Лабораторная работа № 7

Введение в работу сданными

Беличева Дарья Михайловна

Содержание

1	Цель работы	4
2	Задание	5
3	Теоретическое введение	6
4	Выполнение лабораторной работы	7
5	Выводы	25
Список литературы		26

Список иллюстраций

4.1	Считывание данных	./
4.2	Запись данных в файл	8
4.3	Словари	8
4.4	DataFrames	9
4.5	RDatasets	10
4.6	Работа с переменными отсутствующеготипа (MissingValues)	10
4.7	FileIO	11
4.8	Кластеризация данных. Метод k-средних	12
4.9	Кластеризация данных. Метод k-средних	13
4.10	ластеризация данных. Метод k ближайших соседей	14
	Обработка данных. Метод главных компонент	15
	Обработка данных. Линейная регрессия	16
4.13	Обработка данных. Линейная регрессия	17
4.14	Кластеризация	18
4.15	Кластеризация	19
4.16	Регрессия	20
4.17	Регрессия	21
4.18	В Модель ценообразования биномиальных опционов	22
4.19	Модель ценообразования биномиальных опционов	23
4.20	Модель ценообразования биномиальных опционов	24

1 Цель работы

Основной целью работы является освоение специализированных пакетов Julia для обработки данных.

2 Задание

- 1. Используя JupyterLab, повторите примерыи. При этом дополните графики обозначениями осей координат, легендой с названиями траекторий, названиями графиков и т.п.
- 2. Выполните задания для самостоятельной работы.

3 Теоретическое введение

Julia – высокоуровневый свободный язык программирования с динамической типизацией, созданный для математических вычислений [1]. Эффективен также и для написания программ общего назначения. Синтаксис языка схож с синтаксисом других математических языков, однако имеет некоторые существенные отличия.

Для выполнения заданий была использована официальная документация Julia [2].

4 Выполнение лабораторной работы

Выполним примеры из лабораторной работы (рис. 4.1-4.13).

Рис. 4.1: Считывание данных

```
Запись данных в СSV-файл:

[14]: "programming_languages_data2.csv", P)

[14]: "programming_languages_data2.csv", P)

[15]: #Пример записи данных в текстовый файл с разделителем ',':
writedlm("programming_languages_data.txt", Tx, ',')

[16]: #Пример записи данных в текстовый файл с разделителем '-':
writedlm("programming_languages_data2.txt", Tx, '-')

[17]: #Построчное считывание данных с указанием разделителя:
P_new_delim = readdlm("programming_languages_data2.txt", '-')

[17]: 74×2 Matrix(Any):
    "year" "language"
    1952 "Autocode"
    1953 "Fortraw"
    1955 "FLOM-MATIC"
    1957 "COMTRAW"
    1958 "LISP"
    1958 "ALGOL 58"
    1959 "FACT"
    1959 "RPG"
    1962 "APL"
    2003 "Scala"
    2005 "F#"
    2006 "PowerShell"
    2006 "PowerShell"
    2007 "Clojure"
    2009 "Go"
    2011 "Rust"
    2011 "Batt"
    2011 "Red"
    2011 "Elixir"
    2011 "Swift"
```

Рис. 4.2: Запись данных в файл

```
Словари

[18]: # Инициализация словаря:
dict = Dict(Integer, Vector{String}}()
# Инициализация словаря:
dictz = Dict()

[18]: Dict{Any, Any}()

[19]: # Заполнение словаря данными:
for i = 1:size(P,1)
    year, lang = P[i,:]
    if year in keys(dict)
        dict[year] = push!(dict[year], lang)
    else
        end
end

[20]: # Пример определения в словаре языков программирования, созданных в 2003 году:
dict[2003]

[20]: 2-element Vector{String}:
    "Groovy"
    "Scala"
```

Рис. 4.3: Словари

Рис. 4.4: DataFrames

Рис. 4.5: RDatasets

Рис. 4.6: Работа с переменными отсутствующеготипа (MissingValues)

```
FilelO
                                            # Подключаем пакет FileI0:
using FileI0
                                            import Pkg
Pkg.add("ImageI0")
                                                                             Resolving package versions...
Installed FileIO - v1.16.5
Updating `~/work/study/Project.toml`
    # Загрузка изображения:
X1 = load("julialogo.svg.png")
63]: 660×1024 Array{RGBA{N0f8},2} with eltype ColorTypes.RGBA{FixedPointNumbers.N0f8}: RGBA{N0f8}(0.0,0.0,0.0,0.0) ... RGBA{N0f8}(0.0,0.0,0.0,0.0,0.0) ... RGBA{N0f8}(
                                                    RGBA(N078)(0.0,0.0,0.0,0.0)
                                                                                                                                                                                                                                                                                                               RGBA(N0f8)(0.0,0.0,0.0,0.0)
  64]: # Определение типа
@show typeof(X1);
                                                  typeof(X1) = Matrix{ColorTypes.RGBA{FixedPointNumbers.N0f8}}
    65]: @show size(X1);
                                            size(X1) = (660, 1024)
```

