Lecture 2 – measurement in physics

- Why electronic measurement is so useful.
- Input and output impedances. (Measuring with Oscilloscopes)
- Ideal operational amplifiers (op-amp). (Amplifying)
- Non-ideal behavior of op-amps.

The oscilloscope as a "perfect" measurement tool

- Probably the most important measuring device in laboratory physics as many transducers produce a voltage output. It's essential to know how to use one and what its limitations are.
- Oscilloscopes measure V(t) rather well. At up to few 100 MHz, and at least 500× higher if you are willing to pay money.
- And critically, they meet point 1 they don't affect what they're measuring, or do they?

"Black-boxes": input and output impedances

• Consider a <u>real</u> voltage source, such as a transducer for temperature, e.g. a thermocouple:

This can (Thevenin's theorem) always (in the linear regime) be represented by an equivalent circuit:

Here V_1 is a "perfect" voltage source – it can deliver an infinite current with V_1 constant – in series with an impedance.

If the output is shorted, a current i flows (which we can measure with an ammeter).

The <u>output impedance</u> of the transducer is defined as: $Z_{out} = V_1/i$.

Now consider connecting the transducer to a 'scope

• The oscilloscope's equivalent circuit is:

It just consists of an impedance, the <u>"input</u> <u>impedance"</u> + ideal Voltmeter (which draws no current)

• So we have:

transducer

 \square Current conservation and Ohm's law \Rightarrow

current in
$$Z_{out} = \text{current in } Z_{in} \Rightarrow \frac{V_1 - V_{in}}{Z_{out}} = \frac{V_{in} - 0}{Z_{in}}$$
.

So
$$V_{in} = V_1 \frac{Z_{in}}{Z_{in} + Z_{out}}$$
.

So for measurements with a real transducer and a real oscilloscope we find

 The voltage measured by the 'scope ≠ the voltage produced by the transducer.

$$V_{in} = V_1 \frac{Z_{in}}{Z_{in} + Z_{out}}$$

- For measurements to be approximately correct we need
 - Z_{in} very high so the 'scope draws very little current.
 - Z_{out} very low so the transducer provides as much current as possible.

Key insights

- It's easy to measure the wrong thing.
- This impacts both the transducer design and the measurement apparatus.
- For voltage measurements, we'd like:
 - A transducer with a low output impedance.
 - A measurement device with a high input impedance.
 - Typical 'scopes have Z_{in} at DC of 1-10 M Ω .

A second look at our measurement example

• Consider a perfect resistor network with R_1 and R_2 , and a perfect measuring instrument.

This means the device measuring V_{out} has $Z_{in} = \infty$ so it takes no current.

So,
$$i_{in} = \frac{V_{in}}{R_1 + R_2} = i_2 = \frac{V_{out}}{R_2}$$
.

This is called a "potential divider"

$$V_{out} = V_{in} \cdot \frac{R_2}{R_1 + R_2} = V_{in} \times \frac{\text{resistance across } V_{out}}{\text{resistance across } V_{in}}.$$

What if the 'scope impedance is complex?

• In real 'scopes Z_{in} is complex.

$$Z_{in} = \left(\frac{1}{R_{in}} + i\omega C_{in}\right)^{-1} = \frac{R_{in}}{1 + i\omega C_{in}R_{in}}$$

Frequency (Hz)

- $R_{in}\sim 1M\Omega$, $C_{in}\sim 20pF$
- Assume our transducer has $R_{out} \sim 100\Omega$

Assume our transducer has
$$R_{out} \sim 100\Omega$$
 $Z_{total} = R_{out} + Z_{in}$ $V_{out} = V_{in} \frac{Z_{in}}{Z_{total}}$ $V_{out} = V_{in} \frac{R_{in}}{R_{out} + \frac{R_{in}}{1 + i\omega C_{in}R_{in}}} = V_{in} \frac{R_{in}}{R_{in} + R_{out}(1 + i\omega C_{in}R_{in})}$ $V_{out} \geq 0.1$

Can we fix this?

