Probabilités - Chapitre 1

Abdallah K

Cours de Mathématiques

Espaces probabilisés et probabilités

2 Probabilités conditionnelles et indépendance

Expérience aléatoire

Expérience dont on connaît les conditions mais pas l'issue. Notée $\mathcal{E}.$

Expérience aléatoire

Expérience dont on connaît les conditions mais pas l'issue. Notée $\mathcal{E}.$

Univers

Ensemble des issues possibles. Noté Ω .

Expérience aléatoire

Expérience dont on connaît les conditions mais pas l'issue. Notée $\mathcal{E}.$

Univers

Ensemble des issues possibles. Noté Ω .

Événement

Toute partie de Ω . Noté $A, B, C \dots$

Notations importantes

Notation	Lecture	Vocabulaire
Ø	-	événement impossible
Ω	grand omega	univers (ou événement
		certain)
ω	omega	issue
$\{\omega\}$	singleton omega	événement élémentaire
Α	-	événement
$\omega \in A$	omega dans \emph{A}	ω est une réalisation possible
		de A
\overline{A}	A barre	événement contraire de $\it A$
$A \cup B$	A union B	réalisation de A , ou B , ou les
		deux
$A \cap B$	A inter B	réalisation de A et B
A - B	A privé de B	réalisation de A et \overline{B}
$A \cap B = \emptyset$	-	A et B sont incompatibles
$A \subset B$	A inclus dans B	A implique B

Lois de De Morgan

$$\overline{A \cup B} = \overline{A} \cap \overline{B}$$
 et $\overline{A \cap B} = \overline{A} \cup \overline{B}$

Système complet d'événements

Événements A_1, \ldots, A_n tels que :

- Incompatibles deux à deux
- Leur union donne Ω

$$\bigcup_{k=1}^{n} A_k = \Omega$$

Système complet d'événements

Événements A_1, \ldots, A_n tels que :

- Incompatibles deux à deux
- Leur union donne Ω

$$\bigcup_{k=1}^{n} A_k = \Omega$$

Tribu

Famille ${\mathcal A}$ de parties de Ω vérifiant :

- $\Omega \in \mathcal{A}$,
- pour tout $A \in \mathcal{A}, \overline{A} \in \mathcal{A}$,
- pour toute famille d'événements $(A_k)_{k\in\mathbb{N}^*}$ tels que, pour tout $k\in\mathbb{N}^*,\ A_k\in\mathcal{A}$, on a $\bigcup_{k=1}^\infty A_k\in\mathcal{A}$.

Si Ω est fini ou infini dénombrable, on prend $\mathcal{A}=\mathcal{P}(\Omega)$ (l'ensemble des parties de Ω).

Probabilité P

 $\mathbb{P}:\mathcal{A}\to\mathbb{R}$ est une probabilité si :

- $\forall A \in \mathcal{A}, \ \mathbb{P}(A) \in [0,1]$
- $\mathbb{P}(\Omega) = 1$
- Additivité pour événements incompatibles

Probabilité \mathbb{P}

 $\mathbb{P}:\mathcal{A}\to\mathbb{R}$ est une probabilité si :

- $\forall A \in \mathcal{A}, \ \mathbb{P}(A) \in [0,1]$
- $\mathbb{P}(\Omega) = 1$
- Additivité pour événements incompatibles

Espace probabilisé

Triplet $(\Omega, \mathcal{A}, \mathbb{P})$

Propriétés des probabilités

$$egin{aligned} \mathbb{P}(\emptyset) &= 0 \ \mathbb{P}(\overline{A}) &= 1 - \mathbb{P}(A) \ A \subseteq B &\Rightarrow \mathbb{P}(A) \leq \mathbb{P}(B) \ \mathbb{P}(A \cup B) &= \mathbb{P}(A) + \mathbb{P}(B) - \mathbb{P}(A \cap B) \end{aligned}$$

Union de 2 événements

$$\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) - \mathbb{P}(A \cap B)$$

Union de 2 événements

$$\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) - \mathbb{P}(A \cap B)$$

Union de 3 événements

$$\mathbb{P}(A \cup B \cup C) = \mathbb{P}(A) + \mathbb{P}(B) + \mathbb{P}(C) - \mathbb{P}(A \cap B) - \mathbb{P}(A \cap C) - \mathbb{P}(B \cap C) + \mathbb{P}(A \cap B \cap C)$$

