Dimensionnement d'une alimentation isolée/

Noyau Transformateur

Réalisé par : FALL El Hadji Fallou, PEREZ Rphael, ABATY Sidi & TALEB Salah Dine

Tuteur académique : SCHELLMANNS Ambroise

SOMMAIRE

- > Introduction
- Définir le cahier des charges
- > Choix de la topologie
- > Dimensionnement et choix des composants
- Mathcad
- Simulation
- Conclusion

Introduction

> Dimensionner un convertisseur DC/DC isolé,

> Sélectionner les composants adaptés

Analyser ses performances (efficacité énergétique, régulation de la tension et de conformité aux exigences de sécurité).

Cahiers des charges

Etude de A à Z une alimentation à découpage:

- Entrée en 300V DC
- Isolation galvanique
- Sortie 12V DC 8A
- Rendement global 90%

PROBLÈME

- Isolation galvanique oblige l'utilisation d'une topologie a base de transformateur.
- Topologie type hacheur série a proscrire

Comparaison des topologies existante

Topologie	Puissance typique	Complexité	Composants clés	Utilisation
			· / /	Petites
Flyback	<150 W	Simple	,	puissances, isolement
Foward(1 interrupteur)	100-150 W	Moyenne	ldiode l transtol	meilleure régulation
Foward(2interrupteurs)	150-350 W	Moyenne+	,	Meilleure efficacité
Push-Pull	100-500 W	Complexe	,	Entrée à haute tension
Demi-pont	150-500 W	Complexe		Applications industrielles
Pont complet		Très complexe	4 MOSFET, transformateur	Très hautes puissances

Choix du Flyback

- ✓ Adapté aux faibles puissances (< 150W)
- ✓ Simplicité de conception
- ✓ Isolation galvanique intégrée grâce au transformateur
- ✓ Bonne régulation avec contrôle en mode courant.

Comparaison entre Mode Tension et Mode Courant

Mode de Régulation	Principe	Avantages	Inconvénients
II .	Compare la tension de sortie à une référence et ajuste le rapport cyclique (Duty Cycle)	II I	Moins stable, réponse plus lente
Mode Courant	Compare le courant primaire du transformateur à une référence	rapide, protection	Nécessite une mesure de courant (résistance shunt)

Comparaison des modes de fonctionnement d'ul Flyback : CCM vs DCM

Tension de sortie		Moins stable, dépend plus de la charge.
Tension de drain du MOSFET	d oscillations dues au	Plus élevée à cause des surtensions et oscillations sur le drain du MOSFET.
Pertes dans le transformateur	Plus faibles, car le courant est plus lisse et les pics sont réduits.	Plus élevées, car les pics de courant augmentent les pertes Joule et les pertes par effet de peau.
transformateur	car l'énergie est transférée plus	pour stocker l'énergie en une seule phase.
électromagnétiques)	de façon plus douce.	pics de courant.
Complexité de commande	l'instabilité.	conduction.
Utilisation typique	Puissance moyenne à élevée (>50W) : alimentations industrielles, chargeurs haute puissance.	Puissance faible à moyenne (<50W) : chargeurs USB, petites alimentations.

Mode continu / Discontinu

- Le courant dans l'inductance ne retombe jamais à zéro pendant la période de commutation.
- Le courant dans l'inductance retombe à zéro avant la fin de chaque cycle.

Choix du mode continu.

- ✓ Réduire les contraintes électriques et thermiques
- ✓ Améliorer le rendement
- ✓ Réduire Leş EMI.

allure des tensions et courants en conduction continue (charge RL avec DRL)

Choix des composants

1. Rapport de transformation :

$$m = \frac{1-\alpha}{\alpha Ve} . Vs = \frac{1-0.45}{0.45*300} . 12 = 0.048$$

F = 100 kHz et α = 0.45

2. Choix du noyau de ferrites choisi :

ETD39/20/13 3C90

Effective core parameters

SYMBOL	PARAMETER	VALUE	UNIT
Σ(I/A)	A) core factor (C1)		mm ⁻¹
V _o	effective volume	11500	mm ³
I _e	effective length	92.2	mm
Ao	effective area	125	mm ²
Amin	minimum area	123	mm ²
m	mass of core half	~ 30	g

