Automaten

bγ

Dr. Günter Kolousek

Automaten – Einführung

- Automat = virtuelle Maschine
- Ausführung eines Algorithmus
 - ▶ als Programm auf realer Maschine
 - virtuelle Maschine
- Automatentheorie
 - ► Teil der theoretischen Informatik
 - Beschreibung der Arbeitsweise von Automaten
 - Algorithmen mit Hilfe von Automaten untersuchen

Automaten – Zweck

- ▶ Überprüfung, ob reale Maschine gebaut werden kann
- Modellierung von zustandsabhängigen Systemen
 - Entwurf und Analyse digitaler Schaltkreise
 - Simulation und Implementierung realer Automaten (z.B. Getränkeautomat, Verkehrsampel, Bankomat,...)
 - Spezifikation und Implementation von Netzwerkprotokollen, GUIs (z.B. Wizard), Workflows
 - lexikalische Analyse (Compiler)
 - Überprüfung von Eingabeworten, Mustererkennung

Einteilung der Automaten

Chomsky-Hierarchie für Automaten

Тур	Automat	Sprache
Typ-0	Turingmaschine	unbeschränkt
Typ-1	linear beschränkter Automat	kontextsensitiv
Typ-2	Kellerautomat	kontextfrei
Typ-3	endlicher Automat	regulär

Definitionen

- Eingabealphabet = Menge aller Eingabezeichen: E
- ▶ endliche Menge aller Zustände: Z
 - ▶ d.h. $|Z| = n, n \in \mathbb{N}$
- ightharpoonup Zustandsübergangsfunktion: δ
 - Automat im i.ten Zustand z_i
 - Startzustand: z₀
 - durch Eingabe des i-ten Zeichens ei
 - $Eingabewort e = (e_0, e_1, ..., e_n)$
 - wird in den Zustand z_{i+1} übergeleitet.

Definitionen – 2

- ► Menge der Endzustände: F
 - $ightharpoonup F \subset Z$
- Ausgabealphabet = Menge aller Ausgabezeichen: A
- ightharpoonup Ausgabefunktion: γ
 - Automat im i.ten Zustand: z_i
 - durch Eingabe des i-ten Zeichens: ei
 - ▶ ausgegeben wird das i-te Zeichen: a_i.

Beispiel Getränkeautomat

- Geldstück vom Betrag g
- ► Wahl zwischen zwei möglichen Getränken
 - ► Kaffee ... k
 - ▶ Tee ... t
- Auswahltaste ohne Geld: Signalton s
- ► Rückgabemöglichkeit durch Drücken von r

Beispiel Getränkeautomat – 2

- ► Eingabealphabet $E = \{g, k, t, r\}$
 - ▶ g ... Einwurf eines Geldstückes
 - ▶ k ... Kaffee-Auswahltaste k drücken
 - ▶ t ... Tee-Auswahltaste t drücken
 - r... Rückgabetaste r drücken
- ightharpoonup Zustandsmenge $Z = \{A, B\}$
 - ► A ... Geldbetrag ausreichend
 - ▶ B ... Automat bereit
- Ausgabealphabet $A = \{k, t, x, s\}$
 - ▶ k ... Ausgabe Getränk Kaffee
 - ► t ... Ausgabe Getränk Tee
 - x ... Rückgabe Geldbetrag x
 - ► s ... Signalton

Arbeitsweise

- Vom Eingabewort e (am Eingabeband) wird ein Zeichen gelesen
- neuer Zustand wird bestimmt
- eventuell Ausgabe von Zeichen (am Ausgabeband)

Zustandsdiagramm

- lacktriangle Darstellungsweise der Zustandsübergangsfunktion δ
- Knoten (Zustand)
 - Startzustand
 - Normaler Zustand
 - Endzustand
 - ➤ → Fehlerzustand
- ► Kante (Zustandsübergang)
 - mit/ohne Ausgabe
 - Zusammenfassung mehrerer paralleler Kanten

Beispiele

- Zustandsdiagramm des Getränkeautomaten
- Zustandsdiagramm des erweiterten Getränkeautomaten
 - ► Getränkepreis 1 Euro
 - ▶ 1 Euro-Münze und 50 Cent-Münze
 - Restbetrag soll zurückgegeben werden
- ➤ → manchmal ist "Fehlerzustand" sinnvoll

