

PATENT Customer No. 22, 852 Attorney Docket No. 08888.0517

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re Application of:)
Francis BLANCHE et al.))
Application No.: 09/970,663) Group Art Unit: 1635
Filed: October 5, 2001)) Examiner: Brian Whiteman
For: COMPOSITION FOR THE PRESERVATION OF INFECTIOUS RECOMBINANT ADENOVIRUSES	RECEIVED OCT O 6 2003
Commissioner for Patents P.O. Box 1450 Alexandria, VA 22313-1450	TECH CENTER 1600/2900
Sir:	

DECLARATION UNDER 37 C.F.R. § 1.131

We, Francis Blanche and Shian-Jiun Shih, state that we are the named applicants of the above-identified application and that we are co-inventors of the subject matter described and claimed therein. Prior to November 16, 1998, we, the co-inventors, had completed in France the invention as described and claimed in the above-identified application as evidenced by the following:

1. Exhibit A: Laboratory Notebook Pages 51-55 and 176 (A1-A6) of Francis Blanche, showing, a composition comprising adenoviral particles and a glycerol buffer solution at pH 8.4, wherein the buffer solution does not contain added divalent metal cations or alkali metal cations. See pages 52-53 (A2-A3), formulation #2, for example, comprises Tris/HCl and 10% glycerol at pH 8.4 (hereinafter referred to as "formulation #2".) The addition of adjuvants, such as sucrose or Tween20 is shown, for example, at page 176, formulations C and D. Formulation #2 is shown to be

Application No. 09/970,663 Attorney Docket No. 03806.0517

useful for preserving adenoviruses. See page 55 (A5), stable viral titer after 15 days of storage in formulation #2. Some compositions were tested for stability after –20°C or 4°C storage, indicating that the –20°C frozen viral compositions were thawed to test viability. See page 176 (A6), last three lines from the bottom.

- 2. The present specification at page 17, first formulation in the Table, shows a formulation identical to formulation #2 of Exhibit A;
- 3. Example 3 of the present specification, at pages 18-19, shows that a formulation identical to formulation #2 of Exhibit A has a stable viral titer after 15 days of storage, similar to the 15-day storage stability of formulation #2 shown on page 55 (A5) of Exhibit A.

While the dates have been redacted, the undersigned testify that all experiments described herein were conducted before November 16, 1998.

We declare further that all statements made herein of our own knowledge are true and that all statements made on information and belief are believed to be true; and further, that the statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code, and that such willful false statements may jeopardize the validity of the application or any patents issuing thereon.

Dated: 25 hegus, 2003	By: Francis Blanche
/	Francis Blanche
Dated:, 2003	By:
	Shian-Jiun Shih

PATENT Customer No. 22, 852 Attorney Docket No. 08888.0517

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re Application of:)
Francis BLANCHE et al.))
Application No.: 09/970,663)) Group Art Unit: 1635
Filed: October 5, 2001)) Examiner: Brian Whiteman
For: COMPOSITION FOR THE PRESERVATION OF INFECTIOUS RECOMBINANT ADENOVIRUSES	RECEIVED TECHCENTED
Commissioner for Patents P.O. Box 1450 Alexandria, VA 22313-1450	TECH CENTER 1600/2900
Sir:	00/290 ₀

DECLARATION UNDER 37 C.F.R. § 1.131

We, Francis Blanche and Shian-Jiun Shih, state that we are the named applicants of the above-identified application and that we are co-inventors of the subject matter described and claimed therein. Prior to November 16, 1998, we, the co-inventors, had completed in France the invention as described and claimed in the above-identified application as evidenced by the following:

1. Exhibit A: Laboratory Notebook Pages 51-55 and 176 (A1-A6) of Francis Blanche, showing, a composition comprising adenoviral particles and a glycerol buffer solution at pH 8.4, wherein the buffer solution does not contain added divalent metal cations or alkali metal cations. See pages 52-53 (A2-A3), formulation #2, for example, comprises Tris/HCI and 10% glycerol at pH 8.4 (hereinafter referred to as "formulation #2".) The addition of adjuvants, such as sucrose or Tween20 is shown, for example, at page 176, formulations C and D. Formulation #2 is shown to be

Application No. 09/970,663 Attorney Docket No. 03806.0517

useful for preserving adenoviruses. See page 55 (A5), stable viral titer after 15 days of storage in formulation #2. Some compositions were tested for stability after -20°C or 4°C storage, indicating that the -20°C frozen viral compositions were thawed to test viability. See page 176 (A6), last three lines from the bottom.

