	$\Delta_{1}^{\#1}{}_{\alpha\beta}$	$\Delta^{\#2}_{1}{}^{+}{}_{lphaeta}$	$\Delta^{\#3}_{1^+lphaeta}$	$\Delta_{1^{-}lpha}^{\#1}$	$\Delta_{1^{-}\alpha}^{\#2}$	$\Delta_{1^{-}\alpha}^{\#3}$	$\Delta_{1^- lpha}^{\#4}$	$\Delta_{1^{-}lpha}^{ ext{\#5}}$	$\Delta_{1^{-}lpha}^{\#6}$	${\mathcal T}_{1^-lpha}^{\sharp 1}$
$\Delta_{1}^{#1} \dagger^{\alpha\beta}$	$\frac{4}{3} \left(-\frac{1}{a_0 + 4a_1 - 4a_2} + \frac{2a_1 + a_2 - 2a_5 - 6a_7 + 2a_9}{2(2a_1 + a_2)(a_5 + 3a_7) + a_9^2 + a_0(2a_1 + a_2 - 2a_5 - 6a_7 + 2a_9)} \right)$	$\frac{2}{3}\sqrt{2}\left(-\frac{1}{a_0+4a_1-4a_2}-\frac{2(2a_1+a_2-2a_5-6a_7+2a_9)}{2(2a_1+a_2)(a_5+3a_7)+a_9^2+a_0(2a_1+a_2-2a_5-6a_7+2a_9)}\right)$	$\frac{4(2a_1+a_2+a_9)}{3(2(2a_1+a_2)(a_5+3a_7)+a_9^2+a_0(2a_1+a_2-2a_5-6a_7+2a_9))}$	0	0	0	0	0	0	0
$\Delta_{1}^{#2} \dagger^{\alpha\beta}$	$\frac{2}{3}\sqrt{2}\left(-\frac{1}{a_0+4a_1-4a_2}-\frac{2(2a_1+a_2-2a_5-6a_7+2a_9)}{2(2a_1+a_2)(a_5+3a_7)+a_9^2+a_0(2a_1+a_2-2a_5-6a_7+2a_9)}\right)$		$4 \sqrt{2} (2 a_1 + a_2 + a_9)$	0	0	0	0	0	0	0
$\Delta_{1}^{#3} \dagger^{\alpha\beta}$	$-\frac{4(2a_1+a_2+a_9)}{3(2(2a_1+a_2)(a_5+3a_7)+a_9^2+a_0(2a_1+a_2-2a_5-6a_7+2a_9))}$	$\frac{4\sqrt{2}(2a_1+a_2+a_9)}{3(2(2a_1+a_2)(a_5+3a_7)+a_9^2+a_0(2a_1+a_2-2a_5-6a_7+2a_9))}$	$-\frac{4 \left(a_{0}-2 a_{1}-a_{2}\right)}{3 \left(2 \left(2 a_{1}+a_{2}\right) \left(a_{5}+3 a_{7}\right)+a_{9}^{2}+a_{0} \left(2 a_{1}+a_{2}-2 a_{5}-6 a_{7}+2 a_{9}\right)\right)}$	0	0	0	0	0	0	0
$\Delta_1^{#1}$ † lpha	0	0	0	$\frac{4 (2 a_1 + a_2 - 2 a_5 - 6 a_7 + 2 a_9)}{3 (2 (2 a_1 + a_2) (a_5 + 3 a_7) + a_9^2 + a_0 (2 a_1 + a_2 - 2 a_5 - 6 a_7 + 2 a_9))}$	$\frac{4\sqrt{2}(2a_1+a_2-2a_5-6a_7+2a_9)}{3(2(2a_1+a_2)(a_5+3a_7)+a_9^2+a_0(2a_1+a_2-2a_5-6a_7+2a_9))}$	0	0	$-\frac{4\sqrt{\frac{2}{3}}(2a_1+a_2+a_9)}{3(2(2a_1+a_2)(a_5+3a_7)+a_9^2+a_0(2a_1+a_2-2a_5-6a_7+2a_9))}$	$\frac{4(2a_1+a_2+a_9)}{3\sqrt{3}(2(2a_1+a_2)(a_5+3a_7)+a_9^2+a_0(2a_1+a_2-2a_5-6a_7+2a_9))}$	0
