NUMERICAL QUALIFIER SOLUTION: AUGUST 2013

Problem 1. Let V be a closed subspace of $H^1(\Omega), V_h \subset V$ be a finite element approximation space and Ω a domain in \mathbb{R}^d . Given $W^0 \in V_h$, we consider the forward Euler approximation: $W^{n+1} \in V_h$, $n = 0, 1, \ldots$ satisfying

$$((W^{n+1} - W^n)/k, \theta) + A(W^n, \theta) = (f^n, \theta), \quad \text{for all } \theta \in V_h.$$

Here k > 0 is the time step size, $t^n = nk$, $f^n \in V_h(\cdot, \cdot)$ is the inner product in $L^2(\Omega), \|\cdot\|$ is the corresponding norm and $A(\cdot, \cdot)$ is a symmetric, coercive, and bounded bilinear form on V.

Let $\{\psi_i\}$, $i=1,\ldots,M$ be an orthonormal basis with respect to (\cdot,\cdot) for V_h of eigenfunctions satisfying

$$A(\psi_i, \theta) = \lambda_i(\psi_i, \theta),$$
 for all $\theta \in V_h$.

(a) Expand

$$W^n = \sum_{i=1}^M c_i^m \psi_i, \quad \text{and} \quad f^n = \sum_{i=1}^M d_i^n \psi_i,$$

and set $\delta_i = 1 - k\lambda_i$. Derive a recurrence relation for c_i^{n+1} in terms of δ_i, c_i^n, k and d_i^n .

(b) Assume that the CFL condition, $k\lambda_i \leq 2$, holds for all eigenvalues λ_i . Show that

$$|c_i^n| \le \begin{cases} |c_i^0|, & if f^n = 0 \,\forall n, \\ (t^n)^{1/2} \left(k \sum_{j=0}^{n-1} |d_i^j|^2\right)^{1/2}, & if W^0 = 0. \end{cases}$$

(c) Use Part (b) above and superposition principle to derive the stability estimate

$$||W^n|| \le ||W^0|| + (t^n)^{1/2} \left(k \sum_{j=0}^{n-1} ||f^j||^2\right)^{1/2}$$

Solution. (a) We want to derive a recurrence relation for c_i^{n+1} . Let $W^n = \sum_{i=1}^M c_i^n \psi_i$ and $f^n = \sum_{i=1}^M d_i^n \psi$ and substitute into the discrete equation in the problem statement:

$$\frac{1}{k} \Big(\sum_{i=1}^M c_i^{n+1} \psi_i - \sum_{i=1}^M c_i^n \psi_i, \theta \Big) + A(\sum_{i=1}^M c_i^n \psi_i, \theta) = \Big(\sum_{i=1}^M d_i^n \psi_i, \theta \Big).$$

Note that this holds for any $\theta \in V_h$. Then, by linearity of integration and linearity of the bilinear form, we have that

$$\sum_{i=1}^{M} (c_i^{n+1} - c_i^n)(\psi_i, \theta) + k \sum_{i=1}^{M} c_i^n A(\psi_i, \theta) = k \sum_{i=1}^{M} d_i^n(\psi_i, \theta).$$

where we multiplied both sides by k. Then, by the eigenvalue problem above, we can rewrite the above equation as

$$\sum_{i=1}^{M} (c_i^{n+1} - c_i^n)(\psi_i, \theta) + k \sum_{i=1}^{M} c_i^n \lambda_i(\psi_i, \theta) = k \sum_{i=1}^{M} d_i^n(\psi_i, \theta).$$

Since $\{\psi_i\}$, $i=1,\ldots,M$ is an **orthonormal** basis, let us set $\theta=\psi_i$. This yields

$$(c_i^{n+1} - c_i^n) + kc_i^n \lambda_i = kd_i^n,$$

$$\Longrightarrow$$

$$c_i^{n+1} = (1 - k\lambda_i)c_i^n + kd_i^n,$$

$$= \delta_i c_i^n + kd_i^n.$$

This our recurrence relation for c_i^{n+1} .

