Réponse

Exercice 1: 5 points

1. **Réponse :c**)150%

2. Réponse : c) 3, 23%

3. Réponse :b) connexe

4. Réponse : a) $p(X \le 20) \approx 0.159$

Exercice 2: 6 points

1.
$$\begin{cases} \lim_{x \to +\infty} 1 - x = -\infty \\ \lim_{x \to +\infty} e^x = +\infty \end{cases} \text{ par produit } \lim_{x \to +\infty} (1 - x)e^x = -\infty$$

Donc $\lim_{x\to +\infty} f(x) = -\infty$

$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} e^x - xe^x + \ln(3) = \ln(3) \text{ car } \lim_{x \to -\infty} xe^x = 0$$

2.
$$f'(x) = -e^x + (1-x)e^x = (-1+1-x)e^x = -xe^x$$

Comme $e^x > 0$, alors f est du signe de -x.

Ainsi on obtient le tableau de variations suivant :

x	$-\infty$		0	+∞
f'(x)		+	þ	_
a/ \	1+ln(3)			
f(x)	1(2)	/		
	ln(3)			$-\infty$

3. a) $f(1) = \ln(3) > 0$ et $f(2) = -e^2 + \ln(3) \approx -6,29 < 0$. D'après le tableau de variations, l'équation f(x) = 0 admet une unique solution dans l'intervalle [1;2].

b) $\alpha \approx 1.3$ audixième près.

4. Tableau de signe de f:

x	$-\infty$ $\alpha+\infty$		
f(x)	+ 0 -		

5.a)

$$F'(x) = -e^x + (-x+2)e^x + \ln(3) = (-1+x+2)e^x + \ln(3)$$

$$F'(x) = (1-x)e^x + \ln(3) = f(x)$$

Donc F est une primitive de f sur R.

b)

$$\int_{-1}^{1} f(x)dx = \left[(-x+2)e^{x} + \ln(3)x \right]_{-1}^{1}$$

$$= (-1+2)e^{1} + \ln(3) \times 1 - ((1+2)e^{-1} + \ln(3) \times (-1))$$

$$= e + \ln(3) - 3e^{-1} + \ln(3) = e - 3e^{-1} + 2\ln(3) \approx 3,81$$

Exercice 3: (4 points)

- 1. Oui car le nuage de points a une forme allongé.
- 2. les coordonnées du point moyen G de ce nuage sont :

$$\overline{x} = \frac{1+2+3+4+5}{5} = 3$$
et $\overline{y} = \frac{37+37,9+39+39,1+40,5}{5} = 38,7$

3.a) Une équation de la droite de régression (d) de y enx par la méthode des moindres carrés est : y = 0.82x + 36.24.

b)

$$y > 45 \Leftrightarrow 0.82x + 36.24 > 45 \Leftrightarrow x > \frac{8.76}{0.82}$$

soit $x \approx 10,68$

le nombre d'élève du moyen dépassera donc les 45 milliers Djibouti à partir du rang x = 11 soit en 2023.

Exercice 4 (6 points)

1. a) Diminué de 20% revient à multiplier par 0,8 donc :

$$u_1 = 0.8 \times 200 + 10 = 170$$

 $u_2 = 0.8 \times 170 + 10 = 146$

- b) Chaque fin de mois le nombre de tonnes du peinture dans le stock diminue de 20 % donc il sera multiplié par 0,8 auquel s'ajoute10 tonnes. Donc on obtient la relation $u_{n+1} = 0.8u_n + 10$.
- 2.a) Pour tout entier naturel n, on a:

$$v_{n+1} = u_{n+1} - 50 = 0, 8u_n + 10 - 50 = 0, 8u_n - 40$$

 $v_{n+1} = 0, 8(u_n - 50) = 0, 8v_n.$

Donc la suite (v_n) est géométrique de raison 0,8 et de premier terme $v_0 = u_0 - 50 = 200 - 50 = 150$.

Ainsi, pour tout entier naturel n, $v_n = 150 \times 0.8^n$.

- **b) Pour tout entier naturel** *n***, on a** : $u_n = v_n + 50 = 150 \times 0, 8^n + 50$.
- 3.a) Le programme détermine le plus petit entier n tel que $u_n < 51$.
- b) Après exécution de ce programme, la valeur affichée est 23.

A partir du 23e mois, le stock du quincaillerie contiendra moinsde 51 tonnes de peinture.