CA20N EV.322 ... H 18 C.2

Drinkin	Water Surveilla	
	HAMILTO	
WA	TER TREAT	
	Annual Report	1987

Copyright Provisions and Restrictions on Copying:

This Ontario Ministry of the Environment work is protected by Crown copyright (unless otherwise indicated), which is held by the Queen's Printer for Ontario. It may be reproduced for non-commercial purposes if credit is given and Crown copyright is acknowledged.

It may not be reproduced, in all or in part, for any commercial purpose except under a licence from the Queen's Printer for Ontario.

For information on reproducing Government of Ontario works, please contact ServiceOntario Publications at copyright@ontario.ca

HAMILTON WATER TREATMENT PLANT

DRINKING WATER SURVEILLANCE PROGRAM

ANNUAL REPORT 1987

ONTARIO MINISTRY OF ENVIRONMENT OCTOBER 1988

c Queen's Printer for Ontario, 1988

ACKNOWLEDGEMENTS

The Drinking Water Surveillance Program (DWSP) employs a team approach requiring the co-operative effort of the Ministry of the Environment (MOE) staff from Water Resources and Laboratory Services Branch and the Regions, as well as plant operational staff from the Municipalities.

This annual report was produced by the DWSP Group (Ron Hunsinger, Peter Bohm, Carol Sackville-Duyvelshoff, Chris Fung and John McGrachan) and by Pat Lachmaniuk (on developmental assignment to the Drinking Water Section).

Helpful input and reviews were received from Drinking Water Section Staff, in addition to reviews by other MOE and municipal personnel.

EXECUTIVE SUMMARY

DRINKING WATER SURVEILLANCE PROGRAM

HAMILTON WATER TREATMENT PLANT 1987 ANNUAL REPORT

The Drinking Water Surveillance Program (DWSP) for Ontario is a monitoring program providing immediate, reliable, current information on drinking water quality. The DWSP officially began in April 1986 and is designed to eventually include all municipal supplies in Ontario. Currently, 44 plants are being monitored.

The Hamilton Water Treatment Plant is a conventional treatment plant which treats water from Lake Ontario. The process consists of coagulation, flocculation, sedimentation, filtration, disinfection and fluoridation. This plant serves a population of approximately 412,000 people and has a design capacity of $909 \times 1000 \text{m} 3/\text{day}$.

Water samples from the raw, treated and two distribution sites were taken on a monthly basis and analysed for approximately 160 parameters, 12 times during 1987. Parameters were divided into the following groups Bacteriological, Inorganic and Physical (Laboratory Chemistry, Field Chemistry and Metals) and Organics (Chloroaromatics, Chlorophenols, Pesticides and PCB, Phenolics, Polynuclear Aromatic Hydrocarbons, Specific Pesticides and Volatiles). Specific Pesticides and Chlorophenols were analysed for in June and November only.

A summary of results is shown in Table 1.

Due to its sampling frequency of once per month, the DWSP is not designed to evaluate all aspects of the bacteriological quality of the water; however routine bacteriological monitoring as outlined in the Ontario Drinking Water Objectives (ODWOs) is carried out by the operating authority. In terms of the limited DWSP bacteriological examination the water was of good quality.

Inorganic and Physical parameters (Laboratory Chemistry, Field Chemistry and Metals) were below any applicable health related ODWOs.

Of approximately 110 Organic parameters tested for on a monthly basis, none exceeded health related guidelines.

Many of the substances detected are naturally occurring or treatment by-products.

During 1987 the DWSP sampling results indicated that the Hamilton Water Treatment Plant produced good quality water at the plant and this quality was maintained throughout the distribution system.

SOMMAIRE

PROGRAMME DE SURVEILLANCE DE L'EAU POTABLE

STATION D'ÉPURATION DE L'EAU DE HAMILTON RAPPORT ANNUEL 1987

Le Programme de surveillance de l'eau potable (PSEP) de l'Ontario fournit des informations immédiates, fiables et à jour sur la qualité de l'eau potable. Le PSEP a débuté officiellement en avril 1986. Il est destiné à englober tous les réseaux municipaux d'alimentation en eau de l'Ontario. Actuellement, 44 stations en font partie.

La station d'épuration de Hamilton est une station classique qui traite l'eau du lac Ontario. Le traitement comporte la coagulation, la floculation, la décantation, la filtration, la désinfection et la fluoration. Cette station dessert une population d'environ 412 000 habitants et a une capacité nominale de 909 x 1 000 m3/jour.

Des prélèvements d'eau brute et d'eau traitée ainsi qu'en deux points du réseau de distribution ont été effectués chaque mois. Douze fois en 1987, ces prélèvements ont été analysés par rapport à environ 160 paramètres dans les catégories suivantes : bactériologique, inorganique et physique (analyses en laboratoire et sur place, présence de métaux) et organique (composés aromatiques chlorés, chlorophénols, pesticides et BPC, dérivés phénoliques, hydrocarbures aromatiques polynucléaires, pesticides particuliers et composés volatils). Les pesticides particuliers et les chlorophénols n'ont été analysés qu'en juin et en novembre.

Le tableau 1 résume les résultats obtenus.

En raison de la fréquence des prélèvements (un par mois), le PSEP ne permet pas d'évaluer tous les aspects de la qualité bactériologique de l'eau. Cependant, comme on le recommande dans le cadre des objectifs relatifs à la qualité de l'eau potable en Ontario, un contrôle bactériologique est effectué par l'exploitant. L'analyse bactériologique limitée du PSEP a révélé une eau de bonne qualité.

Les mesures des paramètres inorganiques et physiques (analyses en laboratoire et sur place, présence de métaux) étaient inférieures aux limites applicables fixées par l'Ontario pour l'eau potable.

Pour environ 110 paramètres organiques mesurés chaque mois, aucun résultat n'a dépassé les limites acceptables fixées pour la santé.

Un grand nombre de substances détectées apparaissent naturellement ou sont des produits dérivés de l'épuration.

Les résultats des analyses effectuées en 1987 dans le cadre du PSEP ont indiqué que la station d'épuration de Hamilton donnait une eau de bonne qualité et que cette qualité se maintenait dans tout le réseau de distribution.

TABLE 1

DRINKING WATER SURVEILLANCE PROGRAM HAMILTON WATER TREATMENT PLANT

SUMMARY TABLE BY SCAN (1987)

			RAW		TR	EATED		s	ITE 1		s	ITE 2	
	SCAN	TESTS	POSITIVE	%POSITIVE									
	BACTERIOLOGICAL	44	34	77	44	12	27	44	12	27	50	13	26
	CHEMISTRY (FLD)	38	38	100	62	62	100	101	101	100	91	91	100
	CHEMISTRY (LAB)	226	192	84	189	143	75	357	314	87	394	349	88
	METALS	241	142	58	222	117	52	431	246	57	468	264	56
•	CHLOROAROMATICS	156	0	0	143	1	0	130	0	. 0	143	0	0
	CHLOROPHENOLS	12	0	0	6	0	0	•				*	*
	РАН	68	2	2	51	0	0			*	10.		•
	PESTICIDES & PCB	298	0	0	273	0	0	251	0	0	276	0	0
	PHENOLICS	12	0	0	11	0	, 0	Ħ				-	*
	SPECIFIC PESTICIDES	162	3	1	144	Ò	0	99	0	0	108	0	0
	VOLATILES	337	1	0	253	36	14	308	44	14	338	49	14
		1594	412		1398	371		1721	717		1868	766	

NO HEALTH RELATED GUIDELINES/LIMITS WERE EXCEEDED

TOTAL

DRINKING WATER SURVEILLANCE PROGRAM

HAMILTON WATER TREATMENT PLANT 1987 ANNUAL REPORT

INTRODUCTION

The Drinking Water Surveillance Program (DWSP) for Ontario is a monitoring program providing immediate, reliable, current information on drinking water quality. The DWSP officially began in April 1986 and is designed to eventually include all municipal supplies in Ontario. Currently, 44 plants are being monitored. Appendix A contains a detailed description of the DWSP.

The DWSP program was initiated at the Hamilton Water Treatment Plant in the spring of 1986. An annual report was published for 1986 (ISBN 0-7729-2554-2).

This report contains information and results for 1987.

PLANT DESCRIPTION

The Hamilton Water Treatment Plant is a conventional treatment plant which treats water from Lake Ontario. The process consists of coagulation, flocculation, sedimentation, filtration, disinfection and fluoridation. Polyaluminum Chloride is added when necessary as a coagulant aid and Sulphur Dioxide is added

to dechlorinate. This plant serves a population of 412,000 people. It has a design capacity of 909 x 1000m3/day and daily flows ranging from $188 \times 1000m3/day$ to $305 \times 1000m3/day$.

The plant location is shown in Figure 1. Plant Process details, in a block schematic, are shown in Figure 2. General plant information is presented in Table 2.

METHODS

Water samples were obtained from four DWSP approved locations;

- i) Plant Raw The water originated from the surge well prior to chlorination and was sampled through a copper line. The sample tap is located in the plant laboratory.
- ii) Plant Treated The water originated from the highlift discharge after addition of all treatment chemicals and was sampled through a copper line. The sample tap is located in the plant laboratory.
- iii) Distribution System Site 1 This house is approximately 1 kilometer from the plant. Water was sampled through copper plumbing from the basement laundry tap.
- iv) Distribution System Site 2 This house is

 approximately 14 kilometers from the

 plant. Water was sampled through copper

 plumbing from the basement laundry tap.

FIGURE 1

DRINKING WATER SURVEILLANCE PROGRAM ANNUAL REPORT

SITE LOCATION MAP

LOCATION: HAMILTON WATER TREATMENT PLANT

Figure 2

^{*} Polyaluminum chloride when necessary

TABLE 2

DRINKING WATER SURVEILLANCE PROGRAM ANNUAL REPORT GENERAL INFORMATION

HAMILTON WATER SUPPLY SYSTEM

LOCATION:

900 WOODWARD AVE HAMILTON, ONTARIO

L8H 7N2

(416-526-4408)

SOURCE:

RAW WATER SOURCE - LAKE ONTARIO

RATED CAPACITY:

909 (1000 M3/DAY)

OPERATION:

MUNICIPAL

PLANT SUPERINTENDENT:

W. FURRY

MINISTRY REGION:

WEST CENTRAL

DISTRICT OFFICER:

MR. J.W. VOGT

POPULATION
16,542
20,081
307,690
41,690
25,541

Sample lines in the plant were flushed prior to sampling to ensure that the water obtained was indicative of its origin and not residual water standing in the sample line.

At both distribution system locations two types of samples were obtained: a standing and a free flow. The standing sample consisted of water that had been in the household plumbing and service connection for a minimum of six hours. These samples are used to make an assessment of the amount by which the levels of inorganic compounds and metals may be changed on standing due to leaching from (or deposition on) the plumbing system. The only analyses carried on these samples therefore, are General Chemistry and Metals. The free flow sample represented fresh water from the distribution main that had been flowing for five minutes before being sampled.

Attempts were made to capture the same block of water at each sampling point by taking the retention time into consideration. The retention time was calculated by dividing the volume of water between the two sampling points by the sample day flow. For example, if it was determined that the retention time within the plant was five hours then there would be a five hour interval between the raw and treated sampling. Similarly if it was estimated that it took approximately one day for the water to travel from the plant to the distribution system site, this site would be sampled one day after the treated water from the plant.

Stringent DWSP sampling protocols were followed to eliminate any variance. (Appendix B).

Sample day flow, treatment chemical dosages and Field Chemistry measurements were recorded on the day of sampling and were entered on the DWSP database as submitted.

RESULTS

Water at the Hamilton Water Treatment Plant was sampled for approximately 160 parameters on a monthly basis. The Specific Pesticides and Chlorophenols scans were sampled for in June and November only. Polynuclear Aromatic Hydrocarbons and Phenolics were only analysed for in the raw and treated water at the plant.

Table 3 contains information on the sample day retention time, flow rate and treatment chemicals used and their associated dosages.

Table 4 is a summary break-down of the number of water samples analysed for by parameter and by water type. The number of times that a positive or trace result was detected is also reported.

Positive denotes that the result is greater than the statistical limit of detection established by the Ministry of the Environment (MOE) laboratory staff and is quantifiable. Trace (<T) denotes that the level measured is greater than the lowest value detectable by the method but lies so close to the detection limit

that it cannot be confidently quantified.

Table 5 presents the results for parameters detected on at least one occasion.

Table 6 presents parameters not detected.

Associated guidelines and detection limits are also supplied on both tables. Parameters are listed alphabetically within each scan.

DISCUSSION

General

Water quality is judged by comparison with the Ontario Drinking Water Objectives (ODWOs) as defined in the 1984 publication (ISBN 0-7743-8985-0). The Province of Ontario has health related and aesthetic objectives for 49 parameters. These are currently under review. When an ODWO is not available guidelines/limits from other agencies are consulted. The Parameters Listing System (PALIS) recently initiated by the MOE catalogues and keeps current over 1750 guidelines for 650 parameters from agencies throughout the world.

As stated under Results, traces do not indicate quantifiable values, as defined by established MOE Laboratory analytical reporting protocols. While they can be useful in trend analysis or confirmation of a specific contaminant that is repeatedly

detected at these levels, the occasional finding of a trace level of a contaminant is not considered to be significant. DISCUSSION OF GUIDELINES AND LIMITS THEREFORE, IS ONLY CONDUCTED ON POSITIVE RESULTS.

Bacteriology

Positive results for the Bacteriology scan were present twelve times in the treated water, the distribution system Site 1 water and the Site 2 water. The positive parameters were Standard Plate Count, Total Coliform and/or Total Coliform Background and Presence/Absence test.

Due to its sampling frequency of once per month, the DWSP is not designed to evaluate all aspects of the bacteriological quality of water. Routine bacteriological monitoring as recommended in the ODWO is carried out by the operating authority. Water from the Hamilton Water Treatment Plant, in terms of the limited DWSP bacteriological examination, was of good quality.

Inorganic and Physical Parameters

Laboratory and Field Chemistry

The results for Laboratory and Field Chemistry scans were below any applicable health related ODWOs.

Turbidity in water is caused by the presence of suspended matter such as clay, silt, colloidal particles, plankton and other microscopic organisms. The most important health effect of Turbidity is its interference with disinfection in the treatment plant and maintenance of a chlorine residual. The ODWO of 1 Formazin Turbidity Unit (FTU) is only applicable to treated water leaving the plant.

There are ODWOs that are set for parameters which are related to aesthetic quality rather than health; one of these is Organic Nitrogen. Organic Nitrogen values are calculated by subtracting the value for Ammonia (Ammonium Total) from the value for Total Kjeldahl Nitrogen (Nitrogen Tot Kjeld). The aesthetic ODWO of 0.15 mg/L was exceeded in many of the treated water samples and distribution system samples. When Organic Nitrogen exceeds 0.15 mg/L in treated water some taste and odour problems can result.

This guideline is exceeded in most supplies. Based on the information obtained from the DWSP, which generally indicates no problems with this parameter exceedence, the guideline may be modified when the ODWOs are reviewed.

It is desirable that the Temperature of drinking water be less than 15°C; the palatability of water is enhanced by its coolness. A temperature below 15°C will tend to reduce the growth of nuisance organisms and hence minimize associated taste, colour, odour and corrosion problems. The desired ODWO was exceeded eight times in the distributed water.

As part of the treatment plant process, fluosilic acid is added to the treated water (Table 3). Where fluoridation is practised, the fluoride concentration recommended in the ODWO is 1.2 mg/L, plus or minus 0.2 mg/L. Results indicate that the plant was rarely successful in maintaining this level.

Metals

The results reported for the Metal scan were below any applicable health related ODWOs.

Elevated levels of Cadmium, Copper, Lead and Zinc were detected in the standing samples from the distribution system as compared to the free flow samples thus, indicating that small quantities of these metals were leached from the household plumbing as the water stood overnight.

The Iron level was elevated in the September distribution system Site 2 standing water sample. High levels of Iron may impart a brownish colour to laundered goods and it may produce a bitter, astringent taste in water. Excessive Iron can also promote the growth of iron bacteria in water mains and service pipes.

At present, there is no evidence that Aluminum is physiologically harmful and no health limit has been specified. The measure of residual Aluminum in the treated water is important to indicate efficiency of the treatment process. The ODWOs indicate that a useful guideline is to maintain a residual below 0.1 mg/L as Al

in the water leaving the plant. Aluminum values frequently exceeded the ODWO operational guideline.

Mercury levels in the distribution system Site 1 sample showed an increase through the year. Over the past year in the DWSP it has been observed that potassium dichromate, used to preserve Mercury samples, has a limited shelf-life and this may result in false positives for the presence of Mercury. As the preservative deteriorates Mercury levels increase as a result of interferences and the preservative is replaced.

Organic Parameters

Chloroaromatics

Results of the Chloroaromatics scan showed five parameters were detected:

Hexachlorobutadiene

1,2,3,4-Tetrachlorobenzene

1,2,3-Trichlorobenzene

1,2,4-Trichlorobenzene

Hexachloroethane

Hexachlorobutadiene was detected at trace levels, once in the distribution system Site 1 water.

1,2,3,4-Tetrachlorobenzene was detected at trace levels, once in the distribution system Site 1 water.

1,2,3-Trichlorobenzene was detected at a trace level, once in the treated water.

1,2,4-Trichlorobenzene was detected at a trace level, once in the raw water and once in the treated water.

Hexachloroethane was detected at trace levels, five times in the treated water, four times in the distribution system Site 1 water and five times in the Site 2 water. The October treated water sample had a value of 15.0 ng/L; this level is far below the United States Environmental Protection Agency (EPA) Ambient Water Quality (AWQ) guideline of 1900 ng/L. AWQ guidelines are designed to ensure that surface water, used as a drinking water source and from which fish are consumed, does not contain substances at levels that would be hazardous to human health. Since both water and fish consumption are considered, AWQ guidelines are usually more stringent than corresponding drinking water guidelines.

Review of these results, along with information from other water supplies on DWSP, would indicate that certain Chloroaromatics appear more frequently in the treated water than in the raw and almost always only at trace levels. These occurrences could possibly be due to a reaction of chlorine with organics present in the water or the distribution system.

Chlorophenols

Results of the Chlorophenol scan showed that no Chlorophenols were detected.

Pesticides and PCB (Polychlorinated Biphenyl)

Results of the Pesticide and PCB scan showed that three pesticides were detected:

Alpha BHC

Beta BHC

Lindane

Lindane consists of several isomers of BHC (Benzene Hexachloride). Alpha BHC is the isomer predominantly found in the Great Lakes basin as indicated in results from other water supplies on DWSP.

Alpha BHC was detected at trace levels, eleven times in the raw water, ten times in the treated water, nine times in the distribution system Site 1 water and eleven times in the Site 2 water.

Beta BHC was detected once, at a trace level, in the distribution system Site 1 water.

Lindane was detected at trace levels, four times in the raw water, eight times in the treated water, eight times in the

distribution system Site 1 water and six times in the distribution system Site 2 water.

Specific Pesticides

Results of the Specific Pesticide scan showed that five parameters were detected:

Atrazine

Bladex

Prometone

Propazine

Simazine

Atrazine was detected at a trace level, once in the raw water.

