Teorema 14 Teorema general de Stokes Sea M una k-variedad orientada en \mathbb{R}^3 (k=2 o 3) contenida en algún conjunto abierto K. Supongamos que ω es una (k-1)-forma sobre K. Entonces

$$\int_{\partial M} \omega = \int_{M} d\omega.$$

Aquí la integral se interpreta como una integral simple, doble o triple, según sea apropiado. De hecho, esta es la forma del teorema de Stokes que generaliza a espacios de dimensión arbitraria.

Ejercicios

- **1.** Calcular $\omega \wedge \eta$ si
 - (a) $\omega = 2x dx + y dy$ $\eta = x^3 dx + y^2 dy$.
 - (b) $\omega = x \, dx y \, dy$ $\eta = y \, dx + x \, dy$
 - (c) $\omega = x dx + y dy + z dz$ $\eta = z dx dy + x dy dz + y dz dx$.
 - (d) $\omega = xy \, dy \, dz + x^2 \, dx \, dy$ $\eta = dx + dz$.
 - (e) $\omega = e^{xyz} dx dy$ $\eta = e^{-xyz} dz$.
- 2. Probar que

$$(a_1 dx + a_2 dy + a_3 dz) \wedge (b_1 dy dz + b_2 dz dx + b_3 dx dy)$$
$$= \left(\sum_{i=1}^{3} a_i b_i\right) dx dy dz.$$

- **3.** Hallar $d\omega$ en los siguientes ejemplos:
 - (a) $\omega = x^2 y + y^3$.
 - (b) $\omega = y^2 \cos x \, dy + xy \, dx + dz$.
 - (c) $\omega = xy \, dy + (x+y)^2 \, dx$.
 - (d) $\omega = x \, dx \, dy + z \, dy \, dz + y \, dz \, dx$.
 - (e) $\omega = (x^2 + y^2) \, dy \, dz$.
 - (f) $\omega = (x^2 + y^2 + z^2) dz$.
 - (g) $\omega = \frac{-x}{x^2 + y^2} dx + \frac{y}{x^2 + y^2} dy$.

- (h) $\omega = x^2 y \, dy \, dz$.
- **4.** Sea C el segmento de recta desde el punto (-2,0,1) a (3,6,9). Sean $\omega_1 = y \, dx + x \, dy + xy \, dz$, $\omega_2 = z \, dx + y \, dy + 2x \, dz$ y f(x,y,z) = xy. Calcular lo siguiente:

(a)
$$\int_C f\omega_1$$
. (b) $\int_C f\omega_2$. (c) $\int_C \omega_1 + \omega_2$.

5. Sea C parametrizada por $c(t)=(t^2+4t,\,t+1),\,t\in[0,\pi].$ Sean $\omega_1=y\,dx+x\,dy,\,\omega_2=y^2\,dx+x^2\,dy$ y f(x,y)=x. Calcular lo siguiente:

(a)
$$\int_C f\omega_1$$
. (b) $\int_C f\omega_2$. (c) $\int_C \omega_1 + \omega_2$.

6. Sea $V: K \to \mathbb{R}^3$ un campo vectorial definido por $V(x, y, z) = G(x, y, z)\mathbf{i} + H(x, y, z)\mathbf{j} + F(x, y, z)\mathbf{k}$ y sea η la 2-forma sobre K dada por

$$\eta = F dx dy + G dy dz + H dz dx.$$

Demostrar que $d\eta = (\text{div } \mathbf{V}) \ dx \ dy \ dz$.

7. Si $\mathbf{V} = A(x,y,z)\mathbf{i} + B(x,y,z)\mathbf{j} + C(x,y,z)\mathbf{k}$ es un campo vectorial sobre $K \subset \mathbb{R}^3$, definimos la operación Forma₂: campos vectoriales \rightarrow 2-formas mediante

$$Forma_2(\mathbf{V}) = A \, dy \, dz + B \, dz \, dx + C \, dx \, dy.$$

- (a) Demostrar que $\operatorname{Forma}_2(\alpha \mathbf{V}_1 + \mathbf{V}_2) = \alpha \operatorname{Forma}_2(\mathbf{V}_1) + \operatorname{Forma}_2(\mathbf{V}_2)$, donde α es un número real.
- (b) Demostrar que Forma₂ (rot \mathbf{V}) = $d\omega$, donde $\omega = A dx + B dy + C dz$.