Bevezetés a programozáshoz

EGYETEMI JEGYZET

© Ez a másolat egy készülő egyetemi jegyzet munkapéldánya. A teljes jegyzetről, vagy annak bármely részéről további egy vagy több másolat készítéséhez a szerzők előzetes írásbeli hozzájárulására van szükség. A másolatnak tartalmaznia kell a sokszorosításra vonatkozó korlátozó kitételt is. A jegyzet kizárólag egyetemi oktatási vagy tanulmányi célra használható.

A szerzők hozzájárulásukat adják ahhoz, hogy az ELTE-n az 2000-2001-es tanévben elsőéves programozó-matematikus hallgatók bármelyike saját maga részére, tanulmányaihoz egy példány másolatot készítsen a jegyzetből.

Minden észrevételt, amely valamilyen hibára vonatkozik örömmel fogadunk. Budapest, 2002. szeptember 30.

A SZERZŐK

ELTE PROG-MAT. 2000-2001

Tartalomjegyzék

1.	Alapfogalmak						
	1.1.	Alaphalmazok	7				
	1.2.	Sorozatok	8				
	1.3.	Direktszorzat	8				
	1.4.	Relációk	9				
		1.4.1. Logikai relációk	10				
		1.4.2. Lezárt, korlátos lezárt	11				
	1.5.	Példák	12				
	1.6.	Feladatok	15				
2	A nr	rogramozás alapfogalmai	17				
4.	2.1.		17				
		· · · · · · · · · · · · · · · · · · ·	- '				
	2.2.	A feladat	18				
	2.3.	A program	18				
	2.4.	A programfüggvény	19				
	2.5.	Megoldás	19				
	2.6.	Példák	20				
	2.7.	Feladatok	22				
3.	Kiterjesztések 25						
	3.1.	A feladat kiterjesztése	25				
	3.2.	A program kiterjesztése	26				
	3.3.	Kiterjesztési tételek	27				
	3.4.	Példák	31				
	3.5.	Feladatok	33				
1	A típus 35						
٦.	-	A típusspecifikáció	35				
		A típus	36				
	T.4.	11 upuo	50				

2000-2001 TARTALOMJEGYZÉK

	4.3.	Példák	38
	4.4.	Feladatok	41
5.	Spec	ifikáció	43
	5.1.	A leggyengébb előfeltétel	43
	5.2.	A feladat specifikációja	45
	5.3.	A változó fogalma	46
	5.4.	A típusspecifikáció tétele	47
	5.5.	Példák	49
		Feladatok	50
6.	Elen	ni programok	53
		Feladatok	56
7.	Prog	ramkonstrukciók	57
	7.1.	Megengedett konstrukciók	57
	7.2.	A programkonstrukciók programfüggvénye	60
	7.3.	Levezetési szabályok	62
	7.4.	A programkonstrukciók és a kiszámíthatóság	68
		7.4.1. Parciális rekurzív függvények	68
		7.4.2. A parciális rekurzív függvények kiszámítása	69
		7.4.3. Következmény	73
		7.4.4. Relációk	73
_			
8.	_	skonstrukciók	75 75
	8.1.	A megengedett konstrukciók	75 70
	8.2.	Szelektorfüggvények	78
	8.3.	Az iterált specifikációs függvényei	79
	8.4.	A függvénytípus	80
	8.5.	A típuskonstrukciók típusműveletei	81
9.	Alap	vető programozási tételek	85
	9.1.	Összegzés	85
	9.2.	Számlálás	87
	9.3.	Maximumkeresés	88
	9.4.	Feltételes maximumkeresés	89
	9.5.	Lineáris keresés	90
	9.6.	Logaritmikus keresés	93
10.	Függ	yényérték kiszámítása	95
	10.1.	Függvénykompozícióval adott függvény	
		kiszámítása	95
	10.2.	Esetszétválasztással adott függvény kiszámítása	96
	10.3.	Rekurzív formulával adott függvény kiszámítása	96
		Elemenként feldolgozható függvény	97
		10.4.1. Egyváltozós-egyértékű eset	99
			100
			100
			101
11.	Vissz	zalépéses keresés	103

