dynamical System on Graphs

Introduction to Eigenvalues and Eigenvectors

Determinants

Eigenvalues and Eigenvectors of $n \times n$ Matrices

Similarity and Diagonalization

Iterative Methods for Computing Eigenvalues

Applications and the Perron-Frobenius Theorem

Eigenvalue Problem

- For a square matrix A, are there nonzero vectors x such that Ax is just a scalar multiplication of x? In other words, which nonzero vectors satisfy $Ax = \lambda x$? $(\lambda \in \mathbb{R}) \rightarrow$ "Eigenvalue problem"
- ▶ eigen- [áigən]: "own" or "charateristic of"

Definition

Let A be an $n \times n$ matrix. A scalar λ is called an **eigenvalue** of A if there is a nonzero x such that $Ax = \lambda x$. Such a vector x is called an **eigenvector** of A corresponding to λ .

- Why are they important?
- Do they exist for any matrix?
- Is there only one eigenvector for an eigenvalue?
- Is there only one eigenvalue for an eigenvector?
- Given an eigenvalue, how can we find the corresponding eigenvectors? → Example 4.2
- How can we find eigenvalues?

Eigenspace

- Example 4.2
 - ightarrow "The set of all eigenvectors corresponding to an eigenvalue λ of an $n \times n$ matrix A is just the set of *nonzero* vectors in $\mathrm{null}(A-\lambda I)$."

Definition

Let A be an $n \times n$ matrix and let λ be an eigenvalue of A. The collection of all eigenvectors corresponding to λ , together with the zero vector, is called the **eigenspace** of λ and is denoted by E_{λ} .

Geometric Interpretation of Eigenvectors

- Ax and λx are parallel, i.e., x is an eigenvector of A iff T_A transforms x into a parallel vector.
- Examples: Scaling, reflection (Ex 4.4), rotation
- Only the direction of an eigenvector matters. (Why?)
 - → Only unit vectors need to be considered. (Fig 4.7)

Finding Eigenvalues

- For $A \in \mathbb{R}^{n \times n}$, the eigenvectors of λ are the nonzero vectors satisfying $Ax = \lambda x$.
 - $\rightarrow Ax \lambda Ix = 0 \rightarrow (A \lambda I)x = 0$
 - ightarrow The eigenspace E_{λ} is the non-trivial null space of $A-\lambda I$.
- ▶ For 2 × 2 matrices,
 - \rightarrow a matrix has a non-trivial null space iff it is non-invertible.
 - → a matrix is non-invertible iff its determinant is zero.
 - $ightarrow \lambda$ is an eigenvalue of A iff $\det{(A \lambda I)} = 0$ (Example 4.5)
- Can be generalized to any square matrices.
 - \rightarrow What are the determinants for $n \times n$ matrices?

Outline

Introduction: A Dynamical System on Graphs

Introduction to Eigenvalues and Eigenvectors

Determinants

Eigenvalues and Eigenvectors of $n \times n$ Matrices

Similarity and Diagonalization

Iterative Methods for Computing Eigenvalues

Applications and the Perron-Frobenius Theorem

Determinants

- Notation: $\det A = |A|$
- ▶ 1 × 1 matrices

$$\det A = |a| = a$$
 (Not the absolute value)

▶ 2 × 2 matrices

$$\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11}a_{22} - a_{12}a_{21}$$

▶ 3 × 3 matrices

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = ?$$

Determinant of a 3×3 Matrix

Definition

Let
$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$
 . Then the **determinant** of A is the scalar

$$\det A = |A| = a_{11} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} - a_{12} \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + a_{13} \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}$$

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} \rightarrow a_{11} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix}$$

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} \rightarrow a_{12} \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix}$$

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} \rightarrow a_{13} \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}$$

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$$

Determinant of a 3×3 Matrix (cont'd)

• With A_{ij} defined as the submatrix of A obtained by deleting row i and column j,

$$\det A = a_{11} \det A_{11} - a_{12} \det A_{12} + a_{13} \det A_{13}$$
$$= \sum_{j=1}^{3} (-1)^{1+j} a_{1j} \det A_{1j}$$

- $\det A_{ij}$ is called the (i, j)-minor of A.
- Computed with respect to the first row.
 - → Why row not column? Why the first row?
 - ightarrow Can be generalized to columns or other rows (The Laplace Expansion Theorem)
- Another method (See (2) on p.264)

$$|A| = a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32} - a_{31}a_{22}a_{13} - a_{32}a_{23}a_{11} - a_{33}a_{21}a_{12}$$

