

Emil Björnson

Outline

- Revisit MMSE processing
 - Asymptotic behaviors
- Zero-forcing processing
 - Key properties
 - Closed-form expression
- Performance comparison: Different processing schemes

Recall: Uplink Massive MIMO with linear processing

• Received signal:

$$\mathbf{y} = \sqrt{\rho_{ul}} \mathbf{G} \mathbf{D}_{\boldsymbol{\eta}}^{1/2} \mathbf{q} + \mathbf{w}$$
 where $\mathbf{D}_{\boldsymbol{\eta}} = \begin{pmatrix} \eta_1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \eta_K \end{pmatrix}$, $\mathbf{q} = \begin{pmatrix} q_1 \\ \vdots \\ q_K \end{pmatrix}$

- Assign receiver filter a_i for user i: $a_i^H y = \sqrt{\rho_{ul}} a_i^H G D_{\eta}^{1/2} q + a_i^H w$
 - For all users $A = [a_1 \dots a_K]$: $A^H y = \sqrt{\rho_{ul}} A^H G D_{\eta}^{1/2} q + A^H w \approx q$

In some "good" sense

MMSE receiver processing

$$\boldsymbol{a}_{i} = \sqrt{\rho_{ul}\eta_{i}}\boldsymbol{B}_{i}^{-1}\widehat{\boldsymbol{g}}_{i}$$

$$= \operatorname{constant} \cdot \left(\boldsymbol{B}_{i} + \rho_{ul}\eta_{i}\widehat{\boldsymbol{g}}_{i}\widehat{\boldsymbol{g}}_{i}^{H}\right)^{-1}\widehat{\boldsymbol{g}}_{i}$$

$$B^{-1}a = (1 + a^{H}B^{-1}a)(B + aa^{H})^{-1}a$$

$$\boldsymbol{B}_{i} = \sum_{k=1,k\neq i}^{K} \rho_{ul} \eta_{k} \widehat{\boldsymbol{g}}_{k} \widehat{\boldsymbol{g}}_{k}^{H} + \sum_{k=1}^{K} \rho_{ul} \eta_{k} (\beta_{k} - \gamma_{k}) \boldsymbol{I}_{M} + \boldsymbol{I}_{M}$$

What happens to MMSE asymptotically?

Co-User Channels $\widehat{\boldsymbol{g}}_1$, $\widehat{\boldsymbol{g}}_{i-1}$, $\widehat{\boldsymbol{g}}_{i+1}$, $\widehat{\boldsymbol{g}}_K$

Reformulating MMSE processing

- Notation: $\widehat{\boldsymbol{G}} = [\widehat{\boldsymbol{g}}_1 \ ... \ \widehat{\boldsymbol{g}}_K], \boldsymbol{D}_{\eta} = \operatorname{diag}(\eta_1, ..., \eta_K)$
 - For one user:

$$\boldsymbol{a}_{i} = \sqrt{\rho_{ul}\eta_{i}} \left(\sum_{k=1}^{K} \rho_{ul}\eta_{k} \widehat{\boldsymbol{g}}_{k} \widehat{\boldsymbol{g}}_{k}^{H} + \sum_{k=1}^{K} \rho_{ul}\eta_{k} (\beta_{k} - \gamma_{k}) \boldsymbol{I}_{M} + \boldsymbol{I}_{M} \right)^{-1} \widehat{\boldsymbol{g}}_{i}$$

