Intelligent Management Prototype Phase V

Risk-based Task Recommendation via Machine Learning Techniques

Scope & System Architecture

- Adaptive, Evidence-based Process using machine learning
- Workflow Determination & Automation
- Automated Quality Assurance
- Predictable Results Cost, Progress & Quality (automated tracking of progress)

Accomplishment to Date

- Workflow/Evidence Determination & Risk Analysis
- Effort Estimates & Evidence Analysis
- Automated Quality Assessment Using Data Normalization Architecture
- Phase IV
 - Al/Machine learning (ML) techniques and principles to demonstrate automatic revisions to the development process, using Incremental Commitment Spiral Model (ICSM) and automated Quality Assurance.
 - The TR4 milestone is the use case and data from the following sources is used for analysis/learning: Development Risk drivers, Defect Prediction factors, Huawei's Quality Management database, and static code analysis.

Phase V

- Integrate risk prediction model with advanced tollgates of system prototype.
- Explore open source project data to improve risk prediction model.

Overview

- Operational Concept
- Potential Data Sources
- Learning Risk Prediction Model
- Intelligent Risk Mitigation
- Demo
- Conclusions
- Next Steps

Artificial Intelligence in Software Engineering

The Solutions:

Industry (Companies/Products/Platforms B2B Ready):

Code Construction / Configuration, © CODEBEAT COCIOTA SOURCE[d] * SOURCEGRAPH Quality Management / Testing, © OPPOCHIE APPLICOR PRETRO Maintenance: DECIBELANSICHT fedr8 © Logz.lo re:infer talla@

Academic (Researches):

Requirements, ucdd narcia reta(rubric)

Code Construction / Configuration; DeepCoder FlashMeta RobustFill

Potential Fields:

Design, Project Management;

Operational Concept

At each anchor point / milestone within the software development lifecycle, The system

quantifies risks based on a set of criteria tracked from existing data source,

then redirects to different tasks based on the potential risks.

In order to present a concrete idea, current anchor point / milestone is set to

Terms

Workflow

Describes the roles and tasks involved in activities.

Modeled by BPMN2.0 in previous prototype.

Tollgate connects

- Incoming activities
 which consists of a series of tasks.
- Outgoing activities
 which consists of a series of tasks.

Examples

Potential Data Sources

Development Risk Drivers from Project Initialization

- Expressive factors while initializing a project
 - **22 factors:** reflects the product, process, personnel, and platform of the project.
 - Have been integrated into the current prototype

Estimated	Effort (Person-Months)	Schedule Duration (Months)	Productivity (KSLOC per Month)	Staff (Number of FTEs)
Optimistic:	340.93	21.77	5.05	15.66
Most Likely:	426.16	23.31	4.72	18.29
Pessimistic:	532.70	24.95	4.41	21.35

Defect Prediction Factors

- 3 Baseline Defect Rates in addition to the project initialization settings
 - Automated Analysis
 - Peer Reviews
 - Level of Testing Sophistication

Defect Removal Rating Scales

	Very Low	Low	Nominal	High	Very High	Extra High
Automated Analysis	Simple compiler syntax checking	Basic compiler capabilities	Compiler extension Basic req. and design consistency	Intermediate- level module Simple req./design	More elaborate req./design Basic dist- processing	Formalized specification, verification. Advanced dist-processing
Peer Reviews	No peer review	Ad-hoc informal walk- through	Well-defined preparation, review, minimal follow-up	Formal review roles and Well-trained people and basic checklist	Root cause analysis, formal follow Using historical data	Extensive review checklist Statistical control
Level of Testing Sophistication	No testing	Ad-hoc test and debug	Basic test Test criteria based on checklist	Well-defined test seq. and basic test coverage tool system	More advance test tools, preparation. Dist- monitoring	Highly advanced tools, model- based test

Code Repository Analysis (SQUAAD)

Understanding Software Quality Evolution Using SQUAAD

- Two approaches
 - Absolute value of quality attributes after each commit
 - Impact of developers on quality attributes at each commit
- Quality Attributes
 - A collection of 50+ metrics
 - Example
 - M1: Code Smells
 - M2: Security Vulnerabilities
- How can we use this data?
 - If the number of code smells (M1) exceeds a certain amount maintenance tasks should get higher priority.

If the number of security vulnerabilities (M2) has increased in the last commit maintenance tasks should get higher priority.

