Nate Warner MATH 230 November 11, 2023

Homework/Worksheet 9 - Due: Wednesday, November 15

1. Use the comparison test to determine whether the series is convergent or divergent

(a)
$$\sum_{n=1}^{\infty} \frac{1}{2n-1}$$

(b)
$$\sum_{n=1}^{\infty} \frac{\sin^2 n}{n^2}$$

(c)
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{n^2+1}}$$

Remark. Suppose we have two series a_n, b_n and $\exists N \in \mathbb{Z}^+$ s.t $0 \le a_n \le b_n \ \forall n \ge N$. If b_n converges then a_n will also converge. Conversely, if $a_n \ge b_n \ge 0 \ \forall n \ge N$, and b_n diverges, then a_n will also diverge

Problem 1.a. If we let b_n be the series $\sum_{n=1}^{\infty} \frac{1}{2n}$. We may conject that this series will diverge since it is know that the harmonic series $\sum \frac{1}{n}$ diverges, and multiplying a series by a constant factor will not affect the convergence or divergence. Furthermore,

$$\frac{1}{2n-1} > \frac{1}{2n}.$$

Conclusion. Thus, since $\sum_{n=1}^{\infty} \frac{1}{2n}$ diverges, we can conclude that $\sum_{n=1}^{\infty} \frac{1}{2n-1}$ will also diverge

Problem 1.b Let b_n be the series $\sum_{n=1}^{\infty} \frac{1}{n^2}$ Since we know the sine function produces outputs in the range [-1,1], the sine function squared will produce outputs withing the range [0,1]. However, since we are only considering integer values $[1, \infty)$, $\sin^2 n$ will only produce outputs (0, 1). This is because the sine function has outputs of 1 at $\frac{\pi}{2} + 2k\pi$, $k \in \mathbb{Z}$, and outputs of 0 at $k\pi$, $k \in \mathbb{Z}$,

Problem 1.b: Let $b_n = \sum_{n=1}^{\infty} \frac{1}{n^2}$. We know The function $\sin^2(x)$ yields values in the range [0,1], as $\sin(x)$ varies between -1 and 1. For integer values n in the range $[1, \infty)$, $\sin^2(n)$ will produce values in the interval (0,1). This is because $\sin(x)$ equals 1 at $\frac{\pi}{2} + 2k\pi$ and 0 at $k\pi$, where k is an integer, and these points are not integers. Thus we can conclude

$$\frac{\sin^2 n}{n^2} < \frac{1}{n^2}.$$

Conclusion. Since we know by the p-series $\frac{1}{n^2}$ will converge, $\frac{\sin^2 n}{n^2}$ will also converge

Problem 1.c Let b_n be the series $\sum_{n=1}^{\infty} \frac{1}{n+1}$. We know this series will diverge because it is just the harmonic series $\frac{1}{n}$ shifted over by 1. We can deduce that $\frac{1}{\sqrt{n^2+1}} > \frac{1}{n+1}$ by looking at their reciprocals

$$\sqrt{n^2 + 1} < n + 1$$

$$n^2 + 1 < (n + 1)^2$$

$$n^2 + 1 < n^2 + 2n + 1$$

$$n^2 < n^2 + 2n.$$

Conclusion. Since this is clearly a true statement, then by the reciprocal identify for inequalities, which states if $0 \le a \le b$, then $\frac{1}{a} \ge \frac{1}{b}$ it holds that $\frac{1}{\sqrt{n^2+1}} > \frac{1}{n+1}$. and since we know $\sum_{n=1}^{\infty} \frac{1}{n+1}$ diverges, then $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n^2+1}}$ will also diverge.

