Guilherme de Oliveira Valadas Faria - 47260 - MIEI Mark: 0.2/5 (total score: 0.2/5)

 \square Determine h, dados g, p e x.

		+61/1/60+
	Departamento de Matemát Criptografia	cica Faculdade de Ciências e Tecnologia — UNL 8/7/2018 Exame Final
	Número de aluno 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	← Marque o seu número de aluno preenchendo completamente os quadrados respectivos da grelha ao lado (■) e escreva o nome completo, o número e o curso abaixo. Nome: Fauta
	99999	Curso: MIEL Número de aluno: 47766 O exame é composto por 10 questões de escolha múltipla. Nas questões marque a resposta certa preenchendo completamente o quadrado respectivo (1) com caneta azul ou preta, cada resposta certa vale 0,5 valores, cada resposta errada desconta 0,2 valores e marcações múltiplas anulam a questão. Se a soma das classificações das questões de escolha múltipla der um número negativo, será atribuído 0 valores como resultado final.
	Questão 1 Considere o gr se, e só se:	rupo $\mathbb{Z}/n\mathbb{Z}$. Pode-se definir uma multiplicação tal que \mathbb{F}_n é um corpo
0.5/0.5		impar. n é uma potência de um número primo. n é um número primo.
		le Kerckhoff são princípios que todos os sistemas criptográficos devem erckhoff fundamental diz que a segurança de um sistema criptográfico
-0.2/0.5	só do segredo do algorit só da chave, mas não do só da complexidade da do segredo da chave e d	encriptação.
	Questão 3 Qual destes pr	rotocolos criptográficos é assimétrico?
-0.2/0.5	☑ ElGamal☑ AES	☐ Vigenère ☐ DES
	Questão 4 O Discrete Logarithm Pro	$blem\;(DLP)\; ext{para a congruência}\; g^{\mathbf{r}}\equiv h\;(\operatorname{mod} p)\; ext{\'e} :$
-0.2/0.5	Determine p, dados g, h	Determine x , dados g , $h \in p$.

Determine g, dados h, $p \in x$.

	Questão 5 No protocolo de troca de chaves de Diffie-Hellman, Alice e Bob usam números secretos a e b para calcular números A e B que são depois trocados.		
0.5/0.5			
	Questão 6 No protocolo <i>ElGamal</i> , Bob usa a chave pública da Alice $A \equiv g^a \pmod{p}$ para enviar um <i>ciphertext</i> (c_1, c_2) com $c_1 \equiv g^k \pmod{p}$ e $c_2 \equiv mA^k \pmod{p}$; k uma chave <i>ephemeral</i> . Para recuperar a mensagem m , Alice calcula:		
)/0.5			
	Questão 7 — O algoritmo de Miller-Rabin devolve um número primo com probablidade elevada. No caso improvável do número devolvido p não ser primo, o que pode acontecer no protocolo criptográfico de $ElGamal$ que usa este número para a escolha de \mathbb{F}_p^{\bullet} :		
)/0.5	 □ A quebra do protocolo é fácil. □ Dois ciphertexts podem encriptar a mesma mensagem. ☑ Duas mensagens podem ser codificadas pelo mesmo ciphertext. □ A encriptação torna-se lenta. 		
	Questão 8 Um protocolo criptográfico tem a propriedade de total secrecy, se, e só se:		
	O conjunto das chaves possíveis tem a mesma cardinalidade que o conjunto dos potenciais ciphertexts.		
)/0.5	 □ O protocolo pode ser quebrado em tempo exponencial. □ O protocolo pode ser quebrado em tempo polinomial. □ A probabilidade de um plaintext é independente do ciphertext. 		
	Questão 9 O funcionamento do RSA é baseado no seguinte:		
)/0.5	 Mulitplicação é fácil e divisão é difícil. Exponenciação em F_p[*] é fácil e factorização é difícil. Mulitplicação é fácil e factorização é difícil. Exponenciação em F_p[*] é fácil e o Discrete Logarithm Problem é difícil. 		
	Questão 10 Curvas elípticas são importantes em criptografia, porque (empiricamente):		
0.2/0.5	 A operação de "adição" é mais fácil sobre curvas elípticas do que em F_p*. A operação de "adição" é mais complicada sobre curvas elípticas do que em F_p*. A solução do DLP é mais complicada sobre curvas elípticas do que em F_p*. A exponenciação é mais rápida sobre curvas elípticas do que em F_p*. 		