Zustandstabelle

- ightharpoonup Darstellungsweise der Zustandsübergangsfunktion δ
- einfacher Getränkeautomat

$$ightharpoonup z_0 = B, F = \{B\}$$

▶ Tabelle

	g	k	t	r
В	A/-	B/s		B/-
Α	A/g	B/k	B/t	B/g

- Beispiel
 - ges.: Zustandstabelle des erweiterten Getränkeautomaten

Automaten - Überblick

- 1. Endlicher Automat ohne Ausgabe (EA)
- 2. Deterministischer EA (DEA)
- 3. Satz von der Existenz endlicher Automaten
- 4. Konstruktion eines EA aus einer rechtslinearen regulären Grammatik
- 5. Nichtdeterministischer EA (NEA)
- 6. Satz über die Äquivalenz von NEA und DEA
- 7. Konstruktion eines DEA aus NEA
- 8. Konstruktion eines minimalen DEA
- 9. Implementierung eines DEA
- 10. Endlicher Automat mit Ausgabe: Mealy & Moore
- 11. Kellerautomat
- 12. Turingmaschine

Endlicher Automat ohne Ausgabe

(engl. finite automaton)

- ightharpoonup EA = (E, Z, δ, z_0, F)
- ► EA: endliche Menge an Zuständen!
 - ▶ d.h. |Z| = n
- ▶ ohne Ausgabe → Akzeptor
 - Akzeptor: Eingabeworte entweder akzeptiert oder nicht akzeptiert
 - akzeptiert gdw. Eingabewort zur Gänze gelesen und Endzustand erreicht
 - ► hält, wenn Eingabewort zur Gänze gelesen oder kein weiterer Zustandsübergang möglich

EA – prinzipielle Arbeitsweise

```
def process(delta, z0, F, e):
    z = z0
    for e in e:
        waehle z aus delta(z, e)
        wenn kein Folgezustand:
            break
    else: # Eingabewort zur Gaenze gelesen!
        if z in F:
            return True
    return False
```

Von einem Knoten mehrere gleichbezeichnete Kanten?!

Deterministischer EA

- Keine gleichbezeichnete Kanten von einem Knoten
 - ightharpoonup Zustandsübergangsfunktion δ liefert einen Zustand

 - ▶ verwenden wir nicht: ϵ -DEA ... δ : $Z \times (E \cup \{\epsilon\}) \rightarrow Z$
- \triangleright δ liefert u.U. keinen Zustand
- Arbeitsweise

```
def process(delta, z0, F, e):
    z = z0
    for e in e:
        z = delta(z, e)
        if not z:
            break # kein Zustandsuebergang!
    else: # Eingabewort zur Gaenze gelesen!
        if z in F:
            return True
    return False
```

DEA – Beispiele

- Darstellung ganzer Zahlen
- Darstellung für Gleitkommazahlen (ohne Exponent).
 - ► erlaubt: 123 +0.5 -.3 .7
 - nicht erlaubt: 3. 1.2.3 --5
 - Eingabealphabet: $E = \{0, ..., 9, +, -, .\}$
 - ightharpoonup Zustände: $Z = \{S, A, B, C, D\}$
 - ightharpoonup Anfangsszustand: $z_0 = S$
 - ► Endzustände: $F = \{A, C\}$

Akzeptierte Wortmenge eines DEA

- ightharpoonup erweiterte Zustandsübergangsfunktion $\hat{\delta}$ eines DEA
 - ermittelt ausgehend von einem Zustand beim Einlesen eines Wortes den erreichten Zustand
 - \triangleright $v, w \in E^+, e \in E, w = ve$

$$\hat{\delta}: Z \times E^+ \to Z$$

$$\hat{\delta}(z, w) = \begin{cases} \delta(\hat{\delta}(z, v), e) & |w| > 1 \\ \delta(z, w) & |w| = 1 \end{cases}$$

- ▶ Beispiel: $\hat{\delta}(z, abc) = \delta(\hat{\delta}(z, ab), c) = \delta(\delta(\hat{\delta}(z, a), b), c) = \delta(\delta(\delta(z, a), b), c)$
- ► Wortmenge, die von einem DEA akzeptiert wird: *T*(*DEA*)

$$T(\textit{DEA}) = \begin{cases} \{w \in E^+ | \hat{\delta}(z_0, w) \in F\} & z_0 \notin F \\ \{w \in E^+ | \hat{\delta}(z_0, w) \in F\} \cup \{\epsilon\} & z_0 \in F \end{cases}$$

Satz von der Existenz EA

Zu jeder regulären Grammatik G gibt es einen endlichen Automaten A, für den gilt:

$$L(G) = T(A)$$

wobei:

- ► L(G) ... Sprache, die durch eine Grammatik erzeugt werden kann
- ► T(A) ... Menge der Worte, die vom Automaten akzeptiert werden

D.h. die von A akzeptierte Wortmenge T(A) stimmt mit der von der Grammatik G erzeugten Sprache L(G) überein.

