Introduction to the Theory of Computation

Lecture M3: Module 3 Recap

Tiago Cogumbreiro

Today we will...

- Announcements
- Recap what we learned in CS 420
- Discuss what work/didn't work in CS 420
- Go over sample exercises for mini-test 3
- Course evaluation

Announcements

Mini Test 3

Where: Y02-2330, 2nd University Hall

When: from 5:30pm until 6:45pm

CSM Undergraduate Research Fellowships

Want to do research?

CSM students applying for this Fellowship need to:

- Identify a potential topic of research and a potential research group.
- Demonstrate an excellent academic standing with a minimum grade point average (GPA)
 of 3.2.
- Commit to working with a research group the equivalent time of 2-3 credits of coursework per semester.
- Agree to present a research poster at the CSM Student Success Showcase on Friday, May 15, 2020.

Deadline: January 15, 2020

forms.umb.edu/csm-opportunities/c/urf

Looking back...

• We learned about **regular languages** and their applications (lesson 17)

- We learned about **regular languages** and their applications (lesson 17)
 - regular expressions for validation, text searching

- We learned about **regular languages** and their applications (lesson 17)
 - regular expressions for validation, text searching
 - finite state machines for structuring stateful algorithms

- We learned about **regular languages** and their applications (lesson 17)
 - regular expressions for validation, text searching
 - finite state machines for structuring stateful algorithms
 - multiple abstractions to handle the same concept and solve different problems (DFA/NFA/REGEX)

Looking back...

• We learned context-free languages and their applications (lesson 17)

- We learned **context-free languages** and their applications (lesson 17)
 - context-free grammars for parsing structured text (JSON example/programming languages)

- We learned context-free languages and their applications (lesson 17)
 - context-free grammars for parsing structured text (JSON example/programming languages)
 - multiple abstractions to handle the same concept and solve different problems (PDA/CFG)

Looking back...

• We learned about **Turing-recognizable languages**

- We learned about **Turing-recognizable languages**
 - Church-Turing thesis: programs are Turing Machines

- We learned about **Turing-recognizable languages**
 - Church-Turing thesis: programs are Turing Machines
 - Recognizable: implementation answers YES correctly (may loop)

- We learned about **Turing-recognizable languages**
 - Church-Turing thesis: programs are Turing Machines
 - Recognizable: implementation answers YES correctly (may loop)
 - Decidable: implementation answers YES/NO correctly (recognizable + terminates)

- We learned about **Turing-recognizable languages**
 - Church-Turing thesis: programs are Turing Machines
 - Recognizable: implementation answers YES correctly (may loop)
 - Decidable: implementation answers YES/NO correctly (recognizable + terminates)
 - Are there decision problems that have no implementation possible?

- We learned about **Turing-recognizable languages**
 - Church-Turing thesis: programs are Turing Machines
 - Recognizable: implementation answers YES correctly (may loop)
 - Decidable: implementation answers YES/NO correctly (recognizable + terminates)
 - Are there decision problems that have no implementation possible?
 - Reducibility: mapping problems into other problems

- We learned about **Turing-recognizable languages**
 - Church-Turing thesis: programs are Turing Machines
 - Recognizable: implementation answers YES correctly (may loop)
 - Decidable: implementation answers YES/NO correctly (recognizable + terminates)
 - Are there decision problems that have no implementation possible?
 - Reducibility: mapping problems into other problems
 - Logic programming using a proof assistant

What work/didn't work in CS 420?

Do you think using a proof assistant helped you?

Do you think we should devote *more* time learning to use a proof assistant?

Mini Test 3 Primer

Mini Test 3 overview

- 50 points for Sections 4.1 and 4.2 (HW7 + Exercises in Lesson 20)
- around 10 points for Section 5.1
- around 40 points for Section 5.3
- Level 1: 60 points
- Level 2: 25 points
- Level 3:15 points

Exercise 1 (Level 1)

Know why membership tests fail and succeed; explain why certain membership fails.

Exercise 1 (Level 1)

Know why membership tests fail and succeed; explain **why** certain membership fails.

Let D be the DFA below

- ullet Exercise 2.1: Is $\langle D,0100
 angle \in A_{DFA}$?
- Exercise 2.2: Is $\langle D, 101 \rangle \in A_{DFA}$?
- Exercise 2.3: Is $\langle D \rangle \in A_{DFA}$?

- ullet Exercise 2.4: Is $\langle D, 101
 angle \in A_{REX}$?
- Exercise 2.5: Is $\langle D
 angle \in E_{DFA}$?
- Exercise 2.6: Is $\langle D,D
 angle \in EQ_{DFA}$?
- Exercise 2.7: Is $101 \in A_{REX}$?

Exercise 2 (Level 1)

Know how to compose decidable algorithms as new decidable algorithms.

Exercise 2 (Level 1)

Know how to compose decidable algorithms as new decidable algorithms.

Give an algorithm that decides EQ_{REX}

Exercise 2 (Level 1)

Know how to compose decidable algorithms as new decidable algorithms.

