

REC'D **0 5 OCT 2004**WIPO PCT

CERTIFICADO OFICIAL

Por la presente certifico que los documentos adjuntos son copia exacta de la solicitud de PATENTE de INVENCION número 200301830, que tiene fecha de presentación en este Organismo el 31 de Julio de 2003.

Madrid, 24 de Septiembre de 2004

El Director del Departamento de Patentes e Información Tecnológica.

P.D.

Mª DEL MAR BIARGE MARTÍNEZ

PRIORITY DOCUMENT
SUBMITTED OR TRANSMITTED IN
COMPLIANCE WITH
RULE 17.1(a) OR (b)

· cello	
	MINISTERIO DE CIENCIA Y TECNOLOGÍA

racino artico	na a systemic dans al openation
	Oficina Española
	de Patentes y Marcas

INSTANCIA DE SOLICITUD

NUMERO DE SOLICITUD

A TECNOLOGIA		·			P2003	01831)			
(1) MODALIDAD: PATENTE DE INVENCIÓN	□ MODELO	DE UTU IDA	D		103 JUL 3	1 11 25				
(2) TIPO DE SOLICITUD:	(3) EXP. PRINCIPAL O DE ORIGEN:			FECHA Y HORA DE PRESENTACIÓN EN LA O.E.P.M.						
ADICIÓN A LA PATENTE SOLICITUD DIVISIONAL	N ° SOLICITUE	MODALIDAD N° SOLICITUD FECHA SOLICITUD			PECHA I HURA DE PRESENTACION EN CA C.E.P.M.					
CAMBIO DE MODALIDAD		. (FECHA Y HORA PRESENTACIÓN EN LUGAR DISTINTO O.E.P.M.						
☐ TRANSFORMACIÓN SOLICIT☐ PCT: ENTRADA FASE NACIO	UD PATENTE EUROPEA			(4) LUGAR DE PRESENTACIÓN: CO				GO		
(5) SOLICITANTE (S): APELLIDOS O DENOMINACIÓN SOCIAL CONSEJO SUP. INVESTIG. CIENTÍFICAS			DMBRE :	NACIONALIDA ESPAÑOLA	AD CÓDIGO PAÍS	DNI/CIF Q2818002D	CNAE	PYME		
. •		. Zala Pari	MATERITES Y N CONTRACTOR MATERIAL	arcas						
(6) DATOS DEL PRIMER SOLICITANTE: DOMICILIO SERRANO, 117 LOCALIDAD MADRID PROVINCIA MADRID PAÍS RESIDENCIA ESPAÑA NACIONALIDAD ESPAÑOLA	OFICINA ERI DPI	o. SECRETA HEPRO HEPRO Paname, 1	MACHENAL MACHENAL Madrid 20071	FAX CORREO E		@csic.es ·				
(7) INVENTOR (ES):	APELLIDOS		NO	OMBRE	NA	CIONALIDAD	C	ODIGO		
LORENZO PRIETO FERNÁNDEZ HERRERO			VICTOR DE LUIS ÁNGEL	•	ESPAÑOL ESPAÑOL	-		PAIS ES ES		
(8) EL SOLICITANTE ES EL INVENTOR			(9) MODO DE OB	STENCIÓN DEL DE	RECHO:					
EL SOLICITANTE NO ES EL INVENTO	·			LABORAL CONTRATO SUCESIÓN						
(10) TÍTULO DE LA INVENCIÓN: SISTEMA PARA LA PRODUCCIÓ HEMOLISINA DE Escherichia col	N DE PROTEÍ i	NAS DIMÉRI	CAS BASADO	EN EL SISTE	EMA DE TRANS	SPORTE DE				
(11) EFECTUADO DEPÓSITO DE MATERIA I	BIOLÓGICA:	· · · · · · · · · · · · · · · · · · ·		□ sı	· XN	0				
(12) EXPOSICIONES OFICIALES: LUGAR	•			FECHA						
(13) DECLARACIONES DE PRIORIDAD: PAÍS DE ORIGEN		CÓDIGO PAÍS	NÚN ·	MERO		FECHA				
(14) EL SOLICITANTE SE ACOGE AL APLAZAI	MIENTO DE PAGO	DE TASAS PREV	ISTO EN EL ART 1	62 LEV 11/86 DE 0	DATENTES	П				
(15) AGENTE /REPRESENTANTANTE: NOMBR						POR PROFESIONAL	ES)			
(16) RELACION DE DOCUMENTOS QUE SE A	COMPAÑAN:	•			FIRMA DEL SOLI	CITANTE O REPR	ESENTA	WTE		
DESCRIPCIÓN Nº DE PÁGINAS: 30 X Nº DE REIVINDICACIONES: 8 DIBUJOS. Nº DE PÁGINAS: 30 X LISTA DE SECUENCIAS Nº DE PÁGINAS: 3	JUSTIFICAN	FORMACIÓN COMP	ASA DE SOLICITUD		Comin	40 /4	<u>~</u>			
RESUMEN DOCUMENTO DE PRIORIDAD TRADUCCIÓN DEL DOCUMENTO DE PRIORID	CUESTIONA CK OTROS: AL	RIO DE PROSPECO JTORIZACIÓN			FIRMA DEL FUNC	R COMUNICACIÓN)	-			
NOTIFICACIÓN SOBRE LA TASA DE CONCES Se le notifica que esta solicitud se ci el pago de esta tasa dispone de tres meses a más los diez días que establece el art. 81 del	onsiderará retirada contar desde la pu	si no procede al iblicación del anu	pago de la tasa de Inclo de la concesió	concesión; para n en el BOPI,	A	1		-		

ILMO. SR. DIRECTOR DE LA OFICINA ESPAÑOLA DE PATENTES Y MARCAS

informacion@oepm.es

www.oepm.es

MOD. 31011 - 1-EJEMPLAR PARA EL EXPEDIENTE

C/PANAMÁ, 1. · 28071 MADRID

NÚMERO DE SOLICITUD

P200301830

FECHA DE PRESENTACIÓN

RESUMEN Y GRÁFICO

RESUMEN (Máx. 150 palabras)

SISTEMA PARA LA PRODUCCIÓN DE PROTEÍNAS DIMÉRICAS BASADO EN EL SISTEMA DE TRANSPORTE DE HEMOLISINA DE Escherichia coli

El sistema comprende una construcción de ADN que comprende: a) una primera secuencia de ácido nucleico que contiene la secuencia de nucleótidos que codifica para un producto de interés; b) una segunda secuencia de ácido nucleico que contiene la secuencia de nucleótidos que codifica para un dominio de dimerización; y c) una tercera secuencia de ácido nucleico que contiene la secuencia de nucleótidos que codifica para la -hemolisina (HlyA) de Escherichia coli o para un fragmento de dicha proteína que comprende la señal de reconocimiento del mecanismo de secreción del sistema transportador de hemolisina (Hly) de E. coli; en donde el extremo 3' de dicha primera secuencia de ácido nucleico está unido al extremo 5' de dicha segunda secuencia de ácido nucleico y el extremo 3' de dicha segunda secuencia de ácido nucleico. De aplicación en la producción de proteínas recombinantes diméricas.

GRÁFICO

Mod. 3106i

•	•		_			
12	SOLICITUD DE PATENTE DE INVEN	ICIÓN		21) NÚMER 0 0 3 0	O DE SOLIC	
31) NÚMERO	DATOS DE PRIORIDAD (32) FECHA	33 PAIS		22) FECHA	DE PRESEN	NTACIÓN
			(VL /	TE DE LA QI DIVISORIA	JE ES
(71) SOLICITANTE ((S) ERIOR DE INVESTIGACIONES CIENTÍFICAS		L			· · · · · · · · · · · · · · · · · · ·
DOMICILIO SE	RRANO, 117 - 28006 MADRID NA	CIONALIDAD ESP	PAÑOLA			
72 INVENTOR (ES	y VICTOR DE LORENZO PRIETO Y LUIS ANGEL FERNÁNDEZ	HERRERO				
(51) Int. Cl.		GRÁFICO (S	SÓLO PARA IN	TERPRETAR RES	UMEN)	
						•
				٠		
	INVENCIÓN . LA PRODUCCIÓN DE PROTEÍNAS DIMÉRICAS BASAD . DE TRANSPORTE DE HEMOLISINA DE Escherichia co					
C) PEOUNTN					<u> </u>	•:•
	LA PRODUCCIÓN DE PROTEÍNAS DIMÉRICAS BASAD	O EN EL SIST	EMA DE	TRANSPO	RTE DE	•••••
El sistema comp contiene la secu nucleico que co secuencia de ác Escherichia coli secreción del si ácido nucleico e	E Escherichia coli prende una construcción de ADN que comprende: a) un prende una construcción de ADN que comprende: a) un prende de nucleótidos que codifica para un producto de intiene la secuencia de nucleótidos que codifica para un sido nucleico que contiene la secuencia de nucleótidos i o para un fragmento de dicha proteína que comprende stema transportador de hemolisina (Hly) de E. coli; en está unido al extremo 5' de dicha segunda secuencia de cido nucleico está unido al extremo 5' de dicha tercera	interés; b) un n dominio de c que codifica p la señal de re donde el extrel a ácido nucleic	la segundimerizado ara la - econocimo 3' de co y el ex	da secuen ción; y c) ι hemolisin niento del dicha prir αtremo 3' α	cia de ád ina terce a (HlyA) mecanis nera sec le dicha	ido ra de mo de uencia de segunda
producción de p	proteinas recombinantes diméricas.				٠	
•						
	. *			,		

TÍTULO

15

20

25

30

SISTEMA PARA LA PRODUCCIÓN DE PROTEÍNAS DIMÉRICAS BASADO EN EL SISTEMA DE TRANSPORTE DE HEMOLISINA DE Escherichia coli

5 CAMPO DE LA INVENCIÓN

Esta invención se relaciona con la producción de proteínas recombinantes diméricas mediante el empleo de un sistema de expresión de proteínas basado en el sistema de transporte de hemolisina de *Escherichia coli*.

10 ANTECEDENTES DE LA INVENCIÓN

Desde hace algún tiempo se está investigando en la producción de proteínas de fusión que comprenden fragmentos de anticuerpos recombinantes bi- o multifuncionales (minianticuerpos). Estas proteínas de fusión presentan algunas ventajas y pueden ser utilizadas con fines terapéuticos o de diagnóstico. Por este motivo, se han ido desarrollando diversos sistemas de expresión de fragmentos de anticuerpos. Algunos de estos sistemas de expresión se basan en el empleo de Escherichia coli.

Habitualmente se seleccionan diferentes fragmentos de anticuerpos y se producen en E. coli tras la clonación de fragmentos de las regiones variable (V) y constante (C) de inmunoglobulinas (Ig) en vectores de fagos filamentos o fagomidios [Hoogenboom, H. R. 1997. Designing and optimizing library selection strategies for generating high-affinity antibodies Trends in Biotechnology. 15:62-70; Hoogenboom, H. R. 2002. Overview of antibody phage-display technology and its applications Methods Mol Biol. 178:1-37; Winter, G., A. D. Griffiths, R. E. Hawkins, and H. R. Hoogenboom 1994. Making antibodies by phage display technology Annual Rev. Immunol. 12:433-455]. Estos fragmentos reconstruyen el sitio de unión al antígeno del anticuerpo original que, en general, se ensambla mediante el contacto de los dominios V de las cadenas pesadas (H) y ligeras (L) [Ay, J., T. Keitel, G. Kuttner, H. Wessner, C. Scholz, M. Hahn, and W. Hohne 2000. Crystal structure of a phage library-derived single-chain Fv fragment complexed with turkey egg-white lysozyme at 2.0 A resolution J Mol Biol. 301:239-46]. Este es el caso de las moléculas Fab, que consisten en la asociación de dos polipéptidos que contienen los dominios V_H-C_{H1} y V_L-C_L y de las moléculas Fv (scFv) de cadena simple, en las que los dominios V_H y V_L se unen en un único polipéptido. Las moléculas de Fab y scFv tienen ventajas importantes, tales

como niveles de expresión más elevados en E. coli y una mejor distribución y aclaramiento más rápido cuando se administran in vivo para aplicaciones diagnósticas o terapéuticas [Carter, P., and A. M. Merchant 1997. Engineering antibodies for imaging and therapy Current Opinion in Biotechnology. 8:449-454; Marasco, W. A., and S. Dana Jones 1998. Antibodies for targeted gene therapy: extracellular gene targeting and intracellular expression Adv Drug Deliv Rev. 31:153-170; Yokota, T., D. E. Milenic, M. Whitlow, and J. Schlom 1992. Rapid tumor penetration of a single-chain Fv and comparison with other immunoglobulin forms Cancer Res. 52:3402-8].

También se han producido en E. coli fragmentos de anticuerpo basados en un 10 único dominio de Ig [Nuttall, S. D., R. A. Irving, and P. J. Hudson 2000. Immunoglobulin VH domains and beyond: design and selection of single-domain binding and targeting reagents Curr Pharm Biotechnol. 1:253-63; Riechmann, L., and S. Muyldermans 1999. Single domain antibodies: comparison of camel VH and camelised human VH domains J Immunol Methods. 231:25-38; Sheriff, S., and K. L. Constantine 1996. Redefining the minimal antigen-binding fragment Nat Struct Biol. 15 3:733-6]. Este progreso se realizó gracias al hallazgo de que en las especies de camélidos (por ejemplo, llamas, camellos) una proporción de sus anticuerpos naturales carece de cadena ligera, construyendo por tanto sus superficie de unión a antígenos con un único dominio V de la cadena pesada (VHH). Además de los beneficios de scFv y 20 Fabs, los dominios V_{HH} han demostrado una estabilidad y solubilidad superiores y una inmunogenicidad inferior [Cortez-Retamozo, V., M. Lauwereys, G. Hassanzadeh Gh, M. Gobert, K. Conrath, S. Muyldermans, P. De Baetselier, and H. Revets 2002. Efficient tumor targeting by single-domain antibody fragments of camels Int J Cancer. 98:456-62; Nuttall, S. D., R. A. Irving, and P. J. Hudson 2000. 25 Immunoglobulin VH domains and beyond: design and selection of single-domain binding and targeting reagents Curr Pharm Biotechnol. 1:253-63; Riechmann, L., and S. Muyldermans 1999. Single domain antibodies: comparison of camel VH and camelised human VH domains J Immunol Methods. 231:25-38]. Sin embargo, todos estos fragmentos de anticuerpo pierden la bivalencia de unión a antígenos (o 30 multivalencia) mostrada por los anticuerpos completos. Su carácter monovalente se refleja por una disminución en la afinidad funcional (avidez) para sus antígenos correspondientes. Para solventar este problema, se obtuvieron por ingeniería genética cortos dominios de oligomerización (por ejemplo, hélices anfipáticas) en los extremos C

terminales para producir minianticuerpos bivalentes y tetravalentes con avidez idéntica a los anticuerpos completos [Pack, P., M. Kujau, V. Schroeckh, U. Knupfer, R. Wenderoth, D. Riesenberg, and A. Plückthun 1993. Improved bivalent miniantibodies, with identical avidity as whole antibodies, produced by high cell density fermentation of Escherichia coli Biotechnology (N Y). 11:1271-7; Pack, P., K. Muller, R. Zahn, and A. Plückthun 1995. Tetravalent miniantibodies with high avidity assembling in Escherichia coli J Mol Biol. 246:28-34; Pack, P., and A. Plückthun 1992. Miniantibodies: use of amphipathic helices to produce functional, flexibly linked dimeric FV fragments with high avidity in Escherichia coli Biochemistry. 31:1579-84; Plückthun, A., and P. Pack 1997. New protein engineering approaches to multivalent and bispecific antibody fragments Immunotechnology. 3:83-105; Rheinnecker, M., C. Hardt, L. L. Ilag, P. Kufer, R. Gruber, A. Hoess, A. Lupas, C. Rottenberger, A. Plückthun, and P. Pack 1996. Multivalent antibody fragments with high functional affinity for a tumor-associated carbohydrate antigen J Immunol. 157:2989-97].

5

10

15

20

25

30

En casi todos los casos, los fragmentos de anticuerpos monovalentes y multivalentes se han producido en el espacio periplásmico de E. coli fusionándoles un péptido señal en el extremo N terminal (N-SP) que es reconocido por la maquinaria celular de la ruta de secreción general (Sec) [Plückthun, A., C. Krebber, U. Krebber, U. Horn, U. Knüpfer, R. Wenderoth, L. Nieba, K. Proba, and D. Riesenberg 1996. Producing antibodies in Escherichia coli: from PCR to fermentation, p. 203-252. In J. McCafferty, and H. R. Hoogenboom (eds), Antibody Engineering: A Practical Approach. IRL Press, Oxford]. Recientemente se ha descrito un método alternativo para la producción de scFvs funcionales en el medio extracelular de cultivos de E. coli que emplean el transportador de la hemolisina α (Hly) [Fernández, L. A., I. Sola, L. Enjuanes, and V. de Lorenzo 2000. Specific secretion of active single-chain Fv antibodies into the supernantants of Escherichia coli cultures by use of the hemolysin system Appl Environ Microbiol. 66:5024-5029]. Este sistema de secreción es independiente de los genes sec celulares y consta de dos componentes de membrana interna (IM), HlyB y HlyD, y el poro de la membrana externa (OM), TolC, que se ensamblan en un gran complejo proteico con un canal hidrófilo interno [Gentschev, I., G. Dietrich, and W. Goebel 2002. The E. coli alpha-hemolysin secretion system and its use in vaccine development Trends Microbiol. 10:39-45; Koronakis, V., C. Andersen, and C. Hughes 2001. Channel-tunnels Curr Opin Struct Biol. 11:403-7;

Koronakis, V., A. Sharff, E. Koronakis, B. Luisi, and C. Hughes 2000. Crystal structure of the bacterial membrane protein TolC central to multidrug efflux and protein export Nature. 405:914-919; Thanabalu, T., E. Koronakis, C. Hughes, and V. Koronakis 1998. Substrate-induced assembly of a contiguous channel for protein export from E. coli: reversible bridging of an inner-membrane translocase to an outer membrane exit pore EMBO J. 17:6487-96]. El sustrato natural de este sistema, la toxina de la hemolisina a (HlyA), se expulsa a través de este canal directamente desde el citoplasma hacia el medio extracelular sin un intermediario periplásmico y de una forma dependiente de ATP. La señal reconocida por la maquinaria de secreción de Hly se localiza en el extremo C terminal de HlyA. Se ha demostrado que los híbridos scFv-HlyA, que contienen una molécula de scFv que carece del N-SP unido al último HlyA de aproximadamente 23 kDa, se secretan de una forma funcional y oxidada por el transportador de Hly [Fernández, L. A., and V. De Lorenzo 2001. Formation of disulphide bonds during secretion of proteins through the periplasmic-independent type I pathway Mol Microbiol. 40:332-46; Fernández, L. A., I. Sola, L. Enjuanes, and V. de Lorenzo 2000. Specific secretion of active single-chain Fv antibodies into the supernantants of Escherichia coli cultures by use of the hemolysin system Appl Environ -Microbiol. 66:5024-5029].

