

Introduction

Image and Signal Processing

Norman Juchler

Overture

What is a signal? What is signal processing?

Spot the signals!

Spot the signals!

Task 1: In teams of two, examine the various signals that you have just experienced. Where did they occur, what happened to the signals? Create a list of 10 observations. Be creative!

Task 2: Try to produce a concise definition for signals.

Some observations involving signals...

- The drummer sets the beat
- The guitarist's effects unit distorts the sound
- Various microphones or pickup systems record the instruments
- A sound reinforcement system amplifies and mixes the sound
- The bassist recognizes the change in harmony in time
- Spotlights swirl around and generate a programmed lighting effect
- A spectator's body signals a critical level of intoxication through slight nausea
- The DJ plays samples that were previously processed in an audio editing tool
- A red LED signals the status of the guitarist's monitor speaker

- ...

Introduction

Some observations involving signals...

- The video and audio are recorded using a smartphone camera
- The video was edited and converted into a compatible format
- The beamer produces the video on the canvas
- The computer streams the data from a file
- The image reaches the students' attention via their retinas
- ...while at the same time a specific pattern of neural activity signals:

The concept of signal is omnipresent!

Introduction

What is a signal?

Definition: A detectable physical quantity or impulse (such as a voltage, current, or magnetic field strength) by which messages or information can be transmitted

Based on Merriam-Webster

Definition: Signal refers to both the process and the result of transmitting data, typically accomplished by varying a physical quantity over time or space.

Based on Wikipedia

Definition: Carrier of information (e.g., an electromagnetic wave), which is modulated/modified according to the content of the information to be transmitted.

Based on Duden

Properties of signals

Task 3: From a previous course, we recall the smartphone app **Phyphox**, which allows users to explore and visualize signals obtained from the sensors of their smartphones.

In teams of two, investigate the properties of different signals.

zhaw

Properties of signals

- Signals can be transmitted and received
- Signals can be processed and stored
- Signals carry information
- Signals can be classified by mathematical properties*
 - Continuous-time vs. discrete-time signals
 - Analog vs. digital signals
 - Periodic vs. aperiodic signals
 - Even vs. odd signals
 - Deterministic vs. random signals

Introduction

Properties of signals

- Signals can be transmitted and received
- Signals can be processed and stored
- Signals carry information
- Signals can be classified by mathematical properties*
- Signals can be modelled mathematically*, by means of
 - Amplitude
 - Characteristic frequencies
 - Latency (time delay between signal initiation and reception)
 - Period (for periodic signals)
 - Amount of energy or power carried by a signal
- Signals can suffer from noise or distortions

Signals and transmission media

- Some forms of signals require a medium for signal transmission, that is, a material or substance capable of propagating waves or energy. Examples:
 - Sound waves require a fluid or solid medium
 - Electrical signals (that involve the movement of charge carriers, like electrons) can travel through conductive materials such as wires
 - Biochemical signals in an organism (like hormones, neurotransmitters or cytokines) usually require a bodily fluid as a medium (like cytosol, interstitial fluid, blood)
- Other forms of signals do not require a transmission medium. Examples:
 - Electromagnetic waves (light, radio waves, microwaves)
 - Gravitational waves

Example: Electroencephalography (EEG)

- EEGs measure the electrical activity of the brain
- Records the electrical signals produced by millions of neurons firing synchronously
- Different types of brain waves are characteristic for different states of consciousness

Image sources: Link 1,, Link 2, Link 3

Distinction of subdisciplines

Analog signal processing (ASP)

- Operates on continuous signals
- Modify signals using physical principles
- Example: amplify or filter an electric signal with analog circuits
- Applications: radio frequency communication, audio processing, optical filters / classical optics
- Historical significance in early electronic devices before the advent of digital signal processing

This course:
digital signal and
image processing

Digital signal processing (DSP)

- Operates on digital representations of signals (discrete-time, discrete-amplitude): often as sequences of numbers sampled at regular intervals
- DSP employs various algorithms and techniques to transform, filter, or enhance signals
- DSP algorithms are typically implemented using software on computers or specialized hardware
- DSP has a wide range of applications, from telecommunications, audio and speech processing, image and video processing, and more
- Predominant form of signal processing, DSP has revolutionized various industries

Distinction of subdisciplines

Common specialties

- Audio and speech processing
- Telecommunication
- Image processing
- Video processing
- Biomedical image processing
- Radar and sonar signal processing
- Metrology / sensor signal processing

Related domains:

- Machine learning: Enhances signal processing workflows by employing algorithms that learn patterns from data.
- Mathematics, statistics, stochastics: Used to model and describe signals and data generating processes.
- Information theory: Studies the processing, extraction, storage, transmission and quantification of information
- System theory: Studies dynamic systems, the inner states of systems, and their in- and output behavior. Used for, instance to, model signal generating processes.
- Control systems: Studies how to control the states of dynamic systems. Involves measurement and control signals

