16. Биномиальный закон распределения

16.1. Производящие функции

Пусть имеется случайная величина ξ , принимающая неотрицательные целочисленные значения $0,1,2,\ldots k,\ldots$ с вероятностями $p_1,p_2,\ldots,p_k,\ldots$, где $p_k=P(\xi=k)$.

Производящей функцией для дискретной случайной величины ξ называется функция вида

$$\varphi(z) = \sum_{k=0}^{\infty} p_k z^k, \tag{16.1}$$

где z – аргумент функции (0 < z < 1).

Коэффициенты при z^k равны вероятностям того, что случайная величина ξ примет значение k.

Вычислим первую производную по z от производящей функции

$$\varphi'(z) = \sum_{k=0}^{\infty} k p_k z^{k-1}.$$
 (16.2)

Вычислим производную второго порядка по z от производящей функции

$$\varphi''(z) = \sum_{k=0}^{\infty} k(k-1)p_k z^{k-2}.$$
 (16.3)

При z=0, получаем

$$\varphi(0) = p_0 \geqslant 0, \qquad \varphi'(0) = p_1 \geqslant 0, \qquad \varphi''(0) = 2p_2 \geqslant 0.$$
 (16.4)

При z=1, получаем

$$\varphi(1) = \sum_{k=0}^{\infty} p_k = 1. \tag{16.5}$$

$$\varphi'(1) = \sum_{k=0}^{\infty} k p_k = M(\xi).$$
 (16.6)

$$\varphi''(1) = \sum_{k=0}^{\infty} k(k-1)p_k = \sum_{k=0}^{\infty} k^2 p_k - \sum_{k=0}^{\infty} k p_k = M(\xi^2) - M(\xi).$$
 (16.7)

Найдём значение для дисперсии дискретной случайной величины ξ принимающие неотрицательные целые значения 0, 1, 2, ..., k, ..., через производящую функцию. Для этого используем формулы (16.6), (16.7) для значений производных $\varphi'(1)$, $\varphi'(1)$ и формулу для дисперсии $D(\xi) = M(\xi^2) - M^2(\xi)$.

$$D(\xi) = M(\xi^2) - M^2(\xi) = (M(\xi^2) - M(\xi)) + M(\xi) - M^2(\xi) =$$

= $\varphi''(1) + \varphi'(1) - (\varphi'(1))^2$.

$$D(\xi) = \varphi''(1) + \varphi'(1) - (\varphi'(1))^{2}. \tag{16.8}$$

Эти формулы пригодятся при вычислении математическое ожидание и дисперсии случайной величины ξ .

16.2. Биномиальный закон распределения

Пусть проведено n независимых испытаний с вероятностью p появления события A в каждом испытании (испытания Бернулли). Обозначим ξ — случайную величину, равную числу появлений события A в n испытаниях. По формуле Бернулли

$$P(\xi=m)=P_n(m)=C_n^mp^mq^{n-m}$$
, где $q=1-p,\ m=0,1,\ \dots,n.$ (16.9)

Определение 16.1. Распределение дискретной случайной величины, задаваемое нижеприведенной таблицей, называется **биномиальным**.

ξ	0	1	2	 k	 n-1	n
p	q^n	npq^{n-1}	$C_n^2 p^2 q^{n-2}$	 $C_n^k p^k q^{n-k}$	 $np^{n-1}q$	p^n

Биномиальное распределение определяется двумя параметрами n и p.

Выведем формулу для производящей функции биномиального распределения, подставив в (16.1) вместо p_k формулу Бернулли и используя вормулу бином Ньютона $(a+b)^n = \sum_{k=0}^n C_n^k a^k b^{n-k}$.

$$\varphi(z) = \sum_{k=0}^{n} p_k z^k = \sum_{k=0}^{n} C_n^k p^k q^{n-k} z^k = \sum_{k=0}^{n} C_n^k q^{n-k} (pz)^k = (q+pz)^k.$$

Получили формулу для производящей функцией биномиального распределения

$$\varphi(z) = (q + pz)^n, \tag{16.10}$$

где z – аргумент функции (0 < z < 1).

Если в каждом из независимых испытаниях вероятности наступления событий разные, то производящая функция примет вид

$$\varphi_n(z) = (q_1 + p_1 z)(q_2 + p_2 z) \cdots (q_n + p_n z). \tag{16.11}$$

При этом вероятности того, что в n опытах событие A наступит m раз, равна коэффициенту при m-й степени многочлена.

