סיבוכיות- תרגול 9

סיבוכיות מקום

נרצה למדוד את המקום הדרוש על מנת לבצע חישוב כלשהו. מכיוון שנעסוק גם בסיבוכיות מקום תת-לינארי באורך הקלט, נרצה להפריד בין המקום הנדרש לאחסון את הקלט/פלט, לבין המקום הנדרש לביצוע החישובים. לשם כך נעסוק במ"ט בעלת 3 סרטים:

- .1) סרט קלט- קריאה בלבד
- 2) סרט פלט- כתיבה בלבד.
- . סרט עבודה- קריאה וכתיבה (3

משתמשת בלכל M מ"ט דטר'. נאמר כי M בעלת סיבוכיות מקום $\mathbb{N} \to \mathbb{N}$, אם לכל M משתמשת בלכל $S:\mathbb{N} \to \mathbb{N}$ משתמשת בלכל היותר S(n) תאים מסרט העבודה עבור קלטים באורך

מקום מ"ט דטר' בעלת סיבוכיות מקום (אם קיימת מ"ט דטר' בעלת סיבוכיות מקום בערה: נאמר כי בעית הכרעה כלשהי שייכת למחלקה DSPACE(s) אם קיימת מ"ט דטר' בעלת סיבוכיות מקום Oig(s(n)ig)

משפטים שראינו:

- $.DSPACE(s(n)) \subseteq DTIME(n \cdot 2^{O(s(n))})$ (1
- $.NSPACE(s(n)) \subseteq DSPACE(s(n)^2)$, $s(n) \ge \log n$ ולכל , $NL \subseteq DSPACE((\log n)^2)$ (2 .PSPACE = NPSPACE
 - .NSPACEig(s(n)ig) = coNSPACEig(s(n)ig) , $s(n) \geq \log n$ ולכל, NL = coNL (3
 - $.PH \subseteq PSPACE \subseteq EXP$ (4

משפט היררכית המקום

לכל שתי פונקציות $s_1(n)=oig(s_2(n)ig)$ ו- $s_1(n)\geq \log n$ בר, כך ש- $s_1,s_2:\mathbb{N}\to\mathbb{N}$ מתקיים כי $S_1,s_2:\mathbb{N}\to\mathbb{N}$ מוכל ממש).

ע"י L נגדיר את השפה L נגדיר את בריך להראות שפה L המקיימת בריך להראות שפה L המקיימת בריעה אותה. נרצה ש- M_L תקיים את התכונות הבאות:

- $Oig(s_2(n)ig)$ סיבוכיות המקום של (1
- $M_L(w) \neq M(w)$ עבורו w עבורו לכל קלט, קיים קלט שעוצרת לכל מ"ט שבורו מקום $O(s_1(n))$ שעוצרת לכל מ"ט M

2 אם נצליח לבנות $L\in DSPACE(s_2)$, ומתכונה 1 נקבל כי $L=\{w\mid M_L(w)=1\}$, ומתכונה 2 נקבל כי $L\neq DSPACE(s_1)$. נקבל כי $L\neq DSPACE(s_1)$

:נגדיר את M_L באופן הבא

$:M_{I}(w)$

- . בדוק ש-w מהצורה (M) (M) (M) בדוק ש-w מהצורה w- בחה.
- $s_2(|w|)$ -סמלץ את M(w) למשך $2^{s_2(|w|)}$ צעדים. אם M לא עצרה, או M ניסתה להשתמש ביותר מ-(2 מקום- דחה.
 - M(w)- החזר תשובה הפוכה מ

ברור כי M_L עוצרת לכל קלט. נראה כי התכונות לעיל מתקיימות ובכך נסיים את ההוכחה:

- שלב 1 ניתן לביצוע במקום לוגריתמי (נניח כי אם $\langle M \rangle$ אינו תיאור חוקי של מ"ט, נדחה בניסיון לסמלץ את 10g $2^{s_2(|w|)}=s_2(|w|)$ בשלב 2, לצורך ספירת הצעדים מספיק לשמור מונה בגודל (M(w) בשלת סיבוכיות מקום $S_2(|w|)$ בעלת סיבוכיות מקום מספיק להקצות $S_2(|w|)$ תאים על סרט העבודה. סה"כ S_2 .

 $.DSPACE(s^c) \subset DSPACE(s^{c+1})$ מתקיים $c \in \mathbb{N}$ ולכל $s(n) \geq \log n$ מסקנה: לכל פונקציה

 $.P \neq DSPACE(n)$ תרגיל: הוכיחו כי

פתרון: נניח בשלילה כי P = DSPACE(n) ונראה כי P = DSPACE(n) בסתירה למשפט היררכית נניח בשלילה כי $S \in DSPACE(n^2)$ מקום. המקום. תהי $S \in DSPACE(n^2)$. לכן קיימת מ"ט $S \in DSPACE(n^2)$

נגדיר שפה חדשה $S' = \{x10^{|x|^2} \mid x \in S\}$. נשים לב כי $S' = \{x10^{|x|^2} \mid x \in S\}$, כי בהנתן קלט y, ניתן לבדוק אם $y = x10^{|x|^2}$ הוא מהצורה $y = x10^{|x|^2}$, ואם כן, לסמלץ את את $y = x10^{|x|^2}$ ולהחזיר את תשובתה. המקום הנדרש סה"כ הוא $y = x10^{|x|^2}$.

לפי ההנחה, מתקיים כי $S'\in P$. לכן קיימת מ"ט פולינומית M' המכריעה את S'. כעת, נראה כי $S'\in P$. נבנה מ"ט M'' הפועלת באופן הבא: בהנתן קלט M'' יוצרת את המחרוזת $y=x10^{|x|^2}$ ומסמלצת את M''(y). זמן הריצה M'' פולינומי ב-|x| ולכן גם פולינומי ב-|x|. לכן |x|

. בסתירה בסתירה נקבל כי $DSPACE(n) \subseteq DSPACE(n)$. כלומר, $S \in DSPACE(n)$