- 2. The present specification at page 17, first formulation in the Table, shows a formulation identical to formulation #2 of Exhibit A;
- 3. Example 3 of the present specification, at pages 18-19, shows that a formulation identical to formulation #2 of Exhibit A has a stable viral titer after 15 days of storage, similar to the 15-day storage stability of formulation #2 shown on page 55 (A5) of Exhibit A.

While the dates have been redacted, the undersigned testify that all experiments described herein were conducted before November 16, 1998.

We declare further that all statements made herein of our own knowledge are true and that all statements made on information and belief are believed to be true; and further, that the statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code, and that such willful false statements may jeopardize the validity of the application or any patents issuing thereon.

Dated:, 2003	By:
	Francis Blanche
Dated: Aug 18_, 2003	By: SSShih
•	Shian-Jiun Shih

ESSAIS FORMULATIONS STABILITE

RECEIVED

TECH CENTER 1600/2900

BUT : Observer la stabilité ou la précipitation éventuelle du virus Y28 dans différentes formulations.

MATERIEL VIRAL ETUDIE:

Solution virale Y28 produite en Cell Cube à l'échelle 8 Mer par l'équipe JF Chaubard et purifiée par chromatographie échangeuse d'anions, conservée dans le Tris 20mM pH8, MgCl₂ 1mM, NaCl 500mM et glycerol 10%.

Le virus purifié titre 3,94.10¹¹ pv/ml.

PREPARATION DES DIFFERENTS TAMPONS ETUDIES:

1. Solutions mères :

	SOLUTIONS MERES:	PREPARATIONS:
A	Tris / HCl pH 8,4 à 500mM	10,07g Tris base + 6,60g Tris/Hcl dans 250ml eau PPI (Tris base ref: T8524 et Tris HCL ref:T7149)
В	Sucrose à 50g/100ml	250g de sucrose dans 500ml d'eau PPi
С	NaCl 5M	Sigma - Aldrich ref. \$150
D	MgCl ₂ 1M	Sigma - Aldrich ref M1028
E	Glycerol	Sigma - Aldrich ref.G5516
F	D-Mannitol	Sigma - Aldrich ref.M9647
G	Tween 20	Sigma - Aldrich ref.P8074
H	Tampon borate pH 7.4 100mM	Acide borique 100mM + NaOH 0.1N
j	Tampon phosphate pH 7.4 10mM	130mg KH ₂ PO ₄ + 705mg K ₂ HPO ₄ dans 500ml eau PPI

A-2

SI

2. Formulations :

				5	SOLUTIONS	S MERES	<u>:</u>			
	A	В	<u>C</u>	D	E	F	G	Н	1	Eau PP
ESSAIS:									1	
					·····				γ	***
<u>1</u>	20 ml		<u>·</u>	L	<u>l</u> L				<u> </u>	qsp 500n
2	20ml		I	T	+ 50mi		Γ			qsp 500r
	·						,			
3	20ml	50ml		0,5 ml	<u> </u>					qsp 500n
	r			,	1 1		Ţ <u>.</u>		1	600-
4	20ml	50ml	L	l	LL		<u> </u>	l	<u> </u>	qsp 5001
5	20ml .	50ml	l	0,5ml		25g			Τ	qsp 500r
			Į				,	τ		
6	20ml	50 m l	15ml	0,5ml	السنا	25g	<u> </u>	<u> </u>	1	qsp 5001
				·	,		1 0 6 3		1	I 600-
	20ml	50ml	<u> </u>	1	•	± ¥	0,5ml		1	qsp 5001
8	20ml	50ml		0,5ml			0,5ml			qsp 5001
		•			,			,		, -
9	<u> </u>	50ml	<u> </u>	0,5ml	اـــــا		<u>l</u>	50ml		qsp 5001
10	1	T	<u> </u>	1	+ 50ml			Ī	500ml	
<u>11</u>		2	Solutionvin	ale obtenue	au 2ème rin ml dans DPI	cage lors	de la diafilt	ration fina	<u>ile.</u>	

3 Résumé des formulations étudiées :

Voir tableau ci-après.

