Computer System: Hardware

Operating System Principles

操作系统原理

Input/Output

李旭东

leexudong@nankai.edu.cn Nankai University

 ${\sf OSP} @ LeeXudong@nankai.edu.cn\\$

I/O System Target

- Basic
 - Issue commands to the device
 - catch interrupts
 - Handle errors
- Easy to use
- Extensibility
 - Device independence

Objectives

- Principles of I/O Hardware
- Principles of I/O Software
- I/O Software Layers
- Disks
- Clocks
- User Interfaces
- Power Management

Principles of I/O Hardware

I/O Devices

- Block devices
 - Block addressable
- Character devices
 - A stream of characters
- Other devices
 - Clocks

leexudong@nankai.edu.cn

-

- USB2.0
- 480Mbit/s
- USB3.05Gbit/s
- WLAN
- 1Gbit/s

Device	Data rate
Keyboard	10 bytes/sec
Mouse	100 bytes/sec
56K modem	7 KB/sec
Telephone channel	8 KB/sec
Dual ISDN lines	16 KB/sec
Laser printer	100 KB/sec
Scanner	400 KB/sec
Classic Ethernet	1.25 MB/sec
USB (Universal Serial Bus)	1.5 MB/sec
Digital camcorder	4 MB/sec
IDE disk	5 MB/sec
40x CD-ROM	6 MB/sec
Fast Ethernet	12.5 MB/sec
ISA bus	16.7 MB/sec
EIDE (ATA-2) disk	16.7 MB/sec
FireWire (IEEE 1394)	50 MB/sec
XGA Monitor	60 MB/sec
SONET OC-12 network	78 MB/sec
SCSI Ultra 2 disk	80 MB/sec
Gigabit Ethernet	125 MB/sec
Ultrium tape	320 MB/sec
PCI bus	528 MB/sec
Sun Gigaplane XB backplane	20 GB/sec

Device Controllers

- I/O Unit
 - A mechanical component 机械部件
 - An electronic component 电子部件
 - Device controller: (i.e.) Adapter 适配器
 - Preamble 前置码
 - ECC: Error-Correcting Code 差错校验码
- Device Controller
 - Convert the serial bit stream into a block of bytes and perform any error correction necessary
 - Can handle one, two, four ... identical devices
- Interface between the controller and device
 - ANSI, IEEE, ISO standard, A de facto standard
 - IDE, SCSI, SATA, USB, Firewire(IEEE 1394)

leexudong@nankai.edu.cn

Device Controllers

 $\mathsf{OSP} \circledcirc \mathsf{LeeXudong@nankai.edu.cn}$

Memory-Mapped I/O

- Device controller
 - Control registers
 - A data buffer
- I/O port
- I/O port space: set of I/O ports
- Special I/O instruction
 - IN REG, PORT
 - OUT PORT, REG
- Memory-Mapped I/O
 - MOV R0, 4

leexudong@nankai.edu.cn

10

12

Memory-Mapped I/O

- a) Separate I/O and memory space
- b) Memory-mapped I/O
- c) Hybrid

Memory

All addresses (memory

and I/O) go here

CPU

Memory-Mapped I/O

- (a) A single-bus architecture
- (b) A dual-bus memory architecture

leexudong@nankai.edu.cn 11 leexudong@nankai.edu.cn

Interrupts

Interrupts

- Interrupts 中断 v.s. traps 陷阱
 - Different interrupt source
 - Trap: current running process
 - Different interrupt handler's provider
 - Different act time
 - Different context

leexudong@nankai.edu.cn

Interrupts

■ Precise 精确 and Imprecise interrupts

a) a precise interrupt; b) an imprecise interrupt

leexudong@nankai.edu.cn

17

4

Principles of I/O Software

Goals of I/O Software 1/2

- device independence 设备独立性
 - programs can access any I/O device
 - without specifying device in advance
 - (floppy, hard drive, or CD-ROM)
- uniform naming 统一命名
 - name of a file or device a string or an integer
 - not depending on which machine
- error handling 错误处理
 - handle as close to the hardware as possible

Goals of I/O Software 2/2

- synchronous(同步) V.S. asynchronous(异步)
 - blocked transfers vs. interrupt-driven
- buffering 缓冲
 - data coming off a device cannot be stored in final destination
- Shareable 共享 v.s. dedicated 专用 devices
 - disks are shareable
 - tape drives would not be

