DATENBANK-ARCHITEKTUR FÜR FORTGESCHRITTENE

Architektur von Datenbanksystemen

Dani Schnider

FS23

Oracle-Architektur

Memory-Architektur

Prozess-Architektur File-Architektur

MEMORY-ARCHITEKTUR

Architektur von Datenbanksystemen

Memory-Architektur

System Global Area (SGA)

- Gemeinsam genutzte Speicherbereiche für eine Oracle-Datenbankinstanz
- SGA wird von allen Server- und Hintergrundprozessen "geteilt"

Program Global Area (PGA)

- Speicherbereich für Daten und Kontrollinformationen eines Server- oder Hintergrundprozesses
- Zugriff auf PGA ist exklusiv, d.h. jeder Prozess hat seine eigene PGA

System Global Area (SGA)

System Global Area (SGA)

System Global Area (SGA)

SQL> SELECT * FROM v\$sgainfo;		
NAME	BYTES	RESIZEABLE
Fixed SGA Size	778240	No
Redo Buffers	262144	No
Buffer-Cache Size	109051904	Yes
Shared Pool Size	50331648	Yes
Large Pool Size	4194304	Yes
Java Pool Size	4194304	Yes
Streams Pool Size	0	Yes
Granule Size	4194304	No
Maximum SGA Size	268435456	No
Startup overhead in Shared Pool	25165824	No
Free SGA Memory Available	964689920	

Database Buffer Cache

- Enthält Datenblöcke, die aus der Datenbank in die SGA geladen wurden
- Daten-, Index- und Undo-Blöcke werden mit einem LRU-Algorithmus (least recently used) im Buffer-Cache verwaltet

Shared Pool

- Library Cache: SQL und PL/SQL code, der vom Parser überprüft wurde
- Data Dictionary Cache: Informationen aus dem Data Dictionary
- Server Result Cache: Resultate von SQL-Abfragen (falls Result Cache aktiviert ist)
- Reserved Pool: Reservierter Bereich für grosse zusammenhängende Speicherblöcke

Redo Log Buffer

- Log-Protokoll aller Datenänderungen in Datenbankblöcken
- Enthält Redo-, Commit- und Checkpoint-Einträge
- Redo Log Buffer wird vom Log Writer (LGWR) in die Redo Log Files geschrieben
 - wenn 1/3 des Buffers oder 1MB gefüllt ist
 - Nach 3 Sekunden
 - nach einem COMMIT
 - wenn ein "Log Switch" erfolgt
 - bevor der Database WriterDaten schreibt

Program Global Area (PGA)

SQL Work Areas:

- Speicherbereich für Sort-Operationen (z.B. ORDER BY, GROUP BY)
- Hash join
- Bitmap create / merge
- **...**

■ Session Memory:

- Session-Variablen
- Logon-Informationen

■ Private SQL Area:

■ Bind-Variablen pro Session/User

PROZESS-ARCHITEKTUR

Architektur von Datenbanksystemen

Prozess-Architektur

- Ausführung der Applikation
- Kommunikation mit Datenbank-Instanz

Server Processes

- Ausführung von SQL-Befehlen
- Lesen von Datenblöcken aus Database Files
- Kommunikation mit Applikaiton

Background Processes

- SMON System Monitor
- PMON Process Monitor
- PMAN Process Manager
- LGWR Log Writer Process
- DBW0 Database Writer
- CKPT Checkpoint Process
- LREG Listener Registration Process
- MMON and MMML Manageability Monitor Process
- RECO Recoverer Process

FS23

Background-Prozesse

Quelle: https://docs.oracle.com/en/database/oracle/oracle-database/21/dbiad/

FILE-ARCHITEKTUR

Architektur von Datenbanksystemen

Loa &

Log & Trace

Files

File-Architektur

- Database Files
- Control Files
- Redo Log Files
- Archive Redo Log Files
- Flashback Logs
- Weitere Files
 - Parameter Files
 - Password File
 - Log und Trace Files

Parameter

File

Password

File

Control Files

- Control File enthält
 - Datenbankname
 - Pfad und Filenamen von Database Files und Redo Log Files
 - Aktuelle "Log sequence number"
 - Checkpoint Informationen
 - etc.
- Ohne Control Files kann die Datenbank-Instanz nicht gestartet werden
- Deshalb sollten Control Files gespiegelt werden

Redo Log Files

- Transaktionsverlauf aller Datenbankänderungen
 - SQL Statements
 - Commits
 - Checkpoints
- Für jede Gruppe sollten zwei Files definiert werden
- Spiegelung über verschiedene Dateisysteme

Parameter Files

Konfigurationsparameter für Datenbank / Datenbank-Instanz

- Aktuell > 400 Parameter
- Zusätzlich > 5000 "undokumentierte Parameter"

PFILE (Parameter File)

- Textfile
- Defaultname: init\$ORACLE_SID.ora
- Parameteränderungen in Texteditor
- Dynamische Änderungen nicht möglich
- Kein Syntax-Check bis zum nächsten Restart
- Wird nur noch als "Backup" verwendet

SPFILE (Server Parameter File)

- Binärfile
- Defaultname: spfile\$ORACLE_SID.ora
- Parameteränderungen via SQL:

```
SQL> ALTER SYSTEM ....;
```

- Impliziter Syntax-Check
- Empfohlene Methode

Konfigurationsänderungen

Parameter können auf unterschiedlichen Ebenen geändert werden

Session level:

```
ALTER SESSION SET nls_language = 'GERMAN';
```

■ System level (immediate, until database is restarted):

```
ALTER SYSTEM SET pga_aggregate_target = 2G SCOPE=MEMORY;
```

System level (after next startup):

```
ALTER SYSTEM SET pga_aggregate_target = 3G SCOPE=SPFILE;
```

System level (immediate and in parameter file):

```
ALTER SYSTEM SET pga_aggregate_target = 3G SCOPE=BOTH;
```

Note: not all parameter can be changed on all levels (see Oracle Reference, chapter 2 and v\$parameter)

Database Files

Database Files

Tablespace Layout (Beispiel)

MULTITENANT ARCHITEKTUR

Architektur von Datenbanksystemen

Multitenant Database Architecture

- Eine Container Database (CDB)
- Mehrere Pluggable Databases (PDB)
- Jede PDB ist ein "Mandant" (= tenant) ("Mandantenfähiges System")

Multitenant Database Architecture

October 29, 2019

Oracle Database 19c | Up to 3 PDBs per CDB Without Licensing Multitenant

Released earlier this year, Oracle Database 19c is the long-term support release for the 12c, 18c and 19c family of databases. This means that Oracle Database 19c has all the innovations in 12c, 18c and 19c, with premier support through to March 2023 and extended support through to 2026. In addition, Oracle Database 19c now supports up to 3 pluggable databases (PDBs) per container database (CDB) without requiring additional multitenant license. See page 11 of Oracle Database Licensing Information User Manual for more details.

Table 1-2 Consolidation

Source: https://blogs.oracle.com/database/oracle-database-19c-up-to-3-pdbs-per-cdb-without-licensing-multitenant-v2