$\Delta_1^{\#2} \uparrow^{\alpha}$	0	0	0	$\frac{4\sqrt{2}(2a_1+a_2-2a_5-6a_7+2a_9)}{3(2(2a_1+a_2)(a_5+3a_7)+a_9^2+a_0(2a_1+a_2-2a_5-6a_7+2a_9))}$	$\frac{8(2a_1+a_2-2a_5-6a_7+2a_9)}{3(2(2a_1+a_2)(a_5+3a_7)+a_9^2+a_0(2a_1+a_2-2a_5-6a_7+2a_9))}$	0	0	$-\frac{8(2a_1+a_2+a_9)}{3\sqrt{3}(2(2a_1+a_2)(a_5+3a_7)+a_9^2+a_0(2a_1+a_2-2a_5-6a_7+2a_9))}$	$\frac{4\sqrt{\frac{2}{3}}(2a_1+a_2+a_9)}{3(2(2a_1+a_2)(a_5+3a_7)+a_9^2+a_0(2a_1+a_2-2a_5-6a_7+2a_9))}$	0
$\Delta_1^{#3} \dagger^{\alpha}$	0	0	0	0	0	$-\frac{10}{9(a_0+2a_5-6a_7)} - \frac{1}{6(3a_0-2(a_5-8a_6+5a_7-4a_{13}k^2))} - \frac{1}{16}$	$\frac{1}{8} \sqrt{5} \left(\frac{4}{a_0 + 2a_5 - 6a_7} - \frac{3}{3a_0 - 2a_5 + 16a_6 - 10a_7 + 8a_{13}k^2} \right)$	$-\frac{1}{\sqrt{2} (9 a_0 - 6 (a_5 - 8 a_6 + 5 a_7 - 4 a_{13} k^2))}$	$-\frac{1}{9 a_0 - 6 (a_5 - 8 a_6 + 5 a_7 - 4 a_{13} k^2)}$	0
$\Delta_{1}^{\#4} \uparrow^{\alpha}$	0	0	0	0	0	$\frac{1}{18} \sqrt{5} \left(\frac{4}{a_0 + 2a_5 - 6a_7} - \frac{3}{3a_0 - 2a_5 + 16a_6 - 10a_7 + 8a_{13}k^2} \right)$	$-\frac{2}{9(a_0+2a_5-6a_7)}-\frac{5}{6(3a_0-2(a_5-8a_6+5a_7-4a_{13}k^2))}$	$-\frac{\sqrt{\frac{5}{2}}}{9a_0-6(a_5-8a_6+5a_7-4a_{13}k^2)}$	$-\frac{\sqrt{5}}{9a_0-6(a_5-8a_6+5a_7-4a_{13}k^2)}$	0
$\Delta_1^{\#5} \uparrow^{lpha}$	0	0	0	$-\frac{4\sqrt{\frac{2}{3}}(2a_1+a_2+a_9)}{3(2(2a_1+a_2)(a_5+3a_7)+a_9^2+a_0(2a_1+a_2-2a_5-6a_7+2a_9))}$	$-\frac{8(2a_1+a_2+a_9)}{3\sqrt{3}(2(2a_1+a_2)(a_5+3a_7)+a_9^2+a_0(2a_1+a_2-2a_5-6a_7+2a_9))}$	$-\frac{1}{\sqrt{2} (9 a_0 - 6 (a_5 - 8 a_6 + 5 a_7 - 4 a_{13} k^2))}$	$-\frac{\sqrt{\frac{5}{2}}}{9 a_0-6 (a_5-8 a_6+5 a_7-4 a_{13} k^2)}$	$\frac{8(-a_0+2a_1+a_2)}{9(2(2a_1+a_2)(a_5+3a_7)+a_9^2+a_0(2a_1+a_2-2a_5-6a_7+2a_9))} - \frac{1}{9a_0-6(a_5-8a_6+5a_7-4a_{13}k^2)}$	$(\sqrt{2} (12a_0^2 - 3a_9^2 - a_0 (30a_1 + 15a_2 + 2a_5 - 64a_6 + 22a_7 + 6a_9 - 32a_{13}k^2 + 2(2a_1 + a_2) (a_5 - 32a_6 + 11a_7 - 16a_{13}k^2)))/$ $(9(2(2a_1 + a_2) (a_5 + 3a_7) + a_9^2 + a_0 (2a_1 + a_2 - 2a_5 - 6a_7 + 2a_9))$ $(3a_0 - 2(a_5 - 8a_6 + 5a_7 - 4a_{13}k^2)))$	2)+
