Scilab Textbook Companion for Introduction to Thermal Systems Engineering: Thermodynamics, Fluid Mechanics, and Heat Transfer by M. J. Moran¹

Created by
Avik Kumar Das
Thermodynamics
Civil Engineering
IIT Bombay
College Teacher
NA
Cross-Checked by
K. V. P. Pradeep

April 25, 2014

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Introduction to Thermal Systems Engineering: Thermodynamics, Fluid

Mechanics, and Heat Transfer

Author: M. J. Moran

Publisher: Wiley Publication, US

Edition: 10

Year: 2003

ISBN: 0-471-20490-0

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

Lis	st of Scilab Codes	5
3	Using Energy and First Law of thermodynamics	9
4	Evaluating Properties	13
5	Control Volume Analysis Using Energy	19
6	The Second Law of Thermodynamics	23
7	Using Entropy	25
8	Vapor Power and Refrigeration Sysytem	30
9	Gas Power Systems	35
10	Psychrometric Operations	40
11	Getting Started in Fluid Mechanics	45
12	The Momentum and Mechanical Energy Equations	48
14	Internal and External Flow	53
15	Getting Started in Heat Transfer	57
16	Heat Transfer by Conduction	60
17	Heat transfer by Convection	66

List of Scilab Codes

Exa 3.1	1	9
Exa 3.2	2	10
Exa 3.3	3	10
Exa 3.4	4	11
Exa 3.5	5	11
Exa 3.6	6	12
Exa 4.1	1	13
Exa 4.2	2	14
Exa 4.3	3	14
Exa 4.4	4	15
Exa 4.6	6	15
Exa 4.7	7	16
Exa 4.8	8	16
Exa 4.10	10	17
Exa 4.11	11	17
Exa 5.1	1	19
Exa 5.3	3	19
Exa 5.4	4	20
Exa 5.5	5	21
Exa 5.7	7	21
Exa 5.8	8	22
Exa 5.9	9	22
Exa 6.1	1	23
Exa 6.2	2	23
Exa 6.3	3	24
Exa 7.1	1	25
Exa 7.2	2	25
Exa 7.4	4	26

Exa 7.5	5	26
Exa 7.6	6	27
Exa 7.8	8	27
Exa 7.9	9	28
Exa 7.10	10	28
Exa 7.13	13	29
Exa 8.1	1	30
Exa 8.2	2	31
Exa 8.3	3	31
Exa 8.4	4	32
Exa 8.5	5	33
Exa 8.6	6	33
Exa 8.7	7	34
Exa 9.1	1	35
Exa 9.2	2	36
Exa 9.3	3	37
Exa 9.4	4	37
Exa 9.5	5	38
Exa 9.6	6	38
Exa 10.1	1	40
Exa 10.2	2	40
Exa 10.3	3	41
Exa 10.4	4	42
Exa 10.5	5	42
Exa 10.6	6	43
Exa 10.7	7	44
Exa 11.1	1	45
Exa 11.2	2	46
Exa 11.3	3	46
Exa 12.1	1	48
Exa 12.2	2	48
Exa 12.3	3	49
Exa 12.5	5	50
Exa 12.6	6	50
Exa 12.7	7	50
Exa 12.8	8	51
Exa 12.9	9	51
Exa 14 1	1	53

Exa 14.2	2 .									 					53
Exa 14.3	3.														54
Exa 14.7	7.									 					55
Exa 14.8	8.									 					55
Exa 14.9	9.									 					56
Exa 15.1	1.														57
Exa 15.2	2 .									 					57
Exa~15.5	5.									 					58
Exa 15.6	6.														59
Exa 16.1	1.														60
Exa 16.2	2 .														60
Exa 16.3	3.									 					61
Exa 16.4	4 .									 					61
Exa 16.6	6.									 					62
Exa 16.7	7.														62
Exa 16.8	8.									 					63
Exa 16.9	9.														64
Exa 16.10	10														64
Exa 17.1	1.														66
Exa 17.2	2 .														66
Exa 17.3	3.									 					67
Exa 17.4	4 .									 					67
Exa 17.5	5.									 					68
Exa 17.6	6.									 					69
Exa 17.7	7.									 					69
Exa 17.9	9.									 					70
Exa 17.10	10									 					71
Exa 17.11	11									 					71
Exa 17.12	12									 					72
Exa 17.13	13									 					72
Exa 17.14	14									 					73
Exa 17.15	15														74
Exa 18.1	1.									 					75
Exa 18.2	2 .														75
Exa 18.4	4 .									 					76
Exa 18.5	5.														77
Exa 18.6	6.														77
Exa. 18.7	7														78

Exa 18.8	8.																78
Exa 18.9	9.																79
Exa 18.10	10										_						80

Using Energy and First Law of thermodynamics

Scilab code Exa 3.1 1

```
1
2 / example 3.1
3 clc; funcprot(0);
4 // Initialization of Variable
5 V1=0.1;
6 V2=0.2;
7 P1=3.0; // pressure
8 n1=1.5;
9 n2=1.0;
10 \quad n3=0.0;
11 P2=P1*(V1/V2)^n1;
12 W = (P2*V2-P1*V1)/(1-n1);
13 disp(W*100, "work done in kj");
14 W2=P1*V1*log(V2/V1);
15 disp(W2*100, "work done in kj");
16 W3=P1*(V2-V1);
17 disp(W3*100,"work done in kj");
18 clear()
```

Scilab code Exa 3.2 2

```
1
2
3 //example 3.2
4 clc; funcprot(0);
5 // Initialization of Variable
6 k=-4.6; //u2-u1;
7 W=17.6; //work done
8 m=4; //mass
9 Q=W+m*k;
10 disp(Q, "Energy transferred in kJ");
11 clear()
```

Scilab code Exa 3.3 3

```
1 // example 3.3
2 clc; funcprot(0);
3 // Initialization of Variable
4 patm=14.7; //in lbf/in^2
5 \text{ mpiston} = 100;
6 g=32.2;
7 A=1; // area
8 mair=0.6;
9 delu=18;
10 k=1.6; //V2-V1;
11 P=mpiston*g/A/32.2/144+14.7;
12 W=P*k*144/778;
13 Q=W+mair*delu;
14 disp(Q,"Heat transferred in Btu")
15 W2=patm*k*144/778;
16 disp(W2, "Work done in Btu");
```

```
17 delz=k/A;
18 PE=mpiston*g*delz/32.2/778;
19 Q2=W2+PE+mair*delu;
20 disp(Q2,"Heat transferred in Btu")
21 clear()
```

Scilab code Exa 3.4 4

```
1
2 //example 3.4
3 clc; funcprot(0);
4 // Initialization of Variable
5 h=-0.171;
6 A=1;
7 Tb=300; //temperature
8 Tf=293; //temperature
9 W1dot=-60.0;
10 Qdot=h*A*(Tb-Tf);
11 disp(Qdot,"the rate of heat transfer in kW");
12 W2dot=Qdot-W1dot;
13 disp(W2dot,"the rate of energy transfer in kW");
14 clear()
```

Scilab code Exa 3.5 5

```
1 //example 3.5
2 clc; funcprot(0);
3 // Initialization of Variable
4 Wdot=-0.225;
5 A=25.0e-6;
6 h=150;
7 Tf=293; //temperature
8 Tb=-Wdot/h/A+Tf;
```

```
9 disp(Tb, "temperature in kelvin (80 C)");
10 clear()
```

Scilab code Exa 3.6 6

```
1 // \text{example } 3.6
2 clc; funcprot(0);
3 // Initialization of Variable
4 clf()
5 t=linspace(0,100,11);
6 tau=18;
7 omega=100;
8 \text{ Wdotelec} = -2.0;
9 Wdotshaft=tau*omega/1000;
10 Wdot=Wdotelec+Wdotshaft;
11 Q=0.2*2.71^-(0.05*t);
12 delE=4*(1-2.71^-(0.05*t));
13 plot(t,Q);
14 plot(t,delE,'r');
15 xtitle('Q or delE vs t', 'time', 'Q(blue) or delE(red)'
      );
16 clear()
```

Evaluating Properties

Scilab code Exa 4.1 1

```
1 // \text{example } 4.1
2 clc; funcprot(0);
3 // Initialization of Variable
4 V=0.5; //volume
5 P1=1; //pressure
6 P2=0.5;
7 vf1=1.0432/1000;
8 vf2=1.0582/1000;
9 x = 0.5;
10 \text{ T1=99.63};
11 v1=vf1+0.5*(1.694-vf1);
12 v2=v1;
13 T2=111.4; //from table
14 disp(T2, "temperature in degree celcius");
15 \text{ m=V/v1};
16 mg1=x*m;
17 disp(mg1,"mass of vapor in kg");
18 x2=(v1-vf2)/(1.159-vf2);
19 mg2=x2*m;
20 disp(mg2, "mass of vapor in kg");
21 clear()
```

Scilab code Exa 4.2 2

```
1 //example 4.2
2 clc; funcprot(0);
3 // Initialization of Variable
4 m=0.1;
5 v1=2.2661;
6 P2=20; // pressure
7 v2=2.6704;
8 V1=m*v1;
9 disp(V1,"volume in ft^3");
10 V2=m*v2;
11 disp(V2,"volume in ft^3");
12 W=P2*(V2-V1)*144/778;
13 disp(W,"Work done in Btu");
14 clear()
```

