

Principles of Information Security, Fifth Edition

Chapter 10
Implementing Information Security

Change is good. You go first! DILBERT (BY SCOTT ADAMS)

Learning Objectives

- Upon completion of this material, you should be able to:
 - Explain how an organization's information security blueprint becomes a project plan
 - Discuss the many organizational considerations that a project plan must address
 - Explain the significance of the project manager's role in the success of an information security project
 - Describe the need for professional project management for complex projects

Learning Objectives (cont'd)

- Describe technical strategies and models for implementing a project plan
- List and discuss the nontechnical problems that organizations face in times of rapid change

Introduction

- SecSDLC implementation phase is accomplished by changing the configuration and operation of an organization's information systems.
- Implementation includes changes to:
 - Procedures (through policy)
 - People (through training)
 - Hardware (through firewalls)
 - Software (through encryption)
 - Data (through classification)
- Organization translates blueprint for information security into a project plan.

Information Security Project Management

- Project plan must address project leadership, managerial/technical/budgetary considerations, and organizational resistance to change.
- Major steps in executing a project plan are:
 - Planning the project
 - Supervising tasks and action steps
 - Wrapping up
- Each organization must determine its own project management methodology for IT and information security projects.

Developing the Project Plan

- Creation of a project plan can be done using work breakdown structure (WBS).
- Major project tasks in WBS are:
 - Work to be accomplished
 - Assignees
 - Start and end dates
 - Amount of effort required
 - Estimated capital and noncapital expenses
 - Identification of dependencies between/among tasks
- Each major WBS task is further divided into smaller tasks or specific action steps.

Task	c or subtask	Resources	Start (5) & end (E) dates	Estimated effort in hours	Estimated capital expense	Estimated noncapital expense	Depend- encies
1	Contact field office and confirm network assumptions	Network architect	S: 9/22 E: 9/22	2	\$0	\$200	
2	Purchase standard firewall hardware						
2.1	Order firewall through purchasing group	Network architect	S: 9/23 E: 9/23	1	\$0	\$100	1
2.2	Order firewall from manufacturer	Purchasing group	S: 9/24 E: 9/24	2	\$4,500	\$100	2.1
2.3	Firewall delivered	Purchasing group	E: 10/3	1	\$0	\$50	2.2
3	Configure firewall	Network architect	S: 10/3 E: 10/5	8	\$0	\$800	2.3
4	Package and ship firewall to field office	Student intern	S: 10/6 E: 10/15	2	\$0	\$85	3
5	Work with local technical resource to install and test	Network architect	S: 10/22 E: 10/31	6	\$0	\$600	4
6	Penetration test						
6.1	Request penetration test	Network architect	S: 11/1 E: 11/1	1	\$0	\$100	5
6.2	Perform penetration test	Penetration test team	S: 11/2 E: 11/12	9	\$0	\$900	6.1
6.3	Verify that results of penetration test were passing	Network architect	S: 11/13 E: 11/15	2	\$0	\$200	6.2
7	Get remote office sign-off and update all network drawings and documentation	Network architect	S: 11/16 E: 11/30	8	\$0	\$800	6.2

Table 10-1 Example Project Plan Work Breakdown Structure

© Cengage Learning 2015

Project Planning Considerations

- As project plan is developed, adding detail is not always straightforward.
- Special considerations include financial, priority, time and schedule, staff, procurement, organizational feasibility, training and indoctrination, and scope.

- Financial considerations
 - Regardless of existing information security needs, the amount of effort that can be expended depends on available funds.
 - Cost-benefit analysis must be reviewed and verified prior to the development of a project plan.
 - Both public and private organizations have budgetary constraints, though of a different nature.
 - To justify an amount budgeted for a security project at either public or for-profit organizations, it may be useful to benchmark expenses of similar organizations.

- Priority considerations
 - In general, the most important information security controls should be scheduled first.
 - Implementation of controls is guided by prioritization of threats and value of threatened information assets.

