Chapter 6: Optimization Algorithms

Outline

- Cost fitness objective function
- Search space
- Hill-climbing
- Simulated annealing
- Genetic Algorithm

Learning problem

- Symbolic learning
 - Steering rules by examples
- Numerical learning -> optimization
 - Minimizing cost function
 - Maximizing fitness function
 - Dynamically optimizing objective function

Search space

- Search space = parameter space
 - Combinatorial problem
 - Permutation problem
- Global optimum vs. local optimum

Global optimum-oriented searching

- Hill-climbing
- Simulated annealing
- Genetic algorithm

Hill-climbing algorithms

- Hill-climbing
- Steepest gradient
- Gradient-proportional descent

Simulated annealing

- Simulating the process of annealing metal atoms
- High temperature → high probability for atoms to overcome (break) local energy

Select random start point $\mathbf{x} := (x_1, x_2, x_3, ..., x_n)$

Select initial temperature T > 0

Acceptance Probability

- P = $\exp(-E_a/kT)$
- $P = \exp(-\Delta E/T)$

• P =
$$\frac{1}{1 + \exp(\Delta E/T)}$$

Genetic Algorithm

- Inspired by natural evolution
- Claimed to reach global optimum

Genetic Algorithm

- Using chromosomes to represent candidate solutions
- Generating a population of candidates
- Fitness evaluation
- Selection for reproduction
- Reproduction
 - Mating
 - Cross-over
 - Mutation
 - Selection

- Make thing "genetic"
 - Maximize f(x,y)

- Make thing "genetic"
 - Maximize f(x,y) (log(x^2+x^y)-cos(y^x))

- Make thing "genetic"
 - Maximize f(x,y)

Solution candidate

- Make thing "genetic"
 - Maximize f(x,y)

Solution candidate

- Allele
- Locus

- Make thing "genetic"
 - Maximize f(x,y)

- Make thing "genetic"
 - Maximize f(x,y)

Make thing "genetic"

- Maximize f(x,y)

Crossover

$ m_1 m_2 m_3 m_4 m_5 m_6 m_7 m_8$

f ₁ f ₂ f ₃ f ₄ f ₅ f ₆ f ₇	f_8
--	-------

Crossover

Crossover

m_1	m_2	m ₃	m_4	m ₅	m ₆	m ₇	m ₈
	-	**	-	**	100		3,0

$$f_1$$
 f_2 f_3 f_4 f_5 f_6 f_7 f_8

```
m<sub>1</sub> | f<sub>2</sub> | f<sub>3</sub> | f<sub>4</sub> | f<sub>5</sub> | m<sub>6</sub> | m<sub>7</sub> | m<sub>8</sub>
```


Mutation

- Altering the value of one or more loci
- Based on a probability P_m

Validity check

- A = 01, B = 10, C = 11
- BACA

1 0 0 1	1 1	0 1
---------	-----	-----

Validity check

- A = 01, B = 10, C = 11
- BACA

1 0 0	1	1	1	0	1
-------	---	---	---	---	---

Selection

- Selection methods:
 - Strong
 - Week

Selection

- Selection methods:
 - Too Strong: premature convergence
 - Too Week: slow evolution

Selection methods

- Roulette wheel selection
- Linear fitting scaling
- Boltzman fitness scaling
- Rank selection

