

(5)

Int. Cl.:

C 07 c, 175/00

C 07 d, 29/20

C 07 d, 87/34

BUNDESREPUBLIK DEUTSCHLAND

DEUTSCHES PATENTAMT

(52)

Deutsche Kl.:

12 o, 25

12 p, 1/01

12 p, 3

(10)

Offenlegungsschrift

2 300 107

(11)

Aktenzeichen: P 23 00 107.2

(21)

Anmeldetag: 3. Januar 1973

(22)

Offenlegungstag: 11. Juli 1974

(43)

Ausstellungsriorität: —

(30)

Unionspriorität

(32)

Datum: —

(33)

Land: —

(31)

Aktenzeichen: —

(54)

Bezeichnung: Vitamin A-Säureamide

(61)

Zusatz zu: —

(62)

Ausscheidung aus: —

(71)

Anmelder: BASF AG, 6700 Ludwigshafen

Vertreter gem. §16 PatG: —

(72)

Als Erfinder benannt: König, Horst, Dr.; Peh, Jutta, Dr.med. vet.; Scholz, Herbert, Dr.; 6700 Ludwigshafen; Paust, Joachim, Dr., 6701 Neuhofen

Unser Zeichen: O.Z. 29 615 D/UB

6700 Ludwigshafen, 2. 1. 1973

Vitamin A-Säureamide

Die vorliegende Erfindung betrifft neue Vitamin A-Säureamide.

Amidderivate der Vitamin A-Säure sind bekannt. Beispielsweise wird von H.O. Huisman et al in den Recueil 77, 97 (1958) das Vitamin A-Säureisobutylamid beschrieben. Weiterhin wird von H.A. Staab in den Liebigs Ann. Chem. 654, 128 (1962) das Vitamin A-Säureimidazolid beschrieben.

Aus der deutschen Offenlegungsschrift 2 102 586 sind Vitamin A-Säureamide bekannt, die zur Prophylaxe und Therapie von Karzinomen, Akne oder anderen dermatologischen Affektionen verwendet werden.

Die Erfindung betrifft neue Vitamin A-Säureamide der allgemeinen Formel I

in der R¹ Wasserstoff und R² eine Alkylgruppe mit mehr als 10 C-Atomen, eine substituierte Phenylgruppe, eine Naphthylgruppe, eine Cycloalkylgruppe oder ein polycyclischer Alkylrest oder R¹ eine niedere Alkylgruppe und R² einen cycloaliphatischen Ring oder R¹ und R² zusammen mit dem sie verbindenden Stickstoffatom einen Ring, der gegebenenfalls ein weiteres Heteroatom enthält, bedeuten.

Bei den erfindungsgemäßen Vitamin A-Säureamiden, in denen R¹ Wasserstoff bedeutet, handelt es sich dementsprechend um sekundäre Amide der Vitamin A-Säure. Eine weitere Gruppe erfindungsgemäßer Vitamin A-Säureamide stellen tertiäre Amide der Vitamin A-Säure dar.

Für R² kommen als Alkylreste mit mehr als 10 C-Atomen insbesondere solche mit 11 bis 20 C-Atomen, der Undecyl-, Dodecyl-, Tridecyl-, Tetradecyl-, Pentadecyl-, Hexadecyl-, Heptadecyl-, Octadecyl-, Nonadecyl- oder Eicosylrest, in Betracht. Als polycyclischer Alkylrest ist insbesondere der Adamantylrest zweckmäßig.

Als substituierte Phenylgruppen für R² kommen bevorzugt Phenylgruppen in Betracht, die durch eine oder mehrere niedere Alkylgruppen mit 1 bis 4 C-Atomen, wie Methyl, Äthyl, Propyl, Butyl, Isobutyl, Halogenatome, wie Fluor, Chlor, Brom oder Jod, Nitrogruppen, Alkoxygruppen, wie Methoxy, Äthoxy, oder Carbalkoxyreste, wie Äthoxycarbonyl, Methoxycarbonyl, substituiert sind.

Als Naphthylgruppe kommt insbesondere der β-Naphthylrest in Betracht.

Zweckmäßige Cycloalkylgruppen sind Cycloalkylreste mit 3 bis 10 C-Atomen im Ring, wie Cyclopropyl, Cyclobutyl, Cyclopentyl oder Cyclohexyl.

