Lineare Algebra I - Vorlesungs-Script

Prof. Andrew Kresch

Basisjahr 08/09 Semester II

Mitschrift:

Simon Hafner

Inhaltsverzeichnis

1	Bili	nearformen	1
	1.1	Vektorprodukt in \mathbb{R}^3	1 3
	1.2	Skalar produkt über \mathbb{C}^n	4
	1.3	Bilinearform	5
	1.4	Bilineare und quadratische Formen	8
		1.4.1 Polarisierungsformel	
	1.5	Sesquilineare Form	8
	1.6	Volumen	13
		1.6.1 Spat	13
	1.7	Orthogonale und unitäre Endomorphismen	16
	1.8	Beschreibung von $SO(3)$ und $O(3)$	20
	1.9	Selbstadjugierte Endomorphismen	21
2	Kla	ssifikation von Bilinearformen auf $\mathbb{R}^n \leftrightarrow \mathbf{Signatur}$	28
3	Mu	ltilineare Algebra	32
		Der Bidualraum $V \rightsquigarrow V^* \rightsquigarrow V^{**}$	36

1 Bilinearformen

Das kanonische Skalarprodukt (oder: Standardskalarprodukt) von \mathbb{R}^n ist die Abbildung

$$<,>:\mathbb{R}^n x \mathbb{R}^n$$
 $\to \mathbb{R}$ (x,y) $\mapsto < x,y> \in \mathbb{R}$

gegeben durch

$$\langle x, y \rangle := x_1 y_1 + \dots + x_n y_n$$

falls
$$x = (x_1, \dots, x_n)$$
 und $y = (y_1, \dots, y_n)$ sind.

Definition 1 (Konvention). eine 1x1 Matrix wird mit Eintrag indentifiziert

$$(x) \in M(1 \times 1, K) \leftrightarrow x \in K$$

Dann können wir schreiben:

$$\langle x, y \rangle = (x^t)(y)$$

$$x = (x_1, \vdots, x_n), y = (y_1, \vdots,)$$

$$(x_1, \dots, x_n) (y_1, \vdots, y_n) = x_1 y_1 + \dots + x_n y_n)$$

Bemerkung 1 (<, > ist bilinear).

$$< x + x', y > = < x, y > + < x', y >$$

 $< \lambda x, y > = \lambda < x, y >$
 $< x, y + y' > = < x, y > + < x, y' >$
 $< x, \lambda y > = \lambda < x, y >$

symmetrisch:

$$< x, y > = < y, x >$$

positiv definit:

$$\langle x, x \rangle \ge 0$$

 $\langle x, x \rangle = \implies x = 0 \in \mathbb{R}^n$

$$f\ddot{\mathbf{u}}\mathbf{r}\forall x,y,x',y'\in\mathbb{R}^n,\lambda\in\mathbb{R}$$

Bemerkung 2 (Hintergrund: euklidische Geometrie).

$$||x|| = \sqrt{\langle x, x \rangle} = \sqrt{x_1^2 + \dots + x_n^2}$$

Bemerkung 3 (Eigenschaften von $\|.\|$).

$$||x|| \ge 0$$
, mit $||x|| = 0 \Leftrightarrow x = 0$
 $||\lambda x|| = |\lambda| ||x||$
 $||x + y|| \le ||x|| + ||y||$

Dann definieren wir den Abstand von $x, y \in \mathbb{R}^n$:

$$d(x,y) \in \mathbb{R}$$
$$d(x,y) := ||y - x||$$

Bemerkung 4. Eigenschaften

$$d(x,y) \ge 0, \operatorname{mit} d(x,y) = 0 \Leftrightarrow x = y$$

$$d(y,x) = d(x,y)$$

$$d(x,z) \le d(x,y) + d(y,z)$$

$$\operatorname{für} x, y, z \in \mathbb{R}^n$$

Wir sind motiviert, Struktiren zu definieren, basierend auf diesen Eigenschaften, so z.B.

- Bilineare Formen (symetrisch, positiv definit)
- Norme
- Metriken

Proof. $\|.\|$ und d: die Dreiecksungleichung folgt aus der Cauchy-Schwarzschen Ungleichung

$$||x + y||^{2} = = \langle x + y, x + y \rangle$$

$$= ||x||^{2} + ||y||^{2} + 2 \langle x, y \rangle \le (?) (||x|| + ||y||)^{2}$$

$$\Leftrightarrow \langle x, y \rangle \le ||x|| ||y||$$

Cauchy-Schwarz'sche Ungleichung: für $x, y \in \mathbb{R}^n$

$$< x, y >^2 \le < x, x > < y, y >$$

mit Gleichheit genau dann, wenn x und y linear abhängig sind.

$$A = \begin{pmatrix} --- & x & --- \\ --- & y & --- \end{pmatrix} \in M(2 \times n, \mathbb{R})$$

A hat Rang ≤ 1

Proof.

$$A \cdot A^t = \begin{pmatrix} \langle x, x \rangle & \langle x, y \rangle \\ \langle x, y \rangle & \langle y, y \rangle \end{pmatrix} \in M(2 \times 2), \mathbb{R}$$
$$\det(A \cdot A^t) = = \langle x, x \rangle \langle y, y \rangle - \langle x, y \rangle^2$$

Es gibt eine Gleichung von Determinanten:

$$A, B \in M(k \times n, K)$$

$$\det(A \cdot B^t) = \sum_{1 \le s_1 < s_2 < \dots < s_k \le n} \det(A^{s_1, \dots, s_k}) \det(B^{s_1, \dots, s_k})$$
 wobei $A^{s_1, \dots, s_k} := (a_i, s_j)_{1 < i, j < k}, B^{s_1, \dots, s_k} = (b_i, s_j)_{1 < i, j < k}$

Beweis-Skizze: Reduktion zum Fall, dass die Zeilen von A und B Standardbasiselemente sind; direkte Berechnung in diesem Fall. Es folgt:

$$\det(A \cdot A^t) = \sum_{1 \le i < j \le n} \det(A^{i,j})^2 \ge 0$$

und ist = $0 \Leftrightarrow \text{alle } 2 \times 2 \text{ Minoren von } A \text{ sind } 0 \Leftrightarrow rang(A) \leq 1$

Korollar 1. Wir können definieren

$$\angle(x,y) := \cos^{-1} \underbrace{\frac{\langle x,y}{\|x\| \|y\|}}_{\in [-1,1] \in \mathbb{R}} \in [0,\pi] \in \mathbb{R}$$

$$f\ddot{u}r$$

$$0 \neq x \in \mathbb{R}^n$$

$$0 \neq y \in \mathbb{R}^n$$

Korollar 2. x, y Vektoren, θ Winkel zwischen den beiden

$$\langle x, y \rangle = \frac{1}{2} \left(\|x\|^2 + \|y\|^2 - \|y - x\|^2 \right)$$

und deshalb:

$$\cos \theta = \frac{\|x\|^2 + \|y\|^2 - \|y - x\|^2}{2\|x\| \|y\|}$$

⇒ Winkel eines Dreiecks ist nur von den Seitenlängen abhängig.

Beispiel 1.

$$\angle(x,y) = \frac{\pi}{2} \Leftrightarrow < x,y> = 0$$

$$\underbrace{\{y|< x,y> = 0\} = 0}_{\text{Untervektorraum}} \cup \{0 \neq y \in \mathbb{R}^n | \angle(x,y) = \frac{\pi}{2}\}$$

Man nennt x und y senkrecht falls $\langle x, y \rangle = 0$

Fazit 1.

$$<.,..>\mathbb{R}^{n}\times\mathbb{R}^{n}\to\mathbb{R}^{n}\qquad \text{bilinear form}$$

$$\|..\|\mathbb{R}^{n}\to\mathbb{R}_{\geq0}\qquad \qquad \text{Norm}$$

$$d(.,.)\mathbb{R}^{n}\times\mathbb{R}^{n}\to\mathbb{R}_{>0}\qquad \qquad \text{Metrik}$$

$$\|x\|=\sqrt{}$$

$$d(x,y)=\|y-x\|$$

$$=\frac{\|x\|^{2}+\|y\|^{2}-\|y-x\|^{2}}{2}$$

1.1 Vektorprodukt in \mathbb{R}^3

$$\mathbb{R}^3 \times \mathbb{R}^3 \to \mathbb{R}^3$$

$$(x,y) \mapsto x \times y$$

für $y = (y_1, y_2, y_3)$ und $y = (y_1, y_2, y_3)$ ist

$$x \times y = (x_2y_3 - x_3y_2, x_3y_1 - x_1y_2, x_1y_2 - x_2y_1)$$

oder:

$$x \times y = \det \begin{pmatrix} e_1 & e_2 & e_3 \\ x_1 & x_2 & x_3 \\ y_1 & y_2 & y_3 \end{pmatrix}$$

wobei (e_1, e_2, e_3) die Standardbasis ist. Es ist deshalb klar, dass

$$0 = \det \begin{pmatrix} x_1 & x_2 & x_3 \\ x_1 & x_2 & x_3 \\ y_1 & y_2 & y_3 \end{pmatrix} = \langle x, x \times y \rangle$$

$$0 = \det \begin{pmatrix} y_1 & y_2 & y_3 \\ x_1 & x_2 & x_3 \\ y_1 & y_2 & y_3 \end{pmatrix} = \langle y, x \times y \rangle$$

 $x \times y$ liegt auf der Gerade von Vektoren senkrecht zu x und y. weiter:

$$\det \begin{pmatrix} w_1 & w_2 & w_3 \\ x_1 & x_2 & x_3 \\ y_1 & y_2 & y_3 \end{pmatrix} = \langle x \times y, x \times y \rangle$$

$$= \|x \times y\|^2 = (x_2 y_3 - x_3 y_2)^2 + (x_3 y_1 - x_1 y_3)^2 + (x_1 y_2 - x_2 y_1)^2$$

$$= \|x\|^2 \|y\|^2 - \langle x, y \rangle^2 = \|x\|^2 \|y\|^2 \left(1 - \frac{\langle x, y \rangle^2}{\|x\|^2 \|y\|^2}\right)$$

$$= \|x\|^2 \|y\|^2 (1 - \cos^2 \angle (x, y)) = \|x\|^2 \|y\|^2 \sin^2 \angle (x, y)$$

Fazit 2. Wenn das Ergebnis = 0, folgt daraus, dass x und y linear abhängig sind. Falls x und y linear unabhängig sind, dann folgt dass $(x \times y, x, y)$ zu derselben Orientierungsklasse gehört wie (e_1, e_2, e_3) . Insgesamt bedeutet dies, dass $x \times y$ folgende Eigenschaften hat:

- \bullet ist senkrecht zu x und y
- ist $0 \Leftrightarrow x$ und y sind linear abhängig
- hat Länge $||x|| ||y|| \sin \angle(x, y)$
- ullet und hat die Richtung, die mit x und y die gleiche Orientierungsklassse wie die Standardbasis hat.

1.2 Skalarprodukt über \mathbb{C}^n

Sei $z = (z_1, \dots, z_n)$ und $w = (w_1, \dots, w_n) \in \mathbb{C}^n$

Bemerkung 5. Der Ausdruck macht Sinn.

$$\langle z, w \rangle := z_1 w_1 + \dots + z_n w_n$$

 $\langle z, z \rangle := z_1^2 + \dots + z_n^2$

Dann kann die Länge nicht mehr interpretiert werden, z.B. für $z=(1,i,0,\cdots,0)$ haben wir $< z, z >= 1^2 + i^2 = 0$. Isotropische Untervektorräume von \mathbb{C}^n werden nicht in in diesem Kurs behandelt. $(V \subset \mathbb{C}^n \text{ s.d. } < v, w >= 0 \ \forall v, w \in V)$. Für die Physik, die Geometrie usw. ist eine Interpretation in Zusammenhang mit Länge wichtig, deshalb brauchen wir eine neue Definition.

Definition 2 (Das kanonische Skalarprodukt). von \mathbb{C}^n ist gegeben durch

$$< .,.>_c : \mathbb{C}^n \mathbb{C}^n \qquad \to \mathbb{C}$$
 $(z,w) \qquad \mapsto z_1 \bar{w_1} + \dots + z_n \bar{w_n}$

Eigenschaften 1 (von $< ., >_c$).

für $z, z', w, w' \in \mathbb{C}^n$, $\lambda \in \mathbb{C}$ < .,. >_c ist sesquilinear

$$< w, z>_c =$$
 $\overline{< z, w>_c}$ hermitisch $< z, z>_c \in$ $\mathbb{R}_{\geq 0}$ positiv definit $< z, z>=0 \Leftrightarrow$ $z=0$

Fazit 3. $\langle .,. \rangle_c$ ist sesquilinear, hermitisch und positiv definit.

Proof. Bei Bedarf sonstwo nachschauen (Zu viele Zeichen und zu wenig Sinn). Es läuft auf eine Sammlung von Quadraten heraus. \Box

Definition 3 (Norm von \mathbb{C}^n).

$$||z|| = \sqrt{\langle z, z \rangle_c}$$

Bemerkung 6. Sei $w = (x'_1 + xy'_1, \cdots, x'_n + iy'_n)$. Dann:

$$\langle z, w \rangle_c = (x_1 + iy_1)(x_1' - iy_1') + \dots + (x_n + iy_n)(x_n' - iy_n')$$
$$= (x_1x_1' + y_1y_1' + \dots + x_nx_n' + y_ny_n') + i(x_1'y_1 - x_1y_1' + \dots + x_n'x_n - x_ny_n')$$

Auf diese Weise ist $\langle ., . \rangle_c$ eine Erweiterung von reellen Skalarprodukt.

 ${\rm Re}<.,.>_c=<.,.>$ von \mathbb{R}^{2n} unter diesem Isomorpismus. Sei $\omega:={\rm Im}<.,.>:$

$$\omega: \mathbb{C}^n \times \mathbb{C}^n \qquad \longrightarrow \mathbb{R}$$

$$oder \mathbb{R}^{2n} \times \mathbb{R}^{2n} \longrightarrow \mathbb{R}$$

Eigenschaften 2 (von ω (Imaginärteil des kanonischen Skalarproduktes)). bilinear

schiefsymmetrisch $\omega(w,z) = -\omega(z,w)$

$$\omega(z,z) = 0 \ \forall z \in \mathbb{C}^n \ (\text{oder } \mathbb{R}^{2n})$$

1.3 Bilinearform

Sei K ein Körper und V ein K-Vektorraum.

Definition 4 (Bilinearform). Eine bilineare Form auf V ist eine Abbildung

$$s: V \times V \to K$$

so dass:

$$s(v + v', w) = s(\lambda v, w) + s(v', w)$$

$$s(\lambda v, w) = \lambda s(v, w)$$

$$s(v, w) + s(v, w')$$

$$s(v, w) + s(v, w')$$

$$s(v, w) + s(v, w')$$

 $\forall v, v', w, w' \in V, \lambda \in K$

Und: s heisst symmetrisch, falls s(w,v) = s(v,w) und schiefsymmetrisch, falls s(w,v) = -s(v,w).

