Exercise 1: Equivalent Representation of Separation and Sufficiency

(a) Show the equivalence between

$$\hat{y} \perp \!\!\!\perp \mathbf{A} \mid y$$

and

$$\mathbb{P}(\hat{y} = 1 \mid y = -1, \mathbf{A} = \mathbf{a}) = \mathbb{P}(\hat{y} = 1 \mid y = -1, \mathbf{A} = \tilde{\mathbf{a}})$$
 (equal false positive rates)

$$\mathbb{P}(\hat{y} = -1 \mid y = 1, \mathbf{A} = \mathbf{a}) = \mathbb{P}(\hat{y} = -1 \mid y = 1, \mathbf{A} = \tilde{\mathbf{a}})$$
 (equal false negative rates)

which holds for all possible realizations $\mathbf{a}, \tilde{\mathbf{a}}$ of \mathbf{A} .

(b) Show the equivalence between

$$y \perp \!\!\! \perp \mathbf{A} \mid \mathbf{S}$$

and

$$\mathbb{P}(y=1 \mid \mathbf{S}=s, \mathbf{A}=\mathbf{a}) = \mathbb{P}(y=1 \mid \mathbf{S}=s, \mathbf{A}=\tilde{\mathbf{a}})$$

holding for all possible realizations $\mathbf{a}, \tilde{\mathbf{a}}$ of \mathbf{A} and all possible realizations s of \mathbf{S} .

Exercise 2: Fairness Measure

Assume that the sensitive attribute **A** has only two possible realizations, say **a** and $\tilde{\mathbf{a}}$, and **a** corresponds to a privileged group and $\tilde{\mathbf{a}}$ to an unprivileged group. Let $d_{\max} = \min\left(\frac{\mathbb{P}(\hat{y}=1)}{\mathbb{P}(\mathbf{A}=\tilde{\mathbf{a}})}, \frac{\mathbb{P}(\hat{y}=-1)}{\mathbb{P}(\mathbf{A}=\tilde{\mathbf{a}})}\right)$ and consider the following measure for fairness

$$\delta = \frac{\mathbb{P}(\hat{y} = 1 \mid \mathbf{A} = \mathbf{a}) - \mathbb{P}(\hat{y} = 1 \mid \mathbf{A} = \tilde{\mathbf{a}})}{d_{\max}}.$$

Which values can this measure realize and how can we interpret the extreme values from a fairness perspective?

Exercise 3: Calibration

Assume we have a set

$$\mathcal{D} = \left\{ \left(\mathbf{x}^{(i)}, y^{(i)} \right) \right\}_{i=1}^{N} \in \left(\mathcal{X} \times \mathcal{Y} \right)^{N}$$

of training examples $(\mathbf{x}_i, y_i) \in \mathcal{X} \times \mathcal{Y}$, where $\mathcal{X} = \mathbb{R}^d$ and $\mathcal{Y} = \{-1, +1\}$. Recall that in logistic regression the probability $p(y = +1 \mid \mathbf{x})$ is modeled as

$$\pi_{\boldsymbol{\theta}}: \ \mathcal{X} \to [0, 1]$$

$$\mathbf{x} \mapsto \frac{1}{1 + \exp\left(-\langle \boldsymbol{\theta}, \mathbf{x} \rangle\right)},$$

with $\boldsymbol{\theta} = (\theta_1, \dots, \theta_d)^{\top} \in \mathbb{R}^d$ is a parameter vector.

Assume we have a partition of \mathcal{X} into $G \in \mathbb{N}$ groups¹, say $\mathcal{X}_1, \ldots, \mathcal{X}_G$. Consider the following quantity

$$H_{\theta}(G) = \sum_{g=1}^{G} \frac{(O_{g,+1} - E_{g,+1|\theta})^2}{E_{g,+1|\theta}} + \frac{(O_{g,-1} - E_{g,-1|\theta})^2}{E_{g,-1|\theta}},$$

where $O_{g,\pm 1}$ is the number of observed y's which are ± 1 and the corresponding \mathbf{x} is an element of \mathcal{X}_g , and $E_{g,\pm 1|\boldsymbol{\theta}}$ is the number of expected y's which are ± 1 under the model $\pi_{\boldsymbol{\theta}}$ and the corresponding \mathbf{x} is an element of \mathcal{X}_g .

¹Here, we mean disjoint subsets of \mathbb{R}^d whose union is $\mathcal{X} = \mathbb{R}^d$

- (a) Give a mathematical definition of $O_{g,+1}$, $O_{g,-1}$, $E_{g,+1|\theta}$ and $E_{g,-1|\theta}$.
- (b) If the model π_{θ} is (approximately) well-calibrated, what values should $H_{\theta}(G)$ take? What is a desirable property of the partition $\mathcal{X}_1, \ldots, \mathcal{X}_G$ of \mathcal{X} ?
- (c) Generate a data set \mathcal{D} with $\mathcal{X} = \mathbb{R}$ of size N = 100 in the following way:
 - Sample each x_i according to a standard normal distribution;
 - Sample u_i uniformly at random from the unit interval;
 - Set $y_i = 2 \cdot \mathbb{1}_{[u_i < \exp(x_i)/(1 + \exp(x_i))]} 1$

Fit a logistic regression model π_{θ} to the data and visualize whether the model is calibrated in a suitable way. Next, compute $H_{\theta}(G)$ for different values of G, say $G \in \{5, \ldots, 15\}$, where you use a suitable partition $\mathcal{X}_1, \ldots, \mathcal{X}_G$ of \mathcal{X} . Repeat this whole procedure (of computing $H_{\theta}(G)$) for 1000 times and compute the average over the computed $H_{\theta}(G)$ values and plot these averages as a function of G into one figure.

- (d) Generate your data set \mathcal{D} of size N = 100 in the following way:
 - Sample each x_i according to a standard normal distribution;
 - Sample u_i uniformly at random from the unit interval;
 - Set $y_i = 2 \cdot \mathbb{1}_{[u_i < \exp(x_i^2)/(1 + \exp(x_i^2))]} 1$

Repeat (c) for this data generating process and include the resulting average curve into the figure of (c).