CET

Multiple Choice Questions

This topic includes in CET - 2018

IMHT-CET 20221

(online - shift)

(Memory Based Questions)

The general solution of 1.

 $\sin x - 3\sin 2x + \sin 3x = \cos x - 3\cos 2x + \cos 3x$ is

a)
$$n\pi + \frac{\pi}{8}$$

b)
$$\frac{n\pi}{2} + \frac{\pi}{8}$$

c)
$$(-1)^n \frac{n\pi}{2} + \frac{\pi}{8}$$

b)
$$\frac{n\pi}{2} + \frac{\pi}{8}$$
 c) $(-1)^n \frac{n\pi}{2} + \frac{\pi}{8}$ d) $2n\pi + \cos^{-1}\frac{3}{2}$

The value of 2.

cos 12° + cos 84° + cos 156° + cos 132° is

a)
$$\frac{1}{2}$$

b) 1

c)
$$\frac{-1}{2}$$

d) $\frac{1}{8}$

 $\sin (270^{\circ} - \theta) \sin (90^{\circ} - \theta) - \cos (270^{\circ} - \theta) \cos (90^{\circ} + \theta)$ is 3.

b) 1

d) 2

The value of $(\cos \alpha + \cos \beta)^2 + (\sin \alpha + \sin \beta)^2$ is 4.

a)
$$2\cos^2\left(\frac{\alpha-\beta}{2}\right)$$
 b) $4\cos^2\left(\frac{\alpha-\beta}{2}\right)$ c) $4\sin^2\left(\frac{\alpha-\beta}{2}\right)$ d) $2\sin^2\left(\frac{\alpha-\beta}{2}\right)$

b)
$$4\cos^2\left(\frac{\alpha-\beta}{2}\right)$$

c)
$$4 \sin^2\left(\frac{\alpha-\beta}{2}\right)$$

d)
$$2 \sin^2 \left(\frac{\alpha - \beta}{2} \right)$$

Let $(\cos \alpha + \beta) = \frac{4}{5}$ and $\sin (\alpha - \beta) = \frac{5}{13}$, where $0 \le \alpha, \beta \le \frac{\pi}{4}$ then $\tan 2\alpha = \frac{\pi}{4}$ 5.

a)
$$\frac{25}{16}$$

b)
$$\frac{19}{13}$$
 c) $\frac{20}{7}$

c)
$$\frac{20}{7}$$

d)
$$\frac{56}{33}$$

The value of $\cos^2 10^\circ - \cos 10^\circ$. $\cos 50^\circ + \cos^2 50^\circ$ is 6.

a)
$$\frac{3}{2}$$

a)
$$\frac{3}{2}$$
 b) $\frac{3}{4}$ (1 + cos 20°) c) $\frac{3}{4}$

c)
$$\frac{3}{4}$$

d)
$$\frac{3}{2} + \cos 20^{\circ}$$

If $\tan A = \frac{1}{2}$, $\tan B = \frac{1}{3}$ then $\tan (A + 2B)$ has the value 7.

a) 1

c) 3

d) 4

 $\frac{\sin^2(-160^{\circ})}{\sin^2 70^{\circ}} + \frac{\sin(180^{\circ} - \theta)}{\sin \theta} =$ 8.

- a) tan^{2} (20°)
- b) cot² (20°)
- c) $\sec^2 (20^\circ)$
- d) cosec² (20°)

Let AD and BC be two vertical poles at A and B respectively on a horizontal ground. If 9. AD = 8 m, BC = 11 m and AB = 10 m. Then the distance (in meters) of point M on AB from the point A such that MD² + MC² is minimum is

a) 8

b) 7

c) 4

d) 5

10. $\cos^2 48^\circ - \sin^2 12^\circ = \dots$, if $\sin 18^\circ = \frac{\sqrt{5} - 1}{4}$

- a) $\frac{\sqrt{5}}{8} 1$
- b) $\frac{\sqrt{5}-1}{8}$
- c) $\frac{\sqrt{5}}{8} + 1$
- d) $\frac{\sqrt{5}+1}{9}$

Trigonor

18.

MHT-CET 2021] (online - shift) (Memory Based Questions)

- If θ lies in first quadrant and 5 tan $\theta = 4$, then $\frac{5\sin\theta 3\cos\theta}{\sin\theta + 2\cos\theta}$ is equal to
- c) $\frac{1}{14}$
- d) 0

20.

19.

21

- The value of tan 3A tan 2A tan A is
 - a) tan 3A tan 2A tan A
 - c) tan A tan 2A tan 2A tan 3A
- b) tan 3A tan 2A tan A
- d) tan 3A tan A tan 2A tan 3A
- Find the value of $\cos\left(\frac{x}{2}\right)$, if $\tan x = \frac{5}{12}$ and x lies in third quadrant.

