高等演算法 HW2

許博翔

April 12, 2024

Notation 1. N(v) :=the neighborhood of v.

Problem 0.

Problem 1, 2: All by myself.

Problem 3, 4, 5: Discuss with: B10401113 張有朋、B10902101 鄭百里

Problem 1.

Equivalent ILP:

$$\min \sum_{v \in V} w_v x_v.$$
 subject to : $x_u + x_v \ge 1$, $\forall uv \in E$.
$$x_v \in \{0, 1\}, \ \forall v \in V.$$

LP relaxation:

$$\begin{aligned} &\min \sum_{v \in V} w_v x_v. \\ &\text{subject to}: x_u + x_v \geq 1, \ \forall uv \in E. \\ &x_v \geq 0, \ \forall v \in V. \end{aligned}$$

Dual LP:

$$\max \sum_{e \in E} \alpha_e.$$
 subject to :
$$\sum_{u \in N(v)} \alpha_{uv} \le w_v, \ \forall v \in V.$$

$$\alpha_e \ge 0, \ \forall e \in E.$$

The rephrased algorithm:

1. Initially, the residual weight $r_v = w_v$ for every vertex v. The vertex cover S is empty. All variables x_v, α_e are 0.

- 2. Repeat until all edges are covered by S:
 - (a) Pick any edge e = uv that is not covered by S.
 - (b) Set α_{uv} to min (r_u, r_v) , and reduce the residual weights r_u and r_v by α_{uv} .
 - (c) Add all vertices v with 0 residual weights to S, and set x_v to 1.

We want to prove that:

- 1. $x_u + x_v \ge 1$, $\forall uv \in E$.
- $2. \sum_{u \in N(v)} \alpha_{uv} \le w_v, \ \forall v \in V.$
- 3. $x_u + x_v \le 2$ or $\alpha_{uv} = 0$, $\forall uv \in E$.
- 4. $\sum_{u \in N(v)} \alpha_{uv} \ge w_v \text{ or } x_v = 0, \ \forall v \in V.$

Proof of 1.:

If $x_u + x_v < 1$, then $x_u = x_v = 0$.

- \Rightarrow neither u nor v is in S.
- $\Rightarrow uv$ is not covered by S, contradiction.

$$\therefore x_u + x_v \ge 1.$$

Proof of 2.:

By 2(b) of the algorithm, the amount of change of r_v is the amount of α_e for e connected to v.

$$\therefore \sum_{u \in N(v)} \alpha_{uv} = \text{the amount of change of } r_v = w_v - r_v \le w_v.$$

Proof of 3.:

$$x_u + x_v \le 1 + 1 \le 2.$$

Proof of 4.:

If $x_v \neq 0$, then r_v is set to 0 by 2(c).

$$\Rightarrow \sum_{u \in N(v)} \alpha_{uv} = w_v - r_v = w_v.$$

Since the complementary slackness conditions 3. 4. are satisfied, this is a 2-approximation.

Problem 2. Run phase 1 in class.

Let K denote the given k in the problem description (since k is frequently used in this proof).

Let
$$S_j := \{i : \alpha_j > c_{ij}\}, \ T_j := \{i : \alpha_j = c_{ij}\}, \ U_j := \begin{cases} S_j, \text{ if } S_j \neq \emptyset \\ T_j, \text{ otherwise} \end{cases}$$

Since the algorithm in phase 1 guaranteed that all clients are connected.

$$\therefore S_j \cup T_j \neq \emptyset, \ \forall j.$$

In another word, $U_j \neq \emptyset$, $\forall j$.

Let's modify the phase 2 in class.

Let I := the set of all temporarily facilities, and serve client j with an arbitrary element $p_j \in U_j$.

Let
$$B_i := \{j : p_j = i\}.$$

 $\forall i \in I, \sum (\alpha_j - c_{ij}) \leq \sum (\alpha_j - c_{ij})^{\alpha_j = c_{ij} \text{ for } i \in T_j} =$

