

CS201H DISCRETE MATHEMATICS FOR COMPUTER SCIENCE

Dr. QI WANG

Department of Computer Science and Engineering

Office: Room413, CoE South Tower

Email: wangqi@sustech.edu.cn

Rules of Inference for Propositional Logic

■ modus ponens (law of detachment) 肯定前件式

$$(p \land (p \rightarrow q)) \rightarrow q$$

■ modus tollens 否定后件式

$$(\neg q \land (p \rightarrow q)) \rightarrow \neg p$$

■ hypothetical syllogism 假言三段论

$$((p \rightarrow q) \land (q \rightarrow r)) \rightarrow (p \rightarrow r)$$

■ disjunctive syllogism 选言三段论

$$(\neg p \land (p \lor q)) \rightarrow q$$

Rules of Inference for Propositional Logic

Addition

$$p o (p \lor q)$$

Simplication

$$(p \wedge q) \rightarrow p$$

Conjunction

$$((p) \land (q)) \rightarrow (p \land q)$$

Resolution

$$((p \lor q) \land (\neg p \lor r)) \rightarrow (q \lor r)$$

Rules of Inference for Quantified Statements

Universal Instantiation (UI)

$$\frac{\forall x P(x)}{\therefore P(c)}$$

Universal Generalization (UG)

$$P(c)$$
 for an arbitrary c
 $\therefore \forall x P(x)$

Existential Instantiation (EI)

$$\exists x P(x)$$

 $\therefore P(c)$ for some element c

Existential Generalization (EG)

$$P(c)$$
 for some element c
 $\therefore \exists x P(x)$

Methods of Proving Theorems

- Basic methods to prove theorems:
 - ♦ direct proof
 - $-p \rightarrow q$ is proved by showing that if p is true then q follows
 - proof by contrapositive
 - show the contrapositive $\neg q \rightarrow \neg p$
 - proof by contradiction
 - show that $(p \land \neg q)$ contradicts the assumptions
 - proof by cases
 - give proofs for all possible cases
 - proof of equivalence
 - $-p \leftrightarrow q$ is replaced with $(p \rightarrow q) \land (q \rightarrow p)$

Prove that " $\sqrt{2}$ is *irrational*". (*rational numbers* are those of the form $\frac{m}{n}$, where m, n are integers.)

Prove that " $\sqrt{2}$ is *irrational*". (*rational numbers* are those of the form $\frac{m}{n}$, where m, n are integers.)

Proof:

Suppose that $\sqrt{2}$ is rational. Then there exist two integers m and n such that $\gcd(m,n)=1$ and $\sqrt{2}=m/n$. We have then $m^2=2n^2$. It then follows that m is even. Let m=2k for some integer k. It then follows that $n^2=2k^2$. Hence, n is also even. This means $\gcd(m,n)$ must have a factor 2, which contradicts to the assumption that $\gcd(m,n)=1$.

Prove that "There are infinitely many prime numbers".

Prove that "There are infinitely many prime numbers".

Proof:

Suppose that there are only a finite number of primes. Then some prime number p is the largest of all the prime numbers, and we can list the prime numbers in ascending order:

$$2, 3, 5, 7, 11, \ldots, p$$
.

Let $n = (2 \times 3 \times 5 \times \cdots \times p) + 1$. Then n > 1, and n cannot be divided by any prime number in the list above. This means that n is also a prime. Clearly, n is larger than all the primes in the list above. This is contrary to the assumption that all primes are in the list.

Words from Dijkstra

Edsger W. Dijkstra (1930–2002)

-"... mathematical logic is and must be the basis for software design... mathematical analysis of designs and specifications have become central activities in computer science research."

A set is an unordered collection of objects. These objects are called elements or members.

- A set is an unordered collection of objects. These objects are called elements or members.
- Many discrete structures are built with sets:
 - ♦ combinations
 - ♦ relations
 - ♦ graphs

- A set is an unordered collection of objects. These objects are called elements or members.
- Many discrete structures are built with sets:
 - ♦ combinations
 - ♦ relations
 - ♦ graphs

Examples:

```
♦ S = \{2, 3, 5, 7\}
♦ A = \{1, 2, 3, ..., 100\}
♦ B = \{a \ge 2 \mid a \text{ is a prime}\}
♦ C = \{2n \mid n = 0, 1, 2, ...\}
```


Examples:

```
♦ S = \{2, 3, 5, 7\}
♦ A = \{1, 2, 3, ..., 100\}
♦ B = \{a \ge 2 \mid a \text{ is a prime}\}
♦ C = \{2n \mid n = 0, 1, 2, ...\}
```

Representing a set by:

