Chapter 33 Sommes et projecteurs

Exercice 1 (33.0)

Soient E un \mathbb{K} -espace vectoriel, A, B deux sous-espaces vectoriels de E, C un supplémentaire de $A \cap B$ dans B.

Montrer $A + B = A \oplus C$.

Solution 1 (33.0)

Exercice 2 (33.0)

Soient E un espace vectoriel et A, B, C trois sous-espace vectoriel tels que

$$A \cap B = A \cap C \tag{1}$$

$$A + B = A + C \tag{2}$$

$$B \subset C$$
. (3)

Montrer que B = C.

Solution 2 (33.0)

Exercice 3 (33.0)

Soit $u, w \in \mathbb{R}^2$ les vecteurs

$$u = \begin{pmatrix} -1\\2 \end{pmatrix}, \quad w = \begin{pmatrix} -3\\5 \end{pmatrix}.$$

En utilisant la définition de somme directe, montrer que \mathbb{R}^2 = Vect { u } \oplus Vect { w }.

Solution 3 (33.0)

Soit $(x, y)^T \in \mathbb{R}^2$. On cherche $u' \in \text{Vect } \{u\} \text{ et } v' \in \text{Vect } \{v\} \text{ tels que } (x, y)^T = u' + v'$. Cela revient à déterminer $\alpha, \beta \in \mathbb{R}$ tels que

$$\begin{pmatrix} x \\ y \end{pmatrix} = \alpha u + \beta v = \begin{pmatrix} -\alpha - 3\beta \\ 2\alpha + 5\beta \end{pmatrix}.$$

Or

$$\left\{ \begin{array}{ll} -\alpha - 3\beta &= x \\ 2\alpha + 5\beta &= y \end{array} \right. \iff \left\{ \begin{array}{ll} -\alpha - 3\beta &= x \\ -\beta &= y + 2x \end{array} \right. \iff \left\{ \begin{array}{ll} \alpha &= 5x + 3y \\ \beta &= -2x - y \end{array} \right.$$

Ce qui assure l'existence et l'unicité de la décomposition de tout $(x, y)^T \in \mathbb{R}^2$ dans Vect $\{u\}$ + Vect $\{v\}$. On a donc

$$R^2 = \text{Vect} \{ u \} \oplus \text{Vect} \{ v \}.$$

Exercice 4 (33.0)

Vérifier si les espaces suivants sont supplémentaires dans $E = \mathbb{R}^3$

$$F = \left\{ (x, y, z) \in \mathbb{R}^3 \mid 3x - y + z = 0 \right\} \qquad \text{et} \qquad G = \left\{ (t, -t, t) \mid t \in \mathbb{R} \right\}.$$

Solution 4 (33.0)

Montrons que $F \cap G = \{0\}$. Soit $(x, y, z) \in F \cap G$, 3x - y + z = 0 et il existe $t \in \mathbb{R}$ tel que (x, y, z) = (t, -t, t). En reportant dans l'équation, on obtient

$$3t - (-t) + t = 0$$
 c'est-à-dire $t = 0$.

Ainsi (x, y, z) = (0, 0, 0); On a donc $F \cap G = \{(0, 0, 0)\}$. De plus, dim F = 2 (on reconnait l'équation cartésienne d'un plan de \mathbb{R}^3) et dim G = 1 (car $G = \text{Vect}\{(1, -1, 1)\}$). On a donc

$$F \cap G = \{0\}$$
 et $\dim F + \dim G = 3 = \dim \mathbb{R}^3$,

d'où $\mathbb{R}^3 = F \oplus G$.

Exercice 5 (33.0)

Dans l'espace vectoriel $E = \mathbb{R}_3[X]$, on considère les sous-espaces vectoriels

$$F_1 = \{ P \in E \mid P(0) = P(1) = 0 \}$$
 $F_2 = \mathbb{R}_1[X]$

Montrer que $E = F_1 \oplus F_2$.

Exercice 6 (33.0)

Soient $E = \mathcal{F}(\mathbb{R}, \mathbb{R})$.

- 1. Montrer que $V = \{ f \in E \mid f(2) = f(3) \}$ est un sous-espace vectoriel de E.
- 2. Montrer que $W=\operatorname{Vect}\left\{\operatorname{Id}_{\mathbb{R}}\right\}$ est un supplémentaire de V dans E.

Solution 6 (33.0)

Exercice 7 (33.0)

Dans l'espace $\mathcal{F}(\mathbb{R}, \mathbb{R})$, on note \mathcal{P} l'ensemble des fonctions paires et \mathcal{I} l'ensemble des fonctions impaires.

- **1.** Montrer que \mathcal{P} et \mathcal{I} sont deux sous-espaces vectoriels de $\mathcal{F}(\mathbb{R}, \mathbb{R})$.
- **2.** Montrer que l'intersection $\mathcal{P} \cap \mathcal{I}$ est réduite à la fonction nulle.
- **3.** Montrer que toute fonction peut s'écrire comme la somme d'une fonction paire et d'une fonction impaire.
- **4.** En déduire $\mathcal{P} \oplus \mathcal{I} = \mathcal{F}(\mathbb{R}, \mathbb{R})$.

Solution 7 (33.0)

1. La fonction nulle $\tilde{0}: \mathbb{R} \to \mathbb{R}, x \mapsto 0$ est paire.

Soit $f, g \in \mathcal{P}$ et $\alpha, \beta \in \mathbb{R}$, alors

$$\forall x \in \mathbb{R}, (\alpha f + \beta g)(-x) = \alpha f(-x) + \beta g(-x) = \alpha f(x) + \beta g(x) = (\alpha f + \beta g)(x).$$

Ainsi, $\alpha f + \beta g \in \mathcal{P}$. L'ensemble \mathcal{P} est donc un sous-espace vectoriel de $\mathcal{F}(\mathbb{R}, \mathbb{R})$.

