

Hong Kong University of Science and Technology EdgeGPT: GPT-Empowered Autonomous Edge Inference

Jiawei Shao and Jun Zhang

- Edge AI emerges as a promising solution to achieve connected intelligence by delivering high-quality, low-latency, and privacy-preserving intelligent services at the network edge.
- We introduce an <u>autonomous</u> edge AI system that automatically organizes, adapts, and optimizes itself to meet users' diverse requirements.
- The system employs a <u>cloud-edge-client architecture</u>, where the large language model, i.e., GPT, resides in the cloud for <u>task planning</u>, and other Al models are co-deployed on devices and edge servers for <u>edge inference</u>.

Step 1: Task planning

Prefix:

The Al assistant schedules the edge inference according to the {{Request}}. It should decompose the request into the tasks in {{Available tasks}}. The available resources include {{Edge device list, Edge server list, Expert Al model list}}. Here are several cases for your reference: {{Demonstrations}}.

Request:

Please monitor the user's emotions.

Task planning (Response of GPT):

{Task 1: Monitor the heart rate, {Al model: NA}, {Edge device: Wearable device}}

{Task 2: Predict mood from the heart rate, {Al model: Mood classification}, {Edge device: Mobile phone}}

Step 2: Edge Inference

Client-edge co-inference: Partition the AI model into two parts. Deploy them at the device and edge server, respectively. Compress and Transmit the intermediate feature.

Intermediate

Case study on various tasks

Request: I have captured an animal. What kind of animal is in the image?

Task planning:

{Task 1: image classification, {AI model: ViT model}, {Edge device: Mobile phone}}

Inference result: Dog

Request: An interesting image has appeared on the browser. Tell me what the mustache is made of in this image.

Task planning:

{Task 1: Visual question answering, {Al model: blip-vqa-base},

{Edge device: Tablet computer}}
Inference result: Bananas

Request: Detect how many objects are in the picture.

Task planning:

{Task 1: Object detection, {AI model: detr-resnet-101}, {Edge device: Mobile phone}}

{Task 2: image Classification, {AI model: ViT model}, {Edge device: Mobile phone}}

Inference result: One giraffe and two zebras.

Request: What's in the front of my car?

Task planning:

{Task 1: Capture image, {AI model: NA}, {Edge device: Vehicle}} {Task 2: image caption, {AI model: blip-image-captioning-base}, {Edge device: Vehicle}}

Inference result: A horse carrying a large load of hay and two people sitting on it.

Experiments

Evaluation for task planning

• Compare the communication overhead and performance of different inference schemes.

Method	Image classification		Image caption				Visual question answering		
	Cost↓	Accuracy [↑]	Cost↓	BLEU↑	CIDEr↑	SPICE↑	Cost↓	Test-dev↑	Test-std↑
Edge-only inference with lossless data compression	224.41 KB	84.16%	249.40 KB	39.66	133.25	23.77	372.58 KB	78.24	78.32
Edge-only inference with lossy data compression	33.86 KB	82.83%	19.16 KB	38.84	129.30	23.32	20.51 KB	77.22	77.38
Client-edge co-inference	32.83 KB	84.02%	18.77 KB	39.58	133.29	23.75	20.39 KB	78.22	78.22

 Consider three vision tasks at the network edge, including image classification, image caption, and visual question answering.

Setup

Edge device: Jetson Nano board.
 Edge server: GeForce RTX series.
 Cloud server: Microsoft Azure

Evaluation for task planning

- Correctly understand users' requests.
- A quick response is preferred, but GPT models have a vast number of parameters.

Model	Acc↑	F1↑	Latency↓
GPT-3 350M	32.93%	33.95%	0.37 sec
GPT-3 6.7B	40.24%	42.31%	0.55 sec
GPT-3 175B	68.89%	74.70%	0.45 sec
GPT-3 175B IT	84.44%	85.39%	0.58 sec
Zero-shot Classification	36.59%	36.59%	0.28 sec

System end-to-end Latency

- System latency comprises two main components: task planning time and edge inference time.
- Our client-edge co-inference scheme achieves lower latency compared to baselines when the data rate between the device and edge server varies from 100 to 500 KB/s.

