Bottom-Up Parsing II

Lecture 8

Instructor: Fredrik Kjolstad
Slides based on slides designed by Prof. Alex Aiken

Review: Shift-Reduce Parsing

Bottom-up parsing uses two actions:

$$Shift$$

$$ABC|xyz \Rightarrow ABCx|yz$$

Reduce $Cbxy|ijk \Rightarrow CbA|ijk$

Recall: The Stack

- · Left string can be implemented by a stack
 - Top of the stack is the
- Shift pushes a terminal on the stack
- Reduce
 - pops 0 or more symbols off of the stack
 - production rhs
 - pushes a non-terminal on the stack
 - production lhs

Key Issue

- How do we decide when to shift or reduce?
- Example grammar:

```
E \rightarrow T + E \mid T

T \rightarrow int * T \mid int \mid (E)
```

- Consider step int | * int + int
 - We could reduce by $T \rightarrow int giving T \mid * int + int$
 - A fatal mistake!
 - No way to reduce to the start symbol E

Definition: Handles

 Intuition: Want to reduce only if the result can still be reduced to the start symbol

Assume a rightmost derivation

$$5 \rightarrow^* \alpha X \omega \rightarrow \alpha \beta \omega$$

• Then X $\rightarrow \beta$ in the position after α is a handle of $\alpha\beta\omega$

Handles (Cont.)

- Handles formalize the intuition
 - A handle is a string that can be reduced and also allows further reductions back to the start symbol (using a particular production at a specific spot)
- We only want to reduce at handles
- Note: We have said what a handle is, not how to find handles

Important Fact #2

Important Fact #2 about bottom-up parsing:

In shift-reduce parsing, handles appear only at the top of the stack, never inside

Why?

- Informal induction on # of reduce moves:
- True initially, stack is empty
- · Immediately after reducing a handle
 - right-most non-terminal on top of the stack
 - next handle must be to right of right-most nonterminal, because this is a right-most derivation
 - Sequence of shift moves reaches next handle

Summary of Handles

- In shift-reduce parsing, handles always appear at the top of the stack
- Handles are never to the left of the rightmost non-terminal
 - Therefore, shift-reduce moves are sufficient; the | need never move left
- Bottom-up parsing algorithms are based on recognizing handles

Recognizing Handles

- There are no known efficient algorithms to recognize handles
- Solution: use heuristics to guess which stacks are handles
- On some CFGs, the heuristics always guess correctly
 - For the heuristics we use here, these are the SLR grammars
 - Other heuristics work for other grammars

Grammars

Viable Prefixes

- It is not obvious how to detect handles
- At each step the parser sees only the stack, not the entire input; start with that . . .
 - α is a viable prefix if there is an ω such that $\alpha \mid \omega$ is a state of a shift-reduce parser

Huh?

- · What does this mean? A few things:
 - A viable prefix does not extend past the right end of the handle
 - It's a viable prefix because it is a prefix of the handle
 - As long as a parser has viable prefixes on the stack no parsing error has been detected

Important Fact #3

Important Fact #3 about bottom-up parsing:

For any grammar, the set of viable prefixes is a regular language

Important Fact #3 (Cont.)

- Important Fact #3 is non-obvious
- We show how to compute automata that accept viable prefixes

Items

- An item is a production with a "." somewhere on the rhs, denoting a focus point
- The items for $T \rightarrow (E)$ are
 - $T \rightarrow .(E)$
 - $T \rightarrow (.E)$
 - $T \rightarrow (E.)$
 - $T \rightarrow (E)$.

Items (Cont.)

- The only item for $X \to \varepsilon$ is $X \to .$
- Items are often called "LR(0) items"

Intuition

- The problem in recognizing viable prefixes is that the stack has only bits and pieces of the rhs of productions
 - If it had a complete rhs, we could reduce
- These bits and pieces are always prefixes of rhs of productions

Example

Consider the input (int)

- Then (E|) is a state of a shift-reduce parse
- (E is a prefix of the rhs of $T \rightarrow$ (E)
 - · Will be reduced after the next shift
- Item $T \rightarrow$ (E.) says that so far we have seen (E of this production and hope to see)

