# 实验三 微程序控制器实验

### 实验目的

- 掌握微程序控制器的组成原理
- 掌握TEC-8模型机微程序控制器的实现方法, 尤其是微地址转移逻辑的实现方法。
- 理解条件转移对计算机的重要性。





#### TEC-8指令系统

根据SWC、SWB、SWA状态选择工作方式

#### 1、控制台指令

| SWC | SWB | SWA | 操作            | 说明                  |
|-----|-----|-----|---------------|---------------------|
| 0   | 0   | 0   | 启动程序(PR)      | 执行存储器中的用户<br>程序     |
| 0   | 0   | 1   | 写存储器<br>(WRM) | 从给定的首地址起,<br>连续写存储器 |
| 0   | 1   | 0   | 读存储器<br>(RRM) | 从给定的首地址起,<br>连续读存储器 |
| 0   | 1   | 1   | 写寄存器<br>(WRF) | 依次往R0-R3写入数据        |
| 1   | 0   | 0   | 读寄存器(RRF)     | 读出R0-R3的数据          |

#### 连续存储器写指令



初始化:

SEL3=0,SEL2=0, SEL1=1,SEL0=1 读取系统状态,类似用 户指令中的取指令

SBUS, LAR, STOP, SELCTL

SBUS, MEMW, ARINC, STOP, SELCTL



#### 连续存储器读指令



初始化:

SEL3=0,SEL2=0, SEL1=1,SEL0=1

SBUS, LAR, STOP, SELCTL

MBUS, ARINC, STOP, SELCTL



#### 连续寄存器写指令



#### 连续寄存器读指令



SEL3=0,SEL2=0, **SEL1=1,SEL0=1** 

SEL3=0,SEL2=0,SEL1=0,SEL0=1

**SELCTL, STOP** 

SEL3=1,SEL2=0,SEL1=1,SEL0=1

**SELCTL, STOP** 



#### 控制台指令流程图 (注意微地址分配)





# 2、用户指令

| 名称    | 助记符         | 功能          | 指令格式                |                            |
|-------|-------------|-------------|---------------------|----------------------------|
|       |             |             | IR7 IR6 IR5 IR4 IR3 | IR2 IR1 IR0                |
| 加法    | ADD Rd, Rs  | Rd+Rs→Rd    | 0 0 0 1 Rdl         | RdO Rs1 Rs0                |
| 减法    | SUB Rd, Rs  | Rd-Rs→Rd    | 0 0 1 0 Rdl         | RdO Rs1 Rs0                |
| 逻辑与   | AND Rd, Rs  | Rd & Rs→Rd  | 0 0 1 1 Rdl         | RdO Rs1 Rs0                |
| 加 1   | INC Rd      | Rd+1→Rd     | 0 1 0 0 Rdl         | RdO × ×                    |
| 取数    | LD Rd, [Rs] | [Rs] →Rd    | 0 1 0 1 Rdl         | RdO Rs1 Rs0                |
| 存数    | ST Rs, [Rd] | Rs→[Rd]     | 0 1 1 0 Rdl         | RdO Rs1 Rs0                |
| C条件转移 | JC addr     | 若C=1,则      | 0 1 1 1 offs        | set                        |
|       |             | @+offset→PC |                     |                            |
| Z条件转移 | JZ addr     | 若Z=1 ,则     | 1 0 0 0 offs        | set                        |
|       |             | @+offset→PC |                     |                            |
| 无条件转移 | JMP [Rd]    | Rd→PC       | 1 0 0 1 Rdl F       | Rado × ×                   |
| 输出    | OUT Rs      | Rs→DBUS     | 1 0 1 0 ×           | × RS1 RS0                  |
| 中断返回  | IRET        | 返回断点        | 1 0 1 1 ×           | $\times$ $\times$ $\times$ |
| 关中断   | DI          | 禁止中断        | 1 1 0 0 ×           | $\times$ $\times$ $\times$ |
| 开中断   | EI          | 允许中断        | 1 1 0 1 ×           | $\times$ $\times$ $\times$ |
| 停机    | STOP        | 暂停执行        | 1 1 1 0 ×           | $\times$ $\times$ $\times$ |

ADD Rd,Rs

Rd+Rs→Rd

(PC) →IBUS→IR 取指 **PC+1** → **PC** 执行 ALU(Rd+RS)→Rd 中断 检测 关中断 (PC)→IAR **SD**→**PC** 

LIR, PCINC

MS3S2S1S0CIN=010011 ABUS,DRW,LDZ,LDC

INTDI,LIAR,SEL1/0=00, STOP

SBUS,LPC



下条指令取指

LD Rd,[Rs]

[Rs]→Rd

(PC) →IBUS→IR 取指  $PC+1 \rightarrow PC$ 执行 (Rs)→AR (AR)→Rd 公共 操作

LIR, PCINC

MS3S2S1S0CIN=110100 ABUS,LAR

MBUS, DRW

JC addr

若C=1,则PC+@offset→PC



**OUT Rs** 

(Rs)→DBUS

取指

(PC) →IBUS→IR
PC+1 → PC

执行
(Rs)→DBUS

公共
操作

LIR, PCINC

MS3S2S1S0CIN=110100 ABUS





#### 000 用户指令流 取指 INT=0 程图 (2) P4 INT=1 11 01 INTDI LIR PCINC LIAR P1 SEL1 = 0SELO = 0STOP 14 **SBUS** LPC P1 根据IR7-IR4分支 1001 1100 1101 1010 1011 1110 **JMP** OUT IRET DI EI STP 29 2A **2B** 2C 2D 2E M M IABUS STOP INTDI INTEN S=1111 S=1010 LPC P4 ABUS **ABUS** P4 LPC P4 **P4**