List of All Metrics

Tool: SonarQube

Classes

Comment_lines_density

Vulnerabilities

Lines

Ncloc

Complexity

Security_rating

Major_violations

Duplicated_blocks

Code_smells

File_complexity

Functions

Duplicated_files

Duplicated_lines_density

Reliability_rating

Critical_violations

Violations

Statements

Blocker_violations

Reliability_remediation_effort

Duplicated_lines

Bugs

Security_remediation_effort

Directories

Info violations

Sqale_index

Sqale_debt_ratio

Minor_violations

Files

Sqale_rating

Tool: PMD

Basic

Emptycode

Clone implementation

Comments

Codesize

String and stringbuffer

Naming

Strict exceptions

Optimization

Design

Security code guidelines

Braces

Type resolution

Coupling

Finalizer

Import statements

Unused code

Unnecessary

Tool: FindBugs

Security

l18n

Mt_correctness

Style

Experimental

Correctness

Malicious_code

Bad_practice

Performance

Code Smells (SQUAAD)

A maintainability-related issue in the code.

- Leaving it as-is means that at best maintainers will have a harder time than they should making changes to the code.
- At worst, they'll be so confused by the state of the code that they'll introduce additional errors as they make changes.

Example:

- Child class fields should not shadow parent class fields.
 - Having a variable with the same name in two unrelated classes is fine, but do the same thing within a class hierarchy and you'll get confusion at best, chaos at worst.

NONCOMPLIANT CODE EXAMPLE

```
public class Fruit {
    protected Season ripe;
    protected Color flesh;
    // ...
}

public class Raspberry extends Fruit {
    private boolean ripe; // Noncompliant
    private static Color FLESH; // Noncompliant
}
```

COMPLIANT SOLUTION

```
public class Fruit {
  protected Season ripe;
  protected Color flesh;
  // ...
}
public class Raspberry extends Fruit {
  private boolean ripened;
  private static Color FLESH_COLOR;
}
```

Security Vulnerabilities (SQUAAD)

A security-related issue which represents a potential backdoor for attackers.

Example:

- SQL binding mechanisms should be used
 - Applications that execute SQL commands should neutralize any externally-provided values used in those commands.
 - Failure to do so could allow an attacker to include input that changes the query so that unintended commands are executed, or sensitive data is exposed.

```
public User getUser(Connection con. String user) throws SQLException {
 Statement stmt1 = null:
 Statement stmt2 = null:
 PreparedStatement pstmt;
 trv {
  stmt1 = con.createStatement():
  ResultSet rs1 = stmt1.executeQuery("GETDATE()"); // Compliant;
parameters not used here
  stmt2 = con.createStatement():
  ResultSet rs2 = stmt2.executeQuery("select FNAME, LNAME, SSN " +
          "from USERS where UNAME=" + user); // Noncompliant;
parameter concatenated directly into query
  pstmt = con.prepareStatement("select FNAME, LNAME, SSN " +
          "from USERS where UNAME=" + user); // Noncompliant;
parameter concatenated directly into query
  ResultSet rs3 = pstmt.executeQuery();
 //...
public User getUserHibernate(org.hibernate.Session session, String
userInput) {
 org.hibernate.Query query = session.createQuery( // Compliant
       "FROM students where fname = " + userInput); // Noncompliant;
parameter binding should be used instead
// ...
```

Evidence Criteria

• Success Criteria of the Evidence in

TR4

TR4/DCR2 QA Inputs

Key Performance Indicator	Threshold					
Nodal Testcases executed	99%					
Nodal Testcases Pass Rate	95%					
Feature Documentation complete including the actual implementation	95%					
Requirements Mapping to test cases captured in Repository	90%					
Trouble Tickets carried over from older releases resolved	100%					
Preliminary capacity and memory analysis	100%					
Regression completed	100%					
Regression pass rate	95%					
Upgrade paths validated	100%					
Problem tracking work-on-hand	<1.5 weeks 18					

Quality Management Database From Huawei's DNA

5 Factors can be used in the current model

- FCR (feature completion rate)
- CD (number of code defects)
- ISS (number of reported issues at the feature level)
- ISRR (issue removal rate)
- DRR (defect removal rate)

TR4_

Issue Resolution Analysis

Understanding Issue Resolution Status

- Collect information from JIRA and categorized by milestone
 - Get to know which of the still-open issues at the end of phase 1 were still open in later phases, as they would be still accumulating technical debt.
 - Get to know if high-severity issues were given higher priorities for closure.

