Raster Graphics in X Windows

Professor Raymond Zavodnik

Tbilisi State University April 23, 2013

- Given two integer-valued endpoints (X_A, Y_B) and (X_B, Y_B) calculate the pixel-values that lie nearest to the ideal line
- The ideal line between these two points has the form y = mx + b, where $m = \frac{Y_B Y_A}{X_B X_A} = \frac{\Delta y}{\Delta x}$
- Thus, given successive *x*-values $x = X_A, \dots, X_B$ calculate *y* and round up or down.
- Problem: This calculation uses floating point calculations

- Given two integer-valued endpoints (X_A, Y_B) and (X_B, Y_B) calculate the pixel-values that lie nearest to the ideal line
- The ideal line between these two points has the form y = mx + b, where $m = \frac{Y_B Y_A}{X_B X_A} = \frac{\Delta y}{\Delta x}$
- Thus, given successive *x*-values $x = X_A, \dots, X_B$ calculate y and round up or down.
- Problem: This calculation uses floating point calculations

- Given two integer-valued endpoints (X_A, Y_B) and (X_B, Y_B) calculate the pixel-values that lie nearest to the ideal line
- The ideal line between these two points has the form y = mx + b, where $m = \frac{Y_B Y_A}{X_B X_A} = \frac{\Delta y}{\Delta x}$
- Thus, given successive x-values $x = X_A, \dots, X_B$ calculate y and round up or down.
- Problem: This calculation uses floating point calculations

- Given two integer-valued endpoints (X_A, Y_B) and (X_B, Y_B) calculate the pixel-values that lie nearest to the ideal line
- The ideal line between these two points has the form y = mx + b, where $m = \frac{Y_B Y_A}{X_B X_A} = \frac{\Delta y}{\Delta x}$
- Thus, given successive x-values $x = X_A, \dots, X_B$ calculate y and round up or down.
- Problem: This calculation uses floating point calculations

Eliminating Floating Point

- Assume $0 \le m \le 1$ and b = 0
- Start with x = 0
- Problem: Do we pick (1,0) or (1,1) as successor?
 - If $\frac{1}{2} \leq \frac{\Delta y}{\Delta x} \leq 1$ pick (1,1)
 - Write this: $e = \frac{\Delta y}{\Delta x} \frac{1}{2} \ge 0$
 - Similarly: $e = \frac{\Delta y}{\Delta x} \frac{1}{2} < 0$ means pick (1,0)

- Now consider The next transition. If (1,0) was chosen, *i.e.* m-1/2<0, then the next e is e=2m-1/2. If then e>=0 we must increment y, *i.e.* choose (2,1).
- If this e were less than 0 then y is not incremented. In both cases e is incremented by m, but y is incremented only if e > 0
- The case (1,1) is handled similarly: If 2-2m>1/2, or, 0>m+(m-1/2)-1>0 then pick (2,1), thus do not increment y. If $2-2m\le 1/2$ then increment y. In both cases increment e by m-1 and increment e only if e was nonnegative.

Algorithm

- ② If $e \ge 0$ then increment y. But then decrement e and add m to this: $e \leftarrow e 1 + m$
- **3** If e < 0 then y is *not* incremented, but $e \leftarrow e + m$
- Write the initialization of e = m 1/2 as $e' = 2\Delta y \Delta x$
- **⑤** Instead of $e \leftarrow e 1$ write $e' \leftarrow e' 2\Delta x$
- **1** Instead of $e \leftarrow e + m$ write $e' \leftarrow e' + 2\Delta y$

Bresenham's Algorithm

1
$$x \leftarrow X_A, y \leftarrow Y_A$$

2 $dx \leftarrow X_B - X_A, dy \leftarrow Y_B - Y_A$
3 $e \leftarrow 2dy - dx$
4 for $i = 1$ to dx
WritePixel (x, y)
if $e \ge 0$ begin

$$y \leftarrow y + 1$$

$$e \leftarrow e - 2dx$$
end
$$x \leftarrow x + 1$$

$$e \leftarrow e + 2dy$$

Example of Line Drawing

$$y = 0.3x$$

Scan Conversion in Raster Graphics

- Rastergraphics enables the filling of closed polygons with pixels of chosen colors
- Almost all modern graphics hardware supports the technology of Scan Conversion
- Based on television technology
- Basic algorithm says that when scanning a pixel row from left to right change from background color to polygon color when entering over the first (odd) edge
- Change back to background color when crossing the next (even) edge
- Make sure that pixels do not get set twice at edges
- Thus, use background color when setting boundary pixels on odd edges, set polygon color when exiting over even edges

Integer Arithmetic and Polygon Filling

- Obviously there is also here a need to use integer arithmetic when computing the next pixel of an edge from the previous pixel
- Bresenham does not really work here
- Proceed incrementally, using the coherence of each span of lixels between successive edges to set all pixels in easch span
- Starting with the minimal vertex of a polygon, incrementally calculate using integer arithmetic the intersection of the next scan row with the relevant polygon edges
- Set the pixels to the polygon color on spans between odd intersections

Remarks

- Minimal vertices count twice, inflections once and maximal vertices not at all
- Rule: Approaching an edge from outside from the right round up, from inside from the right round down
- If the left pixel of a span has an integer x-coordinate, it lies inside the polygon, whereas a right such pixel does not
- Use edge coherence to calculate points of intersection between polygon edges and successive scan lines
- Start with: $x_{i+1} = x_i + \frac{1}{m}$, because $\Delta y = 0$ for scan conversion

Elimination of Floating Point

- Assume m > 1 for current edge
- Write x_i as an integer plus a remainder: $x_i = [x_i] + r_i$ as a sum of an integer $[x_i]$ and a fraction $0 \le r_i \le 1$
- Start with the integer value of some vertex x_{min}
- **Set** inc to the numerator of $\frac{1}{m}$
- Add the numerator to inc until this quantity is greater than the numerator
- Increment x by 1
- Reset inc to inc denom

Algorithm for Polygon Filling

- The Edgetable (ET) contains all polygon edges sorted by their smallest y-values. Within a row of the ET sort the edges according to their increasing x-values
- The Active Edge Table (AET) is a dynamic data structure that for a given scan line contains those polygon edges that that scan line interesects

Algorithm for Polygon Filling

- Find minimal vertex (vertices) y₀ of the ET
- 2 AET = NULL
- \odot if AET != NULL or ET != ϕ
 - **1** Move edges with $y_{min} = y_0$ into the AET
 - Sort the AET with increasing x
 - **③** Write pixel spans for pairs x_1, x_2 in the AET
 - Remove edges with max coordinates y₀ from the AET

 - **(3)** Calculate new *x*-values using integer arithmetic
 - Resort the AET
- Go to 3

Polygon Filling Example

