Step-1

If $B = M^{-1}AM$ for an invertible matrix M

By the product rule of determinants, we get $\det B = \det(M^{-1}AM)$

 $= \det M^{-1} \times \det A \times \det M$

While determinant is a scalar quantity, the product of determinants is commutative

So, this equation can be written as $= \det A(\det M^{-1} \times \det M)$

 $= \det A \Big(\det M^{-1} M \Big)$

 $= \det A(\det I)$

We know that the determinant of the identity matrix is 1

In other words, $\det(M^{-1}AM) = \det A$

Step-2

Also,
$$\det A^{-1}B = \det \{ A^{-1}(M^{-1}AM) \}$$

= $\det(A^{-1})\det(A)$ By the above result

= $\det(A^{-1}A)$ By the product rule

 $= \det I$

=1