Lecture 17

EECS 483: COMPILER CONSTRUCTION

Announcements

- HW4: OAT v.1.0
 - Parsing & translation to LLVM IR
 - Helps to start early!
 - Due: Tuesday, March 26th
- Professor New (Me): taking family leave soon, guest lectures starting in 1 or 2 weeks

Midterm

- Average: 65.26/92 = 70.9%
- Median: 66.25/92 = 72.0%
- Std. Dev.: = 13%
- Will curve median grade to B+

Midterm

- Breakdown by question
 - All Qs received at least one perfect score answer
 - Lots of partial credit
 - Questions with lowest median:
 - Parsing T/F Questions
 - CBPV function call
 - LLVM DAGs vs Trees
 - Bounding number of states in NFA -> DFA conversion
 - LL(1) grammar

Scope, Types, and Context

SEMANTIC ANALYSIS

Compilation in a Nutshell

```
Source Code
(Character stream)
if (b == 0) { a = 1; }

Token stream:

if ( b == 0 ) } { a = 0 ; }

Parsing

Abstract Syntax Tree:

Intermediate code:

Analysis &
```

```
11:
    %cnd = icmp eq i64 %b,
0
    br i1 %cnd, label %12,
label %13
12:
    store i64* %a, 1
    br label %13
13:
```

Transformation

Backend

Assembly Code

Εq

Assn

None

```
11:
    cmpq %eax, $0
    jeq 12
    jmp 13
12:
    ...
```

Most of the Remainder of the Course

Static Program Analysis

- Static means the program is analyzed at compile-time
- Used for two main purposes in the compiler:
 - Last stage of the frontend: "Type checking" or "Semantic Analysis"
 - Not every program that passes parsing is valid

```
- int main() { return x; }
- int main() { return "hello world"; }
```

- If the type checker fails, the program is rejected, like a parse error
- After the program passes the frontend, we consider it well-formed and will compile it.
- During optimization: "static analysis"
 - We can do more optimizations if we know more about the program
 - Are these equivalent programs?

```
- int main() { int y = f(); return 0; }
- int main() { return 0; }
```

- We can optimize the first to the second if we establish that f is side-effect free.
- Since they take place after the frontend, the analysis never rejects the program
- Next few weeks: type checking, after that optimization and analyis

Variable Scoping

- Consider the problem of determining whether a programmer-declared variable is in scope.
- Issues:
 - Which variables are available at a given point in the program?
 - Shadowing is it permissible to re-use the same identifier, or is it an error?
- Example: The following program is syntactically correct but not wellformed. (y and q are used without being defined anywhere)

```
int fact(int x) {
  var acc = 1;
  while (x > 0) {
    acc = acc * y;
    x = q - 1;
    }
  return acc;
}
```

Q: Can we solve this problem by changing the parser to rule out such programs?

Type Checking as Grammar

	Specification	Implementation
Lexing	Regular Expressions	DFA
Parsing	CFG LL(1) grammars LR(1) grammars	Pushdown automata Recursive descent Shift/reduce parser
Type checking	Inference rules	Manual recursive descent Constraint solving

Inference Rules

- We can read a judgment G ⊢ e as "the expression e is well scoped and has free variables in G"
- For any environment G, expression e, and statements s_1 , s_2 .

$$G \vdash if (e) s_1 else s_2$$

holds if $G \vdash e$ and $G \vdash s_1$ and $G \vdash s_2$ all hold.

More succinctly: we summarize these constraints as an inference rule:

Premises
$$G \vdash e \qquad G \vdash s_1 \qquad G \vdash s_2$$

Conclusion $G \vdash if (e) s_1 \text{ else } s_2$

• Such a rule can be used for *any* substitution of the syntactic metavariables G, e, s_1 and s_2 .

