giovedì 6 febbraio 2020 11:31

TASK 1

Use a weather forecast website, and utilize the psychrometric chart and the formula we went through in the class to determine the absolute humidity, the wet-bulb temperature and the mass of water vapour in the air in Classroom A (Aula A) of Piacenza campus in the moment that you are solving this exercise (provide the inputs that you utilized)

A = 10 x 25 x 5 = 1250 m²
T = 11°C = 284 K
P = 102.9 kPa ~ 101.325 kPa = 1 atm

$$\Phi$$
 = 30%
? = ω - T_{wb} - m_v

FORMULAS

$$\Phi = m_v / m_q = P_v / P_q$$

 $P_g = P_{sat@11^{\circ}C} = 1.2276 \text{ kPa}$ (value found in steam tables for $P_{sat@10^{\circ}C}$)

$$P_v = \Phi \times P_g = 0.3 \times 1.2276 \text{ kPa} = 0.36828 \text{ kPa}$$

$$P = P_a + P_v$$

$$P_a = P - P_v = 102.9 \text{ kPa} - 0.37 \text{ kPa} = 102.35 \text{ kPa}$$

$$\omega = 0.622 P_v / P_a = (0.622 \times 0.37 \text{ kPa}) / 102.35 \text{ kPa} = 0.00225 \text{ kg}_v / \text{kg}_a$$

HP: for temperatures below 50°C we treat dry air and water vapour as ideal gasses (m=PV/R_{SPECIFIC}Ti_{nK})

$$m_v = P_v V_v / R_v T$$

 $R_v = 0.4615$ (found in tables)

 $m_V = (0.37 \text{ kPa x } 1250 \text{ m}^2) / (0.4615 \text{ x } 284 \text{ K}) = 3.53 \text{ kg}$

PSYCHROMETRIC CHART

TASK 2

Utilize the same methodology we went through in the class and determine the sensible and latent load corresponding to internal gains, the ventilation, and the infiltration in a house with a good construction quality and with the same geometry as that of the example which is located in Brindisi, Italy.

EXAMPLE: A building with a height of 2.5 m and an average construction quality, is located in Piacenza, considering two occupants and one bedroom calculate, and a conditioned floor area of 200 m² and wall area is 144 m², calculate the internal gains, infiltration, and ventilation loads.

$$Q_{igsensible}$$
 = 136 + 2.2 A_{cf} + 22 N_{oc} = 136 + 2.2 x 200 m² + 22 x 2 = 620 W

$$Q_{iglatent}$$
 = 20 + 0.22 A_{cf} + 12 N_{oc} = 20 + 0.22 x 200 m² + 12 x 2 = 88 W

To find the infiltration I must know how much is the max flowrate of air

Table 3 Unit Leakage Areas

Construction	Description	A_{ul} , cm ² /m ² 0.7	
Tight	Construction supervised by air-sealing specialist		
Good	Carefully sealed construction by knowledgeable builder		
Average	Typical current production housing	2.8	
Leaky	Typical pre-1970 houses	5.6	
Very leaky	Old houses in original condition	10.4	

 $A_{ul} = 1.4 \text{ cm}^2/\text{m}^2$

Exposed surfaces (wall + roof)

$$A_{ex} = 200 \text{ m}^2 + 144 \text{ m}^2 = 344 \text{ m}^2$$

$$A_L = A_{ex} \times A_{ul} = 344 \text{ m}^2 \times 1.4 \text{ cm}^2/\text{m}^2 = 481.6 \text{ cm}^2$$

INFILTRATION DRIVING FORCE
Table 5 Typical IDE Values L/(s.cm

<i>Н</i> , т	Heating Design Temperature, °C				Cooling Design Temperature, °C				
	-40	-30	-20	-10	0	10	30	35	40
2.5	0.10	0.095	0.086	0.077	0.069	0.060	0.031	0.035	0.040
3	0.11	0.10	0.093	0.083	0.072	0.061	0.032	0.038	0.043
4	0.14	0.12	0.11	0.093	0.079	0.065	0.034	0.042	0.049
5	0.16	0.14	0.12	0.10	0.086	0.069	0.036	0.046	0.055
6	0.18	0.16	0.14	0.11	0.093	0.072	0.039	0.050	0.061
7	0.20	0.17	0.15	0.12	0.10	0.075	0.041	0.051	0.068
8	0.22	0.19	0.16	0.14	0.11	0.079	0.043	0.058	0.074

 $IDF_{heating} = 0.073 \text{ L/s*cm}^2$

 $IDF_{cooling} = 0.033 \text{ L/s*cm}^2$

 $V_{infiltrationH} = A_L \times IDF_{heating} = 481.6 \text{ cm}^2 \times 0.073 \text{ L/s*cm}^2 = 35.16 \text{ L/s}$

 $V_{infiltrationC} = A_L \times IDF_{cooling} = 481.6 \text{ cm}^2 \times 0.033 \text{ L/s*cm}^2 = 15.89 \text{ L/s}$

$$V_{ventilation}$$
 = 0.05 A_{cf} + 3.5 (N_{br} +1) = 0.05*200 m² + 3.5*(1+1) = 17 L/s

V_{ventilation-infiltrationH} = 35.16 L/s + 17 L/s = 52.16 L/s

V_{ventilation-infiltrationC} = 15.98 L/s + 17 L/s = 32.89 L/s

C_{sensible} = 1.23

C_{latent} = 3010

Based on ASHRAE Standard 55: cooling = 24°C - heating = 20°C

$Q_{sensibleC} = C_{sensible} V_{ventilation-infiltrationC} \Delta T_{cooling}$

 $Q_{sensibleC}$ = 1.23 * 32.89 L/s * (31.1 – 24) °C = 287.23 W

Q_{sensibleH} = C_{sensible} V_{ventilation-infiltrationH} ΔT_{heating}

 $Q_{sensibleH}$ = 1.23 * 52.16 L/s * (20 – 4.1) °C = 1020.09 W

$Q_{latentC} = C_{latent} V_{ventilation-infiltrationC} \Delta\omega_{cooling}$

Q_{latentC} = 3010 * 32.89 L/s * 0.017= 1682.98 W

 $\Delta\omega_{cooling}$ = 0.017 (found with the psychrometric chart knowing the dry and wet bulb temperatures)