QUIZ 3

Due Jun 8 at 12:30pm **Points** 40 **Questions** 20

Available Jun 8 at 11am - Jun 8 at 12:30pm about 2 hours Time Limit 90 Minutes

Instructions

MULTIPLE CHOICE. Choose the best answer.

Attempt History

	Attempt	Time	Score
LATEST	Attempt 1	50 minutes	40 out of 40

(!) Correct answers will be available Jun 15 at 12am - Jun 16 at 12am.

Score for this quiz: **40** out of 40 Submitted Jun 8 at 11:56am This attempt took 50 minutes.

Question 1	2 / 2 pts
What is the slope of the normal line to the curve $y=$ the point $(2,16)$?	$2x^3$ at
O 6	
-1/24	
O -1/6	
O 24	

Which of the following is the second der $y = \cos(2x + 3)$?

- $-\cos(2x+3)$
- $-\cos(2)$
- $-\cos 0$
- $\bigcirc -4\cos(2x+3)$

2 / 2 pts

Question 3

The derivative of $y=rac{x}{x-1}$ is _____?

- 0 1
- $\frac{1}{(x-1)^2}$
- $\bigcirc \frac{-1}{(x-1)^2}$
- $\bigcirc \ \frac{2x-1}{(x-1)^2}$

If
$$f(x)=(4x^3+2x-1)^4$$
 , then $f^{\prime}(x)$

- $0.48x(12x^2+2)^3$
- $4(4x^3+2x-1)^3$
- $\bigcirc \ 8 \left(6 x^2+1
 ight) \left(4 x^3+2 x-1
 ight)^3$
- $4(12x^2+2)^3$

Send

Question 5

2 / 2 pts

Suppose $f(x) = \tan(x^2) + \cot^2 x$. What is f'(x)?

- $\bigcirc \sec^2(x^2) 2\cot x$
- $\bigcirc \sec^2(2x) 2\csc x \cot x$
- $2x\sec^2(x^2) 2\csc^2x\cot x$
- $\bigcirc \sec^2(x^2) 2\csc x \cot x$

Question 6

2 / 2 pts

Let $A(x)=3x^2$. The instantaneous raunit change in x at x=-2 is equal to

- 3
- -12
- 0 12
- _ -3

Question 7

Send

$$\frac{d}{dx}(\sec^2 x - \tan^2 x) = \underline{\hspace{1cm}}?$$

- 0
- \bigcirc 4 sec $x \tan x$
- $\bigcirc 2\sec x 2\tan x$
- $\bigcirc 2\sec x + 2\tan x$

Question 8

2 / 2 pts

Given $x^2-3xy^3=10$. Find $rac{dy}{dx}$.

QUIZ 3: [1212_CSMATH1_S15] - DIFFERENTIAL CAL	CULUS
$\bigcirc \frac{2x}{9y^2}$	
$\bigcirc -rac{2x}{9y^2}$	
$\bigcirc \ rac{3y^2-2x}{9xy^2}$	
$\bigcirc \frac{2x-3y^2}{9xy^2}$	
Question 9	
Given the function defined by:	Send
$f(x) = \begin{cases} 2x, & \text{if } x \\ x^2, & \text{if } x \leq 2 \end{cases}$	•
What is $m{f}_+^{\prime}(2)$?	

0 4

O DNE

2

 $-+\infty$

Given the function defined by:

$$f(x) = \begin{cases} 2x, & \text{if } x > 2\\ x^2, & \text{if } x \le 2 \end{cases}$$

Does f'(2) exists? Why?

- \bigcirc Yes; $f'_{+}(2) = f'_{-}(2)$
- \bigcirc No; $\lim_{x o 2^+} f(x)
 eq \lim_{x o 2^-} f(x)$
- No; $f'_{+}(2) \neq f'_{-}(2)$
- \bigcirc Yes; f is continuous at x=2.

