Part 0 Slide 1/many Convenor: R. A. Kennedy

Signal Processing ENGN2228

Lecturer: Dr. Alice P. Bates

Research School of Engineering, CECS
The Australian National University
Canberra ACT 2601 Australia

Second Semester

- What are Signals?
 - Examples of Signals
- 2 Independent Variables
- **3 Continuous Time Signals**
- **4** Discrete Time Signals
- **5** Periodic Signals
- **6** Signal Energy and Power
- 7 Odd and Even Signals

Part 1 Slide 3/many Convenor: R. A. Kennedy

Definition (Signals)

Signals carry information in their variations. Mathematically signals are functions of one or more independent variables.

Examples of signals are:

- speech and audio signals, output from a microphone
- voltages, currents
- images, stock market prices, currency exchange rates
- temperature, weather data
- biological signals
- • •

Signals are generally connected with physical quantities that vary with time or space or both.

- What are Signals?
 - Examples of Signals
- 2 Independent Variables
- **3 Continuous Time Signals**
- **4** Discrete Time Signals
- **5** Periodic Signals
- **6** Signal Energy and Power
- 7 Odd and Even Signals

Examples of Signals – Share Price (vs time)

Examples of Signals – Flute Sound Waveform (vs time)

Part 1 Slide 7/many Convenor: R. A. Kennedy

Examples of Signals – An Image (vs pixel space)

art 1 Slide 8/many Convenor: R. A. Kenned

Examples of Signals – iPhone Accelerometers (vs time)

Part 1 Outline

- 1 What are Signals?
 - Examples of Signals
- **Independent Variables**
- 3 Continuous Time Signals
- 4 Discrete Time Signals
- 5 Periodic Signals
- 6 Signal Energy and Power
- 7 Odd and Even Signals

Signals vary with respect to the "independent variables"

Continuous

- air temperature across Australia (latitude and longitude)
- petrol price as a function of time

Discrete

2etro/price

- digital image pixels (xy), 3D medical image voxels (xyz)
- petrol price for every day of the week

Australian Mon Tues Wed

Independent Variables – (dimension)

The independent variables can be one dimensional 1D, 2D, 3D, etc.

- A signal may vary with time (1D)
- An image varies with cartesian coordinates x and y in space (2D)
- The temperature can vary with position in a room horizontal x and y, and vertical z (3D)
- A movie is a 2D image that varies with time (3D)
- What dimension is a 3D movie?

Independent Variables – (dimension)

 fMRI – functional Magnetic Resonance Imaging – 3D volume of patient's brain is imaged every one or two seconds (4D, i.e., 3 space and 1 time dimensions)

Oversized pencil sharpener

fMRI

Independent Variables – (dimension)

• dMRI – diffusion Magnetic Resonance Imaging – 3D volume of patient's brain is imaged and the diffusion of water molecules is measured in 3D within every voxel - 6D image.

6D dMRI image

Brain wiring

Independent Variables – (course focus on 1D)

- For this course we will focus on 1D
- That is, a single independent variable
- Most cases this is "time"

Part 1 Outline

- 1 What are Signals?
 - Examples of Signals
- 2 Independent Variables
- **3** Continuous Time Signals
- **4** Discrete Time Signals
- **5** Periodic Signals
- **6** Signal Energy and Power
- 7 Odd and Even Signals

Definition (Continuous-Time, CT, Signals)

Continuous-Time Signals are signals whose independent variable is **continuous** and taken as time. That is, x(t) with continuum t.

 $x(t), \quad t \in \mathbb{R}$ (real numbers/time)

- ullet Signals from the real physical world are generally CT, such as voltage, pressure, velocity, etc, as functions of time t
- Examples of real-valued CT signals (functions) are shown next: one noisy and the other some dying signal with additive noise.
- Followed by an example of a complex-valued CT signal.

Continuous Time Signals – Examples (note (t))

Continuous Time Signals – Complex Example

$$x(t) \triangleq \exp(2\pi j t \exp(-0.6 t)) \exp(-0.5 t) \in \mathbb{C}$$

Part 1 Slide 19/many Convenor: R. A. Kennedy

Part 1 Outline

- 1 What are Signals?
 - Examples of Signals
- 2 Independent Variables
- **3 Continuous Time Signals**
- **4** Discrete Time Signals
- **5** Periodic Signals
- **6** Signal Energy and Power
- 7 Odd and Even Signals

Definition (Discrete-Time (DT) Signals)

Discrete-Time Signals are signals whose independent variable takes on only a **discrete set of values** and are generally taken to be integer values. That is, x[n] with discrete/integer n

$$x[n], \quad n \in \mathbb{Z} \text{ (integers)}$$

- Signals from the real physical world are generally not naturally DT, but most man-made and "sampled" signals are DT
- Examples of real-valued DT signals (discrete functions) are shown next slide:
 - x[n] is somewhat random
 - y[n] looks like a sampled sinusoid

Discrete Time Signals – Real-Valued Examples (note [n])

Discrete Time Signals

Reminder:

Continuous-Time (CT) signals: x(t) with t – continuous values¹

Discrete-Time (DT) signals: x[n] with n – integer values¹

 $^{^1}$ Round brackets \equiv continuous. Square brackets \equiv discrete.

