实验 利用单臂路由实现 VLAN 间路由

【实验名称】

利用单臂路由实现 VLAN 间路由。

【实验目的】

掌握如何路由器端口上划分子接口、封装 Dot1Q(IEEE 802.1Q)协议,实现 VLAN 间的路由。

【背景描述】

假设某企业有两个主要部门:销售部和技术部,员工都连接在1台二层交换机上,网络内有1台路由器用于连接Internet。现在发现网络内的广播流量较多,需要对广播进行限制但不能影响2个部门进行相互通信,要在路由器上做适当配置来实现这一目标。

【需求分析】

需要在交换机上配置 VLAN,然后在路由器连接交换机的端口上划分子接口,给相应的 VLAN 设置 IP 地址,以实现 VLAN 间的路由。

【实验拓扑】

图 3-5 实验拓扑图

【实验设备】

路由器 1台 二层交换机 1台

【预备知识】

交换机的基本配置方法, VLAN 的工作原理和配置方法, Trunk 的工作原理和配置方法, 单臂路由的工作原理和配置方法

【实验原理】

在交换网络中,通过 VLAN 对一个物理网络进行了逻辑划分,不同的 VLAN 之间是无法直接访问的,必须通过三层的路由设备进行连接。一般利用路由器或三层交换机来实现不同 VLAN 之间的互相访问。

将路由器和交换机相连,使用 IEEE 802.1Q 来启动一个路由器上的子接口成为干道模

式,就可以利用路由器来实现 VLAN 之间的通信。

路由器可以从某一个 VLAN 接收数据包并且将这个数据包转发到另外的一个 VLAN,要实施 VLAN 间的路由,必须在一个路由器的物理接口上启用子接口,也就是将以太网物理接口划分为多个逻辑的、可编址的接口,并配置成干道模式,每个 VLAN 对应一个这种接口,这样路由器就能够知道如何到达这些互联的 VLAN。

【实验步骤】

第一步: 配置交换机的主机名、划分 VLAN 和添加端口、设置 Trunk

Switch#configure terminal

Switch(config)#hostname L2-SW

- L2-SW(config)#vlan 10
- L2-SW(config-vlan)#name xiaoshou
- L2-SW(config-vlan)#vlan 20
- L2-SW(config-vlan)#name jishu
- L2-SW(config-vlan)#exit
- L2-SW(config)#interface range fastEthernet 0/6-10
- L2-SW(config-if-range)#switchport mode access
- L2-SW(config-if-range)#switchport access VLAN 10
- L2-SW(config-if-range)#exit
- L2-SW(config)#interface range fastEthernet 0/11-15
- L2-SW(config-if-range)#switchport mode access
- L2-SW(config-if-range)#switchport access vlan 20
- L2-SW(config-if-range)#exit
- L2-SW(config)#interface fastEthernet 0/1
- L2-SW(config-if)#switchport mode trunk
- L2-SW(config-if)#end

第二步: 在路由器上设置名称、划分子接口、配置 IP 地址

RSR20#configure terminal

RSR20(config)#hostname Router

Router(config)#interface fastEthernet 0/0

Router(config-if)#no ip address

! 去掉路由器主接口上的 IP 地址

Router(config-if)#no shutdown

Router(config-if)#exit

Router(config)#interface fastEthernet 0/0.10

! 进入子接口 Fa0/0.10

Router(config-subif)#encapsulation dot1Q 10

! 指定子接口 Fa0/0.10 对应 VLAN 10,并配置干道模式

Router(config-subif)#ip address 192.168.10.1 255.255.255.0

! 配置子接口 Fa0/0.10 的 IP 地址

Router(config-subif)#exit

Router(config)#interface fastEthernet 0/0.20

! 进入子接口 Fa0/0.20

Router(config-subif)#encapsulation dot1Q 20

!指定子接口 Fa0/0.20 对应 VLAN 20,并配置干道模式

Router(config-subif)#ip address 192.168.20.1 255.255.255.0

! 配置子接口 Fa0/0.20 的 IP 地址

Router(config-subif)#end

第三步: 查看交换机的 VLAN 和 Trunk 配置

L2-SW#show vlan

1 default active Fa0/1 ,Fa0/2 ,Fa0/3	}
Fa0/4 ,Fa0/5 ,Fa0/2 ,Fa0/17,Fa0/18,Fa0/20,Fa0/21,Fa0/24)/16 a0/19
10 xiaoshou active Fa0/1 ,Fa0/6 ,Fa0	7
Fa0/8 ,Fa0/9 ,Fa0)/10
20 jishu active Fa0/1 ,Fa0/11,Fa0/	12
Fa0/13,Fa0/14,Fa	10/15
L2-SW#	
L2-SW#show interfaces fastEthernet 0/1 switchport	
Interface Switchport Mode Access Native Protected VLAN I	sts

第四步: 查看路由器的路由表

Fa0/1

Router#show ip route

Codes: C - connected, S - static, R - RIP B - BGP

Enabled Trunk 1 1

O - OSPF, IA - OSPF inter area

N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2

Disabled All

E1 - OSPF external type 1, E2 - OSPF external type 2

i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area

* - candidate default

Gateway of last resort is no set

- C 192.168.10.0/24 is directly connected, FastEthernet 0/0.10
- C 192.168.10.1/32 is local host.
- C 192.168.20.0/24 is directly connected, FastEthernet 0/0.20
- C 192.168.20.1/32 is local host.

