Week 4 – Collective communication, topologies

- Main topics this week
 - Collective communication, topologies
- Reading
 - Pacheco, Chapters 4 and 5

Research Computing @ CU Boulder

tive Communication and topologies

2/6/12

Lecture 6 Collective Communication and topologies Networks topology slides adopted from: Networks: Topologies - HPC Advisory Council www.hpcadvisorycouncil.com/events/2011/../pdf/.../10_HPCAC.pdf

Milestone	Due Date
Project Matchmaking	Wednesday, Feb.15
Project Proposal	Wednesday, Feb.24
CSCI 5576 Paper Presentations	March 12-16
Annotated Bibliography	March 23
Project Checkpoint	Monday, Apr. 4
Final Presentations	April 30 – May 4
Final Paper	May 9

World leading large scale machines * National Supercomputing Centre in Shenzhen * Fat-tree, 5.2K nodes, 120K cores, NVIDIA GPUs, China (Petaflop) * Tokyo Institute of Technology * Fat-tree, 4K nodes, NVIDIA GPUs, Japan (Petaflop) * Commissariat a l'Energie Atomique (CEA) * Fat-tree, 4K nodes, 140K cores, France (Petaflop) * Los Alamos National Lab – Roadrunner * Fat-tree, 4K nodes, 130K cores, USA (Petaflop) * NASA * Hypercube, 9.2K nodes, 82K cores – NASA, USA * Jülich JuRoPa * Fat-tree, 3K nodes, 30K cores, Germany * Sandia National Labs – Red Sky * 3D-Torus, 5.4K nodes, 43K cores – Sandia "Red Sky", USA

d-Dimensional Torus Topology • Formal definition • T=(V,E) is said to be d-dimensional torus of size $N_1 \times N_2 \times ... \times N_d$ if: • $V=\{(v_1,v_2,...,v_d): 0 \le v_i \le N_i-1\}$ • $E=\{(u\to v): \text{ exists } j \text{ s.t. } 1\}$ for each $i\neq j$, $v_i=u_i$ AND 2) $v_i=(u_j\pm 1) \text{ mod } N_i\}$ • Examples N1 = 5 N1 = 5 Output | N_1 = 1 | N_1

3D-Torus System with Infiniband – Key Items • Multiple server nodes per cube junction • Smaller 3D cube size the better • Lowest latency between remote nodes • Minimizing throughput contention • Ability to connect storage • Support for separate networks • Dedicated network (links) for specific applications/usage • Example: links dedicated for collectives or specific jobs

Collective communication

- Broadcast
- one to all: data from root to all others
- Gather
- all to one: all send data to root (result is vector)
- Scatter
- one to all: reverse of gather
- Reduce
- all to one: combine results on all at root via specified operation

Research Computing @ CU Boulder

Collective Communication and topologies

2/6/12

MPI operations

- MPI_BCAST
- MPI_GATHER
- MPI_SCATTER
- MPI_REDUCE

arguments similar to those of $\,$ MPI_SEND and $\,$ MPI_RECV $\,$

Research Computing @ CU Boulder

Collective Communication and topologi

How to do gather without collective routine

- The simple way of where all send to 0 (root) at once
- More efficiently, take advantage of network topology
- Can reduce number of steps
- Does reduce contention for wires

Research Computing @ CU Boulde

ollective Communication and topologies

2/6/12

Contention

Two simple and important topologies show topologies are graphs: nodes and edges

Research Computing @ CU Boulder

Consider a ring of p processors

- Gather requires p/2 communication steps
- $$\label{eq:cost_series} \begin{split} \text{-} & \text{Cost per step} = T = t_s + k \; t_c \\ & t_s = \text{startup or latency} \\ & k = \text{bytes in message (constant size here)} \\ & t_c = \text{communication cost} \end{split}$$

 $1/t_c = bandwidth$

• Total cost = (p/2)*T

search Computing @ CU Boulder

llective Communication and topologi

What's a more efficient topology? Do we immediately see how to do a gather on a mesh? Research Computing & CU Boulder Collective Communication and topologies 2,8712

Tree Gather requires ____ steps Cost per step = Total cost = ___

But we don't have a tree!

- Graph embeddings allow us to find one graph in another
 - (one topology in another)
- = virtual circuit
- Designing efficient parallel programs requires us to understand graph embeddings
 - · What are efficient communication schemes?
 - · What schemes avoid contention?
- · What schemes permit nearest neighbor communication?

Research Computing @ CU Boulde

lective Communication and topologies

2/6/12

One example ring in 2-D mesh

Graph embedding

- Graph embedding gives us flexibility in how we design algorithm: use convenient communication graph V_s and embed it into network graph V_t
- Concerns
 - $^{\circ}$ load : maximum number of nodes in $\rm V_s$ mapped to same node in $\rm V_t(CPU$ use)
 - $^{\circ}$ congestion : maximum number of edges in E $_{\rm s}$ mapped to paths containing same edge in E $_{\rm t}$ (bandwidth, contention)
 - dilation : maximum distance between any two nodes $(\Omega(u), \Omega(v)) \in V_t$ such that $(u, v) \in E_s$ (nearest neighbors)

search Computing @ CU Boulder

Collective Communication and topologic

How to embed Finding optimal embedding NP-complete, in general, so heuristics used to determine good embedding Fine: connected graph containing no cycles Spanning tree: subgraph that includes all nodes of given graph and is also a tree Spanning tree algorithm prevents redundant communication

So focus on embedding tree into mesh (torus) binary tree (not spanning tree) into 2-D mesh dilation = ceil((k-1)/2)

Other operations similarly based on trees

- Reduce has the same communication scheme as gather but with operations on values
- · Broadcast and scatter go from root to leaves
- Other ops like MPI_ALLGATHER: all to all, communication goes in one direction then other
- Next weeks' lab assignment: butterfly allreduce
- Topology is butterfly
- · Communication goes in both directions

Collective Communication and topologi