CLAIMS:

A putative protective antigen against a <u>Mvcoplasma</u>, prepared by a method including

providing

a sample of a Mycoplasma;

an antibody probe including at least one antibody against a Mycoplasma produced by a method including:

10

providing a biological sample taken a short time after an invitude animal has been challenged with a <u>Mycoplasma</u> or <u>Mycoplasma</u> extract taken from the infection site or an area of a lesion or an area close to the infection site or lesion;

isolating cells from the biological sample:

15

culturing cells in vitro in a suitable culture medium; and harvesting antibodies produced from said cells:

probing the <u>Mvcoplasma</u> sample with the antibody probe to detect at least one antigen; and

isolating the antigen detected

- 2. A putative protective antigen according to claim 1 wherein the Mycoplasma is Mycoplasma hyponeumoniae.
- 3. A putative protective antigen against <u>Mycopiasma hyponeumoniae</u>, or related infections, selected from the group of antigens having approximate molecular weights of 110-114, 90-94, 72-75, 50-54, 52-54 and 46-48 kilodaltons (kD), as herein described, mutants, derivatives and fragments thereof.
- 4. A putative protective antigen according to claim 3 which is a surface 30 protein.

- 5. A putative protective antigen according to claim 3 or ∠ which is a surface \ipo-protein or membrane protein.
- 6 A putative protective antigen according to any one of claims 3-5 having 5 approximate molecular weight of 110-114, 90-94, 74, 62, 52 and 48 kD.
 - 7. A putative protective antigen according to claim 3 wherein the antigen in the 72-75 kD region contains the following N-terminal amino acid sequence:

AGXLQKNSLLEEVWYLAL

10

8. A putative protective antigen according to claim 7 further including one or more of the following N-terminal amino acid sequences:

AKNFDFAPSIQGYKKIAHEL

NLKPEQILQLLG

15

LLKAEXNKXIEZINTXLDN

9. A putative protective antigen according to claim 3 wherein the antigen in the 50-54 kD region contains the following N-terminal amino acid sequence:

MKLAKLL#GFX(N/L)/M/VXIK

ADP(F/I)(R/E)Y(V/A/PQG(QXA)X(M/N)VG

10. A putative protective antigen according to claim 3 wherein the antigen in the 52-54 kD region contains the following N-terminal amino acid sequence:

AGXWAKETTKEEKS

25

20

11. A putative protective antigen according to claim 10 further including one or more of the following N-terminal amino sequences:

AWVTADGTVN

AIVTADGTVNDNKPNQWVRKY

30

12 A putative protective antigen according to claim 3 wherein the antigen in the 49-48 kD region contains the following N-terminal amino acid sequence:

13. A putative protective antigen according to claim 12 further including one or more of the following internal amino acid sequences:

5

TIYKPDKVLGKVAVEVLRVLIAKKNKASR AEQAITKLKLEGFDTQ KNSQNKIIDLSPEG

14. An isolated nucleic acid fragment encoding a putative protective antigen against Mycoplasma hyponeumoniae or related infections, said nucleic acid fragment including the following sequence, mutants, derivatives, recombinants and fragments thereof:

	10		\	_		
4-	10	20				_
15	1234567390	1234567890	/\\2345678\90	1234567890	1234567890	
					· -	
	ATGAAAAAA	TGCCACTATA	CCAGAGGAAA	GAGCAGTATA	TAAAATAATT	50
20	AAAATTACAT	TITCTTCATT	TGCGCGAGAA	TTTTTAAGAA	TTAGTACATT	100
	AAAAAGTAGA	ACAAAAGTTA	TAATETAAA	CATTAGCGCA		150
	ARATTARA	AGTTTTATCT	APTITYA	ATCGAAATCC	AACCAGGCAT	200
	AAATCTTTGT	CAGTATTTAT	CAAGTCGGTA	TITTTCATT	ATTICTACTA	250
	TTATTATA	TGAATTTGCA	TITTCCATAA	TCTAAAATTT	TACATTTTTT	300
	TATAACAATT	TITAAAAATT	ACTOTTTAAT	TTATAGTATT	TITTATITT	350
	TTAGTCTAAA	TTATAAATT	ATCTTGAATT	TIATTIGAAT	TITATAATT	4 00
25	TAGTACTAAA	AAATACAAAT	ATTITICCT	ATTOTAAGAA	AAATTCATTT	450
	ALLARAMATIT	ATTGATTTTT	ATAGTATAAT	TIGITIGIAT	AATTGAATTA	500
	ACTIGATITG	AAAGGGAACA	AAA TGAAAAA	AATGCTTAGA	AAAAAATTCT	550
	TGTATTCATC	AGCTATTTAT	GCAACTTCGC	TTGCATCAAT	TATTGCATTT	500
	GTTGCAGCAG		GACAGAATCA	GGTTCAACTT	CTGATTCTAA	550
30	ACCACAAGCC	GAGACGCTAA	AACATAAAGT	AAGTAATGAT	TCTATTCGAA	700
	TAGCACTAAC	CGATCCGGAT	AATCCTCGAT	GAATTAGTEC	CCAAAAAGAT	750
	ATTATTTCTT	ATGTTGATGA	AACAGAGGCA	GCAACTTOAA	CAATTACAAA	500
	AAACCAGGAT	GCACAAAATA	ACTGACTCAC	TCAGCAAGOT	AATTTAAGCC	850
	CAGCGCCAAA	AGGATTTATT	ATTGCCCCTG	AAAATGGAAG	TGGAGTTGGA	900
35		ATACAATTGC	TGATAAAGGA	ATTCCGATTG	VIGCCIATGA	950
	TCGACTAATT	ACTGGATCTG	ATAAATATGA	TTGGTATGTT	TETTTGATA	1000
	atgaaaagt	TGGTGAATTA	CAAGGTCTTT	CACTTGCTGC	GOGTCTATTA	ายอื่อ
40	GGAAAAGAAG	ATGGTGCTTT	TGATTCAATT	GATCAAATGA	ATGRATATCT	1100
	aaaatcacat	ATGCCCCAAG	AGACAATTTC	TTTTTATACA	ATCGCGGGTT	1150
	CCCAAGATGA	TAATAATTCC	CAATATTTT	ATAATGGTGC	AATGARAGTA	7200
	CTTAAAGAAT	TAATGAAAA	TTCGCAAAAT	AAAATAATTG	ATTTATETCC	1250
45	TGAAGGCGAA	AATGCTGTTT	ATGTCCCAGG	ATGAAATTAT	GGAACTQCCG	1300
	GTCAAAGAAT	CCAATCTTTT	CTAACAATTA	ACAAAGATCC	AGCAGGTEGT	1350
	AATAAAATCA	AAGCTGTTGG	TTCAAAAECA	GCTTCTATTT	TCAAAGGATT	1400
	TOTTGCCCCA	aatgatggaa	TGGCCGAACA	AGCAATCACC	ACATTAACAC\	1450
	TTGAAGGGTT	TGATACCCAA	-AAATCTTIG	TAACTCGTCA		1500
	GATAAAGCCA .	AGACTITTAT .	CAAAGACGGC	GATCAAAATA	TGACAATTTA \	7550

10

ليا
Щ
Ū
hā
Ш
=
W
æ
e fri
H

\wedge					
TARACCTGAT	AAAGTTTTAG	GAAAAGTTGC	TGTTGAAGTT	CTTCGGGTTT	1500
	GAAAAATAAA	GCATCTAGAT	CAGAAGTCGA	AAACGAACTA	ารรถ
THE CANAL	TACCAAATAT	TTCATTTAAA	TATGATAATC	AAACATATAA	1700
AG ACAAGG I	AAAAATATTA	ATACAATTIT	AGTAAGTCCA	GTAATTGTTA	1750
CAAAAGCTAA	TGTTGATAAT	CCTGATGCCT	AA		1782

An isolated nucleic acid fragment according to claim 14 encoding a putative protective antigen wherein the antigen is in the 46-48 kD region including the following nucleic acid sequence, mutants, derivatives, recombinants and fragments thereof:

		-\				
	10	20	30	40	50	
	1234567890	1234567890	1234557890	1234557890	1234567890	
		7				·
15	ATGAAAAAAA	TGCOACTATA	CCAGAGGAAA	L GAGCAGTATA	TAAAATAATT	50
	AAAATTACAT	TITCTACATT	TGCGCCAGAA		TTAGTACATT	100
	AAAAAGTAGA	ACAAAAGTTA	TTAATGTAAA	CATTAGCGCA	ATCCTTAAGA	150
20	AAAAATTAAA	AGTTTTATCT	ATTITITIA	ATCGAAATCC	AACCAGGCAT	
	AAATCTTTGT	CAGTATTAT	CAAGTCGGTA	TTTTCATT	ATTTCTACTA	250
	AAATATTATT	TGAATTTGCA	TTTTCCATAA	TCTAAAATTT	TACATTTTTT	300
	TATAACAATT	TTTAAAAATT \	\ ACTCTTTAAT	TTATAGTATT	TTTATTT	350
	TTAGTCTAAA	TTATAAAATT	ATCTTGAATT	TTATTTGAAT	TTTATAATT	400
	TAGTACTAAA	AAATACAAAT	ATTITITECT	ATTCTAAGAA	AAATTCATTT	450
	TTTAAAAAAA	ATTGATTTT	ATAGTATAAT	TTGTTTGTAT	AATTGAATTA	500
25	ACTIGATTIG	AAAGGGAACA		AATGCTTAGA	AAAAAATTCT	5 50
	TGTATTCATC	AGCTATTTAT	GCAACTT¢GC	TTGCATCAAT	TATTGCATTT	500
	GTTGCAGCAG		- / /	GGTTCAACTT	CTGATTCTAA	550
	ACCACAAGCC	GAGACGCTAA	AACATANAGT	AAGTAATGAT	TCTATTCGAA	700
20	TAGCACTAAC	CGATCCGGAT	AATCCTC GAT	GAATTAGTGC	CCAAAAAGAT	750
30	ATTATTTCTT	ATGTTGATGA	AACAGAGGCA	GCAACTTCAA	CAATTACAAA	, _{f.} 300
	AAACCAGGAT	GCACAAATA	ACTGACT/CAC	TCAGCAAGCT	AATTTAAGCC	* 550
	CAGCGCCAAA		ATTGCCCCCTG	AAAATGGAAG	TGGAGTTGGA	500
	ACTGCTGTTA	ATACAATTGC	TGATAAAGGA	\ATTCCGATTG	TTGCCTATGA	950
	TCGACTAATT	ACTGGATCTG	AVAAATATGA	TIGGTATGTT	TCTTTTGATA	1000
35	ATGAAAAAGT	TGGTGAATTA	CAAGGTCTTT	CACTTGCTGC	GGGTCTATTA	1050
	GGAAAAGAAG	ATGGTGCTTT	TGATTCAATT	GATCAAATGA	ATGAATATCT	1100
	AAAATCACAT	ATGCCCCAAG	AGACAATTTC	TITYTATACA	ATCGCGGGTT	1150
	CCCAAGATGA	TAATAATTCC	CAATATTTTT	ATAATGGTGC	AATGAAAGTA	1200
40	CTTAAAGAAT	TAATGAAAAA	TTCGCAAAAT	DTTANTAALA	ATTIATCTCC	1250
20	TGAAGGCGAA	AATGCTGTTT	ATGTCCCAGG	ATGAAATTAT		1300
	GTCAAAGAAT	CCAATCTTTT	CTAACAATTA	ACAAAGATCC		1350
	AATAAAATCA	AAGCTGTTGG	TTCAAAACCA	GCTTCTATT	TCAAAGGATT	1400
45	TCTTGCCCCA	AATGATGGAA	TGGCCGAACA	AGCAATCACC	AAATTAAAAC	1450
	TTGAAGGGTT	TGATACCCAA	AAAATCTTTG	TANCTOGTC	AGATTATAAT	1500
-5	GATAAAGCCA	AAACTTTTAT	CAAAGACGGC	GATCAAAATA\	TGACAATTTA	1550
	TAAACCTGAT	AAAGTTTTAG	GAAAAGTTGC	TGTTGAAGTT	CITCGGGIII	1500
	TAATTGCAAA	GAAAAATAAA	GCATCTAGAT	CAGAAGTCGA	ANGCGAACTA	1550
	AAAGCAAAAC	TACCAGATAT	TTCATTTAAA	TATGATAATC	AAACATATAA	1700
50	AGTACAAGGT	ACTATATA	ATACAATTIT	AGTAAGTCCA	GTANTGTTA	1750
J.	CAAAAGCTAA	TGTTGATAAT	CCTGATGCCT	AA	\	1762

25

30

6. A method for producing an antibody against a <u>Mvcoplasma</u> including providing a biological sample taken a short time after an immune animal has been challenged with a <u>Mvcoplasma</u> or <u>Mvcoplasma</u> extract taken from the infection site or an area of a lesion or an area close to the infection site or lesion;

isolating cells from the biological sample; culturing cells in vitro in a suitable culture medium; and harvesting antibodies produced from said cells.

- 17. A method according to claim 16 wherein the biological sample is taken at a predetermined time after the animal has been challenged with a <u>Mvcoplasma</u>, preferably 2 to 7 days after challenge.
- 18. A method according to claim 16 wherein the culturing of cells in vitro further includes addition of helper factors to the culture, said helper factors selected from the group including cytokines used alone or in combination, including Interleukin 1, 2, 3, 4, 5, 6, 7 and 8, colony stimulating factors, interferons and any other factors that may be shown to have an enhancing effect on specific B cell secretion.
- 20 19. A method according to any one of claims 18-18 further including a cell activation step including activating the cells isolated to proliferate and secrete and/or release antipodies

said cell activation step including adding a cell activating agent to the culture medium, said cell activating agent selected from the group including mitogens as herein described and helper factors produced by leukocytes, or their synthetic equivalents or combinations thereof.

