

Definition 2.7 (Semantik der Aussagenlogik)

 φ und ψ seien aussagenlogische Formeln und I eine Interpretation. Die Semantik der Aussagenlogik ist durch die *Modellrelation*, \models 'gegeben, die induktiv über dem Formelaufbau definiert ist:

$$I \models 1$$

$$I \not\models 0$$

$$I \models A_i :\Leftrightarrow I(A_i) = 1$$

$$I \models (\neg \varphi) :\Leftrightarrow I \not\models \varphi$$

$$I \models (\varphi \land \psi) :\Leftrightarrow I \models \varphi \text{ und } I \models \psi$$

$$I \models (\varphi \lor \psi) :\Leftrightarrow I \models \varphi \text{ oder } I \models \psi$$

$$I \models (\varphi \to \psi) :\Leftrightarrow I \not\models \varphi \text{ oder } I \models \psi$$

$$I \models (\varphi \to \psi) :\Leftrightarrow I \not\models \varphi \text{ oder } I \models \psi$$

$$I \models (\varphi \leftrightarrow \psi) :\Leftrightarrow I \not\models \varphi \to \psi \text{ und } I \models \psi \to \varphi$$

$$I \models (\varphi \leftrightarrow \psi) :\Leftrightarrow I \not\models (\varphi \leftrightarrow \psi)$$

Eine Interpretation I mit $I \models \varphi$ heißt Modell für φ .

Abbildung 2.6 demonstriert den Semantikbegriff an einem konkreten Beispiel.