实验报告 भ

姓名: 荀浩航 学号: PB21020636 班级: 物理学院 4 班 日期: 2023 年 4 月 18 日

1 实验名称

直流辉光等离子体放电实验

2 实验目的

- 1. 观察直流低气压辉光等离子体的放电现象,通过对辉光等离子体的伏安特性曲线的测量,理解辉光等离子体的电学特性;
- 2. 理解直流电气击穿的机制;
- 3. 验证帕邢定律;
- 4. 采用 Langmuir 双探针法测量等离子体参数。

3 实验原理

3.1 等离子体及其物理特性及主要参量

等离子体具有一系列不同于普通气体的特性:

(1) 高度电离,是电和热的良导体,具有比普通气体大几百倍的比热容。(2) 带正电的和带负电的粒子密度几乎相等。(3) 宏观上是电中性的。

描述等离子体的一些主要参量为:

(1) 电子温度 T_e , 它是等离子体的一个主要参量。(2) 带电粒子密度。(3) 轴向电场强度 E_e 。(4) 电子平均动能 E_e 。(5) 空间电位分布。

3.2 气体放电

直流放电形成辉光等离子体的经典结构如图 1 所示,在电气击穿形成等离子体前要经历暗放电阶段,包括本底电离区、饱和区、汤森放电区和电晕放电区。

图 1 低气压放电管工作原理示意图

低气压放电可分为三个阶段:暗放电、辉光放电和电弧放电。其中各个阶段的放电在不同的应用领域有广泛的应用。这三个阶段的划分从现象上来看是放电强度的不同,从内在因素来看是其放电电压和放电电流之间存在着显著差异。经典的直流低气压放电在正常辉光放电区有如图 2 所示:

图 2 低气压放电现象

3.3 帕邢定律

在低气压直流放电中,气体的击穿电压由下式决定:

$$V_b = Cpd/\ln\left[\frac{Apd}{\ln\left(1+\frac{1}{\gamma}\right)}\right]$$

其中 γ 为二次电子发射系数,常数 A、C 和气体种类有关的常数,p 为压强,d 为阴阳极间距离, V_b 为击穿电压。

上式表明某一特定气体的击穿电压仅仅依赖于 pd 的乘积,这一现象被称为帕邢 (Paschen)定律。

3.4 郎缪尔(Langmuir)探针

探针法分单探针法和双探针法。朗缪尔探针又称为静电探针,是一种双探针结构。双探针法是在放电管中装两根探针,相隔一段距离 L。相比于单探针的诊断方法,双探针不以放电装置的阴极或者阳极作为参考点,而是引入一根与测量探针完全相同的探针为参考极,从而使两根探针均处于悬浮电位,进而减少了探针对等离子体的扰动,使测量结果更为可靠。

双探针的伏安特性 曲线要满足如下方程:

$$\begin{split} I_D &= I_{i02} - I_{e2} = I_{e1} - I_{i01} \\ V_D &= V_{P1} - V_{P2} + V_e \\ I_{e1} &= I_{e01} \mathrm{exp} \; (-\frac{eV_{p1}}{kT_{e1}}) \\ I_{e2} &= I_{e02} \mathrm{exp} \; (-\frac{eV_{p2}}{kT_{e2}}) \end{split}$$

式中, I_{i01} 、 I_{i02} 是探针 1、2 的离子饱和电流; I_{e1} 、 I_{e2} 是电子电流; I_{e01} 、 I_{e02} 是电子饱和电流; V_{p1} 、 V_{p2} 是探针鞘层电位; V_{e} 是两探针间的电位差。

如果两根探针靠得足够近,且等离子均匀,则有 kT_{e1} = kT_{e2} , n_{e01} = n_{e02} ,上述四个式子得

$$\frac{I_{e1}}{I_{e2}} = \frac{I_{e01}}{I_{e02}} \exp\left(-\frac{eV_D - eV_e}{kT_e}\right)$$

取对数并对 Vn 微分后得

$$\frac{1}{I_{e1}} \frac{dI_{e1}}{dV_D} - \frac{1}{I_{e2}} \frac{dI_{e2}}{dV_D} = \frac{e}{kT_e}$$

整理上述式子并令 V_D= 0 得

$$kT_e = -e \frac{I_{i01}I_{i02}}{I_{i01} + I_{i02}} \left(\frac{dV_D}{dI_D}\right) |_{V_D = 0}$$

如果两探针完全相同,则 I_{i01}≈I_{i02},则有

$$kT_e = -e\frac{I_{i0}}{2} \left(\frac{dV_D}{dI_D}\right)|_{V_D = 0}$$

根据麦克斯韦分布, 电子密度的表达式为

$$n_e = \frac{4I_{e0}}{eS_e} \sqrt{\frac{\pi m_e}{8kT_e}}$$

式中, I_{e0} 的单位为 A,为了计算方便,取 0.05A; S_e 的值取 0.04cm²; kT_e 的单位为 eV,1eV=11600K,k 为玻尔兹曼常数 $k=1.3806505\times10^{-23}$ J/K; m_e 为电子质量 $m_e=0.91\times10^{-30}$ kg; n_e 的单位为 cm⁻³。

