Die potentiometrische Bestimmung von Hypochlorit und Chlorat mit Kupferchlorür.

Von Omobor

Bölge Troberg.

[Eingegangen am 24. Oktober 1932.]

Die kürzlich von Erich Müller und K. H. Tänzler¹) beschriebene Titration von Platin und Gold mit Kupferchlorürlösung führte mich zu Versuchen, diese Titersubstanz auch auf die Bestimmung von Hypochlorit und Chlorat anzuwenden.

Die Herstellung der $\operatorname{Cu_2Cl_2}$ -Lösung geschah folgendermaßen: 7,5 g $\operatorname{Cu_2Cl_2}$ wurden in 750 ccm KCl-Lösung, enthaltend 280 g KCl/l, unter Zugabe von 4 ccm 2 n-Salzsäure gelöst. Die Einstellung erfolgte gegen 0,1 n-K $_2\operatorname{Cr_2O_7}$ -Lösung 2). Die Aufbewahrung der Lösung sowie die Titrationen geschahen unter Wasserstoff, der über erhitzten Palladiumasbest geleitet worden war. Der Titer fiel im Tag um einige Zehntelprozent.

Die Bestimmung des Hypochlorits erfolgte bei gewöhnlicher Temperatur nach Zusatz von etwas Natriumcarbonat. Sie bietet keine Schwierigkeit.

Die Titration des Chlorats muss bei stark saurer Reaktion und bei höherer Temperatur erfolgen, da andernfalls die Reaktion zwischen ${\rm ClO_3'}$ und ${\rm Cu_2''}$ zu langsam vor sich geht. Dabei besteht aber die Gefahr von Verlusten durch Entweichen von Chlor (s. Vers. 1, Tab. 1). Ihnen kann man weitgehend begegnen, wenn man die Hauptmenge der Kupfer-

Tabelle 1. 0,2 n-KClO $_3$ -Lösung, Temperatur 80 $^{\rm o}$, potentiometrisch mit Cu $_2$ Cl $_2$ -Lösung titriert 3).

Versuch Nr.	$ootnotesize{KClO_3}{L\"{o}sung}$	H ₂ O	Schwefel- säure (1:1) ccm	TICl mg	Zu wenig %	Bemerkung
1 2 3 4 5	10 10 10 10 10	20 20 30 35 40	30 30 20 45 40	1 1 1 1 1	30 3 1,8 0,9 0,1	Bei 80° titriert. Hauptmenge Cu ₂ Cl ₂ bei 18° zugefügt, dann bei 80° titriert.

¹⁾ Diese Ztschrft. 89, 339 (1932).

²) E. Zintl und H. Wattenberg, Ber. Deutsch. Chem. Ges. 55, 3366 (1922); vergl. diese Ztschrft. 63, 103 (1923).

³) Nach Methode 1; siehe Erich Müller, Die elektrometrische (potentiometrische) Maßanalyse, 5. Aufl., S. 79 (1932).

chlorürlösung mit einem Mal in der Kälte zusetzt, dann ansäuert und bei 80° zu Ende titriert (s. Vers. 2, 3, Tab. 1). Dabei ist Schwefelsäure zu benutzen. Ein zu hoher Säuregehalt wirkt ungünstig auf das Ergebnis. Zusatz einer geringen Menge von Thalliumchlorür beschleunigt die Potentialeinstellung.

Unter Beachtung der aus Tab. 1 folgenden Lehren kann die Bestimmung von Hypochlorit und Chlorat in einem Zug mit hinreichender Genauigkeit erfolgen, wie die folgenden Versuche 6 und 7 zeigen, bei denen der Gehalt an Chlorat verschieden gross gewählt wurde.

Versuch 6. Eine KCl-Lösung (250 g KCl/l) wurde eine Zeitlang elektrolysiert. 20 ccm davon wurden mit 20 ccm Wasser verdünnt und nach Zufügen von $\sim 1\,g$ Na $_2$ CO $_3$ mit einer 0,0948 n-Cu $_2$ Cl $_2$ -Lösung bei 18 o titriert. Danach wurde nach Zugabe von 10 ccm Schwefelsäure (1:1) 1 mg TlCl zugefügt und bei 80 o C weiter titriert.

