Flex-MoE: Modeling Arbitrary Modality Combination via the Flexible Mixture-of-Experts

Sukwon Yun¹, Inyoung Choi², Jie Peng³, Yangfan Wu³, Jingxuan Bao², Qiyiwen Zhang², Jiayl Xin², Qi Long², Tianlong Chen¹

¹University of North Carolina at Chapel Hill ²University of Pennsylvania ³University of Science and Technology of China

Transformer vs. Mixture of Experts

MoE vs Transformer

 MoE - model architecture where many specialized sub-models (experts) exist.

• **Transformer** – sequence modeling architecture that relies on self-attention mechanisms.

 MoE often applied to transformer architecture due to their success/scalability.

Routers (or Gates)

Mixture of Experts

Experts

- An expert is a subset of the original network that is independently parameterized.
- Each has its own weights not shared with other experts.
- Inputs are processed by the gate network which decides which expert to use.

Combination Function

Sparse MoE - Passing a token via the router and chosen experts

Sparse Mixture-of-Experts (SMoE)

 The model learns which experts are best with particular tokens

 Only a set of experts are activated for each input rather than all experts

 Makes computation more efficient, with possible trade-offs in accuracy

Rise of Mixture of Experts (MoE)

Mixture of Experts

1991

Jacobs et al.
Combined
local experts
for vowel
classification

Top-K Routing

2017

Shazeer et al.
Sparsely
activated
experts

Switch Transformer

2022

Fedus et al. Routed to one expert Dropless MoE

2022+

Gale et al.
Block-sparse
matrix mult.

"Megablocks"; also Soft MoE

Multimodal Alzheimer's Disease (AD)

- AD pathologies involve many hypotheses spanning various modalities.
- Modalities might be missing for certain patients that could be useful in understanding their progression.
- Most models expect all modalities to be present.
- Number of modalities are growing along with possible combinations.

Missing Modality Problem

Methods Overview

Flex-MoE Framework

Missing Modality Bank

Expert Generalization

Expert Specialization

Generalization (SMoE)

- Train first layer of SMoE
 - Easiest examples first
 - All modalities fully observed
- More challenging examples appear later
 - Follows vanilla SMoE equation
 - Input tokens only consist of full modality combinations

$$\mathbf{y} = \sum_{i=1}^{|D|} \mathcal{R}(\mathbf{x})_i \cdot f_i(\mathbf{x}),$$
 $\mathcal{R}(\mathbf{x}) = ext{Top-K}(ext{softmax}(g(\mathbf{x})), k),$ $\mathbf{TopK}(\mathbf{v}, k) = egin{cases} \mathbf{v}, & ext{if } \mathbf{v} ext{ is in the top } k, \\ 0, & ext{otherwise.} \end{cases}$

- y final output of MoE layer
 |E| number of experts
- $f_i(x)$ output of the ith expert, given x
- $R(x)_i$ routing weight assigned to expert i, given x
- TopK(v, k) keeps only top k probabilities
 - Only most relevant experts preserved
 - Masks others to zero

Specialization

Once the experts are initially trained, they use a special routing mechanism (S-Router) to target specific experts with specific modality combinations.

This is achieved by the following loss function

$$\mathcal{L}_{ce} = -\sum_{j=1}^{n} \mathcal{MC}(\mathbf{x}_{j}) \log(\max(\mathcal{S} ext{-Router}(\mathbf{x}_{j})))$$

- MC one hot vector indicating which combination to target
- **S-router** outputs probability distribution over experts for input x_i
- Accumulates the loss over all inputs in the batch
- Penalizes S-router when selected top-1 expert doesn't match modality combination

	ADNI	MIMIC-IV
Туре	Alzheimer's multimodal dataset	ICU clinical dataset
Data	MRI, PET, genetics, clinical, biospecimens	ICD-9, clinical text, labs/vitals
Patients	Alzheimer's cases across stages	Adults with ≥ 2 visits
Size	~2,000 subjects (varies by modality)	~50,000 patients (subset of full MIMIC-IV)
Task	Multi-class prediction of AD stage- Dementia, CN, or MCI	One-year mortality binary classification
Prep	Mean imputation for missing data	Drop death-time visits, use last visit only
Access	Multi-center, open-access	Single center, de-identified

CN = normal cognitive aging, MCl = mild cognitive impairment, AD = Alzheimer's Disease

Experimental Design

	ADNI	MIMIC-IV
Dataset focus	AD prediction	One-year patient mortality prediction
Classification task	3-class classification: CN, MCI, Dementia	Binary classification: 1-year mortality (yes/no)
Modalities Used	MRI, PET, Genetic (APOE, SNPs), Clinical, Biospecimen (CSF, blood, urine)	ICD-9 codes, Clinical Text, Labs & Vitals
Baselines	3D CNN, VGG, ResNet-18, ResNet-34, Autoencoders, GRU, ShaeSpec, mmFormer, MAG, MulT, TF	Same multimodal models: FuseMoE, MulT, MAG, TF, LIMoE
Fusion Strategy	For baselines lacking imputation/fusion: zero-padding used during batch training	Same

Baselines

Modality	Model/Method	Description
Image-only	3D CNN	Processes 3D MRI scans.
Image-only	3D CNN + 3D CLSTM	Combines 3D CNN with convolutional LSTM for temporal features.
Image-only	2D VGG	Pretrained VGG with layer-wise transfer learning on 2D MRI slices.
Image-only	Modified ResNet-18	Adapted for 2D MRI scans.
Genetic-only	ResNet-34	Handles high-dimensional genetic data.
Multimodal (ADNI)	Autoencoder + 3D CNN	Integrates imaging, genetic, and clinical data.
Multimodal (ADNI)	GRU-based Architecture	Incorporates imaging, genetic, clinical, and biospecimen data.
Multimodal (ADNI)	ShaeSpec	Spectral attention mechanism across modalities.
Multimodal (ADNI)	mmFormer	Transformer-based multimodal fusion with attention.
Multimodal (ADNI & MIMIC-IV)	FuseMOE	Mixture-of-experts strategy for direct multimodal integration.
Multimodal (ADNI & MIMIC-IV)	MulT	Cross-attention for cross-modal interaction.
Multimodal (ADNI & MIMIC-IV)	MAG	Multimodal fusion via adaptation vector mapping.
Multimodal (ADNI & MIMIC-IV)	TF	Combines embedding sub-networks and a tensor fusion layer.
Multimodal (ADNI & MIMIC-IV)	LIMoE	Uses entropy regularization for stable multimodal learning with contrastive learning.

Experimental Settings

Setting	Values
LR	1e-3, 1e-4, 1e-5
Hidden Dim	64, 128, 256
Batch Size	8, 16
# Experts	16, 32
Top-k	2, 3, 4
Loss Coeff.	0.01
Data Split	70% train, 15% val, 15% test
Modality Handling	Intersection for val/test; zero-pad if needed
Runs	3 seeds, averaged
Hardware	NVIDIA A100 GPUs

Results - ADNI

		Moda	alities			Dataset: ADNI / Metric: ACC								
мс	(9)	ğ			Transformer-based [59]	GRU-based [33]	ShaSpec	mmFormer	TF	MulT	MAG	LIMoE	FuseMoE	Flex-MoE
\mathcal{I},\mathcal{G}	•	•			54.81 ±1.45	53.59 ± 2.98	48.09 ± 0.66	49.85 ± 4.92	59.94 ± 0.40	60.32 ± 0.95	59.94 ± 1.00	59.29 ± 0.95	60.41 ± 0.87	61.08 ±0.78
\mathcal{I},\mathcal{C}	•		•		44.35 ±1.99	57.15 ±1.58	47.62 ± 1.81	51.96 ± 4.23	54.53 ± 0.66	50.14 ± 1.05	52.19 ± 2.90	52.38 ± 3.46	53.13 ± 1.97	56.49 ± 2.55
\mathcal{I},\mathcal{B}				•	40.80 ± 2.94	57.61 ±1.86	50.98 ± 2.09	51.45 ± 3.53	52.57 ± 2.06	51.17 ± 2.88	52.47 ± 4.11	53.87 ± 2.75	49.67 ± 1.97	60.41 ±0.26
\mathcal{G},\mathcal{C}		•	•		51.91 ±1.39	52.85 ± 2.47	52.85 ± 2.65	49.58 ± 4.45	38.38 ± 3.03	46.03 ± 5.42	40.34 ± 6.11	35.76 ± 6.24	38.84 ± 2.42	60.60 ± 0.26
\mathcal{G},\mathcal{B}		•		•	45.01 ±1.30	52.66 ± 3.63	58.54 ± 2.97	48.45 ± 4.56	42.20 ± 1.78	39.40 ± 2.91	$40.52 \; {\pm} 2.52$	36.88 ± 5.04	37.91 ± 0.80	63.59 ±1.04
\mathcal{C},\mathcal{B}			•	•	44.63 ±0.92	63.68 ±0.48	59.10 ± 2.69	47.71 ± 4.49	39.68 ± 2.38	$44.54 \; {\pm}0.82$	40.15 ± 2.58	43.98 ± 0.00	37.91 ± 0.80	60.50 ± 0.82
$\mathcal{I},\mathcal{G},\mathcal{C}$			•		55.12 ±2.38	54.72 ±0.28	49.30 ±3.17	46.49 ±3.57	54.06 ±1.98	60.97 ± 0.95	61.34 ±0.61	53.50 ± 2.25	60.97 ± 1.32	63.21 ±1.73
$\mathcal{I},\mathcal{G},\mathcal{B}$	•	•		•	56.12 ±3.44	55.28 ± 3.44	52.85 ± 0.53	47.15 ± 6.43	54.44 ± 2.26	53.03 ± 1.95	54.15 ± 1.06	53.97 ± 1.08	$52.85 \pm\! 1.00$	62.28 ±2.75
$\mathcal{I}, \mathcal{C}, \mathcal{B}$	•		•	•	43.79 ± 0.69	60.97 ± 2.60	52.85 ± 3.30	47.18 ± 4.68	52.29 ± 1.47	49.86 ± 1.50	53.24 ± 0.50	54.97 ± 0.00	49.67 ± 1.00	64.05 ±1.78
$\mathcal{G},\mathcal{C},\mathcal{B}$		•	•	•	45.28 ±1.85	53.87 ± 3.35	$62.09 \; \pm 3.27$	$46.38 \; {\pm} 4.24$	43.33 ± 4.43	43.32 ± 6.74	37.25 ± 1.99	$40.99 \; {\pm} 2.62$	34.64 ± 1.95	65.36 ±1.38
$\mathcal{I},\mathcal{G},\mathcal{C},\mathcal{B}$		•	•	•	$\mid~52.10~{\scriptstyle\pm0.99}$	55.64 ± 1.86	52.84 ± 0.53	$58.92 \pm \scriptstyle 6.58$	57.24 ± 3.05	$58.82 \pm \scriptstyle{0.82}$	61.44 ± 1.61	55.18 ± 4.22	59.52 ± 1.00	66.11 ±1.14

3-class classification of AD stage- Dementia, CN, or MCI

CN = normal cognitive aging, MCI = mild cognitive impairment, AD = Alzheimer's Disease

Image (\mathcal{I}, \square) Clinical (\mathcal{C}, \square) Biospecimen (\mathcal{B}, \square) Genetic (\mathcal{G}, \square)

Results - MIMIC-IV

	M	odaliti	ies		Dataset: MIMIC-IV / Metric: ACC				
\mathcal{MC}	S. C. C.			TF	MulT	MAG	LIMoE	FuseMoE	Flex-MoE
$\overline{\mathcal{L},\mathcal{N}}$	•	•	ä	60.05 ±1.96	57.96 ±7.25	62.72 ±2.36	63.80 ±1.99	60.50 ±3.82	76.14 ±0.73
$egin{array}{l} \mathcal{L}, \mathcal{N} \ \mathcal{L}, \mathcal{C} \ \mathcal{N}, \mathcal{C} \end{array}$	•		•	64.13 ± 3.39	62.47 ± 2.01	60.13 ± 1.97	64.89 ± 1.46	63.31 ± 3.21	75.15 ± 0.55
\mathcal{N},\mathcal{C}		•	•	60.97 ± 2.36	62.23 ± 2.81	59.41 ± 4.15	64.27 ± 4.05	64.77 ± 3.05	74.96 ±1.59
$\overline{\mathcal{L},\mathcal{N},\mathcal{C}}$	•	•	•	63.11 ±2.17	64.62 ±0.44	62.87 ± 2.50	61.61 ±2.37	63.90 ± 1.72	76.81 ±0.90

Binary classification on 1-year mortality

Clinical Notes (\mathcal{N}, \square) ICD-9 Codes (\mathcal{C}, \square) Lab and Vital values (\mathcal{L}, \nearrow)

Results - Missing Modality Bank

- (LEFT) Cosine similarity between observed modalities and their bank representation
 - More overlapping combinations share similar embedding information
- (RIGHT) Cosine similarity between missing modalities and retrieved bank representation
 - Certain missing modalities are handled more similarly by the model than others

Results - Modality Combination Activation Ratio

- Generalized knowledge (BCGI) is distributed across all experts
 - a. Due to expert generalization

- 2. Each expert is able to acquire specialized knowledge
 - a. Due to expert specialization

Ablation Test

Table 3: Ablation study of Flex-MoE.

	ACC	F1
Flex-MoE	66.11	64.73
w/o ES	62.75	60.79
$w/o \{ES + EG\}$	62.49	60.07
w/o embedding bank	63.87	62.48
w/o sorting - random	62.65	60.70
w/o sorting - ascending	63.87	62.22

- When ES/GS removed, accuracy dropped lowest
- 2. Embedding bank also important, accuracy dropped when removed
- 3. Ascending order sorting shown less performant than descending order sorting

Sensitivity Analysis

Figure 6: Sensitivity analysis of Flex-MoE. The hyper-parameters include the number of experts, the number of SMoE layers and Top-k expert selection. For the experiment, ADNI dataset with full modalities is used.

Tested 3 Hyperparameters:

- # Experts
 - More isn't always better
- # SMoE Layers
 - Using a single layer most effective
- Top-K
 - Found 4 to be the best choice

References/Resources

- Visual guide to MoEs
 - https://newsletter.maartengrootendorst.com/p/a-visual-guide-to-mixture-of-ex perts
- Calculating an MoE by hand
 - https://www.linkedin.com/posts/tom-yeh_deeplearning-generatieveai-llms-activity-7141461533112381441-J35v?utm_source=share&utm_medium=member_deskt_op
- Review Scaling vision with sparse mixture of experts
 - <u>https://sh-tsang.medium.com/review-scaling-visio</u>

1. Mixture of Experts (MoE)

sformer vs. Mixture of Experts in LLMs

Review — Scaling Vision with Sparse Mixture of Experts

V-MoE, up to 24 MoE Layers, 32 Experts Per Layer, Almost 15B Parameters

