ALJABAR LINEAR VEKTOR DAN MATRIKS

Semester Genap 2016-2017

Resmawan

Universitas Negeri Gorontalo

Matematika 2017

3.1.1 Vektor Geometrik

• Sejumlah besaran beserta kuantitasnya seperti *luas, panjang, massa, suhu*, dan sejenisnya dapat kita sebut sebagai **skalar**.

- Sejumlah besaran beserta kuantitasnya seperti luas, panjang, massa, suhu, dan sejenisnya dapat kita sebut sebagai skalar.
- Besaran-besaran yang disertai dengan arah disebut sebagai vektor.
 Sebagai contoh;

- Sejumlah besaran beserta kuantitasnya seperti luas, panjang, massa, suhu, dan sejenisnya dapat kita sebut sebagai skalar.
- Besaran-besaran yang disertai dengan arah disebut sebagai vektor.
 Sebagai contoh;
 - Sebuah kendaraan bergerak dengan kecepatan 70 km/jam ke arah barat. Kecepatan dan arah kendaraan ini membetuk sebuah vektor yang disebut kecepatan kendaraan.

- Sejumlah besaran beserta kuantitasnya seperti luas, panjang, massa, suhu, dan sejenisnya dapat kita sebut sebagai skalar.
- Besaran-besaran yang disertai dengan arah disebut sebagai vektor.
 Sebagai contoh;
 - Sebuah kendaraan bergerak dengan kecepatan 70 km/jam ke arah barat. Kecepatan dan arah kendaraan ini membetuk sebuah vektor yang disebut kecepatan kendaraan.
 - Contoh lain dapat kita jumpai saat sebuah meja didorong dengan gaya tertentu sehingga mengalami pergeseran tempat. Dalam kasus seperti ini dapat dijumpai sebuah vektor gaya dan pergeseran.

- Sejumlah besaran beserta kuantitasnya seperti luas, panjang, massa, suhu, dan sejenisnya dapat kita sebut sebagai skalar.
- Besaran-besaran yang disertai dengan arah disebut sebagai vektor.
 Sebagai contoh;
 - Sebuah kendaraan bergerak dengan kecepatan 70 km/jam ke arah barat. Kecepatan dan arah kendaraan ini membetuk sebuah vektor yang disebut kecepatan kendaraan.
 - Contoh lain dapat kita jumpai saat sebuah meja didorong dengan gaya tertentu sehingga mengalami pergeseran tempat. Dalam kasus seperti ini dapat dijumpai sebuah vektor gaya dan pergeseran.
- Secara **simbolis**, vektor dapat dinyatakan dengan huruf kecil tebal seperti **a**, **b**, **c**, **x**, **y**, **z**, atau huruf lainnya.

- Sejumlah besaran beserta kuantitasnya seperti *luas, panjang, massa, suhu*, dan sejenisnya dapat kita sebut sebagai **skalar**.
- Besaran-besaran yang disertai dengan arah disebut sebagai vektor.
 Sebagai contoh;
 - Sebuah kendaraan bergerak dengan kecepatan 70 km/jam ke arah barat. Kecepatan dan arah kendaraan ini membetuk sebuah vektor yang disebut kecepatan kendaraan.
 - Contoh lain dapat kita jumpai saat sebuah meja didorong dengan gaya tertentu sehingga mengalami pergeseran tempat. Dalam kasus seperti ini dapat dijumpai sebuah vektor gaya dan pergeseran.
- Secara simbolis, vektor dapat dinyatakan dengan huruf kecil tebal seperti a, b, c, x, y, z, atau huruf lainnya.
- Secara **geometrik**, sebuah vektor dapat dinyatakan sebagai ruas garis terarah atau anak panah pada bidang dan ruang.

- Sejumlah besaran beserta kuantitasnya seperti *luas, panjang, massa, suhu*, dan sejenisnya dapat kita sebut sebagai **skalar**.
- Besaran-besaran yang disertai dengan arah disebut sebagai vektor.
 Sebagai contoh;
 - Sebuah kendaraan bergerak dengan kecepatan 70 km/jam ke arah barat. Kecepatan dan arah kendaraan ini membetuk sebuah vektor yang disebut kecepatan kendaraan.
 - Contoh lain dapat kita jumpai saat sebuah meja didorong dengan gaya tertentu sehingga mengalami pergeseran tempat. Dalam kasus seperti ini dapat dijumpai sebuah vektor gaya dan pergeseran.
- Secara **simbolis**, vektor dapat dinyatakan dengan huruf kecil tebal seperti **a**, **b**, **c**, **x**, **y**, **z**, atau huruf lainnya.
- Secara geometrik, sebuah vektor dapat dinyatakan sebagai ruas garis terarah atau anak panah pada bidang dan ruang.
- Arah anak panah menunjukkan arah vektor sedangkan panjang anak panah menunjukkan besaran vektor.

3.1.1 Vektor Geometrik

Jika sebuah vektor ${\bf v}$ mempunyai titik awal A dan titik akhir B, maka vektor ${\bf v}$ dapat ditulis

$$\mathbf{v} = \overrightarrow{AB}$$

dan secara geometris direpresentasikan

Gambar 3.1.1a

3.1.1 Vektor Geometrik

 Vektor dengan arah dan ukuran sama disebut ekuivalen dan dinyatakan setara walaupun terletak pada posisi yang berbeda (Gambar 3.1.1b)

3.1.1 Vektor Geometrik

 Vektor dengan arah dan ukuran sama disebut ekuivalen dan dinyatakan setara walaupun terletak pada posisi yang berbeda (Gambar 3.1.1b)

• Dua buah vektor **v** dan **w** yang ekuivalen dinyatakan

$$v = w$$

3.1.1 Vektor Geometrik

Definition (Jumlah Vektor Metode Segitiga)

Jika \mathbf{v} dan \mathbf{w} adalah sebarang vektor yang diletakkan sedemikian sehingga titik akhir \mathbf{v} berhimpit dengan titik awal \mathbf{w} , maka **jumlah vektor** $\mathbf{v} + \mathbf{w}$ direpresentasikan dengan anak panah dari titik awal \mathbf{v} hingga titik akhir \mathbf{w} .(Gambar 3.1.1c)

Gambar 3.1.1c

3.1.1 Vektor Geometrik

Definition (Jumlah Vektor Metode Jajar Genjang)

Jika \mathbf{v} dan \mathbf{w} adalah sebarang vektor yang diletakkan sedemikian sehingga titik awalnya saling berhimpit dan masing-masing ujungnya dihubungkan dengan bayangan vektor selainnya, maka **jumlah vektor** $\mathbf{v} + \mathbf{w}$ direpresentasikan dengan anak panah yang berhimpit dengan garis diagonal jajar genjang. (Gambar 3.1.1d)

Gambar 3.1.1d

3.1.1 Vektor Geometrik

Definition (Vektor Nol dan Negatif)

Vektor nol adalah vektor dengan panjang nol dan dinyatakan sebagai **0**. Secara geometrik vektor nol dapat direpresentasikan dengan sebuah titik. Vektor nol memiliki sifat

$$\mathbf{0} + \mathbf{v} = \mathbf{v} + \mathbf{0} = \mathbf{v}$$

Jika ${\bf v}$ sebarang vektor taknol, maka $-{\bf v}$ adalah **bentuk negatif** dari ${\bf v}$ dan didefinisikan sebagai vektor yang besarnya sama dengan ${\bf v}$ namun memiliki arah yang berlawanan (Gambar 3.1.1e). Vektor ini memiliki sifat

$$\mathbf{v} + (-\mathbf{v}) = \mathbf{0}$$

3.1.1 Vektor Geometrik

Definition (Selisih Vektor)

Jika **v** dan **w** adalah dua vektor sebarang, maka **selisih v** dari **w** didefinisikan sebagai

$$\mathbf{w} - \mathbf{v} = \mathbf{w} + (-\mathbf{v})$$

(Gambar 3.1.1f)

Gambar 3.1.1f

3.1.1 Vektor Geometrik

Definition (Selisih Vektor)

Tanpa menggambar $-\mathbf{v}$, jika \mathbf{v} dan \mathbf{w} adalah sebarang vektor yang diletakkan sedemikian sehingga titik awalnya saling berhimpit, maka selisih \mathbf{v} dari \mathbf{w} adalah vektor yang terbentuk dari titik akhir \mathbf{v} ke titik akhir \mathbf{w} . (Gambar 3.1.1g).

