PROCESSOR ORGANIZATION

Processor organization

Figure 9-1 Processor registers and ALU connected through common buses

Processor- scratchpad memory

- If registers in processor enclosed in memory unit in processor-scratch pad memory
- Registers neednot be connected through bus, cheaper
- The operation

$$R1 \leftarrow R2 + R3$$

Performed as:

 T_1 : $A \leftarrow M[010]$ read R2 into register A

 T_2 : $B \leftarrow M[011]$ read R3 into register B

 T_3 : $M[001] \leftarrow A + B$ perform operation in ALU and transfer result to R1

Figure 9-2 Processor unit employing a scratchpad memory

Processor with 2 port memory

- To overcome the delay caused when reading two source registers
- Has 2 address lines to select 2 words

Figure 9-3 Processor unit with a 2-port memory

Design of arithmetic and logic circuits

Figure 9-5 Block diagram of a 4-bit ALU

- Implemented in 3 steps:
 - 1. Design of arithmetic section
 - Design of logic section
 - 3. Modification of arithmetic section to include logic too

Design of arithmetic circuit

Basic component – parallel adder

(c) A plus 1's complement of B

(b) Addition with carry

(e) Transfer A

(f) Increment A

(h) Transfer A

$$X_i = A_i$$

 $Y_i = B_i s_0 + B_i' s_1$ $i = 1, 2, ..., n$

Figure 9-7 True/complement, one/zero circuit

Figure 9-8 Logic diagram of arithmetic circuit

Function select								Output equals	Function	
s ₁	<i>s</i> ₀	$C_{\rm in}$	•							
0	0	0	0	F = A	Transfer A					
0	0	1	0	F = A + 1	Increment A					
0	I	0	В	F = A + B	Add B to A					
0	1	1	В	F = A + B + 1	Add B to A plus 1					
1	0	0	\overline{B}	$F = A + \overline{B}$	Add 1's complement of B to A					
1	0	1	\vec{B}	$F = A + \overline{B} + 1$	Add 2's complement of B to A					
Ī	1	0	All l's	F = A - 1	Decrement A					
l	1	1	Ali l's	F = A	Transfer A					

What will be the effect on output carry in the ci	rcuit?

Design of logic circuit

s ₁	s_0	Output	Operation
0	0	$F_i = A_i + B_i$	OR
o	1	$F_i = A_i \oplus B_i$	XOR
1	0	$F_i = A_i B_i$	AND
1	1	$F_i = A_i^i$	NOT

Combining arithmetic and logic units

s ₂	s ₁	<i>s</i> ₀	X,	Y_i	C_i	$F_i = X_i \oplus Y_i$	Operation	Required operation
1	0	0	A,	0	0	$F_i = A_i$	Transfer A	OR
1	0	1	A_i	\boldsymbol{B}_{i}	0	$F_i = A_i \oplus B_i$	XOR	XOR
ı	i	0	A_{i}	<i>B</i> .	0	$F_i = A_i \odot B_i$	Equivalence	AND
1	1	1	A_i	1	0	$F_{i} = A_{i}$ $F_{i} = A_{i} \oplus B_{i}$ $F_{i} = A_{i} \odot B_{i}$ $F_{i} = A'_{i}$	NOT	NOT

$$X_{i} = A_{i} + s_{2}s'_{1}s'_{0}B_{i} + s_{2}s_{1}s'_{0}B'_{i}$$

$$Y_{i} = s_{0}B_{i} + s_{1}B'_{i}$$

$$Z_{i} = s'_{2}C_{i}$$

Logic diagram of ALU

TABLE 9-4 Function table for the ALU of Fig. 9-13

Selection					
5 2	<i>s</i> ₁	<i>s</i> ₀	Cin	Output	Function
0	0	0	0	F = A	Transfer A
0	0	0	1	F = A + 1	Increment A
0	0	1	0	F = A + B	Addition
ŏ	Õ	Ī	1	F = A + B + 1	Add with carry
Õ	ĭ	Ô	0	F = A - B - 1	Subtract with borrow
Õ	i	Ō	1	F = A - B	Subtraction
Õ	ī	í	Ō	F = A - 1	Decrement A
0	î	ī	i	F = A	Transfer A
ĭ	- 0	ō	X	$F = A \vee B$	OR
1	ŏ	i	X	$F = A \oplus B$	XOR
î	ì	Ô	X	$F = A \wedge B$	AND
1	1	ı	X	$F = \overline{A}$	Complement A

STATUS REGISTER

- Condition code/flag- C,S,Z,V
- C(carry flag): set if output carry is 1
- S(Sign flag): set if highest order bit is 1
- Z(Zero flag): set if output has all 1's
 - If set after XOR, A,B same
- V(Overflow): set if there is overflow

Figure 9-14 Setting bits in a status register

Shifter

$H_{\mathbf{i}}$	H_0	Operation	Function
0 0 1	0 1 0	$S \leftarrow F$ $S \leftarrow \operatorname{shr} F$ $S \leftarrow \operatorname{shl} F$ $S \leftarrow 0$	Transfer F to S (no shift) Shift-right F into S Shift-left F into S Transfer 0's into S

