Combining semantic precision with biologistfriendly systems through RDF and Metarel

Ward Blondé, July 2012

RDF triples

- RDF consists of triples subject-predicate-object (s p o). 'Predicate' is synonym of 'relation' here...
- PRDF is not a decidable logic, however, it does provide an intuitive semantics by interpreting predicates as verbs or verbal expressions (subject-verb-object or SVO-triples):

The triple (ISA123 is a biomolecule) should mean something like: ISA123 'is a' biomolecule...

SVO-triples

- SPARQL queries RDF and has therefore the potential to return SVO-triples like:
 - Ghent is located in Belgium
 - Biological cell contains water molecule
 - John is a human
 - John loves Mary
 - Stefan is located in train ABC
- SPARQL in combination with the SVO-intuition can be used for browsing and visualizing RDF and creating integrated queries over several triples

SVO-triples

An SVO-triple can be represented in RDF through unique identifiers for the subject, predicate and object, and through labels:

Expressive Knowledge Management

- Knowledge Management is concerned with more expressive statements like:
 - Every biological cell contains some water molecule at each moment.
 - Stefan is located in train ABC between 9 am and 10 am on 12/07/2012
 - Protein ABC4 has the disposition to interact with protein CDK2

Expressive statements in RDF

Engineering advanced statements in RDF can be done by breaking SVO-triples in several triples:

"Every cell nucleus is part of some cell"

Problem statement

- Browsing via the SVO-intuition is not longer possible for this kind of expressive statements in RDF.
- Blank nodes are only allowed in subjects and objects for the current RDF standard. This forces the break-up of SVO-triples.

No generic way of finding a verb and an object.

Problem statement

- Different ways of breaking up SVO-triples are used:
 - Logical quantification (like for all, there exists)
 - Reification (for e.g. specifying when a triple is true, how certain is the triple)
 - Lists (for e.g. grouping triples as a set of sufficient logical conditions)
 - N-ary relations (as a binary relation between subject and object, with some external entities of importance)

Solution

Solution: encode extra information in the predicates:

Solution

Solution: encode extra information in OBO-tags:

```
[Term]
id: URI_s
name: biological cell
def: "A biological is a cell that is biological." [WB]
is_a: URI_cell! cell
relationship: URI_p URI_o
has quantification: at-all-times-all-some
```

URIs of expressive predicates remain **outside the OBO Format**, but can be maintained in a meta-ontology about predicates, like **Metarel**. This also provides a basis for translation to **OWL**.

Advantages

- A library of basic SPARQL queries, that exploit the SVO-intuition, can be engineered for all statements:
 - To which objects is this subject related?
 - Show ten SVO-triples.
 - Is there a relation between this subject and that object, and if so, which?
- More advanced SPARQL queries can take into account the extra information from the classification of the predicates

Advantages

- Modules can be extracted via SPARQL/Update:
 - Retain only SVO-triples for a browser-application
 - Retain only relations that hold at all times
 - Retain only relations compatible with **OWL EL**.

>

SPARQL core example

Describe a URI_a via the SVO-intuition:

```
SELECT*
WHERE {
{?s ?p URI a.
?s rdfs:label ?subject.
?p rdfs:label ?predicate.}
UNION
{URI_ a ?p ?o.
?p rdfs:label ?predicate.
?o rdfs:label ?object.}
```

Describing a URI is the core of the Linked Data idea. It can facilitate browsing and automated vizualization.
This single query fits for

all statements.

What the proposal is NOT

Very expressive, but a completely **different model**, requiring different queries and chain rules.

What the proposal is NOT

2) Blank predicates

Compatible model, but **not allowed** in standard RDF

Conclusions

- Expressive Knowledge Management can be combined with intuitive SPARQL browsing by avoiding the break-up of SVO-triples
- Extra information can be added on SVO-triples by the distinction of many semantically precise predicates, which can be classified in a special predicate ontology (like e.g. Metarel)