Images and some text courtesy of The Essentials of CAGD by Farin and Hansford

Geometric Design: Bezier Curves

Interactive Computer Graphics
Professor Eric Shaffer

Geometric Modeling

We will finish the semester by briefly looking at some math for modeling

Geometric modeling is typically done by engineers and artists

- Assisted by computational tools (e.g. Maya or Blender or AutoCAD)
- The software provides a mathematical models of curves/surfaces

For rendering, ultimately everything will be turned into triangles.

But modeling triangle-by-triangle would be too tedious

Modeling Curves – Some Questions

Suppose we render curves by approximating them with line segments

How can we can generate points on a curve...let's try to do it for a parabola

What would be one possible parametric equation for a simple parabola $y = x^2$?

Modeling Curves – Some Questions

Suppose we render curves by approximating them with line segments

How can we can generate points on a curve...let's try to do it for a parabola

What would be one possible parametric equation for a simple parabola $y = x^2$?

$$P(t) = \begin{bmatrix} t \\ t^2 \end{bmatrix}$$

We could generate a bunch of line segments using the parametric equation.

What advantages does storing/representing the curve as the equation have over storing the line segments?

Modeling Curves – Some Questions

How can we can generate points on a curve...let's try to do it for a parabola

What would be one possible parametric equation for a simple parabola $y = x^2$?

$$P(t) = \begin{bmatrix} t \\ t^2 \end{bmatrix}$$

We could generate a bunch of line segments using the parametric equation. What advantages does storing/representing the curve as the equation have over storing the line segments?

- More compact
- Infinite resolution
- Some tasks are easier
 e.g. finding derivatives or deforming the geometry

Parametric Curves

Parametric curves defined in 3D:

$$\mathbf{x}(t) = \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} f(t) \\ g(t) \\ h(t) \end{bmatrix}$$

Simple example: a helix

$$\mathbf{x}(t) = \begin{bmatrix} \cos(t) \\ \sin(t) \\ t \end{bmatrix}$$

Bezier Curves

Type of polynomial curve

Curve is defined by a modeler (artist) specifying control points

Can be defined to generate a polynomial of any degree

- Cubics are most common
- Higher degree curve requires more control points

Can be joined together to form piecewise polynomial curves

Can form the basis of Bezier patches which define a surface

Named after Pierre Bezier French Mechanical Engineer Worked for Renault Lived 1910-1999

Cubic Bezier Curves

The b_i are control points that an artist picks In this example they are (-1,0), (0,1), (0,-1) and (1,0)

$$\mathbf{x}(t) = \begin{bmatrix} -(1-t)^3 + t^3 \\ 3(1-t)^2t - 3(1-t)t^2 \end{bmatrix}$$

Shape?

Rewrite as a combination of points

$$\mathbf{x}(t) = (1-t)^{3} \begin{bmatrix} -1\\ 0 \end{bmatrix} + 3(1-t)^{2}t \begin{bmatrix} 0\\ 1 \end{bmatrix} + 3(1-t)^{2}t \begin{bmatrix} 0\\ 1 \end{bmatrix} + 3(1-t)t^{2} \begin{bmatrix} 0\\ -1 \end{bmatrix} + t^{3} \begin{bmatrix} 1\\ 0 \end{bmatrix}$$

Four points form a polygon

- Resembles curve for $t \in [0,1]$

Cubic Bezier Curves

Define a cubic Bézier curve by

$$\mathbf{x}(t) = (1-t)^3 \mathbf{b}_0 + 3(1-t)^2 t \mathbf{b}_1 + 3(1-t)t^2 \mathbf{b}_2 + t^3 \mathbf{b}_3$$

2D or 3D points \mathbf{b}_i are the Bézier control points Control points form the Bézier polygon of the curve Also written as

$$\mathbf{x}(t) = B_0^3(t)\mathbf{b}_0 + B_1^3(t)\mathbf{b}_1 + B_2^3(t)\mathbf{b}_2 + B_3^3(t)\mathbf{b}_3$$

 B_i^3 are called the cubic Bernstein polynomials The \mathbf{b}_i are called the coefficients of the polynomial $\mathbf{x}(t)$

Bezier Curves

Important Properties of Bezier Curves

- Endpoint Interpolation
- Symmetry
- Invariance under affine transformations
- Convex hull property
- Linear precision

