化学热力学

化学反应及相关过程中的能量效应 (热力学第一定律)

化学反应过程的方向和限度 (热力学第二定律)

> 阐明绝对熵的数值 (热力学第三定律)

> 常见的平衡现象

溶解平衡: NaCl(s) \longrightarrow Na⁺(aq) + Cl⁻(aq)

化学反应平衡: $N_2O_4(g) \longrightarrow 2NO_2(g)$

相平衡: $H_2O(1)$ \longrightarrow $H_2O(g)$

为何会存在化学平衡?

每个化学反应都存在逆反应,正反应与逆反 应速率相等时,化学反应达到平衡

平衡态、非平衡态与近平衡态

尽管很多实验室中的化学反应并非处于平衡 态,只是接近平衡态,但仍可用平衡态方法研究。

第五章 化学平衡

5.1 化学平衡

5.2 标准平衡常数的应用

5.3 化学平衡的移动

5.1 化学平衡

1. 化学平衡的基本特征

> 化学平衡的概念

在化学反应中,仅少数反应在一定条件下能进行到底,它们逆反应的倾向极小,可认为这些反应 是不可逆,称**不可逆反应**

$$2KClO_{3}(s) \xrightarrow{MnO_{2}} 2KCl(s) + 3O_{2}(g)$$

$$H_{2}(g) + F_{2}(g) \longrightarrow 2HF(g)$$

很多化学反应,在同一条件能同时向正、逆两个方向进行,称<mark>可逆反应</mark>

$$N_2(g) + 3H_2(g) \longrightarrow 2NH_3(g)$$

一定条件下,一个可逆反应的正反应速率与逆反应 速率相等时,反应物的浓度与生成物的浓度不再改变, 达到反应的最大限度,称**化学平衡状态**

> 化学平衡的基本特征

化学平衡的基本特征

- (1) **化学平衡最明显的特征**:正反应速率等于逆反应 速率,呈动态平衡
- (2) 从热力学观点: 到达平衡时,化学反应 Gibbs 函数变 $\Delta_r G_{m,T} = 0$, 反应到了该条件下的极限,各物质的浓度 (分压) 不变,平衡组成不变,可用平衡常数表征
- (3) **化学平衡是相对的、动态的、有条件的**,因此可改变:维持原平衡的条件发生变化,原平衡被破坏,重新建立平衡

2. 标准平衡常数与反应商

> 平衡常数的概念

大量实验结果表明:一定温度下,反应达到平衡时,生成物的浓度积与反应物的浓度积之比(称浓度商),是一个常数,称平衡常数

浓度积: 有关物质的浓度项(并以反应中化学计量数 为幂)的乘积。如合成 HI 的反应:

$$H_2(g) + I_2(g) \longrightarrow 2HI(g)$$

在 698 K 时的实验数据如表所示:

例: $H_2(g) + I_2(g) \longrightarrow 2HI(g)$ (698 K)

实验编号	起始浓度 × 10 ³ mol·L ⁻¹			平衡浓度 × 10 ³ mol·L ⁻¹			$K = \frac{[HI]^2}{[HI]^2}$
	H_2	I_2	HI	H_2	I_2	HI	$\mathbf{K} = [\mathbf{H}_2] \cdot [\mathbf{I}_2]$
1	10.677	11.695	0	1.831	3.129	17.67	54.5
2	11.354	9.044	0	3.560	1.250	15.59	54.6
3	11.357	7.510	0	4.565	0.738	13.54	54.5
4	0	0	4.489	0.476	0.479	3.531	54.4
5	0	0	10.692	1.414	1.141	8.410	54.3

$$H_2(g) + I_2(g) \longrightarrow 2HI(g)$$

在 698 K,
$$K = \frac{[HI]^2}{[H_2] \cdot [I_2]} = 54.5$$

可见:

- (1) 在一定温度下,K 为常数;
- (2) 测定平衡时各组分的浓度(分压),通过平衡常数表达式,可求出平衡常数 K:
- (3) 平衡常数可定量表示反应进行的限度: 值越大,表明在给定条件下生成物越多,反应进行越完全

> 平衡常数的分类

浓度平衡常数:稀溶液中的反应,一定T、平衡时,以平衡浓度表示的平衡常数,用 K_c 表示

对于一般反应:

$$aA(aq) + bB(aq) \implies pC(aq) + qD(aq)$$

a, b, p, q: 反应中各物质的化学计量数

$$K_c = \frac{[c(\mathbf{C})]^p \cdot [c(\mathbf{D})]^q}{[c(\mathbf{A})]^a \cdot [c(\mathbf{B})]^b}$$

c(A), c(B), c(C), c(D): 反应物和生成物的平衡浓度

分压平衡常数:低压下进行的气相反应,一定T、平衡时,以平衡分压表示的平衡常数,用 K_n 表示

对于一般反应:

$$aA(g) + bB(g) \implies pC(g) + qD(g)$$

a, b, p, q: 反应中各物质的化学计量数

$$K_p = \frac{p_{\rm C}^p \cdot p_{\rm D}^q}{p_{\rm A}^a \cdot p_{\rm B}^b}$$

 p_A, p_B, p_C, p_D : 反应物和生成物的平衡分压

 K_c 和 K_p 可由实验测定,称为实验平衡常数

标准平衡常数: 热力学中最常用,用 K^{θ} 表示, θ 是标准态的符号

ightharpoonup 非标准态反应 Gibbs 函数变 $\Delta_{r}G$ 的表达式

$$\Delta_{\mathbf{r}} G_{\mathbf{m}, T} = \Delta_{\mathbf{r}} G^{\theta}_{\mathbf{m}, T} + RT \ln J$$
或
$$\Delta_{\mathbf{r}} G_{\mathbf{m}, T} = \Delta_{\mathbf{r}} G^{\theta}_{\mathbf{m}, T} + 2.303RT \lg J$$

 $\Delta_{\mathbf{r}} G^{\theta}_{\mathbf{m}, T}$: 温度 T 下反应的标准 Gibbs 函数变;

R: 摩尔气体常数, 8.314 J·mol⁻¹·K⁻¹;

