System Identification LS 2017

Least squares identification

Xing Chao

Least squares identification Improved algorithm

auxiliary variable method

Generalized least square method

Hsia method

Augmented matrix method

Xing Chao

Institute of Astronautics, Northwestern Polytechnical University

Contents

Least squares identification

Xing Chao

auxiliary variable method

Generalized least square method

Hsia method

Augmented matrix method

auxiliary variable method

2 Generalized least square method

3 Hsia method

auxiliary variable method

Least squares identification

Xing Chao

- The identification accuracy is higher than the basic least squares estimation method;
- computate easily;
- Asymptotically unbiased estimate;
- Construction of auxiliary variable matrix.

auxiliary variable

Generalized least square method

Hsia method

Principle of auxiliary variable method

Least squares identification

Xing Chao

 $Y = \Phi\theta + \xi$ $\Phi^{T}Y = \Phi^{T}\Phi\theta + \Phi^{T}\xi$ $(\Phi^{T}\Phi)^{-1}\Phi^{T}Y = (\Phi^{T}\Phi)^{-1}\Phi^{T}\Phi\theta + (\Phi^{T}\Phi)^{-1}\Phi^{T}\xi$ $(\Phi^{T}\Phi)^{-1}\Phi^{T}Y = \theta + (\Phi^{T}\Phi)^{-1}\Phi^{T}\xi$

auxiliary variable

Generalized least square method

Hsia method

Principle of auxiliary variable method

Least squares identification

Xing Chao

auxiliary variable method Generalized

least square method

nsia metho

Augmented matrix method

$$\begin{array}{rcl} Y & = & \Phi\theta + \xi \\ Z^{T}Y & = & Z^{T}\Phi\theta + Z^{T}\xi \\ (Z^{T}\Phi)^{-1}\Phi^{T}Y & = & (Z^{T}\Phi)^{-1}\Phi^{T}\Phi\theta + (Z^{T}\Phi)^{-1}Z^{T}\xi \\ (Z^{T}\Phi)^{-1}\Phi^{T}Y & = & \theta + (Z^{T}\Phi)^{-1}Z^{T}\xi \end{array}$$

where:

$$E(Z^{T}\xi) = 0$$

$$E(Z^{T}\Phi) = Q$$

where Q Nonsingular $_{\circ}$

Asymptotically unbiased

Least squares identification

Xing Chao

$$\begin{split} \mathrm{E}[\hat{\theta}_{\mathrm{IV}}] &= \mathrm{E}[(\mathrm{Z}^{\mathrm{T}}\Phi)^{-1}\mathrm{Z}^{\mathrm{T}}\mathrm{Y}] \\ &= \mathrm{E}[(\mathrm{Z}^{\mathrm{T}}\Phi)^{-1}\mathrm{Z}^{\mathrm{T}}(\Phi\theta + \xi)] \\ &= \theta + \mathrm{E}[(\mathrm{Z}^{\mathrm{T}}\Phi)^{-1}\mathrm{Z}^{\mathrm{T}}\xi] \\ \lim_{\mathrm{N}\to\infty} \mathrm{E}[\hat{\theta}_{\mathrm{IV}}] &= \theta + \mathrm{E}[(\mathrm{Z}^{\mathrm{T}}\Phi)^{-1}]\mathrm{E}[\mathrm{Z}^{\mathrm{T}}\xi] \\ &= \theta \end{split}$$

auxiliary variable

Generalized least square method

Hsia method

The construction method of auxiliary variable method

Least squares identification

Xing Chao

- Recursive auxiliary variable parameter estimation method
- Adaptive filtering method
- Pure lag method
- Taly principle method

auxiliary variable

Generalized least square method

Hsia method

Recursive auxiliary variable parameter estimation method:Z

Least squares identification

Xing Chao

auxiliary variable

Generalized least square method

Hsia method

Recursive auxiliary variable parameter estimation method:process

Least squares identification

Xing Chao

• initialize: use basic least squares method to estimate $\hat{\theta}$, let $Z = \Phi$,

