

Testing Overall Regression

Analysis of Variance (ANOVA) for multiple regression:

Variability Source	DF	Sum of Squares	Mean SS	F-Statistic
Regression	р	SSReg	SSReg / p	MSSReg/MSE
Residual	n-p-1	SSE	SSE / (n-p-1)	
Total	n-1	SST		

$$SSReg = \sum_{i=1}^{n} (\hat{y}_i - \bar{y})^2 \qquad SSE = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 \qquad SST = \sum_{i=1}^{n} (y_i - \bar{y})^2$$

Null hypothesis: All predictor coefficients are 0, i.e., $\mathbf{H_0}$: $\beta_1 = \beta_2 = \cdots = \beta_p = 0$.

Reject H_0 if F-statistic is large (> $F_{\alpha, p, n-p-1}$ for α significance level, p and n-p-1 df).

• At least one of the coefficients is different from zero at the α significance level.

p-value = $Prob(F_{p, n-p-1} > F-statistic)$ for F-distribution with p and n-p-1 df.

Reject H₀ if p-value is small.

0

Testing Subsets of Coefficients

Analysis of Variance (ANOVA):

$$SST(X_1, \dots, X_p) = SSReg(X_1, \dots, X_p) + SSE(X_1, \dots, X_p)$$

$$SSReg(X_1, \dots, X_p) = SSReg(X_1) + SSReg(X_2|X_1) + SSReg(X_3|X_1, X_2) + \dots + SSReg(X_p|X_1, \dots, X_{p-1})$$

 $SSReg(X_1)$: Sum of squares (SS) explained using only X_1

 $SSReg(X_2|X_1)$: *Extra* SS explained using X_2 in addition to X_1

 $SSReg(X_3|X_1,X_2)$: *Extra* SS explained using X_3 in addition to X_1 and X_2

 $SSReg(X_p|X_1,\cdots,X_{p-1})$: **Extra** SS explained using X_p in addition to X_1 , X_2 ,... X_{p-1}

Georgia Tech

Testing Subsets of Coefficients

- Does X₁ alone significantly aid in predicting Y?
 - SSReg(X_1) vs. SSE(X_1)
- Does the addition of X_2 significantly contribute to the prediction of Y after accounting (controlling) for the contribution of X_1 ?
 - SSReg($X_2 \mid X_1$) vs. SSE(X_1, X_2)
- Does the addition of X_3 significantly contribute to the prediction of Y after accounting (controlling) for the contribution of X_1 and X_2 ?
 - SSReg(X₃ | X₁, X₂) vs. SSE(X₁, X₂, X₃)
- Does the addition of X_p significantly contribute to the prediction of Y after accounting (controlling) for the contribution of $X_1,...,X_{p-1}$?
 - SSReg($X_p \mid X_1, ..., X_{p-1}$) vs. SSE($X_1, X_2, ..., X_p$)

5

Testing Subsets of Coefficients

Partial F-test:

• Consider a full model with two sets of predictors, $X_1, ..., X_p$ (perhaps controlling factors) and $(Z_1, ..., Z_q)$ (perhaps additional explanatory factors):

$$Y = \beta_0 + \beta_1 X_1 + \cdots + \beta_p X_p + \alpha_1 Z_1 + \cdots + \alpha_q Z_q + \varepsilon$$

Test whether any of the Z factors add explanatory power to the model:

$$\mathbf{H_0}$$
: $\alpha_1 = \alpha_2 = \cdots = \alpha_q = 0$ vs. $\mathbf{H_a}$: $\alpha_i \neq 0$ for at least one α_i , $i = 1, \dots, q$

F-statistic =
$$F_{partial} = \frac{SSReg(Z_1, ..., Z_q | X_1, ..., X_p)/q}{SSE(Z_1, ..., Z_q, X_1, ..., X_p)/(n-p-q-1)}$$

- Reject H₀ if F-statistic is large (F-statistic > F_{α, q, n-p-q-1})
 - At least one coefficient is different from zero at the α significance level

Testing for Statistical Significance

• Consider a full model with the set of predictors, X_1 , ..., X_p and an additional predicting variable Z:

$$Y = \beta_0 + \beta_1 X_1 + \dots + \beta_p X_p + \alpha Z + \varepsilon$$

Test whether Z has explanatory or predictive power:

$$\mathbf{H_0}$$
: $\alpha = 0$ vs $\mathbf{H_a}$: $\alpha \neq 0$

$$F-\text{statistic} = F_{partial} = \frac{SSReg(Z|X_1, ..., X_p)/1}{SSE(Z,X_1, ..., X_p)/(n-p-2)}$$

Reject H₀ if F-statistic is large (F-statistic > F_{α, 1, n-p-2})

This is equivalent to testing for statistical significance using the t-test

7

Testing for Statistical Significance

• Consider a full model with the set of predictors, X_1 , ..., X_p and an additional predicting variable Z:

$$Y = \beta_0 + \beta_1 X_1 + \dots + \beta_n X_n + \alpha Z + \varepsilon$$

Test whether Z has explanatory or predictive power:

$$\mathbf{H_0}$$
: $\alpha = 0$ vs $\mathbf{H_a}$: $\alpha \neq 0$

$$\text{F--statistic} = \text{F}_{partial} = \frac{\text{SSReg}(\textbf{Z}|X_1, \dots, X_p)/1}{\text{SSE}(Z_i X_1, \dots, X_p)/(n-p-2)}$$

• Reject H_0 if F-statistic is large (F-statistic > $F_{\alpha, 1, n-p-2}$)

This is equivalent to testing for statistical significance using the t-test

- Interpretation of the t-test for statistical significance is conditional on other predicting variables being in the model.
- The relationship between Y and X is statistically significant given all other predicting variables being in the model.

Do not perform variable selection based on the p-values of the t-tests!

Georgia Tech

