SYNCHRONIZING AUTOMATA AND THE ČERNÝ CONJECTURE

William DeMeo

williamdemeo@gmail.com

University of South Carolina

Graduate Algebra Seminar University of Colorado April 11, 2013

These slides and other resources are available at http://williamdemeo.wordpress.com

A *finite automaton* is a triple $\mathbf{A} = \langle Q, \Sigma, \delta \rangle$ where

- Q is a set of states
- Σ is a set of *letters* (the *input alphabet*)
- ullet $\delta: Q \times \Sigma \to Q$ is a transition function

A *finite automaton* is a triple $A = \langle Q, \Sigma, \delta \rangle$ where

- Q is a set of states
- Σ is a set of *letters* (the *input alphabet*)
- $\delta: Q \times \Sigma \to Q$ is a *transition function*

If A is currently in state $q \in Q$, then upon input $a \in \Sigma$ the next state is $\delta(q, a)$.

A *finite automaton* is a triple $A = \langle Q, \Sigma, \delta \rangle$ where

- Q is a set of states
- Σ is a set of *letters* (the *input alphabet*)
- $\delta: Q \times \Sigma \to Q$ is a *transition function*

If **A** is currently in state $q \in Q$, then upon input $a \in \Sigma$ the next state is $\delta(q, a)$.

Given an input sequence of letters $a_0, a_1, \ldots, a_{n-1}$, the resulting state is

$$\delta(\cdots \delta(\delta(q, a_0), a_1) \cdots, a_{n-1}) \tag{1.1}$$

A *finite automaton* is a triple $A = \langle Q, \Sigma, \delta \rangle$ where

- Q is a set of states
- Σ is a set of *letters* (the *input alphabet*)
- $\delta: Q \times \Sigma \to Q$ is a *transition function*

If **A** is currently in state $q \in Q$, then upon input $a \in \Sigma$ the next state is $\delta(q, a)$.

Given an input sequence of letters $a_0, a_1, \ldots, a_{n-1}$, the resulting state is

$$\delta(\cdots \delta(\delta(q, a_0), a_1) \cdots, a_{n-1}) \tag{1.1}$$

If we write aq in place of $\delta(q, a)$, then (1.1) is simply $a_{n-1}a_{n-2} \dots a_1a_0q$.

A *finite automaton* is a triple $A = \langle Q, \Sigma, \delta \rangle$ where

- Q is a set of states
- Σ is a set of *letters* (the *input alphabet*)
- $\delta: Q \times \Sigma \to Q$ is a *transition function*

If **A** is currently in state $q \in Q$, then upon input $a \in \Sigma$ the next state is $\delta(q, a)$.

Given an input sequence of letters $a_0, a_1, \ldots, a_{n-1}$, the resulting state is

$$\delta(\cdots \delta(\delta(q, a_0), a_1) \cdots, a_{n-1}) \tag{1.1}$$

If we write aq in place of $\delta(q, a)$, then (1.1) is simply $a_{n-1}a_{n-2} \dots a_1a_0q$.

Let Σ^* denote the free monoid obtained by composing letters.

A *word* $w \in \Sigma^*$ is just a string of letters, $w = a_0 a_1 \dots a_{n-1}$, which acts on a state $q \in Q$ as you expect:

$$wq = a_0a_1 \dots a_{n-1}q$$

Viewed this way, the automaton $\langle Q, \Sigma, \delta \rangle$ is simply a unary algebra $\mathbf{A} = \langle Q, \Sigma \rangle$ with universe Q and basic operations Σ .

Viewed this way, the automaton $\langle Q, \Sigma, \delta \rangle$ is simply a unary algebra $\mathbf{A} = \langle Q, \Sigma \rangle$ with universe Q and basic operations Σ .

A is called *synchronizing* if there exists a constant word in Σ^* ; that is, a term operation w such that wx = wy for all $x, y \in Q$.

Such w are called *reset words* for A.

Viewed this way, the automaton $\langle Q, \Sigma, \delta \rangle$ is simply a unary algebra $\mathbf{A} = \langle Q, \Sigma \rangle$ with universe Q and basic operations Σ .

A is called *synchronizing* if there exists a constant word in Σ^* ; that is, a term operation w such that wx = wy for all $x, y \in Q$.

