Distribution	Probability Density Function	$\mathbb{E}(X)$	$\mathbf{Var}(X)$
$X \sim \mathrm{Bi}(n,p)$	$p_X(x) = \binom{n}{x} p^x (1-p)^{n-x}$	np	np(1-p)
$X \sim \mathrm{U}(m,n)$ - Discrete Uniform	$p_X(x) = \frac{1}{n - m + 1}$	$\frac{m+n}{2}$	$\frac{1}{12}((n-m+1)^2-1)$
$X \sim \mathrm{R}(a,b)$ - Continuous Uniform	$f_X(x) = \frac{1}{b-a}$	$\frac{a+b}{2}$	$\frac{1}{12}(b-a)^2$
$T \sim \exp(\alpha)$ - Rate Parameter	$f_T(t) = \alpha e^{-\alpha t}$, for $t \ge 0$	$\frac{1}{\alpha}$	$\frac{1}{\alpha^2}$
$T \sim \exp(\theta)$ - Scale Parameter	$f_T(t) = \frac{1}{\theta} e^{-\frac{1}{\theta}t}$, for $t \ge 0$	θ	$ heta^2$
$T \sim \gamma(r, \alpha)$	$f_T(t) = \frac{\alpha^r t^{r-1} e^{-\alpha t}}{\Gamma(r)}, \text{ for } t \ge 0$	$\frac{r}{\alpha}$	$\frac{r}{\alpha^2}$
$X \sim N(\mu, \sigma^2)$	$f_X(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2\sigma^2}(x-\mu)^2}$, for $x \in \mathbb{R}$	μ	σ^2
$X \sim \operatorname{Beta}(\alpha, \beta)$	$f_X(x) = \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)} x^{\alpha-1} (1-x)^{\beta-1}, \text{ for } x \in [0,1]$	$\frac{\alpha}{\alpha + \beta}$	$\frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}$

Confidence Intervals

Estimating Means

For large $r, t_r \longrightarrow N(0,1)$ is a good approximation.

Normal, Single Mean, Known σ

$$\left(\bar{x} \pm c \frac{\sigma}{\sqrt{n}}\right)$$
; with $c = F^{-1}(1 - \frac{\alpha}{2})$ from pivot N(0, 1).

Normal, Single Mean, Unknown
$$\sigma$$
 $\left(\bar{x} \pm c\frac{s}{\sqrt{n}}\right)$; with $c = F^{-1}(1 - \frac{\alpha}{2})$ from pivot t_{n-1} . Normal, Two Means, Two Known σ 's

$$\left((\bar{x}-\bar{y})\pm c\sqrt{\frac{\sigma_X^2}{n}+\frac{\sigma_Y^2}{m}}\right)$$
; with c from pivot N(0,1).

Normal, Two Means, Unknown σ 's, Many Samples

 $\left((\bar{x}-\bar{y})\pm c\sqrt{\frac{s_X^2}{n}+\frac{s_Y^2}{m}}\right)$; with c from pivot N(0,1).

 $\stackrel{
ightharpoonup}{
m Normal}$, Two Means, Unknown σ 's, Common Variance $\left((\bar{x}-\bar{y})\pm c\cdot s_P\sqrt{\frac{1}{n}+\frac{1}{m}}\right); \text{ with } c \text{ from pivot } t_{n+m-2}.$ $s_P=\sqrt{\frac{(n-1)s_X^2+(m-1)s_Y^2}{n+m-2}}$ Normal, Two Means, Unknown σ 's, \neq Variances

 $\left((\bar{x}-\bar{y})\pm c\sqrt{\frac{s_X^2}{n}+\frac{s_Y^2}{m}}\right); \text{ with } c \text{ from pivot } t_r.$ $r=\left(\frac{s_X^2}{n}+\frac{s_Y^2}{m}\right)^2/\left(\frac{s_X^4}{n^2(n-1)}+\frac{s_Y^4}{m^2(m-1)}\right)$ Normal, Paired Samples

For pairs (X_i, Y_i) , let $D_i = X_i - Y_i$. $D_i \sim N(\mu_D, \sigma_D^2)$. $\left(\bar{d} \pm c \frac{s_d}{\sqrt{n}}\right)$; with c from pivot t_{n-1} .

Estimating Variance

Normal, Single Variance - estimate of σ^2 not σ ! $\left(\frac{(n-1)s^2}{b}, \frac{(n-1)s^2}{a}\right)$; with a, b from pivot χ^2_{n-1} .

Normal, Two Variances

A confidence interval for the ratio of the variances σ_X^2/σ_Y^2 is $\left(a \cdot \frac{s_x^2}{s_y^2}, b \cdot \frac{s_x^2}{s_y^2}\right)$; with a, b from pivot $F_{m-1, n-1}$.

