浅谈CMT以及复现

论文链接: https://arxiv.org/abs/2107.06263

论文代码(个人实现版本): https://github.com/FlyEgle/CMT-pytorch

写在前面

本篇博客讲解CMT模型并给出从0-1复现的过程以及实验结果,由于论文的细节并没有给出来,所以最后的复现和paper的精度有一点差异,等作者release代码后,我会详细的校对我自己的code,找找原因。

1. 出发点

- Transformers与现有的卷积神经网络 (CNN) 在性能和计算成本方面仍有差距。
- 希望提出的模型不仅可以超越典型的Transformers, 而且可以超越高性能卷积模型。

2. 怎么做

- 1. 提出混合模型(串行),通过利用Transformers来捕捉长距离的依赖关系,并利用CNN来获取局部特征。
- 2. 引入depth-wise卷积,获取局部特征的同时,减少计算量
- 3. 使用类似R50模型结构一样的stageblock,使得模型具有下采样增强感受野和迁移dense的能力。
- 4. 使用conv-stem来使得图像的分辨率缩放从VIT的1/16变为1/4, 保留更多的patch信息。

3. 模型结构

- (a)表示的是标准的R50模型,具有4个stage,每个都会进行一次下采样。最后得到特征表达后,经过AvgPool进行分类
- (b)表示的是标准的VIT模型,先进行patch的划分,然后embeeding后进入Transformer的block,这里,由于Transformer是long range的,所以进入什么,输出就是什么,引入了一个非image的class token来做分类。
- (c)表示的是本文所提出的模型框架CMT,由CMT-stem, downsampling, cmt block所组成,整体结构则是类似于R50,所以可以很好的迁移到dense任务上去。

3.1. CMT Stem

使用convolution来作为transformer结构的stem,这个观点FB也有提出一篇paper, Early Convolutions Help Transformers See Better。

CMT&Conv stem共性

- 使用4层conv3x3+stride2 + conv1x1 stride 1 等价于VIT的patch embeeding, conv16x16 stride 16.
- 使用conv stem,可以使模型得到更好的收敛,同时,可以使用SGD优化器来训练模型,对于超参数的依赖没有原始的那么敏感。好处那是大大的多啊,仅仅是改了一个conv stem。

CMT&Conv stem异性

• 本文仅仅做了一次conv3x3 stride2,实际上只有一次下采样,相比conv stem,可以保留更多的patch的信息到下层。

从时间上来说,一个20210628(conv stem),一个是20210713(CMT stem),存在借鉴的可能性还是比较小的,也说明了conv stem的确是work。

3.2. CMT Block

每一个stage都是由CMT block所堆叠而成的,CMT block由于是transformer结构,所以没有在stage里面去设计下采样。每个CMT block都是由 Local Perception Unit, Ligntweight MHSA, Inverted Residual FFN 这三个模块所组成的,下面分别介绍:

Local Perception Unit(LPU)

本文的一个核心点是希望模型具有long-range的能力,同时还要具有local特征的能力,所以提出了LPU这个模块,很简单,一个3X3的DWconv,来做局部特征,同时减少点计算量,为了让Transformers的模块获取的longrange的信息不缺失,这里做了一个shortcut,公式描述为:

$$LPU(X) = DWConv(X) + X$$

• Lightweight MHSA(LMHSA)

MHSA这个不用多说了,多头注意力,Lightweight这个作用,PVT曾经有提出过,目的是为了降低复杂度,减少计算量。那本文是怎么做的呢,很简

单,假设我们的输入为 $H_i imes W_i imes C_i$,对其分别做一个scale,使用卷积核为k imes k, stride为k的Depth Wise卷积来做了一次下采样,得到的shape为 $\frac{H_i}{k} imes \frac{W_i}{k} imes C_i$,那么对应的Q,K,V的shape分别为:

$$egin{aligned} Q_{shape} &= (H_i imes W_i) imes C_i = N_i imes C_i \ K_{shape} &= (rac{H_i}{k_i} imes rac{W_i}{k_i}) imes C_i = N_I^{'} imes C_i \ V_{shape} &= (rac{H_i}{k_i} imes rac{W_i}{k_i}) imes C_i = N_I^{'} imes C_i \end{aligned}$$

