- 1. If an electron is completely detached from an atom
 - a) the atom is ionized.
 - b) the atom is in its ground state.
 - c) the atom must be in a molecule.
 - d) the atom is an isotope.
 - e) none of the above.
- 2. We can determine the distance to a galaxy that contains Cepheid variable stars by using
 - a) the period-colour relation
 - b) the mass-luminosity relation
 - c) the mass-radius relation
 - d) the velocity-distance relation
 - e) the period-luminosity relation
- 3. An atom of nitrogen with 7 electrons, 7 protons and 7 neutrons has an atomic number and atomic weight of
 - a) 7 and 7, respectively
 - b) 14 and 7, respectively
 - c) 7 and 21, respectively
 - d) 14 and 21, respectively
 - e) 7 and 14, respectively
- 4. The Doppler effect
 - a) explains the rainbow of visible light
 - b) causes a prism to form a spectrum
 - c) causes the speed of light to be finite
 - d) is the change in wavelength from a source moving towards or away from us
 - e) was used by de Broglie to study quantum mechanics
- 5. You are moving to west at 0.75c and your friend is moving to the east at 0.75c. If you direct a light beam at your friend, and your friend directs a light beam at you, then
 - a) neither beam will reach the ship to which it is directed
 - b) you will see your friend's light arrive at a speed of 1.5c, and your friend will see your light arrive at a speed of 1.5c
 - c) you will see your friend's light arrive at a speed of c, and your friend will see your light arrive at a speed of c
 - d) one of you will see light arrive at a speed of c, and the other will see light arrive at 1.5c
 - e) none of the above
- 6. What did Planck use to solve the blackbody problem?
 - a) that light is made up of waves
 - b) that electrons have a wavelength
 - c) that when you shine light on a metal it produces a current
 - d) that light interferes with itself
 - e) that light comes in packets of energy

- 7. The spectral lines of a star are observed to be shifted toward larger wavelengths. This shows
 - a) that the star is relatively cool.
 - b) that the star is very hot.
 - c) that the star is moving away from us.
 - d) that the star is approaching us.
 - e) that it is impossible to tell anything with information given.
- 8. Parallax to a star would be easier to measure if:
 - a) The distance between the observer and the star were larger.
 - b) The Earth moved more slowly in its orbit (took longer than a year to orbit the Sun)
 - c) We lived on Mars
 - d) all of above
 - e) none of the above
- 9. In order to be classified as a dwarf planet in our Solar System, a body must orbit the Sun and
 - a) be round.
 - b) not be a moon.
 - c) clear its orbit of other objects.
 - d) all of the above.
 - e) only answers a and b.
- 10. A statement was made in class that, "The vacuum is not empty." This referred to the fact:
 - a) That the bag has not been emptied lately
 - b) That quarks and electrons are continually being created and destroyed
 - c) That the vacuum has many atoms in it
 - d) That electrons and positrons are continually created and destroyed
 - e) None of the above
- 11. Assume you are observing a rotating spiral galaxy. If you could suddenly turn off gravity what would happen?
 - a) The galaxy would collapse down to a point
 - b) The galaxy would fly apart
 - c) The galaxy would rotate more quickly
 - d) Nothing would happen-- the galaxy would keep rotating at the same rate
 - e) The galaxy would start rotating in the opposite direction
- 12. Which of the following characteristics do NOT apply to giant elliptical galaxies?
 - a) Rapidly rotating
 - b) Not forming many stars
 - c) Lacking spiral arms
 - d) Found in the centres of galaxy clusters
 - e) All of the above

- 13. The Heisenberg Uncertainty Principle tells us that
 - a) knowing the exact energy also tells us exactly the time.
 - b) determining the energy more accurately leads to a more accurate determination of time.
 - c) determining the energy more accurately leads to a less accurate determination of time.
 - d) the accuracy of knowing the energy is independent of the accuracy of knowing the time.
 - e) none of the above
- 14. The distance between the Sun and the nearest star is smaller than the distance between the Milky Way and the our nearest neighbour (Andromeda) by a factor of
 - a) A few tens
 - b) A hundred
 - c) A thousand
 - d) A million
 - e) A billion
- 15. Atoms make spectral lines because
 - a) electrons have only certain allowed orbits.
 - b) photons have only certain allowed orbits.
 - c) speed of light in a vacuum is a constant.
 - d) light consists of waves.
 - e) none of the above
- 16. An astronomer finds an object at a distance of 1 000 lightyears from Earth. Based on the distance, which of the following is this object most likely to be?
 - a) An object in the Kuiper Belt
 - b) an artificial satellite orbiting the Earth
 - c) the blackhole at the centre of the Milky Way
 - d) a galaxy
 - e) a star in our galaxy
- 17. We can study how galaxies evolve because
 - a) galaxies are transparent to visible light
 - b) the further away we look, the further back in time we see
 - c) we can watch how they interact in real time
 - d) early astronomers kept good records that we can use today
 - e) all of the above
- 18. As you move to higher altitude above the Earth, what happens to you?
 - a) your weight decreases and your mass stays the same.
 - b) your weight and mass decrease
 - c) your weight increases and your mass stays the same
 - d) your weight and mass stay the same
 - e) impossible to know

