Propositional Logic

Course Code: CSC 1204 Course Title: Discrete Mathematics

Dept. of Computer Science Faculty of Science and Technology

Lecturer No:	1b	Week No:	1	Semester:	Summer 2021-2022
Lecturer:	S.M. Abdur Rouf Bhuiyan [arouf@aiub.edu]				

Lecture Outline

1.1 Propositional Logic

- Logic
- Propositional Logic
- Propositions
- Propositional Variables
- Compound Propositions
- Logical Operators
- Truth Value & Truth Table
- Truth Tables of Compound Propositions (next class)
- Conditional Statements (next class)
- Logic and Bit Operations (next class)

Objectives and Outcomes

- Objectives: To understand the importance of logic in mathematical reasoning, to understand proposition and propositional logic, symbol and usage of different types of logical operators.
- Outcomes: Students are expected to be able to apply logical operators and analyze logical propositions via truth tables, be able to construct a truth table for a given compound proposition.

Key Terms

- Logic: Logic is the discipline that deals with the methods of reasoning.
 - Logic is the basis of all mathematical reasoning
 - The rules of logic specify the meaning of mathematical statements
- Propositional Logic: The area of logic that deals with propositions is called the propositional logic.

Key Terms

Proposition: A proposition is a declarative statement that's either TRUE or FALSE, but not both.

- Statements that are not propositions include
 - Questions
 - Commands

Key Terms

- Propositional variable: A variable that represents a proposition. The conventional letters used for propositional variables are p, q, r, s, t,...
- Compound proposition: A proposition constructed by combining two or more propositions using logical operators (AKA: logical connectives)
- Logical Operators: Operators used to combine propositions
- Truth Value: The truth value of a proposition is true, denoted by T, if it is a true statement and false, denoted by F, if it is a false statement. Truth Value ==> Either True or False
- Truth Table: A table displaying the truth values of propositions.

Proposition: Examples

Proposition	Not Proposition
3 + 2 = 32	Bring me coffee!
3 + 2 = 5	3 + 2
CSC 1204 is Katrina's favorite class.	CSC 1204 is her favorite class.
Every cow has four legs.	Do you like Cake?

Logical Operators

- Logical Operators ==> unary, binary
- Unary:
 - Negation
- Binary
 - Conjunction
 - Disjunction
 - Exclusive OR
 - Conditional/Implication
 - Bi-conditional

Logical Operators: Symbols & Usage

Operator	Symbol	Usage
Negation		NOT
Conjunction	^	AND
Disjunction	V	OR
Exclusive or	\oplus	XOR
Conditional	\rightarrow	if, then
Bi-conditional	\leftrightarrow	iff

Propositional Logic: Negation

- Let p be a proposition. The negation of p, denoted by $\neg p$ (or p), is the statement "It is not the case that p."
- The proposition $\neg p$ is read "not p"
- The truth value of the negation of p, $\neg p$, is the opposite of the truth value of p.

Truth table for Negation of a Proposition

© The McGraw-Hill Companies, Inc. all rights reserved.

TABLE 1 The Truth Table for the Negation of a Proposition.			
p	$p \qquad \neg p$		
T F F T			

Propositional Logic: Negation

- Negation just turns a false proposition to true and the opposite for a true proposition.
- Example1: p: I am going to town
 p: I am not going to town; or,
 It is not the case that I am going to town
- Example2: p: "23 = 15 +7" p happens to be false, so $\neg p$ is true.

Conjunction

- Let p and q be propositions. The *conjunction* of p and q, denoted by $p \wedge q$, is the proposition "p and q."
- The conjunction $p \wedge q$ is true when both p and q are true and is false otherwise.
- Conjunction corresponds to English "AND".
- <u>Example</u>: Liana is curious AND clever.

Truth Table for Conjunction

© The McGraw-Hill Companies, Inc. all rights reserved.

TABLE 2 The Truth Table for the Conjunction of Two Propositions.

p	\boldsymbol{q}	$p \wedge q$
Т	Т	Т
Т	F	F
F	T	F
F	F	F

Conjunction: Example

• Example: p: 'I am going to town'

q: 'It is going to rain'

 $p \wedge q$: 'I am going to town and it is going to rain.'

• Note: Both p and q must be true to $p \land q$ be true

Disjunction

- Let p and q be propositions.
- The *disjunction* of p and q, denoted by $p \vee q$, is the proposition "p or q."
- The disjunction $p \lor q$ is false when both p and q are false and is true otherwise.
- Disjunction is true when at least one of the components is true.
- Disjunction corresponds to English "OR".
- Example: Abdullah is brave OR intelligent.

Truth Table for Disjunction

© The McGraw-Hill Companies, Inc. all rights reserved.

TABLE 3	The	Truth	Table	for
the Disjunc	tion	of Two)	
Proposition	S.			

p	\boldsymbol{q}	$p \lor q$
Т	T	Т
Т	F	Т
F	T	T
F	F	F

Examples of Conjunction & Disjunction

Let,

p:5 < 9

q:9 < 7.

Construct the propositions $p \wedge q$ and $p \vee q$.

Solution:

- The conjunction of the propositions p and q is the proposition $p \wedge q : 5 < 9$ and 9 < 7
- The disjunction of the propositions p and q is the proposition $p \lor q : 5 < 9$ or 9 < 7

Question: What are the truth values of $p \wedge q$ and $p \vee q$?

Exclusive Or

- Let p and q be propositions.
- The *exclusive or* of p and q, denoted by $p \oplus q$, is the proposition that is **true** when exactly one of p and q is true and is **false** otherwise.

Truth Table of Exclusive Or

© The McGraw-Hill Companies, Inc. all rights reserved.

TABLE 4	The	Truth	Table	for
the Exclusiv	ve Oı	r of Tw	'O	
Proposition	S.			

p	\boldsymbol{q}	$p \oplus q$
Т	T	F
Т	F	Т
F	T	Т
F	F	F

Books

 Discrete Mathematics and its applications with combinatorics and graph theory (7th edition) by Kenneth H. Rosen [Indian Adaptation by KAMALA KRITHIVASAN], published by McGraw-Hill

References

- 1. Discrete Mathematics, Richard Johnsonbaugh, Pearson education, Inc.
- 2. Discrete Mathematical Structures, *Bernard Kolman*, *Robert C. Busby*, *Sharon Ross*, Prentice-Hall, Inc.
- 3. SCHAUM'S outlines Discrete Mathematics(2nd edition), by Seymour Lipschutz, Marc Lipson