Determinants of $n \times n$ Matrices

Definition

Let $A = [a_{ij}]$ be an $n \times n$ matrix, where $n \ge 2$. Then the **determinant** of A is the scalar

$$\det A = |A| = a_{11} \det A_{11} - a_{12} \det A_{12} + \dots + (-1)^{1+n} a_{1n} \det A_{1n}$$
$$= \sum_{j=1}^{n} (-1)^{1+j} a_{1j} \det A_{1j}$$

• Cofactor expansion along the first row: With (i, j)-cofactor of A defined as

$$C_{ij} = (-1)^{i+j} \det A_{ij},$$

the definition becomes

$$\det A = \sum_{j=1}^{n} a_{1j} C_{1j}.$$

The Laplace Expansion Theorem

Theorem 4.1: The Laplace Expansion Theorem

The determinant of an $n \times n$ matrix $A = [a_{ij}]$, where $n \ge 2$, can be computed as

$$\det A = a_{i1}C_{i1} + a_{i2}C_{i2} + \dots + a_{in}C_{in} = \sum_{j=1}^{n} a_{ij}C_{ij}$$

(which is the **cofactor expansion along the ith row**) and also as

$$\det A = a_{1j}C_{1j} + a_{2j}C_{2j} + \dots + a_{nj}C_{nj} = \sum_{i=1}^{n} a_{ij}C_{ij}$$

(the cofactor expansion along the jth column)

Most useful when the matrix contains a row or column with lots of zeros. Why? (Example 4.11)

Determinants of Triangular Matrices

The Laplace expansion theorem is particularly useful when the matrix is (upper or lower) triangular.

Theorem 4.2

The determinant of a triangular matrix is the product of the entries on its main diagonal. Specifically, if $A=[a_{ij}]$ is an $n\times n$ triangular matrix then

$$\det A = a_{11}a_{22}\cdots a_{nn}$$

Why? (Example 4.12)

Computing Determinants

- Laplace expansion is very inefficient! (p.268)
- ► The determinant of a triangular matrix can be easily found.
- We can compute the determinant of a matrix efficiently from its reduced form.
 - \rightarrow "How does the determinant change after elementary row operations?"

Properties of Determinants

Theorem 4.3

Let $A = [a_{ij}]$ be a square matrix.

- a. If A has a zero row (column), then $\det A = 0$.
- b. If B is obtained by interchanging two rows (columns) of A, then $\det B = -\det A$.
- c. If A has two identical rows (columns), then $\det A = 0$.
- d. If B is obtained by multiplying a row (column) of A by k, then $\det B = k \det A$.
- e. If A, B, and C are identical except that the ith row (column) of C is the sum of the ith rows (columns) of A and B, then $\det C = \det A + \det B$.
- f. If B is obtained by adding a multiple of one row (column) of A to another row (column), then $\det B = \det A$.

Determinants of Elementary Matrices

- (b), (d) and (f) of the properties are related to elementary row operations.
- What are the determinants of elementary matrices?

Theorem 4.4

Let E be an $n \times n$ elementary matrix.

- a. If E results from interchanging two rows of I_n , then $\det E = -1$.
- b. If E results from multiplying one row of I_n by k, then $\det E = k$.
- c. If E results from adding a multiple of one row of I_n to another row, then $\det E = 1$.
 - Determinants of all the elementary matrices are nonzero.

Determinants of Elementary Matrices (cont'd)

• If B = EA, $\det B = ?$

Lemma 4.5

Let B be an $n\times n$ matrix and let E be an $n\times n$ elementary matrix. Then

$$\det(EB) = (\det E)(\det B)$$

How about det (AB) when A is NOT an elementary matrix? → Theorem 4.8 (p.272)

Theorem 4.6

A square matrix A is invertible if and only if $\det A \neq 0$.

Determinants and Matrix Operations

How can we write the followings in terms of $\det A$ and $\det B$?

