AMENDMENTS TO THE CLAIMS

RECEIVED. CENTRAL FAX CENTER

JUL 117 2016

1. (Currently Amended) A compound represented by the structural formula (I):

$$Q^{1} \qquad Q^{2} \qquad Q^{3} \qquad Q^{3} \qquad Q^{4} \qquad Q^{5} \qquad Q^{5} \qquad Q^{4} \qquad (I)$$

or pharmaceutically acceptable isomers, salts, solvates or esters of the compound of Formula (I), wherein in Formula (I) above:

X, Y and Z can be the same or different and each is independently selected from the group consisting of -CH₂-, -CH(alkyl)- and -C(alkyl)₂-;

 Q^1 and Q^2 can be the same or different and each is independently selected from the group consisting of H, <u>-G</u>, -(C₀₁-C₃₀ alkylene)-G, -OC(O)R⁶, -OC(O)OR⁹, -OC(O)NR⁶R⁷, and -L-M:

Q³ is 1 to 5 substituents independently selected from the group consisting of alkyl, alkynyl, $\underline{-G}$, $-(C_{01}-C_{30}$ alkylene)-G, $\underline{-OR_{-}^6}$, $-(C_{01}-C_{10}$ alkylene)-OR₋⁶, $\underline{-C(O)R_{-}^6}$, $-(C_{01}-C_{10}$ alkylene)-C(O)OR₋⁶, $\underline{-C(O)R_{-}^6}$, $-(C_{01}-C_{10}$ alkylene)-C(O)OR₋⁶, $\underline{-OC(O)R_{-}^6}$, $-(C_{01}-C_{10}$ alkylene)-OC(O)OR₋⁶, $\underline{-OC(O)R_{-}^6}$, $-(C_{01}-C_{10}$ alkylene)-OC(O)OR₋⁶, $-(C_{01}-C_{10})$ alkylene)-OC(O)OR₋⁶, $-(C_{01}-C_{10})$ alkylene)-OR₋⁶, $-(C_{01}-C_{10})$ alkylene)-C(O)OR₋⁶, $-(C_{01}-C_{10})$ alkylene)-OC(O)OR₋⁶, $-(C_{01}-C_{10})$ alkylene)-OC(O)OR₋⁶,

```
-NR^6C(O)NR^7R^8, -NR^6S(O)_{0.2}R^9, -N(S(O)_{0.2}R^9)_2, -CHNOR^6, -C(O)NR^6R^7,
-C(O)NR^6NR^6R^7, -S(O)_{0.2}NR^6R^7, -S(O)_{0.3}R^9, -O-C(O)-(C_1-C_{10} \text{ alkylene})-C(O)NR^6R^7,
-OC(O)-(C_1-C_{10} \ alkylene)-NR^6C(O)O-(alkylaryl), \ -P(O)(OR^{10})_2,\\
-(C<sub>1</sub>-C<sub>10</sub> alkylene)-OSi(alkyl)<sub>3</sub> , -CF<sub>3</sub>, -OCF<sub>3</sub>, halo, alkoxyalkoxy, alkoxyalkoxy,
alkoxycarbonylalkoxy, alkoxyarylalkoxy, alkoxyiminoalkyl, alkyldioyl, allyloxy, aryl, arylalkyl,
aryloxy, arylaikoxy, aroyl, aroyloxy, aroylaroyloxy, arylaikoxycarbonyl, benzoylbenzoyloxy,
heteroaryl, heteroarylalkyl, heteroarylalkoxy, dioxolanyl, heterocyclyl, heterocyclylalkyl,
heterocyclylcarbonyl, heterocyclylcarbonylalkoxy and -L-M;
         O<sup>4</sup> is 1 to 5 substituents independently selected from the group consisting of alkyl,
alkenyl, alkynyl, \underline{-G}, \underline{-(C_{01}-C_{30})} alkylene)-G, \underline{-OR^6}, \underline{-(C_{01}-C_{10})} alkylene)-OR<sup>6</sup>, \underline{-C(O)R^6},
-(C_{01}-C_{10} \text{ alkylene})-C(O)R^{6}, -C(O)OR^{6}, -(C_{01}-C_{10} \text{ alkylene})-C(O)OR^{6}, -OC(O)R^{6},
-(C_{01}-C_{10} \text{ alkylene})-OC(O)R^6, -OC(O)OR^9, -(C_{01}-C_{10} \text{ alkylene})-OC(O)OR^9, -CH=CH-C(O)R^6,
-CH=CH-C(O)OR<sup>6</sup>, -C=C-C(O)OR<sup>6</sup>, -C=C-C(O)R<sup>6</sup>, -O-(C<sub>1</sub>-C<sub>10</sub> alkylene)-OR<sup>6</sup>.
-O-(C_1-C_{10} \text{ alkylene})-C(O)R^6, -O-(C_1-C_{10} \text{ alkylene})-C(O)OR^6, -CN,
-O-(C_1-C_{10}) alkylene)-C(O)NR<sup>6</sup>R<sup>7</sup>, -O-C(O)NR^6NR^7C(O)OR^6, -O-(C_{01}-C_{10})
C(O)NR^6NR^7C(O)OR^6, -O-(C_1-C_{10} \text{ alkylene})-C(O)(\text{aryl})-N_3 -O-(C_4-C_{10} \text{ alkylene})-C(O)(\text{aryl})-N_3
```