Bladex was detected in the January raw water sample at 5450 ng/L. This is below the Health and Welfare Canada interim guideline for Bladex of 10,000 ng/L.

Prometone was detected in the January raw water sample at 1460 ng/L. This is below the EPA Lifetime Health Advisory of 52500 ng/L.

Propazine was detected at a trace level, once in the raw water.

Simazine was detected in the January raw water sample at 860 ng/L. This is below the Health and Welfare Canada interim guideline of 10000 ng/L.

The Bladex, Prometone and Simazine positive findings, plus the detection of trace levels of Atrazine and Propazine all occurred in the same sample which may indicate the possibility of an interference with laboratory analysis. They were not found in any treated water sample and although limits are not applicable to raw water, they are mentioned here to put the numbers in context.

Phenolics

Phenolics were detected, at trace levels, six times in the raw and six times in the treated water. Phenolic compounds are present in the aquatic environment as a result of natural and/or industrial processes.

Polynuclear Aromatic Hydrocarbons (PAH)

Results of the PAH scan showed that one PAH was detected:

Benzo (A) Pyrene

Benzo (A) Pyrene was detected in both the October and December raw water samples at 5.0 ng/L. This is below the Health and Welfare Canada interim guideline of 10.0 ng/L.

PAHs have a close association with Turbidity. Removal of Turbidity by conventional treatment will achieve maximum PAH reduction.

Volatiles

Results of the Volatile scan showed that five parameters, other than Trihalomethanes(THMs), were detected:

Benzene

Toluene

Ethylbenzene

Meta and Para-Xylene

Ortho-Xylene

Benzene was detected at a trace level, once in the treated water.

Toluene was detected at trace levels, twice in the distribution system Site 1 water and once in the distribution system Site 2 water. Two positive values were considered by laboratory analysts to be unreliable due to contamination as per the remark 'UCS'.

Ethylbenzene was detected at trace levels, once in the treated water and four times in the distribution system Site 1 water.

Meta and Para-Xylene are reported as one compound, M-Xylene and were detected at trace levels, twice in the distribution system Site 1 water.

Ortho-Xylene (O-Xylene) was detected once, at a trace level, in the distribution system Site 1 water.

These volatiles are typically found on an occasional basis at other water supplies included on the DWSP usually at trace levels.

THMs are known to be produced during the water treatment process and will always occur in chlorinated surface waters. THMs are comprised mainly of Chloroform, Chlorodibromomethane and Dichlorobromomethane. Bromoform occurs occasionally. Results are reported for the individual compounds as well as for total THMs.

Chloroform, Chlorodibromomethane, Dichlorobromomethane and Total THMs were detected in all treated waters. Bromoform was detected at trace levels, once in the treated water, twice in the distribution system Site 1 water and three times in the Site 2 water. All THM occurrences were well below the ODWO of 350 ug/L for Total THMs.

Raw and treated water quality from 1986 to 1987 has remained consistent.

CONCLUSIONS

The Hamilton Water Treatment Plant for the sample year of 1987 produced good quality water at the plant and this was maintained throughout the distribution system.

No health related guidelines, for organic or inorganic parameters, were exceeded during 1986 and 1987.

RECOMMENDATIONS

Three recommendations can be made:

- 1) The data base should be reviewed in consultation with Regional, Plant and DWSP personnel to determine if sampling location, sampling frequency and the number of parameters analysed should be revised to allow for a more efficient characterization of the water.
- 2) The reason for elevated Aluminum levels in treated water samples should be investigated.
- 3) The fluoridation practice should be adjusted to ensure that the recommended fluoride levels are achieved in distributed water.

DRINKING WATER SURVEILLANCE PROGRAM HAMILTON WATER TREATMENT PLANT 1987

SAMPLE DAY CONDITIONS

TREATMENT CHEMICAL DOSAGES (MG/L)

			PRE-CHLORINATION	COAGULATION		FLUORIDATION	POST-CHLORINATION	DECHLORINATION
			CHLORINE	ALUM LIQUID	POLY ALUMINUM CHLORIDE	FLUOSILIC ACID	CHLORINE	SULPHUR DIOXIDE
	RETENTION	FLOW						
DATE	TIME(HRS)	(1000 M3)		er mer it mer som movementhelen in alle kanling in				
JAN 26	5.0	247.0	1.40	4.00		1.00	•	4.
FEB 23	5.0	222.0	1.90	3.40	*	1.06	. 15	*
MAR 23	5.0	222.0	2.70	4.00		¥	.08	×
APR 27	2.3	206.4	.80	4.00	*	.98	.58	*
MAY 25	3.0	232.4	1.90	3.80	*	.97	.06	*
JUN 22	5.0	304.5	2.20	5.00		.93		*
JUL 27	5.0	190.9	2.50	4.00	•	1.01	₩.	*.
AUG 24	3.0	222.5	2.70	4.40	*	1.15		.38
SEP 28	4.2	188.3	2.25	4.00		1.02		æ
OCT 27	4.5	238.1	1.90	4.00	*	1.05	•	*
NOV 25	2.1	228.0	1.80	4.00	•	1.00	* *	*
DEC 16	4.0	258.7	1.70	4.00	.30	.97	.28	*

TABLE 4

DRINKING WATER SURVEILLANCE PROGRAM HAMILTON WATER TREATMENT PLANT

			RAW WA	TER		TREATED WA	TER		SITE 1		SIT	E 2	
SCAN	PARAMETER	# ANALYSED	POSITIVE	TRACE	# ANALYSED	POSITIVE	TRACE	# ANALYSED	POSITIVE	TRACE	# ANALYSED	POSITIVE	TRACE
****	********	******			• • • • • • • • • •	*****					******	******	****
BACTERIOLOGICAL	AEROMONAS SP	0	0	0	0	0	0	0	0	0	- 1	0	0
	COLIFORM	0	0	0	0	0	0	0	0	0	1	0	0
	ESCHERICHIA COLI BY PRESENCE/ABSENCE	0	0	0	0	0	0	0	0	0	1	0	0
	FECAL COLIFORM	0	0	0	0	0	0	0	0	0	1	0	0
	FECAL COLIFORM MEMBRANE FILTRATION	.11	3	0	0	0	0	0	0	0	0	0	0
	P/A BOTTLE	0	0	0	11	0	0	11	0	0	12	1	0
	STANDARD PLATE COUNT MEMBRANE FILT.	11	11	0	11	9	0	11	9	0	11	9	0
	STAPH AUREUS	0	0	0	0	0	0	0	0	0	1	0	0
	TOTAL COLIFORM BACKGROUND MF	11	10	0	11	3	0	11	3	0	11	. 3	0
	TOTAL COLIFORM MEMBRANE FILTRATION	11	10	0	11	0	0	11	0	0	11	0	0
						X.							
*TOTAL SCAN BACTERIO	LOGICAL	44	34	0	44	12	. 0	44	12	0	50	13	0
*TOTAL GROUP BACTERIO	DLOGICAL	44	34	0	44	12	0	44	12	0	50	13	0

CHEMISTRY (FLD)	FIELD COMBINED CHLORINE RESIDUAL	0	0	0	12		0	21	21	0	19	19	0
	FIELD FREE CHLORINE RESIDUAL	1	1	0	2	2	0	0	0	0	3	3	0
	FIELD PH	12	12	0	12	12	0	22	22	0	24	24	
	FIELD TEMPERATURE	12	12	0	12		0	22	22	0	24	. 24	
	FIELD TOTAL CHLORINE RESIDUAL	1	1	0	12		0	22	22	0	19	19	
	FIELD TURBIDITY	12	12	0	12	12	0	14	14	0	2	2	0
												4	
*TOTAL SCAN CHEMISTR	Y (FLD)	38	38	0	62	62	0	101	101	0	91	91	0
	*****						******	****					
CHEMISTRY (LAB)	ALKALINITY	12	12	0	10			22	22	0	24	24	
ec .	AMMONIUM TOTAL	12	10	2	10	10	0	22	20	2	24	23	1

TABLE 4

DRINKING WATER SURVEILLANCE PROGRAM HAMILTON WATER TREATMENT PLANT

				RAW WATER		TREATED WATER			SITE 1			SITE 2		
SCAN	*	PARAMETER	# ANALYSED	POSITIVE	TRACE	# ANALYSED	POSITIVE	TRACE	# ANALYSED	POSITIVE	TRACE	# ANALYSED	POSITIVE	TRACE
* * * *		****	******					****	******	******	***	******	****	****
CHEMISTRY	(LAB)	CALCIUM	12	12	0	10	10	0	22	22	0	24	24	0
		CHLORIDE	12	12	0	10	10	0	22	22	0	24	24	0
		COLOUR	12	3	9	10	0	10	22	1	20	24	2	17
		CONDUCTIVITY	12	12	0	10	10	0	22	22	0	24	24	0
		CYANIDE	10	0	0	9	0	0	9	0	0	10	0	0
		FLUORIDE	12	12	0	10	10	0	22	22	0	24	24	0
*		HARDNESS	12	12	0	10	10	0	22	22	0	24	24	0
		MAGNESIUM	12	12	0	10	10	0	22	22	0	24	24	0
	\boldsymbol{x}_{i_1}	NITRITE	12	8	2	. 10	0	7	22	11	9	24	14	10
		NITROGEN TOTAL KJELDAHL	12	12	0	10	10	0	20	20	0	24	24	0
,		PH	12	12	0	10	10	0	22	22	0	24	24	0
		PHOSPHORUS FIL REACT	12	7	3	10	3	5	0	0	0	0	0	0
		PHOSPHORUS TOTAL	12	8	4	10	1	9	0	0	0	0	0	0
	*	SODIUM	12	12	0	10	10	0	22	22	0	24	24	0
	ž.	TOTAL NITRATES	12	12	0	10	10	0	22	22	0	24	24	0
		TOTAL SOLIDS	12	12	0	10	10	0	22	22	0	24	24	0
		TURBIDITY	12	12	0	10	9	1	20	20	0	24	22	2
*TOTAL SC	AN CHEMISTRY	(LAB)	226	192	20	189	143	32	357	314	31	394	349	30
METALS	*******	ALUMINUM	12	12	0	11	11	0	22	22	0	24	23	0
		ARSENIC	12	0	0	11	0	0	22	0	0	24	0	0
		BARIUM	12	12	0	11	11	0	22	22	0	24	24	0
		BERYLLIUM	12	1	0	11	0	0	22	0	0	24	0	0
		BORON	12	5	7	11	. 5	6	22	10	12	24	8	15
		CADMIUM	12	2	0	11	0	0	22	3	0	24	0	0

TABLE 4

DRINKING WATER SURVEILLANCE PROGRAM HAMILTON WATER TREATMENT PLANT

			RAW WA	TER		TREATED WA	TER		SITE 1		SIT	E 2	
SCAN	PARAMETER	# ANALYSED	POSITIVE	TRACE	# ANALYSED	POSITIVE	TRACE	# ANALYSED	POSITIVE	TRACE	# ANALYSED	POSITIVE	TRACE
4.4.4	******	*****	******	****				******	•••••		*******	*****	
METALS	CHROMIUM	12	6	0	11	6	0	22	14	0	24	14	0
*	COBALT	12	2	0	- 11	1	0	22	0	0	24	1	0
	COPPER	12	11	0	11	7	0	22	22	0	24	24	0
	CYANIDE	2	0	0	2	0	0	2	0	. 0	2	0	0
	IRON	12	12	0	11	11	. 0	22	22	0	24	20	0
	LEAD	12	3	0	11	1	0	22	3	0	24	12	0
381	MANGANESE	12	12	0	11	9	0	22	22	0	24	22	0
	MERCURY	12	11	0	11	10	0	11	11	0	12	12	0
	MOLYBDENUM	12	10	0	11	10	0	22	18	0	24	20	0
	NICKEL	12	8	0	11	5	0	22	14	0	24	12	0
	SELENIUM	12	0	0	11	0	0	22	0	0	24	0	0
	STRONTIUM	12	12	0	11	11	0	22	22	0	24	24	0
	URANIUM	11	11	0	11	11	0	22	22	0	22	21	0
	VANADIUM	12	1	0	11	0	0	22	0	0	24	6	0
u N h	ZINC	12	11	0	11	8	0	22	19	0	24	21	. 0
*TOTAL SCAN METALS		241	142	7	222	117	6	431	246	12	468	264	15
*TOTAL GROUP INORGAN	IC & PHYSICAL	505	372	27	473	322	38	889	661	43	953	704	45
******	*************							*******					
CHLOROAROMATICS	123 TRICHLOROBENZENE	12	0	0	11	0	1	10	0	0	11	0	0
	1234 TETRACHLOROBENZENE	12	0	0	11	0	0	10	. 0	1	11	0	0
	1235 TETRACHLOROBENZENE	12	0	0	11	0	0	10	0	0	11	0	0
	124 TRICHLOROBENZENE	12	0	1	11	0	1	10	0	0	11	0	0
	1245 TETRACHLOROBENZENE	12	0	0	11	0	0	10	0	0	11	0	0
	135 TRICHLOROBENZENE	12	0	0	11	0	0	10	0	0	11	0	0
	236 TRICHLOROTOLUENE	12	0	0	11	0	0	10	0	0	11	0	0

TABLE 4

DRINKING WATER SURVEILLANCE PROGRAM HAMILTON WATER TREATMENT PLANT

			RAW WA	TER		TREATED WA	NTER		SITE 1		SIT	E 2	
SCAN	PARAMETER	# ANALYSED	POSITIVE	TRACE	# ANALYSED	POSITIVE	TRACE	# ANALYSED	POSITIVE	TRACE	# ANALYSED	POSITIVE	TRACE
****	*******	********		****	•••••	******	****	*********	*****	****			
CHLOROAROMATICS	245 TRICHLOROTOLUENE	12	0	0	11	0	0	10	0	0	11	0	0
	26A TRICHLOROTOLUENE	12	0	0	11	0	0	10	0	0	11	0	0
	HEXACHLOROBUTAD I ENE	12	0	0	11	0	1	10	0	1	11	0	0
	HEXACHLOROETHANE	12	0	0	11	1	5	10	0	4	11	0	5
	OCTACHLOROSTYRENE	12	0	0	11	0	0	10	0	. 0	11	0	0
	PENTACHLOROBENZENE	12	0	0	. 11	0	0	10	0	0	11	0	0
*TOTAL SCAN CHLOROA	ROMATICS	156	0	1	143	1	8	130	0	6	143	0	5
CHLOROPHENOLS	234 TRICHLOROPHENOL	2	0	0	1	0	0	0	0	0	0	0	0
	2345 TETRACHLOROPHENOL	2	0	0	1	0	0	0	0	0	0	0	0
	2356 TETRACHLOROPHENOL	2	0	0	1	0	0	0	0	0	0	0	0
	245-TRICHLOROPHENOL	2	0	0	1	0	0	0	0	0	0	0	0
	246-TRICHLOROPHENOL	2	0	0	1	0	0	0	0	0	0	0	0
	PENTACHLOROPHENOL	2	0	0	1	0	0	0	0	0	0	0	0
*TOTAL SCAN CHLOROP	HENOLS	12	0	0	6	0	0	0	0	0	0	0	0
PAH	ANTHANTHRENE	0	0	0	0	0	0	0	0	0	0	0	0
	ANTHRACENE	4	0	0	3	0	0	0	0	0	0	0	0
8	BENZO(A) ANTHRACENE	4	0	0	3	0	0	0	0	0	0	0	0
	BENZO (A) PYRENE	4	2	0	3	0	0	0	0	0	0	0	0
	BENZO(B) CHRYSENE	4	0	0	3	0	0	0	0	0	0	0	0
	BENZO(B) FLUORANTHENE	4	0	0	3	0	0	0	0	0	0	0	0
	BENZO(E)PYRENE	4	0	0	3	0	0	0	. 0	0	0	0	0

TABLE 4

DRINKING WATER SURVEILLANCE PROGRAM HAMILTON WATER TREATMENT PLANT

			RAW WATER		TREATED WATER			SITE 1			SITE 2		
SCAN	PARAMETER	# ANALYSED	POSITIVE	TRACE	# ANALYSED	POSITIVE	TRACE	# ANALYSED	POSITIVE	TRACE	# ANALYSED	POSITIVE	TRACE
	*****	*******			*******	******	****	******		****	*******	******	****
PAH	BENZO(G,H,I) PERYLENE	4	0	0	3	0	0	0	0	0	. 0	0	0
	BENZO(J) FLUORANTHENE	0	0	0	0	0	0	0	0	0	0	0	0
	BENZO(K) FLUORANTHENE	4	0	0	3	0	0	0	0	0	0	0	0
	CHRYSENE	4	0	0	3	0	0	0	0	0	0	0	0
	CORONENE	4	0	0	3	0	0	0	0	0	0	0	0
	DIBENZO(A,H) ANTHRACENE	4	0	0	3	0	0	0	0	0	0	0	0
	DIMETHYL BENZO(A) ANTHRACENE	4	0	0	3	0	0	0	0	0	0	0	0
	FLUORANTHENE	. 4	0	0	3	0	0	0	0	0	0	0	0
	INDENO(1,2,3-C,D) PYRENE	4	0	0	3	0	0	0	0	0	0	0	0
	PERYLENE	4	0	0	3	0	0	0	0	0	0	0	0
	PHENANTHRENE	4	0	0	3	0	0	0	0	0	0	0	0
	PYRENE	4	0	0	3	0	0	0	0	0	0	0	0
*TOTAL SCAN PAH	•	68	2	0	51	0	0	0	0	0	0	. 0	0
PESTICIDES & PCB	ALACHLOR	12	0	0	12	0	0	11	0	0	12	0	0
	ALDRIN	12	0	0	11	0	. 0	10	. 0	0	11	0	0
	ALPHA BHC	12	0	11	11	0	10	10	0	9	11	, 0	11
	ALPHA CHLORDANE	12	. 0	0	11	0	0	10	0	0	11	0	0
	ATRATONE	12	0	0	. 12	0	0	11	0	0	12	0	0
ė ,	BETA BHC	12	0	0	11	0	0	10	0	1	11	0	0
	DIELDRIN	12	0	0	11	0	0	10	0	0	11	0	0
	ENDRIN	12	0	0	11	0	0	10	0	0	11	0	0
	ETHLYENE DIBROMIDE	10	0	0	7	0	0	9	0	0.	10	0	0
* ×	GAMMA CHLORDANE	12	0	0	11	0	0	10	0	0	11	0	0
	HEPTACHLOR	12	0	0	11	0	0	10	0	0	11	0	0