On effectue une démonstration analogue pour \mathcal{I} .

2. Soit $f \in \mathcal{P} \cap \mathcal{I}$, alors pour tout $x \in \mathbb{R}$, on a

$$f(-x) = f(x)$$
 et $f(-x) = -f(x)$

et donc f(x) = -f(x), c'est-à-dire f(x) = 0. On a donc $f = \tilde{0}$. Finalement $\mathcal{P} \cap \mathcal{I} = \{\tilde{0}\}$.

- 3. Soit $f \in \mathcal{F}(\mathbb{R}, \mathbb{R})$.
 - (CN) Supposons qu'il existe $g \in \mathcal{P}$ et $h \in \mathcal{I}$ telles que f = g + h. On a alors pour tout $x \in \mathbb{R}$,

$$\begin{cases} f(x) = g(x) + h(x) \\ f(-x) = g(-x) + h(-x) = g(x) - h(x). \end{cases}$$
 d'où
$$\begin{cases} f(x) + f(-x) = 2g(x) \\ f(x) - f(-x) = 2h(x) \end{cases}$$

(CS) Posons

$$g: \mathbb{R} \to \mathbb{R}$$

$$x \mapsto \frac{f(x) + f(-x)}{2}$$

$$f: \mathbb{R} \to \mathbb{R}$$

$$x \mapsto \frac{f(x) - f(-x)}{2}$$

Alors on a clairemenent,

$$f = g + h$$
, $g \in \mathcal{P}$ et $f \in \mathcal{I}$.

4. On a $\mathcal{P} \cap \mathcal{I} = \{\tilde{0}\}\$ d'après la question **2** et $\mathcal{F}(\mathbb{R}, \mathbb{R}) = \mathcal{P} + \mathcal{I}$ d'après la question 3. Finalement,

$$\mathcal{F}(\mathbb{R},\mathbb{R}) = \mathcal{P} \oplus \mathcal{I}.$$

Exercice 8 (33.0)

Dans \mathbb{R}^4 , on considère les sous-espaces vectoriels

$$F = \left\{ \; (x,y,z,t) \in \mathbb{R}^4 \; \middle| \; x+y-z+2t = 0 \; \right\} \qquad \qquad G = \mathrm{Vect}(e) \; \mathrm{où} \; e = (1,1,1,1).$$

- Montrer que F et G sont supplémentaires.
- Soit p la projection sur F parallèlement à G, déterminer p(u) pour tout u de \mathbb{R}^4 .

Exercice 9 (33.0)

Dans l'espace vectoriel \mathbb{R}^3 , on considère les sous-espaces vectoriels

$$E_1 = \text{Vect} \{ (1,0,0), (1,1,1) \}$$
 et $E_2 = \text{Vect} \{ (1,2,0) \}.$

Déterminer l'expression analytique de la symétrie par rapport à E_1 parallèlement à E_2 .

Solution 9 (33.0)

Exercice 10 (33.0)

Soit E, F, G trois espaces vectoriels sur un corps \mathbb{K} , $u \in \mathbf{L}(E, F)$ et $v \in \mathbf{L}(F, G)$.

- **1.** Montrer que $\text{Im}(v \circ u) \subset \text{Im}(v)$ et que $\text{ker}(u) \subset \text{ker}(v \circ u)$.
- **2.** Montrer que $v \circ u = 0 \iff \operatorname{Im} u \subset \ker v$.
- **3.** Montrer que $\ker(v \circ u) = \ker u \iff \ker v \cap \operatorname{Im} u = \{0\}.$
- **4.** Montrer que $\text{Im}(v \circ u) = \text{Im } v \iff \ker v + \text{Im } u = F$.

Solution 10 (33.0)

1. Montrons $\text{Im}(v \circ u) \subset \text{Im}(v)$. Soit $y \in \text{Im}(v \circ u)$, montrons que $y \in \text{Im} v$. Il existe $x \in E$ tel que $y = (v \circ u)(x)$, c'est-à-dire

$$y = v(t)$$
 avec $t = u(x) \in F$.

Autrement dit, $y \in \text{Im } v$; ce qui montre l'inclusion $\text{Im}(v \circ u) \subset \text{Im } v$.

Montrons $\ker(u) \subset \ker(v \circ u)$. Soit $x \in \ker u$. On a donc $u(x) = 0_F$ d'où

$$v \circ u(x) = v(u(x)) = v(0_F) = 0_G;$$

c'est-à-dire $x \in \ker(v \circ u)$. Ceci montre l'inclusion $\ker(u) \subset \ker(v \circ u)$.

2. (\iff) Supposons Im $u \subset \ker v$, montrons $v \circ u = \tilde{0}^2$ c'est-à-dire

$$\forall x \in E, (v \circ u)(x) = 0_G.$$

Soit $x \in E$, alors $u(x) \in \text{Im } u$ or $\text{Im } u \subset \ker v$ donc $u(x) \in \ker v$, c'est-à-dire $v(u(x)) = 0_G$, soit encore $(v \circ u)(x) = 0_G$.

(\Longrightarrow) Supposons $v \circ u = \tilde{0}$. Soit $y \in \operatorname{Im} u$, montrons que $y \in \ker v$. Il existe donc $x \in E$ tel que y = u(x), d'où $v(y) = v(u(x)) = (v \circ u)(x) = 0$ car $v \circ u = \tilde{0}$, autrement dit $y \in \ker v$; ce qui montre l'inclusion $\operatorname{Im} u \subset \ker v$.

