	LAB 6 Name: Heja Bibani
In [3]:	<pre>from qiskit import QuantumCircuit, execute, Aer from qiskit.visualization import plot_histogram from numpy.random import randint import numpy as np</pre>
	<pre>%matplotlib inline</pre> Section 1
	Suppose a qubit $q_0 = -\rangle$. It is measured under a basis with the following two ordered vectors $\begin{bmatrix} \frac{1}{2} \\ \frac{\sqrt{3}}{2} \end{bmatrix}$ and $\begin{bmatrix} -\frac{\sqrt{3}}{2} \\ \frac{1}{2} \end{bmatrix}$.
	Task 1.1 Show that this basis is an orthogonal basis. To show that it is an orthogonal basis we must show that: 1. All entries in B are real numbers 2. $BB^T = B^TB = I$
	First all the entires in B are real numbers. Thus we need to prove number two. This basis can also be written as: $ \begin{bmatrix} \frac{1}{2} & -\frac{\sqrt{3}}{2} \end{bmatrix} $
	$\begin{bmatrix} \frac{1}{2} & -\frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & \frac{1}{2} \end{bmatrix}$ And we can see that $B^T=$
	$\begin{bmatrix} \frac{1}{2} & \frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & \frac{1}{2} \end{bmatrix}$
	$\left[-\frac{\sqrt{2}}{2} - \frac{1}{2}\right]$ When we multiply them together we should see that it will equal the identity matrix:
	$\begin{bmatrix} \frac{1}{2} & -\frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & \frac{1}{2} \end{bmatrix} \times \begin{bmatrix} \frac{1}{2} & \frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & \frac{1}{2} \end{bmatrix} = \begin{bmatrix} (\frac{1}{2} \times \frac{1}{2} + -\frac{\sqrt{3}}{2} \times -\frac{\sqrt{3}}{2}) & (-\frac{\sqrt{3}}{2} \times \frac{1}{2} + \frac{1}{2} \times \frac{\sqrt{3}}{2}) \\ (\frac{\sqrt{3}}{2} \times \frac{1}{2}) + (\frac{1}{2} \times -\frac{\sqrt{3}}{2}) & (\frac{\sqrt{3}}{2} \times \frac{\sqrt{3}}{2} + \frac{1}{2} \times \frac{1}{2}) \end{bmatrix}$
	This equals the identity matrix: $ = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$
	Thus meeting the criteria for an Orthorgonal Matrix. Task 1.2
	If $q_0=c\begin{bmatrix} \frac{1}{2}\\ \frac{\sqrt{3}}{2} \end{bmatrix}+d\begin{bmatrix} -\frac{\sqrt{3}}{2}\\ \frac{1}{2} \end{bmatrix}$, then give the steps for calculating c and d manually.
	Since $ -\rangle = c \begin{bmatrix} \frac{1}{2} \\ \frac{\sqrt{3}}{2} \end{bmatrix} + d \begin{bmatrix} -\frac{\sqrt{3}}{2} \\ \frac{1}{2} \end{bmatrix}$
	This can be re-written as:
	$\begin{bmatrix} \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \end{bmatrix} = \begin{bmatrix} \frac{1}{2} & -\frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & \frac{1}{2} \end{bmatrix} \begin{bmatrix} c \\ d \end{bmatrix}$
	Multiplying both ends by the transpose:
	$\begin{bmatrix} \frac{1}{2} & \frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & \frac{1}{2} \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \end{bmatrix} = \begin{bmatrix} \frac{1}{2} & \frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & \frac{1}{2} \end{bmatrix} \begin{bmatrix} \frac{1}{2} & -\frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & \frac{1}{2} \end{bmatrix} \begin{bmatrix} c \\ d \end{bmatrix}$ Therefore:
	$\begin{bmatrix} c \\ d \end{bmatrix} = \begin{bmatrix} \frac{1}{2} & \frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & \frac{1}{2} \\ -\frac{1}{\sqrt{2}} \end{bmatrix} = \begin{bmatrix} \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \\ -\frac{\sqrt{3}-1}{\sqrt{2}} \end{bmatrix}$
	This is the same as applying the rule:
	$c = \langle \alpha \psi \rangle$ and $c = \langle \beta \psi \rangle$ We can see below:
	$c = \begin{bmatrix} \frac{1}{2} & \frac{\sqrt{3}}{2} \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \end{bmatrix} = \frac{1 - \sqrt{3}}{2\sqrt{2}}$