-O- $(C_2-C_{10} \text{ alkylene})$ -NR⁶R⁷, -NR⁶C(O)R⁷, -NR⁶C(O)OR⁹, -NR⁶C(O)NR⁷R⁸, -NR⁶S(O)₀₋₂R⁹, -N(S(O)₀₋₂R⁹)₂, -CHNOR⁶, -C(O)NR⁶R⁷,

 $-C(O)NR^6NR^6R^7$, $-S(O)_{0.2}NR^6R^7$, $-S(O)_{0.3}R^9$, $-O-C(O)-(C_1-C_{10} alkylene)-C(O)NR^6R^7$,

N=N, -OC(O)-(C₁-C₁₀ alkylene)-C(O)OR⁶, -C(O)NR⁶R⁷, -(C₀₁-C₁₀ alkylene)-C(O)NR⁶R⁷,

 $-OC(O)NR^{6}R^{7}$, $-(C_{01}-C_{10} \text{ alkylene})-OC(O)NR^{6}R^{7}$, $-NO_{2}$, $-NR^{6}R^{7}$, $-(C_{01}-C_{10} \text{ alkylene})-NR^{6}R^{7}$,

-OC(O)-(C1-C10 alkylene)-NR6C(O)O-(alkylaryl), -P(O)(OR10)2,

-(C₁-C₁₀ alkylene)-OSi(alkyl)₃ , -CF₃, -OCF₃, halo, alkoxyalkoxy, alkoxyalkoxy, alkoxyarylalkoxy, alkoxyiminoalkyl, alkyldioyl, allyloxy, arylalkyl, aryloxy, arylalkoxy, aroyloxy, aroyloxy, arylalkoxycarbonyl, benzoylbenzoyloxy, heteroaryl, heteroarylalkyl, heteroarylalkoxy, dioxolanyl, heterocyclylalkyl, heterocyclylcarbonyl, heterocyclylcarbonylalkoxy and -L-M;

O⁵ is 1 to 5 substituents independently selected from the group consisting of alkyl, alkenyl, alkynyl, $\underline{-G}$, $-(C_{01}-C_{30}$ alkylene)-G, $\underline{-CR^6}$, $-(C_{01}-C_{10}$ alkylene)- OR^6 , $\underline{-C(O)R^6}$, - $(C_{\theta 1}$ - C_{10} alkylene)- $C(O)R^6$, - $C(O)OR^6$, - $(C_{\theta 1}$ - C_{10} alkylene)- $C(O)OR^6$, - $OC(O)R^6$. - $(C_{01}$ - C_{10} alkylene)-OC(O) R^6 , -OC(O) QR^9 , - $(C_{01}$ - C_{10} alkylene)-OC(O) QR^9 , -CH=CH-C(O) QR^6 , $-CH=CH-C(O)OR^6$, $-C=C-C(O)OR^6$, $-C=C-C(O)R^6$, $-O-(C_1-C_{10} alkylene)-OR^6$, $-O-(C_1-C_{10} \text{ alkylene})-C(O)R^6$, $-O-(C_1-C_{10} \text{ alkylene})-C(O)OR^6$, -CN, alkylene)-C(O)NR⁶R⁷, -O-C(O)NR⁶NR⁷C(O)OR⁶, -O-(C₀₁-C₁₀ $C(O)NR^6NR^7C(O)OR^6$, $-O-(C_1-C_{10} alkylene)-C(O)(aryl)-N_3 -O-(C_1-C_{10} alkylene)-C(O)(aryl)-N_-$ N=N, -OC(O)-(C₁-C₁₀ alkylene)-C(O)OR⁶, -C(O)NR⁶R⁷, -(C₀₁-C₁₀ alkylene)-C(O)NR⁶R⁷, $-OC(O)NR^6R^7$, $-(C_{01}-C_{10} \text{ alkylene})-OC(O)NR^6R^7$, $-NO_2$, $-NR^6R^7$, $-(C_{01}-C_{10} \text{ alkylene})-NR^6R^7$, -O-(C₂-C₁₀ alkylene)-NR⁶R⁷, -NR⁶C(O)R⁷. -NR⁶C(O)OR⁹. $-NR^{6}C(O)NR^{7}R^{8}$, $-NR^{6}S(O)_{0.2}R^{9}$, $-N(S(O)_{0.2}R^{9})_{2}$, $-CHNOR^{6}$, $-C(O)NR^{6}R^{7}$, $-C(O)NR^6NR^6R^7$, $-S(O)_{0.2}NR^6R^7$, $-S(O)_{0.2}R^9$, $-O-C(O)-(C_1-C_{10} \text{ alkylene})-C(O)NR^6R^7$, -OC(O)-(C₁-C₁₀ alkylene)-NR⁶C(O)O-(alkylaryl), -P(O)(OR¹⁶)₂, - $(C_1-C_{10} \text{ alkylene})$ -OSi $(alkyl)_3$, -CF₃, -OCF₃, halo, alkoxyalkoxy, alkoxyalkoxy, alkoxycarbonylalkoxy, alkoxyarylalkoxy, alkoxyiminoalkyl, alkyldioyl, allyloxy, aryl, arylalkyl, aryloxy, arylalkoxy, aroyl, aroyloxy, aroylaroyloxy, arylalkoxycarbonyl, benzoylbenzoyloxy, heteroaryl, heteroarylalkyl, heteroarylalkoxy, dioxolanyl, heterocyclyl, heterocyclylalkyl, heterocyclylcarbonyl, heterocyclylcarbonylalkoxy and -L-M;

