МГТУ МГТУ МГТУ

Лекция 4. Одномерные случайные величины

Велищанский Михаил Александрович

Московский Государственный Технический Университет имени Н.Э. Баумана

Москва, 2023 — 12

мгту мгту

OH-12

Одномерные случайные величины. Понятие случайной величины

Пример

Наудачу подбрасывается 3 игральных кубика. При выпадении: 3-x 6-к выигрыш — 1800 руб, 2-x 6-к выигрыш — 140 руб, 1-й 6-ки выигрыш — 20 руб, 0 6-к выигрыш — 0 руб. Каждому элементарному событию $N=6^3$ поставлено в соответствии число равное выигрышу, но до опыта нельзя предсказать, какой результат будет иметь место. В этом случае говорят, что выигрыш является случайной величиной.

Выигрыш	0	20	140	1800	
Вероятности	$\frac{125}{6^3}$	$\frac{75}{6^3}$	$\frac{15}{6^3}$	$\frac{1}{6^3}$	PH-12

Случайной величиной естественно назвать такую числовую величину, значение которой зависит от того, какой именно элементарный исход произошел в результате случайного эксперимента.

Случайная величина

Для задания случайной величины необходимо каждому элементарному исходу поставить в соответствие число — значение, которое принимает случайная величина, если в результате опыта произойдет именно этот элементарный исход.

Определение

Пусть $(\Omega, \mathfrak{B}, P)$ — вероятностное пространство. Скалярную функцию $X(\omega)$, заданную на Ω , называют случайной величиной (CB), если $\forall x \in \mathbb{R}$ множество $\{\omega : X(\omega) < x\}$ есть множество элементарных исходов, для которых $X(\omega) < x$ является событием.

Замечание

В дальнейшем, для краткости, вместо $\{\omega: X(\omega) < x\}$ будем писать $\{X(\omega) < x\}$ или просто $\{X < x\}$.

Случайная величина и ее функция распределения

Определение

Функцией распределения (вероятностей) СВ X называют функцию F(x), значение которой в точке x равно вероятности события $\{X < x\}$ т.е. события, состоящего их тех элементарных исходов ω , для которых $X(\omega) < x$: $F(x) = P\{X < x\}$.

Теорема

Функция распределения вероятностей удовлетворяет следующим свойствам.

- 1. $0 \le F(x) \le 1$.
- 2. $F(x_1) \leqslant F(x_2) \ \forall x_1 < x_2 \ (\tau.e. \ F(x) неубывающая \ ф-ция).$
- 3. $F(-\infty) = \lim_{x \to -\infty} F(x) = 0$, $F(+\infty) = \lim_{x \to +\infty} F(x) = 1$.
- 4. $P\{x_1 \leq X < x_2\} = F(x_2) F(x_1)$.
- 5. F(x) = F(x 0), где $F(x 0) = \lim_{y \to x 0} F(y)$ (т.е. F(x) непрерывная слева функция).

Случайная величина и ее функция распределения

Доказательство.

- 1. Т.к. $F(x) = P\{X < x\}$ то из свойства $0 \le P(A) \le 1$ следует что $0 \le F(x) \le 1$.
- 2. Пусть $x_1 < x_2$. Тогда $\{X < x_1\} \subset \{X < x_2\}$, следовательно, по свойству 3, $P\{X < x_1\} \le P\{X < x_2\} \Rightarrow F(x_1) \le F(x_2)$.
- 3. Поскольку $\{X < +\infty\}$ достоверное событие, то $P\{X < +\infty\} = 1.$

 T .к для любой возрастающей последовательности x_1,\ldots,x_n,\ldots $\{X<+\infty\}=ig|$ $\{X< x_n\}$, то в силу аксиомы непрерывности

$$\lim_{x_n\to+\infty} P\{X < x_n\} = P\{X < +\infty\} \Rightarrow F(+\infty) = \lim_{x\to+\infty} F(x) = 1.$$

Аналогично доказывается $F(-\infty) = \lim_{x \to \infty} F(x) = 0$.

