UM 204: QUIZ 1 Jan. 12, 2024

Duration. 15 minutes

Maximum score. 10 points

You are allowed to compute limits of real sequences without proof.

Problem. Let $A:\mathbb{Q}\to [0,\infty)$ be an absolute value function on $\mathbb{Q},$ i.e.,

- (1) A(x) = 0 if and only if x = 0,
- (2) A(xy) = A(x)A(y) for all $x, y \in \mathbb{Q}$,
- (3) $A(x+y) \le A(x) + A(y)$ for all $x, y \in \mathbb{Q}$.

Suppose there is a C > 0 such that $A(n) \leq C$ for all $n \in \mathbb{N}$. Show that

$$A(x+y) \le \max\{A(x), A(y)\}, \quad \forall x, y \in \mathbb{Q}.$$

Hint. Estimate $A((x+y)^m)$ from above, take the m^{th} root, and take limits as $m \to \infty$.