Probability & Statistics for EECS: Homework #04

Due on March 12, 2023 at $23\!:\!59$

Name: **Zhou Shouchen** Student ID: 2021533042

Let C_i : the car is behind the door i, i = 1, 2, 3

 M_i : Monty opended the door i, i = 1, 2, 3

A: we get the car after switching the door.

(a) Since there is no condition on which of doors 2 or 3 Monty opened, so with LOTP, we can get that

$$P(A) = P(A|C_1)P(C_1) + P(A|C_2)P(C_2) + P(A|C_3)P(C_3)$$

Since the car behind each door with equal probability, so $P(C_1) = P(C_2) = P(C_3) = \frac{1}{3}$. Also, if C_1 happened, then we cannot get the car after switching, so $P(A|C_1) = 0$.

And if C_2 happened, then Monty must open the door 3, so we must get the car after switching, so $P(A|C_2) = 1$.

Similarly, $P(A|C_3) = 1$.

So

$$P(A) = 0 * \frac{1}{3} + 1 * \frac{1}{3} + 1 * \frac{1}{3}$$
$$= \frac{2}{3}$$

So above all, the unconditional probability is $P(A) = \frac{2}{3}$.

(b) Since Monty opens the door 2, so with LOTP with extra conditioning, we can get that

$$P(A|M_2) = P(A|C_1, M_2)P(C_1|M_2) + P(A|C_2, M_2)P(C_2|M_2) + P(A|C_3, M_2)P(C_3|M_2)$$

Since that if C_1 happens, then we must not get the car after switching, so $P(A|C_1, M_2) = 0$.

And if C_2 happens, it is impossible for Monty to open the door 2, so $P(M_2|C_2) = 0$, and from the Bayes' Rule, we know that $P(C_2|M_2) = \frac{P(M_2|C_2)P(C_2)}{P(M_2)}$, since $P(M_2|C_2) = 0$, so $P(C_2|M_2) = 0$.

And if C_3 happens, then we must get the car after switching, so $P(A|C_3, M_2) = 1$. So

$$P(A|M_2) = 0 \cdot P(C_1|M_2) + P(A|C_2, M_2) \cdot 0 + 1 \cdot P(C_3|M_2)$$
$$= P(C_3|M_2)$$

With Bayes' Rule, we get that

$$= \frac{P(M_2|C_3)P(C_3)}{P(M_2)}$$

Using LOTP, we can get that

$$P(M_2) = P(M_2|C_1)P(C_1) + P(M_2|C_2)P(C_2) + P(M_2|C_3)P(C_3)$$

$$= p \cdot \frac{1}{3} + 0 \cdot \frac{1}{3} + 1 \cdot \frac{1}{3}$$

$$= \frac{1}{3}(1+p)$$

After getting $P(M_2) = \frac{1}{3}(1+p)$, we can get that

$$P(A|M_2) = \frac{1 \cdot \frac{1}{3}}{\frac{1}{3}(1+p)}$$

$$=\frac{1}{1+p}$$

So above all, the probability given that Monty opens door 2 is $P(A|M_2) = \frac{1}{1 + n}$.

(c) Since Monty opens the door 3, so with LOTP with extra conditioning, we can get that

$$P(A|M_3) = P(A|C_1, M_3)P(C_1|M_3) + P(A|C_2, M_3)P(C_2|M_3) + P(A|C_3, M_3)P(C_3|M_3)$$

Since that if C_1 happens, then we must not get the car after switching, so $P(A|C_1, M_3) = 0$.

And if C_2 happens, then we must get the car after switching, so $P(A|C_2, M_3) = 1$.

And if C_3 happens, it is impossible for Monty to open the door 2, so $P(M_3|C_3) = 0$, and from the Bayes' Rule, we know that $P(C_3|M_3) = \frac{P(M_3|C_3)P(C_3)}{P(M_3)}$, since $P(M_3|C_3) = 0$, so $P(C_3|M_3) = 0$.

