1. Year-Extent Code

```
import pandas as pd
import numpy as np
import glob
import matplotlib.pyplot as plt
# Import all the monthly data and make a yearly mean extent data
path="../../documents/Machine Learning/Project/Monthly Arctic Ice Extent Data/"
files=glob.glob(path+"*.csv")
files.sort()
all_ice_extent=[]
monthly_ice_extent_info=[[] for i in range(12)]
count=0
for file in files:
    monthly_ice_extent_info[count]=pd.read_csv(file)
    all_ice_extent.append(monthly_ice_extent_info[count])
    count=count+1
all_ice_extent_concat = pd.concat(all_ice_extent, axis=0, ignore_index=True, sort=False)
yearly_ice_extent_info=pd.pivot_table(all_ice_extent_concat,index="year",values="
extent")
yearly_ice_extent_info.to_csv("../../documents/Machine
Learning/Project/yearly_ice_extent_info.csv") #To export the year-extent table
yearly_ice_extent_info.head(100)
```

	extent		
year			
1978	12.660000	2006	10.794167
1979	12.350000	2007	10.498333
1980	12.348333	2008	10.990000
1981	12.146667	2009	10.955833
1982	12.467500	2010	10.734167
1983	12.353333	2011	10.505833
1984	11.920000	2012	10.420000
1985	12.015833		
1986	12.224167	2013	10.919167
1987	12.162727	2014	10.812500
1988	11.938182	2015	10.589167
1989	11.986667	2016	10.175833
1990	11.717500	2017	10.415000
1991	11.770000	2018	10.378333
1992	12.121667	2019	10.052727
1993	11.946667		
1994	12.032500		
1995	11.438333		
1996	11.848333		
1997	11.691667		
1998	11.781667		
1999	11.713333		
2000	11.519167		
2001	11.622500		
2002	11.385000		
2003	11.419167		
2004	11.250833		
2005	10.927500		

```
# Building a 10th-order polynomial model to fit the monthly data in 2018
all_ice_extent_concat_sort=all_ice_extent_concat.sort_values(by=["year","
mo"],ascending=True)
x=range(1,13)
monthly_ice_extent_info_2018=all_ice_extent_concat_sort.loc[(all_ice_extent_concat_so
rt["year"]==2018)]
y=monthly_ice_extent_info_2018[" extent"]
degree1=10
coef1=np.polyfit(x,y,degree1)
print('Coefficients: %s' % coef1)
curve=∏
for i in range(12):
   value=coef1[-1]
   for d in range(degree1):
        value =value+x[i]**(degree1-d) * coef1[d]
    curve.append(value)
plt.figure(1)
plt.title("2018 Original Month Data")
plt.plot(x,y)
plt.xlabel("Month")
plt.ylabel("Extent")
plt.savefig("2018 Original Month Data.png")
plt.figure(2)
plt.plot(x,curve, color='red', linewidth=3)
plt.title("Model")
plt.xlabel("Month")
plt.ylabel("Extent")
plt.savefig("2018 Original Month Data Model.png")
plt.show()
Coefficients: [-7.62924383e-06 4.93094595e-04 -1.38059
896e-02 2.19446010e-01
 -2.18080859e+00 1.40697262e+01 -5.92508913e+01 1.59
484431e+02
 -2.60368913e+02 2.31004555e+02 -6.98841667e+011
# Another way to get the polynomial model
p1= np.poly1d(coef1)
yvals = p1(x)
plt.plot(x,y)
plt.plot(x,yvals,'r',label='polyfit values')
```

```
plt.show()
# Building a 18th-order polynomial model to fit the monthly data between 2014-2018(not
referred in the paper)
x=range(1,61)
year_xticks=[]
for year in range(2014,2019):
    for month in range(12):
        if month==0:
             year_xticks.append(str(year))
        else:
             year_xticks.append("")
monthly_ice_extent_info_last_5_years=all_ice_extent_concat_sort.loc[(all_ice_extent_co
ncat_sort["year"]<=2018)&(all_ice_extent_concat_sort["year"]>=2014)]
y=monthly_ice_extent_info_last_5_years[" extent"]
degree2=18
coef2=np.polyfit(x,y,degree2)
print('Coefficients: %s' % coef2)
curve=∏
for i in range(len(x)):
    value=coef2[-1]
    for d in range(degree2):
        value =value+x[i]**(degree2-d) * coef2[d]
    curve.append(value)
plt.figure(1)
plt.title("2014-2018 Original Month Data")
plt.plot(x,y)
plt.xticks(range(len(x)),year_xticks,color='blue')
plt.xlabel("Year")
plt.ylabel("Extent")
plt.savefig("2014-2018 Original Month Data.png")
plt.figure(2)
plt.plot(x,curve, color='red', linewidth=3)
plt.xticks(range(len(x)),year_xticks,color='blue')
plt.xlabel("Year")
plt.ylabel("Extent")
plt.title("Model")
plt.savefig("2014-2018 Original Month Data Model.png")
plt.show()
Coefficients: [-4.22260881e-23 1.68206838e-20 -2.628126
45e-18 1.57740777e-16
```

```
8.53155467e-15 -2.43094702e-12 2.28086919e-10 -1.308
55751e-08
  5.13952817e-07 -1.43522525e-05 2.88276494e-04 -4.16
029714e-03
  4.28465189e-02 -3.12901836e-01 1.61379438e+00 -5.740
47838e+00
  1.26512510e+01 -1.39385812e+01 1.93740278e+01
# Ouput of the extent data in different seasons between 1978-2019
seasonal ice extent info1=pd.DataFrame(columns=("year", "season", "extent"))
seasonal_ice_extent_info2=pd.DataFrame(columns=("year", "Spring", "Summer", "Autum
n", "Winter"))
seasonal_matrix=np.zeros((len(range(1978,2020)),4))
for year in range(1978,2020):
    for season_count in range(0,4):
        if season_count==0:
            season="Spring"
        elif season_count==1:
            season="Summer"
        elif season_count==2:
            season="Autumn"
        else:
            season="Winter"
seasonal_ice_extent=all_ice_extent_concat_sort.loc[(all_ice_extent_concat_sort["year"]=
=year)&(all ice extent concat sort["mo"]>3*season count)&(all ice extent concat sort[
" mo"]<=3*(season_count+1))]
seasonal_ice_extent_info1=seasonal_ice_extent_info1.append({"year":year, "season":sea
son, "extent":seasonal_ice_extent[" extent"].mean()},ignore_index=True)
seasonal_matrix[year-1978][season_count]=seasonal_ice_extent[" extent"].mean()
seasonal ice extent info2=seasonal ice extent info2.append({"year":str(year), "Spring":
seasonal_matrix[year-1978][0], "Summer": seasonal_matrix[year-1978][1], "Autumn": seaso
nal_matrix[year-1978][2], "Winter": seasonal_matrix[year-1978][3]}, ignore_index=True)
seasonal_ice_extent_info2.head(50)
```