- 19. If you draw a spacetime diagram, the worldline of something moving at the speed of light in your reference frame is
 - a) horizontal.
 - b) slanted.
 - c) vertical.
 - d) curved.
 - e) a circle.
- 20. Which of the following is false?
 - a) The order of events can be different for observers in different reference frames.
 - b) From your point of view, time runs slower in the reference frame of anyone moving relative to you.
 - c) If one observer measures two events to be simultaneous, all observers must agree on their simultaneity.
 - d) Time dilation is an observationally verified fact.
 - e) Time runs slower in a high-speed rocket ship.
- 21. You are observing a star about 500 trillion km (50 lightyears) away. How old is the most recent information you can get about this star?
 - a) 50 years
 - b) 300,000 seconds
 - c) This can't be determined without having more information.
 - d) 500 trillion seconds
 - e) 500 years
- 22. Which was the final prediction of General Relativity experimentally observed?
 - a) Gravitational Lensing
 - b) Gravitational Redshift
 - c) Gravitational Length Contraction
 - d) Gravitational Waves
 - e) Gravitational Time Dilation
- 23. In the raisin bread analogy for the Universe, what do the raisins represent?
 - a) stars
 - b) intergalactic space
 - c) black holes
 - d) galaxies
 - e) something else
- 24. In what way is general relativity more general (deals with more situations) than special relativity?
 - a) It includes accelerated motion but not gravitation.
 - b) It includes accelerated motion and gravitation.
 - c) It includes only constant, unaccelerated motion.
 - d) It includes only motion at the speed of light.
 - e) None of the above

- 25. Suppose we look at two distant galaxies: Galaxy 1 is twice as far away as Galaxy 2. In that case,
 - a) Galaxy 1 must be twice as big as Galaxy 2
- b) we are seeing Galaxy 1 as it looked at an earlier time in the history of the universe than Galaxy 2 $\,$
- c) we are seeing Galaxy 1 as it looked at a later time in the history of the universe than Galaxy 2
 - d) Galaxy 2 must be twice as old as Galaxy 1.
 - e) none of the above
- 26. Which is the weakest of the fundamental forces in the Universe?
 - a) weak force
 - b) electromagnetic force
 - c) strong force
 - d) gravitational force
 - e) none of the above
- 27. The Milky Way star, Sirius, is 9 light-years from the Sun while the Milky Way star, Canopus, is 100 light-years from the Sun. Hubble's Law implies that:
 - a) Sirius is moving at the same speed as Canopus
 - b) Sirius is moving more slowly than Canopus
 - c) Sirius and Canopus are BOTH moving away from the Sun
 - d) both b & c
 - e) none of the above
- 28. During one lecture, a thought experiment was discussed that involved a skateboarder. The main point of the discussion was to show
 - a) that light follows a curved path.
 - b) that the speed of light is constant.
 - c) that different observers could obtain different measures of time.
 - d) that different observers see light redshifted by different amounts.
 - e) none of the above.
- 29. Famous observations were made in 1919 to test the prediction of Einstein's general theory of relativity. The main reason that it was done during a total eclipse of the sun was
 - a)—so that the star light would follow a curved path
 - b)—so that star light that passed close to the sun would be visible
 - c)—so that the light could pass close to the moon
 - d)—so that the gravitational force from the sun and moon would be combined
 - e)—none of the above
- **DID NOT COUNT. Ambiguous.**
- 30. Which of the following are the correct standard units of mass, distance and time?
 - a) kg, light yrs, yrs
 - b) g, m, s
 - c) kg, m, s
 - d) g, light yrs, yrs
 - e) none of the above