<u>פתרון גיליון תרגילים מספר 9</u>

1) רשמו פיתוחי טיילור לפונקציות הבאות:

$$a = 0$$
 סביב הנקודה $f(x) = \sqrt[3]{1+x}$ (א

$$f(0) = 1$$
, $f'(x) = \frac{1}{3}(1+x)^{-2/3} \Rightarrow f'(0) = \frac{1}{3}$, $f''(x) = \frac{-2}{9}(1+x)^{-5/3}$

$$\Rightarrow f''(0) = \frac{-2}{9} , f'''(x) = \frac{10}{27} (1+x)^{-8/3} \Rightarrow f'''(0) = \frac{10}{27}$$

:ולכן
$$f(x) = (-1)^{n+1} \frac{1 \cdot 2 \cdot 5 \cdot \dots \cdot (2 + 3(n-2))}{3^n}$$
 : ולכן

$$T_n(x) = 1 + \frac{1}{3}x - \frac{2}{9}x^2 + \dots + \frac{(-1)^n}{3^n} \prod_{k=1}^n (2 + 3(k-2))x^n$$

$$a=1$$
 סביב $f(x)=x\sqrt{x}$ (ב

נפתח את הפונקציה \sqrt{x} סביב 1.

$$f(1) = 1$$
, $f'(x) = \frac{1}{2}x^{-1/2}$, $f^{(n)}(x) = \frac{(-1)^n}{2^n} \prod_{k=1}^n (-1 + 2(k-1))$

: לכן

$$T_n(x) = 1 + \frac{1}{2}(x-1) - \frac{1}{4}(x-1)^2 + \dots + \frac{(-1)^n}{2^n} \prod_{k=1}^n (-1 + 2(k-1))(x-1)^n$$

 $P_{n}(x) = 1 + (x - 1)$:פולינום טיילור של x סביב 1 הוא

נכפיל את שני הפולינומים ונקבל:

$$M_n(x) = T_n(x) + (x-1)T_n(x) = 1 + \left(\frac{1}{2} + 1\right)(x-1) + \left(-\frac{1}{4} + \frac{1}{2}\right)(x-1)^2$$

$$+\left(\frac{3}{8}-\frac{1}{4}\right)(x-1)^3+\ldots+\left[\prod_{k=1}^n(-1+2(k-1))-2\prod_{l=1}^{n-1}(-1+2(l-1))\right]\frac{\left(-1\right)^n(x-1)^n}{2^n}$$

$$M_n(x) = 1 + \dots + \frac{(-1)^n}{2^n} \left[(2n-5) \prod_{k=1}^{n-1} (-1 + 2(k-1)) \right] (x-1)^n$$
 ולכן:

$$a = 0$$
 סביב הנקודה $f(x) = (1+x)^m \quad m \in N$ (ג

$$f(x) = \sum_{k=0}^{m} {m \choose k} x^k$$
 : m זהו פולינום ממעלה

$$P_n(x) = \sum_{k=0}^n {m \choose k} x^k$$
 ;

2) בעזרת פיתוח טיילור חשבו קירוב מספרי של:

$$\sin(1^{\circ})$$
 בדיוק של $\sin(1^{\circ})$

$$\sin(x)$$
 הטור של .1° = $\frac{\pi}{180}$ rad

: והשארית
$$T_n(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} + \dots + (-1)^n \frac{x^{2n+1}}{(2n+1)!}$$

:יש לבדוק עבור איזה
$$n$$
 מתקיים | $R_{2n+1}(x) = \left| \frac{\cos(c)}{(2n+2)!} x^{2n+2} \right| \le \left| \frac{x^{2n+2}}{(2n+2)!} \right|$

. יספיק.
$$n=6$$
 . $(2n+2)! \ge 10^9$: אז נחפש $\frac{\pi}{180} < 1$ -שיספיק. $\left| R_n \left(\frac{\pi}{180} \right) \right| \le 10^{-9}$

הערה: הערה באת $\frac{\pi}{180}$ בדיוק של 10^{-9} . ניתן לעשות זאת לדוגמא, בעזרת

. סביב אפס arccos(-1) סביב אפס

$$10^{-3}$$
 בדיוק של $\sqrt{28}$ (ב

:סביב אפס $f(x) = \sqrt{25 + x}$ סביב אפס

$$f(0) = 5$$
, $f'(x) = \frac{1}{2}(x+25)^{-1/2}$ $f'(0) = \frac{1}{10}$, $f''(x) = \frac{-1}{4}(x+25)^{-3/2}$

$$f''(0) = \frac{-1}{4}, \quad f'''(x) = \frac{3}{8}(x+25)^{-5/2}$$

$$R_2(3) = \frac{3}{8}(c+25)^{-5/2} \frac{3^3}{3!} < \frac{3}{8}(0+25)^{-5/2} \frac{3^3}{3!} = \frac{54}{100000} < 10^{-3}$$