Factors

- ISS_Num_Resolved: # of resolved issues
- ISS_Num_Unresolved: # of unresolved issues
- Personnel: # of contributors
- Estimated_Effort: Estimated total cost
- Accu_Trival: Accumulated unsolved issues at Trival Level
- Accu_Minor: Accumulated unsolved issues at Minor Level
- o ..

Data Source Categories

- Project Settings
 - Development risk drivers
 - Defect prediction factors
- Runtime States
 - Issues on Design, Implementation, Testing and Technical Debts
 - Code Repository Analysis
 - Issue Resolution Analysis
 - Quality Management Database
- All those required data are supposed to be automatically extracted from different data sources during the runtime.

Integration with Machine Learning

Learning

Risk Prediction Model

The Model Building Process

The Data Collection Process

- Collecting data points by the inputs of the proposed model
 - Group X: The results of automatic code static analysis,
 - Group Y: The inputs from project settings when initializing a project in the system.
 - Group Z: The data entries from the quality management database (open source project data as supplement).
- When put into production, the data assumed by the model will automatically generated/input from the user interface of the expert system. No requirements of extra effort of manually inputting the data.
- Labeling data points.
 - Experienced project Managers label the current status of a project into different levels of risk.
 - The Risk calculator (developed in phase II) provides the guideline for the experts.
 - Other Domain knowledge and criteria may also apply, if the expert is confident, for example, by the criteria of being over budget or schedule

Risk Prediction Neural Network

- Classify the current status of a project into five levels of risk based on the defined inputs.
- Multilayer Perceptron with 3-layer architecture: Input layer, Hidden layer, and Output Layer.
 - The neurons in the hidden layer are the general representations of the inputs.
 - May generalise more hidden layers as needed.

Current Implementation of Risk Prediction Model

- 1. Actual data from Open Source Projects and USC 577 software engineering courses.
 - a. Open source projects: ACUMOS ATT, OPNFV ATT, APOLLO Baidu, **Carbon Data- Huawei, OpenSDS-Huawei**, HYPERLEDGER IBM.
 - b. USC master-level engineering sources: 22 projects.
- 2. Simulated data for model training and testing.
 - a. 500 data points based on covariance matrices of the empirical data.
- 3. Using Neuralnet Package in R to train the model.
 - a. Demo API is available at our EC2 server

Risk Estimation Model based on USC-CSSE Projects

Data Source:

25 Master-level software engineering projects from 2015-2017. Formal method (ICSM) was applied.
 Those project involved real world clients and delivered complete products.

Measures:

- Risk drivers describe the relevant characteristics of a project in terms of personnel, platform, process, and product aspects.
- They describe the potential risks from products and platforms.
- They describe ability of the people and the process to undertake the risks.
- A combination of those factors describes the general bounds of the levels of risks.