Properties of Bezier Curves

Endpoint Interpolation

The curve will pass through the first and last control points:

$$x(0.0) = b_0$$

$$x(1.0) = b_3$$

Symmetry

Specifying contol points in order b_0, b_1, b_2, b_3 generates same curve as the order b_3, b_2, b_1, b_0

Properties of Bezier Curves

Invariance under affine transformations

Transforming the control polygon similarly transforms the curve

Linear Precision

If b_1 and b_2 are evenly spaced on a straight line, the cubic Bezier curve will be the linear interpolant between b_0 and b_3

Properties of Bezier Curves

The convex hull property

Extrapolation: t outside [0,1]

- Curve not within convex hull (in general)
- Unpredictable behavior

Derivatives

Differentiate each component with respect $t \Rightarrow$ the tangent vector

$$\frac{\mathrm{d}\mathbf{x}(t)}{\mathrm{d}t} = -3(1-t)^2\mathbf{b}_0 + [3(1-t)^2 - 6(1-t)t]\mathbf{b}_1 + [6(1-t)t - 3t^2]\mathbf{b}_2 + 3t^2\mathbf{b}_3$$

Group like terms

$$\frac{\mathrm{d}\mathbf{x}(t)}{\mathrm{d}t} = 3[\mathbf{b}_1 - \mathbf{b}_0](1-t)^2 + 6[\mathbf{b}_2 - \mathbf{b}_1](1-t)t + 3[\mathbf{b}_3 - \mathbf{b}_2]t^2$$

Abbreviated as

$$\frac{\mathrm{d}\mathbf{x}(t)}{\mathrm{d}t} = 3\Delta\mathbf{b}_0(1-t)^2 + 6\Delta\mathbf{b}_1(1-t)t + 3\Delta\mathbf{b}_2t^2$$

where $\Delta \mathbf{b}_i$ is known as the forward difference

Shorten notation: $\dot{\mathbf{x}}(t) \equiv d\mathbf{x}(t)/dt$

Derivatives

Example

$$\mathbf{x}(t) = (1-t)^3 \begin{bmatrix} -1\\0 \end{bmatrix} + 3(1-t)^2 t \begin{bmatrix} 0\\1 \end{bmatrix}$$
$$+ 3(1-t)t^2 \begin{bmatrix} 0\\-1 \end{bmatrix} + t^3 \begin{bmatrix} 1\\0 \end{bmatrix}$$

$$\dot{\mathbf{x}}(t) = 3 \begin{bmatrix} 1 \\ 1 \end{bmatrix} (1-t)^2 + 6 \begin{bmatrix} 0 \\ -2 \end{bmatrix} (1-t)t$$

$$+ 3 \begin{bmatrix} 1 \\ 1 \end{bmatrix} t^2$$

$$\dot{\mathbf{x}}(0.5) = \begin{bmatrix} 1.5 \\ -1.5 \end{bmatrix}$$

Tangent vectors at the curve's endpoints:

$$\dot{\mathbf{x}}(0) = 3\Delta\mathbf{b}_0 \qquad \dot{\mathbf{x}}(1) = 3\Delta\mathbf{b}_2$$

- ⇒ control polygon is tangent to the curve at the endpoints
 - property helps with piecing together several Bézier curves

How do you generate points on a Bezier Curve?

You could just plug values for t into the formula we have already seen and evaluate x(t)

The de Casteljau algorithm is an alternative way to generate points

- More computationally efficient
- Uses repeated linear interpolation
- Can be implemented recursively or interatively
- Invented by Paul de Faget de Casteljau in 1959

Given: $\mathbf{b}_0, \dots, \mathbf{b}_3$ and a parameter value t

Find: $\mathbf{x}(t)$

Compute:

$$\mathbf{b}_0^1 = (1-t)\mathbf{b}_0 + t\mathbf{b}_1 \le \mathbf{b}_1^1 = (1-t)\mathbf{b}_1 + t\mathbf{b}_2$$

 $\mathbf{b}_2^1 = (1-t)\mathbf{b}_2 + t\mathbf{b}_3$

$$\mathbf{b}_0^2 = (1-t)\mathbf{b}_0^1 + t\mathbf{b}_1^1$$

 $\mathbf{b}_1^2 = (1-t)\mathbf{b}_1^1 + t\mathbf{b}_2^1$

$$\mathbf{x}(t) = \mathbf{b}_0^3 = (1-t)\mathbf{b}_0^2 + t\mathbf{b}_1^2$$

Simply repeated linear interpolation!