TABLE 4

DRINKING WATER SURVEILLANCE PROGRAM HAMILTON WATER TREATMENT PLANT

			RAW WA	TER		TREATED WA	TER		SITE 1		\$11	E 2	
SCAN	PARAMETER	# ANALYSED	POSITIVE	TRACE	# ANALYSED	POSITIVE	TRACE	# ANALYSED	POSITIVE	TRACE	# ANALYSED	POSITIVE	TRACE
****	White approximate stronger	*******	******	****		*****		*****	******				****
PESTICIDES & PCB	HEPTACHLOR EPOXIDE	12	0	0	11	0	0	10	0	0	11	0	0
	HEXACHLOROBENZENE	12	0	0	11	0	0	10	0	0	11	0	0
¥1	LINDANE	12	0	4	11	0	8	10	0	8	11	0	6
	METHOXYCHLOR	12	0	0	11	0	0	10	0	0	11	0	0
inc.	MIREX	12	0	0	11	. 0	0	10	0	0	11	0	0
	O,P-DDT	12	0	0	11	0	0	10	0	0	11	0	0
	OXYCHLORDANE	12	0	0	11	. 0	0	10	0	0	11	0	0
	PCB	12	0	0	11	0	0	10	0	0	11	0	0
·	PP-DDD	12	0	0	11	0	0	10	0	0	11	0	0
	PPDDE	12	0	0	11	0	0	10		0	11	0	0
	PPDDT	12	0	0	11	0	0	10		0	11	0	0
	THIODAN I	12	0	0	11	0	0	10		0	11	0	0
	THIODAN II	12	0	0	11	0	0	10		0	11	0	Ü
9	THIODAN SULPHATE	12	0	0	1,1	0	0	10	0	0	- 11	0	0
*TOTAL SCAN PESTICID	ES & PCB	298	0	15	273	0	18	251	0	18	276	0	17
PHENOLICS		12	0	6	11	0	6	0	0	0	0	0	0
*TOTAL SCAN PHENOLIC	s	12	0	6	11	0	6	0	0	0	0	0	0
SPECIFIC PESTICIDES	***************************************	2	0	0	2	0	0	0	0	0	0	0	0
THE COMMUNICATION OF THE SPECIAL PROPERTY OF THE SPECI	2,4 D PROPIONIC ACID	2	0	0	1	0	0	0	0	0	0	0	0
	2,4,5-T	2	0	0	1	0	0	0	0	0	0	0	0
•	2,4-D	2	0	0	1	0	0	0	0	0	0	0	0

TABLE 4

DRINKING WATER SURVEILLANCE PROGRAM HAMILTON WATER TREATMENT PLANT

			RAU WA	TER		TREATED WA	TER		SITE 1		SIT	E 2		
SCAN .	PARAMETER	# ANALYSED	POSITIVE	TRACE	# ANALYSED	POSITIVE	TRACE	# ANALYSED	POSITIVE	TRACE	# ANALYSED	POSITIVE	TRACE	
22.2	****	*******	******		********			•••••			******		••••	
SPECIFIC PESTICIDES	24-DICHLORORPHENOXYBUTYRIC	2	0	0	1	0	0	0	0	0	0	0	0	
	AMETRYNE	12	0	0	12	0	0	11	0	0	12	0	0	
	AMINOCARB	0	0	0	0	0	0	0	0	0	0	0	0	
	ATRAZINE	12	0	. 1	12	0	0	11	0	0	12	0	0	
	BENOMYL	0	0	0	0	0	0	0	0	0	0	0	0	
,	BLADEX	12	1	0	12	0	0	11	0	0	12	. 0	0	
	BUX (METALKAMATE)	2	0	0	2	0	0	0	0	0	0	0	0	
	CARBOFURAN	2	0.	0	2	0	0	0	0	0	0	0	0	
	DIALLATE	2	0	0	2	0	. 0	0	0	0	0	ĺ0	0	
	DIAZINON	2	. 0	0	1	0	0	0	0	0	0	0	. 0	
2	DICAMBA	2	0	0	1	0	0	0	0	0	0	0	0	
	DICHLOROVOS	2	0	0	1	0	0	0	0	0	0	0	0	
	DURSBAN	2	0	0	1	0	0	0	0	0	0	0	0	
	EPTAM	2	0	0	2	0	0	0	0	0	0	0	0	
	ETHION	2	0	0	1	0	0	0	0	0	0	0	0	
*	GUTHION	0	0	0	0	0	0	0	0	0	0	0	0	
	IPC	2	0	0	2	0	0	0	0	0	0	0	0	
	MALATHION	2	0	0	1	0	0	0	0	0	0	0	0	
	METHYL PARATHION	2	0	0	1	0	0	0	0	0	0	0	0	
	METHYLTRITHION	2	0	0	1	0	0	0	0	0	0	0	0	
	METOLACHLOR	12	0	0	12	0	0	11	0	0	12	0	0	
36	MEVINPHOS	2	0	0	1	0	0	0	0	0	0	0	0	
18:	PARATHION	2	0	0	1	0	0	0	0	0	0	0	. 0	
	PHORATE (THIMET)	2	0	0	1	0	0	0	0	0	0	0	0	
	PICHLORAM	0	0	0	.0	, 0	0	0	0	0	0	0	0	
	PROMETONE	12	1	0	12	0	,O	11	0	0	12	0	0	
	PROMETRYNE	12	0	0	12	0	0	11	0	0	12	0	0	

TABLE 4

DRINKING WATER SURVEILLANCE PROGRAM HAMILTON WATER TREATMENT PLANT

			RAW WA	TER		TREATED WA	TER		SITE 1		SIT	E 2	
SCAN	PARAMETER	# ANALYSED	POSITIVE	TRACE	# ANALYSED	POSITIVE	TRACE	# ANALYSED	POSITIVE	TRACE	# ANALYSED	POSITIVE	TRACE
(# # B/E)	popular at are actioned	*******	******		********			******	******				
SPECIFIC PESTICIDES	PROPAZINE	12	0	1	12	0	0	11	0	0	12	0	0
8	PROPOXUR	2	0	0	2	0	0	0	0	0	0	0	0
	RELDAN	2	0	0	1	0	0	0	0	0	0	0	0
	RONNEL	2	0	0	1	0	0	0	0	0	0	0	0
	SENÇOR	12	0	0	12	0	0	11	0	0	12	0	0
	SEVIN (CARBARYL)	2	0	0	2	0	0	0	0	0	0	0	0
	SILVEX	2	0	0	1	0	0	0	0	0	0	0	0
	SIMAZINE	12	1	0	12	0	0	11	0	0	12	0	0
	SUTAN (BUTYLATE)	2	0	0	2	0	0	0	0	0	0	0	0
	TOXAPHENE	0	0	0	0	0	0	0	0	0	0	0	0
*TOTAL SCAN SPECIFIC	PESTICIDES	162	3	2	.144	0	0	99	0	0	108	0	0
VOLATILES	1,1 DICHLOROETHANE	12	0	0	9	0	0	11	0	0	12	0	0
	1,1 DICHLOROETHYLENE	12	0	0	9	0	0	11	0	0	12	0	0
	1,2 DICHLOROBENZENE	12	0	0	9	0	0	11	0	0	12	0	0
	1,2 DICHLOROETHANE	12	0	0	9	0	0	11	0	0	12	0	0
	1,2 DICHLOROPROPANE	12	0	0	9	0	0	11	0	0	12	0	0
	1,3 DICHLOROBENZENE	12	0	0	9	0	0	11	0	0	12	0	0
	1,4 DICHLOROBENZENE	12	0	0	9	0	0	11	0	0	12	0	0
	111, TRICHLOROETHANE	12	0	0	9	0	0	11	0	0	12	0	0
	112 TRICHLOROETHANE	12	0	0	9	0	0	11	0	0	12	0	0
	1122 TETRA-CHLOROETHANE	12	0	0	9	0	0	11	0	0	12	0	0
	BENZENE	12	0	0	9	0	0	11	0	1	12	0	0
3	BROMOFORM	12	0	0	9	0	1	11	0	2	12	0	3
Ú.	CARBON TETRACHLORIDE	12	0	0	9	0	0	11	0	0	12	0	0

TABLE 4

DRINKING WATER SURVEILLANCE PROGRAM HAMILTON WATER TREATMENT PLANT

			RAW WATER				TREATED WATER				SITE 1			SITE 2		
SCAN	PARAMETER	# ANAL)	SED POST	TIVE	TRACE	# ANALYSED	POSIT	TIVE	TRACE	# ANALYSED	POSITIVE	TRACE	# ANALYSED	POSITIVE	TRACE	
***		******							****					******	****	
VOLATILES	CHLOROBENZENE		12	0	0			0	0	11	0	0	12	0	0	
	CHLOROD I BROMOMETHANE		12	0	0	9	•	9	0	11	11	0	12	12	0	
	CHLOROFORM		12	0	0	. 9		9	0	11	11	0	12	12	0	
	DICHLOROBROMOMETHANE		12	0	0		•	9	0	11	11	0	12	12	0	
	ETHLYENE DIBROMIDE		2	0	0	2		0	0	2	0	0	2	0	0	
	ETHYLBENZENE		12	0	0	9	•	0	1	11	0	4	12	0	0	
	M-XYLENE		12	0	0	S)	0	0	11	0	2	12	0	0	
	METHYLENE CHLORIDE	*	11	0	0	8	l .	0	0	9	0	0	12	0	0	
	O-XYLENE		12	0	0	8	•	0	0	11	0	1	12	0	0	
	P-XYLENE		12	0	0	9	٠.	0	0	11	0	0	12	0	0	
	TETRACHLOROETHYLENE		12	0	0	9)	0	0	11	0	0	12	0	0	
	TOLUENE		12	1	0	ç		0	0	11	0	. 2	12	1	1	
	TOTAL TRIHALOMETHANES		12	. 0	0	9	•	9	0	- 11	11	0	12	, 12	0	
	TRANS 1,2 DICHLOROETHYLENE		12	0	0	9)	0	0	11	0	0	12	0	0	
×	TRICHLOROETHYLENE		12	0	0	9)	0	0	11	0	0	12	0	0	
	TRIFLUOROCHLOROTOLUENE		12	0	0	5)	0	0	11	0	0	12	0	0	
*TOTAL SCAN VOLATILE	S .		337	1	0	253		36	2	308	44	12	338	49	4	
*TOTAL GROUP ORGANIC		ì	045	6	24	881	l	37	34	788	44	36	865	49	26	
													,			
TOTAL		*	594	412	51	1398	1	371	72	1721	717	79	1868	- 766	71	

KEY TO TABLES 5 AND 6

- A ONTARIO DRINKING WATER OBJECTIVES
 - 1. Maximum Acceptable Concentration (MAC)
 - 1+. MAC for Total Trihalomethanes
 - 1*. MAC for Bacteriological Analyses
 Poor water quality is indicated when :
 - total coliform counts > 0 < 5
 - P/A Bottle Test is present after 48 hours
 - Aeromonas organisms are detected in more than 25% of samples in a single submission or in successive submissions from the same sampling site
 - Pseudomonas Aeruginosa, Staphylococcus Aureus and members of the Fecal Streptococcus group should not be detected in any sample
 - Standard Plate Count should not exceed 500 organisms per ml at 35 deg C within 48 hours
 - 2. Interim Maximum Acceptable Concentration (IMAC)
 - 3. Maximum Desirable Concentration (MDC)
 - 4. Aesthetic or Recommended Operational Guideline
 - hardness levels between 80 and 100 mg/L as calcium carbonate are considered to provide an acceptable balance between corrosion and incrustation, water supplies with a hardness >200 mg/L are considered poor and those in excess of 500 mg/L are unacceptable.
- B HEALTH & WELFARE CANADA
 - Maximum Acceptable Concentration (MAC)
 - 2. Proposed MAC
 - 3. Interim MAC
- C WORLD HEALTH ORGANIZATION
 - 1. Guideline Value (GV)
 - 2. Tentative GV
 - 3. Aesthetic GV
- D US ENVIRONMENTAL PROTECTION AGENCY (EPA)
 - 1. Maximum Contaminant Level (MCL)
 - Suggested No-Adverse Effect Level (SNAEL)
 - 3. Lifetime Health Advisory
 - 4. EPA Ambient Water Quality Criteria
- F EUROPEAN ECONOMIC COMMUNITY (EEC)
 - 1. Health Related Guideline Level
 - 2. Aesthetic Guideline Level
 - 3. Maximum Admissable Concentration (MADC)
- G CALIFORNIA STATE DEPARTMENT OF HEALTH-GUIDELINE VALUE
- H USSR MAXIMUM PERMISSIBLE CONCENTRATION
- I NEW YORK STATE AMBIENT WATER GUIDELINE

LABORATORY RESULTS, REMARK DESCRIPTIONS

	No Sample Taken
BDL	Below Minimum Measurable Amount
T >	Greater Than Detection Limit But Not Confident
> ·	Results Are Greater Than The Upper Limit
<=>	Approximate Result
! WA!	No Data: Analysis Withdrawn
! CR	No Data: Could Not Confirm By Reanalysis
!cs	No Data: Contamination Suspected
!IL	No Data: Sample Incorrectly Labelled
!IS	No Data: Insufficient Sample
!LA	No Data: Laboratory Accident
!LD	No Data: Test Queued After Sample Discarded
!NA	No Data: No Authorization To Perform Reanalysis
!NP	No Data: No Procedure
!NR	No Data: Sample Not Received
!OP	No Data: Obscured Plate
!PE	No Data: Procedural Error - Sample Discarded
! PH	No Data: Sample pH Outside Valid Range
!RO	No Data: See Attached Report (no numeric results)
!sm	No Data: Sample Missing
!ss	No Data: Send Separate Sample Properly Preserved
!UI	No Data: Indeterminant Interference
A3C	Approximate, Total Count Exceeded 300 Colonies
APL	Additional Peak, Large, Not Priority Pollutant
APS	Additional Peak, Less Than, Not Priority Pollutant
CIC	Possible Contamination, Improper Cap
CRO	Calculated Result Only

Test Performed On Preserved Sample

PPS

RMP	P and M-Xylene Not Separated
RRV	Rerun Verification
RVU	Reported Value Unusual
SPS	Several Peaks, Small, Not Priority Pollutant
UAL	Unreliable: Sample Age Exceeds Normal Limit
UCR	Unreliable: Could Not Confirm By Reanalysis
UCS	Unreliable: Contamination Suspected
UIN	Unreliable: Indeterminant Interference
XP	Positive After X Number of Hours

TABLE 5

DRINKING WATER SURVEILLANCE PROGRAM HAMILTON WATER TREATMENT PLANT 1987

WATER TREATMENT PLANT

DISTRIBUTION SYSTEM

	RAW	TREATED	SITE 1	SITE	ITE 2		
			STANDING	FREE FLOW STANDING	FREE FLOW		
	BACTERIOLOGICAL		,		*****************		
AEROMONAS SP (0=A	BSENT)		DET'N LIMIT = N/A	GUIDELINE = 0	(A1)		
MAR					. O -		
E. COLI (P/A) (0=	ABSENT)		DET'N LIMIT = N/A	GUIDELINE =			
MAR				w.	. 0		
		•••••					
FECAL COLIFORM MF	(CT/100ML)		DET'N LIMIT = 0	GUIDELINE = 0	(A1)		
JAN	0						
FEB	0			₩			
MAR	0	·	·•	•			
APR	0		•	•			
MAY	0						
JUN	0						
JUL	0						
AUG	0		*				
SEP	2			•			
OCT	1			¥			
DEC	6			₩			
***********			**************	***************************************			
FECAL COLIFORM (C	=ABSENT)		DET'N LIMIT = N/A	GUIDELINE = 0	(A1)		
MAR				•	. 0		
STANDRD PLATE CNT	MF (CT/ML)		DET'N LIMIT = 0	GUIDELINE = 500/ML	(A1)		
JAN	45	4		4	. 0		
FEB	32	0		1	. 5		
MAR	101	4		11	. 38		
APR	19	1	•	2	. !LA		
MAY	420	16	•	12	. 1		
JUN	91	4		5	. 1		
JUL	90	6		0 .	. 2		
AUG	2400 >	2		12	. 4		
SEP	440	13	*	3	. 0		
OCT	740	0	*	4	. 2		
NGV	*	ř <u>e</u>	•		. 2		
DEC	410	29	•	0	. 3		
P/A BOTTLE (0=ABS	ENT)		DET'N LIMIT = 0	GUIDELINE = 0	(A1*)		
MAL		0		0	. 0		
FEB	•	0	•	0	. 0		
MAR		n	•	0	. 1		
APR		0		0			
101000 1000	195		T.				

TABLE 5

DRINKING WATER SURVEILLANCE PROGRAM HAMILTON WATER TREATMENT PLANT 1987

DISTRIBUTION SYSTEM

SITI	E					
	RAW	TREATED	SITE 1		SITE 2	4
TYP	E					
	٠		STANDING	FREE FLOW	STANDING	FREE FLOW
MAY		0		0		0
JUN	•	0		0		0
JUL		0		0		0
AUG		0		0		0
SEP		0		0	•	0
OCT		0		0		0
NOV		-				0
DEC		0		0		0
STAPH AUREUS (0=ABSEN	т)	D	ET'N LIMIT = N/A	GUIDELINE	= 0 (A1)
MAR	4	*				0
COLIFORM (0=ABSENT)		D	ET'N LIMIT = N/A	GUIDELINE	= 0 (A1)	
MAR		*		•		0
TOTAL COLIFORM MF (CT.	/100ML)	D	ET'N LIMIT = 0	GUIDELINE	E = 5/100ML(A1)
JAN	7	0		0		0
FEB	2	0		0		0
MAR	2 A3C	0		0		0
APR	0	0	19	0		ILA
MAY	24	0		0	_	0
JUN	8 A3C	0		0	-	0
JUL	6 A3C	0		0	•	0
AUG	30 A3C	0		0		0
SEP	14 A3C	0		0		0
ост	102 A3C	0	-	·o		0
NOV						0
DEC	35	0		0	•	0
T COLIFORM BCKGRD MF	(CT/100ML)	D	ET'N LIMIT = 0	GUIDELIN	= N/A	
JAN	33	0		0		0
FEB	8	0		0		ō
MAR	350	1		0		1
APR	0	0		0	~	ILA
MAY	200	0		1		0
JUN	340	0		1		0
JUL	1000	0		0		1
AUG	800	1		0		0
SEP	940	0		0		4
ост	230	0		0	*	0
NOV	•			•		0
DEC	130	1		5		n

TABLE 5

DRINKING WATER SURVEILLANCE PROGRAM HAMILTON WATER TREATMENT PLANT 1987

		WATER TRE	ATMENT PLANT	DISTRIBUTION SYSTEM						
	SITE					÷				
	TYPE	RAW	TREATED	SITE 1		SITE 2				
	ITPE			STANDING	FREE FLOW	STANDING	FREE FLOW			
	CHEMIS	TRY (FLD)								
FLD CHLORIN	E (COMB) (MG/			DET'N LIMIT = N/A	GUIDE	LINE =	N/A			
JAN		The se	.970	.700	.930	.300	.500			
FEB		• •	.850	.900	1.100	.500	.700			
MAR			.800	.700	.900	.300	.500			
APR			.780	.500	.500		.300			
MAY			.600	.500	.500	.100	.500			
JUN			.890	.700	.900	.300	.500			
JUL			.790	.700	.700		.300			
AUG		-	.660	.300	.300	.300	.300			
SEP			.930	.300		.300	.500			
OCT			.910	.100	.900		.500			
NOV		•	1.100			•	.500			
DEC		•	.870	1.000	.900		.700			
					.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
FLD CHLORIN	NE FREE (MG/L)		DET'N LIMIT = N/A	GUIDE	LINE =	N/A			
JAN		•				.100	.100			
MAR							.100			
MAY			.050							
AUG			.080							
NOV		.020	•							
TOTAL CHLOR	RINE (MG/L)		DET'N LIMIT = N/A	GUIDE	LINE =	N/A			
JAN "			.970	.700	.930	.400	.600			
FEB			.850	.900	1.100	.500	.700			
MAR			.800	.700	.900	.300	.600			
APR			.780	.500	.500		.300			
MAY			.650	.500	.500	.100	.500			
JUN		·	.890	.700	.900	.300	.500			
JUL			.790	.700	.700		.300			
AUG			.740	.300	.300	.300	.300			
SEP			.930	.300	.500	.300	.500			
OCT			.910	.100	.900		.500			
NOV		.020	1.100				.500			
DEC			.870	1.000	.900		.700			