Such w are called *reset words* for A.

$$Q = \{0, 1, 2, 3\}$$

$$a = (1, 1, 2, 3)$$

$$b = (1, 2, 3, 0)$$

Viewed this way, the automaton $\langle Q, \Sigma, \delta \rangle$ is simply a unary algebra $\mathbf{A} = \langle Q, \Sigma \rangle$ with universe Q and basic operations Σ .

A is called *synchronizing* if there exists a constant word in Σ^* ; that is, a term operation w such that wx = wy for all $x, y \in Q$.

Such w are called *reset words* for A.

$$Q = \{0, 1, 2, 3\}$$

$$a = (1, 1, 2, 3)$$

$$b = (1, 2, 3, 0)$$

$$\mathbf{A} = \langle Q, \{a, b\} \rangle$$

Viewed this way, the automaton $\langle Q, \Sigma, \delta \rangle$ is simply a unary algebra $\mathbf{A} = \langle Q, \Sigma \rangle$ with universe Q and basic operations Σ .

A is called *synchronizing* if there exists a constant word in Σ^* ; that is, a term operation w such that wx = wy for all $x, y \in Q$.

Such w are called *reset words* for **A**.

$$Q = \{0, 1, 2, 3\}$$

$$a = (1, 1, 2, 3)$$

$$b = (1, 2, 3, 0)$$

$$A = \langle Q, \{a, b\} \rangle$$

Viewed this way, the automaton $\langle Q, \Sigma, \delta \rangle$ is simply a unary algebra $\mathbf{A} = \langle Q, \Sigma \rangle$ with universe Q and basic operations Σ .

A is called *synchronizing* if there exists a constant word in Σ^* ; that is, a term operation w such that wx = wy for all $x, y \in Q$.

Such w are called *reset words* for A.

The notion was formalized in 1964 in a paper by Jan Černý, though implicitly it had been around since at least 1956.

The idea of synchronization is natural and of obvious importance: we aim to restore control over a device whose current state is unknown.

For example, our view of an orbiting satellite may be temporarily obstructed by the Moon; once it comes back into view, we regain control and reorient it (Černý's original motivation).

In the 80's, the notion was reinvented by engineers working in a branch of robotics which deals with part handling problems in industrial automation.

In the 80's, the notion was reinvented by engineers working in a branch of robotics which deals with part handling problems in industrial automation.

Suppose that one of the parts of a certain device has the following shape:

Such parts will move along a conveyor belt and must be sorted and oriented before assembly.

In the 80's, the notion was reinvented by engineers working in a branch of robotics which deals with part handling problems in industrial automation.

Suppose that one of the parts of a certain device has the following shape:

Such parts will move along a conveyor belt and must be sorted and oriented before assembly.

Assume that only four initial orientations are possible, namely,

Prior to assembly the part must be in position 1, "bump-left" orientation.

Problem: construct an orienter that will put the part in bump-left position independently of its initial orientation.

SYNCHRONIZING AUTOMATA

Solution: position two types of obstacles, short and tall, in the path of the part. When the part passes a tall obstacle, it always rotates 90°. When it passes a short obstacle, it rotates by 90° iff it is in bump-down orientation.

SYNCHRONIZING AUTOMATA

Solution: position two types of obstacles, short and tall, in the path of the part. When the part passes a tall obstacle, it always rotates 90°. When it passes a short obstacle, it rotates by 90° iff it is in bump-down orientation.

SYNCHRONIZING AUTOMATA

Solution: position two types of obstacles, short and tall, in the path of the part. When the part passes a tall obstacle, it always rotates 90°. When it passes a short obstacle, it rotates by 90° iff it is in bump-down orientation.

THE ČERNÝ BOUND

- A synchronizing automaton with n states *reaches the Černý bound* if the minimum length of all reset words is $(n-1)^2$.
- We present all known proper synchronizing automata with n > 2 states.

("proper" means removal of any letter results in a nonsynchronizing automaton)

SPORADIC EXAMPLES

There are three sporadic examples on 3 states:

SPORADIC EXAMPLES

For 4 states, three sporadic examples are known:

ROMAN'S EXAMPLE

For 5 states, a synchronizing automaton reaching the $\check{\text{C}}\text{ern}\acute{\text{y}}$ bound was discovered by Adam Roman:

KARI'S EXAMPLE

The last in our list and the most remarkable example was published in 2001 by Jarkko Kari.

