Nombres entiers, itérations

# Aperçu

- 1. Nombres entiers
- 2. Suites définies par une relation de récurrence
- 3. Entiers relatifs
- 4. Les nombres rationnels

- 1. Nombres entiers
- 1.1 Les entiers naturels
- 1.2 L'ensemble ordonné  $(\mathbb{N}, \leq)$
- 1.3 Le principe de récurrence
- 2. Suites définies par une relation de récurrence
- 3. Entiers relatifs
- 4. Les nombres rationnels

### 1. Nombres entiers

- 1.1 Les entiers naturels
- 1.2 L'ensemble ordonné  $(\mathbb{N}, \leq)$
- 1.3 Le principe de récurrence
- 2. Suites définies par une relation de récurrence
- 3 Entiers relatifs
- Les nombres rationnels

D

On désigne par  $\mathbb N$  l'ensemble des entiers naturels:

$$\mathbb{N} = \{ 0, 1, 2, 3, \dots \}.$$

P L'addition des entiers possède les propriétés suivantes:

- 1. L'addition est une loi de composition interne dans  $\mathbb{N}$ . Si m et n sont deux entiers naturels; on sait que leur somme est une entier  $m + n \in \mathbb{N}$ .
- 2. L'addition étant associative dans  $\mathbb{R}$ , elle est a fortiori associative dans  $\mathbb{N}$ .

$$\forall (x, y, z) \in \mathbb{N}^3, (x + y) + z = x + (y + z).$$

On note simplement x + y + z.

- 3. L'addition dans  $\mathbb{R}$  admet le nombre 0 comme élément neutre; puisque 0 est une entier naturel, il est l'élément neutre pour l'addition dans  $\mathbb{N}$ .
- 4. L'addition dans  $\mathbb{N}$  est commutative puisque, dans  $\mathbb{R}$ , elle est commutative.

La multiplication des entiers possède les propriétés suivantes:

- 1. La multiplication est une loi de composition interne dans  $\mathbb{N}$ . Si m et n sont deux entiers naturels; on sait que leur produit est une entier  $m \times n \in \mathbb{N}$ .
- 2. La multiplication étant associative dans  $\mathbb{R}$ , elle est a fortiori associative dans  $\mathbb{N}$ .

$$\forall (x, y, z) \in \mathbb{N}^3, (xy)z = x(yz).$$

On note simplement xyz.

- 3. La multiplication dans  $\mathbb{R}$  admet le nombre 1 comme élément neutre; puisque 1 est une entier naturel, il est l'élément neutre pour la multiplication dans  $\mathbb{N}$ .
- 4. La multiplication dans  $\mathbb{N}$  est commutative puisque, dans  $\mathbb{R}$ , elle est commutative.
- 5. La multiplication dans  $\mathbb N$  est distributive par rapport à l'addition, puisqu'elle l'est dans  $\mathbb R$

$$\forall (x, y, z) \in \mathbb{N}^3, x.(y + z) = x.y + x.z \text{ et } (x + y).z = x.z + y.z.$$

Р

- 1. Le seul élément ayant un opposé pour l'addition dans  $\mathbb{N}$  est 0.
- 2. Le seul élément ayant un inverse pour la multiplication dans  $\mathbb{N}$  est 1.

Ν

$$\mathbb{N}^{\star} = \mathbb{N} \setminus \{0\}.$$

- 1. Nombres entiers
- 1.1 Les entiers naturels
- 1.2 L'ensemble ordonné  $(\mathbb{N}, \leq)$
- 1.3 Le principe de récurrence
- 2. Suites définies par une relation de récurrence
- 3 Entiers relatifs
- 4. Les nombres rationnels

# **Axiomatique**

L'ensemble  $\mathbb N$  est muni d'une relation d'ordre totale  $\leq$  vérifiant les deux propriétés fondamentales suivantes

- 1. Toute partie non vide de N admet un plus petit élément.
- 2. Toute partie non vide et majorée de N admet un plus grand élément.
- 3. N n'a pas de plus grand élément.