Discrete Time Signals

- Natural DT signals? Less common, e.g., DNA base sequence
- Most DT signals are man-made
- Images, digital music, stock market data, etc

DT signals are increasingly important because they are in a form that permit calculations, that is, "processing", via computers (CPUs), graphics processing units (GPU's) and digital signal processors (DSPs)

Part 1 Outline

- 1 What are Signals?
 - Examples of Signals
- 2 Independent Variables
- **3 Continuous Time Signals**
- **4** Discrete Time Signals
- 5 Periodic Signals
- **6** Signal Energy and Power
- 7 Odd and Even Signals

Definition (Periodic Continuous Time Signals)

CT Signal x(t) is **periodic with period** T>0 if

$$x(t) = x(t+T)$$

for all real $t \in \mathbb{R}$ (or $\forall t \in \mathbb{R}$).

• If the signal is given by

$$x(t) = \sin(t),$$

then $x(t) = x(t + 2\pi)$, $\forall t$, and $x(t) = x(t + 4\pi)$, $\forall t$, etc.

• So, $x(t) = \sin(t)$ is periodic with period $T = 4\pi$. But, of course, $T = 4\pi$ is not the smallest period. This motivates the following definition:

Periodic Signals (CT definition)

Definition (Fundamental Period T_0)

The fundamental period, $T_0 > 0$, is the **smallest positive period** T for which x(t) is periodic.

- If $x(t) = \sin(t)$, then $T_0 = 2\pi$. If $x(t) = A\sin(\omega_0 t + \theta)$ or $x(t) = A\cos(\omega_0 t + \theta)$, then

$$T_0 = \frac{2\pi}{\omega_0}$$

- Also $x(t) = \exp(jt)$ has fundamental period $T_0 = 2\pi$. So complex signals can be periodic too. Use same formula calculate T_0
- $x(t) = \sin(4t)$ has fundamental period $T_0 = \pi/2$.
- $x(t) = \sin(3t)$ has fundamental period $T_0 = 2\pi/3$.
- $x(t) = \sin(t) + \sin(4t)$ has fundamental period $T_0 = 2\pi$.
- $x(t) = \sin(3t) + \sin(4t)$ has fundamental period $T_0 = 2\pi$.
- $x(t) = \sin(3t) + \sin(4t + \pi/7)$ has fundamental period $T_0 = 2\pi$.
- $x(t) = \sin(\pi t/3)/2 + \sin(\pi t/4 \pi/5)/2$ has fundamental period $T_0 = 24$.

Periodic Signals – Example

Definition (Periodic Discrete Time Signals)

DT Signal x[n] is **periodic with integer period** N > 0 if

$$x[n] = x[n+N]$$

for all integer $n \in \mathbb{Z}$.

Definition (Fundamental Period N_0)

The fundamental period, $N_0 > 0$, is the **smallest positive integer** N for which x[n] is periodic.

Periodic Signals[(DT definition)]1.2.2page 12

• For DT sinusoidal and exponential signals:

$$N = \frac{2\pi}{\omega_0} m$$

where $m=1,2,\ldots$ such that N is an integer.

- $x[n] = \cos[2\pi n]$, $\omega_0 = 2\pi$ therefore $N = \frac{2\pi}{2\pi} m$. For m = 1, $N_0 = 1$.
- $x[n] = 5\sin[\frac{6\pi n}{35}]$, $\omega_0 = \frac{6\pi}{35}$ therefore $N = \frac{35}{3}m$. For m = 3, $N_0 = 35$.
- $x[n] = \cos\left[\frac{\pi}{2}n\right] + \cos\left[\frac{\pi}{4}n\right]$, $N_0 = 8$ as lowest common multiple.

m = 4m

$$N_0 = 4 (m=1)$$

$$N = 2\pi m = 8m$$

Periodic Signals[(DT definition)]1.2.2page 12

- Are CT sinusoids always periodic? YES
- Are DT sinusoids always periodic? NO depends on the sampling rate
 - ω_0 must be a rational multiple of 2π .
- $x[n] = \cos\left[\frac{n}{6}\right]$, $\omega_0 = \frac{1}{6}$, $N = \frac{2\pi}{\frac{1}{6}} = 12m\pi$ so non-periodic.

Part 1 Outline

- 1 What are Signals?
 - Examples of Signals
- 2 Independent Variables
- **3 Continuous Time Signals**
- **4** Discrete Time Signals
- **5** Periodic Signals
- **6** Signal Energy and Power
- 7 Odd and Even Signals