$\Delta_1^{\#6} \uparrow^{lpha}$	0	0	0	$\frac{4 \left(2 a_{1} + a_{2} + a_{9}\right)}{3 \sqrt{3} \left(2 \left(2 a_{1} + a_{2}\right) \left(a_{5} + 3 a_{7}\right) + a_{9}^{2} + a_{0} \left(2 a_{1} + a_{2} - 2 a_{5} - 6 a_{7} + 2 a_{9}\right)\right)}$	$\frac{4\sqrt{\frac{2}{3}}(2a_1+a_2+a_9)}{3(2(2a_1+a_2)(a_5+3a_7)+a_9^2+a_0(2a_1+a_2-2a_5-6a_7+2a_9))}$	$-\frac{1}{9 a_0-6 (a_5-8 a_6+5 a_7-4 a_{13} k^2)}$	$-\frac{\sqrt{5}}{9a_0-6(a_5-8a_6+5a_7-4a_{13}k^2)}$	$ \sqrt{2} (12a_0^2 - 3a_9^2 - a_0 (30a_1 + 15a_2 + 2a_5 - 64a_6 + 22a_7 + 6a_9 - 32a_{13}k^2) + a_0 (2a_1 + a_2) (a_5 - 32a_6 + 11a_7 - 16a_{13}k^2)))/ $ $ (9 (2 (2a_1 + a_2) (a_5 + 3a_7) + a_9^2 + a_0 (2a_1 + a_2 - 2a_5 - 6a_7 + 2a_9)) $ $ (3a_0 - 2 (a_5 - 8a_6 + 5a_7 - 4a_{13}k^2))) $	$\frac{-4a_0+8a_1+4a_2}{9(2(2a_1+a_2)(a_5+3a_7)+a_9^2+a_0(2a_1+a_2-2a_5-6a_7+2a_9))} - \frac{2}{9a_0-6(a_5-8a_6+5a_7-4a_{13}k^2)}$	0
${\mathcal T}_1^{\sharp 1} {\dagger}^{lpha}$	0	0	0	0	0	0	0	0	0	0

	$\Gamma^{\#1}_{1}{}^{+}_{lphaeta}$	$\Gamma_{1}^{\#2}_{\alpha\beta}$	$\Gamma^{\#3}_{1^+ lphaeta}$	$\Gamma_{1}^{\#1}{}_{\alpha}$	Γ ₁ ^{#2} α	$\Gamma_{1}^{\#3}{}_{\alpha}$	$\Gamma_{1}^{\#4}{}_{\alpha}$	$\Gamma_{1}^{\#5}{}_{\alpha}$	$\Gamma_{1-\alpha}^{\#6}$ $h_{1-\alpha}^{\#1}$
$\Gamma_{1}^{#1} \dagger^{\alpha\beta}$	$\frac{1}{4} \left(-a_0 - 6 a_1 + 5 a_2 \right)$	$-\frac{a_0 + 2a_1 - 3a_2}{2\sqrt{2}}$	$\frac{1}{4} \left(-2 a_1 - a_2 - a_9 \right)$	0	0	0	0	0	0 0
$\Gamma_{1}^{#2} \dagger^{\alpha\beta}$	$-\frac{a_0+2a_1-3a_2}{2\sqrt{2}}$	$\frac{1}{2} \left(-2 a_1 + a_2 \right)$	$\frac{2a_1 + a_2 + a_9}{2\sqrt{2}}$	0	0	0	0	0	0 0
$\Gamma_{1}^{#3} \dagger^{\alpha\beta}$	$\frac{1}{4} \left(-2 a_1 - a_2 - a_9 \right)$	$\frac{2a_1+a_2+a_9}{2\sqrt{2}}$	$-\frac{3}{4} (2 a_1 + a_2 - 2 a_5 - 6 a_7 + 2 a_9)$	0	0	0	0	0	0 0
$\Gamma_{1}^{#1} \uparrow^{\alpha}$	0	0	0	$\frac{1}{12}$ $(a_0 - 2a_1 - a_2)$	$\frac{a_0 - 2 a_1 - a_2}{6 \sqrt{2}}$	0	0	$-\frac{2a_1+a_2+a_9}{2\sqrt{6}}$	$\frac{2a_1 + a_2 + a_9}{4\sqrt{3}}$
