

INSTITUTO FEDERAL FARROUPILHA DISCIPLINA: QUÍMICA (3° ANO)

Hidrocarbonetos: nomenclatura, classificação e propriedades

Vanize Caldeira da Costa

Uruguaiana, março de 2022

Hidrocarbonetos

Compostos formados apenas por carbono e hidrogênio @

Classificação

Hidrocarbonetos

Cadeia aberta

- Alcanos;
- Alcenos;
- · Alcinos.

Cadeia fechada e não-aromática

- Cicloalcanos;
- · Cicloalcenos.

Cadeia aromática

Tipo de ligação de carbono-carbono

Hidrocarbonetos aromáticos

Benzeno

Naftaleno

Cíclicos, planares, insaturados e com ligações duplas conjugadas

Regra de Hückel

Número de elétrons π deslocalizados dados pela equação 4n + 2 elétrons π , onde n = 0, 1, 2, 3...

Ressonância

Elétrons estão deslocalizados por todos os átomos do ciclo

Benzeno não é uma ou outra estrutura, mas uma mistura das duas (um híbrido de ressonância)

Hidrocarbonetos

Amplamente encontrados na natureza

Principais fontes:

Gás natural e o petróleo (suprir demanda de energia)

> alcanos, alcenos e compostos aromáticos

95% de hidrocarbonetos (90% metano – alcano)

Separados em frações pela sua destilação fracionada

Além de serem utilizados como fonte de energia, muitos compostos obtidos dessas frações são transformados em milhares de produtos, como medicamentos, pesticidas, plásticos e fibras sintéticas

Gás residual: gás combustível

GLP (gás liquefeito de petróleo): gás combustível engarrafado (uso doméstico e industrial)

Gasolina: combustível de automóveis (solvente)

Querosene: iluminação, combustível de aeronaves

Óleo combustível leve (diesel): combustível

Óleos combustíveis:

combustível e matéria-prima para lubrificantes

Óleo lubrificante leve: lubrificantes

Óleo lubrificante médio: lubrificantes

Resíduo: asfalto, piche e impermeabilizantes

REAÇÕES DE COMBUSTÃO

Extremamente exotérmicas

combustível (combustíveis fósseis são amplamente utilizados) comburente (O₂)

(promove a oxidação do combustível)

Reações exotérmicas - processos que liberam calor.

Pode ser convertido em trabalho

REAÇÕES DE COMBUSTÃO

Exemplo:

Principal componente do gás natural

Principal desvantagem do uso de combustíveis fósseis

A combustão (queima) de combustíveis fósseis libera algumas substâncias (Ex: CO₂, SO₂ e NO₂) que podem ocasionar danos ao meio ambiente e a saúde dos seres vivos

IMPACTOS AMBIENTAIS

Chuva ácida

Efeito estufa

Problemas respiratórios

DANOS A SAÚDE

Chuva ácida

Óxidos ácidos – reagem com água formando ácidos.

A chuva é naturalmente ácida devido à presença de dióxido de carbono (CO₂) na atmosfera

2 NO₂ +
$$H_2O \rightarrow HNO_3 + HNO_2$$

O aumento da acidez da chuva ocorre principalmente quando há um aumento na concentração de óxidos de enxofre e nitrogênio na atmosfera. Esses óxidos formam ácidos fortes, como o H₂SO₄ e o HNO₃, os quais diminuem consideravelmente o pH da água da chuva.

Fonte: https://www.educamaisbrasil.com.br/enem/quimica/chuva-acida

Efeito estufa

Aumento da
temperatura da Terra
ocasionado pela
retenção do calor
proveniente do sol por
certos gases presentes
na atmosfera

Efeito estufa

Aumento da
temperatura da Terra
ocasionado pela
retenção do calor
proveniente do sol por
certos gases presentes
na atmosfera

Fonte: SILVA, C. N. et al, 2009.

<u>Gases-estufa</u>: vapor d'água, **dióxido de carbono** (CO_2) , metano (CH_4) , óxido nitroso (N_2O) , clorofluorcarbonetos (CFCs), hidroclorofluorcarbonetos (HCFCs) e hexafluoreto de enxofre (SF_6) .

