Homework 5: More Limits (Due 3/6/23)

Assignments should be **stapled** and written clearly and legibly. Problems 6 and 7 are optional.

- 1. Let (a_n) be a convergent sequence. Suppose that $\lim a_n > 0$. Use the definition of a limit to prove that there exists $N \in \mathbb{N}$ such that $a_n > 0$ for all $n \geq N$.
- 2. From any given sequence (a_n) we can form the related sequence $(b_n) = (5a_n + 2)$. Use the definition of convergence of a sequence to prove that if (a_n) converges to 20, then (b_n) converges to ______. (First fill in the blank.)
- 3. Let (a_n) and (b_n) be sequences. Suppose that (a_n) converges to 0.
 - (a) Using the definition of convergence, prove that if (b_n) is bounded, then the sequence (a_nb_n) converges. (Note that you may not assume that (b_n) converges.)
 - (b) If the sequence (b_n) is not bounded, must the sequence (a_nb_n) necessarily converge? If so, prove it. If not, give a counterexample.
- 4. Give an example of a sequence (a_n) such that
 - (a) (a_n) converges to 0, but $a_n \neq 0$ for all n.
 - (b) (a_n) is bounded but does not converge.
 - (c) $\lim_{n\to\infty} \frac{a_{n+1}}{a_n} = 1$ but (a_n) does not converge.
 - (d) $(|a_n|)$ converges but (a_n) does not.
- 5. Give examples of the following:
 - (a) two divergent sequences (a_n) and (b_n) for which $(a_n + b_n)$ coverges.
 - (b) two divergent sequences (c_n) and (d_n) for which (c_nd_n) converges.
- 6. (Challenging) Suppose that (a_n) is a convergent sequence and $f: \mathbb{N} \to \mathbb{N}$ is a bijection. Determine whether $(a_{f(n)})$ converges. Prove your answer.
- 7. (More Challenging)
 - (a) Prove that if a sequence (a_n) is convergent, then the sequence of averages

$$b_n = \frac{a_1 + a_2 + \dots + a_n}{n}$$

is also convergent, and converges to the same limit.

(b) Show by example that it is possible for a sequence to diverge but its sequence of averages to converge.