	$d = \begin{bmatrix} -\frac{\sqrt{3}}{2} & \frac{1}{2} \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \end{bmatrix} = \frac{-\sqrt{3} - 1}{2\sqrt{2}}$
	Section 2 It is known that measuring a qubit under the Horizontal basis is equivalent to applying H gate to this qubit first and then then measuring it
	under the Vertical basis. Please prove this fact in a Markdown cell. Since:
	$ +\rangle = \begin{bmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{bmatrix}$ and $ -\rangle = \begin{bmatrix} \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \end{bmatrix}$
	This can also be written as the following below, to find the probability we must use its transpose, that is to to calculate a and b: $ \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix} $
	$\begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{bmatrix}$ The transpose is of the following:
	$\begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{bmatrix}$
	The hadamard gate is of the following:
	$\begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{bmatrix}$
	This is a symmetric gate, thus the transpose is the same: $\begin{bmatrix} \frac{1}{-C} & \frac{1}{-C} \end{bmatrix}$
	$\begin{bmatrix} \overline{\sqrt{2}} & \overline{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{bmatrix}$ Thus, applying the gate to the following qubit will satisfy the requirement of making the measurement in this direction, and we can then
	apply the hadamard gate to the following qubit will satisfy the requirement of making the measurement in this direction; and we can then apply the hadamard gate to simulate making a measurement with a qubit in this direction: $ \psi\rangle = a +\rangle + b -\rangle$ Applying the hadamard gate:
	$H(\psi\rangle) = a \times H(+\rangle) + b \times H(-\rangle)$
	$H(+\rangle) = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$
	$H(\mid -\rangle) = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$
	Thus, this satisfies: $H(\mid \psi \rangle) = a \mid 0 \rangle + b \mid 1 \rangle$
	Thus, this satisfies:
	Thus, this satisfies: $H(\psi\rangle) = a 0\rangle + b 1\rangle$ This means, measuring a qubit in the Horizontal basis is equivalent to applying Hadamard gate and then measuring in Vertical basis.
	Thus, this satisfies: $H(\psi\rangle) = a 0\rangle + b 1\rangle$ This means, measuring a qubit in the Horizontal basis is equivalent to applying Hadamard gate and then measuring in Vertical basis. Section 3 In the BB84 Protocol, the bits where Alice and Bob choose different bases are not considered. Let's use D to denote the set of these bits. In this task, you should use both manual calculation and Quantum Circuit simulation to show the following: Task 3.1 If Eve doesn't eavesdrop, the probability for Alice and Bob to agree on a bit in D is 1/2. When Alice and Bob disagree on the measurement basis the following configurations are possible:
	Thus, this satisfies: $H(\psi\rangle) = a 0\rangle + b 1\rangle$ This means, measuring a qubit in the Horizontal basis is equivalent to applying Hadamard gate and then measuring in Vertical basis. Section 3 In the BB84 Protocol, the bits where Alice and Bob choose different bases are not considered. Let's use D to denote the set of these bits. In this task, you should use both manual calculation and Quantum Circuit simulation to show the following: Task 3.1 If Eve doesn't eavesdrop, the probability for Alice and Bob to agree on a bit in D is 1/2. When Alice and Bob disagree on the measurement basis the following configurations are possible: $X-H-V \rightarrow \frac{1}{\sqrt{2}} 0\rangle - \frac{1}{\sqrt{2}} 1\rangle$ $X-V-H \rightarrow \frac{1}{\sqrt{2}} 0\rangle - \frac{1}{\sqrt{2}} 1\rangle$