Пример 16.1. Автомобилист движется по улице на которой расположены 4 светофора. Вероятность проехать светофор без остановки для каждого светофора различна и равна: $p_1 = 0.3$, $p_2 = 0.8$, $p_3 = 0.5$ и $p_4 = 0.7$. Какова вероятность, что автомобилист остановиться ровно на двух светофорах.

Применяем формулу (16.11) для n=4 и $p_1=0,3, p_2=0,8, p_3=0,5,$ $p_4=0,7, q_1=0,7, q_2=0,2, q_3=0,5, q_4=0,3.$ $\varphi_4(z)=(0,7+0,3z)(0,2+0,8z)(0,5+0,5z)(0,3+0,7z).$

Раскрываем скобки

$$\varphi_4(z) = 0.084z^4 + 0.337z^3 + 0.395z^2 + 0.163z + 0.021.$$

Искомыми вероятностями будут коэффициенты при соответствующих степенях данного многочлена.

$$P_4(0) = 0.021; \ P_4(1) = 0.163; \ P_4(2) = \textbf{0,395}; \ P_4(3) = 0.337; \ P_4(4) = 0.084.$$

Otbet: $P_3(2) = 0.395.$

Эту задачу можно решить без использования производящей функции.

$$P_3(0) = q_1 q_2 p_3 p_4 = 0.021.$$

$$P_4(1) = p_1 q_2 q_3 q_4 + q_1 p_2 q_3 q_4 + q_1 q_2 p_3 q_4 + q_1 q_2 q_3 p_4 = 0.163.$$

$$P_4(2) = q_1q_2p_3p_4 + q_1p_2q_3p_4 + q_1p_2p_3q_4 + p_1q_2q_3p_4 + p_1q_2p_3q_4 + p_1p_2p_3q_4 + p_1p_2q_3q_4 + p_1q_2q_3q_4 + p_1q_2q_3q$$

$$P_4(3) = p_1 p_2 p_3 q_4 + p_1 p_2 q_3 p_4 + p_1 q_2 p_3 p_4 + q_1 p_4 + 2p_3 p_4 = 0.337.$$

$$P_4(4) = p_1 p_2 p_3 p_4 = 0.084.$$

Пример 16.2. Используя производящую функцию, вывести формулы для математического ожидания и дисперсии биномиального распределения.

◀ Найдем производные первого и второго порядка производящей функции (16.10).

$$\varphi'(z) = ((q+pz)^n)' = np(q+pz)^{n-1}, \qquad \varphi''(z) = n(n-1)p^2(q+pz)^{n-2}.$$

$$\varphi'(1) = np(p+q) = np.$$

$$\varphi''(1) = n(n-1)p^2(q+p)^{n-2} = n(n-1)p^2.$$

$$M(\xi) = np.$$

$$D(\xi) = \varphi''(1) + \varphi'(1) - (\varphi'(1))^2 =$$

$$= n(n-1)p^2 + np - n^2p^2 = n^2p^2 - np^2 + np - n^2p^2 = np(1-p) = npq.$$

Математическое ожидание и дисперсия для биномиального распределённой случайной величины ξ вычисляется по формулам:

$$M(\xi) = np; \quad D(\xi) = npq. \tag{16.12}$$

Пример 16.3. Найдите значение производящей функции биномиального распределения с параметром p = 0, 8 и n = 4 точке в точке 0, 5.

$$\varphi(z) = (0.2 + 0.8 \cdot 0.5)^4 = 0[, 6^4 = 0.1296.$$

Ответ: 0,1296.

Пример 16.4. Вероятность попадания стрелком в мишень равна 0,8. Написать биномиальный закон распределения дискретной случайной величины ξ — числа попаданий в мишень при трёх выстрелах. Найти $M(\xi)$ и $D(\xi)$.

 \blacktriangleleft Данная случайная величина имеет следующие возможные значения: 0 (стрелок не попал в мишень ни разу), 1 (попал один раз), 2 (попал два раза), 3 (ни разу не промахнулся). Здесь p=0.8, q=1-p=0.2, n=3.

По формуле Бернулли (16.9) найдем:

$$P(0) = C_3^0 \cdot (0.8)^0 \cdot (0.2)^3 = \frac{1}{125}, \quad P(1) = C_3^1 \cdot (0.8)^1 \cdot (0.2)^2 = \frac{12}{125},$$

$$P(2) = C_3^2 \cdot (0.8)^2 \cdot (0.2)^1 = \frac{48}{125}, \quad P(3) = C_3^3 \cdot (0.8)^3 \cdot (0.2)^0 = \frac{64}{125}.$$

Отметим, что P(0) + P(1) + P(2) + P(3) = 1.