 $\forall i \in I, \sum_{j \in B_i} (\alpha_j - c_{ij}) \leq \sum_{j: i \in U_j} (\alpha_j - c_{ij}) \stackrel{\alpha_j = c_{ij} \text{ for } i \in T_j}{=} \sum_{j: i \in U_j \cap S_j} (\alpha_j - c_{ij}) \stackrel{\text{by the definition of } U_j}{=}$ $\sum_{i: i \in S} (\alpha_j - c_{ij}) \stackrel{\text{by phase 1}}{=} f_i.$

$$\sum_{j:i \in S_i} (\alpha_j - c_{ij}) \stackrel{\text{by phase } 1}{=} f_i.$$

$$\Rightarrow \sum_{j \in B_i} \alpha_j \le \sum_{j \in B_i} c_{ij} + f_i.$$

$$f_i + \sum_{j \in B_i} c_{ij} \le f_i + \sum_{j:i \in U_j} c_{ij} = \sum_{j:i \in U_j} \alpha_j.$$

$$\Rightarrow \sum_{i \in I} \left(f_i + \sum_{j \in B_i} c_{ij} \right) \le \sum_{i \in I} \sum_{j: i \in U_j} \alpha_j = \sum_j |U_j| \alpha_j \le \sum_j k \alpha_j \text{ (since if } c_{ij} = \infty, \text{ then } \alpha_j < c_{ij} \text{)}.$$

Also, if $i \notin I$, $x_i = 0$.

$$\therefore \sum_{i} x_{i} \left(\sum_{j} \beta_{ij} c_{ij} + f_{i} \right) = \sum_{i \in I} \left(\sum_{j \in B_{i}} c_{ij} + f_{i} \right) \leq \sum_{j} k \alpha_{j}.$$

 \therefore this is a k-approximation

Problem 3. Let K denote the given k in the problem description (since k is frequently used in this proof).

Let
$$S_j := \{i : \alpha_j > c_{ij}\}, \ T_j := \{i : \alpha_j = c_{ij}\}, \ U_j := \begin{cases} S_j, \text{ if } S_j \neq \emptyset \\ T_j, \text{ otherwise} \end{cases}$$

Since the algorithm in phase 1 guaranteed that all clients are connected.

$$\therefore S_j \cup T_j \neq \emptyset, \ \forall j.$$

In another word, $U_j \neq \emptyset$, $\forall j$.

Algorithm in phase 2:

- 1. $I := \emptyset, J :=$ the set of all temporarily open facilities, $S := \emptyset$.
- 2. while $J \neq \emptyset$
 - (a) Let $i \in J$ s.t. $q_i := \sum_{j \notin S: i \in U_i} \alpha_j$ is maximized, and let $S^{(i)} := S^c$.
 - (b) Let A_i denote all facilities in J that are conflict with i.
 - (c) Remove $A_i \cup \{i\}$ from J, add i to I.
 - (d) for all $j \notin S$ with $i \in U_j$, serve j with i, and add j to S.
- 3. for all $j \notin S$, select an arbitrary $i \in U_j$, it must be in some A_k for some k by 2(b), serve j with k.

The maximality of I is guaranteed by the condition of the while loop.

Let p_j denote the facility that serves j in the above algorithm, and $B_i := \{j : p_j = i\}$. By the definition of temporarily open and that no two facilities in I are confict with each other, $\forall i \in I, \{j : i \in S_j\} \subseteq B_i$.

$$\Rightarrow \forall i \in I, \sum_{j \in S \cap B_i} (\alpha_j - c_{ij}) = f_i.$$

$$\Rightarrow \forall i \in I, f_i + \sum_{j \in S \cap B_i} c_{ij} = \sum_{j \in S \cap B_i} \alpha_j.$$

 $\forall j \notin S$, by 3., there's $i \in U_j$ s.t. i conflicts with p_j . By the definition of conflict, $\exists k$ s.t. $\alpha_k - c_{ik} > 0$ and $\alpha_k - c_{p_j k} > 0$.

$$\Rightarrow c_{p_j j} \le c_{ij} + c_{ik} + c_{p_j k} < c_{ij} + 2\alpha_k \stackrel{::}{\le} \alpha_j + 2\alpha_k \le 3\alpha_j.$$

The last inequality above is because α_k = the time that k is connected = the time that i is temporarily open \leq the time that j is connected = α_j .

 $\forall i \in I$:

$$\begin{split} &\sum_{j \in S \cap B_i} \alpha_j \overset{2(\mathrm{d})}{=} \sum_{j \in S^{(i)}} \alpha_j = q_i. \\ &\sum_{j \in B_i \backslash S} \alpha_j \overset{\text{there's } k \in U_j \text{ s.t. } k \in A_i}{\leq} \sum_{k \in A_i} \sum_{j \in B_i \backslash S: k \in U_j} \alpha_j \leq \sum_{k \in A_i} \sum_{j \in S^{(i)}} \alpha_j = \sum_{k \in A_i} q_k \overset{2(\mathrm{a})}{\leq} \sum_{k \in A_i} q_i = \\ &|A_i|q_i \leq (K-1)q_i. \\ \Rightarrow &\sum_{j \in S \cap B_i} \alpha_j = q_i = \frac{1}{K} (1+K-1)q_i \geq \frac{1}{K} \left(\sum_{j \in S \cap B_i} \alpha_j + \sum_{j \in B_i \backslash S} \alpha_j\right) = \frac{1}{K} \sum_{j \in B_i} \alpha_j. \end{split}$$

