预习	报告	实验	记录	分析	讨论	总员	戈 绩
25		25		30		80	

年级、专业:	2022 级物理学	组号:	2
姓名:	黄罗琳、王显	学号:	22344001、22344002
实验时间:	2024.3.6	教师签名:	

实验二 基本电路元件伏安特性的测量

【实验报告注意事项】

- 1. 实验报告由三部分组成:
 - (a) 预习报告:课前认真研读实验讲义,弄清实验原理;实验所需的仪器设备、用具及其使用、完成课前预习思考题;了解实验需要测量的物理量,并根据要求提前准备实验记录表格(可以参考实验报告模板,可以打印)。(20分)
 - (b) 实验记录:认真、客观记录实验条件、实验过程中的现象以及数据。实验记录请用珠笔或者钢笔书写并签名(用铅笔记录的被认为无效)。保持原始记录,包括写错删除部分,如因误记需要修改记录,必须按规范修改。(不得输入电脑打印,但可扫描手记后打印扫描件);离开前请实验教师检查记录并签名。(30分)
 - (c) 数据处理及分析讨论:处理实验原始数据(学习仪器使用类型的实验除外),对数据的可靠性和合理性进行分析;按规范呈现数据和结果(图、表),包括数据、图表按顺序编号及其引用;分析物理现象(含回答实验思考题,写出问题思考过程,必要时按规范引用数据);最后得出结论。(30分)

实验报告就是将预习报告、实验记录、和数据处理与分析合起来,加上本页封面。(80分)

2. 实验报告在每个小结(补做)的之后一周内提交,最后一次实验,在结束一周内提交。

3. 注意事项:

- (a) 请认真查看并理解实验讲义第一章内容;
- (b) 注意实验器材的合理使用;
- (c) 使用结束使用各种仪器之后需要将其放回原位。

目录

1	基本	x电路元件伏安特性的测量 预习报告	3
	1.1	实验目的	3
	1.2	仪器用具	3
	1.3	原理概述	3
	1.4	实验预习题	4
2	基本	x 电路元件伏安特性的测量 实验记录	6
	2.1	实验内容、步骤与结果	6
		2.1.1 操作步骤记录	6
		2.1.2 测试线性电阻元件的伏安特性	6
		2.1.3 测试非线性电阻 12V 白炽灯的伏安特性	8
		2.1.4 测试直流稳压电源 DP832 的 CH2 的伏安特性	8
		2.1.5 测试数控恒流源 (DCS-01) 的伏安特性	9
		2.1.6 电流控制电压源 (CCVS) 基本特性测试	9
	2.2	原始数据记录	11
	2.3	实验过程遇到问题及解决办法	11
3	基本	x电路元件伏安特性的测量 分析与讨论 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	12
	3.1	实验数据分析	12
		3.1.1 对实验一数据进行线性拟合	12
		3.1.2 测试非线性电阻 12V 白炽灯的伏安特性	14
		3.1.3 测试直流稳压电源 (DP831) CH2 的伏安特性	15
		3.1.4 数控恒流源	15
		3.1.5 电流控制电压源 (CCVS) 基本特性测试	16
	3.2	实验后思考题	16
4	ET	X 实验名称 ××× 结语	17
	4.1	实验心得和体会、意见建议等	17
	4.2	参考文献	17
	4.3	附件及实验相关的软硬件资料等	17

基本电路元件伏安特性的测量 预习报告

1.1 实验目的

- 1. 学习基本电路元件伏安特性的测试方法。
- 2. 进一步练习直流稳压电源、万用表的使用方法。

1.2 仪器用具

编号	仪器用具名称	数量	主要参数(型号,测量范围,测量精度等)
1	电路原理箱	1	
2	直流稳压电源	1	
3	直流电流表	1	
4	直流电压表	1	
5	电流表专用线	1	
6	2 号实验导线	1	

1.3 原理概述

- 1. 通过研究元件的伏安特性,可以得出元件的各种特性;如果把电阻元件的电压取为横坐标(纵坐标),电流取为纵坐标(横坐标),画出电压和电流的关系曲线,这条曲线称为该元件的伏安特性。
- 2. 与线性元件不同的是,非线性元件的伏安特性曲线不是一条通过原点的直线,不服从欧姆定律,有些非线性电阻元件的伏安特性还与电压或电流的方向有关。

