Detection Algorithm

- 1. Let *Work* and *Finish* be vectors of length *m* and *n*, respectively Initialize:
 - (a) Work = Available
 - (b) For i = 1, 2, ..., n, if *Allocation*_i $\neq 0$, then *Finish*[i] = *false*; otherwise, *Finish*[i] = *true*
- 2. Find an index i such that both:
 - (a) Finish[i] == false
 - (b) Request_i \leq Work

If no such i exists, go to step 4

3. Work = Work + Allocation; Finish[i] = true go to step 2 This means that either all the processes are finished, or all the unfinished processes are in need of more resource instances, thus made to wait for them to be available.

Algorithm requires an order of $O(m \times n^2)$ operations to detect whether the system is in deadlocked state

4. If Finish[i] == false, for some $i, 1 \le i \le n$, then the system is in deadlock state. Moreover, if Finish[i] == false for an i, then P_i is deadlocked