Amendments to the claims

This listing of claims will replace all prior versions, and listings, of claims in the application:

- 1. (Original): A method of treating or preventing IBD in a mammal; comprising, administering a therapeutically effective amount of LXR agonist, or a pharmaceutically acceptable salt, solvate, or physiologically functional derivative thereof.
- 2. (Original): The method of claim 1 in which IBD is selected from the group consisting of Crohn's disease, ulcerative colitis, and inflammatory colitis caused by bacteria, ischemia, radiation, drugs or chemical substances.
- 3. (Currently amended): The method according to claim 1 or 2, wherein the LXR agonist is a compound of formula (II):

$$X$$
 $(CR^1R^2)_p$
 Z
 O
 $(CH_2)_n$
 $(CHR^4)_q$
 A

wherein:

X is OH or NH₂;

p is 0-6;

each R¹ and R² are the same or different and are each independently selected from the group consisting of H, C₁₋₈alkyl, C₁₋₈alkoxy and C₁₋₈thioalkyl;

Z is CH or N;

when Z is CH, k is 0-4;

when Z is N, k is 0-3;

each R³ is the same or different and is independently selected from the group consisting of halo, -OH, C₁₋₈alkyl, C₂₋₈alkenyl, C₁₋₈alkoxy, C₂₋₈alkenyloxy,

 $-S(O)_{a}R^{6}$, $-NR^{7}R^{8}$, $-COR^{6}$, $COOR^{6}$, $R^{10}COOR^{6}$, $OR^{10}COOR^{6}$, $CONR^{7}R^{8}$, $-OC(O)R^{9}$,

-R¹⁰NR⁷R⁸, -OR¹⁰NR⁷R⁸, 5-6 membered heterocycle, nitro, and cyano;

International Application No. PCT/EP2004/008426 International Filing Date: 27 July 2004

a is 0, 1 or 2;

 R^6 is selected from the group consisting of H, C_{1-8} alkyl, C_{1-8} alkoxy and C_{2-8} alkenyl;

each R^7 and R^8 are the same or different and are each independently selected from the group consisting of H, C_{1-8} alkyl, C_{2-8} alkenyl,

C₃₋₈alkynyl;

 R^9 is selected from the group consisting of H, C_{1-8} alkyl and -NR⁷R⁸; R^{10} is C_{1-8} alkyl;

n is 2-8;

q is 0 or 1;

R⁴ is selected from the group consisting of H, C₁₋₈alkyl, C₁₋₈alkenyl, and alkenyloxy;

Ring A is selected from the group consisting of C₃₋₈cycloalkyl, aryl, 4-8 membered heterocycle, and 5-6 membered heteroaryl;

each ring B is the same or different and is independently selected from the group consisting of C₃₋₈cycloalkyl and aryl.

4. (Original): The method according to claim 3, in which the LXR agonist is the compound of formula (IIa)

(IIa)

International Application No. PCT/EP2004/008426 International Filing Date: 27 July 2004

5. (Currently amended): The method according to claim 1 or 2, wherein the LXR agonist is a compound of compounds of formula (I):

$$X^{1} \xrightarrow{X^{2}} X^{3}$$

$$R^{1} \xrightarrow{Ar-Y}$$

$$X^{4} \xrightarrow{X^{5}} X^{6} \qquad R^{2}$$
(I)

wherein:

Ar represents an aryl group; R^1 is -OH, -O-(C_1 - C_7)alkyl, -OC(O)-(C_1 - C_7)alkyl, -O-(C_1 - C_7)heteroalkyl, -OC(O)- (C_1 - C_7)heteroalkyl, -CO₂H, -NH₂, -NH(C_1 - C_7)alkyl, -N((C_1 - C_7)alkyl) or -NH-S(O)₂-(C_1 - C_5)alkyl;

 R^2 is (C_1-C_7) alkyl, (C_1-C_7) heteroalkyl, aryl and aryl (C_1-C_7) alkyl;

- X^1 , X^2 , X^3 , X^4 , X^5 and X^6 are each independently H, (C₁-C₅)alkyl, (C₁-C₅)hetroalkyl, F or Cl, with the proviso that no more than three of X^1 through X^6 are H, (C₁-C₅)alkyl or (C₁-C₅)heteroalkyl; and
- Y is $-N(R^{12})S(O)_{m^-}$, $-N(R^{12})S(O)_{m}N(R^{13})$ -, $-N(R^{12})C(O)$ -, $-N(R^{12})C(O)N(R^{13})$ -, $-N(R^{12})C(S)$ or $-N(R^{12})C(O)O$ -, wherein R12 and R13 are each independently hydrogen, (C_1-C_7) aryl, (C_1-C_7) heteroalkyl, aryl and $aryl(C_1-C_7)$ alkyl, and optionally when Y is $-N(R^{12})S(O)_{m^-}$ or $-N(R^{12})S(O)_{m}N(R^{13})$ -, R^{12} forms a five, six or seven-membered ring fused to Ar or to R^2 through covalent attachment to Ar or R^2 , respectively. In the above Y groups, the subscript m is an integer of from 1 to 2.
- 6. (Original): The method according to claim 5, in which the LXR agonist is the compound of formula Ia

la