Dynamics in two-dimensions

We have done:

kinematics in two dimensions

Newton's second law in one dimension

$$(F_{\text{net}})_x = \sum F_x = ma_x$$

$$x_f = x_i + v_{ix} \Delta t + \frac{1}{2} a_x (\Delta t)^2 \qquad y_f = y_i + v_{iy} \Delta t + \frac{1}{2} a_y (\Delta t)^2$$
$$v_{fx} = v_{ix} + a_x \Delta t \qquad v_{fy} = v_{iy} + a_y \Delta t$$

Dynamics in two-dimensions

We have done:

kinematics in two dimensions

Newton's second law in one dimension

$$(F_{\text{net}})_x = \sum F_x = ma_x$$
 and $(F_{\text{net}})_y = \sum F_y = ma_y$

$$x_{f} = x_{i} + v_{ix} \Delta t + \frac{1}{2} a_{x} (\Delta t)^{2}$$

$$y_{f} = y_{i} + v_{iy} \Delta t + \frac{1}{2} a_{y} (\Delta t)^{2}$$

$$v_{fx} = v_{ix} + a_{x} \Delta t$$

$$v_{fy} = v_{iy} + a_{y} \Delta t$$

As an example

A small rocket for gathering weather data has a mass of 30 kg and generates 1500 N of thrust. On a windy day, the wind exerts a 20 N horizontal force on the rocket. If the rocket is launched straight up, by how much has it been deflected sideways when it reaches a height of 1.0 km?

- Draw a free body diagram for the rocket.
- Apply Newton's second law $(F_{net} = ma)$ to the rocket in the y-direction.
- Apply Newton's second law to the rocket in the x direction.

Known $x_{i} = y_{i} = 0 \text{ m}$ $v_{ix} = v_{iy} = 0 \text{ m/s}$ $y_{f} = 1000 \text{ m}$ m = 30 kg $F_{\text{thrust}} = 1500 \text{ N}$ D = 20 NFind x_{f}

As an example

A small rocket for gathering weather data has a mass of 30 kg and generates 1500 N of thrust. On a windy day, the wind exerts a 20 N horizontal force on the rocket. If the rocket is launched straight up, by how much has it been deflected sideways when it reaches a height of 1.0 km?

- Draw a free body diagram for the rocket.
- Apply Newton's second law $(F_{net} = ma)$ to the rocket in the y-direction.
- Apply Newton's second law to the rocket in the x direction.

Projectile Motion with drag

$$a_{x} = -\frac{\rho CA}{2m} v_{x} \sqrt{v_{x}^{2} + v_{y}^{2}}$$

$$a_{y} = -g - \frac{\rho CA}{2m} v_{y} \sqrt{v_{x}^{2} + v_{y}^{2}}$$

A car travels around a curve at constant speed without sliding. What force is responsible for the acceleration of the car?

- a) Static Friction
- b) Normal Force
- c) Tension
- d) Kinetic Friction
- e) Thrust

A car travels around a curve at constant speed without sliding. What force is responsible for the acceleration of the car?

A satellite orbits the earth. What force is responsible for the acceleration of the satellite?

A little girl holds tight to the bars on a merry-go-round as it rotates steadily. What force is responsible for the acceleration of the girl?

- a) Static Friction between shoes and floor
- b) Gravity
- c) Kinetic Friction
- d) Tension in arms
- e) Thrust

Quiz

Question #19

An ice hockey puck is tied by a string to a stake in the ice. The puck is then swung in a circle. What force is producing the centripetal acceleration of the puck?

- A. Gravity
- B. Air resistance
- C. Friction
- D. Normal force
- E. Tension in the string
- F. A new force: the centrifugal force.

Uniform circular motion

rtz-coordinate system

- The *r*-axis (radial) points *from* the particle *toward* the center of the circle.
- The *t*-axis (tangential) is tangent to the circle, pointing in the ccw direction.
- The z-axis is perpendicular to the plane of motion.

Dynamics of Uniform Circular Motion

An object in uniform circular motion is not traveling at constant velocity. It is accelerating!

There must be a force that causes this acceleration

$$\vec{F}_{\text{net}} = m\vec{a} = \left(\frac{mv^2}{r}, \text{ toward center of circle}\right)$$

Highway and racetrack curves are banked to allow the normal force of the road to provide the centripetal acceleration of the turn.

Example Problem I

What is the maximum speed with which a 1500 kg car can make a left turn around a curve of radius 50 m on a level (unbanked) road without sliding?

