Экзаменационная программа по курсу «Введение в математический анализ», осенний семестр 2020–2021 учебного года

Содержание

1	2
2	5
3	10
4	12
5	15
6	17
7	20
8	22
9	27
10	29

1

Действительные числа

Дедекиндовы сечения

Сечение множества рациональных чисел $\mathbb{Q}(A_*, A^*)$ – разбиение \mathbb{Q} на два таких непустых множества A_* и A^* , таких, что:

- $A_* \cup A^* = \mathbb{Q}$
- $A_* \cap A^* = \emptyset$
- $\forall x \in A_*, \forall y \in A^* \longmapsto y > x$

Иррациональные числа

В сечении вида A A_* не имеет наибольшего элемента, а A^* имеет наименьший. В сечении вида B A_* имеет наибольший элемент, а A^* не имеет наименьшего. В сечении вида C A_* не имеет наибольшего элемента, а A^* не имеет наименьшего.

Иррациональным числом называется сечение вида (С).

Действительные числа

Действительным числом называется любое сечение множества $\mathbb Q$ вида $\widehat{(A)}$ или $\widehat{(C)}$.

Упорядоченность, плотность и непрерывность действительных чисел

Пусть
$$\alpha, \beta \in \mathbb{R}, \alpha = (A_*, A^*), \beta = (B_*, B^*)$$

 $\alpha = \beta$ если $A_* = B_*$

Предложение:

противоречие

Если $\alpha, \beta \in \mathbb{R}, \alpha \neq \beta$, то имеет место одно из включений: $A_* \subset B_*$ либо $A_* \supset B_*$

Доказательство: пусть $A_* \not\subset B_*$ и $A_* \not\supset B_*$

Тогда $\exists a \in \mathbb{Q}: a \in A_* \land a \notin B_* \implies a \in B^*$ и $\exists b \in \mathbb{Q}: b \notin A_* \land b \in B_* \implies b \in A^*$ так как $a \neq b$ $a \in A_*, b \in A^* \implies b > a$ $b \in B_*, a \in B^* \implies a > b$

Пусть
$$\alpha, \beta \in \mathbb{R}, \alpha = (A_*, A^*), \beta = (B_*, B^*)$$

 $\alpha < \beta$ если $A_* \neq B_* \wedge A_* \subset B_*$

Упорядоченность \mathbb{R} :

 $\forall \alpha, \beta \in \mathbb{R}$ имеет место либо $\alpha = \beta$, либо $\alpha < \beta$, либо $\alpha > \beta$. $\alpha = \beta, \beta = \gamma \implies \alpha = \gamma$ $\alpha < \beta, \beta < \gamma \implies \alpha < \gamma$

Плотность \mathbb{Q} в \mathbb{R} :

Пусть $\alpha, \beta \in \mathbb{R}, \alpha < \beta$, тогда $\exists c \in \mathbb{Q} : \alpha < c < \beta$

Доказательство: $\alpha < \beta \implies A_* \subset B_* \implies \exists c \in \mathbb{Q} : c \in B_* \land c \notin A_*.$

Так как в нижнем классе нет наибольшего элемента, $\alpha \leq c < \beta$. Если $\alpha \in \mathbb{I}$, то $c \neq \alpha \implies \alpha < c < \beta$. Если $\alpha \in \mathbb{Q}$, то можно взять $c \in B_* : c > \alpha$.

Сечение множества действительных чисел \mathbb{R} (\mathcal{A}_* , \mathcal{A}^*) – разбиение \mathbb{Q} на два таких непустых множества \mathcal{A}_* и \mathcal{A}^* , таких, что:

- $\mathcal{A}_* \cup \mathcal{A}^* = \mathbb{R}$
- $\mathcal{A}_* \cap \mathcal{A}^* = \emptyset$
- $\forall x \in \mathcal{A}_*, \forall y \in \mathcal{A}^* \longmapsto y > x$

Теорема Дедекинда:

Среди сечений множества \mathbb{R} сечений вида $\widehat{\mathbb{C}}$) нет \implies непрерывность \mathbb{R} .

Десятичные дроби

Пусть числу $\alpha \in \mathbb{R}$ соответствует сечение $(\mathcal{A}_*; \mathcal{A}^*)$. За a_0 обозначим наибольшее целое число из \mathcal{A}_* . Отрезок $[a_0; a_0+1]$ поделим на 10 отрезков одинаковой длины и выберем среди них тот, который содержит α : $\alpha \in [a_0+\frac{a_1}{10}; a_0+\frac{a_1+1}{10}]$. На шаге n $\alpha \in [a_0+\frac{a_1}{10}+...+\frac{a_n}{10}; a_0+\frac{a_1}{10}+...+\frac{a_n+1}{10}]$. Бесконечную десятичную дробь $a_0, a_1a_2...a_n$... можно считать представлением действительного числа α . Заметим, что если α можно представить как $\frac{p}{10^n}, p \in \mathbb{Z}, n \in \mathbb{N}$, (то есть α – сократимая десятичная дробь) то α соответствуют две десятичные дроби: $a_0, a_1a_2...a_n000...$ и $a_0, a_1a_2...(a_n-1)999...$.

Теорема о существовании и единственности точной верхней (нижней) грани числового множества, ограниченного сверху (снизу)

Множество X ограничено сверху, если $\exists C \in \mathbb{R} : \forall x \in X \longmapsto x \leq C$

Число M называется верхней гранью множества X, если $\forall x \in X \longmapsto x \leq M$

Число $\alpha=\sup X$ называется точной верхней гранью множества X, если $\forall x\in X\longmapsto x\leq \alpha\wedge\forall\alpha'\exists x\in X:x>\alpha'.$

Лемма: если множество $X \subset \mathbb{R}$ имеет наибольший элемент $M = \max X$, то $M = \sup X$.

Доказательство: так как M — наибольший элемент X, то все остальные элементы X меньше M и не являются верхней гранью X, так как $M \in X$ и M > x. Следовательно, M — точная верхняя грань X.

Теорема: для ограниченного сверху множества $X \subset \mathbb{R}$ существует единственная точная верхняя грань.

Доказательство: если в X есть наибольший элемент, то α равно ему. Есть в X наибольшего элемента нет, то построим сечение $(\mathcal{A}_*, \mathcal{A}^*)$, такое, что в \mathcal{A}^* содержатся все верхние грани X, а в \mathcal{A}_* – все остальные числа, при этом множество \mathcal{A}^* не пусто, так как X ограничено сверху, а $X \subset \mathcal{A}_*$, так как если элемент из $X \in \mathcal{A}^*$, то он является максимальным. По теореме Дедекинда, если либо больший элемент в \mathcal{A}_* , либо меньший в \mathcal{A}^* . Если в \mathcal{A}_* есть наибольший элемент, то он является верхней гранью X – противоречие. Следовательно есть наименьший элемент в \mathcal{A}^* , который по определению является точной верхней гранью X.

Теперь докажем единственность точной верхней грани. Пусть α, α' – точные верхние грани множества $X, \alpha' < \alpha$. Так как α – точная верхняя грань, $\forall \beta < \alpha \exists x \in X : x > \beta \implies \exists x' \in X : x' > \alpha' \implies \alpha' \neq \sup X$.

Счетность множества рациональных чисел

Докажем счетность множества полжительных рациональных чисел.

Пусть $H \geq 2 \in \mathbb{N}$. Рассмотрим все взаимно простые пары чисел $p,q \in N$, такие что p+q=H, и соответствующие им рациональные числа. Понятно, что таких пар конечное число, и таким образом представляется любое рациональное число.

Теперь расставим соответствующие каждому H рациональные числа по порядку и пронумеруем их:

$$\frac{1}{1}, \frac{1}{2}, \frac{2}{1}, \frac{1}{3}, \frac{3}{1}, \frac{1}{4}, \frac{2}{3}, \frac{3}{2}, \frac{4}{1}, \dots$$

Так как множество положительных рациональных чисел счетно, то и аналогичным образом счетно множество отрицательных рациональных чисел, а их объединение в объединении вместе с конечным множетсвом, состоящим из 0, так же счетно и является \mathbb{R} .

Несчетность множества действительных чисел

Если подмножество множества несчетно, то и само оно несчетно.

Рассмотрим числа на интервале (0; 1), представленные в виде десятичных дробей:

$$\alpha_1 = 0, a_1^1 a_2^1 \dots a_n^1 \dots$$

 $\alpha_2 = 0, a_1^2 a_2^2 \dots a_n^2 \dots$

. . .

$$\alpha_k = 0, a_1^k a_2^k \dots a_n^k \dots$$

. . .

Допустим, что подмножество (0;1) счетно.

Построим число γ такое, что $\gamma=0, c_1c_2...c_n...; c_i\neq a_i^i, c_i\neq 9.$ γ не равно ни одному из a_i , что противоречит тому, что (0;1) счетно. Следовательно, само множество действительных чисел также счетно.

Бесконечно малые и бесконечно большие последовательности и их свойства

Последовательность $\{x_n\}$ называется бесконечно большой, если:

$$\forall M > 0 \exists N = N(M) : \forall n > N \longmapsto |x_n| > M$$

Последовательность $\{x_n\}$ называется бесконечно малой, если:

$$\forall \varepsilon > 0 \exists N = N(\varepsilon) : \forall n \ge N \longmapsto |x_n| < \varepsilon$$

Теорема: сумма двух бесконечно маллых последовательностей также является бесконечно малой. **Доказательство:** пусть последовательности $\{x_n\}$ и $\{y_n\}$ – бесконечно малые:

$$\forall \varepsilon > 0 \exists N_x = N_x(\varepsilon) : \forall n \ge N_x \longmapsto |x_n| < \frac{\varepsilon}{2}$$

$$\forall \varepsilon > 0 \exists N_y = N_y(\varepsilon) : \forall n \ge N_y \longmapsto |y_n| < \frac{\varepsilon}{2}$$

$$\forall \varepsilon > 0 \exists N = \max(N_x(\varepsilon), N_y(\varepsilon)) : \forall n \ge N \longmapsto |x_n| < \frac{\varepsilon}{2} \land |y_n| < \frac{\varepsilon}{2}$$

$$|x_n + y_n| \le |x_n| + |y_n| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

следовательно, $\{x_n\} + \{y_n\}$ – также бесконечно малая последовательность.

