Equivalence of smoothness spaces by means of frames of discrete shearlets on the cone and curvelets

Francisco Blanco-Silva blanco@math.sc.edu

Department of Mathematics and IMI University of South Carolina

33rd SIAM Southeastern-Atlantic Section Conference

$\overline{\text{Outline}}$

Background and Motivation

Frames

Curvelets

Shearlets on the cone

Approximation Spaces

Decomposition Spaces

Function Spaces via Frame Decompositions

Equivalence of Decomposition Spaces

Sketch of the Proof

Future Work

From Decomposition Spaces to Approximation Spaces

Outline

Background and Motivation

Frames

Curvelets

Shearlets on the cone

Approximation Spaces

Decomposition Spaces

Function Spaces via Frame Decompositions
Equivalence of Decomposition Spaces
Stratch of the Proof

Future Work

From Decomposition Spaces to Approximation Spaces

Frames

A sequence $\{\phi_{\lambda}\}_{{\lambda}\in\Lambda}$ is a frame for a Hilbert space ${\mathcal H}$ if

$$A||f||^2 \le \sum_{\lambda \in \Lambda} |\langle f, \phi_{\lambda} \rangle|^2 \le B||f||^2$$

If A = B, the frame is tight.

Frames

A sequence $\{\phi_{\lambda}\}_{{\lambda}\in\Lambda}$ is a frame for a Hilbert space \mathcal{H} if

$$|A||f||^2 \le \sum_{\lambda \in \Lambda} |\langle f, \phi_{\lambda} \rangle|^2 \le B||f||^2$$

If A = B, the frame is tight.

Trivial description of \mathcal{H} by means of frame coefficients:

$$f \in \mathcal{H}$$
 if and only if $\sum_{\lambda \in \Lambda} |\langle f, \phi_{\lambda} \rangle|^2 < \infty$

Frames

A sequence $\{\phi_{\lambda}\}_{{\lambda}\in\Lambda}$ is a frame for a Hilbert space \mathcal{H} if

$$|A||f||^2 \le \sum_{\lambda \in \Lambda} |\langle f, \phi_{\lambda} \rangle|^2 \le B||f||^2$$

If A = B, the frame is tight.

Trivial description of \mathcal{H} by means of frame coefficients:

$$f \in \mathcal{H}$$
 if and only if $\sum_{\lambda \in \Lambda} |\langle f, \phi_{\lambda} \rangle|^2 < \infty$

Frames are not bases (in general) but still,

$$f = \sum_{\lambda \in \Lambda} \langle f, \phi_{\lambda} \rangle \, \phi_{\lambda}$$

$$\begin{split} f &= \sum_{n=0}^{\infty} \sum_{k} \sum_{\boldsymbol{z} \in \mathbb{Z}^2} \langle f, \phi_{n\boldsymbol{z}\boldsymbol{k}} \rangle \, \phi_{n\boldsymbol{z}\boldsymbol{k}} \\ &+ \sum_{\boldsymbol{z} \in \mathbb{Z}^2} \langle f, \Phi_{\boldsymbol{z}} \rangle \, \Phi_{\boldsymbol{z}} \\ \|f\|_{L_2(\mathbb{R}^2)}^2 &= \sum_{n=0}^{\infty} \sum_{k} \sum_{\boldsymbol{z} \in \mathbb{Z}^2} |\langle f, \phi_{n\boldsymbol{z}\boldsymbol{k}} \rangle|^2 \\ &+ \sum_{\boldsymbol{z} \in \mathbb{Z}^2} |\langle f, \Phi_{\boldsymbol{z}} \rangle|^2 \end{split}$$

$$\begin{split} f &= \sum_{n=0}^{\infty} \sum_{k} \sum_{\boldsymbol{z} \in \mathbb{Z}^2} \langle f, \phi_{n\boldsymbol{z}k} \rangle \, \phi_{n\boldsymbol{z}k} \\ &+ \sum_{\boldsymbol{z} \in \mathbb{Z}^2} \langle f, \Phi_{\boldsymbol{z}} \rangle \, \Phi_{\boldsymbol{z}} \\ \|f\|_{L_2(\mathbb{R}^2)}^2 &= \sum_{n=0}^{\infty} \sum_{k} \sum_{\boldsymbol{z} \in \mathbb{Z}^2} |\langle f, \phi_{n\boldsymbol{z}k} \rangle|^2 \\ &+ \sum_{\boldsymbol{z} \in \mathbb{Z}^2} |\langle f, \Phi_{\boldsymbol{z}} \rangle|^2 \end{split}$$