2. Use the Limit Comparison Test to determine whether the series is convergent or divergent.

(a)
$$\sum_{n=1}^{\infty} \ln\left(1 + \frac{1}{n^2}\right)$$

$$\text{(b)} \sum_{n=1}^{\infty} \frac{1}{4^n - 3^n}$$

(c)
$$\sum_{n=1}^{\infty} \left(1 - \cos \frac{1}{n}\right)$$

Remark. Suppose we have two series a_n , b_n where a_n , $b_n \ge 0 \,\forall n \ge 1$. Then if

- $\lim_{n\to\infty}\frac{a_n}{b_n}=L\neq 0$ or $+\infty$. Then a_n and b_n either both converge or both diverge
- $\lim_{n\to\infty}\frac{a_n}{b_n}=0$, then if b_n converges, so does a_n
- $\lim_{n\to\infty}\frac{a_n}{b_n}=+\infty$, then if b_n diverges, so does a_n

Problem 2.a Let $b_n = \frac{1}{n^2}$, which by the p-series, converges

$$\lim_{n \to \infty} \frac{a_n}{b_n} = \frac{\ln\left(1 + \frac{1}{n^2}\right)}{\frac{1}{n^2}}$$

$$= \lim_{n \to \infty} \frac{\ln\left(1 + \frac{1}{n^2}\right)}{n^{-2}}$$

$$\stackrel{H}{=} \lim_{n \to \infty} \frac{\frac{1}{1 + \frac{1}{n^2}} \cdot -\frac{2}{n^3}}{-\frac{2}{n^3}}$$

$$= \lim_{n \to \infty} \frac{-2n^3}{-2n^3\left(1 + \frac{1}{n^2}\right)}$$

$$= \lim_{n \to \infty} \frac{1}{\left(1 + \frac{1}{n^2}\right)}$$

$$= 1.$$

Conclusion. Since $\sum_{n=1}^{\infty} \frac{1}{n^2}$ converges, so does $\sum_{n=1}^{\infty} \ln \left(1 + \frac{1}{n^2}\right)$

Problem 2.b Choose $b_n = \frac{1}{4^n} = \left(\frac{1}{4}\right)^n$, which is a geometric series with |r| < 1 and thus converges

$$\lim_{n \to \infty} \frac{\frac{1}{4^n - 3^n}}{\frac{1}{4^n}}$$

$$= \lim_{n \to \infty} \frac{4^n}{4^n - 3^n}$$

$$= \lim_{n \to \infty} \frac{\frac{4^n}{4^n}}{\frac{4^n}{4^n} - \frac{3^n}{4^n}}$$

$$= \lim_{n \to \infty} \frac{1}{1 - \left(\frac{3}{4}\right)^n}$$

$$= 1.$$

Thus, since $\sum_{n=1}^{\infty} \frac{1}{4^n}$ converges, so does $\sum_{n=1}^{\infty} \frac{1}{4^n - 3^n}$

Problem 2.c Choose $b_n = \frac{1}{n^2}$, which we know converges

$$\begin{split} &\lim_{n\to\infty}\frac{1-\cos\left(\frac{1}{n}\right)}{\frac{1}{n^2}} \quad \text{(Indeterminate } \frac{0}{0}\text{)} \\ &\stackrel{H}{=}\lim_{n\to\infty}\frac{\sin\left(\frac{1}{n}\right)\cdot-\frac{1}{n^2}}{-\frac{2}{n^3}} \\ &=\lim_{n\to\infty}\frac{n^3\sin\left(\frac{1}{n}\right)}{2n^2} \\ &=\frac{1}{2}\lim_{n\to\infty}n\sin\left(\frac{1}{n}\right) \\ &=\frac{1}{2}\lim_{n\to\infty}\frac{\sin\left(\frac{1}{n}\right)}{n^{-1}} \quad \text{(Indeterminate } \frac{0}{0}\text{)} \\ &\stackrel{H}{=}\frac{1}{2}\lim_{n\to\infty}\frac{\cos\left(\frac{1}{n}\right)\cdot-\frac{1}{n^2}}{-\frac{1}{n^2}} \\ &=\frac{1}{2}\lim_{n\to\infty}\cos\left(\frac{1}{n}\right) \\ &=\frac{1}{2}\cos 0 \\ &=\frac{1}{2}. \end{split}$$

Conclusion. Since $\lim_{n\to\infty} \frac{a_n}{b_n} = L \neq 0$ or $+\infty$, since b_n converges, so does a_n