Heitor da Silva Cordeiro Moniz - 45809 - MIEI Mark: 2.1/5 (total score: 2.1/5)

T		1	

+80/1/22+

	Departamento de Matemá Criptografia	itica 8/7/20	Faculdade de Ciências e Tecnologia — UNL D18 Exame Final
	Número de aluno 0 0 0 0 0 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3 4 4 4 4 4 5 5 5 5 6 6 6 6 6 7 7 7 7 7 8 8 8 8 8 9 9 9 9 9	Nome: Haiton Nome: Haiton Nome: Manua Curso: MIEI O exame é composto parque a resposta certivo () com caneta a cada resposta errada dequestão. Se a soma das	nero de aluno preenchendo completamente os quagrelha ao lado () e escreva o nome completo, o xo. da Silva Condeino Número de aluno: 45809 Dor 10 questões de escolha múltipla. Nas questões ta preenchendo completamente o quadrado respectazul ou preta, cada resposta certa vale 0,5 valores, esconta 0,2 valores e marcações múltiplas anulam a se classificações das questões de escolha múltipla der cerá atribuído 0 valores como resultado final.
	Questão 1 Considere o g se, e só se:	rupo $\mathbb{Z}/n\mathbb{Z}$. Pode-se d	efinir uma multiplicação tal que \mathbb{F}_n é um corpo
0.5/0.5	n é um número par. n é um potência de un Questão 2 Os princípios e satisfazer. Um princípio de K deve depender:	le <i>Kerckhoff</i> são princi	n é um número primo. n é um número primo ímpar. (pios que todos os sistemas criptográficos devem diz que a segurança de um sistema criptográfico
0.5/0.5	só da complexidade da só do segredo do algoria só da chave, mas não d do segredo da chave e d	thmo, mas não do segro o segredo do algoritmo).
0.5/0.5	Questão 3 Qual destes por DES ElGamal	rotocolos criptográfico	s é assimétrico? Vigenère AES
	Questão 4 O Discrete Logarithm Pro	blem (DLP) para a co	ngruência $g^x \equiv h \pmod{p}$ é:
0/0.5		1	Determine x , dados g , $h \in p$. Determine h , dados g , $p \in x$.

	Questão 5 No protocolo de troca de chaves de Diffie-Hellman, Alice e Bob usam números secretos a e b para calcular números A e B que são depois trocados.
0.2/0.5	\nearrow A é calculado por $g^a \pmod{p}$, B por $g^b \pmod{p}$ e a chave comum secreta é $g^{ab} \pmod{p}$. \nearrow A é calculado por $g^a \pmod{p}$, B por $g^b \pmod{p}$ e a chave comum secreta é $A \cdot B$. \nearrow A é calculado por $a^g \pmod{p}$, B por $b^g \pmod{p}$ e a chave comum secreta é $g^{ab} \pmod{p}$. \nearrow A é calculado por $a^g \pmod{p}$, B por $b^g \pmod{p}$ e a chave comum secreta é $(ab)^g \pmod{p}$.
	Questão 6 No protocolo <i>ElGamal</i> , Bob usa a chave pública da Alice $A \equiv g^a \pmod{p}$ para enviar um <i>ciphertext</i> (c_1, c_2) com $c_1 \equiv g^k \pmod{p}$ e $c_2 \equiv mA^k \pmod{p}$; k uma chave <i>ephemeral</i> . Para recuperar a mensagem m , Alice calcula:
0.5/0.5	
	Questão 7 — O algoritmo de Miller-Rabin devolve um número primo com probablidade elevada. No caso improvável do número devolvido p não ser primo, o que pode acontecer no protocolo criptográfico de $ElGamal$ que usa este número para a escolha de \mathbb{F}_p^* :
0/0.5	 □ Dois ciphertexts podem encriptar a mesma mensagem. □ A encriptação torna-se lenta. □ A quebra do protocolo é fácil.
	Duas mensagens podem ser codificadas pelo mesmo <i>ciphertext</i> .
	Questão 8 Um protocolo criptográfico tem a propriedade de total secrecy, se, e só se:
	O conjunto das chaves possíveis tem a mesma cardinalidade que o conjunto dos potenciais ciphertexts.
0.2/0.5	A probabilidade de um plaintext é independente do ciphertext.
	O protocolo pode ser quebrado em tempo exponencial.
	O protocolo pode ser quebrado em tempo polinomial.
	Questão 9 O funcionamento do RSA é baseado no seguinte:
	Mulitplicação é fácil e divisão é difícil.
0.5/0.5	Mulitplicação é fácil e factorização é difícil. Exponenciação em \mathbb{F}_p^* é fácil e factorização é difícil.
	Exponenciação em \mathbb{F}_p^* é fácil e o Discrete Logarithm Problem é difícil.
	Questão 10 Curvas elípticas são importantes em criptografia, porque (empiricamente):
	\square A operação de "adição" é mais fácil sobre curvas elípticas do que em \mathbb{F}_p^* .
0/0 E	\square A exponenciação é mais rápida sobre curvas elípticas do que em \mathbb{F}_p^* .
0/0.5	A operação de "adição" é mais complicada sobre curvas elípticas do que em \mathbb{F}_p^* .
	\boxtimes A solução do DLP é mais complicada sobre curvas elípticas do que em \mathbb{F}_p^* .

