生产 N 件产品的过程中,涉及到零配件采购、检测、装配、成品检测、不合格品调换与拆解等多个环节。我们将通过数学建模来分析每个环节的成本,并通过MATLAB 程序实现最小生产成本的计算。

注意步骤(3)中关键条件:对拆解后的零配件,重复步骤(1)和步骤(2)的处理方式,我们选择不合格成品经过拆解,可以按照零件购买价格的 60%进行回收的方式进行处理。

这里有两个思路:固定生产的成品数,或者固定成功生产的产品数,任选其一即可。

1.定义参数

基本参数:

N:生产的成品数。

- a_{11}, a_{12}, a_{13} :零配件 1、零配件 2、成品的次品率。
- a_{21}, a_{22} : 分别表示零配件 1、零配件 2 的采购单价。
- a_{31}, a_{32}, a_{33} :零配件 1、零配件 2、成品的检测成本。

 c_1 :成品的市场售价。 c_2 :不合格产品调换损失(物流成本、信誉损失等)。 c_3 :拆解费用。 c_4 : 成品的装配成本为

田沙山

决策变量: x_1, x_2, x_3 :二值变量,表示是否对零配件 1、零配件 2 和成品进行检测,取值为 0 或 1; y_1 :二值变量,表示是否对不合格的成品进行拆解,取值为 0 或 1。

 $x_1 = 1$ 表示对零配件 1 进行检测. $x_1 = 0$ 表示不检测。

 $x_2 = 1$ 表示对零配件 2 进行检测, $x_2 = 0$ 表示不检测。·

 $x_3 = 1$ 表示对成品进行检测, $x_3 = 0$ 表示不检测

 $y_1 = 1$ 表示对不合格的成品进行拆解, $y_1 = 0$ 表示直接丢弃

2.成本公式

2.1 零配件采购和检测成本

1. 零配件 1, 2 的采购和检测:

采购数量:

获取更多数学建模相关资料关注【公众号:数模加油站】2024数模国赛交流群:295754845

$$\frac{N}{\left(1-a_{11}\cdot(1-x_1)\right)}$$

采购成本:

$$C_{\text{\$RH 1 RM}} = \frac{N}{\left(1 - a_{11} \cdot (1 - x_1)\right)} \cdot a_{21}$$

检测成本:

$$C_{\text{spec} + 1 \text{ low}} = x_1 \cdot \frac{N}{(1 - a_{11})} \cdot a_{31}$$

同理零配件 2 的采购数量: $\frac{N}{(1-a_{12}\cdot(1-x_2))}$, 采购成本: $C_{\text{零配件 2 采购}} = \frac{N}{(1-a_{12}\cdot(1-x_2))}$ a_{21} ,检测成本 $C_{\mathbb{R}^{n+1}}$ 检测成本 $C_{\mathbb{R}^{n+1}}$ a_{22} 加油药

3.2 成品的装配和检测成本

成品装配成本:

$$C_{\text{成品检测}} = x_3 \cdot N \cdot a_{33}$$

不检测成品时,次品将讲入市场,造成调换损失:

$$C_{$$
调换损失 $}=(1-x_3)\cdot N\cdot a_{13}\cdot c_2$

3.4 拆解成本

不合格成品经过拆解,可以按照零件购买价格的 60%进行回收:

$$C_{\text{ffff}} = y_1 \cdot N \cdot (1 - P_{\triangle A \text{GR}}) \cdot c_3 - y_1 \cdot N \cdot (1 - P_{\triangle A \text{GR}}) \cdot 0.6 \cdot c_1$$

其中,成品的合格率P_{合格成品为:}

$$P_{\text{合格成品}} = \left(1 - a_{11} \cdot (1 - x_1)\right) \cdot \left(1 - a_{12} \cdot (1 - x_2)\right) \cdot \left(1 - a_{13} \cdot (1 - x_3)\right)$$

总成本公式

总成本 C_{total} 包括零配件的采购和检测成本、成品装配和检测成本、调换损失和拆解成本:

$$C_{
m total} = C_{
m percent} + C_{
m$$

结果:

	1	2	3	4	5	6
方案 1 成 本	31044 .4444 44444 4	34700	33444.444 4444444	39500	33944.444 4444444	29657.894 7368421
方案 2 成 本	23293 .8444 44444 4	20743.200 0000000	25693.844 4444444	25543.200 0000000	23877.244 4444444	30570.694 7368421
方案 3 成 本	33444 .4444 44444 4	36500	33444.444 4444444	35500	34944.444 4444444	32157.894 7368421
方案 4 成 本	28010 .4444 44444 5	26204.000 0000000	28010.444 4444445	25204.000 0000000	26936.444 4444444	32781.894 7368421
方案 5 成 本	32377 .7777 77777 8	33950	34777.777 7777778	36250	30694.444 4444444	31868.421 0526316
方案 6 成 本方	26943 .7777	23654.000 0000000	29343.777 7777778	25954.000 0000000	25260.444 4444445	32492.421 0526316

获取更多数学建模相关资料关注【公众号:数模加油站】2024数模国赛交流群:295754845

	77777 8					
方案 7 成 本	34777 .7777 77777 8	35750	34777.777 7777778	32250	31694.444 4444444	34368.421 0526316
方案 8 成 本	31917 .7777 77777 8	30030.000 0000000	31917.777 7777778	26530.000 0000000	28834.444 4444444	34688.421 0526316
方案 9成 本	32822 .2222 22222 2	36200	35222.222 2222222	39750	42388.888 8888889	31552.631 5789474
方案 10 成本	27388 .2222 22222 2	25904.000 0000000	29788.222 2222222	29454.000 0000000	34380.888 8888889	32176 .631 5789474
方案 11 成本	35222 .2222 22222 2	38000	35222.222 2222222	35750	43388.888 8888889	34052.631 5789474
方案 12 成本	32362 .2222 22222 2	32280.000 0000000	32362.222 2222222	30030.000 0000000	37668.888 8888889	34372.631 5789474
方案 13 成本	34155 .5555 55555 6	35450	36555.555 5555556	36500	39138.888 8888889	33763.157 8947368

