Absolute Pitch

Jonghwan Park 2012006522

Yeonjun Choi 2015003818

CONTENTS

- 1. Motivation
- 2. Timetable
 - 3. Roles
- 4. Algorithm
- 5. Simulation
- 6. Conclusion

1. Motivation

Absolute Pitch

1. Motivation

Absolute Pitch

Guitar tuner principle learned in Digital Signal Processing class

1. Motivation

Absolute Pitch

Wanting to train our vocal ability

2. Timetable

Absolute Pitch

2. Timetable

3 ~ 4 月	5~6月	7 月	8~10月	10 月
)	Q			
Brainstorming	Review feasibility	Final idea	Develop	Debugging and UI

3. Roles

Absolute Pitch

3. Roles

Absolute Pitch

Individually developing the same functions and merging the optimal codes

4. Algorithm

Absolute Pitch

4. Algorithm – Pitch Training

4. Algorithm – Pitch Training: Display Result

Ex. Receiving A3 (220Hz)

RR: 220*(1.05), RB: A4 frequency

LR: 220*(0.95), LB: A2 frequency

[LR<F<RR, F<LB, LB<=F<LR, RR<=F<RB, RB<F]

4. Algorithm – Pitch Training: Display Result

Ex. Receiving A3 (220Hz)

4. Algorithm – Pitch Training: Display Result

Ex. Receiving A3 (220Hz)

countArray

LR<F<RR [0] F<LB [1] LB<=F<LR [2] RR<=F<RB [3] RB<F [4]

Cases	Arrow position on screen	
countArray[0] is the biggest	S0	
countArray[1] is the biggest	SLB	
countArray[2] is the biggest	SLB+(Avg-LB)*{(SL-SLB)/(LR-LB)}	
countArray[3] is the biggest	SR+(Avg-RR)*{(SRB-SR)/(RB-RR)}	
countArray[4] is the biggest	SRB	

4. Algorithm – Vocal Training

4. Algorithm – Vocal Training: Create an Array

N간 T당 2개 혹은 3개의 Frequency를 받고, Ex. 총 3T의 시간에 Frequency를 받는 경우

Step 1. Frequency를 받는 배열의 최소 크기를 정한다.

시간 T당 2개 혹은 3개의 Frequency를 받으므로, 시간 T당 배정된 배열의 크기를 4(=S)로 한다. 따라서 이 경우 Frequency를 받는 배열의 최소 크기는 12로 한다.

Step 2. Timer Counter를 설정한다.

시간에 따라 배열을 받는 위치를 변화시키기 위한 도구이다.

4. 알고리즘 - Vocal Training: Create an Array

Ex. 총 3T의 시간에 Frequency를 받고, 총 3T의 시간에 Frequency를 받는 경우

4. 알고리즘 - Vocal Training: Create an Array

Ex. 총 3T의 시간에 Frequency를 받고, 총 3T의 시간에 Frequency를 받는 경우

이를 통해 다음과 같은 형태의 Array를 얻을 수 있다.

0~1T의 음 1T~2T의 음 2T~3T의 음

이와 같이 구한 Array에서 F1_1, F1_2을 통해 0~T에 해당하는 음을,

F2_1, F2_2, F2_3를 통해 T~2T에 해당하는 음을, F3_1, F3_2를 통해 2T~3T에 해당하는 음을 잡아낼 수 있다.

따라서 이와 같이 Frequency의 배열을 만들면 각 박자에 해당하는 음을 확인하기 쉬워지고, 이후 어플리케이션에 저장된 원곡과 비교 과정 또한 용이해진다.

4. 알고리즘 - Vocal Training: Compare& Display Result

Refer : 첫번째 받는 음을 Reference로 지정

Error : 저장된 데이터 음과 받은 음의 주파수를 비교 시 틀린 경우

Correct : 저장된 데이터 음과 받은 음의 주파수를 비교 시 맞는 경우

4. 알고리즘 – Vocal Training: Compare& Display Result

5. Demo

Absolute Pitch

6. Conclusion

Absolute Pitch

6. Conclusion – Objective

Absolute Pitch

Be able to practice an absolute pitch via

Absolute Pitch app

6. Conclusion – Objective

Absolute Pitch

Be able to practice
accurate intervals of
songs via **A**bsolute **P**itch
app

Thank You

