Part 4 - Hessian of L2 penalized binary logistic regression

Show that the Hessian or second derivative of $J(\theta)$ can be written as

$$H = \frac{1}{m}(X^T S X + \lambda I)$$

$$S = diag(h_{\theta}(x^{(1)})(1 - h_{\theta}(x^{(1)})), ..., h_{\theta}(x^{(m)})(1 - h_{\theta}(x^{(m)})))$$

Show that H is positive definite. You may assume that $0 < h_{\theta}(x^{(i)}) < 1$ so the elements of S are strictly positive and that X is full rank.

Solution

S is a diagonal matrix with the elements $h_{\theta}(x^{(i)})(1-h_{\theta}(x^{(i)}))$ on the diagonal. This can be represented as:

$$S = \operatorname{diag}(h_{\theta}(X)(1 - h_{\theta}(X)))$$

Where $h_{\theta}(X)$ is a vector containing the predicted values for all training examples. Let us rewrite the gradient $\nabla J(\theta)$ using H, S, X, and θ :

$$\nabla J(\theta) = \frac{1}{m} X^T (h_{\theta}(X) - y) + \frac{\lambda}{m} \theta = \frac{1}{m} X^T S (X\theta - y) + \frac{\lambda}{m} \theta$$

where $X\theta$ represents the predictions $h_{\theta}(X)$ for all training examples. Let compute the Hessian of $J(\theta)$:

$$H = \frac{\partial}{\partial \theta} \left(\frac{1}{m} X^T S (X \theta - y) + \frac{\lambda}{m} \theta \right)$$
$$= \frac{1}{m} \left(\frac{\partial}{\partial \theta} \left(X^T S X \theta - X^T S y \right) + \frac{\partial}{\partial \theta} \lambda \theta \right)$$
$$= \frac{1}{m} \left(X^T S X + \lambda I \right)$$

A matrix is positive definite if it's symmetric and all its eigenvalues are positive. First, let us prove that H is symmetric. By definition, a symmetric matrix is equal to its transpose:

$$H^{T} = \left(\frac{1}{m}(X^{T}SX + \lambda I)\right)^{T}$$
$$= \frac{1}{m}(X^{T}SX + \lambda I)^{T}$$
$$= \frac{1}{m}(X^{T}(SX)^{T} + (\lambda I)^{T})$$
$$= \frac{1}{m}(X^{T}SX + \lambda I) = H$$

Given that $0 < h_{\theta}(x^{(i)}) < 1$ for all i, then all elements on the diagonal of the matrix S are strictly positive since they are of the form $h_{\theta}(x^{(i)})(1 - h_{\theta}(x^{(i)}))$.

positive definite (all of its eigenvalues are strictly positive). Similarly, since all elements of S are strictly positive, S is also positive definite. Now, consider λ_A and λ_B , the eigenvalues of A and B, respectively. Then, the eigenvalues of H are:

Now, let's prove that all eigenvalues of H are strictly positive. Consider $H = \frac{1}{m}(X^TSX + \lambda I)$. Let $A = X^TSX$ and $B = \lambda I$. Since X is full rank, all of its columns of linearly independent; thus, X^TX is

Since both λ_A and λ_B are positive, then λ_H is also positive. Therefore, all eigenvalues of H are strictly positive.

 $\lambda_H = \frac{1}{m}(\lambda_A + \lambda_B)$

Since $H = H^T$ and $\lambda_H > 0$, then we can conclude that H is positive definite.