Empirically collected data - Risk Drivers

Development Risk Drivers

	T NO DD50	E1 E1/	0501	75.11		DELLY	2171	CD11/	DUIDE	2001	711.05		DI COL	1010	2012	20011	4.051/	DI EV		700	0.75	0055
1	Team. NO Semester PREC	FLEX	RESL	TEAM	PMAT	RELY	DATA	CPLX	RUSE	DOCU	TIME	STOR	PVOL	ACAP	PCAP	PCON	APEX	PLEX	LTEX	TOOL	SITE	SCED
2	1 fall2015/: L	Н	Н	VH	N	N	Н	N	L	N	N	N	L	Н	Н	VH	N	N	N	N	N	N
3	2 fall2015/sL	Н	Н	VH	N	N	Н	N	L	N	N	N	L	Н	Н	VH	N	N	N	N	N	N
4	3 fall2015 L	N	N	Н	N	Н	L	Н	Н	Н	N	N	L	N	N	L	N	N	N	N	Н	N
5	4 fall2015 H	Н	N	Н	N	N	L	L	Н	N	N	N	N	N	N	Н	L	L	VL	Н	Н	VL
6	5 fall2015 H	Н	L	Н	L	N	N	N	VH	L	N	N	L	Н	Н	VH	L	L	N	VH	EXH	N
7	6 fall2015 N	N	Н	N	N	N	L	N	N	N	N	N	L	N	Н	Н	N	N	Н	N	H	N
8	7 fall2015 L	L	L	L	N	L	N	N	N	N	N	N	N	N	N	N	L	N	L	L	N	N
9	2 fall2014 L	H	N	H	N	VH	H	H	H	N	N	N	L	H	N	VH	L	L	N	L	H	N
10	5 fall2014 N	N	H	H	N	N	L	N	N	N	N	N	L	N	H	Н	L	N	VL	N	H	N
11	6 fall2014 H	H	H	VH	N	Н	Н	N	L	N	N	H	L	Н	L	L	Н	L	L	N	VH	N
12	8 fall2014 N	H	N	N	H	Н	N	N	Н	N	N	N	L	N	N	VH	L	N	L	N	Н	N
13	9 fall2014 H	L	N	N	N	L	L	L	L	N	N	N	L	N	N	VH	Н	N	Н	L	VH	N
14	11 fall2014 H	H	N	Н	N	N	L	L	N	N	N	Н	N	N	L	VH	L	N	N	N	H	N
15	13 fall2014 N	N	L	H	N	N	L	L	L	L	N	N	L	VH	VH	VL	H	N	H	H	VH	N
16	14 fall2014 L	H	H	H	L	N	L	N	L	N	N	H	L	H	H	VH	N	N	N	H	EXH	N
17	15 fall2014 N	N	N	H	N	N	L	N	L	N	N	H	L	N	N	VL	N	N	N	N	VH	N
18	1 fall2014/s H	H	N	H	N	N	L	N	N	N	N	N	N	H	Н	VH	N	N	H	N	Н	N
19	7 fall2014/s N	VH	N	H	N	N	L	N	L	N	Н	N	L	N	Н	Н	H	H	N	H	VH	N
20	4 fall2014/sL	N	L	VH	N	H	H	N	L	N	N	N	N	N	L	VH	L	VL	L	N	H	N
21	10 fall2014/s H	VH	H	VH	N	N	VH	N	L	L	EXH	N	H	H	VH	H	H	L	VH	VH	VH	N
22	12 fall2014/s N	N	Н	H	N	N	H	N	L	N	N	N	H	H	H	VH	N	N	N	N	VH	N
23	3 faII2014/sH	H	L	Н	L	N	Н	N	VH	N	N	N	L	Н	Н	Н	L	VH	L	VH	EXH	N
24	1 spring201 N	N	Н	Н	N	N	Н	Н	N	Н	N	N	N	Н	N	VL	L	N	N	N	Н	N
25	3 spring201 N	N	L	N	N	Н	Н	N	N	Н	Н	Н	N	Н	N	L	N	N	N	N	N	N
	← → COCOMOData ⊕ : ←																					

Scatter Matrix for Data Simulation

Scatterplot Matrix for Risk Prediction Factors

Example of Simulated Data

The Trained Neural Network

Risk Prediction Model based on Open Source Projects

- 1. Explore possibility of building risk prediction models for open source projects.
 - 1.Two open source projects
 - I. Carbon Data.
 - II. Fabric Java.

2. What data can be used (Jira and Github are commonly used software engineering tools. Data derived platform is available for production)

- 1. Jira Repos
 - I. Release and Milestones.

Related factors in prediction model: Phase

II. Effort tracking report.

Related factors in prediction model: Effort (actual effort), Estimated Effort (estimated effort)

III. Issue tracking reports: issue creation and resolution reports.

Related factors in prediction model: ISS_Num_Resolved, ISS_Num_Unresolved, Accu_Trivial, Accu_Minor, Accu_Major, Accu_Critical, Accu_Block

IV. Personnel and Contributions.

Related factors in prediction model: Personnel

V. System Modules.

2.Github

I.Commits.

Related factors in prediction model: CSmell, SVul

3. How risk can be evaluated (in following slides).

Empirically collected data - Issue Resolution (Jira)

- The distribution of creation time indicates the phases *Phase*. (If actual definition of phases is available, it would be better)
- Issue records provides creation times and resolution times of the issues.
- ISS_Num_Resolved, ISS_Num_Unresolved are calculated by Phase using the issue report

