全国计算机技术与软件专业技术资格(水平)考试

2017 年下半年 软件评测师 下午试卷

(考试时间 14:00~16:30 共 150 分钟)

请按下述要求正确填写答题纸

- 1.在答题纸的指定位置填写你所在的省、自治区、直辖市、计划单列市的名称。
- 2.在答题纸的指定位置填写准考证号、出生年月日和姓名。
- 3.答题纸上除填写上述内容外只能写解答。
- 4.本试卷共 5 道题,都是必答题,满分 75 分。
- 5.解答时字迹务必清楚,字迹不清时,将不评分。
- 6. 仿照下面例题,将解答写在答题纸的对应栏内。

例题

2017 年下半年全国计算机技术与软件专业技术资格(水平)考试日期是(1)月(2)日。

因为正确的解答是"11 月 4 日",故在答题纸的对应栏内写上"11"和"4"(参看下表)。

例题	解答栏
(1)	11
(2)	4

试题一

阅读下列 C 程序,回答问题 1 至问题 3,将解答填入答题纸的对应栏内。

【C程序】

【C程序】

```
Int DoString(char*string){
 char *argv[100];
 Int argc=1;
 while(1) {
                                                        //1
  while(*string&& *string!='-')
                                                          //2,3
     String++;
                                                        //4
  if(!*string)
                                                        //5
     break;
                                                       //6
   argv[argc]=string;
  while(*string && *string!="\n'&& *string!= '\t') //7,8,9,10
   string++;
                                                       //11
  argc++;
                                                        //12
 }
 return 0;
                                                       //13
}
                                                                         【问题1】
```

请针对上述 C 程序给出满足 100%DC (判定覆盖) 所需的逻辑条件。

【问题 2】

请画出上述程序的控制流图,并计算其控制流图的环路复杂度 V(G)。

【问题3】

请给出问题2中控制流图的线性无关路径。

试题二

阅读下列说明,回答问题1至问题3,将解答填入答题纸的对应栏内。

【说明】

某银行 B 和某公司 C 发行联名信用卡,用户使用联名信用卡刷卡可累计积分,积分累计规则与刷卡金额和刷卡日期有关,具体积分规则如表 2-1 所示。此外,公司 C 的会员分为普通会员、超级会员和 PASS 会员三个级别,超级会员和 PASS 会员在刷卡时有额外积分奖励,奖励规则如表 2-2 所示。

	表	€ 2-1 积分规则		
刷卡日期	积分			
每月9日、19日	刷卡金额小	数部分四舍五	∖后的2倍	
11月11日	刷卡金额小	数部分四舍五户	\后的6倍	
12月12日	刷卡金额小	数部分四舍五户	\ 后的4倍	
其他日期	刷卡金额小	数部分四舍五		
	表 2-2	额外积分奖励	规则	
会员级别	普通会员	超级会员	PASS会员	
级别代码	м	S	P	
额外积分奖励	0%	100%	200%	

银行B开发了一个程序来计算用户每次刷卡所累积的积分,程序的输入包括会员级别L、刷卡日期D和刷卡金额A,程序的输出为本次积分S。其中,L为单个字母且大小写不敏感,D由程序直接获取系统日期,A为正浮点数最多保留两位小数,S为整数。

【问题1】(5分)

采用等价类划分法对该程序进行测试,等价类表如下表所示,请补充表 2-3 中空(1)[~](5)

			表2-3 等价表	
输入条件	有效等价类	编号	一	编号
	M	1	非字母	9
会员等级L [S	2	非单个字母	10
	(1)	3	(4)	11
	毎月9日、19日	4		
刷卡日期D	11月11日	5		
while Days [(2)	6		
	其他日期	7		
刷卡金额A	(3)	8	非浮点数	12
/中川 卜立左谷MA [(5)	13
			多于两位小数的正浮点数	14

【问题 2】(9分)

根据以上等价类表设计的测试用例如下表所示,请补充表 2-4 中空(1)~(9)

		2000			表 2-4测
编号		输入	覆盖等价类(编	预期输出S	
細方	L	D	A	号)	「分が利用につ
1	Ж	1月9日	500.25	1, 4, 8	(1)
2	S	11月11日	(2)	2, 5, 8	6000
3	P	12月12日	500	(3)	6000
4	P	(4)	500	3, 7, 8	1500
5	(5)	其他日期	500	9, 7, 8	N/A
6	非单个字母	其他日期	500	10,7,8	(6)
7	(7)	其他日期	500	11, 7, 8	N/A
8	M	其他日期	非浮点数	(8)	N/A
9	M	其他日期	非正浮点数	1,7,13	N/A
10	M	其他日期	(9)	1,7,14	N/A

