โครงร่างโครงการพิเศษทางเภสัชศาสตร์

สาขาเภสัชศาสตร์ มหาวิทยาลัยขอนแก่น

ชื่อนักศึกษาผู้รับผิดชอบโครงการ นายเฉลิมเดช ตฤณวิวัฒน์ รหัสประจำตัว 623150041-7 อาจารย์ที่ปรึกษา อาจารย์ ดร.ธราพงษ์ ศรีสงคราม

1. ชื่อหัวข้อโครงการวิจัย

Advancing skin toxicity predictions with HaCaT cells and machine learning

2. หลักการและเหตุผล

ความเป็นพิษทางผิวหนัง คือ ผลเสียที่เกิดจากการได้รับสารผ่านทางผิวหนัง ทั้งเกิดแค่เฉพาะที่หรือทั้งระบบ ไหลเวียนโลหิตในมนุษย์หรือสัตว์ ฉะนั้น จึงมีความจำเป็นที่จะต้องทดสอบความเป็นพิษของสารเคมีก่อนที่จะ สามารถนำไปใช้ได้เพื่อให้ความมั่นใจว่าสารเคมีที่จะนำไปใช้ในกิจกรรมต่าง ๆ นั้นมีความปลอดภัย โดยการ ทดสอบความเป็นพิษทางผิวหนังของสารเคมีมีการประเมิน 3 รูปแบบคือ 1) ประเมินการระคายเคืองผิวหนัง (Skin irritation) 2) ประเมินการกัดกร่อนผิวหนัง (Skin corrosion) 3) ประเมินการแพ้ของผิวหนัง (Skin sensitization)

ในปัจจุบัน การทดสอบความเป็นพิษทางผิวหนังของสารเคมีสามารถทำการทดสอบได้โดยหลายวิธี ได้แก่ 1) ทดสอบในสารเคมี เช่น การทดสอบเพื่อประเมินการแพ้ของผิวหนัง Direct peptide reactivity assay 2) ทดสอบในหลอดทดลอง เช่น การทดสอบในหลอดทดลองเพื่อประเมินการกัดกร่อนผิวหนัง แบบจำลองเนื้อเยื่อ ผิวหนังขั้นนอกของมนุษย์ (Reconstructed human epidermis) การทดสอบในหลอดทดลองเพื่อประเมินการ แพ้ของผิวหนัง The ARE-Nrf2 Luciferase KeratinoSensTM 3) ทดสอบในสัตว์ทดลอง เช่น การทดสอบใน สัตว์ทดลองเพื่อประเมินการแพ้ของผิวหนัง Guinea pig maximization test and Buehler test หรือ 4) ทดสอบโดยใช้แบบจำลองทางคอมพิวเตอร์ โดยวิธีการทดสอบเหล่านี้ถูกกำหนดให้เป็นแนวทางการทดสอบความ เป็นพิษทางผิวหนังของสารเคมีโดยองค์การเพื่อความร่วมมือทางเศรษฐกิจและการพัฒนา (OECD) ซึ่งเป็นองค์กร ที่ได้รับการยอมรับทั่วโลก โดยองค์กรนี้ให้คำแนะนำเกี่ยวกับแนวทางการทดสอบความเป็นพิษด้านต่าง ๆ

HaCaT cell เป็นเซลล์ไลน์เคราติโนไซต์อมตะของมนุษย์ (Immortalized human keratinocyte cell line) ชนิด aneuploid ซึ่งมีการพัฒนาให้เป็นเซลล์เคราติโนไซต์ของมนุษย์ในหลอดทดลอง เนื่องจากมีคุณสมบัติ differentiation capacity ที่สูง และสามารถเพิ่มจำนวนมากขึ้นในหลอดทดลองได้ เพื่อใช้ในงานวิจัยทาง

วิทยาศาสตร์อย่างแพร่หลายซึ่งรวมไปถึงงานวิจัยด้านพิษวิทยาและการทดสอบความเป็นพิษทางผิวหนังของ สารเคมี (Boelsma et al., 1999; Boukamp et al., 1988; Şenkal et al., 2022; Wilson, 2014)

การทดสอบความเป็นพิษในปัจจุบันสนับสนุนหลักการ 3Rs จึงนำมาสู่การพัฒนาแบบจำลองการศึกษา ความสัมพันธ์ระหว่างโครงสร้างและความเป็นพิษทางผิวหนังโดยใช้วิธีการเรียนรู้ของเครื่อง (Machine learning) เพื่อใช้ในการทำนายความเป็นพิษทางผิวหนังของสารเคมีที่ต้องการทดสอบ

