University of Michigan LoG(M)

put your name here

Gauss Sum Tables in Finite Fields

James Evans, *put your name here*

University of Michigan

February 21, 2025

Introduction

University of Michigan LoG(M)

- Gauss sums are essential in number theory and finite field analysis.
- We break down key concepts before defining Gauss sums rigorously.
- This will provide a structured understanding before analyzing the code.

Research Goals

University of Michigan LoG(M)

- Reproduce Counterexamples: Verify the correctness of prior counterexamples found by Bakeberg,
 Gerbelli-Gauthier, Goodson, Iyengar, Moss, and
 Zhang for n = 2 [2].
- **Generalization to Larger** *n***:** Investigate whether these failures extend to larger values of *n*.
- Refining Conjectures: Develop a refined conjecture specifying the conditions under which the theorem holds or fails.
- Computational Exploration: Utilize SageMath and other computational tools to generate and analyze new examples.

Definition of a Group

University of Michigan LoG(M)

- **A group** is a set G with an operation \cdot satisfying:
 - 1 Closure: If $a, b \in G$, then $a \cdot b \in G$.
 - 2 Associativity: $(a \cdot b) \cdot c = a \cdot (b \cdot c)$ for all $a, b, c \in G$.
 - 3 Identity: There exists an element e such that $e \cdot a = a \cdot e = a$ for all $a \in G$.
 - 4 Inverse: Each $a \in G$ has an inverse a^{-1} such that $a \cdot a^{-1} = e$.
- A group is **abelian** if $a \cdot b = b \cdot a$ for all $a, b \in G$.
- A group is cyclic if it can be generated by a single element.

Definition of a Field

University of Michigan LoG(M)

- A **field** *F* is a set with two operations: addition and multiplication.
- It satisfies:
 - (F, +) is an abelian group (additive group).
 - **2** $(F \setminus \{0\}, \cdot)$ is an abelian group (multiplicative group).
 - **3** Distributive law: $a \cdot (b+c) = a \cdot b + a \cdot c$ for all $a, b, c \in F$.
- A **finite field** (or Galois field) GF(q) has q elements, where q is a prime power.

Example: The Field GF(3)

University of Michigan LoG(M)

- Elements: $GF(3) = \{0, 1, 2\}.$
- Identity Elements:
 - Additive identity: 0, since a + 0 = a for all a.
 - Multiplicative identity: 1, since $a \cdot 1 = a$ for all $a \neq 0$.
- Inverses:
 - Additive inverse: $1^{-1} = 2$, $2^{-1} = 1 \pmod{3}$, $0^{-1} = 0$.
 - Multiplicative inverse: $1^{-1} = 1$, $2^{-1} = 2 \pmod{3}$.
- **■** Example of Closure and Associativity:
 - Closure: $1 + 2 = 0 \mod 3$, stays in GF(3).
 - Associativity: (1+2)+1=0+1=1 is the same as 1+(2+1)=1+0=1.
- This satisfies all field axioms.

Gauss Sums: Definition

University of Michigan LoG(M)

James Evans, *put your name here*

- The Gauss sum is an element of \mathbb{C}^* and is associated with the field $GF(q^m)$.
- Given a finite field $GF(q^m)$ and two characters:
 - Multiplicative character $\alpha : GF(q^m)^* \to \mathbb{C}^*$.
 - Additive character $\psi : GF(q^m) \to \mathbb{C}^*$.
 - lacksquare Auxiliary multiplicative character $heta: GF(q^m)^* o \mathbb{C}^*.$
- The Gauss sum is defined as:

$$G(\alpha, \theta, \psi) = \sum_{a \in GF(q^m)^*} \alpha(a)\theta(a)\psi(a).$$

■ The function θ is an additional multiplicative character used to adjust contributions in the sum.

