Homework #5

Sam Fleischer

February 21, 2016

Hunter and Nachtergaele 8.2	2
Hunter and Nachtergaele 8.3	2
Hunter and Nachtergaele 8.4	3
Hunter and Nachtergaele 8.6	3
Hunter and Nachtergaele 8.7	3
Hunter and Nachtergaele 8.8	4
Hunter and Nachtergaele 8.9	4
Hunter and Nachtergaele 8.11	5
Hunter and Nachtergaele 8.12	5

Hunter and Nachtergaele 8.2

If $\mathcal{H} = \mathcal{M} \oplus \mathcal{N}$ is an orthogonal direct sum, show that $\mathcal{M}^{\perp} = \mathcal{N}$ and $\mathcal{N}^{\perp} = \mathcal{M}$.

Proof. Suppose $x \in \mathcal{M}^{\perp}$. Then $x \in \mathcal{H} \Longrightarrow \exists ! y, z \text{ such that } x = y + z \text{ where } y \in \mathcal{M} \text{ and } z \in \mathcal{N}$. Then

$$\langle x, x \rangle = \langle x, y \rangle^{-0} + \langle x, z \rangle = \langle x, z \rangle \implies \langle x, x - z \rangle = 0 \implies x = z$$

which shows $x \in \mathcal{N}$, i.e. $\mathcal{M}^{\perp} \subset \mathcal{N}$.

Now suppose $x \notin \mathcal{M}^{\perp}$. Then $x \in \mathcal{M}$ and $x \neq 0$. Thus $x \notin \mathcal{N}$ since a direct sum implies $\mathcal{N} \cap \mathcal{M} = \{0\}$. Thus $\mathcal{N} \subset \mathcal{M}^{\perp} \subset \mathcal{N} \implies \mathcal{N} = \mathcal{M}^{\perp}$.

Switching \mathcal{N} and \mathcal{M} in the above paragraphs shows $\mathcal{M} = \mathcal{N}^{\perp}$.

Hunter and Nachtergaele 8.3

Let \mathcal{M} , \mathcal{N} be closed subspaces of a Hilbert space \mathcal{H} and P, Q the orthogonal projections with ran $P = \mathcal{M}$, ran $Q = \mathcal{N}$. Prove that the following conditions are equivalent: (a) $\mathcal{M} \subset \mathcal{N}$; (b) QP = P; (c) PQ = P; (d) $\|Px\| \le \|Qx\|$ for all $x \in \mathcal{H}$; (e) $\langle x, Px \rangle \le \langle x, Qx \rangle$ for all $x \in \mathcal{H}$.

Proof. We will show $(a) \to (b) \to (c) \to (d) \to (e) \to (a)$, which proves the statements' equivalence.

- $(a) \to (b)$. Let $\mathcal{M} \subset \mathcal{N}$ and let $x \in \mathcal{H}$. Then $Px \in \mathcal{M} \subset \mathcal{N} \implies Q(Px) = Px \implies QP = P$.
- $(b) \rightarrow (c)$. Let QP = P. Then

$$\langle x, Py \rangle = \langle Px, y \rangle = \langle QPx, y \rangle = \langle Px, Qy \rangle = \langle x, PQy \rangle \Longrightarrow \langle x, Py - PQy \rangle = 0 \quad \forall x, y \in \mathcal{H}.$$

Thus Py - PQy = 0 for all $y \in \mathcal{H}$, i.e. PQ = P.

 $(c) \rightarrow (d)$. Let PQ = P. First note $||Px|| \le ||x||$ for all $x \in \mathcal{H}$ because

$$\|Px\| = \frac{\|Px\|^2}{\|Px\|} = \frac{\langle Px, Px \rangle}{\|Px\|} = \frac{\left\langle x, P^2x \right\rangle}{\|Px\|} = \frac{\langle x, Px \rangle}{\|Px\|} \le \|x\|$$

by the Cauchy-Schwarz inequality. Thus,

$$||Px|| = ||PQx|| = ||P(Qx)|| \le ||Qx|| \quad \forall x \in \mathcal{H}$$

 $(d) \to (e)$. Let $||Px|| \le ||Qx||$.

$$\|Px\|^2 \le \|Qx\|^2 \implies \langle Px, Px \rangle \le \langle Qx, Qx \rangle \implies \langle x, P^2x \rangle \le \langle x, Q^2x \rangle \implies \langle x, Px \rangle \le \langle x, Qx \rangle \qquad \forall x \in \mathcal{H}$$

(e) \rightarrow (a). Let $\langle x, Px \rangle \leq \langle x, Qx \rangle$ and suppose $x \in M$. Then Px = x. Then $\|x\|^2 = \langle x, x \rangle = \langle x, Px \rangle \leq \langle x, Qx \rangle$. However, since $\|Qx\| \leq \|x\|$ for all x, then $\langle x, Qx \rangle \leq \|x\| \|Qx\| \leq \|x\|^2$, which shows $\langle x, Qx \rangle = \|x\|^2$. Thus Qx = x, which shows $x \in \mathcal{N}$, proving $\mathcal{M} \subset \mathcal{N}$.

