What do we want? And when do we want it? Alternative objectives and their implications for experimental design.

Maximilian Kasy

March 2020

Experimental design as a decision problem

Experimental design decision:

• How to assign treatments, given the available information and objective.

Key ingredients defining a decision problem:

- 1. Objective function:
 - What is the ultimate goal? What will the experimental data be used for?
- 2. Action space:
 - What information can experimental treatment assignments depend on?
- 3. Ways to evaluate a decision function:
 - a Risk function (expected loss conditional on parameters)
 - b Bayes risk (averaging risk function over prior distribution of parameters)
 - Minimax risk (worst case risk function over some set of parameters).

Experimental design as a decision problem

Experimental design decision:

• How to assign treatments, given the available information and objective.

Key ingredients defining a decision problem:

- 1. Objective function:
 - What is the ultimate goal? What will the experimental data be used for?
- 2. Action space:
 - What information can experimental treatment assignments depend on?
- 3. Ways to evaluate a decision function
 - a Risk function (expected loss conditional on parameters)
 - b Bayes risk (averaging risk function over prior distribution of parameters)
 - c Minimax risk (worst case risk function over some set of parameters).

Experimental design as a decision problem

Experimental design decision:

How to assign treatments, given the available information and objective.

Key ingredients defining a decision problem:

- 1. Objective function:
 - What is the ultimate goal? What will the experimental data be used for?
- 2. Action space:

What information can experimental treatment assignments depend on?

- 3. Ways to evaluate a decision function:
 - a Risk function (expected loss conditional on parameters),
 - b Bayes risk (averaging risk function over prior distribution of parameters),
 - c Minimax risk (worst case risk function over some set of parameters).

Four possible types of objective functions for experiments

- 1. Squared error for estimates.
 - For instance for the average treatment effect.
 - Possibly weighted squared error of multiple estimates.
- 2. **In-sample average** outcomes.
 - Possibly transformed (inequality aversion),
 - costs taken into account, discounted.
- 3. Policy choice to maximize average observed outcomes.
 - Choose a policy after the experiment.
 - Evaluate the experiment based on the implied policy choice.
- 4. Policy choice to maximize utilitarian welfare.
 - Similar, but welfare is not directly observed.
 - Instead, maximize a weighted average (across people) of equivalent variation.

This talk:

Review of several of my papers, considering each of these in turn.

Space of possible experimental designs

What information can treatment assignment condition on?

- 1. Covariates?
 - ⇒ Stratified and targeted treatment assignment.
- 2. Earlier outcomes for other units, in sequential or batched settings?
 - \Rightarrow Adaptive treatment assignment.

This talk:

- First conditioning on covariates, then settings without conditioning (for exposition only).
- First non-adaptive, then adaptive experiments.

Two approaches to optimization

- 1. Fully optimal designs.
 - Conceptually straightforward (dynamic stochastic optimization), but numerically challenging.
 - Preferred in the economic theory literature,
 which has focused on tractable (but not necessarily practically relevant) settings.
 - Do not require randomization.
- Approximately optimal or rate optimal designs.
 - Heuristic algorithms.
 - Prove (rate)-optimality ex post.
 - Preferred in the machine learning literature.
 This is the approach that has revived the bandit literature and made it practically relevant.
 - Might involve randomization.

This talk:

- Approximately optimal algorithms.
- Bayesian algorithms, but we characterize the *risk function*, i.e., behavior conditional on the true parameter.

This talk: Several papers considering different objectives

Minimizing squared error:

Kasy, M. (2016). Why experimenters might not always want to randomize, and what they could do instead. *Political Analysis*, 24(3):324–338.

Maximizing in-sample outcomes:

Caria, S., Gordon, G., Kasy, M., Osman, S., Quinn, S., and Teytelboym, A. (2020). Job search assistance for refugees in Jordan: An adaptive field experiment. *Work in progress*.