Konstruktion: aus re-li reg. G

- ightharpoonup G = (Φ , Σ , P, S)
- ► Algorithmus
 - 1. Zu jedem NT-Symbol aus Φ wird Knoten gebildet (keine Endknoten).
 - 2. Zusätzlicher Endknoten mit neuer Bezeichnung.
 - 3. Startknoten entspricht Startsymbol S.
 - 4. Kanten gemäß den Produktionen:
 - ightharpoonup A ightharpoonup aB: Kante von A nach B mit der Beschriftung a.
 - A → a: Kante vom Knoten A zum Endknoten mit der Beschriftung a.
 - **b** Bei S $\rightarrow \varepsilon$: Startknoten ist gleichzeitig Endknoten.

Beispiel

ges.: Automat für ganze Zahlen

$$\begin{split} &G = (\Phi, \Sigma, P, S) \\ &\Phi = \{S, Z\} \\ &\Sigma = \{+, -, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9\} \\ &P = \{S \rightarrow +Z| - Z|0Z|1Z|2Z|3Z|4Z|5Z|6Z|7Z|8Z|9Z, \\ &S \rightarrow 0|1|2|3|4|5|6|7|8|9, \\ &Z \rightarrow 0Z|1Z|2Z|3Z|4Z|5Z|6Z|7Z|8Z|9Z, \\ &Z \rightarrow 0|1|2|3|4|5|6|7|8|9\} \\ &S = S \end{split}$$

Satz: Äquivalenz von re-li und li-li Gr

- ► Zu jeder rechtslinearen Grammatik G = (ϕ, Σ, P, S) existiert eine linkslineare Grammatik G' = (ϕ', Σ, P', S') , sodass L(G) = L(G') gilt, die Grammatiken also äquivalent sind.
- ► Zu jeder linkslinearen Grammatik G = (ϕ, Σ, P, S) existiert eine rechtslineare Grammatik G' = (ϕ', Σ, P', S') , sodass L(G) = L(G') gilt, die Grammatiken also äquivalent sind.

Konstruktion: aus li-li reg. G

- ightharpoonup G = (Φ , Σ , P, S)
- ► Algorithmus
 - 1. Zu jedem NT-Symbol aus Φ wird Knoten gebildet (keinen Startknoten markieren!).
 - 2. Zusätzlicher Startknoten mit neuer Bezeichnung.
 - 3. Endknoten entspricht Startsymbol S.
 - 4. Kanten gemäß den Produktionen:
 - ightharpoonup A ightharpoonup Ba: Kante von B nach A mit der Beschriftung a.
 - ightharpoonup A ightharpoonup a: Kante vom neuem Startknoten zum Knoten A mit der Beschriftung a.
 - ▶ Bei S $\rightarrow \varepsilon$: neuer Startknoten ist gleichzeitig Endknoten.

Nichtdeterministischer EA

- ► Von einem Knoten: mehrere gleichbezeichnete Kanten
 - ightharpoonup Zustandsübergangsgangsfunktion δ liefert Menge zurück
 - $\delta: Z \times E \to \mathcal{P}(Z)$
 - ▶ verwenden wir nicht: ϵ -NEA ... δ : $Z \times (E \cup \{\epsilon\}) \rightarrow \mathcal{P}(Z)$
- D.h. der Automat muss eine der Kanten wählen
 - ▶ kann die "falsche" sein → backtracking
- Arbeitsweise

```
def process(delta, z0, F, e):
    z = z0
    for e in e:
        zset = delta(z, e)
        if not zset:
            break # kein Zustandsuebergang!
        z = zset.pop() # u.U. falsch!
    else: # Eingabewort zur Gaenze gelesen!
        if z in F:
            return True
    return False
```

NEA - Beispiel

Darstellung für Gleitkommazahlen (ohne Exponent)

erlaubt: 123 +0.5 -.3 .7 nicht erlaubt: 3. 1.2.3 --5

	0 - 9	+,-	
S	{ <i>E</i> }	{ <i>D</i> , <i>A</i> }	{ <i>B</i> }
Α	{ <i>A</i> }	-	{ <i>B</i> }
В	{ C }	-	-
<u>C</u> D	{ C }	-	-
D	{ <i>E</i> }	-	-
<u>E</u>	{ <i>E</i> }	-	-

0.3,... kann nicht verarbeitet werden. Modifikationen?

Satz: Äquivalenz von NEA und DEA

Zu jedem nicht-deterministischen endlichen Automaten gibt es einen äquivalenten deterministischen endlichen Automaten.

Es gilt somit: T(NEA) = T(DEA)

NEA zu DEA

- $ightharpoonup Z_{NEA} = \{z_{(0)}, z_{(1)}, z_{(2)}, z_{(3)}, \ldots\}$
- $ightharpoonup Z_{DEA} = \{z'_{(0)}, z'_{(1)}, z'_{(2)}, z'_{(3)}, \ldots\}$
- Zustandsmenge des DEA ist eine Teilmenge der Potenzmenge der Zustandsmenge des NEA

$$\mathcal{P}(Z_{\textit{NEA}}) = \{\{\}, \{z_{(0)}\}, \{z_{(0)}, z_{(1)}\}, \{z_{(0)}, z_{(2)}\}, \{z_{(0)}, z_{(3)}\}, \ldots\}$$

D.h.:

$$Z_{DEA} \subseteq \mathcal{P}(Z_{NEA})$$

NEA zu DEA – Konstruktion

- Basis: Zustandstabelle des nicht-deterministischen Automaten
- Verfahren
 - 1. Beim Startzustand beginnen
 - Enthält die Zustandstabelle eine Teilmenge: neuer Knoten, der diese Teilmenge darstellt.
 - 3. Für neue 'Teilmengen'-knoten ergibt sich das Verhalten aus der Summe aller Zustände der Teilmenge.
 - Schritt 2,3 solange durchführen, bis alle Knoten, die in der Zustandstabelle vorkommen auch auf der linken Seite (Liste der Zustände) stehen.
 - 5. Bestimmen der Endknoten: Jene, die mindestens einen Endknoten des NEA enthalten.
 - 6. Die neuen Knoten zur besseren Lesbarkeit umbenennen.

NEA zu DEA – Beispiel

Minimaler DEA

Motivation und Definition

- ▶ Erinnerung: $Z_{DEA} \subseteq \mathcal{P}(Z_{NEA})$, d.h.: $|Z_{DEA}| \leq 2^{|NEA|} \rightarrow \text{Anzahl}$ der Zustände des konstruierten DEA ist u.U. sehr hoch!!!
- Optimal für die Implementierung: DEA mit minimaler Anzahl an Zuständen
- ▶ Definition: Äquivalenter minimaler DEA ... äquivalenter DEA mit minimaler Anzahl an Zuständen (von allen äquivalenten DEAs)
- Ziel: Konstruktion eines äquivalenten minimalen DEAs

Minimaler DEA - 2

Äquivalente Zustände

- ▶ $z_{(i)}$ und $z_{(j)}$ sind äquivalent, wenn: $\forall w \in E^+ : \hat{\delta}(z_{(i)}, w) \in F \leftrightarrow \hat{\delta}(z_{(i)}, w) \in F$
- ► Beachte, dass **nicht** gefordert ist, dass

$$\hat{\delta}(z_{(i)}, w) = \hat{\delta}(z_{(j)}, w)$$

- man nennt 2 Zustände unterscheidbar, wenn diese nicht äquivalent sind
 - ▶ D.h. $z_{(i)}$ ist von $z_{(j)}$ unterscheidbar, wenn es mindestens ein w gibt, sodass einer der Zustände $\hat{\delta}(z_{(i)}, w)$ und $\hat{\delta}(z_{(j)}, w)$ akzeptiert und der andere nicht.
- Ermittlung äquivalenter Zustände mit dem Table-filling Algorithmus

Minimaler DEA – Konstruktion

1. Entferne alle Zustände, die vom Startzustand aus nicht erreicht werden können.

Table-filling Algorithmus:

- 2. Erstelle für die Menge von unterschiedlichen Paaren (keine Reihenfolge \rightarrow Menge) an Zuständen $\{\{z_{(i)},z_{(j)}\},i\neq j\}$ eine Tabelle.
- 3. Markiere alle Paare, bei denen genau ein Zustand zu den akzeptierenden Zuständen gehört und der andere nicht, als nicht zusammenlegbar.
- 4. Wiederhole bis keine Änderungen mehr vorgenommen:
 - markiere alle Paare als nicht zusammenlegbar, für die es ein Eingabezeichen e gibt, so dass die mit e erreichten Folgezustände bereits markiert wurden.

Minimaler DEA – Konstruktion – 2

- 5. Partitioniere die Menge der Zustände Z auf Basis von Schritt 4 in Blöcke, die jeweils alle zu einem Zustand z äquivalenten Zustände enthalten.
- 6. Konstruiere den äquivalenten minimalen DEA unter Verwendung der erstellten Blöcke.

Beispiel

Beispiel - 2

- 1. Zustände entfernen... \rightarrow nichts zu tun
- 2. Leere Tabelle erstellen

Α			
В			
С			
	S	Α	В

3. Initiale Paare markieren

Α			
В			
С	Χ	Χ	Х
	S	Α	В

Beispiel – 3

- 4. Wiederholen bis keine Änderungen...
 - (a) Iteration 1
 - ► $\{A, S\}$: $A \xrightarrow{1} C, S \xrightarrow{1} A \dots \{C, A\}$ bereits markiert $\rightarrow \{A, S\}$ markieren!
 - ► $\{B, S\}$: $B \xrightarrow{1} A, S \xrightarrow{1} A$... nicht unterscheidbar \rightarrow *nicht* markieren!
 - ► $\{B,A\}$: $B \xrightarrow{1} A, A \xrightarrow{1} C \dots \{C,A\}$ bereits markiert $\to \{B,A\}$ markieren!

Α	Χ		
В		Χ	
С	Χ	Χ	Χ
	S	Α	В

(b) Iteration 2: Einzige freie Stelle ist $\{B, S\} \rightarrow$ nicht unterscheidbar...

Beispiel - 4

- 5. Blöcke bilden. Nur $\{B, S\}$ ist nicht unterscheidbar \rightarrow $Z = \{SB, A, C\}$
- 6. Zustandsdiagramm des äquivalenten minimalen DEA

Knoten umbenennen und fertig!

Implementierung eines DEA

1. switch-basiert

```
char z; // current state
char e; // current input symbol
switch (z) {
  case 'A':
    switch (e) {
      case 'a':
        z_new = 'B';
        break;
      case 'b': ...
      case 'c': ...
    break;
  case 'B':
    switch (e) {
      case 'a': ...
```

Implementierung eines DEA

switch basiert \rightarrow einfach, effizient, aber unflexibel

- 2. Tabellen-basiert
 - Verwendung eines verschachtelten Dictionaries
 - u.U. auch zweidimensionales Array
 - äußeres Dictionary
 - Key ... aktueller Zustand
 - ► Value ... inneres Dictionary
 - inneres Dictionary
 - Key ... aktuelles Eingabesymbol
 - Value ... Folgezustand
 - Ermittlung des Folgezustandes
 - $z = delta_tab[z][e]$

Endlicher Automat mit Ausgabe

- Zweck: Erzeugung von Ausgabewörtern aus gegebenen Eingabewörtern
- \blacktriangleright $M = (E, Z, A, \delta, \gamma, z_o, F)$
- ► Mealy-Automat
 - Ausgabefunktion
 - $ightharpoonup a_i = \gamma(z_i, e_i),$
- ▶ Moore-Automat
 - Ausgabefunktion
 - $ightharpoonup a_i = \gamma(z_i)$

Beispiel: Alarmanlage

Zustände:

- O ... ausgeschaltet (off)
- ▶ B... bereit
- ► V ... Voralarm (Bewegungsmelder an)
- A ... Alarm (Unterbrechungsmelder an)

Eingangssymbole:

- ▶ e ... einschalten
- a ... ausschalten
- v ... Vorarlarm ausschalten
- b ... Alarm Bewegungsmelder
- u ... Alarm Unterbrechungsmelder
- g ... Alarm quittieren

► Ausgabesymbole:

- b ... Vorbeugende Maßnahmen: alle Warnmelder aktiviert
- s ... Sicherungsmaßnahmen: Schließen aller Tore
- ▶ l ... Alarmmaßnahmen: Warnsirene/Scheinwerfer an

Kellerautomat - Definition

(engl. push down automaton)

- ► KA = (E, Z, K, δ , z_0 , k_0 , F)

 - $ightharpoonup e \in E^* \dots$ Eingabewort
 - $z \in Z^*$... Wort, das alle Zustände in der Reihenfolge enthält, die der Automat einnimmt.
 - ▶ $k \in K^*$... aktuelles Wort im Stack. Mit k_0 als oberstes Element.
- prinzipielle Arbeitsweise
 - $ightharpoonup e_j \in E \cup \{\varepsilon\}$
 - \triangleright $(z_{i+1}, l) \in \delta(z_i, e_i, k_0)$
 - ► dann
 - ightharpoonup Zustand z_{i+1}
 - ▶ k_0 durch $l = l_0...l_n \in K^*, n \in \mathbb{N}_0$ ersetzt (in der Reihenfolge von oben nach unten).

Übergänge, Halten, Akzeptieren

- 2 Arten von Zustandsübergängen
 - ▶ mit Lesen eines Eingabezeichens: $\delta(z_i, e_i, k_0) \neq \{\}$
 - ohne Lesen eines Eingabez. (spontan): $\delta(z_i, \varepsilon, k_0) \neq \{\}$
- ▶ Haltebedingungen
 - der Stack leer ist
 - ► Eingabewort gelesen & kein spontaner Übergang möglich
 - ► Eingabewort nicht gelesen ist & kein Übergang möglich
- Akzeptanzbedingungen
 - zustandsakzeptiert: Endzustand erreicht
 - kellerakzeptiert: Stack leer
 - akzeptiert: Endzustand erreicht und Stack leer

Zustandsübergangsfunktion

► Zustandstabelle

	Eingabesymbol	 ε
Zustand,Kellersymbol	Menge von (Folgezustand, Wort aus <i>K</i> *)	

Zustandsdiagramm

Beispiel

- \triangleright $E = \{0, 1\}, Z = \{A, B\}, F = \{B\}, K = \{\bot, 0, 1\}$
- ► $z_0 = A, k_0 = \bot$
- $ightharpoonup \delta$ gemäß folgender Zustandstabelle:

	0	1
A, \perp	(B, \perp)	$(A, 1 \perp)$
A, 0	_	_
A , 1	(A, ε)	(A, 11)
B, \perp	$(B,0\bot)$	(A, \perp)
B , 0	(B, 00)	(B,ε)
B, 1	-	_

 $\qquad \text{Akzeptierte Sprache: } L(\textit{KA}) = \{\textit{w} \in \{0,1\}^* | \textit{\#}0 \qquad \textit{\#}1\}$

Konfigurationen und Züge

- Konfiguration
 - ► Tripel $(z_i, w, k) \in Z \times E^* \times K^*$
 - geben an:
 - ▶ den momentanen Zustand $z_i \in Z$
 - ▶ den noch zu lesenden Teil $w \in E^*$ des Eingabewortes
 - ▶ den Kellerinhalt $k \in K^*$
 - ► Startkonfiguration ist (z_0, e, k_0)
- Zug
 - Paar von Konfigurationen
 - entweder
 - $((z_i, w, k_0 \ l), (z_{i+1}, w, q \ l)), k_0 \in K, q \in K^* \text{ mit } (z_{i+1}, q) \in \delta(z_i, \varepsilon, k_0)$
 - $((z_i, e_j \ w, k_0 \ l), (z_{i+1}, w, q \ l)) \text{ mit } (z_{i+1}, q) \in \delta(z_i, e_j, k_0)$
 - werden üblicherweise so angeschrieben:
 - \triangleright $(z_i, w, p \ l) \vdash (z_{i+1}, w, q \ l)$ bzw.
 - \triangleright $(z_i, e_j w, p l) \vdash (z_{i+1}, w, q l)$

Beispiele

- ► KA aus vorhergehendem Beispiel; *e* = 11000
 - ► Züge: $(A, 11000, \bot) \vdash (A, 1000, 1\bot) \vdash (A, 000, 11\bot) \vdash (A, 00, 1\bot) \vdash (A, 0, 0, 1\bot) \vdash (A, 0, 0, 1) \vdash (A, 0, 0, 1)$
 - d.h.: e vollständig gelesen, Endzustand erreicht, Stack bis auf Startsymbol leer; Stack kann in diesem Fall nicht leer werden!
- ightharpoonup KA aus vorhergehendem Beispiel; e=011000
- ightharpoonup KA aus vorhergehendem Beispiel; e = 1101100

Beispiel

- \triangleright $E = \{0, 1\}, Z = \{A, B\}, F = \{B\}, K = \{\bot, 0, 1\}$
- ► $z_0 = A, k_0 = \bot$
- $ightharpoonup \delta$ gemäß folgender Zustandstabelle:

	0	1	ε
A, \perp	$(A, 0\bot)$	$(A, 1 \perp)$	(B,ε)
A , 0	(A, 00)	(A, ε)	-
A , 1	(A, ε)	(A, 11)	-

- $ightharpoonup L(KA) = \{ w \in \{0,1\}^* | \#0$ #1 $\}$
- ▶ Dieser Automat ist nicht deterministisch!

Beispiel

- $E = \{0,1\}, Z = \{A,B,C\}, F = \{C\}, K = \{\bot,0,1\}$
- ► $z_0 = A, k_0 = \bot$
- $ightharpoonup \delta$ gemäß folgender Zustandstabelle:

	0	1	ε
A, \perp	$(A, 0\bot)$	$(A, 1 \perp)$	(B, \perp)
A, 0	(A, 00)	(A, 10)	(B, 0)
A, 1	(A, 01)	(A, 11)	(B, 1)
B, \perp	_	_	(C, \perp)
B , 0	(B, ε)	_	_
B, 1	_	(B, ε)	_
C, \perp	_	_	-
C , 0	_	_	-
C , 1	_	_	-

- $L(KA) = \{ w \in \{0,1\}^* | w = w_1 w_2, w_1 = w_2 \}$
- Dieser Automat ist nicht deterministisch!

Deterministischer KA (DKA)

- ► KA deterministisch, wenn
 - ▶ für alle $z_i \in Z$, $E_i \in E$ und $k_0 \in K$ gilt:

$$\blacktriangleright$$
 # $\delta(z_i, E_i, k_0) + #\delta(z_i, \varepsilon, k_0) \leq 1$

- ▶ D.h. für jeden Zustand und für jedes Zeichen an der Kellerspitze gibt es höchstens eine Möglichkeit, mit oder ohne Eingabe den Zustand zu wechseln und das Kellerzeichen zu ersetzen.
- Beispiel
 - ► DKA soll folgende Sprache akzeptieren:

$$L(KA) = \{w_1 \$ w_2 | w_1, w_2 \in \{0, 1\}^*, w_1 = w_2^T\}$$

ges.: Zustandstabelle und Zustandsdiagramm

Turingmaschine (TM) – Überblick

- wahlfreier Zugriff auf den Arbeitsspeicher
 - vgl. Stack beim Kellerautomaten
- ► TM: *universelles* Maschinenmodell zur Realisierung von Algorithmen
 - hauptsächlich in der theoretischen Informatik
 - Turings Vorstellung
 - Endlicher Automat mit einem unendlichen Speicherband
 - Lese/Schreibkopf, der sich auf dem Band bewegen kann.
 - Felder des Bandes: Buchstaben des Bandalphabets
 - Zeichen unter dem Kopf: lesen/verändern
 - Kopf: um ein Feld nach links/rechts oder an Stelle
 - ► CPU läßt sich als TM auffassen (aber: endlicher Speicher)
- Linear beschränkter Automat: beschränkter Speicher!

Turingmaschine - Definition

- ► TM = $(Z, E, B, \delta, z_0, \#, F)$
 - ightharpoonup B ... Bandalphabet, $E \subseteq B$

 - \blacktriangleright # \in B E ... Leerzeichen
 - ▶ l... Bewegung nach links
 - r ... Bewegung nach rechts
 - ► n ... keine Bewegung
 - # ... Leerzeichen

Arbeitsweise

- ► TM im Zustand z_i , unter Kopf das Bandsymbol $b_m \in B$
- ► TM im nächsten Schritt in den Zustand z_{i+1} über
- schreibt anstelle von b_m ein Symbol $b_n \in B$
- ▶ führt danach eine Bewegung $x \in \{l, r, n\}$
- Am Anfang steht das Eingabewort am Band und der Schreib-/Lesekopf befindet sich am ersten Zeichen.
- ▶ Beispiel: $L(G) = \{a^n b^n c^n | n > 0\}$