Лекция 10

Благороднейший Арсений

2013-04-19

$$\begin{cases}
f = \sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} x_{ij} \to min \\
\sum_{j=1}^{n} x_{ij} = S_i, i = 1..m \\
\sum_{i=1}^{m} x_{ij} = D_j, j = 1..m \\
x_i j \ge 0, i = 1..m, j = 1..n
\end{cases}$$
, где $\sum_{i=1}^{m} S_i = \sum_{j=1}^{n} D_j$ (*)

(2) Основные идеи симплексного метода задачи двойственной к транспортной задаче

$$\begin{cases} g = \sum_{i=1}^m S_i u_i + \sum_{j=1}^n D_j v_j \to \max \\ u_i + v_j \le c_{ij}, i = 1..m, j = 1..n \\ u_i, v_j \text{ не ограничены в знаке} \end{cases}$$

Если

- 1. x_{ij} удовлетворяют ограничениям прямой задачи
- $2. \ u_i, v_i$ удовлетворяют ограничениям двойственной задачи
- 3. $x_{ij}(c_{ij} u_i v_j) = 0$,

То в этом случае x_{ij} – оптимальное решение прямой задачи, u_i, v_j - двойственной.

Общая схема которого такова:

- Находим БДР прямой задачи
- Это решение итерационно улучшаем так, чтобы на каждом шаге выполнялись условия (1) и (3)
- При выполнении условия (2) вычисления заканчивают.
- 4 Улучшение текущего БДР

Пусть x_{ij} - некоторое БДР. Тогда для него выполняются ограничения транспортной задачи.

```
\begin{cases} x_{11} + \dots + x_{1n} = S_1 \\ x_{21} + \dots + x_{2n} = S_2 \\ \dots \\ x_{m1} + \dots + x_{mn} = S_m \\ x_{11} + x_{21} + \dots + x_{m1} = D_1 \\ x_{12} + x_{22} + \dots + x_{m2} = D_2 \\ \dots \\ x_{1n} + x_{2n} + \dots + x_{mn} = D_n \\ c_{11}x_{11} + \dots + c_{1n}x_{1n} + \dots + c_{m1}x_{m1} + \dots + c_{mn}x_{mn} = f \end{cases}
```

Каждое уравнение первой группы умножим на u_i , каждое уравнение второй группы умножим на v_j и вычтем из равенства для целевой функции

$$\sum_{i=1}^{m} \sum_{j=1}^{n} (c_{ij} - u_i v_j) x_{ij} = f - \sum_{i=1}^{m} S_i u_i - \sum_{j=1}^{n} v_j D_j$$
(*)

Занимаясь линейным программированием, мы показали, что коэффициенты при базисных переменных в соотношении (*) можзно выбрать равными нулю. Это будет каноническая форма целевой функции.

При доказательстве одного из соотношений двойственности мы показали, что если x_{ij} – оптимальное решение прямой задачи, то подобранное значение переменных двойственной задачи будут оптимальным решением двойственной задачи.

Так как x_{ij} не обязательно является оптимальным решением транспортной задачи, то u_i , v_j , возможно, не будут удовлетворять ограничениям двойственной задачи. Подобранные значение u_i , v_j можно назвать "пробным" базисом двойственной задачи. Если этот базис будет допустим, то x_{ij} будет оптимальным решением транспортной задачи.

Эти значения u_i , v_j должны удовлетворять следующей системе: $u_i+v_j=c_{ij}$, где $(i,j)\in$ базисн индексов. Так как в транспортной задаче m+n-1 базисных переменных, то в этой системе m+n-1 уравнений. В этой системе m+n неизвестных.

Эту систему решают, придавая одному из неизвестных произвольное (обычно 0) значение. В принципе, можно произвольной переменной присвоить произвольное значение. На ход решения это не повлияет.

После того, как найдены u_i , v_j нужно вычислить величины $d_{ij} = c_{ij} - u_i - v_j$, где $(i,j) \in$ небазисн индексов. d_{ij} равное значению коэффициента при небазисн. перем. x_{ij} в (*).