Optimizing policy choice – average outcomes:

Kasy, M. and Sautmann, A. (2020). Adaptive treatment assignment in experiments for policy choice. *Working Paper*. (R&R at Econometrica)

• Optimizing policy choice – utilitarian welfare:

Kasy, M. (2020). Adaptive experiments for optimal taxation. *Work in progress*. building on

Kasy, M. (2019). Optimal taxation and insurance using machine learning – sufficient statistics and beyond. *Journal of Public Economics*.

Literature

- Statistical decision theory: Berger (1985), Robert (2007).
- Non-parametric Bayesian methods: Ghosh and Ramamoorthi (2003), Williams and Rasmussen (2006), Ghosal and Van der Vaart (2017).
- Stratification and re-randomization: Morgan and Rubin (2012), Athey and Imbens (2017).
- Adaptive designs in clinical trials: Berry (2006), FDA et al. (2018).
- Bandit problems:
 Weber et al. (1992),
 Bubeck and Cesa-Bianchi (2012),
 Russo et al. (2018).

- Best arm identification: Glynn and Juneja (2004), Bubeck et al. (2011), Russo (2016).
- Bayesian optimization: Powell and Ryzhov (2012), Frazier (2018).
- Reinforcement learning: Ghavamzadeh et al. (2015), Sutton and Barto (2018).
- Optimal taxation:
 Mirrlees (1971),
 Saez (2001),
 Chetty (2009),
 Saez and Stantcheva (2016).

Minimizing squared error

Maximizing in-sample outcomes

Optimizing policy choice: Average outcomes

Optimizing policy choice: Utilitarian welfare

Conclusion and summary

No randomization in general decision problems

Theorem (Optimality of deterministic decisions)

Consider a general decision problem.

Let $R^*(\cdot)$ equal either Bayes risk or worst case risk. Then:

- 1. The optimal risk $R^*(\delta^*)$, when considering only deterministic procedures is no larger than the optimal risk when allowing for randomized procedures.
- 2. If the optimal deterministic procedure is unique, then it has strictly lower risk than any non-trivial randomized procedure.

Sketch of proof (Kasy, 2016):

- The risk function of a randomized procedure is a weighted average of the risk functions of deterministic procedures.
- The same is true for Bayes risk and minimax risk.
- The lowest risk is (weakly) smaller than the weighted average.

Minimizing squared error: Setup

- 1. **Sampling:** Random sample of n units. Baseline survey \Rightarrow vector of covariates X_i .
- 2. **Treatment assignment:** Binary treatment assigned by $D_i = d_i(\mathbf{X}, U)$. \mathbf{X} matrix of covariates; U randomization device.
- 3. Realization of outcomes: $Y_i = D_i Y_i^1 + (1 D_i) Y_i^0$
- 4. **Estimation:** Estimator $\widehat{\beta}$ of the (conditional) average treatment effect, $\beta = \frac{1}{n} \sum_{i} E[Y_{i}^{1} Y_{i}^{0}|X_{i}, \theta]$

Prior:

- Let $f(x,d) = E[Y_i^d | X_i = x]$.
- Let C((x,d),(x',d')) be the prior covariance of f(x,d) and f(x',d').

Expected squared error

- Notation:
 - $C: n \times n$ covariance matrix of the $f(X_i, D_i)$.
 - \bar{C} : n vector of covariances of $f(X_i, D_i)$ with the CATE β .
 - $\widehat{\beta}$: The posterior best linear predictor of β .
- Kasy (2016):

The Bayes risk (expected squared error) of a treatment assignment equals

$$\operatorname{\sf Var}(eta|m{X}) - \overline{C}' \cdot (C + \sigma^2 I)^{-1} \cdot \overline{C},$$

where the prior variance $Var(\beta|X)$ does not depend on the assignment, but \overline{C} and C do.

Optimal design

- The **optimal design** minimizes the Bayes risk (expected squared error).
- Simple approximate optimization algorithm: Re-randomization.
- For continuous covariates, the optimum is generically unique, and a non-random assignment is optimal.
- Expected squared error is a measure of balance across treatment arms.
- Variations:
 - Different estimators (difference in means, or linear controls for covariates).
 - Different priors (symmetric across treatments, or assuming functional form).
- Two Caveats:
 - Randomization inference requires randomization outside of decision theory.
 - If minimizing worst case risk given procedure, but not given randomization, mixed strategies can be optimal (Banerjee et al., 2017).

