KECERDASAN TIRUAN (UAS)

Nama: Tulus Prasetyo

Nim: 230741094

Prodi: Ilmu Komputer

Penjelasan Object Detection Project

from ultralytics import YOLO # Untuk memuat model YOLO dan melakukan deteksi

import cv2 # Untuk pemrosesan gambar dan video

import streamlit as st # Untuk membuat antarmuka web

from PIL import Image # Untuk manipulasi gambar

import numpy as np # Untuk operasi berbasis array

from collections import Counter # Untuk menghitung jumlah objek yang terdeteksi

Fungsi:

• Mengimpor pustaka yang diperlukan untuk memuat model YOLO, membaca data dari kamera, dan menampilkan hasil deteksi di aplikasi Streamlit.

2. Fungsi load model

python

Salin kode

@st.cache resource

def load model(model path):

return YOLO(model path)

Penjelasan:

- **@st.cache_resource**: Cache hasil dari fungsi load_model agar model hanya dimuat satu kali. Ini meningkatkan efisiensi.
- YOLO(model_path): Memuat model YOLO dari file yang ditentukan oleh model_path.

3. Fungsi display results

```
python
Salin kode
def display results(image, results):
  boxes = results.boxes.xyxy.cpu().numpy() # Koordinat bounding box
  scores = results.boxes.conf.cpu().numpy() # Skor kepercayaan
  labels = results.boxes.cls.cpu().numpy() # Indeks kelas
  names = results.names # Nama kelas objek
  detected objects = []
  for i in range(len(boxes)):
    if scores[i] > 0.5: # Ambang batas kepercayaan
       x1, y1, x2, y2 = boxes[i].astype(int)
       label = names[int(labels[i])]
       score = scores[i]
       detected objects.append(label)
       cv2.rectangle(image, (x1, y1), (x2, y2), (0, 255, 0), 2) # Gambar kotak
       cv2.putText(image, f"{label}: {score:.2f}", (x1, y1 - 10),
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2) # Teks label
  return image, detected_objects
```

Penjelasan:

- Mengambil hasil deteksi (bounding box, skor, label) dari model YOLO.
- Gambar kotak di sekitar objek yang terdeteksi pada gambar.
- Mengembalikan gambar yang sudah diberi kotak dan daftar objek yang terdeteksi.

4. Fungsi main

```
python
Salin kode
def main():
st.title("Real-time Object Detection with YOLO")
```

```
st.sidebar.title("Settings")
  model_path = "yolo11n.pt" # Path ke model YOLO
  model = load model(model path)
  # Tombol checkbox untuk memulai/menghentikan deteksi objek
  run detection = st.sidebar.checkbox("Start/Stop Object Detection",
key="detection control")
  # Jika checkbox diaktifkan
  if run detection:
    cap = cv2.VideoCapture(0) # Buka kamera
    st frame = st.empty() # Placeholder untuk frame video
    st detection info = st.empty() # Placeholder untuk informasi deteksi
    while True:
       ret, frame = cap.read()
       if not ret:
         st.warning("Failed to capture image.")
         break
       frame = cv2.cvtColor(frame, cv2.COLOR BGR2RGB) # Konversi ke RGB untuk
Streamlit
       results = model.predict(frame, imgsz=640) # Deteksi objek
       frame, detected objects = display results(frame, results[0]) # Proses hasil deteksi
       st_frame.image(frame, channels="RGB", use_column width=True) # Tampilkan
frame
       if detected objects:
         object counts = Counter(detected objects)
```

```
detection_info = "\n".join([f"{obj}: {count}" for obj, count in
object_counts.items()])
  else:
    detection_info = "No objects detected."

st_detection_info.text(detection_info) # Tampilkan informasi deteksi

if not st.session_state.detection_control: # Hentikan jika checkbox dimatikan
    break

cap.release()
```

Penjelasan:

- **Tujuan utama:** Membuat antarmuka web untuk mendeteksi objek secara real-time menggunakan kamera.
- Jika tombol checkbox diaktifkan, aplikasi:
 - Membuka kamera.
 - Melakukan deteksi dengan YOLO untuk setiap frame video.
 - o Menampilkan hasil deteksi (kotak, label, informasi) di antarmuka web.
- Jika checkbox dimatikan, aplikasi berhenti.

5. Pemanggilan main

```
python
Salin kode
if _name_ == "_main_":
    main()
```

Penjelasan:

- Mengeksekusi fungsi main saat skrip dijalankan sebagai file utama.
- Pastikan typo _name _ diperbaiki menjadi __name __, dan _main _ menjadi __main __.

Kesimpulan

Kode ini adalah aplikasi Streamlit untuk deteksi objek real-time menggunakan YOLO. Pengguna dapat mengaktifkan/mematikan deteksi melalui antarmuka web, melihat hasil deteksi dalam video, dan mendapatkan informasi tentang objek yang terdeteksi.

Tutorial Sampai ke Hasil Deploy

1. Step Pertama

Buat Folder baru untuk Proyek, Contohnya: UAS KECERDASAN setelah folder di buat lalu masukkan file yolo11n.pt

Didalam folder tersebut, buat file utama app.py untuk menjalankan kode python.

2. Lalu

Buatkan Codingan seperti berikut

3. Selanjutnya

Buka Command Promp dan masukkan variabel folder yang sudah di buat, lalu masukkan virtualment dengan perintah .venv\scripts\activate

Lalu kita klik Enter, dan Centangkan bagian Start/Stop Object Detecion