	Thus, this satisfies: $H(\psi\rangle) = a 0\rangle + b 1\rangle$ This means, measuring a qubit in the Horizontal basis is equivalent to applying Hadamard gate and then measuring in Vertical basis. Section 3 In the BB84 Protocol, the bits where Alice and Bob choose different bases are not considered. Let's use D to denote the set of these bits. In this task, you should use both manual calculation and Quantum Circuit simulation to show the following: Task 3.1 If Eve doesn't eavesdrop, the probability for Alice and Bob to agree on a bit in D is 1/2. When Alice and Bob disagree on the measurement basis the following configurations are possible: $X-H-V \rightarrow \frac{1}{\sqrt{2}} 0\rangle - \frac{1}{\sqrt{2}} 1\rangle$
	Thus, this satisfies: $H(\psi\rangle) = a \mid 0\rangle + b \mid 1\rangle$ This means, measuring a qubit in the Horizontal basis is equivalent to applying Hadamard gate and then measuring in Vertical basis. Section 3 In the BB84 Protocol, the bits where Alice and Bob choose different bases are not considered. Let's use D to denote the set of these bits. In this task, you should use both manual calculation and Quantum Circuit simulation to show the following: Task 3.1 If Eve doesn't eavesdrop, the probability for Alice and Bob to agree on a bit in D is 1/2. When Alice and Bob disagree on the measurement basis the following configurations are possible: $X-H-V \rightarrow \frac{1}{\sqrt{2}} 0\rangle - \frac{1}{\sqrt{2}} 1\rangle$ $X-V-H \rightarrow \frac{1}{\sqrt{2}} 0\rangle + \frac{1}{\sqrt{2}} 1\rangle$ $V-H \rightarrow \frac{1}{\sqrt{2}} 0\rangle + \frac{1}{\sqrt{2}} 1\rangle$
	Thus, this satisfies: $H(\psi\rangle) = a 0\rangle + b 1\rangle$ This means, measuring a qubit in the Horizontal basis is equivalent to applying Hadamard gate and then measuring in Vertical basis. Section 3 In the BBB4 Protocol, the bits where Alice and Bob choose different bases are not considered. Let's use D to denote the set of these bits. In this task, you should use both manual calculation and Quantum Circuit simulation to show the following: Task 3.1 If Eve doesn't eavesdrop, the probability for Alice and Bob to agree on a bit in D is 1/2. When Alice and Bob disagree on the measurement basis the following configurations are possible:
	Thus, this satisfies: $R(\psi\rangle) = a 0\rangle + b 1\rangle$ This means, measuring a qubit in the Horizontal basis is equivalent to applying Hadamard gate and then measuring in Vertical basis. Section 3 In the BB84 Protocol, the bits where Alice and Bob choose different bases are not considered. Let's use D to denote the set of these bits. In this task, you should use both manual calculation and Quantum Circuit simulation to show the following: Task 3.1 If Eve doesn't eavesdrop, the probability for Alice and Bob to agree on a bit in D is 1/2. When Alice and Bob disagree on the measurement basis the following configurations are possible: $X + V + V + \frac{1}{\sqrt{2}}[0] - \frac{1}{\sqrt{2}}[1]$ $X + V + \frac{1}{\sqrt{2}}[0] - \frac{1}{\sqrt{2}}[1]$ $Y + V + \frac{1}{\sqrt{2}}[0] + \frac{1}{\sqrt{2}}[1]$ When Alice and Bob disagree on the basis the qubit is in a quantum superposition of the following two states: $\frac{1}{\sqrt{2}}[0] + \frac{1}{\sqrt{2}}[1] + \frac{1}{\sqrt{2}}[1]$ This means that there is a 50% chance of them agreeing on the bits when they do disagree on the basis. $\frac{1}{\sqrt{2}}[0] + \frac{1}{\sqrt{2}}[1] + \frac{1}{\sqrt{2}}[1]$ This means that there is a 50% chance of them agreeing on the bits when they do disagree on the basis. $\frac{1}{\sqrt{2}}[0] + \frac{1}{\sqrt{2}}[1] +$
