Advanced Materials Modeling Homework 2

Notes: In multiple choice problems explain your answer. Add references if needed. Upload solution as a single file "YourName.pdf" or "YourName.zip".

1. Derive the dependence of total energy $E_{\text{tot}}(N)$ of a system on the number of electrons between two integer values.

Hint: Minimize the total energy

$$E_{\text{tot}} = p_N E_N + p_{N+1} E_{N+1} + p_{N-1} E_{N-1} ,$$

where p_i is the probability of charge state i, with respect to p_i under the following constraints: condition of convex dependence on *integer* N:

$$E_{N+1} + E_{N-1} > 2E_N$$
;

the normalization condition

$$p_N + p_{N+1} + p_{N-1} = 1$$
;

and the fixed charge constraint

$$p_N N + p_{N+1}(N+1) + p_{N-1}(N-1) = N + \omega$$
,

where ω is the fractional charge.

2. Prove Janak's theorem:

$$\frac{\partial E[f,n]}{\partial f_i} = \varepsilon_i \,,$$

where E[f, n] is the total energy depending on occupations f and electron density $n(\mathbf{r})$, and ε_i is the energy of the ith Kohn-Sham eigenstate.

Hint:

$$E[f, n] = -\frac{1}{2} \sum_{i} f_{i} \langle \psi_{i} | \nabla^{2} | \psi_{i} \rangle + \int d^{3}r V_{\text{ext}}(\mathbf{r}) n(\mathbf{r}) + \frac{1}{2} \int d^{3}r d^{3}r' \frac{n(\mathbf{r}) n(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} + \int d^{3}r V_{\text{XC}}(\mathbf{r}) n(\mathbf{r}),$$

$$n(\mathbf{r}) = \sum_{i} f_{i} |\psi_{i}(\mathbf{r})|^{2},$$

$$\int d^{3}r |\psi_{i}(\mathbf{r})|^{2} = 1,$$

and Kohn-Sham equations:

$$-\frac{1}{2}\nabla^2\psi_i(\mathbf{r}) + V_{\text{ext}}(\mathbf{r})\psi_i(\mathbf{r}) + \left(\int d^3r' \frac{n(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|}\right)\psi_i(\mathbf{r}) + V_{\text{XC}}(\mathbf{r})\psi_i(\mathbf{r}) = \varepsilon_i\psi_i(\mathbf{r}).$$

Also, consider ψ_i and $V_{\rm XC}$ as independent of f_i (PARTIAL derivative with respect to f_i !).

3. Mark all correct statements:

Hartree-Fock method

- (A) includes correlation
- (B) is exact
- (C) is self-interaction free
- (D) generally underestimates band gaps

4. Mark all correct statements:

DFT with LDA functional

- (A) includes correlation
- (B) prefers electron delocalization
- (C) is self-interaction free
- (D) generally underestimates band gaps

5. Mark all correct statements:

For exact DFT functional

- (A) KS gap is equal to observable gap
- (B) highest occupied Kohn-Sham state energy does not depend on occupation 0 < f < 1
- (C) the total energy of a system is a non-linear function of particle number between integer occupations