Работа 3.6.1.

Спектральный анализ электрических сигналов.

Спектральный анализ электрических сигналов.

Цель работы: изучение спектрального состава периодических электрических сигналов.

Оборудование: персональный компьютер, USB-осциллограф АКИП-4107, функциональный генератор WaveStation 2012, соединительные кабели.

Многие физические процессы можно моделировать с помощью линейных дифференциальных уравнений. К решениям таких уравнений применим принцип суперпозиции: разнообразные сложные явления удобно представлять в виде суммы простых решений линейных уравнений. Для линейных уравнений такими простыми решениями являются гармонические функции. Математическая теория представления сложных функций в виде сумм гармонических составляющих получила название теории рядов и интегралов Фуръе.

В радиотехнике широко используется разложение сложных сигналов на гармонические колебания различных частот ω . Функция $F(\omega)$, описывающая зависимость амплитуды гармоник от их частоты, называется амплитудной спектральной характеристикой - спектром исходного сигнала. Представление сложного периодического сигнала в виде суммы гармонических сигналов в математике называется разложением в ряд Фуръе. Непериодические сигналы представляются в виде интеграла Фурье.

Пусть заданная функция f(t) периодически повторяется с частотой $\Omega_1 = 2\pi/T$, где T - период повторения. Ее разложение в ряд Фурье имеет вид

$$f(t) = \frac{a_0}{2} + \sum_{i=1}^{\infty} [a_n \cos(n\Omega_1 t) + b_n \sin(n\Omega_2 t)]$$

$$\tag{1}$$

или

$$f(t) = \frac{A_0}{2} + \sum_{i=1}^{\infty} A_n \cos(n\Omega_1 t - \psi_n). \tag{2}$$

где $a_0/2=A_0/2$ - среднее значение $f(t),\,a_n$ и b_n - амплитуды членов разложения, определяющиеся по формулам

$$a_n = \frac{2}{T} \int_{t_1}^{t_1+T} f(t) \cos(n\Omega_1 t) dt,$$

$$b_n = \frac{2}{T} \int_{t_1}^{t_1+T} f(t) \sin(n\Omega_1 t) dt,$$

точку t_1 можно выбрать произвольно. При этом между коэффициентами существует следующая связь:

$$A_n = \sqrt{a_n^2 + b_n^2}; \quad \psi_n = \arctan \frac{b_n}{a_n}$$

Таким образом, видно, что сигнал раскладывается в сумму сигналов с частотами Ω_1 , $2\Omega_1$, $3\Omega_1$, и т.д. Представляя $\cos \alpha$ в виде

$$\cos \alpha = \frac{e^{i\alpha} + e^{-i\alpha}}{2}$$

и подставляя в (2):

$$f(t) = \frac{1}{2} \left(A_0 + \sum_{n=1}^{\infty} A_n e^{-i\psi_n} e^{in\Omega_1 t} + \sum_{n=1}^{\infty} A_n e^{i\psi_n} e^{-in\Omega_1 t} \right)$$

Вводя комплексные амплитуды

$$\widetilde{A_n} = A_n e^{-i\psi_n}; \quad \widetilde{A_{-n}} = A_n e^{i\psi_n}; \quad \widetilde{A_0} = A_0$$
 (3)

получим

$$f(t) = \frac{1}{2} \sum_{n = -\infty}^{\infty} \widetilde{A_n} e^{in\Omega_1 t}$$
(4)

Видно, что введение отрицательных частот $(-n\Omega_1)$ позволяет записать разложение Фурье простым способом. (3) обеспечивают действительность суммы (4): каждой частоте $k\Omega_1$ соответствует в (2) один член (n=k), а в (4) - два (n=k) и n=-k). Формулы (3) позволяют переходить от комплексного представления и обратно.