	Thus, this satisfies: $R(\phi\rangle) = a 0\rangle + b 1\rangle$ This means, measuring a qubit in the Horizontal basis is equivalent to applying Hadamard gate and then measuring in Vertical basis. Section 3 In the B884 Protocol, the bits where Alice and Bob choose different bases are not considered. Let's use D to denote the set of these bits. In this task, you should use both manual calculation and Quantum Circuit simulation to show the following: Task 3.1 If Eve doesn't eavesdrop, the probability for Alice and Bob to agree on a bit in D is 1/2. When Alice and Bob disagree on the measurement basis the following configurations are possible: $X+H-V \rightarrow \frac{1}{\sqrt{2}} 0\rangle - \frac{1}{\sqrt{2}} 1\rangle$ $X+V+D \rightarrow \frac{1}{\sqrt{2}} 0\rangle - \frac{1}{\sqrt{2}} 1\rangle$ $X+V+D \rightarrow \frac{1}{\sqrt{2}} 0\rangle - \frac{1}{\sqrt{2}} 1\rangle$ When Alice and Bob disagree on the basis the qubit is in a quantum superposition of the following two states: $\frac{1}{\sqrt{2}} 0\rangle + \frac{1}{\sqrt{2}} 1\rangle \frac{1}{\sqrt{2}} 1\rangle$ This means that there is a 50% chance of them agreeing on the bits when they do disagree on the basis. $\frac{1}{\sqrt{2}} 0\rangle + \frac{1}{\sqrt{2}} 1\rangle \frac{1}{\sqrt{2}} 1\rangle$ This means that there is a 50% chance of them agreeing on the bits when they do disagree on the basis. $\frac{1}{\sqrt{2}} 0\rangle + \frac{1}{\sqrt{2}} 1\rangle \frac{1}{\sqrt{2}} 1$
In [4]:	Thus, this satisfies: $R(\psi\rangle) = a 0\rangle - b 1\rangle$ This means, measuring a qubit in the Horizontal basis is equivalent to applying Hadamard gate and then measuring in Vertical basis. Section 3 In the BB84 Protocol, the bits where Alice and Bob choose different bases are not considered. Let's use D to denote the set of these bits. In this task, you should use both manual calculation and Quantum Circuit simulation to show the following: Task 3.1 If Eve doesn't eavesdrop, the probability for Alice and Bob to agree on a bit in D is 1/2. When Alice and Bob disagree on the measurement basis the following configurations are possible: $X + V + V - \frac{1}{\sqrt{2}} 0\rangle - \frac{1}{\sqrt{2}} 1\rangle$ $X + V + V + \frac{1}{\sqrt{2}} 0\rangle - \frac{1}{\sqrt{2}} 1\rangle$ $V + V + \frac{1}{\sqrt{2}} 0\rangle + \frac{1}{\sqrt{2}} 1\rangle$ When Alice and Bob disagree on the basis the qubit is in a quantum superposition of the following two states: $\frac{1}{\sqrt{2}} 0\rangle - \frac{1}{\sqrt{2}} 1\rangle$ This means that there is a 50% chance of them agreeing on the bits when they do disagree on the basis. $\frac{1}{\sqrt{2}} 0\rangle - \frac{1}{\sqrt{2}} 1\rangle$ This means that there is a 50% chance of them agreeing on the bits when they do disagree on the basis. $\frac{1}{\sqrt{2}} 0\rangle - \frac{1}{\sqrt{2}} 1\rangle$ $\frac{1}{\sqrt{2}} 0\rangle - \frac{1}{\sqrt{2}} 1\rangle = 0 : \forall Prepare qubit in Vertical Basis in Equation 1 in Equation 2 and 1 in Equation 2 and 2 and 3 in Equation 3 in Equation 3 and 3 in Equation $
In [4]:	Thus, this satisfies: $R(\psi\rangle) = a(0) - b(1)$ This means, measuring a qubit in the Horizontal basis is equivalent to applying Hadamard gate and then measuring in Vertical basis. Section 3 In the BBS4 Protocol, the bits where Alice and Bob choose different bases are not considered. Let's use D to denote the set of these bits. In this task, you should use both manual calculation and Quantum Circuit simulation to show the following: Task 3.1 If Eve doesn't exceeding, the probability for Alice and Bob to agree on a bit in D is 