K PLUS PROCHES VOISINS (K-NN) K-NEAREST NEIGHBORS (K-NN)

Jérémie Cabessa Laboratoire DAVID, UVSQ

RÉGRESSION / CLASSIFICATION

- Dans le cadre de l'apprentissage supervisé, on distingue deux types de méthodes:

K-NN

RÉGRESSION / CLASSIFICATION

- ▶ Dans le cadre de l'apprentissage supervisé, on distingue deux types de méthodes:
- Méthodes de régression
 La variable d'output (réponse) est quantitative.

K-NN

Méthodes de classification
 La variable d'output (réponse) est qualitative.

RÉGRESSION / CLASSIFICATION

- ▶ Dans le cadre de l'apprentissage supervisé, on distingue deux types de méthodes:
- Méthodes de régression
 La variable d'output (réponse) est quantitative.
- Méthodes de classification
 La variable d'output (réponse) est qualitative.

CLASSIFICATION

Ce chapitre présente une méthodes simple de classification:

K-NN

- L'algorithme des K plus proches voisins ou (K-Nearest Neighbors, K-NN).
- ► K-NN peut être aisément généralisé dans un contexte de régression.

CLASSIFICATION

Ce chapitre présente une méthodes simple de classification:

K-NN

- L'algorithme des K plus proches voisins ou (K-Nearest Neighbors, K-NN).
- K-NN peut être aisément généralisé dans un contexte de régression.

► Soit un training set

$$S_{\text{train}} = \{(\boldsymbol{x_1}, y_1), \dots, (\boldsymbol{x_N}, y_N)\}.$$

- Pour toute (nouvelle) observation x, on aimerait prédire sa classe y.
- L'algorithme K plus proches voisins procède ainsi

Soit un training set

$$S_{\text{train}} = \{(x_1, y_1), \dots, (x_N, y_N)\}.$$

- Pour toute (nouvelle) observation x, on aimerait prédire sa classe y.

◆□▶ ◆周▶ ◆三▶ ◆三▶ ● めの○

$$S_{\text{train}} = \{(x_1, y_1), \dots, (x_N, y_N)\}.$$

- Pour toute (nouvelle) observation x, on aimerait prédire sa classe y.
- L'algorithme K plus proches voisins procède ainsi:
 - ightharpoonup On fixe le nombre de voisins $k \in \mathbb{N}$.
 - Pour toute observation x, on prend ses k plus proches voisins $(x_{i_1}, y_{i_1}), \ldots, (x_{i_k}, y_{i_k})$:
 - On prédit pour x la classe y qui apparaît le plus fréquemment dans ses k plus proches voisins.

$$S_{\text{train}} = \{(x_1, y_1), \dots, (x_N, y_N)\}.$$

- Pour toute (nouvelle) observation x, on aimerait prédire sa classe y.
- L'algorithme K plus proches voisins procède ainsi:
 - ▶ On fixe le nombre de voisins $k \in \mathbb{N}$.
 - Pour toute observation x, on prend ses k plus proches voisins $(x_{i_1}, y_{i_1}), \ldots, (x_{i_k}, y_{i_k})$:
 - On prédit pour x la classe y qui apparaît le plus fréquemment dans ses k plus proches voisins.

$$S_{\text{train}} = \{(x_1, y_1), \dots, (x_N, y_N)\}.$$

- Pour toute (nouvelle) observation x, on aimerait prédire sa classe y.
- L'algorithme K plus proches voisins procède ainsi:
 - ▶ On fixe le nombre de voisins $k \in \mathbb{N}$.
 - Pour toute observation x, on prend ses k plus proches voisins $(x_{i_1}, y_{i_1}), \ldots, (x_{i_k}, y_{i_k})$:
 - On prédit pour x la classe y qui apparaît le plus fréquemment dans ses k plus proches voisins.

$$S_{\text{train}} = \{(x_1, y_1), \dots, (x_N, y_N)\}.$$

- Pour toute (nouvelle) observation x, on aimerait prédire sa classe y.
- L'algorithme K plus proches voisins procède ainsi:
 - ▶ On fixe le nombre de voisins $k \in \mathbb{N}$.
 - Pour toute observation x, on prend ses k plus proches voisins $(x_{i_1}, y_{i_1}), \ldots, (x_{i_k}, y_{i_k})$:
 - On prédit pour x la classe y qui apparaît le plus fréquemment dans ses k plus proches voisins.

K-NN

FIGURE 2.14. The KNN approach, using K=3, is illustrated in a simple situation with six blue observations and six orange observations. Left: a test observation at which a predicted class label is desired is shown as a black cross. The three closest points to the test observation are identified, and it is predicted that the test observation belongs to the most commonly-occurring class, in this case blue. Right: The KNN decision boundary for this example is shown in black. The blue grid indicates the region in which a test observation will be assigned to the blue class, and the orange grid indicates the region in which it will be assigned to the orange class.