1		Data	Table	
	Period	Issues	Total Age	Avg. Age
		Unresolv		
2		ed		
3	17-Jun-17	989	109593	110
4	18-Jun-17	985	110017	111
5	19-Jun-17	976	109985	112
6	20-Jun-17	976	110902	113
7	21-Jun-17	976	111873	114
8	22-Jun-17	975	112763	115
9	23-Jun-17	970	113505	117
10	24-Jun-17	979	114176	116
11	25-Jun-17	979	115155	117
12	26-Jun-17	979	116133	118
13	27-Jun-17	978	116986	119
14	28-Jun-17	981	117834	120
15	29-Jun-17	990	117939	119
16	30-Jun-17	1022	118560	116
17	1-Jul-17	1042	119601	114
18	2-Jul-17	1041	120616	115
19	3-Jul-17	1032	120978	117
20	4-Jul-17	1035	122010	117
21	5-Jul-17	1043	123039	117
22	6-Jul-17	1058	124096	117
23	7-Jul-17	1061	125129	117

Example of issue related datasheet - Age

Empirically collected data - Time Tracking (Jira)

Time tracking records provide estimated times and actual times spent on certain tasks.

• Effort (actual effort), Estimated_Effort (estimated effort) for each Phase is calculated by the effort spent on the issues that belong to the Phase.

Empirically collected data - Code Analysis (Github)

Code Metrics

Code metrics applied to each commit to measure code quality and technical debt.

- Number of Code smells (CSmell) is calculated by commits that belong to Phase
- Number of Vulnerabilities (SVul) is calculated
- by commits that belong to **Phase**

^{*} This analytical data is generated by SQUAAD

Classified Cumulative Bugs by Severity (Jira)

Accumulated Bugs of different severity reflect the potential technical debt.

Accu_Trivial, Accu_Minor, Accu_Major,
 Accu_Critical, Accu_Block are determined by
 categorizing the bugs according to their severity.

 D
 E
 F
 G
 H

 Accu_Trival
 Accu_Minor
 Accu_Major
 Accu_Critical
 Accu_Block

 13
 2
 2
 3
 4

 4
 4
 8
 16
 4

 17
 12
 32
 12
 8

 5
 14
 21
 17
 6

Example of empirically collected data for accumulated bugs of different types

Distributions of Accumulated Bugs of Different Types 35 20 25 20

Empirically collected data - Personnel & Contribution (Jira)

Effort distribution over team members identify the contributors, which helps measure the balance of workload.

• The distribution of the effort to personnel determines the core contributors, the number of which define the factor **Personnel**. Contributors who contribute larger than 5% are determined as core contributors.

Effort Distribution to Different Developers

ı	· · · · · · · · · · · · · · · ·	us 00	10 001
	Α	В	С
1	name	hours	%
2	xubo245	3438	0.41
3	Unassigne	2762	0.33
4	panner se	904	0.1
5	kumar visl	504	0.06
6	Kunal Kap	502	0.06
7	zhouguan	168	0.02
8	Ran Ming	20	0
9	tianli	2	0
10	Zuo Wang	0	0
11	Zhichao Zł	0	0
12	zhaowei	0	0
13	zhangwei	0	0
14	zhangshur	0	0
15	Yadong Qi	0	0
16	xuchuanyi	0	0
17	xbkaishui	0	0
18	WilliamZh	0	0
19	Weizhong	0	0
20	wangsen	0	0
21	Vinod Rob	0	0
22	Vinod KC	0	0

Example of identifying core developers

Risk Assessment Metrics based on Open Source Data

The proposed method to measure risk.

- Risk_inflation_rate = ISS_Num_Unresolved (number of unsolved issues) / ISS_Num_Resolved (number of solved issues) (at the end of a milestone)
- 2. Pressure = Actual_Effort / Estimated_Effort (for each phase)
- 3. Risk = Risk_inflation_rate + Pressure

