AUTONOMOUS MOBILE ROBOTICS

MOTION PLANNING AND CONTROL

GEESARA KULATHUNGA

SEPTEMBER 7, 2022

CONTROL OF MOBILE ROBOTS

TASK 01

Let's try to control the differential drive robot. Consider you are given the following vehicle parameters: sampling period T_s = 0.033s, wheel radius r = 0.04 m, distance between the wheels L = 0.08 m

- Calculate analytically and by simulation the shape of the path done by the robot for the following cases? initial state of the robot you can get by calling self.set_q_init
 - ▶ $v(t) = 0.5 \text{ m/s}, \omega(t) = 0 \text{ rad/s}$
 - ▶ $v(t) = 1 \text{ m/s}, \omega(t) = 2 \text{ rad/s}$
 - \triangleright v(t) = 0 m/s, $\omega(t)$ = 2 rad/s
 - wheels angular velocities are $\omega(t)_L = 20 rad/s$ and $\omega(t)_R = 18 rad/s$
- Check that calculated and simulated path the same. Why or why not?
- Plot odometry of the vehicle and how can we reduce the error between desired and actual odometry of the vehicle?

3

TASK 02

Consider the following figure

Assume you know the vehicle parameters of the vehicle. Can you calculate the path that vehicle has to navigate from position A to position B? Make necessary assumptions

2

TASK 02

Consider the following figure

■ Can you calculate the path that vehicle has to navigate from position A to position B? Make necessary assumptions