KARI'S EXAMPLE

The last in our list and the most remarkable example was published in 2001 by Jarkko Kari.

Minimum length reset word: abbababababababababababa

A BRIEF REVIEW

ullet For nonempty set A, let $\operatorname{Op}(A)$ be the set of all operations on A. That is,

$$\mathrm{Op}(A) = \bigcup_{n < \omega} A^{(A^n)}$$

A BRIEF REVIEW

• For nonempty set A, let $\operatorname{Op}(A)$ be the set of all operations on A. That is,

$$\mathrm{Op}(A) = \bigcup_{n < \omega} A^{(A^n)}$$

• For each $k \le n < \omega$, the kth projection operation is

$$p_k^n(x_1,\ldots,x_n)=x_k$$

• If $f \in A^{(A^n)}$ and $g_1, \ldots, g_n \in A^{(A^k)}$, then a *generalized composition* is

$$f[g_1,\ldots,g_n]:(x_1,\ldots,x_k)\mapsto f(g_1(x_1,\ldots,x_k),\ldots,g_n(x_1,\ldots,x_k))$$

A BRIEF REVIEW

• For nonempty set A, let $\operatorname{Op}(A)$ be the set of all operations on A. That is,

$$\mathrm{Op}(A) = \bigcup_{n < \omega} A^{(A^n)}$$

• For each $k \le n < \omega$, the kth projection operation is

$$p_k^n(x_1,\ldots,x_n)=x_k$$

• If $f \in A^{(A^n)}$ and $g_1, \dots, g_n \in A^{(A^k)}$, then a *generalized composition* is

$$f[g_1,\ldots,g_n]:(x_1,\ldots,x_k)\mapsto f(g_1(x_1,\ldots,x_k),\ldots,g_n(x_1,\ldots,x_k))$$

 A *clone* on A is a subset of Op(A) that contains all projections and is closed under generalized compositions.

A BRIEF REVIEW

• For nonempty set A, let Op(A) be the set of all operations on A. That is,

$$\mathrm{Op}(A) = \bigcup_{n < \omega} A^{(A^n)}$$

• For each $k \le n < \omega$, the kth projection operation is

$$p_k^n(x_1,\ldots,x_n)=x_k$$

• If $f \in A^{(A^n)}$ and $g_1, \dots, g_n \in A^{(A^k)}$, then a *generalized composition* is

$$f[g_1,\ldots,g_n]:(x_1,\ldots,x_k)\mapsto f(g_1(x_1,\ldots,x_k),\ldots,g_n(x_1,\ldots,x_k))$$

- A clone on A is a subset of Op(A) that contains all projections and is closed under generalized compositions.
- Given $F \subseteq \operatorname{Op}(A)$, let $\operatorname{Clo}^A(F)$ denote the smallest clone on A containing F.
- Let $Clo_n^A(F)$ denote the *n*-ary members of $Clo^A(F)$.

A BRIEF REVIEW

• If $A = \langle A, F \rangle$ is an algebra, then $\mathrm{Clo}^A(F)$ is called the *clone of term operations* on A, which we denote by $\mathrm{Clo}(A)$.

A BRIEF REVIEW

• If $A = \langle A, F \rangle$ is an algebra, then $\mathrm{Clo}^A(F)$ is called the *clone of term operations* on A, which we denote by $\mathrm{Clo}(A)$.

THEOREM

Given A and $n \in \omega$, the set $\mathrm{Clo}_n(\mathbf{A})$ is a subuniverse of the direct power algebra $\mathbf{A}^{(A^n)}$. It is generated by the projections $\{p_1^n, p_2^n, \ldots, p_n^n\}$.

A BRIEF REVIEW

• If $A = \langle A, F \rangle$ is an algebra, then $\mathrm{Clo}^A(F)$ is called the *clone of term operations* on A, which we denote by $\mathrm{Clo}(A)$.

THEOREM

Given A and $n \in \omega$, the set $\operatorname{Clo}_n(A)$ is a subuniverse of the direct power algebra $A^{(A^n)}$. It is generated by the projections $\{p_1^n, p_1^n, \dots, p_n^n\}$.

(Note that $Clo_1(\mathbf{A})$ is the subuniverse of \mathbf{A}^A generated by p_1^1 , the identity map.)

