(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平10-190065

(43)公開日 平成10年(1998) 7月21日

(51) Int.Cl.⁸

識別記号

FΙ

H01L 33/00

H01L 33/00

N

審査請求 未請求 請求項の数6 OL (全 11 頁)

(21)出願番号	特膜平8-350253	(71)出版人	000226057	
			日亜化学工業株式会社	
(22)出顧日	平成8年(1996)12月27日		徳島県阿南市上中町岡491番地100	
		(72)発明者	永峰 邦浩	
			徳島県阿南市上中町岡491番地100	日亜化
			学工業株式会社内	
		(72)発明者	泉野 訓宏	
			徳島県阿南市上中町岡491番地100	日亜化
		0 - 0 -	学工業株式会社内	
		(72)発明者	藤原 勇一	
			徳島県阿南市上中町岡491番地100	日亜化
			学工業株式会社内	

最終頁に続く

(54) 【発明の名称】 発光装置及びそれを用いたLED表示器

(57) 【要約】

【課題】本願発明は、可視光を発光する蛍光物質及び発光素子と、を有し発光装置に係わり、高輝度且つ均一に発光可能な発光装置及びそれを用いたLED表示器に関する。

【解決手段】本願発明は、開口部底面においてLEDチップを配置すると共に該開口部内にコーティング部を有する発光装置であって、前記コーティング部がLEDチップ上の第1のコーティング部と、第1のコーティング部上にLEDチップからの可視光によって励起され可視光を発光する蛍光物質が含まれた第2のコーティング部と、を有する発光装置及びこれを用いたLED表示器である。

【特許請求の範囲】

【請求項1】 関口部底面においてLEDチップを配置すると共に該関口部内にコーティング部を有する発光装置であって、

前記コーティング部がLEDチップ上の第1のコーティング部と、第1のコーティング部上にLEDチップからの可視光によって励起され可視光を発光する蛍光物質が含まれた第2のコーティング部と、を有することを特徴とする発光装置。

【請求項2】前記LEDチップが窒化物系化合物半導体であると共に、前記蛍光物質がセリウムで付活されたイットリウム・アルミニウム・ガーネット系蛍光物質である請求項1記載の発光装置。

【請求項3】前記第1のコーティング部の表面が、発光 観測面側から見て窪んだ凹球面状である請求項1に記載 の発光装置。

【請求項4】前記開口部の側壁形状を階段状に形成し、 段ごとに第1のコーティング部及び第2のコーティング 部を有する請求項1に記載の発光装置。

【請求項5】前記開口部を有する基板が、セラミックス、金属基板、熱伝導性フィラー入り耐熱性有機樹脂基板から選択される1つである請求項1に記載の発光装置。

【請求項6】請求項5記載の開口部が同一基板に2以上配置されると共に、該開口部内に配された導体配線と、前記LEDチップとが電気的に接続されたことを特徴とするLED表示器。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本願発明は、バックライト光源、光センサーや光プリンターなどの読みとり/書き込み光源、各種データなどが表示可能な表示装置に用いられる発光装置に係わり、特に蛍光物質と、発光素子と、を有し高輝度且つ均一に発光可能な発光装置及びそれを用いたLED表示器に関するものである。

[0002]

【従来の技術】今日、RGB(赤色系、緑色系、青色系)において、1000mcd以上にも及ぶ超高輝度に発光可能な発光素子(以下LEDチップとも言う。)がそれぞれ開発された。これに伴い、赤色系(R)、緑色系(G)、青色系(B)が発光可能な各LEDチップを用い混色発光させることでフルカラーLED表示器が設置されつつある。このようなLED表示器例としてフルカラー大型映像装置などの他に、単一色表示を用いた文字表示板等がある。単一色表示として白色系は赤色系などの注意を引きつける色とは異なり、そのため長時間視認しても疲れにくい。このことから特に白色系などの単一色LED表示器が要望されている。

【0003】一方、LEDチップは優れた単色性ピーク 波長を有する。そのため白色系などを表示させる場合に は、RGBやB(青色系)Y(黄色系)の混色など2種類以上のLEDチップからの発光を混色させる必要がある。しかし、行き先表示板等に用いられるLED表示器などにおいては必ずしも2種類以上のLEDチップを用いて白色系など表示させる必要性はない。

【0004】そこで本願出願人は、LEDチップと蛍光物質により背色発光ダイオードからの発光を色変換させて他の色などが発光可能な発光ダイオードとして特開平5-152609号公報、特開平7-99345号公報などに記載された発光ダイオードを開発した。これらの発光ダイオードによって、1種類のLEDチップを用いて白色系など種々の発光色を発光させることができる。

【0005】具体的には、発光層のエネルギー・バンドギャップが大きいLEDチップをリードフレームの先端に設けられたカップ上などに配置する。LEDチップは、LEDチップが設けられたメタルステムやメタルポストとそれぞれ電気的に接続させる。そして、LEDチップを被覆するモールド部材中などにLEDチップからの光を吸収し波長変換する蛍光体を含有させて形成させてある。

【0006】この場合、青色系の発光ダイオードと、その発光を吸収し黄色系を発光する蛍光物質などを選択することにより、これらの発光の混色を利用して白色系を発光させることができる。このような発光ダイオードは、白色系を発光する発光ダイオードとして利用した場合においても十分な輝度を発光する発光ダイオードとして利用することができる。

[0007]

