Министерство науки и высшего образования Российской Федерации

федеральное государственное автономное образовательное учреждение высшего образования «НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИТМО»

Отчет по лабораторной работе

Прямой метод решения СЛАУ на основе LU-разложения

по дисциплине «Методы оптимизации»

Авторы: Герасимов Михаил, Пушкарев Глеб, Асмирко Антон

Группа: М3235

Факультет: ФИТиП

Преподаватель: Корсун Мария Михайловна, Михаил Свинцов Викторович

Санкт-Петербург 2021

Лабораторная работа №3

- 1. Реализовать прямой метод решения СЛАУ на основе LU-разложения с учетом следующих требований:
 - формат матрицы профильный;
 - размерность матрицы, элементы матрицы и вектор правой части читать из файлов¹, результаты записывать в файл;
 - в программе резервировать объём памяти, необходимый для хранения в нем только одной матрицы и необходимого числа векторов (то есть треугольные матрицы, полученные в результате разложения, должны храниться на месте исходной матрицы);
 - элементы матрицы обрабатывать в порядке, соответствующем формату хранения, то есть необходимо работать именно со столбцами верхнего и строками нижнего треугольников.
- 2. Провести исследование реализованного метода на матрицах, число обусловленности которых регулируется за счёт изменения диагонального преобладания (то есть оценить влияние увеличения числа обусловленности на точность решения). Для этого необходимо решить последовательность СЛАУ:

$$A_k x_k = f_k, \quad k = 0, 1, 2, ...,$$
 (1)

где матрицы A_k строятся следующим образом:

$$a_{ii} = \begin{cases} -\sum_{i \neq j} a_{ij}, & i > 1 \\ -\sum_{i \neq j} a_{ij} + 10^{-k}, & i = 1 \end{cases}$$

и $a_{ij} \in \{0,-1,-2,-3,-4\}$ выбираются достаточно произвольно, а правая часть f_k получается умножением матрицы A_k на вектор $x^* = (1, ..., n)$. Размерность n для СЛАУ выбирать от 10 до 10^3 .

Для каждого k, для которого система (1) вычислительно разрешима, оценить погрешность найденного решения. Исследования представить в виде следующей таблицы:

¹ Предварительно необходимо написать отдельный генератор матрицы в требуемом формате. Далее полученные структуры матрицы, вектор правой части и точного решения записываются в файлы. Для каждого теста создавать отдельную директорию. При запуске метода решения выбирается директория, из которой будут считываться данные.

n	k	$ x^* - x_k $	$ x^* - x_k / x^* $

Для одного из значений k попытаться найти операцию, вызывающую скачкообразное накопление погрешности, пояснить полученные результаты.

3. Провести аналогичные исследования на матрицах Гильберта различной размерности. Матрица Гильберта размерности k строится следующим образом:

$$a_{ij} = \frac{1}{i+j-1}, \ i, j = \overline{1,k}$$
.

- 4. Реализовать метод Гаусса с выбором ведущего элемента для **плотных** матриц. Сравнить метод Гаусса по точности получаемого решения и по количеству действий с реализованным прямым методом LU-разложения.
- 5. *Бонусное задание.* Реализовать метод сопряженных градиентов для решения СЛАУ, матрица которых хранится в разреженном строчно-столбцовом формате и является симметричной.

Точность решения СЛАУ задавать как минимум $1e^{-7}$.

- 5.1. Протестировать разработанную программу. Для тестирования использовать матрицы небольшой размерности, при этом вектор правой части формировать умножением тестовой матрицы на заданный вектор.
- 5.2. Провести исследование реализованного метода на матрице с диагональным преобладанием, построенной следующим образом:

$$a_{ii} = \begin{cases} -\sum_{i \neq j} a_{ij}, & i > 1 \\ -\sum_{i \neq j} a_{ij} + 1, & i = 1, \end{cases}$$

и $a_{ij} \in \{0,-1,-2,-3,-4\}$ выбираются достаточно произвольно, а правая часть f получается умножением матрицы A на вектор $x^* = (1,...,n)$. Размерность n для СЛАУ выбирать от 10 до 10^5 .

Построить таблицу:

n	Количество итераций	$ x^*-x_k $	$ x^* - x_k / x^* $	cond(A)

Для каждого полученного решения с помощью невязки и погрешности оценить число обусловленности $cond(A) \geq \frac{\|x-x^*\|}{\|x^*\|} / \frac{\|f-Ax\|}{\|f\|}$.

- 5.3. Провести аналогичные (п. 5.2) исследования на матрице с обратным знаком внедиагональных элементов.
- 5.4. Повторить аналогичные (п. 5.2) исследования для плотной матрицы Гильберта для различных размерностей (размерность n для СЛАУ выбирать от 10 до 10^3).

Требования к программному коду (вычислительные алгоритмы)

- 1. Рекомендуется использовать языки программирования: C++, C#, Java.
- 2. Рекомендуется придерживаться основных положений ООП при разработке.
- 3. Рекомендуется выполнять документирование программного кода.

Оценка результатов

Задание	Результат (в виде коэффициента)	
Сдача в срок	0.15	
Основные численные результаты, выводы, защита	0.0 - 0.55	
Программная реализация и индивидуальный код	0.0 - 0.25	
Грамотность изложения и общее качество отчета	0.0 – 0.05	
Дополнительное задание	0.3	

Срок сдачи третей лабораторной работы - до 14.05.2021 (включительно).

Описание структур и методов:

1. Профильный формат хранения матриц

Профильные форматы хранения матриц используется, когда матрица не обладает определенной структурой и ненулевые элементы расположены в произвольном порядке, но при этом они расположены, так что в строке можно выделить так называемый профиль — это часть строки от первого ненулевого элемента в строке до диагонального элемента. Причем, если между первым ненулевым элементом и элементом диагонали есть нулевые элементы, то они будут храниться в профиле.

Есть два вида профильных форматов:

- Симметричный профильный расположение элементов матрицы является симметричным относительно главной диагонали. Такой формат позволяет сэкономить память.
- Несимметричный профильный портрет матрицы относительно главной диагонали несимметричный

В профильном формате хранения матриц используется 4 массива:

- Вещественный массив di[n]— массив диагональных элементов.
- Вещественный массив al[m] массив вне диагональных элементов нижнего треугольника (по строкам).
- Вещественный массив au[m] массив вне диагональных элементов верхнего треугольника (по столбцам).
- Целочисленный массив ia[n] массив хранящий индексы с которых начинается профиль

К элементу матрицы с индексами і, ј обращаются по данной схеме:

- Если i = j, то $a_{ij} = di[i]$;
- Если i > j, то вычисляется длина соответствующего профиля len = ia[i+1] ia[i], тогда $a_{ij} = ia[i] + len i + j + 1$.
- ullet если i < j, то len = ia[j+1] ia[j], тогда $a_{ij} = ia[j] + len j + i + 1$.

2. LU - разложение

Разложение, в результате которого матрица A представляется в виде произведения нижнетреугольной матрицы L на верхнетреугольную матрицу U называется LU – разложением. LU – разложение существует если главные миноры матрицы A отличны он нуля, причем если элементы диагонали матрицы L или матрицы U ненулевые, то разложение считается единственным.

$$U_{ii} = 1$$

$$L_{00} = A_{00}$$

$$L_{ij} = A_{ij} - \sum_{k=0}^{j-1} L_{ik} U_{kj}$$

$$U_{ij} = \frac{1}{L_{jj}} \left(A_{ji} - \sum_{k=0}^{j-1} L_{jk} U_{ki} \right)$$

$$L_{ii} = A_{ii} - \sum_{k=0}^{i-1} L_{ik} U_{ki}$$

Элементы матриц L и U можно считать на месте старой матрицы (так как профиль в случае профильных матриц не меняется), что существенно экономит затрачиваемую память.

- 3. Метод Гаусса с LU разложением Решение СЛАУ вида Ax = b методом Гаусса с выбором ведущего элемента заключается в следующем:
 - а. Расширенная матрица $(A \mid b)$ приводится к треугольному виду прямым ходом. На k-ой итерации (при k от 0 до n-1) среди строчек $A_k \dots A_n$ выбирается строчка с наибольшем по модулю элементом A_{ik} и меняется местами со строчкой A_k (для уменьшения погрешности). Остальные элементы расширенной матрицы изменяются по формулам:

$$for i = \overline{k+1, n-1}$$

$$A_{ij} = A_{ij} - \frac{A_{ik}}{A_{kk}} \cdot A_{kj}, \quad j = \overline{k, n}$$

$$b_i = b_i - \frac{A_{ik}}{A_{kk}} \cdot b_k$$

После проведённых преобразований матрица $(A \mid b)$ приводится к верхнетреугольному виду.

b. Обратным ходом в полученной системе находится искомое решение x по следующим формулам:

$$x_k = \frac{1}{A_{kk}} \cdot \left(b_k - \sum_{j=k+1}^{n-1} A_{kj} \cdot x_j \right), \quad k = \overline{n-1,0}$$

Если в какой-то момент в расширенной матрице появляется строчка, состоящая полностью из элементов, меньших заданной точности по модулю, то решения нет или их бесконечно много.

Исследование LU-разложения:

			го-разложен	
n	k	x* - x	x* - x / x*	Count of actions
10	0	3,11527E-15	1,58769E-16	1135
10) 1	3,75551E-15	1,91398E-16	1135
10) 2	2,77506E-15	1,4143E-16	1135
10	3	3,41463E-15	1,74026E-16	1135
10) 4	3,64505E-15	1,85769E-16	1135
10	5	3,70052E-15	1,88596E-16	1135
10) 6	3,30312E-15	1,68343E-16	1135
10	7	4,42615E-15	2,25577E-16	1135
10	8	3,58867E-15	1,82895E-16	1135
10	9	4,23009E-15	2,15585E-16	1135
10	10	3,44119E-15	1,75379E-16	1135
100	0	3,64566E-13	6,26749E-16	1014850
100) 1	3,51706E-13	6,04639E-16	1014850
100) 2	3,30941E-13	5,68941E-16	1014850
100	3	3,47562E-13	5,97515E-16	1014850
100) 4	3,47046E-13	5,96629E-16	1014850
100	5	3,73189E-13	6,41573E-16	1014850
100	6	3,41536E-13	5,87156E-16	1014850
100	7	3,60845E-13	6,20352E-16	1014850
100	8	3,57114E-13	6,13937E-16	1014850
100	9	3,55789E-13	6,1166E-16	1014850
100	10	3,55789E-13	6,1166E-16	1014850
500	0	1,00021E-11	1,5472E-15	125374250
500	1	9,88616E-12	1,52926E-15	125374250
500	2	1,00602E-11	1,55618E-15	125374250
500	3	1,00134E-11	1,54894E-15	125374250
500) 4	1,00312E-11	1,55171E-15	125374250
500	5	1,00195E-11	1,54989E-15	125374250
500	6	1,00175E-11	1,54958E-15	125374250
500	7	1,00176E-11	1,5496E-15	125374250
500	8	1,00176E-11	1,5496E-15	125374250
500	9	1,00176E-11	1,5496E-15	125374250
500	10	1,00176E-11	1,5496E-15	125374250
1000	0	3,80442E-11	2,0822E-15	1001498500
1000) 1	3,85072E-11	2,10754E-15	1001498500
1000) 2	3,86121E-11	2,11329E-15	1001498500
1000	3	3,86588E-11	2,11584E-15	1001498500
1000) 4	3,88673E-11	2,12725E-15	1001498500
1000	5	3,90011E-11	2,13458E-15	1001498500
1000			2,05962E-15	1001498500
1000			2,06553E-15	1001498500
1000		·	2,09063E-15	1001498500
1000		· ·	2,05385E-15	1001498500
1000			2,06081E-15	1001498500

Как видно из таблицы с увеличением размерности, так и с увеличением числа обусловленности увеличивается погрешность вычислений. Погрешность увеличивается из-за большого количества делений чисел близких к нулю.

Исследование LU-разложения на матрицах Гильберта:

n	Count of actions	x* - x	x* - x / x*
2	11	1,48952E-15	6,66134E-16
3	36	4,09797E-14	1,09523E-14
4	82	1,79201E-12	3,27175E-13
5	155	1,61557E-11	2,17843E-12
6	261	3,09513E-10	3,24458E-11
7	406	4,33716E-08	3,66557E-09
8	596	1,69087E-06	1,18384E-07
9	837	3,4777E-05	2,06001E-06
10	1135	0,003271563	0,000166734
11	1496	0,098310176	0,00437042
12	1926	2,584083722	0,101356102
13	2431	47,48964254	1,659422406
14	3017	271,1573368	8,511151843
15	3690	259,7606384	7,376706432
16	4456	188,6626206	4,877755933
17	5321	214,8978353	5,086428343
18	6291	1111,576203	24,20476948
19	7372	657,2337054	13,22425914
20	8570	630,2527582	11,76450901
10	1135	0,003271563	0,000166734
100	1014850	200843,0167	345,2817671
500	125374250	15061449,04	2329,81522
1000	1001498500	141006016,7	7717,429777

Для матриц Гилберта известно, что число обусловленности растет экспоненциально $\left(O\left(\frac{\left(1+\sqrt{2}\right)^{4n}}{\sqrt{n}}\right)\right)$. Из-за этого наблюдается резкий скачок в погрешности, причем даже при малых n.

