BERT

Табишева Анастасия ФКН ПМИ 171 НИС 2020

BERT: зачем?

Проблема

Обучать "с нуля" всю модель и собирать данные для конкретной задачи - долго и трудоёмко

Идея

Будем использовать предобученную на огромном корпусе текстов модель и дообучать её под узкую задачу

Особенности BERT:

- Двунаправленный трансформер
- Дообучение до разных задач
- Универсальный словарный запас
- Лучшие результаты для некоторых бенчмарков

Bert: Model Architecture

- 12 Blocks (Heads)
- 768 Hidden Unit
- 12 Attention Heads
- · 110M parameters

State of the Art Model

- 24 Blocks
- 1024 Hidden Unit
- 16 Attention Heads
- 340M parameters

Эволюция эмбеддингов

- Эмбеддинги word2vec не учитывают контекст
- OpenAl GPT только левый (правый) контекст
- ELMO независимы обучается на левом и правом контексте
- BERT одновременно учитывает весь контекст

- ELMO две независимые LSTM
- GPT однонаправленный трансформер
- BERT двунаправленный трансформер

Q math practice books for adults

BEFORE 9:00 google.com a Amazon.com > Math-Practice-Grade... Math Practice, Grades 6 - 8 (The 100+ Series™) - Amazon.com Amazon.com: Math Practice, Grades 6 - 8 (The 100+ Series™) ... Mark Twain Common Core Math Workouts Resource Book, Grade 6, Ages 11 -12 #1 Best Seller in Teen & Young Adult Geometry.

9:00 google.com a Amazon.com > Math-Grownups-Re-... Math for Grownups: Re-Learn the Arithmetic You Forgot From ... Math for Grownups and millions of other books are available for Amazon Kindle. (Basic Math for Adults) Part 1.

AFTER

Представление токенов для BERT

- WordPiece токенизация слова
- Индикатор одного из двух предложений
- Позиция слова в предложении

Input	[CLS] my	dog is	cute [SEP]	he likes	play	##ing [SEP]
Token Embeddings	E _[CLS] E _{my}	E _{dog} E _{is}	E _{cute} E _[SEP]	E _{he} E _{likes}	E _{play}	E _{##ing} E _[SEP]
Segment Embeddings	E _A E _A	E _A E _A	E _A E _A	E _B E _B	+ E _B	+ + E _B E _B
	+ +	+ +	+ +	+ +	+	+ +
Position Embeddings	E_0 E_1	E_2 E_3	E ₄ E ₅	E ₆ E ₇	E ₈	E ₉ E ₁₀

Стадии обучения

- Pre-training
 - ★ Маскированная языковая модель
 - ★ Предсказание следующего предложения

Fine-tuning

Маскированная языковая модель (MLM)

Хотим научить нашу модель понимать контекст вокруг слов

- 1. Случайно заменяем 15% токенов на [MASK]
 - 80% времени заменяем токен на [MASK]
 - 10% времени заменяем на случайный токен
 - 10% времени токен остается исходным
- 2. Модель предсказывает только замаскированные токены, но у нее нет информации, какие именно это токены

0.1% Aardvark Use the output of the Possible classes: masked word's position Improvisation All English words 10% to predict the masked word 0% Zyzzyva FFNN + Softmax 512 5 6 **BERT** Randomly mask 8 512 15% of tokens [MASK] this skit Let's stick [CLS] Input this skit Let's stick to improvisation in [CLS]

Предсказание следующего предложения (NSP)

Хотим понимать связь между двумя предложениями

- 50% времени даем следующее предложение
- 50% времени даем несвязанные предложения

Модель должна предсказать, следует ли второе предложение из первого

Пример ввода для NSP

```
Input = [CLS] the man went to [MASK] store [SEP]
        he bought a gallon [MASK] milk [SEP]

Label = IsNext
Input = [CSL] the man [MASK] to the store [SEP]
```

penguin [MASK] to the store [SEP]

penguin [MASK] are flight ##less birds [SEP]

Label = NotNext

Fine-tuning

- Классификация предложений (анализ тональности)
- Классификация пар предложений (эквивалентность)
- Создание ответов на вопросы (ответ содержится в тексте)
- Таггинг предложения (предсказание именованных сущностей)

Пример задачи для Fine-tuning - SQuAD (Stanford Question Answering Dataset)