Gambar 3.1.1g

3.1.1 Vektor Geometrik

Definition (Kelipatan Skalar)

Jika ${\bf v}$ adalah vektor taknol dan k skalar taknol, maka **hasilkali** $k{\bf v}$ didefinisikan sebagai vektor yang panjangnya |k| kali panjang ${\bf v}$.

Jika k > 0, maka arahnya sama dengan \mathbf{v} ,

Jika k < 0, maka arahnya berlawanan dengan \mathbf{v} ,

Jika $k = \mathbf{0}$ atau $\mathbf{v} = \mathbf{0}$, maka $k\mathbf{v} = \mathbf{0}$.

Vektor kv disebut kelipatan skalar dari v.

3.1.1 Vektor Geometrik

Example

Perhatikan Gambar 3.1.1h sebagai ilustrasi hubungan antara vektor \mathbf{v} dan vektor-vektor $\frac{1}{2}\mathbf{v}$, $(-1)\mathbf{v}$, $2\mathbf{v}$, dan $(-3)\mathbf{v}$.

3.1.2 Vektor pada Ruang Berdimensi Dua

3.1.2 Vektor pada Ruang 2 Dimensi

Misal ${\bf v}$ adalah sebarang vektor yang ditempatkan sedemikian rupa sehingga titik awalnya berhimpit dengan titik asal **sistem koordinat** siku-siku. Koordinat (v_1, v_2) dari titik akhir ${\bf v}$ disebut **komponen** ${\bf v}$, ditulis

$$\mathbf{v}=(v_1,v_2)$$

Perhatikan Gambar 3.1.2a

Gambar 3.1.2a

3.1.2 Vektor pada Ruang 2 Dimensi

Ekuivalen

Dua vektor ekuivalen secara geometris akan diletakkan saling berhimpit pada bidang koordinat karena mempunyai besaran dan arah yang sama. Dua vektor

$${f v}=(v_1,v_2)$$
 dan ${f w}=(w_1,w_2)$

dikatakan **akuivalen** jika dan hanya jika

$$v_1 = w_1$$
 dan $v_2 = w_2$

Penjumlahan dan Perkalian Skalar

Jika ${f v}=(v_1,v_2)\;$ dan ${f w}=(w_1,w_2)$ sebarang vektor dan k adalah sebarang skalar, maka

$$\mathbf{v} + \mathbf{w} = (v_1 + w_1, v_2 + w_2)$$

 $k\mathbf{v} = (kv_1, kv_2)$

Gambar 3.1.2b dan Gambar 3.1.2c

3.1.2 Vektor pada Ruang 2 Dimensi

Gambar 3.1.2b

Gambar 3.1.2c

3.1.2 Vektor pada Ruang 2 Dimensi

Example

Jika
$$\mathbf{v} = (1, -2)$$
, $\mathbf{w} = (7, 6)$, dan $k = 4$, maka

$$\mathbf{v} + \mathbf{w} = (1+7, -2+6) = (8, 4)$$

$$k\mathbf{v} = 4(1, -2) = (4, -8)$$

Pengurangan Vektor

Karena $\mathbf{v} - \mathbf{w} = \mathbf{v} + (-1)\mathbf{w}$, maka

$$\mathbf{v} - \mathbf{w} = (v_1 - w_1, v_2 - w_2)$$

Tugas anda membuktikan bahwa hubungan ini berlaku.

3.1.3 Vektor pada Ruang Berdimensi Tiga

3.1.3 Vektor pada Ruang 3 Dimensi

Misal **v** adalah sebarang vektor yang ditempatkan sedemikian sehingga titik awalnya berhimpit dengan titik asal **sistem koordinat** siku-siku. Sebagaimana pada Gambar 3.1.3a, koordinat pada titik akhir **v** disebut **komponen v**, ditulis

$$\mathbf{v}=(v_1,v_2,v_3)$$

Gambar 3.1.3a

3.1.3 Vektor pada Ruang 3 Dimensi

Ekuivalen

Dua vektor ekuivalen secara geometris akan diletakkan saling berhimpit pada bidang koordinat karena mempunyai besaran dan arah yang sama. Dua vektor

$$\mathbf{v} = (v_1, v_2, v_3)$$
 dan $\mathbf{w} = (w_1, w_2, w_3)$

dikatakan **akuivalen** jika dan hanya jika

$$v_1=w_1$$
 , $v_2=w_2$ dan $v_3=w_3$

Penjumlahan dan Perkalian Skalar

Jika $\mathbf{v}=(v_1,v_2,v_3)$ dan $\mathbf{w}=(w_1,w_2,w_3)$ sebarang vektor dan k adalah sebarang skalar, maka

$$\mathbf{v} + \mathbf{w} = (v_1 + w_1, v_2 + w_2, v_3 + w_3)$$

 $k\mathbf{v} = (kv_1, kv_2, kv_3)$

3.1.3 Vektor pada Ruang 3 Dimensi

Contoh

Gambar berikut adalah tampilan vektor (4, 5, 6) dan (-3, 2, -4) dalam ruang berdimensi 3.

3.1.4 Menentukan Komponen Vektor

3.1.4 Menentukan Komponen Vektor

Pada kondisi tertentu, suatu vektor diletakkan sedemikian sehingga titik awalnya tidak terletak pada titik asal. Jika vektor $\overrightarrow{P_1P_2}$ memiliki titik awal $P_1(x_1,y_1)$ dan titik akhir $P_2(x_2,y_2)$, maka

$$\overrightarrow{P_1P_2} = (x_2 - x_1, y_2 - y_1)$$

Secara geometrik ditampilkan pada Gambar 3.1.4

3.1.4 Menentukan Komponen Vektor

Example

Komponen vektor ${f v}=\overrightarrow{P_1P_2}$ dengan titik awal $P_1(2,-1,4)$ dan titik akhir $P_2(7,5,-8)$ adalah

$$\mathbf{v} = (7,5,-8) - (2,-1,4)$$

$$= (7-2,5-(-1),-8-4)$$

$$= (5,6,-12)$$

Problem (Latihan 3.1)

- ① Buatlah sketsa dari vektor berikut dimana titik awalnya terletak pada titik asal a) $\mathbf{v}_1 = (3,4,5)$ b) $\mathbf{v}_2 = (3,-4,5)$
- 2 Misal $\mathbf{u}=(-3,1,2)$, $\mathbf{v}=(4,0,-8)$ dan $\mathbf{w}=(6,-1,4)$. Tentukan komponen-komponen dari a) $\mathbf{5}(\mathbf{v}-4\mathbf{u})$ b) $(2\mathbf{u}-7\mathbf{w})-(8\mathbf{v}+\mathbf{u})$
- Misal vektor-vektor pada soal no.2. Tentukan komponen vektor \mathbf{x} yang memenuhi $2\mathbf{u} \mathbf{v} + \mathbf{x} = 7\mathbf{x} + \mathbf{w}$
- Misal vektor-vektor pada soal no.2. Tentukan skalar c_1 , c_2 dan c_3 yang memenuhi sehingga $c_1\mathbf{u}+c_2\mathbf{v}+c_3\mathbf{w}=(2,0,4)$
- **1** Tentukan vektor taknol **u** dengan titik awal P(-1,3,5) sehingga **u** searah dengan $\mathbf{v} = (6,7,3)$. Lakukan hal yang sama agar **u** berlawanan arah dengan \mathbf{v} .
- **1** Tentukan vektor taknol **u** dengan titik akhir Q(3,0,-5) sehingga **u** searah dengan **v** = (4,-2,1). Lakukan hal yang sama agar **u** berlawanan arah dengan **v**.