- ▶ Plus K est petit, plus la frontière de décision est non-linaire:
 → petit biais mais grande variance (bias-variance trade-off)
- ▶ Plus K est grand, plus la frontière de décision est linaire:
 → petite variance mais grand biais (bias-variance trade-off)

- Plus K est petit, plus la frontière de décision est non-linaire: → petit biais mais grande variance (bias-variance trade-off)
- lacktriangle Plus K est grand, plus la frontière de décision est linaire:
 - \rightarrow petite variance mais grand biais (bias-variance trade-off)

FIGURE 2.16. A comparison of the KNN decision boundaries (solid black curves) obtained using K=1 and K=100 on the data from Figure 2.13. With K=1, the decision boundary is overly flexible, while with K=100 it is not sufficiently flexible. The Bayes decision boundary is shown as a purple dashed line.

FIGURE 2.17. The KNN training error rate (blue, 200 observations) and test error rate (orange, 5,000 observations) on the data from Figure 2.13, as the level of flexibility (assessed using 1/K) increases, or equivalently as the number of neighbors K decreases. The black dashed line indicates the Bayes error rate. The jumpiness of the curves is due to the small size of the training data set.

- Soient $X = (X_1, ..., X_p)$ des variables explicatives et Y une variable réponse qualitative (C classes différentes).
- ightharpoonup On codes les réalisations de Y par $1, 2, \ldots, C$.
- Pour toute classe $c=1,\ldots,C$, on aimerait modéliser les probabilités que Y=c étant données une réalisation des variables $X=X_1,\ldots,X_p$:

$$\Pr(Y = c \mid \boldsymbol{X})$$

Pour toute observation $x = (x_1, ..., x_p)$, on prédit la classe \hat{c} associée à la plus grande probabilité:

$$\hat{c} = \arg\max_{c \in \{1, \dots, C\}} \Pr(Y = c \mid \boldsymbol{X} = \boldsymbol{x})$$

- Soient $X = (X_1, ..., X_p)$ des variables explicatives et Y une variable réponse qualitative (C classes différentes).
- ▶ On codes les réalisations de Y par $1, 2, \ldots, C$.
- Pour toute classe $c=1,\ldots,C$, on aimerait modéliser les probabilités que Y=c étant données une réalisation des variables $\boldsymbol{X}=X_1,\ldots,X_p$:

$$\Pr(Y = c \mid \boldsymbol{X})$$

Pour toute observation $x = (x_1, ..., x_p)$, on prédit la classe \hat{c} associée à la plus grande probabilité:

$$\hat{c} = \arg\max_{c \in \{1, \dots, C\}} \Pr(Y = c \mid \boldsymbol{X} = \boldsymbol{x})$$

- Soient $X = (X_1, ..., X_p)$ des variables explicatives et Y une variable réponse qualitative (C classes différentes).
- ▶ On codes les réalisations de Y par 1, 2, ..., C.
- Pour toute classe $c=1,\ldots,C$, on aimerait modéliser les probabilités que Y=c étant données une réalisation des variables $\boldsymbol{X}=X_1,\ldots,X_p$:

$$\Pr(Y = c \mid \boldsymbol{X})$$

Pour toute observation $x=(x_1,\ldots,x_p)$, on prédit la classe \hat{c} associée à la plus grande probabilité:

$$\hat{c} = \arg\max_{c \in \{1, \dots, C\}} \Pr(Y = c \mid \boldsymbol{X} = \boldsymbol{x})$$

- Soient $X = (X_1, ..., X_p)$ des variables explicatives et Y une variable réponse qualitative (C classes différentes).
- ▶ On codes les réalisations de Y par 1, 2, ..., C.
- Pour toute classe $c=1,\ldots,C$, on aimerait modéliser les probabilités que Y=c étant données une réalisation des variables $\boldsymbol{X}=X_1,\ldots,X_p$:

$$\Pr(Y = c \mid \boldsymbol{X})$$

Pour toute observation $x = (x_1, ..., x_p)$, on prédit la classe \hat{c} associée à la plus grande probabilité:

$$\hat{c} = \arg\max_{c \in \{1, \dots, C\}} \Pr(Y = c \mid \boldsymbol{X} = \boldsymbol{x})$$

► Soit un training set

$$S_{\text{train}} = \{(\boldsymbol{x_1}, y_1), \dots, (\boldsymbol{x_N}, y_N)\}.$$

L'algorithme K-Nearest Neighbors procède ainsi: pour toute (nouvelle) observation x, on estime $Pr(Y = c \mid X = x)$ par:

$$\hat{\Pr}(Y = c \mid X = x) = \frac{1}{K} \sum_{x_i \in \mathcal{N}_x^K} I(y_i = c)$$

où \mathcal{N}_{x}^{K} désigne les K plus proches voisins de x et I(.) la fonction indicatrice (vaut 1 si $y_{i} = c$ et 0 sinon).