Beispiel 2. • $\langle ., . \rangle := \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ ist eine symmetrische bilineare Form

- \bullet ω ist eine schiefsymmetrisch bilineare Form
- $(<.,.>_c \text{ nicht})$
- $V = \{ \text{stetige Abbildung}[0,1] \to \mathbb{R} \}$ über \mathbb{R} : $f,g \in V$

$$s(f,g) = \int_0^1 f(x)g(x)dx$$

ist eine symmetrisch bilineare Form auf V

Sei K ein Körper, V ein K-Vektorraum, mit $\dim_K V < \infty$, und $s: V \times V \to K$ eine bilineare Form.

Definition 5. Ist $B = (v_i)_{1 \le i \le n}$ eine Basis von V, so setzen wir

$$M_B(s) := (s(v_i, v_j))_{1 < i, j < n} \in M(n \times n, K)$$

die darstellende Matrix

Korollar 3. $f\ddot{u}r \ x, y \in V$

$$x = x_1v_1 + \dots + x_nv_n$$

$$y = y_1v_1 + \dots + y_nv_n$$

und

$$M_B(s) = (a_{ij})_{1 \le i,j \le n}, d.h.a_{ij} = s(v_i, v_j)$$

haben wir:

$$s(x,y) = \sum_{i,j=1}^{n} x_i y_j a_{ij}$$

$$= (x_1 \cdots x_n) \cdot \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & & \vdots \\ a_{n1} & \cdots & a_{nn} \end{pmatrix} \cdot \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}$$

$$= x^t M_B(s) \cdot y$$

Proposition 1. Sei V ein endlich-dim. Vektorraum über K mit Basis $B = (v_i)_{1 \leq i \leq n}$. Es gibt eine Bijektion zwischen der Menge von Bilinearformen und $M(n \times n, K)$, gegeben durch

$$(s: V \times V \to K) \mapsto M_B(s)$$

Beweis 1. Wir schreiben einen Vektor $x \in V$ als (x_1, \dots, x_n) falls $x = x_1v_1 + \dots + x_nv_n$. Ähnlich für y. Dann ist

$$A \in M(n \times n, K) \mapsto V \times V \to K$$
$$(x, y) \mapsto x^t \cdot A \cdot y$$

inverses zu der obigen Abbildung.

Bemerkung 7. Sei $(s: V \times V \to K)$ eine bilineare Forum und $A = (a_{ij})_{1 \le i,j \le n}$ die darstellende Matrix. Wir erinnern uns an die Notation

$$\Phi_B: K^n \to V$$
 $e_1 \mapsto v_i$

Dann:

$$K^{n} \times K^{n} \xrightarrow{\Phi_{B} \times \Phi_{B}} V \times V \xrightarrow{s} K$$

ist gegeben durch

$$(x,y) \mapsto t_x A \cdot y$$

Sei $A = (u_i)_{1 \le i \le n}$ eine andere Basis.

$$K^{n} \xrightarrow{\Phi_{A}} V$$

$$\xrightarrow{T} = \Phi_{B}^{-1} \circ \Phi_{A}$$

$$K^{n} \xrightarrow{\Phi_{B}}$$

Proposition 2. Transforations formel Mit dieser Notation haben wir:

$$M_A(s) = T^t \cdot M_B(s) \cdot T$$

Beweis 2.

$$K^{n} \times K^{n} \xrightarrow{\Phi_{B} \times \Phi_{B}} V \times V \xrightarrow{s} K$$

$$(x, y) \mapsto t_{x} \cdot M_{B}(s) \cdot y$$

Es folgt: (eine Bastelei...)

$$K^{n} \times K^{n} \xrightarrow{\Phi_{A} \times \Phi_{A}} V \times V \xrightarrow{s} K$$

$$\xrightarrow{T \times T} K^{n} \times K^{n} \xrightarrow{\Phi_{B} \Phi_{B}} \uparrow$$

Es folgt aus der oberen Proposition (Vor der Transf.):

$$T^t M_B(s)T = M_a(s)$$

Beispiel 3. $V = K^n$, mit Standardskalaprodukt $\langle ., . \rangle$. Ist $B = (e_1, \dots, e_n)$, so ist

$$\begin{pmatrix} 1 & & 0 \\ & \ddots & \\ 0 & & 1 \end{pmatrix} = M_{\text{Standardbasis}}(\langle \cdot, \cdot, \cdot \rangle)$$

Sei

$$A = (e_1, e_2 - e_1, e_3 - e_2, \dots, e_n - e_{n-1})$$

=: (u_1, u_2, \dots, u_n)

Direkt aus der Definition:

$$\langle u_i, u_j \rangle = \begin{cases} 1 & i = j = 1 \\ 2 & i = j > 1 \\ -1 & |i - j| = 1 \\ 0 & \text{sonst} \end{cases}$$

oder mit der Transformationsformel

$$T = \begin{pmatrix} 1 & 1 & 0 \\ \dots & & 1 \\ 0 & & 1 \end{pmatrix} \text{und} T^t E_N T''$$

Bemerkung 8. Ist A die darstellende Matrix bezügloich einer Basis, so haben wir:

- symmetrisch $\Leftrightarrow A = A^t$
- schiefsymmetrisch $\Leftrightarrow A = -A^t$

Das stimmt überein mit (vgl. Übungsblatt 3): $A \in M(n \times n)$ ist symmetrisch $\Leftrightarrow A = A^t$. A ist schiefsymmetrisch oder antisymmetrisch (oder alternierend wenn $\mathrm{char}(K) \neq 2) \Leftrightarrow A = -A^t$

1.4 Bilineare und quadratische Formen

Eine quadratische Form $V \to K$ wird zu einer Bilinearform assoziert. Falls $\dim_K V < \infty$: "quadratische Form" bedeutet $q:V \to K$ bezüglich einem Koordinatensystem gegeben als homogenes quadratisches Polynom. Ist $s:V \times V \to K$ eine bilineare Form, dann heisst

$$\begin{array}{ccc} q: V & \to K \\ v & \mapsto q(v) = s(v,v) \end{array}$$

die zu s gehörige quadratische Form.

Beispiel 4. $\langle v, v \rangle = v_1^2 + \cdots + v_n^2$ für $v \in K^n$ Für $A = (a_{ij})_{1 \le i,j \le n}$ eine symmetrische Matrix mit $s: V \times V \to K$, $(x,y) \mapsto x^t Ay$, haben wir

$$s(x,x) = x^t A x$$

$$= (x_1 \cdots x_n) \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & & \vdots \\ a_{n1} & \cdots & a_{nn} \end{pmatrix} \begin{pmatrix} x_1 \\ \vdots \\ s_n \end{pmatrix}$$

$$= \sum_{i,j=1}^n a_{ij} x_i x_j$$

$$= \sum_{i=1}^n a_{ii} x_i^2 + 2 \sum_{1 \le i < j \le n} a_{ij} x_i x_j$$

Ist $char(K) \neq 2$, so haben wir:

{symm. bilineare Formen in
$$K^n$$
} \leftrightarrow {quadr. Formen auf K^n }
$$s \mapsto q(v) := s(v,v)$$
 \leftrightarrow (Polarisierungsformel)

1.4.1 Polarisierungsformel

Ist s eine symmetrische Bilinearform und q die zu s gehörende quadratische Form über einem Vektorraum V über K mit $\operatorname{char}(K) \neq 2$, dann gilt:

$$s(v, w) = \frac{1}{2} (q(v+w) - q(v) - q(w))$$

$$= \frac{1}{2} (q(v) + q(w) - q(v+w))$$

$$= \frac{1}{4} (q(v+w) - q(v-w))$$

1.5 Sesquilineare Form

Definition 6. Sei V ein komplexer Vektorraum. Eine Abbildung

$$s:V\times V\to\mathbb{C}$$

heisst sesquilinear falls:

$$s(v + v', w) = s(v, w) + s(v', w)$$

$$s(\lambda v, w) = \lambda s(v, w)$$

$$s(v, w + w') = s(v, \lambda w) = \bar{\lambda} s(v, w)$$

für $v, v', w, w' \in V, \lambda \in \mathbb{C}$

Beispiel 5. <.,.> auf \mathbb{C}^n

$$s(f,g) = \int_0^1 f(x)g(x)dx$$

$$\text{auf} V := \{\text{stetige Abb.}\}[0,1] \to \mathbb{C}\}$$

Definition 7. Eine sesquilineare Form heisst hermitesch, falls

$$s(w, v) = s(v, w) \ \forall v, w \in V$$

Beispiel 6. $<.,.>_c$ auf \mathbb{C}^n ist hermitesch.

Bemerkung9. Man spricht von
 <u>hermiteschen Form,</u> diese sind immer sesquilinear

Definition 8. Sei $\dim_{\mathbb{C}} V < \infty$, und $B := (V_i)_{1 \leq i \leq n}$ eine Basis. Ist s eine sesquilineare Form, so definieren wir

$$M_B(s) := (s(v_i, v_j))_{1 \le i \le n}$$

die darstellende Matrix. Sind $z, w \in V$

$$z = z_1 v_1 + \dots + z_n v_n$$

$$w = w_1 v_1 + \dots + w_n v_n$$

dann haben wir

$$s(z, w) = \sum_{i,j=1}^{n} z_i \bar{w}_j a_{ij} \text{wobei} a_{ij} = s(v_i, v_j)$$

$$= (z_1 \cdots z_n) \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & & \vdots \\ a_{n1} & \cdots & a_{nn} \end{pmatrix} \begin{pmatrix} \bar{w}_1 \\ \vdots \\ \bar{w}_n \end{pmatrix} = z^t M_B(s) \cdot \bar{w}$$

Proposition 3. Sei V ein endlich dim. \mathbb{C} Vektorraum und $B = (v_i)_{1 \leq i \leq n}$. Wir haben eine Bijektion

$$\{sesquilineare\ Form\ auf\ V\}\ \leftrightarrow\ M(n\times n,\mathbb{C})$$

Unter dieser Bijektion haben wir:

$$\{hermitesche Formen\} \leftrightarrow \{A \in M(n \times n, \mathbb{C}) : A^t = \bar{A}\}$$

Man sagt: eine Matrix $A \in M(n \times n, \mathbb{C})$ mit $A^t = \bar{A}$ ist <u>hermitesch</u>.

Satz 1. Transformationsformel Sei $A = (u_1, \dots, u_n)$ eine andere Basis mit Transformationsmatrix T:

TODO: hier einfügen

Dann gilt:

$$M_A(s) = T^t \cdot M_B(s) \cdot \bar{T}$$

 $Mit\ g(v) := s(v,v)\ gilt\ die\ Polarisierungsformel$

$$s(v, w) = \frac{1}{4} (q(v+w) - q(v-w) + iq(v+iw) - iq(v-iw))$$

Definition 9. Sei $K = \mathbb{R}$ oder \mathbb{C} , V ein K-Vektorraum und $s: V \times V \to K$ eine Billinearform $\begin{cases} \text{symmetrisch} & K = \mathbb{R} \\ \text{hermitesch} & K = \mathbb{C} \end{cases}$ heisst positiv definit, falls s(v; v) > 0 $\forall 0 \neq v \in V$

Beispiel 7. <.,.> ist positiv definit auf \mathbb{R}^n $<.,.>_c$ ist psoitiv definit auf \mathbb{C}^n

Definition 10. Ein Skalarprodukt ist $\begin{cases} \text{positiv definite symetrische bilineare Form} & K = \mathbb{R} \\ \text{eine positiv definite hermetische Form} & K = \mathbb{C} \end{cases}$

Definition 11. Skalarprodukt oft $\langle .,. \rangle$, Norm $||v|| := \sqrt{\langle v,v \rangle}$

Definition 12. Euklidischer Vektorraum Vektorraum über \mathbb{R} mit Skalarprodukt

Definition 13. Untärer Vektorraum Vektorraum über $\mathbb C$ mit Skalarprodukt **Beispiel 8.**

$$V = \{f: [0,1] \to \mathbb{R} \text{stetig}\} \text{ mit } < f,g> = \int_0^1 f(x)g(x)dx$$

$$V = \{f: [0,1] \to \mathbb{C} \text{stetig}\} \text{ mit } < f,g> = \int_0^1 f(x)\overline{g(x)}dx$$

in beiden Fällen

$$||f|| = \sqrt{\int_0^1 |f(x)|^2 dx}$$

" L^2 -Norm"

Bemerkung 10. In einem beliebigen euklidischen bzw. unitären Vektorraum gilt die Cauchy-Schwarz'sche Ungleichtung

$$|\langle v, w \rangle| \le ||v|| \, ||w|| \, \, \forall v, w \in V$$

mit = genau dann, wenn v und w linear abhängig sind.

Beweis 3. (Skizze) klar falls v = 0 oder w = 0, also nehmen wir an, dass $v \neq 0$ und $w \neq 0$ 1. Reduktion: zum Fall ||v|| = ||w|| = 1.

$$v_1 := \frac{v}{\|v\|} w_1 := \frac{w}{\|w\|}$$
$$\|v_1\| = 1 \|w_1\| = 1$$

2. Reduktion: Es reicht aus, zu zeigen: Re < $v,w> \leq 1 = genau \ dann \ wenn \ V = W$

$$\begin{aligned} |< v, w>| &= & \mu < v, w> \mu \in \mathbb{C}, |\mu| = 1 \\ &= & < \mu v, w> \in \mathbb{R}_{\geq} \\ &= & \operatorname{Re} < v', w> wobeiv' := \mu v \end{aligned}$$

Cauchy-Schwarz'sche Ungleichung \leq , Gleicheit: v, w linear unabhängig \Longrightarrow v', w linear unabhängig \Longrightarrow $v' \neq w$

 $Eigenschaften\ 3.$

$$= \text{falls} \\ < v - w, v - w > \ge 0 \\ v - w = 0 \\ < v, v > - < v, w > - < w, v > + < w, w > \ge 0 \\ v = w \\ 1 - < v, v > - \overline{< v, w >} + 1 \ge 0 \\ v = w$$

Beispiel 9. Ist $T:V\to\mathbb{R}^n$ oder $T:V\to\mathbb{C}^n$ ein Isomorphismus, dann ist $s:V\times V\to\mathbb{R}$ (bzw. $s:V\times V\to\mathbb{C}$) gegeben durch

$$s(x,y) = \langle T_x, T_y \rangle$$

bzw.

$$s(x,y) = \langle T_x, T_y \rangle_c$$

ein Skalarprodukt.