【问题3】(6分)

如果规定了单次刷卡的积分上限为 20000(即 S 取值大于等于 0 且小于等于 20000),则还需要针对 S 的取值补充一些测试用例。假设采用等价类划分法和边界值分析法来补充用例,请补充表 2-5、表 2-6 中的空(1) $^{\sim}$ (6)。

编号	表 2-5补充等价类 等价类
1	0<=S<=20000
2	(1)
3	(2)
	表 2-6 边界值
编号	边界值
1	S=20000
2	(3)
3	(4)
4	S=0
2 3 4 5	(5)
6	(6)

试题三

阅读下列说明,回答问题1至问题3,将解答填入答题纸的对应栏内。

【说明】

某公司欲开发一套基于 Web 的通用共享单车系统。该系统的主要功能如下:

- 1. 商家注册、在线支付;后台业务员进行车辆管理与监控、查询统计、报表管理、价格设置、管理用户信息。
- 2. 用户输入手机号并在取验证码后进行注册、点击用车后扫描并获取开锁密码、锁车(机械锁由用户点击结束用车)后3秒内显示计算的费用,用户确认后支付、查看显示时间与路线及其里程、预约用车、投诉。

【问题1】(6分)

采用性能测试工具在对系统性能测试时,用 Apdex (应用性能指数) 对用户使用共享单车的满意度进行量化,系统需要满足 Apdex 指数为 0.90 以上。

Apdex 量化时,对应用户满意度分为三个区间,通过响应时间数值 T 来划分, T 值代表着用户对应用性能满意的响应时间界限或者说是"门槛"(Threshold)。

针对用户请求的响应时间, Apdex 的用户满意度区间如下:

满意: (0,T]让用户感到很愉快

容忍:(T, 4T]慢了一点,但还可以接受,继续这一应用过程

失望: >4T, 太慢了, 受不了了, 用户决定放弃这个应用

Apdex 的计算如下:

Apdex=(小于T的样本数+T~4T的样本数/2)/总样本数

针对用户功能,本系统设定 T=2 秒,记录响应时间,统计样本数量,2 秒以下记录数 3000, 2^{8} 秒记录数 1000,大干 8 秒 500。

请计算本系统的 Apdex 指数,并说明本系统是否达到要求。

【问题 2】(6分)

系统前端采用 HTML5 实现,已使用户可以通过不同的移动设备的浏览器进行访问。设计兼用行测试矩阵,对系统浏览器兼容性进行测试。

【问题3】(8分)

针对用户手机号码获取验证码进行注册的功能,设计 4 个测试用例。(假设合法手机号码为 11 位数字,验证码为 4 位数字)

试题四

阅读下列问题,回答问题1到问题4,将解答写在答题纸的对应栏内。

【说明】

图 4-1 是某企业信息系统的一个类图,图中属性和方法前的"+"、"#"和"- "分别表示公有成员、保护成员和私有成员。其中:

图 4-1 类图

- (1) 类 Manager 重新实现了类 Employee 的方法 calSalary(), 类 Manager 中的方法 querySalary()继承了其父类 Employee 的方法 querySalary()。
- (2) 创建类 Employee 的对象时,给其设置职位 (position)、基本工资 (basicSalary) 等信息。方法 calSalary()根据个人的基本工资、当月工资天数 (workDays) 和奖金 (bonus) 等按特定规则计算员工工资。
- (3) 类 Department 中的方法 statSalary 中首先调用了该类的方法 load(), 获取本部门员工列表, 然后调用了类 Employee 中的方法 calSalary()。 现拟采用面向对象的方法进行测试。

【问题1】

图 4-1 所示的类图中,类 manager 和类 Employee 之间是什么关系?该关系对测试的影响是什么?

【问题2】

- (1) 类 Manager 重新实现了类 Employee 的方法 calSalary(), 这是面向对象的什么机制?是否需要重新测试该方法?
- (2)类 Manager 中的方法 querySalary()继承了其父类 Employee 的方法 querySalary(),是否需要重新测试该方法?

【问题3】

- (1) 请结合题干说明中的描述,给出测试类 Employee 方法 calSalary()时的测试序列。
 - (2) 请给出类图 4-1 中各个类的测试顺序。

【问题 4】

从面向对象多态特性考虑,测试方法 statSalary()时应注意什么?