我们知道,在计算MHSA的时候要遵守两个计算原则:

- 1. Q, K的序列dim要一致。
- 2. K, V的token数量要一致。

所以,本文中的MHSA计算公式如下:

$$LeightweightMHSA(Q,K,V) = Softmax(rac{QK^{^{'T}}}{\sqrt{d_k}} + B)V^{^{'}}$$

Inverted Resdiual FFN(IRFFN)

FFN的这个模块,其实和mbv2的block基本上就是一样的了,不一样的地方在于,使用的是GELU,采用的也是DW+PW来减少标准卷积的计算量。很简单,就不多说了,公式如下:

$$IRFFN(X) = Conv(F(Conv(X)))$$

 $F(X) = DWConv(X) + X$

那么我们一个block里面的整体计算公式如下:

$$X_{i}^{'} = LPU(X_{i-1}) \ X_{i}^{''} = LMHSA(LN(X_{i}^{'})) + X_{i}^{'} \ X_{i} = IRFFN(LN(X_{i}^{''})) + X_{i}^{''}$$

3.3 patch aggregation

每个stage都是由上述的多个CMTblock所堆叠而成,上面也提到了,这里由于是transformer的操作,不会设计到scale尺度的问题,但是模型需要构造下采样,来实现层次结构,所以downsampling的操作单独拎了出来,每个stage之前会做一次卷积核为2x2的,stride为2的卷积操作,以达到下采样的效果。

所以,整体的模型结构就一目了然了,假设输入为224x224x3,经过CMT-STEM和第一次下采样后,得到了一个56x56的featuremap,然后进入stage1,输出不变,经过下采样后,输入为28x28,进入stage2,输出后经过下采样,输入为14x14,进入stage3,输出后经过最后的下采样,输入为7x7,进入stage4,最后输出7x7的特征图,后面接avgpool和分类,达到分类的效果。

我们接下来看一下怎么复现这篇paper。

4. 论文复现

ps: 这里的复观指的是没有源码的情况下,实现网络,训练等,如果是结果复现,会标明为复观精度。

这里存在几个问题

• 文章的问题:我看到paper的时候,是第一个版本的arxiv,大概过了一周左右V2版本放出来了,这两个版本有个很大的diff。

Output Size	Layer Name	CMT-Ti	CMT-XS	CMT-S	CMT-B	
112×112	Stem	$3 \times 3, 16$, stride 2	$3 \times 3, 16$, stride 2	$3 \times 3, 32$, stride 2	$3 \times 3, 38$, stride 2	
	60 Cont. A. L. Cont. Con	$[3 \times 3, 16] \times 2$	$[3 \times 3, 16] \times 2$	$[3 \times 3, 32] \times 2$	[3 imes 3, 38] imes 2	
56×56	Patch Aggr.	2×2 , 46, stride 2	2×2 , 52, stride 2	2×2 , 64, stride 2	2×2 , 76, stride 2	
	LPU	$\begin{bmatrix} 3 \times 3, 46 \end{bmatrix}$	$\begin{bmatrix} 3 \times 3, 52 \end{bmatrix}$	$\begin{bmatrix} 3 \times 3, 64 \end{bmatrix}$	$\lceil 3 \times 3,76 \rceil$	
Stage 1	LMHSA	$H_1=1, k_1=8 \times 2$	$H_1=1, k_1=8 \times 3$	$H_1=1, k_1=8 \times 3$	$ H_1=1, k_1=8 \times 4$	
	IRFFN	$R_1=3.6$	$R_1=3.8$	$R_1=4$	$\lfloor R_1=4 \rfloor$	
28×28	Patch Aggr.	2×2 , 76, stride 2	2×2 , 96, stride 2	2×2 , 128, stride 2	2×2 , 160, stride 2	
	LPU	$\begin{bmatrix} 3 \times 3,92 \end{bmatrix}$	$\lceil 3 \times 3, 104 \rceil$	$\lceil 3 \times 3, 128 \rceil$	$\lceil 3 \times 3, 152 \rceil$	
Stage 2	LMHSA	$H_2=2, k_2=4 \times 2$	$H_2=2, k_2=4 \times 3$	$H_2=2, k_2=4 \times 3$	$ H_2=2, k_2=4 \times 4$	
	IRFFN	$R_2=3.6$	$R_2=3.8$	$R_2=4$	$R_2=4$	
14×14	Patch Aggr.	2×2 , 152, stride 2	2×2 , 192, stride 2	$\sim 2 \times 2$, 256, stride 2	2×2 , 320, stride 2	
	LPU	$\lceil 3 \times 3, 184 \rceil$	$\begin{bmatrix} 3 \times 3,208 \end{bmatrix}$	$\lceil 3 \times 3,256 \rceil$	$\lceil 3 \times 3,304 \rceil$	
Stage 3	LMHSA	$H_3=4, k_3=2 \times 10$	$H_3=4, k_3=2 \times 12$	$H_3=4, k_3=2 \times 16$	$ H_3=4, k_3=2 \times 20$	
20	IRFFN	$R_3=3.6$	$\lfloor R_3=3.8 \rfloor$	R_3 =4	$R_3=4$	
7×7	Patch Aggr.	2×2 , 304, stride 2	2×2 , 384, stride 2	2×2 , 512, stride 2	2×2 , 640, stride 2	
	LPU	$\begin{bmatrix} 3 \times 3,368 \end{bmatrix}$	$\lceil 3 \times 3,416 \rceil$	$\lceil 3 \times 3,512 \rceil$	$\begin{bmatrix} 3 \times 3,608 \end{bmatrix}$	
Stage 4	LMHSA	$H_4=8, k_4=1 \times 2$	$H_4=8, k_4=1 \times 3$	$ H_4=8, k_4=1 \times 3$	$H_4=8, k_4=1 \times 4$	
	IRFFN	$R_4=3.6$	R_4 =3.8	$\lfloor R_4=4 \rfloor$	$R_4=4$	
1×1	FC			, 1280		
1×1	Classifier		1×1	, 1000		
# Pa	rams	9.49 M	$15.24~\mathrm{M}$	25.14 M	45.72 M	
# FLOPs		0.64 B	1.54 B	4.04 B	9.33 B	

Output Size	Layer Name	CMT-Ti	CMT-XS	CMT-S	CMT-B	
112 × 112	Stem	$3 \times 3, 16, \text{ stride } 2$ $[3 \times 3, 16] \times 2$	$3 \times 3, 16, \text{ stride } 2$ $[3 \times 3, 16] \times 2$	$3 \times 3, 32, \text{ stride } 2$ $[3 \times 3, 32] \times 2$	$3 \times 3, 38, \text{ stride } 2$ $[3 \times 3, 38] \times 2$	
56×56	Patch Aggr.	2×2 , 46, stride 2	2×2 , 52, stride 2	2×2 , 64, stride 2	2×2 , 76, stride 2	
Stage 1	LPU LMHSA IRFFN	$\begin{bmatrix} 3 \times 3, 46 \\ H_1 = 1, k_1 = 8 \\ R_1 = 3.6 \end{bmatrix} \times 2$	$\begin{bmatrix} 3 \times 3, 52 \\ H_1 = 1, k_1 = 8 \\ R_1 = 3.8 \end{bmatrix} \times 3$	$\begin{bmatrix} 3 \times 3, 64 \\ H_1 = 1, k_1 = 8 \\ R_1 = 4 \end{bmatrix} \times 3$	$\begin{bmatrix} 3 \times 3, 76 \\ H_1 = 1, k_1 = 8 \\ R_1 = 4 \end{bmatrix} \times 4$	
28×28	Patch Aggr.	2×2 , 92, stride 2	2×2 , 104, stride 2	2×2 , 128, stride 2	2×2 , 152, stride 2	
Stage 2	LPU LMHSA IRFFN	$\begin{bmatrix} 3 \times 3, 92 \\ H_2 = 2, k_2 = 4 \\ R_2 = 3.6 \end{bmatrix} \times 2$	$\begin{bmatrix} 3 \times 3, 104 \\ H_2 = 2, k_2 = 4 \\ R_2 = 3.8 \end{bmatrix} \times 3$	$\begin{bmatrix} 3 \times 3, 128 \\ H_2 = 2, k_2 = 4 \\ R_2 = 4 \end{bmatrix} \times 3$	$\begin{bmatrix} 3 \times 3, 152 \\ H_2 = 2, k_2 = 4 \\ R_2 = 4 \end{bmatrix} \times 4$	
14×14	Patch Aggr.	2×2 , 184, stride 2	2×2 , 208, stride 2	2×2 , 256, stride 2	2×2 , 304, stride 2	
Stage 3	LPU LMHSA IRFFN	$\begin{bmatrix} 3 \times 3, 184 \\ H_3 = 4, k_3 = 2 \\ R_3 = 3.6 \end{bmatrix} \times 10$	$\begin{bmatrix} 3 \times 3, 208 \\ H_3 = 4, k_3 = 2 \\ R_3 = 3.8 \end{bmatrix} \times 12$	$\begin{bmatrix} 3 \times 3, 256 \\ H_3 = 4, k_3 = 2 \\ R_3 = 4 \end{bmatrix} \times 16$	$\begin{bmatrix} 3 \times 3,304 \\ H_3 = 4, k_3 = 2 \\ R_3 = 4 \end{bmatrix} \times 20$	
7×7	Patch Aggr.	2×2 , 368, stride 2	2×2 , 416, stride 2	2×2 , 512, stride 2	2×2 , 608, stride 2	
Stage 4	LPU LMHSA IRFFN	$\begin{bmatrix} 3 \times 3,368 \\ H_4 = 8, k_4 = 1 \\ R_4 = 3.6 \end{bmatrix} \times 2$	$\begin{bmatrix} 3 \times 3, 416 \\ H_4 = 8, k_4 = 1 \\ R_4 = 3.8 \end{bmatrix} \times 3$	$\begin{bmatrix} 3 \times 3, 512 \\ H_4 = 8, k_4 = 1 \\ R_4 = 4 \end{bmatrix} \times 3$	$\begin{bmatrix} 3 \times 3,608 \\ H_4 = 8, k_4 = 1 \\ R_4 = 4 \end{bmatrix} \times 4$	
1 × 1	FC		1 × 1	, 1280		
1×1	Classifier		1 × 1	, 1000		
# Pa	rams	9.49 M	15.24 M	25.14 M	45.72 M	
# FI	LOPs	0.64 B	1.54 B	4.04 B	9.33 B	

网络结构可以说完全不同的情况下,FLOPs竟然一样的,当然可能是写错了,这里就不吐槽了。不过我一开始代码复现就是按下面来的,所以对于我也没影响多少,只是体验有点差罢了。

• 细节的问题: paper和很多的transformer一样,都是采用了Deit的训练策略,但是差别在于别的paper或多或少会给出来额外的tirck,比如最后FC的dp的 ratio等,或者会改变一些,再不济会把代码直接release了,所以只好闷头尝试Trick。

4.1 复现难点

paper里面采用的Position Embeeding和Swin是类似的,都是Relation Position Bias,但是和Swin不相同的是,我们的Q,K,V尺度是不一样的。这里我考虑了两种实现方法,一种是直接bicubic插值,另一种则是切片,切片更加直观且embeeding我设置的可BP,所以,实现里面采用的是这种方法,代码如下:

```
def generate_relative_distance(number_size):
    """return relative distance, (number_size**2, number_size**2, 2)
    """
    indices = torch.tensor(np.array([[x, y] for x in range(number_size) for y in range(number_size)]))
    distances = indices[None, :, :] - indices[:, None, :]
    distances = distances + number_size - 1  # shift the zeros postion
    return distances
...
elf.position_embeeding = nn.Parameter(torch.randn(2 * self.features_size - 1, 2 * self.features_size - 1))
...
    q_n, k_n = q.shape[1], k.shape[2]
attn = attn + self.position_embeeding[self.relative_indices[:, :, 0], self.relative_indices[:, :, 1]][:, :k_n]
```

4.2 复现trick历程(血与泪TT)

一方面想要看一下model是否是work的,一方面想要顺便验证一下DeiT的策略是否真的有效,所以从头开始做了很多的实验,简单整理如下:

- 数据:
 - 1. 训练数据: 20%的imagenet训练数据(快速实验)。
 - 2. 验证数据: 全量的imagenet验证数据。
- 环境:
 - 1. 8xV100 32G
 - 2. CUDA 10.2 + pytorch 1.7.1
- sgd优化器实验记录

model	augments	resolution	batchsize	epoch	optimizer	LR	strategy
CMT- TINY	crop+flip	184->160	512X8	120	SGD	1.6	cosine
CMT- TINY	crop+flip+colorjitter+randaug	184->160	512X8	120	SGD	1.6	cosine
CMT- TINY	crop+flip+colorjitter+randaug+mixup	184->160	512X8	120	SGD	1.6	cosine
CMT- TINY	crop+flip+colorjitter+randaug+cutmix	184->160	512X8	120	SGD	1.6	cosine
CMT- TINY	crop+flip+colorjitter+randaug	184->160	512X8	120	SGD	1.6	cosine
CMT- TINY	crop+flip+colorjitter+randaug+mixup	184->160	512X8	200	SGD	1.6	cosine
CMT- TINY	crop+flip+colorjitter+randaug+cutmix	184->160	512X8	300	SGD	1.6	cosine
CMT- TINY	crop+flip+colorjitter+randaug	184->160	512X8	200	SGD	1.6	cosine
CMT- TINY	crop+flip+colorjitter+randaug	184->160	512X8	120	SGD+ape(wrong- >resolution)	1.6	cosine
CMT- TINY	crop+flip+colorjitter+randaug	184->160	512X8	120	SGD+rpe	1.6	cosine
CMT- TINY	crop+flip+colorjitter+randaug	184->160	512X8	120	SGD+ape(real- >resolution)	1.6	cosine
CMT- TINY	crop+flip+colorjitter+randaug	184->160	512X8	120	SGD+pe_nd	1.6	cosine

model	augments	resolution	batchsize	epoch	optimizer	LR	strategy
CMT- TINY	crop+flip+colorjitter+randaug	184->160	512X8	120	SGD+qkv_bias	1.6	cosine
CMT- TINY	crop+flip+colorjitter+randaug	184->160	512X8	120	SGD+qkv_bias+rpe	1.6	cosine
CMT- TINY	crop+flip+colorjitter+randaug	184->160	512X8	120	SGD+qkv_bias+ape	1.6	cosine
CMT- TINY	crop+flip+colorjitter+randaug+no mixup+no_cutmix+labelsmoothing	184->160	512X8	300	SGD+qkv_bias+rpe	1.6	cosine
CMT- TINY	crop+flip+colorjitter+randaug+mixup+cutmix+labelsmoothing	184->160	512X8	300	SGD+qkv_bias+rpe	1.6	cosine

结论:可以看到在SGD优化器的情况下,使用1.6的LR,训练300个epoch,warmup5个epoch,是用cosine衰减学习率的策略,用 randaug+colorjitter+mixup+cutmix+labelsmooth,设置weightdecay为0.1的配置下,使用QKV的bias以及相对位置偏差,可以达到比baseline高11%个点的结果,所有的实验都是用FP16跑的。

• adamw优化器实验记录

model	augments	resolution	batchsize	epoch	optimizer	
CMT- TINY	crop+flip	184->160	512X8	120	AdamW	(
CMT- TINY	crop+flip+colorjitter+randaug	184->160	512X8	300	AdamW	(
CMT- TINY	crop+flip+colorjitter+randaug	184->160	512X8	120	AdamW	(
CMT- TINY	crop+flip+colorjitter+randaug+mixup+cutmix+labelsmoothing	184->160	512X8	300	adamw+qkv_bias+rpe	(
CMT- TINY	crop+flip+colorjitter+randaug+mixup+cutmix+labelsmoothing + repsampler	184->160	512X8	300	adamw+qkv_bias+rpe	(
CMT- TINY	crop+flip+colorjitter+randaug+mixup+cutmix+labelsmoothing	184->160	512X8	300	adamw+qkv_bias+rpe	(
CMT- TINY	crop+flip+colorjitter+randaug+mixup+cutmix+labelsmoothing	184->160	512X8	300	adamw+qkv_bias+rpe	1
CMT- TINY	crop+flip+colorjitter+randaug+mixup+cutmix+labelsmoothing + repsampler	184->160	512X8	300	adamw+qkv_bias+rpe	(
CMT- TINY	crop+flip+colorjitter+randaug+mixup+cutmix+labelsmoothing	184->160	512X8	300	adamw+qkv_bias+rpe	8
CMT- TINY	crop+flip+colorjitter+randaug+mixup+cutmix+labelsmoothing	184->160	512X8	300	adamw+qkv_bias+rpe	5
CMT- TINY	crop+flip+colorjitter+randaug+mixup+cutmix+labelsmoothing	184->160	512X8	300	adamw+qkv_bias+rpe	6
CMT- TINY	crop+flip+colorjitter+randaug+mixup+cutmix+labelsmoothing	184->160	512X8	300	adamw+qkv_bias+rpe	6
CMT- TINY	crop+flip+colorjitter+randaug+mixup+cutmix+labelsmoothing	184->160	512X8	300	adamw+qkv_bias+rpe	6