- \bullet det (kA) = ?
- \rightarrow det (A + B) = ?
- \rightarrow det (AB) = ?
- \bullet det $(A^{-1}) = ?$
- \bullet det $(A^T) = ?$

$$\det(kA)$$
 and $\det(A+B)$

 $ightharpoonup \det (kA)$

Theorem 4.7

If A is an $n \times n$ matrix, then

$$\det\left(kA\right) = k^n \det A$$

- See Theorem 4.3(d).
- \rightarrow det (A+B)
 - $\det(A+B) = \det A + \det B? \to \mathsf{No}!$
 - No general forumla. (p.271)

$\det (AB)$, $\det (A^{-1})$ and $\det (A^T)$

 $ightharpoonup \det(AB)$

Theorem 4.8 If A and B are $n \times n$ matrices, then

$$\det(AB) = (\det A)(\det B)$$

If A is invertible, then

$$\det\left(A^{-1}\right) = \frac{1}{\det A}$$

Theorem 4.10

 $ightharpoonup \det (A^T)$

m 4.10

For any square matrix A,

 $\det A = \det A^T$

Cramer's Rule and the Adjoint

- What is the relation between determinants and the solution of a linear systems? → Cramer's rule (Theorem 4.11)
- What is the relation between determinants and the inverse of a matrix? → Adjoint (Theorem 4.12)
- Notation $A_i({m b})$: the matrix obtained by replacing the ith column of A by ${m b}$

$$A_i(\boldsymbol{b}) = \begin{bmatrix} \boldsymbol{a}_1 & \cdots & \boldsymbol{b} & \cdots & \boldsymbol{a}_n \end{bmatrix}$$

Cramer's Rule

Theorem 4.11: Cramer's Rule

Let A be an invertible $n \times n$ matrix and let b be a vector in \mathbb{R}^n . Then the unique solution x of the system Ax = b is given by

$$x_i = \frac{\det(A_i(\boldsymbol{b}))}{\det A}$$
 for $i = 1, \dots, n$

- Requires to compute determinants
 - → Computationally inefficient except small systems.

Adjoint

- 1. What is the formula of the inverse of a matrix in terms of determinants?
- 2. What is the solution of the equation AX = I?

$$A\boldsymbol{x}_1 = \boldsymbol{e}_1 \quad A\boldsymbol{x}_2 = \boldsymbol{e}_2 \quad \cdots \quad A\boldsymbol{x}_n = \boldsymbol{e}_n$$

- 3. By the Cramer's rule, $x_{ij} = \frac{\det(A_i(e_j))}{\det A}$
- **4**. $\det(A_i(e_j)) = (-1)^{j+i} \det A_{ji} = C_{ji}$ (Why?)
- 5. $A^{-1} = X = \frac{1}{\det A} [C_{ji}] = \frac{1}{\det A} [C_{ij}]^T = \frac{1}{\det A} \operatorname{adj} A$

Adjoint (cont'd)

Theorem 4.12

Let A be an invertible $n \times n$ matrix. Then

$$A^{-1} = \frac{1}{\det A} \operatorname{adj} A$$

- $ightharpoonup \operatorname{adj} A := [C_{ji}] = [C_{ij}]^T$: the adjoint (or adjugate) of A
 - $C_{ij} := (-1)^{i+j} \det A_{ij} : (i,j)$ -cofactor of A

Outline

Introduction: A Dynamical System on Graphs

Introduction to Eigenvalues and Eigenvectors

Determinants

Eigenvalues and Eigenvectors of $n \times n$ Matrices

Similarity and Diagonalization

Iterative Methods for Computing Eigenvalues

Applications and the Perron-Frobenius Theorem

Finding Eigenvalues

- How to compute eigenvalues of a matrix?
- How many eigenvalues does a matrix have?
- λ is an eigenvalue of A iff $\det(A \lambda I) = 0$.

The eigenvalues of a square matrix A are precisely the solutions λ of the equation

$$\det\left(A - \lambda I\right) = 0$$

- ▶ What does $\det(A \lambda I)$ look like?
 - \rightarrow A polynomial in λ of degree n (Characteristic polynomial of A)
 - \rightarrow At most n distinct eigenvalues

Finding Eigenvalues and Eigenvectors Procedure

Let A be an $n \times n$ matrix.

