

Universidade Federal de Santa Catarina Disciplina de Inteligência Artificial Campus Araranguá

Métodos de busca Busca heurística

Prof. Eliane Pozzebon

epozzebon@gmail.com

Plano de aula

Métodos de busca

- a) Busca heurística
 - Busca A*
 - Busca Gulosa

Introdução

- Os métodos de busca são aplicados em diversos campos na resolução de problemas.
- A busca é um processo importante na solução de problemas difíceis para os quais não há técnicas mais diretas disponíveis.
- As estratégias de busca dividem-se em
 - Busca sem informação (busca cega)
 - Busca com informação (busca heurística)

Introdução

- Os métodos de busca cega fornecem uma solução para o problema de achar um caminho até um nó meta. Entretanto, em muitos casos, a utilização destes métodos é impraticável devido ao número muito elevado de nós a expandir antes de achar uma solução.
- Para muitos problemas, é possível estabelecer princípios ou regras práticas para ajudar a reduzir a busca.
- A técnica usada para melhorar a busca depende de informações especiais acerca do problema em questão.
- Esta informação pode ser chamada de INFORMAÇÃO
 HEURÍSTICA, e os métodos ou procedimentos de busca que a
 utilizam de MÉTODOS DE BUSCA HEURÍSTICA.

Busca Heurística

- Heurística: palavra originada do Grego "heuriskein" (descobrir).
- Não garante encontrar a melhor resposta, mas quase sempre encontra uma resposta muito boa.
- Consiste em uma função de avaliação (f(n)) que mede a distância até o objetivo.
- E uma função heurística (h(n)) utilizada para estimar o custo do caminho mais econômico do nó n até o nó objetivo.
 - Se n é um nó objetivo, então h(n) = 0.

Busca Heurística

- A informação que pode compor uma informação heurística é o custo do caminho.
- O custo do caminho pode ser composto pelo somatório de dois outros custos:
 - 1. O custo do caminho do estado inicial até o estado atual que está sendo expandido (função g).
 - 2. Uma estimativa do custo do caminho do estado atual até o estado meta (função heurística h).
- A filosofia geral que move a busca heurística é: O MELHOR PRIMEIRO.
 Isto é, no processo de busca deve-se primeiro expandir o nó "mais desejável" segundo uma função de avaliação.

Funções Heurísticas

- Uma função heurística deve ser admissível, ou seja, não deve superestimar o custo para alcançar o objetivo.
- Sempre é melhor usar funções heurísticas com valores mais altos desde que não superestime o custo e que o tempo de computação seja muito grande.
- O propósito de uma função heurística é guiar o processo de busca na direção mais promissora, sugerindo que caminho seguir primeiro, quando houver mais de um disponível.

Funções Heurísticas

- Exemplo:
 - Quebra-cabeça de 8 peças.

Funções Heurísticas

- Funções heurísticas que podem ser utilizadas para o quebra-cabeça de 8 peças:
 - $-h_1$ = número de blocos em posições erradas.
 - h_1 = 6 blocos.
 - $-h_2$ = soma das distâncias dos blocos de suas posições objetivo. (distância Manhatan)
 - $h_2 = 4 + 0 + 3 + 3 + 1 + 0 + 2 + 1 = 14$

- Estratégias de busca com informação:
 - Busca Gulosa pela melhor escolha.
 - -A*
- Algoritmos de busca local:
 - Busca de Subida da Encosta
 - Busca de Têmpera Simulada
 - Busca em Feixe Local
 - Algoritmos Genéticos

- Busca Gulosa (Greedy Search)
 - Tenta expandir o nó que aparece mais próximo ao nó meta.
 - Avalia os nós usando apenas a função heurística f(n) = h(n).
 - Exemplo:
 - Localização de rotas na Romênia Ir de Arad a Bucareste.
 - Usar heurística de distância em linha reta h_{DLR} h(n) é a distância em linha reta de n até bucareste.
 - $h_{DLR}(in(Arad)) = 366Km$.

- Busca Gulosa (Greedy Search)
 - Exemplo: Caminho entre Arad e Bucareste.

- Busca Gulosa (Greedy Search)
 - Exemplo:
 - Estado inicial

- Busca Gulosa (Greedy Search)
 - Exemplo:
 - Após expandir Arad

- Busca Gulosa (Greedy Search)
 - Exemplo:
 - Após expandir Sibiu

- Busca Gulosa (Greedy Search)
 - Exemplo:
 - Após expandir Fagaras

- Busca Gulosa (Greedy Search)
 - Exemplo:
 - Custo de busca foi mínimo pois nenhum nó que não esteja no caminho da solução foi expandido.
 - O caminho até Bucareste passando por Sibiu e Fagaras é 32Km mais longo que o caminho por Rimnicu Vilcea e Pitesti (otimização).
 - Algoritmo é dito *guloso* pois em cada passo tenta chegar o mais perto possível do objetivo.

- Busca Gulosa (Greedy Search)
 - Observações:
 - Semelhante à busca e profundidade por preferir seguir um único caminho até o objetivo, mas voltará ao encontrar um beco sem saída (backtracking).
 - Não é ótimo e é incompleta.
 - Pode entrar em um caminho infinito e nunca retornar para experimentar outras possibilidades.

- Busca Gulosa (Greedy Search)
 - Análise de complexidade
 - É completa se não admitir estados repetidos.
 - Tempo: uma boa heurística pode reduzir drasticamente o tempo.
 - Espaço: todos os nós são matidos na memória.
 - Não garante a solução ótima.

A* (A estrela)

- Procura evitar expandir nós que já são "custosos".
- É um método de busca que procura otimizar a solução, considerando todas as informações disponíveis até aquele instante, não apenas as da última expansão.
- Todos os estados abertos até determinado instante são candidatos à expansão.
- Combina, de certa forma, as vantagens tanto da busca em largura como em profundidade.
- Busca onde o nó de menor custo "aparente" na fronteira de espaço de estados é expandido primeiro.

- A* (A estrela)
 - -f(n) = g(n) + h(n)
 - onde:
 - f(n) = custo do caminho do nó inicial até o nó n.
 - g(n) = custo do caminho estimado do nó n até o nó final.
 - h(n) = custo do caminho total estimado.

A* (A estrela)

- A* expande o nó de menor valor de f a cada instante.
- A* deve usar uma heurística admissível, isto é, $h(n) \le h^*(n)$, onde $h^*(n)$ é o custo real para ir de n até o nó final.
- Admissibilidade de A*
 - Um método de busca é admissível se ele sempre encontra uma solução e se esta solução é a de menor custo.
 - A busca em largura é admissível. O mesmo não ocorre com a busca em profundidade.
- Teorema da admissibilidade de A*
 - A busca A* é ótima, isto é, sempre encontra o caminho de menor custo até a meta.

- A* (A estrela)
 - Exemplo: Caminho entre Arad e Bucareste.

Busca Heuristica

Busca A* (A estrela)

- A* (A estrela)
 - Exemplo:
 - Estado inicial

- A* (A estrela)
 - Exemplo:
 - Após expandir Arad

- A* (A estrela)
 - Exemplo:
 - Após expandir Sibiu

- A* (A estrela)
 - Exemplo:
 - Após expandir Rimnieu Vilcea

- A* (A estrela)
 - Exemplo:
 - Após expandir Fagaras

- A* (A estrela)
 - Exemplo:
 - Após expandir Pitesti

- A* (A estrela)
 - Observações:
 - Quando utilizada com busca em árvore, A^* será ótima se h(n) for uma heurística admissível.
 - *h(n)* é admissível se nunca superestimar o custo para alcançar o objetivo.
 - Se g(n) é o custo exato para alcançar n, como consequência, f(n) nunca irá superestimar o custo verdadeiro de uma solução passando por n.

- A* (A estrela)
 - Observações:
 - A* será ótima se o espaço de busca for um grafo e h(h) for uma heurística consistente (monotônica).
 - Uma heurística h(h) é consistente se para todo nó n e todo sucessor n' de n gerado por qualquer ação a, o custo estimado de alcançar o objetivo a partir de n não é maior que o custo do passo de se chegar a n' somado ao custo estimado de alcançar o objetivo a partir de n', ou seja:

- A* (A estrela)
 - Observações:
 - Para todo nó
 - $n:h(n) \le c(n,a,n') + h(n')$

- Toda heurística consistente é admissível.
- Frequentemente quando h(n) é admissível, é também consistente.

- A* (A estrela)
 - Avaliação:
 - Estratégia de busca completa.
 - Ótima.
 - Por manter todos os nós gerados em memória, esgota o espaço bem antes de esgotar o tempo.

• EXERCÍCIO

- Algoritmo A*
 - g(n): mede o cumprimento real do caminho de um estado n qualquer até o estado inicial
 - h(n): estimativa heuristica da distância entre o estado n e o objetivo
 - f(n): função de avaliação f(n)=g(n)+h(n)
- Jogo do 8
 - g(n) = nível do nó (custo real)
 - h(n) = número de peças fora do lugar (estimativa)
 » h = (1+1+1+0+1+1+1)=7

Exercício

Estado inicial

Estado objetivo

Exercícios...