Judgments

- A *judgment* is a (meta-syntactic) notation that *names* a relation among one or more sets.
 - The sets are usually built from object-language syntax elements and other "math" sets (e.g., integers, natural numbers, etc.)
 - We usually describe them using metavariables that range over the sets.
 - Often use domain-specific notation to ease reading.
 - The meaning of judgments, *i.e.*, which sets they represent, is defined by (collections of) inference rules
- Example: When we say "G ⊢ e is a judgment where G is a context of variables and e is a term, defined by these [...] inference rules" that is shorthand for this "math speak":
 - Let Var be the set of all (syntactic) variables
 - Let Exp be the set {e | e is a term of the untyped lambda calculus}
 - Let $\mathcal{P}(Var)$ be the (finite) powerset of variables (set of all finite sets)
 - Define well-scoped $\subseteq (\mathcal{P}(Var), Exp)$ to be a relation satisfying the properties defined by the associated inference rules [...]
 - Then "G \vdash e" is notation that means that (G, e) ∈ well-scoped

Scope-Checking Lambda Calculus

- Consider how to identify "well-scoped" lambda calculus terms
 - Given: G, a set of variable identifiers, e, a term of the lambda calculus
 - Judgment: $G \vdash e$ "the free variables of e are included in G"

$$x \in G$$

$$G \vdash x$$

"the variable x is free, but in scope"

$$\frac{G \vdash e_1 \qquad G \vdash e_2}{G \vdash e_1 e_2}$$

"G contains the free variables of e₁ and e₂"

$$G \cup \{x\} \vdash e$$

 $G \vdash \text{fun } x \rightarrow e$

"x is available in the function body e"

Scope-checking Code

- Compare the OCaml code to the inference rules:
 - structural recursion over syntax
 - the check either "succeeds" or "fails"

```
let rec scope_check (g:VarSet.t) (e:exp) : unit =
  begin match e with
  | Var x -> if VarSet.member x g then () else failwith (x ^ "not in scope")
  | App(e1, e2) -> ignore (scope_check g e1); scope_check g e2
  | Fun(x, e) -> scope_check (VarSet.union g (VarSet.singleton x)) e
  end
```

$$x \in G$$
 $G \vdash e_1$ $G \vdash e_2$ $G \cup \{x\} \vdash e$ $G \vdash x$ $G \vdash e_1 e_2$ $G \vdash fun x \rightarrow e$
$$G \vdash x$$

$$APP$$

$$FUN$$

- The inference rules are a *specification* of the intended behavior of this scope checking code.
 - they don't specify the order in which the premises are checked

Example Derivation Tree

- Note: the OCaml function scope_check verifies the existence of this tree. The structure of the recursive calls when running scope_check is the same shape as this tree!
- Note that $x \in E$ is implemented by the function VarSet.mem

Example Failed Derivation

- This program is *not* well scoped
 - The variable z is not bound in the body of the left function.
 - The typing derivation fails because the VAR rule cannot succeed
 - (The other parts of the derivation are OK, though!)

Uses of the inference rules

- We can do proofs by induction on the structure of the derivation.
- For example:

Lemma: If $G \vdash e$ then $fv(e) \subseteq G$.

Proof.

By induction on the derivation that $G \vdash e$.

x ∈ G

 $G \vdash x$

- case: VAR then we have e = x (for some variable x) and $x \in G$. But $fv(e) = fv(x) = \{x\}$, but then $\{x\} \subseteq G$.
- case: APP then we have $e = e_1 e_2$ (for some $e_1 e_2$) and, by induction, we have $fv(e_1) \subseteq G$ and $fv(e_2) \subseteq G$, so $fv(e_1 e_2) = fv(e_1) \cup fv(e_2) \subseteq G$

$$\frac{G \vdash e_1 \quad G \vdash e_2}{G \vdash e_1 e_2}$$

$$G \cup \{x\} \vdash e_1$$

- case: FUN then we have $e = (fun \ x \rightarrow e_1)$ for some x, e_1 and, by induction, we have $fv(e_1) \subseteq G \cup \{x\}$, but then we also have $fv(fun \ x \rightarrow e_1) = fv(e_1) \setminus \{x\} \subseteq ((G \cup \{x\}) \setminus \{x\}) \subseteq G$