- Recurse:
 - update Z

$$\hat{\mathbf{Y}} = \mathbf{Z}\hat{\theta}$$

• compute $\hat{\theta}$

$$\hat{\theta} = (\mathbf{Z}^{\mathrm{T}} \boldsymbol{\Phi})^{-1} \mathbf{Z}^{\mathrm{T}} \mathbf{Y}$$

• iterate until $\hat{\theta}$ converges.

auxiliary variable

Generalized least square method

Hsia method

Adaptive filtering method

Least squares identification

Xing Chao

On the basis of recursive auxiliary variable parameter estimation method ,let:

$$\hat{\theta}_{k} = (1 - \alpha)\hat{\theta}_{k-1} + \alpha\hat{\theta}_{k-d}$$

 α : $\in [0.01, 0.1]$

 $d: \in [0, 10],$

auxiliary variable method

Generalized least square method

Hsia method

Pure lag method

Least squares identification

Xing Chao

auxiliary variable method

Generalized least square method

Hsia method

Augmented matrix method

$$\hat{y}_k = u_{k-m}$$

When d = n, there is:

$$Z \ = \ \begin{bmatrix} -u_0 & \cdots & -u_{1-n} & u_{n+1} & \cdots & u_1 \\ -u_1 & \cdots & -u_{2-n} & u_{n+2} & \cdots & u_2 \\ \vdots & & \vdots & \vdots & \vdots \\ -u_{N-1} & \cdots & -u_{N-n} & u_{n+N} & \cdots & u_2 \end{bmatrix}$$

Tally principle

If noise ξ_k is referred as output of this model :

$$\xi_k = c(z^{-1})n_k$$

where n_k is uncorrelated ramdom noise with zero mean $_{\circ}$ and:

$$c(z^{-1}) = 1 + c_1 z^{-1} + \dots + c_m z^{-m}$$

then, let:

Least squares identification

Xing Chao

auxiliary variable method

Generalized least square method

Hsia method

Recursive auxiliary variable method

Least squares identification

Xing Chao

auxiliary variable method

Generalized least square method

Hsia method

Recursive auxiliary variable method

Least squares identification

Xing Chao

auxiliary variable method

Generalized least square method

Hsia method

$$\begin{array}{lll} \hat{\theta}_{N} & = & P_{N}Z_{N}^{T}Y_{N} \\ P_{N} & = & (Z_{N}^{T}\Phi_{N})^{-1} \\ \hat{\theta}_{N+1} & = & P_{N+1}Z_{N+1}^{T}Y_{N+1} \\ P_{N+1} & = & \left(\left[Z_{N}^{T} \quad Z_{N+1} \right] \begin{bmatrix} \Phi_{N} \\ \Psi_{N+1}^{T} \end{bmatrix} \right)^{-1} \\ & = & (P_{N}^{-1} + Z_{N+1}\Psi_{N+1}^{T})^{-1} \\ \Psi_{N+1} & = & \left[-y_{n+N} \quad \cdots \quad -y_{N+1} \quad u_{n+N+1} \quad \cdots \quad u_{N+1} \right]^{T} \\ z_{N+1} & = & \left[-\hat{y}_{n+N} \quad \cdots \quad -\hat{y}_{N+1} \quad u_{n+N+1} \quad \cdots \quad u_{N+1} \right]^{T} \end{array}$$

Recursive auxiliary variable method

By using the inverse lemma of matrix, the recursive formula can be deduced:

$$\begin{array}{lcl} \hat{\theta}_{N+1} & = & \hat{\theta}_{N} + K_{N+1}(y_{N+1} - \psi_{N+1}^{T} \hat{\theta}_{N}) \\ P_{N+1} & = & P_{N} - K_{N+1} \Psi_{N+1}^{T} P_{N} \\ K_{N+1} & = & P_{N} z_{N+1} (1 + \Psi_{N+1}^{T} P_{N} z_{N+1})^{-1} \end{array}$$

- Select initial parameters by reference to recursive least square method
- is sensitive to initial value P_0 , it is better to use recursive least squares methods with first $50{\sim}100$ point, then use auxiliary variable method.

