Задача 10-2

В работах, посвященных одной из областей химии, встречаются формулы и уравнения реакций, которые могут показаться невероятными, например:

1)
$$C + S = CS$$

2)
$$2C + S = C_2S$$

3)
$$C + H = CH$$

На самом деле каждая из букв здесь обозначает не элемент, а определенное вещество, причем все эти вещества содержат в своем составе один и тот же элемент. Вещества, обозначаемые двумя или более буквами, являются продуктами соединения веществ, обозначенных одной буквой.

В одной из работ вместе с уравнениями реакций приведены массовые соотношения реагентов и продуктов реакций:

4)
$$2\mathbf{C}_{2}\mathbf{S} + 4\mathbf{H} = \mathbf{C}_{3}\mathbf{S}_{2}\mathbf{H}_{3} + \mathbf{C}\mathbf{H}$$

 $1.000 \,\Gamma$ $0.215 \,\Gamma$
5) $\mathbf{C}_{3}\mathbf{A} + 3\mathbf{C}\mathbf{S}\mathbf{H}_{2} + 26\mathbf{H} = \mathbf{C}_{6}\mathbf{A}\mathbf{S}_{3}\mathbf{H}_{32}$
 $1.000 \,\Gamma$ $4.645 \,\Gamma$
6) $\mathbf{C}_{4}\mathbf{A}\mathbf{F} + 3\mathbf{C}\mathbf{S}\mathbf{H}_{2} + 30\mathbf{H} = \mathbf{C}_{6}\mathbf{A}\mathbf{S}_{3}\mathbf{H}_{32} + \mathbf{C}\mathbf{H} + \mathbf{F}\mathbf{H}_{3}$
 $1.000 \,\Gamma$ $1.063 \,\Gamma$ $2.583 \,\Gamma$ $0.440 \,\Gamma$

Вопросы:

- **1.** Определите, какое соединение обозначается каждой из букв **C**, **H**, **A**, **F**, **S** и $\overline{\mathbf{S}}$. Приведите используемые для определения расчёты.
- **2.** Запишите уравнения реакций 1 3 в привычной форме.
- 3. Закончите уравнения реакций с использованием буквенных обозначений:

7)
$$C_3A + 6H = ...$$

8)
$$2C_3S + 6H = ... + ...$$

9)
$$C_4AF + 10H = ... + ... + ...$$

4. Одна из реакций, упоминающихся в школьных учебниках химии, могла бы с помощью этих обозначений быть записана как

10)
$$\mathbf{C}_3 \mathbf{P} + 2\mathbf{H}\mathbf{\bar{S}} + 5\mathbf{H} = \mathbf{CPH}_3 + 2\mathbf{C}\mathbf{\bar{S}}\mathbf{H}_2$$

Запишите это уравнение в привычном нам виде. Какое обиходное название носит её продукт?

5. О какой области химии идет речь? (Достаточно закончить одним словом - химия ...)

Решение задачи 10-2 (автор: Седов И.А.)

1. Рассчитаем отношения масс веществ **C**, **H**, **A**, **F**, **S** и $\overline{\textbf{S}}$. Воспользовавшись тем, что в реакциях **5** и **6** присутствуют вещества $\textbf{C}_6\textbf{A}\overline{\textbf{S}}_3\textbf{H}_{32}$ и $\textbf{C}\overline{\textbf{S}}\textbf{H}_2$, а стехиометрические коэффициенты перед ними одинаковые, массу $\textbf{C}\overline{\textbf{S}}\textbf{H}_2$ в реакции **5** можно рассчитать из пропорции:

$$m(\bar{\text{CSH}}_2) = \frac{4.645}{2.583} 1.063 = 1.912 \text{ r},$$

масса Н, участвующего в реакции 5:

$$m(26H) = 4.645 - 1.000 - 1.912 = 1.733 \text{ r}.$$

Масса Н, участвующего в реакции 6:

$$m(30H) = \frac{30}{26} \frac{2.583}{4.645} 1.733 = 1.112 \,\mathrm{r},$$

масса СН, участвующего в реакции 6:

$$m(CH) = (1 + 1.063 + 1.112) - (2.583 + 0.440) = 0.152 \text{ r.}$$

5.
$$\mathbf{C}_{3}\mathbf{A} + 3\mathbf{C}\overline{\mathbf{S}}\mathbf{H}_{2} + 26\mathbf{H} = \mathbf{C}_{6}\mathbf{A}\overline{\mathbf{S}}_{3}\mathbf{H}_{32}$$

