Gradi	Radianti	sin	cos	tan	cot
0	0	0	1	0	-
30	$\frac{\pi}{6}$	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{3}}$	$\sqrt{3}$
45	$\frac{\pi}{4}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	1	1
60	$\frac{\pi}{3}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$\sqrt{3}$	$\frac{1}{\sqrt{3}}$
90	$\frac{\pi}{2}$	1	0	-	0
120	$\frac{2}{3}\pi$	$\frac{\sqrt{3}}{2}$	$-\frac{1}{2}$	$-\sqrt{3}$	$-\frac{1}{\sqrt{3}}$
135	$\frac{3}{4}\pi$	$\frac{\sqrt{2}}{2}$	$-rac{\sqrt{2}}{2}$	-1	-1
150	$\frac{5}{6}\pi$	$\frac{1}{2}$	$-rac{\sqrt{3}}{2}$	$-\frac{1}{\sqrt{3}}$	$-\sqrt{3}$
180	π	0	-1	0	-
210	$\frac{7}{6}\pi$	$-\frac{1}{2}$	$-\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{3}}$	$\sqrt{3}$
225	$\frac{5}{4}\pi$	$-rac{\sqrt{2}}{2}$	$-rac{\sqrt{2}}{2}$	1	1
240	$\frac{4}{3}\pi$	$-\frac{\sqrt{3}}{2}$	$-\frac{1}{2}$	$\sqrt{3}$	$\frac{1}{\sqrt{3}}$
270	$\frac{3}{2}\pi$	-1	0	-	0
300	$\frac{5}{3}\pi$	$-\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$-\sqrt{3}$	$-\frac{1}{\sqrt{3}}$
315	$\frac{7}{4}\pi$	$-\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	-1	-1
330	$\frac{11}{6}\pi$	$-\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$-\frac{1}{\sqrt{3}}$	$-\sqrt{3}$
360	2π	0	1	0	-

Molt: (a+ib)(c+id)=(ac-bd)+(ad+bc)i Cnj: $\overline{z}=a-ib$ Molt-Cnj: $z\cdot\overline{z}=||z||^2$ $i^0=1$ $i^1=i$ $i^2=-1$ $i^3=-i$ $i^4=i^0=1$ Prop: $\overline{z+w}=\overline{z}+\overline{w}$ $\overline{z\cdot w}=\overline{z}\cdot\overline{w}$ $z=re^{i\theta}=r(\cos\theta+\sin\theta)$ r=||z|| $a=x=r\cos\theta$ $b=y=r\sin\theta$ $\theta=\arctan\frac{x}{y}$ Prendere θ in base ai segni di x=a,y=b sul piano cartesiano. Radici: $z^n=z_0$ $r=\sqrt[n]{r_0}$ $\theta_k=\frac{\theta_0}{n}+\frac{2k\pi}{n}$ con $k\in[0,n)$. Quindi: $\sqrt[n]{z_0}_k=re^{i\theta_k}$. Noto che: $\frac{x}{i}=-xi$.

Spazio vettoriale: v+w=w+v, (v+w)+u=v+(w+u), v+0=v, v+(-v)=0, $\lambda(v+w)=\lambda v+\lambda w$, $(\lambda u)v=\lambda uv$, $1\cdot v=v$. Sottospazio $W\subset V$: $v_0\in V$ origine $v_0\in W$, $v,v'\in W\to v+v'\in W$, $\lambda\in\mathbb{K}\to\lambda v\in W$.

Prodotto vettoria;e in \mathbb{R}^3 : $u=v imes w=egin{bmatrix} v_2w_3-v_3w_2\\v_3w_1-v_1w_3\\v_1w_2-v_2w_1 \end{bmatrix}$. u è ortogonale a v,w. u=0 Se v,w

sono linearmente dipendenti. (v|w|u) è base di \mathbb{R}^3 . Vale $||u||^2+\langle v,w\rangle^2=||v||^2\cdot||w||^2$. Vale ||u|| è l'area del parallelogramma.