+67/1/48+

	Departamento de Matemá	tica Faculdade de C	liências e Tecnologia — UNL
	Criptografia	8/7/2018	Exame Final
	Número de aluno 0 0 0 0 0 1 1 1 1 1 2 2 2 2	← Marque o seu número de aluno predrados respectivos da grelha ao lado (■ número e o curso abaixo.) e escreva o nome completo, o
	3 3 3 3 3 3 3 4 4 4 4 4 5 5 5 5 5 6 6 6 6 6 6 6 6 6 6	I.ValG	de aluno: 42526
	77777	O exame é composto por 10 questões de marque a resposta certa preenchendo co- tivo () com caneta azul ou preta, cada cada resposta errada desconta 0,2 valores questão. Se a soma das classificações das um número negativo, será atribuído 0 val	mpletamente o quadrado respec- a resposta certa vale <u>0,5</u> valores, e e marcações múltiplas anulam a questões de escolha múltipla der
	Questão 1 Considere o g se, c só sc:	rupo $\mathbb{Z}/n\mathbb{Z}$. Pode-se definir uma multip	plicação tal que F _n é um corpo
-0.2/0.5	n é um número primo. n é uma potência de un		nero primo ímpar. nero par.
		de Kerckhoff são princípios que todos os cerckhoff fundamental diz que a seguran	
0/0.5	só da complexidade da	thmo, mas não do segredo da chave.	
	Questão 3 Qual destes p	rotocolos criptográficos é assimétrico?	
0.5/0.5	☐ AES ■ ElGamal	☐ Vigenère ☐ DES	
	Questão 4 O Discrete Logarithm Pro	$color (DLP)$ para a congruência $g^x \equiv b$	$h \pmod{p}$ é:
-0.2/0.5	$igstyle igstyle ext{Determine } x, ext{ dados } g, g$ $igstyle ext{Determine } h, ext{ dados } g, g$		a, dados h , p e x . a, dados g , h e x .