 $1.000 \,\Gamma$ $1.912 \,\Gamma$ $1.733 \,\Gamma$ $4.645 \,\Gamma$

6.
$$\mathbf{C_4AF} + 3\mathbf{C\overline{S}H_2} + 30\mathbf{H} = \mathbf{C_6A\overline{S}_3H_{32}} + \mathbf{CH} + \mathbf{FH_3}$$

 $1.000 \,\Gamma - 1.063 \,\Gamma - 1.112 \,\Gamma - 2.583 \,\Gamma - 0.152 \,\Gamma - 0.440 \,\Gamma$

Используя рассчитанные массы можно найти отношения молярных масс веществ, например:

$$\frac{M(C) + M(H)}{30 \text{ M(H)}} = \frac{m(CH)}{m(30H)} = \frac{0.152}{1.112} = M(C) = 3.10 \text{ M(H)}$$

$$\frac{M(\mathbf{F}) + 3 M(\mathbf{H})}{30 M(\mathbf{H})} = \frac{\mathbf{m}(\mathbf{FH}_3)}{\mathbf{m}(30\mathbf{H})} = \frac{0.440}{1.112} = > M(\mathbf{F}) = 8.87 M(\mathbf{H})$$

$$\frac{3 M(\mathbf{C}) + M(\mathbf{A})}{26 M(\mathbf{H})} = \frac{\mathbf{m}(\mathbf{C}_3 \mathbf{A})}{\mathbf{m}(26\mathbf{H})} = \frac{1.000}{1.733} = > M(\mathbf{A}) = 5.70 M(\mathbf{H})$$

$$\frac{M(\mathbf{C}) + 3 M(\overline{\mathbf{S}}) + 6M(\mathbf{H})}{30 M(\mathbf{H})} = \frac{\mathbf{m}(3\mathbf{C}\overline{\mathbf{S}}\mathbf{H}_2)}{\mathbf{m}(30\mathbf{H})} = \frac{1.063}{1.112} = > M(\overline{\mathbf{S}}) = 4.46 M(\mathbf{H})$$

Аналогично для реакции

4.
$$2 \mathbf{C}_2 \mathbf{S} + 4\mathbf{H} = \mathbf{C}_3 \mathbf{S}_2 \mathbf{H}_3 + \mathbf{CH}$$

 $1.000 \,\Gamma$ $0.215 \,\Gamma$

$$\frac{2(2 \,\mathrm{M}(\mathbf{C}) + \mathrm{M}(\mathbf{S}))}{\mathrm{M}(\mathbf{C}) + \mathrm{M}(\mathbf{H})} = \frac{4 \cdot 3.10 \,\mathrm{M}(\mathbf{H}) + 2 \,\mathrm{M}(\mathbf{S})}{3.10 \,\mathrm{M}(\mathbf{H}) + \mathrm{M}(\mathbf{H})} = \frac{\mathbf{m}(\mathbf{C}_2 \mathbf{S})}{\mathbf{m}(\mathbf{C}\mathbf{H})} = \frac{1.000}{0.215} = >$$

M(S) = 3.335 M(H)

Возможность других веществ соединяться аж с 32 молекулами **H** и низкая молярная масса (остальные вещества в несколько раз превосходят) заставляет в первую очередь проверить гипотезу о том, что **H** – вода, а общий элемент всех веществ – кислород. Тогда молярные массы **C**, **F**, **A**, **S** и $\overline{\textbf{S}}$. с округлением до целых равны 56, 160, 103, 60, 80 $^{\text{г}}/_{\text{моль}}$, соответственно. Вычитая из полученных значений массу 1-го, 2-х и 3-х атомов кислорода на формульную единицу получим:

	М, г/моль	- O	-2O	-3O	Оксид
C	56	40(Ca)	24	8	CaO
F	160	144	128	112 (2 Fe)	Fe ₂ O ₃
A	103	87	71	55 (2AI)	Al_2O_3
S	60	44	28(Si)	12	SiO ₂
S	80	64	48	32(S)	SO_3

Тогда для формулы приведенные в условии можно записать в более привычном виде:

CS	C ₂ S	$C_3S_2H_3$	$\mathbf{C}_{3}\mathbf{A}$	FH ₃	CH
CaO·SiO ₂	2CaO·SiO ₂	3CaO·2SiO ₂ ·3H ₂ O	3CaO·Al ₂ O ₃	$Fe_2O_3\cdot 3H_2O$	CaO·H ₂ O
CaSiO ₃	Ca ₂ SiO ₄	$Ca_3Si_2O_7\cdot 3H_2O$	Ca ₃ Al ₂ O ₆	$Ca_3Al_2O_6$	Ca(OH) ₂