Least squares identification

Xing Chao

auxiliary variable method

Generalized least square method

Hsia method

Generalized least square method

Least squares identification

Xing Chao

- The filtering model is established to whiten the data
- The method is complex and with heavy computation
- The convergence of the iterative algorithm is not proved

auxiliary variable method

method

Hsia method

Generalized least squares: system model

Least squares identification

Xing Chao

auxiliary variable method

Generalized least square method

Hsia method

$$\begin{array}{rcl} a(z^{-1})y_k & = & b(z^{-1})u_k + \xi_k \\ f(z^{-1}) & = & 1 + f_1z^{-1} + \dots + f_mz^{-m} \\ \xi_k & = & \frac{1}{f(z^{-1})}\varepsilon_k \\ f(z^{-1})\xi_k & = & \varepsilon_k \\ \xi_k & = & -f_1\xi_{k-1} - \dots - f_m\xi_{k-m} + \varepsilon_k \end{array}$$

Generalized least squares: system model

Least squares identification

Xing Chao

auxiliary variable method

least square method

Hsia method

$$\begin{array}{rcl} a(z^{-1})f(z^{-1})y_k & = & b(z^{-1})f(z^{-1})u_k + \varepsilon_k \\ & a(z^{-1})\bar{y}_k & = & b(z^{-1})\bar{u}_k + \varepsilon_k \\ & \bar{y}_k & = & f(z^{-1})y_k \\ & = & y_k + f_1y_{k-1} + \cdots + f_my_{k-m} \\ & \bar{u}_k & = & f(z^{-1})u_k \\ & = & u_k + f_1u_{k-1} + \cdots + f_mu_{k-m} \end{array}$$

Generalized least squares method: noise model parameter estimation

Least squares identification

Xing Chao

auxiliary variable method

Generalized least square method

Hsia method

$$\begin{array}{lll} \boldsymbol{\xi} & = & \Omega \boldsymbol{f} + \boldsymbol{\varepsilon} \\ \boldsymbol{\xi} & = & \left[\boldsymbol{\xi}_{n+1} & \boldsymbol{\xi}_{n+2} & \cdots & \boldsymbol{\xi}_{n+N} \right]^T \\ \boldsymbol{f} & = & \left[\boldsymbol{f}_1 & \boldsymbol{f}_2 & \cdots & \boldsymbol{f}_m \right]^T \\ \boldsymbol{\varepsilon} & = & \left[\boldsymbol{\varepsilon}_{n+1} & \boldsymbol{\varepsilon}_{n+2} & \cdots & \boldsymbol{\varepsilon}_{n+N} \right]^T \\ \boldsymbol{\Omega} & = & \begin{bmatrix} -\boldsymbol{\xi}_n & \cdots & -\boldsymbol{\xi}_{n+1-m} \\ -\boldsymbol{\xi}_{n+1} & \cdots & -\boldsymbol{\xi}_{n+2-m} \\ \vdots & & \vdots \\ -\boldsymbol{\xi}_{n+N-1} & \cdots & -\boldsymbol{\xi}_{n+N-m} \end{bmatrix} \\ \boldsymbol{\hat{f}} & = & (\Omega^T \Omega)^{-1} \Omega^T \boldsymbol{\xi} \end{array}$$

Generalized least squares: process

• initialize, let

$$\hat{f}(z^{-1}) = 1$$

- iterate
 - filtering:

$$\begin{array}{rcl} \bar{y}_k & = & \hat{f}(z^{-1})y_k \\ \bar{u}_k & = & \hat{f}(z^{-1})u_k \end{array}$$

• Least square estimation:

$$\hat{\theta} = (\bar{\Phi}^{\mathrm{T}}\bar{\Phi})^{-1}\bar{\Phi}^{\mathrm{T}}\bar{Y}$$