3. วัตถุประสงค์

- 1) พัฒนาแบบจำลองด้วยการใช้การเรียนรู้ของเครื่อง (Machine learning) ในการทำนายความเป็นพิษทาง ผิวหนังโดยการใช้ข้อมูลความสัมพันธ์โครงสร้างและความเป็นพิษของสารเคมี
- 2) สร้างและตรวจทานแบบจำลองในการทำนายความเป็นพิษทางผิวหนังที่สร้างขึ้นโดยการใช้ข้อมูล ความสัมพันธ์โครงสร้างและความเป็นพิษของสารเคมี
- 3) หาประสิทธิภาพของแบบจำลองที่พัฒนาขึ้นด้วยการใช้การเรียนรู้ของเครื่องโดยนำแบบจำลองไปทำนาย สารเคมีอื่นไม่ใช่สารเคมีในข้อมูลชุดเรียนรู้ (Training set)

4. ผลงานวิจัยหรือวรรณกรรมที่เกี่ยวข้อง

ในบทนี้จะกล่าวถึงทฤษฎีและผลงานวิจัยที่เกี่ยวข้องของการศึกษา ประกอบไปด้วยการทำนายความเป็นพิษ ทางผิวหนังด้วยเซลล์ HaCaT และการทำนายความเป็นพิษทางผิวหนังด้วยการเรียนรู้ของเครื่อง (Machine learning)

4.1 การทำนายความเป็นพิษทางผิวหนังด้วยเซลล์ HaCaT เพื่อประเมินการระคายเคืองผิวหนัง

Sanchez et al. (2006) ได้ทำการศึกษาความเป็นพิษทางผิวหนังและดวงตาของสารลดแรงตึงผิว แบบประจุลบ 5 ชนิดเพื่อประเมินศักยภาพในการระคายเคือง (Irritation potential) ของสารลดแรงตึงผิว เหล่านี้ด้วยการทดสอบในหลอดทดลองด้วยเซลล์ HaCaT โดยการใช้วิธีทดสอบ 2 วิธีคือ neutral red assay และ MTT assay เพื่อประเมินการรอดชีวิตของเซลล์ (Cell viability)

ผลจากการทดสอบความเป็นพิษทางผิวหนังในหลอดทดลองด้วยเซลล์ HaCaT โดยวิธี neutral red assay มีค่า IC50 สูงกว่า วิธี MTT assay แต่ถึงอย่างนั้นความสัมพันธ์ระหว่างความเข้มข้นของสารลด แรงตึงผิวกับความเป็นพิษของสารเคมีในทั้งสองวิธีก็คล้ายคลึงกัน

4.2 การทำนายความเป็นพิษทางผิวหนังด้วยเซลล์ HaCaT เพื่อประเมินการแพ้ของผิวหนัง

Eskes et al. (2019) ได้ทำการศึกษาความสามารถในการทำซ้ำและการทำนายภายใน ห้องปฏิบัติการ (Intra-lab) ของ The Cocultured Activation Test (COCAT) คือการเพาะเลี้ยงเซลล์ HaCaT (เซลล์ไลน์เคราติโนไซต์มนุษย์) และเซลล์ THP-1 (ตัวแทนของ antigen presenting cells) ซึ่ง The Cocultured Activation Test (COCAT) ใช้ในการทำนายความเป็นพิษทางผิวหนังเพื่อประเมินการแพ้ของ ผิวหนัง โดยใช้วิธีการทดสอบสารเคมีแบบปกปิด (Blind testing) ผลลัพธ์ของสารเคมี 80% ของ 15 ชนิดที่ ใช้วัดค่าการทำซ้ำ คือ 100% สำหรับความไว (sensitivity) 75% สำหรับความจำเพาะ (specificity) 92.3% สำหรับความแม่น (accuracy) และเมื่อนับรวมกับสารเคมีที่ยังไม่ได้ข้อสรุปจะมีความแม่นเท่ากับ 87.4% สรุปได้ว่าวิธี COCAT มีแนวโน้มที่ดีในการทดสอบความเป็นพิษทางผิวหนังของสารเคมีเพื่อประเมินการแพ้ ของผิวหนัง

4.3 การทำนายพิษทางผิวหนังด้วยวิธีการเรียนรู้ของเครื่อง (Machine learning)