- Iisting (enumerating) the elements
- ♦ if enumeration is hard, use ellipses (...)
- definition by property, using the set builder

$$\{x \mid x \text{ has property } P(P(x))\}$$

Important sets

Natural numbers:

$$\diamond$$
 N = {0, 1, 2, 3, ...}

Integers:

$$\diamond \mathbf{Z} = \{\ldots, -2, -1, 0, 1, 2, \ldots\}$$

Positive integers:

$$\diamond \mathbf{Z}^+ = \{1, 2, 3, \ldots\}$$

Rational numbers:

$$\diamond \mathbf{Q} = \{ \frac{p}{q} \mid p \in \mathbf{Z}, q \in \mathbf{Z}, q \neq 0 \}$$

Real numbers:

$$\diamond R$$

Complex numbers:

$$\diamond$$
 C

Interval Notation and Equality

$$[a, b] = \{x \mid a \le x \le b\}$$

$$[a, b) = \{x \mid a \le x < b\}$$

$$(a, b) = \{x \mid a < x \le b\}$$

$$(a, b) = \{x \mid a < x < b\}$$

■ Two sets A, B are *equal* if and only if $\forall x \ (x \in A \leftrightarrow x \in B)$.

- Let $S = \{x | x \notin x\}$, is a set of sets that are not members of themselves.
 - Henry is a barber who shaves all people who do not shave themselves. Does Henry shave himself?

Bertrand Russell (1872-1970) Cambridge, UK Nobel Prize Winner

- Let $S = \{x | x \notin x\}$, is a set of sets that are not members of themselves.
 - Henry is a barber who shaves all people who do not shave themselves. Does Henry shave himself?

Question: Is $S \in S$ or $S \notin S$?

Bertrand Russell (1872-1970) Cambridge, UK Nobel Prize Winner

- Let $S = \{x | x \notin x\}$, is a set of sets that are not members of themselves.
 - Henry is a barber who shaves all people who do not shave themselves. Does Henry shave himself?

Question: Is $S \in S$ or $S \notin S$?

- *S* ∈ *S*?: *S* does not satisfy the condition, so $S \notin S$.

 $-S \notin S$?: S is included in the set S, so $S \in S$.

Bertrand Russell (1872-1970) Cambridge, UK Nobel Prize Winner

- Let $S = \{x | x \notin x\}$, is a set of sets that are not members of themselves.
 - Henry is a barber who shaves all people who do not shave themselves. Does Henry shave himself?

Question: Is $S \in S$ or $S \notin S$?

- *S* ∈ *S*?: *S* does not satisfy the condition, so $S \notin S$.
- $-S \notin S$?: S is included in the set S, so $S \in S$.

Bertrand Russell (1872-1970) Cambridge, UK Nobel Prize Winner

Answer: axiomatic set theory (out of range)

Universal and Empty Set

- The *universal set* is the set of all objects under consideration, denoted by *U*.
- The *empty set* is the set of no object, denoted by \emptyset or $\{\}$.

Universal and Empty Set

- The *universal set* is the set of all objects under consideration, denoted by *U*.
- The *empty set* is the set of no object, denoted by \emptyset or $\{\}$.

- Note: $\emptyset \neq \{\emptyset\}$

Venn Diagrams and Subsets

A set can be visualized using Venn diagrams

John Venn (1834-1923) Cambridge, UK

Venn Diagrams and Subsets

A set can be visualized using Venn diagrams

John Venn (1834-1923) Cambridge, UK

■ A set A is called to be a *subset* of B if and only if every element of A is also an element of B ($\forall x (x \in A \rightarrow x \in B)$), denoted by $A \subseteq B$.

Proper Subsets and Properties

■ If $A \subseteq B$, but $A \neq B$, then we say A is a *proper subset* of B, denoted by $A \subset B$ $(\forall x (x \in A \rightarrow x \in B) \land \exists x (x \in B \land x \notin A))$.

Proper Subsets and Properties

■ If $A \subseteq B$, but $A \neq B$, then we say A is a *proper subset* of B, denoted by $A \subset B$ $(\forall x (x \in A \rightarrow x \in B) \land \exists x (x \in B \land x \notin A))$.

■ Theorem $\emptyset \subseteq S$.

Proper Subsets and Properties

■ If $A \subseteq B$, but $A \neq B$, then we say A is a *proper subset* of B, denoted by $A \subset B$ $(\forall x (x \in A \rightarrow x \in B) \land \exists x (x \in B \land x \notin A))$.

■ Theorem $\emptyset \subseteq S$.

Proof:

By definition, we need to prove $\forall x (x \in \emptyset \to x \in S)$. Since the empty set does not contain any element, $x \in \emptyset$ is always false. Then the implication is always true.

