Localpathplan 节点

1.功能:

功能根据/task_cmd 消息所传输的路径进行路径加密,并生成全局路径和局部路径。

2.发布消息

- ➤ localpath_pub = nh_local->advertise<nav_msgs::Path>("localpath", 10); (10m 之内的路径信息)
- ➤ globalpath_pub = nh_local->advertise<nav_msgs::Path>("globalpath", 10); (加密后各点信息)
- ➤ taskpath_pub = nh_local->advertise<nav_msgs::Path>("taskpath", 10); (原 始路径的各点信息)
- shotpose_pub = nh_local->advertise<geometry_msgs::PoseStamped>("target_pose", 10);(原始路径最后一个点信息)
- ▶ pathmarkers_pub
 nh_local->advertise<visualization_msgs::MarkerArray>("path_markers",
 10); (发布路径速度与方向标识)
- ➤ remainpath_pub = nh_local->advertise<std_msgs::Float64>("remainpath", 10); (剩余的路径长度)
- passedpath_pub = nh_local->advertise<std_msgs::Float64>("passedpath",10);(经过的路径长度)

3.订阅消息

所传递的 msg 是否存在 task 字符,有的话消息传给 cur_task,根据消息进行 GetGlobalPathFromTask(*msg);和 GlobalPathPlan()处理,最后得到一个路径 global_poses(插值并速度规划后的);

carstate_sub =
nh->subscribe<data_comm::car_state>("/can_comm/car_state", 10,
&TLocalPathPlan::CarStateCallback, this);

rviz_goal_sub

nh->subscribe<geometry_msgs::PoseStamped>("/move_base_simple/goal",

10, &TLocalPathPlan::RvizGoalCallback, this); (如果运行容易出问题)

根据从rviz中(2D Nav Goal 操作)的接收到的位置消息,生成一个移动任务并进行全局路径规划。根据目标点进行 GetGlobalPathFromTask(task);和

GlobalPathPlan()

4.主函数

发布 taskpath_pub.publish(task_path); 两个回调函数处理完的数据

发布 globalpath_pub.publish(global_path);

进行局部路径规划 LocalPathPlan,并发布 localpath_pub.publish(local_path);

发布路径速度与方向标识 PubPathMarkers();

3.其他函数说明

➤ GetGlobalPathFromTask 函数含义: void
TLocalPathPlan::GetGlobalPathFromTask(mqtt_comm::task task)

将传递进来的路径最后一个点的位置和姿态信息传递给 shotpose 并发布 shotpose_pub.publish(shotpose); (target_pose)

遍历每个点,将每个点的位置和姿态信息传递给 p_map task_path.poses.push_back(p_map); (task_path)

▶ GlobalPathPlan();函数含义: void TLocalPathPlan::GlobalPathPlan()

遍历任务路径中的所有路径点(最后一个点不需要遍历)。获取相邻的两个路径点的坐标信息。检查是否需要在下一个点停止 CheckStopAtNextPoin(task_path, i, true)。进行路径加密处理 LineInterpolation(p1, p2, ds, last_path_precision),生成路径片段 path。设置路径片段的姿态信息。将路径片段添加到 plan_path中。判断是否有折点需要停止,如果是,则进行速度规划 SpeedPlan(plan_path, 0.1, safe_dis)并将路径添加到全局路径 global_path中。如果全局路径非空,将最后一个路径点的高度设为 0。

➤ CheckStopAtNextPoint 函数含义: bool TLocalPathPlan::CheckStopAtNextPoint(nav_msgs::Path path, int id, bool action_stop)

主要目的是通过比较路径的几何特性和方向变化,判断是否需要在下一个

_

点停止。动作标志位、运动模式变化、车头朝向变化、路径方向变化

► LineInterpolation 函数含义: nav_msgs::Path

TLocalPathPlan::LineInterpolation(geometry_msgs::Point p1,

geometry_msgs::Point p2, float ds, float last_ds)

函数的目的,通过在两个相邻的路径点之间进行插值,生成一段平滑(按设定的 ds 等分)路径,同时根据是否要停车进行最后两个点之间 last_ds 间距更细密的差值,返回 path

➤ SpeedPlan 函数含义: void TLocalPathPlan::SpeedPlan(nav_msgs::Path&path, float min_vel, float safe_dis)

用于对给定的路径 path 进行速度规划。函数根据路径点之间的距离和目标速度,通过加速和减速约束,规划出路径上每个点的速度(加减速而非阶跃)

▶ LocalPathPlan 函数含义 void TLocalPathPlan::LocalPathPlan()

调用 UpdateLaneType,并找最短路径,根据当前点发布已经走过的路径 passedpath_pub.publish(data_msg); 和 没 有 走 过 的 路 径 remainpath_pub.publish(data_msg),遍历全局路径 global_path,从最近点开始构建 本 地 路 径 local_path, 直 到 超 过 10 米 或 满 足 某 个 停 止 条 件 CheckStopAtNextPoint 为止。

UpdateLaneType() 函数含义: void TLocalPathPlan::UpdateLaneType()

更新车道类型(lane_type),并在车辆当前任务路径上找到最近的点,如果找到新的车道类型,就更新参数。

➤ PubPathMarkers()函数含义:

在 rviz 中显示路径点的朝向等 pathmarkers_pub.publish(markerarray);

➤ GenFinalPathByPose : nav_msgs::Path
TLocalPathPlan::GenFinalPathByPose(geometry_msgs::PoseStamped pose)
暂时无用