MATEMÁTICA APLICADA

ADMINISTRAÇÃO, ECONOMIA E CIÊNCIAS SOCIAIS E BIOLÓGICAS

7ª edição

Harshbarger • Reynolds

H324m Harshbarger, Ronald J.

Matemática aplicada [recurso eletrônico] : administração, economia e ciências sociais e biológicas / Ronald J. Harshbarger, James J. Reynolds ; tradução: Ariovaldo Griesi, Oscar Kenjiro N. Asakura; revisão técnica: Helena Maria de Ávila Castro, Afrânio Carlos Murolo. – 7. ed. – Dados eletrônicos. – Porto Alegre : AMGH, 2013.

Editado também como livro impresso em 2006. ISBN 978-85-8055-273-7

1. Matemática aplicada. 2. Administração. 3. Economia. 4. Ciências Sociais. 5. Ciências Biológicas. I. Reynolds, James J. II. Título.

CDU 51-7

- 51. **Modelagem** *Estudantes por computador* A tabela a seguir mostra o número médio de estudantes por computador nas escolas públicas para os anos do calendário escolar que terminaram entre 1985 e 2000.
 - (a) Encontre um modelo exponencial para estes dados. Considere *x* como o número de anos após 1980.
 - (b) Este modelo é uma função de crescimento ou decaimento exponencial? Explique como você sabe.
 - (c) Quantos estudantes por computador nas escolas públicas este modelo prevê para 2010?

Ano	Estudantes por Computador	Ano	Estudantes por Computador
1985	75	1993	16
1986	50	1994	14
1987	37	1995	10,5
1988	32	1996	10
1989	25	1997	7,8
1990	22	1998	6,1
1991	20	1999	5,7
1992	18	2000	5,4

Fonte: Quality Education Data, Inc., Denver, Colorado

5.2 Funções Logarítmicas e Suas Propriedades

OBJETIVOS

- Converter equações para funções logarítmicas da forma logarítmica para a exponencial, e vice e versa.
- Calcular alguns logaritmos especiais.
- Traçar gráficos das funções logarítmicas.
- Usar as propriedades das funções logarítmicas para simplificar expressões envolvendo logaritmos.
- Usar a fórmula de mudança de base.
- Modelar com funções logarítmicas.

PRÉ-APLICAÇÃO

Se *P* dólares forem investidos a uma taxa de juros anual *r*, compostos continuamente, então o valor futuro do investimento após *t* anos é dado por

$$S = Pe^{rt}$$

Uma questão comum com investimentos como esse é: "Quanto tempo demora para o investimento duplicar?". Isto é, quando S = 2P? Para responder a esta questão e, conseqüentemente, desenvolver a fórmula do "tempo de duplicação", será preciso resolver a equação em t e para isso é necessário o uso das **funções logarítmicas**.

Funções Logarítmicas e Gráficos

Antes do desenvolvimento e da grande disponibilidade das calculadoras e computadores, certos cálculos aritméticos, tais como $(1,37)^{13}$ e ${}^{16}\sqrt{3,09}$, eram difíceis de fazer. Os cálculos poderiam ser feitos com relativa facilidade usando os **logaritmos**, desenvolvidos no século XVII por John Napier, usando uma régua de cálculo, que, por sua vez, se baseia nos logaritmos. Atualmente, o uso dos logaritmos como uma técnica de cálculo praticamente desapareceu, mas o estudo das **funções logarítmicas** ainda é muito importante, em razão das muitas aplicações existentes dessas funções.

Por exemplo, consideremos novamente a cultura de bactérias descritas no início da seção anterior. Se soubermos que a cultura foi iniciada com um organismo e que a cada minuto todos os microorganismos presentes se dividem em dois novos, então poderemos encontrar o número de minutos que demora até que eles sejam 1.024 organismos resolvendo

$$1.024 = 2^{y}$$

A solução dessa equação pode ser escrita na forma

$$y = \log_2 1.024$$

que se lê "y é igual ao logaritmo de 1.024 na base 2".

Em geral, podemos expressar a equação $x = a^y$ (a > 0, $a \ne 1$) na forma y = f(x) definindo uma **função logarítmica**.

Função Logarítmica

Para
$$a > 0$$
 e $a \ne 1$, a função logarítmica

$$y = \log x$$
 (forma logarítmica)

tem domínio x > 0, base a e é definida por

$$a^y = x$$
 (forma exponencial)

TABELA 5.3

Forma	Forma	
Logarítmica	Exponencial	
$\log_{10} 100 = 2$	$10^2 = 100$	
\log_{10}^{10} 0,1 = -1	$10^{-1} = 0.1$	
$\log_2 x = y$	$2^{y} = x$	
$\log_a 1 = 0 \ (a > 0)$	$a^0 = 1$	
$\log_a^a a = 1 \ (a > 0)$	$a^1 = a$	

Conforme a definição, sabemos que $y = \log_a x$ significa $x = a^y$. Isso significa que $\log_3 81 = 4$ porque $3^4 = 81$. Nesse caso, o logaritmo, 4, era o expoente ao qual temos que elevar a base 3 para obter 81. Em geral, se $y = \log x$, então y é o expoente ao qual a base a deve ser elevada para obtermos x.

O número a é chamado de **base** em ambos $\log_a x = y$ e $a^y = x$, e y é o *logaritmo* em $\log_a x = y$ e o *expoente* em $a^y = x$. Desse modo, podemos afirmar que **o logaritmo** é um expoente.

A Tabela 5.3 mostra algumas equações logarítmicas e suas formas exponenciais equivalentes.

EXEMPLO 1 Formas Logarítmicas e Exponenciais

- (a) Escreva $64 = 4^3$ na forma logarítmica.
- (b) Escreva $\log_4 \left(\frac{1}{64}\right) = -3$ na forma exponencial.
- (c) Se $4 = \log_2 x$, encontre x.

