

() Preliminary Specifications(V) Final Specifications

Module "WSVGA Color TFT-LCD with LED Backlight design				
Model Name	B089AW01 V0			
Note (🗭)	LED Backlight with driving circuit design			

Customer	Date	Approved by	Date
		Jerry Chen	06/17/2008
Checked & Approved by	Date	Prepared by	
		lvy Lee	06/17/2008
Note: This Specification is subjusting without notice.	ect to change	NBBU Marketi AU Optronics	

1 of 35 document version 1.4

Product Specification AU OPTRONICS CORPORATION

Contents

1. Handling Precautions	4
2. General Description	5
2.1 General Specification	5
2.2 Optical Characteristics	6
3. Functional Block Diagram	11
4. Absolute Maximum Ratings	11
5. Electrical characteristics	13
5.1 TFT LCD Module	13
5.2 Backlight Unit	15
6. Signal Characteristic	16
6.1 Pixel Format Image	16
6.2 The input data format	17
6.3 Signal Description/Pin Assignment	18
6.4 Interface Timing	21
6.5 Power Sequence	23
6.5.1 Panel Power Sequence	23
7. Connector Description	24
7.1 TFT LCD Module	24
8. 8. LED Driving Specification	25
8.1 Connector Description	25
8.2 Pin Assignment	25
9. Vibration and Shock Test	26
9.1 Vibration Test	26
9.2 Shock Test Spec:	26
11. Mechanical Characteristics	28
11.1 LCM Outline Dimension	28
11.2 Screw Hole Depth and Center Position	30
12. Shipping and Package	31
12.1 Shipping Label Format	31
12.2 Carton package	32
12.3 Shipping package of palletizing sequence	32
13. Appendix: EDID description	33

AU OPTRONICS CORPORATION

Record of Revision

Version and Date	Page	Old description	New Description	Remark
0.1 2008/03/31	AII	First Edition for Customer		
1.0 2008/05/20	AII	Preliminary spec	Final spec	
1.1 2008/06/03	18,	6.3 Signal Description/Pin Assignment	6.3 Signal Description/Pin Assignment	
	25	- 39 pinà NC or ENB pin input	- 39 pinà ENB pin input	
1.2 2008/06/03	15	5.2 Backlight Unit	5.2 Backlight Unit	
		- LED parameter and symbal	- LED parameter and symbal update	
1.3 2008/06/06	19	Note	Note	
	21	1.Circiut on Note 2	1. Remove circuit on Note 2	
		2.Clock frequency: 85MHz max	2.Clock frequency: 75MHz max	
1.4 2008/06/17		5.2 Backlight Unit	5.2 Backlight Unit	
	26	- Duty Ratio: Non	- Duty Ratio: Update	
		9. Vibration and Shock Test: Non	9. Vibration and Shock Test :Update	

document version 1.4 3 of 35

AU OPTRONICS CORPORATION

1. Handling Precautions

- 1) Since front polarizer is easily damaged, pay attention not to scratch it.
- 2) Be sure to turn off power supply when inserting or disconnecting from input connector.
- 3) Wipe off water drop immediately. Long contact with water may cause discoloration or spots.
- 4) When the panel surface is soiled, wipe it with absorbent cotton or other soft cloth.
- 5) Since the panel is made of glass, it may break or crack if dropped or bumped on hard surface.
- 6) Since CMOS LSI is used in this module, take care of static electricity and insure human earth when handling.
- 7) Do not open nor modify the Module Assembly.
- 8) Do not press the reflector sheet at the back of the module to any directions.
- 9) At the insertion or removal of the Signal Interface Connector, be sure not to rotate nor tilt the Interface Connector of the TFT Module.
- 11)After installation of the TFT Module into an enclosure (Notebook PC Bezel, for example), do not twist nor bend the TFT Module even momentary. At designing the enclosure, it should be taken into consideration that no bending/twisting forces are applied to the TFT Module from outside. Otherwise the TFT Module may be damaged.
- 12) Small amount of materials having no flammability grade is used in the LCD module. The LCD module should be supplied by power complied with requirements of Limited Power Source (IEC60950 or UL1950), or be applied exemption.
- 13) Disconnecting power supply before handling LCD modules, it can prevent electric shock, DO NOT TOUCH the electrode parts, cables, connectors and LED circuit part of TFT module that a LED light bar build in as a light source of back light unit. It can prevent electrostic breakdown.

