Algebraic Geometry: Homework 1

- 1. R be a ring and S a multiplicative subset of R with $1 \in S$ and $0 \notin S$
 - (i) It is reflexive, since for any $t \in S$, t(rs-rs)=0, thus $(r,s)\sim (r,s)$. Suppose $(r,s)\sim (r',s')$, so there exist $t\in S$ such that t(rs'-r's)=0 which also means t(r's-rs')=0 and we have symmetry. Lastly, let $(r,s)\sim (t,u)$ and $(t,u)\sim (v,w)$, then there exist $a,b\in S$ such that

$$a(ru - ts) = 0$$

$$b(tw - vu) = 0$$

Then abwru - abwts = 0, bastw - basvu = 0 and summing them gives abu(rw - vs) = 0 with $abu \in S$ which shows transitivity.

- (ii) Same as part (i).
- (iii) Define the action of R_s on M_s , $\phi: R_s \times M_s \to M_s$, $((r,s),(m,s')) \mapsto (rm,ss')$. We first show that the action is well-defined. Let $(r_1,s_1) \sim (r_2,s_2) \in R_s$ and $(m_1,t_1) \sim (m_1,t_1) \in M_s$. Then $\phi((r_i,s_i),(m_i,t_i)) = (r_im_i,s_it_i)$ for i=1,2. Since $a(r_1s_2-r_2s_1)=0$ and $b(m_1t_2-m_2t_1)=0$ with some $a,b\in S$,

$$ab(r_1s_2m_1t_2 - r_2s_1m_1t_2) = 0$$
$$ab(r_2s_1m_1t_2 - r_2s_1m_2t_1) = 0$$

thus we have $ab(r_1m_1s_2t_2-r_2m_2s_1t_1)$, so $(r_1m_1,s_1t_1)\sim (r_2m_2,s_2t_2)$. M_s is a R_s -module, since for $m_i\in M$, $r_i\in R$ and $s_i,t_i\in S$,

- $\bullet (r,s)((m_1,t_1)+(m_2,t_2)) = (r,s)((m_1t_2+m_2t_1,t_1t_2)) = (rm_1t_2+rm_2t_1,st_1t_2) = (rm_1,st_1)+(rm_2,st_2)$
- $\bullet((r_1, s_1) + (r_2, s_2))(m, t) = (mr_1s_2 + mr_2s_1, s_1s_2t) = (r_1m, s_1t) + (r_2m, s_2t)$
- $\bullet((r_1, s_1)(r_2, s_2))(m, t) = (r_1 r_2 m, s_1 s_2 t) = (r_1, s_1)(r_2 m, s_2 t) = ((r_1, s_1)(r_2, s_2))(m, t)$
- $\bullet(1_R, 1_S)(m, t) = (m, t)$
- 2. Given morphisms of R-modules, $\phi: M \to N$ and $\psi: N \to P$, it is an exact sequence if the image of ϕ is equal to the kernel of ψ in N.
 - (i) If $M = 0_M$, then $\phi(0_M) = \{0_N\} = \ker(\psi)$, thus ψ is injective.
 - (ii) If $P = 0_P$, then $\phi(M) = \ker(\psi) = N$, thus ϕ is surjective.
 - (iii) For a prime ideal \mathfrak{p} with $S = R \mathfrak{p}$, and $R_S = R_{\mathfrak{p}}$, $M_S = M_{\mathfrak{p}}$. Let $p(r,s) \in \mathfrak{p}R_{\mathfrak{p}}$ with $p \in \mathfrak{p}$ and $(r,s) \in R_{\mathfrak{p}}$. It is an ideal since, $p(r,s)(r',s') = p(rr',ss') \in \mathfrak{p}R_{\mathfrak{p}}$.

 \mathfrak{p} does not contain any unit of R, else $\mathfrak{p}=R$ and $S=\varnothing$. Thus for $(p,s)\in\mathfrak{p}R_{\mathfrak{p}}$, it is not a unit in $R_{\mathfrak{p}}$ and thus it is a proper ideal. It is maximal since for any $(r,s)\in R_{\mathfrak{p}}-\mathfrak{p}R_{\mathfrak{p}}$, it is a unit of $R_{\mathfrak{p}}$ since $r\in S$ and its inverse is (s,r). Thus $\mathfrak{p}R_{\mathfrak{p}}+((r,s))=R_{\mathfrak{p}}$ for any $(r,s)\in R_{\mathfrak{p}}-\mathfrak{p}R_{\mathfrak{p}}$

- (iv) Given the natural maps $\phi_{\mathfrak{p}}: M_{\mathfrak{p}} \to N_{\mathfrak{p}}$ and $\psi_{\mathfrak{p}}: N_{\mathfrak{p}} \to P_{\mathfrak{p}}$ given by $(m, s) \mapsto (\phi(m), s)$ and $(n, s) \mapsto (\psi(n), s)$, (v)
- 3. (i)
- 4. (i)