$$\begin{split} f &= \sum_{n=0}^{\infty} \sum_{k} \sum_{\boldsymbol{z} \in \mathbb{Z}^2} \langle f, \phi_{n\boldsymbol{z}\boldsymbol{k}} \rangle \, \phi_{n\boldsymbol{z}\boldsymbol{k}} \\ &+ \sum_{\boldsymbol{z} \in \mathbb{Z}^2} \langle f, \Phi_{\boldsymbol{z}} \rangle \, \Phi_{\boldsymbol{z}} \\ \|f\|_{L_2(\mathbb{R}^2)}^2 &= \sum_{n=0}^{\infty} \sum_{k} \sum_{\boldsymbol{z} \in \mathbb{Z}^2} |\langle f, \phi_{n\boldsymbol{z}\boldsymbol{k}} \rangle|^2 \\ &+ \sum_{\boldsymbol{z} \in \mathbb{Z}^2} |\langle f, \Phi_{\boldsymbol{z}} \rangle|^2 \end{split}$$

$$\begin{split} f &= \sum_{n=0}^{\infty} \sum_{k} \sum_{\boldsymbol{z} \in \mathbb{Z}^2} \langle f, \phi_{n\boldsymbol{z}\boldsymbol{k}} \rangle \, \phi_{n\boldsymbol{z}\boldsymbol{k}} \\ &+ \sum_{\boldsymbol{z} \in \mathbb{Z}^2} \langle f, \Phi_{\boldsymbol{z}} \rangle \, \Phi_{\boldsymbol{z}} \\ \|f\|_{L_2(\mathbb{R}^2)}^2 &= \sum_{n=0}^{\infty} \sum_{k} \sum_{\boldsymbol{z} \in \mathbb{Z}^2} |\langle f, \phi_{n\boldsymbol{z}\boldsymbol{k}} \rangle|^2 \\ &+ \sum_{\boldsymbol{z} \in \mathbb{Z}^2} |\langle f, \Phi_{\boldsymbol{z}} \rangle|^2 \end{split}$$

$$\mathrm{width}_n/\mathrm{length}_n \asymp 2^n.$$

 $\phi_{nzk} \colon \mathbb{R}^2 \to \mathbb{C}$ with parameters $n \in \mathbb{Z}$ (shape AND scaling), $z \in \mathbb{Z}^2$ (location), and $1 \le k \le 2^{\lceil n/2 \rceil + 2}$ (direction).

$$(\phi_{n\mathbf{z}k})^{\hat{}}(\xi) = W_n(|\xi|) V_{n,k}(\xi/|\xi|) e^{2\pi i (\beta_{n\mathbf{z}k} \cdot \xi)}$$

 $\phi_{nzk} \colon \mathbb{R}^2 \to \mathbb{C}$ with parameters $n \in \mathbb{Z}$ (shape AND scaling), $z \in \mathbb{Z}^2$ (location), and $1 \le k \le 2^{\lceil n/2 \rceil + 2}$ (direction).

$$(\phi_{n\mathbf{z}k})^{\widehat{}}(\xi) = W_n(|\xi|) V_{n,k}(\xi/|\xi|) e^{2\pi i (\beta_{n\mathbf{z}k} \cdot \xi)}$$

▶ $W_n(\xi)$ amplitude window.

 $\phi_{nzk} \colon \mathbb{R}^2 \to \mathbb{C}$ with parameters $n \in \mathbb{Z}$ (shape AND scaling), $z \in \mathbb{Z}^2$ (location), and $1 \le k \le 2^{\lceil n/2 \rceil + 2}$ (direction).

$$(\phi_{n\mathbf{z}k})^{\widehat{}}(\xi) = W_n(|\xi|) V_{n,k}(\xi/|\xi|) e^{2\pi i (\beta_{n\mathbf{z}k} \cdot \xi)}$$

- ▶ $W_n(\xi)$ amplitude window.
- ▶ $V_{n,k}(\xi/|\xi|)$ angular window.

