X. Zugriffskontrolle

(wirkt ein bisschen altmodisch, heute usage control)

X.1. Bell-LaPadula-Modell

Das Bell-LaPadula-Modell ist ein statisches Zugriffskontrollmodell. Oberstes Schutzziel: Confidentiality

X.1.1. Definition

- \bullet Subjektmenge S
- Objektmenge \mathcal{O}
- Menge von Zugriffsoperationen $\mathcal{A} = \{read, write, append, execute\}$
- Menge \mathcal{L} von Security Levels mit einer partiellen Ordnung \leq

Dabei implizieren write-Rechte die read-Rechte. (Beispiel: unclassified \leq confidential \leq secret \leq top secret)

Im Bell-LaPadula-Modell ist der Systemzustand ein Element aus $\mathcal{B} \times \mathcal{M} \times \mathcal{F}$, wobei:

- $\mathcal{B} = \mathcal{P}(\mathcal{S} \times \mathcal{O} \times \mathcal{A})$ aktuelle Zugriffe beschreibt (wer hat Zugriff auf was mit welcher Zugriffsart)
- \mathcal{M} die Menge der Zugriffskontrollmatrizen (ACM) bezüglich der Subjekte in \mathcal{S} und der Objekte in \mathcal{O} ist. Die Elemente von \mathcal{M} haben die Form $M = (M_{so})_{s \in \mathcal{S}, o \in \mathcal{O}}$ mit $M_{so} \subseteq \mathcal{A}$ für alle $s \in \mathcal{S}, o \in \mathcal{O}$.
- \mathcal{F} Dreitupel aus Funktionen enthält, den sog. Security Level Assignments. Hier gilt $\mathcal{F} \subseteq \mathcal{L}^{\mathcal{S}} \times \mathcal{L}^{\mathcal{S}} \times \mathcal{L}^{\mathcal{O}}$. Ein Dreitupel (f_s, f_c, f_o) hat dabei folgende Form und Bedeutung:
 - $-f_s \colon \mathcal{S} \to \mathcal{L}$ gibt für jedes $s' \in \mathcal{S}$ den maximalen Sicherheitslevel an
 - $-f_c \colon \mathcal{S} \to \mathcal{L}$ gibt den gegenwärtigen (current) Sicherheitslevel an
 - $-f_o \colon \mathcal{O} \to \mathcal{L}$ gibt für jedes $o' \in \mathcal{O}$ den Sicherheitslevel an

Dabei gilt: f_c muss von f_s dominiert werden: $\forall s' \in \mathcal{S} : f_c(s') \leq f_s(s')$.

Ein Systemzustand heißt sicher, wenn er die folgenden drei Eigenschaften erfüllt:

• Simple Security Property (ss-Eigenschaft): ein Zustand (b, M, f) genügt der ss-Eigenschaft, falls $\forall (s', o', a') \in b$ mit $a \in \{read, write\}$ gilt: $f_s(s') \geq f_o(o')$ ("no read up")

- Star Property (*-Eigenschaft): ein Zustand (b,M,f) erfüllt die *-Eigenschaft, falls $\forall (s',o',a') \in b$ mit $a \in \{append, write\}$ gilt: $f_c(s') \leq f_o(o')$ ("no write down") Weiterhin, falls ein $(s',o',a) \in b$ mit $a \in \{append, write\}$ und ein $(\hat{s},\hat{o},\hat{a}) \in b$ mit $s' = \hat{s}$ und $\hat{a} \in \{read, write\}$ existiert, dann muss $f_o(\hat{o}) \leq f_o(o')$ gelten. ("Kein Nachrichtenfluss von high level object zu low level object.")
- Discretionary Security Property (ds-Eigenschaft): ein Zustand (b, M, f) erfüllt die ds-Eigenschaft, falls $\forall (s', o', a) \in b$ stehts $a \in M_{s'o'}$ gilt

X.1.2. Basic Security Theorem

Werden ausgehend von einem sicheren Initialzustand nur sichere Übergänge durchgeführt, so erhält man einen sicheren Systemzustand.

X.1.3. Nachteile

Leider sammelt sich im Bell-LaPadula-Modell Information "oben", ein Deklassifizieren ist nicht möglich. In der Praxis werden etwa "trusted subjects" eingeführt, um ein Deklassifizieren von Daten zu erlauben.

Weitere Nachteile:

- Integrität der Daten wird nicht mitbetrachtet (niedrigstufige user/Prozesse können evtl. höher eingestufte Objekte verändern)
- keine Forderung an die ACM, etwa darf allen $s \in \mathcal{S}$ alle Rechte gegeben werden
- verdeckte Kanäle, z.B. die (Nicht)Existenz von Dateien, bleiben unberücksichtigt

X.1.4. Vorteile

- handhabbar
- formal (d.h. für Beweise geeignet)

X.2. Chinese-Wall-Modell

Zugriffsrechte hängen von der Vergangenheit ab \to z.B. kein Informationsfluss zwischen konkurrierenden Firmen (z.B. bei Unternehmensberatung)

X.2.1. Definition

- Menge C von Firmen
- \bullet Objektmenge \mathcal{O} (jedes Objekt gehört einer Firma)
- Subjektmenge S (die Berater)
- Funktion $y: \mathcal{O} \to \mathcal{C}$, welche jedem Objekt die zugehörige Firma zuordnet
- Funktion $x: \mathcal{O} \to \mathcal{P}(\mathcal{C})$, welche jedem Objekt eine conflict-of-interest-Klasse zuordnet

Die Sicherheitsmarke (security label) eines Objekts $o \in \mathcal{O}$ ist das Tupel (x(o), y(o)). Im Falle $x(o) = \emptyset$ spricht man von "sanitized information".

Eine Matrix M enthält Informationen über Zugriffe $M = (M_{so})_{s \in \mathcal{S}, o \in \mathcal{O}}$ mit

$$M_{so} = \begin{cases} true, & \text{falls } s \text{ Zugriff auf } o \text{ hatte,} \\ false, & \text{sonst.} \end{cases}$$

Der Initialzustand ist $M = (false)_{s \in \mathcal{S}, o \in \mathcal{O}}$.

X.2.2. Eigenschaften

- Simple Security Property (ss-Eigenschaft): $s \in \mathcal{S}$ erhält Zugriff auf $o \in \mathcal{O}$ nur, falls $\forall o' \in \mathcal{O}$ mit $M_{so'} = true$ gilt: y(o) = y(o') oder $y(o) \notin x(o')$.
- Star Property (*-Eigenschaft): ein $s \in \mathcal{S}$ erhält Schreibzugriff auf ein Objekt $o \in \mathcal{O}$ nur, falls s aktuell keinen Lesezugriff auf $o' \in \mathcal{O}$ hat mit $y(o) \neq y(o')$ oder $x(o') = \emptyset$. (Die *-Eigenschaft verhindert die Weitergabe von Daten über Dritte.)