Estimates of the summary AUC under three settings of (c_1, c_2) $(\tau_1^2, \tau_2^2) = (0.5, 0.5)$

Yi

2021-12-01

Table 1: Summary of the SAUC estimates under the true selective publication mechanism of $(c_1, c_2) = (1/\sqrt{2}, 1/\sqrt{2})$

			S = 15	S = 25	S = 50	S = 200
No.	Methods	True	Median (Q1, Q3)	Median (Q1, Q3)	Median (Q1, Q3)	Median (Q1, Q3)
1	Prop (\hat{c}_1, \hat{c}_2) Prop $(c_1 = c_2)$ Prop $(c_1 = 0)$ Heckman-type Reistma _O Reistma _P	62.0	4.1 (45.2, 77.2) 3.9 (42.5, 76.6) 7.4 (51.1, 78.3) 5.6 (52.1, 76.7) 7.9 (53.6, 78.7) 1.3 (48.5, 73.0)	2.3 (50.7, 74.1) 2.4 (51.5, 74.3) 7.5 (59.8, 76.3) 6.4 (57.9, 74.4) 7.8 (61.1, 76.6) 0.3 (53.7, 69.6)	0.6 (52.0, 70.4) 1.3 (53.9, 70.6) 7.2 (63.5, 73.9) 4.8 (60.3, 71.9) 7.4 (64.1, 74.3) 0.1 (56.5, 67.1)	-0.2 (55.9, 65.9) 0.2 (57.2, 66.0) 6.5 (65.7, 70.7) 4.5 (62.9, 69.3) 7.1 (66.3, 71.2) -0.1 (59.1, 64.6)
2	Prop (\hat{c}_1, \hat{c}_2) Prop $(c_1 = c_2)$ Prop $(c_1 = 0)$ Heckman-type Reistma _O Reistma _P	70.2	2.3 (61.2, 78.9) 1.9 (59.7, 78.6) 3.9 (65.9, 79.8) 2.3 (63.6, 78.0) 4.2 (66.5, 79.9) 1.4 (63.5, 76.9)	0.9 (62.5, 76.3) 0.8 (62.7, 76.6) 3.2 (67.8, 77.9) 1.7 (64.6, 76.3) 3.5 (68.8, 78.1) 0.3 (64.7, 74.7)	1.0 (65.3, 75.1) 0.8 (65.3, 75.1) 3.4 (70.4, 76.7) 1.7 (67.2, 75.2) 3.9 (70.7, 77.0) 0.1 (66.8, 73.4)	0.1 (67.7, 72.4) 0.1 (67.9, 72.3) 3.3 (71.9, 75.2) 1.5 (69.6, 73.6) 3.7 (72.3, 75.2) -0.0 (68.5, 71.7)
3	Prop (\hat{c}_1, \hat{c}_2) Prop $(c_1 = c_2)$ Prop $(c_1 = 0)$ Heckman-type Reistma _O Reistma _P	84.6	-0.5 (77.9, 87.5) -0.8 (76.7, 87.3) -0.2 (78.6, 87.7) 0.2 (79.4, 87.9) 0.8 (80.3, 88.4) -1.1 (78.1, 86.4)	-0.0 (79.7, 87.2) -0.1 (79.1, 87.1) 0.5 (81.0, 87.4) 0.9 (82.1, 87.5) 1.6 (83.2, 88.2) -0.5 (80.7, 86.5)	-0.0 (81.5, 86.6) 0.0 (81.4, 86.7) 0.9 (83.3, 87.1) 1.5 (83.9, 87.5) 2.1 (84.8, 88.1) -0.2 (82.5, 86.0)	0.1 (83.3, 85.9) 0.1 (83.2, 85.8) 1.2 (84.6, 86.8) 1.6 (85.1, 87.0) 2.3 (85.9, 87.6) -0.0 (83.7, 85.5)