053

ESSAI N°

ESSAIS

ESSAIS DE FORMULATIONS

Y28 CELL CUBE 8MER

and bend from the seasons and seasons the seasons and the seasons and seasons are seasons

MATERIELS UTILISES:

- $\rightarrow \! 10$ PD 10 pour la diafiltration équilibrées avec 5 x 5ml de tampon étudié.
- \rightarrow Ultrafree 15 ml avec membrane Biomax 100 Kd (Millipore) (2x pour chaque essai).
- →Centrifugeuse réglée à 1500 tr/mn.

MISE EN OEUVRE:

OPERATIONS:	POUR CHAQUE ESSAI:
·	1.5.
DIAFILTRATION:	10 PD10 x 2,5ml de solution virale Y28 à 3,94.10 ¹¹ pv/ml. Elution par 10PD10 x 3,5ml du tampon étudié.
	·
CONCENTRATION:	2 Ultrafree 15ml 100Kd remplie à 15ml puis recharges avec 2,5ml de solution virale diafiltrée. Soit 17,5ml concentrés à 500µl (x2).
	(soit une concentration à ≈ 1.10 ¹³ pv/ml.)
TO A	Récupération et pool des 2 Ultrafree pour chaque essai.
RECUPERATION ET FILTRATION 0,2μm :	Filtration sur filtres Millex 0,2µ non stériles. Stockage dans tubes en verre stériles.
ALIQUOTAGE: (1=0)	→ 100µl dans tube Ependorff congelé à -26°C par essai. → 20µl + 980µl tampon clhp anal. pour dosage. → env.900µl conservés à +4°C pour étude de stabilité. → env.100µl de la volution virale Y28 sortie chromato initiale est congelé à -26°C.
TEMOINS PBS/glycerol 10%:	directement concentré à 1.10 ¹³ pv/ml, récupéré et aliquoté comme les autres essais.

1 10.00 in Joseph 200 - 2 TA 1986

DOSAGES CLHP ANALYTIQUE:

DPBS+NaCl+glycérol piecipi	Tar	Taj	Borate+1	·Tris+MgCl	T		Tris+NaCl+Mg	Tris+MgCl ₁	-	Tr		Tris+l	ы	17		
DPBS+NaCl+glycérol	Tumpon 11	Tumpon 10 Phosphate +glycérol	Borate+MgCl ₂ +sucrose	Tris+MgCl ₂ +sucrose+tween Tampon 9	Tampon 8	Титроп 7	Tis+NaCl+MgCl ₂ +sucrose+mannitol	Tris+MgCl ₃ +sucrose+mannitol	amnon 4	Tris+sucrose	Tampons 4	Tris+MgCl ₂ +sucrose	Tampon 3	Tris+glyvérol	Tris 20mM	Tampon
3,57. 10	.537 1012	7,20. 1012	non detecte		7.17. 1017	6,22. 10 ¹²	6,48. 10 ¹²	5,84, 10	604 1017		6,31. 1017		6.29. 1012		771 102	4 07 1017
precipite a t<1 jour	mecipite le lendemain	opacification a j=2	solution trouble des le	précipité le lendemain	operitor à i-7	nonnale à j=15	précipité à j=7	normale à j=15			nonnale à i=15	mais non précipité à j=15	Touristant in the state of the		normale à j=15	L'ECHANTILLON
non filtré : non dosé filtré 0,2μm:	filtré 0,2µm:	non filtré : non dosé	non filtré : non dosé filtré 0,2μm:	filtré 0,2µm:	filtre 0,2µm: 9,31.10 ¹¹	non filits : 9 43 1011	non filué : non dosé	non filtré : 1,85.10 ¹⁷ filtré 0,2μm: 1,47.10 ¹²		filtré 0,2µm: 5,7.10 ¹²	non filtr4 : 5 92 1012	filtré 0,2µm: 2,09,10 ¹¹		non filtré : 8,12,10" filtré 0,2μm: 7,96,10"	non filtré : 1,0.10 ¹² filtré 0,2μm: 9,1.10 ¹¹	TITRE DV/ml J=15
			1	İ	nbre plateaux:9000 asymétries:0,95 et 0,83		aymetries:1,08 et 1,12	le retour pic adéno traîne nbre plateaux:17000		pic symétrique	asymétries:0,93 et 0,86	montée du pic asymétrique 1.44 note plateaux: 32000	,	pic symétrique	le retour pic adéno traîne nbre plateaux:12000 aymétries:1,25 et 1,5	OBSERVATIONS CLHP du dosage 1=15
					non dosé normale	.		non dosé normale	потпаве	non filtré :1,87.10 ¹⁷ nbre plateaux:14000 asymétries:1 28 et 1 42		non dosé trouble mais non↓	normale	non filtré : 7,88. It ¹⁷ pic symétrique	non dosé normale	TITRE pV/mt J=20 (*) Observations CLHP Apparence echantillon
				1		ļ			normale	non filtré :1,09.10 ¹² nbre plateaux:~ 4000		.	полцаве	non filtré : 9,27,10 ¹⁷ pic symétrique	!	TITRE pV/mt J=22 (*) Observations CLHP Apparence échantillon