1/2. When Alice and Bob disagree on the measurement basis the following configurations are possible: $XH \cdot V \rightarrow \frac{1}{\sqrt{2}}(0) - \frac{1}{\sqrt{2}}(1)$ $XV \cdot H \rightarrow \frac{1}{\sqrt{2}}(0) - \frac{1}{\sqrt{2}}(1)$ $When Alice and Bob disagree on the basis the qubit is in a quantum superposition of the following two states: \frac{1}{\sqrt{2}}(0) - \frac{1}{\sqrt{2}}(1) This means that there is a 50% chance of them agreeing on the bits when they do disagree on the basis. \frac{1}{\sqrt{2}}(0) - \frac{1}{\sqrt{2}}(1) - \frac{1}{\sqrt{2}}(1) This means that there is a 50% chance of them agreeing on the bits when they do disagree on the basis. \frac{1}{\sqrt{2}}(0) - \frac{1}{\sqrt{2}}(1) - \frac{1}{\sqrt{2}}(1) If bases (i) = 0: \theta Eveparse qubit in Vertical Basis if bits (1) = 0: \theta Continual crucial In \theta is \theta bits (1) = 0: \theta Continual crucial In \theta is \theta bits (1) = 0: \theta Continual crucial In \theta is \theta bits (1) = 0: \theta Continual crucial In \theta is \theta bits (1) = 0: \theta Continual crucial In \theta is \theta bits (1) = 0: \theta Continual crucial In \theta is \theta bits (1) = 0: \theta Continual crucial In \theta is \theta bits (1) = 0: \theta Continual crucial In \theta is \theta bits (1) = 0: \theta Continual crucial Basis if bits (1) = 0: \theta Continual crucial Basis is \theta bits (1) = 0: \theta Continual crucial Basis is \theta bits (1) = 0: \theta Continual crucial Basis is \theta bits (1) = 0: \theta Continual crucial Basis is \theta bits (1) = 0: \theta Continual crucial Basis is \theta bits (1) = 0: \theta Continual crucial Basis is \theta bits (1) = 0: \theta Continual crucial Basis is \theta bits (1) = 0: \theta Continual crucial Basis$
In [4]:	Thus, this satisfies: $R(\psi) = a 0 + b 1)$ This means, measuring a qubit in the Horizontal basis is equivalent to applying Hadamard gate and then measuring in Vertical basis. Section 3 In the BBB4 Protocol, the bits where Alice and Bob choose different bases are not considered. Let's use D to denote the set of these bits. In this task, you should use both manual calculation and Quantum Circuit simulation to show the following: Task 3.1 If Eve doesn't exvesdrop, the probability for Alice and Bob to agree on a bit in D is 1/2. When Alice and Bob disagree on the measurement basis the following configurations are possible: $X+V+\frac{1}{\sqrt{2}}(0)-\frac{1}{\sqrt{2}}(1)$ $X+V+\frac{1}{\sqrt{2}}(0)-\frac{1}{\sqrt{2}}(1)$ $V+V+\frac{1}{\sqrt{2}}(0)+\frac{1}{\sqrt{2}}(1)$ When Alice and Bob disagree on the basis the qubit is in a quantum superposition of the following two states: $\frac{1}{\sqrt{2}}(0)+\frac{1}{\sqrt{2}}(1)\frac{1}{\sqrt{2}}(0)-\frac{1}{\sqrt{2}}(1)$ This means that there is a 50% chance of them agreeing on the bits when they do disagree on the basis. $\frac{1}{\sqrt{2}}(0)+\frac{1}{\sqrt{2}}(1)\frac{1}{\sqrt{2}}(0)-\frac{1}{\sqrt{2}}(1)$ This means that there is a 50% chance of them agreeing on the bits when they do disagree on the basis. $\frac{1}{\sqrt{2}}(0)+\frac{1}{\sqrt{2}}(1)\frac{1}{\sqrt{2}}(0)-\frac{1}{\sqrt{2}}(1)$ This means that there is a 50% chance of them agreeing on the bits when they do disagree on the basis. $\frac{1}{\sqrt{2}}(0)+\frac{1}{\sqrt{2}}(1)\frac{1}{\sqrt{2}}(0)-\frac{1}{\sqrt{2}}(1)$ This means that there is a 50% chance of them agreeing on the bits when they do disagree on the basis. $\frac{1}{\sqrt{2}}(0)+\frac{1}{\sqrt{2}}(1)\frac{1}{\sqrt{2}}(0)-\frac{1}{\sqrt{2}}(1)$ This means that there is a 50% chance of them agreeing on the bits when they do disagree on the basis. $\frac{1}{\sqrt{2}}(0)+\frac{1}{\sqrt{2}}(1)\frac{1}{\sqrt{2}}(0)-\frac{1}{\sqrt{2}}(1)$ This means that there is a 50% chance of them agreeing on the bits when they do disagree on the basis. $\frac{1}{\sqrt{2}}(0)+\frac{1}{\sqrt{2}}(1)\frac{1}{\sqrt{2}}(0)-\frac{1}{\sqrt{2}}(1)$ This means that there is a 50% chance of them agreeing on the bits when they do disagree on the basis. $\frac{1}{\sqrt{2}}(0)+\frac{1}{\sqrt{2}}(1)\frac{1}{\sqrt{2}}(0)-\frac{1}{\sqrt{2}}(1)$
