

Riskoptima Wealth Tech Temmuz 2025

## ML in Trading

### Contents



- 1.Data acquisition and preprocessing for financial markets
- 2. Feature engineering for time series data
- 3. Machine learning models for classification and regression
- 4. Options trading strategies with ML
- 5. Backtesting and performance evaluation
- 6. Advanced techniques and real-world applications

## Data Sources For Trading



#### **Market Data**

Price and volume information for financial instruments:

- OHLCV (Open, High, Low, Close, Volume)
- Tick data (trade-by-trade information)
- Order book data (bid/ask prices and volumes)
- Index values and constituents

#### **Fundamental Data**

<u>Information about company financials and performance:</u>

- <u>Financial statements (income, balance sheet, cash flow)</u>
- Earnings reports and forecasts
- Valuation metrics (P/E, P/B, EV/EBITDA)
- <u>Dividend information</u>

#### **Alternative Data**

Non-traditional data sources that may provide trading insights:

News sentiment and social media analysis

Satellite imagery (e.g., retail parking lots)

Credit card transaction data

Web traffic and app usage statistics

#### **Derivatives Data**

Information about options, futures, and other derivatives:

Options chains (strikes, expiries, premiums)

Implied volatility surfaces

Greeks (delta, gamma, theta, vega)

Open interest and volume

#### MARKET DATA



#### **Market Data Sources**

1 Yahoo Finance: Free historical data for stocks, ETFs, and indices

2 Alpha Vantage: API for real-time and historical data

3 Quandl: Financial, economic, and alternative datasets

4 IEX Cloud: Real-time and historical financial data

5 Polygon.io: Market data for stocks, options, forex, and crypto

#### **Data Formats**

- CSV: Simple tabular format for historical data
- JSON: Common format for API responses
- Parquet/HDF5: Efficient storage for large datase

```
# Fetching Stock Data with yfinance
import yfinance as yf
import pandas as pd
# Download historical data for AAPL
ticker = 'AAPL'
start date = '2020-01-01'
end date = '2023-12-31'
data = yf.download(ticker,
                   start=start date,
                   end=end date)
# Display the first 5 rows
print(data.head())
# Sample output:
# Open High Low Close Adj Close Volume
# Date
  2020-01-02 74.059998 75.150002 73.797501 75.087502
```

#### **OPTIONS DATA**

#### **Options Data Components**

- Contract Specifications: Strike price, expiration date, option type (call/put)
- Pricing Information: Bid, ask, last price, mid price Greeks: Delta, gamma, theta, vega, rho
- Implied Volatility: Market's expectation of future volatility
- Volume and Open Interest: Trading activity and outstanding contracts

#### **Sample Option Data**

| Strike           | Expiry     | Туре | Last  | Bid   | Ask   | IV   | Delta |
|------------------|------------|------|-------|-------|-------|------|-------|
| 180              | 2023-07-21 | Call | 10.25 | 10.10 | 10.40 | 0.28 | 0.65  |
| <sup>/</sup> 185 | 2023-07-21 | Call | 7.50  | 7.35  | 7.65  | 0.27 | 0.55  |
| 190              | 2023-07-21 | Call | 5.20  | 5.10  | 5.30  | 0.26 | 0.45  |



```
# Options Data Processing
import pandas as pd
import numpy as np
import bz2
import pickle
# Load compressed options data
def load_options_data(file_path):
    with bz2.BZ2File(file_path, 'rb') as f:
        data = pickle.load(f)
    return data
# File path
file_path =
 'data_modules/spx_eom_expiry_options_2015_2022.bz2'
# Load the data
options_data = load_options_data(file_path)
# Convert to DataFrame
```