$\Gamma_{1}^{#2} \uparrow^{\alpha}$	0	0	0	$\frac{a_0 - 2 a_1 - a_2}{6 \sqrt{2}}$	$\frac{1}{6}(a_0-2a_1-a_2)$	0	0	$-\frac{2a_1+a_2+a_9}{2\sqrt{3}}$	$\frac{2a_1 + a_2 + a_9}{2\sqrt{6}}$
$\Gamma_1^{#3} \uparrow^{\alpha}$	0	0	0	0	0	$\frac{1}{12} \left(-9 a_0 - 14 a_5 - 8 a_6 + 50 a_7 - 4 a_{13} k^2 \right)$	$\frac{1}{3} \sqrt{5} (a_5 - 2 a_6 - a_7 - a_{13} k^2)$	$\frac{-3 a_0 + 2 (a_5 - 8 a_6 + 5 a_7 - 4 a_{13} k^2)}{12 \sqrt{2}}$	$-\frac{a_0}{4} + \frac{1}{6} (a_5 - 8a_6 + 5a_7 - 4a_{13}k^2)$
$\Gamma_{1}^{\#4} \uparrow^{\alpha}$	0	0	0	0	0	$\frac{1}{3} \sqrt{5} (a_5 - 2 a_6 - a_7 - a_{13} k^2)$	$\frac{1}{12} \left(-9 a_0 + 2 a_5 - 40 a_6 + 34 a_7 - 20 a_{13} k^2 \right)$	$\frac{1}{12} \sqrt{\frac{5}{2}} \left(-3 a_0 + 2 \left(a_5 - 8 a_6 + 5 a_7 - 4 a_{13} k^2 \right) \right)$	$\frac{1}{12} \sqrt{5} \left(-3 a_0 + 2 \left(a_5 - 8 a_6 + 5 a_7 - 4 a_{13} k^2 \right) \right) \qquad 0$
$\Gamma_1^{\#5} \uparrow^{\alpha}$	0	0	0	$-\frac{2a_1+a_2+a_9}{2\sqrt{6}}$	$-\frac{2a_1+a_2+a_9}{2\sqrt{3}}$	$\frac{-3a_0+2(a_5-8a_6+5a_7-4a_{13}k^2)}{12\sqrt{2}}$	$\frac{1}{12} \sqrt{\frac{5}{2}} \left(-3 a_0 + 2 \left(a_5 - 8 a_6 + 5 a_7 - 4 a_{13} k^2 \right) \right)$	$\frac{1}{12} \left(-3 a_0 - 2 \left(6 a_1 + 3 a_2 - 7 a_5 + 8 a_6 - 23 a_7 + 6 a_9 + 4 a_{13} k^2 \right) \right)$	$-\frac{3a_0-6a_1-3a_2+4a_5+16a_6+8a_7-6a_9+8a_{13}k^2}{6\sqrt{2}}$
$\Gamma_1^{\#6} \uparrow^{\alpha}$	0	0	0	$\frac{2a_1 + a_2 + a_9}{4\sqrt{3}}$	$\frac{2a_1+a_2+a_9}{2\sqrt{6}}$	$-\frac{a_0}{4} + \frac{1}{6} (a_5 - 8 a_6 + 5 a_7 - 4 a_{13} k^2)$	$\frac{1}{12} \sqrt{5} \left(-3 a_0 + 2 \left(a_5 - 8 a_6 + 5 a_7 - 4 a_{13} k^2 \right) \right)$	$-\frac{3 a_0 - 6 a_1 - 3 a_2 + 4 a_5 + 16 a_6 + 8 a_7 - 6 a_9 + 8 a_{13} k^2}{6 \sqrt{2}}$	$\frac{1}{12} \left(-6 a_0 - 6 a_1 - 3 a_2 + 10 a_5 - 32 a_6 + 38 a_7 - 6 a_9 - 16 a_{13} k^2 \right) 0$
$h_1^{#1} + ^{\alpha}$	0	0	0	0	0	0	0	0	0 0

	$\Delta_{2}^{\#1}{}_{lphaeta}$	$\Delta^{\#2}_{2}{}^{+}{}_{lphaeta}$	$\Delta^{\#3}_{2}{}^{+}{}_{lphaeta}$	${\mathcal T}_{2}^{\#1}{}_{lphaeta}$	$\Delta_{2}^{\#1}{}_{lphaeta\chi}$	$\Delta_{2}^{\#2}{}_{lphaeta\chi}$