This is a problem at high frequencies, but we can compensate to some extent using 'scope probes:

$$Z_{total} = Z_p + Z_{in}$$

$$V_{out} = V'_{in} \frac{Z_{in}}{Z_p + Z_{in}}$$

$$V_{out} = V'_{in} \frac{\frac{R_{in}}{1 + i\omega C_{in} R_{in}}}{\frac{R_p}{1 + i\omega C_p R_p} + \frac{R_{in}}{1 + i\omega C_{in} R_{in}}}$$

If
$$C_{in}R_{in} = C_pR_p$$
, $V_{out} = \frac{V'_{in} R_{in}}{R_{in} + R_p}$

 C_{in} is 'compensated', however $V_{out} \neq V'_{in}$

Some warnings regarding measurement

- 1. For <u>current measurement</u>, you least disturb the system if the measurement device <u>takes</u> all of the current $low Z_{in}$.
- 2. To <u>transfer maximum power</u> from one system to another (this is not equivalent to a non-invasive measurement) then Z_{out} of one system must equal Z_{in} of the next:
 - EM radiation flux into a solar cell.
 - ☐ The gel used when having an ultrasound scan.

(Impedance: ratio of a "potential" to a "flow")

The high Z_{in} of a 'scope is great for measuring voltage signals, but little power gets into the oscilloscope.

In general, we frequently amplify and/or modify them:

Operational amplifier...

Operational Amplifiers – background

- Packaged, high gain, high input impedance voltage amplifiers:
 - Contain 10-100 transistors, Rs, Cs etc.
 - Contain very clever circuitry. [we are skipping the electronics of discrete transistors!]
 - Draw energy from a power supply.
 - You as physicists need to know NONE of the details

Why is this?

- We wish to <u>use</u> op-amps (not design them).
- In this case we can follow a "systems" approach and assume their behavior is characterized by a small number of properties.
 - This is what physicists routinely do when modelling the real world
 - It's also to some extent necessary (and common) to use equipment where we "trust" previous design/implementation.
- A real op-amp is a good approximation to an ideal amplifier (we will explore how good later).

How to 'view' an op-amp

 Amplifier has an "open loop gain" of A

$$V_{out} = A(V_+ - V_-)$$

• So, for example, if we connect "+" input to a potential V_{in} and connect "-" input to ground:

$$V_{out} = AV_{in}$$

Properties of a model "ideal" voltage amplifier [assume]

these from now ... until we do otherwise!]

$$A = \infty$$

(in reality $A \gg 10^5$)

$$Z_{in} \equiv \frac{\partial V_{in}}{\partial i_{in}} = \infty$$

If the amplifier is fed with a small current that doesn't matter.

So it can provide lots of current to what it is connected to.

Let's ask ourselves: would such an ideal amplifier be useful? If $A=\infty$, even a tiny V_{in} would make $V_{out}=\infty$ (or rather equal to the ±15V supply limit...)

We can make such an infinite gain amplifier useful by using "negative feedback" $V_{out} = A(V_+ - V_-)$

- We sense a fraction of the output and connect to the –ve input.
- As the output rises, the amplifier starts lowering it.
- An equilibrium is reached that stops the output saturating
 - Under these circumstances, the analysis of circuits involving such amplifiers is relatively straightforward.

GOLDEN RULES FOR ANALYSING IDEAL OP-AMPS

- ☐ Golden Rule #1: the inputs draw no current:
 - Because Z_{in} is infinite.
- □ Golden Rule #2: The voltages on the "+" and "-" inputs are the same, unless the output is saturated:
 - Because A is so high, if the output is not to saturate, the voltages at the "+" and "-" inputs must be very close to equal.
 - Note: one must <u>provide</u> negative feedback to achieve this.

How to wire up an inverting voltage amplifier

- Want to find the self-consistent solution for V_{out}/V_{in} .
- This is called the "closed-loop" gain, i.e. the gain of the circuit with feedback.

□ Step 1:

- $V_{+} = 0$. So $GR2 \Rightarrow V_{-} = 0$.
- In this situation, the "-" pin is called a "virtual earth".

Step 2: conserve current and use Ohm's law

■ Remember to apply a p.d. sign convention consistently. Here we have taken V_{in} as highest, V_{\cdot} less, and V_{out} least (hence the current flow directions). Can, e.g., reverse this but the solution will be the same.

So, what does this mean in practice?

- Provided the op-amp is ideal (or nearly so):
 - We can use the systems approach.
 - The gain of the circuit is set by just the two resistors.
 - With negative feedback present at all frequencies, circuit will amplify provided V_{in} is not so high that V_{out} reaches ±15 V.

Skipping in lecture today

Can we better justify golden rule 2 $(v_+=v_-)$?

