Universidade Federal de Alfenas - UNIFAL-MG

Disciplina: Matemática Discreta Período: 2025/1

Professor: Anderson José de Oliveira

Lista de Exercícios 2 - Teoremas

1.	Pesquise	О	que	éе	apresent	te	exemp.	los	sobre	cada	um	dos	itens	a	seguir:

- (a) proposição
- (b) axioma
- (c) conjectura
- (d) teorema
- (e) lema
- (f) corolário

2. Identifique o erro na prova do teorema a seguir:

Teorema 0.0.1 Para todos inteiros k, se k > 0 então $k^2 + 2k + 1$ é um número composto.

Prova:

Suponha que k é um número inteiro tal que k>0. Se k^2+2k+1 é composto então $k^2+2k+1=r\cdot s$, para inteiros r e s tal que $1<(k^2+2k+1)$ e $1< s<(k^2+2k+1)$. Já que $k^2+2k+1=r\cdot s$ e ambos r e s estão necessariamente entre 1 e k^2+2k+1 , então k^2+2k+1 não é primo. Assim, k^2+2k+1 é composto, o que devia ser mostrado. \square

3. Identifique o erro na prova do teorema a seguir:

Teorema 0.0.2 A soma de quaisquer dois inteiros pares é igual a 4k para algum inteiro k.

Prova:

Suponha que m e n são dois inteiros pares quaisquer. Pela definição de par m=2k para algum inteiro k e n=2k para algum inteiro k. Por substituição, m+n=2k+2k=4k, o que devia ser provado. \square

- 4. Prove se a seguinte afirmação é verdadeira ou não. Para todos inteiros n, $4(n^2 + n + 1) 3n^2$ é um quadrado perfeito.
- 5. Prove se a seguinte afirmação é verdadeira ou não. Para todos inteiros n e m, se n-m é par então n^3-m^3 é par.

- **6.** Prove se a seguinte afirmação é verdadeira ou não. O quociente de dois números racionais é um número racional.
- 7. Prove se a seguinte afirmação é verdadeira ou não

 \forall inteiros a, b e c, se a|b e a|c então a|(b+c).

- 8. Prove se a seguinte afirmação é verdadeira ou não. A soma de quatro números inteiros consecutivos não é divisível por 4.
- 9 O resultado de $\frac{1}{0}$ é um número irracional? Explique.
- 10. Prove por contraposição que a soma de dois números reais é menor que 50 então pelo menos um dos números é menor que 25.
- 11. Prove que se x > 0 e x < y, em que $x, y \in \mathbb{R}$, então $x^2 < y^2$.
- 12. Considere o conjunto dos números inteiros e prove que:
 - (a) a soma de dois números pares é par.
 - (b) a soma de dois números ímpares é par.
 - (c) o produto de dois números pares é par.
 - (d) o produto de dois números ímpares é ímpar.
 - (e) a soma de um número par e um número ímpar é ímpar.
 - (f) o produto de um número par e um número ímpar é par.
- 13. Prove por absurdo que: Se n é um número inteiro e seu quadrado é ímpar, então n também é ímpar.
- 14. Prove que $\sqrt{2}$ é um número irracional.
- 15. Mostre que a afirmação "Todo inteiro positivo pode ser escrito como a soma do quadrado de dois inteiros" é falsa.

Bom trabalho!! Estou à disposição para o que precisarem!!