ALGO QCM

1.	Dans 1	e	hachage,	la	place	ď	un	élément	est	déterminé	par	?
----	--------	---	----------	----	-------	---	----	---------	-----	-----------	-----	---

- (a) sa valeur
- (b) la valeur de sa clé
- (c) un calcul effectué sur sa valeur
- (d) un calcul effectué sur sa clé

2. La division est plus efficace si?

- (a) m est pair
- (b) m est impair
- m est premier
- (d) m possède de nombreux petits diviseurs

3. La méthode de hachage qui tronçonne la séquence de bits en sous-mots est?

- (a) la complétion
- (b) la compression
- (c) l'extraction
- (d) la multiplication

4. Une fonction de	hachage doit	être?	0
① Déterministe (b) Universelle	<u></u> >	Bunifor	, c

- (c) Facile à coder
 (d) Rapide à calculer
 - 5. La méthode de hachage qui prend seulement certains bits de la représentation est?
 - (a) la complétion
 - (b) la compression
 - (c) l'extraction
 - (d) l'exception
 - 6. Une fonction de hachage doit être uniforme?
 - (a) Oui
 - (b) Non
 - (c) Cela dépend

Ţ

- 7. Parmi les méthodes suivantes, lesquelles sont des méthodes de hachage de base?
 - (a) explosion
 - (b) exception
 - (c) modulation
 - (d) aucune
- 8. Lorsque deux éléments distincts ont même de valeur de hachage, on dit que l'on a?
 - (a) Collision principale
 - (b) Collision primaire
 - (c) Collision secondaire
 - (d) Collision simple
- 9. l'efficacité de la multiplication dépend?
 - (a) principalement de m
 - (b) principalement de θ
 - (c) autant de m que de θ
 - (d) ni de m ni de θ

- 10. La complétion est une méthode de hachage de base?
 - (a) Oui
 - (b) Non
 - (c) Certaines fois

complétion + compression division

QCM N°2

lundi 3 octobre 2016

Question 11

Soient (u_n) et (v_n) deux suites réelles positives quelconques telles que $u_n = o(v_n)$ et $\sum v_n$ diverge. Alors

- a. $\sum u_n$ converge
- b. $v_n \longrightarrow +\infty$
- c. $\sum u_n$ diverge
- d. on ne peut rien dire de la nature de $\sum u_n$

Question 12

Soit (u_n) une suite réelle strictement positive telle que

$$\frac{u_{n+1}}{u_n} \longrightarrow \frac{1}{4} \ \checkmark^{1}$$

871, 80 m cv

Alors

- $a. \sum u_n$ converge
- b. $\sum u_n$ diverge
- c. on ne peut rien dire de la nature de $\sum u_n$

Question 13

Soit (u_n) une suite réelle positive telle que

$$\sqrt[n]{u_n} \longrightarrow 1$$

8/1, EUn CV

Alors

- a. $\sum u_n$ converge
- b. $\sum u_n$ diverge
- \bigcirc on ne peut rien dire de la nature de $\sum u_n$

-> EUn et EVn sout

de même nature

Question 14

Soit (u_n) une suite réelle que lconque telle que $\sum (u_n - u_{n-1})$ diverge. Alors

- a. $\sum u_n$ diverge
- b. (un) diverge
- c. (un) converge
- d. rien de ce qui précède

Question 15

Soient (u_n) et (v_n) deux suites réelles telles que $u_n \sim v_n$ et $\sum v_n$ converge.

- a $\sum u_n$ converge
- b. $\sum u_n$ diverge
- c. on ne peut rien dire sur la nature de $\sum u_n$

Question 16

Soit $\sum u_n$ une série à termes positifs et $(S_n) = \left(\sum_{k=1}^n u_k\right)$. Alors

- (S_n) est croissante
- b. (S_n) est décroissante
- c. (S_n) n'est pas nécessairement monotone
- \bigcirc $\sum u_n$ converge ssi (S_n) est majorée
 - e. rien de ce qui précède

Question 17

Soit $q \in \mathbb{R}^+$. Alors $\sum q^n$

- a. converge
- b. diverge
- c. converge ssi q < 1
- d. converge ssi q > 1
- e. converge ssi $q \leq 1$

Question 18

Soit $\alpha \in \mathbb{R}$. Alors $\sum n^{\alpha}$

- a. converge ssi $\alpha > 1$
- b. converge ssi $\alpha < 1$
- c. converge ssi $\alpha < -1$
- d. converge ssi $\alpha > -1$
- e. diverge pour tout α