Ν

Si p et q sont des entiers, on note

$$[[p,q]] = \{ n \in \mathbb{N} \mid p \le n \le q \}.$$

R S

Si p et q sont des entiers,

$$p \le q \iff p < q + 1.$$

- 1. Nombres entiers
- 1.1 Les entiers naturels
- 1.2 L'ensemble ordonné  $(\mathbb{N}, \leq)$
- 1.3 Le principe de récurrence
- 2. Suites définies par une relation de récurrence
- 3 Entiers relatifs
- 4. Les nombres rationnels

On rappelle qu'un **prédicat** ou une **propriété** sur  $\mathbb N$  est une relation contenant une variable  $n \in \mathbb N$ , c'est-à-dire une application de  $\mathbb N$  dans l'ensemble  $\mathcal B = \{ \text{Vrai}, \text{Faux} \}$ . Si R est un tel prédicat, on écrit «on a R(n)» ou plus simplement «R(n)» pour exprimer que la valeur de R(n) est Vrai. Par exemple, si R(n) est « $2n \ge n^2$ », on a R(1) et R(2) mais on n'a pas R(3).

## Principe de récurrence

Soit R un prédicat sur  $\mathbb{N}$ . On suppose que

- R(0) est vraie,
- $\forall n \in \mathbb{N}, R(n) \implies R(n+1).$

Dans ces conditions, la propriété R(n) est vraie pour tout  $n \in \mathbb{N}$ :

$$\forall n \in \mathbb{N}, R(n).$$

Utiliser ces propriétés, c'est faire un raisonnement par récurrence.

Démonstration non exigible. Effectuons un raisonnement par l'absurde. On suppose donc qu'il existe  $n \in \mathbb{N}$  tel que R(n) est faux ; autrement dit, l'ensemble

$$A = \{ n \in \mathbb{N} \mid \text{non } R(n) \}.$$

n'est pas vide. Or  $A \subset \mathbb{N}$  donc A admet un plus petit élément, noté a.

R(0) est vraie, donc  $a \ge 1$ . Par définition de a, on a  $a-1 \notin A$ , c'est-à-dire que l'assertion R(a-1) est vraie. Or

$$\forall n \in \mathbb{N}, R(n) \implies R(n+1);$$

donc R(a) est vraie, c'est absurde.

Conclusion:  $\forall n \in \mathbb{N}, R(n)$ .



Ε

*Démonstration.* Raisonnons par récurrence. Pour  $n \in \mathbb{N}$ , on définit l'assertion

$$R(n): 5^{n+2} \ge 4^{n+2} + 3^{n+2}.$$

- L'assertion R(0) est vraie<sup>1</sup> puisque  $5^2 = 4^2 + 3^2$ .
- Soit un entier  $n \ge 0$ . On suppose que R(n) est vraie, c'est-à-dire  $5^{n+2} > 4^{n+2} + 3^{n+2}$  Ainsi<sup>2</sup>

$$5^{n+3} = 5 \times 5^{n+2}$$

$$\geq 5 \times \left(4^{n+2} + 3^{n+2}\right)$$

d'après R(n).

Or  $5 \times 4^{n+2} \ge 4^{n+3}$  et  $5 \times 3^{n+2} \ge 3^{n+3}$ ; on peut donc affirmer

$$5^{n+3} \ge 4^{n+3} + 3^{n+3}$$

d'où R(n+1).

 $\triangleright$  D'après le principe de récurrence, <sup>3</sup> l'assertion R(n) est vraie pour tout  $n \in \mathbb{N}$ .



<sup>&</sup>lt;sup>1</sup>Initialisation : R(0).

### Récurrence à deux pas

Soit R un prédicat sur  $\mathbb{N}$ . On suppose que

$$R(0)$$
 et  $R(1)$  et  $\forall n \in \mathbb{N}, (R(n) \text{ et } R(n+1)) \Longrightarrow R(n+2).$ 

Dans ces conditions,

$$\forall n \in \mathbb{N}, R(n).$$

Ce résultat peut se généraliser à la récurrence à trois pas, quatre pas. . .

