

Mitsubishi Project Environmental Risk Factors for ALS

Claire Wang Jun 2020 - Aug 2020

Agenda

Background Database

Methods

Results

Summary

What Is ALS

SYMPTOMS

Progressive loss of muscle control ALS gradually prohibits the ability to:

- Speak
- Grasp objects
- Swallow
- Move
- Walk
- Breathe

DIAGNOSIS

Difficult to diagnose

• ALS is often diagnosed by ruling out other diseases, which may take months or years

MILITARY

Veterans are more likely to get ALS

 ALS impacts veterans regardless of the branch of service served in and affects those who served in both peacetime and war

- Amyotrophic lateral sclerosis
- A nervous system disease in which a person's brain loses connections with the muscles
- Causes weakness, disability, and eventually death from failure of the ventilatory muscles
- One can be diagnosed with ALS after on average of 9 to 12 months since they begin to notice symptoms
- 20% more common in men than in women

What is ALS

- Stephen Hawking diagnosed with ALS
- Lived with ALS for 55 years
- March 14, 2018

What is ALS

5,000+ people are diagnosed per year

2-5 YEARS is the average life expectancy

of cases are inherited through a mutated gene

4 DRUGS

are currently approved by the U.S. FDA to treat ALS (Riluzole, Nuedexta, Radicava, and Tiglutik)

\$2 BILLION

is the estimated cost to develop a drug to slow or stop the progression of ALS

90 PERCENT of cases occur

of cases occur without family history

someone is diagnosed or someone passes

away from ALS

\$250,000

is the estimated out-of-pocket cost for caring for a person with ALS

The Mitsubishi Project - Background

- Mitsubishi Tanabe Pharma America (MTPA) markets Radicava for the treatment of ALS
- Can slow the progress of ALS by 25% 30%
- None of them cure the disease
- Radicava acts as an antioxidant

The average total score on the ALS Functional Rating Scale–Revised (ALSFRS-R) after 24 weeks

The Mitsubishi Project - Background

Researchers and scientists are seeking a different pathway to improve the performance of the drug

Opportunity:

- Alternative pathway: the ethnobotanical identification of flora with toxic or therapeutic activity (Cox et al. 2016)
- Study has shown that classes of environmental toxins increase the likelihood of ALS, especially in regard to pesticides

Challenge:

- However, people are likely exposed to multiple chemicals
- It is too soon for the scientists to know which individual chemicals, or mixtures of chemicals, lead to motor neuron damage

The Mitsubishi Project - Goal

On the other hand:

- Some of environmental toxicants have synergistic effects
 - BMAA and mercury (Rush et al. 2012)

Project objective:

- Identify environmental pollutants that are risk factors for the development of ALS
- Explore the potential toxicants with synergistic effects
- Propose the results for drug development

My Goal:

 Develop the model tested on the old patients data to predict the future cohort's disease outcome

The Database

The Symphony Integrated Dataverse® (IDV®) database:

- The most comprehensive and interconnected source of healthcare data in the industry
- A medical claims database with more over 240M patients

Components of IDV:

- Reclaim resources: practitioner, procedure, diagnosis, patient, and payer information
 - Hospital
 - Medical
 - Prescription
- Point-of-sale prescription data
- Non-retail Invoice data
- Demographics

The Database

Our project data:

- Symphony healthcare claims dataset
- Merged with Air Toxics Release Inventory(TRI) data for chemicals released from large industrial facilities
- Age and gender matched controls for case-control comparison
- 104796 rows, 457 columns
- 78597 controls, 26199 ALS cases

Outcome: ALS_stat	ALS = 1	Control = 0
Location: zip3	Min = 10	Max = 994
Year: dx_year	Min = 2013	Max = 2019
Age: dx_age	Min = 18	Max = 81
Sex: sex	Male	Female
Toxins: (446 types)	From: X2.4.D	To: ZOXAMIDE

The Analytical Approach:

Programming Language:

R

Data:

- Random assignment
- Train-test split
- Data cleaning/imputation

Methods:

- Pair-wise interaction analysis on the train set (package: Glinternet) 1st data filtering رليم
- Logistic regression model with interaction terms on the test set Computing false discovery rate given the p-values (package: FDR) 2nd data filtering
- Descriptive Analysis on findings of synergistic pairs (package: Tableone)

Step: Random Split

- Find the year that splits the data to 2:1. Obtain the "old_ALS" data and "recent_ALS" data (package: dyplyr)
- 2. Random assign the patient data from control group to train and test set with a 0.65:0.35 ratio
- 3. The "old_ALS" data merged to the train set, "recent_ALS" merged to the test set

dx_year	Als_stat	Counts	Cumsum
2013	1	3537	0.1350052
2014	1	4737	0.3158136
2015	1	4650	0.4933013
2016	1	4195	0.6534219
2017	1	4428	0.822436
2018	1	4407	0.9906485
2019	1	245	1
NA	0	78597	7-7

Step: Data Cleaning

- 1. Eliminate the columns(toxins) that have more than 80% NA's
 - a. 164 toxins dropped,
 - b. 149 toxins have more than 50% NA's out of the rest 282 toxins
- 2. Convert the data to continuous/categorical
 - a. Approach 1: impute NA with smallest non-NA divided by 2
 - b. Approach 2: categorize the variables
 - 1. NA = 0
 - Values < median of the non-NA's = 1
 - 3. Values > median of the non-NA's = 2

Step: Pairwise Interaction Analysis

X = 282 predictors(toxins)

 $Y = ALS_stat$

Model: glinternet.cv

- The glinternet model return the main effect coefficients and interaction coefficients for each pair
- Glinternet.cv does k-fold cross validation for glinternet

Step: Pairwise Interaction Analysis

Model 1:

- numLevels = rep(3, 282) # for categorical variables, 3 levels
- glinternet.cv(X, Y, numLevels, nFolds = 3, family = "binomial")
- X from approach 2 (categorical variables)

Choose lambda 1Std = 28, the largest value of lambda that produces a cv error that is within 1 standard deviation of the minimum cv error

Step: Pairwise Interaction Analysis

- Extract all the coefficients under Lambda1Std, i_1Std = 28
 - coefs <- coef(gcv_fit\$glinternetFit)[[i_1Std]]
- Build a table that saves the obtained interactions (603 pairs) with
 - Indicies of toxins
 - Name of toxins
 - Main effect coefficients 3 levels
 - Interaction coefficients 3 x 3 = 9 per pair

```
head(main_effect_table) coefs$interactionsCoef$catcat[[1]]

## [,1] [,2] [,3] ## cat187_0 cat187_1 cat187_2

## [1,] -9.628271e-05 8.591761e-05 0.0000103682 ## cat1_0 -0.0001602940 -2.314479e-05 0.0001834357

## [2,] -2.201447e-03 8.146961e-03 -0.0059453096 ## cat1_1 -0.0002760016 -4.336528e-04 0.0007096513

## [3,] 3.818252e-03 -6.330695e-03 0.0025126298 ## cat1_2 0.0004362925 4.567945e-04 -0.0008930901
```

Step: Logistic Regression

Validate with logistic regression model on the test set:

- Extract and save the interactions coefficient and p-values for each pair obtained from the glinternet model
- summary(glm($Y_{test} \sim Age + Sex + X_{test}[,1]^* X_{test}[,187]$))\$coefficients[6,c(1,4)]

```
## Estimate Pr(>|t|)
## -0.01062673 0.04936902
```

• The final table:

Att_1_index	Att_2_index Att_1_name	Att_2_name	att1_0_vs_att2_0	att1_0_vs_att2_1	att1_0_vs_att2_2	att1_1_vs_att2_0	att1_1_vs_att2_1	att1_1_vs_att2_2	att1_2_vs_att2_0	att1_2_vs_att2_1	att1_2_vs_att2_2	Estimated_Coef	p_value
1	187 X2.4.D	MYCLOBUTANIL	-0.000160294029054934	-2.31447927396166E-05	0.00018343572230256	-0.000276001581822604	-0.000433652810603422	0.000709651292934036	0.000436292511385547	0.000456794503851049	0.00018343572230256	-0.0106267264851528	0.0493690201355432
2	99 X2.4.DB	FAMOXADONE	-0.000684442704602552	0.000801934379376638	-0.00011750204229425	-0.000181992138687498	0.00187793178493654	-0.0016959500137692	0.000866424475769887	-0.00267987653183334	-0.00011750204229425	-0.00839271729890425	0.0467276629099446
2	191 X2.4.DB	NAPROPAMIDE	-0.00111893628644159	-0.000463578797220171	0.00158250307267035	0.00180883847531622	-0.00230102159570716	0.000492171109399523	-0.000689914199866043	0.00276458838193591	0.00158250307267035	-0.0161030982630352	8.59931428207112E-05
2	225 X2.4.DB	PYMETROZINE	-0.00075976287975421	0.00078733560684048	-2.75834400019118E-05	0.00221294479370996	-0.00271779256111311	0.000504837054487508	-0.00145319262687139	0.00193044624135699	-2.75834400019118E-05	-0.0116643100075713	0.00238568209786905
2	246 X2.4.DB	SPIROMESIFEN	-0.000711269067251555	-0.00223057296116114	0.00294180970572544	-0.00259835011307215	-0.00306689693899364	0.00566521472937853	0.00330958685763644	0.00529743757746753	0.00294180970572544	-0.0134696114590896	0.000536495480233066

Step: Filtering

Filter to obtain rows with p-values < 0.05

- coef_table[coef_table\$p_value < 0.05,]
- Obtained 235 pairs

Challenge:

- Hard to interpret
- Complicated in terms of further filtering work

Step: Model 2

- numLevels = rep(1, 282) # 1 for continuous variables
- glinternet.cv(X, Y, numLevels,, nFolds = 3, family = "binomial")
- X from approach 1 (continuous variables)

Step: Model 2

- Found 20 pairs from Glinternet Model
- Filtered to get 8 pairs with p-values < 0.05

```
Att_1 index Att_2 index
                                       Att 1 name
                                                            Att 2 name
## 2
                                                        PYRACLOSTROBIN
                                      ACIFLUORFEN
                           226
## 3
                                      ACIFLUORFEN
                                                               ROTENONE
## 5
               49
                          164 CLORANSULAM. METHYL
                                                                   MCPB
## 12
               97
                          238
                                      ETHOPROPHOS
                                                              ROTENONE
## 14
                                                    PIPERONYL.BUTOXIDE
              129
                           214
                                    FORAMSULFURON
## 15
                                MALEIC.HYDRAZIDE
                                                           TEBUTHIURON
              159
## 17
              164
                           238
                                             MCPB
                                                               ROTENONE
## 20
              194
                           207
                                     NICOSULFURON PETROLEUM.DISTILLATE
      Att 1 main coefs Att 2 main coefs interaction coef
                                                                p value
         -2.251375e-05
## 2
                           -7.348082e-08
                                            -6.105576e-09 1.007386e-02
## 3
         -2.251375e-05
                           4.367913e-04
                                             6.949447e-07 6.830684e-05
## 5
         -1.151330e-04
                          -9.258519e-05
                                             9.338570e-06 4.029598e-02
## 12
          4.475148e-07
                           4.367913e-04
                                            -3.844440e-08 8.350269e-03
## 14
          2.905877e-05
                           -2.185850e-05
                                            -6.479625e-06 6.410331e-03
## 15
         -1.938417e-06
                           -5.433801e-06
                                             1.664764e-08 1.180398e-03
## 17
         -9.258519e-05
                           4.367913e-04
                                             2.114675e-07 3.707409e-03
## 20
          1.671414e-04
                           1.004280e-06
                                            -4.786234e-08 3.267132e-02
```