• residue:

$$\hat{\xi} = \mathbf{Y} - \Phi \hat{\theta}$$

• use residue $\hat{\xi}$ instead of ξ to compute \hat{f} :

$$\hat{f} = (\hat{\Omega}^T \hat{\Omega})^{-1} \hat{\Omega}^T e$$

Xing Chao

auxiliary variable method

least square method

Hsia method

Least squares identification

Xing Chao

auxiliary variable method

method

Hsia method

- include resursive estimate of parameter $\hat{\theta}$ and noise model parameter \hat{f}
- The results of offline and recursive calculation are not exactly the same
- process:
 - Initialization, and the initial value is selected by referring to recursive least square
 - filtering, compute new value of \bar{y}_k, \bar{u}_k
 - \bullet compute $\hat{\theta}$ and $\hat{\mathbf{f}}$ by using recursive least square algorithm

• initialize:

$$\hat{\theta}_{0} = 0$$
 $P_{0}^{(\theta)} = c_{1}^{2}I$
 $\hat{f}_{(0)} = 0$
 $P_{0}^{(f)} = c_{2}^{2}I$

• filtering

$$\begin{array}{rcl} \bar{y}_{N+1} & = & \hat{f}_{(N)}(z^{-1})y_{N+1} \\ & = & \hat{f}_{(N)}(z^{-1})y_{(n+N+1)} \\ \bar{u}_{N+1} & = & \hat{f}_{(N)}(z^{-1})u_{N+1} \\ & = & \hat{f}_{(N)}(z^{-1})u_{(n+N+1)} \end{array}$$

Least squares identification

Xing Chao

auxiliary variable method

method

Hsia method

Least squares identification

Xing Chao

• compute $\hat{\theta}$

$$\begin{array}{lll} \hat{\theta}_{N+1} & = & \hat{\theta}_{N} + K_{N+1}^{(\theta)}(\bar{y}_{N+1} - \bar{\Psi}_{N+1}^{T}\hat{\theta}_{N}) \\ K_{N+1}^{(\theta)} & = & P_{N}^{(\theta)}\bar{\Psi}_{N+1}(1 + \bar{\Psi}_{N+1}^{T}P_{N}^{(\theta)}\bar{\Psi}_{N+1})^{-1} \\ P_{N+1}^{(\theta)} & = & P_{N}^{(\theta)} - K_{N+1}^{(\theta)}\bar{\Psi}_{N+1}^{T}P_{N}^{(\theta)} \\ \bar{\Psi}_{N+1} & = & \left[-\bar{y}_{n+N} \cdot \cdots - \bar{y}_{N+1} \cdot \bar{u}_{n+N+1} \cdot \cdots \cdot \bar{u}_{N+1} \right] \end{array}$$

auxiliary variable method

method

Hsia method

• compute residue $\hat{\xi}_{N+1}$

$$\hat{\xi}_{N+1} \ = \ y_{N+1} - \Psi_{N+1} \hat{\theta}_{N+1}$$

• compute f

$$\begin{array}{lll} \hat{f}_{N+1} & = & \hat{f}_{N} + K_{N+1}^{(f)}(\hat{\xi}_{N+1} - \hat{\omega}_{N+1}^{T}\hat{f}_{N}) \\ K_{N+1}^{(f)} & = & P_{N}^{(f)}\hat{\omega}_{N+1}(1 + \hat{\omega}_{N+1}^{T}P_{N}^{(f)}\hat{\omega}_{N+1})^{-1} \\ P_{N+1}^{(f)} & = & P_{N}^{(f)} - K_{N+1}^{(f)}\hat{\omega}_{N+1}^{T}P_{N}^{(f)} \\ \hat{\omega}_{N+1} & = & \left[-\hat{\xi}_{n+N} & \cdots & -\hat{\xi}_{n+N+1-m} \right] \end{array}$$

Least squares identification

Xing Chao

auxiliary variable method

method

Hsia method

Hsia method

Least squares identification

Xing Chao

auxiliary variable method

Generalized least square method

Hsia method

- Alternately solving system model and noise model parameters
- It can be divided into two types: Hsia correction method and Hsia improvement method
- Recursive algorithm can be extended to MIMO system
- There is no need to filter the data repeatedly, so the calculation efficiency is relatively high
- The estimation result is relatively good