Figure 9-15 4-bit combinational-logic shifter

Processor unit

1	2	3	4	5	6_	7	8	9	10 11	12	13	14	15 16
	A			В			D		F		C_{in}		H

					Function of selection variables					
Binary code		•	A	В	D	F with $C_{in} = 0$	F with $C_{in} = 1$	Н		
0	0	0	Input data	Input data	None	$A, C \leftarrow 0$	A + 1	No shift		
0	0	1	RI	* R 1	R1	A + B	A+B+1	Shift-right, $I_R = 0$		
0	1	0	R2	R2	R2	A-B-1	A - B	Shift-left, $I_L = 0$		
0	1	1	R3	R3	R3	A-1	$A, C \leftarrow 1$	O's to output bus		
1	0	0	R4	R4	R4	$A \vee B$				
1	0	1	R5	R5	R5	$A \oplus B$	_	Circulate-right with C		
1	1	0	R6	R6	R6	$A \wedge B$	_	Circulate-left with C		
1	ı	ì	R7	R7	R7	\overline{A}	_	_		

Accumulator register

 $T_1: A \leftarrow 0$

 T_2 : $A \leftarrow A + R1$

 T_3 : $A \leftarrow A + R2$

clear A

transfer R1 to A

add R2 to A

- N bit accumulator needs n stages connected in cascade
- Each stage have a JK flipflop with associated circuitries

Figure 9-23 4-bit accumulator constructed with four stages

TABLE 9-10 List of microoperations for an accumulator

Control variable	Microoperation	Name
<i>p</i> ₁	$A \leftarrow A + B$	Add
p_2	$A \leftarrow 0$	Clear
p_3	$A \leftarrow \overline{A}$	Complement
P ₄	$A \leftarrow A \wedge B$	AND
p _s	$A \leftarrow A \lor B$	OR
p_6	$A \leftarrow A \oplus B$	Exclusive-OR
p_7	$A \leftarrow \text{shr } A$	Shift-right
p_{6}	$A \leftarrow \text{shl } A$	Shift-left
p_9	$A \leftarrow A + 1$	Increment
	If $(A = 0)$ then $(Z = 1)$	Check for zero

Present state	Inputs		Next state	_	-flop puts	Output
A_{i}	B_{i}	C_{I}	A_{I}	JA_{I}	KA_{i}	C_{i+1}
0	0	0	0	0	X	0
0	0	1	1	1	X	0
0	1	0	1	1	X	0
0	ļ	1	0	0	X	1
}	Ō	0	1	X	0	0
1	0	1	0	X	1	1
1	1	0	0	X	1	1
1	1	İ	1	Х	0	. 1

$$JA_{i} = B_{i}C'_{i}p_{1} + B'_{i}C_{i}p_{1}$$

$$KA_{i} = B_{i}C'_{i}p_{1} + B'_{i}C_{i}p_{1}$$

$$C_{i+1} = A_{i}B_{i} + A_{i}C_{i} + B_{i}C_{i}$$

$$JA_i = B_iC_i' + B_i'C_i$$

$$KA_i = B_i C_i' + B_i' C_i$$

$$KA_i = B_iC_i' + B_i'C_i$$
 $C_{i+1} = A_iB_i + A_iC_i + B_iC_i$

Figure 9-18 Excitation table for add microoperation

Accumulator: clear

$$JA_i = 0$$
$$KA_i = p_2$$

Complement

$$JA_i = p_3$$
$$KA_i = p_3$$

Present state	Input	Next state	Flip-flop inputs		
A_i	B_i	A_i	JAi	KA_i	
0	0	0	0	X	
0	1	0	0	X	
1	0	0	X	Į	
1	1	1	X	0	
		(a) Al	ND		

		B _i			B _i
				Х	х
4_{i}	х	х	A_i	1	
	lAi	 ()		KA_i	B'i

Present state	Input	Next state	Flip-flop inputs	
A_i	Bi	A;	JA_i	KA_i
0	0	0	0	X
0	1	1	1	X
1	0	1	X	0
1	1	1	X	0

$$A_{i} \left\{ \begin{array}{c|c} B_{i} & B_{i} \\ \hline 1 & X & X \\ \hline JA_{i} - B_{i} & KA_{i} = 0 \end{array} \right.$$

(b) OR

Present state	Input	Next state	Flip-flop inputs	
A_i	B_i	A_I	JAi	KA
0	0	0	0	
0	í	1	1	X
1	0	1	X	0
1	1	0	l X	1

$$A_{i} \left\{ \begin{array}{c|c} B_{i} & B_{i} \\ \hline 1 & X & X \\ \hline X & X & A_{i} \end{array} \right\} A_{i} \left\{ \begin{array}{c|c} X & X \\ \hline 1 & 1 \\ \hline X & X & X \end{array} \right\}$$

$$IA_{i} = B_{i} \quad KA_{i} = B_{i}$$

(c) Exclusive-OR

Figure 9-19 Excitation tables for logic microoperations

One stage accumulator

$$JA_{i} = B_{i}C_{i}'p_{1} + B_{i}'C_{i}p_{1} + p_{3} + B_{i}p_{5} + B_{i}p_{6} + A_{i+1}p_{7} + A_{i-1}p_{8} + E_{i}$$

$$KA_{i} = B_{i}C_{i}'p_{1} + B_{i}'C_{i}p_{1} + p_{2} + p_{3} + B_{i}'p_{4} + B_{i}p_{6} + A_{i+1}'p_{7}$$

$$+ A_{i-1}'p_{8} + E_{i}$$

$$C_{i+1} = A_i B_i + A_i C_i + B_i C_i$$

$$E_{i+1} = E_i A_i$$

$$z_{i+1} = z_i A'_i$$