TARTALOMJEGYZÉK 2000-2001 5

12. Programtranszformációk 12.1. Koordináta transzformációk 12.1.1. Típustranszformációk 12.2. Állapottér transzformáció 12.3. Egyszerű programtranszformációk	107 107 107 111 112
13. Szekvenciális megfelelő	117
14. Programinverzió14.1. Egyváltozós eset14.2. Kétváltozós eset	121 121 123
15. Időszerűsítés 15.1. Az időszerűsítés definíciója	125 127 127 129 131 132 132 134 135

2000-2001 TARTALOMJEGYZÉK

ELTE PROG-MAT. 2000-2001

1.

Alapfogalmak

Ahhoz, hogy bármiről érdemben beszélhessünk, meg kell állapodnunk egy jelölésrendszerben. Az alábbiakban bevezetjük azokat a jelöléseket és alapvető definíciókat amelyeket a továbbiakban gyakran fogunk használni.

1.1. Alaphalmazok

Először bevezetjük a matematikában gyakran használt számhalmazok jelöléseit.

N − a természetes számok halmaza,

 \mathbb{N}_0 – a nemnegatív egészek halmaza,

z – az egész számok halmaza,

Q – a racionális számok halmaza,

C − a komplex számok halmaza,

L – a logikai értékek halmaza,

 $\mathbb{L} = \{igaz, hamis\},\$

∅ – az üres halmaz.

Vegyük észre, hogy a természetes számok halmazát (\mathbb{N}) és a nemnegatív egészek halmazát (\mathbb{N}_0) külön jelöljük. Ennek az az oka, hogy az általunk használt jelölésrendszerben a természetes számok hamaza nem tartalmazza a nullát.

Megjegyezzük továbbá, hogy [a..b]-vel fogjuk jelölni, a valós [a,b] intervallum egész elemeinek halmazát, azaz

$$[a..b] = [a,b] \cap \mathbb{Z}.$$

Természetesen használni fogjuk a matematikában megszokott halmazelméleti műveleteket:

∪ – unió,

 \cap - metszet,

és relációkat:

 \in - eleme,

⊆ részhalmaza,

⊂ – valódi része.

1.2. Sorozatok

Ha A egy adott halmaz, akkor az $\alpha = <\alpha_1, \alpha_2, \cdots>, \alpha_i \in A$ egy A-beli véges, vagy végtelen sorozatot jelöl.

Az A-beli véges sorozatokat $\alpha = <\alpha_1, \alpha_2, \ldots, \alpha_n>, \alpha_i \in A$ alakban írhatjuk le. A véges sorozat hosszát $|\alpha|$ jelöli.

Az A-beli véges sorozatok halmazát A^* -gal, a végtelen sorozatok halmazát A^∞ -nel jelöljük. Az előző két halmaz uniójaként előálló A-beli véges, vagy végtelen sorozatok halmazát A^{**} -gal jelöljük.

Egy $\alpha \in A^{**}$ sorozatat értelmezési tartományát \mathcal{D}_{α} -val jelöljük, és a következő halmazt értjük rajta:

$$\mathcal{D}_{\alpha} = \left\{ \begin{array}{ll} [1..|\alpha|], & \text{ha } \alpha \in A^* \\ \mathbb{N}, & \text{ha } \alpha \in A^{\infty} \end{array} \right.$$

Legyenek $\alpha^1, \alpha^2, \ldots, \alpha^{n-1} \in A^*$ és $\alpha^n \in A^{**}$. Ekkor azt a sorozatot, amit az $\alpha^1, \alpha^2, \ldots, \alpha^{n-1}, \alpha^n$ sorozatok egymás után írásával kapunk, a fenti sorozatok konkatenációjának nevezzük, és $kon(\alpha^1, \alpha^2, \ldots, \alpha^{n-1}, \alpha^n)$ -nel jelöljük.

Egy A^{**} -beli sorozat redukáltjának nevezzük azt a sorozatot, amit úgy kapunk, hogy az eredeti sorozat minden azonos elemekből álló véges részsorozatát a részsorozat egyetlen elemével helyettesítjük. Egy $\alpha \in A^{**}$ sorozat redukáltját $red(\alpha)$ -ával jelöljük.

