

Las Americas Institute of Technology

Nombre del estudiante:

Jesus Alberto Beato Pimentel.

Matricula:

2023-1283.

Institución académica:

Instituto Tecnológico de las Américas (ITLA).

Materia:

Física Eléctrica.

Profesor:

Lidia Noelia Almonte Rosario.

Tema del trabajo:

Practica 2. Ejercicios de libro Física Serway

Fecha:

30/05/2024

Practica 2. Realizar los siguientes ejercicios, pág. 685: 1, 3, 8, 13 y de la pág. 687: 6, 19, 25, 35, 44, 54. Del libro de Física Serway

Ejercicios de pág. 685

1) En invierno, el sol está en el cielo más abajo que en verano. ¿Cómo incide lo anterior en el flujo de luz solar sobre un área determinada de la superficie de la Tierra? ¿Cómo afecta lo anterior al clima?

En el invierno el sol más bajo en el cielo en comparación con el verano y demás estaciones, esto incide directamente en el flujo de luz solar, ya que, mientras bajo se encuentra el sol es menos directo e intenso sobre la superficie de la Tierra. Esto afecta al clima cambiando la temperatura, ya que es menos directo e intenso por ende contribuye a generar un clima frío.

3) En una región del espacio en la cual no existen cargas hay un campo eléctrico uniforme. ¿Qué se puede concluir acerca del flujo eléctrico neto a través de una superficie gaussiana colocada en esta región del espacio?

La ausencia de cargas en una región con un campo eléctrico uniforme implica que el flujo eléctrico neto a través de la superficie gaussiana colocada en esa región es cero. Esto se debe a que la ley de Gauss relaciona el flujo eléctrico neto con la carga neta encerrada, y en este caso, la carga neta es cero.

8) Si se conoce la carga total en el interior de una superficie cerrada pero no se especifica la distribución de la carga, ¿puede utilizar la ley de Gauss para determinar el campo eléctrico? Explique.

En el caso de saber la carga total en ele interior de una superficie cerrada y no tener una distribución de carga especifica, se puede utilizar la Ley de Gauss, ya que, esta ley establece que el flujo eléctrico a través de una superficie cerrada es proporcional a la carga eléctrica total encerrada dentro de esa superficie.

13) Una persona entra en una gran esfera metálica hueca aislada de la tierra. Si a la esfera se le deposita una carga considerable, ¿la persona resultará lastimada si toca el interior de la esfera? Explique qué pasaría si la persona tiene además una carga inicial cuyo signo es opuesto al de la carga de la esfera.

En el primer caso que plantea el ejercicio, en la cual, la persona no tiene carga el campo eléctrico en el interior de la esfera por la tanto es cero, por lo que, al tocar el interior de la esfera la persona no se lastimaría. Pero, en el otro caso que plantea el ejercicio que la persona en el interior de la esfera tiene una carga opuesta a la carga de la esfera ya el campo eléctrico en el interior de la esfera ya no será cero, por lo que carga que es impulsada a la pared del interior de dicha esfera y la persona en este caso si resultara afectada porque la carga que lleva se le transfiere al metal de la esfera.

Ejercicios de pág. 685

6. El campo eléctrico presente en la superficie total de una cubierta esférica delgada de 0.750 m de radio tiene un valor de 890 N/C y apunta radialmente hacia el centro de la esfera. a) ¿Cuál es la carga neta en el interior de la superficie de la esfera? b) ¿Qué se puede concluir en relación con la naturaleza y distribución de la carga en el interior de la cubierta esférica?

_	
Dates	Toumulas
Y = 0.750m F = 890 N/C	$A = 4\pi r^2$ $Q = E \times A \times E_0$
E0 = 8.85 x 10-12 c2/Nm2.	V= Z X II A Z Z
	the second secon
$A = 4 (3.1416) (0.750 m)^2$ = 12.57 (0.5625 m²) (= $\frac{1}{4}$.070 m²)	
Q=(890 N/e)(7.070 m²)(8.85 =(890 N/c)(7.070 m²)(0.000 [=5.5687 x 10-8c]	x 10 2 (Nm²)
b) fa distribución de lange mo es uniforme, que se	determine didia carga.
A satisfaction of the same of	o o a figure out the figure

19. Determine la magnitud del campo eléctrico en la superficie de un núcleo de plomo-208, que contiene 82 protones y 126 neutrones. Suponga que el núcleo de plomo tiene un volumen igual a 208 veces el volumen de un protón, considere al protón como una esfera de radio 1.20 10 15 m.

(9)	Datos
Formulas	Ce = 1.602 × CO
TO BOW SANDERA	N = -208
F = K.q. HIA	N = 1.31364x
	y = 7.596 x 10
9 = 82 · Ce	K = 8.9875 x109
r = rp . 3208'	F = 0.1875 AND
-19\	
9 = 82 · (1.602×10'2)	
9 - 82 · (0.0000000000000000000000000000000000	
9 = 1.31364 x 10 °C	
Y=1.20 x 10 m x \$\frac{3208}{208}	
r=1.20 x 10 m x 1208	
r=0.00000000000000000000000000000000000	
Y = 7.596 x 10 15	
E = (8.9875×109) (1.31364×1017)	27
F = (8,9875 x 10) (1.31369 x 10)	
(7.596 × 1515)	
	1
F = 1.182 x 10-7 = 2.05 x 1021 N	10
5.766 x 10-29	
23 N/	
(F = 2.05 x 1621 /6)	

25. Problema de repaso. Una partícula con una carga de 60.0 nC está colocada en el centro de una cubierta esférica no conductora con un radio interior igual a 20.0 cm y un radio exterior de 25.0 cm. La cubierta esférica tiene una carga con una densidad uniforme de 1.33 mC/m3. Un protón se mueve en órbita circular justo en el exterior de la cubierta esférica. Calcule la rapidez del protón.