Definition 14. Sei V ein exklusiver, bzw. unitärer Vektorraum

- $v, w \in V$ heisst orthogonal, falls $\langle v, w \rangle = 0$
- $U,W\subset V$ heissen orthogonal (geschrieben $U\perp V$) falls $U\perp W\ \forall u\in U,\ w\in W$
- $U \subset W$ das orthagonale Koplement ist $U^{\perp} = \{v \in V : u \perp v \forall u \in U\}$
- v_1, \dots, v_n sind orthogonal, falls $v_i \perp v_j \ \forall i \neq j$
- v_1, \dots, v_n sind orthonormal, falls $v_i \perp v_j \ \forall i \neq j \ \text{und} \ \|v_i\| = 1 \ \forall i$
- V ist orthagonale direkte Summe von Untervektorräumen V_1, \dots, V_r falls

$$V = V_1 \bigoplus \cdots \bigoplus V_r$$
$$V_i \perp V_i \forall i \neq j$$

$$C([-1,1],\mathbb{R}) := \{ f : [-1;1] \to \mathbb{R} \text{stetig} \}$$

dann ist $C([-1,1]\mathbb{R})$ die orthogonale direkte Summe von $C([-1,1]\mathbb{R})_{\text{gerade}}$ und $C([-1,1]\mathbb{R})_{\text{ungerade}}$. gerade: f(-x)=f(x) und ungerade: f(-x)=-f(x)

$$f(x) = \underbrace{\frac{f(x) + f(-x)}{2}}_{\text{gerader Teil}} + \underbrace{\frac{f(x) - f(-x)}{2}}_{\text{ungerader Teil}}$$

ggerade, hungerade $\implies gh$ ungerade $\implies < g, h >= \int_{-1}^1 g(x) h(x) = 0$

Bemerkung 11. Ist v_1, \dots, v_n eine orthonormale Familie mit $v_i \neq 0 \forall i$, so gilt

- 1. $(i)(v_1, \dots, v_n)$ ist linear unabhängig $(c_1v_1 + \dots + c_nv_n = 0 \implies c_i < v_i, v_i > + \dots + c_i < v_i, v_i > + \dots + c_n < v_n, v_i > = 0 \implies c_i ||v_i||^2 = 0 \implies c_i = 0)$
- 2. $\left(\frac{v_1}{\|v_i\|}, \cdots, \frac{v_n}{\|v_i\|}\right)$ ist orthonormal

Satz 2. Ist (v_1, \dots, v_n) eine orthonormale Basis von V, so gilt folgendes für beliebiges $v \in V$

$$v = \sum_{i=1}^{n} \langle v_i, v_j \rangle v_i$$

$$v = \sum_{i=1}^{b} c_i v_i$$

$$\langle v, v_j \rangle = \sum_{i=1}^{n} c_i \langle v_i, v_j \rangle$$

$$= c_j \langle v_i, v_j \rangle = c_j$$

Proposition 4. Sei $K = \mathbb{R}$ oder \mathbb{C} und (V, < ., . >) ein euklidischer bzw. unitärer Vektorraum über K

- 1. Ist $n := \dim_K V < \infty$ und (v_1, \dots, v_d) eine orthonormale Familie von Vektoren von V, so existieren v_{d+1}, \dots, v_n , so dass (v_1, \dots, v_n) eine orthonormale Basis von V ist.
- 2. Ist $U \subset V$ ein endlichdimensionaler Untervektorraum, so gilt $V = U \bigoplus U^{\perp}$, orthonormal direkte Summe.

Beweis 4. Es gibt triviale Fälle: d = n in 1., U = 0 in 2. Auch: der Fall (d = 0) in 1. $\Leftarrow d = 1$: $0 \neq v \in V$ beliebiger Vektor, wir nehmen $b_1 = \frac{v}{\|v\|}$ Beweis durch Induktion nach N mit Induktionsannahme 1. gilt für $n \leq N$ N = 1 okay.

$$\begin{array}{c|c} U: \text{1-dimensional} & U^{\perp} \text{: 2-dim} \\ s(e_1, e_1) = 3 & = 24 \end{array}$$

Plan: Wir zeigen IA \implies 2. für $\dim_K U \leq N$ und IA \implies 1. für

 $n \leq N+1$. $IA \xrightarrow{\dim U \leq N} \exists \ orthonormale \ Basis (u_1, \cdots, u_d) \ von \ U \ d := \dim U. \ F\"{u}r \ beliebiges$ $v \in V$ gilt:

$$v - \sum_{i=1}^{n} \langle v_i, v_j \rangle u_i \in U^{\perp}$$

denn

$$\left\langle v - \sum_{i=1}^{n} \langle v_i, u_i \rangle u_i, u_j \right\rangle = \langle v, u_j \rangle - \sum_{i=1}^{n} \langle v, u_j \rangle \langle u_i, u_j \rangle = 0$$

Und: 1. für $\dim V \leq N+1$ folgt aus IA und 2. für $U \leq N$

$$1 \leq d < n = \dim V \geq N+1$$

$$\implies 1 \leq d \leq N u n d 1 \leq \dim V - d \geq N$$

Sei $U := span(v_1, \dots, v_d)$ Aus 2. haben wir $V = U \bigoplus U^{\perp}$ Nach IA, \exists orthonormale Basis (v_{d+1}, \dots, v_n) von U^{\perp} Es folgt, dass (v_1, \dots, v_n) ist eine $orthonormale\ Basis\ von\ V$.

Eigenschaften 4. Praktisches Verfahren zu testen ob ein symmetrisch bilineare bzw. hermetische Form ein Skalaprodukt ist (falls $\dim_K V < \infty).$ Verfahren:

- \bullet wählen $U\subset V$ nicht trivialer Untervektorraum (z.B. $U=span(v), 0\neq$ $v \in V$
- \bullet Berechnen U^\perp
- Testen:
 - Ist $V = U \bigoplus U^{\perp}$?
 - Ist die Einschränkung von der Form auf U ein Skalarprodukt?
 - Ist die Einschränkung von der Form auf U^{\perp} ein Skalarprodukt?

Beispiel 10. $\mathbb{R}^3 \times \mathbb{R}^3 \to \mathbb{R}$

$$M := \begin{pmatrix} 3 & 1 & 2 \\ 1 & 3 & -1 \\ 2 & -1 & 2 \end{pmatrix}$$

Wir betrachten die entsprechende Bilinearform

$$(x,y) \mapsto t_x \cdot M \cdot y$$

$$\begin{array}{ll} U = & (e_1) \\ U^{\perp} = & \{(x_1, x_2, x_3 : 3x_1 + x_2 + 2x_3 = 0\} \\ = & ((1, -3, 0), (0, 2, -1)) \end{array}$$

Die darstellende Matrix:

$$s|_{U^{\perp}} \leadsto \begin{pmatrix} 24 & -21 \\ -21 & 18 \end{pmatrix}$$

$$U \cong \mathbb{R}^2$$
 $W = (e_1) \in \mathbb{R}^2$
 $W^{\perp} = \{(x_1, x_2) | 24x_1 - 21x_2 = 0\}$
 $= (21, 24)$

W 1-dim, W^{\perp} 1-dim

$$(s|_{U^{\perp}})(e_1, e_2) = 24$$

$$(21 \quad 24) \begin{pmatrix} 24 & -21 \\ -21 & 18 \end{pmatrix} (21 \quad 18) = -216$$

⇒ kein Skalarprodukt

1.6 Volumen

1.6.1 Spat

Definition 16. Spat u_1, \dots, u_n orthonormale Basis. Dann ist der von (u_1, \dots, u_n) aufgespannte Spat definiert als (wobei $c_i := \text{von } (u_1, \cdots, u_n)$ aufgespannten Spat)

$$\left\{ \sum_{i=1}^{n} c_i u_i | 0 \le c_i \le 1 \ \forall i \right\}$$

Vol(Spat):=1

Falls $v_1, \dots, v_n \in V$ beliebig sind, dann hat der von (v_1, \dots, v_n) aufgespannte

$$Vol = \left| \det \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & & \vdots \\ a_{n1} & \cdots & a_{nn} \end{pmatrix} \right| v_i = \sum_{j=1}^n a_{ij} u_i$$

Sei
$$b_i j := \langle v_i, v_j \rangle$$
 und $B := \begin{pmatrix} b_{11} & \cdots & b_{1n} \\ \vdots & & \vdots \\ b_{n1} & \cdots & b_{nn} \end{pmatrix}$ Wir haben $b_{ij} = \sum_{k=1}^n a_{ik} a_{jk}$,

also $B = A \cdot A^t$. Es folgt:

$$Vol = \sqrt{(\det A)^2} = \sqrt{\det B}$$

Vorteile:

- keine Wahl von orthonormaler Basis nötig
- auch sinnvoll für eine Kollektion v_1, \cdots, v_m evzl. $m \neq n$

Beispiel 11. m=1

$$\det B = \left\| v_1 \right\|^2$$

$$\sqrt{\det B} = \left\| v_1 \right\|$$

Definition 17. Grammsche Determinante Im m-dim Volumen := $\sqrt{G(v_1, \dots, v_m)}$ wobei

$$G(v_1, \dots, v_m) := \det \left(\langle v_i, v_j \rangle \right)_{1 \le i, j \le m}$$

die sogenannte Grammsche Determinante ist.

Bemerkung 12. Es gilt $G(v_1, \dots, v_m) = 0 \Leftrightarrow v_1, \dots, v_m$ lineare abhängig, weil

$$A = (a_{ij}) \in M(m \times n, \mathbb{R})$$

mit

$$G(v_1, \dots, v_m) = \det(A, A^t) = \sum (m \times m \text{Minor})$$

Bemerkung 13.

$$\operatorname{Vol}(v_1, \cdots, v_m) := \sqrt{G(v_1, \cdots, v_m)}$$

ist 0 falls $\exists i: v_i = 0$

sonst:

$$Vol(v_1, \dots, v_m) = ||v_1|| \dots ||v_m|| Vol(\frac{v_1}{||v_1||}, \dots, \frac{v_m}{||v_m||})$$

Satz 3. Hadamard'sche Ungleichung

$$Vol(v_1, \cdots, v_m) \leq ||v_1|| \cdots ||v_m||$$

für $0 \neq v_i \in V$, $i=1,\cdots,m$. Mit Gleichheit genau dann wenn v_1,\cdots,v_m orthogonal sind.

Beweis 5. Durch fallende Induktion nach

$$\max\{|I|: I \subset \{1, \cdots, m\} | (v_i)_{i \in I} \text{ orthogonal}\}$$

Fall max $\{\cdots\} = m$ das bedeutet, v_1, \cdots, v_m sind orthogonal. Dann:

$$G(v_1, \dots, v_m) = \det \begin{pmatrix} \|v_1\|^2 & 0 \\ & \ddots & \\ 0 & \|v_m\|^2 \end{pmatrix} = \|v_1\|^2 \cdots \|v_m\|^2$$

Die ist der Induktionsanfang.

Sei $r \in \mathbb{N}$, $1 \le r < m$. Induktionsanahme: Ungleichung für den Fall

$$\max\{|I|: (v_i)_{i\in I} \text{ orthogonal}\} > r$$

Sei v_1, \dots, v_m , so dass $\max \{\dots\} = r$. o.B.d.A: v_1, \dots, v_r orthogonal. Wir schreiben:

$$v_{m} = \underbrace{v_{m} - \sum_{i=1}^{r} \frac{\langle v_{m}, v_{i} \rangle}{\langle v_{i}, v_{i} \rangle} v_{i}}_{\tilde{v}_{m} \in \operatorname{span}(v_{1}, \dots, v_{r})^{\perp}} + \underbrace{\sum_{i=1}^{r} \frac{\langle v_{m}, v_{i} \rangle}{\langle v_{i}, v_{i} \rangle} v_{i}}_{\tilde{v}_{m} \in \operatorname{span}(v_{1}, \dots, v_{r})}$$
$$< \tilde{v_{m}}, \tilde{v_{m}} = 0$$

- $v = \tilde{v} + \tilde{\tilde{v}}$
- $\bullet < \tilde{v}, \tilde{\tilde{v}} > = 0$
- $||v||^2 = ||\tilde{v}||^2 + ||\tilde{\tilde{v}}||^2$

Das ist eine Orthogonale Projektion Wir haben

$$G(v_1, \cdots, v_m) = G(v_1, \cdots, v_{m-1}, \tilde{v_m})$$

weil (Spalten- und Zeilenumforumgen...). Es folgt:

$$Vol(v_1, \dots, v_m) = Vol(v_1, \dots, v_{m-1}, \tilde{v_m}) \le ||v_1|| \dots ||v_{m-1}|| ||\tilde{v_m}|| < ||v_1|| \dots ||v_{m-1}|| ||\tilde{v_m}||$$

Definition 18. Gram-Schmidt-Orthagonalisierungsverfahren

$$\tilde{v_r} := v_r - \sum_{i=1}^{r-1} \frac{\langle v_r, \tilde{v_i} \rangle}{\langle \tilde{v_i}, \tilde{v_i} \rangle} \tilde{v_i}, \text{für} 1, 2, \cdots$$

gegeben: eine Kollektion (v_1, \dots, v_n) oder abzählbar unendlich (v_1, v_2, \dots) . Das Verfahren produziert $(\tilde{v_1}, \tilde{v_2}, \dots)$, mit:

$$\begin{array}{lll} (\tilde{v_1}, \tilde{v_2}, \cdots & = & (v_1, v_2, \cdots) \\ (\tilde{v_1}, \cdots, \tilde{v_m}) & = & (v_1, \cdots, v_m) \ \forall m \\ (\tilde{v_1}, \tilde{v_2}, \cdots) & \text{sind orthogonal} \end{array}$$

Beispiel 12. $C([-1,1],\mathbb{R})$ mit $< f,g> = \int_{-1}^{1} f(x)g(x) dx$

$$(1, x, x^{2}, \cdots)$$

$$\xrightarrow{\text{GS}} \frac{\langle x^{2}, 1 \rangle}{\langle 1, 1 \rangle} = \frac{2/3}{2}$$

$$(1, x, x^{2} - \frac{1}{3}, x^{3} - \frac{3}{5} \cdots)$$

Bis auf Normalisierung bekommen wir die Legendre-Polynome.

Fazit 4. Bilinearform Sesquilinearform
$$\xrightarrow{+ \text{ def, symm}} \text{Norm} \rightarrow \text{Metrik}$$
 Norm:
$$||.|| : V \rightarrow \mathbb{R}_{\geq 0}$$

$$||x|| = 0 \Leftrightarrow x = 0$$

$$||\lambda x|| = |\lambda| ||x||$$

$$||x + y|| \leq ||x|| + ||y||$$

Metrik:

$$d: V \times V \to \mathbb{R}_{\leq 0}$$

$$d(x, <) = 0 \Leftrightarrow x = y$$

$$d(x, y) = d(y, x)$$

$$d(x, z) \leq d(y, y) + d(y, z)$$

Aber: nicht jede Metrik, nicht einmal jede transinvariante Metrik kommt von einer Norm.