• For all users, $A = [a_1 \dots a_K]$:

$$A = \sqrt{\rho_{ul}} \left(\rho_{ul} \widehat{\mathbf{G}} \mathbf{D}_{\eta} \widehat{\mathbf{G}}^{H} + \sum_{k=1}^{K} \rho_{ul} \eta_{k} (\beta_{k} - \gamma_{k}) \mathbf{I}_{M} + \mathbf{I}_{M} \right)^{-1} \widehat{\mathbf{G}} \mathbf{D}_{\eta}^{1/2}$$

$$= \sqrt{\rho_{ul}} \widehat{\mathbf{G}} \mathbf{D}_{\eta}^{1/2} \left(\rho_{ul} \mathbf{D}_{\eta}^{1/2} \widehat{\mathbf{G}}^{H} \widehat{\mathbf{G}} \mathbf{D}_{\eta}^{1/2} + \sum_{k=1}^{K} \rho_{ul} \eta_{k} (\beta_{k} - \gamma_{k}) \mathbf{I}_{K} + \mathbf{I}_{K} \right)^{-1}$$

$$(BD + I)^{-1}B = B(DB + I)^{-1}$$

Asymptotic: High SNR $(M \ge K)$

• MMSE processing:

$$\boldsymbol{A} = \sqrt{\rho_{ul}} \widehat{\boldsymbol{G}} \boldsymbol{D}_{\eta}^{1/2} \left(\rho_{ul} \boldsymbol{D}_{\eta}^{1/2} \widehat{\boldsymbol{G}}^{H} \widehat{\boldsymbol{G}} \boldsymbol{D}_{\eta}^{1/2} + \sum_{k=1}^{K} \rho_{ul} \eta_{k} (\beta_{k} - \gamma_{k}) \boldsymbol{I}_{K} + \boldsymbol{I}_{K} \right)^{-1}$$

• High SNR
$$(\rho_{ul} \to \infty)$$
:
$$\gamma_k = \frac{\tau_p \rho_{ul} \beta_k^2}{1 + \tau_p \rho_{ul} \beta_k} \to \beta_k, \qquad \widehat{\boldsymbol{G}} \to \boldsymbol{G} = [\boldsymbol{g}_1 \dots \boldsymbol{g}_K]$$

$$\sqrt{\rho_{ul}} \boldsymbol{A} = \widehat{\boldsymbol{G}} \boldsymbol{D}_{\eta}^{1/2} \left(\boldsymbol{D}_{\eta}^{1/2} \widehat{\boldsymbol{G}}^H \widehat{\boldsymbol{G}} \boldsymbol{D}_{\eta}^{1/2} + \sum_{k=1}^K \eta_k (\beta_k - \gamma_k) \boldsymbol{I}_K + \frac{1}{\rho_{ul}} \boldsymbol{I}_K \right)^{-1}$$

$$\to \boldsymbol{G} (\boldsymbol{G}^H \boldsymbol{G})^{-1} \boldsymbol{D}_{\eta}^{-1/2}$$

$$A^{H}y = D_{\eta}^{-1/2} (G^{H}G)^{-1} G^{H}G D_{\eta}^{1/2} q + A^{H}w / \sqrt{\rho_{ul}} = q + A^{H}w / \sqrt{\rho_{ul}}$$

Zero-forcing (ZF):Cancel all interference

Geometry of MR and ZF

Use all signal power Get part of the interference

Remove all interference Get part of the signal

Asymptotic: Many Antennas

• MMSE processing:

$$A = \sqrt{\rho_{ul}} \widehat{\boldsymbol{G}} \boldsymbol{D}_{\eta}^{1/2} \left(\rho_{ul} \boldsymbol{D}_{\eta}^{1/2} \widehat{\boldsymbol{G}}^{H} \widehat{\boldsymbol{G}} \boldsymbol{D}_{\eta}^{1/2} + \sum_{k=1}^{K} \rho_{ul} \eta_{k} (\beta_{k} - \gamma_{k}) \boldsymbol{I}_{K} + \boldsymbol{I}_{K} \right)^{-1}$$
Diagonal contains
$$\|\widehat{\boldsymbol{g}}_{k}\|^{2}, \text{ grows with } \boldsymbol{M}$$
Independent of \boldsymbol{M}