3. (\Longrightarrow) Supposons $\ker(v \circ u) = \ker u$ et montrons $\ker v \cap \operatorname{Im} u = \{0_F\}$. Soit $y \in \ker v \cap \operatorname{Im} u$. Puisque $y \in \operatorname{Im} u$, il existe $x \in E$ tel que y = u(x). De plus, $y \in \ker v$, c'est-à-dire $v(y) = 0_G$, on a donc

$$(v \circ u)(x) = v(u(x)) = v(y) = 0_G$$

c'est-à-dire $x \in \ker(v \circ u)$. Or on a supposé $\ker(v \circ u) = \ker u$, d'où $x \in \ker u$, d'où

$$y = u(x) = 0_F.$$

On donc $\ker v \cap \operatorname{Im} u \subset \{0_F\}$, l'inclusion réciproque étant évidente. ³

(⇐⇒) Supposons $\ker v \cap \operatorname{Im} u = \{0_F\}$. Montrons $\ker(v \circ u) \subset \ker u$. Soit $x \in \ker(v \circ u)$, on a donc $(v \circ u)(x) = v(u(x)) = 0_G$, d'où

$$u(x) \in \ker v$$
.

$$\operatorname{Im}(v \circ u) = (v \circ u)(E) = v(u(E)) \subset v(F) = \operatorname{Im} v.$$

¹Rien de nouveau ici, la linéarité de u et v ne sert à rien. On aurait pu également écrire $\operatorname{Im} u = u(E) \subset F$ donc

 $^{^2\}tilde{0}$ désigne l'application nulle $0_{\mathbf{L}(E,G)}.$

³L'inclusion $\{0_F\} \subset \ker v \cap \operatorname{Im} u$ est évidente, car $\ker v$ et $\operatorname{Im} u$ sont des sous-espace vectoriel de F.

De plus, $u(x) \in \operatorname{Im} u$, d'où $u(x) \in \ker v \cap \operatorname{Im} u = \{ 0_F \}$, c'est-à-dire

$$u(x) = 0_F$$
 ou encore $x \in \ker u$.

Nous avons montrer l'inclusion $\ker(v \circ u) \subset \ker u$. L'inclusion réciproque étant toujours vraie d'après la question 1., nous avons l'égalité $\ker(v \circ u) = \ker u$.

4. (\Longrightarrow) Supposons que $\text{Im}(v \circ u) = \text{Im } v$ et montrons $\ker v + \text{Im } u = F$. Soit $x \in F$. ⁴ On a $v(x) \in \text{Im } v$ et $\text{Im } v = \text{Im}(v \circ u)$, d'où l'existence de $t \in E$ tel que

$$v(x) = (v \circ u)(t).$$

Posons y = u(t) et z = x - y, alors

$$v(z) = v(x) - v(y) = v(u(t)) - v(u(t)) = 0_G.$$

On a donc

$$x = y + z$$
 $y = u(t) \in \operatorname{Im} u$ $z \in \ker v$;

ce qui montre que $x \in \operatorname{Im} u + \ker v$. Par conséquent, nous avons montrer $F \subset \operatorname{Im} u + \ker v$, l'inclusion réciproque étant toujours vraie car $\operatorname{Im} u$ et $\ker v$ sont des sous-espace vectoriel de F, nous avons l'égalité annoncée.

(\iff) Supposons que Im $u + \ker v = F$ et montrons Im $(v) \subset \operatorname{Im}(v \circ u)$. Soit $y \in \operatorname{Im} v$. Il existe $x \in F$ tel que y = v(x). Puisque $F = \operatorname{Im} u + \ker v$, il existe $t \in E$ et $z \in \ker v$ tels que

$$x = u(t) + z$$
.

On a alors $y = v(x) = v(u(t)) + v(z) = (v \circ u)(t) \in \text{Im}(v \circ u)$. Nous avons montré l'inclusion $\text{Im}(v) \subset \text{Im}(v \circ u)$. L'inclusion réciproque étant toujours vraie d'après la question 1., nous avons l'égalité $\text{Im}(v) = \text{Im}(v \circ u)$.

⁴C'est la partie CS d'un raisonnement par CN et CS. Voici la partie CN : Supposons qu'il existe $y \in \text{Im } u$ et $z \in \text{ker } v$ tels que x = y + z. Ainsi, y = u(t) avec $t \in E$, d'où nécessairement v(x) = v(y) + v(z) = v(u(t)). On doit donc choisir $t \in E$ tel que $v \circ u(t) = v(x)$, ce qui est toujours possible puisque $v(x) \in \text{Im } v = \text{Im}(v \circ u)$.

Exercice 11 (33.0)

Soient E un espace vectoriel de dimension n sur \mathbb{K} , f un endomorphisme de E, P et Q deux éléments de $\mathbb{K}[X]$.

Si
$$P = a_0 + a_1 X + \dots + a_n X^n$$
, on note $P(f)$ l'endomorphisme

$$a_0 \operatorname{Id}_E + a_1 f + \dots + a_n f^n$$
.

- **1.** Montrer que $(P \cdot Q)(f) = P(f) \circ Q(f)$.
- 2. Montrer que si P divise Q, alors

$$\ker P(f) \subset \ker Q(f) \quad \text{ et } \quad \operatorname{Im} Q(f) \subset \operatorname{Im} P(f).$$

3. Montrer que si D est le PGCD de P et Q, alors

$$\ker D(f) = \ker P(f) \cap \ker P(f)$$
 et $\operatorname{Im} D(f) = \operatorname{Im} P(f) + \operatorname{Im} Q(f)$.

Solution 11 (33.0)

Exercice 12 (33.0)

On note $E = C^1([0, 1], \mathbb{R})$ le \mathbb{R} -espace vectoriel des applications de classe C^1 sur [0, 1] et à valeurs réelles,

$$F = \left\{ \begin{array}{c} f \in E \ \middle| \ \int_0^1 f = 0, f(0) = 0, f'(1) = 0 \end{array} \right\} \quad \text{et} \quad G = \operatorname{Vect}\left(e_0, e_1, e_2\right) \text{ avec } e_k \ : \ [0, 1] \ \rightarrow \ \mathbb{R}$$

- 1. Montrer que F et G sont deux sous-espaces vectoriels de E.
- **2.** Montrer que $E = F \oplus G$.