Generalization

- The stack may have many prefixes of rhs's $Prefix_1 Prefix_2 \dots Prefix_{n-1} Prefix_n$
- Let Prefix; be a prefix of rhs of $X_i \rightarrow \alpha_i$
 - Prefix, will eventually reduce to Xi
 - The missing part of α_{i-1} starts with X_i
 - i.e. there is a $X_{i-1} \rightarrow Prefix_{i-1} X_i \beta$ for some β
- Recursively, Prefix_{k+1}...Prefix_n eventually reduces to the missing part of α_k

An Example

```
E \rightarrow T + E \mid T

T \rightarrow int * T \mid int \mid (E)
```

```
Consider the string (int * int):
  (int *|int) is a state of a shift-reduce parse
  "(" is a prefix of the rhs of T \rightarrow (E)
  "\epsilon" is a prefix of the rhs of E \rightarrow T
  "int *" is a prefix of the rhs of T \rightarrow int * T
```

An Example (Cont.)

$$E \rightarrow T + E \mid T$$

 $T \rightarrow int * T \mid int \mid (E)$

```
The "stack of items" T \to (.E) E \to .T T \to int * .T Says We've seen "(" of T \to (E) We've seen \epsilon of E \to T We've seen int * of T \to int * T
```

Recognizing Viable Prefixes

Idea: To recognize viable prefixes, we must

- Recognize a sequence of partial rhs's of productions, where
- Each sequence can eventually reduce to part of the missing suffix of its predecessor

An NFA Recognizing Viable Prefixes

- 1. Add a dummy production $S' \rightarrow S$ to G
- 2. The NFA states are the items of G
 - Including the extra production
- 3. For item $E \rightarrow \alpha.X\beta$ add transition $E \rightarrow \alpha.X\beta \rightarrow^X E \rightarrow \alpha X.\beta$
- 4. For item $E \to \alpha.X\beta$ and production $X \to \gamma$ add $E \to \alpha.X\beta \to \alpha.X\beta \to \alpha.X\beta$

An NFA Recognizing Viable Prefixes (Cont.)

5. Every state is an accepting state

6. Start state is $5' \rightarrow .5$

$$E \rightarrow T + E \mid T$$

 $T \rightarrow int * T \mid int \mid (E)$

NFA for Viable Prefixes
$$E \rightarrow T + E \mid T$$

 $T \rightarrow int * T \mid int \mid (E)$

$$E \rightarrow T + E \mid T$$

 $T \rightarrow int * T \mid int \mid (E)$

$$E \rightarrow T + E \mid T$$

 $T \rightarrow int * T \mid int \mid (E)$

$$E \rightarrow T + E \mid T$$

 $T \rightarrow int * T \mid int \mid (E)$

$$E \rightarrow T + E \mid T$$

 $T \rightarrow int * T \mid int \mid (E)$

$$E \rightarrow T + E \mid T$$

 $T \rightarrow int * T \mid int \mid (E)$

$$E \rightarrow T + E \mid T$$

 $T \rightarrow int * T \mid int \mid (E)$

$$E \rightarrow T + E \mid T$$

 $T \rightarrow int * T \mid int \mid (E)$

$$E \rightarrow T + E \mid T$$

 $T \rightarrow int * T \mid int \mid (E)$

$$E \rightarrow T + E \mid T$$

 $T \rightarrow int * T \mid int \mid (E)$

NFA for Viable Prefixes

$$E \rightarrow T + E \mid T$$

 $T \rightarrow int * T \mid int \mid (E)$

NFA for Viable Prefixes

$$E \rightarrow T + E \mid T$$

 $T \rightarrow int * T \mid int \mid (E)$

NFA for Viable Prefixes

$$E \rightarrow T + E \mid T$$

 $T \rightarrow int * T \mid int \mid (E)$

Translation to the DFA

 $E \rightarrow T + . E$

 $E \rightarrow .T$

 $E \rightarrow .T + E$

T → .(E)

 $T \rightarrow .int * T$

 $T \rightarrow .int$

 $E \rightarrow T + E$.

 $S' \rightarrow . E$

E

 $S' \rightarrow E$.

 $E \rightarrow . T$

 $E \rightarrow .T + E$

 $T \rightarrow .(E)$

 $T \rightarrow .int * T$

 $T \rightarrow .\mathsf{int}$

 $E \rightarrow T. + E$

 $E \rightarrow T$.

