

Marcus Kracht April 9, 2020

Contents

1	Fundamental Structures												3										
	1.1	Algebra and Structures																					3

1 Fundamental Structures

1.1 Algebra and Structures

We define $M+N:=M\times\{0\}\cup N\times\{1\}$. This is called the **disjoint union** If $R\subseteq M\times N$ is a relation, we write $R^{\smile}:=\{\langle x,y\rangle:yRx\}$ for the so-called **converse of** R. We put $\Delta_M:=\{\langle x,x\rangle:x\in M\}$ and call this set the **diagonal on** M. Now put

$$R^{0} := \Delta_{M} \qquad \qquad R^{n+1} := R \circ R^{n}$$

$$R^{+} := \bigcup_{0 < i \in \omega} R^{i} \qquad \qquad R^{*} := \bigcup_{i \in \omega} R^{i}$$

 R^+ is called the **transitive closure of** R.

An n-ary relation on M is a subset of M^n , an n-ary function on M is a function $f:M^n\to M$. A 0-ary function on M is a function $c:1\to M$. We also call it a **constant**.

Now let F be a set and $\Omega: F \to \omega$. The pair $\langle F, \Omega \rangle$ also denoted by Ω alone, is called a **signature** and F the set of **function symbols**

Definition 1.1. Let $\Omega: F \to \omega$ be a signature and A a nonempty set. Furthur, let Π be a mapping which assigns to every $f \in F$ an $\Omega(f)$ -ary function on A. Then we call the pair $\mathfrak{A}:=\langle A,\Pi\rangle$ and Ω -algebra.

In order not to get drowned in notation we write $f^{\mathfrak{A}}$ for the function $\Pi(f)$.

The set of Ω -terms is the smallest set Tm_Ω s.t. if $f \in F$ and $t_i \in \mathrm{Tm}_\Omega$, $i < \Omega(f)$, also $f(t_0, \dots, t_{\Omega(f)-1}) \in \mathrm{Tm}_\Omega$. To begin with we define the **level** of a term. If $\Omega(f) = 0$, then f() is a term of level 0, which we also denote by 'f'. If $t_i, i < \Omega(f)$, are terms of level n_i , then $f(t_0, \dots, t_{\Omega(f)-1})$ is a term of level $1 + \max\{n_i : i < \Omega(f)\}$. We therefore speak about induction on the construction of the term. Two terms u and v are equal, in symbols u = v, if they have identical level and either they are both of level 0 and there is an $f \in F$ such u = v = f() or there is an $f \in F$ and terms $s_i, t_i, i < \Omega(f)$, s.t. $u = f(s_0, \dots, s_{\Omega(f)-1})$ and $v = f(t_0, \dots, t_{\Omega(f)-1})$ as well as $s_i = t_i$ for all $i < \Omega(f)$