Scilab code Exa 4.3 3

```
1 //example 4.3
2 clc; funcprot(0);
3 // Initialization of Variable
4 V=10.0; //ft^3
5 v1=26.8; //ft^3/lb
6 u1=1077.6; //btu/lb
7 u2=1161.6; //Btu/lb;
8 m=V/v1;
9 W=-m*(u2-u1);
10 disp(W,"Work done in Btu");
11 clear()
```

Scilab code Exa 4.4 4

```
1 // example 4.4
2 clc; funcprot(0);
3 // Initialization of Variable
4 P=10; //pressure
5 \text{ v2=0.1944; //volume}
6 v1=0.3066; //volume
7 uf3=631.68;
8 v3=0.1944;
9 \text{ vg3=0.3928};
10 vf3=1.0905/1000;
11 x3=(v3-vf3)/(vg3-vf3);
12 u3=uf3+x3*(2559.5-uf3);
13 k1=P*(v2-v1)*100; //k=W/m
14 k2=u3-2957.3+k1; //k2=Q/m
15 \operatorname{disp}(k2, "Q/m \text{ in } kJ/kg");
16 clear()
```

Scilab code Exa 4.6 6

```
1 //example 4.6
2 clc; funcprot(0);
3 // Initialization of Variable
4 Tr1=793.0/647.3;
5 Pr1=22.0/22.09;
6 Rbar=8314.0;
7 M=18.02;
8 T1=793.0;
9 P1=20.0e6;
10 pr2=0.69;
11 v1=0.83*Rbar/M/P1*T1;
```

```
12 disp(v1, "Specific weight in m^3/kg");
13 vrdash=v1*22.09e6/Rbar*M/647.3;
14 Tr2=673/647.3;
15 P2=22.09e6*pr2;
16 disp(P2/10^6, "Pressure in Mpa");
17 clear()
```

Scilab code Exa 4.7 7

```
//example 4.7
clc; funcprot(0);
// Initialization of Variable
p2=2;//pressure
p1=1;//pressure
T1=540;//temperature
Rbar=1545;
M=28.97;
P1=14.7*144;
T2=p2/p1*T1;
disp(T2,"temperature in degreeR");
v3=Rbar/M*T2/P1;
disp(v3,"specific volume in ft^3/lb");
clear()
```

Scilab code Exa 4.8 8

```
1 //example 4.8
2 clc; funcprot(0);
3 // Initialization of Variable
4 Q=-20;
5 m=2;
6 u2=143.98;
7 u1=92.04;
```

```
8 W=Q-m*(u2-u1);
9 disp(W,"work done on the system in Btu");
10 clear()
```

Scilab code Exa 4.10 10

```
1 // example 4.10
2 clc; funcprot(0);
3 // Initialization of Variable
4 m1=2;
5 m2=8;
6 T1 = 350;
7 T2 = 300;
8 P1=0.7; // bar
9 P2=1.2; // bar
10 Tf = 315; //K
11 cv=0.745; //heat capacity
12 pf = (m1+m2)*Tf/(m1*T1/P1+m2*T2/P2);
13 disp(pf, "final pressure in bar");
14 Q=m1*cv*(Tf-T1)+m2*cv*(Tf-T2);
15 disp(Q,"heat transfer into the system in kJ");
16 clear()
```

Scilab code Exa 4.11 11

```
1 //example 4.11
2 clc; funcprot(0);
3 // Initialization of Variable
4 P2=5.0;
5 P1=1.0;
6 n=1.3;
7 T1=530;
8 R=1.986;
```

```
9 u2=131.88;

10 u1=90.33;

11 T2=T1*(P2/P1)^(.3/n);

12 k1=R*(T2-T1)/(1-n)/28.97; //k1=W/m

13 disp(k1,"W/m in Btu/lb");

14 k2=k1+u2-u1; //k2=Q/m

15 disp(k2,"Q/m in Btu/lb");

16 clear()
```

Control Volume Analysis Using Energy

Scilab code Exa 5.1 1

```
1 //example 5.1
2 clc; funcprot(0);
3 // Initialization of Variable
4 v3=1.108e-3;
5 m1dot=40;
6 A2=25.0e-4;
7 v2=1.0078e-3;
8 m3dot=0.06/v3;
9 m2dot=m3dot-m1dot;
10 disp(m2dot,"mass flow rate in kg/s");
11 V2=m2dot*v2/A2;
12 disp(V2,"velocity in m/s");
13 clear()
```

Scilab code Exa 5.3 3

```
1 //example 5.3
2 clc; funcprot(0);
3 // Initialization of Variable
4 h1=3213.6; //kJ/kg
5 V1=10.0;
6 V2=665.0;
7 mdot=2.0;
8 h2=h1+(V1^2/2-V2^2/2)/1000;
9 //using table with given h2 values
10 v2=0.1627; //specific volume
11 V2=665;
12 A2=mdot*v2/V2;
13 disp(A2, "Area in m^2");
14 clear()
```

Scilab code Exa 5.4 4

```
1 // \text{example } 5.4
2 clc; funcprot(0);
3 // Initialization of Variable
4 h1=3177.2;
5 \times 2 = 0.9;
6 \text{ hf2=191.83};
7 \text{ mdot} = 4600.0;
8 Wcvdot=1000.0;
9 V2 = 50.0; // velocity
10 V1=10.0; // velocity
11 h2=hf2+x2*2392.8;
12 k1=h2-h1;
13 k2=(V2^2/2-V1^2/2)/1000.0;
14 Qcvdot=Wcvdot+mdot*(k1+k2)/3600;
15 disp(Qcvdot, "specific kinetic energy difference in
      kW");
16 clear()
```

Scilab code Exa 5.5 5

```
1 // example 5.5
2 clc; funcprot(0);
3 // Initialization of Variable
4 \quad A1 = 0.1;
5 V1=6.0;
6 V2=2.0;
7 delh=290.16-451.8;
8 p1=10<sup>5</sup>;
9 Rbar=8314.0;
10 Qcvdot = -180.0/60;
11 M=28.97; // molecular mass
12 T1=290.0;
13 mdot=A1*V1*p1*M/Rbar/T1;
14 Wcvdot=Qcvdot+mdot*(delh+(V1^2/2-V2^2/2)/1000);
15 disp(Wcvdot," heat transfer per unit time in kW")
16 clear()
```

Scilab code Exa 5.7 7

```
1 //example 5.7
2 clc; funcprot(0);
3 // Initialization of Variable
4 h1=2465.1;
5 h2=188.45;
6 k=62.7; //h3-h4;
7 k2=(h1-h2)/k;
8 disp(k2,"m3dot/m1dot is");
9 k3=h2-h1;
10 disp(k3,"Qcvdot/m1dot in kJ/kg");
11 clear()
```

Scilab code Exa 5.8 8

```
//example 5.8
clc; funcprot(0);
// Initialization of Variable
v1=1.3;
cp=1.005;
p1=1.01325*10^5;
T2=305;
T1=293;
pi=3.14;
Wcvdot=-98.0;
A1=1/v1*(-Wcvdot/cp/(T2-T1)/1000)*8314/28.97*T1/p1;
D1=sqroot(4*A1/pi)*100;
disp(round(D1), "minmum diameter required in cm");
clear()
```

Scilab code Exa 5.9 9

```
1 //example 5.9
2 clc; funcprot(0);
3 // Initialization of Variable
4 hf1=394.1;
5 hg1=1203.9;
6 h2=1168.8;
7 x1=(h2-hf1)/(hg1-hf1);
8 disp(x1*100,"the quality of line in %");
9 clear()
```

The Second Law of Thermodynamics

Scilab code Exa 6.1 1

```
//example 6.1
clc; funcprot(0);
// Initialization of Variable
Input=1000.0;
Tc=300.0;
Th=500.0;
Uutput=410.0;
neta=Output/Input*100;
nmax=(1-Tc/Th)*100;
disp(neta, "efficiency in %");
disp(nmax, "maximum efficiency in %");
disp("the system cannot exist");
clear()
```

Scilab code Exa 6.2 2

```
//example 6.2
clc; funcprot(0);
// Initialization of Variable
Qcdot=8000;
Wcycledot=3200.0;
Tc=268.0;
Th=295.0;
Beta=Qcdot/Wcycledot;
disp(Beta,"coeff. of performance");
Betamax=Tc/(Th-Tc);
disp(Betamax,"maximum coeff. of performance");
clear()
```

Scilab code Exa 6.3 3

```
//example 6.3
clc; funcprot(0);
// Initialization of Variable
Tc=492;
Th=530; //temperature
Qh=6e5;
Wcycle=(1-Tc/Th)*Qh;
disp(Wcycle,"Minimum Work input theoritical in Btu/day");
MTC=Wcycle/3413*0.08;
disp(MTC,"Minimum cost theoritical in $/day");
clear()
```

Using Entropy

Scilab code Exa 7.1 1

```
1 //example 7.1
2 clc; funcprot(0);
3 // Initialization of Variable
4 P=1.014;
5 vg=1.673;
6 vf=1.0435/1000;
7 T=373.15; //temperature
8 sg=7.3549;
9 sf=1.3069;
10 k=P*(vg-vf)*10^5/1000;
11 disp(k,"W/m in kJ/kg");
12 k1=T*(sg-sf);
13 disp(k1,"Q/m in kJ/kg");
14 clear()
```

Scilab code Exa 7.2 2

```
1 //example 7.2
```

```
2 clc; funcprot(0);
3 // Initialization of Variable
4 k=-2087.56; //from table t2
5 disp(k,"W/m in kJ/kg");
6 k1=6.048; //from table t2
7 disp(k1,"sigma/m in kJ/kg/K");
8 clear()
```