 $\phi_{nzk} \colon \mathbb{R}^2 \to \mathbb{C}$ with parameters $n \in \mathbb{Z}$ (shape AND scaling), $z \in \mathbb{Z}^2$ (location), and $1 \le k \le 2^{\lceil n/2 \rceil + 2}$ (direction).

$$(\phi_{n\mathbf{z}k})^{\widehat{}}(\xi) = W_n(|\xi|) V_{n,k}(\xi/|\xi|) e^{2\pi i (\beta_{n\mathbf{z}k} \cdot \xi)}$$

- ▶ $W_n(\xi)$ amplitude window.
- $ightharpoonup V_{n,k}(\xi/|\xi|)$ angular window.

 $\phi_{nzk} \colon \mathbb{R}^2 \to \mathbb{R}$ with parameters $n \in \mathbb{Z}$ (shape AND scaling), $z \in \mathbb{Z}^2$ (location), and $-2^n \le k < 2^n$ (direction/shear).

$$(\phi_{n\mathbf{z}k})^{\widehat{}}(\xi) = W_n(|\xi_1|) V_{n,k}(\xi_2/\xi_1) e^{2\pi i(\beta_{n\mathbf{z}k}\cdot\xi)}$$

 $\phi_{nzk} \colon \mathbb{R}^2 \to \mathbb{R}$ with parameters $n \in \mathbb{Z}$ (shape AND scaling), $z \in \mathbb{Z}^2$ (location), and $-2^n \le k < 2^n$ (direction/shear).

$$(\phi_{n\mathbf{z}k})^{\widehat{}}(\xi) = W_n(|\xi_1|) V_{n,k}(\xi_2/\xi_1) e^{2\pi i (\beta_{n\mathbf{z}k} \cdot \xi)}$$

▶ $W_n(|\xi_1|)$ "first coordinate" window.

 $\phi_{nzk} \colon \mathbb{R}^2 \to \mathbb{R}$ with parameters $n \in \mathbb{Z}$ (shape AND scaling), $z \in \mathbb{Z}^2$ (location), and $-2^n \le k < 2^n$ (direction/shear).

$$(\phi_{n\mathbf{z}k})^{\widehat{}}(\xi) = W_n(|\xi_1|) V_{n,k}(\xi_2/\xi_1) e^{2\pi i (\beta_{n\mathbf{z}k} \cdot \xi)}$$

- ▶ $W_n(|\xi_1|)$ "first coordinate" window.
- ▶ $V_{n,k}(\xi_2/\xi_1)$ slope window.

 $\phi_{n\mathbf{z}k} \colon \mathbb{R}^2 \to \mathbb{R}$ with parameters $n \in \mathbb{Z}$ (shape AND scaling), $\mathbf{z} \in \mathbb{Z}^2$ (location), and $-2^n \le k < 2^n$ (direction/shear).

$$(\phi_{n\mathbf{z}k})^{\widehat{}}(\xi) = W_n(|\xi_1|) V_{n,k}(\xi_2/\xi_1) e^{2\pi i(\beta_{n\mathbf{z}k}\cdot\xi)}$$

- ▶ $W_n(|\xi_1|)$ "first coordinate" window.
- $ightharpoonup V_{n,k}(\xi_2/\xi_1)$ slope window.

Different frames?

- ► Same spatial localization, scaling, directional sensitivity, sparsity.
- ► Different frequency localization, generation at different levels.

How to prove equivalence of these two frames?

 \blacktriangleright Same description of Smoothness Spaces

How to prove equivalence of these two frames?

- ▶ Same description of Smoothness Spaces
- ► Same Approximation Spaces

$$\begin{split} X_N &= \left\{ \sum_{\ell \in \Lambda_N} c_\ell \, \phi_\ell : \# \Lambda_N = N \right\} \\ \mathcal{A}_q^s \big(\mathcal{H}, \{X_N^{\text{curv}}\}_{N \in \mathbb{N}} \} \big) &= \mathcal{A}_q^s \big(\mathcal{H}, \{X_N^{\text{shear}}\}_{N \in \mathbb{N}} \} \big) \end{split}$$

Outline

Background and Motivation

Frames

Curvelets

Shearlets on the cone

Approximation Spaces

Decomposition Spaces

Function Spaces via Frame Decompositions Equivalence of Decomposition Spaces Sketch of the Proof