4	Prop (\hat{c}_1, \hat{c}_2) Prop $(c_1 = c_2)$ Prop $(c_1 = 0)$ Heckman-type Reistma _O Reistma _P	86.4	-0.5 (82.8, 87.9) -0.5 (82.3, 87.8) -0.2 (83.3, 88.0) -0.1 (83.2, 88.0) 0.5 (84.4, 88.6) -0.7 (83.6, 87.5)	-0.2 (84.2, 87.8) -0.1 (84.2, 87.8) 0.0 (84.6, 88.0) 0.1 (84.8, 88.0) 0.9 (85.8, 88.5) -0.3 (84.5, 87.5)	-0.0 (85.1, 87.4) -0.0 (85.1, 87.5) 0.4 (85.6, 87.7) 0.4 (85.6, 87.7) 1.2 (86.6, 88.4) -0.1 (85.2, 87.2)	0.0 (85.9, 87.0) 0.0 (85.9, 87.0) 0.5 (86.4, 87.5) 0.5 (86.4, 87.4) 1.3 (87.3, 88.1) -0.0 (85.9, 86.8)
5	Prop (\hat{c}_1, \hat{c}_2) Prop $(c_1 = c_2)$ Prop $(c_1 = 0)$ Heckman-type Reistma _O Reistma _P	87.7	-2.0 (79.5, 89.4) -2.3 (78.8, 89.3) -3.2 (77.2, 88.9) -1.8 (80.0, 89.6) -1.7 (79.1, 89.8) -1.7 (80.9, 89.2)	-1.0 (82.5, 89.4) -1.2 (82.6, 89.4) -2.1 (80.8, 89.1) -1.1 (82.5, 89.6) -0.7 (83.0, 89.9) -0.5 (83.8, 89.3)	-0.1 (84.9, 89.4) -0.3 (85.1, 89.3) -1.4 (83.5, 88.7) -0.6 (84.8, 89.5) -0.1 (85.4, 89.8) -0.3 (85.5, 89.1)	0.1 (86.5, 88.8) -0.1 (86.6, 88.7) -0.9 (85.5, 88.0) -0.2 (86.3, 88.7) 0.3 (87.0, 89.1) 0.0 (86.7, 88.5)
6	Prop (\hat{c}_1, \hat{c}_2) Prop $(c_1 = c_2)$ Prop $(c_1 = 0)$ Heckman-type Reistma _O Reistma _P	83.5	-0.9 (76.0, 87.2) -1.3 (76.0, 86.9) -2.5 (74.6, 86.3) -1.0 (76.7, 87.1) -1.0 (76.9, 87.1) -1.0 (76.8, 86.7)	0.3 (79.0, 87.4) 0.1 (79.3, 87.1) -1.3 (77.7, 86.1) 0.2 (79.5, 86.7) 0.4 (80.1, 87.1) -0.2 (79.6, 86.5)	0.4 (81.1, 86.8) 0.2 (80.8, 86.5) -0.9 (79.8, 85.5) -0.0 (80.6, 86.3) 0.5 (81.5, 86.6) -0.2 (80.8, 85.7)	0.2 (82.2, 85.3) -0.0 (82.1, 84.8) -0.7 (81.5, 84.2) -0.1 (82.2, 84.9) 0.7 (82.9, 85.4) -0.1 (82.2, 84.5)