 $\cdot, \, \Sigma$

5

10

15

20

25

30

Por otra parte, la dimerización es una propiedad que con frecuencia se desea conseguir por ingeniería genética en las proteínas cuando está implicada una actividad de unión (por ejemplo, en las interacciones proteína-ADN o antígeno-anticuerpo), puesto que puede intensificar su afinidad funcional (avidez) [Baxevanis, A. D., and C. R. Vinson 1993. Interactions of coiled coils in transcription factors: where is the specificity? Curr Opin Genet Dev. 3:278-85; Busch, S. J., and P. Sassone-Corsi 1990. Dimers, leucine zippers and DNA-binding domains Trends Genet. 6:36-40; Crothers, D. M., and H. Metzger 1972. The influence of polyvalency on the binding properties of antibodies Immunochemistry. 9:341-357; Plückthun, A., and P. Pack 1997. New protein engineering approaches to multivalent and bispecific antibody fragments Immunotechnology. 3:83-105]. Un procedimiento para la producción de proteínas diméricas que comprenden dos proteínas de fusión monoméricas en una interacción no covalente ha sido descrito en la patente norteamericana US 5.910.573. Las proteínas diméricas así obtenidas se acumulan dentro de la célula en el espacio periplásmico, sin secretarse al medio extracelular. Esto conduce a una mayor toxicidad de su expresión

para la bacteria *E. coli*, induciendo un menor rendimiento en los cultivos (peso seco de células por litro), y dificultando la posterior purificación del anticuerpo dimérico al tener que lisar (romper) las bacterias.

Por tanto, sigue existiendo la necesidad de desarrollar sistemas alternativos para la producción de proteínas diméricas.

COMPENDIO DE LA INVENCIÓN

5

10

15

20

25

30

La invención proporciona una solución a la necesidad existente basada en el desarrollo de una construcción de ADN que comprende (i) una secuencia de nucleótidos que codifica para la α-hemolisina (HlyA) de Escherichia coli o para un fragmento de dicha proteína que comprende la señal de reconocimiento del mecanismo de secreción del sistema transportador de hemolisina (Hly) de E. coli; (ii) una secuencia de nucleótidos que codifica para un dominio de dimerización; y (iii) una secuencia de nucleótidos que codifica para un producto de interés. Mediante el empleo de dicho sistema de expresión y secreción de proteínas se obtienen proteínas diméricas en el medio. La eficacia de dicho sistema de secreción ha sido demostrada mediante la producción de minianticuerpos de alta avidez derivados de los anticuerpos de camello V_{HH} (Ejemplo 1).

El translocador de hemolisina de *E. coli* se había usado anteriormente para la secreción de polipéptidos heterólogos, especialmente toxinas y antígenos de patógenos, así como para la secreción de anticuerpos recombinantes scFv. Sin embargo, los resultados ahora obtenidos han puesto de manifiesto que la incorporación de una hélice anfipática de autodimerización en el extremo N terminal de C-HlyA no interfiere con la secreción de Hly y permite la dimerización del polipéptido secretado. Asimismo, la dimerización intensifica la avidez de la unión del polipéptido secretado derivado de C-HlyA. Además, también puede tener otras aplicaciones, como la asociación molecular de varios antígenos y/o adyuvantes producidos por cepas bacterianas vivas, o la combinación de diversas actividades biológicas para la generación de moléculas biespecíficas (por ejemplo, la unión a un antígeno y el reclutamiento del complemento).

Por tanto, un aspecto de esta invención se relaciona con una construcción de ADN que comprende (i) una secuencia de nucleótidos que codifica para la α-hemolisina (HlyA) de *Escherichia coli* o para un fragmento de dicha proteína que comprende la señal de reconocimiento del mecanismo de secreción del sistema transportador de

hemolisina (Hly) de *E. coli*; (ii) una secuencia de nucleótidos que codifica para un dominio de dimerización; y (iii) una secuencia de nucleótidos que codifica para un producto de interés.

En otro aspecto, la invención se relaciona con un cassette de expresión que comprende dicha construcción de ADN operativamente unida a una secuencia de control de expresión de la secuencia de nucleótidos que codifica para el producto de interés.

En otro aspecto, la invención se relaciona con una bacteria que comprende dicha construcción de ADN o dicho cassette de expresión.

En otro aspecto, la invención se relaciona con un método para producir un producto de interés, en forma de una proteína de fusión dimérica, que comprende crecer dicha bacteria bajo condiciones que permiten la producción y excreción al medio de cultivo de dicho producto de interés en forma de una proteína de fusión dimérica.

En otro aspecto, la invención se relaciona con una proteína de fusión dimérica? obtenible por expresión de la secuencia de ácido nucleico contenida dicha construcción de ADN.

BREVE DESCRIPCIÓN DE LAS FIGURAS

5

10

15

20

25

30

La Figura 1 ilustra la secreción del polipéptido C-HlyA que contiene el dominio ZIP. La Figura 1A muestra una representación esquemática de la estructura de los polipéptidos EHlyA y ZEHlyA que contienen la señal de secreción de 23 kDa ('hlyA) del transportador de Hly de E. coli marcado con el epítopo E. La masa de dichos polipéptidos (en kDa), deducida de su secuencia de aminoácidos, se muestra a la derecha. Se indica la composición del dominio ZIP (bisagra de Ig, cremallera de leucina, marca de 6xhis). También se muestra la secuencia de aminoácidos de la región N terminal de ambos polipéptidos EHlyA y ZEHlyA. La Figura 1B es una representación esquemática del polipéptido C-HlyA (monomérico) marcado con el epítopo E y del polipéptido C-HlyA (dimérico) marcado con el epítopo E y que contiene el dominio ZIP (bisagra de Ig, cremallera de leucina, marca de 6xhis). La Figura 1C muestra el resultado de la inmuno-transferencia desarrollada con un anticuerpo monoclonal anti-E marcado con POD de las proteínas secretadas (S) y celulares (C) producidas tras la inducción de 4 h con IPTG 0,3 mM de cultivos de células de E. coli HB2151, crecidas a 37°C, que contienen el plásmido pVDL9.3 (que codifica para HlyB

y HlyD) y uno de los plásmidos indicados, pEHlyA o pZEHlyA. Las proteínas cargadas por carril representan las encontradas en aproximadamente 5 μl de los sobrenadantes (S) del cultivo y las de las células de *E. coli* (C) presentes en aproximadamente 100 μl de los mismos cultivos (DO_{600nm} aproximadamente 2).

La Figura 2 ilustra el entrecruzamiento de los polipéptidos C-HlyA secretados con glutarato de disuccinimidilo (DSG). Los polipéptidos EHlyA y ZEHlyA secretados (10 µg/ml en PBS aproximadamente) se incubaron con DSG, a las concentraciones indicadas, y se sometieron a SDS-PAGE desnaturalizante y a inmunotransferencia con anticuerpo monoclonal anti-E marcado con POD (véase el Ejemplo 1, apartado relativo a los Materiales y Métodos, para más detalles). Tal como se muestra, ZEHlyA se entrecruzó con DSG formando una banda proteica en SDS-PAGE de aproximadamente 66 kDa, unas dos veces el tamaño de su monómero.

La Figura 3 muestra los resultados de la cromatografía de filtración en gel de los polipéptidos de C-HlyA monoméricos y diméricos. La Figura 3A es un gráfico que representa el volumen de elución de los polipéptidos EHlyA (círculo) y ZEHlyA (triángulo) separados por cromatografía de filtración en gel (véase el Ejemplo 1, apartado relativo a los Materiales y Métodos, para más detalles) junto con patrones de proteínas de masa conocida (cuadrados). Los patrones de masa utilizados fueron la tiroglobulina (Mr 670.000), la gammablobulina bovina (Mr 158.000), la ovoalbúmina de pollo (Mr 44.000) y la mioglobina equina (Mr 17.000). La presencia de EHlyA o ZEHlyA en las fracciones eluídas se determinó por inmunotransferencia con anticuerpo monoclonal anti-E marcado con POD. La Figura 3B muestra el resultado de 1a inmunotransferencia desarrollada con un anticuerpo monoclonal anti-E marcado con POD de los polipéptidos EHlyA y ZEHlyA. Una representación esquemática de EHlyA (monomérico) y de ZEHlyA (dimérico) se muestra en la parte superior.

La Figura 4 ilustra la secreción de polipéptidos V_{HH}-HlyA monoméricos (V_{amy}-HlyA) y diméricos (V_{amy}-ZHlyA). La Figura 4A es una representación esquemática de la estructura de los polipéptidos V_{amy}-HlyA y V_{amy}-ZhlyA que contienen la señal de secreción de 23 kDa ('hlyA) del transportador de Hly de E. coli marcado con el epítopo E. La masa de dichos polipéptidos (en kDa), deducida de su secuencia de aminoácidos, se muestra a la derecha. La Figura 4B es una representación esquemática del polipéptido V_{amy}-ZHlyA (monomérico) marcado con el epítopo E y del polipéptido V_{amy}-ZHlyA (dimérico) marcado con el epítopo E y que contiene el dominio ZIP (bisagra de Ig,

cremallera de leucina, marca de 6xhis). La Figura 4C muestra los resultados de un Western blot en donde se pone de manifiesto la secreción de híbridos proteicos que tienen dominios V_{HH} y -EHlyA o -ZEHlyA. Las células de *E. coli* HB2151 (pVDL9.3) que llevan uno de los plásmidos indicados (pV_{amy}HlyA o pV_{amy}ZHlyA) se indujeron con IPTG (véase el Ejemplo 1, apartado relativo a los Materiales y Métodos, para más detalles), a la temperatura indicada, y la presencia de polipéptidos secretados marcados con el epítopo E en sobrenadantes de cultivos se determinó por inmunotransferencia con anticuerpo monoclonal anti-E marcado con POD. Los polipéptidos V_{amy}HlyA y V_{amy}ZHlyA de longitud completa se detectaron en los sobrenadantes de cultivos, junto con algunos fragmentos proteolíticos derivados de ellos. La Figura 4D es un gráfico del volumen de elución de los polipéptidos V_{amy}HlyA (círculo) y V_{amy}ZHlyA (triángulo) separados por cromatografía de filtración en gel, junto con patrones de proteinas de masa conocida (cuadrados) y detectados con inmunotransferencia con anticuerpo monoclonal anti-E marcado con POD. Los patrones de masa utilizados fueron los mismos que los utilizados en relación con la Figura 3.

La Figura 5 es una gráfica que ilustra la actividad de unión de los polipéptidos. V_{HH}-HlyA monoméricos y diméricos. La unión de la α-amilasa mediante los polipéptidos V_{amy}HlyA y V_{amy}ZhlyA, a las concentraciones indicadas, se determinó mediante ELISA (véase el Ejemplo 1, apartado relativo a los Materiales y Métodos, para más detalles). Los minianticuerpos marcados con el epítopo E unidos se detectaron con anticuerpo monoclonal anti-E marcado con POD y lectura de la D.O. a 490 nm. Como controles de la especificidad se emplearon V_{ttx}HlyA y V_{ttx}ZhlyA. La unión previa a un antígeno control no relacionado (ovoalbúmina) se ha sustraído (DO_{490nm} 0,05). Los datos presentados son la media de los triplicados de cada punto. Se realizaron dos experimentos adicionales independientes, que demostraron valores similares a los mostrados en la figura.

La Figura 6 muestra el mapa del plásmido pZEHlyA.

La Figura 7 muestra el mapa del plásmido pZEHlyA2-SD.

La Figura 8 muestra el mapa del plásmido pV_{amy}HlyA.

La Figura 9 muestra el mapa del plásmido pV_{amy}ZhlyA.

10

15

20

30

En un aspecto, la invención proporciona una construcción de ADN, en adelante construcción de ADN de la invención, que comprende:

5

10

15

20

25

30

- a) una <u>primera secuencia de ácido nucleico</u> que contiene la secuencia de nucleótidos que codifica para un producto de interés;
- b) una segunda secuencia de ácido nucleico que contiene la secuencia de nucleótidos que codifica para un dominio de dimerización; y
- c) una tercera secuencia de ácido nucleico que contiene la secuencia de nucleótidos que codifica para la α-hemolisina (HlyA) de E. coli o para un fragmento de dicha proteína que comprende la señal de reconocimiento del mecanismo de secreción del sistema transportador de Hly de E. coli, o una secuencia de nucleótidos que codifica para un gen homólogo, o una secuencia de nucleótidos que codifica para una variante, natural o artificial, de HlyA o de un fragmento de la misma que comprende la señal de reconocimiento del mecanismo de secreción del sistema transportador de Hly de E. coli;

en donde el extremo 3' de dicha primera secuencia de ácido nucleico está unido al extremo 5' de dicha segunda secuencia de ácido nucleico y el extremo 3' de dicha segunda secuencia de ácido nucleico está unido al extremo 5' de dicha tercera secuencia de ácido nucleico.

La primera secuencia de ácido nucleico contiene la secuencia de nucleótidos que codifica para un producto de interés (gen de interés). El producto de interés puede ser eucarótico, procariótico, viral, etc. Prácticamente cualquier péptido o proteína susceptible de ser expresado de forma recombinante puede ser utilizado en la construcción de ADN de la invención, por ejemplo, enzimas, inhibidores enzimáticos, hormonas, moléculas implicadas en la adhesión y/o señalización celular y compuesta por dominios, por ejemplo, inmunoglobulinas, etc. A modo ilustrativo, dicho producto de interés puede ser un antígeno inmunogénico tal como una proteína o un fragmento antigénico de la misma procedente de un patógeno, por ejemplo, de un patógeno viral, bacteriano, de un parásito, etc., que puede causar infecciones en seres humanos o animales; un agente terapéutico, por ejemplo, un antígeno específico de tumor, un antígeno de una enfermedad auto-inmune, etc.; o una molécula inmunoreguladora, por

ejemplo, factores de crecimiento, citoquinas, tales como interleuquinas, interferones, etc. En una realización particular, dicho producto de interés es un minianticuerpo.

La <u>segunda secuencia de ácido nucleico</u> contiene la secuencia de nucleótidos que codifica para un dominio de dimerización. Un dominio de dimerización es una secuencia peptídica que promueve la dimerización en las proteínas que lo contienen. Prácticamente cualquier dominio de dimerización puede ser utilizado en la construcción de ADN de la invención, por ejemplo, hélices peptídicas, que contienen, al menos, una hélice, o una estructura formada por una hélice, una vuelta y otra hélice, etc., estructuras de doble arrollamiento helicolidal (coiled coil), y, en general, cualquier secuencia peptídica que promueva la dimerización en las proteínas que la contengan. En una realización particular, dicho dominio de dimerización comprende la cremallera de leucina del factor de transcripción GCN4 de levadura.

5

10

15

20

25

30

La tercera secuencia de ácido nucleico comprende la secuencia de nucleótidos que codifica para la α-hemolisina (HlyA) de E. coli o para un fragmento de dicha proteína que comprende la señal de reconocimiento del mecanismo de secreción del sistema transportador de Hly de E. coli, o una secuencia de nucleótidos que codifica para un gen homólogo, o una secuencia de nucleótidos que codifica para una variante, natural o artificial, de HlyA o de un fragmento de la misma que comprende la señal de reconocimiento del mecanismo de secreción del sistema transportador de Hly de E. coli. La señal de reconocimiento del mecanismo de secreción del sistema transportador de Hly de E. coli parece estar comprendida en el extremo carboxilo terminal (C-terminal), concretamente dentro de los últimos 60 aminoácidos de HlyA. La secuencia de aminoácidos y nucleótidos de la HlyA de E. coli puede obtenerse de GeneBank, número de acceso M10133, donde también puede obtenerse la secuencia de nucleótidos de aminoácidos de Hlyb y HlyD. En una realización particular, dicha tercera secuencia de ácido nucleico está constituida por la secuencia de nucleótidos que codifica para la HlyA de E. coli. En otra realización particular, dicha tercera secuencia de ácido nucleico comprende un fragmento de la HlyA de E. coli que contiene la señal de reconocimiento del mecanismo de secreción del sistema transportador de Hly de E. coli, tal como una secuencia de nucleótidos que codifica para los 60 últimos aminoácidos del extremo Cterminal de HlyA de E. coli. En este caso, dicha tercera secuencia de ácido nucleico está constituida por, o comprende, la secuencia de nucleótidos que codifica para los 60 últimos aminoácidos del extremo C-terminal de HlyA de E. coli.

En una realización concreta de la invención, dicha tercera secuencia de ácido nucleico contiene la secuencia de nucleótidos identificada como SEQ ID NO: 1 que codifica para un péptido de aproximadamente 23 kDa del extremo carboxilo terminal de HlyA de *E. coli* cuya secuencia de aminoácidos se muestra en la SEQ ID NO: 2.

5

10

15

20

25

30

En general, el dominio de dimerización no se fusiona directamente al gen que codifica el producto de interés sino que es ventajoso introducir un péptido espaciador (flexible) entre el extremo del gen que codifica para el producto de interés y el comienzo del dominio de dimerización. Por tanto, si se desea, la construcción de ADN de la invención también puede contener, además, una cuarta secuencia de ácido nucleico que codifica para un péptido espaciador situada entre dichas segunda y tercera secuencias de ácido nucleico, en donde el extremo 5' de dicha cuarta secuencia de ácido nucleico está unido al extremo 3' de dicha segunda secuencia de ácido nucleico y el extremo 3' de dicha cuarta secuencia de ácido nucleico está unido al extremo 5' de dicha tercera secuencia de ácido nucleico. De esta manera, la secuencia codificante del producto de interés está unida al dominio de dimerización mediante un péptido espaciador. Ventajosamente, dicho péptido espaciador es un péptido con flexibilidad estructural. Prácticamente, cualquier péptido con flexibilidad estructural puede ser utilizado. A modo ilustrativo, dicho péptido flexible puede contener repeticiones de restos de aminoácidos, tales como Gly-Gly-Gly-Ser, o cualquier otra repetición de restos de aminoácidos adecuada, o bien la región bisagra de un anticuerpo. En una realización particular, dicho péptido espaciador flexible comprende la región bisagra de un anticuerpo y la construcción de ADN de la invención contiene la secuencia codificante para dicho péptido flexible. En una realización concreta de la invención, dicha cuarta tercera secuencia de ácido nucleico contiene la secuencia de nucleótidos identificada como SEQ ID NO: 3 que codifica para un péptido de 10 aminoácidos que comprende la región bisagra de un anticuerpo cuya secuencia de aminoácidos se muestra en la SEO ID NO: 4.

Para facilitar el aislamiento y purificación del péptido o proteína de fusión obtenida mediante la presente invención, la construcción de ADN de la invención puede contener, si se desea, una secuencia de ácido nucleico que codifica para un péptido susceptible de ser utilizado con fines de aislamiento o purificación del péptido o proteína de fusión. Por tanto, en una realización particular, la construcción de ADN de

la invención contiene, si se desea, una <u>quinta secuencia de ácido nucleico</u> que codifica para un péptido susceptible de ser utilizado con fines de aislamiento o purificación.

Prácticamente cualquier péptido o secuencia peptídica que permita el aislamiento o purificación del péptido o proteína de fusión puede ser utilizada, por ejemplo, una secuencia de polihistidina, una secuencia peptídica reconocida por un anticuerpo monoclonal y que puede servir para purificar la proteína de fusión resultante por cromatografía de inmunoafinidad, por ejemplo, péptidos etiqueta tales como c-myc, HA, E, FLAG, etc. [Using Antibodies: A laboratory manual. Ed Harlow and David Lane (1999). Cold Spring Harbor Laboratory Press. New Cork. Capítulo: Tagging proteins. pp. 347-377] y, en general, cualquier otra secuencia reconocida por un anticuerpo.

5

10

15

20

25

30

Dicha quinta secuencia de ácido nucleico puede estar situada en cualquier posición de la construcción de ADN de la invención excepto en la región correspondiente al extremo C-terminal de HlyA ya que, en ese caso, rompería la señal de secreción. A modo ilustrativo, dicha quinta secuencia de ácido nucleico podría estar situada entre dichas primera y segunda secuencias de ácido nucleico, en donde el extremo 5' de dicha quinta secuencia de ácido nucleico está unido al extremo 3' de dicha primera secuencia de ácido nucleico y el extremo 3' de dicha quinta secuencia de ácido nucleico está unido al extremo 5' de dicha segunda secuencia de ácido nucleico. Alternativamente, dicha quinta secuencia de ácido nucleico podría estar situada en la región correspondiente al extremo N-terminal de la proteína de fusión resultante o entre el producto de interés y el dominio de dimerización.