document version 1.4 4 of 35

2. General Description

B089AW01 V0 is a Color Active Matrix Liquid Crystal Display composed of a TFT LCD panel, a driver circuit, and LED backlight system. The screen format is intended to support the WSVGA (1024(H) x 600(V)) screen and 262k colors (RGB 6-bits data driver) with LED backlight driving circuit. All input signals are LVDS interface compatible.

B089AW01 V0 is designed for a display unit of notebook style personal computer and industrial machine.

2.1 General Specification

The following items are characteristics summary on the table at 25 $^{\circ}\mathrm{C}$ condition:

Items	Unit	Specifications				
Screen Diagonal	[mm]	226.06(W")				
Active Area	[mm]	195.07(H) X	113.4(V)			
Pixels H x V		1024x3(RGB) x 600			
Pixel Pitch	[mm]	0.1905 (H) x	0.189 (V)			
Pixel Arrangement		R.G.B. Vertic	al Stripe			
Display Mode		Normally Wh	ite			
White Luminance Note: ILED is LED current	[cd/m ²]	180 typ. (center) 150 min. (center) (Note1)				
Luminance Uniformity		1.6 max. (13	points)			
Contrast Ratio		300 typ				
Response Time	[ms]	30 typ / 50 m	ax			
Nominal Input Voltage VDD	[Volt]	+3.3 typ.				
Power Consumption	[Watt]	3.0 max. (Inc	lude Logic an	d Black Lig	ht power)	
Weight	[Grams]	190 max.				
Physical Size	[mm]		L	W	T	
		Max	213.66	129.85	5.45	
		Typical	213.36	129.55	5.15	
Electrical Interfere		Min - - -				
Electrical Interface		1 channel LVDS				
Surface Treatment		Anti-Glare				

document version 1.4 5 of 35

Support Color		262K colors (RGB 6-bit)
Temperature Range Operating Storage (Non-Operating)	[°C]	0 to +50 -20 to +65
RoHS Compliance		RoHS Compliance

2.2 Optical Characteristics

The optical characteristics are measured under stable conditions at 25°C (Room Temperature):

Item	Unit	Conditions	Min.	Тур.	Max.	Note
White Luminance	[cd/m ²]	Center	150	180	-	1, 4, 5.
Viewing Angle	[degree]	e] Horizontal		45	-	4,9
	[degree]	(Right) CR = 10 (Left)	-	45	-	
	[degree]	Vertical	-	15	-	
	[degree]	(Upper) CR = 10 (Lower)	-	35	-	
Luminance Uniformity		13 Points	-	-	1.6	2,3,4
CR: Contrast Ratio			200	300	-	4,6
Cross talk	%				4	4,7
Response Time	[msec]	Rising	-	12	20	4,8
	[msec]	Falling	-	18	30	
	[msec]	Rising + Falling	-	30	50	
		Red x	0.535	0.585	0.635	4,9
		Red y	0.304	0.354	0.404	
Chromaticity of color		Green x	0.29	0.34	0.39	
Coordinates		Green y	0.529	0.579	0.629	
(CIE 1931)		Blue x	0.092	0.142	0.192	
		Blue y	0.048	0.098	0.148	
		White x	0.263	0.313	0.363	
		White y	0.279	0.329	0.379	

6 of 35 document version 1.4

AU OPTRONICS CORPORATION

Note 1:13 points position (Ref: Active area)

Note 3: The luminance uniformity of 5 or13 points is defined by dividing the maximum luminance values by the minimum test point luminance

0		Maximum Brightness of five points
δ _{W5}	=	Minimum Brightness of five points
2		Maximum Brightness of thirteen points
δ w13	=	Minimum Brightness of thirteen points

document version 1.4 7 of 35

AU OPTRONICS CORPORATION

The LCD module should be stabilized at given temperature for 30 minutes to avoid abrupt temperature change during measuring. In order to stabilize the luminance, the measurement should be executed after lighting Backlight for 30 minutes in a stable, windless and dark room.