Im et al. (2023) ได้ทำการศึกษาการทำนายความเป็นพิษทางผิวหนังเพื่อประเมินการแพ้ของ ผิวหนังด้วยการใช้การเรียนรู้ของเครื่อง โดยการศึกษานี้ต้องการพัฒนาแบบจำลองการเรียนรู้ของเครื่องที่ใช้ งานได้จริงเพื่อประเมินการแพ้ของผิวหนังด้วยการใช้คุณสมบัติทางเคมีกายภาพ 3 ประการ ได้แก่ แรงตึงผิว จุดหลอมเหลวและน้ำหนักโมเลกุล

ในการศึกษานี้ได้สร้างขึ้นจากข้อมูล Local lymph mode assay ของสารเคมี 482 ชนิดและ พัฒนาขึ้นเป็นแบบจำลอง Random Forest เพื่อประเมินการแพ้ของผิวหนัง และได้ตรวจสอบความถูกต้อง ด้วยสารก่อภูมิแพ้ในน้ำหอม 45 ชนิดที่ถูกประประกาศโดยกรรมาธิการของสหภาพยุโรป (European Commission) และให้ผลลัพธ์คือคะแนน 54% สำหรับ penal 82% สำหรับ ternary, และ 96% สำหรับ binary ซึ่งดีกว่าโมเดล Support vector machine, QSAR (Chem tunes) และ Linear model สุดท้ายจึง ทดสอบความถูกต้องเทียบกับ Direct Peptide Reactivity Assay และผลลัพธ์ที่ได้มีแนวโนมคล้ายคลึงกัน

Wilm et al. (2021) ได้ทำการศึกษาการทำนายศักยภาพของอาการแพ้ของผิวหนังจากโมเลกุล ขนาดเล็กด้วยแบบจำลองการเรียนรู้ของเครื่องที่ฝึกอบรบด้วยคำอธิบายทางชีวภาพ ด้วยการใช้สาร 257 ชนิด และสร้างแบบจำลองที่ดีที่สุดในการศึกษาชื่อว่า Skin Doctor CP:Bio ซึ่งมีประสิทธิภาพเท่ากับ 0.82 และ Matthews correlation coefficient (MCC) เท่ากับ 0.53 (ที่นัยสำคัญเท่ากับ 0.20) และแบบจำลอง นี้สามารถนำไปพัฒนาแบบจำลองการเรียนรู้ของเครื่องที่ใช้ในการทำนายความเป็นพิษของโมเลกุลขนาดเล็ก

5. วิธีดำเนินการวิจัย

1) การเก็บรวบรวมข้อมูล

จากการรวบรวมงานวิจัยที่ใช้การทดสอบความเป็นพิษเพื่อประเมินการระคายเคือง

งานวิจัยที่เกี่ยวข้อง	การทดสอบความเป็	การทดสอบที่ใช้			
	สารเคมี	ผลบวก	ผลลบ		
Han et al. (2021)	100	35	64	In vivo	
Han et al. (2021)	36	26	10	Human	
Cotovio et al.,	48	20	28	In vivo	
(2005)					
Cotovio et al.,	48	23	25	In vitro	
(2005)					

ตารางที่ 1 ตารางแสดงการรวบรวมชุดข้อมูลด้านความเป็นพิษทางผิวหนังเพื่อประเมินการระคายเคืองผิวหนัง

2) การคำนวณลายพิมพ์ระดับโมเลกุล (Molecular Fingerprints)

Simplified molecular-input line-entry system (SMILEs) จะถูกนำมาใช้เป็นลายพิมพ์ระดับโมเลกุล (Molecular Fingerprints) เพื่อนำไปพัฒนาแบบจำลองในการทำนายความเป็นพิษทางผิวหนังด้วยการใช้การ เรียนรู้ของเครื่อง เนื่องจาก SMILEs เป็นวิธีการอธิบายโครงสร้างโมเลกุลที่สามารถแปลงโครงสร้างโมเลกุลให้มาอยู่ ในรูปแบบของข้อมูล Bit string แสดงอยู่ถึงการมีหรือไม่มีโครงสร้างอยู่ในโมเลกุล (Seo et al., 2020) และ SMILE ใช้พื้นที่จัดเก็บน้อยและสามารถบอกถึงโครงสร้างแบบ 3 มิติได้ด้วย (Syahid et al., 2023)