Para facilitar el reconocimiento de la proteína o péptido de fusión obtenido, la construcción de ADN de la invención también puede contener, si se desea, una sexta secuencia de ácido nucleico que codifica para un péptido susceptible de ser utilizado con fines de reconocimiento.

Prácticamente cualquier péptido o secuencia peptidica que permita el reconocimiento del péptido o proteína de fusión puede ser utilizada, por ejemplo, una secuencia peptidica reconocida por un anticuerpo monoclonal y que puede servir para reconocer la proteína de fusión resultante por cromatografía de inmunoafinidad, por ejemplo, péptidos etiqueta tales como c-myc, HA, E, FLAG y, en general, cualquier otra secuencia reconocida por un anticuerpo.

Dicha sexta secuencia de ácido nucleico puede estar situada en cualquier posición de la construcción de ADN de la invención excepto en la región correspondiente al extremo C-terminal de HlyA para evitar que se rompa la señal de secreción. A modo ilustrativo, dicha sexta secuencia de ácido nucleico podría estar situada entre dichas primera y segunda secuencias de ácido nucleico, en donde el extremo 5' de dicha sexta secuencia de ácido nucleico está unido al extremo 3' de dicha primera secuencia de ácido nucleico y el extremo 3' de dicha sexta secuencia de ácido nucleico está unido al extremo 5' de dicha segunda secuencia de ácido nucleico. Alternativamente, dicha sexta secuencia de ácido nucleico podría estar situada en la región correspondiente al extremo N-terminal de la proteína de fusión resultante o entre el producto de interés y el dominio de dimerización.

5

10

15

20

25

30

Dichas quinta y sexta secuencias de ácido nucleico pueden estar separadas entre sí. Alternativamente, en una realización particular, dichas quinta y sexta secuencias de ácido nucleico pueden estar unidas entre sí. En este caso, a modo ilustrativo, dicha sexta secuencia de ácido nucleico que codifica para un péptido susceptible de ser utilizado con fines de reconocimiento puede estar situada entre dichas primera y quinta secuencias de ácido nucleico, en donde el extremo 5' de dicha sexta secuencia de ácido nucleico está unido al extremo 3' de dicha primera secuencia de ácido nucleico y el extremo 3' de dicha sexta secuencia de ácido nucleico está unido al extremo 5' de dicha quinta secuencia de ácido nucleico. Alternativamente, dichas secuencias pueden estar unidas entre sí en el orden inverso, en cuyo caso, dicha sexta secuencia de ácido nucleico que codifica para un péptido susceptible de ser utilizado con fines de reconocimiento está situada entre dichas primera y quinta secuencias de ácido nucleico, en donde el extremo 3' de dicha sexta secuencia de ácido nucleico está unido al extremo 5' de dicha primera secuencia de ácido nucleico y el extremo 5' de dicha sexta secuencia de ácido nucleico está unido al extremo 3' de dicha quinta secuencia de ácido nucleico.

Si se desea, la construcción de ADN de la invención puede contener, además, una secuencia de nucleótidos que codifica para una secuencia de aminoácidos susceptible de ser escindida específicamente por medios enzimáticos o químicos con el fin de liberar el producto de interés una vez aislada la proteína de fusión. En este caso, la construcción de ADN de la invención puede incluir, además, una séptima secuencia de ácido nucleico que comprende una secuencia de nucleótidos que codifica para una

secuencia de aminoácidos susceptible de ser escindida específicamente por medios enzimáticos o químicos. Prácticamente cualquier secuencia de aminoácidos susceptible de ser escindida específicamente por medios enzimático o químicos puede ser utilizada. En una realización particular, dicha séptima secuencia de ácido nucleico comprende una secuencia de nucleótidos que codifica para un sitio de reconocimiento de una proteasa, por ejemplo, una enteroquinasa, Arg-C endoproteasa, Glu-C endoproteasa, Lys-C endoproteasa, Factor de coagulación Xa y similares. En otra realización particular, dicha séptima secuencia de ácido nucleico comprende una secuencia de nucleótidos que codifica para un sitio susceptible de ser específicamente escindido por un reactivo químico tal como, por ejemplo, bromuro de cianógeno que escinde restos de metionina o cualquier otro reactivo químico apropiado.

5

10

15

20

25

30

Dicha séptima secuencia de ácido nucleico se encuentra, generalmente, a continuación del extremo 3' de dicha primera secuencia de ácido nucleico que codifica para el producto de interés de manera.

La construcción de ADN de la invención puede obtenerse mediante el empleo de técnicas ampliamente conocidas en el estado de la técnica [Sambrook et al., "Molecular cloning, a Laboratory Manual", 2nd ed., Cold Spring Harbor Laboratory Press, N.Y., 1989 Vol 1-3]. Dicha construcción de ADN de la invención puede incorporar, operativamente unida, una secuencia reguladora de la expresión de la secuencia de nucleótidos que codifica para el producto de interés, constituyendo de este modo un cassette de expresión.

Por tanto, en otro aspecto, la invención proporciona un cassette de expresión que comprende la construcción de ADN de la invención operativamente unida a una secuencia de control de expresión de la secuencia de nucleótidos que codifica para el producto de interés. Las secuencias de control son secuencias que controlan y regulan la transcripción y, en su caso, la traducción del producto de interés, e incluyen secuencias promotoras (pT7, plac, pBAD, ptet, etc.), secuencias codificantes para reguladores transcripcionales (lacI, tetR, araC, etc.), secuencias de unión a ribosomas (RBS), y/o secuencias terminadoras de transcripción (t1t2, etc.), etc. En una realización particular, dicha secuencia de control de expresión es funcional en bacterias, en particular, en bacterias Gram negativas.

Ventajosamente, dicho cassette de expresión comprende, además, un marcador o gen que codifica para un motivo o para un fenotipo que permita la selección de la célula

hospedadora transformada con dicho cassette de expresión. Ejemplos ilustrativos de dichos marcadores que podrían estar presentes en el cassette de expresión de la invención incluyen genes de resistencia a antibióticos, por ejemplo, ampicilina, tetraciclina, kanamicina, cloranfenicol, espectinomicina, etc., genes de resistencia a compuestos tóxicos (telurito, mercurio, etc.).

La construcción de ADN de la invención, o el cassette de expresión proporcionado por esta invención, pueden ser insertados en un vector apropiado. Por tanto, en otro aspecto, la invención se relaciona con un vector, tal como un vector de expresión, que comprende dicha construcción de ADN o dicho cassette de expresión. La elección del vector dependerá de la célula hospedadora en la que se va a introducir posteriormente. A modo de ejemplo, el vector donde se introduce dicha secuencia de ADN puede ser un plásmido o un vector que, cuando se introduce en una célula hospedadora, se integra o no en el genoma de dicha célula. La obtención de dicho vector puede realizarse por métodos convencionales conocidos por los técnicos en la materia [Sambrok et al., 1989, citado supra].

En otro aspecto, la invención se relaciona con una bacteria, en particular, una bacteria Gram negativa, que comprende una construcción de ADN de la invención o un cassette de expresión de la invención, en adelante bacteria de la invención. Dicha bacteria debe tener el sistema exportador de hemolisina (Hly) de *E. coli* para lo cual, si no lo tiene de forma nativa, se debe proporcionar dicho sistema a la bacteria transformándola con un vector que contenga los genes HlyB y Lid, por ejemplo, el plásmido pVDL9.3 [Fernández, L.A. et al., Applied and Environmental Microbiology, Nov. 2000, 5024-5029]. Prácticamente cualquier bacteria Gram negativa, por ejemplo, *E. coli*, Salmonella tiphymurium, Pseudomonas aeruginosa, Pseudomonas putida, etc., puede ser transformada con la construcción de ADN de la invención o con el cassette de expresión de la invención. Para ello, las señales promotoras, reguladoras, marcadoras y orígenes de replicación deben ser optimizados para cada especie bacteriano. En una realización particular, dicha bacteria Gram negativa es *Escherichia coli*.

La construcción de ADN de la invención puede ser utilizada para producir productos de interés. Por tanto, en otro aspecto, la invención se relaciona con un método para producir un producto de interés, en forma de una proteína de fusión dimérica, que comprende crecer una bacteria de la invención bajo condiciones que permiten la producción y excreción al medio de cultivo de dicho producto de interés en forma de

una proteína de fusión dimérica. Las condiciones para optimizar el cultivo de la bacteria de la invención dependerán de la bacteria utilizada.

Si se desea, el método para producir un producto de interés proporcionado por esta invención incluye, además, el aislamiento y purificación de dicha proteína de fusión dimérica. En este caso, la construcción de ADN de la invención incluye, además, dicha séptima secuencia de ácido nucleico previamente definida que comprende una secuencia de nucleótidos que codifica para una secuencia de aminoácidos susceptible de ser escindida específicamente por medios enzimáticos o químicos con el fin de liberar el producto de interés una vez aislada la proteína de fusión. En una realización particular, dicha secuencia de nucleótidos codifica para un sitio de reconocimiento de una proteasa, por ejemplo, una enteroquinasa, Arg-C endoproteasa, Glu-C endoproteasa, Lys-C endoproteasa, Factor de coagulación Xa y similares. En otra realización particular, dicha secuencia de nucleótidos codifica para un sitio susceptible de ser específicamente escindido por un reactivo químico tal como, por ejemplo, bromuro de cianógeno que esciende restos de metionina o cualquier otro reactivo químico apropiado.

En otro aspecto, la invención se relaciona con una proteína de fusión dimérica obtenible por expresión de la secuencia de ácido nucleico contenida en la construcción de ADN de la invención, que comprende:

- (i) la secuencia de aminoácidos de la HlyA de E. coli o de un fragmento de dicha proteína que comprende la señal de reconocimiento del mecanismo de secreción del sistema transportador de hemolisina (Hly) de E. coli;
 - (ii) una secuencia de aminoácidos correspondiente a un dominio de dimerización; y
 - (iii) la secuencia de aminoácidos de un producto de interés.

25

30

20

10

15

De forma más concreta, la proteína de fusión dimérica de la invención comprende

(i) la secuencia completa de aminoácidos de HlyA de E. coli, o alternativamente, un fragmento de HlyA de E. coli que comprende la señal de reconocimiento del mecanismo de secreción del sistema transportador de Hly de E. coli [NOTA: Intentaré definir su secuencia de aminoácidos en base a la información que me facilitéis sobre la secuencia completa de aminoácidos de dicha proteína];

(ii) un dominio de dimerización, tal como una hélice peptídica, una estructura de doble arrollamiento helicolidal (coiled coil), o, en general, cualquier secuencia peptídica que promueva la dimerización en las proteínas que la contengan. En una realización particular, dicho dominio de dimerización comprende la cremallera de leucina del factor de transcripción GCN4 de levadura; y

(iii) un producto de interés, por ejemplo, una enzima, un inhibidor enzimático, una hormona, una molécula implicada en la adhesión y/o señalización celular y compuesta por dominios, por ejemplo, una inmunoglobulina, un antígeno inmunogénico, tal como una proteína o un fragmento antigénico de la misma procedente de un patógeno, por ejemplo, de un patógeno viral, bacteriano, de un parásito, etc., que puede causar infecciones en seres humanos o animales, un agente terapéutico, por ejemplo, un antígeno específico de tumor, un antígeno de una enfermedad auto-inmune, etc., o una molécula inmunoreguladora, por ejemplo, un factor de crecimiento, una citoquina, tal como una interleuquina, un interferón, etc.; en una realización particular, dicho producto de interés es un minianticuerpo susceptible de ser utilizado con fines terapéuticos, de diagnóstico o de investigación.

La proteína de fusión dimérica de la invención también puede contener, si se desea, (a) un péptido espaciador entre el producto de interés y el dominio de dimerización; ventajosamente, dicho péptido espaciador es un péptido con flexibilidad estructural, por ejemplo, un péptido que contiene repeticiones de restos de aminoácidos, tales como Gly-Gly-Gly-Ser, o cualquier otra repetición de restos de aminoácidos adecuada, o bien la región bisagra de un anticuerpo; en una realización particular, dicho péptido espaciador flexible comprende la región bisagra de un anticuerpo; y/o (b) un péptido para facilitar el aislamiento o purificación del péptido o proteína de fusión, por ejemplo, una secuencia de polihistidina, o una secuencia peptídica reconocida por un anticuerpo monoclonal y que puede servir para purificar la proteína de fusión resultante por cromatografía de inmunoafinidad, por ejemplo, péptidos etiqueta tales como c-myc, HA, E, FLAG, y, en general, cualquier otra secuencia reconocida por un anticuerpo; y/o (c) un péptido que permita el reconocimiento del péptido o proteína de fusión, por ejemplo, una secuencia peptídica reconocida por un anticuerpo monoclonal y que puede

10

5

15

20

25

30

servir para reconocer la proteína de fusión resultante por cromatografía de inmunoafinidad, por ejemplo, péptidos etiqueta tales como c-myc, HA, E, FLAG y, en general, cualquier otra secuencia reconocida por un anticuerpo; y/o (d) una secuencia de aminoácidos susceptible de ser escindida específicamente por medios enzimáticos, por ejemplo, una secuencia de aminoácidos que constituye un sitio de reconocimiento de una proteasa, por ejemplo, una enteroquinasa, Arg-C endoproteasa, Glu-C endoproteasa, Lys-C endoproteasa, Factor de coagulación Xa y similares, o una secuencia de aminoácidos susceptible de ser específicamente escindida por un reactivo químico tal como, por ejemplo, bromuro de cianógeno y similares.

El sistema de producción de proteínas de fusión diméricas proporcionado por esta invención es particularmente útil para la producción de proteínas implicadas en una actividad de unión, por ejemplo, en las interacciones proteína-ADN o antígeno-anticuerpo, puesto que puede intensificar su avidez.

Una ventaja del sistema proporcionado por esta invención radica en que permite producir proteínas tóxicas para un huésped bacteriano que, de no ser por ese sistema, no se podrían expresar en dicho huésped bacteriano debido a us toxicidad. Como es conocido, la expresión por métodos recombinantes de proteínas tóxicas para un huésped bacteriano es muy complicada o prácticamente imposible cuando dicha proteína tóxica expresada no es exportada desde la bacteria hacia el exterio. Con el método proporcionado por esta invención se puede expresar una proteína tóxica o previamente inexpresable, o expresada a bajos niveles, para producir la proteína deseada en cantidades utilizables.

El siguiente ejemplo ilustra la invención sin que deba ser considerado como limitativo del alcance de la misma.

25

30

5

10

15

20

EJEMPLO 1

Producción de minianticuerpos diméricos con elevada afinidad secretados por el sistema de transporte de hemolisina (Hly) de E. coli

En este ejemplo se describe la secreción de minianticuerpos diméricos en sobrenadantes de cultivos de *E. coli* que emplean el sistema de transporte de hemolisina (Hly). En primer lugar, se demostró que la dimerización puede conseguirse por ingeniería genética en el sistema de transporte de la Hly. Para ello se insertó una hélice α anfipática (es décir, el dominio de cremallera de leucina del factor de transcripción de

levaduras GCN4) en el extremo N terminal de una versión marcada (E-tag) del dominio C terminal de 23 kDa de la hemolisina (EHlyA). Se comprobó que el polipéptido resultante (ZEHlyA) se secretaba eficazmente por las células de *E. coli* y se acumulaba en el medio de cultivo como un dímero estable. Después se utilizaron los vectores derivados de 'EHlyA y 'ZEHlyA para la secreción de los dominios V_{HH} de inmunoglobulinas obtenidos de anticuerpos de camello. Se secretaron los híbridos V_{HH}-EHlyA y V_{HH}-ZEHlyA y se encontraron en el medio extracelular como monómeros y dímeros, respectivamente. Cuando se compararon con sus homólogos monoméricos, las moléculas diméricas V_{HH}-ZEHlyA mostraron propiedades superiores de unión a su antígeno relacionado, con un aumento de 10 veces en su afinidad funcional (avidez). Este procedimiento permite obtener fácilmente minianticuerpos V_{HH} monoméricos y diméricos con alta avidez a partir de los sobrenadantes de cultivos de *E. coli*, facilitando así la selección y la purificación de alto rendimiento de clones de V_{HH} a partir de grandes librerías.

15

20

25

30

10

5

1. MATERIALES Y MÉTODOS

Cepas bacterianas, crecimiento y condiciones de inducción. Las cepas de E. coli K-12 empleadas eran DH5αF' (supE44 Δ(lacZYA-argF)U169 Φ80(lacZΔM15) hsdR17 recAl endAl gyrA96 thil relAl; Invitrogen) para la clonación y la propagación de los plásmidos y HB2151 (Δlac-pro, ara, nal^r, thi, F'proAB lacl^q lacZΔM15) [Carter, P., H. Bedouelle, and G. Winter 1985. Improved oligonucleotide site-directed mutagenesis using M13 vectors. Nucleic Acids Res. 13:4431-4443] para la expresión de proteínas. Las bacterias que contenían los plásmidos indicados en cada caso se hicieron crecer a 30°C en placas de agar LB [Miller, J. H. 1992. A short course in bacterial genetics: a laboratory manual and handbook for Escherichia coli and related bacteria. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York] que contenía glucosa al 2% (p/v) (para reprimir el promotor lac) y los antibióticos apropiados para la selección de plásmidos. Para la inducción de los híbridos HlyA, se inocularon colonias individuales en el medio LB líquido que contenía glucosa al 2% (p/v) y se hicieron crecer a 30°C o a 37°C hasta que a la densidad óptica a 600 nm (DO_{600 nm}) alcanzó un valor de 0,5 aproximadamente. En ese punto, las bacterias se recogieron por centrifugación, se resuspendieron a la misma densidad en LB que contenía isopropil-1tio-β-D-galactósido (IPTG) 0,3 mM y se incubaron (a 30°C o a 37°C) con agitación

(160 r.p.m.) durante un periodo de tiempo comprendido entre 4 y 16 h. Se recogieron los sobrenadantes del cultivo tras la eliminación de las células de *E. coli* por centrifugación (10.000xg, 10 min) y se añadió 1/10 del volumen de tampón fosfato salino (PBS) 10X concentrado [PBS: Na₂HPO₄ 8 mM, KH₂PO₄ 1,5 mM, KCl 3 mM, NaCl 137 mM, pH 7,0]. Los sobrenadantes del cultivo se emplearon directamente para realizar inmunoensayos o se almacenaron a -80°C hasta su utilización. Los antibióticos añadidos al medio de cultivo para la selección de plásmidos fueron la ampicilina (Ap; 150 μg/ml) y el cloranfenicol (Cm; 30 μg/ml).