Introduction

Structure of the course

Overview: Content of the course

- Analog and digital signals
- Sampling, sampling theorem
- Fourier transform and spectra
- Noise and other sources of error
- Important filter operations and transformations
- Process and visualize time series and image data in Python
- Applications of image and signal processing

Spectra of two insects

Illustration of 2D convolution

zh

Semester plan

- Course is organized in three blocks:
 - Time signal processing
 - Image processing
 - Applications
- The two first parts are completed with a graded written examination
- In the second half, students work on a project

_	<u>CW</u>	SW	Date	What	Topics
	8	1	17.02.25	Practice	Introduction: Motivation, general information and setup
			21.02.25	Lecture	Time signal processing: Continuous and discrete signals, sampling
!	9	2	24.02.25	Practice	Time signal processing: Audio signals, superposition, sampling, autocorrelation
			28.02.25	Lecture	Fourier: Types of Fourier transforms, time-frequency duality, spectra
	10	3	03.03.25	Practice	Fourier: FT for own signal, spectra and visualizations
			07.03.25	Lecture	Filtering: Convolution, signal characteristics and noise, purpose
	11	4	10.03.25	Practice	Filtering: Time-domain behavior of different filters
			14.03.25	Lecture	Filtering: Common filters for (discrete) time signals
П	12	5	17.03.25	Practice	Filtering: Frequency domain behavior of filters
			21.03.25	Lecture	Images: Sampling, formats, spatial and color space transformations
	13	6	24.03.25	Practice	Examination 1: Signal processing / Basics about image processing
			28.03.25	Lecture	Fourier in 2D: Amplitude (and phase) images, spectrogram
П	14	7	31.03.25	Practice	Fourier in 2D: Spectral images, DIY kernels / Group projects: Topic fair
			04.04.25	Lecture	Image processing: Gradients, noise removal, detection
	15	8	07.04.25	Practice	Image processing: Noise removal, detection
			11.04.25	Lecture	Image processing: Masks, morphological operations, contours, segmentation
	16	9	14.04.25	Practice	Image processing: Masks, / Group projects: Problem statement
			18.04.25		Karfreitag / Good Friday
	17	10	21.04.25		Easter Monday
			25.04.25	Lecture	Image processing: Feature extraction
	18	11	28.04.25		Industry visits / Brücke
			02.05.25		
	19	12	05.05.25	Practice	Examination 2: Image processing
			09.05.25	Lecture	Applications: Matching / registration, stereo vision, demos
	20	13	12.05.25	Practice	Group projects: Q&A
			16.05.25	Lecture	Applications: Compression (JPEG / MPEG), demos
	21	14	19.05.25	Practice	Applications: From Bar- to QR-Codes
			23.05.25	Lecture	Summary / Buffer
	22	15	26.05.25	Practice	Group projects: Q&A
			30.05.25		Auffahrt / Brücke
	23	16	02.06.25		Semester break
			06.06.25		Group projects: Submission of notebooks – Fr 06.06.25, 23:59
	24	17	09.06.25		Semester break
			13.06.25		Group projects: Submission peer feedback – Fr 13.06.25, 23:59
_			· ·		

Course assessment

Assessment	Weight
Experience grade	30%
Grade of intermediate exam I	5%
Grade of intermediate exam II	5%
Grade of course project (teams of 2-3)	20%
Final written module examination	70%

Intermediate exams

- Duration: 30min
- (Pen and paper or Moodle)
- Permitted aids:
 - Summary: max. 2 A4 pages
 - Calculator
 - Dictionary
- In presence (on Monday morning)
- Topics: Consult the learning objectives!
- In the event of illness (medical certificate required):
 Oral exam on a separate date

Date	Time	Exams	Topics
Monday, 24.03.2025	08:15	Intermediate 1	Signals
Monday, 05.05.2025	, 08:15	Intermediate 2	Images

Group projects

- In group of 2-3 students
- Goal: Realize a filter project
- Possible topics:
 - Own or prepared ones
 - During the topic fair, we form groups and discuss possible topics
- Submission:
 - A documented Jupyter notebook (A template will be provided)
 - All relevant datafiles

Date	Event
Mo, 31.03.2025	Topic fair for group projects
Mo, 14.04.2025	Start group projects
Fr, 06.06.2025	Submission project notebooks

Didactic concept

Didactic challenges:

- The range of topics is rather large
- The concepts are abstract
- At the same time, the course should serve joy and curiosity

Advantages:

- The topics are relevant to daily life and other subjects taught in the ADLS
- Results appeal to the senses (hearing, seeing) and are therefore fun.

This course

- ...offers a blend of theory and practice
- ...promotes active participation for better learning effects
- ...requires the students to actively digest the provided materials
- ...relies on learning objectives to provide guidance (for the students and the tutor)
- (...favors Git/GitHub over Moodle)

Communication channels

- For personal messages:
 - norman.juchler@zhaw.ch
 - Monday morning in person
- From tutor to students:
 - Moodle announcements
- From everyone to everyone:
 - GitHub Discussions
- Learning resources:
 - GitHub project
 - Pull recent changes!
 - Enable "Watch" for notifications!