So

$$P(A|M_3) = 0 \cdot P(C_1|M_3) + 1 \cdot P(C_2|M_3) + P(A|C_3, M_3) \cdot 0$$
$$= P(C_2|M_3)$$

With Bayes' Rule, we get that

$$= \frac{P(M_3|C_2)P(C_2)}{P(M_3)}$$

Using LOTP, we can get that

$$P(M_3) = P(M_3|C_1)P(C_1) + P(M_3|C_2)P(C_2) + P(M_3|C_3)P(C_3)$$
$$= (1-p) \cdot \frac{1}{3} + 1 \cdot \frac{1}{3} + 0 \cdot \frac{1}{3}$$
$$= \frac{1}{3}(2-p)$$

After getting $P(M_3) = \frac{1}{3}(2-p)$, we can get that

$$P(A|M_3) = \frac{1 \cdot \frac{1}{3}}{\frac{1}{3}(2-p)}$$
$$= \frac{1}{2-p}$$

So above all, the probability given that Monty opens door 3 is $P(A|M_3) = \frac{1}{2-n}$.

(a) No.

Since the value of the *PMF* at n is proportional to $\frac{1}{n}$, so let $P(x=n)=k\cdot\frac{1}{n}$, where k is a constant.

According to the PMF's property, since the support of the distribution is $\{1, 2, 3, \dots\}$, so $\sum_{n=1}^{\infty} P(x=n) = 1$,

so
$$\sum_{n=1}^{\infty} k \cdot \frac{1}{n} = 1$$
, i.e. $k \cdot \sum_{n=1}^{\infty} \frac{1}{n} = 1$.

However, from the knowledge that we have learn about infinite series in mathematical analysis, $\sum_{n=1}^{\infty} \frac{1}{n}$ is

divergent, is it is impossible to find a number k, s.t. $k \cdot \sum_{n=1}^{\infty} \frac{1}{n} = 1$.

So above all, there do not have such distribution.

(b) Yes.

Since the value of the PMF at n is proportional to $\frac{1}{n^2}$, so let $P(x=n)=k\cdot\frac{1}{n^2}$, where k is a constant.

According to the *PMF*'s property, since the support of the distribution is $\{1, 2, 3, \dots\}$, so $\sum_{n=1}^{\infty} P(x=n) = 1$,

so
$$\sum_{n=1}^{\infty} k \cdot \frac{1}{n^2} = 1$$
, i.e. $k \cdot \sum_{n=1}^{\infty} \frac{1}{n^2} = 1$.

From the knowledge that we have learn about infinite series in mathematical analysis, $\sum_{n=1}^{\infty} \frac{1}{n^2}$ is convergent

to
$$\frac{\pi^2}{6}$$
,

so
$$k \cdot \frac{\pi^2}{6} = 1$$
, i.e. $k = \frac{6}{\pi^2}$

so
$$k \cdot \frac{\pi^2}{6} = 1$$
, i.e. $k = \frac{6}{\pi^2}$.
So there exist a $k = \frac{6}{\pi^2}$, s.t. $k \cdot \sum_{n=1}^{\infty} \frac{1}{n^2} = 1$.

So above all, there have such distribution, and its PMF is that $P(x=n) = \frac{6}{\pi^2 n^2}$

$$Y = \left\{ \begin{array}{cc} X+1, & X \le 6 \\ 1, & X=7 \end{array} \right.$$

Since
$$Y$$
 is the next day of X , so
$$Y = \left\{ \begin{array}{l} X+1, \quad X \leq 6 \\ 1, \quad X=7 \end{array} \right.$$
 And since X takes values with equal probabilities, so Y also takes values with equal probabilities. So $P(X=i) = \frac{1}{7}, P(Y=i) = \frac{1}{7},$ and X,Y have the same support $C = \{1,2,3,4,5,6,7\}.$ So $X \sim DUnif(C), Y \sim DUnif(C).$

So
$$X \sim DUnif(C), Y \sim DUnif(C)$$

So X, Y have the same distribution.

