Course Outline

- Semiconductor Industry and Technology Overview
- IC Design Flows
- Timing in Digital Systems
- Front-end Design Flow
- Back-end Design Flow
- Interconnection and Signal Integrity
- Low-Power Design
- Design-for-Testability (DFT)

VLSI Design, Fall 2021

Amr Wassal

IC Design Flows

- The MOS Transistor
- Analog and Circuit Design
- Digital Logic Families
- Productivity Gap
- Digital Design Flows

Design Abstraction Levels

The MOS Transistor

The NMOS Transistor Cross Section

n areas have been doped with donor ions (arsenic) of concentration N_{D} - electrons are the majority carriers

p areas have been doped with acceptor ions (boron) of concentration N_{A} -holes are the majority carriers

Switch Model of NMOS Transistor

Switch Model of PMOS Transistor

VLSI Design, Fall 2021

Amr Wassal

Threshold Voltage Concept

The value of V_{GS} where strong inversion occurs is called the threshold voltage, V_{T}

The Threshold Voltage

where

$$V_T = V_{T0} + \gamma(\sqrt{|-2\phi_F|} + V_{SB}| - \sqrt{|-2\phi_F|})$$

V_{SB} is the source-bulk voltage

 V_{T0} is the threshold voltage at $V_{SB} = 0$ and is mostly a function of the manufacturing process

Difference in work-function between gate and substrate material, oxide thickness, Fermi voltage, charge of impurities trapped at the surface, dosage of implanted ions, etc.

- $\phi_F = -\phi_T \ln(N_A/n_i)$ is the Fermi potential ($\phi_T = kT/q = 26mV$ at 300K is the thermal voltage; N_A is the acceptor ion concentration; $n_i \approx 1.5 \times 10^{10}$ cm⁻³ at 300K is the intrinsic carrier concentration in pure silicon)
- $\gamma = \sqrt{(2q\epsilon_{si}N_A)}/C_{ox}$ is the body-effect coefficient (impact of changes in V_{SB}) (ϵ_{si} =1.053x10⁻¹⁰F/m is the permittivity of silicon; $C_{ox} = \epsilon_{ox}/t_{ox}$ is the gate oxide capacitance with ϵ_{ox} =3.5x10⁻¹¹F/m)

The Body Effect

- □ V_{SB} is the substrate bias voltage (normally positive for n-channel devices with the body tied to ground)
- A negative bias causes V_T to increase from 0.45V to 0.85V

Long Channel I-V Plot (NMOS)

NMOS transistor, 0.25um, $L_d = 10um$, W/L = 1.5, $V_{DD} = 2.5V$, $V_T = 0.43V$

Transistor in Linear Mode

Assuming $V_{GS} > V_{T}$

The current is a linear function of both V_{GS} and V_{DS}

Voltage-Current Relation: Linear Mode

For long-channel devices (L > 0.25 micron)

• When $V_{DS} \le V_{GS} - V_{T}$

$$I_D = k'_n W/L [(V_{GS} - V_T)V_{DS} - V_{DS}^2/2]$$

where

 $k'_n = \mu_n C_{ox} = \mu_n \varepsilon_{ox} / t_{ox} = is$ the process transconductance parameter (μ_n is the carrier mobility (m²/Vsec))

 $k_n = k'_n$ W/L is the gain factor of the device

For small V_{DS} , there is a linear dependence between V_{DS} and I_{D} , hence the name resistive or linear region

Transistor in Saturation Mode

Assuming $V_{GS} > V_{T}$

The current remains constant (transistor saturates)

Voltage-Current Relation: Saturation Mode

For long channel devices

• When $V_{DS} \ge V_{GS} - V_{T}$

$$I_{D}' = k'_{n}/2 W/L [(V_{GS} - V_{T})^{2}]$$

since the voltage difference over the induced channel (from the pinch-off point to the source) remains fixed at $V_{GS} - V_{T}$

 However, the effective length of the conductive channel is modulated by the applied V_{DS}, so

$$I_D = I_D' (1 + \lambda V_{DS})$$

where λ is the channel-length modulation (varies with the inverse of the channel length)