Теорема: бесконечно малая последовательность ограничена.

Доказательство: пусть последовательность $\{x_n\}$ – бесконечно малая:

$$\forall \varepsilon > 0 \exists N = N(\varepsilon) : \forall n \geq N \longmapsto |x_n| < \varepsilon$$

Возьмем произвольное ε_0 . Тогда $\forall n \geq N(\varepsilon_0) \longmapsto |x_n| < \varepsilon_0$. Выберем среди первых $N(\varepsilon_0)$ членов последовательности максимальный по модулю и обозначим его модуль за ε_1 . Тогда $\forall x: 1 \leq x \leq N(\varepsilon_0) \longmapsto |x_n| \leq \varepsilon_1$. Следовательно, $\forall n \in \mathbb{N} \longmapsto |x_n| \leq \varepsilon = \max(\varepsilon_0, \varepsilon_1) \Longrightarrow \{x_n\}$ ограничена.

Теорема: произведение бесконечно малой и ограниченной последовательностей – бесконечно малая последовательность.

Доказательство: пусть $\{x_n\}$ – ограниченная последовательность, $\{y_n\}$ – бесконечно малая:

$$\exists C > 0 : \forall n \longmapsto |x_n| \le C$$

$$\forall \varepsilon > 0 \exists N = N(\varepsilon) : \forall n \ge N \longmapsto |y_n| < \frac{\varepsilon}{C}$$

$$\forall \varepsilon > 0 \exists N = N(\varepsilon) : \forall n \ge N \longmapsto |x_n y_n| \le C|y_n| < \varepsilon$$

Теорема: произведение двух бесконечно малых последовательностей – бесконечно малая последовательность.

Доказательство: Любая бесконечно малая последовательность ограничена, следовательно про-

изведение двух бесконечно малых последовательностей – бесконечно малая, как и произведение бесконечно малой и ограниченной.

Теорема: если все члены бесконечно малой последовательности с какого-то номера равны γ , то $\gamma=0$.

Доказательство: пусть $\gamma \neq 0$. Последовательность $\{x_n\}$ бесконечно мала, возьмем $\varepsilon_0 = |\gamma|$ и проверим для него условие:

$$\exists N = N(\gamma) : \forall n \ge N \longmapsto |\gamma| < |\gamma|$$

получается противоречие.

Теорема: если последовательность $\{x_n\}$ – бесконечно большая, то с какого-то номера определена бесконечно малая последовательность $\{y_n\} = \{\frac{1}{x_n}\}.$

Доказательство: так как $\{x_n\}$ – бесконечно большая:

$$\forall M > 0 \exists N = N(M) : \forall n \ge N \longmapsto |x_n| > \frac{1}{M} \implies \frac{1}{|x_n|} < M$$

Следовательно $\{y_n\}$ – бесконечно малая.

Теорема: если последовательность $\{x_n\}$ – ограниченная, а $\{y_n\}$ – бесконечно большая, то с какогото номера определена бесконечно малая последовательность $\{z_n\} = \{\frac{x_n}{y_n}\}$.

Доказательство: так как $\{y_n\}$ – бесконечно большая, $\{y'_n\}$, где $y'_n = \frac{1}{y_n}$, – бесконечно малая. Тогда $\{z_n\}$ – бесконечно малая как произведение бесконечно малой и ограниченной.

Теорема: если последовательность $\{|x_n|\}$ ограничена снизу c>0, а $\{y_n\}$ – бесконечно малая и $y_n\neq 0 \forall n$, то $\{z_n\}=\{\frac{x_n}{y_n}\}$ – бесконечно большая.

Доказательство: так как $\{y_n\}$ – бесконечно малая:

$$\forall \varepsilon > 0 \exists N = N(\varepsilon) : \forall n \ge N \longmapsto |y_n| < \frac{1}{\varepsilon} \implies \frac{1}{|y_n|} > \varepsilon$$

Следовательно $\{y_n\}$ – бесконечно большая. $|x_ny_n| > C|y_n| > \varepsilon$, следовательно $\{z_n\}$ – бесконечно большая.

Предел числовой последовательности

Последовательность $\{x_n\}$ сходится к a, если последовательность $\{y_n\}$, где $y_n = x_n - a$, бесконечно мала.

Число $a = \lim_{x \to \infty} x_n$ называется пределом последовательности $\{x_n\}$, если:

$$\forall \varepsilon > 0 \exists N = N(\varepsilon) : \forall n \ge N \longmapsto |x_n - a| < \varepsilon$$

Единственность предела

Доказательство: пусть a_1 – предел последовательности $\{x_n\}$ и a_2 – предел $\{x_n\}$. Тогда:

$$\forall \varepsilon > 0 \exists N_1 = N_1(\varepsilon) : \forall n \geq N_1 \longmapsto |x_n - a_1| < \varepsilon$$

$$\forall \varepsilon > 0 \exists N_2 = N_2(\varepsilon) : \forall n \ge N_2 \longmapsto |x_n - a_2| < \varepsilon$$

$$\forall \varepsilon > 0 \exists N = \max(N_1(\varepsilon), N_2(\varepsilon)) : \forall n \ge N \longmapsto x_n \in (a_1 - \varepsilon; a_1 + \varepsilon) \cap (a_2 - \varepsilon; a_2 + \varepsilon)$$

При $\varepsilon \leq \frac{a_1+a_2}{2} \ (a_1-\varepsilon;a_1+\varepsilon) \cap (a_2-\varepsilon;a_2+\varepsilon) = \varnothing$ – противоречие.

Арифметические операции со сходящимися последовательностями

Теорема: если последовательность $\{x_n\}$ сходится к a, а $\{y_n\}$ – к b, то их сумма $\{z_n\} = \{x_n\} + \{y_n\}$ сходится к a+b.

Доказательство: $x_n = a_n + a$, $y_n = b_n + b$, где $\{a_n\}$ и $\{b_n\}$ – бесконечно малые последовательности. Последовательность $\{c_n\}$, где $c_n = x_n - a + y_n - b = a_n + b_n$, – бесконечно мала, следовательно a + b – предел $\{z_n\}$

Теорема: если последовательность $\{x_n\}$ сходится к a, а $\{y_n\}$ – к b, то их произведение $\{z_n\}$ = $\{x_n\} \cdot \{y_n\}$ сходится к ab.

Доказательство: $x_n = a_n + a$, $y_n = b_n + b$, где $\{a_n\}$ и $\{b_n\}$ – бесконечно малые последовательности. Последовательность $\{c_n\}$, где $c_n = x_n y_n - ab = (a_n + a)(b_n + b) - ab = a_n b_n + ba_n + ab_n$, – бесконечно мала, следовательно ab – предел $\{z_n\}$

Теорема: если последовательность $\{x_n\}$ сходится к a, а $\{y_n\}$ – к $b \neq 0$, то с какого-то номера определена последовательность их частного $\{z_n\} = \frac{\{x_n\}}{\{y_n\}}$, которая сходится к $\frac{a}{b}$.

Доказательство: $x_n = a_n + a, y_n = b_n + b,$ где $\{a_n\}$ и $\{b_n\}$ – бесконечно малые последовательности. Докажем сначала существование $\{z_n\}$. Пусть $\varepsilon_0 = \frac{|b|}{2}$.

$$\exists N = N(\varepsilon_0) : \forall n \ge N \longmapsto |y_n - b| < \frac{|b|}{2}$$
$$\frac{|b|}{2} < y_n < \frac{3|b|}{2}$$
$$\frac{1}{y_n} < \frac{2}{|b|}$$

Видно, что $\{y_n\}$ с $N(\varepsilon_0)$ не равна 0, и что последовательность $\{\frac{1}{y_n}\}$ ограничена. Последовательность $\{c_n\}$, где $c_n=\frac{x_n}{y_n}-\frac{a}{b}=\frac{a_n+a}{b_n+b}-\frac{a}{b}=\frac{ba_n+ab-ab-ab_n}{b(b_n+b)}=\frac{1}{b_n+b}(a_n-\frac{a}{b}b_n)$, – бесконечно мала как произведение ограниченной и бесконечно малой, следовательно $\frac{a}{b}$ – предел $\{z_n\}$

Свойства пределов, связанные с неравенствами

Теорема: Если для последовательности $\{x_n\}$ $\exists n_0 \in \mathbb{N}, b \in \mathbb{R} : \forall n \geq n_0 \longmapsto x_n \geq b \land \exists \lim_{n \to \infty} x_n = a,$ то $a \geq b$.

Доказательство: Пусть a < b:

$$\varepsilon_0 = b - a$$

$$\exists n_1 = n_1(\varepsilon_0) \ge n_0 : \forall n \ge n_1 \longmapsto |x_n - a| < b - a$$

$$x_n - a < b - a$$

$$x_n < b$$

что противоречит тому, что $x_n \ge b$

Теорема: Если для последовательностей $\{x_n\}$ и $\{y_n\}$ $\exists n_0: \forall n \geq n_0 \longmapsto x_n \geq y_n \land \exists \lim_{n \to \infty} x_n = a \land \exists \lim_{n \to \infty} y_n = b$, то $a \geq b$.

