מבוא לתורת הקבוצות – תרגיל 5

להגשה עד ליום ראשון ה־18 בדצמבר 2011

- $R'' = R^{-1}$ יחס. הסבירו מדוע הטענה R'' סימטרי מדוע הסבירו מדוע יחס. 1.
 - :על \mathbb{Z} באופן הבאR,S ביחסים 2.
 - $5 \mid a-b$ אם ורק אם aRb
 - $5 \mid a+b$ אם ורק אם $aSb \bullet$

הוכיחו את הוכיחו את שקילות? הנו יחס הנו יחס שקילות. האם $R \cup S$ הגו יחס שקילות? הנו יחס שקילות.

- הטענות מן הפריכו או הפריכו הוכיחו או הפריכו מעל קבוצה x (לא ריקה) כלשהי. הוכיחו או הפריכו כל אחת מן הטענות הבאות:
 - x אנו יחס שקילות מעל $R \cup S$ (ב) א שקילות מעל $R \cap S$ (א)
 - . הוכיחו כי יחס רפלקסיבי הנו מעגלי 1 אם ורק אם הוא יחס שקילות.
- יהי מורר x = x יחס עבורו $f: x \to y$ יחס עבורו לא ריקות, תהי הייו היי $x \times y$ יחס עבורו לא היחסים הבאים: על $x \times y$ יחס שקילות כלשהו על $x \times y$ נגדיר את היחסים הבאים:

$$S_{f} = \{(u, v) \in x^{2} \mid f(u) \sim f(v)\}$$

$$S_{r} = \{(u, v) \in x^{2} \mid \exists u', v' (((u, u'), (v, v') \in r) \land (u' \sim v'))\}$$

האם S_r הנו בהכרח המעל x? האם שקילות מעל איז הניחו או האם האם המעל איז הוכיחו מעל אחד מן המקרים!

- .6 שקילות. בשאלה הכיחו כי היחסים V , L_n שהוגדרו בשאלה הכיחו כי היחסים S^{-1} וי
- 7. נסמן ב־ $\mathcal R$ את אוסף כל יחסי השקילות על $\mathbb N$. נגדיר על $\mathcal R$ את היחס $\mathcal R$ את אוסף כל יחסי השקילות על $\mathbb N$. נגדיר על $\mathcal R$ את היחס $\mathcal R$ אם קיימת פונקציה $\mathcal P$ הפיכה מ־ $\mathbb R$ על עצמו, עבורה $\mathcal R$ הנו יחס שקילות.
 - , ונגדיר ($\Pi=(0,\infty)^\mathbb{N}$, נסמן ב־ח את אוסף הסדרות החיוביות של ממשיים (כלומר, $\Pi=(0,\infty)^\mathbb{N}$ את אוסף הסדרות החיוביות אוסף פאר פאר פאר אוסף את אוסף הסדרות החיוביות של משיים (כלומר, $\Omega=\{(a,b)\in\Pi^2\mid \exists c_1,c_2>0\,\exists N\in\mathbb{N}\,\forall n>N\,(c_1b_n\leq a_n\leq c_2b_n)\}$

הוכיחו כי Θ הנו יחס שקילות.

9. נגדיר

$$S = \left\{ \left(\left(x, y \right), \left(u, v \right) \right) \in \left(\mathbb{R}^2 \setminus \left\{ \left(0, 0 \right) \right\} \right)^2 \mid \exists \lambda \in \mathbb{R} \left(\left(u = \lambda x \right) \wedge \left(v = \lambda y \right) \right) \right\}$$

הוכיחו כי S הנו יחס שקילות.

באופן הבא: $\mathcal{P}\left(x
ight)^{2}$ מעל \mathcal{U} מעל גדיר אינסופית. נגדיר אינסופית. מעל

$$\mathcal{U} = \left\{ \left(\left(a, b \right), \left(c, d \right) \right) \in \left(\mathcal{P} \left(x \right)^2 \right)^2 \mid a \cup b = c \cup d \right\}$$

. הוכיחו כי $\mathcal U$ הנו יחס שקילות

הוגדר בתרגיל הקודם. ¹