	year	Spring	Summer	Autumn	Winter
0	1978	NaN	NaN	NaN	12.660000
1	1979	15.976667	13.946667	8.466667	11.010000
2	1980	15.620000	13.806667	8.583333	11.383333
3	1981	15.380000	13.746667	8.416667	11.043333
4	1982	15.730000	13.973333	8.603333	11.563333
5	1983	15.680000	13.653333	8.716667	11.363333
6	1984	15.116667	13.580000	8.186667	10.796667
7	1985	15.360000	13.883333	7.946667	10.873333
8	1986	15.526667	13.473333	8.513333	11.383333
9	1987	15.613333	13.813333	8.413333	10.135000
10	1988	15.770000	13.540000	8.356667	11.363333
11	1989	15.290000	13.203333	8.340000	11.113333
12	1990	15.410000	13.173333	7.396667	10.890000
13	1991	15.010000	13.480000	7.800000	10.790000
14	1992	15.193333	13.350000	8.573333	11.370000
15	1993	15.466667	13.440000	7.736667	11.143333
16	1994	15.280000	13.510000	8.236667	11.103333
17	1995	15.026667	12.953333	7.270000	10.503333
18	1996	14.816667	13.130000	8.640000	10.806667
19	1997	15.110000	13.160000	7.796667	10.700000
20	1998	15.356667	13.396667	7.823333	10.550000
21	1999	15.023333	13.536667	7.613333	10.680000
22	2000	14.860000	13.126667	7.643333	10.446667
23	2001	14.976667	13.276667	7.753333	10.483333
24	2002	14.986667	12.950000	7.233333	10.370000
25	2003	15.020000	13.043333	7.423333	10.190000
26	2004	14.643333	12.666667	7.420000	10.273333
27	2005	14.240000	12.720000	6.816667	9.933333

```
28
     2006
            14.070000 12.450000 6.940000
                                                  9.716667
 29
     2007
            14.250000 12.616667 5.850000
                                                  9.276667
 30
    2008
            14.673333
                         12.843333
                                     6.426667
                                                 10.016667
 31
     2009
            14.566667
                         13.003333
                                     6.623333
                                                  9.630000
 32
    2010
            14.486667
                         12.706667
                                     6.270000
                                                  9.473333
 33 2011
            14.123333
                         12.513333
                                     5.926667
                                                  9.460000
    2012
            14.493333
                         12.770000 5.320000
                                                  9.096667
 34
 35
    2013
            14.483333 12.886667 6.450000
                                                  9.856667
 36 2014
            14.276667
                         12.606667
                                     6.470000
                                                  9.896667
 37
     2015
            14.123333
                         12.413333
                                                  9.620000
                                     6.200000
    2016
            14.020000
                         12.003333
 38
                                     5.946667
                                                  8.733333
 39
     2017
            13.866667
                         12.380000
                                     6.080000
                                                  9.333333
 40
            13.783333
                         12.236667
                                                  9.270000
    2018
                                     6.223333
            14.170000
                        12.046667 5.646667
 41
     2019
                                                  7.495000
# Plotting the figure with the seasonal data(not shown in the paper)
plt.figure(figsize=(50,5))
year_season=[]
for year in range(1978,2020):
   for season_count in range(4):
       if season count==0:
           year_season.append(str(year)+"-Spring")
       elif season count==1:
           year_season.append(str(year)+"-Summer")
       elif season_count==2:
           year_season.append(str(year)+"-Autumn")
       else:
           year season.append(str(year)+"-Winter")
plt.plot(range(len(seasonal_ice_extent_info1["extent"])),seasonal_ice_extent_info1["exten
t"])
plt.xticks(range(len(seasonal_ice_extent_info1["extent"])),year_season,color='blue',rotati
plt.title("Seasonality")
plt.xlabel("Season")
plt.ylabel("Extent")
```

```
plt.savefig("Seasonal data.png",bbox_inches='tight')
plt.show()
# Method 1: using Seaborn library to plot the linear regression model
import seaborn as sns
%matplotlib inline
plt.plot(range(1978,2020), yearly_ice_extent_info[" extent"])
sns.regplot(x=np.arange(1978,2020),y=" extent",data=yearly_ice_extent_info)
plt.xlabel('Year')
plt.ylabel('Extent')
plt.title('Yearly Arctic Ice Extent')
plt.savefig("Yearly Arctic Ice Extent.png")
plt.show()
