Modèles de Localisation et Applications (MLA) Daniel Porumbel

daniel.porumbel@cnam.fr
cedric.cnam.fr/~porumbed/mla/

Rappel : le problème de localisation simple

- $x_{ij} = 1$: le client $j \in \mathcal{N}$ est affecté au site $i \in \mathcal{M}$
- $y_i = 1$: le site $i \in \mathcal{M}$ est ouvert
- J'ai inversé i avec j par rapport à la formulation que vous avez déjà vue en MLA (avec Mme. Elloumi)

$$\begin{aligned} & \min & & \sum_{i \in \mathcal{M}} f_i y_i + \sum_{j \in \mathcal{N}} \sum_{i \in \mathcal{M}} c_{ij} x_{ij} \\ & & \sum_{i \in \mathcal{M}} x_{ij} = 1 & \forall \text{client } j \in \mathcal{N} \\ & & x_{ij} \leq y_i & \forall \text{ site } i \in \mathcal{M}, \forall \text{ client } j \in \mathcal{N} \\ & & x_{ij} \geq 0, y_i \in \{0, 1\} \end{aligned}$$

Version ultra-simple « cas d'école »

• un seul client (pas besoin d'indice j) à affecter à un seul site

coût d'ouverture du site
$$i$$
 min $\sum_{i \in \mathcal{M}} f_i y_i + \sum_{i \in \mathcal{M}} c_i x_i$ coût d'affectation au site i $\sum_{i \in \mathcal{M}} x_i = 1$ $x_i \leq y_i \quad \forall i \in M$ $x_i \geq 0, y_i \in \{0, 1\}$

Version ultra-simple « cas d'école »

• un seul client (pas besoin d'indice j) à affecter à un seul site

coût d'ouverture du site
$$i$$
 min $\sum_{i \in \mathcal{M}} f_i y_i + \sum_{i \in \mathcal{M}} c_i x_i$ coût d'affectation au site i $\sum_{i \in \mathcal{M}} x_i = 1$ $x_i \leq y_i \quad \forall i \in M$ $x_i \geq 0, y_i \in \{0, 1\}$

Version 2:

• Ajouter des contraintes sur y

$$\min \sum_{i \in \mathcal{M}} f_i y_i + \sum_{i \in \mathcal{M}} c_i x_i$$

$$y_1 \ge y_2, \ y_1 \ge y_3$$

$$\sum_{i \in \mathcal{M}} x_i = 1$$

$$x_i \le y_i \quad \forall i \in \mathcal{M}$$

$$x_i \ge 0, y_i \in \{0, 1\}$$

Version 2:

• Ajouter des contraintes sur y

$$\min \sum_{i \in \mathcal{M}} f_i y_i + \sum_{i \in \mathcal{M}} c_i x_i$$

$$y_1 \ge y_2, \ y_1 \ge y_3$$

$$\sum_{i \in \mathcal{M}} x_i = 1$$

$$x_i \le y_i \quad \forall i \in \mathcal{M}$$

$$x_i \ge 0, y_i \in \{0, 1\}$$

Version 3:

• On considère une demande de d = 2

$$\min \sum_{i \in \mathcal{M}} f_i y_i + \sum_{i \in \mathcal{M}} c_i x_i$$

$$y_1 \ge y_2, \ y_1 \ge y_3$$

$$\sum_{i \in \mathcal{M}} x_i = \mathbf{d} \quad (= 2)$$

$$x_i \le y_i \quad \forall i \in \mathcal{M}$$

$$x_i \ge 0, y_i \in \{0, 1\}$$

On veut regarder d = 2 films à d cinéma différents;

- y le prix du billet à chaque cinéma
 - x le prix du trajet vers chaque cinéma
- $y_1 \ge y_2$ Au cinéma 2 il faut acheter une paire de lunettes 3D qui coûte y_1 .
- $y_1 \ge y_3$ Idem pour cinéma 3, mais une paire suffit pour y_2 et y_3

Version 3:

• On considère une demande de d = 2

$$\min \sum_{i \in \mathcal{M}} f_i y_i + \sum_{i \in \mathcal{M}} c_i x_i$$

$$y_1 \ge y_2, \ y_1 \ge y_3$$

$$\sum_{i \in \mathcal{M}} x_i = d \quad (= 2)$$

$$x_i \le y_i \quad \forall i \in \mathcal{M}$$

$$x_i \ge 0, y_i \in \{0, 1\}$$

Version 3:

• On considère une demande de d = 2

$$\min \sum_{i \in \mathcal{M}} f_i y_i + \sum_{i \in \mathcal{M}} c_i x_i$$

$$y_1 \ge y_2, \ y_1 \ge y_3$$

$$\sum_{i \in \mathcal{M}} x_i = \mathbf{d} \quad (= 2)$$

$$x_i \le y_i \quad \forall i \in \mathcal{M}$$

$$x_i \ge 0, y_i \in \{0, 1\}$$

$$\begin{aligned} \min \quad & \sum_{i \in \mathcal{M}} f_i y_i + w \\ & y_1 \geq y_2, \ y_1 \geq y_3 \\ & w \geq F(\mathbf{y}) = \min_{\mathbf{x}} \sum_{i \in \mathcal{M}} c_i x_i \\ & \sum_{i \in \mathcal{M}} x_i = d \\ & x_i \leq y_i \quad \forall i \in \mathcal{M} \\ & w \geq 0, y_i \in \{0, 1\}, x_i \geq 0 \end{aligned}$$

On va dualiser $F(\mathbf{y})$ en utilisant les variables duales b et \mathbf{v}

$$\begin{aligned} & \min & \sum_{i \in \mathcal{M}} f_i y_i + w \\ & y_1 \geq y_2, \ y_1 \geq y_3 \\ & w \geq F(\mathbf{y}) = \min_{\mathbf{x}} \sum_{i \in \mathcal{M}} c_i x_i \\ & \sum_{i \in \mathcal{M}} x_i = d \\ & x_i \leq y_i \quad \forall i \in \mathcal{M} \end{aligned}$$

$$(b)$$

$$x_i \leq y_i \quad \forall i \in \mathcal{M}$$

$$w \geq 0, y_i \in \{0, 1\}, x_i \geq 0$$

On va dualiser F(y) en utilisant les variables duales b et v.

$$\begin{array}{ll} \min & \sum_{i \in \mathcal{M}} f_i y_i + w \\ & y_1 \geq y_2, \ y_1 \geq y_3 \\ & w \geq F(\mathbf{y}) = \max_{b, \mathbf{v}} d \cdot b - \sum_{i \in \mathcal{M}} y_i v_i \\ & b - v_i \leq c_i \quad \forall i \in \mathcal{M} \\ & b \in \mathbb{R} \\ & \mathbf{v} \geq 0 \\ & w \geq 0, y_i \in \{0, 1\} \end{array}$$

$$\begin{array}{ll} \min & \sum_{i \in \mathcal{M}} f_i y_i + w \\ y_1 \geq y_2, \; y_1 \geq y_3 \\ w \geq F(\mathbf{y}) = \max_{b, \mathbf{v}} d \cdot b - \sum_{i \in \mathcal{M}} y_i v_i \\ b - v_i \leq c_i & \forall i \in \mathcal{M} \\ b \in \mathbb{R} \\ \mathbf{v} \geq 0 \\ w \geq 0, y_i \in \{0, 1\} \end{array}$$

Le \max représente la valeur d'une solution duale optimale (b^*, \mathbf{v}^*)

- L'ensemble de solutions duales réalisables (b, v) est le même pour tout \mathbf{y}
- Même si (b^*, \mathbf{v}^*) n'est pas optimale pour tous les \mathbf{y} , sa valeur objectif reste toujours une borne inférieure pour \mathbf{w}

$$\begin{array}{ll} \min & \sum_{i \in \mathcal{M}} f_i y_i + w \\ y_1 \geq y_2, \; y_1 \geq y_3 \\ w \geq d \cdot b - \sum_{i \in \mathcal{M}} y_i v_i \quad \forall \underbrace{b \in \mathbb{R}, \mathbf{v} \geq 0 : b - v_i \leq c_i \; \forall i \in \mathcal{M}}_{\mathsf{Polytope Benders}} \\ x_i \geq 0, y_i \in \{0, 1\} \end{array}$$

$$\begin{array}{ll} \min & \sum_{i \in \mathcal{M}} f_i y_i + w \\ y_1 \geq y_2, \; y_1 \geq y_3 \\ w \geq d \cdot b - \sum_{i \in \mathcal{M}} y_i v_i \quad \forall \; \underline{b \in \mathbb{R}, \mathbf{v} \geq 0 : b - v_i \leq c_i \; \forall i \in \mathcal{M}} \\ x_i \geq 0, y_i \in \{0,1\} \end{array}$$

On a d'innombrables solutions duales (sommets du polytope Benders) \implies on génère que les contraintes utiles.

$$\begin{array}{ll} \min & \sum_{i \in \mathcal{M}} f_i y_i + w \\ & y_1 \geq y_2, \ y_1 \geq y_3 \\ & w \geq d \cdot b - \sum_{i \in \mathcal{M}} y_i v_i \quad \forall \underbrace{b \in \mathbb{R}, \mathbf{v} \geq 0 : b - v_i \leq c_i \ \forall i \in \mathcal{M}}_{\mathsf{Polytope \ Benders}} \\ & x_i \geq 0, y_i \in \{0, 1\} \end{array}$$

On a d'innombrables solutions duales (sommets du polytope Benders) \implies on génère que les contraintes utiles.