T: 反应温度,K: J: 为反应商

对于理想气体的反应:

$$aA(g) + bB(g) \implies pC(g) + qD(g)$$

a, b, p, q: 反应中各物质的化学计量数

非标准态 Gibbs 函数变 Δ_{r} $G_{m,T}$ 为:

$$\Delta_{\rm r} G_{\rm m, T} = \Delta_{\rm r} G_{\rm m, T}^{\theta} + RT \ln \frac{(p_{\rm C}/p^{\theta})^p (p_{\rm D}/p^{\theta})^q}{(p_{\rm A}/p^{\theta})^a (p_{\rm B}/p^{\theta})^b}$$

 $p_{\rm C}, p_{\rm D}, p_{\rm A}, p_{\rm B}$: C, D, A, B 在反应中的分压,Pa;

p^θ: 标准压力, 100 kPa

对于理想溶液的反应:

$$aA(aq) + bB(aq) \implies pC(aq) + qD(aq)$$

a, b, p, q: 反应中各物质的化学计量数

非标准态 Gibbs 函数变 Δ_{r} $G_{m,T}$ 为:

$$\Delta_{\mathrm{r}} G_{\mathrm{m,}T} = \Delta_{\mathrm{r}} G_{\mathrm{m,}T}^{\theta} + RT \ln \frac{(c_{\mathrm{C}}/c^{\theta})^{p}(c_{\mathrm{D}}/c^{\theta})^{q}}{(c_{\mathrm{A}}/c^{\theta})^{a} (c_{\mathrm{B}}/c^{\theta})^{b}}$$

 $c_{\rm C}$, $c_{\rm D}$, $c_{\rm A}$, $c_{\rm B}$: C, D, A, B 在反应中的浓度, ${\rm mol}\cdot {\rm L}^{-1}$; c^{θ} : 标准浓度, $1~{\rm mol}\cdot {\rm L}^{-1}$

对于一般反应:

$$aA(g) + bB(aq) \implies pC(s) + qD(g)$$

a, b, p, q: 反应中各物质的化学计量数

非标准态 Gibbs 函数变 $\Delta_{\mathbf{r}} G_{\mathbf{m},T}$ 为: 【体不计入式中】

纯固体、纯液 体不计入式中

$$\Delta_{\mathrm{r}} G_{\mathrm{m,}T} = \Delta_{\mathrm{r}} G_{\mathrm{m,}T}^{\theta} + RT \ln \frac{(\boldsymbol{p}_{\mathrm{D}}/\boldsymbol{p}^{\theta})^{q}}{(\boldsymbol{p}_{\mathrm{A}}/\boldsymbol{p}^{\theta})^{a} (\boldsymbol{c}_{\mathrm{B}}/\boldsymbol{c}^{\theta})^{b}}$$

 $p_D, p_A: D, A$ 在反应中的分压,Pa;

 $c_{\rm B}$: B 在反应中的浓度,mol·L⁻¹;

 p^{θ} : 标准压力,100 kPa; c^{θ} : 标准浓度,1 mol·L⁻¹

$$WO_3(s) + 3H_2(g) \longrightarrow W(s) + 3H_2O(g)$$

$$\Delta_{\rm r} G_{\rm m, T} = \Delta_{\rm r} G_{\rm m}^{\theta} + RT \ln \frac{[p({\rm H}_2{\rm O})/p^{\theta}]^3}{[p({\rm H}_2)/p^{\theta}]^3}$$

$$CuCl_2(aq) + H_2S(g) \longrightarrow CuS(s) + 2HCl(g)$$

$$\Delta_{\rm r} G_{\rm m, T} = \Delta_{\rm r} G^{\theta}_{\rm m} + RT \ln \frac{[p(\rm HCl)/p^{\theta}]^2}{[c(\rm CuCl_2)/c^{\theta}] [p(\rm H_2S)/p^{\theta}]}$$

对于一般反应:

$$aA(g) + bB(aq) \implies pC(s) + qD(g)$$

a, b, p, q: 反应中各物质的化学计量数

非标准态 Gibbs 函数变 $\Delta_{\mathbf{r}} G_{\mathbf{m}, T}$ 为:

$$\Delta_{\rm r} G_{\rm m, T} = \Delta_{\rm r} G^{\theta}_{\rm m} + RT \ln \frac{(\boldsymbol{p}_{\rm D}/\boldsymbol{p}^{\theta})^q}{(\boldsymbol{p}_{\rm A}/\boldsymbol{p}^{\theta})^a (\boldsymbol{c}_{\rm B}/\boldsymbol{c}^{\theta})^b}$$

当反应的各物质处于标准态时,J=1, $\ln J=0$

$$\therefore \quad \Delta_{\rm r} G_{\rm m, T} = \Delta_{\rm r} G^{\theta}_{\rm m}, T$$

若体系处于平衡态, $\Delta_{\rm r} G_{\rm m, T} = 0$

$$\Delta_{\rm r} G_{\rm m, T} = 0$$

$$J = K^{\theta} = \frac{(p_{\mathrm{D}}/p^{\theta})^q}{(p_{\mathrm{A}}/p^{\theta})^a (c_{\mathrm{B}}/c^{\theta})^b}$$
 无量纲

 p_i : 气体 i 的平衡分压, c_i : 溶液中物质 i 的平衡浓度 18

标准平衡常数无量纲,数值与实验平衡常数往往不同

$$N_2(g) + 3H_2(g) \longrightarrow 2NH_3(g)$$

平衡分压/10⁶ Pa: 4.17 12.52 3.57

$$K_p = \frac{p_{\text{NH}_3}^2}{p_{\text{N}_2} \cdot p_{\text{H}_2}^3} = \frac{(3.57 \times 10^6)^2}{(4.17 \times 10^6) \times (12.52 \times 10^6)^3}$$

$$= 1.56 \times 10^{-15} \,\text{Pa}^{-2}$$

$$K^{\theta} = \frac{(p_{\text{NH}_3} / p^{\theta})^2}{(p_{\text{N}_2} / p^{\theta}) (p_{\text{H}_2} / p^{\theta})^3}$$

$$= \frac{(3.57 \times 10^6 / 10^5)^2}{(4.17 \times 10^6 / 10^5) \times (12.52 \times 10^6 / 10^5)^3} = 1.56 \times 10^{-5}$$

根据 $\Delta_{\mathbf{r}} G_{\mathbf{m}, T} = \Delta_{\mathbf{r}} G_{\mathbf{m}}^{\theta} + RT \ln J$

