Révisions

Trains épicycloïdaux & Lois de Coulomb

Exercice 1 - Train simple \star

A3-05

C2-06

Soit le train épicycloïdal suivant.

Question 1 Tracer le graphe des liaisons.

Question 2 Déterminer ω_{40} en fonction de ω_{30} et $\omega_{10}.$

Question 3 On suppose que ω_{40} est bloqué. Exprimer le rapport $\frac{\omega_{30}}{\omega_{10}}$.

Corrigé voir 1.

Exercice 2 - Train simple *

A3-05

C2-06

Xavier Pessoles

Soit le train épicycloïdal suivant.

Question 1 Tracer le graphe des liaisons.

Question 2 Déterminer ω_{40} en fonction de ω_{30} et $\omega_{10}.$

Question 3 On suppose que ω_{40} est bloqué. Exprimer le rapport $\frac{\omega_{30}}{\omega_{10}}$.

Corrigé voir 2.

Exercice 3 - Train simple *

A3-05

C2-06

Soit le train d'engrenages suivant.

Question 1 Tracer le graphe des liaisons.

Question 2 Déterminer ω_{40} en fonction de ω_{30} et ω_{10} .

Question 3 On suppose que ω_{40} est bloqué. Exprimer le rapport $\frac{\omega_{30}}{\omega_{10}}$.

Corrigé voir 3.

Exercice 4 - Assemblage par frettage *

B2-14 Pas de corrigé pour cet exercice.

Le frettage consiste à encastrer deux pièces en utilisant le phénomène d'adhérence.

Avant l'assemblage réalisé à l'aide d'une presse, l'arbre 1 possède un diamètre légèrement supérieur à celui de l'alésage (trou cylindrique) de la pièce 2 dans laquelle il vient se loger.

Après frettage, il subsiste donc une pression de contact p (souvent supposée uniforme sur toute la surface de contact) entre les deux pièces.

Les caractéristiques de cet assemblage par frettage sont les suivantes :

- R: rayon de l'arbre 1;
- *L*: longueur du contact;
- f: facteur d'adhérence entre les deux pièces.

Objectif Déterminer l'effort axial maximal transmissible et le couple maximal transmissible d'une pièce à l'autre.

Effort axial maximal transmissible

L'effort axial maximal transmissible correspond à la valeur maximale de la composante axiale de la résultante de l'action mécanique qui peut être transmise d'une pièce à l'autre sans qu'elles se désolidarisent.

Pour simplifier notre étude, on considère la pièce 2 fixe et on cherche à déterminer la composante axiale de la résultante de l'action mécanique à appliquer à la pièce 1 pour atteindre le glissement de 1/2 suivant $-\overrightarrow{z}$.

Question 1 Refaire en grand les 2 schémas : un dans le plan $(\overrightarrow{y}, \overrightarrow{z})$ et l'autre dans le plan $(\overrightarrow{x}, \overrightarrow{y})$, en plaçant les actions élémentaires normale et tangentielle de 2 sur 1 en un point Q quelconque de la surface de contact.

Question 2 Exprimer $\overline{d} F_{2\rightarrow 1}(\overrightarrow{Q})$.

Question 3 Déterminer la résultante axiale maximale transmissible en fonction de p et des caractéristiques géométriques du frettage.

Question 4 Calculer $R(2 \rightarrow 1)$ lorsque la pression est de la forme : $p(\theta) = p_0 \cos \theta$ pour $\theta \in [-\pi/2, \pi/2]$.

Corrigé voir 4.

Exercice 5 - Assemblage par frettage *

B2-14 Pas de corrigé pour cet exercice.

Le frettage consiste à encastrer deux pièces en utilisant le phénomène d'adhérence.

Avant l'assemblage réalisé à l'aide d'une presse, l'arbre 1 possède un diamètre légèrement supérieur à celui de l'alésage (trou cylindrique) de la pièce 2 dans laquelle il vient se loger.

Après frettage, il subsiste donc une pression de contact p (souvent supposée uniforme sur toute la surface de contact) entre les deux pièces.

Les caractéristiques de cet assemblage par frettage sont les suivantes :

- R: rayon de l'arbre 1;
- *L* : longueur du contact;
- *f* : facteur d'adhérence entre les deux pièces.

Objectif Déterminer l'effort axial maximal transmissible et le couple maximal transmissible d'une pièce à l'autre.

Couple maximal transmissible

Le couple (ou moment) maximal transmissible correspond à la valeur maximale de la composante sur l'axe \overrightarrow{z} du moment résultant de l'action mécanique qui peupêtre. 0.1 transmise d'une pièce à l'autre sans qu'elles se désolidarisent.

Pour simplifier notre étude, on considère la pièce 2 fixe

et on cherche à déterminer la composante sur l'axe \overrightarrow{z} du moment résultant de l'action mécanique à appliquer à la pièce 1 pour atteindre le glissement de 1/2 autour de \overrightarrow{z} .

Question 1 Refaire en grand les 2 schémas : un dans le plan $(\overrightarrow{y}, \overrightarrow{z})$ et l'autre dans le plan $(\overrightarrow{x}, \overrightarrow{y})$, en plaçant les actions élémentaires normale et tangentielle de 2 sur 1 en un point Q quelconque de la surface de contact.

Question 2 Exprimer $\overline{d} \, \overline{F_{2 \to 1}}(\overline{Q})$.

Déterminer le couple maximal transmissible en fonction de p et des caractéristiques géométriques du frettage.

Corrigé voir ??.