As for P(X < Y), from the relation between X, Y that we have mentioned above, we could know that $P(X < Y) = \sum_{x=1}^{6} P(X = x, Y = x + 1) = 6 \cdot \frac{1}{7} = \frac{6}{7}.$

So above all, X, Y have the same distribution. And $P(X < Y) = \frac{6}{7}$.

(a) Since the coins are randomly chosen, so each coin has the probability of $\frac{1}{2}$ to be chosen.

Suppose that Y is the number that the first coin heads, and Z is the number that the second coin heads.

So $Y \sim Bin(n, p_1)$, and $Z \sim Bin(n, p_2)$

Suppose that there are *i* times head. Then $P(Y = i) = \binom{n}{i} p_1^i (1 - p_1)^{n-i}, P(Z = i) = \binom{n}{i} p_2^i (1 - p_2)^{n-i}$.

Since the coins are randomly chosen with equal probability, so we have $\frac{1}{2}$'s probability to choose the first coin as well as the second coin.

So $P(X=i)=\frac{1}{2}P(Y=i)+\frac{1}{2}P(Z=i)=\frac{1}{2}\binom{n}{i}p_1^i(1-p_1)^{n-i}+\frac{1}{2}\binom{n}{i}p_2^i(1-p_2)^{n-i}$ So above all, the PMF of X is

$$P(X=i) = \frac{1}{2} \binom{n}{i} p_1^i (1-p_1)^{n-i} + \frac{1}{2} \binom{n}{i} p_2^i (1-p_2)^{n-i}$$

And its support is $\{0, 1, 2, \dots, n\}$.

(b) Since $p_1 = p_2$, so with what we have in (a), let $p = p_1 = p_2$, then we can get that

$$P(X=i) = \binom{n}{i} p^i (1-p)^{n-i}$$

And its support is $\{0, 1, 2, \dots, n\}$.

From what we have learned, we can find that it is the same as $X \sim Bin(n, p)$.

So above all, if $p_1 = p_2 = p$, the distribution of X is Bin(n, p).

(c) Intuitively, when $p_1 \neq p_2$, if we flip n times, and i times it heads.

For the first coin, $P(X=i) = \binom{n}{i} p_1^i (1-p_1)^{n-i}$.

And for the second coin $P(Y=i) = \binom{n}{i} p_2^i (1-p_2)^{n-i}$.

As n get bigger, for a fixed i, $\frac{P(X=i)}{P(Y=i)} = (\frac{p_1}{p_2} \cdot \frac{1-p_2}{1-p_1})^i \cdot (\frac{1-p_1}{1-p_2})^n$. the rate of P(X=i) and P(Y=i) is getting extrame to 0 or ∞ . The difference between them are getting

bigger.

And it is much harder(impossible) to find a p s.t. $\binom{n}{i}p^i(1-p)^{n-i} = \frac{1}{2}\binom{n}{i}p_1^i(1-p_1)^{n-i} + \frac{1}{2}\binom{n}{i}p_2^i(1-p_2)^{n-i}$.

Because as n get bigger, the difference bewteen two parts that are needed to be averaged are also getting bigger, so no p are suitable to average the two parts.

So intuitively, X is not Binomial for $p_1 \neq p_2$.

(a) Since $X \sim Bern(p), Y \sim Bern(\frac{1}{2}),$ so $P(X=1)=p, P(X=0)=1-p, P(Y=1)=\frac{1}{2}, P(Y=0)=\frac{1}{2}$ And since X and Y are independent, so $P(X \oplus Y=1)=P(X \neq Y)=P(X=1,Y=0)+P(X=0,Y=1)=P(X=1)P(Y=0)+P(X=0)P(Y=1)=p \cdot \frac{1}{2}+(1-p) \cdot \frac{1}{2}=\frac{1}{2}.$ $P(X \oplus Y=0)=P(X=Y)=P(X=1,Y=1)+P(X=0,Y=0)=P(X=1)P(Y=1)+P(X=0)P(Y=0)=p \cdot \frac{1}{2}+(1-p) \cdot \frac{1}{2}=\frac{1}{2}.$ So $P(X \oplus Y=1)=\frac{1}{2}, P(X \oplus Y=0)=\frac{1}{2}$

The PMF is same as what we have learned that $X \oplus Y \sim Bern(\frac{1}{2})$.

