# Lecture 10: Quantifying uncertainties in Monte Carlo estimates

**Professor Ilias Bilionis** 

#### The central limit theorem



#### The Central Limit Theorem

- Take  $X_1, X_2, \ldots$  to be iid random variables with mean  $\mu$  and variance  $\sigma^2$ .
- Consider their average:

$$S_N = \frac{X_1 + \dots + X_N}{N}$$

• The Central Limit Theorem States that:



# Example of the Central Limit Theorem

- Take  $X_i \sim \operatorname{Exp}(r)$  with r fixed.
- Define the average of N such variables:

$$S_N = \frac{X_1 + \ldots + X_N}{N}$$

- Characterize probability density function of the average via samples. repeatedly sample X, XN
- Compare to the CLT prediction.



#### N=1

CLT: Exponential by Gaussian (N=1)



#### N=2



### N=5

CLT: Exponential by Gaussian (N=5)



#### N = 10

CLT: Exponential by Gaussian (N=10)



#### N = 100

CLT: Exponential by Gaussian (N=100)



## CLT holds for any set of i.i.d. random variables

#### N = 1000

CLT: Exponential by Gaussian (N=1000)

