Colle 14A: Polynômes et dénombrement

Question de cours :

Polynômes interpolateurs de Lagrange : définition, existence et unicité.

Exercice 1:

Résoudre dans $\mathbb{R}[X]$ l'équation suivante :

$$(X^2 + 1)P''(X) - 6P(X) = 0$$

Exercice 2 : Nombre de dérangements

On pose $D_0 = 1$ et pour tout $n \in \mathbb{N}^*$, on note D_n le nombre de permutations σ de [1, n] sans point fixe :

$$\forall \ell \in [\![1,n]\!], \quad \sigma(\ell) \neq \ell$$

- 1. Montrer que pour tout $n \in \mathbb{N}^*$, $\sum_{k=0}^n \binom{n}{k} D_{n-k} = n!$
- 2. Calculer, pour tout $n \in \mathbb{N}$ et $p \in [0, n]$, $\sum_{k=0}^{p} {n \choose k} {n-k \choose p-k} (-1)^k$.
- 3. En déduire que pour tout $n \in \mathbb{N}$, $D_n = \sum_{k=0}^n (-1)^k \frac{n!}{k!}$.

Exercice 3:

De combien de façons différentes peut-on placer p tours sur un échiquier de taille n de façon à ce qu'elles ne puissent pas se prendre?

Valentin Messina

Aux Lazaristes - Maths Sup

Colle 14B: Polynômes et dénombrement

Question de cours :

Définition et dénombrement du nombre de p-listes, de p-arrangements et de p-combinaisons. On réalisera la démonstration dans le cas des p-arrangements.

Exercice 1 : Calcul de $\zeta(2)$

1. Soit $n \in \mathbb{N}$. Montrer qu'il existe un unique polynôme P_n tel que :

$$\forall t \in]0, \frac{\pi}{2}[, \quad P_n(\cot^2(t)) = \frac{\sin((2n+1)t)}{\sin^{2n+1}(t)}$$

- 2. Pour tout $n \in \mathbb{N}^*$, expliciter les racines de P_n , puis calculer leur somme notée σ_1 .
- 3. En observant que pour tout $t \in]0, \frac{\pi}{2}[, \cot^2(t)] \leq \frac{1}{t^2} \leq 1 + \cot^2(t)$, déterminer la valeur de $\zeta(2)$.

Exercice 2:

Soit p,q,m trois entiers naturels tels que $q\leqslant p\leqslant m.$ Démontrer combinatoirement que :

$$\binom{m}{p} = \sum_{j=0}^{p} \binom{q}{j} \binom{m-q}{p-j}$$

Exercice 3:

Dénombrer les anagrammes de MATHS, RIRE et ANANAS.

Colle 14C: Polynômes et dénombrement

Question de cours :

Donner les formules de Pascal et du capitaine. Démontrer la formule du capitaine de façon combinatoire.

Exercice 1:

On définit la suite de polynômes $(A_n)_{n\in\mathbb{N}}$ vérifiant les conditions : $A_0=1$ et pour tout $n\in\mathbb{N}$,

$$A'_{n+1} = A_n$$
 et $\int_0^1 A_{n+1}(t) dt = 0$

- 1. Calculer A_1, A_2 et A_3 .
- 2. Montrer que la suite $(A_n)_{n\in\mathbb{N}}$ est déterminée de façon unique. Préciser le degré de A_n .
- 3. Montrer que pour tout $n \in \mathbb{N}$ et tout $t \in \mathbb{R}, A_n(t) = (-1)^n A_n(1-t)$.
- 4. Soit $n \ge 2$. Montrer que $A_n(0) = A_n(1)$ et que $A_{2n-1}(0) = 0$.
- 5. On pose provisoirement pour tout $n \in \mathbb{N}$, $c_n = A_n(0)$. Montrer que pour tout $n \in \mathbb{N}$,

$$A_n(X) = \sum_{k=0}^n \frac{X^k}{k!} c_{n-k}$$

6. En déduire que pour tout $n \in \mathbb{N}, |c_n| \leq 1$.

Exercice 2:

Soit $n \in \mathbb{N}^*$. Démontrer combinatoirement que :

$$\binom{2n}{n} = \sum_{k=0}^{n} \binom{n}{k}^2$$

Exercice 3:

On souhaite ranger sur une étagère 4 livres de mathématiques (distincts), 6 livres de physique, et 3 de chimie. De combien de façons peut-on effectuer ce rangement si (seuls) les livres de mathématiques doivent être groupés?