Estimating Proportions (Large n - Normal Approx.)

$$\approx \left(\hat{p} \pm c\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}\right)$$
; with c from pivot N(0,1).

$$\approx \left(\hat{p} \pm c\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}\right); \text{ with } c \text{ from pivot N}(0,1).$$

$$\mathbf{Two Proportions}$$

$$\approx \left(\hat{p_1} - \hat{p_2} \pm c\sqrt{\frac{\hat{p_1}(1-\hat{p_1})}{n} + \frac{\hat{p_2}(1-\hat{p_2})}{n}}\right); c \text{ from pivot N}(0,1).$$
Consider the derivative and follows in the contribution of the property of the contribution of the contrib

Can also derive a confidence interval from the exact distribution of the binomial RV $n \cdot \hat{p} \sim \text{Bi}(n, p)$.

Prediction Intervals

Let X^* be a future realisation of X.

Let
$$X$$
 be a future realisation of X .
If $X \sim N(\mu, \sigma^2)$, $\bar{X} \sim N(\mu, \frac{\sigma^2}{n})$, and $(\bar{X} - X^*) \sim N(\mu, \sigma^2 + \frac{\sigma^2}{n})$.
 $\left(\bar{x} \pm c\sqrt{s^2 + \frac{s^2}{n}}\right)$ is a prediction interval with c from t_{n-1} .

If σ is known, use pivot N(0,1). If μ is known use χ^2_{n-1} .

Pivots

Sampling from a normal distribution:

•
$$Z = \frac{\bar{X} - \mu}{\sigma / \sqrt{n}} \sim N(0, 1)$$

•
$$T = \frac{\bar{X} - \mu}{s / \sqrt{n}} \sim t_{n-1}$$

$$\bullet \ \frac{(n-1)S^2}{\sigma^2} \sim \chi^2_{n-1}$$

Regression

Ordinary Least Square (OLS) Estimators

All parameters are unbiased and except $\hat{\sigma}^2$ are normally distributed (Variances as below).

Let
$$K = \sum_{i=1}^{n} (x_i - \bar{x})^2$$
 and $D^2 = \sum_{i=1}^{n} (Y_i - \hat{\alpha}_0 - \hat{\beta}(x_i - \bar{x}))^2$:

$$\hat{\alpha}_0 = \bar{Y}; \quad \hat{\beta} = \frac{\sum_{i=1}^n (x_i - \bar{x})Y_i}{\sum_{i=1}^n (x_i - \bar{x})^2}; \quad \hat{\alpha} = \hat{\alpha}_0 - \hat{\beta}\bar{x}; \quad \hat{\sigma}^2 = \frac{D^2}{n-2}$$

$$\operatorname{Var}(\hat{\alpha}) = \left(\frac{1}{n} + \frac{\bar{x}^2}{K}\right)\sigma^2; \qquad \operatorname{Var}(\hat{\beta}) = \frac{\sigma^2}{K}; \qquad \operatorname{Var}(\hat{\alpha}_0) = \frac{\sigma^2}{n}$$

$$\operatorname{Cov}(\hat{\alpha}_0, \hat{\beta}) = 0; \qquad \operatorname{Var}(\hat{\mu}(x)) = \left(\frac{1}{n} + \frac{(x - \bar{x})^2}{K}\right) \sigma^2$$

Regression Pivots

$$\frac{(n-2)\hat{\sigma}^2}{\sigma^2} \sim \chi_{n-2}^2; \quad \frac{\hat{\beta}-\beta}{\hat{\sigma}/\sqrt{K}} \sim t_{n-2}; \quad \frac{\hat{\mu}(x)-\mu(x)}{\hat{\sigma}\sqrt{\frac{1}{n}+\frac{(x-\bar{x})^2}{K}}} \sim t_{n-2}$$

Bayesian Inference

Law of Total Probability

$$f(x) = \int_{-\infty}^{\infty} f(x, y) dy = \int_{-\infty}^{\infty} f(x \mid y) f(y) dy$$

 $f(x)=\int_{-\infty}^{\infty}f(x,y)dy=\int_{-\infty}^{\check{\infty}}f(x\mid y)f(y)dy$ Normal Distribution, Known $\sigma,$ Inference for μ

 $X_1, \ldots, X_n \sim \mathrm{N}(\mu, \sigma^2)$. Let $Y = \bar{X} \sim \mathrm{N}(\mu, \sigma^2/n)$.