model	augments	resolution	batchsize	epoch	optimizer	
CMT- TINY	crop+flip+colorjitter+randaug+mixup+cutmix+labelsmoothing+warmup20	184->160	512X8	300	adamw+qkv_bias+rpe	6. 03
CMT- TINY	crop+flip+colorjitter+randaug+mixup+cutmix+labelsmoothing+droppath	184->160	512X8	300	adamw+qkv_bias+rpe	6. 0:

结论:使用AdamW的情况下,对学习率的缩放则是以512的bs为基础,所以对于4k的bs情况下,使用的是4e-3的LR,但是实验发现增大到6e-3的时候,还会带来一些提升,同时放大一点weightsdecay,也略微有所提升,最终使用AdamW的配置为,6e-3的LR,1e-1的weightdecay,和sgd一样的增强方法,然后加上了随机深度失活设置,最后比baseline高了16%个点,比SGD最好的结果要高0.8%个点。

4.3. imagenet上的结果

model-name	input_size	FLOPs	Params	acc@one_crop(ours)	acc(papers)	weights
CMT-T	160x160	516M	11.3M	75.124%	79.2%	weights

最后用全量跑,使用SGD会报nan的问题,我定位了一下发现,running_mean和running_std有nan出现,本以为是数据增强导致的0或者nan值出现,结果空跑几次数据发现没问题,只好把优化器改成了AdamW,结果上述所示,CMT-Tiny在160x160的情况下达到了75.124%的精度,相比MbV2,MbV3的确是一个不错的精度了,但是相比paper本身的精度还是差了将近4个点,很是离谱。

速度上,CMT虽然FLOPs低,但是实际的推理速度并不快,128的bs条件下,速度慢了R50将近10倍。

5. 实验结果

总体来说,CMT达到了更小的FLOPs同时有着不错的精度, imagenet上的结果如下:

Model	Top-1 Acc.	Top-5 Acc.	# Params	Resolution	# FLOPs	Ratio
CPVT-Ti-GAP [6]	74.9%	-	6M	2242	1.3B	2.2×
DenseNet-169 [20]	76.2%	93.2%	14M	224 ²	3.5B	5.8×
EfficientNet-B1 [50]	79.1%	94.4%	7.8M	240^{2}	0.7B	$1.2 \times$
CMT-Ti	79.2%	94.6%	9.5M	160^{2}	0.6B	1 ×
ResNet-50 [15]	76.2%	92.9%	25.6M	224 ²	4.1B	2.7×
CoaT-Lite Mini [59]	78.9%	¥	11M	224 ²	2.0B	$1.3 \times$
DeiT-S [51]	79.8%	=0	22M	224 ²	4.6B	$3.1 \times$
EfficientNet-B3 [50]	81.6%	95.7%	12M	300^{2}	1.8 B	$1.2 \times$
CMT-XS	81.8%	95.8%	15.2M	192^{2}	1.5B	1 ×
ResNeXt-101-64x4d [58]	80.9%	95.6%	84M	224 ²	32B	8×
T2T-ViT-19 [62]	81.2%		39.0	224 ²	8.0B	$2\times$
PVT-M [54]	81.2%	-	44.2M	224 ²	6.7B	$1.7 \times$
Swin-T [32]	81.3%	_	29M	224 ²	4.5B	$1.1 \times$
CPVT-S-GAP [6]	81.5%	-	23M	224 ²	4.6B	$1.2 \times$
RegNetY-8GF [40]	81.7%	-	39.2M	224 ²	8.0B	$2\times$
CeiT-S [61]	82.0%	95.9%	24.2M	224 ²	4.5B	$1.1 \times$
CvT-13-NAS [57]	82.2%	-0	18M	224 ²	4.1B	$1\times$
EfficientNet-B4 [50]	82.9%	96.4%	19M	380 ²	4.2B	$1 \times$
Twins-SVT-B [5]	83.1%	20	56.0M	224 ²	8.3B	$2.1 \times$
CMT-S	83.5%	96.6%	25.1M	224 ²	4.0B	1×
ViT-B/16 _{↑384} [10]	77.9%	Ε.	55.5M	384 ²	77.9B	8.4×
T2T-ViT-24 [62]	82.2%	-	63.9M	224 ²	12.6B	$1.4 \times$
CPVT-B [6]	82.3%	-0	88M	224 ²	17.6B	$1.9 \times$
TNT-B [13]	82.8%	96.3%	65.6M	224 ²	14.1B	$1.5 \times$
DeiT-B _{↑384} [51]	83.1%		85.8M	384 ²	55.6B	$6.0 \times$
CvT-21 _{↑384} [57]	83.3%	-	31.5M	384 ²	24.9B	$2.7 \times$
Swin-B [32]	83.3%	_	88M	224 ²	15.4B	$1.7 \times$
Twins-SVT-L [5]	83.3%	-	99.2M	224 ²	14.8B	$1.6 \times$
CeiT-S _{↑384} [61]	83.3%	96.5%	24.2M	384 ²	12.9B	$1.4 \times$
BoTNet-S1-128 [45]	83.5%	96.5%	75.1M	256^{2}	19.3B	$2.1 \times$
EfficientNet-B6 [50]	84.0%	96.8%	43M	528 ²	19.2B	$2.0 \times$
СМТ-В	84.5%	96.9%	45.7M	256 ²	9.3B	1 ×
EfficientNet-B7 [50]	84.3%	97.0%	66M	600 ²	37B	1.9×
CMT-L	84.8%	97.1%	74.7 M	288^{2}	19.5B	1 ×

coco2017上也有这不错的精度

Table 7: **Object detection results on COCO val2017.** All models use RetinaNet as basic framework and are trained in "1x" schedule. FLOPs are calculated on 1280×800 input. † means the results are from [5].

Backbone	# Params	# FLOPs	mAP	$\mid \mathrm{AP}_{50}$	AP_{75}	$\mid \mathrm{AP_S}$	AP_M	$\mathrm{AP_L}$
ConT-M [60]	217B	27.0M	37.9	58.1	40.2	23.0	40.6	50.4
ResNet-101 [15]	315B	56.7M	38.5	57.6	41.0	21.7	42.8	50.4
RelationNet++ [4]	266B	39.0M	39.4	58.2	42.5	-	-	-
ResNeXt-101-32x4d [58]	319B	56.4M	39.9	59.6	42.7	22.3	44.2	52.5
PVT-S [54]	226B	34.2M	40.4	61.3	43.0	25.0	42.9	55.7
Swin- T^{\dagger} [32]	245B	38.5M	41.5	62.1	44.2	25.1	44.9	55.5
Twins-SVT-S [5]	209B	34.3M	42.3	63.4	45.2	26.0	45.5	56.5
Twins-PCPVT-S [5]	226B	34.4M	43.0	64.1	46.0	27.5	46.3	57.3
CMT-S (ours)	231B	44.3M	44.3	65.5	47.5	27.1	48.3	59.1

6. 结论

本文提出了一种名为CMT的新型混合架构,用于视觉识别和其他下游视觉任务,以解决在计算机视觉领域以粗暴的方式利用Transformers的限制。所提出的 CMT同时利用CNN和Transformers的优势来捕捉局部和全局信息,促进网络的表示能力。在ImageNet和其他下游视觉任务上进行的大量实验证明了所提出 的CMT架构的有效性和优越性。

代码复现repo: https://github.com/FlyEgle/CMT-pytorch