当反应达到平衡时,

$$\Delta_{\rm r} G_{{
m m}, T} = 0$$
, $J = K^{
m \theta}$,即 $0 = \Delta_{
m r} G^{
m \theta}_{{
m m}} + RT \ln K^{
m \theta}$

$$\Delta_{\rm r} G^{\theta}_{\rm m} = -RT \ln K^{\theta} = -2.303RT \lg K^{\theta}$$

 $\Delta_{\rm r}G^{\theta}_{\rm m}$: 标准摩尔 Gibbs 函数变;

R: 摩尔气体常数, 8.314 J·mol⁻¹·K⁻¹;

T: 反应温度,K;

 K^{θ} : 标准平衡常数,无单位

$\Delta_{\rm r} G^{\theta}_{\rm m} = -RT \ln K^{\theta} = -2.303RT \lg K^{\theta}$

Jacobus Henricus van't Hoff (1852~1911) 荷兰化学家 获1901年Nobel化学奖

van't Hoff 等温式

亦可表示为:

$$K^{\theta} = e^{-\Delta_{\rm r} G^{\theta}_{\rm m}/RT} = 10^{-\Delta_{\rm r} G^{\theta}_{\rm m}/2.303\rm RT}$$

- > 将热力学与平衡常数联系在一起
- ightharpoonsign 当反应和温度确定, $\Delta_{\mathbf{r}} G^{\theta}_{\mathbf{m},T}$ 和 K^{θ} 都是反应的固有属性,因此都是常数

【例题1】请判断下列说法是否正确,为什么?

- (1) 某一反应的 $\Delta_r G^{\theta}_m > 0$,表明该反应不能自发进行
- $(2) \Delta_{\rm r} G^{\theta}_{\rm m}$ 是平衡状态时的自由能变化,因为 $\Delta_{\rm r} G^{\theta}_{\rm m} = -RT \ln K^{\theta}$
- (3) 当温度一定时,合成塔中进行的合成氨反应,其平衡常数 K_p 是一个确定的数值 $\sqrt{}$
- (4) 对于大多数反应, $\Delta_{\rm r} G_{\rm m} = \Delta_{\rm r} G_{\rm m}^{\theta}$ 的条件是反应的各物质都处于标准态 \checkmark

> 标准平衡常数的计算

平衡常数是化学反应的重要数据,可由一些方法获得:

方法一:由实验测定化学反应达平衡时各物质的平衡 浓度或分压,直接计算而得

【例题1】698 K 时
$$H_2(g) + I_2(g) \longrightarrow 2HI(g)$$
 平衡分压/kPa: 23.530 13.854 133.240

$$K^{\theta} = \frac{(p_{\text{HI}}/p^{\theta})^2}{(p_{\text{H}_2}/p^{\theta})(p_{\text{I}_2}/p^{\theta})} = 54.46$$

方法二: 利用有关热力学数据,根据

$$\Delta_{\rm r} G^{\theta}_{\rm m} = -2.303RT \lg K^{\theta}$$

由化学反应的 $\Delta_{\mathbf{r}} G^{\theta}_{\mathbf{m}}$ 计算不同 T 下的 K^{θ}

确定化学反应的 $\Delta_{r}G^{\theta_{m}}$ 的方法主要有两种:

$$(1) \Delta_{\rm r} G^{\theta}_{\rm m} = \sum \Delta_{\rm f} G^{\theta}_{\rm m} (\mathbf{生成物}) - \sum \Delta_{\rm f} G^{\theta}_{\rm m} (\mathbf{反应物})$$

利用附录二中标准状态下 298 K 各物质的 $\Delta_f G^{\theta}_m$, 求出 298 K 时的 K^{θ}

(2) 用等温方程式计算

$$\Delta_{\rm r} G^{\theta}_{\rm m, T} = \Delta_{\rm r} H^{\theta}_{\rm m, T} - T \cdot \Delta_{\rm r} S^{\theta}_{\rm m, T}$$

 $将\Delta_{\mathbf{r}}H^{\theta}_{\mathbf{m}}$ 、 $\Delta_{\mathbf{r}}S^{\theta}_{\mathbf{m}}$ 近似看作与温度无关的常数

$$\Delta_{\rm r} G^{\theta}_{\rm m, T} \approx \Delta_{\rm r} H^{\theta}_{\rm m} (298 \text{ K}) - T \cdot \Delta_{\rm r} S^{\theta}_{\rm m} (298 \text{ K})$$

式中:

$$\Delta_{\rm r} H^{\rm \theta}_{\rm m}(298 \text{ K}) = \sum \Delta_{\rm f} H^{\rm \theta}_{\rm m}(298 \text{ K}, 生成物) -$$
 $\sum \Delta_{\rm f} H^{\rm \theta}_{\rm m}(298 \text{ K}, 反应物)$

$$\Delta_{\rm r} S_{\rm m}^{\theta}(298 \text{ K}) = \sum S_{\rm m}^{\theta}(298 \text{ K}, 生成物) - \sum S_{\rm m}^{\theta}(298 \text{ K}, 反应物)$$

【例题2】分别计算 298 K 和 673 K 时反应的平衡常数

$$N_2(g) + 3H_2(g) \longrightarrow 2NH_3(g)$$

解:

$$N_2(g) + 3H_2(g) \longrightarrow 2NH_3(g)$$

 $\Delta_{\rm f} H^{\rm \theta}_{\rm m} / {\rm kJ \cdot mol^{-1}}$ 0

0

-46.11

 $S_{\rm m}^{\theta} / \text{ J·mol}^{-1} \cdot \text{K}^{-1}$ 191.50 130.57

192.34

 $\Delta_{\rm f} G^{\theta}_{\rm m} / {\rm kJ \cdot mol^{-1}}$ 0

0

-16.48

$$N_2(g) + 3H_2(g) \longrightarrow 2NH_3(g)$$

$$\Delta_{\rm f} G^{\rm \theta}_{\rm m} / {\rm kJ \cdot mol^{-1}}$$
 0

$$-16.48$$

298 K 时,
$$\Delta_{\rm r} G^{\theta}_{\rm m} = \sum \Delta_{\rm f} G^{\theta}_{\rm m}$$
 (生成物)
$$- \sum \Delta_{\rm f} G^{\theta}_{\rm m} (反应物)$$
$$= 2 \times (-16.48) = -32.96 \text{ kJ·mol}^{-1}$$

$$\lg K^{\theta} = \left(-\Delta_{\rm r} G^{\theta}_{\rm m}\right) / \left(2.303RT\right) \\
= 32.96 \times 10^{3} / \left(2.303 \times 8.314 \times 298\right) = 5.776 \\
\vdots \quad K^{\theta} = 5.97 \times 10^{5}$$

$$N_2(g) + 3H_2(g) \implies 2NH_3(g)$$
 $\Delta_f H^0_{m} / kJ \cdot mol^{-1} = 0 = 0 = -46.11$ $S^0_{m} / J \cdot mol^{-1} \cdot K^{-1} = 191.50 = 130.57 = 192.34$

