計量経済 II: 宿題 5

村澤 康友

提出期限: 2023年10月30日

注意:すべての質問に解答しなければ提出とは認めない。授業の HP の解答例を正確に再現すること(乱数は除く)。グループで取り組んでよいが,個別に提出すること。解答例をコピペしたり,他人の名前で提出した場合は,提出点を 0 点とし,再提出も認めない。すべての結果をワードに貼り付けて印刷し(A4 縦・両面印刷可・手書き不可),2 枚以上の場合は向きを揃えて問題番号順に重ね,左上隅をホッチキスで留めること。

- 1. gretl のサンプル・データ nysewk は,ニューヨーク証券取引所の株価指数(NYSE 総合指数)の 1965 \sim 2006 年の週次データである.nysewk の対数階差系列の AR(1) モデルを以下の 3 つの方法で推定し,結果を比較しなさい.
 - (a) OLS
 - (b) 条件つき ML 法
 - (c) 厳密な ML 法
 - ※ gretl で ARIMA モデルを ML 推定する手順は以下の通り.
 - (a) メニューから「モデル」 \rightarrow 「一変量時系列」 \rightarrow 「ARIMA」を選択.
 - (b)「従属変数」を1つ選択.
 - (c)「説明変数(回帰変数)」は選択しない.
 - (d) (非季節)「AR 次数」「階差次数」「MA 次数」を入力.
 - (e) 推定手法を選択.
 - (f) その他は必要に応じて設定(基本的にデフォルト値のままでよい).
 - (g)「OK」をクリック.
- 2. gretl のサンプル・データ sw-ch14 の LHUR は, 1959 年第 1 四半期~1999 年第 4 四半期のアメリカの 失業率の季節調整済みデータである.
 - (a) LHUR の時系列グラフとコレログラムを描きなさい.
 - (b) 次数 (3,3) までの各種 ARMA モデルを厳密な ML 法で推定し、AIC・SBIC・HQC を比較して、 最適なモデルを検討しなさい.
 - ※ gretlで AIC・SBIC・HQC を比較する手順は以下の通り.
 - (a) メニューから「モデル」→「一変量時系列」→「ARIMA lag selection」を選択.
 - (b)「従属変数」を1つ選択.
 - (c)「説明変数(回帰変数)」は選択しない.
 - (d) (非季節)「AR 次数」「階差次数」「MA 次数」に最大次数を入力.
 - (e) 推定手法を選択.
 - (f) $\lceil OK \rfloor$ をクリック.

解答例

1. (a) OLS

モデル 1: 最小二乗法 (OLS), 観測: 1966-01-19–2006-07-26 (T=2115) 従属変数: ld_close

	係数	標準誤差		t-ratio	p 値
const	0.00127461	0.0	00449131	2.838	0.0046
ld_close_1	0.0119651	0.0	217540	0.5500	0.5824
Mean dependent	var 0.001	290	S.D. depe	endent var	0.020612
Sum squared resi	d 0.897	978	S.E. of re	gression	0.020615
R^2	0.000	143	Adjusted	\mathbb{R}^2	-0.000330
F(1,2113)	0.302	520	P-value(A	F)	0.582365
Log-likelihood	5209.	819	Akaike cı	riterion	-10415.64
Schwarz criterion	-10404	1.33	Hannan-	Quinn	-10411.50
$\hat{ ho}$	-0.000	104	Durbin-V	Vatson	2.000055

(b) 条件つき ML 法

モデル 2: ARMA, 観測: 1966-01-19-2006-07-26 (T=2115) 従属変数: ld_close

	係数		標準誤差		z	p 値	
const	0.0012	27461 0	.000	449131	2.838	0.004	.5
ϕ_1	0.0119	0651 0	.021	7540	0.5500	0.582	23
Mean depender	nt var	0.0012	90	S.D. dej	pendent v	var	0.020612
Mean of innova	tions	0.0000	00	S.D. of	innovatio	ns	0.020615
R^2		0.0001	43	Adjuste	$d R^2$		0.000143
Log-likelihood		5209.8	19	Akaike	criterion	-	-10415.64
Schwarz criterie	on	-10404.	33	Hannan	-Quinn	-	-10411.50
		Real	Im	aginary	Moduli	ıs	頻度
AR							
Roo	t 1	83.5765		0.0000	83.576	65 0.	0000

(c) 厳密な ML 法

モデル 3: ARMA, 観測: 1966-01-12-2006-07-26 (T=2116) 従属変数: ld_close

標準誤差はヘッシアン(Hessian)に基づく

	係	《数	標準	基誤差	z	p 値	
const	0.001	29144	0.000	453254	2.849	0.0044	1
ϕ_1	0.011	.9596	0.021	7337	0.5503	0.5821	L
Mean depender	nt var	0.001	291	S.D. de	pendent '	var	0.020607
Mean of innova	tions	-1.60e	e-08	S.D. of	innovatio	ons	0.020600
R^2		0.000)143	Adjuste	ed R^2		0.000143
Log-likelihood		5212	.773	Akaike	criterion	_	10419.55
Schwarz criteri	on	-1040	2.57	Hannan	-Quinn	_	10413.33
		Rea	l In	naginary	Moduli	us	頻度
AR							
Roc	t 1	83.6152	2	0.0000	83.615	52 0.0	0000

2. (a) 時系列グラフ

コレログラム

自己相関係数(ACF) LHUR

偏自己相関係数(PACF) LHUR

(b) モデル選択
Estimated using AS 197 (厳密最尤法)
Dependent variable LHUR, T = 164
Criteria for ARMA(p, q) specifications

AIC BIC HQC loglik p, q 599.6740 0,0 597.1571 603.3569 -296.5786 0, 1 393.7388 403.0384 397.5141 -193.8694 0, 2 260.8509 273.2503 265.8846 -126.42540, 3 203.2645 218.7639 209.5567 -96.6323 1, 0 113.5521 122.8517 117.3274 -53.7760 1, 1 51.3776 63.7771 56.4113 -21.6888 1, 2 46.5767 62.0761 52.8689 -18.2884 1, 3 35.9776 54.5768 43.5282 -11.9888 2, 0 50.4357* 43.0700* 38.0363 -15.0181 2, 1 39.3665 54.8659 45.6587 -14.6833 2, 2 40.8506 59.4497 48.4011 -14.4253 2, 3 37.6282 59.3273 46.4372 -11.8141 54.9818 3, 0 39.4824 45.7746 -14.74123, 1 38.8661 57.4653 46.4167 -13.4331 3, 2 40.8091 62.5082 49.6181 -13.4046

34.3698*

3, 3

Log-likelihood ('loglik') is provided for reference

59.1687

予測が目的なら AIC が選ぶ ARMA(3,3) が最適. 真のモデルが目的なら SBIC・HQC が選ぶ AR(2) が最適.

44.4372

-9.1849

^{&#}x27;*' indicates best, per criterion