ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ имени М.В.ЛОМОНОСОВА»

ФИЗИЧЕСКИЙ ФАКУЛЬТЕТ МГУ

Кафедра квантовой электроники

ОПТИЧЕСКИЙ ОТКЛИК МИ-РЕЗОНАНСНЫХ НАНОЧАСТИЦ, СВЯЗАННЫХ С ДИЭЛЕКТРИЧЕСКИМИ ВОЛНОВОДАМИ

Зав. кафедрой квантовой электроники: д. ф. -м. н., профессор Панов В. И.

Бакалаврская работа студента 427 группы

Нестерова К. Е. Научный руководитель: к. ф. -м. н., н. с. Щербаков М. Р.

Оглавление

1	Вве	дение	3
2	Литературный обзор		4
	2.1	Метаматериалы	4
	2.2	Рассеяние Ми	4
	2.3	Оптический магнетизм	4
	2.4	Метод конечных разностей во временной области	4
3	Пос	Постановка задачи	
4	Оригинальная часть		6
	4.1	Исследуемые наноструктуры	6
	4.2	Численный расчёт для одиночного нанодиска	6
	4.3	Численный расчёт для массива нанодисков	6
	4.4	Обсуждение	6
5	Зак.	Заключение	
Chucay hutanatyni i			Q

1 Введение

С каждым годом развитие технологических возможностей человечества позволяет производить искусственные структуры с характерными размерами всё меньших порядков. В настоящее время реальностью является управление формой и размерами материалов на наномасштабах, что позволяет создавать композитные материалы с заданными свойствами. Это обуславливает необходимость исследования параметров и области применения подобных метаматериалов. Особо интересным классом метаматериалов являются структуры с оптическим магнетизмом, то есть обладающие резонансом с ненулевым магнитным дипольным моментом на оптических частотах, что невозможно в обычных веществах, встречающихся в природе в естественном виде. Известна возможность возбуждения магнитного дипольного резонанса как для металлических метаматериалов, так и для чисто диэлектрических наноструктур.

При кажущейся простоте металлических решений они обладают существенным недостатком в виде больших омических потерь. Исследование нелинейно-оптических свойств требует высокой интенсивности излучения, порой достигающей порога оптической прочности материалов, что делает подобные решения неприменимыми. Неметаллические наноструктуры выгодно выделяются отсутствием подобного недостатка, однако пока что слабо изучены.

В данной дипломной работе численно определены оптимальные параметры для возбуждения магнитного резонанса в одиночном кремниевом нанодиске, связанном с диэлектрическим волноводом, и оптимизирована конфигурация системы из 20 нанодисков для потенциального создания оптического переключателя (?).

2 Литературный обзор

2.1 Метаматериалы

TODO: Веселаго [1]

2.2 Рассеяние Ми

TODO: теория Ми

2.3 Оптический магнетизм

TODO: немного теории + аналогичные по функционалу структуры

2.4 Метод конечных разностей во временной области

TODO: теория метода + Lumerical

3 Постановка задачи

ТООО: идея, обоснование, пункты исследования

4 Оригинальная часть

4.1 Исследуемые наноструктуры

TODO: сэндвичи, картинки, характерные размеры

4.2 Численный расчёт для одиночного нанодиска

TODO: две высоты, оптимизация, распределение полей

4.3 Численный расчёт для массива нанодисков

ТООО: диски с одной стороны, зеркально, графики пропускания, результаты

4.4 Обсуждение

TODO: возможный фундаментальный предел глубины (пока неясно, считается) и максимума производной

5 Заключение

ТОРО: посчитали, оптимизировали, сравнили с аналогичными

Список литературы

[1] Веселаго В. Г. Электродинамика веществ с одновременно отрицательными значениями ϵ и μ // Успехи физических наук. — 1967. — Т. 6, № 9. — С. 2861.