Good Stuff

$$|Ef(X) - Ef(Y)| \le E|f(X) - f(Y)|$$

 $X_n \xrightarrow{L1} X \Rightarrow EX_n \to EX$

Markov:

$$P(|X| \ge \varepsilon) \le \frac{E|X|^p}{\varepsilon^p}$$

Chebechev:

$$P(|X - EX| \ge a) \le \frac{VX}{a^2}$$

Causchy-Shwartz:

$$|EXY| \le E|XY| \le \sqrt{EX^2} \sqrt{EY^2}$$

Geometrisk sum: (Bemærk k=0)

$$\sum_{k=0}^{n} r^k = \frac{1 - r^{n+1}}{1 - r}$$

Varians af produkt af uafhængige stok var:

$$Var(XY) = (EX)^2 Var(Y) + (EY)^2 Var(Y) + Var(X) Var(Y)$$

Eller:

$$Var(XY) = EX^{2}Y^{2} - (EX)^{2}(EY)^{2}$$

KOVARIANS
$$Cov(XY) = EXY - EXEY$$

Integrals

Gamma, $\alpha > 0$, shape and $\beta > 0$ rate.

$$\int_0^\infty \frac{\beta^\alpha}{\Gamma(\alpha)} x^{\alpha-1} e^{-\beta x} = 1, \quad EX = \frac{\alpha}{\beta}$$

Beta, $\alpha, \beta > 0$ shape parameters.

$$\int_0^1 \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha) \cdot \Gamma(\beta)} x^{\alpha-1} (1-x)^{\beta-1} = 1, \quad EX = \frac{\alpha}{\alpha+\beta}$$

Kap 1

lemma 1.2.12 - Tilstrækkelig betingelse for a.s. konvergens

Lad (X_n) være en følge, og X en anden stok. var. Hvis $\sum_{n=1}^{\infty} P(|X_n - X| \ge \epsilon) < \infty$, for alle $\epsilon > 0$ da har vi at $X_n \xrightarrow{a.s.} X$

lemma 1.2.13 - næsten sikker konvergens af delfølge

Hvis $X_n \xrightarrow{p} X$. Eksisterer der en delfølge (X_{n_k}) hvor $X_{n_k} \xrightarrow{a.s} X$

Lemma 1.2.5 Entydighed af grænser

Hvis X_n konvergerer i P, a.s, eller \mathcal{L}^p både mod X og Y Da er (X = Y) næsten sikkert, dvs de er kun forskellige på nulmængder.

Lemma 1.2.6 Bevarelse af grænser i a.s. og P ved kont. transformationer

Lad (X_n) være en følge af stok. var. Hvis $X_n \xrightarrow{a.s.} X$ vil $f(X_n) \xrightarrow{a.s.} f(X)$. Ligeså for konvergens i Sandsynlighed. Hvor $f: \mathbb{R} \to \mathbb{R}$ er en kont. funktion. NB. pr NOTE 8 gælder lemmaet også for funktioner, $f: \mathbb{R}^k \to \mathbb{R}$, $k \geq 1$ Desuden skal f blot være kont. på en a.s. mængde.

Lemma 1.2.10

Lad (X_n) og (Y_n) være følger af stok.var. Og lad X og Y være 2 andre stok.var. Hvis $X_n \stackrel{P}{\longrightarrow} X$, $Y_n \stackrel{P}{\longrightarrow} Y$ har vi at $X_n + Y_n \stackrel{p}{\longrightarrow} X + Y$ samt $X_n Y_n \stackrel{p}{\longrightarrow} XY$ Ligeså for a.s. konvergens.