Twisted Gauss Sum

University of Michigan LoG(M)

James Evans, *put your name here* **Definition:** The twisted Gauss sum is an element of \mathbb{C}^* and is associated with the field $GF(q^2)$. If $G(\alpha, \psi)$ is a standard Gauss sum for a multiplicative character α and an additive character ψ , a twisted Gauss sum is of the form:

$$G(\Theta, \alpha, \Psi) = \sum_{x \in GF(q^2)^*} \Theta(x) \cdot \alpha(N(x)) \cdot \Psi(tr(x)), \quad (1)$$

where:

- ullet Θ and α are multiplicative characters of $GF(q^2)^*$, mapping $GF(q^2)^*$ to \mathbb{C}^* .
- lackloss Ψ is an additive character of $GF(q^2)$, mapping $GF(q^2)$ to \mathbb{C}^* .
- N(x) represents the norm function $N: GF(q^2) \to GF(q)$.
- tr(x) represents the trace function $tr: GF(q^2) \rightarrow GF(q)$.

The Converse Theorem of Gauss Sums [1]

University of Michigan LoG(M)

James Evans *put your name here*

Theorem

Consider two multiplicative characters θ_1 and θ_2 defined on the multiplicative group of a finite field $GF(q^m)^*$. If for all additive characters ψ on $GF(q^m)$ and all multiplicative characters α on $GF(q^m)^*$, the following equality holds:

$$G(\alpha, \theta_1, \psi) = G(\alpha, \theta_2, \psi),$$

$$\sum_{\mathbf{a}\in \mathit{GF}(q^m)^*}\alpha(\mathbf{a})\theta_1(\mathbf{a})\psi(\mathbf{a})=\sum_{\mathbf{a}\in \mathit{GF}(q^m)^*}\alpha(\mathbf{a})\theta_2(\mathbf{a})\psi(\mathbf{a}),$$

then it must be the case that θ_1 and θ_2 are identical, or at least related by a well-understood transformation.

Macro Purpose of the Code

University of Michigan LoG(M)

- The purpose of this code is to generate a **table of Gauss** sums for a finite field $GF(q^2)$.
- It systematically computes Gauss sums for different character pairs:
 - Multiplicative characters α and θ .
 - Additive character ψ .
- The table stores values of the twisted Gauss sum:

$$G(\alpha, \theta, \psi) = \sum_{\mathbf{a} \in GF(q^2)^*} \alpha(\mathbf{a})\theta(\mathbf{a})\psi(\mathbf{a}).$$

Constructing the Table

University of Michigan LoG(M)

- The multiplicative generator of $GF(q^2)^*$ is used to systematically construct different possible characters.
- Raising the generator to different powers gives distinct character mappings for α and θ .
- Each row and each column corresponds to a different possible character created from the generator.
- An entry in the table represents the twisted Gauss sum for the combination of those two particular characters.

Relation to the Converse Theorem

University of Michigan LoG(M)

- This structure allows us to compare different character mappings.
- The table provides a framework for analyzing the behavior of twisted Gauss sums in relation to the Converse Theorem.
- Understanding how character mappings interact helps in proving or refuting generalizations of Gauss sum identities.

Gauss Sum Table Example Output

University of Michigan LoG(M)

$\theta \backslash \alpha$	0	1		q-1
0	G(0,0)	G(0,1)		G(0, q-1)
1	G(1,0)	G(1, 1)		G(1,q-1)
2	G(2,0)	G(2,1)		G(2, q-1)
:	:	:	٠	:
$q^{2} - 1$	$G(q^2-1,0)$	$G(q^2-1,1)$		$G(q^2-1,q-1)$

Applying the Converse Theorem

University of Michigan LoG(M)

- The Converse Theorem of Gauss Sums states that if two multiplicative characters produce identical Gauss sums across all additive characters ψ and all multiplicative characters α , then θ_1 and θ_2 must be identical or related by a well-understood transformation.
- In the Gauss sum table, each row corresponds to a different multiplicative character θ , and each column corresponds to a different multiplicative character α .
- To apply the theorem:
 - Identify two rows in the table where all entries match across all ψ and α values.
 - Highlight these rows and investigate the corresponding θ_1 and θ_2 .
 - Check whether θ_1 and θ_2 are identical or related by a known transformation.
- This process helps verify whether the Converse Theorem holds in our computed Gauss sum table

References

University of Michigan LoG(M)

James Evans *put your name here*

[2] Elad Zelingher. "Failure of Converse Theorems of Gauss Sums Modulo \ell." Preprint, available from https://lsa.umich.edu/content/dam/math-assets/logm/wn2025/ELAD-ZELINGHER.pdf, 2025.