Step: Model 3

1 Glinternet

	Att_1_index	Att_2_index	Att_1_name	Att_2_name	Att_1_main_coefs	Att_2_main_coefs	interaction_coef	int_coef_glm	p_value
19	3	263	X6.BENZYLADENINE	THIACLOPRID	-0.0404949513371709	0.637291332637374	0.00336265303593312	0.0132621892088431	0.00903288837263681
50	10	19	ALDICARB	BACILLUS.SUBTILIS	0.00764768789941734	-0.0383059287795336	0.0202279875957431	0.00652442657846244	0.0494040444902521
51	10	101	ALDICARB	FENARIMOL	0.00764768789941734	0.0389589171782285	0.0168522077384913	0.00766550284120469	0.0237372536395864
70	14	57	AZADIRACHTIN	CUPROUS.OXIDE	0.0259150790343004	-0.118797402383505	0.0230772982848491	0.0120807348413047	0.00285416773001247
104	18	229	BACILLUS.PUMILIS	PYRETHRINS	1.34950368609536	0.0184025637809732	0.00126492304549287	0.0172245928059466	0.0163292518721553
200	31	156	BUTYLATE	LINDANE	0.268330980202988	-0.0771621263913669	0.0217861317172191	0.0113564854288167	0.0139136997684876
203	31	258	BUTYLATE	TEFLUTHRIN	0.268330980202988	0.0628327470641632	0.0480320348471713	0.00997165884687693	0.0319349383958483

- SSZ Pali S
- Filtered by interaction coefficient > 0
 - 27 pairs

684	684	153	198	KAOLIN.CLAY	OXAMYL	-0.11298468	1672464	-0.0587413747	380037	0.08746821577	39094
822	822	218	232	PROHEXADIONE	PYRIPROXYFEN	-0.13682016	6342337	-0.138967605	358499	0.01312945008	62278
	Adju	st the p-va			l - 1 - 1 - 1 - 1 0 0	4					
	•	Adding th	e adjusted	d p-values to t	ne table of 88	1 pairs					
		> library(fo	drtool)								
		> fdr = fdrt	tool(table\$	p_value, statis	tic="pvalue")						
		> table[,'p_	_adjusted']	<- fdr\$pval							
	 Found 499 pairs that are significant Filtering by interaction coefficients > 0 Found 56 pairs with synergistic effects Matching with main effects > 0 Finally obtained 4 pairs with an increasing risk effect on ALS synergistically 										
	att1	_main_glm	att	2_main_glm	int_coef_g	lm	p_value		p_adjus	sted	_
	0.00	008363942050	032688 0.	00924589039942	902 0.0076655	0284120469	0.02373	72536395864	0.02373	372536395864	∃DU

Att_2_name

FENARIMOL

TRIASULFURON

Att_1_main_coefs

0.00764768789941734

-0.0221289721387776

Att_2_main_coefs

0.0389589171782285

0.169072303579421

interaction_coef

0.0168522077384913

0.00643109911694891

X

51

568

51

568

Att_1_index Att_2_index Att_1_name

10

111

101 ALDICARB

272 FLONICAMID

Results:

- Using the package "tableone" to check how our data performed after the train-test-split
- Our data looks robust, as most of them have more control cases than ALS cases

