Hyper Tuning Parameter Assignment to find R2 Square Value

1. Mulitple Linear Regression

from sklearn.linear_model import LinearRegression

Sl.No	сору_Х	fit_intercept	R2 Score
1	TRUE	TRUE	0.9358
2	FALSE	FALSE	0.7389

2. Support Vector Machine (SVM)

Epsilon Support Vector Regression - SVR

from sklearn.svm import SVR

		R2 Score			
Sl.No	C (Regularisation parameter)	kernel is ' rbf '	kernel is ' linear '	kernel is ' poly '	kernel is ' sigmoid '
1	1	-0.05740	-0.05569	-0.05710	-0.05721
2	10	-0.05681	-0.03964	-0.05367	-0.05472
3	100	-0.05073	0.10647	-0.01980	-0.03045
4	1000	0.00677	0.78028	0.26616	0.18507
5	10000	0.37190	0.92400	0.81296	0.85353

Note - kernel value given as 'precomputed' & 'callable' parameters not supporting

3. Decision Tree

${\bf Decision Tree Regressor}$

<u>from sklearn.tree import DecisionTreeregressor</u>

SI.No	criterion	splitter	max_features	R2 Score
1	squared_error also known as mse - mean squared error	best		0.8996
2		random		0.8511
3		best	sqrt	0.5552
4		random	sqrt	0.4186
5		best	log2	0.6673
6		random	log2	0.8842
7		best		0.9263
8		random		0.8579
9	friedman_mse also known as	best	sqrt	0.0331
10	mean squared error with Friedman's	random	sqrt	0.3265
11		best	log2	0.6260
12		random	log2	-0.9209
13		best		0.9494
14		random		0.8821
15	absolute_error also known as	best	sqrt	-0.5509
16	mae - mean absolute error	random	sqrt	0.2991
17		best	log2	0.6599
18		random	log2	0.5885

Note -

- squared error parameter given as mse
- absolute_error parameter given as mae
- criterion value 'poisson 'parameter not supporting