Wenn R¹ und R² zusammen mit dem Stickstoffatom einen heterocyclischen Ring, der gegebenenfalls noch ein weiteres Heteroatom, wie Sauerstoff, Stickstoff oder Schwefel enthalten kann, bedeuten, sind heterocyclische Ringe mit 3 bis 10 Gliedern im Ring bevorzugt. Davon sind beispielsweise die cyclischen Imide der Vitamin A-Säure, wie das Piperidid, das Morpholid oder das Piperazid zu nennen.

Wenn R¹ eine niedere Alkylgruppe, zweckmäßigerweise eine niedere Alkylgruppe mit 1 bis 4 C-Atomen, wie Methyl, Äthyl, Propyl, Butyl, Isobutyl, bedeutet, dann steht für R² bevorzugt ein cycloaliphatischer Rest mit 3 bis 10 C-Atomen im Ring.

Beispiele hierfür sind das N-propyl-N-cyclohexylamid und das N-butyl-N-cyclohexylamid der Vitamin A-Säure.

Die erfindungsgemäßen Verbindungen sind in an sich üblicher Weise herstellbar, indem man ein funktionelles Derivat der

2300107

Vitamin A-Säure, bevorzugt ein Vitamin A-Säurehalogenid, mit einem Amin der Formel II

worin R¹ und R² die oben angegebene Bedeutung haben, umsetzt. Als funktionelle Vitamin A-Säurederivate kommen beispielsweise in Betracht Vitamin A-Säurechlorid, Vitamin A-Säurebromid, Vitamin A-Säureanhydrid, Vitamin A-Säurephenylester oder Vitamin A-Säureazid.

Das bevorzugte funktionelle Vitamin A-Säurederivat ist das Vitamin A-Säurechlorid, das zweckmäßig in Form einer Lösung in einem wasserfreien organischen Lösungsmittel verwendet wird. Hierzu kommen als Lösungsmittel in Betracht z.B. Diäthyläther, Benzol oder Toluol.

Es ist vorteilhaft, auch das Amin der Formel II in Form einer Lösung in einem organischen Lösungsmittel zu verwenden. Hierzu kommen ebenso als Lösungsmittel in Betracht beispielsweise Diäthyläther, Benzol oder Toluol.

Die bevorzugten Lösungsmittel für die Umsetzung sind Äther, insbesondere Diäthyläther, und aromatische Kohlenwasserstoffe, insbesondere Benzol.

Die Umsetzung erfolgt zweckmäßigerweise bei Temperaturen von -20°C bis 50°C, wobei die Reihenfolge der Zugabe unerheblich ist. Der bevorzugte Temperaturbereich liegt bei -20°C bis Raumtemperatur.

Es ist vorteilhaft, die Reaktion in einer Inertgasatmosphäre und unter Vermeidung starker Lichteinwirkung durchzuführen.

Es ist zweckmäßig, den bei der Reaktion entstehenden Chlorwasserstoff mit einer stöchiometrisch äquivalenten Menge eines HCl-Acceptors abzufangen. Dazu können tertiäre Amine, wie Tri-

2300107

äthylamin oder Pyridin, oder ein entsprechender Überschuß des umzusetzenden Amins eingesetzt werden.

Die Aufarbeitung des Reaktionsproduktes geschieht in an sich üblicher Weise. Es kann vorteilhaft sein, das Endprodukt säulen-chromatographisch, beispielsweise an neutralem Aluminiumoxid, zu reinigen. Eine bevorzugte und einfach durchzuführende Reinigung besteht jedoch in der Umkristallisation.

Als Amine der Formel II sind gemäß den für R¹ und R² angegebenen Bedeutungen beispielsweise zu nennen: Stearylamin, Cyclo-propylamin, N-propyl-N-cyclohexylamin, N-butyl-N-cyclohexylamin, 3,4-Dimethylanilin, m-Nitroanilin, p-Fluoranilin, 2-Methylanilin, p-Aminobenzosäureäthylester, 2-Methoxyanilin, p-Äthoxy-anilin, β-Naphthylamin, p-Chlor-anilin, m-Chlor-anilin, Piperidin, Morpholin oder Adamantylamin.

Die erfindungsgemäßen Vitamin A-Säureamide können in den dem Fachmann an sich bekannten Applikationsformen verwendet werden.