10

15

20

25

30

Plásmidos y oligonucleótidos. Se emplearon métodos estándar para la manipulación y el aislamiento del ADN, la amplificación por PCR y la secuenciación del ADN [Ausubel, F. M., R. Brent, R. E. Kingston, D. D. Moore, J. G. Seidman, J. A. Smith, and K. Struhl 1994. Current Protocols in Molecular Biology. John Wiley & Sons, New York; Sambrook, J., E. Fritsch, and T. Maniatis 1989. Molecular cloning. A laboratory manual. Cold Spring Harbor Laboratory Press, New York]. Los oligonucleótidos se obtuvieron de Sigma Genosys (Reino Unido) o de Isogen Bioscience BV (Países Bajos). Los plásmidos pEHlyA (Apr), pEHlyA2-SD (Apr) y pVDL9.3 (Cm^r) ya han sido descritos [Fernández, L. A., and V. De Lorenzo 2001. Formation of disulphide bonds during secretion of proteins through the periplasmicindependent type I pathway Mol Microbiol. 40:332-46; Fernández, L. A., I. Sola, L. Enjuanes, and V. de Lorenzo 2000. Specific secretion of active single-chain Fv antibodies into the supernantants of Escherichia coli cultures by use of the hemolysin system Appl Environ Microbiol. 66:5024-5029; Tzschaschel, B. D., C. A. Guzman, K. N. Timmis, and V. de Lorenzo 1996. An Escherichia coli hemolysin transport systembased vector for the export of polypeptides: Export of Shiga-like toxin IIeB subunit by Salmonella typhimurium aroA. Nature Biotechnology. 14:765-769]. El plásmido pZEHlyA (Ap^r) se obtuvo insertando en el sitio único SalI de pEHlyA un fragmento de ADN de 170 pb que codifica para el dominio ZIP amplificado por PCR y digerido con Sall. El mapa del plásmido pZEHlyA se muestra en la Figura 6. La amplificación por PCR del dominio ZIP se llevó a cabo con la ADN polimerasa Vent (New England Biolabs), usando como molde 1 ng de pCLZIP (Codon Genetic Systems, GmbH), y como cebadores los oligonucleótidos identificados como SEQ ID NO: 5 y SEQ ID NO: 6, que incorporaban dos sitios SalI flanqueando el producto amplificado. El plásmido

pZEHlyA2-SD (Ap^I) se obtuvo insertando en el sitio único SaII de pEHlyA2-SD el fragmento de ADN de 170 pb que codifica para ZIP obtenido por digestión con SaII de pZEHlyA. El mapa del plásmido pZEHlyA2-SD se muestra en la Figura 7. Se seleccionó la orientación del fragmento de ADN ZIP que producía una inserción interna en el dominio C-HlyA marcado con E de pZEHlyA y pZEHlyA2-SD tras la secuenciación del ADN. Los fragmentos de ADN de aproximadamente 0,3 kb que codificaban para los dominios V_{HH}, V_{amy} y V_{ttx} se amplificaron por PCR con la ADN polimerasa Vent, usando como molde 1 ng de los fagémidos A100R3A2 (anti-α-amilasa) o R3E5 (vacuna antitetánica), respectivamente, y como cebadores los oligonucleótidos identificados como SEQ ID NO: 7 y SEQ ID NO: 8.

5

10

15

Los productos amplificados de ADN que codifican para V_{amy} y V_{ttx} contenían los sitios de restricción flanqueantes *Nco*I y *Sfi*I, lo que permitía su clonación en los mismos sitios de pEHlyA2-SD y pZEHlyA2-SD, generando así pV_{amy}HlyA, pV_{ttx}HlyA, pV_{amy}ZhlyA y pV_{ttx}ZHlyA. Los mapas de los plásmidos pV_{amy}HlyA y pV_{amy}ZhlyA se muestran en las Figuras 8 y 9, respectivamente. Los fagémidos A100R3A2 y R3E5 fueron proporcionados por el Dr. Hennie Hoogenboon (Dyax Co., EE. UU.). Ambos fagémidos son derivados de pCANTAB6 (Cambridge Research Biochemicals) que contienen los dominios V_{HH} de camélidos clonados entre los sitios *Sfi*I y *Not*I.

20 Electroforesis e inmunotransferencia de proteínas. Se llevó a cabo la electroforesis en geles de dodecil sulfato sódico - poliacrilamida (SDS-PAGE) usando geles de apilamiento al 4% y de separación al 10% (acrilamida:bisacrilamida 29:1; Bio-Rad), utilizando el sistema de electroforesis Miniprotean® (Bio-Rad) y siguiendo los protocolos estándar [Ausubel, F. M., R. Brent, R. E. Kingston, D. D. Moore, J. G. 25 Seidman, J. A. Smith, and K. Struhl 1994. Current Protocols in Molecular Biology. John Wiley & Sons, New York; Fraile, S., F. Roncal, L. A. Fernandez, and V. de Lorenzo 2001. Monitoring Intracellular Levels of XylR in Pseudomonas putida with a Single-Chain Antibody Specific for Aromatic-Responsive Enhancer-Binding Proteins J Bacteriol. 183:5571-9]. Para la inmunotransferencia, las proteínas se transfirieron a una 30 membrana de difloruro de polivinilideno (Immobilon-P, Millipore) usando un aparato de electroforesis por transferencia semiseca (Bio-Rad). La membrana se bloqueó en tampón MTP (leche desnatada al 3% p/v, Tween 20 al 0,1% v/v en PBS) y se detectaron los polipéptidos marcados con E con anticuerpo monoclonal anti-E marcado con

peroxidasa (0,2 µg/ml en tampón MTP; Amersham Bioscience). El conjugado anticuerpo-POD unido se reveló mediante quimioluminiscencia, tal como ya se ha descrito [Fraile, S., F. Roncal, L. A. Fernandez, and V. de Lorenzo 2001. Monitoring Intracellular Levels of XylR in *Pseudomonas putida* with a Single-Chain Antibody Specific for Aromatic-Responsive Enhancer-Binding Proteins J Bacteriol. 183:5571-9]. La membrana se expuso a una película de rayos X (X-OMAT®, Kodak) o a ChemiDoc® (Bio-Rad) para la cuantificación por quimioluminiscencia (software Quantity-one®; Bio-Rad). Las concentraciones de los polipéptidos HlyA marcados con E secretados presentes en los sobrenadantes del cultivo de *E. coli* se determinaron por la intensidad de sus bandas de proteínas correspondientes en geles de SDS-poliacrilamida teñidos con plata [Ansorge, W. 1985. Fast and sensitive detection of protein and DNA bands by treatment with potassium permanganate J. Biochem. Biophys. Methods. 11:13-20] y mediante inmuno-transferencia usando anticuerpo monoclonal anti-E marcado con POD. Se usaron diluciones seriadas de scFvs marcados con E purificados, de concentración conocida, como patrones en estos experimentos.

Entrecruzamiento de proteínas. Antes de su incubación con el agente de entrecruzamiento bifuncional glutarato de disuccinimidilo (DSG, 7.7 Å spacer; Pierce), los polipéptidos de HlyA marcados con E presentes en los sobrenadantes de los cultivos se equilibraron en el mismo volumen de PBS por ultrafiltración a través de una membrana con punto de corte de 10 kDa (Microcon 10, Millipore) que eliminó los compuestos pequeños con grupos amino libres presentes en el medio de cultivo. El entrecruzamiento se llevó a cabo durante 30 minutos a temperatura ambiente añadiendo DBS 40 ó 130 μM a muestras de proteínas de 50 μl equilibradas en PBS. Tras esta incubación, el agente de entrecruzamiento se inactivó con Tris-HCl 50 mM (pH 7,5) durante 15 minutos y se añadió un volumen de tampón de muestra SDS-PAGE 2X concentrado [Fraile, S., F. Roncal, L. A. Fernandez, and V. de Lorenzo 2001. Monitoring Intracellular Levels of XylR in *Pseudomonas putida* with a Single-Chain Antibody Specific for Aromatic-Responsive Enhancer-Binding Proteins J Bacteriol. 183:5571-9]. Tras hervir durante 5 minutos, se cargaron 10 μl para el SDS-PAGE.

Cromatografía por exclusión de tamaño. Los sobrenadantes del cultivo (aproximadamente 0,2 ml) que contenían PBS 1X se mezclaron con 2 mg de proteína

patrón de masa conocida (disuelta en 60 μl de H₂O) y se hicieron pasar a través de una resina Bio-Gel A de 1,5m (Bio-Rad) empaquetada en una columna de 1 m de longitud y 1,5 cm de ancho (Bio-Rad). Los patrones de filtración del gel (Bio-Rad) fueron la tiroglobulina (PM 670.000), la gammablobulina bovina (PM 158.000), la ovoalbúmina de pollo (PM 44.000), la mioglobina equina (PM 17.000) y la vitamina B-12 (PM 1.350). La velocidad de flujo de la muestra a través de la columna se fijó a 0,2 ml/min usando una bomba peristáltica (P-1, Amersham Bioscience). El volumen de vacío de la columna se calculó mediante la elución de azul de dextrano 2000 (Amersham Bioscience). La elución de los patrones de proteínas a través de la columna se monitorizó mediante absorción de luz UV (Uvicord S II, Amersham Bioscience). Se recogieron fracciones de 1 ml (colector RediFrac, Amersham Bioscience) y se concentraron 10 veces mediante precipitación con ácido tricloroacético (TCA) al 10% (p/v) y 10 µg de albúmina sérica bovina (BSA, Roche) que actuaba como transportador. La presencia de proteínas HlyA marcadas con E en estas fracciones se detectó por Western blot utilizando un anticuerpo monoclonal anti-E marcado con POD (véase más arriba).

5

10

15

20

25

30

Ensayos de inmunoabsorción ligados a enzima (ELISA). Los antígenos (α-amilasa u ovoalbúmina; Sigma) se adsorbieron durante 1 h a 37°C a inmunoplacas de microtitulación de 96 pocillos (Maxisorb, Nunc) a 200 μg/ml en PBS. Se lavó el exceso de antígeno y las placas se bloquearon durante 16 h a 4°C en tampón MTP (véase anteriormente). Los minianticuerpos se diluyeron en tampón MTP, se añadieron a los pocillos a las concentraciones indicadas en cada caso y se incubaron durante 1 h a temperatura ambiente. A continuación, los anticuerpos no unidos se eliminaron mediante cuatro lavados de los pocillos con PBS que contenía Tween 20 al 0,1% (v/v). El conjugado anticuerpo monoclonal anti-E marcado con POD (0,2 μg/ml en tampón MTP) se añadió a los pocillos y se incubó adicionalmente durante 1 h a temperatura ambiente para detectar los minianticuerpos unidos marcados con E. Tras lavar como antes, las placas se revelaron usando o-fenilenediamina (Sigma). Se dejó continuar la reacción durante 10 minutos en oscuridad, se paró con HCl 0,6 N y se determinó la DO a 490nm de los pocillos (lector de microplacas Benchmark, Bio-Rad).

2. RESULTADOS

5

10

15

20

25

30

Dimerización por ingeniería genética de la señal de secreción de HlyA. En primer lugar, se investigó si la dimerización de C-HlyA podría realizarse por ingeniería genética sin afectar a su secreción. Se seleccionó un corto dominio de unos 6 kDa aproximadamente, denominado ZIP, que se había utilizado para la dimerización de scFvs en el periplasma de E. coli [Kerschbaumer, R. J., S. Hirschl, A. Kaufmann, M. Ibl, R. Koenig, and G. Himmler 1997. Single-chain Fv fusion proteins suitable as coating and detecting reagents in a double antibody sandwich enzyme-linked immunosorbent assay Anal Biochem. 249:219-27; Pack, P., and A. Plückthun 1992. Miniantibodies: use of amphipathic helices to produce functional, flexibly linked dimeric FV fragments with high avidity in Escherichia coli Biochemistry. 31:1579-84] para su inserción en C-HlyA. El dominio ZIP consta de una hélice anfipática que forma la cremallera de leucina del factor de transcripción de levaduras GCN4, flanqueado en su extremo N terminal por una zona bisagra peptídica derivada de la IgG3 del ratón, y en su extremo C terminal por un marcador de polihistidina (6xhis). Se insertó un fragmento de ADN que codificaba para el dominio ZIP internamente cerca del extremo N terminal de la versión de aproximadamente 27 kDa marcada con E de C-HlyA (EHlyA) presente en el plásmido pEHlyA (Figura 1A). El plásmido resultante, pZEHlyA, codifica para un polipéptido de aproximadamente 33 kDa (denominado ZEHlyA) que contiene los dominios ZIP y C-HlyA marcados con E (Figuras 1A y 1B).

La producción de ZEHlyA y EHlyA, como control sin ZIP, se indujo en cultivos de células TolC⁺ de tipo salvaje de *E. coli* (por ejemplo, la cepa HB2151) que llevaban pVDL9.3, que codifica para HlyB y HlyD, y que alojaban pZEHlyA o pEHlyA, respectivamente. Como se muestra en la Figura 1C, se encontraron ambos polipéptidos en niveles similares (aproximadamente 10 μg/ml) en los sobrenadantes de los cultivos de *E. coli* crecidos a 37°C tras la inducción de 4 h con IPTG 0,3 mM. Estas proteínas se detectaron en virtud del péptido marcado con E incorporado en sus secuencias con anticuerpo monoclonal anti-E marcado con POD (Métodos). La secreción de ambos polipéptidos derivados de HlyA fue específica y dependiente de la expresión de los componentes HlyB y HlyD por *E. coli* (datos no mostrados) [Fernández, L. A., and V. De Lorenzo 2001. Formation of disulphide bonds during secretion of proteins through the periplasmic-independent type I pathway Mol Microbiol. 40:332-46]. Este resultado

indicaba que la presencia del dominio de dimerización ZIP no tenía efecto en la eficacia de la exportación de la señal de C-HlyA.

A continuación, se investigó el estado de oligomerización de los polipéptidos secretados. Se incubaron muestras de alícuotas que contenía los polipéptidos secretados EHlyA o ZEHlyA con el agente de entrecruzamiento bifuncional glutarato de disuccinimidilo (DSG) y luego se sometieron a SDS-PAGE desnaturalizante y a inmunotransferencia con anticuerpo monoclonal anti-E marcado con POD (Métodos). En este experimento, sólo se entrecruzaron las muestras de ZEHlyA a baja concentración de DSG (40 μM) para formar una banda de proteínas con una masa molecular (Mr) aparente de aproximadamente 66 kDa (Figura 2, carril 5), lo que estaba de acuerdo con el tamaño esperado para un dímero de ZEHlyA. La concentración más elevada de DSG (130 μM) intensificó la intensidad de la banda correspondiente a ZEHlyA dimérico (Figura 2, carril 6) mientras que sólo tenía una reactividad menor sobre EHlyA control (Figura 2, carril 3).

También se demostró la dimerización de ZEHlyA mediante cromatografía por exclusión de tamaño. Se separaron muestras de alícuotas de sobrenadantes de cultivos que contenían EHlyA o ZEHlyA secretados en una columna de filtración en gel, con un límite de exclusión de 1.500 kDa, junto con proteínas de masa conocida utilizadas como patrones (Métodos). Como se muestra en la Figura 3A, ZEHlyA mostró una Mr aparente de aproximadamente 66 kDa en la cromatografía de filtración en gel, mientras que EHlyA tuvo una Mr aparente de aproximadamente 32 kDa en las mismas condiciones. Es importante que se detectara un único pico para cada proteína (Figura 3B), lo que indica que ambos polipéptidos estaban presentes como monómeros (EHlyA) y dímeros (ZEHlyA) estables en disolución. Considerados juntos, estos resultados demostraron que podría obtenerse la dimerización de proteínas mediante la incorporación de hélices anfipáticas en C-HlyA sin interferir con su secreción por el transportador de Hly.

Secreción de minianticuerpos diméricos por el sistema de la Hly de E. coli. A la vista de los resultados previamente obtenidos se procedió a estudiar si los fragmentos de anticuerpos diméricos podían secretarse mediante el sistema de la Hly. En primer lugar, se construyó un plásmido, denominado pZEHlyA2-SD, para generar fusiones internas entre los fragmentos de anticuerpos recombinantes que carecen del dominio N-SP y

ZEHlyA. Este plásmido es un derivado de pEHlyA2-SD [Fernández, L. A., I. Sola, L. Enjuanes, and V. de Lorenzo 2000. Specific secretion of active single-chain Fv antibodies into the supernantants of Escherichia coli cultures by use of the hemolysin system Appl Environ Microbiol. 66:5024-5029] en el que se insertó un fragmento de ADN que codifica para el dominio ZIP en un único sitio SaII, entre la secuencia de poliunión y el dominio C-HlyA marcado con E (Métodos). Se seleccionaron dos anticuerpos de camello V_{HH} , frente a α -amilasa (amy) o la vacuna antitetánica (ttx), para determinar su expresión como híbridos con los restos 'EHlyA y 'ZEHlyA (Figuras 4A y 4B). El empleo de anticuerpos de camello V_{HH} como pares de fusión se debió a su pequeño tamaño (aproximadamente 15 kDa) y a su baja tendencia a formar agregados de proteínas [Muyldermans, S. 2001. Single domain camel antibodies: current status J Biotechnol. 74:277-302; Plückthun, A., and P. Pack 1997. New protein engineering approaches to multivalent and bispecific antibody fragments Immunotechnology 3:83-105], lo que podría interferir con el análisis de la dimerización obtenida por el dominio ZIP (véase Discusión). Las células de E. coli HB2151 (pVDL9.3) se transformaron con un plásmido que codificaba para el híbrido V_{HH}-HlyA (pV_{amy}HlyA, pV_{amy}ZHlyA, pV_{ttx}HlyA o pV_{ttx}ZHlyA) y se indujeron 4 h por la adición de IPTG 0,3 mM a los cultivos líquidos crecidos en LB a 30 ó 37 °C. Los polipéptidos secretados VamyHlyA y V_{amy}ZHlyA se detectaron posteriormente en los sobrenadantes de los cultivos correspondientes de E. coli por Western blot con anticuerpo monoclonal anti-E marcado con POD (Figura 4C). En estas condiciones, la concentración final de VamvHlyA y V_{amy} ZHlyA fue de aproximadamente 2 µg/ml a 37°C, y se redujo aproximadamente en 2 veces en los cultivos que crecieron a 30°C. Resultados similares se obtuvieron con V_{ttx} HlyA y V_{ttx} ZHlyA (datos no mostrados).

10

15

20

25

30

El estado de oligomerización de los híbridos V_{HH} -HlyA secretados se sometió a ensayo mediante cromatografía de filtración en gel (Figura 4D). Muestras de alícuotas de sobrenadantes de cultivos de *E. coli* que contenían V_{amy} HlyA o V_{amy} ZHlyA se cargaron en una columna de filtración en gel (límite de exclusión de 1.500 kDa), junto con proteínas de masa conocida. A partir de sus perfiles de elución puede deducirse (Figura 4D) que el híbrido V_{amy} HlyA tenía una Mr aparente de aproximadamente 40 kDa, lo que estaba completamente de acuerdo con la masa esperada para un monómero de este polipéptido. Por el contrario, V_{amy} ZHlyA mostró una Mr aparente de aproximadamente 95 kDa, que es aproximadamente el doble de la masa esperada de su

monómero (es decir, 47 kDa). Hay que mencionar que la temperatura a la que se indujeron los cultivos de *E. coli* (30°C ó 37°C) no tuvo ninguna influencia en el comportamiento cromatográfico de estas muestras. Por lo tanto, la secreción de los anticuerpos de camello V_{HH} monoméricos o diméricos pueden producirse fusionándolos a los restos EHlyA o ZEHlyA, respectivamente.