OSP © LeeXudong@nankai.edu.cn $\$19 \overline{y}$ OSP © LeeXudong@nankai.edu.cn $\$20 \overline{y}$

Programmed I/O

■ Programmed I/O 程序控制 I/O

Steps in printing a string

leexudong@nankai.edu.cn

21

Programmed I/O

22

Busy waiting

leexudong@nankai.edu.cn

Interrupt-Driven I/O

■ 中断驱动式 I/O

```
copy_from_user(buffer, p, count);
enable_interrupts();
while (*printer_status_reg != READY);
*printer_data_register = p[0];
scheduler();

(a)

if (count == 0) {
    unblock_user();
} else {
    *printer_data_register = p[i];
    count = count - 1;
    i = i + 1;
}
acknowledge_interrupt();
return_from_interrupt();
```

Writing a string to the printer using interrupt-driven I/O a)Code executed at the time the print system call is made b) Interrupt service procedure for the printer

leexudong@nankai.edu.cn

I/O Using DMA

- Direct Memory Access, DMA
 - a feature of computerized systems that allows certain hardware subsystems to access main system memory independently of the central processing unit (CPU)

I/O Using DMA

■ 使用 DMA 的 I/O

copy_from_user(buffer, p, count);
set_up_DMA_controller();
scheduler();

acknowledge_interrupt();
unblock_user();
return_from_interrupt();

(a)

(b)

Printing a string using DMA.

- (a) Code executed when the print system call is made.
- (b) Interrupt service procedure.

leexudong@nankai.edu.cn

25

DMA

- Bus modes
 - Word-at-a-time mode
 - Block mode
- DMA modes
 - Burst mode: 突发模式
 - DMA controller requests for the transfer of one word and gets it
 - Cycle stealing mode:block the CPU
 - Fly-by mode: 飞越模式
 - DMA controller tell the device controller to transfer the data directly to main memory

leexudong@nankai.edu.cn

26

DMA

- Physical memory addresses
- Virtual memory addresses
 - DMA controller must use the MMU to have the virtual-to-physical translation done
- Disk ↔ Disk Controller buffer ↔ mem

I/O Using Channel

- Channel 通道
- A high-performance input/output (I/O) architecture that is implemented in various forms on a number of computer architectures, especially on mainframe computers
- Channel architecture uses a separate, independent, lowcost processor
- Channel processors are simple, but self-contained, with minimal logic and sufficient on-board scratchpad memory (working storage) to handle I/O tasks
- Each channel may support one or more controllers and/or devices, but each channel program may only be directed at one of those connected devices

leexudong@nankai.edu.cn 27 leexudong@nankai.edu.cn 28

Channel I/O

- Channel program
 - a sequence of channel command words (CCWs) which are executed by the I/O channel subsystem.

		•		
OP	Р	R	Bytes	Mem Addr.
WRITE	0	0	80	813
WRITE	0	0	140	1034
WRITE	0	1	60	5830
WRITE	0	1	300	2000
WRITE	0	0	250	1850
WRITE	1	1	250	720

leexudong@nankai.edu.cn

I/O Software Layers

I/O Software Layers

User-level I/O software			
Device-independent operating system software			
Device drivers			
Interrupt handlers			
Hardware			

Interrupt Handlers

- 1. Save registers not already been saved by interrupt hardware.
- 2.Set up a context for the interrupt service procedure.
- 3.Set up a stack for the interrupt service procedure.
- 4.Acknowledge the interrupt controller. If there is no centralized interrupt controller, reenable interrupts.
- 5.Copy the registers from where they were saved to the process table.

leexudong@nankai.edu.cn 31 leexudong@nankai.edu.cn 32

Interrupt Handlers

- 6. Run the interrupt service procedure.
- 7. Choose which process to run next.
- 8.Set up the MMU context for the process to run next.
- 9.Load the new process' registers, including its PSW.
- 10. Start running the new process.

leexudong@nankai.edu.cn

33

Device Drivers

- Device driver
 - Each I/O device attached to a computer needs some device-specific code for controlling it
 - Each device driver normally handles one device type, or at most, one class of closely related devices
 - In order to access the device's hardware, meaning the controller's registers, the device driver normally has to be part of the OS kernel

Device-Independent I/O Software

Uniform interfacing for device drivers		
Buffering		
Error reporting		
Allocating and releasing dedicated devices		
Providing a device-independent block size		