Prior: $\mu \sim N(\mu_0, \sigma_0^2)$

Posterior: $f(\mu \mid y) \propto f(y \mid \mu) f(\mu) \propto \exp \left[-\frac{(\mu - \mu_1)^2}{2\sigma_1^2} \right]$

Where:

$$\mu_1 = \frac{\frac{\mu_0}{\sigma_0^2} + \frac{y}{\sigma^2/n}}{\frac{1}{\sigma_0^2} + \frac{1}{\sigma^2/n}}; \qquad \frac{1}{\sigma_1^2} = \frac{1}{\sigma_0^2} + \frac{1}{\sigma^2/n}$$

So $\mu \mid y \sim N(\mu_1, \sigma_1^2)$

Binomial Distribution, Beta / Uniform Prior

 $X \sim \text{Bi}(n, \theta)$. Prior: $\theta \sim \text{Beta}(\alpha, \beta)$

Posterior: $\theta \mid x \sim \text{Beta}(\alpha + x, \beta + n - x)$

ANOVA

All populations assumed to have equal variance.

Total Sample Size: $n = n_1 + \cdots + n_k$ Group Means: $\bar{X}_{i\cdot} = \frac{1}{n_i} \sum_{j=1}^{n_i} X_{ij}$ Grand Mean: $\bar{X}_{\cdot\cdot} = \frac{1}{n} \sum_{i=1}^k \sum_{j=1}^{n_i} X_{ij} = \frac{1}{n} \sum_{i=1}^k n_i \bar{X}_{i\cdot}$

Single Factor (One Way) ANOVA

Hypotheses: $H_0: \mu_1 = \mu_2 = \cdots = \mu_k \text{ vs. } H_1: H_0$ Sum of Squares:

Treatment SS:

 $SS(T) = \sum_{i=1}^{k} \sum_{j=1}^{n_i} (\bar{X}_{i.} - \bar{X}_{..})^2 = \sum_{i=1}^{k} n_i (\bar{X}_{i.} - \bar{X}_{..})^2$

 $SS(E) = \sum_{i=1}^{k} \sum_{j=1}^{n_i} (X_{ij} - \bar{X}_{i.})^2 = \sum_{i=1}^{k} (n_i - 1)S_i^2$

Total SS: $SS(TO) = \sum_{i=1}^{k} \sum_{j=1}^{n_i} (X_{ij} - \bar{X}_{..})^2 = SS(T) + SS(E)$

Null Distributions of Sum of Squares Terms:

$$\frac{SS(T)}{\sigma^2} \sim \chi^2_{k-1}; \quad \frac{SS(E)}{\sigma^2} \sim \chi^2_{n-k}; \quad \frac{SS(TO)}{\sigma^2} \sim \chi^2_{n-1}$$

Test Statistic (F-test)

$$F = \frac{SS(T)/(k-1)}{SS(E)/(n-k)}$$

Under H_0 , $F \sim F_{k-1,n-1}$, so since the numerator will be larger when H_0 is false reject H_0 for F > c.

Two Factor (Two Way) ANOVA

Assume $X_{ij} \sim N(\mu_{ij}, \sigma^2)$. $\mu_{ij} = \mu + \alpha_i + \beta_j$. $\sum_{i=1}^a \alpha_i = 0$ and $\sum_{j=1}^{b} \beta_j = 0$. Take one observation from each combination of a and b (n = ab).

Hypotheses: $H_{0A}: \alpha_1 = \alpha_2 = \cdots = \alpha_k = 0$ vs. $H_1: \overline{H}_0$ or $H_{0B}: \beta_1 = \beta_2 = \dots = \beta_k = 0$ vs. $H_1: \bar{H}_0$

Means:

$$\bar{X}_{\cdot \cdot} = \frac{1}{ab} \sum_{i=1}^{a} \sum_{j=1}^{b} X_{ij}; \quad \bar{X}_{i \cdot} = \frac{1}{b} \sum_{j=1}^{b} X_{ij}; \quad \bar{X}_{\cdot j} = \frac{1}{a} \sum_{i=1}^{a} X_{ij}$$

Sum of Squares:

 $SS(A) = b \sum_{i=1}^{a} (\bar{X}_{i.} - \bar{X}_{..})^{2}$ $SS(B) = a \sum_{j=1}^{b} (\bar{X}_{.j} - \bar{X}_{..})^{2}$

Error SS:

 $SS(E) = \sum_{i=1}^{a} \sum_{j=1}^{b} (X_{ij} - \bar{X}_{i\cdot} - \bar{X}_{\cdot j} + \bar{X}_{\cdot \cdot})^2$

Total SS:

SS(TO) = SS(A) + SS(B) + SS(E)

Test Statistics (F-test):

The test statistics for H_{0A} and H_{0B} are:

$$F = \frac{SS(A)/(a-1)}{SS(E)/(a-1)(b-1)} \quad \text{or} \quad \frac{SS(B)/(b-1)}{SS(E)/(a-1)(b-1)} > c$$

With c from $F_{a-1,(a-1)(b-1)}$ or $F_{b-1,(a-1)(b-1)}$ respectively.