- 1. Compute the characteristic polynomial $\det (A \lambda I)$ of A.
- 2. Find the eigenvalues of A by solving the characteristic equation $\det (A \lambda I) = 0$ for λ .
- 3. For each eigenvalue λ , find the null space of the matrix $A-\lambda I$. This is the eigenspace E_{λ} , the nonzero vectors of which are the eigenvectors of A corresponding to λ .
- 4. Find a basis for each eigenspace.
 - Algebraic multiplicity of an eigenvalue: multiplicity as a root of the characteristic equation.
 - Geometric multiplicity of an eigenvalue λ : dim E_{λ}
 - What's the relation between the algebraic & geometric multiplicities? (Example 4.18 & 4.19)
 - → Geometric multiplicity ≤ Algebraic multiplicity (Lemma 4.26 on p.303)

Eigenvalues of Triangular Matrices

 How does the characteristic equation look like if A is triangular? (See Theorem 4.2 on p.268)

$$\rightarrow (a_{11} - \lambda)(a_{22} - \lambda) \cdots (a_{nn} - \lambda) = 0$$

Theorem 4.15

The eigenvalues of a triangular matrix are the entries on its main diagonal.

What Does Eigenvalues Tell Us?

Theorem 4.16

A square matrix A is invertible if and only if 0 is *not* an eigenvalue of A.

- Why?
- ...and there will be more (about the importance of eigenvalues).

Fundamental Theorem of Invertible Matrices: Ver. 3

Theorem 3.27

Let A be an $n \times n$ matrix. The following statements are equivalent:

- a. A is invertible.
- **b.** Ax = b has a unique solution for every b in \mathbb{R}^n .
- c. Ax = 0 has only the trivial solution.
- d. The reduced row echelon form of A is I_n .
- f e. A is a product of elementary matrices.
- f. rank(A) = n
- g. nullity(A) = 0
- h. The column vectors of A are linearly independent.
- i. The column vectors of A span \mathbb{R}^n .
- j. The column vectors of A form a basis for \mathbb{R}^n .
- k. The row vectors of A are linearly independent.
- I. The row vectors of A span \mathbb{R}^n .
- m. The row vectors of A form a basis for \mathbb{R}^n .
- n. $\det A \neq 0$
- o. 0 is not an eigenvalue of A.

Eigenvalue of A^k and A^{-1}

Theorem 4.18

Let A be a square matrix with eigenvalue λ and corresponding eigenvector x.

- a. For any positive integer k, λ^k is an eigenvalue of A^k with corresponding eigenvector x.
- b. If A is invertible, then $1/\lambda$ is an eigenvalue of A^{-1} with corresponding eigenvector \boldsymbol{x} .
- c. For any integer k, λ^k is an eigenvalue of A^k with corresponding eigenvector x.
 - Application: Computing $A^k x$ where x is not an eigenvector of A. (Example 4.21)
 - \rightarrow Is this possible for any x?

Computing $A^k x$

Theorem 4.19

Suppose the $n \times n$ matrix A has eigenvectors v_1, v_2, \cdots, v_m with corresponding eigenvalues $\lambda_1, \lambda_2, \cdots, \lambda_m$. If x is a vector in \mathbb{R}^n that can be expressed as a linear combination of these eigenvectors—say,

$$\boldsymbol{x} = c_1 \boldsymbol{v}_1 + c_2 \boldsymbol{v}_2 + \dots + c_m \boldsymbol{v}_m$$

then, for any integer k,

$$A^k \mathbf{x} = c_1 \lambda_1^k \mathbf{v}_1 + c_2 \lambda_2^k \mathbf{v}_2 + \dots + c_m \lambda_m^k \mathbf{v}_m$$

When does it work for any x?

Theorem 4.20

Let A be an $n \times n$ matrix and let $\lambda_1, \lambda_2, \cdots, \lambda_m$ be distinct eigenvalues of A with corresponding eigenvectors $\boldsymbol{v}_1, \boldsymbol{v}_2, \cdots, \boldsymbol{v}_m$. Then $\boldsymbol{v}_1, \boldsymbol{v}_2, \cdots, \boldsymbol{v}_m$ are linearly independent.

Outline

Introduction: A Dynamical System on Graphs

Introduction to Eigenvalues and Eigenvectors

Determinants

Eigenvalues and Eigenvectors of $n \times n$ Matrices

Similarity and Diagonalization

Iterative Methods for Computing Eigenvalues

Applications and the Perron-Frobenius Theorem

Why Diagonalize Matrices?

