QUANTENMECHANIK, BLATT 9, SOMMERSEMESTER 2015, C. KOLLATH

Abgabe Di 16.06 vor der Vorlesung. Besprechung 19.06

I. DER ZWEIDIMENSIONALE HARMONISCHE OSZILLATOR

Betrachten Sie den harmonischen Oszillator in der Ebene. Der Hamiltonoperator des Systems kann in Polarkoordinaten dargestellt werden:

$$\hat{H} = -\frac{\hbar^2}{2m} \left\{ \frac{\partial^2}{\partial r^2} + \frac{1}{r} \frac{\partial}{\partial r} + \frac{1}{r^2} \frac{\partial^2}{\partial \varphi^2} \right\} + \frac{1}{2} m \omega^2 r^2 .$$

- (a) Zeigen Sie, dass $\hat{L}_z = -i\hbar \frac{\partial}{\partial \varphi}$ in der Darstellung durch Polarkoordinaten. (3 Punkte)
- (b) Zeigen Sie, dass \hat{L}_z und \hat{H} gemeinsame Eigenvektoren haben. (3 Punkte)
- (c) Sei einer der Eigenzustände gegeben durch $\psi_m(r,\varphi)$ mit Eigenwert $\hbar m$ zum Operator \hat{L}_z . Wie hängt $\psi_m(r,\varphi)$ von φ ab? Was kann man über m aussagen? (3 Punkte)

II. EIN ELEKTRON IN DER FALLE

Wir betrachten ein Elektron mit magnetischem Moment μ_0 , dass in einem eindimensionalen unendlichen Potentialtopf gefangen ist und unter Einfluss eines homogenen magnetischen Feldes steht. Der Hamiltonoperator des Systems is gegeben durch:

$$\hat{H} = \frac{\hat{p}_x^2}{2m} + V(\hat{x}) - B_y \hat{\mu}_y$$

mit V(x) = 0 falls $x \in [0, L]$ und $V(x) = +\infty$ sonst, $B_y > 0$, m der Elektronenmasse, und $\hat{\mu}$ der Operator des magnetischen Moments.

- 1. Geben Sie den Grundzustand an. (4 Punkte)
- 2. Betrachten Sie als Anfangszustand:

$$|\psi(t=0)\rangle = N(|\phi_1\rangle + |\phi_2\rangle) \otimes (|+\rangle_z + |-\rangle_z) \tag{1}$$

wobei $|\phi_1\rangle$ und $|\phi_2\rangle$ der Grundzustand und der erste angeregte Zustand des unendlichen Potentialtopfes sind, N ist die Normierungskonstante, $|+\rangle_z$ und $|-\rangle_z$ sind die Eigenzustände von $\hat{\mu}_z$ mit den zugehörigen Eingewerten $+\mu_0$ und $-\mu_0$. Berechnen Sie N, $|\psi(t)\rangle$, $\langle \hat{\mu}_x(t)\rangle$, $\langle \hat{\mu}_x(t)\rangle$, und $\langle \hat{\mu}_z(t)\rangle$. (11 Punkte)

III. EIN GELADENES TEILCHEN IM MAGNETFELD

Der Hamiltonoperator eines geladenen Teilchens im Magnetfeld $\mathbf{B} = \nabla \times \mathbf{A}$ ist gegeben durch :

$$\hat{H} = \frac{1}{2m} \left(\hat{\mathbf{p}} - \frac{e}{c} \hat{\mathbf{A}} (\hat{\mathbf{r}}) \right)^2$$

wobei e die elektrische Ladung des Teilchens bezeichnet, m seine Masse, $\hat{\mathbf{p}} = (\hat{p}_x, \hat{p}_y, \hat{p}_z)$ ist der Impulsoperator und $\hat{\mathbf{r}}$ ist der Ortsoperator. Das Teilchen hat kein magnetisches Moment. Wir nehmen an, dass $\hat{\mathbf{A}} = -B_0 \hat{y} \mathbf{e}_{\mathbf{x}}$.