图 3 双探针法测量电子温度数据曲线

4 实验步骤

4.1 直流低气压放电现象观察及伏安曲线的测量

- (1) 打开电源总开关(在仪器左侧一个气动开关), 拧动仪器钥匙通电。
- (2) 打开机械泵,打开挡板阀(逆时针拧到底),打开电阻真空计,抽本底真空到小于5Pa。
- (3) 打开流量计到阀控档,调节流量计流量,使气压达到 20Pa。
- (4) 开水冷, 开高压, 并将工作选择打到"辉光放电测量"档, 固定气压 20Pa
- (5) 提升放电管电压至起辉,起辉后调节放电管电压,使放电电流达到 90mA 左右,之后每 5mA 左右一个点降电压测伏安特性曲线,直至放电电流为 0。
- (6) 将放电管电压降至 0, 之后调节流量计到 40Pa, 重复上一步骤。

4.2 气体击穿电压的测定及帕邢定律的验证

- (1) 将放电管电压降至 0,将工作档位打到"击穿电压"档,调节流量计旋钮,使气压达到 10Pa,提升放电管电压同时密切关注击穿电压示数,一旦击穿电压有 0.5V 以上的突变,立即降低放电管电压直至 0,之后再记录击穿电压之前的放电管电压示数。
- (2) 调节流量计使气压分别达到 10Pa、20Pa、30Pa、40Pa、50Pa, 重复以上步骤(注意, 每次调节气压之前必须把放电管电压降到 0)。

4.3 朗缪尔双探针法测量电子温度和等离子体密度

- (1) 将放电管电压降至 0,将工作档位打到"双探针"档,调节流量计使气压固定到20Pa,提升放电管电压直至起辉,起辉后调整放电管电压使放电电流维持在 0-20mA。调整探针电压从 0 至±100V,记录探针电压与电流。(注意:0~±10V 区间测量步长为 1V,±10~±100V 区间测量步长为 10V。)调整放电管电压使放电电流维持在 0-15mA 重复上述步骤测第二组双探针数据。
- (2) 实验完成后,把放电管电压和探针电压降至 0,关闭高压按钮,工作档位打到"断"档,关闭冷却水,流量计打到关闭。待压强低于 5Pa(若抽真空 10min 还未达到 5Pa也可以关闭)再关闭电阻真空计、机械泵,拧钥匙到关闭档,最后关闭仪器总电源。

5 实验数据及处理

三个实验的原始数据如下:

5.1 直流低气压放电现象观察及伏安曲线的测量

工作电压:	20Pa	工作电压	40Pa
电压/V	电流/mA	电压/V	电流 mA
1027	46.4	636	46.2
970	41.4	609	41.2
913	36.4	587	36.2
855	31.4	563	31.2
799	26.4	541	26.2
740	21.4	516	21.2
673	16.4	486	16.2
602	11.4	449	11.2
504	6.4	399	6.2
367	1.4	325	1.2

表 1 直流低气压放电现象观察及伏安曲线的测量实验数据

做出伏安特性曲线,如图 4、5、6 所示

图 4 20Pa 时低气压放电的伏安特性曲线

图 5 40Pa 时低气压放电的伏安特性曲线

图 6 低气压放电伏安特性曲线对比图

对上图进行定性分析,得到以下结论:

- (1) 在辉光放电范围内,一定极距 D、气压 P条件下,放电管电流随着电压增大而增大; 一定极距 D、电压 U条件下,电流随着气压的增大而增大。
- (2) 气压增大, *dI/dU*也增大, 即等离子体电导增大, 导电性增强。这可能是气压增大使等离子体中电子、离子浓度增大导致的。
- (3) 电压较低时曲线线性较好,可能是电压较低时电子能量较小,碰撞时气体电离较少, 类似一般良导体,而电压高时碰撞激发与电离并存,此时伏安特性较为复杂,故线性 较差;导致高压端曲线不平滑的另一个原因是随着实验时间的推移,等离子管内气压 可能出现变化,导致曲线受气压变化而波折。

