Relaying a Fountain Code

Ramakrishna Gummadi and RS Sreenivas

Coordinated Science Lab
Department of Electrical and Computer Engineering
University of Illinois at Urbana-Champaign

IT School, PSU

06/03/08

Fountain Codes

Fountain Coded Stream

- Each client collects enough packets to decode
- Coding doesn't depend on the erasure probabilities Rateless!
- Most popular examples: LT, Raptor.

- Average degree $O(\log k) \Rightarrow \text{Logarithmic Per Symbol Complexity}$
- $k + O(\sqrt{k}\log^2 k)$ coded packets sufficient \Rightarrow Rate Optimal and very low overhead
- Decoding Iterative BP decoding

- Simply Forwarding lose mincut capacity
- Decode and Reencode Delay
- Random Linear Codes O(k) Complexity
- Chunked Codes [Harvey et. al. 2006] $O(\log^2 k)$ complexity
- Trade off Schemes for Line networks [Pakzad et. al. 2005]
- Can we achieve the optimality of single hop?

Multiple hops

- Simply Forwarding lose mincut capacity
- Decode and Reencode Delay
- Random Linear Codes O(k) Complexity
- Chunked Codes [Harvey et. al. 2006] $O(\log^2 k)$ complexity
- Trade off Schemes for Line networks [Pakzad et. al. 2005]
- Can we achieve the optimality of single hop?

Multiple hops

- Simply Forwarding lose mincut capacity
- Decode and Reencode Delay
- Random Linear Codes O(k) Complexity
- Chunked Codes [Harvey et. al. 2006] $O(\log^2 k)$ complexity
- Trade off Schemes for Line networks [Pakzad et. al. 2005]
- Can we achieve the optimality of single hop?

Fountain Coded Stream

- Simply Forwarding lose mincut capacity
- Decode and Reencode Delay
- Random Linear Codes O(k) Complexity
- Chunked Codes [Harvey et. al. 2006] $O(\log^2 k)$ complexity
- Trade off Schemes for Line networks [Pakzad et. al. 2005]
- Can we achieve the optimality of single hop?

Multiple hops

- Simply Forwarding lose mincut capacity
- Decode and Reencode Delay
- Random Linear Codes O(k) Complexity
- Chunked Codes [Harvey et. al. 2006] $O(\log^2 k)$ complexity
- Can we achieve the optimality of single hop?

- Simply Forwarding lose mincut capacity
- Decode and Reencode Delay
- Random Linear Codes O(k) Complexity
- Chunked Codes [Harvey et. al. 2006] $O(\log^2 k)$ complexity
- Trade off Schemes for Line networks [Pakzad et. al. 2005]
- Can we achieve the optimality of single hop?

- Simply Forwarding lose mincut capacity
- Decode and Reencode Delay
- Random Linear Codes O(k) Complexity
- Chunked Codes [Harvey et. al. 2006] $O(\log^2 k)$ complexity
- Trade off Schemes for Line networks [Pakzad et. al. 2005]
- Can we achieve the optimality of single hop?

Goals

- No Delay because of Decode and Re-encode
- Rateless
- Throughput rate to any node = Its min cut capacity from the source
- Complexity and Overhead similar to LT codes at all nodes

Goals

- No Delay because of Decode and Re-encode
- Rateless
- Throughput rate to any node = Its min cut capacity from the source
- Complexity and Overhead similar to LT codes at all nodes

- No Delay because of Decode and Re-encode
- Rateless
- Throughput rate to any node = Its min cut capacity from the source
- Complexity and Overhead similar to LT codes at all nodes

Goals

- No Delay because of Decode and Re-encode
- Rateless
- Throughput rate to any node = Its min cut capacity from the source
- Complexity and Overhead similar to LT codes at all nodes

Assumptions

- Tree Network
- Discrete Memoryless Erasure Channels
- Universal Upper bound on Erasure probabilities

Challenges

- Online Encoding
 - Intermediate Nodes can only access packets sequentially as received.
- Re-encoding the Coded packets
 - Intermediate nodes should be able to re-encode the coded packets without waiting to decode.

Challenges

- Online Encoding
 - Intermediate Nodes can only access packets sequentially as received.
- Re-encoding the Coded packets
 - Intermediate nodes should be able to re-encode the coded packets without waiting to decode.

