Homework 1

Shengshi Yuan Measure Theory

June 25, 2018

Problem 1.3.

- (1) is not an algebra
- (2) is not an algebra
- (3) is a σ algebra

Problem 1.7.

Suppose power set is not the largest possible σ algebra, then there exists a larger σ algebra that contains sets that are not subsets of $X \to \text{contradiction}$ by defination Suppose $\{\phi, x\}$ is not the smallest possible σ algebra, then there exists a smaller σ algebra A

Suppose $\{\phi, x\}$ is not the smallest possible σ algebra, then there exists a smaller σ algebra A $\subset \{\phi, x\}$. However, such set is not closed under complement \to contradiction by defination

Problem 1.10.

Let $\{S_a\}$ be a family of σ algebras.

 $A \in \cap S_a \Rightarrow A \in S_i \ \forall \ i \Rightarrow A^{\complement} \in S_i \ \forall \ i \Rightarrow A^{\complement} \cap S_a$ Let $A_j \in \cap S_i$ for $j \in J$. Then $A_j \in S_i \ \forall \ i \ \forall \ j \Rightarrow \cup A_j \subset \cap S_i$

Problem 1.17.

- (1) $A \subset B \Rightarrow \exists B_i \text{ such that } B_i \in B \text{ and } B_i \notin A \Rightarrow \mu(B) = \mu(B_i) + \mu(A) \geq \mu(A)$
- (2) If $\{A_i\}$ forms a partition of A, then the equality holds, otherwise $\sum_{i=1}^{\infty} \mu(A_i) \geq \mu(\cup A_i)$

Problem 1.18.

- (1) If A is empty, then $A \cap B$ is also empty $\Rightarrow \lambda(A) = \mu(A \cap B) = 0$
- (2) Let $\{A_i\}$ be a partition of $A \Rightarrow \lambda(\cup A_i) = \mu(A \cap B) = \sum_{i=1}^{\infty} \mu(A_i \cap B) = \sum_{i=1}^{\infty} \lambda(A_i)$

Problem 2.14.

Let A be an algebra. By lemma, \forall sets in A can be written as countable unions of open intervals $\Rightarrow A_i \in \sigma(O) \ \forall i \Rightarrow \sigma(A) \subset \sigma(O)$. Also, \forall sets in O can be written as countable union of sets of $A \Rightarrow O \subset A \Rightarrow \sigma(O) \subset \sigma(A) \Rightarrow \sigma(O) = \sigma(A)$

Problem 3.1.

Let $a \in \mathbb{R}$. Then $\{a\} \subset \{a-\epsilon, a+\epsilon\} \ \forall \epsilon \Rightarrow 2\epsilon = \lambda^*(\{a-\epsilon, a+\epsilon\}) \geq \lambda^*(\{a\}) \Rightarrow \lambda^*(\{a\}) = 0 \ \forall a$. If $A = \cup \{a_i\}$ is a countable set, then $\lambda^*(A) = 0$

Problem 3.4.

Each of 4 sets can be written as either countable unions of other sets or complements of other set, hence, if one of them is measurable, others are also measurable.

Problem 3.7.