673 K 时,
$$\Delta_{\rm r} H^{\theta}_{\rm m}$$
(298 K) = $\Sigma \Delta_{\rm f} H^{\theta}_{\rm m}$ (298 K, 生成物)
$$- \Sigma \Delta_{\rm f} H^{\theta}_{\rm m}$$
(298 K, 反应物)
$$= 2 \times (-46.11) = -92.22 \text{ kJ·mol·}^{1}$$

$$\Delta_{\rm r} S_{\rm m}^{\theta}(298 \ {\rm K}) = \sum S_{\rm m}^{\theta}(298 \ {\rm K}, 生成物)$$

$$- \sum S_{\rm m}^{\theta}(298 \ {\rm K}, 反应物)$$

$$= (2 \times 192.34) - (3 \times 130.57 + 191.50)$$

$$= -198.53 \ {\rm J\cdot mol^{-1}\cdot K^{-1}}$$

$$N_2(g) + 3H_2(g) \longrightarrow 2NH_3(g)$$

$$\triangle_{r}G^{\theta}_{m} (673 \text{ K}) = \Delta_{r}H^{\theta}_{m} - T \cdot \Delta_{r}S^{\theta}_{m}$$

$$= -92.22 - 673 \times (-198.53) \times 10^{-3}$$

$$= 41.39 \text{ kJ·mol}^{-1}$$

$$\lg K^{\theta} = \left(-\Delta_{\rm r} G^{\theta}_{\rm m}\right) / \left(2.303RT\right)
= \left(-41.39 \times 10^{3}\right) / \left(2.303 \times 8.314 \times 673\right)
= -3.212$$

$$K^{\theta} (673 \text{ K}) = 6.14 \times 10^{-4}$$
$$K^{\theta} (298 \text{ K}) = 5.97 \times 10^{5}$$

放热、熵减的化学反应 低温更有利

3. 多重平衡法则

化学反应方程式的书写不同,平衡常数表达式不同 例如,合成氨反应:

$$N_2(g) + 3H_2(g) \longrightarrow 2NH_3(g)$$
 $K^{\theta}_1 = \frac{(p_{NH_3}/p^{\theta})^2}{(p_{N_2}/p^{\theta})(p_{H_2}/p^{\theta})^3}$

$$1/2N_2(g) + 3/2H_2(g) \Longrightarrow NH_3(g) \quad K^{\theta}_2 = \frac{p_{NH_3}/p^{\theta}}{(p_{N_2}/p^{\theta})^{1/2}(p_{H_2}/p^{\theta})^{3/2}}$$

$$2NH_3(g) \longrightarrow N_2(g) + 3H_2(g) \quad K_3^{\theta} = \frac{(p_{N_2}/p^{\theta})(p_{H_2}/p^{\theta})^3}{(p_{NH_3}/p^{\theta})^2}$$

则有:
$$K^{\theta}_{1} = (K^{\theta}_{2})^{2}$$
; $K^{\theta}_{1} = 1/K^{\theta}_{3}$

由此,可推论与归纳出若干平衡常数运算规则:

- (1) 一个平衡反应乘以系数 J,其平衡常数 K^{θ} 变为(K^{θ}) J ,即新平衡反应的平衡常数
- (2) 当正反应的平衡常数为 K^{θ}_{L} 时,逆反应的平衡常数 为 $K^{\theta}_{\dot{\Theta}} = 1/K^{\theta}_{\text{L}}$
- (3) 若一个反应可表示为两个或更多个反应之和,则总反应的 K^0 等于同温度时各反应的平衡常数的乘积,如: 反应(3) = 反应(1) + 反应(2)

贝J: $K^{\theta}_{3} = K^{\theta}_{1} \cdot K^{\theta}_{2}$

(4) 若一个平衡反应是由两个平衡反应相减所得,则该反应的平衡常数等于后两个平衡常数之商,如:

反应
$$(3) = 反应(2) - 反应(1)$$

则:
$$K^{\theta}_{3} = K^{\theta}_{2} / K^{\theta}_{1}$$

(3)和(4),称为**多重平衡法则**。利用此法则间接 计算其他相关化学反应的平衡常数

【例题1】在温度为700°C时,有反应:

(1)
$$NO_2(g) \longrightarrow NO(g) + 1/2O_2(g)$$
 $K^{\theta}_1 = 0.012$

(2)
$$SO_2(g) + 1/2O_2(g) \longrightarrow SO_3(g)$$
 $K^{\theta}_2 = 20$

试求该温度时反应 (3) 的平衡常数 K^{θ}_3

$$(3) SO_2(g) + NO_2(g) \longrightarrow SO_3(g) + NO(g)$$

解:由以上三个方程式可以看出:(1) + (2) = (3)

根据多重平衡规则,则有:

$$K_{3}^{\theta} = K_{1}^{\theta} \cdot K_{2}^{\theta} = 0.012 \times 20 = 0.24$$

【例题2】已知:

(1)
$$CO_2(g) + H_2(g) \longrightarrow CO(g) + H_2O(g)$$

$$K^{\theta_1}(823 \text{ K}) = 0.14$$

(2)
$$CoO(s) + H_2(g) \longrightarrow Co(s) + H_2O(g)$$

 K^{θ}_2 (823 K) = 67

试求在 823 K, 反应

(3)
$$CoO(s) + CO(g) \longrightarrow Co(s) + CO_2(g)$$
 的平衡常数 K^{θ}_3 。

解: 反应(3) = 反应(2) - 反应(1)

$$K_{3}^{\theta}$$
 (823 K) = $K_{2}^{\theta} / K_{1}^{\theta} = 67 / 0.14 = 4.8 \times 10^{2}$