Method: record system model

Least squares identification

Xing Chao

auxiliary variable method

Generalized least square method

Hsia method

$$\begin{array}{rcl} a(z^{-1})y(k) & = & b(z^{-1})u(k) + \xi_k \\ & \xi_k & = & \frac{\varepsilon(k)}{f(z^{-1})} \\ a(z^{-1}) & = & 1 + a_1z^{-1} + \dots + a_nz^{-n} \\ b(z^{-1}) & = & b_0 + b_1z^{-1} + \dots + b_nz^{-n} \\ f(z^{-1}) & = & 1 + f_1z^{-1} + \dots + f_mz^{-m} \end{array}$$

Method: record system model

Least squares identification

Xing Chao

auxiliary variable method

Generalized least square method

Hsia method

$$\begin{array}{rcl} a(z^{-1})y(k) & = & b(z^{-1})u(k) + \xi_k \\ & \xi_k & = & \frac{\varepsilon(k)}{f(z^{-1})} \\ a(z^{-1}) & = & 1 + a_1z^{-1} + \dots + a_nz^{-n} \\ b(z^{-1}) & = & b_0 + b_1z^{-1} + \dots + b_nz^{-n} \\ f(z^{-1}) & = & 1 + f_1z^{-1} + \dots + f_mz^{-m} \\ & \xi_k & = & (1 - f(z^{-1})\xi_k + \varepsilon_k \\ a(z^{-1})y(k) & = & b(z^{-1})u(k) + (1 - f(z^{-1}))\xi_k + \varepsilon_k \end{array}$$

Method: the system model of vector xias

Least squares identification

Xing Chao

$$\begin{array}{lll} y_N & = & y_{(n+N)} \\ & = & \Psi_N^T \theta + \omega_N^T f + \epsilon_N \\ f & = & \left[f_1 & \cdots & f_m \right]^T \\ \Psi_N & = & \left[-y_{(n+N-1)} & \cdots & -y_{(N)} & u_{(n+N)} & \cdots & u_{(N)} \right]^T \\ \omega_N & = & \left[-\xi_{(n+N-1)} & \cdots & -\xi_{(n+N-m)} \right]^T \end{array}$$

Generalized least square

auxiliary

variable method

method

Hsia method

Method: parameters

Least squares identification

Xing Chao

auxiliary variable method

Generalized least square method

Hsia method

$$\begin{bmatrix} \mathbf{y}_1 \\ \vdots \\ \mathbf{y}_N \end{bmatrix} &= \begin{bmatrix} \boldsymbol{\Psi}_1^\mathrm{T} & \boldsymbol{\omega}_1^\mathrm{T} \\ \vdots & \vdots \\ \boldsymbol{\Psi}_N^\mathrm{T} & \boldsymbol{\omega}_N^\mathrm{T} \end{bmatrix} \begin{bmatrix} \boldsymbol{\theta} \\ \mathbf{f} \end{bmatrix} + \begin{bmatrix} \boldsymbol{\varepsilon}_1 \\ \vdots \\ \boldsymbol{\varepsilon}_N \end{bmatrix}$$

$$\mathbf{Y} &= \begin{bmatrix} \boldsymbol{\Phi} & \boldsymbol{\Omega} \end{bmatrix} \begin{bmatrix} \boldsymbol{\theta} \\ \mathbf{f} \end{bmatrix} + \boldsymbol{\varepsilon}$$

$$\begin{bmatrix} \hat{\boldsymbol{\theta}} \\ \hat{\mathbf{f}} \end{bmatrix} &= \begin{bmatrix} \boldsymbol{\Phi}^\mathrm{T} \boldsymbol{\Phi} & \boldsymbol{\Phi}^\mathrm{T} \boldsymbol{\Omega} \\ \boldsymbol{\Omega}^\mathrm{T} \boldsymbol{\Phi} & \boldsymbol{\Omega}^\mathrm{T} \boldsymbol{\Omega} \end{bmatrix}^{-1} \begin{bmatrix} \boldsymbol{\Phi}^\mathrm{T} \mathbf{Y} \\ \boldsymbol{\Omega}^\mathrm{T} \mathbf{Y} \end{bmatrix}$$

