Decoding of Hand Gestures from Electrocorticography with LSTM Based Deep Neural Network

43rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society

Jathurshan Pradeepkumar ¹, Mithunjha Anandakumar ¹, Vinith Kugathasan ¹, Thilina D. Lalitharatne ², Anjula C. De Sil va^1 , Simon L. Kappe l^3

1 Department of Electronic and Telecommunication Engineering, University of Moratuwa, Sri Lanka.

2 Dyson School of Design Engineering, Imperial College London, UK.

3 Department of Electrical and Computer Engineering, Aarhus University, Denmark.

Imperial College London

Background

- ECOG BCI
- Problem statement
 - Hand gesture decoder
 - Deep Learning

Modality	Signal Type	Temporal Resolution	Spatial Resolution	Method Type	Portability	
EEG	Electrical	~0.05s	~10mm	Non- invasive	Portable	
MEG	Magnetic	~0.05s	~5mm	Non- invasive	Non- Portable	
ECoG	Electrical	~0.03s	~1mm	Invasive	Portable	

T. Jiang et al., "Characterization and Decoding the Spatial Patterns of Hand Extension/Flexion using High Density ECoG, "IEEE Trans. Neural Syst. Rehabil. Eng., vol. 25, no. 4, pp. 370-379, 2017

Image Source : G. Pandarinathan, S. Mishra, A. M. Nedumaran, P. Padmanabhan, and B. Gulyás, "The potential of cognitive neuroimaging: A way forward to the mind-machine interface," *Journal of Imaging*, vol. 4, no. 5. 2018.

Previous Works

 High gamma frequencies (>65Hz) [1]

Preprocessing

- Support Vector Machine– SVM [1]
- Linear Discriminant
 Analysis LDA [4]
- Time Invariant Linear
 Discriminant Analysis –
 TVLDA [3]
- Recurrent Neural
 Network RNN [2]

Classification

- Feature Selection -Statistical based [3]
- Common Spatial Patterns – CSP [4]
- Principal Component Analysis – PCA[3]

Feature Reduction

Previous Works

- Few studies have utilized temporal information [2,3]
- Equal importance to variations in different frequency bands
- Channel selection for each frequency band

We propose,

- Novel LSTM Based Deep Neural Network Architecture
- Channel Reduction by giving equal importance to each frequency band.
 - Statistical Based Channel Selection
 - PCA

Overview

Dataset & Preprocessing

- 'FingerFlex' Dataset *
- 7 participants
- 150 trials/participant
- 1 kHz Sampling Rate

Table: Datasets

Code	Age	Gender	Handedness	Hemisphere	No. Of Electrodes
bр	18	F	Right	Left	46
сс	21	М	Right	Right	63
zt	27	F	Right	Left	61
jp	35	F	Right	Left	58
ht	26	М	Right	Left	64
wc	32	М	Right	Left	64
jc	18	F	Right	Left	47

^{*} K. Miller et al., "Human Motor Cortical Activity Is Selectively Phase-Entrained on Underlying Rhythms," PLoS Computational Biology, vol. 8, no.9, 2012.

J. Gruenwald, A. Znobishchev, C. Kapeller, K. Kamada, J. Scharinger, and C. Guger, "Time-variant linear discriminant analysis improves hand gesture and finger movement decoding for invasive brain computer interfaces," Front. Neurosci., vol. 13, no. Sep, 2019.

Feature Extraction

Onset

 x_m

ECoG segment for gesture trial m

Window Size: 250 ms
Overlap: 50 ms

PSD for each segment:
$$S_{l,m}^{(t)}(k) = \frac{1}{N} \left| \sum_{n=0}^{N-1} h(n) x_{l,m}^{(t)}(n) e^{-\left(\frac{j2\pi kn}{N}\right)} \right|^2$$

l: ECoG Channel

m: Gesture Trial

N: Total number of samples

t: A segment of $x_{(l,m)}$

k: frequency bin

h(n): Hamming window

Feature Extraction

PSD for each segment: $S_{l,m}^{(t)}(k)$

Frequency Bands:

• Theta : 4-8 Hz

• Alpha : 8-12 Hz

• Beta : 12-40 Hz

• Low Gamma : 40-70 Hz

• High Gamma : 70-135 Hz

• High Frequency : 135-200 Hz

$$A_{l,m,f}^{(t)} = \frac{1}{N_f} \left| \sum_{i=1}^{N_f} S_{l,m}^{(t)}(k_{f,i}) \right|$$