Scilab code Exa 7.4 4

```
//example 7.4
clc; funcprot(0);
// Initialization of Variable
Qdot=-1.2;
Tb=300.0;
Tf=293.0;
sigmadot=-Qdot/Tb;
disp(sigmadot,"heat transfer rate in kW/K");
sigmadot1=-Qdot/Tb;
disp(sigmadot1,"heat transfer rate in kW/K");
clear()
```

Scilab code Exa 7.5 5

```
1 //example 7.5
2 clc; funcprot(0);
3 // Initialization of Variable
4 k1=540.0; //Wcv/m
5 h2=2676.1;
6 h1=3230.9;
7 V2=100;
8 V1=160;
9 s2=7.3549;
```

```
10 s1=6.9212;
11 k2=k1+(h2-h1)+(V2^2/2-V1^2/2)/1000;
12 disp(k2,"Qevdot/mdot in kJ/kg");
13 k3=-k2/350+(s2-s1);
14 disp(k3,"sigmacvdot/mdot in kJ/kg/K");
15 clear()
```

Scilab code Exa 7.6 6

```
1 // \text{example } 7.6
2 clc; funcprot(0);
3 // Initialization of Variable
4 T2=635; //temperature
5 T1=530; //temperature
6 T3=460; //temperature
7 P2=1; // pressure
8 P3=1;//pressure
9 P1=5.1; //pressure
10 \text{ cp=0.24};
11 R=1.986/28.97;
12 k1 = -105; //T1-T2
13 k2=70; //T1-T3
14 a=0.4*k1+0.6*k2;
15 disp(a, "since mass is conserved thus value is ");
16 \text{ k=0.4*}(\text{cp*log}(\text{T2/T1}) - \text{R*log}(\text{P2/P1})) + 0.6*(\text{cp*log}(\text{T3/T1}))
      )-R*log(P3/P1));
17 disp(k, "sigmacvdot/m1dot in Btu/lb/R");
18 disp("thus second law of thermodynamics is also
      conserved");
19 clear()
```

Scilab code Exa 7.8 8

```
1 //example 7.8
2 clc; funcprot(0);
3 // Initialization of Variable
4 p1=1; // pressure
5 pr2=21.18;
6 pr1=1.3860;
7 k=1.39;
8 T2=1160; // temperature
9 T1=540; // temperature
10 p=p1*pr2/pr1;
11 disp(p, "pressure in atm");
12 p2=p1*(T2/T1)^(k/(k-1));
13 disp(p2, "Pressure final in atm");
14 clear()
```

Scilab code Exa 7.9 9

```
1 //example 7.9
2 clc; funcprot(0);
3 // Initialization of Variable
4 h1=3105.6;
5 h2s=2743.0;
6 nt=0.75; // effeiciency
7 k=nt*(h1-h2s);
8 disp(k,"Wevdot/mdot in kJ/kg");
9 clear()
```

Scilab code Exa 7.10 10

```
1 //example 7.10
2 clc; funcprot(0);
3 // Initialization of Variable
4 h1=390.88;
```

```
5 h2s=285.27;
6 k=74.0; //Wevdot/mdot
7 ks=h1-h2s; //(Wevdot/mdot)s
8 nt=k/ks*100;
9 disp(nt, "efficiency in %");
10 clear()
```

Scilab code Exa 7.13 13

```
1 //example 7.13
2 clc; funcprot(0);
3 // Initialization of Variable
4 T1=293; //kelvin
5 p2=5; //atm
6 p1=1; //atm
7 n=1.3;
8 h2=426.35;
9 h1=293.17;
10 T2=T1*(p2/p1)^((n-1)/n);
11 k=-n*8.314/28.97*(T2-T1)/(n-1); //Wcvdot/mdot
12 disp(k,"Wcvdot/mdot in kJ/kg");
13 k1=k+h2-h1;
14 disp(k1,"Qcvdot/mdot in kJ/kg");
15 clear()
```

Vapor Power and Refrigeration Sysytem

Scilab code Exa 8.1 1

```
1 //example 8.1
2 clc; funcprot(0);
3 // Initialization of Variable
4 h1 = 2758.0;
5 h2=1794.8;
6 h3=173.88;
7 h4=h3+1.0084/1000*(8-0.008)*1000;
8 neta=(h1-h2-h4+h3)/(h1-h4);
9 disp(neta*100,"thermal efficiency in \%");
10 bwr=(h4-h3)/(h1-h2);
11 disp(bwr*100,"back work ratio in \%");
12 mdot = 100*1000*3600/(h1-h2-h4+h3);
13 disp(mdot, "mass flow rate in kg/h");
14 Qindot=mdot*(h1-h4)/3600/1000;
15 disp(Qindot, "energy inflow rate in MW");
16 Qoutdot=mdot*(h2-h3)/3600/1000;
17 disp(Qoutdot, "energy outflow rate in MW");
18 disp(Qoutdot/Qindot*100," ratio of energy outflow/
     inflow in \%");
```

```
19 mcwdot=mdot*(h2-h3)/(146.68-62.99);
20 disp(mcwdot,"mass flow rate in kg/h");
21 clear()
```

Scilab code Exa 8.2 2

```
1 // \text{example } 8.2
2 clc; funcprot(0);
3 // Initialization of Variable
4 h1 = 2758.0;
5 h2=1939.3;
6 \text{ h3} = 173.88;
7 h4=h3+8.06/0.85;
8 neta=(h1-h2-h4+h3)/(h1-h4);
9 disp(neta*100,"thermal efficiency in \%");
10 mdot = 100*1000*3600/(h1-h2-h4+h3);
11 disp(mdot, "mass flow rate in kg/h");
12 Qindot=mdot*(h1-h4)/3600/1000;
13 disp(Qindot, "energy inflow rate in MW");
14 Qoutdot=mdot*(h2-h3)/3600/1000;
15 disp(Qoutdot, "energy outflow rate in MW");
16 mcwdot=mdot*(h2-h3)/(146.68-62.99);
17 disp(mcwdot, "mass flow rate in kg/h");
18 clear()
```

Scilab code Exa 8.3 3

```
1 //example 8.3
2 clc; funcprot(0);
3 // Initialization of Variable
4 h1=3348.4;
5 h2=2741.8;
6 h3=3353.3;
```

```
7 h4=2428.5;
8 h6=181.94;
9 h5=173.88;
10 neta=(h1-h2-h4+h3-h6+h5)/(h1-h6+h3-h2);
11 disp(neta*100,"thermal efficiency in %");
12 mdot=100*1000*3600/(h1-h2-h4+h3-h6+h5);
13 disp(mdot,"mass flow rate in kg/h");
14 Qoutdot=mdot*(h4-h5)/3600/1000;
15 disp(Qoutdot,"energy outflow rate in MW");
16 //part2
17 h2=2832.8;
18 h4=2567.2;
19 neta=(h1-h2-h4+h3-h6+h5)/(h1-h6+h3-h2);
20 disp(neta*100,"thermal efficiency in %");
21 clear()
```

Scilab code Exa 8.4 4

```
1 // example 8.4
2 clc; funcprot(0);
3 // Initialization of Variable
4 h1=3348.4;
5 h7 = 705.3;
6 h6 = 697.22;
7 h5=174.6;
8 \text{ h4} = 173.88;
9 h2=2832.8;
10 h3=2249.3;
11 k1=h1-h2+0.8034*(h2-h3);/Wt/m1
12 k2=h7-h6+0.8034*(h5-h4); //Wp/m1
13 k3=h1-h7; //Qin/m1
14 neta=(k1-k2)/k3;
15 disp(neta*100,"thermal efficiency in \%");
16 m1dot=100*1000*3600/(k1-k2);
17 disp(m1dot, "mass flow rate in kg/h");
```

Scilab code Exa 8.5 5

```
1 // \text{example } 8.5
2 clc; funcprot(0);
3 // Initialization of Variable
4 mdot=0.08;
5 \text{ h2s} = 264.7;
6 h1 = 247.23;
7 h4=85.75;
8 \text{ Th} = 299.0;
9 Wcdot=mdot*(h2s-h1);
10 disp(Wcdot, "work input in kW");
11 Qindot=mdot*(h1-h4)*60.0/211;
12 disp(Qindot, "refrigration capacity in ton");
13 Beta=(h1-h4)/(h2s-h1);
14 disp(Beta, "coefficient of performance");
15 Bmax = 273/(Th - 273);
16 disp(Bmax, "maximum coefficient of performance");
17 clear()
```

Scilab code Exa 8.6 6

```
1 //example 8.6
2 clc; funcprot(0);
3 // Initialization of Variable
4 h2s=272.39;
5 h1=241.35;
6 mdot=0.08;
7 h4=99.56;
8 Wcdot=mdot*(h2s-h1);
9 disp(Wcdot,"work input in kW");
```

```
10 Qindot=mdot*(h1-h4)*60.0/211;
11 disp(Qindot, "refrigration capacity in ton");
12 Beta=(h1-h4)/(h2s-h1);
13 disp(Beta, "coefficient of performance");
14 clear()
```

Scilab code Exa 8.7 7

```
1 // \text{example } 8.7
2 clc; funcprot(0);
3 // Initialization of Variable
4 h1=241.35;
5 \text{ h2s} = 272.39;
6 nc=0.8; //efficiency
7 h4=91.49;
8 h2=(h2s-h1)/nc+h1;
9 \text{ mdot} = 0.08;
10 Wcdot=mdot*(h2-h1);
11 disp(Wcdot,"work input in kW");
12 Qindot=mdot*(h1-h4)*60.0/211;
13 disp(Qindot, "refrigration capacity in ton");
14 Beta=(h1-h4)/(h2-h1);
15 disp(Beta, "coefficient of performance");
16 clear()
```