A toy problem

- Generate a random set of k+o(k) symbols according to the LT encoding process.
- Run a mock decoder. Let π be the sequence in which we see decoded packets.
- Decodability \Rightarrow the coded packet used in the i^{th} step of decoding was a combination involving only the first i decoded packets.
- Do actual encoding *online* by assigning packet indices in the sequence defined by $\pi!$

A toy problem

- Generate a random set of k+o(k) symbols according to the LT encoding process.
- Run a mock decoder. Let π be the sequence in which we see decoded packets.
- Decodability \Rightarrow the coded packet used in the i^{th} step of decoding was a combination involving only the first i decoded packets.
- Do actual encoding *online* by assigning packet indices in the sequence defined by $\pi!$

A toy problem

- Generate a random set of k + o(k) symbols according to the LT encoding process.
- \bullet Run a mock decoder. Let π be the sequence in which we see decoded packets.
- Decodability \Rightarrow the coded packet used in the i^{th} step of decoding was a combination involving only the first i decoded packets.
- Do actual encoding *online* by assigning packet indices in the sequence defined by $\pi!$

- Generate a random set of k+o(k) symbols according to the LT encoding process.
- \bullet Run a mock decoder. Let π be the sequence in which we see decoded packets.
- Decodability \Rightarrow the coded packet used in the i^{th} step of decoding was a combination involving only the first i decoded packets.
- Do actual encoding *online* by assigning packet indices in the sequence defined by $\pi!$

- Generate a random set of k+o(k) symbols according to the LT encoding process.
- \bullet Run a mock decoder. Let π be the sequence in which we see decoded packets.
- Decodability \Rightarrow the coded packet used in the i^{th} step of decoding was a combination involving only the first i decoded packets.
- Do actual encoding *online* by assigning packet indices in the sequence defined by $\pi!$

- Do concatenated coding slap on successive layers of the same code at each hop
- Fix a sequence of block lengths, k = k₀...k_n along the hops.
 subject to: k_i coded packets at node i is enough to recover the k_{i-1} packets that were recoded by node i 1 w.h.p
- $k_i \le k_0 (1 + \frac{\log^2 \frac{kn}{\delta}}{\sqrt{k}})^i$
- Overhead doesn't accumulate over hops, since $k_n = O(k_0)$ if we set $k_0 = \Omega(n^3)$.
- ullet Complexity of encoding \sim LT coding on a block length k_i
- Decoding i instances of LT decoding.

- Do concatenated coding slap on successive layers of the same code at each hop
- Fix a sequence of block lengths, $k = k_0 \dots k_n$ along the hops.
 - subject to: k_i coded packets at node i is enough to recover the k_{i-1} packets that were recoded by node i-1 w.h.p
- $k_i \le k_0 (1 + \frac{\log^2 \frac{kn}{\delta}}{\sqrt{k}})^i$
- Overhead doesn't accumulate over hops, since $k_n = O(k_0)$ if we set $k_0 = \Omega(n^3)$.
- ullet Complexity of encoding \sim LT coding on a block length k_i
- Decoding i instances of LT decoding.

- Do concatenated coding slap on successive layers of the same code at each hop
- Fix a sequence of block lengths, $k = k_0 \dots k_n$ along the hops.
 - subject to: k_i coded packets at node i is enough to recover the k_{i-1} packets that were recoded by node i-1 w.h.p
- $k_i \le k_0 (1 + \frac{\log^2 \frac{kn}{\delta}}{\sqrt{k}})^i$
- Overhead doesn't accumulate over hops, since $k_n = O(k_0)$ if we set $k_0 = \Omega(n^3)$.
- ullet Complexity of encoding \sim LT coding on a block length k_i
- Decoding i instances of LT decoding.

- Do concatenated coding slap on successive layers of the same code at each hop
- Fix a sequence of block lengths, $k = k_0 \dots k_n$ along the hops.
 - subject to: k_i coded packets at node i is enough to recover the k_{i-1} packets that were recoded by node i-1 w.h.p
- $k_i \le k_0 (1 + \frac{\log^2 \frac{kn}{\delta}}{\sqrt{k}})^i$
- Overhead doesn't accumulate over hops, since $k_n = O(k_0)$ if we set $k_0 = \Omega(n^3)$.
- ullet Complexity of encoding \sim LT coding on a block length k_i
- Decoding i instances of LT decoding.