Первая последовательность - вопрос

Вторая последовательность - текст с ответом

Классификация предложений

Классификация пар предложений

Таггинг предложения

Недостатки BERT

- Каждое скрытое слово предсказывается в отдельности. Мы теряем информацию о возможных связях между маскированными словами
- Несоответствие между тренировкой модели (есть [MASK] токены) и использованием предобученной модели (таких токенов нет)
- Слишком много параметров

Результаты

• Показал state-of-the-art результаты в 11 бенчмарках NLP

System	MNLI-(m/mm)	QQP	QNLI	SST-2	CoLA	STS-B	MRPC	RTE	Average
3000 85	392k	363k	108k	67k	8.5k	5.7k	3.5k	2.5k	-
Pre-OpenAI SOTA	80.6/80.1	66.1	82.3	93.2	35.0	81.0	86.0	61.7	74.0
BiLSTM+ELMo+Attn	76.4/76.1	64.8	79.8	90.4	36.0	73.3	84.9	56.8	71.0
OpenAI GPT	82.1/81.4	70.3	87.4	91.3	45.4	80.0	82.3	56.0	75.1
BERT _{BASE}	84.6/83.4	71.2	90.5	93.5	52.1	85.8	88.9	66.4	79.6
$BERT_{LARGE}$	86.7/85.9	72.1	92.7	94.9	60.5	86.5	89.3	70.1	82.1

Не слишком ли много?

- BERT base 12 слоев (блоков трансформера), 12 attention heads, 110 млн параметров
- BERT Large 24 слоя, 16 attention heads, 340 млн параметров

Можно ли меньше?

Квантизация

Прунинг

Дистилляция знаний

		Compression	Performance	Speedup	Model	Evaluation
	DistilBERT (Sanh et al., 2019)	×2.5	90%	×1.6	BERT ₆	All GLUE tasks
	BERT ₆ -PKD (Sun et al., 2019a)	×1.6	97%	×1.9	BERT ₆	No WNLI, CoLA and STS-B
_	BERT ₃ -PKD (Sun et al., 2019a)	×2.4	92%	$\times 3.7$	BERT ₃	No WNLI, CoLA and STS-B
tio	(Aguilar et al., 2019)	$\times 2$	94%	-	BERT ₆	CoLA, MRPC, QQP, RTE
Distillation	BERT-48 (Zhao et al., 2019)	$\times 62$	87%	×77	BERT ₁₂ *†	MNLI, MRPC, SST-2
ist	BERT-192 (Zhao et al., 2019)	×5.7	94%	$\times 22$	BERT ₁₂ *†	MNLI, MRPC, SST-2
П	TinyBERT (Jiao et al., 2019)	×7.5	96%	$\times 9.4$	BERT ₄ *†	All GLUE tasks
	MobileBERT (Sun et al.)	×4.3	100%	$\times 4$	BERT ₂₄ †	No WNLI
	PD (Turc et al., 2019)	×1.6	98%	$\times 2.5^3$	BERT ₆ [†]	No WNLI, CoLA and STS-B
	MiniBERT(Tsai et al., 2019)	$\times 6^{\S}$	98%	×27§	mBERT ₃ †	CoNLL-2018 POS and morphology
	BiLSTM soft (Tang et al., 2019)	×110	91%	$\times 434^{\ddagger}$	$BiLSTM_1$	MNLI, QQP, SST-2
mt.	Q-BERT (Shen et al., 2019)	×13	99%	-	BERT ₁₂	MNLI, SST-2
Quant.	Q8BERT (Zafrir et al., 2019)	$\times 4$	99%	_	BERT ₁₂	All GLUE tasks
	ALBERT-base (Lan et al., 2019)	×9	97%	×5.6	BERT ₁₂ **	MNLI, SST-2
Other	ALBERT-xxlarge (Lan et al., 2019)	$\times 0.47$	107%	$\times 0.3$	BERT ₁₂ **	MNLI, SST-2
0	BERT-of-Theseus (Xu et al., 2020)	×1.6	98%	2	BERT ₆	No WNLI

NO, you cannot understand the meaning of a text without explicitly evaluating its linguistic constituents and defining grammar rules!

Вопросы

- Из каких частей состоят эмбеддинги для модели?
- Опишите задачи, на которых предобучается BERT
- Для каких задач может быть дообучен BERT, приведите конкретный пример, опишите, что подается на вход и какие нужно добавить выходные слои

Всем спасибо!