Functions of the device-independent I/O software

leexudong@nankai.edu.cn 35 leexudong@nankai.edu.cn 3

Uniform Interfacing for Device Drivers

Major device number, minor device number

leexudong@nankai.edu.cn

37

Buffering

- Buffers can increase application performance
 - by allowing synchronous operations such as file reads or writes to complete quickly instead of blocking while waiting for hardware interrupts to access a physical disk subsystem

Buffering User Process OS I/O Device __in 0) No Buffer User Process OS I/O Device __in_ a) User Space Buffer **User Process** OS I/O Device b) Single Buffer User Process I/O Device c) Double Buffer **User Process** I/O Device d) Circular Buffer OSP © LeeXudong@nankai.edu.cn

Error Reporting

- Errors are far more common in the context of I/O than in other contexts
- Classes of I/O errors
 - Programming errors
 - Actual I/O errors
- How to handle I/O errors

.

leexudong@nankai.edu.cn

Device-Independent Block Size

- Different disks may have different sector sizes
- The device-independent software hides this fact and provides a uniform block size to higher layers

User-Space I/O Software

- Applications
 - Open, Read, Write, ..., Close

leexudong@nankai.edu.cn 41 leexudong@nankai.edu.cn 42

Disks

- Magnetic Disks
 - IDE: Integrated Drive Electronics
 - SATA: Serial ATA
- overlapped seeks
 - A controller can do seeks on two or more drivers at the same time
- Logical block addressing
 - X Cylinders, Y heads, Z sectors
 - Continue...

Disks

- · Logical block addressing
- X Cylinders, Y heads, Z sectors
- (x, y, z)
 - IBM PC: (65536, 16, 63)

Disks

Parameter	IBM 360-KB floppy disk	WD 18300 hard disk
Number of cylinders	40	10601
Tracks per cylinder	2	12
Sectors per track	9	281 (avg)
Sectors per disk	720	35742000
Bytes per sector	512	512
Disk capacity	360 KB	18.3 GB
Seek time (adjacent cylinders)	6 msec	0.8 msec
Seek time (average case)	77 msec	6.9 msec
Rotation time	200 msec	8.33 msec
Motor stop/start time	250 msec	20 sec
Time to transfer 1 sector	22 msec	17 μsec

a) Physical geometry of a disk with two zones b)A possible virtual geometry for this disk

Disk Arm Scheduling Algorithms

- Time required to read or write a disk block determined by 3 factors
 - Seek time
 - Rotational delay
 - Actual transfer time

Seek time dominates

- Error checking is done by controllers
- Scheduling Algorithms
 - FCFS 、SSF 、 Elevator
 - Example:11,1,36,16,34,9,12
 - Moved 111 cylinders

OSP © LeeXudong@nankai.edu.cn

SSF disk scheduling algorithm

Shortest Seek First (SSF) disk scheduling algorithm

Elevator disk scheduling algorithm

- Elevator(电梯) disk scheduling algorithm
 - SCAN algorithm(扫瞄)

 ${\sf OSP} \ @ \ LeeXudong@nankai.edu.cn$

leexudong@nankai.edu.cn

RAID

- RAID
 - Redundant Array of Inexpensive Disks
 - Redundant Array of Independent Disks
- Goals of RAID
 - Improve disk performance
 - Improve disk storage safe

leexudong@nankai.edu.cn

50

RAID Bit 4 RAID level 3 Strip: 条带 P0-3 Strip 3 Strip 7 P4-7 RAID level 4 Strip 11 P0-3 Strip 3 P4-7 Strip 7 Strip 10 Strip 11 RAID level 5 Strip 14 Strip 15 Strip 18 Strip 19

leexudong@nankai.edu.cn

RAID

? Which one is better??

Others Storage Devices

- CD-ROM:
 - Compact Disc Read Only Memory
- CD-Recordables
- CD-Rewritables
- DVD
 - Digital Video Disk
- ...

leexudong@nankai.edu.cn

54

Stable Storage

- Stable Storage
 - Different from RAID
 - Logical Error: keep the disk consistent
 - crashes during writes corrupting the original data without replacing them by newer data
- ECC
 - Error-correcting code
 - 16 bytes: ecc(512 bytes)
- Stable Storage
 - Stable Writes
 - Stable Reads

• ...

