Вопросы:

- 2. Семейство множеств это множество, элементами которого являются другие множества. Например: {{1,2}, {3,4}}
- 3. Булеан множество всех подмножеств данного множества. Например: булеан множества $\{2, 3, \{4, 5\}, 1\} \{\emptyset, \{2, 3, \{4, 5\}, 1\}, \{2\}, \{3\}, \{1\}, \{4, 5\}, \{2, 3\}, \{2, 1\}, \{3, 1\}, \{2, \{4, 5\}\}, \{2, 3, \{4, 5\}\}, \{2, 1, \{4, 5\}\}, \{1, 3, \{4, 5\}\}\}$
- 6. $A \cup B = \{x \mid x \in A \text{ or } x \in B\}$

- 10. Декартово произведение множеств это множество, элементами которого являются все возможные упорядоченные пары элементов из исходных множеств. Например: $A = \{1,2\}$ $B = \{3\}$ $A \times B = \{(1,3),(2,3)\}$
- 15. Свойства поглощение: $(A \cap B) \cup A = A; (A \cup B) \cap A = A$ Свойства склеивания: $(A \cap B) \cup (A \cap \bar{B}) = A; (A \cup B) \cap (A \cup \bar{B}) = A$
- 16. Приоритет: 1. Дополнение 2. Пересечение 3. Объединение, разность, симметрическая разность. Приоритет можно изменить, поставив скобки в нужном месте. Например: $A \cap B \cup C != A \cap (B \cup C)$
- 18. ∈ используется, когда нужно показать принадлежность элемента множеству с используется, когда нужно показать, что множество слева от знака является подмножеством множества, которое стоит справа от значка. При этом не допускается равенство множеств.

⊆ используется, когда нужно показать, что множество слева от знака является **подмножеством** множества, которое стоит справа от значка. При этом **допускается** равенство множеств.

Примеры:

Задания:

```
Задание 1
                                           Дано множество вида A = \{a, b, c, d\}. Укажите верные запись.
                              1)
                         a) a \in A; \forall
a) \{a\} \subset \{a, b\}; \forall
6) d \subset A; \forall
6) \{c\} \subseteq \{c\}; \forall
8) \emptyset \in A; \forall
8) \emptyset \in \{a, b, c\}; \forall
9) \{a, b, c, d\} \subseteq A; \forall
1) \emptyset \subset A; \forall
1) \emptyset \subset A; \forall
2)
                                                                                                                                                                                                                                                                                        a) a, b \in \{a, b, c\}
                                                                                                                                                                                                                                                                                        5) Ø € {a, b, c}; \
                                                                                                                                                                                                                                                                                      B) Ø ∈ {Ø}; V
                                                                                                                                                                                                                                                                                      r) Ø = {Ø}; \
                          \mu) a = \{a\}; \times
                                                                                                                                                                                                                                                                                  e)\emptyset = \{\emptyset\}. \times
                        Рассмотрим доказательство
                        Утверждение 1: A \setminus B = A \cap \overline{B}.
                         D HXE AIB (=) (XEB =) XEB (=) (XEA (=) XEANB =)
                        =) ANB SAMB
                   E HXEANBEN (XEB =) X &B => (X &B => X 
                                =) ANBCANB
                        (A\BCANB = ANB, rmo ung
                  <u>Утверждение 2</u>: A = \bar{B} \iff A \cap B = \emptyset и A \cup B = U.
        (S) A=B
       +xeANB (=) (xeB =) x ∉ B =) x ∉ A =) ANB=Ø
 YXEAVB(=)[XEB YYEU [YEA => YEAVB

[Y#A => YEB => Y
LAVBEN => V-AUB
(=) (ANB=Ø Ax: xeAk xeB(*)

(AVB=V YXEV XEA OF XEB (*+)

YXEA (] ZEB =) XEA (XEB =) NORMBOREW NO(*) =) XfB=) XEB=) ASB
```

YXEB X 4B => REA => BEA

(A CB t=) A=B

доказать утверждения. Привести примеры, в которых правая часть утверждения верна, но левая верна не будет.

a) $A \subseteq B \Rightarrow A \cup C \subseteq B \cup C$ $A \subseteq B \supseteq C$ $A \subseteq B \subseteq C$ $A \subseteq B \subseteq C$ $A \subseteq B \subseteq C$ $A \subseteq C$ $A \subseteq C$

