

KAUNO TECHNOLOGIJOS UNIVERSITETAS INFORMATIKOS FAKULTETAS

1 Laboratorinis darbas Nr. 17

Atliko:

IFE-8 gr. studentas Kemežys Martynas

Priėmė:

lekt. Andrius Kriščiūnas

TURINYS

1.	UŽDUOTIS	2
2.	PAGRINDINĖ DALIS	3
	2.1 Daugianario "Grubus" šaknų įvertis	3
	2.2 Daugianario "Tikslesnis" šaknų įvertis	
	2.3 Daugianario šaknų radimas	
	2.4 Transcendentinės funkcijos šaknų radimas	8
	2.5 Tekstinio uždavinio sprendimas	11
3.	IŠVADOS	12
4.	PRIEDAI	13
	4.1 Programinio kodo fragmentai:	13

1. UŽDUOTIS

1. Išspręsti netiesines lygtis: a) Daugianaris f(x) = 0, b) Transcendentinė funkcija g(x) = 0

2. Pagal pateiktą uždavinio sąlygą sudaryti netiesinę lygtį ir pasirinktu skaitiniu metodu ją išspręsti.

Uždavinys variantams 16-20

 T_0 temperatūros kūnas patalpinamas į aplinką, kurios temperatūra T_A . Tariama, kad aplinkos temperatūra yra palaikoma išorinių šaltinių ir kūno temperatūra neturi įtakos aplinkos temperatūrai. Kūno temperatūra T(t) užrašoma dėsniu $T(t) = (T_0 - T_A)e^{kt} + T_A$, k – proporcingumo koeficientas. Kam lygus proporcingumo koeficientas k, jeigu žinoma, kad praėjus laikui t_1 kūno temperatūra bus T_1 ?

Varianto Nr.	T_0 , K	T_A , K	t_1 , s	T_1 , K
17	400	320	30	344

Pav. 2

2. PAGRINDINĖ DALIS

2.1 Daugianario "Grubus" šaknų įvertis

Daugianaris:

$$1.03x^5 - 2.91x^4 - 1.44x^3 + 5.56x^2 - 0.36x - 1.13$$

Grubaus įverčio formulė:

$$R = |x| < 1 + \frac{\max\limits_{0 \le i \le n-1} |a_i|}{a_n}$$

Įsistate kof. gauname:

$$R = 1 + \frac{5.56}{1.03} \approx 6,398$$

Gautas grubus šaknies įvertis:

$$-6.398 < x < 6.398$$

2.2 Daugianario "Tikslesnis" šaknų įvertis

Tikslesnio įverčio formulės:

$$R_{teig} = 1 + \sqrt[k]{\frac{B}{a_n}}$$

$$k = n - \max_{0 \le i \le n-1} (i, a_i < 0)$$

$$B = \max_{0 \le i \le n-1} (|a_i|, a_i < 0)$$

Pilna įverčio formulė:

$$-\min(R, Rneig) \le x \le \min(R, Rteig)$$

Skaičiuojame Rteig:

$$k = 5 - 4 = 1$$

$$B = 5,56$$

$$Rteig = 1 + \frac{2,91}{1,03} \approx 3,825$$

Skaičiuojame Rneig:

$$1.03x^5 + 2.91x^4 - 1.44x^3 - 5.56x^2 - 0.36x + 1.13$$

$$k = 5 - 3 = 2$$

$$B = 5,56$$

$$Rneig = 1 + \sqrt{\frac{5,56}{1,03}} \approx 3,32$$

Gauname tikslesnį šaknies įvertį:

$$-3.32 \le x \le 3.825$$

2.3 Daugianario šaknų radimas

Gautas šaknis tiksliname su "Stygų", "Liestinių" ir "Skenavimo su mažėjančiu žingsniu" metodais.

