Package 'SplitGLM'

November 22, 2022

Type Package							
Title Split Generalized Linear Models							
Version 1.0.5							
Date 2022-11-21							
Maintainer Anthony Christidis <anthony.christidis@stat.ubc.ca></anthony.christidis@stat.ubc.ca>							
Description Functions to compute split generalized linear models. The approach fits generalized linear models that split the covariates into groups. The optimal split of the variables into groups and the regularized estimation of the coefficients are performed by minimizing an objective function that encourages sparsity within each group and diversity among them. Example applications can be found in Christidis et al. (2021) <arxiv:2102.08591>.</arxiv:2102.08591>							
License GPL (>= 2)							
Biarch true							
Imports Rcpp (>= 1.0.3)							
LinkingTo Rcpp, RcppArmadillo							
RoxygenNote 7.0.2							
Suggests testthat, vctrs, mvnfast							
NeedsCompilation yes							
Author Anthony Christidis [aut, cre], Stefan Van Aelst [aut], Ruben Zamar [aut]							
Repository CRAN							
Date/Publication 2022-11-22 09:30:05 UTC							
R topics documented:							
coef.cv.SplitGLM							

2 coef.cv.SplitGLM

	predict.cv.SplitGl predict.SplitGLM SplitGLM	· · · ·																				11
Index																						15
coef	.cv.SplitGLM	Coe	fficie	ents	fo	r cı	.Sp	lit	Gl	LM	10) bj	iec	t								

Description

coef.cv.SplitGLM returns the coefficients for a cv.SplitGLM object.

Usage

```
## S3 method for class 'cv.SplitGLM'
coef(object, group_index = NULL, ...)
```

Arguments

object An object of class cv.SplitGLM.

group_index The group for which to return the coefficients. Default is the ensemble coeffi-

cients.

Additional arguments for compatibility.

Value

The coefficients for the cv.SplitGLM object.

Author(s)

Anthony-Alexander Christidis, <anthony.christidis@stat.ubc.ca>

See Also

```
cv.SplitGLM
```

```
# Data simulation
set.seed(1)
n <- 50
N <- 2000
beta.active <- c(abs(runif(p, 0, 1/2))*(-1)^rbinom(p, 1, 0.3))
# Parameters
p.active <- 100
beta <- c(beta.active[1:p.active], rep(0, p-p.active))</pre>
```

coef.SplitGLM 3

```
Sigma <- matrix(0, p, p)</pre>
Sigma[1:p.active, 1:p.active] <- 0.5</pre>
diag(Sigma) <- 1</pre>
# Train data
x.train <- mvnfast::rmvn(n, mu = rep(0, p), sigma = Sigma)
prob.train <- exp(x.train %*% beta)/</pre>
               (1+exp(x.train %*% beta))
y.train <- rbinom(n, 1, prob.train)</pre>
mean(y.train)
# Test data
x.test \leftarrow mvnfast::rmvn(N, mu = rep(0, p), sigma = Sigma)
prob.test <- exp(x.test %*% beta)/</pre>
              (1+exp(x.test %*% beta))
y.test <- rbinom(N, 1, prob.test)</pre>
mean(y.test)
# SplitGLM - CV (Multiple Groups)
split.out <- cv.SplitGLM(x.train, y.train,</pre>
                           glm_type="Logistic",
                           G=10, include_intercept=TRUE,
                           alpha_s=3/4, alpha_d=1,
                           n_lambda_sparsity=50, n_lambda_diversity=50,
                           tolerance=1e-3, max_iter=1e3,
                           n_folds=5,
                           active_set=FALSE,
                           n_threads=1)
split.coef <- coef(split.out)</pre>
# Predictions
split.prob <- predict(split.out, newx=x.test, type="prob", group_index=NULL)</pre>
split.class <- predict(split.out, newx=x.test, type="class", group_index=NULL)</pre>
plot(prob.test, split.prob, pch=20)
abline(h=0.5, v=0.5)
mean((prob.test-split.prob)^2)
mean(abs(y.test-split.class))
```

coef.SplitGLM

Coefficients for SplitGLM Object

Description

coef.SplitGLM returns the coefficients for a SplitGLM object.

Usage

```
## S3 method for class 'SplitGLM'
coef(object, group_index = NULL, ...)
```

4 coef.SplitGLM

Arguments

object An object of class SplitGLM.

group_index The group for which to return the coefficients. Default is the ensemble.

Additional arguments for compatibility.