Subset Properties

■ Theorem $S \subseteq S$.

Subset Properties

■ Theorem $S \subseteq S$.

Proof:

By definition, we need to prove $\forall x (x \in S \rightarrow x \in S)$. This is obviously true.

Subset Properties

■ Theorem $S \subseteq S$.

Proof:

By definition, we need to prove $\forall x (x \in S \rightarrow x \in S)$. This is obviously true.

■ Note: two sets are equal if and only if each is a subset of the other.

$$\forall x \ (x \in A \leftrightarrow x \in B)$$

Cardinality

Let S be a set. If there are exactly n distinct elements in S where n is a nonnegative integer, we say that S is a finite set and n is the *cardinality of* S, denoted by |S|.

A set is *infinite* if it is not finite.

Cardinality

Let S be a set. If there are exactly n distinct elements in S where n is a nonnegative integer, we say that S is a finite set and n is the *cardinality of* S, denoted by |S|.

A set is *infinite* if it is not finite.

$$A = \{1, 2, 3, \dots, 20\} \ (|A| = 20)$$
 $B = \{1, 2, 3, \dots\} \ (infinite)$
 $|\emptyset| = 0$

Power Set

• Given a set S, the *power set* of S is the set of all subsets of the set S, denoted by $\mathcal{P}(S)$.

Power Set

• Given a set S, the *power set* of S is the set of all subsets of the set S, denoted by $\mathcal{P}(S)$.

Examples:

```
⋄ ∅
⋄ {1}
⋄ {1,2}
⋄ {1,2,3}
```

What is the power set?

Power Set

• Given a set S, the *power set* of S is the set of all subsets of the set S, denoted by $\mathcal{P}(S)$.

Examples:

```
♦ ∅
♦ {1}
♦ {1,2}
♦ {1,2,3}
```

What is the power set?

If S is a set with |S| = n, then $|\mathcal{P}(S)| = 2^n$. Why?

Tuples

■ The ordered n-tuple $(a_1, a_2, ..., a_n)$ is the ordered collection that has a_1 as its first element and a_2 as its second element and so on until a_n as its last element.

Tuples

The ordered n-tuple (a_1, a_2, \ldots, a_n) is the ordered collection that has a_1 as its first element and a_2 as its second element and so on until a_n as its last element.

coordinates of a point in the 2-D plane

■ Let A and B be sets. The Cartesian product of A and B, denoted by $A \times B$, is the set of all ordered pairs (a, b), where $a \in A$ and $b \in B$. Hence

$$A \times B = \{(a, b) \mid a \in A \land b \in B\}$$

■ Let A and B be sets. The Cartesian product of A and B, denoted by $A \times B$, is the set of all ordered pairs (a, b), where $a \in A$ and $b \in B$. Hence

$$A \times B = \{(a, b) \mid a \in A \land b \in B\}$$

Example:

$$A = \{1, 2\}, B = \{a, b, c\}$$

 $A \times B = \{(1, a), (1, b), (1, c), (2, a), (2, b), (2, c)\}$

■ The *Cartesian product* of the sets $A_1, A_2, ..., A_n$, denoted by $A_1 \times A_2 \times ... \times A_n$, is the set of ordered n-tuples $(a_1, a_2, ..., a_n)$ where $a_i \in A_i$ for i = 1, ..., n.

$$A_1 \times A_1 \times \cdots \times A_n =$$

$$\{(a_1, a_2, \dots, a_n) \mid a_i \in A_i \text{ for } i = 1, 2, \dots, n\}$$

■ The *Cartesian product* of the sets $A_1, A_2, ..., A_n$, denoted by $A_1 \times A_2 \times ... \times A_n$, is the set of ordered n-tuples $(a_1, a_2, ..., a_n)$ where $a_i \in A_i$ for i = 1, ..., n.

$$A_1 \times A_1 \times \cdots \times A_n =$$

$$\{(a_1, a_2, \dots, a_n) \mid a_i \in A_i \text{ for } i = 1, 2, \dots, n\}$$

Example:

$$A = \{0, 1\}, B = \{1, 2\}, C = \{0, 1, 2\}$$
 $A \times B \times C = \{(0, 1, 0), (0, 1, 1), (0, 1, 2), (0, 2, 0), (0, 2, 1), (0, 2, 2), (1, 1, 0), (1, 1, 1), (1, 1, 2), (1, 2, 0), (1, 2, 1), (1, 2, 2)\}$

$$\blacksquare A \times B \neq B \times A$$

$$\blacksquare |A \times B| = |A| \times |B|$$

$$\blacksquare A \times B \neq B \times A$$

$$\blacksquare |A \times B| = |A| \times |B|$$

■ A subset of the Cartesian product $A \times B$ is called a *relation* from the set A to the set B.