Lemma 1.2.11 Borel-Cantelli

Lad (F_n) være en følge af events, da gælder at hvis $\sum_{n\geq 1} P(F_n) < \infty \implies P(F_n i.o.) = 0$

lemma 1.3.12 (Second Borel-Cantelli)

Lad (F_n) være en følge af <u>uafhængige</u> events. Da er $P(F_n i.o.) = \begin{cases} 0 & \iff \sum_{n \geq 1} P(F_n) < \infty \\ 1 \end{cases}$

Cauchy Egenskaber

Lemma 1.2.14

Lad (X_n) være en følge af stok. var. Der gælder da følgende mængderelation: $((X_n) \text{ er cauchy}) = \bigcap_{m=1}^{\infty} \bigcup_{n=1}^{\infty} \bigcap_{k \geq n} \left(|X_k - X_n| \leq \frac{1}{m} \right)$ Heraf følger at ovenstående mængde er målelig.

Kap 2

Lemma 2.1.5 Invarians af $X \iff X$ er \mathcal{I}_T målelig

Der gælder

$$X \circ T = X \Longleftrightarrow T^{-1}(X \in A) = (X \in A)$$

Altså at X er \mathcal{I}_T målelig. Husk $\mathcal{I}_T = \left\{ F \in \mathcal{F} \,|\, T^{-1}(F) = F \right\}$

Kap 3 svag konvergens og konvergens i fordeling

Lemma 3.1.2 Konvergens i fordeling og svag konvergens af mål er ækvivalent

Lad X_n have fordeling μ_n og lad X være en anden stok. var. med fordeling μ Da gælder at $X_n \xrightarrow{D} X \Longleftrightarrow \mu_n \xrightarrow{wk} \mu$

Lemma 3.1.5 Grænser for svag konvergens er entydige. $\mu_n \xrightarrow{wk} \mu$ og $\mu_n \xrightarrow{wk} \nu \Longrightarrow \mu = \nu$

Lemma 3.1.6, konvergens i fordeling sikrer Tightness

Lad (μ_n) være en følge af ssh-mål på $(\mathbb{R}, \mathcal{B})$, og μ et andet mål. Antag at $\lim_{n\to\infty} \int f d\mu_n = \int f d\mu$ For alle $f \in C_b^u(\mathbb{R}$ Altså svag konvergens ved **uniformt** kontinuerte, boundede funktioner. Da gælder: $\lim_{M\to\infty} \sup_{n\geq 1} \mu_n([-M,M]^c) = 0$

THM 3.1.7 Svag konvergens kan reduceret til undersøgelse af konvergens af integraler af **uniformt** kontinuert boundede funktioner. Dvs: $\mu_n \xrightarrow{wk} \mu \iff \lim_{n \to \infty} \int f d\mu_n = \int f d\mu$ for alle $f \in C_b^u(\mathbb{R})$

THM 3.1.8 continuous mapping lad $\mu_n \xrightarrow{wk} \mu$ da har vi for alle kontinuerte funktioner $h : \mathbb{R} \to \mathbb{R}$ at $h(\mu_n) \xrightarrow{wk} h(\mu)$

Lemma 3.1.9, Scheffé, punktvis konvergens af tætheder, medfører konvergens i fordeling

Lad μ_n være en følge af sandsynlighedsmål med tæthed $g_n(x)$ mht et mål ν altså $\mu_n = g_n(x) \cdot \nu$ Lad μ være et andet mål med $\mu = g(x) \cdot \mu$ da gælder at hvis $g_n(x) \to g(x)$ for ν -næsten alle x, så gælder $\mu_n \xrightarrow{D} \mu$

Lemma 3.2.1 Lad (μ_n) være en følge af ssh-mål på $(\mathbb{R}, \mathcal{B})$

Lad $F_n(x)$ hhs F(x) være CDF for μ_n hhs μ , dvs $F(x) = \mu(-\infty, x]$

Hvis $\mu_n \xrightarrow{wk} \mu$ og F(x) er kontinuert i x da gælder også at $F_n(x) \to F(x)$

Lemma 3.3.1 Deterministisk grænse for konvergens i fordeling og sandsynlighed

Lad (X_n) være en følge af stok.var. og lad $x \in \mathbb{R}$

Da gælder $X_n \xrightarrow{P} x \iff X_n \xrightarrow{D} x$

Altså er konvergens i sandsynlighed og fordeling ækvivalent, når grænsen er deterministisk.

