Deep learning model for prediction of solvation free energies in generic organic solvents

Architecture

Solute Smiles

Minnesota solvation database (MNSOL)

Embedding layer

Mol2vec

Morgan Algorithm

Recurrent layer

Bidirectional LSTM

Attention layer

Normalization with the softmax function

$$\alpha_{ij} = \frac{\exp(\operatorname{score}(\mathbf{h}_i, \mathbf{g}_j))}{\sum_{k} \exp(\operatorname{score}(\mathbf{h}_i, \mathbf{g}_k))}$$

The solvent context, P denotes an emphasized hidden state H with the attention alignment. Solute context Q is obtained using the same procedure.

$$\mathbf{p}_i = \sum_{j}^{M} \alpha_{ij} \mathbf{g}_j$$

Luong's dot-product attention as a score function since it is computationally efficient.

$$score(\mathbf{h}_i,\mathbf{g}_j) = \mathbf{h}_i \cdot \mathbf{g}_j$$

Pooling layer

The context weighted from the attention layer is an Lx2D matrix. Two max-pooling layers reduce contexts H, G, P, and Q to feature vectors u and v.

```
\mathbf{u} = \text{MaxPooling}([\mathbf{h}_1; \mathbf{p}_1, ..., \mathbf{h}_N; \mathbf{p}_N])
```

$$\mathbf{v} = \text{MaxPooling}([\mathbf{g}_1; \mathbf{q}_1, ..., \mathbf{g}_M; \mathbf{q}_M])$$

Predictor: MLP

- 10-fold cross-validation (CV)
- Stochastic gradient descent (SGD) algorithm with Nesterov momentum:
 - learning rate is 0.0002
 - momentum is 0.9
- Loss function: root mean squared error (RMSE)
- Result: RMSE 0.8

Output Probabilities Softmax **Transformer** Linear Add & Norm Feed Forward Add & Norm Add & Norm Multi-Head Feed Attention Forward $N \times$ Add & Norm $N \times$ Add & Norm Masked Multi-Head Multi-Head Attention Attention Positional Positional Encoding Encoding Output Input Embedding Embedding Inputs Outputs (shifted right)

Encoder layers

Self attention

Multi-head attention

1) Concatenate all the attention heads

2) Multiply with a weight matrix W° that was trained jointly with the model

Χ

3) The result would be the Z matrix that captures information from all the attention heads. We can send this forward to the FFNN

Architecture

2 encoder layers

- 10-fold cross-validation (CV)
- Stochastic gradient descent (SGD) algorithm with Nesterov momentum:
 - learning rate is 0.000002
 - momentum is 0.009
- Loss function: root mean squared error (RMSE)
- Result: RMSE 1.08

1 encoder layer + shared attention

- 10-fold cross-validation (CV)
- Stochastic gradient descent (SGD) algorithm with Nesterov momentum:
 - learning rate is 0.000002
 - momentum is 0.009
- Loss function: root mean squared error (RMSE)
- Result: RMSE 0.85

1 encoder layer + multihead

- 10-fold cross-validation (CV)
- Stochastic gradient descent (SGD) algorithm with Nesterov momentum:
 - learning rate is 0.000002
 - momentum is 0.009
- Loss function: root mean squared error (RMSE)
- Result: Test RMSE 2, 2, 1.5...