	Questão 5 No protocolo de troca de chaves de Diffie-Hellman, Alice e Bob usam números secretos a e b para calcular números A e B que são depois trocados.
0.5/0.5	☐ A é calculado por $a^g \pmod{p}$, B por $b^g \pmod{p}$ e a chave comum secreta é $g^{ab} \pmod{p}$. > A é calculado por $g^a \pmod{p}$, B por $g^b \pmod{p}$ e a chave comum secreta é $g^{ab} \pmod{p}$. ☐ A é calculado por $g^a \pmod{p}$, B por $g^b \pmod{p}$ e a chave comum secreta é $A \cdot B$. ☐ A é calculado por $a^g \pmod{p}$, B por $b^g \pmod{p}$ e a chave comum secreta é $(ab)^g \pmod{p}$. >
	Questão 6 No protocolo <i>ElGamal</i> , Bob usa a chave pública da Alice $A \equiv g^a \pmod{p}$ para enviar um <i>ciphertext</i> (c_1, c_2) com $c_1 \equiv g^k \pmod{p}$ e $c_2 \equiv mA^k \pmod{p}$; k uma chave <i>ephemeral</i> . Para recuperar a mensagem m , Alice calcula:
-0.2/0.5	
	Questão 7 — O algoritmo de Miller-Rabin devolve um número primo com probablidade elevada. No caso improvável do número devolvido p não ser primo, o que pode acontecer no protocolo criptográfico de $ElGamal$ que usa este número para a escolha de \mathbb{F}_p^* :
0.5/0.5	 Duas mensagens podem ser codificadas pelo mesmo ciphertext. A quebra do protocolo é fácil. Dois ciphertexts podem encriptar a mesma mensagem. A encriptação torna-se lenta.
	Questão 8 Um protocolo criptográfico tem a propriedade de total secrecy, se, e só se:
-0.2/0.5	 O protocolo pode ser quebrado em tempo exponencial. O conjunto das chaves possíveis tem a mesma cardinalidade que o conjunto dos potenciais ciphertexts. O protocolo pode ser quebrado em tempo polinomial. X probabilidade de um plaintext é independente do ciphertext.
	Questão 9 O funcionamento do RSA é baseado no seguinte:
-0.2/0.5	 Mulitplicação é fácil e factorização é difícil. Exponenciação em F_p[*] é fácil e factorização é difícil. Exponenciação em F_p[*] é fácil e o Discrete Logarithm Problem é difícil. Mulitplicação é fácil e divisão é difícil.
	Questão 10 Curvas elípticas são importantes em criptografia, porque (empiricamente):
-0.2/0.5	\boxtimes A solução do DLP é mais complicada sobre curvas elípticas do que em \mathbb{F}_p^* .
	A exponenciação é mais rápida sobre curvas elípticas do que em \mathbb{F}_p^* .
	☐ A exponenciação é mais rápida sobre curvas elípticas do que em \mathbb{F}_p^* . ☐ A operação de "adição" é mais fácil sobre curvas elípticas do que em \mathbb{F}_p^* .

Hugo Daniel Cepeda Mochão - 47231 - MIEI Mark: 0.8/5 (total score: 0.8/5)

+37/1/48+

	Departamento de Matemá Criptografia	tica 8/7/2	Faculdade de Ciências e Tecnologia — UNL 018 Exame Final
	Número de aluno 0 0 0 0 0 1 1 1 1	drados respectivos da número e o curso abai	
	3 3 3 3 3		nochao
	5 5 5 5 5 6 6 6 6 6 7 7 7 7	O exame é composto	número de aluno: 7 2 3 1
	9 9 9 9 9	tivo () com caneta cada resposta errada d questão. Se a soma da	ta preenchendo completamente o quadrado respec- azul ou preta, cada resposta certa vale 0,5 valores, lesconta 0,2 valores e marcações múltiplas anulam a s classificações das questões de escolha múltipla der será atribuído 0 valores como resultado final.
	Questão 1 Considere o gr se, c só se:	rupo $\mathbb{Z}/n\mathbb{Z}$. Pode-se o	definir uma multiplicação tal que F _n é um corpo
0.5/0.5	n ć um número primo í n ć um número primo.	ímpar.	n é uma potência de um número primo. n é um número par.
			rípios que todos os sistemas criptográficos devem diz que a segurança de um sistema criptográfico
-0.2/0.5	só da complexidade da só da chave, mas não do só do segredo do algorit do segredo da chave e d	o segredo do algoritm	redo da chave.
	Questão 3 Qual destes pr	rotocolos criptográfico	os é assimétrico?
-0.2/0.5	ElGamal AES		□ Vigenère□ DES
	Questão 4 O Discrete Logarithm Pro	blem (DLP) para a c	ongruência $g^x \equiv h \; (\operatorname{mod} p) \; \acute{\mathrm{e}}$:
0.5/0.5	Determine h , dados g , p Determine x , dados g , h		Determine p , dados g , $h \in x$. Determine g , dados h , $p \in x$.