Pour x, on prédit la classe \hat{c} donnée par:

$$\hat{c} = \arg\max_{c \in \mathcal{I}_1} \hat{\Pr}(Y = c \mid \boldsymbol{X} = \boldsymbol{x})$$

Coit up training cot

Soit un training set

$$S_{\text{train}} = \{(x_1, y_1), \dots, (x_N, y_N)\}.$$

▶ L'algorithme K-Nearest Neighbors procède ainsi: pour toute (nouvelle) observation x, on estime $\Pr(Y = c \mid X = x)$ par:

$$\hat{\Pr}(Y = c \mid \boldsymbol{X} = \boldsymbol{x}) = \frac{1}{K} \sum_{\boldsymbol{x}_i \in \mathcal{N}_{\boldsymbol{x}}^K} I(y_i = c)$$

où \mathcal{N}_{x}^{K} désigne les K plus proches voisins de x et I(.) la fonction indicatrice (vaut 1 si $y_{i}=c$ et 0 sinon).

Pour x, on prédit la classe \hat{c} donnée par

$$\hat{c} = \arg\max_{c \in \{1,\dots,C\}} \hat{\Pr}(Y = c \mid \boldsymbol{X} = \boldsymbol{x})$$

► Soit un training set

$$S_{\text{train}} = \{(x_1, y_1), \dots, (x_N, y_N)\}.$$

L'algorithme K-Nearest Neighbors procède ainsi: pour toute (nouvelle) observation x, on estime $\Pr(Y = c \mid X = x)$ par:

$$\hat{\Pr}(Y = c \mid \boldsymbol{X} = \boldsymbol{x}) = \frac{1}{K} \sum_{\boldsymbol{x}_i \in \mathcal{N}_{\boldsymbol{x}}^K} I(y_i = c)$$

où \mathcal{N}_{x}^{K} désigne les K plus proches voisins de x et I(.) la fonction indicatrice (vaut 1 si $y_{i}=c$ et 0 sinon).

Pour x, on prédit la classe \hat{c} donnée par:

$$\hat{c} = \arg \max_{c \in \{1, \dots, C\}} \hat{\Pr}(Y = c \mid \boldsymbol{X} = \boldsymbol{x})$$

```
Algorithm 1: knn(dataset, k, xnew)
```

```
\label{eq:dist_and_targets} \begin{split} & \text{dist\_and\_targets} = [] \\ & \text{for } x_i, y_i \text{ } \textit{in } \text{dataset } \text{do} \\ & | & d_i = \text{distance}(x_i, x_{new}) \\ & & \text{dist\_and\_targets.append}([d_i, y_i]) \\ & \text{end} \\ & \text{dist\_and\_targets} = \text{sort\_by\_first\_component}(\text{dist\_and\_targets}) \\ & y = \text{most\_frequent\_target}(\text{dist\_and\_targets}[0:k]) \\ & \text{return } y \end{split}
```



```
\begin{split} & \textbf{Algorithm 1: knn(dataset, k, x_{new})} \\ & \textbf{dist\_and\_targets} = [] \\ & \textbf{for } \textbf{x_i, y_i } \textit{ in } \textbf{dataset do} \\ & & d_i = \texttt{distance}(\textbf{x_i, x_{new}}) \\ & & \texttt{dist\_and\_targets.append}([d_i, y_i]) \\ & \textbf{end} \\ & \textbf{dist\_and\_targets} = \texttt{sort\_by\_first\_component}(\texttt{dist\_and\_targets}) \\ & \textbf{y} = \texttt{most\_frequent\_target}(\texttt{dist\_and\_targets}[0:k]) \end{split}
```

```
\begin{array}{l} \text{dist\_and\_targets} = [] \\ \text{for } x_i, y_i \text{ } \textit{in} \text{ dataset do} \\ & d_i = \text{distance}(x_i, x_{new}) \\ & \text{dist\_and\_targets.append}([d_i, y_i]) \\ \text{end} \\ & \text{dist\_and\_targets} = \text{sort\_by\_first\_component}(\text{dist\_and\_targets}) \end{array}
```

```
 \begin{aligned} & \textbf{Algorithm 1: knn(dataset, k, x_{new})} \\ & \textbf{dist\_and\_targets} = [] \\ & \textbf{for } x_i, y_i \text{ } \textit{in } \textbf{dataset } \textbf{do} \\ & & d_i = \texttt{distance}(x_i, x_{new}) \\ & & \texttt{dist\_and\_targets.append}([d_i, y_i]) \\ & \textbf{end} \\ & \textbf{dist\_and\_targets} = \texttt{sort\_by\_first\_component}(\texttt{dist\_and\_targets}) \\ & y = \texttt{most\_frequent\_target}(\texttt{dist\_and\_targets}[0:k]) \end{aligned}
```



```
\begin{split} & \text{Algorithm 1: knn(dataset, k, x_{new})} \\ & \text{dist\_and\_targets} = [] \\ & \text{for } x_i, y_i \text{ in } \text{dataset } \text{do} \\ & & d_i = \text{distance}(x_i, x_{new}) \\ & & \text{dist\_and\_targets.append}([d_i, y_i]) \\ & \text{end} \\ & \text{dist\_and\_targets} = \text{sort\_by\_first\_component}(\text{dist\_and\_targets}) \\ & y = \text{most\_frequent\_target}(\text{dist\_and\_targets}[0:k]) \\ & \text{return } y \end{split}
```

```
Algorithm 1: knn(dataset, k, x_{new})
```

```
\begin{split} & \text{dist\_and\_targets} = [] \\ & \text{for } x_i, y_i \text{ } \textit{in} \text{ } \text{dataset } \text{do} \\ & \mid \quad d_i = \text{distance}(x_i, x_{new}) \\ & \mid \quad dist\_and\_targets.append([d_i, y_i]) \\ & \text{end} \\ & \text{dist\_and\_targets} = \text{sort\_by\_first\_component}(\text{dist\_and\_targets}) \\ & y = \text{most\_frequent\_target}(\text{dist\_and\_targets}[0:k]) \\ & \text{return } y \end{split}
```

