Aditya Shirode, Rhythm Shah, Shrenuj Gandhi

2. [5 points] Understanding asymptotic notation

An alternate definition of Ω , call it Ω^{∞} , is defined as follows: $f(n) \in \Omega^{\infty}(g(n))$ if there exists c > 0 such that $f(n) \ge cg(n) \ge 0$ for infinitely many integers n > 0. If $f(n) \in \Omega^{\infty}(g(n))$ then you can't hope to show $f(n) \in O(h(n))$ for any h(n) that grows more slowly than g(n).

- (a) Obviously $f(n) \in \Omega(g(n))$ implies $f(n) \in \Omega^{\infty}(g(n))$. Prove that the other direction is not true, i.e., prove that $f(n) \in \Omega^{\infty}(g(n))$ does not imply $f(n) \in \Omega(g(n))$.
- (b) Prove that, for any two non-negative functions f(n) and g(n), either $f(n) \in O(g(n))$ or $f(n) \in \Omega^{\infty}(g(n))$ (or both) and that the same is not true if we replace Ω^{∞} with Ω .

1 point for part (a), 3 points for the first part of (b), 1 points for the counterexample in part (b).

Answer:

(a) If for some c > 0, $f(n) \in \Omega^{\infty}(g(n))$, then, $f(n) \ge cg(n) \ge 0$ This will hold true for infinite integer values of n > 0.

Now, if
$$f(n) \in \Omega(g(n))$$
 \Longrightarrow $f(n) \ge c_1 g(n)$, $c_1 > 0, n \ge n_0$.

As above inequality holds true for values of $n \ge n_0$, and not all n > 0, it is a subset of Ω^{∞} case.

Lets prove this with an example.

Assume
$$f(n) = n, g(n) = \frac{n}{\lg n}$$

For this assumption, $f(n) \in \Omega^{\infty}(g(n))$ for many n > 0. But $f(n) \notin \Omega(g(n))$ for values of n < 2.

Hence, $f(n) \in \Omega^{\infty}(g(n))$ does not imply $f(n) \in \Omega(g(n))$.

(b) f(n) and g(n) are non-negative functions.

$$f(n) > 0, \quad g(n) > 0$$

Now, there will be some value of c and n_0 , for which, either

$$f(n) \ge c_1 g(n)$$
 will not grow slower (1)

or
$$f(n) \le c_1 g(n)$$
 will not grow faster (2)

Hence, if (1), then
$$f(n) \in \Omega^{\infty}(q(n))$$
 (3)

and if (2), then
$$f(n) \in O(g(n))$$
 (4)

In the rare case that f(n) = cg(n), both (3) and (4) will hold true.

Now, for the same case, if we replace Ω^{∞} with $\Omega()$, it does not hold true, as is proven by the example in (a).