

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Ordinary Level

CANDIDATE NAME			
CENTRE NUMBER		CANDIDATE NUMBER	

965084125

COMBINED SCIENCE

5129/02

Paper 2

May/June 2010

2 hours 15 minutes

Candidates answer on the Question Paper.

No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use a soft pencil for any diagrams, graphs or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all questions.

A copy of the Periodic Table is printed on page 24.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

For Examiner's Use

This document consists of 23 printed pages and 1 blank page.

1 A series circuit is shown in Fig. 1.1. The resistors have values of 3Ω and 6Ω .

For Examiner's Use

Fig. 1.1

- (a) On Fig. 1.1, draw the symbol for a voltmeter connected to measure the potential difference across the 6Ω resistor. [2]
- (b) The ammeter reading is 0.20 A.

Calculate

(i) the potential difference across the 6Ω resistor,

(ii) the combined resistance of the two resistors.

resistance =
$$\Omega$$
 [1]

Aluı	minium, chlorine, magnesium and silicon are in the same period of the Periodic Table.
(a)	Which two of these elements conduct electricity? Give a reason for your choice.
	elements
	reason
	[2]
(b)	The oxides of magnesium and phosphorus are added to water and Universal Indicator paper is dipped into each solution.
	State the colour of the indicator with each of the solutions.
	magnesium oxide solution
	phosphorus oxide solution[2]
(c)	Strontium is in the same group of the Periodic Table as magnesium.
	Explain why strontium and magnesium have similar chemical reactions.
	[1]

2

3 Measurements were made of the diameter of the pupil of a person's right eye over a period of five minutes in a darkened room.

For Examiner's Use

During this time, a light of varying intensity was shone into the person's right eye. The results are shown in Fig. 3.1.

Fig. 3.1

- (a) Use Fig. 3.1 to answer the following questions.
 - (i) When is the pupil most dilated?

•		•	F.4.7
trom	mins to	mine	171

(ii) When is the intensity of the light entering the eye at its greatest?

f			F41
Trom	mins to	mins	11

(iii) Suggest when the light intensity decreases most rapidly.

from mins to	mins	[1]
--------------	------	-----

(b) Name the structure in the human eye which brings about changes in pupil size.

[1]

(c) During this experiment, the **left** eye stays in the dark.

On Fig. 3.1, draw a line to show the diameter of the pupil of the **left** eye. [1]

(d) In the pupil reflex, where are the receptors?

.....[1]

4

nucleus of cobalt emits a beta-particle to form a nickel nucleus.
he equation for the nuclear decay is ${}^{60}_{\chi}{\rm Co} \rightarrow {}^{60}_{28}{\rm Ni} + {}^{0}_{-1}{\rm \beta}$.
a) Calculate the value of x.
x =[
State the nature of a beta-particle.
Determine the number of neutrons in a nucleus of nickel-60 ($^{60}_{28}$ Ni).
number of neutrons =[
number of neutrons =
d) A nucleus of carbon $^{14}_{\ 6}$ C emits a beta-particle.
A nucleus of carbon ${}^{14}_{6}$ C emits a beta-particle. The half-life of ${}^{14}_{6}$ C is 5700 years.
A nucleus of carbon ${}^{14}_{6}\text{C}$ emits a beta-particle. The half-life of ${}^{14}_{6}\text{C}$ is 5700 years. Initially, a sample of wood contains 1 000 000 atoms of ${}^{14}_{6}\text{C}$.
A nucleus of carbon ${}^{14}_{6}\text{C}$ emits a beta-particle. The half-life of ${}^{14}_{6}\text{C}$ is 5700 years. Initially, a sample of wood contains 1 000 000 atoms of ${}^{14}_{6}\text{C}$.
A nucleus of carbon ${}^{14}_{6}\text{C}$ emits a beta-particle. The half-life of ${}^{14}_{6}\text{C}$ is 5700 years. Initially, a sample of wood contains 1 000 000 atoms of ${}^{14}_{6}\text{C}$.
A nucleus of carbon ${}^{14}_{6}\text{C}$ emits a beta-particle. The half-life of ${}^{14}_{6}\text{C}$ is 5700 years. Initially, a sample of wood contains 1 000 000 atoms of ${}^{14}_{6}\text{C}$.

....., and stored in the cells as insoluble carbohydrate.

© UCLES 2010 5129/02/M/J/10

For Examiner's Use

[4]

6

Ammonium nitrate is made by adding ammonia solution to nitric acid.		
The equation for the reaction is		
$NH_3 + HNO_3 \longrightarrow NH_4NO_3$		
(a) State the type of reaction that occurs between ammonia and nitric acid.		
[1]		
(b) Calculate the relative molecular mass of		
ammonia,		
ammonium nitrate. [2]		
[A _r : N, 14; H, 1; O, 16.]		
(c) Calculate the mass of ammonia required to make 2.0 kg of ammonium nitrate.		
mass = kg [2]		

7 Two similar metal cans **A** and **B** are shown in Fig. 7.1.

Fig. 7.1

Can **A** has a shiny white surface. Can **B** has a matt black surface. Both cans contain equal masses of hot water. Initially, the cans and water are all at the same temperature.

