EC 5311 Digital IC Design: Assignment 3 CMOS inverter - transient characteristics

$$V_{Tn} = 0.7$$
, $\mu_n = 0.025 \,\mathrm{m^2/V} - \mathrm{s}$, $C_{oxn} = 0.00834 \,\mathrm{F/m^2}$, $vsat_n = 8e4 \,\mathrm{m/s}$, $\lambda_n = 0.2$
 $|V_{Tp}| = 0.7$, $\mu_p = 0.009 \,\mathrm{m^2/V} - \mathrm{s}$, $C_{oxp} = 0.00816 \,\mathrm{F/m^2}$, $vsat_p = 3e4 \,\mathrm{m/s}$, $\lambda_p = 0.2$.

1. Consider the static CMOS inverter shown below. It drives another identical inverter. The input V_{in} is a pulse between 0 and V_{DD} , with a rise and fall time equal to 5 ps and a pulse width of 250 ps. The output is V_{out} .

- (a) Set $V_{DD}=1.8V$. Assume that $L_n=L_p=0.15\,\mu\mathrm{m}$ and $W_n=0.42\,\mu\mathrm{m}$. Obtain the delay for $W_p=0.42\,\mu\mathrm{m},0.84\,\mu\mathrm{m},1.26\,\mu\mathrm{m}$.
- (b) Set W_p so that delay is minimised. Plot the delay as a function of V_{DD} for $V_{DD} = 1$ V to 1.8V in steps of 0.1V. How does it compare with analytical estimates?
- (c) Plot the measured and estimated energy-delay product as a function of V_{DD} . What is the optimum V_{DD} ?