Prova Scritta di INFORMATICA TEORICA 8 Luglio 2002

- 1. Scrivere un'espressione regolare per il linguaggio costituito da tutte le stringhe sull'alfabeto $\{a,b\}$ che non iniziano per b e che non contengono la b un numero dispari di volte.
- 2. Scrivere un'espressione regolare per il linguaggio costituito da tutte le stringhe sull'alfabeto $\{a,b,c\}$ che contengono due sole volte la lettera a.
- 3. Quali fra le seguenti affermazioni sono vere?

$$(a^*b)^*a^* = (a \cup b)^*$$

$$b^*aa^*b(a \cup b)^* = (a \cup b)^*ab(a \cup b)^*$$

$$(a^*b^*)^* = (a^*b)^*$$

- 4. Costruire un DFA che riconosce il linguaggio costituito da tutte le stringhe non vuote sull'alfabeto $\{a,b,c\}$ tali che il numero di c fra due b consecutive è dispari.
- 5. Costruire un DFA che riconosce il linguaggio costituito da tutte le stringhe sull'alfabeto $\{a,b\}$ che contengono almeno tre volte la lettera a e al piu' due volte la lettera b.
- 6. Sia L il linguaggio costituito da tutte le stringhe sull'alfabeto $\{a,b\}$ la cui lunghezza è una potenza di due:

$$L = \{v \in \{a, b\}^* \text{ tale che } |v| = 2^k, k > 1\}.$$

Esiste un DFA che riconosce L? Motivare la risposta.

7. Data una stringa $w=a_1...a_n$ sull'alfabeto Σ , denotiamo con w^R il reverse di w: $w^R=a_n...a_1$. Sia L un linguaggio sull'alfabeto Σ riconosciuto da un automa a stati finiti, e sia L^R il linguaggio costituito da tutti i reverse delle stringhe in L:

$$L^R = \{v \in \Sigma^* | v^R \in L\}.$$

Il linguaggio L^R è anch'esso riconosciuto da un automa a stati finiti? Argomentare la risposta, cioè, in caso di risposta affermativa, dare i cenni di una possibile dimostrazione, e, in caso di risposta negativa, provare a costruire un controesempio.

8. Dato il linguaggio sull'alfabeto Σ

$$L = \{ w \in \Sigma^* | w = w^R \},$$

esiste un automa a stati finiti che riconosce L? Esiste una grammatica context-free che genera L? Argomentare le risposte e, in caso di risposta affermativa, costruire espliciyamente un DFA (o una grammatica CF) che riconosce (o genera) il linguaggio L.

9. Costruire una grammatica context-free che genera il seguente linguaggio:

$$L = \{a^{2n}b^kc^{3n} | n \ge 1, k \ge 1\}.$$

10. Data la grammatica

$$\Omega \to \Omega a \Omega$$

$$\Omega \to \Omega b \Omega$$

$$\Omega \to c$$
,

dire se è ambigua o meno.