EC38002 Econometrics I, Spring 2024

Problem Set 6: Marek Chadim¹

1. Given moment equations $g_i(\beta) = Z_i(Y_i - X_i'\beta)$, the criterion can be written as

$$J(\beta) = (Z'Y - Z'X\beta)'W(Z'Y - Z'X\beta).$$

The constrained problem is equivalent to finding the saddle point of the Lagrangian $L = \frac{1}{2}J(\beta) + \lambda'(R'\beta - c)$. The first order conditions are

$$\frac{\partial}{\partial \beta} L(\tilde{\beta}_{\text{cmm}}, \tilde{\lambda}_{\text{cmm}}) = -X' Z W(Z' Y - Z' X \tilde{\beta}_{\text{cmm}}) + R \tilde{\lambda}_{\text{cmm}} = 0$$
 (1)

$$\frac{\partial}{\partial \lambda} L(\tilde{\beta}_{cmm}, \tilde{\lambda}_{cmm}) = R' \tilde{\beta}_{cmm} - c = 0$$
 (2)

Premultiplying (1) by $R'(X'ZWZ'X)^{-1}$

$$R'(X'ZWZ'X)^{-1}X'ZWZ'Y-R'(X'ZWZ'X)^{-1}X'ZWZ'X\tilde{\beta}_{\mathrm{cmm}}=R'(X'ZWZ'X)^{-1}R\tilde{\lambda}_{\mathrm{cmm}}$$

Recognizing the unrestricted GMM estimator $\hat{\beta}_{gmm}$, imposing (2) and assuming full rank condition for invertibility to solve for $\tilde{\lambda}_{cmm}$

$$\tilde{\lambda}_{\text{cmm}} = \left[R'(X'ZWZ'X)^{-1}R \right]^{-1} (R'\hat{\beta}_{\text{gmm}} - c).$$

Substituting this expression into (1) and solving for $\tilde{\beta}_{cmm}$

$$\tilde{\beta}_{\text{cmm}} = \hat{\beta}_{\text{gmm}} - (X'ZWZ'X)^{-1}R \left[R'(X'ZWZ'X)^{-1}R \right]^{-1} (R'\hat{\beta}_{\text{gmm}} - c).$$

2. (a) The criterion function is

$$J(\beta) = \frac{1}{n} e' X \hat{\Omega}^{-1} X' e$$

rewrite using $\hat{V}_{\beta} = \left(\frac{1}{n}X'X\right)^{-1}\hat{\Omega}\left(\frac{1}{n}X'X\right)^{-1}$

$$J(\beta) = n \left((X'X)^{-1} X'e \right)' \hat{V}_{\beta}^{-1} \left((X'X)^{-1} X'e \right) = n(\beta - \hat{\beta})' \hat{V}_{\beta}^{-1} (\hat{\beta} - \beta),$$

since
$$(X'X)^{-1}X'e = (X'X)^{-1}X'(y - X'\beta) = \hat{\beta} - \beta$$
.

(b) Setting the efficient weight matrix from unconstrained estimation the constrained GMM estimator can be written as efficient minimum distance

$$\tilde{\beta} = \hat{\beta} - \hat{V}_{\beta} R \left(R' \hat{V}_{\beta} R \right)^{-1} (R' \hat{\beta} - 0)$$

Therefore

$$D = n(\hat{V}_{\beta}(R'\hat{V}_{\beta})^{-1}R'\beta)'\hat{V}_{\beta}^{-1}(\hat{V}_{\beta}(R'\hat{V}_{\beta})^{-1}R'\beta) = n(\hat{V}_{\beta}(R'\hat{V}_{\beta})^{-1}R'\beta)'R(R'\hat{V}_{\beta})^{-1}R'\beta$$
$$= n\beta'R(R'\hat{V}_{\beta})^{-1}R'\hat{V}_{\beta}(R'\hat{V}_{\beta})^{-1}R'\beta = n(R'\beta)(R'\hat{V}_{\beta})^{-1}(R'\beta) = W_{n}$$

 $^{^{1}42624}$ @student.hhs.se

3. (a) use AJR2001.dta gen logmort2 = logmort0*logmort0 ivregress gmm loggdp (risk=logmort0 logmort2)

loggdp	Coefficient	std. err.
risk cons	.7278459 3.336234	.0900634 $.6138203$

- (b) estat overid Hansen's J chi2(1) = 3.74788 (p = 0.0529)
- (c) ivregress 2sls loggdp (risk=logmort0 logmort2)

loggdp	Coefficient	Std. err.
risk _cons	$.7722554 \\ 3.018849$.1130303 .7434204

The GMM and 2SLS estimates are similar.

4.
$$Y_0 = 0 \implies \text{Var}[Y_0] = 0$$

$$\text{Var}[Y_1] = \text{Var}[Y_0 + e_1] = \text{Var}[e_1] = 1,$$

$$\text{Var}[Y_2] = \text{Var}[Y_1 + e_2] = \text{Var}[Y_0 + e_1 + e_2] = \text{Var}[e_1] + \text{Var}[e_2] = 2,$$

$$\vdots$$

$$\text{Var}[Y_t] = \sum_{i=1}^t \text{Var}[e_j] = t.$$

The variance is not constant over time. Consequently the series is non-stationary.

5. (a) Set
$$e_t = 0$$
 for $t \neq 0$ and set $e_0 = 1$ to recursively calculate $b_j = \frac{\partial}{\partial e_t} Y_{t+j} = \frac{\partial}{\partial e_0} Y_j$.

$$b_{0} = 1$$

$$b_{1} = \alpha_{1}b_{0} = \alpha_{1}$$

$$b_{2} = \alpha_{1}b_{1} = \alpha_{1}^{2}$$

$$\vdots$$

$$b_{j} = \alpha_{1}b_{j-1} = \alpha_{1}^{j}.$$

(b) $\hat{b}_j(\hat{\alpha}_1) = \hat{\alpha}_1^j$ using the least squares estimator

$$\hat{\alpha} = \left(\sum_{t=2}^{n} X_t X_t'\right)^{-1} \left(\sum_{t=2}^{n} X_t Y_t\right),\,$$

where $X_t = (1, Y_{t-1}, \dots, Y_{t-2})'$.

(c) By the delta method as $n \to \infty$

$$\sqrt{n}(\hat{b}_j - b_j) \xrightarrow{d} \mathcal{N}\left(0, j^2(\hat{\alpha}_1)^{2(j-1)} s^2(\hat{\alpha}_1)\right)$$

since $\frac{\partial}{\partial \alpha_1} b_j = j \alpha_1^{j-1}$. The 95% asymptotic confidence interval is

$$\hat{b}_j \pm 1.96 \times j(\hat{\alpha}_1)^{(j-1)} s(\hat{\alpha}_1)$$

- 6. (a) use FRED-QD.dta gen y = 100*(pnfix/L.pnfix-1)
 - (b) Under the assumption of correct specification covariance matrix estimation is identical to the cross- section case using conventional regression methods.

$$\begin{array}{lll} \text{reg y L}(1/4).\text{y, r} \\ \text{Linear regression} & \text{Number of obs} = 231 \\ \text{F}(4\,,\ 226) = 25.32 & \text{Prob} > \text{F} = 0.0000 \end{array}$$

у	Coefficient	std. err.	t	P> t
L1. L2.	.501609 .168321	$.0760312 \\ .0702794$	6.60 2.40	$0.000 \\ 0.017$
L3. L4.	$0261832 \\068269$.06278 $.0525659$	$-0.42 \\ -1.30$	$0.677 \\ 0.195$
$_{ m cons}$.4911459	.1477817	3.32	0.001

(c) Heteroskedasticity and Autocorrelation Consistent/Robust (HAC/HAR) covariance matrix estimators are appropriate under general dependence.

newey y L(1/4).y, lag(5)Regression with Newey-West standard errors Maximum lag = 5 Number of obs = 231 F(4,226) = 32.25 Prob > F = 0.0000

у	Coefficient	std. err.	t	P> t
L1.	.501609	.0843377	5.95	0.000
L2.	.168321	.0692569	2.43	0.016
L3.	0261832	.0654151	-0.40	0.689
L4.	068269	.051575	-1.32	0.187
$_{ m cons}$.4911459	.1425101	3.45	0.001

- (d) Since the standard errors are similar the model is likely to be correctly specified in the sense that it has unforecastable errors and serially uncorrelated regression scores.