GRADE	A _L (nH)	μе	AIR GAP (μm)	TYPE NUMBER
3C90	3000 ±25%	≈ 1760	≈ 0	ETD39/20/13-3C90
3C94	3000 ±25%	≈ 1760	≈ 0	ETD39/20/13-3C94
3C95 des	3650 ±25%	≈ 2145	≈ 0	ETD39/20/13-3C95
3F3	2800 ±25%	≈ 1640	≈ 0	ETD39/20/13-3F3

NUMBER OF SECTIONS	WINDING AREA (mm²)	MINIMUM WINDING WIDTH (mm)	AVERAGE LENGTH OF TURN (mm)	AREA PRODUCT Ae x Aw (mm ⁴)	TYPE NUMBER
1	177	25.7	69	22100	CPH-ETD39-1S-16P(1)

Données fixes: $J = 4A/mm^2$ et Kb = 0.17

Le choix de kb=0.17 à 100 kHz

✓ Permet de limiter l'induction maximale Bmax à 0.1 T,.

✓ Réduisant ainsi le risque de saturation du noyau tout en maintenant un bon transfert d'énergie.

3. Puissance convertible:

$$P_{conv} = kb \times \delta i \times B \times Sf \times Sb \times \frac{f}{2\sqrt{\alpha}}$$

$$P_{conv} = 0.17 \times 4 \times 0.1 \times 125 \times 177. 10^{-6} \times \frac{100000}{2\sqrt{0.45}}$$

$$P_{conv} = 112W$$

On doit donc convertir 96 W.

4. Calcul des pertes fers :

$$P_{fer} = P_v \times Ve = 80.10^3 \times 11500.10^{-9} = 0.92 W$$

5. Calcul du nombre de spires :

$$N_1 = \frac{\alpha \times Ve}{B \times Sf \times f} = \frac{0.45 \times 300}{0.1 \times 125.10^{-6} \times 100.10^3} = 108$$
$$N_2 = m. N_1 = 0.048 \times 108 = 5$$

$$I_{1eff} = m.\sqrt{\alpha}.Is = 0.26 A$$
$$I_{2eff} = \sqrt{\alpha}.Is = 5.38 A$$

Section du conducteur du primaire : $S_{fil1} = \frac{I_{1eff}}{\delta i} = 0.065 \, mm^2$

Section du conducteur du secondaire : $S_{fil2} = \frac{I_{2eff}}{\delta i} = 1.345 \text{ mm}^2$

Diamètre requis pour le fil primaire : $D_{fil1} = 2\sqrt{\frac{S_{fil1}}{\pi}} = 0.2877mm$

Diamètre requis pour le fil secondaire : $D_{fil2} = 2\sqrt{\frac{S_{fil2}}{\pi}} = 1.3086 \, mm$

6. Epaisseur de peau :

$$\delta_p = \sqrt{\frac{\rho_{cu}}{\pi \mu_0 f}} \approx \frac{70}{\sqrt{f}} = \frac{70}{\sqrt{100k}} = 0.221mm$$

$$d\delta_p = 2\delta_p = 0.442mm$$

On a : $D_{fil1} < d\delta_p$, donc nous avons choisi un fil classique.

<u>Choix du conducteur normalisé</u>: AWG29 (primaire) avec $S_{cu1} = 0.0642 \ mm^2$

Puisque $D_{fil2} > d\delta_p$, un fil de Litz est nécessaire.

7. Choix du fil de Litz

Diamètre des brins

Le diamètre d'un brin doit être inférieur à $d\delta_p = 2\delta_p = 0.442mm$.

Un choix courant est 0.2 mm, qui est bien inférieur à 0.442 mm.

