Resolução dos Exercícios

Aplicando o **Teorema Mestre** às recorrências:

1)
$$T(n) = 4T(n/2) + n$$

Temos a = 4 e b = 2, logo:

$$n^{\log_b a} = n^{\log_2 4} = n^2$$
.

Além disso, $f(n) = n = O(n^{2-\varepsilon})$ para $\varepsilon = 1$. Pelo caso 1 do Teorema Mestre:

$$T(n) = \Theta(n^2).$$

2)
$$T(n) = 4T(n/2) + n^2$$

Aqui a = 4 e b = 2, logo:

$$n^{\log_b a} = n^{\log_2 4} = n^2$$
.

Temos $f(n) = n^2 = \Theta(n^{\log_b a}).$

Pelo caso 2 do Teorema Mestre:

$$T(n) = \Theta(n^2 \log n).$$

3)
$$T(n) = 4T(n/2) + n^3$$

Novamente a = 4 e b = 2, então:

$$n^{\log_b a} = n^{\log_2 4} = n^2.$$

Neste caso, $f(n) = n^3 = \Omega(n^{2+\varepsilon})$, com $\varepsilon = 1$.

Verifiquemos a condição de regularidade:

$$a \cdot f(\frac{n}{b}) = 4 \cdot (\frac{n}{2})^3 = \frac{n^3}{2} \le c \, n^3$$
, para $c = \frac{1}{2} < 1$.

Assim, pelo caso 3 do Teorema Mestre:

$$T(n) = \Theta(n^3).$$