试题五

阅读下列说明,回答问题1至问题3,将解答填入答题纸的对应栏内。

【说明】

某飞行器供油阀控制软件通过控制左右两边的油箱 BL、BR 向左右发动机 EL、ER 供油, 既要保证飞行器的安全飞行,又要保证飞行器的平衡,该软件主要完成的功能如下:

- (1)无故障情况下,控制左油箱 BL 向左发动机 EL 供油,右油箱 BR 向右发动机 ER 供油,不上报故障;
- (2) 当左油箱 BL 故障时,控制右油箱 BR 分别向左、右发动机 EL 和 ER 供油,并上报二级故障——左油箱故障;
- (3) 当右油箱 BR 故障时,控制左油箱 BL 分别向左、右发动机 EL 和 ER 供油,并上报二级故障——右油箱故障;
- (4) 当左发动机 BL 故障时,根据左右油箱的剩油量决定(如果左右油箱剩油量之差大于等于 50 升,则使用剩油量多的油箱供油,否则同侧优先供油)左油箱 BL 还是右油箱 BR 向右发动机 ER 供油,并上报一级故障——左发动机故障;
- (5) 当右发动机 ER 故障时,根据左右油箱的剩油量决定(如果左右油箱剩油量之差大于等于 50 升,则使用剩油量多的油箱供油,否则同侧优先供油) 左油箱且还是右油箱 BR 向左发动机 BL 供油,并上报一级故障——右发动机故障;
- (6) 当一个油箱和一个发动机同时故障时,则无故障的油箱为无故障发动机供油, 并上报一级故障——故障油箱和发动机所处位置;
- (7) 当两个油箱或两个发动机同时故障或存在更多故障时,则应进行双发断油控制,并 上报特级故障——两侧油箱或两侧发动机故障;
- (8)故障级别从低级到高级依次为二级故障、一级故障和特级故障,如果低级故障和高级故障同时发生,则只上报最高级别故障。

【问题1】(6分)

覆盖率是度量拥试完整性的一个手段,也是度量测试有效性的一个手段。在嵌入式软件白盒测试过程中,通常以语句覆盖率、条件覆盖率和 MC/DC 覆盖率作为度量指标。

在实现第 6 条功能时,设计人员采用了下列算法:

if ((BL==故障) && (EL==故障))

{BR 供油 ER; BL 断油; EL 断油; }

2017 年下半年 软件评测师 下午试卷 第 9页 (共 11页)

```
if ((BL==故障) && (ER==故障)) {BR 供油 EL; BL 断油; ER 断油; } if ((BR==故障) && (EL==故障)) {BL 供油 ER; BR 断油; EL 断油; } if ((BR=故障) && (ER==故障)) {BL 供油 EL; BR 断油; ER 断油; }
```

请指出对上述算法达到 100%语句覆盖、100%条件覆盖和 100%MC/DC 覆盖所需的最少测试用例数目,填写表 5-1 中的空(1) $^{\circ}(3)$.

覆盖率类型	所需的最少用例数	
100%语句覆盖	(1)	
100%条件覆盖	(2)	
100%MC/DC	(3)	

【问题 2】(12分)

为了测试此软件功能,测试人员设计了表 5-2 所示的测试用例,请填写该表中的空(1) ~(12)。

序号	前置条件(剩油 量)		輸入				输出		
	B_L	B_R	B_{L}	B_R	EL	ER	E _L E _R		上报故障
1	200	200	无故障	无故障	无故障	无故障	B_{L}	$B_{\mathbb{R}}$	无
2	200	200	故障	无故障	无故障	无故障	(1)	$B_{\mathbb{R}}$	二级故障
3	200	200	无故障	故障	无故障	无故障	B_{L}	(2)	二级故障
4	130	120	无故障	无故障	故障	无故障	断油	(3)	一级故障
5	150	90	无故障	无故障	故障	无故障	断油	(4)	一级故障
6	(5)	180	无故障	无故障	无故障	故障	$\mathbb{B}_{\mathbb{R}}$	断油	一级故障
7	90	(6)	无故障	无故障	无故障	故障	$\mathbb{B}_{\mathbb{L}}$	断油	一级故障
8	200	200	故障	无故障	故障	无故障	(7)	$B_{\mathbb{R}}$	一级故障
9	200	200	无故障	故障	无故障	故障	(8)	断油	一级故障
10	200	200	无故障	故障	故障	无故障	断油	(9)	一级故障
11	200	200	故障	无故障	无故障	故障	(10)	断油	一级故障
12	200	200	故障	故障	无故障	无故障	断油	断油	一级故障
13	200	200	无故障	无故障	故障	(11)	断油	断油	特级故障
14	200	200	故障	无故障	故障	故障	断油	断油	(12)

【问题3】

常见的黑盒测试的测试用例设计方法包括等价类划分、决策表、因果图、边界值分析等。测试人员在针对本题设计测试时,使用哪种测试用例设计方法最恰当?