This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

POWERED BY Dialog

Computers semiconductor memory unit - with temp. monitoring of memory elements has temp. sensor, counter, selector, and logic gates

Patent Assignee: SMIRNOV R V

Patent Family

Patent Number	Kind	Date	Application Number Kind Date	Week	Type
SU 522523	Α	19760922		197719	В

Priority Applications (Number Kind Date): SU 2069040 A (19741018)

Abstract:

SU 522523 A

Memory unit with reduced power consumption includes temp. sensor 5, selector 7, counter 8, ANDgates 9 and OR-gate 10. The input of sensor 5 is connected to the body of semiconductor memory elements 1 and its output is connected via analog-digital converter 6 to selector 7, the outputs of which are connected to the first inputs of AND-gates 9. The second inputs of AND-gates 9 are connected to the corresp. outputs of counter 10 and their outputs are connected via OR-gate 10 to the second input of switch 2.

Frequency pulses from generator 4 are applied to the input of counter 8 which divides the frequency by Nk=2k (k=0, 1, 2,..., n is the number of bits of the counter). Sensor 5 measures the temp. of the body of one of the semiconductor elements of memory 1. The temp. converted into digital code by converter 6 is applied to selector 7, which selects the AND-gate 9 corresp. to this temp.

Derwent World Patents Index © 2004 Derwent Information Ltd. All rights reserved. Dialog® File Number 351 Accession Number 1702649

Союз Советских Социалистических Республик

Государственный комитет Совета Министров СССР по делам изобретений и открытий

ОПИСАНИЕ (п)522523 **ИЗОБРЕТЕНИЯ**

к авторскому свидетельству

(61) Дополнительное к авт. свид-ву -

(22) Заявлено 18.10.74 (21) 2069040/04

с присоединением заявки № -

(23) Приоритет —

(43) Опубликовано 25.07.76. Бюллетень № 27

(45) Дата опубликования описания 22.09.76

(51) M. Kл. G11C 11/34

(53) УДК 681.327.66 (088.8)

(72) Авторы изобретения

Р. В. Смирнов и Г. Д. Софийский

(71) Заявитель

(54)ЗАПОМИНАЮМЕЕ УСТРОЙСТВО

1

Изобретение относится к вычислительной технике и может быть использовано в запоминающих устройствах ЭВМ.

Известно полупроводниковое запоминающее устройство, содержащее элементы памяти, соединенные через ключ с блоком питания, генератор, в котором применено импульсное питание полупроводниковых элементов памяти [1]. При этом частота импульсного питания не зависит от температуры окружающей среды.

Наиболее близким к изобретению из известных устройств является полупроводниковое запоминающее устройство, содержащее полупроводниковые элементы памяти, соединенные через ключ с шиной питания и генератор [2]. Этому устройству свойственна сравнительно большая потребляемая мощность.

Цель изобретения — уменьшение потребляемой мощности устройства.

Для достижения этого в устройство введены датчик температуры, аналого-цифровой преобразователь, дешифратор, счетчик, элементы И, элемент ИЛИ. причем вход датчика температуры подключен к корпусу полупроводниковых элементов памяти, выход- 25 2

через аналого-цифровой преобразователь к дешифратору, выходы которого подключены к первым входам элементов И, выходы поспедних подключены к входам элемента ИЛИ, выход которого соединен с вторым входом ключа, вход счетчика соединен с генератором, выходы счетчика — с вторыми входами элементов И.

На чертеже приведена структурная схема предла-10 гаемого устройства.

Устройство содержит полупроводниковые элементы памяти 1, ключ 2, шину питания 3, генератор 4, датчик температуры 5, аналого-цифровой преобразователь 6, дешифратор 7, счетчик 8, элементы И 9, элемент ИЛИ 10.

Устройство работает следующим образом. Импульсы частоты с выхода генератора 4 поступают на вход счетчика 8, который осуществляет деление частоты на множитель $N_{\kappa} = 2^{\kappa}$ ($\kappa = 0, 1, 2, ... n$; n — разрядность счетчика). Датчик температуры 5 измеряет температуру корпуса одного из полупроводниковых элементов памяти 1. Температура, измеренная с помощью аналого-цифрового преобразователя 6, преобразуется в цифровой код темпера-

туры, поступающий на вход дешифратора 7, с помощью которого он расшифровывается и выбирает один из элементов И 9, соответств ующий данному инфровому коду температуры. Тем самым производится выбор последовательности импульсов, поступающих с выходов счетчика с частотой $\mathbf{f}_{\mathbf{k}} = \mathbf{f} \cdot \mathbf{2}^{-\mathbf{k}}$, соответствующей температуре корпуса полупроводниковых элементов памяти. Проходя через элемент ИЛИ 10, последовательность импульсов поступает далее на вход ключа 2, вырабатывая тем самым импульсное питание с частотой $\mathbf{f}_{\mathbf{k}} = \mathbf{f} \cdot \mathbf{2}^{-\mathbf{k}}$ для полупроводниковых элементов памяти 1.

Частота подачи импульсного питания уменьшается с понижением температуры корпуса полупроводниковых элементов памяти, что позволяет существенно снизить мощность, потребляемую устройством.

Данное устройство позволяет значительно сократить мощность рассеяния в запоминающем устройстве, в особенности, при работе в области низких температур окружающей среды.

Формула изобретения

Запоминающее устройство, содержащее полупроводниковые элементы памяти, соединенные через ключ с шиной питания, о т л и ч а ю щ е е с я тем, что, с целью уменьшения потребляемой мощности устройства, оно содержит датчик температуры, аналого—цифровой преобразователь, дешифратор, счетчик, элементы И, элемент ИЛИ, причем вход датчика температуры подключен к корпусу полупроводниковых элементов памяти, выход — через аналого—цифровой преобразователь к дешифратору, выходы которого подключены к первым входам элементов И, выходы которых подключены к входам элемента ИЛИ, выход элемента ИЛИ соединен с вторым входом ключа, вход счетчика соединен с генератором, выход счетчика — с вторыми входами элементов И.

Источники информации, принятые во внимание при экспертизе:

- 1. Журнал "Электроника "№ 6, стр. 62-63, 1974.
- 2. Патент США, кл. 340—173, № 3703710, опубл. 1971.

 Составитель В. Фролов

 Редактор Е. Гончар
 Техред
 Г. Родак
 Корректор
 П. Кравченко

 Заказ 3599/330
 Тираж 723
 Подписное

ЩНИИПИ Государственного комитета Совета Министров СССР по делам изобретений и открытий

113035, Москва. Ж-35, Раушская наб., д.4/5 Филиал ППП " Патент ", г. Ужгород, ул. Проектная, 4