Gas Power Systems

Scilab code Exa 9.1 1

```
1 // \text{example } 9.1
2 clc; funcprot(0);
3 // Initialization of Variable
4 T2=1212.0;
5 p1=1.0;
6 T1 = 540.0;
7 T4 = 1878.0;
8 T3 = 3600.0;
9 u4=342.2;
10 u1=92.04;
11 u3=721.44;
12 u2=211.3;
13 m=1.47/1000;
14 V1 = 0.02;
15 k=8; //V1/V2
16 p2=k*p1*T2/T1;
17 disp(p2, "pressure in atm");
18 p3=p2*T3/T2;
19 disp(p3, "pressure in atm");
20 p4=p1*T4/T1;
21 disp(p4, "pressure in atm");
```

```
22  neta=1-(u4-u1)/(u3-u2);
23  disp(neta*100,"thermal efficiency in %");
24  W=m*(u3-u4-u2+u1);
25  mep=W/V1/(1-1/k)*778/144;
26  disp(mep,"mean effective pressure in lbf/in^2 is equal to 8.03 atm");
27  clear()
```

Scilab code Exa 9.2 2

```
1 // \text{example } 9.2
2 clc; funcprot(0);
3 // Initialization of Variable
4 T2=898.3;
5 T1 = 300.0;
6 \quad T4 = 887.7;
7 \text{ vr3}=3.97;
8 V1 = 0.861;
9 R=8314; //gas constant
10 \quad u4 = 664.3;
11 u1 = 214.07;
12 h3=1999.1;
13 h2=930.98;
14 p1=0.1;
15 k=18.0; //V1/V2
16 rc=2.0; //V3/V2
17 p2=k*p1*T2/T1;
18 disp(p2, "pressure in atm");
19 T3=rc*T2;
20 disp(T3," temperature in K");
21 \text{ vr4=vr3*k/rc};
22 p4=p1*T4/T1;
23 disp(p4, "pressure in atm");
24 neta=1-(u4-u1)/(h3-h2);
25 disp(neta*100,"thermal efficiency in \%");
```

```
26 W=(h3-u4-h2+u1); // Wcycle/m
27 V1=R*T1/29.97/10^5;
28 mep=W/V1/(1-1/k)*1000/10^6;
29 disp(mep, "mean effective pressure in MPa");
30 clear()
```

Scilab code Exa 9.3 3

```
1 // \text{example } 9.3
2 clc; funcprot(0);
3 // Initialization of Variable
4 h4=808.5;
5 h2=579.9;
6 h3=1515.4;
7 h1=300.19;
8 T=300; //temperature
9 R=8314; //gas constant
10 M=28.97; //mass molecular
11 neta=(h3-h4-h2+h1)/(h3-h2);
12 disp(neta*100,"thermal efficiency in \%");
13 bwr = (h2-h1)/(h3-h4);
14 disp(bwr*100,"back work ratio in %");
15 mdot = 5*10^5*M/R/T;
16 Wcycledot=mdot*[h3-h4-h2+h1];
17 disp(Wcycledot, "net power developed in kW");
18 clear()
```

Scilab code Exa 9.4 4

```
1 //example 9.4
2 clc; funcprot(0);
3 // Initialization of Variable
4 h1=300.19;
```

```
5 k=349.6; //Wcdot/mdot
6 h2=h1+k;
7 h3=1515.4;
8 mdot=5.807;
9 k2=h3-h2; // Qindot/mdot
10 neta=(565.6-k)/k2;
11 disp(neta*100,"thermal efficiency in %");
12 bwr=k/565.5;
13 disp(bwr*100,"back work ratio in %");
14 Wcycledot=mdot*(565.5-k);
15 disp(Wcycledot,"net power developed in kW");
16 clear()
```

Scilab code Exa 9.5 5

```
1 //example 9.5
2 clc; funcprot(0);
3 // Initialization of Variable
4 h3=1515.4; //kJ/kg
5 h4=808.5; //kJ/kg
6 nreg=0.8;
7 h2=579.9; //kJ/kg
8 h1=300.19; //kJ/kg
9 hx=nreg*(h4-h2)+h2;
10 neta=(h3-h4-h2+h1)/(h3-hx);
11 disp(neta*100,"thermal efficiency in %");
12 clear()
```

Scilab code Exa 9.6 6

```
1 //example 9.6
2 clc; funcprot(0);
3 // Initialization of Variable
```

```
4 ha=102.7; //Btu/lb
5 Va=909.3; //ft/s
6 h3=546.54; //Btu/lb
7 h2=216.2; //Btu/lb
8 pr4=113.8;
9 h5=265.8; //Btu/lb
10 pr3=233.5;
11 h1=102.7+Va<sup>2</sup>/2/32.2/778;
12 pr1=1.051;
13 pra=0.6268;
14 p1=pr1/pra*11.8;
15 disp(p1, "Pressure in lbf/in^2");
16 p2=8*p1;
17 disp(p2, "Pressure in lbf/in^2");
18 p3=p2;
19 h4=h3+h1-h2;
20 p4=p3*pr4/pr3;
21 disp(p4, "Pressure in lbf/in^2");
22 V5 = sqroot(2*(h4-h5)*32.2*778);
23 disp(V5, "velocity in ft/s (2069 mi/h)");
24 clear()
```

Chapter 10

Psychrometric Operations

Scilab code Exa 10.1 1

```
1 //example 10.1
2 clc; funcprot(0);
3 // Initialization of Variable
4 phi=0.7;
5 pg=0.3632; //lbf/in^2
6 omega2=0.0052;
7 pv1=phi*pg;
8 omega1=0.622*pv1/(14.7-pv1);
9 disp(omega1,"lb(vapor)/lb(dry air) is");
10 mv1=1/(1/omega1+1);
11 ma=1-mv1;
12 mv2=omega2*ma;
13 mw=mv1-mv2;
14 disp(mw,"mass of water vapor that condenses in lb");
15 clear()
```

Scilab code Exa 10.2 2

```
1 // example 10.2
2 clc; funcprot(0);
3 // Initialization of Variable
4 phi1=0.8;
5 \text{ pg1=0.01228};
6 pa1=0.9902*10<sup>5</sup>;
7 R=8314; //gasconstant
8 T = 283;
9 pv1=phi1*pg1;
10 va1=R/28.97*T/pa1;
11 madot=150/va1;
12 omega=0.622*(pv1/(1-pv1));
13 Qcvdot=madot*(303.2-283.1)+omega*(2556.3-2519.8);
14 disp(Qcvdot,"heat flow rate in kJ/min");
15 \text{ pv2=pv1};
16 phi2=pv2/0.04246;
17 disp(phi2*100, "humidity in %");
18 //alternatively
19 madot=150/0.81;
20 \ Qcvdot = madot * (45.9 - 25.7);
21 disp(Qcvdot, "heat flow rate in kJ/min");
22 clear()
```

Scilab code Exa 10.3 3

```
1 //example 10.3
2 clc; funcprot(0);
3 // Initialization of Variable
4 pv1=0.02123*10^5;
5 patm=1.013*10^5;
6 ha2=283.1;
7 ha1=303.2;
8 hg1=2556.3;
9 hg2=2519.8;
10 omega2=0.0076;
```

Scilab code Exa 10.4 4

```
1 //example 10.4
2 clc; funcprot(0);
3 // Initialization of Variable
4 omega1=0.002;
5 mstdot=52;
6 madot=90;
7 omega2=omega1+mstdot/60/madot;
8 disp(omega2,"humidity ratio is ");
9 clear()
```

Scilab code Exa 10.5 5

```
1 //example 10.5
2 clc; funcprot(0);
3 // Initialization of Variable
4 T1=100;
```

```
5 T2=70;
6 cpa=0.24;
7 omega1=0.0045; // humidity
8 hg1=1105;
9 hg2=38.1;
10 hg2=1092;
11 hf=38.1;
12 p2=14.696; // lb / in^2
13 omega2=(cpa*(T1-T2)+omega1*(hg1-hf))/(hg2-hf);
14 mwdot=352.1*60*(omega2-omega1);
15 disp(mwdot, "mass flow rate in lb/h");
16 pv2=omega2*p2/(omega2+0.622);
17 phi2=pv2/0.36332;
18 disp(phi2*100, "relative humidity in %")
19 clear()
```

Scilab code Exa 10.6 6

```
1 //example 10.6
2 clc; funcprot(0);
3 // Initialization of Variable
4 omega1=0.002;
5 omega2=0.0094;
6 ma1dot=180.0;
7 ma2dot=497.0;
8 omega3=(omega1*ma1dot+omega2*ma2dot)/(ma1dot+ma2dot);
9 disp(omega3, "relative humidity");
10 k1=10;//(ha+whv)1
11 k2=47.8;//(ha+whv)2
12 k3=(ma1dot*k1+ma2dot*k2)/(ma1dot+ma2dot)
13 disp(k3,"(ha+whv)3 in kJ/kg");
14 disp(19,"temperature by inspection in degreeC")
15 clear()
```