# Plotting the heatmap of monthly extent data
import seaborn as sns
ice_extent=all_ice_extent_concat.pivot(" mo","year"," extent")
ax=sns.heatmap(ice_extent,cmap="YIGnBu_r",vmin=7.5,vmax=15)
ax.set_title("Monthly Arctic Ice Extent")
fig=ax.get_figure()
fig.savefig("Monthly Arctic Ice Extent.png")
ax.set_ylabel("month")
# Method 2: Least Squares Estimation
theta1=(len(range(1978,2020))*np.dot(range(1978,2020), yearly ice extent info["
extent"])-(np.arange(1978,2020).sum())*yearly_ice_extent_info["
extent"].sum())/(len(range(1978,2020))*((np.arange(1978,2020)**2).sum())-(np.arange(1978,
2020).sum())**2)
print("theta1="+str(theta1))
theta0=yearly_ice_extent_info[" extent"].mean()-theta1*(np.arange(1978,2020).mean())
print("theta0="+str(theta0))
theta1=-0.05572477059714807
theta0=122.81834220578858
plt.plot(range(1978,2020), yearly_ice_extent_info[" extent"])
plt.plot(range(1978,2020),theta1*range(1978,2020)+theta0)
plt.scatter(range(1978,2020),yearly_ice_extent_info[" extent"])
plt.title("Least Square Estimation")
plt.xlabel("Year")
plt.ylabel("Extent")
plt.savefig("Least Square Estimation.png")
```

```
plt.show()
# Method 3: Gradient Descent
iters=10000 #Iterating Time
alpha=0.001 #Learning Rate
theta0=1
theta1=-1
loss_value=∏
m=len(range(1978,2020))
def normalization(X):
                        #Normalization to condense the data into the range 0 to 1.
    minVal=X.min()
    maxVal=X.max()
    diff=maxVal-minVal
    if diff!= 0:
         X = (X-minVal)/diff
    else:
         X=0
    return X,diff,minVal
[X,diffx,minValx]=normalization(np.arange(1978,2020))
[Y,diffy,minValy]=normalization(yearly_ice_extent_info[" extent"])
for i in range(iters):
    error=theta1*X+theta0-Y
    cost=np.power(error,2).sum()/m
    loss_value.append(cost)
    theta0=theta0-(alpha*error.sum()/m)
    theta1=theta1-alpha*(((error*X).sum()/m))
# Revertion of parameters and plotting figures of linear regression model.
theta1=theta1*diffy/diffx
theta0=theta0*diffy+minValy-theta1*minValx
print("theta1="+str(theta1))
print("theta0="+str(theta0))
plt.figure(1)
plt.plot(range(iters),loss_value)
plt.title("Loss Value")
plt.xlabel("Iteration Time")
plt.ylabel("Loss Value")
plt.savefig("Loss Value.png")
plt.figure(2)
plt.plot(np.arange(1978,2020),theta1*np.arange(1978,2020)+theta0)
plt.scatter(np.arange(1978,2020),yearly_ice_extent_info[" extent"])
plt.title("Gradient Descent")
plt.xlabel("Year")
plt.ylabel("Extent")
```

```
plt.savefig("Gradient Descent.png")
plt.show()
theta1=-0.05912366314200111
theta0=129.61618456222237
# Prediction of the first year with ice-free month and the first ice-free year
import sympy
from sympy.abc import x
import math
diff1=monthly_ice_extent_info_2018["
                                       extent"].mean()-monthly_ice_extent_info_2018["
extent"].min()
                                         extent"].max()-monthly_ice_extent_info_2018["
diff2=monthly_ice_extent_info_2018["
extent"].mean()
predicted_ice_free_year1=sympy.solve(theta1*x+theta0-diff1,x)
predicted_ice_free_year1=math.ceil(predicted_ice_free_year1[0])
print(predicted_ice_free_year1)
predicted_ice_free_year2=sympy.solve(theta1*x+theta0+diff2,x)
predicted_ice_free_year2=math.ceil(predicted_ice_free_year2[0])
print(predicted_ice_free_year2)
2098
2259
# Plotting the monthly data in 2098 and 2259
curve1=[]
curve2=[]
x=range(1,13)
for i in range(12):
    value1=coef1[-1]
    value2=coef1[-1]
    for d in range(degree1):
        value1=value1+x[i]**(degree1-d) * coef1[d]
        value2=value2+x[i]**(degree1-d) * coef1[d]
    curve1.append(value1+theta1*(predicted ice free year1-2018))
    curve2.append(value2+theta1*(predicted_ice_free_year2-2018))
plt.figure(1)
plt.plot(x,curve1)
plt.xlabel("Month")
plt.ylabel("Extent")
plt.title("First Year With Ice-Free Period-2098")
plt.savefig("First Year With Ice-Free Period-2098.png")
```

```
plt.figure(2)
plt.plot(x,curve2)
plt.xlabel("Month")
plt.ylabel("Extent")
plt.title("Ice Free Year")
plt.savefig("Ice Free Year.png")
#Plotting the predicted monthly data between 2019-2023
curve3=[]
x=range(1,61)
year_xticks=[]
for year in range(2019,2024):
    for month in range(12):
         if month==0:
             year_xticks.append(str(year))
         else:
              year_xticks.append("")
for i in range(1,6):
    for j in range(12):
         value3=coef1[-1]
         for d in range(degree1):
              value3=value3+x[j]**(degree1-d) * coef1[d]
         curve3.append(value3+theta1*i)
plt.xticks(range(len(x)),year_xticks,color='blue')
plt.plot(x,curve3)
plt.xlabel("Year")
plt.ylabel("Extent")
plt.title("Predicted Arctic Ice extent from 2019 to 2023")
plt.savefig("Predicted Arctic Ice extent from 2019 to 2023.png")
```

