Ridge Regression

9 试题

1 point	
Vhich verfit	of the following is NOT a valid measure of ting?
	Sum of parameters ($w_1+w_2+\ldots+w_n$)
	Sum of squares of parameters ($w_1^2 + w_2^2 + \ldots + w_n^2$)
	Range of parameters, i.e., difference between maximum and minimum parameters
	Sum of absolute values of parameters ($ w_1 + w_2 +\ldots+ w_n $)
_	e regression, choosing a large penalty strength λ to lead to a model with (choose all that apply):
<u> </u>	High bias
	Low bias

High variance

Low variance

1 point

3.

Which of the following plots best characterize the trend of bias, variance, and generalization error (all plotted over λ)?

1 point	:
4.	
double of the	e regression using unnormalized features, if you the value of a given feature (i.e., a specific column feature matrix), what happens to the estimated cients for every other feature? They:
\bigcirc	Double
	Half
	Stay the same
	Impossible to tell from the information provided
cross v	nly have a small number of observations, K-fold validation provides a better estimate of the alization error than the validation set method. True
	False
1 point	
	l cross validation is more computationally intensive eave-one-out (LOO) cross validation.
	True
	False

1 point

7.

Assume you have a training dataset consisting of N observations and D features. You use the closed-form solution to fit a multiple linear regression model using ridge regression. To choose the penalty strength λ , you run leave-one-out (LOO) cross validation searching over L values of λ . Let $\mathrm{Cost}(N,D)$ be the computational cost of running ridge regression with N data points and D features. Assume the prediction cost is negligible compared to the computational cost of training the model. Which of the following represents the computational cost of your LOO cross validation procedure?

- $() LN \cdot \operatorname{Cost}(N,D)$
- $lacksquare LN \cdot \operatorname{Cost}(N-1,D)$
- O $LD \cdot \operatorname{Cost}(N-1,D)$
- \bigcap $LD \cdot \operatorname{Cost}(N, D)$
- $L \cdot \operatorname{Cost}(N-1,D)$
- \cap $L \cdot \operatorname{Cost}(N, D)$

1 point

8.

Assume you have a training dataset consisting of 1 million observations. Suppose running the closed-form solution to fit a multiple linear regression model using ridge regression on this data takes 1 second. Suppose you want to choose the penalty strength λ by searching over 100 possible values. How long will it take to run leave-one-out (LOO) cross-validation for this selection task?

About 3 hours

	About 3 days
	About 3 years
	About 3 decades
1	
point	
observ to fit a regress to choo possib	The you have a training dataset consisting of 1 million vations. Suppose running the closed-form solution multiple linear regression model using ridge sion on this data takes 1 second. Suppose you want cose the penalty strength λ by searching over 100 le values. If you only want to spend about 1 hour to λ , what value of k should you use for k-fold crosstion?
	k=6
	k=36
	k=600
	k=3600
<u> </u>	I, 伟臣 沈 , understand that submitting work that isn't my own may result in permanent failure of this course or deactivation of my Coursera account. 了解荣誉准则的更多信息
	提交测试