 - a) $\frac{5}{\sqrt{13}}$ b) $\frac{5}{\sqrt{26}}$
- c) $\frac{5}{13}$
- d) $\sqrt{\frac{1}{26}}$
- 14. The expression $\left(\frac{\cos A + \cos B}{\sin A \sin B}\right)^n + \left(\frac{\sin A + \sin B}{\cos A \cos B}\right)^n = \frac{1}{2}$
 - a) $2 \cot^n \left(\frac{A-B}{2} \right)$ if 'n' is even
- b) 0 if 'n' is even
- c) $2 \cot^n \left(\frac{A-B}{2}\right)$ if 'n' is odd
- d) 3 if 'n' is odd

- The value of sin 18° is

 - a) $\frac{4}{\sqrt{5}-1}$ b) $\frac{\sqrt{5}-1}{4}$
- c) $\frac{\sqrt{5}+1}{4}$
- d) $\frac{4}{\sqrt{5}+1}$
- 16. If $x \in \left(0, \frac{\pi}{2}\right)$ and x satisfies the equation $\sin x \cos x = \frac{1}{4}$, then the values of x are
 - a) $\frac{\pi}{12}, \frac{5\pi}{12}$
- b) $\frac{\pi}{8}, \frac{3\pi}{8}$
- c) $\frac{\pi}{8}$, $\frac{\pi}{4}$
- d) $\frac{\pi}{6}, \frac{\pi}{12}$

17.	16	$\cos(A+B)$	sin(C+	D)		tan B tan C =		
		cos(A-B)	sin(C-	D)	, then tan A		tan C =	4

- a) 0
- b) tan D
- c) cot D
- d) tan D
- 18. If $3 \sin \theta = 2 \sin 3\theta$ and $0 < \theta < \pi$, then $\sin \theta = \dots$
 - a) $\frac{\sqrt{2}}{\sqrt{5}}$
- b) $\frac{\sqrt{3}}{2\sqrt{2}}$
- c) $\frac{\sqrt{2}}{3}$
- d) $\frac{\sqrt{3}}{\sqrt{5}}$

19. With usual notation in $\triangle ABC$, if $\frac{\sin A}{\sin C} = \frac{\sin(A-B)}{\sin(B-C)}$, then a^2 , b^2 , c^2 are in

- a) Not in AP
- b) HP
- c) AP
- d) GP

20. $\tan A + 2 \tan 2A + 4 \tan 4A + 8 \cot 8A = \dots$

- a) tan 2A
- b) cot A
- c) tan A
- d) cot 2A

[MHT-CET 2020]

(online - shift)

(Memory Based Questions)

21. If $\sin \theta = -\frac{12}{13}$, $\cos \phi = -\frac{4}{5}$, and θ , ϕ lie in the third quadrant, then $\tan (\theta - \phi) = -\frac{12}{13}$

- a) $-\frac{56}{33}$
- b) $\frac{33}{56}$
- c) $-\frac{33}{56}$
- d) $\frac{56}{33}$

22. If $a = \sin 175^{\circ} + \cos 175^{\circ}$, then

- a) a > 0
- b) a < 0
- c) a = 0
- d) a = 1

23. If $\sec x + \tan x = 3$, where $x \in \left(0, \frac{\pi}{2}\right)$, then $\sin x = \dots$

a) $\frac{4}{5}$

- b) $\frac{3}{5}$
- c) 1
- d) $\frac{1}{5}$

24. If A and B are supplementary angles, then $\sin^2 \frac{A}{2} + \sin^2 \frac{B}{2} = \dots$

- a) $\frac{1}{2}$
- b) $\frac{1}{3}$

c) 1

d) 0

25. If $\sin x + \csc x = 3$, then the value of $\sin^4 x + \csc^4 x$ is

a) 49

b) 47

c) 07

d) 74

26. $\frac{\sin A + \sin 7A + \sin 13A}{\cos A + \cos 7A + \cos 13A} = \dots$

- a) cot 6 A
- b) cot 7 A
- c) tan 7 A
- d) tan 6 A

19812" - sin12" , sin147" 19812" - sin12" , cvs.147"

0 0

- d) = 2
- Trigono 36.

37.

38.

39.

40

d) $\frac{\cos \theta}{\sqrt{2}}$

- c) $2\cos\theta$

- 29. If $A * B * C = 180^\circ$, then the value of $\tan \left(\frac{A}{2}\right) \tan \left(\frac{B}{2}\right) + \tan \left(\frac{B}{2}\right) \cdot \tan \left(\frac{C}{2}\right) \cdot \tan \left(\frac{C}{2}\right)$
 - $\tan \left(\frac{A}{2}\right)$ is
 - a) 2

- c) -2
- d) 1
- In a triangle ABC, if $\frac{\sin A \sin C}{\cos C \cos A} = \cot B$, then A, B, C are in
 - a) Harmonic progression

b) G.P.

c) A.G.P.

