1 Amplificateurs opérationnels

1.1 Modèle petits signaux du BJT

I_0	Courant de polarisation sur la sortie
U_{early}	Tension de Early $(15 \mathrm{V}150 \mathrm{V})$
I_B	Courant de polarisation de base
U_T	Tension thermique ($\approx 25 \mathrm{mV}$)
β	Gain du transistor
C_m	Capacité de Miller (sortie)
C_e	Capacité de Miller reportée sur la base

$$U_T = \frac{kT}{e}$$
 $k = 1.381 \times 10^{-23}$ $e = 1.602 \times 10^{-19}$

1.1.1 Modèle du livre

A noter que le gain A est le gain vu par le transistor. Si on modifie la suite du circuit pour diminuer le gain, il faudra mettre à jour les valeurs calculées.

1.1.2 GBW

Produit constant sur la droite du GBW

$$A \cdot \omega_c = \text{GBW}$$
 $\omega_c = 2\pi f_c$

Si on a une application avec $\omega_a,$ alors le gain maximal est donné par

$$A_{max_{\omega}} = \frac{\text{GBW}}{\omega}$$

1.1.3 Modèle du cours

on suppose que le courant de base est nul (que R'_E est parcouru par le courant du collecteur uniquement).

1.2 Comportement en fréquence d'un ampli-op

Le gain est de la forme

$$\frac{AU_D}{1 + \frac{s}{\omega_0}}$$

Avec ${\cal U}_D$ la différence de tension entre les bornes + et