Object Detection

PIRL, POSTECH Hanul Roh

Computer Vision Tasks

DOG, DOG, CAT

Multiple Object

This image is CC0 public domain

Computer Vision Tasks

Instance Segmentation

DOG, DOG, CAT

Multiple Object

This image is CC0 public domain

Classification + Localization

Classification + Localization

Object Detection as Classification: Sliding Window

Apply a CNN to many different crops of the image, CNN classifies each crop as object or background

Dog? NO Cat? YES Background? NO

Problem: Need to apply CNN to huge number of locations and scales, very computationally expensive!

Region Proposals

- Find image regions that are likely to contain objects
- To find regions, Selective Search algorithm gives 1K~2K region proposals per image

R-CNN: Regions with CNN features

Linear Regression for bounding box offsets

Region Proposal – Selective Search

R-CNN Training

- 1. M ← Pre-train a ConvNet for ImageNet classification dataset
- 2. $M' \leftarrow$ Fine-tune for object detection(softmax + log loss)
- 3. R ← Selective Search for region proposals
- 4. $F \leftarrow$ Cache feature vectors to disk using M' in R
- 5. Train post hoc linear SVMs on F for object classification
- 6. Train post hoc linear bounding-box regressors on F

* Post hoc means the parameters are learned after the ConvNet is fixed

Bounding-Box Regression

$$P^i = (P^i_x, P^i_y, P^i_w, P^i_h)$$

Specifies the pixel coordinates of the center of proposal P^{i} 's Bounding box together with P^{i} 's width and height

$$G^{i} = (G_{x}^{i}, G_{y}^{i}, G_{w}^{i}, G_{h}^{i})$$
 The ground-truth bounding box

$$\hat{G}_x = P_w d_x(P) + P_x \tag{1}$$

$$\hat{G}_y = P_h d_y(P) + P_y \tag{2}$$

$$\hat{G}_w = P_w \exp(d_w(P)) \tag{3}$$

$$\hat{G}_h = P_h \exp(d_h(P)). \tag{4}$$

Bounding-Box Regression

Each function $d_{\star}(P)$ (where \star is one of x, y, h, w) is modeled as a linear function of the pool₅ features of proposal P, denoted by $\phi_5(P)$. (The dependence of $\phi_5(P)$ on the image data is implicitly assumed.) Thus we have $d_{\star}(P) = \mathbf{w}_{\star}^{\mathrm{T}}\phi_5(P)$, where \mathbf{w}_{\star} is a vector of learnable model parameters. We learn \mathbf{w}_{\star} by optimizing the regularized least squares objective (ridge regression):

$$\mathbf{w}_{\star} = \underset{\hat{\mathbf{w}}_{\star}}{\operatorname{argmin}} \sum_{i}^{N} (t_{\star}^{i} - \hat{\mathbf{w}}_{\star}^{\mathsf{T}} \boldsymbol{\phi}_{5}(P^{i}))^{2} + \lambda \|\hat{\mathbf{w}}_{\star}\|^{2}. \quad (5)$$

$$\hat{G}_x = P_w d_x(P) + P_x \tag{1}$$

$$\hat{G}_y = P_h d_y(P) + P_y \tag{2}$$

$$\hat{G}_w = P_w \exp(d_w(P)) \tag{3}$$

$$\hat{G}_h = P_h \exp(d_h(P)). \tag{4}$$

The regression targets t_{\star} for the training pair (P, G) are defined as

$$t_x = (G_x - P_x)/P_w \tag{6}$$

$$t_y = (G_y - P_y)/P_h \tag{7}$$

$$t_w = \log(G_w/P_w) \tag{8}$$

$$t_h = \log(G_h/P_h). \tag{9}$$

Problems of R-CNN

- Slow at test-time: need to run full forward path of CNN for each region proposal
 - 13s/image on a GPU
 - 53s/image on a CPU
- SVM and regressors are post-hoc: CNN features not updated in response to SVMs and regressors
- Complex multistage training pipeline
 - Fine-tune network with softmax classifier
 - Train post-hoc linear SVMs
 - Train post-hoc bounding-box regressions

Fast R-CNN

- Train the detector in a single stage, end-to-end
 - No caching features to disk
 - No post hoc training steps
- Train all layers of the network