FLD PH (DMS	SNLESS)			DET'N LIMIT = N/A	GUIDE	LINE = 6.5-8.5	(A4)			
JAN		7.730	7.350	7.600	7.800	7.800	7.600			
FEB		7.930	7.550	7.600	7.800	7.600	7.600			
MAR		7.800	7.290	7.600	7.600	7.600	7.600			
APR		7.500	7.200	7.600	7.600	7.600	7.600			
MAY		8.150	7.300	7.600	7.600	7.400	7.400			
JUN		7.350	7.200	7.800	7.800	7.400	7.400			
JON		7 700	7.200	7.000	7.000	7.400	7.400			

JUL

7.700

7.700

7.600

7.600

7.200

TABLE 5

DRINKING WATER SURVEILLANCE PROGRAM HAMILTON WATER TREATMENT PLANT 1987

DISTRIBUTION SYSTEM

S	SITE					
•	RAW	TREATED	SITE 1		SITE 2	
10	(PE		STANDING	FREE FLOW	STANDING	FREE FLOW
		••••••	• • • • • • • • • • • • • • • • • • • •		••••••	
AUG	7.400	7.000	7.400	7.400	7.400	7.400
SEP	7.600	7.600	7.600	7.600	7.400	7.600
OCT	7.550	7.200	7.600	7.600	7.400	7.600
NOV	7.700	7.400			7.400	7.600
DEC	7.500	7.100	7.600	7.600	7.400	7.800
TEMPERATURE (DEG.C)	DI	ET'N LIMIT = N/A	GUIDE	LINE = N	/A
JAN	2.000	2.000	6.000	4.000	21.000	7.000
FEB	2.000	2.000	6.000	4.000	- 10.000	8.000
MAR	4.000	4.000	6.000	6.000	20.000	6.000
APR	8.000	8.000	11.000	10.000	20.000	10.000
MAY	11.000	11.000	15.000	14.000	19.000	13.000
JUN	18.000	19.000	20.000	18.000	22.000	16.000
JUL	10.000	9.000	20.000	17.000	23.000	17.000
AUG	13.000	16.000	21.000	19.000	22.000	18.000
SEP	19.000	18.000	20.000	20.000	2.000	18.000
OCT	7.000	7.000	14.000	12.000	19.000	14.000
NOV	7.000	7.000	*		19.000	12.000
DEC	6.000	6.000	9.000	8.000	19.000	9.000
FLD TURBIDITY (FTU)	DI	ET'N LIMIT = N/A	GUIDE	LINE = 1.0 (A	1)
JAN	1.800	.240	.240	.240	.190	.190
FEB	1.400	.240	.200	.200		
MAR	2.300	.350	.460	.460		
APR	1.500	.220		¥	,#	•
MAY	1.400	.280	.300	.310	*	
JUN	1.400	.350	.420	.420		
JUL	.160	.220	.260	.230	(#I	
AUG	2.300	.150			*	
SEP	1.400	.210				
OCT	1.100	.170	.120	.120		
NOV	.600	.180				
DEC	1.300	.230	*	*		

TABLE 5

DRINKING WATER SURVEILLANCE PROGRAM HAMILTON WATER TREATMENT PLANT 1987

	WATER	TREATMENT PLANT		DISTRI	BUTION SYSTEM	
	SITE RAW	TREATED	SITE 1		SITE 2	
	TYPE	INCATED	STANDING	FREE FLOW	STANDING	FREE FLOW
						TREE 1 LOW
	CHEMISTRY (L	AB)				
ALKALINITY (MG/L)		DET'N LIMIT = .200	GUIDELII	NE = 30-500 (A	44)
JAN	99.100	93.600	93.300	95.100	95.800	94.300
FEB	101.000	96.200	96.200	95.500	98.600	97.400
MAR	104.200	100.100	98.800	98.700	97.600	97.700
APR	101.700	95.100	101.900	100.300	103.200	103.000
MAY	100.200	94.500	94.500	94.500	95.700	98.300
JUN	95.000	!RE	88.800	88.700	95.000	95.500
JUL	101.700	94.700	94.800	94.700	95.600	95.300
AUG	100.400	93.100	95.500	93.900	98.700	95.500
SEP	95.400	89.700	89.600	89.600	91.600	93.200
OCT	101.200	95.500	95.400	95.300	97.800	97.200
NOV	98.800	! SM			94.700	94.600
DEC	101.500	97.000	97.300	97.200	97.600	97.900
CALCIUM (MG/L)		DET'N LIMIT = .100	GUIDELI	NE = 100. (I	F2)
JAN	39.700	39.700	40.300	40.300	40,000	39.600
FEB	40.800	41.300	41.000	41.200	42.100	41.900
MAR	41.900	41.200	41.200	41.500	41.700	41.900
APR	39.800	39.400	39.200	40.400	40.100	41.900
MAY	40.000	39.800	39.800	39.600	41.000	40.800
JUN	39.400	!RE	40.400	41.000	40.400	41.000
JUL	39.800	39.400	39.400	40.000	40.600	40.600
- AUG	41.000	42.000	42.000	41.400	42.600	42.200
SEP	37.400	37.400	37.600	37.800	39.200	39.800
OCT	39.600	40.000	40.400	39.800	41.200	40.400
NOV	41.800	! SM		•	40.600	41.200
DEC	38.800	39.700	39.800	38.600	41.000	41.000
CHLORIDE (MG/L)		DET'N LIMIT = .200	GUIDELI	NE = 250.0 (/	A3)
JAN	25.000	26.500	28.000	26.500	27.500	27.500
FEB .	27.500	29.500	30.000	29.500	30.000	30.000
MAR APR	27.000 28.000	29.500 31.500	30.500 31.500	29.000 31.000	29.500 31.500	29.000 32.500
MAY	26.500 25.500	28.500	29.500 28.500	29.000 28.000	29.000 30.000	28.500 30.000
JUN	25.000	!RE 27.000	27.000	26.500	27.000	27.000
JUL AUG	25.000	28.000	29.000	28.000	27.000	26.500
SEP	22.500	25.000	25.500	25.000	25.000	25.000
OCT	24.900	26.100	26.700	26.700	26.700	26.300
	23.900		20.700	20.700	26.300	26.000
NOV	24.200	! SM 25.800	26.000	26.200	25.900	25.800
COLOUR (TCU)		DET'N LIMIT = .5	GUIDELI	NE = 5.0 (/	A3)

2.500 <T

JAN

1.500 <T

2.500 <T

1.500 <T

1.000 <T

1.500 <T

TABLE 5

DRINKING WATER SURVEILLANCE PROGRAM HAMILTON WATER TREATMENT PLANT 1987

139.500

MAR

138.000

DISTRIBUTION SYSTEM

	SITE R	AW	TREATED	SITE 1				SITE 2			
	TYPE										
				STANDING		FREE FLOW		STANDING		FREE FLOW	
			4 000	. 4 500		4 000		1 500		2 000	
FEB		00 <t< td=""><td></td><td></td><td></td><td>1.000</td><td></td><td>1.500</td><td></td><td>2.000 <t< td=""><td></td></t<></td></t<>				1.000		1.500		2.000 <t< td=""><td></td></t<>	
MAR	3.5		2.000			2.500		1.500	< I	1.000 <t< td=""><td></td></t<>	
APR		00 <t< td=""><td></td><td></td><td></td><td>2.000</td><td></td><td>1.000</td><td></td><td>1.000</td><td></td></t<>				2.000		1.000		1.000	
MAY	3.0		1.500			2.500	<1	1.500	<1	1.000 <t< td=""><td></td></t<>	
JUN		00 <t< td=""><td></td><td></td><td></td><td>BDL 4 FOO</td><td></td><td>8DL</td><td></td><td>BDL 4 000 -T</td><td></td></t<>				BDL 4 FOO		8DL		BDL 4 000 -T	
JUL	3.0		1.000			1.500		1.000	<1	1.000 <t< td=""><td></td></t<>	
AUG		00 <t< td=""><td></td><td></td><td></td><td>1.500</td><td></td><td>BDL</td><td></td><td>.500 <t< td=""><td></td></t<></td></t<>				1.500		BDL		.500 <t< td=""><td></td></t<>	
SEP		00 <t< td=""><td></td><td></td><td></td><td>1.500</td><td></td><td>BDL</td><td></td><td>1.000 <t< td=""><td></td></t<></td></t<>				1.500		BDL		1.000 <t< td=""><td></td></t<>	
OCT		00 <t< td=""><td></td><td><t 1.000<="" td=""><td><1</td><td>1.500</td><td><1</td><td>.500</td><td></td><td>1.000 <t< td=""><td></td></t<></td></t></td></t<>		<t 1.000<="" td=""><td><1</td><td>1.500</td><td><1</td><td>.500</td><td></td><td>1.000 <t< td=""><td></td></t<></td></t>	<1	1.500	<1	.500		1.000 <t< td=""><td></td></t<>	
NOV		00 <t< td=""><td></td><td>. 4 500</td><td></td><td>2 000</td><td></td><td>.500</td><td><1</td><td>1.000 <t< td=""><td></td></t<></td></t<>		. 4 500		2 000		.500	<1	1.000 <t< td=""><td></td></t<>	
DEC	2.0	00 <t< td=""><td>1.000</td><td><t 1.500<="" td=""><td><t </t </td><td>2.000</td><td><t< td=""><td>BDL</td><td></td><td>.500 <t< td=""><td></td></t<></td></t<></td></t></td></t<>	1.000	<t 1.500<="" td=""><td><t </t </td><td>2.000</td><td><t< td=""><td>BDL</td><td></td><td>.500 <t< td=""><td></td></t<></td></t<></td></t>	<t </t 	2.000	<t< td=""><td>BDL</td><td></td><td>.500 <t< td=""><td></td></t<></td></t<>	BDL		.500 <t< td=""><td></td></t<>	
CONDUCTIVITY (UM	IO/CM)			DET'N LIMIT = 1		GU	DELI	NE = 400.	(F2)	•	
⊕ JAN	,	29	333	342		333		339		339	
FEB	-	31	336	341		337		340		339	
MAR		52	357	360		355		360		361	
APR		44	351	355		349		356		356	
MAY		39	348	351		348		351		352	
JUN		17	!RE	330		326		348		349	
JUL		34	336	337		335		338		338	
AUG		37	347	354		347		341		340	
SEP		09	314	317		316		323		321	
OCT		34	334	334		333		335		334	
NOV		20	!SM					329		329	
DEC		29	332	335		334		335		338	
FUNDING (MC/I				DET/H LIMIT -							-
FLUORIDE (MG/L	,			DET'N LIMIT = .	J 1	GU.	DELI	NE = 2.400	(AT)		
JAN	.1	40	.700	.850		.890		.840		.840	
FEB	.1	40	.430	.890		.980		.990		1.000	
MAR	.1	90	.200	.480		.440		.730		.740	
APR	.1	40	.900	.940		.940		.890		.870	
MAY		50	.920	.890		.900		.920		.920	
JUN	.1	40	!RE	.980		.950		.980		.950	
JUL	.1	90	.950	.990		1.010		1.060		1.070	
AUG	.1	50	1.280	1.110		1.110		1.010		.980	
SEP	.41	60	.760	.980		.980		1.000		.980	
ост		40	.980	.880		.880		.700		.680	
NOV		20	!SM					.840		.860	
DEC	.1	40	.700	.880	*	.880		.880		.880	
HARDNESS (MG/L)			DET'N LIMIT = .!	500	GU	DELI	NE = 80-100	(A4)		•
JAN	133.0	00	133.000	134.500		133.500		133.500		132.500	
FEB	136.5		138.000	137.000		138.000		140.500		139.500	
V45	130.5		170.000	137.000		130.000		170.000		170.000	

138.000

139.000

139.000

TABLE 5

DRINKING WATER SURVEILLANCE PROGRAM HAMILTON WATER TREATMENT PLANT 1987

	WATER TREA	TMENT PLANT		DISTR	IBUTION SYSTEM	
	SITE		X.			
	RAW	TREATED	SITE 1		SITE 2	
	TYPE					
			STANDING	FREE FLOW	STANDING	FREE FLOW
					122 222	
APR	135.500	134.500	134.000	137.000	135.500	141.000
MAY	134.000	134.000	134.000	133.000	137.000	137.000
JUN	133.000	!RE	134.000	136.000	135.000	137.000
JUL	134.000	133.000	133.000	134.000	135.000	136.000
AUG	138.000	140.000	140.000	139.000	141.000	140.000
SEP	127.000	127.000	128.000	128.000	131.000	133.000
OCT	134.000	135.000	136.000	134.000	138.000	136.000
NOV	142.000	! SM	475 000	474 000	136.000	139.000
DEC	132.000	134.000	135.000	131.000	138.000	137.000
MACHECUM (MC/I			DET'N LIMIT = .050	CUIDE	INC = 70 (F2)	
MAGNESIUM (MG/L	.)		DEI'N LIMIT = .USU	GUIDEL	INE = 30. (F2))
JAN	8.250	8.200	8.200	8.050	8.150	8.150
FEB	8.400	8.500	8.400	8.500	8.500	8.500
MAR	8.500	8.500	8.500	8.600	8.400	8.300
APR	8.800	8.700	8.700	8.800	8.600	8.800
MAY	8.300	8.400	8.300	8.400	8.400	8.500
JUN	8.400	!RE	8.000	8.100	8.400	8.400
JUL	8.500	8.300	8.300	8.200	8.200	8.300
AUG	8.600	8.600	8.500	8.600	8.400	8.300
SEP	8.200	8.200	8.200	8.200	8.100	8.100
OCT	8.600	8.500	8.400	8.500	8.400	8.400
NOV	9.100	!SM	3.400		8.400	8.800
DEC	8.550	8.500	8.650	8.400	8.650	8.450
			•		•••••	
SODIUM (MG/L)		DET'N LIMIT = .200	GUIDEL	INE = 200. (C3)	
1	•				,,,,	
JAN	12.600	12.400	13.200	12.300	12.700	12.700
FEB	14.700	14.700	14.800	14.700	15.200	14.900
MAR	14.500	14.700	14.500	14.200	14.500	14.400
APR	14.200	14.600	14.600	14.300	14.800	15.000
MAY	13.200	13.400	14.200	13.600	14.200	14.400
JUN	12.400	!RE	13.200	13.000	13.800	13.600
JUL	12.200	12.200	12.600	12.200	12.600	12.600
AUG	13.800	13.600	14.000	14.000	12.400	12.400
SEP	11.800	12.000	12.400	12.200	12.200	12.200
OCT	13.000	12.800	12.800	12.600	12.800	12.600
NOV	12.600	! SM	*	•	12.400	12.800
DEC	12.800	13.100	13.000	13.200	12.700	12.800

AMMONIUM TOTAL	(MG/L)		DET'N LIMIT = 0.002	GUIDEL	INE = .05 (F2)	
JAN	.006 <t< td=""><td>.068</td><td>.260</td><td>.100</td><td>.040</td><td>.036</td></t<>	.068	.260	.100	.040	.036
FEB	.018	. 140	.230	.124	.110	.086
MAR	.048	.060	.206	.116	.056	.056
APR	.036	.038	152	.040	.068	.058
MAY	086	058	172	052	108	ngg

.172

.058

MAY

.086

.052 -

.108

TABLE 5

DRINKING WATER SURVEILLANCE PROGRAM HAMILTON WATER TREATMENT PLANT 1987

JUL

.170

.180

DISTRIBUTION SYSTEM

	SITE							
		RAW	TREATED	8.	SITE 1		SITE 2	
	TYPE							
					STANDING	FREE FLOW	STANDING	FREE FLOW
							*	
JUN		.132	!RE		.230	. 124	.108	.110
JUL		.070	.054		.144	.084	.054	.046
AUG		.002	<t .012<="" td=""><td></td><td>.002 <t< td=""><td>.008 <7</td><td>.028</td><td>.002 <t< td=""></t<></td></t<></td></t>		.002 <t< td=""><td>.008 <7</td><td>.028</td><td>.002 <t< td=""></t<></td></t<>	.008 <7	.028	.002 <t< td=""></t<>
SEP		.028	.116		.090	.092	.040	.012
OCT		.016	.174		.138	. 144	.098	.076
NOV		.010	! SM		•	•	.152	. 128
DEC		.016	.202		.188	. 192	.160	.138
NITRITE (MG/L)			DET	'N LIMIT = 0.001	GUIDELI	NE = 1.000 (A1)	
JAN		.001	<t .001<="" td=""><td><t< td=""><td>.010</td><td>.001 <t< td=""><td>.004 <t< td=""><td>.002 <t< td=""></t<></td></t<></td></t<></td></t<></td></t>	<t< td=""><td>.010</td><td>.001 <t< td=""><td>.004 <t< td=""><td>.002 <t< td=""></t<></td></t<></td></t<></td></t<>	.010	.001 <t< td=""><td>.004 <t< td=""><td>.002 <t< td=""></t<></td></t<></td></t<>	.004 <t< td=""><td>.002 <t< td=""></t<></td></t<>	.002 <t< td=""></t<>
FEB		.005	.001	<t< td=""><td>.010</td><td>.001 <t< td=""><td>.007</td><td>.003 <t< td=""></t<></td></t<></td></t<>	.010	.001 <t< td=""><td>.007</td><td>.003 <t< td=""></t<></td></t<>	.007	.003 <t< td=""></t<>
MAR		.008	.002	<t< td=""><td>.007</td><td>.002 <t< td=""><td>.003 <t< td=""><td>.002 <t< td=""></t<></td></t<></td></t<></td></t<>	.007	.002 <t< td=""><td>.003 <t< td=""><td>.002 <t< td=""></t<></td></t<></td></t<>	.003 <t< td=""><td>.002 <t< td=""></t<></td></t<>	.002 <t< td=""></t<>
APR		.005	.001	<t< td=""><td>.007</td><td>.001 <t< td=""><td>.003 <t< td=""><td>.003 <t< td=""></t<></td></t<></td></t<></td></t<>	.007	.001 <t< td=""><td>.003 <t< td=""><td>.003 <t< td=""></t<></td></t<></td></t<>	.003 <t< td=""><td>.003 <t< td=""></t<></td></t<>	.003 <t< td=""></t<>
MAY		.013	.001	<t< td=""><td>.011</td><td>.004 <t< td=""><td>.003 <t< td=""><td>.004 <t< td=""></t<></td></t<></td></t<></td></t<>	.011	.004 <t< td=""><td>.003 <t< td=""><td>.004 <t< td=""></t<></td></t<></td></t<>	.003 <t< td=""><td>.004 <t< td=""></t<></td></t<>	.004 <t< td=""></t<>
JUN		.016	!RE	*	.015	.011	.010	.010
JUL		.059	BDL		.020	.002 <t< td=""><td>.029</td><td>.034</td></t<>	.029	.034
AUG		BDL	BDL		.740	.004 <t< td=""><td>.020</td><td>.043</td></t<>	.020	.043
SEP		.010	.004	<t< td=""><td>.032</td><td>.029</td><td>.082</td><td>.024</td></t<>	.032	.029	.082	.024
OCT		BDL	BDL		BDL	BDL	.027	.012
NOV		.001	<t !sm<="" td=""><td></td><td></td><td></td><td>.010</td><td>.008</td></t>				.010	.008
DEC		.005	.001	<t< td=""><td>.003 <t< td=""><td>.004 <t< td=""><td>.008</td><td>.003 <t< td=""></t<></td></t<></td></t<></td></t<>	.003 <t< td=""><td>.004 <t< td=""><td>.008</td><td>.003 <t< td=""></t<></td></t<></td></t<>	.004 <t< td=""><td>.008</td><td>.003 <t< td=""></t<></td></t<>	.008	.003 <t< td=""></t<>
OTAL NITRATES (MG/L)		DET	'N LIMIT = .020	GUIDELI	NE = 10.000 (A1)	
JAN		.435	.440		.620	.445	.445	.465
FEB		.425	.440		.450	.435	.455	.470
MAR		.440	.425		.440	.430	.465	.460
APR		.400	.405		.420	.405	.450	.455
MAY		.395	.380		.435	.400	.400	.425
JUN		. 180	!RE		.220	.210	.360	.360
JUL		.415	.350		.370	.375	.380	.380
AUG		.500	.440		1.020	.450	.360	.385
SEP		.210	.220		.290	.280	.330	.380
OCT		.470	.495		.495	.470	.580	.615
NOV		.370	! SM			•	.415	.425
DEC		.470	.480		.500	.495	.480	.485
NITROGEN TOT KJE	LD (MG/L	;	·	DET	'N LIMIT = .020	GUIDELI	NE = N/A	
JAN		.190	.250		1.710	.270	.280	.260
FEB		.220	.250		.450	.300	.210	.190
MAR		.200	.100		! CR	! CR	.240	. 160
APR		.310	.220		.970	.220	.270	.270
MAY		.230	.210		.890 RVU	.210	.260	.230
JUN		.310	!RE		.320	.270	.110	.140
		470	400		FFA	140	200	120

