598. Range Addition II

Description

You are given an $[m \times n]$ matrix [M] initialized with all [0]'s and an array of operations [ops], where $[ops[i] = [a_i, b_i]]$ means [M[x][y]] should be incremented by one for all $[0 <= x < a_i]$ and $[0 <= y < b_i]$.

Count and return the number of maximum integers in the matrix after performing all the operations.

Example 1:

0	0	0	1	1	0	2	2	1
0	0	0	1	1	0	2	2	1
0	0	0	0	0	0	1	1	1

```
Input: m = 3, n = 3, ops = [[2,2],[3,3]]
Output: 4
Explanation: The maximum integer in M is 2, and there are four of it in M. So return 4.
```

Example 2:

```
Input: m = 3, n = 3, ops = [[2,2],[3,3],[3,3],[3,3],[2,2],[3,3],[3,3],[2,2],[3,3],[3,3],[3,3]]
Output: 4
```

Example 3:

```
Input: m = 3, n = 3, ops = []
Output: 9
```

Constraints:

- 1 <= m, n <= 4 * 10^4
- 0 <= ops.length <= 10 4
- ops[i].length == 2
- $1 \ll a_i \ll m$
- $1 \leftarrow b_i \leftarrow n$