

- () Preliminary Specifications(v) Final Specifications

Module	le 11.6"(11.58") FHD 16:9 Color TFT-LCD with LED Backlight design			
Model Name B116HAN03.1(H/W: 0A)				
Note (🗭)	LED Backlight with driving circuit design			

Customer	Date	Appro
		<u>Kevin K</u>
Checked & Approved by	Date	Prepa
		<u>Erica `</u>
Note: This Specification is without notice.	is subject to change	MI

Approved by	Date			
Kevin KH Shen	02/26/2012			
Prepared by				
Erica YT Lin	02/26/2012			
MPBU Marketing Division AU Optronics corporation				

Contents

1.	Handling Precautions	3
	General Description	
	2.1 General Specification	
	2.2 Optical Characteristics	
3.	Functional Block Diagram	
	Absolute Maximum Ratings	
	4.1 Absolute Ratings of TFT LCD Module	
	4.2 Absolute Ratings of Environment	
5.	Electrical Characteristics	
	5.1 TFT LCD Module	
	5.3 Backlight Unit	3
6.	Signal Interface Characteristic	
	6.1 Pixel Format Image	
	6.2 Integration Interface Requirement	3
	6.4 Interface Timing	
7.	Panel Reliability Test	
	7.1 Vibration Test	
	7.2 Shock Test	
	7.3 Reliability Test	
8.	Mechanical Characteristics	
	Shipping and Package	
	9.1 Shipping Label Format	
	9.2 Carton Package	
	9.3 Shipping Package of Palletizing Sequence	2

Record of Revision

Vers	Version and Date Page		Old description	New Description	Remark
0.1	2012/3/19	All	First Edition for Customer		
0.2	2012/4/02	5.26	First Edition for Customer	Update gerneral spec/ Connector part number/ 2D drawing	
0.3	2012/8/24	5	Update Support Color		
			Update Max thickness		
			Update Max Power Consumption		
		6	Update RGB color croodinates		
		6	Update view angle		
		11	Update Functional Block Diagram		
		13	Update Power Specification		
		14	Update Display port main link		
		15	Update LED characteristic		
		16	Update Backlight input signal characteristics		
		25	Update 2D drawing		
0.4	2012/12/19	5		Update Pixel Pitch	
1.0	2013/02/26		Final version release		
		5	ILED=21mA	ILED=23mA	
		12		Remove touch function	

1. Handling Precautions

- 1) Since front polarizer is easily damaged, pay attention not to scratch it.
- 2) Be sure to turn off power supply when inserting or disconnecting from input connector.
- 3) Wipe off water drop immediately. Long contact with water may cause discoloration or spots.
- 4) When the panel surface is soiled, wipe it with absorbent cotton or other soft cloth.
- 5) Since the panel is made of glass, it may break or crack if dropped or bumped on hard surface.
- 6) Since CMOS LSI is used in this module, take care of static electricity and insure human earth when handling.
- 7) Do not open nor modify the Module Assembly.
- 8) Do not press the reflector sheet at the back of the module to any directions.
- 9) At the insertion or removal of the Signal Interface Connector, be sure not to rotate nor tilt the Interface Connector of the TFT Module.
- 11) After installation of the TFT Module into an enclosure (Notebook PC Bezel, for example), do not twist nor bend the TFT Module even momentary. At designing the enclosure, it should be taken into consideration that no bending/twisting forces are applied to the TFT Module from outside. Otherwise the TFT Module may be damaged.
- 12) Small amount of materials having no flammability grade is used in the LCD module. The LCD module should be supplied by power complied with requirements of Limited Power Source (IEC60950 or UL1950), or be applied exemption.
- 13) Disconnecting power supply before handling LCD modules, it can prevent electric shock, DO NOT TOUCH the electrode parts, cables, connectors and LED circuit part of TFT module that a LED light bar build in as a light source of back light unit. It can prevent electrostatic breakdown.

2. General Description

B116HAN03.1 is a Color Active Matrix Liquid Crystal Display composed of a TFT LCD panel, a driver circuit, and LED backlight system. The screen format is intended to support the 16:9 HDTV, 1920(H) x1080(V) screen and 262k colors (RGB 6-bits data driver) with LED backlight driving circuit. All input signals are eDP interface compatible.

B116HAN03.1 is designed for a display unit of notebook style personal computer and industrial machine.