3.2.1 Sifat-Sifat Aritmatika Vektor

3.2.1 Sifat-Sifat Aritmatika Vektor

Theorem (Sifat-Sifat Aritmatika Vektor)

Jika \mathbf{u}, \mathbf{v} dan \mathbf{w} adalah vektor-vektor pada ruang berdimensi n dan k, l adalah sebarang skalar, maka

$$\mathbf{0} \mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$$

2
$$(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w})$$

1
$$\mathbf{u} + (-\mathbf{u}) = \mathbf{0}$$

$$(k+1)\mathbf{u} = k\mathbf{u} + l\mathbf{u}$$

$$0$$
 $1u = u$

3.2.1 Sifat-Sifat Aritmatika Vektor

Proof.

Bukti Teorema nomor 2.

Misal
$$\mathbf{u}(u_1, u_2, ..., u_n)$$
, $\mathbf{v}(v_1, v_2, ..., v_n)$, $\mathbf{w}(w_1, w_2, ..., w_n)$, maka

$$(\mathbf{u} + \mathbf{v}) + \mathbf{w} = ((u_1, u_2, ..., u_n) + (v_1, v_2, ..., v_n)) + (w_1, w_2, ..., w_n)$$

$$= (u_1 + v_1, u_2 + v_2, ..., u_n + v_n) + (w_1, w_2, ..., w_n)$$

$$= ((u_1 + v_1) + w_1, (u_2 + v_2) + w_2, ..., (u_n + v_n) + w_n)$$

$$= (u_1 + (v_1 + w_1), u_2 + (v_2 + w_2), ..., u_n + (v_n + w_n))$$

$$= (u_1, u_2, ..., u_n) + (v_1 + w_1, v_2 + w_2, ..., v_n + w_n)$$

$$= \mathbf{u} + (\mathbf{v} + \mathbf{w})$$

Bukti lain diserahkan sebagai Latihan

3.2.1 Sifat-Sifat Aritmatika Vektor

Theorem (Perkalian Skalar)

Jika \mathbf{v} adalah vektor pada ruang berdimensi n dan k adalah sebarang skalar, maka

- 0v = 0
- $(-1) \mathbf{v} = -\mathbf{v}$

Definition (Kombinasi Linear)

Jika **w** adalah vektor di R^n , maka **w** dikatakan **kombinasi linear** dari vektor-vektor $\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n$ di R^n jika dapat dinyatakan dalam bentuk

$$\mathbf{w} = k_1 \mathbf{v}_1 + k_2 \mathbf{v}_2 + \cdots + k_r \mathbf{v}_r$$

dimana $k_1, k_2, ..., k_r$ adalah skalar yang disebut **koefisien kombinasi** linear.

3.2.2 Norma dan Jarak Vektor

3.2.2 Norma dan Jarak Vektor

Misal suatu vektor sebarang \mathbf{v} . Panjang vektor \mathbf{v} disebut **norma** (norm) dari \mathbf{v} dan dinyatakan dengan $\|\mathbf{v}\|$. Berdasarkan Teorema Pythagoras, norma vektor $\mathbf{v}=(v_1,v_2)$ pada ruang 2 dimensi (Gambar 3.2.2a) adalah

$$\|\mathbf{v}\| = \sqrt{v_1^2 + u_2^2}$$

Gambar 3.2.2a

3.2.2 Norma dan Jarak Vektor

Adapun norma vektor $\mathbf{v}=(v_1,v_2,v_3)$ pada ruang 3 dimensi (Gambar 3.2.2b) mengikuti Teorema Pythagoras, yaitu

Gambar 3.2.2b

$$\|\mathbf{v}\|^2 = (OR)^2 + (RP)^2 = (OQ)^2 + (QR)^2 + (RP)^2 = v_1^2 + v_2^2 + v_3^2$$

 $\|\mathbf{v}\| = \sqrt{v_1^2 + v_2^2 + v_3^2}$

Suatu vektor dengan norma satu disebut vektor satuan.

Resmawan (UNG)

3.2.2 Norma dan Jarak Vektor

Definition (Norma Vektor di R^n)

Jika $\mathbf{v}=(v_1,v_2,...,v_n)$ adalah vektor di R^n , maka **norma** dari \mathbf{v} dinotasikan $\|\mathbf{v}\|$ dan didefinisikan mengikuti formula

$$\|\mathbf{v}\| = \sqrt{v_1^2 + v_2^2 + \dots + v_n^2}$$

Example

1 Norma dari vektor $\mathbf{v} = (-3, 2, 1)$ di \mathbb{R}^3 adalah

$$\|\mathbf{v}\| = \sqrt{(-3)^2 + 2^2 + 1^2} = \sqrt{14}$$

2 Norma dari vektor $\mathbf{v} = (2, -1, 3, -5)$ di \mathbb{R}^4 adalah

$$\|\mathbf{v}\| = \sqrt{2^2 + (-1)^2 + 3^2 + (-5)^2} = \sqrt{39}$$

3.2.2 Norma dan Jarak Vektor

Theorem

Jika $\mathbf{v} = (v_1, v_2, ..., v_n)$ adalah vektor di R^n dan k adalah sebarang skalar, maka

- ||v|| > 0
- $\|\mathbf{v}\| = 0$ jika dan hanya jika $\mathbf{v} = \mathbf{0}$
- $||k\mathbf{v}|| = |k| ||\mathbf{v}||$

Proof.

[Akan dibuktikan poin 3]

Jika $\mathbf{v} = (v_1, v_2, ..., v_n)$ maka $k\mathbf{v} = (kv_1, kv_2, ..., kv_n)$ sehingga

$$||k\mathbf{v}|| = \sqrt{(kv_1)^2 + (kv_2)^2 + \dots + (kv_n)^2} = \sqrt{(k)^2 (v_1^2 + v_2^2 + \dots + v_n^2)}$$
$$= \sqrt{(k)^2} \sqrt{(v_1^2 + v_2^2 + \dots + v_n^2)} = |k| \sqrt{(v_1^2 + v_2^2 + \dots + v_n^2)}$$

3.2.2 Norma dan Jarak Vektor

Jika $P_1(x_1, y_1, z_1)$ dan $P_2(x_2, y_2, z_2)$ adalah dua titik pada ruang berdimensi 3, maka **jarak** diantara keduanya adalah **norma** dari vektor $\overrightarrow{P_1P_2}$ (Gambar 3.2.2c)

Gambar 3.2.2c

Karena
$$\overrightarrow{P_1P_2}=(x_2-x_1,y_2-y_1,z_2-z_1)$$
, maka
$$d=\left\|\overrightarrow{P_1P_2}\right\|=\sqrt{\left(x_2-x_1\right)^2+\left(y_2-y_1\right)^2+\left(z_2-z_1\right)^2}$$

3.2.2 Norma dan Jarak Vektor

Definition (Jarak Vektor di R^n)

Jika $\mathbf{u} = (u_1, u_2, ..., u_n)$ dan $\mathbf{v} = (v_1, v_2, ..., v_n)$ adalah titik di R^n , maka **jarak** antara \mathbf{u} dan \mathbf{v} dinotasikan $d(\mathbf{u}, \mathbf{v})$ dan didefinisikan

$$d(\mathbf{u}, \mathbf{v}) = \|\mathbf{u} - \mathbf{v}\| = \sqrt{(u_1 - v_1)^2 + (u_2 - v_2)^2 + \dots + (u_n - v_n)^2}$$