#### TEC-8微指令格式



- •操作控制字段29位,采用直接表示法编码
- 顺序字段11位(其中判别字段5位,后继地址6位NuA5-NuA0),采用断定方式形成微地址

#### 微地址转移逻辑有多个输入信号:



SWC、SWB、SWA,用来决定控制台指令微程序的分支;——P0测试

IR7-I~IR4-I是机器指令的操作码字段; ———P1测试

C-I,运算器进位信号; ——P2测试

Z-I, 是结果为零标志位; ——P3测试

INT是中断请求申请信号; ——P4测试

| CLR# | P4P3P2P1P0 | T3       | uA5  | uA4  | uA3   | uA2   | uA1   | uA0   |
|------|------------|----------|------|------|-------|-------|-------|-------|
| 0    | XXXXX      | X        | 0    | 0    | 0     | 0     | 0     | 0     |
| 1    | 0 0 0 0 0  | <b> </b> | NuA5 | NuA4 | NuA3  | NuA2  | NuA1  | NuA0  |
| 1    | 0 0 0 0 1  | <b> </b> | NuA5 | NuA4 | SWC   | SWB   | SWA   | NuA0  |
| 1    | 0 0 0 1 0  | <b> </b> | NuA5 | NuA4 | IR7-I | IR6-I | IR5-I | IR4-I |
| 1    | 0 0 1 0 0  | <b> </b> | NuA5 | NuA4 | NuA3  | NuA2  | NuA1  | С     |
| 1    | 0 1 0 0 0  | <b> </b> | NuA5 | NuA4 | NuA3  | NuA2  | NuA1  | Z     |
| 1    | 1 0 0 0 0  | <b> </b> | NuA5 | INT  | NuA3  | NuA2  | NuA1  | NuA0  |

#### 微地址转移逻辑的逻辑表达式

- NuA5-T=NuA5
- NuA4-T=NuA4 or (P4 and INT)
- NuA3-T=NuA3 or (P1 and IR7) or (P0 and SWC)
- NuA2-T=NuA2 or (P1 and IR6) or (P0 and SWB)
- NuA1-T=NuA1 or (P1 and IR5) or (P0 and SWA)
- NuA0-T=NuA0 or (P1 and IR4) or (P2 and C-I) or (P3 and Z-I)



### 微程序设计



#### 连续存储器写指令









# 实验任务

- 1. 正确设置模式开关SWC、SWB、SWA,用单微指令方式(DP=1)跟踪控制台操作读寄存器、写寄存器、 读存储器、写存储器的执行过程,与微程序流程图 对照,理解微程序的设计原理。(将数据0F0H、10H、55H、0AAH分别写入R0、R1、R2、R3和10H开始的存储器单元内。)
- 2. 正确设置操作码IR7~IR4,用单微指令方式(DP=1)跟踪除停机指令STOP之外的所有指令的执行过程,与微程序流程图对照,理解微程序的设计原理。(本任务须连接6根导线:IR4-I、IR5-I、IR6-I、IR7-I、C-I、Z-I依次通过接线孔与电平开关连接。

#### 注意:

- 1. 将控制器转换开关拨到微程序位置,编程开关设置成正常位置,将DP=1,即单拍状态。
- 2. 将信号IR4-I、IR5-I、IR6-I、IR7-I、C-I、Z-I依次通过接线孔与电平开关连接。通过拨动电平开关送上述信号值。
- 3. 每按一次QD,注意观察并记录相关数据

#### 实验记录表

进入中断的方式: 执行EI指令之后, 执行其他任意一 条指令时,按 PALUSE键

|       | 微地址  | 下地址   |       | 微指令完成的微操作                                               |
|-------|------|-------|-------|---------------------------------------------------------|
| 功能    | uA5~ | NuA5~ | P4~P0 | (数据流向)                                                  |
|       | uA0  | NuA0  |       |                                                         |
| 复位    | 00H  |       | P0    | SEL=0011, <b>P0</b> =1, 下条微地址由                          |
|       |      |       |       | NuA5NuA4SWCSWBSWANuA0决定。                                |
| 写寄    | 09H  |       |       | $R0 \rightarrow A, R1 \rightarrow B, SD \rightarrow R0$ |
| 存器    |      |       |       |                                                         |
|       |      |       |       |                                                         |
|       |      |       |       |                                                         |
| 读寄    |      |       |       |                                                         |
| 存器    |      |       |       |                                                         |
| 中断    |      |       |       |                                                         |
|       |      |       |       |                                                         |
| 取指    |      |       | P1    |                                                         |
| ADD   |      |       |       |                                                         |
| LD    |      |       |       |                                                         |
|       |      |       |       |                                                         |
| ST    |      |       |       |                                                         |
|       |      |       |       |                                                         |
| JC    |      |       |       |                                                         |
| (C=0) |      |       |       |                                                         |
| (C=1) |      |       |       |                                                         |
| JZ    |      |       |       |                                                         |
| (Z=0) |      |       |       |                                                         |
| (Z=1) |      |       |       |                                                         |
| JMP   |      |       |       |                                                         |
| OUT   |      |       |       |                                                         |
| EI    |      |       |       |                                                         |
| STP   |      |       |       |                                                         |