

LOW DROP POWER SCHOTTKY RECTIFIER

MAIN PRODUCTS CHARACTERISTICS

I _{F(AV)}	3 A
V _{RRM}	40 V
T j	150℃
V _F (max)	0.475 V

FEATURES AND BENEFITS

- VERY SMALL CONDUCTION LOSSES
- NEGLIGIBLE SWITCHING LOSSES
- EXTREMELY FAST SWITCHING
- LOW FORWARD VOLTAGE DROP

DESCRIPTION

Axial Power Schottky rectifier suited for Switch Mode Power Supplies and high frequency DC to DC converters. Packaged in DO-201AD these devices are intended for use in low voltage, high frequency inverters, free wheeling, polarity protection and small battery chargers.

ABSOLUTE RATINGS (limiting values)

Cumbal	Davamatar		11:4			
Symbol	Parameter	1N5820	1N5821	1N5822	Unit	
V _{RRM}	Repetitive peak reverse voltage	20	30	40	V	
I _{F(RMS)}	RMS forward current	10			Α	
I _{F(AV)}	Average forward current	$T_L = 100^{\circ}C$ $\delta = 0.5$			3	Α
		$T_L = 110^{\circ}C$ $\delta = 0.5$	3	3		Α
I _{FSM}	Surge non repetitive forward current		80		Α	
T _{stg}	Storage temperature range	- 65 to + 150			°C	
Tj	Maximum operating junction temperature *			150		
dV/dt	Critical rate of rise of reverse voltage			10000		

^{* :} $\frac{dPtot}{dTj} < \frac{1}{Rth(j-a)}$ thermal runaway condition for a diode on its own heatsink

July 1999 - Ed: 2A

THERMAL RESISTANCES

Symbol	Paramete	Value	Unit	
R _{th (j-a)}	Junction to ambient	Lead length = 10 mm	80	°C/W
R _{th (j-l)}	Junction to lead	Lead length = 10 mm	25	°C/W

STATIC ELECTRICAL CHARACTERISTICS

Symbol	Parameter	Tests Co	1N5820	1N5821	1N5822	Unit	
I _R *	Reverse leakage	Tj = 25°C	$V_R = V_{RRM}$	2	2	2	mA
	current	Tj = 100°C		20	20	20	mA
V _F *	Forward voltage drop	Tj = 25°C	IF = 3 A	0.475	0.5	0.525	V
		Tj = 25°C	I _F = 9.4 A	0.85	0.9	0.95	V

Pulse test : * tp = 380 μ s, δ < 2%

To evaluate the conduction losses use the following equations :

 $P = 0.33 \times I_{F(AV)} + 0.035 I_{F}^{2}_{(RMS)} \text{ for } 1N5820 / 1N5821$ $P = 0.33 \times I_{F(AV)} + 0.060 I_{F}^{2}_{(RMS)} \text{ for } 1N5822$

Fig. 1: Average forward power dissipation versus average forward current (1N5820/1N5821).

Fig. 2: Average forward power dissipation versus average forward current (1N5822).

Fig. 2-1: Average forward current versus ambient temperature (δ =0.5) (1N5820/1N5821).

Fig. 3-1: Non repetitive surge peak forward current versus overload duration (maximum values) (1N5820/1N5821).

Fig. 4: Relative variation of thermal impedance junction to ambient versus pulse duration (epoxy printed circuit board, e(Cu)=35mm, recommended pad layout).

Fig. 2-2: Average forward current versus ambient temperature (δ =0.5) (1N5822).

Fig. 3-2: Non repetitive surge peak forward current versus overload duration (maximum values) (1N5822).

Fig. 5: Junction capacitance versus reverse voltage applied (typical values).

57

Fig. 6-1: Reverse leakage current versus reverse voltage applied (typical values) (1N5820/1N5821).

Fig. 6-2: Reverse leakage current versus reverse voltage applied (typical values) (1N5822).

Fig. 7-1: Forward voltage drop versus forward current (typical values) (1N5820/1N5821).

Fig. 7-2: Forward voltage drop versus forward current (typical values) (1N5822).

Fig. 8: Non repetitive surge peak forward current versus number of cycles.

4/5

PACKAGE MECHANICAL DATA

DO-201AD plastic

	DIMENSIONS				NOTES		
REF. Millimeters		neters	Inches				
	Min.	Max.	Min.	Max.			
Α		9.50		0.374	1 - The lead diameter Ø D is not controlled over zone E		
В	25.40		1.000				
ØC		5.30		0.209	2 - The minimum axial length within which the device may be		
ØD		1.30		0.051	placed with its leads bent at right angles is 0.59"(15 mm)		
Е		1.25		0.049			

Ordering type	Marking	Package	Weight	Base qty	Delivery mode
1N582x	Part number cathode ring	DO-201AD	1.12g	600	Ammopack
1N582xRL	Part number cathode ring	DO-201AD	1.12g	1900	Tape & reel

■ Epoxy meets UL94,V0

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied.

STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics

© 1999 STMicroelectronics - Printed in Italy - All rights reserved.

STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A.

http://www.st.com