Α	В	С	D	Е	F	G	Н		1	J	K	L	М	N	0
								/							
Phase	ISS_Num_Resolved	ISS_Num_Unresolved	Accu_Trival	Accu_Minor	Accu_Major	Accu_Critical	Accu_Block	rsk_	_inflation_rat	e Effort	Difference	Personnel	Estimated Effort	ressure	Risk
July/16/2017	231	109	13	2	2	3	4		0.471	61 4876	4876	16	3840	1.269792	1.741653
															1
Sep/16/2017	441	148	4	4	8	16	4	1	0.3356	01 11230	6354	16	7680	0.827344	1.162945
Feb/16/2018	1341	503	17	12	32	12	8	П	0.3750	93 33871	22641	16	19200	1.179219	1.554312
								П							
Mar/16/2018	441	571	. 5	14	21	17	6	١\	1.2947	85 46275	12404	16	3840	3.230208	4.524993
								_ \							
	Phase July/16/2017 Sep/16/2017 Feb/16/2018	Phase ISS_Num_Resolved July/16/2017 231 Sep/16/2017 441 Feb/16/2018 1341	Phase ISS_Num_Resolved ISS_Num_Unresolved July/16/2017 231 109 Sep/16/2017 441 148 Feb/16/2018 1341 503	Phase ISS_Num_Resolved ISS_Num_Unresolved Accu_Trival July/16/2017 231 109 13 Sep/16/2017 441 148 4 Feb/16/2018 1341 503 17	Phase ISS_Num_Resolved ISS_Num_Unresolved Accu_Trival Accu_Minor	Phase ISS_Num_Resolved ISS_Num_Unresolved Accu_Trival Accu_Minor Accu_Major July/16/2017 231 109 13 2 2 Sep/16/2017 441 148 4 4 8 Feb/16/2018 1341 503 17 12 32	Phase ISS_Num_Resolved ISS_Num_Unresolved Accu_Trival Accu_Minor Accu_Major Accu_Critical July/16/2017 231 109 13 2 2 3 Sep/16/2017 441 148 4 4 8 16 Feb/16/2018 1341 503 17 12 32 12	Phase ISS_Num_Resolved ISS_Num_Unresolved Accu_Trival Accu_Minor Accu_Major Accu_Critical Accu_Block July/16/2017 231 109 13 2 2 3 4 Sep/16/2017 441 148 4 4 8 16 4 Feb/16/2018 1341 503 17 12 32 12 8	Phase ISS_Num_Resolved ISS_Num_Unresolved Accu_Trival Accu_Minor Accu_Major Accu_Critical Accu_Block rsk July/16/2017 231 109 13 2 2 3 4 Sep/16/2017 441 148 4 4 8 16 4 Feb/16/2018 1341 503 17 12 32 12 8	Phase ISS_Num_Resolved ISS_Num_Unresolved Accu_Trival Accu_Minor Accu_Major Accu_Critical Accu_Block r/sk_inflation_ra July/16/2017 231 109 13 2 2 3 4 0.4718 Sep/16/2017 441 148 4 4 8 16 4 0.3356 Feb/16/2018 1341 503 17 12 32 12 8 0.3750	Phase ISS_Num_Resolved ISS_Num_Resolved Accu_Trival Accu_Minor Accu_Major Accu_Critical Accu_Block rsk_inflation_rate Effort July/16/2017 231 109 13 2 2 3 4 0.471 61 4876 Sep/16/2017 441 148 4 4 8 16 4 0.335 601 11230 Feb/16/2018 1341 503 17 12 32 12 8 0.375 93 33871	Phase ISS_Num_Resolved ISS_Num_Unresolved Accu_Trival Accu_Minor Accu_Major Accu_Critical Accu_Block rsk_inflation_rate Effort Difference July/16/2017 231 109 13 2 2 3 4 0.471 61 4876 4876 Sep/16/2017 441 148 4 4 8 16 4 0.335 01 11230 6354 Feb/16/2018 1341 503 17 12 32 12 8 0.375 093 33871 22641	Phase ISS_Num_Resolved ISS_Num_Unresolved Accu_Trival Accu_Minor Accu_Major Accu_Critical Accu_Block rsk_inflation_rate Effort Difference Personnel July/16/2017 231 109 13 2 2 3 4 0.471861 4876 4876 16 Sep/16/2017 441 148 4 4 8 16 4 0.335601 11230 6354 16 Feb/16/2018 1341 503 17 12 32 12 8 0.375093 33871 22641 16	Phase ISS_Num_Resolved ISS_Num_Unresolved Accu_Trival Accu_Minor Accu_Major Accu_Critical Accu_Block rsk_inflation_rate Effort Difference Personnel Estimated Effort July/16/2017 231 109 13 2 2 3 4 0.471\$61 4876 4876 16 3840 Sep/16/2017 441 148 4 4 8 16 4 0.335\$01 11230 6354 16 7680 Feb/16/2018 1341 503 17 12 32 12 8 0.375093 33871 22641 16 19200	Phase ISS_Num_Resolved ISS_Num_Unresolved Accu_Trival Accu_Minor Accu_Major Accu_Critical Accu_Block r/sk_inflation_rate Effort Difference Personnel Estimated Effort Pressure 40.471861 4876 4876 16 3840 1.269792 Sep/16/2017 441 148 4 4 8 16 4 0.335601 11230 6354 16 7680 0.827344 Feb/16/2018 1341 503 17 12 32 12 8 0.375093 33871 22641 16 19200 1.179219