$$\therefore \sum_{j \in B_i} c_{ij} + f_i = \sum_{j \in S \cap B_i} \alpha_j + \sum_{j \in B_i \setminus S} c_{ij} \le \sum_{j \in S \cap B_i} \alpha_j + 3 \sum_{j \in B_i \setminus S} \alpha_j = 3 \sum_{j \in B_i} \alpha_j - 2 \sum_{j \in S \cap B_i} \alpha_j \le (3 - \frac{2}{K}) \sum_{j \in B_i} \alpha_j.$$

Also, $\forall i \notin I$, $x_i = 0$.

 \therefore this is a $(3 - \frac{2}{K})$ -approximation.

Problem 4. Let OPT = $\sum_{i} f_{i}y_{i} = \sum_{i} \alpha_{j}$. (They're equal by the strong duality theorem).

 \Rightarrow all slackness conditions must hold.

$$\Rightarrow \alpha_i - \beta_{ij} = c_{ij} \text{ or } x_{ij} = 0, \ \forall i, j.$$

Let p_j denote the falicity that serves j, q_i denote the chosen client j that open i in N_i , and $B_i := \{j : p_i = i\}.$

If $p_j \notin N_j$, it means that $N_j \cap N_{q_{p_j}} \neq \emptyset$. Let r_j denote a facility that $\in N_j \cap N_{q_{p_j}}$. Else just simply set $r_i := p_i$.

Let
$$F$$
 denote the set of falicities that are open.
$$\sum_{i \in F} f_i \leq \sum_{i \in F} f_i \sum_{k \in N_{q_i}} x_{kq_i} \leq \sum_{i \in F} f_i \sum_{k \in N_{q_i}} y_k \stackrel{f_i \leq f_k, \ \forall k \in N_{q_i}}{\leq} \sum_{i \in F} \sum_{k \in N_{q_i}} f_k y_k \stackrel{N_{q_i} \cap N_{q_k} = \emptyset, \ \forall i \neq k}{\leq} \sum_{i \in F} f_i y_i = OPT.$$

 $\forall j, c_{p_j j} \leq c_{r_j j} + c_{r_j q_{p_j}} + c_{p_j q_{p_j}}$ (by the definition of metric).

Since q_{p_j} is chosen before j, there is $\alpha_{q_{p_j}} \leq \alpha_j$.

Since $r_j \in N_j, r_j \in N_{q_{p_i}}, p_j \in N_{q_{p_j}}$, by the definition of N, there is $x_{r_j j}, x_{r_j q_{p_j}}, x_{p_j q_{p_j}}$ are all nonzero.

.::

$$c_{r_j j} \le c_{r_j j} + \beta_{r_j j} = \alpha_j.$$

$$c_{r_iq_{p_i}} \le c_{r_iq_{p_i}} + \beta_{r_iq_{p_i}} = \alpha_{q_{p_i}} \le \alpha_j.$$

$$c_{p_j q_{p_i}} \le c_{p_j q_{p_i}} + \beta_{p_j q_{p_i}} = \alpha_{q_{p_i}} \le \alpha_j.$$

$$\Rightarrow c_{r_j j} \leq 3\alpha_j.$$

$$\therefore \sum_{i \in F} \sum_{j \in B_i} c_{p_j j} \le \sum_{i \in F} \sum_{j \in B_i} 3\alpha_j = 3 \sum_j \alpha_j = 3OPT.$$

$$\therefore \sum_{i \in F} f_i + \sum_{j \in B} c_{p_j j} \le OPT + 3OPT = 4OPT.$$

Since OPT is the optimal solution of LP relaxation, which is not greater than the optimal solution of ILP (denote as OPT').

$$\therefore \sum_{i \in F} f_i + \sum_{j \in B_i} c_{p_j j} \le 4OPT \le 4OPT'.$$

 \Rightarrow this is a 4-approximation.

Problem 5. We'll use the term "at time t" denote when the value of α_j of unserved client j is set to t in the algorithm (that is, not performing 1. or 2. yet).

Let $U^{(t)}$ denote U at time t.

Let p_j denote the facility that serves j, and $B_i := \{j : p_j = i\}$.

Suppose that f_i is open at time a_i .

