Ve492: Introduction to Artificial Intelligence

Agents and Environments

Paul Weng

UM-SJTU Joint Institute

Slides adapted from http://ai.berkeley.edu, AIMA, UM, CMU

Announcements

- Project 0: Python Tutorial
 - Due next Monday
 - Don't wait for the last moment!

Project 1 will also be released on next Monday

- Survey for deciding OHs and Recitation times
 - * Respond by the end of the week
 - OHs start next week

Outline

- Agents and Environments
- * Task
- Environment types
- Agent types

Complexity theory

Agents and Environments

What is an Agent?

- * Agents: humans, robots, software, cars...
- Mathematical view:
 - Function from percept or percept sequence to action
- * CS view:
 - Program that takes a percept as an input and returns an action

Example: Vacuum Cleaner

- * What are the percepts?
 - * Readings from sensors
 - * Location
 - Dirt detection
 - Obstacle detection
- What are the actions?
 - Move, brush, vacuum

Example: Adaptive Video Player

Huysegems et al. 2015

- * What are the percepts?
 - Network conditions
- What are the actions
 - Request of the most suited quality version of the next video chunks

Example: Autonomous Trader

- * What are the percepts?
 - Financial prices
 - Economic data
 - * News
- What are the actions?
 - Buy/sell/hold stocks

Recommender Systems

- * What are the percepts?
 - User's search query
 - User's previous interactions (clicks, page views, purchases...)
 - User's information
- What are the actions?
 - Product lists

How to Select Actions?

- * What is the right function from percepts to actions?
 - * Performance measure for environment sequence
 - * 1pt per m^2 cleaned in time T
 - * 1pt per m^2 cleaned/time step
 - * -1pt per dirty m^2

Can it be implemented as a small/efficient program?

Rationality

- * Being rational = maximizing "expected utility"
- * What is rational depends on:
 - Agent's prior knowledge of environment
 - Current percept sequence
 - Actions available to agent
 - * Performance measure

Rational Agents

- Are rational agents omniscient?
 - No they are limited by the available percepts and limited prior knowledge
- Are rational agents clairvoyant?
 - No they may lack knowledge of the environment dynamics
- Do rational agents explore and learn?
 - * Yes in unknown environments these are essential
- So rational agents are not necessarily successful, but they are autonomous

Task: PEAS

- * To design a rational agent, we must specify the task environment
- Consider, e.g., the task of designing an automated taxi:
- Performance measure
 - Safety, destination, profits, legality, comfort, ...
- * Environment
 - * Streets/highway, traffic, pedestrians, weather...
- * Actuators
 - Steering, brake, accelerate, display/speaker...
- Sensors
 - * Camera, radar, accelerometer, engine sensors, microphone...

PEAS for Recommender System

Performance measure

CTR (Click-Through-Rate), profits, happy customer...

* Environment

Users, products

* Actuators

Product lists

Sensors

Database accesses, APIs

Environment Types

	Mahjong solitaire	Mahjong	Recommender system	Taxi	Real world
Fully or partially observable	Р	Р	Р	Р	Р
Single agent or multi-agent	S	M	S	М	M
Deterministic or stochastic	D	D/S	D/S	S	S
Static or dynamic	S	S	D	D	D
Discrete or continuous	D	D	D/C	С	С
Episodic or sequential	E	Е	E	E	S

The Environment of a Go Player is:

Choose all correct answers:

- Discrete (≠ Continuous)
- ♦ Observable (≠ Partially Observable)

- Deterministic (≠ Non-deterministic)
- * Episodic (≠ Sequential)

PEAS: Pacman

* Performance measure

* -1 per step; +10 food; +500 win; -500 die; +200 hit scared ghost

* Environment

map, Pacman dynamics (incl. ghost behavior)

* Actuators

North, South, East, West, (Stop)

* Sensors

Entire state is visible

Different Types of Agents

Simple Reflex Agents

Model-based Reflex Agents

QUIZ

Can a Reflex Agent be Rational?

Choose one answer:

- * Yes
- * No

Video of Demo Reflex Optimal

Video of Demo Reflex Odd

Goal-based Agents

Video of Demo Replanning

Video of Demo Mastermind

Utility-based Agents

Learning Agents

Complexity Theory

Credit: Michael Sipser

Overview of Complexity Theory

- Measure of difficulty wrt size of problem instance
- Problem vs algorithm complexity
- Space vs computational vs sample complexity
 - * $O(1) \subset O(\log(n)) \subset O(\sqrt{n}) \subset O(n)$
 - * $O(n\log(n)) \subset O(n^{1+\alpha}) \subset O(2^n) \subset O(n!)$
 - * 2¹⁰⁰ on machine 1e9 op/sec requires 4e13 years

Important Complexity Classes

- Class = set of problems; Problem = set of instance of problem
- * P: problems that can be solved in polynomial time $O(n^k)$
 - Shortest path problem, linear programming, matching
- NP: problems where if solutions can be verified in polynomial time
 - Traveling salesman problem, Boolean satisfiability problem

Million Dollar Question: P=NP?

- NP-hard = as hard as NP
- NP-complete = hardest problems in NP

Some Other Complexity Classes

- PSPACE: problems that can be solved using polynomial amount of space
- * EXPTIME: problems that can be solved in exponential time $O(2^{p(n)})$

For More Information

- * AIMA, Chapter 2 for Intelligent Agents
- * AIMA, Chapter A.1 for Complexity

True or False

- 1. An agent that senses only partial information about the state cannot be perfectly rational.
- 2. There exist task environments in which no pure reflex agent can behave rationally.
- 3. There exists a task environment in which every agent is rational.
- 4. The input to an agent program is the same as the input to the agent function.
- 5. Every agent function is implementable by some program/machine combination.
- 6. Suppose an agent selects its action uniformly at random from the set of possible actions. There exists a deterministic task environment in which this agent is rational.
- 7. It is possible for a given agent to be perfectly rational in two distinct task environments.
- 8. Every agent is rational in an unobservable environment.
- 9. A perfectly rational poker-playing agent never loses.