2023 Vill. Mat A3 – 5. gyakorlat

(ZH gyakorlás)

1. Oldjuk meg az alábbi diffegyenleteket, kezdeti érték feladatokat!

a)
$$x^2y' = xy + y^2e^{-\frac{x}{y}}$$

b)
$$x + xy^2 = 4y', y(2) = -\frac{\pi}{4}$$

c)
$$(y-x)^2 = y', y(0) = -1$$

d)
$$\frac{1}{\ln(x+y)} = y' + 1$$
, $y(0) = -1$

2. Oldjuk meg az alábbi diffegyenleteket!

a)
$$(1-xy) + (xy-x^2)y' = 0$$

b)
$$\sinh x + 4ye^{xy} + (\cosh y + 4xe^{xy})y' = 0$$

3. Téjünk át ívhossz paraméterezésre!

a)
$$r(t) = (e^t \cos t, e^t \sin t, e^t),$$

b)
$$r(t) = (t, \cos t^2, t \sin t^2)$$

4. Határozzuk meg az alábbi vektormezők integrálját az adott görbe mentén!

a)
$$v(x,y,z) = (yz^2, xz^2, 2xyz), L: (1,1,0) \rightarrow (0,0,2)$$

b)
$$v(r) = \frac{k \times r}{|k \times r|^3}$$
, $r(t) = (R \cos t, R \sin t, 0)$, $0 \le t \le \pi$

5. Határozzuk meg az alábbi vektormezők integrálját az adott felület mentén!

- a) Számítsa ki a $v(x,y,z) = (-y^2,y^2,z)$ vektorfüggvény görbementi integrálját a (0,0,0), (2,0,0), (0,2,0) csúcsokkal rendelkező háromszög pozitívan irányított határára!
- b) Számítsa ki a $v(x,y,z) = (xy,-xy,z^2)$ vektorfüggvény görbementi integrálját az (1,0,0) pontból a (0,1,0) pontba menő szakasz esetén.

6. Határozzuk meg az alábbi vektormezők integrálját az adott felület mentén!

a)
$$v(x,y,z) = (y^2, z^4, x + 2z), H: x^2 + y^2 \le 4, 0 \le z \le 1$$
, kifelé irányítva a térfogatból

b)
$$v(r) = |r|^2 r$$
, $N: |r| \le R > 0$, $y, z \ge 0$, $\int_{\partial N} v dA = ?$

c) Számítsa ki a $v(x,y,z) = (3x + \sin y, x^2 + y^2, z)$ vektorfüggvény felületi integrálját a (0,0,3) csúcspontú, z = 0, $x^2 + y^2 \le 9$ feltételekkel adott alaplapú egyenes kúp kifelé irányított palástjára!