1 Лабораторная работа № 1 "Калькулятор систем счисления"

Цель: Создание оконного приложения, позволяющего выполнять различные операции над числами в различных системах счисления.

1.1 Задание

Составить приложение, используя модуль создания оконных приложений Tkinter, реализующее индивидуальное задание. Интерфейс должен предоставлять ввод символов: как числовых, так и знаков операций – и с использованием клавиатуры, и с помощью кнопок приложения. Также в приложении необходимо создать меню, в котором должны быть следующие пункты:

- заданные действия,
- очистка полей ввода/вывода (по одному и всех сразу),
- информация о программе и авторе.

Использование встроенных функций bin(), oct(), hex() запрещено.

1.2 Варианты

- 1. Перевод заданного вещественного числа из 10-й системы счисления в 2-ю и обратно.
- 2. Перевод заданного вещественного числа из 10-й системы счисления в 3-ю и обратно.
- 3. Перевод заданного целого числа из 10-й системы счисления в 3-ю симметричную и обратно.
- 4. Перевод заданного вещественного числа из 10-й системы счисления в 4-ю и обратно.
- 5. Перевод заданного вещественного числа из 10-й системы счисления в 5-ю и обратно.
- 6. Перевод заданного вещественного числа из 10-й системы счисления в 6-ю и обратно.
- 7. Перевод заданного вещественного числа из 10-й системы счисления в 7-ю и обратно.
- 8. Перевод заданного вещественного числа из 10-й системы счисления в 8-ю и обратно.
- 9. Перевод заданного вещественного числа из 10-й системы счисления в 9-ю и обратно.
- 10. Сложение, вычитание и умножение вещественных чисел в 2-й системе счисления.
- 11. Сложение и вычитание вещественных чисел в 3-й системе счисления.
- 12. Сложение и вычитание вещественных чисел в 3-й симметричной системе счисления.
- 13. Сложение и вычитание вещественных чисел в 4-й системе счисления.
- 14. Сложение и вычитание вещественных чисел в 5-й системе счисления.
- 15. Сложение и вычитание вещественных чисел в 6-й системе счисления.
- 16. Сложение и вычитание вещественных чисел в 7-й системе счисления.
- 17. Сложение и вычитание вещественных чисел в 8-й системе счисления.
- 18. Сложение и вычитание вещественных чисел в 9-й системе счисления.
- 19. Сложение и вычитание вещественных чисел в 16-й системе счисления.
- 20. Сложение и вычитание целых чисел с использованием восьмиразрядного сумматора.

2 Лабораторная работа № 2 "Исследование методов сортировки"

Цель: исследовать различные методы сортировки, проанализировав временную сложность алгоритмов.

2.1 Задание

Реализовать 1 метод сортировки. Продемонстрировать его корректную работу на списке малой размерности (до 10 элементов).

Далее составить таблицу замеров времени сортировки списков трёх различных размерностей. Для каждой размерности списка необходимо исследовать:

- случайный список,
- отсортированный список,
- список, отсортирован в обратном порядке.

В результате должна получиться следующая таблица

	N_1	N_2	N_3
Упорядоченный массив			
Случайный массив			
Обратно упорядоченный массив			

2.2 Варианты

- 1. метод простых вставок;
- 2. метод вставок с барьером;
- 3. метод вставок с бинарным поиском;
- 4. метод Шелла;
- 5. метод простого выбора;
- 6. метод сортировки "пузырьком";
- 7. метод сортировки "пузырьком"с флагом;
- 8. метод шейкер-сортировки;
- 9. метод "расчески";
- 10. "гномья" сортировка;
- 11. пирамидальная сортировка.

3 Лабораторная работа № 3 "Методы уточнения корней"

Цель: реализация итерационных алгоритмов вычислительной математики.

3.1 Задание

Задается большой отрезок от a до b и шаг h. Проходя большой отрезок с шагом h, найти отрезки, где есть корень, и уточнить его с заданной точностью eps методом по варианту. Шаг задается таким, что на отрезке может быть или только один корень, или ни одного.

Входные данные — левый и правый концы a и b большого отрезка, шаг h, точность eps. Вычисление с заданной точностью производится одним из двух способов (на выбор пользователя): пока абсолютное значение разности предыдущего и текущего значений корня в точке больше eps или пока значение функции в точке корня больше eps.

Выходные данные – таблица. В таблицу выводить: номер корня, отрезок, корень на отрезке с точностью от 6 до 9 значащих цифр, значение функции в точке корня по спецификации типа е с минимальным значением цифр в мантиссе, количество итераций и код ошибки.

Номер корня	$[x_i; x_{i+1}]$	\bar{x}	$f(\bar{x})$	Количество итераций	Код ошибки

Также вывести график функции, отметить на нем найденные корни и точки по варианту с использованием matplotlib.