Minimizing squared error

Maximizing in-sample outcomes

Optimizing policy choice: Average outcomes

Optimizing policy choice: Utilitarian welfare

Conclusion and summary

Maximizing in-sample outcomes

- Minimizing squared error is appropriate when you want to get precise estimates of policy effects.
- But in many settings we want to also **help participants** as much as possible.
- As argued by Kant (1791):
 - Act in such a way that you treat humanity, whether in your own person or in the person of any other, never merely as a means to an end, but always at the same time as an end.
- If we care about both participant welfare and estimator precision, we might try to trade both off.
- This is done by the γ -Thompson algorithm that I will introduce shortly. (Please let me know if you have a better name for the algorithm!)

Adaptive targeted assignment: Setup

- Waves t = 1, ..., T, sample sizes N_t .
- Treatment $D \in \{1, \dots, k\}$, outcomes $Y \in \{0, 1\}$, covariate $X \in \{1, \dots, n_x\}$.
- Potential outcomes Y^d .
- Repeated cross-sections: $(Y_{it}^0, \dots, Y_{it}^k, X_{it})$ are i.i.d. across both i and t.
- Average potential outcomes:

$$\theta^{dx} = E[Y_{it}^d | X_{it} = x].$$

• **Regret**: Difference in average outcomes from decision *d* versus the optimal decision.

$$\Delta^{dx} = \max_{d'} \theta^{d'x} - \theta^{dx}.$$

Average in-sample regret:

$$\frac{1}{M}\sum_{i,t}\Delta^{D_{it}X_{it}}.$$

Thompson sampling and γ -Thompson sampling

- Thompson sampling
 - Old proposal by Thompson (1933).
 - Popular in online experimentation.
- Assign each treatment with probability equal to the posterior probability that it is optimal, given X = x and given the information available at time t.

$$p_t^{dx} = P_t \left(d = \underset{d'}{\operatorname{argmax}} \ \theta^{d'x} \right).$$

• γ -**Thompson sampling**: Assign each treatment with probability equal to

$$(1-\gamma)\cdot p_t^{dx} + \gamma/k$$
.

Compromise between full randomization and Thompson sampling.

My development economics co-authors want to both publish estimates and help!

Limiting behavior

Theorem (Caria et al. 2020)

Given θ , as $t \to \infty$:

- 1. The cumulative share q_t^{dx} allocated to treatment d in stratum x converges in probability to $\bar{q}^{dx} = (1 \gamma) + \gamma/k$ for $d = d^{*x}$, and to $\bar{q}^{dx} = \gamma/k$ for all other d.
- 2. Average in-sample regret converges in probability to

$$\gamma \cdot \left(\frac{1}{k} \sum_{x,d} \Delta^{dx} \cdot p^{x} \right).$$

3. The normalized average outcome for treatment d in stratum x $\sqrt{M_t} \left(\bar{Y}_t^{dx} - \theta_0^{dx} \right)$, converges in distribution to

$$N\left(0, \frac{\theta_0^{dx}(1 - \theta_0^{dx})}{\bar{q}^{dx} \cdot p^x}\right)$$

Limiting behavior

Theorem (Caria et al. 2020)

Given θ , as $t \to \infty$:

- 1. The cumulative share q_t^{dx} allocated to treatment d in stratum x converges in probability to $\bar{q}^{dx} = (1 \gamma) + \gamma/k$ for $d = d^{*x}$, and to $\bar{q}^{dx} = \gamma/k$ for all other d.
- 2. Average in-sample regret converges in probability to

$$\gamma \cdot \left(\frac{1}{k} \sum_{x,d} \Delta^{dx} \cdot p^x\right).$$

3. The normalized average outcome for treatment d in stratum x $\sqrt{M_t} \left(\bar{Y}_t^{dx} - \theta_0^{dx} \right)$, converges in distribution to

$$N\left(0, \frac{\theta_0^{dx}(1 - \theta_0^{dx})}{\bar{q}^{dx} \cdot p^x}\right)$$

Limiting behavior

Theorem (Caria et al. 2020)

Given θ , as $t \to \infty$:

- 1. The cumulative share q_t^{dx} allocated to treatment d in stratum x converges in probability to $\bar{q}^{dx} = (1 \gamma) + \gamma/k$ for $d = d^{*x}$, and to $\bar{q}^{dx} = \gamma/k$ for all other d.
- 2. Average in-sample regret converges in probability to

$$\gamma \cdot \left(\frac{1}{k} \sum_{x,d} \Delta^{dx} \cdot p^{x}\right).$$

3. The normalized **average outcome** for treatment d in stratum x, $\sqrt{M_t} \left(\bar{Y}_t^{dx} - \theta_0^{dx} \right)$, converges in distribution to

$$N\left(0, \frac{\theta_0^{dx}(1-\theta_0^{dx})}{\bar{q}^{dx}\cdot p^x}\right).$$

Interpretation

- In-sample regret is (approximately) proportional to the share γ of observations fully randomized.
- The variance of average potential outcome estimators is proportional
 - to $\frac{1}{\gamma/k}$ for sub-optimal d,
 - to $\frac{1}{(1-\gamma)+\gamma/k}$ for conditionally optimal d.
- The variance of treatment effect estimators, comparing the conditional optimum to alternatives, is therefore decreasing in γ.
- An **optimal** choice of γ could **trade off** regret and estimator variance.

In the application coming next, we chose $\gamma=.2$, somewhat arbitrarily.

Application: Job search assistance for refugees in Jordan

- Jordan 2019, International Rescue Committee.
 - Participants: Syrian refugees and Jordanians.
 - Main locations: Amman and Irbid.
 - Sample size: 3770.
- Context: Jordan compact.

Gave refugees the right to work in low-skilled formal jobs.

- 4 Treatments:
 - 1. Cash: 65 JOD (91.5 USD).
 - 2. Information: On (i) how to interview for a formal job, and (ii) labor law and worker rights.
 - 3. Nudge: A job-search planning session and SMS reminders.
 - 4. Control group.
- Conditioning variables for treatment assignment: 16 strata, based on
 - 1. nationality (Jordanian or Syrian),
 - 2. gender,
 - 3. education (completed high school or more), and
 - 4. work experience (having experience in wage employment).

Irbid and Amman

Assignment probabilities over time

Assignment probabilities over time, by stratum

Effect heterogeneity: Posterior means and 95% credible sets

Minimizing squared error

Maximizing in-sample outcomes

Optimizing policy choice: Average outcomes

Optimizing policy choice: Utilitarian welfare

Conclusion and summary

Optimizing policy choice: Average outcomes

- Setup: As before, but without covariates (just for presentation).
- Suppose you will **choose a policy** after the experiment, based on posterior beliefs,

$$d_T^* \in \operatorname*{argmax}_d \hat{\theta}_T^d, \qquad \qquad \hat{\theta}_T^d = E_T[\theta^d].$$

- Evaluate experimental designs based on expected welfare (ex ante, given θ).
- Equivalently, expected policy regret

$$\mathsf{R}(\mathsf{T}) = \sum_{d} \Delta^d \cdot P\left(d_T^* = d\right), \qquad \qquad \Delta^d = \max_{d'} \theta^{d'} - \theta^d.$$

- Justification:
 - Continuing experimentation is costly and requires oversight.
 - Political constraints might prevent indefinite experimentation.
 - Experimental samples are often small relative to the policy-population.

