InfoGAN

助教:來俊聖

製作: 鄧駿智、來俊聖

Standard GAN

$$L_D = -\log(D(I_{real})) - \log(1 - D(G(z)))$$

$$\begin{cases} L_G = \log(1 - D(G(z))) \\ L_G = -\log(D(G(z))) \end{cases}$$

In this lab, you can use either of them, but you should tell me which one you use in your report.

Standard GAN Loss

Info-GAN

Info-GAN

In Information Theory:

Mutual Information: I(X;Y) = H(X)-H(X|Y) = H(Y)-H(Y|X)

$$H(Y) = -\sum_{y} \log p(y)p(y)$$

$$I(X;Y) = H(X) - H(X | Y) = H(Y) - H(Y | X)$$

Info-GAN pf.

$$\begin{split} & \mathrm{I}(\mathsf{c};\mathsf{G}(\mathsf{z},\mathsf{c})) = \mathrm{H}(\mathsf{c}) - \mathrm{H}(\mathsf{c}|\mathsf{G}(\mathsf{z},\mathsf{c})) \\ & = E_{x \sim G(z,c)} \left[E_{c' \sim P(C|\mathcal{X})} [logP(c'|x)] \right] + \mathrm{H}(\mathsf{c}) \\ & = E_{x \sim G(z,c)} \left[D_{KL}(P(\cdot|x)||Q(\cdot|x)) + E_{c' \sim P(C|\mathcal{X})} [logQ(c'|x)] \right] + \mathrm{H}(\mathsf{c}) \\ & \geq E_{x \sim G(z,c)} \left[E_{c' \sim P(C|\mathcal{X})} [logQ(c'|x)] \right] + \mathrm{H}(\mathsf{c}) \\ & = E_{c \sim P(c),x \sim G(z,c)} [logQ(c|x)] + \mathrm{H}(\mathsf{c}) \end{split}$$

We can increase the lower bound of mutual Information by other distribution!!

Info-GAN Flow

Take MNIST for example

Binary Cross Entropy (Adversarial Loss)

Info-GAN Loss

Adversarial Loss

$$L_D = -\log(D(I_{real})) - \log(1 - D(G(z)))$$

$$\begin{cases} L_G = \log(1 - D(G(z))) \\ L_G = -\log(D(G(z))) \end{cases}$$

Update $D \rightleftharpoons Update G/Q$

Information Loss

$$L_I(Q,G) = -\log(Q(c|G(z,c)))$$

Pseudo code

1. Update d network

- a. feed real_image into D network, compute bce loss for D network
- b. Create noise and concatenate with one-hot latent named z
- c. Feed z into the G model and generate fake_image
- d. Feed fake_image into D network, compute bce loss for D network

2. Update d network

- Generate fake_image like previously, feed into discriminator and compute bce loss for G network
- b. Feed fake_image into Q network, then compute classification loss (crossentropy) for G network

Expected Outputs

To do list

- Complete all model
- Complete training procedure
 - The details are at the pseudo code part.
 - You need to tune learning rate and the weight of each loss at this part.
 - If you are not familiar with this, you are welcome to check sample code online. But please make sure you understand the meaning of all code.

Bonus

- At this part, you need to can directly run the training script with a new model for CelebA, but you need to load data yourself.
- Torchvision.datasets.ImageFolder will help, please check it out.

Hyper-parameters

- mnist
 - 1. $c_{size} = 10$
 - 2. $z_{size} = 62$
 - 3. Total epochs = 50
 - 4. Optimizer: Adam
- CelebA
 - 1. $c_{size} = 100$
 - 2. $z_{size} = 128$
 - 3. Total epochs = 10
 - 4. Optimizer: Adam
- All other parameters need to be tuned
- You can even change the hyper parameters above

Important Date

• Deadline: 10/30 11:59 a.m.

• Demo date: 10/30

- Zip report and source code into a .zip file and name it as DLP_LAB5_yourlD_name.zip
- Email to alanlai199.cs07g@nctu.edu.tw with email title DLP_LAB5_yourID_name

Info-GAN Report Spec

MNIST

- 1. Introduction (10%)
- 2. Experiment setups: (20%)
 - A. How you implement InfoGAN
 - i. Adversarial loss
 - ii. Maximizing mutual information
 - B. Which loss function of generator you used? What's different?
- 3. Results (30%)
 - A. results of your samples
 - B. Training loss curves
- 4. Discussion (20%)
- 5. Demo (20%)
 - Show your result and explain your code
- (optional) Bonus: CelebA (15%)
 - Results of your samples (10%)
 - Demo (5%)