 $G \vdash \mathsf{fun} \ x \to e_1$

```
 fv(x) = \{x\} 
fv(fun x \rightarrow exp) = fv(exp) \setminus \{x\}  ('x' is a bound in exp)
fv(exp_1 exp_2) = fv(exp_1) \cup fv(exp_2)
```

See tc.ml

STATICALLY RULING OUT PARTIALITY: TYPE CHECKING

Adding Integers to Lambda Calculus

```
\begin{array}{lll} exp ::= & & & & & & & \\ & | & n & & & & \\ & | exp_1 + exp_2 & & & & \\ & | binary \ arithmetic \ operation \\ & val ::= & & & \\ & | fun \ x \ -> exp & & functions \ are \ values \\ & | n & & integers \ are \ values \\ & | n & & integers \ are \ values \\ & (e_1 + e_2)\{v/x\} & = (e_1\{v/x\} + e_2\{v/x\}) & substitute \ everywhere \\ \end{array}
```

$$\exp_1 \Downarrow n_1 \exp_2 \Downarrow n_2$$
 $\exp_1 + \exp_2 \Downarrow (n1 [+] n_2)$
Object-level '+'

Meta-level '+'

NOTE: there are no rules for the case where exp1 or exp2 evaluate to functions! The semantics is *undefined* in those cases.

Type Checking / Static Analysis

Recall the interpreter from the Eval3 module:

- The interpreter might fail at runtime.
 - Not all operations are defined for all values (e.g., 3/0, 3 + true, ...)
- A compiler can't generate sensible code for this case.
 - A naïve implementation might "add" an integer and a function pointer

Type Judgments

- In the judgment: $E \vdash e : t$
 - E is a typing environment or a type context
 - E maps variables to types. It is just a set of bindings of the form: $x_1 : t_1, x_2 : t_2, ..., x_n : t_n$
- For example: $x : int, b : bool \vdash if (b) 3 else x : int$
- What do we need to know to decide whether "if (b) 3 else x" has type int in the environment x : int, b : bool?

```
- b must be a bool i.e. x : int, b : bool \vdash b : bool
```

- 3 must be an int i.e. x : int, b : bool + 3 : int
- x must be an int i.e. $x : int, b : bool \vdash x : int$

Simply-typed Lambda Calculus

• For the language in "tc.ml" we have five inference rules:

VAR $X:T \in E$ $E \vdash e_1: int$ $E \vdash e_2: int$ $E \vdash i: int$ $E \vdash e_1: int$ $E \vdash e_2: int$

FUN

$$E, x : T \vdash e : S$$

$$E \vdash \text{fun } (x:T) \rightarrow e : T \rightarrow S$$

APP

$$E \vdash e_1 : T \rightarrow S \quad E \vdash e_2 : T$$

$$E \vdash e_1 e_2 : S$$

Note how these rules correspond to the code.

Type Checking Derivations

- A *derivation* or *proof tree* has (instances of) judgments as its nodes and edges that connect premises to a conclusion according to an inference rule.
- Leaves of the tree are axioms (i.e. rules with no premises)
 - Example: the INT rule is an axiom
- Goal of the typechecker: verify that such a tree exists.
- Example: Find a tree for the following program using the inference rules on the previous slide:

 \vdash (fun (x:int) -> x + 3) 5 : int

Example Derivation Tree

```
x : int \in x : int

x : int \vdash x + 3 : int

x : int \vdash x + 3 : int

x : int \vdash x + 3 : int

x : int \vdash x + 3 : int

x : int \vdash x + 3 : int

x : int \vdash x + 3 : int

x : int \vdash x + 3 : int

x : int \vdash x + 3 : int

x : int \vdash x + 3 : int

x : int \vdash x + 3 : int

x : int \vdash x + 3 : int

x : int \vdash x + 3 : int

x : int \vdash x + 3 : int

x : int \vdash x + 3 : int

x : int \vdash x + 3 : int

x : int \vdash x + 3 : int

x : int \vdash x + 3 : int

x : int \vdash x + 3 : int

x : int \vdash x + 3 : int

x : int \vdash x + 3 : int

x : int \vdash x + 3 : int

x : int \vdash x + 3 : int

x : int \vdash x + 3 : int

x : int \vdash x + 3 : int
```