 $K^{\theta_3}(823 \text{ K}) > K^{\theta_2}(823 \text{ K})$,用 CO 做还原剂更易反应

5.2 标准平衡常数的应用

1. 计算平衡系统的组成

有了平衡常数,即可计算平衡时各物质的平衡浓度,反应的<mark>最大产量、转化率、解离率</mark>以及达到某种要求所需反应物的量等

转化率: 反应物在平衡时已转化为生成物的百分数

某反应物转化率 $\alpha = \frac{反应物已转化的量}{反应物的起始量} \times 100\%$

解离率: 反应物在平衡时已解离为生成物的百分数

某反应物解离率 $\alpha' = \frac{反应物已解离的量}{反应物的起始量} \times 100\%$

【例题1】一定温度合成氨 $N_2(g) + 3H_2(g) \longrightarrow 2NH_3(g)$ 的 $K^0 = 2.25 \times 10^{-4}$ 。若该温度下, N_2 与 H_2 以 1: 3 的体积比在密闭容器中反应,达平衡时氨的体积百分数为 40%,估算平衡时所需总压? 解题的关键在求各物质分压

解: 平衡时各物质的摩尔分数: $x_{NH_3} = 0.4$; $x_{N_2} = 0.6 \times 1/(1+3) = 0.15$; $x_{H_2} = 0.6 \times 3/(1+3) = 0.45$

设所需总压为 p kPa,则平衡时各物质的分压:

$$p_{\text{NH}_3} = 0.4p, \quad p_{\text{N}_2} = 0.15p, \quad p_{\text{H}_2} = 0.45p$$

$$K^{\theta} = \frac{(p_{\text{NH}_3}/p^{\theta})^2}{(p_{\text{N}_2}/p^{\theta})(p_{\text{H}_2}/p^{\theta})^3} = \frac{(0.4p/100)^2}{(0.15p/100)(0.45p/100)^3} = 2.25 \times 10^{-4}$$

$$p = 2.28 \times 10^4 \,\text{kPa}$$
 36

【例题2】298 K 时,乙酸与乙醇酯化反应的 $K^{\theta} = 4.0$ 。现 有乙酸与乙醇各 2 mol 在容器中混合反应,能生成多少摩 尔乙酸乙酯?

解:设平衡时生成 $x \mod Z$ 酸乙酯,令溶液的体积为VL:

$$CH_3COOH(1) + C_2H_5OH(1) \longrightarrow CH_3COOC_2H_5(1) + H_2O(1)$$

起始浓度: 2/V

平衡浓度: (2-x)/V (2-x)/V

 χ/V

 χ/V

$$K^{\theta} = \frac{[c(\text{CH}_{3}\text{CO}_{2}\text{C}_{2}\text{H}_{5})/c^{\theta}] \cdot [c(\text{H}_{2}\text{O})/c^{\theta}]}{[c(\text{CH}_{3}\text{CO}_{2}\text{H})/c^{\theta}] \cdot [c(\text{C}_{2}\text{H}_{5}\text{OH})/c^{\theta}]} = \frac{(x/V)^{2}}{[(2-x)/V]^{2}} = 4.0$$

即得: $x^2 = 4.0(x-2)^2$ 解得: x = 1.3

二 乙酸的平衡转化率 α = 1.3/2.0 × 100% = 65%实际生产的转化率要低于平衡转化率

$$CH_3COOH(1) + C_2H_5OH(1) \longrightarrow CH_3COOC_2H_5(1) + H_2O(1)$$

> 平衡转化率的影响因素:

浓度(原料配比、从反应系统中分离去除产物) 反应温度 反应压力

2. 判断反应进行的限度

根据 $\Delta_{\rm r} G^{\theta}_{\rm m} = -2.303 RT \lg K^{\theta}$

可将化学反应分为三种:

- (1) $\Delta_{\rm r} G^{\theta}_{\rm m} < 0$,则 $K^{\theta} > 1$ $\Delta_{\rm r} G^{\theta}_{\rm m} \downarrow , K^{\theta} \uparrow , 平衡时生成物越多,正向进行程度越大$
- (2) $\Delta_{\rm r} G^{\theta}_{\rm m} > 0$,则 $K^{\theta} < 1$ $\Delta_{\rm r} G^{\theta}_{\rm m} \uparrow , K^{\theta} \downarrow ,$ 平衡时生成物越少,正向进行程度越小
- (3) $\Delta_{\rm r} G^{\theta}_{\rm m} = 0$,则 $K^{\theta} = 1$ 反应物浓度积等于生成物浓度积

ightharpoonup 化学反应的限度与 $\Delta_{\mathbf{r}}G^{\theta}_{\mathbf{m}}$ 、 K^{θ}

根据热力学原理:

一切化学反应都是可逆的,

$$\Delta_{\rm r} G^{\theta}_{\rm m, T} = -2.303RT \lg K^{\theta}$$

但实际上,

(1) 若 $\Delta_{\rm r} G^{\theta}_{{
m m}, T}$ 是很大的负值, $K^{\theta}>>1$

正向反应可几乎进行完全,称为不可逆反应

(2) 若 $\Delta_{\rm r} G^{\theta}_{{\rm m}, T}$ 是很大的正值, $0 < K^{\theta} << 1$ 正向反应几乎不可以进行,不反应

298 K 时反应的 $\Delta_{\mathbf{r}}G^{\theta}_{\mathbf{m},T}$ 与相应 K^{θ} 值

 $(\Delta_{\mathbf{r}} G^{\theta}_{\mathbf{m}, T} = -2.303RT \, \mathbf{lg} K^{\theta})$

$\Delta_{ m r} G^{ m heta}_{ m m, \it T}$ /kJ·mol ⁻¹	-40	-10 -5	0	+ 5 +10	+ 40
K^{Θ}	1.0×10^7	57 7.5	1	0.13 0.02	1.0×10^{-7}
平衡混合物 组成	反应物 可忽略	生成物 占优势		反应物 占优势	生成物 可忽略
结论	正反应 彻底	正反应 为主		逆反应 为主	逆反应 彻底

$\Delta_{\mathbf{r}} G^{\theta}_{\mathbf{m},T}$ 与 K^{θ} 反映了在给定温度下反应的限度一般认为:

(1) $\Delta_{\rm r} G^{\theta}_{\rm m} \leq -40 \text{ kJ·mol-1}$, $K^{\theta} \geq 10^7$,正反应自发完全