(TEA => XEB => XEBUC => XEBUCE)

b) $A \subseteq B \Rightarrow A \cap C \subseteq B \cap C$ $A \subseteq B = \{ \forall x \notin A = \} x \notin B \}$ $\forall x \in A \cap C = \{ z \mid z \in A \} x \in C \}$

(XEA => XEB => XEB NC) = ARCBAC

c) $A \subseteq B \Rightarrow A \setminus C \subseteq B \setminus C$ $(A \subseteq B \rightleftharpoons A \setminus C \subseteq B \setminus C)$ $(A \subseteq B \rightleftharpoons A \setminus C \subseteq B \setminus C)$ $(A \subseteq B \rightleftharpoons A \setminus C \subseteq B \setminus C)$ $(A \subseteq B \rightleftharpoons A \setminus C \subseteq B \setminus C)$ $(A \subseteq B \rightleftharpoons A \setminus C \subseteq B \setminus C)$ $(A \subseteq B \rightleftharpoons A \setminus C \subseteq B \setminus C)$ $(A \subseteq B \rightleftharpoons A \setminus C \subseteq B \setminus C)$ $(A \subseteq B \rightleftharpoons A \setminus C \subseteq B \setminus C)$ $(A \subseteq B \rightleftharpoons A \setminus C \subseteq B \setminus C)$ $(A \subseteq B \rightleftharpoons A \setminus C \subseteq B \setminus C)$ $(A \subseteq B \rightleftharpoons A \setminus C \subseteq B \setminus C)$ $(A \subseteq B \rightleftharpoons A \setminus C \subseteq B \setminus C)$ $(A \subseteq B \rightleftharpoons A \setminus C \subseteq B \setminus C)$ $(A \subseteq B \rightleftharpoons A \setminus C \subseteq B \setminus C)$ $(A \subseteq B \rightleftharpoons A \setminus C \subseteq B \setminus C)$ $(A \subseteq B \rightleftharpoons A \setminus C \subseteq B \setminus C)$ $(A \subseteq B \bowtie A \setminus C \subseteq B \setminus C)$ $(A \subseteq B \bowtie A \setminus C \subseteq B \setminus C)$ $(A \subseteq B \bowtie A \setminus C \subseteq B \setminus C)$ $(A \subseteq B \bowtie A \setminus C \subseteq B \setminus C)$ $(A \subseteq B \supseteq C \subseteq B \setminus C)$ $(A \subseteq B \supseteq C \subseteq B \setminus C)$ $(A \subseteq B \supseteq C \subseteq B \subseteq C)$ $(A \subseteq B \supseteq C \subseteq B \subseteq C)$ $(A \subseteq B \supseteq C \subseteq C)$ $(A \subseteq B \supseteq C \subseteq C)$ $(A \subseteq B \supseteq C)$ $(A \subseteq C)$ (

d) $A \subseteq B \Rightarrow C \setminus B \subseteq C \setminus A$ for k manuferoson $A \subseteq B \Rightarrow C \setminus B \subseteq C \setminus A$ for k manuferoson $A \subseteq B \Rightarrow (\forall x \in A \Rightarrow x \in A) \Rightarrow (\forall x \in C \land B \Rightarrow x \in A) \Rightarrow (\forall x \in C \land B \Rightarrow x \in A \Rightarrow x$

e) $A \subseteq B \Rightarrow \overline{B} \subseteq \overline{A}$ => $C B \subseteq C A$ $A \subseteq B \in \{\forall x \in A \Rightarrow x \in B\} \} \neq \chi \notin A$ => $\chi \in \overline{A} \notin B \Rightarrow \chi \in \overline{A} \notin \overline{A} \Leftrightarrow \chi \in \overline{A} \Leftrightarrow$

f) $A \subseteq C \cup B \subseteq C \Rightarrow A \cap B \subseteq C$ $(A \subseteq C :=)(\forall x \in A \supseteq x \in C))$ $\forall x \in A \cap B \subseteq C$ $(B \subseteq C :=)(\forall x \in A \supseteq x \in C))$ $\forall x \in A \cap B \subseteq C$ $(B \subseteq C :=)(\forall x \in B :=) x \in C))$

Задание 3

Привести примеры применения утверждений (в обе стороны).

