Diksha Godse (002116411)

Program Structures & Algorithms Spring 2022 Assignment No. 3

Name- Diksha Godse NUID - 002116411

TASK 1

- ♦ (a) Implement height-weighted Quick Union with Path Compression. For this, you will flesh out the class UF_HWQUPC. All you have to do is to fill in the sections marked with // TO BE IMPLEMENTED ... // ...END IMPLEMENTATION.
- (b) Check that the unit tests for this class all work. You must show "green" test results in your submission (screenshot is OK).

Output Screenshot:

> UF_HWQUPC_Test

TASK 2

Using your implementation of UF_HWQUPC, develop a UF ("union-find") client that takes an integer value n from the command line to determine the number of "sites." Then generates random pairs of integers between 0 and n-1, calling connected() to determine if they are connected and union() if not. Loop until all sites are connected then print the number of connections generated. Package your program as a static method count() that takes n as the argument and returns the number of connections; and a main() that takes n from the command line, calls count() and prints the returned value. If you prefer, you can create a main program that doesn't require any input and runs the experiment for a fixed set of n values. Show evidence of your run(s).

```
■ Console ×  Debug Shell  Search
<terminated> UF_HWQUPC_client [Java Application] C:\Program Files\Java\jdk-17\bin\javaw.exe (Mar 4, 2022, 8:07:53 PM - 8:09:02 PM)
*****please enter -1 to exit or positive integer to continue*****
Input: Number of objects/sites (n): 50
113 Random Pairs (m) generated for 50 objects (n).
Input: Number of objects/sites (n): 100
257 Random Pairs (m) generated for 100 objects (n).
Input: Number of objects/sites (n): 200
591 Random Pairs (m) generated for 200 objects (n).
Input: Number of objects/sites (n): 300
964 Random Pairs (m) generated for 300 objects (n).
Input: Number of objects/sites (n): 400
1301 Random Pairs (m) generated for 400 objects (n).
Input: Number of objects/sites (n): 500
1682 Random Pairs (m) generated for 500 objects (n).
Input : Number of objects/sites (n): 600
2100 Random Pairs (m) generated for 600 objects (n).
Input: Number of objects/sites (n): -1
```

TASK 3

Determine the relationship between the number of objects (n) and the number of pairs (m) generated to accomplish this (i.e. to reduce the number of components from n to 1). Justify your conclusion in terms of your observations and what you think might be going on.

EVIDENCE

Column 1	Column 2	Column 3
number of Objects (n)	Number of connections (m)	Approx to n* ln(n)/2
50	113	97
100	257	230
200	591	529
300	964	855

400	1301	1198
500	1682	1553
600	2100	1919

Graphical Representation

Conclusion

- 1. From the number of experiments carried out It is observed that, relationship between the number of objects (n) and the number of pairs (m) is m is equivalent to $n * \ln(n)/2$. Evidence provided above clearly shows that, cloumn2 and column 3 are equivalent.
- 2. In theory, Weight Quick-Union with Path Compression is not quite linear.
- 3. In practice, Weight Quick-Union with Path Compression is linear.