ESSAI N°

Essais Tp2 et Tp4 retitrés à J=22 pour test bioactivité par M. Janicot

2 25. 2 Direct of

le ESSAI N° _____

SUJET: ADENIOVIRUS

MISE EN PLACE DES ESSAIS DE STABILITE ADENOVIRUS DANS DIFFERENTES FORMULATIONS

Echantillon de départ: 400ml fraction F3 (+10% glycérol) du DEMOBATCH 3 (CC16M-Ad5/CMV/P53/293) , dosée à $3,6.10^{11}$ pv/ml soit $1,44.10^{14}$ pv pour 400ml.

Tampons étudiés (filtrés 0,22 µm):

- -Tampon A:Tris 20mM-pH8,4+10% glycérol
- -Tampon B :Tris 20mM-pH8,4+5% sucrose
- -Tampon C :Tris 20mM-pH8,4+10% glycérol+5% sucrose
- -Tampon D: Tris 20mM-pH8,4+5% glycérol+10% sucrose
- -Tampon E: Tris 20mM-pH8,4+10% glycérol+1mM MgCl₂
- -Tampon F: Tris 20mM-pH8,4+ 10% glycérol+150mM NaCl+1mM MgCl₂
- -Tampon G: Tris 20mM-pH8,4+5% glycérol
- -Tampon H: Tris 20mM-pH8,4+10% sucrose
- -Tampon I : Acétate d'ammonium 20mM-pH8+10% glycérol
- -Tampon J : Acetate d'ammonium 20mM-pH8+5% sucrose

Mise en place des essais :dans labo L3 de recherches/B1 Monod

-1 erétape : concentration de l'échantillon en utilisant 16 Ûltrafree 15ml/30Kd membrane biomax (UFV2BTK40 Millipore) ,centrifugation à 1500tr/mn .Premier passage on amène le volume à 5ml , (il faut environ 30mn pour le passage de 5 ml) on recharge une deuxième fois les Ultrafree avec 10ml (on tourne à 1760tr/mn-500G) et on amène le volume total final à 105ml.

on conserve 5ml pour électrophorèse 2D et on effectue un dosage HPLC (d1/10)

- on trouve 1,21.10¹²pv/ml soit 1,27.10¹⁴pv pour 105ml.
- -2^{tene} étape : changement de tampon sur PD10 Pharmacia (4 PD10 par tampon, soit 4 fois 2,5ml du concentrat ou 1,21.10¹²pv/tampon) , on récupère 14ml.
- -3^{ense} étape : on concentre les éluats PD10 sur un Ultrafree 15ml/30Kd (même réf. que étape 1) on amène le volume à <1ml.

 on récupère le concentrat et on volume à 1ml avec le filtrat.
- -4^{eme} étape ; on fait subir à chaque échantillon une filtration stérilisante sur an filtre Millipore (Sterile Millex-GV 0,22μm) membrane PVDF , récupération dans un tube stérile.
- -5 eme étape : sur chaque échantillon de 1 ml après filtration →dosage HPLC (d1/50) pour les échantillons TpA à E ,aliquoter 14 tubes de 50µl ,dans tubes stériles, pour les échantillons TpF à J ,il y a 15 aliquotes de 50µl ,les titres se situent entre 9,8.10¹² et 1,08.10¹³ pv/ml (voir cahier DOS-01 page 42)
- -6 tape : les aliquotes de 50 µl sont mis œ jour en stabilité à -20 °C. les reliquats soit ~250 à 300 µl sont conservés à 4 °C.

Il est prévu un dosage pfu (labo D.Faucher) de chaque échantillon →1 tube de 50µl à -20°C

Note To l'en obline a 4-c art man may it remand

SUJET

ENGLISH-LANGUAGE TRANSLATION OF EXHIBIT "A" (6 pages)

RECEIVED

TRIAL NO. _____

OCT 0 6 2003

TECH CENTER 1600/2900

CEL 02051

FORMULATION TRIALS: STABILITY.