		Test Set		Train Set				
	Level of predictors	$ALS_stat = 0$	$ALS_stat = 1$	Level of predictors	$ALS_stat = 0$	$ALS_stat = 1$		
Counts		27,496	9,080		51,101	17,119		
ALDICARB (%)	0	14150 (51.5)	4526 (49.8)	0	25949 (50.8)	8749 (51.1)		
	1	6578 (23.9)	2341 (25.8)	1	12242 (24.0)	4276 (25.0)		
	2	6768 (24.6)	2213 (24.4)	2	12910 (25.3)	4094 (23.9)		
FLONICAMID (%)	0	14972 (54.5)	4782 (52.7)	0	27981 (54.8)	9345 (54.6)		
	1	6252 (22.7)	2137 (23.5)	1	11483 (22.5)	3948 (23.1)		
	2	6272 (22.8)	2161 (23.8)	2	11637 (22.8)	3826 (22.3)		
KAOLIN.CLAY (%)	0	11350 (41.3)	3445 (37.9)	0	20970 (41.0)	6595 (38.5)		
	1	8113 (29.5)	2751 (30.3)	1	15172 (29.7)	5142 (30.0)		
	2	8033 (29.2)	2884 (31.8)	2	14959 (29.3)	5382 (31.4)		
PROHEXADIONE (%)	0	13941 (50.7)	4522 (49.8)	0	26069 (51.0)	8454 (49.4)		
	1	6848 (24.9)	2153 (23.7)	1	12553 (24.6)	4261 (24.9)		
	2	6707 (24.4)	2405 (26.5)	2	12479 (24.4)	4404 (25.7)		
FENARIMOL (%)	0	10233 (37.2)	3194 (35.2)	0	19187 (37.5)	5884 (34.4)		
	1	8670 (31.5)	2800 (30.8)	1	15808 (30.9)	5638 (32.9)		
	2	8593 (31.3)	3086 (34.0)	2	16106 (31.5)	5597 (32.7)		
TRIASULFURON (%)	0	19738 (71.8)	6264 (69.0)	0	36478 (71.4)	12156 (71.0)		
	1	3854 (14.0)	1413 (15.6)	1	7292 (14.3)	2440 (14.3)		
	2	3904 (14.2)	1403 (15.5)	2	7331 (14.3)	2523 (14.7)		
OXAMYL (%)	0	3832 (13.9)	1145 (12.6)	0	7155 (14.0)	2081 (12.2)		
	1	11921 (43.4)	3877 (42.7)	1	21955 (43.0)	7521 (43.9)		
	2	11743 (42.7)	4058 (44.7)	2	21991 (43.0)	7517 (43.9)		
PYRIPROXYFEN (%)	0	11379 (41.4)	3657 (40.3)	0	20990 (41.1)	6684 (39.0)		
	1	8116 (29.5)	2649 (29.2)	1	15028 (29.4)	5227 (30.5)		
	2	8001 (29.1)	2774 (30.6)	2	15083 (29.5)	5208 (30.4)		

Summary

Advantages:

- The analytical results can drastically save the drug development budget
- 282 toxins = 39621 pairs
- The model efficiently helps to limit the target pairs that worth studying on

Limitations:

- Due to high proportion of missing values:
 - 164 toxins were eliminated and not considered during the analysis
 - < 50% of the 282 toxins have less than 50% NA's
 </p>
 - Loss of information due to data categorization

Thank you

Mitsubishi Project:

- Professor Jiang Gui
 - Associate Professor of Biomedical Data Science
 - Associate Professor of The Dartmouth Institute
 - Associate Professor of Community and Family Medicine
- Professor Angeline S. Andrew
 - Associate Professor of Neurology

Capstone Program:

- Dr. Jennifer A. Emond
- Dr. Aurora Drew

References

- 1. What is ALS?, ALS Association, https://www.als.org/understanding-als/what-is-als
- 2. Su FC, Goutman SA, Chernyak S, et al. Association of Environmental Toxins With Amyotrophic Lateral Sclerosis [published correction appears in JAMA Neurol. 2017 May 1;74(5):612]. *JAMA Neurol.* 2016;73(7):803-811. doi:10.1001/jamaneurol.2016.0594.
- 3. What is RADICAVA® (edaravone)? https://www.radicava.com/patient/learn/understanding-radicava/
- 4. Cox PA, Davis DA, Mash DC, Metcalf JS, Banack SA. Dietary exposure to an environmental toxin triggers neurofibrillary tangles and amyloid deposits in the brain. Proc Roy Soc B 2016;283(1823).
- 5. Haley Otman, Pesticide Exposure May Be ALS Risk Factor, Michigan Health Lab, May 09, 2016, https://labblog.uofmhealth.org/lab-report/pesticide-exposure-may-be-als-risk-factor.
- 6. Rush T, Liu XQ, Lobner D. Synergistic toxicity of the environmental neurotoxins methylmercury and b-N-methylamino-L-alanine. NeuroReport 2012, 23:216–219.
- 7. Symphony Integrated Dataverse® (IDV®) https://symphonyhealth.prahs.com/product/idv/

