طراحي الگوريتم: پيشرفتهاي روشمند

حسين رادمرد

۱۵ اردیبهشت ۳ ۱۴۰

۱.۰ مسئله ۸۳ رنگ کردن یک گراف دو رنگی

در این مسئله، مانند موارد بعدی، حل مسئله هدف ماست و بهینه بودن جواب برای ما حائز اهمیت نیست. دراینجا، ما الگوریتمی را برای رنگ کردن گراف با دردست داشتن تنها دو رنگ، بررسی میکنیم. نسخه ی کلی تر (رنگ آمیزی با هر تعداد رنگ) در مسئله ی ۵۹، صفحه ی ۲۳۶ بررسی میشود. گراف با دردست داشتن تنها دو رنگ، بررسی میکنیم. نسخه ی کلی تر ادامه، این بحث بسیار به موضوع "گرافهای پرکاربرد: گرافهای دوبخشی" مرتبط است.

گراف همبند بدون جهت (G=N,V) (ناتهی) به ما داده شدهست. ما قصد داریم با رنگهای سیاه و سفید گراف را رنگ آمیزی کنیم به گونهای که هیچ دو راس همسایه ای دارای رنگ یکسانی نباشند. چنین گرافی را گراف دورنگی مینامیم. الگوریتم حریصانه ای که ما قصد ساخت آن را برای این منظور داریم به پیمایش سطری گراف ها مرتبط است که آن را در ابتدا بررسی کردیم.

چنین گرافی را گراف دورنگی مینامیم. الگوریتم حریصانه ای که ما قصد ساخت آن را برای این منظور داریم به پیمایش سطری گراف ها مرتبط است که آن را در ابتدا بررسی کردیم.

پیمایش سطری گراف: یادآوری

معرفي

اول از همه، اجازه دهید مفاهیم "فاصلهی میان دو راس" و "پیمایش سطری" را برای گرافهای همبند بدون جهت تعریف کنیم.

تعریف ۱۰ (فاصلهی میان دو راس): در نظر میگیریم، G=(N,V) یک گراف همبند بدون جهت و S و S دو راس این گراف باشند. طول کوتاهترین مسیر میان S و S دو را فاصلهی میان S و S گویند.

تعریف ۱۱ (جستجوی سطری): فرض کنیم G یک گراف همبند و بدون جهت و s یکی از راس های آن باشد. هر فرایندی که با افزایش فاصلهها از راس s با راس های گراف G برخورد میکند به عنوان پیمایش سطری گراف G از s شناخته میشود.

از نمودار (b) در شکل ۸.۷ صفحه a ستوانیم نتیجه بگیریم که لیست a,b,c,d,e,f,g,h با پیمایش سطری با شروع از راس a مطابقت دارد. و همین مطلب برای لیست a,c,b,d,e,h,f,g نیز صدق میکند.

تصویر ۸.۷ - یک مثال از گراف. تصویر (a) گرافی را نمایش میدهد که مثالی از حالت مسئله را نشان میدهد. تصویر (b) کوتاهترین مسیر راس a را تا هر راس گراف با خطوط پررنگ نشان میدهد. در تصویر (b) عددی که در هر راس مشخص است در واقع فاصلهی آن راس تا راس a است.

حلقه بدون تغيير

ما علاقه داریم یک الگوریتم حریصانه تکرارشونده بسازیم، و در این نمونه خود را برای جستجوی حلقه بدون تغییر محدود میکنیم، ادامه ی این ساز و کار به خواننده واگذار میشود. اکنون تصور میکنیم قسمتی از کار انجام شده ست(بخش ۳، صفحه ۹۳ را ببنید). به این ترتیب، برای یک گراف جزئی کار به خواننده واگذار میشود. اکنون تصور میکنیم قسمتی از کار انجام شده ست(بخش ۳، صفحه ۹۳ را ببنید). به این ترتیب، برای یک گراف جزئی G = (N, V) با شروع از S داریم. G = (N, V) با شروع از S داریم. مرسوما، این لیست، CLOSE نامیده میشود. پیشرفت این روند شامل گستردن این لیست با افزودن رئوسی است که در CLOSE نیستند و تا جای ممکن به S نزدیکند.

