Detecting Parkinsons Disease using Machine Learning ASSIGNMENT - 2

Date	26th September 2022
Team ID	PNT2022TMID27836
Student Name	Subha Madhav M.S (311519104058)
Domain Name	Healthcare
Project Name	Detecting Parkinsons Disease using Machine Learning
Maximum Marks	2 Marks

1.) IMPORT THE REQUIRED LIBRARIES

```
In [1]:
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
```

2.)DOWNLOAD AND UPLOAD THE DATASET

	= pd.read_ .head()	csv('Churn	_Modellin	g.csv')									
	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	Estimated Salary
0	1	15634602	Hargrave	619	France	Female	42	2	0.00	1	1	1	101348.88
1	2	15647311	Hill	608	Spain	Female	41	1	83807.86	1	0	1	112542.58
2	3	15619304	Onio	502	France	Female	42	8	159660.80	3	1	0	113931.57
3	4	15701354	Boni	699	France	Female	39	1	0.00	2	0	0	93826.63
		15737888	Mitchell	850		Female	43	_	125510.82	1			79084.10

3.) HANDLE MISSING VALUES IN THE DATASET

4.) PERFORM THE DESCRIPTIVE STATISTICS ON THE DATASET

[6]: d	f.des	cribe()								
t[6]:		CreditScore	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	Estimated Salary	Exited
	count	10000.000000	10000.000000	10000.000000	10000.000000	10000.000000	10000.00000	10000.000000	10000.000000	10000.000000
	mean	650.528800	38.921800	5.012800	76485.889288	1.530200	0.70550	0.515100	100090.239881	0.203700
	std	96.653299	10.487806	2.892174	62397.405202	0.581654	0.45584	0.499797	57510.492818	0.402769
	min	350.000000	18.000000	0.000000	0.000000	1.000000	0.00000	0.000000	11.580000	0.000000
	25%	584.000000	32.000000	3.000000	0.000000	1.000000	0.00000	0.000000	51002.110000	0.000000
	50%	652.000000	37.000000	5.000000	97198.540000	1.000000	1.00000	1.000000	100193.915000	0.000000
	75%	718.000000	44.000000	7.000000	127644.240000	2.000000	1.00000	1.000000	149388.247500	0.000000
	max	850.000000	92.000000	10.000000	250898.090000	4.000000	1.00000	1.000000	199992.480000	1.000000
	f.inf	o() 'pandas.cor	re.frame.Dat	aFrame'>						
R D	angeI ata c	ndex: 10000 olumns (tota	entries, 0 l 11 columr	to 9999 is):						
	# C	olumn 		.l Count Dt	ype 					
	1 G 2 G	reditScore eography ender	10000 r 10000 r	on-null in on-null obj on-null obj	ject ject					
	4 T 5 B	ge enure alance	10000 r 10000 r	on-null in on-null in on-null flo	t64 pat64					
	7 H	umOfProducts asCrCard sActiveMembe	10000 r	on-null in on-null in on-null in	t64					
		stimatedSala								

5.) PERFORM VARIOUS VISUALISATIONS

a.) UNIVARIANTE ANALYSIS

c.) MULTI - VARIANTE ANALYSIS

	CreditScore	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	${\sf EstimatedSalary}$	Exited
CreditScore	1.000000	-0.003965	0.000842	0.006268	0.012238	-0.005458	0.025651	-0.001384	-0.027094
Age	-0.003965	1.000000	-0.009997	0.028308	-0.030680	-0.011721	0.085472	-0.007201	0.285323
Tenure	0.000842	-0.009997	1.000000	-0.012254	0.013444	0.022583	-0.028362	0.007784	-0.014001
Balance	0.006268	0.028308	-0.012254	1.000000	-0.304180	-0.014858	-0.010084	0.012797	0.118533
NumOfProducts	0.012238	-0.030680	0.013444	-0.304180	1.000000	0.003183	0.009612	0.014204	-0.047820
HasCrCard	-0.005458	-0.011721	0.022583	-0.014858	0.003183	1.000000	-0.011866	-0.009933	-0.007138
IsActiveMember	0.025651	0.085472	-0.028362	-0.010084	0.009612	-0.011866	1.000000	-0.011421	-0.156128
EstimatedSalary	-0.001384	-0.007201	0.007784	0.012797	0.014204	-0.009933	-0.011421	1.000000	0.012097
Exited	-0.027094	0.285323	-0.014001	0.118533	-0.047820	-0.007138	-0.156128	0.012097	1.000000

6.) FIND AND REPLACE THE OUTLIERS

7.) CHECK FOR CATEGORICAL COLUMNS AND ENCODE THEM

1e d	r om sklearn. e = LabelEnc f.Geography f.Gender = l	oder() = le.fit_t	ransfor	m(df	.Geogra						
-	f.head()										
2]:	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	EstimatedSalary	Exited
	0 619	0	0	42	2	0.00	1	1	1	101348.88	1
(
1	1 608	2	0	41	1	83807.86	1	0	1	112542.58	0
1	1 608 2 502	2	0	41		83807.86 159660.80	1	0	1	112542.58 113931.57	0
2		_					3 2				1 0

8.)SPLIT DATA INTO DEPENDENT AND INDEPENDENT VARIABLES

<pre>X = df X.head</pre>		columns=['[Exited'])						
Cred	ditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	EstimatedSalary
0	619	0	0	42	2	0.00	1	1	1	101348.88
1	608	2	0	41	1	83807.86	1	0	1	112542.58
2	502	0	0	42	8	159660.80	3	1	0	113931.57
3	699	0	0	39	1	0.00	2	0	0	93826.63
4	850	2	0	43	2	125510.82	1	1	1	79084.10
Y = df Y.head 0 1 1 0 2 1	()	I								

9.) SCALE THE INDEPENDENT VARIABLES

```
Scale the Independent Variables

In [25]: from sklearn.preprocessing import MinMaxScaler scale = MinMaxScaler()
X_scaled = pd.DataFrame(scale.fit_transform(X),columns=X.columns)
```

10.) SPLIT THE DATA INTO TRAINING AND TESTING