Set Operations

■ Union Let A and B be sets. The *union* of the sets A and B, denoted by $A \cup B$, is the set $\{x | x \in A \lor x \in B\}$.

Venn Diagram for $A \cup B$

■ Intersection The *intersection* of the sets A and B, denoted by $A \cap B$, is the set $\{x | x \in A \land x \in B\}$.

Venn Diagram for $A \cap B$

Set Operations

■ **Complement** If A is a set, then the *complement* of the set A (with respect to U), denoted by \overline{A} is the set U - A, $\overline{A} = \{x \in U | x \notin A\}$.

■ **Difference** Let A and B be sets. The *difference* of A and B, denoted by A - B, is the set containing the elements of A that are not in B.

$$A - B = \{x | x \in A \land x \notin B\} = A \cap \overline{B}$$

Disjoint Sets and the Cardinality of the Union

■ Two sets A and B are called *disjoint* if their intersection is empty $(A \cap B = \emptyset)$.

Disjoint Sets and the Cardinality of the Union

■ Two sets A and B are called *disjoint* if their intersection is empty $(A \cap B = \emptyset)$.

$$|A \cup B| = |A| + |B| - |A \cap B|$$

Disjoint Sets and the Cardinality of the Union

■ Two sets A and B are called *disjoint* if their intersection is empty $(A \cap B = \emptyset)$.

$$|A \cup B| = |A| + |B| - |A \cap B|$$

the principle of inclusion and exclusion

Review Questions

- $U = \{0, 1, 2, \dots, 10\}, A = \{1, 2, 3, 4, 5\}, B = \{4, 5, 6, 7, 8\}$
 - 1. $A \cup B$
 - 2. $A \cap B$
 - 3. *Ā*
 - 4. **B**
 - 5. A B
 - 6. B A

Identity laws

$$\diamond A \cup \emptyset = A$$

$$\diamond A \cap U = A$$

Domination laws

$$\diamond A \cup U = U$$

$$\diamond A \cap \emptyset = \emptyset$$

Idempotent laws

$$\Diamond A \cup A = A$$

$$\Diamond A \cap A = A$$

Complementation laws

$$\diamond \bar{\bar{A}} = A$$

Commutative laws

$$\diamond A \cup B = B \cup A$$

$$\diamond A \cap B = B \cap A$$

Associative laws

$$\diamond A \cup (B \cup C) = (A \cup B) \cup C$$

$$\diamond A \cap (B \cap C) = (A \cap B) \cap C$$

Distributive laws

$$\diamond A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

$$\diamond A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

De Morgan's laws

$$\diamond \overline{A \cap B} = \overline{A} \cup \overline{B}$$

$$\diamond \overline{A \cup B} = \overline{A} \cap \overline{B}$$

Absorbtion laws

$$\diamond A \cup (A \cap B) = A$$
$$\diamond A \cap (A \cup B) = A$$

Complement laws

$$A \cup \bar{A} = U$$

$$A \cap \bar{A} = \emptyset$$

Absorbtion laws

$$\diamond A \cup (A \cap B) = A$$
$$\diamond A \cap (A \cup B) = A$$

Complement laws

$$A \cup \bar{A} = U$$

$$A \cap \bar{A} = \emptyset$$

Set identities can be proved using membership tables.

Absorbtion laws

$$\diamond A \cup (A \cap B) = A$$
$$\diamond A \cap (A \cup B) = A$$

Complement laws

Set identities can be proved using membership tables.

Prove that $\overline{A \cap B} = \overline{A} \cup \overline{B}$

A	В	\overline{A}	\overline{B}	$\overline{A \cap B}$	$ \overline{A} \cup \overline{B} $
1	1	0	0	0	0
1	0	0	1	1	1
0	1	1	0	1	1
0	0	1	1	1	1

Other Proofs of $\overline{A \cap B} = \overline{A} \cup \overline{B}$

Proof 2

P. 130 EXAMPLE 10

By showing that $\forall x (x \in \overline{A \cap B} \leftrightarrow x \in \overline{A} \cup \overline{B})$

Proof 3

Using set builder and logical equivalences

Other Proofs of $\overline{A \cap B} = \overline{A} \cup \overline{B}$

Proof 2

P. 130 EXAMPLE 10

By showing that $\forall x (x \in \overline{A \cap B} \leftrightarrow x \in \overline{A} \cup \overline{B})$