5

10

15

20

25

A continuación, se probó si la dimerización mejoraba las propiedades de unión funcional de V_{amy} ZHIyA. Para este fin, se comparó la unión a la α -amilasa de V_{amy} HIyA monomérico y de VamyZHlyA dimérico mediante ELISA. En estos experimentos, se incubaron diluciones seriadas de sobrenadantes de cultivos de E. coli que contenían cantidades idénticas de VamyHlyA o VamyZHlyA con placas de ELISA recubiertas con α-amilasa u ovoalbúmina (como antígeno control). Tras el lavado, los minianticuerpos unidos se detectaron con el conjugado anticuerpo monoclonal anti-E marcado con POD y se realizó la lectura a la DO_{490nm} (Métodos). La unión específica de la α-amilasa se demostró incubando estas placas con V_{ttx}HlyA y V_{ttx}ZHlyA. En la Figura 5 se muestra el resultado de un ELISA prototipo de estos experimentos. La unión previa a ovoalbúmina (en todos los casos la DO_{490nm} 0,05) se ha sustraído de los valores presentados. Tal como se indica, la molécula V_{amy} ZHlyA dimérica presentó una afinidad funcional mayor frente a la α -amilasa, que $V_{amy}HlyA$ monomérica. No se observó unión a α -amilasa con los derivados control de V_{ttx} (Figura 5) ni con los polipéptidos EHlyA y ZEHlyA (datos no mostrados). En general, al menos se requirió una concentración diez veces mayor de VamyHlyA monomérico para lograr señales de unión a la α -amilasa similares a las obtenidas con $V_{amv}ZHlyA$. Además, en la concentración de saturación de ambos minianticuerpos (aproximadamente 0,5 µg/ml) la unión obtenida con V_{amy}ZHlyA alcanzó un nivel meseta superior. Por tanto, la dimerización de V_{amy}ZHlyA induce un efecto de avidez sobre este minianticuerpo que se refleja en una mayor afinidad de unión funcional a su antígeno.

3. DISCUSIÓN

La dimerización es una propiedad que con frecuencia se desea conseguir por ingeniería genética en las proteínas cuando está implicada una actividad de unión (por ejemplo, en las interacciones proteína-ADN o antígeno-anticuerpo), puesto que puede intensificar su afinidad funcional (avidez).

Este ejemplo ilustra la obtención por ingeniería genética, por primera vez, de la dimerización de las proteínas secretadas por el sistema de transporte de hemolisina de E. $coli\ y$ se ha empleado esa tecnología para producir minianticuerpos de alta avidez derivados de los anticuerpos de camello V_{HH} .

Los resultados obtenidos demuestran que la incorporación de una hélice anfipática de autodimerización en el extremo N terminal de C-HlyA no interfiere con la secreción de Hly y permite la dimerización del polipéptido secretado. Tal como se muestra, la dimerización puede intensificar la avidez de la unión del polipéptido secretado derivado de C-HlyA. Además, también puede tener otras aplicaciones, como la asociación molecular de varios antígenos y/o adyuvantes producidos por cepas bacterianas vivas, o la combinación de diversas actividades biológicas para la generación de moléculas biespecíficas (por ejemplo, la unión a un antígeno y el reclutamiento del complemento).

El scFvs dimérico de alta avidez se ha producido en el periplasma de las células de *E. coli* insertando hélices anfipáticas en su extremo C terminal. Inicialmente parecía sencillo probar si scFv dimérico podía secretarse fusionándolos a 'ZEHlyA. Sin embargo, la tendencia reconocida de scFvs a formar dímeros y agregados de proteínas de elevado peso molecular indujo a utilizar fragmentos más pequeños de anticuerpos. De hecho, cuando se investigó el estado de oligomerización de un híbrido scFv-HlyA (6AC3HlyA) mediante cromatografía de filtración en gel, se encontró que forma un número discreto de especies moleculares que difieren en su masa aparente [es decir, a 30°C aproximadamente el 50% tenía la masa del monómero, Mr 55 kDa aproximadamente, mientras que el resto tenía una Mr aparente de aproximadamente 115, aproximadamente 170 e igual o superior a 350 kDa (datos no publicados)].

Los anticuerpos de camello V_{HH} han recibido mucha atención debido a su mejor solubilidad y a su estructura más simple, lo que facilita su amplificación y clonaje. Merece la pena destacar que los cambios efectuados no disminuyen la afinidad ni la especificidad de los anticuerpos de camello V_{HH} , debido a la presencia de regiones

10

5

.

15

25

20

30

determinantes de la complementaridad (CDR) extremadamente variables que compensan la pérdida de diversidad provocada por la ausencia de un dominio V_L. Los anticuerpos de camello también han demostrado un potencial extraordinario como inhibidores enzimáticos puesto que sus grandes CDR pueden alcanzar los sitios activos escondidos en las enzimas. Además, la similitud entre los anticuerpos de camello V_{HH} y las secuencias de la familia VH3 humana está permitiendo la generación de librerías presentadas en fagos de los dominios V_H humanos camelizados y de los anticuerpos de camello V_{HH} humanizados.

Los beneficios expuestos anteriormente motivaron a los inventores a utilizar los dominios V_{HH} para su secreción por el translocador de hemolisina de *E. coli*. Los resultados obtenidos muestran que los anticuerpos de camello funcionales, tanto en la forma monomérica como en la dimérica, pueden recuperarse de los sobrenadantes del cultivo de *E. coli* a niveles similares a los obtenidos en su expresión periplásmica (aproximadamente 1 mg/litro de cultivo a D.O.600nm =1). Además, la dimerización provocada por ZEHlyA indujo un aumento de diez veces en la afinidad funcional de V_{amy}. Este valor está dentro del intervalo esperado producido por el cambio de anticuerpos monovalentes a divalentes. En conclusión, estos datos demuestran que el sistema de secreción de Hly puede emplearse para la secreción de polipéptidos y minianticuerpos diméricos de alta avidez. La simplicidad de esta tecnología puede ser extremadamente útil para la selección de alto rendimiento de las librerías de anticuerpos.

REIVINDICACIONES

5

10

15

20

25

30

- 1. Una construcción de ADN que comprende:
 - a) una <u>primera secuencia de ácido nucleico</u> que contiene la secuencia de nucleótidos que codifica para un producto de interés;
 - b) una <u>segunda secuencia de ácido nucleico</u> que contiene la secuencia de nucleótidos que codifica para un dominio de dimerización; y
 - c) una tercera secuencia de ácido nucleico que contiene la secuencia de nucleótidos que codifica para la α-hemolisina (HlyA) de E. coli o para un fragmento de dicha proteína que comprende la señal de reconocimiento del mecanismo de secreción del sistema transportador de Hly de E. coli, o una secuencia de nucleótidos que codifica para un gen homólogo, o una secuencia de nucleótidos que codifica para una variante, natural o artificial, de HlyA o de un fragmento de la misma que comprende la señal de reconocimiento del mecanismo de secreción del sistema transportador de Hly de E. coli;

en donde el extremo 3' de dicha primera secuencia de ácido nucleico está unido al extremo 5' de dicha segunda secuencia de ácido nucleico y el extremo 3' de dicha segunda secuencia de ácido nucleico está unido al extremo 5' de dicha tercera secuencia de ácido nucleico.

- 2. Construcción de ADN según la reivindicación 1, en la que dicho producto de interés se selecciona entre enzimas, inhibidores enzimáticos, hormonas, moléculas implicadas en la adhesión y/o señalización celular y compuesta por dominios, antígenos inmunogénicos, agentes terapéuticos, y moléculas inmunoreguladoras.
- 3. Construcción de ADN según la reivindicación 2, en la que dicho producto de interés se selecciona entre antígenos específicos de tumor, antígenos de enfermedades auto-inmune, factores de crecimiento, citoquinas, interleuquinas, interferones y minianticuerpos.

- 4. Construcción de ADN según la reivindicación 1, en la que dicho dominio de dimerización comprende una hélice peptídica o una estructura de doble arrollamiento helicolidal (coiled coil).
- 5. Construcción de ADN según la reivindicación 4, en la que dicho dominio de dimerización comprende la cremallera de leucina del factor de transcripción GCN4 de levadura.
- 6. Construcción de ADN según la reivindicación 1, en la que dicha tercera secuencia de ácido nucleico comprende la secuencia de nucleótidos que codifica para la α-hemolisina (HlyA) de E. coli o para un fragmento de dicha proteína que comprende la señal de reconocimiento del mecanismo de secreción del sistema transportador de Hly de E. coli, o una secuencia de nucleótidos que codifica para un gen homólogo, o una secuencia de nucleótidos que codifica para una variante, natural o artificial, de HlyA o de un fragmento de la misma que comprende la señal de reconocimiento del mecanismo de secreción del sistema transportador de Hly de E. coli.
 - 7. Construcción de ADN según la reivindicación 6, en la que dicha tercera secuencia de ácido nucleico se selecciona entre:

a) la secuencia de nucleótidos que codifica para la HlyA de E. coli;

- una secuencia de ácido nucleico que comprende la secuencia de nucleótidos que codifica para los 60 últimos aminoácidos del extremo Cterminal de HlyA de E. coli;
- c) una secuencia de ácido nucleico constituida por una secuencia de nucleótidos que codifica para los 60 últimos aminoácidos del extremo C-terminal de HlyA de *E. coli*;
- d) la secuencia de nucleótidos identificada como SEQ ID NO: 1; y
- e) una secuencia de nucleótidos que codifica para la secuencia de aminoácidos identificada como SEQ ID NO: 2.

8. Construcción de ADN según la reivindicación 1, que comprende, además, una <u>cuarta</u> secuencia de ácido nucleico que codifica para un péptido espaciador situada entre dichas segunda y tercera secuencias de ácido nucleico, en donde el extremo 5' de dicha cuarta

30

25

20

secuencia de ácido nucleico está unido al extremo 3' de dicha segunda secuencia de ácido nucleico y el extremo 3' de dicha cuarta secuencia de ácido nucleico está unido al extremo 5' de dicha tercera secuencia de ácido nucleico.

- 9. Construcción de ADN según la reivindicación 8, en la que dicho péptido espaciador comprende repeticiones de restos de aminoácidos, preferentemente, repeticiones Gly-Gly-Gly-Ser.
- 10. Construcción de ADN según la reivindicación 8, en el que dicho péptido espaciador
 10 es una región bisagra de un anticuerpo.
 - 11. Construcción de ADN según la reivindicación 1, que comprende, además, una quinta secuencia de ácido nucleico que codifica para un péptido susceptible de ser utilizado con fines de aislamiento o purificación.
 - 12. Construcción de ADN según la reivindicación 11, en la que dicho péptido susceptible de ser utilizado con fines de aislamiento o purificación comprende una secuencia de polihistidina o una secuencia peptídica reconocida por un anticuerpo monoclonal y que puede servir para purificar la proteína de fusión resultante por cromatografía de inmunoafinidad.
 - 13. Construcción de ADN según la reivindicación 11, en la que dicha quinta secuencia de ácido nucleico está situada entre dichas primera y segunda secuencias de ácido nucleico, en donde el extremo 5' de dicha quinta secuencia de ácido nucleico está unido al extremo 3' de dicha primera secuencia de ácido nucleico y el extremo 3' de dicha quinta secuencia de ácido nucleico está unido al extremo 5' de dicha segunda secuencia de ácido nucleico.
- 14. Construcción de ADN según la reivindicación 1, que comprende, además, una sexta
 30 secuencia de ácido nucleico que codifica para un péptido susceptible de ser utilizado con fines de reconocimiento.

15

20

25

- 15. Construcción de ADN según la reivindicación 14, en la que dicho péptido susceptible de ser utilizado con fines de reconocimiento comprende una secuencia peptídica reconocida por un anticuerpo monoclonal y que puede servir para reconocer la proteína de fusión resultante por cromatografía de inmunoafinidad.
- 16. Construcción de ADN según la reivindicación 15, en la que dicho péptido susceptible de ser utilizado con fines de reconocimiento comprende la secuencia del epítopo E.

: . . :

- 17. Construcción de ADN según la reivindicación 14, en la que dicha sexta secuencia de ácido nucleico está situada entre dichas primera y segunda secuencias de ácido nucleico, en donde el extremo 5' de dicha sexta secuencia de ácido nucleico está unido al extremo 3' de dicha primera secuencia de ácido nucleico y el extremo 3' de dicha sexta secuencia de ácido nucleico está unido al extremo 5' de dicha segunda secuencia de ácido nucleico.
 - 18. Construcción de ADN según la reivindicación 11 ó 14, en la que dichas quinta y sexta secuencias de ácido nucleico están separadas entre sí.
- 20 19. Construcción de ADN según la reivindicación 11 ó 14, en la que dichas quinta y sexta secuencias de ácido nucleico están unidas entre sí.
- 20. Construcción de ADN según la reivindicación 19, en la que dicha sexta secuencia de ácido nucleico está situada entre dichas primera y quinta secuencias de ácido nucleico,
 25 en donde el extremo 5' de dicha sexta secuencia de ácido nucleico está unido al extremo 3' de dicha primera secuencia de ácido nucleico y el extremo 3' de dicha sexta secuencia de ácido nucleico está unido al extremo 5' de dicha quinta secuencia de ácido nucleico.
- 21. Construcción de ADN según la reivindicación 19, en la que dicha sexta secuencia de ácido nucleico está situada entre dichas primera y quinta secuencias de ácido nucleico, en donde el extremo 3' de dicha sexta secuencia de ácido nucleico está unido al extremo 5' de dicha primera secuencia de ácido nucleico y el extremo 5' de dicha sexta

secuencia de ácido nucleico está unido al extremo 3' de dicha quinta secuencia de ácido nucleico.

22. Construcción de ADN según la reivindicación 1, que comprende, además, una séptima secuencia de ácido nucleico que comprende una secuencia de nucleótidos que codifica para una secuencia de aminoácidos susceptible de ser escindida específicamente por medios enzimáticos o químicos.

5

15

- 23. Construcción de ADN según la reivindicación 22, en la que dicha séptima secuencia
 de ácido nucleico comprende una secuencia de nucleótidos que codifica para un sitio de reconocimiento de una proteasa.
 - 24. Construcción de ADN según la reivindicación 23, en la que dicha proteasa se selecciona entre una enteroquinasa, Arg-C endoproteasa, Glu-C endoproteasa, Lys-C endoproteasa y Factor de coagulación Xa.
 - 25. Construcción de ADN según la reivindicación 24, en la que dicha séptima secuencia de ácido nucleico comprende una secuencia de nucleótidos que codifica para un sitio susceptible de ser específicamente escindido por un reactivo químico.
 - 26. Construcción de ADN según la reivindicación 25, en la que dicho reactivo químico es bromuro de cianógeno.
- 27. Construcción de ADN según la reivindicación 22, en la que dicha séptima secuencia
 de ácido nucleico se encuentra a continuación del extremo 3' de dicha primera secuencia de ácido nucleico.
- 28. Un cassette de expresión que comprende una construcción de ADN según cualquiera de las reivindicaciones 1 a 27 operativamente unida a una secuencia de control de expresión de la secuencia de nucleótidos que codifica para el producto de interés.

29. Cassette de expresión según la reivindicación 28, en la que dicha secuencia de control de expresión de la secuencia de nucleótidos que codifica para el producto de interés comprende una secuencia promotora, una secuencia codificante para reguladores transcripcionales, una secuencia de unión a ribosomas (RBS) y/o una secuencia terminadora de transcripción.

5

20

- 30. Cassette de expresión según la reivindicación 28, que comprende, además, un marcador,
- 31. Cassette de expresión según la reivindicación 30, en el que dicho marcador comprende un gen de resistencia a antibióticos o un gen de resistencia a compuestos tóxicos.
- 32. Cassette de expresión según la reivindicación 28, en el que dicha secuencia de control de expresión es funcional en bacterias.
 - 33. Una bacteria Gram negativa que comprende una construcción de ADN según cualquiera de las reivindicaciones 1 a 27 o un cassette de expresión según cualquiera de las reivindicaciones 28 a 32.
 - 34. Bacteria según la reivindicación 33, seleccionada entre Escherichia coli, Salmonella tiphymurium, Pseudomonas aeruginosa y Pseudomonas putida.
- 35. Un método para producir un producto de interés, en forma de una proteína de fusión dimérica, que comprende crecer una bacteria según la reivindicación 33 ó 34 bajo condiciones que permiten la producción y excreción al medio de cultivo de dicho producto de interés en forma de una proteína de fusión dimérica.
- 36. Método según la reivindicación 35, que comprende, además, el aislamiento y purificación de dicha proteína de fusión dimérica.
 - 37. Método según la reivindicación 35 ó 36, en el que dicho producto se selecciona entre enzimas, inhibidores enzimáticos, hormonas, moléculas implicadas en la adhesión

y/o señalización celular y compuesta por dominios, antígenos inmunogénicos, agentes terapéuticos, y moléculas inmunoreguladoras.

- 38. Método según la reivindicación 37, en el que dicho producto de interés se selecciona
 5 entre antígenos específicos de tumor, antígenos de enfermedades auto-inmune, factores de crecimiento, citoquinas, interleuquinas, interferones y minianticuerpos.
 - 39. Una proteína de fusión dimérica obtenible por expresión de la secuencia de ácido nucleico contenida en una construcción de ADN según cualquiera de las reivindicaciones 1 a 27.
 - 40. Proteína de fusión dimérica según la reivindicación 37, que comprende:
 - la secuencia de aminoácidos de la α-hemolisina (HlyA) de Escherichia coli o de un fragmento de dicha proteína que comprende la señal de reconocimiento del mecanismo de secreción del sistema transportador de hemolisina (Hly) de E. coli;
 - (ii) una secuencia de aminoácidos correspondiente a un dominio de dimerización; y
 - (iii) la secuencia de aminoácidos de un producto de interés.

20

10

- 41. Proteína de fusión según la reivindicación 40, que comprende:
 - (i) la secuencia completa de aminoácidos de HlyA de *E. coli*, o un fragmento de HlyA de *E. coli* que comprende la señal de reconocimiento del mecanismo de secreción del sistema transportador de Hly de *E. coli*;
- 25 (ii) un dominio de dimerización, seleccionado entre una hélice peptídico y una estructura de doble arrollamiento helicolidal (coiled coil); y
- (iii) un producto de interés seleccionado entre una enzima, un inhibidor enzimático, una hormona, una molécula implicada en la adhesión y/o señalización celular y compuesta por dominios, un antígeno inmunogénico, un agente terapéutico, una molécula inmunoreguladora, y un minianticuerpo.

42. Proteína de fusión según la reivindicación 40 ó 41, que comprende, además (a) un péptido espaciador entre el producto de interés y el dominio de dimerización; y/o (b) un péptido para facilitar el aislamiento o purificación del péptido o proteína de fusión; y/o (c) un péptido que permita el reconocimiento del péptido o proteína de fusión; y/o (d) una secuencia de aminoácidos susceptible de ser escindida específicamente por medios enzimáticos o químicos.

5

10

15

43. Proteína de fusión según la reivindicación 42, que comprende, (a) un péptido que contiene repeticiones de Gly-Gly-Gly-Ser o la región bisagra de un anticuerpo; y/o (b) una secuencia de polihistidina o una secuencia peptídica reconocida por un anticuerpo monoclonal y que puede servir para purificar la proteína de fusión resultante por cromatografía de inmunoafinidad; y/o (c) una secuencia peptídica reconocida por un anticuerpo monoclonal y que puede servir para reconocer la proteína de fusión resultante por cromatografía de inmunoafinidad; y/o (d) una de aminoácidos que constituye un sitio de reconocimiento de una enteroquinasa, Arg-C endoproteasa, Glu-C endoproteasa, Lys-C endoproteasa o Factor de coagulación Xa o una secuencia de aminoácidos susceptible de ser específicamente escindida por un reactivo químico.

-**:**-

Fig. 1 (cont.)

:...<u>:</u>

Fig. 3 (cont.)