2.1 General Specification

The following items are characteristics summary on the table at 25 $^{\circ}\mathrm{C}$ condition:

Items	Unit	Specifications					
Screen Diagonal	[mm]	293.83 (11.6W")					
Active Area	[mm]	256.32(H) x 144.18(V)					
Pixels H x V		1920 x 3(R	GB) x 1080				
Pixel Pitch	[mm]	0.1335 X 0.	1335				
Pixel Format		R.G.B. Verl	ical Stripe				
Display Mode		Normally B	ack				
White Luminance (ILED=23mA) (Note: ILED is LED current)	[cd/m ²]	400 typ. (5 points average)					
Luminance Uniformity		1.25 max. (5 points)				
Contrast Ratio		800 typ					
Response Time	[ms]	25 typ / 35	Max				
Nominal Input Voltage VDD	[Volt]	+3.3 typ.					
Power Consumption	[Watt]	4W max. (I	nclude Logic	and Blu po	wer)		
Weight	[Grams]	170 max.(V	V/O digitizer)				
	[mm]		Min.	Тур.	Max.		
Physical Size (panel only)		Length		270.37			
without bracket		Width		159.79	1.0		
		Thickness 4.9					
Electrical Interface		2 lane eDP					
Glass Thickness	[mm]	0.25					
Surface Treatment(panel only)		Anti-Glare,	Hardness 3l	-			

Support Color		RGB 8-bit
Temperature Range Operating Storage (Non-Operating)	[°C] [°C]	0 to +50 -20 to +60
RoHS Compliance		RoHS Compliance

2.2 Optical Characteristics

The optical characteristics are measured under stable conditions at 25°C (Room Temperature) :

Item		Symbol	Conditions	Min.	Тур.	Max.	Unit	Note
White Luminance ILED=21mA			5 points average		400		cd/m ²	1, 4, 5.
		$oldsymbol{ heta}_{ extsf{R}}$	Horizontal (Right) CR = 10 (Left)		89 89			
Viewing A	ngle	- Ψн Ψ∟	Vertical (Upper) CR = 10 (Lower)		89 89		degree	4, 9
Luminan Uniformi		δ _{5P}	5 Points			1.25		1, 3, 4
Luminan Uniformi		δ _{13P}	13 Points			1.5		2, 3, 4
Contrast R	atio	CR			800	-		4, 6
Cross ta	lk	%				4		4, 7
Response ⁻	Time	T _{RT}	Rising + Falling		30	45	msec	4, 8
	Red	Rx		0.566	0.596	0.626		
	neu	Ry		0.316	0.346	0.376		
	Green	Gx		0.297	0.327	0.357		
Color / Chromaticity	arcen	Gy		0.558	0.588	0.618		
Coordinates		Вх	CIE 1931	0.123	0.153	0.183		4
	Blue	Ву		0.098	0.128	0.158		
	White	Wx		0.283	0.313	0.343		
	wille	Wy		0.299	0.329	0.359		
NTSC		%		-	52	-		

Note 1: 5 points position (Ref: Active area)

Note 2: 13 points position (Ref: Active area)

Note 3: The luminance uniformity of 5 or 13 points is defined by dividing the maximum luminance values by the minimum test point luminance

0	Maximum Brightness of five points
δ _{w5} =	Minimum Brightness of five points
2	Maximum Brightness of thirteen points
$\delta_{\text{W13}} =$	Minimum Brightness of thirteen points

Note 4: Measurement method

The LCD module should be stabilized at given temperature for 30 minutes to avoid abrupt temperature change during measuring. In order to stabilize the luminance, the measurement should be executed after lighting

Backlight for 30 minutes in a stable, windless and dark room, and it should be measured in the center of screen.

Center of the screen

Note 5: Definition of Average Luminance of White (Y_L):

Measure the luminance of gray level 63 at 5 points \cdot $Y_L = [L(1) + L(2) + L(3) + L(4) + L(5)] / 5$ L (x) is corresponding to the luminance of the point X at Figure in Note (1).

Note 6: Definition of contrast ratio:

Contrast ratio is calculated with the following formula.

Note 7: Definition of Cross Talk (CT)

 $CT = |Y_B - Y_A| / Y_A \times 100 (\%)$

Where

Y_A = Luminance of measured location without gray level 0 pattern (cd/m₂)

Y_B = Luminance of measured location with gray level 0 pattern (cd/m₂)

Product Specification

AU OPTRONICS CORPORATION

Note 8: Definition of response time:

The output signals of BM-7 or equivalent are measured when the input signals are changed from "Black" to "White" (falling time) and from "White" to "Black" (rising time), respectively. The response time interval between the 10% and 90% of amplitudes. Refer to figure as below.

Product Specification

AU OPTRONICS CORPORATION

Note 9. Definition of viewing angle

Viewing angle is the measurement of contrast ratio \geq 10, at the screen center, over a 180° horizontal and 180° vertical range (off-normal viewing angles). The 180° viewing angle range is broken down as follows; 90° (θ) horizontal left and right and 90° (Φ) vertical, high (up) and low (down). The measurement direction is typically perpendicular to the display surface with the screen rotated about its center to develop the desired measurement viewing angle.

3. Functional Block Diagram

The following diagram shows the functional block of the 11.6 inches wide Color TFT/LCD 40 Pin one channel Module

4. Absolute Maximum Ratings

An absolute maximum rating of the module is as following:

4.1 Absolute Ratings of TFT LCD Module

Item	Symbol	Min	Max	Unit	Conditions
Logic/LCD Drive Voltage	Vin	-0.3	+4.0	[Volt]	Note 1,2

4.2 Absolute Ratings of Environment

Item	Symbol	Min	Max	Unit	Conditions
Operating Temperature	TOP	0	+50	[°C]	Note 4
Operation Humidity	HOP	5	95	[%RH]	Note 4
Storage Temperature	TST	-20	+60	[°C]	Note 4
Storage Humidity	HST	5	95	[%RH]	Note 4

Note 1: At Ta (25°C)

Note 2: Permanent damage to the device may occur if exceed maximum values

Note 3: LED specification refer to section 5.2

Note 4: For quality performance, please refer to AUO IIS (Incoming Inspection Standard).

Operating Range

Storage Range

+

5. Electrical Characteristics

5.1 TFT LCD Module

5.1.1 Power Specification

Input power specifications are as follows;

The power specification are measured under 25°C and frame frenquency under 60Hz

Symble	Parameter	Min	Тур	Max	Units	Note
VDD	Logic/LCD Drive Voltage	3.0	3.3	3.6	[Volt]	
PDD	VDD Power	-	-	1	[Watt]	Note 1
IDD	IDD Current	-	-	270	[mA]	Note 1
IRush	Inrush Current	-	-	2000	[mA]	Note 2
VDDrp	Allowable Logic/LCD Drive Ripple Voltage	-	-	100	[mV] p-p	

Note 1 : Maximum Measurement Condition : Black Pattern at 3.3V driving voltage. ($P_{max}=V_{3.3} \times I_{black}$)

Note 2: Measure Condition

Vin rising time

5.1.2 Signal Electrical Characteristics

Input signals shall be low or High-impedance state when VDD is off.

Signal electrical characteristics are as follows;

Display Port main link signal:

	Display port main link						
		Min	Тур	Max	unit		
VCM	RX input DC Common Mode Voltage		0		V		
VDiff _{P-P}	Peak-to-peak Voltage at a receiving Device	340		1320	mV		

Follow as VESA display port standard V1.1a.

Display Port AUX_CH signal:

	Display port AUX_CH						
		Min	Тур	Max	unit		
VCM	AUX DC Common Mode Voltage		0		V		
VDiff _{P-P}	AUX Peak-to-peak Voltage at a receiving Device	0.4	0.6	0.8	V		

Follow as VESA display port standard V1.1a.

Display Port VHPD signal:

Display Port VHPD							
	Min Typ Max unit						
VHPD	HPD voltage	2.25		3.6	V		

Follow as VESA display port standard V1.1a.

5.3 Backlight Unit

5.3.1 LED characteristics

Parameter	Symbol	Min	Тур	Max	Units	Condition
Backlight Power Consumption	PLED	-	-	3.03	[Watt]	(Ta=25°C), Note 1 Vin =12V
LED Life-Time	N/A	10,000	-	-	Hour	(Ta=25°C), Note 2 I _F =23 mA

Note 1: Calculator value for reference P_{LED} = VF (Normal Distribution) * IF (Normal Distribution) / Efficiency

Note 2: The LED life-time define as the estimated time to 50% degradation of initial luminous.