Ряд распределения примет вид:

ξ	0	1	2	3
P	0,008	0,096	0,384	0,512

Ряд распределения можно получить используя производящую функцию: $\varphi(z)=(0,2+0,8z)^3=0,008+0,096z+0,384z^2+0,512z^3.$

Получили тот же результат.

Найдём $M(\xi)$ и $D(\xi)$ двумя способами.

1 способ. По общим формулам для дискретной случайной величины.

$$M(\xi) = \sum_{k=0}^{3} x_k p_k = 0 \cdot 0,008 + 1 \cdot 0,096 + 2 \cdot 0,384 + 3 \cdot 0,512 = \mathbf{2,4}.$$
 $D(\xi) = M(\xi^2) - M^2(\xi) = 0^2 \cdot 0,008 + 1^2 \cdot 0,096 + 2^2 \cdot 0,384 + 3^2 \cdot 0,512 - 2,4^2 = \mathbf{0,48}.$ 2 способ. По формулам (16.12) для биномиального распределения. $M(\xi) = np = 3 \cdot 0,8 = \mathbf{2,4}$ $D(\xi) = npq = 2,4 \cdot 0,2 = \mathbf{0,48}.$ \blacktriangleright

Ответ: $M(\xi) = 2.4, \ D(\xi) = 0.48.$

Пример 16.5. На складе 20% приборов являются неточными. Взяты 5 приборов для проверки. Составить таблицу распределения случайной величины ξ — число точных приборов среди проверенных. Определить математическое ожидание $M(\xi)$ и $D(\xi)$.

Вероятность отбора неточного прибора q=0,2, а точного прибора p=1-q=0,8. В данной задаче имеем биномиальное распределение. Запишем ряд распределения:

ξ	0	1	2	3	4	5
P	$0,2^{5}$	$C_5^1 \cdot 0.8 \cdot 0.2^4$	$C_5^2 \cdot 0.8^2 \cdot 0.2^3$	$C_5^3 \cdot 0.8^3 \cdot 0.2^2$	$C_5^4 \cdot 0.8^4 \cdot 0.2$	0.8^{5}

Для получения числовых значений используем Maxima-программу:

load(distrib)\$ fpprintprec:4\$

 $P:makelist(pdf_binomial(k, 5, 0.8), k, 0, 5);$

$$(\%04) [3.2 * 10^{-4}, 0.0064, 0.0512, 0.205, 0.41, 0.328]$$

Или другой вариант программы с использованием производящей функции $\operatorname{expand}((0.2+0.8*z)^5);$

 $(\%04)\ 0.32768*z^5+0.4096*z^4+0.2048*z^3+0.0512*z^2+0.0064*z+3.2*10^-4$ Согласно формулам (16.12), математическое ожидание

$$M(\xi) = np = 5 \cdot 0.8 = 4$$
, а дисперсия $D(\xi) = npq = 5 \cdot 0.8 \cdot 0.2 = 0.8$.
Ответ: $M(\xi) = 4$, $D(\xi) = 0.8$.

Пример 16.6. В партии поступивших на склад деталей 10% бракованные. Случайным образом выбрали n=15 деталей. Случайная величина ξ — число бракованных деталей среди выбранных. Составить ряд распределения случайной величины ξ . Найти математическое ожидание и дисперсию случайной величины ξ . Какова вероятность, что будет выбрано более трёх бракованных деталей. Построить график ряда распределения случайной величины ξ .

◀ По формуле Бернулли (16.9) найдем:

$$P(\xi = k) = C_n^k \cdot (0,1)^k \cdot (0,9)^{n-k}, \quad k = 0, 1, \dots, 15.$$

Для вычисления математического ожидания применяем формулу

$$M(\xi) = \sum_{k=0}^{15} k \cdot P(\xi = k).$$

Для вычисления дисперсии применяем формулу

$$D(\xi) = M(\xi^2) - M^2(\xi)$$
, где $M(\xi^2) = \sum_{k=0}^{15} k^2 \cdot P(\xi = k)$.

Для вычисления вероятности, что будет выбрано более трёх бракованных деталей находим

$$P_3_15 = \sum_{k=4}^{15} P(\xi = k)$$
 или $P_3_15 = 1 - \sum_{k=0}^{3} P(\xi = k)$.

