Design of a 1.2V LDO for 1mA-25mA Load Range in $0.18\mu m$ CMOS

Error Amplifier Architecture

The output impedance due to load regulation is approximately:

$$\text{Load Regulation} \approx \frac{r_{dsp}}{1 + T_0} \approx \frac{r_{dsp}}{A_{EA0} \cdot g_{mp} \cdot r_{dsp} \cdot \beta} = \frac{1}{A_{EA0} \cdot g_{mp} \cdot \beta}$$

To meet the specification:

$$\begin{split} \frac{1}{A_{EA0} \cdot g_{mp} \cdot \beta} &\leq 50 \, \mu \text{V/mA} = 0.05 \\ \Rightarrow A_{EA0} \cdot g_{mp} \cdot \beta &\geq 20 \end{split}$$

Given:

$$g_{mp} \approx 20 \,\text{mS}, \quad \beta = \frac{2}{3} \Rightarrow A_{EA0} \cdot 20 \times 10^{-3} \cdot \frac{2}{3} \ge 20 \Rightarrow A_{EA0} \ge 1500$$

The line regulation is approximated by:

Line Regulation
$$\approx \frac{1}{A_{EA0} \cdot \beta} \leq 500 \,\mu\text{V/V} = 0.0005$$

$$\Rightarrow A_{EA0} \cdot \beta \ge 2000 \Rightarrow A_{EA0} \ge \frac{2000}{\beta} = \frac{2000}{2/3} = 3000$$

From both line and load regulation requirements, the minimum gain required is:

$$A_{EA0} \ge 3000 \ (\approx 69.54 \, \text{dB})$$

To ensure margin, a higher DC gain of approximately 90 dB was chosen. Since bandwidth was not a primary concern for this design, the tradeoff of lower speed for higher gain was acceptable.

To meet this high gain target while minimizing power and avoiding excess poles, a triple-cascode telescopic amplifier was selected as the error amplifier. This architecture was favored over folded cascode and multistage alternatives due to its superior gain efficiency and simplicity in compensation.

Choosing Parameters

To achieve the required open-loop gain for the error amplifier, we use the gain expression for a triple-cascode amplifier:

$$A_{EA0} = \frac{1}{2} (g_m r_{ds})^3$$

Solving for $A_{EA0} = 31622$, we get:

$$g_m r_{ds} = \sqrt[3]{2A_{EA0}} = \sqrt[3]{63244} \approx 39.84$$

To ensure sufficient gain, this was rounded up:

$$q_{m}r_{ds} = 42$$

Based on this, we chose:

$$g_m = 80 \,\mu\text{S}, \quad r_{ds} = 525 \,\text{k}\Omega$$

Since a triple-cascode topology was used, the drain voltage swing is limited. To maintain saturation with minimum v_{ds} , we selected a small $\Delta = 0.1 \,\text{V}$. With:

$$v_{ds} = 0.2 \, \text{V}, \quad \Delta = 0.1 \, \text{V}$$

The transconductance and bias current relationship is:

$$g_m = \frac{2I_D}{\Delta} \Rightarrow I_D = \frac{g_m \cdot \Delta}{2} = \frac{80 \times 10^{-6} \cdot 0.1}{2} = 4 \,\mu\text{A}$$

For this bias current, the NMOS transistor width was chosen as:

$$W_{NMOS} = 6.03 \,\mu\text{m}$$

This sizing achieves the desired transconductance while keeping the device in saturation with appropriate headroom for cascoding.

Figure 1: LDO schematic.

Figure 2: Error Amplifier Transistor-Level Schematic

Pass Transistor Sizing:

To properly size the PMOS pass transistor for the target load current range of 1mA to 25mA, we began by setting both V_{gs} and V_{ds} to 0.9V, and perform a sweep of the PMOS transistor width. After narrowing down the suitable width range, we performed an additional sweep over V_{gs} to ensure that the chosen device would reliably conduct the required current across expected variations in gate voltage. Following these iterations, we selected a PMOS width of 650μ m as it provided sufficient drive strength across the specified voltages and currents.