SOLUÇÃO

- (a) $64 = 4^3$ é equivalente a $3 = \log_4 64$.
- (b) $\log_4(\frac{1}{64}) = -3$ é equivalente a $4^{-3} = \frac{1}{64}$.
- (c) Se $4 = \log_{3} x$, então $2^{4} = x$ e x = 16.

EXEMPLO 2 Calculando Logaritmos

Calcule:

- (a) log, 8
- (b) $\log_{3} 9$
- (c) $\log_5(\frac{1}{25})$

SOLUÇÃO

- (a) Se $y = \log_2 8$, então $8 = 2^y$. Como $2^3 = 8$ temos $\log_2 8 = 3$.
- (b) Se $y = \log_3 9$, então $9 = 3^y$. Como $3^2 = 9$ temos $\log_3 9 = 2$.
- (c) Se $y = \log_5(\frac{1}{25})$, então $\frac{1}{25} = 5^y$. Como $5^{-2} = \frac{1}{25}$, temos $\log_5(\frac{1}{25}) = -2$.

Gráficos

EXEMPLO 3 Traçando o Gráfico de uma Função Logarítmica

Trace o gráfico de $y = \log_{10} x$.

SOLUÇÃO

Podemos traçar o gráfico de $y = \log_2 x$ estudando o gráfico de $x = 2^y$. A tabela de valores (encontrados substituindo valores para y e calculando x) e o gráfico são mostrados na Figura 5.12

	I
$x=2^y$	y
1 0	-3
1/4	-2
$ \begin{array}{c} \frac{1}{8} \\ \frac{1}{4} \\ \frac{1}{2} \\ 1 \\ 2 \\ 4 \\ 8 \end{array} $	-1
1	0
2	1
4	2 3
8	3

Figura 5.12

Da definição de logaritmos, vemos que todo logaritmo tem uma base. A maioria das aplicações de logaritmos envolve logaritmo na base 10 (chamado de **logaritmo comum**) ou logaritmo na base e (chamado de **logaritmo natural**). De fato, os logaritmos na base e são os únicos que têm teclas de função nas calculadoras científicas. Assim, é importante familiarizar-se com seus nomes e notações.

Logaritmos Comuns e Naturais

Logaritmos comuns:	$\log x$	significa	$\log_{10} x$.
Logaritmos naturais:	ln x	significa	$\log_e x$.

Os valores das funções logarítmicas comum e natural são usualmente encontrados com uma calculadora. Por exemplo, uma calculadora fornece log $2\approx 0,\!301$ e ln $2\approx 0,\!693$. Retornaremos agora à Pré-Aplicação.

EXEMPLO 4 Tempo de Duplicação para um Investimento

Na Pré-Aplicação observamos que o tempo de duplicação para um investimento capitalizado continuamente pode ser encontrado resolvendo a equação $S = Pe^{rt}$ em t, quando S = 2P. Isto é, devemos resolver $2P = Pe^{rt}$, ou (equivalentemente) $2 = e^{rt}$.

- (a) Expresse $2 = e^{rt}$ na forma logarítmica e então resolva esta equação, determinando t, para encontrar a fórmula do tempo de duplicação.
- (b) Se um investimento rende 10% de juros anuais, compostos continuamente, em quanto tempo ele duplicará?

SOLUÇÃO

(a) Na forma logarítmica, $2 = e^{rt}$ é equivalente a $\log_e 2 = rt$. Resolvendo, temos a fórmula para o tempo de duplicação

$$t = \frac{\log_e 2}{r} = \frac{\ln 2}{r}$$

(b) Se a taxa de juros é r = 10%, capitalizada continuamente, o tempo necessário para que o investimento dobre é

$$t = \frac{\ln 2}{0.10} \approx 6,93 \text{ anos}$$

Observe que poderíamos escrever o tempo de duplicação para este problema como

$$t = \frac{\ln 2}{0.10} \approx \frac{0,693}{0.10} = \frac{69,3}{10}$$

Em geral, podemos aproximar o tempo de duplicação para um investimento a r%, compostos continuamente, por $\frac{70}{r}$. (Em economia, isto é chamado de Regra do 70.)

EXEMPLO 5 Participação no Mercado

Suponha que, depois que uma companhia introduziu um novo produto, o número de meses m que leva até que sua participação no mercado seja s por cento, pode ser modelado por

$$m = 20 \ln \left(\frac{40}{40 - s} \right)$$

Quando este produto terá uma participação de 35% no mercado?

SOLUÇÃO

Uma participação de 35% no mercado significa s = 35. Consequentemente,

$$m = 20 \ln \left(\frac{40}{40 - s} \right)$$
$$= 20 \ln \left(\frac{40}{40 - 35} \right) = 20 \ln \left(\frac{40}{5} \right) = 20 \ln (8) \approx 41,6$$

Assim, a participação no mercado será 35% após 41,6 meses, aproximadamente.

EXEMPLO 6 Logaritmo Natural

Trace o gráfico de y = In x.

SOLUÇÃO

Podemos traçar o gráfico $y = \ln x$ calculando $y = \ln x$ para x > 0 (incluindo alguns valores no intervalo 0 < x < 1) com uma calculadora. O gráfico é mostrado na Figura 5.13

х	$y = \ln x$
0,05	-3,000
0,10	-2,303
0,50	-0,693
1	0,000
2	0,693
3	1,099
5	1,609
10	2,303

Figura 5.13

Encerra aqui o trecho do livro disponibilizado para esta Unidade de Aprendizagem. Na Biblioteca Virtual da Instituição, você encontra a obra na íntegra.