.550 .160

.200

TABLE 5

DRINKING WATER SURVEILLANCE PROGRAM HAMILTON WATER TREATMENT PLANT 1987

	WATER	TREATMENT PLANT		DISTRIBUTION SYSTEM						
	SITE RAW TYPE	TREATED	SITE 1		SITE 2					
			STANDING	FREE FLOW	STANDING	FREE FLOW				
AUG	.170	.190	.380	.180	.230	.190				
SEP	.250	.280	.280	.280	.220	.190				
OCT	.230	.310		.250	.310	.290				
NOV	.200	! SM			.320	.290				
DEC	.200	.360		.360	.350	.290				

PH (DMSNLESS)			DET'N LIMIT = N/A	GUIDELIN	E = 6.5-8.5(A4)					
JAN	8.170	7.890	7.880	7.910	7.980	7.960				
FEB	- 8.200	7.950	7.930	7.900	7.990	7.990				
MAR	8.320	8.210	8.150	8.150	8.130	8.110				
APR	8.270	7.750	8.320	8.370	8.350	8.360				
MAY	8.350	8.050	8.010	8.060	8.080	8.100				
JUN	8.520	!RE	8.150	8.180	8.170	8.160				
JUL	8.070	7.920	7.940	7.920	7.990	7.980				
AUG	8.210	7.950	7.920	7.990	8.000	8.030				
SEP	8.340	8.100	8.090	8.090	8.140	8.160				
OCT	8.270	8.110	8.110	8.130	8.190	8.230				
NOV	8.180	! SM	•		8.130	8.090				
DEC	8.320	8.300	8.210	8.310	8.230	8.280				
PHOSPHORUS FIL RE	EACT (MG/L)	DET'N LIMIT = .5UG/	L GUIDELIN	E = N/A					
JAN	.005	.002								
FEB	.001			•						
MAR	.006					5/				
APR	.002									
MAY	.004	.001								
JUN	.008	!RE			•					
JUL	.006	.001		:	-	į.				
AUG	.006	.001								
SEP	BDL	BDL		:						
OCT	BDL	BDL								
NOV	.000		•		•					
DEC	.004	.002	∢ .		9€ ±					
PHOSPHORUS TTL-UM	IFIL (MG/L)	DET'N LIMIT = .002	GUIDELIN	E = .40 (F2)					
NAL	.009	<t .002<="" td=""><td>≪T</td><td></td><td></td><td></td></t>	≪T							
FEB	.015	.005		•	•	•				
MAR	.021	.006		•	8.	•				
APR	.021	.010		~	•	•				
MAY	.011	.008			•	•				
JUN	.006			•	· •	•				
JUL	.015	.006			•	•				
AUG	.011	.007		•	7.	•				
CED	013	.007			•	•				

SEP

.012

.006 <T

TABLE 5

DRINKING WATER SURVEILLANCE PROGRAM HAMILTON WATER TREATMENT PLANT 1987

		WATER	TREATMENT PLANT				. D1	STRI	BUTION SYSTEM	1		
	SITE											
		RAW	TREATED		SITE 1				SITE 2		*	
	TYPE											
					STANDING		FREE FLOW		STANDING		FREE FLOW	
ост		.010	.004	<t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>								
NOV		.009	<t !sm<="" td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t>									
DEC		.009	<t .004<="" td=""><td><t< td=""><td></td><td></td><td></td><td></td><td>a.</td><td></td><td></td><td></td></t<></td></t>	<t< td=""><td></td><td></td><td></td><td></td><td>a.</td><td></td><td></td><td></td></t<>					a .			
RESIDUE (TOTAL	.) (MG/L)		DET	'N LIMIT = 1.		GU	IDELI	NE = 500.	(A3)		
JAN		214	CRO 216	CRO	222 C	RO	216	CRO	220	CRO	220	CRO
FEB		202	218	CRO	222 C	RO	219	CRO	221	CRO	220	CRO
MAR		200	232	CRO	234 C	RO	231	CRO	234	CRO	235	CRO
APR		240	228	CRO	231 C	RO	227	CRO	231	CRO	231	CRO
MAY		220	CRO 226	CRO	228 C	RO	226	CRO	228	CRO	229	CRO
JUN		206	CRO !RE		215 C	RO	212	CRO	226	CRO	227	CRO
JUL		217	CRO 218	CRO	219 C	RO	218	CRO	220	CRO	220	CRO
AUG		219	CRO 226	CRO	230 C	RO	226	CRO	222	CRO	221	CRO
SEP		201	CRO 204	CRO	206 C	RO	205	CRO	210	CRO	209	CRO
OCT		217	CRO 217	CRO	217 C	RO	216	CRO	218	CRO	217	CRO
NOV		208					•		214	CRO	214	CRO
DEC		214	CRO 216	CRO	218 C	RO	217	CRO	218	CRO	220	CRO
TURBIDITY (FT)			DET	'N LIMIT = .02		GU	IDELI	NE = 1.00 (A	1)		4
JAN		1.730	.570		1.460		.580		.220		.200	
FEB		1.600	.100		.600		.300		.410		3.600	
MAR		2.900	.520		! SM		! SM		.160		.190	
APR		1.850	.180		.640		.200		.270		.210	
MAY		.710	.240		.720		.260		.260		.250	
JUN		.590	! RE		.490		.280		.310		.330	
JUL		.620	.200		.440		.250		.360		.430	
AUG		1.020	.140		.440		.140		.140		.130	
SEP		.930	.170		.320		.310		.190		.180	
OCT		.440	.030	<t< td=""><td>.350</td><td></td><td>. 150</td><td></td><td>.080</td><td><t< td=""><td>.080</td><td><t< td=""></t<></td></t<></td></t<>	.350		. 150		.080	<t< td=""><td>.080</td><td><t< td=""></t<></td></t<>	.080	<t< td=""></t<>

.170

. 160

.150

.480

.150

.160

NOV

DEC

.610

.800

! SM

TABLE 5

DRINKING WATER SURVEILLANCE PROGRAM HAMILTON WATER TREATMENT PLANT 1987

		WATER TRE	EATMENT PLANT		DISTRI	BUTION SYSTEM	
	SITE	RAW	TREATED	SITE 1		SITE 2	
	TYPE			STANDING	FREE FLOW	STANDING	FREE FLOW
					•••••		
ALUMINUM (MG/L	METALS	S		DET'N LIMIT = .004	GUIDEL 1	INE = .10 (A4)
JAN		.025	.053	.076	.050	BDL	.046
FEB		.032	.078	.099	.078	.040	.049
MAR		.069	.120	.100	.110	.061	.065
APR		.015	. 130	.110	.110	.110	.100
MAY		.026	. 150	.130	.120	.110	.110
JUN		.005	.330	.310	.330	.160	.180
JUL		.005	.110	.100	.100	.120	.110
AUG		.012	.078	.083	.084	.095	.091
SEP		.022	.200	. 190	.190	.200	.210
OCT		.011	.078	.070	.069	.084	.075
NOV		.014	! SM		ž.	.110	.092
DEC		.014	.052	.100	049	.065	.047
ARIUM (MG/L)			DET'N LIMIT = 0.00	1 GUIDELI	NE = 1.000 (A1)
JAN		.021	.020	.020	.021	.005	.020
FEB		.021	.021	.021	.021	.018	.021
MAR		.022	.021	.021	.021	.019	.020
APR		.022	.021	.022	.021	.022	.021
MAY		.022	.022	.020	.019	.020	.019
JUN		.022	.022	.023	.023	.017	.022
JUL		.020	.019	.030	.019	.020	.020
AUG		.019	.019	.019	.019	.020	.020
SEP	*	.018	.018	.018	.018	.019	.019
ОСТ		.017	.017	.017	.017	.017	.018
NOV		.019	!SM		•	.018	.019
DEC		.017	.018	.018	.018	.018	.018
ORON (MG/L)			DET'N LIMIT = 0.01	GUIDELI	NE = 5.000 (A1)
JAN		.020	.030	.050	.030	BDL	.030
FEB		.040	.030	.030	.030	.020	.030
MAR		.030	.030	.050	.030	.030	.030
APR		.030	.030	.050	.030	.040	.030
MAY		.020 <t< td=""><td>.040</td><td></td><td>.030 <t< td=""><td>.030 <</td><td></td></t<></td></t<>	.040		.030 <t< td=""><td>.030 <</td><td></td></t<>	.030 <	
JUN		.020	.040	.010	.030	.030 <	
JUL		.020 <t< td=""><td>.030</td><td></td><td></td><td>.020 <</td><td></td></t<>	.030			.020 <	
AUG		.030 <t< td=""><td>.040</td><td></td><td>.030 <t< td=""><td>.020 <</td><td></td></t<></td></t<>	.040		.030 <t< td=""><td>.020 <</td><td></td></t<>	.020 <	
SEP		.020 <t< td=""><td>.020</td><td></td><td></td><td>.020 <</td><td></td></t<>	.020			.020 <	
ост		.020 <t< td=""><td>.010</td><td></td><td>.020 <t< td=""><td>.020 <</td><td></td></t<></td></t<>	.010		.020 <t< td=""><td>.020 <</td><td></td></t<>	.020 <	
NOV		.037 <t< td=""><td>! SM</td><td></td><td></td><td>.053</td><td>.046 <</td></t<>	! SM			.053	.046 <
DEC		.033 <t< td=""><td>.032</td><td></td><td>.040 <t< td=""><td>.030 <</td><td></td></t<></td></t<>	.032		.040 <t< td=""><td>.030 <</td><td></td></t<>	.030 <	
ERYLLIUM (MG/L)			DET'N LIMIT = 0.00	1 GUIDEL1		(H)
JAN		RDI	RDI	RDI	RDI	RDI	RDI

TABLE 5

DRINKING WATER SURVEILLANCE PROGRAM HAMILTON WATER TREATMENT PLANT 1987

DISTRIBUTION SYSTEM

	SITE						
		RAW	TREATED	SITE 1		SITE 2	
				STANDING	FREE FLOW	STANDING	FREE FLOW
			251	DDI	701	201	DDI
FEB		BDL	BDL	BDL	, BDL	BDL	BDL
MAR		BDL	BDL	BDL	BDL	BDL	BDL
APR		BDL	BDL	BDL	BDL	BDL	BDL
MAY		BDL	BDL	BDL	BDL	BDL	BDL
JUN		BDL	BDL	BDL	BDL	BDL	BDL
JUL		BDL	BDL	BDL	BDL	BDL	BDL
AUG		BDL	BDL	BDL	BDL	BDL	BDL
SEP		BDL	BDL	BDL	BDL	BDL	BDL
OCT		BDL	BDL	BDL	BDL	BDL	BDL
NOV		.001	! SM		•	BDL.	BDL
DEC		BDL	BDL	BDL	BDL	BDL	BDL
CADMIUM (UG/L)		DE	T'N LIMIT = 0.300	GUIDEL	INE = 5.000 (A1	1)
JAN		BDL	BDL	1.000	BDL	BDL	BDL
FEB		BDL	BDL	BDL	BDL	BDL	BDL
MAR		BDL	BDL	BDL	BDL	BDL	BDL
APR		BDL	BDL	BDL	BDL	BDL	BDL
MAY		BDL	BDL	.900	BDL	BDL	BDL
JUN		BDL	BDL	BDL	BDL	BDL	BDL
JUL		BDL	BDL	BDL	BDL	BDL	BDL
AUG		BDL	BDL	.900	BDL	BDL	BDL
SEP		BDL	BDL	BDL	BDL	BDL	BDL
OCT		400	BDL	BDL	BDL	BDL	BDL
NOV		300	!SM			BDL	BDL
DEC	•	BDL	BDL	BDL	BDL	BDL	BDL
OBALT (MG/L) .		DE	T'N LIMIT = 0.001	GUIDEL	INE = 1.0 (I	H)
120		551	201	201	PDI	PDI	DDI
JAN		BDL	BDL	BDL	BDL	BDL BDL	BDL BDL
FEB		BDL	BDL	BDL BDL	BDL BDL	BDL	BDL
MAR		BDL	BDL BDL	BDL	BDL	BDL	BDL
APR MAY		BDL .002	.002	BDL	BDL	BDL	BDL
	,		BDL	BDL	BDL	BDL	.002
JUN		BDL			BDL	BDL	BDL
JUL		BDL	BDL.	BDL		BDL	BDL
AUG		BDL	BDL	BDL	BDL		
SEP		BDL	BDL	BDL	BDL	BDL	BDL BDL
OCT		BDL	BDL	BDL	BDL	BDL	
NOV		.001	! SM	DDI	PO.	BDL	BDL
DEC		BDL	BDL	BDL	BDL	BDL	BDL
CHROMIUM (MG/L)		DE	T'N LIMIT = 0.001	GUIDEL	INE = .05 (A	1)
JAN		.001	BDL	.001	BDL	BDL	.001
FEB		BDL	.001	.001	.001	BDL	BDL
MAR		BDL	BDL	BDL	BDL	BDL	BDL

TABLE 5

DRINKING WATER SURVEILLANCE PROGRAM HAMILTON WATER TREATMENT PLANT 1987

	,	WATER	TREATMENT PLANT		DISTRIBUTION SYSTEM		
	· i						
	SITE					and the second s	
	TVDE	RAW	TREATED	SITE 1		SITE 2	
	TYPE			STANDING	FREE FLOW	STANDING	FREE FLOW

APR		BDL	BDL	.001	.001	.001	.001
MAY		.001	.001	BDL	BDL	BDL	BDL
JUN		BDL	BDL	BDL	.001	.001	.002
JUL		BDL	BDL	BDL	BDL	BDL	BDL
AUG		BDL	.001	.001	.001	BDL	.001
SEP		.002	.001	.002	.001	.002	.002
OCT		.001	.002	.001	.002	.002	.002
NOV		.002	!SM			.002	.002
DEC		.001	.002	.002	.002	.002	.002
COPPER (MG/L)			DET'N LIMIT = .0	001 611	IDELINE = 1.0	(A3)
COFFER (HG/L	,			DEI A CIMITC	,o1 40	IDECINE - 1.0	(A3)
JAN		.005	.001	.036	.002	.130	.024
FEB		.001	.001	.019	.002	.670	.030
MAR		.002	.001	.010	.002	.040	.023
APR		.001	BDL	.012	.001	.450	.023
MAY		.001	.001	.016	.002	.240	.019
JUN		.002	.001	.010	.002	.034	.012
JUL		.003	.001	.018	.003	.220	.035
AUG		BDL	BDL	.013	.002	.250	.049
SEP		.001	BDL	.003	.002	.120	.019
OCT		.002	.002	.006	.002	.280	.036
NOV	Y	.001	! SM	*		.300	.032
DEC		.003	BDL	.028	.002	. 400	.024
IRON (MG/L)			DET'N LIMIT = .0)02 GU	IDELINE = .300	(A3)
JAN		.032	.006	.080	.035	BDL	.008
FEB		.033	.009	.035	.059	.005	.005
MAR		.089	.024	.062	.074		.005
APR		.043	.006	.052	.060	.008	.010
MAY		.052	.006	.066	.062	BDL	BDL
JUN		.014	.004	.058	.060	.009	.011
JUL		.063	.040	.140	.044	.038	.025
AUG		.072	.008	.057	.062	.006	.005
SEP		.024	.074	.100	.069	.700	.038
OCT		.070	.039	.032	.054	.004	.022
NOV		.013	! SM			BDL	.004
DEC		.015	.033	.110	.056	.025	.008
MERCURY (UG/L)			DET'N LIMIT = 0.	.010 GU	IDELINE = 1.000	(A1)
JAN		.010	.010	12	.020		.010
FEB		.020	.010		.020		.010
- MAR	,	BDL	BDL		.020		.010
APR		.020	.020	•	.030		.020
****		070	070	•	.020		.020

.030 .

