Updated Heuristic Record for RH via NB/BD — v13.3

Zero-Free Symmetry and Weighted Fits in Narrow-Band / Broad-Daylight

Serabi (math.NT; cross-list: math.CA)

October 3, 2025

Abstract

We report a compact, reproducible update (v13.3) to our heuristic program toward Riemann Hypothesis (RH) via NB/BD transforms. Using $K_{mn}=e^{-\frac{1}{2}|\log(m/n)|}$ and weighted least-squares, we record a zero-free symmetry boost $\eta\approx 0.35\to 0.5075$ (driven by $\varepsilon=0.08$), with slope parameter $\theta:0.03\to 0.280$ and $R^2:0.008\to 0.315$. At $N=5\cdot 10^6$ we log the split errors MSE₊ = 0.098, MSE₋ = 0.185, and MSE* = 0.145, with down-weighting $w_-=1.2$ yielding $\sim 10\%$ reduction in MSE₋. A small-sample ridge run (5k) gives $\sim 12\%$ improvement (0.170 \to 0.150). No proof is claimed; this is a heuristic record with full code for reproduction.

1 Introduction

We work within the NT framework where NB/BD weighted correlations are used to amplify zero-free structure on critical-type axes. Our kernel is

$$K_{mn} = e^{-\frac{1}{2}|\log(m/n)|}. (1)$$

The aim is to push a symmetry indicator η (Polya-type $c_0 = 0.7$ baseline) beyond 0.5 under controlled weights, while monitoring slope θ in log-log regressions and out-of-bag mean square error (MSE) splits. We emphasize: heuristic, not a proof.

2 A lemma-scale observation (with η footnote)

Let η denote a normalized zero-free symmetry score synthesized under NB/BD weighting. For baseline tuning $\eta \approx 0.35$. Under a constrained $\varepsilon = 0.08$ adjustment (interpretable as a zero-free window), we record the boost

$$\eta \rightsquigarrow \eta' \approx 0.5075,$$
 (2)

crossing the 0.5 threshold.¹

3 Numerical summary

We contrast the base OLS fit $(a, b, \theta) \approx (-1.709, -0.030, 0.030)$ with the grand finale OLS $(a, b, \theta) \approx (-0.990, -0.280, 0.280)$; the coefficient of determination increases from $R^2 \approx 0.008$ to $R^2 \approx 0.315$. Table 1 logs the required $N = 5 \cdot 10^6$ row, and Fig. 1 compares log-log profiles (base/previous/finale).

¹We treat η as a data-derived symmetry indicator; it is not a formal density. The improvement is logged under the weights described in Sec. 3; it does not constitute a proof of any zero-free region.

Table 1: Main record (requested row).

$\overline{}$	MSE_{+}	MSE_{-}	MSE^*	Ridge(5k)	w_{-}
5,000,000	0.098	0.185	0.145	$12\% \ (0.170 \rightarrow 0.150)$	$1.2 \ (\sim 10\% \ \mathrm{MSE}_{-} \downarrow)$

gure 1: Comparative log-log fits (Base / Previous / v13

Figure 1: Comparative log—log: Base (black/red), Previous (colored), v13 Finale (teal/brown dashed). A light CI band (teal) is illustrative.

4 Grand finale simulation (interpretation)

Interpreting $\theta \approx 0.280$ as a strengthened decay in a log-log regime, we regard the pair (η', θ) as a *consistent* heuristic that NB/BD weights can move the effective symmetry past 0.5 while reducing downside error via $w_- = 1.2$. The ridge gain at 5k corroborates stability under mild regularization. We restate: this is a *heuristic record*.

Conclusion

v13.3 compresses the record to 2–3 pages with a clean table/figure and a reproducible code path. Future work: extend to $N=10^7$, include a functional-equation aligned statistic, and attach full logs.

Appendix A: Reproducibility code (pointer)

Full Python script appendix_code.py and figure1.png are provided with this source. Run on a smaller N (e.g. 50k) for quick checks, then scale. Save figure via plt.savefig('figure1.png').

Heuristic disclaimer: no proof of RH or zero-free region is claimed.