5.2 气体击穿电压的测定及帕邢定律的验证

压强/Pa	10	20	30	40	50
击穿电压/V	390	440	472	463	476

表 2 气体击穿电压的测定及帕邢定律的验证实验数据

做出击穿电压随压强变化图,如图7所示。

图 7 击穿电压随压强变化示意图

从图中可以看出,在 d 不变时,随着压强的增大,击穿电压也随之增大,验证了 V_b 与 P 为 正相关关系。

5.3 朗缪尔双探针法测量电子温度和等离子体密度

功率: 13.104W 压强: 20Pa							
电压/V	电流/uA	电压/V	电流 uA	电压/V	电流/uA	电压/V	电流 uA
0	0	-1	-2.3	0	0	-1	-1.9
1	1.9	-2	-4.2	1	1.9	-2	-3.6
2	3.9	-3	-5.9	2	3.4	-3	-5
3	5.5	-4	-7.6	3	4.6	-4	-6.2
4	7.1	-5	-9.4	4	5.7	-5	-7.3
5	8.7	-6	-11	5	6.6	-6	-8.3
6	10.2	-7	-12.4	6	7.5	-7	-8.9
7	11.4	-8	-14	7	8.1	-8	-9.8
8	12.8	-9	-15.5	8	8.7	-9	-10.3
9	14	-10	-16.7	9	9.3	-10	-11
10	15.3	-20	-25.4	10	9.8	-20	-14.9
20	22.3	-30	-30	20	12.8	-30	-17.2
30	26.1	-40	-33.5	30	15.1	-40	-19.3
40	29.3	-50	-36.7	40	17.1	-50	-21.5
50	32.3	-60	-39.9	50	19	-60	-23.6

60	35.2	-70	-43.2	60	20.9	-70	-25.6
70	38.2	-80	-46.3	70	22.7	-80	-27.5
80	41	-90	-49.6	80	24.3	-90	-29.4
90	43.5	-100	-52.4	90	26.2	-100	-31.2
100	46.2			100	27.8		

表 3 朗缪尔双探针法测量电子温度和等离子体密度实验数据 做出在功率为 13.104W 时,探针电压和探针电流的图像,如图 8 所示。

图 8 探针电流随探针电压变化图 (功率为 13.104W)

从图中可以看出,图像大致可分为三段线性关系,其拟合关系式分别为:

直线
$$1:I = 0.3315U - 19.7767$$
 ($-100V \le U \le -20V$)

直线 $2:I = 1.6852U - 0.3905 (-10V \le U \le 10V)$

直线 $3:I = 0.2952U + 17.1900(20V \le U \le 100V)$

计算得到直线 1、2 焦点坐标为: (-14.3209, -24.5241)

计算得到直线 2、3 焦点坐标为: (12.6478, 20.9236)

在
$$V_D=0$$
 附近用中心差商代替导数值有 $\left(\frac{dV_D}{dI_D}\right)|_{V_D=0}=\frac{2V}{4.2uA}=0.4762\times 10^6\Omega$

故
$$T_e = -\frac{e}{k} \frac{I_{i01}I_{i02}}{I_{i01}+I_{i02}} \left(\frac{dV_D}{dI_D}\right)|_{V_D=0} = -\frac{1e}{1.381 \times 10^{-23} J/K} \times \frac{24.5241 \times 20.9236}{24.5241 + 20.9236} \times 0.4762V = 0.4762V$$

 $6.2292 \times 10^4 K$

$$n_e = \frac{4I_{e0}}{eS_e} \sqrt{\frac{\pi m_e}{8kT_e}} = \frac{4\times0.05}{e\times0.04} \sqrt{\frac{\pi\times0.91\times10^{-30}}{8\times5.377}} = 2.0136\times10^{11} cm^{-3}$$

在功率为 8.8126W 时同理得:

图 9 探针电流随探针电压变化图 (功率为 8.8126W)

从图中可以看出,图像大致可分为三段线性关系,其拟合关系式分别为:

直线 $1:I = 0.2038U - 11.1256 (-100V \le U \le -20V)$

直线 $2:I = 1.1817U - 0.3190 (-10V \le U \le 10V)$

直线 $3:I = 0.1857U + 9.5156(20V \le U \le 100V)$

计算得到直线 1、2 焦点坐标为: (-11.0508, -13.3778)

计算得到直线 2、3 焦点坐标为: (9.8741, 11.3492)

在 $V_D=0$ 附近用中心差商代替导数值有 $\left(\frac{dV_D}{dI_D}\right)|_{V_D=0} = \frac{2V}{3.8uA} = 0.5263 \times 10^6 \Omega$

故
$$T_e = -rac{e}{k} rac{I_{io1}I_{io2}}{I_{io1}+I_{io2}} \left(rac{dV_D}{dI_D}
ight) \big|_{V_D=0} \ = -rac{1e}{1.381 \times 1.2231 \times 10^{-23} J/K} imes rac{13.3778 \times 11.3492}{13.3778 + 11.3492} imes 0.5263V =$$

 $3.7440 \times 10^4 K$

$$n_e = \frac{4I_{e0}}{eS_e} \sqrt{\frac{\pi m_e}{8kT_e}} = \frac{4\times0.05}{e\times0.04} \sqrt{\frac{\pi\times0.91\times10^{-30}}{8\times3.232}} = 2.5973\times10^{11} cm^{-3}$$

6 思考题

- 1. 暗放电区电流的测量应注意什么问题?
 - 答:通常暗放电电流在 $10^{-12}\sim10^{-7}$ A,所以采用档是通过电压求电流。取样电阻是 1M0
- 2. 阴极与阳极显著的热效应差别的原因?

	阴极处聚集了阳离子, 正离子动能比电子低,		其温度也较高,	反