151-0530-00L, Spring, 2020

Nonlinear Dynamics and Chaos II

Homework Assignment 1

Due: Thursday, March 11, in class

- 1. Show that the map the binary expansion map $g(x) = 2x \mod 1$ is chaotic on [0,1].
- 2. Let A denote the transition matrix for a sub-shift $\sigma \colon \Sigma_A^N \mapsto \Sigma_A^N$ of finite type on N symbols.
 - (a) Show that the number of fixed points of σ is equal to trace(A).
 - (b) Show that the total number of admissible k-periodic points (i.e., k-periodic points whose minimal period may be less than k) is equal to $\operatorname{trace}(A^k)$.
- 3. The idea of the Lyapunov-exponent (see part I of this course) can be extended from continuous to discrete dynamical systems. Specifically, for one-dimensional iterated maps $x_{n+1} = f(x_n)$ defined by a smooth function $f: \mathbb{R} \to \mathbb{R}$, assume that trajectories separate from each other at an asymptotic rate of $e^{\lambda(x_0)n}$ for some exponent $\lambda \in \mathbb{R}$, which we may informally call the Lyapunov exponent associated with the initial condition x_0 from which the iteration starts. Note that $\lambda(x_0)$ may also be negative, which indicates exponential convergence between the trajectories starting close to x_0 . Positive values of $\lambda(x_0)$ indicate sensitive dependence on initial conditions near x_0 , which is a necessary condition for chaotic behavior, as we have seen. A more precise definition of $\lambda(x_0)$ formalizes these ideas by letting

$$\lambda(x_0) = \lim_{n \to \infty} \frac{1}{n} \lim_{\delta \to 0+} \log \frac{|f^n(x_0 + \delta) - f^n(x_0)|}{\delta},$$

whenever the limits involved in this expression exist.

(a) Show that

$$\lambda(x_0) = \lim_{n \to \infty} \frac{1}{n} \sum_{i=0}^{n-1} \log |f'(f^i(x_0))|,$$

whenever the limit $n \to \infty$ exists.

(b) Compute $\lambda(x_0)$ as the average of ten $\lambda(x_0^i)$ values for randomly selected initial conditions x_0^1, \ldots, x_0^{10} for the logistic map f(x) = ax(1-x), for 50 a values taken from the parameter range $a \in [3,4]$. Plot the resulting average Lyapunov exponents as a function of a and identify the approximate a value over which an overall sensitivity for initial conditions arises and hence chaos is possible. Include a copy of your code with the results. (Hint: see Olsen, L.F., and Degn, H., Chaos in biological systems, Quart. Rev. Biophys. 18 (1985) 165-225, Fig. 6 for the plot you should obtain from your calculations.)