1、(10p)

 $\hbox{1-bit comparator - logic expression , draw the circuit and complete the time} \\$

Α	В	F _{A<b< sub=""></b<>}	F _{A=B}	F _{A>B}
0	0	0	1	0
0	1	1	0	0
1	0	0	0	1
1	1	0	1	0

Expression:

 $F_{A=B} = \overline{A \oplus B}$

 $\mathbf{F}_{A < B} = \overline{\mathbf{A}} \ \mathbf{B}$

 $\mathbf{F}_{A>B} = \mathbf{A} \ \overline{\mathbf{B}}$

Circuit: (4p)

Time diagram: (6p)

2、(10p)

reduce the expression $F(x, y, z, w) = \sum m(2, 4, 6, 8, 13, 14, 15) + \sum d(0, 7, 9, 10)$ Karnaugh map: (6p)

$$F = \overline{yw} + \overline{xw} + yz + x\overline{z}w$$
 (4p)
或将 $x\overline{z}w$ 替换为 xyw

即:
$$F = \overline{y}\overline{w} + \overline{x}\overline{w} + yz + xyw$$

3 (15p) Give the truth table of 1-bit full adder, and implement it using 1-of-8 multiplexer.

Truth Table: (8p)

Α	В	Cin	Cout	Sum
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

1- of-8 multiplexer: (7p)

$$Cout = f(a, b, Cin) = \sum m(3, 5, 6, 7)$$

$$Sum = f(a, b, Cin) = \sum m(1, 2, 4, 7)$$

$$4 \cdot f(a,b,c) = b\overline{c} + a\overline{b} + abc$$

1)(10p) SOP and POS

$$f(a,b,c) = \sum m(2,4,5,6,7) = \overline{a}b\overline{c} + a\overline{b}\overline{c} + a\overline{b}c + ab\overline{c} + abc$$
 (5p)

$$f(a,b,c) = \prod M(0,1,3) = (a+b+c)(a+b+\overline{c})(a+\overline{b}+\overline{c})$$
 (5p)

2) (10p)nand gates

$$f(a,b,c) = \overline{b\overline{c} \cdot \overline{ab}} \cdot \overline{abc}$$
 (5p)
(或者是 $\overline{\overline{a} \cdot \overline{b\overline{c}}}$)

3) (15p) 3-line-to-8-line decoder

输出采用低有效输出,最小项使用与非门(非-或门)连接,或最大项使用或门连接。

4)(15p) 1-of-16 decoder (4-to-16 decoder)

可以将最高位接 1,此时采用输出位 8-15,

或者将最高位接 0,此时采用输出位 0-7,

最小项采用与非(非-或)门,或利用最大项使用或门输出。

5)(15p)1-of-4 multiplexer

(4p)

ab c	00	01	11	10
0	0	1	1	1
1	0	0	1	1

ab	00	01	11	10
c				
0	0	1	1	
1	0	0	1	1
		J		
	$D_0 = 0$	$D_i = C$	' D3=	D ₂ =

降维(4p)

a b	0	1
0	0	1
1	C'	1

选择一个数据输入端作为信号输入, S1 连接 a,S0 连接 b,D0 接地, D1 接 c',D2 和 D3 接 Vcc (7p)