Bevezetjük még a τ függvényt, ami egy véges sorozathoz hozzárendeli annak utolsó elemét: $\tau: A^* \to A, \forall \alpha \in A^*$:

$$\tau(\alpha) = \alpha_{|\alpha|}.$$

1.3. Direktszorzat

Legyenek $A_{i_1},A_{i_2},\ldots,A_{i_n}$ tetszőleges halmazok, $I=\{i_1,\ldots,i_n\},\ J=\{j_1,\ldots,j_m\},\ J\subseteq I$ és $H=I\setminus J=\{h_1,\ldots,h_s\}.$ Ekkor az

$$A = \sum_{k=1}^{n} A_{i_k} = \{ (a_1, \dots, a_n) \mid a_k \in A_{i_k}, k \in [1..n] \}$$

direktszorzatnak a

$$B = \underset{k=1}{\overset{m}{\times}} A_{j_k}$$

direktszorzat altere és a

$$B' = \underset{k-1}{\overset{s}{\times}} A_{h_k}$$

direktszorzat kiegészítő altere.

A $pr_B: A \rightarrow B$ függvényt projekciónak nevezzük, ha

$$\forall k \in [1..m] : pr_B(a)_k = a_l \text{ ahol } j_k = i_l.$$

$$pr_B((a_1, a_2)) = (pr_B(a_1), pr_B(a_2)) \in B \times B$$

 $pr_B(\alpha) = \beta \in B^{**}, \text{ahol } \mathcal{D}_{\beta} = \mathcal{D}_{\alpha} \text{ és}$
 $\forall i \in \mathcal{D}_{\beta} : \beta_i = pr_B(\alpha_i)$

1.4. Relációk

Relációnak nevezzük egy tetszőleges direktszorzat tetszőleges részhalmazát. A továbbiakban csak olyan relációkkal foglalkozunk, amelyek kétkomponensű direktszorzat részei. Ezeket a relációkat *bináris relációknak* nevezzük.

Legyenek A és B tetszőleges halmazok, $R\subseteq A\times B$ pedig egy tetszőleges reláció. Ekkor a reláció *értelmezési tartománya*:

$$\mathcal{D}_R = \{ a \in A \mid \exists b \in B : (a, b) \in R \},\$$

a reláció értékkészlete:

$$\mathcal{R}_R = \{ b \in B \mid \exists a \in A : (a, b) \in R \},\$$

a reláció értéke egy adott helyen:

$$R(a) = \{b \in B \mid (a, b) \in R\},\$$

egy $H \subseteq A$ halmaz R szerinti $k\acute{e}pe$

$$R(H) = \{ b \in B \mid \exists a \in H : (a, b) \in R \},\$$

Azt mondjuk, hogy egy reláció determinisztikus, vagy parciális függvény, ha

$$\forall a \in A : |R(a)| \le 1.$$

Függvénynek nevezünk egy relációt akkor, ha

$$\forall a \in A : |R(a)| = 1.$$

Legyen $R \subset A \times B$. Ekkor az $R^{(-1)}$ reláció az R inverze, ha

$$R^{(-1)} = \{ (b, a) \in B \times A \mid (a, b) \in R \}.$$

Legyen $H \subseteq B$ tetszőleges halmaz. Ekkor az

$$R^{(-1)}(H) = \{ a \in A \mid R(a) \cap H \neq \emptyset \}$$

halmazt a H halmaz R reláció szerinti inverz képének nevezzük. Vegyük észre, hogy az inverz kép fogalma megegyezik az inverz reláció szerinti kép fogalmával. Ugyanekkor az

$$R^{-1}(H) = \{ a \in \mathcal{D}_R \mid R(a) \subseteq H \}$$

halmazt a H halmaz R reláció szerinti ősképének nevezzük. Vegyük észre, hogy az őskép mindig része inverz képnek. A két kép kapcsolatát mutatja az alábbi ábra:

A relációk között értelmezünk műveleteket is. Legyen $P \subseteq A \times B$ és $Q \subseteq B \times C$. Ekkor az $R \subseteq A \times C$ relációt a P és Q relációk *kompozíciójának* nevezzük, ha

$$R = Q \circ P = \{(a, c) \in A \times C \mid \exists b \in B : (a, b) \in P \land (b, c) \in Q\}.$$

Az $S \subset A \times C$ relációt a P és Q relációk szigorú kompozíciójának nevezzük, ha

$$S = Q \odot P = \{(a, c) \in A \times C \mid \exists b \in B : (a, b) \in P \land (b, c) \in Q \land P(a) \subseteq \mathcal{D}_Q\}.$$

10 **2000-2001** 1. ALAPFOGALMAK

1.1. ábra. Inverz kép és őskép

1.2. ábra. Kompozíció és szigorú kompozíció

1.4.1. Logikai relációk

Az $R\subseteq A\times \mathbb{L}$ típusú relációkat – ahol A tetszőleges halmaz –, logikai relációknak nevezzük. A logikai relációkra bevezetünk néhány jelölést:

Legyen $R \subseteq A \times \mathbb{L}$. Ekkor az R gyenge igazsághalmaza:

$$\lfloor R \rfloor = R^{(-1)}(\{igaz\}),$$

erős igazsághalmaza:

$$\lceil R \rceil = R^{-1}(\{igaz\}).$$

Vegyük észre, hogy ha R függvény, akkor az erős és gyenge igazsághalmaz megegyezik. A függvényekre alkalmazott igazsághalmaz-képzésnek van egy inverz művelete, a karakterisztikus függvény megadása: legyen $H\subseteq A$. Ekkor a $\mathcal{P}(H):A\to\mathbb{L}$ függvény a H halmaz karakterisztikus függvénye, ha

$$\lceil \mathcal{P}(H) \rceil = H.$$

A fenti definíciókból következik, hogy tulajdonképpen mindegy, hogy egy halmaz részhalmazairól, vagy a halmazon értelmezett logikai függvényekről (állításokról) beszélünk, hiszen ezen fogalmak kölcsönösen egyértelműen megfelelnek egymásnak.

1.4.2. Lezárt, korlátos lezárt

Legyen $R \subseteq A \times A$ egy homogén reláció. A reláció nulladik hatványa:

$$R^0 = \{ (a, a) \mid a \in A \}.$$

A reláció n-edik hatványa, $n \in \mathbb{N}$:

$$R^n = R^{n-1} \circ R$$
.

Az $R \subset A \times A$ reláció *lezártja* az az $\overline{R} \subset A \times A$ reláció, amelyre:

•
$$\mathcal{D}_{\overline{R}} = \{ a \in A \mid \not\exists \alpha \in A^{\infty} : \alpha_1 \in R(a) \land \forall i \in \mathbb{N} : \alpha_{i+1} \in R(\alpha_i) \} \text{ \'es}$$

•
$$\forall a \in \mathcal{D}_{\overline{R}} : \overline{R}(a) = \{ b \in A \mid \exists k \in \mathbb{N}_0 : b \in R^k(a) \land b \notin \mathcal{D}_R \}.$$

A lezárt tehát olyan pontokban van értelmezve, amelyekből kiindulva a relációt nem lehet végtelen sokszor egymás után alkalmazni, és ezekhez a pontokhoz olyan pontokat rendel, amelyeket úgy kapunk, hogy a reláció véges sokszori alkalmazásával kikerülünk az eredeti reláció értelmezési tartományából. Tehát $\mathcal{D}_R \cap \mathcal{R}_{\overline{R}} = \emptyset$ mindig

Az $R\subseteq A\times A$ reláció korlátos lezártja az az $\overline{\overline{R}}\subseteq A\times A$ reláció, amelyre:

•
$$\mathcal{D}_{\overline{\overline{R}}} = \{ a \in A \mid \exists k_a \in \mathbb{N}_0 : R^{k_a}(a) = \emptyset \} \text{ \'es}$$

•
$$\forall a \in \mathcal{D}_{\overline{\overline{R}}} : \overline{\overline{R}}(a) = \overline{R}(a).$$