 $T \rightarrow int. * T$

int

int $T \rightarrow int$.

int

 $T \rightarrow int * .T$

 $T \rightarrow .(E)$

 $T \rightarrow .int * T$

 $T \rightarrow .int$

int

 $T \rightarrow int * T$.

 $T \rightarrow (E.)$

 $T \rightarrow (E)$.

 $T \rightarrow (. E)$

 $E \rightarrow .T$

 $\mathsf{E} \to .\mathsf{T} + \mathsf{E}$

 $T \rightarrow .(E)$

 $T \rightarrow .int * T$

 $T \rightarrow .int$

40

Lingo

The states of the DFA are

"canonical collections of items"

or

"canonical collections of LR(0) items"

The Dragon book gives another way of constructing LR(0) items

Valid Items

Item $X \to \beta.\gamma$ is valid for a viable prefix $\alpha\beta$ if $S' \to^* \alpha X \omega \to \alpha\beta\gamma\omega$

by a right-most derivation

After parsing $\alpha\beta$, the valid items are the possible tops of the stack of items

Items Valid for a Prefix

An item I is valid for a viable prefix α if the DFA recognizing viable prefixes terminates on input α in a state s containing I

The items in s describe what the top of the item stack might be after reading input α

Valid Items Example

- · An item is often valid for many prefixes
- Example: The item $T \rightarrow (.E)$ is valid for prefixes

LR(0) Parsing

- · Idea: Assume
 - stack contains α
 - next input is t
 - DFA on input α terminates in state s
- Reduce by $X \to \beta$ if
 - s contains item $X \rightarrow \beta$.
- Shift if
 - s contains item $X \rightarrow \beta.t\omega$
 - equivalent to saying s has a transition labeled t

LR(0) Conflicts

- LR(0) has a reduce/reduce conflict if:
 - Any state has two reduce items:
 - $X \rightarrow \beta$. and $Y \rightarrow \omega$.
- LR(0) has a shift/reduce conflict if:
 - Any state has a reduce item and a shift item:
 - $X \rightarrow \beta$. and $Y \rightarrow \omega.t\delta$

 $E \rightarrow T$.

 $E \rightarrow T. + E$

 $T \rightarrow int. * T$

 $E \rightarrow T + E$.

 $T \rightarrow .int$

 $S' \rightarrow E$.

 $T \rightarrow \text{int.}$ int

* $T \rightarrow \text{int * .T}$ $T \rightarrow .(E)$ $T \rightarrow .\text{int * T}$ $T \rightarrow .\text{int}$

in

Two shift/reduce conflicts with LR(0) rules

SLR

- LR = "Left-to-right scan"
- SLR = "Simple LR"
- SLR improves on LR(0) shift/reduce heuristics
 - Fewer states have conflicts

SLR Parsing

- · Idea: Assume
 - stack contains α
 - next input is t
 - DFA on input α terminates in state s
- Reduce by $X \to \beta$ if
 - s contains item $X \rightarrow \beta$.
 - t ∈ Follow(X)
- Shift if
 - s contains item $X \rightarrow \beta.t\omega$

SLR Parsing (Cont.)

- If there are conflicts under these rules, the grammar is not SLR
- The rules amount to a heuristic for detecting handles
 - The SLR grammars are those where the heuristics detect exactly the handles

 $S' \rightarrow E$.

$$E \rightarrow T. + E$$

$$T \rightarrow int. * T$$

$$T \rightarrow int. * T$$

$$T \rightarrow int.$$

$$E \rightarrow . T$$

$$E \rightarrow . T + E$$

$$T \rightarrow .(E)$$

$$T \rightarrow .int * T$$

 $E \rightarrow T$.

No conflicts with SLR rules!

Precedence Declarations Digression

- Lots of grammars aren't SLR
 - including all ambiguous grammars
- We can parse more grammars by using precedence declarations
 - Instructions for resolving conflicts

Precedence Declarations (Cont.)

- Consider our favorite ambiguous grammar:
 - $E \rightarrow E + E \mid E * E \mid (E) \mid int$
- The DFA for this grammar contains a state with the following items:
 - $E \rightarrow E * E$. $E \rightarrow E . + E$
 - shift/reduce conflict!
- Declaring "* has higher precedence than +" resolves this conflict in favor of reducing

Precedence Declarations (Cont.)