【発明が解決しようとする課題】しかしながら、発光ダイオードに用いられるマウント・リード上の反射カップ内などに単にLEDチップ及び蛍光物質を実装させると、発光観測面において色むらを生じる場合がある。より詳しくは、発光観測面側から見てLEDチップが配置された中心部が青色ぽっく、その周辺にリング状に黄、緑や赤色っぽい部分が見られる場合がある。人間の色調感覚は、白色において特に敏感である。そのため、僅かな色調差でも赤っぽい白、緑色っぽい白、黄色っぽい白などと感じる。

【0008】このような発光観測面を直視することによって生ずる色むらは、品質上好ましくないばかりでなく、LED表示器に応用した場合における表示面の色調むらや、光センサーなどの精密機器における誤差を生ずることにもなる。さらに、このような発光装置は、時間と共に発光輝度が低下する傾向にあるという問題を有する。本願発明は、上記問題点を解決し発光観測面における色調むらが極めて少なく高輝度に白色系などが発光可能な発光装置及びそれを用いた表示装置を提供することにある。

[0009]

【課題を解決するための手段】本願発明は、開口部底面

においてLEDチップを配置すると共に該開口部内にコ ーティング部を有する発光装置であって、前記コーティ ング部がLEDチップ上の第1のコーティング部と、第 1のコーティング部上にLEDチップからの可視光によ って励起され可視光を発光する蛍光物質が含まれた第2 のコーティング部と、を有する発光装置とすることによ って上記課題を解決できるものである。また、本願発明 は、LEDチップが窒化物系化合物半導体であると共 に、蛍光物質がセリウムで付活されたイットリウム・ア ルミニウム・ガーネット系蛍光物質の発光装置である。 さらに、第1のコーティング部の表面が、発光観測面側 から見て窪んだ凹球面状である発光装置であり、開口部 の側壁形状を階段状に形成し、段ごとに第1のコーティ ング部及び第2のコーティング部を有する発光装置でも ある。開口部を有する基板が、セラミックス、金属基 板、熱伝導性フィラー入り耐熱性有機樹脂基板から選択 される1つである発光装置である。さらに、本願発明 は、前記開口部が同一基板に2以上配置されると共に、 開口部内に配された導体配線と、前記LEDチップとが **電気的に接続されたLED表示器でもある。**

[0010]

【作用】本願発明は、LEDチップ近傍の第1のコーティング部と、第1のコーティング部上に蛍光物質を有する第2のコーティング部とすることによってLEDチップから放出される光の光路長差を実質的に低減させることによって発光装置の色調むらを低減させると共に蛍光物質が設けられたことによる光の閉じこめを緩和させることができる。そのため、長時間の使用においても発光輝度の低下が少ない均一光が発光可能な発光装置やLED表示器とすることができる。

[0011]

【発明の実施の形態】本願発明者らは、種々の実験の結果、発光素子と蛍光物質とを特定の配置関係とすることによって、発光観測面における色調むらや輝度低下を改善できることを見出し本願発明を成すに至った。

【0012】本願発明の構成によって、色調むらや輝度低下の改善が図れることは定かではないが以下の如く考えられる。即ち、発光素子から放出された光は、図5(A)に示すように(a)、(b)、(c)、(d)、(e)、(f)の如く様々な角度に放出される。このような光は、蛍光物質が含有されたコーティング部を通過する光路長がそれぞれ異なる。特に、LEDチップから放出される光の角度が浅い光ほど光路長が長くなる傾向にある。このため、光路長差によって蛍光物質に変換される光量が異なり、色調むらが生ずることとなる。特に(d)、(e)の領域では光路長が長いためLEDチップからの光が蛍光物質によって波長変換される光が多くなり、発光観測面側から見て色調むらが生じやすいと考えられる。また、LEDチップから放出される光(f)ある。

このような光もLEDチップ周辺の色調むら原因になると考えられる。

【0013】また、LEDチップ上に蛍光物質を有するコーティング部を直接配置させると、蛍光物質によってLEDチップからの光が反射・散乱される割合が増える。特に、LEDチップ近傍では、LEDチップからの可視光が蛍光体物質によって反射散乱などされる回数が極端に増加し光の密度が高くなる。この結果、コーティング部の母材である有機樹脂などが劣化しやすく、最終的には輝度が低下する傾向にあると考えられる。

【0014】本願発明は、図5 (B) の如く、LEDチップ上に第1のコーティング部、第2のコーティング部 の積層構造とすることにより光路長差を少なくすると共にLEDチップ近傍の光の散乱を少なく輝度の低下を抑制しうるものである。

【0015】具体的な発光装置の一例として、チップタイプLEDを図2に示す。チップタイプLEDとして外部電極を有し凹部が形成されたパッケージを用いた。凹部内に窒化ガリウム系化合物半導体を発光層としたLEDチップがエポキシ樹脂によってダイボンディングされている。LEDチップの各電極と外部電極とは、それぞれ金線を用いてワイヤーボンディングされている。凹部のLEDチップ上に第1のコーティング部としてエポキシ樹脂を強布し乾燥させた。次に第2のコーティング部として、シリコーン樹脂の基材中に(RE $_{1-x}$ Sm $_x$)。(Al $_{1-y}$ Ga $_y$)。 O_{12} :Ce蛍光物質を含有させたものを第1のコーティング部上に形成させた。