La section d'un brin de diamètre 0.2 mm est :

$$S_{brin} = \frac{\pi (0.2)^2}{4} = 0.0314 \ mm^2$$

Nombre de brins nécessaires

Pour atteindre la section totale requise $S_{fil2} = 1.345 \text{ mm}^2$, on calcule :

$$n = \frac{S_{fil2}}{S_{brin}} = \frac{1.345}{0.0314} = 43$$

On choisit un fil de Litz standard avec 48 brins de 0.2 mm, ce qui est légèrement supérieur à la valeur minimale requise.

Le noyau ETD39/20/13 a une fenêtre de bobinage d'environ : $S_{fenetre} = 46 \; mm^2$

Occupation du bobinage primaire

Nombre de spires : N1=108

Section du fil primaire : $S_{fil1} = 0.0642 \text{ mm} 2 \text{ (AWG29)}$

Occupation totale: $S_{primaire} = N_1 \times S_{fil1} = 108 \times 0.0642 = 12 \text{ mm}^2$

Occupation du bobinage secondaire

Nombre de spires : $N_2 = 5$

Fil de Litz choisi: 48×0.248 mm (diamètre total ≈1.8 mm)

Section effective d'un fil de Litz :

$$S_{cu2} = \frac{\pi (1.8)^2}{4} = 2.54 \ mm^2$$

Occupation totale: $S_{secondaire} = N_2 \times S_{fil2} = 5 \times 2.54 = 13 \text{ } mm^2$

Calcul de l'espace total occupé :

$$S_{total} = S_{primaire} + S_{secondaire} = 12 + 13 = 25 \text{ } mm^2$$

8. <u>Dimensionnement des inductances :</u>

$$L_1 = N_1^2 \times A_1 = 108^2 \times 3025.10^{-9} = 0.035 H$$

$$L_2 = N_2^2 \times A_l = 5^2 \times 3025.10^{-9} = 75.625 \, uH$$

Longueur moyenne pour le tour de bobinage : $L_{tour} = \pi.D$

$$L_{tour1} = \pi.D1 = \pi \times 0.3432 = 1.0782 \ mm$$

$$L_{tour2} = \pi.D2 = \pi \times 1.5958 = 5.013 \, mm$$

9. <u>Dimensionnement des résistances :</u>

$$\begin{split} R_1 &= N1. L_{tour1}. R_{fil1} = 108 \times 3.382. \, 10^{-3} \times 0.000222 = 2.627 m \Omega \\ R_2 &= N2. L_{tour2}. R_{fil2} = 49 \times 7.263. \, 10^{-3} \times 0.000111 = 39.5 \mu \Omega \end{split}$$

10. Calcul d'inductance magnétisante :

$$L_m = \frac{N_1^2 \times \mu_0 \times \mu_r \times A_e}{L_e}$$

$$L_m = \frac{108^2 \times 4\pi. \, 10^{-7} \times 1760 \times 125. \, 10^{-6}}{92.2. \, 10^{-3}} = 0.035 \, H$$

$$P_j = R_1 \cdot I_{1eff}^2 + R_2 \cdot I_{2eff}^2 = 1.32 \ mW$$

$$P_{transfo} = P_j + P_{fer} = 0.9232 W$$

11. <u>Calcul de puissance d'entrée - sortie :</u>

$$P_s = V_s \times I_s = 12 \times 8 = 96 W$$

$$P_e = \frac{Ps}{n} = 107 W$$

Dimensionnement de la diode

$$I_{dmoy} = \frac{(I_{2max} + I_{2min})(1 - \alpha)}{2} = I_s = 8 A$$

$$I_{Dmax} = I_{2max} = \frac{N1}{N2} \times \frac{Ve}{L1} \times \frac{\alpha}{2f} + \frac{Ps}{Vs(1 - \alpha)} = 14.96 A$$

$$I_{Dmin} = I_{2min} = -\frac{N1}{N2} \times \frac{Ve}{L1} \times \frac{\alpha}{2f} + \frac{Ps}{Vs(1 - \alpha)} = 14.13 A$$

$$V_{Dmax} = V_2 - V_s = -(mVe + V_s) = -26.4 V$$

Choix de la diode: VS-12CWQ03FN-M3(High Performance Schottky Rectifier)

