Alexis Anzaldo

Mexicali, Baja California, Mexico | 6861931011 | ancalexis@hotmail.com

LinkedIn: https://www.linkedin.com/in/alexis-anzaldo/ | Portfolio website: https://alexis-anzaldo.github.io/

SKILLS

- Programming: Python (Pytorch, Scikit-Learn, OpenCV, Numpy, Matplotlib, Pandas, Seaborn), SQL, HTML/CSS.
- Tools: Microsoft Office, Power BI, Matlab, Labview.
- Spanish: Native. English: B2.

EXPERIENCE

Data Scientist - Skyworks Solutions, Inc.

Iun. 2023 - Current

- Applying analytical techniques to extract valuable insights from datasets while conducting data cleaning, feature engineering, and in-depth analysis.
- Development of predictive models and algorithms to optimize inspection processes and drive strategic business decisions.

PROJECTS

Deep Reinforcement Learning for resource allocation in wireless networks

- Accelerated the learning of the conventional Deep Q-Network model for power allocation in wireless networks by up to 77% and improved the network performance by up to 24.7% by proposing different training strategies with transfer learning. Simulations were performed using Python (Numpy, Pytorch, and Matplotlib).
- Conceptualized, analyzed, and wrote three published refereed articles in top journals from Q1 and Q2 in the computer science area.

San Diego home price prediction

- Collected and scraped data using BeautifulSoup and preprocessed it by cleaning, handling missing values, and detecting outliers with Python (Pandas, Numpy, and Matplotlib).
- Trained a regression model and achieved an accuracy score of 83.7% using grid search with scikit-learn in Python.
- Deployed the trained model on a Flask server to make predictions and hosted it on a web page using HTML/CSS.

Recognition of eye diseases with neural networks

- Designed a convolution neural network with 89.2% accuracy for detecting ocular diseases using the ODIR-5K database of the Kaggle platform using Python (Numpy, Keras).
- Managed and planned teamwork tasks for the preprocessing stage involving image formatting, data cleaning, and data augmentation for unbalanced classes.

Explainable AI (XAI) for beer brand classification

- Implemented GRAD-CAM, an explainable AI method, to interpret the Convolutional Neural Network (CNN) decision-making for beer brand classification.
- Fine-tuned the pre-trained VGG16 CNN architecture with additional layers to achieve an accuracy of 91.6%. Data augmentation, preprocessing, and training were performed using libraries such as Keras, Sklearn, and Numpy.

EDUCATION

Ph. D. in Science and Engineering Universidad Autónoma de Baja California – Mexicali, Baja California, México M. S. in Science and Engineering Universidad Autónoma de Baja California – Mexicali, Baja California, México. BS in Electronics Engineering	2019-2023 2017-2019 2016		
		Universidad Autónoma de Baja California – Mexicali, Baja California, México.	
		CERTIFICATIONS	
		IBM AI Engineering, IBM, Online.	Sep. 2023
		 Practical Data Science on the AWS Cloud Specialization, Amazon Web Services (AWS), Online. 	May 2023
 Google Data Analytics Professional Certificate, Google, Online. 	May 2023		
DVDV 16 4 TVO V6			

PUBLICATIONS

- Accelerated Resource Allocation Based on Experience Retention for B5G Networks, Journal of Network and Computer Applications, https://doi.org/10.1016/j.jnca.2023.103593
- Experience Replay-based Power Control for Sum-rate Maximization in Multi-cell Networks, *IEEE Wireless Communications Letters*, https://doi.org/10.1109/LWC.2022.3202904
- Buffer Transference Strategy for Power Control in B5G-Ultra-dense Wireless Cellular Networks, Wireless Networks, https://doi.org/10.1007/s11276-022-03087-6