$\Delta_{2}^{\#1} \dagger^{lphaeta}$	$\frac{4 (2 a_1 + a_2 - 2 a_5 - 6 a_7 + 2 a_9)}{2 (2 a_1 + a_2) (a_5 + 3 a_7) + a_9^2 + a_0 (2 a_1 + a_2 - 2 a_5 - 6 a_7 + 2 a_9)}$	0	$-\frac{4 \left(2 a_{1}+a_{2}+a_{9}\right)}{\sqrt{3} \left(2 \left(2 a_{1}+a_{2}\right) \left(a_{5}+3 a_{7}\right)+a_{9}^{2}+a_{0} \left(2 a_{1}+a_{2}-2 a_{5}-6 a_{7}+2 a_{9}\right)\right)}$	0	0	0
$\Delta_2^{\#2} \dagger^{\alpha\beta}$	0	$-\frac{4}{3(a_0+2a_5-6a_7)}$	0	0	0	0
$\Delta_2^{#3} \dagger^{\alpha\beta}$	$-\frac{4 (2 a_1+a_2+a_9)}{\sqrt{3} (2 (2 a_1+a_2) (a_5+3 a_7)+a_9^2+a_0 (2 a_1+a_2-2 a_5-6 a_7+2 a_9))}$	0	$-\frac{4 (a_0-2 a_1-a_2)}{3 (2 (2 a_1+a_2) (a_5+3 a_7)+a_9^2+a_0 (2 a_1+a_2-2 a_5-6 a_7+2 a_9))}$	0	0	0
${\mathcal T}_2^{\sharp 1} \dagger^{lphaeta}$	0	0	0	$-\frac{8}{a_0 k^2}$	0	0
$\Delta_2^{#1} \dagger^{\alpha\beta\chi}$	0	0	0	0	$\frac{4 (2 a_1 + a_2 - 2 a_5 - 6 a_7 + 2 a_9)}{2 (2 a_1 + a_2) (a_5 + 3 a_7) + a_9^2 + a_0 (2 a_1 + a_2 - 2 a_5 - 6 a_7 + 2 a_9)}$	$-\frac{4 \left(2 a_{1}+a_{2}+a_{9}\right)}{\sqrt{3} \left(2 \left(2 a_{1}+a_{2}\right) \left(a_{5}+3 a_{7}\right)+a_{9}^{2}+a_{0} \left(2 a_{1}+a_{2}-2 a_{5}-6 a_{7}+2 a_{9}\right)\right)}$
$\Delta_{2}^{\#2} \dagger^{\alpha\beta\chi}$	0	0	0	0	$-\frac{4 (2 a_1 + a_2 + a_9)}{\sqrt{3} (2 (2 a_1 + a_2) (a_5 + 3 a_7) + a_9^2 + a_0 (2 a_1 + a_2 - 2 a_5 - 6 a_7 + 2 a_9))}$	$-\frac{4 (a_0-2 a_1-a_2)}{3 (2 (2 a_1+a_2) (a_5+3 a_7)+a_9^2+a_0 (2 a_1+a_2-2 a_5-6 a_7+2 a_9))}$

0	0	
$\Gamma_{3^{-}}^{\#1} \alpha \beta \chi$ $\Gamma_{3^{-}}^{\#1} + \alpha \beta \chi \left[-\frac{3}{4} (a_0 + 2 a_5 - 6 a_7) \right]$	$\Delta_{3}^{\#1} + \alpha \beta \chi = \frac{4}{3(a_0 + 2a_5 - 6a_7)}$	$\Delta_{3}^{*1} \alpha eta \chi$
	7	