Future Work

From Decomposition Spaces to Approximation Spaces

Approximation Spaces

$$\mathcal{A}_{q}^{s}(\mathcal{H}, \{X_{n}\}_{n \in \mathbb{N}}) = \left\{ f \in \mathcal{H} : \left(\sum_{n=1}^{\infty} \frac{1}{n} \left(n^{s} E(f, X_{n})_{\mathcal{H}} \right)^{q} \right)^{1/q} < \infty \right\},$$

$$\mathcal{A}_{\infty}^{s}(\mathcal{H}, \{X_{n}\}_{n \in \mathbb{N}}) = \left\{ f \in \mathcal{H} : \sup_{n \in \mathbb{N}} n^{s} E(f, X_{n})_{\mathcal{H}} < \infty \right\}.$$

Approximation Spaces

$$\mathcal{A}_{q}^{s}(\mathcal{H}, \{X_{n}\}_{n \in \mathbb{N}}) = \left\{ f \in \mathcal{H} : \left(\sum_{n=1}^{\infty} \frac{1}{n} \left(n^{s} E(f, X_{n})_{\mathcal{H}} \right)^{q} \right)^{1/q} < \infty \right\},$$

$$\mathcal{A}_{\infty}^{s}(\mathcal{H}, \{X_{n}\}_{n \in \mathbb{N}}) = \left\{ f \in \mathcal{H} : \sup_{n \in \mathbb{N}} n^{s} E(f, X_{n})_{\mathcal{H}} < \infty \right\}.$$

Outline

Background and Motivation

Frames

Curvelets

Shearlets on the cone

Approximation Spaces

Decomposition Spaces

Function Spaces via Frame Decompositions Equivalence of Decomposition Spaces Sketch of the Proof

Future Work

From Decomposition Spaces to Approximation Spaces

Decomposition Spaces (Feichtinger, Gröbner) '80s

▶ ${Q_{\lambda}}_{{\lambda} \in {\Lambda}}$ a covering of \mathbb{R}^2 satisfying:

$$\exists N > 0, \forall \lambda_0, \sharp \{\lambda : Q_\lambda \cap Q_{\lambda_0} \neq \emptyset\} \leq N.$$

- $\{\psi_{\lambda}\}_{{\lambda}\in\Lambda}$ a partition of unity satisfying:
 - supp $\psi_{\lambda} \subset Q_{\lambda}$
 - $\sup_{\lambda \in \Lambda} |Q_{\lambda}|^{1/p-1} \|\mathcal{F}^{-1}\psi_{\lambda}\|_{L_{p}(\mathbb{R}^{2})} < \infty \text{ for } 0 < p < 1.$
- ▶ A moderate weight $\omega = \{\omega_{\lambda} = \omega(x_{\lambda})\}_{\lambda \in \Lambda}$:
 - $\omega \colon \mathbb{R}^2 \to \mathbb{R}^+$ satisfying $\omega(x) \le C\omega(y), x, y \in Q_{\lambda}$.
 - $\blacktriangleright x_{\lambda} \in Q_{\lambda}.$

Decomposition Spaces (Feichtinger, Gröbner) '80s

▶ ${Q_{\lambda}}_{{\lambda} \in {\Lambda}}$ a covering of \mathbb{R}^2 satisfying:

$$\exists N > 0, \forall \lambda_0, \sharp \{\lambda : Q_\lambda \cap Q_{\lambda_0} \neq \emptyset\} \leq N.$$

- $\{\psi_{\lambda}\}_{{\lambda}\in\Lambda}$ a partition of unity satisfying:
 - supp $\psi_{\lambda} \subset Q_{\lambda}$
 - $\sup_{\lambda \in \Lambda} |Q_{\lambda}|^{1/p-1} \|\mathcal{F}^{-1}\psi_{\lambda}\|_{L_{p}(\mathbb{R}^{2})} < \infty \text{ for } 0 < p < 1.$
- ▶ A moderate weight $\omega = \{\omega_{\lambda} = \omega(x_{\lambda})\}_{\lambda \in \Lambda}$:
 - $\omega \colon \mathbb{R}^2 \to \mathbb{R}^+$ satisfying $\omega(x) \le C\omega(y), x, y \in Q_\lambda$.
 - $x_{\lambda} \in Q_{\lambda}.$

