Math 100B: Homework 7

Merrick Qiu

Problem 1

We can first uniquely factorize each number and check if they share any primes in common

$$2 + 4i = 2(1 + 2i) = (1 + i)(1 - i)(1 + 2i)$$

$$5 + 5i = 5(1+i) = (1+2i)(1-2i)(1+i)$$

Therefore gcd(2+4i, 5+5i) = (1+i)(1+2i) = -1+3i.

- (a) Suppose that f(x) was reducible in R[x]. This would imply that f(x) = g(x)h(x) where g(x) and h(x) are not units in R[x] and they have positive degree (if they were constants then f(x) would no longer have g(x) = 1). We can write $g(x) = cg_0(x)$ and $h(x) = c'h_0(x)$ where $g_0(x)$ and $h_0(x)$ are primitive and $c, c' \in R$. Therefore $f(x) = cc'g_0(x)h_0(x)$ but by Gauss' lemma, $g_0(x)h_0(x)$ is primitive and so c = c' = 1. Therefore g(x) and h(x) are primitive.
 - However this is a factorization of f(x) into two positive degree polynomials, which are not units in F[x], which is a contradiction. Therefore f(x) is irreducible in R[x].
- (b) Note that $\mathbb{Q}[x,y] = (\mathbb{Q}[y])[x]$ and take $R = \mathbb{Q}[y]$. Let $F = \mathbb{Q}(y)$ to be the field of fractions of R. Since $(y)x + (y^2 + 1)$ has $\gcd(y, y^2 + 1) = 1$, we can simply show that $yx + y^2 + 1$ is irreducible in F[x] and apply part (a) to prove that it is irreducible in $R[x] = \mathbb{Q}[x, y]$.
 - Since $yx + y^2 + 1$ is a degree 1 polynomial in terms of x, it can only be written as the product of a degree 1 polynomial and a degree 0 polynomial, and all degree 0 polynomials in F[x] are units since its a field of fractions, so $yx + y^2 + 1$ is therefore irreducible in F[x] and R[x].

(a) Since $B = \{v_1, \ldots, v_n\}$ is a basis, we can write $u = b_1 v_1 + \ldots + b_n v_n$ for all $u \in V$. Let B' be B but with v_i replaced with w. B' is still linearly independent since if there was a way to form a nontrivial linear combination of its elements to get zero, that would immediately also give us a nontrivial linear combination that equals zero in B by simply substituting in $w = a_1 v_1 + \ldots + a_n v_n$ into that linear combination.

In order to show that B' spans, we need to show it is possible to write $u = c_1v_1 + \ldots + c_{i-1}v_{i-1} + c_iw + c_{i+1}v_{i+1} + \ldots + c_nv_n$, which is u written in terms of the basis vectors in B'. First let us solve out for v_i in terms of the vectors in B'.

$$v_i = \frac{w - \sum_{j \neq i} a_j v_j}{a_i}$$

Next we can substitute to get the representation we need, which shows B' is a basis as well.

$$u = b_1 v_1 + \dots + b_i v_i + \dots + b_n v_n$$

$$= b_1 v_1 + \dots + b_i \left(\frac{w - \sum_{j \neq i} a_j v_j}{a_i} \right) + \dots + b_n v_n$$

$$= \left(b_1 - \frac{b_i a_1}{a_i} \right) v_1 + \dots + \left(\frac{b_i}{a_i} \right) v_i + \dots + \left(b_n - \frac{b_i a_n}{a_i} \right) v_n$$

(b) We can prove this by induction. Let $B_i = \{w_1, \dots, w_i, v_{i+1}, \dots, v_n\}$. In the base case, B_0 is the original basis we started with. Asumme that B_i is a basis. There exists some vector v_j that can be written as the linear combination of vectors in B_i that is not already in B_i . There must be some w_k used in this linear combination with nonzero coefficient, so we can replace w_k with v_j and then rearrange the vectors to get a new basis B_{i+1} by part (a).

If we have two bases, $B = \{v_1, \ldots, v_n\}$ and $B' = \{w_1, \ldots, w_m\}$ where m > n, then we can replace the elements of B' one by one with elements by B to create a basis that is a superset of B, which is a contradiction. Likewise if m < n we can replace elements of B with elements of B' to create a basis that is a super set of B', which is also a contradiction. Therefore all basis have the same number of elements in V.

Suppose that there did exist a linear combination of these functions that equaled zero.

$$ax^2 + b\sin x + c\cos x + de^x = 0$$

At x=0 we have that c+d=0. At $x=2\pi$ we have that $c+de^{2\pi}=0$, which implies $de^{2\pi}-d=0$, d=0 and c=0. At $x=\pi$ we have that $a\pi^2=0$ which implies a=0. We are left with $b\sin x=0$ which implies b=0. Therefore only the trivial linear combination gives zero meaning these functions are independent.

If we have a linear combination of a finite number of reciprocals of monic degree 1 polynomials equal to 0, we can show that it implies all the coefficients are 0.

$$0 = \sum_{i=1}^{n} \frac{c_i}{x - a_i} = \frac{\sum_{i=1}^{n} c_i \prod_{j \neq i} (x - a_j)}{\prod_{i=1}^{n} (x - a_i)}$$

In the numerator, if $c_i \neq 0$ then $x - a_i$ does not divide the numerator and a_i is not a root, so it must be that all the $c_i = 0$. Therefore the set of reciprocals of monic degree 1 polynomials in linearly independent.