#### DATA STORAGE

#### **Data Storage Methods**

- 1. CSV Files
- Simple text files with comma-separated values, widely used for tabular data.
- Pros: ✓ Human-readable, ✓ Universal compatibility, ✓ Easy to share
- Cons: X Inefficient for large datasets, X No schema enforcement, X Slow to read/write
- 2. Compressed Files (bz2, gzip)
- Compressed formats that reduce storage requirements for large datasets.
- Pros: ✓ Reduced storage space, ✓ Faster network transfers, ✓ Maintains original format
- Cons: X Compression/decompression overhead, X Not directly queryable, X Requires full decompression
- 3. Pickle Files
  - Python-specific binary format for serializing Python objects.
- Pros: ✓ Preserves Python objects, ✓ Fast for Python workflows, ✓ Maintains complex structures
- Cons: X Python-specific, X Security concerns, X Version compatibility issues
- 4. Parquet / HDF5
- Columnar storage formats optimized for analytics and big data.
- Pros: ✓ High compression, ✓ Column-oriented for analytics, ✓ Schema enforcement
- Cons: X Less human-readable, X Requires specialized tools



```
# Working with Different Storage Formats
import pandas as pd
import numpy as np
import pickle
import bz2
# Sample data
data = {
    'date': pd.date range('2022-01-01', periods=100),
    'price': np.random.randn(100).cumsum() + 100,
    'volume': np.random.randint(1000, 10000, 100)
df = pd.DataFrame(data)
# 1. Save as CSV
df.to_csv('stock_data.csv', index=False)
# 2. Save as Pickle
df.to_pickle('stock_data.pkl')
```

#### **DATA PROCESSING**

#### Preprocessing Steps for Financial Data

#### 1. Handling Missing Values

- Financial data often contains missing values due to non-trading days, data collection issues, or corporate actions.
  - Options include forward/backward filling, interpolation, or removing affected rows.

#### 2. Adjusting for Corporate Actions

- Stock splits, dividends, and other corporate actions can create discontinuities in price series.
  - Adjusted prices account for these events to maintain consistency.

#### 3. Normalization and Scaling

- Different assets have different price ranges.
- Normalization techniques like min-max scaling or standardization help models focus on relative movements rather than absolute values.

#### 4. Handling Outliers

- Market crashes, flash crashes, or data errors can create extreme values.
- Techniques like winsorization, trimming, or robust scaling can mitigate their impact on models.

#### 5. Time Series Alignment

- When working with multiple data sources, proper time alignment is crucial.
- Different exchanges, time zones, and reporting frequencies must be harmonized.



```
# Data Preprocessing Example
import pandas as pd
import numpy as np
from sklearn.preprocessing import StandardScaler,
RobustScaler
# Load stock data
df = pd.read_csv('AAPL_daily_data.csv')
df['Date'] = pd.to_datetime(df['Date'])
df.set index('Date', inplace=True)
# 1. Handle missing values
# Check for missing values
print(f"Missing values: {df.isnull().sum()}")
# Fill missing values using forward fill
df.fillna(method='ffill', inplace=True)
# 2. Calculate returns instead of using prices
df['Returns'] = df['Adj Close'].pct change()
```

#### **Feature Engineering**



- Moving Averages (MA)
- Bollinger Bands
- Relative Strength Index (RSI)
- MACD (Moving Average Convergence Divergence)

#### Time Series Features

- Day, Week, Month Features
- Lag Features
- **Example 2** Return Calculations

#### Feature Selection and Importance

- **©** Feature Importance
- Correlation Analysis
- Dimensionality Reduction (PCA)



```
# Calculate Technical Indicators
import pandas as pd
import numpy as np
def calculate_features(df):
    # Moving Averages
   df['MA5'] = df['close'].rolling(window=5).mean()
    df['MA20'] = df['close'].rolling(window=20).mean()
    # Bollinger Bands
    df['MA20_std'] = df['close'].rolling(window=20).std()
    df['upper_band'] = df['MA20'] + (df['MA20_std'] * 2)
    df['lower band'] = df['MA20'] - (df['MA20 std'] * 2)
    # RSI calculation
    delta = df['close'].diff()
    gain = (delta.where(delta > 0, 0)).rolling(window=14).mean()
    loss = (-delta.where(delta < 0, 0)).rolling(window=14).mean()</pre>
    rs = gain / loss
    df['RSI'] = 100 - (100 / (1 + rs))
    return df
```