Molt matrici M(m,n): $(AB)_{i,j} = \sum_{k=1}^n A_{i,k} \cdot B_{k,j}$. Per ottenere $(AB)_{i,j}$ si moltiplica la riga i di A con la colonna j di B. Prop: Assoc A(BC) = (AB)C, Dist A(B+C) = AB + AC, $\lambda(AB) = (\lambda A)B = A(\lambda B)$.

Mosse gauss e det: $\lambda \cdot r \to \lambda \det(A)$, scambio $-\det(A)$, $\lambda A \to \lambda^n \cdot \det(A)$, somma non varia. Binet: $\det(AB) = \det(A) \cdot \det(B)$.

Inversa: $(cof)_{i,j} = (-1)^{i+j} \cdot \det(A_{i,j})$. $A^{-1} = \frac{1}{\det(A)} \cdot {}^t(cof)$. Se $\det = 0$ allora non è né biett/invt. Controllo (cof): somma di prodotto euclideo tra due righe è $\det(A)$.

Inversa 2x2:
$$A=\begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
, $A^{-1}=\frac{1}{ad-bc}\begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$.

Teorema di Rouché-Capelli: 0 soluzioni se rk(A|B) > rk(A), 1 soluzione se rk(A) = n, infinite se rk(A) < n. Dimensione spazio soluzioni: $\dim = n - rk(A)$.

Applicazioni lineari: $f(v+w)=f(v)+f(w), \ f(\lambda v)=\lambda f(v).$ Isomorfismo se biettiva. Endomorfismo: $f:V\to V.$ $L_A(v)$ è una FUNZIONE data da $A\cdot v.$ Iniettiva se $\dim\ker f=0$ cioè $\ker f$ contiene un solo vettore. Suriettiva se $\dim V\geq \dim Im\ f=\dim W.\ \dim im\ f$ è Span dei vettori di [f].

 $A \sim B$ (simili) solo se esiste M per cui $A = M^{-1} \cdot B \cdot M$. Se simili: rk(A) = rk(B) $\det(A) = \det(B)$, $A \rightleftharpoons$ invertibile se e solo se B lo \rightleftharpoons . Invece, A, B congruenti se $A = {}^tM \cdot B \cdot M$.

Diagonalizzabilità: se [f] su $\mathbb R$ è simmetrica, allora è diagonalizzabile. Stesso se è su $\mathbb C$ ed è Hermitiana. Altrimenti, se ci sono tutti autovalori distinti è diagonalizzabile. Altrimenti, se tutte le $m^a=m^g$ è diagonalizzabile. Se matrice non su $\mathbb C$, allora controllare somma m^a uguale grado.

Prodotto scalare: $\langle v,w \rangle$ con Prop: $\langle v+v',w \rangle = \langle v,w \rangle + \langle v',w \rangle$, $\langle \lambda v,w \rangle = \lambda \, \langle v,w \rangle$, $\langle v,v \rangle = \langle w,v \rangle$, $\langle v,w \rangle = \langle v,w \rangle + \langle v,w \rangle$, $\langle v,v \rangle = \langle v,w \rangle = \langle$

Prodotto Hermitiano: simile allo scalare per matrici complesse. Prop:

$$\langle v+v',w
angle = \langle v,w
angle + \langle v',w
angle$$
 , $\langle \lambda v,w
angle = \lambda \, \langle v,w
angle$, $\langle v,w
angle = \overline{\langle w,v
angle}$, $\langle v,w+w'
angle = \langle v,w
angle + \langle v,w'
angle$,

 $\langle v, \lambda w \rangle = \overline{\lambda} \, \langle v, w \rangle$, $\langle v, 0 \rangle = \langle 0, v \rangle = 0$, $\langle v, v \rangle \in \mathbb{R}$. H matrice Hermitiana, può descrivere un prodotto Hermitiano $g_H(v, w) = {}^t v \cdot \overline{w}$. Prodotto Hermitiano Euclideo: $\langle v, w \rangle = {}^t v \cdot \overline{w}$.