wherein optionally one or more carbon atoms of the $-(C_{01}-C_{30} \text{ alkylene})$ - radical of Q^1 , Q^2 , Q^3 , Q^4 and Q^5 is independently replaced by -O-, -C(O)-, -CH=CH-, -C=C-, -N(alkyl)-, -N(alkyl)-, or -NH-;

G is selected from the group consisting of a sugar residue, disugar residue, trisugar residue, tetrasugar residue, sugar acid, amino sugar, amino acid residue, oligopeptide residue comprising 2 to 9 amino acids, trialkylammoniumalkyl radical and -S(O)₂-OH, wherein optionally the sugar residue, disugar residue, trisugar residue, tetrasugar residue, sugar acid, amino sugar, amino acid residue or oligopeptide residue of G is substituted with -L-M;

L is selected from the group consisting of

$$\begin{cases} -(CH_2)_{\overline{x}1} - NH - \frac{1}{5}, & -(CH_2)_{\overline{x}2} - NH - \frac{1}{5}, & -(CH_2)_{\overline{x}3} - O - CO, &$$

wherein Me is methyl;

M is selected from the group of moieties consisting of

pharmaceutically acceptable salts of the moieties (M1) and (M3) to (M10) and free acids of the moieties (M1) and (M3) to (M10);

R² and R³ can be the same or different and each is independently selected from the group consisting of hydrogen, alkyl and aryl;

R⁶, R⁷ and R⁸ can be the same or different and each is independently selected from the group consisting of hydrogen, alkyl, aryl and arylalkyl; and

each R⁹ is independently alkyl, aryl or arylalkyl.
each R¹⁰ is independently H or alkyl;
q is 0 or 1;
r is 0 or 1;

m, n and p are independently selected from 0, 1, 2, 3 or 4; provided that at least one of q and r is 1, and the sum of m, n, p, q and r is 1, 2, 3, 4, 5 or 6; and provided that when p is 0 and r is 1, the sum of m, q and n is 1, 2, 3, 4 or 5;

x1 is 1 to 10; x2 is 1 to 10; x3 is 1 to 10; x4 is 1 to 10; x5 is 1 to 10: x6 is 1 to 10; and x7 is 1 to 10; x8 is 1 to 10; x9 is 1 to 10; x10 is 1 to 10; x11 is 1 to 10; x12 is 1 to 10; x13 is 1 to 10; x14 is 1 to 10; x15 is 1 to 10; and x16 is 1 to 10; x17 is 1 to 10; and x18 is 1 to 10;

with the proviso that at least one of Q¹, Q², Q³, Q⁴ and Q⁵ is -L-M or the sugar residue, disugar residue, trisugar residue, tetrasugar residue, sugar acid, amino sugar, amino acid residue or oligopeptide residue of G is substituted with -L-M, and wherein each of the above alkyl, alkenyl, alkynyl, alkylene, alkoxyalkoxy, alkoxyalkoxyalkoxy, alkoxyarylalkoxy, alkoxyarylalkoxy, alkoxyiminoalkyl, alkyldioyl, allyloxy, aryl, arylalkyl, aryloxy, arylalkoxy, aroylaroyloxy, arylalkoxy, aroylaroyloxy, arylalkoxycarbonyl, benzoylbenzoyloxy, heteroarylalkyl, heteroarylalkoxy, dioxolanyl, heterocyclylalkyl, heterocyclylcarbonyl, or heterocyclylcarbonylalkoxy groups, when present, is independently substituted or unsubstituted.

- (Original) The compound according to claim 1, wherein m, n and r are each zero,
 q is 1, p is 2, and Z is -CH₂-.
- 3. (Original) The compound according to claim 1, wherein m, n and r are each zero, q is 1, p is 2, and Z is $-CH_2$, Q^1 is $-OR^6$, wherein R^6 is hydrogen and Q^5 is fluorine.
- 4. (Currently Amended) The compound according to claim 1, wherein R² and R³ are each preferably hydrogen.
- 5. (Original) The compound according to claim 1, wherein Q¹ and Q² are each independently selected from the group consisting of -OR⁶, -O(CO)R⁶, -O(CO)OR⁹ and -O(CO)NR⁶R⁷.
 - 6. (Original) The compound according to claim 1, wherein Q⁴ is halo or -OR⁶.

- 7. (Original) The compound according to claim 1, wherein Q¹ is -OR⁶ wherein R⁶ is H.
- 8. (Original) The compound according to claim 1, wherein Q¹, Q², Q³, Q⁴ or Q⁵ is -L-M.
- 9. (Currently Amended) The compound according to claim 1, wherein Q^1 , Q^2 , Q^3 , Q^4 or Q^5 is $\underline{-G \text{ or } -(C_{01}-C_{30} \text{ alkylene})-G}$.
- 10. (Withdrawn) The compound according to claim 1, wherein G is selected from the group consisting of:

$$R^{5a}O$$
 OR^{4a} $R^{5a}O$ OR^{4a} OR^{5a} OR^{5a} OR^{5a} OR^{5a} OR^{5a} OR^{5a} OR^{5a} OR^{5a} OR^{5a}

$$R^{4b}Q$$
 $R^{4b}Q$
 R^{4

wherein R, R^a and R^b can be the same or different and each is independently selected from the group consisting of H, -OH, halo, -NH₂, azido, alkoxyalkoxy or -W-R³⁰;

W is independently selected from the group consisting of -NH-C(O)-, -O-C(O)-, -O-C(O)-N(\mathbb{R}^{31})-, -NH-C(O)-N(\mathbb{R}^{31})- and -O-C(S)-N(\mathbb{R}^{31})-;

R^{2a} and R^{6a} can be the same or different and each is independently selected from the group consisting of H, alkyl, acetyl, aryl and arylalkyl;

R^{3a}, R^{4a}, R^{5a}, R^{7a}, R^{3b} and R^{4b} can be the same or different and each is independently selected from the group consisting of H, alkyl, acetyl, arylalkyl, -C(O)alkyl and -C(O)aryl;

R³⁰ is independently selected from the group consisting of R³²-substituted T, R³²-substituted-T-alkyl, R³²-substituted-alkenyl, R³²-substituted-alkyl, R³²-substituted-cycloalkylalkyl;

R³¹ is independently selected from the group consisting of H and alkyl;

T is independently selected from the group consisting of phenyl, furyl, thienyl, pyrrolyl, oxazolyl, isoxazolyl, thiazolyl, isothiazolyl, benzothiazolyl, thiadiazolyl, pyrazolyl, imidazolyl and pyridyl;

R³² is 1 to 3 substituents which are each independently selected from the group consisting of H, halo, alkyl, -OH, phenoxy, -CF₃, -NO₂, alkoxy, methylenedioxy, oxo, alkylsulfanyl, alkylsulfinyl, alkylsulfonyl, -N(CH₃)₂, -C(O)-NHalkyl, -C(O)-N(alkyl)₂, -C(O)-alkyl, -C(O)-alkoxy and pyrrolidinylcarbonyl; or R³² is a covalent bond and R³¹, the nitrogen to which it is attached and R³² form a pyrrolidinyl, piperidinyl, N-methyl-piperazinyl, indolinyl or morpholinyl group, or a alkoxycarbonyl-substituted pyrrolidinyl, piperidinyl, N-methylpiperazinyl, indolinyl or morpholinyl group.

11. (Withdrawn) The compound according to claim 10, wherein G is selected from:

wherein Ac is acetyl and Ph is phenyl.

- 12. (Currently Amended) The compound according to claim 1, wherein optionally one or more carbon atoms of the $-(C_{\theta l}-C_{30} \text{ alkylene})$ radical of Q^1 , Q^2 , Q^3 , Q^4 and Q^5 is independently replaced by -O-.
 - 13. (Original) The compound according to claim 1, which is

14. (Currently Amended) A pharmaceutical composition for the treatment er prevention of atherosclerosis, hypercholesterolemia, sitosterolemia a vascular condition, diabetes mellitus, obesity, stroke, lowering a concentration of a cholesterol, phytosterol or 5a stanol in

JÚL-07-2006 14:29 P.15

Application No. 10/791,979 Amendment dated July 7, 2006 Attorney Docket No. CV06039US01

plasma of a mammal, preventing treating demyelination or treating Alzheimer's disease and/or regulating levels of amyloid β peptides in a subject comprising a therapeutically effective amount of a compound of claim 1 in a pharmaceutically acceptable carrier.

- 15. (Original) A pharmaceutical composition comprising a cholesterol-lowering effective amount of a compound of claim 1 in a pharmaceutically acceptable carrier.
- 16. (Currently Amended) A method of treating atherosclerosis, hypercholesterolemia, sitosterolemia or preventing a vascular condition, diabetes mellitus, obesity, stroke, lowering a concentration of a cholesterol, phytosterol or 5α -stanol in plasma of a mammal, preventing treating demyelination or treating Alzheimer's disease or regulating a level of an amyloid β peptide in a subject comprising the step of administering to a subject in need of such treatment an effective amount of a compound of claim 1.
- 17. (Original) A method of lowering cholesterol level in plasma of a mammal in need of such treatment comprising administering a pharmaceutically effective amount of the compound of claim 1.
 - 18. (Currently Amended) A compound represented by the structural formula (IA):

$$Q^{1} \qquad Q^{2} \qquad Q^{3} \qquad Q^{3} \qquad Q^{4} \qquad (IA)$$

or pharmaceutically acceptable isomers, salts, solvates or esters of the compound of Formula (IA),

wherein in Formula (IA) above:

X, Y and Z can be the same or different and each is independently selected from the group consisting of -CH₂-, -CH(alkyl)- and -C(alkyl)₂-;

 Q^1 and Q^2 can be the same or different and each is independently selected from the group consisting of H, $\underline{-G}$, $-(C_{01}-C_{30}$ alkylene)-G, $-OC(O)R^6$, $-OC(O)OR^9$, $-OC(O)NR^6R^7$, and -L-M:

Q3 is I to 5 substituents independently selected from the group consisting of alkyl, alkenyl, alkynyl, $\underline{-G}$, $\underline{-(C_{01}-C_{30} \text{ alkylene})-G}$, $\underline{-OR^6}$, $\underline{-(C_{01}-C_{10} \text{ alkylene})-OR^6}$, $\underline{-C(O)R^6}$, -(C_{01} - C_{10} alkylene)-C(O) R^6 , - $C(O)OR^6$, -(C_{01} - C_{10} alkylene)-C(O) OR^6 , -OC(O) R^6 . - $(C_{01}$ - C_{10} alkylene)- $OC(O)R^6$, - $OC(O)OR^9$, - C_{10} alkylene)- $OC(O)OR^9$, -CH=CH- $C(O)R^6$, $-CH=CH-C(O)OR^6$, $-C=C-C(O)OR^6$, $-C=C-C(O)R^6$, $-O-(C_1-C_{10} \text{ alkylene})-OR^6$, $-O-(C_1-C_{10} \text{ alkylene})-C(O)R^6$, $-O-(C_1-C_{10} \text{ alkylene})-C(O)OR^6$, -CN, $-O-(C_1-C_{10} \quad alkylene)-C(O)NR^6R^7, \quad \underline{-O-C(O)NR^6NR^7C(O)OR^6}, \quad -O-(C_{\theta 1}-C_{10} \quad alkylene)-C_{\theta 1}-C_{\theta 1}-C_{\theta$ $C(O)NR^6NR^7C(O)OR^6, -O-(C_1-C_{10} \text{ alkylene})-C(O)(\text{aryl})-N_3-O-(C_1-C_{10} \text{ alkylene}) -C(O)(\text{aryl})-N_3-O-(C_1-C_{10} \text{ alkylene}) -C(O)(\text{aryl})-N_3-O-(C_1-C_1)-(O)(\text{aryl})-N_3-(O)(C_1-C_1)-(O)(C_1-C_1)-(O)(C_1-C_1)-(O)(C_1-C_1)-(O)(C_1-C_1)-(O)(C_1-C_1)-(O)(C_1-C_1)-(O)(C_1-C_1)-(O)(C_1-C_1-C_1)-(O)(C_1-C_1-C_1)-(O)(C_1-C_1-C_1-C_1)-(O)(C_1-C_1-C_1-C_1-C_1-$ N=N, -OC(O)-(C₁-C₁₀ alkylene)-C(O)OR⁶, -C(O)NR⁶R⁷, -(C₀₁-C₁₀ alkylene)-C(O)NR⁶R⁷, $-OC(O)NR^{6}R^{7}$, $-(C_{01}-C_{10} \text{ alkylene})-OC(O)NR^{6}R^{7}$, $-NO_{2}$, $-NR^{6}R^{7}$, $-(C_{01}-C_{10} \text{ alkylene})-NR^{6}R^{7}$, -O-(C_2 - C_{10} alkylene)-NR⁶R⁷, -NR⁶C(O)R⁷, -NR⁶C(O)OR⁹, $-NR^6C(O)NR^7R^8$, $-NR^6S(O)_{0-2}R^9$, $-N(S(O)_{0-2}R^9)_2$, $-CHNOR^6$, $-C(O)NR^6R^7$, $-C(O)NR^6NR^6R^7$, $-S(O)_{0-2}NR^6R^7$, $-S(O)_{0-2}R^9$, $-O-C(O)-(C_1-C_{10} \text{ alkylene})-C(O)NR^6R^7$, -OC(O)-(C₁-C₁₀ alkylene)-NR⁶C(O)O-(alkylaryl), -P(O)(OR¹⁰)₂, - $(C_1-C_{10} \text{ alkylene})$ -OSi $(alkyl)_3$, -CF₃, -OCF₃, halo, alkoxyalkoxy, alkoxyalkoxy, alkoxycarbonylalkoxy, alkoxyarylalkoxy, alkoxyiminoalkyl, alkyldioyl, allyloxy, aryl, arylalkyl, aryloxy, arylalkoxy, aroyl, aroyloxy, aroylaroyloxy, arylalkoxycarbonyl, benzoylbenzoyloxy, heteroaryla, heteroarylalkyl, heteroarylalkoxy, dioxolanyl, heterocyclylalkyl,