	Questão 5 No protocolo de troca de chaves de Diffie-Hellman, Alice e Bob usam números secretos a e b para calcular números A e B que são depois trocados.
0.5/0.5	☐ A é calculado por $g^a \pmod{p}$, B por $g^b \pmod{p}$ e a chave comum secreta é $A \cdot B$. ☐ A é calculado por $a^g \pmod{p}$, B por $b^g \pmod{p}$ e a chave comum secreta é $g^{ab} \pmod{p}$. ☐ A é calculado por $g^a \pmod{p}$, B por $g^b \pmod{p}$ e a chave comum secreta é $g^{ab} \pmod{p}$. ☐ A é calculado por $a^g \pmod{p}$, B por $b^g \pmod{p}$ e a chave comum secreta é $(ab)^g \pmod{p}$.
	Questão 6 No protocolo <i>ElGamal</i> , Bob usa a chave pública da Alice $A \equiv g^a \pmod{p}$ para enviar um <i>ciphertext</i> (c_1, c_2) com $c_1 \equiv g^k \pmod{p}$ e $c_2 \equiv mA^k \pmod{p}$; k uma chave <i>ephemeral</i> . Para recuperar a mensagem m , Alice calcula:
-0.2/0.5	
	Questão 7 — O algoritmo de Miller-Rabin devolve um número primo com probablidade elevada. No caso improvável do número devolvido p não ser primo, o que pode acontecer no protocolo criptográfico de <i>ElGamal</i> que usa este número para a escolha de \mathbb{F}_p^* :
0.5/0.5	 □ A quebra do protocolo é fácil. □ Dois ciphertexts podem encriptar a mesma mensagem. ☑ Duas mensagens podem ser codificadas pelo mesmo ciphertext. □ A encriptação torna-se lenta.
	Questão 8 Um protocolo criptográfico tem a propriedade de total secrecy, se, e só se:
-0.2/0.5	 O protocolo pode ser quebrado em tempo polinomial. O protocolo pode ser quebrado em tempo exponencial. O conjunto das chaves possíveis tem a mesma cardinalidade que o conjunto dos potenciais ciphertexts.
	A probabilidade de um plaintext é independente do ciphertext.
	Questão 9 O funcionamento do RSA é baseado no seguinte: Mulitplicação é fácil e divisão é difícil.
-0.2/0.5	 ✓ Mulitplicação é fácil e factorização é difícil. ☐ Exponenciação em F_p é fácil e o Discrete Logarithm Problem é difícil.
	\bigoplus Exponenciação em \mathbb{F}_p^* é fácil e factorização é difícil.
	Questão 10 Curvas elípticas são importantes em criptografia, porque (empiricamente):
-0.2/0.5	A operação de "adição" é mais fácil sobre curvas elípticas do que em \mathbb{F}_p^* .
	\square A exponenciação é mais rápida sobre curvas elípticas do que em \mathbb{F}_p^* . \square A operação de "adição" é mais complicada sobre curvas elípticas do que em \mathbb{F}_p^* .
	\boxtimes A solução do DLP é mais complicada sobre curvas elípticas do que em \mathbb{F}_p^* .

Hélio Torres Aguiar - 41745 - MIEI Mark: 0/5 (total score: -0.6/5)

+95/1/52+

	Departamento de Matemá Criptografia	tica Faculdade de Ciências e Tecnologia — UNL 8/7/2018 Exame Final
	Número de aluno 0 0 0 0 0 1 1 1 1	← Marque o seu número de aluno preenchendo completamente os quadrados respectivos da grelha ao lado (■) e escreva o nome completo, o número e o curso abaixo.
	2 2 2 2 2 3 3 3 3 3	Nome: Helio Torres Agrins
	4 4 5 5 5 6 6 6 6 6 6 6	Curso: MIEI Número de aluno: 41745
	7 7 7 7 8 8 8 8 8 9 9 9 9 9	O exame é composto por 10 questões de escolha múltipla. Nas questões marque a resposta certa preenchendo completamente o quadrado respectivo () com caneta azul ou preta, cada resposta certa vale 0,5 valores, cada resposta errada desconta 0,2 valores e marcações múltiplas anulam a questão. Se a soma das classificações das questões de escolha múltipla der um número negativo, será atribuído 0 valores como resultado final.
	Questão 1 Considere o g se, e só se:	rupo $\mathbb{Z}/n\mathbb{Z}$. Pode-se definir uma multiplicação tal que \mathbb{F}_n é um corpo
-0.2/0.5	igwedge n é uma potência de un $igwedge n$ é um número par.	n número primo. $n \in \mathbb{R}$ n é um número primo. $n \in \mathbb{R}$ n é um número primo ímpar.
		le Kerckhoff são princípios que todos os sistemas criptográficos devem erckhoff fundamental diz que a segurança de um sistema criptográfico
-0.2/0.5	só da complexidade da só da chave, mas não de do segredo da chave e d só do segredo do algorit	o segredo do algoritmo.
	Questão 3 Qual destes pr	rotocolos criptográficos é assimétrico?
0.5/0.5	☐ DES ☐ Vigenère	☐ AES ElGamal
	Questão 4 O Discrete Logarithm Pro	$blem\;(DLP)\; ext{para a congruência}\; g^x\equiv h\;(\operatorname{mod} p)\; ext{\'e} :$
-0.2/0.5	Determine p , dados g , h Determine h , dados g , p	y , and y , and y