Для рассчета комплексных амплитуд умножим левую и правую части (4) на $e^{-ik\Omega_1 t}$ и проинтегрируем за период, например, от 0 до $2\pi/\Omega_1$. В правой части обнулятся все члены, кроме n=k, дающего $A_kT/2$. Поэтому

$$A_k = \frac{2}{T} \int_0^T f(t)e^{-ik\Omega_1 t} dt.$$

Теперь рассмотрим функции, исследуемые в работе.

Периодическая последовательность прямоугольных сигналов с амплитудой V_0 , длительностью τ , частотой повторения $f_{\text{повт}}=1/T$, где T - период повторения импульсов.

Найдем среднее значение:

$$\langle V \rangle = \frac{a_0}{2} = \frac{A_0}{2} = \frac{1}{T} \int_{-\tau/2}^{\tau/2} V_0 dt = V_0 \frac{\tau}{T}$$

Рис. 1: Периодическая последовательность прямоугольных импульсов

Амплитуды косинусных составляющих будут равны

$$a_n = \frac{2}{T} \int_{-\tau/2}^{\tau/2} V_0 \cos(n\Omega_1 t) dt = 2V_0 \frac{\tau}{T} \frac{\sin(n\Omega_1 \tau/2)}{n\Omega_1 \tau/2} \sim \frac{\sin(x)}{x}$$

Рис. 2: Спектр периодической последовательности прямоугольных импульсов

Поскольку функция четная, все амплитуды синусоидальных гармоник будут нулевыми. Амплитуды гармоник меняются по закону $\frac{\sin(x)}{x}$. На графике изображен случай, когда T крастно τ . Назовем шириной спектра $\Delta \nu$ расстояние от первого максимума, возникающего от главного максимума до первого нуля, возникающего при $\Omega_1 = 2\pi/T$. При этом $\Delta \omega \tau \approx 2\pi$, или $\Delta \nu \Delta t \approx 1$.

Периодическая последовательность цугов гармонического колебания $V_0\cos(\omega_0 t)$ с длительностью цуга τ и периодом повторения T.

Функция также симметричная относительно t=0. Амплитуда n-й гармоники определяется выражением

$$A_n = a_n = \frac{2}{T} \int_{-\tau/2}^{\tau/2} V_0 \cos(\omega_0 t) \cdot \cos(n\Omega_1 t) dt =$$

Рис. 3: Периодическая последовательность цугов

$$=V_0 \frac{\tau}{T} \left(\frac{\sin[(\omega_0 - n\Omega_1)\frac{\tau}{2}]}{(\omega_0 - n\Omega_1)\frac{\tau}{2}} + \frac{\sin[(\omega_0 + n\Omega_1)\frac{\tau}{2}]}{(\omega_0 + n\Omega_1)\frac{\tau}{2}} \right)$$

Рис. 4: Спектр периодической последовательности цугов

Такое спектральное распределение $F(\omega)$ для случая, когда T кратно τ , представлено на рис. 5. Сравнивая этот график с аналогичным для прямоугольных импульсов, видим, что они аналогичны, но максимумы сдвинуты на почастоте на ω_0 .

Амплитудно-модулированные сигналы. Рассмотрим гармонические колебания частоты ω_0 , амплитуда которых медленно меняется по гармоническому закону с частотой Ω ($\Omega \ll \omega_0$):

$$f(t) = A_0[1 + m\cos(\Omega t)]\cos(\omega t) \tag{5}$$

Коэффициент m называется глубиной модуляции. При m < 1 амплитуда ко-

Рис. 5: Гармонические колебания, модулированные по амплитуде

лебаний меняется от минимальной $A_{min} = A_0(1-m)$ до максимальной $A_{max} = A_0(1+m)$. Глубина модуляции может быть представлена в виде

$$m = \frac{A_{max} - A_{min}}{A_{max} + A_{min}}$$

Преобразовывая уравнение (5), получим спектр:

$$f(t) = A_0 \cos(\omega_0 t) + A_0 m \cos(\Omega t) \cos(\omega_0 t) =$$

$$= A_0 \cos(\omega_0 t) + \frac{A_0 m}{2} \cos(\omega + \Omega)t + \frac{A_0 m}{2} \cos(\omega - \Omega)t$$