Two Factor ANOVA with Interaction Terms

Take samples over two factors, but c samples for each factor pair. $\mu_{ij} = \mu + \alpha_i + \beta_j + \gamma_{ij}$.

Hypotheses: $H_{0A}: \alpha_1 = \alpha_2 = \cdots = \alpha_k = 0$ vs. $H_1: \bar{H}_0$

or $H_{0B}: \beta_1 = \beta_2 = \dots = \beta_k = 0$ vs. $H_1: \bar{H}_0$ or $H_{0AB}: \gamma_{ij} = 0 \ \forall \ i, j \ \text{vs.} \ H_1: \bar{H}_0$ Means:

$$\bar{X}_{ij.} = \frac{1}{c} \sum_{k=1}^{c} X_{ijk}; \quad \bar{X}_{i..} = \frac{1}{bc} \sum_{j=1}^{b} \sum_{k=1}^{c} X_{ijk}$$

$$\bar{X}_{.j.} = \frac{1}{ac} \sum_{i=1}^{a} \sum_{k=1}^{c} X_{ijk}; \quad \bar{X}_{...} = \frac{1}{abc} \sum_{i=1}^{a} \sum_{j=1}^{b} \sum_{k=1}^{c} X_{ijk}$$

Sum of Squares:

 $SS(A) = bc \sum_{i=1}^{a} (\bar{X}_{i..} - \bar{X}_{...})^{2}$ $SS(B) = ac \sum_{j=1}^{b} (\bar{X}_{.j.} - \bar{X}_{...})^{2}$ $SS(AB) = c \sum_{i=1}^{a} \sum_{j=1}^{b} (\bar{X}_{ij.} - \bar{X}_{i..} - \bar{X}_{.j.} + \bar{X}_{...})^{2}$

 $SS(E) = \sum_{i=1}^{a} \sum_{j=1}^{b} \sum_{k=1}^{c} (X_{ijk} - \bar{X}_{ij.})^2$

SS(TO) = SS(A) + SS(B) + SS(AB) + SS(E)

Test Statistics (F-test):

The test statistics for H_{0A} and H_{0B} are:

$$F = \frac{SS(A)/(a-1)}{SS(E)/ab(c-1)} \quad \text{or} \quad \frac{SS(B)/(b-1)}{SS(E)/ab(c-1)} > c$$

With c from $F_{a-1,ab(c-1)}$ or $F_{b-1,ab(c-1)}$ respectively. And for H_{0AB} with c from $F_{(a-1)(b-1),ab(c-1)}$:

$$F = \frac{SS(AB)/(a-1)(b-1)}{SS(E)/ab(c-1)} > c$$

Mean Squares / Mean Square Error

MSE is found by dividing the SS(E) by its degrees of freedom. $\hat{\sigma}^2 = MS(E)$ is an unbiased estimator for the variance.

Goodness-of-fit Test (χ^2)

 O_i is the Observed count of data in class i, E_i is the Expected count under H_0 . Be careful to use the count and not the proportion. For k classes:

$$Q_{k-1} = \sum_{i=1}^{k} \frac{(O_i - E_i)^2}{E_i} \approx \chi_{k-1}^2$$

Since the numerator $(O_i - E_i)^2$ will be larger when H_0 is false, we reject H_0 for $Q_{k-1} > c$, with c from χ^2_{k-1} .

Two Classes (k=2)

Testing $H_0: p = p_1$ vs. $H_1: p \neq p_1$

More than Two Classes (k > 2)

Let p_1, \ldots, p_k define the proportions of a categorical distribution. H_0 : " p_1, \ldots, p_k do define the distribution" vs. $H_1: \bar{H}_0$

Other Formulae

Sample Variance
$$s^2=\frac{1}{n-1}\sum_{i=1}^n(x_i-\bar{x})^2=\frac{1}{n-1}\left(\left(\sum_{i=1}^nx_i^2\right)-n\bar{x}^2\right)$$
 Cramér-Rao Lower Bound

The CR Lower Bound is the minimum possible variance of an estimator $\hat{\theta}$ of θ . It is the asymptotic variance of the MLE.

$$\ell(\theta) = \ln L(\theta); \qquad U(\theta) = \frac{\partial \ell}{\partial \theta}$$
 (Score Function)

$$V(\theta) = -\frac{\partial U}{\partial \theta};$$
 $I(\theta) = \mathbb{E}(V(\theta))$ (Fisher Information)

$$\operatorname{Var}(\hat{\theta}) \ge \frac{1}{I(\theta)}$$
 (CR Lower Bound)

Gamma Function in Beta $+ \gamma$ Distributions

 $\Gamma(n) = (n-1)!$