- The term "precedence declaration" is misleading
- These declarations do not define precedence;
 they define conflict resolutions
 - Not quite the same thing!

Naïve SLR Parsing Algorithm

- 1. Let M be DFA for viable prefixes of G
- 2. Let $|x_1...x_n|$ be initial configuration
- 3. Repeat until configuration is 5 | \$
 - Let $\alpha \mid \omega$ be current configuration
 - Run M on current stack α
 - If M rejects α , report parsing error
 - Stack α is not a viable prefix
 - If M accepts α with items I, let a be next input
 - Reduce if $X \to \beta$. $\in I$ and $\alpha \in Follow(X)$
 - Shift if $X \rightarrow \beta$. $\alpha \gamma \in I$
 - Report parsing error if neither applies

Notes

 If there is a conflict in the last step, grammar is not SLR(k)

- k is the amount of lookahead
 - In practice k = 1

```
Configuration DFA Halt State Action | int * int$ 1 shift
```



```
Configuration DFA Halt State Action | int * int$ 1 shift | int | * int$ 3 * not in Follow(T) shift | int * | int$ 11 shift
```


$E \rightarrow T + . E$ $E \rightarrow .T$ Configuration int * | int\$ $E \rightarrow T + E$. $E \rightarrow .T + E$ T → .(E) $E \rightarrow T$. $S' \rightarrow E$. $T \rightarrow .int * T$ $E \rightarrow T. + E$ $T \rightarrow .\mathsf{int}$ $T \rightarrow (. E)$ $T \rightarrow int. * \underline{T}$ $E \rightarrow .T$ int $T \rightarrow int$. $S' \rightarrow . E$ int $\mathsf{E} \to .\mathsf{T} + \mathsf{E}$ 4 $E \rightarrow . T$ $T \rightarrow .(E)$ int $T \rightarrow int * T.$ $E \rightarrow .T + E$ $T \rightarrow .int * T$ $T \rightarrow int ~ ^{\bigstar}$. T $T \rightarrow .(E)$ $T \rightarrow .int$ $T \rightarrow (E.)$ 11 $T \rightarrow .(E)$ $T \rightarrow .int * T$ 9 $T \rightarrow .int * T$ $T \rightarrow .int$ $T \rightarrow (E)$. 10 $T \rightarrow .int$ 65

$E \rightarrow T + . E$ $E \rightarrow .T$ $E \rightarrow T + E$. Configuration int * int | \$ $E \rightarrow .T + E$ T → .(E) $E \rightarrow T$. $S' \rightarrow E$. $T \rightarrow .int * T$ $E \rightarrow T. + E$ $T \rightarrow .\mathsf{int}$ $T \rightarrow (. E)$ $T \rightarrow int. * \underline{T}$ $E \rightarrow .T$ int $T \rightarrow int$. $S' \rightarrow . E$ int $\mathsf{E} \to .\mathsf{T} + \mathsf{E}$ 4 $E \rightarrow . T$ $T \rightarrow .(E)$ int $T \rightarrow int * T.$ $E \rightarrow .T + E$ $T \rightarrow .int * T$ $T \rightarrow int ~ ^{\bigstar}$. T $T \rightarrow .(E)$ $T \rightarrow .int$ $T \rightarrow (E.)$ 11 $T \rightarrow .(E)$ $T \rightarrow .int * T$ 9 $T \rightarrow .int * T$ $T \rightarrow .int$ $T \rightarrow (E)$. 10 $T \rightarrow .int$ 69

$E \rightarrow T + . E$ $E \rightarrow .T$ $E \rightarrow T + E$. Configuration int * int | \$ $E \rightarrow .T + E$ T → .(E) $E \rightarrow T$. $S' \rightarrow E$. $T \rightarrow .int * T$ $E \rightarrow T. + E$ $T \rightarrow .\mathsf{int}$ $T \rightarrow (. E)$ $T \rightarrow int. * T$ $E \rightarrow .T$ $S' \rightarrow . E$ $T \rightarrow int$. int int $\mathsf{E} \to .\mathsf{T} + \mathsf{E}$ 4 $E \rightarrow . T$ $T \rightarrow .(E)$ int $T \rightarrow int * T.$ $E \rightarrow .T + E$ $T \rightarrow .int * T$ $T \rightarrow int * .T$ $T \rightarrow .(E)$ $T \rightarrow .int$ $T \rightarrow (E.)$ T → .(E) $T \rightarrow .int * T$ 9 $T \rightarrow .int * T$ $T \rightarrow .int$ $T \rightarrow (E)$. 10 $T \rightarrow .int$ 70