Исследование метода Гаусса:

		1 1	методатаус	
n	k	x* - x	x* - x / x*	Count of actions
10	0	3,20644E-15	1,63415E-16	850
10	1	3,50255E-15	1,78507E-16	850
10	2	3,45814E-15	1,76243E-16	850
10	3	3,61982E-15	1,84483E-16	850
10	4	3,60328E-15	1,8364E-16	850
10	5	3,40008E-15	1,73284E-16	850
10	6	3,51259E-15	1,79018E-16	850
10	7	2,35695E-15	1,20121E-16	850
10	8	4,05499E-15	2,06661E-16	850
10	9	2,43371E-15	1,24033E-16	850
10	10	3,78971E-15	1,93142E-16	850
100	0	4,32062E-13	7,42785E-16	686500
100	1	3,78072E-13	6,49967E-16	686500
100	2	3,76364E-13	6,4703E-16	686500
100	3	4,16091E-13	7,15328E-16	686500
100	4	3,84351E-13	6,60761E-16	686500
100	5	3,8851E-13	6,67913E-16	686500
100	6	3,97605E-13	6,83547E-16	686500
100	7	3,72268E-13	6,39989E-16	686500
100	8	3,80058E-13	6,53382E-16	686500
100	9	3,83569E-13	6,59417E-16	686500
100	10	3,75441E-13	6,45444E-16	686500
500	0	1,00445E-11	1,55375E-15	83832500
500	1	9,67058E-12	1,49592E-15	83832500
500	2	9,76222E-12	1,51009E-15	83832500
500	3	9,81533E-12	1,51831E-15	83832500
500	4	9,84159E-12	1,52237E-15	83832500
500	5	9,82483E-12	1,51978E-15	83832500
500	6	9,82362E-12	1,51959E-15	83832500
500	7	9,65938E-12	1,49418E-15	83832500
500	8	9,82361E-12	1,51959E-15	83832500
500	9	9,84518E-12	1,52292E-15	83832500
500	10	9,51672E-12	1,47212E-15	83832500
1000	0	3,82415E-11	2,093E-15	668665000
1000	1	3,82215E-11	2,09191E-15	668665000
1000	2	3,83354E-11	2,09814E-15	668665000
1000	3	3,84322E-11	2,10344E-15	668665000
1000	4	3,81874E-11	2,09005E-15	668665000
1000	5	3,77346E-11	2,06526E-15	668665000
1000	6	3,77372E-11	2,0654E-15	668665000
1000	7	3,7652E-11	2,06074E-15	668665000
1000	8	3,7603E-11	2,05806E-15	668665000
1000	9	3,77323E-11	2,06513E-15	668665000
1000	10	3,77679E-11	2,06708E-15	668665000

Исследование проводились на тех же матрицах, которые использовались в исследовании LU-разложения. Как видно из таблицы разница в точности невелика.

Исследование метода Гаусса на матрицах Гильберта:

n	Count of actions	x* - x	x* - x / x*
2	10	1,48952E-15	6,66134E-16
3	31	1,60134E-14	4,27976E-15
4	68	1,14368E-12	2,08806E-13
5	125	5,2681E-11	7,10351E-12
6	206	1,1666E-09	1,22293E-10
7	315	3,62467E-08	3,0634E-09
8	456	3,00325E-06	2,1027E-07
9	633	1,10215E-05	6,5286E-07
10	850	0,003895328	0,000198524
11	1111	0,188768859	0,008391799
12	1420	1,257977472	0,049341936
13	1781	221,4040323	7,736482994
14	2198	75,83000754	2,380170554
15	2675	157,8850695	4,483634684
16	3216	178,0000559	4,602081886
17	3825	49,16526817	1,163695359
18	4506	688,3423273	14,98877657
19	5263	281,3876471	5,661826429
20	6100	1441,666582	26,91063113
10	850	0,003895328	0,000198524
100	686500	70641,2778	121,4438302
500	83832500	6239582,808	965,184356
1000	668665000	70633138,61	3865,837076

Метод Гаусса более точен чем LU-разложение на больших размерностях и большом числе обусловленности матрицы, на маленьких же они примерно одинаковы.