Доказательство: Пусть a < b:

$$\varepsilon_0 = \frac{b-a}{2}$$

$$\exists n_1 = n_1(\varepsilon_0) \ge n_0 : \forall n \ge n_1 \longmapsto |x_n - a| < \frac{b-a}{2}$$

$$\exists n_2 = n_2(\varepsilon_0) \ge n_0 : \forall n \ge n_2 \longmapsto |y_n - b| < \frac{b-a}{2}$$

$$x_n < a + \frac{b-a}{2} = \frac{b+a}{2}$$

$$b - \frac{b-a}{2} = \frac{b+a}{2} < y_n$$

$$x_n < y_n$$

что противоречит тому, что $x_n \ge y_n$

Теорема: Если для последовательностей $\{x_n\}$, $\{y_n\}$ и $\{z_n\}$ то $\exists \lim_{n\to\infty} z_n = a$. $\exists n_0 : \forall n \geq n_0 \longmapsto \land \exists \lim_{n\to\infty} x_n = \lim_{n\to\infty} y_n = a$,

Доказательство:

$$\begin{aligned} x_n - a &\geq y_n - a \geq z_n - a \\ |y_n - a| &\leq \max(|x_n - a|, |z_n - a|) \\ \forall \varepsilon &> 0 \exists N_1 = N_1(\varepsilon_0) : \forall n \geq N_1 \longmapsto |x_n - a| < \varepsilon \\ \forall \varepsilon &> 0 \exists N_2 = N_2(\varepsilon_0) : \forall n \geq N_2 \longmapsto |z_n - a| < \varepsilon \\ \forall \varepsilon &> 0 \exists N = \max(N_1(\varepsilon_0), N_2(\varepsilon_0)) : \forall n \geq N_2 \longmapsto |y_n - a| < \varepsilon \end{aligned}$$

Теорема Вейерштрасса о пределе монотонной ограниченной последовательности

Теорема: Если последовательность $\{x_n\}$ ограничена и монотонна, то она сходится к своей точной верхней грани (если она неубывает или возрастает), или к своей точной нижней грани (если она невозрастает или убывает).

Доказательство: пусть $\{x_n\}$ возрастает.

$$a = \sup\{x_n\} \implies \forall \varepsilon \exists N = N(\varepsilon) : x_N > a - \varepsilon$$

$$0 < a - x_N < \varepsilon$$

так как $\{x_n\}$ возрастает

$$\forall n > N \longmapsto x_n > x_N \implies 0 < a - x_n < a - x_N < \varepsilon$$

следовательно $\{x_n\}$ сходится к $a = \sup\{x_n\}$.

Теорема Кантора о вложенных отрезках

Системой стягивающихся отрезков называют последовательность $\{[a_n;b_n]\}$, если:

- $\forall n \longmapsto [a_{n+1}; b_{n+1}] \subseteq [a_n; b_n]$
- $\lim_{n\to\infty} (b_n a_n) = 0$

Теорема: система стягивающихся отрезков имеет единственную точку, принадлежащую им всем. **Доказательство:** $\{a_n\}$, $\{b_n\}$ ограничены и монотонны, следовательно $\exists c = \sup\{a_n\} = \inf\{b_n\}$. Пусть $\exists c' > c : c' \in [a_n; b_n] \forall n$. Тогда $\forall nb_n - a_n \geq c' - c > 0 \implies \lim_{n \to \infty} (b_n - a_n) > 0$, что противоречит тому, что $\lim_{n \to \infty} (b_n - a_n) = 0$.

Число e

Теорема: число $e = \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n$

Доказательство:

$$x_n = 1 + n\frac{1}{n} + \frac{n(n-1)}{2!}\frac{1}{n^2} + \dots + \frac{n(n-1)\dots(n-(n-1))}{n!}\frac{1}{n^n}$$

$$x_n = 1 + 1 + \frac{1}{2!}\left(1 - \frac{1}{n}\right) + \dots + \frac{1}{n!}\left(1 - \frac{1}{n}\right)\left(1 - \frac{2}{n}\right)\dots\left(1 - \frac{n-1}{n}\right)$$

$$x_{n+1} = 1 + 1 + \frac{1}{2!}\left(1 - \frac{1}{n+1}\right) + \dots + \frac{1}{(n+1)!}\left(1 - \frac{1}{n+1}\right)\left(1 - \frac{2}{n+1}\right)\dots\left(1 - \frac{n}{n+1}\right)$$

$$x_{n+1} > x_n$$

$$\frac{1}{n!} < \frac{1}{2^{n-1}}$$

$$x_n \le 2 + \frac{1}{2!} + \dots + \frac{1}{n!} \le 2 + \frac{1}{2} + \dots + \frac{1}{2^{n-1}} = 2 + 1 - \frac{1}{2^{n-1}} < 3$$

Последовательность монотонно возрастает и ограничена, следовательно $\exists \lim_{n \to \infty} \{x_n\} = e.$

Подпоследовательности, частичные пределы

Подпоследовательности

Пусть $\{x_n\}$ — произвольная последовательность, $\{k_n\}$ — возрастающая последовательность из натуральных чисел. Тогда $\{x_{k_n}\}$ называется подпоследовательностью $\{x_n\}$.

Частичные пределы

Если $\{x_{k_n}\}$ сходится к a, то a – частичный предел $\{x_n\}$.

Теорема Больцано-Вейерштрасса

Теорема: если последовательность $\{x_n\}$ ограничена, то у нее есть сходящаяся последовательность $\{x_{k_n}\}$.

Доказательство: Так как $\{x_n\}$ ограничена, $\exists \alpha, \beta : \alpha \leq x_n \leq \beta \forall n$. На отрезке $[\alpha; \beta]$ лежит бесконечное колличество членов последовательности. Выберем такой отрезок $[\alpha_1; \beta_1]$, на котором лежит бесконечное колличество членов последовательности и для которого $\beta_1 - \alpha_1 = \frac{\beta - \alpha}{2}$. На шаге n имеем $\beta_n - \alpha_n = \frac{\beta_{n-1} - \alpha_{n-1}}{2}$.

$$\lim_{n \to \infty} (b_n - a_n) = \lim_{n \to \infty} (b - a) \frac{1}{2^n} = 0$$
$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n = \gamma$$

Выберем x_{k_1} такое, что $x_{k_1} \in [a_1;b_1]$. Выберем x_{k_2} такое, что $x_{k_2} \in [a_2;b_2]$ и $k_2 > k_1$. Такое k_2 существует, потому что если не учитывать все элементы последовательности, чей номер меньше или равен k_1 , на $[a_2;b_2]$ все равно лежит бесконечное колличество членов $\{x_n\}$. На шаге n выбираем x_{k_n} такое, что $x_{k_n} \in [a_n;b_n]$ и $k_n > k_{n-1}$.

$$a_n \le x_{k_n} \le b_n$$

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n = \gamma \implies \lim_{n \to \infty} x_{k_n} = \gamma$$

Критерий Коши существования конечного предела последовательности

Фундаментальная последовательность

Если для последовательности $\{x_n\}$ выполняется следующее условие:

$$\forall \varepsilon > 0 \exists N = N(\varepsilon) : \forall n, m \ge N \longmapsto |x_n - x_m| < \varepsilon$$

то она называется фундаментальной.

Критерий Коши

Теорема: чтобы у последовательности $\{x_n\}$ существовал конечный предел, необходимо и достаточно, чтобы она была фундаментальной.

Доказательство:

Необходимость: пусть $\lim_{n\to\infty} x_n = a$. Тогда:

$$\forall \varepsilon > 0 \exists N = N(\varepsilon) : \forall n, m \ge N \longmapsto |x_n - a| < \frac{\varepsilon}{2} \land |x_m - a| < \frac{\varepsilon}{2}$$

$$\frac{-\varepsilon}{2} < x_n - a < \frac{\varepsilon}{2}$$

$$\frac{-\varepsilon}{2} < a - x_m < \frac{\varepsilon}{2}$$

$$-\varepsilon < x_n - x_m < \varepsilon$$

$$|x_n - x_m| < \varepsilon$$

следовательно, $\{x_n\}$ – фундаментальная.

Достаточность: если $\{x_n\}$ фундаментальная, то она ограничена, следовательно у нее есть подпоследовательность $\{x_{k_n}\}$, сходящаяся к a:

$$\forall \varepsilon > 0 \exists N_1 = N_1(\varepsilon) : \forall n \ge N_1 \longmapsto |x_{k_n} - a| < \frac{\varepsilon}{2}$$

Так как $\{x_n\}$ фундаментальная:

$$\forall \varepsilon > 0 \exists N_2 = N_2(\varepsilon) : \forall n, m \ge N_2 \longmapsto |x_n - x_m| < \frac{\varepsilon}{2}$$

 $\forall \varepsilon>0 \exists N=\max(N_1(\varepsilon),N_2(\varepsilon)): \forall n\geq N \longmapsto |x_n-a|=|x_n-x_{k_N}+x_{k_N}-a|\leq |x_n-x_{k_N}|+|x_{k_N}-a|<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon$ следовательно, $\{x_n\}$ сходится к a.

Определения предела функции в терминах окрестностей и в терминах последовательностей, их эквивалентность

Далее подразумевается, что функция f(x) определена в некой выколотой Δ окрестности точки x_0 : $X = \{x : 0 < |x - x_0| < \Delta\}.$

Предел функции в точке по Коши

Число $a = \lim_{x \to x_0} f(x)$ называется пределом функции f(x) в точке x_0 , если:

$$\forall \varepsilon > 0 \exists \delta = \delta(\varepsilon) > 0 : \forall x \in X : 0 < |x - x_0| < \delta \longmapsto |f(x) - f(x_0)| < \varepsilon$$

Предел функции а точке по Гейне

Последовательностью Гейне назовем сходящуюся к x_0 последовательность $\{x_n\}$, где $x_n \neq x_0$. Число a называется пределом функции в точке x_0 , если для произвольной сходящейся к x_0 последовательности Гейне с какого-то n_0 определена $f(x_n)$, и $\lim_{n\to\infty} f(x_n) = a$

Эквивалентность определений предела по Коши и по Гейне

Теорема: определения предела функции в точке по Коши и по Гейне эквивалентны.

Доказательство:

Пусть a – предел функции в точке x_0 по Коши:

$$\forall \varepsilon > 0 \exists \delta = \delta(\varepsilon) : \forall x \in X : 0 < |x_n - x_0| < \delta$$

Для любой последовательности Гейне, сходящейся к x_0 , найдется $N=N(\delta)=N(\varepsilon): \forall n\geq N \mapsto 0<|x_n-x_0|<\delta \implies |f(x_n)-a|<\varepsilon \implies \lim_{n\to\infty}f(x_n)=a.$ $f(x_n)$ сходится к a для произвольной последовательности Гейне, следовательно a – предел f(x) в точке x_0 по Гейне.