$E \rightarrow T + . E$ $E \rightarrow .T$ $E \rightarrow T + E$. Configuration int * int | \$ $E \rightarrow .T + E$ T → .(E) $E \rightarrow T$. $S' \rightarrow E$. $T \rightarrow .int * T$ $E \rightarrow T. + E$ $T \rightarrow .\mathsf{int}$ $T \rightarrow (. E)$ $T \rightarrow int. * \underline{T}$ $E \rightarrow .T$ int $T \rightarrow int$. $S' \rightarrow . E$ int $\mathsf{E} \to .\mathsf{T} + \mathsf{E}$ 4 $E \rightarrow . T$ $T \rightarrow .(E)$ int $T \rightarrow int * T.$ $E \rightarrow .T + E$ $T \rightarrow .int * T$ $T \rightarrow int ~ ^{\bigstar}$. T $T \rightarrow .(E)$ $T \rightarrow .int$ $T \rightarrow (E.)$ 11 $T \rightarrow .(E)$ $T \rightarrow .int * T$ 9 $T \rightarrow .int * T$ $T \rightarrow .int$ $T \rightarrow (E)$. 10 $T \rightarrow .int$ 71

```
Configuration DFA Halt State
                                     Action
lint * int$
                                     shift
int | * int$
                                     shift
               3 * not in Follow(T)
int * | int$
                                     shift
               11
                                     red. T→int
            3 \quad \$ \in Follow(T)
int * int |$
int * T | $
               4 \quad \$ \in Follow(T)
                                     red. T→int*T
```


$E \rightarrow T + . E$ $E \rightarrow .T$ $E \rightarrow T + E$. Configuration int * T | \$ $E \rightarrow .T + E$ T → .(E) $E \rightarrow T$. $S' \to E$. $T \rightarrow .int * T$ $E \rightarrow T. + E$ $T \rightarrow .\mathsf{int}$ $T \rightarrow (. E)$ $T \rightarrow int. * \underline{T}$ $E \rightarrow .T$ int $T \rightarrow int$. $S' \rightarrow . E$ int $\mathsf{E} \to .\mathsf{T} + \mathsf{E}$ 4 $E \rightarrow . T$ $T \rightarrow .(E)$ int $T \rightarrow int * T.$ $E \rightarrow .T + E$ $T \rightarrow .int * T$ $T \rightarrow int ~ ^{\bigstar}$. T $T \rightarrow .(E)$ $T \rightarrow .int$ $T \rightarrow (E.)$ 11 $T \rightarrow .(E)$ $T \rightarrow .int * T$ 9 $T \rightarrow .int * T$ $T \rightarrow .int$ $T \rightarrow (E)$. 10 $T \rightarrow .int$ 74

$E \rightarrow T + . E$ $E \rightarrow .T$ $E \rightarrow T + E$. Configuration int * T | \$ $E \rightarrow .T + E$ T → .(E) $E \rightarrow T$. $S' \to E$. $T \rightarrow .int * T$ $E \rightarrow T. + E$ $T \rightarrow .\mathsf{int}$ $T \rightarrow (. E)$ $T \rightarrow int. * T$ $E \rightarrow .T$ $S' \rightarrow . E$ $T \rightarrow int$. int int $\mathsf{E} \to .\mathsf{T} + \mathsf{E}$ 4 $E \rightarrow . T$ $T \rightarrow .(E)$ int $T \rightarrow int * T.$ $E \rightarrow .T + E$ $T \rightarrow .int * T$ $T \rightarrow int * .T$ $T \rightarrow .(E)$ $T \rightarrow .int$ $T \rightarrow (E.)$ T → .(E) $T \rightarrow .int * T$ 9 $T \rightarrow .int * T$ $T \rightarrow .int$ $T \rightarrow (E)$. 10 $T \rightarrow .int$ 75