- Note: the OCaml function typecheck verifies the existence of this tree. The structure of the recursive calls when running typecheck is the same shape as this tree!
- Note that $x : int \in E$ is implemented by the function lookup

Ill-typed Programs

Programs without derivations are ill-typed

```
Example: There is no type T such that \vdash (fun (x:int) \rightarrow x 3) 5 : T
```


Type Safety

"Well typed programs do not go wrong."

- Robin Milner, 1978

Theorem: (simply typed lambda calculus with integers)

If \vdash e:t then there exists a value v such that e \Downarrow v.

- Note: this is a very strong property.
 - Well-typed programs cannot "go wrong" by trying to execute undefined code (such as 3 + (fun x -> 2))
 - Simply-typed lambda calculus is guaranteed to terminate!
 (i.e. it isn't Turing complete)

Notes about this Typechecker

- The interpreter evaluates the body of a function only when it's applied.
- The typechecker always checks the body of the function
 - even if it's never applied
 - We assume the input has some type (say t_1) and reflect this in the type of the function ($t_1 \rightarrow t_2$).
- Dually, at a call site $(e_1 e_2)$, we don't know what *closure* we're going to get.
 - But we can calculate e_1 's type, check that e_2 is an argument of the right type, and determine what type e_1 will return.
- Question: Why is this an approximation?
- Question: What if well_typed always returns false?

oat.pdf

TYPECHECKING OAT

Checking Derivations

- A *derivation* or *proof tree* has (instances of) judgments as its nodes and edges that connect premises to a conclusion according to an inference rule.
- Leaves of the tree are <u>axioms</u> (i.e. rules with no premises)
 - Example: the INT rule is an axiom
- Goal of the type checker: verify that such a tree exists.
- Example1: Find a tree for the following program using the inference rules in oat.pdf:

```
var x1 = 0;
var x2 = x1 + x1;
x1 = x1 - x2;
return(x1);
```

Example 2: There is no tree for this ill-scoped program:

```
var x2 = x1 + x1;
return(x2);
```

Example Derivation

```
var x1 = 0;
var x2 = x1 + x1;
x1 = x1 - x2;
return(x1);
```

$$\frac{\mathcal{D}_{1} \quad \mathcal{D}_{2} \quad \mathcal{D}_{3} \quad \mathcal{D}_{4}}{G_{0}; \cdot ; \text{int} \vdash \text{var } x_{1} = 0; \text{var } x_{2} = x_{1} + x_{1}; x_{1} = x_{1} - x_{2}; \text{return } x_{1}; \Rightarrow \cdot, x_{1} : \text{int}, x_{2} : \text{int}}{\vdash \text{var } x_{1} = 0; \text{var } x_{2} = x_{1} + x_{1}; x_{1} = x_{1} - x_{2}; \text{return } x_{1};}$$
[PROG]

Example Derivation

$$\mathcal{D}_{1} = \frac{\frac{\overline{G_{0}; \cdot \vdash 0 : int}}{\overline{G_{0}; \cdot \vdash 0 : int}} \begin{bmatrix} INT \end{bmatrix}}{\overline{G_{0}; \cdot \vdash var \ x_{1} = 0 \Rightarrow \cdot, x_{1} : int}} \begin{bmatrix} DECL \end{bmatrix}}$$

$$\mathcal{D}_{1} = \overline{G_{0}; \cdot ; int \vdash var \ x_{1} = 0; \Rightarrow \cdot, x_{1} : int}} \begin{bmatrix} SDECL \end{bmatrix}$$