### Récurrence à partir du rang k

Soit R un prédicat sur  $[k, +\infty[$ . On suppose que

$$R(k)$$
 et  $\forall n \geq k, R(n) \implies R(n+1)$ .

Dans ces conditions,

$$\forall n \geq k, R(n)$$
.

### Récurrence limitée à un intervalle

Soit a, b deux entiers tels que  $a \le b$ , et soit R un prédicat sur [a, b] tel que l'on ait

$$R(a)$$
 et  $\forall n \in [a, b-1], R(n) \implies R(n+1).$ 

Alors

$$\forall n \in [[a,b]], R(n).$$

### Récurrence avec prédécesseurs

Soit R un prédicat sur  $\mathbb{N}$ . On suppose que

$$R(0)$$
 et  $\forall n \in \mathbb{N}, (R(0) \text{ et } R(1) \text{ et } \dots \text{ et } R(n)) \Longrightarrow R(n+1).$ 

Alors

$$\forall n \in \mathbb{N}, R(n).$$

### 1. Nombres entiers

- 2. Suites définies par une relation de récurrence
- 2.1 Suites arithmétiques
- 2.2 Suites géométriques
- 2.3 Suites arithmético-géométriques
- 2.4 Définition d'une suite par récurrence
- Entiers relatifs
- 4. Les nombres rationnels



### 1. Nombres entiers

- 2. Suites définies par une relation de récurrence
- 2.1 Suites arithmétiques
- 2.2 Suites géométriques
- 2.3 Suites arithmético-géométriques
- 2.4 Définition d'une suite par récurrence
- 3. Entiers relatifs
- 4. Les nombres rationnels

D Une suite  $(u_n)_{n\in\mathbb{N}}$  est dite **arithmétique** lorsqu'il existe un nombre complexe r tel que

$$\forall n\in\mathbb{N}, u_{n+1}=u_n+r.$$

Ce nombre r est appelé la **raison** de la suite  $(u_n)_{n\in\mathbb{N}}$ .

Soit  $(u_n)_{n\in\mathbb{N}}$  une suite arithmétique de raison r, alors

$$\forall n \in \mathbb{N}, u_n = u_0 + nr.$$

Plus généralement,

$$\forall (p,q) \in \mathbb{N}^2, u_q = u_p + (q-p)r.$$

### 1. Nombres entiers

- 2. Suites définies par une relation de récurrence
- 2.1 Suites arithmétiques
- 2.2 Suites géométriques
- 2.3 Suites arithmético-géométriques
- 2.4 Définition d'une suite par récurrence
- 3. Entiers relatifs
- 4. Les nombres rationnels

D Une suite  $(u_n)_{n\in\mathbb{N}}$  est dite **géométrique** lorsqu'il existe un nombre complexe r tel que

$$\forall n\in\mathbb{N}, u_{n+1}=ru_n.$$

Ce nombre r est appelé la **raison** de la suite  $(u_n)_{n\in\mathbb{N}}$ .

Soit  $(u_n)_{n\in\mathbb{N}}$  une suite géométrique de raison r, alors

$$\forall n \in \mathbb{N}, u_n = u_0 r^n.$$

Plus généralement, si  $r \neq 0$ .

Ρ

$$\forall (p,q) \in \mathbb{N}^2, u_q = u_p r^{q-p}.$$

### 1. Nombres entiers

- 2. Suites définies par une relation de récurrence
- 2.1 Suites arithmétiques
- 2.2 Suites géométriques
- 2.3 Suites arithmético-géométriques
- 2.4 Définition d'une suite par récurrence
- 3. Entiers relatifs
- 4. Les nombres rationnels

Une suite  $(u_n)_{n\in\mathbb{N}}$  est dite **arithmético-géométrique** lorsqu'il existe deux nombres complexes a et b tels que

$$\forall n \in \mathbb{N}, u_{n+1} = au_n + b.$$

I<del>V</del>

Soit  $f:\mathbb{C}\to\mathbb{C}$  définie par f(x)=ax+b. On considère la suite  $(u_n)$  vérifiant la relation de récurrence

$$\forall n \in \mathbb{N}, u_{n+1} = au_n + b = f(u_n).$$

On suppose  $a \neq 1$ , (sinon  $(u_n)$  est une suite arithmétique).