 Q^4 is 1 to 5 substituents independently selected from the group consisting of alkyl, alkynyl, $\underline{-G}$, $\underline{-(C_{01}-C_{30} \text{ alkylene})}$ -G, $\underline{-OR}^6$, $\underline{-(C_{01}-C_{10} \text{ alkylene})}$ - OR^6 , $\underline{-C(O)R}^6$,

heterocyclylcarbonyl, heterocyclylcarbonylalkoxy and -L-M;

```
-(C_{01}-C_{10} alkylene)-C(O)R^6, -C(O)OR^6, -(C_{01}-C_{10} alkylene)-C(O)OR^6, -OC(O)R^6.
-(C_{\theta\underline{1}}-C_{10} \text{ alkylene})-OC(O)R^6, \underline{-OC(O)OR}^9, -(C_{\theta\underline{1}}-C_{10} \text{ alkylene})-OC(O)OR^9, -CH=CH-C(O)R^6, \underline{-OC(O)OR}^9, -CH-C(O)R^6, \underline{-OC(O)OR}^9, -CH-C(O)R^6, \underline{-OC(O)OR}^9, -CC(O)R^6, \underline{-OC(O)OR}^9, -CC(O)R^6, \underline{-OC(O)OR}^9, -CC(O
-CH=CH-C(O)OR^6, -C=C-C(O)OR^6, -C=C-C(O)R^6, -O-(C_1-C_{10} \text{ alkylene})-OR^6,
-O-(C_1-C_{10} alkylene)-C(O)R^6, -O-(C_1-C_{10} alkylene)-C(O)OR^6, -CN,
-O-(C_1-C_{10}) alkylene)-C(O)NR<sup>6</sup>R<sup>7</sup>, -O-C(O)NR^6NR^7C(O)OR^6, -O-(C_{01}-C_{10})
C(O)NR<sup>6</sup>NR<sup>7</sup>C(O)OR<sup>6</sup>, -O-(C<sub>1</sub>-C<sub>10</sub> alkylene)-C(O)(aryl)-N<sub>3</sub>-O-(C<sub>1</sub>-G<sub>10</sub> alkylene)-C(O)(aryl)-N-
N=N^{-}, -OC(O)-(C_{1}-C_{10} \text{ alkylene})-C(O)OR^{6}, -C(O)NR^{6}R^{\frac{7}{2}}, -(C_{\theta 1}-C_{10} \text{ alkylene})-C(O)NR^{6}R^{\frac{7}{2}},
 -OC(O)NR^{6}R^{7}, -(C_{91}-C_{10} \text{ alkylene}) -OC(O)NR^{6}R^{7}, -NO_{2}, -NR^{6}R^{7}, -(C_{91}-C_{10} \text{ alkylene}) -NR^{6}R^{7},
 -O-(C_2-C_{10} \text{ alkylene})-NR^6R^7, -NR^6C(O)R^7, -NR^6C(O)OR^9,
 -NR^6C(O)NR^7R^8, -NR^6S(O)_{0-2}R^9, -N(S(O)_{0-2}R^9)_2, -CHNOR^6, -C(O)NR^6R^7,
  -C(O)NR^6NR^6R^7, -S(O)_{0.2}NR^6R^7, -S(O)_{0.2}R^9, -O-C(O)-(C_1-C_{10} \text{ alkylene})-C(O)NR^6R^7,
  -OC(O)-(C1-C10 alkylene)-NR6C(O)O-(alkylaryl), -P(O)(OR10)2,
  -(C_1-C_{10} \text{ alkylene})-OSi(alkyl)<sub>3</sub> , -CF<sub>3</sub>, -OCF<sub>3</sub>, halo, alkoxyalkoxy, alkoxyalkoxyalkoxy,
  alkoxycarbonylalkoxy, alkoxyarylalkoxy, alkoxyiminoalkyl, alkyldioyl, allyloxy, aryl, arylalkyl,
  aryloxy, arylalkoxy, aroyl, aroyloxy, aroylaroyloxy, arylalkoxycarbonyl, benzoylbenzoyloxy,
  heteroaryl, heteroarylalkyl, heteroarylalkoxy, dioxolanyl, heterocyclyl, heterocyclylalkyl,
  heterocyclylcarbonyl, heterocyclylcarbonylalkoxy and -L-M;
```

Q⁵ is 1 to 5 substituents independently selected from the group consisting of alkyl, alkynyl, -G, -(C $_{01}$ -C $_{30}$ alkylene)-G, -OR $_{01}^{6}$, -(C $_{01}$ -C $_{10}$ alkylene)-OR $_{01}^{6}$, -C(O)R $_{01}^{6}$, -C(O)R $_{01}^{6}$, -C(O)R $_{01}^{6}$, -C(O)R $_{01}^{6}$, -C(O)OR $_{01}^{6}$, -O-(C₁-C₁₀ alkylene)-C(O)OR $_{01}^{6}$,

 $\begin{array}{l} \underline{-OC(O)NR^6R^7,} -(C_{01}\text{-}C_{10} \text{ alkylene}) - OC(O)NR^6R^7,} -NO_2, \underline{-NR^6R^7,} -(C_{01}\text{-}C_{10} \text{ alkylene}) - NR^6R^7,} \\ -O-(C_2\text{-}C_{10} \text{ alkylene}) -NR^6R^7,} -NR^6C(O)R^7,} -NR^6C(O)OR^9,} \\ -NR^6C(O)NR^7R^8,} -NR^6S(O)_{0\cdot 2}R^9,} -N(S(O)_{0\cdot 2}R^9)_2,} -CHNOR^6,} -C(O)NR^6R^7,} \\ -C(O)NR^6NR^6R^7,} -S(O)_{0\cdot 2}NR^6R^7,} -S(O)_{0\cdot 2}R^9,} -O-C(O)-(C_1\text{-}C_{10} \text{ alkylene}) -C(O)NR^6R^7,} \\ -OC(O)-(C_1\text{-}C_{10} \text{ alkylene}) -NR^6C(O)O-(\text{alkylaryl}),} -P(O)(OR^{10})_2,} \end{array}$