- Triangular and diagonal matrices are good.
 - → How can we relate a square matrix to a triangular or diagonal one keeping the eigenvalues?
- Gaussian elimination?
 - → Eigenvalues are not preserved.
- Diagonalization

Similar Matrices

Definition

Let A and B be $n \times n$ matrices. We say that A is similar to B if there is an invertible $n \times n$ matrix P such that $P^{-1}AP = B$. If A is similar to B, we write $A \sim B$.

- Equivalent to " $A = PBP^{-1}$ " or "AP = PB."
- ▶ P depends on A and B. Is it unique?

Theorem 4.21

Let A, B and C be $n \times n$ matrices.

- a. $A \sim A$. (Reflexivity)
- b. If $A \sim B$, then $B \sim A$. (Symmetry)
- c. If $A \sim B$ and $B \sim C$, then $A \sim C$. (Transitivity)
 - Equivalent relation

Similar Matrices (cont'd)

Theorem 4.22

Let A and B be $n \times n$ matrices with $A \sim B$. Then

- a. $\det A = \det B$.
- **b.** *A* is invertible if and only if *B* is invertible.
- c. A and B have the same rank.
- **d**. *A* and *B* have the same characteristic polynomial.
- e. A and B have the same eigenvalues.
 - The converse is not necessarily true. (See Remark on p.300.)
 - Useful when showing two matrices are not similar. (How?)

Diagonalization

- Good if a square matrix is similar to a diagonal matrix.
- Is it always possible?
- ▶ How can we find P?

Definition

An $n \times n$ matrix A is **diagonalizable** if there is a diagonal matrix D such that A is similar to D—that is, if there is an invertible $n \times n$ matrix P such that $P^{-1}AP = D$.

Diagonalization (cont'd)

▶ How can we find D and P?

Theorem 4.23

Let A be an $n \times n$ matrix. Then A is diagonalizable if and only if A has n linearly independent eigenvectors.

More precisely, there exist an invertible matrix P and a diagonal matrix D such that $P^{-1}AP = D$ if and only if the columns of P are n linearly independent eigenvectors of A and the diagonal entries of D are eigenvalues of A corresponding to the eigenvectors in P in the same order.

▶ Is a non-invertible matrix diagonalizable? (Example 4.26)

Diagonalization (cont'd)

How can we check if the eigenvectors are linearly independent? (See the 2nd remark below Example 4.26)

Theorem 4.24

Let A be an $n \times n$ matrix and let $\lambda_1, \lambda_2, \cdots, \lambda_k$ be distinct eigenvalues of A. If \mathcal{B}_i is a basis for the eigenspace E_{λ_i} , then $\mathcal{B} = \mathcal{B}_1 \cup \mathcal{B}_2 \cup \cdots \cup \mathcal{B}_k$ (i.e., the total collection of basis vectors for all the eigenspaces) is linearly independent.

 We don't have to check the linear independence of eigenvectors associated with different eigenvalues.

Theorem 4.25

If A is an $n \times n$ matrix with n distinct eigenvalues, then A is diagonalizable.

▶ The converse is not always true.

The Diagonalization Theorem

Lemma 4.26

If A is an $n \times n$ matrix, then the geometric multiplicity of each eigenvalue is less than or equal to its algebraic multiplicity.

► The sum of the algebraic multiplicities is always *n*. Therefore, *A* is diagonalizable when...?

Theorem 4.27

Let A be an $n \times n$ matrix whose distinct eigenvalues are $\lambda_1, \lambda_2, \cdots, \lambda_k$. The following statements are equivalent:

- a. A is diagonalizable.
- b. The union \mathcal{B} of the bases of the eigenspaces of A (as in Theorem 4.24) contains n vectors.
- c. The algebraic multiplicity of each eigenvalue equals its geometric multiplicity.
 - Computing A^k (Example 4.29) $A^k = PD^kP^{-1}$ for all $k \ge 1$.

Computing $A^k x$

▶ When x is an eigenvector of A. (Theorem 4.18)

$$A^k \boldsymbol{x} = \lambda^k \boldsymbol{x}$$

When x is a linear combination of the eigenvectors of A.
 (Theorem 4.19)

$$\boldsymbol{x} = \sum_{j=1}^{m} c_j \boldsymbol{v}_j \to A^k \boldsymbol{x} = \sum_{j=1}^{m} (c_j A^k \boldsymbol{v}_j) = \sum_{j=1}^{m} (c_j \lambda_j^k \boldsymbol{v}_j)$$

▶ When A is diagonalizable. (Example 4.29)

$$A^k \boldsymbol{x} = (PDP^{-1})^k \boldsymbol{x} = PD^k P^{-1} \boldsymbol{x}$$

Otherwise... Good luck!

