

Amendment dated

Reply to Office Action of November 15, 2006

AMENDMENTS TO THE SPECIFICATION

Please amend the paragraph starting at page 8, line 14 as follows:

In fact, if we indicate with V_p the voltage drop measured on the terminals A, B of the resistance R_s , with V_x the voltage on the terminals of the capacitor 13 of capacitance C_x , we obtain the relation 1):

$$V_x = T_p V_p / C_x R_s \quad (T_p V_p) / (C_x R_s) \quad 1)$$

in which T_p indicates the duration of the time to charge the capacitor 13 up to a voltage V_x , i.e. the driving time of the circuit 1. However the voltage drop V_p , being proportional to the resistance R_s , will also suffer the variations due to the above-mentioned parasitic parameters, and will not give a true indication if used as a quantity representing the level of ink.

GB
3/30/07
Please amend the paragraph starting at page 8, line 1 as follows:

step 6): the detecting circuit 1 is powered with a pulse of current I of duration equal to the driving time T_p , taken from the memory 16, and the voltage drop V_x on the terminals of the capacitor 13 is measured, before being converted by the converter 3029, connected to the control unit or CPU;