Introduction to DSA. Basic terminology is said to efficient when the code A program enecutes in minimum time and minimum memory Space. DSA Contains complex tanks like → Data Collection -> organizedun of duta -> dulloping and maintaining routines DSF) is applied on following areas: Compiler design = syntem Analysis
semantic Analysis operating system - process, memoris, File management. DBMS -> mornaging large dates sets Statical analysis package -> store and marroise data sets. -Numerical analysis - vectors, etc (elgenvalus) (mentions) --) AI - rearch Algo, M.L, --simulation devent, provet euro simulation. -) Comphics - collision difection > (BVT)'s, 2 d dress arrand classification of dota structures Priminthue and non-primithue Pormintlue doubertypes are those which are jundo menter destatypes of a programming lang. Non-primitive dotatypes are snore which are weated by the help of P.D.T. Stream.

Non-pormiting dolotyp lines:
James: id in the date, when it is stood in the sequential order. En: Array; linked tids stock, such as memory it can be supremeded in the way. (1) Sequential memory sociations (1) means of links. plan-linear: it is the date, when it is not stored in the sequential order. Ens trees and graphs.
Array: - it is a Collection of similar date element -) in this data is stored in consecutive memory locations.
fyrton; <u>en;</u> type-nami [size]; int stu[60];
limitedions of Array: Through one fined memory locations on stored Consecutivuls which with may not be available. Inscrition and deletion is problematic.
Jinked Jist : Then ble, dynamic data stoucture, noder and requested order. Severy node in the Jist points out to the vent node (dement)

x Energy noch Contains the following two types of
date:
The value of the node
(2) A pointer.
I the final rock
-) As it is dynamical allocated, it will stored nodes
to him ted to the memory avaliable
tig: 11 > 121 - 121 lofs and (Null pointer) Head.
Stacks:
-> It is linear D.S in which insertlen and
deletten of elements are done at only one end,
which is known as the top of the Steek
- 7+in (IIFO) last-In, form out structure.
-) when the new element is added at less than un
just one will be deleted.
s Frung stack has variable top, It is the position
where the element is added (or) deleted.
-) Another variable MAX', which is used to store the
maximum elements that the stack can stove.
in top=Null (Stack is empty)
if top= MAX-1 (Moch in pull)
tcg: [A AB ADC ABCD ABCD]
Array supresentation of stock

There operations of Stack.
and in adds an element to the top of the Stack
(1) pop :- rumous and element from the top of the stack
(3) peep: outurns the value of the topmost of the stand
-) before inserting any value in stack, as should
chick your over flow, it means chicking for
avallability of memory in the storage.
Queues & (FIFO) (Flows In flow out)
-> eliment that is conserted first in the flow
and to be taken OWI.
-) elements in a queue cadded at one end Called
the vuar and elements that are vumoved from
other end is called frond.
-) every queue has "pronet and "ruar" variable.
For example:
For example 3- 12 9 2 18 1 1 1 36 1 1 1 12 9 2 18 1 1 1 36 1 1 1 rear rear rear Add new eliment 48 ord order than rear
Now, if you add new eliment 48 ord orean shen near
Now, wy your want
will be incremented by 1.
after addition:
12 9 7 17 14 36 45 7 9 9 9 9 9 9 9 9 9
How, you want to remove an element, the variable
Now, you want to swindy and the trans is done only
front will be uncreased, deletions its done only.
From this enel. 36/45/ / 11/ 12/36/45/ /

-> ourflow : chicking the anadobility of memory before inserting if not overflow takes
place
- underflow & checking the analos 111ty of docta ins Queues before deleting. If not underflow takes place.
Trees ;
A true is a non-dinear data stoucture, where the dota in arranged in a hierarchical order. I oud the node is the root node, remaining node are partitioned into sub rodes, (sub-true of the visot). Binary true: it consists of one visot node and left, right sub-true, both the sub-true are outse brown true. Sinory true. I deft pointer which points to the left sub-true. A hight pointer which points to the right sub-true. The root element is the topment rode, when painted by nome root points.

(

Rive the main voot element

T, , is the non-empty so, it is called left fucusar To in the non-empty so, with called vight fucuerson

Graphs: (Non-Liver DI)

- -) (ollection of nuntieles (called nodes) and edges that -> Here, instead of parent-child relationship between
 - itel nodes, any kind of complex relationships
- blus the nodes can exist. -> In July node, of its contains one parent, but in graphs
- Nou may Contain many 20--in us and you graph operations, seaching the

graph, finding the shortest path

Operations on Pata structures: Transvering + il in going through the collection of data once and doing something with if along the weigreading processing, analyzing. - curry element gets othersten searching; it is to find the location of one or more Clements sectify the Constraint. Inserting; add of new items to the gruen dust. Peliting: sumone a particular dater item from the Collection of desta witcoms. Sovieting: Posta ûtems Com he avranged in come order duce arrending (07) discending order depending on the type of application. Meaging & Lum of two sorted data vitems can be Combined. to form a single that of souted data when, Abstract data type: date type & in us the Common dovertypes like int, day Moad, Woulde, bolean. elt. Abstract's it means Considered apart from the detailed specifications (or) implementations -> focusing on the ensented feature and behaviours of a data stouchur while rignaring the defaits of how its in promented

Algorithms F
nervisiming rome Could be at lens
is in the party of
to during an aight
- A complete Alogethm is divided unto smaller
parts.
-> each modern of Algorithm dungning. -> Two approaches for Algorithm dungning.
O Top-down approach
2 bottom-up opproach.
Top-down opproach: It is the making the Complex Alogrithm into smaller modules and solving
Hom -) it is a step wise sufinement. -) it is a step wise sufinement. -) process of decomposition. Bottom- Lefon approach: It is the summer of top-down sportom- Lefon approach: It is also during the most bosic or higher hunds. with disignimning the most bosic or

As we compared top-down approach and Rotton, up approach in und become of approach in und become of Approachen, now the date is encapsulated and arother a module, the une connot see in

* TIME AND SPACE COMPLEXITY:

Time complexity & It is which a program execution

Time Complexity: It is basically the ownning time of a program as a function of the imput size.

Space Complexity: It is the storage required during the program execution on a function of the imput S12C.