Exercice 13 (33.0)

Soit

$$p: \mathbb{R}^2 \to \mathbb{R}^2$$

$$(x,y) \mapsto \left(\frac{4x+2y}{5}, \frac{2x+y}{5}\right).$$

- **1.** Montrer que *p* est un projecteur de \mathbb{R}^2 .
- 2. Déterminer les éléments caractéristiques de p.
- 3. Déterminer l'expression de la symétrie par rapport à Im p suivant la direction ker p.

Solution 13 (33.0)

1. p est l'application linéaire canoniquement associée à la matrice

$$A = \begin{pmatrix} \frac{4}{5} & \frac{2}{5} \\ \frac{2}{5} & \frac{1}{5} \end{pmatrix} = \frac{1}{5} \begin{pmatrix} 4 & 2 \\ 2 & 1 \end{pmatrix}.$$

Or

$$A^2 = \frac{1}{25} \begin{pmatrix} 20 & 10 \\ 10 & 5 \end{pmatrix} = \frac{1}{5} \begin{pmatrix} 4 & 2 \\ 2 & 1 \end{pmatrix} = A.$$

On a donc $p \circ p = p$: l'application p est un projecteur de \mathbb{R}^2 .

2. On a directement,

$$\ker(p) = \left\{ (x, y) \in \mathbb{R}^2 \mid 2x + y = 0 \right\} = \text{Vect} \left\{ (1, -2) \right\}$$
$$\text{Im}(p) = \text{Vect} \left\{ (2, 1) \right\} = \left\{ (x, y) \in \mathbb{R}^2 \mid x - 2y = 0 \right\}.$$

Remarque. On peut également utiliser le fait que $\operatorname{Im}(p) = \ker(p - \operatorname{Id}_E)$, et puisque $A - I_3 = \begin{pmatrix} -1/5 & 2/5 \\ 2/5 & -4/5 \end{pmatrix}$, on retrouve $\ker(p - \operatorname{Id}_E) = \{ (x, y) \in \mathbb{R}^2 \mid x - 2y = 0 \}$.

3. En notant s la symétrie par rapport à Im p et suivant la direction ker p, on a $s = 2p - \mathrm{Id}_{\mathbb{R}^2}$, d'où

$$\forall (x, y) \in \mathbb{R}^2, s(x, y) = \left(\frac{3x + 4y}{5}, \frac{4x - 3y}{5}\right).$$

Exercice 14 (33.0)

Soit dans $E=\mathbb{R}^3$ un vecteur $v=(v_1,v_2,v_3)$ tel que $v_1+v_2+v_3=1$. Montrer que l'application ϕ qui à un vecteur $x=(x_1,x_2,x_3)$ associe le vecteur

$$x - (x_1 + x_2 + x_3)v$$

est un projecteur.

Préciser son image et son noyau.

Solution 14 (33.0)

Exercice 15 (33.0)

Soit
$$n \ge 2$$
 et soit s : $\mathbb{R}_n[X] \to \mathbb{R}_n[X]$
 $P \mapsto P - P''(0)X^2 - 2P(0)$

- **1.** Montrer que s est un endomorphisme de $\mathbb{R}_n[X]$.
- 2. Montrer que s est une symétrie dont on donnera les éléments caractéristiques.

Solution 15 (33.0)

Exercice 16 (33.0)

Soit p un projecteur de E.

Montrer que si le scalaire λ est distinct de 0 et 1, alors $p - \lambda \operatorname{Id}_E$ est un automorphisme, et expliciter son inverse.

Exercice 17 (33.0)

Soient p et q deux projecteurs de E.

- 1. Montrer que p + q est un projecteur si et seulement si $p \circ q = q \circ p = 0$.
- 2. Dans ce cas, montrer

$$\ker(p+q) = \ker p \cap \ker q$$
 et $\operatorname{Im}(p+q) = \operatorname{Im} p \oplus \operatorname{Im} q$.

Solution 17 (33.0)

1. L'application p + q est linéaire. De plus, $p^2 = p$ et $q^2 = q$, donc

$$(p+q)^2 = p^2 + p \circ q + q \circ p + q^2 = p + p \circ q + q \circ p + q$$

Ainsi p + q est un projecteur si, et seulement si $p \circ q + q \circ p = 0$.

(\Leftarrow) Supposons que $p \circ q = q \circ p = 0$. Alors $p \circ q + q \circ p = 0$ et donc p + q est un projecteur.

(\implies) Réciporquement, supposons que p+q soit un projecteur, alors $p \circ q = -q \circ p$. En composant cette relation à gauche par p, on obtient

$$p \circ (p \circ q) = p \circ (-q \circ p) = -(p \circ q) \circ p = (q \circ p) \circ p = q \circ p^2 = q \circ p.$$

Et puisque $(p \circ p) \circ q = p \circ q$, on obtient

$$q \circ p = p \circ q$$
.

De la relation $p \circ q + q \circ p = 0$, on déduit alors $p \circ q = q \circ p = 0$.

2. Si $x \in \ker p \cap \ker q$, alors p(x) = 0 et q(x) = 0, d'où

$$(p+q)(x) = 0$$
 et $x \in \ker(p+q)$.

On a donc ker $p \cap \ker q \subset \ker(p+q)$.

Réciproquement, soit $x \in \ker(p+q)$. On remarque que $p \circ (p+q) = p^2 + p \circ q = p$, d'où

$$p(x) = p((p+q)(x)) = p(0) = 0$$
 et $x \in \ker p$.