Example Derivation

$$\mathcal{D}_{3} = \frac{\frac{}{\vdash \text{-}:(\texttt{int},\texttt{int}) \to \texttt{int}} \stackrel{[\texttt{ADD}]}{\vdash \text{-}:(\texttt{int},\texttt{int}) \to \texttt{int}} \stackrel{x_{1}:\texttt{int} \in \cdot, x_{1}:\texttt{int}, x_{2}:\texttt{int}}{G_{0};\cdot, x_{1}:\texttt{int}, x_{2}:\texttt{int} \vdash x_{1}:\texttt{int}} \stackrel{[\texttt{VAR}]}{\vdash \text{-}:(\texttt{int},\texttt{int}) \to \texttt{int}} \stackrel{[\texttt{ADD}]}{\vdash \text{-}:(\texttt{int},\texttt{int}) \to \texttt{int}} \stackrel{x_{1}:\texttt{int}, x_{2}:\texttt{int}}{\vdash x_{1}:\texttt{int}, x_{2}:\texttt{int}} \stackrel{[\texttt{VAR}]}{\vdash \text{-}:(\texttt{int},\texttt{int}) \to \texttt{int}} \stackrel{[\texttt{ADD}]}{\vdash \text{-}:(\texttt{int},\texttt{int}) \to \texttt{-}:(\texttt{int},\texttt{int}) \to \texttt{-}:(\texttt{int},\texttt{int}) \to \texttt{-}:(\texttt{int},\texttt{int}) \to \texttt{-}:(\texttt{int},\texttt{int}) \to \texttt{-}:(\texttt{int},\texttt{int}) \to \texttt{-}:(\texttt{int},\texttt{-}) \to \texttt{-}:(\texttt{-}) \to \texttt{-}:(\texttt$$

$$\mathcal{D}_{4} = \frac{x_{1} : \mathtt{int} \in \cdot, x_{1} : \mathtt{int}, x_{2} : \mathtt{int}}{G_{0}; \cdot, x_{1} : \mathtt{int}, x_{2} : \mathtt{int} \vdash x_{1} : \mathtt{int}} [\mathtt{VAR}] [\mathtt{Ret}]$$

$$\mathcal{D}_{4} = \frac{G_{0}; \cdot, x_{1} : \mathtt{int}, x_{2} : \mathtt{int} \vdash \mathtt{return}}{G_{0}; \cdot, x_{1} : \mathtt{int}, x_{2} : \mathtt{int}} [\mathtt{Ret}]$$

Type Safety For General Languages

Theorem: (Type Safety)

```
If \vdash P : t is a well-typed program, then either:
```

- (a) the program terminates in a well-defined way, or
- (b) the program continues computing forever
- Well-defined termination could include:
 - halting with a return value
 - raising an exception
- Type safety rules out undefined behaviors:
 - abusing "unsafe" casts: converting pointers to integers, etc.
 - treating non-code values as code (and vice-versa)
 - breaking the type abstractions of the language
- What is "defined" depends on the language semantics...

Why Inference Rules?

- They are a compact, precise way of specifying language properties.
 - E.g. ~20 pages for full Java vs. 100's of pages of prose Java Language Spec.
- Inference rules correspond closely to the recursive AST traversal that implements them
- Type checking (and type inference) is nothing more than attempting to prove a different judgment (E ⊢ e : t) by searching backwards through the rules.
- Compiling in a context is nothing more than a collection of inference rules specifying yet a different judgment (G ⊢ src ⇒ target)
 - Moreover, the compilation rules are very similar in structure to the typechecking rules
- Strong mathematical foundations
 - The "Curry-Howard-Lambek correspondence":
 - Programming Language: Logic: Category theory: Order Theory
 - Programs : Proof : Morphism : Inequality
 - Type : Proposition : Object : Element
 - See EECS 490, 590, my 598 if you're interested in type systems!