SH	CSH ₂	$C_6A\overline{S}_3H_{32}$	C ₄ AF
SO ₃ ·H ₂ O	CaO·3SO ₃ ·2H ₂ O	6CaO·Al ₂ O ₃ ·3SO ₃ ·32H ₂ O	6CaO·Al ₂ O ₃ ·Fe ₂ O ₃
H ₂ SO ₄	CaSO ₄ ·2H ₂ O	Ca ₆ Al ₂ (OH) ₁₂ (SO ₄) ₃ ·26H ₂ O	Ca ₆ Al ₂ Fe ₂ O ₁₂

2. В привычной записи уравнения реакций 1-3 выглядят следующим образом:

$$1) CaO + SiO_2 = CaSiO_3$$

2)
$$2CaO + SiO_2 = Ca_2SiO_4$$

3)
$$CaO + H_2O = Ca(OH)_2$$

Реакции 4-6, протекающие при затвердевании строительных смесей, в привычной форме записи выглядят очень громоздко, потому специалисты и используют сокращения:

4)
$$2 \text{ Ca}_2 \text{SiO}_4 + 4 \text{H}_2 \text{O} = 3 \text{CaO} \cdot 2 \text{SiO}_2 \cdot 3 \text{H}_2 \text{O} + \text{Ca(OH)}_2$$

5)
$$3CaO \cdot Al_2O_3 + 3 (CaSO_4 \cdot 2H_2O) + 26 H_2O = 3CaO \cdot Al_2O_3 \cdot 3CaSO_4 \cdot 32H_2O$$

6)
$$4\text{CaO} \cdot \text{Al}_2\text{O}_3 \cdot \text{Fe}_2\text{O}_3 + 3 (\text{CaSO}_4 \cdot 2\text{H}_2\text{O}) + 30 \text{ H}_2\text{O} =$$

= $3\text{CaO} \cdot \text{Al}_2\text{O}_3 \cdot 3\text{CaSO}_4 \cdot 32\text{H}_2\text{O} + \text{Ca}(\text{OH})_2 + 2 \text{ Fe}(\text{OH})_3$

3. Очевидно, что C_3AH_6 – это единственный продукт реакции 7:

7)
$$C_3A + 6H = C_3AH_6$$
.

Реакция **8** представляет собой взаимодействие с водой обогащенного кальцием силиката. В условии задачи есть аналогичная реакция:

$$2C_2S + 4H = C_3S_2H_3 + CH,$$

отсюда уравнение:

8)
$$2C_3S + 6H = C_3S_2H_3 + 3CH$$

При взаимодействии с водой смешанного оксида алюминия, кальция и железа образуется смесь гидроксидов, при этом щелочной гидроксид кальция вступит в реакцию с амфотерным гидроксидом алюминия. Продукт этого взаимодействия C_3AH_6 известен нам из первой реакции.

9)
$$C_4AF + 10H = C_3AH_6 + CH + FH_3$$

4. Обратим внимание, что символы представляют собой первую букву элемента, образующего оксид $\mathbf{S} = \mathrm{SiO}_2$, а в случае SO_3 используется символ $\overline{\mathbf{S}}$.

 ${f P}-$ это ангидрид трехосновной кислоты, оксид фосфора, тогда уравнение ${f 10}$ можно записать в следующем виде:

10) $Ca_3(PO_4)_2 + 2 H_2SO_4 + 5 H_2O = Ca(H_2PO_4)_2 \cdot H_2O + 2 CaSO_4 \cdot 2H_2O$

Продукт приведенной реакции — это смесь 2-х веществ гипса и дигидрофосфата кальция, эта смесь используется в качестве удобрения и называется «двойной суперфосфат».

5. Правильный ответ — химия *цемента* (засчитываются также ответы химия бетона, химия стройматериалов, химия вяжущих веществ и др. по смыслу).

Система оценивания:

1.	Подтвержденные расчетами формулы оксидов C , H , A , F , S и $\overline{\textbf{S}}$ по 2 балла	12 баллов
2.		3 балла
3.	Уравнения реакций 7 – 9 по 1 баллу	3 балла
4.	Уравнение реакции 10 – 1 балл Название – 0.5 балла	1.5 балла
5.	Верный ответ	0.5 балла
	итого:	20 баллов