$$\widehat{\mathfrak{D}}(\{Q_{\lambda}\}_{\Lambda}, \{\psi_{\lambda}\}_{\Lambda})_{L_{p}(\mathbb{R}^{2})}^{\ell_{q}(\Lambda, \boldsymbol{\omega})} = \left\{ f \in L_{p}(\mathbb{R}^{2}) : \{\|\mathcal{F}^{-1}(\psi_{\lambda}\widehat{f})\|_{L_{p}(\mathbb{R}^{2})}\}_{\lambda \in \Lambda} \in \ell_{q}(\Lambda, \boldsymbol{\omega}) \right\}$$

Besov Spaces (Frazier, Jawerth, Weiss) '91'

$$f \in B_q^s(L_p(\mathbb{R}^2))$$
 iff $\sum_{n \in \mathbb{Z}} \left(\int_{\mathbb{R}^2} (1+2^{sn})^p |\mathcal{D}_n f(x)|^p dx \right)^{q/p} < \infty$

- Atoms $(\mathcal{D}_n f) \hat{f}(\xi) = \psi_n(\xi) \hat{f}(\xi)$, where $\sup \psi_n = \{2^{n-1} \le |\xi| \le 2^{n+1}\},$ $\sum_{n \in \mathbb{Z}} \psi_n(\xi) = 1.$
- Weights $\omega_n = 1 + 2^{sn}$

Besov Spaces (Frazier, Jawerth, Weiss) '91'

- \wedge $\Lambda = \mathbb{Z}$.
- Covering: $Q_n = \{2^{n-1} < |\xi| < 2^{n+1}\}.$
- ▶ Partition of Unity: ψ_n radially symmetric, $\sum_{n \in \mathbb{Z}} \psi_n(\xi) = 1$ for all $\xi \in \mathbb{R}^2 \setminus \{0\}$.
- ▶ Moderate weight: $\omega_n = 1 + 2^{ns}$.

$$B_q^s(L_p(\mathbb{R}^2)) = \mathfrak{D}(\{Q_n\}, \{\psi_n\})_{L_p(\mathbb{R}^2)}^{\ell_q(\Lambda, \omega)}$$

Outline

Background and Motivation

Frames

Curvelets

Shearlets on the cone

Approximation Spaces

Decomposition Spaces

Function Spaces via Frame Decompositions Equivalence of Decomposition Spaces

Sketch of the Proof

Future Work

From Decomposition Spaces to Approximation Spaces

Curvelet Decomposition Spaces

- Covering: $Q_{nk} = \operatorname{supp} \phi_{n\mathbf{0}k}$.
- ▶ Partition of Unity: $\psi_{nk} = |\phi_{n\mathbf{0}k}|^2$.
- ▶ Moderate weight: $\omega_{nk} = 2^{ns}$.

$$\mathfrak{D}\big(\{Q_{nk}\},\{\psi_{nk}\}\big)_{L_p(\mathbb{R}^2)}^{\ell_q(\Lambda,\boldsymbol{\omega})}$$

Theorem (B-S '09)

Define $\psi_{nk} = |\phi_{n\mathbf{0}k}|^2$, $Q_{nk} = \operatorname{supp} \psi_{nk}$, $\Lambda = \{(n,k)\}$. Then, for the same moderate weight $\boldsymbol{\omega}$,

$$\mathfrak{D}\big(\{Q_{nk}^{\mathrm{curv}}\}_{\Lambda},\{\psi_{nk}^{\mathrm{curv}}\}_{\Lambda}\big)_{L_p(\mathbb{R}^2)}^{\ell_q(\Lambda,\pmb{\omega})} = \mathfrak{D}\big(\{Q_{nk}^{\mathrm{shear}}\}_{\Lambda},\{\psi_{nk}^{\mathrm{shear}}\}_{\Lambda}\big)_{L_p(\mathbb{R}^2)}^{\ell_q(\Lambda,\pmb{\omega})}$$

with equivalent norms.