Если считать операции умножения и деления, то LU-разложение совершает $\frac{2n}{3}+n^2+\frac{n^3}{3}$ действий, метод Гаусса совершает $-\frac{n}{3}+n^2+\frac{n^3}{3}$ действий. За счёт совершения меньшего числа сложных операций метод Гаусса более эффективен по времени, чем метод LU-разложения, что видно из табличных данных.

Подведем итоги:

- Метод Гаусса превосходит LU-разложение в скорости и точности (на больших размерностях, и большом числе обусловленности), но требует матрицу в обычном формате.
- Профильный формат хранения матриц позволяет сэкономить память на матрицах с большим диагональным преобладанием (то есть, когда элементы сосредоточены около главной диагонали). Минус такого формата заключается в невозможности изменять элементы вне профиля без перестраивания структуры.
- Число обусловленности сильно влияет на ошибку в решении даже на небольших размерностях. При увеличении размерности этот эффект усиливается.
- Метод LU-разложения не требует изменения элементов вне профиля матрицы, поэтому профильный формат хранения матрицы подходит для данного метода, что позволяет работать с СЛАУ большего размера.

Метод сопряженных градиентов:

n	Iterations	x* - x	x*-x / x*	cond(A)
10	10,33333	3,02E-09	1,54079E-10	2,461632
100	16,66667	2,06E-08	3,54088E-11	0,997363
300	21,33333	7,43E-08	2,46927E-11	1,026749
500	21,33333	2,26E-07	3,50035E-11	1,012415
700	21,66667	2,32E-07	2,16835E-11	1,000326
1000	21,66667	6,19E-07	3,38852E-11	0,994511

Сразу стоит обратить внимание на очень малое кол-во итераций по сравнению с прошлыми методами. Точность чуть хуже по сравнению с прошлыми методами.

Метод сопряженных градиентов на матрицах Гильберта:

n	Iterations	x* - x	x* - x / x*	cond(A)
2	2	1,78E-15	7,94411E-16	0,926162933
3	3	7,18E-13	1,91786E-13	0,734398978
4	5	2,92E-11	5,33399E-12	5,986636642
5	7	2,58E-11	3,48013E-12	217,3213419
6	10	6,49E-10	6,80648E-11	17505,805
7	9	0,007851	0,000663517	268889262,6
8	8	0,020021	0,001401755	23034445,83
9	12	0,00554	0,000328152	22511309,84
10	12	0,011025	0,000561881	105560308
11	11	0,018917	0,000840975	180811541,7
12	11	0,029539	0,0011586	86296691,2
13	11	0,043171	0,001508514	46428481,4
14	11	0,060062	0,001885237	27649113,92
15	14	0,017317	0,000491776	534544881,3
16	14	0,023767	0,000614492	315317606,8
17	14	0,031573	0,000747294	205968376,5
18	14	0,040833	0,00088914	137669213,6
19	14	0,05164	0,001039062	95762495,56
20	13	0,064082	0,001196173	12520802,36
40	17	0,259102	0,001741334	22186601,4
60	19	0,359728	0,001324087	30166059,06
80	23	0,353959	0,000848845	61295309
100	22	0,728156	0,001251818	36586653,93
200	27	2,515357	0,001534582	23023747,65
400	35	4,095477	0,000885037	8994412,525
600	42	6,385637	0,000751615	11950918,09
800	42	13,86183	0,001060081	12333100,06
1000	38	24,73639	0,001353853	23651121,25

Все так же кол-во итераций очень маленькое по сравнению с прошлыми методами. Вдобавок порядок роста погрешности меньше. Метод сопряженных градиентов себя зарекомендовал как устойчивый и более выгодный чем прошлые методы, особенно для больших размерностей.

Выводы:

Гаусс превосходит LU-разложение в скорости и точности (на больших размерностях, и большом числе обусловленности), но требует матрицу в обычном формате (в данном случае матрицах Гилберта).

Число обусловленности на Гилбертовых матрицах растет экспоненциально. Так же было замечено что точность в основном зависит не от алгоритма, а от числа обусловленности. Метод сопряженных градиентов совершает гораздо меньше итераций, и дает лучшую точность на матрицах с большим числом обусловленности.

Исходный код: https://github.com/NelosG/Optimization-Methods/tree/main/Lab3