The PIPPIN User's Guide

from MHuffman notes

PIPPIN Instruction Set

<u>Program 1:</u> Add 2 numbers<u>Program 2:</u> Count down loop

PIPPIN Instruction Set

Ref: The Analytical Engine p. 211

Note:

The purpose and intent of the **AND** instruction is not clear and is not included in the following table. The **PIPPIN** simulator included on the CD and at the authors' Web site places 0 in the accumulator regardless of the input to **AND**.

Opcode Operand Binary Hex		Assembly	Description			
		ex	Instruction	Description		
					Add contents of referenced memory address to contents of accumulator. Address Mode = Direct	
00000000	bbbbbbbb	00	XX	ADD X	Example: Add value stored at memory address 128 (10000000 binary, 80 hex, variable W) to contents of accumulator.	
					00000000 10000000 00 10 ADD W	
					Add immediate value to contents of accumulator. Address Mode = Immediate	
00010000	bbbbbbbb	10 XX	XX	ADD #n	Example: Add the number 45 (00101101 binary, 2D hex) to accumulator:	
					00010000 00101101 10 2D ADD #45	
00000001		0.1	V/V/	GUD. V	Subtract contents of referenced memory address from contents of accumulator. Address Mode = Direct	
00000001	bbbbbbbb	01	XX	SUB X	Example: Subtract value stored at memor address 129 (10000001 binary, 81 hex, variable X) from accumulator.	

					00000001 10000001 01 11 SUB X				
					Subtract immediate value from contents of accumulator. Address Mode = Immediate				
00010001	bbbbbbbb	11	XX	SUB #n	Example: Subtract the number 27 (00011011 binary, 1B hex) from accumulator:				
					00010001 00011011 11 1B SUB #27				
					Multiply contents of accumulator by 8-bit value stored at referenced memory address. Address Mode = Direct				
00000010	bbbbbbbb	02	XX	MUL X	Example: Multiply accumulator by value stored at memory address 130 (10000010 binary, 82 hex, variable Y).				
					00000010 10000010 02 12 MULY				
					Multiply contnets of accumulator by immediate value. Address Mode = Immediate				
00010010	bbbbbbbb	12	XX	MUL #n	Example: Multiply accumulator by the number 5 (00000101 binary, 05 hex):				
					00010010 00000101 12 05 MUL #5				
					Divide contents of accumulator by 8-bit value stored at referenced memory address. Address Mode = Direct				
00000011	bbbbbbbb	03	XX	DIV X	Example: Divide accumulator by value stored at memory address 131 (10000011 binary, 83 Hex, variable Z).				
					00000011 10000011 03 13 DIV Z				
					Divide contnets of accumulator by immediate value. Address Mode = Immediate				
00010011	bbbbbbbb	13	XX	DIV #n	Example: Divide accumulator by the number 10 (00001010 binary, 0A hex):				
					00010011 00001010 13 0A DIV #10				

						Load the accumulator with the 8-bit value stored at referenced memory address. Address Mode = Direct		
00000100	bbbbbbbb	04	XX	LOD	X	Example: Place value stored at memory address 132 (10000100, 84 Hex, variable T1) into accumulator.		
						00000011 10000011 03 13 DIV Z		
						Load the accumulator with an immediated value. Address Mode = Immediate		
00010100	bbbbbbbb	13	XX	LOD	# <i>n</i>	Example: Place the number 100 (01100100 binary, 64 hex) into accumulator.		
						00010100 01100100 14 64 LOD #100		
						Store the contents of the accumulator into the referenced memory address. Address Mode = Direct		
00000101	00000101 bbbbbbbbb 05 XX STO X		X	Example: Save value of accumulator in memory address 133 (10000101 binary, 85 hex, variable T2).				
						00000101 10000101 05 15 STO T2		
00001001	00000000	09	00	NOT		If the accumulator contains 0 then set the accumulator to 1; otherwise set the accumulator to 1. Assume any non-zero value = TRUE and 0 = FALSE; NOT inverts the "truth" of the accumulator.		
00001010	bbbbbbbb	OA	XX	CPZ	X	Compare X with Zero; if the contents of the referenced memory address = 0, set the accumulator to 1 (TRUE), otherwise set accumulator to 0 (FALSE). e.g. TRUE or FALSE: "Does X = 0? Address Mode = Direct		
	22355555		217		44	Example: Set the accumulator to 1 (TRUE) or 0 (FALSE) depending on whether the value in memory address 129 (10000001 binary, 81 Hex, variable X) = 0.		
						00001010 10000001 0A 11 CPZ X		