Пусть a – предел функции в точке x_0 по Гейне, а по Коши он не равен a:

$$\exists \varepsilon_0 > 0 : \forall \delta > 0 \exists x_\delta : 0 < |x_\delta - x_0| < \delta \longmapsto |f(x_\delta) - a| \ge \varepsilon_0$$

$$\delta_n = \frac{1}{n} > 0 \implies \exists x_n : 0 < |x_n - x_0| < \delta_n \longmapsto |f(x_n) - a| \ge \varepsilon_0$$

То есть существует такая сходящаяся к x_0 последовательность Гейне $\{x_n\}$, для которой $\{f(x_n)\}$ не сходится к a, что противоречит тому, что a – предел по Гейне.

Свойства пределов функции

Вытекают из свойств предела последовательностей и применения определения предела функции по Гейне.

Критерий Коши существования конечного предела функции

Функция f(x) удовлетворяет условию Коши в точке x_0 , если:

$$\forall \varepsilon > 0 \exists \delta = \delta(\varepsilon) : \forall x_1, x_2 \in X : 0 < |x_1 - x_0| < \delta \land 0 < |x_2 - x_0| < \delta \longmapsto |f(x_1) - f(x_2)| < \varepsilon$$

Теорема: для того, чтобы функция f(x) в имела конечный предел в точке x_0 , необходимо и достаточно, чтобы она удовлетворяла условию Коши в точке x_0 .

Доказательство:

Необходимость: пусть $a = \lim_{x \to x_0} f(x)$:

$$\forall \varepsilon > 0 \exists \delta = \delta(\varepsilon) > 0 : \forall x_1, x_2 \in X : 0 < |x_1 - x_0| < \delta \land 0 < |x_2 - x_0| < \delta \longmapsto |(f(x_1) - f(x_0))| < \frac{\varepsilon}{2} \land |(f(x_0) - f(x_2))| < \frac{\varepsilon}{2}$$

$$-\frac{\varepsilon}{2} < f(x_1) - f(x_2) < \frac{\varepsilon}{2}$$

$$-\varepsilon < f(x_1) - f(x_2) < \varepsilon$$

$$|f(x_1) - f(x_2)| < \varepsilon$$

следовательно, f(x) удовлетворяет условию Коши в точке x_0 .

Достаточность: пусть f(x) удовлетворяет условию Коши в точке x_0 :

$$\forall \varepsilon > 0 \exists \delta = \delta(\varepsilon) : \forall x_1, x_2 \in X : 0 < |x_1 - x_0| < \delta \land 0 < |x_2 - x_0| < \delta \longmapsto |f(x_1) - f(x_2)| < \varepsilon$$

Возьмем произвольную сходящуюся к x_0 последовательность Гейне.

$$\forall \delta \exists N = N(\delta) = N(\varepsilon) : \forall n, m \ge N \longmapsto 0 < |x_n - x_0| < \delta \land 0 < |x_m - x_0| < \delta \longmapsto |f(x_n) - f(x_m)| < \varepsilon$$

Следовательно $\{f(x_n)\}$ фундаментальна и сходится к некому a.

Покажем, что $\{f(x_n)\}$ сходится к одному a вне зависимости от выбора последовательности Гейне $\{x_n\}$.

Пусть $\{x'_n\}$ и $\{x''_n\}$ сходятся к x_0 , $\{f(x'_n)\}$ сходится к a', $\{f(x''_n)\}$ сходится к a''. Построим новую последовательность Гейне $\{\bar{x}_n\} = \{x'_1, x''_1, x'_2, x''_2, ..., x'_n, x''_n, ...\}$. $\{f(\bar{x}_n)\}$ — фундаментальная, значит она сходится к \bar{a} . Раз $\{f(\bar{x}_n)\}$ сходится к \bar{a} , значит $\{f(x'_n)\}$ и a', $\{f(x''_n)\}$ сходятся к \bar{a} , $\bar{a} = a' = a''$. Следовательно \bar{a} — предел f(x) в точке x_0 по Гейне.

Предел сложной функции

Пусть функция f(x) определена в выколотой Δ_1 окрестности точки x_0 : $X = \{x : 0 < |x - x_0| < \Delta_1\}$, а функция g(x) определена в выколотой Δ_2 окрестности точки y_0 : $Y = \{y : 0 < |y - y_0| < \Delta_2\}$, $f(X) \subseteq Y$.

Теорема: Если предел функции f(x) в точке x_0 равен y_0 , сама f(x) на X не принимает значения y_0 , предел функции g(y) в точке y_0 равен a, то предел функции h(x) = g(f(x)) в точке x_0 равен a. Доказательство:

Для произвольной сходящейся к x_0 последовательности Гейне $\{x_n\}$ $\{f(x_n)\}$ является сходящейся к y_0 последовательностью Гейне. Следовательно, $\{g(f(x_n))\} = \{h(x_n)\}$ сходится к a, a – предел в точке x_0 функции h(x) про Гейне.

Существование односторонних пределов у монотонных функций

Теорема: если f(x) определена и монотонна на (a;b), то $\forall x_0 \in (a;b) \exists f(x_0-0) \land \exists f(x_0+0)$. Если f(x) неубывает или возрастает на (a;b), то $f(x_0-0) \leq f(x_0) \leq f(x_0+0)$. Если f(x) невозрастает или убывает на (a;b), то $f(x_0-0) \geq f(x_0) \geq f(x_0+0)$.

Доказательство: пусть f(x) возрастает на (a;b). Докажем существование $f(x-0) \forall x$:

$$\forall x_0 \in (a; b) \forall x \in (a; x_0) \longmapsto f(x) < f(x_0) \implies \exists \sup_{(a; x_0)} f(x) = \alpha \le f(x_0)$$

$$\forall \varepsilon \exists x_\varepsilon \in (a; x_0) : f(x_\varepsilon) > \alpha - \varepsilon$$

$$\delta = \delta(\varepsilon) = x_0 - x_\varepsilon > 0$$

$$\forall x : 0 < x_0 - x < \delta \longmapsto \alpha - \varepsilon < f(x) \le \alpha$$

$$\alpha - \varepsilon < f(x) < \alpha + \varepsilon$$

$$|f(x) - \alpha| < \varepsilon$$

$$f(x_0 - 0) = \alpha$$

существование $f(x+0) \forall x$ доказывается аналогичным образом.

Непрерывность функции в точке

Функция f(x) называет непрерывной в точке x_0 , если

$$\lim_{x \to x_0} f(x) = f(x_0)$$

Свойства функций, непрерывных в точке

Теорема: если функции f(x) и g(x) непрерывны в точке x_0 , то функции f(x) + g(x) и f(x)g(x) тоже непрерывны в x_0 . Если $g(x_0) \neq 0$, то функция $\frac{f(x)}{g(x)}$ непрерывна в точке x_0 . Доказательство: Следует из свойств арифметических операций с пределами.

Теорема: если функция f(x) определена и непрерывна в точке x_0 , то существует такая δ -окрестность точки x_0 , в пределах которой f(x) сохраняет свой знак.

Функцию $\Delta y(x_0, \Delta x)$ в точке x_0 определим как $f(x_0 + \Delta x) - f(x_0)$.

Теорема: если функция f(x) непрерывна в точке x_0 , то $\lim_{\Delta x \to 0} \Delta y(x_0, \Delta x) = 0$.

Односторонняя непрерывность

Функция f(x) называет одностоние непрерывной в точке x_0 , если

$$\lim_{x \to x_0 \pm 0} f(x) = f(x_0)$$

Непрерывность сложной функции

Теорема: если функция f(x) непрерывна в точке x_0 , а функция g(y) непрерывна в точке $y_0 = f(x_0)$, то функция $h(x) = g(f(x_0))$ непрерывна в точке x_0 .

Доказательство: по теореме о переходе к пределу под знаком непрерывной функции $\lim_{x\to x_0} g(f(x)) = g(y_0) = g(f(x_0))$.

Теорема о переходе к пределу под знаком непрерывной функции

Теорема: если предел функции f(x) точке x_0 равен y_0 , а функция g(y) непрерывна в точке $y_0 = f(x_0)$, то $\lim_{x \to x_0} g(f(x)) = g(\lim_{x \to x_0} f(x))$.

Доказательство: возьмем сходящуюся к x_0 последовательность Гейне $\{x_n\}$, тогда последовательность $\{y_n\} = \{f(x_n)\}$ сходится к y_0 . Последовательность $\{g(y_n)\}$ сходится к $g(y_0) = g(\lim_{n\to\infty} f(x_n))$. Следовательно $\lim_{x\to x_0} g(f(x)) = g(\lim_{x\to x_0} f(x))$.

Точки разрыва, их классификация. Разрывы монотонных функций

Классификация точек разрыва:

- точка x_0 устранимая точка разрыва, если f(x) либо не определена, либо не непрерывна в точке x_0 .
- точка x_0 точка разрыва первого рода, если для f(x) существуют и не равны левый и правый пределы в точке x_0 . Их разность $\omega(x_0) = f(x_0 + 0) f(x_0 0)$ называется скачком функции в точке x_0 .

• точка x_0 – точка разрыва второго рода, если для f(x) не существует конечного левого или правого предела в точке x_0 .

Теорема: монотонной функция, определенная на (a;b), имеет только точки разрыва первого рода. **Доказательство:** пусть f(x) возрастает на (a;b). Точек разрыва второго рода нет в силу теоремы о существование односторонних пределов у монотонных функций. В силу той же теоремы и неравенстава $f(x-0) \le f(x_0) \le f(x_0+0)$, $f(x-0) = f(x_0+0) = \gamma \ne f(x_0)$ не может выполняться, и следовательно x_0 не может быть устранимой точкой разрыва.

Теорема: множество точек разрыва определенной на (a;b) монотонной функции f(x) не более, чем счетно.

Доказательство: каждой точке разрыва x_0 соответствует интервал $(f(x_0 - 0); f(x_0 + 0))$ точки которого за исключением, быть может, $f(x_0)$, не входят в область определения f(x). В силу монотонности f(x) эти интервалы не пересекаются. На каждом интервале выберем рациональную точку. Таким образом мы установили взаимнооднозначное соответствие между точками разрыва и подмножеством счетного множества рациональных чисел \mathbb{Q} .

