Correction de la feuille de TD n.4 de IPD 2015-2016, Ensimag 2A IF

H. Guiol & J. Lelong

Exercice 1. Principe de Réflexion

Soit $(W_t)_{t>0}$ un mouvement brownien standard.

Pour tout $y \in \mathbb{R}$ on pose $\tau_y = \inf\{t : W_t = y\}.$

1. Montrer que τ_y est un temps d'arrêt presque sûrement fini.

Réponse. Il suffit d'observer que $\tau_y \geq 0$ et que

$$\{\tau_y \le t\} = \bigcup_{0 \le s \le t} \{W_s = y\} = \bigcup_{0 \le s \le t, s \in \mathbb{Q}} \bigcap_{n \ge 1} \{y - 1/n \le W_s \le y + 1/n\}$$

qui est une réunion dénombrable d'intersections dénombrable d'événements dans $\mathcal{F}_t = \sigma(W_u, 0 \le u \le t)$ donc elle même dans \mathcal{F}_t .

Pour montrer qu'il est p.s. fini : sans perte de généralité supposons y > 0 alors pour tout ω tel que $t \to W_t(\omega)$ est continu et tel que lim sup $W_t(\omega) = +\infty$. Pour un tel ω si on avait $\tau_y(\omega) = +\infty$ ceci impliquerait (par continuité) que pour tout t on ait $W_t(\omega) < y$ ce qui entrainerait $\limsup W_t(\omega) \le y$ ce qui contredit le choix de ω .

L'ensemble \mathcal{N} des ω qui ne satisfont pas $t \to W_t(\omega)$ est continu ou qui ne vérifient pas $\limsup W_t(\omega) = +\infty$ est négligeable. Donc avec probabilité 1 on a $\tau_y < +\infty$.

Le cas y<0 se traite de la même façon. Enfin $\tau_0=0$: car 0 est point d'accumulation de l'ensemble des zéros du Brownien.

2. En déduire que $B_t := W_{\tau_y + t}$ est un mouvement brownien issu de y indépendant de $\sigma(W_s, s \le \tau_y)$. **Réponse.** On utilise la propriété de Markov Forte : le processus $W_{\tau_y + t} - W_{\tau_y} = B_t - y$ est un M.B.S. indépendant de \mathcal{F}_{τ_y} .

Pour tout ce qui suit suppose $y \ge 0$ et $x \le y$,

3. montrer que

$$\mathbb{P}(\tau_u \le t, W_t \le x) = \mathbb{P}(\tau_u \le t, W_t \ge 2y - x).$$

Réponse. Il suffit de remarquer que

$$\{\tau_y \le t, W_t \le x\} = \{\tau_y \le t, W_t - W_{\tau_y} + y \le x\}$$

par Markov Fort $W_{s+\tau_y}-W_{\tau_y}$ est un MBS indépendant de \mathcal{F}_{τ_y} et $-(W_{s+\tau_y}-W_{\tau_y})$ est aussi un MBS indépendant de \mathcal{F}_{τ_y} d'où

$$\mathbb{P}(\tau_u \le t, W_t \le x) = \mathbb{P}(\tau_u \le t, -(W_t - W_{\tau_u}) + y \le x) = \mathbb{P}(\tau_u \le t, W_t \ge 2y - x).$$

4. On pose $M_t = \max_{0 \le u \le t} W_u$

$$\mathbb{P}(M_t \ge y, W_t < x) = \mathbb{P}(W_t \ge 2y - x).$$

Réponse. In suffit de voir que y < 2y - x ce qui implique $\{W_t \ge 2y - x\} \subset \{\tau_y \le t\}$ et on utilise la question précédente.

5. En déduire que

$$\mathbb{P}(M_t \ge y | W_t = x) = \exp\left(-2\frac{y(y-x)}{t}\right)$$

Réponse. On a

$$\mathbb{P}(M_t \ge y | W_t = x) = \frac{\partial_x \mathbb{P}(M_t \ge y, W_t \le x)}{\partial_x \mathbb{P}(W_t \le x)}$$

Ce qui donne le résultat en appliquant le résultat de la question précédente.

Exercice 2. Temps de sortie d'un intervalle.

Soient a < 0 < b deux réels et (W_t) un M.B.S. Pour tout $y \in \mathbb{R}$ on note $\tau_y = \inf\{t : W_t = y\}$. On pose $T = \tau_a \wedge \tau_b$.

1. Montrer que T est un temps d'arrêt presque sûrement fini.

Réponse. T est le minimum de deux temps d'arrêt (cf. exercice précédent) donc est également un temps d'arrêt. Les temps d'ateintes τ_a et τ_b sont presque sûrement finis (cf. exercice précédent) donc le minimum l'est également.

