COMPUTER SCIENCE & IT

DIGITAL LOGIC

Lecture No. 13

Combinational Circuit

Question Discussion

Decoder

Encoder

Decoder

- What is Decoder?
- · 9t is a combinational ckt having many inputs and many of s
- . It is banically und to convert binary into other codes.

 If binary to octal

 If binary to the the adecimal
- · 9ts order is n:2n

2:4 Decoder

AB=11

3:8 Decoder

Low enable decoder

Imp point regarding functionality of decoder:

· Whenever we apply a particular input combination on i/p ride then corresponding o/p line will go at logic 1' and at the sametime other o/p lines will be at 'c'.

Full adder implementation using Decoder + OR gate

Full adder using 3:8 decoder + OR gate:

$$S(x,y,3) = X \oplus y \oplus 3 = \sum (1,2,4,7) = \overline{x}\overline{y}\overline{3} + \overline{x}\overline{y}\overline{3} + x\overline{y}\overline{3} + x\overline{y}\overline{3}$$

H.W.

Q. 9 mplement F.S. uning 3:8 decoder & OR gate.

Q. 9mblement H.A & H.S using 2:4 decoder & ORgate.

Q. $f(A,B,C) = \overline{A}B + B\overline{C} + AC$ implement the given function using a decoder and OR. Imp point regarding implementation of logical function using decoder:

Whenever use need implement any boolean function using decoder & DR gate, then function must always be expressed in standard SOP form

No of i/P lines in decoder is equal to no of Variables in boolean function.

Comparison of DeMUX and Decoder circuit

How their internal circuits are same?

_

Encoder

What is encoder?

```
# 9t is a combinational CKt having many 1/Px and many 0/Ps.
```

9t is banically used to convert other codes into binary.

y Hexadecimal to binary.

```
# 9ts order is (2n:n)
```

$$egin{array}{c} I_0 \ I_1 \ I_2 \ I_3 \ \end{array} egin{array}{c} y_1 \ y_0 \ \end{array}$$

$$y_{1}(I_{0},I_{1},I_{2},I_{3}) = \Sigma(I,2) + d\Sigma(0,3,5,6,7,9,10,11)$$

$$y_{0}(I_{0},I_{1},I_{2},I_{3}) = \Sigma(I,4) + d\Sigma(0,3,5,6,7,9,10,11)$$

$$y_{1} = I_{2}+I_{3} + d\Sigma(0,3,5,6,7,9,10,11)$$

$$y_{2} = I_{1}+I_{3} + I_{3}$$

$$y_{3} = I_{1}+I_{3}$$

Truth Table:

	I_0	I_1	I_2	I_3	y_1	y_0
8		0	0	0	0	0
4	0	1	0	0	0	
2	0	0)	0	1	0
	0	O	0		ſ	(

$$y_1 = J_2 + I_3$$

$$\forall o = I_1 + I_3$$

Pw

• 8:3 Encoder:

Truth Table:

1	D	1
1	V	V
_ `	=	

I_0	I_1	I_2	I_3	I_4	I_5	I_6	I_7	<i>y</i> ₂	y_1	y_0
	0	O	0	0	0	0	0	0	0	D
0	1	0	0	0	0	O	0	D	0	1
0	0		σ	0	0	0	0	0		O
٥	δ	Ŏ	1	0	O	0	0	0	- 1	1
D	0	0	0	1	0	O	0		0	D
0	0	0	0	0		0	O	1	D	
D	0	0	O	O	0	1	0	1	1	0
0	0	0	O	0	0	O)	1	1	1

$$y_2 = I_4 + I_5 + I_6 + I_7$$

$$y_1 = I_2 + I_3 + I_6 + I_7$$

$$y_0 = I_1 + I_3 + I_5 + I_7$$

Priority Encoder:

$$y_1 = J_2 + J_3$$

 $y'_{1}(I_{3},I_{2},I_{1},I_{0}) = \sum (I_{1},I_{2},I_{3}) + d \Sigma(0)$ $y'_{0}(I_{3},I_{2},I_{1},I_{0}) = \sum (I_{1},4,5,6,7) + d \Sigma(0)$ $y'_{0}(I_{3},I_{2},I_{1},I_{0}) = \sum (I_{1},4,5,6,7) + d \Sigma(0)$

ч.							
y1	Īī,	TITO	I, Io	I, 19			
Ī,Ī,	X	1	- 1	1			
$\overline{I}_3I_{\lambda}$							
I312							
I315							
Y - = =							

Note: All 0's combination will never be possible in any Encoder -> normal or primity

Encoder.

2 Minute Summary

- Decoder & Encoder

Thank you

Soldiers!