Resistor Sizing

We selected a feedback ratio of $\beta = \frac{2}{3}$, where:

$$\beta = \frac{R_{F2}}{R_{F1} + R_{F2}}$$

To satisfy this ratio, we chose:

$$R_{F1} = 10 \,\mathrm{k}\Omega, \quad R_{F2} = 20 \,\mathrm{k}\Omega$$

These values are reasonable, as they set the feedback divider current to approximately $40 \,\mu\text{A}$ when $V_{\text{OUT}} = 1.2 \,\text{V}$, which is acceptable given the overall quiescent current budget, particularly under maximum load

conditions $(I_L = 20 \,\mathrm{mA})$.

Miller Capacitor Compensation

To ensure loop stability and achieve a phase margin (PM) close to 60° , Miller compensation was implemented. A compensation capacitor C_c was placed between the output of the error amplifier and an internal high-impedance node. This introduces a dominant pole at low frequency and pushes the non-dominant poles to higher frequencies through pole-splitting. To determine the optimal value of C_c , a parameter sweep was performed in simulation under the worst-case loading condition ($I_L = 20 \,\mathrm{mA}$)

Table 1: MOSFET Characteristics

Device	W	L	g_m	r_{ds}	I_{ds}	Δ	Region of Operation
M_{P1}	540nm	$360\mathrm{nm}$	$27.06 \mu S$	$195.6 \mathrm{K}\Omega$	$-6\mu\mathrm{A}$	-284.4mV	Linear
M_{P2}	$1.62 \mu \mathrm{m}$	360nm	$56.93 \mu S$	$1.548\mathrm{M}\Omega$	$-6\mu\mathrm{A}$	-172.4mV	Saturation
M_{P3}	$540\mathrm{nm}$	360nm	$17.78 \mu S$	$49.53 \mathrm{K}\Omega$	$-6\mu\mathrm{A}$	-350.4 mV	Linear
M_{P4}	$1.62 \mu \mathrm{m}$	360nm	$55.28\mu\mathrm{S}$	$1.869 \mathrm{M}\Omega$	-6μA	-183.4mV	Saturation
M_{N1}	$360\mathrm{nm}$	360nm	$48.97 \mu S$	$90.22 \mathrm{K}\Omega$	$6\mu A$	$167.8 \mathrm{mV}$	Linear
M_{N2}	810nm	360nm	$81.89 \mu S$	$907.2 \mathrm{K}\Omega$	$6\mu A$	$120.1 \mathrm{mV}$	Saturation
M_{N3}	270nm	360nm	$29.69 \mu S$	$31.4 \mathrm{K}\Omega$	$6\mu A$	$219.3 \mathrm{mV}$	Linear
M_{N4}	810nm	360nm	$83.13 \mu S$	$943.5 \mathrm{K}\Omega$	$6\mu A$	124.8mV	Saturation
M_{P5}	$1.26 \mu \mathrm{m}$	360nm	$74.93 \mu S$	$1.24\mathrm{M}\Omega$	$-15.3 \mu A$	-284.3mV	Saturation
M_{N5}	$6.03 \mu \mathrm{m}$	360nm	$279.8 \mu S$	$288.7 \mathrm{K}\Omega$	$15.3\mu\mathrm{A}$	80.08mV	Saturation
M_{P6}	$4.995 \mu { m m}$	495nm	$62.34 \mu S$	$945.6 \mathrm{K}\Omega$	$-4.125 \mu A$	-103.3mV	Saturation
M_{P7}	$4.995 \mu { m m}$	495nm	$61.74 \mu S$	$598.6\mathrm{K}\Omega$	$-4.125 \mu A$	-107.2mV	Saturation
M_{P8}	$9\mu\mathrm{m}$	540nm	$71.6\mu\mathrm{S}$	$739.9 \mathrm{K}\Omega$	$-4.125 \mu A$	-90.44mV	Saturation
M_{P9}	$4.995 \mu \mathrm{m}$	495nm	$62.34 \mu S$	$945.8 \mathrm{K}\Omega$	$-4.125 \mu A$	-103.3mV	Saturation
M_{P10}	$4.995 \mu { m m}$	495nm	$71.6\mu\mathrm{S}$	$613.3 \mathrm{K}\Omega$	$-4.125 \mu A$	-107.1mV	Saturation
M_{P11}	$9\mu\mathrm{m}$	540nm	$72.38 \mu S$	$1.89 \mathrm{M}\Omega$	$-4.125 \mu A$	-89.46mV	Saturation
M_{N6}	$4.5 \mu \mathrm{m}$	540nm	$86.99 \mu S$	$1.192 \mathrm{M}\Omega$	$4.125\mu\mathrm{A}$	$68.93 \mathrm{mV}$	Saturation
M_{N7}	$4.005 \mu \mathrm{m}$	360nm	$88.67\mu\mathrm{S}$	$186\mathrm{K}\Omega$	$4.125\mu\mathrm{A}$	$64.28 \mathrm{mV}$	Saturation
M_{N8}	$6.03 \mu \mathrm{m}$	360nm	$93.28 \mu S$	$391.5 \mathrm{K}\Omega$	$4.125\mu\mathrm{A}$	$56.59 \mathrm{mV}$	Saturation
M_{N9}	$4.5 \mu \mathrm{m}$	540nm	$87.04 \mu S$	$1.162 \mathrm{M}\Omega$	$4.125\mu\mathrm{A}$	$69.18 \mathrm{mV}$	Saturation
M_{N10}	$4.005 \mu\mathrm{m}$	360nm	$88.6\mu\mathrm{S}$	$180 \mathrm{K}\Omega$	$4.125\mu\mathrm{A}$	64.31mV	Saturation
M_{N11}	$6.03 \mu \mathrm{m}$	360nm	$93.28 \mu S$	$391.2 \mathrm{K}\Omega$	$4.125\mu\mathrm{A}$	$56.59 \mathrm{mV}$	Saturation
M_{N12}	$6.03 \mu \mathrm{m}$	360nm	$263.6\mu\mathrm{S}$	$220.8 \mathrm{K}\Omega$	$14.25\mu\mathrm{A}$	79.1mV	Saturation
M_P	$650 \mu \mathrm{m}$	180nm	-	-	-	-	-