Die erfindungsgemäßen neuen Vitamin A-Säureamide können zur topischen und systemischen Therapie von Praekanzerosen und Karzinomen sowie zur systemischen und topischen Prophylaxe von Karzinomen verwendet werden. Sie können hierzu als solche oder in Kombination mit zytostatischen Mitteln sowie Strahlentherapie angewandt werden. Des weiteren können sie zur topischen und systemischen Therapie von Akne, Psoriasis und anderen mit verstärkter oder pathologisch veränderter Verhornung einhergehenden dermatologischen Affektionen sowie bei Ekzemen verwendet werden. Sie können auch bei Affektionen der Schleimhäute, die mit entzündlichen oder degenerativen bzw. metaplastischen Veränderungen einhergehen, verwendet werden. Als bevorzugtes Vitamin A-Säureamid ist das Vitamin A-Säureanilid-4-carbonsäureäthylester zu nennen.

Die an der Ratte und Maus durchgeföhrten Toxizitätsprüfungen ergaben folgende Resultate für die akute Toxizität:

2300107

Tabelle 1RatteVitamin A-Säuremorpholid in Olivenöl DAB 7

	<u>o r a l</u>	mg/kg	
nach 24 Std.	nach 14 Tagen	nach 28 Tagen	
DL ₁₀	< 4000	< 4000	< 4000
DL ₅₀	> 6400	< 4000	< 4000
DL ₉₀	> 6400	6400	6400

intraperitoneal mg/kg

	nach 24 Std.	nach 14 Tagen	nach 28 Tagen
DL ₁₀	> 4000	< 4000	< 4000
DL ₅₀	> 4000	4000	< 4000
DL ₉₀	> 4000	> 4000	> 4000

RatteVitamin A-Säure-pentamethylenimid in Olivenöl DAB 7

	<u>o r a l</u>	mg/kg	
nach 24 Std.	nach 14 Tagen	nach 28 Tagen	
DL ₁₀	> 3000	2000	2000
DL ₅₀	> 3000	> 3000	> 3000
DL ₉₀	> 3000	> 3000	> 3000

intraperitoneal mg/kg

	nach 24 Std.	nach 14 Tagen	nach 28 Tagen
DL ₁₀	> 3000	3000	3000
DL ₅₀	> 3000	> 3000	> 3000
DL ₉₀	> 3000	> 3000	> 3000

2300107

Tabelle 2

Ratte

Vitamin A-Säureanilid-4-carbonsäureäthylester in Olivenöl DAB 7

	<u>o r a l</u>	mg/kg	
	nach 24 Std.	nach 14 Tagen	nach 28 Tagen
DL ₁₀	> 6400	> 6400	> 6400
DL ₅₀	> 6400	> 6400	> 6400
DL ₉₀	> 6400	> 6400	> 6400

intraperitoneal mg/kg

	nach 24 Std.	nach 14 Tagen	nach 28 Tagen
DL ₁₀	> 4000	> 4000	> 4000
DL ₅₀	> 4000	> 4000	> 4000
DL ₉₀	> 4000	> 4000	> 4000

Maus

Vitamin A-Säuremorpholid in Olivenöl DAB 7

	<u>o r a l</u>	mg/kg	
	nach 24 Std.	nach 14 Tagen	nach 28 Tagen
DL ₁₀	> 6400	< 4000	< 4000
DL ₅₀	> 6400	< 4000	< 4000
DL ₉₀	> 6400	> 4000	> 4000

intraperitoneal mg/kg

	nach 24 Std.	nach 14 Tagen	nach 28 Tagen
DL ₁₀	> 6400	< 4000	< 4000
DL ₅₀	> 6400	< 4000	< 4000
DL ₉₀	> 6400	< 4000	< 4000

2300107

Tabelle 3MausVitamin A-Säure-pentamethylenimid in Olivenöl DAB 7

	<u>o r a l</u>	mg/kg	
	nach 24 Std.	nach 14 Tagen	nach 28 Tagen
DL ₁₀	> 3000	2000	2000
DL ₅₀	> 3000	< 3000	< 3000
DL ₉₀	> 3000	> 3000	> 3000

intraperitoneal mg/kg

	nach 24 Std.	nach 14 Tagen	nach 28 Tagen
DL ₁₀	> 3000	3000	3000
DL ₅₀	> 3000	> 3000	> 3000
DL ₉₀	> 3000	> 3000	> 3000

MausVitamin A-Säureanilid-4-carbonsäureäthylester in Olivenöl DAB 7

	<u>o r a l</u>	mg/kg	
	nach 24 Std.	nach 14 Tagen	nach 28 Tagen
DL ₁₀	> 6400	6400	6400
DL ₅₀	> 6400	> 6400	> 6400
DL ₉₀	> 6400	> 6400	> 6400

intraperitoneal mg/kg

	nach 24 Std.	nach 14 Tagen	nach 28 Tagen
DL ₁₀	> 6400	6400	6400
DL ₅₀	> 6400	> 6400	> 6400
DL ₉₀	> 6400	> 6400	> 6400

2300107

Die vorliegenden Ergebnisse zeigen, daß Vitamin A-Säureanilid-4-carbonsäureäthylester sowohl bei oraler als auch intraperitonealer Gabe von Ratten und Mäusen selbst in einer Dosierung von 6400 mg/kg Körpergewicht symptomlos vertragen werden.