Vegyük észre, hogy egy reláció lezártja, és korlátos lezártja különbözhet. A definíciókból látható, hogy ez a különbözőség csak az értelmezési tartományok között jelentkezhet. Ennek azonban szükséges feltétele, hogy egy alkalmas pontból kiindulva a relációt ne lehessen végtelen sokszor alkalmazni, de a véges sokszori alkalmazások hosszára ne tudjunk korlátot mondani. Természetesen ez csak akkor lehetséges, ha végtelen sok véges alkalmazás-sorozatot tudunk a pontból indítani. Nézzünk erre egy egyszerű példát: legyen $R \subseteq \mathbb{Z} \times \mathbb{Z}$, és

$$R(a) = \left\{ \begin{array}{ll} \{a-1\}, & \text{ha } a > 0 \\ \mathbb{N}, & \text{ha } a < 0 \end{array} \right.$$

Ekkor $\mathbb{Z}=\mathcal{D}_{\overline{R}}\neq\mathcal{D}_{\overline{\overline{R}}}=\mathbb{N}_0$. Legyen $R\subseteq A\times A$ és $\pi:A\to\mathbb{L}$. A

$$R|_{\pi} = (R \cap (\lceil \pi \rceil \times A)) \cup \{(a, a) \in A \times A \mid a \in \lceil \pi \rceil \setminus \mathcal{D}_R\}$$

relációt feltételes relációnak nevezzük.

Vegyük észre, hogy egy feltételes reláció nem ugyanaz, mint a reláció leszűkítése a feltétel igazsághalmazára, azaz $R|_{\pi} \neq R|_{\lceil \pi \rceil}!$ Továbbá fontos megjegyezni, hogy a feltételes reláció értelmezési tartománya mindig a feltétel igazsághalmaza, azaz

A továbbiakban egy feltételes reláció lezártját illetve korlátos lezártját a reláció feltételre vonatkozó lezártjának illetve feltételre vonatkozó korlátos lezártjának fogjuk nevezni.

1.5. Példák

12

1. példa: Írjuk fel az $A\times B$, $A\times C$, $(A\times B)\times C$, és $A\times B\times C$ halmazok elemeit, ha $A=\{0,1\}, B=\{1,2,3\}, C=\{p,q\}!$ Megoldás:

2. példa: Legyen $R \subseteq \{1, 2, 3, 4, 5\} \times \{1, 2, 3, 4, 5\}$.

$$R = \{(1, 2), (1, 4), (2, 1), (3, 4), (3, 3), (3, 5), (4, 5)\}.$$

- a) Mi a reláció értelmezési tartománya és értékkészlete?
- b) Determinisztikus-e, ill. függvény-e a reláció?
- c) Mi R 0., 2., (-1). hatványa?
- d) Mi a {4,5} halmaz inverz képe, ill. ősképe?

Megoldás:

a)
$$\mathcal{D}_R = \{1, 2, 3, 4\},\$$

 $\mathcal{R}_R = \{1, 2, 3, 4, 5\}.$

- b) A reláció nem determinisztikus, ugyanis pl. |R(1)| = 2! Mivel a reláció nem determinisztikus, függvény sem lehet.
- c) A reláció 0. hatványa az identikus leképezés, azaz:

$$R^0 = \{(1,1), (2,2), (3,3), (4,4), (5,5)\}.$$

Mivel $R^2=R\circ R$, azt kell megvizsgálnunk, hogy mely pontokból hogyan lehet a relációt egymás után kétszer alkalmazni:

$$\begin{array}{cccc} (1,2) & \longrightarrow & (2,1) \\ (1,4) & \longrightarrow & (4,5) \\ (2,1) & \longrightarrow & (1,2) \\ (2,1) & \longrightarrow & (1,4) \\ (3,4) & \longrightarrow & (4,5) \\ (3,3) & \longrightarrow & (3,4) \\ (3,3) & \longrightarrow & (3,3) \\ (3,3) & \longrightarrow & (3,5) \end{array}$$