Figure from https://leonardoaraujosantos.gitbooks.io/artificial-inteligence/content/object_localization_and_detection.html

Fast R-CNN

ROI Pooling

- Its purpose is to perform max pooling on inputs of non uniform sizes to obtain fixed-size feature maps (e.g. 7×7 for VGG-net fc layer).
- The ROI pooling is done by:

ROI in Conv feature map : $21x14 \rightarrow 3x2$ max pooling with stride $(3,2) \rightarrow 0$ output: 7x7 ROI in Conv feature map : $35x42 \rightarrow 5x6$ max pooling with stride $(5,6) \rightarrow 0$ output: 7x7

Fast R-CNN Training

- 1. Take an input and a set of bounding boxes
- 2. Generate convolutional feature maps
- 3. For each bbox, get a fixed-length feature vector from ROI pooling layer
- 4. Outputs have two information
 - 1. K+1 class labels
 - 2. Bounding box locations
- Loss function

Predicted box coordinates
$$L(p,u,t^u,v) = L_{\mathrm{cls}}(p,u) + \lambda[u \geq 1]L_{\mathrm{loc}}(t^u,v), \tag{1}$$

$$\uparrow \qquad \qquad \uparrow \qquad \qquad \uparrow$$
 True class score Log loss Smooth L1 loss

$$L_{loc}(t^u, v) = \sum_{i \in \{x, y, w, h\}} \operatorname{smooth}_{L_1}(t_i^u - v_i), \qquad (2)$$

in which

$$\operatorname{smooth}_{L_1}(x) = \begin{cases} 0.5x^2 & \text{if } |x| < 1\\ |x| - 0.5 & \text{otherwise,} \end{cases}$$
 (3)

R-CNN vs Fast R-CNN

R-CNN

- Extract image regions
- 1 CNN per region (2000 CNNs)
- Classify region-based features

SPP-net & Fast R-CNN (the same forward pipeline)

- 1 CNN on the entire image
- Extract features from feature map regions
- Classify region-based features

R-CNN vs Fast R-CNN

Problems of Fast R-CNN

 Out-of-network region proposals are the test-time computational bottleneck

- Object detection networks are fast but,
 - Region proposal
 - Selective Search [Uijlings et al. ICCV 2011]: 2s per image
 - EdgeBoxes [Zitnick & Dollar. ECCV 2014]: 0.2s per image

Faster R-CNN (RPN + Fast R-CNN)

- Insert a Region Proposal Network (RPN) after the last convolutional layer -> Using GPU!
- RPN trained to produce region proposals directly; no need for external region proposals
- After RPN, use ROI Pooling and an upstream classifier and bbox regressor just like Fast R-CNN

Training Goal: Share Feature Map

Faster R-CNN: Region Proposal Network

- Slide a small window on the feature map
- Build a small network for
 - Classifying object or not-object, and
 - Regressing bbox locations
- Position of the sliding window provides localizatio information with reference to the image
- Box regression provides finer localization information with reference to this sliding window

Faster R-CNN: Region Proposal Network

Use N anchor boxes at each location

 Anchors are translation invariant: use the same ones at every location

Regression gives offsets from anchor boxes

 Classification gives the probability that each (regressed) anchor shows an object

Faster R-CNN: Region Proposal Network

 Intermediate layer – 256(or 512) 3x3 filter, stride 1, padding 1

 Cls layer – 18(9x2) 1x1 filter, stride 1, padding 0

 Reg layer – 36(9x4) 1x1 filter, stride 1, padding 0

Anchors

- Anchors: pre-defined reference boxes
- Multi-scale/size anchors:
 - Multiple anchors are used at each position:
 - 3 scale(128x128, 256x256, 512x512), 3 aspect ratios (2:1, 1:1, 1:2) yield 9 anchors
 - Each anchor has its own prediction function

Positive/Negative Samples

- An anchor is labeled as positive if
 - The anchor is the one with highest IoU overlap with a ground-truth box
 - The anchor has an IoU overlap with a ground-truth box higher than 0.7
- Negative labels are assigned to anchors with IoU lower than 0.3 for all ground-truth boxes

