DUBLIN INSTITUTE OF TECHNOLOGY **KEVIN STREET, DUBLIN 8**

DT211 BSc Computing

YEAR I

Semester 2 Examinations 2014-15

Mathematics 1 (CMPU 1018)

Ms Bláthnaid Sheridan Dr Chris Hills

Date: Wednesday 20th May 2015

Time: 9.30 - 11.30 am

Full marks for complete answers to Question 1 and any other 2 questions. Question 1 carries 40 marks. All other questions carry 30 marks.

Mathematical Tables and Graph paper are available.

- 1.
- (a) Let A be the set of characters appearing in the string "domain", B the set of characters appearing in the string "memory" and C be the set of characters appearing in the string "mathematics". List the elements of the following sets:

 $(i) A \cup B \quad (ii) A \cap C \quad (iii) A \setminus B \quad (iv) (A \cap B) \setminus (B \cap C)$ [5 marks]

(b) Find the inverse of the matrix $=\begin{pmatrix} 7 & -5 \\ 6 & 2 \end{pmatrix}$. Hence or otherwise, solve the following system of equations:

$$7x_1 - 5x_2 = 1$$
$$6x_1 + 2x_2 = 26$$

[5 marks]

(c) Find the mean, mode and variance of the following set of data: 56, 23, 35, 48, 95, 32, 87, 23

[5 marks]

- (d) Given the following matrices $E = \begin{pmatrix} 3 & -1 \\ 5 & -4 \end{pmatrix}$ and $F = \begin{pmatrix} 2 & 4 \\ 2 & 7 \end{pmatrix}$, evaluate (if possible) the following:
 - i. $(2E)^T$, where T denotes the transpose of a matrix. ii. F^{-1}

[5 marks]

(e) Use Euclid's Algorithm to find hcf(482, 914).

[5 marks]

- (f) Let $f: \mathbb{N} \to \mathbb{N}$ be given by $f(x) = \sqrt{5x + 7}$. Let $g: \mathbb{N} \to \mathbb{N}$ be given by $g(x) = x^2 - 2$. Calculate:
 - i. (fog)(2)
 - ii. (gof)(1)
 - (gog)(x)iii.
 - (fof)(y)iv.

[5 marks]

- (g) Calculate the following modular operations
 - i. (9+2) mod 7

ii. $(5 \times 3) \mod 11$

[5 marks]

(h) Simplify

$$2x^3\sqrt{\frac{(3x^5)^3}{x}}$$

[5 marks]

2.

(a) Write out the operational tables for \mathbb{Z}_7 . Use Fermat's Little Theorem to find the inverses of 3 and 4 modulo 7. Check your answers against the multiplication table for \mathbb{Z}_7 .

[12 marks]

(b)

- i. Use Caesar's Shift algorithm with key k = 7 to encrypt the message "Tomorrow is another day".
- ii. Using the Caesar shift with key k = 5, decrypt the message "YMJ BJFYMJW NX LWJFY".

[12 marks]

(c) Use prime factorisation to calculate hcf(2120, 688).

[6 marks]

3.

- (a) Let $A = \{3, 4, 5\}$, $B = \{x, y, z\}$ and $C = \{y, z, w\}$ be sets. List the elements of the following sets
 - (i) The power set of A, P(A).
 - (ii) The symmetric difference of B and C, $B\Delta C$
 - (iii) The Cartesian product of A and B, $A \times B$.

[10 marks]

(b) Use truth tables to prove:

- (i) $(A \wedge B) \wedge C$ is logically equivalent to $A \wedge (B \wedge C)$
- (ii) $\overline{(F \wedge G)}$ is logically equivalent to $\overline{F} \vee \overline{G}$

[10 marks]

(c) Use the Euclidean Algorithm to find the multiplicative inverse of 39 in \mathbf{Z}_{211}^* i.e. the inverse of 39 modulo 211.

[10 marks]

4.

(a) If
$$A = \begin{pmatrix} 2 & 6 & -7 \\ -3 & 1 & 2 \\ 0 & 1 & 3 \end{pmatrix}$$
, $B = \begin{pmatrix} 5 & 5 & 0 \\ 1 & -6 & -4 \\ 8 & 1 & 2 \end{pmatrix}$ and $C = \begin{pmatrix} -3 & 2 \\ -7 & 5 \end{pmatrix}$ evaluate (if possible)

i.
$$A + 2B$$

ii.
$$B - A$$

iii.
$$C^2$$

iv.
$$B^T$$

[4 marks]

(b) Find the image of the square which has vertices (2,2), (4,2), (2,4), (4,4) after scaling about the origin by factors of 3 in the x-direction and 5 in the y-direction.

Note: The scaling matrix is given by $\begin{pmatrix} s_x & 0 & 0 \\ 0 & s_y & 0 \\ 0 & 0 & 1 \end{pmatrix}$.

[12 marks]

(c) A rectangle has the following vertices A, B, C and D in homogeneous coordinates

$$A = \begin{pmatrix} 5 \\ -1 \\ 1 \end{pmatrix}, B = \begin{pmatrix} -10 \\ -1 \\ 1 \end{pmatrix}, C = \begin{pmatrix} -10 \\ 10 \\ 1 \end{pmatrix}, D = \begin{pmatrix} 5 \\ 10 \\ 1 \end{pmatrix}$$

Find the image of this rectangle under the rotation of the plane through an angle of $\frac{\pi}{3} rads = 60^{\circ}$ counter-clockwise about the origin, given that the rotation of the plane counter-clockwise about the origin (0,0) through an angle θ radians is given by the matrix

$$R_{\theta} = \begin{pmatrix} Cos\theta & -Sin\theta & 0\\ Sin\theta & Cos\theta & 0\\ 0 & 0 & 1 \end{pmatrix}$$

[14 marks]