Свойства функций, непрерывных на отрезке

Ограниченность

Теорема: если функции f(x) непрерывна на отрезке [a;b], то она ограничена на этом отрезке. Доказательство: пусть f(x) неограничена на [a;b]:

$$\forall n \in \mathbb{N} \exists x_n \in [a;b] : |f(x_n)| > n$$

$$\{y_n\} = \{f(x_n)\}\$$

последовательность $\{y_n\}$ – бесконечно большая. Последовательность $\{x_n\}$ ограничена, следовательно она содержит в себе сходящуюся подпоследовательность $\{x_{k_n}\}$. Раз последовательность $\{x_{k_n}\}$ сходится, а f(x) непрерывна, последовательность $\{f(x_{k_n})\}$ сходится и не является бесконечно большой, что противоречит тому, что $\{f(x_n)\}$ – бесконечно большая.

Достижимость точных верхней и нижней граней

Теорема: если функции f(x) непрерывна на отрезке [a;b], то она достигает свою точную верхнюю грань α и свою точную нижнюю грань β .

Доказательство: пусть f(x) не достигает α . Введем функцию $g(x) = \frac{1}{\alpha - f(x)}$, непрерывную на [a;b]. Она ограничена сверху A.

$$\frac{1}{\alpha - f(x)} \le A$$

$$f(x) \le \alpha - \frac{1}{A}$$

следовательно $\alpha - \frac{1}{A}$ – верхняя грань f(x), что противоречит тому, что α – точная верхняя грань.

Теорема о промежуточных значениях непрерывной функции

Теорема: если функции f(x) непрерывна на отрезке [a;b] и принимает на его концах значения разных знаков, то существует такое $x_0 \in (a;b)$, что $f(x_0) = 0$.

Доказательство: пусть f(a) < 0 и f(b) > 0.

$$X = \{x \in [a; b] : f(x) < 0\} \neq \emptyset$$

$$\exists x_0 = \sup X$$

так как f(x) непрерывна справа в точке a, она сохраняет свой знак в какой-то окрестности a, следовательно $x_0 \in (a;b)$. Предположим, что $f(x_0) \neq 0$. Тогда в некой δ окрестности она сохраняет свой знак. Так как $x_0 = \sup X$, $\exists x' \in (x_0 - \delta; x_0) : f(x') < 0$. Однако $\forall x \in (x_0; x_0 + \delta) \longmapsto f(x) \geq 0$. Следовательно, $f(x_0)$ не сохраняет свой знак ни в какой δ окрестности и равна δ .

Теорема: если функция f(x) непрерывна на отрезке [a;b], то она достигает любого своего промежуточного значения.

Доказательство: пусть $g(x) = f(x) - \gamma$, где γ – некое промежуточное значение. Функция g(x) непрерывна и на концах [a;b] принимает значения разных знаков, следовательно она достигает 0 в некой точке x_0 . $f(x_0) = g(x_0) + \gamma = \gamma$.

Теорема об обратной функции

Обратная функция

Пусть f(x) определена на множестве X, Y – множество ее значений. Если выполняется условие:

$$\forall y \in Y \exists ! x \in X : f(x) = y$$

то на Y существует обратная функция $f^{-1}(y)$, каждому $y \in Y$ сопоставляющая такой $x \in X$, что y = f(x).

Теорема об обратной функции

Лемма: если f(x) определена и строго монотонна на X, Y – множество ее значений, тогда на Y определена и имеет такой же тип сторогой монотонности, что и f(x), обратная функция $f^{-1}(y)$. **Доказательство:** так как f(x) сторого монотонна:

$$\forall x_1 \neq x_2 \longmapsto f(x_1) < f(x_2) \lor f(x_1) > f(x_2)$$

Следовательно, на Y существует обратная функция $f^{-1}(y)$. Пусть f(x) возрастает. Докажем возрастание $f^{-1}(y)$:

$$\forall y_1 > y_2 \in Y \longmapsto f^{-1}(y_1) = x_1 > x_2 = f^{-1}(y_2)$$

пусть это не так:

$$x_1 \leq x_2$$

$$f(x_1) = y_1 \le y_2 = f(x_2)$$

противоречие.

Теорема: пусть на [a;b] определена, непрерывна и сторого монотонна функция f(x), $\alpha = \inf_{[a;b]} f(x)$, $\beta = \sup_{[a;b]} f(x)$. Тогда на $[\alpha;\beta]$ определена, непрерывна и сторого монотонна в том же направлении, что f(x), обратная функция $f^{-1}(y)$.

Доказательство: существование и строгая монотонность $f^{-1}(y)$ следует из леммы. Докажем непрерывность обратной функции для возрастающей f(x). Для монотонно возрастающей $f^{-1}(y)$ для всех $y_0 \in (a;b)$ выполняется следующее неравенставо:

$$f^{-1}(y_0 - 0) \le f^{-1}(y_0) \le f^{-1}(y_0 + 0)$$

Пусть разрывна в какой-то точке $y_0 \in (\alpha; \beta)$:

$$f^{-1}(y_0 - 0) < f^{-1}(y_0) \lor f^{-1}(y_0) < f^{-1}(y_0 + 0)$$

Пусть выполняется левое неравенставо $f^{-1}(y_0 - 0) < f^{-1}(y_0)$:

$$\forall y \in [\alpha; y_0) \longmapsto a \le f^{-1}(y) \le f^{-1}(y_0 - 0) = \sup_{[\alpha; y_0)} f^{-1}(y) < f^{-1}(y_0)$$

$$\forall y \in [y_0; \beta] \longmapsto f^{-1}(y_0) \le f^{-1}(y) = \sup_{[\alpha; y_0)} f^{-1}(y) < f^{-1}(y_0)$$

значит $(f^{-1}(y_0-0); f^{-1}(y_0))$ не принадлежит области значений $f^{-1}(y)$. Интервал $(f^{-1}(y_0-0); f^{-1}(y_0))$ лежит на отрезке [a; b]. Следовательно образом $[\alpha; \beta]$ является множество $[a; f^{-1}(y_0-0)) \cup (f^{-1}(y_0); b]$,

что противоречит тому, что образ $[\alpha;\beta]-[a;b].$

К аналогичному противоречию проходим, рассмотрев правое неравенство $f^{-1}(y_0) < f^{-1}(y_0+0)$. Для концов отрезка надо аналогичным образом доказать, что $f^{-1}(\alpha+0) = f^{-1}(\alpha)$ и $f^{-1}(\beta-0) = f^{-1}(\beta)$.

7

Второй замечательный предел

$$e = \lim_{x \to \infty} \left(1 + \frac{1}{x} \right)^x$$

Определение и свойства экспоненты, показательной функции, логариф-мической и степенной функций

Степенная функция с рациональным показателем

Функцию $f(x) = x^{\frac{p}{q}} = (\sqrt[q]{x})^p$ где $x > 0 \in \mathbb{R}, p \in \mathbb{Z}, q \in \mathbb{N}$ назовем степенной с рациональным показателем. Если p = 0, то f(x) = 1, если p < 0, то $f(x) = \frac{1}{x - \frac{p}{q}}$.

Свойства степенной функции с рациональным показателем $f(x) = x^{\frac{p}{q}} = x^r$:

- $(\sqrt[q]{x})^p = \sqrt[q]{x^p}$
- $r_1, r_2 \in \mathbb{Q} \implies (x^{r_1})^{r_2} = x^{r_1 r_2}$
- $r_1, r_2 \in \mathbb{Q} \implies x^{r_1} x^{r_2} = x^{r_1 + r_2}$
- $x > 1, r > 0 \implies x^r > 1$
- $x > 1, r_1 < r_2 \in \mathbb{Q} \implies x^{r_1} < x^{r_2}$

Показательная функция

Пусть $a>0, x\in\mathbb{R}$. Последовательность $\{r_n\}$ сходится к x. Определим показательную функцию как

$$f(x) = a^x = \lim_{n \to \infty} r_n$$

Свойства показательной функции $f(x) = a^x$:

- $x_1, x_2 \in \mathbb{R} \implies (a^{x_1})^{x_2} = a^{x_1 x_2}$
- $x_1, x_2 \in \mathbb{R} \implies a^{x_1} a^{x_2} = a^{x_1 + x_2}$
- $a > 1 \implies \lim_{x \to +\infty} a^x = +\infty \land \lim_{x \to -\infty} a^x = 0$
- $0 < a < 1 \implies \lim_{x \to +\infty} a^x = 0 \wedge \lim_{x \to -\infty} a^x = +\infty$

Если a = e, то f(x) называется экспоненциальной функцией, или экспонентой.

Логарифмическая функция

По теореме об обратной функции, на интервале $(0; +\infty)$ определена обратная $f(x) = a^x$ где $a \in \mathbb{R}, a > 0, a \neq 1$ функция $g(x) = \log_a x$.

Свойства логарифмической функции:

- $a > 1 \implies \lim_{x \to +\infty} \log_a x = +\infty \land \lim_{x \to +0} \log_a x = -\infty$
- $0 < a < 1 \implies \lim_{x \to +\infty} \log_a x = -\infty \wedge \lim_{x \to +0} \log_a x = +\infty$

Если a = e, то f(x) называется натуральным логарифмом.

Степенная функция с действительным показателем

Степенную функцию с действительным показателем определим как $f(x)=x^{\beta}=\left(a^{\log_a x}\right)^{\beta}=a^{\beta\log_a x}$, где $x>0, a\in\mathbb{R}, a>0, a\neq 1, \beta\in\mathbb{R}$.

Непрерывность элементарных функций

Элементарные функции непрервны всюду, где определены.