4. Если $x_1 < x_2$ то событие $\{X < x_2\} = \{X < x_1\} \cup \{x_1 \leqslant X < x_2\}.$

$$P\{X < x_2\} = P\{X < x_1\} + P\{x_1 \le X < x_2\} \Rightarrow$$

$$\Rightarrow P\{x_1 \le X < x_2\} = P\{X < x_2\} - P\{X < x_1\} = F(x_2) - F(x_1).$$

Случайная величина и ее функция распределения

продолжение.

5. Пусть x_1, \dots, x_n, \dots — возрастающая последовательность такая, что $\lim_{n \to +\infty} x_n = x$. Событие $\{X < x\} = \bigcup_n \{X < x_n\}$. В силу *аксиомы непрерывности* $\lim_{n \to +\infty} P\{X < x_n\} = P\{X < x\}$ т.е. $\lim_{x_k \to x \to 0} F(x_k) = F(x)$.

Замечание

1. Пункт 2 можно доказать используя свойство 4 т.к. $F(x_2) - F(x_1) = P\{x_1 \leqslant X < x_2\} \geqslant 0 \Rightarrow F(x_2) \geqslant F(x_1)$.

MLTA

- 2. Можно доказать, что F(x) может иметь не более счетного множества разрывов первого рода.
- 3. Можно доказать, что любая неубывающая, непрерывная слева функция F(x), которая удовлетворяет условиям $F(-\infty) = 0$ и $F(+\infty) = 1$ является функцией распределения некоторой CB X.

Дискретные случайные величины

Определение

Случайную величину X называют дискретной, если множество ее возможных значений конечно или счетно.

Распределение дискретной СВ удобно описывать с помощью ряда распределения.

Определение

Рядом распределения (вероятностей) дискретной СВ X называют таблицу, состоящую из двух строк: в верхней строке перечислены все возможные значения СВ x_1, \ldots, x_n , а в нижней — вероятности $p_i = P\{X = x_i\}$ того, что СВ примет эти значения.

X	<i>x</i> ₁	<i>x</i> ₂	 Xi		Xn
P	p_1	<i>p</i> ₂	 pi	N	p _n

При этом в силу аксиомы нормированности $\sum_{i=1}^n p_i = 1.$

Построение функции распределения по ряду распределения

ΦH-12

Теорема

Георема
Если X — дискретная скалярная СВ со множеством возможных значений $\{x_k\}_{k=1}^{N\leqslant\infty}$, то ее функция распределения вероятностей F(x) имеет вид: ФН-12

$$\mathbf{M} \Gamma F(x) = \begin{cases} 0 & x \leq x_1, \\ \sum_{x_k < x} P\{X = x_k\} & x_1 < x \leq x_N, & \mathbf{Y} \\ 1 & x > x_N. \end{cases}$$

Доказательство.

Пусть X — дискретная CB, заданная своим рядом распределения, причем значения x_1, x_2, \ldots, x_n расположены в порядке возрастания. Тогда $\forall x \leqslant x_1 \{X < x\}$ — невозможное событие и, следовательно, $F(x) = P\{X < x\} = P\{\emptyset\} = 0$.

Построение функции распределения по ряду распределения

доказательство (продолжение).

 $= p_1 + p_2 + \ldots + p_k.$

Если
$$x_1 < x \leqslant x_N$$
, то $\exists k < N: \ x_k < x \leqslant x_{k+1}.$ Тогда $\{X < x\} = \{X = x_1\} \cup \{X = x_2\} \cup \ldots \cup \{X = x_k\}.$ Поскольку

$$\{X < x_2\} = \{X < x_1\} \cup \{x_1 \leqslant X < x_2\} = \varnothing \cup \{X = x_1\}$$
 ...
$$\{X < x_k\} = \{X < x_{k-1}\} \cup \{x_{k-1} \leqslant X < x_k\} =$$

$$= \{X < x_{k-1}\} \cup \{X = x_{k-1}\},$$
 to $P\{X < x\} = P\{X = x_1\} + P\{X = x_2\} + \ldots + P\{X = x_k\} =$

 $= p_1 + p_2 + \ldots + p_k.$ Если $x > x_N$, то $\{X < x\} = \Omega$ — достоверное событие и $P\{X < x\} = 1 = F(x).$

Биномиальное распределение

Определение

Дискретная СВ X распределена по биномиальному закону, если она принимает значения $0, 1, 2, \ldots, n$ с вероятностями $C_n^k p^k q^{n-k}, k=0,\ldots,n$, т.е. ее закон распределения имеет вид: $P\{X=k\}=P_n(k)=C_n^k p^k q^{n-k}, k=0,\ldots,n,\ q=1-p.$