- Time and scheduling considerations
 - Time impacts project plans at dozens of points, including:
 - Time to order, receive, install, and configure security control
 - Time to train the users
 - Time to realize control's return on investment

Staffing considerations

- Need for qualified, trained, and available personnel constrains project plan
- Experienced staff is often needed to implement technologies and develop and implement policies and training programs.

Procurement considerations

- Often constraints on the selection of equipment/services
 - Some organizations require use of particular service vendors/manufacturers/suppliers.
- These constraints may limit which technologies can be acquired.

- Organizational feasibility considerations
 - Changes should be transparent to system users unless the new technology is intended to change procedures (e.g., requiring additional authentication or verification).
 - Successful project requires that organization be able to assimilate proposed changes.
 - New technologies sometimes require new policies, employee training, and education.

- Training and indoctrination considerations
 - Size of organization and normal conduct of business may preclude a large training program for new security procedures/technologies.
 - If so, the organization should conduct phased-in or pilot implementation.

- Scope considerations
 - Project scope: description of project's features, capabilities, functions, and quality level, used as the basis of a project plan
 - Organizations should implement large information security projects in stages.

The Need for Project Management

- Project management requires a unique set of skills and thorough understanding of a broad body of specialized knowledge.
- Most information security projects require a trained project manager (a CISO) or skilled IT manager trained in project management techniques.

The Need for Project Management (cont'd)

- Supervised implementation
 - Some organizations may designate a champion from general management community of interest to supervise implementation of information security project plan.
 - An alternative is to designate a senior IT manager or CIO to lead implementation.
 - Best solution is to designate a suitable person from information security community of interest.
 - In final analysis, each organization must find project leadership best suited to its specific needs.

The Need for Project Management (cont'd)

- Executing the plan
 - A negative feedback loop ensures that project progress is measured periodically.
 - When significant deviation occurs, corrective action is taken.
 - Often, a project manager can adjust one of three planning parameters for the task being corrected:
 - Effort and money allocated
 - Elapsed time/Scheduling impact
 - Quality or quantity of deliverable

Figure 10-1 Gap analysis

The Need for Project Management (cont'd)

- Project wrap-up
 - Project wrap-up is usually handled as procedural task and assigned to mid-level IT or information security manager.
 - Collect documentation, finalize status reports, and deliver final report and presentation at wrap-up meeting
 - Goal of wrap-up is to resolve any pending issues, critique overall project effort, and draw conclusions about how to improve process.

Security Project Management Certifications

- GIAC certified project manager
 - Offered by SANS Institute; focuses on security professionals/managers with project management responsibilities
- IT security project management
 - Offered by EC Council as a milestone in its Certified E-Business Professional program
- Certified security project manager
 - Security Industry Association focused on physical security; also incorporates information security

Technical Aspects of Implementation

- Some aspects of implementation process are technical and deal with the application of technology.
 - Others deal with human interface to technical systems.

Conversion Strategies

 As components of new security system are planned, provisions must be made for changeover from the previous method of performing a task to

the new method.

Four basic approaches:

- Direct changeover
- Phased implementation
- Pilot implementation
- Parallel operations

Figure 10-2 Conversion strategies

The Bull's-Eye Model

- Proven method for prioritizing program of complex change
- Requires that issues be addressed from general to specific; focus is on systematic solutions and not on individual problems
- Relies on the process of project plan evaluation in four layers:
 - Policies
 - Networks
 - Systems
 - Applications

Figure 10-3 The bull's-eye model

To Outsource or Not

- Just as some organizations outsource IT operations, organizations can outsource part or all of their information security programs.
- When an organization outsources most/all IT services, information security should be part of contract arrangement with the supplier.
- Organizations of all sizes frequently outsource network monitoring functions.

Technology Governance and Change Control

- Technology governance guides how frequently technical systems are updated and how updates are approved/funded.
- By managing the process of change, the organization can:
 - Improve communication, enhance coordination, reduce unintended consequences, improve quality of service, and ensure groups are complying with policies

Nontechnical Aspects of Implementation

- Some aspects of implementation are not technical in nature, instead dealing with the human interface to technical systems.
- Include creating a culture of change management and considerations for the organizations facing change.

