

Institutt for matematiske fag

Eksamensoppgave i TMA4135 Matematikk 4D

Faglig kontakt under eksamen: Gunnar Tara Tlf: 46432506	aldsen	
Eksamensdato: august 2017		
Eksamenstid (fra-til): 09:00-13:00		
Hjelpemiddelkode/Tillatte hjelpemidler: C: Bestemt, enkelt kalkulator og Rottmann ma	tematisk formelsamling.	
Annen informasjon:		
Alle svar må begrunnes.		
Du må ha med nok mellomregninger til at tenk	kemåten din klart fremgår.	
Oppgaven består av 20 delpunkter som har lik	vekt ved sensur.	
To sider med formler er vedlagt bakerst.		
Målform/språk: bokmål		
Antall sider: 3		
Antall sider vedlegg: 2		
		Kontrollert av:
Informasjon om trykking av eksamensoppgave		
Originalen er: 1-sidig □ 2-sidig ⊠		
sort/hvit ⊠ farger □	Dato	Sign
skal ha flervalgskjema □	= 55	9

Oppgave 1 Grafen til y = f(x) er gitt under.

- a) Finn perioden til f og definer hva dette betyr.
- b) Er f en like eller en odde funksjon? Gi en begrunnelse.

Oppgave 2 La
$$y + \int_0^t \tau y'(t - \tau) d\tau = 0$$
 hvor $y(0) = 1$.

- a) Finn laplacetransformasjonen Y til y.
- **b)** Finn y(t).

Oppgave 3 La
$$y' = -x/y^2$$
 og $y(0) = 1$.

- a) Utfør to steg med den forbedrede Euler metoden med steglengde h = 0.1.
- b) Sammenlign de to svarene med eksakt løsning og diskuter resultatet kort.

Oppgave 4 La
$$J = \int_{-1}^{1} \ln(x^2 + 1) dx$$
.

- a) Hvor liten må steglengden h være for at trapesmetoden skal gi en feil mindre enn 0.1 ved beregning av J.
- b) Beregn J med trapesmetoden med denne h verdien.
- c) Beregn J med Simpson's metode med valgt steglengde $\Delta \leq h$.
- d) Diskuter kort om feilen i trapesmetoden samsvarer med resultatet funnet ved Simpson's metode.
- e) Ved Gauss integrasjon kan J beregnes med presisjonsgrad 2N-1 ved å beregne integranden i N punkter. Forklar hvordan dette er mulig.

Oppgave 5 La $u_{xx} + u_{yy} = 0$ på området \mathcal{R} med randbetingelser som i figuren under

- a) Tegn en figur med figurtekst som forklarer hvordan en approksimasjon til u er gitt av et diskretisert lineært ligningssystem som du skal beskrive. Bruk steglengde h=0.25 i begge koordinatretningene.
- b) Hvor mange ukjente er det i systemet som funksjon av steglengden h?
- c) Finn alle løsninger på formen u = F(x)G(y) som oppfyller de tre randbetingelsene u(x,0) = u(0,y) = u(2,y) = 0.
- d) Finn en løsning som også oppfyller randbetingelsen $u(x,1) = \sin(\pi x)\cos(2\pi x)$.

Oppgave 6 La u(x,t) være det vertikale utsvinget til en streng relativt til en horisontal x-akse ved tidspunkt t.

- a) Anta at $0 \le x \le L$ og at u(0,t) = u(L,t) = 0 for alle $t \ge 0$. Tegn en figur A med figurtekst som forklarer disse antagelsene. Illustrer den geometriske tolkningen av den partiell deriverte $u'(x,t) = u_x(x,t)$ i figur A.
- b) En vertikal linje gjennom et punkt x på x-aksen deler strengen logisk i en venstre del og en høyre del. La $\vec{T}(x,t)$ være kraften som virker på strengens venstre del fra strengen høyre del. For en ideell streng er \vec{T} en tangentvektor til strengen. Tegn en figur B med figurtekst som forklarer disse antagelsene. Vis at for en ideell streng gjelder

$$u' = \frac{F}{H} \tag{1}$$

hvor F og H er den vertikale og horisontale komponenten til \vec{T} . Illustrer ligning (1) i figur B.

c) Dersom strengen kun har vertikal bevegelse, så vil massen $m = \int_x^{x+\Delta x} \rho(s) ds$ til strengen mellom x og $x + \Delta x$ ikke avhenge av tiden t. Forklar dette.