- ightharpoonup On peut facilement généraliser l'algorithme $K ext{-NN}$ pour un contexte de régression.
- Pour toute observation x, au lieu de lui prédire la classe \hat{c} qui apparaît le plus souvent parmi les classes c_i des K plus proches voisins...
- on lui prédit la valeur moyenne \hat{y} des targets y_i de ses K plus proches voisins:

$$\hat{y} = \frac{1}{K} \sum_{\boldsymbol{x_i} \in \mathcal{N}_x^K} y$$

- ightharpoonup On peut facilement généraliser l'algorithme $K ext{-NN}$ pour un contexte de régression.
- Pour toute observation x, au lieu de lui prédire la classe \hat{c} qui apparaît le plus souvent parmi les classes c_i des K plus proches voisins...
- on lui prédit la valeur moyenne \hat{y} des targets y_i de ses K plus proches voisins:

$$\hat{y} = \frac{1}{K} \sum_{\boldsymbol{x_i} \in \mathcal{N}_{\boldsymbol{x}}^K} y$$

- On peut facilement généraliser l'algorithme K-NN pour un contexte de régression.
- Pour toute observation x, au lieu de lui prédire la classe \hat{c} qui apparaît le plus souvent parmi les classes c_i des K plus proches voisins...
- on lui prédit la valeur moyenne \hat{y} des targets y_i de ses K plus proches voisins:

$$\hat{y} = \frac{1}{K} \sum_{\boldsymbol{x_i} \in \mathcal{N}_{\boldsymbol{x}}^K} y_i$$

INTRODUCTION

- ► Comment évaluer la performance d'un classifieur binaire?
- On utilise les matrices de confusion et les métriques qui en découlent: precision, recall, accuracy, F1-score, ROC curve, et AUC.

Métriques de classification

Introduction

- Comment évaluer la performance d'un classifieur binaire?
- On utilise les matrices de confusion et les métriques qui en découlent: precision, recall, accuracy, F1-score, ROC curve, et AUC.

PROBLÈME

- ► Exemple: Soit un groupe de 1000 personnes dans lequel se trouve 10 individus dangereux.
- Supposons qu'on ait entraîné un modèle (classifieur binaire) qu prédit si un individu est dangereux ou non.
- Mais ce modèle est très défaillant: parmi 10 individus dangereux, seul 1 est détecté comme dangereux; sinon, parmi les 990 personnes inoffensives, toutes sont détectées comme inoffensives.

PROBLÈME

- ► Exemple: Soit un groupe de 1000 personnes dans lequel se trouve 10 individus dangereux.
- Supposons qu'on ait entraîné un modèle (classifieur binaire) qui prédit si un individu est dangereux ou non.
- Mais ce modèle est très défaillant: parmi 10 individus dangereux, seul 1 est détecté comme dangereux; sinon, parmi les 990 personnes inoffensives, toutes sont détectées comme inoffensives.

