Fiche technique et formules de mathématiques financières Prof. H. El-Otmany

A.U.: 2021-2022

BUT-Tech. de Co. Semestre: 2

NB: cette fiche présente les techniques nécessaires minimales de calcul financier; elle ne constitue donc pas un objectif mais un pré-requis pour les mathématiques financières!

Tout au long de cette fiche, on considère les notations suivantes :

- C_0 : capital initial (,emprunté, prêté, placé, investi,) ou valeur actuelle (actualisée).
- *i* : taux d'intérêt annuel.
- n : la durée ou la période de l'emprunt (prêt, placement, investissement, ...).
- C_f : capital final (capitalisé, remboursé, gagné, cumulé,...) à la fin de la période.

Intérêts simples et composés 1

Type d'intérêt	Description						
Simples	les intérêts sont constants pendant la période n.						
	Le capital final : $C_f = C_0(1 + i n)$.						
	La valeur des intérêts simples : $I_s(n) = n \times i \times C_0 = C_f - C_0$.						
	Les capitaux sont des suites arithmétiques de raison $r = iC_0$ où $C_n = C_0 + nr = 0$						
	$C_0 + n \times iC_0$.						
	$\frac{C_f}{C_0} = 1$						
	La durée d'investissement : $n = \frac{\frac{C_f}{C_0} - 1}{i}$. Le taux d'intérêt simple est : $i = \frac{\frac{C_f}{C_0} - 1}{n}$.						
	$\frac{C_f}{C_0}-1$						
	Le taux d'intérêt simple est : $i = \frac{c_0}{n}$.						
Composés	Les intérêts sont variables pendant la période n						
	Le capital final : $C_f = C_0(1+i)^n$.						
	La valeur des intérêts composés : $I_c(n) = C_f - C_0$.						
	Les capitaux sont des suites géométriques de raison $q=1+iC_0$ où $C_n=C_0q^n=1$						
	$C_0(1+iC_0)^n$.						
	$\ln\left(\frac{C_f}{C_0}\right)$						
	La durée d'investissement : $n = \frac{\ln\left(\frac{C_f}{C_0}\right)}{\ln(1+i)}$.						
	Le taux d'intérêt composé est : $i = \left(\frac{C_f}{C_0}\right)^{1/n} - 1$.						

Taux périodique, taux équivalent, taux proportionnel

Le taux de la période n peut être défini sur une sous-période k en années, en semestres, en trimestres, en mois, en quinzaines et en jours.

Type de taux	taux semestriel	taux trimestriel	taux mensuel	taux quinzaine	taux Journalier
Valeur	i	i	i	i	i
	$\frac{1}{2}$	$\frac{1}{4}$	${12}$	$\overline{24}$	$\frac{1}{360}$

— Le taux proportionnel au taux annuel i pour une sous-période k est le taux appliqué à intérêts simples sur toutes les sous-périodes k défini par

$$i_k = \frac{i}{k}.$$

— Le taux équivalent au taux annuel *i* pour une sous-période est le taux qui est appliqué à intérêts composés sur toutes les sous-périodes défini par

$$i_k = (1+i)^{1/k} - 1.$$

3 Annuités et tableau d'amortissement

— Une annuité a_k est une somme d'argent (contrepartie) versée à chaque période, en général d'un an par un épargnant (emprunteur) pour constituer (rembourser) une épargne (une dette ou un emprunt) :

$$a_k = \frac{i}{1 - (1+i)^{-n}} \times C_k.$$

 $\mbox{Autrement dit : annuit\'e} = \frac{\mbox{taux d'int\'er\^et}}{1 - (1 + \mbox{taux d'int\'er\^et})^{-\mbox{p\'eriode}}} \times \mbox{capital initial}.$

— Tableau d'amortissement :

Période n° k	Capital C_k^{de} en début d'exercice	Intérêts I_k	Capital amorti A_k	Annuité a_k	Capital C_{k-1} en fin d'exercice
1	$C_0^{de} = C_0$	$I_1 = iC_0$	$A_1 = a_1 - I_1$	$a_1 = A_1 + I_1$	$C_1 = C_0 - A_1$
2	$C_2^{de} = C_1$	$I_2 = iC_1$	$A_2 = a_2 - I_2$	$a_2 = A_2 + I_2$	$C_2 = C_1 - A_2$
k	$C_k^{de} = C_{k-1}$	$I_k = iC_{k-1}$	$A_k = a_k - I_k$	$a_k = A_k + I_k$	$C_k = C_{k-1} - A_k$
·	:		:	•	:
n	$C_n^{de} = C_{n-1}$	$I_n = iC_{n-1}$	$A_n = a_n - I_n$	$a_n = A_n + I_n$	$C_n = C_{n-1} - A_n$

avec

- $C_k^{de} = C_{k-1}$; Capital ou emprunt de la période écoulée k= capital ou emprunt de la période k-1.
- $I_k = iC_{k-1}$; Intérêt de la période $k = \text{Taux d'intérêt} \times \text{capital ou emprunt de la période } k 1.$
- $A_k = a_k I_k$; Capital amorti (amortissement) de la période k = annuité Intérêt de la période k.
- $C_k = C_{k-1} A_k$; Emprunt restant de la période k = capital ou emprunt de la période (k-1) moins capital amorti de la période k.