Rotazione: funzione
$$L_A:\mathbb{R}^2 o \mathbb{R}^2$$
 con $A=egin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$. Riflessione con $A=egin{bmatrix} \cos \theta & \sin \theta \\ \sin \theta & -\cos \theta \end{bmatrix}$.

Autoagiunto: endomorfismo $T:V\to V$ con base ortonormale di V se $\langle T(v),w\rangle=\langle v,T(w)\rangle$. Anche se $[T]^B_B$ Hermitiana in $\mathbb C$ o simmetrica in $\mathbb R$. Casi notevoli: $L_A:\mathbb R^n\to\mathbb R^n$ con A simmetrica e $L_A:\mathbb C^n\to\mathbb C^n$ con A Hermitiana.

Angolo:
$$\cos \theta = \frac{\langle v, w \rangle}{||v|| \cdot ||w||}$$
, $\theta = \arccos \cos \theta$.

Proiezione ortogonale su vettore: w,v vettori: $P_w(v)=\frac{\langle v,w\rangle}{\langle w,w\rangle}w$. Sia W uno spazio vettoriale con base ortogonale con $\dim W=n$, allora $P_W(v)=\sum_{i=1}^n\frac{\langle v,w_i\rangle}{\langle w_i,w_i\rangle}w_i$. Se base ortonormale, niente denominatore. Se base non ortogonale, ortogonalizzare.

Gramm Schmidt:

1.
$$w_1'=w_1$$
2. $w_2'=w_2-P_{w_1}(w_2)$
3. $w_n'=w_{m+1}'=w_n-P_{\{w_1,...,w_m\}}(w_n)$

Intersezioni

- Piano-Piano (Cartesiani): Sistema
- Piano-Piano (Parametrici): Trasformare in cartesiani -> parametrici
- Piano-Retta (Cartesiani): Sistema
- Retta-Retta (Cartesiani): Sistema
- Retta (P+Span(v)) Retta (Q+Span(w)) (Parametriche): Porre uguali, P+tv=Q+sw, poi isolare: tv+s(-w)=Q-P, trasformare in sistema $\begin{bmatrix} v & -w & | & Q-P \end{bmatrix}$
- Piano (Cartesiano) Retta (Parametrica P+Span(v)): Sostituire x,y,z in equazione del piano $(P_0+v_0t)+(P_1+v_1t)+(P_3+v_3t)$

Angoli

- Piano Retta (P+Span(v)): ϕ angolo tra la retta ed il normale. θ angolo tra piano e retta dato da $\theta=\frac{\pi}{2}-\phi$. Con $\phi=\arccos\frac{\langle v,n\rangle}{||v||\cdot||n||}$ con n normale del piano
- Retta (P + Span(v)) Retta (Q + Span(w)): $heta = rccos rac{\langle v, w
 angle}{||v||\cdot||w||}$
- Piano Piano: angolo trai normali

Distanze

• Punto-Punto:
$$d(P,Q) = ||Q - P||$$

• Punto
$$P$$
 - Retta $Q + Span(v)$: $d(P,r) = rac{||v imes (P-Q)||}{||v||}$

- Retta
$$r=P_0+tv$$
 - Retta $r'=P_1+sw$ (Parallele): $d(r,r')=d(P_0,P_1)$

• Retta
$$r=P_0+tv$$
 - Retta $r'=P_1+sw$ (Sghembe): $\frac{|\det{(v|w|P_1-P_0)|}}{||v imes w||}$

• Punto
$$P_0=egin{bmatrix} x_0\y_0\z_0\end{bmatrix}$$
 - Piano $\pi=ax+by+cz-d=0$: $d(P_0,\pi)=rac{|ax_0+by_0+cz_0-d|}{\sqrt{a^2+b^2+c^2}}$