Introduction to Data Engineering

Week 9: Distribution is Challenging

Today's Lecture...

- > Distribution of data and compute:
 - > Why do it?
 - > How did it affect the designs of things we've studied?
- > Review of some Key Distribution Challenges:
 - > Replication
 - > Partitioning
 - > Transactions
 - > Consensus

Distribution: Why and What?

Distribution: Why Do It?

Why do we distribute data?

> Scalability:

- > Go Bigger: Data too big to fit on a single machine.
- > Go Faster: Desired read/write rates too fast for a single machine.

> Fault Tolerance / High Availability:

> Keep working if machine(s) go down via redundancy

> Latency:

- > Keep copies of data physically nearer to its users
- > Cache results of costly operations between user and source

Distribution: Sharing

Types of Sharing

> Shared-Memory on one Node:

> Buy a big machine; Fault tolerance may be limited and costly

> Shared Distributed-Memory:

> Data spread over memories on multiple nodes

> Shared-Disk:

- > Array of disks connected over fast network
- > Scalability limited by contention, locking

> Share Nothing:

- > Scale horizontally over independent nodes with own CPU/RAM/disk
- > Coordinate at software layer

Distribution: Replication and Partitioning

How Data Gets Distributed Over Nodes

> Replication:

- > Keep a copy of same data on multiple nodes
- > Redundancy guards against node failure/unavailability
- > Might also improve performance

> Partitioning:

- > Break large data into smaller partitions
- > Assign partitions to separate nodes (sharding)

Replication

Replication: Challenges and Opportunities

What and Why?

- > **Replication**: keep copies of the same data on multiple nodes, connected via a network.
- > Why?
 - > Keep data near the user to reduce latency
 - > Keep system working even with failed nodes to increase availability
 - > To increase number of machines that can serve reads to increase read throughput

Replication: How Immutability Helps

Why can Immutability help?

- > *Immutability:* if replicated data doesn't change over time it is easier to:
 - > Maintain consistency
 - > Support concurrent access
- > Almost everything hard about replication involves handling *changes* to the replicated data.
- > There are several approaches to replicating data between nodes.

Replication: Leaders and Followers

One Approach: Leaders and Followers

- > Each node that stores a copy of a datum is a *replica*
- > Every write should eventually reach all desired replicas.
- > Common approach: **Leader and Follower**
 - > One replica designated a leader (or master or primary)
 - > Clients submit writes to the leader, which writes locally first
 - > Leader sends changes to the followers, which then update their local storage, applying writes *in same order* as at leader.
- > Sometimes have a long term designated leader; other times not.

Replication: Synchrony and Asynchrony

Leaders and Followers: Synchrony and Asynchrony

- > Terminology: Synchronous vs. Asynchronous Updates
 - > **Synchronous:** Don't report success until replicas updated.
 - > **Asynchronous:** May report success before some or all replicas are written.
 - > **Semi-synchronous:** some followers synchronous, others not.

Replication: Handling Failed Replicas

Leaders and Followers: Handling Failed Replicas

- > Handling Failed Replicas
 - > What if a leader fails? How do we tell and what do we do?
 - > Become unavailable?
 - > Decide on a new leader?
 - > What about stuff that was only on leader at failure time?
 - > What if new followers are added?
 - > How do they catch up?
- > Different systems do different things, sometimes it's configurable.

Replication: Consistency

Leaders and Followers: Consistency

- > We saw earlier that replication could lag at some nodes.
- > Result: consistency issues.
- > Consistency Levels
 - > **Read-After-Write:** i.e. "read your writes"
 - > Monotonic Reads: you can't see reads backward in time.
 - > **Consistent Prefix Reads:** if sequence of writes happens in a certain order, any reader sees them in the same order.

Replication: Multiple Leaders

Multi-Leader Replication

- > Single leader systems have downsides:
 - > Bottleneck for write throughput
 - > Single point of failure
- > Multi-leader lets writes be accepted at multiple nodes
- > Replication must still happen from leaders to followers
- > Multiple reasons to do it
- > Schemes can be complex
- > Other names: master-master, active/active replication

Replication: Multiple Leaders

Multi-Leader Replication: Use Cases

- > Multi-datacenter operation
 - > Replicas in multiple datacenters
 - > Leader(s) in each datacenter
- > Challenges:
 - > Between datacenters, latency may be high
 - > Failure may force datacenters to operate independently for a while
 - > Network conditions likely worse between DCs than within
 - > Handling write conflicts: many approaches with different pros-cons