So above all, the distribution of $X \oplus Y$ is that $Bern(\frac{1}{2})$.

(b) From (a) we know that $P(X \oplus Y = 1) = P(X \oplus Y = 0) = \frac{1}{2}$. $P(X \oplus Y = 1, X = 1) = P(X = 1, Y = 0) = P(X = 1)P(Y = 0) = \frac{1}{2}p$, and $P(X \oplus Y = 1)P(X = 1) = \frac{1}{2}p$. $P(X \oplus Y = 1, X = 0) = P(X = 0, Y = 1) = P(X = 0)P(Y = 1) = \frac{1}{2}(1 - p)$, and $P(X \oplus Y = 0)P(X = 0) = \frac{1}{2}(1 - p)$. $P(X \oplus Y = 0, X = 1) = P(X = 1, Y = 1) = P(X = 1)P(Y = 1) = \frac{1}{2}p$, and $P(X \oplus Y = 1)P(X = 1) = \frac{1}{2}p$. $P(X \oplus Y = 0, X = 0) = P(X = 0, Y = 0) = P(X = 0)P(Y = 0) = \frac{1}{2}(1 - p)$, and $P(X \oplus Y = 0)P(X = 0) = \frac{1}{2}(1 - p)$.

So for all $X \oplus Y$, X, we have $P(X \oplus Y = a, X = b) = P(X \oplus Y = a)P(X = b)$, where a, b = 0, 1. So $X \oplus Y$, X are independent.

As for $X \oplus Y$ and X $P(X \oplus Y = 1, Y = 1) = P(X = 0, Y = 1) = P(X = 0)P(Y = 1) = \frac{1}{2}p$, and $P(X \oplus Y = 1)P(Y = 1) = \frac{1}{4}$. $P(X \oplus Y = 1, Y = 0) = P(X = 1, Y = 0) = P(X = 1)P(Y = 0) = \frac{1}{2}(1-p)$, and $P(X \oplus Y = 1)P(Y = 0) = \frac{1}{4}$. $P(X \oplus Y = 0, Y = 1) = P(X = 1, Y = 1) = P(X = 1)P(Y = 1) = \frac{1}{2}p$, and $P(X \oplus Y = 0)P(Y = 1) = \frac{1}{4}$. $P(X \oplus Y = 0, Y = 0) = P(X = 0, Y = 0) = P(X = 0)P(Y = 0) = \frac{1}{2}(1-p)$, and $P(X \oplus Y = 0)P(Y = 0) = \frac{1}{4}$. If $p = \frac{1}{2}$, then for all $X \oplus Y, Y$, we have $P(X \oplus Y = a, Y = b) = P(X \oplus Y = a)P(Y = b)$, for all a, b = 0, 1. So when $p = \frac{1}{2}$, $X \oplus Y, Y$ are independent, and when $p \neq \frac{1}{2}$, $X \oplus Y, Y$ are not independent.

So above all, $X \oplus Y, X$ are independent.

When $p = \frac{1}{2}$, $X \oplus Y$, Y are independent.

When $p \neq \frac{1}{2}$, $X \oplus Y$, Y are not independent.

(c) <1>. We can prove that $Y_J \sim Bern(\frac{1}{2})$ with Mathematical induction.

Since all
$$X_i \sim Bern(\frac{1}{2}), i = 1, 2, \dots, n$$
. So $P(X_i = 1) = P(X_i = 0) = \frac{1}{2}$.

When
$$|J| = 1$$
, $P(Y_J = 1) = P(X_j = 1, j \in J) = \frac{1}{2}$. Similarly, $P(Y_J = 0) = \frac{1}{2}$.