(b) Let us assume the CFL condition holds $k\lambda_i \leq 2$ for all λ_i . Case $f^n = 0$. Let $f^n = 0$ for all n. Then, by part (a) we know that

$$c_i^{n+1} = \delta_i c_i^n,$$

= $(1 - k\lambda_i)c_i^n.$

Since A is **coercive**, the eigenvalue problem above gives us that $\lambda_i \geq 0$. Then note that $0 \leq k\lambda_i \leq 2 \implies 0 \geq -k\lambda_i \geq -2 \implies 1 \geq 1 - k\lambda_i \geq -1 \implies |\delta_i| \leq 1$. Then, since $d_i^n = 0$, we see that

$$\left|c_i^{n+1}\right| = \left|\delta_i c_i^n\right| < \left|c_i^n\right|.$$

Since this holds for each time step, we have that $|c_i^n| \leq |c_i^0|$ for all n.

Case $W^0 = 0$. Let $W^0 = 0$. From the recurrence relation, we see that for n = 0, $c_i^1 = \oint_i^0 c_i^0 + k d_i^0 = k d_i^0 \implies \left| c_i^1 \right| \le k \left| d_i^0 \right| = k^{1/2} \left| k^{1/2} d_i^0 \right| = (1 \cdot k)^{1/2} \left(k \left| d_i^0 \right|^2 \right)^{1/2}$. Here, we show the "1" to represent n = 1.

Let us proceed by induction. Assume the following holds

$$|c_i^n| \le (t^n)^{\frac{1}{2}} \left(k \sum_{j=0}^{n-1} \left| d_i^j \right|^2 \right)^{\frac{1}{2}}$$

for some $n \geq 1$. Then, we have that

$$\begin{split} \left|c_{i}^{n+1}\right| &= \left|\delta_{i}c_{i}^{n} + kd_{i}^{n}\right|, \\ &\leq \left|\delta_{i}\right| \left|c_{i}^{n}\right| + \left|kd_{i}^{n}\right|, \\ &\leq \left|c_{i}^{n}\right| + \left|kd_{i}^{n}\right|, \\ &\leq \left|c_{i}^{n}\right| + \left|kd_{i}^{n}\right|, \\ &\leq \left(t^{n}\right)^{\frac{1}{2}} \left(k \sum_{j=0}^{n-1} \left|d_{i}^{j}\right|^{2}\right)^{\frac{1}{2}} + k \left|d_{i}^{n}\right|, \\ &= \left(t^{n}\right)^{\frac{1}{2}} \left(k \sum_{j=0}^{n-1} \left|d_{i}^{j}\right|^{2}\right)^{\frac{1}{2}} + k^{\frac{1}{2}} \left(k \left|d_{i}^{n}\right|^{2}\right)^{\frac{1}{2}}, \\ &\left(ab + cd \leq \sqrt{a^{2} + c^{2}} \sqrt{b^{2} + d^{2}}\right) \leq \left(t^{n} + k\right)^{\frac{1}{2}} \left(k \sum_{j=0}^{n-1} \left|d_{i}^{j}\right|^{2} + k \left|d_{i}^{n}\right|^{2}\right)^{\frac{1}{2}}, \\ &= \left(t^{n+1}\right)^{\frac{1}{2}} \left(k \sum_{j=0}^{n} \left|d_{i}^{j}\right|^{2}\right)^{\frac{1}{2}} \end{split}$$

(c) We want to show the stability inequality in the problem statement. Let us use the results from the previous sub-problems. Let $W^n \in V_h$ be defined as $W^n = W_1^n + W_2^n$ where $W_1^n, W_2^n \in V_h$ solve the respective problems:

$$\begin{cases} (W_1^{n+1} - W_1^n, \theta) + A(W_1^n, \theta) = 0 \\ W_1^0 = W^0 & \forall \theta \in V_h, \end{cases}$$
$$\begin{cases} (W_2^{n+1} - W_2^n, \theta) + A(W_2^n, \theta) = (f^n, \theta) \\ W_2^0 = 0 & \forall \theta \in V_h, \end{cases}$$

