Class#4

 □ Date	@Jan 15, 2021 10:30 AM
# Hours	1
Type (Test/Normal)	Normal Class
: <u>■</u> Unit	Unit 1

Topic/Chapter: Unit 1

The Actual notes:

▼ Examples - Constructing a DFA from an NDFA

▼ Numero uno

$$M = (Q, \Sigma, S, 20, F) \rightarrow NDFA$$

$$M' = (Q', \Sigma, S', 20', F') \rightarrow DFA$$

$$Q' = 2Q, Q' = [20] S'([2n,2,--,2i],q) = [k_1,--,k_1]$$

$$[2i,2j-2k] \qquad ift S[2n,2,--2i],q) = [k_1,--,k_1]$$

$$S[2n,2,--2i],q) = [k_1,---2i],q)$$

$$S[2n,2,--2i],q) = [k_1,---2i],q)$$

$$S[2n,2,--2i],q)$$

$$S[2n,2,--2i],q)$$

$$S[2n,2,--2i],q)$$

$$S[$$

Only use square basket for DFA, not curly while listing the tuple in reference to the provided NDFA tuple

Share
$$/\Sigma$$
 0 | $S'([20], 0)$
 Q Q Q = $S(20, 0) = [20]$
 $[20]$ $[21]$ $[20]$ $S'([20], 1)$
 $[21]$ $[21]$ $[20, 21]$ = $S(20, 1)$
 $[20, 21]$ $[20, 21]$ $S'([20, 21], 0)$
 $= S(20, 21)$ $= S(20, 21)$
 $= S(20, 21)$ $= S(20, 21)$

corresponding DFA that accepts the same set of states:

▼ Numero dōs

$$[20] \rightarrow [20,2]$$

$$[20,2] = [20,2]$$

$$S'[[20,2], q)$$

$$= S[[20,2], q)$$

$$= S[[20,2], q)$$

$$= S[[20,2], q)$$

Shore
$$[[20]]$$
 [20,21] [20] [20,21] [20,21] [20,21] [20,21] [20,21,22] [20,21,22] [20,21,22] [20,21,22] [20,21,22] [20,21,22] [20,21,22] [20,21,22] [20,21,22] [20,21,22] [20,21,22] [20,21,22] [20,21,22] [20,21,22]

Minimisation of finite automata

Definition: 2 states q1 and q2 are **k-equivalent** ($k \ge 0$) if both delta (q1,x) and delta (q2,x) are final states or non-final states for all strings x of length $\le k$

2 states q1 and q2 are **equivalent** if they are equivalent for all $k \ge 0$

2 final states → **0-equivalent**

2 non-final states → **0-equivalent**

This type of relation on a set of states is an equivalence relation.

An equivalence relation induces a partition(intersection is phi, and union is the whole set) on the set Q, called equivalence classes.

Suppose this partition is $\pi k \rightarrow$ the elements of πk are k-equivalence classes - and any 2 elements in any of these classes are k-equivalent.

Cardinality of $\pi k \leq cardinality$ of Q

if 2 states are (k+1) equivalent \rightarrow they are also k-equivalent; but vice versa is not true

▼ Condition under which the vice-versa ^ is true

The states q1, and q2 are k+1 equivalent if,

- 1. They are k-equivalent, and
- 2. delta(q1,a) & delta(q2,a) are also k equivalent, for all a belongs to sigma

Proof:

Two states
$$21 & 212 \text{ are } \text{ Ck+1}) - \text{eq. if}$$

y 1. Hey are $k - \text{eq. if}$

y 2. $8(9_{1}, 9) & 8(9_{2}, a)$ are also $k - \text{eq. } \text{y} \in \mathbb{Z}$.

Suppose.

Pt. $9_{11}, 9_{2}$ are not $(\text{k+1}) - \text{eq. } \text{for } \text{length}(\text{k+1}), |\omega_{1}| = k$

Then 3 a start $\omega = a\omega_{1}$ or $\text{length}(\text{k+1}), |\omega_{1}| = k$
 $8\cdot 1 \cdot 8(9_{1}, a\omega_{1}) & 8(9_{2}, a\omega_{1}) \rightarrow \text{non final.}$
 $8 \cdot 1 \cdot 8(9_{1}, a\omega_{1}) & 8(9_{2}, a\omega_{1}) \rightarrow \text{non final.}$
 $8 \cdot 1 \cdot 8(9_{1}, a\omega_{1}) & 8(9_{2}, a\omega_{1}) \rightarrow \text{non final.}$
 $8 \cdot 1 \cdot 8(9_{1}, a\omega_{1}) & 8(9_{2}, a\omega_{1}) \rightarrow \text{non final.}$