RIPPLE CARRY ADDER (64-bit)

COMPUTER-AIDED DIGITAL DESIGN

The "ripple" part comes from the fact that the carry ripples through each bit from right to left, just like ripples

N-bit Ripple Carry Adder

A Ripple carry adder is a set of simple binary adders lined up in a row.

The carry-out from each bit's addition passes to the carry-in of the next bit

Slow for large binary numbers because each bit's addition depends on the previous one.

1-BIT FULL ADDER

Input			Output			
Α	В	Cin	Sum	Carry		
0	0	0	0	0		
0	0	1	1	0		
0	1	0	1	0		
0	1	1	0	1		
1	0	0	1	0		
1	0	1	0	1		
1	1	0	0	1		
1	1	1	1	1		

Sum = x'y'z+x'yz+xy'z'+xyzCarry = xy+xz+yz

RTL VIEW cout~1 cout~3 cout~2 sum sum

1-BIT FULL ADDER system verilog HDL


```
⊟module FA_16(
  2
               input logic [15:0] a, b,
               input logic cin,
  3
              output logic [15:0] sum,
  4
  5
              output logic cout);
  6
              wire [14:0]c;
  8
             full_adder Fa0 (a[0],b[0],cin,sum[0],c[0]);
full_adder Fa1 (a[1],b[1],c[0],sum[1],c[1]);
full_adder Fa2 (a[2],b[2],c[1],sum[2],c[2]);
full_adder Fa3 (a[3],b[3],c[2],sum[3],c[3]);
full_adder Fa4 (a[4],b[4],c[3],sum[4],c[4]);
full_adder Fa5 (a[5],b[5],c[5],sum[5],c[5]);
  9
10
11
12
13
              full_adder Fa5 (a[5],b[5],c[4],sum[5],c
14
15
              full_adder Fa6 (a[6],b[6],c[5],sum[6],c[6]);
16
              full_adder Fa7 (a[7],b[7],c[6],sum[7],c
17
              full_adder Fa8 (a[8],b[8],c[7],sum[8],c[8]);
              full_adder Fa9 (a[9],b[9],c[8],sum[9],c[9]);
full_adder Fa10 (a[10],b[10],c[9],sum[10],c[10]);
18
19
             full_adder Fa11 (a[11],b[11],c[10],sum[11],c[11]);
full_adder Fa12 (a[12],b[12],c[11],sum[12],c[12]);
full_adder Fa13 (a[13],b[13],c[12],sum[13],c[13]);
full_adder Fa14 (a[14],b[14],c[13],sum[14],c[14]);
full_adder Fa15 (a[15],b[15],c[14],sum[15],cout);
20
21
22
23
24
25
26
          endmodule
27
```

16-BIT FULL ADDER system verilog HDL


```
module RCA64_tb;
logic [63:0] sum;//output
logic cout;//output
logic [63:0] a,b;//input
logic cin;//input
       ⊟RCA_64 T1(
         .a(a),
.b(b),
10
         .cin(cin),
11
         .sum(sum),
12
         .cout(cout));
13
14
       ⊟initial begin
15
        a=0; b=0; cin=0;
#10 a=64'd998; b=64'd128; cin=64'd0;
#100 a=64'd9998; b=64'd9028; cin=64'd0;
16
18
19
         #50;
20
21
       Lend
22
         endmodule
23
```

TESTBENCH

a=64'd998 b=64'd128

a=64'd9998 b=64'd9028

SIMULATION

ADDITION OF TWO DECIMAL NUMBERS a=64'd998; b=64'd128; a=64'd998; b=64'd9028;

SUM=1126 Cout=0

SUM=25094 Cout=0

Node Name	Direction	Location	I/O Bank	VREF Group	I/O Standard	ırrent Streng	Slew Rate
<u>□</u> a[3]	Input	PIN_C12	7	B7_N0	2.5 Vfault)	12mAault)	
<mark>-</mark> a[2]	Input	PIN_D12	7	B7_N0	2.5 Vfault)	12mAault)	
<mark>-</mark> a[1]	Input	PIN_C11	7	B7_N0	2.5 Vfault)	12mAault)	
<mark>-</mark> a[0]	Input	PIN_C10	7	B7_N0	2.5 Vfault)	12mAault)	
<u>⊩</u> b[3]	Input	PIN_A14	7	B7_N0	2.5 Vfault)	12mAault)	
□ b[2]	Input	PIN_A13	7	B7_N0	2.5 Vfault)	12mAault)	
- b[1]	Input	PIN_B12	7	B7_N0	2.5 Vfault)	12mAault)	
⊩ b[0]	Input	PIN_A12	7	B7_N0	2.5 Vfault)	12mAault)	
- cin	Input	PIN_B14	7	B7_N0	2.5 Vfault)	12mAault)	
cout cout	Output	PIN_D13	7	B7_N0	2.5 Vfault)	12mAault)	2 (default)
° sum[3]	Output	PIN_B10	7	B7_N0	2.5 Vfault)	12mAault)	2 (default)
sum[2]	Output	PIN_A10	7	B7_N0	2.5 Vfault)	12mAault)	2 (default)
sum[1]	Output	PIN_A9	7	B7_N0	2.5 Vfault)	12mAault)	2 (default)
sum[0]	Output	PIN_A8	7	B7_N0	2.5 Vfault)	12mAault)	2 (default)

THANK YOU

S.KAUSHIK