3.2 Варианты

3.2.1 Методы

- 1. половинного деления;
- 2. хорд;
- 3. Ньютона (касательных);
- 4. упрощенный метод Ньютона;
- 5. секущих;
- 6. комбинированный;
- 7. простых итераций;
- 8. Стефансона;
- 9. Брента (библиотечная реализация).

Вариант = (номер в списке группы % 9) + 1

3.2.2 Отмечаемые на графике точки

- 1. Локальные экстремумы
- 2. Точки перегиба

Вариант = (номер в списке группы % 2) + 1

Лабораторная работа №4 "Решение планиметрических задач"

Разработать приложение с графическим интерфейсом для решения поставленной задачи. Приложение позволяет пользователю задавать параметры фигур как с помощью клавиатуры, вводя цифровые значения, так и задавая мышкой характеристики фигуры на поле графического экрана. (Только для групп ИУ7-24, 25. Остальным только ввод с клавиатуры).

Также необходимо сделать графическую интерпретацию полученного решения.

Индивидуальные задания

#	Задача
1	На плоскости заданы множество точек A и множество прямых B. Найти две такие различные точки из A, что проходящая через них прямая параллельна наибольшему количеству прямых из B.
	Дать графическое изображение результатов.
2	Дано множество точек на плоскости. Найти треугольник, для которого разность площадей треугольников, образованных делением одной из биссектрис, будет минимальна.
	Дать графическое изображение результатов.
3	Из заданного множества точек на плоскости выбрать две различные точки так, чтобы окружности заданного радиуса с центрами в этих точках содержали внутри себя одинаковое количество заданных точек.
	Дать графическое изображение результатов.
4	На плоскости заданы множество точек A и множество треугольников. Найти две такие точки из A, что проходящая через них прямая пересекается с максимальным количеством треугольников из B.
	Дать графическое изображение результатов.
5	На плоскости задаются различные точки. Выбрать три такие, на которых (как на вершинах) можно построить треугольник с наименьшей длиной биссектрис.
	Дать графическое изображение результатов.
6	Заданы два множества точек. Найти такой треугольник с вершинами – точками первого множества, внутри которого находится одинаковое количество точек из первого и из второго множеств.
	Дать графическое изображение результатов.
7	На плоскости задано множество точек. Найти треугольник, построенный на этих точках, в котором самый большой угол.
	Дать графическое изображение результатов.
8	На плоскости задано множество точек. Определить количество выпуклых четырехугольников, которые можно построить на этих точках.

	Дать графическое изображение результатов.
9	На плоскости задано множество окружностей. Определить окружность, которая пересекает наибольшее количество окружностей.
	Дать графическое изображение результатов.
10	На плоскости задано множество точек и множество окружностей. Найти такую окружность, разница между количествами точек внутри и вне которой минимальна.
	Дать графическое изображение результатов.
11	На плоскости задано множество прямых. Найти три прямые, образующие треугольник минимальной площади.
	Дать графическое изображение результатов.
12	На плоскости задано множество точек. Найти центр и радиус круга минимальной площади, содержащего эти точки.
	Дать графическое изображение результатов.
13	Из заданного множества точек выбрать три различные точки так, чтобы разность между площадью круга, ограниченного окружностью, проходящей через эти три точки, и площадью треугольника с вершинами в этих точках, была минимальной.
	Дать графическое изображение результатов.
14	На плоскости задано множество точек. Определить количество выпуклых четырехугольников, которые можно построить на этих точках.
	Дать графическое изображение результатов.
15	Заданы два множества точек. Найти такой треугольник с вершинами – точками первого множества, внутри которого находится одинаковое количество точек из первого и из второго множеств.
	Дать графическое изображение результатов.
16	Дано множество точек на плоскости. Найти треугольник, для которого разность площадей треугольников, образованных делением одной из биссектрис, будет минимальна.
	Дать графическое изображение результатов.
17	На плоскости задано множество точек. Построить на трех точках этого множества такой треугольник, чтобы разница между количеством точек внутри и вне была минимальна.
	Дать графическое изображение результатов.
18	Выбрать три различные точки из заданного множества точек на плоскости так, чтобы площадь построенного по ним треугольника была максимальна.
	Дать графическое изображение результатов.
19	На плоскости задано множество точек и множество окружностей. Провести по точкам прямую, которая будет пересекать максимальное количество окружностей.

	Дать графическое изображение результатов.
20	На плоскости заданы множество точек A и множество прямых B. Найти две такие различные точки из A, что проходящая через них прямая параллельна наибольшему количеству прямых из B. Дать графическое изображение результатов.
21	На плоскости задано множество точек. Провести прямую по данным точкам так, чтобы количество точек с одной стороны от прямой и с другой отличалось минимально. Дать графическое изображение результатов.

^{* --} изображение создается с использованием виджета Canvas tkinter.