- Do concatenated coding slap on successive layers of the same code at each hop
- Fix a sequence of block lengths, $k = k_0 \dots k_n$ along the hops.
 - subject to: k_i coded packets at node i is enough to recover the k_{i-1} packets that were recoded by node i-1 w.h.p
- $k_i \le k_0 (1 + \frac{\log^2 \frac{kn}{\delta}}{\sqrt{k}})^i$
- Overhead doesn't accumulate over hops, since $k_n = O(k_0)$ if we set $k_0 = \Omega(n^3)$.
- ullet Complexity of encoding \sim LT coding on a block length k_i
- Decoding i instances of LT decoding.

- Do concatenated coding slap on successive layers of the same code at each hop
- Fix a sequence of block lengths, $k = k_0 \dots k_n$ along the hops.
 - subject to: k_i coded packets at node i is enough to recover the k_{i-1} packets that were recoded by node i-1 w.h.p
- $k_i \le k_0 (1 + \frac{\log^2 \frac{kn}{\delta}}{\sqrt{k}})^i$
- Overhead doesn't accumulate over hops, since $k_n = O(k_0)$ if we set $k_0 = \Omega(n^3)$.
- ullet Complexity of encoding \sim LT coding on a block length k_i
- Decoding *i* instances of LT decoding.

Definition

An **Online Code Copy** is an ordered sequence of k_{i+1} **code symbols** that can be generated in an "online fashion".

Definition

A Code Matrix is a $T(k) \times k_{i+1}$ random matrix of Code Symbols in which each row is an independent Online Code Copy.

Definition

The **Online phase** at node i is defined to be the period until the time slot at which node i collects a total of k_{i+1} coded packets.

Definition

State is the number of packets successfully collected so far.

Definition

An **Online Code Copy** is an ordered sequence of k_{i+1} **code symbols** that can be generated in an "online fashion".

Definition

A Code Matrix is a $T(k) \times k_{i+1}$ random matrix of Code Symbols in which each row is an independent Online Code Copy.

Definition

The **Online phase** at node i is defined to be the period until the time slot at which node i collects a total of k_{i+1} coded packets.

Definition

State is the number of packets successfully collected so far.

Definition

An **Online Code Copy** is an ordered sequence of k_{i+1} **code symbols** that can be generated in an "online fashion".

Definition

A **Code Matrix** is a $T(k) \times k_{i+1}$ random matrix of *Code Symbols* in which each row is an independent *Online Code Copy*.

Definition

The **Online phase** at node i is defined to be the period until the time slot at which node i collects a total of k_{i+1} coded packets.

Definition

State is the number of packets successfully collected so far

Definition

An **Online Code Copy** is an ordered sequence of k_{i+1} **code symbols** that can be generated in an "online fashion".

Definition

A Code Matrix is a $T(k) \times k_{i+1}$ random matrix of Code Symbols in which each row is an independent Online Code Copy.

Definition

The **Online phase** at node i is defined to be the period until the time slot at which node i collects a total of k_{i+1} coded packets.

Definition

State is the number of packets successfully collected so far

Definition

An **Online Code Copy** is an ordered sequence of k_{i+1} **code symbols** that can be generated in an "online fashion".

Definition

A Code Matrix is a $T(k) \times k_{i+1}$ random matrix of Code Symbols in which each row is an independent Online Code Copy.

Definition

The **Online phase** at node i is defined to be the period until the time slot at which node i collects a total of k_{i+1} coded packets.

Definition

State is the number of packets successfully collected so far.

CodeMatrix

CODE BLOCK at node i

Code copy	C ₁₁	C ₁₂	C ₁₃	
	c ₂₁	C ₂₂		
	C ₃₁			
	C _{T1}			

 $\label{eq:Dimensions: TX k} \begin{subarray}{ll} Dimensions: TX k_{i+1} \\ Number of indices used to generate the symbols: k_i \\ \end{subarray}$

Algorithm

Procedure LT - RELAY (node i)

- First generate
 - (i) A random code matrix, $\mathcal{M}_i = [c_{ij}]_{1 \leq i \leq T, 1 \leq j \leq k_{i+1}}$
 - (ii) An independent random *online code copy*, $\mathcal{R}_i = \{\theta_j\}_{1 \leq j \leq k_{i+1}}$
- **2** Online phase (i.e. while in state $j, 0 \le j \le k_{i+1}$):
 - (i) In the first time slot of state j, use code symbol θ_j for coding.
 - (ii) Remaining Slots: Pick \hat{c} uniformly at random from the j^{th} column of \mathcal{M}_i . If not previously picked, send a packet coded according to \hat{c} . Else, it becomes an *idle slot*.
- 3 Beyond the online phase, generate independent coded packets at each time slot using the standard LT coding procedure.