- a) A ⊆ C u B ⊆ C ⇔ A ∪ B ⊆ C \$ = 91,2 } 573,43 C= 91,2,3,43
- b) A⊆BuA⊆C ⇔A⊆B∩C A={13 B={12} C={1,3}
- c) $A \subseteq B \Leftrightarrow A \backslash B = \emptyset$ $A = \{3, 4\}$ $B = \{3, 4\}$
- d) $A \subseteq B \Leftrightarrow \bar{A} \cup B = U \ A = \{3, 0\} \ B = \{0, 2, 3, 9\}$
- e) $A \subseteq B \Leftrightarrow A \cup B = B \ A = 93,03 \ R = 90,23,93$
- f) $A \subseteq B \Leftrightarrow A \cap B = A A \{3, 0\}$ $\beta \{0, 2, 3, 9\}$

Задание 4

Привести примеры применения утверждений.

- 10 h = 91, 2, 3, 43 AC +Uh a) A⊆A∪BA={1,23 B={1,2,3,43
- b) AnB = A A= {7,27 B= {7,27 Ans= {7,27 Ans= 4
- c) A\B = A A = {1,23 B= {33 A \ P = {1,23 A \ PCA

Известно, что $B \subseteq A \subseteq C$, $a \in A$ и $a \notin B$. Какие из следующих утверждений верны:

- 1. a ∉ C
- (2) a ∈ C
- 3. $a \in A \cap B$
- (5) $a \in A \setminus B$
- 6. $a \in B \setminus A$
- (\hbar) $a \in A \triangle B$
- $(8) \{a\} \subseteq A \cap C$

- (9.) a ∈ A U C
- $10. \{a\} \subseteq A \setminus C$
- 11. $\{a\} \subseteq A \Delta C$
- $f2/a \in (A \cap B) \cup C$
- $\{a\} \subseteq A \cap (B \cup C)$
- $14. \{a\} \subseteq B \cup (C \backslash A)$
- 15. $\{a\} \subseteq A \cap (B \setminus C)$
 - 16. $\{a\} \subseteq B\Delta (A \setminus C)$

Задание 6

A=92,4,6,83

Дан универсум $U = \{1, 2, 3, 4, 5, 6, 7, 8\}$ и его подмножества $A = \{x | x - \text{четно}\}$, $B = \{x | x - \text{кратно четырем}\}, C = \{x | x - \text{простое}\}, D = \{1, 3, 5\}.$ (=52,3,5,73

Найти множества:

- 1. AUB = {2,4,6,8}
- 3. A DB = 12163
- 4. An (BUCUD)-12, 416, 8) 1 121,2,3,4,5,1,83=12,4,83
- 1. $A \cup B = \{2, 4, 6, 8\}$ 2. $C \cap D = \{3, 5\}$ 5. $C \triangle D = \{1, 2\}, (7) = \{2, 6\}, (7)$
 - 7. AnB= 81, 3, 5, 13, 1812, 3, 5, 6, 23= 2, 4, 6, 83

Задание 7

Привести примеры применения утверждений.

- a) $A \cup B = A \cap B \Leftrightarrow A = BA=27,23$ $B = \{7,23\}$
- b) $|2^A| = 2^{|A|}$ $A = \{1, 2\}$
- c) $2^{A \cap B} = 2^A \cap 2^B$ $A = \{ 1 \}$ $B = \{ 3 \}$
- d) $2^{A} \setminus 2^{B} = 2^{A} \setminus 2^{A \cap B} \quad A = \{1\} \quad B = \{1\}$
- e) $|2^{A \cup B}| = 2^{|A \cup (B \setminus (A \cap B))|} = 2^{|A| + |B| \cdot |A \cap B|} = 2^{|A| \cdot 2^{|B|}} / 2^{|A \cap B|} / 2^{|A \cap B|} / 2^{|A \cap B|}$

N- advagaem приоритетам N- yниверсум. Упростить выражения, если $A \subset B, B = C$.

b)
$$\overline{A \cup B \cap \overline{C}} = \overline{A \vee \varnothing} = \overline{A}$$

Задание 9 закон поглощения Упростить выражения.

1.
$$(B \cap C \cap D) \cup (C \cap D) \cup (A \cap C \cap D) = (C \cap D) \cup (A \cap C) = (C \cap D) = ($$

3.
$$(A \cup \overline{B}) \cap (A \cup \overline{B} \cup C) \cap (A \cup \overline{B} \cup D) = (A \vee \overline{B}) \wedge (A \vee \overline{B} \vee D) = A \vee \overline{B}$$

4.
$$(\bar{A} \cup B) \cap B \cap (B \cup \bar{C}) = \beta \wedge (\beta \vee \bar{C}) = \beta$$

Задание 10 закон склеивания Упростить выражения.