Очевидно, в базис следует включить ту переменную x_{ij} , для которой $d_{ij} < 0$. В соответствии с принципом оптимальности, выберем ту переменную, для которой $max\{|d_{ij}|:d_{ij}<0\}$. Если все $d_{ij}\geq 0$, то текущее БДР оптимально.

Замечание Если $d_{ij} \geq 0$ для небаз и $d_{ij} = 0$ для базисных, то $c_{ij} - u_i - v_j \geq 0$ для всех. Т.е. $u_i + v_j \leq c_{ij}$. Т.е., выбранный базис для двойственной задачи допустим.

Пример

•	5	5 25 10		10
10	5 3	5 3	5	1
15	4	15 6	7	8
25	1	5 2	10 3	10 4

Составим систему $c_{ij}=u_i+v_j,\,(i,j)\in$ баз. инд.

$$\begin{cases} u_1 + v_1 = 3 \\ u_1 + v_2 = 3 \\ u_2 + v_2 = 6 \\ u_3 + v_2 = 2 \\ u_3 + v_3 = 3 \\ u_3 + v_4 = 4 \end{cases}$$

$$\Pi_{\text{УСТЬ}} \ u_3 = 0 \rightarrow$$

$$\begin{cases} u_1 = 3 - 2 = 1 \\ u_2 = 6 - 2 = 4 \\ u_3 = 0 \end{cases}$$

$$\begin{cases} v_1 = 3 - 1 = 2 \\ v_2 = 2 \\ v_3 = 3 \\ v_4 = 4 \end{cases}$$

$$\begin{cases} d_{13} = 5 - u_1 - v_3 = 5 - 1 - 3 = 1 \ge 0 \\ d_{14} = 1 - u_1 - v_4 = 1 - 1 - 4 = \boxed{4} < 0 \\ d_{21} = 4 - u_2 - v_1 = 4 - 4 - 1 = -1 < 0 \\ d_{23} = 7 - u_2 - v_3 = 7 - 4 - 3 = 0 \\ d_{24} = 8 - u_2 - v_4 = 8 - 4 - 4 = 0 \\ d_{31} = 1 - u_3 - v_1 = 1 - 0 - 2 = -1 < 0 \end{cases}$$

Таким образом, x_{14} - в базис.

Какую переменную следует исключить из базиса?

5	5 - w	•	$+\mathbf{w}$
•	15	•	•
•	5 + w	10	10 - w

 x_{14} включаем в базис \to в новом БДР x_{14} можзет принять значение $x_{14} = w > 0 \to$ в этом случае нарушается баланс в 1й строке и 4м столбце.

Из 4-го столбца $\to x_{34} := 10 - w \to$ не выполняется.

Ограничение для 3-й строки $\to x_{32} := 5 + w \to$ нарушим баланс во 2м столбце $\to x_{12} := 5 - w$.

Проведённая процедура называется построением цикла транспортной задачи. Цикл всегда содержит ровно 1 небазисныую клетку, а все остальные - базисные. Можно показать, что для данного БДР и данной переменной, подлежащей для включения в базис, цикл единственный.

Нужно выбрать те клетки, в которых -w и выбрать ту, в которой минимальное значение x – 5. Если таких переменных несколько, то из базиса можно исключить любую, но только одну. w=5

5	• (небазс)	•	5
•	15	•	•
•	10	10	5

Блок схема симплексного метода

•	5	25	10	10	
10	5 3	3	5	5 1	
15	4	15 6	7	8	
25	1	10 2	10 3	5 4	

$$\begin{cases} u_1 + v_1 = 3 \\ u_1 + v_4 = 1 \\ u_2 + v_2 = 6 \\ u_3 + v_2 = 2 \\ u_3 + v_3 = 3 \\ u_3 + v_4 = 4 \end{cases}$$