Рис. 6: Спектр гармонических колебания, модулированных по амплитуде

Спектр $F(\omega)$ таких колебаний содержит три составляющих. Основная компонента представляет собой исходное немодулированное колебание с несущей частотой ω_0 и амплитудой $A_{\rm och}=A_0$ - первое слагаемое в правой части последнего уравнения. Боковые компоненты спектра соответствуют гармоническим колебаниям с частотами $(\omega_0+\Omega)$ и $(\omega_0-\Omega)$ - второе и третье слагаемые. Амлитуды этих колебаний одинаковы и составляют m/2 от амплитуды немодулированного сигнала: $A_{\rm fok}=A_0m/2$.

Экспериментальная установка.

Функциональный генератор WaveStation 2012 позволяет сформировать два различных электрических сигнала, которые выводятся на два независимых канала — СН1 и СН2. Сигнал с канала СН1 подается на вход А, а сигнал с канала СН2 — на вход В USB-осциллографа. Затем эти сигналы подаются на вход компьютера через USB-соединение. При работе USB- осциллографа в режиме осциллографа, на экране компьютера можно наблюдать каждый из сигналов в отдельности, а также их произведение. В режиме спектроанализатора можно наблюдать спектры этих сигналов. При включении функционального генератора, на его экране отображается информация о параметрах электрического сигнала.

Рис. 7: Схема для исследования сигналов

А. Исследование спектра периодической последовательности прямоугольных импульсов Ход работы:

- 1. Получим на экране спектр импульсов с параметрами $f_{\text{повт}} = 10^3 \ \Gamma$ ц; $\tau = 25$ мкс. Первый ноль амплитуды наблюдается ни $\nu = 10 \ \text{к} \Gamma$ ц. При увеличении τ вдвое мы наблюдаем уменьшение нуля амплитуды до 5 к Γ ц, при увеличении $f_{\text{повт}}$ вдвое ноль не меняется, зато возрастает аплитуда сигнала.
 - 2. Снимем зависимость ширины спектра $\Delta \nu$ от длительности импульса τ :

τ , MKC	Δu , к Γ ц	$1/\tau$, MKC ⁻¹
40.0	26.0	0,025
60.0	17.0	0,017
80.0	12.0	0,013
100.0	10.0	0,010
120.0	8.0	0,008
140.0	7.0	0,007
160.0	6.0	0,006
180.0	6.0	0,006
200.0	5.0	0,005

В данном случае примем погрешность σ_{τ} равной 0.1 мкс, так как мы имеем возможность выставлять τ на генераторе с точностью до десятых. Соответственно, погрешность $1/\tau$ будет пренебрежимо мала, т.к., вычисленная по формуле

$$\sigma_{1/\tau} = \frac{1}{\tau} \cdot \varepsilon_{\tau},$$

она составляет доли процентов от величины, и в данном случае может не учитываться, так как она на два порядка меньше, чем порядок значащих цифр. Погрешность σ_{ν} примем равной 0.5 к Γ ц, так как деления на шкале спектрометра на экране не позволяют измерять с большей точностью.

Таким образом, можем построить график $\Delta \nu (1/\tau)$:

Из графика определим угол наклона: $\frac{\Delta(\Delta\nu)}{\Delta(1/\tau)}=1,0.$ Полученное значение совпадает с теоретическим, ожидаемым значением.