Example

Jika $\mathbf{u}=(1,3,-2,7)$ dan $\mathbf{v}=(0,7,2,2)$ adalah titik di R^4 , maka jarak antara \mathbf{u} dan \mathbf{v} adalah

$$d(\mathbf{u}, \mathbf{v}) = \sqrt{(1-0)^2 + (3-7)^2 + (-2-2)^2 + (7-2)^2}$$

= $\sqrt{58}$

Problem (Latihan 3.2)

- **1** Misal $\mathbf{u} = (7, -3, 1)$, $\mathbf{v} = (9, 6, 6)$ dan $\mathbf{w} = (2, 1, -8)$. Hitunglah:
 - $\mathbf{0} \|\mathbf{u} + \mathbf{v}\|$
 - ||u|| + ||v||
 - $||-2\mathbf{u}|| + 2||\mathbf{u}||$
 - **9** $\|3\mathbf{u} 5\mathbf{v} + \mathbf{w}\|$
 - $\frac{1}{\|\mathbf{w}\|}\mathbf{w}$
- Tentukan jarak antara P₁ dan P₂ jika
 - $P_1(7, -5, 1), P_2(-7, -2, -1)$
 - $P_1(3,3,3), P_2(6,0,3)$
- **1** Misal $\mathbf{v}=(-1,2,5)$. Tentukan semua skalar k sehingga $\|k\mathbf{v}\|=4$.

3.3.1 Hasilkali Titik

3.3.1 Hasilkali Titik

Definition (Hasilkali Titik)

Jika ${\bf u}$ dan ${\bf v}$ adalah vektor-vektor pada R^2 atau R^3 dan θ adalah sudut antara ${\bf u}$ dan ${\bf v}$, maka **hasilkali titik** (hasilkali dalam euclidean) ${\bf u} \cdot {\bf v}$ didefinisikan oleh

$$\mathbf{u} \cdot \mathbf{v} = \|\mathbf{u}\| \|\mathbf{v}\| \cos \theta$$

Jika $\mathbf{u} = \mathbf{0}$ atau $\mathbf{v} = \mathbf{0}$ maka didefinisikan $\mathbf{u} \cdot \mathbf{v} = \mathbf{0}$

Berdasarkan definisi ini, jika **u** dan **v** adalah vektor-vektor taknol maka

$$\cos \theta = \frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\| \|\mathbf{v}\|}$$

3.3.1 Hasilkali Titik

Example

Temukan hasilkali titik dari vektor-vektor yang terdapat pada Gambar 3.3.1

Gambar 3.3.1

3.3.1 Hasilkali Titik

Solution

$$\mathbf{u} \cdot \mathbf{v} = \|\mathbf{u}\| \|\mathbf{v}\| \cos \theta$$

$$= \left(\sqrt{0^2 + 0^2 + 1^2}\right) \left(\sqrt{0^2 + 2^2 + 2^2}\right) \cos 45^0$$

$$= (1) \left(2\sqrt{2}\right) \left(\frac{1}{2}\sqrt{2}\right)$$

$$= 2$$

3.3.2 Bentuk Komponen Hasilkali Titik

3.3.2 Bentuk Komponen dari Hasilkali Titik

Misalkan $\mathbf{u}=(u_1,u_2,u_3)$ dan $\mathbf{v}=(v_1,v_2,v_3)$ adalah dua vektor taknol. Jika θ adalah sudut antara \mathbf{u} dan \mathbf{v} (Gambar 3.3.2), maka hukum cosinus menghasilkan

Gambar 3.3.2

$$\left\|\overrightarrow{PQ}\right\|^2 = \left\|\mathbf{u}\right\|^2 + \left\|\mathbf{v}\right\|^2 - 2\left\|\mathbf{u}\right\|\left\|\mathbf{v}\right\|\cos\theta$$

3.3.2 Bentuk Komponen dari Hasilkali Titik

Karena $\overrightarrow{PQ} = \mathbf{v} - \mathbf{u}$, maka

$$2 \|\mathbf{u}\| \|\mathbf{v}\| \cos \theta = \|\mathbf{u}\|^2 + \|\mathbf{v}\|^2 - \|\overrightarrow{PQ}\|^2$$
$$\|\mathbf{u}\| \|\mathbf{v}\| \cos \theta = \frac{1}{2} (\|\mathbf{u}\|^2 + \|\mathbf{v}\|^2 - \|\mathbf{v} - \mathbf{u}\|^2)$$

atau

$$\mathbf{u} \cdot \mathbf{v} = \frac{1}{2} \left(\|\mathbf{u}\|^2 + \|\mathbf{v}\|^2 - \|\mathbf{v} - \mathbf{u}\|^2 \right)$$

Dengan subtitusi

$$\|\mathbf{u}\|^2 = u_1^2 + u_2^2 + u_3^2, \|\mathbf{v}\|^2 = v_1^2 + v_2^2 + v_3^2$$

 $\|\mathbf{v} - \mathbf{u}\|^2 = (v_1 - u_1)^2 + (v_2 - u_2)^2 + (v_3 - u_3)^2$

diperoleh

$$\mathbf{u} \cdot \mathbf{v} = u_1 v_1 + u_2 v_2 + u_3 v_3$$

3.3.2 Bentuk Komponen dari Hasilkali Titik

Definition (Hasilkali Titik di R^n)

Jika $\mathbf{u} = (u_1, u_2, ..., u_n)$ dan $\mathbf{v} = (v_1, v_2, ..., v_n)$ adalah vektor di R^n ,maka **hasilkali titik u** dan \mathbf{v} dinotasikan $\mathbf{u} \cdot \mathbf{v}$ dan didefinisikan

$$\mathbf{u}\cdot\mathbf{v}=u_1v_1+u_2v_2+\cdots+u_nv_n$$

Example

- Gunakan definisi ini untuk menyelesaikan masalah pada contoh sebelumnya
- 2 Hitung **u** · **v** untuk vektor-vektor di R^4 :

$$\mathbf{u} = (-1, 3, 5, 7)$$
, $\mathbf{v} = (-3, -4, 1, 0)$

3.3.2 Bentuk Komponen dari Hasilkali Titik

Solution

1
$$\mathbf{u} \cdot \mathbf{v} = (0)(0) + (0)(2) + (1)(2) = 0 + 0 + 2 = 2$$

②
$$\mathbf{u} \cdot \mathbf{v} = (-1)(-3) + (3)(-4) + (5)(1) + (7)(0)$$

= $3 - 12 + 5 + 0$
= -4

Example

Misal vektor $\mathbf{u}=(2,-1,1)$ dan $\mathbf{v}=(1,1,2)$. Tentukan $\mathbf{u}\cdot\mathbf{v}$ dan sudut θ antara \mathbf{u} dan \mathbf{v} .