Method: deviation correction method

inverse by ulsing block matrix:

$$\begin{split} \begin{bmatrix} \hat{\theta} \\ \hat{f} \end{bmatrix} &= \begin{bmatrix} \Phi^T \Phi & \Phi^T \Omega \\ \Omega^T \Phi & \Omega^T \Omega \end{bmatrix}^{-1} \begin{bmatrix} \Phi^T Y \\ \Omega^T Y \end{bmatrix} \\ &= \begin{bmatrix} P_N \Phi^T Y - P_N \Phi^T \Omega D^{-1} \Omega^T M Y \\ D^{-1} \Omega^T M Y \end{bmatrix} \\ &= \begin{bmatrix} \hat{\theta}_{LS} - P_N \Phi^T \Omega \hat{f} \\ D^{-1} \Omega^T M Y \end{bmatrix} \\ P_N &= (\Phi^T \Phi)^{-1} \\ M &= I - \Phi (\Phi^T \Phi)^{-1} \Phi^T \\ D &= \Omega^T M \Omega \end{split}$$

Least squares identification

Xing Chao

auxiliary variable method

Generalized least square method

Hsia method

Method: deviation correction method iteration steps

• Initialization: computing basic least squares estimation

$$\hat{\theta} = (\Phi^{T}\Phi)^{-1}\Phi^{T}Y$$

- iterate
 - compute residual $\hat{\xi}$ to construct $\hat{\Omega}$

$$\hat{\xi} = \mathbf{Y} - \Phi \hat{\theta}$$

• compute \hat{f} to correct $\hat{\theta}$

$$\begin{array}{lcl} \hat{f} & = & D^{-1} \hat{\Omega}^T M Y \\ \hat{\theta} & = & \hat{\theta} - (\Phi^T \Phi)^{-1} \Phi^T \hat{\Omega} \hat{f} \\ \end{array}$$

Least squares identification

Xing Chao

auxiliary variable method

Generalized least square method

Hsia method

Method: the modified method

use $\hat{\theta}$ instead of θ :

$$\begin{array}{rcl} \mathbf{Y} & = & \left[\boldsymbol{\Phi} & \boldsymbol{\Omega} \right] \begin{bmatrix} \hat{\boldsymbol{\theta}} \\ \mathbf{f} \end{bmatrix} + \boldsymbol{\varepsilon} \\ \\ & = & \boldsymbol{\Phi} \hat{\boldsymbol{\theta}} + \boldsymbol{\Omega} \mathbf{f} + \boldsymbol{\varepsilon} \\ \mathbf{Y} - \boldsymbol{\Phi} \hat{\boldsymbol{\theta}} & = & \boldsymbol{\Omega} \mathbf{f} + \boldsymbol{\varepsilon} \end{array}$$

obtained least squares estimate of f:

$$\begin{array}{lll} \hat{\mathbf{f}} & = & (\hat{\Omega}^T\hat{\Omega})^{-1}\hat{\Omega}^T(\mathbf{Y} - \Phi\hat{\theta}) \\ \hat{\theta} & = & \hat{\theta} - (\Phi^T\Phi)^{-1}\Phi^T\Omega\hat{\mathbf{f}} \end{array}$$

