Copyright Notice

These slides are distributed under the Creative Commons License.

<u>DeepLearning.Al</u> makes these slides available for educational purposes. You may not use or distribute these slides for commercial purposes. You may make copies of these slides and use or distribute them for educational purposes as long as you cite <u>DeepLearning.Al</u> as the source of the slides.

For the rest of the details of the license, see https://creativecommons.org/licenses/by-sa/2.0/legalcode

Lightweight

Low-latency

Privacy

Improved power consumption

Efficient model format

Lightweight

Low-latency

Privacy

Improved power consumption

Efficient model format

Lightweight

Low-latency

Privacy

Improved power consumption

Efficient model format

Lightweight

Low-latency

Privacy

Improved power consumption

Efficient model format

Lightweight

Low-latency

Privacy

Improved power consumption

Efficient model format

Lightweight

Low-latency

Privacy

Improved power consumption

Efficient model format

Lightweight

Low-latency

Privacy

Improved power consumption

Efficient model format

Components in TensorFlow Lite

Converter

(to TensorFlow Lite format)

- Transforms TensorFlow models into a form efficient for reading by the interpreter
- Introduces optimizations to improve binary size model performance and/or reduce model size.

Interpreter

- Diverse platform support, (Android, iOS, embedded Linux and microcontrollers)
- Platform APIs for accelerated inference

Architecture

Android

(Java / C++ API)

TensorFlow Model

Converter

iOS

(Swift / C API)

Linux

Raspberry Pi / Coral

(Python / Java / C++ API)

Performance

Acceleration	Available
Software	NN API (also a delegate)
Hardware	Edge TPU
	GPU
	CPU Optimizations (ARM and x86)

Delegates

Techniques

- Quantization
- Weight pruning
- Model topology transforms
 - Tensor Decomposition
 - Distillation

Why Quantize?

- All available CPU platforms are supported
- Reducing latency and inference cost
- Low memory footprint
- Allow execution on hardware restricted-to or optimized-for fixed-point operations
- Optimized models for special purpose HW accelerators (TPUs)

Putting it all together

TensorFlow Saved TF Lite TF Lite Model Converter Model

TensorFlow Lite Converter

Parameters for conversion

Python API (preferred)

SavedModel

- The standard for serializing a TensorFlow model
- A MetaGraph to hold metadata
- Holds snapshot of the trained model (with model weights and computation)
- No model building code required
- Supports model versioning

Inspecting with SavedModel's CLI

Inspecting with SavedModel's CLI

```
The given SavedModel SignatureDef contains the following input(s):
  inputs['input_1'] tensor_info:
      dtype: DT_FLOAT
      shape: (-1, 224, 224, 3)
      name: serving_default_input_1:0
The given SavedModel SignatureDef contains the following output(s):
  outputs['act_softmax'] tensor_info:
      dtype: DT_FLOAT
      shape: (-1, 1000)
      name: StatefulPartitionedCall:0
Method name is: tensorflow/serving/predict
```

Exporting a SavedModel from Keras

```
pretrained_model = tf.keras.applications.MobileNet()
tf.saved_model.save(pretrained_model, '/tmp/saved_model/1/')
```

```
import tensorflow as tf
```

```
# Store data for x and y x = [-1, 0, 1, 2, 3, 4] y = [-3, -1, 1, 3, 5, 7]
```



```
# Create a simple Keras model.
model = tf.keras.models.Sequential(
    [tf.keras.layers.Dense(units=1, input_shape=[1])])
model.compile(optimizer='sgd', loss='mean_squared_error')
model.fit(x, y, epochs=500)
```

```
import pathlib
# Export the SavedModel
export_dir = '/tmp/saved_model'
tf.saved_model.save(model, export_dir)
# Convert the model
converter = tf.lite.TFLiteConverter.from_saved_model(export_dir)
tflite_model = converter.convert()
# Save the model
tflite_model_file = pathlib.Path('/tmp/foo.tflite')
tflite_model_file.write_bytes(tflite_model)
```