A BRIEF REVIEW

• If $A = \langle A, F \rangle$ is an algebra, then $\mathrm{Clo}^A(F)$ is called the *clone of term operations* on A, which we denote by $\mathrm{Clo}(A)$.

THEOREM

Given A and $n \in \omega$, the set $\operatorname{Clo}_n(A)$ is a subuniverse of the direct power algebra $A^{(A^n)}$. It is generated by the projections $\{p_1^n, p_1^n, \dots, p_n^n\}$.

(Note that $Clo_1(\mathbf{A})$ is the subuniverse of \mathbf{A}^A generated by p_1^1 , the identity map.)

EXAMPLE

$$A = \{0, 1, 2\}$$
 $a = (1, 1, 2)$ $b = (1, 2, 0)$ $\mathbf{A} = \langle A, \{a, b\} \rangle$

A BRIEF REVIEW

• If $A = \langle A, F \rangle$ is an algebra, then $\mathrm{Clo}^A(F)$ is called the *clone of term operations* on A, which we denote by $\mathrm{Clo}(A)$.

THEOREM

Given A and $n \in \omega$, the set $\operatorname{Clo}_n(A)$ is a subuniverse of the direct power algebra $A^{(A^n)}$. It is generated by the projections $\{p_1^n, p_2^n, \ldots, p_n^n\}$.

(Note that $Clo_1(\mathbf{A})$ is the subuniverse of \mathbf{A}^A generated by p_1^1 , the identity map.)

EXAMPLE

$$A = \{0, 1, 2\}$$
 $a = (1, 1, 2)$ $b = (1, 2, 0)$ $\mathbf{A} = \langle A, \{a, b\} \rangle$

 $Clo_1(\mathbf{A})$ is the subuniverse of $\mathbf{A}^A = \mathbf{A} \times \mathbf{A} \times \mathbf{A}$ generated by (0, 1, 2).

TERMS A BRIEF REVIEW

- Let ${\mathcal F}$ be a set of operation symbols and let $\rho:{\mathcal F}\to\omega$ be a similarity type.
- Let $F_n = \{ f \in \mathcal{F} \mid \rho(f) = n \}$ be the set of *n*-ary operation symbols in \mathcal{F} .

TERMS A BRIEF REVIEW

- Let \mathcal{F} be a set of operation symbols and let $\rho: \mathcal{F} \to \omega$ be a similarity type.
- Let $F_n = \{ f \in \mathcal{F} \mid \rho(f) = n \}$ be the set of *n*-ary operation symbols in \mathcal{F} .
- Let X be a set, disjoint from \mathcal{F} , whose elements we call *variables*.
- A word on the alphabet $X \cup \mathcal{F}$ is a finite string $a_1 a_2 \cdots a_n$, where $a_i \in X \cup \mathcal{F}$. The *product* of words is defined by concatenation.

TERMS A BRIEF REVIEW

- Let \mathcal{F} be a set of operation symbols and let $\rho: \mathcal{F} \to \omega$ be a similarity type.
- Let $F_n = \{ f \in \mathcal{F} \mid \rho(f) = n \}$ be the set of *n*-ary operation symbols in \mathcal{F} .
- Let X be a set, disjoint from \mathcal{F} , whose elements we call *variables*.
- A word on the alphabet X ∪ F is a finite string a₁a₂···a_n, where a_i ∈ X ∪ F. The product of words is defined by concatenation.
- The set $T_{\rho}(X)$ of terms of type ρ over X is the smallest set T of words on the alphabet $X \cup \mathcal{F}$ such that
 - $X \cup F_0 \subseteq T$
 - If $t_1, \ldots, t_n \in T$ and $f \in F_n$, then $ft_1t_2 \cdots t_n \in T$.
- If t_1, \ldots, t_n are terms and $f \in F_n$ is an n-ary operation symbol, we often write $f(t_1, t_2, \cdots, t_n)$ instead of $f(t_1, t_2, \cdots, t_n)$

TERMS

A BRIEF REVIEW

- For each $f \in F_n$ let $f^{\mathbf{T}_{\rho}(X)}$ be the n-ary operation on $T_{\rho}(X)$ that maps (t_1, \ldots, t_n) to $ft_1 \ldots t_n$.
- Define *term algebra of type* ρ as follows

$$\mathbf{T}_{\rho}(X) = \langle T_{\rho}(X), \{ f^{\mathbf{T}_{\rho}(X)} : f \in \mathfrak{F} \} \rangle$$

 $\mathbf{T}_{\rho}(X)$ is free in \mathscr{A}_{ρ} over X.