 $N_{f:}$: Total number of frequency bins

 $k_{f,i}:i^{th}$ frequency bin for frequency band

f: Frequency band

 $S_{l,m}^{(t)}$: PSD of each segment

Feature Extraction

Normalization

-2*s* to -1.5*s*

$$A_{norm,l,m,f}^{(t)} = 10log_{10} \left(\frac{A_{l,m,f}^{(t)}}{\bar{A}_{relax,l,m,f}} \right)$$

 $A_{norm,l,m,f}^{(t)}$: Normalized PSD

 $A_{l,m,f}^{(t)}$: Average PSD for frequency band f

 $\bar{A}_{relax,l,m,f}$: Average relaxation PSD

Feature Reduction

1. Statistical Based Channel Selection

2. Principal Component Analysis

Statistical Based Channel Selection

Statistical Based Channel Selection

Principal Component Analysis

Channels	Gesture Trial 1					Gesture Trial 2				Gesture Trial M					
Chainleis	Segment 1	Segment 2	Segment 3		Segment T	Segment 1	Segment 2	Segment 3		Segment T	Segment 1	Segment 2	Segment 3		Segment T
1															
2															
3															
4															
5															
e***															
L															

Gesture Classification

Results and Discussion

Stratified 10-fold cross validation accuracy

• Gruenwald et al [1]

• For 7 subjects: 79.6

• Onaran et al [2]:

• For first 3 subjects: 86.3%

Proposed Method:

• With PCA: 77.0%

• With Statistical Channel Selection: 82.4 %

Table: Classification Accuracy

Code	Gruenwald et al, 2019 [1]	Proposed architecture with PCA	Proposed architecture with statistical channel selection
bp	89.4 ± 1.3	82.6±10.3	89.8±6.7
СС	82.8±1.2	83.7±7.2	85.4±6.7
zt	85.7±1.2	84.9±7.2	86.6±9.2
Average (bp,cc,zt)	85.9	83.7	87.3
jp	77.3±2.0	70.4±11.3	79.2±12.1
ht	64.5±3.2	66.1±8.6	69.7±6.5
wc	80.1±1.7	71.4±11.8	79.7±6.0
jc	77.5±1.7	80.2±7.5	86.7±4.2
Average (All)	79.6	77.0	82.4

projections," 2011 Ann. Int. Conf. IEEE Eng. Med. Biol. Soc., 2011.

^[1] J. Gruenwald, A. Znobishchev, C. Kapeller, K. Kamada, J. Scharinger, and C. Guger, "Time-variant linear discriminant analysis improves hand gesture and finger movement decoding for invasive brain-computer interfaces," Front. Neurosci., vol. 13, no. Sep, 2019.

^{.[2]} Onaran, N. Ince, and A. Cetin, "Classification of multichannel ECoG related to individual finger movements with redundant spatial

Conclusion

- ✓ LSTM based novel deep neural network architecture
 - ✓ To provide equal importance for each frequency band
- ✓ Experimented with two feature reduction approaches
 - ✓ PCA and statistical based channel selection approaches
- ✓ Achieved accuracy better than state-of-the-art methods.

References

- [1] Yanagisawa et al., "Real-time control of a prosthetic hand using human electrocorticography signals: Technical note," J. Neurosurg., vol. 114, no. 6, pp. 1715-1722, 2011.
- [2] G. Pan et al., "Rapid decoding of hand gestures in electrocorticography using recurrent neural networks," Front. Neurosci., vol. 12, no. Aug, 2018.
- [3] J. Gruenwald, A. Znobishchev, C. Kapeller, K. Kamada, J. Scharinger, and C. Guger, "Time-variant linear discriminant analysis improves hand gesture and finger movement decoding for invasive brain-computer interfaces," Front. Neurosci., vol. 13, no. Sep, 2019.
- [4] C. Kapeller et al., "Single trial detection of hand poses in human ECoG using CSP based feature extraction," 36th Ann. Int. Conf. IEEE Eng.Med. Biol. Soc., 2014

Thank You

Our code is available at:

https://github.com/Jathurshan0330/Decoding-of-Hand-Gestures-from-Electrocorticography-with-LSTM-Based-Deep-Neural-Network

Further Inquires:

Jathurshan Pradeepkumar

Department of Electronic and Telecommunication, University of Moratuwa, Sri Lanka.

jathurshanpradeepkumar@gmail.com

+94777150631