Stable Storage

- Stable Storage
 - Crash Recovery
 - CPU crash :five cases

Disk

(e)

Clocks(Timers)

Clock Hardware

- Crystal oscillator 晶振体, a counter, a holding register
- CPU interrupt: clock tick
- 8284/82C284
- Two modes: One-shot mode, Square-ware mode

Clocks(Timers)

- Frequency Multiplier 倍频器
- UTC: Universal Coordinated Time
 - Greenwich Mean Time • UNIX: Jan.1, 1970 Windows: Jan.1, 1980

Clock

- Soft Timers
- **Duties of Clock Software**
 - Maintaining the time of day
 - Preventing processes from running longer than they are allowed to
 - Accounting for CPU usage
 - Handling the alarm system call made by user processes
 - Providing watchdog timers for parts of the system itself
 - Doing profiling, monitoring, and statistics gathering

User Interface

- Terminal Devices
 - Input Devices
 - Keyboard
 - Mouse
 - ...
 - Output Devices
 - Monitor
 - ...

leexudong@nankai.edu.cn

Terminal 终端

- Text Terminal
 - RS-232*
- GUI Terminal
 Graphical User
 Interface
 - Windows
 - X Window*
 - •
- Net Terminal*
 - SLIM: Stateless Low-level Interface Machine

OSP © LeeXudong@nankai.edu.cn

Text Terminal: RS-232

- An RS-232 terminal communicates with computer 1 bit at a time
- Called a serial line bits go out in series, 1 bit at a time
- Windows uses COM1 and COM2 ports, first to serial lines
- unix: /dev/tty1 /dev/tty2
- Computer and terminal are completely independent

OSP © LeeXudong@nankai.edu.cn

Text Terminal: RS-232 Input 1/2

canonical mode, noncanonical mode

Character	POSIX name	Comment
CTRL-H	ERASE	Backspace one character
CTRL-U	KILL	Erase entire line being typed
CTRL-V	LNEXT	Interpret next character literally
CTRL-S	STOP	Stop output
CTRL-Q	START	Start output
DEL	INTR	Interrupt process (SIGINT)
CTRL-\	QUIT	Force core dump (SIGQUIT)
CTRL-D	EOF	End of file
CTRL-M	CR	Carriage return (unchangeable)
CTRL-J	NL	Linefeed (unchangeable)

Characters handled specially in canonical mode

OSP © LeeXudong@nankai.edu.cn

Text Terminal: RS-232 Input 2/2

- Central buffer pool
 - 10 chars per buffer
- Dedicated buffer for each terminal OSP © LeeXudong@nankai.edu.cn

Text Terminal: RS-232 Output

Escape sequence	Meaning		
ESC [nA	Move up n lines		
ESC [nB	Move down n lines		
ESC [nC	Move right <i>n</i> spaces		
ESC [nD	Move left n spaces		
ESC[m;nH	Move cursor to (m,n)		
ESC[sJ	Clear screen from cursor (0 to end, 1 from start, 2 all)		
ESC[sK	Clear line from cursor (0 to end, 1 from start, 2 all)		
ESC [nL	Insert n lines at cursor		
ESC [nM	Delete n lines at cursor		
ESC [nP	Delete n chars at cursor		
ESC [n@	Insert n chars at cursor		
ESC [n m	Enable rendition <i>n</i> (0=normal, 4=bold, 5=blinking, 7=reverse)		
ESC M	Scroll the screen backward if the cursor is on the top line		

- The ANSI escape sequences 转义序列

 - accepted by terminal driver on output
 ESC is ASCII character (0x1B)
 n,m, and s are optional numeric parameters
- Termcap 终端数据库

 $\mathsf{OSP} \circledcirc \mathsf{LeeXudong@nankai.edu.cn}$

GUI

- Graphical User Interface
 - Douglas Engelbart:
 - Stanford Research Institute
 - human–computer interaction
 - Xerox PARC: copied
 - Steve Jobs(Apple Corp.): Prodution
 - Apple Lisa 、 Macintosh
 - Microsoft Windows: From Apple

GUI

■ GUI "**WIMP**"

- Window
- Icon
- Menu
- Pointing device

OSP © LeeXudong@nankai.edu.cn

GUI: Display Hardware 1/2

- Display Hardware
 - Vector graphics 矢量设备
 - Raster graphics 栅格设备
 - Char mode 、 Bit mode (pixel 像素 , bitmap 位图)
- Memory-mapped displays
 - driver writes directly into display's video RAM Graphics