Производная функции одной переменной

Производной функции f(x) в точке x_0 называется следующий предел:

$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

Односторонние производные

Производные справа и слева определяются соответственно как:

$$f'(x_0 \pm 0) = \lim_{x \to x_0 \pm 0} \frac{f(x) - f(x_0)}{x - x_0}$$

Непрерывность функции, имеющей производную

Теорема: если функция f(x) дифференцируема в точке x_0 , то она непрервна в точке x_0 Доказательство: пусть f(x) дифференцируема в точке x_0 :

$$\Delta f(x_0, \Delta x) = A\Delta x + \alpha(\Delta x)\Delta x = f(x) - f(x_0)$$

$$\lim_{\Delta x \to 0} \Delta f(x_0, \Delta x) = \lim_{\Delta x \to 0} (f(x_0 + \Delta x) - f(x_0)) = 0$$

$$\lim_{\Delta x \to 0} (f(x_0 + \Delta x) - f(x_0)) = \lim_{\Delta x \to 0} f(x_0 + \Delta x) - \lim_{\Delta x \to 0} f(x_0) = \lim_{\Delta x \to 0} f(x_0 + \Delta x) - f(x_0) = 0$$

$$\lim_{\Delta x \to 0} f(x_0 + \Delta x) = f(x_0)$$

Дифференцируемость функции в точке, дифференциал

Функция f(x) дифференцируема в точке x_0 , если ее приращение $\Delta f(x_0, \Delta x) = f(x + \Delta x) - f(x)$, соответствующее приращению аргумента Δx , можно представить в виде $\Delta f(x_0, \Delta x) = A\Delta x + \alpha(\Delta x)\Delta x$, где $\alpha(\Delta x)$ – бесконечно малая при $x \to 0$.

Теорема: понятие дифференцируемости функции f(x) в точке x_0 эквивалентно тому, что у функции f(x) существует производная в точке x_0 .

Доказательство: Пусть функция f(x) дифференцируема в точке x_0 :

$$\frac{\Delta f(x_0, \Delta x)}{\Delta x} = A + \alpha(\Delta x)$$

$$f'(x_0) = \lim_{\Delta x \to 0} \frac{\Delta f(x_0, \Delta x)}{\Delta x} = A$$

Пусть у функции f(x) есть производная в точке x_0 :

$$f'(x_0) = \lim_{\Delta x \to 0} \frac{\Delta f(x_0, \Delta x)}{\Delta x}$$
$$\frac{\Delta f(x_0, \Delta x)}{\Delta x} - f'(x_0) = \alpha(\Delta x)$$
$$\lim_{\Delta x \to 0} \alpha(\Delta x) = 0$$
$$\Delta f(x_0, \Delta x) = f'(x_0) \Delta x + \alpha(\Delta x) \Delta x$$

Геометрический смысл производной и дифференциала

Значение производной в точке – тангенс угла наклона касательной к графику функции в точке.

Производная суммы, произведения и частного двух функций

Теорема: пусть у функций f(x) и g(x) существуют производные в точке x_0 . Тогда для функций $f(x) \pm g(x)$, f(x)g(x) и $\frac{f(x)}{g(x)}$ (если $g(x_0) \neq 0$) существуют производные.

- $(f(x) \pm g(x))' = f'(x) \pm g'(x)$
- (f(x)g(x))' = f'(x)g(x) + g'(x)f(x)
- $\bullet \left(\frac{f(x)}{g(x)}\right)' = \frac{f'(x)g(x) g'(x)f(x)}{g^2(x)}$

Доказательство:

Для суммы и разности:

$$(f(x) \pm g(x))' = \lim_{\Delta x \to 0} \frac{(f(x + \Delta x) \pm g(x + \Delta x)) - (f(x) \pm g(x))}{\Delta x}$$
$$(f(x) \pm g(x))' = \lim_{\Delta x \to 0} \frac{(f(x + \Delta x) - f(x)) \pm (g(x + \Delta x) - g(x))}{\Delta x}$$
$$(f(x) \pm g(x))' = f'(x) \pm g'(x)$$

Для произведения функций:

$$(f(x)g(x))' = \lim_{\Delta x \to 0} \frac{f(x + \Delta x)g(x + \Delta x) - f(x)g(x)}{\Delta x}$$

$$(f(x)g(x))' = \lim_{\Delta x \to 0} \frac{f(x + \Delta x)g(x + \Delta x) - f(x + \Delta x)g(x) + f(x + \Delta x)g(x) - f(x)g(x)}{\Delta x}$$

$$(f(x)g(x))' = \lim_{\Delta x \to 0} \frac{f(x + \Delta x)(g(x + \Delta x) - g(x)) + (f(x + \Delta x) - f(x))g(x)}{\Delta x}$$

$$(f(x)g(x))' = f(x)g'(x) + f'(x)g(x)$$

Для отношения функций:

$$\left(\frac{f(x)}{g(x)}\right)' = \lim_{\Delta x \to 0} \left(\frac{f(x + \Delta x)}{g(x + \Delta x)\Delta x} - \frac{f(x)}{g(x)\Delta x}\right)$$
$$\left(\frac{f(x)}{g(x)}\right)' = \lim_{\Delta x \to 0} \left(\frac{f(x + \Delta x)g(x) - f(x)g(x + \Delta x)}{g(x)g(x + \Delta x)\Delta x}\right)$$
$$\left(\frac{f(x)}{g(x)}\right)' = \frac{f'(x)g(x) - f(x)g'(x)}{g^2(x)}$$

Производная сложной функции

Теорема: Пусть функция f(x) дифференцируема в точке x_0 , функция g(y) дифференцируема в точке $y_0 = f(x_0)$. Тогда производная функции h(x) = g(f(x)) в точке x_0 равна $h'(x_0) = g'(f(x_0)f'(x_0)$ Доказательство:

$$\Delta g(y_0, \Delta y) = g'(y_0)\Delta y + \alpha(\Delta y)\Delta y$$
$$\lim_{\Delta y \to 0} \alpha(\Delta y) = 0$$

$$\Delta x \to 0 \implies \Delta y \to 0$$

$$\frac{\Delta g(y_0, \Delta y)}{\Delta x} = g'(y_0) \frac{\Delta y}{\Delta x} + \alpha(\Delta y) \frac{\Delta y}{\Delta x}$$

$$\lim_{\Delta x \to 0} \frac{\Delta g(y_0, \Delta y)}{\Delta x} = (g(f(x))'(x_0) = g'(y_0)f'(x_0) + 0 = g'(f(x_0))f'(x_0)$$

Производная обратной функции

Теорема: Пусть функция f(x) непрерывна и строго монотонна на множестве $X=x:|x-x_0|\leq \delta$ и в точке x_0 имеет производную $f'(x_0)\neq 0$. Тогда обратная функция $f^{-1}(y)$ в точке $y_0=f(x_0)$ имеет производную $f'(y_0)=\frac{1}{f(x_0)}$.

Доказательство: Обратная функция $f^{-1}(y)$ существует по теореме об обратной функции.

$$\Delta y = f(x_0 + \Delta x) - f(x_0)$$

$$\Delta x = f^{-1}(y_0 + \Delta y) - f^{-1}(y_0)$$

$$\frac{\Delta x}{\Delta y} = \frac{1}{\frac{\Delta y}{\Delta x}}$$

$$\Delta x \to 0 \implies \Delta y \to 0$$

$$\lim_{\Delta y \to 0} \frac{\Delta x}{\Delta y} = \lim_{\Delta x \to 0} \frac{1}{\frac{\Delta y}{\Delta x}}$$

$$f^{-1}(y_0) = \frac{1}{f'(x_0)}$$

Производные элементарных функций

$$(e^{x})' = \lim_{\Delta x \to 0} \frac{e^{x + \Delta x} - e^{x}}{\Delta x} = \lim_{\Delta x \to 0} e^{x} \frac{e^{\Delta x} - 1}{\Delta x} = \lim_{\Delta x \to 0} e^{x} \frac{1 + \Delta x - 1}{\Delta x} = e^{x}$$

$$(\ln x)' = \lim_{\Delta x \to 0} \frac{\ln(x + \Delta x) - \ln x}{\Delta x} = \lim_{\Delta x \to 0} \frac{\ln(\frac{x + \Delta x}{x})}{\Delta x} = \lim_{\Delta x \to 0} \frac{\Delta x}{x \Delta x} = \frac{1}{x}$$

$$(x^{\beta})' = (e^{\beta \ln x})' = \frac{\beta}{x} e^{\beta \ln x} = \beta x^{\beta - 1}$$

$$(\sin x)' = \lim_{\Delta x \to 0} \frac{\sin(x + \Delta x) - \sin x}{\Delta x} = \lim_{\Delta x \to 0} \frac{2\sin(\frac{\Delta x}{2})\cos(x + \frac{\Delta x}{2})}{\Delta x} = \cos x$$

$$(\cos x)' = (\sin(x + \frac{\pi}{2}))' = \cos(x + \frac{\pi}{2}) = -\sin x$$

$$(\tan x)' = (\frac{\sin x}{\cos x})' = \frac{\cos x \cos x + \sin x \sin x}{\cos^{2} x} = \frac{1}{\cos^{2} x} = 1 + \tan^{2} x$$

$$(\arcsin x)' = (\arcsin(\sin \varphi))' = \frac{1}{\cos \varphi} = \frac{1}{\sqrt{1 - \sin^{2} \varphi}} = \frac{1}{\sqrt{1 - x^{2}}}$$

$$(\arccos x)' = (\arcsin(\cos \varphi))' = \frac{-1}{\sin \varphi} = \frac{-1}{\sqrt{1 - \cos^{2} \varphi}} = \frac{-1}{\sqrt{1 - x^{2}}}$$

$$(\arctan x)' = (\arctan(\tan \varphi))' = \frac{1}{1 + \tan^{2} \varphi} = \frac{1}{1 + x^{2}}$$

Инвариантность формы дифференциала относительно замены переменной

Определение дифференциала

Дифференциалом функции f(x) df в точке x_0 назовем линейную относительно Δx часть приращения $\Delta f(x_0, \Delta x)$ функции f(x), соответствующую приращению аргумента Δx .

$$df(x_0) = f'(x_0)\Delta x$$

Дифференциалом независимой переменной $x\ dx$ назовем любое число.

$$dx = \Delta x$$

$$df(x_0) = f'(x_0)dx$$

$$f'(x_0) = \frac{dy(x_0)}{dx}$$

Инвариантность формы дифференциала относительно замены переменной

Пусть функция z = g(y) дифференцируемая в точке y_0 :

$$dz = g'(y_0)dy$$

Пусть функция g(y) дифференцируемая в точке $y_0 = f(x_0)$, f(x) дифференцируема в точке x_0 :

$$z = h(x) = g(f(x))$$

$$h'(x_0) = g'(y_0)f'(x_0)$$

$$h'(x_0) = \frac{dz}{dx} = g'(y_0)\frac{dy}{dx}$$

$$dz = g'(y_0)dy$$

Вне зависимости от того, является ли y независимой переменной или y=f(x), дифференциал z=g(y) всегда имеет один вид $dz=g'(y_0)dy$.