Replication: Leaderless Replication

Leaderless Replication

- > Approach 1: Client sends write to several replicas.
- > Approach 2: A coordinator node replicates on behalf of the client
 - > Coordinator doesn't enforce a particular ordering of writes
 - > Coordinator may read from multiple replicas
 - > Related ideas: read-repair, hinted-handoff, anti-entropy.
 - > Quorum reading and writing: can trade off latency for consistency

Partitioning

Partitioning

Partitioning:

- > Break data into multiple chunks spread across nodes
- > Partitions sometimes called shards, regions, tablets, vnodes, vBuckets...
- > Once data is partitioned:
 - > It can be bigger than any single node could hold
 - > Computation can be independently executed on partitions
- > Partitioning is usually combined with replication

Partitioning: Handling Key-Value Data

Partitioning Key-Value Data

> Goal:

- > Spread out the data distribution and query load
- > Avoid imbalanced partitions and hot spots

> Schemes:

- > Partition by key range (bad if keys very non-uniform)
- > Partition by hashes of keys (good hash function required) then give each partition a range of hashes
 - > Lose efficient range queries unless we do extra work

Partitioning: Handling Key-Value Data

Hot Spots can Still Occur Naturally...

- > **e.g.** Imagine a social media site where there are celebrities and schmoes:
- > A celebrity may form a natural hot spot
- > Can use tricks, e.g.
 - > Figure out how many pieces a celebrity should be broken into...
 - > Augment their key with a piece number...
 - > ...then hash that.

Partitioning: Handling Key-Value Data

Rebalancing Partitions

- > Over a DB's lifetime things may change:
 - > Query throughput increases so we want more nodes
 - > Dataset size increases so we want more nodes
 - > Nodes fail so we want failover or replacement
- > All the above require data and queries to be rebalanced
- > Desiderata:
 - > After rebalancing things should be shared fairly
 - > While rebalancing system should remain available
 - > We should move as little data as possible

Partitioning

Rebalancing Partitions: Strategies

- > Bad Idea: hash(data) mod N
 - > We change N and everything has to move
- > Fixed Number of Partitions
 - > Fix a number of partitions, N, where N >> | nodes |
 - > If a node is added it can steal a few partitions from every existing node; leaving nodes can donate back.
 - > Only entire partitions move between nodes
 - > Can leave old assignment of partition in place while data is moving

Partitioning

Rebalancing Partitions: Strategies

> Dynamic Partitioning

- > Create partitions dynamically
- > When a partition gets too big, split it in halves
- > When a partition shrinks below threshold, merge with adjacent partitions
- > Each partition is assigned to a node
 - > Merges can happen locally
 - > Splits can overflow to other nodes to rebalance

Partitioning: Routing Requests

Request Routing

- > When a client requests data how does it know which node matters?
- > This is a *service discovery* problem with various approaches:
 - > 1. Let clients contact any node, forward requests and replies if they contacted the wrong node
 - > 2. Use a routing tier to direct clients to correct node
 - > 3. Force clients to be aware of where things are

Partitioning

Request Routing

- > How do we get queries to the correct destination node?
- > All participants must agree on:
 - > What is where?
 - > What is alive?
- > Many systems use a separate **coordination service** for this, e.g. Zookeeper in Kafka and HBase
- > Cassandra and its relatives use a **gossip protocol** among nodes to disseminate changes in cluster state

Transactions

Transactions

What and Why?

- > Historically, transactions simplify the programming model in the face of:
 - > Failures and crashes
 - > Updates may not get everywhere
 - > Updates may be incompletely applied at a node
 - > Concurrent accesses
 - > Readers may observe partial changes in progress
 - > Writes may collide and produce corrupt results
 - > Check and act operations may race
- > Common argument: "every programmer understands transactions, so let's just solve all our problems with them."
 - > No.

Transactions: Idea and Desiderata

Transaction: Notion and Properties

- > A *transaction* lets an application:
 - > Group multiple reads and writes...
 - > ...in a single logical unit...
 - > ...which either commits, or aborts.
- > Traditionally transactions were **ACID**:
 - > **Atomic**: all or nothing effects
 - > Consistent: never leave database in a corrupt state
 - > **Isolated**: concurrent TXNs *appear* to run serially
 - > **Durable**: a committed TXN's result is stored safely

Transactions: Scope of a Transaction

Single vs Multiple Object Operations

> Single Objects:

- > Atomicity and isolation are easier
- > e.g. one database row in an RDBMS; one JSON doc in a doc DB

> Multiple Objects:

- > Harder
- > May have to use distributed locks
- > Failure more likely and pernicious, latency worse
- > Many distributed datastore abandon multi-object transactions entirely
- > Scary Campfire Story: X/Open XA spec. for distributed transaction processing

Transactions: Isolation Levels

Isolation Levels

- > TXNs touching different data can safely run in parallel.
- > But, we may have problems, if two TXNs:
 - > Modify the same data, or...
 - > One reads data the other is modifying.
- > The 'I' in ACID is about hiding such problems.
- > There are different levels of isolation and:
 - > They are hard to understand
 - > Implemented inconsistently between databases.