Dimensionnement du MOSFET

$$I_{Tmax} = I_{1max} = \frac{Ve}{L1} \times \frac{\alpha}{2f} + m \times \frac{Ps}{Vs(1-\alpha)} = 0.717 A$$

$$I_{Tmin} = I_{1min} = m. I_{2min} = 0.696A$$

$$V_{Tmax} = V_e + \frac{Vs}{m} = 550 V$$

Choix du MOSFET: NTP055N65S3H (MOSFET - Power, N - Channel, SUPERFET_FAST)

Calcul des pertes et de rendement

1. Pertes diode et transistor:

$$\begin{split} P_{diode} &= 0.425 \times I_{Dmoy} + 0.0008 \times \alpha \times I_{s}^{2} \\ P_{diode} &= 0.425 \times 8 + 0.0008 \times 0.45 \times 8^{2} = 3.65 \, \mathrm{W} \\ P_{Transistor} &= P_{com} + P_{on} = V_{s} \times I_{1max} (T_{R} + T_{F}) \times \frac{f}{2} + R_{dson} \times I^{2}_{1eff} \\ P_{com} &= 12 \times 0.717 \times (16 \times 10^{-9} + 0.6 \times 10^{-9}) \times \frac{100000}{2} = = 7.14 \, \mathrm{mW} \\ P_{on} &= 0.045 \times 0.26^{2} = 2.4 \, mW \\ P_{Transistor} &= 7.14 \, mW + 2.4 mW = 9.54 \, mW \end{split}$$

2. Calcul de pertes totales :

$$P_{totale} = P_{transfo} + P_{Transistor} + P_{diode}$$

 $P_{totale} = 0.9232 W + 3.65 W + 9.54 mW = 4.58 W$

3. Calcul de rendement :

$$\eta = \frac{P_s}{P_s + P_{Totals}} = \frac{96}{96 + 4.58} = 0.954$$

Filtre de sortie

Le courant dans la charge étant constant (Is), la loi des condensateurs nous donne :

$$I_c = C \frac{dV}{dt}$$

Pendant la phase où D est bloquée, on a : $I_c = -I_s = -8 A$

Ce qui conduit à la variation de la tension sur le condensateur :

$$\Delta V_s = Is \frac{T_{offD}}{C}$$

Dans ce cas, la diode D est bloquée uniquement pendant la phase de conduction de l'interrupteur K, soit de 0 à αT .

$$T_{offD} = (1 - \alpha)T = 5.5 \,\mu s$$

$$C = Is \frac{T_{offD}}{\Delta Vs} = \frac{8 \times 5.5 \mu}{0.1} = 44 \mu F$$

Le condensateur stocke l'énergie et compense l'ondulation de tension lorsque la diode est bloquée

Régulation du courant de sortie dans un Flyback

Choix d'un amplificateur d'erreur : TL431

- ✓ Offre une référence de tension précise
- ✓ Une réponse rapide aux variations de courant.
- ✓ Facile à intégrer dans un système avec un optocoupleur pour l'isolation.

Régulation du courant de sortie dans un Flyback

Choix de l'optocoupleur : PC817

- ✓ Permet d'adapter le courant de sortie en fonction de la mesure obtenue par la régulation via TL431.
- √ largement disponibles.
- ✓ peu coûteux et largement documentés.
- ✓ Faciles à utiliser et à intégrer dans le design d'une alimentation flyback, tout en offrant des performances stables.

Schéma PC817

Régulation du courant de sortie dans un Flyback

Choix d'un contrôleur PWM: LM5023DGK

- ✓ Assure la gestion du MOSFET
- ✓ Permettant un contrôle précis de la commutation
- ✓ Une régulation de la tension et du courant de manière fiable.

