Multivariate Linear Regression Hypothesis: ho(x) = Ox = Ox + Ox, ... On Xn Parameters: 6, an M+1 dimensional vector New Algorithm: (hz1) x; = value of fleature, in the it's sample $\theta_{j} := \theta_{j} - \alpha \left[\frac{1}{m} \sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) \cdot y^{(i)} \right)_{x_{j}}^{(i)} \right] \times \frac{1}{m} = \frac{1}{m} \text{ of training samples}$ M = of features $\frac{\partial}{\partial \theta} (\mathcal{T}(\theta))$ Feature Scalingua Idea: Make sure features are on a similar scale E.G. $X_1 = Size (0-2,000 ft) \implies X_1 = Size$ $<math>X_2 = \text{Hoffieds} (1-5) \implies X_2 = \frac{1}{2000}$ $X_3 = \frac{1}{2000}$ Rule: Let every feature into: -1 = xi = 1 (Grilare) This will tielp gradient descent converge! Mean Normalization X, = Sige -1000 | Replace Xi With tz = thedr - 2 [mail | Xi-Mi to trave about zero mean.

Size
$$(x)$$

Example: m=4

×0	Size	# of es	#oflows	AGE home	Price
1	2104 1416 1534 852	<i>3</i> 3 2	7	45 40 30 36	768 232 315 178

$$\Rightarrow$$
 $\Theta = (X^T X)^T X^T Y$