از آنجایی که هر راسی که در CLOSE حضور نداشته باشد، یک کاندید احتمالی برای انقال به CLOSE است، در غیاب بقیه ی مفروضات، پیشرفت ممکن اما به همان نسبت هزینه بر است. پیشنهاد میکنیم که نسخه اول این ثابت را با اضافه کردن یک ساختمان داده بهبود ببخشید. ساختمان داده OPEN شامل تمام رئوسی ست که در CLOSE حضور نداشته و کاندید این موضوع هستند که همسایه حداقل یکی از رئوس CLOSE هستند. بیشین OPEN به عنوان یک لیست اولویت با مدیریت برروی فاصله ی عناصرش از s بوجود می آید، این موضوع به این دلیل است که عنصری که باید به لیست CLOSE منتقل شود باید نزدیک ترین به s باشد.

بعدها میبینیم که نسخه ساده تری از یک لیست اولویت نیز امکان پذیر است. برای ماندگاری این نسخه جدید از تغییر ناپذیر ^۲، بهینه است که ابتدای صف OPEN را به انتهای لیست ،CLOSE - به عنوان همتای تقویت ثابت** - برای معرفی همسایگان "جدید" عنصر منتقل شده به OPEN عنصرهایی که نه در OPEN هستند(انتخاب حریصانه) منتقل کنیم.

با این حال، با توجه به عنصر e در OPEN، پرسیدن سوال درباره وجود یا عدم وجود یکی از همسایگان آن در OPEN یا OPEN می تواند پرهزینه باشد. راه حل بهتر شامل گزاره زیر است: از نظر رنگ آمیزی، یک "رنگ" به هر راس گراف اختصاص می یابد؛ سفید، اگر راس در OPEN پرهزینه باشد، و در غیر این صورت خاکستری (در واقع، در اینجا، دو رنگ نقش مقادیر بولین را بازی می کنند). به شرطی که دسترسی مستقیم به رئوس امکان پذیر باشد، به روز رسانی OPEN آسان تر می شود. در پیشرفت، حفظ این مکمل ناوردا با رنگ آمیزی هر راسی که به OPEN منتقل می شود به رنگ سفید حاصل می شود.

بیایید به استراتژی مدیریت صف OPEN بازگردیم. آیا می توان به جای صف اولویت دار از یک صف ساده FIFO (نگاه کنید به بخش ۸.۱ صفحه ۲۳) استفاده کرد؟ در این صورت، مدیریت OPEN به طور قابل توجهی ساده می شود. برای انجام این کار، زمانی که رأس e از OPEN خارج می شود تا به CLOSE ملحق شود، همسایگان e که نامزد ورود به OPEN هستند باید فاصله ای بیشتر یا مساوی با تمام عناصر موجود در OPEN می شود تا به e این امر امکان داشتن یک صف مرتب را فراهم می کند. این بدان معناست که اگر e در فاصله e از e باشد، سایر عناصر OPEN در فاصله e از e قرار دارند، زیرا همسایگان "خاکستری" e در فاصله e از e قرار دارند. این فرض را به ناوردا اضافه می کنیم. خواننده دعوت می شود بررسی کند که آیا این موضوع با راهاندازی حلقه واقعاً برقرار شده است. همچنان باید ثابت کرد که با پیشرفت حفظ می شود. در نهایت، ما ناوردای زیر را پیشنهاد می کنیم که از چهار بند تشکیل شده است.

- ۱. بسته (CLOSE) یک صف اول_وارد_اول_خارج (FIFO) است که معتوای آن نشان دهنده یک "پیمایش عمق_اول" از زیرگراف G است که توسط رئوس موجود در بسته (CLOSE) تشکیل شده است.
- ۲. باز (OPEN) یک صف اول_وارد_اول_خارج (FIFO) از رئوس همسایه رئوس موجود در بسته (CLOSE) است. اشتراک مجموعه بین
 باز (OPEN) و بسته (CLOSE) تهی است.
- ۳. اگر ابتدای صف باز (OPEN) حاوی رئوس با فاصله k از s باشد، سایر عناصر صف باز (OPEN) در فاصله k یا (k+1) از s قرار دارند.
 - ۴. در گراف ،G رئوس موجود در بسته (CLOSE) یا باز (OPEN) به رنگ سفید رنگ آمیزی می شوند، سایر رئوس خاکستری هستند.