Proof 3

P. 131 EXAMPLE 11

Using set builder and logical equivalences

$$\overline{A \cap B} = \{x | x \notin A \cap B\}$$

$$= \{x | \neg (x \in (A \cap B))\}$$

$$= \{x | \neg (x \in A \land x \in B)\}$$

$$= \{x | \neg (x \in A) \lor \neg (x \in B)\}$$

$$= \{x | x \notin A \lor x \notin B\}$$

$$= \{x | x \in \overline{A} \lor x \in \overline{B}\}$$

$$= \{x | x \in \overline{A} \cup \overline{B}\}$$

$$= \overline{A} \cup \overline{B}$$

definition of complement definition of intersection De Morgan's laws definition definition of complement definition of union definition

Generalized Unions and Intersections

■ The union of a collection of sets is the set that contains those elements that are members of at least one set in the collection $\bigcup_{i=1}^{n} A_i = A_1 \cup A_2 \cup \cdots \cup A_n$.

■ The *intersection of a collection of sets* is the set that contains those elements that are members of all sets in the collection $\bigcap_{i=1}^{n} A_i = A_1 \cap A_2 \cap \cdots \cap A_n$.

Question: How to represent sets in a computer?

One solution: explicitly store the elements in a list

Question: How to represent sets in a computer?

One solution: explicitly store the elements in a list

A better solution: assign a bit in a bit string to each element in the universal set and set the bit to 1 if the element is in the set otherwise 0.

Question: How to represent sets in a computer?

One solution: explicitly store the elements in a list

A better solution: assign a bit in a bit string to each element in the universal set and set the bit to 1 if the element is in the set otherwise 0.

Example:

$$U = \{1, 2, 3, 4, 5\}$$

 $A = \{2, 5\} - A = 01001$
 $B = \{1, 5\} - B = 10001$

Question: How to represent sets in a computer?

One solution: explicitly store the elements in a list

A better solution: assign a bit in a bit string to each element in the universal set and set the bit to 1 if the element is in the set otherwise 0.

Example:

$$U = \{1, 2, 3, 4, 5\}$$

 $A = \{2, 5\} - A = 01001$
 $B = \{1, 5\} - B = 10001$

Union: $A \lor B = 11001 - \{1, 2, 5\}$

Intersection: $A \wedge B = 00001 = \{5\}$

Complement: $\bar{A} = 10110 = \{1, 3, 4\}$

Functions

Let A and B be two sets. A function from A to B, denoted by $f:A \rightarrow B$, is an assignment of exactly one element of B to each element of A. We write f(a) = b if b is the unique element of B assigned by the function f to the element a of A.

Functions

Let A and B be two sets. A function from A to B, denoted by $f:A \rightarrow B$, is an assignment of exactly one element of B to each element of A. We write f(a) = b if b is the unique element of B assigned by the function f to the element a of A.

- Explicitly state the assignments between elements of the two sets
- By a formula

- Explicitly state the assignments between elements of the two sets
- By a formula

Example 1:

$$A = \{1, 2, 3\}, B = \{a, b, c\}$$

Assume f is defined as $1 \mapsto c$, $2 \mapsto a$, $3 \mapsto c$. Is f a function?

- Explicitly state the assignments between elements of the two sets
- By a formula

Example 2:

$$A = \{1, 2, 3\}, B = \{a, b, c\}$$

Assume g is defined as $1 \mapsto c$, $1 \mapsto b$, $2 \mapsto a$, $3 \mapsto c$. Is g a function?

- Explicitly state the assignments between elements of the two sets
- By a formula

Example 3:

$$A = \{0, 1, \dots, 9\}, B = \{0, 1, 2\}$$

Assume h is defined as $h(x) = x \mod 3$. Is h a function?

Important Sets of Functions

Let f be a function from A to B. We say that A is the domain of f and B is the codomain of f. If f(a) = b, b is called the image of a and a is a preimage of b. The range of f is the set of all images of elements of A, denoted by f(A). We also say f maps A to B.

Important Sets of Functions

Let f be a function from A to B. We say that A is the domain of f and B is the codomain of f. If f(a) = b, b is called the image of a and a is a preimage of b. The range of f is the set of all images of elements of A, denoted by f(A). We also say f maps A to B.

Example:

$$A = \{1, 2, 3\}, B = \{a, b, c\}$$

Important Sets of Functions

Let f be a function from A to B. We say that A is the domain of f and B is the codomain of f. If f(a) = b, b is called the image of a and a is a preimage of b. The range of f is the set of all images of elements of A, denoted by f(A). We also say f maps A to B.