Note:

Median with 25th empirical quartile (Q1) and 75th empirical quartile (Q3) and convergence rate (CR) are reported. No. denotes the senario numbers. S denotes the number of the population studies; True denotes the true value of the SAUC. Prop $(hatc_1, hatc_2)$, Prop $(c_1 = c_2)$, and Prop $(c_1 = 1)$ denote the proposed method that estimates (c_1, c_2) , correctly specifies $(c_1, c_2) = (1/sqrt2, 1/sqrt2)$, and misspecifies $(c_1, c_2) = (1, 0)$, respectively; Heckman-type denotes the method of Piao et al.; Reitsma_O and Reitsma_P denote the Reitsma model based on N observed studies and S population studies, respectively. All the entries are multiplied by 100.

Table 2: Summary of the SAUC estimates under the true selective publication mechanism of $(c_1, c_2) = (1, 0)$

			S = 15	S = 25	S = 50	S = 200
No.		True	Median (Q1, Q3)	Median (Q1, Q3)	Median (Q1, Q3)	Median (Q1, Q3)
1	$\begin{array}{c} \operatorname{Prop}\ (\hat{c}_1,\hat{c}_2) \\ \operatorname{Prop}\ (c_1=1) \\ \operatorname{Prop}\ (c_1=c_2) \\ \operatorname{Heckman-type} \\ \operatorname{Reistma}_O \\ \operatorname{Reistma}_P \end{array}$	62.0	-0.3 (46.3, 74.5) 2.3 (47.1, 75.2) 0.2 (48.0, 74.5) -0.7 (48.4, 71.9) 4.3 (51.9, 75.6) 1.3 (48.5, 73.0)	0.8 (49.7, 71.4) 2.8 (51.3, 73.1) 0.9 (51.3, 72.0) 0.4 (51.7, 69.9) 4.7 (56.4, 73.9) 0.3 (53.7, 69.6)	-0.3 (52.7, 68.8) 0.7 (54.9, 69.9) 1.9 (56.4, 70.1) -1.2 (53.8, 66.8) 4.1 (60.8, 71.4) 0.1 (56.5, 67.1)	0.3 (57.6, 65.6) 0.3 (57.9, 65.5) 3.3 (62.1, 68.0) -2.1 (55.4, 63.4) 4.0 (63.0, 68.6) -0.1 (59.1, 64.6)
2	$\operatorname{Prop}\ (\hat{c}_1,\hat{c}_2)$ $\operatorname{Prop}\ (c_1=1)$ $\operatorname{Prop}\ (c_1=c_2)$ $\operatorname{Heckman-type}$ $\operatorname{Reistma}_O$ $\operatorname{Reistma}_P$	70.2	-0.6 (57.4, 77.2) 1.1 (59.0, 77.9) -0.8 (57.3, 77.1) -2.9 (55.9, 74.8) 1.4 (61.6, 78.0) 1.4 (63.5, 76.9)	-0.5 (60.0, 75.3) 1.0 (63.0, 75.9) -0.7 (60.3, 75.0) -3.3 (58.0, 72.8) 1.5 (65.5, 76.0) 0.3 (64.7, 74.7)	-0.2 (63.9, 74.0) 0.9 (65.9, 74.8) 0.2 (64.7, 74.5) -3.0 (59.7, 71.7) 1.7 (67.7, 75.2) 0.1 (66.8, 73.4)	-0.0 (68.1, 72.1) 0.2 (68.3, 72.1) 1.1 (69.1, 72.9) -4.3 (61.7, 69.1) 1.5 (70.0, 73.3) -0.0 (68.5, 71.7)
