HW2 – Machine Learning

Leonard Christopher Limanjaya

1a. Perform Shapiro-Wilk test on the differences of two datasets using R.

File: 1a.R

Result:

algo_a: w -> 0.88731, p-value -> 0.009812

algo_b: w -> 0.83833, p-value -> 0.001066

1b. Perform paired t test by hand

Date	Algorithm A	Algorithm B	dist	diff 3	
anneal	93,99	76,17	17,82	317,5524	
Balana-Icale	91,36	91.04	0,32	0/1024	
Breast - cancer	71,68	72,38	-0,7	0,49	
Breast - W	97,28	95,09	1,29	116641	
Credit-a	81,94	8449	1,45	2/1025	
Deimo tology	97,81	93,17	4,64	21/1296	
Diobetes	77,47	60,92	7,55	17,002r	
6001	77,1	71,96	5,14	26,4196	
Heart-C	81/81	84,49	1,32	1,7424	
Heore-h	86,39	8 3/33	3/06	9,3636	
Heart-Itation	83,7	81,81	1182	3,4221	
Hepotitu	89,03	79,31	9,68	93,7024	
Hypothytoid	95,68	92,29	3,39	11,4921	
longsphere	92,02	90,31	1,7]	2,9241	
Kr-vi-hp	87,89	19,72	8,17	66,7489	
Labor	91,23	91,23	0	0	
Letter	72,84	77,71	-4,87	23,7169	
Lymph	55,8	81,08	4,73	22,3729	
Princis-tumor	20112	29,r	20/65	426,4221	
Jich	97,48	93,88	416	21,16	!
lonor	99,04	88,94	101	102,01	
I plice	95136	f2.04	43,32	1876,622	
Vehicle	66167	69,62	-2195	817025	
Vote	90,11	90,17	-046	012116	
Woreforn-tooo	64,04	63,92	0,12	01014613	
			141,93	3097,492	
d:0105				40	
			ID= 141	,95	
= ID	141,93		ID2: 30	97,492	
nID2-(ID)2 [2	75 - 7097, 492 - 141, 9	r 1			
V n-1 V	24	ť		g tone : 2	
14	1,93 141,9	3 2,9/	titot >	terre Reje	u H
$\sqrt{27}$	91,8275 48,91	-13/			

The Ho is Both of the algorith is equal, but from the calcualtion we can know that t_{stat} is bigger than t_{crit} so we reject the Ho

1c. Perform paired t test using R

File: 1c.R

Result:

t = 2.9049, df = 24, p-value = 0.007777

alternative hypothesis: true mean difference is not equal to 0

95 percent confidence interval: 1.643587, 9.710813

Mean of the differences: 5.6772

1d. Perform Wilcoxon Signed-Rank Test by hand

Data	Algo A	Algo B	dest	def	Ronk	
annga l	93,99	76,17	17/82	17,82	23	
Bolony scale	91,36	91/04	0,32	0,32	3	
Breast- conter	71.68	72,38	- 07	-017	5	
Breatt - w	37, 28	95,99	1/29	1,29	6	
Gredit- Q	85,94	84,49	1,41	1/46	8	
Permotology	91,31	93,17	9164	4164	15	
Diobetes	77,47	68192	7,45	7,14	19	
Glan	77,1	71,96	1514	1/14	18	
Heart C	82.81	84,49	1/32	1,32	7	
Hear th	\$6,39	83,33	3,06	3,01	12	
Heart - Hotlog	83,7	21,87	1,85	1,94	10	
Hepotetis	80103	79,31	9,69	016	21	
Hypothyroid	95169	92,29	3,39	3,39	13	
lonaiphere	92.02	20131	1,71	1,71	9	
Hr-vs- Hp	27,29	79,72	2117	3,17	20	
Lohor	91,23	81/23	0	0	1	
Letter	72,84	77,71	-4187	918)	17	
Lymph	55,81	81109	41.73	4,73	16	
Pringry -tumor	fort	29,5	20155	10161	24	
Sich	97,48	93,83	416	416	14	
Sohor	99,04	98,94	10/1	1011	22	
Jph a	95,36	\$2,04	413,32	43132	25	
Vehicle	66167	69,62	-21gr	2194	11	
Vou	90111	90117	-0146	0,46	4	
Wordown 1000	64104	63,92	0/12	0,12	2	

