Assignment 1

Relational Algebra

Question 1. We should include at least one candidate key in our superkey. To do so we have k options which is formally shown by $\binom{k}{1}$. In that superkey other non-prime attributes may or may not exist (two options). As a result we can show them by 2^{n-k} . Consequently, we have $\binom{k}{1} 2^{n-k}$ superkeys with only one prime attribute. We can use a combination of two prime attributes with arbitrary number of non-prime attributes. With the same logic they will sum up to $\binom{k}{2} 2^{n-k} = k(k-1) 2^{n-k}$ options. We can continue the same process all the way to using all the prime attributes which has $\binom{k}{k} 2^{n-k} = 2^{n-k}$ options. The way that we counted different options do not have overlaps so we can sum them to have the solution.

$$\sum_{i=1}^{k} \binom{k}{i} 2^{n-k} = 2^{n-k} \sum_{i=1}^{k} \binom{k}{i} = 2^{n-k} (2^k - 1) = 2^n - 2^{n-k}$$

We can interpret the solution in another way. We can take any subset of attributes as a superkey except those with no prime-attributes. As a result, we have 2^n possible subsets and if we remove all of the prime attributes and compute their subsets we will have 2^{n-k} possibilities. Finally we can take undesirable subsets of attributes out of the total number of possibilities which leads to the same answer.

Question 2.

1) $\sigma_{\theta}(R \cup S) = \sigma_{\theta}(R) \cup \sigma_{\theta}(S)$ is always valid.

Figure 1

Let $X = \sigma_{\theta}(R \cup S)$, where θ is a set of conditions to apply to the argument of the operation. Without loosing the generality, we denote the all the records in the R - S with A, S - R with B, and $R \cap S$ with C. These records clearly do not overlap. So if the records in $S \cup R$ satisfying the condition set θ are $X = \{x_1, x_2, ..., x_i\}$, we can order them like $\{a_1, ..., a_j, b_1, ..., b_k, c_1, ..., c_l\}$. Let's

denote $A' = \{a_1, ..., a_j\}$, $B' = \{b_1, ..., b_k\}$, $C' = \{c_1, ..., c_l\}$. Remember that we can shuffle the records however we want.

$$\forall x \in X, x \in (A' \cup B' \cup C')$$
$$x \in (A' \cup B') \cup (B' \cup C')$$
$$x \in \sigma_{\theta}(R) \cup \sigma_{\theta}(S)$$

- 2) $\Pi_L(\sigma_{\theta}(S)) = \sigma_{\theta}(\Pi_L(S))$ is not always valid. Clearly if θ contains conditions on attributes not listed in L, then we cannot swap selection and projection operators.
- 3) $\sigma_{\theta}(R) S = \sigma_{\theta}(R S)$ is always valid.

Figure 2

Question 3. Assume that we have manged to store the data of a transportation system as the relations below:

- Company(comp_id, name)
- Trip(trip_id, date, origin, dest, comp_id, duration)
- Passenger(pass_id, name)
- Pass_in_Trip(trip_id, pass_id,

Please write each of these queries using relational algebra. (15 points)

1) The date of every trip starting from "Ottawa".

$$\Pi_{date} \left(\sigma_{origin='Ottawa'} \left(Trip \right) \right)$$

2) The list of every city that a passenger named "Alex" had a trip to.

$$\Pi_{dest} \left(Trip \bowtie \Pi_{trip_id} \left(Pass_in_Trip \bowtie \Pi_{pass_id} \left(\sigma_{name='Alex'} \left(Passenger \right) \right) \right) \right)$$

3) The ID of every passenger who has a trip after 2022-08-08, taking less than 12 minutes.

$$\Pi_{pass_id}\left(Pass_in_Trip \bowtie \Pi_{trip_id}\left(\sigma_{date>'2022-08-08' \land duration>12}\left(Trip\right)\right)\right)$$

Question 4.

$$\Pi_{s_name}(\sigma_{Producer.s_city=P2.s_city}(Producer \times \rho_{P2}(\Pi_{s_city}(\sigma_{s_id=8}(Producer)))))$$

This query returns the name of producers who are active in the same city as the producer with ID 8.