

Equipe 3 - Fruit Classification

Alunos:

Fábio Carvalho Simões Lívia Braga Sydrião de Alencar Micael José de Lima Nicolas Kalebe Menezes da Silva Rafael de Oliveira Feitosa Yuri Ramos Ribeiro

Sumário

- Introdução
- Metodologia
- Pré-processamento
- Modelos
- Avaliação
- Predição
- Conclusão
- Referências

Introdução

- Realização de um projeto de classificação de imagens de diferentes classes de frutas utilizando a biblioteca Tensor Flow.
- Divisão do processo em várias etapas:
 - Pré-processamento dos dados.
 - Exploração das funcionalidades do Tensor Flow.
 - Construção de modelos de aprendizado de máquina.
 - Avaliação dos modelos por diferentes métricas.
 - Predição das imagens.

Introdução

- Importância da classificação automática de imagens de frutas em áreas como:
 - Agricultura.
 - Comércio.
 - Alimentação.
- Desafios da tarefa de classificação:
 - variabilidade nas formas, cores e texturas das frutas.
 - Condições de iluminação e fundo das imagens.
- Importância da solução:
 - Aumento da eficiência e redução dos custos operacionais em setores como agricultura e varejo.
 - Melhoria na qualidade dos produtos entregues ao consumidor.
 - Contribuição para sistemas de monitoramento e análise agrícola, fornecendo dados valiosos para a tomada de decisões.

Metodologia

Base de dados:

Número total de imagens: 22495 imagens

Número de Classes: 33

Tamanho da imagem: 100x100

OBS: Base de dados reduzido

Método:

3 modelos diferentes de CNN

Pré-Processamento

- Verificando valores nulos e duplicatas:
 - Resultado: ok
- Dataframe e Redução do tamanho do dataset:
 - Validação Treinamento e Teste (fração de 88%)
- Carregando imagem e criando um array de dados:
 - Validação Treinamento: (14832, 100, 100, 3)
 - Teste: (4964, 100, 100,3)
- Codificação das classes em valores numéricos
- Divisão de Treinamento, Validação e Teste:
 - Treinamento: (11865, 100, 100, 3) 80% dos dados
 - Validação: (2967, 100, 100, 3) 20% dos dados
 - o Teste: (4964,100,100,3)
- Aplicação da função prepare:
 - Normalização dos dados (1/ 255)
 - Batch_size = 128
 - suffle = True
 - Augment = True

Modelo 1 - PRINCIPAL

Definição do Modelo CNN:

- Define um modelo sequencial
- Adiciona uma camada convolucional
 - \circ filters = 5
 - o kernel size = 3
 - activation = "relu"
 - input_shape = (100, 100, 3)
- Adiciona uma camada de pooling Máximo
 - o pool_size = 2
 - o padding = 'valid'
- Transformação dos dados para camada densa
- Adiciona uma camada densa(totalmente conectada)
 - len(classes)
 - activation = 'softmax'

Compilação do modelo:

- Configura para treinamento
 - loss = "categorical crossentropy"
 - optimizer= "Adam"
 - metrics = ["Accuracy"]

Modelo 2

Definição do Modelo CNN:

- Define um modelo sequencial
- Adiciona uma camada convolucional
 - \circ filters = 10
 - o kernel size = 5
 - o activation = "selu"
 - input_shape = (100, 100, 3)
- Adiciona uma camada de pooling Máximo
 - o pool size = 4
 - o padding = 'same'
- Transformação dos dados para camada densa
- Adiciona uma camada densa(totalmente conectada)
 - len(classes)
 - activation = 'softmax'

Compilação do modelo:

- Configura para treinamento
 - loss = "categorical crossentropy"
 - optimizer= "SGD"
 - o metrics = ["Accuracy"]

Modelo 3

Definição do Modelo CNN:

- Define um modelo sequencial
- Adiciona uma camada convolucional
 - \circ filters = 15
 - kernel size = 7
 - activation = "leaky relu"
 - input_shape = (100, 100, 3)
- Adiciona uma camada de pooling Máximo
 - o pool_size = 6
 - o padding = 'valid'
- Transformação dos dados para camada densa
- Adiciona uma camada densa(totalmente conectada)
 - len(classes)
 - o activation = 'softmax'

Compilação do modelo:

- Configura para treinamento
 - loss = "categorical crossentropy"
 - o optimizer= "Adam"
 - metrics = ["Accuracy"]

Avaliação: Matriz de Confusão - Modelo 1

Cada célula da matriz representa o número de instâncias de uma classe prevista correta ou incorretamente pelo modelo.

$$Precision = rac{Previs\~oes\ Positivas\ Corretas}{Previs\~oes\ Positivas}$$

$$Recall = rac{Previs ilde{o}es\ Positivas\ Corretas}{Exemplos\ Positivos}$$

$$F1\ Score = 2 * \frac{Precisão * Recall}{Precisão + Recall}$$

Pontuação:

➡ Precisão: 1.0 ➡ Recall: 1.0 ➡ F1:

1.0

Avaliação: Matriz de Confusão - Modelo 2

Cada célula da matriz representa o número de instâncias de uma classe prevista correta ou incorretamente pelo modelo.

$$Precision = rac{Previs ilde{o}es\ Positivas\ Corretas}{Previs ilde{o}es\ Positivas}$$

$$Recall = rac{Previs\~oes~Positivas~Corretas}{Exemplos~Positivos}$$

$$F1\ Score = 2 * \frac{Precisão * Recall}{Precisão + Recall}$$

Pontuação:

→ Precisão: 0.98
→ Recall: 0.99
→ F1: 0.98

Avaliação: Matriz de Confusão - Modelo 3

Cada célula da matriz representa o número de instâncias de uma classe prevista correta ou incorretamente pelo modelo.

$$Precision = rac{Previs\~{o}es\ Positivas\ Corretas}{Previs\~{o}es\ Positivas}$$

$$Recall = \frac{Previs\~{o}es\ Positivas\ Corretas}{Exemplos\ Positivos}$$

$$F1\ Score = 2 * \frac{Precisão * Recall}{Precisão + Recall}$$

Pontuação:

➡ Precisão: 0.99 ➡ Recall: 0.99 ➡ F1: 0.99

Avaliação: Accuracy x Loss

Modelo I

- 10 epochs
- loss: 0.0
- val_loss: 0.0
- accuracy: 1.0
- val_acurracy: 1.0

Modelo 2

- 10 epochs
- loss : 0.0
- val_loss: 0.0
- accuracy: 1.0
- val_acurracy: 1.0

Modelo 3

- 10 epochs
- loss : 0.0
- val_loss: 0.0
- accuracy: 1.0
- val_acurracy: 1.0

Avaliação: TP, FP, FN e TN

	Previsão: Sim	Previsão: Não
Realidade: Sim	Positivo Verdadeiro	Falso Negativo
Realidade: Não	Falso Positivo	Negativo Verdadeiro

- Verdadeiros Positivos (TP)
- Falsos Positivos (FP)
- Falsos Negativos (FN)
- Verdadeiros Negativos (TN)

Modelo 1	Modelo 2	Modelo 2
		⇔ TP = 87
⇒ FN = 0	⇒ FN = 54	⇒ FN = 3
⇒ TN = 2880	⇒ TN = 2881	⇒ TN = 2875

Avaliação: Sensibilidade, Especificidade e Média Geométrica

G-mean indica o equilíbrio entre o desempenho na classe majoritária e minoritária e leva em consideração tanto a sensibilidade quanto a especificidade.

- Sensibilidade: Recall
- Especificidade: 1 (False Positive/ (False Negative + True Negative))
- G-Means = √Sensibilidade * Especificidade

Modelo 1	Modelo 2	Modelo 3
⇒ Sensibilidade = 1.0	⇒ Sensibilidade = 0.61	⇒ Sensibilidade = 0.96
⇒ Especificidade = 1.0	Especificidade =	⇒ Especificidade = 0.99
	0.98	

Predição: Modelo 1

Predição 1

⇔ Predição: Grape Blue

Predição 2

➡ Predição: Orange

Predição 3

☼ Predição: Pear

Predição 4

➡ Predição: Lemon

Predição: Modelo 2

Pred		

Desperada:Desperada:Passion FruitDesperada:D

Passion Fruit

Predição 2

☼ Predição: Banana

Predição 3

⇔ Predição: Peach

Predição 4

⇔ Predição: Limes

Predição: Modelo 3

Predição 1

⇒ Esperada: Onion White

➡ Predição: Onion White

Predição 2

⇔ Predição: watermelon

Predição 3

➡ Predição: Papaya

Predição 4

➡ Predição: Blueberry

Conclusão

- Apesar da mudança dos parâmetros dos 3 modelos, eles continuam obtendo resultados de accuracy, F1-Score, matriz de confusão muito semelhantes.
- O método de Avaliação TP, FP, FN e TN se mostrou o mais efetivo com o método da média geométrica que usa os dados da avaliação anterior que mostra a diferença mais clara entre os modelos 1 que possui 0FN e o modelo 3 que possui 3FN do modelo 2 que possui 54FN o que pode impactar na precisão.
- Provável overffiting dos dados, pelo alto valor de avaliação chegando a 100%, o que de certo modo é algo a desconfiar.
- Não importa as alterações dos parâmetros na construção dos modelos, eles obtem resultados semelhantes, o que significa que pode haver um problema na etapa de pré-processamento.

Conclusão

- Possíveis melhorias:
 - Aumento da base de dados
 - Mudança no formato da imagens
 - Mudança no fundo, iluminação e nas cores das imagens
 - Comparação de características de classes visualmente semelhantes
- Problemas ocorridos:
 - Ambiente de execução limitado para alterações em loop de formatação de cada imagem, ou até aumento destas, o que dificulta melhorias.
 - Adequação às métricas de avaliação, pois sendo dados de imagens multiclasse, há uma limitação de opções em relação a dados tabulares ou de apenas 2 classes.
 - Dificuldade em encontrar os labels do projeto após a divisão dos dados em treino e teste, ao aplicar diferentes métricas de melhoria, avaliação e predição, por necessitar chamar as labels e imagens separadas, como por exemplo a divisão de treino imagem, treino labels, teste imagem e teste label.

Referências

- https://mariofilho.com/precisao-recall-e-f1-score-em-machine-learning/#qual-a-f%C3 %B3rmula-da-precis%C3%A3o-na-matriz-de-confus%C3%A3o
- https://mariofilho.com/as-metricas-mais-populares-para-avaliar-modelos-de-machin e-learning/
- https://medium.com/data-hackers/entendendo-o-que-%C3%A9-matriz-de-confus%C 3%A3o-com-python-114e683ec509
- https://www.kaggle.com/datasets/sshikamaru/fruit-recognition