- 1. Bestätigen Sie, dass die Wahl des Vektorpotentials einem konstanten Magnetfeld $\mathbf{B} = B_0 \mathbf{e_z}$ entspricht. (1 Punkt)
- 2. Zeigen Sie, dass \hat{p}_x und \hat{p}_z Konstanten der Bewegung sind, d.h. die Erwartungswerte verändern sich nicht in der Zeit. (3 Punkte)
- 3. Bestimmen Sie die Energieniveaus des Systems (Sie können nicht normierte Zustände verwenden). (5 Punkte)

IV. DER SCHWERPUNKT UND DIE RELATIVBEWEGUNG

Wir betrachten zwei bewegte Teilchen deren Hamiltonoperator gegeben ist durch:

$$\hat{H} = \frac{\hat{\mathbf{p}}_1^2}{2m_1} + \frac{\hat{\mathbf{p}}_2^2}{2m_2} + V(\hat{\mathbf{r}}_1 - \hat{\mathbf{r}}_2)$$

1. Zeigen Sie, dass man \hat{H} in der Form $\hat{H} = \hat{H}_S + \hat{H}_{rel}$ schreiben kann, mit

$$\hat{H}_S = \frac{\hat{\mathbf{P}}^2}{2M}$$
 , $\hat{H}_{rel} = \frac{\hat{\mathbf{p}}^2}{2\mu} + V(\hat{\mathbf{r}})$

wobei

$$\hat{\mathbf{P}} = \hat{\mathbf{p}}_1 + \hat{\mathbf{p}}_2$$
 , $\hat{\mathbf{R}} = \frac{m_1 \hat{\mathbf{r}}_1 + m_2 \hat{\mathbf{r}}_2}{m_1 + m_2}$, $M = m_1 + m_2$,

$$\hat{\mathbf{p}} = \frac{m_2 \hat{\mathbf{p}}_1 - m_1 \hat{\mathbf{p}}_2}{m_1 + m_2}$$
 , $\hat{\mathbf{r}} = \hat{\mathbf{r}}_1 - \hat{\mathbf{r}}_2$, $\mu = \frac{m_1 m_2}{m_1 + m_2}$

gesetzt wurden. (3 Punkte)

2. Überprüfen Sie die folgenden Kommutatoren:

$$[\hat{X}_i, \hat{P}_k] = i\hbar \delta_{ik}$$
 , $[\hat{x}_i, \hat{p}_k] = i\hbar \delta_{ik}$, $[\hat{X}_i, \hat{p}_k] = 0$, $[\hat{x}_i, \hat{P}_k] = 0$, $[\hat{\mathbf{P}}, \hat{H}_{rel}] = 0$

$$[\hat{H}_{rel}, \hat{H}_S] = [\hat{H}_{rel}, \hat{H}] = [\hat{H}_S, \hat{H}] = 0$$
 (2)

(6 Punkte)

3. Was sind die Eigenfunktionen von \hat{H}_S ? Was folgt aus den obigen Ergebnissen für die stationären Zustände von \hat{H} ? (5 Punkte)

V. DREHIMPULS

Sei $\hat{\mathbf{J}}$ der Drehimpuls eines Teilchens und \hat{J}_z seine z-Komponente.

- 1. Zeigen Sie, dass $\hat{\mathbf{J}}^2$ und \hat{J}_z kommutieren. Begründen Sie die Wahl der Basis $\{|j,m\rangle\}$ um die Zustände des Drehimpulses darzustellen. (3 Punkte)
- 2. Zeigen Sie, dass für einen Wert j gilt, $-j \le m \le j$, und interpretieren Sie diesen Zusammenhang. Verwenden Sie die Normierung des Vektors $\hat{J}_{+}|j,m\rangle$, wobei $\hat{J}_{+}=\hat{J}_{x}+i\hat{J}_{y}$. (3 Punkte)
- 3. Zeigen Sie, dass für ein System im Zustand $|j,m\rangle$, die mittleren quadratischen Abweichungen ΔJ_x und ΔJ_y des Drehimpulses $\hat{\mathbf{J}}$ gegeben sind durch

$$\Delta J_x = \Delta J_y = \hbar \sqrt{(j(j+1) - m^2)/2}$$

Verwenden Sie die Symmetrieeigenschaften entlang der Richtungen x und y. (5 Punkte)

4. Leiten Sie die folgenden Ausdrücke für den Bahndrehimpuls in Kugelkoordinaten her:

(a)
$$\hat{L}_{\pm} = \hat{L}_x \pm i\hat{L}_y = \hbar e^{\pm i\varphi} \left(\pm \frac{\partial}{\partial \theta} + i \cot \theta \frac{\partial}{\partial \varphi} \right)$$
 (5 Zusatzpunkte)

(b)
$$\hat{\mathbf{L}}^2 = -\hbar^2 \left(\frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial}{\partial \theta} \right) + \frac{1}{\sin^2 \theta} \frac{\partial^2}{\partial \varphi^2} \right)$$
 (5 Zusatzpunkte)

(c)
$$\Delta = \frac{1}{r} \frac{\partial^2}{\partial r^2} r - \frac{1}{r^2 \hbar^2} \hat{\mathbf{L}}^2$$
 (5 Zusatzpunkte)