Note 5: Definition of Average Luminance of White (Y_L):

Measure the luminance of gray level 63 at 5 points , $Y_L = [L (1) + L (2) + L (3) + L (4) + L (5)] / 5 L (x) is corresponding to the luminance of the point X at Figure in Note (1).$

Note 6: Definition of contrast ratio:

Contrast ratio is calculated with the following formula.

Note 7: Definition of Cross Talk (CT)

$$CT = |Y_B - Y_A| / Y_A \times 100 (\%)$$

Where

document version 1.4 8 of 35

AU OPTRONICS CORPORATION

Y_A = Luminance of measured location without gray level 0 pattern (cd/m₂)

YB = Luminance of measured location with gray level 0 pattern (cd/m2)

Note 8: Definition of response time:

The output signals of BM-7 or equivalent are measured when the input signals are changed from "Black" to "White" (falling time) and from "White" to "Black" (rising time), respectively. The response time interval between the 10% and 90% of amplitudes. Refer to figure as below.

document version 1.4 9 of 35

AU OPTRONICS CORPORATION

Note 8. Definition of viewing angle

Viewing angle is the measurement of contrast ratio \geq 10, at the screen center, over a 180° horizontal and 180° vertical range (off-normal viewing angles). The 180° viewing angle range is broken down as follows; 90° (θ) horizontal left and right and 90° (Φ) vertical, high (up) and low (down). The measurement direction is typically perpendicular to the display surface with the screen rotated about its center to develop the desired measurement viewing angle.

document version 1.4 10 of 35

3. Functional Block Diagram

The following diagram shows the functional block of the 8.9 inches wide Color TFT/LCD 40 Pin (One ch/connector Module:

document version 1.4 11 of 35

AU OPTRONICS CORPORATION

4. Absolute Maximum Ratings

An absolute maximum rating of the module is as following:

4.1 Absolute Ratings of TFT LCD Module

Item	Symbol	Min	Max	Unit	Conditions
Logic/LCD Drive	Vin	-0.3	+4.0	[Volt]	Note 1,2

4.2 Absolute Ratings of Backlight Unit

Item	Symbol	Min	Max	Unit	Conditions
LED Driving Voltage	V_{LED}	-	36 (Row Output)	[Volt]	Note 1,2,3
LED Driving Current	I _{LED}	-	30 (Row Output)	[mA] rms	Note 1,2,3

4.3 Absolute Ratings of Environment

Item	Symbol	Min	Max	Unit	Conditions
Operating Temperature	TOP	0	+50	[°C]	Note 4
Operation Humidity	HOP	8	95	[%RH]	Note 4
Storage Temperature	TST	-20	+65	[°C]	Note 4
Storage Humidity	HST	5	95	[%RH]	Note 4

Note 1: At Ta (25°C)

Note 2: Permanent damage to the device may occur if exceed maximum values

Note 3: LED specification refer to section 5.2

Note 4: For quality performance, please refer to AUO IIS (Incoming Inspection Standard).

Operating Range

Storage Range

+

document version 1.4 12 of 35

AU OPTRONICS CORPORATION

5. Electrical characteristics

5.1 TFT LCD Module

5.1.1 Power Specification

Input power specifications are as follows;

Symble	Parameter	Min	Тур	Max	Unit	Note
VDD	Logic/LCD Drive Voltage	3.0	3.3	3.6	[Volt]	
PDD	VDD Power	-	0.86	1	[Watt	Note 1/2
IDD	IDD Current	•	260	280	[mA]	Note 1/2
IRush	Inrush Current	•	650	1	[mA]	Note 3
VDDrp	Allowable Logic/LCD Drive Ripple Voltage	-	-	100	[mV] p-p	

Note 1: Maximum Measurement Condition: Black Pattern

Note 2: Typical Measurement Condition: Mosaic Pattern

Note 3: Measure Condition

Vin rising time

document version 1.4 13 of 35

AU OPTRONICS CORPORATION

5.1.2 Signal Electrical Characteristics

Input signals shall be low or High-impedance state when VDD is off.

It is recommended to refer the specifications of SN75LVDS82DGG (Texas Instruments) in detail.

Signal electrical characteristics are as follows;

Parameter	Condition	Min	Max	Unit
Vth	Differential Input High Threshold (Vcm=+1.2V)	-	100	[mV]
Vtl	Differential Input Low Threshold (Vcm=+1.2V)	-100	-	[mV]
Vcm	Differential Input Common Mode Voltage	1.125	1.375	[V]

Note: LVDS Signal Waveform

document version 1.4 14 of 35

AU OPTRONICS CORPORATION

Parameter	Symbol	Min	Тур	Max	Units	Condition
LED Circuit Power Supply	V_{LED}	4.5	5	5.5	[Volt]	(Ta=25°ℂ)
LED Circuit Input current	I _{LED}		350	400	[mA]	(Ta=25°ℂ)
LED Power Consumption	P_{LED}		1.75	2.0	[Watt]	(Ta=25°C) Note 1
LED PWM Frequency	L_{Freq}		200	1K	Hz	
LED Life-Time	N/A	10,000	1	-	Hour	(Ta=25°C) I _F =20 mA Note 2
Duty Ratio		20		100	%	

Note 1: Calculator value for reference IF×VF =P

Note 2: The LED life-time define as the estimated time to 50% degradation of initial luminous.

Note 3: The LED driving condition is defined for LED module (24 LED)

Note 4: Define "LED Lifetime": brightness is decreased to 50% of the initial value.

document version 1.4 15 of 35

6. Signal Characteristic

6.1 Pixel Format Image

Following figure shows the relationship of the input signals and LCD pixel format.

	0	1		102	2	<mark>1</mark> 02	3
1st Line	R G B	R G B		R G	В	R G	В
	1	ı	1	1		1	
		'	÷				
				•		•	
			· ·				
			:				
	1		•				
		.					
		L , ' ,		· 		,	
599th Line	R G B	R G B		R G	В	R G	В

document version 1.4 16 of 35

6.2 The input data format

RxCLKIN	
RxIN0	G0 R5 R4 R3 R2 R1 R0
RxIN1	B1 B0 G5 G4 G3 G2 G1
RxIN2	DE VS HS B5 B4 B3 B2

Olama al Maria	Description	
Signal Name	Description	
R5	Red Data 5 (MSB)	Red-pixel Data
R4	Red Data 4	Each red pixel's brightness data consists of
R3	Red Data 3	these 6 bits pixel data.
R2	Red Data 2	
R1	Red Data 1	
R0	Red Data 0 (LSB)	
	Red-pixel Data	
G5	Green Data 5 (MSB)	Green-pixel Data
G4	Green Data 4	Each green pixel's brightness data consists of
G3	Green Data 3	these 6 bits pixel data.
G2	Green Data 2	
G1	Green Data 1	
G0	Green Data 0 (LSB)	
	Green-pixel Data	
B5	Blue Data 5 (MSB)	Blue-pixel Data
B4	Blue Data 4	Each blue pixel's brightness data consists of
B3	Blue Data 3	these 6 bits pixel data.
B2	Blue Data 2	
B1	Blue Data 1	
B0	Blue Data 0 (LSB)	
	, ,	
	Blue-pixel Data	
RxCLKIN	Data Clock	The typical frequency is 50.4 MHZ. The signal is
		used to strobe the pixel data and DE signals. All
		pixel data shall be valid at the falling edge when
		the DE signal is high.
DE	Display Timing	This signal is strobed at the falling edge of
		RxCLKIN. When the signal is high, the pixel
		data shall be valid to be displayed.
VS	Vertical Sync	The signal is synchronized to RxCLKIN.
HS	Horizontal Sync	The signal is synchronized to RxCLKIN.

Note: Output signals from any system shall be low or High-impedance state when VDD is off.

document version 1.4 17 of 35

6.3 Signal Description/Pin Assignment

Pin no	Symbol	Description	Remark
1	GND	Ground	
2	VDD	+3.3V Power Supply	
3	VDD	+3.3V Power Supply	
4	VEDID	+3.3V EDID Power	
5	NC	No Connection (Reserve for AUO test)	
6	CLKEDID	EDID Clock Input	
7	DATAEDID	EDID Data Input	
8	RxIN0-	LVDS differential data input(R0-R5, G0)	
9	RxIN0+	LVDS differential data input(R0-R5, G0)	
10	GND	Ground	
11	RxIN1-	LVDS differential data input(G1-G5, B0-B1)	
12	RxIN1+	LVDS differential data input(G1-G5, B0-B1)	
13	GND	Ground	
14	RxIN2-	LVDS differential data input(B2-B5, HS, VS, DE)	
15	RxIN2+	LVDS differential data input(B2-B5, HS, VS, DE)	
16	GND	Ground	
17	RxCLKIN-	LVDS differential clock input	
18	RxCLKIN+	LVDS differential clock input	
19	GND	Ground	
20	NC	No Connection (Reserve for AUO test)	
21	NC	No Connection (Reserve for AUO test)	
22	GND	Ground	
23	NC	No Connection (Reserve for AUO test)	
24	NC	No Connection (Reserve for AUO test)	
25	GND	Ground	
26	NC	No Connection (Reserve for AUO test)	
27	NC	No Connection (Reserve for AUO test)	
28	GND	Ground	
29	VLED	LED Power Supply +5V	
30	VLED	LED Power Supply +5V	
31	VLED_GND	LED Ground	
32	VLED_GND	LED Ground	
33	VLED_GND	LED Ground	
34	NC	No Connection (Reserve for AUO test)	
35	NC	No Connection (Reserve for AUO test)	
36	NC	No Connection (Reserve for AUO test)	
37	NC	No Connection (Reserve for AUO test)	
38	S_PWMIN	System PWM signal Input	Note 1
39	LED_EN	ENB pin input (On: 3.3V or 5V, Off: 0V)	Note 2
40	NC	No Connection (Reserve for AUO test)	

document version 1.4 18 of 35

AU OPTRONICS CORPORATION

LVDS is a differential signal technology for LCD interface and high speed data transfer device.

Note 1: The PWM pin should not connect to ground, it should pull-high if not adjust brightness.

Note 2: Pin 39 connects to LED ENB pin. On (High): 3.3V or 5V, Off (Low): 0V

document version 1.4 19 of 35

AU OPTRONICS CORPORATION

Note1: Start from right side

Note2: Input signals shall be low or High-impedance state when VDD is off.

internal circuit of LVDS inputs are as following.

The module uses a 100ohm resistor between positive and negative data lines of each receiver input

document version 1.4 20 of 35

AU OPTRONICS CORPORATION

6.4 Interface Timing

6.4.1 Timing Characteristics

Basically, interface timings should match the 1024 x 600 /60Hz manufacturing guide line timing.

Parameter		Symbol	Min.	Тур.	Max.	Unit
Frame Rate		-	-	60	-	Hz
Clock frequency		1/ T _{Clock}	ı	50.4	75	MHz
	Period	T _V	603	625	650	
Vertical	Active	T _{VD}	600	600	600	T_{Line}
Section	Blanking	T _{VB}	3	25	50	
	Period	T _H	1303	1344	1534	
Horizontal	Active	T _{HD}	1024	1024	1024	T_{Clock}
Section	Blanking	T _{HB}	22	320	510	

Note: DE mode only

document version 1.4 21 of 35

AU OPTRONICS CORPORATION

6.4.2 Timing diagram

document version 1.4 22 of 35

AU OPTRONICS CORPORATION

6.5 Power Sequence

6.5.1 Panel Power Sequence

VDD power and LED on/off sequence is as follows. Interface signals are also shown in the chart. Signals from any system shall be Hi-Z state or low level when VDD is off.

.

POWER Sequence Timing

· · · · · · · · · · · · · · · · · · ·						
Parameter		Value		Unit		
Parameter	Min.	Тур.	Max.	Offic		
T1	0.5	-	10	[ms]		
T2	30	40	50	[ms]		
T3	200	-	1	[ms]		
T4	10	-	-	[ms]		
T5	10	-	-	[ms]		
T6	0	-	1	[ms]		
T7	10	-	-	[ms]		
T8	100	-	1	[ms]		
T9	0	16	50	[ms]		
T10	-	-	10	[ms]		
T11	1000	-	-	[ms]		

document version 1.4 23 of 35

7. Connector Description

Physical interface is described as for the connector on module.

These connectors are capable of accommodating the following signals and will be following components.

7.1 TFT LCD Module

Connector Name / Designation	For Signal Connector			
Manufacturer	IPEX or compatible			
Type / Part Number	IPEX 20347-340E-12 or compatible			
Mating Housing/Part Number	IPEX 20347-340E-12 or compatible			

document version 1.4 24 of 35

8. 8. LED Driving Specification

8.1 Connector Description

It is a intergrative interface and comibe into LVDS connector. The type and mating refer to section 7.

8.2 Pin Assignment

Pin no	Symbol	Description	Remark
29	VLED	LED Power Supply +5V	
30	VLED	LED Power Supply +5V	
31	VLED_GND	LED Ground	
32	VLED_GND	LED Ground	
33	VLED_GND	LED Ground	
34	NC	No Connection (Reserve for AUO test)	
35	NC	No Connection (Reserve for AUO test)	
36	NC	No Connection (Reserve for AUO test)	
37	NC	No Connection (Reserve for AUO test)	
38	S_PWMIN	System PWM signal Input	
39	LED_EN	ENB pin input (On: 3.3V or 5V, Off: 0V)	
40	NC	No Connection (Reserve for AUO test)	

25 of 35 document version 1.4

Product Specification AU OPTRONICS CORPORATION

9. Vibration and Shock Test

9.1 Vibration Test

Test Spec:

Test method: Non-Operation

Acceleration: 1.5 G

Frequency: 10 - 500Hz Sine Wave

Sweep: 30 Minutes each Axis (X, Y, Z)

9.2 Shock Test Spec:

Test Spec:

Test method: Non-Operation

Acceleration: 220 G, Half sine wave

Active time: 2 ms

Pulse: X,Y,Z .one time for each side

26 of 35 document version 1.4

AU OPTRONICS CORPORATION

Items	Required Condition	Note
Temperature Humidity Bias	Ta= 40℃, 90%RH, 240h	
High Temperature Operation	Ta= 50°ℂ , Dry, 240h	
Low Temperature Operation	Ta= 0℃, 240h	
High Temperature Storage	Ta= 60°C , 240h	
Low Temperature Storage	Ta= -20℃, 240h	
Thermal Shock Test	Ta=-20℃ to 60℃, Duration at 30 min, 100 cycles	
ESD	Contact : ±8 KV	Note 1
	Air: ±15 KV	

Note1: According to EN 61000-4-2, ESD class B: Some performance degradation allowed. No data lost

. Self-recoverable. No hardware failures.

Remark: MTBF (Excluding the LED): 30,000 hours with a confidence level 90%

document version 1.4 27 of 35

AU OPTRONICS CORPORATION

11. Mechanical Characteristics

11.1 LCM Outline Dimension

Note: In order to avoid IC damage, it is not allowed to have any component overlapping on those areas.

document version 1.4 28 of 35

AU OPTRONICS CORPORATION

document version 1.4 29 of 35

AU OPTRONICS CORPORATION

11.2 Screw Hole Depth and Center Position

Screw hole minimum depth, from side surface =2.5 mm (See drawing)

Screw hole center location, from front surface = 2.95 ± 0.1 mm (See drawing)

Suggestions: Customers' Screw maximum length = 2.0 mm (See drawing)

Screw Torque: Maximum2.5 kgf-cm

document version 1.4 30 of 35

Product Specification AU OPTRONICS CORPORATION

12. Shipping and Package

12.1 Shipping Label Format

Manufactured 08/02 Model No: B089AW01 V.0 AU Optronics **OAXXG** MADE IN CHINA (S01)

HW: 0A FW:1

CT:CAJDF016RWWXXX

document version 1.4 31 of 35

Product Specification AU OPTRONICS CORPORATION

12.2 Carton package

12.3 Shipping package of palletizing sequence

document version 1.4 32 of 35

13. Appendix: EDID description

B089AW01 V0 EDID Code

Address	FUNCTION	Value	Value	Value	Note
HEX		HEX	BIN	DEC	
00	Header	00	00000000	0	
01		FF	11111111	255	
02		FF	11111111	255	
03		FF	11111111	255	
04		FF	11111111	255	
05		FF	11111111	255	
06		FF	11111111	255	
07		00	00000000	0	
08	EISA Manuf. Code LSB	06	00000110	6	
09	Compressed ASCII	AF	10101111	175	
0A	Product Code	C2	11000010	194	
0B	hex, LSB first	10	00010000	16	
0C	32-bit ser #	00	00000000	0	
0D		00	00000000	0	
0E		00	00000000	0	
0F		00	00000000	0	
10	Week of manufacture	01	0000001	1	
11	Year of manufacture	12	00010010	18	
12	EDID Structure Ver.	01	0000001	1	
13	EDID revision #	03	00000011	3	
14	Video input def. (digital I/P, non-TMDS, CRGB)	80	10000000	128	
15	Max H image size (rounded to cm)	14	00010100	20	
16	Max V image size (rounded to cm)	0B	00001011	11	
17	Display Gamma (=(gamma*100)-100)	78	01111000	120	
18	Feature support (no DPMS, Active OFF, RGB, tmg Blk#1)	0A	00001010	10	
19	Red/green low bits (Lower 2:2:2:2 bits)	FA	11111010	250	
1A	Blue/white low bits (Lower 2:2:2:2 bits)	56	01010110	86	
1B	Red x (Upper 8 bits)	92	10010010	146	
1C	Red y/ highER 8 bits	56	01010110	86	
1D	Green x	54	01010100	84	
1E	Green y	98	10011000	152	
1F	Blue x	24	00100100	36	
20	Blue y	1A	00011010	26	
21	White x	4F	01001111	79	
22	White y	54	01010100	84	
23	Established timing 1	00	00000000	0	
24	Established timing 2	00	00000000	0	
25	Established timing 3	00	00000000	0	
26	Standard timing #1	01	0000001	1	
27		01	0000001	1	
28	Standard timing #2	01	0000001	1	

document version 1.4 33 of 35

20	AU OF TROMICS CORE	1	İ	4	
29	Chandand timing #0	01	00000001	1	
2A 2B	Standard timing #3	01	00000001	1	
2G 2C	Chandard timing #4	01	00000001	1	
2D	Standard timing #4	01	00000001 00000001	1	
2E	Standard timing #F	01	00000001	1	
2F	Standard timing #5	01	0000001	1	
30	Standard timing #6	01	0000001	1	
31	Standard tirring #0	01	00000001	1	
32	Standard timing #7	01	00000001	1	
33	Otandard tirring #7	01	00000001	1	
34	Standard timing #8	01	0000001	1	
35	Standard timing #5	01	0000001	1	
36	Pixel Clock/10000 LSB	B0	10110000	176	
37	Pixel Clock/10000 USB	13	00010011	19	
38	Horz active Lower 8bits	00	00000000	0	
39	Horz blanking Lower 8bits	40	01000000	64	
3A	HorzAct:HorzBlnk Upper 4:4 bits	41	01000001	65	
3B	Vertical Active Lower 8bits	58	01011000	88	
3C	Vertical Blanking Lower 8bits	19	00011001	25	
3D	Vert Act : Vertical Blanking (upper 4:4 bit)	20	00100000	32	
3E	HorzSync. Offset	18	00011000	24	
3F	HorzSync.Width	88	10001000	136	
40	VertSync.Offset : VertSync.Width	31	00110001	49	
41	Horz‖ Sync Offset/Width Upper 2bits	00	0000000	0	
42	Horizontal Image Size Lower 8bits	СЗ	11000011	195	
43	Vertical Image Size Lower 8bits	71	01110001	113	
44	Horizontal & Vertical Image Size (upper 4:4 bits)	00	00000000	0	
45	Horizontal Border (zero for internal LCD)	00	00000000	0	
46	Vertical Border (zero for internal LCD)	00	00000000	0	
47	Signal (non-intr, norm, no stero, sep sync, neg pol)	18	00011000	24	
48	Detailed timing/monitor	00	00000000	0	
49	descriptor #2	00	00000000	0	
4A		00	00000000	0	
4B		0F	00001111	15	
4C		00	00000000	0	
4D		00	00000000	0	
4E		00	00000000	0	
4F		00	00000000	0	
50		00	00000000	0	
51		00	00000000	0	
52		00	00000000	0	
53		00	00000000	0	
54		00	00000000	0	
55		00	00000000	0	
56		00	00000000	0	
57		00	00000000	0	

document version 1.4 34 of 35

58		00	00000000	0	<u> </u>
59		20	00100000	32	
5A	Detailed timing/monitor	00	00000000	0	
5B	descriptor #3	00	00000000	0	
5C	3000.ptcc	00	00000000	0	
5D		FE	11111110	254	
5E		00	0000000	0	
5F	Manufacture	41	01000001	65	Α
60	Manufacture	55	01010101	85	U
61	Manufacture	4F	01001111	79	0
62		0A	00001010	10	
63		20	00100000	32	
64		20	00100000	32	
65		20	00100000	32	
66		20	00100000	32	
67		20	00100000	32	
68		20	00100000	32	
69		20	00100000	32	
6A		20	00100000	32	
6B		20	00100000	32	
6C	Detailed timing/monitor	00	00000000	0	
6D	descriptor #4	00	00000000	0	
6E		00	00000000	0	
6F		FE	11111110	254	
70		00	00000000	0	
71	Manufacture P/N	42	01000010	66	В
72	Manufacture P/N	30	00110000	48	0
73	Manufacture P/N	38	00111000	56	8
74	Manufacture P/N	39	00111001	57	9
75	Manufacture P/N	41	01000001	65	Α
76	Manufacture P/N	57	01010111	87	W
77	Manufacture P/N	30	00110000	48	0
78	Manufacture P/N	31	00110001	49	1
79	Manufacture P/N	20	00100000	32	
7A	Manufacture P/N	56	01010110	86	V
7B	Manufacture P/N	30	00110000	48	0
7C		20	00100000	32	<u> </u>
7D		0A	00001010	10	
7E	Extension Flag	00	00000000	0	
7F	Checksum	5A	01011010	90	

document version 1.4 35 of 35