

Contents

- 1. DRAM 총수요 예측
- 2. 영국 COVID-19 & 미국·한국 HIV/AIDS 예측
- 3. 영화 흥행 예측
- 4. R Shiny App

1. 256K-DRAM 분기별 선적자료에 대한 시계열 도표

1982년부터 1995년까지의 DRAM의 분기별 판매 수량이다.

1988년도에 가장 수요가 많았으며 peak 이후로는 계속 감소하는 패턴을 보이고 있다.

2. Bass, Logistic, Gumbel 모델을 이용하여 OLS (m, p, q) 추정

	Bass	Logistic	Gumbel
n	$(\widehat{m},\widehat{p},\widehat{q})$	$(\widehat{m},\widehat{q})$	$(\widehat{m},\widehat{q})$
15	(892463, 0.00067, 0.681)	(881245.6, 0.688)	(5890455, 0.1487)
15	상대오차 = -80.82	상대오차 = -81.06045	상대오차 = 26.59649
20	(4147325, 0.00497, 0.2297)	(4049601, 0.2512)	(5007992, 0.127)
30	상대오차 = -10.866	상대오차 = -12.96677	상대오차 = 7.630766
51	(4621533, 0.00583, 0.19418) 상대오차 = -0.675	(4606018, 0.2108) 상대오차 = -1.008375	(4740560, 0.1362) 상대오차 = 1.88317

많은 자료를 이용할수록 총 수요량 값과 비슷하게 추정한 것을 확인할 수 있다.

3. MSE, Q-Q plot 등을 이용하여 최적 예측모형 선택

3. MSE, Q-Q plot 등을 이용하여 최적 예측모형 선택

3. MSE, Q-Q plot 등을 이용하여 최적 예측모형 선택

OLS 방법과 마찬가지로 n 이 클수록 상대오차가 작은 것을 확인할 수 있다. Q-Q plot을 살펴보면 Gumbel 분포를 가정하였을 경우 가장 직선 형태에 가깝다.

4. 1M-DRAM 전체자료 (n=40)에 대해 예측한 m값 비교

Q-Q Plot을 살펴보면, Gumbel 모형에서 가장 직선을 잘 따르는 것을 확인할 수 있다.

1. 일별 Covid-19 사망자수 S(t), 누적사망자수 Y(t)에 대한 시계열 도표

5월의 사망자 수가 가장 컸고 그 이후로는 감소하는 경향을 보인다.

2. 모수 (p, q, m) 추정, m값의 상대 오차 계산 & 최적 모형 선택

N	Bass (m,p,q)	상대오차
20	2.778e+32, 3.78e+28, 3.78e+28	inf
30	1.239e+04, 3.539e-04, 0.2726	-70
50	2.724e+04, 2.371e-03, 0.1466	-34

Ν	Logisitc(m,q) ; p=0	상대오차
20	-598.83, 0.204	-101.443
30	12065.71, 0.277	-70.925
50	26656.39, 0.158	-35.766

N	Gumbel(m,q); p=0	상대오차
20	4.0751, -0.0749	-99.99
30	135492.3, 0.0529	226.495
50	33872.14, 0.0776	-18.378

상대오차의 절대값이 가장 작은 Gumbel (N=50) Model이 가장 좋은 모델이다.

3. m 추정값의 정확도 비교, 각 방법의 장단점 기술

Gumbel (N=50) 모델의 Q-Q Plot을 그렸을 때, M값이 너무 작아 gumbel : -log(-log(ur))로 하면, 114개의 데이터가 누락된다는 단점이 있다.

4. 이탈리아 Covid-19의 최적 예측모형 찾기 & 정확도 비교

최초 n= 20, 30, 50일 자료 이용

N	Bass (m,p,q)	상대오차
20	12269.48, 0.005, 0.22	inf
30	19930.28, 0.005, 0.16	-65
50	28697.56, 0.0071, 0.092	-46

N	Logisitc (m,q) ; p=0	상대오차
20	10962.23, 0.257	-68.972
30	18815.09, 0.186	-46.745
50	27479.92, 0.118	-22.219

N	Gumbel (m,q) ; p=0	상대오차
20	23567.10, 0.086	-33.294
30	26598.35, 0.082	-24.714
50	30556.22, 0.069	-13.512

상대오차의 절대값이 가장 작은 Gumbel (N=50) Model이 가장 좋은 모델이다.

미국 분기별 HIV/AIDS-감염자 자료 (1981-1997)

1. 분기별 HIV/AIDS 감염자자료 S(t)에 대한 시계열 도표

t가 45-47일 때, 즉 1992년도 신규 에이즈 감염자수가 2만명을 넘었고, 1992년 2분기(t=46)에 최고점에 도달했다. 그 후부터는 감염자수가 현저하게 감소하는 추세임을 볼 수 있다.

미국 분기별 HIV/AIDS-감염자 자료 (1981-1997)

1. 분기별 HIV/AIDS 감염자자료 S(t)에 대한 시계열 도표

전반적으로 매년 각 분기별 신규 감염자수 비율은 균일하다. 즉 HIV/AIDS 감염자는 분기에 관계없이 비슷하게 비율로 발생한다.

미국 분기별 HIV/AIDS-감염자 자료 (1981-1997)

2. 모수 (p, q, m) 추정, m값의 상대 오차 계산 & 최적 모형 선택

n	Bass	Logistic	Gumbel
n	$(\widehat{m}, \widehat{p}, \widehat{q})$	$(\widehat{m},\widehat{q})$	$(\widehat{m},\widehat{q})$
20	(116137, 0.00191, 0.214)	(88572, 0.2456)	(784235, 0.0503)
20	상대오차 = -90.923	상대오차 = -93.077	상대오차 = -38.705
40	(450452, 0.002, 0.12)	(403336, 0.1366)	(886444, 0.0461)
40	상대오차 = -64.793	상대오차 = -68.476	상대오차 = -30.716
45	(786740, 0.001525, 0.0965)	(773275, 0.1033)	(1000860, 0.0483)
65	상대오차 = -38.509	상대오차 = -39.562	상대오차 = -21.774

상대오차가 가장 작은 Gumbel 모형이 가장 타당한 모형이라고 할 수 있다. 또한 세 모형 다 n값이 커질수록 상대오차가 감소함을 볼 수 있다.

1. 연도별 HIV/AIDS 감염자자료 S(t)에 대한 시계열 도표

국내 HIV 감염인의 숫자는 2000년까지는 완만하게 증가하다가 그 이후부터 가파르게 증가하는 추세를 보인다. 2015년부터는 증가추세가 약화된 것으로 보인다.

2. (dlnYt, Yt), (dlnYt, InYt) 산점도 & OLS (m,q) 추정

각 산점도에서 선형성을 찾기 힘들었기 때문에 dlny(t)와 y(t)를 직접적으로 이용하는 식이 아닌, s(t)와 y(t)를 이용하는 식을 사용해서 회귀 직선을 추정하였다.

	Regression	Adj R-squared	(q, m)
Logistic	$S(t) = 0.165y(t-1) - 5.6e-6 y(t-1)^2$	0.9855	(0.165, 29400)
Gumbel	S(t) = 0.66y(t-1) - 0.06y(t) Iny(t-1)	0.9928	(0.06, 54871)

Adjusted R-squared 값이 더 높은 Gumbel 모델이 최적 모델이다.

3. OLS m으로 그린 Logistic 및 Gumbel Q-Q plot & (μ,σ) 추정

Q-Q Plot의 Adjusted R-squared를 비교했을 때, Gumbel분포의 값이 더 높다. 즉, Gumbel 분포가 1985년부터 2009년까지의 데이터를 더 잘 설명한다고 할 수 있다.

4. S(t)의 예측값을 추정(1985~2040년) & 의미 설명

Logistic 분포로 구한 예측 값은 약 2010년에 최댓값을 기록하고 점점 감소함을 볼 수 있다. 이를 실제 관측 값과 비교해보면, logistic 분포는 S(t) 값을 예측하기에 적절하지 않음을 알 수 있다.

4. S(t)의 예측값을 추정(1985~2040년) & 의미 설명

Gumbel 분포로 구한 예측 값은 약 2020년 최댓값을 기록하고 그 이후 점점 감소하는 경향을 보인다. 실제 값과 일치하는 경향을 보이는 Gumbel 분포가 적절한 분포임을 확인할 수 있다.

1. 일별 관객수S(t) 및 누적 관객수Y(t) 시계열 도표

엑시트

약 2019년 9월을 기점으로 증가하지 않았다.

영화 흥행 예측

1. 일별 관객수S(t) 및 누적 관객수Y(t) 시계열 도표

알라딘

약 2019년 8월을 기점으로 증가하지 않았다.

2. m값의 상대 오차 계산 & 최적 모형 선택

개봉 후 1주, 2주 및 4주 간의 흥행 자료를 이용

엑시트

총 관객수 추정 (실제 m : 9426161)					
bass logisic gumbel Exponent					
Week1	15303	15071	15264	21640	
Week2 2355667 2297368 2648178 -275878					
Week4	6794898	6640789	7073915	-5423895	

상대오차					
bass logisic gumbel Exponent					
Week1	-99.84	-99.84	-99.84	-99.77	
Week2	-75.01	-75.63	-71.91	-102.93	
Week4	-27.91	-29.55	-24.95	-157.54	

Gumbel 모형의 성능이 가장 뛰어나고 Exponential 모형으로 추정한 m의 상대오차의 절대값이 가장 크다.

2. m값의 상대 오차 계산 & 최적 모형 선택

개봉 후 1주, 2주 및 4주 간의 흥행 자료를 이용

알라딘

총 관객수 추정 (실제 m : 12723775)					
bass logisic gumbel Exponent					
Week1	562974	-20401			
Week2 1528417 1487495 1640016 -675373					
Week4	8088579	5704853	7697641	-1775874	

상대오차				
	bass	logisic	gumbel	Exponent
Week1	-97.08	-97.31	-95.58	-100.16
Week2	-87.99	-88.31	-87.11	-105.31
Week4	-36.43	-55.16	-39.50	-113.96

Bass 모형의 성능이 가장 뛰어나고 Exponential 모형으로 추정한 m의 상대오차의 절대값이 가장 크다.

3. 실제 총 관객수 m을 이용하여 Q-Q plot 작성

개봉 후 1주, 2주 및 4주 간의 흥행 자료를 이용

엑시트

Q-Q plot을 그려본 결과 엑시트의 경우 Gumbel과 Exponential 모형이 가장 적절하다.

영화 흥행 예측

3. 실제 총 관객수 m을 이용하여 Q-Q plot 작성

개봉 후 1주, 2주 및 4주 간의 흥행 자료를 이용

알라딘

Q-Q plot을 그려본 결과 알라딘의 경우 Gumbel 모형이 가장 적절하다.