Det vertikale massemiddelpunktet til en bit av strengen er definert ved $\overline{u}(x,t) = m^{-1} \int_x^{x+\Delta x} \rho(s) u(s,t) ds$. I det følgende tas det som gitt at $m/\Delta x \to \rho$ og at $\ddot{u} = \overline{u}_{tt} \to \ddot{u}$ når $\Delta x \to 0$.

d) Forklar at Newton's andre lov gir $m\ddot{\bar{u}} = F(x + \Delta x, t) - F(x, t) - mg$ hvor g er tyngdens akselerasjon. Gi en begrunnelse for at

$$\rho \ddot{u} = F' - \rho g \tag{2}$$

e) Vis at bølgeligningen

$$\ddot{u} = c^2 u'' - g \tag{3}$$

er en konsekvens av ligning (1) og (2). Her er $c^2 = H/\rho$, $\ddot{u} = u_{tt}$ og $u'' = u_{xx}$ og det antas som gitt at H er konstant.

I lærebokas utledning av bølgeligningen antas det at utsvinget u er lite, men denne antagelsen har vi ikke gjort her. Diskuter kort om antagelsen om et lite utsving er nødvendig i forhold til antagelsene vi har gjort over.

To sider med formler er vedlagt.

Numerics

- Fixed-point iteration: $\mathbf{x}^{(k+1)} = \mathbf{g}(\mathbf{x}^{(k)})$ converges if $|\mathbf{g}'| \leq K < 1$
- Vectorial Newton's method: $\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} + \mathbf{h}^{(k)}$ and $\mathbf{h}^{(k)}$ is the smallest least-squares solution of $\mathbf{f}'(\mathbf{x}^{(k)})\mathbf{h}^{(k)} = -\mathbf{f}(\mathbf{x}^{(k)})$ with $\mathbf{f}'_{ij} = \partial_j f_i$
- Lagrange interpolation polynomial:

$$p_n(x) = \sum_{k=0}^n L_k(x) f(x_k)$$
 and $L_k(x) = \prod_{i \neq k} \frac{x - x_i}{x_k - x_i}$

- Newton series: $f(x) = f[x_0] + f[x_0, x_1](x x_0) + \cdots$ $+ f[x_0, x_1, \dots, x_n](x - x_0) \cdots (x - x_{n-1}) + \frac{f^{(n+1)}(t)}{(n+1)!}(x - x_0) \cdots (x - x_n)$
- Taylor series: $f(x) = f(x_0) + f'(x_0)(x x_0) + \cdots + \frac{f^{(n)}(x_0)}{n!}(x x_0)^n + \frac{f^{(n+1)}(t)}{(n+1)!}(x x_0)^{n+1}$
- Trapezoid rule: $\int_a^b f(x) dx = h \left[\frac{1}{2} f_0 + f_1 + f_2 + \ldots + f_{n-1} + \frac{1}{2} f_n \right] \frac{b-a}{12} h^2 f''(t)$
- Simpson rule: $\int_a^b f(x) dx = \frac{h}{3} \left[f_0 + 4f_1 + 2f_2 + \ldots + 4f_{2m-1} + f_{2m} \right] \frac{b-a}{180} h^4 f^{(4)}(t)$
- Jacobi iteration: $\mathbf{x}^{(k+1)} = \mathbf{b} \mathbf{L}\mathbf{x}^{(k)} \mathbf{U}\mathbf{x}^{(k)}$ with $\mathbf{A} = \mathbf{I} + \mathbf{L} + \mathbf{U}$
- Gauß–Seidel iteration and Liebmann's method: $\mathbf{x}^{(k+1)} = \mathbf{b} \mathbf{L}\mathbf{x}^{(k+1)} \mathbf{U}\mathbf{x}^{(k)} \text{ with } \mathbf{A} = \mathbf{I} + \mathbf{L} + \mathbf{U}$

• ADI:
$$-\Delta_x u^{(n+\frac{1}{2})} = \Delta_u u^{(n)} + \rho, -\Delta_u u^{(n+1)} = \Delta_x u^{(n+\frac{1}{2})} + \rho$$