Lagrangian density $ \frac{1}{3} a_0 \bigcap_{\alpha \mu}^{\mu} \bigcap_{\beta \beta}^{\alpha \beta} + \frac{1}{3} a_1 \bigcap_{\alpha \mu}^{\mu} \bigcap_{\beta \beta}^{\alpha \beta} + \frac{1}{3} a_2 \bigcap_{\alpha \mu}^{\mu} \bigcap_{\beta \beta}^{\alpha \beta} + \frac{1}{3} a_1 \bigcap_{\alpha \mu}^{\mu} \bigcap_{\beta \beta}^{\alpha \beta} + \frac{1}{3} a_2 \bigcap_{\alpha \beta \mu}^{\mu} \bigcap_{\beta \beta}^{\alpha \beta} + \frac{1}{3} a_2 \bigcap_{\alpha \beta \mu}^{\mu} \bigcap_{\beta \beta}^{\alpha \beta} + \frac{1}{3} a_3 \bigcap_{\alpha \beta \mu}^{\mu} \bigcap_{\beta \beta}^{\alpha \beta} + \frac{1}{3} a_3 \bigcap_{\alpha \beta \mu}^{\mu} \bigcap_{\beta \beta}^{\alpha \beta} + \frac{1}{3} a_3 \bigcap_{\alpha \beta \mu}^{\mu} \bigcap_{\beta \beta \beta}^{\alpha \beta} + \frac{1}{3} a_3 \bigcap_{\alpha \mu \beta}^{\mu} \bigcap_{\beta \beta \beta}^{\alpha \beta} + \frac{1}{3} a_3 \bigcap_{\alpha \mu \beta}^{\mu} \bigcap_{\alpha \beta \mu}^{\alpha \beta \mu} + \frac{1}{3} a_3 \bigcap_{\alpha \mu \beta}^{\mu} \bigcap_{\alpha \beta \mu}^{\alpha \beta \mu} \bigcap_{\beta \alpha \mu}^{\alpha \beta \mu}^{\alpha \beta \mu} \bigcap_{\beta \alpha \mu}^{\alpha \beta \mu} \bigcap_{\beta \alpha \mu}^{\alpha \beta \mu} \bigcap_{\beta \alpha \mu}^{\alpha \beta \mu}^{\alpha \beta \mu} \bigcap_{\beta \alpha \mu}^{\alpha \beta \mu}^{\alpha \beta \mu} \bigcap_{\beta \alpha \mu}^{\alpha \beta \mu}^{\alpha \beta \mu}^{\alpha \beta \mu} \bigcap_{\beta \alpha \mu}^{\alpha \beta \mu$
--

	$\Gamma_{0}^{#1}$	Γ ₀ ^{#2}	Γ ₀ ^{#3}	Γ ₀ ^{#4}	$h_{0}^{\#1}$	$h_0^{\#2}$	Γ <mark>#</mark> 1
$\Gamma_{0}^{#1} +$	0	0	0	0	0	0	0
Γ ₀ ^{#2} †	0	$\frac{1}{4} \left(-3 a_0 - 2 \left(a_5 + 4 a_6 - 7 a_7 \right) \right)$	a ₅ - 2 a ₆ - a ₇	$\frac{-3 a_0 + 2 (a_5 - 8 a_6 + 5 a_7)}{4 \sqrt{2}}$	0	0	0
Γ ₀ ^{#3} †	0	a ₅ -2a ₆ -a ₇	$\frac{1}{4} \left(-3 a_0 - 2 \left(a_5 + 4 a_6 - 7 a_7 \right) \right)$	$\frac{-3a_0+2(a_5-8a_6+5a_7)}{4\sqrt{2}}$	0	0	0
Γ ₀ ^{#4} †	0	$\frac{-3a_0+2(a_5-8a_6+5a_7)}{4\sqrt{2}}$	$\frac{-3a_0+2(a_5-8a_6+5a_7)}{4\sqrt{2}}$	$\frac{1}{4} \left(-3 a_0 + 2 \left(a_5 - 8 a_6 + 5 a_7 \right) \right)$	0	0	0
$h_{0}^{#1}$ †	0	0	0	0	$\frac{a_0 k^2}{4}$	0	0