(Here we used the superposition principle). Then, by part (b) we know that for each W_1^n and W_2^n :

$$\begin{split} & \left| c_{1,i}^n \right| \leq \left| c_i^0 \right|, \\ & \left| c_{2,i}^n \right| \leq (t^n)^{\frac{1}{2}} \left(k \sum_{j=0}^{n-1} \left| d_i^j \right|^2 \right)^{\frac{1}{2}}. \end{split}$$

Note that $(W_1^n, W_1^n) = \|W_1^n\|^2 = \sum_{i=1}^M |c_{1,i}|^2 \le \sum_{i=1}^M |c_i^0|^2 = \|W^0\|^2$. Similarly, $\|W_2^n\|^2 \le t^n k \sum_{j=0}^{n-1} \|f^j\|^2$. Then, by the triangle inequality we get the desired estimate:

$$\|W^n\| \le \|W_1^n\| + \|W_2^n\| \le \|W^0\| + (t^n)^{1/2} \left(k \sum_{j=0}^{n-1} \|f^j\|^2\right)^{\frac{1}{2}}$$

Problem 2. In this problem, C (with or without subscript) denotes generic positive constants which are independent of the triangle diameters h_{τ} and \mathbb{P}^{j} denotes the space of polynomials \mathbb{R}^{2} of degree at most j.

Let Ω be a polynomial domain in \mathbb{R}^2 and u be the solution in $H_0^1(\Omega)$ of

(0.1)
$$\int_{\Omega} \nabla u \cdot \nabla v dx = \int_{\Omega} f v dx, \quad \text{for all } v \in H_0^1(\Omega),$$

with $f \in L^2(\Omega)$.

Let \mathcal{T}_h for 0 < h < 1 be shape regular triangulations of Ω . Set

$$X_h = \{ v_h \in H^1(\Omega) : v_h|_{\tau} \in \mathbb{P}^2 \} \text{ and } V_h = X_h \cap H^1_0(\Omega).$$

(a) For $\tau \in \mathcal{T}_h$, let $b_{\tau} \in \mathbb{P}^3$ be the "bubble" function defined by the conditions b_{τ} equal one on the barycenter of τ and b_{τ} vanishes on $\partial \tau$. Show that for any function $w_h \in X_h$

$$C_2 \|w_h\|_{L^2(\tau)} \ge \|b_\tau^{1/2} w_h\|_{L^2(\tau)} \ge C_1 \|\|_{L^2(\tau)}.$$

(b) For $f_h \in X_h$ and $v_h \in V_h$, let z_h denote the function given by

$$z_h|_{\tau} = b_{\tau}(f_h + \Delta v_h)|_{\tau}, \quad \tau \in \mathcal{T}_h.$$

Explain why $z_h \in H_0^1(\Omega)$.

(c) Show that

$$||b_{\tau}^{1/2}(f_h + \Delta v_h)||_{L^2(\tau)}^2 = \int_{\tau} (f_h - f)z_h dx + \int_{\tau} (\nabla (u - v_h) \cdot \nabla z_h dx.$$

Solution. (a) Let $\lambda_1, \lambda_2, \lambda_3$ be the usual barycentric coordinates on τ . Recall that the "bubble" function defined by the conditions b_{τ} equal one on the barycenter of τ and b_{τ} vanishes on $\partial \tau$ is given by:

$$b_{\tau} = 27\lambda_1\lambda_2\lambda_3$$
.

Let $b_{\tau}(x,y)$ be the representation of the bubble function in Cartesian coordinates. Let $F_{\tau}: \hat{\tau} \to \tau$ be the affine transformation from the reference element $\hat{\tau}$ to the physical element τ . Let $\hat{w}_h = w_h \circ F_{\tau}$ and $\hat{b}_{\hat{\tau}} = b_{\tau} \circ F_{\tau}$. Then we have the following equalities:

$$||b_{\tau}^{1/2}w_{h}||_{L^{2}(\tau)} = \left|\det F_{\tau}^{'}\right|^{1/2} ||\hat{b}_{\hat{\tau}}^{1/2}\hat{w}_{h}||_{L^{2}(\hat{\tau})},$$

and

$$||w_h||_{L^2(\tau)} = \left|\det F_{\tau}'\right|^{1/2} ||\hat{w}_h||_{L^2(\hat{\tau})}.$$