- Euler method: $\mathbf{y}_{n+1} = \mathbf{y}_n + h\mathbf{f}(x_n, \mathbf{y}_n)$
- Improved Euler method: $\mathbf{k}_1 = h\mathbf{f}(x_n, \mathbf{y}_n), \ \mathbf{k}_2 = h\mathbf{f}(x_n + h, \mathbf{y}_n + \mathbf{k}_1),$ $\mathbf{y}_{n+1} = \mathbf{y}_n + \frac{1}{2}\mathbf{k}_1 + \frac{1}{2}\mathbf{k}_2$
- The classical Runge–Kutta method:

$$\mathbf{k}_{1} = h\mathbf{f}(x_{n}, \mathbf{y}_{n}), \qquad \mathbf{k}_{2} = h\mathbf{f}(x_{n} + h/2, \mathbf{y}_{n} + \mathbf{k}_{1}/2),$$

$$\mathbf{k}_{3} = h\mathbf{f}(x_{n} + h/2, \mathbf{y}_{n} + \mathbf{k}_{2}/2), \qquad \mathbf{k}_{4} = h\mathbf{f}(x_{n} + h, \mathbf{y}_{n} + \mathbf{k}_{3}),$$

$$\mathbf{y}_{n+1} = \mathbf{y}_{n} + \frac{1}{6}\mathbf{k}_{1} + \frac{1}{3}\mathbf{k}_{2} + \frac{1}{3}\mathbf{k}_{3} + \frac{1}{6}\mathbf{k}_{4}$$

- Implicit Euler method: $\mathbf{y}_{n+1} = \mathbf{y}_n + h\mathbf{f}(x_{n+1}, \mathbf{y}_{n+1})$
- Trapezoid and Crank-Nicolson methods: $\mathbf{y}_{n+1} = \mathbf{y}_n + \frac{h}{2} \left[\mathbf{f}(x_n, \mathbf{y}_n) + \mathbf{f}(x_{n+1}, \mathbf{y}_{n+1}) \right]$
- Finite differences: $u'(x) \approx \frac{u(x+h)-u(x-h)}{2h}, \ u''(x) \approx \frac{u(x-h)-2u(x)+u(x+h)}{h^2}$

Fourier series:
$$f(x) \sim a_0 + \sum_{n=1}^{\infty} \left(a_n \cos\left(\frac{n\pi x}{L}\right) + b_n \sin\left(\frac{n\pi x}{L}\right) \right)$$

$$a_0 = \frac{1}{2L} \int_{-L}^{L} f(x) \, dx, \ a_n = \frac{1}{L} \int_{-L}^{L} f(x) \cos\left(\frac{n\pi x}{L}\right) \, dx, \ b_n = \frac{1}{L} \int_{-L}^{L} f(x) \sin\left(\frac{n\pi x}{L}\right) \, dx$$

Fourier transform

$f(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \hat{f}(k)e^{ikx} dk$	$\hat{f}(k) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x)e^{-ikx} dx$
f * g(x)	$\sqrt{2\pi}\hat{f}(k)\hat{g}(k)$
$f^{(n)}(x)$	$(ik)^n \hat{f}(k)$
e^{-ax^2}	$\frac{1}{\sqrt{2a}}e^{-k^2/4a}$
$e^{-a x }$	$\sqrt{\frac{2}{\pi}} \frac{a}{k^2 + a^2}$
$\frac{1}{1+x^2}$	$\sqrt{\frac{\pi}{2}}e^{- k }$
f(x) = [x < a]	$\sqrt{\frac{2}{\pi}} \frac{\sin ka}{k}$

Laplace transform

f(t)	$F(s) = \int_0^\infty e^{-st} f(t) dt$
$e^{at}f(t)$	F(s-a)
$\cos(\omega t)$	$\frac{s}{s^2 + \omega^2}$
$\sin(\omega t)$	$\frac{\omega}{s^2+\omega^2}$
$\cosh(\omega t)$	$\frac{s}{s^2 - \omega^2}$
$\sinh(\omega t)$	$\frac{\omega}{s^2 - \omega^2}$
t^n	$\frac{n!}{s^{n+1}}$
e^{at}	$\frac{1}{s-a}$
f(t-a)u(t-a)	$e^{-sa}F(s)$
$\delta(t-a)$	e^{-as}