1. Cahier des charges :

$$m \coloneqq \frac{1-\alpha}{\alpha \cdot V_s} \cdot V_s = 0.049 \qquad f \coloneqq \begin{bmatrix} 100000 \\ 50000 \end{bmatrix} \ I_{1eff} \coloneqq m \cdot \sqrt[2]{\alpha} \cdot I_s = 0.262 \ \textbf{\textit{A}} \quad I_{2eff} \coloneqq \sqrt[2]{\alpha} \cdot I_s$$

2. Section et diametre requis pour le fil

$$S_{fil1}\coloneqq\frac{I_{1eff}}{\delta i} = \left(6.559 \cdot 10^{-8}\right) \; \boldsymbol{m}^2 \qquad \qquad S_{fil2}\coloneqq\frac{I_{2eff}}{\delta i} = \left(1.342 \cdot 10^{-6}\right) \; \boldsymbol{m}^2$$

$$D_{fil1} \coloneqq \sqrt[2]{\frac{S_{fil1}}{\pi}} = (1.445 \cdot 10^{-4}) \ m$$
 $D_{fil2} \coloneqq \sqrt[2]{\frac{S_{fil2}}{\pi}} = (6.535 \cdot 10^{-4}) \ m$

3. Epaisseur de peau

$$\delta_{p1} \coloneqq \frac{70}{\sqrt[2]{f(0)}} = 0.221 \qquad \qquad \delta_{p2} \coloneqq \frac{70}{\sqrt[2]{f(1)}} = 0.313 \qquad \qquad d\delta_{p} \coloneqq 2 \cdot \delta_{p2} = 0.626$$

$$S_{brin}\!\coloneqq\!0.0314\ \pmb{mm}^2 \qquad x\!\coloneqq\!\frac{S_{fil2}}{S_{brin}}\!=\!42.727 \qquad S_{cuivre}\!\coloneqq\!0.064$$

$$N_1 \coloneqq \frac{\alpha \cdot V_e}{A(1,0) \cdot \prod\limits_{i=2}^{3} A(1,i)} = 108 \frac{\mathbf{kg} \cdot \mathbf{m}^2}{\mathbf{s}^3 \cdot \mathbf{A}} \qquad N_2 \coloneqq m \cdot N_1 = 5.28 \frac{\mathbf{kg} \cdot \mathbf{m}^2}{\mathbf{s}^3 \cdot \mathbf{A}}$$

4. Choix du fil de Litz

$$S_{Primaire} := N_1 \cdot S_{cuivre} = 6.912 \frac{\mathbf{kg} \cdot \mathbf{m}^2}{\mathbf{s}^3 \cdot \mathbf{A}}$$

$$S_{Sexondaire} := N_2 \cdot S_{cuivre} = 0.338 \frac{\mathbf{kg} \cdot \mathbf{m}^2}{\mathbf{s}^3 \cdot \mathbf{A}}$$

$$S := S_{Sexondaire} + S_{Primaire} = 7.25 \frac{\mathbf{kg \cdot m}^2}{\mathbf{s}^3 \cdot \mathbf{A}}$$

5. Dimensionnement des inductences :

$$L_1 := N_1^2 \cdot A(1,4) = 0.035 \frac{kg^2 \cdot m^4}{s^6 \cdot A^2}$$

$$L_2 := N_2^2 \cdot A(1,4) = (8.433 \cdot 10^{-5}) \frac{kg^2 \cdot m^4}{s^6 \cdot A^2}$$

