3.2.4. Свободные колебания в электрическом контуре.

Баранов Михаил

Цель работы

Исследование свободных колебаний в электрическом контуре.

В работе используются

Генератор импульсов, электронное реле, магазин сопротивлений, магазин емкостей, катушка индуктивности, электронный осциллограф, универсальный измерительный мост.

Теория

Свободные колебания

Рассмотрим электрический контур, состоящий из последовательно соединённых конденстора C, катушки индуктивности L и резистора R. Обозначим разность потенциалов на конденсаторе U_C , а ток, текущий в контуре, через I. Второе првило Кирхгофа:

$$L\frac{d^2I}{dt^2} + R\frac{dI}{dt} + \frac{I}{C} = 0. ag{1}$$

Вводя обозначения $\gamma=\frac{R}{2L},\,\omega_0^2=\frac{1}{LC},$ получим уравнение

$$\ddot{I} + 2\gamma \dot{I} + \omega_0^2 I = 0. \tag{2}$$

Его решение в общем виде:

$$I = -\frac{U_0}{L\kappa} e^{-\gamma t} \operatorname{sh}(\kappa t), \tag{3}$$

где $\kappa = \sqrt{\gamma^2 - \omega_0^2}, \ U_0 = U_C$ – начальное напряжение на конденсаторе.

Затухающие колебания

В случае, когда $\gamma < \omega_0$, имеем $\kappa = i\omega$, где $\omega = \sqrt{\omega_0^2 - \gamma^2}$ – частоты свободных (собственных) колебаний. Тогда ток

$$I = -\frac{U_0}{L\omega}e^{-\gamma t}\sin(\omega t) \tag{4}$$

затухает и имеет колебательный характер. Величина γ определяет затухание колебаний: $\gamma = \frac{1}{\tau}$, где τ – время затухание амплитуды в e раз. Формулы для наряжение на кондесаторе и тока в цепи можно переписать иначе:

$$U_C = U_0 \frac{\omega_0}{\omega} e^{-\gamma t} \cos(\omega t - \theta),$$

$$I = -\frac{U_0}{L} e^{-\gamma t} \cos(\omega t - \theta).$$
(5)

Апериодические колебания

В случае $\gamma > \omega_0$, формулы для тока и напряжения на конденсаторе имеют следующий вид:

$$I = -\frac{U_0}{L\kappa}e^{-\gamma t}\operatorname{sh}(\kappa t),$$

$$U_C = U_0 e^{-\gamma t} \left(\frac{\gamma}{\kappa} \operatorname{sh}(\kappa t) + \operatorname{ch}(\kappa t) \right).$$

Процесс в этом случае не является колебательным, его называют апериодическим. Режим, соответствующий $\gamma = \omega_0$, называются *критическим*. В этом случае предельный переход $\omega \to 0$ в (5) даст

$$I = -\frac{U_0}{L}te^{-\gamma t},$$

$$U_C = U_0 e^{-\gamma t} (1 + \gamma t).$$

Сопротивление в этом случае

$$R_{\rm \kappa p} = 2\sqrt{\frac{L}{C}} \tag{6}$$

называется *критическим сопротивлением* контура. *Добротность* контура по определению

$$Q = 2\pi \frac{W}{\Delta W},$$

где W – запасённая энергия, ΔW – потери за период. Тогда

$$Q = 2\pi \frac{CU_0^2/2 \cdot e^{-2\gamma t}}{CU_0^2/2 \cdot (e^{-2\gamma t} - e^{-2\gamma (T+t)})} = \frac{\pi}{\gamma T} = \frac{1}{R} \sqrt{\frac{L}{C}}.$$

Логарифмическим декрементом затухания называются число

$$\Theta = \ln \frac{U_k}{U_{k+1}} = \ln e^{\gamma T} = \gamma T$$

или

$$\Theta = \frac{1}{n} \ln \frac{U_k}{U_{k+n}}.$$

Установка

Рис. 1: Схема установки

На рисунке приведена схема для исследования свободных колебаний в контуре, содержащем постоянную индуктивность L и переменные ёмкость C и сопротивление R. Колебания наблюдаются на экране осциллографа.

Для периодического возбуждения колебаний в контуре используется генератор импульсов Г5-54. С выхода генератора по коаксиальному кабелю импульсы поступают на колебательный контур через электронное реле, смонтированное в отдельном блоке (или на выходе генератора). Реле содержит тиристор D и ограничительный резистор R_1 .

Импульсы заряжают конденсатор C. После каждого импульса генератор отключается от колебательного контура, и в контуре возникают свободные затухающие колебания. Входное сопротивление осциллографа велико ($\approx 1~\mathrm{MOm}$), так что его влиянием на контур можно пренебречь. Для получения устойчивой картины затухающих колебаний используется режим ждущей развёртки с синхронизацией внешними импульсами, поступающими с выхода «синхроимпульсы» генератора.

Ход работы

Прежде всего измерим индуктивность L и сопротивление катушки R_L в зависимости от частоты

ν , Гц	L , м Γ н	R_L , Om
50	200,4	11,1
1000	200,1	18,8
5000	200,4	41,2

Таблица 1: Некоторые параметры катушки индуктивности

В итоге мы получаем, что $L = 200 \pm 0, 2$ мГн.

Измерение периодов свободных колебаний

Установим на магазине сопротивлений R=0 Ом и C=0,02 мкФ. Подобрав частоту развертки получим изображение наших колебаний на осциллографе. Из этого убедимся, что частота повторений, которую мы установили на генераторе ($\nu_0=100~\Gamma$ ц) будет равна частоте повторения импульсов.