$$u_3 = 0$$

$$\begin{cases} u_1 = -3 \\ u_2 = 4 \\ u_3 = 0 \\ v_1 = 6 \\ v_2 = 6 \\ v_3 = 3 \\ v_4 = 4 \end{cases}$$

$$\begin{cases} d_{12} = 3 + 3 - 2 = 4 \\ d_{13} = 5 + 3 - 3 = 5 \\ d_{21} = 4 - 4 - 6 = 6 \end{cases}$$

$$\begin{cases} d_{23} = 7 - 4 - 3 = 0 \\ d_{24} = 8 - 4 - 4 = 0 \end{cases}$$

$$\begin{cases} d_{24} = 8 - 4 - 4 = 0 \\ d_{24} = 8 - 4 - 4 = 0 \end{cases}$$

•	5	25		10
10	5 - w 3	3	5	5 + w 1
15	+w 4	15 -w 6	7	8
25	1	10 + w 2	10 3	5 - w 4

Исключим x_{34} , w = 5. $x_{11} = 0$, $x_{34} = 0$.

•	5	25	10	10
10	0 3	3	5	10 1
15	5 4	10 6	7	8
25	1	15 2	10 3	4

$$\begin{cases} u_1+v_1=3\\ u_1+v_4=1\\ u_2+v_1=4\\ u_2+v_2=6\\ u_3+v_2=2\\ u_3+v_3=3\\ u_1=0\\ \begin{cases} u_1=0\\ u_2=1\\ u_3=-3\\ \end{cases}\\ v_1=3\\ v_2=5\\ v_3=6\\ v_4=1\\ \begin{cases} d_{12}=3-0-5=-2\\ d_{13}=5-0-6=-1\\ d_{23}=7-1-6=0\\ d_{24}=8-1-1=6\\ d_{31}=1+3-3=1\\ d_{34}=4+3-1=6\\ \end{cases}$$

•	5	25	10	10
10	0 - w 3	+w 3	5	10 1
15	$5 + w \mid 4$	10 - w 6	7	8
25	1	15 2	10 3	4

w = 0

 x_{11} можно из базиса исключить.

•	5	25	10	10
10	3	0 3	5	10 1
15	5 4	10 6	7	8
25	1	15 2	10 3	4

Итерация 4

$$\begin{cases} u_1 + v_2 = 3 \\ u_1 + v_4 = 1 \\ u_2 + v_1 = 4 \\ u_2 + v_2 = 6 \\ u_3 + v_2 = 2 \\ u_3 + v_3 = 3 \end{cases}$$

$$v_2 = 0$$

$$\begin{cases} u_1 = 3 \\ u_2 = 6 \\ u_3 = 2 \\ v_1 = -2 \\ v_2 = 0 \\ v_3 = 1 \\ v_4 = -2 \end{cases}$$

$$\begin{cases} d_{11} = 3 - 3 + 2 = 2 \\ d_{13} = 5 - 3 - 1 = 1 \\ d_{23} = 7 - 6 - 1 = 0 \\ d_{24} = 8 - 6 + 2 = 4 \\ d_{31} = 1 - 2 + 2 = 1 \\ d_{34} = 4 - 2 + 2 = 4 \end{cases}$$

ПОСТАНОВКА ЗАДАЧ ТРАНСПОРТНОГО ТИПА

Мы рассмотрим некоторые содержательные задачи, которые могут быть сведены к ТЗ.

(1) Задача о назначениях.

n работ, n исполнителей. Каждый исполнитель может выполнять любую работу, но только одну. c_{ij} - стоимость выполнения i-й работы j-м.

Необходимо распределить работы таким образом, чтобы общая стоимость выполнения всех работ была минимальной.

