

(21) 4063-9798

(11) 4063-1877

(21) 8831-6621

Skype: cerne-tec

MSN: cerne-tec@hotmail.com

www.cerne-tec.com.br

Manual do Usuário

Placa CLPIC

Índice

1. Introdução	03
2. Chapeado da Placa	04
3. Conector de Alimentação	05
4. Conector de Comunicação Serial	06
5. Conector Paralelo	07
6. Conector de Saídas de Relés 1, 2 e 3	09
7. Conector de Saídas de Relés 4 e 5	10
8. Conector de Saídas do Relés 6	11
9. Conector de Entradas Digitais	12
10. Conector de Display LCD	13
11. Conector do AD, PWM, DA e Leds	14

Introdução

A placa CLPIC foi desenvolvida com o intuito de facilitar o desenvolvimento de projetos complexos em um intervalo de tempo muito reduzido. Funções de acesso as entradas e saídas, display, comunicação serial dentre outros são alguns dos aspectos disponíveis na CLPIC. Para programá-la, o desenvolvedor utilizará o software AutoEASY que pode ser baixado diretamente do site da Cerne (www.cernetec.com.br) ou instalado através do CD que acompanha o kit.

Nós da Equipe Cerne Tecnologia desejamos um bom aprendizado e nos colocamos a disposição para eventuais dúvidas.

2. Chapeado da Placa

Vejamos os conectores disponíveis na placa CLPIC.

- 1. Conector de comunicação serial
- 2. Conector Paralelo
- 3. Conector de saídas de relés 1, 2 e 3
- 4. Conector de saídas de relés 4 e 5
- 5. Conector de saída de relé 6
- 6. Conector de entradas digitais
- 7. Conector de display LCD
- 8. Conector de AD, PWM, DA e Leds
- 9. Conectores de Alimentação

3. Conector de Alimentação

Através do conector de alimentação podemos alimentar a placa assim como os relés 1, 2, 3, 4 e 5 que tem as suas saídas do tipo energizada. Os conectores estão organizados da seguinte forma:

Configuração das pinagens		
Conector de alimentação DC	Pino 1 – VCC	
	Pino 2 – GND	
Conector de saída DC	Pino 1 – VCC	
	Pino 2 – GND	
Conector de alimentação dos relés	Pino 1 – VCC	
	Pino 2 – GND	

4. Conector de Comunicação Serial

Este conector permite que a placa comunique com o mundo externo assim como possibilita que um novo programa seja gravado nela. O padrão adotado de comunicação é o RS232 com um baud rate de 9600 bps. Observe melhor

Configuração das pinagens		
Pino	Função	
1	Saída de alimentação DC (A mesma que alimenta a placa)	
2	Saída de 5 V	
3	RX	
4	TX	
5	GND	

Note que os pinos de TX e RX acima são em relação a comunicação da placa. Neste caso ao conectar se com o PC, os fios que ligam os mesmos devem ser invertidos afim de permitir a comunicação.

5. Conector Paralelo

Através deste conector, o PC (Personal Computer) pode controlar as saídas 1, 2, 3 e 4 da placa assim como saber o estado de quatro entradas digitais, neste caso as entradas 1, 2, 3 e 4.

Configuração das pinagens		
Pino	Pino Função	
1	Controle da saída 1 A	

2	Controle da saída 1 B
3	Controle da saída 2 A
4	Controle da saída 2 B
5	Controle da saída 3 A
6	Controle da saída 3 B
7	Controle da saída 4 A
8	Controle da saída 4 B
9	Entrada digital 4
10	Entrada digital 3
11	Entrada digital 2
12	Entrada digital 1
13	GND

As entradas digitais 1, 2, 3 e 4 são ativas em nível baixo. Note que para o controle de cada relé, existem dois terminais chamados A e B. Isto é feito já os relés 1, 2, 3, 4 e 5 tem as suas saídas energizadas com controle de reversão, neste caso podemos ter 3 estados, sendos estes ligado, desligado e invertido. A combinação para o acionamento das saídas é a seguinte:

Α	В	Resultado
0	0	Desligado
0	1	Saída Ligada (12 V)
1	0	Saída Invertida (-12V)
1	1	Não permitido (curto)

Configuração das pinagens	
Pino	Função
1	
2	
3	
4	
5	

6. Conector de Saídas de Relés 1, 2 e 3

Através destes conectores podemos ter acesso as saídas destes relés. Vejamos o conector abaixo:

Quando a saída 1, 2 ou 3 são acionadas através do comando SET (Ligar) o pino 1 fica conectado a GND e o 2 a VCC. Quando o comando Inv (Inverter) o pino 1 fica conectado a VCC e o 2 a GND. Quando o comando CLR (Desligar) é acionado, ambos os pinos ficam no mesmo potencial desligando desta forma a carga conectada ao pino. Cada um dos relés podem suporta uma corrente de no máximo 1 A.

10

7. Conector de Saídas de Relés 4 e 5

Através destes conectores podemos ter acesso as saídas destes relés. Vejamos o conector abaixo:

Quando a saída 4 ou 5 são acionadas através do comando SET (Ligar) o pino 1 fica conectado a GND e o 2 a VCC. Quando o comando Inv (Inverter) o pino 1 fica conectado a VCC e o 2 a GND. Quando o comando CLR (Desligar) é acionado, ambos os pinos ficam no mesmo potencial desligando desta forma a carga conectada ao pino. Cada um dos relés podem suporta uma corrente de no máximo 1 A.

8. Conector de Saídas do Relé 6

Este relé diferente dos anteriores é uma saída do tipo contato aberto. Desta forma, este relé funciona como um interruptor aberto que quando acionado através do comando SET permite ligar alguma carga externa.

9. Conector de Entradas digitais

Este conector possibilita que a CLPIC detecte alterações lógicas externas. Ao todo são 6 entradas que são do tipo contato seco. Estas entradas devem ser aterradas para que a CLPIC detecte que algum evento externo ocorreu. Veja abaixo a localização deste conector:

Configuração das pinagens		
Pino	Função	
1	GND	
2	Entrada digital 6	
3	Entrada digital 5	
4	Entrada digital 4	
	Entrada digital 3	
	Entrada digital 2	
5	Entrada digital 1	

10. Conector de Display LCD

A CLPIC fornece um conector no qual pode ser conectado um display do tipo lcd compatível com o controlador HT44780. Veja abaixo a localização deste conector:

O conector do display obedece a seguinte pinagem:

	Configuração das pinagens		
Pino	Função		
1	D7		
2	D6		
3	D5		
4	D4		
5	EN		
6	RS		
7	Contraste		
8	5 V		
9	GND		

Note que ao montar o display, o pino RW (5) do LCD deve ser aterrado.

11. Conector do AD, PWM, DA e Leds

Através deste conector podemos utilizar os dispositivos AD, PWM, DA e Leds. Este conector está apresentado abaixo:

Vejamos a configuração deste conector:

Configuração das pinagens		
Pino	Função	
1	GND	
2	5V	
3	12V	
4	Led1	
5	Led2	
6	PWM	
7	DA	
8	AD	

Suporte Técnico

Qualquer dúvida que você tenha não hesite em nos contatar! Temos os seguintes meios de acesso:

Telefone: (21) 4063-9798 ou (11) 4063-1877

E-mail: suporte@cerne-tec.com.br

Skype: cerne-tec

MSN: cerne-tec@hotmail.com

Desejamos a você um excelente desenvolvimento de projetos eletrônicos

microcontrolados!

Cerne Tecnologia