Cas des événements incompatibles

Si A et B incompatibles :

$$\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B)$$

Cas des événements incompatibles

Si A et B incompatibles :

$$\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B)$$

Inégalité de Boole

$$\mathbb{P}\left(\bigcup_{k=1}^n A_k\right) \leq \sum_{k=1}^n \mathbb{P}(A_k)$$

Probabilité uniforme

Si Ω fini avec équiprobabilité :

$$\mathbb{P}(A) = \frac{\mathsf{Card}(A)}{\mathsf{Card}(\Omega)}$$

Probabilité uniforme

Si Ω fini avec équiprobabilité :

$$\mathbb{P}(A) = \frac{\mathsf{Card}(A)}{\mathsf{Card}(\Omega)}$$

Exemple

Lancer d'un dé équilibré :

$$\mathbb{P}(\mathsf{pair}) = \frac{3}{6} = \frac{1}{2}$$

Définition

Probabilité de A sachant B $(\mathbb{P}(B) > 0)$:

$$\mathbb{P}(A|B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}$$

Définition

Probabilité de A sachant B ($\mathbb{P}(B) > 0$) :

$$\mathbb{P}(A|B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}$$

Formule de Bayes

$$\mathbb{P}(A|B) = \frac{\mathbb{P}(B|A) \cdot \mathbb{P}(A)}{\mathbb{P}(B)}$$

Probabilités composées

$$\mathbb{P}(A \cap B \cap C) = \mathbb{P}(A)\mathbb{P}(B|A)\mathbb{P}(C|A \cap B)$$

Probabilités composées

$$\mathbb{P}(A \cap B \cap C) = \mathbb{P}(A)\mathbb{P}(B|A)\mathbb{P}(C|A \cap B)$$

Probabilités totales

$$\mathbb{P}(A) = \mathbb{P}(A|B)\mathbb{P}(B) + \mathbb{P}(A|\overline{B})\mathbb{P}(\overline{B})$$

Règles

- ullet Somme branches =1 à chaque nœud
- Probabilité chemin = produit des probabilités

Définition

A et B sont indépendants si :

$$\mathbb{P}(A \cap B) = \mathbb{P}(A) \cdot \mathbb{P}(B)$$

Définition

A et B sont indépendants si :

$$\mathbb{P}(A \cap B) = \mathbb{P}(A) \cdot \mathbb{P}(B)$$

Équivalences

- $\mathbb{P}(A|B) = \mathbb{P}(A)$
- $\mathbb{P}(B|A) = \mathbb{P}(B)$

Stabilité par complémentation

Si A et B indépendants, alors :

- \bullet \overline{A} et B indépendants
- A et \overline{B} indépendants
- \overline{A} et \overline{B} indépendants

Stabilité par complémentation

Si A et B indépendants, alors :

- \bullet \overline{A} et B indépendants
- A et \overline{B} indépendants
- \overline{A} et \overline{B} indépendants

Attention

Indépendance deux à deux \neq Indépendance mutuelle

Indépendance deux à deux

 A_1, \ldots, A_n indépendants deux à deux si :

$$\forall i \neq j, \ \mathbb{P}(A_i \cap A_j) = \mathbb{P}(A_i)\mathbb{P}(A_j)$$

Indépendance deux à deux

 A_1, \ldots, A_n indépendants deux à deux si :

$$\forall i \neq j, \ \mathbb{P}(A_i \cap A_j) = \mathbb{P}(A_i)\mathbb{P}(A_j)$$

Indépendance mutuelle

 A_1, \ldots, A_n mutuellement indépendants si :

$$\forall I \subseteq \{1,\ldots,n\}, \ \mathbb{P}\left(\bigcap_{i\in I}A_i\right) = \prod_{i\in I}\mathbb{P}(A_i)$$

Points clés

- Espace probabilisé $(\Omega, \mathcal{A}, \mathbb{P})$
- Propriétés fondamentales
- Probabilités conditionnelles
- Indépendance

Points clés

- Espace probabilisé $(\Omega, \mathcal{A}, \mathbb{P})$
- Propriétés fondamentales
- Probabilités conditionnelles
- Indépendance

Applications

- Calculs de probabilités
- Résolution de problèmes
- Modélisation

Merci pour votre attention!