ON THE POWER OF COLOR REFINEMENT

V. ARVIND, JOHANNES KÖBLER, GAURAV RATTAN UND OLEG VERBITSKY

Florian Lüdiger

05.02.2018

Seminar Algorithm Engineering - Lehrstuhl 11 - TU Dortmund

GRAPH-ISOMORPHIE

Definition

Zwei Graphen G und H sind **isomorph**, wenn es eine bijektive Abbildung ϕ gibt, sodass gilt:

$$(u,v) \in E_G \Leftrightarrow (\phi(u),\phi(v)) \in E_H$$
 für alle $u,v \in V_G$.

COLOR-REFINEMENT

Definition

Mit der Color-Refinement-Heuristik kann in polynomieller Zeit festgestellt werden, dass zwei Graphen nicht isomorph sind.

Anders gesagt gilt für beliebige Graphen G,H:

(1) CR unterscheidet G und $H \Rightarrow G \not\simeq H$

LIMITIERUNG DER HEURISTIK

Es gibt nicht-isomorphe Graphenpaare, welche das Color-Refinement nicht unterscheiden kann.

DIE KLASSE DER CR-GRAPHEN

Definition

Graph *G* ist **CR-Graph**, wenn das Color-Refinement diesen von jedem nicht zu *G* isomorphen Graphen *H* unterscheiden kann.

Für beliebige CR-Graphen *G,H* gilt also:

ERGEBNIS UND BEOBACHTUNG

- $ig(\ 1 \ ig)$ CR unterscheidet G und $H \Rightarrow G
 ot\simeq H$
- $\left(\begin{array}{c} 2\end{array}
 ight)$ $G
 eq H\Rightarrow$ CR unterscheidet G und H

Korollar

Für zwei CR-Graphen G und H gilt:

CR erkennt G und H als isomorph \Leftrightarrow G \simeq H

ERGEBNIS UND BEOBACHTUNG

- $ig(\ 1 \, ig)$ CR unterscheidet G und $H \Rightarrow G
 ot \simeq H$
- $\left(\begin{array}{c} 2 \end{array}\right)G
 ot\simeq H \Rightarrow \mathsf{CR}$ unterscheidet G und H

Korollar

Für zwei CR-Graphen G und H gilt:

CR erkennt G und H als isomorph \Leftrightarrow G \simeq H

Wie identifiziere ich also die Klasse der CR-Graphen?

ANWENDUNGSBEISPIEL

STABILE PARTITIONIERUNG

Definition

Die Partitionierung $\mathcal P$ teilt den Graphen $\mathcal G$ in die Farbklassen eines Verfeinerungsschritts ein.

STABILE PARTITIONIERUNG

Definition

Die Partitionierung $\mathcal P$ teilt den Graphen $\mathcal G$ in die Farbklassen eines Verfeinerungsschritts ein.

Definition

Wenn sich die Partitionierung bei weiteren Verfeinerungsschritten nicht mehr ändert, wird diese **stabile Partitionierung** \mathcal{P}^s genannt.

STABILE PARTITIONIERUNG

Definition

Die Partitionierung $\mathcal P$ teilt den Graphen $\mathcal G$ in die Farbklassen eines Verfeinerungsschritts ein.

Definition

Wenn sich die Partitionierung bei weiteren Verfeinerungsschritten nicht mehr ändert, wird diese **stabile Partitionierung** \mathcal{P}^s genannt.

Definition

Die einzelnen Partitionen innerhalb der Partitionierung werden Zellen genannt.

ANWENDUNG AUF DAS BEISPIEL

LOKALE STRUKTUR VON CR-GRAPHEN

Lemma

Die Zellen der stabilen Partition \mathcal{P}_G eines CR-Graphen erfüllen folgende Eigenschaften:

(A) Für beliebige Zellen $X \in \mathcal{P}_G$ ist G[X] ein leerer Graph, vollständiger Graph, Matching-Graph mK_2 , das Komplement eines Matching Graphen oder der 5-Kreis.

AM BEISPIEL

AM BEISPIEL - LEERER GRAPH

AM BEISPIEL - MATCHING-GRAPH

LOKALE STRUKTUR VON CR-GRAPHEN

Lemma

Die Zellen der stabilen Partition \mathcal{P}_G eines CR-Graphen erfüllen folgende Eigenschaften:

(A) Für beliebige Zellen $X \in \mathcal{P}_G$ ist G[X] ein leerer Graph, vollständiger Graph, Matching-Graph mK_2 , das Komplement eines Matching Graphen oder der 5-Kreis.

LOKALE STRUKTUR VON CR-GRAPHEN

Lemma

Die Zellen der stabilen Partition \mathcal{P}_G eines CR-Graphen erfüllen folgende Eigenschaften:

- (A) Für beliebige Zellen $X \in \mathcal{P}_G$ ist G[X] ein leerer Graph, vollständiger Graph, Matching-Graph mK_2 , das Komplement eines Matching Graphen oder der 5-Kreis.
- (B) Für beliebige Zellen $X,Y \in \mathcal{P}_G$ ist G[X,Y] ein leerer Graph, vollständiger bipartiter Graph, eine disjunkte Vereinigung von Sternen $sK_{1,t}$, bei der X die Menge der s inneren Knoten und Y die Menge der st Blätter ist, oder das bipartite Komplement des zuletzt genannten Graphen.

AM BEISPIEL

AM BEISPIEL - LEERER GRAPH

AM BEISPIEL - DISJUNKTE VEREINIGUNG VON STERNEN $SK_{1,t}$

AM BEISPIEL - MATCHING GRAPH*

LOKALE STRUKTUR VON CR-GRAPHEN

Lemma

Die Zellen der stabilen Partition \mathcal{P}_G eines CR-Graphen erfüllen folgende Eigenschaften:

- (A) Für beliebige Zellen $X \in \mathcal{P}_G$ ist G[X] ein leerer Graph, vollständiger Graph, Matching-Graph mK_2 , das Komplement eines Matching Graphen oder der 5-Kreis.
- (B) Für beliebige Zellen $X,Y \in \mathcal{P}_G$ ist G[X,Y] ein leerer Graph, vollständiger bipartiter Graph, eine disjunkte Vereinigung von Sternen $sK_{1,t}$, bei der X die Menge der s inneren Knoten und Y die Menge der st Blätter ist, oder das bipartite Komplement des zuletzt genannten Graphen.

Anwendung der vorgestellten Bedingungen Anwendungsbeispiel

Beweis lokale Struktur

Ein Beweis für globale Struktur beispielhaft