When |J| = 2, since X_1, \dots, X_n are i.i.d.

So
$$P(Y_J = 1) = P(X_{j_1} \oplus X_{j_2} = 1) = P(X_{j_1} = 1)P(X_{j_2} = 0) + P(X_{j_1} = 0)P(X_{j_2} = 1) = \frac{1}{4} + \frac{1}{4} = \frac{1}{2}$$
.

Similarly,
$$P(Y_J = 0) = \frac{1}{2}$$
.

And when |J'| = k, $k = 1, 2, \dots, n - 1$, for a specific J'.

Let $J = J' \cup \{i\}$, where $i \notin J'$. So |J| = k + 1.

And we know that $P(Y_{J'} = 1) = P(Y_{J'} = 0) = \frac{1}{2}$.

So for all
$$i \notin J'$$
, $P(Y_J = 1) = P(X_i \oplus Y_{J'} = 1) = P(X_i = 1)P(Y_{J'} = 0) + P(X_i = 0)P(Y_{J'} = 1) = \frac{1}{4} + \frac{1}{4} = \frac{1}{2}$.

Similarly,
$$P(Y_J = 0) = \frac{1}{2}$$
.

And for all J', all the above arguments are valid.

So for all
$$J$$
, $P(Y_J = 1) = P(Y_J = 0) = \frac{1}{2}$.

So
$$Y_J \sim Bern(\frac{1}{2})$$
.

<2>. Let J, K be two of the $2^n - 1$ R.V.s, and $J \neq K$.

From the Venn diagram, we can devide the $J \cup K$ part into three parts.

Let
$$A = J \cap K$$
, $B = J \cap K^c$, $C = J^c \cap K$.

So
$$J = A \cup B, K = A \cup C$$
.

1. If $A = \emptyset$, then B = J, C = K, i.e. $J \cap K = \emptyset$, so it is obvious that J, K are independent since they do not have any intersection.

As for $A \neq \emptyset$.

2. If $J \subset K$ or $K \subset J$, without loss of generality, take $J \subset K$.

And let $K = J \cup C, J \cap C = \emptyset$, so $Y_K = Y_J \oplus Y_C$.

Since
$$Y_J, Y_C \sim Bern(\frac{1}{2}),$$

so
$$P(Y_J = a, Y_K = b) = P(Y_J = a, Y_C = (a \oplus b))$$

since $J \cap C = \emptyset$, so Y_J and Y_C are independent, so $P(Y_J = a, Y_K = b) = P(Y_J = a)P(Y_C = (a \oplus b)) = \frac{1}{4}$.

And also $P(Y_J = a)P(Y_K = b) = \frac{1}{4}$.

So
$$P(Y_J = a, Y_K = b) = P(Y_J = a) P(Y_K = b)$$

So the R.V.s are pairwise independent.

3. If $J \not\subset K$ and $K \not\subset J$, then $Y_J = Y_A \oplus Y_B, Y_K = Y_A \oplus Y_C$. And $Y_A, Y_B, Y_C \sim Bern(\frac{1}{2})$. With LOTP, we can get that