In den folgenden Beispielen werden die Umsetzungen unter Stickstoff als Inertgas und unter Feuchtigkeitsausschluß durchgeführt. In den Beispielen verhalten sich die Gewichtsteile zu den Raumteilen wie das Kilogramm zum Liter.

Beispiel 1

Vitamin-A-Säurechlorid

Zu einer Suspension von 10 Gewichtsteilen Vitamin A-Säure in 150 Raumteilen trockenem Äther gibt man 2,8 Gewichtsteile trockenes Pyridin und tropft bei -10°C eine Lösung von 4 Gewichtsteilen destilliertem Thionylchlorid in 5 Raumteilen trockenem Äther zu. Bei Raumtemperatur röhrt man 1 Stunde. Das ausgefallene Pyridinhydrochlorid wird abgesaugt und das frisch hergestellte Vitamin A-Säurechlorid sofort zur Darstellung der Vitamin A-Säureamide eingesetzt.

Vitamin A-Säuremorpholid

Zu einer Lösung von 1,74 Gewichtsteilen Morpholin in 30 Raumteilen trockenem Äther tropft man bei -20°C eine ätherische Lösung von 3,19 Gewichtsteilen frisch herstelltem Vitamin A-Säurechlorid. Nach 3 Stunden Röhren bei Raumtemperatur wird abgesaugt, das Filtrat dreimal mit 200 Raumteilen Wasser gewaschen, getrocknet und eingeengt. Der Rückstand wird säulenchromatographisch an neutralem Aluminiumoxid (Laufmittel Hexan : Äther = 5:1) gereinigt und zweimal aus Isopropanol mit wenig Wasser umkristallisiert.

Ausbeute 76 % gelbe Kristalle

Fp. 84-85 $^{\circ}\text{C}$ E₁¹ 1110
 λ_{max} 342 nm (äthanol)

2300107

Analyse $C_{24}H_{35}NO_2$

	% C	% H	% O	% N
ber.:	78,0	9,55	8,66	3,79
gef.:	77,7	9,6	8,8	4,1

Beispiel 2

Vitamin-A-Säure-piperidid

Zu einer Lösung von 1,7 Gewichtsteilen Piperidin in 15 Raumteilen absolutem Äther lässt man bei Raumtemperatur eine frisch hergestellte ätherische Lösung von 3,19 Gewichtsteilen Vitamin A-Säurechlorid zutropfen. Nach 3 Stunden Rühren wird abgesaugt, das Filtrat viermal mit 100 Raumteilen Wasser gewaschen, getrocknet und eingeengt. Der Rückstand wird an neutralem Aluminiumoxid (Laufmittel Hexan : Äther = 5:1) gereinigt und zweimal aus Aceton-Methanol-Wasser umkristallisiert.

Ausbeute 63 % gelbe Kristalle

Fp. 96-97°C

E_1^1 888 λ_{max} 338 nm (Äthanol)

Analyse $C_{25}H_{37}NO$

	% C	% H	% O	% N
ber.:	81,69	10,15	4,35	3,8
gef.:	81,5	10,4	4,8	3,8

Beispiel 3

Vitamin-A-Säurecyclopropylamid

Analog Beispiel 2

Lösungsmittel: trockenes Benzol

Reaktionszeit: 4 Stunden

2300107

Reaktionstemperatur: 40°C

Umkristallisieren aus wäßrigem Methanol

gelbe Kristalle Fp. 141°C

E_1^1 1400 λ_{max} 350 nm (Äthanol)

Analyse $C_{23}H_{33}NO$

	% C	% H	% O	% N
ber.:	81,35	9,8	4,71	4,12
gef.:	81,3	10,0	5,2	4,1

Beispiel 4

Vitamin A-Säure-1-adamantylamid

Analog Beispiel 3

Beim Umkristallisieren aus Methanol schließt das Vitamin A-Säure-1-adamantylamid 1 Mol Kristallmethylealkohol ein.

gelbe Kristalle Fp. 95-100°C

E_1^1 1080 λ_{max} 346 nm (Äthanol)