PROBLÈME

- ► Exemple: Soit un groupe de 1000 personnes dans lequel se trouve 10 individus dangereux.
- Supposons qu'on ait entraîné un modèle (classifieur binaire) qui prédit si un individu est dangereux ou non.
- Mais ce modèle est très défaillant: parmi 10 individus dangereux, seul 1 est détecté comme dangereux; sinon, parmi les 990 personnes inoffensives, toutes sont détectées comme inoffensives.

		prédiction	
	inoffensif dangerei		dangereux
réalité	inoffensif	990	0
realite	dangereux	9	1

- L'erreur totale du modèle n'est que de $\frac{9+0}{1000}=0.9\%$
- Autrement dit, l'accuracy du modèle est de $\frac{990+1}{1000}=99.1\%$
- Pourtant, le classifieur est mauvais: il laisse passer presque tous les dangereux.
- C'est le paradoxe de l'accuracy.

		prédiction	
		inoffensif dangereux	
réalité	inoffensif	990	0
realite	dangereux	9	1

- ▶ L'erreur totale du modèle n'est que de $\frac{9+0}{1000} = 0.9\%$.
- Autrement dit, l'accuracy du modèle est de $\frac{990+1}{1000} = 99.1\%$
- Pourtant, le classifieur est mauvais: il laisse passer presque tous les dangereux.
- C'est le paradoxe de l'accuracy.

		prédiction	
		inoffensif dangereu	
réalité	inoffensif	990	0
realite	dangereux	9	1

- ▶ L'erreur totale du modèle n'est que de $\frac{9+0}{1000} = 0.9\%$.
- Autrement dit, l'accuracy du modèle est de $\frac{990+1}{1000} = 99.1\%$.
- Pourtant, le classifieur est mauvais: il laisse passer presque tous les dangereux.
- C'est le paradoxe de l'accuracy

		prédiction	
		inoffensif	dangereux
réalité	inoffensif	990	0
realite	dangereux	9	1

- ▶ L'erreur totale du modèle n'est que de $\frac{9+0}{1000} = 0.9\%$.
- Autrement dit, l'accuracy du modèle est de $\frac{990+1}{1000} = 99.1\%$.
- Pourtant, le classifieur est mauvais: il laisse passer presque tous les dangereux.
- C'est le paradoxe de l'accuracy

		prédiction	
		inoffensif	dangereux
réalité	inoffensif	990	0
realite	dangereux	9	1

- L'erreur totale du modèle n'est que de $\frac{9+0}{1000} = 0.9\%$.
- Autrement dit, l'accuracy du modèle est de $\frac{990+1}{1000} = 99.1\%$.
- Pourtant, le classifieur est mauvais: il laisse passer presque tous les dangereux.
- C'est le paradoxe de l'accuracy.

MATRICE DE CONFUSION

▶ De manière générale, la matrice de confusion d'un classifieur est la suivante:

- ► True positive: prédit comme positif (positive), et c'est juste dans la réalité (True).
- ► True negative: prédit comme négatif (negative), et c'est juste dans la réalité (True).
- ► False positive: prédit comme positif (positive), et c'est faux dans la réalité (False).
- ► False negative: prédit comme négatif (negative), et c'est faux dans la réalité (False).

- ► True positive: prédit comme positif (positive), et c'est juste dans la réalité (True).
- ► True negative: prédit comme négatif (negative), et c'est juste dans la réalité (True).
- ► False positive: prédit comme positif (positive), et c'est faux dans la réalité (False).
- ► False negative: prédit comme négatif (negative), et c'est faux dans la réalité (False).

▶ True positive: prédit comme positif (positive), et c'est juste dans la réalité (True).

- ▶ True negative: prédit comme négatif (negative), et c'est juste dans la réalité (True).
- ► False positive: prédit comme positif (positive), et c'est faux dans la réalité (False).

► True positive: prédit comme positif (positive), et c'est juste dans la réalité (True).

- ► True negative: prédit comme négatif (negative), et c'est juste dans la réalité (True).
- ► False positive: prédit comme positif (positive), et c'est faux dans la réalité (False).
- ► False negative: prédit comme négatif (negative), et c'est faux dans la réalité (False).

- ▶ Accuracy: $Accuracy = \frac{TP+TN}{N+P}$
- ▶ False positive rate: $FPR = \frac{FP}{N}$
- ▶ True positive rate / Recall: $TPR = Recall = \frac{TP}{P}$

- ▶ Precision: $Precision = \frac{TP}{P^*}$
- ▶ Negative prediction value : $NPV = \frac{TN}{N^*}$

		Predicted class		
		– or Null	+ or Non-null	Total
True	– or Null	True Neg. (TN)	False Pos. (FP)	N
class	+ or Non-null	False Neg. (FN)	True Pos. (TP)	P
	Total	N*	P*	

TABLE 4.6. Possible results when applying a classifier or diagnostic test to a population.

