Gating Mechanisms for Combining Character and Word-level Word Representations: An Empirical Study

Jorge A. Balazs, Yutaka Matsuo

The University of Tokyo, Graduate School of Engineering, Japan

{jorge, matsuo}@weblab.t.u-tokyo.ac.jp

Incorporating subword information into word representations has been shown to be beneficial, however there is no principled way for doing so.

Questions

- How does the method for combining character and word representations affect the quality of final word representations?
- What is effect these have in downstream performance?

Summary

- A vector gate is the best at combining character and word representations, as measured by word similarity tasks.
- This mechanism learns that to properly model increasingly infrequent words, it has to increasingly rely on character-level information.
- Despite the increased expressivity of word representations it offers, it has no clear effect in sentence representations, as measured by sentence evaluation tasks.

Model Description

- We initialize word-level word representations $|v_i^{(w)}|$ with GloVe, and create character-level word representations $v_i^{(c)}$ with a BiLSTM over randomly-initialized character representations.
- We test 5 different ways of combining $[v_i^{(w)}]$ and $[v_i^{(c)}]$ into the final word representations v_i :
- ullet word-only: $oldsymbol{v}_i = egin{bmatrix} oldsymbol{v}_i^{(w)} \end{bmatrix}$
- ullet char-only: $oldsymbol{v}_i = oldsymbol{v}_i^{(c)}$
- ullet concat: $oldsymbol{v}_i = \left[egin{array}{c} oldsymbol{v}_i^{(w)} \ \vdots \end{array}; oldsymbol{v}_i^{(c)}
 ight]$
- scalar gate: $g_i = \sigma(oldsymbol{w}^{ op}[oldsymbol{v}_i^{(w)}]\!\!+\!\!b)$
 - $\mathbf{v}_i = g_i \mathbf{v}_i^{(c)} + (1 g_i) \mathbf{v}_i^{(w)}$
- •vector gate:
- $oldsymbol{g}_i = \sigma(oldsymbol{W}ig[oldsymbol{v}_i^{(w)}ig]\!\!+\!oldsymbol{b})$
- $oldsymbol{v}_i = oldsymbol{g}_i \odot oldsymbol{v}_i^{(c)} + (oldsymbol{1} oldsymbol{g}_i) \odot oldsymbol{v}_i^{(w)}$
- We feed the final word representations v_i to a BiLSTM, and max-

pool its output to obtain a sentence representation.

- Models are trained in the SNLI and MultiNLI (MNLI) datasets. The combined representation of the premise-hypothesis pair is defined as $s = [s_p; s_h; |s_p - s_h|; s_p \odot s_h]$, where s_p is the sentence representation of the premise and s_h that of the hypothesis.
- s is finally mapped to label space through a fully-connected network.

Gating Mechanisms

Gating Values

Word-level Results

		MEN	MTurk287	MTurk771	RG65	RW	SimLex999	SimVerb3500	WS353	WS353R	WS353S
SNLI	W	71.78	35.40	49.05	61.80	18.43	19.17	10.32	39.27	28.01	53.42
	С	9.85	-5.65	0.82	-5.28	17.81	0.86	2.76	-2.20	0.20	-3.87
	cat	71.91	35.52	48.84	62.12	18.46	19.10	10.21	39.35	28.16	53.40
	sg	70.49	34.49	46.15	59.75	18.24	17.20	8.73	35.86	23.48	50.83
	vg	<u>80.00</u>	32.54	62.09	68.90	20.76	37.70	20.45	54.72	47.24	65.60
MNLI	W	68.76	50.15	68.81	65.83	18.43	42.21	25.18	61.10	58.21	70.17
	С	4.84	0.06	1.95	-0.06	12.18	3.01	1.52	-4.68	-3.63	-3.65
	cat	68.77	50.40	68.77	65.92	18.35	42.22	25.12	61.15	58.26	70.21
	sg	67.66	49.58	68.29	64.84	18.36	41.81	24.57	60.13	57.09	69.41
	vg	76.69	<u>56.06</u>	<u>70.13</u>	<u>69.00</u>	<u>25.35</u>	<u>48.40</u>	<u>35.12</u>	<u>68.91</u>	<u>64.70</u>	<u>77.23</u>

Sentence-level Results

		Classification							Entailment	Relatedness	Semantic Textual Similarity	
		CR	MPQA	MR	SST2	SST5	SUBJ	TREC	SICKE	SICKR [†]	STS16 [†]	\mathbf{STSB}^{\dagger}
SNLI	W	80.50	84.59	74.18	78.86	42.33	90.38	86.83	86.37	88.52	59.90*	71.29*
	С	74.90^{*}	78.86^{*}	65.93*	69.42*	35.56*	82.97*	83.31*	84.13*	83.89*	59.33*	67.20^{*}
	cat	80.44	84.66	74.31	78.37	41.34*	90.28	85.80*	<u>86.40</u>	88.44	59.90*	71.24*
	sg	80.59	84.60	74.49	79.04	41.63*	90.16	86.00	86.10*	88.57	60.05^{*}	71.34*
	vg	80.42	84.66	74.26	78.87	42.38	90.07	85.97	85.67	88.31*	60.92	71.99
MNLI	W	83.80	89.13	79.05	83.38	45.21	91.79	89.23	84.92	86.33	66.08	71.96*
	С	70.23*	72.19*	62.83*	64.55*	32.47*	79.49*	74.74*	81.53*	75.92*	51.47*	61.74*
	cat	<u>83.96</u>	89.12	<u>79.23</u>	83.70	45.08*	<u>91.92</u>	<u>90.03</u>	85.06	86.45	<u>66.17</u>	71.82^{*}
	sg	83.88	89.06	79.22	83.71	45.26	91.66*	88.83*	84.96	86.40	65.49*	71.87^{*}
	vg	83.45*	89.05	79.13	83.87	<u>45.88</u>	91.55*	89.49	84.82	86.50	65.75	72.82

Correlations Between Sentence and Word-level Tasks