Penyelesaian

$$\boldsymbol{u}\cdot\boldsymbol{v}=\left(2\right)\left(1\right)+\left(-1\right)\left(1\right)+\left(1\right)\left(2\right)=3$$

$$\|\mathbf{u}\| = \sqrt{2^2 + (-1)^2 + 1^2} = \sqrt{6}$$

$$\|\mathbf{v}\| = \sqrt{1^2 + 1^2 + 2^2} = \sqrt{6}$$

$$\cos \theta = \frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\| \|\mathbf{v}\|} = \frac{3}{6} = \frac{1}{2}$$
, maka $\theta = 60^{\circ}$

3.3.2 Bentuk Komponen dari Hasilkali Titik

Theorem (Sifat sudut antara dua vektor)

Misal **u** dan **v** adalah vektor di R^2 atau R^3 , maka

$$\bullet \mathbf{v} \cdot \mathbf{v} = \|\mathbf{v}\|^2 \text{ atau } \|\mathbf{v}\| = (\mathbf{v} \cdot \mathbf{v})^{\frac{1}{2}}$$

- Jika u dan v tak nol dan θ adalah sudut diantaranya, maka
 - θ lancip jika dan hanya jika $\mathbf{u} \cdot \mathbf{v} > \mathbf{0}$
 - θ tumpul jika dan hanya jika $\mathbf{u} \cdot \mathbf{v} < \mathbf{0}$
 - θ siku-siku jika dan hanya jika $\mathbf{u} \cdot \mathbf{v} = \mathbf{0}$

Example

Jika
$$\mathbf{u}=(1,-2,3)$$
, $\mathbf{v}=(-3,4,2)$, dan $\mathbf{w}=(3,6,3)$, maka

$$\mathbf{u} \cdot \mathbf{v} = (1)(-3) + (-2)(4) + (3)(2) = -5$$

$$\mathbf{v} \cdot \mathbf{w} = (-3)(3) + (4)(6) + (2)(3) = 21$$

$$\mathbf{u} \cdot \mathbf{w} = (1)(3) + (-2)(6) + (3)(3) = 0$$

(Sudut **Tumpul**)

(Sudut **Lancip**)

3.3.3 Sifat-Sifat Hasilkali Titik

3.3.3 Sifat-Sifat Hasilkali Titik

Theorem (Sifat Hasilkali Titik)

Jika \mathbf{u} , \mathbf{v} dan \mathbf{w} adalah vektor-vektor pada R^2 atau R^3 dan k sebarang skalar, maka

- $\mathbf{0} \mathbf{u} \cdot \mathbf{v} = \mathbf{v} \cdot \mathbf{u}$
- $\mathbf{Q} \mathbf{u} \cdot (\mathbf{v} + \mathbf{w}) = \mathbf{u} \cdot \mathbf{v} + \mathbf{u} \cdot \mathbf{w}$
- $\mathbf{0} \ \mathbf{v} \cdot \mathbf{v} > 0$ jika $\mathbf{v} \neq \mathbf{0}$ dan $\mathbf{v} \cdot \mathbf{v} = 0$ jika $\mathbf{v} = \mathbf{0}$

Proof.

Akan dibuktikan poin 3, kemudian selebihnya disisakan sebagai **latihan**. Misal $\mathbf{u} = (u_1, u_2, u_3)$ dan $\mathbf{v} = (v_1, v_2, v_3)$ maka

$$k (\mathbf{u} \cdot \mathbf{v}) = k (u_1 v_1 + u_2 v_2 + u_3 v_3)$$

= $(ku_1) v_1 + (ku_2) v_2 + (ku_3) v_3 = (k\mathbf{u}) \cdot \mathbf{v}$

Problem (Latihan 3.3)

- ① Tentukan u · v
 - **1** $\mathbf{u} = (-6, -2), \ \mathbf{v} = (4, 0)$
 - **2** $\mathbf{u} = (1, -5, 4), \ \mathbf{v} = (3, 3, 3)$
 - **3** $\mathbf{u} = (-2, 2, 3), \mathbf{v} = (1, 7, -4)$
- $oldsymbol{artheta}$ Tentukan cosinus dan sudut heta antara $oldsymbol{\mathsf{u}}$ dan $oldsymbol{\mathsf{v}}$ pada soal nomor 1.
- Tentukan apakah sudut u dan v membentuk sudut lancip, tumpul, atau tegak lurus.
 - **1** $\mathbf{u} = (6, 1, 4), \ \mathbf{v} = (2, 0, -3)$
 - **2** $\mathbf{u} = (-6, 0, 4), \ \mathbf{v} = (3, 1, 6)$
 - **3** $\mathbf{u} = (0, 0, -1), \ \mathbf{v} = (1, 1, 1)$
- Jika $\mathbf{p} = (2, k)$ dan $\mathbf{q} = (3, 5)$, tentukan k sedemikian sehingga:
 - p dan q ortogonal
 - 2 Sudut antara **p** dan **q** adalah $\pi/3$
 - Sudut antara **p** dan **q** adalah $\pi/4$

3.4.1 Vektor-Vektor Ortogonal

3.4.1 Vektor-Vektor

Definition (Vektor Ortogonal)

Dua vektor taknol **u** dan **v** di R^n dikatakan **ortogonal** (saling tegak lurus) jika dan hanya jika $\mathbf{u} \cdot \mathbf{v} = \mathbf{0}$ dan dinotasikan $\mathbf{u} \perp \mathbf{v}$.

Dengan kata lain, vektor nol di R^n bersifat ortogonal dengan semua vektor di R^n .

Example

Tunjukkan bahwa vektor taknol $\mathbf{u}=(-2,3,1,4)$ dan $\mathbf{v}=(1,2,0,-1)$ saling tegak lurus di R^4 .

Penyelesaian

$$\mathbf{u} \cdot \mathbf{v} = (-2, 3, 1, 4)(1, 2, 0, -1) = (-2)(1) + (3)(2) + (1)(0) + (4)(-1)$$

= $-2 + 6 + 0 - 4$
= 0

Dengan demikian, \mathbf{u} dan \mathbf{v} ortognal di R^4

3.4.2 Proyeksi Ortogonal

 Suatu vektor u dapat dinyatakan sebagai hasil jumlah dari dua vektor yang berbeda, satu vektor sejajar dengan vektor taknol a dan vektor lainnya tegak lurus terhadap vektor a.

- Suatu vektor u dapat dinyatakan sebagai hasil jumlah dari dua vektor yang berbeda, satu vektor sejajar dengan vektor taknol a dan vektor lainnya tegak lurus terhadap vektor a.
- Jika u dan a ditempatkan sedemikian sehingga titik-titik awalnya saling berhimpit di titik Q, maka vektor u dapat diuraikan sebagai berikut (Gambar 3.4.2):

- Suatu vektor u dapat dinyatakan sebagai hasil jumlah dari dua vektor yang berbeda, satu vektor sejajar dengan vektor taknol a dan vektor lainnya tegak lurus terhadap vektor a.
- Jika u dan a ditempatkan sedemikian sehingga titik-titik awalnya saling berhimpit di titik Q, maka vektor u dapat diuraikan sebagai berikut (Gambar 3.4.2):
 - Tarik sebuah garis dari ujung u yang memotong tegak lurus pada vektor a,

- Suatu vektor u dapat dinyatakan sebagai hasil jumlah dari dua vektor yang berbeda, satu vektor sejajar dengan vektor taknol a dan vektor lainnya tegak lurus terhadap vektor a.
- Jika u dan a ditempatkan sedemikian sehingga titik-titik awalnya saling berhimpit di titik Q, maka vektor u dapat diuraikan sebagai berikut (Gambar 3.4.2):
 - Tarik sebuah garis dari ujung u yang memotong tegak lurus pada vektor a,
 - @ Buat sebuah vektor w_1 dari Q hingga ke garis tegak lurus tersebut,

- Suatu vektor u dapat dinyatakan sebagai hasil jumlah dari dua vektor yang berbeda, satu vektor sejajar dengan vektor taknol a dan vektor lainnya tegak lurus terhadap vektor a.
- Jika u dan a ditempatkan sedemikian sehingga titik-titik awalnya saling berhimpit di titik Q, maka vektor u dapat diuraikan sebagai berikut (Gambar 3.4.2):
 - Tarik sebuah garis dari ujung u yang memotong tegak lurus pada vektor a,
 - @ Buat sebuah vektor $\mathbf{w_1}$ dari Q hingga ke garis tegak lurus tersebut,
 - 4 Hitung selisih dari

$$\mathsf{w_2}{=}\,\mathsf{u}-\mathsf{w_1}$$

3.4.2 Proyeksi Ortogonal Ortogonal

Dari Gambar 3.4.2 ditunjukkan bahwa

$$\mathbf{w_1} + \mathbf{w_2} \mathbf{= w_1} + (\mathbf{u} - \mathbf{w_1}) = \mathbf{u}$$