-(C₁-C₁₀ alkylene)-OSi(alkyl)₃ , -CF₃, -OCF₃, halo, alkoxyalkoxy, alkoxyalkoxy, alkoxyarylalkoxy, alkoxyiminoalkyl, alkyldioyl, allyloxy, aryl, arylalkyl, aryloxy, arylalkoxy, aroyloxy, aroyloxy, arylalkoxycarbonyl, benzoylbenzoyloxy, heteroarylalkyl, heteroarylalkoxy, dioxolanyl, heterocyclylalkyl, heterocyclylcarbonyl, heterocyclylcarbonyl, heterocyclylcarbonylalkoxy and -L-M;

wherein optionally one or more carbon atoms of the $-(C_{01}-C_{30} \text{ alkylene})$ - radical of Q^1 , Q^2 , Q^3 , Q^4 and Q^5 is independently replaced by -O-, -C(O)-, -CH=CH-, -C=C-, -N(alkyl)-, -N(alkyl)-, or -NH-;

G is selected from the group consisting of a sugar residue, disugar residue, trisugar residue, tetrasugar residue, sugar acid, amino sugar, amino acid residue, oligopeptide residue comprising 2 to 9 amino acids, trialkylammoniumalkyl radical and -S(O)₂-OH, wherein optionally the sugar residue, disugar residue, trisugar residue, tetrasugar residue, sugar acid, amino sugar, amino acid residue or oligopeptide residue of G is substituted with -L-M;

L is selected from the group consisting of

$$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \end{array} \end{array} \end{array} \end{array} = \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \end{array} \end{array} = \begin{array}{c} \begin{array}{c} \\ \end{array} = \begin{array}{c} \\ = \end{array} = \begin{array}{c} \\ \end{array} = \begin{array}{c}$$

$$\begin{array}{l} -\xi & \text{O-C(O)-(CH2)}_{x17} \text{O-(O)C-} & \xi \\ & \text{and} \end{array}$$

wherein Me is methyl;

M is selected from the group of moieties consisting of

and pharmaceutically acceptable salts of moieties (M1) to (M33);

R² and R³ can be the same or different and each is independently selected from the group consisting of hydrogen, alkyl and aryl;

R⁶, R⁷ and R⁸ can be the same or different and each is independently selected from the group consisting of hydrogen, alkyl, aryl and arylalkyl; and

```
each R<sup>9</sup> is independently alkyl, aryl or arylalkyl, each R<sup>10</sup> is independently H or alkyl; q is 0 or 1; r is 0 or 1;
```

m, n and p are independently selected from 0, 1, 2, 3 or 4; provided that at least one of q and r is 1, and the sum of m, n, p, q and r is 1, 2, 3, 4, 5 or 6; and provided that when p is 0 and r is 1, the sum of m, q and n is 1, 2, 3, 4 or 5;

```
x8 is 1 to 10;

x9 is 1 to 10;

x10 is 1 to 10;

x11 is 1 to 10;

x12 is 1 to 10;

x13 is 1 to 10;

x14 is 1 to 10;

x15 is 1 to 10; and

x16 is 1 to 10; and

x18 is 1 to 10;
```

with the proviso that at least one of Q¹, Q², Q³, Q⁴ and Q⁵ is –L-M or the sugar residue, disugar residue, trisugar residue, tetrasugar residue, sugar acid, amino sugar, amino acid residue or oligopeptide residue of G is substituted with –L-M, and wherein each of the above alkyl, alkenyl, alkynyl, alkylene, alkoxyalkoxy, alkoxyalkoxy, alkoxyarylalkoxy, alkoxyarylalkoxy, alkoxyiminoalkyl, alkyldioyl, allyloxy, aryl, arylalkyl, aryloxy, arylalkoxy, aroyloxy, aroyloxy, arylalkoxy, arylalkoxy, aroyloxy, aroyloxy, arylalkoxy, arylalkoxy, aroyloxy, aroyloxy, aroyloxy, arylalkoxy, aroyloxy, aroyloxy, aroyloxy, aroyloxy, aroyloxy, arylalkoxy, aroyloxy, aroyloxy,

heteroaryl, heteroarylalkyl, heteroarylalkoxy, dioxolanyl, heterocyclyl, heterocyclylalkyl, heterocyclylcarbonyl, or heterocyclylcarbonylalkoxy groups, when present, is independently substituted or unsubstituted