2. Temperature-Extent Code

 $\ensuremath{\text{\#}}$ Original table for temperature between 1978 and 2019

import pandas as pd import numpy as np

 $temperature_info=pd.read_csv(".../.documents/Machine Learning/Project/Temperature Data/Monthly/GLB.Ts+dSST.csv", header=1)$

temperature_info.loc[98:139].head(100)

	Year	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	J-D	D-N	DJF	MAM	JJA	SON
98	1978	0.06	0.10	0.19	0.17	0.09	-0.01	0.04	-0.13	0.06	0.03	0.14	0.08	0.07	0.06	0.06	0.15	-0.04	0.08
99	1979	80.0	-0.10	0.19	0.15	0.03	0.14	0.04	0.17	0.25	0.25	0.29	0.48	0.16	0.13	0.02	0.12	0.11	0.26
100	1980	0.30	0.40	0.30	0.30	0.35	0.20	0.22	0.18	0.20	0.13	0.29	0.21	0.26	0.28	0.39	0.32	0.20	0.21
101	1981	0.52	0.42	0.48	0.32	0.24	0.29	0.32	0.35	0.15	0.12	0.23	0.41	0.32	0.30	0.39	0.35	0.32	0.16
102	1982	0.05	0.15	0.03	0.15	0.18	0.06	0.14	0.03	0.14	0.13	0.17	0.42	0.14	0.14	0.20	0.12	0.08	0.15
103	1983	0.53	0.43	0.41	0.27	0.33	0.22	0.18	0.35	0.37	0.16	0.30	0.17	0.31	0.33	0.46	0.34	0.25	0.28
104	1984	0.31	0.14	0.26	0.06	0.32	0.02	0.19	0.19	0.21	0.13	0.07	-0.04	0.15	0.17	0.21	0.21	0.13	0.14
105	1985	0.22	-0.04	0.17	0.12	0.14	0.15	0.04	0.16	0.13	0.11	0.05	0.13	0.11	0.10	0.05	0.15	0.12	0.10
106	1986	0.27	0.37	0.30	0.22	0.21	0.12	0.11	0.15	0.03	0.15	0.11	0.13	0.18	0.18	0.26	0.24	0.13	0.09
107	1987	0.32	0.43	0.18	0.24	0.25	0.34	0.40	0.24	0.35	0.32	0.29	0.46	0.32	0.29	0.30	0.23	0.33	0.32
108	1988	0.57	0.44	0.51	0.42	0.43	0.39	0.32	0.38	0.36	0.37	0.12	0.28	0.38	0.40	0.49	0.46	0.37	0.28
109	1989	0.12	0.30	0.36	0.29	0.17	0.16	0.33	0.33	0.35	0.28	0.19	0.37	0.27	0.26	0.23	0.27	0.28	0.27
110	1990	0.41	0.43	0.79	0.56	0.45	0.39	0.46	0.34	0.23	0.44	0.47	0.40	0.45	0.45	0.40	0.60	0.40	0.38
111	1991	0.42	0.50	0.35	0.51	0.34	0.53	0.47	0.40	0.44	0.28	0.29	0.31	0.40	0.41	0.44	0.40	0.46	0.34
112	1992	0.47	0.41	0.47	0.27	0.30	0.26	0.08	0.08	-0.01	0.06	0.02	0.21	0.22	0.23	0.40	0.35	0.14	0.03
113	1993	0.34	0.37	0.36	0.27	0.28	0.23	0.25	0.11	0.12	0.23	0.03	0.18	0.23	0.23	0.31	0.30	0.19	0.13
114	1994	0.26	0.02	0.30	0.40	0.27	0.44	0.30	0.22	0.32	0.41	0.44	0.38	0.31	0.30	0.15	0.33	0.32	0.39
115	1995	0.52	0.79	0.47	0.46	0.28	0.42	0.45	0.46	0.34	0.47	0.44	0.25	0.45	0.46	0.56	0.40	0.44	0.42
116	1996	0.23	0.47	0.33	0.32	0.28	0.25	0.36	0.48	0.25	0.20	0.38	0.37	0.33	0.32	0.32	0.31	0.36	0.28
117	1997	0.30	0.41	0.52	0.35	0.36	0.54	0.34	0.43	0.52	0.60	0.64	0.58	0.46	0.45	0.36	0.41	0.43	0.59
118	1998	0.59	0.88	0.63	0.64	0.66	0.76	0.68	0.66	0.42	0.43	0.43	0.56	0.61	0.61	0.68	0.65	0.70	0.43
119	1999	0.48	0.65	0.32	0.33	0.27	0.36	0.38	0.32	0.38	0.34	0.37	0.41	0.39	0.40	0.56	0.31	0.35	0.37
120	2000	0.25	0.56	0.55	0.57	0.35	0.39	0.37	0.42	0.40	0.27	0.31	0.28	0.39	0.40	0.41	0.49	0.40	0.32
121	2001	0.46	0.44	0.56	0.51	0.58	0.52	0.59	0.50	0.52	0.51	0.73	0.56	0.54	0.52	0.39	0.55	0.54	0.58
122	2002	0.77	0.79	0.88	0.58	0.63	0.53	0.60	0.53	0.63	0.54	0.59	0.43	0.63	0.64	0.71	0.70	0.55	0.59
123	2003	0.75	0.59	0.60	0.55	0.61	0.48	0.58	0.65	0.62	0.74	0.53	0.75	0.62	0.59	0.59	0.59	0.57	0.63
124	2004	0.58	0.73	0.63	0.62	0.39	0.44	0.26	0.47	0.51	0.61	0.73	0.51	0.54	0.56	0.69	0.55	0.39	0.62
125	2005	0.74	0.61	0.74	0.68	0.63	0.65	0.62	0.62	0.72	0.75	0.74	0.68	0.68	0.67	0.62	0.69	0.63	0.73

```
126 2006 0.56 0.73 0.63 0.48 0.50
                                      0.66 0.55
                                                 0.71
                                                        0.65 0.69 0.73 0.79 0.64 0.63 0.66
                                                                                               0.54
                                                                                                     0.64
                                                                                                          0.69
127 2007 1.01
                0.70 0.72 0.75 0.68
                                      0.61 0.60
                                                 0.60
                                                        0.60 0.59 0.58
                                                                        0.49 0.66 0.69 0.84
                                                                                               0.72
                                                                                                     0.60
                                                                                                          0.59
    2008 0.30
                0.38
                     0.74 0.53
                                0.49
                                      0.49 0.60
                                                  0.47
                                                             0.65
                                                                  0.69
                                                                        0.54 0.54 0.54 0.39
                                                                                               0.59
                                                                                                     0.52
                                                                                                           0.65
129
    2009 0.65
                0.54
                     0.54 0.60
                                0.66
                                      0.65 0.71
                                                  0.68
                                                        0.73 0.66
                                                                  0.80
                                                                        0.67
                                                                             0.66 0.65 0.58
                                                                                               0.60
                                                                                                     0.68
                                                                                                           0.73
    2010 0.75
                     0.92 0.84
                                0.76
                                      0.68 0.64
                                                                        0.45 0.73 0.74 0.75
130
                0.84
                                                  0.66
                                                        0.63 0.70
                                                                  0.82
                                                                                               0.84
                                                                                                     0.66
                                                                                                           0.72
    2011 0.52
                0.48
                     0.65 0.65
                                0.52
                                      0.61 0.70
                                                 0.73
                                                        0.58 0.66
                                                                  0.59
