Solution Set 17

Problem 1

不定项选择题

设 H,K 是群 $< G, \circ >$ 的子群,下面哪些代数系统是 $< G, \circ >$ 的子群?

$$A.< H \cup K, \circ > \qquad B.< H \cap K, \circ > \qquad C.< K - H, \circ > \qquad D.< H -$$

 $K, \circ >$

解:

В

Problem 2, page 204 习题 21

设 G 为群, a 是 G 中给定元素, a 的正规化子 N(a) 表示 G 中与 a 可交换的元素构成的集合,即 $N(a)=\{x|x\in G\land xa=ax\}$. 证明: N(a) 是 G 的子群.

证明: $ea = ae, e \in N(a) \neq \emptyset$,

$$a(xy)=(ax)y=(xa)y=x(ay)=x(ya)=(xy)a$$
, 所以 $xy\in N(a)$

由
$$ax = xa$$
, 得 $x^{-1}axx^{-1} = x^{-1}xax^{-1}$, $x^{-1}ae = eax^{-1}$, 即 $x^{-1}a = ax^{-1}$,

所以 $x^{-1} \in N(a)$ 。根据判定定理,N(a) 是 G 的子群.

或者用下面的论述来证。

$$ea = ae, e \in N(a) \neq \emptyset,$$

 $\forall x, y \in N(a), \mathbb{N}$

$$(xy^{-1})a = x(y^{-1}a) = x(a^{-1}y)^{-1} = x(ya^{-1})^{-1} = x(ay^{-1}) = (xa)y^{-1} = a(xy^{-1})$$

所以 $xy^{-1} \in N(a)$ 。

Problem 3, page 204 习题 22

设 H 是群 G 的子群, $x \in G$, 令 $xHx^{-1} = \{xhx^{-1}|h \in H\}$, 证明 xHx^{-1} 是 G 的子群, 称为 H 的共轭子群.

证明: $e = xex^{-1} \in xHx^{-1}$, 因此 xHx^{-1} 非空。任取 $xh_1x^{-1}, xh_2x^{-1} \in xHx^{-1}$, 有 $h_1h_2^{-1} \in H$. 因此得

$$(xh_1x^{-1})(xh_2x^{-1})^{-1} = xh_1x^{-1}xh_2^{-1}x^{-1} = x(h_1h_2^{-1})x^{-1} \in xHx^{-1}$$

根据判定定理, xHx^{-1} 是 G 的子群.

Problem 4, page 204 习题 24

设 H 和 K 分别为群 G 的 r,s 阶子群,若 r 与 s 互素,证明 $H \cap K = \{e\}$. 易见 $H \cap K$ 是 H 的子群,也是 K 的子群。由 Lagrange 定理,子群的阶是群的阶的因子,因此 $|H \cap K|$ 整除 r,也能整除 s,从而, $|H \cap K|$ 整除 r 与 s 的最大公因子。由已知 r 与 s 互素,这就得到 $|H \cap K| = 1$,即 $H \cap K = \{e\}$.

Problem 5

证明: 若 G 中只有一个 2 阶元,则这个 2 阶元一定与 G 中所有元素可交换。

证明:设 2 阶元为 a,任取 G 中元素 x,易证 xax^{-1} 也是 2 阶元,因为

$$(xax^{-1})(xax^{-1}) = xa^2x^{-1} = xex = e$$

因此 $|xax^{-1}|=2$ 或者 1。如果 $|xax^{-1}|=1$,那么 $xax^{-1}=e$,从而得到 xa=x,根据消去律得 a=e,与 a 是 2 阶元矛盾。由已知,只有 1 个 2 阶元,必有 $a=xax^{-1}$,从而得到 ax=xa。

Problem 6

证明: 在群 G 中, 如果 $g,h \in G$ 满足 gh = hg, 并且 $\gcd(|g|,|h|) = 1$, 那 么 |gh| = |g||h|

(提示: $\Diamond N = |gh||g|$, 使用阶的性质和交换律)

证明:由

$$(gh)^{|g||h|} = g^{|g||h|}h|g||h| = e$$

我们知道 |gh| | |g||h|。由

$$e = (gh)^{|gh||h|} = g^{|gh||h|}h|gh||h| = g|gh||h|$$

我们有 $|g| \mid |gh||h|$,因为 $\gcd(|g|,|h|)=1$,所以 $|g| \mid |gh|$ 。同理有 $|h| \mid |gh|$ 。 所以 $|g||h| \mid |gh|$ 。

得证。

Problem 7

(正规子群与陪集) 设群 G 有子群 H, H 是正规子群当且仅当

$$\forall q \in G, \forall h \in H : qhq^{-1} \in H$$

证明: 若子群 H 为正规子群,则左右陪集相等。即证 $\forall g \in G, gH = Hg$. 证明:

令 g 为 G 中任意一元素。gH = Hg 当且仅当 $\forall a \in G, a \in gH \Leftrightarrow a \in Hg$ 。不失一般性,令 $a \in G$ 且 $a \in gH$,则存在 $h \in H$ 使得 a = gh。因为 H 是正规子群,所以 $ghg^{-1} \in H$,设 $ghg^{-1} = h'$ 。故 a = gh = h'g,所以 $a \in Hg$ 成立。另一个方向同理可得。

Problem 8

证明: 使用阶的概念证明费马小定理。即对素数 p 和任意整数 a, 均有 $a^p \equiv a \pmod{p}$ 。

(提示:考虑集合 $\mathbb{Z}_n^* := \{ [m]_n \in \mathbb{Z}_n | \gcd(m,n) = 1 \}$ 在乘法下构成的群。使用拉格朗日定理的拓展:元素的阶和群的阶之间的关系)

证明:

如果 a 为 p 的倍数,那么立即可得。

否则 $[a]_p$ 不为零,因此是 \mathbb{Z}_p^* 的成员,群 \mathbb{Z}_p^* 的阶为 p-1,故

$$[a]_p^{p-1} = [1]_p$$

也就是

$$[a]_p^p = [a]_p$$

得证。