

Incorporating Aerodynamic Effects into Model Based Control for Multirotors

Rik Bähnemann

Semester Project
Supervised by Markus Achtelik, Michael Burri, Mina Kamel

Motivation

- Trajectory following
- Model predictive control
- Wind compensation

AscTec Falcon 8 at wind turbine inspection [1].

Overview

Modelling

Control

Simulation

Conclusion and Outlook

Equations of Motion

$$m \cdot \mathbf{a} = \mathbf{R}_{WB} \sum_{i=1}^{n} \underbrace{(\mathbf{F}_{T,i} + \mathbf{F}_{D,i})}_{=:\mathbf{F}_{i}} + \mathbf{F}_{G}$$

$$\mathbf{J} \cdot \dot{\boldsymbol{\omega}} + \boldsymbol{\omega} \times \mathbf{J} \cdot \boldsymbol{\omega} = \sum_{i=1}^{n} \left(\mathbf{M}_{R,i} + \mathbf{M}_{D,i} + \mathbf{F}_{i} \times \mathbf{I}_{i} \right)$$

Wind Drag

■ Area drag [2]

$$\mathbf{F}_{A} = -\frac{1}{2}C_{A}\rho \|\boldsymbol{\nu}\|_{2} \boldsymbol{\nu}$$

Rotor drag

$$\blacksquare$$
 $\mathbf{F}_D = -\sum_{i=1}^n \omega_i \cdot C_D \cdot \boldsymbol{\nu}^{\perp}$

Air speed

$$\mathbf{v} = \mathbf{V} - \mathbf{W}$$

Wind Model

Stationary stochastic process

$$\mathbf{w}(k+1) = \mathbf{w}(k) + \sigma \varepsilon(k)$$
$$\varepsilon_i(k) \sim \mathcal{N}(0,1) \ \forall i \in \{x, y, z\}$$

Wind speed observations in $[m s^{-1}]$ [3].

System Overview

- Cascaded control
- Given attitude control
- Given state and wind estimation
- SysId attitude and thrust dynamics

Black Box Dynamics Model

Receding Horizon Control

At each sample time:

- Measure/estimate current state x(t)
- Find the optimal input sequence for the entire planning window *N*:

$$U_t^* = \left\{u_t^*, u_{t+1}^*, \dots, u_{t+N-1}^*\right\}$$

• Implement the first control action u_t^*

Receding Horizon Control

Advantages:

- Input and state constraints
- Optimal solution for horizon
- Parameter tuning

Disadvantages:

- Stability, robustness guarantees
- OCP computationally expensive

Solution:

- Code generation for optimization
 - CVXGEN
 - ACADO

Linear and nonlinear MPC

- deterministic wind feed-forward
- offset-free constant reference tracking
- trajectory tracking

Difference:

- MPC linearization about hovering
- NMPC nonlinear dynamics

Nonlinear MPC OCP

$$\min_{x(\cdot),u(\cdot)} \qquad \int_{t}^{t+NT_{s}} \left(||x(\tau) - x_{ref}(\tau)||_{Q}^{2} + ||u(\tau) - u_{ref}(\tau)||_{R}^{2} d\tau \right)$$

$$+ ||x(t+NT_{s}) - x_{ref}(t+NT_{s})||_{P}^{2}$$

$$s.t. \qquad \dot{x}(\tau) = f(x(\tau), u(\tau), w(\tau), \psi(\tau))$$

$$\dot{w}(\tau) = 0$$

$$\dot{\psi}(\tau) = 0$$

$$\begin{bmatrix} T_{min} \\ -45^{\circ} \\ -45^{\circ} \end{bmatrix} \leq u(\tau) \leq \begin{bmatrix} T_{max} \\ 45^{\circ} \\ 45^{\circ} \end{bmatrix}, \quad \forall \tau \in [t, t+NT_{s}]$$

$$x(t) = \hat{x}(t), \ w(t) = \hat{w}(t), \ \psi(t) = \hat{\psi}(t)$$

$$N = 100$$

Step Response: Nonlinear MPC

Wind Experiment

Optimization Times

- Real-time capability
- ACADO optimization grows linearly in N
- CVXGEN bounded in problem size

index	CVXGEN	ACADO
mean	0.84	1.09
std	0.14	0.13
median	0.83	1.08
max	1.15	1.52
states	10	13
inputs	3	3
horizon	40	40

Conclusion and Outlook

- Two trajectory following controller
- Wind gust rejection for measured winds
- Real-time linear and nonlinear MPC
- MPC just as easy as LQRI but superior

Outlook:

- Validate results in real experiments
- Improve controller
 - e.g. quaternion NMPC, disturbance estimation, stability analysis, model...

Thank you! Questions?

Rik Bähnemann

brik@ethz.ch

ETH zürich

References

- Technologies (AscTec). Civil Infrastructure Inspection." [1] Ascending "Industrial http://www.asctec.de/en/ industrial-civil-infrastructure-inspection/, 2015.
- [2] F. Schiano, J. Alonso-Mora, K. Rudin, P. Beardsley, R. Siegwart, and B. Siciliano, "Towards Estimation and Correction of Wind Effects on a Quadrotor UAV," IMAV 2014: International Micro Air Vehicle Conference and Competition 2014, Delft, The Netherlands, August 12-15, 2014, Aug. 2014.
- Google, "Wind Observation," http://www.google.org/pdfs/google_heliostat_wind_data_collection.pdf, 2015.