图 1: 非线性电阻元件的伏安特性

- 3. 常见非线性电阻元件有: 电流控制型电阻、电压控制型电阻、既是电流控制型又是电压控制型电阻
- 4. 电源可以分为独立源和受控源两种。受控源可以分为四种:压控电压源、流控电压源、压控电流源、流控电流源。受控源的基本特性有输入特性、输出特性和转移特性。

- 5. 输入特性是指控制端电压与电流之间的关系;输出特性是指控制量为某一常数时,输出端电压与电流之间的关系;转移特性是指输出量与控制量之间的关系。
- 6. 四种理想受控源的转移特性表示如下:
 - 1) VCVS: $\mu = u1/u2$, 称之为转移电压比;
 - 2) CCVS: $\gamma = u2/i1$, 称之为转移电阻;
 - 3) VCCS: g = i2/u1, 称之为转移电导;
 - 4) CCCS: $\beta = i2/i1$, 称之为转移电流比。

1.4 实验预习题

思考题 1.1: 预习了解电路基本元件及其伏安特性。

原理概述部分

思考题 1.2: 考虑发热对电阻伏安特性的影响;

电阻发热会导致电阻的分子无规则热运动加剧,对电子运动的阻抗增加,阻值会升高。

思考题 1.3: 万用表电压档与电流档的内阻范围以及内阻对测量的影响;

在电压档,内阻的分流会降低电压。所以内阻越高,分流越小,测量误差越小;

在电流档,内阻的压降会使实际电流减小。所以内阻越小,压降越小,测量误差越小。

思考题 1.4: 受控源和独立源相比有何异同点? 比较两种受控源的代号、控制量与被控制量的关系如何?

独立源的输出电流或电压保持恒定不变,受控源的输出电流或电压可通过改变控制端来改变。

CCVS,控制量为输入电流,被控制量为输出电压;

VCCS,控制量为输入电压,被控制量为输出电流。

图 2: 四种受控源

思考题 1.5: 两种受控源中的 g、 γ 的意义是什么? 如何测得?

- g 为流控电压源的转移电阻, 是输出电流与输入电压之比。
- γ 为压控电流源的转移电导, 是输出电流与输入电压之比。

思考题 1.6: 受控源输入输出是否符合能量守恒,其中的能量转移是怎么进行的? 受控源输入输出符合能量守恒;受控源的输出能量来自于电路的其他部分或外部提供,而不是受控源本身。

专业:	物理学	年级:	2022 级
姓名:	黄罗琳、王显	学号:	22344001、22344002
室温:	23°C	实验地点:	A522
学生签名:	见附件部分	评分:	
实验时间:	2024/3/6	教师签名:	

基本电路元件伏安特性的测量 实验记录

2.1 实验内容、步骤与结果

2.1.1 操作步骤记录

1.

2.1.2 测试线性电阻元件的伏安特性

操作步骤记录:

- 1. 首先构建进行电流表内接的实验电路, 待测原件选为 120ω 和 51ω 的电阻。
- 2. 为防止电阻两端的功率不超过 1w,设定在 120ω 实验中的电压不超过 6V, 51ω 实验中电压不超过 8V。
- 3. 测量过程均采用 0.5V 步长进行测量,通过调整电源电压进行注意测量并记录数据。
- 4. 完成电流表内接实验后,改变实验电路,进行电流表外接的电路进行实验

图 3: 内接法电路图

120		51	
u/v	i/ma	u	i
4.98	41.57	5.96	115.65
4.48	37.4	5.47	106.13
3.49	33.25	4.97	96.39
3.48	29.08	4.47	86.67
2.99	24.9	3.97	76.59
2.49	20.74	3.48	66.9
1.99	16.58	2.98	57.37
1.49	12.42	2.48	47.76
0.99	8.28	1.98	38.17
0.49	4.13	1.49	28.6
5.48	45.58	0.99	19.07
5.98	44.84	0.49	9.51
6.48	54.1		
6.97	58.32		
7.47	62.6		
7.97	66.87		