 Vektor w₁ disebut Proyeksi Ortogonal u pada a, atau disebut Komponen vektor u disepanjang a, dinotasikan

$$\mathbf{w_1} = \textit{proj}_a \ \mathbf{u}$$

Vektor w₂ disebut komponen vektor u yang ortogonal terhadap
 a, dinotasikan

$$\mathbf{w_2} = \mathbf{u} - \textit{proj}_{\mathbf{a}} \ \mathbf{u}$$

3.4.2 Proyeksi Ortogonal Ortogonal

Theorem (Proyeksi Vektor)

Jika **u** dan **a** adalah vektor di R^n , dan jika **a** \neq **0**, maka

$$proj_{\mathbf{a}} \mathbf{u} = \frac{\mathbf{u} \cdot \mathbf{a}}{\|\mathbf{a}\|^2} \mathbf{a}$$
 (Komponen vektor \mathbf{u} sepanjang \mathbf{a})

$$\mathbf{u} - proj_{\mathbf{a}} \mathbf{u} = \mathbf{u} - \frac{\mathbf{u} \cdot \mathbf{a}}{\|\mathbf{a}\|^2} \mathbf{a}$$
 (Komponen vektor \mathbf{u} yang ortogonal terhadap \mathbf{a})

Bukti:

Diserahkan sebagai latihan.

3.4.2 Proyeksi Ortogonal Ortogonal

Example

Misal $\mathbf{u}=(2,-1,3)$ dan $\mathbf{a}=(4,-1,2)$. Carilah komponen vektor \mathbf{u} sepanjang \mathbf{a} dan komponen vektor \mathbf{u} yang tegak lurus terhadap \mathbf{a} .

Penyelesaian:

$$\begin{array}{ll} \textbf{u} \cdot \textbf{a} = & (2)(4) + (-1)(-1) + (3)(2) = 15 & \text{dar} \\ \|\textbf{a}\|^2 = & 4^2 + (-1)^2 + 2^2 = 21 \end{array}$$

Dengan demikian, komponen vektor ${\bf u}$ sepanjang ${\bf a}$ adalah

$$proj_{\mathbf{a}} \mathbf{u} = \frac{\mathbf{u} \cdot \mathbf{a}}{\|\mathbf{a}\|^2} \mathbf{a} = \frac{15}{21} (4, -1, 2) = \left(\frac{20}{7}, -\frac{5}{7}, \frac{10}{7}\right)$$

dan komponen vektor ${\bf u}$ yang tegak lurus terhadap ${\bf a}$ adalah

$$\mathbf{u} - \frac{\mathbf{u} \cdot \mathbf{a}}{\left\|\mathbf{a}\right\|^2} \ \mathbf{a} = \! (2, -1, 3) - \left(\frac{20}{7}, -\frac{5}{7}, \frac{10}{7}\right) = \left(-\frac{6}{7}, -\frac{2}{7}, \frac{11}{7}\right)$$

3.4.3 Jarak Titik dan Garis

3.4.3 Jarak Titik dan Garis

Theorem (Jarak Titik dan Garis)

• Jarak (D) titik $P_0(x_0, y_0)$ dan garis ax + by + c = 0 dalam ruang R^2 adalah

$$D = \frac{|ax_0 + by_0 + c|}{\sqrt{a^2 + b^2}}$$

② Jarak (D) titik $P_0(x_0, y_0, z_0)$ dan garis ax + by + cz + d = 0 dalam ruang R^3 adalah

$$D = \frac{|ax_0 + by_0 + cz_0 + d|}{\sqrt{a^2 + b^2 + c^2}}$$

Example

Jarak titik (1, -4, -3) dan garis 2x - 3y + 6z = -1 adalah

$$D = \frac{|2(1) - 3(-4) + 6(-3) + 1|}{\sqrt{2^2 + (-3)^2 + 6^2}} = \frac{|-3|}{7} = \frac{3}{7}$$

Problem (Latihan 3.4)

Tentukan apakah u dan v vektor ortogonal

2
$$\mathbf{u} = (3, -2, 1, 3); \mathbf{v} = (-4, 1, -3, 7)$$

Tentukan proyeksi ortogonal u pada a

1
$$\mathbf{u} = (1, -2); \mathbf{a} = (-4, -3)$$

2
$$\mathbf{u} = (3, -2, 6); \mathbf{a} = (1, 2, -7)$$

Tentukan komponen vektor u yang ortogonal terhadap a:

1
$$\mathbf{u} = (2, 1, 1, 2); \mathbf{a} = (4, -4, 2, -2)$$

2
$$\mathbf{u} = (5, 0, -3, 7); \mathbf{a} = (2, 1, -1, -1)$$

Tentukan jarak antara titik dan garis yang diberikan

$$(-3,1)$$
; $4x + 3y + 4 = 0$

$$(3,1,-2)$$
; $x + 2y - 2z = 4$

3.5 Hasilkali Silang

3.5.1 Hasilkali Silang Vektor

3.5.1 Hasilkali Silang Vektor

Definition (Hasilkali Silang)

Jika $\mathbf{u}=(u_1,u_2,u_3)$ dan $\mathbf{v}=(v_1,v_2,v_3)$ adalah vektor dalam ruang berdimensi tiga, maka **Hasilkali u** dan \mathbf{v} adalah vektor yang didefinisikan sebagai

$$\mathbf{u} \times \mathbf{v} = (u_2v_3 - u_3v_2, u_3v_1 - u_1v_3, u_1v_2 - u_2v_1)$$

atau dalam notasi determinan ditulis

$$\mathbf{u} \times \mathbf{v} = \left(\left| \begin{array}{cc} u_2 & u_3 \\ v_2 & v_3 \end{array} \right|, - \left| \begin{array}{cc} u_1 & u_3 \\ v_1 & v_3 \end{array} \right|, \left| \begin{array}{cc} u_1 & u_2 \\ v_1 & v_2 \end{array} \right| \right)$$

Catatan:

Untuk memudahkan memahami definisi ini, lakukan langkah-langkah berikut:

1 Bentuklah matriks 2×3 yang entri-entrinya terdiri dari komponen **u** pada baris pertama dan komponen **v** pada baris kedua

3.5.1 Hasilkali Silang Vektor

Catatan:

- $\begin{bmatrix}
 u_1 & u_2 & u_3 \\
 v_1 & v_2 & v_3
 \end{bmatrix}$
- ② Untuk menghitung komponen pertama dari $\mathbf{u} \times \mathbf{v}$, hilangkan kolom pertama dan hitung determinannya;
- Untuk menghitung komponen kedua, hilangkan kolom kedua dan hitung negatif dari determinannya;
- Untuk menghitung komponen ketiga, hilangkan kolom ketiga dan hitung determinannya.