$$P(Y_I = a, Y_K = b)$$

$$= P(Y_A \oplus Y_B = a, Y_A \oplus Y_C = b | Y_A = 1) \\ P(Y_A = 1) + P(Y_A \oplus Y_B = a, Y_A \oplus Y_C = b | Y_A = 0) \\ P(Y_A = 0) + P(Y_A \oplus Y_B = a, Y_A \oplus Y_C = b | Y_A = 0) \\ P(Y_A = 0) + P(Y_A \oplus Y_B = a, Y_A \oplus Y_C = b | Y_A = 0) \\ P(Y_A = 0) + P(Y_A \oplus Y_B = a, Y_A \oplus Y_C = b | Y_A = 0) \\ P(Y_A = 0) + P(Y_A \oplus Y_B = a, Y_A \oplus Y_C = b | Y_A = 0) \\ P(Y_A \oplus Y_B = a, Y_A \oplus Y_C = b | Y_A = 0) \\ P(Y_A \oplus Y_B = a, Y_A \oplus Y_C = b | Y_A = 0) \\ P(Y_A \oplus Y_B = a, Y_A \oplus Y_C = b | Y_A = 0) \\ P(Y_A \oplus Y_B = a, Y_A \oplus Y_C = b | Y_A = 0) \\ P(Y_A \oplus Y_B = a, Y_A \oplus Y_C = b | Y_A = 0) \\ P(Y_A \oplus Y_B = a, Y_A \oplus Y_C = b | Y_A = 0) \\ P(Y_A \oplus Y_B = a, Y_A \oplus Y_C = b | Y_A = 0) \\ P(Y_A \oplus Y_B = a, Y_A \oplus Y_C = b | Y_A = 0) \\ P(Y_A \oplus Y_B = a, Y_A \oplus Y_C = b | Y_A = 0) \\ P(Y_A \oplus Y_B = a, Y_A \oplus Y_C = b | Y_A = 0) \\ P(Y_A \oplus Y_B = a, Y_A \oplus Y_C = b | Y_A = 0) \\ P(Y_A \oplus Y_B = a, Y_A \oplus Y_C = b | Y_A = 0) \\ P(Y_A \oplus Y_B = a, Y_A \oplus Y_C = b | Y_A = 0) \\ P(Y_A \oplus Y_B = a, Y_A \oplus Y_C = b | Y_A = 0) \\ P(Y_A \oplus Y_B = a, Y_A \oplus Y_C = b | Y_A = 0) \\ P(Y_A \oplus Y_B = a, Y_A \oplus Y_C = b | Y_A = 0) \\ P(Y_A \oplus Y_B = a, Y_A \oplus Y_C = b | Y_A = 0) \\ P(Y_A \oplus Y_B = a, Y_A \oplus Y_C = b | Y_A = 0) \\ P(Y_A \oplus Y_A \oplus Y_C = b | Y_A = a, Y_A \oplus Y_C = b | Y_A = 0) \\ P(Y_A \oplus Y_A \oplus Y_C = b | Y_A = a, Y_A$$

Since A, B, C are devided to three parts, so A, B, C are independent. So the original formula

$$= \frac{1}{2}P(1 \oplus Y_B = a)P(1 \oplus Y_C = b) + \frac{1}{2}P(0 \oplus Y_B = a)P(0 \oplus Y_C = b)$$

And since the XOR equaltion has the unique solution, and $Y_B, Y_C \sim Bern(\frac{1}{2})$, so the original formula

$$= \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} + \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2}$$
$$= \frac{1}{4}$$

And since $P(Y_J = a)P(Y_K = b) = \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{4}$, so for all a, b = 0, 1, we have $P(Y_J = a, Y_K = b) = P(Y_J = a)P(Y_K = b)$. So above all, the R.V.s are pairwise independent.

<3>. For a situation that J, K, L are three of the $2^n - 1$ R.V.s, and $J \neq K, J \neq L, K \neq L$. Let $J \cap K = \emptyset$, and $L = J \cup K$, then $Y_L = Y_J \oplus Y_K$. And $Y_J, Y_K, Y_L \sim Bern(\frac{1}{2})$. But $P(Y_J = 1, Y_K = 1, Y_L = 1) = 0$, since when $Y_J = Y_K = 1, Y_L = Y_J \oplus Y_K = 0 \neq 1$.

However, $P(Y_J=1)P(Y_K=1)P(Y_L=1)=(\frac{1}{2})^3$, so $P(Y_J=1,Y_K=1,Y_L=1)\neq P(Y_J=1)P(Y_K=1)P(Y_L=1)$ in this situation. So the R.V.s are not independent.

So above all, $Y_J \sim Bern(\frac{1}{2})$, the R.V.s are pairwise independent, and not independent had all been proved,