                                                                        0.60 0.61 0.59 0.48
                                                                                               0.60
                                                                                                     0.68
                                                                                                          0.61
131
132 2012 0.49
                0.49
                     0.57 0.71
                                0.77
                                      0.65 0.58
                                                 0.64
                                                        0.71 0.79
                                                                  0.79
                                                                        0.53 0.64 0.65 0.53
                                                                                               0.69
                                                                                                     0.62
                                                                                                          0.76
133
    2013 0.71
                0.63
                     0.67 0.56
                                0.62
                                      0.70 0.61
                                                  0.70
                                                             0.69
                                                                  0.85
                                                                        0.70
                                                                             0.68 0.67 0.62
                                                                                               0.62
                                                                                                     0.67
                                                                                                          0.77
    2014
          0.76
                0.55
                     0.79
                           0.81
                                0.85
                                      0.67
                                           0.58
                                                  0.80
                                                        0.84
                                                             0.79
                                                                  0.66
                                                                        0.80
                                                                             0.74
                                                                                   0.73 0.67
                                                                                               0.82
                                                                                                     0.68
                                                                                                           0.77
135 2015 0.86
                0.89
                     0.96 0.77
                                0.79
                                      0.81 0.74
                                                  0.82
                                                        0.84 1.08
                                                                  1.06
                                                                        1.16
                                                                             0.90
                                                                                   0.87
                                                                                       0.85
                                                                                               0.84
                                                                                                     0.79
                                                                                                           0.99
136 2016 1.17
                1.37 1.36 1.12
                                0.95
                                      0.81 0.84
                                                  1.01
                                                        0.91 0.87
                                                                  0.90
                                                                        0.85
                                                                             1.01
                                                                                   1.04 1.23
                                                                                               1.14
                                                                                                     0.89
                                                                                                          0.90
137 2017 1.03 1.14 1.16 0.93
                                      0.72 0.82
                                0.90
                                                 0.86
                                                        0.79 0.90
                                                                  0.88
                                                                        0.94 0.92 0.91 1.01
                                                                                               1.00
                                                                                                     0.80
                                                                                                          0.86
138 2018 0.82
                0.85 0.90 0.89
                                0.82
                                      0.78 0.82
                                                  0.76
                                                        0.80 1.00 0.82
                                                                        0.91
                                                                             0.85 0.85 0.87
                                                                                               0.87
                                                                                                     0.79
                                                                                                          0.88
139 2019 0.93 0.95 1.18 1.02 0.86
                                      0.92 0.94
                                                 0.93
                                                        0.92 1.02 1.02
                                                                        NaN NaN 0.97 0.93
                                                                                               1.02
                                                                                                     0.93
                                                                                                          0.99
```