Рис. 4.7: FileIO

Рис. 4.8: Кластеризация данных. Метод k-средних

```
85]: using Clustering
             # Добавление данных :latitude и :longitude в новый фрейм:
X = filter_houses[!,[:latitude,:longitude]]
# Конвертация данных в матричный вид:
X = Matrix(X)
              # Задание количества кластеров:
k = length(unique(filter_houses[!,:zip]))
             L = кmeans(x,k)
# Формирование фрейма данных:
df = DataFrame(cluster = C.assignments,city = filter_houses[!,:city],
latitude = filter_houses[!,:latitude],
longitude = filter_houses[!,:longitude],zip = filter_houses[!,:zip])
              clusters_figure = plot(legend = false)
for i = 1:k
    clustered_houses = df[df[!,:cluster].== i,:]
    xvals = clustered_houses[!,:latitude]
    yvals = clustered_houses[!,:longitude]
    scatter!(clusters_figure,xvals,yvals,markersize=4)
              end
xlabel!("Latitude")
ylabel!("Longitude")
title!("Houses color-coded by cluster")
display(clusters_figure)
              unique_zips = unique(filter_houses[!,:zip])
zips_figure = plot(legend = false)
for uzip in unique_zips
   subs = filter_houses[filter_houses[!,:zip].==uzip,:]
   x = subs[!,:latitude]
   y = subs[!,:longitude]
   scatter!(zips_figure,x,y)
end
              end
xlabel!("Latitude")
ylabel!("Longitude")
title!("Houses color-coded by zip code")
display(zips_figure)
                                                                      Houses color-coded by cluster
                     -120.6
                                                                                                                                        0 00
                     -120.8
             Longitude
                     -121.0
                     -121.2
                     -121.4
                                                                       38.4
                                                                                                                                                         38.8
                                                                                                                                                                                                  39.0
                                                                                                              Latitude
```

Рис. 4.9: Кластеризация данных. Метод k-средних

Рис. 4.10: ластеризация данных. Метод k ближайших соседей

Рис. 4.11: Обработка данных. Метод главных компонент

Рис. 4.12: Обработка данных. Линейная регрессия

Рис. 4.13: Обработка данных. Линейная регрессия

Теперь выполним задания для самостоятельный работы. Загрузим

```
using RDatasets
iris = dataset("datasets", "iris")
```

Используем Clustering.jl для кластеризации на основе k-средних. Сделаем точечную диаграмму полученных кластеров. Для этого проиндексируем фрейм данных, преобразуем его в массив и транспонируем (рис. 4.14).

Рис. 4.14: Кластеризация

Рис. 4.15: Кластеризация

Пусть регрессионная зависимость являетсял инейной. Матрица наблюдений факторов X имеет размерность $N \times 3$ randn (N, 3), массив результато в $N \times 1$, регрессионная зависимость является линейной. Найдем МНК-оценку для линейной модели.

- Сравним свои результаты с результатами использования llsq из MultivariateStats.jl.
- Сравним свои результаты с результатамии спользования регулярной регрессии наименьших квадратов из GLM.jl.

Создадим матрицу данных X2, которая добавляет столбец единиц в начало матрицы данных, и решим систему линейных уравнений.

Рис. 4.16: Регрессия

Найдем линию регрессии, используя данные (X,y). Построем график (X,y), используя точечный график. Добавим линию регрессии, используя abline!. Добавим заголовок «График регрессии» и подпишим оси x и y.

Рис. 4.17: Регрессия

Построим траекторию возможных цен на акции:

- S начальная цена акции;
- Т длина биномиального дерева в годах;
- n количество периодов;
- h = Tn длина одного периода;
- σ волатильность акции;
- r годовая процентная ставка;
- $u = \exp(rh + \sigma\sqrt{h});$
- $d = \exp(rh \sigma\sqrt{h});$ $p^* = \frac{\exp(rh) d}{u d};$

Пусть $S=100,\,T=1,\,n=10000,\,\sigma=0.3$ и r=0.08. Попробуем построить траекторию курса акций.

Рис. 4.18: Модель ценообразования биномиальных опционов

Создадим функцию createPath (S ::Float64, r ::Float64, sigma ::Float64, T ::Float64, n ::Int64), которая создает траекторию цены ак- ции с учетом начальных параметров. Используем createPath, чтобы создать 10 разных траекторий и построим их все на одном графике.

Рис. 4.19: Модель ценообразования биномиальных опционов

Распараллелим генерацию траектории. Можем использовать Threads. @threads, pmap и @parallel.

Рис. 4.20: Модель ценообразования биномиальных опционов

5 Выводы

В результате выполнения данной лабораторной работы я освоила специализированные пакеты Julia для обработки данных.

Список литературы

::: {#ref}s :::

- 1. JuliaLang [Электронный ресурс]. 2024 JuliaLang.org contributors. URL: https://julialang.org/ (дата обращения: 11.10.2024).
- 2. Julia 1.11 Documentation [Электронный pecypc]. 2024 JuliaLang.org contributors. URL: https://docs.julialang.org/en/v1/ (дата обращения: 11.10.2024).