Due date: 16 August 2023

Total marks: 30

[4]

[15]

[6]

[5]

1. Consider a spring-mass oscillator of time period T as shown in the figure below. There is a wall A/2 distance to the right from the equilibrium position of the oscillator.

 $A \xrightarrow{A/2}$

The oscillator is given an initial displacement A towards the left and released from the rest. Considering all collisions to be elastic, what is the time period of the oscillator?

2. For an oscillator we found $\omega = \pm \omega_{\circ}$. If it started with x(0) = A and $\dot{x}(0) = \frac{\omega_{\circ} A}{2}$ then find x(t).

Can you solve the problem using only $Ae^{i\omega_o t}$? Why not?

3. Consider the spring-mass system shown in the figure below:

- (a) Find the equilibrium positions $(x_1^{\circ} \text{ and } x_2^{\circ})$. Assuming the equilibrium length of the spring a_{\circ} to be $\frac{L}{10}$.
- (b) Assuming unequal masses m_1 and m_2 and $k_1 = k_2 = k$, find the longitudinal normal mode frequencies.
- (c) For longitudinal modes, assuming equal masses $m_1 = m_2$ (you may start from the known solutions), find the $x_1(t)$ and $x_2(t)$ for motion starting from the rest with an initial displacement $x_1(0) = A$ and $x_2(0) = \frac{A}{2}$.
- 4. Find the normal modes (frequencies and ratios of amplitude) for the transverse oscillation of the following system: [7]

PH2101