OBJECTIVE: Observe the stability, or possible precipitation, of the Y28 virus in different formulations.

VIRAL MATERIAL STUDIED:

Y28 solution produced in a cell cube on an 8 mer scale by the J.F. Chaubard team, purified by ion exchange chromatography, and preserved in 20mM pH8 TRIS, 1mM MgCl₂, 500mM NaCl, and 10% glycerol. The purified virus titrates 3.94.10¹¹ pv/ml.

PREPARATION OF THE DIFFERENT BUFFER SOLUTIONS USED:

1. Stock solutions:

	STOCK SOLUTIONS:	PREPARATIONS:				
A	Tris / HCl pH 8.4 at 500mM	10.07g Tris base + 6.60g Tris/Hcl in 250ml water for injection (Tris base ref: T8524 and Tris HCL ref:T7149)				
В	Sucrose at 50g/100ml	250g sucrose in 500ml of water for injection.				
С	NaCl 5M	Sigma - Aldrich ref. S150				
D	MgCl ₂ 1M	Sigma - Aldrich ref. M1028				
E	Glycerol	Sigma - Aldrich ref. G5516				
F	D-Mannitol	Sigma - Aldrich ref. M9647				
G	Tween 20	Sigma - Aldrich ref. P8074				
Н	100mM borate buffer solution pH 7.4	100mM boric acid + NaOH 0 ₂ 1N				
I	10mM phosphate buffer solution pH 7.4	130mg KH ₂ PO ₄ + 705mg K ₂ HPO ₄ in 500ml water for injection.				

TRIAL	NO	
INIAL	INO.	

2. Formulations:

				STO	OCK SOLU	TIONS:					
	Α	В	С	D	E	F	G	Н	1	Water for injection	
TRIAL:	<u></u>									Injection	
1	20ml			T	Г -						
		<u> </u>		<u> </u>			<u> </u>		<u> </u>	QS 500ml	
2	20ml				+ 50ml					QS 500ml	
3	20ml	50ml		0,5ml			T		 	QS 500ml	
4	20ml	50ml						<u> </u>	·		
				<u> </u>			<u> </u>		ļ	QS 500ml	
5	20ml	50ml		0.5ml		25g				QS 500ml	
6	20ml	50ml	15ml	0.5ml		25g		1	T	QS 500ml	
7	001	F0 1								QC 500iiii	
	20ml	50ml					0.5ml			QS 500ml	
8	20ml	50ml		0.5ml			0.5ml			QS 500ml	
9		50ml		0.5ml				1.50-1			
				0.0111	L		<u> </u>	50mi		QS 500ml	
10					+ 50ml				500ml		
11											

3. Summary of the formulations studied:

See the following tables.

TRIAL NO.

Y28 CELL CUBE 8MER

FORMULATION TRIALS

10mM pH7.4 phosphate buffer	Solution									+	
10 mM borate pH7.4 buffer	SOIGHOI								+		
DPBS							100			100	+
Glycerol 10%		+	A COLUMN TO SERVICE AND A SERV	0.75						+	+
Mannitol 5%	A STATE OF THE STA	The second second	do.	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	+	+					
Tween20 0.1%		100 mm			4	10 mm	+	+	E-151		
Sucrose 5%			+	+	+	+	+	+	+	1. The state of th	and the second
MgCl ₂	1964		+	AND DESTRUCTION	+	+		+	+	1.0	i.
NaCl 150mM	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2.1		35		+				À	+
Z0mM pH 8.4	+	+	+	+	+	+	+	+			
TRIAL	-	2	ဧ	4	5	9	2	8	6	10	T

TRIAL NO.	
-----------	--

MATERIALS USED:

- ightarrow 10 PD 10 for diafiltration balanced with 5 x 5ml of the buffer solution studied.
- ightarrow 15ml Ultrafree with 100 Kd Biomax (Millipore) membrane (2x for each trial).
- \rightarrow Centrifuge set at 1500 rev/min.