Value

The coefficients for the SplitGLM object.

Author(s)

Anthony-Alexander Christidis, <anthony.christidis@stat.ubc.ca>

See Also

SplitGLM

```
# Data simulation
set.seed(1)
n <- 50
N <- 2000
p <- 1000
beta.active < c(abs(runif(p, 0, 1/2))*(-1)^rbinom(p, 1, 0.3))
# Parameters
p.active <- 100
beta <- c(beta.active[1:p.active], rep(0, p-p.active))</pre>
Sigma <- matrix(0, p, p)</pre>
Sigma[1:p.active, 1:p.active] <- 0.5</pre>
diag(Sigma) <- 1
# Train data
x.train <- mvnfast::rmvn(n, mu = rep(0, p), sigma = Sigma)
prob.train <- exp(x.train %*% beta)/</pre>
               (1+exp(x.train %*% beta))
y.train <- rbinom(n, 1, prob.train)</pre>
mean(y.train)
# Test data
x.test \leftarrow mvnfast::rmvn(N, mu = rep(0, p), sigma = Sigma)
prob.test <- exp(x.test %*% beta)/</pre>
              (1+exp(x.test %*% beta))
y.test <- rbinom(N, 1, prob.test)</pre>
mean(y.test)
# SplitGLM - CV (Multiple Groups)
split.out <- SplitGLM(x.train, y.train,</pre>
                        glm_type="Logistic",
                        G=10, include_intercept=TRUE,
                        alpha_s=3/4, alpha_d=1,
```

cv.SplitGLM 5

cv.SplitGLM

Cross Validation - Split Generalized Linear Model

Description

cv.SplitGLM performs the CV procedure for split generalized linear models.

Usage

```
cv.SplitGLM(
  х,
  у,
  glm_type = "Linear",
  G = 10,
  include_intercept = TRUE,
  alpha_s = 3/4,
  alpha_d = 1,
  n_{\text{lambda\_sparsity}} = 50,
  n_{\text{lambda\_diversity}} = 50,
  tolerance = 0.001,
  max_iter = 1e+05,
  n_folds = 10,
  active_set = FALSE,
  full_diversity = FALSE,
  n_{threads} = 1
)
```

Arguments

x Design matrix.

y Response vector.

glm_type Description of the error distribution and link function to be used for the model.

Must be one of "Linear", "Logistic", "Gamma" or "Poisson".

6 cv.SplitGLM

G Number of groups into which the variables are split. Can have more than one value. include_intercept

Boolean variable to deterr

Boolean variable to determine if there is intercept (default is TRUE) or not.

alpha_s Elastic net mixing parmeter. Default is 3/4.

alpha_d Mixing parameter for diversity penalty. Default is 1.

 $n_lambda_sparsity$

Number of candidates for the sparsity penalty parameter. Default is 100.

n_lambda_diversity

Number of candidates for the sparsity penalty parameter. Default is 100.

tolerance Convergence criteria for the coefficients. Default is 1e-3.

max_iter Maximum number of iterations in the algorithm. Default is 1e5.

n_folds Number of cross-validation folds. Default is 10.

full_diversity Full diversity between the groups. Default is FALSE.

n_threads Number of threads. Default is 1.

Value

An object of class cv.SplitGLM.

Author(s)

Anthony-Alexander Christidis, <anthony.christidis@stat.ubc.ca>

See Also

```
coef.cv.SplitGLM, predict.cv.SplitGLM
```

```
# Data simulation
set.seed(1)
n <- 50
N <- 2000
p <- 1000
beta.active <- c(abs(runif(p, 0, 1/2))*(-1)^rbinom(p, 1, 0.3))
# Parameters
p.active <- 100
beta <- c(beta.active[1:p.active], rep(0, p-p.active))
Sigma <- matrix(0, p, p)
Sigma[1:p.active, 1:p.active] <- 0.5
diag(Sigma) <- 1
# Train data
x.train <- mvnfast::rmvn(n, mu = rep(0, p), sigma = Sigma)
prob.train <- exp(x.train %*% beta)/</pre>
```