Least squares identification

Xing Chao

auxiliary variable method

Generalized least square method

Hsia method

Method: the modified method iteration steps

• initialize: Computational basic least squares estimation

$$\hat{\theta} = (\Phi^{T}\Phi)^{-1}\Phi^{T}Y$$

- iterate
 - compute residual $\hat{\xi}$ to construct $\hat{\Omega}$

$$\hat{\xi} = \mathbf{Y} - \Phi \hat{\theta}$$

• compute \hat{f} to correct $\hat{\theta}$

$$\hat{\mathbf{f}} = (\hat{\Omega}^{\mathrm{T}} \hat{\Omega})^{-1} \hat{\Omega}^{\mathrm{T}} (\mathbf{Y} - \Phi \hat{\theta})$$

$$\hat{\theta} = \hat{\theta} - (\Phi^{\mathrm{T}} \Phi)^{-1} \Phi^{\mathrm{T}} \hat{\Omega} \hat{\mathbf{f}}$$

Least squares identification

Xing Chao

auxiliary variable method

Generalized least square method

Hsia method

Method: the recursive method

$$\begin{split} \tilde{\Phi} &= \begin{bmatrix} \Phi & \hat{\Omega} \end{bmatrix} \\ \tilde{\theta} &= \begin{bmatrix} \hat{\theta} \\ f \end{bmatrix} \\ \tilde{\theta}_{N+1}^T &= \tilde{\theta}_N + K_{N+1} (v_{N+1} - \tilde{\Psi}_{N+1}^T \tilde{\theta}_N) \end{split}$$

$$P_{N+1} = P_N + K_{N+1}(\hat{y}_{N+1} - \hat{\psi}_N)$$

 $P_{N+1} = P_N - K_{N+1}\tilde{\psi}_{N+1}^T P_N$

$$1 \text{ N}+1 - 1 \text{ N} - \text{N}_{N+1} \Psi_{N+1} \text{ N}$$

$$K_{N+1} = P_N \tilde{\Psi}_{N+1}^T (1 + \tilde{\Psi}_{N+1}^T P_N \tilde{\Psi}_{N+1})^{-1}$$

其中:

$$y_N = \tilde{\Psi}_N^T \tilde{\theta} + \hat{\varepsilon}_{(n+N)}$$

$$\tilde{\Psi}_{N} = \begin{bmatrix} \Psi_{N}^{T} & \hat{\omega}_{N}^{T} \end{bmatrix}^{T}$$

$$\Psi_{N} \ = \ \begin{bmatrix} -y_{(n+N-1)} & \cdots & -y_{(N)} & u_{(n+N)} & \cdots & u_{(N)} \end{bmatrix}^{T}$$

$$\hat{\omega}_{N} = \begin{bmatrix} \hat{\xi}_{(n+N-1)} & \cdots & \hat{\xi}_{(n+N-m)} \end{bmatrix}^{T}$$

$$\hat{\xi}_{k} = v_{k} - \Psi_{k} \hat{\theta}$$

Least squares identification

Xing Chao

auxiliary variable method Generalized

least square method

Hsia method

Augmented matrix method

Least squares

Xing Chao

- The noise model parameters are extended to the identified parameter vectors
- Simultaneous identification of system parameters and noise parameters
- It is widely used and has a good convergence
- Recursive methods are often used in practical algorithms

auxiliary variable method

Generalized least square method

Hsia method

Augmented matrix method: system model

Least squares identification

Xing Chao

$$\begin{array}{rcl} a(z^{-1})y(k) & = & b(z^{-1})u(k) + c(z^{-1})\varepsilon(k) \\ & a(z^{-1}) & = & 1 + a_1z^{-1} + \dots + a_nz^{-n} \\ & b(z^{-1}) & = & b_0 + b_1z^{-1} + \dots + b_nz^{-n} \\ & c(z^{-1}) & = & 1 + c_1z^{-1} + \dots + c_nz^{-n} \end{array}$$