3A

Fig. 5

Mapa de pZEHlyA

Con 16 enzimas: ECORI PSTI SALI HINDIII BAMHI NOTI SACI SACII SPHI KPNI XBAI NHEI NDEI

AGCGGATAACAATTTCACACAGGAAACAGCT (secuencia anterior a ATG)

		CIC	3G T.	ACT'	ATC	3C'I"]	'AAA	TCT	'AGA	ACTI	raac	3CCA	.Cag	ctgc	AGGC(CGCC	'AGG	CTT	'CGGI	7	
	M	T	M	Ι	Т	N	ь	D	L	N	S	V	s	T S	G G	G	P	K		- Ta 1	h 3
				Sma	aI I												s	acI		=> Ig 1	ninge
	TC	CAC	CTC	CGCC	CGG	GTC	TTC	CCG	TAT	'GAA	ACA	AGCT	GGA	AGACA	AAG:	raga	.GGA	 GCT	CCTI		
61				+-			+				+			-+ rctgi					4	- 120	
															110	41C1	CCI	CGA	GGAA		
	s	T	P	P	G	S	s	R ₌	M =>]	K Leu	Q -zi:	L pper	E GC	D K N4	V	Ē	Е	Г	L	- '	
					Xba	-		,			,										
					ADa	<u>.</u>							Hir	ıdIIİ							
														i							
	AG	CAA	GAZ	CTA	.CCA	l TCT	AGA	AAA	CGA	GGT	'AGC	TCG'	TCTC	 AAAA	AGCI	TGT	TĢG	TGA	ACGT	•	
.21				-+-			+-				+			+		+			4	180	
.21	TC	 GTT	CTI	GAT	GGT	aga	TCT	 F TT	GCŢ	CCA	+ TCG	AGC	AGAC	TTTT	TCGA	+ ACA	ACC.	ACT	4	180	
.21	TC	 GTT	CTI	GAT	GGT	aga	TCT	 F TT	GCŢ	CCA	+ TCG	AGC	AGAC	+	TCGA	+ ACA	ACC.	ACT	4	180	
.21	TC	 GTT	CTI	GAT	GGT	aga	TCT	 F TT	GCŢ	CCA	+ TCG	AGC	AGAC	TTTT	TCGA	+ ACA	ACC.	ACT	+ TGCA	180	
.21	TC	 GTT	CTI	GAT	GGT	aga	TCT	ett	GCŢ E	CCA V	+ TCG	R	AGAC	TTTT	TCGA	+ ACA	ACC.	ACT	r r	-	
	TC	GTT K	N	Y	GGT:	AGA L	TCT	PTT N	GCT E Acc	CCA V	+ TCG	R R Small	AGAC	TTTT	TCG#	V	ACC	ACT	rGCA R	-	
	TC	GTT K	CTT N	GAT Y	GGT.	AGA L	TCTT	rtt n	GCT E Ac Sal	CCA V	+ TCG A	R Small	AGAC L	TTTTT K K GGTG	TCG#	V	ACC	ACT	TCCG	-	
. 81	TC	GTT K	TCA	Y CCA	GGT.	AGA L	TCTT	rtt N	GCT E Ac Sal	CCA V	TCG A GAC	R Small	AGAC L	TTTTT K K GGTG	TCGA	ACA V	ACC	ACT E Ba	R amHI CCCG	-	
81	GGT CCF	GTT K	TCA	Y CCA GGT.	TCAC	AGA L CCA'	TCTT	PTT N	GCT E Acsal	CCA V cI I gTCc	TCG A GAC	Small GCCC	L L CGGGG	GGTG	TCGF L CGCC	GGTCCCAC	ACC.	ACT" E Ba	R R amHI FCCG	-	
81	GGT CCF	GTT K	TCA AGT	GCA CCA GGT	GGT.	AGA L CCA GGT	TCTT	TTTO	GCT E Acsal	CCA V cI I gTCc	TCG A GAC	Small GCCC	L L CGGGG	CGGTG CCAC	TCGZ L CGCC GCGG	GGT(CCA)	ACC.	ACT" E Ba	R R amHI CCG	-	
81	GGT CCF	GTT K	TCA AGT	GCA CCA GGT	GGT.	AGA L CCA GGT	TCTT E CAC AGTG	TTTO	GCT E Acsal	CCA V cI I gTCc	TCG A GAC	Small GCCC	L L CGGGG	GGTG	TCGZ L CGCC GCGG	GGT(CCA)	ACC.	ACT" E Ba	R R amHI FCCG	-	
81	GGT CCF	GTT K	TCA AGT	GCA CCA GGT	GGT.	AGA L CCA GGT	TCTT E CAC AGTG	TTTO	GCT E Acsal	CCA V cI I gTCc	TCG A GAC	Small GCCC	L L CGGGG	CGGTG CCAC	TCGZ L CGCC GCGG	GGT(CCA)	ACC.	ACT" E Ba	R R amHI FCCG	-	

	301				-+	. 		-+-		. .					-+			-+-			+	360
					ETTO K										CGAA L		-				ATT.	-
	361				-+			+-				+			-+			+ -			CAT + GTA	420
		D	L	L	٠ĸ	G	G	Y	G	N	D	I	Y	R	Y	L	s	G	Y	G	н	-
	421		-		-+	- -		+				+	-		-+-			+-		- - -	TTTC +	480
		GT.	ATA. I			3CT2 D	ACT'	rcc: G			TCT D				GTÇ <i>i</i> S						AAAG F	-
	481				-+-			+				+			-+-			+		- -	TAAT + ATTA	540
		R	D	v	A	F	ĸ	R	E	G	N	D	L	I	М	Y	ĸ	A	E	G .	N .	-
	541				-+-			+				+			-+-		-· - -	+			GTCA + CAGT	600
			L			G	Н		N									E			s	-
	601	·			-+-			+				+			-+-			+			CACA + GTGT	660
		D	D	L	s	N	н	Q	I	E	Q	I	F	D	K	D	G	R	V	I	т	-
	• 0	•										,										
,	661				-4-			+				+			-+-			+			TGTG + ACAC	720
		P	D	s	L	ĸ	к	A	F	E	Y	Q	Q	s	N	N	ĸ	V .	s	Y	v	-
	721				-+-			+				+			-+-			+			TGAA	780
																					ACTT	
		v	\sim	u	רו	7\	•	T	v	G		0	מ	N	ь	N	P	ىل	Ι	N	E	-

PstI ${\tt ATCAGCAAAATCATTTCAGCTGCAGGTAACTTCGATGTTAAGGAGGAAAGATCTGCCGCT}$ 781 ------ 840 TAGTCGTTTTAGTAAAGTCGACGTCCATTGAAGCTACAATTCCTCCTTTCTAGACGGCGA I S K I I S A A G N F D V K E E R S A A NdeI ${\tt TCTTTATTGCAGTTGTCCGGTAATGCCAGTGATTTTTCATATGGACGGAACTCAATAACT}$ 841 ------ 900 ${\tt AGAAATAACGTCAACAGGCCATTACGGTCACTAAAAAGTATACCTGCCTTGAGTTATTGA}$ S L L Q L S G N A S D F S Y G R N S I T TTGACAGCATCAGCATAA 901 ----- 918 AACTGTCGTAGTCGTATT LTASA* Enzimas que cortan: EcoRI HindIII AccI BamHI NdeI PstI SacI SalI · SmaI XbaI Enzimsa que no cortan: KpnI Ncol NheI NotI SacII SphI

Fig. 6

Mapa de pZEHLYA2SD

Con 11 enzimas: ECORI BGLII BAMHI NCOI NHEI SFII SALI XMAI XBAI EAGI SALI HINDIII

																		-			
				Bg.	lII	Eco	RI														
	ΔͲር፤	מידים	י ריכיז	יידעע	 מיויים	חדמי	l TGA	ATTC	'GGG	יכפיי	TCG	ΑΑΑ	ATTA	ATA	ACG/	ACTO	CACI	TAT	4GG		
` 1																-+-				60	
,	TAC	rTA'	rgc'	rta.	TAA	CTAG	ACT	TAAC	CCC	GGGA	AGC'	TTT:	raat	'AT'	rgc:	rga(GTG <i>I</i>	ATA	rcc		
						Xba	ıI											No	coI		
							1												i		
								'AGA												120	
								TCTI												120	
	0				~																
		_						_	٦												
	Nh	eI 	·			Sfi	1	Sa	alI 												
								GCC													
																				180	
	GTA	CCG	ATC	GTG	CCG	GAG	ccc	CCGG	CGCA	GCTG	CAG	GCC	GCC	AGG	CTT	CGG.	AAG	GTG.	AGG		
	м	Α	s	т	Α	s	G	A 1	A S	т	s	G	G	P	K	P	s	Т	P	-	
					•	•											=>	Ig	hi	nge	
	_																				
Xπ	ıaΙ																				
	- 1																	,			
	GCC	CGG	GTC	TTC	CCG	TATO	GAA <i>I</i>	\CAG(CTGG	AAG!	ACAA	AGT	AGA	GGA	GCT	CCT	TAG	CAA	gaa.		
				+			-+			+			+			-+-			+	240	
				+			-+			+			+			-+-			+	240	
				+	GGC	ATA	-+-: CTT:		GACC	+	 rgtt		+ TCT	 CCT	CGA	-+-	ATC		+	240	
	CGG	GCC	CAG	+ AAG	GGC R	ATAC	-+ CTT: K	rgrc	GACC	+ TTCI	 rgtt	TCA	+ TCT	 CCT	CGA	-+- .GGA	ATC	 GTT	CTT	240	
	CGG	GCC	CAG S	+ AAG	GGC R	ATAC	-+ CTT: K	rgtc Q :	GACC L E	+ TTCT D CN4	rgtt K	TCA	+ TCT	 CCT	CGA	-+- .GGA	ATC	 GTT	CTT	240	
	CGG	GCC	CAG S	+ AAG	GGC R	ATAC	-+ CTT: K	rgtc Q :	GACC L E	+ TTCI	rgtt K	TCA	+ TCT	 CCT	CGA	-+- .GGA	ATC	 GTT	CTT	240	
	CGG	GCC G	CAG S	+ AAG S	GGC R	M Le	-+ CTT K eu-z	Q : ippe	GACC L Fer G	TTCT D CN4	rgti K III 	TCA V	+ TCT E	 CCT ·E	CGA L	-+- .GGA L	ATC S	GTT K	CTT N	240	
81	CGG	GCC G Xba CCA	CAG S I TCT	+ AAG S AGA	GGC R =:	M > Le	K Eu-z	Q : ippe	GACC L E er G H	+ TTCT D CN4 (ind:	rgti K III 	TCA V	+ TCT E	CCT E	CGA L	-+- .GGA L	ATC S	GTT K	PCTT N	240	
81	CGG	GCC G Xba CCA	CAG S I TCT	+ AAG S AGA	GGC R =:	M > Le	K Eu-z	Q : ippe	GACC L E er G H	+ TTCT D CN4 (ind:	rgti K III 	TCA V	+ TCT E	CCT E	CGA L	-+- .GGA L	ATC S	GTT K	PCTT N	240	
81	CTA	GCC G Xba CCA	CAG S I TCT AGA	+ AAG S AGA	GGC R =: AAA 	M > Le	K Eu-z	Q : ippe	GCAG	+ TTCT D CN4 (ind:	rgti K III AAAA	TCA V	+ TCT E TGT + ACA	TGG	CGA L	LACG	ATC S	GTT K	PCTT N	240	
81	CTA	GCC G Xba CCA GGT	CAG S I TCT	+ AAG S AGA + TCT	GGC R =: AAA TTT	M > Le	K Eu-z GGT/ CCA:	Q : ippe	GACO GCACO GCACO R I	TTCT CN4 (ind.	rgti K III AAAA	TCA V	+ TCT E TGT + ACA	TGG	CGA L TGA ACT	LACG	ATC S TGG ACC	GTT K	TCA	240	=>
81	CTA	GCC G Xba CCA GGT	CAG S I TCT	+ AAG S AGA + TCT	GGC R =: AAA TTT	M Le	K Eu-z GGT/ CCA:	Q : ippe	GACO GCACO GCACO R I	TTCT CN4 (ind.	rgti K III AAAA	TCA V	+ TCT E TGT + ACA	TGG	CGA L TGA ACT	LACG	ATC S TGG ACC	GTT K	TCA	240	· =>
.81	CGG P CTA GAT	GCC G Xba CCA GGT H	CAG S I TCT AGA	+ AAG S AGA + TCT	GGC R =: AAA TTTT	M Le	K Eu-z GGT/ CCA:	GTCG Q ippe AGCT CGA A Xma	GACC L F F CGTC GCAC R I	TTCT CN4 (ind: TGA) + ACTT	rgti K III AAAA rtti K	Y V AGCT CGA	+ TCT E TGT + ACA	TGG	CGA L TGA ACT	LACG LACG TGC R	ATC S TGG ACC G	GTT K TTGG ACC	TCA	240	=>
81	CTA GAT	GCC G Xba CCA GGT H	CAG S I I TCT AGA	+ AAG S AGA + TCT E	GGC R =:	ATAC M CGAC GCTC E Sal:	K Eu-z GGT CCA: V I	Q :ippe	GACC EFF G CGTC GCAC R I	+ TTCT D CN4 Lind TGA ACTT K	CGTT K III AAAA FTTTT K	TCA V AGCT CGGA	+ TCT E TGT + ACA V	TGG	CGA L TGA ACT E	-+- GGA L LACG +- TGC R	ATC S STGG ACC G II	GTT K TGG ACC G	OTT N TCA TCA AGT H CGCT	240	->

b

b.

Fig. 7 (cont.)

b			6xl Eag:	nis I	tag		A	s	Т	P	G	•		P tag		P	Y	P	D	P	L	-
	36	GG)	AAC	CGG	CCGC	GGA	AAA	TTCI	CTT	rgc'	TAA	AAA	ATG:	CAT?	TAT(CCG	3TG(JAAZ	AAGG	TAA	TGA	
	36	1 CC'	TTGO	3CC0	-+ 3GCC	CCT		-+ AAG <i>E</i>	ייייייייייייייייייייייייייייייייייייי		+				+			-+-			+	420
								11101	1OA	100/	711	111	.ACA	ALA	TAC	iGC(ACC	.'T"T"3	TCC	TTA:	'ACT	
b		Е	P	7	G	E		_	_	_						٠.						
_		Ľ	F	A	G	E	N =>	S C-:	L hlv		K	N	V	L	S	G	G	K	G	N	D	-
	40	CAA	AGTI	GTA	CGG	CAG	TGA	GGGA	GCA	GA	CT	GCT	TGF	TGG	CGG	AGA	AGG	GAA	TGA	TCT	TCT	
	42.				+			-+			+				+							480
							-101	CCCI	CGI	CIC	JO _M	CGA	AC1	ACC	GÇC	TC1	"I'CC	CTT	'ACT	AGA	AGA	
b		K	L	Y	G	Ş	E	G	A	D	L	Ľ	D	G	G	E	G	N	D	L	L	-
		GAA	AGG	TGG	АТА	TGG	TAA'	rgat	'АТТ	'T'A'T	rcg	מידים	ייטיי	רוניידיי	אככ	. אידי	ምርር	יממא	ממא	m a m	ma m	
	483				+			-+			+				4							540
		-CTI	TCC	ACC	TAT	ACC.	ATT	ACTA	TAA	ATA	AGC.	AAT.	AGA	AAG	TCC	TAT	'ACC	GGT	AGT	ATA	ATA	
p		K	G	G	Y	G	N	D	Ι	Y	R	Y	Ĺ	s	G	Y	G	H	н	1	I	_
		TGA	CGA	TGA	AGG	GGG	GAA	GAC	GAT	AAA	יריי	מאניי	արգույ	ממכי	תביעד	ייי עייי	א ריי א	mmm.	000	aa.	aam	
	541				+			+			-+				+							600
		ACT	GCT.	ACT	TCC	CCC	CTTT	CTG	CTA	TTT	'GA	GTC.	AAA	TCG	ACT	ATA	TCT	AAA	GGC	CCT	GCA	
b		D	D	E	G	G	ĸ	ם מ	D :	ĸ	L	s	L	A	D	I	D	F	R	D	v	_
		TGC	CTT	TAA	GCGZ	AGAZ	AGGG	AAT(GAC	CTC	AT:	CATO	GTA	TAA	AGC'	тса	∆GG	י מ מידי	יייבאיו	հետև	ריניין	
	601				+			+			-+-				+						•	660
	-	ACO	GAA	HT 1.	الالال	rcri	rece	TTA	CTG	GAG	TAZ	ATAC	CAT	TTA	rcg.	ACT'	TCC	ATT	ACA	AGAZ	AAG	337
b		A	F	K	R	E	G	n i) 1	Ĺ	I	M	Y	ĸ	A	E	G	N	v	L	s	_
		TAT'	TGG	CAC	CAAZ	דעע	ינינטטי	ATT	יאיי	יציוריין	N N N	. 7. 7. 6	ma	3 mmr								
	661			1				+			-+-				h – ~ .							720
		ATA	ACCO	3GT(TTT	TTA	CCA	TAAT	GTA	LAA!	ГТI	TTC	BAC	CAA	CT.	r r r	CTC	CAGI	CTA	CTA	GA	720
b	•	I	G	H	ĸ	N	G	r 1	' F	, 1	ĸ	N	W	F	E	v	707		_	_	_	
		om or							_	•				_	_	K		S	D		L,	-
	721	CTCT		.CA1	CAG	ATA	GAG(CAGA	TTI	TT	JAT	AAA	GAC	CGGC	AGC	GTZ	ATC	CACA	CCA	GAT	TC.	
		GAGA	ATTA	GTA	GTC	TAT	CTC	TCT	'AAA	AA	CTA	TTT	CTC	CCC	TCC	CAT	TAG	- + TGT	GGT	 'C'T'A	ΔG -+	780
b		s			_																	
		-			Ī) I				K				V	I	_	-	_	s	-
	701	TCTT	'AAA'	AAA	GCA	TTT	GAA'	ATC	AGC	AGA	GT.	AAT.	AAC	AAG	GTA	AGI	TAT	GTG	TAT	GGA	CA	•
	,01	AGAA		+			4				+-			+				+			-+	840

Fig. 7 (cont.)

b		L	ĸ	ĸ	A	F	E	Y	Q	Q	s	И	N	K	v	s	Y	V	Y	G	H	-
		TGA	TGC	ATC.	AAC	TTA	TGG	GAG	CCA	GGA	CAA	TCT	TAA	TCC	ATT	AAT"	raa'	TGA	TAA	CAG	CAA	900
	841	ACT																				300
b		ď	A	s	T	Y	G	s	Q	D	N	L	N	P	L	I,	N	E	r	s	ĸ	-
														Bgl	II							
	901	AAT																				960
	901																				AAT.	
b		I	I	s	A	A	G	N	F	D	v	ĸ	E	E	R	S	A	A	s	L	L	-
	961	GCA	GTT	GTC	CGG	TAA	TGC	CAG	TGA	TTT	TTC	ATA	TGG	ACG	GAA +	CTC	AAT	AAC	TTT	GAC	AGC	1020
	301																				TCG	
b	•	Q	L	s	G	N	A	s	D	F	s	Y	G	R	N	s	I	T	L	T	A	-
	1021																				TTA	1080
																					'TAA	
b _,	•	s	A	*	-				•													
	1081				+			-+-			+				+	-		-+-				1140
		CGA	AAT	AAA	AAC	CTC	AGT	l'TA'	'ACC	AAT!	GAA	CAG	TAT	TTT	AAC	TAA	TAC	:CCA	ATA	TGC	:GGG	
																					GAT	
	1141																				CTA	1200
											•											
	1201				+			-+-			4				+			-+-				1260
		AAC	TGT	GTC	TGC	CCT!	'GAC	CAG	ACC	CTA	LTT	rgca	GTA	CCA	ACG	AAC	GAC	:GC1	"T"T'A	AGAA	ATC	
																					CCG	
	1261																				GGC	1320
		CAM	י איזיי	th Chu	יכפא	.ca	יאפיר	! አጥር	ימאר	יכיחיר	יחעי	עיוייט	ישישים.	ጥር፤አ	ርጥአ	ልልር	ጥሮል	ሊቲጥ፤	ממג	מממי	CAA	
	1321	CAI			+			-+-			+				+			-+-			·+	1380

Fig. 7 (cont.)