(a)	Explain why the temperature of the water in can B falls more quickly than the water in can A .
	[1]
(b)	State the process by which heat is transferred through the metal of the cans.
	[1]
(c)	Air around each can is heated and rises.
	Explain why the air rises.
	[1]

8	Wat	er for drinking is stored in reservoirs.	Fo
	(a)	State the two processes used to purify water to make it fit to drink.	Exami Us
		process 1	
		process 2[2]	
	(b)	Suggest how these two processes purify water.	
		[2]	

9 A cross-section of part of a leaf, as it appears under the microscope, is shown in Fig. 9.1.

For Examiner's Use

Fig. 9.1

(a)	Name the tissues labelled X and Y .	
	X	
	Υ	[2]
(b)	The leaf contains air spaces.	
	Which tissue contains the most air spaces?	
		[1]
(c)	Describe how carbon dioxide enters a leaf during photosynthesis.	
		[2]
(d)	The leaf is very thin.	
	Explain how this helps the leaf to make carbohydrates by photosynthesis.	
		[2]

10 (a) Complete Fig. 10.1 by inserting 'yes' or 'no' in the blank spaces.

For Examiner's Use

material	is the material magnetic?
aluminium	no
carbon	
iron	
plastic	
steel	

Fig. 10.1 [2]

(b) Using the materials in Fig. 10.1, name the material which is

(i) a poor electrical conductor,[1]

(ii) used for the core of a transformer.[1]

11 Fig. 11.1 shows a blast furnace for the extraction of iron from iron ore.

For Examiner's Use

Fig. 11.1

- (a) Name an ore from which iron is extracted.[1]
- (b) In the extraction of iron, the iron ore is reduced by carbon monoxide.
 - (i) Balance the equation for the reduction of iron ore.

$$Fe_2O_3 + \dots Fe_1 + \dots Fo_2$$
 [1]

(ii) Explain what is meant by *reduction*.

гн	1
 ĮΙ	J

(iii) Describe how carbon monoxide is produced from the coke added to the furnace.

 [2]

(c) Suggest why sodium is not extracted using the same process as iron.

r.	
17	(L

12 Fig. 12.1 shows how the displacement of particles in a wave varies with distance along the wave.

For Examiner's Use

Fig. 12.1

(a) (Jse	⊢ıg.	12.1	to (dete	ermine	e tor	this	wave
----	-----	-----	------	------	------	------	--------	-------	------	------

(b) Waves on the surface of water are transverse waves.

(i)	the wavelength,	mm	[1

(ii) the amplitude. mm [1]

What is meant by a transverse wave?

13 (a)		Explain the function of teeth in the digestion of food.							
	(b)								[2]
			ates of dental decay amongst children in towns ${\bf A}$ and ${\bf B}$ were surveyed. The results e shown in Fig. 13.1.						
							rates of dental ent of the water	decay in town A a	and in
		n d te	verage number of lecayed eeth per hild	10 - 5 - 0	town A	Fig. 13.1		ear-olds rear-olds	
		(i)	concentra		-	to suggest v	vhich town has	the higher water flu	ebirou
			townexplanation						
		(ii)	Suggest two other possible reasons for the difference in rates of dental decay in the two towns.						

14 Regions of the electromagnetic spectrum are shown in Fig. 14.1.

For Examiner's Use

radiowaves		microwaves	A	visible light	ultraviolet light	X-rays	gamma-rays				
	Fig. 14.1										
(a)	(a) Name the region of the spectrum labelled A.										
							[1]				
(b)	Whic	h region of the	e spectrum ha	as the longest	wavelength?						
	[1]										
(c)	All el	ectromagnetic	c waves trave	I at the same s	speed in a vacuur	m.					
	State	the magnitud	le of this spe	ed.							

speed = m/s [1]

15 Part of the carbon cycle is shown in Fig. 15.1.

Fig. 15.1

(a) Use words from the list to complete the three empty boxes in Fig. 15.1.

animals	bacteria	carbon dioxide	fossil fuels	oxygen	plants
Each word may	be used onc	e, more than once, o	or not at all.		[3]

(b) Which processes are represented by the arrows labelled X, Y and Z?

X	
Y	
Z	[3]

© UCLES 2010 5129/02/M/J/10

For Examiner's Use

16 Fig. 16.1. shows properties of four substances.

For Examiner's Use

substance	melting point °C	boiling point °C	density g/cm ³
Α	-219	-183	0.0015
В	-114	78	0.79
С	119	445	1.96
D	1083	2582	8.94

Fig. 16.1

Use the letters in Fig. 16.1 to answer the questions below. Each letter may be used once, more than once or not at all.

Which substance is most likely to be

(a)	a metal,	[1]
(b)	a liquid at room temperature,	[1]
(c)	a covalent solid at room temperature?	[1]

17 A wooden block is pulled across a horizontal table at a constant speed of 0.20 m/s as shown in Fig. 17.1.

For Examiner's Use

Fig. 17.1

The block is pulled a distance of 0.80 m by the horizontal force of 4.0 N.

(a) Calculate the time taken for the block to move 0.80 m.