Введём матрицу $X=(x_{i,j})_{i,j=\overline{1:n}},$ для которой определено условие

$$x_{i,j} = egin{cases} 1, \ \text{если i-ю работу выолняет j-й исполнитель} \\ 0, \ \text{иначе} \end{cases}$$

Тогда общая стоимость выполнения работ $f = \sum_{i=1}^n \sum_{j=1}^n a_j x_{ij}$

Каждая строка матрицы X должна содержать ровно 1 единицу, т.к. каждую работу выполняет ровно 1 исполнитель.

$$\sum_{j=1}^n x_{ij} = 1$$
, где $i = \overline{1:n}$

Каждый столбец матрицы Х должен содержать ровно 1 единицу:

$$\sum_{i=1}^n x_{ij} = 1$$
, где $j = \overline{1:n}$

Таким образом приходим к математической постановке:

$$\begin{cases} f = \sum_{i=1}^{n} \sum_{j=1}^{n} a_j x_{ij} \to min \\ \sum_{j=1}^{n} x_{ij} = 1, \text{ где } i = \overline{1:n} \\ \sum_{i=1}^{n} x_{ij} = 1, \text{ где } j = \overline{1:n} \\ x_{ij} \in \{0,1\} \end{cases}$$

Задача о назначениях является частным случаем транспортной задачи для $m=n, S_i=D_i=1$. Условие $x_{ij}\in\{0,1\}$ можно заменить условием $x_{ij}\geq 0$, т.к. мы показали ранее, что если все мощности $S_i,D_j\in\mathbb{Z}$, то $x_{ij}\in\mathbb{Z}$.

Замечание: Любое БДР задачи о назначениях будет вырождено, т.к. баз. переменных 2n-1, а любое допустимое решение содержит лишь n единиц \Rightarrow некоторые баз. перем. будут =0.

(2) Транспортные задачи с промежуточными пунктами.

В (обычной) ТЗ были m источников и n стоков. Условие этой задачи можно сформулировать с использованием орграфа, или, как принято говорить в ИО, ориентированной сети.

<u>Замечание</u> Мы намеренно указываем мощность стоков со знаком -, чтобы показать, что в соотв. пункта продукция выводится из транспортной системы.

Соответственно, этим обозначением ограничения ТЗ удобно записывать в виде:

$$x_{i1} + ... + x_{in} = S_i, i = 1..m$$

 $-x_{ij} - ... - x_{nj} = -D_j, j = 1..n$

В ТЗ с промежуточными пунктами помимо пунктов, из которых продукция может только вывозиться, и пунктов, в которые она может только ввозиться, могут присутствовать пункты, в которые продукция может как ввозиться, так и вывозиться.

<u>Пример</u> Крупная торговая компания имеет сеть складов в регионе, структура которой изображена на рисунке.

Из п.1. продукцию можно только вывозить \Rightarrow п.1 называется источником.

В п.п. 6, 7 можно только завозить \Rightarrow они называются стоками.

Остальные пункты называются промежуточными.

 $c_{ij} \ge 0$ - стоимость перевозки педингицы продукции из i-го в j-й.

Каждый пункт характеризуется числом, которое мы бдуем называть величиной "чистого запаса"в этом пункте и обозначим T_k , где k - номер пункта.

Величина $T_k>0$ означает, что в соответствующем пункте имеется избыток продукции

 $T_k < 0 \Rightarrow$ недостаток. Значение $T_k = 0$ означает, что после всех перевозок объём продукции в k-м пункте не должэен измениться.

В нашем примере

Тогда стоимость перевозок $f = \sum_{(i,j) \in \text{сети}} c_{ij} x_{ij} \to min.$

Каждое ограничение имеет вид:

-{объём продукции, ввозимой в k-й пункт} + {объём продукции, вывозимой из k-го пункта} = T_k , k = 1..7

В нашем примере получаем систему ограничений.

Пункт	x_{12}	x_{13}	x_{23}	x_{24}	x_{34}	x_{35}	x_{45}	x_{46}	x_{54}	x_{56}	x_{57}	
1	1	1										+7
2	-1		1	1								+5
3		-1	-1		1	1						0
4				-1	-1		1	1	-1			0
5						-1	-1		1	1	1	-3
6								-1		-1		-4
7											-1	-5

Таким образом приходим к ЗЛП.

