Cvičení 6 - 24.10.2024

červené - spolu modré - samostatně

(učebnice s. 125)

Druhá derivace & průběh funkce

7. Najděte intervaly, ve kterých je funkce konvexní, resp. konkávní a inflexní body funkce f, dané předpisem

(a)
$$f(x) = x \cdot \ln x$$

(b)
$$f(x) = 2x + 3x^2 - \frac{1}{3}x^3$$

$$f(x) = \frac{\ln x}{x}$$

(d)
$$f(x) = \frac{1}{3}x^3 - \frac{5}{2}x^2 - 6x$$

(e)
$$f(x) = e^{-\frac{1}{2}x^2}$$

(f)
$$f(x) = \ln x^2 + \frac{1}{x}$$

$$(g) \quad f(x) = \ln(1 - e^x)$$

$$(h) \quad f(x) = \frac{e^x + x}{x}$$

(i)
$$f(x) = \frac{1}{x} + \frac{2}{x^2}$$

(j)
$$f(x) = 3x^4 - 4x^3$$

(k)
$$f(x) = \frac{1}{3}x^3 - x^2$$

(l)
$$f(x) = e^{2x} - 4e^{3-x}$$

$$(m) \quad f(x) = \frac{x}{1+x^2}$$

(n)
$$f(x) = \operatorname{arctg} x^2$$

Výsledky

- 7. (a) f je konvexní v $(0, \infty)$,
 - (b) f je konvexní v $(-\infty,3\rangle,$ konkávní v $\langle 3,\infty),$ v bodě x=3má inflexi,
 - (c) f je konkávní v $(0, e\sqrt{e})$, konvexní v $(e\sqrt{e}, \infty)$, v bodě $x = e\sqrt{e}$ má inflexi,
 - (d) f je konkávní v $(-\infty, \frac{5}{2})$, konvexní v $(\frac{5}{2}, \infty)$, v bodě $x = \frac{5}{2}$ má inflexi,
 - (e) f je konvexní v $(-\infty, -1)$ a v $(1, \infty)$, konkávní v (-1, 1), v bodech x = -1 a x = 1 má inflexi,
 - (f) f je konkávní v $(-\infty,0)$ a v $(1,\infty)$, konvexní v (0,1), v bodě x=1 má inflexi,
 - (g) f je konkávní v $(-\infty, 0)$,
 - (h) f je konkávní v $(-\infty,0),$ konvexní v $(0,\infty),$ nemá inflexi,
 - (i) f je konkávní v $(-\infty, -6)$, konvexní v (-6, 0) a v $(0, \infty)$, v bodě x = -6 má inflexi,
 - (j) f je konvexní v $(-\infty,0)$ a v $(\frac{2}{3},\infty)$, konkávní v $(0,\frac{2}{3})$, v bodech x=0 a $x=\frac{2}{3}$ má inflexi,
 - (k) f je konkávní v $(-\infty, 1)$, konvexní v $(1, \infty)$, v bodě x = 1 má inflexi,
 - (l) f je konkávní v $(-\infty,1\rangle,$ konvexní v $\langle 1,\infty),$ v bodě x=1 má inflexi,
 - (m) f je konkávní v $(-\infty, -\sqrt{3})$ a v $(0, \sqrt{3})$, konvexní v $(-\sqrt{3}, 0)$ a v $(\sqrt{3}, \infty)$, v bodech $x = -\sqrt{3}$, x = 0 a $x = \sqrt{3}$ má inflexi,
 - (n) f je konkávní v $(-\infty, -\sqrt[4]{\frac{1}{3}})$ a v $\langle \sqrt[4]{\frac{1}{3}}, \infty \rangle$, konvexní v $\langle -\sqrt[4]{\frac{1}{3}}, \sqrt[4]{\frac{1}{3}} \rangle$, v bodech $x = -\sqrt[4]{\frac{1}{3}}$ a $x = \sqrt[4]{\frac{1}{3}}$ má inflexi.