Current Determinates

- For a fixed V_{DS} and V_{GS} (> V_T), I_{DS} is a function of
 - the distance between the source and drain L
 - the channel width W
 - the threshold voltage V_T
 - the thickness of the SiO₂ t_{ox}
 - the dielectric of the gate insulator (e.g., SiO_2) ε_{ox}
 - the carrier mobility
 - for n-fets: $\mu_n = 500 \text{ cm}^2/\text{V-sec}$
 - for p-fets: $\mu_p = 180 \text{ cm}^2/\text{V-sec}$

Long Channel I-V Plot (NMOS)

NMOS transistor, 0.25um, $L_d = 10um$, W/L = 1.5, $V_{DD} = 2.5V$, $V_T = 0.43V$

Short Channel Effects

Behavior of short channel device mainly due to

For an NMOS device with L of $0.25\mu m$, only a couple of volts difference between D and S are needed to reach velocity saturation

Voltage-Current Relation: Velocity Saturation

For short channel devices

• Linear: When $V_{DS} \le V_{GS} - V_T$ $I_D = \kappa(V_{DS}) k'_n W/L [(V_{GS} - V_T)V_{DS} - V_{DS}^2/2]$

where $\kappa(V) = 1/(1 + (V/\xi_c L))$ is a measure of the degree of velocity saturation

• Saturation: When $V_{DS} = V_{DSAT} \ge V_{GS} - V_{T}$ $I_{DSat} = \kappa (V_{DSAT}) k'_{n} W/L [(V_{GS} - V_{T})V_{DSAT} - V_{DSAT}^{2}/2]$

VLSI Design, Fall 2021

Velocity Saturation Effects

For short channel devices and large enough $V_{GS} - V_{T}$

 $V_{DSAT} < V_{GS} - V_{T}$ so the device enters saturation before V_{DS} reaches $V_{GS} - V_{T}$ and operates more often in saturation

□ I_{DSAT} has a linear dependence w.r.t. V_{GS} so a reduced amount of current is delivered for a given control voltage

VLSI Design, Fall 2021

Short Channel I-V Plot (NMOS)

NMOS transistor, 0.25um, $L_d = 0.25um$, W/L = 1.5, $V_{DD} = 2.5V$, $V_T = 0.43V$

MOS I_D-V_{GS} Characteristics

(for $V_{DS} = 2.5V$, W/L = 1.5)

- Linear (short-channel)
 versus quadratic (long-channel) dependence
 of I_D on V_{GS} in
 saturation
- Velocity-saturation causes the shortchannel device to saturate at substantially smaller values of V_{DS} resulting in a substantial drop in current drive

The MOS Current-Source Model

$$\begin{split} \textbf{I}_{D} &= 0 \qquad \text{for } \textbf{V}_{GS} - \textbf{V}_{T} < 0 \\ \textbf{I}_{D} &= \textbf{k'} \ \textbf{W/L} \ [(\textbf{V}_{GS} - \textbf{V}_{T}) \textbf{V}_{min} - \textbf{V}_{min}^{2} / 2] (1 + \lambda \textbf{V}_{DS}) \\ &\qquad \qquad \text{for } \textbf{V}_{GS} - \textbf{V}_{T} \geq 0 \\ &\qquad \qquad \text{with } \textbf{V}_{min} = \min(\textbf{V}_{GS} - \textbf{V}_{T}, \ \textbf{V}_{DS}, \ \textbf{V}_{DSAT}) \\ &\qquad \qquad \text{and } \textbf{V}_{GT} = \textbf{V}_{GS} - \textbf{V}_{T} \end{split}$$

Determined by the voltages at the four terminals and a set of five device parameters

	$V_{T0}(V)$	$\gamma(V^{0.5})$	$V_{DSAT}(V)$	k'(A/V ²)	λ(V ⁻¹)
NMOS	0.43	0.4	0.63	115 x 10 ⁻⁶	0.06
PMOS	-0.4	-0.4	-1	-30 x 10 ⁻⁶	-0.1

Other (Submicon) MOS Transistor Concerns

- Velocity saturation
- Sub-threshold conduction (aka weak inversion)
 - Transistor is already partially conducting for voltages below V_T
- Threshold variations
 - In long-channel devices, the threshold is a function of the length (for low V_{DS})
 - In short-channel devices, there is a drain-induced threshold barrier lowering (DIBL) at the upper end of the V_{DS} range (for small L)
- Parasitic resistances
 - resistances associated with the source and drain contacts

Latch-up

IC Design Flows

- The MOS Transistor
- Analog and Circuit Design
- Digital Logic Families
- Productivity Gap
- Digital Design Flows

Typical Chip Design

IC Component Types

- Intellectual
 Property (IP)
 represents large
 blocks performing
 completed
 functions (DAC,
 ADC, PLL, etc)
- Standard Cells represent digital nodes performing simplest functions.