The rate-optimal allocation

- For good designs, R(T) converges to 0 at a fast rate.
- We can characterize the oracle-optimal shares \bar{q}^d allocated to each treatment d, given θ , as follows:
- 1. The **rate** of convergence to 0 of **policy regret** $R(T) = \sum_{d} \Delta^{d} \cdot P(d_{T}^{*} = d)$ is equal to the slowest rate of convergence of $P(d_{T}^{*} = d)$ across the sub-optimal d.
- 2. The **rate** of convergence of the **probability** $P\left(d_T^*=d\right)$ is increasing in the share \bar{q}^d assigned to d, and is also increasing in the effect size Δ^d . It is equal to the rate of convergence of the posterior probability p_t^d
- 3. The **optimal sample shares** \bar{q}^d equalize the rate of convergence of $P(d_T^* = d)$ across sub-optimal d.
 - This is infeasible, since it requires knowledge of heta

The rate-optimal allocation

- For good designs, R(T) converges to 0 at a fast rate.
- We can characterize the oracle-optimal shares \bar{q}^d allocated to each treatment d, given θ , as follows:
- 1. The **rate** of convergence to 0 of **policy regret** $R(T) = \sum_{d} \Delta^{d} \cdot P(d_{T}^{*} = d)$ is equal to the slowest rate of convergence of $P(d_{T}^{*} = d)$ across the sub-optimal d.
- 2. The **rate** of convergence of the **probability** $P\left(d_T^* = d\right)$ is increasing in the share \bar{q}^d assigned to d, and is also increasing in the effect size Δ^d . It is equal to the rate of convergence of the posterior probability p_t^d .
- 3. The **optimal sample shares** \bar{q}^d equalize the rate of convergence of $P(d_T^* = d)$ across sub-optimal d.

This is infeasible, since it requires knowledge of θ !

The rate-optimal allocation

- For good designs, R(T) converges to 0 at a fast rate.
- We can characterize the oracle-optimal shares \bar{q}^d allocated to each treatment d, given θ , as follows:
- 1. The **rate** of convergence to 0 of **policy regret** $R(T) = \sum_{d} \Delta^{d} \cdot P(d_{T}^{*} = d)$ is equal to the slowest rate of convergence of $P(d_{T}^{*} = d)$ across the sub-optimal d.
- 2. The **rate** of convergence of the **probability** $P(d_T^* = d)$ is increasing in the share \bar{q}^d assigned to d, and is also increasing in the effect size Δ^d . It is equal to the rate of convergence of the posterior probability p_t^d .
- 3. The **optimal sample shares** \bar{q}^d equalize the rate of convergence of $P(d_T^* = d)$ across sub-optimal d.

This is infeasible, since it requires knowledge of θ !

Exploration sampling

- How do we construct a feasible algorithm that behaves in the same way?
- Agrawal and Goyal (2012) proved that Thompson-sampling is rate-optimal for the multi-armed bandit problem. It is not for our policy choice problem!
- We propose the following modification.
- Exploration sampling:

Assign shares q_t^d of each wave to treatment d, where

$$\begin{split} q_t^d &= S_t \cdot p_t^d \cdot (1 - p_t^d), \\ p_t^d &= P_t \left(d = \underset{d'}{\operatorname{argmax}} \; \theta^{d'} \right), \end{split} \qquad S_t = \frac{1}{\sum_d p_t^d \cdot (1 - p_t^d)}. \end{split}$$

- This modification
 - 1. yields rate-optimality (theorem coming up), and
 - 2. improves performance in our simulations.

Exploration sampling is rate optimal

Theorem (Kasy and Sautmann 2020)

Consider exploration sampling in a setting with fixed wave size $N_t = N \ge 1$. Assume that $\theta^{d^{(1)}} < 1$ and that the optimal policy $d^{(1)}$ is unique. As $T \to \infty$, the following holds:

- 1. The share of observations $\bar{q}_T^{d^{(1)}}$ assigned to the best treatment converges in probability to 1/2.
- 2. The share of observations \bar{q}_T^d assigned to treatment d converges in probability to a non-random share \bar{q}^d for all $d \neq d^{(1)}$. \bar{q}^d is such that $-\frac{1}{NT}\log p_t^d \to^p \Gamma^*$ for some $\Gamma^* > 0$ that is constant across $d \neq d^{(1)}$.
- 3. Expected policy regret converges to 0 at the same rate Γ^* , that is $-\frac{1}{NT}\log R(T) \to^p \Gamma^*$.

 No other assignment shares \bar{q}^d exist for which $\bar{q}^{d^{(1)}} = 1/2$ and R(T) goes to 0 at a faster rate than Γ^* .