第五步:测试网络连通性

给 PC1 和 PC2 分别配置 192.168.10.0/24 和 192.168.20.0/24 网段内的 IP 地址,并分

别以 192.168.10.1 和 192.168.20.1 作为网关,例如 PC2 的 IP 地址配置为:

```
C:\VINDOVS\system32\cmd.exe
                                                                       _ D X
C: Vipconfig
Windows IP Configuration
Ethernet adapter UMware Network Adapter UMnet8:
       Connection-specific DNS Suffix .:
       IP Address. . . . . . . . . . : 192.168.145.1
       Subnet Mask . . . . . . . . . : 255.255.255.0
       Default Gateway . . . . . . . :
Ethernet adapter UMware Network Adapter UMnet1:
       Connection-specific DNS Suffix .:
       IP Address. . . . . . . . . . : 192.168.126.1
       Subnet Mask . . . . . . . . : 255.255.255.0
       Default Gateway . . . . . . . :
Ethernet adapter 本地连接:
       Connection-specific DNS Suffix .:
       IP Address. . . . . . . . . . : 192.168.20.98
       Subnet Mask . . . . . . . . . : 255.255.255.0
       Default Gateway . . . . . . . : 192.168.20.1
C: V
```

图 3-6 PC2 的 IP 地址配置

从 PC2 上 ping 所属 VLAN 的网关、VLAN 10 的网关和 PC1 的结果如下,说明配置单臂路由后,网络已经全部实现互联互通。

```
C:\VINDOVS\system32\cmd.exe

C:\>
C:\>
ping 192.168.20.1

Pinging 192.168.20.1 with 32 bytes of data:

Reply from 192.168.20.1: bytes=32 time<1ms TIL=64

Ping statistics for 192.168.20.1:

Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),

Approximate round trip times in milli-seconds:

Minimum = Oms, Maximum = Oms, Average = Oms
```

图 3-7 从 PC2 ping VLAN 20 的网关

```
C:\VINDOVS\system32\cmd.exe

C:\Vping 192.168.10.1

Pinging 192.168.10.1 with 32 bytes of data:

Reply from 192.168.10.1: bytes=32 time<1ms TTL=64
Ping statistics for 192.168.10.1:

Packets: Sent = 4, Received = 4, Lost = 0 (0x loss),
Approximate round trip times in milli-seconds:
Minimum = 0ms, Maximum = 0ms, Average = 0ms
```

图 3-8 从 PC2 ping VLAN 10 的网关

```
C:\VINDOVS\system32\cmd.exe

C:\ping 192.168.10.10

Pinging 192.168.10.10 with 32 bytes of data:

Reply from 192.168.10.10: bytes=32 time=1ms ITL=127

Reply from 192.168.10.10: bytes=32 time<1ms ITL=127

Reply from 192.168.10.10: bytes=32 time<1ms ITL=127

Reply from 192.168.10.10: bytes=32 time<1ms ITL=127

Ping statistics for 192.168.10.10:

Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),

Approximate round trip times in milli-seconds:

Minimum = 0ms, Maximum = 1ms, Average = 0ms
```

图 3-9 从 PC2 ping PC1

【注意事项】

- 1、在给路由器的子接口配置 IP 地址之前,一定要先封装 dot1q 协议。
- 2、各个 VLAN 内的主机,要以相应 VLAN 子接口的 IP 地址作为网关。

【参考配置】

Router#show running-config

```
Building configuration...

Current configuration: 586 bytes!

version RGNOS 10.1.00(4), Release(18443)(Tue Jul 17 20:50:30 CST 2007 -ubu1server)
hostname Router!
!
interface FastEthernet 0/0
duplex auto
```

```
speed auto
interface FastEthernet 0/0.10
 encapsulation dot1Q 10
 ip address 192.168.10.1 255.255.255.0
interface FastEthernet 0/0.20
 encapsulation dot1Q 20
 ip address 192.168.20.1 255.255.255.0
interface FastEthernet 0/1
 duplex auto
 speed auto
line con 0
line aux 0
line vty 04
 login
!
end
L2-SW#show running-config
Building configuration...
```

System software version: 1.68 Build Apr 25 2007 Release

```
Current configuration: 757 bytes
!
version 1.0
hostname L2-SW
vlan 1
vlan 10
 name xiaoshou
!
vlan 20
 name jishu
interface fastEthernet 0/1
```

```
switchport mode trunk
interface fastEthernet 0/6
 switchport access vlan 10
interface fastEthernet 0/7
 switchport access vlan 10
interface fastEthernet 0/8
 switchport access vlan 10
interface fastEthernet 0/9
 switchport access vlan 10
interface fastEthernet 0/10
 switchport access vlan 10
interface fastEthernet 0/11
 switchport access vlan 20
interface fastEthernet 0/12
 switchport access vlan 20
!
interface fastEthernet 0/13
 switchport access vlan 20
interface fastEthernet 0/14
 switchport access vlan 20
interface fastEthernet 0/15
 switchport access vlan 20
!
end
```