The Culture of Change Management

- Prospect of change can cause employees to consciously or unconsciously resist the change.
- The stress of change can increase the probability of mistakes or create vulnerabilities in systems.
- Change management can lower resistance to change and build resilience.
- Lewin change model:
 - Unfreezing
 - Moving
 - Refreezing

Considerations for Organizational Change

- Steps can be taken to make employees more amenable to change:
 - Reducing resistance to change from the start
 - Developing a culture that supports change

Considerations for Organizational Change (cont'd)

- Reducing resistance to change from the start
 - The more ingrained the existing methods and behaviors, the more difficult the change.
 - Best to improve interaction between affected members of organization and project planners in early project phases
 - Three-step process for project managers: communicate, educate, and involve
 - Joint application development

Considerations for Organizational Change (cont'd)

- Developing a culture that supports change
 - Ideal organization fosters resilience to change
 - Resilience: An organization understands change is a necessary part of the organizational culture, and embracing change is more productive than fighting it.
 - To develop such a culture, the organization must successfully accomplish many projects that require change.

Information Systems Security Certification and Accreditation

- It may seem that only systems handling secret government data require security certification and accreditation.
- In order to comply with recent federal regulations protecting personal privacy, the organizations need to have formal mechanisms for verification and validation.

Information Systems Security Certification and Accreditation (cont'd)

- Certification versus accreditation
 - Accreditation: authorizes IT system to process, store, or transmit information; assures systems of adequate quality
 - Certification: evaluation of technical and nontechnical security controls of IT system establishing extent to which design and implementation meet security requirements

The NIST Security Life Cycle Approach

- SP 800-37, Rev. 1: Guidelines for Applying the Risk Management Framework to Federal Information Systems, and CNSS Instruction-1000: National Information Assurance Certification and Accreditation Process (NIACAP)
 - Provide guidance for the certification and accreditation of federal information systems
- Information processed by the federal government is grouped into one of three categories:
 - National security information (NSI)
 - Non-NSI
 - Intelligence community (IC)

The NIST Security Life Cycle Approach (cont'd)

- A new publication, NIST SP 800-39: Integrated
 Enterprise-Wide Risk Management: Organization,
 Mission, and Information Systems View builds on a
 three-tiered approach to risk management
 - Tier 1 addresses risk from organizational perspective
 - Tier 2 addresses risk from mission/business process perspective
 - Tier 3 addresses risk from information system perspective

Figure 10-4 Tiered Risk Management Framework

Figure 10-5 Risk Management Framework

Figure 10-6 Security control allocation from NIST SP 800-37, Rev. 1

NSTISS Certification and Accreditation

- National security interest systems have their own C&A standards
- NSTISS Instruction 1000: National Information Assurance Certification and Accreditation Process (NIACAP)
 - Establishes minimum national standards for certifying/accrediting national security systems
 - Designed to certify that IS meets documented requirements
 - Composed of four phases: definition, verification, validation, and post accreditation

Figure 10-7 Overview of the NIACAP process

Figure 10-8 NIACAP Phase 1, Definition

Figure 10-9 NIACAP Phase 2, Verification

Figure 10-10 NIACAP Phase 3, Validation

Figure 10-11 NIACAP Phase 4, Post Accreditation

ISO 27001/27002 Systems Certification and Accreditation

- Organizations outside the United States apply these standards.
- Standards were originally created to provide a foundation for British certification of information security management systems (ISMSs).
- Organizations wishing to demonstrate their systems have met this international standard must follow the certification process.

Figure 10-12 ISMS certification and accreditation¹¹

Summary

- Moving from security blueprint to project plan
- Organizational considerations addressed by project plan
- Project manager's role in the success of an information security project
- Technical strategies and models for implementing project plan
- Nontechnical problems that organizations face in times of rapid change