Exploration sampling is rate optimal

Theorem (Kasy and Sautmann 2020)

Consider exploration sampling in a setting with fixed wave size $N_t = N \ge 1$. Assume that $\theta^{d^{(1)}} < 1$ and that the optimal policy $d^{(1)}$ is unique.

As $T \to \infty$, the following holds:

- 1. The share of observations $\bar{q}_T^{d^{(1)}}$ assigned to the best treatment converges in probability to 1/2.
- 2. The share of observations \bar{q}_T^d assigned to treatment d converges in probability to a non-random share \bar{q}^d for all $d \neq d^{(1)}$. \bar{q}^d is such that $-\frac{1}{NT}\log p_t^d \to^p \Gamma^*$ for some $\Gamma^* > 0$ that is constant across $d \neq d^{(1)}$.
- Expected policy regret converges to 0 at the same rate Γ*, that is - 1/NT log R(T) → Γ*.
 No other assignment shares q̄^d exist for which q̄^{d(1)} = 1/2 and R(T) goes to 0 at a faster rate than Γ*.

Exploration sampling is rate optimal

Theorem (Kasy and Sautmann 2020)

Consider exploration sampling in a setting with fixed wave size $N_t = N \ge 1$. Assume that $\theta^{d^{(1)}} < 1$ and that the optimal policy $d^{(1)}$ is unique.

As $T \to \infty$, the following holds:

- 1. The share of observations $\bar{q}_T^{d^{(1)}}$ assigned to the best treatment converges in probability to 1/2.
- 2. The share of observations \bar{q}_T^d assigned to treatment d converges in probability to a non-random share \bar{q}^d for all $d \neq d^{(1)}$. \bar{q}^d is such that $-\frac{1}{NT}\log p_t^d \to^p \Gamma^*$ for some $\Gamma^* > 0$ that is constant across $d \neq d^{(1)}$.
- 3. Expected policy regret converges to 0 at the same rate Γ^* , that is, $-\frac{1}{NT}\log R(T) \to^p \Gamma^*$.

 No other assignment shares \bar{q}^d exist for which $\bar{q}^{d^{(1)}} = 1/2$

and R(T) goes to 0 at a faster rate than Γ^* .

Our proof draws on several Lemmas of Glynn and Juneja (2004) and Russo (2016).

- 1. Each treatment is assigned infinitely often. $\Rightarrow p_T^d$ goes to 1 for the optimal treatment and to 0 for all other treatments.
- 2. Claim 1 then follows from the definition of exploration sampling.
- Claim 2: Suppose p^d_t goes to 0 at a faster rate for some d
 Then exploration sampling stops assigning this d.
 This allows the other treatments to "catch up."
- 4. Claim 3: Balancing the rate of convergence implies efficiency. This follows from the rate-optimal allocation discussed before

Our proof draws on several Lemmas of Glynn and Juneja (2004) and Russo (2016).

- 1. Each treatment is assigned infinitely often. $\Rightarrow p_T^d$ goes to 1 for the optimal treatment and to 0 for all other treatments.
- 2. Claim 1 then follows from the definition of exploration sampling.
- Claim 2: Suppose p^d_t goes to 0 at a faster rate for some d
 Then exploration sampling stops assigning this d.
 This allows the other treatments to "catch up."
- Claim 3: Balancing the rate of convergence implies efficiency.
 This follows from the rate-optimal allocation discussed before

Our proof draws on several Lemmas of Glynn and Juneja (2004) and Russo (2016).

- 1. Each treatment is assigned infinitely often. $\Rightarrow p_T^d$ goes to 1 for the optimal treatment and to 0 for all other treatments.
- 2. Claim 1 then follows from the definition of exploration sampling.
- 3. Claim 2: Suppose p_t^d goes to 0 at a faster rate for some d. Then exploration sampling stops assigning this d. This allows the other treatments to "catch up."
- 4. Claim 3: Balancing the rate of convergence implies efficiency. This follows from the rate-optimal allocation discussed before

Our proof draws on several Lemmas of Glynn and Juneja (2004) and Russo (2016).