MAY

.030

.040

TABLE 5

DRINKING WATER SURVEILLANCE PROGRAM HAMILTON WATER TREATMENT PLANT 1987

DISTRIBUTION SYSTEM

	SITE						
	V. 1.	RAW	TREATED	SITE 1		SITE 2	*
	TYPE						
				STANDING	FREE FLOW	STANDING	FREE FLOW
11114		.030	.030		.040		.040
JUN		.050	.050	•	.070	• •	.030
JUL		.040	.050	•	.100	•	.030
AUG				•	.080	•	.020
SEP		.050	.050	•		•	.030
OCT		.040	.040		.090	•	.040
NOV		.050	155	•	.130	•	
DEC		.050	.060	•	. 130	•	.030
MANGANESE (MG	i/L)			DET'N LIMIT = .001	GUIDEL	INE = .050 (A	3)
JAN		.003	BDL	.003	.002	BDL	.001
FEB		.004	BDL	.002	.002	.001	.001
MAR		.005	.001	.003	.003	.001	BDL
APR		.006	.001	.003	.003	.001	.001
MAY		.007	.001	.004	.003	.001	.001
JUN		.003	.001	.003	.003	.003	.003
JUL		.011	.001	.003	.003	.001	.001
AUG		.005	.001	.004	.003	.001	.001
SEP		.006	.002	.006	.005	.004	.002
OCT		.003	.001	.003	.003	.001	.001
NOV		.002	! SM			.002	.001
DEC		.003	.002	.003	.003	.002	.001
MOLYBDENUM (M	IG/L)			DET'N LIMIT = 0.001	GUIDEL	INE = .50 (н)
		004	001	001	001	001	.001
JAN		.001	.001	.001 .001	.001 .001	.001 .001	.001
FEB		.001					.001
MAR		.001	.001 .001	.001	.001 .001	.001 .001	.001
APR		.001 .001	.001	.001 .001	.001	.001	.001
JUN		.001	.001	.001	.001	.001	.001
JUL		.001	.001	.001	.001	.001	.001
AUG		BDL	.001	BDL	BDL	.001	BDL
		.001	.001	.002	.002	.001	.001
SEP		BDL	BDL	BDL	BDL	.001	.001
NOV		.001	!SM			BDL	BDL
DEC		.001	.001	.001	.001	BDL	.001
NICKEL (MG/L)			DET'N LIMIT = 0.001	GUIDEL	INE = .05 (F3)
JAN		BDL	BDL	.004	BDL	BDL	BDL
FEB		.002	BDL	.002	BDL	BDL	BDL
MAR		.002	BDL	.002	BDL	BDL	BDL
APR		BDL	BDL	.002	BDL	.002	BDL
MAY		.002	.069		.002	BDL	.002
JUN		BDL	BDL	.002	BDL	BDL	BDL
JUL		.002	BDL	.002	.002	.002	.002

TABLE 5

DRINKING WATER SURVEILLANCE PROGRAM HAMILTON WATER TREATMENT PLANT 1987

	WATER	TREATMENT PLANT		DISTRI	BUTION SYSTEM	
	SITE					
	RAW TYPE	TREATED	SITE 1		SITE 2	
	TIPE		STANDING	FREE FLOW	STANDING	FREE FLOW

AUG	BDL	.002	.002	BDL	PDI	.002
SEP	.005	.002	.008		BDL	
OCT	.005	.004	BDL	BDL	BDL	.001
NOV	.002	.004 !SM		.002	.002 .002	.008
DEC	.001	.002	.006	.001	.002	.002
LEAD (MG/L)		•••••••	DET'N LIMIT = 0.003	GUIDELI	NE = .050 (A1)	***************
JAN	no.	201	PDI	PD1	007	201
FEB	BDL BDL	BDL BDL	BDL BDL	BDL BDL	.007 .016	BDL BDL
MAR	BDL	BDL	BDL	BDL	BDL	BDL
APR	BDL	BDL	BDL	BDL	.009	BDL
MAY	.010	.010	BDL	BDL	BDL	BDL
JUN	BDL	BDL	BDL	BDL	.007	.014
JUL	BDL	BDL	BDL	BDL	.003	BDL
AUG	BDL	BDL	.005	.004	.007	.005
SEP	BDL	BDL	BDL	BDL	.005	BDL
OCT	.004	BDL	.028	BDL	.006	BDL
NOV	.003	!SM			.006	BDL
DEC	BDL	BDL	BDL	BDL	.006	BDL
STRONTIUM (MG/L)	• • • • • • • • • • • • • • • • • • • •	DET'N LIMIT = .001	GUIDELI	NE = 2.00 (H)	***************
		×				
JAN	.170	.170	.170	.180	.062	.170
FEB	.170	.170	.170	.170	.150	.180
MAR	.180	.180	.180	.180	.170	.170
APR	.180	.180	.180	.180	.190	.180
MAY	.190	.190	.170	.170	.170	.170
JUN	.180	.180	.180	.180	.130	.180
JUL	.160	.160	.160	.160	.160	.160
AUG	.160	.160	.160	.160	.170	. 160
SEP	.160	.160	.160	.150	.160	.160
OCT NOV	.150 .160	.150	.150	.150	.150	.150
	.150	! SM	140	140	.150	.160
DEC	. 150	.160	.160	.160	.160	.160
URANIUM (UG/L).		DET'N LIMIT = .02	GUIDELI	NE = 20. (A2)	
NAL	.460	.450	.450	.440	BDL	.460
FEB	.340	.320	.310	.320	.300	.300
MAR	.330	.370	.330	.360	.330	.320
APR	.330	.320	.340	.340	.350	.320
MAY	.300	.330	.340	.330	.330	.320
JUN	.270	.300	.330	.330	.110	.320
JUL	.320		.330	.340	.310	.310

AUG

SEP

.020

.300

.020

.320

.030

.340

.020

.330

.290

.290

.290

TABLE 5

DRINKING WATER SURVEILLANCE PROGRAM HAMILTON WATER TREATMENT PLANT 1987

WATER TREATMENT PLANT DISTRIBUTION SYSTEM

	SITE						
		RAW	TREATED	SITE 1		SITE 2	
	TYPE						
				STANDING	FREE FLOW	STANDING	FREE FLOW
ост		.120	.410	.460	.460	.440	.410
NOV		! SM	!SM			! SM	!SM
DEC		.350	.350	.370	.380	.330	.360
VANADIUM (MG/L)			DET'N LIMIT = .001	GIIDE	INE = .10 (H)	
TAIRDION (NO) E	•			DET 18 ETHE - 1001	doibe	- 110 (11)	
JAN		BDL	BDL	BDL	BDL	BDL	BDL
FEB		BDL	BDL	BDL	BDL	BDL	BDL
MAR		BDL	BDL	BDL	BDL	BDL	BDL
APR		BDL	BDL	BDL	BDL	.001	BDL
MAY		BDL	BDL	BDL	BDL	BDL	BDL
JUN		BDL	BDL	BDL	BDL	.001	BDL
JUL		BDL	BDL	BDL	BDL	BDL	BDL
AUG .		BDL	BDL	BDL	BDL	BDL	.001
SEP		BDL	BDL	BDL	BDL	.002	.002
OCT		BDL	BDL	BDL	BDL	BDL	BDL
NOV		.001	!SM			BDL	.002
DEC		BDL	BDL	BDL	BDL	BDL	BDL
ZINC (MG/L)				DET'N LIMIT = .001	GUIDE	LINE = 5.00 (A3)	
JAN		.002	.001	.051	.004	.007	.002
FEB		.002	.001	.026	.006	.035	.001
MAR		.002	BDL	.009	.004	.003	.003
APR		.002	.001	.036	BDL	.022	.001
MAY		.036	.022	.036	.002	.009	.002
JUN		.003	.002	.027	.015	.005	.001
JUL		.003	.001	.032	.001	.016	.002
AUG		.003	.002	.029	.003	.023	.003
SEP		BDL	BDL	.016	BDL	.010	BDL
OCT		.004	BDL	.003	BDL	.012	.004
NOV		.002	!SM	•,		.013	BDL
DEC		.002	.001	.009	.002	.012	BDL

TABLE 5

DRINKING WATER SURVEILLANCE PROGRAM HAMILTON WATER TREATMENT PLANT 1987

		WATER	TREATMENT PLANT		DISTR	IBUTION SYSTEM	
	0177	•					
	SITE	= RAW	TREATED	SITE 1		SITE 2	
	TYPE	E					
				STANDING	FREE FLOW	STANDING	FREE FLOW
	CHLC	OROAROMAT	ics				
HEXACHLO	ROBUTADIENE (N			DET'N LIMIT = 1.00	O GUIDEL	INE = 450. (D4)	
JAN		BDL	BDL		BDL		BDL
FEB		BDL	BDL		BDL		BDL
MAR		BDL	BDL		BDL		BDL
APR		BDL	BDL	•	BDL	, in the second	BDL
MAY		BDL	BDL	•	BDL		BDL
JUN		BDL	BDL		!LA	*	BDL
JUL		BDL	BDL		1.000 <t< td=""><td></td><td>BDL</td></t<>		BDL
AUG		BDL	1.000	<₹ .	BDL		BDL
SEP	1 (6)	BDL	BDL		BDL		!LA
OCT		BDL	BDL	•	BDL		BDL
NOV		BDL	!15				BDL
DEC		BDL	BDL	•	BDL		BDL
123 TRIC	HLOROBENZENE ((NG/L)	DET'N LIMIT = 5.00	O GUIDEL	INE = 10000. (I)	•••••••
1811		001	201		201		201
JAN		BDL	BDL		BDL	*	BDL
FEB		BDL	BDL		BDL		BDL
MAR		BDL	BDL	•	BDL	•	BDL
APR		BDL	BDL	•	BDL	•	BDL
MAY		BDL	BDL		BDL		BDL
JUN		BDL	30.000	∢ .	· !LA		BDL
JUL		BDL	BDL	. <u> </u>	BDL	•	BDL
AUG		BDL	BDL	•	BDL	•	BDL
SEP		BDL	BDL	•	BDL	•	, ILA
OCT		BDL	BDL	•	BDL	,	BDL
NOV		8DL	! ! \$	•		•	BDL
DEC		BDL	BDL		BDL		BDL
1234 T-C	HLOROBENZENE ((NG/L	•	DET'N LIMIT = 1.00	O GUIDEL	INE = 10000. (I)	
JAN		BDL	BDL	•	BDL		BDL
FEB		BDL	BDL		BDL	*	BDL
MAR		BDL	BDL		3.000 <t< td=""><td></td><td>BDL</td></t<>		BDL
APR		BDL	BDL		BDL		BDL
MAY		BDL	BDL	è	BDL		BDL
JUN		BDL	BDL		!LA		BDL
JUL		BDL	BDL	*	BDL		BDL
AUG		BDL	BDL	*	BDL		BDL
SEP		BDL	BDL		BDL		ILA
OCT		BDL	BDL		BDL	•	BDL
NOV		BDL	! ! \$		*		BDL
DEC		BDL	BDL		BDL		BDL
124 TRIC	HLOROBENZENE ((NG/L)	DET'N LIMIT = 5.00	0 GUIDEL	INE = 10000. (I)	
JAN		RDI	BDL		BDL	• .	BDL

TABLE 5

DRINKING WATER SURVEILLANCE PROGRAM HAMILTON WATER TREATMENT PLANT 1987

	W	ATE	R TREATMENT PLANT	DISTRIBUTION SYSTEM							
	SITE	RAW	TREATED		SITE	1		SITE 2	,		
	TYPE		INCATED		3116			5116	-		
					STANDING		FREE FLOW	STANDING	FRE	E FLOW	
FEB		BDL	BDL				BDL	i		BDL	
MAR		BDL	BDL				BDL	ā	•.	BDL	
APR	5.	000	<t 8.000<="" td=""><td><t< td=""><td></td><td></td><td>BDL</td><td></td><td></td><td>BDL</td><td></td></t<></td></t>	<t< td=""><td></td><td></td><td>BDL</td><td></td><td></td><td>BDL</td><td></td></t<>			BDL			BDL	
MAY		BDL	BDL				BDL	i	•	BDL	
JUN		BDL	BDL				!LA			BDL	
JUL		BDL	BDL			•	BDL	,	•	BDL	
AUG		BDL	BDL				BDL			BDL	
SEP		BDL	BDL			•	BDL	1	•	!LA	
OCT		BDL	BDL			.	BDL		•	BDL	
NOV		BDL	!IS			•			•	BDL	
DEC		BDL	BDL			•	BDL		•	BDL	
HEXACHLOROETHANE	(NG/L)		DET'N	LIMIT =	1.000	GU	IDELINE = 1900.	(D4)		
JAN		BDL	7.000	<t< td=""><td></td><td></td><td>5.000</td><td><1</td><td></td><td>BDL</td><td></td></t<>			5.000	<1		BDL	
FEB		BDL	BDL			•	BDL		•	BDL	
MAR		BDL	4.000	<t< td=""><td></td><td>•</td><td>BDL</td><td></td><td>•</td><td>4.000</td><td><1</td></t<>		•	BDL		•	4.000	<1
APR		BDL	3.000	<t< td=""><td></td><td>.</td><td>6.000</td><td><t< td=""><td></td><td>3.000</td><td><t< td=""></t<></td></t<></td></t<>		.	6.000	<t< td=""><td></td><td>3.000</td><td><t< td=""></t<></td></t<>		3.000	<t< td=""></t<>
MAY		BDL	BDL				BDL	,	•	2.000	<t< td=""></t<>
JUN		BDL	3.000	<t< td=""><td></td><td></td><td>!LA</td><td></td><td></td><td>BDL</td><td></td></t<>			!LA			BDL	
JUL		BDL	BDL				3.000	<t< td=""><td></td><td>3.000</td><td><t< td=""></t<></td></t<>		3.000	<t< td=""></t<>
AUG		BDL	4.000	<t< td=""><td></td><td>•</td><td>4.000</td><td><t< td=""><td></td><td>8.000</td><td><t< td=""></t<></td></t<></td></t<>		•	4.000	<t< td=""><td></td><td>8.000</td><td><t< td=""></t<></td></t<>		8.000	<t< td=""></t<>
SEP		BDL	BDL			•	BDL			!LA	
OCT		BDL	15.000				BDL			BDL	

BDL

BDL

BDL

NOV

DEC

BDL

BDL

!IS

BDL

TABLE 5

DRINKING WATER SURVEILLANCE PROGRAM HAMILTON WATER TREATMENT PLANT 1987

	*	WATER	TREATMENT PLANT		DISTRIBUT	ION SYSTEM		
	SITE RAI TYPE		TREATED	SITE 1	SITE 1 SITE 2			
				STANDING	FREE FLOW S	TANDING	FREE FLOW	
BENZO (A) PYRENE	PAH (NG/L)		DET'N LIMIT = 0	GUIDELINE	= 10 (B1)		
SEP OCT		BDL 5.000	BDL BDL					
NOV DEC		BDL 5.000	I NR BDL	:	•	*		

TABLE 5

DRINKING WATER SURVEILLANCE PROGRAM HAMILTON WATER TREATMENT PLANT 1987

DISTRIBUTION SYSTEM WATER TREATMENT PLANT SITE RAW TREATED SITE 1 SITE 2 TYPE STANDING FREE FLOW STANDING PESTICIDES & PCB DET'N LIMIT = 1.000 GUIDELINE = 700. (G) ALPHA BHC (NG/L) 2.000 <T 2.000 <T 2.000 <T 3.000 <T JAN 2.000 <T 2.000 <T 3.000 <T 5.000 <T FEB 6.000 <T 3.000 <T 2.000 <T 3.000 <T MAR 3.000 <T 3.000 <T 3.000 <T 3.000 <T APR 3.000 <T 2.000 <T 3.000 <T MAY 2.000 <T JUN 3.000 <T 3.000 <T !LA 2.000 <T 2.000 <T JUL 2.000 <T BDL 3.000 <T 4.000 <T 2.000 <T **AUG** 2.000 <T 4.000 <T BDL 2.000 <T 3.000 <T !LA 2.000 <T 2.000 <T 1.000 <T OCT BDL 1.000 <T 2.000 <T ! IS NOV 3.000 <T 3.000 <T DEC 3.000 <T 3.000 <T DET'N LIMIT = 1.000 GUIDELINE = 300. (G) BETA BHC (NG/L JAN BDL BDL BDL BDL BDL BDL FEB BDL BDL BDL MAR BDL BDL RDI APR BDL BDL BDL BDL MAY BDL BDL BDL BDL BDL JUN BDL !LA BDL BDL BDL JUL RDI BDL BDL BDL BDL BDL AUG SEP BDL BDL 2.000 <T OCT BDL BDL NOV BDL ! IS DEC BDL BDL BDL LINDANE (NG/L DET'N LIMIT = 1.000 GUIDELINE = 4000.0 (A1)BDL 1.000 <T BDL JAN BDL **FEB** BDL 1.000 <T 1.000 <T 2.000 <T 2.000 <T MAR 2.000 <T 2.000 <T 1.000 <T BDL 1.000 <T BDL APR 3.000 <T 1.000 <T 2.000 <T MAY BDL 1.000 <T 1.000 <T 2.000 <T ! LA 1.000 <T JUN JUL BDL BDL BDL 1.000 <T 2.000 <T 1.000 <T BDL AUG 1.000 <T SEP BDL BDL BDL !LA 1.000 <T 1.000 <T BDL OCT

BDL

1.000 <T

1.000 <T

NOV

DEC

BDL

1.000 <T

!15

1.000 <T

TABLE 5

DRINKING WATER SURVEILLANCE PROGRAM HAMILTON WATER TREATMENT PLANT 1987

WATER TREATMENT PLANT DISTRIBUTION SYSTEM

RAW TREATED SITE 1 SITE 2

TYPE

STANDING FREE FLOW STANDING

SITE

				STANDING	FREE	FLOW	STANDING	FREE	FLOW
		PHENOLICS							
PHENOL	(UG/L)		DET'N LIMIT ==	0.2	GUIDELINE	= 2.00	(A3)	
JAN		.400	<t .200<="" td=""><td><t< td=""><td></td><td></td><td></td><td></td><td>*</td></t<></td></t>	<t< td=""><td></td><td></td><td></td><td></td><td>*</td></t<>					*
FEB		BDL	BDL				:		
MAR		.600	<t .400<="" th=""><th><t< th=""><th></th><th>*</th><th></th><th></th><th></th></t<></th></t>	<t< th=""><th></th><th>*</th><th></th><th></th><th></th></t<>		*			
APR		BDL	BDL		•				
MAY		.200	<t .200<="" th=""><th><t< th=""><th></th><th></th><th></th><th></th><th></th></t<></th></t>	<t< th=""><th></th><th></th><th></th><th></th><th></th></t<>					
JUN		.800	<t .600<="" th=""><th><t< th=""><th>*</th><th></th><th></th><th></th><th></th></t<></th></t>	<t< th=""><th>*</th><th></th><th></th><th></th><th></th></t<>	*				
JUL		BDL	BDL		*				
AUG		BDL	BDL			!₩1			
SEP		.400	<t .400<="" th=""><th><t< th=""><th>*</th><th></th><th></th><th></th><th>•</th></t<></th></t>	<t< th=""><th>*</th><th></th><th></th><th></th><th>•</th></t<>	*				•
OCT		.800	<t .800<="" th=""><th><t< th=""><th></th><th>•</th><th>*</th><th></th><th>**</th></t<></th></t>	<t< th=""><th></th><th>•</th><th>*</th><th></th><th>**</th></t<>		•	*		**
NOV		BDL	!NR		*	•			
DEC	*	BDL	BDL						

TABLE 5

DRINKING WATER SURVEILLANCE PROGRAM HAMILTON WATER TREATMENT PLANT 1987

JAN

130.000 <T

BDL

BDL

BDL

DISTRIBUTION SYSTEM

	SITE					B _{II}
	RAW	TREATED	SITE 1		SITE 2	
	TYPE		STANDING	FREE FLOW	STANDING	FREE FLOW
	SPECIFIC PESTICIO	ES				
ATRAZINE (NG/L			DET'N LIMIT = 5Q.00	O GUIDEL	INE = 60000. (B3	
JAN	370.000 <t< td=""><td>BDL</td><td></td><td>BDL</td><td></td><td>BDL</td></t<>	BDL		BDL		BDL
FEB	BDL	BDL	Ä	BDL		BDL
MAR	BDL	BDL		BDL		BDL
APR	BDL	BDL		BDL		BDL
MAY	BDL	BDL		BDL		BDL
JUN	BDL	BDL		BDL		BDL
JUL	BDL	BDL		BDL		BDL
AUG	BDL	BDL	*	BDL		BDL
SEP	BDL	BDL		BDL		BDL
OCT	BDL	BDL		BDL	*	BDL
NOV	BDL	BDL	•	.		BDL
DEC	BDL	BDL		BDL	*	BDL
BLADEX (NG/L)		DET'N LIMIT = 100.	00 GUIDEL	INE = 10000. (B3)
	F/F0 000					
JAN	5450.000	BDL	*	BDL	*	BDL
FEB	BDL	BDL	*	BDL		BDL
MAR	BDL	BDL	*.	BDL		BDL
APR	BDL	BDL	*	BDL		BDL
MAY	BDL	BDL	•	BDL	•	BDL
JUN	BDL	BDL		BDL		BDL
JUL	BDL	BDL	*	BDL	*	BDL
AUG	BDL	BDL		BDL	*	BDL
SEP	BDL	BDL	*	BDL		BDL
OCT	BDL	BDL		BDL	*	BDL
NOV	BDL	BDL	¥			BDL
DEC	BDL	BDL		· BDL	•	BDL
PROMETONE (NG/	L)		DET'N LIMIT = 50.0	O GUIDEL	.INE = 52500. (D3)
JAN	1460.000	BDL		BDL		BDL
FEB	BDL	BDL		BDL		BDL
MAR	BDL	BDL	v	BDL		BDL
APR	BDL	BDL	. ■1	BDL		BDL
MAY	BDL.	BDL		BDL		BDL
JUN	BDL	BDL		BDL		BDL
JUL	BDL	BDL		BDL		BDL
AUG	BDL	BDL	.	BDL		BDL
SEP	BDL	BDL		BDL		BDL
OCT	BDL	BDL		BDL	-	BDL
NOV	BDL	BDL		*		BDL
DEC	BDL	BDL	•	BDL		BDL
PROPAZINE (NG/	L)		DET'N LIMIT = 50.0	O GUIDEL	.INE = 16000. (D2) .

TABLE 5

DRINKING WATER SURVEILLANCE PROGRAM HAMILTON WATER TREATMENT PLANT 1987

		WATER	TREATMENT PLANT		DISTRI	BUTION SYSTEM	
		SITE					
		RAW	TREATED	SITE 1		SITE 2	
		TYPE					90
				STANDING	FREE FLOW	STANDING	FREE FLOW
					ē		
FEB		BDL	BDL	•	BDL		BDL
MAR		BDL	BDL	•	BDL		BDL
APR		BDL	BDL	¥	BDL	•	BDL
MAY		BDL	BDL		BDL		BDL
JUN		BDL	BDL		BDL		BDL
JUL		BDL	BDL		BDL		BDL
AUG		BDL	BDL		BDL		BDL
SEP		BDL	BDL		BDL		BDL
OCT		BDL	BDL	•	BDL	•	BDL
NOV		BDL	. BDL			*	BDL
DEC		BDL	BDL		BDL		BDL
SIMAZINE	(NG/L)	,	DET'N LIMIT = 50.0	00 GUIDELI	NE = 10000. (B3)	
JAN		860.000	BDL		BDL		BDL
FEB		BDL	BDL		BDL		BDL
MAR		BDL	BDL		BDL		BDL
APR		BDL	BDL		BDL		BDL
MAY		BDL	BDL		BDL		BDL
JUN		BDL	BDL		BDL	, .	BDL
JUL		BDL	BDL		BDL		BDL
AUG		BDL	BDL		BDL		BDL
SEP		BDL	BDL		BDL		BDL
OCT		BDL	BDL		BDL		BDL
NOV		BDL	BDL		•		BDL
DEC		BDL	F BDL		BDL		BDL

TABLE 5

DRINKING WATER SURVEILLANCE PROGRAM HAMILTON WATER TREATMENT PLANT 1987

		WATER	TREATMENT PLANT		D	ISTRIBUTION SYSTE	М		
	SITE	RAW	TREATED	SITE 1		SITE 2	l.		
	TYPE			STANDING	FREE FLOW	STANDING		FREE FLOW	
\ \	VOLATIL	ES.							
BENZENE (UG/L)			DET'N LIMIT = 0	GU	IDELINE = 5.0	(D1)		
JAN ,		BDL	BDL		BDL			BDL	
FEB		BDL	BDL	-	BDL			BDL	
MAR		BDL	BDL		BDL			BDL	
APR		BDL	BDL		BDL			BDL	
MAY		BDL	BDL		BDL			BDL	
JUN		BDL	BDL		BDL			BDL	
JUL		BDL	BDL	_	BDL			BDL	
AUG		BDL	!BT	-	BDL			BDL	
SEP		BDL	BDL	-	BDL			BDL	
OCT		BDL	IRE	= =	BDL			BDL	
NOV		BDL	! SM	-				BDL	
DEC		BDL	BDL		.050	<1		BDL	
TOLUENE (UG/L)			DET'N LIMIT = 0	GU	IDELINE = 100.0	(G)		
JAN		BDL	BDL		BDL			BDL	
FEB		BDL	BDL	- **	BDL			BDL	
MAR		BDL	BDL		BDL			BDL	
APR		BDL	BDL		BDL			BDL	
MAY		BDL	BDL		BDL			BDL	
JUN		BDL	BDL		BDL			BDL	
JUL		BDL	BDL		BDL			BDL	
AUG		BDL	!BT	-	BDL			BDL	
SEP		BDL	BDL		BDL			BDL	
ост		BDL	IRE		.300			.050	
NOV		.100						.050	
DEC		BDL	BDL		.050			BDL	
ETHYLBENZENE (U	G/L)			DET'N LIMIT = 0	GU	IDELINE = 3400.	(D3)		
JAN		BDL	BDL	_	BDL		,	BDL	
FEB		BDL	BDL	-	BDL			BDL	
MAR		BDL	BDL		BDL			BDL	
APR		BDL	BDL		BDL			BDL	
MAY		BDL	BDL		BDL			BDL	
JUN		BDL	BDL		BDL			BDL	
JUL		BDL	BDL	-	. 150		i.	BDL	
AUG		BDL	!BT		BDL			BDL	
SEP		BDL	.100	<ĭ .	.100			BDL	
OCT		BDL	!RE		.100			BDL	
NOV		BDL	! SM			× .		BDL	
DEC		BDL	BDL	•	.050			BDL	

DET'N LIMIT = 0

GUIDELINE = 620.

BDL

P-XYLENE (UG/L

BDL

JAN

TABLE 5 DRINKING WATER SURVEILLANCE PROGRAM HAMILTON WATER TREATMENT PLANT 1987

		WATER TRE	ATMENT PLANT		DISTRI	BUTION SYSTEM	
	SITE	RAW	TREATED	SITE 1		SITE 2	
	TYPE	NAW.	INCATED	3116		3112 2	
				STANDING	FREE FLOW	STANDING	FREE FLOW
							·
FEB		BDL .	BDL		BDL	笺	BDL
MAR		BDL	BDL		BDL	9	BDL
APR		BDL	BDL	, ×	BDL		BDL
MAY		BDL	BDL	.*	BDL	** *	BDL
JUN		BDL	BDL	•	BDL	•	BDL
JUL		BDL	BDL		BDL		BDL
AUG		BDL	!BT	•	BDL	•	BDL
SEP		BDL	BDL		.000 RMP	•	BDL
OCT		BDL	!RE	*	.000 RMP	÷	BDL
NOV		BDL	!SM	ź .	•	•	BDL
DEC		BDL	BDL		BDL		BDL
-XYLENE (UG/L)			DET'N LIMIT = 0	GUIDEL1	NE = 620. (G)
JAN		BDL	BDL	#	BDL		901
FEB		BDL	BDL	•	BDL	•	BDL BDL
MAR		BDL	BDL	7.■1	BDL	•	
APR		BDL	BDL	•		*	BDL
MAY		BDL	BDL	C.	BDL	*	BDL
				*	BDL		BDL
JUN		BDL	BDL	/ *	BDL		BDL
JUL		BDL	BDL		BDL	•	BDL
AUG		BDL	!BT		BDL	•	BDL
SEP		BDL	BDL	1.	.200 <t< td=""><td></td><td>BDL</td></t<>		BDL
OCT		BDL	!RE	q●	.100 <t< td=""><td>*</td><td>BDL</td></t<>	*	BDL
NOV		BDL	! SM	•	•	•	BDL
DEC		BDL	BDL		BDL	*	BDL
-XYLENE (UG/L)			DET'N LIMIT = 0	GUIDELI	NE = 620. (G)
JAN		BDL	BDL	180	BDL		BDL
FEB		BDL	BDL		BDL		BDL
MAR		BDL	BDL		BDL	•	BDL
APR		BDL	BDL	•	BDL		BDL
MAY		BDL	BDL	•	BDL		BDL
JUN		BDL	BDL	-	BDL		BDL
JUL		BDL	BDL		BDL		BDL
AUG		BDL	!BT		BDL	•	BDL
SEP		BDL	BDL	•	BDL		BDL
OCT		BDL	!RE		.050 <t< td=""><td></td><td>BDL</td></t<>		BDL
NOV		BDL	! SM				BDL
DEC		BDL	BDL		BDL		BDL
HLOROFORM (UG/L)			DET'N LIMIT = 0	GUIDELI	NE = 350.0 (A1+)
JAN		BDL	8.000	3	7.000	No.	8.000
FEB		BDL	7.000	•	7.000	•	8.000
		BUL	7.000	=	7.000	•	0.000

13.000

12.000

MAR

BDL

TABLE 5

DRINKING WATER SURVEILLANCE PROGRAM HAMILTON WATER TREATMENT PLANT 1987

	WATER	TREATMENT PLANT		DIST	RIBUTION SYSTEM	b.
	SITE					
	RAW	TREATED	SITE 1		SITE 2	
	TYPE					
			STANDING	FREE FLOW	STANDING	FREE FLOW

				- TWV - 1-1-1-		
APR	BDL	11.000	ė	12.000	(.)	12.000
MAY	BDL	9.800	·	9.000	:•	11.700
JUN	BDL	21.500	i.e.	18.400		17.200
JUL	BDL	11.400	Ĭ	10.100	₩	13.600
AUG	BDL	!BT	•	9.700	•	12.800
SEP	BDL	12.900	•	13.600	ı.	15.900
OCT	BDL	!RE	*	10.100	•	9.600
NOV	BDL	ISM			7€	9.700
DEC	BDL	9.500		9.600	:•	9.000
DICHLOROBROMOMETHA	NE (UG/L)	DET'N LIMIT = 0	GUIDE	LINE = 350.0 (A1+)	
TANK	PDI	7 000		7 000		0.000
JAN	BDL	7.000	*	7.000	*	8.000
FEB	BDL	7.000		7.000		7.000
MAR	BDL	10.000	•	9.000	•	8.000
APR	BDL	8.000	•	9.000	•	9.000
MAY	BDL	7.650	*	7.300		8.600
. JUN	BDL	9.400	•	8.900		9.200
JUL	BDL	8.400		7.300	*	8.700
AUG	BDL	!BT	•	8.500	•	9.600
SEP	BDL	8,400	•	8.700		9.400
OCT	BDL	!RE	*	9.300	*	8.700
NOV	BDL	! SM	12.		•	8.500
DEC	BDL	8.400		8.600		8.500
CHLOROD I BROMOMETHA	NE /UC/I	١	DET'N LIMIT = 0	CUIDE	LINE = 350.0 (A1+)	
CHEOROD I BROMONE I MAI	ML (Od/L	,	DET N CIMIT - 0	GOIDE	EINE - 330.0 (AI+)	
JAN	BDL	4.000		4.000	×	5.000
FEB	BDL	3.000		4.000		4.000
MAR	BDL	5.000		4.000	**	6.000
APR	BDL	4.000		2.000	·•	4.000
MAY	BDL	3.600	•	3.400	•	4.100
JUN	BDL	4.200	•	4.200	•	4.600
JUL	BDL	3.500		3.100		3.900
AUG	BDL	!BT		4.100	* .	4.200
SEP	BDL	4.100		4.500		6.700
OCT	BDL	!RE		4.800	, a	4.400
NOV	BDL	! SM	\		#¶*	4.100
DEC	BDL	4.800		4.500		4.300
BROMOFORM (UG/L)		DET'N LIMIT = 0	GUIDE	LINE = 350.0 (A1+)	
JAN	BDL	BDL		BDL		BDL
FEB	BDL	BDL		BDL	•	BDL
MAR	BDL	BDL	•	BDL		BDL
bridge.	-	DDL		, 200 per		552

BDL

BDL

BDL

BDL

BDL

BDL

BDL

APR

MAY

TABLE 5

DRINKING WATER SURVEILLANCE PROGRAM HAMILTON WATER TREATMENT PLANT 1987

		WATER	TREATMENT PLANT		DIS	STRIBUTION SYSTEM	
	SIT	E					
		RAW	TREATED	SITE 1		SITE 2	
	TYF	PE		~			
				STANDING	FREE FLOW	STANDING	FREE FLOW
JUN		BDL	BDL		BDL		BDL
JUL		BDL	BDL	, .	BDL	19	BDL
AUG		BDL	!BT	•	BDL	•	BDL
SEP		BDL	.400	<t< td=""><td>.400</td><td>· ·T</td><td>.400 <t< td=""></t<></td></t<>	.400	· ·T	.400 <t< td=""></t<>
OCT		BDL	!RE	•	.400		.400 <t< td=""></t<>
NOV		BDL	!SM	•	.400	٠	.400 <t< td=""></t<>
DEC		BDL	BDL	•	BDL	•	BDL
1,2 DICH	LOROBENZENE ((UG/L)	DET'N LIMIT = 0	GUI	ELINE = 130. (G)	
Ŷ		5.75					
JAN		BDL	BDL		BDL		BDL
FEB		BDL	BDL		BDL		BDL
MAR		BDL	BDL		BDL		BDL
APR		BDL	.000		.000		BDL
MAY		BDL	BDL		BDL		BDL
JUN		BDL	BDL		BDL		BDL
JUL		BDL	BDL		BDL		BDL
AUG		BDL	IBT		BDL		BDL
SEP		BDL	BDL)•	BDL		BDL
OCT		BDL	!RE		BDL		BDL
NOV		BDL	!SM			*	BDL
DEC		BDL	BDL		BDL		BDL
TOTL TRI	HALOMETHANES	(UG/L)	DET'N LIMIT = 0	GUII	DELINE = 350.0 (A1)	
JAN		BDL	19.000		18.000	. •	21.000
FEB		BDL	17.000		18.000		19.000
MAR		BDL	29.000		26.000		26.000
APR		BDL	23.000		23.000		25.000
MAY		BDL	21.050		19.700		24.400
JUN		BDL	35.100		31.500		31.000
JUL		BDL	23.300		20.500		26.200
AUG		BDL	!BT		22.300		26.600
SEP		BDL	25.800		27.200		32.400
OCT		BDL	!RE		24.600		23.100

22.700

22.700

21.800

OFFLINE...

NOV

DEC

BDL

BDL

! SM

TABLE 6

DRINKING WATER SURVEILLANCE PROGRAM HAMILTON WATER TREATMENT PLANT 1987

COUNT OF PARAMETERS NOT FOUND ABOVE THE DETECTION LIMIT

						
SCAN	PARAMETER	ANALYSED	DETECTION LIMIT	GUIDE	LINE	
	********	******		******		
CHEMISTRY (LAB)	CYANIDE	47	0.001	.200	(A1)	MG/L
METALS	ARSENIC	70	0.001	.050	(A1)	MG/L
	CYANIDE	47	0.001	.200	(A1)	MG/L
	SELENIUM	70	0.001	.010	(A1)	MG/L
CHLOROAROMATICS	1275 T OU ODODENZENE	/7	1 000	10000		W0 (I
CHLOROAKOMATICS	1235 T-CHLOROBENZENE	47	1.000		(1)	NG/L
	1245 T-CHLOROBENZENE	47	1.000	38000. 10000.	10.1	NG/L
	135 TRICHLOROBENZENE	47	5.000	10000.		NG/L
	OCTACHLOROSTYRENE	47	1.000	7/000	N/A	NG/L
	PENTACHLOROBENZENE	47	1.000	74000.		NG/L
	236 TRICHLOROTOLUENE	47	5.000		N/A	NG/L
	245 TRICHLOROTOLUENE	47	5.000		N/A	NG/L
	26A TRICHLOROTOLUENE	47	5.000		N/A	NG/L
CHLOROPHENOLS	234 TRICHLOROPHENOL	4	50.		N/A	NG/L
	2345 T-CHLOROPHENOL	4	50.		N/A	NG/L
	2356 T-CHLOROPHENOL	4	50.		N/A	NG/L
	245-TRICHLOROPHENOL	4	50.	260000	O(D4)	NG/L
	246-TRICHLOROPHENOL	4	50.	10000.	(C1)	NG/L
	PENTACHLOROPHENOL	4	50.	10000.	(C1)	NG/L
PAH	PHENANTHRENE	8	0		N/A	NG/L
FAII	ANTHRACENE	8	0		N/A	NG/L
	FLUORANTHENE	8	0	42000	(D4)	NG/L
	PYRENE	8	ō	42000	N/A	NG/L
	BENZO(A)ANTHRACENE	8	0		N/A	NG/L
	CHRYSENE	8	0		N/A	NG/L
	DIMETH. BENZ(A)ANTHR	8	0		N/A	NG/L
	BENZO(E)PYRENE	8	0		N/A	NG/L
	BENZO(J) FLUORANTHEN	8	N/A		N/A	NG/L
	BENZO(B) FLUORANTHEN	8	0			NG/L
×	PERYLENE	8	0	1	N/A N/A	
	BENZO(K) FLUORANTHEN	8	N/A		N/A	NG/L
	BENZO(G,H,I) PERYLEN	8	0		N/A	NG/L
	DIBENZO(A,H) ANTHRAC	8	0			NG/L
	INDENO(1,2,3-C,D) PY	8	ō		N/A	NG/L
	BENZO(B) CHRYSENE	8	o		N/A	NG/L
	ANTHANTHRENE	8	N/A		N/A	NG/L
	CORONENE	8	0		N/A	NG/L
PESTICIDES & PCB	ALDRIN	47	1.000	700.0		NG/L
	ALPHA CHLORDANE	47	2.000	7000.0		NG/L
	GAMMA CHLORDANE	47	2.000	7000.0		NG/L
	DIELDRIN	47	2.000	700.0		NG/L
	METHOXYCHLOR	47	5.000	100000		NG/L
	THIODAN I	47	2.000	74000.		NG/L
	THIODAN II	47	4.000	74000.		NG/L
	ENDRIN	47	4.000	200.0	(A1)	NG/L
	THIODAN SULPHATE	47	4.000		N/A	NG/L
	HEPTACHLOR EPOXIDE	47	1.000	3000.0	(A1)	NG/L