לכן מספיק לפתח עד סדר 2:

$$\sqrt{28} \approx 5 + \frac{3}{10} - \frac{9}{42}$$
 : ולכן $f(x) = 5 + \frac{1}{10}x - \frac{1}{4\cdot 2}x^2 + R_2(x)$

$$.5 \cdot 10^{-2}$$
 בדיוק של $\ln(2)$ (ג

מחשבים את פיתוח טייליור של $\ln(1+x)$ סביב אפס. ע"פ חישוב השארית יש מחשבים את פיתוח טייליור של $\ln(2)=-\ln(\frac{1}{2})$: n=4 לפתח עד n=4 ונקבל:

.
$$\ln 2 = \frac{131}{192} \pm \frac{1}{20}$$
 ולכן $T_4(-\frac{1}{2}) = -\frac{1}{2} - \frac{1}{2}(-\frac{1}{2})^2 + \frac{1}{3}(\frac{-1}{2})^3 - \frac{1}{4}(\frac{-1}{2})^4 = -\frac{131}{192}$

- . תהי $f: \Re \to \Re$ מורה (3
- אז f אז $f(x_1) < f(x_2)$ כך ש- $x_1 < x_2$ סונוטונית הוכיחו שאם קיימים הוכיחו (x_2, ∞) אז (x_2, ∞)

הוכחה: $f(ty+(1-t)x) \le tf(y)+(1-t)f(x)$ ראינו . $f(ty+(1-t)x) \le tf(y)+(1-t)f(x)$

בכיתה שאם $\frac{f(x_2) - f(x_1)}{x_2 - x_1} \leq \frac{f(x_4) - f(x_3)}{x_4 - x_3}$ גתון כי $\frac{f(x_2) - f(x_1)}{x_2 - x_1} \leq \frac{f(x_3) - f(x_3)}{x_4 - x_3}$ נתון כי

$$f(x_4) - f(x_3) \ge 0$$
 ולכן $\frac{f(x_4) - f(x_3)}{x_4 - x_3} \ge 0$ ולכן $f(x_2) > f(x_1)$

- ב) הסיקו שמתקיים אחד מהמקרים הבאים:
 - מונוטונית. f
- קיים x_0 כך שf מונוטונית יורדת ב- $[-\infty,x_0]$ ומונוטונית עולה ב (ii .[x_0,∞)

הוכחה:

.
$$A = \{y \mid \exists x < y : f(x) < f(y)\}$$
 : נסמן

 $f(x_1) < f(x_2)$ פניח כי $f(x_1) < f(x_2)$ אינה מונטונית יורדת. אז קיימים $x_1 < x_2$ כלומר $x_2 \in A$ כלומר $x_2 \in A$

(לכן, $f(x_3) > f(x_4)$ ער כך א $x_3 < x_4$ נניח כי f אינה מונוטונית עולה. קיימים

, בנוסף, בנוסף (ג $[x_3,\infty)$ כי אחרת ע"פ סעיף קודם f היתה מונוטונית עולה ב $x_3
otin A$ בנוסף, מדוע?). $x_3
otin A$

לכן קיים $[x_0,\infty)$. ע"פ הסעיף הקודם f מונוטונית עולה ב $[x_0,\infty)$. ע"פ הסעיף הקודם

f אז $f(x_1)>f(x_2)$ סימטרי ניתן להראות שאם קיים $x_1< x_2$ כך ש $f(x_1)>f(x_2)$ אז סימטרי ניתן להראות שאם קיים $f(-\infty,x_1)$ ולכן $f(-\infty,x_1)$ ולכן $f(-\infty,x_1)$

- : נתונה $\Re o \Re$ קמורה. הוכח (4
- אם $\lim_{x \to \infty} f(x)$ סופי אז f מונוטונית לא עולה. (א

נכון. ע"פ שאלה קודמת.

. אם a נקודת קיצון מקומית של f אז a מינימום גלובלי (ב

נכון. אפשר לעשות זאת לפי הלמה על שיפועי מיתרים:

14 השיפוע של 13 > השיפוע של 13 > השיפוע של 11