In [4]:	Thus, this satisfies: \(R(\psi) = u 0) + b(1) \) This means, measuring a qubit in the Horizontal basis is equivalent to applying Hadamard gate and then measuring in Vertical basis. Section 3 In the 3884 Protocol, the bits where Alice and 80b choose different bases are not considered. Let's use D to denote the set of these bits. In this task, you should use both manual calculation and Quantum Circuit simulation to show the following: Task 3.1 If the doesn't eavesdring, the probability for Alice and 80b to agree on a bit in D is 1/2. When Alice and 80b disagree on the measurement basis the following configurations are possible: \(\frac{1}{2}(0) - \frac{1}{2}(1) \) \(\frac{1}{2}(0) - \frac{1}{2}(1) \) When Alice and 80b disagree on the basis the qubit is in a quantum superposition of the following two states: \(\frac{1}{2}(0) - \frac{1}{2}(1) \) When Alice and 80b disagree on the basis the qubit is in a quantum superposition of the following two states: \(\frac{1}{2}(0) - \frac{1}{2}(1) \) When Alice and 80b disagree on the basis the qubit is in a quantum superposition of the following two states: \(\frac{1}{2}(0) + \frac{1}{2}(1) \frac{1}{2}(0) + \frac{1}{2}(1) \) When Alice and 80b disagree on the basis the qubit is in a quantum superposition of the following two states: \(\frac{1}{2}(0) + \frac{1}{2}(1) \frac{1}{2}(0) + \frac{1}{2}(0) + \frac{1}{2}(1) \frac{1}{2}(0) + \frac{1}{2}(0
In [4]:	Thus, this satisfies: $R_1(y_1) = a(0 - b, 1)$ This means, measuring a qubit in the Horizontal basis is equivalent to applying Hadamard gate and then measuring in Vertical basis. Section 3 In the BBS Protocol, the bits where Alice and Bob choose different bases are not considered. Let's use D to denote the set of these bits. In this task, you should use both manual calculation and Quambum Circuit simulation to show the following: Task 3.1 If See doesn't exvestrop, the probability for Alice and Bob to agree on a bit in D is $1/2$. When Alice and Bob disagree on the measurement basis the following configurations are possible: $X+W = \frac{1}{\sqrt{2}}(0) - \frac{1}{\sqrt{2}}(1)$ $W+W = \frac{1}{\sqrt{2}}(0) + \frac{1}{\sqrt{2}}(1)$ $W+W = \frac{1}{\sqrt{2}}(0) + \frac{1}{\sqrt{2}}(1)$ $W+W = \frac{1}{\sqrt{2}}(0) + \frac{1}{\sqrt{2}}(1)$ This means that there is a 30% chance of them agreeing on the bits when they do disagree on the basis. decf candod managing (Lifes, because):
In [4]:	Thus, this satisfies: $R(y) = a \mid 0 + b \mid 1)$ This means, measuring a qubit in the Horizontal basis is equivalent to applying Hadamard gate and then measuring in Vertical basis. Section 3 In the BBSA Protocol, the bits where Alice and Bob choose different bases are not considered. Let's use 0 to denote the set of these bits. In this basis, pur should use both manual calculation and Quantum Circuit simulation to show the following: Tasks 3.1 If the docent relevation, the probability for Alice and Bob to agree on a bit in D is $1/2$. When Alice and Bob disagree on the measurement basis the following configurations are possible: $\frac{1}{\sqrt{2}}(0) - \frac{1}{\sqrt{2}}(1)$ $\frac{1}{\sqrt{2}}(0) - \frac{1}{\sqrt{2}}(1)$ When Alice and Bob disagree on the basis the qubit is in a quantum superposition of the following two states: $\frac{1}{\sqrt{2}}(0) - \frac{1}{\sqrt{2}}(1)$ When Alice and Bob disagree on the basis the qubit is in a quantum superposition of the following two states: $\frac{1}{\sqrt{2}}(0) - \frac{1}{\sqrt{2}}(1) = \frac{1}{\sqrt{2}}(1) =$