- Soit (y*, w*) la solution optimale du maître restreint
- ② On résout le sous-problème Benders $F(\mathbf{y}^*)$ et on détermine les valeurs duales optimales (b^*, \mathbf{v}^*) .
- **3** On ajoute dans le maître la coupe associée à (b^*, \mathbf{v}^*) :

$$w \geq d \cdot b^* - \sum_i y_i v_i^*$$

Revenir à 1 si la coupe ci-dessus est violée par y*.

1 Si la solution du sous-problème Benders est un rayon de valeur objectif non-bornée?

1 Si la solution du sous-problème Benders est un rayon de valeur objectif non-bornée?

Réponse : on obtient une coupe de faisabilité. La plus forte est $b=v_1=v_2\cdots=v_n$, ce qui conduit à $d-\sum_{i\in\mathcal{M}}y_i\leq 0$, c.à.d, une coupe qu'on peut ajouter dès le départ.

Les coupes vues auparavant étaient des coupes d'optimalité.

1) Si la solution du sous-problème Benders est un rayon de valeur objectif non-bornée?

Réponse : on obtient une coupe de faisabilité. La plus forte est $b = v_1 = v_2 \cdots = v_n$, ce qui conduit à $d - \sum_{i \in M} y_i \leq 0$, c.à.d, une coupe qu'on peut ajouter dès le départ.

Les coupes vues auparavant étaient des coupes d'optimalité.

2 Si on a $y_i = 0$ pour un i, peut-on avoir une solution du polytope Benders avec $v_i \to \infty$?

1 Si la solution du sous-problème Benders est un rayon de valeur objectif non-bornée?

Réponse : on obtient une coupe de faisabilité. La plus forte est $b=v_1=v_2\cdots=v_n$, ce qui conduit à $d-\sum_{i\in\mathcal{M}}y_i\leq 0$, c.à.d, une coupe qu'on peut ajouter dès le départ.

Les coupes vues auparavant étaient des coupes d'optimalité.

2 Si on a $y_i = 0$ pour un i, peut-on avoir une solution du polytope Benders avec $v_i \to \infty$? Oui, il faut faire attention à cela et chercher des coupes avec de petits coefficients.

1 Si la solution du sous-problème Benders est un rayon de valeur objectif non-bornée?

Réponse : on obtient une coupe de faisabilité. La plus forte est $b=v_1=v_2\cdots=v_n$, ce qui conduit à $d-\sum_{i\in\mathcal{M}}y_i\leq 0$, c.à.d, une coupe qu'on peut ajouter dès le départ.

Les coupes vues auparavant étaient des coupes d'optimalité.

- Si on a $y_i = 0$ pour un i, peut-on avoir une solution du polytope Benders avec $v_i \to \infty$? Oui, il faut faire attention à cela et chercher des coupes avec de petits coefficients.
- **3** Rappel : le coût d'affectation des clients pour un \mathbf{y}^* figé est $F(\mathbf{y}^*) = d \cdot b^* \sum_i y_i^* v_i^*$. Donc la dérivée partielle de $F(\mathbf{y})$ par rapport à tout y_i est \leq 0. C'est normal?

1 Si la solution du sous-problème Benders est un rayon de valeur objectif non-bornée?

Réponse : on obtient une coupe de faisabilité. La plus forte est $b = v_1 = v_2 \cdots = v_n$, ce qui conduit à $d - \sum_{i \in \mathcal{M}} y_i \le 0$, c.à.d, une coupe qu'on peut ajouter dès le départ.

Les coupes vues auparavant étaient des coupes d'optimalité.

- 2 Si on a $y_i = 0$ pour un i, peut-on avoir une solution du polytope Benders avec $v_i \to \infty$? Oui, il faut faire attention à cela et chercher des coupes avec de petits coefficients.
- Rappel: le coût d'affectation des clients pour un \mathbf{y}^* figé est $F(\mathbf{y}^*) = d \cdot b^* \sum_i y_i^* v_i^*$. Donc la dérivée partielle de $F(\mathbf{y})$ par rapport à tout y_i est ≤ 0 . C'est normal? Oui : plus de sites \Longrightarrow le coût d'affectation ne peut que baisser