- 1. Each treatment is assigned infinitely often.
 - $\Rightarrow p_T^d$ goes to 1 for the optimal treatment and to 0 for all other treatments.
- 2. Claim 1 then follows from the definition of exploration sampling.
- 3. Claim 2: Suppose p_t^d goes to 0 at a faster rate for some d. Then exploration sampling stops assigning this d. This allows the other treatments to "catch up."
- 4. Claim 3: Balancing the rate of convergence implies efficiency. This follows from the rate-optimal allocation discussed before.

Application: Agricultural extension service for farmers in Odisha, India

- Odisha (India), 2019.
 NGO Precision Agriculture for Development, and Government of Odisha.
- **Context**: Enrolling rice farmers into customized advice service by mobile phone.
 - [...] to build, scale, and improve mobile phone-based agricultural extension with the goal of increasing productivity and income of 100 million smallholder farmers and their families around the world.
- Sample: 10,000 calls, divided into waves of 600.
- 6 treatments:
 - The call is pre-announced via SMS 24h before, 1h before, or not at all.
 - For each of these, the call time is either 10am or 6:30pm.
- Outcome: Did the respondent answer the enrollment questions?

Odisha

Assignment shares over time

Outcomes and posterior parameters

Treatment			Outcomes			Posterior		
Call time	SMS alert	m_T^d	r_T^d	r_T^d/m_T^d	mean	SD	p_T^d	
10am	-	903	145	0.161	0.161	0.012	0.009	
10am	1h ahead	3931	757	0.193	0.193	0.006	0.754	
10am	24h ahead	2234	400	0.179	0.179	0.008	0.073	
6:30pm	-	366	53	0.145	0.147	0.018	0.011	
6:30pm	1h ahead	1081	182	0.168	0.169	0.011	0.027	
6:30 pm	24h ahead	1485	267	0.180	0.180	0.010	0.126	

 m_T^d : Number of observations, r_T^d : Number of successes, $p_T^d = P_T \left(d = \operatorname{argmax}_{d'} \theta^{d'} \right)$.

Minimizing squared error

Maximizing in-sample outcomes

Optimizing policy choice: Average outcomes

Optimizing policy choice: Utilitarian welfare

Conclusion and summary

Maximizing utilitarian welfare

- For both in-sample regret and policy regret:
 Objectives are defined in terms of observable outcomes.
- Contrast this to welfare economics / optimal tax theory:
 Objectives are defined in terms of revealed preference.
- Quantification: Equivalent variation.
 What money transfer would make people indifferent to a given policy change?
- Operationalization through the envelope theorem:
 In assessing welfare effects, we can hold behavior constant.
- Example: Optimal insurance.
 - Individual health care expenditures Y.
 - Share covered by insurance *T*.
 - Behavioral response $Y = g(T, \epsilon)$.
 - Per capita expenditures $m(T) = E[g(T, \epsilon)]$.

Deriving social welfare

- Effect of marginal change of t:
 - 1. On insurance expenditures: $\partial_t(t \cdot m(t))$.
 - 2. On patient welfare: m(t) (behavioral response is ignorable by envelope theorem).
 - 3. On social welfare: $\lambda m(t) \partial_t (t \cdot m(t))$ (welfare weight $\lambda > 1$).
- Integration yields social welfare:

$$u(t) = \lambda \int_0^t m(x) dx - t \cdot m(t).$$

- If we knew $m(\cdot)$, we could calculate this, and choose the policy $t^* = \operatorname{argmax}_t u(t)$.
- If we had experimental data,
 we could calculate the posterior expectation û of u,
 by plugging in the posterior expectation m̂ of m,
 and maximize posterior expected welfare, î = argmax t û(t)

Example: RAND health insurance experiment, $\lambda=1.5$

Bayesian updating (Kasy, 2019)