138	ACAGATATCTTATTTCTGATCTGGAGCAGCGAAATCCCCGTGTTCTCGAACAGTCTGAGT 1+ TGTCTATAGAATAAAGACTAGACCTCGTCGCTTTAGGGGGCACAAGAGCTTGTCAGACTCA	1440
144	TTGAGGCGTTATATCAGGGGCATATTATTCTTATCGCTTCCCGTTCTTCTGTTGCCGGA 1+ AACTCCGCAATATAGTCCCCGTATAATAAGAATAGCGAAGGGCAAGAAGACAACGGCCCT	1500
150:	AACTGGCGAAATTTGACTTTACCTGGTTTATTCCTGCCATTATAAAATACAGGAGAATAT TTGACCGCTTTAAACTGAAATGGACCAAATAAGGACGGTAATATTTTATGTCCTCTTATA	1560
1561	TTATTGAAACCCTTGTTGTGTCTGTTTTTTACAATTATTTGCATTAATAACCCCCCTTT L+++++ AATAACTTTGGGAACAACACAGACAAAAAAATGTTAATAAACGTAATTATTGGGGGGAAA	1620
1621	TTTTTCAGGTGGTTATGGACAAAGTATTAGTGCACAGGGGATTTTCAACTCTTAATGTTA++ AAAAAGTCCACCAATACCTGTTTCATAATCACGTGTCCCCTAAAAGTTGAGAATTACAAT	1680
1681	TTACTGTCGCATTATCTGTTGTGGTGGTGTTTGAGATTATACTCAGCGGTTTAAGAACTT+ AATGACAGCGTAATAGACAACACCACCACAAACTCTAATATGAGTCGCCAAATTCTTGAA	1740
_ 1741	ACATTTTTGCACATAGTACAAGTCGGATTGATGTTGAGTTGGGTGCCAAACTCTTCCGGC	26
1801	ATTTACTGGCGCTACCGATCTCTTATTTTGAGAGTCGTCGTGTTGGTGATACTGTTGCCA TAAATGACCGCGATGGCTAGAGAATAAAACTCTCAGCAGCACAACCACTATGACAACGGT	1860
1861	GGGTAAGAGAATTAGACCAGATCCGTAATTTTCTGACAGGACAGGCATTAACATCTGTTC	1920
1921	HindIII TGGACTTATTATTTTCATTCATATTTTTTGCGGTAATGTGGTATTACAGTCCAAAGCTT	979

Fig. 7 (cont.)

Enzimas que cortan:

BamHI BglII EagI EcoRI HindIII NcoI NheI SalI SfiI XbaI XmaI

Enzimas que no cortan:

Ninguno

Fig. 7

Mapa de pVamyHLYA

Con	n 8	en	ziπ	nas:	: N	ICO:	ΙI	PST:	I S	AL]	ГН	INI	DII:	I S	FI	ΙE	MAS	ні	NO	TI	ECO	RI PSTI
	:	т -			+				+			-+-			+				+		AAGG/	+ 60 ·
	63	G. 1 -	ATA'	Nco: TAT(CCA'	TGG	CTC	'AGG'	TGC.	AGC'.	rgg:	rgg/	AGTC	'TT(GGG(GAG(GCT(CGG:	rgcz	łGG(CTGGC	3 - 120
		C,	rat:	ATAC	3GT	ACC	GAG	TCC	ACG'	TCG	ACC	ACC:	rcag	AAC	ccc	CTC	GAC	3CCI	CG	ccc	ACC	2
a ·					M =>	A VH	Q H a	V mil	Q asa	L	v	E	S	W	G	G	s	v	Q	A	G	-
	101	G	3GT(CTCT	rga(BAC'	rct	CCT	GCA	CAGO	ccc	CTGC	ATT	CAC	CTC	CAA	TAC	CTC	CCC	CAT	GGAC	2
	121	C	CAC	JAGA	CTC	TG	AGA	GGA	CGT	GTC0	GGG	ACC	TAA	GTG	GAG	GTI	'ATC	GAC	GGC	:GTA	CCTG	- 180 :
a		G	s	L	R	ь	s	С	T	A	P	G	F	Т	s	. N	s	С	R	M	D	_
					•		Ps	tI 														
	181				-+-			4				+			-+-	<u></u>		+		~	TGGT	240
ä													'CAC	CCA	.GAG	TAG	ATA	ATC	ATG	ACT	ACCA	•
a		W	¥	R	Q	A	A	G	K	Q	R	E	W	V	S	S	I	s	T	D	G	-
	241				-+-			+				+			-+-			+			CAAG + GTTC	300
a								s														-
	301				-+-			+				+			-+-			+			CTGT + GACA	360
a		D	T	v	Y.	L	Q	M	N	s	L	к	P.	E	D	T	A	ı	· Y	Y	С	-
	267	GC	ZGT(GAGO	GAC	GAA'	TGG	GTA'	TCG'	TCC	GCA.	ATC:	CAC	GA/	ATT:	rcg	CTAC	CTG	3GG(ccc	GGG	
	30 T				-+			+				+			-+-			4-	- -		+	420
a ·		A	v	R	T	N	G.	Y	R	P	Q	s	н	E	F	R	Y	W	G	p	G	_

Fig. 8 (cont.)

SfiI SalI

						~~~					mac	1	1000	ار ا	ייייריר	יא כיכ	יכככ	ccc	CCT	יפכפ	CCG	
	421	ACC	CCAC	3GTC	CACC	ZGTC	rrcc	JTC#	AACC			. <b>.</b>			+			-+-			CCG	480
		TG	GT	CCAC	TGC	GCAC	BAG	AGT	rtgo	CGG	AGC	CCC	CGG	CGC	AGC	TGC	:GGG	CCC	CCF	CGC	:GGC	
1		т	Q	v	Ţ	v	s	s	т	A	s	G	A	A	s	T	P	G .	G	Α	P	-
				ъ.	TT	-														=>	E-ta	ra
					amH]	ĺ												•				
	407	GT	GCC	GTA'	rcc	GGA?	rcc	GCT(	3GA/	/CCC	3GC(	CGGC	3gA7	LAA!	rtC1	CTI	GC1	'AAA'	AA?	rgta	ATTA ++	540
	4 Ø I	CA	 CGG	CAT	AGG	CCT	AGG	CGA	CCT.	rgg(	CGG	CCC	CCTI	TŤ	\aGI	AGAP	ACGA	.TTT	TT	ACAT	TAAT	
_		v	ъ	Y	P	D	P	L	E	P	A	G	E	N	s	L	А	ĸ	N	v	L	_
<b>a</b>		٧	P	1	F	ט	F			£		Ŭ	_		-h]	_						
		TC	CGG'	TGG	AAA	AGG'	TAA'	TGA(	CAA	3TTC	ATE	CGG	CAG	rgac	GGZ	AGCI	AGA	CTC	CT	rga?	rGGC	600
	541	AG	 GCC	 ACC'	- + - : TTT'	TCC	ATT	+ ACT	GTT(	CAA	CAT	3CC(	TC?	ACT	- + - ·	rcgi	CTC	GAC	GA	ACTA	/CCG	800
														Е	G		D			D	G	_
Э			G	_		G			K									_	_	_	_	
	C01	GG	AGA	AGG	GAA'	TGA'	TCT	TCT	GAA	AGG'	rgg	ATA'	rgg:	raa:	rga'	rat".	rta:	rcg:	PTA' 	rct:	rtca +	660
	601	CC	TCT	TCC	CTT.	ACT.	aga.	AGA	CTT'	TCC	ACC'	ratz	ACC	ATT	ACT	ATA	AAT	AGC	TA	AGA	AAGT	
		G	E	G	N	ъ	т.	т.	к	G	G	Y	G	N	D	I	Y	R	Y	L	s	
_		_	_	-		_											•					
	661				-+-			+				+			-+-			+-			AGCT	720
		CC	TAT	ACC	GGT.	AGT.	ATA	ATA	ACT	GCT	ACT	TCC	CCC	CTT'	TCT	GCT	ATT'	rga	GTC.	AAA	rcga	
a		G	Y	G	н	Н	I	I	D	D	E	G	G	ĸ	D	D	ĸ	L	s	L	A	-
		C N	መ አ መ	מים מי	mm	CCC	aa x	ርር የ	ጥርር		ממידי	מרפ	ממב	DGG.	GAA	TGA	CCT	CAT'	гат	GTA'	TAAA	
	721				-+-			+				+			-+-			+			+	780
		CT	ATA	TCT	AAA	GGC	CCT	GCA	ACG	GAA.	ATT	CGC	TÇT	TCC	CTT.	ACT	GGA	GTA	ATA	CAT	ATTT	
a		D	I	D	F	R	D	v	A	F	К	R	E	G	N	D	L	I	M	Y	K	-
		GC	TGA	AGG	TAA	TGT	TCT	TTC	TAT	TGG	CCA	CAA	AAA'	TGG	TAT	TAC	ATT	TAA	AAA	CTG	GTTT	
	781		:_		-+-			+				+			-+-			+			+ CAAA	840
a .		A	E	G	N	V	L	s	I	G	H	K	N	G	I	Т	F	K	N	W	F	-
		GA	AAA	AGA	GTC	AGA	TGA	TCT	CTC	TAA	TCA	TCA	GAT.	AGA	GCA	GAT'	TTT	TGA'	TAA	AGA	CGGC	000
	841	 СТ	 T	 тст	-+- CAG	 тст	 ACT	+ AGA	 GAG	 ATT	 AGT	+ AGT	CTA	 TCT	- + - CGT	 CTA	AAA	+ ACT	 ATT	TCT	+ GCCG	900
																						_
a																					G,	
	007	AG	GGT	AAT	CAC	ACC	AGA	TTC	TCT	TAA	AAA	AGC	ATT	TGA	ATA	TCA	GCA	GAG' +	TAA 	TAA 	CAAG +	960
	AOT	TC	CCA	TTA	-+- GTG	TGG	TCT	+ AAG	aga	ATT	TTT	TCG	TAA	ACT	TAT	AGT	CGT	CTC	ATT	TTA	GTTC	

										٠			•									
а		R	V	1	T	₽	D	S	L	K	K	A	F	E	Y	Q	Q	S	N	N	K	-
	961	GT.	AAG	TTA	TGT	GTA	ATGO	BAC	ATG	ATGC	ATC	AAC	TTA	TGG	GAG	CCA	.GG7	ACAA	ATCI	TAA	TCCA	
	501	CA	TTC	AAT	ACA	CAT	ACC	TGT	rac:	race	TAG	+ TTG	AAT	'ACC	-+- CTC	ggt	CCI	GTI	AGA	ATT	+ AGGT	1020
a		v	s	Y	v	Y	G	н	D	A	s	т	Y	Ġ	s	0	D	N	L	N	p	_
													Pst	т		_						
		mm;	ላ አ ጣ።	א איזיי	ma x	7 7 C	107.0							]								
	1021				-+-	- ~ -		+				+			-+-			+			GGAA	1080
		AA'	CTA.	ATT.	ACT	TTA	GTC	GTI	TTA	GTA	AAG'	rcg.	ACG	TCC	ATT	GAA	GCI	'ACA	ATT	CCT	CCTT	
a		L	I	N	E	I	s	K	I	I	s	A	A	G	N	F	·D	v	ĸ	E	E	-
		AGA	ATC:	TGC	CGC	TTC	TTT	ATT	'GCA	GTT	GTC	CGG'	raa'	TGC	CAG:	rga'	TTT	TTC	ATA	TGG.	ACGG	
	1081	TCT	ragi	ACG	-+- 3CG:	aag	 AAA	+ AAT	CGI	CAA	CAG	+: 3CC2	 ATT	ACG	-+- 3TC/	ACT.	 AAA	+ AAG	TAT	acc'	+ IGCC	1140
a	•	R	s	A		s	L	L	0	L	s	G	N	A	s	D	F	s	Y	G		
		<b>D D</b> C	יידירי	מחי אל א	א א כוי	Taran.	_		-			_					_		_	_	R	<u>-</u> .
	1141				-+-	-,		+							-+			+			FACT	1200
		TTC	AGT	rtat	rtgz	AAA	CTG	TCG	TAG	TCG'	rat:	TAT	ATA	ATTA	LAA!	TT	ACT.	ATC	GTT	AGA	ATGA	:
а		N	S	I	T	L	T	A	s	A	* .	•										. ;
	1201	GGG	CTG	TGC	CAC	CAT	AAG	ATT	GCT.	ATT:	rtti	TGC	ag:	rca i	raa:	'GG	TT	CTT	GTC	ATA	XAAT	•
<b>-</b> ,	1201	CCC	GAC	ACC	GTO	TA	rrc'	+ TAA:	CGA'	TAA	1	ACC	TC	 AGTA	TTA	CCI	 [AA]	+ GAA	CAG	rati	TTA	1260
												,										45 5/8
	1261	TGA	TTA	TGG	GT7	'ATA	ACG(	ccc'	rgg:	AGA1	TTT	'AGC	CCZ	ATA	CCA	TAZ	ACG'	CTC	CTGT	TA.	CCC	
	1261	ACT.	AAT	'ACC	CAA	TAT	rgc	GGG2	ACC'	CTF	AAA	TCG	GGT	TAT	GGI	 L'TA'	rgc	+ ·	GAC!	· · · · \ATI	GGG	1320
																						•
	1321	GGA.	AGA	AAT	TAA	ACA	TAC	GAT:	rtgi	ACAC	AGA	.CGG	GAC	TGG	TCT	GGG	AT.	raac	CGTC	CATO	GTT	1380
				TTA	ATT	TG1	TATO	TAZ	AAC:	rgTG	TCT	GCC	CTG	ACC	AGA	CCC	TA.	TTC	CAC	TAC	CAA	1380
	1381	GCT	rgc'	TGC	GAA +	ATC	TTT	PAGA	AACI	CAAA	.GGT	AAA 	ACA	GGT	AAA	AAA	AAC	'AA'	TGA	CCG	ATT	3440
		CGAZ	ACG.	ACG	CTT	TAG	AAA	\TC1	TG	TTT	CCA	TTT	TGT	'CCA	ттт	TTT	TTC	TTA	ACI	GGC	TAA	144U
		AAA(	ملىدلىد	יידי מיד	rmc	$m \sim m$	~~~	1000	יידי מי	יאכיתי	CTC	77.0	~~~	~~~								
	1441				+	TCT 		-+-		TCA	+				+			-+-				1500

Fig. 8 (cont.)

1501	TAAAGTCAGTAAAGAAGCAAACAGATATCTTATTTCTGATCTGGAGCAGCGAAATCCCCG	1560
1561	TGTTCTCGAACAGTCTGAGTTTGAGGCGTTATATCAGGGGCATATTATTCTTATCGCTTC++ ACAAGAGCTTGTCAGACTCAAACTCCGCAATATAGTCCCCGTATAATAAGAATAGCGAAG	1620
1621	CCGTTCTTCTGTTGCCGGGAAACTGGCGAAATTTGACTTTACCTGGTTTATTCCTGCCAT++ GGCAAGAAGACAACGGCCCTTTGACCGCTTTAAACTGAAATGGACCAAATAAGGACGGTA	1680
1681	TATAAAATACAGGAGAATATTTATTGAAACCCTTGTTGTGTCTGTTTTTTTACAATTATT++++ ATATTTTATGTCCTCTTATAAATAACTTTGGGAACAACACACAGACAAAAAAATGTTAATAA	1740
1741	TGCATTAATAACCCCCCTTTTTTTTCAGGTGGTTATGGACAAAGTATTAGTGCACAGGGG+++ ACGTAATTATTGGGGGGAAAAAAAAGTCCACCAATACCTGTTTCATAATCACGTGTCCCC	1800
1801	ATTTTCAACTCTTAATGTTATTACTGTCGCATTATCTGTTGTGGTGGTGTTTGAGATTAT	1860
1861	ACTCAGCGGTTTAAGAACTTACATTTTTGCACATAGTACAAGTCGGATTGATGTTGAGTT++++ TGAGTCGCCAAATTCTTGAATGTAAAAACGTGTATCATGTTCAGCCTAACTACAACTCAA	1920
1921	GGGTGCCAAACTCTTCCGGCATTTACTGGCGCTACCGATCTCTTATTTTGAGAGTCGTCG	1980
1981	TGTTGGTGATACTGTTGCCAGGGTAAGAGAATTAGACCAGATCCGTAATTTTCTGACAGG	2040
2041	ACAGGCATTAACATCTGTTCTGGACTTATTATTTTCATTCA	- 2100

Fig. 8 (cont.)

HindIII GTATTACAGTCCAAAGCTTACTCTGGTGATCTTATTTTCGCTGCCTTGTTATGCTGCATG 2101 -----+ 2160 CATAATGTCAGGTTTCGAATGAGACCACTAGAATAAAAGCGACGGAACAATACGACGTAC  ${\tt GTCTGTTTTATTAGCCCCATTTTGCGACGTCGCCTTGATGATAAGTTTTCACGGAATGC}$ 2161 ------ 2220 CAGACAAAAATAATCGGGGTAAAACGCTGCAGCGGAACTACTATTCAAAAGTGCCTTACG  ${\tt GGATAATCAATCTTTCCTGGTGGAATCAGTCACGGCGATTAACACTATAAAAGCTATGGC}$ 2221 -----+ 2280 CCTATTAGTTAGAAAGGACCACCTTAGTCAGTGCCGCTAATTGTGATATTTTCGATACCG PstI  ${\tt AGTCTCACCTCAGATGACGAACATATGGGACAAACAATTGGCAGGATATGTTGCTGCAGG}$ 2281 -----+ 2340  ${\tt TCAGAGTGGAGTCTACTGCTTGTATACCCTGTTTGTTAACCGTCCTATACAACGACGTCC}$  $\tt CTTCAAAGTGACAGTATTAGCAACCATTGGTCAACAAGGAATACAGTTAATACAAAAGAC$ 2341 -----+ 2400  ${\tt GAAGTTTCACTGTCATAATCGTTGGTAACCAGTTGTTCCTTATGTCAATTATGTTTTCTG}$  ${\tt TGTTATGATCATCAACCTGTGGTTGGGAGCACACCTGGTTATTTCCGGGGATTTAAGTAT}$ ACAATACTAGTAGTTGGACACCAACCCTCGTGTGGACCAATAAAGGCCCCTAAATTCATA TGGTCAGTTAATTGCTTTAATATGCTTGCTGGTCAGATTGTTGCACCGGTTATTCGCCT 2461 -----+ 2520 ACCAGTCAATTAACGAAATTATACGAACGACCAGTCTAACAACGTGGCCAATAAGCGGA  ${\tt TGCACAAATCTGGCAGGATTTCCAGCAGGTTGGTATATCAGTTACCCGCCTTGGTGATGT}$ 2521 ------ 2580 ACGTGTTTAGACCGTCCTAAAGGTCGTCCAACCATATAGTCAATGGGCGGAACCACTACA GCTTAACTCTCCAACTGAAAGTTATCATGGGAAACTGGCATTACCGGAAATTAATGGTGA 2581 -----+ 2640  ${\tt CGAATTGAGAGGTTGACTTTCAATAGTACCCTTTGACCGTAATGGCCTTTAATTACCACT}$ TATCACTTTTCGTAATATCCGGTTTCGCTATAAGCCTGACTCTCCGGTTATTTTAGATAA 2641 -----+ 2700 ATAGTGAAAAGCATTATAGGCCAAAGCGATATTCGGACTGAGAGGCCAATAAAATCTATT TATCAATCTCAGTATTAAGCAGGGGGAGGTTATTGGTATTGTCGGACGTTCTGGTTCAGG ATAGTTAGAGTCATAATTCGTCCCCCTCCAATAACCATAACAGCCTGCAAGACCAAGTCC

Fig. 8 (cont.)