A fenti táblázat alapján:

$$R^2 = \{(1,1), (1,5), (2,2), (2,4), (3,5), (3,4), (3,3)\}.$$

 $R^{(-1)}$ a reláció inverzének definíciója alapján:

$$R = \{(2,1), (4,1), (1,2), (4,3), (3,3), (5,3), (5,4)\}.$$

d) fjuk fel, hogy mit rendel a reláció az értelmezési tartomány egyes pontjaihoz:

$$R(1) = \{2,4\}$$

$$R(2) = \{1\}$$

$$R(3) = \{3,4,5\}$$

$$R(4) = \{5\}$$

Az inverz kép definíciója alapján:

$$R^{(-1)}(\{4,5\} = \{1,3,4\}.$$

Az őskép definíciója alapján:

$$R^{-1}({4,5} = {4}).$$

3. példa: Megadható-e valamilyen összefüggés egy H halmaz inverz képének képe, és a H halmaz között?

Megoldás: Legyen $R \subseteq A \times B$, $H \subseteq B$. Ekkor

$$R(R^{(-1)}(H)) = R(\{a \in A \mid R(a) \cap H \neq \emptyset\}) = \bigcup_{R(a) \cap H \neq \emptyset} R(a).$$

Vegyük észre, hogy általános esetben nem tudunk mondani semmit a két halmaz viszonyáról, ugyanis

- i.) ha $H \not\subseteq \mathcal{R}_R$, akkor $H \not\subseteq R(R^{(-1)}(H))$ és
- ii.) ha $\exists a \in R^{(-1)}(H) : R(a) \not\subseteq H$, akkor $R(R^{(-1)}(H)) \not\subseteq H$.

Tekintsük e fenti esetet egy egyszerű számpéldán: Legyen $A=B=\{1,2,3\},$ $R=\{(1,1),(1,2)\}.$ Ekkor $H=\{2,3\}$ esetén $R(R^{(-1)}(H))=\{1,2\}$, azaz egyik irányú tartalmazkodás sem áll fenn.

4. példa: Legyen $R \subseteq A \times B$, $P,Q \subseteq B$. Hogyan lehetne jellemezni az $R^{-1}(P \cup Q)$ és az $R^{-1}(P \cap Q)$ halmazt az $R^{-1}(P)$ és $R^{-1}(Q)$ halmaz segítségével? **Megoldás:**

$$R^{-1}(P \cup Q) = \{a \in \mathcal{D}_R \mid R(a) \subseteq (P \cup Q)\} =$$

$$\supseteq \{a \in \mathcal{D}_R \mid R(a) \subseteq P\} \cup \{a \in \mathcal{D}_R \mid R(a) \subseteq Q\}.$$

A másik irányú tartalmazkodás sajnos nem áll fenn, ugyanis lehet olyan $a \in \mathcal{D}_R$ amelyre

$$R(a) \not\subset P$$
, és $R(a) \not\subset Q$, de $R(a) \subset P \cup Q$.

Nézzük ezt egy számpéldán: Legyen $A=B=\{1,2\},$ $R=\{(1,1),(1,2)\},$ $P=\{1\},$ $Q=\{2\}.$ Ekkor $R^{-1}(P)$ és $R^{-1}(Q)$ üres, de $R^{-1}(P\cup Q)=\{1\}.$ Vizsgáljuk most meg a metszetet!

$$R^{-1}(P \cap Q) = \{a \in \mathcal{D}_R \mid R(a) \subseteq (P \cap Q)\} =$$

= $\{a \in \mathcal{D}_R \mid R(a) \subseteq P\} \cap \{a \in \mathcal{D}_R \mid R(a) \subseteq Q\} =$
= $R^{-1}(P) \cap R^{-1}(Q).$

Tehát bebizonyítottuk, hogy két tetszőleges halmaz metszetének ősképe egyenlő a két halmaz ősképének metszetével.

5. példa: Legyenek $F \subseteq A \times B, G \subseteq B \times C$. Igaz-e, hogy

$$(G \circ F)^{(-1)} = F^{(-1)} \circ G^{(-1)}$$
?