Making a new table including year, temperature and extent useful_temperature_info=temperature_info[["Year","J-D"]][98:140] useful_temperature_info=useful_temperature_info.reset_index(drop=True) mean_temperature_2019=temperature_info[["Jan","Feb","Mar","Apr","May","Jun","Jul", "Aug","Sep","Oct","Nov","Dec"]][139:140].mean(1) useful_temperature_info["J-D"][41]=mean_temperature_2019 useful_temperature_info.rename(columns={"J-D":"Temperature"},inplace=True) yearly_ice_extent_info=pd.read_csv("../../documents/Machine Learning/Project/yearly_ice_extent_info.csv") extent=yearly_ice_extent_info[" extent"] useful_temperature_info["Extent"]=extent useful_temperature_info.head(50)

	Year	Temperature	Extent	28	2006	0.640000	10.794167
0	1978	0.070000	12.660000	29	2007	0.660000	10.498333
1	1979	0.160000	12.350000	30	2008	0.540000	10.990000
2	1980	0.260000	12.348333	31	2009	0.660000	10.955833
3	1981	0.320000	12.146667	32	2010	0.730000	10.734167
4	1982	0.140000	12.467500	33	2011	0.610000	10.505833
5	1983	0.310000	12.353333	34	2012	0.640000	10.420000
6	1984	0.150000	11.920000	35	2013	0.680000	10.919167
7	1985	0.110000	12.015833				
8	1986	0.180000	12.224167	36	2014	0.740000	10.812500
9	1987	0.320000	12.162727	37	2015	0.900000	10.589167
10	1988	0.380000	11.938182	38	2016	1.010000	10.175833
11	1989	0.270000	11.986667	39	2017	0.920000	10.415000
12	1990	0.450000	11.717500	40	2018	0.850000	10.378333
13	1991	0.400000	11.770000	41	2019	0.971818	10.052727
14	1992	0.220000	12.121667				
15	1993	0.230000	11.946667				
16	1994	0.310000	12.032500				
17	1995	0.450000	11.438333				
18	1996	0.330000	11.848333				
19	1997	0.460000	11.691667				
20	1998	0.610000	11.781667				
21	1999	0.390000	11.713333				
22	2000	0.390000	11.519167				
23	2001	0.540000	11.622500				
24	2002	0.630000	11.385000				
25	2003	0.620000	11.419167				
26	2004	0.540000	11.250833				
27	2005	0.680000	10.927500				

```
# Method 1: using seaborn library to plot the linear regression model
import matplotlib.pyplot as plt
import seaborn as sns
%matplotlib inline
sns.regplot(x="Temperature",y="Extent",data=useful temperature info)
plt.title("Global Temperature-Arctic Ice Extent")
plt.savefig("Global Temperature-Arctic Ice Extent.png")
plt.show()
# Plotting 3-dimensional figure for year-temperature-extent
from mpl toolkits import mplot3d
ax = plt.axes(projection='3d')
ax.plot3D(useful_temperature_info["Year"],useful_temperature_info["Temperature"],usef
ul_temperature_info["Extent"])
ax.set_xlabel("Year")
ax.set_ylabel("Temperature")
ax.set_zlabel("Extent")
ax.set_title("Year-Temperature-Extent")
plt.savefig("Year-Temperature-Extent.png")
plt.show()
# Method 2: Least Squares Estimation
m=len(range(1978,2020))
theta1=(m*(useful_temperature_info["Temperature"]*useful_temperature_info["Extent"]).s
um()-useful temperature info["Temperature"].sum()*useful temperature info["Extent"].su
m())/(m*(useful_temperature_info["Temperature"]**2).sum()-(useful_temperature_info["Te
mperature"].sum())**2)
theta0=useful_temperature_info["Extent"].mean()-theta1*useful_temperature_info["Temp
erature"].mean()
print("theta1="+str(theta1))
print("theta0="+str(theta0))
theta1=-2.6560725497955553
theta0=12.747022317796091
plt.plot(useful_temperature_info["Temperature"],theta1*useful_temperature_info["Temper
ature"]+theta0)
plt.scatter(useful_temperature_info["Temperature"],useful_temperature_info["Extent"])