▶ Déterminons le(s) point(s) fixe(s) de f: pour  $x \in \mathbb{C}$ ,

$$f(x) = x \iff ax + b = x \iff (a - 1)x = -b \iff x = \frac{b}{1 - a}.$$

L'application f a donc un unique point fixe  $\ell = \frac{b}{1-a}$ .

Soit 
$$f: \mathbb{C} \to$$

Soit  $f: \mathbb{C} \to \mathbb{C}$  définie par f(x) = ax + b. On considère la suite  $(u_n)$  vérifiant la relation de récurrence

$$\forall n \in \mathbb{N}, u_{n+1} = au_n + b = f(u_n).$$

On suppose  $a \neq 1$ , (sinon  $(u_n)$  est une suite arithmétique).

Introduisons la suite  $(v_n)$  définie par

$$\forall n \in \mathbb{N}, v_n = u_n - \ell = u_n - \frac{b}{1 - a},$$

alors, pour  $n \in \mathbb{N}$ ,

$$\begin{split} v_{n+1} &= u_{n+1} - \ell = au_n + b - \ell = a(v_n + \ell) + b - \ell \\ &= av_n + a\ell + b - \ell = av_n + f(\ell) - \ell = av_n. \end{split}$$

Ainsi, la suite  $(v_n)$  est une suite géométrique de raison a:

$$\forall n \in \mathbb{N}, v_n = a^n v_0.$$

d'où

$$\forall n \in \mathbb{N}, u_n = v_n + \ell = a^n(u_0 - \ell) + \ell = a^n u_0 + b \frac{1 - a^n}{1 - a}.$$



On considère la suite  $(u_n)$  définie par  $u_0 = 6$  et  $u_{n+1} = 9u_n + 56$  pour tout entier naturel n.

- 1. Calculer les premiers termes de la suites,  $u_0$ ,  $u_1$ ,  $u_2$ .
- 2. La suite  $(u_n)$  est-elle une suite arithmétique? une suite géométrique?
- 3. Exprimer  $u_n$  en fonction de n.

# P Formule hors-Programme

Soit  $(u_n)_{n\in\mathbb{N}}$  une suite arithmético-géométrique vérifiant

$$\forall n \in \mathbb{N}, u_{n+1} = au_n + b.$$

Alors, si  $a \neq 1$ , on a

$$\forall n \in \mathbb{N}, u_n = a^n u_0 + b \frac{1 - a^n}{1 - a} = \left( u_0 - \frac{b}{1 - a} \right) a^n + \frac{b}{1 - a}.$$

**Programme** Le programme officiel stipule que vous devez connaître une méthode de calcul du terme général d'une suite arithmético-géométrique. Le résultat ci-dessus, en plus d'être plutôt indigeste, est donc hors-programme.

### 1. Nombres entiers

- 2. Suites définies par une relation de récurrence
- 2.1 Suites arithmétiques
- 2.2 Suites géométriques
- 2.3 Suites arithmético-géométriques
- 2.4 Définition d'une suite par récurrence
- 3 Entiers relatifs
- 4. Les nombres rationnels

Soit E un ensemble, f une application de E dans E, a un élément de E. Il existe une et une seule suite  $(x_n)_n \in \mathbb{N}$  de E telle que

$$\left\{ \begin{array}{l} x_0=a \\ \forall n\in \mathbb{N}, x_{n+1}=f(x_n). \end{array} \right.$$

C'est ainsi, par exemple, que l'on définira les suites arithmétiques et géométriques.

On peut aussi définir une suite par des relations de récurrence plus compliquées.

Soit E un ensemble,  $(f_n)_{n\in\mathbb{N}}$  une famille d'applications de E dans E, a un élément de E. Il existe une et une seule suite  $(x_n)_{n\in\mathbb{N}}$  de E telle que

$$\left\{ \begin{array}{l} x_0 = a \\ \forall n \in \mathbb{N}, x_{n+1} = f_n(x_n). \end{array} \right.$$

Avec  $E = \mathbb{N}$ ,  $f_n(x) = (n+1)x$ , et a = 1. On définit ainsi par récurrence la suite

$$n! = 1 \times 2 \times \cdots \times n$$

(pour n > 0). Ce nombre, qui est le produit des n premiers entiers > 0 s'appelle factorielle de n. On convient que 0! = 1.

n! intervient dans de nombreuses formules; n! prend rapidement de «grandes valeurs»:  $10! = 3\,628\,800$ ; 50! est un nombre de 65 chiffres en base 10; 100! est un nombre à 158 chiffres en base 10.

On peut aussi définir une suite par des relations de récurrence plus compliquées.

Soit E un ensemble,  $(f_n)_{n\in\mathbb{N}}$  une famille d'applications de E dans E, a un élément de E. Il existe une et une seule suite  $(x_n)_{n\in\mathbb{N}}$  de E telle que

$$\begin{cases} x_0 = a \\ \forall n \in \mathbb{N}, x_{n+1} = f_n(x_n). \end{cases}$$

Avec  $E = \mathbb{R}_+$ ,  $f_n(x) = \sqrt{x+n}$ , et a=1. On définit ainsi par récurrence une suite  $(x_n)$  telle que

Ε

$$x_0 = 1$$
,  $x_1 = 1$ ,  $x_2 = \sqrt{2}$ ,  $x_3 = \sqrt{\sqrt{2} + 2}$ ,  $x_4 = \sqrt{\sqrt{\sqrt{2} + 2} + 3}$ ,...

On définit aussi des suites par récurrence d'ordre k où k est un entier naturel non nul. Il s'agit de suites  $(x_n)$  de E définies à l'aide d'une suite d'applications de  $(f_n)$  de  $E^k$  dans E, pour lesquelles on se donne les k premières valeurs  $x_0, x_1, \ldots, x_{k-1}$  et pour tout n

$$x_{n+k} = f_n(x_n, x_{n+1}, \dots, x_{n+k-1}).$$

Étant donnés  $\left(a_0,\dots,a_{k-1}\right)\in E^k$ , il y a encore existence et unicité de la suite  $\left(x_n\right)$  de E telle que

$$\left\{ \begin{array}{l} x_0 = a_0, x_1 = a_1, \dots, x_{k-1} = a_{k-1} \\ \forall n \in \mathbb{N}, x_{n+k} = f_n \left( x_n, x_{n+1}, \dots, x_{n+k-1} \right). \end{array} \right.$$

La suite de Fibonacci est définie par

R

Ε

$$\begin{cases} F_0 = 0, F_1 = 1 \\ \forall n \in \mathbb{N}, F_{n+2} = F_n + F_{n+1} \end{cases}$$

Il arrive même que l'on définisse une suite par une relation de récurrence dans laquelle chaque terme se calcule à l'aide de tous les précédents. Là aussi on admet l'existence et l'unicité.

On définit aussi des suites par récurrence d'ordre k où k est un entier naturel non nul. Il s'agit de suites  $(x_n)$  de E définies à l'aide d'une suite d'applications de  $(f_n)$  de  $E^k$  dans E, pour lesquelles on se donne les k premières valeurs  $x_0, x_1, \ldots, x_{k-1}$  et pour tout n

$$x_{n+k} = f_n(x_n, x_{n+1}, \dots, x_{n+k-1}).$$

Étant donnés  $\left(a_0,\dots,a_{k-1}\right)\in E^k$ , il y a encore existence et unicité de la suite  $\left(x_n\right)$  de E telle que

$$\begin{cases} x_0 = a_0, x_1 = a_1, \dots, x_{k-1} = a_{k-1} \\ \forall n \in \mathbb{N}, x_{n+k} = f_n \left( x_n, x_{n+1}, \dots, x_{n+k-1} \right). \end{cases}$$

Dans  $\mathbb{R}$ , la suite  $(x_n)$  telle que

R

Ε

$$\left\{ \begin{array}{l} x_0 = 1, x_1 = 2 \\ \forall n \in \mathbb{N}, x_{n+2} = 3x_n - 2x_{n+1} - n. \end{array} \right.$$

Il arrive même que l'on définisse une suite par une relation de récurrence dans laquelle chaque terme se calcule à l'aide de tous les précédents. Là aussi on admet l'existence et l'unicité.

- 1. Nombres entiers
- 2. Suites définies par une relation de récurrence
- 3. Entiers relatifs
- 3.1 L'anneau  $(\mathbb{Z}, +, \times)$
- 3.2 L'ensemble ordonné ( $\mathbb{Z}, \leq$ )
- 3.3 Division euclidienne
- 4. Les nombres rationnels

- 1. Nombres entiers
- 2. Suites définies par une relation de récurrence
- 3. Entiers relatifs
- 3.1 L'anneau  $(\mathbb{Z}, +, \times)$
- 3.2 L'ensemble ordonné ( $\mathbb{Z}, \leq$ )
- 3.3 Division euclidienne
- 4. Les nombres rationnels

D

On désigne par  $\mathbb Z$  l'ensemble des entiers relatifs

$$\mathbb{Z} = \{ \dots, -3, -2, -1, 0, 1, 2, -3, \dots \}.$$

- 1. L'addition est une loi de composition interne dans  $\mathbb{Z}$ .
- 2. L'addition est associative dans  $\mathbb{Z}$ .
- 3. L'addition admet 0, élément de  $\mathbb{Z}$  comme élément neutre.
- 4. L'addition est commutative dans  $\mathbb{Z}$ .
- 5. Tout entier relatif admet pour opposé un entier relatif.
- 6. La multiplication est une loi de composition interne dans Z.
- 7. La multiplication est associative dans  $\mathbb{Z}$ .
- 8. La multiplication admet 1, élément de  $\mathbb{Z}$  comme élément neutre.
- 9. La multiplication est commutative dans  $\mathbb{Z}$ .
- 10. La multiplication dans  $\mathbb{Z}$  est distributive par rapport à l'addition.

Les seuls éléments ayant un inverse pour la multiplication dans  $\mathbb Z$  sont 1 et -1.

- 1. Nombres entiers
- 2. Suites définies par une relation de récurrence
- 3. Entiers relatifs
- 3.1 L'anneau  $(\mathbb{Z}, +, \times)$
- 3.2 L'ensemble ordonné ( $\mathbb{Z}, \leq$ )
- 3.3 Division euclidienne
- 4. Les nombres rationnels

L'ensemble  $\mathbb Z$  est muni d'une relation d'ordre totale  $\leq$  vérifiant les deux propriétés fondamentales suivantes

- 1. Toute partie non vide et minorée de Z admet un plus petit élément.
- 2. Toute partie non vide et majorée de Z admet un plus grand élément.

- 1. Nombres entiers
- 2. Suites définies par une relation de récurrence
- 3. Entiers relatifs
- 3.1 L'anneau  $(\mathbb{Z}, +, \times)$
- 3.2 L'ensemble ordonné  $(\mathbb{Z}, \leq)$
- 3.3 Division euclidienne
- 4. Les nombres rationnels

## D

## Division euclidienne dans **Z**

Soient  $a \in \mathbb{Z}$  et  $b \in \mathbb{N}^*$ . Alors il existe un unique couple d'entiers  $(q,r) \in \mathbb{Z} \times \mathbb{N}$  vérifiant

$$a = bq + r$$

et

$$0 \le r < b.$$

- ightharpoonup q est le **quotient** de la division euclidienne de a par b.
- ightharpoonup r est le **reste** de la division euclidienne de a par b.