1. AnBncuBncuBnc

3. $(A \cup \overline{B} \cup C) \cap (\overline{A} \cup \overline{B} \cup C) \cap B$

Найдите элементы множеств, если $A = \{1, 2, 4, 5\}; B = \{1, 3, 6, 7\}; C = \{2, 3, 6, 7\}.$

Задание 11 закон склеивания Упростить выражения.

1. Bn¢UBncOUAUC=BUAVC=ODVC

2.
$$(B \cap \bar{c}) \cup \bar{B} \cap \bar{c}$$
 $\cap A = \bar{c} \cap A = \emptyset$

3.
$$(A \cup B) \cap (\bar{A} \cup B) \cup (A \cap C) = B \vee (A \cap C) = D \vee A$$

Упростить, если $A \subset B \subset C$.

Рассмотрим доказательство следующего тождества $\bar{A} \cup (A \cap C) = \bar{A} \cup C$ $\widehat{A} \cup (A \cap C) = |\widehat{A} \cup A| \cap (\bar{A} \cup C) = \cup (\bar{A} \cup C) = |\widehat{A} \cup C| =$

Задание 12

U — универсум. Упростить формулы при условии, что множества A,B,C, и D связаны отношением вида $A \subset B \subset C \subset D \subset U$

$$\begin{array}{c}
(1) P = \overline{A \cap B \cap \overline{C} \cap \overline{D}} \cup \overline{A \cap B \cap D} \cup \overline{A \cap B \cap C} \cup \overline{A \cap B \cap C} - \emptyset \cup (B \setminus A) \vee \emptyset \cup B = B \setminus A
\end{array}$$

2. $P = \overline{A} \cap B \cap D \cup \overline{A} \cap B \cap C \cap D \cup A \cap \overline{B} \cap C \cup A \cap B \cap C$

$$\begin{array}{c}
3 & P = \overline{A} \cap B \cap \overline{C} \cup \overline{A} \cap C \cap D \cup \overline{A} \cap B \cap \overline{C} \cup \overline{A} \cap B \cap C
\end{array}$$

4. $P = \overline{A} \cap B \cap \overline{C} \cap D \cup \overline{A} \cap B \cap C \cup A \cap \overline{B} \cap C \cup A \cap B \cap \overline{C}$

ассмотрим доказательство следующего тождества

$$A \setminus (A \setminus B) = A \cap B$$

 $A \setminus (A \setminus B) = A \cap (\overline{A \setminus B}) = A \cap (\overline{A \cap B}) = A \cap (\overline{B \setminus A}) =$
 $= (A \cap B) \cup (A \cap \overline{A}) = (A \cap B) \cup (A \cap \overline{B}) = A \cap B$

Задание 13

Воспользовавшись свойствами (законами) операций над множествами, выяснить, верны ли тождества для любых А, В, С.

a)
$$A \cap (B \setminus C) = (A \cap B) \setminus (A \cap C)$$

$$(A \cap C) = (A \cap B) \setminus (A \cap C) = (A \cap B) \cap (A \cap C) = (A \cap C)$$

b)
$$A \cap (B \triangle C) = (A \cap B) \triangle (A \cap C)$$

 $A \cap (B \triangle C) = A \cap ((B \vee C) \land (B \wedge C)) = (A \cap (B \vee C)) \land (A \cap (B \wedge C)) = (A \cap B) \lor (A \cap C)$
 $= ((A \cap B) \lor (A \cap C)) \land ((A \cap B) \cap (A \cap C)) = (A \cap B) \lor (A \cap C)$
c) $A \cap (B \land A) = \emptyset$ $A \cap (B \land A) = A \cap A \cap B = \emptyset \land B = \emptyset$

d)
$$A\setminus (B \cup C) = (A\setminus B) \cap (A\setminus C)$$

 $A\setminus (B \cup C) = A \cap \overline{B} \cap (A \setminus C) = A \cap \overline{B} \cap \overline{C} = A \cap (\overline{B} \cup C) = A \setminus (\overline{B} \cup C)$