TTTTTCGTGTAATTGATTTAATTAAGTTGCAA

Enzimas que cortan:

BamHI HindIII NcoI PstI

SalI

SfiI

Enzimas que no cortan:

EcoRI NotI

Fig. 8

### Mapa de pVamyZHLYA

Con 11 enzimas: ECORI SPHI PSTI NCOI NHEI NDEI BAMHI HINDIII SALI SFII NOTI

			VCO.	]																	
61				+				<b></b> -			-+-			+				+			+ 120
	ري	ATI	4.1.W																	GACC	С
							V mil			V	E.	5	W	G	G	. 5	V	Q	A	G	~
																				rgga(	
121																				ACCT(	+ 180 G
	G	s	ь	R	L	s	C	T	A	P	G	F	T	s	N	s	C	R	M	D	-
						Pst	ΕĮ														
	TG	GTA	CCC	CCA	GGC	TGC	CAGG	GAA	GCF	AGC(	3CG/	GTC	GGT	CTC	CAT	CTA'	TTA(	STAC	CTG#	ATGG:	Г
181																				ACC	+ 240 A
	W	Y	R	Q	A	A	G-	ĸ	Q	R	E	W	v	s	s	Ĩ	S	T	D	G	-
	CG	CAC	AAG	CTA	TGC	'AGF	CŤC	CGT	GAA	.GG0	ecce	:ATT	'CAC	CA:	ст	CA	AAGZ	ACAA	AGC	CAAC	2
41				-+-			+				+			-+-				<b>. – –</b> –			- 300
	R						s						т		s		D		A		_
													-				_	•••		••	
01	GA	CAC	GGT 	GTA	TCT	GCA	AAT	GAA	CAG	CCI	'GAA	ACC	TGA	GGA	CAC	GGC	CAT	'CTA	TTA	CTGT	. 360
																				GACA	
	ה .	T	v	Y	L	Q	M	·N	s	L	ĸ	P	E	D	т	A	I	Y	Y	C	

a		·A	v	R	T	N	G	Y	R	P	Q	s	н	E	F	R	Y	W	G	P	G	-	
		AC	CCA	GGT(	CAC	CGT(	CTC	CTC.	AAC	GGC(		iI      GGG		Sal:	l	GAC	3TC	CGG	CGG'	rcc	GAAG		
	421				-+-			+				+			-+-			+			+ CTTC	480	
a		Ť	Q	V	T	v	S	s	T	A	s	G			s	T	s	G	G	P _.	ĸ	- hinge	
	481		TTC	CAC'																	GCTC	540	;
		GG.	AAG	GTG																	CGAG		:
a		P	s	Т	P	P	G	s			M Leuc		_			D SCN4	K	V	E	E	ь	-	.:
					•						-				ні	ndI	II !						•••
	541				-+-	<b></b> -		+				+			-+-			+			IGAA + ACTT	600	:··
a		L	s	ĸ	N	Y	н.	L	E	N	E	V	A	R	L	ĸ	к	L	v	G	E	-	:::
											Sal	I											:
	601				-+-			+				+			-+-			+			GTAT + CATA	660	:::
a		R	G			H chis			н	н	A	s	T	P	G	G	A  =>	P - E-	V tag	P	Y	-	•••
	Ва	amH	I																				
	661				-+-			+				+			-+-			+			TGGA + ACCT	720 ·	
a		P	D	P	L	E	P	<b>A</b>	G	E		s · C-			Κ.	. И	v	L	S	G	G	-	
	721				-+-			+				+			-+-			+		<b>-</b>	AGGG	780	
a							•														rccc G	_	

Fig. 9 (cont.)

	781	L			+-				+			-+-			+				<b></b>		ATGG(	+ 840
а															•						G	
	84]	CATCATATTATTGACGATGAAGGGGGGAAAGACGATAAACTCAGTTTAGCTGATATAGAT 841+ GTAGTATAATAACTGCTACTTCCCCCCCTTTCTGCTATTTGAGTCAAATCGACTATATCTA															900					
		GI	'AG'I	l'A'TA	ATA	AAC'	TGC	TAC	TTC	CCC	CCT	TTC'	rgc:	TAT'	TTG	AGT	CAA	ATC	BACI	TAT	TCT	A
a		H	H	Ι	I	D	D	E	G	G	K	D	D	K	L	s	L	A	D	I	D	-
a	901	TT	TTCCGGGACGTTGCCTTTAAGCGAGAAGGGAATGACCTCATTATGTATAAAGCTGAAGGT															r				
		AA	.GGC	CCT	GCA	ACC	3GA	AAT"	rcgo	CTC'	TTC	CCT	rac"	rgg	AGT	AAT	ACA:	[TAT	TCG	ACI	TCC	1 960
а		F	R	D	. <b>v</b>	A	F	K	R	E	G	N	D	L	I	M	Y	ĸ	A	E	G	-
	961	AATGTTCTTTCTATTGGCCACAAAAATGGTATTAC												CAT'	ГТА	}						
		TT.	ACA	AGA	AAG	AT?	AAC	CGG:	rgti	TT.	FAC	CATA	ATO	TA	AAT'	rr'r	rgac	CAA	ACI	TTI	TCTC	1020
a		N	٧	L	s	r	G	н	ĸ	N	G	I	T	F	К	N	W	F	E	K	E	_ :
	1021	TC	AGA	TGA:	TCT	CTC	TAZ	ATC#	ATCA	.GA	rag <i>i</i>	AGCA	GAT	TT	rtg <i>i</i>	ATA	AAGA	'CGG	CAG	GGT	AATC	:
<del></del> .		AG'	rct:	ACT	-+- AGA	GAG	ATT	ragi	AGT	CT	TCI	·+ rcgi	'CTA	AA.	AAC'	 CTAT	TCI	GCC	GTC	CCA	+ TTAG	1080
a		s	D	D	L	s	N	H	Q	ı	E	Q	I	F	D	K	D	G	R	v	I	- ",
	1001	AC	ACC.	AGA:	rtc'	ГСТ	'T'AA	AAA	AGC	ATI	TGA	ATA	TCA	.GCA	GAC	TAP	TAA	.CAA	GGT.	AAG	TTAT	
	TORT	ACACCAGATTCTCTTAAAAAAGCATTTGAATATCAGCAGAGTAATAACAAGGTAAGTTAT  081+ TGTGGTCTAAGAGAATTTTTTCGTAAACTTATAGTCGTCTCATTATTGTTCCATTCAATA												1140								
a		<b>T</b> ,	P	D	s	L	ĸ	K	A	F	E	Y	Q	Q	s	N	N	ĸ	v	s	Y	-
	1147	GTG	TAT	rgga	CA:	rga:	TGC	ATC	AAC'	TTA	.TGG	GAG	CCA	GGA	.CAA	AATCTTAATCCATTAATTAAT + 1200						
	TT#T	CAC	AT	ACCI	GTA	CT.	ACG	TAG	TTG	AAT	ACC	+ CTC	 GGT	CCT	-+- GTT	AGA	ATT	+ AGG	raa'	TTA	+ ATTA	1200
a		v	Y	G	н	D	A	s	T	Y	G	s	0	D	N	L	N	P	т.	т	N	_

Fig. 9 (cont.)

PstI

		GAAATCAGCAAAATCATTTCAGCTGCAGGTAACTTCGATGTTAAGGAGGAAAGATCTGCC														1260						
	1201	CTTTAGTCGTTTTAGTAAAGTCGACGTCCATTGAAGCTACAATTCCTCCTTTCTAGACGG															1200					
٠.		E	I	s	ĸ	I	I	s	A	A	G	N	F	D	v	ĸ	E	E	R	s	A	
•											_~~	a. a	ma.		Nde	1	mcc	ארכ	ימאא	ሮጥር	מיזי בע בי	
	1261							+				+			-+-	<del>-</del>		+			ATAA: + TTAT:	1320
<b>a</b>										N											I	-
	1321							+				+			-+-						GTGC	1300
a	1321	TG	AAA	CTG	TCG	TAG S	TCG	TAT	TAT -	ATA	ATT	AAA	TTT	'AC'I	TATC	GTT	'AGA	ATO	BACC	CGF	ACACG	
	1381	CF	CAT	CAA?	ATT	rgci	PTA:	TTT	. <b></b> -			-+			+-				+		FATGG + ATACC	. 1440
	1441											-+-			+				+		GAAAT 	1500
	1501								<b>-</b>			-+-			+				+		GCTG(  CGAC(	1200
	1561								<b></b>			-+-			+				+		TTTA  AAAT	+ 1020
	1621	١ _							+			-+-			+		<b>-</b>		+		GTCA  CAGT	+ 1000
	1683								<b>_</b>			-+-			+				-+		CTCG L AGAGC	T 1/30
		Α	TTT	CTT	CGT	TTG	TCT.	HIA	AA	THA	мон	, LIM	-CAC									

174	ACAGTCTGAGTTTGAGGCGTTATATCAGGGGCATATTATTCTTATCGCTTCCCGTTCTTC
272	1+ 1800 TGTCAGACTCAAACTCCGCAATATAGTCCCCGTATAATAAGAATAGCGAAGGGCAAGAAG
180	TGTTGCCGGGAAACTGGCGAAATTTGACTTTACCTGGTTTATTCCTGCCATTATAAAATA
	ACAACGGCCCTTTGACCGCTTTAAACTGAAATGGACCAAATAAGGACGGTAATATTTTAT
186	CAGGAGAATATTTATTGAAACCCTTGTTGTGTCTGTTTTTTTT
	GTCCTCTTATAAATAACTTTGGGAACAACACAGACAAAAAAATGTTAATAAACGTAATTA
1921	AACCCCCCTTTTTTTCAGGTGGTTATGGACAAAGTATTAGTGCACAGGGGATTTTCAAC
-	TTGGGGGGAAAAAAAGTCCACCAATACCTGTTTCATAATCACGTGTCCCCTAAAAGTTG
1981	TCTTAATGTTATTACTGTCGCATTATCTGTTGTGGTGGTGTTTTGAGATTATACTCAGCGG
	AGAATTACAATAATGACAGCGTAATAGACAACACCACCACAAACTCTAATATGAGTCGCC
2041	TTTAAGAACTTACATTTTTGCACATAGTACAAGTCGGATTGATGTTGAGTTGGGTGCCAA
	AAATTCTTGAATGTAAAAACGTGTATCATGTTCAGCCTAACTACAACTCAACCCACGGTT
 2101	ACTCTTCCGGCATTTACTGGCGCTACCGATCTCTTATTTTGAGAGTCGTCGTGTTGGTGA
	TGAGAAGGCCGTAAATGACCGCGATGGCTAGAGAATAAAACTCTCAGCAGCACAACCACT
2161	TACTGTTGCCAGGGTAAGAGAATTAGACCAGATCCGTAATTTTCTGACAGGACAGGCATT
	ATGACAACGGTCCCATTCTCTTAATCTGGTCTAGGCATTAAAAGACTGTCCTGTCCGTAA
2221	AACATCTGTTCTGGACTTATTATTTTCATTCATATTTTTTGCGGTAATGTGGTATTACAG
	PTGTAGACAAGACCTGAATAATAAAAGTAAGTATAAAAAAACGCCATTACACCATAATGTC
Hi	ndIII
2281	CCCAAGCTTACTCTGGTGATCTTATTTTCGCTGCCTTGTTATGCTGCATGGTCTGTTTT
1	AGGTTTCGAATGAGACCACTAGAATAAAAGCGACGGAACAATACGACGTACCAGACAAAA
7 2341 -	ATTAGCCCCATTTTGCGACGTCGCCTTGATGATAAGTTTTCACGGAATGCGGATAATCA
A	TAATCGGGGTAAAACGCTGCAGCGGAACTACTATTCAAAAGTGCCTTACGCCTATTAGT

2401	ATCTTTCCTGGTGGAATCAGTCACGGCGATTAACACTATAAAAGCTATGGCAGTCTCACC	2460
	TAGAAAGGACCACCTTAGTCAGTGCCGCTAATTGTGATATTTTCGATACCGTCAGAGTGG	•
	NdeI PstI	
2461	TCAGATGACGAACATATGGGACAAACAATTGGCAGGATATGTTGCTGCAGGCTTCAAAGT++ AGTCTACTGCTTGTATACCCTGTTTGTTAACCGTCCTATACAACGACGTCCGAAGTTTCA	2520
2521	GACAGTATTAGCAACCATTGGTCAACAAGGAATACAGTTAATACAAAAGACTGTTATGAT++++++ CTGTCATAATCGTTGGTAACCAGTTGTTCCTTATGTCAATTATGTTTTCTGACAATACTA	2580
2581	CATCAACCTGTGGTTGGGAGCACACCTGGTTATTTCCGGGGATTTAAGTATTGGTCAGTT+	2640 :
2641	AATTGCTTTTAATATGCTTGCTGGTCAGATTGTTGCACCGGTTATTCGCCTTGCACAAAT+++ TTAACGAAAATTATACGAACGACCAGTCTAACAACGTGGCCAATAAGCGGAACGTGTTTA	2700
2701	CTGGCAGGATTTCCAGCAGGTTGGTATATCAGTTACCCGCCTTGGTGATGTGCTTAACTC  GACCGTCCTAAAGGTCGTCCAACCATATAGTCAATGGGCGGAACCACTACACGAATTGAG	2700
276	TCCAACTGAAAGTTATCATGGGAAACTGGCATTACCGGAAATTAATGGTGATATCACTTT  1++++++	2020
282	TCGTAATATCCGGTTTCGCTATAAGCCTGACTCTCCGGTTATTTTAGATAATATCAATCT  1+++++	2000
288	CAGTATTAAGCAGGGGAGGTTATTGGTATTGTCGGACGTTCTGGTTCAGGAAAAAGCAG  1+++++	T 2330
294	ATTAACTAAATTAATTCAACGTT  1+ 2963  TAATTGATTTAATTAAGTTGCAA	

Fig. 9 (cont.)

Enzimas que cortan:

BamHI HindIII NcoI NdeI PstI SalI SfiI

Enzimas que no cortan:

EcoRI NheI NotI SphI

Fig. 9

#### LISTA DE SECUENCIAS

<110> Consejo Superior de Investigaciones Científicas

<120> Sistema para la producción de proteínas diméricas basado en el sistema de transporte de hemolisina de Escherichia coli

<160>8

45

10

```
<170> PatentIn version 2.0
     <210>1
     <211>654
     <212> DNA
15
     <213> Escherichia coli
     <400>1
     ggaaaattct cttgctaaaa atgtattatc cggtggaaaa ggtaatgaca agttgtacgg 60
     cagtgaggga gcagacctgc ttgatggcgg agaagggaat gatcttctga aaggtggata 120
     tggtaatgat atttatcgtt atctttcagg atatggccat catattattg acgatgaagg 180
20
     ggggaaagac gataaactca gtttagctga tatagatttc cgggacgttg cctttaagcg 240
     agaagggaat gacctcatta tgtataaagc tgaaggtaat gttctttcta ttggccacaa 300
     aaatggtatt acatttaaaa actggtttga aaaagagtca gatgatctct ctaatcatca 360
     gatagagcag atttttgata aagacggcag ggtaatcaca ccagattctc ttaaaaaagc 420
     atttgaatat cagcagagta ataacaaggt aagttatgtg tatggacatg atgcatcaac 480
25
     ttatgggagc caggacaatc ttaatccatt aattaatgaa atcagcaaaa tcatttcagc 540
     tgcaggtaac ttcgatgtta aggaggaaag atctgccgct tctttattgc agttgtccgg 600
     taatgccagt gatttttcat atggacggaa ctcaataact ttgacagcat cagc
     <210>2
30
     <211>218
     <212> PRT
     <213> Escherichia coli
     <400> 2
     Glu Asn Ser Leu Ala Lys Asn Val Leu Ser Gly Gly Lys Gly Asn Asp
```

35

Lys Leu Tyr Gly Ser Glu Gly Ala Asp Leu Leu Asp Gly Gly Glu Gly

40 Asn Asp Leu Leu Lys Gly Gly Tyr Gly Asn Asp Ile Tyr Arg Tyr Leu

Ser Gly Tyr Gly His His Ile Ile Asp Asp Glu Gly Gly Lys Asp Asp

Lys Leu Ser Leu Ala Asp Ile Asp Phe Arg Asp Val Ala Phe Lys Arg 65

Glu Gly Asn Asp Leu Ile Met Tyr Lys Ala Glu Gly Asn Val Leu Ser 50

Ile Gly His Lys Asn Gly Ile Thr Phe Lys Asn Trp Phe Glu Lys Glu 110

Ser Asp Asp Leu Ser Asn His Gln Ile Glu Gln Ile Phe Asp Lys Asp 55

		115					120						125			
5 .	Gly Arg 130		Ile	Thr	Pro	Asp 135		Leu	Lys	Lys	Ala 140		Glu	Tyr	Gln	
<b>J</b> .	Gln Ser 145	Asn	Asn	Lys	Val 150	Ser	Tyr	Val	Tyr	Gly 155		Asp	Ala	Ser	Thr 160	
10	Tyr Gly	Ser	Gln	Asp 165	Asn	Leu	Asn	Pro	Leu 170		Asn	Glu	Ile	Ser 175	ГÀЗ	
	Ile Ile	Ser	Ala 180	Ala	Gly	Asn	Phe	Asp 185	.Val	ГÀЗ	Glu	Glu	Arg 190	Ser	Ala	•
15	Ala Ser	Leu 195	Leu	Gln	Leu	Ser	Gly 200	Asn	Ala	Ser	Asp	Phe 205		Tyr	Gly	
20	Arg Asn 210	Ser	Ile	Thr	Leu	Thr 215		Ser	Ala	,						
20	<210> 3 <211> 30 <212> D															
25	<212> DNA <213> Secuencia artificial <223> Región bisagra de anticuerpo <400> 1 cggtccgaag ccttccactc cgcccgggtc															30
30	<210> 4 <211> 10 <212> PRT <213> Región bisagra de anticuerpo															r#.
35	<400>2 Gly Pro	Lys	Pro	Ser 5	Thr	Pro	Pro	Gly	Ser 10							
40	<210> 5 <211> 33 <212> DI <213> Se <223> OI	NA cuen				dor E	BACF	KHIN	GE							
	<400> 5 gcgtcga	acgt	GC	ggcg	gtc	c g	aago	cctt	.cc a	act						33
15	<210> 6 <211> 44 <212> Dt <213> Se <223> Ot	NA cuenc				lor F	OR ¹¹	210								
60	<400> 6 gcgtcga	-							ac d	cacc	;					44

<210>7 <211>47 <212> DNA <213> Secuencia artificial <223> Oligonucleótido iniciador VHHA1 <400>7 ctatgcggcc cagccggcca tggctcaggt gcagctggtg gagtctt 47 <210>8 10 <211>47 <212> DNA <213> Secuencia artificial <223> Oligonucleótido iniciador VHHASfil <400>8 15 cgtcgacgcg gcccccgagg ccgttgagga gacggtgacc tgggtccc 48