Reducibility and r.e. sets

Given two sets $A, B \subseteq \mathbb{N}$ and $A \leq_m B$:

- 1) if B is r.e. then A is r.e.
- 2) if A is not r.e. then B is not r.e.

Etymology theorem

The etymology theorem, which states that a set A is recursively enumerable if and only if $A = cod(f) = \{f(x) \mid x \in N\}$ for some computable function $f : N \to N$, is important here because it provides a key insight into why the set A in the proposition is not recursively enumerable when $A \neq \emptyset$ and $A \neq N$.

The proof proceeds by assuming A is recursively enumerable and then deriving a contradiction. If A is recursively enumerable, then by the etymology theorem, there exists a computable function $f: N \to N$ such that $A = img(f) = \{f(x) \mid x \in N\}$.

Now, we distinguish two cases:

- 1. If $A = \emptyset$, then f is a total computable function with $img(f) = \emptyset$. However, this is not possible, since img(f) must contain at least the elements $\{f(x) \mid x \in N\}$. So A cannot be empty.
- 2. If $A \neq \emptyset$, then fix some $a0 \in A$. Since A = img(f), f must be total, otherwise $img(f) \subset A$ which contradicts A = img(f). But then the function F defined by F(x) = a0 if $x \in A$ and

F(x) = a0 otherwise, is total computable, and $img(F) = \{a0\}$. However, $img(F) \neq A$ since we assumed $A \neq N$. This contradicts the assumption that A = img(f).

Therefore, in both cases we arrive at a contradiction by assuming A is recursively enumerable and $A \neq \emptyset$ and $A \neq N$. The etymology theorem was key in allowing us to characterize A as the image of a total computable function f and leading to these contradictions.

.