Scilab code Exa 10.7 7

```
1 // \text{example } 10.7
2 clc; funcprot(0);
3 // Initialization of Variable
4 m1dot=4.5e7;
5 hf1=159.21;
6 hf2=125.79;
7 ha4=308.2;
8 ha3=298.2;
9 \text{ w}4=0.0327; // \text{humidity}
10 hg4=2565.3;
11 hg3=2547.2;
12 w3=0.0068; //humidity
13 hf5=83.96;
14 madot=m1dot*(hf1-hf2)/(ha4-ha3+w4*hg4-w3*hg3-(w4-w3)
      *hf5);
15 m5dot=madot*(w4-w3);
16 disp(m5dot," mass flow rate in kg/h");
17 clear()
```

Chapter 11

Getting Started in Fluid Mechanics

Scilab code Exa 11.1 1

```
1 //example 11.1
2 clc; funcprot(0);
3 // Initialization of Variable
4 gas=42.5;//gamma of gasoline
5 hgas=17.0; //height of gasoline
6 hw=3.0; //height of water
7 wat=62.4; //gamma of water
8 k=gas*hgas/144.0; //p1-p0
9 disp(k, "pressure difference in lbf/in^2");
10 disp(k*144/wat," pressure difference in feet of water
     ");
11 k1=wat*hw/144.0+k; //p2-p0
12 disp(k1*144, "pressure difference in lbf/ft^2");
13 disp(k1, "pressure difference in lbf/in^2");
14 disp(k1*144/wat," pressure difference in feet of
     water");
15 clear()
```

Scilab code Exa 11.2 2

```
//example 11.2
clc; funcprot(0);
// Initialization of Variable
SGoil=0.9; // specific gravity of oil
wat=62.4; //gamma of water
SGhg=13.6; // specific gravity of mercury
h1=36.0/12;
h2=6.0/12;
h3=9.0/12;
pair=-SGoil*wat*(h1+h2)+SGhg*wat*h3;
pgage=pair/144.0;
disp(pgage, "Gauge pressure in lbf/in^2(psi)");
clear()
```

Scilab code Exa 11.3 3

```
1 //example 11.3
2 clc; funcprot(0);
3 // Initialization of Variable
4 b=2.0;
5 a=4.0;
6 gamm=9.8*10^3; //gamma
7 pi=3.14;
8 Fr=integrate('gamm*sin(pi*60/180)*b*y', 'y', 6,10);
9 yr=gamm*sin(pi*60/180)/Fr*b*integrate('y^2', 'y', 6,10);
10 disp(yr, "location of resultant weight in m");
11 //alternatively
12 yr1=b*a^3/12/b/a/8+8;
13 disp(yr1, "location of resultant weight in m");
```

14 clear()

Chapter 12

The Momentum and Mechanical Energy Equations

Scilab code Exa 12.1 1

```
1 //example 12.1
2 clc; funcprot(0);
3 // Initialization of Variable
4 //for a sample value of theta=45degrees
5 pi=3.14;
6 rho=1.94;
7 A=0.06; // area
8 V=10.0; // velocity
9 theta=pi*45/180;
10 Fax=-rho*A*V^2*(1-cos(theta));
11 disp(Fax," resultant force in x direction in lbf");
12 Fay=rho*A*V^2*sin(theta);
13 disp(Fay," resultant force in y direction in lbf");
14 clear()
```

Scilab code Exa 12.2 2

```
//example 12.2
clc; funcprot(0);
// Initialization of Variable
rho=1.94;
A=0.1;
V=50;
pl=30;//pressure
p2=24;//pressure
mdot=rho*A*V;
Fay=-2*mdot*V-(p1+p2)*144*A;
disp(Fay, resultant force in y direction in lbf");
disp("resultant force in -ve y direction")
clear()
```

Scilab code Exa 12.3 3

```
1 // \text{example } 12.3
2 clc; funcprot(0);
3 // Initialization of Variable
4 pi=3.14;
5 rho=999.0;
6 \quad Q = 0.6/1000;
7 A1=pi*0.016^2/4;
8 \quad A2=pi*0.005^2/4;
9 p1=464*1000;
10 p2=0;
11 Ww = 0.03;
12 Vn = 1;
13 mdot=rho*Q;
14 V1 = Q/A1;
15 V2=Q/A2;
16 Fa=mdot*(V1-V2)+Wn+Ww+p1*A1;
17 disp(Fa, "Force in N");
18 clear()
```

Scilab code Exa 12.5 5

```
1 //example 12.5
2 clc; funcprot(0);
3 // Initialization of Variable
4 k=3.0; //p1/gamma
5 k2=0.5; //p2/gamma
6 z1=0;
7 z2=2;
8 h1=k-k2-z2+z1;
9 disp(h1,"head loss in terms of height of water")
10 clear()
```

Scilab code Exa 12.6 6

```
1 //example 12.6
2 clc; funcprot(0);
3 // Initialization of Variable
4 z1=100;
5 V2=6;
6 g=9.81;
7 gamm=9.8*1000; // density
8 Q=4.72; // flow rate
9 ht=z1-V2^2/2/g;
10 Wtdot=gamm*Q*ht/1000;
11 disp(Wtdot,"power output in kW");
12 clear()
```

Scilab code Exa 12.7 7

```
//example 12.7
clc; funcprot(0);
// Initialization of Variable
Wpdot=10*550;
gamm=62.4; // density
Q=2; // flow rate
hp=Wpdot/gamm/Q;
hl=-30+hp;
disp(hl,"head loss in ft");
Wdot=gamm*Q*hl/550;
disp(Wdot,"power output in hp");
clear()
```

Scilab code Exa 12.8 8

```
1 //example 12.8
2 clc; funcprot(0);
3 // Initialization of Variable
4 k=1.4;
5 p0=1*10^6;
6 p2=7.84*10^5;
7 k=1.4;
8 R=8314; // gas constant
9 T2=336; // temperature
10 M2=(2/(k-1)*((p0/p2)^((k-1)/k)-1))^0.5;
11 disp(M2," the exit mach no is");
12 V2=M2*sqroot(k*R/28.97*T2);
13 mdot=p2*V2/1000/R/T2*28.97;
14 disp(mdot," mass flow rate in kg/s");
15 clear()
```

Scilab code Exa 12.9 9

```
1 //example 12.9
2 clc; funcprot(0);
3 // Initialization of Variable
4 k1=0.88; //p2/poy;
5 \text{ k2=0.628; } //\text{poy/pox}
6 pox=100;//pressure
7 R=1545;
8 T2 = 494;
9 k=1.4;
10 M2 = 0.24;
11 A = 2.4;
12 V2=M2*sqroot(k*R/28.97*T2*32.2);
13 mdot = 95.9 * A * V2/T2/R * 28.97;
14 disp(mdot, "mass flow rate in lb/s");
15 p2=k1*k2*pox;
16 disp(p2, "pressure in lbf/in^2")
17 clear()
```

Chapter 14

Internal and External Flow

Scilab code Exa 14.1 1

```
//example 14.1
clc; funcprot(0);
// Initialization of Variable
rho=1.23;//density
V=50;//velocity
D=0.004;//diameter
l=0.1;
mu=1.79e-5;
Re=rho*V*D/mu;
disp(Re,"reynolds no");
f=0.028;//friction factor from Moody's chart
delP=f*1/D*.5*rho*V^2/1000.0;
disp(delP,"pressure diffference in kPa");
clear()
```

Scilab code Exa 14.2 2

```
1 // example 14.2
```

```
2 clc; funcprot(0);
3 // Initialization of Variable
4 \text{ rho} = 1.94;
5 V = 8.7;
6 D=0.0625;
7 g=32.2;
8 V2=19.6;
9 1 = 60;
10 z2=20;
11 mu = 2.34e - 5;
12 Kl=2; //constant
13 Re=rho*V*D/mu;
14 disp(Re, "reynolds no");
15 f=0.0215; //friction factor from Moody's chart
16 P1=rho*g*z2+1/2*rho*(V2^2-V^2)+rho*f*1/D*V^2/2;
17 P1=P1/144+rho*V^2/2*(10+4*1.5+Kl)/144;;
18 disp(P1, "entire pressure drop in psi");
19 clear()
```

Scilab code Exa 14.3 3

```
1 //example 14.3
2 clc; funcprot(0);
3 // Initialization of Variable
4 rho=1.67;
5 V=9.31; // velocity
6 D=4;
7 mu=8.0e-5;
8 g=32.2;
9 1=799;
10 Q=117;
11 f=0.0125; // friction factor
12 Re=rho*V*D/mu;
13 disp(Re, "reynolds no");
14 hp=f*1/D*V^2/2/g*5280;
```

```
disp(hp,"pump head in ft of H20");
hp=round(hp/100)*100
W=rho*g*Q*hp/550;
disp(W,"power required in hp");
clear()
```

Scilab code Exa 14.7 7

```
1 //example 14.7
2 clc; funcprot(0);
3 // Initialization of Variable
4 rho=0.00238;
5 U=80.7; // velocity
6 l=8;
7 mu=3.74e-7;
8 Cd=0.0066;
9 d=4;
10 Re=rho*U*1/mu;
11 disp(Re,"reynolds no");
12 f=0.0066; // friction factor from Moody's chart
13 D=1/2*rho*U^2*1*d*f;
14 disp(D,"drag force in lbf");
15 clear()
```