25)	
Datos	Termula
Cp = 60.0nc	Ke 9 = 9
Ri : 20.0cm	eE = mu²
d = 1.33 mC/m3	K. A.
× Valumen	
# T[(0.25 m) 3-(0.20m) 3] # T[0.015625 m3 - 0.008 m3] = 3.19	Sm ² Oz.
& Carga	142
Pu = (-1,23 × 10-6 5/3) (3.19× 10 m3)	
TGO X 109 (-4.25 X 10-8) = 1.02 X 10-8	
\times Magnitud $K = 9 = 9 = 8.99 \times 10^9 \text{ M}^2 \times 1$	0 02 × 10-2 = 1.97 × 104 1/c
$V = \left(\frac{e}{rr}\right)^{\frac{1}{2}} = \left[\frac{1.60 \times 10^{-19}}{1.67 \times 10^{-24}} \times \frac{10^{4}}{1.67 \times 10^{-24}} \times 1$	
V = 5.94 x 105 mg	

35. Una placa cuadrada de cobre de 50.0 cm de lado tiene una carga neta igual a cero y está colocada en una región de un campo eléctrico uniforme de 80.0 kN/C dirigido perpendicularmente a la placa. Determine a) la densidad de carga en cada una de las caras de la placa y b) la carga total en cada placa

25)	Formula
A = 50.0 cm F = 80.0 kn/c Lo = 8.85 × 10 1 c ² /Nm ²	F = Q = Q = F Fo Fo Fo 0 = Q = 0 = 0 - A
a) Q = 180.0 km/c = (8:85 × 10 ° c 2/Nm2)	A
$D = (708 \text{ NeV} m^2) (0.50)^2$ $= 1.77 \times 10^{-62}$	

44. Una esfera aislante y sólida, de 5.00 cm de radio, tiene una carga positiva neta de 3.00 mC, con distribución uniforme en todo su volumen. Concéntrico a la esfera hay una cubierta esférica conductora con radio interior de 10.0 cm y radio exterior de 15.0 cm, que tiene carga neta de 1.00 mC, como se muestra en la figura Q24.11. a) Considere una superficie gaussiana esférica de 16.0 cm de radio y encuentre la carga neta encerrada por esta superficie. b) ¿Cuál es la dirección del campo eléctrico en el punto D, a la derecha de la cubierta y a un radio de 16 cm? c) Encuentre la magnitud del campo eléctrico en el punto D. d) Encuentre el vector de campo eléctrico en el punto C, a 12.0 cm de radio. e) Considere una superficie gaussiana esférica a través del punto C y encuentre la carga neta encerrada por esta superficie. f) Considere una superficie gaussiana esférica de 8.00 cm de radio y encuentre la carga neta encerrada por esta superficie. g) Encuentre el vector de campo eléctrico en el punto B, a 8 cm de radio. h) Considere una superficie gaussiana esférica a través del punto A, a 4.00 cm de radio, y encuentre la carga neta encerrada por esta superficie. i) Encuentre el vector de campo eléctrico en el punto A. j) Determine la carga sobre la superficie interior de la cubierta conductora. k) Determine la carga sobre la superficie exterior de la cubierta conductora. l) Bosqueje una gráfica de la magnitud del campo eléctrico o en términos de r.

44) Datos	Thormula
R = 5.00 cm	$E = \frac{h_3}{v^2}$
DP = 3.00 Cm	10 12
B = 10.0cm	
Re = 15.0cm	
Q = 1.00 mc	
Pd = 16cm	
Pc = 12.0cm	
Pb = 8600	
Pa = 4.00 cm	
R3=16.0cm	
2)90 = 3.00mc	- 1mc -= 2.0mc
esta dirigida	del campo eléctrico en el punto D. hacra afuera os también hacia
	99×109) (20×10-9)
T - 707 U N/C	
J = 0	
e) OE = SE da	
F) 9m = 3.00 No	2.15-9/(0.011-8) -1/21 -1/4
	9×10-9) (3.0×10) =4.21 m N/2
h) q = Pv = (30#) (まガ13) = 1.59NC
3 3 11 5	

h) q = -1 mc - q = -1 mc - (310mc)

54. Una superficie cerrada de dimensiones a b 0.400 m y c 0.600 m está colocada como se observa en la figura P24.54. La arista izquierda de la superficie cerrada está ubicada en la posición x a. El campo eléctrico en toda la región no es uniforme y se conoce por $E \rightarrow (3.0\ 2.0x\ 2)i\ N/C$, donde x está expresado en metros. Calcule el flujo eléctrico neto que sale de la superficie cerrada. ¿Cuál es la carga neta que se encuentra dentro de la superficie

Dates.
V= TUS BY
La = 0.400 m
Lb=0.400m
1c=0.600 n
OF = -Exa + Exia)
DE = - (3+202) ab + (3+2(2+2)2) ab
= 22b(23+e)
= 2(0.4)(0.4)(0.6)(2(0.4)4(0.6)
= 0.48 (0.48)
= 0.264/1 11 m-/C
O=FoBE
= 7.38×10-nC
$= 23b(23+e)$ $= 2(6.4)(0.4)(6.6)(2(0.4)+(0.6))$ $= 0.48(0.48)$ $= 0.269+0m2/c$ $= (8.85 \times 10^{-12} c^{2}/nm^{2})(0.269 \text{ m·m}^{2}/e)$