

两块 L298N + 4 台减速直流电机 + Raspberry Pi 5 + AA 电池盒(6 × AA ,≈ 9 V)

-- 完整接线总览与注意事项 --

目标:让Raspberry Pi 5 精确控制 4 台 6 V-12 V 直流减速电机的正/反转和转速。 硬件:

- 2 × L298N 双路电机驱动板 (共 4 路)
- 4 × DC Getriebemotoren (车底盘配套)
- 1 × 树莓派 5 (GPIO 40 pin)
- 1×AA 电池盒 (6节 AA,≈9V,带开关与两根线) 用于 电机 供电
- 1×官方5V-5AUSB-CPD 适配器用于 树莓派 供电

1. 供电与接地框架

树莓派的5V轨 绝对不要与电池+9V相连;仅三块板 共地。 若电池盒带开关,开关置于+线;电池容量建议>2000 mAh(NiMH)以提供峰值电流。

2. 单块 L298N 接线 (每板控制 2 台电机)

L298N 引脚	逻辑作用	连接到 Pi 5 BCM GPIO	说明
ENA	电机 A 速度 PWM	18 (PWM 0A)	拔掉 ENA 跳帽,接此引脚
IN1	电机 A 方向位 1	17	高/低 配合 IN2
IN2	电机 A 方向位 2	27	_
IN3	电机 B 方向位 1	22	_
IN4	电机 B 方向位 2	23	_
ENB	电机 B 速度 PWM	19 (PWM 1A)	拔掉 ENB 跳帽
12 V / Vcc	电机电源正	电池 +9 V	6-12 V 皆可
5 V	板载稳压输出	留空	不回供 Pi
GND	共地	电池 – & Pi GND	_

L298N-2 另一块完全相同,只是换一组 GPIO:

L298N-2 引脚	逻辑作用	连接到 Pi 5 BCM GPIO
ENA	电机 C 速度 PWM	12 (PWM 0B)
IN1	电机 C 方向位 1	5
IN2	电机 C 方向位 2	6
IN3	电机 D 方向位 1	20
IN4	电机 D 方向位 2	21
ENB	电机 D 速度 PWM	13 (PWM 1B)
其余电源脚	同上	

这样共用 8 根普通 GPIO + 4 根硬件 PWM, Pi 5 的四路硬件 PWM 全部用上(18/19/12/13)。若只需全速,保留跳帽不连 PWM, GPIO 数可减半。

3. 电机接线

- 电机 A (前左) → L298N-1 0UT1 0UT2
- 电机 **B (**前右) → L298N-1 0UT3 0UT4
- 电机 C (后左) → L298N-2 0UT1 0UT2
- 电机 D (后右) → L298N-2 0UT3 0UT4

若装配后发现某轮转向与预期相反,可**对调该电机的两根 OUT** 线或在软件里交换 INx 输出高低。

4. 树莓派 GPIO 物理脚汇总

方向	ВСМ	物理 Pin	职责
PWM0A	18	12	ENA-1(前左)
PWM1A	19	35	ENB-1(前右)
PWM0B	12	32	ENA-2 (后左)
PWM1B	13	33	ENB-2(后右)
DIR	17	11	IN1-1
DIR	27	13	IN2-1
DIR	22	15	IN3-1
DIR	23	16	IN4-1
DIR	5	29	IN1-2
DIR	6	31	IN2-2
DIR	20	38	IN3-2
DIR	21	40	IN4-2
GND	_	6/9/14/20/25/30/34/39	共地

5. 上电与调试顺序

- 1. 断电状态完成全部接线,确认:
 - Pi 5 未接 L298N 5 V 引脚。
 - 电机供电与树莓派供电完全分离仅共地。
 - ENA/ENB 跳帽已拔出(如需 PWM)。
- 2. 先给树莓派上电并 SSH 登录,不接电机电源,运行测试脚本检查 GPIO 输出无误 (LED 或万用表测)。
- 3. 关闭脚本,接入 AA 电池盒 开关至 OFF 位置,将 +9 V 线接两块 L298N 的 Vcc,-线接公共地。
- 4. 打开电池开关后再运行脚本,观察四轮能否按指令正转/反转/调速。
- 5. 若树莓派突然重启或出现欠压闪电符,说明 GND 未连好或电机电干扰回灌 5 V—— 检查布线并在电机端加 100 nF 陶瓷电容抑制火花。

6. Python 控制框架(四轮差速示例)

```
# 文件: four motor driver.py
import RPi.GPI0 as GPI0
# GPIO map: 见上表
PWM_PINS = [18, 19, 12, 13] # ENA1, ENB1, ENA2, ENB2
DIR PINS = [
   (17, 27), # A 方向
   (22, 23), # B 方向
   (5, 6), # C 方向
   (20, 21) # D 方向
1
GPI0.setmode(GPI0.BCM)
for pin in sum(DIR_PINS, []) + PWM_PINS:
    GPIO.setup(pin, GPIO.OUT, initial=GPIO.LOW)
pwms = [GPI0.PWM(p, 1000) for p in PWM_PINS]
for p in pwms: p.start(0)
def set motor(idx, speed):
                           # idx 0-3, speed -100...100
   a, b = DIR PINS[idx]
   forward = speed >= 0
   GPIO.output(a, forward)
   GPIO.output(b, not forward)
    pwms[idx].ChangeDutyCycle(min(abs(speed), 100))
def tank_drive(v_left, v_right): # -100...100
    set motor(0, v left)
   set_motor(2, v_left)
   set_motor(1, v_right)
    set_motor(3, v_right)
if __name__ == "__main__":
   try:
       tank_drive(70, 70) # 前进
       time.sleep(2)
       tank_drive(-70, -70) # 后退
       time.sleep(2)
       tank_drive(70, -70) # 原地右转
```

```
time.sleep(2)
finally:
    for p in pwms: p.stop()
    GPIO.cleanup()
```

7. 常见故障速查

现象	排查要点
电机不动、L298N LED 不亮	9 V 未接 Vcc / 跳帽未拔 / EN 未输出 PWM
前后轮方向颠倒	交换对应 OUT 线或反转 INx 逻辑
树莓派 USB 设备掉线	电机启动电流尖峰 \rightarrow GND 回路干扰;缩短 GND 线、在电机并联 TVS 或 RC Snubber
电机空转无力	电池电压不足(AA 镍氢<7 V 时扭矩明显下降)或 L298N 饱和压降大;考虑换 2×18650 (7 V-8.4 V)
无法调速	硬件 PWM 引脚被占用、频率太低或 EN 跳帽未拔;用 gpio readall 查看实际波形

温馨提示:L298N 是老田双极晶体管驱动(典型 Vsat 2 V-4 V),效率低且发热。若后期需要更大电流或更高效率,推荐升级 TB6612FNG、DRV8833 或 BTS7960 (MOSFET Hbridge)。在原型阶段 L298N 足够稳健且资料丰富,便于调试。祝接线顺利!