Transactions: Serializability

Serializable Isolation: The Ideal

> The end result of transactions, even executing in parallel, is the same as if they had executed, one at a time, *serially*, without any concurrency.

> Thus:

- > If the transactions behave correctly run individually...
- > ...they continue to be correct if run concurrently.
- > The database prevents all possible race conditions.
- > So why not demand serializability always and everywhere?

Transactions: Serializability

Serializable Isolation: The Reality

- > Supporting Serializability is:
 - > Expensive
 - > Complex, especially with multi-node systems
- > Common Techniques to support Serializability:
 - > Literally execute transactions in serial order
 - > Two Phase Locking (only option for many years)
 - > Optimistic Concurrency Control

Transactions

Other Isolation Levels

- > If we don't want to pay for Serializability what can we do?
- > There are **weaker isolation levels**, but:
 - > Each doesn't guard against certain concurrency anomalies
 - > Your application will have to deal with the remainder, e.g. using explicit locking

> Isolation levels to read up on:

- > Read Committed
- > Snapshot Isolation / Repeatable Read

The Consensus Problem

- > **Consensus:** getting all nodes to agree on something.
- > Consensus is hard to do when there are:
 - > Network failures
 - > Process failures
- > Many problems are *reducible* to consensus:
 - > Leader election
 - > Atomic commit
 - > Total order broadcast
 - > Distributed locking
 - > Uniqueness constraint enforcement
 - > Membership/coordination service
- > Consensus mechanisms are complex and hard to implement

Consensus in Practical Systems

- > We don't have time to say much about Consensus here
- > Several Consensus algorithms exist:
 - > e.g. Paxos, Raft, Viewstamped Replication
- > There are systems that implement variations of it:
 - > As a service usable by other systems
 - > e.g. Zookeeper, Raft, Chubby, etcd, consul.
 - > That are used by some systems seen in this program (e.g. HDFS, HBase, Kafka...)
- > There's debate over whether it should be a service or a library

Zookeeper: An Example Consensus System

> Uses a protocol called Zookeeper Atomic Broadcast

> Deployed as a cluster of nodes (available when majority

up):

> Exposes hierarchical namespace:

Zookeeper: Exposed Abstractions

- > **ZNodes:** each can have associated...
 - > Children
 - > Small amounts of data: e.g. status, configuration, location
 - > Each node is read and written atomically
- > **Ephemeral znodes:** exist as long as client session that created them remains active.
- > **Sequence nodes:** monotonically increasing number appended to requested name.
- > Nodes can have **watches**, that are triggered on node changes, with client notified.

Zookeeper: Guarantees

- > **Sequential Consistency:** updates from a client will be applied in the order they were sent.
- > Atomicity: Updates are all or nothing.
- > **Single System Image:** client sees same view regardless of node it connects to.
- > Reliability: Updates survive until overwritten.
- > **Timeliness:** Client view of system guaranteed to be up to date within a certain time bound.

Summary:

- > Systems are distributed because we want things like:
 - > Scalability, fault tolerance, low latency
- > Distribution requires a system to grapple with:
 - > Replication
 - > Partitioning
 - > Transactions
 - > Consensus
- > Systems we studied:
 - > Take various approaches to dealing with the above challenges...
 - > ...yielding various quirks and compromises
- > Understanding why these things are the way they are makes them easier to deal with.

For Next Week: Project Presentations

- > Does there exist anybody who has not yet:
 - > Formed a team?
 - > Chosen a dataset?
 - > Got started?
- > We'll do presentations in class next week
 - > If we can't fit them all in, we may have to overflow to do some by Zoom at another time
- > Project work can continue for another week or two (until grades due) after next week

References

- > Designing Data-Intensive Applications, Kleppmann, Chapters 5—9
- > http://zookeeper.apache.org

Q&A

UNIVERSITY OF WASHINGTON

Studying at UW

> What defines the students and faculty of the University of Washington? Above all, it's our belief in possibility and our unshakable optimism. It's a connection to others, both near and far. It's a hunger that pushes us to tackle challenges and pursue progress. It's the conviction that together we can create a world of good. And it's our determination to Be Boundless. Join the journey at uw.edu.