Give an algorithm that decides EQ_{REX}

```
def EQ_REX(R1, R2):
    return EQ_DFA(REX_TO_DFA(R1), REX_TO_DFA(R2))
```

Similar examples: give a decider for

- A_{NFA} , A_{REX} , A_{PDA} (Lesson 17)
- EQ_{DFA} (Lesson 18)
- EQ_{DFAREX} (Exercise 4.2) (or any combination therein)
- *ALL*_{DFA} (Exercise 4.3)
- $A\epsilon_{\mathsf{CFG}}$ (Exercise 4.4)

- $\{\langle R,S \rangle \mid R,S \text{ are regex} \land L(R) \subseteq L(S)\}$ is decidable (Problem 4.13)
- $\{\langle R \rangle \mid R \text{ is regex over } \{0,1\} \land w \text{ contains } 111 \land w \in L(G)\}$ (Exercise 4.16)

Exercise 3 (Level 1)

Know examples of recognizable, decidable, unrecognizable, undecidable languages.

Exercise 3 (Level 1)

Know examples of recognizable, decidable, unrecognizable, undecidable languages.

Give an example of a recognizable and undecidable language.

Exercise 3 (Level 1)

Know examples of recognizable, decidable, unrecognizable, undecidable languages.

Give an example of a recognizable and undecidable language.

Solution: A_{TM} is recognizable (in proof of Theorem 4.11, page 202) and undecidable (Theorem 4.11).

Tip: build a table of (co-)recognizable, decidable, undecidable, and (co-)unrecognizable languages

• Think of A, E, EQ for DFA, CFG, and TM

Exercise 4 (Level 2)

Map-reducible: Use decidability (Theorem 5.22 and Corollary 5.23) and recognizability (Theorem 5.28 and Corollary 5.29) to derive conclusions about the languages we studied (A, E, EQ + DFA, CFG, TM).

Exercise 4 (Level 2)

Map-reducible: Use decidability (Theorem 5.22 and Corollary 5.23) and recognizability (Theorem 5.28 and Corollary 5.29) to derive conclusions about the languages we studied (A, E, EQ + DFA, CFG, TM).

Given that $A_{\mathsf{TM}} \leq_{\mathsf{m}} HALT_{\mathsf{TM}}$, show that $HALT_{\mathsf{TM}}$ is undecidable.

Exercise 4 (Level 2)

Map-reducible: Use decidability (Theorem 5.22 and Corollary 5.23) and recognizability (Theorem 5.28 and Corollary 5.29) to derive conclusions about the languages we studied (A, E, EQ + DFA, CFG, TM).

Given that $A_{\mathsf{TM}} \leq_{\mathsf{m}} HALT_{\mathsf{TM}}$, show that $HALT_{\mathsf{TM}}$ is undecidable.

Proof. Apply Corollary 5.23 since $A_{\rm TM}$ is undecidable (Theorem 4.11) and $A_{\rm TM} \leq_{\rm m} HALT_{\rm TM}$ (hypothesis).

More examples

- Show that $\overline{HALT}_{\mathrm{TM}}$ is unrecognizable.
- Show that $HALT_{\mathsf{TM}}$ is undecidable. (Exercise 5.24/Lesson 22)
- Show that A_{TM} is recognizable via mapping reducibility. (Lesson 22)

Exercise 5 (level 2)

Relate facts on map-reducible.

Exercise 5 (level 2)

- Relate facts on map-reducible.
 - Exercise 5.6: \leq_{m} is a transitive relation.
 - Exercise 5.22: A is recognizable iff $A \leq_{\mathrm{m}} A_{\mathsf{TM}}$.

Let (H1) $A_{CFG} \leq_{\mathrm{m}} A_{TM}$, (H2) $A_{DFA} \leq_{\mathrm{m}} A_{CFG}$, and (H3) A_{TM} is recognizable.

Prove that we can conclude that A_{DFA} is recognizable using map-reducibility.

Exercise 5 (level 2)

Relate facts on map-reducible.

- Exercise 5.6: \leq_{m} is a transitive relation.
- Exercise 5.22: A is recognizable iff $A \leq_{\mathrm{m}} A_{\mathsf{TM}}$.

Let (H1) $A_{CFG} \leq_{\mathrm{m}} A_{TM}$, (H2) $A_{DFA} \leq_{\mathrm{m}} A_{CFG}$, and (H3) A_{TM} is recognizable.

Prove that we can conclude that A_{DFA} is recognizable using map-reducibility.

Proof.

- 1. $A_{DFA} \leq_{\mathrm{m}} A_{TM}$ by Exercise 5.6, (H1) $A_{CFG} \leq_{\mathrm{m}} A_{TM}$, (H2) $A_{DFA} \leq_{\mathrm{m}} A_{CFG}$.
- 2. A_{DFA} is recognizable, by Exercise 5.22, (1) $A_{DFA} \leq_{\mathrm{m}} A_{TM}$, and (H3).

Exercise 6 (Level 2)

Relate facts on map-reducible.