Question 11 2/2 pts Let $f(x) = \cos^2\left(4x^3\right)$, then f'(x) is $-24x^2\cos(4x^3)$ $-24x^2\cos(4x^3)\sin(4x^3)$ $-2\cos(4x^3)\sin(4x^3)$ $-12x^2\sin^2(4x^3)$

Given $f\left(x
ight)=\sin\!\left(rac{x-1}{x+2}
ight)$. Then, $f^{\,\prime}\left(x
ight)$ is

- $\bigcirc \cos\left(\frac{x-1}{x+2}\right)$
- $\bigcirc \cos\left(\frac{3(x-1)}{(x+2)^3}\right)$
- $\bigcirc \cos\left(\frac{3}{(x+2)^2}\right)$
- $\bigcirc \frac{3}{(x+2)^2}\cos\left(\frac{x-1}{x+2}\right)$

Send

Question 13

2 / 2 pts

Which of the following statements is NOT ALWAYS TRUE?

If f is differentiable at x=a, then f is continuous at x=a.

- \circ If $f_{+}'(a)=f_{-}'(a)=k$, then $f_{-}'(a)=k$.
- \circ If $f_{+}^{\,\prime}\left(a
 ight)
 eq f_{-}^{\,\prime}\left(a
 ight)$, then $f^{\,\prime}\left(a
 ight)$ do not exists.

If f is continuous at x = a, then then f is differentiable at x = a.

The derivative of $f(x)=rac{x^2}{6}+rac{6}{\sqrt{x}}$ is

$$\bigcirc \ \frac{x}{12} - \frac{3}{\sqrt[3]{x^2}}$$

$$\bigcirc \ rac{x}{3} - rac{3}{\sqrt[3]{x^2}}$$

$$\bigcirc \ \frac{x}{12} - \frac{3}{\sqrt{x^3}}$$

$$\bigcirc \ \frac{x}{3} - \frac{3}{\sqrt{x^3}}$$

2 / 2 pts

Send

Question 15

The 4th derivative of $y=rac{2}{x}$ is?

$$-\frac{2}{x^2}$$

$$\frac{4}{x^3}$$

$$\frac{48}{x^5}$$

 $\frac{12}{x^4}$

Question 16

Let

$$f(x) = \begin{cases} x^2 & x \le 1\\ 2x & x > 1 \end{cases}$$

Which of the following statements is FAL

Send

 $f^{\,\prime}\left(1\right)$ do not exists because $f\left(x\right)$ is NOT continuous at x=1

$$f'_{-}(1) = 2$$

$$f'_{+}(1) = 2$$

Question 17

2 / 2 pts

Given that:

$$\cos(x+y) - \sin(x+y) = 2.$$

Then $\frac{dy}{dx}$ is equal to ?

O 1		•
undefined		
-1		
O 0		
Question 18		
Suppose that the tumor in a person's bo shape. The average rate of change of the with respect to the radius, as the radius 1.0 cm is?		Send
Recall that the volume of the sphere is $V\left(r ight)=rac{4}{3}\pi r^3$, where r is the radius	given by	
$\bigcirc \ rac{19}{12}\pi$		
\circ π		
\bigcirc $\frac{7}{3}\pi$		
$\bigcirc~4\pi$		

Question 19 2 / 2 pts Suppose that the tumor in a person's body is spherical in shape. The instantaneous rate of chang Course Chat

tumor with respect to the radius, when t

Recall that the volume of the sphere is ${
m g}$ $V\left(r
ight) = rac{4}{3}\pi r^3$, where r is the radius

- $-\frac{19}{12}\pi$
- $\mathbf{0}$ 4π
- $-\pi$
- $-\frac{7}{3}\pi$

Question 20

Find the equation of the line tangent to the curve $x^2+4y^2=13$ at the point (3,-1).

- 0 4x 3y 15 = 0
- 3x-4y-13=0
- 4x + 3y 9 = 0
- 3x + 4y 5 = 0

Quiz Score: 40 out of 40

Send