Circuit and Layout Editors

Custom Design Example

FLASHADC4

IC Classification

IC Classification: Signal Type

Analog

Combination of the first two

Electrical levels move up and down continuously

Electrical levels are either ON ("1) or OFF

("0")

Combination of the first two

IC Classification: Active Component Type

Phases of IC Design

Analog Specification Example

	Parameter description			Max		
1.	Process	3.3V IO devices in TSMC 0.11				
2.	Resolution	9		10	Bits	
3.	Conversion Rate	18		30	MHz	
4.	Input Clock Frequency	18		30	MHz	
5.	Integral Nonlinearity			1	LSB	
6.	Differential Nonlinearity			0.5	LSB	
7.	Gain Error		5		%FSR	
8.	Offset error		5		%FSR	
9.	Signal to Noise Ratio	56		62	DBc	
10.	Harmonic Distortion		-60		DBc	
11.	Temperature Drift			12	ppm/C	
12.	Reference Voltage		1.25		V	
13.	Analog Input Voltage		1.6		V	
14.	Power Supply Voltage1	1.08	1.2	1.32	V	
15.	Power Supply Voltage2	3	3.3	3.6	V	
16.	Power Dissipation		125	180	mW	
17.	Operating Temperature	0		125	°C	
18.	Spurious Free Dynamic Range			-10	dB	
19.	Effective Resolution Band Width		6		MHz	
20.	Clock jitter			28	Ps	

Analog/Circuit Design Flow

Circuit Selection

- Usually a known circuit structure is selected.
- Design can find a convenient structure which is known to be good for the problem being solved.

Circuit Design

- All detailed circuits of designed IC are being developed usually at the transistor level.
- The aim of schematic design is to create a circuit which works at operating conditions defined in specification and have the parameter values needed.
- Schematic design
 - Structural synthesis
 - Parametric synthesis
 - Parametric optimization

Parametric Optimization

- Each device has configurable parameters
- Schematic designer changes these parameters to get a circuit which meets the spec
- Iterations of changes and spice simulations are used to tune these parameters ,

W - gate width, L - gate length

W - resistor width, L - resistor length

Transistor gate width and length, or resistor dimensions can be changed to change their electrical characteristics.

Physical Design (Layout)

- The construction of the IC or its separate parts is being developed, i.e., geometrical sizes of separate elements, the material, etc.
- Place devices present in schematic and connect to each other according to schematic.
- Do necessary actions to ensure that Layout will not affect circuit operation and does not violate fabrication rules.

VLSI Design, Fall 2021

Physical Design (Layout)

Physical Design (Layout)

Design Rule Check (DRC)

To ensure that Layout does not violate design rules there is a program that can check this

Layout Versus Schematic (LVS)

Layout Parasitic Extraction (LPE)

There is a parasitic extractor tool which calculates parasitic devices present in layout adds them back to circuit

Deliverables

- Completed design is a set of files which represent different design views:
 - SPICE netlist format is used to deliver schematic view
 - GDSII binary format is used to deliver layout of the circuit

SPICE Description Example

- SPICE is a hardware description language (HDL) which enables to describe circuit at device level
- It has text-based format that is readable and can be easily modified

An Example of GDSII File

GDSII is binary format, therefore it is not readable

Inverter.gds

Test Chip and its Testing

- Samples of designed ICs in a small amount are being prepared.
- With the help of laboratory equipment different input signals are applied to manufactured ICs and the parameters relevant to the specifications are measured.
- In case of meeting all the requirements of the latter, IC largescale fabrication starts.
- Otherwise, compared with the spec's requirements, the earlier phases of design are carried out to exclude the present incompatibility or problem.