Эту задачу можно решить симплекс-методом, но мы покажем, как свести её к ТЗ.

Основная идея:

- Если пункт только источник \Rightarrow останется источкником.
- Если только сток \Rightarrow останется стоком.
- Если и источник и сток ⇒ два новых пункта источник и сток, соединённые связью 0 в оба направления.

Алгоритм сведения к ТЗ

- 1. Для каждого источника k резервируем в транспортной таблице строку, можность соответствующего источника $S_i = T_k$
- 2. Для каждого стока k задачи с промежуточными пунктами резервируем в транспортной таблице столбце, мощность соответствующего стока $D_j = T_k + B$, где B общий объём перевозимой в системе продукции(в нашем примере B = 12).
- 3. Для каждого промежуточного пункта резервируем в транспортной таблице и строку и столбец. Мощность соответствующего источника $S_i = -T_k$, мощность соответствующего стока $D_j = B$
- 4. Ввести переменные $x_{ij} \geq 0$ только для тех дуг, которые существуют в исходной сети, соответствующие стоимости c_{ij} принять равными стоимостям перевозок по соответствующим дугам исходной сети. Для промежуточных пунктов также ввести переменные x_{kk} , $c_{kk} = 0$.

•	Стоки	12	12	12	12	4	5
Мощности	Пункт	2	3	4	5	6	7
$S_1 = 7$	1	c ₁₂	c ₁₃	•	•	•	•
$S_2 = 5 + 12 = 17$	2	0	c23	c ₂₄	•	•	•
$S_3 = 0 + 12 = 12$	3	•	0	c ₃₄	c ₃₅	•	•
$S_4 = 0 + 12 = 12$	4	•	•	0	c ₄₅	c ₄₆	•
$S_5 = -3 + 12 = 9$	5	•	•	c ₅₄	0	c ₅₆	$ c_{57} $

Замечание

- 1. Заштрихованные клетки можно интерпретировать кака случай $c_{ij} = +\infty, +\infty * 0 = 0.$
- 2. В исходной задаче ЛП 7 уравнений и 11 переменных, в полученной ТЗ. 11 уравнений и 15 переменных. Увеличение размерности связано с тем, что некоторые пункты являются промежуточными.
- 3. Можно показать, что полученная ТЗ эквивалентная задаче ЛП.
- 4. Величина В играет роль т.н. "буферного" запаса
- 5. Многие операционные модели, содержательная постановка которых не имеет ничего общего с перевозкой продукции, приводятся к ТЗ с промежуточными пунктами, а, следовательно и к ТЗ.

(3) Модель выбора кратчайшего пути

Дано

- 1. орграф(сеть), каждой дуге (i, j) которого поставлено в соответствие число $c_{ij} \ge 0$. Это число интерпретируется как длина этой дуги или стоимость её прохождения.
- 2. В этой сети выделено 2 узла, один из которых мы будем называть источником, а другой стоком.

Требуется найти длину кратчайшего пути из источника в сток.

Пример Найти кратчайший путь из узла 1 в узел 7.

Будем рассматривать граф как транспортную сеть.

Узел 1 – источник. $T_1 = +1$

Узел 7 – сток. $T_7 = -1$

Остальные пункты промежуточные.

$$T_k = 0, k = \{2, 3, 4, 5, 6\}$$

Замечание

- 1. При сведении этой задачи к ТЗ будет работать правило "Если мощности целочислены, то и x_{ij} целочислено $\Rightarrow x_{ij} \in \{0,1\}$
- 2. Значение целевой функции $f = \sum c_{ij} x_{ij}$, где $x_{ij} \in \{0,1\}$ на любом БДР будет равно длине некоторого пути. Значение функции на оптимальном решении равно длине кратчайшего пути
- 3. У полученной ТЗ мощности всех источников и стоков будут $=1 \Rightarrow$ её можно рассмотреть как вариант задачи о назначении, в которой некот. работники и не могут выполнить некот. работы (некот $c_{ij} = +\infty$).

12