Example:

$$A = \{1, 2, 3\}, B = \{a, b, c\}$$

- -c is the image of 1
- 2 is a preimage of a
- the domain of f is $\{1, 2, 3\}$
- the codomain of f is $\{a, b, c\}$
- the range of f is $\{a, c\}$

Image of a Subset

■ For a function $f: A \to B$ and $S \subseteq A$, the image of S is a subset of B that consists of the images of the elements of S, denoted by f(S) ($f(S) = \{f(s) | s \in S\}$)

Image of a Subset

■ For a function $f: A \to B$ and $S \subseteq A$, the image of S is a subset of B that consists of the images of the elements of S, denoted by f(S) ($f(S) = \{f(s) | s \in S\}$)

Let $S = \{1, 3\}$, what is f(S)?

• A function f is called *one-to-one* or *injective*, if and only if f(x) = f(y) implies x = y for all x, y in the domain of f. In this case, f is called an *injection*.

• A function f is called *one-to-one* or *injective*, if and only if f(x) = f(y) implies x = y for all x, y in the domain of f. In this case, f is called an *injection*.

• A function f is called *one-to-one* or *injective*, if and only if f(x) = f(y) implies x = y for all x, y in the domain of f. In this case, f is called an *injection*.

Not injective

• A function f is called *one-to-one* or *injective*, if and only if f(x) = f(y) implies x = y for all x, y in the domain of f. In this case, f is called an *injection*.

Not injective

Injective function

Injective Functions

Example 1:

$$A = \{1, 2, 3\}, B = \{a, b, c\}$$

Define f as
 $-1 \mapsto c$
 $-2 \mapsto a$
 $-3 \mapsto c$
Is f one-to-one?

Injective Functions

Example 1:

```
A = \{1, 2, 3\}, B = \{a, b, c\}
Define f as
-1 \mapsto c
-2 \mapsto a
-3 \mapsto c
Is f one-to-one?
```

Example 2:

Let $g : \mathbf{Z} \to \mathbf{Z}$, where g(x) = 2x - 1Is g one-to-one?

Surjective (Onto) Function

■ A function f is called *onto* or *surjective*, if and only if for every $b \in B$ there is an element $a \in A$ such that f(a) = b. In this case, f is called a *surjection*.

Surjective (Onto) Function

■ A function f is called *onto* or *surjective*, if and only if for every $b \in B$ there is an element $a \in A$ such that f(a) = b. In this case, f is called a *surjection*.

Alternatively: A function is *onto* if and only if all codomain elements are covered (f(A) = B).

Surjective (Onto) Function

■ A function f is called *onto* or *surjective*, if and only if for every $b \in B$ there is an element $a \in A$ such that f(a) = b. In this case, f is called a *surjection*.

Alternatively: A function is *onto* if and only if all codomain elements are covered (f(A) = B).

Surjective Functions

Example 1:

$$A = \{1, 2, 3\}, B = \{a, b, c\}$$

Define f as $-1 \mapsto c$
 $-2 \mapsto a$
 $-3 \mapsto c$
Is f onto?

Surjective Functions

Example 1:

```
A = \{1, 2, 3\}, B = \{a, b, c\}
Define f as
-1 \mapsto c
-2 \mapsto a
-3 \mapsto c
Is f onto?
```

Example 2:

Let $A = \{0, 1, ..., 9\}$, $B = \{0, 1, 2\}$ Define $h : A \to B$ as $h(x) = x \mod 3$. Is h onto?

Bijective Function (One-to-One Correspondence)

■ A function *f* is called *bijective*, if and only if it is both one-to-one and onto.

Bijective Function (One-to-One Correspondence)

■ A function *f* is called *bijective*, if and only if it is both one-to-one and onto.

Bijective Functions

Example 1:

$$A = \{1, 2, 3\}, B = \{a, b, c\}$$

Define f as
 $-1 \mapsto c$
 $-2 \mapsto a$
 $-3 \mapsto b$
Is f bijective?

Bijective Functions

Example 1:

```
A = \{1, 2, 3\}, B = \{a, b, c\}
Define f as
-1 \mapsto c
-2 \mapsto a
-3 \mapsto b
Is f bijective?
```

Example 2:

Define $g: \mathbb{N} \to \mathbb{N}$ as $g(x) = \lfloor \frac{x}{2} \rfloor$ (floor function). Is g bijective?

Summary

■ Suppose that $f: A \rightarrow B$.

To show that f is injective	Show that if $f(x) = f(y)$ for all $x, y \in A$, then $x = y$
To show that f is not <i>injective</i>	Find specific elements $x, y \in A$ such that $x \neq y$ and $f(x) = f(y)$
To show that f is surjective	Consider an arbitrary element $y \in B$ and find an element $x \in A$ such that $f(x) = y$
To show that <i>f</i> is not <i>surjective</i>	Find a specific element $y \in B$ such that $f(x) \neq y$ for all $x \in A$

Note

Prove that "for a function $f: A \rightarrow B$ with |A| = |B| = n, f is one-to-one if and only if f is onto."