Large
$$M$$

$$\approx \sqrt{\rho_{ul}} \widehat{\boldsymbol{G}} \boldsymbol{D}_{\eta}^{1/2} \left(\rho_{ul} \boldsymbol{D}_{\eta}^{1/2} \widehat{\boldsymbol{G}}^{H} \widehat{\boldsymbol{G}} \boldsymbol{D}_{\eta}^{1/2} \right)^{-1}$$
$$= \frac{1}{\sqrt{\rho_{ul}}} \widehat{\boldsymbol{G}} \left(\widehat{\boldsymbol{G}}^{H} \widehat{\boldsymbol{G}} \right)^{-1} \boldsymbol{D}_{\eta}^{-1/2}$$

Zero-forcing with imperfect channel estimates

Complex Wishart Matrices

• **Z** is an $M \times K$ matrix with i.i.d. CN(0,1) random variables $(M \ge K)$

 $\mathbf{Z}^H \mathbf{Z}$ has a complex Wishart distribution

- Properties:
 - $E\{\mathbf{Z}^H\mathbf{Z}\} = M\mathbf{I}_K$
 - $E\{(\mathbf{Z}^H\mathbf{Z})^{-1}\} = \frac{1}{M-K}\mathbf{I}_K$

ZF:
$$A = \frac{1}{\sqrt{\rho_{ul}}} \widehat{G} (\widehat{G}^H \widehat{G})^{-1} D_{\eta}^{-1/2} = \frac{1}{\sqrt{\rho_{ul}}} Z (Z^H Z)^{-1} D_{\gamma}^{-1/2} D_{\eta}^{-1/2}$$

$$\widehat{G} = Z D_{\gamma}^{1/2}$$
Equivalent ZF: $A = Z (Z^H Z)^{-1}$

Received signal when using ZF processing

$$\boldsymbol{G} = \boldsymbol{Z}\boldsymbol{D}_{\gamma}^{1/2} - \widetilde{\boldsymbol{G}}$$

- Received signal: $\mathbf{y} = \sqrt{\rho_{ul}} \mathbf{G} \mathbf{D}_{\eta}^{1/2} \mathbf{q} + \mathbf{w} = \sqrt{\rho_{ul}} \mathbf{Z} \mathbf{D}_{\gamma}^{1/2} \mathbf{D}_{\eta}^{1/2} \mathbf{q} + \mathbf{w} \sqrt{\rho_{ul}} \widetilde{\mathbf{G}} \mathbf{D}_{\eta}^{1/2} \mathbf{q}$
 - Apply ZF $(A = Z(Z^{H}Z)^{-1})$:

$$A^{H}y = \sqrt{\rho_{ul}}(Z^{H}Z)^{-1}Z^{H}ZD_{\gamma}^{1/2}D_{\eta}^{1/2}q + (Z^{H}Z)^{-1}Z^{H}\left(w - \sqrt{\rho_{ul}}\widetilde{G}D_{\eta}^{1/2}q\right)$$

$$= I_{K}$$

w: Uncorrelated interference and noise

• For user
$$i$$
:
$$[A^{H}y]_{i} = \sqrt{\rho_{ul}\gamma_{i}\eta_{i}}q_{i} + \left[(Z^{H}Z)^{-1}Z^{H}\left(w - \sqrt{\rho_{ul}}\widetilde{G}D_{\eta}^{1/2}q\right)\right]_{i}$$
 Deterministic channel Covariance:
$$\sum_{k=1}^{K} \rho_{ul}\eta_{k}(\beta_{k} - \gamma_{k})I_{K}$$

$$E\{(Z^{H}Z)^{-1}Z^{H}Z(Z^{H}Z)^{-1}\} = \frac{1}{M-K}I_{K}$$

Using the capacity bound with deterministic channel

- Desired signal $x = q_i$, transmit power $\rho = \rho_{ul}\eta_i$
- Determinstic and known channel coefficient $g = \sqrt{\gamma_i}$