3) สร้างและออกแบบแบบจำลอง

การสร้างแบบจำลองการศึกษาความสัมพันธ์ระหว่างโครงสร้างและความเป็นพิษทางผิวหนังของสารด้วย การเรียนรู้ของเครื่อง จะเริ่มจากการสืบค้นชุดข้อมูลที่เกี่ยวข้องแล้วนำข้อมูลที่ได้มานั้นตัดค่าที่ไม่มีความจำเป็นออก หลังจากนั้นทำการแบ่งชุดข้อมูลออกเป็น 2 ชุด คือข้อมูลชุดเรียนรู้ (training set) และข้อมูลชุดทดสอบ (Test set) โดยการสร้างแบบจำลองเพื่อประเมินแบบจัดหมวดหมู่ (Classification-based model) จะถูกใช้ในโครงการนี้

4) ประเมินและตรวจทานแบบจำลอง

การทดสอบภาวะสารูปสนิทดี (Goodness-of-fit test) จะถูกใช้ในการประเมินแบบจำลองการศึกษา ความสัมพันธ์ระหว่างโครงสร้างและความเป็นพิษทางผิวหนังของสารด้วยการเรียนรู้ของเครื่อง (OECD, 2014) โดย ใช้ Confusion matrix ในประเมินด้านความไว (Sensitivity) ความจำเพาะ (Specificity) ความแม่นยำ (Accuracy) และความเที่ยง (Precision) และมีตัวแปร 4 ตัวที่เกี่ยวข้องกับการคำนวณ (Bank & Schmehl, 1989; Wang et al., 2010) ได้แก่

- 1) True positive (TP) คือ สิ่งที่ทำนายตรงกับสิ่งที่เกิดขึ้นจริง กรณีทำนายได้ผลบวก สิ่งที่เกิดขึ้นให้ ผลบวก
- 2) True negative (TN) คือ สิ่งที่ทำนายตรงกับสิ่งที่เกิดขึ้นจริง กรณีทำนายได้ผลลบ สิ่งที่เกิดขึ้นให้ผล ลบ
- 3) False positive (FP) คือ สิ่งที่ทำนายไม่ตรงกับสิ่งที่เกิดขึ้นจริง กรณีทำนายได้ผลบวก สิ่งที่เกิดขึ้น ให้ผลลบ
- 4) False negative (FN) คือ สิ่งที่ทำนายไม่ตรงกับสิ่งที่เกิดขึ้นจริง กรณีทำนายได้ผลลบ สิ่งที่เกิดขึ้นให้ ผลบวก

Confusion matrix	สิ่งที่เกิดขึ้นให้ผลบวก	สิ่งที่เกิดขึ้นให้ผลลบ
ทำนายได้ผลบวก	True positive	False positive
ทำนายได้ผลลบ	False negative	True negative

ตารางที่ 2 ตารางแสดง Confusion matrix

ความไว (sensitivity) คือ สัดส่วนผลบวกที่เป็นจริง ใช้แยกผลลบที่ไม่เป็นจริงออกเนื่องจากยิ่งความไวมาก เท่าใด โอกาสได้ผลลบที่ไม่เป็นจริงยิ่งน้อยลงเท่านั้น คำนวณได้จาก Sensitivity = TP/(TP + FN)

ความจำเพาะ (specificity) คือ สัดส่วนผลลบที่เป็นจริง ใช้แยกผลบวกที่ไม่เป็นจริงออก ยิ่งความจำเพาะ สูงเท่าใด ยิ่งสามารถแยกผลบวกที่ไม่เป็นจริงได้มากเท่านั้น คำนวณได้จาก Specificity = TN/(TN + FP)

ความแม่น (accuracy) คือ ความสามารถบ่งบอกว่าการทดสอบมีผลใกล้เคียงกับค่าจริง คำนวณได้จาก Accuracy = (TP + TN)/(TP+ TN + FP + FN)

ความเที่ยง (precision) คือ ความสามารถที่บ่งบอกว่าสามารถทำซ้ำได้หลายครั้ง คำนวณได้จาก Precision = TP/(TP + FP)

5) y-Randomization test

y-Randomization test คือ วิธีทดสอบความทนของวิธีเพื่อประเมินว่าแบบจำลองสามารถอธิบาย ความสัมพันธ์ระหว่างตัวแปรต้นและตัวแปรตามได้ โดยจะเปรียบเทียบโมเดลที่สร้างขึ้นใหม่ด้วยการสุ่มค่าตัวแปร ตาม (y) เทียบกับโมเดลดั้งเดิม (Rücker et al., 2007)

