8 IP adresy IPv4

Účel a funkce IP adres

- IP adresa (Internetová protokolová adresa) = číslo, které jednoznačně identifikuje síťové rozhraní v počítačové síti
- IP adresa může být zapsána v desítkové soustavě nebo ve dvojkové soustavě
- každý počítač má svoje jedinečné číslo a slouží jako identifikátor mezi ostatními počítači a veškerými zařízeními na internetu
- toto číslo je automaticky generováno počítačem a musí být pro přehlednost jednoznačné
- v současnosti se nejvíce používá generování podle protokolu IPv4 a to v podobě například: 192.168.1.1, toto protokolové číslo je zapsané ve 32-bitovém čísle [4 decimální čísla (oktety = 4 osmice bitů) -> 0 255], což znamená, že máme přibližně 4 miliardy možností, ale protože spousta adres je zabrána pro jiné účely, není jich doopravdy tolik
- jelikož IP adres verze 4 je pouze omezené množství, nové počítače mají IP adresu verze 6, která nabízí více variant, je zapsaná ve 128-bitovém čísle a má tedy 4x více kombinací než 32-bitové číslo
- IP adresa se dělí na 3 hlavní části: 1) číslo sítě 2) číslo podsítě 3) číslo síťového rozhraní
- tyto hlavní části umožňují co nejpřesnější lokalizaci počítače v síti kdekoliv na světě, můžeme si to představit jako poštovní adresu, akorát pro počítače
- podle tohoto čísla lze určit na které síti se uživatel s počítačem nachází a potom už ho můžeme snadno vystopovat
- jelikož jsou tyto čísla pro obyčejné uživatele příliš složitá, existuje systém DNS (Domain Name System = systém jmenování domén), který umožňuje používat jména počítačů, která jsou dobře zapamatovatelná a automaticky je potom převede na číselnou IP adresu pro identifikaci

Třídy adres

Tří da	Začátek (bin)	1. bajt	Standardní maska	Bitů sítě	Bitů PC	Sítí	Stanic v každé síti
Α	0	0–127	255.0.0.0	8	24	126	16 777 216
В	10	128- 191	255.255.0.0	16	16	16384	65536
С	110	192- 223	255.255.255.0	24	8	2 097 152	256
D	1110	224- 239			multica	est	
E	1111	240- 255	vyhrazeno jako rezerva (výzkumné a experimentální účely)				

třída	první byte	minimální adresa	maximální adresa
Α	0 – až 127	0.0.0.0	127.255.255.255
В	128 až 191	128.0.0.0	191.255.255.255
С	192 až 233	192.0.0.0	233.255.255.255
D	224 až 239	224.0.0.	239.255.255.255
E	240 až 255	240.0.0.0 <- (zkrácená podoba) ->	255.255.255

původně sloužila v IPv4 k určení podsítě první osmice bitů (první číslo v zápisu IP adresy), když se to ukázalo jako nedostatečné, byly zavedeny tzv. třídy IP adres (A, B, C, D a E), kde bylo rozdělení na podsítě určeno tzv. maskou sítě a ta byla určena prvními několika bity samotné IP adresy, tento způsob se však po čase ukázal také jako nedostatečný, protože poskytoval relativně hodně velkých podsítí (třída A) a málo malých podsítí (třída C)

Třída A

- rozsah 0 127
- první 1 bit je adresa sítě, další 3 jsou adresy PC

Třída B

- rozsah 128 191
- první 2 bity jsou adresa sítě, další 2 bity jsou adresy PC

Třída C

- rozsah 192 233
- první 3 bity jsou adresa sítě, další 1 bit je adresa PC

Třída D

- slouží pro skupinovou adresaci (multicast)

Třída E

- slouží pro experimentální účely

Rezervované IP adresy

- nelze využívat všechny IP adresy, protože nějaké mají speciální určení
- nejnižší adresa v síti (s nulovou adresou stanice) slouží v IPv4 jako označení celé podsítě
- nejvyšší adresa v síti (adresa stanice obsahuje samé binární jedničky) slouží jako adresa pro všesměrové vysílání (broadcast), takové adresy tedy nelze použít pro normální účely
- adresy 127.x.x.x (tzv. localhost, nejčastěji se používá adresa 127.0.0.1) jsou rezervovány pro tzv. loopback, logickou smyčku umožňující posílat pakety sám sobě

třída	rozsah	minimální adresa	maximální adresa	maska rozsahu [10]	maska rozsahu [prefix]
Α	10	10.0.0.0	10.255.255.255	255.0.0.0	/8
В	172.16 až 32	172.16.0.0	172.31.255.255	255.240.0.0	/12
С	192.168	192.168.0.0	192.168.255.255	255.255.0.0	/16
D	nic	-	-	-	-
E	nic	-	_	-	-

- toto jsou rozsahy IP adres pro použití v domácí, firemní či podnikové síti jakéhokoliv typu, tyto rozsahy se na Internetu nikdy nemohou objevit
- vyhrazené adresy z třídy A jsou pro velké a rozlehlé sítě, adresy ze sítě B jsou pro menší, ale i tak rozlehlé sítě, adresy ze sítě C jsou pro domácí využití

Veřejné a soukromé IP adresy

Veřejné

- veřejná IP adresa je viditelná v síti Internet
- je-li IP adresa PC viditelná, je možno se k takovémuto PC odkudkoli z internetu připojit a komunikace s ním je velmi rychlá, a tudíž pohodlná
- k nevýhodám veřejné IP adresy patří menší anonymita, se kterou je spojeno riziko útoků na počítač dané adresy, je proto nezbytné, aby takového PC bylo zabezpečeno antivirovou ochranou a firewallem

Neveřejné

- neveřejná IP adresa je z hlediska bezpečnosti vhodnější, neboť je takovýto počítač v internetu neviditelný
- ve většině případů je takovéto PC skryto za proxyserverem, který přiděluje adresu pouze vnitřní sítě, je tedy možno sdílet data pouze v intranetu neboli interní síti
- naprostá většina poskytovatelů internetového připojení svým klientům poskytuje právě tento typ adresy

Subnetting

- proces rozdělení IP sítí do menších podsítí nazývaných "podsítě"
- používá se zejména v oddělených oblastech, ve kterých je potřeba lépe využít přidělený adresní prostor
- typicky toto řešení využívají firmy, které mají několik menších oddělených sítí s relativně malým počtem uzlů v každé síti, tato firma pak místo více adres třídy C (pro každou lokální síť jedna) vystačí s jedinou adresou třídy C, kde prvních několik bitů z lokální části adresy použije pro adresaci podsítě

-			
- 1	1 /.V	1 1 /. V	1 1
- 1	adresa sítě	adresa podsítě	adresa uzlu
- 1	adicoa oite	adicoa podoite	auicsa uziu

 př. adresu 192.44.118.192 třídy C firma použije pro vytvoření 4 lokálních foremních podsítí takto:

Původní IP adresa:

síťová část adresy	lokální část adresy
--------------------	---------------------

Pro adresaci podsítí budou použity první 2 bity lokální části adresy, mohou vzniknout 4 podsítě s různými adresami:

adresa sítě	00	adresa uzlu
adresa sítě	01	adresa uzlu
adresa sítě	10	adresa uzlu
adresa sítě	11	adresa uzlu

- rozdělení jedné síťové adresy na několik adres se děje posunutím hranice mezi oběma logickými složkami adresy směrem k nižším bitům (doprava)
- posunutí je definováno maskou sítě (podsítě)
- důležitý je fakt, že toto rozdělení na několik podsítí je záležitost lokální, nikoli globální, navenek se tedy všechny adresy podsítí jeví stále jako jediná síťová adresa
- z tohoto důvodu je nutné, aby sítě, které subnetting využívají měly jediný společný vstupní bod

Supernetting

- princip supernettingu je opačný než u subnettingu
- původně samostatné síťové adresy spojuje do jedné společné adresy
- pro použití supernettingu nejsou vhodné libovolné adresy, musí jít o adresy "sousední", to jsou adresy, které se shodují v určitém počtu vyšších bitů své síťové části a vyčerpávají všechny bitové kombinace v příslušném počtu nižších bitů své síťové části
- supernetting se používá pro zjednodušení směrovacích tabulek
- informace o "splynutí" více adres v jednu musí mít na rozdíl od subnettingu globální charakter, aby ji pro směrování bylo možné použít

VLSM (Variable Length Subnet Masking)

- aby nedocházelo k blokování IP adres u menších sítí, byl zaveden koncept IP adresace s možností měnit délku HOST ID (nebo SUBNET ID) podle velikosti uvažované IP subsítě
- aby mohl VLSM systém správně fungovat, bylo nutné upravit směrovací protokoly v IP sítích tak, aby si směrovače vyměňovaly mezi sebou nejen IP adresy sítí, ale i jejich přidružené síťové masky
- výsledkem použití VLSM systému je to, že menším subsítím je přiřazena delší IP maska a tím i kratší pole HOST ID, tak aby co nejlépe korespondovalo s požadavky dané sítě
- VLSM adresace tedy významně přispívá k efektivnějšímu využití přiděleného adresového prostoru s minimální blokací IP adres
- na druhou stranu VLSM je náročnější na pochopení a v některých případech může komplikovat správu sítě
- VLSM má smysl používat jen v těch případech, kdy je třeba efektivně využít IP adresový prostor, typicky toto hlavně platí pro veřejné IP adresy, které musíme šetřit

The Box Method The box method is a simple way to visualize the breakdown of subnets and addresses into smaller sizes. By shading or coloring in the boxes you can easily break up your subnets without overlapping your addresses. You adjust each subnet to the correct size needed. Start with a square. The whole square is a single subnet comprised of 256 addresses. /24 255.255.255.0 256 Hosts 1 Subnet Split the box in half and you get two subnets with 128 addresses /25 255.255.255.128 128 Hosts 2 Subnets Divide the box into guarters and you get four subnets with 64 addresses.

/26

255.255.255.192 64 Hosts

4 Subnets

Visualizing Subnets Using

Split each individual square and you get eight subnets with 32 addresses.	Ö	32	128	160
/27 255.255.255.224 32 Hosts 8 Subnets	31 64 95	96	159 192 223	191 224 255
Split the boxes in half again and you get sixteen subnets with sixteen addresses.	0 15	32 47	128 143	160 175 176
/28 255.255.255.240 16 Hosts 16 Subnets	31 64 79 80	63 96 111 112	159 192 207 208	191 224 239 240 255
The next split gives you thirty two subnets with eight addresses.	0 0 7 15 16 94	30 47 46 96	135 143 144 152	950 950 957 175 176 164
/29 255.255.255.248 8 Hosts 32 Subnets	23 31 64 72 71 79 80 88	55 63 56 104 309 111 112 129	151 194 192 200 199 203 200 216 215 223	183 191 224 232 321 239 340 348 347 256
The last split gives sixty four subnets with four addresses each.	0 8 11 4 12 7 15 16 24 19 27 20 28 23 31	32 40 36 43 36 44 38 47 48 56 51 59 52 60 55 63	128 136 131 138 132 140 136 143 144 152 147 155 148 156 151 154	160 168 163 171 164 172 167 175 176 184 179 187 180 188
/30 255.255.255.252 4 Hosts 64 Subnets	64 72 67 75 68 76 71 79 80 88 83 91 84 92 87 95	96 104 99 107 100 106 103 111 112 120 115 123 116 124 119 127	192 200 196 203 196 204 199 207 206 216 211 219 212 220 215 223	224 232 227 236 228 236 231 239 240 248 343 251 244 252 347 256

ZDROJE:

https://docplayer.cz/26775120-Adresace-ipv4-vlsm-cidr-priklady-a-principy.html

https://wiki.knihovna.cz/index.php/IP adresa#Protokol IPv4

http://dousa.blogujem.eu/2014/04/zakladni-zarikadla-v-ipv4-siti-ip-adresy/

https://www.earchiv.cz/anovinky/ai1646.php3

https://www.anetliberec.cz/clanky/detail-verejna-vs-neverejna-ip-adresa-54/

https://cs.wikipedia.org/wiki/IP adresa

https://moodle.sspbrno.cz/pluginfile.php/6391/mod resource/content/1/ip adresy1.pdf