- 20. A method according to any one of claims 16-19 wherein the antibody is in the form of the supernatant harvested from the culture medium.
- 21. An antibody against a <u>Mycoplesma</u> prepared according to the method of any one of claims 16-20

22. A method of identifying a putative protective antigen associated with a Mycoplasma preferably Mycoplasma hyopneumoniae, said method including providing

5

a sample of a Mycoplasma; and

an antibody probe including at least one antibody against a Mycoplasma.

probing the <u>Mycoplasma</u> sample with the antibody probe to detect at least one antigen; and

isolating the antigen detected.

23. A method of punitying a putative protective antigen associated with a Mycoplasma, preferably Mycoplasma hyppneumoniae, said method including providing

15

20

25

10

a crude antigen mixture; and

an antibody against a <u>Mycoplasma</u> immobilized on a suitable support:

subjecting the crude antiger mixture to affinity chromatography utilizing the immobilized antibody; and

isolating the purified antigen so formed.

24. A method for preparing a synthetic antigenic polypeptide against Mycoplasma, preferably Mycoplasma hyppneumoniae, which method includes providing

a cDNA library or genomic library dekived from a sample of Mycoplasma; and

an antibody probe including an antibody prepared according to claim 15:

generating synthetic polypeptides from the cDNA library of genomic library: probing the synthetic polypeptides with the antibody probe; and isolating the synthetic antigenic polypeptide detected thereby.

10

15

20

25

- A method according to claim 24 wherein the antibody probe includes an antibody raised against an antigen against Mycoplasma hyppneumoniae, or related infections, selected from the group of antigens having approximate molecular weights of 110-114, 90-94, 72-75, 60-64, 52-54 and 46-48 kilodaltons (kD), as herein described, mutants, derivatives and fragments thereof.
- 26. A synthetic putative protective antigen in the 72-75 kD region produced by a method according to claim 24 or 25 having an N-terminal amino acid sequence: AGXLQKNSLLEEVWYLAL

27. A synthetic putative protective antigen according to claim 26 further including internal amino adio sequences:

> AKNFDFAPSIQGYKKIAHEL NLKPEQILQLLG

LLKAEXNKXIEEINTXLON

28. A synthetic putative protective antigen in the 60-64 kD region produced by a method according to claim 24 of 25 having an N-terminal amino acid sequence:

MKLAKLLKGFX(N/L)(M/V)IR

ADP(F/I)(R/E)Y(V)A)PQG(Q/A)X(M/N)VG

A synthetic putative protective antigen in the 52-54 kD region produced by 29. a method according to claim 24 or 25 having an n-terminal amino acid sequence:

AGXWAKETTKEEKS

A synthetic putative protective antigen according to claim 29 further 30. including internal amino acid sequences:

AWVTADGTVN

AIVTADGTVNDNKPNQWVRKY.

31. A synthetic putative protective antigen in the 4548 kD region produced by a method according to claim 24 or 25 having an N-terminal amino acid seglyence.

20

- 33 -

AGXGQTESGSTSDSKPQAETLKHKV

A synthetic putative protective antigen according to claim 31 further including internal amino acid sequences:

TIYKPDKVLGKVAVEVLRVLIAKKNKASR AEQAITKLKLEGFDTQ KNSQNKIIDLSPEG

- 33. A vaccine or veterinary composition including a prophylactically effective amount of at least one putative protective antigen against a <u>Mycoplasma</u> according to any one of claims 1-13.
- 34. A vaccine or veterinary composition according to claim 33 including a plurality of putative protective antigens selected from antigens having approximate molecular weights of 110-114, 90-94, 72-75, 50-64, 52-54 and 46-48 kilodattons.
 - 35. A vaccine or veterinary composition including an antibody against a Mycoplasma according to claim 21.
 - 35. A diagnostic kit including a diagnostic antigen or fragment thereof according to any one of claims 1-13 and 26-32.
- 37. A method for preventing or treating a <u>Mycoplasma</u> infection, which method including administering to an animal a prophylactically of the apeutically effective amount of at least one putative protective antigen according to any one of claims 1-13.
- 38. An isolated DNA fragment encoding a putative protective antigen against Mycoplasma or related infections, said DNA fragment having a nucleic acid sequence according to Figure 6 or an homologous sequence, and functionally active fragments, mutant, variant or recombinant thereof.

- A clone including a DNA fragment according to claim 38.
- A clone according to claim 39 which is clone pC1-2 as hereinbefore 40. described.
 - An amino acid sequence or functional equivalent thereof encoded by the DNA fragment according to claim 3/8.
- An arrino acid sequence or functional equivalent thereof having the amino 10 42. acid sequence of Figure 7
 - A putative protective antigen or antibody substantially as hereinbefore 43. described with reference to the examples.