Metodas	Intervalas	Šaknis	Paklaida	Iteracijos
Stygų	[-1.319999999999998,- 1.219999999999998]	-1,287	-0,3751	1
Liestinių		-1,307	1,135E-09	8
Skenavimo	1.21999999999999	-1,287	-6,34E-09	41
Stygų	[-0.4199999999999793,	-0,419	0,009525	1
Liestinių		-0,421	-2,23E-10	3
Skenavimo	-0.3199999999999795]	-0,419	9,416E-09	33
Stygų	[0.58000000000000021,	0,584	-0,01437	1
Liestinių		0,579	5,724E-10	3
Skenavimo	0.680000000000002]	0,584	-7,64E-09	35
Stygų	[1 2800000000000000	1,334	0,1994	1
Liestinių	[1.28000000000000022,	1,287	1,141E-09	7
Skenavimo	1.3800000000000023]	1,334	7,643E-09	37
Stygų	[2.58000000000000003,	2,613	-1,829	1
Liestinių		2,547	-4,01E-09	9
Skenavimo	2.680000000000033]	2,613	-6,76E-09	45

Lentele. 1

To paties daugianario šaknis randame "Desmos Graphing Calculator" įrankio pagalba:

2.4 Transcendentinės funkcijos šaknų radimas

Duota transcendentinė funkcija:

$$\sin(x)\ln(x) - \frac{x}{6}; 1 \le x \le 20$$

Pavaizduojame funkciją nurodytame intervale ir atskiriame šaknų intervalus

Gautas šaknis tiksliname su "Stygų", "Liestinių" ir "Skenavimo su mažėjančiu žingsniu" metodais.

Metodas	Intervalas	Šaknis	Paklaida	Iteracijos
Stygų	[3.2000000000000000000000000000000000000	3,209	1,37E-04	1
Liestinių		3,209	2,95E-04	1
Skenavimo	,3.3000000000000002]	3,208	-6,89E-09	37
Stygų	[6.099999999999999	6,154	-3,30E-04	1
Liestinių		6,155	1,30E-03	1
Skenavimo	,6.19999999999995]	6,155	7,64E-09	39
Stygų	[9.5999999999984,	9,627	-3,72E-05	1
Liestinių		9,627	1,70E-03	1
Skenavimo	9.6999999999983]	9,627	-5,01E-09	40
Stygų	[12 20000000000074	12,307	9,91E-05	1
Liestinių	[12.29999999999974,	12,307	5,95E-04	1
Skenavimo	12.3999999999974]	12,307	5,30E-09	34
Stygų	[1E 0000000000000061	16,049	-1,99E-03	1
Liestinių	[15.99999999999961,	16,049	3,35E-03	1
Skenavimo	16.09999999999962]	16,049	-7,36E-09	37
Stygų	[18.39999999999995, - 18.499999999999996]	18,454	-3,82E-03	1
Liestinių		18,455	3,85E-03	1
Skenavimo	10.4333333333333	18,455	5,04E-09	38

Lentele. 2

"Desmos Graphing Calculator" įrankio pagalba gauta diagrama ir šaknys:

2.5 Tekstinio uždavinio sprendimas

Kūno temperatūros pokytis apskaičiuojamas formule:

$$T(t) = (T_0 - T_A)e^{kt} + T_A$$

Duoti duomenys:

Varianto Nr.	T_0 , K	T_A , K	t_1 , s	T_1 , K
17	400	320	30	344

I lygtį įrašome turimus duomenis:

$$T(t) = (400 - 320) * e^{30*k} + 320 = 344$$

Susumuojame:

$$T(t) = 80e^{30k} - 24$$

Pasirinktas metodas: skenavimo su mažėjančiu žingsniu.

Skenavimo metodo rezultatai:

Metodas	Intervalas	Šaknis	Paklaida	Iteracijos
Skenavimo	[-1,1]	-0,0401324	-6,41E-09	53

Lentele. 3

Grafinės lygties sprendimas:

3. IŠVADOS

- Stygų metodo esmė yra ta, kad kreivės lankas pakeičiamas styga ir taip artėjama prie lygties šaknies.
- Niutono metodas turi kvadratinį konvergavimo greitį ir konverguoja sparčiau, ypač, kai paklaida pasidaro maža.
- Skenavimo intervalas bendruoju atveju iš anksto nežinomas, todėl kyla pavojus parinkti per didelį skenavimo žingsnį ir "peršokti" kelias šaknis.

4. PRIEDAI

4.1 Realizuotų algoritmų programinio kodo fragmentai:

```
-----CHORD-1-----
```