- Accuracy: $Accuracy = \frac{TP+TN}{N+P}$
- ▶ False positive rate: $FPR = \frac{FP}{N}$
- ▶ True positive rate / Recall: $TPR = Recall = \frac{TP}{P}$

- ▶ Precision: $Precision = \frac{TP}{P^*}$
- ▶ Negative prediction value : $NPV = \frac{TN}{N^*}$

		Predicted class		
		– or Null	+ or Non-null	Total
True	– or Null	True Neg. (TN)	False Pos. (FP)	N
class	+ or Non-null	False Neg. (FN)	True Pos. (TP)	P
	Total	N*	P*	

TABLE 4.6. Possible results when applying a classifier or diagnostic test to a population.

▶ Accuracy: $Accuracy = \frac{TP+TN}{N+P}$

► False positive rate: $FPR = \frac{FP}{N}$

▶ True positive rate / Recall: $TPR = Recall = \frac{TP}{P}$

▶ Precision: $Precision = \frac{TP}{P^*}$

► Negative prediction value : $NPV = \frac{TN}{N^*}$

		Predicted class		
		– or Null	+ or Non-null	Total
True	– or Null	True Neg. (TN)	False Pos. (FP)	N
class	+ or Non-null	False Neg. (FN)	True Pos. (TP)	Р
	Total	N*	P*	

TABLE 4.6. Possible results when applying a classifier or diagnostic test to a population.

- ▶ Accuracy: $Accuracy = \frac{TP+TN}{N+P}$
- ► False positive rate: $FPR = \frac{FP}{N}$
- ▶ True positive rate / Recall: $TPR = Recall = \frac{TP}{P}$

- ▶ Precision: $Precision = \frac{TP}{P^*}$
- ▶ Negative prediction value : $NPV = \frac{TN}{N^*}$

		Predicted class		
		– or Null	+ or Non-null	Total
True	– or Null	True Neg. (TN)	False Pos. (FP)	N
class	+ or Non-null	False Neg. (FN)	True Pos. (TP)	P
	Total	N*	P*	

TABLE 4.6. Possible results when applying a classifier or diagnostic test to a population.

- ▶ Accuracy: $Accuracy = \frac{TP+TN}{N+P}$
- ▶ False positive rate: $FPR = \frac{FP}{N}$
- ▶ True positive rate / Recall: $TPR = Recall = \frac{TP}{P}$

- ▶ Precision: $Precision = \frac{TP}{P^*}$
- ▶ Negative prediction value : $NPV = \frac{TN}{N^*}$

		Predicted class		
		- or Null + or Non-n		Total
True	– or Null	True Neg. (TN)	False Pos. (FP)	N
class	+ or Non-null	False Neg. (FN)	True Pos. (TP)	P
	Total	N*	P*	

TABLE 4.6. Possible results when applying a classifier or diagnostic test to a population.

Matrice de Confusion

Dans notre example, on a:

- $ightharpoonup Accuracy = \frac{990+1}{1000} = 99.1 \text{ (bon)}$
- ▶ $FPR = \frac{0}{990+0} = 0\%$ (bon, low=good)

- $Recall = \frac{TP}{P} = \frac{1}{9+1} = 10\%$: (mauvais!)
- ► $Precision = \frac{TP}{P^*} = \frac{1}{0+1} = 100\%$ (bon)
- $ightharpoonup \frac{TN}{N^*} = \frac{990}{990+9} = 99.099\% \text{ (bon)}$
- Dans ce cas, les bonnes performances apparentes viennent du fait que les 2 classes sont fortement "imbalanced". Toutefois, le recall nous indique que notre modèle est mauvais...

		prédiction	
		inoffensif dangereux	
réalité	inoffensif	990	0
realite	dangereux	9	1

Dans notre example, on a:

- $ightharpoonup Accuracy = \frac{990+1}{1000} = 99.1 \text{ (bon)}$
- ► $FPR = \frac{0}{990+0} = 0\%$ (bon, low=good)

- $ightharpoonup Recall = rac{TP}{P} = rac{1}{9+1} = 10\%$: (mauvais!)
- ▶ $Precision = \frac{TP}{P^*} = \frac{1}{0+1} = 100\%$ (bon)
- $ightharpoonup \frac{TN}{N^*} = \frac{990}{990+9} = 99.099\% \text{ (bon)}$
- Dans ce cas, les bonnes performances apparentes viennent du fait que les 2 classes sont fortement "imbalanced". Toutefois, le *recall* nous indique que notre modèle est mauvais...

		prédiction	
		inoffensif	dangereux
réalité	inoffensif	990	0
realite	dangereux	9	1

Matrice de Confusion

Dans notre example, on a:

- $ightharpoonup Accuracy = \frac{990+1}{1000} = 99.1 \text{ (bon)}$
- ► $FPR = \frac{0}{990+0} = 0\%$ (bon, low=good)