auxiliary variable method

Generalized least square method

Hsia method

Augmented matrix method: system model vector representation

$$\begin{aligned} y_N &= y_{(n+N)} \\ &= \Psi_N^T \theta + \varepsilon_{(n+N)} \\ &= \left[\Psi_{N,(y,u)}^T \ \Psi_{N,\xi}^T \right] \left[\begin{matrix} \theta_{(y,u)} \\ \theta_{\xi} \end{matrix} \right] + \varepsilon_N \\ \theta &= \left[\begin{matrix} \theta_{(y,u)} \ \theta_{\xi} \end{matrix} \right]^T \\ \theta_{(y,u)} &= \left[\begin{matrix} a_1 \ \cdots \ a_n \quad b_0 \ \cdots \ b_n \end{matrix} \right]^T \\ \theta_{\xi} &= \left[\begin{matrix} c_1 \ \cdots \ c_n \end{matrix} \right]^T \\ \Psi_N &= \left[\begin{matrix} \Psi_{N,(y,u)} \ \Psi_{N,\xi} \end{matrix} \right]^T \\ \Psi_{N,(y,u)} &= \left[\begin{matrix} -y_{(n+N-1)} \ \cdots \ -y_{(N)} \ u_{(n+N)} \ \cdots \ u_{(N)} \end{matrix} \right]^T \\ \Psi_{N,\xi} &= \left[\begin{matrix} \varepsilon_{(n+N-1)} \ \cdots \ \varepsilon_{(N)} \end{matrix} \right]^T \end{aligned}$$

Least squares identification

Xing Chao

auxiliary variable method

Generalized least square method

Hsia method

Augmented matrix method: Parameter Solving

Least squares identification

Xing Chao

auxiliary variable method

Generalized least square method

Hsia method

$$\begin{bmatrix} y_1 \\ \vdots \\ y_N \end{bmatrix} &= \begin{bmatrix} \Psi_{1,(y,u)}^T & \Psi_{1,\xi}^T \\ \vdots & \vdots \\ \Psi_{N,(y,u)}^T & \Psi_{N,\xi}^T \end{bmatrix} \begin{bmatrix} \theta_{(y,u)} \\ \theta_{\xi} \end{bmatrix} + \begin{bmatrix} \varepsilon_1 \\ \vdots \\ \varepsilon_N \end{bmatrix}$$

$$Y &= \begin{bmatrix} \Phi_{(y,u)} & \Phi_{\xi} \end{bmatrix} \begin{bmatrix} \theta_{(y,u)} \\ \theta_{\xi} \end{bmatrix} + \varepsilon$$

$$\begin{bmatrix} \hat{\theta}_{(y,u)} \\ \hat{\theta}_{\xi} \end{bmatrix} &= \begin{bmatrix} \Phi_{(y,u)}^T \Phi_{(y,u)} & \Phi_{(y,u)}^T \Phi_{\xi} \\ \Phi_{\xi}^T \Phi_{(y,u)} & \Phi_{\xi}^T \Phi_{\xi} \end{bmatrix}^{-1} \begin{bmatrix} \Phi_{(y,u)}^T Y \\ \Phi_{\xi}^T Y \end{bmatrix}$$

Augmented matrix method: recursive equations

use $\hat{\varepsilon}$ instead of ε :

$$y_{N} = \hat{\Psi}_{N}^{T} \hat{\theta} + \hat{\varepsilon}_{(n+N)}$$

$$\hat{\Psi}_{N} = \begin{bmatrix} -y_{(n+N-1)} & \cdots & -y_{(N)} & u_{(n+N)} & \cdots & u_{(N)} & \hat{\epsilon}_{N}^{T} \end{bmatrix}^{T}$$

$$\hat{\epsilon}_{N} = \begin{bmatrix} \hat{\varepsilon}_{(n+N-1)} & \cdots & \hat{\varepsilon}_{(N)} \end{bmatrix}^{T}$$

Available recurrence formula:

$$\hat{\theta}_{N+1}^{T} = \hat{\theta}_{N} + K_{N+1}(y_{N+1} - \hat{\Psi}_{N+1}^{T} \hat{\theta}_{N})
P_{N+1} = P_{N} - K_{N+1} \hat{\Psi}_{N+1}^{T} P_{N}
K_{N+1} = P_{N} \hat{\Psi}_{N+1}^{T} (1 + \hat{\Psi}_{N+1}^{T} P_{N} \hat{\Psi}_{N+1})^{-1}$$

Least squares identification

Xing Chao

auxiliary variable method

Generalized least square method

Hsia method