【0016】第1のコーティングと第2のコーティング部は、積層構成となっている。また、図2の如く第1のコーティング部の断面端部が上がっている。そのため第1のコーティング部の表面が、発光観測面側から見て強んだ凹球面状をとる。第1のコーティング部中の蛍光物質をより中心付近に集めることが可能となる。このような形状は、第1のコーティング部であるエポキシ樹脂の粘度及び硬化温度・時間を制御して作成することができる。これにより実質的な光路長差を少なくし、より色調むらや輝度低下の少ない発光装置とすることができる。以下、本願発明の構成部材について詳述する。

【0017】(コーティング部101、102、201、202、401、402)本願発明のコーティング部とは、LEDチップを外部環境などから保護するものである。コーティング部は、LEDチップ上に設けられるものであり少なくとも一部にLEDチップからの可視光によって励起され可視光を発光する蛍光物質を含む樹脂や硝子などである。いずれにしてもコーティング部は、LEDチップからの可視光の行路長差を低減させることによりLEDチップと蛍光物質からの可視光を十分混色などさせられるものである。特に、本願発明のコーティング部は、蛍光物質が含有された単なる層形状とし

たものよりもLEDチップから放出された光の光路長差がより少なくなるように設けられてある。また、効率よく外部に放出されるよう多層構成とさせてある。したがって、コーティング部の形状は、凸レンズ形状、種々の多層形状などが挙げられる。また、薄膜に形成されたコーティング部を接着させることによって形成させても良い。

【0018】第1のコーティング部101と、第2のコーティング部102の基材は、同じ材料を用いてもよいし、異なる材料を用いてもよい。異なる材料を用いるといるは、より外部に近い側に耐候性のある材料を用いることが好ましい。また、より内部にある材料ほど膨張の少ない材料を用いることが好ましい。このようなコーティング部を構成する具体的基材としては、エポキシ樹脂、ユリア樹脂、アクリル樹脂、シリコーン樹脂などの透光性樹脂や硝子などが好適に用いられる。また、第1のコーティング部及び第2のコーティング部の厚みは、それでしていても良いし、異なっていても良い。蛍光物質としては、LEDチップからの光などを考慮して有機、無機の染料や顔料等種々のものが挙げられる。

【0019】第1及び/又は第2のコーティング部には、拡散剤、着色剤や光安定剤を含有させても良い。着色剤を含有させることによってLEDチップ及び/又は蛍光物質からの光を所望にカットするフィルター効果を持たせることができる。拡散剤を含有させることによって指向特性を所望に調節させることができる。光安定剤である紫外線吸収剤を含有させることによってコーティング部を構成する樹脂などの劣化を抑制することができる。具体的な拡散剤としては、チタン酸バリウム、酸化チタン、酸化アルミニウム、酸化珪素等が好適に用いられる。光安定剤としては、ベンゾトリアゾール系、ベンゾフェノン系、サリシレート系、シアノアクリレート系、ヒンダードアミン系などが挙げられる。

【0020】また、コーティング部の主材料は、モールド部材と同じ材料を用いてもよいし、異なる部材としても良い。コーティング部を異なる部材で形成させた場合においては、LEDチップや導電性ワイヤーなどにかかる外部応力や熱応力をより緩和させることもできる。

【0021】(蛍光物質)本願発明に用いられる蛍光物質としては、少なくとも半導体発光層から発光された可視光で励起されて可視光を発光する蛍光物質をいう。LEDチップから発光した可視光と、蛍光物質から発光する可視光が補色関係などにある場合やLEDチップからの可視光とそれによって励起され発光する蛍光物質の可視光がそれぞれ光の3原色(赤色系、緑色系、青色系)に相当する場合、LEDチップからの発光と、蛍光物質からの発光と、を混色表示させると白色系の発光色表示を行うことができる。そのため発光装置の外部には、LEDチップからの発光と蛍光物質からの発光とがコーティング部などを透過する必要がある。このような調整

は、蛍光物質と樹脂などとの比率や塗布、充填量などを 種々調整する。或いは、発光素子の発光波長を種々選択 することにより白色を含め電球色など任意の色調を提供 させることができる。

【0022】さらに、第2のコーティング部内における 蛍光物質の含有分布は、混色性や耐久性にも影響する。 すなわち、第2のコーティング部の外部表面側からLE Dチップに向かって蛍光物質の分布濃度が高い場合は、 外部環境からの水分などの影響をより受けにくく水分な どによる劣化を抑制しやすい。

【0023】他方、蛍光物質の含有分布をLEDチップからモールド部材表面側に向かって分布濃度が高くなると外部環境からの水分の影響を受けやすいがLEDチップからの発熱、照射強度などの影響がより少なく蛍光物質の劣化を抑制することもできる。したがって、使用環境によって種々選択することができる。このような、蛍光物質の分布は、蛍光物質を含有する基材、形成温度、粘度や蛍光物質の形状、粒度分布などを調整させることによって種々形成させることができる。

【0024】半導体発光層によって励起される蛍光物質は、無機蛍光体、有機蛍光体、蛍光染料、蛍光顔料など種々のものが挙げられる。具体的な蛍光物質としては、ペリレン系誘導体やセリウム付活されたイットリウム・アルミニウム・ガーネット蛍光体である(RE_{1-x}S m_x) $_3$ ($Al_{1-y}Ga_y$) $_5O_{12}$:Ce($0 \le x < 1$ 、 $0 \le y \le 1$ 、但し、REは、Y,Gd,La,Lu,Scからなる群より選択される少なくとも一種の元素である。)などが挙げられる。特に、蛍光物質として(RE $_{1-x}Sm_x$) $_3$ ($Al_{1-y}Ga_y$) $_5O_{12}$:Ce を用いた場合には、エネルギーバンドギャップの大きい窒化物系化合物半導体を発光層に用いたLEDチップと接する或いは近接して配置され放射照度として(Ee)= 3W・cm $^{-2}$ 以上10W・cm $^{-2}$ 以下においても高効率に十分な耐光性有する発光装置とすることができる。

