Statistique et aide à la décision Session 3

David Causeur Agrocampus Ouest IRMAR CNRS UMR 6625

Plan

1 Estimation d'un modèle de régression logistique

Précision de l'estimation et tests

Estimation des paramètres de régression

Supposons $Y = \pm 1$ et X quantitative :

logit
$$\mathbb{P}(Y = +1 \mid X = x) = \beta_0 + \beta_1 x$$

Ajuster un modèle de régression logistique revient à **estimater** les paramètres β_0 et β_1 .

Méthode d'estimation : maximum de vraisemblance.

Vraisemblance d'un modèle

La vraisemblance $\ell_{x,y}(\beta)$, où $\beta = (\beta_0, \beta_1)'$, d'un modèle de régression logistique est la probabilité conjointe (pour tout i = 1, ..., n) d'observer $Y_i = y_i$ pour le ième individu pour lequel $X_i = x_i$:

$$\ell_{x,y}(\beta) = \mathbb{P}(Y_1 = y_1, \ldots, Y_n = y_n \mid X_1 = x_1, \ldots, X_n = x_n).$$

Les individus étant mutuellement indépendants,

$$\ell_{x,y}(\beta) = \mathbb{P}(Y_1 = y_1 \mid X_1 = x_1) \dots \mathbb{P}(Y_n = y_n \mid X_n = x_n).$$

Déviance d'un modèle

La déviance $\mathcal{D}_{x,y}(\beta)$ d'un modèle de régression logistique est définie par $\mathcal{D}_{x,y}(\beta) = -2 \log \ell_{x,y}(\beta)$

On en déduit une expression explicite :

$$\mathcal{D}_{x,y}(\beta) = -2\sum_{i=1}^{n} \log \frac{1}{1 + \exp(-y_i(\beta_0 + \beta_1 x_i))},$$

= $2\sum_{i=1}^{n} \log(1 + \exp(-y_i(\beta_0 + \beta_1 x_i))).$

Déviance d'un modèle

La déviance $\mathcal{D}_{x,y}(\beta)$ d'un modèle de régression logistique est définie par $\mathcal{D}_{x,y}(\beta) = -2 \log \ell_{x,y}(\beta)$

La déviance s'interprète comme le critère des moindres carrés :

- $\mathcal{D}_{x,y}(\beta) \geq 0$,
- $\mathcal{D}_{x,y}(\beta) = 0$ pour un ajustement parfait,
- Plus $\mathcal{D}_{x,y}(\beta)$ est petit, meilleur est l'ajustement.
- ► R Studio

Minimisation de la déviance

Soit $S_{x,y}(\beta)$ le gradient de la déviance

$$S_{x,y}(\beta) = \begin{pmatrix} \frac{\partial \mathcal{D}_{x,y}}{\partial \beta_0}(\beta) \\ \frac{\partial \mathcal{D}_{x,y}}{\partial \beta_1}(\beta) \end{pmatrix}.$$

L'estimateur $\hat{\beta}$ du maximum de vraisemblance de β vérifie

$$S_{x,y}(\hat{\beta}) = 0.$$

Plan

Estimation d'un modèle de régression logistique

2 Précision de l'estimation et tests

Précision de l'estimation

Lorsque *n* est grand,

$$\begin{pmatrix} \hat{\beta}_0 - \beta_0 \\ \hat{\beta}_1 - \beta_1 \end{pmatrix} \sim \mathcal{N} \begin{pmatrix} 0 \\ 0 \end{pmatrix}; V_{\hat{\beta}} = (X'VX)^{-1} \end{pmatrix}$$

où

$$X = \begin{pmatrix} 1 & x_1 \\ \vdots & \vdots \\ 1 & x_n \end{pmatrix}, V = \begin{pmatrix} v(x_1) & 0 & \dots & 0 \\ 0 & v(x_2) & \dots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \dots & v(x_n) \end{pmatrix}.$$

et
$$v(x_i) = \pi(x_i)(1 - \pi(x_i))$$
.

Précision de l'estimation

Test de Wald de H_0 : $\beta_1 = 0$

$$z_{\beta_1} = \frac{\hat{\beta}_1}{\sqrt{\hat{V}(\hat{\beta}_1)}} \sim_{H_0} \mathcal{N}(0;1)$$
, approximativement si n est grand

Intervalle de confiance de niveau $1 - \alpha$ de β_1

$$\Big[\hat{\beta}_1-u_{1-\frac{\alpha}{2}}\sqrt{\hat{V}(\hat{\beta}_1)};\hat{\beta}_1+u_{1-\frac{\alpha}{2}}\sqrt{\hat{V}(\hat{\beta}_1)}\Big],$$

où $u_{1-\frac{\alpha}{2}}$ est le quantile d'ordre $1-\frac{\alpha}{2}$ de la loi $\mathcal{N}(0;1)$.

