

Potenciostato con comunicación USB sobre LPCXpresso y FreeRTOS

Arluna, Gustavo Luis

Gómez Caamaño, Axel Lucas

Trinidad, Hernán

Contenido

Introducción

- ¿Qué es un potenciostato?
- > ¿Cómo funciona un potenciostato?
- Sustancia de ensayo => Ferricianuro de potasio
- Voltamperograma ideal
- Voltamperograma obtenido
- Diagrama en Bloques

Hardware

- > Especificaciones técnicas
- > Potenciostato
- Electrodos y circuito medidor de corriente
- Adaptación de señal
- Microcontrolador LPCXpresso con FreeRTOS
- Fuente de alimentación

Contenido

- Software
 - Software: LPC y FreeRTOS
 - > Software: Qt
 - Software: Protocolo de comunicación
- Metodología de trabajo
 - > Metodología/Experiencia

- Próximos pasos => ya realizados
 - Próximos pasos => ya realizados
- Mediciones
- Resultados

Introducción

Introducción: ¿Qué es un potenciostato?

Es un dispositivo electrónico utilizado para estudios de electroquímica, entre sus usos permite:

- Investigar los mecanismos de reacción redox de una sustancia química.
- Caracterizar dicha sustancia en función a su gráfico voltamperométrico.

Introducción: ¿Qué es un potenciostato?

Desde el punto de vista electrónico, se trata de un generador de señales con tres electrodos que imponen una tensión variable a una sustancia y miden la corriente iónica generada a partir de una reacción redox.

Introducción: ¿Cómo funciona un potenciostato?

Al inyectar una señal con determinada forma de onda, al electrodo auxiliar, se mide la corriente, en el electrodo de trabajo, y la tensión, en el electrodo de referencia. En base a ello, se genera el voltamperograma característico de la sustancia.

Forma de onda de la tensión

Corriente en función de la tensión aplicada

Intro: Sustancia de ensayo => Ferricianuro de potasio

Ferricianuro de potasio:

$$Fe(CN)_{6}^{3-} + 1e^{-} \longleftrightarrow Fe(CN)_{6}^{4-}$$

$$K_{3} \Big[Fe(CN)_{6} \Big] + K^{+} + 1e^{-} \longleftrightarrow K_{4} \Big[Fe(CN)_{6} \Big]$$

Al someter al ferricianuro de potasio (a la izquierda de la ecuación redox) al potencial de electrodo se reduce y se forma Ferrocianuro de potasio (a la derecha de la ecuación redox)

Introducción: Voltamperograma ideal

Introducción: Voltamperograma obtenido

Introducción: Diagrama en bloques

Hardware

Hardware: Especificaciones técnicas

- Rango de corriente de medición: 150uA a 15mA
- Sensibilidad de corriente: 2uA (escala x0.1)
- Error de medición 2% de plena escala
- Conversor Analógico Digital (ADC) 12 bits
- Conversor Digital Analógico (DAC) 10 bits
- Amplitud de señal máxima ±1400mV
- Forma de onda triangular determinación por 3 puntos
- Exportar/Importar voltamperograma en CSV
- Tensión de alimentación: 220V
- Requisitos PC y Sistema Operativo:
 - Comunicación USB
 - Sistema operativo: Windows

Hardware: Potenciostato

Hardware: Electrodos y circuito medidor de corriente

Hardware: Adaptación de señal

Hardware: Microcontrolador LPCXpresso con FreeRTOS

Hardware: Fuente de alimentación

Software

Software: LPC y FreeRTOS

Tareas

- vUSBTask
- vDACTask
- vADCTask

Interrupciones

- USB_IRQHandler
- ADC IRQHandler
- TIMERn IRQHandler

Software: Qt

Software: Protocolo de comunicación

<u>Inicio de medición:</u> Interfaz Gráfica => LPCXpresso

Trama: 13 bytes

Código Operación	Byte Libre	Tensión Inicial [mV]	Tensión pico [mV]	Tensión final [mV]	Tensión retención [mV]	Velocidad barrido [mV/s]	Cantidad ciclos	Tiempo Retención [s]	Ganancia Corriente
0xA1	0×00	14 bits	14 bits	14 bits	14 bits	8 bits	8 bits	8 bits	8 bits

La respuesta del LPCXpresso hacia la Interfaz consiste en el envío del mismo código de operación (0xA1) en el primer byte y los bytes restantes en 0 (0x00)

Metodología de trabajo

Metodología/Experiencia

- Iniciamos en 2020, debido a la pandemia la primer parte del desarrollo se realizó en reuniones de forma remota:
 - Tipo proyecto a realizar
 - Documentación: Anteproyecto, Bench, Diagrama de Gantt
 - Esquemático, simulaciones, cálculos, programación del microcontrolador
- Se utilizó un repositorio git para mantener el versionado (código, kicad, Itspice)
- En abril del 2021 se hizo la primer versión la placa
- En agosto del 2021 nos juntamos presencial por primera vez.
- Las tareas se dividieron en base a los componentes del proyecto
 (diseño/simulación hardware, firmware sistema embebido, software pc)

Próximos pasos => ya realizados

Próximos pasos => ya realizados

- Se realizó una nueva versión del circuito integrando fuente de alimentación, selección de ganancia digital y su esquemático general.
- Se midió la solución del par ferricianuro con electrodos de Platino y
 Plata/Cloruro de Plata para determinar la constante de difusión.

Mediciones

Mediciones

Resultados

Resultados

Resultados

- Se logró medir la constante de difusión con un error relativo del 1,6% con los siguientes datos:
 - Radio del electrodo (Platino): **0,5mm**
 - o Altura del electrodo (Platino) sumergido: **2cm**
 - Concentración del ferricianuro: 5mM
 - Velocidad de barrido: 50mV/s
 - Corriente medida: 508uA

Constante de difusión obtenida: 7,11.E-06

Constante de difusión verdadera: 7.E-06 => Er = 1,6%

$$i_p(mA) = (2.6865 \times 10^5) A D^{1/2} c v^{1/2}$$

Ec. Randles-Sevcik

