CS311 HW1

Jongmin Lee

February 10 2024

Problem 1

$$\begin{array}{l} \frac{n(n+1)^2}{2} - \frac{n^2(n^2+1)}{4} + 78 \in O(n^3) \to \frac{n^2(n+1)^2}{2^2} - \frac{n^2(n^2+1)}{4} + 78 \leq C*n^3 \\ \to \frac{n^2(n^2+2n+1)}{4} - \frac{n^2(n^2+1)}{4} + 78 \leq C*n^3 \to \frac{n^4+2n^3+n^2-n^4-n^2}{4} + 78 \subset C*n^3 \\ \to \frac{2n^3}{4} + 78 \leq C*n^3 \to 4*(\frac{2n^3}{4} + 78) \leq 4*(C*n^3) \\ \to 2n^3 + 312 \leq 4*C*n^3 \to 2n^3 - (2n^3+312) \leq 4Cn^3 - 2n^3 \to 312 \leq n^3(4C-2) \end{array}$$
 Therefore, C is equal to 1 and n is equal to 7 since 7³ is equal to 343

2 Problem 2

Prove or disprove $2^{2^n} \in O(2^{2n})$

Since we know this is not true because left grows faster than right. We are going to disprove.

If we apply logarithm to this formula, then

$$\log C + 2n \ge 2^n \to (\log C + 2n) - 2n \ge (2^n) - 2n \to \log C \ge 2^n - 2n$$

As you can see $\log C$ is constant and $2^n - 2n$ is keep growing.

Which means that this assumption is wrong

Therefore, $2^{2^n} \notin O(2^{2n})$

3 Problem 3

Prove that any function that is in $O(\log_2(n))$ is also in $O(\log_3(n))$

When we make it to formula we get, $\log_2(n) \in O(\log_3(n))$ In logarithm there is $\log_a(b) = \frac{\log_c b}{\log_c a}$ We can use this to derive the solution. There exist $c, n_0, \frac{\log n}{\log 2} \le c * \frac{\log n}{\log 3}$ When we divide $\log n$ from both side we get, $\log^3 a \in \mathbb{R}$ $\frac{\log 3}{\log 2} \le c$ From this we can derive c and n_0 by doing same thing of logarithm's rule reversely which is $c = \log_2 3$ and $n_0 = 1$ since n disappeared.

Problem 4 4

Prove that if $f_1(n) \in O(g_1(n))$ and $f_2(n) \in O(g_2(n))$ then $f_1(n) + f_2(n) \in O(g_1(n) + g_2(n))$ In different form is There exist $c_1, n_{0_1}, f_1(n) \leq c_1 * g_1(n)$ and there exist c_2, n_{0_2} $f_2(n) \leq c * g_2(n)$

Since c_1 and c_2 is lowest boundary constant, bigger than c_1 and c_2 is not a big problem. Which means we can add it together and make it to $c_3 \rightarrow c_1 + c_2 = c_3$ Also it can be applied for n_{0_1} and n_{0_2} too, because after n_0 it's always bigger than previous. So, $n_{0_1} + n_{0_2} = n_{0_3}$

There exist c_3 and n_{0_3} ,

We are going to add $f_2(n)$ on both side of $f_1(n) \le c_3 * g_1(n)$ Then it become, $f_1(n) + f_2(n) \le c_3 * g_1(n) + f_2(n)$ and also add $c_3 * g_1(n)$ on both side of $f_2(n) \le c_3 * g_2(n)$ Then it become, $f_2(n) + c_3 * g_1(n) \le c_3 * g_2(n) + c_3 * g_1(n)$

What we can see from this is that both equation (1) and (2) have same part which is $c_3 * g_1(n) + f_2(n)$ which means that we can link two formulas together. That leads to this formula:

$$\begin{split} f_1(n) + f_2(n) &\leq c_3 * g_1(n) + f_2(n) \leq c_3 * g_1(n) + c_3 * g_2(n) \\ \text{which same as } f_1(n) + f_2(n) \leq c_3 * g_1(n) + c_3 * g_2(n) \\ \text{Because of this, } f_1(n) &\in O(g_1(n)) \text{ and } f_2(n) \in O(g_2(n)) \text{ then } \\ f_1(n) + f_2(n) &\in O(g_1(n) + g_2(n)) \text{ is right.} \end{split}$$

5 Problem 5

For this problem first loop with i++ is $\sum_{i=1}^{n}$

Second loop with j- - is $\sum_{i=1}^{n}$

And inner loop with k++ is $\sum_{i=-1}^{i+j}$

So if we add it up together equation of runtime for this loop is

$$\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{k=1}^{i+j} 1 \to \sum_{i=1}^{n} \sum_{j=1}^{n} i + j + 1 \to \sum_{i=1}^{n} \sum_{j=1}^{n} i + \sum_{i=1}^{n} \sum_{j=1}^{n} j + \sum_{i=1}^{n} \sum_{j=1}^{n} 1 = \sum_{i=1}^{n} \sum_{j=1}^{n} i = n * \sum_{i=1}^{n} i = n * \frac{n(n+1)}{2} = n * \frac{n^2 + n}{2} = \frac{n^3 + n^2}{2}$$

$$\sum_{i=1}^{n} \sum_{j=1}^{n} j = \sum_{i=1}^{n} \frac{n(n+1)}{2} = n * (\frac{n(n+1)}{2}) = \frac{n^3 + n^2}{2}$$

$$\sum_{i=1}^{n} \sum_{j=1}^{n} 1 = \sum_{i=1}^{n} 1 = n^2$$
So if we add it all up then we get

So if we add it all up then we get
$$2(\frac{n^3+n^2}{2}+\frac{n^3+n^2}{2}+n^2)=2n^3+4n^2$$

For worst case runtime which is biggest n, the answer for problem 5 is $O(n^3)$

6 Problem 6

Runtime of inner loop for this problem is $\sum_{j=1}^{n} 1 = n$

Since outer loop is while loop which divide i value by 2 each time we cannot use summation. So we need table.

number of iteration	i value	$\cos t$
0	n	n
1	$\frac{n}{2}$ $\frac{n}{2^2}$	n
2	$\frac{n}{2^2}$	n
		n
k	$\frac{n}{2^k}$	n

And what we can see is last i value is $\frac{n}{2^k}$ since loop ends at $i\geq 2$ situation, smallest value $\frac{n}{2^k}$ can be is 2. Which means $\frac{n}{2^k}=2$. From here we can use logarithm. If we apply logarithm this equation becomes $\log_2 2=k$ From logarithm we found k value which is $\log_2 2$. Since cost is constant n that runs $\log_2 2$ times, runtime of this code is $O(\log_2 2n)$