$E \rightarrow T + . E$ $E \rightarrow .T$ $E \rightarrow T + E$. Configuration int * T | \$ $E \rightarrow .T + E$ T → .(E) $E \rightarrow T$. $S' \rightarrow E$. $T \rightarrow .int * T$ $E \rightarrow T. + E$ $T \rightarrow .\mathsf{int}$ $T \rightarrow (. E)$ $T \rightarrow int. * T$ $E \rightarrow .T$ $S' \rightarrow . E$ $T \rightarrow int$. int int $E \rightarrow .T + E$ 4 $E \rightarrow . T$ $T \rightarrow .(E)$ int $T \rightarrow int * T$. $E \rightarrow .T + E$ $T \rightarrow .int * T$ $T \rightarrow int ~ ^{\bigstar}$. T $T \rightarrow .(E)$ $T \rightarrow .int$ $T \rightarrow (E.)$ 11 $T \rightarrow .(E)$ $T \rightarrow .int * T$ 9 $T \rightarrow .int * T$ $T \rightarrow .int$ $T \rightarrow (E)$. 10 $T \rightarrow .int$ 76

SLR Example

```
Configuration DFA Halt State
                                       Action
lint * int$
                                       shift
int | * int$
                                      shift
                3 * not in Follow(T)
int * | int$
                                      shift
                11
                                      red. T→int
int * int |$
                3 \quad \$ \in Follow(T)
int * T | $
                4 \quad \$ \in Follow(T)
                                      red. T→int*T
T |$
                5 $ \in Follow(E) red. E\rightarrowT
```


SLR Example

```
Configuration DFA Halt State
                                       Action
lint * int$
                                       shift
int | * int$
                                       shift
                3 * not in Follow(T)
int * | int$
                                       shift
                11
                                       red. T→int
int * int |$
                3 \quad \$ \in Follow(T)
int * T | $
                4 \quad \$ \in Follow(T)
                                       red. T→int*T
T |$
                5 \quad \$ \in Follow(T)
                                       red. E→T
E |$
                                       accept
```

Notes

- Skipped using extra start state 5' in this example to save space on slides
- Rerunning the automaton at each step is wasteful
 - Most of the work is repeated

An Improvement

 Remember the state of the automaton on each prefix of the stack

Change stack to contain pairs

Symbol, DFA State >

An Improvement (Cont.)

For a stack

```
\langle sym_1, state_1 \rangle \dots \langle sym_n, state_n \rangle
state<sub>n</sub> is the final state of the DFA on sym_1 \dots sym_n
```

- Detail: The bottom of the stack is (any,start) where
 - any is any dummy symbol
 - start is the start state of the DFA

Goto Table

- Define goto[i,A] = j if state_i \rightarrow ^A state_j
- goto is just the transition function of the DFA
 - One of two parsing tables

Refined Parser Moves

- · Shift x
 - Push $\langle a, x \rangle$ on the stack
 - a is current input
 - x is a DFA state
- Reduce $X \rightarrow \alpha$
 - As before
- Accept
- Error

Action Table

For each state s; and terminal a

- If s_i has item $X \to \alpha.a\beta$ and goto[i,a] = j then action[i,a] = shift j
- If s_i has item $X \to \alpha$. and $a \in Follow(X)$ and $X \neq S'$ then action[i,a] = reduce $X \to \alpha$
- If s_i has item $S' \rightarrow S$. then action[i,\$] = accept
- Otherwise, action[i,a] = error

SLR Parsing Algorithm

```
Let I = w$ be initial input
Let j = 0
Let DFA state 1 have item S' \rightarrow .S
Let stack = \( \text{dummy, 1} \)
   repeat
        case action[top_state(stack),I[j]] of
                 shift k: push ( I[j++], k )
                 reduce X \rightarrow A:
                     pop |A| pairs,
                     push (X, goto[top_state(stack),X])
                 accept: halt normally
                 error: halt and report error
```

Notes on SLR Parsing Algorithm

- Note that the algorithm uses only the DFA states and the input
 - The stack symbols are never used!
- However, we still need the symbols for semantic actions

More Notes

- Some common constructs are not SLR(1)
- LR(1) is more powerful
 - Build lookahead into the items
 - An LR(1) item is a pair: LR(0) item x lookahead
 - $[T\rightarrow . int * T, $]$ means
 - After seeing T→ int * T reduce if lookahead is \$
 - More accurate than just using follow sets
 - Take a look at the LR(1) automaton for your parser!