Complex analytic vanishing cycles for formal schemes

Vladimir Berkovich

Algebraic geometry

R henselian OVR (ey.
$$O_{C,o}$$
)

Assume R alg. closed.

Fact. if F is constructible 2/nz-mod (n, chan <math>R)=1 $\Rightarrow R^{q}+n (F) \text{ are constructible}.$

Formal geometry

$$k^{\circ\circ} = \{a \in k : |a| < 1\}$$
. A sume $\widetilde{k} = k^{\circ}/k^{\circ\circ} - alg$. closed.

Det . A special formal scheme /ho is a hocally finite union of open

Spf (A), $A = k^{\circ}\{T_{1}, \dots, T_{m}\} \mathbb{L}_{S_{1}, \dots, S_{n}} \mathbb{J}$ $(w, S_{1}, \dots, S_{m}), \quad w \text{ generator of } k^{\circ \circ}.$

X special formel scheme $/k^{\circ}$ \longrightarrow $\chi_{S} = (\chi, 0_{\chi}/\chi)$ an ideal of eleficition \longrightarrow $\chi_{\eta} - k$ - analysic space

es. if $\lambda = Spt(A)$, $\lambda_{\eta} = \{x \in \mathbb{A}^{m+n} : |T_{\tilde{i}}(x)| \leq 1, |S_{\tilde{j}}(x)| < 1, \{x\} = 0, \forall f \in \alpha\}$

ψη: χ~ ~ ×5(ω)~.

Example . \times scheme of first type $/k^{\circ}$ $\hat{\times}$; $y \in \times_s \longrightarrow \hat{\times}/y$.

 F_{acts} . (i) χ scheme of finite type $/k^{\circ}$. $y \in \chi_s$ (losed subscheme

F constructible $\mathbb{Z}/n\mathbb{Z}-\operatorname{mod}$ on \mathbb{X}_{η} , $(n,\operatorname{chan} \widetilde{k})=1$.

 $\Rightarrow RY_{\eta}(f)|_{y} \Rightarrow RY_{\eta}(\hat{f}/y) \longrightarrow Aut(\hat{f}/y) - aution on RY_{\eta}(f)|_{y}$ $(\hat{X}/y)_{\eta} \rightarrow \chi_{\eta}$

f/g f

(ii) X - special formal scheme, F constructible on ×n, ⇒ R94n (F) are constructible.

$$^{o}\eta(\varphi, \Lambda): \varphi_{s}^{*}(R\psi_{\eta}(\Lambda_{*\eta})) \longrightarrow R\psi_{\eta}(\Lambda_{*\eta})$$

$$\forall \Psi, \Psi \colon \Psi \longrightarrow X, \ \Psi \equiv \Psi(I) \Rightarrow \Theta_{\eta}(\Psi, \Lambda) = \Theta_{\eta}(\Psi, \Lambda)$$

Complex geometry

$$D^{*} = D \setminus \{0\} \subset D \subset \{0\}$$

$$\int_{D^{*}}^{\infty} \pi = \pi_{1}(D^{*})$$

$$F \qquad \chi_{\eta} \stackrel{?}{J}, \chi \stackrel{?}{\subset} Y$$

$$(C^{\eta}, o) \stackrel{f}{\longrightarrow} (C, o) \qquad F \mapsto i^{*}(\widehat{I}_{*} F)$$

$$F \Rightarrow o , g \stackrel{f}{\longrightarrow} C$$

$$R^{1} +_{\eta} (F), \qquad F \Rightarrow G$$

Facts (i)
$$F$$
 constr. $\frac{\partial F}{\partial x_s} = \frac{\partial F}{\partial x_s} \times \frac{\partial F}$

(11) 1 - finitely gen. abelian gp TT - module.

 $\sim \Lambda_{X_{\eta}^{h}}$. $R^{9}4\eta \left(\Lambda_{X_{\eta}^{h}}\right)$ are algebraically constructible on X_{η}^{h} .

Y scheme of fints type / C

Det. For Yh is (algebraically) constructible if I Y=Yo>Y1>...>Yn=\$

Zanishi closed

sir. Flyh Yitz is loc. constant w fritely gen. stalks.

 $D_{c}(TT-Mod)=\{\Lambda^{c}\in D(TT-Mod): H^{q}(\Lambda^{c}) \text{ are } \delta^{h}. \text{ gen. } /\mathbb{Z}\}$ Y scheme of finite type/C $\longrightarrow D_{c}(\gamma^{h}).$

K n.a. feld /C of discrete valuation, $\widetilde{K} \simeq C$. $(\Rightarrow K \simeq C((3)))$ residue feed

G= had (|ce | K) = lim Mn = 2

The One can construct an exact functor

 $D_c^b(\Pi-Mod) \longrightarrow D_c^b(X_s^h(\Pi))$, $\Lambda^o \mapsto RY_\eta^h(\Lambda_{X_\eta})$ 1.t. the following is true.

(iii) given a generator
$$\omega \in K^{00}$$
, $(0_{6,0} \rightarrow k^{0})$
 $(B, b) \rightarrow (0,0)$
 $X \text{ scheme } \int 0_{B,b}$

(iv) given a subscheme YC
$$\Re$$
s, \Re g-cpt special formal scheme /k° $\mathbb{R}^h \left(\bigwedge_{\Re \eta} \right) \Big|_{\Psi} \Rightarrow \mathbb{R}^h \left(\bigwedge_{\Re \eta} \right)_{\eta}$

(vi) (continuity) Given
$$X$$
 of reg. (reg-smooth) Xy , $\exists n > 1$ s.t. $Y = Y$ of $(\text{mod } I^n)$, I an ideal $Y \cap Y$, $Y \cap Y$ of $(Y, \cap Y) = 0$ of $(Y, \cap Y)$.

X cpt strictly K-analytic space.
$$(\forall X, \ \text{fix} \ X)$$
 $\exists \ a \ \text{formal model} \ X \ \text{of} \ X \ (\Leftarrow \ \text{Raynand}), \ a \ \text{formal scheme of first type} \ / \ K^{\circ}$
 $X = \exists \eta, \quad \Lambda \ \text{is} \ a \ T-\text{mod}. \ \text{fig.} \ / \ 2 \ (\text{cig.} \ \Lambda = \ 2)$

 $H^{q}(\bar{x};\Lambda):=R^{q}\Gamma(X^{h},R+\eta(\Lambda_{X\eta}))$ $\longrightarrow T$ $(\bar{x}=x)$ \hat{k} $\hat{k$

Y proper schene over K, $X = Y^{an}$, $PHS = H^{a}_{it}(\overline{Y}, \overline{Q}_{i})$ Conj. Hodge str. on $H^{a}(\overline{X}; \overline{Z})$; limit Hedge structure.