【0025】(RE $_{1-x}$ Sm $_x$) $_3$ (A $_{1-y}$ Ga $_y$) $_5O_{12}$:Ce蛍光体は、ガーネット構造のため、熱、光及び水分に強く、励起スペクトルのピークが470nm付近などにさせることができる。また、発光ピークも530nm付近にあり720nmまで裾を引くブロードな発光スペクトルを持たせることができる。しかも、組成のA $_1$ の一部をG $_3$ で置換することで発光波長が短波長にシフトし、また組成のYの一部をG $_3$ で置換することが可能で、発光波長が長波長へシフトする。このように組成を変化することで発光色を連続的に調節することが可能である。したがって、長波長側の強度がG $_3$ の組成比で連続的に変えられるなど窒化物半導体の青色系発光を利用して白色系発光に変換するための理想条件を備えている。

【0026】このような蛍光体は、Y、Gd、Ce、Sm、Al、La及びGaの原料として酸化物、又は高温

で容易に酸化物になる化合物を使用し、それらを化学量論比で十分に混合して原料を得る。又は、Y、Gd、Ce、Smの希土類元素を化学量論比で酸に溶解した溶解液を蓚酸で共沈したものを焼成して得られる共沈酸化物と、酸化アルミニウム、酸化ガリウムなどとを混合して混合原料を得る。これにフラックスとしてフッ化アンモニウム等のフッ化物を適量混合して坩堝に詰め、空気中1350~1450°Cの温度範囲で2~5時間焼成して焼成品を得、次に焼成品を水中でボールミルして、洗浄、分離、乾燥、最後に篩を通すことで得ることができる。

【0028】(LEDチップ103、203、403)本願発明に用いられるLEDチップとは、蛍光物質を効率良く励起できる比較的短波長を効率よく発光可能な窒化物系化合物半導体などが好適に挙げられる。このようなLEDチップは、MOCVD法等により基板上にInGaN等の半導体を発光層として形成させることができる。半導体の構造としては、MIS接合、PIN接合やPN接合などを有するホモ構造、ヘテロ構造あるいはダブルヘテロ構成のものが挙げられる。半導体層の材料やその混晶度によって発光波長を種々選択することができる。また、半導体活性層を量子効果が生ずる薄膜に形成させた単一量子井戸構造や多重量子井戸構造とすることもできる。

【0029】窒化ガリウム系化合物半導体を使用した場合、半導体基板にはサファイヤ、スピネル、SiC、Si、ZnO等の材料が用いられる。結晶性の良い窒化ガリウムを形成させるためにはサファイヤ基板を用いることが好ましい。このサファイヤ基板上にGaN、AlN等のパッファー層を低温で形成しその上にPN接合を有する窒化ガリウム半導体を形成させる。窒化ガリウム半導体を形成させるが発電化ガリウム半導体を形成させる場合は、N型ドーパントとしてSi、Ge、Se、Te、C等を適宜導入することが好ましい。一方、P型窒化ガリウム半導体を形成させる場合は、P型ドーパンドであるZn、Mg、Be、Ca、Sr、Ba等をドープさせる。

【0030】窒化ガリウム系化合物半導体は、P型ドーパントをドープしただけではP型化しにくいためP型ドーパント導入後に、炉による加熱、低速電子線照射やプラズマ照射等によりアニールすることでP型化させることが好ましい。エッチングなどによりP型半導体及びN型半導体の露出面を形成させた後、半導体層上にスパッ

タリング法や真空蒸着法などを用いて所望の形状の各電極を形成させる。次に、形成された半導体ウエハー等をダイヤモンド製の刃先を有するブレードが回転するダイシングソーにより直接フルカットするか、又は刃先幅よりも広い幅の溝を切り込んだ後(ハーフカット)、外力によって半導体ウエハーを割る。あるいは、先端のダイヤモンド針が往復直線運動するスクライバーにより半導体ウエハーに極めて細いスクライブライン(経線)を例えば碁盤目状に引いた後、外力によってウエハーを割り半導体ウエハーからチップ状にカットする。このようにして窒化ガリウム系化合物半導体であるLEDチップを形成させることができる。

【0031】本願発明の発光装置において白色系を発光させる場合、蛍光物質との補色等を考慮して発光素子の主発光波長は400nm以上530nm以下が好ましく、420nm以上490nm以下がより好ましい。LEDチップと蛍光物質との効率をそれぞれより向上させるためには、450nm以上475nm以下がさらに好ましい。なお、本願発明に主として用いられるLEDチップの他、蛍光物質を励起させない或いは、励起されても蛍光物質から可視光などが実質的に発光されない光のみを発光するLEDチップを一緒に配置させることもできる。この場合、白色系と、赤色や黄色などが発光可能な発光装置とすることもできる。

【0032】(マウント・リード104)マウント・リード104は、LEDチップ103を配置させると共に 蛍光物質を収容させるカップとを有することが好ましい。このようなカップを本願発明における開口部として 機能させることもできる。LEDチップを複数設置しマウント・リードをLEDチップの共通電極として利用する場合においては、十分な電気伝導性とボンディングワイヤー等との接続性を有することが好ましい。