Рис. 2: Колебания в контуре

Теперь изменяя ёмкость в диапазоне 0,02-0,09 мк Φ проведем измерения периодов свободных колебаний и сравним их с теоретическими данными по формуле

$$T = 2\pi\sqrt{LC}$$

O &	,		A 7	T	T	
С, нФ	t, MC	σ_t , MC	N периодов	T_{prac} , MC	T_{theor} , MC	σ_T , MC
20	5,0	0,3	12	0,42	0,40	0,03
25	5,0	0,3	11	0,45	0,44	0,03
30	5,0	0,3	10	0,50	0,49	0,03
35	5,0	0,3	9,25	0,54	0,53	0,03
40	5,0	0,3	8,75	0,57	0,56	0,03
45	5,0	0,3	8,25	0,61	0,60	0,04
50	5,0	0,3	7,75	0,65	0,63	0,04
55	5,0	0,3	7,5	0,67	0,66	0,04
60	5,0	0,3	7,25	0,69	0,69	0,04
70	5,0	0,3	6,5	0,77	0,74	0,05

Таблица 2: Таблица данных измерения периода свободных колебаний и сравнение с теорией

Видим, что теория очень хорошо сходится с экспериментом.

Измерение критического сопротивления и декремента затухания

Для начала рассчитаем емкость, при которой частота собственных колебаний контура будет равна $\nu_0=5$ к Γ ц.

$$C = \frac{1}{4\pi^2 \nu_0^2 L} \approx 5 \mathrm{H}\Phi$$

И для значений L и C рассчитаем R_{crit}

$$R_{crit}=2\pi\sqrt{rac{L}{C}}pprox12,6$$
кОм

Для этих значений L и C рассчитаем декремент затухания для каждого сопротивления из интервала $(0, 1-0, 3)R_{crit}$. Из этих данных по формуле

$$R_{crit} = R_{\Sigma} \sqrt{\left[\frac{2\pi}{\theta}\right]^2 + 1}$$

находим R_{crit} запишем все в таблицу.

R, Ом	U_1 , дел	σ_{U_1} , дел	U_2 , дел	σ_{U_2} , дел	θ	$\sigma_{ heta}$	R_{crit} , Om	$\sigma_{R_{crit}}$, Om
1200	4	0,2	2,1	0,2	0,64	0,07	11800	1000
1500	4	0,2	1,8	0,2	0,80	0,10	11900	1300
1800	4	0,2	1,6	0,2	0,92	0,12	12500	1600
2100	4	0,2	1,3	0,2	1,1	0,2	11900	1400
2400	4	0,2	1,1	0,2	1,3	0,2	11900	1300
2700	4	0,2	1	0,2	1,4	0,3	12500	1000
3000	4	0,2	0,8	0,2	1,6	0,4	12000	1300
3300	4	0,2	0,7	0,2	1,7	0,5	12300	1600

Таблица 3: Таблица измерения R_{crit}

В итоге мы получаем, что $R_{crit} = (12, 1 \pm 1, 8)$ кОм.

Так же мы можем получить R_{crit} просто подбором, добиваясь подобной картины

Рис. 3: Затухание колебаний

Подбирая мы получаем, что $R_{crit} \approx 12$ кОм.

Свободные колебания на фазовой плоскости

Рассмотрим свободные колебания на фазовой плоскости, для этого подключим место соединения катушки индуктивности и магазина сопротивлений к выходу X и включим на осциллографе канал X-Y. В итоге мы получаем картинку на экране как на рисунке ниже.

Рис. 4: Фазовая диаграмма для свободных колебаний

Для фазовой диаграммы для двух значений посчитаем так же декремент затухания

R, Om	U_1 , дел	U_2 , дел	θ	$\sigma_{ heta}$
1800	4,1	1,6	0,94	0,15
3000	3	0,5	1,8	0,2

Таблица 4: Декремент затухания для фазовой диаграммы

Видим, что мы получили такой же декремент затухания как и при его подсчете из графика колебаний.

Добротность свободных колебаний в контуре

Добротность можно найти по формуле

$$Q = \frac{\pi}{\theta}$$

Найдем ее для $R_{max} = 3$ кОм и для $R_{min} = 1,8$ кОм из графика и фазовой диаграммы. Итоговые результаты запишем в таблицу.

Так же добротность можно найти и из теоретических соображений по формуле

$$Q = \frac{1}{R} \sqrt{\frac{L}{C}}$$

Результаты так же занесем в таблицу, и в итоге мы получаем эту таблицу со всеми данными из данного эксперимента, по которой мы можем сравнить все полученные значения

	L_{coil} , м Γ н	R_{crit} , кОм		Q			
	L_{coil} , MI II	Teop.	Подбор	Граф.	Teop.	Граф.	Спираль
R_{max}	$-200 \pm 0, 2$	12,6	12	$12,5 \pm 1,8$	3,5	$3, 4 \pm 0, 4$	$3, 3 \pm 0, 5$
R_{min}				$12,0 \pm 1,8$	2,1	$1,9 \pm 0,5$	$1,75 \pm 0,2$

Таблица 5: Итоговые результаты эксперимента

Вывод

Как видно из таблицы 5, наилучший способ измерения добротности — с помощью графика, потому что получаются наиболее близкие значения с меньшими погрешностями. Так же из графика видно, что R_{crit} лучше измеряется при более высоком сопротивлении в контуре.

Литература

- 1. **Лабораторный практикум по общей физике:** Учебное пособие. В трех томах. Т. 2. Электричество и магнетизм /Гладун А.Д., Александров Д.А., Берулёва Н.С. и др.; Под ред. А.Д. Гладуна М.: МФТИ, 2007. 280 с.
- 2. **Дополнительное описание лабораторной работы 3.2.4**: Свободные колебания в электрическом контуре; Под ред. МФТИ, 2018 г. 4 с.