A convenient schematic tool for describing the algorithm

Arrange the involved points in a triangular diagram

In the implementation of the de Casteljau algorithm:

- Not necessary to use a 2D array to simulate the triangular diagram
- A 1D array of control points is sufficient For example \mathbf{b}_0^1 is calculated and loaded into \mathbf{b}_0 (Must save original control polygon)

Example

$$\mathbf{x}(t) = (1-t)^3 \begin{bmatrix} -1\\0 \end{bmatrix} + 3(1-t)^2 t \begin{bmatrix} 0\\1 \end{bmatrix} + 3(1-t)t^2 \begin{bmatrix} 0\\-1 \end{bmatrix} + t^3 \begin{bmatrix} 1\\0 \end{bmatrix}$$

Evaluate at t = 0.5

Modeling with Cubic Bezier Curves

Lots of nice properties...

- Curvy...artistically expressive
- Only 4 control points...control polygon easy for artist to visualize and work with...
- Can be joined piecewise with matching tangents at endpoints

But...can we express any cubic as a Bezier curve? Not immediately obvious....

We can express any cubic as a sum of the monomials t^0 , t^1 , t^2 , t^3 $P(t) = at^3 + bt^2 + ct^1 + dt^0$

So...let's see if we can convert between the monomial basis and the Berntsein basis

The Matrix Form and Monomials

A cubic Bézier curve:

$$\mathbf{b}(t) = B_0^3(t)\mathbf{b}_0 + B_1^3(t)\mathbf{b}_1 + B_2^3(t)\mathbf{b}_2 + B_3^3(t)\mathbf{b}_3$$

Rewritten in matrix form:

$$\mathbf{b}(t) = egin{bmatrix} \mathbf{b}_0 & \mathbf{b}_1 & \mathbf{b}_2 & \mathbf{b}_3 \end{bmatrix} egin{bmatrix} B_0^3(t) \ B_1^3(t) \ B_2^3(t) \ B_3^3(t) \end{bmatrix}$$

A more concise formulation using matrices:

$$\mathbf{b}(t) = \begin{bmatrix} \mathbf{b}_0 & \mathbf{b}_1 & \mathbf{b}_2 & \mathbf{b}_3 \end{bmatrix} \begin{bmatrix} 1 & -3 & 3 & -1 \\ 0 & 3 & -6 & 3 \\ 0 & 0 & 3 & -3 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ t \\ t^2 \\ t^3 \end{bmatrix}$$

The Matrix Form and Monomials

Monomial polynomials are the most

familiar type

- Cubic case: $1, t, t^2, t^3$

Can reformulate a Bézier curve

$$\mathbf{b}(t) = \mathbf{b}_0 + 3t(\mathbf{b}_1 - \mathbf{b}_0) + 3t^2(\mathbf{b}_2 - 2\mathbf{b}_1 + \mathbf{b}_0) + t^3(\mathbf{b}_3 - 3\mathbf{b}_2 + 3\mathbf{b}_1 - \mathbf{b}_0) = \mathbf{a}_0 + \mathbf{a}_1t + \mathbf{a}_2t^2 + \mathbf{a}_3t^3$$

Geometric interpretation of \mathbf{a}_i and \mathbf{b}_i different

The Matrix Form and Monomials

The monomial coefficients a_i are defined as

$$\begin{bmatrix} \mathbf{a}_0 & \mathbf{a}_1 & \mathbf{a}_2 & \mathbf{a}_3 \end{bmatrix} = \begin{bmatrix} \mathbf{b}_0 & \mathbf{b}_1 & \mathbf{b}_2 & \mathbf{b}_3 \end{bmatrix} \begin{bmatrix} 1 & -3 & 3 & -1 \\ 0 & 3 & -6 & 3 \\ 0 & 0 & 3 & -3 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Inverse process:

$$\begin{bmatrix} \mathbf{b_0} & \mathbf{b_1} & \mathbf{b_2} & \mathbf{b_3} \end{bmatrix} = \begin{bmatrix} \mathbf{a_0} & \mathbf{a_1} & \mathbf{a_2} & \mathbf{a_3} \end{bmatrix} \begin{bmatrix} 1 & -3 & 3 & -1 \\ 0 & 3 & -6 & 3 \\ 0 & 0 & 3 & -3 \\ 0 & 0 & 0 & 1 \end{bmatrix}^{-1}$$

The square matrix in this equation is nonsingular ⇒ Any cubic curve can be written in Bézier or monomial form