【0033】マウント・リードの具体的な電気抵抗としては300μΩcm以下が好ましく、より好ましくは、3μΩcm以下である。また、マウント・リード上に複数のLEDチップを積置する場合は、LEDチップからの発熱量が多くなるため熱伝導度がよいことが求められる。具体的には、0.01cal/cm²/cm/℃以上が好ましくより好ましくは 0.5cal/cm²/cm/℃以上である。これらの条件を満たす材料としては、鉄、銅、鉄入り銅、錫入り銅、メタライズパターン付きセラミック等が挙げられる。

【0034】(インナー・リード105) インナー・リード105としては、マウント・リード104上に配置されたLEDチップ103と接続された導電性ワイヤーとの接続を図るものである。マウント・リード上に複数のLEDチップを設けた場合は、各導電性ワイヤー同士が接触しないよう配置できる構成とする必要がある。具体的には、マウント・リードから離れるに従って、インナー・リードのワイヤーボンディングさせる端面の面積

を大きくすることなどによってマウント・リードからより離れたインナー・リードと接続させる導電性ワイヤーの接触を防ぐことができる。導電性ワイヤーとの接続端面の粗さは、密着性を考慮して1.6 S以上10 S以下が好ましい。

【0035】インナー・リードの先端部を種々の形状に 形成させるためには、あらかじめリード・フレームの形 状を型枠で決めて打ち抜き形成させてもよく、或いは全 てのインナー・リードを形成させた後にインナー・リー ド上部の一部を削ることによって形成させても良い。さ らには、インナー・リードを打ち抜き形成後、端面方向 から加圧することにより所望の端面の面積と端面高さを 同時に形成させることもできる。

【0036】インナー・リードは、導電性ワイヤーであるボンディングワイヤー等との接続性及び電気伝導性が良いことが求められる。具体的な電気抵抗としては、300μQcm以下が好ましく、より好ましくは3μQcm以下である。これらの条件を満たす材料としては、鉄、銅、鉄入り銅、錫入り銅及び銅、金、銀をメッキしたアルミニウム、鉄、銅等が挙げられる。

【0037】(電気的接続部材106)電気的接続部材である導電性ワイヤー106などとしては、LEDチップ103の電極とのオーミック性、機械的接続性、電気伝導性及び熱伝導性がよいものが求められる。熱伝導度としては0.01cal/cm²/cm/℃以上が好ましく、より好ましくは0.5cal/cm²/cm/℃以上である。また、作業性などを考慮して導電性ワイヤーの場合、好ましくは、直径Φ10μm以上、Φ45μm以下である。このような導電性ワイヤーとして具体的には、金、銅、白金、アルミニウム等の金属及びそれらの合金を用いた導電性ワイヤーが挙げられる。このような導電性ワイヤーは、各LEDチップの電極と、インナー・リード及びマウント・リードなどと、をワイヤーボンディング機器によって容易に接続させることができる。

【0038】(モールド部材107)モールド部材107は、発光装置の使用用途に応じてLEDチップ103、導電性ワイヤー106、蛍光物質が含有されたコーティング部102などを外部から保護するために好適に設けることができる。モールド部材107は、各種樹脂や硝子などを用いて形成させることができる。モールド部材を所望の形状にすることによってLEDチップからの発光を集束させたり拡散させたりするレンズ効果を持たせることができる。従って、モールド部材は複数積層した構造としてもよい。具体的には、凸レンズ形状、凹レンズ形状さらには、発光観測面から見て楕円形状や円形などそれらを複数組み合わせた物などが挙げられる。また、LEDチップからの光を集光させレンズ形状を探る場合においては、発光観測面側から見て発光面が拡大されるため光源の色調むらが特に顕著に現れる。従っ

て、本願発明の色むら抑制の効果が特に大きくなるもの である。

【0039】モールド部材の具体的材料としては、主としてエポキシ樹脂、ユリア樹脂、シリコーンなどの耐候性に優れた透光性樹脂や硝子などが好適に用いられる。また、モールド部材に拡散剤を含有させることによってLEDチップからの指向性を緩和させ視野角を増やすこともできる。拡散剤の具体的材料としては、チタン酸バリウム、酸化チタン、酸化アルミニウム、酸化珪素等が好適に用いられる。さらに、モールド部材とコーティング部とを異なる部材で形成させても良い。また、屈折率を考慮してモールド部材とコーティング部とを同じ部材を用いて形成させることもできる。

【0040】(基板404) LEDチップ403が多数配置される高精細、高視野角及び小型薄型LED表示器用の基板403としては、LEDチップ403及び電気的接続部材などと蛍光物質を含有させる複数の凹状開口部を設けた導体配線層を有するものが好適に挙げられる。このような基板においては、複数のLEDチップを直接同一基板上に高密度実装させるとLEDチップからの放熱量が多くなる。LEDチップからの熱を十分放熱できず、また蛍光物質を樹脂中に均一に分散させなければコーティング部の部分的な亀裂や着色などの劣化を生じさせる場合もある。

【0041】したがって、凹状開口部を設けた導体配線層を有する基板としては、放熱性の優れ蛍光物質を含有させたコーティング部などとの密着性が良いことが望まれる。このような凹状開口部を有する配線基板材料としては、セラミックス基板、金属をベースにし絶縁層を介して導体配線層を有する金属基板、熱伝導性フィラー入り耐熱性有機樹脂基板が好適に挙げられる。これらの基板は、凹状開口部と配線部層とを一体的に形成することが可能である。セラミックス基板では孔開き基板の積層、金属基板ではプレス加工、有機樹脂基板では樹脂成型により凹状開口部と配線部が一体化したLED表示器を簡易に形成させることができる。

