Question 1:

```
function Lpred = myBayesPredict(Dtrain, Ltrain, Dtest, opt)
%% 1. Use Naive Bayes Function to Make classification
if opt==1
NB = fitcnb(Dtrain,Ltrain); % construct a Naive Bayes model NB
Lpred = predict(NB, Dtest); % apply the trained model NB to predict
class of test samples in Dtest
end
%% 2. Use the discriminant function G(x) = likelihood*prior for
classification
if opt==2
  C = unique(Ltrain);
  Lpred = [];
   for iC = 1:length(C) % For each class i, calculate P(X|W_j)P(W_j) for
all testing samples
       cl = C(iC);
       idx = find(Ltrain==cl);
       data = Dtrain(idx,:);
       mu = mean(data); % feature mean vector
       sigma = cov(data); % feature covariance matrix
       P = length(idx)/length(Ltrain);
       % For each testing sample, calculate P(X|Wj)P(Wj) = likelihood of
class i * prior of class i
       for j = 1:size(Dtest,1)
           x = Dtest(j, :);
           likelihood = mvnpdf(x, mu, sigma); % likelihood of the current
class i
           prior = P; % prior of the current class i
           % Record values of the discriminat function G(X)
           % In the following matrix G, each row represent a class, and
           % each column represent a testing sample
           G(iC, j) = likelihood*prior; % P(X|Wj)P(Wj)
       end
   end
   % For each testing sample, find the index of the class that have
maximum
   % value of likelihood*prior
   [\sim, pred] = max(G);
   Lpred = C(pred);
end
```

```
%% 3. Use the derived discriminant function G(x) for classification
% based on the the assumption of Multivariate Normal Distribution for
features
if opt==3
   C = unique(Ltrain);
   Lpred = [];
   for iC = 1:length(C)
       cl = C(iC);
       idx = find(Ltrain==cl);
       data = Dtrain(idx,:);
       mu = mean(data)';
       sigma = cov(data);
       P = length(idx)/length(Ltrain);
       W = -0.5*inv(sigma);
       w = inv(sigma)*mu;
       w0 = -0.5 \times (sigma) \times (sigma) \times (det(sigma)) + (log(P);
       for j = 1:size(Dtest, 1)
           x = Dtest(j, :)';
           % The closed form of the derived discriminant function G(X)
           G(iC, j) = x'*W*x + w'*x + w0;
       end
   end
   [\sim, pred] = max(G);
   Lpred = C(pred);
end
```

Results:

Confusion matrix for fold 1		
1	2	3
10	0	0
0	10	0
0	0	10

Confusion matrix for fold 2

1	2	3
10	0	0
0	10	0
0	0	10

Confusion matrix for fold 3

1	2	3
10	0	0
0	9	1
0	0	10

Confusion matrix for fold 4

1	2	3
10	0	0
0	9	1
0	1	9

Confusion matrix for fold 5

1	2	3
10	0	0
0	10	0
0	0	10

Overall confusion matrix

1	2	3
50	0	0
0	48	2
0	1	49

Accuracy for 5 folds

1	
•	1
•	1
0.9667	/
0.9333	3
•	1

Overall average accuracy

1	2
0.9800	

Accuracy for Bayesian option 1,2 and 3

1	2
1	0.9533
2	0.9800
3	0.9800

Question 2:

```
function [Lpred, w] = FishersLDA(Dtrain, Ltrain, Dtest, lambda)
% Binary Classification using Fisher's linear discriminant
if (nargin<3 || isempty(lambda))</pre>
  lambda = [0 1; 1 0];
end
%-----Fisher Linear Discriminant-----%
idx1 = find(Ltrain==1); % the index for class 1
idx2 = find(Ltrain==2); % the index for class 2
Dtrain c1 = Dtrain(idx1, :); % the training samples of class 1
Dtrain c2 = Dtrain(idx2, :); % the training samples of class 2
N c1 = length(idx1); % the number of samples in class 1
N c2 = length(idx2); % the number of samples in class 2
sigma1 = cov(Dtrain c1);
mu1 = mean(Dtrain c1);
sigma2 = cov(Dtrain c2);
mu2 = mean(Dtrain c2);
Sw = sigma1 + sigma2;
%% The optimal direction w for sample projection:
w = inv(Sw)*(mu1-mu2)';
%-----The Projected Data-----%
Dtrain new = Dtrain*w; % Projected training data
Ltrain new = Ltrain; % Training data label
Dtest new = Dtest*w; % Projected testing data
Dtrain new c1 = Dtrain new(idx1, :); % projected training samples of
class 1
Dtrain new c2 = Dtrain new(idx2, :); % projected training samples of
class \frac{1}{2}
mu1 new = mean(Dtrain new c1); % mean of projected samples of class 1
mu2 new = mean(Dtrain new c2);
sigma1 new = std(Dtrain new c1); % standard deviation of projected
samples of class 1
sigma2 new = std(Dtrain new c2);
Ntest = size(Dtest, 1);
Lpred = [];
for i = 1:Ntest
        feat = Dtest new(i);
        prior1 = length(idx1)/length(Ltrain);
```

1001565060

Goutham Munagala

```
likelihood1 = normpdf(feat, mu1_new, sigma1_new); % likelihood of
the current class 1
    prior2 = length(idx2)/length(Ltrain);
    likelihood2 = normpdf(feat, mu2_new, sigma2_new); % likelihood of
the current class 2

if (likelihood1/likelihood2) > (lambda(1,2)-
lambda(2,2))/(lambda(2,1)-lambda(1,1))*(prior2/prior1);
    pred = 1;
else
    pred = 2;
end

Lpred(i,1) = pred;
end
end
```

Results:

lambda = [0 1; 1 0]

5 fold accuracy

1
0.6087
0.6250
0.6957
0.6522
0.4783

Sensitivity and specificity

1	2
0.3000	0.8462
0.3636	0.8462
0.5000	0.8462
0.7000	0.6154
0.9091	0.0833

Overall accuracy

1	
0.6120)

lambda = [0 5; 1 0]

Accuracy	for	5	folds
riccaracy	101	_	10100

1
0.5652
0.5652
0.5417
0.5417
0.5000

Sensitivity and specificity

1	2
0	1
0	1
0	1
0	1
0.4000	0.5833

Overall accuracy

I
0.5428