In [4]:	Thus, this satisfies: ### (i/o) = a (i)o = 5 (i) This means, measuring a qubit in the Horizontal basis is equivalent to applying Hodamand gare and then measuring in Vertical basis. **Section 3** In the BBB Protocol, the bits where Alice and Bob choose different bases are not considered. Let sure D to denote the set of these bits. In this task, you including so both manual calculation and Quantum Circuit simulation to show the following: **Task 3.1** **The discent bases disperse on the measurement basis the following configurations are possible: **What Alice and Bob disagree on the measurement basis the following configurations are possible: **WHAT = \frac{1}{2}(0) = \frac{1}{3}(1)\$ **What Alice and Bob disagree on the basis the qubit is in a quantum superposition of the following two states: **\frac{1}{2}(0) = \frac{1}{3}(1)\$ **What Alice and Bob disagree on the basis the qubit is in a quantum superposition of the following two states: **\frac{1}{2}(0) = \frac{1}{3}(1)\$ **What Alice and Bob disagree on the basis the qubit is in a quantum superposition of the following two states: **\frac{1}{3}(0) = \frac{1}{3}(1)\$ **What Alice and Bob disagree on the basis the qubit is in a quantum superposition of the following two states: **\frac{1}{3}(0) = \frac{1}{3}(1)\$ **What Alice and Bob disagree on the basis the qubit is in a quantum superposition of the following two states: **\frac{1}{3}(0) = \frac{1}{3}(1)\$ **What Alice and Bob disagree on the basis the qubit is in a quantum superposition of the following two states: **\frac{1}{3}(0) = \frac{1}{3}(1)\$ **What Alice and Bob disagree on the basis the qubit is in a quantum superposition of the following two states: **\frac{1}{3}(0) = \frac{1}{3}(1)\$ **\frac{1}{3}(0
In [4]:	Thus, this satisfies $R(\psi) = a(0) + b(1)$. This means, measuring a cubit in the Horizontal basis is equivalent to applying Hadamard gate and then measuring in Vertical basis. Section 3 in the 884 Protocol, the bits where Alice and 80b choose different bases are not considered. Let a use D to denote the set of these bits. In this task, you where the bits him this task there is a 50% chance of them agreeing on the bits when they do disagree on the basis. def encode_measure bits, base():
In [4]:	Thus, this satisfies: $R(\cdot \phi) = a(0 + b(1))$ This means monoming a quide in the Horizontal basis is equivalent to applying Hodamard gate and then measuring in Venical basis. Section 3 In the 884P Protocol, the bits where Arice and 8bb choose different bases are not considered. Let use D to denote the set of these bits. In this test you would be both minimal calculation and Quantum Circuit simulation to ense the following: Task 3.1 If the occurs envestion, the probability for Arice and 8bb to agree on a bit in D is 1/2. When Arice and 6bb disagree on the measurement basis the following configurations are possible: $X + V = \frac{1}{\sqrt{2}}(0) + \frac{1}{\sqrt{2}}(1)$ When Arice and 6bb disagree on the basis the qubit is in a quantum superposition of the following two states: $\frac{1}{\sqrt{2}}(0) + \frac{1}{\sqrt{2}}(1) + \frac{1}{\sqrt{2}}(1)$ When Arice and 6bb disagree on the basis the qubit is in a quantum superposition of the following two states: $\frac{1}{\sqrt{2}}(0) + \frac{1}{\sqrt{2}}(1) + $