- Draw a free-body diagram for the car (rear view) as it travels around the corner.
- Identify your r-t-z coordinate system.
- •Assemble Newton's second law ($F_{net} = ma$) in the "r" and "z" dimensions.

Example Problem 1

What is the maximum speed with which a 1500 kg car can make a left turn around a curve of radius 50 m on a level (unbanked) road without sliding?

- Draw a free-body diagram for the car (rear view) as it travels around the corner.
- Identify your r-t-z coordinate system.
- •Assemble Newton's second law ($F_{net} = ma$) in the "r" and "z" dimensions.

A car turns a corner on a banked road. Which of the diagrams <u>could</u> be the car's free-body diagram?

Quiz

A car turns a corner on a banked road. Which of the diagrams <u>could</u> be the car's free-body diagram?

Banked Curves

If this were an icy road (no friction), what banking angle must the road have if you are going to be able to make it through the corner?

- a) Draw the free-body diagram
- b) Identify your coordinate system
- c) Put together Newton's second law

Banked Curves

If this were an icy road (no friction), what banking angle must the road have if you are going to be able to make it through the corner?

- a) Draw the free-body diagram
- b) Identify your coordinate system
- c) Put together Newton's second law

Banked Curves

If this were an icy road (no friction), what banking angle must the road have if you are going to be able to make it through the corner?

$$v_0 = \sqrt{rg \tan \theta}$$

- a) Draw the free-body diagram
- b) Identify your coordinate system
- c) Put together Newton's second law

If you travel faster than this speed, what must the free-body diagram look like?

$$v_0 = \sqrt{rg \tan \theta}$$

If you travel slower than this speed, what must the free-body diagram look like?

$$v_0 = \sqrt{rg \tan \theta}$$

Banked Curves with friction

What is the maximum speed that this car can travel through the banked curve without slipping off the road. (The road is not frictionless)

- a) Draw the free-body diagram
- b) Identify your coordinate system
- c) Put together Newton's second law

Banked Curves with friction

What is the maximum speed that this car can travel through the banked curve without slipping off the road. (The road is not frictionless)

- a) Draw the free-body diagram
- b) Identify your coordinate system
- c) Put together Newton's second law

An object is launched from the top of a tall tower.

What will the trajectory look like if you give the object a <u>small</u> initial velocity?

An object is launched from the top of a tall tower.

What will the trajectory look like if you give the object a <u>small</u> initial velocity?

What will the trajectory look like if you give the object a <u>large</u> initial velocity?

An object is launched from the top of a tall tower.

What will the trajectory look like if you give the object a <u>small</u> initial velocity?

What will the trajectory look like if you give the object a <u>large</u> initial velocity?

Is it possible to give it a large enough velocity so that it comes back around to you again?

An object is launched from the top of a tall tower.

What will the trajectory look like if you give the object a small initial velocity?

What will the trajectory look like if you give the object a <u>large</u> initial velocity?

Is it possible to give it a large enough velocity so that it comes back around to you again?

Flat-earth approximation

 $\vec{F}_{\rm G} = (mg, \text{ vertically downward})$

Actual Planet

 $\vec{F}_{\rm G} = (mg, \text{ toward center})$

Flat-earth approximation

$$\vec{a} = \frac{\vec{F}_{\text{net}}}{m} = (g, \text{ toward center})$$

Spherical planet

$$\vec{a} = \frac{\vec{F}_{\text{net}}}{m} = (g, \text{ toward center})$$

$$a_r = \frac{(v_{\text{orbit}})^2}{r} = g$$

Spherical planet

$$\vec{a} = \frac{\vec{F}_{\text{net}}}{m} = (g, \text{ toward center})$$

$$a_r = \frac{(v_{\text{orbit}})^2}{r} = g$$

The required speed for a circular orbit near the planet's surface

Question: An object is orbiting a planet a distance r from the center of the planet. What speed does the orbiting object have?

$$\vec{a} = \frac{\vec{F}_{\text{net}}}{m} = (g, \text{ toward center})$$

$$a_r = \frac{(v_{\text{orbit}})^2}{r} = g$$

The required speed for a circular orbit near the planet's surface

$$v_{\text{orbit}} = \sqrt{rg}$$

$$\vec{a} = \frac{\vec{F}_{\text{net}}}{m} = (g, \text{ toward center})$$

$$a_r = \frac{(v_{\text{orbit}})^2}{r} = g$$

The required speed for a circular orbit near the planet's surface

$$v_{\text{orbit}} = \sqrt{rg}$$

$$v_{
m orbit} = rac{2\pi r}{T}$$