COMPILING

Compilation As Translating Judgments

Consider the source typing judgment for source expressions:

$$C \vdash e : t$$

How do we interpret this information in the target language?

$$[\![C \vdash e : t]\!] = ?$$

- [C] translates contexts
- [t] is a target type
- [e] translates to a (potentially empty) stream of instructions, that, when run, computes the result into some operand
- INVARIANT: if $[C \vdash e : t] = ty$, operand, stream then the type (at the target level) of the operand is ty=[t]

Example

• $C \vdash 341 + 5 : int$

what is
$$[C \vdash 341 + 5 : int]$$
?

What about the Context?

- What is [C]?
- Source level C has bindings like: x:int, y:bool
 - We think of it as a finite map from identifiers to types
- What is the interpretation of C at the target level?
- [C] maps source identifiers, "x" to source types and [x]
- What is the interpretation of a variable [x] at the target level?
 - How are the variables used in the type system?

$$\frac{x:t \in L}{G;L \vdash x:t}$$
 TYP_VAR as expressions (which denote values)

$$x: t \in L$$
 $G; L \vdash exp: t$
 $G; L; rt \vdash x = exp; \Rightarrow L$
as addresses
(which can be assigned)

Interpretation of Contexts

• [C] = a map from source identifiers to types and target identifiers

INVARIANT:

```
x:t \in C means that
```

- (1) $lookup [C] x = (t, \%id_x)$
- (2) the (target) type of %id_x is [[t]]* (a pointer to [[t]])

Interpretation of Variables

Establish invariant for expressions:

What about statements?

$$\boxed{ \begin{array}{c} x : t \in L \quad G ; L \vdash exp : t \\ \hline G ; L ; rt \vdash x = exp ; \Rightarrow L \\ \text{as addresses} \\ \text{(which can be assigned)} \end{array} } = \begin{array}{c} \text{TYP_ASSN} \\ \text{[store [t]] opn, [t]* \%id_x]} \\ \text{where } (t, \%id_x) = \text{lookup [L] } x \\ \text{and [G; L} \vdash exp : t] = ([t], opn, stream) \end{array}$$

Other Judgments?

Statement:
 [C; rt ⊢ stmt ⇒ C'] = [C'], stream

Declaration:
 [G;L ⊢ t x = exp ⇒ G;L,x:t]] = [G;L,x:t], stream
 INVARIANT: stream is of the form:
 stream' @
 [%id_x = alloca [t];
 store [t] opn, [t]* %id_x]
 and [G;L ⊢ exp : t] = ([t], opn, stream')

Rest follow similarly

COMPILING CONTROL

Translating while

- Consider translating "while(e) s":
 - Test the conditional, if true jump to the body, else jump to the label after the body.

```
[C;rt \vdash while(e) s \Rightarrow C'] = [C'],
```

```
lpre:
    opn = [C ⊢ e : bool]
    %test = icmp eq i1 opn, 0
    br %test, label %lpost, label %lbody
lbody:
    [C;rt ⊢ s ⇒ C']
    br %lpre
lpost:
```

- Note: writing opn = [C ⊢ e : bool] is pun
 - translating $[C \vdash e : bool]$ generates *code* that puts the result into opn
 - In this notation there is implicit collection of the code

Translating if-then-else

• Similar to while except that code is slightly more complicated because if-then-else must reach a merge and the else branch is optional.

```
[\![C; rt \vdash if (e_1) s_1 else s_2 \Rightarrow C']\!] = [\![C']\!]
```

```
opn = [\![ C \vdash e : bool ]\!]
\% test = icmp \ eq \ i1 \ opn, \ 0
br \ \% test, \ label \ \% else, \ label \ \% then
then:
[\![ C; rt \vdash s_1 \Rightarrow C' ]\!]
br \ \% merge
else:
[\![ C; \ rt \ s_2 \Rightarrow C' ]\!]
br \ \% merge
merge:
```

Connecting this to Code

- Instruction streams:
 - Must include labels, terminators, and "hoisted" global constants
- Must post-process the stream into a control-flow-graph
- See frontend.ml from HW4