Accelerating Access to Life-Saving Treatments to Patients

pumas

Augmenting healthcare intelligence with predictive analytics that turn data into life-saving decisions

pumas^{Al}

DeepPumas Introduction

Niklas Korsbo

DeepPumas – simple and effective utilization of both knowledge and data

Data

Models

Medical Images

Known Molecular Interactions

Known Cell Interactions

Known Drug
Properties

Known Prognostic Factors

>>

Lead Generation

Clinical

Research

>>

Market

Research

000

>>

000

Quality-by-design Manufacturing

>>

Individualized Patient Management

000

NLME

$\begin{array}{ll} \mbox{Typical values} & \mbox{Patient data} & \mbox{Random effects} \\ \theta \in \mathbb{R}^3_+ & \mbox{Age} \\ \Omega \in \mathbb{R}^3_+ & \mbox{Weight} & \eta \sim \mbox{MvNormal} \left(\Omega\right) \end{array}$

Individual parameters

$$Ka_{i} = \theta_{1} \cdot e^{\eta_{i,1}} + c_{1} \cdot Age_{i}$$

$$CL_{i} = \theta_{2} \cdot e^{\eta_{i,2}}$$

$$V_{i} = \theta_{3} \cdot e^{\eta_{i,3}} + c_{2} \cdot Weight_{1}^{c_{3}}$$

Dynamics

$$\begin{split} \frac{d[\text{Depot}]}{dt} &= -Ka[\text{Depot}], \\ \frac{d[\text{Central}]}{dt} &= Ka[\text{Depot}] - \frac{CL}{V}[\text{Central}]. \end{split}$$

Error model

 $Outcome \sim \text{Normal}\left(Central, \sqrt{Central} \cdot \sigma\right)$

WHAT IS A NEURAL NETWORK (NN)?

Information processing mechanism

Loosely based on neurons

Mathematically: Just a function!

NNs are useable anywhere where you'd use a function!

Universal approximators!

- Approximate <u>any</u> function
- Functional form tuned by parameters
- Parameter tuning can be linked to observed patient outcomes

Use data to automatically discover relationships

NLIME WITH DEEPPUMAS

Typical values

Patient data

Random effects

$$\theta \in \mathbb{R}^3_+$$
$$\Omega \in \mathbb{R}^3_+$$

 $\eta \sim \text{MvNormal}(\Omega)$

Individual parameters

$$Ka_{i} = \theta_{1} \cdot e^{\eta_{i,1}} + c_{1} \cdot Age_{i} + CL_{i} = \theta_{2} \cdot e^{\eta_{i,2}}$$

$$V_{i} = \theta_{3} \cdot e^{\eta_{i,3}} + c_{2} \cdot Weight_{1}^{c_{3}} + CL_{i} = \theta_{3} \cdot e^{\eta_{i,3}} + CL_{i} \cdot Weight_{1}^{c_{3}} + CL_{i} = \theta_{3} \cdot e^{\eta_{i,3}} + CL_{i} \cdot Weight_{1}^{c_{3}} + CL_{i} \cdot Weig$$

Dynamics

$$\frac{d[\text{Depot}]}{dt} = -Ka[\text{Depot}],$$

$$\frac{d[\text{Central}]}{dt} = Ka[\text{Depot}] -$$

Error model

 $Outcome \sim \text{Normal}\left(Central, \sqrt{Central} \cdot \sigma\right)$

DeepNLME – Flexible local information processing

Dynamic variables

Random effects

Time

Drug PK

Individualized parameters

Outcome transformations

Longitudinal biomarkers

DiffEQ terms

Image

Parameter contribution

Receptor drug occupancy Random effect

Pain score

Time after first dose Random effects

Individualizable longitudinal biomarkers

Dynamic variables Random effects

Individualizable dynamics term

Data

- Primary outcomes
- Longitudinal biomarkers
- Images
- Omics
- EHRs