THM 3.2.3, Ækvivalens af konvergens i fordeling, og konvergens af fordelingfunktion

Lad μ_n være en følge af sandsynlighedsmål, μ et andet mål. Antag at μ_n har fordelingsfunktion $F_n(x)$ mens μ har fordelignsfunktion F(x) Da gælder at for $\mu_n \xrightarrow{D}$ Hvis og kun hvis der eksister en tæt delmængde af \mathbb{R} , A hvorom der gælder at $\lim_{n\to\infty} F_n(x) = F(x)$ for alle $x \in A$

Lemma 3.3.2 Slutsky - Sum af grænser i Fordeling og Sandsynlighed

Lad $X_n \xrightarrow{D} X$ og $Y_n \xrightarrow{P} 0$ altså en deteministisk grænse, da gælder der at $X_n + Y_n \xrightarrow{D} X$

THM 3.3.3 Generalisering af Slutsky, Grænser i fordeling

Lad være givet som i Slutsky, Da gælder for alle deterministiske grænser i sandsynlighed $Y_n \xrightarrow{P} y$ hvor $y \in \mathbb{R}$, og for en kont. afbildning $h : \mathbb{R}^2 \to \mathbb{R}$ at $h(X_n, Y_n) \xrightarrow{D} h(X, y)$

Lemma 3.4.9 mm.

For en stokastisk variabel X med cf: $\varphi(\theta)$ da har $\alpha + \beta X$ cf: $\varphi(\theta) = e^{i\theta\alpha}\varphi(\beta\theta)$

NB husk at standard normalfordelingen, N(0,1) har cf: $\varphi(\theta) = e^{\frac{-\theta^2}{2}}$ for

 $X \sim N(0,1)$ da er $X' = \xi + \sigma X$ fordelt ved $N(\xi, \sigma^2)$

og specielt har X' cf: $\theta \to e^{i\theta\xi} e^{\frac{-\sigma^2\theta^2}{2}} = e^{i\theta\xi - \frac{\sigma^2\theta^2}{2}}$

Standard exponentialfordelingen har cf: $\theta \mapsto \frac{1}{1-i\theta}$ og igen følger af lemmaet at eksponentialfordelingen med middelværdi λ har cf: $\theta \mapsto \frac{1}{1-i\lambda\theta}$

Se slides og opgaver for flere.

THM 3.5.3, Klassisk CLT

Lad (X_n) være en i
id følge af stokastiske variable. Med $EX_n=\xi$ og $VX_n=\sigma^2$ da gælder

$$\frac{1}{\sqrt{n}} \sum_{k=1}^{n} \frac{X_k - \xi}{\sigma} \xrightarrow{D} N(0, 1)$$

Bemærk at vi ved Cont. Map. THM har følgende:

$$\frac{1}{n} \sum_{k=1}^{n} X_k \xrightarrow{D} N\left(\xi, \frac{1}{n}\sigma^2\right)$$

Hvor vi allerede vidste hvad middelværdien skulle være, jvf Store Tals Lov. Bemærk desuden at dette giver os at $\frac{1}{n}\sum_{k=1}^{n}X_k \stackrel{a.s.}{\sim} N(\xi, \frac{1}{n}\sigma^2)$

Lemma 3.6.2 Assymptotisk normalitet medfører konvergens i P mod middelværdien Lad $X_n \overset{a.s.}{\sim} N(\xi, \frac{1}{n}\sigma^2)$ Da gælder at $X_n \overset{P}{\longrightarrow} \xi$ Dette giver intuitivt god mening, idet X_n koncentrer sig omkring sin middelværdi.

Kompleks analyse

God tricks: for $z \in \mathbb{C}$ gælder $|Re(z)| \leq |z|$ ligeså for den imaginære del.

