Heliconius butterflies Biodiversity genomics course Tena-Ecuador 2024

Introduction

Introduction

Introduction

Brown, 1992

Raw sequences files and quality control

Fastq Format

This format is designed to handle base quality metrics output from sequencing machines.

Line 1 begins with the '@' character and is followed by a sequence identifier and an optional description.

Line 2 is the sequence letters.

Line 3 begins with a '+' character; it marks the end of the sequence and is optionally followed by the same sequence identifier again in line 1.

Line 4 encodes the quality values for the sequence in Line 2, and must contain the same number of symbols as letters in the sequence.

Read header

Colon

@EAS139:136:FC706VJ:2:2104:15343:197393 1:Y:18:ATCACG

EAS139	the unique instrument name	
136	the run id	
FC706VJ	the flowcell id	
2	flowcell lane	
2104	tile number within the flowcell lane	
15343	'x'-coordinate of the cluster within the tile	
197393	'y'-coordinate of the cluster within the tile	
1	the member of a pair, 1 or 2 (paired-end or mate-pair reads only)	
Y	Y if the read is filtered, N otherwise	
18	0 when none of the control bits are on, otherwise it is an even number	
ATCACG	index sequence	

Quality scores

```
@EAS139:136:FC706VJ:2:2104:15343:197393 1:Y:18:ATCACG
CCGTCAATTCATTAGTTTTTAACCTTTGCGGCCGTACTCCCCAGGCGGT
+
AAAAAAAAAAAAAAA:9@::::??@@::FFAAAAAACCAA::::BB@@?A?
```

Quality score: ASCII encoding

40:0	90:Z	141 : a
41:A	91:[142:b
42:B	92:\	143:c
43:C	93:]	144:d
44:D	94:^	145 : e
45:E	95:_	146:f
•	:	:

Quality Score	Probability of incorrect base call	Base call accuracy
10	I in 10	90%
20	I in 100	99%
30	I in 1000	99.9%
40	I in 10000	99.99%

Assess quality with FastQC → .html ¥

Per base sequence quality

Per tile sequence quality

Per sequence quality scores

Per base sequence content

Per sequence GC content

Sequence length distribution

Let's have a look at the first few sequences and check the sequencing quality with fastqc