Question 19

Au voisinage de 0, on a

a.
$$\ln(1-x) = x - \frac{x^2}{2!} + \frac{x^3}{3!} + o(x^3)$$

b.
$$\ln(1-x) = -x - \frac{x^2}{2} - \frac{x^3}{3} + o(x^3)$$

c.
$$\ln(1-x) = -x + \frac{x^2}{2} - \frac{x^3}{3} + o(x^3)$$

d.
$$\ln(1-x) = -x + \frac{x^2}{2!} - \frac{x^3}{3!} + o(x^3)$$

e. rien de ce qui précède

Question 20

Au voisinage de 0, on a

a.
$$\sin(x) = x + \frac{x^3}{3!} + o(x^3)$$

b.
$$\sin(x) = 1 + x + \frac{x^2}{2!} + o(x^2)$$

$$\epsilon. \sin(x) = 1 - x + \frac{x^2}{2!} + o(x^2)$$

(d)
$$\sin(x) = x - \frac{x^3}{3!} + o(x^3)$$

e. rien de ce qui précède

Q.C.M n°2 de Physique

41- Les composantes du vecteur force \vec{F}_1 sur le schéma ci-dessous sont :

a)
$$\vec{F}_1 = \begin{pmatrix} F_1 \\ 0 \end{pmatrix}$$

a)
$$\vec{F}_1 = \begin{pmatrix} F_1 \\ 0 \end{pmatrix}$$
 b) $\vec{F}_1 = \begin{pmatrix} 0 \\ -F_1 \end{pmatrix}$ c) $\vec{F}_1 = \begin{pmatrix} F_1 \cdot \cos(\alpha) \\ 0 \end{pmatrix}$

42- Les composantes du vecteur force \vec{F}_2 sur le schéma de la question 41 sont :

(a)
$$\vec{F}_2 = \begin{pmatrix} F_2 \cdot \cos(\alpha) \\ F_2 \cdot \sin(\alpha) \end{pmatrix}$$

$$\vec{F}_2 = \begin{pmatrix} F_2 \cdot \sin(\alpha) \\ F_2 \cdot \cos(\alpha) \end{pmatrix}$$

a)
$$\vec{F}_2 = \begin{pmatrix} F_2 \cdot \cos(\alpha) \\ F_3 \cdot \sin(\alpha) \end{pmatrix}$$
; b) $\vec{F}_2 = \begin{pmatrix} F_2 \cdot \sin(\alpha) \\ F_2 \cdot \cos(\alpha) \end{pmatrix}$; c) $\vec{F}_2 = \begin{pmatrix} -F_2 \cdot \cos(\alpha) \\ -F_2 \cdot \sin(\alpha) \end{pmatrix}$

43- Le produit scalaire de deux forces $\vec{F_1}$ et $\vec{F_2}$ tel que : $(\vec{F_1}, \vec{F_2}) = \alpha$ s'écrit :

(a)
$$F_1 F_2 \cdot \cos(\alpha)$$

b)
$$F_1.F_2.\sin(\alpha)$$

c)
$$\sqrt{F_1^2 + F_2^2 + 2F_1 \cdot F_2 \cdot \cos(\alpha)}$$

44- La norme du vecteur $\vec{V}_3 = \vec{V}_1 \wedge \vec{V}_2$, tel que : $(\vec{V}_1, \vec{V}_2) = \alpha$ est :

a)
$$V_3 = V_1 \cdot V_2$$

b)
$$V_3 = V_1 \cdot V_2 \cdot \cos(\alpha)$$

b)
$$V_3 = V_1 \cdot V_2 \cdot \cos(\alpha)$$

c) $V_3 = \sqrt{V_1^2 + V_2^2 + 2V_1 \cdot V_2 \cdot \cos(\alpha)}$
d) $V_3 = V_1 \cdot V_2 \cdot |\sin(\alpha)|$

$$(d)V_3 = V_1.V_2.|\sin(\alpha)|$$

- 45- La force électrique qui décrit l'interaction entre deux charges ponctuelles q_1 et q_2 , séparées par une distance r est
 - a) proportionnelle au produit des masses m₁ et m₂ des deux charges.
 - b) négligeable à l'échelle atomique
 - c) inversement proportionnelle au produit des charges
 - (d) inversement proportionnelle à r2

46- La force électrique \vec{F}_e vérifie

- a) attractive quelle que soit la nature des charges
- attractive ou répulsive selon le signe des charges
 - c) répulsive quelle que soit la nature des charges

47- Un champ électrostatique \vec{E} est dit divergent lorsqu'il est créé par :

- (a) Un proton
 - b) Un neutron
 - c) Un électron

48- Le champ électrostatique \vec{E} créé au point M par une charge placée au même point Mest:

- a) convergent
- b) Nul
- (c) Non défini

49- L'intensité du champ électrostatique créé au point M, par une charge qA placée au point A est donné par :

(a)
$$E_A(M) = k \frac{|q_A|}{(AM)^2}$$

b)
$$E_A(M) = k \frac{|q_A| |q_M|}{(AM)^2}$$

c) $E_A(M) = k \frac{|q_A|}{AM}$

c)
$$E_A(M) = k \frac{|q_A|}{AM}$$

50- Un doublet électrique (-Q, +Q) de charges placées respectivement aux points A et B crée un champ électrique au milieu O du segment AB de norme :

a)
$$E(O) = k \frac{Q}{(AB)^2}$$

b)
$$E(O) = \frac{4kQ}{(AB)^2}$$

c)
$$E(O) = 0$$

$$(d) E(O) = \frac{8kQ}{(AB)^2}$$

QCM Electronique - InfoS3

Pensez à bien lire les questions ET les réponses proposées (attention à la numérotation des réponses)

Révisions: Lois et Théorèmes de l'électronique

Soit le circuit ci-contre :

Q51. On veut déterminer le courant I_3 qui traverse R_3 .