Задание 14

Укажите номера множеств, которые являются подмножествами мно-

$$Q = A \cup B \cap C \cup B \cap D.$$

$$(\bigcirc P = A \cap B \cup B \cap C \cup B \cap D;$$

$$(\bigcirc P = A \cup B \cap C \cup B \cap D;$$

$$(\bigcirc P = A \cup B \cap C \cup B \cap D;$$

$$(\bigcirc P = A \cup B \cap C \cup B \cap D;$$

$$(\bigcirc P = A \cup B \cap C \cup B \cap D;$$

$$(\bigcirc P = A \cup B \cap C \cup B \cap D;$$

$$(\bigcirc P = A \cup B \cap C \cup B \cap D;$$

$$(\bigcirc P = A \cup B \cap C \cup B \cap D;$$

$$(\bigcirc P = A \cup B \cap C \cup B \cap D;$$

$$(\bigcirc P = A \cup B \cap C \cup B \cap D;$$

$$(\bigcirc P = A \cup B \cap C \cup B \cap D;$$

$$(\bigcirc P = A \cup B \cap C \cup B \cap D;$$

$$(\bigcirc P = A \cup B \cap C \cup B \cap D;$$

$$(\bigcirc P = A \cup B \cap C \cup B \cap D;$$

$$(\bigcirc P = A \cup B \cap C \cup B \cap D;$$

$$(\bigcirc P = A \cup B \cap C \cup B \cap D;$$

$$(\bigcirc P = A \cup B \cap C \cup B \cap D;$$

$$(\bigcirc P = A \cup B \cap C \cup B \cap D;$$

$$(\bigcirc P = A \cup B \cap C \cup B \cap D;$$

$$(\bigcirc P = A \cup B \cap C \cup B \cap D;$$

$$(\bigcirc P = A \cup B \cap C \cup B \cap D;$$

$$(\bigcirc P = A \cup B \cap C \cup B \cap D;$$

$$(\bigcirc P = A \cup B \cap C \cup B \cap D;$$

$$(\bigcirc P = A \cup B \cap C \cup B \cap D;$$

$$(\bigcirc P = A \cup B \cap C \cup B \cap D;$$

$$(\bigcirc P = A \cup B \cap C \cup B \cap D;$$

$$(\bigcirc P = A \cup B \cap C \cup B \cap D;$$

$$(\bigcirc P = A \cup B \cap C \cup B \cap D;$$

$$(\bigcirc P = A \cup B \cap C \cup B \cap D;$$

$$(\bigcirc P = A \cup B \cap C \cup B \cap D;$$

$$(\bigcirc P = A \cup B \cap C \cup B \cap D;$$

$$(\bigcirc P = A \cup B \cap C \cup B \cap D;$$

$$(\bigcirc P = A \cup B \cap C \cup B \cap D;$$

$$(\bigcirc P = A \cup B \cap C \cup B \cap D;$$

$$(\bigcirc P = A \cup B \cap C \cup B \cap D;$$

$$(\bigcirc P = A \cup B \cap C \cup B \cap D;$$

$$(\bigcirc P = A \cup B \cap C \cup B \cap D;$$

$$(\bigcirc P = A \cup B \cap C \cup B \cap D;$$

$$(\bigcirc P = A \cup B \cap C \cup B \cap D;$$

$$(\bigcirc P = A \cup B \cap C \cup B \cap D;$$

$$(\bigcirc P = A \cup B \cap C \cup B \cap D;$$

$$(\bigcirc P = A \cup B \cap C \cup B \cap D;$$

$$(\bigcirc P = A \cup B \cap C \cup B \cap D;$$

$$(\bigcirc P = A \cup B \cap C \cup B \cap D;$$

$$(\bigcirc P = A \cup B \cap C \cup B \cap D;$$

$$(\bigcirc P = A \cup B \cap C \cup B \cap D;$$

$$(\bigcirc P = A \cup B \cap C \cup B \cap D;$$

$$(\bigcirc P = A \cup B \cap C \cup B \cap D;$$

$$(\bigcirc P = A \cup B \cap C \cup B \cap D;$$

$$(\bigcirc P = A \cup B \cap C \cup B \cap D;$$

$$(\bigcirc P = A \cup B \cap C \cup B \cap D;$$

$$(\bigcirc P = A \cup B \cap C \cup B \cap D;$$

$$(\bigcirc P = A \cup B \cap C \cup B \cap D;$$

$$(\bigcirc P = A \cup B \cap C \cup B \cap D;$$

$$(\bigcirc P = A \cup B \cap C \cup B \cap D;$$

$$(\bigcirc P = A \cup B \cap C \cup B \cap D;$$

$$(\bigcirc P = A \cup B \cap C \cup B \cap D;$$

$$(\bigcirc P = A \cup B \cap C \cup B \cap D;$$

