

How about Munich?

- ▶ Munich (München) 3rd largest city in Germany (1.5 mil inhabitants) and growing fast
- Located at the south of Germany in the province of Bavaria close to the Alps mountains
- ► Famous for its beer festival Oktoberfest
- Economicaly strongest city in Germany large business potential

Project Introduction

- Purpose of this project is to find neighbhorhoods with a space for a new gym venue
- Munich has 25 neighborhoods (Stadtbezirke) that vary in size and wealthiness
- Comparison of neighborhoods
 - number of gyms vs population
 - Affluence average rent per sqm of private estates
- ► Goal:
 - find the neighborhoods with high population and low number of gyms
 - what kind of gym to offer (simple vs luxurious)

Data Collection and Source

- 3 data inputs:
 - Foursquare API
 - ▶ List of gyms and their addresses
 - ▶ Format: json file
 - ▶ Demographical data
 - number of inhabitants in each neighborhood
 - ▶ source: Munich city council statistical website
 - ► Format: MS Excel file
 - Private property rent prices
 - ► Average rent per sqm in each neighborhood
 - ► Source: https://suedbayerische-immobilien.de/Mietpreise-Muenchen-Stadtteile
 - ► Format: table on the webpage

Methodology

- Foursquare API venue info
 - Collected number of gyms in each area and their addresses
 - ► Radius set high to cover large neighborhoods -> duplicated venues, filtered unique venues and checked the correcsponding venues using Geopy Nominatim library
- Demographic file
 - ► Selected population 15 65 years old (customer base)
 - Calculated population share for additional gym in each area "Potential Customers"
- ► Rental price data
 - ▶ Table extracted from website using Beautiful Soup, applied name conversion
- ► Merged all three columns into one dataframe

K-Means Clustering

- ► Final data frame segmented into 4 clusters using K-Means algorithm
- Inputs population per gym and the average rent in each neighborhood
- Clusters plotted into scatter plot
- ► Clusters 1 and 3 our target
 - neighborhoods with large population and no gyms
 - ranging over a variety of rent prices cheaper as well as affluent areas

Optimal Neighborhoods for New Gym

- ► Cluster 1 medium to lower rent areas, welcome simple gym with average membership fees
 - Obergiesing Fasangarten
 - Untergiesing Harlaching
 - ▶ Hadern
- ► Cluster 3 high rent areas offering upscale venues, ideal for luxury gym with a lot of additional facilities
 - ► Ludwigsvorstadt Isarvorstadt
 - Schwabing West

Population 15 - 65 Yrs	Number of Gyms	Potential Customers	Rent EUR/sqm	Cluster Label
40440.0	0.0	40440	16.4	3
49129.0	0.0	49129	15.2	3
39182.0	0.0	39182	12.9	1
36244.0	0.0	36244	13.8	1
32602.0	0.0	32602	12.8	1
	40440.0 49129.0 39182.0 36244.0	40440.0 0.0 49129.0 0.0 39182.0 0.0 36244.0 0.0	40440.0 0.0 40440 49129.0 0.0 49129 39182.0 0.0 39182 36244.0 0.0 36244	49129.0 0.0 49129 15.2 39182.0 0.0 39182 12.9 36244.0 0.0 36244 13.8

