国家精品课程,国家精品资源共享课

信号与系统

Signals and Systems

西安电子科技大学 Xidian University, Xi'an China

第五章 离散傅里叶变换

5.1连续变换到离散变换的演化	Z5.1 傅里叶变换中连续到离散的演化
	Z5.2 五种傅里叶变换的比较
5.2 离散傅里叶变换(DFT)	Z5.3 离散傅里叶变换定义
	Z5.4 快速傅里叶变换(FFT)
5.3 离散傅里叶级数 (DFS)	Z5.5 主值区间
	Z5.6 离散傅里叶级数
5.4 离散时间傅里叶变换(DTFT)	Z5.7 DTFT的定义
	Z5.8 从DFS到DTFT的演化
5.5 三种离散变换之间的关系	Z5.9 DFT与DFS的关系
	Z5.10DTFT与DFS的关系
	Z5.11 DTFT与DFT的关系

第五章 离散傅里叶变换

5.6 离散傅里叶变换的性质	Z5.12 DTFT基本性质
	Z5.13 DFT与DFS的性质
5.7 离散余弦变换(DCT)	Z5.14 离散余弦变换的定义
	Z5.15 JPEG中的DCT

思考问题:

- *为什么要对信号进行离散化?
- *离散信号该如何进行频谱分析?

知识点Z5.1

傅里叶变换中连续到离散的演化

主要内容:

- 1.时域离散化
- 2.频域离散化
- 3.DTFT, DFT, DFS

基本要求:

- 1.掌握时域频域离散化的基本概念
- 2.掌握DTFT、DFT和DFS的变换式

Z5.1傅里叶变换中连续到离散的演化

1. 由FT演化出DTFT

$$F(j\omega) = \int_{-\infty}^{\infty} f(t)e^{-j\omega t}dt$$

问题:上述傅里叶变换式中,不论在时域还是在频域,信号都是连续的。但以计算机为代表的数字处理系统只能存储和处理有限长度的离散数字信号,且无法直接进行连续积分运算。 需要对信号离散化。

由采样定理知,序列可以看作在满足采样定理的条件下对连续信号进行采样得到,则有:

$$X(j\omega) = \sum_{n=-\infty}^{\infty} x[n \cdot \Delta t] e^{-j\omega n \Delta t} \Delta t$$

将时域间隔单位归一化后,得到:

$$X(j\omega) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n}$$

上式是将连续傅里叶变换中的时域信号进行离散化后得到,称<u>离散时间傅里叶变换(DTFT—Discrete-time</u> Fourier Transform)。

分析: DTFT仍未达到便于数字系统处理的目的。

- (1) 时域序列的长度仍然是<u>无限长</u>的。
- (2) 信号在频域仍然是连续的。

因此,还需要对频域信号进行离散化。

2. 演化出DFT

实际上,对DTFT而言,其频域变换结果是以 2π 为周期的连续周期函数。为此,对时限信号在频域内以 $\frac{2\pi}{N}$ 为间隔对DFTF的变换结果进行<u>频域取样</u>,有:

$$X[k] = \sum_{n=0}^{N-1} x[n]e^{-j\frac{2\pi}{N}nk}, \qquad k = 0, \dots, N-1$$

显然上式在频域内也是离散且有限的,这非常适合于计算机等数字信号处理系统来进行处理。该式实际上给出的是非周期离散序列的

<u>离散傅里叶变换 (</u>DFT- Discrete Fourier Transform)。

3. 演化出DFS

对周期为T的连续信号 $\tilde{x}(t)$ 而言,其傅里叶级数为:

$$X(jk\Omega) = \frac{1}{T} \int_0^T \tilde{x}(t) e^{-jk\Omega t} dt$$

其中 $\Omega = \frac{2\pi}{T}$,它也是频域中两条相邻谱线的间隔。

若要将周期信号在时域内进行离散化,只需以恰当的采样率进行采样,即可得到对应的周期序列。

对周期为 N 的周期离散序列 $\tilde{x}(n)$ 而言,时域积分 演变为离散求和,因此有

$$\tilde{X}(jk\Omega) = \frac{1}{N} \sum_{n=0}^{N-1} \tilde{x}(n)e^{-jk\Omega n}$$

上式即<u>离散傅里叶级数</u>(DFS- Discrete Fourier Series)。

若离散周期序列 $\tilde{x}(n)$ 的一个周期取出来,记作 x(n) 并且将**DFS**变换结果中的一个周期取出来,记作 $X(jk\Omega)$ 则有:

$$X(jk\Omega) = \frac{1}{N} \sum_{n=0}^{N-1} x(n)e^{-jk\Omega n}, \quad k = 0...N-1$$

上式本质上与<u>离散傅里叶变换</u>(DFT)相同。由此可见,离散傅里叶变换(DFT)可以从DTFT延伸而来,也可以认为是从DFS演变得到。

需要说明的是,在常见的信号处理应用中,离散傅里叶变换占据主导地位。

知识点Z5.2

五种傅里叶变换的比较

主要内容:

- 1. 五种傅里叶变换的含义
- 2.五种傅里叶变换之间的关系

基本要求:

- 1.掌握五种傅里叶变换的差异
- 2.理解各种傅里叶变换的信号波形

表 5.1-1 五种傅里叶变换的特性↓

TO THE TOTAL TOWNS OF THE TOTAL TOWNS OF THE TOWN OF THE TOW		
变换₽	时域特性₽	频域特性₽
傅里叶变换↩	连续、非周期↩	非周期、连续↓
(FT) &	$X(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\omega) e^{j\omega t} d\omega \Leftrightarrow$	$X(j\omega) = \int_{-\infty}^{\infty} x(t)e^{-j\omega t} dt dt$
傅里叶级数↩	连续、周期↓	非周期、离散↩
(FS) 🕫	$\widetilde{X}(t) = \sum_{k=-\infty}^{\infty} X(jk\Omega) e^{jk\Omega t} \Leftrightarrow$	$X(jk\Omega) = \frac{1}{T} \int_0^T \tilde{x}(t) e^{-jk\Omega t} dt +$
离散时间傅里叶变换↩	离散、非周期↩	周期、连续↩
(DTFT) 🕫	$x[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(j\omega) e^{j\omega n} d\omega + \infty$	$X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x(n)e^{-j\omega n} \Leftrightarrow$
离散傅里叶级数↩	离散、周期↩	周期、离散↩
(DFS) 🕫	$\tilde{x}[n] = \frac{1}{N} \sum_{k=0}^{N-1} \tilde{X}(k) e^{j\frac{2\pi}{N}kn}, -\infty < n < +\infty < \infty$	$\tilde{X}[k] = \sum_{n=0}^{N-1} \tilde{x}(n) e^{-j\frac{2\pi}{N}kn}, -\infty < k < +\infty < 0$
离散傅里叶变换↩	离散、非周期↩	离散、非周期↩
(DFT) &	$x[n] = \frac{1}{N} \sum_{k=0}^{N-1} X(k) e^{j\frac{2\pi}{N}kn}, 0 \le n \le N-1 $	$X[k] = \sum_{n=0}^{N-1} x(n) e^{-j\frac{2\pi}{N}kn}, 0 \le k \le N-1 e^{-j\frac{2\pi}{N}kn}$

结合前述特性图示可知,除离散傅里叶变换外,若 某个信号在时域(或频域)内是周期的,则经变换 (或反变换)后其变换结果在频域(或时域)内是离 散的: 若信号在时域(或频域)内是离散的,则其变 换(或反变换)结果在频域(或时域)内是周期的。 周期性和离散性呈现出对偶关系。

离散傅里叶变换则提供了一种在时域和频域内均是 离散的信号变换方法。

知识点Z5.3

离散傅里叶变换定义

主要内容:

- 1.离散傅里叶变换
- 2.离散傅里叶变换的基
- 3.离散傅里叶变换的物理意义

基本要求:

- 1.离散傅里叶变换的定义
- 2.离散傅里叶变换的基

定义:对于一个长度为N的离散信号 x[n], n=0,K,N-1 其离散傅里叶变换(**DFT**)为:

$$X[k] = \sum_{n=0}^{N-1} x[n]W_N^{nk}, \qquad k = 0, K, N-1$$

其中: $W_N = e^{-j\frac{2\pi}{N}}$

可验证: $w^{(k)} = \begin{bmatrix} 1 & W_N^{-k} & W_N^{-2k} & K & W_N^{-(N-1)k} \end{bmatrix}^T$ 构成N维复数空间 C^N 中的一组正交基,也是**DFT**的基函数。

由于 $\|w^{(k)}\|^2 = N$,为了使其成为正交规范基,可以通过 $1/\sqrt{N}$ 的缩放因子而使其规范化。

DFT基向量 $w^{(1)} \in C^{32}$

DFT基向量 $w^{(7)} \in C^{32}$

DFT基向量 $w^{(31)} \in C^{32}$

由离散傅里叶变换的公式可知,信号在经过变换后的长度不变,但是由于DFT的基是复数,所以通常变换系数也为复数,因此可以从幅度和相位两个方面来分析DFT的特性。

离散傅里叶反变换 : 若X[k], k = 0, K, N-1为长度为N的离散傅里叶变换系数序列,则称

$$x[n] = \frac{1}{N} \sum_{k=0}^{N-1} X[k] W_N^{-nk}, \qquad n = 0, K, N-1$$

为 X[k] 的离散傅里叶反变换(IDFT)。

离散傅里叶变换的物理意义

离散傅里叶反变换是将一个有限信号x[n]表示成了N个离散正弦分量的加和,每个正弦分量的振幅和初始相位由系数X[k]给出。

更直观地,可以将离散傅里叶反换描述为:

- (1) 设计一组包含N个复正弦分量信号发生器;
- (2) 将其中第k个正弦量发生器的频率设置为 $\frac{2\pi k}{N}$
- (3) 将其中第k个正弦量发生器的振幅设置为 |X[k]|/N
- (4) 将其中第k个正弦量发生器的相位设置为 $\angle X[k]$
- (5) 同时启动发生器,将它们的输出相加。按照先后顺序,前 N个输出值为 x[n], n = 0, K , N-1

例 设信号

$$x_1[n] = \cos\left(\frac{\pi}{8}n\right), n = 0, ..., 63$$
 $x_2[n] = \cos\left(\frac{\pi}{8}n + \frac{\pi}{3}\right), n = 0, ..., 63$

试分析两个信号离散傅里叶变换结果的差异。

解:

信号 $x_1[n]$ 是一正弦曲线,其频率与其基向量之一的 $\omega^{(4)}$ 一致 (因为 $\pi/8=4\times 2\pi/64$),通过计算可知其变换系数只 fX[4]和X[60]是非零的,而相位在全局皆为0。 其离散傅里叶变换结果如图所示。

 $x_1[n]$ 及其**DFT**

 $x_2[n]$ 及其**DFT**

从上述两图可以看出,两个信号的幅频特性相同,但 相频特性有明显差异,这与时域表达式中两信号具有 相同的角频率但初相不同的结果是一致的。

关于其它序列的离散傅里叶频谱的描述以及图形,详见扩展资源L5001。