Example

Hasilkali silang $\mathbf{u} \times \mathbf{v}$, jika $\mathbf{u} = (1,2,-2)$ dan $\mathbf{v} = (3,0,1)$ adalah

$$\mathbf{u} \times \mathbf{v} = \left(\left| \begin{array}{cc} 2 & -2 \\ 0 & 1 \end{array} \right|, - \left| \begin{array}{cc} 1 & -2 \\ 3 & 1 \end{array} \right|, \left| \begin{array}{cc} 1 & 2 \\ 3 & 0 \end{array} \right| \right)$$
$$= (2, -7, -6)$$

3.5.1 Hasilkali Silang Vektor

Theorem (Hubungan Hasilkali Silang dan Hasilkali Titik)

Jika u, v, dan w adalah vektor-vektor pada ruang berdimensi 3, maka:

$$\textbf{2} \ \ \textbf{v} \cdot (\textbf{u} \times \textbf{v}) = \textbf{0} \qquad \qquad (\textbf{u} \times \textbf{v} \ \textit{ortogonal terhadap} \ \textbf{v})$$

- **1** $\|\mathbf{u} \times \mathbf{v}\|^2 = \|\mathbf{u}\|^2 \|\mathbf{v}\|^2 (\mathbf{u} \cdot \mathbf{v})^2$ (Identitas Lagrange) (Hubungan Hasilkali Silang dan Hasilkali Titik)

Example

Misal $\mathbf{u} = (1, 2, -2)$ dan $\mathbf{v} = (3, 0, 1)$. Buktikan bahwa $\mathbf{u} \times \mathbf{v}$ ortogonal terhadap \mathbf{u} maupun \mathbf{v} .

3.5.1 Hasilkali Silang Vektor

Solution

Pada contoh sebelumnya telah ditunjukkan bahwa

$$\mathbf{u} \times \mathbf{v} = (2, -7, -6)$$

Karena

$$\mathbf{u} \cdot (\mathbf{u} \times \mathbf{v}) = (1, 2, -2) (2, -7, -6)$$

= $(1) (2) + (2) (-7) + (-2) (-6) = 0$

dan

$$\mathbf{v} \cdot (\mathbf{u} \times \mathbf{v}) = (3, 0, 1) (2, -7, -6)$$

= (3) (2) + (0) (-7) + (1) (-6) = 0

Maka, $\mathbf{u} \times \mathbf{v}$ ortogonal terhadap \mathbf{u} maupun \mathbf{v} .

3.5.1 Hasilkali Silang Vektor

Theorem (Sifat-Sifat Hasilkali Silang)

Jika \mathbf{u} , \mathbf{v} , dan \mathbf{w} adalah vektor-vektor pada ruang berdimensi 3 dan k adalah skalar sebarang, maka:

$$\mathbf{0} \mathbf{u} \times \mathbf{u} = \mathbf{0}$$

3.5.2 Vektor Satuan Standar

3.5.2 Vektor Satuan Standar

• Perhatikan vektor-vektor pada Gambar 3.5.1 berikut

Gambar 3.5.1

3.5.2 Vektor Satuan Standar

Perhatikan vektor-vektor pada Gambar 3.5.1 berikut

Gambar 3.5.1

Vektor-vektor ini dapat dinyatakan dengan

$$\mathbf{i} = (1, 0, 0), \quad \mathbf{j} = (0, 1, 0), \quad \mathbf{k} = (0, 0, 1)$$

3.5.2 Vektor Satuan Standar

Perhatikan vektor-vektor pada Gambar 3.5.1 berikut

Gambar 3.5.1

Vektor-vektor ini dapat dinyatakan dengan

$$\mathbf{i} = (1, 0, 0), \quad \mathbf{j} = (0, 1, 0), \quad \mathbf{k} = (0, 0, 1)$$

Vektor tersebut memiliki panjang 1 sehingga disebut Vektor Satuan
 Standar pada ruang berdimensi 3.

3.5.2 Vektor Satuan Standar

• Setiap vektor $\mathbf{v} = (v_1, v_2, v_3)$ dapat dinyatakan dalam bentuk i, j,dan k karena dapat dapat ditulis

$$\mathbf{v} = (v_1, v_2, v_3) = v_1(1, 0, 0) + v_2(0, 1, 0) + v_3(0, 0, 1) = v_1 \mathbf{i} + v_2 \mathbf{j} + v_3 \mathbf{k}$$

3.5.2 Vektor Satuan Standar

• Setiap vektor $\mathbf{v} = (v_1, v_2, v_3)$ dapat dinyatakan dalam bentuk \mathbf{i} , \mathbf{j} ,dan \mathbf{k} karena dapat dapat ditulis

$$\boldsymbol{v} = (v_1, v_2, v_3) = v_1 (1, 0, 0) + v_2 (0, 1, 0) + v_3 (0, 0, 1) = v_1 \mathbf{i} + v_2 \mathbf{j} + v_3 \mathbf{k}$$

Sebagai Contoh

$$(2, -3, 4) = 2\mathbf{i} - 3\mathbf{j} + 4\mathbf{k}$$

3.5.2 Vektor Satuan Standar

• Setiap vektor ${\bf v}=(v_1,v_2,v_3)$ dapat dinyatakan dalam bentuk ${\bf i},~{\bf j},$ dan ${\bf k}$ karena dapat dapat ditulis

$$\mathbf{v} = (v_1, v_2, v_3) = v_1 (1, 0, 0) + v_2 (0, 1, 0) + v_3 (0, 0, 1) = v_1 \mathbf{i} + v_2 \mathbf{j} + v_3 \mathbf{k}$$

Sebagai Contoh

$$(2, -3, 4) = 2\mathbf{i} - 3\mathbf{j} + 4\mathbf{k}$$

Berdasarkan Definisi Hasilkali Silang, diperoleh

$$\mathbf{i} \times \mathbf{j} = \left(\left| \begin{array}{cc} 0 & 0 \\ 1 & 0 \end{array} \right|, -\left| \begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array} \right|, \left| \begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right| \right) = (0, 0, 1) = \mathbf{k}$$

3.5.2 Vektor Satuan Standar

• Setiap vektor $\mathbf{v}=(v_1,v_2,v_3)$ dapat dinyatakan dalam bentuk $\mathbf{i},\ \mathbf{j},$ dan \mathbf{k} karena dapat dapat ditulis

$$\mathbf{v} = (v_1, v_2, v_3) = v_1(1, 0, 0) + v_2(0, 1, 0) + v_3(0, 0, 1) = v_1 \mathbf{i} + v_2 \mathbf{j} + v_3 \mathbf{k}$$

Sebagai Contoh

$$(2, -3, 4) = 2\mathbf{i} - 3\mathbf{j} + 4\mathbf{k}$$

• Berdasarkan Definisi Hasilkali Silang, diperoleh

$$\mathbf{i} \times \mathbf{j} = \left(\left| \begin{array}{cc} 0 & 0 \\ 1 & 0 \end{array} \right|, -\left| \begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array} \right|, \left| \begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right| \right) = (0, 0, 1) = \mathbf{k}$$

Dengan cara ini dapat ditunjukkan bahwa

$$\mathbf{i} \times \mathbf{i} = 0$$
 $\mathbf{j} \times \mathbf{j} = 0$ $\mathbf{k} \times \mathbf{k} = 0$
 $\mathbf{i} \times \mathbf{j} = \mathbf{k}$ $\mathbf{j} \times \mathbf{k} = \mathbf{i}$ $\mathbf{k} \times \mathbf{i} = \mathbf{j}$
 $\mathbf{j} \times \mathbf{i} = -\mathbf{k}$ $\mathbf{k} \times \mathbf{j} = -\mathbf{i}$ $\mathbf{i} \times \mathbf{k} = -\mathbf{j}$

3.5.3 Bentuk Determinan Hasilkali Silang

3.5.3 Bentuk Determinan Hasilkali Silang

3.5.3 Bentuk Determinan Hasilkali Silang

 Hasilkali silang dapat dinyatakan dalam bentuk notasi determinan matriks 3 × 3:

$$\mathbf{u} \times \mathbf{v} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{vmatrix} = \begin{vmatrix} u_2 & u_3 \\ v_2 & v_3 \end{vmatrix} \mathbf{i} - \begin{vmatrix} u_1 & u_3 \\ v_1 & v_3 \end{vmatrix} \mathbf{j} + \begin{vmatrix} u_1 & u_2 \\ v_1 & v_2 \end{vmatrix} \mathbf{k}$$

