Федеральное государственное автономное образовательное учреждение высшего образования

Санкт-Петербургский политехнический университет Петра Великого Институт компьютерных наук и кибербезопасности Высшая школа компьютерных технологий и информационных систем

Отчет №6

по дисциплине «Аппаратное обеспечение информационно-измерительных систем»

Выполнил: студент гр. 5132703/20101	<noдпись></noдпись>	Басалгин А.Д. Тихомирова А.О.
Руководитель: ассистент	<noдпись></noдпись>	Кравченко В. В.
		«»2024 г.

Санкт-Петербург 2024

Введение

Цели работы:

- закрепить понятия и вопросы, относящиеся к нелинейным САР (понятия нелинейных элементов и систем, линеаризация нелинейных статических характеристик и нелинейных дифференциальных уравнений, понятие линеаризованной системы);
- освоить методику моделирования нелинейных CAP в среде SimInTech с использованием блока Язык программирования.

Задание

Вариант 3. Выполните моделирование процесса регулирования скорости подъемного механизма, используя в качестве динамической модели объекта регулирования уравнение (3.11), реализованное в структурной модели САР с помощью блока Язык программирования и метода понижения дифференциального уравнения (см. пример 3) при нулевом начальном значении угловой скорости ω и изменениях задающего воздействия U_0 от 0,1 до 3,0 В. Параметры (свойства) блоков структурной модели САР задайте как локальные.

Структурная схема:

Язык программирования:

```
initialization
    J = 0.0363;
a = 26.9;
b = 5.15;
c = 0.012;
r_m = 0.06;
i = 31.5;
R_b = 52.4;
L = 0.3;
k_tg = 0.1;
k_pb = 2;
T_pb = 0.03;
k_y = 20;
M_D = 2.5;
end;

k_p = 1/R_b;
T_p = 1/R_b;
init w = 0;
input U_p;
output w;
w' = (M_D - (a*U_p*U_p*w)/(b*b+w*w)-c*w)/J;
```

Задающее напряжение U_0 от 0.1 В до 3 В:

При $U_0 = 0.1$

 $y(+\infty) = 0.03382$ $\varepsilon = 0.03562 * 0.05 = 0.00178$ $t_{\pi\pi} = 0.23 \text{ c.}$ $y_{co} = -0.00178$

При $U_0 = 0.5$

График

$$y(+\infty) = 0.04522$$
 $\varepsilon = 0.04628 * 0.05 = 0.002314$
 $t_{\pi\pi} = 0.192 \text{ c.}$
 $y_{co} = 0.00226$

При $U_0 = 1$

$$y(+\infty) = 0.05852$$

$$\varepsilon = 0.059 * 0.05 = 0.00295$$

$$t_{\text{пп}} = 0.256 \text{ c.}$$

$$y_{co} = 0.00297$$

При $U_0 = 1.5$

График

$$y(+\infty) = 0.07106$$
 $\varepsilon = 0.0712 * 0.05 = 0.00356$
 $t_{\pi\pi} = 0.345 \text{ c.}$
 $y_{co} = 0.0035$

----- График

$$y(+\infty) = 0.07713$$
 $\varepsilon = 0.0772 * 0.05 = 0.00386$
 $t_{\pi\pi} = 0.449 \text{ c.}$
 $y_{co} = 0.00386$

- График

$$y(+\infty) = 0.00242$$
 $\varepsilon = 0.0082 * 0.05 = 0.00041$
 $t_{\pi\pi} = 0.162 \text{ c.}$
 $y_{co} = -0.00409$

—— График

$$y(+\infty) = 0.00139$$
 $\varepsilon = 0.0062 * 0.05 = 0.00031$
 $t_{\pi\pi} = 0.102 \text{ c.}$
 $y_{co} = -0.00031$

$$y(+\infty) = 0.000931$$
 $\varepsilon = 0.00534 * 0.05 = 0.000267$
 $t_{\pi\pi} = 0.084 \text{ c.}$
 $y_{co} = -0.000266$

График зависимости $y(+\infty)(U_0)$:

(U_0)	<i>y</i> (+∞)
0,1	0,03382
0,5	0,04522
1	0,05852
1,5	0,07106
1,75	0.07713
2	0,00242
2,5	0,00139
3	0,000931

Критическое значение достигается при $U_0=1.75$. При увеличении U_0 ($U_0<1.75$) - увеличение времени переходного процесса и увеличение относительной статистической ошибки. При $U_0>1.75$ - уменьшение времени переходного процесса и уменьшение относительной статистической ошибки. Наилучшие характеристики при $U_0=1.75$.

Вывод

В ходе лабораторной работы были успешно освоены ключевые понятия, касающиеся нелинейных систем автоматического регулирования (САР), включая нелинейные элементы и системы, а также линеаризацию их статических характеристик и соответствующих дифференциальных уравнений. Мы изучили методику моделирования нелинейных САР в среде SimInTech, используя блок «Язык программирования», что дало нам возможность создавать уникальные математические модели с помощью алгебраических уравнений и уравнений динамики в удобной текстовой форме.

Оптимальные характеристики модели были зафиксированы именно при $U_0=1.75$, что подчеркивает важность точного выбора управляющего воздействия для обеспечения стабильной и эффективной работы нелинейных систем.