• What if we don't assume it's true? Remember A is very large (> 10^5)

Since V_{+} is grounded, the op-amp output:

$$V_{out} = A(V_+ - V_-) = -AV_-$$

Ohm's Law across R_1 and R_2 :

$$i_{in} = \frac{V_{in} - V_{-}}{R_{1}}, \qquad i_{2} = \frac{V_{-} - V_{out}}{R_{2}}$$

GR1 ($i_{-}=0$), so conserving current:

$$i_{in} = i_2 = \frac{V_{in} - V_{-}}{R_1} = \frac{V_{-} - V_{out}}{R_2}$$

$$V_{out} = -\frac{R_2}{R_1}V_{in} + \left(1 + \frac{R_2}{R_1}\right)V_{-}$$

$$V_{out} = -\frac{R_2}{R_1}V_{in} - \left(1 + \frac{R_2}{R_1}\right)\frac{V_{out}}{A}$$

$$V_{out} = -\frac{R_2}{R_1} V_{in} \left(\frac{A}{A + \left(1 + \frac{R_2}{R_1}\right)} \right) \approx -\frac{R_2}{R_1} V_{in}$$

$$V_+ - V_- pprox - rac{1}{A} rac{R_2}{R_1} V_{in} pprox 0$$
 (a very small number!)

Golden Rule 2!

So feedback + large A \rightarrow GR2

We can also wire non-inverting amplifier circuits

- Step 1:
 - GR2 \Rightarrow $V_{\underline{}} = V_{+} = V_{in}$

Step 2: conserve currents and use Ohm's law and GR1

$$i_{2} = i_{1} + i_{-} \Rightarrow \frac{V_{out} - V_{-}^{\vee} \vee V_{-} - 0}{R_{2}} = \frac{V_{-} - 0}{R_{1}} + 0 \qquad \Rightarrow gain \equiv \frac{V_{out}}{V_{in}} = 1 + \frac{R_{2}}{R_{1}}$$

We can understand the non-inverting circuit in a different (and helpful) way

• GR1 \Rightarrow i_{-} = 0 & GR2 \Rightarrow $V_{-} = V_{+} = V_{in}$ (as before)

- Can recognize that:
 - \blacksquare R_1 and R_2 are acting as a <u>potential divider</u> across V_{out} and ground (i.e. 0V)

$$V_{-} = V_{in} = \frac{R_1}{R_1 + R_2} \cdot V_{out} \Longrightarrow \frac{V_{out}}{V_{in}} = 1 + \frac{R_2}{R_1}.$$

Recovering our previous result.

Op-amps can be used to do much more than make amplifiers...

• The external components don't have to be just resistors – can be Rs, Cs, Ls and more ⇒ e.g. integrators, differentiators, filters...

This is useful for amplifying signals close to a <u>wanted</u> frequency and <u>filtering out</u> the rest.

Summary so far

- Making a measurement very likely may ⇒ measuring a small electrical signal.
- This must be measured faithfully, and possibly amplified and filtered.
- If we have an ideal high gain voltage amplifier we now know how to use it in a circuit.
- The circuit gain $(=V_{out}/V_{in})$ can be set by a few <u>external</u> components as long as they are arranged to give negative feedback.

Considering non-ideal performance

- How does non-ideal op-amp behaviour affect our previous results and their use in the lab:
 - Modelling non-ideal behavior.
 - Gain, Z_{in} , Z_{out} ?
- How do we manage other "failings" when measuring with a real device:
 - For example, frequency response.

What do we mean by a non-ideal op-amp?

A not ∞ but 10^4 – 10^6 .

 Z_{in} not ∞ but high, and Z_{out} not 0 but low.

A is complex and a function of frequency. The amplifying circuitry has a finite slew rate, dV_{out}/dt .

There is an input "bias current" independent of V_{in} (10⁻¹²-10⁻⁷A) that sets an upper limit to external resistor values.

There is an output voltage independent of (V_+-V_-) – equivalent to a differential offset of 10^{-3} to 10^{-2} V – that must be balanced with an external potentiometer.

A reasonable more realistic model for the non-inverting case

Conserve current and use Ohm's law:

At 1:
$$i_{in} = \frac{V_{in} - V_{-}}{r_{in}} = \frac{V_{-} - 0}{R_{1}} + \frac{V_{-} - V_{out}}{R_{2}}$$

At 2:
$$i_{out} = \frac{A(V_{in} - V_{-}) - V_{out}}{R_{out}} + \frac{V_{-} - V_{out}}{R_{2}}$$

What we do now is eliminate the unknowns to get the characteristics of the circuit

■ We treat the whole circuit as a "system" with an effective input impedance, an open-loop gain, and an output impedance such that we can write

$$V_{out} = V_{in} \cdot \text{(open loop gain)} - i_{out} \cdot \text{(output impedance)}$$
(G)
(Z_{out})

 \square We hope Z_{in} of the "system" is high and Z_{out} for the "system" is low.