¹priori

 $^{^2}$ invariant

شکل ۹.۷، صفحه ۳۶۶، مراحل مختلف «پیمایش اول_سطر» گراف شکل ۸.۷، صفحه ۳۶۳ را نشان می دهد. در هر گراف موجود در تصویر، رئوس موجود در CLOSE با خطوط خاکستری و رئوس موجود در OPEN با خطوط دوتایی نمایش داده شده اند. فواصل فقط به عنوان یادآوری ذکر شده اند، الگوریتم از آنها استفاده نمی کند. بیایید به عنوان مثال در مورد مرحلهای که منجر به گذار از شکل e به شکل f می شود، توضیح دهیم. در شکل شده اند، الگوریتم از آنها استفاده نمی کند. بیایید به عنوان مثال در مورد مرحلهای که منجر به گذار از شکل e به شکل f می شود، توضیح دهیم. در شکل e، OPEN «پیمایش اول سطر» زیرگراف القا شده توسط رئوس e، و b را در خود جای داده است. راس e، ابتدای صف ،OPEN به انتهای CLOSE مستند، بنابراین آنها را در نظر نمی گیریم. g از قبل در OPEN ملحق شده و با رنگ نظر نمی گیریم. g از قبل در OPEN ملحق شده و با رنگ سفید رنگ آمیزی می شود.

ساختارهای داده

از دو نوع ساختار داده در این الگوریتم استفاده شده است. مورد اول، صفهای اول_وارد_اول_خارج می که در صفحه ۳۲ توضیح داده شدهاند. مورد دوم مربوط به نسخهی «رنگ آمیزی شده می نامند.

در این الگوریتم، نیاز به رنگآمیزی رئوسهای یک گراف، دسترسی به رنگ آنها و کاوش لیست همسایگان وجود دارد، بنابراین تعاریف زیر ارائه میشود (فرض بر این است که مجموعه رنگها تعریف شده است):

- عملگر رنگ آمیزی (ColorGr(G, s, col: عملیاتی که رأس s گراف G را با رنگ col رنگ آمیزی میکند.
 - عملگر (ColorGr(G,s,col) عملیاتی که رأس S گراف S درا با رنگ امیزی میکند.
 - تابع WhichColorGr(G, s) نتیجه رنگها: تابعی که رنگ رأس ۶ گراف G را برمیگرداند.
- عملگر (OpenNeighborsGr(G,s) عملیاتی که کاوش لیست همسایگان رأس (OpenNeighborsGr(G,s)
- تابع EndListNeighborsGr(G,s) نتیجه بولی: تابعی که مقدار درست را برمیگرداند اگر و تنها اگر کاوش لیست همسایگان رأس S گراف G تمام شده باشد.
- عملگر (ReadNeighborsGr(G,s,s) است را در 'ReadNeighborsGr(G,s,s) عملگر نشانگر را یک خانه به جلو حرکت می دهد.

در این کاربرد، از نظر بیان الگوریتم و کارایی، بهترین بهینهسازی نمایش آن با استفاده از لیست همسایگی است (برای مشاهدهی نمونهای از چنین نمایشی برای گرافهای جهتدار، به شکل d در صفحهی d مراجعه کنید). بنابراین، گراف به صورت یک "سهتایی" G = (N, V, R) تعریف می شود که در آن d نشان دهنده رنگها است (در حال حاضر "سفید" و "خاکستری").

الگوريتم

علاوه بر نمودار ،G این الگوریتم از متغیرهای cv راس جاری و فهرست همسایگان برای مرور لیست همسایگان استفاده می کند.

1.

- 2. n N1 and n = ... and N = 1... n and Colors = grey, white and
- 3. $V N \times N$ and $V = \dots$

³FIFO: first in first out

4. variables

```
5. R N Colors and G = (N, V, R) and
```

- 6. s N and cv N and neighb N and CLOSE FIFO(N) and OPEN FIFO(N)
- 7. begin

```
constants
for w \in N do
 ColorGr(G, w, grey)
end for
InitFifo(CLOSE); InitFifo(OPEN);
s \leftarrow \dots; // choice of the initial vertex:
ColorGr(G, s, white);
AddFifo(OPEN, s);
while not IsEmptyFifo(OPEN) do
  cv \leftarrow HeadFifo(OPEN); RemoveFifo(OPEN);
  AddFifo(CLOSE, cv);
  OpenNeighborsGr(G, cv);
  while not EndListNeighborsGr(G, cv) do
    ReadNeighborsGr(G, cv, neighb);
   if WhichColorGr(G, neighb) = grey then
      ColorGr(G, neighb, white);
      AddFifo(OPEN, neighb);
    end if
  end while
end while
write(CLOSE);
END
```


شکل ۹.۷ – مراحل مختلف کاوش اولویت_عرضی در گراف اسکیما (الف) در شکل ۸.۷ (صفحه ۳۶۳). رئوس با دایره توپر، رئوس a در گراف اسکیما (الف) در شکل ۵.۷ (صفحه ۳۶۳). رئوس OPEN هستند، آنهایی که با دو دایره مشخص شده اند، رئوس OPEN هستند. مقدار صحیح که هر راس را همراهی می کند، فاصله شناخته شده از راس هستند، آنهایی که با دو صف OPEN و CLOSE به ترتیب در شمال شرقی و جنوب گراف ها نشان داده شده اند.

سوال ۱: پیچیدگی مجانبی این الگوریتم از نظر شرایط ارزیابی شده چیست؟

سوال ٢: بر اساس اين الگوريتم، اصل الگوريتم رنگ آميزي حريصانه را توضيح دهيد.

الگوریتم رنگ آمیزی دو رنگ گراف

اكنون تمام چيزى كه براى حل مسئله نياز است را داريم تا به مشكل اصلى در هسته اين مسئله بپردازيم: رنگ آميزى يك گراف با سياه و سفيد. ما الگوريتم بالا را به گونه اى تطبيق خواهيم داد كه به صورت متناوب با سياه و سفيد، بر اساس عمق در رابطه با راس شروع، رنگ آميزى شود، تا زمانى كه رئوس تمام شوند يا به يك حالت غيرممكن برخورد كنيم.

سوال ۳: الگوریتم رنگ آمیزی را طراحی کنید.

Algorithm 1

```
//coloring all the vertices in grey:
for w \in N do
  ColorGr(G, w, grey)
end for
InitFifo(CLOSE); InitFifo(OPEN);
s \leftarrow \dots; // choice of the initial vertex:
ColorGr(G, s, white);
AddFifo(OPEN, s);
while not IsEmptyFifo(OPEN) do
  cv \leftarrow HeadFifo(OPEN); RemoveFifo(OPEN);
  AddFifo(CLOSE, cv);
  OpenNeighborsGr(G, cv);
  while not EndListNeighborsGr(G, cv) do
    ReadNeighborsGr(G, cv, neighb);
    if WhichColorGr(G, neighb) = grey then
      Color Gr(G, neighb, white);\\
      AddFifo(OPEN, neighb);
    end if
  end while
end while
write(CLOSE);
END
```

سوال ٢: بر اساس اين الگوريتم، اصل الگوريتم رنگ آميزي حريصانه را توضيح دهيد.

شکل ۸.۷، صفحه ۳۶۳

سوال ۵: كد الگوريتم را بنويسيد و پيچيدگي آن را مشخص كنيد.

سوال θ : مسئله θ ۵، صفحه θ ۳۶، به مسئله عمومی تر رنگ آمیزی با θ رنگ θ رنگ θ میپردازد. امکان تعمیم الگوریتم ارائه شده در پاسخ به سوال

۵، برای ۲ < m را مورد بحث قرار دهید.

تذکر یک ویژگی جالب از گرافهای دو_رنگپذیر این است که: یک گراف، دو_رنگپذیر است اگر و تنها اگر هیچ دوری با طول فرد نداشته باشد. با این حال، این ویژگی سازنده نیست: مشاهدهی آن روی یک گراف منجر به رنگ آمیزی نمی شود!

راه حل در صفحه ۳۹۷ است.

a منطق مرتبه اول b مشخصات و برنامه نویسی ضروری

c نظریه مجموعه d طراحی سیستم های اطلاعاتی

e پایگاه های داده f پایگاه های داده ساختارها

۰.۰ مسئله ۸۴: از ترتیب جزئی به ترتیب کلی

دو نسخه از مرتبسازی توپولوژیکی مورد بررسی قرار میگیرد. نسخه اول ساده لوحانه است اما خیلی کارآمد نیست و طراحی آن آسان است. نسخه دوم نیازمند تقویت یک ناورد [خاصیت تغییرناپذیر] است؛ با استفاده از اشارهگرها پیادهسازی می شود و هر دو مسئلهی بهینهسازی و دستکاری ساختارهای پویا را به خوبی نشان می دهد. الگوریتمی که در اینجا ساخته شده است نزدیک به الگوریتم ماریمونت برای سطح بندی یک گراف بدون مدار است.

برای حل این مسئله، ابتدا باید مسئله ۲، صفحه ۳۳ را مطالعه کرد. فرض کنید (E, \prec) یک زوج مرتب باشد به گونهای که E یک مجموعه متناهی با n عضو و $\mathbb R$ یک رابطه ترتیب کلی $\mathbb R$ سازگار با $\mathbb R$ بنا کنیم، به این معنی که برای هر زوج (E, \prec) از (E, \prec) از (E, \prec) به هر عضو از (E, \prec) که هیچ پیش تر نداشته باشد، عضو مینیمال گفته می شود.

مثال در زمینهی دورهی علوم کامپیوتر، ۱c و ۲c نشاندهندهی این واقعیت است که دورهی ۱c باید قبل از دورهی ۲c گذرانده شود تا پیشنیازهای لازم برای درک دورهی دوم فراهم شود. حال دورههای زیر را در نظر بگیرید:

مثالی از رابطه > به صورت زیر تعریف میشود:

 $a \prec b, a \prec c, b \prec d, c \prec b, c \prec d, c \prec e, c \prec f, e \prec d, f \prec e$

این را میتوان با نمودار زیر نشان داد:

این نوع گراف با دو ویژگی شناخته میشود: جهتدار بودن و عاری بودن از دور (مدار). به چنین گرافی، «گراف جهتدار غیر دوردار» یا « «DAG» گفته میشود. گفته میشود. در چنین گرافی به یک عضو بدون هیچ پیشتر (عضو مینیمال مرتبسازی جزئی)، «نقطهی ورود» گفته میشود.

هدف این مسئله، ساخت یک الگوریتم حریصانه است که یک ترتیب کلی سازگار با ترتیب جزئی اولیه را ارائه دهد. برای مثال بالا، یک راهحل شامل پیشنهاد ترتیب کلی acbfed است.

سوال ۱: اثبات کنید که یک گراف جهتدار غیر دوردار (DAG) غیر تهی، که هر یک از نقاط ورود آن حذف شده باشد، همچنان یک گراف جهتدار غیر دوردار (DAG) باقی میماند.

سوال ۲: فرض کنیم هر گرافی با G = (N, V) نمایش داده شود و Card(N) باشد. اثبات کنید که برخی DAG ها (گراف جهت دار غیر دوردار) به گونهای هستند که Card(V)(n) است.

اکنون، پیش از اجرای آن روی مثال بالا، به ترسیم کلی حلقهی "حریصانه" الگوریتم میپردازیم. روش ساخت استفاده شده مبتنی بر تکنیکِ «اجرای پیشرو» است. سوالات بعدی در مورد الگوریتم، بهینهسازی و پیچیدگی آن خواهد بود.

اولین تلاش برای ساخت

فرض کنید G = (E, V) یک DAG ورودی با n راس باشد

ناورد [خاصیت تغییرناپذیر]: فرض کنید S صف خروجی باشد که شامل مجموعه ES(ESE) از رأسهای مرتبسازی شده بر اساس یک ترتیب کلی سازگار با ES میباشد، به گونه ای که هر راس ES او ES نیست ES نیست ES طبق ترتیب جزئی بزرگتر از هر راس ES است.

شرط توقف: تمام رأسها در صف S قرار دارند، یعنی |S|=n. در واقع، اشتراک ناورد [خاصیت تغییرناپذیر] و شرط قبلی ایجاب میکند که S فهرستی مرتبسازی شده بر اساس ترتیبی سازگار با ترتیب جزئی باشد.

(Induced(G, EES)) به صف S است. این کار باعث می شود که این راس در زیرگراف القا شده (EES) به صف S است. این کار باعث می شود که این راس در زیرگراف القا شده S است تغییرناپذیر] در این راستا تقویت خواهد شد.

به منظور تعیین راسی که باید به بهترین نحو در صف قرار گیرد، ضروری است یک ساختار دادهای معرفی کنیم که قادر به بهرهبرداری از زیرگراف القا شده (Induced(G, EES)) باشد.

طرح جایگزین برای ساختار

به عنوان یک متغیر در نظر گرفته می شود. ناورد [خاصیت تغییرناپذیر]: گزاره G" یک DAG است" به نسخه قبلی ناورد اضافه می شود. شرط توقف: بدون تغییر باقی می ماند.

به دنبال یکی از نقاط ورود گراف G هستیم تا این راس از (EES) را به صف S منتقل کنیم. به راحتی قابل بررسی است که S نسخه اول ناورد را برآورده می کند و اینکه ،G زیرگراف القا شده جدید، در واقع یک DAG است (به دلیل ویژگیای که در پاسخ به سوال ۱ برقرار شده است).

قابل ذکر است که G نقش صف ورودی الگوریتمهای حریصانه را ایفا می کند و اشتراک ناورد و شرط توقف، در واقع، به معنای دستیابی به هدف طلوب است.

آغازین سازی: ناورد [خاصیت تغییرناپذیر] از صف خالی S و گراف G که همان گراف اولیه است، برقرار میشود.

تابع پایان مناسب |S| است، زیرا در هر مرحله از پیشرفت، یک عنصر از S به S منتقل میشود.

قابل ذکر است که این الگوریتم بر اساس ساخت، خروجی صحیحی را برمیگرداند. بدیهی است که این روش، «اجرای پیشرو» را انجام میدهد. سوال ۳: الگوریتم بالا را بر روی مثال ابتدایی اعمال کنید.

سوال ۴: فرض کنید که هر دو تابع dG(s) که درجه ورودی راس s را در گراف g برمیگرداند و القا (Induced) (برای مفاهیم مربوط به گرافها به بخش ۵.۱، صفحه ۲۲ مراجعه کنید) در دسترس هستند، کد این الگوریتم را بنویسید. با فرض اینکه نمایش گرافها با فهرستی از جانشینها باشد (به شکل ۳.۱، صفحه ۲۳ مراجعه کنید)، ثابت کنید که پیچیدگی این الگوریتم از نظر تعداد رئوس بازدید شده در $O(n^{7})$ است.

سوال ۵: در نسخه بدست آمده در پاسخ به سوال ۴، از دیدگاه پیچیدگی، عامل جریمه کننده جستجو برای حداقل بین تمام رئوسهایی است که هنوز باید در نظر گرفته شوند. بر اساس تقویت (تقویت) ناورد فوق، راه حل کارآمدتری برای گرافهای غیرمتراکم (چند قوس با توجه به مجذور تعداد رئوس) پیشنهاد دهید. در مورد کارایی این راه حل چه نتیجهای می توان گرفت؟

راه حل در صفحه ۰ ۴۰ است.