6) การวิเคราะห์ข้อมูล

หลังจากได้แบบจำลองที่ผ่านการประเมินและตรวจทานความถูกต้องและแม่นยำเรียบร้อยแล้ว จะทำการ ทดสอบชุดข้อมูล (Test data set) ด้วยแบบจำลองที่สร้างขึ้น ซึ่งข้อมูลชุดนี้เป็นข้อมูลชุดใหม่ที่ไม่เคยทำการ ทดสอบด้วยแบบจำลองที่สร้างขึ้นมาก่อน โดยจะทำนายความเป็นพิษทางผิวหนังเพื่อดูประสิทธิภาพการทำนาย ของแบบจำลองว่าสามารถทำนายความเป็นพิษทางผิวหนังของข้อมูลชุดใหม่ได้มีประสิทธิภาพเพียงใด

6. ขอบเขตและข้อจำกัดของการวิจัย

- เป็นการทำวิจัยโดยใช้การเรียนรู้ของเครื่อง (Machine learning) เพื่อสร้างแบบจำลองและใช้ทดสอบ ความเป็นพิษทางผิวหนังของสารเคมี
- ข้อจำกัดในชุดข้อมูลที่นำมาใช้สร้างแบบจำลองในการทำนายความเป็นพิษทางผิวหนัง จำเป็นต้อง สืบค้นจากหลายแหล่งข้อมูล

7. สถานที่ทำวิจัย

- ห้องปฏิบัติการวิจัยคณะเภสัชศาสตร์ มหาวิทยาลัยขอนแก่น

8. ประโยชน์ที่คาดว่าจะได้รับ

- ได้ชุดข้อมูลที่เป็นประโยชน์ในการสร้างแบบจำลองเพื่อทำนายความเป็นพิษทางผิวหนังของสารเคมี
- ได้แบบจำลองที่น่าเชื่อถือซึ่งสามารถใช้ทำนายความเป็นพิษทางผิวหนังของสารเคมีได้

9. แผนการดำเนินการเกี่ยวกับกิจกรรมและระยะเวลาในการทำวิจัย (ระยะเวลา 3-6 เดือน)

แผนการดำเนินงาน	พ.ศ. 2566			พ.ศ. 2567			
	ส.ค.	ก.ย.	ต.ค.	พ.ย.	ช.ค.	ม.ค.	ก.พ.
1.จัดทำเค้าโครง							
2.รวบรวมข้อมูลสำหรับสร้างแบบจำลอง							
3.สร้างและออกแบบแบบจำลอง							
4.ประเมินและตรวจทานแบบจำลอง							

5.วิเคราะห์ข้อมูลด้วยแบบจำลองและประเมิน ประสิทธิภาพของแบบจำลอง				
6.สรุปผลการศึกษาในการพัฒนาแบบจำลองการ เรียนรู้ของเครื่อง จัดทำรูปเล่มและเสนอ โครงงานวิจัย				

10. งบประมาณ

งบประมาณจัดโครงการ จากการสนับสนุนจากคณะเภสัชศาสตร์ เป็นเงินทั้งสิ้น 2,000 บาท โดยมีรายละเอียดดังนี้

- ค่า cloud computer 1,500 บาท
- ค่าทำ poster และรูปเล่ม 500 บาท

11. เอกสารอ้างอิง

Bank, H. L., & Schmehl, M. K. (1989). Parameters for evaluation of viability assays: Accuracy, precision, specificity, sensitivity, and standardization. *Cryobiology*, 26(3), 203–211. https://doi.org/10.1016/0011-2240(89)90015-1

Boelsma, E., Verhoeven, M. C., & Ponec, M. (1999). Reconstruction of a human skin equivalent using a spontaneously transformed keratinocyte cell line (HaCaT). *The Journal of Investigative*

Dermatology, *112*(4), 489–498. https://doi.org/10.1046/j.1523-1747.1999.00545.x

Boukamp, P., Petrussevska, R. T., Breitkreutz, D., Hornung, J., Markham, A., & Fusenig, N. E. (1988). Normal keratinization in a spontaneously immortalized aneuploid human keratinocyte cell line. *The Journal of Cell Biology*, *106*(3), 761–771. https://doi.org/10.1083/jcb.106.3.761

Cotovio, J., Grandidier, M.-H., Portes, P., Roguet, R., & Rubinstenn, G.

