Welcome to

EE669: VLSI Technology

Apurba Laha
Department of Electrical Engineering
IIT Bombay 400076

Email: <u>laha@ee.iitb.ac.in</u>, Tel: **022 25769408**

Office hour: Friday 10:00 – 11.00 AM, EE Annex, Room: 104

Wafer cleaning: Why is it so important?

Wafer contamination causes a loss of \$550 million so TSMC downgraded Q1 quarterly revenue guidelines.

Source: Editor: Jacquelyn Update Time: 2019-02-23

As the global largest wafer generation foundry, TSMC has a huge impact on the market in the process of 28 to 7 nm. Safe production of TSMC will affect a number of semiconductor design companies. Last year, TSMC was affected by a Win7 computer poisoning incident in the wafer factory. Unfortunately, a wafer contamination incident broke out at the end of last month. The

The global largest wafer generation foundry, TSMC has a huge impact on the market in the process of 28 to 7 nm.

Wafer handling and cleaning

Terminology

- Wafer/Substrate
- a complete round disk of the semiconductor, usually cut from a grown crystal boule.

Si Crystal growth

Sand / Ingot

A typical wafer is made out of extremely pure silicon that is grown into mono-crystalline cylindrical ingots (boules) up to 300 mm (slightly less than 12 inches) in diameter using the **Czochralski process** (as shown below). These ingots are then sliced into wafers about 0.75 mm thick and polished to obtain a very regular and flat surface.

Wafers of different semiconductors

Standard Wafer Features

- Surfaces
- Top: ground, lapped, and polished.
- Bottom: usually just ground; looks like a dull or matte finish.
- Orientation flats
- Used to mark crystallographic orientation.
- Primary flat indicates the (011) plane for both (100) and (111) wafers.
- Used also to distinguish n-type from p-type.
- Position of the secondary (smaller) flat relative to the primary flat.
- Edge radius
- Ground after wafers are cut from the parent boule.
- Edge radius is usually half the wafer thickness.
- Serial number (on backside)
- Optional; usually done by a laser marking system.

Standard Silicon Wafer Grades

- Epi grade
- Has a thin epitaxial film deposited over top to create a smoother, more defect free working surface
- Recycled/reclaimed grade
- Test grade
- Most common for research purposes
- A good compromise of quality to cost
- No flatness or backside specs and a wide resistivity range
- Usually a prime grade wafer that has failed a spec
- Prime grade
- The best available and suitable for any state-of-the-art process at any major IC manufacturer
- Essentially defect-free and usually expensive (up to ~10X the cost of test grade)
 - Mechanical grade
 - Only the dimensions are controlled
 - Furnace grade
 - Tightly controlled oxygen and carbon content, resistivity, and dopant uniformity

Wafer Tray Assembly

Wafer Tray Assembly

- Standard design polypropylene material.
- Available for 1, 2, 3 inch; 100, 125, 150 mm wafers.
- Tray and spring should only contact the wafer on the edges.
- Can and should be cleaned with solvents prior to loading

The Evolution of Silicon Wafer Cleaning Technology

- ➤ Wafer cleaning chemistry has remained essentially unchanged in the past 45 years
- ➤ It is based on hot alkaline and acidic hydrogen peroxide solutions, a process known as "RCA Standard Clean"

Contamination:

Type, Origin, and Effects of Contaminants

(i) contaminant films,

(ii) discrete particles

(iii) adsorbed gases,

Common Wafer Contaminants

- Surface oxides
- native oxides
- metal oxides from prior processing steps
- Non-reactive dust
- not chemically bound, but often electrostatically or van der
 Waals bonded to the wafer surface
- Water marks
- precipitated salts and organic debris after water has evaporated
- Chemical residue
- residual photoresist, wafer primers, plasticizers, pigments,
 ballasting resins
- Organic films
- oils, waxes, greases, carbonized residue

Keeping Wafers Clean while In Process

- Most air flow in a clean room is down.
- Gravity also sends suspended particles in the air down.
- Wafers that are face-up will accumulate more particulate contamination than wafers which are face-down.

2 solutions:

- Place wafers in process (WIP) face down in wafer trays while in between processing steps.
- Place wafers in process (WIP) face up on top of a clean filter paper and microscope slide and underneath a petri dish cover.

Wafer Cleaning Methods

- Acid / alkali oxide etch
- used to remove native and non-native oxides
- Plasma oxygen ashing
- used to remove organic films and residues
- Ultraviolet-ozone clean
- used to remove organic films and residues
- Solvent clean
- used to remove oils, greases, waxes, and carbonized residues
- De-ionized water clean
- used to remove all loose material

RCA Wafer Clean

Developed by Kern and Puotinen at Radio Chemical America in 1960.

- Standard Cleaning solution 1 (SC-1):
- $-NH_4OH: H_2O_2: H_2O$ @ 1:1:5 to 1:2:7 ratio of standard concentrations.
- Etch at 70-80°C.
- High pH (basic) solution removes organics, carbonized residues, and chemically-bound surface particles by oxidation.
- Standard Cleaning solution 2 (SC-2):
- HCl : H_2O_2 : H_2O @ 1:1:6 to 1:2:8 ratio of standard concentrations.
- Etch at 70-80°C.
- Low pH (acidic) solution desorbs and leaches out metals.
- Both of these solutions will produce some oxidation of a silicon wafer.
- This can be removed by another BOE etch as part of the overall process.

Buffered oxide etch (BOE), also known as buffered HF or BHF

Standard Wafer Clean with Oxide Strip

BOE: mixture of a buffering agent, such as ammonium fluoride (NH₄F), and hydrofluoric acid (HF)

Note: Concentrated HF (typically 49% HF in water) etches silicon dioxide **too quickly** for good <u>process control</u> and also **peels photoresist** used in <u>lithographic</u> patterning. **Buffered oxide** etch is commonly used for more controllable etching

- 1. SC-1 (RCA 1): 1:3:15 NH4OH: H2O2: H2O@ 75°C for 15 min.
- 2. DI H₂O rinse @ RT for 5 min.
- 3. 10:1 BOE @ RT for 1 min. (this is what strips the oxide)
- 4. DI H2O rinse @ RT for 5 min.
- 5. SC-2 (RCA2): 1:3:15 HCl: H2O2: H2O@ 752C for 15 min.
- 6. DI H2O rinse @ RT for 5 min.
- 7. Spin, rinse, & dry –
- use an automated SRD for best results and sparkling clean wafers.

Piranha Etch

- An extremely aggressive etch for organic residue.
- H₂SO₄: H₂O₂ @ 4:1 standard concentrations.
- Etch at 90 C for 10 minutes.
- Mixing of acid and peroxide is extremely exothermic mixture often reaches the boiling point all on its own.
- The pot life is fairly short only 20-30 minutes before the peroxide is decomposed by the heat of the solution.
- This etch solution must be treated with great respect and care.