- Exogenously assigned T. $Var(Y|T) = \sigma^2$.
- Gaussian process prior for $m(\cdot)$,

$$m(\cdot) \sim GP(0, C(\cdot, \cdot)).$$

• Prior covariance of u(t) and Y is D(t, T), where

$$D(t, t') = Cov(u(t), m(t')))$$

$$= \lambda \cdot \int_0^t C(x, t') dx - t \cdot C(t, t').$$

$$D(t) = (D(t, T_1), \dots, D(t, T_n)).$$

- Prior covariance matrix of outcomes **Y** is $\mathbf{C} + \sigma^2 \mathbf{I}$.
- Posterior expectation of u(t):

$$\widehat{u}(t) = \mathbf{D}(t) \cdot \left[\mathbf{C} + \sigma^2 \mathbf{I} \right]^{-1} \cdot \mathbf{Y}.$$

Experimental design problem

- Expected welfare after the experiment: $\max_t E[u(t)|data]$.
- Ex-ante expected welfare: $E[\max_t E[u(t)|\text{data}]]$.
- Experimental design problem:

$$\underset{\text{design}}{\operatorname{argmax}} \ E[\max_t E[u(t)|\text{data}]].$$

Maximize the expectation of a maximum of an expectation!

If we allow for adaptivity:
 Additional layers of expectation and maximization for each wave.
 Numerically infeasible.

The knowledge gradient method

- Knowledge gradient method:
 An approximation successfully applied in the Bayesian optimization literature.
- Pretend that the experiment ends after the next wave. Solve

$$\underset{\text{assignment now}}{\operatorname{argmax}} E[\max_{t} E[u(t)| \text{data after this wave}]].$$

- This ignores the option-value of adapting in the future!
 But it provides an excellent approximation in practice.
- Work in progress:
 - Generalization to higher-dimensional policy spaces.
 - Adaptation to structural models of labor supply.
 - Modification of the method to account for wave structure.
 - Search for implementation partner.
 Basic income experiments?

Simulated example

Conclusion

- Any decision problem requires specification of an objective.
- The choice of objective matters for experimental design.
- Some possible choices:
 - 1. Squared error of effect estimates.
 - 2. In-sample regret.
 - 3. Policy-regret.
 - 4. Utilitarian welfare for policy choice.
- I discussed simple algorithms targeting each of these objectives.

Algorithms for these objectives

1. Expected squared error: Minimize

$$Var(\beta|\mathbf{X}) - \overline{C}' \cdot (C + \sigma^2 I)^{-1} \cdot \overline{C}.$$

2. **In-sample regret** and squared error: γ -Thompson, with assignment probabilities

$$(1-\gamma) \cdot p_t^{dx} + \gamma/k, \qquad \qquad p_t^d = P_t \left(d = \operatorname*{argmax}_{d'} \theta^{d'}
ight).$$

3. Policy regret: Exploration sampling, with assignment probabilities

$$q_t^d = S_t \cdot p_t^d \cdot (1 - p_t^d), \qquad \qquad S_t = rac{1}{\sum_d p_t^d \cdot (1 - p_t^d)}.$$

4. Utilitarian welfare: Knowledge gradient method for social welfare,

 $\underset{\text{assignment now}}{\mathsf{argmax}} \, E[\max_t E[u(t)| \text{data after this wave}]].$

Summary of theoretical findings

- Randomization is sub-optimal in general decision problems:
 Randomization never decreases achievable Bayes / minimax risk,
 and is strictly sub-optimal if the optimal deterministic procedure is unique.
- Measure of balance (MSE):
 The expected MSE of an assignment is a measure of balance, and can be minimized for optimal assignments for estimation.
- 3. γ -Thompson sampling (In-sample regret and MSE): In-sample regret is asymptotically proportional to γ . The variance of treatment effect estimates is decreasing in γ .
- 4. Exploration sampling (Policy regret):

The oracle optimal allocation equalizes power across suboptimal treatments. Exploration sampling achieves this in large samples, and is thus (constrained) rate-efficient.

Web apps implementing the proposed procedures

- Minimizing expected squared error: https://maxkasy.github.io/home/treatmentassignment/
- Maximizing in-sample outcomes: https://maxkasy.github.io/home/hierarchicalthompson/
- Informing policy choice:
 https://maxkasy.shinyapps.io/exploration_sampling_dashboard/

Thank you!