Multi-body NRSfM (NRSfM Challenge 2017)

Suryansh Kumar, Yuchao Dai, Hongdong Li

July 26, 2017

Content

- Introduction
- 2 Spatial-Temporal Representation
- **3** Joint Optimization Formulation
- 4 Experiments and Results

Introduction

Why Multi-body NRSfM Representation?

 Real-world scene consist of multiple deforming objects. For example: pedestrians, soccer match, human interaction and etc.

Goal:

 To segment and reconstruct multiple deforming objects in a scene, simultaneously.

Baseline strategy:

- Two-stage approach:
 - motion segmentation followed by non-rigid reconstruction
 - non-rigid reconstruction followed by motion segmentation.

Why unified approach?

- To better exploit the inherent structure of the problem
 - ⇒ Motion segmentation benefits reconstruction
 - ⇒ Reconstruction benefits motion segmentation
- Both tasks can be solved efficiently within a single optimization.
- Computationally and numerically efficient.

Spatial-Temporal Representation

To exploit the intrinsic structure both spatially and temporally, we propose the spatial-temporal representation for complex non-rigid reconstruction.

- Spatial Clustering ⇒ Provides motion segmentation cues
- Temporal Clustering ⇒ Benefits 3D reconstruction
- Spatial Clustering exploits Trajectory space.
- Temporal Clustering exploits Shape space.

Trajectory Space

Classical NRSfM Representation

$$\mathbf{W} = \mathbf{RS}$$
, where $\mathbf{R} \in \mathbb{R}^{2F \times 3F}$, $\mathbf{S} \in \mathbb{R}^{3F \times P}$ (1)

 $\mathbf{W} \in \mathbb{R}^{2F \times P} \Rightarrow \text{Measurement matrix}.$

 $\mathbf{S} \Rightarrow \mathsf{Shape} \; \mathsf{matrix}.$

 $\mathbf{R} \Rightarrow \text{Rotation matrix (Orthographic Camera Model)}.$

Trajectory Space

Representation of multiple non-rigid deformation in the trajectory space.

$$S = SC_1, diag(C_1) = 0, 1^T C_1 = 1^T.$$

$$S \in \mathbb{R}^{3F \times P}, C_1 \in \mathbb{R}^{P \times P}.$$
(2)

Figure: Illustration of trajectory space

Shape Space

Representation of multiple non-rigid deformation in the shape space.

$$S^{\sharp} = S^{\sharp} C_2, \operatorname{diag}(C_2) = 0, 1^{T} C_2 = 1^{T}.$$

$$S^{\sharp} \in \mathbb{R}^{3P \times F}, C_2 \in \mathbb{R}^{F \times F}.$$
(3)

⇒ Intuition [Cluster distinct activity (Ex: Dance, Yoga)]

Visual illustration

Figure: Intuition of spatial-temporal clustering.

Joint Optimization Formulation

Objective from the trajectory space

minimize
$$\lambda_1 \| C_1 \|_1 + \frac{(1 - \lambda_1)}{2} \| C_1 \|_F^2$$

subject to: (4)
 $S = SC_1, \operatorname{diag}(C_1) = 0, 1^T C_1 = 1^T, \lambda_1 \in [0, 1].$

Objective from the shape space

minimize
$$\lambda_3 \|C_2\|_1 + \frac{(1-\lambda_3)}{2} \|C_2\|_F^2$$

subject to: (5)
 $S^{\sharp} = S^{\sharp} C_2, \operatorname{diag}(C_2) = 0, \mathbf{1}^T C_2 = \mathbf{1}^T, \lambda_3 \in [0, 1].$

Joint Optimization Formulation

Overall Objective ⇒ solved using ADMM

$$\underset{S,C_{1},C_{2}}{\text{minimize}} \frac{1}{2} \|W - RS\|_{F}^{2} + \lambda_{1} \|C_{1}\|_{1} + \frac{1 - \lambda_{1}}{2} \|C_{1}\|_{F}^{2} + \lambda_{2} \|S^{\sharp}\|_{*} + \lambda_{3} \|C_{2}\|_{1} + \frac{1 - \lambda_{3}}{2} \|C_{2}\|_{F}^{2}.$$

$$\underset{Subject to:}{\text{subject to:}} S = SC_{1}, S^{\sharp} = S^{\sharp}C_{2},$$

$$1^{T}C_{1} = 1^{T}, 1^{T}C_{2} = 1^{T},$$

$$\underset{\Delta_{1}, \lambda_{3} \in [0, 1].$$
(6)

where $S^{\sharp} \in \mathbb{R}^{3P \times F}$, $C_1 \in \mathbb{R}^{P \times P}$, and $C_2 \in \mathbb{R}^{F \times F}$ and $\lambda_1, \lambda_2, \lambda_3$ are the trade-off parameters.

Experiments and Results

Advantage over two stage approach

Qualitative results on synthetic sequence

• Two deforming objects are intersecting each other.