【0042】特に、放熱性や耐候性の点においてアルミナを主としたセラミックス基板がより好ましい。具体的には、原料粉末の90~96重量%がアルミナであり、焼結助剤として粘度、タルク、マグネシア、カルシア及びシリカ等が4~10重量%添加され1500から1700℃の温度範囲で焼結させたセラミックス基板、や原料粉末の40~60重量%がアルミナで焼結助剤として60~40重量%の硼珪酸硝子、コージュライト、フォルステライト、ムライトなどが添加され800~1200℃の温度範囲で焼結させたセラミックス基板等である。

【0043】このような基板は、焼成前のグリーンシート段階で種々の形状をとることができる。配線は、タングステンやモリブデンなど高融点金属を樹脂バインダー

に含有させたものを配線パターンとして、グリーンシート上などで所望の形状にスクリーン印刷などさせることによって構成させることができる。また、開口したグリーンシートを多層に張り合わせることなどによりLEDチップや蛍光物質を含有させる開口部をも自由に形成させることができる。したがって、円筒状や孔径の異なるグリーンシートを積層することで階段状の開口部側壁などを形成することも可能である。このようなグリーンシートを焼結させることによってセラミックス基板が得られる。また、それぞれを焼結させた後、接着させて用いてもよい。

【0044】また、最表面のグリーンシートには、Cr 2O3、MnO2、TiO2、Fe2O3などをグリーンシー ト自体に含有させることによって形成された基板表面だ けを暗色系にさせることができる。このような最表面を 持った基板は、コントラストが向上しLEDチップや蛍 光物質の発光をより目立たせることにもなる。開口部に 向かって広がった側壁は、更なる反射率を向上させるこ とができる。凹状開口部の側壁形状は、LEDチップか らの発光の損失を避けるために光学的に反射に適した直 線上のテーパー角ないしは曲面、又は階段状が挙げられ る。また、凹状開口部の深さは第1のコーティング部と なるスリラーや第2のコーティング部となる蛍光物質を 分散したスラリーが流れ出るのを防止すると共に、LE Dチップからの直射光を遮蔽しない範囲での角度により 決められる。したがって、凹状開口部の深さは、0.3 mm以上が好ましく、0.5mm以上2.0mm以内が より好ましい。

【0045】基板の凹状開口部は、LEDチップ、電気 的接続部材や第1及び第2のコーティング部などを内部 に配置させるものである。したがって、LEDチップを ダイボンド機器などで直接積載などすると共にLEDチ ップとの電気的接続をワイヤーボンディングなどで採れ るだけの十分な大きさがあれば良い。凹状開口部は、所 望に応じて複数設けることができ、16x16や24x 24のドットマトリックスや直線状など種々選択させる ことができる。凹状開口部のドットピッチが4mm以下 の高細密の場合には、砲弾型発光ダイオードランプを搭 載する場合と比較して大幅にドットピッチが縮小したも のとすることができる。また、このような基板を用いた LED表示器は、LEDチップからの放熱性に関連する 種々の問題を解決できる髙密度LEDディスプレイ装置 とすることができる。LEDチップと基板底部との接着 は熱硬化性樹脂などによって行うことができる。具体的 には、エポキシ樹脂、アクリル樹脂やイミド樹脂などが 挙げられる。また、フェースダウンLEDチップなどに より基板に設けられた配線と接着させると共に電気的に 接続させるためにはAgペースト、ITOペースト、カ ーポンペースト、金属バンプ等を用いることができる。 【0046】また、基板上に形成された配線には、導電 率、LEDチップや蛍光物質が配される基板底部の反射 率などを向上させるために銀、金、銅、白金、パラジウ ムやこれらの合金を蒸着やメッキ処理などを施して形成 させることもできる。

【0047】 (LED表示装置) 本願発明の発光装置を 用いたLED表示器の一例を示す。本願発明において は、白色系発光装置のみを用い白黒用のLED表示装置 とすることもできる。白黒用のLED表示器は、本願発 明の発光装置である発光ダイオードをマトリックス状な どに配置したものや所望に応じて配置された複数の凹部 を有する基板上にLEDチップ及びコーティング部を有 する構成することができる。各LEDチップを駆動させ る駆動回路とLED表示器とは、電気的に接続される。 駆動回路からの出力パルスによって種々の画像が表示可 能なデイスプレイ等とすることができる。駆動回路とし ては、入力される表示データを一時的に記憶させるRA M (Random, Access, Memory) と、 RAMに記憶されるデータからLED表示器を所定の明 るさに点灯させるための階調信号を演算する階調制御回 路と、階調制御回路の出力信号でスイッチングされて、 発光装置を点灯させるドライバーとを備える。階調制御 回路は、RAMに記憶されるデータから発光装置の点灯 時間を演算してパルス信号を出力する。

【0048】このような、白黒用のLED表示器はRGBのフルカラー表示器と異なり当然回路構成を簡略化できると共に高精細化できる。そのため、RGBの発光装置の特性に伴う色むらなどのないディスプレイとすることができる。また、消費電力を3分の1程度に低減させることができるため電池電源との接続の場合は、使用時間を延ばすことができる。さらに、従来の赤色、緑色のみを用いたLED表示器に比べ人間に対する刺激が少なく長時間の使用に適している。以下、本願発明の実施例について説明するが、本願発明は具体的実施例のみに限定されるものではないことは言うまでもない。