#### **Machine Learning Models**

#### **Classification Models**

- Decision Trees
- A Random Forest
- Support Vector Machines (SVM)
- Artificial Neural Networks

#### **Regression Models**

- ✓ Linear Regression
- Gradient Boosting Regression

#### **Ensemble Models**

- Voting Classifier
- **Stacking**
- Bagging
- Boosting (XGBoost, LightGBM)

#### **Model Evaluation**

- Accuracy
- Precision and Recall
- \* F1 Score
- ✓ ROC Curve and AUC



ΛA

```
# Decision Tree Model
from sklearn.tree import DecisionTreeClassifier
from sklearn.model selection import train test split
from sklearn.metrics import accuracy_score, classification_report
# Split dataset
X_train, X_test, y_train, y_test = train_test_split(
    features, target, test_size=0.2, random_state=42)
# Create and train decision tree model
dt_model = DecisionTreeClassifier(max_depth=5)
dt model.fit(X train, y train)
# Make predictions
y pred = dt model.predict(X test)
accuracy = accuracy_score(y_test, y_pred)
print(f"Model accuracy: {accuracy:.4f}")
# Evaluate model
report = classification report(y test, y pred)
print(report)
```

#### **Option Trading**

#### **Options Strategies**

- Put Spread Strategy
- Straddle Strategy
- Strangle Strategy
- **#** Butterfly Spread

#### ML for Options Trading

- Implied Volatility Forecasting
- Options Pricing
- Strategy Selection
- Optimal Entry/Exit Timing
- Risk Management

```
# Call Spread Strategy Setup
import pandas as pd
import numpy as np
from datetime import datetime, timedelta
# Load options data
options data = pd.read csv('data modules/spx eom options 2022.csv')
# Select options for Call Spread strategy
def setup_call_spread(options_df, date, underlying_price):
    # Filter options for specific date
   day_options = options_df[options_df['date'] == date]
    # Select ATM call option (lower leg)
    atm call = day options
        (day_options['option_type'] == 'call') &
        (day_options['strike'] >= underlying_price)
    ].iloc[0]
    # Select OTM call option (upper leg)
    otm_call = day_options[
        (day_options['option_type'] == 'call') &
        (day_options['strike'] > atm_call['strike'])
    ].iloc[0]
    # Create call spread strategy
    call spread = {
        'date': date,
        'lower_leg': atm_call['strike'],
        'upper leg': otm call['strike'],
        'net_premium': atm_call['mid_price'] - otm_call['mid_price']
    return call spread
```



#### **Backtesting**

#### **Backtesting Components**

- **Historical Data**
- Signal Generation
- Trade Simulation
- Performance Analysis

#### **Performance Metrics**

- Total and Annualized Returns
- Maximum Drawdown
- Sharpe and Sortino Ratios
- **Win Rate and Profit Factor**

#### **Backtesting Challenges**

- ! Overfitting Risk
- Transaction Costs
- (Look-Ahead Bias
- Survivorship Bias
- 📏 Out-of-Sample Testing



```
# Backtest a Strategy
import pandas as pd
import numpy as np
def backtest_strategy(df, signals, initial_capital=10000):
    # Create a positions dataframe
    positions = signals.copy()
    positions['position'] = 0
    positions.loc[signals['signal'] == 1, 'position'] = 1
    positions.loc[signals['signal'] == -1, 'position'] = -1
    # Calculate daily returns
    df['returns'] = df['close'].pct change()
    # Calculate strategy returns
    positions['strategy_returns'] = positions['position'].shift(1) * df['returns']
    # Calculate cumulative returns
    positions['cumulative_returns'] = (1 + positions['strategy_returns']).cumprod()
    # Calculate equity curve
    positions['equity curve'] = initial capital * positions['cumulative returns']
    # Calculate performance metrics
    total_return = positions['cumulative_returns'].iloc[-1] - 1
    sharpe_ratio = positions['strategy_returns'].mean() / positions['strategy_returns'].std() * np.sqrt(252)
    return positions, total return, sharpe ratio
```



# Thank you for reading