(2005). The *In Vitro* Acute Skin Irritation of Chemicals:

Optimisation of the EPISKIN Prediction Model within the

Framework of the ECVAM Validation Process. *Alternatives to Laboratory Animals*, 33(4), 329–349.

Eskes, C., Hennen, J., Schellenberger, M. T., Hoffmann, S., Frey, S.,
Goldinger-Oggier, D., Peter, N., Van Vliet, E., & Blömeke, B. (2019).
The HaCaT/THP-1 Cocultured Activation Test (COCAT) for skin

https://doi.org/10.1177/026119290503300403

- sensitization: A study of intra-lab reproducibility and predictivity. *ALTEX*, *36*(4), 613–622. https://doi.org/10.14573/altex.1905031
- Han, J., Lee, G.-Y., Bae, G., Kang, M.-J., & Lim, K.-M. (2021). ChemSkin Reference Chemical Database for the Development of an In Vitro Skin Irritation Test. *Toxics*, 9(11), 314. https://doi.org/10.3390/toxics9110314
- Im, J. E., Lee, J. D., Kim, H. Y., Kim, H. R., Seo, D.-W., & Kim, K.-B. (2023).
 Prediction of skin sensitization using machine learning. *Toxicology in Vitro*, 93, 105690. https://doi.org/10.1016/j.tiv.2023.105690
- OECD. (2014). Guidance Document on the Validation of (Quantitative)

 Structure-Activity Relationship [(Q)SAR] Models.

 https://doi.org/10.1787/9789264085442-en
- Rücker, C., Rücker, G., & Meringer, M. (2007). Y-Randomization and Its

 Variants in QSPR/QSAR. *Journal of Chemical Information and Modeling*, *47*(6), 2345–2357. https://doi.org/10.1021/ci700157b
- Sanchez, L., Mitjans, M., Infante, M. R., & Vinardell, M. P. (2006).

 Potential irritation of lysine derivative surfactants by hemolysis

- and HaCaT cell viability. *Toxicology Letters*, *161*(1), 53–60. https://doi.org/10.1016/j.toxlet.2005.07.015
- Şenkal, S., Burukçu, D., Hayal, T. B., Kiratli, B., ŞiŞli, H. B., Sağraç, D.,
 Asutay, B., Sümer, E., ŞahiN, F., & Doğan, A. (2022). 3D CULTURE

 OF HaCaT KERATINOCYTE CELL LINE AS AN in vitro TOXICITY

 MODEL. *Trakya University Journal of Natural Sciences*, 23(2), 211–220. https://doi.org/10.23902/trkjnat.1158811
- Seo, M., Shin, H. K., Myung, Y., Hwang, S., & No, K. T. (2020).

 Development of Natural Compound Molecular Fingerprint (NC-MFP) with the Dictionary of Natural Products (DNP) for natural

product-based drug development. Journal of Cheminformatics,

12(1), 6. https://doi.org/10.1186/s13321-020-0410-3

https://doi.org/10.1021/acsomega.3c01641

Syahid, N. F., Weerapreeyakul, N., & Srisongkram, T. (2023). StackBRAF:

A Large-Scale Stacking Ensemble Learning for BRAF Affinity

Prediction. *ACS Omega*, 8(23), 20881–20891.

- Wang, N., Zeng, N. N., & Zhu, W. (2010). *Sensitivity, Specificity, Accuracy, Associated Confidence Interval And ROC Analysis With Practical SAS Implementations*.
- Wilm, A., Garcia de Lomana, M., Stork, C., Mathai, N., Hirte, S.,
 Norinder, U., Kühnl, J., & Kirchmair, J. (2021). Predicting the Skin
 Sensitization Potential of Small Molecules with Machine Learning
 Models Trained on Biologically Meaningful Descriptors.
 Pharmaceuticals, 14(8), 790. https://doi.org/10.3390/ph14080790

Wilson, V. G. (2014). Growth and differentiation of HaCaT keratinocytes.

Methods in Molecular Biology (Clifton, N.J.), 1195, 33–41.

https://doi.org/10.1007/7651 2013 42

ลงชื่อนักศึกษา (นายเฉลิมเดช ตถุณวิวัฒน์)

4	อาจารย์ที่ปรึกษา
2 4642	2222261949 252912
ลงชอ	 ו איווזג נוועולגו ופו ופ

(อาจารย์ ดร.ธราพงษ์ ศรีสงคราม)