Training Risk Prediction Model

Input Example for the neural network based risk prediction model

	Α	В	C	D	Е	F	G	Н	1	J	K	L	M	N	О	
1	Phase	ISS_Num_	ISS_Num_	Personnel	Estimated	Accu_Triva	Accu_Mind	Accu_Majo	Accu_Criti	Accu_Bloc	RISK1	RISK2	RISK3	RISK4	RISK5	
2	1	131	169	8	3840	0	3	0	0	0	0	0	0	1	L	0
3	2	281	568	8	7680	0	2	8	0	0	0	0	0	1	L	0
4	3	541	453	8	19200	3	12	17	0	0	0	1	0	()	0
5	4	281	271	8	13840	5	14	21	0	0	0	1	0	()	0
6	1	231	109	16	3840	13	2	2	3	4	0	1	0	()	0
7	2	441	148	16	7680	4	4	8	16	4	1	0	0	()	0
8	3	1341	503	16	19200	17	12	32	12	8	0	1	0	()	0
9	4	441	571	16	3840	5	14	21	17	6	0	0	0	()	1
10																

The Trained Neural Network

Combination of Risk Prediction Models

Bayesian Averaging on multiple risk estimates as the final estimate of risk

The final estimate of level of risk is the weighted average of the two modes. The weights are determined by the variances of each mode's estimates.

Model Evaluation

Bootstrapping is applied to estimate classification rate and the confidence.

- 1000 resampling from the original datasets.
- For each resample, classification rate (precision) is calculated and confidence level is estimated.
- We have reached 48% classification accuracy on average for the combined model.
- 26% 70% classification accuracy at 95% confidence level.

	USC Model	Open Source Model	Combined Model
Classification Rate	97%	50%	48%
Std. Error.	0.017	0.177	0.112

Risk Prediction Model Prototype

Example - Risk Prediction API

Instruction: Please submit a csv file with project data specified in this file

Project Data: Choose File No file chosen

```
Submit
   "results": [
          "risk lvl1": "1.8995183039438e-185",
          "risk lvl2": "5.78383891570669e-06",
          "risk lvl3": "0.9999999999590604",
          "risk lvl4": "1.86143195634384e-128",
          "risk lvl5": "0"
          "predicted":
   "report": "[1] \"prediction calculation with:\"\n                         RELY DATA CPLX RUSE
PVOL ACAP APEX\n1
                                  1 0.95 0.87 0.85
                                                       1\n[1] \"prediction
results:\"\n
                                                               [,4] [,5]\n[1,]
1.899518e-185 5.783839e-06
                                1 1.861432e-128
                                                              [,1] \n[1,]
3\n"
```

Intelligent Risk Mitigation

How to mitigate risk after the risk is predicted?

- 1. If I'm not experienced.
- 2. If I just want reduce risk to certain level.
 - a. I want to take the risk for certain purposes.

Knowledge Base for Mitigating Risk

1. Common Practice for Mitigating Risk of Different Kinds

a. The practices suggested by COQUALMO: Automated analysis, peer reviews, execution testing tools may be effective for different kinds of defects.

2. Learning from Daily Practice

a. E.g certain form of code review conducted by the organization may be effective for architectural technical debt.

Risk Mitigation Strategies

A set of actions to mitigate risk at certain phase of a project is a risk mitigation strategy. At certain point of a project, there may be multiple risk mitigation action sets that can be applied to reduce the predicted risk level.

Strategies 47

Learning the influences on risk

The effects of the candidate actions on risk are modeled as influences on factors of risk prediction model.

Select the best actions to mitigate risk

Select the best action set to mitigate risk to a certain risk level by the risk

prediction model.

Action Sets 49

Demo

Conclusions

Operational Concept

 Developed the UI prototype and risk prediction model to better explain the results/target;

Feasibility Evidence

- Defined and trained the risk prediction model with available data;
- Proved the technical feasibility for model training, optimization and integration to the current system.