Outline

Background and Motivation

Frames

Curvelets

Shearlets on the cone

Approximation Spaces

Decomposition Spaces

Function Spaces via Frame Decompositions

Equivalence of Decomposition Spaces

Sketch of the Proof

Future Work

From Decomposition Spaces to Approximation Spaces

Sketch of the proof

► The coverings $\mathfrak{Q}^{\text{curv}} = \{Q_{nk}^{\text{curv}}\}$ and $\mathfrak{Q}^{\text{shear}} = \{Q_{nk}^{\text{shear}}\}$ are "equivalent":

```
\mathfrak{Q}^{\text{curv}} is subordinate to \left\{[Q]_7^{\text{shear}}:Q\in\mathfrak{Q}^{\text{shear}}\right\} \mathfrak{Q}^{\text{shear}} is subordinate to \left\{[Q]_2^{\text{curv}}:Q\in\mathfrak{Q}^{\text{curv}}\right\}
```


Sketch of the proof

▶ The coverings $\mathfrak{Q}^{\text{curv}} = \{Q_{nk}^{\text{curv}}\}$ and $\mathfrak{Q}^{\text{shear}} = \{Q_{nk}^{\text{shear}}\}$ are "equivalent":

$$\mathfrak{Q}^{\text{curv}}$$
 is subordinate to $\left\{[Q]_7^{\text{shear}}:Q\in\mathfrak{Q}^{\text{shear}}\right\}$
 $\mathfrak{Q}^{\text{shear}}$ is subordinate to $\left\{[Q]_2^{\text{curv}}:Q\in\mathfrak{Q}^{\text{curv}}\right\}$

► The families $\{\psi_{nk}^{\rm curv}\}$ and $\{\psi_{nk}^{\rm shear}\}$ are partitions of unity satisfying

$$\sup_{(n,k)\in\Lambda} |Q_{nk}|^{1/p-1} \|\mathcal{F}^{-1}\psi_{nk}\|_p < \infty \text{ for all } 0 < p \le 1$$

Sketch of the proof

▶ The coverings $\mathfrak{Q}^{\text{curv}} = \{Q_{nk}^{\text{curv}}\}$ and $\mathfrak{Q}^{\text{shear}} = \{Q_{nk}^{\text{shear}}\}$ are "equivalent":

$$\mathfrak{Q}^{\mathsf{curv}}$$
 is subordinate to $\left\{[Q]_7^{\mathsf{shear}}:Q\in\mathfrak{Q}^{\mathsf{shear}}\right\}$ $\mathfrak{Q}^{\mathsf{shear}}$ is subordinate to $\left\{[Q]_2^{\mathsf{curv}}:Q\in\mathfrak{Q}^{\mathsf{curv}}\right\}$

► The families $\{\psi_{nk}^{\text{curv}}\}$ and $\{\psi_{nk}^{\text{shear}}\}$ are partitions of unity satisfying

$$\sup_{(n,k)\in\Lambda} |Q_{nk}|^{1/p-1} \|\mathcal{F}^{-1}\psi_{nk}\|_p < \infty \text{ for all } 0 < p \le 1$$

▶ Under these conditions, a Theorem by Feichtinger and Groebner (1985) states that the corresponding decomposition spaces must be equal, with equivalent norms.

Outline

Background and Motivation

Frames

Curvelets

Shearlets on the cone

Approximation Spaces

Decomposition Spaces

Function Spaces via Frame Decompositions Equivalence of Decomposition Spaces Sketch of the Proof

Future Work

From Decomposition Spaces to Approximation Spaces

Next steps?

► Embedding Theorems

Theorem (Borup, Nielsen '06)

For
$$0 , $0 < s, q < \infty$ and $s' = \frac{\max(1, 1/p) - \min(1, 1/q)}{2}$,$$

$$B_q^{s+1/(2q)}\big(L_p(\mathbb{R}^2)\big) \hookrightarrow \mathfrak{D}_q^s\big(L_p(\mathbb{R}^2)\big) \hookrightarrow B_q^{s-s'}\big(L_p(\mathbb{R}^2)\big)$$

Next steps?

► Embedding Theorems

For
$$0 , $0 < s, q < \infty$ and $s' = \frac{\max(1, 1/p) - \min(1, 1/q)}{2}$,$$

$$B_q^{s+1/(2q)}(L_p(\mathbb{R}^2)) \hookrightarrow \mathfrak{D}_q^s(L_p(\mathbb{R}^2)) \hookrightarrow B_q^{s-s'}(L_p(\mathbb{R}^2))$$

► Equivalence of Approximation Spaces