3	$\operatorname{Prop}\left(\hat{c}_{1},\hat{c}_{2}\right)$ $\operatorname{Prop}\left(c_{1}=1\right)$ $\operatorname{Prop}\left(c_{1}=c_{2}\right)$ $\operatorname{Heckman-type}$ $\operatorname{Reistma}_{O}$ $\operatorname{Reistma}_{P}$	84.6	-1.7 (74.5, 86.7) -1.6 (75.4, 86.9) -1.7 (74.1, 87.0) -1.3 (77.2, 87.2) -0.3 (77.8, 87.7) -1.1 (78.1, 86.4)	-0.7 (78.8, 86.6) -0.2 (80.2, 86.9) -0.5 (79.2, 86.8) 0.2 (80.9, 87.0) 1.1 (82.2, 87.7) -0.5 (80.7, 86.5)	-0.5 (80.4, 86.3) -0.2 (81.2, 86.5) -0.2 (81.0, 86.6) 0.4 (82.3, 86.8) 1.4 (83.6, 87.7) -0.2 (82.5, 86.0)	-0.2 (83.0, 85.5) -0.0 (83.4, 85.7) 0.3 (83.5, 86.0) 0.7 (84.1, 86.3) 1.7 (85.3, 87.1) -0.0 (83.7, 85.5)
4	$\operatorname{Prop} (\hat{c}_1, \hat{c}_2)$ $\operatorname{Prop} (c_1 = 1)$ $\operatorname{Prop} (c_1 = c_2)$ $\operatorname{Heckman-type}$ $\operatorname{Reistma}_O$ $\operatorname{Reistma}_P$	86.4	-1.1 (81.7, 87.7) -1.0 (82.2, 87.8) -0.9 (81.7, 87.6) -0.9 (81.6, 87.5) -0.1 (83.6, 88.3) -0.7 (83.6, 87.5)	-0.5 (83.6, 87.6) -0.3 (83.9, 87.7) -0.3 (83.8, 87.8) -0.5 (83.7, 87.6) 0.6 (85.1, 88.4) -0.3 (84.5, 87.5)	-0.3 (84.8, 87.3) -0.1 (85.0, 87.4) 0.1 (85.2, 87.7) -0.0 (84.8, 87.4) 0.9 (86.4, 88.3) -0.1 (85.2, 87.2)	-0.0 (85.8, 86.9) 0.0 (85.9, 87.0) 0.3 (86.1, 87.3) -0.0 (85.6, 87.0) 1.2 (87.1, 88.0) -0.0 (85.9, 86.8)
5	$Prop (\hat{c}_1, \hat{c}_2)$ $Prop (c_1 = 1)$ $Prop (c_1 = c_2)$ $Heckman-type$ $Reistma_O$ $Reistma_P$	87.7	-1.6 (78.5, 89.7) -2.3 (77.8, 89.3) -1.0 (79.8, 90.0) -0.3 (81.5, 90.6) -0.9 (79.4, 90.3) -1.7 (80.9, 89.2)	-0.3 (83.4, 90.0) -0.9 (82.3, 89.7) 0.7 (85.0, 90.5) 1.1 (85.1, 90.9) 0.8 (84.7, 90.8) -0.5 (83.8, 89.3)	0.3 (85.5, 89.7) 0.1 (85.1, 89.5) 1.3 (87.1, 90.3) 1.6 (87.0, 90.6) 1.5 (86.9, 90.7) -0.3 (85.5, 89.1)	0.2 (86.8, 89.0) -0.0 (86.5, 88.8) 1.4 (88.3, 89.8) 1.6 (88.3, 90.2) 1.6 (88.4, 90.1) 0.0 (86.7, 88.5)
6	Prop (\hat{c}_1, \hat{c}_2) Prop $(c_1 = 1)$ Prop $(c_1 = c_2)$ Heckman-type Reistma _O Reistma _P	83.5	-1.1 (75.2, 87.8) -1.8 (74.6, 86.9) 0.2 (76.5, 88.3) 1.0 (78.0, 88.8) -0.5 (76.2, 88.1) -1.0 (76.8, 86.7)	0.5 (78.8, 87.9) 0.0 (78.4, 87.3) 1.5 (80.5, 88.4) 1.8 (80.5, 88.6) 1.4 (80.3, 88.2) -0.2 (79.6, 86.5)	0.7 (80.9, 86.9) 0.1 (80.5, 86.3) 2.0 (82.4, 87.9) 2.2 (82.8, 88.3) 1.8 (82.3, 87.7) -0.2 (80.8, 85.7)	0.1 (82.1, 85.0) -0.0 (82.0, 84.8) 1.7 (83.8, 86.4) 2.2 (84.3, 87.1) 1.8 (84.0, 86.5) -0.1 (82.2, 84.5)