GUI: Display Hardware 2/2

- A) A video RAM image
 - simple monochrome display
 - character mode
 - the Xs are attribute bytes
- B) Corresponding screen

OSP © LeeXudong@nankai.edu.cn

GUI: Input Software

- Keyboard driver delivers a number
 - 键盘扫描码, ASCII 码
 - driver converts to characters
 - uses a ASCII table
- Exceptions, adaptations needed for other languages
 - 键盘映射 keymap Or 代码页 code page
 - many OS provide for loadable keymaps or code pages

 ${\sf OSP} @ LeeXudong@nankai.edu.cn\\$

GUI: Output Software

Sample window located at (200,100) on XGA display

GUI: MS Windows 1/5

#include <windows.h>

```
int WINAPI WinMain(HINSTANCE h, HINSTANCE, hprev, char *szCmd, int iCmdShow)
     WNDCLASS wndclass:
                                       /* class object for this window */
     MSG msg;
                                       /* incoming messages are stored here */
     HWND hwnd;
                                       /* handle (pointer) to the window object */
     /* Initialize wndclass */
     wndclass.lpfnWndProc = WndProc;
                                                 /* tells which procedure to call */
     wndclass.lpszClassName = "Program name"; /* Text for title bar */ wndclass.hlcon = Loadlcon(NULL, IDI_APPLICATION); /* load program icon */
     wndclass.hCursor = LoadCursor(NULL, IDC_ARROW);
                                                                /* load mouse cursor */
     RegisterClass(&wndclass);
                                       /* tell Windows about wndclass */
     hwnd = CreateWindow ( ... )
                                       /* allocate storage for the window */
     ShowWindow(hwnd, iCmdShow); /* display the window on the screen */
                                       /* tell the window to paint itself */
     UpdateWindow(hwnd);
```

Skeleton of a Windows main program (part 1)

GUI: MS Windows 2/5

Skeleton of a Windows main program (part 2)

OSP © LeeXudong@nankai.edu.cn

GUI: MS Windows 3/5

- Drawing
 - Lines, curves
 - Filled Areas
 - bitmaps
 - Displaying text
- An example rectangle drawn using Rectangle
 - Rectangle(hdc, xleft, ytop, xright, ybottom)
 - Echo box represents one pixel

 ${\sf OSP} @ LeeXudong@nankai.edu.cn\\$

GUI: MS Windows 4/5

- Bitmap 位图
 - bitBlt(dsthdc, dx, dy, width, height, srchdc, sx, sy, rasteroperator)

OSP © LeeXudong@nankai.edu.cn

- Copying bitmaps using BitBlt
 - A) Before, B) After

(a)

GUI: MS Windows 5/5

- Fonts
 - •BitBlt: bitmap
 - •TrueType: outlines of the characters
 - 20 pt: abcdefgh

sape abcdefgh

81 pt: abcdefgh

Examples of character outlines at different point sizes

Network Terminals: X Window 1/3

Clients and servers in the M.I.T. X Window System

 $\mathsf{OSP} \circledcirc \mathsf{LeeXudong@nankai.edu.cn}$

main(int argc, char *argv[]) Display disp; /* server identifier */ /* window identifier */ Window win; GC gc; /* graphic context identifier */ XEvent event: /* storage for one event */ int running = 1; disp = XOpenDisplay("display_name"); /* connect to the X server */ win = XCreateSimpleWindow(disp, ...); XSetStandardProperties(disp, ...); /* allocate memory for new window */ /* announces window to window mgr */ xGetardadwin openiesdys, ...), /* amothes window to window to get = XCreateGC(disp, win, 0, 0); /* create graphic context */ XSelectInput(disp, win, ButtonPressMask | KeyPressMask | ExposureMask); XMapRaised(disp, win); /* display window; send Expose event */ while (running) { XNextEvent(disp, &event); switch (event.type) { /* get next event */ case Expose: ...; break; /* repaint window */ /* process mouse click */ break: case Keypress: break; /* process keyboard input */ XFreeGC(disp, gc); /* release graphic context */ XDestroyWindow(disp, win); XCloseDisplay(disp); /* deallocate window's memory space */ /* tear down network connection */