IMPLEMENTATION:

OPERATIONS:	500 5100 550
SI EIMHONO.	FOR EACH TRIAL:
DIAFILTRATION:	10 PD10 x 2.5ml of Y28 viral solution at 3.94.10 ¹¹ pv/ml.
	Elution by 10PD10 x 3.5ml of the buffer solution studied.
CONCENTRATION	
CONCENTRATION:	15ml 100Kd 2 Ultrafree filled to 15ml and then refilled
	with 2.5 diafiltrated viral solution.
	17.5ml concentrated at 500μl (x2).
	(or a concentration at ≈ 1.10 ¹³ pv/ml.)
PECOVEDY AND EU TRATION OF	
RECOVERY AND FILTRATION 0.2μm:	Recovery and pooling of the 2 Ultrafree for each trial.
	Filtration using unsterilized 0.2u Millex filters
	Storage in sterilized glass tubes.
ALIQUOTING: (t=0)	
ALIQUOTING . (I=U)	\rightarrow 100µl in Ependorff tube frozen at -26°C. \rightarrow *
	→ 20μl + 980μl anal. HPCL buffer solution for dosing
	→ About 900µl stored at +4°C to study stability.
	→ About 100µl of the initial chromate emerging Y28 viral
	is frozen at -26°C.
10% alvaeral/DBC Complete	
10% glycerol/PBS Samples:	Frozen directly at 1.10 ¹³ pv/ml, recovered and aliquoted
	in the same way as the other trials.

ANALYTICAL HPLC MEASUREMENTS:

TRIAL NO.