Capacity lower bound:

$$C \ge \log_2\left(1 + \frac{\rho|g|^2}{Var\{w\}}\right)$$

$$\rho|g|^2 = \rho_{ul}\eta_i\gamma_i$$

$$Var\{w\} = \frac{1}{M-K} \left(\sum_{k=1}^K \rho_{ul}\eta_k(\beta_k - \gamma_k) + 1 \right)$$

Capacity bound with ZF and use-and-then-forget technique

$$C \ge \log_2 \left(1 + \frac{(M - K)\rho_{ul}\eta_i\gamma_i}{\sum_{k=1}^K \rho_{ul}\eta_k(\beta_k - \gamma_k) + 1} \right)$$

- Interpretation
 - Small-scale fading is not visible in this bound
 - Numerator:

Coherent beamforming gain, grows with antennas as M - K, power $\rho_{ul}\eta_i$ and estimation quality γ_i . Interference suppression removes dimensions

Denominator:

Sum of non-coherent interference from all users, proportional to estimation error variance $\beta_k - \gamma_k$, plus noise variance

MR versus ZF processing

• MR:
$$\log_2\left(1 + \frac{M\rho_{ul}\eta_i\gamma_i}{\sum_{k=1}^K \rho_{ul}\eta_k\beta_k + 1}\right)$$

• ZF:
$$\log_2\left(1 + \frac{(M-K)\rho_{ul}\eta_i\gamma_i}{\sum_{k=1}^K \rho_{ul}\eta_k(\beta_k-\gamma_k)+1}\right)$$

Assumptions

$$K = 10$$

$$\beta = 1$$

$$\tau_p = K$$

$$\eta_k = 1 \ \forall k$$

Zero-forcing precoding

• Uplink ZF expression

$$A = Z(Z^H Z)^{-1}$$

Precoding principle

Transmit in the direction where you heard the users "most clearly"

$$A = \sqrt{M - K} (\mathbf{Z} (\mathbf{Z}^H \mathbf{Z})^{-1})^*$$

since
$$E\{(\mathbf{Z}^H\mathbf{Z})^{-1}\mathbf{Z}^H\mathbf{Z}(\mathbf{Z}^H\mathbf{Z})^{-1}\} = E\{(\mathbf{Z}^H\mathbf{Z})^{-1}\} = \frac{1}{M-K}\mathbf{I}_K$$

Comparing uplink and downlink (with ZF)

Uplink:

$\log_2\left(1 + \frac{(M-K)\rho_{ul}\eta_i\gamma_i}{\sum_{k=1}^K \rho_{ul}\eta_k(\beta_k - \gamma_k) + 1}\right) \quad \log_2\left(1 + \frac{(M-K)\rho_{dl}\eta_i\gamma_i}{(\beta_i - \gamma_i)\sum_{k=1}^K \rho_{dl}\eta_k + 1}\right)$

Downlink:

$$\log_2\left(1 + \frac{(M - K)\rho_{dl}\eta_i\gamma_i}{(\beta_i - \gamma_i)\sum_{k=1}^K \rho_{dl}\eta_k + 1}\right)$$

Similarities

• Same structure (beamforming gain M-K, powers $\rho_{ul/dl}\eta_i$)

Differences

- Uplink interference: From users $(\beta_1 \gamma_1, ..., \beta_K \gamma_K)$
- Downlink interference: From base station $(\beta_i \gamma_i)$

What processing method to utilize?

- MMSE processing
 - Highest performance, complicated capacity expression
- ZF processing
 - Closed-form expression, requires M > K
 - Same complexity as MMSE processing, inferior performance
- MR processing
 - Closed-form expression, *greatly* inferior performance
 - Lowest computational complexity

Summary

- Zero-forcing processing
 - Focus on interference cancellation
 - Equivalent to MMSE at high SNR or many antennas
- Closed-form expression
 - Remaining interference depends on estimation errors
 - Sacrifice antenna dimensions

Emil Björnson