Network Terminals: X Window 3/3

 $\mathsf{OSP} \circledcirc \mathsf{LeeXudong@nankai.edu.cn}$

Network Terminals: SLIM

SLIM

#include <X11/Xlib.h>

#include <X11/Xutil.h>

Stateless Low-level Interface Machine

OSP © LeeXudong@nankai.edu.cn

Network Terminals: SLIM

- SLIM Protocols
 - SFT
 - FILL
 - BITMAP
 - COPY
 - CSCS

OSP © LeeXudong@nankai.edu.cn

Power Management

- ENIAC
 - 180000 vacuum tubes, 140000 watts of power
- PC
 - 200-watt power supply, 85% efficient
 - If 100 million of PC are turnned on at once worldwide
 - 20000 megawattts: 20 nuclear power plants
- Battery-powered Computers
 - Heart of the problem: the batterises cannot hold enough charge to last very long, a few hours at most
 - No process: More Law

 ${\sf OSP} \ @ \ Lee Xudong@nankai.edu.cn$

Power: Reuding Energy Consumption

- Way 1:
 - Turn off parts of the computer (mostly I/O de vices) when they are not in use
- Way 2:
 - The application program uses less energy
 - Possibly degrads the quality of the user experience, in order to strech out battery time

Power: Hardware Issues 1/2

- Batteries
 - disposable 一次性使用的
 - rechargeable 可再充电的
- Modes
 - Working
 - Sleeping
 - Hibernating
 - Off

Power: Hardware Issues 2/2

Power consumption of various parts of a laptop computer

	Device	Li e	et al. (1994)	Lorch and Smith (1998)
1	Display	\	68%	39%
!	CPU		12%	18%
١,	Hard disk	K	20%	12%
	Modem			6%
	Sound			2%
	Memory		0.5%	1%
	Other			22%
		To	p 3	

OSP © LeeXudong@nankai.edu.cn

Problems of Power Management

- Which devices can be controlled?
- Are they on/off, or do they have intermediate s tates?
- How much power is saved in the low-power states?
- Is energy expended to restart the device?
- Must some context be saved when going to a I ow-power state?
- How long does it take to go back to full power?

 ${\sf OSP} @ LeeXudong@nankai.edu.cn\\$

Power: Display

- To get a bright sharp image
 - The screen must be backlit and that takes substantial energy
- Way1:turn off the screen
- Way2:divide the screen into many zones, turn off part of zones
 - J. Flinn and M. Satyanarayanan, "Managing battery lifetime with energy-aware adaptation.," ACM Trans. Comput. Syst., vol. 22, no. 2, pp. 137–179, 2004.

(h)

Power: hard disk

- Hard disk
 - It takes substantial energy to keep it spinning at high spe ed, even if there are no accesses
- Way1:Spin the disk down after a certain number of seconds or minutes of inactivity
- Way2:Have a substantial disk cache in RAM
- Way3:OS informs running programs about the disk state by sending it messages or signals

Power:CPU

- CPU
 - Sleep
 - Cut vlotage

- (a)Running at full clock speed
- (b)Cutting voltage by two: cuts clock speed by two, cuts power by four
 OSP © LeeXudong@nankai.edu.cn

Power: Memory

- Way1:switch off the cache
- Way2:switch off the main memory
- Reloading
 - ...

OSP © LeeXudong@nankai.edu.cn

Power: Wireless Communication

- Wireless communication
 - Radio transmitter
 - Radio receiver
- Turn off the radio receiver
 - Base station,
 - Buffer?
- Ture off the radio transmitter
 - Buffer
- When should the radio be switched off?

Power:Thermal Management

- Thermal 热量
 - Modern CPUs get extremely hot due to their high speed
- Electric Fan
 - Power of Electric Fan?
 - When should the fan be switched off/on?

Power: Battery Management

- Smart Battery
 - Can communicate with the OS
 - Report states of the battery:
 - maxmum voltage, current voltage
 - maxinum charge(负荷), current charge
 - maximum drain(消耗) rate, current drain rate
- Multiple Batteries
- ACPI
 - Advanced Configuration and Power Interface

OSP © LeeXudong@nankai.edu.cn

Summary

- Principles of I/O Hardware
- Principles of I/O Software
- I/O Software Layers
- Disks
- Clocks
- User Interfaces
- Power Management

Power: Degrade

- Degrade Operation 退化运行
 - OS tells the programs to use less energy, even i f theis means providing a poorer user experienc
 - Better a poorer experience than no experience when the battery dies and the lights go out
- How a program can degrade its performanc e to save energy?
 - tradeoff

