Sa funcione $g:\mathbb{R} \to \mathbb{R}$ definite de $g(x) = \sqrt[3]{x}$ NON $e^{-\frac{1}{2}}$ derivabile in 0, ma $g'(0) = +\infty$ CONTROLLARE PER COMPITO!

DISEGNARLA CON GEOGEBRA

$$= \lim_{h \to 0} \frac{\sqrt[3]{h}}{h} \cdot \frac{\sqrt[3]{h^2}}{\sqrt[3]{h^2}} = \lim_{h \to 0} \frac{\sqrt[3]{h^3}}{h \sqrt[3]{h^2}} = \lim_{h \to 0} \frac{\ln \sqrt[3]{h^2}}{h \sqrt[3]{$$

$$= \lim_{h \to 0} \frac{1}{\sqrt[3]{h^2}} = \frac{1}{0^+} = +\infty$$

La derivata in 0 é + 00

g(x)= 3/x von é derivatile

in 0 (anche se la derivata

esiste, ma vole + 00)

DI NON DERIVABILITÀ PUNTI

1) $f_{+}(x_{0}) \neq f_{-}(x_{0})$ DERIVATA DESTRA \neq DERIVATA SINISTRA

E ALMENO UNA DEILE DUE É FINITA => XO ÉUN PUNTO ANGOLOSO

IN BLU TRATTESGIATO CI SONO LE TANGENTI

TUTTI E TRE QUESTI CASI Xo E W PUNTO ANGOLOSO

2)
$$f_{+}^{1}(x_{o})$$
 e $f_{-}^{1}(x_{o})$ some infiniti DI SEGNO OPPOSTO

XO E UNA CUSPIDE

(la tangente é verticale)

3)
$$f'(x_0) = +\infty$$
 OPPURE $f'(x_0) = -\infty$ $\times_0 = \infty$ $\times_0 = \infty$

 $f: I \rightarrow \mathbb{R}$

I internalls $x_o \in I$

f é DERIVABILE in xo => f é CONTINUA in xo

Il viceverso NON VALE!

Infatti una funcione pur essere continua in Xo, me son derivabile in Xo. Ad es.

f(x)=|x| = continue in 0, me non derivalile in 0, dove he un PUNTO ANGOLOSO $[f'_{+}(0)=1 \ e \ f'_{-}(0)=-1]$