T- = 5+17+11+9	1: 37						
T+ = 1+2+3+ 6+7	+ 8+ 9 +10+	12+13+14	+ 11+	16+18+	19 +2	ot 214	22+23+24+29=2
Wnot - 37	Witee	∠ Work	= 7	Reje c+	ske	Ho	#
							F 2

The Ho is both of the algorithm is equal, but from the calcualtion we can know that w_{stat} is smaller than w_{crit} so we reject the Ho

1e. Perform Wilcoxon Signed-Rank Test using R

File: 1e.R

Result:

V = 267, p-value = 0.0008729

Alterhative hypothesis: ture location shift is not equal to 0

Because of the p-value is below the crit value, we can say that Ho is rejected

1f. Perform Sign Test (Binomial test) using R

File: 1f.R

Result:

S=20, p-value = 0.001544

95 percent confidence interval: 1.29, 5.1

Median of x: 3.06

Achieved and Interpolated Confidence Intervals:

	Conf.Level	L.E.pt	U.E.pt
Lower Achieved Cl	0.8922	1.3200	4.7300
Interpolated CI	0.9500	1.2931	5.0973
Upper Achieved CI	0.9567	1.2900	5.1400

2a. Perform Friedman Test by hand

 χ^2

Data	Algo A	Algo B	APgo C	Algo D	RA	RB	Rc	Ro
anneal	93,99	76,17	97.77	97,44	2	١	4	3
Bolono-irale	91,36	91,04	89.6	8916	4	7	1,1	1,5
Breast-concer	71,68	72,38	71,68	12,03	1,5	4	115	3
Breatt- w	97,28	95,99	97	97	sl	1.	215	2,5
Credit - Q	85,94	94,49	87.54	81,1	2	}	4	3
Dermotology	97,81	93,17	98,09	97,81	2,1	1	4	215
Diobetes	77,47	69,92	76,04	76,04	4	3	115	1.5
Glan	71,1	71,96	78,97	1891	2	1	3,1	3,5
Heore-C	21.21	84,49	34182	85,48	4	1	2	3
Heori-h	86,39	83,33	26,07	85,37	3	1	2	4
Heart-Italiag	83,7	18,18	84.07	83,1	2,5	1	4	2,5
Hepoaltii	89,03	79,35	89.68	89,68	2	1	3,r	3,5
Hyposhyroid	95168	92,29	grag	9589	2	1	3	41
loneiphere	92,02	90,71	93,45	93,45	2	1	3,4	3,5
Kr.vs. Ap	87,89	79,72	91,24	91,17	2	1	3	4
Labor	91,23	91,23	82,46	85,96	1,1	1,4	3	4
Lour	72,84	17,71	8112	81,2	1	2	3,4	318
Lymph	11,81	80,18	8031	86,49	1	1	3	9
Primary-tumor	40,15	29,01	49116	10,17	315	1	2	3,5
Sich	97148	93,88	97,11	97,38	3	1	. 4	2
lu ho r	99,04	88,94	99/04	99,04	3	١	3	3
	91,16	52104	96,21	9567	2	1	41	3
Such Ce	11.1.10			100	-		3,1	3,5
Sph a Vehido	66,67	69162	73,12	73112	1	2	1.771	
Vehide		69 ₁₆₂ 90 ₁ 17	94,28	73,51 94,2r	1	2	318	
Vehido Voo	66,67	1		13137	-			
Vehide	96,11	90,17	94,28	94,21	1 4	2	315	1,5

We have H_0 that say that all of them are equal, but from the calculation we can know that Fr is higher than X^2 , so the H_0 is rejected

37,6×2×

2b. Perform Friedman Test using R

File: 2b.R

From the result we can know that the H_0 is rejected, because of p value and X^2 value 2c. If needed, perform Nemenyi post-hoc test by hand.

	CD:	94 (N Ch+1) = 2,569 (408)
		16N 16.251
		2, +69 · 0,36 +
And the second s		- 01938
avg of	Ra	RO RO RO
-	2,42	1,46 2,15 3,1
	1.0 %	
1	he RB	have more Man CD from the other
	in the	Ho Is reported

2d. If needed, perform Nemenyi post-hoc test using R. Draw Friedman test graph using R

File: 2d.R

3. Run the Friedman test for the following result.

File: 3.R