• 50%/50% ratio of positive/negative anchors in a minibatch

RPN Loss Function

i: index of an anchor in a mini-batch

$$L(\{p_i\},\{t_i\}) = \frac{1}{N_{cls}} \sum_{i} L_{cls}(p_i, p_i^*) + \lambda \frac{1}{N_{reg}} \sum_{i} p_i^* L_{reg}(t_i, t_i^*)$$

 p_i : predicted probability of anchor i being an object

 t_i : vector representing the 4 parameterized coordinates of the predicted bounding box

 p_i^* : 1 if the anchor is positive, and 0 if the anchor is negative

 t_i^* : ground-truth box associated with a positive anchor

 L_{cls} : log loss over two classes (object vs. not object)

 L_{reg} : smooth L1 loss

 N_{cls} : number of anchors in mini-batch (~256) N_{reg} : number of anchor locations (~2400)

 λ : default is 10, so that both terms are roughly equally balanced

4-Step RPN Training

Proposals

Region Proposal Network

feature map

classifier

- M0 is an ImageNet pre-trained network
- 1. $train_{rpn}(M0) \rightarrow M1$
- 2. generate_proposals(M1) -> P1
- 3. train_fast_rcnn(M0, P1) -> M2
- 4. train_rpn_frozen_conv(M2) -> M3
- 5. generate_proposals(M3) -> P2
- 6. train_fast_rcnn_frozen_conv(M3, P2) -> M4
- 7. return add_rpn_layers(M4, M3.RPN)

Train an RPN initialized from M0, get M1

Generate training proposals P1 using RPN M1

Train Fast R-CNN M2 on P1 initialized from M0

Train RPN M3 from N2 without changing conv layers

Conv layers are shared with RPN M3

Add M3's RPN layers to Fast R-CNN M4

Results

	R-CNN	Fast R-CNN	Faster R-CNN
Test time per image (with proposals)	50 sec	2 sec	0.2 sec
Speedup	1x	25x	250x
mAP (VOC 2007)	66.0	66.9	66.9

Table 8: Detection results of Faster R-CNN on PAS-CAL VOC 2007 test set using **different settings of anchors**. The network is VGG-16. The training data is VOC 2007 trainval. The default setting of using 3 scales and 3 aspect ratios (69.9%) is the same as that in Table 3.

settings	anchor scales	aspect ratios	mAP (%)
1 scale, 1 ratio	128^{2}	1:1	65.8
	256^{2}	1:1	66.7
1 scale, 3 ratios	128 ²	{2:1, 1:1, 1:2}	68.8
	256^{2}	{2:1, 1:1, 1:2}	67.9
	$\{128^2, 256^2, 512^2\}$		69.8
3 scales, 3 ratios	$\{128^2, 256^2, 512^2\}$	{2:1, 1:1, 1:2}	69.9

Table 9: Detection results of Faster R-CNN on PAS-CAL VOC 2007 test set using **different values of** λ in Equation (1). The network is VGG-16. The training data is VOC 2007 trainval. The default setting of using $\lambda = 10$ (69.9%) is the same as that in Table 3.

λ	0.1	1	10	100	
mAP (%)	67.2	68.9	69.9	69.1	

Problems of Faster R-CNN

- ROI Pooling has some quantization operations
- These operations introduce misalignments between the ROI and the extracted features
- While this may not impact classification, it can make a negative effect on predicting bounding-box

=> MASK R-CNN

Check the code

https://github.com/endernewton/tf-faster-rcnn

References

- Object detection
 - R-CNN: "Rich feature hierarchies for accurate object detection and semantic segmentation" (2013)
 - SPPNet: "Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition" (2014)
 - Fast R-CNN: "Fast R-CNN" (2015)
 - Faster R-CNN: "Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks" (2015)
 - SSD: "SSD: Single Shot MultiBox Detector" (2015)
 - Mask R-CNN: <u>Mask R-CNN</u> (2017)
- Others
 - Selective Search: <u>"Selective Search for Object Recognition"</u> (2012)
- Github
 - R-CNN
 - (Cafffe + MATLAB): https://github.com/rbgirshick/rcnn
 - Fast R-CNN
 - (Caffe + MATLAB): https://github.com/rbgirshick/fast-rcnn
 - Faster R-CNN
 - (tensorflow) https://github.com/endernewton/tf-faster-rcnn