The adeno return peak trails plate number: 12,000 asymmetries: 0.95 and 0.86 Tounded peak top plate number: 9,000 asymmetries: 0.95 and 0.83 Trounded peak top plate number: 9,000 asymmetries: 0.95 and 0.83 Trounded peak top plate number: 9,000 asymmetries: 0.95 and 0.83	TRIALS/BUFFERS	TITER pV/ml J=0	SAMPLE APPEARS	TITER pV/mi	OBSERVATIONS	TITEB nV/m	
## 10.00 Figure 1.0.10° The adeno return peak Part				<u>dav=15</u>	HPLC of the dosage, day=15	day=20(*) HPLC Observations Sample appears	day=22(*) HPLC Observations Sample appears
6.29. 10 ¹² precipitated at day=15 unfiltered; 8.12.10 ¹² symmetrical peak normal symmetrical peak normal symmetrical but not 1 peak to 10 ¹² peak normal at day=15 unfiltered; 2.33.10 ¹¹ symmetrical peak plate number; 22.000 asymmetrical peak filtered 0.2µm: plate number; 22.000 asymmetrical peak filtered 0.2µm: plate number; 22.000 fasymmetrical peak filtered 0.2µm: plate number; 0.93 at 10.10 filtered 0.2µm: plate number; 0.93 at 10.10 filtered 0.2µm: plate number; 1.28 asymmetries: 0.93 at 10.10 filtered 0.2µm: plate number; 1.00 fasymmetries: 1.00 fasymmetries; 1.00 fasymmetries; 1.00 fasymmetries; 1.00 fasymmetries; 1.00 fasymmetries; 1.00 fasymmetries; 0.00 fa		4.97.10 ¹²	normal at day=15	unfiltered: 1.0.10 ¹² filtered 0.2µm: 9.1.10 ¹¹	The adeno return peak trails plate number: 12,000 asymmetries: 1.25 and 1.50	not tested normal	
6.29. 10 ¹² opacification at day=12 ² uritilered: 2.33 10 ¹¹ asymmetrical rise of day=15 a filtered 0.2µm: plate number: 32.000 asymmetries: 0.93 at a symmetries: 0.93 at a conding but not 1 to 1 to 2.09.10 ¹¹ asymmetries: 0.93 at a conding but not 1 to 2.09.10 ¹¹ asymmetries: 0.93 at a conding but not 1 to 2.09.10 ¹¹ asymmetries: 0.93 at a conding but not 1 to 2.09.10 ¹¹ asymmetries: 0.93 at a conding but not 1 to 2.09.10 ¹¹ asymmetries: 0.93 at a conding but not 1 to 2.09.10 ¹¹ asymmetries: 0.93 at a conding but not 1 to 2.09.10 ¹¹ asymmetries: 1.08 and 1.42 (normal) 1.47.10 ¹² arymmetries: 0.00 asymmetries: 0.00 and a	_	7.71. 10 ¹²	normal at day=15	unfiltered: 8.12.10 ¹² filtered 0.2µm: 7.96.10 ¹²	symmetrical peak	unfiltered: 7.88.10 ¹² normal symmetrical	unfiltered: 9.27.10 ¹² normal symmetrical
6.31. 10 ¹² normal at day=15 ifflered: 5.83.10 ¹² symmetrical peak unfiltered: 1.87.10 ¹² filtered 0.2µm: 6.48. 10 ¹² normal at day=15 ifflered 0.2µm: 6.48. 10 ¹² precipitated at day=7 ifflered: 0.2µm: 6.22. 10 ¹² normal at day=7 unfiltered: 9.53.10 ¹¹ rounded peak top not tested day. 7.17. 10 ¹² popacification at day=7 ifflered: 0.2µm: 6.22. 10 ¹² normal at day=7 unfiltered: not tested day. Copacification at day=2 ifflered: 0.2µm:	Srose	6.29. 10 ¹²	opacification at day=12³ but not precipitated at day=15	unfiltered: 2.33.10 ¹¹ filtered 0.2µm: 2.09.10 ¹¹	asymmetrical rise of the peak plate number: 32,000 asymmetries: 0.93 at	not tested clouding but not 1	heak
5.84. 10 ¹² normal at day=15 iffered 0.2µm: rails adeno return peak rot tested not tested iffered 0.2µm: part number: 17,000 and 1.12 and 1.12 rounded peak top filtered 0.2µm: part number: 9,000 normal at day=15 ritlered 0.2µm: part number: 9,000 normal at day=7 ritlered 0.2µm: part number: 9,000 normal at day=7 ritlered 0.2µm: asymmetries: 0.95 and 0.31.10¹¹ opacification at day=7 ritlered 0.2µm: filtered 0.2µm: day. Undetected virus held on the filter solution is changed. 7.20. 10¹² opacification at day=2 unfiltered: not tested filtered 0.2µm: the buffer solution is changed. 7.20. 10¹² opacification at day=2 unfiltered: not tested filtered 0.2µm: the buffer solution is changed. 7.20. 10¹² opacification at day=2 unfiltered: not tested day. 8.37. 10¹² precipitated the next filtered 0.2µm: filtered 0.2µm: day. 9.31.10¹ opacification at day=2 unfiltered: not tested filtered 0.2µm: day.	0	6.31, 10 ¹²	normal at day=15	unfiltered: 5.83.10 ¹² filtered 0.2µm: 5.7.10 ¹²	symmetrical peak	unfiltered: 1.87.10 ¹² plate number: 14,000 asymmetries: 1.28	unfiltered: 1.09.10 ¹² plate number: 4,000 asymmetries: 0.87
6.48. 10 ¹² precipitated at day=7 ilitered 0.2 µm: 6.22. 10 ¹² normal at day=15 ilitered 0.2 µm: 7.17. 10 ¹² opacification at day=7 ilitered 0.2 µm: Undetected virus held on the filter solution clouds once the buffer solution at day=2 changed. 7.20. 10 ¹² opacification at day=2 precipitated the next day ilitered 0.2 µm: Changed virus held on the filter do 0.2 µm: Chang	mannitol	5.84. 10 ¹²	normal at day=15	unfiltered: 1.85.10 ¹² filtered 0.2µm: 1.47.10 ¹²	The adeno return peak trails plate number: 17,000 asymmetries: 1.08 and 1.12	not tested normal	and 0.08 (normal)
6.22. 10^{12} normal at day=15 filtered 0.2µm: plate number: 9,000 g.31.10¹¹¹ asymmetries: 0.95 and 0.83 7.17. 10^{12} opacification at day=7 precipitated the next day. Undetected virus held on the filter solution is changed. 7.20. 10^{12} opacification at day=2 filtered 0.2µm: filtered 0.2µm: day 7.20. 10^{12} opacification at day=2 filtered 0.2µm: day 7.20. 10^{12} opacification at day=2 filtered 0.2µm: filtered 0.2µm: day 6.37. 10^{12} precipitated at < 1 day filtered 0.2µm: filtered 0.2µm: day	rcrose+	6.48. 10 ¹²	precipitated at day=7	unfiltered: not tested filtered 0.2µm:	1	1	I
7.17. 10 ¹² opacification at day=7 precipitated the next day. Undetected virus held on the filter solution clouds once the buffer solution is changed. 7.20. 10 ¹² opacification at day=2 precipitated the next day. 5.37. 10 ¹² precipitated at < 1 day unfiltered: not tested filtered 0.2 µm: day.	neen	6.22. 10 ¹²	normal at day=15	unfiltered: 9.53.10 ¹¹ filtered 0.2µm: 9.31.10 ¹¹	rounded peak top plate number: 9,000 asymmetries: 0.95 and 0.83	not tested normal	1
Undetected virus held on the filter solution clouds once the buffer solution is changed. 7.20. 10 ¹² opacification at day=2 precipitated the next day 5.37. 10 ¹² precipitated at < 1 day	+Tween	7.17. 10 ¹²	opacification at day=7 precipitated the next day.	unfiltered: not tested filtered 0.2µm:			
7.20. 10 ¹² opacification at day=2 precipitated the next day precipitated at < 1 day	rose	Undetected	virus held on the filter solution clouds once the buffer solution is changed.	unfiltered: not tested filtered 0.2µm:	ı	I	I
5.37. 10 ¹² precipitated at < 1 day	erol		opacification at day=2 precipitated the next day	unfiltered: not tested filtered 0.2µm:		1	I
	erol	5.37. 10 ¹²	precipitated at < 1 day	unfiltered: not tested filtered 0.2µm:	1	1	