3. Снимем зависимость частот и амплитуд от номера гармоник для двух значений τ : $\tau=50$ мкс и $\tau=100$ мкс:

	$\tau = 50 \text{ M}$	IKC	$ au=100~{ m mkc}$			
\overline{N}	ν , к Γ ц	A, м B	N	ν , к Γ ц	A, м B	
1	1	3,23	1	1	6,35	
2	2	3,07	2	2	5,89	
3	3	3,01	3	3	5,35	
4	4	2,89	4	4	4,64	
5	5	2,73	5	5	3,87	
6	6	2,53	6	6	3,01	
7	7	2,34	7	7	2,13	
8	8	2,13	8	8	1,29	
9	9	1,95	9	9	0,61	
10	10	1,82	10	10	0,00	
11	11	1,69	11	11	0,52	
12	12	1,59	12	12	0,91	
13	13	1,33	13	13	1,21	
14	14	1,10	14	14	1,33	
15	15	0,91	15	15	1,32	
16	16	0,74	16	16	1,18	
17	17	0,49	17	17	0,93	
18	18	0,30	18	18	0,63	
19	19	0,16	19	19	0,31	
			20	20	0,00	

По значениям восстановим графики, полученные на спектрографе:

Здесь погрешности примем равными $\sigma_A=0.02$ мВ, так как в этих пределах колебались значения, снимаемые с экрана. Погрешность $\sigma_{\nu}=0.5$ к Γ ц, так как сетка идет с шагом 1к Γ ц.

Б. Исследование спектра периодической последовательности цугов гармонических колебаний Ход работы:

- 1. Установим длительность импульсов равной $\tau=100$ мкс, затем $\tau=200$ мкс. При этом резко возрастает амплитуда сигнала, а $\Delta \nu$ уменьшается с 10 до 5 к Γ ц.
- 2. Установим длительность импульса $\tau=100$ мкс. Меняя несущую частоту ν_0 , увидим, что значениям 10, 25 и 40 к Γ ц соответствуют максимумы амплитуд, достигающиеся на частотах 9, 24 и 39 к Γ ц. При этом $\Delta \nu$ остается примерно одной и той же.
- 3. Установим значение несущей частоты $\nu_0=30$ к Γ ц, длительность импульса $\tau=100$ мкс. Найдем $\delta \nu$ для нескольких частот повторений $f_{\text{повт}}$:

$f_{\text{повт}}$, к Γ ц	0.5	1.0	2.0	4.0	5.0
δu , к Γ ц	0.5	1.0	2.0	4.0	5.0

Погрешности $\sigma_{\delta\nu}$ и $\sigma_{f_{\text{повт}}}$ примем равными 0.1 к Γ ц и 0.1 к Γ ц соотвестветнно. Построим график $\delta\nu(f_{\text{повт}})$:

Установим au=100 мкс и снимем зависимость амплитуд и частот для различных гармоник для частот $f_{\text{повт}}=1$ к Γ ц и $f_{\text{повт}}=2$ к Γ ц:

$f_{ m mobt}=1$ к Γ ц			$f_{ m nobt}=2$ к Γ ц			
N	ν , к Γ ц	A, м B	N	ν , к Γ ц	A, MB	
22	22	20,1	22	22	35,1	
23	23	26,4	23	24	72,8	
24	24	36,4	24	26	99,1	
25	25	42,7	25	28	123,0	
26	26	50,2	26	30	135,5	
27	27	55,2	27	32	125,5	
28	28	62,7	28	34	101,6	
29	29	64,0	29	36	60,2	
30	30	64,0	30	38	26,4	
31	31	65,2				
32	32	60,2				
33	33	57,7				
34	34	45,2				
35	35	38,9				
36	36	32,6				
37	37	21,3				
38	38	15,1				

Восстановим графики, полученные на спектрометре:

Теперь сравним картины спектров:

- 1. Прямоугольные импульсы. При увеличении au вдвое мы наблюдаем уменьшение вдвое $\Delta
 u$.
 - 2. Цуги. Увеличивая вдвое $f_{\text{повт}}$, мы наблюдаем уменьшение $\Delta \nu$ также вдвое.
- 3. Сравнивая картины спектров цугов и импульсов при равных значениях $\tau=100$ мкс и $f_{\text{повт}}=1$ к Γ ц, видим, что максимум амплитуды цугов находится заметно правее максимума импульсов.