De même, $q \circ (p + q) = q \circ p + q^2 = q$, d'où

$$q(x) = q\left((p+q)(x)\right) = q(0) = 0 \quad \text{ et } \quad x \in \ker q.$$

On a donc bien $x \in \ker p \cap \ker q$. Ainsi $\ker(p+q) \subset \ker p \cap \ker q$, et par double inclusion,

$$\ker(p+q) = \ker p \cap \ker q.$$

Montrons que $\text{Im}(p+q) = \text{Im } p \oplus \text{Im } q$.

Tout d'abord, montrons que $\operatorname{Im} p \subset \operatorname{Im}(p+q)$. On a $(p+q) \circ p = p^2 + q \circ p = p$ donc $\operatorname{Si} x \in \operatorname{Im}(p)$, alors

$$x = p(x) = (p+q)(p(x)) \in \operatorname{Im}(p+q);$$

d'où $\text{Im}(p) \subset \text{Im}(p+q)$.

De même $(p+q) \circ q = q$ et l'on obtient $\text{Im}(q) \subset \text{Im}(p+q)$.

Ainsi $\operatorname{Im} p + \operatorname{Im} q \subset \operatorname{Im}(p+q)$.

Réciproquement, si $x \in \text{Im}(p+q)$, alors il existe $v \in E$ tel que x = (p+q)(v). Ainsi,

$$x = p(v) + q(v)$$
 $p(v) \in \operatorname{Im} p$ $q(v) \in \operatorname{Im} q$.

On a donc $\text{Im}(p+q) \subset \text{Im}(p) + \text{Im}(q)$ et par double inclusion

$$Im(p+q) = Im(p) + Im(q).$$

Soit $x \in \text{Im}(p) \cap \text{Im}(q)$. Puisque p et q sont des projecteurs, p(x) = x et q(x) = x, d'où

$$p \circ q(x) = p(q(x)) = p(x) = x.$$

Or $p \circ q = 0$, d'où x = 0. On a donc $\text{Im}(p) \cap \text{Im}(q) = \{0\}$.

Finalement,

$$\operatorname{Im}(p+q) = \operatorname{Im}(p) \oplus \operatorname{Im}(q).$$

Exercice 18 (33.0)

Soit f un endomorphisme d'un \mathbb{K} -espace vectoriel E. On pose $f^2 = f \circ f$.

- **1.** Montrer que Im $f \cap \ker f = f (\ker f^2)$.
- **2.** Montrer que ker $f = \ker f^2$ si et seulement si $\operatorname{Im} f \cap \ker f = \{ 0 \}.$
- 3. Montrer que Im $f = \text{Im } f^2$ si et seulement si Im $f + \ker f = E$.
- **4.** En déduire une condition nécessaire et suffisante pour que le noyau et l'image de f soient des sous-espaces vectoriels supplémentaires de E.

Solution 18 (33.0)

Exercice 19 (33.0)

Soit E un espace vectoriel sur $\mathbb R$ et $f\in \mathbf L(E)$ tel que $f^3=\mathrm{Id}_E.$

- 1. Montrer que $\operatorname{Im}\left(f-\operatorname{Id}_{E}\right)\subset\ker\left(f^{2}+f+\operatorname{Id}_{E}\right)$.
- **2.** Montrer que $E = \ker (f \operatorname{Id}_E) \oplus \operatorname{Im} (f \operatorname{Id}_E)$.
- 3. En déduire que $E=\ker\left(f-\operatorname{Id}_E\right)\oplus\ker\left(f^2+f+\operatorname{Id}_E\right)$.

Solution 19 (33.0)

Exercice 20 (33.0)

Soient E un \mathbb{K} -espace vectoriel et $f \in \mathbf{L}(E)$. On suppose que

$$f^2 - 5f + 6 \operatorname{Id}_E = 0$$
 (ici $f^2 = f \circ f$).

Montrer

$$\ker (f - 2\operatorname{Id}_E) \oplus \ker (f - 3\operatorname{Id}_E) = E.$$

Solution 20 (33.0)

Soit $x \in E$. On cherche $y \in \ker(f - 2\operatorname{Id}_E)$ et $z \in \ker(f - 3\operatorname{Id}_E)$ tels que x = y + z.

(CN) Si de tels y, z existent, on a f(y) = 2y et f(z) = 3z, d'où f(x) = f(y+z) = f(y) + f(z) = 2y + 3z.

Ainsi

$$\begin{cases} y+z = x \\ 2y+3z = f(x) \end{cases} \text{ d'où } \begin{cases} -y = f(x) - 3x \\ z = f(x) - 2x \end{cases}$$

Ce qui prouve l'unicité des y et z recherchés.

(CS) Réciproquement, si l'on pose

$$\begin{cases} y = -f(x) + 3x \\ z = f(x) - 2x \end{cases}$$

Alors y + z = x. De plus, $f^2 - 5f + 6 \operatorname{Id}_E = 0$, d'où $f^2(x) = 5f(x) - 6x$, et donc

$$f(y) = f(-f(x) + 3x) = -f^{2}(x) + 3f(x) = -2f(x) + 6x = 2y$$

$$f(z) = f(f(x) - 2x) = f^{2}(x) - 2f(x) = 3f(x) - 6x = 3z.$$

Finalement,

$$x = y + z$$
 $y \in \ker(f - 2\operatorname{Id}_E)$ $z \in \ker(f - 3\operatorname{Id}_E)$.

ce qui montre l'existence des y et z recherchées.