import pathlib

```
# Export the SavedModel
export_dir = '/tmp/saved_model'
tf.saved_model.save(model, export_dir)
# Convert the model
converter = tf.lite.TFLiteConverter.from_saved_model(export_dir)
tflite_model = converter.convert()
# Save the model
tflite_model_file = pathlib.Path('/tmp/foo.tflite')
tflite_model_file.write_bytes(tflite_model)
```

```
import pathlib
# Export the SavedModel
export_dir = '/tmp/saved_model'
tf.saved_model.save(model, export_dir)
# Convert the model
converter = tf.lite.TFLiteConverter.from_saved_model(export_dir)
tflite_model = converter.convert()
# Save the model
```

tflite_model_file = pathlib.Path('/tmp/foo.tflite')

tflite_model_file.write_bytes(tflite_model)

```
import pathlib
# Export the SavedModel
export_dir = '/tmp/saved_model'
tf.saved_model.save(model, export_dir)
# Convert the model
converter = tf.lite.TFLiteConverter.from_saved_model(export_dir)
tflite_model = converter.convert()
# Save the model
tflite_model_file = pathlib.Path('/tmp/foo.tflite')
tflite_model_file.write_bytes(tflite_model)
```

```
import tensorflow as tf
import pathlib
# Load the MobileNet tf.keras model.
model = tf.keras.applications.MobileNetV2(weights="imagenet", input_shape=(224, 224, 3))
# Saving the model for later use by tflite_convert
model.save('model.h5')
# Convert the model.
converter = tf.lite.TFLiteConverter.from_keras_model(model)
tflite_model = converter.convert()
# Save the model
tflite_model_file = pathlib.Path('/tmp/foo.tflite')
tflite_model_file.write_bytes(tflite_model)
```

```
import tensorflow as tf
import pathlib
# Load the MobileNet tf.keras model.
model = tf.keras.applications.MobileNetV2(weights="imagenet", input_shape=(224, 224, 3))
# Saving the model for later use by tflite_convert
model.save('model.h5')
# Convert the model.
converter = tf.lite.TFLiteConverter.from_keras_model(model)
tflite_model = converter.convert()
# Save the model
tflite_model_file = pathlib.Path('/tmp/foo.tflite')
tflite_model_file.write_bytes(tflite_model)
```

```
import tensorflow as tf
import pathlib
# Load the MobileNet tf.keras model.
model = tf.keras.applications.MobileNetV2(weights="imagenet", input_shape=(224, 224, 3))
# Saving the model for later use by tflite_convert
model.save('model.h5')
# Convert the model.
converter = tf.lite.TFLiteConverter.from_keras_model(model)
tflite_model = converter.convert()
# Save the model
tflite_model_file = pathlib.Path('/tmp/foo.tflite')
tflite_model_file.write_bytes(tflite_model)
```

```
import tensorflow as tf
import pathlib
# Load the MobileNet tf.keras model.
model = tf.keras.applications.MobileNetV2(weights="imagenet", input_shape=(224, 224, 3))
# Saving the model for later use by tflite_convert
model.save('model.h5')
# Convert the model.
converter = tf.lite.TFLiteConverter.from_keras_model(model)
tflite_model = converter.convert()
# Save the model
tflite_model_file = pathlib.Path('/tmp/foo.tflite')
tflite_model_file.write_bytes(tflite_model)
```

Command-line usage

```
#!/usr/bin/env bash

# Saving with the command-line from a SavedModel

tflite_convert --output_file=model.tflite --saved_model_dir=/tmp/saved_model

# Saving with the command-line from a Keras model

tflite_convert --output_file=model.tflite --keras_model_file=model.h5
```

Command-line usage

#!/usr/bin/env bash

```
# Saving with the command-line from a SavedModel

tflite_convert --output_file=model.tflite --saved_model_dir=/tmp/saved_model
```

```
# Saving with the command-line from a Keras model
tflite_convert --output_file=model.tflite --keras_model_file=model.h5
```

Command-line usage

```
#!/usr/bin/env bash
# Saving with the command-line from a SavedModel
tflite_convert --output_file=model.tflite --saved_model_dir=/tmp/saved_model
```

tflite_convert --output_file=model.tflite --keras_model_file=model.h5

Post-training quantization

- Reduced precision representation with 3x lower latency
- Little degradation in model accuracy
- Optimization modes
 - Default (both size and latency)

