Geometry of Gaussian Measures

Joseph Anderson

The Ohio State University andejose@cse.ohio-state.edu

24 March 2014

Curves

Let (X, d) be a metric space.

Definition

Let $\gamma:[0,1]\to X$ be continuous. We say that γ is a $\it curve$, and the $\it length$ of γ is

$$L_d(\gamma) = \sup_{0=t_1 < t_2 < \dots < t_N = 1} \sum_{i=1}^N d(\gamma(t_i), \gamma(t_{i+1})).$$

The curve γ is said to be *rectifiable* if its length is finite.

Length Spaces

Definition

Let $x, x' \in X$ and let $\Gamma(x, x')$ be the family of curves joining x and x'. The *intrinsic metric* on X is defined as

$$d^*(x,x') = \inf(L_d(\gamma) \mid \gamma \in \Gamma(x,x')).$$

If $\Gamma(x,x')=\emptyset$, we say that $d^*(x,x')=\infty$.

- If $d = d^*$, then we say that d is intrinsic and we call (X, d^*) a path metric space or length space.
- One calls (X, d^*) geodesic if for any pair of points x, x' there exist $\gamma \in \Gamma(x, x')$ so that $L_d(\gamma) = d(x, x')$.

Space of Measures

Let $\mathcal{P}^{ac}_2(\mathbb{R}^d)$ be the set of all absolutely continuous measures on \mathbb{R}^d with finite second moment.

- Absolutely continuous: $\mu << \lambda$ if $\lambda(A) = 0 \implies \mu(A) = 0$
- Finite second moment: $\int_{\mathbb{R}^d} d(x, x_0) d\mu(x) < \infty$ for all x_0 .

Gaussian Measures

Recall the Gaussian measure on \mathbb{R}^d , $\phi_{\mu,\Sigma}$, where

$$\phi_{\mu,\Sigma}(A) = \frac{1}{\sqrt{\det{(2\pi\Sigma)}^d}} \int_A \exp\left(\frac{-1}{2}\langle x - \mu, \Sigma^{-1}(x - \mu)\rangle\right) d\lambda_n(x).$$

- Let $(\mathcal{N}^d, d_{\mathcal{W},2}^{\mathbb{R}^d})$ be the space of all Gaussian measures on \mathbb{R}^d with the (restriction of the) 2-Wasserstein distance.
- Note: Gaussian measures are square integrable and absolutely continuous with respect to the Lebesgue measure, so $\mathcal{N}^d \subset \mathcal{P}_2^{ac}$

Some Basic Questions about ${\mathcal N}$

Let $\phi_1, \phi_2 \in \mathcal{N}^d$.

- Is it true that we can find a measure $\mu \in \mathcal{M}(\phi_1, \phi_2)$?
- How about $\mathcal{N}^{d^2} \cap \mathcal{M}(\phi_1, \phi_2)$?
- Does \mathcal{N}^d have recognizable structure?

One-Dimensional Warm Up

Let $\phi_1, \phi_2 \in \mathcal{N}_1$ with mean and variance μ_1, σ_1^2 and μ_2, σ_2^2 , respectively.

- lacksquare Couplings exist, and are Gaussian on \mathbb{R}^2
- We can assume that $\mu_1 = \mu_2 = 0$
- We can compute

$$d_{\mathcal{W},2}(\phi_1,\phi_2) = \left(\inf_{\mu \in \mathcal{M}(\phi_1,\phi_2)} \iint |x-y|^2 d\mu(x,y)\right)^{1/2}$$
$$= |\sigma_1 - \sigma_2|.$$

■ Furthermore, this even forms a length space

Known Results

Theorem ([GM96])

Let μ , ν be Borel probability measures on \mathbb{R}^d . Then

- 1 there exists a convex function ψ on \mathbb{R}^d whose gradient $\nabla \psi$ pushes μ forward to ν
- **2** the gradient of ψ is determined up to μ -measure 0
- 3 the measure $\pi = (\operatorname{id} \times \nabla \psi)_{\#} \mu$ is optimal
- 4 π is the only optimal measure in $\mathcal{M}(\mu, \nu)$ unless $d_{\mathcal{W},2}(\mu, \nu) = +\infty$

Theorem ([GS84])

For $\phi_{m,V}, \phi_{n,U} \in \mathcal{N}^d$, we have

$$d_{W,2}^2 = \|m - n\|^2 + \operatorname{tr}(V) + \operatorname{tr}(U) - 2\operatorname{tr}\left(U^{\frac{1}{2}}VU^{\frac{1}{2}}\right)^{\frac{1}{2}}$$

Geometry of \mathcal{N}^d and Applications

- Proved by [GM96] that \mathcal{N}_0^d (mean 0 Gaussian measures) is geometrically convex as a subspace of $\mathcal{P}_2^{ac}(\mathbb{R}^d)$.
- lacktriangle The sectional curvature of \mathcal{N}_0^d can be computed, c.f. [Tak08]
- Known curvature can help learning algorithms which rely on regularization
- Distance between "soft" shapes with Gaussian-like geodesic distances becomes easily computable and interpolated

References

Wilfrid Gangbo and Robert J McCann.

The geometry of optimal transportation.

Acta Mathematica, 177(2):113-161, 1996.

Clark R Givens and Rae Michael Shortt.

A class of wasserstein metrics for probability distributions.

The Michigan Mathematical Journal, 31(2):231–240, 1984.

Asuka Takatsu.

On wasserstein geometry of the space of gaussian measures. 2008.