Conclusion

Pour tout $x \in E$, il existe un unique couple $(y, z) \in \ker(f - 2\operatorname{Id}_E) \times \ker(f - 3\operatorname{Id}_E)$ tels que x = y + z. Autrement dit,

$$E = \ker \left(f - 2\operatorname{Id}_E \right) \oplus \ker \left(f - 3\operatorname{Id}_E \right).$$

Exercice 21 (33.0)

Soient E un espace vectoriel sur un corps \mathbb{K} et $u \in \mathbf{L}(E)$.

1. Montrer que $(\ker u^k)_{k\in\mathbb{N}}$ est une suite croissante et $(\operatorname{Im} u^k)_{k\in\mathbb{N}}$ est une suite décroissante, c'està-dire

$$\forall k \in \mathbb{N}, \ker u^k \subset \ker u^{k+1} \text{ et } \operatorname{Im} u^{k+1} \subset \operatorname{Im} u^k.$$

2. On suppose qu'il existe un entier naturel d tel que ker $u^d = \ker u^{d+1}$. Montrer

$$\forall k \in \mathbb{N}, k \ge d \implies \ker u^{k+1} = \ker u^k.$$

3. Démontrer que, p étant un entier strictement positif, on a

$$\ker u^p = \ker u^{p+1} \iff \ker u^p \cap \operatorname{Im} u^p = \left\{ \; 0_E \; \right\}.$$

4. On suppose qu'il existe un entier naturel d tel que $\operatorname{Im} u^d = \operatorname{Im} u^{d+1}$. Montrer

$$\forall k \in \mathbb{N}, k \ge d \implies \operatorname{Im} u^{k+1} = \operatorname{Im} u^k.$$

5. Démontrer que, p étant un entier strictement positif, on a

$$\operatorname{Im} u^p = \operatorname{Im} u^{p+1} \iff E = \ker u^p + \operatorname{Im} u^p = \left\{ 0_E \right\}.$$

6. On suppose les deux suites $(\ker u^k)_{k\in\mathbb{N}}$ et $(\operatorname{Im} u^k)_{k\in\mathbb{N}}$ stationnaires. Soit p le plus petit entier strictement positif tel que $\ker u^p = \ker u^{p+1}$. Soit q le plus petit entier strictement positif tel que $\operatorname{Im} u^q = \operatorname{Im} u^{q+1}$.

Montrer que dans ces condition l'on a p = q et

$$E = \ker u^p \oplus \operatorname{Im} u^p$$
.

Solution 21 (33.0)

Exercice 22 (33.0) X MP

Soit *E* un espace vectoriel.

- 1. Soit u un endomorphisme de E tel que $\ker u = \operatorname{Im} u$ et S un supplémentaire de $\operatorname{Im} u$: $E = S \oplus \operatorname{Im} u$.
 - (a) Montrer que, pour tout $x \in E$, il existe un unique couple $(y, z) \in S^2$ tel que x = y + u(z). On pose z = v(x) et y = w(x).
 - (b) Montrer que v est linéaire et calculer $u \circ v + v \circ u$.
 - (c) Montrer que w est linéaire et calculer $u \circ w + w \circ u$.
- **2.** Soit $u \in \mathbf{L}(E)$ tel que $u^2 = 0$. On suppose qu'il existe v dans $\mathbf{L}(E)$ tel que $u \circ v + v \circ u = \mathrm{Id}_E$. A-t-on nécessairement ker $u = \mathrm{Im}\,u$?
- 3. Soit $u \in L(E)$ tel que $u^2 = 0$ et $u \neq 0$. On suppose qu'il existe $w \in L(E)$ tel que $u \circ w + w \circ u = u$. A-t-on nécessairement ker $u = \operatorname{Im} u$?

Solution 22 (33.0)

Exercice 23 (33.0)

Dans $E = \mathcal{F}(\mathbb{R}, \mathbb{R})$, on considère le sous-espace vectoriel

$$F = \{ f \in E \mid f(1) = f(2) = 0 \}.$$

1. Soit

$$\phi: E \to \mathbb{R}^2 .$$

$$f \mapsto (f(1), f(2))$$

Montrer que $\phi \in L(E, \mathbb{R}^2)$. Comment interpréter F? ϕ est-elle surjective?

2. Trouver un sous-espace vectoriel G de E sur lequel ϕ induit un isomorphisme entre G et \mathbb{R}^2 .

Solution 23 (33.0)

1. Soit $f, g \in E$ et $\lambda, \mu \in \mathbb{R}$.

$$\phi(\lambda f + \mu g) = ((\lambda f + \mu g)(1), (\lambda f + \mu g)(2)) = (\lambda f(1) + \mu g(1), \lambda f(2) + \mu g(2))$$
$$= \lambda (f(1), f(2)) + \mu (f(2), g(2)) = \lambda \phi(f) + \mu \phi(g).$$

Donc ϕ est linéaire.

F est le noyau de ϕ puisque l'on a l'équivalence pour $f \in E$,

$$f \in \ker \phi \iff (f(1), f(2)) = (0, 0) \iff f(1) = f(2) = 0 \iff f \in F.$$

Montrons que l'application ϕ est surjective. Soit $(a,b) \in \mathbb{R}^2$, on cherche une application $f: \mathbb{R} \to \mathbb{R}$ telle que $\phi(f) = (a,b)$, c'est-à-dire f(1) = a et f(2) = b. On peut choisir par exemple $f: x \mapsto b(x-1) - a(x-2)$.

2. Soit $G = \{ f \in E \mid \exists p, q \in \mathbb{R}, \forall x \in \mathbb{R} f(x) = px + q \}$ l'ensemble des fonctions affines. Montrons que G est un sous-espace vectoriel de E.

L'application nulle $\tilde{0}: x \mapsto 0x + 0$ est affine.