Then, by norm equivalence in polynomial spaces (since they are finite dimensional) we have that:

$$C_2 \|\hat{w}_h\|_{L^2(\hat{\tau})} \ge \|\hat{b}_{\hat{\tau}}^{1/2} \hat{w}_h\|_{L^2(\hat{\tau})} \ge C_1 \|\hat{w}_h\|_{L^2(\hat{\tau})}.$$

Then transforming back to the physical element τ by the affine mapping F_{τ} yields the inequalities on τ .

- (b) First note that z_h vanishes on the boundary of τ , $\partial \tau$, since b_{τ} vanishes on the boundary for all $\tau \in \mathcal{T}_h$. Thus, z_h must vanish on $\partial \Omega$. Note that $(\Delta v_h)|_{\tau}$ is a constant function, thus $(f_h + (\Delta v_h))|_{\tau} \in \mathbb{P}^2 \implies b_{\tau}(f_h + (\Delta v_h))|_{\tau} \in \mathbb{P}^5$. So $z_h|_{\tau} \in H_0^1(\tau)$. Since z_h vanishes on all $\partial \tau$, we will have continuity over all Ω . Thus, $z_h \in H_0^1(\Omega)$.
- (c) We want to show the property in part (c). Let us begin with the left hand side and use integration by parts:

$$\begin{split} \|b_{\tau}^{1/2}(f_h + \Delta v_h)\|_{L^2(\tau)}^2 &= \int\limits_{\tau} b_{\tau}^{1/2}(f_h + \Delta v_h)b_{\tau}^{1/2}(f_h + \Delta v_h)dx, \\ &= \int\limits_{\tau} z_h (f_h + \Delta v_h)dx, \\ &= \int\limits_{\tau} z_h f_h + \int\limits_{\tau} z_h \Delta v_h dx, \\ &= \int\limits_{\tau} z_h f_h dx + \int\limits_{\tau} (\nabla v_h \cdot \mathbf{x})z_h ds - \int\limits_{\tau} \nabla v_h \cdot \nabla z_h dx, \\ &= \int\limits_{\tau} z_h f_h dx - \int\limits_{\tau} \nabla v_h \cdot \nabla z_h dx, \\ &= \int\limits_{\tau} z_h f_h dx - \int\limits_{\tau} \nabla v_h \cdot \nabla z_h dx - \int\limits_{\tau} f z_h dx + \int\limits_{\tau} \nabla z_h \cdot \nabla u dx, \\ &= \int\limits_{\tau} (f_h - f)z_h dx + \int\limits_{\tau} (\nabla (u - v_h)) \cdot \nabla z_h dx. \end{split}$$

Problem 3. Let K be a nondegenerate triangle in \mathbb{R}^2 . Let a_1, a_2, a_3 be the three vertices of K. Let $a_{ij} = a_{ji}$ denote the midpoint of the segment $(a_i, a_j), i, j \in \{1, 2, 3\}$. Let \mathbb{P}^2 be the set of the polynomial functions over K of total degree at most 2. Let $\Sigma = \{\sigma_1, \sigma_2, \sigma_3, \sigma_{12}, \sigma_{23}, \sigma_{31}\}$ be the functions (or degrees of freedom) on \mathbb{P}^2 defined as

$$\sigma_i(p) = p(a_i), i \in \{1, 2, 3\}, \qquad \sigma_{ij}(p) = p(a_i) + p(a_j) - 2p(a_{ij}), i, j = 1, 2, 3, i \neq j.$$

- (a) Show that Σ is a unisolvent set for \mathbb{P}^2 .
- (b) Compute the "nodal" bases of \mathbb{P}^2 which corresponds to $\{\sigma_1, \ldots, \sigma_{31}\}$.
- (c) Evaluate the entry m_{11} of the element mass matrix.