Note

■ Prove that "for a function $f: A \rightarrow B$ with |A| = |B| = n, f is one-to-one if and only if f is onto."

Proof.

 \diamond only if part: Suppose that f is one-to-one. Let $\{x_1, x_2, \ldots, x_n\}$ be elements of A. Then $f(x_i) \neq f(x_j)$ for $i \neq j$. Therefore, $|f(A)| = |\{f(x_1), \ldots, f(x_n)\}| = n$. But |B| = n and $f(A) \subseteq B$. Therefore, f(A) = B.

 \diamond if part: Suppose that f is onto. Let $A = \{x_1, x_2, \ldots, x_n\}$ be a listing of the elements of A. Suppose that $f(x_i) = f(x_j)$ for some $i \neq j$. Then, $|\{f(x_1), \ldots, f(x_n)\}| \leq n - 1$. But |f(A)| = |B| = n, a contradiction.

Bijective Function

• "For a function f from A to itself, f is one-to-one if and only if f is onto, where A is infinite." Is this true?

Bijective Function

• "For a function f from A to itself, f is one-to-one if and only if f is onto, where A is infinite." Is this true?

Counterexample:

$$f: \mathbf{Z} \to \mathbf{Z}$$
, where $f(x) = 2x$.

f is one-to-one but not onto

$$-1 \mapsto 2$$

$$-2 \mapsto 4$$

$$-3 \mapsto 6$$

3 has no preimage.

Two Functions on Real Numbers

■ Let f_1 and f_2 be functions from A to \mathbf{R} . Then $f_1 + f_2$ and $f_1 f_2$ are also functions form A to \mathbf{R} defined for all $x \in A$ by

$$(f_1 + f_2)(x) = f_1(x) + f_2(x)$$

 $(f_1 f_2)(x) = f_1(x) f_2(x)$

Two Functions on Real Numbers

■ Let f_1 and f_2 be functions from A to \mathbf{R} . Then $f_1 + f_2$ and $f_1 f_2$ are also functions form A to \mathbf{R} defined for all $x \in A$ by

$$(f_1 + f_2)(x) = f_1(x) + f_2(x)$$

 $(f_1 f_2)(x) = f_1(x) f_2(x)$

Example:

$$f_1 = x - 1$$
 and $f_2 = x^3 + 1$

Then

$$(f_1 + f_2)(x) = x^3 + x$$

 $(f_1 f_2)(x) = x^4 - x^3 + x - 1$

Let $f: A \rightarrow B$ be a bijection. The *inverse of f* is the function that assigns to an element b belonging to B the unique element a in A such that f(a) = b, denoted by f^{-1} . Hence, $f^{-1}(b) = a$ when f(a) = b. In this case, f is called *invertible*.

■ Note: if *f* is not a bijection, it is impossible to define the inverse function of *f*. Why?

■ Note: if *f* is not a bijection, it is impossible to define the inverse function of *f*. Why?

Assume *f* is not injective:

■ Note: if f is not a bijection, it is impossible to define the inverse function of f. Why?

Assume *f* is not injective:

The inverse is not a function: one element of B is mapped to two different elements of A

■ Note: if *f* is not a bijection, it is impossible to define the inverse function of *f*. Why?

Assume *f* is not surjective:

Note: if f is not a bijection, it is impossible to define the inverse function of f. Why?

Assume *f* is not surjective:

The inverse is not a function: one element of B is not assigned an element of A

Example 1:

 $f: \mathbb{R} \to \mathbb{R}$, where f(x) = 2x - 1.

What is the inverse function f^{-1} ?

Example 1:

 $f: \mathbb{R} \to \mathbb{R}$, where f(x) = 2x - 1.

What is the inverse function f^{-1} ?

$$f^{-1}(x) = (x+1)/2$$

Example 1:

 $f: \mathbb{R} \to \mathbb{R}$, where f(x) = 2x - 1.

What is the inverse function f^{-1} ?

$$f^{-1}(x) = (x+1)/2$$

Example 2:

 $f: \mathbb{Z} \to \mathbb{Z}$, where f(x) = 2x - 1.

Is f invertible?

No, since f is not onto.

Let f be a function from B to C and let g be a function from A to B. The composition of the functions f and g, denoted by $f \circ g$, is defined by $(f \circ g)(x) = f(g(x))$.

Let f be a function from B to C and let g be a function from A to B. The composition of the functions f and g, denoted by $f \circ g$, is defined by $(f \circ g)(x) = f(g(x))$.