ccm Cu ₂ Cl ₂ - Lösung a	Komp. Ohm b	⊿ b/⊿ a	180
15,00 20,00 20,50 21,00 21,40 21,50 21,60 21,70 21,73 21,76 21,80 21,80—21,72	310 307 304 300 282 273 262 228 10 1 11	1 6 8 45 90 110 340 7300 330 250	21,72.0,948 = 20,59 ccm 0,1 n. Nach Penot titriert, brauchten 20ccmLösung 20,80ccmAs ₂ O ₃ -Lösung (f.0,993), d.i. 20,65 ccm 0,1 n-Lösung. 21,72.
= 0,08 0,30 0,60 0,80 1,00 1,20 1,30 1,40 1,45 1,48 1,50 1,53 1,60 1,70	445 437 431 430 424 421 417 415 194 192 191 191	27 30 5 30 30 40 40 7300 100 30 0	1,47+0,08=1,55 imes0,948=1,47 ccm $0,1$ n-Lösung.

Versuch 7.

20 ccm derselben Hypochloritlösung wie bei Vers. 6+20 ccm einer 0,1 n-KClO₂-Lösung wurden zunächst nach Zusatz von $\sim 1\,g$ Na₂CO₃ bei 18° mit der 0,0948 n-Cu₂Cl₂-Lösung titriert. Danach wurden 21 ccm dieser Cu₂Cl₂-Lösung zugegeben; nach weiterem Zusatz von 10 ccm Schwefelsäure (1:1) und von $1\,mg$ TlCl wurde bei 80° zu Ende titriert.

	Tr		
ccm Cu ₂ Cl ₂ -	Komp.	41.14	400
Lösung	Ohm	⊿b/⊿a	18°
a	b		
18,0 20,0 21,0 21,4 21,5 21,6 21,62 21,64 21,67 21,70	298 297 283 257 243 210 193 137 110	1 16 65 140 330 850 2800 900 3300 600	$21,69 \cdot 0,948 = 20,56 ccm \ 0,1 \text{ n.}$ Nach Penot titriert, brauchten $20 ccm \text{ L\"osung } 20,75 ccm \text{ As}_2\text{O}_3\text{-}$ $\text{L\"osung } (\text{f. } 0,993) = 20,59 ccm \text{ 0,1 n.}$ L\"osung.
21,72 $21,72-21,69=$ $0,03+20,97=$ $21,0$ $21,5$ $22,0$ $22,2$ $22,3$ $22,35$ $22,37$ $22,39$ $22,42$ $22,50$ $23,0$	413 410 410 405 404 391 223 222 220 223 210	6 0 25 10 260 8400 50 70	80° 22,36 . 0,948 = 21,20 (für Chlorat im Hypochlorit)

Da man nach der beschriebenen Methode den Gehalt von Chlorat ungefähr kennen, bezw., wenn dies nicht der Fall ist, eine Vortitration ausführen muss, so ist es genauer und nicht umständlicher, einen Überschuss der Cu₂Cl₂-Lösung zuzusetzen und diesen mit Bichromat zurückzutitrieren.

Auf diese Weise titriert, verbrauchten z. B. 25,00 ccm 0,1 n-KClO₃-Lösung bei zwei Versuchen 24,99, bezw. 25,08 ccm 0,1 n-Cu₂Cl₂ Lösung.

Die folgenden Versuche 8 und 9 bringen die Resultate zweier gleichzeitiger Bestimmungen von Hypochlorit und Chlorat mit verschiedenen Mengen des letzteren, bei denen ebenfalls das Chlorat in dieser Weise bestimmt wurde.

 $\label{eq:versuch 8} Versuch 8.$ Eine KCl-Lösung (250 g KCl/l) wurde eine Zeitlang elektrolysiert. 20 ccm davon wurden mit 20 ccm Wasser verdünnt und nach Zufügen von $\sim 1\,g$ Na₂CO₃ mit einer 0,0987 n-Cu₂Cl₂-Lösung bei 180 titriert.

ccm Cu ₂ Cl ₂ - Lösung a	Komp. Ohm b	⊿ b/⊿ a	180
20,0 22,0 23,0 23,20 23,30 23,32 23,34 23,37 23,39	390 385 360 352 305 275 235 48	3 25 40 470 1500 2000 6300 800	$23,36.0,987 = 23,06 \ ccm \ 0,1 \ n.$ Nach Penot titriert, brauchten 20 ccm Lösung $23,28 \ ccm \ 0,1 \ n.$ As_2O_3 -Lösung $(f.0,995) = 23,16 \ ccm \ 0,1 \ n.$ Lösung. $23,36.$