plot.cv.SplitGLM 7

```
(1+exp(x.train %*% beta))
y.train <- rbinom(n, 1, prob.train)</pre>
mean(y.train)
# Test data
x.test <- mvnfast::rmvn(N, mu = rep(0, p), sigma = Sigma)
prob.test <- exp(x.test %*% beta)/</pre>
              (1+exp(x.test %*% beta))
y.test <- rbinom(N, 1, prob.test)</pre>
mean(y.test)
# SplitGLM - CV (Multiple Groups)
split.out <- cv.SplitGLM(x.train, y.train,</pre>
                           glm_type="Logistic",
                          G=10, include_intercept=TRUE,
                           alpha_s=3/4, alpha_d=1,
                          n_lambda_sparsity=50, n_lambda_diversity=50,
                          tolerance=1e-3, max_iter=1e3,
                          n_folds=5,
                           active_set=FALSE,
                          n_threads=1)
split.coef <- coef(split.out)</pre>
# Predictions
split.prob <- predict(split.out, newx=x.test, type="prob", group_index=NULL)</pre>
split.class <- predict(split.out, newx=x.test, type="class", group_index=NULL)</pre>
plot(prob.test, split.prob, pch=20)
abline(h=0.5, v=0.5)
mean((prob.test-split.prob)^2)
mean(abs(y.test-split.class))
```

plot.cv.SplitGLM

Plot of coefficients paths for cv.SplitGLM Object

Description

plot.cv.SplitGLM returns the coefficients for a cv.SplitGLM object.

Usage

```
## S3 method for class 'cv.SplitGLM'
plot(
    x,
    group_index = NULL,
    plot_type = c("Coef", "CV-Error")[1],
    active_only = TRUE,
    path_type = c("Log-Lambda", "L1-Norm")[1],
    labels = TRUE,
    ...
)
```

8 plot.cv.SplitGLM

Arguments

X	An object of class cv.SplitGLM.
group_index	The group for which to return the coefficients. Default is the ensemble coefficients.
plot_type	Plot of coefficients, "Coef" (default), or cross-validated error or deviance, "CV-Error".
active_only	Only include the variables selected in final model (default is TRUE).
path_type	Plot of coefficients paths as a function of either "Log-Lambda" (default) or "L1-Norm".
labels	Include the labels of the variables (default is FALSE).
	Additional arguments for compatibility.

Value

The coefficients for the cv.SplitGLM object.

Author(s)

Anthony-Alexander Christidis, <anthony.christidis@stat.ubc.ca>

See Also

```
cv.SplitGLM
```

```
# Data simulation
set.seed(1)
n <- 50
N <- 2000
p <- 1000
beta.active <- c(abs(runif(p, 0, 1/2))*(-1)^rbinom(p, 1, 0.3))
# Parameters
p.active <- 100
beta <- c(beta.active[1:p.active], rep(0, p-p.active))</pre>
Sigma <- matrix(0, p, p)</pre>
Sigma[1:p.active, 1:p.active] <- 0.5</pre>
diag(Sigma) <- 1</pre>
# Train data
x.train <- mvnfast::rmvn(n, mu = rep(0, p), sigma = Sigma)
prob.train <- exp(x.train %*% beta)/</pre>
               (1+exp(x.train %*% beta))
y.train <- rbinom(n, 1, prob.train)</pre>
mean(y.train)
# Test data
x.test \leftarrow mvnfast::rmvn(N, mu = rep(0, p), sigma = Sigma)
prob.test <- exp(x.test %*% beta)/</pre>
```

predict.cv.SplitGLM 9

```
(1+exp(x.test %*% beta))
y.test <- rbinom(N, 1, prob.test)</pre>
mean(y.test)
# SplitGLM - CV (Multiple Groups)
split.out <- cv.SplitGLM(x.train, y.train,</pre>
                          glm_type="Logistic",
                         G=10, include_intercept=TRUE,
                          alpha_s=3/4, alpha_d=1,
                          n_lambda_sparsity=50, n_lambda_diversity=50,
                          tolerance=1e-3, max_iter=1e3,
                          n_folds=5,
                          active_set=FALSE,
                         n_threads=1)
# Plot of coefficients paths (function of Log-Lambda)
plot(split.out, plot_type="Coef", path_type="Log-Lambda", group_index=1, labels=FALSE)
# Plot of coefficients paths (function of L1-Norm)
plot(split.out, plot_type="Coef", path_type="L1-Norm", group_index=1, labels=FALSE)
# Plot of CV error
plot(split.out, plot_type="CV-Error")
```

predict.cv.SplitGLM Predictions for cv.SplitGLM Object

Description

predict.cv.SplitGLM returns the predictions for a SplitGLM object.

