Лабораторная работа №1.1.4 Измерение интенсивности радиационного фона

Шляпин И.С.

20 сентября 2023 г.

1 Введение

Цель работы:

• Применить методы обработки экспериментальных данных для изучения статистических закономерностей при измерении интенсивности радиационного фона

В работе используются:

- счетчик Гейгера-Мюллера
- блок питания
- компьютер с интерфейсом связи со счетчиком

2 Ход работы

Проведем измерение используя интерфейс компьютера. Приведем данные в таблицу и начнем обработку. Разбивая данные для 20с по парам и просуммировав пары получим данные для 40с.

Проверим связь $\sigma_{\text{отд}} \approx \sqrt{\bar{n}}$. Индекс 1 для 10с, 2 для 40с

$$n_{\text{общ}} = \sum n_i = 5223$$

$$\bar{n}_1 = \frac{n_{\text{общ}}}{N_1} = 13.0575$$

$$\bar{n}_2 = \frac{n_{\text{общ}}}{N_2} = 52.23$$

$$\sigma_1 = \sqrt{\frac{1}{N_1} \sum_{i=1}^{N_1} (n_i - \bar{n}_i)^2} \approx 3.41$$

$$\sigma_2 = \sqrt{\frac{1}{N_2} \sum_{i=1}^{N_2} (n_i - \bar{n}_i)^2} \approx 7.38$$

$$\sqrt{\bar{n}_1} = 3.61 \approx 3.41 = \sigma_1$$

 $\sqrt{\bar{n}_2} = 7.22 \approx 7.38 = \sigma_2$

Как видим связь между среднеквадратическим отклонением и среднем значении есть ($\sigma \approx \sqrt{\bar{n}}$). Теперь определим долю случаев в пределах $\pm \sigma$ и $\pm 2\sigma$.

t = 10c										
Предел	Число случаев	Доля случаев	Теоретическая оценка							
$\pm \sigma_1 = \pm 3.41$	271	67.5%	66%							
$\pm 2\sigma_1 = \pm 6.82$	381	95%	95%							

t = 40c										
Предел	Число случаев	Доля случаев	Теоретическая оценка							
$\pm \sigma_2 = \pm 7.38$	71	71%	68%							
$\pm 2\sigma_2 = \pm 14.76$	95	95%	95%							

Таблица 1: Количество измерений в пределах $\pm \sigma$ и $\pm 2\sigma$

Как видим наши данные с довольно хорошей точностью соответствуют теории. Как видно из графика относительный разброс данных за 40с меньше чем за 10с. Подсчитаем какая разница между этими 2мя случаями.

$$\frac{\sigma_1}{\bar{n}_1} \approx 26\%, \frac{\sigma_2}{\bar{n}_2} \approx 14\%$$

Как видим разница почти в 2 раза, что и следует от того факта что $\sigma \approx \sqrt{\bar{n}}.$

Для финального ответа подсчитаем ошибки средних величин. По теории

$$\sigma_{\bar{n}_1} = \frac{\sigma_1}{N_1} \approx 0.17, \sigma_{\bar{n}_2} \approx 0.74$$

 $\varepsilon_{\bar{n}_1} = \frac{\sigma_{\bar{n}_1}}{\bar{n}_1} \approx 1.3\%, \varepsilon_{\bar{n}_2} \approx 1.4\%$

Получаем финальный результат

$$n_{t=10c} = 13.06 \pm 0.17$$

$$n_{t=40c} = 52.23 \pm 0.74$$

№ опыта	1	2	3	4	5	6	7	8	9	10
0	23	31	26	20	24	23	24	29	36	25
10	29	28	23	20	29	23	28	34	32	27
20	23	30	28	21	23	20	32	25	21	28
30	18	27	21	24	29	18	23	28	25	28
40	32	27	25	33	24	25	32	36	26	21
50	31	34	22	28	25	31	25	28	26	22
60	34	30	26	24	28	23	25	27	13	24
70	23	28	30	27	33	33	21	21	33	24
80	33	28	31	24	34	19	26	32	22	30
90	30	25	29	27	23	28	29	19	23	19
100	27	29	28	33	29	29	28	24	26	34
110	26	26	21	17	20	24	27	18	37	30
120	30	27	24	21	29	20	20	24	19	32
130	21	17	26	22	26	24	25	34	27	28
140	27	26	15	26	20	29	27	19	23	23
150	17	21	16	30	22	34	40	18	24	33
160	32	32	38	34	25	25	23	17	30	33
170	26	28	22	27	31	23	34	34	31	31
180	26	26	18	33	23	27	19	27	19	23
190	29	27	24	26	21	37	24	23	20	19

Таблица 2: Число срабатывании счетчика за 20с

Число импульсов	3	5	6	7	8	9
Число случаев	1	3	3	12	13	25
Доля случаев	0.0025	0.0075	0.0075	0.03	0.0325	0.0625
Число импульсов	10	11	12	13	14	15
Число случаев	40	51	40	34	35	40
Доля случаев	0.1	0.1275	0.1	0.085	0.0875	0.1
Число импульсов	16	17	18	19	20	21
Число случаев	31	32	15	13	8	4
Доля случаев	0.0775	0.08	0.0375	0.0325	0.02	0.01

Таблица 3: Данные для построения гистограммы для 10с

№ опыта	1	2	3	4	5	6	7	8	9	10
0	54	46	47	53	61	57	43	52	62	59
10	53	49	43	57	49	45	45	47	51	53
20	59	58	49	68	47	65	50	56	53	48
30	64	50	51	52	37	51	57	66	42	57
40	61	55	53	58	52	55	56	51	48	42
50	56	61	58	52	60	52	38	44	45	67
60	57	45	49	44	51	38	48	50	59	55
70	53	41	49	46	46	38	46	56	58	57
80	64	72	50	40	63	54	49	54	68	62
90	52	51	50	46	42	56	50	58	47	39

Таблица 4: Число срабатывании счетчика за 40с

Число импульсов	37	38	39	40	41	42	43	44	45	46	47
Число случаев	1	3	1	1	1	3	2	2	4	5	4
Доля случаев	0.01	0.03	0.01	0.01	0.01	0.03	0.02	0.02	0.04	0.05	0.04
Число импульсов	48	49	50	51	52	53	54	55	56	57	58
Число случаев	3	6	6	6	6	6	3	3	5	6	5
Доля случаев	0.03	0.06	0.06	0.06	0.06	0.06	0.03	0.03	0.05	0.06	0.05
Число импульсов	59	60	61	62	63	64	65	66	67	68	72
Число случаев	3	1	3	2	1	2	1	1	1	2	1
Доля случаев	0.03	0.01	0.03	0.02	0.01	0.02	0.01	0.01	0.01	0.02	0.01

Таблица 5: Данные для построения гистограммы для 40с