图 4: 内接法实验数据

图 5: 外接法电路图

120		51	
u	i	u	i
0.49	4.12	0.48	9.4
0.98	8.27	0.97	18.98
1.47	12.41	1.45	28.46
1.97	16.55	1.93	37.98
2.46	20.69	2.42	47.51
2.95	24.82	2.9	57.02
3.45	28.98	3.39	66.6
3.94	33.13	3.87	76.2
4.43	27.29	4.35	85.83
4.92	41.45	4.84	95.47
5.42	45.63	5.33	10.24
5.91	49.82	5.81	115.05
6.4	54.05		
6.9	58.27		
7.39	62.51		
7.88	66.76		

图 6: 外接法实验数据

2.1.3 测试非线性电阻 12V 白炽灯的伏安特性

图 7: 测量电路图

u/v	i/ma	u/v	i/ma
0.49	24.42	5.47	79.74
0.99	32.39	5.97	83.77
1.49	39.38	6.47	87.69
1.98	45.59	6.97	91.48
2.48	51.39	7.47	95.11
2.98	56.67	7.97	98.66
3.48	61.76	8.47	102.11
3.98	66.59	8.96	105.48
4.48	717.17	9.46	108.72
4.98	75.56	9.96	111.92

图 8: 白炽灯测量实验数据

2.1.4 测试直流稳压电源 DP832 的 CH2 的伏安特性

120		51	
u/v	i/ma	u	i
4.98	41.57	5.96	115.65
4.48	37.4	5.47	106.13
3.49	33.25	4.97	96.39
3.48	29.08	4.47	86.67
2.99	24.9	3.97	76.59
2.49	20.74	3.48	66.9
1.99	16.58	2.98	57.37
1.49	12.42	2.48	47.76
0.99	8.28	1.98	38.17
0.49	4.13	1.49	28.6
5.48	45.58	0.99	19.07
5.98	44.84	0.49	9.51
6.48	54.1		
6.97	58.32		
7.47	62.6		
7.97	66.87		

图 9: 内接法实验数据

u/v	i/ma
5.9945	19.1
5.995	18.0907
5.9955	17.0974
5.9962	15.9165
5.9965	15.0691
5.9968	14.0759
5.9973	13.0382
5.9975	12.052
5.9978	10.9825
5.998	9.9774
5.9982	9.0247
5.9985	7.9953
5.9988	7.0237
5.9991	6.0262
5.9992	4.9883

图 10: CH2 实验数据

2.1.5 测试数控恒流源(DCS-01)的伏安特性

图 11: 内接法电路图

u/mv	i/ma
11.194	1.0484
22.333	1.04897
30.051	1.04862
40.333	1.04924
49.899	1.04896
60.868	1.04844
70.898	1.04919

图 12: 数控恒流源(DCS-01)的伏安特性实验数据

2.1.6 电流控制电压源(CCVS)基本特性测试

1. 输出特性 使 CCVS 控制电流 I1=100 A

r/Ω	u 输出/v	i 输出/ma
1k	6.085	6.085
3k	6.136	2.028
5k	6.162	1.232

2. 转移特性及输入特性

使 CCVS 负载 $RL = 2K\Omega$, 改变控制量 I1 大小

实际	i 输入/ma	u1/v	u2/v
0.129	0.1	0.787	6.448
0.241	0.2	2.442	8.984
0.349	0.3	8.094	9.019
0.276	0.25	3.917	8.915
0.202	0.15	1.76	8.857
0.168	0.13	1.194	8.09
0.093	0.05	0.414	4.665

2.2 原始数据记录

实验记录本上的原始数据见 实验台桌面整理见 其它原始数据见

2.3 实验过程遇到问题及解决办法

- 1. 第一个实验中出现了与理论计算不相符的情况(两种方法一测量值偏大,一测量值偏小)而经过初步 计算认定两值均偏小,虽然相对大小正确,经分析,可能由于当时天气为回南天,湿度较大,导致电路 连接出现因潮湿而出现传输问题,可能会导致数据出现误差。
- 2. 第二个实验中起初由于电压较小,灯泡亮度较低,无法确认是否连接正常,可以选择从高电压进行测量,这样可以确认电路安全,也可以保证电路连接正确。
- 3. 第三个实验中,由于恒压源电阻接近于零故建立如电路。
- 4. 第五个实验中, 电路连接有很多难点, 经过与老师讨论和同学互助, 正确连接了电路, 并帮助多位同学完成了电路连接, 其中电路板 12V 供电起初并没有打开, 出现了一组错误数据, 其在数据记录原始版中有体现, 在更正数据之后, 得到了初步符合理论计算的数据。
- 5. 实验中很多连接需要充分利用各种借口的连接线,此外由于手持式万用表很容易损坏,出现了要更换保险丝的问题。

