Bài tập Toán rời rạc, 10.11

Họ Tên: Nguyễn Hữu Nam

Lớp: B23CQCC01-B

MSV: B123DCCC121

Bài làm

 \mathbf{B} ài $\mathbf{1}$. Sử dụng các phép biến đổi tương đương và các mệnh đề tương đương cơ bản, chứng minh sự tương đương logic sau:

1.
$$\neg p \to (q \to r) \Leftrightarrow q \to (p \lor v)$$

2.
$$(p \to q) \leftrightarrow \neg q \to \neg p$$

3.
$$p \lor q \lor (\neg p \land \neg q \land r) \Leftrightarrow p \lor q \lor r$$

Boi - PPP T T T T T T T T T T T T T T T T T	Bartop 1: p > F F F F F F F F F F F F F F	(9 > 7 / T	1) = 9 (9 => T T T	> (pvv) V) /p= (q>v) TT TT TT	2
F T	PTTFF	FITELET	TO THE	1 f	

Bài 2. Sử dụng phương pháp lập bảng chân trị, chứng minh sự tương đương logic sau:

$$1. \ \, \neg(p \leftrightarrow q) = \neg p \leftrightarrow q$$

$$2. \ (p \to q) = (\neg p \lor q)$$

3.
$$\neg (p \lor (\neg p \land q)) = \neg p \land \neg q$$

$$4.\ (p \wedge q) \to (p \vee q) = T$$

5.
$$\neg p \to (q \to r) = q \to (p \lor r)$$

3 FR

7)=7	Pa	r (PVV	9 -> (pvr)
7) > [Pvg]				4 101)
		F		4
and the same of th	TF			T
a linear	FIF	6		£
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	FF	ſ		
- 1 ve	FIF	P	F	
	Baiz:	610	s q)/	ng nr] > (pvr)

Bài 3. Kiểm tra các suy luận sau:

1.
$$[(p \to q) \land \neg q \land \neg r] \to \neg (p \lor r)$$

2.
$$[(p \to (q \to r)) \land (\neg q \to \neg p) \land p] \to r$$

3.
$$[(p \lor q) \land (\neg q \lor r) \land \neg r] \rightarrow q]$$

q - 7 P (q r P) N P KL. t

Bài 4. Ba sinh viên A, B, C bị nghi ngờ đã gian lận trong bài thi. Khi được hỏi đã trả lời như sau:

- A: "B dã chép bài còn C vô tội"
- \bullet B: "Nếu A có tội thì C cũng có tội"
- C: "Tôi không gian lận"
- 1. Nếu cả 3 đều đúng thì ai gian lận?
- 2. Nếu cả 3 không gian lận thì ai nói dối?
- 3. A nói thật, B nói dối thì ai gian lận?
- 4. Nếu cả 3 đều nói dối thì sao?

1. Trường hợp cả 3 đều nói thật:

- Xét lời C trước: C không gian lận là sự thật
- Kết hợp với lời A: B gian lận và C vô tội
- Lời B "nếu A có tội thì C có tội" cũng đúng (vì A không có tội) → Như vậy khi cả ba cùng nói thật, chỉ có B gian lận

2. Trường hợp không ai gian lận:

- Nếu không ai gian lận, lời C là thật
- B nói một câu điều kiện không thể sai (vì cả A và C đều không gian lận)
- Nhưng A nói B gian lận \rightarrow điều này mâu thuẫn với giả thiết \rightarrow Do đó **A là người nói dối**

3. Khi A nói thật và B nói dối:

- Từ lời A (đã biết là thật): B gian lận và C vô tội
- Lời B đã biết là dối nên không cần xét
- Điều này phù hợp với lời $C \rightarrow \mathbf{B}$ là người gian lận

4. Khi cả ba cùng nói dối:

- C nói "tôi không gian lận" là dối → C phải gian lận
- Vì A nói dối nên hoặc B không gian lận, hoặc C không vô tội (nhưng ta đã biết C gian lận)
- B nói dối về mối quan hệ giữa A và C → C chắc chắn gian lận, có thể có thêm người khác

Bài 5. Cho các mệnh đề sau:

- p = "Tam giác ABC là tam giác cân"
- q = "Tam giác ABC là tam giác đều"
- \bullet r = "Tam giác ABC có 2 cạnh BA = BC"
- s = "Tam giác ABC có góc A bằng 60 độ"

Viết các mệnh đề sau bằng ngôn ngữ tự nhiên và cho biết chận trị mệnh đề"

- 1. $q \rightarrow p$
- 2. $r \land \neg s \rightarrow q$
- 3. $r \lor s \rightarrow p$

1. Chuyển thành ngôn ngữ thông thường:

- $q \rightarrow p$: "Một tam giác khi đã là tam giác đều thì chắc chắn là tam giác cân"
- r \land s \rightarrow q: "Tam giác có hai cạnh bằng nhau và góc A là 60° sẽ là tam giác đều"
- r V s → p: "Một tam giác sẽ là tam giác cân nếu nó thỏa mãn ít nhất một trong hai điều kiện: có hai cạnh bằng nhau hoặc có góc A là 60°"

2. Kiểm tra tính đúng sai:

$q \rightarrow p: \mathbf{D}\mathbf{\acute{U}NG}$

- Hãy nghĩ về tam giác đều nó có 3 cạnh bằng nhau
- Điều này tự động làm cho nó có ít nhất 2 cạnh bằng nhau
- Vì thế nó luôn là tam giác cân

$r \wedge s \rightarrow q$: $\mathbf{D\acute{U}NG}$

- Khi một tam giác có:
 - Hai cạnh bằng nhau (BA = BC)
 - Góc giữa hai cạnh đó là 60°
- Theo tính chất hình học, đây chính là định nghĩa của tam giác đều

$r \lor s \rightarrow p: \mathbf{ĐÚNG}$

- Xét trường hợp có hai cạnh bằng nhau: đây là định nghĩa của tam giác cân
- Xét trường hợp có góc 60°:

- $_{\circ}$ Nếu kèm theo hai cạnh bằng nhau \rightarrow tam giác đều \rightarrow tam giác cân
- Nếu không kèm theo hai cạnh bằng nhau → tam giác cân
- Cả hai trường hợp đều dẫn đến tam giác cân