Geometric Modeling for Computer Graphics

Mike Bailey

mjb@cs.oregonstate.edu

Oregon State University

This work is licensed under a <u>Creative</u> <u>Commons Attribution-NonCommercial-</u>
NoDerivatives 4.0 International License

Explicitly Listing Geometry and Topology

Models can consist of thousands of vertices and faces – we need some way to list them efficiently

This is called a Mesh.

Explicitly Listing Geometry and Topology

Cube Example

Oregon State U
Computer Graphics

The Cube Can Also Be Defined with Triangles


```
GLuint TriangleCubeIndices[][3] =
           { 0, 2, 3 },
           { 0, 3, 1 },
           { 4, 5, 7 },
           { 4, 7, 6 },
           { 1, 3, 7 },
           { 1, 7, 5 },
           { 0, 4, 6 },
           \{0, 6, 2\},\
           { 2, 6, 7 },
           { 2, 7, 3 },
           { 0, 1, 5 }
           { 0, 5, 4 }
};
```


3D Printing uses a Triangular Mesh Data Format

mjb – September 2, 2016

3D Printing uses a Triangular Mesh Data Format

Christmas Eve at a Graphics Nerd's House

Another way to Model: Remember Venn Diagrams (2D Boolean Operators) from High School?

Two Overlapping Shapes

Union

Intersection

Difference

Solid Modeling Using 3D Boolean Operators

Two Overlapping Solids

Union

Intersection

Difference

Oregon State University Computer Graphics

This is often called Constructive Solid Geometry (CSG)

Another way to Model: Curve Sculpting – Bezier Curve Sculpting

$$P(t) = (1-t)^{3} P_{0} + 3t(1-t)^{2} P_{1} + 3t^{2} (1-t) P_{2} + t^{3} P_{3}$$
$$0. \le t \le 1.$$

Another way to Model: Surface Sculpting

Wireframe

Surface

With Contour Lines

Showing Curvature

Another way to Model: Volume Sculpting

This is often called a "Lattice".

Object Modeling Rules for 3D Printing

The object must be a legal solid. It must have a definite inside and a definite outside. It can't have any missing face pieces.

Object Modeling Rules for 3D Printing

Objects cannot pass through other objects. If you want two shapes together, do a Boolean union on them so that they become one complete object.

Overlapped in 3D -- bad

Boolean union -- good