3.5.3 Bentuk Determinan Hasilkali Silang

• Hasilkali silang dapat dinyatakan dalam bentuk notasi determinan matriks 3×3 :

$$\mathbf{u} \times \mathbf{v} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{vmatrix} = \begin{vmatrix} u_2 & u_3 \\ v_2 & v_3 \end{vmatrix} \mathbf{i} - \begin{vmatrix} u_1 & u_3 \\ v_1 & v_3 \end{vmatrix} \mathbf{j} + \begin{vmatrix} u_1 & u_2 \\ v_1 & v_2 \end{vmatrix} \mathbf{k}$$

 \bullet Sebagai Contoh, jika $\mathbf{u}=(1,2,-2)$ dan $\mathbf{v}=(3,0,1)$, maka

$$\mathbf{u} \times \mathbf{v} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 2 & -2 \\ 3 & 0 & 1 \end{vmatrix} = \begin{vmatrix} 2 & -2 \\ 0 & 1 \end{vmatrix} \mathbf{i} - \begin{vmatrix} 1 & -2 \\ 3 & 1 \end{vmatrix} \mathbf{j} + \begin{vmatrix} 1 & 2 \\ 3 & 0 \end{vmatrix} \mathbf{k}$$
$$= 2\mathbf{i} - 7\mathbf{j} - 6\mathbf{k}$$

3.5.4 Interpretasi Geometrik Hasilkali Silang

3.5.4 Interpretasi Geometrik Hasilkali Silang

Theorem (Luas Jajar Genjang)

Jika u dan v adalah vektor-vektor pada ruang berdimensi 3, maka Luas Jajar Genjang yang dibatasi oleh u dan v adalah $\|\mathbf{u} \times \mathbf{v}\|$.

Proof:

Jajar Genjang yang dibatasi oleh **u** dan **v** dapat diilustrasikan seperti Gambar 3.5.4

Gambar 3.5.4

3.5.4 Interpretasi Geometrik Hasilkali Silang

Proof:

Dari Gambar 3.5.4 diperoleh Luas Jajar Genjang

$$A = \|\mathbf{u}\| \|\mathbf{v}\| \sin \theta$$

Menurut Identittas Lagrange dan Hasilkali Titik,

$$\|\mathbf{u}\times\mathbf{v}\|^2=\|\mathbf{u}\|^2\left\|\mathbf{v}\right\|^2-\left(\mathbf{u}\cdot\mathbf{v}\right)^2\quad\text{ dan }\quad\mathbf{u}\cdot\mathbf{v}=\left\|\mathbf{u}\right\|\left\|\mathbf{v}\right\|\cos\ \theta$$

sehingga

$$\|\mathbf{u} \times \mathbf{v}\|^{2} = \|\mathbf{u}\|^{2} \|\mathbf{v}\|^{2} - \|\mathbf{u}\|^{2} \|\mathbf{v}\|^{2} \cos^{2} \theta$$
$$= \|\mathbf{u}\|^{2} \|\mathbf{v}\|^{2} (1 - \cos^{2} \theta)$$
$$= \|\mathbf{u}\|^{2} \|\mathbf{v}\|^{2} \sin^{2} \theta$$

Dengan demikian

$$\|\mathbf{u}\| \|\mathbf{v}\| \sin \theta = \|\mathbf{u} \times \mathbf{v}\|$$

3.5.4 Interpretasi Geometrik Hasilkali Silang

Example

Hitung luas segitiga yang dobatasi oleh titik $P_1\left(2,2,0\right)$, $P_2\left(-1,0,2\right)$, dan $P_3\left(0,4,3\right)$.

Solution

Titik-titik ini dapat diilustrasikan

3.5.4 Interpretasi Geometrik Hasilkali Silang

Solution

Terlihat bahwa Luas Segitiga = 1/2 Luas Jajar Genjang yang dibatasi oleh vektor $\overrightarrow{P_1P_2}$ dan $\overrightarrow{P_1P_3}$. Diketahui bahwa

$$\overrightarrow{P_1P_2}=(-3,-2,2)$$
 dan $\overrightarrow{P_1P_3}=(-2,2,3)$

sehingga

$$\overrightarrow{P_1P_2} \times \overrightarrow{P_1P_3} = (-3, -2, 2) \times (-2, 2, 3) = (-10, 5, -10)$$

Dengan demikian,

$$A = \frac{1}{2} \left\| \overrightarrow{P_1 P_2} \times \overrightarrow{P_1 P_3} \right\| = \frac{1}{2} (15) = \frac{15}{2}$$

3.5.4 Interpretasi Geometrik Hasilkali Silang

Definition (Hasilkali Tripel Skalar)

Jika **u**, **v**,dan **w** adalah vektor-vektor pada ruang berdimensi 3, maka

$$\mathbf{u} \cdot (\mathbf{v} \times \mathbf{w})$$

disebut Hasilkali Tripel Skalar dari u, v,dan w.

Hasilkali Tripel Skalar $\mathbf{u}=(u_1,u_2,u_3)$, $\mathbf{v}=(v_1,v_2,v_3)$, dan $\mathbf{w}=(w_1,w_2,w_3)$ dapat dihitung dengan rumus

$$\mathbf{u} \cdot (\mathbf{v} \times \mathbf{w}) = \begin{vmatrix} u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \\ w_1 & w_2 & w_3 \end{vmatrix}$$

3.5.4 Interpretasi Geometrik Hasilkali Silang

Example

Hitung Hasilkali Tripel Skalar dari vektor-vektor

$$u = 3i - 2j - 5k$$
, $v = i + 4j - 4k$, $w = 3j + 2k$

Solution

$$\mathbf{u} \cdot (\mathbf{v} \times \mathbf{w}) = \begin{vmatrix} 3 & -2 & -5 \\ 1 & 4 & -4 \\ 0 & 3 & 2 \end{vmatrix}$$
$$= 3 \begin{vmatrix} 4 & -4 \\ 3 & 2 \end{vmatrix} + 2 \begin{vmatrix} 1 & -4 \\ 0 & 2 \end{vmatrix} - 5 \begin{vmatrix} 1 & 4 \\ 0 & 3 \end{vmatrix}$$
$$= 3(20) + 2(2) - 5(3)$$
$$= 49$$

Problem (Latihan 3.5)

- Misalkan $\mathbf{u} = (3, 2, -1), \mathbf{v} = (0, 2, -3), \text{ dan } \mathbf{w} = (2, 6, 7).$ Hitunglah:
 - $\mathbf{0} \ (\mathbf{u} \times \mathbf{v}) \times (\mathbf{v} \times \mathbf{w})$
 - $\mathbf{0} \quad (\mathbf{u} \times \mathbf{v}) 2\mathbf{w}$
 - $u \times (v 2w)$
 - $\mathbf{0} \ \mathbf{u} \cdot (\mathbf{v} \times \mathbf{w})$
- ② Tentukan suatu vektor yang ortogonal baik terhadap $\mathbf{u} = (-6, 4, 2)$ maupun terhadap $\mathbf{v} = (3, 1, 5)$.
- **1** Hitung luas jajar jenjang yang dibatasi oleh $\mathbf{u} = (3, -1, 4)$ dan $\mathbf{v} = (6, -2, 8)$.
- Hitung luas segitiga yang dibatasi oleh titik P(1, -1, 2), $P_2(0, 3, 4)$ dan $P_3(6, 1, 8)$.
- **5** Gunakan hasilkali silang untuk mencari sinus dari sudut antara vektor-vektor $\mathbf{u} = (2, 3, -6)$ dan $\mathbf{v} = (2, 3, 6)$.