Ряд распределения имеет вид:

Χ	0	1	 k	 n
Р	q ⁿ	$C_n^1 pq^{n-1}$	 $C_n^k p^k q^{n-k}$	 p ⁿ

Корректность определения биномиального распределения:

$$P_n(k) > 0$$
 u $\sum_{k=0}^n P_n(k) = \sum_{k=0}^n C_n^k p^k q^{n-k} = (p+q)^n = 1.$

Данное распределение является распределением числа успехов X в n испытаниях по схеме Бернулли с вероятностью успеха p.

Распределение Пуассона

Определение

Дискретная $CB\ X$ распределена по закону Пуассона, если она принимает неотрицательные целые значения с вероятностями

$$P\{X=k\}=P(k;\,\lambda)=rac{\lambda^k}{k!}e^{-\lambda},\quad k=0,1,\ldots,$$
 где $\lambda>0$ — параметр распределения Пуассона.

Ряд распределения имеет вид:

X	0	1	2	 n	
Р	$e^{-\lambda}$	$\lambda e^{-\lambda}$	$\frac{\lambda^2}{2!}e^{-\lambda}$	 $\frac{\lambda^n}{n!}e^{-\lambda}$	H-12

Корректность определения распределения Пуассона:

$$\sum_{i=0}^{\infty} P(i; \lambda) = \sum_{i=0}^{\infty} \frac{\lambda^{i}}{i!} e^{-\lambda} = e^{-\lambda} \sum_{i=0}^{\infty} \frac{\lambda^{i}}{i!} = e^{-\lambda} e^{\lambda} = 1.$$

Распределение Пуассона

Распределение Пуассона также называют законом редких событий, т.к. оно проявляется там, где производится большое число испытаний, в каждом из которых с малой вероятностью происходит редкое событие.

В соответствии с законом Пуассона распределены, например, число вызовов, поступивших в течение суток на телефонную станцию; число метеоритов, упавших в определенном районе; число распавшихся частиц при радиоактивном распаде вещества.

Кроме того, распределение Пуассона — предельный случай биномиального распределения при неограниченном количестве испытаний $(\lambda=np)$.

Геометрическое распределение

Рассмотрим схему Бернулли. Пусть CB X — число испытаний, которое необходимо провести до первого "успеха".

Тогда X — дискретная CB, принимающая значения $0,1,2,\ldots,n,\ldots$ Очевидно, что

$$P\{X=0\}=p,\; P\{X=1\}=qp,\; P\{X=2\}=qqp\;\dots P\{X=i\}=p\,q^i,\; i=0,1,\dots,\;$$
 где $q=1-p.$

 $\mathsf{T}.\mathsf{o}.$ ряд распределения $\mathsf{CB}\ X$ имеет вид:

ФH-12

X	0	1	2	 n	
Р	р	qp	q^2p	 $q^n p$	

Определение

CB X с таким рядом распределения называют распределенной по геометрическому закону.

Корректность определения геометрического распределения:

$$\sum_{i=0}^{\infty} P\{X=i\} = \sum_{i=0}^{\infty} p(1-p)^i = p \sum_{i=0}^{\infty} (1-p)^i = p \frac{1}{1-(1-p)} = 1.$$

ФH-12

Если скалярная CB X может принимать любое значение из интервала $I \subset \mathbb{R}$, то эту CB естественно назвать непрерывной. При этом возникает логическая проблема при определении $P\{X = x \in I\}$ (парадокс нулевой вероятности):

если
$$(P\{X=x\in I\})>0$$
 то $P\{X\subset I\}=\sum_{x\in I}P\{X=x\}=\infty;$ если $(P\{X=x\in I\})=0$ то $P\{X\subset I\}=\sum_{x\in I}P\{X=x\}=0.$

Данный парадокс объясняется некорректностью суммирования по несчетному множеству точек $x \in I$.

Определение

Определение Непрерывной называют случайную величину X, функцию распределения которой можно представить в виде сходящегося

несобственного интеграла
$$F(x) = \int\limits_{-\infty}^{x} f(y) \, dy$$
, функцию $f(x)$

называют плотностью распределения (вероятностей) случайной величины Х.