plt.title("Least Squares Estimation")
plt.xlabel("Temperature")
plt.ylabel("Extent")
plt.savefig("Least Squares Estimation.png")
plt.show()
```

```
# Method 3: Gradient Descent
iters=100000 #iterating time
alpha=0.001 #Learning Rate
theta0=-1
theta1=10
loss_value=[]
for i in range(iters):
error=theta1*useful_temperature_info["Temperature"]+theta0-useful_temperature_info["
Extent"]
    cost=np.power(error,2).sum()/m
    loss_value.append(cost)
    theta0=theta0-(alpha*error.sum()/m)
    theta1=theta1-alpha*(((error*useful_temperature_info["Temperature"]).sum()/m))
print("theta1="+str(theta1))
print("theta0="+str(theta0))
theta1=-2.5351624908979553
theta0=12.685077241529278
plt.figure(1)
plt.plot(useful_temperature_info["Temperature"],theta1*useful_temperature_info["Temper
ature"]+theta0)
plt.scatter(useful_temperature_info["Temperature"],useful_temperature_info["Extent"])
plt.title("Gradient Descent")
plt.xlabel("Temperature")
plt.ylabel("Extent")
plt.savefig("Gradient Descent.png")
plt.figure(2)
plt.plot(range(iters),loss_value)
plt.title("Loss Value")
plt.xlabel("Iteration Time")
plt.ylabel("Loss Value")
plt.savefig("Loss Value.png")
plt.show()
```

3. CO₂ Concentration-Extent Code

```
# Making a new table including year, CO2 concentration and extent
import pandas as pd
import numpy as np
co2_concentration_info=pd.read_csv("../../documents/Machine
                                                               Learning/Project/CO2
Concentration Data/Yearly/co2_annmean_mlo.txt",sep='\s+')
useful_co2_concentration_info=co2_concentration_info[["year","mean"]][19:60]
useful_co2_concentration_info=useful_co2_concentration_info.reset_index(drop=True)
monthly co2 concentration info=pd.read csv("../../documents/Machine
Learning/Project/CO2 Concentration Data/Monthly/co2_mm_mlo.txt",sep='\s+')
monthly_co2_concentration_info.head(1000)
monthly_co2_concentration_info_2019=monthly_co2_concentration_info.loc[monthly_co
2_concentration_info["year"]==2019]
co2 concentration annual mean 2019=monthly co2 concentration info 2019["average
e"].mean()
ind=len(useful_co2_concentration_info)
useful_co2_concentration_info.loc[ind]=[2019,co2_concentration_annual_mean_2019]
yearly_ice_extent_info=pd.read_csv("../../documents/Machine
Learning/Project/yearly_ice_extent_info.csv")
extent=yearly_ice_extent_info[" extent"]
useful_co2_concentration_info["extent"]=extent
useful co2 concentration info.rename(columns={"mean":"CO2
concentration"},inplace=True)
year=useful_co2_concentration_info["year"].astype("int")
useful_co2_concentration_info["year"]=year
useful_co2_concentration_info.head(50)
```

	year	CO2 concentration	extent
0	1978	335.40	12.660000
1	1979	336.84	12.350000
2	1980	338.75	12.348333
3	1981	340.11	12.146667
4	1982	341.45	12.467500
5	1983	343.05	12.353333
6	1984	344.65	11.920000
7	1985	346.12	12.015833
8	1986	347.42	12.224167
9	1987	349.19	12.162727
10	1988	351.57	11.938182
11	1989	353.12	11.986667
12	1990	354.39	11.717500
13	1991	355.61	11.770000
14	1992	356.45	12.121667
15	1993	357.10	11.946667
16	1994	358.83	12.032500
17	1995	360.82	11.438333
18	1996	362.61	11.848333
19	1997	363.73	11.691667
20	1998	366.70	11.781667
21	1999	368.38	11.713333
22	2000	369.55	11.519167
23	2001	371.14	11.622500
24	2002	373.28	11.385000
25	2003	375.80	11.419167
26	2004	377.52	11.250833
27	2005	379.80	10.927500
28	2006	381.90	10.794167

