

This project analyzes aviation incident data to identify the safest aircraft models for a company entering the aviation business. The analysis focuses on risk metrics across operational factors to support data-driven investment decisions.

**Project Details • Student Name: Michael Mumina Kasimu • Pace: Part Time • Project Review Date: 27/07/2025 23:59:59 • Instructor: Fidelis Wanalwenge • Blog Post URL: [To be added]

***Project Structure text project/

|-data/| |-Aviation_Data.csv # Raw dataset | |-cleaned_data.xlsx # Cleaned_dataset | |-cleaned_data.xlsx # Cleaned_dataset | |-cleaned_data_Metrics.xlsx # Calculated risk metrics |-*** analysis.ipynb # Jupyter notebook with full analysis |-*** README.md # This file

***Key Analysis Steps

- 1. **Data Preparation
 - Loaded and cleaned aviation incident data Handled missing values in critical fields (Make, Model, Injuries, Damage) Filtered relevant columns for analysis
- 2. ***Risk Metrics Calculation

Developed three core safety metrics:

****Fatality Risk: Fatalities per incident ****Damage Risk: Probability of severe damage ****Overall Risk: Weighted composite score (0-100 scale)

3. **Operational Analysis

Examined three key operational factors: ****Engine Type: Distribution among safest aircraft ****Phase of Flight: When incidents occur ****Purpose of Flight: Primary use cases

4. **Visualization

Created multiple visualizations including:

- Safety score comparisons
- Operational factor distributions
- Interactive treemaps of phase/make risk
- Fatality rate scatter plots

**Key Findings

- 1. Safest Aircraft: Boeing 787 ranked safest based on metrics
- 2. Engine Types: Turbofan/jet engines dominate safest models
- 3. High-Risk Phases: Takeoff, maneuvering and landing account for 72% of incidents
- 4. Avoid: Piston engines and amateur-built aircraft showed higher risks

**Recommendations

- 1. Prioritize: Turbofan/jet aircraft (Cessna 208, Pilatus PC-12)
- Training Focus: Takeoff/landing procedures

ſĊ

ſĊ

Q

- 3. Avoid: Models with Overall Risk score > 65
- 4. Consider: FAR Part 135 certified aircraft for stricter standards

**How to Use

- 1. Run analysis.ipynb to reproduce analysis
- Review cleaned_data_Metrics.xlsx for complete risk scores
- 3. See visualizations for operational insights

**Contact

For questions, contact Michael Mumina Kasimu at donmumina@gmail.com

Releases

No releases published Create a new release

Packages

No packages published Publish your first package

Languages

Jupyter Notebook 100.0%

Q