PNEUMONIA X-RAY ANALYSIS

MARINA SAITO

OCTOBER 24, 2021

BUSINESS PROBLEM

- Compare X-Rays of Pediatric Patients with Pneumonia vs. Normal Patients
- Build a Model to Accurately Classify X-Rays of Patients with Pneumonia
- Important to Minimize False Negatives
- Focus on Recall Score

DATA - PEDIATRIC X-RAYS

DATA - BRIGHTNESS DISTRIBUTION

METHODS - DATA AUGMENTATION

- Rotate +/- 30°
- Zoom in and out
- Shift left and right
- Shift up and down
- Horizontal flip

METHODS - MODEL DEVELOPMENT

- Started with simple models
- Tried classic architectures on images to determine basic structure for model
- Selected LeNet5 model
 - Replaced outdated steps with current version
 - Added dropouts to decrease overfitting
 - Some of the models were simply predicting that all images were pneumonia patients, so replaced Relu activation function with leaky relu

METHODS - MODEL DEVELOPMENT

METHODS - MODEL DEVELOPMENT

RESULTS – CONFUSION MATRIX

RESULTS – FEATURE IMPORTANCE

RESULTS – FEATURE IMPORTANCE

CONCLUSIONS

- Created a model that classifies pneumonia in pediatric x-rays
- Model does not perform very well
 - 54% accuracy
 - Recall of 65%
 - Model is not focusing on lungs to classify images

NEXT STEPS

- Continue to adjust parameters on model to better classify pneumonia in pediatric x-rays
 - Improve accuracy
 - Improve recall (minimize false negatives)
 - Improve features model focuses on

Thank You!

Email: saito.mn@gmail.com

GitHub: @mnsaito

LinkedIn: https://www.linkedin.com/in/marina-saito-7478135/