PS7

William Townsend
Department of Economics, The University of Oklahoma, Norman
March 29, 2022

1 Problem 8

My project is going okay so far. I'm trying to figure out a good model for causal factors of crime in Mexico. I have been fidgeting with scraping data from Wikipedia on state phenomena, but mostly I've been collecting data from INEGI. At the moment, I'm trying to see how I can assess the impacts of avocado price on homicides. Also, I'm trying to see if a US deportation shock of Mexican immigrants impacts homicides and/or property crime in Mexico. In truth, I still have a lot of work to do. I think I can find a way to apply a differences in differences model in some fashion though.

2 Table

From these models we can see that $\hat{\beta}_1$ is not estimated well. We vary from 0.062 to 0.050. Applying the mean method in model 2 does not yield accurate results, nor does the mice method and imputation process. We get the same results in model 1 and 3. We also get the same coefficient in model 2 and 4. Regardless, all four coefficients are inaccurate. The last two coeffecients are 0.062 and 0.052 for models 3 and 4, respectively. Both are statistically significant with a 99 percent confidence.

(Intercept)	Model 1 0.534***	Model 2 0.708***	Model 3 0.534***	Model 4 0.708***
hgc	(0.146) $0.062***$	(0.116) $0.050****$	(0.112) $0.062***$	(0.116) $0.050***$
collegenot college grad	(0.005) $0.145***$	(0.004) $0.168***$	(0.004) $0.145***$	(0.004) $0.168***$
tenure	(0.034) $0.050***$ (0.005)	(0.026) 0.038*** (0.004)	(0.025) $0.050***$ (0.004)	(0.026) $0.038***$ (0.004)
tenure_sqrd	-0.002*** (0.000)	-0.001*** (0.000)	-0.002*** (0.000)	-0.001*** (0.000)
age	0.000 (0.003)	0.000 (0.002)	0.000 (0.002)	0.000 (0.002)
marriedsingle	-0.022 (0.018)	-0.027* (0.014)	-0.022+ (0.013)	-0.027* (0.014)
Num.Obs.	1669	2229	2229	2229
R2	0.208	0.147	0.277	0.147
R2 Adj.	0.206	0.145	0.275	0.145
AIC	1179.9	1091.2	925.5	1091.2
BIC	1223.2	1136.8	971.1	1136.8
Log.Lik.	-581.936	-537.580	-454.737	-537.580
F	72.917	63.973	141.686	63.973
RMSE	0.34	0.31	0.30	0.31
+ p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001				