Soit $f: x \mapsto px + q$ et $g: x \mapsto p'x + q'$ deux éléments de G et $\lambda, \mu \in \mathbb{R}$, alors, pour tout $x \in \mathbb{R}$,

$$(\lambda f + \mu g)(x) = (\lambda p + \mu p')x + (\lambda q + \mu q');$$

l'application $\lambda f + \mu g$ appartient donc bien à G.

Le calcul de la question précédente montre que la restriction de ϕ à G,

$$\phi_G: G \to \mathbb{R}^2 ,$$

$$f \mapsto (f(1), f(2))$$

est surjective. De plus, si $f \in \ker \phi_G$, alors $f \in G$ et f(1) = f(2) = 0; or une application affine qui est nulle en deux point est l'application nulle (écrire un système pour ceux qui ne sont pas convaincus), d'où $\ker \phi_G = \left\{ \begin{array}{c} \tilde{0} \end{array} \right\}$: l'application ϕ_G est injective.

Conclusion: l'application ϕ induit un isomorphisme entre G et \mathbb{R}^2 .

Exercice 24 (33.0)

Soient E un espace vectoriel sur un corps \mathbb{K} et F, G deux sous-espace vectoriel de E. On note

$$\mathcal{H} = \{ \ f \in \mathbf{L}(E) \mid \ker f = F \ \text{et } \operatorname{Im} f = G \ \};$$

et on suppose $E = F \oplus G$.

- 1. Montrer que $f \in \mathcal{H}$ induit sur G un automorphisme.
- **2.** Montrer que (\mathcal{H}, \circ) est un groupe.

Solution 24 (33.0)

Sommes en dimension finie

Exercice 25 (33.0)

Soit E un \mathbb{K} -espace vectoriel, F et G deux sous-espaces vectoriels de E tels que $E = F \oplus G$. Soit $(w_i)_{i \in I}$ une famille de vecteurs de E. On décompose chaque vecteur w_i suivant la somme précédente ; cela donne pour tout i,

$$w_i = u_i + v_i,$$

égalité dans laquelle u_i appartient à F et v_i appartient à G.

On suppose la famille $(u_i)_{i\in I}$ libre. Prouver qu'il en est de même de la famille $(w_i)_{i\in I}$.

Solution 25 (33.0)

Exercice 26 (33.0)

Soit

$$X = \operatorname{Vect} \left\{ \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix} \right\}, \quad Y = \operatorname{Vect} \left\{ \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 1 \\ -1 \end{pmatrix} \right\}.$$

La somme X + Y est-elle directe ? Déterminer une base de X + Y.

Solution 26 (33.0)

Soit $z \in X \cap Y$. Il existe donc $\alpha, \beta, \gamma, \delta$ tels que

$$z = \alpha \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \end{pmatrix} + \beta \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix} = \gamma \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix} + \delta \begin{pmatrix} 1 \\ 0 \\ 1 \\ -1 \end{pmatrix}.$$

On a donc

$$\alpha \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \end{pmatrix} + \beta \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix} - \gamma \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix} - \delta \begin{pmatrix} 1 \\ 0 \\ 1 \\ -1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}. \iff \begin{cases} \alpha - \delta &= 0 \\ -\gamma &= 0 \\ \alpha - \delta &= 0 \\ \beta &= -\delta \\ \gamma &= 0 \end{cases}$$

Ainsi $X \cap Y \neq \{0\}$ (on a $X \cap Y = \text{Vect }\{(1,0,1,-1)^T\}$); la somme X + Y n'est donc pas directe.

Remarque. On peut également montrer que les quatre vecteurs forment une famille liée. Remarquez que cela abouti à peu près aux même calculs.

Le calcul précédent montre que

$$(1,0,1,-1)^T = (1,0,1,0)^T - (0,0,0,1)^T$$

on a donc

$$X + Y = \text{Vect} \left\{ \begin{pmatrix} 1\\0\\1\\0 \end{pmatrix}, \begin{pmatrix} 0\\0\\0\\1 \end{pmatrix}, \begin{pmatrix} 0\\1\\0\\0 \end{pmatrix} \right\}$$

ces trois vecteurs formant une famille libre (cf calculs précédents), il forment donc une base de X + Y. **Remarque.** On peut également exploiter la formule de Grassmann...

Exercice 27 (33.0)

Dans
$$\mathbb{R}^4$$
, on pose $F = \text{Vect}(u, v, w)$ et $G = \text{Vect}(x, y)$ avec $u = (0, 1, -1, 0)$ $v = (1, 0, 1, 0)$ $w = (1, 1, 1, 1)$ $x = (0, 0, 1, 0)$ et $y = (1, 1, 0, -1)$. Quelles sont les dimensions de F , G , $F + G$ et $F \cap G$?

Solution 27 (33.0)

Exercice 28 (33.0)

Soient F et G deux sous-espaces vectoriels de dimensions 3 de \mathbb{R}^5 . Montrer que $F \cap G \neq \{0\}$.

Solution 28 (33.0)

Exercice 29 (33.0) Centrale PSI

Soient E un espace vectoriel de dimension $n \ge 1$ et S l'ensemble des sous-espaces vectoriels de E.

- **1.** Soient F et F' dans $S \setminus \{E\}$. Montrer que $F \cup F' \neq E$.
- **2.** Soient H et H' deux hyperplans de E. Montrer qu'il existe $D \in S$ tel que $H \oplus D = H' \oplus D = E$.
- **3.** Soit $d: S \to \mathbb{N}$ vérifiant

$$d\left(E\right)=n$$
 et $\forall F,F'\in\mathcal{S},F\cap F'=\left\{\,0\,\right\}\implies d\left(F+F'\right)=d\left(F\right)+d\left(F'\right).$

Montrer que $\forall F \in \mathcal{S}, d(F) = \dim(F)$.