Usage

```
## S3 method for class 'cv.SplitGLM'
predict(object, newx, group_index = NULL, type = c("prob", "class")[1], ...)
```

Arguments

object An object of class cv.SplitGLM.

newx New data for predictions.

group_index The group for which to return the coefficients. Default is the ensemble.

type The type of predictions for binary response. Options are "prob" (default) and

"class".

. . . Additional arguments for compatibility.

Value

The predictions for the cv.SplitGLM object.

Author(s)

Anthony-Alexander Christidis, <anthony.christidis@stat.ubc.ca>

See Also

```
cv.SplitGLM
```

```
# Data simulation
set.seed(1)
n <- 50
N <- 2000
p <- 1000
beta.active <- c(abs(runif(p, 0, 1/2))*(-1)^rbinom(p, 1, 0.3))
# Parameters
p.active <- 100
beta <- c(beta.active[1:p.active], rep(0, p-p.active))</pre>
Sigma <- matrix(0, p, p)</pre>
Sigma[1:p.active, 1:p.active] <- 0.5</pre>
diag(Sigma) <- 1</pre>
# Train data
x.train <- mvnfast::rmvn(n, mu = rep(0, p), sigma = Sigma)
prob.train <- exp(x.train %*% beta)/</pre>
               (1+exp(x.train %*% beta))
y.train <- rbinom(n, 1, prob.train)</pre>
mean(y.train)
# Test data
x.test \leftarrow mvnfast::rmvn(N, mu = rep(0, p), sigma = Sigma)
prob.test <- exp(x.test %*% beta)/</pre>
              (1+exp(x.test %*% beta))
y.test <- rbinom(N, 1, prob.test)</pre>
mean(y.test)
# SplitGLM - CV (Multiple Groups)
split.out <- cv.SplitGLM(x.train, y.train,</pre>
                           glm_type="Logistic",
                           G=10, include_intercept=TRUE,
                           alpha_s=3/4, alpha_d=1,
                           n_lambda_sparsity=50, n_lambda_diversity=50,
                           tolerance=1e-3, max_iter=1e3,
                           n_folds=5,
                           active_set=FALSE,
                           n_threads=1)
split.coef <- coef(split.out)</pre>
# Predictions
```

predict.SplitGLM 11

```
split.prob <- predict(split.out, newx=x.test, type="prob", group_index=NULL)
split.class <- predict(split.out, newx=x.test, type="class", group_index=NULL)
plot(prob.test, split.prob, pch=20)
abline(h=0.5,v=0.5)
mean((prob.test-split.prob)^2)
mean(abs(y.test-split.class))</pre>
```

predict.SplitGLM

Predictions for SplitGLM Object

Description

predict.SplitGLM returns the predictions for a SplitGLM object.

Usage

```
## S3 method for class 'SplitGLM'
predict(object, newx, group_index = NULL, type = c("prob", "class")[1], ...)
```

Arguments

object An object of class SplitGLM.

newx New data for predictions.

group_index The group for which to return the coefficients. Default is the ensemble.

type The type of predictions for binary response. Options are "prob" (default) and

"class".

. . . Additional arguments for compatibility.

Value

The predictions for the SplitGLM object.

Author(s)

Anthony-Alexander Christidis, <anthony.christidis@stat.ubc.ca>

See Also

SplitGLM

12 SplitGLM

```
# Data simulation
set.seed(1)
n <- 50
N <- 2000
p <- 1000
beta.active \leftarrow c(abs(runif(p, 0, 1/2))*(-1)^rbinom(p, 1, 0.3))
# Parameters
p.active <- 100
beta <- c(beta.active[1:p.active], rep(0, p-p.active))</pre>
Sigma <- matrix(0, p, p)</pre>
Sigma[1:p.active, 1:p.active] <- 0.5</pre>
diag(Sigma) <- 1</pre>
# Train data
x.train <- mvnfast::rmvn(n, mu = rep(0, p), sigma = Sigma)
prob.train <- exp(x.train %*% beta)/</pre>
               (1+exp(x.train %*% beta))
y.train <- rbinom(n, 1, prob.train)</pre>
mean(y.train)
# Test data
x.test \leftarrow mvnfast::rmvn(N, mu = rep(0, p), sigma = Sigma)
prob.test <- exp(x.test %*% beta)/</pre>
              (1+exp(x.test %*% beta))
y.test <- rbinom(N, 1, prob.test)</pre>
mean(y.test)
# SplitGLM - CV (Multiple Groups)
split.out <- SplitGLM(x.train, y.train,</pre>
                       glm_type="Logistic",
                       G=10, include_intercept=TRUE,
                        alpha_s=3/4, alpha_d=1,
                        lambda_sparsity=1, lambda_diversity=1,
                        tolerance=1e-3, max_iter=1e3,
                        active_set=FALSE)
split.coef <- coef(split.out)</pre>
# Predictions
split.prob <- predict(split.out, newx=x.test, type="prob", group_index=NULL)</pre>
split.class <- predict(split.out, newx=x.test, type="class", group_index=NULL)</pre>
plot(prob.test, split.prob, pch=20)
abline(h=0.5, v=0.5)
mean((prob.test-split.prob)^2)
mean(abs(y.test-split.class))
```