Bemerkung 14. Eine Norm kommt von einer +def, symm Bilinearform

$$\Leftrightarrow ||x + y||^2 + ||x - y||^2 = 2(||x||^2 + ||y||^2) \ \forall x, y \in V$$

Definition 19. ausgeartete Bilinearform Eine Bilinearform $s: V \times V \to K$ ist ausgeartet (oder: entartet), falls eine oder beide der induzierten Abbildungen $V \to V^*$ nicht injektiv ist.

$$v \mapsto (w \mapsto s(v, w))$$
$$v \mapsto (w \mapsto s(w, v))$$

Bemerkung 15. Falls $\dim_K V < \infty$, dann:

$$v\mapsto (w\mapsto s(v,w)) \qquad \qquad \text{injektiv}$$

$$v\mapsto (w\mapsto s(w,v)) \qquad \qquad \text{injektiv}$$

$$\updownarrow$$

$$s \text{ ist nicht ausgeartet}$$

$$\updownarrow$$

$$s(v, w) = v^{t} \cdot A \cdot w$$
$$= (A^{t} \cdot v)^{t}$$

j++;

Satz 4. Sei V ein K-Vektorraum, $s:V\times V\to K$ eine symmetrische oder schiefsymmetrische Bilinearform. Für $U\subset V$ Untervektorraum, schreiben wir noch

$$U^{\perp} := \{ v \in V : s(u, v) = 0 \ \forall u \in U \}$$

 $(s(v,u) = 0 \Leftrightarrow s(u,v) = 0 \text{ weil s symm. bzw. schiefsymm.})$

Proposition 5. Sei V ein endlich dimensionaler K-Vektorraum und $s: V \times V \to K$ eine nicht ausgeartete symmetrische oder schiefsymmetrische Bilinearform. Sei $U \subset V$ ein Untervektorraum. Dann gilt:

$$\dim U + \dim U^{\perp} = \dim V$$

Beweis 6. Sei $(v_i)_{i=1,\dots n}$ eine Basis mit $n := \dim V$, und A die darstellende Matrix von s bzw. (v_i) . Wir haben dann:

$$s(x,y) = x^t \cdot A \cdot y$$

und $A^t = \pm A$, $\det A \neq 0$

$$U^{\perp} = \left\{ x \in V_i | x^t \cdot A \cdot y = 0 \ \forall y \in U \right\} = \left\{ x \in V_i | (x \cdot A)^t \cdot y = 0 \ \forall y \in U \right\}$$

 $Sei\ F: V \rightarrow V\ lin.Abb. \leftrightarrow A.\ Dann:$

$$F(U^{\perp}) = \left\{ Ax | (Ax)^t y = 0 \ \forall y \in U \right\} \qquad = \left\{ Ax | \tilde{x}^t y = 0 \ \forall y \in U \right\}$$

Es folgt: mit

$$B := \begin{pmatrix} | & & | \\ u_1 & \cdots & u_d \\ | & & | \end{pmatrix}$$

 (u_1, \dots, u_d) Basis von U, dann ist $F(U^{\perp}) = \text{Ker } B$. Jetzt:

$$\dim U^{\perp} = \dim F(U^{\perp}) = \dim \operatorname{Ker} B = n - \dim U$$

Korollar 4. dim $U < \infty$, $s: V \times V \to K$ nicht ausgeartet, (schief-) symm.

$$U \subset \Longrightarrow \ \left(U^{\perp}\right)^{\perp} = U$$

Bemerkung 16. Es ist nicht immer der Fall, dass $V=U\bigoplus U'$, weil es ist möglich, dass $U\cup U^\perp\neq 0$. 2 Extremfälle:

- U ist isotropisch $(s|_{U'}$ ist trivial) $\Leftrightarrow U \subset \underbrace{U^{\perp}}_{\dim V \dim U}$
- $s|_U$ ist auch nicht ausgeartet $\Leftrightarrow U \cup U^{\perp} = 0 \Leftrightarrow V = U \bigoplus U^{\perp}$

Aus 1. ist klar:

$$\dim U \leq \frac{1}{2}\dim V \ \forall \mathrm{isotrop} U \subset V$$

1.7 Orthogonale und unitäre Endomorphismen

 $K = \mathbb{R} \text{ oder } \mathbb{C}$

Definition 20. orthogonaler bzw. unitärer Endomorphismus Sei V, \langle, \rangle ein ortho. bzw. unitärer Vektorraum. Ein Endomprhismus $F: V \to V$ heisst orthogonal bzw. unitär falls

$$\langle F(v), F(w) \rangle = \langle v, w \rangle \ \forall v, w \in V$$

Bemerkung 17. Das ist äquivalent zu

$$||F(v)|| = ||v|| \ \forall v \in V$$

Eigenschaften 5. orthogonaler bzw. unitärer Endomorphismus Sei F ein orthobzw. unitärer Endomorphismus. Dann:

- F ist injektiv
- Falls $\dim_K V < \infty$, F ist bijektiv, und F' ist auch ortho. bzw. unitär
- Für jeden Eigenwert $\lambda \in K$ gilt $|\lambda| = 1$. Eigenvektor v:

$$||v|| = ||F(v)|| = ||\lambda v|| = |\lambda| ||v||$$

Falls $V = \mathbb{R}^n$ oder \mathbb{C}^n mit Standardskalarprodukt

$$\langle v, w \rangle = v^t w \text{bzw}$$
 $\langle v, w \rangle_c = v^t \bar{w}$

Ist F zur Matrix A entsprechend, dann

$$\langle F(v), F(w) \rangle = \langle v, w \rangle \Leftrightarrow (Av)^t A w = v^t w$$

$$\Leftrightarrow v^t A^t A w = v^t w \Leftrightarrow A^t A = E_n$$

$$\text{bzw} \Leftrightarrow v^t A^t \bar{A} \bar{w} = v^t \bar{w} \Leftrightarrow A^t \bar{A} = E_n$$

Definition 21. ortho. bzw. unitäre Matrix $O(n) := A \in GL_n(\mathbb{R})$ heisst <u>orthogonal</u> falls $A^tA = E_n$

$$U(n) := A \in GL_n(\mathbb{C})$$
 heisst unitär falls $A^t \bar{A} = E_n$

Not 1.

$$O_n := \{ A \in GL_n(\mathbb{R}) | A \text{ orthogonal} \}$$
$$O_n := \{ A \in GL_n(\mathbb{C}) | A \text{ unitär} \}$$

Weil

$$A, B \in O(n) \implies (AB)^t(AB) = B^tA^tAB = B^tB = E_n \implies AB \in O(n)$$

haben wir $O(n) \subset GL_n(\mathbb{R})$ ist eine Untergruppe. Ähnlich: $U(n) \subset GL_n(\mathbb{C})$ ist eine Untergruppe.

Not 2.

$$SO(n) = O(n) \cap SL_n(\mathbb{R})$$

 $SU(n) = U(n) \cap SL_n(\mathbb{C})$

Not 3. ortho. bzw. unitärer Vektorraum

$$O(V) = \{ F \in GL(V) | \text{ortho.} \}$$

$$U(V) = \{ F \in GL(V) | \text{unit"ar} \}$$

Bemerkung 18.

$$A \in O(n) \implies \det A \in \{\pm 1\}$$

$$A \in U(n) \implies \det A \in \{\pm z \in \mathbb{C} : |Z| = 1\}$$

Eigenschaften 6. Charakterisierungen von ortho. bzw. unitären Matrizen Äquivalente Charakterisierungen von orthogonalen bzw. unitären Matrizen $A \in GL_n(\mathbb{R})$:

A ist orthogonal $\Leftrightarrow A^{-1} = A^t \Leftrightarrow A^t A = E_n \Leftrightarrow AA^t = E_n \Leftrightarrow$ die Spalten von A bilden eine Orthonormalbasis von $\mathbb{R}^n \Leftrightarrow$ die Zeilen von A bilden eine Orthonormalbasis von \mathbb{R}^n .

Ähnlich:

A ist unitär $\Leftrightarrow A^{-1} = \bar{A}^t \Leftrightarrow A^t \bar{A} = E_n \Leftrightarrow \bar{A}A^t = E_n \Leftrightarrow \text{die Spalten von } A$

bilden eine Orthonormalbasis von $\mathbb{C}^n \Leftrightarrow$ die Zeilen von A bilden eine Orthonormalbasis von \mathbb{C}^n .

Für n=1

$$O(1) = \{\pm 1\}$$
 $U(1) = \{z \in \mathbb{C} : |z| = 1\} \cong S^1$
 $SO(1) = \{1\}$ $SU(1) = \{1\}$

Für n = 2: $(a, b) \in \mathbb{R}^2$, $a^2 + b^2 = 1$

$$O(2) = \left\{ \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \middle| \theta \in \mathbb{R} \right\} \cup \left\{ \begin{pmatrix} \cos \theta & \sin \theta \\ \sin \theta & -\cos \theta \end{pmatrix} \middle| \theta \in \mathbb{R} \right\}$$
$$SO(2) = \left\{ \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \middle| \theta \in \mathbb{R} \right\} \cong S^{1}$$

$$(z, w) \in \mathbb{C}^2, |z|^2 + |w|^2 = 1, (-\bar{w}, \bar{z}) \perp (z, w)$$

$$U(2) = \left\{ \begin{pmatrix} z & -\lambda \bar{w} \\ w & \lambda \bar{z} \end{pmatrix} | (z, w) \in \mathbb{C}^2, |z|^2 + |w|^2 = 1, \lambda \in \mathbb{C}, |\lambda| = 1 \right\} \cong S^3 \times S^1$$

$$SU(2) = \left\{ \begin{pmatrix} z & -\bar{w} \\ w & \bar{z} \end{pmatrix} | (z,w) \in \mathbb{C}^2, \left|z\right|^2 + \left|w\right|^2 = 1 \right\} \cong S^3$$

SO(3) eine explizite Beschreibung ist möglich (später)

Proposition 6. Sei V ein endlich dimensionaler \mathbb{C} -Vektorraum mit Skalarprodukt \langle , \rangle , und sei $F: V \to V$ ein unitärer Endomorphismus. Dann besitzt V eine Orthonormalbasis von Eigenvektoren von F.

Beweis 7. Durch Indunktion nach dim V. dim V=0,1 trivial. dim $V\geq 2$ Weil $\mathbb C$ algebraisch abgeschlossen ist, gibt es einen Eigenwert $\lambda\in\mathbb C$. Sei $v\in V$ ein Eigenvektor, mit $\|v\|=1$. Weil F untär ist, haben wir $F(v^\perp)=v^\perp$. Wir haben dim $v^\perp=\dim V-1$

$$w \in v^{\perp} \langle v, w \rangle \implies \langle v, w \rangle = 0$$
$$\lambda \langle v, F(w) \rangle = \langle \lambda v, F(w) \rangle = \langle F(v), F(w) \rangle = 0$$
$$\implies F(v^{\perp}) \subset v^{\perp}$$

Aus der Induktionsannahme folgt, dass \exists Orthonormalbasis von v^{\perp} von Eigenvektoren von F. Zusammen mit $v^{V=\operatorname{span} \bigoplus v^{\perp}}$ Orthonormalbasis von V

Korollar 5. Sei $A \in U(n)$. Dann $\exists S \in U(n), \theta_1, \dots, \theta_n \in \mathbb{R}$ so dass

$$SAS^{-1} = \begin{pmatrix} e^{i\theta_1} & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & e^{i\theta_n} \end{pmatrix}$$

Proposition 7. Sei V ein endlich dimensionaler \mathbb{R} -Vektorraum mit Skalarprodukt \langle , \rangle , und sei $F: V \to V$ ein orthogonaler Endomorphismus. Dann besitzt V eine Orthonormalbasis $(v_1^+, \cdots, v_r^+, v_1^-, \cdots, v_s^-, w_1, w_1', \cdots, w_t, w_t')$

- $F(v_i^+) = v_i^+$
- $F(v_i^-) = -v_i^-$
- $F(w_i) = (\cos \theta_i)w_i + (\sin \theta_i)w_i'$
- $F(w_i') = (-\sin\theta w_i) + (\cos\theta_i)w_i'$

 $mit \ \theta_i \in \mathbb{R}, \ 0 < |\theta| < \phi, \ i = 1, \cdots, t$

Beweis 8. Durch Induktion nach dim V: dim V = 0, 1, 2 trivial. dim > 2 (nächstes mal)

$$\dim_{\mathbb{R}} V$$
 $\langle .,. \rangle$ Skalarprodukt

Fazit 5. $F: V \to V$ orthogonaler Endomorphismus

 \implies \exists orthogonale Basis

+1 oder -1 Eigenvektoren

$$F(\alpha w_i + \beta w_i') = (\alpha \cos \Theta_i - \beta \sin \Theta_i) w_i + (\alpha \sin \Theta_i \beta \cos \Theta_i) w_i', \ \Theta_i \in \mathbb{R}$$

Beweis 9. Fortsetzung Durch Induktion nach dim V, Induktionsanfang: dim $V \leq 2$ dim V = 2 bezüglich beliebiger Basis (w_1, w_1') .

$$V: \begin{pmatrix} \cos\Theta & -\sin\Theta \\ \sin\Theta & \cos\Theta \end{pmatrix} oder \begin{pmatrix} \cos\Theta & \sin\Theta \\ -\sin\Theta & \cos\Theta \end{pmatrix}$$

Matrix 1: w_1, w_2 ist wie oben, Matrix 2: chaakteristisches Polynom $t^2 - 1 = (t-1)(t+1) \rightarrow (+1\text{-Eigenvektor}, -1\text{-Eigenvektor})$

1. Fall: ∃ reeller Eigenwert

$$\lambda \in \mathbb{R}, \ |\lambda| = 1 \ v \in V \ F(v) = \lambda v$$

wir zeigen, dass $F(v^\perp)=v^\perp$ genau wie im Fall einees unitären Endomorphismus

$$\dim(v^{\perp}) = \dim V - 1 \stackrel{IA}{\leadsto} v^{\perp} : orthonormale \ Basis$$

$$V = (v) \bigoplus v^{\perp}$$

2. Fall: ∄ reeller Eigenwert

$$\implies P_F(t) = \prod_{i=1}^{(\dim V)/2} Q_i(t)$$

 $Q_i(t)$ irreduzibles quadratisches Polynom. Aus dem Satz von Cayley-Hamilton folgt:

$$\implies \exists \overbrace{v}^{\neq 0} \in V, \ imitQ_i(F)v = 0$$

Sei $0 \neq v_0 \in V$ beliebigen Vektor $P_F(F)v_0 = 0$

$$Q_1(F)Q_2(F)\cdots + \underline{\dim V}_2(F)v_0 = 0$$

$$\implies \exists j: Q_j(F)Q_{j+1}(F)\cdots + \underline{\dim V}_2(F)v_0 = 0$$

$$aber Q_{j+1}(F)\cdots Q_{\dim V}2(F)v_0 \neq 0$$

 \implies wir nehmen i := j und $v := Q_{j+1}(F) \cdots Q_{\frac{\dim V}{2}(F)v_0}$. Beh: $U := \operatorname{span}(v, F(v))$ ist ein F-invariante Vektorraum. $Q_i(F)_v = 0$

 $\Rightarrow \exists a,b \in \mathbb{R} \text{ mit } F(F(v)) = av + bF(V). \text{ Es folgt: } U^{\perp} \text{ ist auch } F\text{-invariant. } V = U \bigoplus U^{\perp} \stackrel{IA}{\leadsto} Basen \text{ von } U \text{ und von } U^{\perp} \text{ wie oben. } Die Vereinigung dieser Basen ist wie erwünscht.}$

Korollar 6. Sei $A \in O(n)$. Dann gibt es ein $S \in O(n)$ und $r, s, t \in \mathbb{N}$,

 $\Theta_1, \cdots, \Theta_t \in \mathbb{R} \ mit$ $\left\{ E_r \qquad 0 \right\}$

$$SAS^{-1} = \begin{pmatrix} E_r & & & & 0 \\ & -E_s & & & \\ & & D_{\Theta_1} & & \\ & & & \ddots & \\ 0 & & & D_{\Theta_t} \end{pmatrix}$$

wobei

$$D_{\Theta} := \begin{pmatrix} \cos \Theta & -\sin \Theta \\ \sin \Theta & \cos \Theta \end{pmatrix}$$

Beispiel 13.

$$A := \begin{pmatrix} 0 & 1 & 0 & & 0 \\ & 0 & 1 & & \\ & & \ddots & \ddots & \\ & & & 0 & 1 \\ 1 & & & & 0 \end{pmatrix} \in U(n)$$

$$A(z_1, \dots, z_n) = (z_2, \dots, z_n, z_1)$$

$$A(1, S, S^2, \dots, S^{n-1}) = (S, S^2, \dots, S^{n-1}, 1)$$

$$S := e^{2\pi i/n} S^n = 1$$

 $\implies (1,S,S^2,\cdots,S^{n-1})$ ist Eigenvektor zum Eigenwert S. Ähnlich: für $0 \le j \le n-1$ haben wir $(1,S^j,S^{2j},\cdots,S^{(n-1)j})$ ist Eigenvektor zum Eigenwert S^j . $1,S,S^2,\cdots,S^{n-1}$ sind paarweise verschieden $\implies (1,S^j,S^{2j},\cdots,S^{(n-1)j})$ ist eine Basis von Eigenvektoren. Normalisierung:

$$\left(\frac{1}{\sqrt{n}}\left(1, S^{j}, S^{2j}, \cdots, S^{(n-1)j}\right)\right)_{j=0,1,\cdots,n-1}$$

ist eine orthonormale Basis von Eigenvektoren

 $(K = \mathbb{C})$ unitärer Endomorpismus von V

Fazit 6. $(K = \mathbb{R})$ orthogonaler Endormophismus von V $\Longrightarrow V = \bigoplus_{\text{Eigenwerte}\lambda} \text{Eig}(F; \lambda)$ orthogonale direkte Summe

Beispiel 14.

$$A = \begin{pmatrix} \frac{3}{13} & \frac{4}{5} & \frac{36}{65} \\ \frac{4}{13} & -\frac{3}{5} & \frac{48}{65} \\ \frac{1}{13} & 0 & -\frac{5}{13} \end{pmatrix} \in O(3)$$

 $\det A = 1 \ 2 \ \text{komplex konjugierte} + 1 \ \text{reller oder 3 reelle Eigenwerte} \implies +1 \\ \text{ist ein Eigenwert.} \ldots \leadsto \text{Eigenvektor} \ (6,3,4) \ \text{zum Eigenwert 1.} \rightarrow \text{v mit} \ \|v\| = 1 \\ v = \frac{1}{\sqrt{61}}(6,3,4) \ \cdots \ v^{\perp} = \text{span} \left((1,-2,0),(2,0,-3)\right) \xrightarrow{\text{Gram-Schmidt}}$

$$(1, -2, 0), (\frac{8}{5}, \frac{4}{5}, -3)$$

Normalisieren:

$$\frac{1}{\sqrt{5}}(1, -2, 0), \sqrt{1}\sqrt{305}(8, 4, -15)$$

Und wir berechnen

$$S := \begin{pmatrix} \frac{6}{\sqrt{61}} & \frac{1}{\sqrt{5}} & \frac{8}{\sqrt{305}} \\ \frac{3}{\sqrt{61}} & -\frac{2}{\sqrt{5}} & \frac{4}{\sqrt{305}} \\ \frac{4}{\sqrt{61}} & 0 & -\frac{15}{\sqrt{305}} \end{pmatrix}$$

bekommen wir

$$\underbrace{S^{-1}}_{=S^t} AS = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -\frac{57}{65} & \frac{4\sqrt{61}}{65} \\ 0 & -\frac{4\sqrt{61}}{65} & -\frac{57}{65} \end{pmatrix}$$

1.8 Beschreibung von SO(3) und O(3)

Eigenschaften 7. Sei $A \in SO(3)$. Dann: entweder es gibt 1 reelle und 2 komplex konjugierte Eigenwerte oder 3 reelle Eigenwerte. $\lambda \in \mathbb{C} \implies \lambda \cdot \bar{\lambda} = 1$. Eigenwerte $+1(\times 3) \Leftrightarrow A = E_3$ oder $-1(\times 2) / +1$. Wenn $\Leftrightarrow A = E^3$, dann ist dim Eig(A, 1) = 1.

$$A: \operatorname{Eig}(A,1)^{\perp} \to \operatorname{Eig}(A,1)^{\perp}$$

ist eine Drehung durch einen Winkel $\Theta \in (0, 2\phi)$. Bezüglich Basis (v_1, v_2, v_3) , $v_1 \in \text{Eig}(A, 1), ||v_1|| = 1$ sieht A aus wie

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos\Theta & -\sin\Theta \\ 0 & \sin\Theta & \cos\Theta \end{pmatrix}$$

Eigenschaften 8. Sei $A \in O(3)$ Falls det A = 1, haben wir $A \in SO(3)$ Falls det A = -1, haben wir $-A \in SO(3)$

Dann bekommen wir die folgende Beschreibung von $A \in O(3)$ mit det A = -1:

- $A = -E_3$
- oder dim $\operatorname{Eig}(A, -1) = 1$ $v_1 \in \operatorname{Eig}(A, -1), \|v_1\| = 1$ $A : \operatorname{Eig}(A, -1)^{\perp} \to \operatorname{Eig}(A, -1)^{\perp}$ ist eine Drehung um den Winkel $\Theta - \pi \in (-\pi, \pi)$ (Spiegelung oder Spiegelung mit Drehung)

1.9 Selbstadjugierte Endomorphismen

 V,\langle,\rangle , K-Vektorraum mit Skalaprodukt. (K= \mathbb{R} oder \mathbb{C}). Ist $F:V\to V$ ein Endomorphismus, so heisst $F^*:V\to V$ adjugierter Endomorphismus falls

$$\langle F(v), w \rangle = \langle v, F^*(w) \rangle \ \forall v, w \in V$$

Definition 22. $F: V \to V$ ist adjugiert falls

$$\langle F(v), w \rangle = \langle v, F(w) \rangle \ \forall v, w \in V$$

Eigenschaften 9. Falls $V=\mathbb{R}^n$ mit Standardskalarprodukt, so zu F ist eine assoziierte Matrix $A\in M(n\times n,\mathbb{R})$, dann ist A^t zu F^* assoziiert. Falls $V=\mathbb{C}^n$, dann ist

$$F \leftrightarrow A \in M(n \times n, \mathbb{C})$$
$$F^* \leftrightarrow \bar{A}^t \in M(n \times n, \mathbb{C})$$

Beweis 10.

$$\langle Av, w \rangle = (Av)^t \bar{w} = v^t A^t \bar{w} = v^t \bar{A}^t w = \langle v, \bar{w}^t w \rangle$$

Bemerkung 19. F^* ist eindeutig falls für \tilde{F}^* gilt

$$\langle F(v), w \rangle = \langle v, \tilde{F}^*(w) \rangle$$

dann ist

$$0 = \left\langle v, \tilde{F}^*(w) - F^*(w) \right\rangle$$

 \Longrightarrow

$$0 = \left\langle \tilde{F}^*(w) - F^*(w), \tilde{F}^*(w) - F^*(w) \right\rangle$$
$$= \left\| \tilde{F}^*(w) - F^*(w) \right\|^2$$
$$\implies \tilde{F}^*(w) = F^*(w)$$

Fazit 7. Im Fall $V=\mathbb{R}^n$ bzw. \mathbb{C}^n mit Standardskalarprodukt ist ein selbstadjungierter Endomorphismus durch eine symmetrische bzw. hermitische Matrix gegeben.

Lemma 1. Jeder Eigenwert eines selbstadjugierten Endomorphismus ist reell.

Beweis 11. Ist $F(v) = \lambda v$ mit $v \neq 0$, so gilt

$$\lambda \langle v, v \rangle = \langle \lambda v, v \rangle = \langle F(v), v \rangle = \langle v, F(v) \rangle = \langle v, \lambda v \rangle = \bar{\lambda} \langle v, v \rangle \implies \lambda = \bar{\lambda}$$

Bemerkung 20. Prä-Hilbertraum bezeichnet einen K-Vektorraum ($K=\mathbb{R}$ oder \mathbb{C}) mit Skalarprodukt. Euklidische bzw. unitäre Vektorräume sind endlichdimensional,

Proposition 8. Sei V ein euklidischer bzw. unitärer Vektorraum und $F:V \rightarrow V$ ein selbstadjugierter Endomorphismus. Dann gibt es eine orthonormale Basis von Eigenvektoren.

Beweis 12. Falls V ein unitärer Vektorraum ist: durch Induktion nach dim V, \exists Eigenwert λ , Eigenvektor v, oBdA haben wir ||v|| = 1. Wir behaupten:

$$F(v^{\perp}) \in V^{\perp}$$

$$\langle v, w \rangle = 0 \implies \langle v, F(w) \rangle = \langle F(v), w \rangle = \langle \lambda v, w \rangle = \lambda \langle v, w \rangle = 0$$

 $IA \Longrightarrow \exists$ orthonormale Basis von v^{\perp} . Dies, zusammen mit v, gibt eine Basis von V. Fall eines euklidischen Vektorraums: Das gleiche Argumente ist gültig, sobald wir wissen, dass F einen Eigenwert besitzt. Man wählt eine Basis von V, so:

$$F \leftrightarrow A \in M(n \times n, \mathbb{R}) \ [n = \dim V]$$

 $mit \ A = A^t$. Wir betrachten A als komplexe Matrix, so dass

$$A = \bar{A} \implies \bar{A}^t = A^t = A \implies A \text{ ist hermetisch}$$

Sei λ ein (komplexer) Eigenwert von A. Weil A hermetisch ist, haben wir $\lambda \in \mathbb{R}$. Wir haben

$$\det(A - \lambda E_n) = 0$$

Dann:

$$\det(F - \lambda i d_V) = 0$$

also λ ist Eigenwert von F.

Korollar 7. Sei $A \in M(n \times n, \mathbb{R})$ symmetrisch. Dann $\exists S \in O(n)$ mit

$$S^t A S = \operatorname{diag}(\lambda_1, \dots, \lambda_n), \ \lambda_1, \dots, \lambda_n \in \mathbb{R}$$

Sei $A \in M(n \times n, \mathbb{C})$ hermetisch. Dann $\exists S \in U(n)$ mit

$$\bar{S}^t A S = \operatorname{diag}(\lambda_1, \cdots, \lambda_n), \ \lambda_1, \cdots, \lambda_n \in \mathbb{R}$$

Korollar 8. Sei $F: V \to V$ wie in der Proposition oben. Dann ist V die orthogonale direkte Summe von diesen Eigenräumen:

$$V = \bigoplus_{Eigenwerte\lambda} \operatorname{Eig}(F; \lambda)$$

Fazit 8. \leadsto Praktisches Verfahren: A symmetrisch bzw. hermetische Matrix \hookrightarrow berechnen $\mathrm{Eig}(A;\lambda)$

→ wählen von jedem eine orthonormale Basis

Beispiel 15.

$$A = \begin{pmatrix} 5 & 3 & 3+3i \\ 3 & 5 & -3-3i \\ 3-3i & -3+3i & 2 \end{pmatrix}$$

$$P_A(t) = \det(tE_3 - A) = (t-5)^2(t-2) + \dots = t^3 - 12t^2 + 256 = (t+4)(t-8)^2$$

$$\operatorname{Eig}(A; -4) = \operatorname{Ker} \begin{pmatrix} 9 & 3 & 3+3i \\ 3 & 9 & -3-3i \\ 3-3i & -3+3i & 6 \end{pmatrix} = \operatorname{span} \left\{ \begin{pmatrix} 1 \\ -1 \\ -1+i \end{pmatrix} \right\}$$

$$\operatorname{Eig}(A; \delta) = \operatorname{Ker} \begin{pmatrix} -3 & 3 & 3+3i \\ 3 & -3 & -3+3i \\ 3-3i & -3+3i & -6 \end{pmatrix} = \operatorname{span} \left\{ \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 2 \\ 0 \\ 1-i \end{pmatrix} \right\} \rightsquigarrow \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \\ 1-i \end{pmatrix}$$

bzw.

$$\begin{pmatrix} \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} & 0 \end{pmatrix}, \begin{pmatrix} \frac{1}{2} & -\frac{1}{2} & \frac{1-i}{2} \end{pmatrix}$$

Wir bekommen:

$$S := \begin{pmatrix} \frac{1}{2} & \frac{\sqrt{2}}{2} & \frac{1}{2} \\ -\frac{1}{2} & \frac{\sqrt{2}}{2} & -\frac{1}{2} \\ \frac{-1+i}{2} & 0 & \frac{1-i}{2} \end{pmatrix}$$

dann:

$$\bar{S}^t A S = \operatorname{diag}(-4, 8, 8)$$

Bemerkung 21. Das Resultat von der Proposition oben im Fall eines euklidischen Vektorraums ist klar, auch aus geometrischem Grund.

symm. Matrizen $\backslash \mathbb{R} \iff$ quadratische Formen

(Prop aktuelle-7) $S^t A S$ aus der Transformationsformel.

...und man kann auch einen alternativen Beweis in diesem Fall geben.

$$A \in M(n \times n, \mathbb{R}), A^t = A \iff q : \mathbb{R}^n \to \mathbb{R}, q(v) := v^t A v$$

(Faktum aus der Analysis)

$$\exists x \in \mathbb{R}^n, ||x|| = 1 \text{ mit} q(x) \ge g(x') \ \forall x' \in \mathbb{R}^n, ||x'|| = 1$$

Dann für $v \in \mathbb{R}^n, v \perp x$ haben wir $Av \perp x$. In der Tat haben wir

$$(Av - q(x)v) \perp x \ \forall v \in \mathbb{R}^n$$

denn

$$\langle Av - q(x)v, v \rangle + 2\lambda \langle Av - q(x)v, x \rangle = (v + \lambda x)^t (A - q(x)E_n)(v + \lambda x) \le 0 \ \forall \lambda \in \mathbb{R}$$

(Details im Buch, 5.6.4)

Bemerkung22. Fselbstadjugiert, $\dim V < \infty \implies \exists$ orthonromale Basis von Eigenvektoren \implies

$$V = \bigoplus_{\lambda} \operatorname{Eig}(F; \lambda)$$

orthogonale direkte Summe \leadsto orthogonalte Projektion

$$P_{\lambda}V \to \operatorname{Eig}(F,\lambda)$$

Dann können wir schreiben

$$F = \sum_{\text{Eigenwerte}\lambda} \lambda P_{\lambda}$$

 $= \{ \text{Eigenwerte von } F \} = \text{"Spektrum"}$

Geschrieben mit Matrizen:

$$A \in (n \times n, \mathbb{R})$$
 symmetrisch $\Longrightarrow \exists S \in O(n)$

so dass $S^{-1}AS$ eine Diagonalmatrix ist.

Interpretation: der zu A assoziierte Endomorphismus ist Diagonalisierbar. S^tAS ist eine Diagonalmatrix

Interpretation: $A \leftrightarrow s : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ Bilinearform.

$$\operatorname{diag}(\lambda_1, \dots, \lambda_n) \leftrightarrow (x, y) \mapsto x^t \operatorname{diag}(\lambda_1, \dots, \lambda_n) y$$

$$\begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} \mapsto \sum_{i=1}^n \lambda_i x_i y_i$$

Fragen

- Zu einer symmetrischen Bilinearform gibt es eine bestimmte Normalform?
- Wie kann man das praktisch berechnen?

Proposition 9. Hauptachsentransofrmation symmetrischer Matrizen Sei $A \in M(n \times n, \mathbb{R})$ symmetrisch und $s : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ die entsprechende symmetrische Bilinearform. Dann:

- 1. Ist $B = (w_1, \dots, w_n)$ eine orthonormale Basis von Eigenvektoren von A, so ist $M_B(s) = \operatorname{diag}(\lambda_1, \dots, \lambda)$ wobei $\lambda_1, \dots, \lambda_n)$ die Eigenwerte von A sind.
- 2. Es gibt eine Basis B' mit

$$M_{B'}(s) = \begin{pmatrix} E_k & & \\ & -E_l & \\ & & 0 \end{pmatrix}$$

Blockdiagonalmatrix, wobei

$$k = \# \{i | \lambda_i > 0\}$$

 $l = \# \{i | \lambda_i < 0\}$

Beweis 13. 1. $\Leftrightarrow \exists S \in O(n) \text{ mit } S^t A S = \operatorname{diag}(\lambda_1, \dots, \lambda_n)$

2.
$$\Leftrightarrow \exists T \in GL_n(\mathbb{R}) \text{ mit } T^tAT = \begin{pmatrix} E_k & \\ & -E_l \\ & 0 \end{pmatrix}$$

 $oBdA\ habe\ wir$

$$\lambda_1, \dots, \lambda_k > 0$$

$$\lambda_{k+1}, \dots, \lambda_{k+l} < 0$$

$$\lambda_{k+l+1} = \dots = \lambda_n = 0$$

Wir nehmen $B' = (w'_1, \dots, w'_n)$ mit

$$w_i' = \begin{cases} \frac{w_i}{\sqrt{|\lambda_i|}} & i \leq k+l \\ w_i, i > l+l \end{cases}$$

$$(w_i')^t A w_i' = \frac{1}{|\lambda_i|} w_i^t A w_i = \frac{1}{|\lambda_i|} \lambda_i \text{ für } i \leq k + l$$

Bemerkung 23.

$$T^t A T = \underbrace{\begin{pmatrix} E_k & \\ & -E_n & \\ & & 0 \end{pmatrix}}_{\text{Subseter-Form}}$$

... Erklärung zum Namen "Hauptachsentransformation"...

Korollar 9. Sei $s : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ eine symmetrische Bilinearform mit entsprechender Matrix A. Die folgenden Aussagen sind äquivalent:

- 1. s ist positiv definit
- 2. Alle Eigenwerte von A sind positiv
- 3. Die Koeffizienten des charakteristischen Polynoms haben alternierende Vorzeichen

Vorzeichenregel von Descartes

Beispiel 16.

$$A = \begin{pmatrix} 3 & 1 & 2 \\ 1 & 3 & -1 \\ 2 & -1 & 2 \end{pmatrix}$$

$$P_A(t) = \det(tE_3 - A) = t^3 - ut^2 + 15t + 3$$

$$P_A(-1) = -21 \ P_a(0) = 3 \implies \exists \lambda : -1 < \lambda < 0$$

Beweis 14. s ist äquivalent zu

$$(x,y) \mapsto \sum_{i=1}^{n} \lambda x_i y_i$$

 \implies s positiv definit $\Leftrightarrow \lambda_i > 0 \ \forall i$

Bemerkung 24. Weitere Begriffe $s: V \times V \to \mathbb{R}$ symmetrische Bilinearform

positiv definit positiv semidefinit negativ definit negativ semidefinit indefinit: $\exists x \in V : s(x,x) > 0 \text{ und } y \in V : s(y,y) < 0$

Tabelle 1: Weitere Begriffe

Bemerkung 25. Ausartungsraum Ausartungsraum von einer Bilinearform $s: V \times V \to K$ auf einem Vektorraum über einem beliebigen Körper K ist:

$$U := \{ v \in V | s(v, w) = 0 \ \forall w \in V \}$$

und ist ein Untervektorraum. Falls s symmetrisch oder schiefsymmetrisch ist, bekommen wir eine induzierte Bilinearform $\bar{s}:V/U\times V/U\to K$, gegeben durch

$$v + U, w + U) \mapsto s(v, w)$$

und \bar{s} ist nicht ausgeartet.

$$v' = v + u, u \in U$$
$$w' = w + \tilde{u}, \ \tilde{u} \in U$$

$$s(v',v') = s(v,w) + s(u,w) + s(v,\tilde{u}) + s(u,\tilde{u}) =$$

$$= s(v,w) + s\underbrace{(u,w)}_{=0} \pm \underbrace{s(\tilde{u},v)}_{=0} + s\underbrace{(u,\tilde{u})}_{=0}$$

$$s(v,w)=0 \implies v \in U \implies v+U$$

ist Nullvektor von V/U

Korollar 10. Sei $n \in \mathbb{N}_{>0}$ und $s : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ eine symmetrische Bilinearform. dann gibt es eine orthogonale Zerlegung

$$\mathbb{R}^n = W_+ \oplus W_i \oplus W_0$$

mit

$$s|_{W_+} > 0, \ s|_{W_-} < 0$$

 $und W_0 = Ausartungsraum von s$

Proposition 10. Trägheitsgesetz/Signatur von Sylvester Sei V ein endlichdimensionaler reeller Vektorraum und $s: V \times V \to \mathbb{R}$ eine symmetrische Bilinearform. Sei

$$V = V_+ \oplus V_- \oplus V_0$$

eine Zerlegung als orthogonale direkte Summe, mit $s|_{V_+}>0$, $s|_{V_-}<0$ und $V_0=Ausartungsraum\ von\ s.\ Dann\ sind$

$$r_{+} := \dim(V_{+}), \ r_{-} = \dim(V_{-}) \ und \ r_{0} := \dim(V_{0})$$

Invarianten von s, charakterisiert durch

$$r_{+} = \max \{ \dim W | W \subset V \ Untervektorraum, \ s|_{W} > 0 \}$$

$$r_{-} = \max \{ \dim W | W \subset V \ Untervektorraum, \ s|_{W} < 0 \}$$

Die Invarianten (r_+, r_-, r_0) heisst Trägheitsindex oder Signatur von s

Bemerkung 26. Ist A eine $n \times n$ symmetrische reelle Matrix, heisst Signatur die Signatur von der zu A entsprechender Biliniearform.

Bemerkung 27. Auch $r_+ - r_-$ heisst Signatur.

Dimension
$$\dim V = r_+ + r_- + r_0$$
 Rang
$$r_+ + r_- \qquad \leftrightarrow (r_+, r_-, r_0)$$
 Signatur in diesen Sinn
$$r_+ - r_-$$

Beweis 15. Reduktionsschritt: Es genüngt, das Resultat zu beweisen, im Fall dass s nicht ausgeartete ist.

$$V \to \bar{V} = V/V_0$$

$$V = V_+ \oplus V_- \oplus V_0$$

$$\bar{V} = \bar{V}_+ \oplus \bar{V}_-$$

wobei $\bar{V}_{\pm} = Bild\ von\ V_{\pm}.\ Bew.\ \bar{V} = \bar{V}_{+} + \bar{V}_{-}\ direkte\ Summe$

$$\Leftrightarrow \bar{V}_+ \cap \bar{V}_- = 0$$

$$\bar{v} \leftrightarrow v \in V_+ \oplus V_0$$

und

$$v \in V_- \oplus V_0$$

 $\Leftrightarrow v \in V_0$ Behauptung: \bar{s} induzierte Bilinearform auf \bar{V}

$$\max \left\{ \dim W |s|_W > 0 \right\} = \max \left\{ \dim U |U \subset \bar{V}, \bar{s}|_U > 0 \right\}$$

und

$$\max \left\{ \dim W | s|_W < 0 \right\} = \max \left\{ \dim U | U \subset \bar{V}, \bar{s}|_U < 0 \right\}$$

Ist $W \subset V, s|_W > 0$, und $\overline{W} := Bild \ von \ W$, so haben wir

$$\dim \bar{W} = \dim W$$

und

$$\bar{s}|\bar{W}>0$$

Dimensionsformel:

$$\dim \bar{W} = \dim W - \dim(\underbrace{W \cap V_0}_{=0}) = \dim W$$

und

$$\bar{s}(\bar{v},\bar{v}) = s(v,v)$$

 $wobei\ v \in W \mapsto v \in \overline{W}\ Umgekehrt\ ist$

$$U \subset \bar{V}, \ \bar{s}|_{U} > 0, \ \dim U = d$$

wählen Basis $(\bar{v}_1, \dots, \bar{v}_d)$ von \bar{U} , mit $v_i \mapsto \bar{v}_i \, \forall i \, dann \, haben \, wir \, W := \mathrm{span}(v_1, \dots, v_d)$ hat die Eigenschaft

$$\dim W = d \ s|_W > 0, \ \operatorname{Im}(W) = U$$

Beweis im Fall s nicht ausgeartet:

Behauptung: Ist

$$W_{+} \subset V, s|_{W_{+}} > 0, \ W_{-} \subset V, s|_{W_{-}} < 0$$

so haben wir

$$W_+ \cap W_- = 0$$

Es folgt:

$$\dim W_- + \dim W_+ \le \dim V$$

 $mit\ Gleicheit \Leftrightarrow V = W_+ \oplus W_-$

Deshalb

$$r_+ + r_- \le \dim V$$

Und wir haben = aus dem Korollar (alternativer Beweis ohne Quotientenvektorräume sehe Buch)

Bemerkung 28. Praktische Fragen:

- Wie berechnet man die Signatur einer symmetrischen Bilinearform?
- Wie findet man eine Basis, so dass die darstellden Matrix in Sylversterform ist?

In Matrixen: $A \in (n \times n, \mathbb{R})$ symm.

- Signatur?
- Finden $T \in GL_n(\mathbb{R})$ mit T^tAT in Sylvesterform

Antwort:

Aus der Hauptachsentrasformation:

$$\exists S \in O(n), S^t A S = S^{-1} A S = \operatorname{diag}(\lambda, \dots, \lambda_n)$$

 \implies Signatur

$$r_{+} = \# \{i | \lambda_{i} > 0\}$$

$$r_{-} = \# \{i | \lambda_{i} < 0\}$$

$$r_0 = \dim \operatorname{Ker}(A)$$

 $S \stackrel{\text{Normieren der Spaltenvektoren}}{\leadsto} S'$

mit S'^tAS in Sylvesterform.

Alternatives, oft leicheres Verfahren:

- Ker(A) = Ausartungsraum berechnen
- Vektoren Wählen, wobei q(v)=s(v,v)verschieden von Null ist. $\leadsto q(v)\in\{\pm 1\}\leadsto v^\perp$

Beispiel 17. Silvesterform

$$A = \begin{pmatrix} 5 & 2 & 3 \\ 2 & 1 & 1 \\ 3 & 1 & 2 \end{pmatrix}$$

$$P_A(t) = t^3 - 8t^2 + 3t = t\left(t - (4 + \sqrt{13})\right)\left(t - (4 - \sqrt{13})\right)$$

Signaturen (2, 0, 1) Mit Halbachsentransformation

$$\begin{array}{cccc} \text{Eigenwert 0} & \leadsto & \text{Eigenvektor } (1,-1,1) \\ \text{Eigenwert } 4+\sqrt{13} & \leadsto & \text{Eigenvektor } (1,4-\sqrt{13},-3+\sqrt{13}) \\ \text{Eigenwert } 4-\sqrt{13} & \leadsto & \text{Eigenvektor } (1,4+\sqrt{13},-3-\sqrt{13}) \end{array}$$

Normieren...

S' ausrechnen...(ne danke)

haben wir

$$S'^t = \begin{pmatrix} 1 & & \\ & 1 & \\ & & 0 \end{pmatrix}$$

Beispiel 18. Alternativ

$$e_2: q(e_2) = e_2^t A e_2 = 1$$

$$e_2^{\perp} = \{(x, y, z) | 2x + y + z = 0\}$$

$$(-1, 2, 0) A \begin{pmatrix} -1 \\ 2 \\ 0 \end{pmatrix} = 1$$

$$Ker(A) = \operatorname{span} \begin{pmatrix} 1 & -1 & -1 \end{pmatrix}$$

$$T := \begin{pmatrix} 0 & -1 & 1 \\ 1 & 2 & -1 \\ 0 & 0 & -1 \end{pmatrix}$$

mit T haben wir $T^tAT = \begin{pmatrix} 1 & 1 \\ & 1 & 0 \end{pmatrix}$

2 Klassifikation von Bilinearformen auf $\mathbb{R}^n \leftrightarrow \text{Si}$ gnatur

Seien euklidische (V,\langle,\rangle) und symmetrische Bilinearform $s:V\times V\to\mathbb{R}$, so können wir die Bilinearform durch die Hauptachsentransormation verstehen. Seien ein endlichdimensionaler \mathbb{R} -Vektorraum V und die symmetrische Bilinearform $s: V \times V \to \mathbb{R}$, dann ist s durch die Signatur (r_+, r_-, r_0) klassifiziert.

Eigenschaften 10. dim V=2

$$\begin{array}{lll} \text{Signatur} & (2,0,0) & q(v) := s(v,v) \text{ Quadratische Schale (positiv)} \\ & (0,2,0) & \text{Quadratische Schale (negativ)} \\ & (1,1,0) & \text{Sattelpunkt} \\ & (0,1,1) & \text{Quadratisches halbes Rohr (positiv)} \\ & (1,0,1) & \text{Quadratisches halbes Rohr (negativ)} \\ Eigenschaften \ 11. \ \dim V = 3 \ \{q(v)=1\} \end{array}$$

- (3,0,0)Sphäre
- (2,1,0)einschaliges Hyperboloid
- +Fälle \boldsymbol{s} entartet (1,2,0)zweischaliges Hyperboloid
- (0,3,0)

Der Fall von Bilinearformen über Vektorräumen über K, K beliebiger Körper.

Proposition 11. Orthogonalisierungssatz Sei V ein endlichdimensionaler Vektorraum über einem Körper mit $char(K) \neq 2$. Sei s eine symmetrische Bilinearform über V. Dann gibt es eine Basis B von V, so dass die $M_B(s)$ eine Diagonalmatrix ist.

Beweis 16. Reduktionsschritt zum Fall s nicht ausgeartet. Sei U= Ausartungsraum. $\bar{V}:=V/U$ und $\bar{s}:=$ induzierte Bilinearform. Wählen wir ein Komplement $W\subset V$ zu U, so haben wir

$$V = U \oplus W$$

$$W \xrightarrow{Isomorphismus} \bar{V}$$

$$s|_{W} \ nicht \ ausgeartet$$

Wir können deshalb behaupten, dass s nicht ausgeartet ist. Dann beweisen wir dies Aussage durch Induktion nach $\dim V$. $\dim V \leq 1$ trivial. Induktionsschritt:

s nicht ausgeartet
$$\Longrightarrow$$
 $\exists v \in V : s(v, v) \neq 0$

Sei $V' := V^{\perp}$ Wir haben $\dim V' = \dim V - 1$, weil s nicht ausgeartet ist. IA \leadsto Basis B' von V' mit $\underbrace{M_B(s|_{V'})}_{auch\ nicht\ ausgeartet}$ diagonal. Dann:

 $B\&v \leadsto B \ mit \ M_B(s) \ eine \ Diagonal matrix$

Korollar 11. Ist char $K \neq 2$, so gibt es zu einer symmetrischen Matrix $A \in (n \times n, \mathbb{K})$ ein $S \in GL_n(\mathbb{K})$ so dass S^tAS eine Diagonalmatrix ist.

Beispiel 19. K beliebig, chat $(K) \neq 2$ $V = K^2$

$$s(x,y) = x_1y_2 + x_2y_1$$

$$v_1 = \begin{pmatrix} 1\\1 \end{pmatrix}$$

$$s(v_1, v_1) = 2$$

$$v_1^{\perp} = \operatorname{span} \begin{pmatrix} 1\\-1 \end{pmatrix}$$

$$v_2 = \begin{pmatrix} 1\\-1 \end{pmatrix}$$

$$s(v_2, v_2) = -2$$

$$B := (v_1, v_2)$$

$$M_B(s) = \begin{pmatrix} 2 & 0\\0 & -2 \end{pmatrix}$$

 $S \ \leftrightarrow \ \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ Standardbasis. Mit $S := \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$ haben wir

$$S^t A S = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} = \begin{pmatrix} 2 & 0 \\ 0 & -2 \end{pmatrix}$$

Bemerkung 29. offen bleibt die Frage: Sind symmetrische Bilinearformen s und s' auf V gegeben $(\dim_{\mathbb{K}} < \infty)$, können wir entscheiden ob s und s' äquivalent sind?

Oder, in Matrizen: Sind symmetrische $A, A' \in (n \times n, \mathbb{K})$ gegeben, können wir entscheiden, obes ein $S \in GL_N(\mathbb{K})$ gibt, so dass $S^tAS = A'$? Die Antwort hängt von \mathbb{K} ab.

- $\mathbb{K} = \mathbb{R}$ durch die Signatur
- $\mathbb{K} = \mathbb{C}$ durch die Rang
- andere \mathbb{K} ?

Im Allgemeinen:

- Rang
- Reduktion zum Fall einer nichtausgearteten Form

Wir behaupten: s ist nicht ausgeartet \Leftrightarrow eine darstellende Matrix A ist invertierbar.

$$\det(A) \in \mathbb{K}^*/(\mathbb{K}^*)^2$$

ist eine Invariante von s, wegen der Transformationsform.

$$T \in GL_n(\mathbb{K}) \rightsquigarrow T^tAT$$

ist eine andere darstellende Matrix. Und

$$\det(T^t A T) = \det(T^t) \det(A) \det(T) = (\det T)^2 \det(A)$$

Definition 23. Diskriminante Sei $s: V \times V \to \mathbb{K}$ eine symmetrische Bilinearform (mit $\dim_{\mathbb{K}} V < \infty$). Die Diskiminante von s ist 0 falls s ausgeartet ist, sonst ist die Klasse von $\det(A)$ in $\mathbb{K}^*/(\mathbb{K}^*)^2$, wobei A eine darstellende Matrix von s ist. Die Diskriminante ist eine Invariante von s

- Rang
- Diskriminante

Bemerkung 30. Noch offen: sind s,s' nicht ausgeartet, mit derselben Diskriminante, zu entscheiden, ob s und s' äquivalent sind.

Beispiel 20. $\mathbb{K} = \mathbb{Q}$, z.B. $V = \mathbb{Q}^2$, s Standardskalarprodukt $s(x, y) = x_1y_1 + x_2y_2$ und s' symmetrische Bilinearform mit $\operatorname{disc}(s) = +1$

$$\begin{pmatrix} a & 0 \\ 0 & a' \end{pmatrix} \xrightarrow{\text{Basiswechsel}} \begin{pmatrix} a & 0 \\ 0 & a \end{pmatrix}$$

 $\text{mit } aa'=b^2, b\in \mathbb{Q}$

$$\implies a = \frac{b^2}{a'} = a' \left(\frac{b}{a'}\right)^2$$

a=2

$$\begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} \end{pmatrix} \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix} \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

a = 3

$$s' \leftrightarrow q'(x) = 3x_1^2 + 3x_2^2$$

Beh:

$$q'(x) \neq 1 \ \forall x \in \mathbb{Q}^2$$

Konsequenz: s' ist nicht äquivalent zu s. Ist $3x_1^2+3x_2^2=1$ so schreiben wir $x_1=\frac{r_1}{s_1},x_2?\frac{r_2}{s_2},\,r_1,r_2,s_1,s_2\in\mathbb{Q},\,s_1,s_2\neq0$

$$3r_1^2s_2^2 + 3r_2^2s_1^2 = s_1^2s_2^2$$

oder
$$3r^2 + 3s^2 = t^2$$
 wobei $r = r_1 s_2$, $s = r_2 s_1$, $t = s_1 s_2$ (1)

$$3^{\text{ungerade}}(3k_1+1) + 3^{\text{ungerade}}(3k_2+1)$$

 \implies Widerspruch zu (1)

Fazit 9. \mathbb{K} : Körper, char(\mathbb{K}) $\neq 2$

V:endlichdimensionaler \mathbb{K} -Vektorraum

 $s \colon V \times V \to \mathbb{K}$ symmetrische Bilinearform

Rang Rang ; dim $V \Leftrightarrow s$ ist ausgeartet. U:=Ausartungsraum. \bar{s} induzierte Bilinearform auf $\bar{V} := V/U$ (nicht ausgeartet)

Diskriminiante für s nicht ausgeartet: $\operatorname{disc}(s) \in \mathbb{K}^*/(K^*)^2$

Beispiel 21.
$$\mathbb{K}=\mathbb{Q},\ V=\mathbb{Q}^2$$
 Bilinear entsprechend zu $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ und $\begin{pmatrix} 3 & 0 \\ 0 & 3 \end{pmatrix}$

- Beide: Rang 2, Diskriminante 1
- nicht äquivalent

Bemerkung 31. Die Frage, ob eine nicht ausgeartete symmetrische Bilinearform auf $V := \mathbb{Q}^2$ der Diskriminante 1 äquivalent zum Standardskalarprodukt ist, können wir nur beantworten mittels einem Resultat aus der Zahlentheorie.

Satz 5. s nicht ausgeartete symmetrische Bilinearform auf \mathbb{Q}^2 disc $(s) = 1 \implies \exists B \text{ Basis mit}$

$$M_B(s) = \begin{pmatrix} a & 0 \\ 0 & a \end{pmatrix}, \ a \in \mathbb{Z}, a \neq 0$$

Dann: s ist äquivalent zum Standardskalarprodukt \Leftrightarrow

$$\exists v \in V, \ s(v,v) = 1 \ d.h. \ \exists x,y \in \mathbb{Q}: \ ax^2 + ay^2 = 1$$

 \Leftrightarrow

$$\exists x, y \in \mathbb{O} \ mit \ x^2 + y^2 = a$$

Bemerkung 32. Ein Resultat aus der Zahlentheorie gibt uns eine Charakterisierung von Summen zweier Quadrate in \mathbb{Q} : für $a \in \mathbb{Z}, a \neq 0$:

$$\exists x, y \in \mathbb{Q} : x^2 + y^2 = a \Leftrightarrow x, y \in \mathbb{Z} : x^2 + y^2 = a$$

 $\Leftrightarrow a>0$ und jede Primzahl $p=4k+3\ (k\in\mathbb{N})$ kommt mit gerader Vielfachheit in der Primzahlzerlegun von a vorkommen. Der Beweis nutzt

$$(x_1x_1' - x_2x_2')^2 + (x_1x_2' + x_2x_1')^2 = (x_1^2 + x_2^2)(x_1'^2 + x_2'^2)$$

Satz von Fermat: p Primzahl

$$\exists x, y \in \mathbb{Z}, x^2 + y^2 = p \iff p = 2 \vee 4|(p-1)$$

Argument vom letzten Mal (auszuschliessen a = 3)

Fazit 10. Zurück zum Fall $\mathbb{K} = \mathbb{R}$

Wir wissen: eine symmetrische Bilinearform $s: V \times V \to \mathbb{R}$ (dim \mathbb{R} $V < \infty$) ist durch die Signatur (r_+, r_-, r_0) charaktertisiert.

$$A: M_B(s) P_A(t) = \prod_{i=1}^n (t - \lambda_i)$$

$$r_{+} = \# \{i | \lambda_{i} > 0\}$$

$$r_{-} = \# \{i | \lambda_{i} < 0\}$$

$$r_0 = \#\{i | \lambda_i = 0\}$$

und

 $s>0 \Leftrightarrow \text{Signatur } (n,0,0) \Leftrightarrow \lambda_i>0 \forall i \Leftrightarrow \text{Koeff. } P_A(t) \text{ hat alternierende Vorzeichen}$

Definition 24. Hauptminor Sei $A = (a_{ij}) \in (n \times n, \mathbb{K})$. Wir schreiben A_k für die Teilmatrix $(A_{ij})_{1 \le i,j \le k}$, für $1 \le k \le n$. Der k-te Hauptminor von A ist $\det(A_k)$

Bemerkung 33. $\dim_{\mathbb{R}} < \infty$, $s: V \times V \to \mathbb{R}$ symmetrische Bilinearform. Wann ist s positiv? Es ist notwendig, aber nicht hinreichend, dass $\det(A) > 0$ für eine darstellende Matrix A.

Proposition 12. Hauptminorenkriterium von Jacobi-Sylvester Sei V ein endlichdimensionaler reeller Vektorraum, $s: V \times V \to \mathbb{R}$ eine symmetrische Bilinearform und A eine darstellende Matrix. Dann ist s positiv definit $\Leftrightarrow \det(A_K) > 0$, $k = 1, \dots, n$ $n = \dim V$

Beweis 17. \Rightarrow Ist s > 0, so ist $s|_W > 0$ für alle Untervektorräume $S \subset V$. Sei $B = (v_1, \dots, v_n)$ eine Basis mit $A = M_B(s)$. Sei $V_k := \operatorname{span}(v_1, \dots, v_k)$ für $1 \le k \le n$. Dann haben wir:

$$M_{(v_1, \dots, v_k)}(s|_{V_k}) = (s(v_i, v_j))_{1 \le i, j \le k} = (A_K)$$

Weil $s|_{V_k} > 0$, folgt: $\det(A_k) > 0$.

 \Leftarrow Durch eine Induktion nach n:

IA: n = 1

IS: Wir nehmen das Resultat an für einen Vektorraum der Dimension n-1. Seien $B=(v_1,\cdots,v_n)$ eine Basis von V und $A=(a_{ij})_{i\leq i,j\leq n}$ $A=M_B(s)$. Wir haben

- $aus \det(A) > 0$ folgt: s ist nicht ausgeartet
- $aus \det(A_1) > 0 \ folgt \ a_{11} > 0$

Wir haben $V = \operatorname{span}(v_1) \oplus V_1^{\perp}$. Es genügt zu zeigen, dass $s|_{v_1^{\perp}}$ positiv definit ist. Eine Basis von v_1^{\perp} sieht so aus: Sei $c_i := \frac{a_{1i}}{a_{11}}$ und $\tilde{v}_i := v_i - c_i v_1$ für $i = 2, \dots, n$.

$$s(v_{1}, \tilde{v}_{1}) = s(v_{1}, v_{i}) - c_{i}s(v_{1}, v_{1}) = a_{1i} - c_{i}a_{11} = 0$$

$$(\tilde{v}_{2}, \dots, \tilde{v}_{n}) \Leftrightarrow \begin{pmatrix} -c_{2} & 1 \\ -c_{3} & 1 \\ & \ddots \\ -c_{n} & 1 \end{pmatrix}$$

$$(\tilde{a}_{ij})_{2 \leq i, j \leq n} \tilde{a}_{ij} = s(\tilde{v}_{i}, \tilde{v}_{j}) = a_{ij} - c_{i}a_{i1} + c_{i}c_{j}a_{11} = a_{ij} - c_{i}a_{1j}$$

$$weil \ c_{i}c_{j}a_{11} = \frac{a_{1i}}{a_{11}}a_{1j} = c_{j}a_{i1}$$

Wir haben für $s \le k \le n$:

$$\begin{pmatrix} -c_2 & 1 & & & \\ -c_3 & 1 & & & \\ & & \ddots & \\ -c_k & & & 1 \end{pmatrix} \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1k} \\ a_{21} & & & \\ \vdots & & \ddots & \\ a_{k1} & & & a_{kk} \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1k} \\ 0 & a_{22} - c_2 a_{12} & \cdots & a_{2k} - c_2 a_{1k} \\ \vdots & & \vdots & & \vdots & \vdots \\ 0 & a_{2k} - c_k a_{12} & \cdots & a_{kk} - c_k a_{1k} \end{pmatrix}$$
$$= \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1k} \\ 0 & \tilde{a}_{22} & \cdots & \tilde{a}_{2k} \\ \vdots & \vdots & \vdots & \vdots \\ 0 & \tilde{a}_{k2} & \cdots & \tilde{a}_{kk} \end{pmatrix}$$
$$\implies \det(A_k) = a_{11} \det(\tilde{a}_{ij})_{2 \leq i, j \leq k}$$

Aus $det(A_k) > 0$ und $a_{11} > 0$ folgt:

$$\det(\tilde{a}_{ij})_{2 \le i, j \le k} > 0, \text{ für } k = 2, \cdots, n$$

Aus der Induktionsvoraussetzung folgt $s|_{v_{+}} > 0$

3 Multilineare Algebra

Definition 25. Dualvektorraum / Linearformen Sei \mathbb{K} ein Körper und V ein \mathbb{K} -Vektorraum. Der Dualvektorraum ist $V^* := \operatorname{Hom}(V, \mathbb{K})$. Elemente vo V^* heissen Linearformen. V^* ist ein \mathbb{K} -Vektorraum, mit Addition von Abbildungen und Multiplikation durch Skalare.

Eigenschaften 12. Sei $B = (v_i)_{i \in I}$ eine Basis von V.

• Koeffizient von v_i

$$v_i^*: v = \sum_{j \in I} a_j v_j \mapsto a_j$$

• Summe von Koeffizienten

$$\sum v_i^* : v = \sum_{j \in I} a_j v_j \mapsto \sum a_j$$

wohldefiniert, weil nur endlich viele a_i sind $\neq 0$

- Operationen auf Funktionsräumen, z.B. $\{f : \mathbb{R} \to \mathbb{R} \text{ stetig}\}$
- Standardkoordinaten: $n \in \mathbb{N}_{>0}$, $V = \mathbb{K}^n$, Standardbasis e_1, \dots, e_n

$$e_i^*:(x_1,\cdots,x_n)\mapsto x_i$$

Bemerkung 34. Ist $B=(v_1,\dots,v_n)$ eine Basis von V, so ist $B^*=(v_1^*,\dots,v_n^*)$ eine Basis von V^* . Denn zu $f:V\to\mathbb{K}$ haben wir $c_i:=f(v_i)$, dann

$$f \text{ linear } \Longrightarrow f(\sum_{i=1}^{n} a_i v_i) = \sum_{i=1}^{n} c_i a_i$$

Das zeigt, dass V^* ist von v_1^*, \cdots, v_n^* aufgespannt. Lineare Unabhängigkeit von v_1^*, \cdots, v_n^* ist klar. Deshalb haben wir einen Isomorphismus $V \to V^*$, gegeben durch $v_i \mapsto v_i^* \ \forall i$. Falls dim $V = \infty$ mit Basis $(v_i)_{i \in I}$, dann ist V^* nicht von den $v_i^*, i \in I$ aufgespannt, z.B.

$$\sum_{i \in I} \not \in \operatorname{span}(v_i^*)_{i \in I}$$

 $\phi: V \to \mathbb{K}$ mit $\phi(v_i) \neq 0$ nur für endlich viele $i \in I$

Beispiel 22. $V = \mathbb{K}$ mit Standardbasis (e_1, \dots, e_n) . Dann hat V^* die Standardbasis (e_1^*, \dots, e_n^*) und wir haben den Isomorphismus

$$\mathbb{K}^n \to (\mathbb{K})^*$$
$$e_i \mapsto e_i^* \ \forall i$$

Bemerkung 35. Es ist nicht überraschend, dass der Isomorphismus $V \to V^*$ assoziert zu einer Basis $B = (v_1, \dots, v_n)$ abhängig von der Basis ist.

Bemerkung 36. Sei $V \subset \mathbb{K}^n$ ein Untervektorraum. V kann durch eine Basis gegeben werden, oder durch Gleichungen.

$$V = \operatorname{span}\left(\begin{pmatrix} 1\\1\\0 \end{pmatrix}, \begin{pmatrix} 0\\1\\1 \end{pmatrix}\right) = \left\{\begin{pmatrix} x\\y\\z \end{pmatrix} \middle| x - y + z = 0\right\}$$

ist eine Linearform auf \mathbb{K}^n

Definition 26. orthogonaler Raum Sei W ein \mathbb{K} -Vektorraum und $V \subset W$ ein Untervektorraum. Der Untervektorraum

$$V^0 = \{ \phi \in W^* : \phi(v) = 0 \ \forall v \in V \} \subset W^*$$

heisst der zuVorthogonale Raum. Falls $\dim V<\infty,$ dann haben wir $\dim V^0=\dim W-\dim V.$ Basis von

$$W^* = \underbrace{W_1, \cdots, W_d, \cdots, W_n}_{\text{you } V}$$

Dann:

$$V^0 = \operatorname{span}\left(w_{d+1}^*, \cdots, w_n^*\right)$$

Definition 27. duale Abbildung Sei $V \to W$ eine lineare Abbildung von K-Vektorräumen. Dann gibt es eine lineare Abbildung $F^*: W^* \to V^*$, die duale Abbildung, gegeben durch Komposition mit F

$$\psi: V \to K \mapsto F^*(\psi) := \psi \circ F$$

Dann

$$V^0 = \ker \left(W^* \to V^* \right)$$

Aus der Dimensionsformel bekommt man nochmals

$$\dim V^0 = \dim W^* - \dim V^*$$

Eigenschaften 13. duale Abbildung

- falls W = V, gilt $(id_V)^* = \mathrm{Id}_{V^*}$
- Ist auch $G: U \to V$ gegeben, so haben wir

$$G^*F^*\psi = (F \circ G)^*\psi$$

Das nennt man Funktorialität.

Bemerkung37. Man kann zeigen, dass zu $U\subset V$ bekommt man eine surjektive duale Abbildung $V^*\to U^*$

$$(\psi: V \to \mathbb{K}) \mapsto \psi|_U$$

Proposition 13. Seien V und W endlich dimensionale \mathbb{K} -Vektorräume mit Basen $A = (v_1, \dots, v_n)$ und $B = (w_1, \dots, w_m)$. Sei $F : V \to W$ eine lineare Abbildung mit darstellender Matrix M. Dann ist $F^* : W^* \to V^*$ bezüglich der dualen Basen $A^* = (v_1^*, \dots, v_n^*)$, $B^* = (w_1^*, \dots, w_m^*)$ durch die Matrix M^t dargestellt. Wir schreiben $M = (a_{ij})$. Das bedeutet:

$$F(v_j) = \sum_{i=1}^{m} a_{ij} w_i$$

Es folgt

$$F^*(w_i^*)(v_j) = i$$
-te Komonent von $F(v_j) = a_{ij}$

Das ist zu sagen, die darstellende Matrix von F^* ist die Matrix (a_{ji})

$$F^*(w_i^*) = \sum_{j=1}^m a_{ij} v_j^*$$

Eigenschaften 14. $F: V \to W$

 $\underbrace{\left(\operatorname{Im} F\right)^{0}}_{\text{alle }W\xrightarrow{\phi}\mathbb{K}\text{ mit }\phi|_{\operatorname{Im} F}=0}=\underbrace{\operatorname{Ker} F^{*}}_{\text{alle }W\xrightarrow{\phi}\mathbb{K}\text{ mit }\phi\circ F=0}$

Da

$$\phi|_{\operatorname{Im} F} = 0 \iff \phi \circ F = 0$$

haben wir die Gleichung.

$$\left(\operatorname{Ker}\right)^{0} = \operatorname{Im}\left(F^{*}\right)$$

 \supset offensichtlich

 \subset folgt aus der Surjektivität von $W^* \to (\operatorname{Im} F)^*$

Wir betrachten $\phi: V \to \mathbb{K}$ mit $\phi|_{\operatorname{Ker} F} = 0$

$$w \to W, w = F(v)$$
 für ein $v \in V$

$$w \leadsto \bar{\phi}(w) = \phi(v)$$

Ist

$$w = F(v')$$

dann ist

$$v' - v \in \operatorname{Ker} F$$

und

d.h.

$$\psi:W\to\mathbb{K}$$

mit

$$\psi|_{\operatorname{Im} F} = \bar{\phi}$$

Das zeigt:

$$F^*(\psi) = \phi$$

Bemerkung 38. An dem Diagramm haben wir eine Bijektion zwischen $\phi \in V^*$ mit $\phi|_{\operatorname{Ker} F} = 0$ und $\bar{\phi} \in (\operatorname{Im} F)^*$

$$\xrightarrow{\dim W < \infty} \dim(\operatorname{Im} F) = \dim(\operatorname{Im} F)^* = \dim(\operatorname{Ker} F)^0 = \dim\operatorname{Im}(F^*)$$

$$\xrightarrow{\dim V, \dim W < \infty} \operatorname{rang}(F) = \operatorname{rang}(F^*)$$

Keine Überraschung! $rang(A) = rang(A^t)$

Beispiel 23.

$$\mathbb{R}[x]^{\leq 2} \xrightarrow{(ev_{-1}, ev_1)} \mathbb{R}$$

surjektiv

$$\implies (\operatorname{Im} F)^0 = 0$$

Interpretation:

$$\alpha f(-1) + \beta f(1) = 0 \ \forall f \in \mathbb{R}[x]^{\leq 2} \ \Leftrightarrow \ \alpha = \beta = 0$$

$$\operatorname{Ker}((\alpha, \beta) \mapsto (f \mapsto \alpha f(-1) + \beta f(1)))$$

$$Ker(ev_{-1}, ev_1) = span(x^2 - 1)$$

$$\implies \operatorname{Ker}(ev_{-1}, ev_1)^0 = \left\{ \mathbb{R}[x]^{\leq 2} \xrightarrow{\phi} \mathbb{R}, \ \phi(x^2 - 1) = 0 \right\} = \operatorname{span}\left(\frac{1}{2}ev_0'' + ev_0, ev_0'\right)$$

und

=
$$\operatorname{Im} (ev_{-1}, ev_1)^* = \operatorname{span}(ev_{-1}, ev_1)$$

weil

$$ev_{-1} = \frac{1}{2}ev_0'' - ev_0' + ev_0$$
$$ev_1 = \frac{1}{2}ev_0'' + ev_0' + ev_0$$

3.1 Der Bidualraum $V \rightsquigarrow V^* \rightsquigarrow V^{**}$

Definition 28. kanonische lineare Abbildung dim $V < \infty \implies$ ein Isomorphismus $V \to V^*$ wird durch die Auswahl einer Basis bestimmt. Dagegen haben wir eine Abbildung $V \to V^{**}$ unabhängig von der Basis, so:

$$v \mapsto \begin{pmatrix} V^* \xrightarrow{ev_v} \mathbb{K} \\ (\phi : V \to \mathbb{K}) \mapsto \phi(v) \end{pmatrix}$$

Dies heisst kanonische lineare Abbildung und ist ein Isomorphismus falls dim $V<\infty$

Bemerkung 39. Im Allgemeinen ist die kanonische Abbildung $V \to V^{**}$ injektiv:

[Sei
$$v \in V$$
 mit $v \neq 0$] $\overset{\operatorname{span}(v) \subset V}{\leadsto} V^* \to \operatorname{span}(V)^*$ $\phi \mapsto \psi : v \mapsto 1 \text{ (d.h. } \phi(v) = 1)$ $\Longrightarrow ev_1(\phi) \neq 0$ $\dim V < \infty \implies \dim V = \dim V^* = \dim V^{**}$

Dann:

$$\implies V \to V^{**}$$
 injektiv \Leftrightarrow bijektiv

Oft schreibt man $V=V^{**}$ für V ein Vektorraum mit dim $V<\infty$. Das bedeutet immer, dass V und V^{**} identifiziert wird, durch den kanonischen Isomorphismus.

Beispiel 24. $V = \mathbb{K}^n$ mit Standardbasis e_1, \dots, e_n . $V^* = (\mathbb{K}^n)^*$ hat die duale Basis e_1^*, \dots, e_n^* $V \to V^{**}$ mit einer Abbildung

$$e_i \mapsto \begin{pmatrix} \phi : (\mathbb{K}^n)^* \to \mathbb{K} \mapsto \phi(e_i) \\ e_j^* \mapsto \delta_{ij} \end{pmatrix} = e_i^{**}$$

Bemerkung 40. Sei $F: V \to W$ eine lineare Abbildung von endlichdimensionalen Vektorräumen. Dann ist $F^**=F$, im folgenden Sinn:

Wobei \sim einen kanonischen Isomorphismus darstellt. Daraus folgt, dass

$$V \xrightarrow{F} W \leadsto W^* \xrightarrow{F^*} V^* \leadsto V^{**} \xrightarrow{F^{**}} W^{**}$$

kommutativ ist.

Bemerkung 41.

Falls $\dim W < \infty$ und $V \subset W,$ dann haben wir $V^{00} = V$ im folgenden Sinn

$$\dim = \dim W - \dim V$$

$$\subset W^*$$

$$\dim = \dim W - (\dim W - \dim V) \dim V$$

$$\subset W^{**} \stackrel{\sim}{\longleftarrow} W \supset V$$

Das Bild von V unter dem kanonischen Isomorphismus ist V^{00} . Sei $v \in V$ $ev_1 \in V^{00}$

$$\phi \in W^*, \ \phi(v)0 \ \forall \phi \in V \implies \phi(v) = 0$$

Beispiel 25.

$$W = \mathbb{R}^3$$

$$V = \operatorname{span}\left(\begin{pmatrix} 1\\0\\1 \end{pmatrix}, \begin{pmatrix} 0\\-1\\1 \end{pmatrix}\right) \implies V^0 = \operatorname{span}(e_1^* - e_2^* - e_3^*) = \operatorname{span}(e_1 + e_3, -e_2 + e_3)$$

$$V^{00} = \operatorname{span}(e_1^{**} + e_2^{**}, e_1^{**} + e_3^{**})$$