Démonstration. Commençons prouver l'unicité d'un couple  $(q,r) \in \mathbb{Z} \times \mathbb{N}$  tel que a = bq + r et  $0 \le r < b$ . Supposons l'existence de deux couples (q,r) et (q',r') vérifiant ces conditions. Alors a = qb + r = q'b + r', d'où

$$r - r' = b(q - q').$$

Puisque  $0 \le r < b$  et  $0 \le r' < b$ , on en déduit -b < r - r' < b, c'est-à-dire  $0 \le |r - r'| = b|q - q'| < b$ . Puisque b > 0 on a |q - q'| < 1 et comme  $|q - q'| \in \mathbb{N}$ : on a donc q = q'. Par conséquent, r - r' = b(q - q') = 0.

Soit  $E = \{ k \in \mathbb{Z} \mid kb \le a \}$ . Cet ensemble est une partie non vide et majorée de  $\mathbb{Z}$ . En effet, si  $a \ge 0$ ,  $0 \in E$  et a majore E (car  $b \ge 1$ ). Si a < 0, alors 0 majore E. L'ensemble E admet donc un plus grand élément q. On a donc  $qb \le a < (q+1)b$  (sinon  $q+1 \in E$ ) et en posant r=a-bq, on a bien  $0 \le r < b$ .

543 | 17  
33 | 31  
16 | lci 
$$a = 543, b = 17, q = 31, r = 16.$$

- 1. Nombres entiers
- 2. Suites définies par une relation de récurrence
- 3. Entiers relatifs
- 4. Les nombres rationnels

L'ensemble  $\mathbb Q$  des nombres rationnels est l'ensemble des nombres réels x représentés par  $\frac{p}{a}$ , avec p appartenant à  $\mathbb Z$  et q appartenant à  $\mathbb Z\setminus\{0\}$ .

contient  $\mathbb{Z}$ , et ses éléments sont appelés nombres rationnels.

$$\mathbb{Q} = \left\{ \begin{array}{c|c} \frac{p}{q} & p \in \mathbb{Z} & \text{et } q \in \mathbb{Z} \setminus \{0\} \end{array} \right\}.$$

$$\mathbb{Q}^{\star} = \mathbb{Q} \setminus \{0\}.$$

Si  $a, c \in \mathbb{Z}$  et  $b, d \in \mathbb{Z}^*$ ,

pas unique, vu la propriété suivante :

$$\frac{a}{b} = \frac{c}{d} \iff ad = bc.$$

$$\frac{p}{q} + \frac{p'}{q'} = \frac{pq' + qp'}{qq'}.$$

- 2. L'addition est associative, commutative dans Q.
- 3. Le nombre 0 appartient à  $\mathbb Q$  est élément neutre pour l'addition.
- 4. Le nombre rationnel  $\frac{p}{q}$  a pour opposé  $\frac{-p}{q}$ .
- 5. La multiplication dans Q est une loi de composition interne. On a

$$\frac{p}{q} \times \frac{p'}{q'} = \frac{pp'}{qq'}.$$

- 6. La multiplication est associative, commutative dans Q.
- 7. Le nombre 1 appartient à  $\mathbb Q$  est élément neutre pour la multiplication.
- 8. Tout nombre rationnel non nul a un inverse dans  $\mathbb{Q}$ . Si  $p \neq 0$ ,  $\frac{p}{q}$  a pour inverse  $\frac{q}{p}$ .

On calcule dans  $\mathbb{Q}$  comme dans  $\mathbb{R}$ .

Il existe des nombres réels non rationnels, appelés **irrationnels** :  $\sqrt{2}$ , e,  $\pi$  sont irrationnels. Ces exemples seront développés ultérieurement.