CS5841/EE5841 Machine Learning

Lecture 9: Review in preparation for neural networks

Evan Lucas

Common abbreviations

- Artificial neural network
 ANN
- Multilayer perceptron -MLP
 - MLP used interchangeably with fully connected or dense NN
- Neural networks NN
 - Used interchangeably with ANN
- Convolutional neural network - CNN

History moment

- First Al Winter criticisms of ANN by Minksy and others
 - They didn't know how to train them - no backpropagation for ANN's until 1982

Minsky and Perceptrons

- Published major work on limitations of perceptrons
 - namely that they can't solve XOR

Inputs	Weights	Net input function	Activation function	
(x_1)	$\begin{pmatrix} w_0 \\ w_1 \end{pmatrix}$	≥ (∑)—		output
X _m	(W _m)			

х	Y	F(x,y)
0	0	0
0	1	1
1	0	1
1	1	0

Training perceptrons - Backpropagation Rumelhart, Hinton, and Williams, 1986

 Allowed easy training of multiple layer perceptrons

Convolutional Neural Networks LeCun et al, 1998

Applied backprop to an architecture involving convolutional steps

Very similar to modern CNNs

Deep NNs

- Really big NNs
- Deep many layers
- First really successful one was AlexNet (2012)

ImageNet dataset

An illustrated example of neural networks

This image by Nikita is licensed under CC-BY 2.0

(assume given a set of possible labels) {dog, cat, truck, plane, ...}

cat

The Problem: Semantic Gap

This image by Nikita is licensed under CC-BY 2.0

What the computer sees

An image is a tensor of integers between [0, 255]:

e.g. 800 x 600 x 3 (3 channels RGB)

First classifier: Nearest Neighbor

Training data with labels

query data

Distance Metric

Example Dataset: CIFAR10

10 classes50,000 training images10,000 testing images

Test images and nearest neighbors

Setting Hyperparameters

Example of 5-fold cross-validation for the value of **k**.

Each point: single outcome.

The line goes through the mean, bars indicated standard deviation

(Seems that k ~= 7 works best for this data)

What does this look like?

k-Nearest Neighbor with pixel distance never used.

Distance metrics on pixels are not informative

(All three images on the right have the same pixel distances to the one on the left)

Parametric Approach: Linear Classifier

Parametric Approach: Linear Classifier

Parametric Approach: Linear Classifier

Neural Network

This image is CC0 1.0 public domain

Example with an image with 4 pixels, and 3 classes (cat/dog/ship Algebraic Viewpoint

Interpreting a Linear Classifier

Interpreting a Linear Classifier: Geometric Viewpoint

$$f(x,W) = Wx + b$$

Array of 32x32x3 numbers (3072 numbers total)

Plot created using Wolfram Cloud

Michigan Tech

Hard cases for a linear classifier

Class 1:

First and third quadrants

Class 2:

Second and fourth quadrants

Class 1:

1 <= L2 norm <= 2

Class 2:

Everything else

Class 1:

Three modes

Class 2:

Everything else

Linear Classifier – Choose a good W

airplane	-3.45	-0.51	3.42
automobile	-8.87	6.04	4.64
bird	0.09	5.31	2.65
cat	2.9	-4.22	5.1
deer	4.48	-4.19	2.64
dog	8.02	3.58	5.55
frog	3.78	4.49	-4.34
horse	1.06	-4.37	-1.5
ship	-0.36	-2.09	-4.79
truck	-0.72	-2.93	6.14

TODO:

- Define a loss function that quantifies our unhappiness with the scores across the training data.
- 2. Come up with a way of efficiently finding the parameters that minimize the loss function. (optimization)

Suppose: 3 training examples, 3 classes.

With some W the scores f(x, W) = Wx are:

cat

3.2

1.3

car

5.1

4.9

frog

-1.7

2.0

Losses:

2.9

2.2

2.5

-3.1

Multiclass SVM loss:

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s = f(x_i, W)$

the SVM loss has the form:

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

 $= \max(0, 2.2 - (-3.1) + 1)$

 $+\max(0, 2.5 - (-3.1) + 1)$

 $= \max(0, 6.3) + \max(0, 6.6)$

= 6.3 + 6.6

= 12.9

Softmax Classifier (Multinomial Logistic Regression)

Softmax Classifier (Multinomial Logistic Regression)

Questions + Comments?

Resources used

http://cs231n.stanford.edu/slides/2023/lecture_2.pdf