Next Steps for Future Phases

- 1. Optimize the risk prediction model based on real data from pilot projects
 - Some management dataset may be available from certain conference, for example, ASE.
- 2. Define the risk mitigation actions based on development business units input.
- 3. Consider the possibility of integrating natural language processing of unstructured data from reports/reviews/feedback those data may be related to risk.

References

- 1. Improving the accuracy of COCOMO's effort estimation based on neural networks and fuzzy logic model.
- 2. Neural Network Model For Software Size Estimation Using Use Case Point Approach
- 3. Model selection for Neural Network Classification
- 4. https://en.wikipedia.org/wiki/Artificial_neural_network
- 5. Feature selection with neural networks
- 6. Confidence Estimation Methods for Neural Networks

Backup Slides

The Three Layers - Input Layer

- Group X: results from SQAaaS(Code Repository Static Analysis)
 - Code Smell (CSmell) and Security vulnerability (SVul)
- Group Y: project settings from COCOMO and COQUALMO
 - 22 project factors and 3 defect removal factors are used.
- Group Z: runtime states from Quality Management Database and Evidence Documents
 - FCR (feature completion rate), CD (number of code defects), DRR (defect removal rate), ISS (number of reported issues at the feature level), ISRR (issue removal rate).

The Three Layers - Hidden Layer

- Neurons in the hidden layer are the generalised representations of the inputs to reflect their influences on risk from different aspects. They are the linear combination of neurons in the input layer.
 - h1 models the influence from technical debt.

$$h_1 = w^T * x$$

 h2 models the influence from the general project characteristics, for example, ability to solve risk.

$$h_2 = v^T * y$$

being over schedule or budget). $h_2 = u^T * z$

56

The Three Layers - Output Layer

- Five units in the output layer model the five levels of risk.
- The five levels of risk correspond to the five levels of risk exposure outlined in the Risk Calculator.
- The target t_k are the linear combination of the inputs from the hidden layer nodes plus the bias.

$$T_k = bias + \beta_k^T h$$

• The probability of each level of risk is calculated by logistic activation function. The most probable risk is output as the estimated risk level.

$$g_k(x) = \frac{1}{1 + e^{-T_k}}$$

$$G(x) = argmaxg_k(x)$$

Neural Network Training and Testing Technical Details

Example of the Input Data

The Model Training Process

Model Training Method

Cost Function

 To train the classifier, cross entropy cost function is used to model the error (the difference the actual and the predicted value).

Backpropagation

- As the sample data input into the model, the error is propagated backwards to change the weights of the specific neurons, specifically is to minus a learning rate multiplied by the partial derivative of the error with respect to the weight.
- The prediction will converge to the actual as more data points is used to train the model.

Cross Entropy as the Cost Function

Distance Measure between f(x_i) and Labels

$$R(\theta) = -\sum_{i=1}^{N} \sum_{k=1}^{K} y_{ik} log f_k(x_i)$$

Forward Propagation

Backward Propagation

An Example of Backpropagation

Model Validation

- A portion of the data should be used as the validation data set to decide the hyper-parameters of the neuron network, for example, the number of neurons.
- If adding or removing a factor doesn't improve the performance of the model significantly, we may remove the factor to avoid overfitting. The potential criteria are E (Classification Error Rate), BIC (Bayesian Information Criteria), AIC (AKaike Information criteria), etc.

Feature Selection

Feature Selection

- Iteratively drop the features of the trained neural network, and assess the classification accuracy against the validation data set.
- 2. Calculated the expected classification accuracy.
- 3. Rank the features with their classification accuracy.
- 4. Eliminate the least salient features according to the rank.
- 5. Calculate the drop in classification accuracy \delta A. If \delta A is smaller than \delta A_0, then output the most parsimonious set of features, otherwise go back to step 4.

Error Rate during Feature Selection

• To avoid the issue of overfitting, the number of variables in the final model equals the minimum number of parameters that produces minimum error minus 1.

Model Testing

- For this classification model, classification error is used to evaluate the estimation accuracy.
- An independent set of data need to be used to test the estimation accuracy of the model.
- Cross validation or bootstrap may also be used if no enough data points available for accuracy estimation.
- Using bootstrap to resample from the data set to derive sampling distribution of accuracy criterion to estimate the confidence interval.

Estimation of Accuracy Confidence by Bootstrapping

- After 1000 (or other large number) runs of resampling from the data set, the distribution of classification accuracy can be approximated by sampling distribution.
- The confidence interval of classification error rate can be estimated.