SplitGLM 13

Description

SplitGLM performs computes the coefficients for split generalized linear models.

Usage

```
SplitGLM(
    x,
    y,
    glm_type = "Linear",
    G = 10,
    include_intercept = TRUE,
    alpha_s = 3/4,
    alpha_d = 1,
    lambda_sparsity,
    lambda_diversity,
    tolerance = 0.001,
    max_iter = 1e+05,
    active_set = FALSE
)
```

Arguments

х	Design matrix.
У	Response vector.
glm_type	Description of the error distribution and link function to be used for the model. Must be one of "Linear", "Logistic", "Gamma" or "Poisson".
G	Number of groups into which the variables are split. Can have more than one value.
include_interd	cept
	Boolean variable to determine if there is intercept (default is TRUE) or not.
alpha_s	Elastic net mixing parmeter. Default is 3/4.
alpha_d	Mixing parameter for diversity penalty. Default is 1.
lambda_sparsit	zy –
	Sparsity tuning parameter value.
lambda_diversi	ty
	Diversity tuning parameter value.
tolerance	Convergence criteria for the coefficients. Default is 1e-3.
max_iter	Maximum number of iterations in the algorithm. Default is 1e5.

Active set convergence for the algorithm. Default is FALSE.

Value

active_set

An object of class SplitGLM.

Author(s)

Anthony-Alexander Christidis, <anthony.christidis@stat.ubc.ca>

14 SplitGLM

See Also

```
coef.SplitGLM, predict.SplitGLM
```

```
# Data simulation
set.seed(1)
n <- 50
N <- 2000
p <- 1000
beta.active < c(abs(runif(p, 0, 1/2))*(-1)^rbinom(p, 1, 0.3))
# Parameters
p.active <- 100
beta <- c(beta.active[1:p.active], rep(0, p-p.active))</pre>
Sigma <- matrix(0, p, p)</pre>
Sigma[1:p.active, 1:p.active] <- 0.5</pre>
diag(Sigma) <- 1</pre>
# Train data
x.train <- mvnfast::rmvn(n, mu = rep(0, p), sigma = Sigma)
prob.train <- exp(x.train %*% beta)/</pre>
               (1+exp(x.train %*% beta))
y.train <- rbinom(n, 1, prob.train)</pre>
mean(y.train)
# Test data
x.test <- mvnfast::rmvn(N, mu = rep(0, p), sigma = Sigma)
prob.test <- exp(x.test %*% beta)/</pre>
              (1+exp(x.test %*% beta))
y.test <- rbinom(N, 1, prob.test)</pre>
mean(y.test)
# SplitGLM - Multiple Groups
split.out <- SplitGLM(x.train, y.train,</pre>
                       glm_type="Logistic",
                       G=10, include_intercept=TRUE,
                       alpha_s=3/4, alpha_d=1,
                       lambda_sparsity=1, lambda_diversity=1,
                       tolerance=1e-3, max_iter=1e3,
                       active_set=FALSE)
split.coef <- coef(split.out)</pre>
# Predictions
split.prob <- predict(split.out, newx=x.test, type="prob", group_index=NULL)</pre>
split.class <- predict(split.out, newx=x.test, type="class", group_index=NULL)</pre>
plot(prob.test, split.prob, pch=20)
abline(h=0.5, v=0.5)
mean((prob.test-split.prob)^2)
mean(abs(y.test-split.class))
```

Index

```
coef.cv.SplitGLM, 2, 6
coef.SplitGLM, 3, 14
cv.SplitGLM, 2, 5, 8, 10
plot.cv.SplitGLM, 7
predict.cv.SplitGLM, 6, 9
predict.SplitGLM, 11, 14
SplitGLM, 4, 11, 12
```