Note:

Median with 25th empirical quartile (Q1) and 75th empirical quartile (Q3) and convergence rate (CR) are reported. No. denotes the senario numbers. S denotes the number of the population studies; True denotes the true value of the SAUC. Prop $(hatc_1, hatc_2)$, Prop $(c_1 = 1)$, and Prop $(c_1 = c_2)$ denote the proposed method that estimates (c_1, c_2) , correctly specifies $(c_1, c_2) = (1, 0)$, and misspecifies $(c_1, c_2) = (1/sqrt2, 1/sqrt2)$, respectively; Heckman-type denotes the method of Piao et al.; Reitsma_O and Reitsma_P denote the Reitsma model based on N observed studies and S population studies, respectively. All the entries are multiplied by 100.

Table 3: Summary of the SAUC estimates under the true selective publication mechanism of $(c_1, c_2) = (0, 1)$

			S = 15	S = 25	S = 50	S = 200
No.		True	Median (Q1, Q3)	Median (Q1, Q3)	Median (Q1, Q3)	Median (Q1, Q3)
1	Prop (\hat{c}_1, \hat{c}_2) Prop $(c_1 = 0)$ Prop $(c_1 = c_2)$ Heckman-type Reistma _O Reistma _P	62.0	-4.7 (36.2, 73.0) 0.3 (41.4, 74.4) -7.1 (32.1, 72.3) -2.4 (39.4, 73.0) 0.7 (40.8, 75.2) 1.3 (48.5, 73.0)	-3.7 (42.7, 69.8) 0.7 (51.5, 72.3) -7.7 (38.3, 68.6) -1.8 (46.0, 70.6) 1.6 (51.2, 73.1) 0.3 (53.7, 69.6)	-4.0 (47.2, 66.3) 0.5 (54.7, 68.7) -6.6 (42.2, 64.1) -1.9 (49.7, 67.4) 0.8 (55.2, 69.3) 0.1 (56.5, 67.1)	-2.4 (54.8, 63.7) -0.1 (57.8, 65.2) -7.3 (49.1, 60.1) -2.7 (54.5, 63.5) 0.4 (58.3, 65.8) -0.1 (59.1, 64.6)
2	Prop (\hat{c}_1, \hat{c}_2) Prop $(c_1 = 0)$ Prop $(c_1 = c_2)$ Heckman-type Reistma _O Reistma _P	70.2	0.0 (53.2, 78.2) 1.0 (59.2, 78.9) -1.1 (48.7, 78.0) -0.3 (55.7, 77.7) 2.0 (59.3, 79.3) 1.4 (63.5, 76.9)	-2.3 (54.9, 75.1) -0.2 (61.2, 75.8) -3.4 (51.2, 75.2) -2.2 (57.8, 74.4) 0.4 (61.5, 76.5) 0.3 (64.7, 74.7)	-1.5 (61.7, 73.4) 0.4 (65.8, 74.4) -2.2 (60.1, 73.2) -1.5 (62.3, 73.1) 1.1 (66.6, 75.1) 0.1 (66.8, 73.4)	-1.1 (66.5, 71.4) -0.0 (68.1, 72.1) -3.1 (63.9, 70.1) -1.6 (65.3, 71.0) 0.6 (68.8, 72.8) -0.0 (68.5, 71.7)
3	Prop (\hat{c}_1, \hat{c}_2) Prop $(c_1 = 0)$ Prop $(c_1 = c_2)$ Heckman-type Reistma _O Reistma _P	84.6	-2.4 (70.0, 86.7) -1.4 (74.0, 87.2) -3.0 (68.0, 86.4) -2.5 (71.2, 86.4) -1.1 (73.8, 87.6) -1.1 (78.1, 86.4)	-1.7 (75.2, 86.6) -0.6 (78.3, 87.1) -2.1 (74.1, 86.5) -1.7 (75.3, 86.2) -0.1 (78.3, 87.4) -0.5 (80.7, 86.5)	-1.0 (78.9, 86.1) 0.0 (81.4, 86.7) -1.7 (77.9, 85.8) -1.3 (78.8, 85.9) 0.4 (81.6, 87.0) -0.2 (82.5, 86.0)	-0.5 (82.4, 85.4) -0.1 (83.3, 85.7) -1.6 (80.8, 84.8) -1.4 (81.1, 84.8) 0.3 (83.6, 86.1) -0.0 (83.7, 85.5)
