

## Art of Problem Solving 2016 India National Olympiad

India National Olympiad 2016

| _  | Problems                                                                                                                                                                                                                                                                                                                          |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| P1 | Let $ABC$ be a triangle in which $AB = AC$ . Suppose the orthocentre of the triangle lies on the incircle. Find the ratio $\frac{AB}{BC}$ .                                                                                                                                                                                       |
| P2 | For positive real numbers $a, b, c$ which of the following statements necessarily implies $a = b = c$ : (I) $a(b^3 + c^3) = b(c^3 + a^3) = c(a^3 + b^3)$ , (II) $a(a^3 + b^3) = b(b^3 + c^3) = c(c^3 + a^3)$ ? Justify your answer.                                                                                               |
| P3 | Let $\mathbb{N}$ denote the set of natural numbers. Define a function $T: \mathbb{N} \to \mathbb{N}$ by $T(2k) = k$ and $T(2k+1) = 2k+2$ . We write $T^2(n) = T(T(n))$ and in general $T^k(n) = T^{k-1}(T(n))$ for any $k > 1$ .                                                                                                  |
|    | (i) Show that for each $n \in \mathbb{N}$ , there exists k such that $T^k(n) = 1$ .                                                                                                                                                                                                                                               |
|    | (ii) For $k \in \mathbb{N}$ , let $c_k$ denote the number of elements in the set $\{n : T^k(n) = 1\}$ .<br>Prove that $c_{k+2} = c_{k+1} + c_k$ , for $k \ge 1$ .                                                                                                                                                                 |
| P4 | Suppose 2016 points of the circumference of a circle are colored red and the remaining points are colored blue. Given any natural number $n \geq 3$ , prove that there is a regular $n$ -sided polygon all of whose vertices are blue.                                                                                            |
| P5 | Let $ABC$ be a right-angle triangle with $\angle B = 90^{\circ}$ . Let $D$ be a point on $AC$ such that the inradii of the triangles $ABD$ and $CBD$ are equal. If this common value is $r'$ and if $r$ is the inradius of triangle $ABC$ , prove that                                                                            |
|    | $\frac{1}{r'} = \frac{1}{r} + \frac{1}{BD}.$                                                                                                                                                                                                                                                                                      |
| P6 | Consider a nonconstant arithmetic progression $a_1, a_2, \dots, a_n, \dots$ . Suppose there exist relatively prime positive integers $p > 1$ and $q > 1$ such that $a_1^2, a_{p+1}^2$ and $a_{q+1}^2$ are also the terms of the same arithmetic progression. Prove that the terms of the arithmetic progression are all integers. |

Contributors: eshan, YESMAths