NAV STAGE 2

https://github.com/ehud-gordon/VAN_ex

Question 2.3

• Describe how to define from [R|t] a transformation T that transforms from $left_0$ coordinates to $left_1$ coordinates.

Applying solvePNP we get M = [R|t] a (3,4) matrix, the R&T matrix from L0 coordinates to L1 coordinates. So given a 3D point X, in L0 coordinates, we have that X in L1 coordinates = Rx + t.

• If camera A has extrinsic matrix [I|0], transformation $T_{A\to B}(x)=R_1x+t_1$ transforms from the coordinates of A to the coordinates of camera B and transformation $T_{B\to C}(x)=R_2x+t_2$ transforms from the coordinates of B to the coordinates of camera C, express transformation $T_{A\to C}$ and the extrinsic matrix of C using R_1,R_2,t_1,t_2 .

The transformation from A to C is simply applying $T_{A->B}$, and then $T_{B->C}$. So $T_{A->C}=R_2(R_1x+t_1)+t_2$, and its extrinsimc matrix is $[R_2R_1|R_2t_1+t_2]$

• For a camera with extrinsic matrix [R|t], what is the location of the camera in the global coordinate system?

Let d_w be the vector, in global CS, of the camera location. Then $t = -Rd_w$, meaning $d_w = R^T(-t)$.

Plot the relative position of the four cameras (from above).

Question 2.4

• Plot on images left0 and left1 the matches, with supporters in different color.

Question 2.5

• Plot the two 3D point clouds from above. Use different colors for the two clouds.

Plot on images left0 and left1 the inliers and outliers in different colors.

Question 2.7

• Plot a trajectory of all the left camera locations in the coordinates of camera 0, as viewed from above. plot the ground truth locations in a different color.

How long did the tracking take?
The tracking for 2761 frames took 20 minutes.