$\begin{array}{c} {\rm ECE~2200L} \\ {\rm Introduction~to~Microelectronics~Circuits} \\ {\rm Laboratory} \end{array}$

Experiment 5
Bipolar Junction Transistor Current-Voltage
Characteristics

Report

Choi Tim Antony Yung October 14, 2020

Objective

To study the current-voltage relationships of the bipolar junction transistors through laboratory experimentation.

Result

The following is the experimental data obtained from 1N2222 BJT.

Table 1: \mathcal{I}_B and \mathcal{V}_{BE} values at circuit without $500\,\Omega$ resistor at collector

V_{BE}	${ m I}_B$
$0\mathrm{mV}$	0 μΑ
$639\mathrm{mV}$	$10 \mu A$
$658\mathrm{mV}$	$20\mu\mathrm{A}$
$668\mathrm{mV}$	$30\mu\mathrm{A}$
$676\mathrm{mV}$	$40\mu\mathrm{A}$
$682\mathrm{mV}$	$50\mu\mathrm{A}$
$686\mathrm{mV}$	$60\mu\mathrm{A}$
$689\mathrm{mV}$	$70\mu\mathrm{A}$
$692\mathrm{mV}$	$80\mu\mathrm{A}$
$695\mathrm{mV}$	$90 \mu A$
$698\mathrm{mV}$	$100\mu A$

Figure 1: I_B vs V_{BE} chart of 1N2222 at circuit without 500 Ω resistor at collector

Table 2: \mathcal{I}_C and \mathcal{V}_{CE} values at circuit with $500\,\Omega$ resistor at collector

	$I_B = 20 \mu\text{A}$		$I_B = 40 \mu\text{A}$		$I_B = 60 \mu\text{A}$	
V_{CE}	V_{CC}	I_C	V_{CC}	I_C	V_{CC}	I_C
1 V	$2.28\mathrm{V}$	$0.002296\mathrm{A}$	$3.64\mathrm{V}$	$0.004736\mathrm{A}$	$4.97\mathrm{V}$	$0.007122\mathrm{A}$
$3\mathrm{V}$	$4.31\mathrm{V}$	$0.002350\mathrm{A}$	$5.72\mathrm{V}$	$0.004880\mathrm{A}$	$7.05\mathrm{V}$	$0.007266\mathrm{A}$
$5\mathrm{V}$	$6.31\mathrm{V}$	$0.002350\mathrm{A}$	$7.83\mathrm{V}$	$0.005077\mathrm{A}$	$9.28\mathrm{V}$	$0.007679\mathrm{A}$
$7\mathrm{V}$	$8.36\mathrm{V}$	$0.002440\mathrm{A}$	$9.93\mathrm{V}$	$0.005257\mathrm{A}$	$11.43\mathrm{V}$	$0.007948\mathrm{A}$
$9\mathrm{V}$	$10.37\mathrm{V}$	$0.002458\mathrm{A}$	$11.99\mathrm{V}$	$0.005364\mathrm{A}$	$13.67\mathrm{V}$	$0.008378\mathrm{A}$
$11\mathrm{V}$	$12.4\mathrm{V}$	$0.002512\mathrm{A}$	$13.98\mathrm{V}$	$0.005346\mathrm{A}$	$15.95\mathrm{V}$	$0.008881\mathrm{A}$

Figure 2: I_C vs V_{CE} chart of 1N2222 at circuit with 500 Ω resistor at collector

DC β at operating point of $V_{CE}=5\,\mathrm{V}$ and $I_{B}=40\,\mathrm{\mu A}$ can then be derived.

$$\beta_{DC} = \frac{I_C(V_{CE} = 5 \text{ V}, I_B = 40 \,\mu\text{A})}{I_B = 40 \,\mu\text{A}} = \frac{0.005 \,077 \,\text{A}}{0.000 \,040 \,\text{A}} = 126.925 \tag{1}$$

Figure 3: PSpice simulation with bias display of the circuit

R_1	=	$15.04\mathrm{k}\Omega$	R_1	=	$15.04\mathrm{k}\Omega$
R_2	=	$3.356\mathrm{k}\Omega$	R_2	=	$3.356\mathrm{k}\Omega$
R_E	=	$217\mathrm{k}\Omega$	R_E	=	$217\mathrm{k}\Omega$
R_C	=	$824\mathrm{k}\Omega$	R_C	=	$824\mathrm{k}\Omega$
V_{CC}	=	$10.00 m{V}$	V_{CC}	=	$10.00\mathrm{V}$
V_C	=	$5.98\mathrm{V}$	V_C	=	$6.045\mathrm{V}$
V_E	=	$1.067{ m V}$	V_E	=	$1.050\mathrm{V}$
V_B	=	$1.719\mathrm{V}$	V_B	=	$1.718\mathrm{V}$

Table 3: Values from circuit

Table 4: Values from simulation

Assuming I_B , I_C enter and I_E exit the BJT, for this circuit,

$$I_C = \frac{V_{CC} - V_C}{R_C}$$

$$I_B = I_E - I_C = \frac{V_E}{R_E} - \frac{V_{CC} - V_C}{R_C}$$

$$V_{CE} = V_C - V_E$$

$$\beta = \frac{I_C}{I_B}$$

We can then calculate β and the BJT bias point I_B , I_C and V_{CE} from table 3 and table 4.

$$I_C = 4.88 \,\mathrm{mA}$$
 $I_C = 4.799 \,\mathrm{mA}$ $I_B = 38.4 \,\mathrm{\mu A}$ $I_B = 38.70 \,\mathrm{\mu A}$ $V_{CE} = 4.913 \,\mathrm{V}$ $V_{CE} = 4.995 \,\mathrm{V}$ $V_{CE} = 4.913 \,\mathrm{V}$ V_{CE

Table 5: Derived from circuit

Table 6: Derived from simulation

Conclusion

From equation 1 we found that beta = 126.925, which is close to the value from table 5. The experimental value at table 3 and table 5 are also similar to the values obtain from PSpice simulation listed in table 4 and table 6.