$h_{0}^{\#2}$ †	0	0	0	0	0	0	0
Γ ₀ -1 †	0	0	0	0	0	0	$-\frac{a_0}{2} - 2a_1 + 2a_2$

	$\Delta_0^{#1}$	$\Delta_0^{\#2}$	$\Delta_0^{\#3}$	$\Delta_0^{\#4}$	${\cal T}_{0}^{\#1}$	$\mathcal{T}_{0}^{#2}$	$\Delta_0^{\#1}$
†	0	0	0	0	0	0	0
†	0	$-\frac{2}{3(a_0+2a_5-6a_7)}-\frac{1}{6a_0-4(a_5-8a_6+5a_7)}$	$\frac{2}{3(a_0+2a_5-6a_7)} - \frac{1}{6a_0-4(a_5-8a_6+5a_7)}$	$-\frac{1}{\sqrt{2} (3 a_0 - 2 (a_5 - 8 a_6 + 5 a_7))}$	0	0	0
†	0	$\frac{2}{3(a_0+2a_5-6a_7)} - \frac{1}{6a_0-4(a_5-8a_6+5a_7)}$	$-\frac{2}{3(a_0+2a_5-6a_7)}-\frac{1}{6a_0-4(a_5-8a_6+5a_7)}$	$-\frac{1}{\sqrt{2} (3 a_0 - 2 (a_5 - 8 a_6 + 5 a_7))}$	0	0	0
†	0	$-\frac{1}{\sqrt{2} (3 a_0 - 2 (a_5 - 8 a_6 + 5 a_7))}$	$-\frac{1}{\sqrt{2} (3 a_0 - 2 (a_5 - 8 a_6 + 5 a_7))}$	$\frac{1}{-3 a_0 + 2 (a_5 - 8 a_6 + 5 a_7)}$	0	0	0
†	0	0	0	0	$\frac{4}{a_0 k^2}$	0	0
†	0	0	0	0	0	0	0
†	0	0	0	0	0	0	$-\frac{2}{a_0+4a_1-4a_2}$

	$\Gamma^{\#1}_{2^+ lphaeta}$	$\Gamma^{\#2}_{2^+ lphaeta}$	Γ ^{#3} ₂ + αβ	$h_{2}^{\#1}{}_{lphaeta}$	$\Gamma_{2}^{\#1}_{\alpha\beta\chi}$	$\Gamma_2^{\#2}_{\alpha\beta\chi}$
$\Gamma_{2}^{#1}$ † $^{\alpha\beta}$	$\frac{1}{4}(a_0 - 2a_1 - a_2)$	0	$-\frac{1}{4}\sqrt{3}(2a_1+a_2+a_9)$	0	0	0
$\Gamma_{2+}^{\#2} \dagger^{\alpha\beta}$	0	$-\frac{3}{4}(a_0+2a_5-6a_7)$	0	0	0	0
$\Gamma_{2}^{#3} \dagger^{\alpha\beta}$	$-\frac{1}{4}\sqrt{3}(2a_1+a_2+a_9)$	0	$-\frac{3}{4} \left(2 a_1 + a_2 - 2 a_5 - 6 a_7 + 2 a_9 \right)$	0	0	0
$h_2^{\#1} \dagger^{\alpha\beta}$	0	0	0	$-\frac{a_0 k^2}{8}$	0	0
$\Gamma_{2}^{\#1} \dagger^{\alpha\beta\chi}$	0	0	0	0	$\frac{1}{4}(a_0 - 2a_1 - a_2)$	$-\frac{1}{4}\sqrt{3}(2a_1+a_2+a_9)$
$\Gamma_2^{\#2} \dagger^{\alpha\beta\chi}$	0	0	0	0	$-\frac{1}{4}\sqrt{3}(2a_1+a_2+a_9)$	$-\frac{3}{4}(2a_1+a_2-2a_5-6a_7+2a_9)$

			9	
	Massive partic	le	?	Quadratic po
	Pole residue:	$\left \frac{1}{4a_{13}}>0\right $?	Pole residue:
	Polarisations:	3	?	Polarisations:
!	Square mass:	$\left \frac{{}^{-3a_0 + 2(a_5 - 8a_6 + 5a_7)}}{8a_{13}} > 0 \right $?	
	Spin:	1		
	Parity:	Odd		