Module 3: Symmetric Key Cryptography

Dr. Partha Pratim Sarangi School of Computer Engineering

III. Diffie-Hellman Key Exchange Algorithm

III. Diffie-Hellman Key Exchange Algorithm

- Devised by Whitefield Diffie and Martin Hellman in 1976 for the solution to the key exchange problem.
- This algorithm is used to exchange the secret key between the sender and the receiver.
- This algorithm facilitates the exchange of secret key without actually transmitting it.

Algorithm:

Two parties choose two large prime numbers n and g, which need not be kept secret

- 1. Sender(Alice) chooses a large random number x(private key of sender) such that $0 \le x \le n-1$ and calculates $R_1 = g^x \mod p$
- Alice sends A to Bob.
- 3. Receiver(Bob) chooses another large random number y (private key of receiver) such that $0 \le y \le n-1$ and calculates $R_2 = g^y \mod p$
- 4. Similarly, Bob sends B to Alice
- 5. Alice calculates secret key $K=(R_2)^x \mod p$
- 6. Bob calculates secret key $K = (R_1)^y \mod p$

Contd..

Diffie-Hellman Key Exchange

The symmetric (shared) key in the Diffie-Hellman method is $K = g^{xy} \mod p$.

Example of Diffie Hellman Key Exchange

Suppose that two parties A and B wish to set up a common secret key (D-H key) between themselves using the Diffie Hellman key exchange technique. They agree on 7 as the modulus and 3 as the primitive root. Party A chooses 2 and party B chooses 5 as their respective secrets. Their D-H key is?

Solution:

```
Given: modulus = p = 7
```

Primitive root=g = 3

Private key of A = x=2

Private key of B = y = 5

Step-01:

Both the parties calculate the value of their public key and exchange with each other.

```
= g^x \mod p = 3^{private key of A} \mod 7
Public key of A(R₁)
                                = 3^2 \mod 7
```

= 2

Public key of B(R₂) =
$$g^y \mod p = 3^{private \text{ key of B}} \mod 7$$

= $3^5 \mod 7$
= 5

Example of Diffie Hellman Key Exchange contd..

Step-02:

Both the parties calculate the value of secret key at their respective side.

Secret key obtained by A (K) =
$$(R_2)^x \mod p = 5^{private \text{ key of A}} \mod 7$$

= $5^2 \mod 7$
= 4

Secret key obtained by B (K) =
$$(R_1)^y \mod p = 2^{private \text{ key of B}} \mod 7$$

= $2^5 \mod 7$
= 4

The value of K is the same for both Alice and Bob;

$$g^{xy} \mod p = 3^{2*5} \mod 7 = 4.$$

Finally, both the parties obtain the same value of secret key.

The value of common secret key = 4.

Security of Diffie-Hellman Key Exchange:

Diffie-Hellman key exchange is susceptible to two attacks:

- 1. Discrete Algorithm Attack
- 2. Man-in-the-middle attack

1. Discrete Logarithm Attack:

• Eve, the intruder can intercept R_1 and R_2 . If she can find (x) from $R_1 = g^x \mod p$ and (y) from $R_2 = g^y \mod p$, then she calculates the symmetric key = $g^{xy} \mod p$.

[see next slide for discrete logarithm in details]

Discrete Logarithm

- Consider the finite, multiplicative group $(Z_p^*, *_p^*)$, where p is prime. Let g be generator of the group. So, $g_1 \mod p$, $g_2 \mod p$, $g_{p-1} \mod p$ is a rearrangement of the integers in Z_p .
- Let x be an element in {0,1,2...p-2}. The function
 y=g^x (mod p)
 is referred to as modular exponentiation with base g and modulus p.
- The inverse operation is expressed as :

$$x=log_gy(mod\ p)$$
 and is referred to as **discrete logarithm**. It involves computing x given the values of p, g, y $\in Z_p^*$

```
\log y = x \log g \pmod{p}
(\log y/\log g) \pmod{p} = x
\log_g y \pmod{p} = x
```

Example of discrete logarithm

Compute discrete logarithm in <Z₁₁*,*₁₁> for g=2

X	g ^x mod 11=y
1	$2^1 \mod 11 = 2$
2	$2^2 \mod 11 = 4$
3	$2^3 \mod 11 = 8$
4	$2^4 \mod 11 = 5$
5	$2^5 \mod 11 = 10$
6	26 mod 11 =9
7	$2^7 \mod 11 = 7$
8	$2^8 \mod 11 = 3$
9	29 mod 11 =6
10	2 ¹⁰ mod 11 =1

	Discrete logarithm
У	$x = \log_2 y \pmod{11}$
1	10
2	1
3	8
4	2
5	4
6	9
7	7
8	3
9	6
10	5

Safe from discrete logarithm attack

To make Diffie-Hellman safe from the discrete logarithm attack, the following are recommended.

- a) The prime p must be very large(more than 300 decimal digits).
- has at least one large prime factor(more than 60 decimal digits).
- The generator must be chosen from the group $\langle Z_{p*}, \times \rangle$
- d) Bob and Alice must destroy x and y after they have calculated the symmetric key. The values of x and y must be used only once.

2. Man-in-the-Middle Attack:

Eve can fool Alice and Bob by creating 2 keys: one between herself and Alice & another between herself and Bob.

- a) Alice chooses x, calculates $R_1 = g^x \mod n$ and sends R_1 to Bob.
- b) Eve, the intruder intercepts R_1 . She chooses z, calculates $R_2 = g^z \mod n$ and sends R_2 to both Alice and Bob
- Bob chooses y, calculates $R_3 = g^y \mod n$ and sends R_3 to Alice. But, R_3 is intercepted by the Eve and never reaches Alice.
- d) Alice and Eve calculates $K_1 = g^{XZ} \mod n$, which becomes a shared key between Alice and Eve. Alice, however, thinks that it is a key shared between Bob and herself.
- e) Bob and Eve calculates K₂=g^{zy} mod n, which becomes a shared key between Eve and Bob. Bob, however, thinks that it is a key shared between Alice and herself.

2. Man-in-the-Middle Attack contd..:

