1a)
$$C = \sqrt{a^2 + b^2}$$
; $\rho = \frac{a^2}{\sqrt{a^2 + b^2}}$; $q = \frac{b^2}{\sqrt{a^2 + b^2}}$
 $h = \sqrt{\frac{a^2 b^2}{a^2 + b^2}} = \frac{ab}{\sqrt{a^2 + b^2}}$

C) Werm
$$b \rightarrow \infty$$
, geht $\frac{b}{7a^2+b^2} \rightarrow 1$ und $h = \frac{ab}{7a^2+b^2} \rightarrow a$ of $\frac{b}{a}$

$$(a) \quad (a) \quad (b) = a^{2} \int_{p^{2}}^{a^{2}} (a) da$$

b) Die Worzel (des Ansdruck under des Worzel)
un B > 0 bleiben, also
$$\frac{a^2}{p^2}$$
 > 1, also $a > p$.

3a)
$$C = \frac{9}{2} + \sqrt{\frac{q^2}{4} + q^2}$$

() Die 7- Lösung 15+
$$\frac{9}{2}$$
 - $\sqrt{\frac{9^2}{4}}$ + 9^2 < 0. Das mucht geometrisch kanen Smn.