Analyse $C_{31}H_{47}NO_2$

	% C	% H	% N
ber.:	79,95	10,17	3,01
gef.:	79,5	10,0	3,2

Beispiel 5

Vitamin-A-Säurestearylamin

Analog Beispiel 1

Säulenchromatographische Reinigung

Aluminiumoxid neutral Akt. III

2300107

Laufmittel Hexan : Äther = 9:1

Hexan : Äther = 5:1

dreimal aus Methanol umkristallisieren

blaßgelbe Kristalle Fp. 84-87°C

E_1^1 800 λ_{max} 346 nm (Äthanol)

Analyse $C_{38}H_{65}NO$

	% C	% H	% O	% N
ber.:	82,69	11,87	2,9	2,54
gef.:	83,1	11,6	2,9	2,7

Beispiel 6

Vitamin A-Säure-N-propyl-N-cyclohexylamid

Analog Beispiel 1 gelbes Öl

E_1^1 1116 λ_{max} 337 nm (Äthanol)

Analyse $C_{29}H_{45}NO$

	% C	% H	% N
ber.:	82,21	10,71	3,31
gef.:	82,2	11,0	3,0

Beispiel 7

Vitamin A-Säure-N-butyl-N-cyclohexylamid

Analog Beispiel 1 gelbes Öl

E_1^1 993,5 λ_{max} 338 nm (Äthanol)

Analyse $C_{30}H_{47}NO$

	% C	% H	% O	% N
ber.:	82,32	10,82	3,66	3,20
gef.:	82,6	11,2	4,0	2,9

Beispiel 8

Vitamin A-Säure-β-naphthylamid

Zu einer frisch hergestellten ätherischen Lösung von 9,57 Gewichtsteilen Vitamin A-Säurechlorid und 5 Raumteilen Pyridin gibt man eine ätherische Lösung von 4,3 Gewichtsteilen β-Naphthylamin. Nach einstündigem Rühren wird das Reaktionsgemisch dreimal mit 100 Raumteilen Wasser, zweimal mit 100 Raumteilen 0,2 n Natronlauge, mit verdünnter Schwefelsäure und nochmals mit Wasser gewaschen. Die ätherische Phase wird getrocknet und eingeengt, der Rückstand dreimal aus Methanol umkristallisiert.

Ausbeute 50 % gelbe Kristalle

Fp. 171-172°C

E_1^1 1224 λ_{max} 367 nm (Äthanol)

Analyse C₃₀H₃₅NO

	% C	% H	% O	% N
ber.:	84,66	8,29	3,76	3,29
gef.:	84,6	8,4	4,1	3,4

Beispiel 9

Vitamin-A-Säure-3,4-dimethylanilid

Zu einer ätherischen Lösung von 12,1 Gewichtsteilen 3,4-Dimethylanilin gibt man eine frisch herstellte Lösung von 15,95 Gewichtsteilen Vitamin A-Säurechlorid. 4 Stunden wird gerührt und unter Rückfluß erhitzt. Nach dem Absaugen wird die ätherische Phase viermal mit Wasser gewaschen, getrocknet und eingeengt. Der Rückstand wird viermal aus Äthylalkohol umkristallisiert.

Ausbeute 56 % gelbe Kristalle

Fp. 159-160°C

2300107

E_1^1 1344 λ_{max} 364 nm (Äthanol)

Analyse $C_{28}H_{37}NO$

	% C	% H	% O	% N
ber.:	83,32	9,24	3,96	3,47
gef.:	83,36	9,4	4,1	3,5

Beispiel 10

Analog zu Beispiel 9 wurden folgende Vitamin A-Säureamide hergestellt:

a) Vitamin A-Säure-(p-fluor)-anilid

gelbe Kristalle Fp. 168-169°C

E_1^1 1343 λ_{max} 362 nm (Äthanol)

Analyse $C_{26}H_{32}FNO$

	% C	% H	% F	% N
ber.:	79,38	8,20	4,83	3,56
gef.:	79,3	8,2	4,9	3,9

b) Vitamin A-Säure-(m-nitro)-anilid

gelbe Kristalle Fp. 174-175°C

E_1^1 899 λ_{max} 364 nm (Äthanol)

Analyse $C_{26}H_{32}N_2O_3$

	% C	% H	% O	% N
ber.:	74,25	7,67	11,41	6,66
gef.:	74,5	7,8	11,1	6,8

c) Vitamin A-Säure-(2-methyl)-anilid

gelbe Kristalle Fp. 127-138°C

E₁¹ 1392 λ_{max} 357 nm (Äthanol)