(2) $\Delta_{\rm r} G^{\theta}_{\rm m} \ge 40 \text{ kJ·mol}^{-1}$, $K^{\theta} \le 10^{-7}$,逆反应自发完全

(3) $-40 \text{ kJ·mol}^{-1} < \Delta_{\text{r}} G_{\text{m}}^{\theta} < 40 \text{ kJ·mol}^{-1}, 10^{-7} < K^{\theta} < 10^{7},$ 正逆反应一定程度进行,可改变条件促进反应进行

> 预测化学反应实现的可能性

常温常压化学固氮:

(1)
$$N_2(g) + 3H_2(g) \implies 2NH_3(g)$$

$$\Delta_r G_{m, 298 K}^{\theta} = -33.47 \text{ kJ·mol}^{-1}; \quad K_{298 K}^{\theta} = 10^6$$

(2)
$$N_2(g) + 3H_2O(1) = 2NH_3(g) + 3/2O_2(g)$$

$$\Delta_r G_{m, 298 K}^{\theta} = 682 \text{ kJ·mol-1}; \quad K_{298 K}^{\theta} = 10^{-100}$$

(3)
$$N_2(g) + 3SO_3^{2-}(aq) + 3H_2O(1) = 2NH_3(g) + 3SO_4^{2-}(aq)$$

$$\Delta_r G_{m, 298 K}^{\theta} = -91.2 \text{ kJ·mol}^{-1}; \quad K_{298 K}^{\theta} = 10^{16}$$

3. 预测反应进行的方向

非标准态 Gibbs 函数变 $\Delta_{r} G_{m,T}$ 为:

$$\Delta_{\mathbf{r}} G_{\mathbf{m}, T} = \Delta_{\mathbf{r}} G_{\mathbf{m}, T}^{\theta} + 2.303RT \, \mathbf{lg} J$$

$$\Delta_{\mathbf{r}} G_{\mathbf{m}, T}^{\theta} = -2.303RT \, \mathbf{lg} K^{\theta}$$

$$\Delta_{\mathbf{r}} G_{\mathbf{m}, T}^{\theta} = -2.303RT \, \mathbf{lg} K^{\theta} + 2.303RT \, \mathbf{lg} J$$

$$= 2.303RT \, \mathbf{lg} (J/K^{\theta})$$

可得结论:

$$\Delta_{\rm r} G_{{\rm m},\,T} < 0$$
,即 $J < K^{\theta}$,正反应可自发进行 $\Delta_{\rm r} G_{{\rm m},\,T} > 0$,即 $J > K^{\theta}$,逆反应可自发进行 $\Delta_{\rm r} G_{{\rm m},\,T} = 0$,即 $J = K^{\theta}$,反应达到平衡

【例题1】2000 °C 时,下列反应的标准平衡常数 $K^{\theta} = 0.098$ $N_{2}(g) + O_{2}(g) \longrightarrow 2NO(g)$

判断在下列条件下反应进行的方向:

$$J = \frac{(p_{\text{NO}}/p^{\theta})^2}{(p_{\text{N}_2}/p^{\theta}) (p_{\text{O}_2}/p^{\theta})}$$

解: (1) $J = (0.0100)^2 / (0.821)(0.821) = 1.48 \times 10^{-4}$ $J < K^{\theta}$,正向自发进行

$$p_{\mathrm{N}_{2}}$$
 $p_{\mathrm{O}_{2}}$ p_{NO} / kPa

- (2) 5.1 5.1 1.6
- (3) 2.0×10^3 5.1×10^3 4.1×10^3

$$J = \frac{(p_{\text{NO}}/p^{\theta})^2}{(p_{\text{N}_2}/p^{\theta})(p_{\text{O}_2}/p^{\theta})}$$

(2)
$$J = (0.016)^2 / (0.051)(0.051) = 0.098$$

 $J = K^{\theta}$,处于平衡状态

$$(3) J = (4.1 \times 10)^2 / (2.0 \times 10)(5.1 \times 10) = 1.6$$
 $J > K^{\theta}$,逆向自发进行

【例题2】298 K 标准状态下,由 MnO_2 和 HCl 制备 Cl_2 反应的 $\Delta_f G^{\theta}_m$ 为:

$$MnO_2(s) + 4H^+(aq) + 2Cl^-(aq) \longrightarrow Mn^{2+}(aq) + Cl_2(g) + 2H_2O(l)$$

- 465.2 0 - 131.3 - 228.0 0 - 237.2

问: (1) 标态下 298 K 时, 反应能否自发?

(2) 若用12.0 mol·L⁻¹ 的HCl, 其他物质仍为标态, 298 K时, 反应能否自发?

解:
$$(1) \Delta_{\rm r} G_{\rm m}^{\theta} = \sum \Delta_{\rm f} G_{\rm m}^{\theta} (生成物) - \sum \Delta_{\rm f} G_{\rm m}^{\theta} (反应物)$$

= $[2 \times (-237.2) - 228.0] - [2 \times (-131.3) + (-465.2)]$
= $25.4 \text{ kJ·mol}^{-1} > 0$

:. 反应非自发

$$MnO_2(s) + 4H^+(aq) + 2Cl^-(aq) \longrightarrow Mn^{2+}(aq) + Cl_2(g) + 2H_2O(l)$$

(2) 若用12.0 mol·L⁻¹ 的HCl,其他物质仍为标态,298 K 时,反应能否自发?

(2)
$$J = \frac{(p_{\text{Cl}_2}/p^{\theta}) (c_{\text{Mn}}^{2+}/c^{\theta})}{(c_{\text{H}^+}/c^{\theta})^4 (c_{\text{Cl}^-}/c^{\theta})^2} = \frac{(100/100) (1.0/1.0)}{(12.0/1.0)^4 (12.0/1.0)^2}$$
$$= 3.35 \times 10^{-7}$$

$$\Delta_{\rm r} G_{\rm m, T} = \Delta_{\rm r} G_{\rm m, T}^{\theta} + 2.303RT \, \text{lg} J$$

$$= 25.4 + 2.303 \times 8.314 \times 298 \times 10^{-3} \times \text{lg} (3.35 \times 10^{-7})$$

$$= -11.5 \, \text{kJ} \cdot \text{mol}^{-1} < 0$$

: 反应自发

一些反应标态下不能进行,但在非标态下可以进行

5.3 化学平衡的移动

$$\Delta_{\rm r} G_{\rm m, T} = -2.303RT \lg K^{\theta} + 2.303RT \lg J$$

对于一般反应:

$$aA(g) + bB(aq) \implies pC(s) + qD(g)$$

非标准态 Gibbs 函数变 $\Delta_{\mathbf{r}} G_{\mathbf{m}, \mathbf{r}}$ 为:

$$\Delta_{\rm r} G_{\rm m, T} = -2.303RT \lg K^{\theta} + RT \ln \frac{(p_{\rm D}/p^{\theta})^q}{(p_{\rm A}/p^{\theta})^a (c_{\rm B}/c^{\theta})^b}$$