00001011	bbbbbbbb	OB	XX	CPL	X	Compare X with Zero; if the contents of the referenced memory address is LESS than 0, set the accumulator to 1 (TRUE), otherwise set accumulator to 0 (FALSE). e.g. TRUE or FALSE: "Is X < 0? Address Mode = Direct			
						Example: Set the accumulator to 1 (TRUE) 0 (FALSE) depending on whether the value is memory address 130 (10000010 binary, 82 Hex, variable Y) < 0.			
						00001011 10000010 OB 10 CPL Y			
						Unconditional Jump: Set PC to <i>n</i> and execute instruction at that address.			
00001100	bbbbbbbb	OC	XX	ЈМР	n	Example: Execute instruction at memory address 14 (00001110 binary, 0E hex).			
						00001110 00001110 OC 0E JMP 14			
						Conditional Jump: Set PC to <i>n</i> and execute instruction at that address IF the accumulator = 0; otherwise go to next instruction.			
00001101	bbbbbbbb	OD	XX	JMZ	n	Example: Execute instruction at memory address 4 (00000100 binary, 04 hex) IF the accumulator is 0.			
						00001101 00000100 0D 04 JMZ 4			
00001110	00000000	ОЕ	00	NOP		No operation; do nothing and go to next instruction.			
00001111	00000000	0F	00	HLT		Halt execution; Control Unit does not fetch any more instructions.			

[<u>TOP</u>]

PROGRAM 1:

Load 2 numbers and add them

Address	Instruction	Accum	W	X	Y
00	LOD #3	3	0	0	0
02	STO W	3	3	0	0

04	LOD #7	7	3	0	0
06	STO X	7	3	7	0
08	ADD W	10	3	7	0
10	STO Y	10	3	7	10
12	HLT	10	3	7	10
•••	• • •				
128	W				
129	X				
130	Y				

PIPPIN memory after program execution:

	00	01	02	03	04	05	06	07	80	09	0A	0B	0C	0D	0E	0F
00 01	14 00	03 00	05 00	80 00	14 00		05 00			80 00			0F 00	00	00 00	00
07	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
08 09	03 00	07 00	0A 00	00 00	00		00			00 00	00 00	00 00	00	00	00 00	00
 0F	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00

Note: 2-byte instructions (opcode + operand) mapped at bottom of memory starting at address 00.

Note: Memory addresses 80 hex through 82 hex (128 - 130 decimal) represented by \mathbf{W} , \mathbf{X} , and \mathbf{Y}

[<u>TOP</u>]

PIPPIN Simulator

PROGRAM 2:

Count down loop

Address	Instruction	Accum Pass 1	Accum Pass 2	Accum Pass 3
00	LOD X	3	2	1
02	SUB #1	2	1	0

04	JMZ 10	2	1	0
06	STO X	2	1	***
08	ЈМР О	2	1	***
10	HLT	***	***	0
Initia	al Memory Values	Memory Pass 1	Memory Pass 2	Memory Pass 3
Initia W (128)	al Memory Values ???		_	
	-	Pass 1	Pass 2	Pass 3

[<u>TOP</u>]

PIPPIN Simulator

Revised: 23 JUN 2004 11:09