 - ↓ Latency
- Efficiently represents an arbitrary magnitude of ranges
- Quantization target specification (FP32/INT8)

```
import tensorflow as tf

converter = tf.lite.TFLiteConverter.from_saved_model(saved_model_dir)

converter.optimizations = [tf.lite.Optimize.OPTIMIZE_FOR_SIZE]

tflite_quant_model = converter.convert()
```

Post-training integer quantization


```
# Define the generator
def generator():
  data = tfds.load(...)
  for _ in range(num_calibration_steps):
    image, = data.take(1)
   yield [image]
converter = tf.lite.TFLiteConverter.from_saved_model(saved_model_dir)
# Set the optimization mode
converter.optimizations = [tf.lite.Optimize.DEFAULT]
# Pass the representative dataset to the converter
converter.representative_dataset = tf.lite.RepresentativeDataset(generator)
```

```
def generator():
  data = tfds.load(...)
  for _ in range(num_calibration_steps):
    image, = data.take(1)
   yield [image]
converter = tf.lite.TFLiteConverter.from_saved_model(saved_model_dir)
# Set the optimization mode
converter.optimizations = [tf.lite.Optimize.DEFAULT]
# Pass the representative dataset to the converter
converter.representative_dataset = tf.lite.RepresentativeDataset(generator)
```

Define the generator

```
# Define the generator
def generator():
  data = tfds.load(...)
  for _ in range(num_calibration_steps):
    image, = data.take(1)
   yield [image]
converter = tf.lite.TFLiteConverter.from_saved_model(saved_model_dir)
# Set the optimization mode
converter.optimizations = [tf.lite.Optimize.DEFAULT]
# Pass the representative dataset to the converter
converter.representative_dataset = tf.lite.RepresentativeDataset(generator)
```

```
# Define the generator
def generator():
  data = tfds.load(...)
  for _ in range(num_calibration_steps):
    image, = data.take(1)
   yield [image]
converter = tf.lite.TFLiteConverter.from_saved_model(saved_model_dir)
# Set the optimization mode
converter.optimizations = [tf.lite.Optimize.DEFAULT]
 Pass the representative dataset to the converter
onverter.representative_dataset = tf.lite.RepresentativeDataset(generator)
```

```
# Set the optimization mode
converter.optimizations = [tf.lite.Optimize.OPTIMIZE_FOR_LATENCY]
# Pass the representative dataset to the converter
converter.representative_dataset = tf.lite.RepresentativeDataset(generator)
# Restricting supported target op specification to INT8
converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS_INT8]
```

Learn more about supported ops:

https://www.tensorflow.org/lite/guide/ops_compatibility

TF-Select to overcome unsupported ops

TF-Select

https://www.tensorflow.org/lite/guide/ops_select

```
import tensorflow as tf
converter = tf.lite.TFLiteConverter.from_saved_model(saved_model_dir)
converter.target_ops = [tf.lite.OpsSet.TFLITE_BUILTINS,
                        tf.lite.OpsSet.SELECT_TF_OPS]
tflite_model = converter.convert()
```

Optimizing your models in a nutshell


```
# Load TFLite model and allocate tensors
interpreter = tf.lite.Interpreter(model_content=tflite_model)
interpreter.allocate_tensors()
# Get input and output tensors.
input_details = interpreter.get_input_details()
output_details = interpreter.get_output_details()
# Point the data to be used for testing and run the interpreter
interpreter.set_tensor(input_details[0]['index'], input_data)
interpreter.invoke()
tflite_results = interpreter.get_tensor(output_details[0]['index'])
```

```
# Load TFLite model and allocate tensors
interpreter = tf.lite.Interpreter(model_content=tflite_model)
interpreter.allocate_tensors()
# Get input and output tensors.
input_details = interpreter.get_input_details()
output_details = interpreter.get_output_details()
# Point the data to be used for testing and run the interpreter
interpreter.set_tensor(input_details[0]['index'], input_data)
interpreter.invoke()
tflite_results = interpreter.get_tensor(output_details[0]['index'])
```

```
# Load TFLite model and allocate tensors
interpreter = tf.lite.Interpreter(model_content=tflite_model)
interpreter.allocate_tensors()
# Get input and output tensors.
input_details = interpreter.get_input_details()
output_details = interpreter.get_output_details()
# Point the data to be used for testing and run the interpreter
interpreter.set_tensor(input_details[0]['index'], input_data)
interpreter.invoke()
tflite_results = interpreter.get_tensor(output_details[0]['index'])
```

```
# Load TFLite model and allocate tensors
interpreter = tf.lite.Interpreter(model_content=tflite_model)
interpreter.allocate_tensors()
# Get input and output tensors.
input_details = interpreter.get_input_details()
output_details = interpreter.get_output_details()
# Point the data to be used for testing and run the interpreter
interpreter.set_tensor(input_details[0]['index'], input_data)
interpreter.invoke()
tflite_results = interpreter.get_tensor(output_details[0]['index'])
```

```
# Load TFLite model and allocate tensors
interpreter = tf.lite.Interpreter(model_content=tflite_model)
interpreter.allocate_tensors()
# Get input and output tensors.
input_details = interpreter.get_input_details()
output_details = interpreter.get_output_details()
# Point the data to be used for testing and run the interpreter
interpreter.set_tensor(input_details[0]['index'], input_data)
interpreter.invoke()
tflite_results = interpreter.get_tensor(output_details[0]['index'])
```