HUSK: $e^{i\theta x} = cos(\theta x) + isin(\theta x)$

I forbindelse med bestemmelse at karakteristiske funktioner, kan det ofte være nyttigt at kende stamfunktionen til $c\cos(\theta x)e^{-x} + d\sin(\theta x)e^{-x}$ Da har vi:

$$\frac{d}{dx}\left(\frac{-c-d\theta}{1+\theta^2}\cos(\theta x)e^{-x} + \frac{c\theta-d}{1+\theta^2}\sin(\theta x)e^{-x}\right) = c\cos(\theta x)e^{-x} + d\sin(\theta x)e^{-x}$$

1 Diverse

$$\sum_{i=2}^{n} \frac{1}{i} \le \log(n) \le \sum_{i=1}^{n-1} \frac{1}{i}$$

Floor, eller integerpart af x: |x| er entydigt givet som den funktion, der opfylder $|x| \le x < |x| + 1$

Exp

$$e^x \ge x + 1$$

og

$$\left(1+\frac{x}{n}\right)^n \to e^x$$

Lav suitable extension, så diskont. bliver målelige.

Survival Analysis

lemma 1.2.12 - Tilstrækkelig betingelse for a.s. konvergens

Lad (X_n) være en følge, og X en anden stok. var. Hvis $\sum_{n=1}^{\infty} P(|X_n - X| \ge \epsilon) < \infty$, for alle $\epsilon > 0$ da har vi at $X_n \xrightarrow{a.s.} X$

lemma 1.2.13 - næsten sikker konvergens af delfølge

Hvis $X_n \xrightarrow{p} X$. Eksisterer der en delfølge (X_{n_k}) hvor $X_{n_k} \xrightarrow{a.s} X$

Lemma 1.2.5 Entydighed af grænser

Hvis X_n konvergerer i P, a.s, eller \mathcal{L}^p både mod X og Y Da er (X = Y) næsten sikkert, dvs de er kun forskellige på nulmængder.

Lemma 1.2.6 Bevarelse af grænser i a.s. og P ved kont. transformationer

Lad (X_n) være en følge af stok. var. Hvis $X_n \xrightarrow{a.s.} X$ vil $f(X_n) \xrightarrow{a.s.} f(X)$. Ligeså for konvergens i Sandsynlighed. Hvor $f: \mathbb{R} \to \mathbb{R}$ er en kont. funktion. NB. pr NOTE 8 gælder lemmaet også for funktioner, $f: \mathbb{R}^k \mapsto \mathbb{R}$, $k \geq 1$ Desuden skal f blot være kont. på en a.s. mængde.

Lemma 1.2.10

Lad (X_n) og (Y_n) være følger af stok.var. Og lad X og Y være 2 andre stok.var.

Hvis
$$X_n \xrightarrow{P} X$$
 , $Y_n \xrightarrow{P} Y$ har vi at $X_n + Y_n \xrightarrow{p} X + Y$ samt $X_n Y_n \xrightarrow{p} XY$

Ligeså for a.s. konvergens.

Lemma 1.2.11 Borel-Cantelli

Lad (F_n) være en følge af events, da gælder at hvis $\sum_{n\geq 1} P(F_n) < \infty \implies P(F_n i.o.) = 0$

lemma 1.3.12 (Second Borel-Cantelli)

Lad (F_n) være en følge af <u>uafhængige</u> events. Da er $P(F_n i.o.) = \begin{cases} 0 & \iff \sum_{n \geq 1} P(F_n) < \infty \\ 1 \end{cases}$

Estimators

Proportional Hazard Model

Let the counting process $N_i(t)$ have intensity given by

$$\lambda_i(t|X) = Y_i(t)\lambda_0(t)\exp(X_i\beta)$$

for a p-vector of covariates for subject i, X_i , and β a p-vector of regression coefficients, i.e. the cox model.

The baseline cumulative hazard function is estimated by the ${\bf Breslow}$ estimator:

$$\hat{\Lambda}_0(t) = \int_0^t \frac{1}{\sum_{i=1}^n Y_i(t) \exp(X_i \hat{\beta})} dN.(s)$$

Properties: