

Unit 2 3set1 MTH174 MCQs for practice

Engineering Mathematics (Lovely Professional University)

Normal ODE, Dependent –Independent functions, Homogeneous Linear ODE:

1.)	The differential equation $y''+3y'+\sqrt{xy}=\sin x$ an integer is normal on every subinterval of					
	a) $(-\infty,\infty)$	b) $[0,\infty)$	c) (0,∞)	d) (-∞,1),(-	$-1,1),(1,\infty)$	
2.)	The differential equation $(x^2 - 1)y'' + 2xy' + y = x \ln x$ is normal on every subinterval of					
	a) $(-\infty,\infty)$	b) $(0,\infty)$	c) (-∞,2)	d) (0,1),(1,	∞)	
3.)	Which of the following functions are linearly independent for $x \in (0, \infty)$?					
	a) $1, x, x^2, 1+x$	b) $1, x(1-x), x^2, x$	c) $2x, 6x + 3, 3$	3x + 2 d) 1, x	$x^2, x^2 (1-x)$	
4.)	If $y_1(x)$ and $y_2(x)$ be the linearly independent solutions of the equation $y''+a(x)y'+b(x)y=0$ or an interval I then which of the following is true					
	a) both $y_1(x)$ and $y_2(x)$ vanishes for some $x_0 \in I$					
	b) both $y_1(x)$ and $y_2(x)$ take extreme values for some $x_0 \in I$					
	c) both $y_1(x)$ and y	$_{2}(x)$ can not vanishe	es for some $x_0 \in I$	d) None of	these	
The general solution of the differential equation $y''+2\pi y'+\pi^2 y=0$ is						
	a) $(A+Bx)e^{-\pi x}$	b) $(A+Bx)e^{-x}$	c) $(A+B)e^{-\pi x}$ d)	$) (A+Bx)e^{\pi x}$		
6.)	The differential equation whose linearly independent solutions are e^{2x} , xe^{2x} is ?					
	a) $y''+4y'+4y=0$	b) $y''+4y'-4y=0$	c) $y''-4y'+4y=0$	d) y"-4y'-4	y = 0	
7.)	The lowest possible order of homogeneous linear differential equation whose particular solution is $3\cos 2x + 5\sinh 3x$ is					
	a) 2	b) 3	c) 5	d) 4		
8.)	The roots of charac	cteristic equation of o	differential equation	on $y^{iv} + 8y'' - 9$	y = 0	
	a) $\pm 1, \pm 3i$ b)	$\pm i, \pm 3i$ c) $\pm i,$	± 3 d) $\pm 1, \pm 3$	ı		
9.)	The general solution of differential equation $y'''-2y''+y'=0$ is					
	$) Ae^x + (Bx + C)$	b) $A + (Bx + C)$	e^x c) (Bx)	$+C)e^{x}$	$d) A + (Bx + C)e^{-x}$	
10.) solutio	The lowest possible order of homogeneous linear differential equation whose particular ion is $1 + x + e^x - 3e^{3x}$ is					

c) 2

b)3

This document is available free of charge on

a) 4

d) 5

(Operator method) Exp(ax), cosh(ax) sinh(ax), h(x). exp(ax): Polynomila, Sin(ax), cos(ax):

- 1. The particular integral $\frac{1}{D+3}e^{2x}$ is

- (a) $\frac{1}{5}e^{2x}$ (b) $\frac{1}{5}$ (c) $\frac{1}{3}e^{2x}$ (d) $\frac{1}{2x+3}e^{2x}$
- 2. The particular integral $\frac{1}{D^2-9}e^{3x}$ is
 - (a) $\frac{1}{6}e^{3x}$ (b) $\frac{xe^{3x}}{6}$
- (c) $\frac{x}{3}e^{3x}$ (d) doesn't exist
- 3. The particular integral $\frac{1}{f(D)}e^{ax}g(x)$ is
- (a) $e^{ax} \frac{1}{f(D)} g(x)$ (b) $g(x) \frac{1}{f(D)} e^{ax}$ (c) $e^{ax} \frac{1}{f(D+a)} g(x)$ (d) $\frac{1}{f(a)} e^{ax} g(x)$
- 4. The particular integral $\frac{1}{f(D^2)}e^{ax}$ is
 - (a) $\frac{1}{f(-a^2)} e^{ax}$

- (c) $\frac{1}{f(a^2)}e^{ax}$, provided $f(a^2)=0$
- (b) $\frac{1}{f(a^2)}e^{ax}$, provided $f(a^2) \neq 0$ (d) $\frac{1}{f(a)}e^{ax}$, provided $f(a) \neq 0$
- 5. The particular integral $\frac{1}{D^3-D^2+4D-4}\sin 3x$ is

- (a) $-\frac{1}{5}\sin 3x$ (c) $\frac{1}{9}x\cos 3x$ (b) $\frac{1}{50}(\sin 3x + x\cos 3x)$ (d) $\frac{1}{50}(\sin 3x + 3\cos 3x)$
- 6. The particular integral of the differential equation $y'' + y = 6 \sin x$ is

 - (a) $6 \cos x$ (b) $3x \sin x$ (c) $-3x \cos x$
- (d) $6 x \cos x$
- 7. The particular integral $\frac{1}{D+5}(2016)^x$ is

- (a) $\frac{1}{2021}(2016)^x$ (b) $x(2016)^x$ (c) $\frac{1}{\ln 2016}(2016)^x$ (d) $\frac{1}{(\ln 2016)^{1/2}}(2016)^x$
- 8. The particular integral of $\frac{d^2y}{dx^2} + \frac{dy}{dx} = x^2 + 2x + 4$ is
 - (a) $\frac{x^2}{x^2} + 4x$
- (b) $\frac{x^3}{a} + 4x$ (c) $\frac{x^3}{a} + 4$ (d) $\frac{x^2}{a} + 4x^2$
- 9. The particular integral of $\frac{d^4y}{dx^4} 16\frac{d^2y}{dx^2} = (8x + 16)$ is
 - (a) $-\frac{x^2}{12} \frac{x}{3}$
- (b) $\frac{x^3}{6} + 2x$ (c) $\frac{x^3}{3} + 4$
 - (d) $\frac{x^2}{3} + 4x$
- The particular integral $\frac{1}{(D+1)^3}(2x+4)$ is 10.
 - (a) $\frac{x^2}{a} + 4x$

- (b) 2x + 4 (c) x 2
- (d) 2x 2
- The particular integral of the differential equation $y'' + 4y = \sin x \cos x$ is
 - (a) $6 \cos x$ (b) $3x \sin x \cos x$ (c) $-3x \cos x$
- (d) $-\frac{x}{8}\cos 2x$
- The particular integral $\frac{1}{D^2}\cos 2x$ is 12.
 - (a) $-4\cos 2x$ (b) $-4\sin 2x$
- (c) $\frac{1}{2}\sin 2x$ (d) $-\frac{1}{4}\cos 2x$
- 13. The particular integral $\frac{1}{R-1}\cos 2x$ is

 - (a) $-\frac{1}{5}(\cos 2x 2\sin 2x)$ (b) $\frac{1}{2}\cos 2x$ (c) $-\sin 2x$ (d) $-\frac{1}{5}(\sin 2x + 2\cos 2x)$

Method of Variation of Parameter, Method of Undetermined co-efficient:

Q23. By method of undetermined coefficients the assumed particular integral of the differential equation $y'' - 2y' - 3y = 6e^{-x} - 8e^x$ is (a) a $e^{-x} + b e^x$ (b) a $xe^{-x} + b e^x$ (c) a $e^{-x} + bx e^x$ (d) a $x^2e^{-x} + b e^x$

❖ The particular integral of differential equation(x > 0) $x^3y^{'''} + 5x^2y^{''} + 5xy^{'} + y = x^2$ Using the transformation x =e^t , we get (in operator notation) [$\theta^3 + 2\theta^2 + 2\theta + 1$]y = e^{2t} is

(A)
$$\frac{1}{21}e^{2t}(B)\frac{1}{31}e^{-2t}(C) - \frac{1}{51}e^{2t}(D)\frac{1}{21}e^{7t}$$