

Al Reliability in Industrial Safety A Case Study with ABB IRB 1200 and Intel RealSense D415

Supervisor: *Mathias Verbeke*

Supervisor: Matthias De Ryck

Iñigo Aduna Alonso

Academic year 2023 – 2024

Master of AI in Business and Industry

State of the Art [3]

1.- Raw Images:

2.- Warped Images (Distortion correction + M):

3.- Masks

State of the Art

3.- Masks

4.- Get object Pixel

$$\{(x_i, y_i), r_i\}_{i=1,\dots N} \ N \equiv \#pieces$$

5.- 2D \rightarrow 3D $\{(x_i, y_i, z_i)\}_{i=1,...N}$

6.-Transformation camera coordinates to robot base coordinates T_{BC}

$$\{(\hat{x}_i, \hat{y}_i, \hat{z}_i)\}_{i=1,\dots N}$$

State of the Art

1.- **Tool Correction**: $(C_x, C_y) = (sqrt(200), sqrt(200)) mm$

Uncertainty: Euclidean Distance $r = sqrt((x_2 - x_1)^2 + (y_2 - y_1)^2)$

Modifications

1.- Tool Correction: $(C_x, C_y) = (sqrt(200), sqrt(200))$

2.- Tool Correction + Camera Deviation:

$$(C_x, C_y) = (sqrt(30), sqrt(120))$$

State of the art

Previous Mask (H=Hue, S=Saturation, V=Value)

- 1.1 Load HSV calibration parameters.
- 1.2 Apply Gaussian Blur for image smoothing
- 1.3 Convert image to HSV for color-based segmentation.
- 1.4 Create mask using HSV calibration values
- 1.5 Apply opening (erosión+dilatation) to remove noise/small objects

Advantages.

Effective for color segmentation

Disadvantages

Sensitive to brightness changes (e.g., Sadows)

Modifications

New Mask (Grayscale)

- 1.1 Grayscale Conversion to reduce complexity.
- 1.2 Apply Gaussian Blur for image smoothing
- 1.3 Edge Detection with Canny Algorithm
 - 1.3.1 Identify edges by finding intensity gradients.
 - 1.3.2 Filter out weak edges, keeping strong ones.
- 1.4 Contour Detection to find and outline distinct shapes.
- 1.5 Mask Creation

Advantages:

Objects where colour isn't distinctive, but shape is.

Disadvantages:

Information loss when converting to grayscale.

Workflow

U-Net [1]

1.- Loss function (Binary Cross Entropy with Logits)

$$BCE = -\frac{1}{N} \sum_{i=1}^{N} \left[y_i \log(\sigma(x_i)) + (1 - y_i) \log(1 - \sigma(x_i)) \right]$$

2.- Evaluation Metric:

$$accuracy = \frac{TP+TN}{TP+TN+FP+FN}$$

$$dice\ score = \frac{2\ TP}{2\ TP + FP + FN}$$

3.- Benchmark U-Net (ImageNet -C) [2]

U-Net [1]

Accuracy = 99.75% Dice Score = 155% (¿?)

Future study:

- 1.- Dice Score Calculation
- 2.- Add Depth to Image (Currently RGB)
- 3.- Benchmark on Imagenet-C
 - 3.1 Evaluate Robustness to Corruption
 - 3.2 Compare performance Metrics
- 4.- Dataset Augmentation Effect (Imagenet-C)
- 5.- Hyperparameter Sweep Study

Post Processing

Mask $\{(x_i, y_i, z_i, \varepsilon_{1i}, \varepsilon_{2i}, \varepsilon_{3i}, \dots, \varepsilon_{Mi})\}_{i=1,\dots N}$ Depth Rescaled $\{(x_i, y_i, z_i, \varepsilon_{1i}, \varepsilon_{2i}, \varepsilon_{3i}, \dots, \varepsilon_{Mi})\}_{i=1,\dots N}$

Use:

Mattias de Ryck 'src/image_processing.py/get_object_pixel ' [3]

Future study:

1.- Get more features $(\epsilon_{1i}, \dots, \epsilon_{Mi})$

1.1 Piece Count

1.2 Geometric

1.2.1 Area

1.2.2 Perimeter

1.2.3 Centroid

1.2.4 Radius

1.2.5 Aspect Ratio

1.2.6 Orientation

1.3 Morphological

1.3.1 Convexity

1.3.2 Texture

1.3.3 Skeletonization

MLP 1

Objective:

Capture Transformation Matrix Complexity, Camera Deviation, Tool Correction.

Input:

 $\{(x_i, y_i)\}_{i=1,...N}$ Warped camera frame

Output:

 $\{(\hat{x}_i, \hat{y}_i)\}_{i=1,...N}$ Wrist ground truth position.

MLP 2

Objective: Capture Uncertainty in robot decision-making.

Process:

1.- Train a MLP

Objective: Given inputs, compute the end robots

wrists predicted position.

Input: $\{(x_i, y_i, \epsilon_{i1}, ... \epsilon_{iM})\}_{i=1,...N}$ Warped camera frame

Output: $\{(\hat{x}_i, \hat{y}_i)\}_{i=1,...N}$ Wrist ground truth position

2.- Fine tune Classifier with Previously Trained Weights

Purpose: Predict=1 for training data points

Key Features: Sigmoid activation function in the

final layer.

3.- Uncertainty:

3.1 First approach: Embeddings [5][6]

3.2 Second approach: Runtime Monitoring of

Neuron Activation Patterns. [4][6]

Greedy Layer Wise Training:

Bibliography

- [1] A. F. Frangi, J. Hornegger, N. Navab, and W. M. Wells, "U-Net: Convolutional Networks for Biomedical Image Segmentation," in *Lecture Notes in Computer Science*, vol. 9351, pp. 234-241, Springer International Publishing AG, Switzerland, 2015, ISBN: 9783319245737.
- [2] D. Hendrycks and T. Dietterich, "Benchmarking Neural Network Robustness to Common Corruptions and Perturbations," 2019.
- [3] M. De Ryck, "Robot Demonstrator Code," 2023, GitHub repository. Available: https://github.com/MatthiasDR96/robot_demonstrator.git.
- [4] Chih-Hong, Cheng, Nührenberg, Georg, and Yasuoka, Hirotoshi. "Runtime Monitoring Neuron Activation Patterns." arXiv.org, 2018. ISSN 2331-8422.
- [5] Lakshminarayanan, B., Pritzel, A., & Blundell, C. (2016). Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles. arXiv.org.
- [6] Sahu, Amit; Vállez, Noelia; Rodríguez-Bobada, Rosana; Alhaddad, Mohamad; Moured, Omar; Neugschwandtner, Georg. "Application of the Neural Network Dependability Kit in Real-World Environments." arXiv (Cornell University), 2020. ISSN: 2331-8422.