	Questão 5 No protocolo de troca de chaves de Diffie-Hellman, Alice e Bob usam números secretos a e b para calcular números A e B que são depois trocados.
0.5/0.5	☐ A é calculado por $g^a \pmod{p}$, B por $g^b \pmod{p}$ e a chave comum secreta é $A \cdot B$. ☐ A é calculado por $g^a \pmod{p}$, B por $g^b \pmod{p}$ e a chave comum secreta é $g^{ab} \pmod{p}$. ☐ A é calculado por $a^g \pmod{p}$, B por $b^g \pmod{p}$ e a chave comum secreta é $g^{ab} \pmod{p}$. ☐ A é calculado por $a^g \pmod{p}$, B por $b^g \pmod{p}$ e a chave comum secreta é $(ab)^g \pmod{p}$.
	Questão 6 No protocolo <i>ElGamal</i> , Bob usa a chave pública da Alice $A \equiv g^a \pmod{p}$ para enviar um <i>ciphertext</i> (c_1, c_2) com $c_1 \equiv g^k \pmod{p}$ e $c_2 \equiv mA^k \pmod{p}$; k uma chave <i>ephemeral</i> . Para recuperar a mensagem m , Alice calcula:
-0.2/0.5	
	Questão 7 — O algoritmo de Miller-Rabin devolve um número primo com probablidade elevada. No caso improvável do número devolvido p não ser primo, o que pode acontecer no protocolo criptográfico de $ElGamal$ que usa este número para a escolha de \mathbb{F}_p^* :
-0.2/0.5	 Dois ciphertexts podem encriptar a mesma mensagem. ☐ A encriptação torna-se lenta. ☐ Duas mensagens podem ser codificadas pelo mesmo ciphertext. ☐ A quebra do protocolo é fácil.
	Questão 8 Um protocolo criptográfico tem a propriedade de total secrecy, se, e só se:
-0.2/0.5	O protocolo pode ser quebrado em tempo exponencial.
	O protocolo pode ser quebrado em tempo polinomial.
	 O conjunto das chaves possíveis tem a mesma cardinalidade que o conjunto dos potenciais ciphertexts.
	A probabilidade de um plaintext é independente do ciphertext.
	Questão 9 O funcionamento do RSA é baseado no seguinte:
	Exponenciação em \mathbb{F}_p^* é fácil e factorização é difícil.
-0.2/0.5	Mulitplicação é fácil e divisão é difícil.
	Mulitplicação é fácil e factorização é difícil. Exponenciação em \mathbb{F}_p^* é fácil e o Discrete Logarithm Problem é difícil.
	Questão 10 Curvas elípticas são importantes em criptografia, porque (empiricamente):
	\square A operação de "adição" é mais complicada sobre curvas elípticas do que em \mathbb{F}_p^* .
0.2/0.5	\bigcirc A operação de "adição" é mais fácil sobre curvas elípticas do que em \mathbb{F}_p^* .
-0.2/0.5	\square A exponenciação é mais rápida sobre curvas elípticas do que em \mathbb{F}_p^* .
	\nearrow A solução do DLP é mais complicada sobre curvas elípticas do que em \mathbb{F}_p^* .