Solution. (a) We want to show that the set Σ is a unisolvent set for \mathbb{P}^2 . First note that $\operatorname{card}(\Sigma) = 6 = \dim \mathbb{P}^2$. We now want to verify that $\sigma(p) = 0$ for all $\sigma \in \Sigma$ implies that p = 0 for any $p \in \mathbb{P}^2$. Before we continue, we want to invoke affine equivalence of the physical and reference element to show unisolvence on the reference element.

Let $\hat{K} := \{(x,y) | x \geq 0, y \geq 0, x+y \leq 1\}$ be the reference triangular element. Let $p(x,y) = a + bx + cy + dxy + ex^2 + fy^2$ be an arbitrary polynomial in \mathbb{P}^2 defined on the reference element. Let $a_1 = (0,0), a_2 = (1,0), a_3 = (0,1), a_{12} = (\frac{1}{2},0), a_{13} = (0,\frac{1}{2}), a_{23} = (\frac{1}{2},\frac{1}{2})$. Then for each degree of freedom, we have that

$$\begin{split} \sigma_1(p) &= a \quad \sigma_2(p) = a+b+e, \\ \sigma_3(p) &= a+c+f, \quad \sigma_{12}(p) = e/2, \\ \sigma_{13}(p) &= f/2, \quad \sigma_{23}(p) = \frac{1}{2}(-d+e+f). \end{split}$$

We immediately see that $\sigma_1(p) = \sigma_4(p) = \sigma_5(p) = 0$ imply that a = e = f = 0. Then from $\sigma_2(p) = \sigma_3(p) = 0 = \sigma_6(p)$ implies that b = c = d = 0. Thus, our polynomial is exactly 0 and have a unisolvent set.

(b) We now want to compute the "nodal" basis functions which correspond to the set Σ on the reference element. That is, we want to find the 6 polynomials w_j such that $\tilde{\sigma}_i(w_j) = \delta_{ij}$, i, j = 1, ..., 6 where δ_{ij} is the Kronecker delta and $\tilde{\sigma}$ represent the 6 DOFS in our set Σ . Solving this system of equations, yields the following basis functions:

$$w_1 = 1 - x - y, w_2 = x, w_3 = y,$$

$$w_4 = -2x(1-x-y), w_5 = -2y(1-x-y), w_6 = -2xy$$

(Try to find these basis functions using barycentric coordinates: $w_1 = \lambda_1, w_2 = \lambda_2, w_3 = \lambda_3, w_4 = -2\lambda_1\lambda_2, w_5 = -2\lambda_1\lambda_3, w_6 = -2\lambda_2\lambda_3$.)

(c) We now want to evaluate the entry m_{11} of the **element** mass matrix. Recall that the entry m_{11} is defined by:

$$m_{11} = \int_K w_1 w_1 dx,$$

where K is the physical triangular element. Since we defined the basis functions on

the reference element, let $\tilde{w}_1 = w_1 \circ F_K^{-1}$. Then, we have that:

$$\int_{K} \tilde{w}_{1} \tilde{w}_{1} dx = \frac{|K|}{|\hat{K}|} \int_{\hat{K}} w_{1} w_{1} d\hat{x},$$

$$= \frac{|K|}{|\hat{K}|} \int_{\hat{K}} (1 - \hat{x} - \hat{y})^{2} dx,$$

$$= \frac{|K|}{|\hat{K}|} \frac{1}{12} = \frac{1}{6} |K|$$

This integration can also be done can with the following integration formula for barycentric coordinates on a simplex $K \subset \mathbb{R}^d$:

$$\int_K \prod_{i=1}^{d+1} \lambda_k^{m_i} = \frac{\prod_{i=1}^{d+1} m_i!}{\left(d + \sum_{i=1}^{d+1} m_i\right)!} d! \, |K|$$

Here, $d = 2, m_1 = 2, m_2 = 0, m_3 = 0$. Thus, we have that

$$\int_{K} \lambda_{1} \lambda_{1} = \frac{2!0!0!}{(2+2+0+0)!} 2! |K|,$$

$$= \frac{1}{6} |K|.$$