On the feasibility for the system of quadratic equations

Anatoly Dymarsky, Elena Gryazina, Boris Polyak, Yury Maximov, Sergei Volodin

Skolkovo Insitute of Science and Technology

Outline

- The Power Flow feasibility problem
- The algorithm
- An example
- Further plans

The problem

Power Flow Feasibility problem:

- Large-scale power grids
- Need to know if a regime is «normal», «safe»
- Ohm's law ⇒ quadratic equations:

$$y_i = f_i(x) = x^T A_i x + 2b_i^T x$$

y (regime) known, x is not

① Determine if $\exists x : y = f(x)$ (means «safe»)

The image $f(\mathbb{R}^n)$ must be examined

The solution

Given: the map $f: \mathbb{R}^n \to \mathbb{R}^m$, $f_i(x) = x^T A_i x + 2b_i^T x$, $A_i^T = A_i$ Proposed algorithm for examining $F = f(\mathbb{R}^n)$:

- Input: $y^0 \in F$, direction c_+ : $c_+ \cdot A > 0$
- Output: value z_{max} s.t. the cut $Q(c_+, z_{\text{max}}, F)$ is convex

Solution overview:

- ① Discovering boundary nonconvexities $\{F_i\}$ close to y^0
- **2** Projecting to c_+ : (F_i, c_+)
- 3 Calculating $z_{\text{max}} = \inf_{i} \inf_{y \in F_i} (c_+, y)$

 $Q(c_+,z,F)=\{y\big|(y-y^*,c_+)\in[0,z]\}\cap F$, y^* — touching point of hyperplane c_+

The solution

Infinite number of nonconvexities ⇒

- @ Gradient projection method
- **3** Projection using $\vec{n} \perp c_{\text{bad}}$

Numerical experiment

An example: $f: \mathbb{R}^4 \to \mathbb{R}^4$. Looking for $z_{\max} = \inf_{c \in c_{\mathrm{bad}}} z(c)$

- 4 local minima
- Global minimum found

Results

Summary

- Power Flow feasibility
- Algorithm cuts convex parts
- Gradient projection method
- $oldsymbol{4}$ Algorithm was tested on a number of maps f

Plan: practical application

- lacksquare $\Bbb C$ case
- 2 Testing for higher dimensions

Thank you! Questions?