

Практическая работа №1

Выбор параметров ДЭС и буферного накопителя энергии

Митрофанов Сергей Владимирович

к.т.н., доцент кафедры СЭСП

Часть первая. Выбор мощности и числа агрегатов ДЭС

Краткая теория

Более 50 000 автономных энергоустановок (более 85% - ДЭС)

ДЭУ 0,4 кВ, 200 кВт

Бензиновые

Дизельные

Газовые

ДЭУ 0,4 кВ, 5 кВт

Без накопителя

$$P_{\mathcal{Д} \supset C} \ge 1,25 P_{\max \textit{нагр}}$$

С накопителем

1. Ёмкость накопителя соизмерима с суточным потреблением

2. Ёмкость накопителя не соизмерима с суточным потреблением

Методика определения мощности ДЭС

 Для крупных потребителей мощность и количество генерирующих установок определяется исходя из:

- 1. Экономичного покрытия графика нагрузки
- При наличии ВИЭ:

$$W_{BH\Theta} \rightarrow \max$$

(Используем накопитель, чтобы максимально вытеснить ДЭС)

• При отсутствии ВИЭ:

$$q_{\rm JHY}(P) \rightarrow \min$$

(Срезаем пики, заполняем провалы)

Схема ДЭС с накопителем энергии

ДД – дизельный двигатель

СГ – синхронный генератор

ВЗУ – выпрямитель

БНЭ – буферный накопитель

АН – автономный инвертор

СУ – система управления

Рекомендации для выбора ДЭС

1) Генераторы ДЭС должны быть одинакового типоразмера, что позволит облегчить монтаж и обслуживания оборудования

2) Для обеспечения надежности электроснабжения при выводе в ремонт и обслуживании агрегатов ДЭС, их количество должно быть избыточным

$$n_{ extstyle eta extstyle C} = n_{ extstyle eta extstyle Y} (P_{max}) + 1 \ n_{ extstyle eta extstyle Y} \geq 2$$

3) При выборе и эксплуатации ДЭС должны быть учтены климатические характеристики местности.

→ Режим работы ДЭС

Рис.2.6. Нагрузочная характеристика ДЭС АД-100

$$k_{3} = \frac{P_{i}}{P_{\text{HOM}}}$$

Долговременная работа при нагрузки менее 40% запрещена

$$k_3 \ge 0.4 \rightarrow nec$$

При загрузке менее 60% работа ДЭУ становится неэффективной

$$k_3 \ge 0.7 \rightarrow opt$$

→ Язык программирования Python

Python — это высокоуровневый язык программирования общего назначения

Главные преимущества данного языка:

- 1. Простота синтаксиса
- 2. большое количество модулей и библиотек самого разнообразного функционала

___ Библиотеки Python

IP[y]: IPython Interactive Computing

• Среда разработки Google.Colab

Основные достоинства:

- 1. Работа в онлайн формате на основе вычислительных ресурсов Google;
- 2. Хранение блокнотов с кодом на облачном диске;
- 3. Возможность обмениваться блокнотами и работать над одним проектом совместно с коллегами.

• Среда разработки Google.Colab

В Colab можно создавать блоки с кодом Python, которые можно запустить, нажав на клавишу "Play" (треугольник в кружке), а также текстовые блоки с пояснениями, дополнениями, заголовками и т.д.

Работа с переменными

```
[1] а = 4 # переменная, содержащая целое число
b = 1.2 # переменная, содержащая дробное число
c = 1+2j # переменная, содержащая комплексное число
d = 'The quick brown fox jumps over the lazy dog' # переменная, содержащая текст
e = "Съешь ещё этих мягких французских булок, да выпей чаю" # так тоже можно
f = [a, b, c, d, e] # список, о нем позже
g = (a, b, c, d, e) # кортеж, о нем позже
h = {a:'целое число', b:'дробное число', c:'комплексное число', d:'строка',
e:'строка', g:'кортеж'} # это словарь, о нем позже
```


🕳 Операции над переменными

```
print('a+b =', a+b)
  print('a*c =', a*c)
  print('a/b =', a/b)
  print('a//b = ', a//b)
  print('a%b =', a%b)
  print('a**b =', a**b)
  print('a is b =', a is b)
  print('a in f =', a in f)
  print("'a'*8 =", 'a'*8)
a+b = 5.2
a*c = (4+8i)
a/b = 3.333333333333333333
a//b = 3.0
a%b = 0.4000000000000000013
a^{**}b = 5.278031643091577
a is b = False
a in f = True
'a'*8 = aaaaaaaa
```