Darauf wurden 5 ccm Cu_2Cl_2 -Lösung + 5 ccm konz. Salzsäure zugefügt; der Überschuss an Cu_2Cl_2 wurde bei 80° mit 0,1 n-K $_2\text{Cr}_2\text{O}_7$ -Lösung zurücktitriert. 23.39 – 23.36 \Longrightarrow

45,58 45,50==	•		i	
0.03 + 4.97 =	5,00 ccm Cu ₂	$ ext{Cl}_2 ext{-} ext{L\"osung}$		800
$ccm 0,1 \text{ n-} \\ \text{K}_2\text{Cr}_2\text{O}_7\text{-} \\ \text{L\"{o}sung} \\ 0 \\ 1,0 \\ 2,0 \\ 2,10 \\ 2,20 \\ 2,30 \\ 2,50$	185 195 251 280 290 296 303	10 56 290 100 60 35		hlorat wurden verbraucht: $0.987 - 2.05 = 2.89 ccm$ $0.1 \mathrm{n\text{-}Cu_2Cl_2\text{-}L\"{o}sung}$.

Versuch 9.

20 ccm derselben Hypochloritlösung wie bei Versuch 8 + 20 ccm einer 0,1 n-KClO₃-Lösung wurden zunächst nach Zusatz von \sim 1 g Na₂CO₃ bei 18° mit der 0,0987 n-Cu₂Cl₂-Lösung titriert.

20,0	367		180
22,0 23,0 23,10 23,20	379 372 362 340	7 100 220	23,38.0,987 = 23,08 ccm 0,1 n-Lösung statt 23,16 ccm (nach Penot).
23,30 23,33 23,36 23,39 23,41	300 286 207 70 62	400 470 2600 4600 400	23,38.

Darauf wurden 25,01 ccm Cu₂Cl₂-Lösung + 5 ccm konz. Salzsäure zugegeben; nun wurde mit 0,1 n-K₂Cr₂O₂-Lösung bei 80° zurücktitriert.

			
ccm Cu ₂ Cl ₂ - Lösung a	Komp. Ohm b		180
23,41—23,38= 0,03+24,98= ccm 0,1 n-	= =25,01 <i>ccm</i> Cu ₂	$\operatorname{Cl}_2 ext{-}\operatorname{L\ddot{o}sung}$	800.
K ₂ Cr ₂ O ₇ - Lösung 0,5 1,0 1,5 1,70 1,75 1,79 1,81 1,83 1,86 1,88 2,00 2,50	200 210 224 241 248 260 267 275 279 282 290 299	20 28 85 140 300 350 400 135 150 70	25,01. 0,987—1,82= 22,87 ccm 0,1 n-Lösung abgezogen ¹): 2,89 ,, ,, erhalten: 19,98 ccm 0,1 n-Lösung statt: 20,00.

Herrn Prof. Dr. Erich Müller danke ich herzlichst für seine Unterstützung bei Ausführung dieser Arbeit.

Institut für Elektrochemie und physikalische Chemie der Technischen Hochschule Dresden. 22. Oktober 1932.

Phosphorbestimmung im Aluminium²).

 ∇ on

K. Steinhäuser und J. Stadler.

[Eingegangen am 24. Oktober 1932.]

Gegen die schon früher angegebene Vorschrift zur Bestimmung von Phosphor im Aluminium wurden von anderer Seite Bedenken erhoben, und zwar gegen die Vertreibung der zugesetzten Flußsäure durch Abrauchen mit Schwefelsäure.

In der Chemikerzeitung³) wird nämlich eine Arbeit von E. J. Baumann⁴) referiert, in der angegeben wird, dass beim Veraschen (offenbar von organischen Substanzen) unter nachfolgendem Abrauchen mit

¹⁾ Für das in der Hypochloritlösung nach Vers. 8 enthaltene Chlorat.

²⁾ Diese Arbeit ist eine Ergänzung der früher erschienenen Abhandlung, diese Ztschrft. 81, 433 (1930).

³) Chem. Ztg. **49**, 887 (1925).

⁴⁾ Proc. of the Soc. f. exp. biol. and med. 20, 171 (1922); durch Chem. Zentrbl. 95, I, 1836 (1924).