Česká zemědělská univerzita v Praze Technická fakulta

Laboratorní práce

Speciální senzorika **Termočlánky a odporové snímače teploty**

Autor: Josef Kořínek

30. prosince 2022

1.Zadání

- Proveďte měření převodní charakteristiky odporových snímačů teploty
- Zjistěte typ neznámého termočlánku, pomocí hodnot získaných z termočlánku typu K
- Vypracujte protokol dle vzoru, který naleznete v kurzu předmětu na moodle.czu.cz

2. Princip fungování senzoru

Termočlánek funguje na základě Seebeckova jevu. Termočlánek se skládá se ze dvou kovů s rozdílnými elektrickými vlastnostmi např. měď a železo nebo měď a nikl. Při rozdílu teplot mezi kovy se na článku generuje napětí. Při změně okolní teploty se změní generovaný proud. Čím vyšší je teplota, tím větší je elektrický proud produkovaný termočlánkem.[1]

Odporový snímač je oproti termočlánku pasivním prvkem, takovéto snímače také nazýváme termistory. Odporové snímače využívají skutečnosti, že drahé kovy mění svůj odpor v lineární závislosti na změně teploty. Teplo urychluje pohyb elektronů v kovu a tím snižuje odpor. NTC termistory mají klesající odpor s rostoucí teplotou [2]

3. Postup měření

Snímače teploty byly postupně po 10 °C ohřívány od 20 °C do 80 °C ve vodní lázni. Pro každou teplotu byla odečtena hodnota odporu u odporových snímačů a hodnota napětí u neznámého termočlánku. Teplota byla zjišťována pomocí DAQ (zařízení pro sběr dat) které rovnou převádělo napětí na známém termočlánku na teplotu.

4. Schéma zapojení

Obr. 1 Schéma zapojení odporových snímačů teploty

Obr. 2 Schéma zapojení termočlánků

Na kanále CH1 byl připojen referenční termočlánek a na kanále CH2 byl připojen neznámý článek (Obr. 2). Ostatní snímače byly odporové a každý snímač měl svůj vlastní ohmmetr tak jak je vidět na Obr. 1.

5. Použité přístroje

Číslo	Název	Тур	Sériové číslo
1.	Multimetr	METEX ME-31	939622
2.		PROTEK 506	506023086
3.		METEX ME-32	FE51761
4.		METEX M3890D USB	1001208
5.	DAQ / SWITCH UNIT	Agilent 34972A LXI	MY49005710

Tab. 1 Seznam použitých přístrojů

6. Použité senzory

Číslo	Тур			
1.	Termočlánek neznámý			
2.	Termočlánek 5TC-TT-K-36-36			
3.	Snímač Pt100			
4.	Snímač Pt1000			
5.	PTC2kΩ			
6.	NTC2k2			

Tab. 2 Seznam použitých senzorů

7. Zpracování dat

°C	Pt100 [Ω]	Pt1000 [kΩ]	PTC2kΩ [kΩ]	NTC2k2 [kΩ]	Neznámý [μV]	Neznámý s ofsetem [mV]
<mark>22</mark>	110,00	<mark>1,10</mark>	<mark>1,97</mark>	<mark>2,45</mark>	<mark>-61,00</mark>	1,04
<mark>29,7</mark>	<mark>113,40</mark>	<mark>1,17</mark>	<mark>2,08</mark>	<mark>1,80</mark>	<mark>217,00</mark>	<mark>1,32</mark>
<mark>40,2</mark>	<mark>119,60</mark>	<mark>1,20</mark>	<mark>2,19</mark>	<mark>1,30</mark>	<mark>436,00</mark>	<mark>1,54</mark>
<mark>50,1</mark>	121,00	<mark>1,20</mark>	<mark>2,39</mark>	<mark>0,53</mark>	942,00	<mark>2,04</mark>
<mark>60</mark>	<mark>124,60</mark>	<mark>1,24</mark>	<mark>2,59</mark>	<mark>0,58</mark>	1 420,00	<mark>2,52</mark>
<mark>70,4</mark>	128,80	<mark>1,28</mark>	<mark>2,76</mark>	0,42	1 735,00	<mark>2,84</mark>
<mark>79,5</mark>	132,20	<mark>1,42</mark>	<mark>2,94</mark>	0,31	<mark>2 118,00</mark>	<mark>3,22</mark>

Tab. 3 Naměřená data

Graf 1 Závislost odporu na teplotě Pt100

Graf 2 Závislost odporu na teplotě Pt1000

Graf 3 Závislost odporu na teplotě $Pt2k2\Omega$

odpor [kΩ] 3 2,5 2 1,5 1 0,5 0 20 30 40 50 60 70 80

Graf 4 Závislost odporu na teplotě NTC2k2

teplota [°C]

Graf 5 Závislost napětí na teplotě neznámého snímače

Obr. 3 Výsledek online kalkulačky nejvíce odpovídající měřeným teplotám

8.Závěr

I přes viditelné nepřesnosti v měření jde na grafickém znázornění vidět lineární závislost, avšak abychom to mohli potvrdit museli bychom mít větší počet měření, který byl vzhledem k časovému omezení hodiny nerealizovatelný. Platinové snímače teploty pt100, pt1000 a pt2k2Ω mají stoupající charakteristiku, jelikož jako u všech vodičů s vzrůstající teplotou roste odpor. Z měření vyplívá, že NTC2k2 má opačnou teplotní charakteristiku tedy, že s rostoucí teplotou odpor klesá, tedy že se jedná o polykrystalický negastor.

Za použití online kalkulačky bylo empiricky při použití ofsetu 1,1 zjištěno, že se charakteristika neznámého snímače nejvíce podobá termočlánku typu K.

9.Zdroje

- [1] Termočlánek: princip činnosti, zařízení [online]. [vid. 2022-12-30]. Dostupné z: https://cs.ruarrijoseph.com/domashniy-uyut/13170-termopara-princip-deystviya-ustroystvo.html
- [2] Snímače teploty Pt100 princip, zapojení, třídy přesnosti | PROFESS [online]. [vid. 2022-12-30]. Dostupné z: https://www.profess.cz/cs/pci/odporove snimace teploty