- For each $f \in F_n$ let $f^{\mathbf{T}_{\rho}(X)}$ be the n-ary operation on $T_{\rho}(X)$ that maps (t_1, \ldots, t_n) to $ft_1 \ldots t_n$.
- Define *term algebra of type* ρ as follows

$$\mathbf{T}_{\rho}(X) = \langle T_{\rho}(X), \{ f^{\mathbf{T}_{\rho}(X)} : f \in \mathfrak{F} \} \rangle$$

 $\mathbf{T}_{\rho}(X)$ is free in \mathscr{A}_{ρ} over X.

- Let $X_n = \{x_1, \dots, x_n\}$. For $t(x_1, \dots, x_n) \in T_\rho(X_n)$ and A an algebra of type ρ , define an n-ary operation r^A on A by recursion on the "height" of t:
 - if *t* is the variable x_i then $t^{\mathbf{A}}(a_1,\ldots,a_n)=a_i$
 - − if $t = fs_1s_2...s_k$ where $f \in F_k$ and $s_1,...,s_k$ are terms, then

$$t^{\mathbf{A}}(a_1,\ldots,a_n) = f^{\mathbf{A}}(s_1^{\mathbf{A}}(a_1,\ldots,a_n),\ldots,s_k^{\mathbf{A}}(a_1,\ldots,a_n))$$

Consider the map $\phi: X_n \to A^{(A^n)}$ defined by $\phi(x_i) = p_i^n$.

Consider the map $\phi: X_n \to A^{(A^n)}$ defined by $\phi(x_i) = p_i^n$.

By freeness of $\mathbf{T}_{\rho}(X_n)$, there exists a unique hom $\bar{\phi}:\mathbf{T}_{\rho}(X_n)\to\mathbf{A}^{(A^n)}$ extending $\phi.$

...and for any $t \in T_{\rho}(X_n)$, we have $\bar{\phi}(t) = t^{\mathbf{A}}$ (induct on height of t)

Consider the map $\phi: X_n \to A^{(A^n)}$ defined by $\phi(x_i) = p_i^n$.

By freeness of $\mathbf{T}_{\rho}(X_n)$, there exists a unique hom $\bar{\phi}:\mathbf{T}_{\rho}(X_n)\to\mathbf{A}^{(A^n)}$ extending ϕ .

...and for any $t \in T_{\rho}(X_n)$, we have $\bar{\phi}(t) = t^{\mathbf{A}}$ (induct on height of t)

THEOREM

$$\operatorname{Clo}_n(\mathbf{A}) = \{t^{\mathbf{A}} : t \in T_\rho(X_n)\}$$

Proof: For the unique hom above, we have $\bar{\phi}(t) = t^{\mathbf{A}} \in Clo_n(\mathbf{A})$.

The image $\bar{\phi}(T_{\rho}(X_n))$ contains all the projections.

The projections generate the algebra $Clo_n(A)$, so

$$\bar{\phi}(T_{\rho}(X_n)) = \operatorname{Clo}_n(\mathbf{A})$$

...and finally, we recall that if $\mathbf{F}_{\mathbf{A}}(X_n)$ denotes a free algebra in $V(\mathbf{A})$ with free generating set X_n , then

$$\mathbf{F}_{\mathbf{A}}(X_n) \cong \mathbf{T}_{\rho}(X_n)/\Theta$$

where two terms are equivalent mod Θ when they induce the same term operation on every member of $V(\mathbf{A})$.

Thus, taking Θ to be the kernel of $\bar{\phi}$, we have $\mathbf{F}_{\mathbf{A}}(X_n) \cong \mathrm{Clo}_n(\mathbf{A})$.

EXAMPLE

$$A = \{0, 1, 2\}$$
 $a = (1, 1, 2)$ $b = (1, 2, 0)$ $\mathbf{A} = \langle A, \{a, b\} \rangle$

 $Clo_1(\mathbf{A})$ is the subuniverse of $\mathbf{A}^A = \mathbf{A} \times \mathbf{A} \times \mathbf{A}$ generated by (0,1,2)

$$Clo_1(\mathbf{A}) \cong \mathbf{F_A}\{(0,1,2)\}$$