Megoldás:

$$(G \circ F)^{(-1)} = \{(c, a) \in C \times A \mid \exists b \in B : (a, b) \in F \land (b, c) \in G\} = \{(c, a) \in C \times A \mid \exists b \in B : (b, a) \in F^{(-1)} \land (c, b) \in G^{(-1)}\} = F^{(-1)} \circ G^{(-1)}.$$

6. példa: Legyenek $F \subset A \times B, G \subset B \times C$. Igaz-e, hogy

$$(G \odot F)^{(-1)} = F^{(-1)} \odot G^{(-1)}$$
?

Megoldás:

$$\begin{split} (G\odot F)^{(-1)} &= \{(c,a)\in C\times A\mid \exists b\in B: (a,b)\in F\wedge (b,c)\in G\wedge\\ &\wedge F(a)\subseteq \mathcal{D}_G\} =\\ &= \{(c,a)\in C\times A\mid \exists b\in B: (b,a)\in F^{(-1)}\wedge (c,b)\in G^{(-1)}\wedge\\ &\wedge F(a)\subseteq \mathcal{D}_G\} =\\ &\neq \{(c,a)\in C\times A\mid \exists b\in B: (b,a)\in F^{(-1)}\wedge (c,b)\in G^{(-1)}\wedge\\ &\wedge G^{(-1)}(c)\subseteq \mathcal{D}_{F^{(-1)}}\} =\\ &= F^{(-1)}\odot G^{(-1)}. \end{split}$$

Számpéldán szemléltetve: legyen $A = B = C = \{1, 2\}, F = G = \{(1, 1), (1, 2)\}.$ Ekkor

$$(G \odot F)^{(-1)} = \emptyset,$$

 $F^{(-1)} \odot G^{(-1)} = \{(1,1), (2,1)\}.$

7. példa: $W = N_1 \times N_2 \times N_3$. $\alpha \in W^{**}$, ahol $N_i = \mathbb{N}$ (i = 1, 2, 3). $\alpha_1 = (1, 1, 1)$. Az α sorozat további elemeit úgy kapjuk meg, hogy a pontok koordinátáit az első koordinátával kezdve ciklikusan 1-gyel növeljük. $red(pr_{N_1 \times N_3}(\alpha)) = ?$

Megoldás: fjuk fel először a sorozat első néhány tagját:

$$\alpha = <(1,1,1),(2,1,1),(2,2,1),(2,2,2),(3,2,2),(3,3,2)\cdots>$$

Az α sorozat projekciója $N_1 \times N_3$ -ra:

$$pr_{N_1 \times N_3}(\alpha) = \langle (1,1), (2,1), (2,1), (2,2), (3,2), (3,2) \dots \rangle$$

A fenti sorozat redukáltja:

$$red(pr_{N_1 \times N_3}(\alpha)) = <(1,1),(2,1),(2,2),(3,2)\cdots>$$

A fentiekből jól látható, hogy a redukció pontosan azokat az elemeket hagyja ki a sorozatból, amelyekben a növelés a második komponensben történt, így az eredménysorozat elemeit is a koordináták ciklikus eggyel növelésével kapjuk meg, az (1, 1) pontból kiindulva.