Qualitative results(Cont.)

• Two deforming objects are well separated in space.

UMPM dataset [10] is composed of real-image tracks.

Quantitative Results on benchmark real-dataset

Datasets	BMM[1]	PND[9]	Zhu et al.[11]	Kumar et al.[8]	Ours
p2_free_2	0.1973	0.1544	0.1142	0.1992	0.1171
p2_grab_2	0.2018	0.1570	0.0960	0.2080	0.0822
p3_ball_1	0.1356	0.1477	0.0832	0.1348	0.0810
p4_meet_12	0.0802	0.0862	0.0972	0.0821	0.0815
p4_table_12	0.2313	0.1588	0.1322	0.2313	0.0994

Table: Performance comparison on real benchmark UMPM dataset [10] (showing relative 3D reconstruction error).

Quantitative Results on benchmark real-dataset

Datasets	BMM[1]	PND[9]	Zhu et al.[11]	Kumar et al.[8]	Ours
Face Seq.1	0.078	0.077	0.082	0.075	0.073
Face Seq.2	0.059	0.062	0.063	0.050	0.052
Face Seq.3	0.042	0.051	0.057	0.038	0.039
Face Seq.4	0.049	0.041	0.056	0.044	0.040

Table: Performance comparison on real benchmark dense face dataset [3] (showing relative 3D reconstruction error).

Evaluation result on NRSfM challenge dataset for test frame.

• Mean RMS (in mm) for orthogonal category.

Datasets	Articulated	Balloon	Paper	Stretch	Tearing
Our Method	10.15	10.64	15.78	9.96	14.17

Table: Performance on the NRSFM challenge dataset on all provided sequence for *single* test image provided by the challenge organizers.

 Note: We submitted results of two methods. Numerically both methods provide results that are very close to each other.

Performance comparison with other top 3 performing algorithms on NRSfM challenge dataset.

• Mean RMS (in mm) for orthogonal category.

Datasets	Articulated	Balloon	Paper	Stretch	Tearing	Mean
Multibody[7]	45.51	14.55	22.88	18.30	21.98	24.64
CSF2 [5]	35.51	19.01	33.95	23.22	18.77	26.09
RIKS [6]	42.11	18.45	32.18	22.88	18.12	26.75
KSTA [4]	36.63	24.88	31.96	24.25	17.59	26.86

Table: Note: These evaluations were done by the organizers of NRSfM challenge at CVPR 2017.

Thanks

References I

[1] Y. Dai, H. Li, and M. He.

A simple prior-free method for non-rigid structure-from-motion factorization.

International Journal of Computer Vision, 107(2):101-122, 2014.

[2] E. Elhamifar and R. Vidal.

Sparse subspace clustering: Algorithm, theory, and applications.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(11):2765-2781, 2013.

[3] R. Garg, A. Roussos, and L. Agapito.

Dense variational reconstruction of non-rigid surfaces from monocular video.

In Proc. IEEE Conf. Computer Vision and Pattern Recognition, pages 1272-1279, 2013.

[4] P. Gotardo and A. Martinez.

Kernel non-rigid structure from motion.

In Proc. IEEE Int'l Conf. Computer Vision, pages 802-809, 2011.

[5] P. Gotardo and A. Martinez.

Non-rigid structure from motion with complementary rank-3 spaces.

In Proc. IEEE Conf. Computer Vision and Pattern Recognition, pages 3065-3072, 2011.

[6] O. C. Hamsici, P. F. Gotardo, and A. M. Martinez.

Learning spatially-smooth mappings in non-rigid structure from motion.

In European Conference on Computer Vision, pages 260-273. Springer, 2012.

References II

[7] S. Kumar, Y. Dai, and H.Li.

Spatio-temporal union of subspaces for multi-body non-rigid structure-from-motion.

Pattern Recognition, 71:428-443, May 2017.

[8] S. Kumar, Y. Dai, and H. Li.

Multi-body non-rigid structure-from-motion.

In 3D Vision (3DV), 2016 Fourth International Conference on, pages 148-156. IEEE, 2016.

[9] M. Lee, J. Cho, C.-H. Choi, and S. Oh.

Procrustean normal distribution for non-rigid structure from motion.

In Proc. IEEE Conf. Computer Vision and Pattern Recognition, pages 1280-1287, 2013.

[10] N. van der Aa, X. Luo, G. Giezeman, R. Tan, and R. Veltkamp.

Umpm benchmark: A multi-person dataset with synchronized video and motion capture data for evaluation of articulated human motion and interaction

In Computer Vision Workshops (ICCV Workshops), 2011 IEEE International Conference on, pages 1264-1269, Nov 2011.

[11] Y. Zhu, D. Huang, F. De La Torre, and S. Lucey.

Complex non-rigid motion 3d reconstruction by union of subspaces.

In IEEE Conference on Computer Vision and Pattern Recognition, pages 1542-1549, 2014.