- 19. (Original) The compound according to claim 18, wherein m, n and r are each zero, q is 1, p is 2, and Z is -CH₂-.
- 20. (Original) The compound according to claim 18, wherein m, n and r are each zero, q is 1, p is 2, and Z is -CH₂-, Q¹ is -OR⁶, wherein R⁶ is hydrogen and Q⁵ is fluorine.
- 21. (Currently Amended) The compound according to claim 18, wherein R^2 and R^3 are each proferably hydrogen.
- 22. (Original) The compound according to claim 18, wherein Q¹ and Q² are each independently selected from the group consisting of -OR⁶, -O(CO)R⁶, -O(CO)OR⁹ and -O(CO)NR⁶R⁷.
 - 23. (Original) The compound according to claim 18, wherein Q⁴ is halo or -OR⁶.
- 24. (Original) The compound according to claim 18, wherein Q¹ is -OR⁶ wherein R⁶ is H.
- 25. (Original) The compound according to claim 18, wherein Q¹, Q², Q³, Q⁴ or Q⁵ is -L-M.
- 26. (Currently Amended) The compound according to claim 18, wherein Q^1 , Q^2 , Q^3 , Q^4 or Q^5 is -(C₉₁-C₃₀ alkylene)-G.

(Withdrawn) The compound according to claim 18, wherein G is selected from 27. the group consisting of:

wherein R, R and R can be the same or different and each is independently selected from the group consisting of H, -OH, halo, -NH₂, azido, alkoxyalkoxy or -W-R³⁰;

W is independently selected from the group consisting of -NH-C(O)-, -O-C(O)-, -O- $C(O)-N(R^{31})-$, -NH- $C(O)-N(R^{31})-$ and -O- $C(S)-N(R^{31})-$;

R²ⁿ and R⁶ⁿ can be the same or different and each is independently selected from the group consisting of H, alkyl, acetyl, aryl and arylalkyl;

R^{3a}, R^{5a}, R^{5a}, R^{7a}, R^{3b} and R^{4b} can be the same or different and each is independently selected from the group consisting of H, alkyl, acetyl, arylalkyl, -C(O)alkyl and -C(O)aryl;

 R^{30} is independently selected from the group consisting of R^{32} -substituted T, R^{32} substituted-T-alkyl, R³²-substituted-alkenyl, R³²-substituted-alkyl, R³²-substituted-cycloalkyl and R³²-substituted-cycloalkylalkyl;

R³¹ is independently selected from the group consisting of H and alkyl;

T is independently selected from the group consisting of phenyl, furyl, thienyl, pyrrolyl, oxazolyl, isoxazolyl, thiazolyl, isothiazolyl, benzothiazolyl, thiadiazolyl, pyrazolyl, imidazolyl and pyridyl;

R³² is 1 to 3 substituents which are each independently selected from the group consisting of H, halo, alkyl, -OH, phenoxy, -CF3, -NO2, alkoxy, methylenedioxy, oxo, alkylsulfanyl, alkylsulfinyl, alkylsulfonyl, -N(CH₃)₂, -C(O)-NHalkyl, -C(O)-N(alkyl)₂, -C(O)-alkyl. -C(O)-

alkoxy and pyrrolidinylcarbonyl; or R³² is a covalent bond and R³¹, the nitrogen to which it is attached and R³² form a pyrrolidinyl, piperidinyl, N-methyl-piperazinyl, indolinyl group, or a alkoxycarbonyl-substituted pyrrolidinyl, piperidinyl, N-methylpiperazinyl, indolinyl or morpholinyl group.

28. (Withdrawn) The compound according to claim 27, wherein G is selected from:

JUL-07-2006 14:31 P.26

Application No. 10/791,979 Amendment dated July 7, 2006 Attorney Docket No. CV06039US01

wherein Ac is acetyl and Ph is phenyl.

- 29. (Original) The compound according to claim 18, wherein optionally one or more carbon atoms of the $-(C_{\theta 1}-C_{30}$ alkylene)- radical of Q^1 , Q^2 , Q^3 , Q^4 and Q^5 is independently replaced by -O-.
- 30. (Currently Amended) A pharmaceutical composition for the treatment of prevention of atherosclerosis, hypercholesterolemia, sitosterolemia a vascular condition, diabetes mellitus, obesity, stroke, lowering a concentration of a cholesterol, phytosterol or 5α -stanol in plasma of a mammal, preventing treating demyelination or treating Alzheimer's disease and/or regulating levels of amyloid β peptides in a subject comprising a therapeutically effective amount of a compound of claim 18 in a pharmaceutically acceptable carrier.
- 31. (Original) A pharmaceutical composition comprising a cholesterol-lowering effective amount of a compound of claim 18 in a pharmaceutically acceptable carrier.
- 32. (Currently Amended) A method of treating atherosclerosis, hypercholesterolemia, sitosterolemia or preventing a vascular condition, diabetes mellitus, obesity, stroke, lowering a concentration of a cholesterol, phytosterol or 5α -stanol in plasma of a mammal, preventing treating demyelination or treating Alzheimer's disease or regulating a level of an amyloid β peptide in a subject comprising the step of administering to a subject in need of such treatment an effective amount of a compound of claim 18.
- 33. (Original) A method of lowering cholesterol level in plasma of a mammal in need of such treatment comprising administering a pharmaceutically effective amount of the compound of claim 18.