- $Recall = \frac{TP}{P} = \frac{1}{9+1} = 10\%$: (mauvais!)
- ▶ $Precision = \frac{TP}{P^*} = \frac{1}{0+1} = 100\%$ (bon)
- $ightharpoonup \frac{TN}{N^*} = \frac{990}{990+9} = 99.099\% \text{ (bon)}$
- Dans ce cas, les bonnes performances apparentes viennent du fait que les 2 classes sont fortement "imbalanced". Toutefois, le recall nous indique que notre modèle est mauvais...

		prédiction		
		inoffensif dangereux		
réalité	inoffensif	990	0	
	dangereux	9	1	

Dans notre example, on a:

- $ightharpoonup Accuracy = \frac{990+1}{1000} = 99.1 \text{ (bon)}$
- ► $FPR = \frac{0}{990+0} = 0\%$ (bon, low=good)

- $Recall = \frac{TP}{P} = \frac{1}{9+1} = 10\%$: (mauvais!)
- ▶ $Precision = \frac{TP}{P^*} = \frac{1}{0+1} = 100\%$ (bon)
- $ightharpoonup \frac{TN}{N^*} = \frac{990}{990+9} = 99.099\% \text{ (bon)}$
- Dans ce cas, les bonnes performances apparentes viennent du fait que les 2 classes sont fortement "imbalanced". Toutefois, le recall nous indique que notre modèle est mauvais...

		prédiction		
		inoffensif dangereux		
réalité	inoffensif	990	0	
	dangereux	9	1	

Dans notre example, on a:

- $ightharpoonup Accuracy = \frac{990+1}{1000} = 99.1 \text{ (bon)}$
- ► $FPR = \frac{0}{990+0} = 0\%$ (bon, low=good)

- $Recall = \frac{TP}{P} = \frac{1}{9+1} = 10\%$: (mauvais!)
- ▶ $Precision = \frac{TP}{P^*} = \frac{1}{0+1} = 100\%$ (bon)
- $rac{TN}{N^*} = rac{990}{990+9} = 99.099\% \text{ (bon)}$
- Dans ce cas, les bonnes performances apparentes viennent du fait que les 2 classes sont fortement "imbalanced". Toutefois, le recall nous indique que notre modèle est mauvais...

		prédiction		
		inoffensif	dangereux	
réalité	inoffensif	990	0	
	dangereux	9	1	

Dans notre example, on a:

- $ightharpoonup Accuracy = \frac{990+1}{1000} = 99.1 \text{ (bon)}$
- ► $FPR = \frac{0}{990+0} = 0\%$ (bon, low=good)
- $Recall = \frac{TP}{P} = \frac{1}{9+1} = 10\%$: (mauvais!)
- ▶ $Precision = \frac{TP}{P^*} = \frac{1}{0+1} = 100\%$ (bon)
- $rac{TN}{N^*} = rac{990}{990+9} = 99.099\% \text{ (bon)}$
- Dans ce cas, les bonnes performances apparentes viennent du fait que les 2 classes sont fortement "imbalanced". Toutefois, le recall nous indique que notre modèle est mauvais...

		prédiction		
		inoffensif	dangereux	
réalité	inoffensif	990	0	
	dangereux	9	1	

On rappel que notre classifieur retourne une probabilité

$$\hat{p} = \hat{\Pr}(Y = 1 \mid \boldsymbol{X} = x)$$

et qu'on classifie x dans la classe 1 si $\hat{p} \geq 0.5$ et dans la classe 0 sinon.

- Le choix du seuil (threshold) de 0.5 est arbitraire..
- On peut créer un classifieur plus ou moins sévères en augmentant ou diminuant ce seuil.

On rappel que notre classifieur retourne une probabilité

$$\hat{p} = \hat{\Pr}(Y = 1 \mid \boldsymbol{X} = x)$$

et qu'on classifie x dans la classe 1 si $\hat{p} \geq 0.5$ et dans la classe 0 sinon.

- Le choix du seuil (threshold) de 0.5 est arbitraire...
- On peut créer un classifieur plus ou moins sévères en augmentant ou diminuant ce seuil.

On rappel que notre classifieur retourne une probabilité

$$\hat{p} = \hat{\Pr}(Y = 1 \mid \boldsymbol{X} = x)$$

et qu'on classifie x dans la classe 1 si $\hat{p} \geq 0.5$ et dans la classe 0 sinon.

- Le choix du seuil (threshold) de 0.5 est arbitraire...
- On peut créer un classifieur plus ou moins sévères en augmentant ou diminuant ce seuil.

- ▶ Voici deux matrices de confusions pour un calssifieur qui utilise les seuils de 0.5 et 0.2, respectivement.
- On voit que le nombre de prédictions positives augmente de 104 à 430 (puisque le seuil est plus bas).