____ Встроенные функции для работы со списками

```
my_list.append(x) - добавляет x в конец списка
my list.clear() - очищает список
my_list.count(x) - возвращает кол-во элементов со значением x
my_list.extend(x) - добавляет элементы списка x к концу списка my_list
my_list.index(x,start,end) - возвращает индекс первого найденного x, можно задать
промежуток для поиска (опционально)
my list.insert(index, x) - вставляет x на заданную позицию
my_list.pop(index) - возвращает элемент с указанным индексом и удаляет его, если
индекс не указан - возвращается и удаляется последний элемент
my_list.remove(x) - удаляет первый элемент со значением x
my_list.reverse() - инвертирует порядок элементов в списке
my_list.sort(key=x) сортирует список на основе функции
```


🕳 Условные операторы и циклы

Условный оператор if

The if Statement

if logical expression(s) statement(s)

end

Relational operator	Meaning
<	Less than.
<=	Less than or equal to.
>	Greater than.
>=	Greater than or equal to.
==	Equal to.
~=	Not equal to.

Цикл for

___ Цикл for

```
for i in range(0,10,1): # цикл for повторно выполняет описанные послее ":" команды N раз, согласно условию, описаному перед ":" print(i)

0
1
2
3
4
5
6
7
8
9
```


ightharpoonup Условный оператор if

```
for i in range(10): # цикл for повторно выполняет описанные послее ":" команды № раз, согласно условию, описаному перед ":"
    if i >= 7: # условие if при выполнении условия, описанного до ":", выполняет команду, описанную после ":"
      print(i, 'i>7')
    elif i >=5: # условие elif при выполнении условия, описанного до ":", выполняет команду, описанную после ":"
      print(i,'i>5')
    else:
      print(i, 'i<5') # условие else выполняет команду, описанную после ":", при невыполнении всех условий
0 i<5
1 i<5
2 i<5
3 i<5
4 i<5
5 i>5
6 i>5
7 i>7
8 i>7
9 i>7
```


Вывод графических результатов

```
[ ] import matplotlib.pyplot as plt
import numpy as np
x = net.res_bus.p_mw.index
y = net.res_bus.p_mw
plt.bar(x,y)
```

<BarContainer object of 3 artists>

• Вывод графических результатов

```
W_month_PV= Graphs.iloc[0,:]*W_pv
  W_month_WT= Graphs.iloc[1,:]
  print(W_month_PV)
      1.353999e+06
1
     3.159330e+06
     5.808458e+06
     8.496832e+06
     1.053764e+07
     1.128332e+07
     1.138144e+07
     8.830426e+06
     5.514111e+06
10
    3.139707e+06
     1.667969e+06
11
     9.026658e+05
Name: Wcac, %, dtype: float64
```

```
import matplotlib.pyplot as plt
x1=np.arange(1,13,1)
y1=W_month_PV
x2=np.arange(1,13,1)
y2=W_month_WT
fig, axes = plt.subplots(2, 1)
axes[0].bar(x1, y1)
axes[1].bar(x2, y2)
```

(BarContainer object of 12 artists)

0.5

0.0

Вывод графических результатов

```
import matplotlib.pyplot as plt
x1=np.arange(1,13,1)
y1=W_month_PV
x2=np.arange(1,13,1)
y2=W month WT
fig, ax = plt.subplots( )
U1 = ax.bar(x1, y1, color = 'g', width = 0.6)
U2 = ax.bar(x1, y2, color = 'r', width = 0.3)
ax.set facecolor('seashell')
fig.set_figwidth(12)
                       # ширина Figure
fig.set_figheight(6)
                       # высота Figure
fig.set facecolor('seashell')
plt.xlabel("Month", fontweight = bold', fontsize = 15)
plt.ylabel("Energy", fontweight ='bold', fontsize = 12)
plt.show()
```


Исходные данные

Мощность и форма графика нагрузки определяются исходя из номера варианта

$$P_{M\Gamma \ni C} = 80 \ \ \kappa Bm$$
 (на данном этапе)