-a-
$$I_3 = \left(\frac{E_1}{R_1 + R_2} + I_0\right)$$

$$b_{5} I_{3} = \frac{R_{4}}{R_{3}} I_{0}$$

$$-c-I_3 = I_0$$

(d-)
$$I_3 = \frac{E + (R_1 + R_2) \cdot I_0}{R_1 + R_2 + R_3}$$

Q52. La résistance R_N du générateur de Norton « vue » par R_1 est :

$$a_{5}R_{N}=R_{2}+R_{3}+R_{4}$$

$$a_{1} R_{N} = R_{2} + R_{3} + R_{4}$$

$$\mathbf{b}_{-}R_{N}=R_{2}+\frac{R_{3}.R_{4}}{R_{3}+R_{4}}$$

$$R_N = R_3 + R_2$$

d-
$$R_N = \frac{R_4 \cdot (R_1 + R_2)}{R_4 + R_1 + R_2} + R_3$$

Soit le circuit ci-contre : Q53.

> Quelle est la valeur de la tension U si l'intérrupteur K est ouvert?

$$a - U = 0$$

b-
$$U = \frac{E}{2}$$

$$c$$
- $U = E$

$$d-U=-E$$

Les semi-conducteurs et les diodes

Q54. Le dopage permet d'augmenter la conductivité du semi-conducteur

(a- VRAI

b- FAUX

Avec une excitation électrique, un matériau isolant peut devenir semi-conducteur :

a- Vrai

b- Faux

matériau c- Seulement possède des électrons dans sa bande de conduction

Q56.

Ce circuit est:

a- Passant

b- Bloqué

Q57. Quel modèle permet la représentation la plus précise de la diode :

a- Le modèle idéal

 d- Les trois modèles sont équivalents

- b- Le modèle à seuil
- c- Le modèle réel

Q58. Quelle est la proposition exacte?

a- Un semiconducteur de type P est dopé à l'aide d'atomes pentavalents.

b- Un semiconducteur de type P est dopé à l'aide d'atomes trivalents.

c- Aucune de ces réponses

Q59. Quelle est la proposition exacte?

a- Un semiconducteur de type N est dopé à l'aide d'atomes pentavalents.

b- Un semiconducteur de type N est dopé à l'aide d'atomes trivalents.

c- Aucune de ces réponses

Q60. Laquelle de ces caractéristiques correspond à la caractéristique courant/tension du modèle réel de la diode :

QCM 2 Architecture des ordinateurs

Lundi 3 octobre 2016

- 61. Le bus d'adresse du 68000 est de :
 - A. 32 bits
 - B. 64 bits
 - C. 16 bits
 - D. 24 bits
- 62. Quel mode a des privilèges limités ?
 - A. Le mode noyau
 - B. Le mode superviseur
 - C: Le mode utilisateur
 - D. Le mode débutant
- 63. Le 68000 possède:
 - A. 32 registres d'adresse
 - B registres d'adresse
 - C. 16 registres d'adresse
 - D. 64 registres d'adresse
- 64. Le 68000 possède:
 - A. 4 registres d'état
 - B. 8 registres d'état
 - 1 registre d'état
 - D. 2 registres d'état
- 65. Quel mnémonique est une directive d'assemblage?
 - A. ILLEGAL
 - B. ORG
 - C. MOVE
 - D. ADD
- 66. Soit l'instruction suivante: MOVE.W (A0)+,D0
 - A. A0 est incrémenté de 1.
 - B. A0 est incrémenté de 2.
 - C. A0 est incrémenté de 4.
 - D. A0 ne change pas.

B. +1

L. 12

W. 44

Architecture des ordinateurs – EPITA – S3 – 2016/2017

- 67. Soit l'instruction suivante : MOVE.W 2(A0),D0
 - A. A0 est incrémenté de 1.
 - B. A0 est incrémenté de 2.
 - C. A0 est incrémenté de 4.
 - D. A0 ne change pas.
- 68. Le registre CCR est : (deux réponses)
 - A. Sur 8 bits.
 - B. Les 8 bits de poids faible du registre SR.
 - C. Sur 16 bits.
 - D. Les 8 bits de poids fort du registre SR.
- 69. Dans l'addition A + B = C, le flag V est positionné à 1 si : (deux réponses)

V= averglow

- A. A est positif, B est positif, C est positif.
- B. A est positif, B est négatif, C est positif.
- A est positif, B est positif, C est négatif.
- A est négatif, B est négatif, C est positif.
- 70. Quels modes d'adressage ne spécifient pas d'emplacement mémoire ? (deux réponses)
 - A. Mode d'adressage direct.
 - B. Mode d'adressage immédiat.
 - C. Mode d'adressage indirect.
 - D. Mode d'adressage absolu.