DIT Departamento de Ingenieria e restilicaciones Tecnhodicas

Cuerpo rígido | Tensores de inercia

Masas puntuales

1. Péndulo de torsión desbalanceado

El sistema que se muestra en la ilustración para t=0 presenta pesos en los extremos de dos brazos. La barra dispuesta verticalmente se mantiene en tal dirección con rulemanes que posibilitan que el eje rote sin fricción con velocidad angular Ω constante respecto el marco inercial O_{xyz} . Para este análisis la masa de brazos y ejes es despreciable frente a la de los pesos m. Calcule:

- a) tensor de inercia respecto a A en función del tiempo $\overline{\overline{I}}_A(t)$
- b) momento angular $\vec{L}_A(t) = \overline{\overline{I}}_A(t) \vec{\Omega}$ y torque $\vec{\tau}(t) = \dot{\vec{L}}(t)$.

Resultados:

$$\begin{split} \bar{\bar{I}}_A &= \begin{bmatrix} \ell^2 m \left(-\cos^2\left(\phi\right)\cos^2\left(\Omega t\right) - \cos^2\left(\Omega t\right) + 2\right) & -\ell^2 m \left(\cos^2\left(\phi\right) + 1\right)\sin\left(\Omega t\right)\cos\left(\Omega t\right) & \frac{\ell^2 m \left(\sin\left(\Omega t - 2\phi\right) - \sin\left(\Omega t + 2\phi\right)\right)}{4} \\ -\ell^2 m \left(\cos^2\left(\phi\right) + 1\right)\sin\left(\Omega t\right)\cos\left(\Omega t\right) & \ell^2 m \left(\sin^2\left(\phi\right)\sin^2\left(\Omega t\right) - 2\sin^2\left(\Omega t\right) + 2\right) & -\frac{\ell^2 m \left(\cos\left(\Omega t - 2\phi\right) - \cos\left(\Omega t + 2\phi\right)\right)}{4} \\ \ell^2 m \left(\cos^2\left(\phi\right) + 1\right) & -\frac{\ell^2 m \left(\cos\left(\Omega t - 2\phi\right) - \cos\left(\Omega t + 2\phi\right)\right)}{4} & \ell^2 m \left(\cos^2\left(\phi\right) + 1\right) \end{bmatrix} \end{split}$$

$$\vec{L}_A = \begin{bmatrix} \frac{\Omega \ell^2 m \left(\sin\left(\Omega t - 2\phi\right) - \sin\left(\Omega t + 2\phi\right)\right)}{4} \\ -\frac{\Omega \ell^2 m \left(\cos\left(\Omega t - 2\phi\right) - \cos\left(\Omega t + 2\phi\right)\right)}{4} \\ \Omega \ell^2 m \left(\cos^2\left(\phi\right) + 1\right) \end{bmatrix}$$

$$\vec{\tau}_A = \begin{bmatrix} \frac{\Omega^2 \ell^2 m \left(\cos\left(\Omega t - 2\phi\right) - \cos\left(\Omega t + 2\phi\right)\right)}{4} \\ \frac{\Omega^2 \ell^2 m \left(\sin\left(\Omega t - 2\phi\right) - \sin\left(\Omega t + 2\phi\right)\right)}{4} \\ 0 \end{bmatrix}$$

2. Molécula de agua

Calcule los momentos de inercia en el SI para una molécula de H_2O . En CNPT se abre con un ángulo de $104,5^{\circ}$ y median $95,84\,\mathrm{pm}$ entre O y H. Resultado:

$$\overline{\overline{I}} = \begin{bmatrix} 1,02353565118967 \cdot 10^{-47} & 0 & 0 \\ 0 & 1,92240664746526 \cdot 10^{-47} & 0 \\ 0 & 0 & 2,94594229865493 \cdot 10^{-47} \end{bmatrix}$$

Cuerpos extensos

- 3. Cubo con arista b [Marion (e) ex. 11-3]
 - a) Calcule el tensor de inercia desde el sistema de ejes x_i con origen en el centro de masa O.
 - b) Use la forma general del teorema de ejes paralelos de Steiner para calcularlo en el sistema X_i con origen en el vértice Q

4. Componentes del tensor de inercia para una barra

Se tiene una barra de m=1 kg de sección despreciable frente a l=1 m. De alinear un eje (\hat{z}) con ella,

- a) Calcule sus momentos de inercia.
- b) Muestre que sucede con los productos de inercia.

5. Ejes conveniente para el cálculo del momentos de inercia

Se dibujan vistas en perspectiva de diversos objetos. Sabre estos dibuje los ejes intersectando en el punto

Mecánica Analítica Computacional

más conveniente para el cálculo de momentos de inercia, esto es, en el centro de masa. Haga lo mismo con los dos ejes que corresponden a la proyección en planta.

6. Planchuela calada

En una planchuela de densidad homogénea se calaron dos aberturas en forma simétrica. Suspendida desde el punto A pendulea en el plano x,y. Por eso es relevante conocer su momento de inercia I_{zz} desde ese punto. Cuente con los datos disponibles en un taller: espesor e del material, dimensiones del plano y una m de pesada.

Se sugiere seguir esta secuencia:

- a) Calcular la densidad del metal de la planchuela contemplando el área faltante por los calados.
- b) Idém. I_{zz} de uno de los calados circulares como si fuera de este metal.
- c) ídem. I_{zz} de una planchuela sin calado desde su centro de masa.
- d) Trasladar con el teorema de Steiner los I_{zz} de ambos calados circulares al centro de la planchuela.
- e) Restando al I_{zz} de la planchuela sin calado el de los círculos obtenga el de la planchuela calada.
- f) Nuevamente con Steiner traslade el I_{zz} de la planchuela calada al punto de penduleo A.

Resultado:
$$I_{zz} = \frac{m\left(-12\pi R^4 - 6\pi R^2 a^2 - 24\pi R^2 d^2 + 4a^3b + ab^3\right)}{12(-2\pi R^2 + ab)}$$

7. Cilindro rodando en semi-cilindro [Landau $\S 32\ 6]$

Hallar la energía cinética de un cilindro homogéneo de radio a que rueda en el interior de una superficie cilíndrica de radio R.

Resultado: $T = \frac{3m(R-a)^2\dot{\phi}^2}{4}$

- 8. Cono circular de altura h ${\bf y}$ radio de la base R $[{\rm Landau}~\S 32~2e]$
 - a) Calcule la posición del centro de masa O desde el vértice O'. Recuerde elegir límites de integración en función de la geometría. Resultado: $|\overline{OO'}| = \frac{3}{4}h$.

9. Cono rodante sobre un plano [Landau §32 7]

El contacto instantáneo con el plano XY, \overline{OA} , forma los ángulo de θ con X y α con el eje del cono. El otro dato conocido es la distancia hasta el cento de masa a.

- a) Asumiendo conocidos los momentos de inercia desde el vértice en la dirección del eje I_3 y en las perpendiculares $I_1=I_2$, escriba la expresión para la energía cinética. Resultado: $T=\frac{1}{2}\cos^2\alpha I_1\dot{\theta}^2+\frac{1}{2}\frac{\cos^4\alpha}{\sin^2\alpha}I_3\dot{\theta}^2+\frac{1}{2}ma^2\dot{\theta}^2$
- b) Exprese en la energía cinética a $I_{1,2,3}$, α y a en función del radio de la base del cono R y su altura h.