2. Montrer que $\mathbb{E}(W_T) = 0$.

Réponse. Le MBS est une martingale. Pour tout t fixé $S = T \wedge t$: est un temps d'arrêt borné (par t). Donc par le théorème d'arrêt $(W_{S \wedge s})_{s \geq 0}$ est également une martingale et $\mathbb{E}(W_{S \wedge t}) = \mathbb{E}(W_0) = 0$. Or $W_{S \wedge t} = W_S = W_{T \wedge t}$ d'où $E(W_{T \wedge t}) = 0$. Par ailleurs on a pour tout t, $|W_{T \wedge t}| \leq \max(-a, b)$ et $\lim_{t \to \infty} W_{T \wedge t} = W_T$ ps. car T est ps fini. Par convergence dominée on a

$$0 = \lim_{t \to \infty} \mathbb{E}(W_{T \wedge t}) = \mathbb{E}(W_T).$$

3. En déduire $\mathbb{P}(\tau_a < \tau_b)$.

Réponse. On écrit que

$$0 = \mathbb{E}(W_T) = a\mathbb{P}(\tau_a < \tau_b) + b(1 - \mathbb{P}(\tau_a < \tau_b))$$

d'où $\mathbb{P}(\tau_a < \tau_b) = \frac{b}{b-a}$

4. Montrer que $\mathbb{E}(W_T^2) = \mathbb{E}(T)$ et en déduire $\mathbb{E}(T)$.

Réponse. Le principe est le même que précédemment nt en utilisant la martingale $M_t = W_t^2 - t$. On montre que $\mathbb{E}(M_{T \wedge t}) = 0 = \mathbb{E}(W_{T \wedge t}^2 - T \wedge t)$ d'où $\mathbb{E}(W_T^2) = \mathbb{E}(T)$. Par ailleurs on a

$$\mathbb{E}(W_T^2) = a^2 \mathbb{P}(\tau_a < \tau_b) + b^2 (1 - \mathbb{P}(\tau_a < \tau_b)) = \frac{ba^2 - ab^2}{b - a} = -ab$$

Exercice 3. Loi de l'arcsinus.

Soit $(B_t)_{t\geq 0}$ un M.B.S. pour tout $a\neq 0$ on note τ_a le temps d'atteinte du niveau a par B_t .

1. Trouver la densité de τ_a .

Réponse. Pour tout t>0 si a>0 on a que $\mathbb{P}(\tau_a\leq t)=\mathbb{P}(M_t\geq a)=\mathbb{P}(|W_t|\geq a)$. Pour a<0 on a $\mathbb{P}(\tau_a\leq t)=\mathbb{P}(m_t\leq a)$ où $m_t=\min_{0\leq s\leq t}W_s$ et comme -B est également un M.B.S. on a $\mathbb{P}(\tau_a\leq t)=\mathbb{P}(M_t\geq -a)$. On a donc pour tout $a\neq 0$

$$\mathbb{P}(\tau_a \le t) = \mathbb{P}(|W_t| \ge |a|) = 2 \int_{|a|}^{+\infty} \frac{1}{\sqrt{2\pi t}} \exp\left(-\frac{x^2}{2t}\right) dx$$

on pose $x = |a|(t/s)^{1/2}$ et on en déduit

$$\mathbb{P}(\tau_a \le t) = \int_0^t \frac{|a|}{\sqrt{2\pi s^3}} \exp\left(-\frac{a^2}{2s}\right) ds$$

D'où la densité

$$f_{\tau_a}(t) = \frac{|a|}{\sqrt{2\pi t^3}} \exp\left(-\frac{a^2}{2t}\right) \ \mathbf{1}_{]0,+\infty[}(t)$$

On pose $L = \sup\{t \le 1 : B_t = 0\}$ le temps de dernière visite à 0 avant le temps 1.

2. Le temps L est il un temps d'arrêt?

Réponse. On observe que pour tout $0 \le t < 1$ on a $\{L \le t\} = \{B_s \ne 0 \text{ pour tous } s \in]t,1]\} \in \mathcal{F}_1$ mais n'est pas dans \mathcal{F}_t .

3. Montrer que pour tout $0 \le s \le 1$

$$\mathbb{P}(L \le s) = 2 \int_0^\infty \mathbb{P}(\tau_0 > 1 - s | B_0 = x) \frac{1}{\sqrt{2\pi s}} \exp(-\frac{x^2}{2s}) dx$$

Réponse. On a

$$\mathbb{P}(L \le s) = \int_{\mathbb{D}} \mathbb{P}(L \le s | B_s = x) f_{B_s}(x) \ dx$$

On note $W_t = B_{t+s} - B_s + x$ qui est un M.B. issue de x, on pose $\tau_0^W = \inf\{t>0: W_t = 0\}$ on a

$$\mathbb{P}(L \le s | B_s = x) = \mathbb{P}(\tau_0^W > 1 - s | W_0 = x) = \mathbb{P}(\tau_{-x} > 1 - s)$$

D'où

$$\mathbb{P}(L \le s) = 2 \int_0^\infty \mathbb{P}(\tau_{-x} > 1 - s) \frac{1}{\sqrt{2\pi s}} \exp(-\frac{x^2}{2s}) \ dx$$

4. En déduire que

$$\mathbb{P}(L \le s) = \frac{2}{\pi}\arcsin(\sqrt{s})$$

Réponse. En utilisant la question 1 on en déduit

$$\mathbb{P}(L \le s) = \frac{1}{\pi} \int_{1-s}^{+\infty} \sqrt{\frac{s}{t}} \frac{1}{t+s} \ dt$$

on pose alors u = s/(t+s) et on trouve

$$\mathbb{P}(L \le s) = \frac{1}{\pi} \int_0^s \frac{du}{u(1-u)} = \frac{2}{\pi} \arcsin(\sqrt{s})$$