		True default status		
		No	Yes	Total
Predicted	No	9,644	252	9,896
$default\ status$	Yes	23	81	104
	Total	9,667	333	10,000

		True default status		
		No	Yes	Total
Predicted	No	9,432	138	9,570
$default\ status$	Yes	235	195	430
	Total	9,667	333	10,000

Prédictions et réalités représentés en ligne et colonnes, respectivement (contrairement à avant).

- ▶ Voici deux matrices de confusions pour un calssifieur qui utilise les seuils de 0.5 et 0.2, respectivement.
- On voit que le nombre de prédictions positives augmente de 104 à 430 (puisque le seuil est plus bas).

		$True\ default\ status$		
		No	Yes	Total
Predicted	No	9,644	252	9,896
$default\ status$	Yes	23	81	104
	Total	9,667	333	10,000

		True default status		
		No	Yes	Total
Predicted	No	9,432	138	9,570
$default\ status$	Yes	235	195	430
	Total	9,667	333	10,000

Prédictions et réalités représentés en ligne et colonnes, respectivement (contrairement à avant).

- Un moyen de juger la performance d'un classifier est de faire sa courbe ROC (ROC curve).
- C'est la courbe du "true positive rate / recall" en fonction du "false positive rate" (ou l'inverse) paramétrée par le seuil θ (θ varie de 1 à 0).

▶ Un moyen de juger la performance d'un classifier est de faire sa courbe ROC (ROC curve).

K-NN

C'est la courbe du "true positive rate / recall" en fonction du "false positive rate" (ou l'inverse) paramétrée par le seuil θ (θ varie de 1 à 0).

Pour $\theta=1$: Tout est classifié "négatif". Ainsi, $FPR=\frac{FP}{N}=0$ et $TPR=\frac{TP}{D}=0$. C'est le point (0,0).

- Pour $\theta=0$: Tout est classifié "positif". Ainsi, $FPR=\frac{FP}{N}=\frac{N}{N}=1$ et $TPR=\frac{TP}{P}=\frac{P}{P}=1$. C'est le point (1,1).
- Le point (0,1) représente le classifieur parfait: $FPR = \frac{FP}{N} = 0 \Rightarrow FP = 0$ et $TPR = \frac{TP}{P} = 1 \Rightarrow TP = P$.

- Pour $\theta=1$: Tout est classifié "négatif". Ainsi, $FPR=\frac{FP}{N}=0$ et $TPR=\frac{TP}{P}=0$. C'est le point (0,0).
- Pour $\theta=0$: Tout est classifié "positif". Ainsi, $FPR=\frac{FP}{N}=\frac{N}{N}=1$ et $TPR=\frac{TP}{P}=\frac{P}{P}=1$. C'est le point (1,1).
- Le point (0,1) représente le classifieur parfait: $FPR = \frac{FP}{N} = 0 \Rightarrow FP = 0$ et $TPR = \frac{TP}{P} = 1 \Rightarrow TP = P$.

Matrice de Confusion

Pour $\theta=1$: Tout est classifié "négatif". Ainsi, $FPR=\frac{FP}{N}=0$ et $TPR=\frac{TP}{P}=0$. C'est le point (0,0).

- Pour $\theta=0$: Tout est classifié "positif". Ainsi, $FPR=\frac{FP}{N}=\frac{N}{N}=1$ et $TPR=\frac{TP}{P}=\frac{P}{P}=1$. C'est le point (1,1).
- Le point (0,1) représente le classifieur parfait: $FPR = \frac{FP}{N} = 0 \Rightarrow FP = 0$ et $TPR = \frac{TP}{P} = 1 \Rightarrow TP = P$.

- Ainsi, on peut évaluer la performance d'un classifier en mesurant de combien il s'écarte du classifieur parfait.

- Ainsi, on peut évaluer la performance d'un classifier en mesurant de combien il s'écarte du classifieur parfait.
- ▶ Pour cela, on mesure l'aire sous la courbe ROC, appelée area under curve (AUC).
- ▶ Si AUC = 1, on est dans le cas du classifieur parfait. Si AUC = 0.5, c'est un classifieur random. Si AUC = 0, on a un classifieur qui classifie tout à l'envers (donc "anti-parfait").

- Ainsi, on peut évaluer la performance d'un classifier en mesurant de combien il s'écarte du classifieur parfait.
- Pour cela, on mesure l'aire sous la courbe ROC, appelée area under curve (AUC).
- Si AUC = 1, on est dans le cas du classifieur parfait. Si AUC = 0.5, c'est un classifieur random. Si AUC = 0, on a un classifieur qui classifie tout à l'envers (donc "anti-parfait").

BIBLIOGRAPHIE

James, G., Witten, D., Hastie, T., and Tibshirani, R. (2013).

An Introduction to Statistical Learning: with Applications in R, volume 103 of Springer Texts in Statistics.

Springer, New York.