(b) Calculate the work done by the force of 4.0 N to move the block through 0.80 m.

18 Fig. 18.1 shows methane burning using a Bunsen burner with the air hole open.

For Examiner's Use

	methane
	Fig. 18.1
(a)	Methane burns completely when the air hole is open.
	State the two products when methane burns completely.
	and
(b)	Methane burns incompletely when the air hole is closed.
	Explain why it is dangerous to use a Bunsen burner in a poorly ventilated room with the air hole closed.
	[2]
(c)	Organic compounds are grouped into families called homologous series.
	Describe the characteristics of a homologous series.
	[2]

19 Fig. 19.1. shows a swinging pendulum in two different positions.

At position **A**, the pendulum bob changes the direction in which it was moving.

For Examiner's Use

Fig. 19.1

(a)	State the energy change that takes place as the pendulum swings from position a position B .	A to
	energy changes to energy.	[2]
(b)	The period of the pendulum is 2.0 s.	
	Calculate the shortest time for the pendulum to move from position A to position B .	
	time = s	3 [1]

20 Changes in the thickness of the lining of a woman's uterus during the menstrual cycle are shown in Fig. 20.1.

For Examiner's Use

Fig. 20.1

(a)) From	Fig. 20.1	, choose	dates	when
-----	--------	-----------	----------	-------	------

(i)	menstruation	is	occurring
-----	--------------	----	-----------

F.4.1
111

(ii) ovulation is likely to occur.

[1]

(b) (i) State the average length of a menstrual cycle.

[1]
 ויו

(ii) Suggest **two** factors that might cause the length of a woman's menstrual cycle to be longer or shorter than the average.

1	 	 	 	 	

			22
21	The	proc	is manufactured from glucose. Sess is carried out in the presence of yeast in an air-free container. Stion produces a solution of ethanol in water.
	(a)	Stat	e the name of the process[1]
	(b)	Ехр	lain why
		(i)	yeast is used in this process,
			[1]
		(ii)	the container should be air-free.
			[1]
	(c)	Wat	er boils at 100 °C. Ethanol boils at 78 °C.
		_	gest the name of the method used to separate ethanol from a mixture of ethanol water.
			[1]
	(d)	Dra	w the structure of a molecule of ethanol.
			[1]

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

DATA SHEET

						F	ne Perio	he Periodic Table of the Elements	e of the	Element	S						
								Group	dno								
_	=												<u>\</u>	^	N	VII	0
							1 Hydrogen										4 Te Helium
7 Lithium	9 Be Beryllium					-						11 B Boron	12 C Carbon 6	14 N Nitrogen 7	16 Oxygen	19 Fluorine	20 Ne Neon 10
23 Na Sodium	Mg Magnesium											27 A 1 Aluminium 13	28 Si Silicon	31 Phosphorus	32 S Sulfur 16	35.5 C1 Chlorine	40 Ar Argon
39 K Potassium	40 Calcium	Scandium 21	48 T Titanium	51 V Vanadium 23	52 Cr Chromium 24	55 Mn Manganese 25	56 Fe Iron	59 Co Cobalt	59 Nickel	64 Copper	65 Zn Zinc 30	70 Ga Gallium	73 Ge Germanium 32	75 AS Arsenic 33	79 Selenium 34		84 Kr Krypton 36
Rubidium 37	Strontium 38	89 ×	91 Zr Zirconium 40	Niobium 41	96 Mo Molybdenum 42	Tc Technetium 43	101 Ru uthenium	103 Bh Rhodium 45	106 Pd Palladium 46	108 Ag Silver 47	112 Cd Cadmium 48	115 In Indium	Sn Tin				131 Xe Xenon 54
133 Cs Caesium 55	137 Ba Barium 56	139 La Lanthanum 57 *	178 # Hatnium 72	181 Ta Tantalum 73	184 W Tungsten 74	186 Re Rhenium 75	190 Os Osmium 76	192 Ir	195 Pt Patinum 78	197 Au Gold	201 Hg Mercury	204 T 1 Thallium	207 Pb Lead		209 PO Polonium 84	210 At Astatine 85	222 Rn Radon 86
223 Fr Francium 87	226 Ra Radium 88	227 Ac Actinium 1															
* 58–71 Lanthanoid series † 90–103 Actinoid series	anthanc Actinoic	oid series d series		140 Cerium 58	Pr Praseodymium 59	Neodymium 60	Pm Promethium 61	Samarium 62	152 Eu Europium 63	Gd Gadolinium 64	159 Tb Terbium 65	162 Dy Dysprosium 66	165 Ho Holmium 67	167 Er Erbium 68	169 Tm Thullum 69	Yb Ytterbium 70	Lu Lutetium 71

a = relative atomic mass X = atomic symbol т В Key

28 b = atomic (proton) number

258 **Md** 257 **Fm** Fermium 100 252 **ES** The volume of one mole of any gas is 24dm3 at room temperature and pressure (r.t.p.). 251 Californium 98 247 **BK**Berkelium
97 Curium Am Americium 95 244 **Pu** Neptunium 238 231 **Pa** 232 **Th** Thorium 8

580

Nobelium