Running models

Pretrained models

Image classification

Object detection

Smart reply

Pose estimation

Segmentation

TensorFlow Hub

Classification modules

Feature vector modules

Embedding modules

Not what you're looking for?

Build a custom model!

Get started

1

Build a model

Create a simple model for (y = 2x - 1) from simulated data and train it

2

Export & Convert

Generate the SavedModel and convert it to TFLite

Verify

Perform evaluation on random data to verify the results

Deploy

Get started

1

Build a model

Create a simple model for (y = 2x - 1) from simulated data and train it

2

Export & Convert

Generate the SavedModel and convert it to TFLite

3

Verify

Perform evaluation on random data to verify the results

4

Deploy

Get started

1

Build a model

Create a simple model for (y = 2x - 1) from simulated data and train it

2

Export & Convert

Generate the SavedModel and convert it to TFLite

3

Verify

Perform evaluation on random data to verify the results

4

Deploy

Get started

1

Build a model

Create a simple model for (y = 2x - 1) from simulated data and train it

2

Export & Convert

Generate the SavedModel and convert it to TFLite

3

Verify

Perform evaluation on random data to verify the results

4

Deploy

Get started

1

Build a model

Create a simple model for (y = 2x - 1) from simulated data and train it

2

Export & Convert

Generate the SavedModel and convert it to TFLite

3

Verify

Perform evaluation on random data to verify the results

4

Deploy

Android

iOS

Transfer Learning

Size of the dataset	Train from scratch	Finetune all the layers
Size of th	Finetune only the lower layers	Train the final classification layer
Data similarity		

Get started

1

Prepare the dataset Ti

Download the Cats vs.
Dogs tf.Dataset, split
into sets (train, val,
test), and preprocess

2

Transfer Learning

Choose a feature
vector module
(MobileNet V2) from
TFHub and perform
transfer learning

3

Export & Convert

Export the trained model to SavedModel and convert it to TFLite

4

Deploy

Get started

1

Prepare the dataset

Download the Cats vs.
Dogs tf.Dataset, split
into sets (train, val,
test), and preprocess

2

Transfer Learning

Choose a feature
vector module
(MobileNet V2) from
TFHub and perform
transfer learning

3

Export & Convert

Export the trained model to SavedModel and convert it to TFLite

4

Deploy

Get started

1

Prepare the dataset

Download the Cats vs.
Dogs tf.Dataset, split
into sets (train, val,
test), and preprocess

2

Transfer Learning

Choose a feature
vector module
(MobileNet V2) from
TFHub and perform
transfer learning

3

Export & Convert

Export the trained model to SavedModel and convert it to TFLite

Deploy

Get started

Transfer Learning Prepare the dataset

Download the Cats vs. Dogs tf.Dataset, split into sets (train, val, test), and preprocess

Choose a feature vector module (MobileNet V2) from TFHub and perform transfer learning

Export & Convert

Export the trained model to SavedModel and convert it to TFLite

Deploy

Get started

1

Prepare the dataset

Download the Cats vs.
Dogs tf.Dataset, split
into sets (train, val,
test), and preprocess

2

Transfer Learning

Choose a feature vector module (MobileNet V2) from TFHub and perform transfer learning 3

Export & Convert

Export the trained model to SavedModel and convert it to TFLite

4

Deploy