胍 惌

1

电子科技大学 2022-2023 学年第 2 学期期末考试 A 卷

考试科目: 数学建模方法 考试形式: _开卷 考试日期: 2024年6月22日

本试卷由五部分构成, 共四页。考试时长: 90分钟

成绩构成比例:平时成绩 20 %,期末成绩 80 %

考试备注:

使用非存储功能的简易计算器、纸质资料,不能使用电脑和智能手机在网上交流与查找答案。

题号	 	三	四	五.	合计
得分					

得 分

一、(30分)。某养老院营养师要为按健康情况分组的一类人(记为甲类)拟订本周蔬菜类菜单,当前可供选择的蔬菜品种,价格和营养成分含量,以及甲类成员所需养分的最低数量见表 1 所示. 病人每周需 14 份蔬菜,为了口味的原因,规定一周内的卷心菜不多于 2 份,胡萝卜不多于 3 份,其他蔬菜不多于 4 份且至少一份.在满足要求的前提下,制订费用最少的一周菜单方案.

表 1 营养需求信息表

W. T. D. MANIELLE							
蔬菜			每份价格 (元)				
	养分	铁	磷	维生素 A	维生素 C	烟酸	
A1	青豆	0.45	20	415	22	0.3	2. 1
A2	胡萝卜	0.45	28	4065	5	0.35	1.0
А3	花菜	0.65	40	850	43	0.6	1.8
A4	卷心菜	0.4	25	75	27	0.2	1.2
A5	芹菜	0.5	26	76	48	0.4	2.0
A6	土豆	0.5	75	235	8	0.6	1.2
每周最	最低需求	6	125	12500	345	5	

得 分

二、(30分)(1)请给出求解最优化模型的随机投点法思路及主要步骤.

(2) 请用直接搜索法 (也称网格法) 求解下列最优化模型近似解. 要求以类似 MATLAB 语言的伪代码描述该算法.

$$\min f(x_1, x_2, x_3) = 2x_1^2 + 2x_1x_2 + x_2^2 + 3(x_3 - 40)^2$$

$$s.t.\begin{cases} 400 \le 3x_1 + 4x_2 + 5x_3 \\ 4x_1 + 3x_2 + 8x_3 \le 1200, \\ 0 \le x_1, x_2, x_3 \le 80. \end{cases}$$

得 分

三、(40分)为了解砖块密度是否与燃烧温度有关,在四种不同的温度下进行 验,其数据如下:

/ •//• • · · · · · · · · · · · · · · · ·						
燃烧温度/℃	砖块密度					
100	21.8	21.9	21.7	21.6	21.7	
125	21.7	21.4	21.5	21.4		
150	22.9	22.8	22.8	21.6	22.5	
175	21.9	21.7	21.8	21.4		

- (1) 计算每组数据(即不同温度对应的数据)的均值、中位数,并初步判断是左偏还是右偏?
- (2) 若有方差分析结果如下表所示,分析该表可得出什么结论?

	自由度	方差和	均方差	F	sig.
组间	3	2.849444	0.949815	9.498148	0.001116
组内	14	1.4	0.1		
总计	17	4.249444	0.249967		

(3) 若要得到更准确的结果, 应该如何处理?

得 分

四、(25分) 求以下微分方程组的通解

$$\begin{bmatrix} x_1' \\ x_2' \end{bmatrix} = \begin{bmatrix} 4 & 2 \\ 3 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

得 分

五、 $(25 \, \mathcal{G}) \, S(t) \, \mathcal{I}(t) \, \mathcal{R}(t)$ 分别表示 t 时刻易感类、传染类、恢复类占城市人口总数的比例. 分析如下 SARS 病毒的传播模型中各等式的原理。

$$\begin{cases}
\frac{dS}{dt} = -\lambda SI & (1) \\
\frac{dI}{dt} = \lambda SI - \nu I & (2) \\
\frac{dR}{dt} = \nu I & (2) \\
I + R + S = 1 & (2) \\
S_0 > 0, I_0 > 0 & (2)
\end{cases}$$