Note: for the adeno return peak measurement standard → plate number 32,000/asymmetries: 1.1 and 1.16. (*) computation of titers with the new measurement standard: 141

A-5

Page 5 of 5

1111AL NO		

SUBJECT: ADENOVIRUS

CONDUCTING ADENOVIRUS STABILITY TRIALS IN DIFFERENT FORMULATIONS

Starting sample: 400ml fraction F3 (+10% glycerol) of DEMOBATCH 3 (CC16M-Ad5/CMV/P53/293) dosed at $3.6.10^{11}$ pv/ml or $1.44.10^{14}$ pv per 400ml.

TRIAL NO

Buffer solutions studied (0.22µm filtered):

- -Buffer solution A: Tris 20mM-pH8.4+10% glycerol
- -Buffer solution B: Tris 20mM-pH8.4+5% sucrose
- -Buffer solution C: Tris 20mM-pH8.4+10% glycerol+5% sucrose
- -Buffer solution D: Tris 20mM-pH8.4+5% glycerol+10% sucrose
- -Buffer solution E: Tris 20mM-pH8.4+10% glycerol+1mM MgCl₂
- -Buffer solution F: Tris 20mM-pH8.4+10% glycerol+150mM NaCl+1mM MgCl₂
- -Buffer solution G: Tris 20mM-pH8.4+5% glycerol
- -Buffer solution H: Tris 20mM-pH8.4+10% sucrose
- -Buffer solution 1: ammonium acetate 20mM-pH8+10% glycerol
- -Buffer solution 1: ammonium acetate 20mM-pH8+5% sucrose

Carrying Out the Trials: At Research Lab L3/Bt Monod

- 1st Step: Concentrating the sample by using 15ml/30Kd 16 Ultrafee biomax membrane (UFV2BTK40 Millipore), centrifuged at 1500rev/min. First run, volume brought to 5ml (5ml run requires @30 mins).The Ultrafree is filled a second time with 10ml (turning occurs at 1760 rv/min.-500G). The final total volume is brought to 105ml. 5ml is stored for 2D electrophoresis and HPLC (dl/10) measurement occurs. One then finds 1.21.10¹²pv/ml, or 1.27.10¹⁴ pv per 105ml.
- 2^{nd} Step: Changing over the sample to PD10 Pharmacia (4 PD10 by buffer solution, i.e., 4 x 2.5ml of the concentrate or 1.21.10¹³pv/buffer solution), 14ml are recovered.
- 3rd Step: The PD10 eluates are concentrated on a 15ml/30Kd Ultrafree (same ref. as Step 1) and the volume is brought to <1ml. The concentrate is recovered and the volume is increased to 1ml with filtrate.
- 4th Step: Each sample undergoes a sterilizing filtration on a Millipore film (Sterile Millex-GV 0.22μm) membrane (PVDF). Collected in a sterile tube.
- 5th Step: On each 1ml sample after filtration →HPLC (d1/50). For samples TpA to E, aliquot 14 tubes of 50µl in sterile tubes. For samples TpF to J, there are 15 aliquots of 50µl. The titers are located between 9.8.10¹² and 1.08.10¹³ pv/ml (see Manual DOS-01 page 42).
- 6^{th} Step: The 50µm aliquots are used while stable at -20 $^{\circ}$ C. The carry-over, i.e., 250 to 300µl, is stored at 4° C.
 - A PFU (D. Faucher Lab) measurement of each sample is provided →1 tube of 50µl at -20°C.