Функции, заданные параметрически, их дифференцирование

Функции, заданные параметрически

Пусть функции x=u(t) и y=v(t) определены на множестве $T=[\alpha;\beta].$ Тогда функция y=f(x) задана параметрически, а t – параметр.

Дифференцирование функций, заданных параметрически

Теорема: пусть функции x=u(t) и y=v(t) непрерывны и сторого монотонны на множестве $T=[\alpha;\beta]$ и дифференцированы в точке $t_0,\,u'(t_0)\neq 0.$ Тогда $f'(x_0)=f'(x(t_0))=\frac{u'(t_0)}{v'(t_0)}$ Доказательство: по теореме об обратной функции, существует обратная функция $t=u^{-1}(x)$.

$$y = v(t)$$

$$t'(x_0) = \frac{1}{u'(t_0)}$$

$$y(x_0) = v(t(x_0))$$
$$y'(x_0) = v'(t_0)t'(x_0) = \frac{v'(t_0)}{u'(t_0)}$$

Производные высших порядков

Производная порядка n функции f(x) в точке x_0 $f^{(n)}(x_0)$ – производная производной порядка n-1 функции f(x) в точке x_0 $f^{(n-1)}(x_0)$.

Функция f(x) n раз диффиренцируема в точке x_0 , если в точке x_0 у нее существует производная порядка n $f^{(n)}(x_0)$.

Формула Лейбница для n-й производной произведения функций

Теорема: пусть функции f(x) и g(x) n дифференцируемы в точке x_0 . Тогда производная порядка n их произведения f(x)g(x) в точке x_0 $(f(x)g(x))^{(n)}(x_0)$ равна $\sum_{k=0}^{n} \binom{n}{k} f^{(k)}(x_0) g^{n-k}(x_0)$.

Доказательство: докажем по индукции.

База: n = 1:

$$(f(x)g(x))'(x_0) = \binom{n}{0}f(x_0)g'(x_0) + \binom{n}{1}f'(x_0)g(x_0) = f(x_0)g'(x_0) + f'(x_0)g(x_0)$$

база верна.

Переход: предположим верно для n:

$$(f(x)g(x))^{(n)}(x_0) = \binom{n}{0}f(x_0)g^{(n)}(x_0) + \binom{n}{1}f'(x_0)g^{(n-1)}(x_0) + \dots + \binom{n}{n}f^{(n)}(x_0)g(x_0)$$

Проверим для n+1:

$$(f(x)g(x))^{(n+1)}(x_0) = \binom{n}{0}(f(x)g^{(n)}(x))'(x_0) + \binom{n}{1}(f'(x)g^{(n-1)}(x))'(x_0) + \dots + \binom{n}{n}(f^{(n)}(x)g(x))'(x_0)$$

$$(f(x)g(x))^{(n+1)}(x_0) = \binom{n}{0} f(x_0)g^{(n+1)}(x_0) + \binom{n}{0} f'(x_0)g^{(n)}(x_0) + \\ \binom{n}{1} f'(x_0)g^{(n)}(x_0) + \binom{n}{1} f''(x_0)g^{(n-1)}(x_0) + \dots + \\ \binom{n}{n} (f^{(n)}(x_0)g'(x_0)) + \binom{n}{n} (f^{(n+1)}(x_0)g(x_0))' \\ \binom{n}{k} + \binom{n}{k+1} = \binom{n+1}{k+1} \\ \binom{n}{n} = \binom{n+1}{n+1} \\ \binom{n}{n} = \binom{n+1}{n} \\ \binom{n}{n0} = \binom{n+1}{0} \\ (f(x)g(x))^{(n+1)}(x_0) = \binom{n+1}{0} f(x_0)g^{(n+1)}(x_0) + \binom{n+1}{1} f'(x_0)g^{(n)}(x_0) + \dots + \binom{n+1}{n+1} f^{(n+1)}(x_0)g(x_0)$$

Дифференциал второго порядка

Пусть функция f(x) дифференципуема в Δ окрестности точки x_0 и дважды дифференцируема в точке x_0 . Тогда в Δ окрестности точки x_0 определена функция dy = f'(x)dx. Дифференциал второго порядка функции f(x) в точке x_0 – дифференциал ее дифференциала dy в точке x_0 $d^2f(x_0)$.

Отсутствие инвариантности формы дифференциал второго порядка относительно замены переменной

Пусть z = g(y). Тогда:

$$dz = g'(y_0)dy$$

$$d(dz)(y_0) = d(g'(y)dy)(y_0) = (d(g'(y))dy + g'(y)d(dy))(y_0) = g''(y_0)(dy)^2 + 0 = g''(y_0)(dy)^2$$

Пусть $z=g(y),\,y=f(x).$ Тогда:

$$dz(y_0) = g'(y_0)dy$$

$$d(dz)(y_0) = d(g'(y)dy)(y_0) = (d(g'(y))dy + g'(y)d(dy))(y_0) = g''(y_0)(dy)^2 + g'(y_0)d^2y$$

Как видно, дифференциал второго порядка не обладает инвариантностью формы.

Теорема Ферма (необходимое условие существования локального экстремума)

Пусть f(x) определена в точке x_0 и в некой Δ окрестности точки x_0 .

Локальный экстремум

Точка x_0 называется локальным минимум функции f(x), если есть такая выколотая $\delta \leq \Delta$ окрестность точки x_0 , что для любого x в этой окрестности $f(x) > f(x_0)$. Точка x_0 называется локальным максимумом функции f(x), если есть такая выколотая $\delta \leq \Delta$ окрестность точки x_0 , что для любого x в этой окрестности $f(x) < f(x_0)$. Точка x_0 называется локальным экстремумом функции f(x), она является либо локальным минимумом, либо локальным максимумом.

Возрастание и убывание функции в точке

Если функций f(x) возрастает в точке x_0 , то существует такая $\delta \leq \Delta$ окрестности точки x_0 , что для всех $x < x_0$ $f(x) < f(x_0)$ и для всех $x > x_0$ $f(x) > f(x_0)$.

Если функций f(x) убывает в точке x_0 , то существует такая $\delta \leq \Delta$ окрестности точки x_0 , что для всех $x < x_0$ $f(x) > f(x_0)$ и для всех $x > x_0$ $f(x) < f(x_0)$.

Возрастание и убывание дифференциремой функции в точке

Теорема: пусть функция f(x) дифференцируема в точке x_0 . Если $f'(x_0) < 0$, то f(x) убывает в точке x_0 . Если $f'(x_0) > 0$, то f(x) возрастает в точке x_0 .

Доказательство: пусть $f'(x_0) > 0$.

$$f'(x_0) = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$$

$$\forall \varepsilon > 0 \exists \delta = \delta(\varepsilon) > 0 : \forall x : 0 < |x - x_0| < \delta \longmapsto f'(x_0) - \varepsilon < \frac{f(x) - f(x_0)}{x - x_0} < f'(x_0) + \varepsilon$$

Пусть $\varepsilon < f'(x_0)$. Тогда из предыдущего неравенства следует возрастание f(x). Аналогично доказывается для $f'(x_0) < 0$.

Теорема Ферма

Теорема: если функция f(x) дифференицируема в точке x_0 и точка x_0 является локальным экстремумом функции f(x), то $f'(x_0) = 0$.

Доказательство: Если $f'(x_0) \neq 0$, то f(x) возрастает или убывает в точке x_0 , что противоречит определению локального экстремума. Следовательно, $f'(x_0) = 0$.

Теоремы о среднем Ролля, Лагранжа, Коши

Теорема Ролля

Теорема: пусть функция f(x) непрерывна на [a;b], дифференцируема на (a;b), и f(a)=f(b). Тогда найдется такая точка x_0 на (a;b), что $f'(x_0)=0$.

Доказательство: так как f(x) непрерывна на [a;b], она достигает своей точной верхней грани α и точной нижней грани β . Если $\alpha = \beta$, то f(x) = const и $f'(x) = 0 \forall x \in (a;b)$. Иначе, так

как f(a) = f(b), найдется такая точка x_0 , что $f(x_0) = \alpha$ или $f(x_0) = \beta$. По теорема Ферма в x_0 $f'(x_0) = 0$.

Теорема Лагранжа

Теорема: пусть функция f(x) непрерывна на [a;b] и дифференцируема на (a;b). Тогда найдется такая точка x_0 на (a;b), что $f(b)-f(a)=f'(x_0)(b-a)$.

Доказательство: введем следующую функцию:

$$F(x) = f(x) - f(a) - \frac{f(b) - f(a)}{b - a}(x - a)$$

$$F'(x) = f'(x) - \frac{f(b) - f(a)}{b - a}$$

F(x) непрерывна на [a;b] и дифференцируема на (a;b), F(a)=F(b)=0. Следовательно, по теореме Ролля существует такая точка x_0 , что $F'(x_0)=0$. Тогда:

$$F'(x) = 0 = f'(x) - \frac{f(b) - f(a)}{b - a}$$

$$f(b) - f(a) = f'(x_0)(b - a)$$

Теорема Коши

Теорема: пусть функции f(x) и g(x) непрерывны на [a;b] и дифференцируемы на (a;b), g'(x) не обращается на (a;b) в 0. Тогда найдется такая точка x_0 на (a;b), что $\frac{f(b)-f(a)}{g(b)-g(a)}=\frac{f'(x_0)}{g'(x_0)}$.

Доказательство: введем следующую функцию:

$$F(x) = f(x) - f(a) - \frac{f(b) - f(a)}{g(b) - g(a)}(g(x) - g(a))$$

$$F'(x) = f'(x) - \frac{f(b) - f(a)}{g(b) - g(a)}g'(x)$$

F(x) непрерывна на [a;b] и дифференцируема на (a;b), F(a)=F(b)=0. Следовательно, по теореме Ролля существует такая точка x_0 , что $F'(x_0)=0$. Тогда:

$$F'(x) = 0 = f'(x) - \frac{f(b) - f(a)}{g(b) - g(a)}g'(x)$$

$$\frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f'(x_0)}{g'(x_0)}$$

Формула Тейлора с остаточным членом в формах Пеано и Лагранжа

Формула Тейлора

Пусть функция f(x) n раз дифференицируема в точке x_0 . Многочлен степени n $P_n(x)$ такой, что $(P_n)^{(k)}(x_0) = f^{(k)}(x_0) \forall k : 1 \leq k \leq n$ называется многочленом Тейлора f(x) в точке x_0 и имеет следующий вид:

$$P_n(x) = f(x_0) + \sum_{k=1}^{n} \frac{f^{(n)}(x_0)}{k!} (x - x_0)^k$$

Если f(x) не является многочленом, то $P_n(x)$ задает приближение функции f(x) в открестности точки x_0 . Остаточным членом $r_n(x)$ называют разность значений функции f(x) и многочлена $P_n(x)$:

$$r_n(x) = f(x) - P_n(x)$$

Формула

$$f(x) = P_n(x) + r_n(x)$$

называется формулой Тейлора функции f(x) в точке x_0 . При $x_0 = 0$ формула Тейлора называется формулой Маклорена.

Формула Тейлора с остаточным членом в форме Лагранжа

Теорема: пусть f(x) n+1 раз дифференицируема в Δ окрестности точки x_0 , тогда между точками x_0 и $x:|x-x_0|<\Delta$ найдется такая точка $\bar x$, что имеет место формула Тейлора с остаточным членом в форме Лагранжа:

$$r_n(x) = \frac{f^{(n+1)}(\bar{x})}{(n+1)!} (x - x_0)^{n+1}$$

Доказательство: заметим, что

$$r_n(x_0) = r'_n(x_0) = \dots = r_n^{(n)}(x_0) = 0$$

Для функций $r_n(x)$ и $(x-x_0)^{n+1}$ n+1 раз применим теорему Коши. Найдется лежащая между x и x_0 точка x_1 , такая, что:

$$\frac{r_n(x)}{(x-x_0)^{n+1}} = \frac{r'_n(x_1)}{(n+1)(x_1-x_0)^n}$$

На шаге n+1 найдется между x_n и x_0 точка \bar{x} , такая, что:

$$\frac{r_n^{(n)}(x_n)}{(n+1)!(x_n-x_0)} = \frac{r_n^{(n+1)}(\bar{x})}{(n+1)!}$$

$$\frac{r_n(x)}{(x-x_0)^{n+1}} = \frac{r_n^{(n+1)}(\bar{x})}{(n+1)!}$$

Продифференцировав формулу Тейлора n+1 раз, получаем:

$$f^{(n+1)}(x) = r_n^{(n+1)}(x)$$

$$\frac{r_n(x)}{(x-x_0)^{n+1}} = \frac{f^{(n+1)}(\bar{x})}{(n+1)!}$$

$$r_n(x) = \frac{f^{(n+1)}(\bar{x})}{(n+1)!} (x - x_0)^{n+1}$$

Формула Тейлора с остаточным членом в форме Пеано

Теорема: пусть f(x) n раз дифференицируема в точке x_0 , тогда имеет место формула Тейлора с остаточным членом в форме Пеано:

$$r_n(x) = o\left((x - x_0)^n\right)$$

Доказательство: заметим, что

$$r_n(x_0) = r'_n(x_0) = \dots = r_n^{(n)}(x_0) = 0$$

Для функций $r_n(x)$ и $(x-x_0)^n$ n-1 раз применим теорему Коши. Найдется лежащая между x и x_0 точка x_1 , такая, что:

$$\frac{r_n(x)}{(x-x_0)^n} = \frac{r'_n(x_1)}{n(x_1-x_0)^{n-1}}$$

На шаге n-1 найдется между x_{n-2} и x_0 точка \bar{x} , такая, что:

$$\frac{r_n^{(n-2)}(x_n)}{\frac{n!}{2}(x_{n-2} - x_0)^2} = \frac{r_n^{(n-1)}(\bar{x})}{n!(\bar{x} - x_0)} = \frac{r_n^{(n-1)}(\bar{x}) - r_n^{(n-1)}(x_0)}{n!(\bar{x} - x_0)}$$

$$x \to x_0 \implies \bar{x} \to x_0$$

$$\lim_{x \to x_0} \frac{r_n^{(n-1)}(\bar{x}) - r_n^{(n-1)}(x_0)}{n!(\bar{x} - x_0)} = \frac{r^{(n)}(x_0)}{n!} = 0$$

$$\lim_{x \to x_0} \frac{r_n(x)}{(x - x_0)^n} = 0$$

$$r_n(x) = o\left((x - x_0)^n\right)$$

Основные разложения по формуле Тейлора

Правило Лопиталя для раскрытия неопределенностей вида $\frac{0}{0}$

Теорема: пусть:

- $\lim_{x\to\alpha} f(x) = \lim_{x\to\alpha} g(x) = 0$
- f(x) и g(x) дифференицируемы на $X = \{x: 0 < |x-\alpha| < \Delta\}$
- $g'(x) \neq 0 \forall x \in X$
- существует $\lim_{x\to\alpha} \frac{f'(x)}{g'(x)}$

Тогда существует $\lim_{x\to\alpha}\frac{f(x)}{g(x)}=\lim_{x\to\alpha}\frac{f'(x)}{g'(x)}.$

Доказательство: доопределим $f(\alpha)$ и $g(\alpha)$ как 0. Точка $\alpha + \Delta x$ принадлежит X. Применим к отрезку с концами α и $\alpha + \Delta x$ теорему Коши:

$$\exists \theta : 0 < \theta < 1$$

$$\frac{f(\alpha + \Delta x) - f(\alpha)}{g(\alpha + \Delta x) - g(\alpha)} = \frac{f'(\alpha + \theta \Delta x)}{g'(\alpha + \theta \Delta x)}$$

$$\lim_{\Delta x \to 0} \frac{f'(\alpha + \theta \Delta x)}{g'(\alpha + \theta \Delta x)} = \lim_{x \to \alpha} \frac{f'(\alpha)}{g'(\alpha)}$$

$$\lim_{\Delta x \to 0} \frac{f(\alpha + \Delta x)}{g(\alpha + \Delta x)} = \lim_{x \to \alpha} \frac{f(\alpha)}{g(\alpha)}$$

$$\lim_{x \to \alpha} \frac{f(\alpha)}{g(\alpha)} = \lim_{x \to \alpha} \frac{f'(\alpha)}{g'(\alpha)}$$

Правило Лопиталя для раскрытия неопределенностей вида $\frac{\infty}{\infty}$

Теорема: пусть:

- $\lim_{x\to\alpha} f(x) = \lim_{x\to\alpha} g(x) = \pm \infty$
- f(x) и g(x) дифференицируемы на $X=(\alpha;\beta)$ или на $X=(\beta;\alpha)$.
- $g'(x) \neq 0 \forall x \in X$
- существует $\lim_{x\to\alpha} \frac{f'(x)}{g'(x)}$

Тогда существует $\lim_{x\to\alpha}\frac{f(x)}{g(x)}=\lim_{x\to\alpha}\frac{f'(x)}{g'(x)}.$ Доказательство: пусть $\lim_{x\to\alpha}f(x)=\lim_{x\to\alpha}g(x)=+\infty,\ X=(\alpha;\beta).$ Найдется такое число $\Delta < \beta - \alpha$, что $g(x) > 1 \forall x \in (\alpha; \alpha + \Delta)$, следовательно g(x) положительна на $(\alpha; \alpha + \Delta)$.

$$\lim_{x \to \alpha} \frac{f'(x)}{g'(x)} = b$$

$$\forall \varepsilon > 0 \exists \delta_0 = \delta_0(\varepsilon) \in (0; \Delta) : \forall x : \alpha < x < \alpha + \delta_0 \longmapsto b - \frac{\varepsilon}{2} < \frac{f'(x)}{g'(x)} < b + \frac{\varepsilon}{2}$$

$$x_0 = \alpha + \delta_0$$

$$x : \alpha < x < x_0$$

К отрезку $[x; x_0]$ применим теормему Коши:

$$\exists \bar{x} \in (x; x_0) : \frac{f(x) - f(x_0)}{g(x) - g(x_0)} = \frac{f'(\bar{x})}{g'(\bar{x})}$$
$$b - \frac{\varepsilon}{2} < \frac{f(x) - f(x_0)}{g(x) - g(x_0)} < b + \frac{\varepsilon}{2}$$
$$\frac{f(x)}{g(x)} - b = \frac{f(x_0) - bg(x_0)}{g(x)} + \left(1 - \frac{g(x_0)}{g(x)}\right) \left(\frac{f(x) - f(x_0)}{g(x) - g(x_0)} - b\right)$$

g(x) – бесконечно большая при $x \to \alpha$:

$$\forall \varepsilon > 0 \exists \delta_1 = \delta_1(\varepsilon) \in (0; \Delta) : \forall x : \alpha < x < \alpha + \delta_1 \longmapsto \left| \frac{f(x_0) - bg(x_0)}{g(x)} \right| < \frac{\varepsilon}{2}$$
$$\delta = \min(\delta_0; \delta_1)$$
$$\forall \varepsilon > 0 \exists \delta = \delta(\varepsilon) \in (0; \Delta) : \forall x : \alpha < x < \alpha + \delta \longmapsto \left| \frac{f(x)}{g(x)} - b \right| < \varepsilon$$
$$\lim_{x \to \alpha} \frac{f(x)}{g(x)} = b$$