Modern Regression: Examination 2019

25 June 2019

Instructions: The time allotted for the examination is 180 minutes. You may answer in either English or French. No written material may be brought into the examination, but a simple calculator may be used. Full marks may be obtained with complete answers to four questions. The final mark will be based on the best four solutions.

Notation: $a_+ = \max(a,0)$ for $a \in \mathbb{R}$; $A_{r \times s}$ means that A is an $r \times s$ matrix; $X \sim \mathcal{N}_p(\mu,\Omega)$ means that X has a p-dimensional multivariate normal distribution with mean vector $\mu_{p \times 1}$ and variance matrix $\Omega_{p \times p}$; and $X_{p \times 1} \sim (\mu,\Omega)$ means that $E(X) = \mu_{p \times 1}$ and $V(X) = \Omega_{p \times p}$.

First name:

Last name:

SCIPER number:

Exercise	Points	Indicative marks
1		/10 points
2		/10 points
3		/10 points
4		/10 points
5		/10 points
Total:		/40 points

1. Independent random variables Y_1, \ldots, Y_n have probability density functions

$$f(y_j; \beta) = \frac{1}{\pi \left\{ 1 + \left(y_j - x_j^{\mathrm{T}} \beta \right)^2 \right\}}, \quad y_j \in \mathbb{R}, \quad j = 1, \dots, n,$$

where β is a $p \times 1$ vector of unknown real-valued parameters and x_1, \dots, x_n are $p \times 1$ vectors of explanatory variables.

- (a) Derive an iterative weighted least squares algorithm to obtain the maximum likelihood estimator of β .
- (b) How would you modify your approach if $y_j x_i^T \beta$ was replaced by $(y_j x_i^T \beta)/\sigma$?
- (c) Let $a(u) = d^2 \log(1 + u^2)/du^2$. Show that if the random variable U has probability density function $\{\pi(1 + u^2)\}^{-1}$ for $u \in \mathbb{R}$, then

$$\Pr\{a(U) > 0\} = 1/2,$$

explain what implications this has for your algorithm, and outline how you could overcome them.

- 2. (a) In what senses does a *generalized linear model* extend the range of application of the linear model? Give two examples of generalized linear models.
 - (b) Show that the chi-squared density with known degrees of freedom ν ,

$$\frac{y^{\nu/2-1}}{2^{\nu/2}\sigma^{\nu}\Gamma(\nu/2)} \exp\left(-\frac{y}{2\sigma^2}\right), \quad y > 0, \sigma > 0, \nu = 1, 2, \dots,$$

can be written in generalized linear model form

$$f(y; \theta, \phi) = \exp \left\{ \frac{y\theta - b(\theta)}{\phi} + c(y; \phi) \right\},$$

where θ and ϕ are functions, to be found, of ν and σ^2 . Compute the mean and variance of y.

(c) The yield of an industrial process was measured r_i times independently at m different temperatures t_i . The resulting yields Z_{ij} , $(j = 1, ..., r_i, i = 1, ..., m)$, may be assumed to be independent and normally distributed with both means ζ_i and variances τ_i dependent on t_i . Explain how the sums of squares $Y_i = \sum_{j=1}^{r_i} (Z_{ij} - \bar{Z}_i)^2$, where $\bar{Z}_i = r_i^{-1} \sum_{j=1}^{r_i} Z_{ij}$, may be used to assess the dependence of variance on temperature in a suitable generalized linear model. Briefly discuss the advantages and disadvantages of the canonical link function of your model.

- 3. The output below is from the analysis of data on the presence of calcium oxalate crystals in 77 samples of urine. The binary response r is an indicator of the presence of such crystals, and there are six explanatory variables: specific gravity (grav), i.e., the density of urine relative to water; pH (ph); osmolarity (osmo, mOsm); conductivity (cond, mMho); urea concentration (urea, millimoles per litre); and calcium concentration (calc, millimoles per litre).
 - (a) What model has been fitted to the data? How is the response variable related to the explanatory variables?
 - (b) How do you interpret the analysis of deviance table? What actions does it suggest to you?
 - (c) Compare the deviance reduction due to grav and the corresponding estimated regression coefficient. What does this suggest to you?
 - (d) Give a 95% confidence interval for the parameter corresponding to calc.
 - (e) How does a fitted value change if ph is decreased by 0.1?
 - (f) What can you say about the fit of the model, based on this output?

```
> anova(urine.glm)
Analysis of Deviance Table
```

Model: binomial, link: logit

Terms added sequentially (first to last)

	Df	Deviance	Resid.	Df	Resid. Dev
NULL				76	105.168
grav	1	14.9327		75	90.235
ph	1	0.0723		74	90.163
osmo	1	9.5573		73	80.606
cond	1	0.0106		72	80.595
urea	1	1.3343		71	79.261
calc	1	21.7007		70	57.560

```
> summary(urine.glm)
```

```
glm(formula = r ~ grav + ph + osmo + cond + urea + calc, family = binomial, data = urine)
```

Deviance Residuals:

```
1Q Median
                       3Q
                              Max
-1.6215 -0.5967 -0.2849 0.3176 2.7445
```

Coefficients:

	Estimate	Std. Error	z value	Pr(> z)	
(Intercept)	0.60609	3.79582	0.160	0.87314	
grav	3.55944	2.22110	1.603	0.10903	
ph	-0.49570	0.56976	-0.870	0.38429	
osmo	0.01681	0.01782	0.944	0.34536	
cond	-0.43282	0.25123	-1.723	0.08493	
urea	-0.03201	0.01612	-1.986	0.04703	*
calc	0.78369	0.24216	3.236	0.00121	**

Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' '1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 105.17 on 76 degrees of freedom Residual deviance: 57.56 on 70 degrees of freedom

AIC: 71.56

4. Consider a regression model of the form

$$y_{n\times 1} = X_{n\times p}\beta_{p\times 1} + Z_{n\times q}b_{q\times 1} + \varepsilon_{n\times 1}, \quad \varepsilon \sim \mathcal{N}_n(0,\Omega) \perp b \sim \mathcal{N}_q(0,\Omega_b).$$

(a) Data y, X and Z are available, and it is desired to predict b by choosing $\tilde{b}(y)$ to minimise

$$\mathbb{E}\left[\{\tilde{b}(y)-b\}^{\mathrm{T}}\{\tilde{b}(y)-b\}\right].$$

Show that $\tilde{b}(y) = E(b \mid y)$.

(b) Find the joint distribution of y and b, and hence show that

$$\begin{split} & \mathrm{E}(b \mid y) &= \left(Z^{\mathrm{T}} \Omega^{-1} Z + \Omega_b^{-1} \right)^{-1} Z^{\mathrm{T}} \Omega^{-1} \left(y - X \beta \right), \\ & \mathrm{var}(b \mid y) &= \left(Z^{\mathrm{T}} \Omega^{-1} Z + \Omega_b^{-1} \right)^{-1}. \end{split}$$

How would these formulae be used in practice?

(c) Discuss what happens when $\sigma_b^2/\sigma^2 \gg 1$ and $\sigma_b^2/\sigma^2 \ll 1$ in the special case $\Omega = \sigma^2 I_n$ and $\Omega_b = \sigma_b^2 I_a$.

Recall (i) that $(A + BCD)^{-1} = A^{-1} - A^{-1}B(C^{-1} + DA^{-1}B)^{-1}DA^{-1}$ for compatible matrices A, B, C, D and if the necessary inverses exist, and (ii) that if

$$\begin{pmatrix} Y_{\mathcal{A}} \\ Y_{\mathcal{B}} \end{pmatrix} \sim \mathcal{N} \left\{ \begin{pmatrix} \mu_{\mathcal{A}} \\ \mu_{\mathcal{B}} \end{pmatrix}, \begin{pmatrix} \Omega_{\mathcal{A}} & \Omega_{\mathcal{A},\mathcal{B}} \\ \Omega_{\mathcal{B},\mathcal{A}} & \Omega_{\mathcal{B}} \end{pmatrix} \right\},$$

then the distribution of $Y_{\mathcal{A}}$ conditional on $Y_{\mathcal{B}} = y_{\mathcal{B}}$ is $\mathcal{N}\left\{\mu_{\mathcal{A}} + \Omega_{\mathcal{A},\mathcal{B}}\Omega_{\mathcal{B}}^{-1}(y_{\mathcal{B}} - \mu_{\mathcal{B}}), \Omega_{\mathcal{A}} - \Omega_{\mathcal{A},\mathcal{B}}\Omega_{\mathcal{B}}^{-1}\Omega_{\mathcal{B},\mathcal{A}}\right\}$.

5. (a) Under what circumstances would you consider the use of a model of the form

$$y_j = \mu(x_j) + \varepsilon_j, \quad j = 1, \dots, n,$$

where the ε_j are independent random variables and $\mu(x)$ is a suitably smooth function of the scalar x? Describe and compare three methods for choosing a suitable degree of smoothness of μ .

(b) The result of minimising the penalized sum of squares

$$\sum_{j=1}^{n} \{y_j - \mu(x_j)\}^2 + \lambda \int \mu''(x)^2 dx$$

is a function $\hat{\mu}(x)$ that yields the $n \times 1$ vector of fitted values $\hat{\mu} = Sy$, with $\hat{\mu}(x_j)$ the jth element of $\hat{\mu}$. Let $\hat{\mu}^{-j}(x)$ and $\hat{\mu}^{-j}$ denote the corresponding function and $n \times 1$ vector of fitted values when the jth pair (x_j, y_j) is not included in the fit. Define an $n \times 1$ vector y^* by setting $y_i^* = y_i$ for $i \neq j$ and $y_j^* = \hat{\mu}^{-j}(x_j)$. By considering the inequality

$$\sum_{i=1}^{n} \{y_i^* - \mu(x_i)\}^2 + \lambda \int \mu''(x)^2 \, \mathrm{d}x \ge \sum_{i \ne i}^{n} \{y_i^* - \mu(x_i)\}^2 + \lambda \int \mu''(x)^2 \, \mathrm{d}x,$$

show that $\hat{\mu}^{-j} = Sy^*$.

(c) Deduce that

$$y_j - \hat{\mu}^{-j}(x_j) = \frac{y_j - \hat{\mu}(x_j)}{1 - S_{jj}}, \quad j = 1, \dots, n.$$

4

Explain how this expression is useful in choosing λ .