Introducere în teoria fasciculelor

Seminar 5 Luni, 17.03.2014.

- 1. (Fibrele și spațiul etalat pentru un fascicul de inele) Fie A un fascicul de inele de bază X.
 - a) Demonstrați că pentru orice $x \in X$ fibra A_x este un inel.
- b) Detaliați cum operațiile de adunare și de înmulțire la nivel de fibre induc aplicații continue la nivelul spațiului etalat asociat $\widetilde{\mathcal{A}}$.
- 2. ("Spec") Fie A un inel comutativ cu unitate. Notăm cu Spec A multimea idealelor prime ale lui A.
- a) (Topologia Zariski) Pentru un ideal \mathfrak{a} se defineşte $V(\mathfrak{a}) \subset \operatorname{Spec} A$ ca mulţimea idealelor prime care conţin \mathfrak{a} . Verificaţi că $V(A) = \emptyset$, $V(0) = \operatorname{Spec} A$. Demonstraţi că $V(\mathfrak{a}\mathfrak{b}) = V(\mathfrak{a}) \cup V(\mathfrak{b})$ şi $V(\sum \mathfrak{a}_i) = \cap V(\mathfrak{a}_i)$. Deduceţi că pe Spec A se poate defini o topologie pentru care mulţimile \hat{n} chise sunt de forma $V(\mathfrak{a})$.
- b) (Fasciculul structural) Pentru $U \subset \operatorname{Spec} A$ deschis se definește $\mathcal{O}_{\operatorname{Spec} A}(U)$ ca mulțimea funcțiilor $s: U \to \coprod_{\mathfrak{p} \in U} A_{\mathfrak{p}}$ astfel ca $s(\mathfrak{p}) \in A_{\mathfrak{p}}$ pentru orice $\mathfrak{p} \in U$ și s să fie local un cât de elemente ale lui A ($A_{\mathfrak{p}}$ este localizatul lui A în raport cu $A \setminus \mathfrak{p}$). Verificați că $\mathcal{O}_{\operatorname{Spec} A}(U)$ este un inel comutativ cu unitate. Introducând aplicații de restricție naturale, demonstrați apoi că $\mathcal{O}_{\operatorname{Spec} A}$ este un fascicul de inele.
- 3. (Definiția conceptului de A-Modul) Fie A un fascicul de inele de bază X.
 - a) Detaliați ce reprezintă compatibilitatea cu structura de modul a aplicațiilor de restricție.
 - b) Formulați o definiție alternativă a conceptului de fascicul de A-module folosind spații etalate.
- 4. (Morfisme de A-Module) Fie A un fascicul de inele de bază X, fie \mathcal{F}, \mathcal{G} fascicule de A-module. Detaliați modul în care este definită incluziunea naturală $\operatorname{Hom}_{\mathcal{A}}(\mathcal{F},\mathcal{G}) \hookrightarrow \Gamma(X, \operatorname{Hom}_{\mathcal{A}}(\mathcal{F},\mathcal{G}))$.
- 5. (Fibrate vectoriale și fascicule local libere) Fie X o varietate netedă, \mathcal{C}_X^{∞} fasciculul structural asociat. Fie $E \xrightarrow{\pi} X$ un fibrat de clasă \mathcal{C}^{∞} pe X.
 - a) Detaliați construcția fasciculului de \mathcal{C}_{X}^{∞} -module asociat, \mathcal{E} .
 - b) Demonstrați că \mathcal{E} este un fascicul local liber de rang r.
- **6.** (Exemple) Fie $X = \mathbb{C}$ și fie $A = \underline{\mathbb{Z}}_X$ fasciculul constant.
 - a) Fie S_1, S_2 fascicule skyscraper cu fibra \mathbb{Z} având suport disjunct. Calculați $S_1 \otimes_{\mathcal{A}} S_2$.
 - b) Fie S_1 un fascicul skyscraper cu fibra \mathbb{Z} și S_2 un \mathcal{A} -Modul local liber de rang r. Calculați $S_1 \otimes_{\mathcal{A}} S_2$.