Outline

Introduction: A Dynamical System on Graphs

Introduction to Eigenvalues and Eigenvectors

Determinants

Eigenvalues and Eigenvectors of $n \times n$ Matrices

Similarity and Diagonalization

Iterative Methods for Computing Eigenvalues

Applications and the Perron-Frobenius Theorem

Outline

Introduction: A Dynamical System on Graphs

Introduction to Eigenvalues and Eigenvectors

Determinants

Eigenvalues and Eigenvectors of $n \times n$ Matrices

Similarity and Diagonalization

Iterative Methods for Computing Eigenvalues

Applications and the Perron-Frobenius Theorem

Markov Chains

$$\boldsymbol{x}_{k+1} = P\boldsymbol{x}_k \quad \rightarrow \quad \boldsymbol{x}_k = P^k \boldsymbol{x}_0$$

- P: transition matrix
- All the components in each column of P add up to 1.
 (Why?)
- x_k : state vector cf) probability vector
- Here, we will see...
 - Steady state vector x: Px = x.
 → "Every Markov chain has a unique steady state vector."
 (p.231)
 - $\lim_{k\to\infty} x_k = \lim_{k\to\infty} P^k x_0 = ?$ $\lim_{k\to\infty} P^k x_0 = x$ $x_k \text{ converges to } x \text{ regardless of } x_0.$

Markov Chains (cont'd)

Theorem 4.30

If P is the $n \times n$ transition matrix of a Markov chain, then 1 is an eigenvalue of P.

- There always exists a vector x such that Px = x.
 - \rightarrow There always exists a steady state vector. But is it unique?

Theorem 4.31

Let P be an $n \times n$ transition matrix with eigenvalue λ .

- a. $|\lambda| \leqslant 1$
- b. If P is regular and $\lambda \neq 1$, then $|\lambda| < 1$.
 - Positive matrix: All the entries are positive.
 - **Regular matrix**: P^k is positive for some k.
 - If P is regular, -1 cannot be an eigenvalue.

Markov Chains (cont'd)

Lemma 4.32

Let P is a regular $n \times n$ transition matrix. If P is diagonalizable, then the dominant eigenvalue $\lambda_1 = 1$ has algebraic multiplicity 1.

- There is only one eigenvector (and its scalar multiplications) such that Px = x.
 - \rightarrow the steady state vector is unique.

Markov Chains (cont'd)

Theorem 4.33

Let P be a regular $n \times n$ transition matrix. Then as $k \to \infty$, P^k approaches an $n \times n$ matrix L whose columns are identical, each equal to the same vector \boldsymbol{x} . This vector \boldsymbol{x} is a steady state probability vector for P.

$$\begin{array}{l} \lim_{k\to\infty}P^k=\begin{bmatrix}\boldsymbol{x}&\cdots&\boldsymbol{x}\end{bmatrix}=:L\\ \to \lim_{k\to\infty}P^k \text{ converges. But what is }\lim_{k\to\infty}P^k\boldsymbol{x}_0=? \end{array}$$

Theorem 4.34

Let P be a regular $n \times n$ transition matrix, with x the steady state probability vector for P, as in Theorem 4.33. Then, for any initial probability vector x_0 , the sequence of iterates x_k approaches x.

lacksquare $\lim_{k o \infty} P^k x_0 = x$ for any x_0 (initial probability vector)

Population Growth

$$L = \begin{bmatrix} b_1 & b_2 & b_3 & \cdots & b_{n-1} & b_n \\ s_1 & 0 & 0 & \cdots & 0 & 0 \\ 0 & s_2 & 0 & \cdots & 0 & 0 \\ 0 & 0 & s_3 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & s_{n-1} & 0 \end{bmatrix}$$

- Leslie matrix
- "The proportion of the population in each class is approaching a stead state." (p.235)
 - \rightarrow There exists a vector such that $Lx = \lambda x$ where $\lambda > 0$.

Theorem 4.35

Every Leslie matrix has a unique positive eigenvalue and a corresponding eigenvector with positive components.