Note 3: LED Forward Current 23 mA per string, total 92mA / LED Forward Voltage 27V typ / LED Array 4parallel * 9series

Note 4: LED driver IC Vender - Richtek

5.3.2 Backlight input signal characteristics

Parameter	Symbol	Min	Тур	Max	Units	Remark
LED Power Supply	VLED	5.5	12.0	21.0	[Volt]	
PWM Logic Input High Level	VDWA EN	2.5	3.3	5.5	[Volt]	Define as
PWM Logic Input Low Level	VPWM_EN	-	-	0.8	[Volt]	Connector Interface
PWM Input Frequency	FPWM	200	6K	15K	Hz	(Ta=25°ℂ)
PWM Duty Ratio	Duty	5		100	%	

6. Signal Interface Characteristic

6.1 Pixel Format Image

Following figure shows the relationship of the input signals and LCD pixel format.

6.2 Integration Interface Requirement

6.2.1 Connector Description

Physical interface is described as for the connector on module.

These connectors are capable of accommodating the following signals and will be following components.

Connector Name / Designation	For Signal Connector
Manufacturer	DDK
Type / Part Number	FF12-40A-R12BN-D3
ting Housing/Part Number	FPC Cable

6.2.2 Pin Assignment

eDP lane is a differential signal technology for LCD interface and high speed data transfer device.

PIN NO	Symbol	Function
P1	H_GND	High Speed Ground
P2	NC	No Connect
P3	Lane1_N	Comp Signal Link Lane 1
P4	NC	No Connect
P5	Lane1_P	True Signal Link Lane 1
P6	NC	No Connect
P7	H_GND	High Speed Ground
P8	NC	No Connect
P 9	Lane0_N	Comp Signal Link Lane 0
P10	NC	No Connect
P11	Lane0_P	True Signal Link Lane 0
P12	NC	No Connect
P13	H_GND	High Speed Ground
P14	NC	No Connect
P15	AUX_CH_P	True Signal Auxiliary Ch.
P16	NC	No Connect
P17	AUX_CH_N	Comp Signal Auxiliary Ch.
P18	H_GND	High Speed Ground
P19	LCD_Self_Test	LCD Panel Self Test Enable
P20	LCD_VCC	LCD logic and driver power

P21	LCD_VCC	LCD logic and driver power
P22	LCD_VCC	LCD logic and driver power
P23	LCD_GND	LCD_ground
P24	LCD_GND	LCD_ground
P25	LCD_GND	LCD_ground
P26	HPD	HPD signale pin
P27	NC	AUO FAB use EDID_DATA
P28	BL_Enable	LED driver IC enable
P29	NC	AUO FAB use EDID_CLK
P30	BL_PWM	LED driver IC PWM
P31	BL_GND	Backlight_ground
P32	BL_GND	Backlight_ground
P33	BL_GND	Backlight_ground
P34	BL_GND	Backlight_ground
P35	NC	No Connect
P36	NC	No Connect
P37	BL_PWR	Backlight power (5.5V~21V)
P38	BL_PWR	Backlight power (5.5V~21V)
P39	BL_PWR	Backlight power (5.5V~21V)
P40	BL_PWR	Backlight power (5.5V~21V)

6.4 Interface Timing

6.4.1 Timing Characteristics

Basically, interface timings should match the 1920 x 1080 /70.7 Hz manufacturing guide line timing.

Parameter		Symbol	Min.	Тур.	Max.	Unit
Frame Rate			50 60			Hz
Clock frequency		1/ T _{Clock}		70.7		MHz
	Period	T _V	1084	1118	1380	
Vertical	Active	T _{VD}		T_{Line}		
Section	Blanking	T _{VB}	4	38	300	
	Period	T _H	2000	2108	2320	
Horizontal	Active	T _{HD}		1920		T _{Clock}
Section	Blanking	T _{HB}	80	188	400	

Note1: The above is as optimized setting

Note2: DE mode only

Note3: The maximum clock frequency = [(1920 + B)*(1080+A)*60]/2 < 80MHz

Note4: Clock frequency number is for reference, real setting value refer to EDID (Clock

frequency 70.7 MHz)

6.5 Power On Sequence

Power on/off sequence is as follows. Interface signals and LED on/off sequence are also shown in the chart.