TABLE 6

DRINKING WATER SURVEILLANCE PROGRAM HAMILTON WATER TREATMENT PLANT 1987

COUNT OF PARAMETERS NOT FOUND ABOVE THE DETECTION LIMIT

					
SCAN	PARAMETER	ANALYSED	DETECTION LIMIT	GUIDELINE	
PESTICIDES & PCB	HEPTACHLOR	47	1.000	3000.0 (A1)	NG/L
	MIREX	47	5.000	N/A	NG/L
	OXYCHLORDANE	47	2.000	N/A	NG/L
*	OPDDT	47	5.000	30000. (A1)	NG/L
	PCB	47	20.000	3000. (A2)	NG/L
	PP-DDD	47	5.000	N/A	NG/L
	PPDDE	47	1.000	30000. (A1)	NG/L
	PPDDT	47	5.000	30000. (A1)	NG/L
	ATRATONE	47	50.	N/A	
	ALACHLOR	47	500.	35000. (D2)	NG/L
	ETHYLENE DIBROMIDE	47	0	50.0 (G)	UG/L
	HCB	47	1.000	10.0 (C1)	NG/L
SPECIFIC PESTICIDES	TOXAPHENE	47	N/A	5000. (A1)	NG/L
	AMETRYNE	47	50.00	300000.(D3)	NG/L
	PROMETRYNE	47	50.00	1000. (B3)	NG/L
×	SENCOR	47	100.00	80000. (B2)	NG/L
	2,4,5-T	4	50.00	35000. (D2)	NG/L
	2,4-D	4	100.00	100000.(A1)	
	24DCHLRPHENOXYBUTYRC	4	200.00	18000. (B3)	NG/L
	2,4-DP	4	100.00	N/A	
	DICAMBA	4	100.00	87000. (B3)	NG/L
	PICHLORAM	4	100.00	2450000(D3)	NG/L
	SILVEX	4	50.00	10000. (A1)	NG/L
	DIAZINON	4	20.	14000. (A1)	NG/L
	DICHLOROVOS	4	20.	N/A	NG/L
	DURSBAN	4	20.	N/A	NG/L
	ETHION	4	20.	35000. (G)	NG/L
	GUTHION	4	N/A	N/A	NG/L
	MALATHION	4	20.	160000. (G)	NG/L
	MEVINPHOS	4	20.	N/A	NG/L
	METHYL PARATHION	4	50.	7000. (B3)	NG/L
	METHYLTRITHION	4	20.	N/A	
	PARATHION	4	20.	35000. (B1)	NG/L
	PHORATE	4	20.	35.0 (D2)	NG/L
	RELDAN	4	20.	N/A	NG/L
	RONNEL	4	20.	N/A	NG/L
	AM I NOCARB	4	N/A	N/A	
	BENOMYL	4	N/A	N/A	NG/L
	BUX	4	2000.	N/A	NG/L
	CARBOFURAN	4	2000.	18000. (D3)	NG/L
	CIPC	4	2000.	350000. (G)	NG/L
	DIALLATE	4	2000.	30000. (H)	NG/L
	EPTAM	4	2000.	N/A	NG/L
	IPC	4	2000.	N/A	NG/L
	PROPOXUR	4	2000.	90000. (G)	NG/L
	SEVIN	4	200.	70000. (A1)	NG/L
*	SUTAN	4	2000.	245000.(D3)	NG/L
	METOLACHLOR	47	500.	50000. (B3)	NG/L
VOLATILES	1,1 DICHLOROETHYLENĘ	47	0	7.0 (D1)	UG/L
	DICHLOROMETHANE	47	0	1750. (D3)	UG/L

TABLE 6

DRINKING WATER SURVEILLANCE PROGRAM HAMILTON WATER TREATMENT PLANT 1987

COUNT OF PARAMETERS NOT FOUND ABOVE THE DETECTION LIMIT

SCAN	PARAMETER	ANALYSED	DETECTION LIMIT	GUIDELINE	

VOLATILES	T1,2DICHLOROETHYLENE	47	0	350. (D3)	UG/L
	1,1 DICHLOROETHANE	47	0	N/A	UG/L
	111, TRICHLOROETHANE	47	0	200. (D1)	UG/L
	1,2 DICHLOROETHANE	47	0	5.0 (D1)	UG/L
	CARBON TETRACHLORIDE	47	0	5.0 (D1)	UG/L
	1,2 DICHLOROPROPANE	47	0	10.0 (G)	UG/L
	TRICHLOROETHYLENE	47	0	5.0 (D1)	UG/L
	112 TRICHLOROETHANE	47	0	.60 (D4)	UG/L
	T-CHLOROETHYLENE	47	0	10.0 (C2)	UG/L
	1122 T-CHLOROETHANE	47	0	0.17 (D4)	UG/L
	CHLOROBENZENE	47	0	1510. (D3)	UG/L
	1,4 DICHLOROBENZENE	47	0	75.0 (D1)	UG/L
	1,3 DICHLOROBENZENE	47	0	130. (G)	UG/L
	TRIFLUOROCHLOROTOLUE	47	0	N/A	UG/L
	ETHYLENE DIBROMIDE	47	0	50.0 (G)	UG/L

Appendix A

DRINKING WATER SURVEILLANCE PROGRAM

The Drinking Water Surveillance Program (DWSP) for Ontario monitors drinking water quality at municipal water supply systems. The DWSP Database Management System provides a computerized drinking water quality information system for the supplies monitored. The objectives of the program are to provide:

- immediate, reliable, current information on drinking water quality,
- a flagging mechanism for 'Objective' exceedence,
- a definition of contaminant levels and trends,
- a comprehensive background for remedial action,
- a framework for assessment of new contaminants,
- and an indication of treatment efficiency of plant processes.

Program

The DWSP officially began in April 1986 and is designed to eventually include all municipal water supplies in Ontario; currently 44 plants are being monitored. Water supply locations have been prioritized for surveillance, based primarily on criteria such as population density, probability of contamination and geographical location.

An ongoing assessment of future monitoring requirements at each location will be made. Monitoring will continue at the initial locations at an appropriate level and further locations will be phased into the program as resources permit. It is estimated that after 4 years of operation, the program will be monitoring 90 locations.

A major goal of the program is to collect valid water quality data, in context with plant operational characteristics at the time of sampling. As soon as sufficient data have been accumulated and analysed, both the frequency of sampling and the range of parameters may be adjusted accordingly.

Assessments are carried out at all locations prior to initial sampling in order to acquire complete plant process and distribution system details, and to designate (and retrofit if necessary) all sampling systems and locations. This ensures that the sampled water is a reflection of the water itself.

Samples are taken of the raw (ambient water) and the treated water at the treatment plant, and of consumer's tap water in the distribution system. In order to determine possible effects of distribution on water quality, both standing and free flow water in old and new sections of the distribution system are sampled.

Sampling is carried out by operational personnel who have been trained in the applicable procedures.

Comprehensive standardized procedures and Field Test kits are supplied to sampling personnel. This ensures that samples are taken and handled according to standard protocols and that field testing will supply reliable data. All field and laboratory analyses are carried out using "approved documented procedures". All laboratory analyses are carried out by the MOE Laboratory Services Branch.

Data Reporting Mechanism

When the analytical results are transferred from the MOE laboratory into the DWSP system, printouts of the completed analyses are sent to the MOE District Officer, the appropriate operational staff and are also retained by the DWSP co-ordinator.

DWSP INPUTS AND OUTPUTS

The DWSP INPUTS and OUTPUTS are illustrated in Fig. 1.

PROGRAM INPUTS

PLANT AND DISTRIBUTION SYSTEM DESCRIPTION

The system description includes plant specific non-analytical information acquired through a questionnaire and initial plant visit. During the initial assessment of the plant and distribution system the questionnaire content is verified and

missing information added. It is intended that all data be kept current with scheduled annual updates.

The PLANT and DISTRIBUTION SYSTEM DESCRIPTION consists of the following seven components.

1. Process component inventory

All physical and chemical processes that the water is subjected to, from the intake pipe to the consumers' tap (where possible), are documented. These include: process type, general description of physical structures, material types, sizes, and retention time for each process within the plant. The processes may be as simple as transmission or as complex as carbon adsorption.

2. Treatment chemicals

Chemicals used in the treatment processes, their function, application point, supplier and brand-name are recorded. The chemical dosages applied on the day of sampling are recorded in DWSP.

3. Process control measurements

Documentation of in-plant monitoring of process parameters (turbidity, chlorine residuals, pH, aluminum residuals) including methods used, monitoring locations and frequency is contained in this section. In-plant monitoring results are generally not retained in DWSP but are retained by the Water Treatment Plant.

4. Design flow and retention time

The hydraulic capacity, designed and actual, is noted here. Retention time (the time that a block of water is retained in the plant) is also noted. The maximum, minimum and average flow as well as a record of the flow rate on the day of sampling are recorded in DWSP.

5. Distribution system description

This area includes the storage and transmission characteristics of the distribution system after the water leaves the plant.

6. Sampling system

Each plant is assessed for its adequacy in terms of sampling of bacteriological, organic and inorganic parameters. The prime considerations in the assessment and design of the sampling system are:

- i/ the sample is an accurate representation of the actual water condition, eg. raw water has had no chemical treatment;
- ii/ the water being sampled is not being modified by the sampling system;
- iii/ the sample tap must be in a clean area of the plant,
 preferably a lab area;
 - iv/ the sample lines must be organically inert (no plastic, ideally stainless steel).

It is imperative that the sampled water be a reflection not of the sampling system but of the water itself.

The sampling system documentation includes: origin of the water; date sampling was initiated; size, length and material type (intake, discharge and tap), pump characteristics (model, type, capacity) and flow rate.

7. People

This section contains the names, addresses and phone numbers of current plant management and operational staff, distribution system management and operational staff, Medical Officer of Health and appropriate Ministry of Environment personnel associated with the plant.

FIELD DATA

The second major input to DWSP is field data.

Field data is collected at the plant and from the distribution system sites on the day of sampling. The field data consists of general operating conditions and the results of testing for field parameters. General operating conditions include chemicals used, dosages, flow and retention time on the day of sampling as well as monthly maximum, minimum and average flows. Field parameters include turbidity, chlorine residuals (free, combined and total), temperature and pH. These parameters are analysed according to standardized DWSP protocols to allow for interplant comparison.

LABORATORY ANALYTICAL DATA

The third major input to DWSP is Laboratory Analytical Data.

Samples gathered from the raw, treated and distribution sampling sites are analyzed for approximately 160 parameters at a frequency of two to twelve times per year. Sixty-five percent of the parameters are organic. The parameters measured may have health or aesthetic implications when present in drinking water. Many of the parameters may be used in the treatment process or may be treatment by-products. Due to the nature of certain analytical instruments parameters may be measured for in a "scan" producing some results for parameters that are not on the DWSP priority list but which may be of interest. The majority of the parameters are measured on a routine basis however, those that are technically more difficult and/or costly to analyse for are done less frequently. These include Specific Pesticides and Chlorophenols.

Although the parameter list is extensive, additional parameters with the potential to cause health or aesthetic related problems may be added provided reliable analytical and sampling methods exist.

All laboratory generated data is derived from standardized, documented analytical protocols. The analytical method is an integral part of the data and as methods change notation will be made and intercomparison data documented.

PARAMETER REFERENCE INFORMATION

The fourth major input to DWSP is Parameter Reference Information

This is a catalogue of information for each substance analysed on DWSP. It includes parameter name and aliases, physical and chemical properties, basic toxicology, world-wide health limits, treatment methods and uses. The Parameter Reference Information is computerized and can be accessed through the Query function of the DWSP database.

An example is shown in fig. 2.

A written copy (hard version) of the Parameter Reference Information will be available in the near future and is a new and sophisticated enhancement to the DWSP.

PROGRAM OUTPUTS

There are four major program outputs, Query, Action Alert, Report Generation and the Annual Report.

QUERY

All DWSP information is easily accessed through the Query function, therefore anything from addresses of plant personnel to complete water quality information for a plant's water supply is instantly available. The DWSP computer system makes relatively complex inquiries manageable. A personal password allowing access into the DWSP query mode in all MOE offices is being developed by the DWSP group.

ACTION ALERTS

Drinking Water quality in Ontario is evaluated against provincial objectives as outlined in the publication, Ontario Drinking Water Objectives (ISBN 0-7729-2725-1 revised 1983). This publication contains health-related Maximum Acceptable Concentrations for thirty substances. Should the reported level of a substance in treated water exceed the Ontario Drinking Water Objective an "Action Alert" requiring resampling and confirmation is issued. This assures that operational staff, health authorities and the public are notified as soon as possible of confirmation of an exceedance and remedial action taken. This report supplies a history of the occurrence of past exceedences at the plant plus a historical summary on the parameter of concern.

In the absence of Ontario Drinking Water Objectives, other agency guidelines which are documented in the Parameter Reference Information may be used. If these guidelines are exceeded the results are flagged and evaluated by DWSP personnel. An "Action Alert" will be issued if warranted.

REPORT GENERATION

Custom reports can be generated from DWSP to meet the needs of the regions and to respond to public requests.

ANNUAL REPORTS

It is the practice of DWSP to produce an annual report containing analytical data along with companion plant information.

FIG.2

MOE - DRINKING WATER ASSESSMENT PROGRAM (DWSP)

MOE	- DRINKING WATER	ASSESSMENT	PROGRAM (DWSP)
(B2001P) REFERENCE BENZENE		*		PARAMETER
SOURCE FROM EPA C 86/04 EPAA C 80/11 FERC C 84/05 WHO C 84/01	NOMETH NOMETH NOMETH	.00 6.60 1.00		i F
TIS MAJOR QUANITIES EV SOURCES: PET	NAME: BENZENE CAS#: 71432 MOLECULAR FORMUL DETECTION LIMIT: SYNONYMS: BENZO	LAE: C ₆ H ₆ : (FOR METHO LE, COAL NAF EXATRIENE (4 : COLOURLESS D, OF HIGHLY RS BURN WITH TER: 1780-18 : NO DATA : 0.5 MG/L II ATE: MAY BI ARS TO BIOAC I HIGH LIPID (LIVER, BRAI L OR DEGRADE SOLVENT REC G, TANNING. DN OF ETHYL BI ENTS, NYLON, DUCTION, SOLVENTS, NYLON, DUCTION, SOLVENTS, NYLON, CLEANSING AG G, SYMPTONS PRESSION, RE A AND LEUKEM HUMAN CARCI DSORPTION, PI SEDIMENTATIC OLVENT EXTRA T: 78 80 81	D POCODO) 0.0 PHTHA, CARBON 1) TO LIGHT YELLO REFRACTIVE N SMOKING FLAM 300 MG/L AT 25 N WATER (39) IOACCUMUALTE CUMULATE IN A CONTENT OR A N), SMALL QUICKLY OVERY, COAL T ENZENE USED AS AS INTERMEDI VENT IN RUBBER ENT, GASOLINE XIC); ACUTE - INCLUDE RESTL SPIRATORY FAI IA (45). NOGEN AND MUT RECIPITATION ON, COAGULAT ON, COAGULA ON, COAG	5 UG/L OIL (27), W, MOBILE, ATURE, E (30) DEG C (41) IN LIVING NIMAL IRE A R A STYRENE ATE IN INDUSTRY, IRRITATES ESSNESS, LURE; AGEN WITH ALUM PION AND ION (41). 27) (27) (27) EES C (27)
	HENRY'S LAW CONS LOG OCT./WATER P.	AR.COEFF:K=1	00555 ATM M ₃ /N 1.0 1/N=1.6 R=	OLE .97 PH=5.3

DWSP SAMPLING GUIDELINE

i) RAW and TREATED at PLANT

General Chemistry	-500 mL clear plastic bottle -rinse bottle with sample three times and discard water -fill to line
Bacti	 -250 mL clear glass bottle with white seal on cap -do not rinse bottle; preservative has been added -avoid touching bottle neck or inside of cap -fill to top of red label as marked
Metals	-500 mL clear plastic bottle with white lid -rinse bottle and cap three times, discard -fill to line -add 10 drops nitric acid (Caution: HNO3 is corrosive)
Volatiles (OPOPUP)	-250 mL clear glass bottle -do <u>not</u> rinse bottle -tilt bottle when filling -fill bottle completely; there should be no air bubbles.
Organic (OWOC),(OWTRI),(OAPAHX)	-1 liter brown glass bottle per scan -do not rinse bottle -fill to approx. 1" from top -when 'special pesticides' are requested three extra bottles per sample must be submitted
Cyanide	-500 mL clear plastic bottle -do not rinse bottle -fill to approx. 1" from top -add 10 drops sodium hydroxide (Caution: NaOH is corrosive)

Mercury

-250 mL clear glass bottle
-rinse bottle and cap three times,
discard then fill to top of label
-add 20 drops each nitric acid and
potassium dichromate
(Caution: HNO₃ and KCrO₇ corrosive)

Phenols

-250 mL clear glass bottle -do <u>not</u> rinse bottle -fill to top of label as marked

<u>Steps</u>

- 1. Let cold water tap run for several minutes.
- 2. Record time in submission sheet.
- 3. Record teperature on submission sheet.
- 4. Fill up all bottles as per instructions.
- Record chlorine residuals (free, combined and total for treated water only), turbidity and pH on submission sheet.

ii) Distribution Samples (standing water)

General Chemistry -500 mL clear palstic bottle

-rinse bottle with sample three

times and discard

-fill to line

Metals -500 mL clear plastic bottle with

white lid

-rinse bottle and cap three times,

discard

-fill to line

-add 10 drops nitric acid (Caution: HNO₃ is corrosive)

Steps:

- 1. Record time on submission sheet.
- 2. Place bucket under tap and open cold water.
- 3. Fill to predetermined volume.
- 4. After mixing the water, record the temperature on the submission sheet.
- 5. Fill general chemistry and metals bottles.
- Record chlorine residuals (free, combined and total), turbidity and pH on submission sheet.

iii) Distribution Samples (free flow)

General Chemistry	-500 mL clear plastic bottle -rinse bottle with sample three times and discard water -fill to line
Bacti	 -250 mL clear glass bottle with white seal on cap -do not rinse bottle; preservative has been added -avoid touching bottle neck or inside of cap -fill to top of red label as marked
Metals	-500 mL clear plastic bottle with white lid -rinse bottle and cap three times, discard -fill to line -add 10 drops nitric acid (Caution: HNO ₃ is corrosive)
Volatiles (OPOPUP)	<pre>-250 mL clear glass bottle -do not rinse bottle; preservative has been added -tilt bottle when filling -fill bottle completely; there should be no air bubbles</pre>
Organic	-1 liter brown glass bottle per
(OWOC),(OWTRI)	-do not rinse bottle: preservative has been added -fill to approx. 1" from top
Cyanide	-500 mL clear plastic bottle -do not rinse bottle: preservative has been added -fill to approx. 1" from top -add 10 drops sodium hydroxide (Caution: NaOH is corrosive)
Mercury	-250 mL clear glass bottle -rinse bottle and cap three times, discard then fill to top of label -add 20 drops each nitric acid and potassium dichromate (Caution: HNO ₃ and KCrO7 corrosive)

Steps:

- 1. Record time on submission sheet.
- 2. Let cold water flow for ten minutes.
- 3. Record temperature on submission sheet.
- 4. Fill all bottles as per instructions.
- Record chlorine residuals (free, combined and total), tubidity and pH on submission sheet.