Замечание

Все реально встречающиеся плотности распределения CB являются непрерывными (за исключением, быть может, конечного числа точек) функциями. Следовательно функция распределения непрерывной CB является непрерывной на всей числовой прямой и в точках непрерывности плотности распределения f(x) имеет место следующее равенство: f(x) = F'(x).

Иногда используется следующее определение непрерывной СВ.

Определение

Непрерывной случайной величиной называют такую случайную величину X, вероятность попадания которой в любой бесконечно малый интервал бесконечно мала и для $\forall x \in \mathbb{R}$ определена функция $f(x) = \lim_{\Delta x \to 0+} \frac{P\{x \leqslant X < x + \Delta x\}}{\Delta x}$ называемая плотностью распределения (вероятностей) случайной величины X.

Теорема

Плотность распределения обладает следующими свойствами:

- 1. $f(x) \ge 0$.
- 2. $P\{x_1 \leqslant X < x_2\} = \int_{x_1}^{x_2} f(x) dx$.
- $3. \int_{-\infty}^{+\infty} f(x) dx = 1.$
- 4. $P\{x \le X < x + \Delta x\} \approx f(x)\Delta x$ в точках непрерывности плотности распределения.

МГТУ

5. $P{X = x} = 0$.

Доказательство.

1. Т.к. F(x) неубывающая функция, то $f(x) = F'(x) \ge 0$.

доказательство (продолжение).

2. Т.к. $P\{x_1 \leqslant X < x_2\} = F(x_2) - F(x_1)$ то из определения и свойства аддитивности сходящегося несобственного интеграла

$$F(x_2) - F(x_1) = \int_{-\infty}^{x_2} f(x) dx - \int_{-\infty}^{x_1} f(x) dx = \int_{x_1}^{x_2} f(x) dx.$$

3. Т.к. событие $\{-\infty < X < +\infty\}$ является достоверным, то

$$\int_{-\infty}^{\infty} f(x) dx = F(+\infty) - F(-\infty) = 1.$$

- 4. $P\{x\leqslant X< x+\Delta x)=F(x+\Delta x)-F(x)=\Delta F(x).$ Если Δx мало то $\Delta F(x)pprox dF(x)=F'(x)\Delta x=f(x)\Delta x.$
- 5. Т.к функция $F(x)=\int\limits_{-\infty}f(y)\,dy$ несобственный интеграл

от плотности, то F(x) непрерывная функция и $\lim_{\Delta x \to 0} \Delta F(x) = 0$.

Тогда
$$P\{X = x\} = \lim_{\Delta x \to 0} (F(x + \Delta x) - F(x)) = 0$$
.

Типичный вид плотности распределения:

Следствие

Из свойства 2 следует, что вероятность попадания непрерывной случайной величины в промежуток $[x_1, x_2)$ численно равна площади криволинейной трапеции ограниченной графиком функции плотности.

Из свойства 3 следует, что площадь, заключенная под всей кривой, изображающей плотность распределения равна 1.

Типичный вид плотности распределения:

Следствие

Из свойства 4 следует, что вероятность попадания $CB \ X$ в некоторый малый промежуток $(x, x + \Delta x)$ практически пропорциональна Δx с коэффициентом пропорциональности f(x).

Можно сказать, что непрерывная СВ реализует геометрическую схему с коэффициентом пропорциональности f(x) в малой окрестности τ . x.

МГТУ МГТУ МГТЗ

Типичный вид плотности распределения:

Следствие

Из свойства 5 следует, что вероятность попадания в любую (заданную до опыта) точку для непрерывной CB=0.

Определение

Если $[a,b] \subset \mathbb{R}$ множество возможных значений непрерывной $CB\ X$ и все они равновероятны, то говорят, что эта CB распределена на [a,b] равномерно.

MITY

Функция плотности f(x) равномерного распределения имеет вид:

$$f(x) = \begin{cases} \frac{1}{b-a}, & x \in [a,b]; \\ 0, & x \notin [a,b]. \end{cases}$$

Функция распределения F(x) равномерно распределенной СВ X имеет вид:

$$F(x) = \begin{cases} 0, & x < a; \\ \frac{x-a}{b-a}, & a \leqslant x \leqslant b; \\ 1, & x > b. \end{cases}$$

Вероятность попадания такой СВ в интервал $(x_1, x_2) \subset [a, b]$ равна $P(X \subset [x_1, x_2]) = F(x_2) - F(x_1) = (x_2 - x_1)/(b - a)$ т.е. пропорциональна длине этого интервала.