Display Port panel power sequence:

Display port interface power up/down sequence, normal system operation

Display Port AUX_CH transaction only:

Display port interface power up/down sequence, AUX_CH transaction only

Display Port panel power sequence timing parameter:

Timing	Description	Dond by		Limits		Notes
parameter	Description	Reqd. by	Min.	Тур.	Max.	Notes
T1	power rail rise time, 10% to 90%	source	0.5ms		10ms	
T2	delay from LCDVDD to black video generation	sink	0ms		200ms	prevents display noise until valid video data is received from the source
Т3	delay from LCDVDD to HPD high	sink	0ms		200ms	sink AUX_CH must be operational upon HPD high.
T4	delay from HPD high to link training initialization	source				allows for source to read link capability and initialize.
Т5	link training duration	source				dependant on source link to read training protocol.
Т6	link idle	source				Min accounts for required BS-Idle pattern. Max allows for source frame synchronization.
т7	delay from valid video data from source to video on display	sink	0ms		50ms	max allows sink validate video data and timing.
Т8	delay from valid video data from source to backlight enable	source				source must assure display video is stable.
Т9	delay from backlight disable to end of valid video data	source				source must assure backlight is no longer illuminated.
T10	delay from end of valid video data from source to power off	source	0ms		500ms	
T11	power rail fall time, 905 to 10%	source			10ms	
T12	power off time	source	500ms			

Note 1: The sink must include the ability to generate black video autonomously. The sink must automatically enable black video under the following conditions:

-upon LCDVDD power on (with in T2 max)-when the "Novideostream_Flag" (VB-ID Bit 3) is received from the

- source (at the end of T9).
- -when no main link data, or invalid video data, is received from the source. Black video must be displayed within 64ms (typ) from the start of either condition. Video data can be deemed invalid based on MSA and timing information, for example.
- Note 2: The sink may implement the ability to disable the black video function, as described in Note 1, above, for system development and debugging purpose.
- Note 3: The sink must support AUX_CH polling by the source immediately following LCDVDD power on without causing damage to the sink device (the source can re-try if the sink is not ready). The sink must be able to respond to an AUX_CH transaction with the time specified within T3 max.

Note 4 : T8,T9,T10,T11 value are recommended, T8,T9,T10,T11≥0 could be acceptable

Display Port panel B/L power sequence timing parameter:

Note: When the adapter is hot plugged, the backlight power supply sequence is shown as below.

	Min (ms)	Max (ms)
T13	0.5	10
T14	10	-
T15	10	<u>=</u>
T16	10	-
T17	10	=
T18	0.5	10
T19	1*	-
T20	1*	

Seamless change: T19/T20 = 5xT_{PWM}*

^{*}T_{PWM}= 1/PWM Frequency

7. Panel Reliability Test

7.1 Vibration Test

Test Spec:

Test method: Non-Operation

Acceleration: 1.5 G

• Frequency: 10 - 500Hz Random

Sweep: 30 Minutes each Axis (X, Y, Z)

7.2 Shock Test

Test Spec:

Test method: Non-Operation

Acceleration: 220 G, Half sine wave

Active time: 2 ms

Pulse: X,Y,Z .one time for each side

7.3 Reliability Test

Items	Required Condition	Note
Temperature Humidity Bias	Ta= 40°C, 90%RH, 300h	
High Temperature Operation	Ta= 50°C, Dry, 300h	
Low Temperature Operation	Ta= 0°C, 300h	
High Temperature Storage	Ta= 60°C, 300h	
Low Temperature Storage	Ta= -20°C, 300h	
Thermal Shock Test	Ta=-20°C to 60°C, Duration at 30 min, 100 cycles	
ESD	Contact: ±8 KV Air: ±15 KV	Note 1

Note1: According to EN 61000-4-2, ESD class B: Some performance degradation allowed. Self-recoverable. No data lost, No hardware failures.

Remark: MTBF (Excluding the LED): 30,000 hours with a confidence level 90%

8. Mechanical Characteristics

8.1.1 Standard Front View

B116XAN03.1 Document Version :1.0 25 of 28

8.1.2 Standard Back View

B116XAN03.1 Document Version :1.0 26 of 28

9. Shipping and Package

9.1 Shipping Label Format

Shipping label

Manufactured MM/WW Model No: B116HAN03.1 AU Optronics Made in China (S1)

H/W: 0A F/W:0

Carton Label

AU Optronics

QTY: 48

RoHS

MODEL NO: B116HAN03.1

PART NO: 97.11B13.100

CUSTOMER NO:

CARTON NO:

Made in China

9.2 Carton Package

9.3 Shipping Package of Palletizing Sequence