化学平衡在一定条件下保持,条件变化时化学平衡 被破坏,将继续向某一方向进行,直至建立新平衡。从 一平衡状态变化到另一平衡状态,称**化学平衡的移动**

Le Châtelier 原理

1884年,法国化学家 Le Châtelier 从实验中总结出一条规律,是适用于一切平衡的普遍规律

Le Châtelier原理:如果改变平衡系统的条件之一(如 浓度、压力或温度等),平衡就会向减弱这个改变的方向移动

利用这一规律,可通过改变条件,使反应向所需的方向转化或使所需反应进行得更彻底

1. 浓度对化学平衡的影响

反应物的浓度与 Gibbs 函数有密切关系:

$$c\uparrow$$
 , $G\uparrow$

平衡时:
$$\Delta_{\rm r} G_{\rm m, T} = \sum \Delta G_{\rm Eco} - \sum \Delta G_{\rm Eco} = 0$$
 即 $\sum \Delta G_{\rm Eco} = \sum \Delta G_{\rm Eco}$

↑反应物浓度,或↓生成物浓度,都将使:

$$\sum \Delta G_{\text{反应物}} > \sum \Delta G_{\text{生成物}}$$

反应将向↓Gibbs 函数方向,即平衡向反应的正向移动

平衡时: $\sum \Delta G_{\overline{\text{D}}\overline{\text{D}}} = \sum \Delta G_{\underline{\text{E}}\overline{\text{D}}}$

同理: ↓反应物浓度,或↑生成物浓度,都将使:

$$\sum \Delta G_{oldsymbol{ iny C}} < \sum \Delta G_{oldsymbol{ iny C}}$$

反应将向↓Gibbs 函数方向,即平衡将会逆向移动

即:增加某物质的浓度,平衡总是向减少该物质浓度的方向移动;若减少某物质的浓度,则平衡总是向着生成该物质的方向移动

例如:

接触法制硫酸

$$2SO_2(g) + O_2(g) \longrightarrow 2SO_3(g)$$

为充分利用SO₂: 向反应系统中鼓入过量空气

酯化反应

 $CH_3COOH(1) + C_2H_5OH(1) \longrightarrow CH_3COOC_2H_5(1) + H_2O(1)$

为提高产率:增加乙醇量,从系统中分出副产物 H_2O

2. 压力对化学平衡的影响

有气体参加的平衡系统,<mark>总压或分压</mark>改变都可能引起各物质的 Gibbs 函数变化,从而使化学平衡移动

分压对化学平衡的影响

增加平衡系统中某气体的分压,平衡将向<mark>减少</mark>该气体分压的方向移动:

反之,<mark>减少</mark>某气体的分压,平衡将向着<mark>增加</mark>该气体分压的方向移动

这和增加(或减少)物质浓度的结果一致

> 总压对化学平衡的影响

影响较复杂:

- ↑ 总压,平衡向反应中气体分子数<mark>减少</mark>的方向移动
- ↓总压,平衡向反应中气体分子数<mark>增多</mark>的方向移动

若反应前后气体分子数相同,则总压不影响平衡; 对纯液体、纯固体反应的体系,压力对反应影响不大

若外加不参与反应的"惰性成分"使总压改变,因为J不变,不会影响平衡

$$C(s) + CO_2(g) \longrightarrow 2CO(g)$$

总压对碳的气化反应的影响 (1000 K)

总压 /kPa	CO 体 积分数 /%	CO ₂ 体 积分数 /%	总压 /kPa	CO 体 积分数 /%	CO ₂ 体 积分数 /%
5788	5	95	162.1	60	40
1349	10	90	91.2	70	30
299.8	20	80	50.7	80	20

3. 温度对化学平衡的影响

$$\Delta_{\rm r} G^{\theta}_{\rm m} = \Delta_{\rm r} H^{\theta}_{\rm m} - T \cdot \Delta_{\rm r} S^{\theta}_{\rm m}$$

$$\Delta_{\rm r} G^{\theta}_{\rm m} = -2.303RT \lg K^{\theta}$$

 $\Delta_{\mathbf{r}} G^{\theta}_{\mathbf{m}}$ 是温度的函数; $\Delta_{\mathbf{r}} H^{\theta}_{\mathbf{m}}$ 和 $\Delta_{\mathbf{r}} S^{\theta}_{\mathbf{m}}$ 基本不受温度影响

 $\therefore K^{\theta}$ 是温度的函数,值的大小与浓度和压力无关

改变平衡系统的浓度、压力时,改变的是平衡的组成:但温度影响的是 K^{θ}

$$\Delta_{\rm r} G^{\theta}_{\rm m} = \Delta_{\rm r} H^{\theta}_{\rm m} - T \cdot \Delta_{\rm r} S^{\theta}_{\rm m};$$

$$\Delta_{\rm r} G^{\theta}_{\rm m} = -2.303RT \lg K^{\theta}$$

$$\therefore \Delta_{\rm r} H^{\theta}_{\rm m} - T \cdot \Delta_{\rm r} S^{\theta}_{\rm m} = -2.303RT \lg K^{\theta}$$

$$\therefore \lg K^{\theta} = -\left(\frac{\Delta_{\mathbf{r}} H^{\theta}_{\mathbf{m}}}{2.303R}\right) \frac{1}{T} + \frac{\Delta_{\mathbf{r}} S^{\theta}_{\mathbf{m}}}{2.303R}$$

上式中: K^{θ} 和 T 是变量

以 $\lg K^{\theta} - 1/T$ 作图得到一条直线,斜率为 $-(\frac{\Delta_{\mathbf{r}}H^{\theta}_{\mathbf{m}}}{2.303R})$

$$\Delta_{\rm r} G^{\theta}_{\rm m} = \Delta_{\rm r} H^{\theta}_{\rm m} - T \cdot \Delta_{\rm r} S^{\theta}_{\rm m} = -2.303RT \lg K^{\theta}$$