Т.о. равномерное распределение реализует схему геометрической вероятности при бросании точки на отрезок [a, b].

Непрерывные случайные величины. Экспоненциальное распределение

Определение

Случайная величина распределена по экспоненциальному (показательному) закону с параметром $\lambda>0$, если ее плотность распределения и функция распределения имеют вид:

$$f(x) = \begin{cases} 0, & x < 0; \\ \lambda e^{-\lambda x}, & x \geqslant 0. \end{cases} \quad F(x) = \begin{cases} 0, & x < 0; \\ 1 - e^{-\lambda x}, & x \geqslant 0. \end{cases}$$

Графики функции плотности и функции распределения:

Определение

Говорят, что непрерывная случайна величина X распределена по нормальному (или гауссову) закону, или имеет нормальное (гауссово) распределение с параметрами m и σ^2 и пишут $X \sim N(m,\sigma^2)$, если ее функция плотности распределения вероятностей имеет вид:

$$f(x) = \varphi_{m,\sigma}(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-m)^2}{2\sigma^2}} \quad (-\infty < m < +\infty, \ \sigma > 0).$$

График $\varphi_{m,\sigma}(x)$ имеет ось симметрии x=m и с ростом параметра σ он становиться все более пологим.

Функция распределения (не выражается в элементарных функциях) и ее график имеют следующий вид:

$$\Phi_{m,\sigma}(x) = \frac{1}{\sigma\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{(x-m)^2}{2\sigma^2}} dx.$$

Если $X \sim N(0,1)$ т.е. m=0 и $\sigma=1$, то говорят, что СВ X имеет стандартный

нормальный закон распределения и его функцию распределения обозначают $\Phi(x)$, а плотность распределения — $\varphi(x)$.

Поскольку функция распределения нормального закона представляет собой "неберущийся" интеграл, то используются таблицы значений функции распределения стандартного нормального распределения. Вероятность попадания в заданный интервал можно вычислить по следующей формуле:

$$P\{a \leq X < b\} = \int_{a}^{b} \varphi_{m,\sigma}(y) \, dy = \int_{a}^{b} \frac{1}{\sigma\sqrt{2\pi}} e^{-(y-m)^{2}/(2\sigma^{2})} \, dy =$$

$$= \begin{cases} x = \frac{y-m}{\sigma} \\ y \to a \Rightarrow x \to \frac{a-m}{\sigma} \\ y \to b \Rightarrow x \to \frac{b-m}{\sigma} \end{cases} \begin{cases} (b-m)/\sigma \\ (a-m)/\sigma \end{cases} = \int_{(a-m)/\sigma}^{(b-m)/\sigma} \varphi(x) \, dx = \Phi\left(\frac{b-m}{\sigma}\right) - \Phi\left(\frac{a-m}{\sigma}\right).$$

В ряде справочников приводятся значение интеграла Лапласа:

$$\Phi_0(x) = \int\limits_0^x arphi(y) dy$$
, обладающего следующими свойствами:

- 1. $\Phi_0(-\infty) = -0.5$, $\Phi_0(+\infty) = 0.5$.
- 2. $\Phi_0(0) = 0$.
- 3. $\Phi_0(-x) = -\Phi_0(x)$.
- 4. $\Phi_0(x) = P\{0 \leqslant X < x\}$ где $X \sim N(0, 1)$.

Пример

Пусть $X \sim N(m, \sigma)$. Найдем $P\{|X - m| < 3\sigma\}$. Согласно полученной ранее формуле:

$$\begin{split} &P\{|X-m|<3\sigma\}=P\{m-3\sigma< X< m+3\sigma\}=\\ &=\Phi_0\Big(\frac{m+3\sigma-m}{\sigma}\Big)-\Phi_0\Big(\frac{m-3\sigma-m}{\sigma}\Big)=2\Phi_0(3)\approx 0.9973. \end{split}$$

Данное значение известно как "правило 3х сигм".