Analyse C₂₇H₃₅NO

	% C	% H	% O	% N
ber.:	83,24	9,06	4,11	3,6
gef.:	83,0	9,1	4,2	3,7

d) Vitamin A-Säureanilid-4-carbonsäureäthylester

gelbe Kristalle Fp. 177-178°C Ausbeute 56 %

E₁¹ 1339 λ_{max} 370 nm (Äthanol)

Analyse C₂₉H₃₇NO₃

	% C	% H	% N
ber.:	77,81	8,33	3,13
gef.:	77,5	8,5	3,4

e) Vitamin-A-Säure-(2-methoxy)-anilid

gelbe Kristalle Fp. 179-181°C

E₁¹ 1347 λ_{max} 363 nm (Äthanol)

Analyse C₂₇H₃₅NO₂

	% C	% H	% O	% N
ber.:	79,96	8,70	7,89	3,45
gef.:	80,3	9,0	8,1	3,4

f) Vitamin A-Säure-(p-äthoxy)-anilid

gelbe Kristalle Fp. 183-185°C

E₁¹ 1174 λ_{max} 363 nm (Äthanol)

Analyse C₂₈H₃₇NO₂

2300107

	% C	% H	% O	% N
ber.:	80,15	8,89	7,63	3,34
gef.:	80,1	9,1	7,5	3,5

g) Vitamin-A-Säure-(m-chlor)-anilid

gelbe Kristalle Fp. 179-180°C

E_1^1 1030 λ_{max} 365 nm (Äthanol)

Analyse $C_{26}H_{32}ClNO$

	% C	% H	% O	% N	% Cl
ber.:	76,2	7,85	3,93	3,42	8,67
gef.:	75,8	7,9	4,3	3,5	9,1

h) Vitamin-A-Säure-(p-chlor)-anilid

gelbe Kristalle Fp. 187-188°C

E_1^1 1363 λ_{max} 365 nm (Äthanol)

Analyse $C_{26}H_{32}ClNO$

	% C	% H	% O	% N	% Cl
ber.:	76,2	7,85	3,93	3,42	8,57
gef.:	76,1	8,2	4,3	3,6	8,3

Die Strukturen aller Vitamin A-Säureamide wurden durch IR- und NMR-Spektren bestätigt.

Patentansprüche

1. Vitamin A-Säureamide der Formel I

in der einer der Reste R¹ Wasserstoff und R² eine Alkylgruppe mit mehr als 10 C-Atomen, eine substituierte Phenylgruppe, eine Naphthylgruppe, eine Cycloalkylgruppe oder eine Polycycloalkylgruppe oder R¹ und R² zusammen mit dem sie verbindenden Stickstoffatom einen Ring, der gegebenenfalls ein weiteres Heteroatom enthält, oder R¹ eine niedere Alkylgruppe und R² einen cycloaliphatischen Ring bedeuten.

2. Vitamin-A-Säure-stearyl amid
3. Vitamin-A-Säure-N-propyl-N-cyclohexyl amid
4. Vitamin-A-Säure-N-butyl-N-cyclohexyl amid
5. Vitamin-A-Säure-3,4-dimethylanilid
6. Vitamin-A-Säure-(m-nitro)-anilid
7. Vitamin A-Säure-(p-fluor)-anilid
8. Vitamin-A-Säure-(2-methyl)-anilid
9. Vitamin A-Säureanilid-4-carbonsäureäthylester
10. Vitamin A-Säure-(2-methoxy)-anilid
11. Vitamin A-Säure-(p-äthoxy)-anilid
12. Vitamin-A-Säure-β-naphthyl amid
13. Vitamin-A-Säure-morpholid
14. Vitamin-A-Säure-piperidid
15. Vitamin-A-Säure-(p-chlor)-anilid
16. Vitamin-A-Säure-(m-chlor)-anilid
17. Vitamin-A-Säure-cyclopropyl amid

2300107

18. Vitamin A-Säure-1-adamantylamid
19. Zubereitung, enthaltend eine oder mehrere Verbindungen des Anspruchs 1.
20. Verfahren zur Herstellung von Vitamin A-Säureamiden der in Anspruch 1 genannten Formel, dadurch gekennzeichnet, daß man ein funktionelles Vitamin A-Säurederivat mit einem Amid der Formel II

in der R¹ und R² die angegebene Bedeutung haben, umgesetzt.

Badische Anilin- & Soda-Fabrik AG

D