方案 14 成本	31295 .5555 55555 6	29730.000 0000000	33695.555 5555556	30780.000 0000000	36278.888 8888889	34083.157 8947368
方案 15 成本	36555 .5555 55555 6	37250	36555.555 5555556	32500	40138.888 8888889	36263.157 8947368
方案 16 成本	36555 .5555 55555 6	37250	36555.555 5555556	32500	40138.888 8888889	36263.157 8947368
最优策略	2	2	2	4	2	15

Matlab 代码:

本

本

function total_cost = production_cost(N, a11, a12, a13, a21, a22, a31, a32,
a33, c1, c2, c3, c4, detect_part1, detect_part2, detect_final, disassemble)

```
% 零配件 1 检测和采购
```

```
part1_quality_rate = (1 - a11 * (1 - detect_part1)); % 零配件 1 合格率 part1_quantity = N / part1_quality_rate; % 零配件 1 采购数量 part1_purchase_cost = part1_quantity * a21; % 零配件 1 采购成本 part1_testing_cost = detect_part1 * (N / (1 - a11)) * a31; % 零配件 1 检测成
```

% 零配件 2 检测和采购

```
part2_quality_rate = (1 - a12 * (1 - detect_part2)); % 零配件 2 合格率 part2_quantity = N / part2_quality_rate; % 零配件 2 采购数量 part2_purchase_cost = part2_quantity * a22; % 零配件 2 采购成本 part2_testing_cost = detect_part2 * (N / (1 - a12)) * a32; % 零配件 2 检测成
```

```
% 成品装配成本
   assembly_cost = N * c4; % 装配成本
   % 成品检测成本
   final_testing_cost = detect_final * N * a33;
   replacement_cost = (1 - detect_final) * N * a13 * c2;
   % 成品合格率
   product_quality_rate = part1_quality_rate * part2_quality_rate * (1 - a13
* (1 - detect_final));
   % 拆解成本和回收收益
   scrap_cost = disassemble * N * (1 - product_quality_rate) * c3;
   scrap_revenue = disassemble * N * (1 - product_quality_rate) * 0.6 * c1;
   % 总成本计算
   total_cost = part1_purchase_cost + part2_purchase_cost +
part1_testing_cost + part2_testing_cost + ...
              assembly_cost + final_testing_cost + replacement_cost +
scrap_cost - scrap_revenue;
end
%输入参数
N = 1000; % 生产的产品数量
a11 = 0.05; % 零配件 1 次品率
a12 = 0.04; % 零配件 2 次品率
a13 = 0.02; % 成品次品率
a21 = 10; % 零配件1单价
a22 = 15; % 零配件 2 单价
a31 = 2; % 零配件 1 检测成本
a32 = 3; % 零配件 2 检测成本
a33 = 5; % 成品检测成本
c1 = 100; % 成品市场售价
c2 = 20; % 不合格品调换损失
c3 = 8; % 拆解费用
c4 = 10; % 成品装配成本
% 决策变量
detect_part1 = 1; % 是否检测零配件1
detect_part2 = 1; % 是否检测零配件 2
detect_final = 1; % 是否检测成品
disassemble = 1; % 是否拆解不合格成品
```

```
% 计算总成本
total_cost = production_cost(N, a11, a12, a13, a21, a22, a31, a32, a33, c1,
c2, c3, c4, detect_part1, detect_part2, detect_final, disassemble);
fprintf('Total production cost: %.2f\n', total_cost);
%六种情况
clc,clear
N = 1000; % 生产的产品数量
a11=[0.1,0.2,0.1,0.2,0.1,0.05];% 零配件 1 次品率
a21=[4,4,4,4,4,4,4];% 零配件1单价
a31=[2,2,2,1,8,2];% 零配件 1 检测成本
                                            ·加油斯特
a12=[0.1,0.2,0.1,0.2,0.2,0.05];% 零配件 2 次品率
a22=[18,18,18,18,18];% 零配件2单价
a32=[3,3,3,1,1,3];% 零配件 2 检测成本
a13=[0.1,0.2,0.1,0.2,0.1,0.05];%成品次品率
c4=[6,6,6,6,6,6];% 成品装配成本
a33=[3,3,3,2,2,3];% 成品检测成本
c1=[56,56,56,56,56,56];%成品市场售价
c2 =[6,6,30,30,10,10];% 不合格品调换损失
c3 =[5,5,5,5,5,40];% 拆解费用
data=zeros(6,17);
for i=1:6
   number=1; minlable=0;minvalue=Inf;
   % 决策变量
   for detect_part1 = 1:2 % 是否检测零配件 1
      for detect part2 = 1:2 % 是否检测零配件 2
          for detect final = 1:2 % 是否检测成品
             for disassemble = 1:2 % 是否拆解不合格成品
                % 计算总成本
                total_cost = production_cost(N, a11(i), a12(i), a13(i),
a21(i), a22(i), a31(i), a32(i), a33(i), c1(i), c2(i), c3(i), c4(i),
detect_part1-1, detect_part2-1, detect_final-1, disassemble-1);
                data(i,number)=total_cost;
                if total cost<minvalue</pre>
                    minlable=number;minvalue=total_cost;
                end
                number=number+1;
                %fprintf('Total production cost: %.2f\n', total_cost);
             end
          end
      end
   end
data(i,17)=minlable;
end
data1=data';
```