Table 2: Performance summary

Design parameter/variable	Simulated performance	Specification
Input voltage	1.8V	≤ 1.8V
Output voltage	1.2V	1.0V - 1.4V
Load current	$20 \mathrm{mA}$	1 mA - 25 mA
DC load regulation	$0.022 \mu V/mA$	$\leq 50 \mu V/mA$
DC line regulation	$15.7\mu V/V$	$\leq 500 \mu V/V$
Quiescent current $(I_L = 1 \text{mA}/I_L = 25 \text{mA})$	$40\mu\mathrm{A}/40\mu\mathrm{A}$	Minimum
$PSR (@F_{in} = 1KHz/F_{in} = 1MHz)$	$-4.7 dB/-61.8 dB (I_L = 25 mA)$	_
Worst-case PSR	-0.33 dB	_
DC loop gain $(I_L = 1 \text{mA}/I_L = 25 \text{mA})$	114.48 dB/106.22 dB	_
Loop-gain unity gain frequency $(I_L = 1 \text{mA}/I_L = 25 \text{mA})$	$1.185 \mathrm{MHz} / 1.00135 \mathrm{MHz}$	_
Loop-gain phase $margin(I_L = 1mA/I_L = 25mA)$	84.47°/88.89°	_
Loop-gain gain margin $(I_L = 1 \text{mA}/I_L = 25 \text{mA})$	38.87 dB/41.79 dB	_
Output noise $(I_L = 1 \text{mA}/I_L = 25 \text{mA})$	$63.27 \mu V / 59.52 \mu V$	_

LOOP-GAIN AC RESPONSE

Figure 3: Loop Gain (at $I_L=25\mathrm{mA})$ vs Freq

Figure 4: Loop Gain (at $I_L = 1$ mA) vs Freq

DC LOAD AND LINE REGULATION RESPONSE

Figure 5: Line Regulation (at $I_L=20 \mathrm{mA})$ vs Time (μ s).

Figure 6: Load Regulation (at $I_L=20 \mathrm{mA}$) vs Time (μ s).

POWER SUPPLY REJECTION AND OUTPUT NOISE

Figure 7: Power Supply Rejection (PSR) ($I_L=1 \mathrm{mA} / 25 \mathrm{mA}$) vs Frequency

Figure 8: Output Noise ($I_L=1\mathrm{mA}/25\mathrm{mA}$) vs Frequency