Теория множеств

Теория множеств — раздел математики, в котором изучаются общие свойства множеств. Теория множеств лежит в основе большинства математических дисциплин; она оказала глубокое влияние на понимание предмета самой математики

Множество – мысленная сущность, которая связывает одну или несколько сущностей в целое.

Элемент множества - объект любой природы, который в совокупности с другими аналогичными объектами составляет множество.

Кратность элемента множества - это количество вхождений элемента в множество

Мощность множества – это суммарное количество вхождений в это множество всех его элементов.

Наибольший элемент - элемент, значение которого больше значений остальных элементов множества.

Наименьший элемент - элемент, значение которого меньше значений остальных элементов множества

Виды множеств

Булеаном множества называется множество всех подмножеств данного множества

Пересекающиеся множества - множества, которые имеют хотя бы один совпадающий элемент.

Непересекающиеся множества - семейство множеств является непересекающимся тогда и только тогда, когда его пересечение есть пустое множество

Конечное множество - либо пустое множество, либо множество, мощность которого есть натуральное число.

Несчётное множество - бесконечное множество, мощность которого больше, чем мощность счетного множества.

Множество является пустым множеством тогда и только тогда, когда ему не принадлежит ни один элемент.

Рефлексивное множество - множество, которому принадлежит его обозначение.

Транзитивное множество - множество, все элементы которого являются его подмножествами

Операции над множествами

Множество si является **объединением** семейства множеств sk тогда и только тогда, когда каждый элемент $x \in si$ с кратностью, равной максимальной кратности вхождения элемента в одно из множеств семейства sk.

Множество si является **пересечением** семейства множеств sk тогда и только тогда, когда каждый элемент x ∈ si с кратностью, равной минимальной кратности вхождения элемента в одно из множеств семейства sk.

Множество является **соответствием** между двумя множествами тогда и только тогда, когда оно является бинарным отношением и первое множество включает унарную проекцию этого бинарного отношения по атрибутивному отношению 1, а второе множество – унарную проекцию этого бинарного отношения по атрибутивному отношению 2

Вычитание множеств - множество sk является вычитанием множества si из множества sj тогда и только тогда, когда каждый элемент x принадлежит множеству sk в том и только том случае, когда он принадлежит множеству sj, и не принадлежит множеству si.

Дополнение есть разность между каким то фиксированным универсумом и данным множеством

Универсум является некоторым фиксированным множеством всех определенных элементов.

Включение - множество si является подмножеством множества sj тогда и только тогда, когда каждый элемент множества si принадлежит множеству sj, причем количество вхождений каждого элемента из множества si не превышает количество вхождений этого элемента во множество sj.

Отношение принадлежности является понятием теории множеств, которого связывает множество и его элемент. В этом случае говорят, что существует принадлежность элемента множеству.

Отношение разбиение - это отношение между семейством множеств и множеством попарно непересекающихся подмножеств, причем объединение этих множеств даёт семейство множеств

Декартовым произведением множеств A и B называется множество, состоящее из всех упорядоченных пар элементов $\langle x_i, x_j \rangle$ таких, что первый элемент каждой пары является элементом первого сомножителя $x_i \in A$, второй элемент пары - элементом второго сомножителя $x_j \in B$, и кратность каждой пары $\langle x_i, x_j \rangle$ равна произведению кратностей x_i и x_i в перемножаемых множествах.

Кортежи

Множество М называется **упорядоченным**, если между его элементами установлено некоторое отношение а < b ("а предшествует b"), обладающее следующими свойствами: 1) между любыми двумя элементами а и b существует одно и только одно из трех соотношений: a = b, a < b, b < a; 2) для любых трех элементов a, b и c из a < b, b < c следует a < c.

Кортеж – упорядоченная последовательность конечного числа элементов.

Два кортежа являются равным тогда и только тогда, когда одноименные компоненты этих кортежей равны.

Инверсия кортежа определяется следующим образом: пара <c, d> называется инверсией пары <a,b>,если их элементы с разными номерами равны

Теория отношений

Связка – множество, элементами которого являются какие-то объекты, которые связаны некоторой связью

Неориентированная связка – это связка, не являющаяся кортежем

Ориентированная связка – это связка, являющаяся кортежем

Отношение - множество однотипных связок.

Арность отношения — количество его аргументов.

Область определения отношения R - множество всех первых элементов пар из бинарного отношения R.

Область значений отношения R - множество всех вторых элементов пар из бинарного отношения R.

Виды отношений

Отношение является ориентированным тогда и только тогда, когда является множеством ориентированных связок.

Отношение является **неориентированным** тогда и только тогда, когда является множеством неориентированных связок.

Бинарное отношение - подмножество декартового произведения двух множеств.

Унарное отношение - множество, арность которого равна 1.

Тернарное отношение - множество, арность которого равна 3

Обратное отношение - бинарное отношение, которое состоит из пар элементов (a,b), полученных перестановкой пар элементов (b,a) данного отношения R

Рефлексивное отношение - бинарное отношение R на множестве A, в котором всякий элемент этого множества находится в отношении R с самим собой.

Антирефлексивное отношение - Бинарное отношение R на множестве A, в котором все элементы множества A не находится в отношении R к самому себе.

Нерефлексивное отношение - бинарное отношение R на множестве A, в котором хотя бы один элемент множества A не находится в отношении R к самому себе

Симметричное отношение - бинарное отношение R на множестве A, в котором для каждой пары элементов множества (a,b) выполнение отношения aRb влечёт выполнение отношения bRa.

Антисимметричное отношение - бинарное отношение R на множестве A, в котором для каждой пары элементов множества (a,b) выполнение отношений aRb и bRa влечёт равенство a и b.

Несимметричное отношение - бинарное отношение R на множестве A, в котором для каждой пары элементов множества (a,b) выполнение отношения aRb не влечёт выполнение отношения bRa.

Транзитивное отношение - бинарное отношение R на множестве A, в котором для любых трёх элементов множества a,b,c выполнение отношений aRb и bRc влечёт выполнение отношения aRc

Нетранзитивное отношение - бинарное отношение R на множестве A, в котором для любых трёх элементов множества a,b,c выполнение отношений aRb и bRc не влечёт выполнение отношения aRc.

Функция f — бинарное отношение, которое удовлетворяет следующему условию: для любого $x \in X$ существует единственный элемент $y \in Y$ такой, что $(x,y) \in f$.

Это просто пипец

Отношение доминирования - антирефлексивное, асимметричное бинарное отношение.

Отношение квазипорядка - рефлексивное, транзитивное бинарное отношение.

Отношение линейного порядка - полное, транзитивное, антисимметричное бинарное отношение.

Отношением строгого порядка - антирефлексивное, транзитивное, антисимметричное бинарное отношение.

Отношением толерантности - рефлексивное, симметричное, нетранзитивное бинарное отношение.

Отношением частичного порядка - рефлексивное, транзитивное, антисимметричное бинарное отношение.

Отношением эквивалентности - рефлексивное симметричное транзитивное отношение.

Операции над отношениями

Отношение R является **объединением отношений** P и Q тогда, когда оно является множеством всех кортежей, принадлежащих хотя бы одному из отношений.

Отношение R является **пересечением отношений** P и Q тогда, когда оно является множеством всех кортежей, принадлежащих обоим отношениям.

Отношение R является **разностью отношений** P и Q тогда, когда оно является множеством кортежей, принадлежащих P и не принадлежащих Q.

Два отношения являются **равными** тогда и только тогда, когда первое является включением второго и второе является включением первого

P. S.

Да прибудет с вами сила на защите!!!