[0049]

【実施例】

(実施例1)主発光ピークが460mmのIn_{の・4}Ga_{の・6}N半導体を発光層としたLEDチップを用いた。LEDチップは、洗浄させたサファイヤ基板上にTMG(トリメチルガリウム)ガス、TMI(トリメチルインジュウム)ガス、窒素ガス及びドーパントガスをキャリアガスと共に流し、MOCVD法で窒化ガリウム系化合物半導体を成膜させることにより形成させた。ドーパントガスとしてSiH₄とCp₂Mgと、を切り替えることによってN型導電性を有する窒化ガリウム系半導体とした。サファイア基板上には、バッファー層であるGaNを介して第1のコンタクト層であるN型導電性を有するGn、発光層であるInGaN、第1のクラッド層であるP型導電性を有するAlGaN、第2のコンタクト層であるP

型導電性を有するGaNをそれぞれ形成させてある。

(なお、P型半導体は、成膜後400℃以上でアニール させてある。また、発光層の厚みは、量子効果が生ずる 程度の3nmとしてある。)

【0050】エッチングによりPN各半導体表面を露出させた後、スパッタリング法により各電極をそれぞれ形成させた。こうして出来上がった半導体ウエハーをスクライプラインを引いた後、外力により分割させ発光素子として350μm角のLEDチップを形成させた。

【0051】一方、銀メッキした銅製リードフレームを打ち抜きにより形成させた。形成されたリードフレームは、マウント・リードの先端にカップを有する。カップには、LEDチップをAgが含有されたエポキシ樹脂でダイボンディングした。LEDチップの各電極とマウント・リード及びインナー・リードと、をそれぞれ金線でワイヤーボンディングし電気的導通を取った。LEDチップ上にシリコーンゴムをLEDチップが積置されたカップ上に注入した。注入後、125℃約1時間で硬化させ第1のコーティング部を形成させた。

【0052】蛍光物質は、Y、Gd、Ceの希土類元素を化学量論比で酸に溶解した溶解液を蓚酸で共沈させた。これを焼成して得られる共沈酸化物と、酸化アルミニウムと混合して混合原料を得る。これにフラックスとしてフッ化アンモニウムを混合して坩堝に詰め、空気中1400°Cの温度で3時間焼成して焼成品を得た。焼成品を水中でボールミルして、洗浄、分離、乾燥、最後に篩を通して形成させた。

【0053】形成された(Y_{0.4}G d_{0.6})₃A l₅O₁₂: Ce蛍光体40重量部、エポキシ樹脂100重量部をよく混合してスラリーとさせた。このスラリーをマウント・リードのカップ内である第1のコーティング部上に注入させた。注入後、蛍光物質が含有された樹脂を130℃約1時間で硬化させた。こうして図5(B)の如く、第1のコーティング部上に厚さ約0.4mの蛍光物質が含有された第2のコーティング部が形成させた。さらに、LEDチップや蛍光物質を外部応力、水分及び塵芥などから保護する目的でモールド部材として透光性エポキシ樹脂を形成させた。モールド部材は、砲弾型の型枠の中に蛍光物質のコーティング部が形成されたリードフレームを挿入し透光性エポシキ樹脂を混入後、150℃5時間にて硬化させた。こうして図1の如き発光装置である発光ダイオードを形成させた。

【0054】こうして得られた白色系が発光可能な発光ダイオードの正面から色温度、演色性をそれぞれ測定した。色温度8080K、Ra(演色性指数)=87.4を示した。さらに、測定点を0度から180度まで45度づつ発光装置の中心上を通るように移動させ各地点における色度点を測定した。また、If=60mA、Ta=25℃での寿命試験を行った。

【0055】 (比較例1) 第1のコーティング部を形成

させず、第2のコーティング部のみを用いてコーティング部を形成した以外は、実施例1と同様にして窒化ガリウム系化合物半導体であるLEDチップが配置されたカップ内のみに蛍光物質として $(Y_{0.4}Gd_{0.6})_3Al_5O_{12}$: Ce蛍光体含有樹脂を注入し硬化させた。こうして形成された発光ダイオードの色度点及び寿命試験結果を実施例1と同様に測定した。測定結果を実施例1と共に図6及び図7に示す。図7においては、実施例1を基準にして表してある。

【0056】(実施例2)ドットマトリクス状に凹状開 口部を有する配線基板としてセラミックス基板を使用し た。凹状開口部はセラミックス基板製造時に配線層のな い孔開きグリーンシートを積層することで形成させた。 16×16ドットマトリクスの凹状開口部のドットピッ チを3.0mm、開口部径を2.0mmφ、開口部深さ を0.8mmとした。全長は48mm角の基板とした。 配線層は、タングステン含有バインダーを所望の形状に スクリーン印刷させることにより形成させた。各グリー ンシートは、重ね合わせて形成させてある。なお、表面 層にあたるグリーンシートには、基板のコントラスト向 上のために酸化クロムを含有させてある。これを焼結さ せることによってセラミックス基板を構成させた。配線 層はドットマトリクスに対応したコモン、信号線を敷設 し表面はNi/Agメッキを施している。セラミックス 基板からの信号線の取り出しは、金属コバールによる接 続ピンを銀ロウ接続により形成した。なお、階段状の開 口部径は、下層は1.7mmφ、上層部開口部径は2. 3mm o である。

