Circuits i Sistemes Electrònics III (CISE III)

Examen final

Cuatrimestre de primavera 03/04 (14 de junio de 2003)

CADA PROBLEMA DEBE ENTREGARSE EN HOJAS SEPARADAS

Problema 1 (25 %)

Para realizar el circuito de la siguiente figura, se dispone de dos amplificadores operacionales (AO), uno del modelo μA741 y otro del modelo LM318.

Especificaciones de cada uno de los AO		
	μΑ741	LM318
V_{OS} (mV)	1	4
$I_{B}(nA)$	80	150
$I_{OS}(nA)$	20	30
CMRR (dB)	80	100
$f_{t}(MHz)$	1	4
SR (V/µs)	0,5	70
margen dinámico salida (V)	±13,5	±13,5

Con el fin de optimizar la respuesta del circuito, se pide:

- a) Elegir en qué posición debe situarse cada AO para que el error producido por las limitaciones de continua (V_{OS}, I_B y I_{OS}) sea mínimo. Calcular el valor de dicho error (peor caso posible).
- b) ¿Cuál es la expresión de la V_o considerando el CMRR de los operacionales para una determinada tensión de entrada V_i? Elegir la posición en qué debe situarse cada uno de los operacionales para que el error producido en la ganancia debido al efecto del CMRR sea el menor posible.
- c) Si se desea amplificar una señal de 150 kHz y 1 mV de amplitud, ¿Cuál debe ser la posición para cada uno de los amplificadores?
- d) Si se desea aprovechar todo el margen dinámico de salida del circuito, ¿cuál es la máxima frecuencia a la que se puede trabajar sin distorsión a la salida? ¿Para qué posición de los AO se produce esta situación?

Problema 2 (25%)

El circuito de la Fig. 1 contiene un transistor trabajando en zona activa. De este circuito se pide:

- a) La tensión V_L en función de las tensiones de entrada V_1 y V_2 .
- b) ¿Cuál es la misión del transistor? Razona la respuesta.

El circuito de la Fig. 2 es un convertidor de tensión a corriente que se utiliza para transmitir señales a larga distancia. De este circuito se pide:

- c) La tensión V_a (realiza y justifica las aproximaciones que consideres necesarias)
- d) La expresión de la corriente I_L en función de R₂, V_a y R_s.
- e) Calcula los valores de R_2 y R_s necesarios para que I_L sea igual a 4 mA cuando V_{in} es igual a 0 V, y que I_L sea igual a 20 mA cuando V_{in} sea igual a 5 V.
- f) ¿Cual es el valor máximo de la impedancia Z_L para que las expresiones anteriores sean válidas?

Problema 3 (25%)

Se desea analizar el circuito de la figura.

Para ello, se pide:

- a) Dibujar la característica entrada-salida V_{o1} en función de V_{o2} .
- **b)** Dar la expresión de la tensión V_{o2} en función de V_{o1} y V_1 .
- c) Representar la evolución temporal de las tensiones V_{o1} y V_{o2}.
- d) Calcular los valores de las amplitudes y los periodos de V_{o1} y V_{o2}.
- e) Calcular el ciclo de trabajo (Duty Cicle) de V_{o1}.
- f) ¿Qué parámetros habría que tener en cuenta para calcular el valor de R₀?

Problema 4 (25%)

El circuito de la figura es un regulador conmutado reductor de tensión. Se sabe que el nivel ALTO en V_B cierra el interruptor S y que el nivel BAJO en V_B abre el interruptor.

Datos:

 $R_a = 40 \text{ k}\Omega$ $R_b = 10 \text{ k}\Omega$

 $R_1 = 10 \text{ k}\Omega$ $C = 0.5 \text{ }\mu\text{F}$ $V_1 = 1 \text{ }V$

 $V_{cc} = 15V$

 $V_{ZENER} = 2.3 \text{ V}$ $V_{diodos \text{ ON}} = 0.7 \text{ V}$

- a) Dibujar la curva de histéresis del trigger de Schmitt $V_B(V_C)$ formado por el amplificador y las resistencias R_6 y R_7 y calcular la expresiones de los umbrales alto V_H y bajo V_L .
- b) Ahora se hace que V_C sea igual a una fracción de V_o , es decir V_c = αV_o , Se desea que la diferencia entre el valor máximo y el mínimo de la tensión de salida sea de 0,1V, calcular el valor de R_7/R_6 , sabiendo que α = 0,124 y que V_R = 1,24V. suponga que el diodo y el amplificador son ideales y que el interruptor cuando está cerrado tiene una resistencia cero.
- c) Se desea que V_o = 10 V, V_i = 18 V, I_o = 1 A, Δi_L = 0,4 A, L = 1 mH, calcular el valor de T_c (tiempo que el interruptor esta cerrado), de T (periodo de la señal de control) y de la frecuencia de la señal de control
- d) Calcular el valor del condensador C.

FECHAS DE INTERÉS

Publicación de Notas Provisionales (Módulo C4 Planta –1): 22 de junio (12 horas)

Fin plazo de alegaciones (Secretaría B3): 25 de junio

Publicación de Notas Definitivas (Módulo C4 Planta –1): 29 de junio (12 horas)