Hunter and Nachtergaele 8.4

Suppose that (P_n) is a sequence of orthogonal projections on a Hilbert space \mathcal{H} such that

$$\operatorname{ran} P_{n+1} \supset \operatorname{ran} P_n, \qquad \bigcup_{n=1}^{\infty} \operatorname{ran} P_n = \mathcal{H}.$$

Prove that (P_n) converges strongly to the identity operator I as $n \to \infty$. Show that (P_n) does not converge to the identity operator with respect to the operator norm unless $P_n = I$ for all sufficiently large n.

Proof. Let $x \in \mathcal{H}$. Then $\exists N$ such that $x \in \operatorname{ran} P_N$. Thus $x \in \operatorname{ran} P_n$ for all $n \ge N$. Since each P_n is an orthogonal projection, then $x = P_n x$ for all $n \ge N$. Thus

$$\lim_{n\to\infty}P_nx=\lim_{n\to\infty}x=x=Ix$$

where I is the identity operator. Thus (P_n) converges strongly to I. If $P_n = I$ for all sufficiently large n, then obviously

$$\lim_{n\to\infty}\|P_n\|=\lim_{n\to\infty}\|I\|=\|I\|$$

Hunter and Nachtergaele 8.6

Show that a linear operator $U: \mathcal{H}_1 \to \mathcal{H}_2$ is unitary if and only if it is an isometric isomorphism of normed linear spaces. Show that an invertible linear map is unitary if and only if its inverse is.

Hunter and Nachtergaele 8.7

If ϕ_y is the bounded linear functional defined in (8.5)

$$\phi_{y}(x) = \langle y, x \rangle \tag{8.5}$$

Prove that $\|\phi_y\| = \|y\|$.

Proof. First we prove $\|\phi_y\|$ is bounded above by $\|y\|$.

$$\|\phi_y\| = \sup_{\|x\|=1} \|\phi_y(x)\| = \sup_{\|x\|=1} \langle y, x \rangle \le \sup_{\|x\|=1} \|y\| \|x\| = \|y\|$$

Next, consider $x = \frac{y}{\|y\|}$ (note $\|x\| = 1$):

$$\|\phi_{y}(x)\| = \|\langle y, x \rangle\| = \left\|\frac{\langle y, y \rangle}{\|y\|}\right\| = \left\|\frac{\|y\|^{2}}{\|y\|}\right\| = \|y\|$$

and thus $\|\phi_v\| \ge \|y\|$, which proves $\|\phi_v\| = \|y\|$.

Hunter and Nachtergaele 8.8

Prove that \mathcal{H}^* is a Hilbert space with the inner product defined by

$$\langle \phi_x, \phi_y \rangle_{\mathcal{H}^*} = \langle y, x \rangle_{\mathcal{H}}.$$

Proof. First note $\langle \cdot, \cdot \rangle_{\mathscr{H}^*}$ is a well-defined inner product since $\langle \cdot, \cdot \rangle_{\mathscr{H}}$ is a well-defined inner product (i.e. the properties of inner product hold). It suffices to show \mathscr{H}^* is closed. Let (ϕ_n) be a convergent sequence of linear functionals in \mathscr{H}^* . By the Riesz Representation Theorem, for all n, $\exists y_n$ such that $\phi_n(x) = \langle y_n, x \rangle_{\mathscr{H}}$ for all $x \in \mathscr{H}$. Since (ϕ_n) converges, then $\forall x \in \mathscr{H}$, $\langle y_n, x \rangle_{\mathscr{H}}$ converges. By continuity of inner product, then y_n converges to some y. By completeness of \mathscr{H} , $y \in \mathscr{H}$. Again by the Riesz Representation Theorem, $\exists \phi \in \mathscr{H}^*$ such that $\phi(x) = \langle y, x \rangle_{\mathscr{H}}$ for all $x \in \mathscr{H}$. Moreover,

$$\lim_{n\to\infty}\phi_n=\lim_{n\to\infty}\langle y_n,\cdot\rangle_{\mathscr{H}}=\langle y,\cdot\rangle_{\mathscr{H}}=\phi_y$$

Thus \mathcal{H}^* is closed, which proves \mathcal{H}^* is a Hilbert space.

Hunter and Nachtergaele 8.9

Let $A \subset \mathcal{H}$ be such that

 $\mathcal{M} = \{x \in \mathcal{H} \mid x \text{ is a finite linear combination of elements in } A\}$

is a dense linear subspace of \mathcal{H} . Prove that any bounded linear functional on \mathcal{H} is uniquely determined by its values on A. If $\{u_{\alpha}\}$ is an orthonormal basis, find a necessary and sufficient condition on a family of complex numbers c_{α} for there to be a bounded linear functional ϕ such that $\phi_{u_{\alpha}} = c_{\alpha}$.

Hunter and Nachtergaele 8.11

Prove that if $A: \mathcal{H} \to \mathcal{H}$ *is a linear map and* dim $\mathcal{H} < \infty$, then

 $\dim \ker A + \dim \operatorname{ran} A = \dim \mathcal{H}$.

Prove that, if $\dim \mathcal{H} < \infty$, then $\dim \ker A = \dim \ker A^*$. In particular, $\ker A = \{0\}$ if and only if $\ker A^* = \{0\}$.

Hunter and Nachtergaele 8.12

Suppose that $A: \mathcal{H} \to \mathcal{H}$ is a bounded, self-adjoint linear operator such that there is a constant c > 0 with

 $c||x|| \le ||Ax||$ for all $x \in \mathcal{H}$.

Prove that there is a unique solution x of the equation Ax = y for every y \in \mathcal{H}.