$$L_{tour1} := \pi \cdot 0.3432 = 1.078$$

$$L_{tour2} \coloneqq \pi \cdot 1.6 = 5.027$$

4. Choix du noyau de ferrites

$$A \coloneqq \begin{bmatrix} \text{ "Sf" "Sb" "B" "f" "Al" "μe" "Volume" "Pv" "Reference"} \\ 125 \cdot 10^{-6} \ 177 \cdot 10^{-6} \ 0.1 \ f(0) \ 3025 \ 10^{-9} \ 1760 \ 11500 \cdot 10^{-9} \ 80 \cdot 10^{3} "ETD39/20/13 \ 3C90" \\ 271 \cdot 10^{-6} \ 300 \cdot 10^{-6} \ 0.1 \ f(1) \ 2800 \cdot 10^{-9} \ 3700 \ 11500 \cdot 10^{-9} \ 13 \cdot 10^{3} "TDK/B65803/T35" \\ 119 \cdot 10^{-6} \ 123 \cdot 10^{-6} \ 0.1 \ f(0) \ 1000 \cdot 10^{-9} \ 2300 \ 11500 \cdot 10^{-9} \ 100 \cdot 10^{3} "Im523" \\ 194 \cdot 10^{-6} \ 200 \cdot 10^{-6} \ 0.1 \ f(0) \ 1928 \cdot 10^{-9} \ 1243 \ 11500 \cdot 10^{-9} \ 890 \cdot 10^{3} "TL431" \\ 178 \cdot 10^{-6} \ 193 \cdot 10^{-6} \ 0.1 \ f(1) \ 1276 \cdot 10^{-9} \ 4593 \ 11500 \cdot 10^{-9} \ 100 \cdot 10^{3} "PC817A" \\ 125 \cdot 10^{-6} \ 177 \cdot 10^{-6} \ 0.1 \ f(1) \ 2800 \ 10^{-9} \ 1640 \ 11500 \cdot 10^{-9} \ 87 \cdot 10^{3} "ETD39/20/13 \ 3F3" \end{bmatrix}$$

112.139

$$n = 1 \dots \operatorname{rows}(A) - 1$$

Puissance Convertible =
$$\left(\frac{\delta i \cdot kb}{2 \cdot \sqrt[2]{\alpha}}\right) \cdot \prod_{i=0}^{3} A(n,i) = \begin{vmatrix} 206.031 \\ 74.186 \\ 196.655 \\ 87.06 \end{vmatrix} = \frac{A}{m^2}$$

Pertes =
$$\prod_{i=6}^{7} A(n,i) = \begin{bmatrix} 0.15 \\ 1.15 \\ 10.235 \\ 1.15 \\ 1.001 \end{bmatrix}$$

Ona choisi le noyaux 1

6. Dimensionnement des résistances :

$$R_1 \coloneqq N_1 \cdot L_{tour1} \cdot 0.000222 = 0.026 \frac{\mathbf{kg} \cdot \mathbf{m}^2}{\mathbf{s}^3 \cdot \mathbf{A}}$$

 $R_2 := N_2 \cdot L_{tour2} \cdot 0.000111 = (2.946 \cdot 10^{-3})$

7. Calcule dinductence magnetisante:

$$L_m \coloneqq \frac{N_1^{-2} \cdot 4 \ \pi \cdot 10^{-7} \cdot A(1,0) \cdot A(1,5)}{92.2 \cdot 10^{-3}} = 0.035 \ \frac{\mathbf{\textit{kg}}^2 \cdot \mathbf{\textit{m}}^4}{\mathbf{\textit{s}}^6 \cdot \mathbf{\textit{A}}^2}$$

$$p_j \coloneqq R_1 \cdot I_{1eff} + R_2 \cdot I_{2eff} = 0.023 \frac{\mathbf{kg} \cdot \mathbf{m}^2}{\mathbf{s}^3}$$

$$Pertes = 0.023 + 0.92 = 0.943$$

Simulation

t = 326.84 msbase de temps = 5 µs

Simulation

- ✓ régulation de la tension et du courant dépend de la fréquence et du rapport cyclique du signal d'entrée.
- ✓ L'absence du contrôleur implique une commande plus simple mais peut aussi limiter les capacités d'adaptation en cas de variations de charge ou de tension d'entrée.

Simulation

Résultats de la simulation

Conclusion et perspectives

- acquérir des compétences pratiques en calculs de performance
- dimensionner correctement les composants (transformateur, les transistors de commutation).
- Il serait bien de faire la conception