专业:	物理学	年级:	2022 级
姓名:	黄罗琳、王显	学号:	22344001、22344002
日期:	2024/3/6	评分:	

基本电路元件伏安特性的测量 分析与讨论

3.1 实验数据分析

3.1.1 对实验一数据进行线性拟合

1. 电压表内接法数据拟合

图 13: 电压表内接 51Ω 拟合

图 14: 电压表内接 120Ω 拟合

2. 电压表外接法数据拟合

图 15: 电压表外接 51Ω 拟合

图 16: 电压表外接 120Ω 拟合

3. 数据对比

图 17: 51Ω 两种方法数据对比

图 18: 120Ω 两种方法数据对比

4. 数据分析

内接法结果: $R1=50.52\pm0.007\Omega$ 相对误差: r1=-0.009 $R2=118.18\pm0.02\Omega$ 相对误差: r2=-0.015 外接法结果: $R1=51.47\pm0.009\Omega$ 相对误差: r1=0.009 $R2=119.43\pm0.02\Omega$ 相对误差: r2=-0.00475 数据对比和理论分析可知,测量小电阻时外接法误差更小,测量大电阻时内接法误差更小,之后所有实验电路设计的选择均采用此项原则,例如对于恒压源内阻无限小的情况,采用电压表内接(防止电流表内阻影响测量)

误差来源分析,正如前文所说,当时空气湿度较大,故对于 120ω 的电阻伏安特性的测量与实际不相符,但是相对大小不变,故可认定实验数据准确,仅存在系统误差。

3.1.2 测试非线性电阻 12V 白炽灯的伏安特性

1. 将实验数据进行绘图。

图 19: 白炽灯伏安特性曲线

2. 图片数据分析

由图可知,白炽灯(非线性电阻)的伏安特性曲线不是一条直线,电阻值随电压或电流的变化而变化。 根据曲线趋势可知,白炽灯的阻值随着电压和电流的增大逐渐升高,其物理意义为:电压电流升高导 致灯丝的温度升高,从而加剧了分子的不规则运动,从而影响了金属的导电能力,故会导致阻值升高。

3.1.3 测试直流稳压电源(DP831) CH2 的伏安特性

1. 将实验数据进行绘图。

图 20: 直流稳压电源(DP831) CH2 的伏安特性曲线

2. 图片数据分析

由图可知,伏安特性曲线不是一条直线,电阻值随电压或电流的变化而变化,这是由于恒压源并非理想电源,存在内阻,故输出电压会产生变化,线性拟合后,斜率的绝对值即为电源内阻。

 $r_{\rm ph} = 3.23858 \times 10^{-4} \Omega.$

3.1.4 数控恒流源

1. 将实验数据进行绘图。

图 21: 数控恒流源的伏安特性曲线

2. 图片数据分析

由图可知,伏安特性曲线近似为一条直线,可以说明恒流源的输出电流恒定,值得一提的是,测量数据发现电流存在极小范围的周期波动,分析其来源可能是由于导线头的不稳定,需要进行手动连接,这可能导致手部颤抖等问题出现接触问题,会导致数据出现波动,但在总体上电流数据恒定,故认定实验成功。

3.1.5 电流控制电压源(CCVS)基本特性测试

图 22: 实验接线总览

1. 输出特性

图 23: 电流控制电压源(CCVS)输出特性

图片数据分析: 由图可知, 电流控制电压源, 尽管输出电流发生了变化, 但是输出电压依旧不变。

2.

3.2 实验后思考题

思考题 3.1:

思考题 3.2:

思考题 3.3:

ETX 实验名称 ××× 结语

4.1 实验心得和体会、意见建议等

1.

4.2 参考文献

- [1] 维基百科 https://zh.wikipedia.org
- [2] 沈韩. 基础物理实验.——北京: 科学出版社, 2015.2 ISBN: 978-7-03-043311-4

4.3 附件及实验相关的软硬件资料等

试验台桌面整理如 实验报告个人签名如Figure 24。

图 24: 个人签名

相关代码已上传至 Github。