19 日本国特許庁(JP) ①実用新案出願公開

◎ 公開実用新案公報(U) 平4-51795

®Int. Cl. ⁵

⑪出 願 人

識別記号

庁内整理番号

匈公開 平成4年(1992)4月30日

H 05 B 33/24 33/26

8815-3K 8815-3K

審査請求 未請求 請求項の数 15 (全 頁)

Ø考案の名称 高コントラスト薄膜EL素子

②実 頗 平2-92805

❷出 頭 平2(1990)9月4日

東京都渋谷区渋谷 2丁目17番 5 号 株式会社ケンウッド内 古田 正寛 四考 案 者

株式会社ケンウッド 東京都渋谷区渋谷2丁目17番5号

00代 理 人 弁理士 柴田 昌雄

1. 考案の名称

高コントラスト薄膜EL素子

2. 実用新案登録請求の範囲

1. 透明基板の上に透明電極を積層し該透明電極と背面電極との間にEL発光を呈する薄膜発光層を介在させた薄膜EL素子において、背面電極をTaの不完全酸化黒色膜で形成したことを特徴とする薄膜EL素子。

3. 前記背面電極の上に低誘電率高抵抗の絶縁体膜を形成し、その上にTaの不完全酸化黒色膜を設けたことを特徴とする請求項1または2の薄膜EL素子。

- 1 **-**

1193

- 4. 透明基板の上に透明電極を積層し該透明電極と黒色化した背面電極との間にE L 発光を呈する薄膜発光層を介在させ該背面電極の上に絶縁体を該絶縁体の上に背面電極と同一物質の背面黒色膜を配置した薄膜 E L 素子において、前記背面黒色膜をで薄膜発光層との間および前記背面黒色膜をを薄膜発光層との間に同一の物質からなる絶縁物を配置したとを特徴とする薄膜 E L 素子・
- 5. 前記背面電極と背面黒色膜とがTaの不完全酸化膜である請求項4の薄膜EL素子。
- 6. 透明基板の上に透明電極を積層し該透明電極と背面電極との間にE L 発光を呈する薄膜発光層を介在させた薄膜E L 素子において、背面電極と薄膜発光層との間に介在する絶縁膜に黒色絶縁膜を用い、背面電極として黒色導体または黒色膜と金属膜との積層を用いたことを特徴とする薄膜E L 素子。
- 7. 前記背面電極の黒色導体または黒色膜をTaの不完全酸化膜で形成し、前記黒色絶縁膜を前記Taの不完全酸化膜をさらに酸化した絶縁膜で

形成した請求項6の薄膜EL素子。

- 8.透明基板の上に透明電極、第1絶縁体層、 E L 発光を呈する発光体層、第2絶縁体層および 背面電極を順次積層した薄膜E L 素子において、 背面電極をT a の不完全酸化黒色膜で形成し、第 1 絶縁体層または第2 絶縁体層の一部を前記T a の不完全酸化黒色膜よりさらに酸化したT a 酸化 物の絶縁膜を用いて形成した薄膜E L 素子。
- 9. 透明基板の上に透明電極を積層し該透明電極と背面電極との間にEL発光を呈する薄膜発光層を介在させた薄膜EL素子において、透明電極と薄膜発光層との間の絶縁膜の全部または一部を着色した絶縁膜で形成したことを特徴とする薄膜EL素子。
- 10. 透明基板の上に透明電極を積層し該透明電極と背面電極との間にEL発光を呈する薄膜発光層を介在させた薄膜EL素子において、透明電極と透明基板との間に着色した絶縁膜を介在させたことを特徴とする薄膜EL素子.
 - 11.前記着色した絶縁膜をTaの不完全酸化

絶縁膜で形成した請求項9または10の薄膜EL 素子。

- 12. 前記背面電極を黒色導体または黒色膜と 金属膜の積層で形成した請求項9乃至11の薄膜 E L素子。
- 13.透明基板の上に透明電極を積層し該透明電極と背面電極との間にE L 発光を呈する薄膜発光層を介在させた薄膜 E L 素子において、透明基板の透明電極と反対側に半透明黒色膜を設けたことを特徴とする薄膜 E L 素子。
- 14. 前記半透明黒色膜としてTaの不完全酸化物を用いた請求項13の薄膜EL素子。
- 15. 前記背面電極として黒色膜と金属膜との 積層を用いた請求項13の薄膜Eし素子。

3. 考案の詳細な説明

[産業上の利用分野]

この考案は交流電界印加によりEL発光を呈する薄膜EL素子に係わり、特に、コントラストが 高められた薄膜EL素子に関する。

[従来の技術]

電圧を印加すると物質が螢光を発する現象すな わちエレクトロルミネッセンス(EL)を利用し たデスプレイに用いられる薄膜EL素子が知られ ている。

従来の薄膜EL素子の構造を第21図に示す.

図に示すように、ガラス基板1の上に透明電極2、第1絶縁体層3、発光体層4、第2絶縁体層5、金属背面電極6が順次積層されており、透明電極2と金属背面電極6とに交流電源7の電圧が印加され発光体層4が発光し、その光がガラス基板1の前方に放射される。

[考案が解決しようとする問題点]

上記した従来のものにおいては、金属背面電極6としてA1等の金属の電極を用いているため外光の反射率が高く、Eしパネル内に侵入した外部光が金属背面電極6で反射され、コントラストおよび表示品位の低下を招くという欠点があった。

この考案は上記した点に鑑みてなされたものであって、その目的とするところは、外部からの光

がBLパネルで反射されることを防止することによりコントラストの高められた薄膜EL素子を提供することにある。

[課題を解決するための手段]

この考案の薄膜EL素子は、背面電極あるいは 背面電極の上または下に設けられる膜に黒色導体 あるいは黒色絶縁体を用い、外部からの光がEL パネルで反射されることを防止したものである。

上記黒色導体あるいは黒色絶縁体としては、タンタル(Ta)の酸化物等が用いられる。

Taを酸化性雰囲気の中で化学変化を伴う蒸着すなわちリアクティブスパッタリングを行うとTaの酸化物が基板等の表面に蒸着される。

第19図に雰囲気の〇₂ 分圧と蒸着されたTa酸化物の抵抗率および光の透過率の関係を示す。

光の透過率は厚み2000オングストロームで 測定した。

図から分かるように、O2分圧を変えることにより、蒸着されるTa酸化物は導体から絶縁体まで変化し、また、透明の状態から黒色半透明の状

態に変化する。使用目的に応じた抵抗率および光の透過率のTa酸化物が黒色導体あるいは黒色絶縁体として使用できる。

[作用]

[実施例]

薄膜E L素子の背面電極を黒色導体とすれば、 外光が背面電極で反射されないので、コントラス トが高くなる。

また、背面電極の前方に着色した絶縁膜を配置 すれば、外光が背面電極で反射されて透明基板外 に放射されるまでに着色した絶縁膜を2度通過し て吸収されるので外光の反射が防止されてコント ラストが高くなる。

さらに、背面電極の後方に着色した絶縁膜を配置すれば、背面電極とその周囲の反射状態が同じになり背面電極の浮き上がりがなくなる。

特に、背面電極の前方の絶縁物と着色した絶縁膜の前方の絶縁物の屈折率を等しくすることにより背面電極の浮き上がり防止の効果が高くなる。

この考案の実施例である薄膜EL素子を図面に

基づいて説明する。

第1図は請求項1に対応する実施例を示す。

図において1は透明基板を構成するガラス基板であり、ガラス基板1の上に酸化錫の透明電極2、アルミナ、五酸化タンタル、窒化シリコン等の第1絶縁体層3、交流電界印加によりEし発光を呈する発光体層4、アルミナ、五酸化タンタル、窒化シリコン等の第2絶縁体層5、背面電極となる酸化丁a黒色導体8とに交流電源7の電圧が印加され発光体層4が発光し、その光がガラス基板1の前方に放射される。

酸化Ta黒色導体8はリアクティブスパッタリングにより蒸着されたTaの不完全酸化黒色膜であり、非発光部での外光の反射が抑制され、コントラストが向上する。

第2図は請求項2に対応する実施例を示す。

図において1は透明基板を構成するガラス基板であり、ガラス基板1の上に透明電極2、第1絶縁体層3、発光体層4、第2絶縁体層5、背面電

極となる酸化Ta黒色導体8と金属背面電極6と の積層体が順次積層されており、透明電極2と金 属背面電極6とに交流電源7の電圧が印加され発 光体層4が発光し、その光がガラス基板1の前方 に放射される。

酸化Ta黒色導体8はリアクティブスパッタリングにより蒸着されたTaの不完全酸化黒色膜であり、非発光部での外光の反射が抑制され、コントラストが向上する。また、金属背面電極6はA1等の蒸着で作られており、Taの不完全酸化黒色膜8の電気電導度の不足を補う。

第3図は請求項3に対応する実施例を示す。

この実施例では第1図に示す薄膜EL素子の酸化Ta黒色導体8の上およびその周囲を覆うようにSiO2等の低誘電率高抵抗の絶縁体膜9およびTaの不完全酸化黒色膜である背面黒色膜10が順次積層されており、このような構成により背面電極の浮き上がりが防止されコントラストが一層向上する。

第4図は請求項3に対応する実施例を示す。

この実施例では第2図に示す薄膜EL素子の金属背面電極6の上およびその周囲を覆うようにSi〇2 等の低誘電率高抵抗の絶縁体膜9およびTaの不完全酸化黒色膜である背面黒色膜10が順次積層されており、このような構成により背面電極の浮き上がりが防止されコントラストが一層向上する。

第20図に、第4図に示す実施例のコントラストを示すグラフ(イ)と従来の薄膜EL素子のコントラストを示すグラフ(ロ)とを比較して示す。

図における横軸は薄膜E L素子表面の外光による照度(ルクッス)であり縦軸はコントラスト比である。また、双方の薄膜E L素子には同一の交流電圧が印加された。図から明らかなように、実施例ではコントラスト比が著しく向上している。

第5図は請求項4および5に対応する実施例を 示す。

この実施例では第1図に示す薄膜Eし素子の酸化Ta黒色導体8の上およびその周囲を覆うようにSi〇。等の低誘電率高抵抗の絶線体膜9、第

2 絶縁層 5 と同一物質の絶縁体層 1 1 およびTaの不完全酸化黒色膜である背面黒色膜 1 0 が順次積層されており、このような構成により背面電極の浮き上がりが防止されコントラストが一層向上する。

なお、絶縁体膜9は背面電極同士のクロストーク防止のため誘電率の低い絶縁体がよく、特に、SiO2が適している。一方、第1絶縁体層3および第2絶縁体層5はEし素子の駆動電圧を低くするために、アルミナ、五酸化タンタル、窒化シリコン等の比較的誘電率の高いものが用いられている。

そこで、背面電極である酸化Taの黒色導体8 と背面黒色膜10との反射率を等しくするように 夫々の前面に配置された第2絶縁体層5と絶縁体 層11との屈折率を等くして背面電極の浮き上が りが防止されている。

第6図は請求項6および7に対応する実施例を示す。

図において1は透明基板を構成するガラス基板

であり、ガラス基板1の上に透明電極2、第1絶 緑体層3、発光体層4、酸化Taの黒色絶縁膜1 2および背面電極となる酸化Taの黒色等体8と 金属背面電極6との積層体が順次積層されており、 透明電極2と金属背面電極6とに交流電源7の電 圧が印加され発光体層4が発光し、その光がガラス基板1の前方に放射される。

黒色絶縁膜12により外光が吸収されてコント ラストが向上する。

第7図は請求項6および7に対応する実施例を 示す。

図において1は透明基板を構成するガラス基板であり、ガラス基板1の上に透明電極2、第1絶縁体層3、発光体層4、酸化丁aの黒色絶縁膜12、第2絶縁体層5および背面電極となる酸化丁aの黒色導体8と金属背面電極6との積層体が順次積層されており、透明電極2と金属背面電極6とに交流電源7の電圧が印加され発光体層4が発光に交流電源7の電圧が印加され発光体層4が発光し、その光がガラス基板1の前方に放射される。

黒色絶縁膜12により外光が吸収されてコント

ラストが向上する.

第8図は請求項8に対応する実施例を示す、

図において1は透明基板を構成するガラス基板であり、ガラス基板1の上に透明電極2、第1絶緑体層3、発光体層4、第2絶緑体層5および背面電極となる酸化Taの黒色導体8と金属背面電極6との積層体が順次積層されており、第2絶緑体層5の背面電極間隙部に黒色導体8よりもららに酸化された酸化Taの黒色絶緑膜12が設けられている。黒色絶緑膜12により外光が吸収されてパネル全体のコントラストが向上する。

第9図は請求項8に対応する実施例を示す。

図において1は透明基板を構成するガラス基板であり、ガラス基板1の上に透明電極2、第1絶縁体層3、発光体層4、第2絶縁体層5および背面電極となる酸化Taの黒色導体8と金属背面電極6との積層体が順次積層されており、第1絶縁体層3の背面電極間隙部の発光体層側に黒色導体8よりもさらに酸化された酸化Taの黒色絶縁膜12により外

光が吸収されてパネル全体のコントラストが向上 する.

第10図は請求項8に対応する実施例を示す。

図において1は透明基板を構成するガラス基板であり、ガラス基板1の上に透明電極2、第1絶縁体層3、発光体層4、第2絶縁体層5および背面電極となる酸化Taの黒色導体8と金属背面電極6との積層体が順次積層されており、第1絶縁体層3の背面電極間隙部の透明電極側に黒色導体8よりもさらに酸化された酸化Taの黒色絶縁膜12が設けられている。黒色絶縁膜12により外光が吸収されてパネル全体のコントラストが向上する。

第11図は請求項9および11に対応する実施 例を示す。

図において1は透明基板を構成するガラス基板であり、ガラス基板1の上に透明電極2、酸化Taの黒色絶縁膜12、発光体層4、第2絶縁体層5および金属背面電極6とが順次積層されており、黒色絶縁膜12により外光が吸収されてパネル全

体のコントラストが向上する。

第12図は請求項9および11に対応する実施 例を示す。

図において1は透明基板を構成するガラス基板であり、ガラス基板1の上に透明電極2、酸化Taの黒色絶縁膜12、第1絶縁体層3、発光体層)4、第2絶縁体層5および金属背面電極6とが順次積層されており、黒色絶縁膜12により外光が吸収されてパネル全体のコントラストが向上する。

第13図は請求項9および11に対応する実施 例を示す、

図において1は透明基板を構成するガラス基板であり、ガラス基板1の上に透明電極2、第1絶縁体層3、酸化Taの黒色絶縁膜12、発光体層4、第2絶縁体層5および金属背面電極6とが順次積層されており、黒色絶縁膜12により外光が吸収されてパネル全体のコントラストが向上する。

第14図は請求項10および11に対応する実 施例を示す。

図において1は透明基板を構成するガラス基板

であり、ガラス基板1の上に酸化Taの黒色絶縁 膜12、透明電極2、第1絶縁体層3、発光体層 4、第2絶縁体層5および金属背面電極6とが順 次積層されており、黒色絶縁膜12により外光が 吸収されてパネル全体のコントラストが向上する。

第15図は請求項12に対応する実施例を示す。 図において1は透明基板を構成するガラス基板 であり、ガラス基板1の上に透明電極2、酸化T aの黒色絶縁膜12、発光体層4、第2絶縁体層 5および背面電極となる酸化Taの黒色等体8と 金属背面電極6との積層体とが順次積層されてお り、黒色絶縁膜12により外光が吸収され、また、 黒色等体8により外光の反射が抑制されパネル全 体のコントラストが向上する。

第16図は請求項12に対応する実施例を示す。 図において1は透明基板を構成するガラス基板 であり、ガラス基板1の上に透明電極2、酸化T aの黒色絶縁膜12、発光体層4、酸化Taの黒 色絶縁膜12および背面電極となる酸化Taの黒 色薄体8と金属背面電極6との積層体とが順次積 層されており、黒色絶縁膜12により外光が吸収 され、また、黒色導体8により外光の反射が抑制 されパネル全体のコントラストが向上する。

第17図は請求項13および14に対応する実施例を示す。

図において1は透明基板を構成するガラス基板であり、ガラス基板1の上に透明電極2、第1絶縁体層3、発光体層4、第2絶縁体層5、金属背面電極6が順次積層されており、ガラス基板1の透明電極2と反対側には酸化Taの半透明黒色膜13が積層されている。半透過黒色膜13により外光が吸収され、パネル全体のコントラストが向上する。

第18図は請求項15に対応する実施例を示す。 図において1は透明基板を構成するガラス基板 であり、ガラス基板1の上に透明電極2、第1絶 緑体層3、発光体層4、第2絶緑体層5および背 面電極となる酸化Taの黒色導体8と金属背面電 極6との積層体が順次積層されており、ガラス基 板1の透明電極2と反対側には酸化Taの半透明

黒色膜13が積層されている。半透過黒色膜13 により外光が吸収され、また、黒色導体8により 外光の反射が抑制されパネル全体のコントラスト が向上する。

[考案の効果]

この考案の薄膜EL素子によれば、外光の反射が抑制され、コントラストが高くなり、また、背面電極とその周囲の反射率が等しくなり背面電極の浮き上がりが防止されている。

14. 図面の簡単な説明

第1図乃至第18図は夫々この考案の実施例である薄膜Eし素子を示す断面図、第19図はこの考案に用いられる酸化Taの抵抗率および光透過率を示すグラフ、第20図はこの考案の実施例の薄膜Eし素子のコントラストを従来のものと比較して示すグラフ、第21図は従来の薄膜Eし素子の例を示す断面図である。

1 … ガラス基板、2 … 透明電極、3 … 第 1 絶縁体層、4 … 発光体層、5 … 第 2 絶縁体層、6 … 金

属背面電極、7…交流電源、8…酸化Ta黒色導体、9…絶縁体膜、10…背面黒色膜、11…絶縁体層、12…黒色絶縁膜、13…半透明黒色膜、

実用新案登録出願人 株式会社 ケンウッド 代理人 弁理士 柴 田 昌 雄

第1図

第2図

1212 代理人 弁理士 柴 田 昌 雄 実閥 4 - 5179

第3図

第4図

代理人 弁理士 柴 田 昌 雄 実開 4 - 5179 5

第5図

実間 4 - 5179 €

代理人 弁理士 柴 田 昌 雄 集開 4 ~ 5179 5

代理人 弁理士 柴 田 昌 2 16 実間 4 - 5179

O 0

第川図

代理人 弁理士 柴田昌雄

室間 / − 517(

1218 代理人 弁理士 柴 田 昌 雄 実開 4 - 5179

第15図

第16図

代理人 弁理士 柴 田 昌 雄 1219

| 10日月 - 31日日

第17図

第18図

1220 代理人 弁理士 柴 田 昌 雄

事間 4 - 51795

1221 代理人 弁理士 柴 田 昌 雄 実開 4 - 5179

代理人 弁理士 柴 田 昌 雄 実開 4 - 5179 5

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

/	
BLACK BORDERS	
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES	
☐ FADED TEXT OR DRAWING	
BLURRED OR ILLEGIBLE TEXT OR DRAWING	
SKEWED/SLANTED IMAGES	
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS	
☐ GRAY SCALE DOCUMENTS	
☐ LINES OR MARKS ON ORIGINAL DOCUMENT	
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE PO	OR QUALITY
OTHER:	•

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.