4	Prop (\hat{c}_1, \hat{c}_2) Prop $(c_1 = 0)$ Prop $(c_1 = c_2)$ Heckman-type Reistma _O Reistma _P	86.4	-1.4 (80.8, 87.6) -0.9 (82.0, 87.9) -1.5 (79.6, 87.5) -1.5 (80.1, 87.1) -0.5 (82.3, 88.1) -0.7 (83.6, 87.5)	-0.8 (82.6, 87.4) -0.3 (83.7, 87.7) -1.1 (82.2, 87.3) -1.2 (81.7, 87.1) -0.0 (84.0, 88.0) -0.3 (84.5, 87.5)	-0.7 (84.0, 87.1) -0.1 (84.8, 87.4) -0.9 (83.5, 87.1) -1.1 (83.1, 86.8) 0.2 (85.2, 87.8) -0.1 (85.2, 87.2)	-0.3 (85.4, 86.8) -0.0 (85.8, 87.0) -0.6 (84.9, 86.5) -1.0 (84.5, 86.2) 0.4 (86.1, 87.3) -0.0 (85.9, 86.8)
5	Prop (\hat{c}_1, \hat{c}_2) Prop $(c_1 = 0)$ Prop $(c_1 = c_2)$ Heckman-type Reistma _O Reistma _P	87.7	-4.4 (74.1, 87.8) -3.4 (76.4, 88.4) -5.5 (72.6, 87.2) -4.2 (75.7, 87.9) -4.5 (73.1, 87.7) -1.7 (80.9, 89.2)	-2.6 (78.4, 88.2) -1.7 (80.1, 88.7) -3.5 (77.6, 87.6) -2.6 (80.3, 88.1) -3.0 (77.0, 88.2) -0.5 (83.8, 89.3)	-0.9 (83.7, 88.8) -0.6 (84.5, 88.9) -1.5 (82.9, 88.3) -1.5 (83.6, 88.1) -1.1 (83.2, 88.7) -0.3 (85.5, 89.1)	-0.1 (86.4, 88.6) -0.1 (86.4, 88.6) -0.3 (86.1, 88.5) -0.7 (85.9, 88.1) -0.2 (86.2, 88.6) 0.0 (86.7, 88.5)
6	Prop (\hat{c}_1, \hat{c}_2) Prop $(c_1 = 0)$ Prop $(c_1 = c_2)$ Heckman-type Reistma _O Reistma _P	83.5	-4.2 (70.0, 85.3) -2.6 (73.1, 85.9) -4.9 (69.2, 84.9) -3.6 (72.4, 85.4) -4.5 (70.1, 85.1) -1.0 (76.8, 86.7)	-1.3 (75.9, 86.0) -0.7 (77.7, 86.3) -2.4 (75.3, 85.3) -1.6 (76.9, 85.9) -2.1 (75.5, 85.7) -0.2 (79.6, 86.5)	-0.3 (79.8, 85.8) -0.2 (80.3, 86.0) -0.9 (78.8, 85.4) -0.5 (79.7, 85.7) -0.8 (79.2, 85.6) -0.2 (80.8, 85.7)	-0.1 (82.0, 84.8) -0.2 (82.0, 84.8) -0.8 (81.2, 84.3) 0.0 (81.6, 85.3) -0.7 (81.4, 84.3) -0.1 (82.2, 84.5)

Note.

Median with 25th empirical quartile (Q1) and 75th empirical quartile (Q3) and convergence rate (CR) are reported. No. denotes the senario numbers. S denotes the number of the population studies; True denotes the true value of the SAUC. Prop $(hatc_1, hatc_2)$, Prop $(c_1 = 1)$, and Prop $(c_1 = c_2)$ denote the proposed method that estimates (c_1, c_2) , correctly specifies $(c_1, c_2) = (0, 1)$, and misspecifies $(c_1, c_2) = (1/sqrt2, 1/sqrt2)$, respectively; Heckman-type denotes the method of Piao et al.; Reitsma_O and Reitsma_P denote the Reitsma model based on N observed studies and S population studies, respectively. All the entries are multiplied by 100.