Theorem

 $(w.h.p.)N_i$, Number of idle slots at node i satisfies $N_i \leq \log i$

Algorithm

Procedure LT - RELAY (node i)

- first generate:
 - (i) A random code matrix, $\mathcal{M}_i = [c_{ij}]_{1 \leq i \leq T, 1 \leq j \leq k_{i+1}}$
 - (ii) An independent random online code copy, $\mathcal{R}_i = \{\theta_j\}_{1 \leq j \leq k_{i+1}}$
- **2** Online phase (i.e. while in state $j, 0 \le j \le k_{i+1}$):
 - (i) In the first time slot of state j, use code symbol θ_j for coding
 - (ii) Remaining Slots: Pick \hat{c} uniformly at random from the j^{th} column of \mathcal{M}_i . If not previously picked, send a packet coded according to \hat{c} . Else, it becomes an *idle slot*.
- 3 Beyond the online phase, generate independent coded packets at each time slot using the standard LT coding procedure.

Theorem

(w.h.p.) N_i , Number of idle slots at node i satisfies $N_i \leq \log N_i$

Algorithm

Procedure LT - RELAY (node i)

- 1 First generate:
 - (i) A random code matrix, $\mathcal{M}_i = [c_{ij}]_{1 \leq i \leq T, 1 \leq j \leq k_{i+1}}$
 - (ii) An independent random online code copy, $\mathcal{R}_i = \{\theta_j\}_{1 \leq j \leq k_{i+1}}$
- **2** Online phase (i.e. while in state $j, 0 \le j \le k_{i+1}$):
 - (i) In the first time slot of state j, use code symbol θ_i for coding.
 - (ii) Remaining Slots: Pick \hat{c} uniformly at random from the j^{th} column of \mathcal{M}_i . If not previously picked, send a packet coded according to \hat{c} . Else, it becomes an *idle slot*.
- 3 Beyond the online phase, generate independent coded packets at each time slot using the standard LT coding procedure.

Theorem

(w.h.p.) N_i , Number of idle slots at node i satisfies $N_i \leq \log k$

Algorithm

Procedure LT - RELAY (node i)

- first generate:
 - (i) A random code matrix, $\mathcal{M}_i = [c_{ij}]_{1 \leq i \leq T, 1 \leq j \leq k_{i+1}}$
 - (ii) An independent random online code copy, $\mathcal{R}_i = \{\theta_j\}_{1 \leq j \leq k_{i+1}}$
- **2** Online phase (i.e. while in state $j, 0 \le j \le k_{i+1}$):
 - (i) In the first time slot of state j, use code symbol θ_j for coding.
 - (ii) Remaining Slots: Pick \hat{c} uniformly at random from the j^{th} column of \mathcal{M}_i . If not previously picked, send a packet coded according to \hat{c} . Else, it becomes an *idle slot*.
- **3** Beyond the online phase, generate independent coded packets at each time slot using the standard LT coding procedure.

Theorem

(w.h.p.) N_i , Number of idle slots at node i satisfies $N_i \leq \log k$

Algorithm

Procedure LT - RELAY (node i)

- first generate:
 - (i) A random code matrix, $\mathcal{M}_i = [c_{ij}]_{1 \leq i \leq T, 1 \leq j \leq k_{i+1}}$
 - (ii) An independent random online code copy, $\mathcal{R}_i = \{\theta_j\}_{1 \leq j \leq k_{i+1}}$
- **2** Online phase (i.e. while in state $j, 0 \le j \le k_{i+1}$):
 - (i) In the first time slot of state j, use code symbol θ_i for coding.
 - (ii) Remaining Slots: Pick \hat{c} uniformly at random from the j^{th} column of \mathcal{M}_i . If not previously picked, send a packet coded according to \hat{c} . Else, it becomes an *idle slot*.
- 3 Beyond the online phase, generate independent coded packets at each time slot using the standard LT coding procedure.

