HM I + II Zusammenfassung KIT

Andreas Mai

14. August 2016

HM Klausur am 30.08.2016 08:00 - 10:00 HM I 11:00 - 13:00 HM II

Kein Anspruch auf Vollständigkeit ;)

Inhaltsverzeichnis

1	Folg	gen und Reihen	1
	1.1	Allgemein	1
	1.2	Monotonie	1
	1.3	Konvergenz	1
		1.3.1 Nullfolgenkriterium	2
		1.3.2 Mino/Majorantenkriterium	2
		1.3.3 Nullfolgenkriterium	2
		1.3.4 Nullfolgenkriterium	2
		1.3.5 Nullfolgenkriterium	2
	1.4	Koshere Folgen (Cauchy-Folgen)	2
2	Diff	erenzieren (Ableiten)	2
3	Inte	grieren	2
	3.1	Partielle Integration	2
	3.2	Substitution	3

1 Folgen und Reihen

1.1 Allgemein

- Eine Folge ist eine durchnummerierte Menge von Zahlen. $(s_n)_{n\in\mathbb{N}}, s\in\mathbb{R}$
- Eine Reihe ist die Summe einer Folge. $(s_m)_{m \in \mathbb{N}}, s \in \mathbb{R}$ Eine Reihe ist auch eine Folge! $\sum_{i=1/0}^{n} (s_i), s \in \mathbb{R}$
- Kleinste obere Schranke = Supremum Größte untere Schranke = Infimum

1.2 Monotonie

Zu faul, evtl später: https://youtu.be/Ii0b3L5UWZw

1.3 Konvergenz

- Eine Folge (oder Reihe) ist konvergent, wenn sie gegen einen bestimmten Wert konvergiert.
- Sie ist bestimmt divergent, wenn sie gegen $\pm \infty$ läuft
- Sie ist unbestimmt divergent, wenn sich keine Aussage machen lässt (bsp: 1 und -1 abwechseln).
- Formel: $\forall \varepsilon > 0 : \exists n_0 : \forall n \geq n_0 : |s_n g| < \varepsilon \ (g: Grenze)$

Grenzwert bestimmen

Grad der Funktion:

- $Z\ddot{a}hlergrad < Nennergrad \Rightarrow s_n \to 0$ Beispiel: $s_n = \frac{n}{n^2 + 4} \Rightarrow s_n \to 0$
- $Z\ddot{a}hlergrad = Nennergrad \Rightarrow s_n \rightarrow Bruch$ Beispiel: $s_n = \frac{3n+4}{5n+96} \Rightarrow s_n \rightarrow \frac{3}{5}$
- $Z\ddot{a}hlergrad > Nennergrad \Rightarrow s_n \to \infty \Rightarrow$ bestimmt divergent Beispiel: $s_n = \frac{n^6 7}{n^2 + 4} \Rightarrow s_n \to \infty$

1

Grenzwert beweisen

Durch Formel.

Beispiel

$$s_n = \frac{1}{n}$$

$$\begin{split} s_n &= \frac{1}{n} \\ \text{Z\"{a}hlergrad} &< \text{Nennergrad} \Rightarrow s_n \to 0 \\ |s_n - g| &= |\frac{1}{n} - 0| = \frac{1}{n} < \frac{1}{n_0} \le \varepsilon \end{split}$$

Drüber schreiben: Es sei $n_0 > \frac{1}{\varepsilon}$

- 1.3.1 Nullfolgenkriterium
- 1.3.2 Mino/Majorantenkriterium
- 1.3.3 Cauchykriterium
- 1.3.4 Leibnitzkriterium

https://youtu.be/xOhr3rFTjok

1.3.5 Noch son kack Kriterium

1.4 Koshere Folgen (Cauchy-Folgen)

Jede Konvergente Folge ist eine Cauchy Folge und ungekehrt.

Hier steht fast das gleiche wie unter Konvergenz

Sinn: Ab einem Mindestindex n_0 ist der Abstand zwischen 2 Folgegliedern kleiner als ε

Formel

$$\forall \varepsilon > 0 \exists n_0 \forall n, m > n_0 : |s_n - s_m| < \varepsilon$$

2 Differenzieren (Ableiten)

3 Integrieren

3.1 Partielle Integration

Verwendung: Integration von Produkten (z.B. $\int x \cdot e^x dx$)

$$\int f'(x) \cdot g(x) dx = f(x) \cdot g(x) - \int f(x) \cdot g'(x) dx$$

LAPTE

Logarithmisch, Algebraisch/Polynom, Trigonometrisch, Exponential Linke Funktion ableiten $g \to g'$ und rechte integrieren $f' \to f$ (links g, rechts f')

Beispiel

$$\begin{split} &\int x \cdot e^{2x} \, \mathrm{d}x \\ &\Rightarrow \text{durch LAPTE: } f'(x) = e^{2x}, g(x) = x \\ &\Rightarrow f(x) = \frac{1}{2} e^{2x}, g'(x) = 1 \\ &\text{Aus der Formel folgt: } \int x \cdot e^{2x} \, \mathrm{d}x = \frac{1}{2} e^{2x} \cdot x - \int \frac{1}{2} e^{2x} \, \mathrm{d}x = \frac{1}{2} e^{2x} \cdot x - \frac{1}{4} e^{2x} = \frac{1}{4} e^{2x} \cdot (2x-1) \end{split}$$

3.2 Substitution

Verwendung: Keine ahnung, dann wenn mans braucht. denk und rechne!

Formel

$$\int_{\varphi(a)}^{\varphi(b)} f(x) \, \mathrm{d}x = \int_a^b f(\varphi(t)) \cdot \varphi'(t) \, \mathrm{d}t$$

Beispiel

$$\begin{split} &\int_{1}^{2} (x^{2} + 2)^{3} \cdot 2x \, \mathrm{d}x \\ \text{Setze } u = x^{2} + 2 \Rightarrow \mathrm{d}u = 2x \, \mathrm{d}x \Rightarrow \mathrm{d}x = \frac{\mathrm{d}u}{2x} \\ &\int (x^{2} + 2)^{3} \cdot 2x \, \mathrm{d}x = \int u^{3} \, \mathrm{d}u = \frac{1}{4}u^{4} = \frac{1}{4}(x^{2} + 2)^{4} \\ \text{Grenzen einfügen: } &\int_{1}^{2} (x^{2} + 2)^{3} \cdot 2x \, \mathrm{d}x = \left[\frac{1}{4}(x^{2} + 2)^{4}\right]_{1}^{2} = \frac{1}{4}(2^{2} + 2)^{4} - \frac{1}{4}(1^{2} + 2)^{4} = \frac{1}{4}6^{4} - \frac{1}{4}3^{4} \end{split}$$

Weiteres Beispiel

$$\int \cos(x^3) \cdot 6x^2 \, dx$$
Setze $u = x^3 \Rightarrow du = 3x^2 \, dx \Rightarrow dx = \frac{du}{3x^2}$

$$\int \cos(u) \cdot 6x^2 \cdot \frac{du}{3x^2} = \int \cos(u) \cdot 2 \, du = 2 \int \cos(u) \, du = 2\sin(u) = 2\sin(x^3)$$