1.6. Feladatok

1. Milyen összefüggés van egy H halmaz R relációra vonatkozó inverz képe és ősképe között? És ha R függvény?

15

- 2. $R = \{((x, y), (x + y, y)) \mid x, y \in \mathbb{N}\}$. Mi a $H = \{(a, b) \mid a, b \in \mathbb{N} \land a + b < 5\}$ halmaz inverz képe, ill. ősképe?
- 3. $R = \{((x,y),(x+y,y)) \mid x,y \in \mathbb{N}\} \cup \{((x,y),(x-y,y)) \mid x,y \in \mathbb{N}\}$. Mi a $H = \{(a,b) \mid a,b \in \mathbb{N} \land a+b < 5\}$ halmaz inverz képe, ill. ősképe?
- 4. $R = \{((x,y), (f(x,y),y)) \mid x,y \in \mathbb{N}\}$, ahol $f : \mathbb{N} \times \mathbb{N} \to \mathbb{N}$. Mi a $H = \{(a,b) \mid a,b \in \mathbb{N} \land a+b < 5\}$ halmaz ősképe ill. inverz képe?
- 5. $R \subseteq A \times B, Q \subseteq B$. Van-e valamilyen összefüggés az $R^{-1}(B \setminus Q)$ halmaz és az $A \setminus (R^{-1}(Q))$ halmaz között?
- 6. Készíts olyan nem üres relációt, amelyre igaz, hogy értékkészlete minden valódi részhalmazának ősképe üres halmaz!
- 7. Legyen $A = \{1, 2, 3, 4, 5\}, R \subseteq A \times A, R = \{(1, 2), (1, 4), (2, 1), (3, 4), (3, 3), (3, 5), (4, 5)\}, f \subseteq A \times \mathbb{L}$ és $f = \{(1, i), (2, i), (3, i), (4, h), (5, i)\}$. Mi f, ill. $(f \circ R)$ igazsághalmaza?
- 8. $R, Q \subseteq A \times A$. Igaz-e, hogy $(R \odot Q)^{(-1)} = Q^{(-1)} \circ R^{(-1)}$?
- 9. $R \subseteq A \times A$. Igaz-e, hogy $(R^{(-1)})^2 = (R^2)^{(-1)}$?
- 10. $R \subset A \times A$. Igaz-e, hogy $\forall H \subset A : R^{-1}(R^{-1}(H)) = (R^2)^{-1}(H)$?
- 11. $P, Q \subseteq \mathbb{N} \times \mathbb{N}$. $Q = \{(a,b) \mid 2|a \wedge b|a \wedge prim(b)\}$.
 - a) $P = \{(a, b) | b | a \land b \neq 1 \land b \neq a\}$
 - b) $P = \{(a, b) \mid b \mid a\}$

Add meg a $Q^{(-1)}$, $Q \circ P$ és $Q \odot P$ -t relációt!

12. Legyen $Q, R, S \subseteq A \times A$, és vezessük be az alábbi jelölést: ha $X \subseteq A \times A$ tetszőleges reláció, akkor X komplementere:

$$\widehat{X} = \{(a, b) \in A \times A \mid (a, b) \notin X\}.$$

Igaz-e, hogy

$$Q \odot R \subset S \iff Q^{(-1)} \odot \widehat{S} \subset \widehat{R}$$
?

Igaz-e a fenti állítás nem-szigorú kompozíció esetén?

13. Legyen $Q, R, S \subseteq A \times A$. Igaz-e, hogy

$$\begin{split} R \subseteq S & \Rightarrow & R \odot Q \subseteq S \odot Q, \\ R \subseteq S & \Rightarrow & Q \odot R \subseteq Q \odot S? \end{split}$$

14. Legyen R és Q két reláció a természetes számok halmazán! R egy természetes számhoz rendeli önmagát és a kétszeresét, Q egy páros természetes számhoz a felét.

- a) Ítd fel a két relációt, és add meg az értelmezési tartományukat!
- b) Ítd fel az R reláció k. hatványát ($k \ge 1$) és ennek az értelmezési tartományát!
- c) Ítd fel a $Q \circ R$ relációt és az értelmezési tartományát!
- d) $F = Q \odot R!$ fd fel az F relációt és az értelmezési tartományát!
- 15. Legfeljebb ill. legalább milyen hosszú egy m és egy n hosszúságú sorozat redukáltjának konkatenációja, ill. konkatenációjának redukáltja?
- 16. Igaz-e, hogy egy α sorozat redukáltjának projekciója ugyanolyan hosszú, mint az α sorozat redukáltja?
- 17. Igaz-e, hogy egy α sorozat projekciójának redukáltja ugyanolyan hosszú, mint az α sorozat redukáltja?
- 18. Legyen $A=N_1\times N_2\times N_3\times N_4,\, B=N_4\times N_1,$ ahol $N_i=\mathbb{N}$ (i=1..4).

$$\begin{array}{lll} \alpha & = & <\!(1,1,1,1), (1,2,1,1), (1,2,3,1), (1,2,3,4), \\ & & (5,2,3,4), (5,7,3,4), (5,7,10,4), \cdots > \end{array}$$

- a) $pr_B(\alpha) = ?$
- b) $red(pr_B(\alpha)) = ?$