Example 1:

```
Let A = \{1, 2, 3\} and B = \{a, b, c, d\}.

g: A \to A f: A \to B

1 \mapsto 3 1 \mapsto b

2 \mapsto 1 2 \mapsto a

3 \mapsto 2 3 \mapsto d

What is f \circ g?
```


Example 1:

```
Let A = \{1, 2, 3\} and B = \{a, b, c, d\}.

g: A \to A f: A \to B

1 \mapsto 3 1 \mapsto b

2 \mapsto 1 2 \mapsto a

3 \mapsto 2 3 \mapsto d
```

What is $f \circ g$?

$$f \circ g : A \rightarrow B$$

 $1 \mapsto d$
 $2 \mapsto b$
 $3 \mapsto a$

Example 2:

```
Let f : \mathbb{Z} \to \mathbb{Z} and g : \mathbb{Z} \to \mathbb{Z}, where f(x) = 2x and g(x) = x^2.
```

What are $g \circ f$ and $f \circ g$?

Example 2:

Let $f : \mathbb{Z} \to \mathbb{Z}$ and $g : \mathbb{Z} \to \mathbb{Z}$, where f(x) = 2x and $g(x) = x^2$.

What are $g \circ f$ and $f \circ g$?

$$g \circ f : \mathbf{Z} \to \mathbf{Z}$$
 $g \circ f = 4x^2$

$$f \circ g : \mathbf{Z} \to \mathbf{Z}$$
 $f \circ g = 2x^2$

Example 2:

Let $f : \mathbb{Z} \to \mathbb{Z}$ and $g : \mathbb{Z} \to \mathbb{Z}$, where f(x) = 2x and $g(x) = x^2$.

What are $g \circ f$ and $f \circ g$?

$$g \circ f : \mathbf{Z} \to \mathbf{Z}$$
 $g \circ f = 4x^2$

$$f \circ g : \mathbf{Z} \to \mathbf{Z}$$
 $f \circ g = 2x^2$

Note: In general, the order of composition matters.

■ Suppose that f is a bijection from A to B. Then $f \circ f^{-1} = I_B$ and $f^{-1} \circ f = I_A$, Since

$$(f^{-1} \circ f)(a) = f^{-1}(f(a)) = f^{-1}(b) = a$$

 $(f \circ f^{-1})(b) = f(f^{-1}(b)) = f(a) = b,$

where I_A , I_B denote the *identity functions* on the sets A and B, respectively.

- The *floor function* assigns a real number x the largest integer that is $\leq x$, denoted by $\lfloor x \rfloor$.
- The *ceiling function* assigns a real number x the smallest integer that is $\ge x$, denoted by $\lceil x \rceil$.

- The *floor function* assigns a real number x the largest integer that is $\leq x$, denoted by $\lfloor x \rfloor$.
- The *ceiling function* assigns a real number x the smallest integer that is $\ge x$, denoted by $\lceil x \rceil$.

TABLE 1 Useful Properties of the Floor and Ceiling Functions.

(n is an integer, x is a real number)

- (1a) $\lfloor x \rfloor = n$ if and only if $n \le x < n + 1$
- (1b) $\lceil x \rceil = n$ if and only if $n 1 < x \le n$
- (1c) $\lfloor x \rfloor = n$ if and only if $x 1 < n \le x$
- (1d) $\lceil x \rceil = n$ if and only if $x \le n < x + 1$

(2)
$$x - 1 < \lfloor x \rfloor \le x \le \lceil x \rceil < x + 1$$

- (3a) $\lfloor -x \rfloor = -\lceil x \rceil$
- (3b) $\lceil -x \rceil = -\lfloor x \rfloor$
- $(4a) \quad \lfloor x + n \rfloor = \lfloor x \rfloor + n$
- $(4b) \quad \lceil x + n \rceil = \lceil x \rceil + n$

Ex. 1: Prove or disprove that if x is a real number, then $\lfloor 2x \rfloor = \lfloor x \rfloor + \lfloor x + \frac{1}{2} \rfloor$.

Ex. 2: Prove or disprove that $\lceil x + y \rceil = \lceil x \rceil + \lceil y \rceil$ for all real numbers x and y.

Ex. 1: Prove or disprove that if x is a real number, then $\lfloor 2x \rfloor = \lfloor x \rfloor + \lfloor x + \frac{1}{2} \rfloor$.

Ex. 2: Prove or disprove that $\lceil x + y \rceil = \lceil x \rceil + \lceil y \rceil$ for all real numbers x and y.

■ The factorial function $f: \mathbb{N} \to \mathbb{Z}^+$ is the product of the first n positive integers when n is a nonnegative integer, denoted by f(n) = n!.

Next Lecture

functions, complexity ...