29	2007	383.79	10.498333
30	2008	385.60	10.990000
31	2009	387.43	10.955833
32	2010	389.90	10.734167
33	2011	391.65	10.505833
34	2012	393.85	10.420000
35	2013	396.52	10.919167
36	2014	398.65	10.812500
37	2015	400.83	10.589167
38	2016	404.24	10.175833
39	2017	406.55	10.415000
40	2018	408.52	10.378333
41	2019	411.41	10.052727

```
# Method 1: using seaborn library to plot the linear regression model import matplotlib.pyplot as plt import seaborn as sns
%matplotlib inline
sns.regplot(x="CO2 concentration",y="extent",data=useful_co2_concentration_info)
plt.title("Global CO2 concentration-Arctic Ice Extent")
plt.savefig("Global CO2 concentration-Arctic Ice Extent.png")
plt.show()
```

Plotting 3-dimensional figure for year-CO2 Concentration-extent(not shown in the paper)

from mpl_toolkits import mplot3d

ax = plt.axes(projection='3d')

 $ax.plot3D (useful_co2_concentration_info["year"], useful_co2_concentration_info["CO2 concentration"], useful_co2_concentration_info["extent"])\\$

ax.set_xlabel("Year")

ax.set_ylabel("CO2 concentration")

plt.yticks(rotation=-20)

ax.set_zlabel("Extent")

ax.set_title("Year-CO2 concentration-Extent")

plt.savefig("Year-CO2 concentration-Extent.png")

```
plt.show()
# Method 2: Least Squares Estimation
m=len(range(1978,2020))
theta1=(m*(useful_co2_concentration_info["CO2
concentration"]*useful_co2_concentration_info["extent"]).sum()-useful_co2_concentratio
n_info["CO2
concentration"].sum()*useful_co2_concentration_info["extent"].sum())/(m*(useful_co2_co
                         concentration"]**2).sum()-(useful_co2_concentration_info["CO2
ncentration_info["CO2
concentration"].sum())**2)
theta0=useful_co2_concentration_info["extent"].mean()-theta1*useful_co2_concentration
info["CO2 concentration"].mean()
print("theta1="+str(theta1))
print("theta0="+str(theta0))
theta1=-0.03098790234076758
theta0=22.903318207084066
plt.plot(useful_co2_concentration_info["CO2
concentration"],theta1*useful_co2_concentration_info["CO2 concentration"]+theta0)
plt.scatter(useful co2 concentration info["CO2
concentration"],useful_co2_concentration_info["extent"])
plt.title("Least Squares Estimation")
plt.xlabel("CO2 concentration")
plt.ylabel("Extent")
plt.savefig("Least Squares Estimation.png")
plt.show()
# Method 3: Gradient Descent
iters=10000 #iterating time
alpha=0.01 #Learning Rate
theta0=1
theta1=1
loss_value=∏
def normalization(X):
    minVal=X.min()
    maxVal=X.max()
    diff=maxVal-minVal
    if diff!= 0:
        X = (X-minVal)/diff
    else:
        X=0
    return X,diff,minVal
[X,diffx,minValx]=normalization(useful_co2_concentration_info["CO2 concentration"])
```

```
[Y,diffy,minValy]=normalization(useful_co2_concentration_info["extent"])
for i in range(iters):
    error=theta1*X+theta0-Y
    cost=np.power(error,2).sum()/m
    loss_value.append(cost)
    theta0=theta0-(alpha*error.sum()/m)
    theta1=theta1-alpha*(((error*X).sum()/m))
plt.figure(1)
plt.plot(X,theta1*X+theta0)
plt.scatter(X,Y)
plt.figure(2)
plt.plot(range(iters),loss_value)
plt.title("Loss Value")
plt.xlabel("Iteration Time")
plt.ylabel("Loss Value")
plt.savefig("Loss Value.png")
plt.show()
# Revertion of parameters and plotting figures of linear regression model.
theta1=theta1*diffy/diffx
theta0=theta0*diffy+minValy-theta1*minValx
print("theta1="+str(theta1))
print("theta0="+str(theta0))
plt.plot(useful co2 concentration info["CO2
concentration"],theta1*useful_co2_concentration_info["CO2 concentration"]+theta0)
plt.scatter(useful_co2_concentration_info["CO2
concentration"],useful_co2_concentration_info["extent"])
plt.title("Gradient Descent")
plt.xlabel("CO2 concentration")
plt.ylabel("Extent")
plt.savefig("Gradient Descent.png")
plt.show()
theta1=-0.030933992859181542
theta0=22.883261295455938
```