温度 T 与标准平衡常数 K^{θ} 的关系:

设有一个可逆反应: $T_1 \leftrightarrow K^{\theta_1}$, $T_2 \leftrightarrow K^{\theta_2}$, 则:

$$\Delta_{\rm r} H^{\theta}_{\rm m} - T_1 \cdot \Delta_{\rm r} S^{\theta}_{\rm m} = -2.303RT_1 \lg K^{\theta}_{\rm 1} \tag{1}$$

$$\Delta_{\rm r} H^{\theta}_{\rm m} - T_2 \cdot \Delta_{\rm r} S^{\theta}_{\rm m} = -2.303RT_2 \lg K^{\theta}_2 \tag{2}$$

$$(1)/T_1-(2)/T_2$$
, 得:

$$\Delta_{\rm r} H^{\theta}_{\rm m} (\frac{1}{T_1} - \frac{1}{T_2}) = 2.303R \lg \frac{K^{\theta}_2}{K^{\theta}_1}$$

$$\lg \frac{K^{\theta}_2}{K^{\theta}_1} = \frac{\Delta_{\rm r} H^{\theta}_{\rm m}}{2.303R} (\frac{T_2 - T_1}{T_2 T_1})$$
van't Hoff 方程

van't Hoff 方程
$$\lg \frac{K^{\theta}_{2}}{K^{\theta}_{1}} = \frac{\Delta_{r} H^{\theta}_{m}}{2.303R} \left(\frac{T_{2} - T_{1}}{T_{2} T_{1}}\right)$$

温度 T 对标准平衡常数 K^{θ} 的影响:

(1) 对于吸热反应, $\Delta_r H^{\theta}_m > 0$,若 $T \uparrow$,即 $T_2 > T_1$,则:

$$\lg (K_2^{\theta} / K_1^{\theta}) > 0, \quad K_2^{\theta} > K_1^{\theta}$$

即 $K^{\theta} \uparrow$,表示生成物数量增加,反应正向进行

. 温度升高,化学平衡向吸热方向移动

$$\lg \frac{K^{\theta}_{2}}{K^{\theta}_{1}} = \frac{\Delta_{r} H^{\theta}_{m}}{2.303R} \left(\frac{T_{2} - T_{1}}{T_{2} T_{1}}\right)$$

温度 T 对标准平衡常数 K^{θ} 的影响:

(2) 对于放热反应, $\Delta_{\mathbf{r}} H^{\theta}_{\mathbf{m}} < 0$,若 $T \uparrow$,即 $T_2 > T_1$,则:

$$\lg (K_2^{\theta} / K_1^{\theta}) < 0, \quad K_2^{\theta} < K_1^{\theta}$$

即 $K^{0} \downarrow$,表示反应物数量增加,反应逆向进行;

只有 $T \downarrow$,即 $T_2 < T_1$,才有

$$\lg (K_{2}^{\theta}/K_{1}^{\theta}) > 0, \quad K_{2}^{\theta} > K_{1}^{\theta}$$

: 降低温度,化学平衡向放热方向移动

$$\lg K^{\theta} = -\left(\frac{\Delta_{\rm r} H^{\theta}_{\rm m}}{2.303R}\right) \frac{1}{T} + \frac{\Delta_{\rm r} S^{\theta}_{\rm m}}{2.303R}$$

van't Hoff 方程

$$\lg \frac{K^{\theta}_{2}}{K^{\theta}_{1}} = \frac{\Delta_{r} H^{\theta}_{m}}{2.303R} \left(\frac{T_{2} - T_{1}}{T_{2} T_{1}} \right)$$

利用 van't Hoff 方程:

- (1) 已知反应的 $\Delta_{\rm r} H^{\theta}_{\rm m}$ 时,从 T_1 和该温度下的 K^{θ}_1 求 T_2 时的 K^{θ}_2
- (2) 已知不同温度下的 K^{θ} 值时,求反应的 $\Delta_{\mathbf{r}}H^{\theta}_{\mathbf{m}}$

化学平衡的移动

影响 因素	条件改变	平衡的变化	平衡移动方向
浓度	加入反应物 (或减少生成物)	消耗部分反应物	正向移动
	加入生成物 (或减少反应物)	消耗部分生成物	逆向移动
压力	增大总压 (减小体积)	减小总压	向气体分子数减 少的方向移动
	减小总压 (增大体积)	增加总压	向气体分子数增 加的方向移动
温度	升高温度	消耗热量	向吸热方向移动
	降低温度	释放热量	向放热方向移动

【例题1】反应 $2Cl_2(g) + 2H_2O(g) \longrightarrow 4HCl(g) + O_2(g)$ $\Delta_{\rm r} H^{\rm \theta}_{\rm m} = 113 \text{ kJ·mol}^{-1}$,在 400 °C 时达到平衡,估计下 列变化如何影响 Cl₂ 的物质的量:

- (1) 温度升至 500 °C; (2) 加入氧气;
- (3) 除去容器中的水汽; (4) 增大容器的体积

解: (1) 平衡正向移动, $n_{\text{Cl}_2} \downarrow$;

- (2) 平衡逆向移动,*n*_{Cl₂}↑;
- (3) 平衡逆向移动,*n*_{Cl₂}↑;
- (4) 平衡正向移动,*n*_{Cl}, ↓

实际工作中,综合考虑多方面因素,控制最适宜条件,获得最好的结果

$$N_2(g) + 3H_2(g) = 2NH_3(g)$$

从反应自发性看:

此化学反应: 放热,熵减 \longrightarrow $\Delta_{r} H < 0$, $\Delta_{r} S < 0$

根据 $\Delta_r G = \Delta_r H - T \Delta_r S$,反应在低温下自发

从平衡移动看: 在低温、加压的条件下进行为好

工业上: 适当提高反应温度, 牺牲部分转化率,

增大反应速率

Haber-Bosch 合成氨方法

- > 反应过程加高压,平衡正向移
- 放热反应,升温不利于平衡,但有利提高生产速度和效率

第五章 小结

■ 化学平衡

化学平衡的基本概念和特点:

化学平衡态的描述;

标准平衡常数 K^{θ} 和反应的标准 Gibbs 函数变;

化学平衡的计算;

化学平衡的移动:基本概念,影响因素:浓度、

压强、温度