Выполнять такой огромный объём работы долго и неинтересно, поэтому пишем Махіта-программу, которая по приведённым формулам получит и выведет все требуемые результаты. Программа очень простая и понятная. При помощи встроенной функцией $pdf_binomial(k, n, p)$ которая вычисляет по формулам (16.9) значения полученного ряда распределения. Создаём массив P, в который записываем полученные значения. В список G записываем значения координат точек для построения графика. Функция plot2d, по координатам списка G строит график, рис. 16. Используя функцию sum, находим математическое ожидание M, дисперсию D случайной величины ξ и искомую вероятность P 3 15.

Рисунок 16. Биномиальное распределения для примера 16.6

- (M) 1.5
- (D) 1.35
- (P_3_15) 0.0556

Пример 16.7. Случайная величина ξ имеет биномиальное распределение с параметрами n=5 и $p=\frac{1}{2}$. Получить ряд распределения случайной величины $\eta=\xi^4$ и найти $M(\eta)$.

Применяя формулу Бернулли $P_n(m) = C_n^m p^m (1-p)^{n-m}$, получаем ряд распределения случайной величины ξ :

ξ	0	1	2	3	4	5
P	$rac{1}{2^5}$	$C_5^1 \cdot \frac{1}{2^5}$	$C_5^2 \cdot \frac{1}{2^5}$	$C_5^3 \cdot \frac{1}{2^5}$	$C_5^4 \cdot \frac{1}{2^5}$	$\frac{1}{2^5}$

Или

ξ	0	1	2	3	4	5
D	1	5	10	10	5	1
P	$\overline{32}$	$\overline{32}$	$\overline{32}$	$\overline{32}$	$\overline{32}$	$\overline{32}$

Возводя в четвёртую степень значения в первой строке, получаем ряд распределения искомой случайной величины η :

η	0	1	16	81	256	625
	1	5	10	10	5	1
P	${32}$	${32}$	${32}$	${32}$	${32}$	${32}$

Находим её математическое ожидание:

$$M(\eta) = \frac{1}{32} \cdot 0 + \frac{5}{32} (1 + 16 + 81 + 256 + 256) + \frac{625}{32} = 90.$$

Ответ: 90.

Пример 16.8. Случайная величина ξ имеет биномиальное распределение с параметрами n=16 и p=0.25. Найти математическое ожидание случайной величины $\eta=\xi^2-4\xi+2$.

 \blacksquare 1 способ. Получаем 16 значений вероятностей $P_k = C_n^k p^k (1-p)^{16-k},$ $k=1,2,\ldots,16,$ и находим $M(\xi)=\sum\limits_{k=1}^{16}P_k.$ Без использования математического пакета трудно обойтись. Пишем простую и понятную Махіта-программу.

2 способ без использования компьютерной техники. Используя формулы для математического ожидания и дисперсии биномиального распределения, получаем:

$$M(\xi) = np = 16 \cdot \frac{1}{4} = 4.$$

$$D(\xi) = npq = 16 \cdot \frac{1}{4} \cdot \frac{3}{4} = 3.$$
Находим $M(\xi^2)$

$$D(\xi) = M\xi^2 - M^2(\xi) \implies M\xi^2 = D(\xi) + M^2(\xi) = 3 + 16 = 19.$$

$$M(\eta) = M(\xi^2 - 4\xi + 2) = M(\xi^2) - 4M(\xi) + M(2) = 19 - 16 + 2 = 5.$$
Ответ: 5.

Пример 16.9. Случайная величина ξ распределена по биномиальному закону с параметрами $n=4,\ p=\frac{1}{3}.$ Найти ряд распределения случайной величины $\eta=\sin^2\!\frac{\pi x}{2}.$

Применяя формулу Бернулли $P_n(m) = C_n^m p^m (1-p)^{n-m}$ получаем ряд распределения случайной величины ξ :

,	0		2	3	4
P	$(2/3)^4$	$4 \cdot (2/3)^3 \cdot (1/3)$	$C_4^2 \cdot (2/3)^2 \cdot (1/3)^2$	$4 \cdot (2/3) \cdot (1/3)^3$	$(1/3)^4$

После вычислений, получаем такую ряд распределения заданной случайной величины ξ :

ξ	0	1	2	3	4
P	16/81	32/81	24/81	8/81	1/81

К первой строке полученной таблицы применяем функцию $sin^2\frac{\pi x}{2}$. Получаем таблицу

ξ	0	1	0	1	0
P	16/81	32/81	24/81	8/81	1/81

Путем объединения столбцов с одинаковыми значениями, получаем ряд распределения искомой случайной величины η :

η	0	1	
P	41/81	40/81	

Задания для самостоятельной работы

- 16.1.
- 16.2.
- 16.3.
- 16.4.
- 16.5.
- 16.6.
- 16.7.
- 16.8.
- 16.9.
- 16.10.