Scilab code Exa 14.8 8

```
1 //example 14.8
2 clc; funcprot(0);
3 // Initialization of Variable
4 rho=0.00238;
5 U=93.5; // velocity
6 Cd1=0.55; // coeff of drag
7 A1=5.2*5.1;
```

```
8 D1940=1/2*rho*Cd1*A1*U^2;
9 disp(D1940,"drag force in lbf");
10 A2=5.2*4.3;
11 Cd2=0.3;
12 D2003=1/2*rho*Cd2*A2*U^2;
13 disp(D2003,"drag force in lbf");
14 W1940=D1940*U/550;
15 disp(W1940,"power required to overcome drag force in hp");
16 W2003=D2003*U/550;
17 disp(W2003,"power required to overcome drag force in hp");
18 clear()
```

Scilab code Exa 14.9 9

```
1 //example 14.9
2 clc; funcprot(0);
3 // Initialization of Variable
4 A=96*7.5;
5 W=210;
6 rho=2.38e-3;
7 U=15;
8 Cl=2*W/rho/U^2/A;
9 disp(Cl,"coeff. of lift ");
10 clear()
```

Chapter 15

Getting Started in Heat Transfer

Scilab code Exa 15.1 1

```
1 //example 15.1
2 clc; funcprot(0);
3 // Initialization of Variable
4 k=1.7;
5 delT=250;
6 L=0.15;
7 H=0.5;
8 W=1.2;
9 qx=k*delT/L;
10 qx=H*W*qx;
11 disp(qx,"heat flux in W");
12 clear()
```

Scilab code Exa 15.2 2

```
1 //example 15.2
```

```
clc; funcprot(0);
// Initialization of Variable
Ts=473;
sigma=5.67e-8;
Tsur=298;
h=15.0;
pi=3.14;
D=0.07;
epsilon=0.8; // emmisivity
E=epsilon*sigma*Ts^4;
G=sigma*Tsur^4;
disp(G,"irradiation in W/m^2");
q=h*pi*D*(Ts-Tsur)+epsilon*pi*D*sigma*(Ts^4-Tsur^4);
disp(q,"heat transfer per unit length in W/m");
clear()
```

Scilab code Exa 15.5 5

```
//example 15.5
clc; funcprot(0);
// Initialization of Variable
k=1.2;
epsilon=0.8; //emmisivity
h=20;
Ts=373;
Tsur=298;
sigma=5.67e-8;
L=.15; //length
a=h*(Ts-Tsur)+epsilon*sigma*(Ts^4-Tsur^4);
T1=Ts+L/k*a;
disp(T1, "inner wall temperature in K");
disp(T1-273, "inner wall temperature in K")
clear()
```

Scilab code Exa 15.6 6

```
1 // \text{example} 15.6
2 clc; funcprot(0);
3 // Initialization of Variable
4 //solving for Ts
5 Tinfinity=293;
6 Tsurr=303;
7 epsilon=0.5;//emmisivity
8 alpha=0.8;
9 G = 2000;
10 h=15;
11 sigma=5.67e-8;
12 deff('y=f(x)', 'y=alpha*G-h*(x-Tinfinity)-epsilon*
      sigma*(x^4-Tsurr^4)');
13 [x] = fsolve(307, f);
14 \operatorname{disp}(x,"temperature in K");
15 disp(x-273, "temperature in degree C");
16 clear()
```

Chapter 16

Heat Transfer by Conduction

```
Scilab code Exa 16.1 1

//example 16.1
clc; funcprot(0);
// Initialization of Variable
Tso=50;//temperature
Tinfinity=25;//temperature
Tsi=385;//temperature
ka=0.15;
kb=0.08;
ho=25;//W/K/m^2
La=(Tsi-Tso)/(1/ka+0.5/kb)/(ho*(Tso-Tinfinity));
L=La+0.5*La
disp(L*1000,"required thickness of composite in mm");
clear()
```

```
Scilab code Exa 16.2 2
```

```
1 // example 16.2
```

Scilab code Exa 16.3 3

```
1 //example 16.3
2 clc; funcprot(0);
3 // Initialization of Variable
4 r1=0.25; //m
5 \text{ r2=0.275; } / \text{m}
6 T1 = 300;
7 T2 = 77;
8 k=0.0017;
9 \text{ hfg=} 2.0 \text{ e5};
10 pi=3.14;
11 q=(T1-T2)/(1/4/pi/k*(1/r1-1/r2)+1/20/4/pi/r2^2);
12 disp(q,"heat transfer in W");
13 mdot=q/hfg;
14 k=mdot/804*1000*3600*24;
15 disp(k, "mdot/rho in liters/day")
16 clear()
```

Scilab code Exa 16.4 4

```
1 //example 16.4
2 clc; funcprot(0);
```

```
3 // Initialization of Variable
4 Tinfinity=30;
5 q=1.5e6;
6 La=0.05;
7 h=1000;
8 T2=Tinfinity+q*La/h;
9 disp(T2,"temperature in degreeC");
10 T1=Tinfinity+(0.02/150+1/h)*q*La;
11 To=q*La^2/2/75+T1;
12 disp(To,"inner surface temperature in degreeC");
13 clear()
```

Scilab code Exa 16.6 6

```
1 //example 16.6
2 clc; funcprot(0);
3 // Initialization of Variable
4 pi=3.14;
5 h=100; //W/m^2/K
6 P=pi*0.005;
7 k=398;
8 Ac=pi/4*0.005^2;
9 thetab=100-25;
10 qf=(h*P*k*Ac)^0.5*thetab;
11 disp(qf,"heat rate in copper rod in W");
12 L=2.65*(k*Ac/h/P)^0.5*1000;
13 disp(L,"minimum value of the length in mm");
14 clear()
```

Scilab code Exa 16.7 7

```
1 //example 16.7
2 clc; funcprot(0);
```

```
3 // Initialization of Variable
4 pi=3.14;
5 T1=80;
6 Tinfinity=20; //temperature
7 Rtc1=1e-3; //m2K/W
8 \text{ r1=0.002};
9 r2=0.003;
10 \text{ H} = 0.006;
11 k = 200;
12 Rtb=638; //K/W
13 Rtf12=24.4;
14 Rtc=Rtc1/2/pi/r1/H;
15 Rtsleeve=log(r2/r1)/2/pi/H/k;
16 Requiv=(1/Rtf12+1/Rtb)^-1;
17 Rtot=Rtc+Rtsleeve+Requiv;
18 qt=(T1-Tinfinity)/Rtot
19 disp(qt,"heat transfer rate in W");
20 clear()
```

Scilab code Exa 16.8 8

```
1 //example 16.8
2 clc; funcprot(0);
3 // Initialization of Variable
4 D=0.125;
5 h=25; //W/m^2
6 k=1.4;
7 c=835; //J/kg
8 Tinfinity=20; //degreeC
9 Ti=225; //degreeC
10 t=360;
11 rho=2225; //density
12 Lc=D/6;
13 Tt=Tinfinity+(Ti-Tinfinity)*exp(-h*t/rho/Lc/c);
14 disp(Tt,"temperature after 6 min in degreeC");
```

```
15 clear()
```

Scilab code Exa 16.9 9

```
1 // example 16.9
2 clc; funcprot(0);
3 // Initialization of Variable
4 rho = 2770;
5 L=0.0015;
6 epsilon=0.8; //emmisivity
7 Tavg=360.5;
8 Tsur=448;
9 \text{ sigma} = 5.67 e - 8;
10 c=875; //J/kg-K
11 tc=rho*L*c/(40+12)*log((25-175)/(150-175));
12 te=tc+5*60;
13 disp(te, "total time spent in s");
14 hrad=epsilon*sigma*(Tavg+Tsur)*(Tavg^2+Tsur^2);
15 disp(hrad, "radiation energy in W/m^2-K");
16 clear()
```

Scilab code Exa 16.10 10

```
1 //example 16.10
2 clc; funcprot(0);
3 // Initialization of Variable
4 h=100; //W/m^2
5 L=0.025;
6 c=800;
7 rho=2325; // density
8 k=1.0;
9 Tinfinity=175;
10 Ti=25;
```

```
11 alpha=5.38e-7;
12 t=60*10;
13 theta=0.615;
14 Bi=h*L/k;
15 disp(Bi, "Biot number is");
16 Fo=alpha*t/L^2;
17 disp(Fo, "Fourier number is");
18 T10=Tinfinity+theta*(Ti-Tinfinity);
19 disp(T10, "midplane temperature after 10 min degreeC"
      );
20 tstar=theta*cos(1.1347);
21 Tl10=Tinfinity+tstar*(Ti-Tinfinity);
22 disp(T10, "msurface temperature after 10 min degreeC"
      );
23 ql=h*(Tl10-Tinfinity);
24 disp(ql,"heat transfer in W/m^2");
Q=\text{rho}*c*0.509*L*(Ti-Tinfinity);
26 disp(Q, "Energy per unit surface in J/m^2")
27 clear()
```

Chapter 17

Heat transfer by Convection

Scilab code Exa 17.1 1 1 //example 17.1 2 clc; funcprot(0); 3 // Initialization of Variable 4 k=integrate('x^-0.1', 'x',0,1); 5 disp(k,"ratio of average convection coefficient"); 6 clear()

Scilab code Exa 17.2 2

```
//example 17.2
clc; funcprot(0);
// Initialization of Variable
U=10;//m/s
L=0.5;
nu=30.84e-6;
Pr=0.687;//prandtl number
Re=U*L/nu;
disp(Re, "reynolds number");
```

```
10  Nul=0.664*Re^0.5*Pr^0.33;
11  h=Nul*0.0364/L;
12  q=h*L*(300-27);
13  disp(q,"colling rate in W/m");
14  //if there is turbulence
15  Nul=0.037*Re^0.8*Pr^0.33;
16  h1=Nul*0.0364/L;
17  q1=h1*L*(300-27);
18  disp(q1,"colling rate in W/m in turbulence");
19  clear()
```