Theorem

(w.h.p.) N_i , Number of idle slots at node i satisfies $N_i \leq \log k$

Uniformity in Code Symbol Selection

Theorem

Let $\chi = \{0,1\}^{T(k) \times k}$ denote the ensemble of all possible realizations of the random matrix, Λ . For $\Psi = [\psi_{ij}] \in \chi$ and for any $S \subset \{1,\ldots,T(k)\} \times \{1,\ldots,k\}$, denote

$$W_S(\Psi) = \sum_{(i,j)\in S} \psi_{ij}$$

Take any $E\subset\{1,\ldots,T(k)\}$ \times $\{1,\ldots,k\}$, with |E|=r, a constant represented as $E=\{e_1,\ldots,e_r\}$. For any $\phi=(\phi_1,\ldots,\phi_r)\in\{0,1\}^r$ let $\Theta_\phi=\{\Psi\in\chi:\psi_{e_j}=\phi_j \text{ for } 1\leq j\leq r\}$. Then, as $k\to\infty$, $P\left(\Theta_\phi\right)$ depends solely on $\sum_{j=0}^r\phi_i=W_E(\Psi)\ \forall\ \Psi\in\Theta_\phi$.

Theorem

Given that (i) the subset of code symbols from \mathcal{M}_i used is uniformly random and (ii) t is past the online phase, the set of all coded packets generated till time slot t forms an LT code.

Proof.

Packets generated were the union of

- $\mathbf{1}$ \mathcal{R}
- $oldsymbol{2}$ An (almost) uniform random subset of code symbols from \mathcal{M}_i
- **3** The independent LT coded packets generated past the online phase.

Theorem

Given that (i) the subset of code symbols from \mathcal{M}_i used is uniformly random and (ii) t is past the online phase, the set of all coded packets generated till time slot t forms an LT code.

Proof.

Packets generated were the union of

- $\mathbf{1}$ \mathcal{R}
- 2 An (almost) uniform random subset of code symbols from \mathcal{M}_i
- 3 The independent LT coded packets generated past the online phase.

Theorem

Given that (i) the subset of code symbols from \mathcal{M}_i used is uniformly random and (ii) t is past the online phase, the set of all coded packets generated till time slot t forms an LT code.

Proof.

Packets generated were the union of

- $\mathbf{n} \mathcal{R}_i$
- **2** An (almost) uniform random subset of code symbols from \mathcal{M}_i
- **3** The independent LT coded packets generated past the online phase.

Observation

(w.h.p.) Assuming monotonically increasing erasure probabilities, the **first** k_i packets collected at node i can be decoded to recover the k_{i-1} packets that were recoded by node i-1.

Theorem

The code described is capacity achieving. That is, packets are transmitted from the source to the node i at a rate equal to $\min_{1 \le j \le i} (1 - \epsilon_j)$.

Observation

(w.h.p.) Assuming monotonically increasing erasure probabilities, the **first** k_i packets collected at node i can be decoded to recover the k_{i-1} packets that were recoded by node i-1.

Theorem

The code described is capacity achieving. That is, packets are transmitted from the source to the node i at a rate equal to $\min_{1 \le j \le i} (1 - \epsilon_j)$.

Observation

(w.h.p.) Assuming monotonically increasing erasure probabilities, the **first** k_i packets collected at node i can be decoded to recover the k_{i-1} packets that were recoded by node i-1.

Theorem

The code described is capacity achieving. That is, packets are transmitted from the source to the node i at a rate equal to $\min_{1 \le j \le i} (1 - \epsilon_j)$.

Observation

(w.h.p.) Assuming monotonically increasing erasure probabilities, the **first** k_i packets collected at node i can be decoded to recover the k_{i-1} packets that were recoded by node i-1.

Theorem

The code described is capacity achieving. That is, packets are transmitted from the source to the node i at a rate equal to $\min_{1 \leq j \leq i} (1 - \epsilon_j)$.

Conclusion

Have shown:

- Min Cut Capacity to every node.
- Ratelessness
- Order optimal delay
- Low overhead
- Low complexity.
- On arbitrarily large tree networks!

Thanks

Thank you!

For more details, please
(a) Talk to me, or
(b) Read a preprint from
http://decision.csl.uiuc.edu/~gummadi2/papers/fountain.pdf