Отчет по тестовому заданию

Постановка задачи

Необходимо построить математическую модель предсказания стоимости вторичной жилой недвижимости в зависимости от параметров жилья, используя данные из объявлений по городу Магнитогорск.

Следует иметь в виду, что реальная стоимость жилья (при совершении сделки) как правило ниже стоимости, указанной в объявлении.

Выбор и получение исходных данных

Исходные данные собираются с сайта <u>citystar.ru</u> при помощи библиотеку Beautiful Soup. Для предсказания цены жилья используются следующие параметры:

- район города;
- улица города;
- этаж;
- количество этажей в доме;
- количество комнат;
- планировка;
- общая площадь;
- жилая площадь;
- площадь кухни.

Выбор метода решения

Для решения задачи используются композиционные алгоритмы машинного обучения, основанные на деревьях решений. Данные алгоритмы не чувствительны к выбросам (кроме целевого признака), масштабу и линейной зависимости признаков, а некоторые из них способны работать с пропусками в данных. Это сильно снижает трудозатраты на предобработку данных, при том, что данные алгоритмы почти не уступают по качестве решения задачи алгоритмам на основе нейронных сетей.

Описание алгоритма решения

Решение задачи состоит из следующих этапов:

- сбор данных с веб-сайта;
- предобработка данных;
- исследование данных (корреляция, пропуски, выбросы);
- подготовка данных для обучения и валидации моделей;
- обучение моделей;
- валидация моделей.

Описание модели

Обучены следующие модели:

- случайный лес;
- градиентный бустинг на решающих деревьях;
- градиентный бустинг CatBoost.

Необходимо отметить, что ни для одной из моделей не производился подбор гиперпараметров (за исключением шага обучения и количества базовых алгоритмов).

Описание качества полученных результатов

Для получения результатов работы моделей использовалась валидационная выборка и следующие метрики качества:

- средняя абсолютная ошибка (МАЕ);
- корень из среднеквадратичной ошибки (RMSE);
- средняя абсолютная ошибка в процентах (МАРЕ).

В таблице 1 приведены сравнительные результаты моделей.

Таблица 1 – Сравнительные результаты моделей на валидационной выборке

Модель	МАЕ, т. р.	RMSE, т. р.	MAPE, %
Случайный лес	520	743	18,03
Градиентный бустинг	553	805	19,45
CatBoost	522	706	17,54

Модель градиентного бустинга показала худший результат по всем представленным метрикам. Наиболее предпочтительной моделью можно считать CatBoost. Однако данная работа представляет из себя минимально жизнеспособный продукт (MVP), а потому, приведенные результаты могут значительно измениться при более тщательной обработке данных и подборе гиперпараметров.

Описание результатов тестирования модели

Тестирование моделей проводилось на веб-сервисе ivankud.com/docs.

Выводы

Композиционные алгоритмы машинного обучения на основе деревьев решений показали приемлемое качество на задаче предсказания цены вторичной жилой недвижимости.

Обученная модель CatBoost имеет значение метрики MAPE на валидационной выборке 17,54 %.

Представленные модели способны дать лучшее качество при тщательной обработке данных и подборе гиперпараметров.