Scilab code Exa 17.3 3

```
1 // \text{example} 17.3
2 clc; funcprot(0);
3 // Initialization of Variable
4 u=60; //m/s
5 \text{ Nu}5 = 546;
6 nu = 26.41e - 6;
7 L4=0.2;
8 L5=0.25;
9 \text{ Pr} = 0.69;
10 Re4=u*L4/nu;
11 Re5=u*L5/nu;
12 Nu4=0.664*Re4^0.5*Pr^0.33;
13 h14 = Nu4 * 0.0338 / L4;
14 Nu4=0.664*Re5^0.5*Pr^0.33;
15 h15=Nu5*0.0338/L5;
16 qconv=(h15*L5-h14*L4)*(230-25);
17 disp(qconv," heat transfer rate in W");
18 clear()
```

Scilab code Exa 17.4 4

```
1 // \text{example} 17.4
2 clc; funcprot(0);
3 // Initialization of Variable
4 \text{ pi}=3.14;
5 \text{ Ts} = 128.4;
6 Tinfinity=26.2;
7 k=0.03;
8 D=0.0127; //m
9 Re=6071; // reynold 's no
10 Pr = 0.7;
11 qconv=46;
12 \quad A = pi * 0.0127 * 0.094;
13 h=0.85*qconv/A/(Ts-Tinfinity);
14 disp(h," heat transfer coefficient in W/m<sup>2</sup>-K");
15 Nu=0.3+0.62*Re^0.5*Pr^0.33/(1+0.4^0.66*Pr^0.66)
      ^0.25*(1+(Re/282000)^0.625)^0.8;
16 hbar=Nu*k/D;
17 disp(Nu, "Nusselt no is")
18 disp(hbar," heat transfer coefficient in W/m^2-K");
19 //using Hilpert correlation
20 Nu1=0.193*Re^0.618*Pr^0.333;
21 disp(Nu1, "Nusselt no is");
22 \text{ hbar1=Nu1*k/D};
23 disp(hbar1,"heat transfer coefficient in W/m^2-K");
24 clear()
```

Scilab code Exa 17.5 5

```
1 //example 17.5
2 clc; funcprot(0);
3 // Initialization of Variable
4 Ti=75;
5 k=0.02588;
6 D=0.01;
7 Nu=47.4
```

```
8 rho=8933; //density
9 c=387;
10 D=0.01;
11 Tinfinity=23;
12 T=35;
13 h=Nu*k/D;
14 t=rho*c*D/6/h*log((Ti-Tinfinity)/(T-Tinfinity));
15 disp(t, "cooling time required in s");
16 Bi=h*0.005/3/399;
17 disp(Bi, "Biots number")
18 clear()
```

Scilab code Exa 17.6 6

```
1 // \text{example} 17.6
2 clc; funcprot(0);
3 // Initialization of Variable
4 m = 0.1;
5 cp=4179; //J/kg/K
6 q=10^6; //W/m^3
7 Do = 0.04;
8 \text{ Di} = 0.02;
9 \text{ pi} = 3.14;
10 L=4*m*cp/(Do^2-Di^2)/pi/q*(60-20);
11 disp(L,"tube length in m");
12 Re=4*m/pi/Di/6.57e-4;
13 disp(Re, "reynolds number");
14 qs=q*(Do^2-Di^2)/4/Di;
15 ho=qs/(70-60);
16 disp(ho, "local heat coefficient in W/m^2-K");
17 clear()
```

Scilab code Exa 17.7 7

```
1 //example 17.7
2 clc; funcprot(0);
3 // Initialization of Variable
4 m=0.25; //kg/s
5 cp=4178; //J/kg-K
6 Tmo=57;
7 Tmi=15;
8 pi=3.14;
9 D=0.05; //m
10 L=6; //m
11 delT=(-Tmo+Tmi)/log((100-Tmo)/(100-Tmi));
12 h=m*cp/pi/D/L*(Tmo-Tmi)/delT;
13 disp(h, "average convection coefficient in W/m^2-K");
14 clear()
```

Scilab code Exa 17.9 9

```
1 // example 17.9
2 clc; funcprot(0);
3 // Initialization of Variable
4 \text{ pi=} 3.14;
5 qs = 2000;
6 \text{ cp} = 4181;
7 m = 0.01;
8 D=0.06;
9 k=0.67;
10 Nu = 4.36;
11 L=m*cp/pi/0.06/qs*(80-20);
12 disp(L,"tube length in m");
13 h=Nu*k/D;
14 Ts=qs/h+80;
15 disp(Ts, "surface temperature in degreeC");
16 clear()
```

Scilab code Exa 17.10 10

```
1 // example 17.10
2 clc; funcprot(0);
3 // Initialization of Variable
4 m=2; // kg/s
5 D=0.04; //m
6 mu=695*10^-6; //Ns/m^2;
7 \text{ pi}=3.14;
8 Nu=396; // nusselt number
9 Re=4*m/pi/D/mu;
10 disp(Re, "reynolds number");
11 h=Nu*0.628/D;
12 Tmo=95-(95-25)*exp(-pi*D*h/m/4178*4);
13 disp(Tmo, "temperature in degree c");
14 q = m * 4176 * (Tmo - 25);
15 disp(q/1000, "rate of heat transfer in kW");
16 Nu1=0.027*Re^0.8*4.62^0.33;
17 disp(Nu1, "Nusselt number");
18 h1 = Nu1 * 0628/D;
19 disp(h1/1000, "coefficient of heat transfer in W/m-K"
      );
20 clear()
21 clear()
```

Scilab code Exa 17.11 11

```
1 //example 17.11
2 clc; funcprot(0);
3 // Initialization of Variable
4 k=33.8e-3;
5 L=0.71;
```

```
6 A=1.02*0.71; // area
7 Ts=505; // temperature
8 Tsur=296 // temperature
9 Nu=147;
10 h=Nu*k/L;
11 q=h*A*(Ts-Tsur);
12 disp(q," heat transfer by convection in W");
13 qrad=A*5.67e-8*(Ts^4-Tsur^4);
14 disp(qrad," heat transfer by radiation in W");
15 hrad=5.67e-8*(Ts+Tsur)*(Ts^2+Tsur^2);
16 disp(hrad," linearized radiation coffecient in W/m^2-K");
17 clear()
```

Scilab code Exa 17.12 12

```
//example 17.12
clc; funcprot(0);
// Initialization of Variable
Nu=65.8;
k=0.028;
As=1.2*1.2;//area
Ts=350;//temperature
Tsurr=300;//temperature
sigma=5.67e-8;
epsilon=0.25;//emmisivity
h=Nu*k/0.3;
Pe=h*As*(Ts-Tsurr)+epsilon*sigma*As*(Ts^4-Tsurr^4);
disp(Pe, "allowable electrical power in W");
clear()
```

Scilab code Exa 17.13 13

```
//example 17.13
clc; funcprot(0);
// Initialization of Variable
pi=3.14;
D=0.1;
Nu=23.3;
k=0.0313;
Ts=438;//temperature
Tsurr=296;//temperature
sigma=5.67e-8;
epsilon=0.85;//emmisivity
h=Nu*k/D;
q=h*pi*D*(Ts-Tsurr)+epsilon*sigma*pi*D*(Ts^4-Tsurr^4);
disp(q,"heat transfer rate from the pipe in W/m");
clear()
```

Scilab code Exa 17.14 14

```
1 //example 17.14
2 clc; funcprot(0);
3 // Initialization of Variable
4 pi=3.14;
5 k=0.625;
6 D=0.025;
7 Nu=90;
8 ho=40;
9 q=8524;
10 delT=(59.8-30)/log(59.8/30);
11 hi=Nu*k/D;
12 U=1/(1/hi+1/ho);
13 L=q/(U*pi*D*delT);
14 disp(L,"length of exchanger in m");
15 clear()
```

Scilab code Exa 17.15 15

```
1 // \text{example} 17.15
2 clc; funcprot(0);
3 // Initialization of Variable
4 pi=3.14;
5 q=7.317e5;
6 c = 2350;
7 Thi = 160;
8 \text{ Thd} = 100;
9 delT = (75-85)/log(75/85);
10 mh=q/c/(Thi-Thd);
11 disp(mh, "mass flow rate of oil in kg/s");
12 ho=400;
13 k=0.643;
14 D=0.025; // diameter
15 Nu=119;
16 hi=k/D*Nu;
17 U=1/(1/hi+1/ho);
18 L=q/(U*pi*D*delT*10*0.87);
19 disp(L,"length of exchanger in m");
20 clear()
```

Chapter 18

Heat transfer by radiation

Scilab code Exa 18.1 1

```
1 //example 18.1
2 clc; funcprot(0);
3 // Initialization of Variable
4 G1=600; //G1=Glambda
5 alpha=0.85;
6 G=G1*(2.5-1)*0.5+G1*0.5*(0.5)+G1*(1.0-0.5);
7 disp(G,"total radiation in W/m^2");
8 Gabs=alpha*G;
9 disp(Gabs,"absorbed radiation in W/m^2");
10 J=0.15*G+525;
11 disp(J,"total radiosity");
12 qrad=525-Gabs;
13 disp(qrad,"net radiative flux leaving the surface in W/m^2");
14 clear()
```