В. Исследование спектра гармонических колебаний, модулированных по амплитуде Ход работы:

Снимем зависимость A_{max} , A_{min} , A_{och} , A_{fok} от размаха сигнала A_0 . Также определим глубину модуляции m по формуле

$$m = \frac{A_{max} - A_{min}}{A_{max} + A_{min}}$$

и найдем зависимость отношения $A_{\text{бок}}/A_{\text{осн}}$.

Погрешности амплитуд примем равными 0.2 мВ, так как в этих пределах колебались графики на экране. Погрешностью A_0 на этом фоне можно пренебречь. Тогда из формул видно, что

$$\sigma_m = \langle m \rangle \cdot (\varepsilon_- + \varepsilon_+)$$

Данную погрешность можно не учитывать, так как она на несколько порядков меньше порядка значащих цифр m. Погрешностью отношения частот можно пренебречь по тем же причинам.

A_0 , B	A_{max} , мВ	A_{min} , мВ	$A_{\text{осн}}$, мВ	$A_{\text{бок}}$, мВ	m	$A_{\rm 6ok}/A_{ m och}$
0,2	545,8	443,0	323,1	15,7	0,10	0,05
0,6	643,7	350,1	323,1	48,9	0,30	0,15
1,0	741,6	242,2	323,1	80,9	0,51	0,25
1,4	849,5	144,3	323,7	114,2	0,71	0,35
1,8	944,8	41,5	320,6	149,3	0,92	0,47
2,0	981,9	15,8	313,7	165,2	0,97	0,50

Построим график $A_{\text{бок}}/A_{\text{осн}}(m)$:

Определим угловой коэффициент: $\frac{\Delta(A_{60\text{к}}/A_{\text{осн}})}{\Delta m}=0.5$. Полученное значение совпадает с ожидаемым теоретическим, т.к. мы ожидали получить отношение, равное 1/2: амплитуды часот теоретически должны соотноситься, как m/2.

Меняя частоту модуляции при m=1, видим, что при увеличении частоты модуляции увеличивается $\delta \nu$.

Исследование спектра сигналов, модулированных по частоте.

Установим значение модулирующей частоты F=1 к Γ ц. Меняя девиацию Δf_m , снимем зависимость амплитуд основной и боковых частот. Определим индекс модуляции β по формуле

$$\beta = \frac{\Delta f_m}{F}$$

и построим график зависимости $A_{\pm 1}/A_0$.

Δf_m , Γ ц	A_0 , MB	A, мВ	A_+ , мВ	A_{-2}, MB	A_{+2} , мВ	A_{-}/A_{0}	β
100	321,0	15,0	15,0			0,05	0,1
200	320,6	32,6	32,6			0,10	0,2
300	316,2	48,3	48,3			0,15	0,3
400	310,0	64,6	64,6			0,21	0,4
500	303,0	78,4	78,4	10,7	10,7	0,26	0,5
600	294,2	93,5	93,5	13,2	13,2	0,32	0,6
700	284,2	108,5	108,5	18,2	18,2	0,38	0,7
800	272,3	121,1	121,1	25,1	25,1	0,44	0,8
900	259,1	133,0	133,0	30,1	30,1	0,51	0,9
1000	247,2	144,3	144,3	37,6	37,6	0,58	1,0

Откуда:

Проведя касательную к графику при малых значениях β . Угловой коэффициент

будет равен 0.5, что совпадает со значением, полученным теоретически. Видно, что экспериментальная зависимость отличается от теоретической не более, чем на 10%, в диапазоне β от 0 до 0.7.

Также можно пронаблюдать изменение картины спектра при дальнейшем увеличении Δf_m . При значениях, больших 1 к Γ ц, повяляется большое число боковых частот, а также изменяется положение максимума (зачастую он становится не единсвтеннен).

Таким образом, в данной лабораторной работе мы провели спектральный анализ нескольких типов сигналов: прямоугольных импульсов, цугов, гармонического сигнала, модулированного по амплитуде и гармонического сигнала, модулированного по частоте. Сравнивая результаты, полученные экспериментально, мы убедились в применимости формул, полученных теоретическим путем.