Выбор мощности и числа генераторов ДЭС

Варианты мощности и числа агрегатов ДЭС

$$n=2 \rightarrow P_{\text{ДЭУ}}=0,5P_{ ext{max нагр}}$$

$$n=3 o 2$$
 агр. $(P_{
m ДЭУ}=0.4P_{
m max\; нагр})+1$ агр. $(P_{
m ДЭУ}=0.2P_{
m max\; нагр})$

🕳 Ход работы

- Произвести расчёт графика нагрузки потребителей
- Используя возможности языка Matlab и файл с базой данных ДЭУ, размещенную гугл. диске, написать программу автоматического выбора типа дизельных установок для двух вариантов компоновки ДЭС:
- 1. Две установки по 50% от мощности потребителей;
- 2. Три установки в пропорции (40%, 40%, 20%);
- Результат расчёта необходимо вывести в командную строку.

Часть вторая. Выбор параметров СНЭ и расчёт режима работы системы

Покрытие графика нагрузки

Приоритет:

$$W_{
m sap_AKB} = \sum (P_{
m M\Gamma ext{9C}} - P_{
m Harp})$$

Разряд АКБ для покрытия пиков:

$$W_{\text{раз_AKB}} = \sum (P_{\text{M}\Gamma \ni \text{C}} + P_{\text{Д}\ni \text{C}} - P_{\text{нагр}})$$

Ограничения ДЭС:

$$k_3 \ge 0.5$$

 $P_{ extsf{J} extsf{J} extsf{Y}} o idem$

Ограничения АКБ:

$$W_{\text{зар_AKE}} = W_{\text{раз_AKE}}$$

$$P_{AKB} \rightarrow idem$$

$$P_{\text{AKE}} \leq P_{\text{max_инв}}$$

Рекомендации к построению алгоритма распределения

- Режим покрытия графика нагрузки определяется балансовыми уравнениями
- Условия работы ДЭС и АКБ логическими операторами
- Приоритет покрытия нагрузки и заряда АКБ принадлежит ВИЭ (МГЭС)
- Правильность работы алгоритма определяется равенством суммарной генерации и потребления на суточном интервале с учётом переменного режима работы АКБ

Принципы покрытия графика нагрузки

$$if\ P_{\mathrm{M}\Gamma \ni \mathrm{C}} = P_{\mathrm{Harp}} \to P_{\mathrm{reh}} = P_{\mathrm{M}\Gamma \ni \mathrm{C}}$$

$$if\ P_{\mathrm{M}\Gamma \ni \mathrm{C}} > P_{\mathrm{Harp}} \to P_{\mathrm{reh}} + P_{\mathrm{3.AKE}} = P_{\mathrm{M}\Gamma \ni \mathrm{C}}$$

$$\begin{split} if \ P_{\text{МГЭС}} < P_{\text{нагр}} \to \text{выбор доп. источника} \downarrow \\ if \ (P_{\text{нагр}} - P_{\text{МГЭС}}) < 0.4 P_{\text{ДЭС}} \to P_{\text{ген}} = P_{\text{МГЭС}} + P_{\text{р.АКБ}} \\ if \ (P_{\text{нагр}} - P_{\text{МГЭС}}) > 0.4 P_{\text{ДЭС}} \to P_{\text{ген}} = P_{\text{МГЭС}} + P_{\text{ДЭС}} \\ if \ P_{\text{нагр}} > (P_{\text{нагр}} - P_{\text{МГЭС}} - P_{\text{ДЭС}}) \to P_{\text{ген}} \\ = P_{\text{МГЭС}} + P_{\text{ДЭС}} + P_{\text{р.АКБ}} \end{split}$$

$$if \sum (P_{\text{p.AKB}.i} \cdot t_i) > \sum (P_{\text{3.AKB}.i} \cdot t_i) \rightarrow P_{\text{3.AKB}.i} = P_{\text{ДЭС}} - (P_{\text{нагр}} + P_{\text{МГЭС}}) \leftarrow P_{\text{ДЭС}} < P_{\text{ДЭС}.\text{ном}}$$
$$if \sum (P_{\text{p.AKB}.i} \cdot t_i) < \sum (P_{\text{3.AKB}.i} \cdot t_i) \rightarrow \downarrow P_{\text{3.AKB}.i} (P_{\text{ДЭС}})$$
$$if P_{\text{3.AKB}.i} (P_{\text{ДЭС}}) = 0 \rightarrow \downarrow P_{\text{3.AKB}.i} (P_{\text{МГЭС}})$$