Scilab code Exa 18.2 2

```
1 // example 18.2
2 clc; funcprot(0);
3 // Initialization of Variable
4 sigma=5.67e-8;
5 lambda1=2200; //mum
6 T=2000; //K
7 C1=3.742e8; //\text{mum}^4/\text{m}^2
8 C2=1.439e8;
9 lambdamax=1.45; //mum
10 E=sigma*T^4;
11 disp(E, "spectral emmisive power in W/m^2");
12 lambda=lambda1/T;
13 disp(lambda, "wavelength corresponding to upper limit
       in mum");
14 E=C1/lambdamax^5/(exp(C2/lambdamax/T)-1);
15 disp(E, "emissive power in W/m<sup>2</sup>.mum");
16 disp("G=9.07*10^5 in W/m^2");
17 clear()
```

Scilab code Exa 18.4 4

```
1 //example 18.4
2 clc; funcprot(0);
3 // Initialization of Variable
4 F1=0.318; //F0---2 mum
5 F2=0.856; //F0---5 mum
6 sigma=5.67e-8;
7 T=1600; //kelvin
8 epsilon=0.4*F1+0.8*(F2-F1);
9 disp(epsilon, "emmisivity");
10 E=epsilon*sigma*T^4;
11 disp(E/1000, "total emmisive power in kW/m^2");
12 clear()
```

Scilab code Exa 18.5 5

```
1 // \text{example} 18.5
2 clc; funcprot(0);
3 // Initialization of Variable
4 F=0.738; //F0-11 ' mum
5 F1=0.014; //F0-11 \text{ mum}
6 sigma=5.67e-8;
7 Ts = 300;
8 Tf=1200;
9 alpha=0.8*F+0.1*(1-F);
10 disp(alpha, "total absorvity")
11 epsilon=0.8*F1+0.1*(1-F1);
12 disp(epsilon, "emmisivity");
13 qrad=epsilon*sigma*Ts^4-alpha*sigma*Tf^4;
14 disp(qrad/1000, "total emissice power in kW/m^2");
15 disp("epsilon=alpha=0.62 for final condition");
16 clear()
```

Scilab code Exa 18.6 6

```
1 //example 18.6
2 clc; funcprot(0);
3 // Initialization of Variable
4 plambda=0.05;
5 sigma=5.67e-8;
6 T=300; //K
7 epsilon=1-plambda;
8 qrad=epsilon*sigma*T^4-0.226*1353;
9 disp(qrad,"net radiative heat flux leaving in W/m^2"
        );
10 clear()
```

Scilab code Exa 18.7 7

```
1 // \text{example} 18.7
2 clc; funcprot(0);
3 // Initialization of Variable
4 \text{ pi}=3.14;
5 F12=0.5;
6 A1=4; //area in terms of L
7 A2=2*pi/4; //area in terms of L
8 F21=A1/A2*F12;
9 disp(F21, "reciprocity relation between A1 and A2");
10 //part2
11 F12=1;
12 A1=1/16; // area in terms of D
13 A2=1/2; //area in terms of D
14 F21 = A1/A2 * F12;
15 disp(F21, "reciprocity relation between A1 and A2");
16 //part3
17 F22=0.5;
18 \quad F23=1-F21-F22;
19 disp(F23, "reciprocity relation");
20 //part4
21 F13=0.17;
22 F12=1-F13;
23 A1=1/4; //area in terms of D
24 A2=1; // area in terms of D
25 F21 = A1/A2 * F12;
26 disp(F21, "reciprocity relation between A1 and A2");
27 clear()
```

Scilab code Exa 18.8 8

```
1 // example 18.8
     2 clc; funcprot(0);
     3 // Initialization of Variable
    4 \text{ pi}=3.14;
     5 \text{ sigma} = 5.67 e - 8;
     6 T1 = 1623 / K
     7 T2=1923; //K
    8 T3=300; //K
    9 F23=0.06;
10 A2=pi*0.075^2/4;
11 A1=pi*0.075*0.15;
12 F21=1-F23;
13 F12=A2/A1*F21;
14 \text{ Pe=A1*0.118*sigma*(T1^4-T3^4)+A2*F23*sigma*(T2^4-T3^4)+A2*F23*sigma*(T2^4-T3^4)+A2*F23*sigma*(T2^4-T3^4)+A2*F23*sigma*(T2^4-T3^4)+A2*F23*sigma*(T2^4-T3^4)+A2*F23*sigma*(T2^4-T3^4)+A2*F23*sigma*(T2^4-T3^4)+A2*F23*sigma*(T2^4-T3^4)+A2*F23*sigma*(T2^4-T3^4)+A2*F23*sigma*(T2^4-T3^4)+A2*F23*sigma*(T2^4-T3^4)+A2*F23*sigma*(T2^4-T3^4)+A2*F23*sigma*(T2^4-T3^4)+A2*F23*sigma*(T2^4-T3^4)+A2*F23*sigma*(T2^4-T3^4)+A2*F23*sigma*(T2^4-T3^4)+A2*F23*sigma*(T2^4-T3^4)+A2*F23*sigma*(T2^4-T3^4)+A2*F23*sigma*(T2^4-T3^4)+A2*F23*sigma*(T2^4-T3^4)+A2*F23*sigma*(T2^4-T3^4)+A2*F23*sigma*(T2^4-T3^4)+A2*F23*sigma*(T2^4-T3^4)+A2*F23*sigma*(T2^4-T3^4)+A2*F23*sigma*(T2^4-T3^4)+A2*F23*sigma*(T2^4-T3^4)+A2*F23*sigma*(T2^4-T3^4)+A2*F23*sigma*(T2^4-T3^4)+A2*F23*sigma*(T2^4-T3^4)+A2*F23*sigma*(T2^4-T3^4)+A2*F23*sigma*(T2^4-T3^4)+A2*F23*sigma*(T2^4-T3^4)+A2*F23*sigma*(T2^4-T3^4)+A2*F23*sigma*(T2^4-T3^4)+A2*F23*sigma*(T2^4-T3^4)+A2*F23*sigma*(T2^4-T3^4)+A2*F23*sigma*(T2^4-T3^4)+A2*F23*sigma*(T2^4-T3^4)+A2*F23*sigma*(T2^4-T3^4)+A2*F23*sigma*(T2^4-T3^4)+A2*F23*sigma*(T2^4-T3^4)+A2*F23*sigma*(T2^4-T3^4)+A2*F23*sigma*(T2^4-T3^4)+A2*F23*sigma*(T2^4-T3^4)+A2*F23*sigma*(T2^4-T3^4)+A2*F23*sigma*(T2^4-T3^4)+A2*F23*sigma*(T2^4-T3^4)+A2*F23*sigma*(T2^4-T3^4)+A2*F23*sigma*(T2^4-T3^4)+A2*F23*sigma*(T2^4-T3^4)+A2*F23*sigma*(T2^4-T3^4)+A2*F23*sigma*(T2^4-T3^4)+A2*F23*sigma*(T2^4-T3^4)+A2*F23*sigma*(T2^4-T3^4)+A2*F23*sigma*(T2^4-T3^4)+A2*F23*sigma*(T2^4-T3^4)+A2*F23*sigma*(T2^4-T3^4)+A2*F23*sigma*(T2^4-T3^4)+A2*F23*sigma*(T2^4-T3^4)+A2*F23*sigma*(T2^4-T3^4)+A2*F23*sigma*(T2^4-T3^4)+A2*F23*sigma*(T2^4-T3^4)+A2*F23*sigma*(T2^4-T3^4)+A2*F23*sigma*(T2^4-T3^4)+A2*F23*sigma*(T2^4-T3^4)+A2*F23*sigma*(T2^4-T3^4)+A2*F23*sigma*(T2^4-T3^4)+A2*F23*sigma*(T2^4-T3^4)+A2*F23*sigma*(T2^4-T3^4)+A2*F23*sigma*(T2^4-T3^4)+A2*F23*sigma*(T2^4-T3^4)+A2*F23*sigma*(T2^4-T3^4)+A2*F23*sigma*(T2^4-T3^4)+A2*F23*sigma*(T2^4-T3^4)+A2*F23*sigma*(T2^4-T3^4)+A2*F23*sigma*(T2^4-T3^4)+A2*F23*sigma*(T2^4-T3^4)+A2*F23*sigma*(T2^4-T3^4)+A2*F23*sigma*(T2^4-T3^4)+A2*F23*sigma*(T2^4-T3^4)+A2*F23*s
15 disp(Pe, "Electrical power required in W");
16 clear()
```

Scilab code Exa 18.9 9

```
14 qw=sigma*(T1^4-T2^4)/1817;
15 disp(qw,"heat rate of radiation in W/m");
16 k=(qw-qwo)/qwo*100;
17 disp(k,"percentage change of heat transfer in %");
18 clear()
```

Scilab code Exa 18.10 10

```
1 // \text{example} 18.10
2 clc; funcprot(0);
3 // Initialization of Variable
4 e1=0.8;
5 e2=0.4;
6 T1 = 1200;
7 T2 = 500;
8 \quad A = 1;
9 Jr = (108323+59043)/2;
10 sigma=5.67e-8;
11 q1=sigma*(T1^4-T2^4)/((1-e1/e1/A)+1/(A*0.5+(2+2)^-1)
      +(1-e2)/e2/A);
12 disp(q1/1000,"the rate of energy supply in kW/m");
13
14 Tr=(Jr/sigma)^0.25;
15 disp(Tr, "temperature in radiating surface in K");
16 clear()
```