In [4]:	Thus, this cardidoc $B(y) = a(y-3)(x)$. This means, measuring a qubit in the Horizontal basis is equivalent, to applying hadamard gate and then measuring in Vertical basis. Section 3 In the BBAD Prococil, the bits where Alitiz and Bob choose different basis are not considered. Let x use D to denote the san of those bits. In this sax, you should use both manual catalation and Quartum Clouds simulation to show the following. Task 2.1 Task 2.1 Task 2.1 When Alice and Bub disagree on the inequalities that so are not considered. Let x use D to denote the san of those bits. In the catalance of Bub disagree on the neasurement basis the following configurations are possible: $x_0 + x_1 = x_1 = x_2 = x_1 = x_2 = x_2 = x_1 = x_2 = x_$
In [4]: n [13]:	That, this statistics $K(y,y) = g(y,y) = g(y,y)$
In [4]: n [13]:	They dissistation: All point in [9] = 5.0 The mounts in application of patient of patient of gate and from incording in viortical basis. Section 3 In the 6935 Phatapacy the bits where Afect and Babic charge officers those are not considered, acts as of these bits. In this task, you should use from Inmental actors and Quantum Crost distriction is shore the officeron. This is a constitution in where the officeron of the following configurations are according to the constitution of
In [4]: n [13]:	This in examines May 19 - 20 in 19 - 20 in 19 in the interaction body is equivalent to applying 1 outcomer gate and then insecuring in Vertical basis. Section 3 In the MBM Fromocol the loss after Allis and from chasse different basis are not considered, bit's cere 7 in devote the ent of their BMS in the MBM Fromocol the loss after Allis and from chasse different basis are not considered, bit's cere 7 in devote the ent of their BMS in the MBM Fromocol the postability for Affice and Sub cape on a bit in 0 is 102. When Affice and BMM Gargare on the measurement basis the Etitoding configurations are possible. When Affice and BMM Gargare on the basis the applicit is in quantum supervised in the following two states: \[\begin{align*} \frac{1}{2} \text{in} \frac{1}{2} \text{in} \\ \frac{1}{2} \text{in} \text{in} \\ \frac{1}{2} \text{in} \frac{1}{2} \text{in} \\ \frac{1}{2} \text{in} \text{in} \text{in} \\ \frac{1}{2} \text{in} \text{in} \text{in} \\ \
In [4]: n [13]:	This in contains: **Major** all to -2 11
In [4]: n [13]:	Take the section 19 in 1
In [4]: n [13]:	They for each interest to a could in the Indiananal basis in agricultural to applying fladar and their measure rich in Vertical basis. Section 3 In the 1885 Thirting of the list where 48 is and the vaccinate of them, but an and construction for for the set of interest in the set of the set of the set of them the set of the set
In [4]: n [13]:	The first office of 10 to 10 t
	They be vaided to the control of the control bettic represent to appropriate control of the cont
In [4]: n [13]:	The third seed of the control of the
In [4]: n [13]:	The distributions of the problems of the company of the distribution of the company of the compa
In [4]: n [13]:	The city of the ci
In [4]: n [13]: n [30]:	The price is a size. **More of the content of the
In [4]: n [13]: n [30]:	The contribution of the control of t
In [4]: n [13]: n [30]:	The discussion of the content of the
n [14]: n [30]:	The secondary of the control of the
In [4]: In [13]:	The common and common
In [4]: n [13]: n [30]:	The content of the co
In [4]: In [13]:	The colon colon is a contract of the contract of the colon colon is a colon colon in the colon colon colon in the colon
In [4]: In [13]:	The content of the content of the foliated bears accessed to only included as an increase requirement of the content of the co