EM algorithm for GMMs: gmm_estimate.m

Synopsis of the algorithm:

- Start from M initial Gaussian models $\mathcal{N}(\mu_k, \Sigma_k)$, $k = 1 \cdots M$, with equal priors set to $P(q_k | \Theta) = 1/M$.
- Do:
 - 1. **Estimation step**: compute the probability $P(q_k|x_n,\Theta)$ for each data point x_n to belong to the mixture q_k :

$$P(q_k|x_n, \Theta) = \frac{P(q_k|\Theta) \cdot p(x_n|q_k, \Theta)}{p(x_n|\Theta)}$$

$$= \frac{P(q_k|\Theta) \cdot p(x_n|\mu_k, \Sigma_k)}{\sum_j P(q_j|\Theta) \cdot p(x_n|\mu_j, \Sigma_j)}$$
(1)

In the algorithm:

$$c(k) = P(q_k|\Theta),$$

 $lBM(n,k) = log p(x_n|q_k,\Theta),$

$$1B(k) = \log p(x_n|\Theta),$$

 $gam_m(n,k) = P(q_k|x_n,\Theta).$

- 2. Maximization step:
 - update the means:

$$\mu_k^{(new)} = \frac{\sum_{n=1}^T x_n P(q_k | x_n, \Theta)}{\sum_{n=1}^T P(q_k | x_n, \Theta)}$$
(2)

- update the variances:

$$\Sigma_k^{(new)} = \frac{\sum_{n=1}^T P(q_k | x_n, \Theta) (x_n - \mu_k^{(new)}) (x_n - \mu_k^{(new)})^{\mathsf{T}}}{\sum_{n=1}^T P(q_k | x_n, \Theta)}$$
(3)

- update the weigths:

$$P(q_k^{(new)}|\Theta^{(new)}) = \frac{1}{T} \sum_{n=1}^{T} P(q_k|x_n, \Theta)$$
(4)

In the algorithm:

$$\begin{split} \text{new_mu(:,k)} &= \mu_k^{(new)}, \\ \text{new_sigm(:,k)} &= \Sigma_k^{(new)}, \\ \text{new_c(k)} &= P(q_k^{(new)} | \Theta^{(new)}). \end{split}$$

3. Go to 1.(*)

* Until: the total likelihood increase for the training data falls under some desired threshold.

1