第7篇: 生态学与动物行为

34 生物与环境

王强

December 3, 2016

南京大学生命科学学院

Outline

34.1 环境与生态因子

34.2 生物与非生物环境之间的关系

34.3 生物与生物之间的相互关系

Figure 1. 巢寄生

34.1 环境与生态因子

34.1.1 环境与生态因子是两个重要的概念

环境

某一特定生物体以外的空间及直接和间接影响 该生物生存的一切事物的总和.

- 语言中的环境定义: 是指环绕着某一 中心事物的周围事物
- 环境是一个相对的概念, 相对于特定的研究主体对象
 - ▶ 生物科学: 以生物为主体.
 - ▶ 环境科学: 以人类为主体.
 - ▶ "宪法"
 - ▶ "环境保护法"

生态因子 指环境中对生物的生长、发育、生殖、行为和 分布有直接影响的环境要素.

- 按因子的理化性质
 - ▶ 气候因子: 光, 水 (降雨), 温度
 - ▶ 土壤因子: 质地, 结构, 理化性质等
 - ▶ 地形因子: 地貌, 海拔, 坡度, 坡向等
 - ▶ 生物因子
 - ▶ 人类因子: 其影响超过了自然因子, 具特殊性

- 按因子是否有生命
 - ▶ 非生物因子
 - ▶ 生物因子
- 按因子变动情况
 - ▶ 稳定因子: 如地磁, 太阳辐射等
 - ▶ 变动因子
 - 周期性变动因子: 气候日变化, 潮汐等
 - 非周期变动因子: 风, 降水, 捕食等

34.1.2 生物对生态因子的耐受性是有限度的

最小<mark>因子法则</mark> 指各种生物的生长速度受它所需的环境因素 中最低量因素的限制.

耐受性法则 每一种生物对每一个环境因素都有一个能耐受 范围.

- 最适区, 生理抑制区, 不能耐受区.
- 对同一生态因子, 不同种类生物的耐受范围不同.

Figure 2. 生物的耐受性限度图解

34.2 生物与非生物环境之间的关系

34.2.1 没有水就没有生物

水对生物生长的重要性:

- 水是生物个体重要组成部分: 60-90%.
- 生物的一切代谢活动都必须以水为介质.
- 水在 3.98°C 时密度最大, 利于低温条件下生存.
 - ▶ 冰作为绝热体阻止冰下水进一步降温
- 水的热容量大, 为生物创造了稳定的温度环境.

Figure 3. 火星上的水

(a) 凤凰号

(b) 冰的升华

Figure 4. 第一个直接证据

Figure 5. 机遇号和勇气号

34.2.2 阳光是生命的能量源泉

- 阳光是地球上一切生物的最终能源.
 - ▶ 植物的光合作用, 利用的日光不过 0.1%
- 光的性质与组成:
 - ▶ 可见光: 380-760 nm (40-50%)
 - ▶ 光合作用: 红光 (620-760 nm), 蓝光 (435-490 nm)
- 光对海洋植物的影响
 - ▶ 光的穿透性限制植物在海洋中分布
 - ▶ 光补偿点: 呼吸作用与光合作用平衡 (透光带下部)

Figure 6. 1665年, 艾萨克・牛顿发现光的色散

Figure 7. 太阳辐射谱

Figure 8. 植物的光补偿点示意图

- 生物的光周期现象
 - ▶ 各类生物所特有的对日照长度变化的反应方式.
- 光是生物节律性活动最可靠的信号系统, 对生物的生活 史, 生殖周期起重要的调控作用.
 - ▶ 季节变化: 植物开花, 休眠等; 动物迁移, 冬眠
 - ▶ 昼夜变化: 含羞草叶片开/合, 生物发光等

Figure 9. 地表所受的太阳辐射强度

34.2.3 温度限制着生物的分布

- 地表温度的高度变异性.
 - ▶ 空间: 纬度, 海拔高度, 小生境.
 - ▶ 时间: 季度变化, 昼夜变化.
- 温度对生物的影响: 适宜温度和最适温度.
 - ▶ 大多数生物的有效温度区: 0-45°C.
 - 例外: 轮虫, 线虫 (-253°C); 极端嗜热嗜酸菌
 - ▶ 低温: 冰晶形成使质膜破裂, 蛋白失活、变性.
 - ▶ 高温: 植物-光合减弱、呼吸增强, 水分平衡被破坏, 蛋白质凝固, 有害物质积累; 动物-酶、蛋白失活.

温度与生物的地理分布(北半球)

- 温度限制动物的地理分布(极端温度):
 - ▶ 北限: 最低温度
 - ▶ 南限: 最高温度, 例: 菜粉蝶, 26°C
- 温度限制植物的地理分布:
 - ▶ 水平分布北界, 垂直分布上限: 低温
 - ▶ 水平分布南界(向赤道),低海拔分布:高温
- 温度和降水共同决定地球生物分布的总格局.

34.3 生物与生物之间的相互关系

34.3.1 食植和捕食

食植关系 动物以植物为食.

- 食植关系是自然界食物链的基础
- 食植关系决定了植物和动物 (昆虫) 的协同进化
 - ▶ 植物: 机械防御和化学防御, 次生代谢物质
 - ▶ 动物: 适应, 对抗植物的防御机制
- 食植关系的存在不影响群落成分和结构的稳定

Figure 10. 光棍树

捕食关系 动物以动物以食.

- 捕食关系构成复杂食物链的必要环节, 使群落中的物质 循环和能量流动变得多样化.
- 捕食关系提高群落中能量的利用率.
- 捕食者和被捕食者间的协同进化.
 - ▶ 形态: 警戒色, 拟态等
 - ▶ 行为: 变色, 排放恶臭气体等

(a) 保护色

(b) 拟态

Figure 11. 被捕食者的防御

34.3.2 竞争

草履虫实验: 高斯, 1934.

<mark>竞争排除原理</mark> 生态要求完全相同的两个物种在同一群落中 无法共存.

生态位 一个物种 (种群) 的生存条件的总集合体.

(a) 大草履虫 P. caudatum

(b) 双小核草履虫 P. aurelia

(c) 袋状草履虫 P. bursaria

Figure 12. 草履虫

Figure 13. 草履虫实验

Figure 14. 草履虫实验(补充版)

Figure 15. 白尾土拨鼠和怀俄明州黄鼠

34.3.3 互惠共生

互惠 指对双方都有利的一种种间关系.

■ 特点:解除这种关系双方均能正常生存.

■ 举例:海葵和寄生蟹;鳄鱼和小鸟.

共生:

■ 特点:解除这种关系双方不能正常生存

■ 举例:

▶ 地衣: 单细胞藻类和真菌的共生体, 植物界的开拓者.

▶ 白蚁和多鞭毛虫:多鞭毛虫分泌纤维素酶.

34.3.4 寄生与拟寄生

寄生 一方获利并对另一方造成损害而不把对方杀死.

- 寄生物以寄主的体液,组织或已消化好的食物为食,常阻碍寄主的生长,降低寄主的生殖力,但不引起寄主的死亡.
- 分类: 体内寄主和体外寄主; 终寄主和中间寄主.
- 生物类型: 病毒, 细菌, 原生动物等.

拟寄生 导致寄主死亡, 更接近捕食关系.

■ 昆虫对昆虫的寄生都属于拟寄生, 如寄生蝇和寄生蜂.

Table 1. 总结

-	有利(+)	有害(-)	无作用(0)
有利(+)	互惠共生	捕食/寄生	偏利共栖
有害(-)	捕食/寄生	竞争	偏害共栖
无作用(0)	偏利共栖	偏害共栖	一