Tut 9: Complex Numbers

On the first page top right corner, write the following

Name:

Roll No:

Batch: & Div:

Tut 9: Complex Numbers

Date:

Q1 If α , β are the roots of the equation $x^2 - 2x + 2 = 0$, prove that

$$\alpha^n + \beta^n = 2.2^{n/2} \cos n \pi/4$$
, Hence deduce $\alpha^8 + \beta^8 = 32$

Q2 Find all the values of $(1+i)^{3/4}$ and find continued product of all the roots.

Q3 If $u = log tan \left(\frac{\pi}{4} + \frac{\theta}{2}\right)$, Prove that

(i) $cosh u = sec \theta$

(ii) $sinh u = tan \theta$

(iii) $tanh u = sin \theta$

(iv) $tanh \frac{u}{2} = tan \frac{\theta}{2}$

Q4 If $cos(x + i y) = cos \alpha + i sin \alpha$, prove that

(i) $\sin \alpha = \pm \sin^2 x = \pm \sin h^2 y$

(ii) cos 2x + cosh 2y = 2

Q5 Prove that $cosh^{-1}(\sqrt{1+x^2}) = tanh^{-1}(\frac{x}{\sqrt{1+x^2}})$

Q6 Find the value of $\log [\sin (x + i y)]$