Chi-Square Part 2: Independence

Independence: Setting

- Let S be the sample space of our experiment and A_1, \ldots, A_r partition S into r collapses.

 - ▶ Think of As and Bs as two variables with different categories (partition)

Independence: Setting

- We care about the relationship between As and Bs
- We define a third partition by

$$F_{ij} = A_i \cap B_j$$

Partitions A_1, \ldots, A_r and B_1, \ldots, B_c are mutually independent if and only if Columns

$$P(E_{ij}) = P(A_i) \cdot P(B_j)$$

for each *ij* pair.

▶ We use the chi-squared methods developed above to check if independence holds

Example 2

Two partitions of criminals, one by type of crime (arson, rape, violence, stealing, coining, fraud) and the other by alcohol consumption (drinker, abstainer). Here is the sample (counts)

	obs	served: ol	,500red	counts		Expect	ed .
X)					•	
	##		drink	abstain		drink	al
	##	arson	50	43	13 AV50 150 raps	y 753×91	_
	##	rape	_88	_62	KO raps	L	
	##	violence	155	110	,		
	##	stealing	379	300	1		
	##	coining	18	14	1		
	##	fraud	63	144			
			753	673	1426		

Example 2 (continued)

```
The expected counts using the outer product (%o%)
               dobserved counts (contingency dable)
exp = rowSums(obs)%o%colSums(obs)/sum(obs)
exp
                   - outer product
##
                drink
                        abstain
                                       Expected
             49.10870 43.89130
  arson
           79.20757 70.79243
##
  rape
## violence 139.93338 125.06662
## stealing 358.54628 320.45372
             16.89762
                       15,10238
## coining
## fraud
            109.30645 97.69355
    Ha: The vourables are independent
Hi: 11 n are related
```

Test statistics

As before, the test statistics are

 $X^2 = \sum_{i=1}^r \sum_{j=1}^c \frac{(o_{ij} - e_{ij})^2}{e_{ij}}$ Same Statistics as Lefore $G^2 = 2 \sum_{i=1}^r \sum_{j=1}^c o_{ij} \log \left(\frac{o_{ij}}{e_{ij}} \right)$

or

Degrees of Freedom

Unrestricted set: rc - 1Restricted set: (r - 1) + (c - 1)Degrees of freedom: (rc - 1) - [(r - 1) + (c - 1)] = (r - 1)(c - 1)

Example 2 (continued)

```
X2 = sum((obs - exp)^2/exp)
   Х2
      [1] 49.73061
   G2 = sum(2*obs*log(obs/exp))
   G2
   ## [1] 50.51729
\rightarrow df = (6 - 1)*(2 - 1)
   1 - pchisq(X2, df)
   ## [1] 1.573317e-09
                                                         Sa
   1 - pchisq(G2, df)
      [1] 1.085962e-09
```

Example 2 Simulation-Based

Example 2 Simulation-Based (continued)

Warning: Please be cautious in reporting a p-value of 0
approximation based on the number of 'reps' chosen in tl
'?get p value()' for more information.

```
## # A tibble: 1 x 1
## p_value
## <abl>
## 1 0
```

Example. Akohol(A) Hoi PH = PIC' PIA Crime(6) 1 Pri= Pic PiA