【0057】一方、半導体発光素子であるLEDチップとして、主発光ピークが450nmのIno.05Gao.95N半導体を用いた。LEDチップは、洗浄させたサファイヤ基板上にTMG(トリメチルガリウム)ガス、TMI(トリメチルインジュウム)ガス、窒素ガス及びドーパントガスをキャリアガスと共に流し、MOCVD法で窒化ガリウム系化合物半導体を成膜させることにより形成させた。ドーパントガスとしてSiH4とCp2Mgと、を切り替えることによってN型導電性を有する窒化ガリウム半導体とP型導電性を有する窒化ガリウム半導体を形成しPN接合を形成させた。(なお、P型半導体は、成膜後400℃以上でアニールさせてある。)

【0058】エッチングによりPN各半導体表面を露出させた後、スパッタリング法により各電極をそれぞれ形成させた。こうして出来上がった半導体ウエハーをスクライプラインを引いた後、外力により分割させ発光素子としてLEDチップを形成させた。この青色系が発光可能なLEDチップをエポキシ樹脂で基板開口部内の所定の場所にダイボンディング後、熱硬化により固定させた。その後25μmの金線をLEDチップの各電極と、基板上の配線とにワイヤーボンディングさせることにより電気的接続をとった。凹部内の下段には、第1のコー

ティング部としてシリコーン樹脂を注入させ130℃1時間で硬化させた。第1のコーティング部の厚みは略 0.4mmであった。

【0059】また、蛍光物質は、Y、Gd、Ceの希土 類元素を化学量論比で酸に溶解した溶解液を蓚酸で共沈 させた。これを焼成して得られる共沈酸化物と、酸化ア ルミニウムと、を混合させ混合原料を得る。これにフラ ックスとしてフッ化アンモニウムを混合して坩堝に詰 め、空気中1400°Cの温度で3時間焼成して焼成品 を得た。焼成品を水中でボールミルして、洗浄、分離、 乾燥、最後に篩を通して形成させた。形成された(Y 0.5Gd_{0.5}) 3Al₅O₁₂: Ce蛍光物質10重量部、シ リコーン樹脂90重量部をよく混合してスラリーとさせ た。このスラリーを第1のコーティング部上の上段であ る凹状開口部内にそれぞれ注入させた。注入後、蛍光物 質が含有された樹脂を130℃1時間で硬化させLED 表示器を形成させた。第2のコーティング部の厚みは 0.4mmであった。また、この時のLED表示器の厚 みはセラミックス基板の厚み2.0mmしかなく、砲弾 型LEDランプ使用のディスプレイ装置と比較して大幅 な薄型化が可能であった。

【0060】このLED表示器と、入力される表示データを一時的に記憶させるRAM(Random、Access、Memory)及びRAMに記憶されるデータから発光ダイオードを所定の明るさに点灯させるための階調信号を演算する階調制御回路と階調制御回路の出力信号でスイッチングされて発光ダイオードを点灯させるドライバーとを備えたCPUの駆動手段と、を電気的に接続させてLED表示装置を構成した。LED表示器近傍においても各開口部における色調むらは確認されなかった。

[0061]

【発明の効果】本願発明の請求項1に記載の構成とすることにより、発光装置とすることによって、高視野角においても混色に伴う色調むらが少なく、信頼性が高い発光装置とすることができる。

【0062】本願発明の請求項2記載の構成とすることによって、より高輝度に信頼性の高い発光装置とすることができる。

【0063】本願発明の請求項3記載の構成とすることによって、より混色に伴う色調むらが少ない発光装置と

することができる。

【0064】本願発明の請求項4記載の構成とすることによって、より安定した色調を有する発光装置とすることができる。

【0065】本願発明の請求項5記載の構成とすることによって、より高細密且つ薄膜に形成可能であると共に安定して発光可能な発光装置とすることができる。

【0066】本願発明の請求項6記載の構成とすることによって、高細密且つ薄膜に形成可能なLED表示器とすることができる。

【図面の簡単な説明】

【図1】図1は、本願発明の発光装置を示した概略断面 図である。

【図2】図2は、本願発明の別の発光装置を示した概略 断面図である。

【図3】図3は、本願発明の発光装置を応用したLED 表示器の概略模式図である。

【図4】図4は、図3のA-A断面における部分的な模式的断面図である。

【図5】図5は、本願発明の作用を説明するための模式 的断面図であり、図5 (A) は、比較のために示した発 光装置の断面図であり、図5 (B) は、本願発明の模式 的断面図である。

【図6】図6は、実施例1と比較例1の色調むらを表す 図面であって、図6(A)が実施例1の色度座標を示 し、図6(B)が比較例1の色度座標を示す。

【図7】図7は、実施例1と比較例1の寿命試験結果を 表すグラフであって、実線が実施例1であり、破線が比 較例1を示す。

【符合の説明】

101、201、401・・・第1のコーティング部

102、202、402・・・第2のコーティング部

103、203、403・・・LEDチップ

104・・・マウント・リード

105・・・インナー・リード

106、206・・・電気的接続部材

107・・・モールド部材

204・・・外部電極

207・・・パッケージ

404・・・基板

405・・・導体配線

【図4】 【図3】 【図6】 【図5】 (A) (A) ... (B) (B)

【図2】

[図1]

【図7】

寿命試験 If=60mA Ta=25℃ 90%RH

フロントページの続き

(72) 発明者 竹内 勇人 徳島県阿南市上中町岡491番地100 日亜化 学工業株式会社内