

ARM® TODAY

Masouros Dimosthenis Manolis Katsaragakis Ioannis Oroutzoglou Aggelos Ferikoglou

Before we start

- helios -> Έγγραφα -> Lab_Material -> ARM material
- Install and open QEMU
- Replace /etc/apt/sources.list file inside qemu vm!!!!!
- Then apt-get update
- Install gcc, vim, build-essential...
- Ready to code!

ARM ltd

- Founded in November 1990
- Designs the ARM range of RISC processor cores
- Licenses ARM core designs to semiconductor partners who fabricate and sell to their customers
 - ARM does not fabricate silicon itself!
- Also develop technologies to assist with the design of the ARM architecture
 - Software tools
 - Boards
 - Debug hardware
 - Application software
 - Graphics
 - Bus architectures
 - Peripherals
 - Cell libraries
- Bought by Softbank in 2016 for \$31.4 billion!

ARM Business Today

- More than 40 million ARM-based chips shipped every day
- Nearly 15 billion ARM-based chips shipped last year alone
- More than 86 billion ARM-based chips shipped in total
- Processor Licenses: 1379
- Semiconductor Partners: more than 450
- more than 4500 patents in total
- ARM technologies reach 80% of the global population!

ARM Markets

ARM Markets

Solutions >

Technologies

arm

Support & Training

Resources

Company

Artificial Intelligence

Compute power built into everyday objects and physical systems.

Transform lives through machine learning solutions.

Security

Security for billions of devices through Arm technologies.

56

Connect anything anywhere with faster, low-latency 5G networks.

Industries

Automotive

Autonomous driving is the next frontier for car manufacturers.

Retail

Leverages IoT for insights into shopper engagements to improve customer experience.

Logistics

Technology that brings end-to-end visibility for transport goods.

Smart Cities

Transform cities to be more responsive to events and changes.

Smart Spaces

 $\label{thm:continuous} \mbox{Modernize indoor space operations using IoT devices to realize significant savings.}$

Smart Homes

The power of home automation through always-on IoT devices.

Healthcare

Improve healthcare with proactive, and advanced treatment solutions.

Storage

Power to meet the growing needs of HDD & SSD storage applications.

Industrial

Industrial and operational practices become increasing efficient with connected IoT devices.

Wearables

Secure, flexible processing for wearable electronics with small silicon footprint.

Utilities & Energy

Data management for the spectrum of critical infrastructure for IoT Utilities.

Mobile Computing

Mobile technology for always-on, always-connected devices with Al.

Infrastructure

loT, cloud and 5G are driving the transformation from datacenter to devices.

Companies utilizing ARM architecture

ARM	System-On-a-Chip (SoC)	Products Containing	Type of ARM processor	Number of Cores
Apple	A4	iPhone 4, iPod Touch (4th Gen), iPad (1st Gen), AppleTV (2nd Gen)	Cortex-A8	1
	A5	iPhone 4S,iPad 2, AppleTV (3rd Gen)	Cortex-A9	2
	A5X	iPad (3rd Gen, Retina Display)	Cortex-A9	2
Samsung	Exynos 3 Single	Samsung Galaxy S, Samsung Galaxy Nexus S	Cortex-A8	1
	Exynos 4 Dual	Samsung Galaxy SII, Samsung Galaxy Note	Cortex-A9	2
	Exynos 4 Quad	Samsung Galaxy SIII	Cortex-A9	4
	Exynos 5 Dual	N/A	Cortex-A15	2
Nvidia	Tegra	Microsoft Zune HD	ARM11	1
	Tegra 2	Samsung Galaxy Tab 10.1, Motorola Xoom, Dell Streak 7 & Pro, Sony Tablet S	Cortex-A9	2
	Tegra X1	Motorola ATRIX, Asus Transformer TF101, Microsoft Kin One	Cortex-A57	4
Texas Instruments	OMAP 3	Barnes and Noble Nook Color	Cortex-A8	1
	OMAP 4	Amazon Kindle Fire, Samsung Galaxy Tab 2, Blackberry Playbook, Samsung Galaxy Nexus	Cortex-A9	2
	OMAP 5	N/A	Cortex-A15	2

ARM Cortex processors - Cortex®-M and SecurCore® portfolio

- Smallest and lowest power Cortex processors
- Optimized for deterministic real time embedded processing
- Microcontroller applications

ARMv8-M

ARM Cortex processors - Cortex®-A portfolio

• Efficient application processors for every level of performance

Cortex-A15

High-performance with infrastructure feature set

Cortex-A17

High-performance with lower power smaller area

Cortex-A57

Proven high-performance

Cortex-A72

2016
Premium Mobile,
Infrastructure,
64/32-bAuto

Cortex-A73

2017 Premium Mobile, Consumer High performance

Cortex-A8

First ARMv7-A processor

Cortex-A9

Well-established mid-range processor used in many markets

Cortex-A53

Balanced
Performance and
efficiency

64/32-bit

High efficiency

Cortex-A5

Smallest and lowest power ARMv7-A CPU, optimized for single-core

Cortex-A7

Most efficient ARMv7-A CPU, higher performance than A5

Cortex-A32

Smallest and lowest power ARMv8-A

Cortex-A35

Highest efficiency

Ultra High efficiency

ARMv7-A

ARMv8-A

ARM Cortex processors - Cortex®-R portfolio

Fast response - optimized for high performance, hard real-time applications

Cortex-R7

High performance 4G modem and storage

Cortex-R8

Highest performance 5G modem and storage Storage & modem

SC000

Real-time performance

Cortex-R5

Real-time performance with functional safety

Cortex-R52

Most advanced processor for functional safety

Functional safety

ARMv7-R

ARMv8-R

ARMv8-A Architecture

ARMv8-A introduces **64-bit architecture** support to the ARM architecture and includes:

- 64 bits general purpose registers
- 64-bit data processing and extended virtual addressing
- Two main execution states:
 - AArch64: The 64-bit execution state
 - AArch32: The 32-bit execution state
- The execution states support three key instruction sets:
 - A32 (or ARM): a 32-bit fixed length instruction set enhanced through the different architecture variants.
 - T32 (Thumb): Thumb-2 technology provides a mixed-length 16- and 32-bit instruction set.
 - A64: a 64-bit fixed-length instruction set that offers similar functionality to the ARM and Thumb instruction sets.

What is big.LITTLE?

- Complex multicore CPU architecture combining...
 - Several high performance "big" cores
 - Several lower power "little" cores
- Cores should be architecturally compatible
- Cores may be...
 - Of 2 different architectures
 - Of the same architecture but with different highest frequency or cache size

Why big.LITTLE?

- Targeting optimal power saving / performance balance
 - Real life CPU load is bursty
 - big.LITTLE allows for running power hungry cores only when bursts are coming
 - Peak performance only when it's needed
 - Power optimized cores run most of the time
- More options for fine-tuning compared to standard Symmetric Multiprocessing (SMP)

What is big.LITTLE?

- Complex multicore CPU architecture combining...
 - Several high performance "big" cores
 - Several lower power "little" cores
- Cores should be architecturally compatible
- Cores may be...
 - Of 2 different architectures
 - Of the same architecture but with different highest frequency or cache size

Why big.LITTLE?

- Targeting optimal power saving / performance balance
 - Real life CPU load is bursty
 - big.LITTLE allows for running power hungry cores only when bursts are coming

Which ones

would you

choose?

- Peak performance only when it's needed
- Power optimized cores run most of the time
- More options for fine-tuning compared to standard Symmetric Multiprocessing (SMP)

Clustered Switching

- Simple implementation
- Identically-sized clusters of "big" or "little" cores
- The operating system scheduler can only see one cluster at a time
- No combinations
- High cluster is picked if at least one High core is needed, otherwise Low cluster

In-kernel switcher

- Pairing up a "big" core with a "little" core
- Each pair operates as one virtual core
- Only one real core is (fully) powered up and running at a time.
- 'Big' core is used when the demand is high
 'Little' core is employed when demand is low

Heterogeneous Multi-processing

- Most powerful use of big.LITTLE architecture
- Use of all physical cores at the same time
- Threads with high priority or computational intensity are allocated to "big" cores, rest in "little" cores

Measured CPU and SoC power savings

Fig. 2: Measured CPU and SoC power savings on a Cortex-A15 MP4·Cortex-A7 MP4 big.LITTLE MP SoC relative to a Cortex-A15 MP4 SoC

DVFS Frequency States: Web Browsing with Audio Playback

Fig 1: The distribution of per-core DVFS Frequency States during Web Browsing with Audio Playback

MultiProcessors System on Chip (MPSoC)

- QorlQ LS2045A and LS2085A multicore processors combine up to eight ARM® Cortex®- A57 cores
- Advanced, high-performance datapath and network peripheral interfaces
- Use case applications:
 - Networking
 - telecom/Datacom
 - wireless infrastructure
 - aerospace applications

QorlQ LS2045A Processor Block Diagram

- Core Complex (CPU, L2 and Frontside CoreNet Platform Cache)
- Accelerators and Memory Control

All Programmable System on Chip (APSoC) – Zyng 7000

ARM-based Processor + FPGA

- Zynq-7000 devices are equipped with dual-core
 ARM Cortex-A9 processors
- Integration with 28nm Artix-7 or Kintex®-7 based programmable logic for excellent performance-per-watt and maximum design flexibility
- Use case applications:
 - Professional Cameras
 - Machine Vision
 - 4K2K Ultra-HDTV

All Programmable System on Chip (APSoC) – Zynq UltraScale+ MPSoC

ARM-based Processor + FPGA

- Zyng UltraScale+ MPSoC devices are equipped with:
 - 4 ARM Cortex-A53 64-bit processors
 - 2 ARM Cortex-R5 32-bit processors for real-time safety critical operation
 - 1 ARM Mali 400 GPU for rendering processes

Integration with 14nm Kintex® or Virtex® based programmable logic with about 4x the FPGA

resources of Zynq-7000

- Use case applications:
 - Professional Cameras
 - Machine Vision
 - 4K2K Ultra-HDTV
 - Camera-based Advanced

Driver Assistance Systems (ADAS)

All Programmable System on Chip (APSoC) – GPUSoC – Tegra X1

ARM-based Processor + FPGA

- 4 CPU-cores, 64-bit ARM
- 2MB shared L2 Cache
- 256 GPU cores
- < 10 Watts power consumption
- Use case scenarios
 - Cell Phones
 - Self-Driving Cars
 - Neural-Networks

Open source embedded OS for IoT

ARM for machine learning

Questions?