- d) A.P.
- If A, B, C, D are the angles of a cyclic quadrilateral taken in order, then $\cos A + \cos B + \cos C + \cos D = \dots$
 - a) 1
- b) $\frac{1}{2}$ c) 0

d) 1

[MHT-CET 2023] (Memory Based Questions)

- 32. $\tan\left(\frac{\pi}{8}\right) =$
 - a) $2 + \sqrt{2}$
- b) $2 \sqrt{2}$
- c) $\sqrt{2} + 1$
- d) $\sqrt{2}-1$

33. If $\sin 18^\circ = \frac{\sqrt{5}-1}{4}$, then what is the value of

 $\cos^2 48^\circ - \sin^2 12^\circ$?

- a) $\frac{\sqrt{5}-1}{9}$
- b) $\frac{\sqrt{5}+1}{9}$
- c) $\frac{\sqrt{5-8}}{8}$
- d) $\frac{\sqrt{5} + 8}{6}$

- 34. If $\tan \theta = \frac{\sin x \cos x}{\sin x + \cos x}$, $0 \le x \le \frac{\pi}{2}$, then $\cos 2\theta = \frac{\pi}{2}$
- 35. If $\theta \cos 2\theta + b \sin 2\theta = c \cos \alpha$ and β as its roots, then $\tan \alpha + \tan \beta =$
- d) $\cos 2x$

- b) $\frac{b}{c+a}$
- c) $\frac{2a}{b+c}$
- d) $\frac{2b}{c+a}$

HI.CEI

Trigonometry - II

MHT-CET

- The value of 36 (4 $\cos^2 9^\circ 1$) (4 $\cos^2 27^\circ 1$) (4 $\cos^2 81^\circ 1$) (4 $\cos^2 243^\circ 1$) is
- If $(1+\sqrt{1+x})\tan x = 1+\sqrt{1-x}$, then $\sin 4x =$
- c) x
- d) 4x

- If $\cos x + \cos y \cos (x + y) = \frac{3}{2}$, then
- c) x = 2y
- d) 2x = y

- sin 20° sin 40° sin 60° sin 80° = 39.

- (c) $\frac{3}{8}$
- d) 16

- $\cos x \cos 7x \cos 5x \cos 13x =$ 40.
 - a) $2 \sin 6x \cos 12x$

b) $2 \sin 6x \sin 12x$

c) $2 \sin^2 6x \cos 6x$

- d) $2 \cos^2 6x \cos 12x$
- If $\sin (\theta \alpha)$, $\sin \theta$ and $\sin (\theta + \alpha)$ are in HP, then $\cos 2\theta =$
 - a) $1+4\cos^2\left(\frac{\alpha}{2}\right)$

b) $1-4\cos^2\left(\frac{\alpha}{2}\right)$

- c) $-1+4\cos^2\left(\frac{\alpha}{2}\right)$
- d) $-1-4\cos^2\left(\frac{\alpha}{2}\right)$
- $96\cos\left(\frac{\pi}{33}\right)\cos\left(\frac{2\pi}{33}\right)\cos\left(\frac{4\pi}{33}\right)\cos\left(\frac{8\pi}{33}\right)\cos\left(\frac{16\pi}{33}\right) =$

- c) 2
- d) 1
- If $\cos 2B = \frac{\cos(A+C)}{\cos(A-C)}$, then $\tan A$, $\tan B$, $\tan C$ are in 43.
 - a) AP

- b) GP
- c) HP
- d) AGP
- In triangle ABC, if $\tan A + \tan B + \tan C = 6$ and $\tan A \tan B = 2$, then $\tan C =$ 44.

b) 2

[MHT-CET 2024]

(Memory Based Questions)

- If $2 \sin^2 x + 3 \sin x 2 > 0$ and $x^2 x 2 < 0$, then x lies in the interval 45.
 - a) (-1,2)
- b) $\left(-1, \frac{5\pi}{6}\right)$ c) $\left(\frac{\pi}{6}, 2\right)$ d) $\left(\frac{\pi}{6}, \frac{5\pi}{6}\right)$

- If $\alpha + \beta = \frac{\pi}{2}$ and $\beta + \gamma = \alpha$, then $\tan \alpha =$ 46.
 - a) $\tan \beta + \tan \gamma$
- b) $2 \tan \beta + \tan \gamma$
- c) $\tan \beta + 2 \tan \gamma$
- d) $2 \tan \beta + 2 \tan \gamma$
- If $\tan A \tan B = x$ and $\cot B \cot A = y$, then $\cot (A B) =$ 47.
 - a) $\frac{1}{y} \frac{1}{x}$
- b) $\frac{1}{x} \frac{1}{y}$
- c) $\frac{1}{x} + \frac{1}{y}$
- d) $\frac{xy}{x-y}$