Solution 29 (33.0)

Exercice 30 (33.0)

Soient

$$r = (1, 0, 0, 1),$$
 $s = (-1, 1, 0, 0),$ $t = (0, 0, 1, 1),$ $u = (2, 0, 1, 0),$ et $v = (2, -1, 2, 3).$

On pose F = Vect(r, s), G = Vect(t, u) et H = Vect(t, v).

- **1.** Montrer que $\mathbb{R}^4 = F \oplus G$.
- **2.** Donner une base de F + H et de $F \cap H$.

Solution 30 (33.0)

Exercice 31 (33.0)

Soit $E = \mathbb{R}_3[X]$. On note

$$F = \left\{ P \in E \mid P(-1) = 0 \text{ et } \int_{-1}^{1} P(t) \, dt = 0 \right\} \text{ et } G = \text{Vect} \left\{ 1 - X - X^{2}, 1 + X + X^{3} \right\}.$$

On ne demande pas de vérifier que F et G sont deux sous-espaces vectoriels de E.

- 1. Déterminer une base de F et une base de G. En déduire les dimensions de F et G.
- **2.** Montrer que $E = F \oplus G$.
- 3. Donner l'expression de la projection π sur F parallèlement à G.

Exercice 32 (33.0)

Soit \mathcal{P} le sous-espace vectoriel de \mathbb{R}^3 défini par $\mathcal{P} = \{(x, y, z) \in \mathbb{R}^3 \mid x + y - z = 0\}$ et $\mathcal{D} = \text{Vect } (1, 2, 0)$.

- **1.** Montrer que $\mathbb{R}^3 = \mathcal{D} \oplus \mathcal{P}$.
- **2.** Donner l'expression de la projection p sur \mathcal{P} parallèlement \mathcal{D} .

Solution 32 (33.0)

1. Pour $(x, y, z) \in \mathbb{R}^3$,

$$(x,y,z) \in \mathcal{P} \iff x+y-z=0 \iff \begin{cases} x = x \\ y = y \iff (x,y,z) \in \text{Vect } \{ (1,0,1), (0,1,1) \}. \\ z = x + y \end{cases}$$

Ces deux vecteurs forment donc une famille génératrice de \mathcal{P} . Or ils sont non colinéaires , ils forment donc aussi une famille libre. Donc ((1,0,1),(0,1,1)) est une base de \mathcal{P} et dim $\mathcal{P}=2$. De plus dim $\mathcal{D}=1$ car ((1,2,0)) est une base de \mathcal{D} . Ainsi

$$\dim \mathbb{R}^3 = \dim \mathcal{P} + \dim \mathcal{D}$$
.

Vérifions que $\mathcal{D} \cap \mathcal{P} = \{ 0_{\mathbb{R}^3} \}$. Soit $(x, y, z) \in \mathcal{D} \cap \mathcal{P}$.

- Puisque $(x, y, z) \in \mathcal{D}$, il existe $\lambda \in \mathbb{R}$ tel que $(x, y, z) = \lambda(1, 2, 0)$.
- De plus $(x, y, z) \in \mathcal{P}$, on a donc x + y z = 0.

On a donc $0 = x + y - z = \lambda + 2\lambda = 3\lambda$ et ceci entraîne $\lambda = 0$ donc $(x, y, z) = 0_{\mathbb{R}^3}$ puis $\mathcal{D} \cap \mathcal{P} = \{ 0_{\mathbb{R}^3} \}$. Ainsi, on a donc $\mathcal{D} \cap \mathcal{P} = \{ 0_{\mathbb{R}^3} \}$ et dim $\mathbb{R}^3 = \dim \mathcal{P} + \dim \mathcal{D}$, ce qui prouve

$$\mathbb{R}^3 = \mathcal{D} \oplus \mathcal{P}$$
.

2. On note p cette projection. Soit $(x, y, z) \in \mathbb{R}^3$. On cherche à exprimer p(x, y, z). Notons pour cela

$$(X, Y, Z) = p(x, y, z)$$

et cherchons (X, Y, Z) en fonction de x, y, z.

- On sait que p(x, y, z) = (X, Y, Z) appartient à \mathcal{P} donc $X + Y Z = 0^5$.
- De plus, p(x, y, z) (x, y, z) appartient à \mathcal{D} . Donc il existe $\lambda \in \mathbb{R}$ tel que $(X, Y, Z) (x, y, z) = p(x, y, z) (x, y, z) = \lambda(1, 2, 0)$. On a donc

$$X = x + \lambda$$
, $Y = y + 2\lambda$, $Z = z$.

De X + Y - Z = 0, on déduit $(x + \lambda) + (y + 2\lambda) - z = 0$, ce qui donne

$$\lambda = -\frac{x + y - z}{3}.$$

On en déduit que

$$p(x, y, z) = (X, Y, Z) = \left(x - \frac{x + y - z}{3}, y - 2\frac{x + y - z}{3}, z\right) = \left(\frac{2x - y + z}{3}, \frac{-2x + y + 2z}{3}, z\right).$$

⁵Puisque l'on a une base de \mathcal{P} , on peut également écrire $(X,Y,Z) = \alpha(1,0,1) + \beta(0,1,1)$, mais cela rallonge un peu les calculs...

Exercice 33 (33.0)

Soient $n \in \mathbb{N}$, $n \ge 3$. On considère $F = \{ P \in \mathbb{R}_n[X] \mid P(1) = P(2) = 0 \}$.

- 1. Justifier que F est un sous-espace vectoriel de $\mathbb{R}_n[X]$ et préciser sa dimension.
- **2.** Soit $G = \text{Vect } (X, X^2)$. Justifier que F et G sont supplémentaires dans $\mathbb{R}_n[X]$.
- **3.** Soit π la projection sur F parallèlement à G, déterminer $\pi(P)$ pour tout P de $\mathbb{R}_n[X]$.

Solution 33 (33.0)