Nomenclatura de hidrocarbonetos

carbono presentes carbono-carbono do composto na molécula

INTERNATIONAL UNION OF PURE AND APPLIED CHEMISTRY

Numero de Carbonos	Prefixo
1	met
2	et
3	prop
4	but
5	pent
6	hex
7	hept
8	o ct
9	non
10	dec

Alcano - an

Alceno - en

Alcino - in

Grupo funcional	Sufixo
Álcool	ol
Aldeído	al
Cetona	ona
Hidrocarboneto	0

Nomenclatura de alcanos

Exemplo 1: CH₄

Hidrocarboneto

Prefixo + Infixo + Sufixo

Exemplo 2: H₃CCH₂CH₃

Hidrocarboneto

Prefixo + Infixo + Sufixo

Como prever a fórmula estrutural de um alcano a partir do seu nome?

Hexano

1°) Com base no prefixo do nome defina o número de átomos de carbono existente no composto.

"hex" - 6 átomos de carbono

2°) Com base no infixo do nome defina o tipo de ligações existente entre os átomos de carbono no composto.

"an" - apenas ligações simples

3°) Garanta a tetravalência dos átomos de carbono através da adição de átomos de hidrogênio no composto.

1. Encontre a cadeia contínua de carbono mais longa (cadeia principal);

2. Numere a cadeia mais longa começando pela extremidade da cadeia mais próximo do grupo substituinte.

3. Considerando a numeração da cadeia, anteriormente estabelecida, escreva o nome do substituinte, precedido pelo número que indica sua posição na cadeia carbônica. O nome da cadeia principal deve ser informado por último. Os números devem ser separados das palavras por hífen.

Substituintes – grupos alquila

Remoção de um átomo de hidrogênio de um alcano

Quando o hidrogênio que foi retirado for terminal os nomes dos grupos alquila são:

Alcano	Grupo Alquila
СН3—Н	CH ₃ —
	Metil
CH ₃ CH ₂ —H	CH ₃ CH ₂ —
	Etil
CH ₃ CH ₂ CH ₂ —H	CH ₃ CH ₂ CH ₂ —
	Propil
CH ₃ CH ₂ CH ₂ CH ₂ —H	CH ₃ CH ₂ CH ₂ CH ₂ —
	Butil

4. Com dois ou mais substituintes presentes na estrutura, dê a cada substituinte o número correspondente à sua posição na cadeia mais longa. Assim, o composto abaixo deve ser designado como 4-etil-2-metilhexano:

5. Quando dois substituintes estão presentes sobre o mesmo carbono, use o número duas vezes, sempre observando a ordem alfabética:

6. Com dois ou mais substituintes idênticos ao longo da cadeia mais longa, use prefixos di-, tri-, tetra-. Observe que todos os substituintes devem ser indicados com números. Vírgulas devem ser usadas para separar os números entre si.

7. Quando duas cadeias de igual comprimento competem para selecionar a cadeia principal, escolha a cadeia com maior número de substituintes.

8. Quando a primeira ramificação ocorre a uma distância igual das duas extremidades da cadeia mais longa, deve ser escolhido o nome que dá o menor número ao primeiro ponto que proporcionar uma diferenciação.

Nomenclatura de cicloalcanos

Exemplo 1:

Alcanos de cadeia aberta

Hidrocarboneto

Exemplo 2 (Cicloalcanos ramificados):

1,3-dimetilciclopentano

Nomenclatura de alcenos

Nomenclatura de alcenos

As regras IUPAC para designar os alcenos são similares aquelas dos alcanos

Exemplos:

$$C=CH$$

Não é necessário indicar a posição da ligação dupla

Nomenclatura de alcenos

$$H_2C = CHCH_2CH_3$$
but-1-eno

$$CH_3CH = CHCH_2CH_2CH_3$$
hex-2-eno

Nomenclatura de alcenos ramificados

Menor número deve ser atribuído a ligação dupla

Nomenclatura de cicloalcenos

Ciclobuteno

Nomenclatura de cicloalcenos ramificados

1-metilciclopenteno

Nomenclatura de alcinos

Nomenclatura de alcinos (2) Infixo - in

5-metilhex-1-ino

Pent-2-ino

4,4-dimetilpent-1-ino

Deve ser atribuído o menor possível a ligação tripla

Alcinos

Podem ser encontrados na natureza em algumas plantas

Picão

Inhame selvagem (Discorea mexicana)

Alguns possuem atividades antibióticas, antitumorais e contraceptivas

Hidrocarbonetos poliinsaturados

$$CH_3-C\equiv C-CH_2-C\equiv C-CH_2-CH_3$$
 octa-2,5-diino
 $CH_3-C\equiv C-CH_2-CH_2-C\equiv C-CH_2-C\equiv CH$ deca-1,4,8-triino