Let's do the algebra, how does this "model" circuit compare to our "perfect" op-amp?

For large A and large r_{in} :

$$V_{out}/V_{in} = 1 + \frac{R_2}{R_1}$$

 $V_{out}/V_{in} = 1 + \frac{R_2}{R_1}$ $R = 10^4 - 10^6,$ $r_{in} = 10^5 - 10^8 \Omega, R_{out} = 30 - 3000 \Omega$

- As in the ideal case, like the Golden rules.
- For large A and large r_{in} :

$$Z_{out} \to \frac{R_{out}}{A} \left(1 + \frac{R_2}{R_1} \right)$$

- So the circuit has a lower Z_{out} than R_{out} of the op-amp itself.
- For large A and low R_{out} :

$$Z_{in} \to \frac{r_{in}A}{1 + R_2/R_1}$$

So the circuit has a higher Z_{in} than r_{in} of the op-amp itself. This amplifying circuit can have a $Z_{in} \sim 10^{12} \Omega$.

So basically if A is big, in this configuration the performance of the circuit as a voltage amplifier is almost "perfect"

This is because we have negative feedback – it's the <u>crucial</u> aspect of the circuit.

A useful, though apparently extreme, case of a non inverting amplifier has

 $R_2/R_1=0$:

The "buffer" or "follower"

$$V_{in} = V_{out}$$

BUT:
$$Z_{in} = r_{in} \cdot A$$
 and $Z_{out} = \frac{R_{out}}{A}$

Use this to "connect" two circuits together

We can similarly model the <u>inverting</u> non-ideal amplifier configuration

□ Again, don't analyze with the Golden Rules, but just conserve current and use Ohm's

law.

We find, provided *A* is high:

$$\frac{V_{out}}{V_{in}} = -\frac{R_2}{R_1}$$

As in the ideal case again.

Similarly, we can solve for the input and output impedances of this circuit. Are Z_{in} high & Z_{out} low?

$$Z_{out} = \frac{R_{out}}{A} f \binom{R_2}{R_1}$$

Good – with a typical op amp and R_1 =1k and R_2 =10k, Z_{out} = 10⁻³ Ω

$$Z_{in} = R_1 + \text{low} - \text{valued } f\left(\frac{R_1, R_2, r_{in}}{A}\right)$$

 R_1

- "virtual-earth" arrangement
- If R_1 is, say, 1k then this is small compared with r_{in} (10^5 - $10^8\Omega$), though large compared with Z_{out} ($\sim 10^{-3} \Omega$) of a previous op-amp stage.
- If you really $\underline{\text{need}} Z_{in}$ high, then use a non-inverting system.

Other shortcomings: frequency dependence

Most measurements involve a range of frequencies:

■ Seismic waves 0.1 Hz − 10 Hz

■ LIGO 50 Hz – 1 kHz

Human hearing 20 Hz – 20 kHz

□ Ultrasound 50 kHz – 200 kHz

In the practical lab you might explore the frequency response of a typical op-amp circuit by measuring it with a set up with a nominal gain of 10.

The measured gain of the circuit implies that op-amps have a built in reduction of A – why?

In general we find:

- \square Consider the feedback resistor, R_2 , in this circuit:
 - A real R_2 will actually be $Z(L,C,R,\omega)$, i.e. have a complex impedance

So, over a big enough frequency range, this can lead to a phase shift of π . This will change –ve feedback into +ve feedback \Rightarrow saturation/oscillation rather than amplification.

Is this really important for low freq. circuits?

- Consider switching a circuit on:
 - This step has Fourier components at all frequencies, so positive feedback is bound to happen.

So, op-amps are designed to have "internal frequency compensation" so that A itself falls at high frequencies.

- □ In itself, this is not always sufficient. <u>Also</u> need to stop oscillation-inducing signals getting back to the inputs, e.g.:
 - Pick-up from stray EM radiation: screen.
 - Along supply lines use decoupling capacitors.

Summary

This one op-amp lecture is the bare minimum one needs to know about op-amps

It already allows you to build a vast number of useful circuits.