Exercise 6 (Level 2)

- Relate facts on map-reducible.
 - Lemma R.1: If $A \leq_{\mathrm{m}} B$, then $\overline{A} \leq_{\mathrm{m}} \overline{B}$.
 - Lemma R.2: If $A \leq_{\mathrm{m}} \overline{B}$ and B recognizable, then $\overline{A} \leq_{\mathrm{m}} B$.
 - Lemma R.3: If A recognizable and $\overline{A} \leq_{\mathrm{m}} B$, then $A \leq_{\mathrm{m}} \overline{B}$.

Let (H1) $B \leq \overline{A}_{TM}$. Show that \overline{B} is recognizable.

Exercise 6 (Level 2)

Relate facts on map-reducible.

- Lemma R.1: If $A \leq_{\mathrm{m}} B$, then $\overline{A} \leq_{\mathrm{m}} \overline{B}$.
- Lemma R.2: If $A \leq_{\mathrm{m}} \overline{B}$ and B recognizable, then $\overline{A} \leq_{\mathrm{m}} B$.
- Lemma R.3: If A recognizable and $\overline{A} \leq_{\mathrm{m}} B$, then $A \leq_{\mathrm{m}} \overline{B}$.

Let (H1) $B \leq \overline{A}_{TM}$. Show that \overline{B} is recognizable.

Proof.

- 1. $\overline{B} \leq A_{TM}$, by Lemma R.2, (H1) $\overline{A}_{TM} \leq B$, and A_{TM} recognizable (pp 202).
- 2. \overline{B} is recognizable, by Exercise 5.22 and (1) $\overline{B} \leq A_{TM}$.

Exercise 7 (Level 2)

Relate facts on map-reducible.

Exercise 7 (Level 2)

UMASS BOSTON

Relate facts on map-reducible.

Show that $\overline{HALT}_{\mathsf{TM}}$ is unrecognizable.

Exercise 7 (Level 2)

Relate facts on map-reducible.

Show that $\overline{HALT}_{\mathsf{TM}}$ is unrecognizable.

Proof.

- 1. $\overline{A}_{\mathsf{TM}} \leq_{\mathrm{m}} \overline{HALT}_{\mathsf{TM}}$, by Theorem R.1 and $A_{\mathsf{TM}} \leq_{\mathrm{m}} HALT_{\mathsf{TM}}$ (exercise 5.24)
- 2. $\overline{HALT}_{\mathsf{TM}}$ is unrecognizable, by Corollary 5.29, $\overline{A}_{\mathsf{TM}} \leq_{\mathrm{m}} \overline{HALT}_{\mathsf{TM}}$ (1), and $\overline{A}_{\mathsf{TM}}$ is unrecognizable (Corollary 4.23)

Exercise 8 (Level 3)

(Exercise 4.2 in the book.)

$$EQ_{DFAREX}\{\langle D,R
angle \mid D ext{ is a DFA} \wedge R ext{ is a regex} \wedge L(D) = L(R)\}$$

Exercise 8 (Level 3)

(Exercise 4.2 in the book.)

$$EQ_{DFAREX}\{\langle D,R\rangle\mid D ext{ is a DFA} \wedge R ext{ is a regex} \wedge L(D)=L(R)\}$$

Let r2n be the function that converts a regular expression into an NFA and n2d be the function that converts an NFA into a DFA.

- 1. $EQ_{DFAREX} \leq_m EQ_{DFA}$ with $F(\langle D,R \rangle) = \langle D, n2d(r2n(R))
 angle$.
 - \circ Unfold \leq_m . Goal: $\langle D,R
 angle \in EQ_{DFAREX} \iff F(\langle D,R
 angle) \in EQ_{DFA}$
 - \circ Unfold EQ_{DFAREX} , EQ_{DFA} , and F . Goal: $L(D) = L(R) \iff L(D) = n2d(r2n(R))$
 - \circ Rewrite goal with $\forall N, L(n2d(N)) = L(N)$ and $\forall R, r2n(R) = L(R)$. Goal: $L(D) = L(R) \iff L(D) = L(R)$. Proof: trivial, since $\forall P, P \iff P$.
- 2. EQ_{DFAREX} is decidable, by Theorem 5.22, (1) $EQ_{DFAREX} \leq_m EQ_{DFA}$, and EQ_{DFA} decidable (Theorem 4.5).

The proof has two main parts: 1) showing that the given language map-reduces to a decidable language and 2) use Theorem 5.22 to conclude.

Exercise 8 (Level 3)

Continuation...

- The proof has two main parts: 1) showing that the given language map-reduces to a decidable language and 2) use Theorem 5.22 to conclude.
- Whenever you say that $A \leq_m B$ be clear about which **function** reduces A to B.

More examples

See HW7

Exercise 9 (Level 3)

Hint...

Combine Lemma R.1, R.2, R.3, Exercise 5.6, Exercise 5.22, and decidability, recognizability to relate the recognizability/decidability between mapping-reducible languages.

Thank you!