- 1. (a) while there are unserved clients
 - i. for i in facilities
 - A. if i is closed, find a set of unserved clients S(i) s.t. $val(i) := \frac{f_i + \sum_{j \in S(i)} c_{ij}}{|S(i)|}$ is minimized. (This is equivalent to 1. in the algorithm.)
 - B. if i is open, find an unserved client $S(i) = \{s(i)\}$ s.t. $val(i) := c_{is(i)}$ is minimized. (This is equivalent to 2. in the algorithm.)
 - ii. Let i^* be a facility s.t. $val(i^*)$ is minimized.
 - iii. Open i^* if it's closed, and serve all clients in $S(i^*)$ by i^* .
- 2. Lemma: if $\alpha_j > c_{ij}$, then $\alpha_j \leq a_i$.

Proof: If $\alpha_j > a_i$, then j is served after i is open. By 2. in the algorithm, $\alpha_j \leq c_{ij}$.

 \therefore the lemma holds.

There are 2 cases:

Case 1: $\alpha_k = 0$.

In this case, $\alpha_j = c_{ij} = 0$, $\forall j \in \{1, 2, \dots, k\}$.

$$\therefore \sum_{j=x}^{k} (\alpha_x - c_{ij}) = 0 \le f_i \text{ holds for all } x = 1, 2, \dots, k.$$

Case 2: $\alpha_k \neq 0$.

- $\Rightarrow \alpha_k > c_{ik}$.
- \Rightarrow by the lemma, $a_i \geq \alpha_k$.

At time α_x , x, x+1, x+2,..., k are unserved, by 1. in the algorithm, $\sum_{i=x}^{k} (\alpha_x - 1)^{i}$

$$c_{ij}$$
) $\leq \sum_{j \in U^{(\alpha_x)}} \max(0, \alpha_x - c_{ij}) \leq f_i$. $\therefore \sum_{j=x}^k (\alpha_x - c_{ij}) \leq f_i$ always holds.

3. Claim: $\alpha_j - \alpha_x \le c_{ix} + c_{ij}, \ \forall 1 \le x \le j \le k$.

Proof: If $\alpha_j = \alpha_x$, then the claim holds trivially.

If $\alpha_j > \alpha_x$, then $\alpha_j > \alpha_x \ge a_{p_x}$ since p_x is open before x is served.

 \Rightarrow by the lemma, $\alpha_j \leq c_{p_x j}$.

$$\Rightarrow \alpha_{j} - \alpha_{x} \leq c_{p_{x}j} - \alpha_{x} \leq c_{jx}j + c_{ix} + c_{p_{x}x} - \alpha_{x} \stackrel{\text{x is served by } p_{x}}{=} c_{ij} + c_{ix}.$$

$$\Rightarrow \sum_{j=x}^{k} (\alpha_{j} - c_{ix} - 2c_{ij}) \stackrel{\text{the claim}}{\leq} \sum_{j=x}^{k} (c_{ix} + c_{ij} + \alpha_{x} - c_{ix} - 2c_{ij}) = \sum_{j=x}^{k} (\alpha_{x} - c_{ij}) \leq f_{i}.$$

4.
$$\sum_{j=1}^{k} (\alpha_{1} - c_{ij}) \leq f_{i}.$$

$$\sum_{j=1}^{k} (\alpha_{j} - c_{i1} - 2c_{ij}) \leq f_{i}.$$
Since $\alpha_{1} - c_{i1} \geq \alpha_{1} - 3c_{i1} \geq 0.$

$$\therefore \sum_{j=1}^{k} (\alpha_{j} - 3c_{ij}) \leq \sum_{j=1}^{k} (\alpha_{1} - c_{ij} + \alpha_{j} - c_{i1} - 2c_{ij}) \leq 2f_{i}.$$

5. We need to define $\alpha'_j, \beta'_{ij} := \max(\alpha'_j - c_{ij}, 0)$ so that $\sum_j \beta'_{ij} \leq f_i$ can be satisfied for all i.

Let
$$\alpha'_j = \frac{1}{3}\alpha_j$$
, one can see that $\sum_j \beta'_{ij} = \sum_{j:\alpha_j \geq 3c_{ij}} \alpha'_j - c_{ij} = \sum_{j:\alpha_j \geq 3c_{ij}} \frac{1}{3}(\alpha_j - 3c_{ij}) \leq \frac{2}{3}f_i \leq f_i$.

From 1. of the algorithm, $\sum_{i \in B_i} (\alpha_j - c_{ij}) = f_i$.

$$\Rightarrow \sum_{j \in B_i} c_{ij} + f_i = \sum_{j \in B_i} \alpha_j \le 3 \sum_{j \in B_i} \alpha'_j.$$

 \therefore this is a 3-approximation.