$$(\bigcirc P = A \cup B \cap C \cup B \cap D;$$

$$(\bigcirc P = A \cup B \cap C \cup B \cap D;$$

$$(\bigcirc P = A \cup B \cap C \cup B \cap D;$$

$$(\bigcirc P = A \cup B \cap C \cup B \cap D;$$

$$(\bigcirc P = A \cup B \cap C \cup B \cap D;$$

$$(\bigcirc P = A \cup B \cap C \cup B \cap D;$$

$$(\bigcirc P = A \cup B \cap C \cup B \cap D;$$

$$(\bigcirc P = A \cup B \cap C \cup B \cap D;$$

$$(\bigcirc P = A \cup B \cap C \cup B \cap D;$$

$$(\bigcirc P$$

Укажите номера множеств, которые являются подмножествами мно-II жества

$$Q = B \cap C \cup \overline{A} \cap D \cup C \cap D \cup \overline{A} \cap B.$$

- 1) $P = A \cap C \cup \overline{A} \cap C \cap D$; 2) $P = B \cap C \cap D \cup \overline{A} \cap \overline{C} \cap D$; 3) $P = \overline{A} \cap B \cup \overline{A} \cap C$; 4) $P = C \cap D \cup A \cap \overline{B} \cap D$; 5) $P = \overline{A} \cap B \cap C \cup \overline{A} \cap \overline{B} \cap D$; 6) $P = A \cap B \cap C \cap D \cup \overline{A} \cap B \cap \overline{D}$; 7) $P = B \cap D \cup \overline{A} \cap \overline{B} \cap \overline{D}$; 8) $P = A \cap \overline{C} \cap D \cup \overline{B} \cap C \cap D$.

Задание 15

Изобразить с помощью диаграмм Эйлера—Венна левые и правые части тождеств. Сравнить их.

a)
$$(A \cup B) \cap (A \cup \overline{B}) = (A \cap B) \cup (A \cap \overline{B})$$

$$(\bar{A} \cup B) \cap A = A \cap B$$

d)
$$A \setminus (B \cup C) = (A \setminus B) \setminus C$$

e)
$$A \setminus (B \setminus C) = (A \setminus B) \cup (A \cap C)$$

f)
$$A \Delta (B \Delta C) = (A \Delta B) \Delta C$$

h)
$$A \triangle (B \cap C) = (A \triangle B) \cap (A \triangle C)$$

d) $A \Delta B$

Задание 17

Выразить операции \cap и \cup , используя только операции Δ , \setminus . (представить $A \cap B$, а также $A \lor B$ через запись, содержащую только символы Δ , \backslash , A, B и скобки) A VB= (A\B) 0B

Пусть $A = \{a, b\}, B = \{b, 1, 2\}, C = \{b, 2\}.$ Найти элементы множества $(A \times B) \cap (B \times C) = \{(b, b), (b, 2)\}$ $(A \times A = \{(a, b), (b, 1), (a, 2), (b, b), (b, 2)\}$ $(b \times C) = \{(b, b), (b, 2), (a, b), (a, 2)\}$ Задание 18

Задание 19

Задайте множество аналитически по закрашенной области на диаграмме Венна.

Задание 20*

Пусть дано $n \in \mathbb{N}$ и задано индексное множество $I = \{1,2,...,n\}$. Для каждого $i \in I$ определены множества $A_i = \{(i,j)|j \in I\}$, $B_i = \{(j,i)|j \in I\}$.

Выразить через данные множества с помощью операций \cap и \cup следующие множества

1)
$$\{(i,j) | 1 \le i \le k, 1 \le j \le k, k \le n\}$$
;

2)
$$\{(i,i) | i=1,2,...,n\}$$
;

3)
$$\{(i,j) | 1 \le i \le j \le n\}$$
.

Задание 21*

Пусть заданы универсум $U=\mathbb{N}$ и индексное множество $I=\{x|x-$ нечетно $\}$. Для каждого $i\in\mathbb{N}$ определены множества $A_i=\{i,i+1,i+2\}$. Охарактеризовать состав множеств

- a) $\bigcap_{i \in I} A_i (A \cap \overline{B}) \setminus (A \cup C)$
- b) $\overline{\bigcap_{i\in I}(\overline{A_i}\cup\overline{A_{i+1}})}$
- c) $\bigcup_{i\in I}(A_i\cap A_{i+2})$
- d) $\bigcup_{i\in I}(\bigcup_{j\in I, j\neq i}(A_i\cap A_j))$