🕳 Цикл while

```
P nagr = [150, 100];
       P mges=50;
     - for i = 1:1:2
           i=1:
           P gen(j) =0;
           while P nagr(j) ~= P gen(j)
           i = i+1;
           P des(j)=i;
           P gen(j) = P mges + P des(j);
 9 -
           end;
10 -
11 -
           A = ['MOMHOCTE ДЭС B ДАННОМ ИНТЕРВАЛЕ ВРЕМЕНИ PABHA ', num2str(P des(j))];
12 -
13 -
       end
14
15
```

```
      Workspace
      Value

      Name ▲
      Value

      Image: Name A
      'мощность ДЭС в да...

      Image: January Science A
      50

      Image: January Science A
      [100,50]

      Image: January Science A
      [150,100]

      Image: January Science A
      [150,100]

      Image: January Science A
      [150,100]

      Image: January Science A
      [150,100]
```

```
>> exmpl2
```

мощность ДЭС в данном интервале времени равна 100 мощность ДЭС в данном интервале времени равна 50

Построение графиков с различным числом рядов

```
1 %Многорядный столбчатый график
2 - y = [2 2 3; 2 5 6; 2 8 9; 2 11 12];
3 - bar(y)
4 %Многорядный сложенный столбчатый график
5 - y = [8 2 3; 2 5 6; 3 8 9; 2 11 12];
6 - bar(y,'stacked')
7 - title('столбчатый график')
8 - ylabel('значения')
9 - xlabel('номера')
```


Потребление топлива на ДЭС

$$q_{\phi a \kappa m} = K_{XX} \cdot q_{_{H}} + (1 - K_{XX}) \cdot q_{_{H}} \cdot \frac{P_{_{\not \Box \Im Y}}}{P_{_{HOM}\not\Box \Im Y}}$$

$$q_{_H} \quad$$
 – номинальный удельный расход топлива,

$$q_{\it daкm}$$
 – фактический удельный расход топлива,

$$K_{\it XX}$$
 –коэффициент, характеризующий потребление топлива на холостом ходу.

$$K_{XX} = 0.3$$

n – число дизельных генераторов,

t – количество часов в рассматриваемом временном интервале

т— количество временных интервалов.

• Расчёт параметров блока АКБ

Вводная часть

Классификация

Особенности работы

Условия выбора

$$U_{ ext{AKE}} = \sum U_{ ext{A}i}$$

 $I_{ ext{AKE}} = const$
 $C_{ ext{AKE}} = const$

12B 200A * ч × 2шт. = 12B 400A * ч (параллельное соединение)

$$egin{aligned} U_{
m AKB} &= const \ I_{
m AKB} &= \sum I_{
m Ai} \ C_{
m AKB} &= \sum C_{
m Ai} \end{aligned}$$

$$C_{\sum_{AKB}} = \frac{W_{_{3ap(pa3p)}}}{U_{_{HOM}} \cdot k_{_{pa3}} \cdot \eta_{_{AKB}}}$$

$$n_{AKEnap} = \frac{C_{\sum AKE}}{C_i}$$

$$n_{{\scriptscriptstyle AKEnoca}} = rac{U_{{\scriptscriptstyle HOM}}}{U_i}$$

$$n_{AKB} = n_{AKBnocn} \cdot n_{AKBnap}$$

$$\eta_{li-ion} = 0.96$$

$$\eta_{Pb-PbO} = 0.80$$

• Схема соединения ячеек АКБ

Вводная часть Классификация Особенности работы Условия выбора

Данные по аккумуляторам

Параметры аккумуляторных батарей фирмы «Лиотех»

Тип литий-	$U_{\scriptscriptstyle{HOM}}$	$C_{\scriptscriptstyle{HOM}}$,	Удельная]	Габариты, м	Macca,	Цена	
ионных	В	Ah	энергия	Длина	Ширина	Высота	КГ	руб.
аккумуляторов			В҈т*ч/кг /					
			Вт*ч/л					
LT-LYP200	3,2	200	66 / 99.2	163	117	337	9,95	14 000
LT-LYP240	3,2	240	79.2 /	163	117	337	9,95	16 800
			119.1					
LT-LYP300	3,2	300	80.5 /	167	163	337	14,80	21 000
			126.1					
LT-LYP380	3,2	380	82.2 /	167	163	337	14,80	26 600
			132.2					
LT-LYP700	3,2	700	84.5 /	289	163	337	26,50	49 000
			140.2					
LT-LYP770	3,2	770	93 / 154.2	289	163	337	26,50	53 900
LT-LFP300	3,2	300	107 / 160	162	114	349	9,50	21 000

Условие выбора параметров инвертора и АКБ

$$P_i \leq P_{{\scriptscriptstyle HOM}}$$

Номинальная мощность инвертора не должна превышать максимальную забираемую от АКБ мощность

$$P_{_{\mathit{B}\,\mathit{blX}}} = P_{_{\mathit{B}\,\mathit{X}}} \cdot \eta_{_{\mathit{UH}\,\mathit{B}}}$$

Мощность инвертора на выходе зависит от кпд инвертора (0,95) и его мощности на входе

$$U_{{\scriptscriptstyle H.cemu}} = U_{{\scriptscriptstyle gbix}}$$

$$U_{AKB} = U_{ex}$$

Напряжение инвертора должно соответствовать напряжению сети и аккумуляторной батареи

$$C_{\sum AKB} \le C_{\max}$$

Емкость АКБ не должна превышать максимального значения на которое рассчитан инвертор

— Данные по инверторам

Аккумуляторные инверторы

Тип	<i>Р</i> _{ном} кВт	<i>Р_{тах}</i> кВт	<i>Р</i> _{пик} кВт	U _{вх} В	U _{вых} В	$C_{max}, \\ ext{Ah}$	Цена Руб.	
MAΠsin hybrid 1,3κΒτ	0,8	1,3	2,5	12		600	30 900	
MAΠsin hybrid 2 κΒτ	1,4	2	3,5	12/24		1000	39 500	
MAΠsin pro3κBτ	2	3	5	12/24/48		1200	46 900	
MAΠsinpro4,5κBτ	3	4,5	7	24/48	220/380	2000	61 300	
MAПsinproбкВт	4	6	9	24/48		2400	71 900	
MAΠsinpro9κBτ	6	9	13	48	220/360	3200	86 000	
MAΠsinpro12κBτ	8	12	17	48		3200	105 000	
MAΠsinpro15κBτ	10	15	19	48		3200	124 500	
MAΠsinpro18κBτ	12	18	22	48		4000	137 000	
MAΠsinpro20κBτ	13,5	20	25	48		4000	150 700	

🕳 Выбор инвертора для АКБ

Параллельное включение инверторов

Если единичной мощности инвертора не достаточно для обеспечения требуемой выдачи мощности в сеть, то устанавливают параллельную установку нескольких инверторов.

🕳 Выбор инвертора для АКБ

Термины и определения

Принцип действия

Классификация

Условия выбора

При необходимости установки нескольких инверторов на параллельную работу:

— Сводная таблица

	Суточный интервал																						
Параметр	TP 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22										23	24											
$P_{ m {\scriptsize Harp}}$																							
Режим работ	ы МГЭ	C																					
Рмгэс ном																							
$P_{\text{мгэс}_\phi$ акт																							
Режим работ	ы ДЭС																						
Рдэс_ном																							
$P_{\text{дэс}_\dot{\Phi}$ акт																							
$n_{\rm дзy}$																							
P _{дэу_факт}																							
<i>К</i> з _{дэу_факт}																							
q _{дэу_ном}		•			•		•			•	•	•				•				•			
q _{дэу_факт}																							
$V_{\rm дэc}$																							
Режим работ	ы нако	пителя	энергі	ии	•	•	•	•	•	•	•				•	•	•	•	•	•	•		
$P_{ m AKB_sap}$																							
P _{АКБ_разр}																							
W_{AKB_3ap}																							
$W_{ m AKB_pasp}$																							

На паре:

- спланировать режим покрытия графика нагрузки для одного варианта компоновке ДЭС
- Результаты расчёта представить в виде графика
- Определить объем потребляемого топлива. Результат вывести в командную строку
- Дома: дописать в программе модули автоматического расчёта числа АКБ и инверторов

🕳 Ход работы

Дома:

дописать в программе модули автоматического расчёта числа АКБ и инверторов

В РГ3:

спланировать режим покрытия графика нагрузки для второго варианта компоновке ДЭС

