Parametric models and logistic regression

Data

Information on 911 Indonesian husband-wife couples, with the wife aged between 20 and 35, and variables including:

- Contraceptive method used (0 = none, 1 = some use)
- Wife's age (in years)
- Husband's age (in years)
- Wife's education (1 = low, 2, 3, 4 = high)
- Husband's education (1 = low, 2, 3, 4 = high)
- Number of children ever born

Notation: Let Y = contraceptive use (0 or 1), and Age = wife's age. Let (Age_i, Y_i) be the observations for couple i ($i = 1, \ldots, n$)

Regression Modeling

Goal: The goal of a regression model is to describe the relationship between the predictor and the response.

Example: linear regression

$$Y_i = eta_0 + eta_1 A g e_i + arepsilon_i \quad ext{where} \quad arepsilon_i \overset{iid}{\sim} N(0, \sigma_arepsilon^2)$$

Here $Y_i=0$ or 1. Is a linear regression appropriate?

Linear regression is not appropriate for binary data

Revisiting the linear regression model

Parametric modeling

A regression model is an example of a more general process called **parametric modeling**

- **Step 1:** Choose a reasonable distribution for Y_i
- **Step 2:** Build a model for the parameters of interest
- Step 3: Fit the model

What do I mean by a *distribution*?

What do I mean by a distribution?

lacktriangle A **distribution** tells us what outcomes are possible for Y_i , and how often these outcomes occur.

Here the possible values of Y_i are 0 (no contraceptive use) and 1 (some use).

How often do these values occur in the population?

What do I mean by a distribution?

lacktriangle A **distribution** tells us what outcomes are possible for Y_i , and how often these outcomes occur.

Here the possible values of Y_i are 0 (no contraceptive use) and 1 (some use).

How often do these values occur in the population?

- We don't know, so we will estimate from the sample
- lacktriangle We assume the probability $Y_i=1$ depends on Age_i

Bernoulli distribution

Definition: Let Y_i be a binary random variable, and $\pi_i = P(Y_i = 1)$. Then $Y_i \sim Bernoulli(\pi_i)$.

What do I mean by a random variable?

Bernoulli distribution

Definition: Let Y_i be a binary random variable, and $\pi_i = P(Y_i = 1)$. Then $Y_i \sim Bernoulli(\pi_i)$.

What do I mean by a random variable?

A **random variable** is an event that has a set of possible outcomes, but we don't know which one will occur

- lacktriangle Here $Y_i=0$ or 1
- ullet Our goal is to use the observed data to estimate $\pi_i = P(Y_i = 1)$

Step 2: Build a model

- + $Y_i = \text{contraceptive use (0 = none, 1 = some)}$
- lacksquare $Y_i \sim Bernoulli(\pi_i)$
- lacktriangledown Our parameter is π_i , which we assume depends on Age_i . For a binary response, we will use a **logistic regression** model

Logistic regression model

 $Y_i = \text{contraceptive use (0 = none, 1 = some)}$

 $Age_i =$ wife's age (in years)

Step 1: $Y_i \sim Bernoulli(\pi_i)$

Step 2:
$$\log\left(\frac{\pi_i}{1-\pi_i}\right) = \beta_0 + \beta_1 \ Age_i$$

Why is there no noise term ε_i in the logistic regression model? Discuss for 1--2 minutes with your neighbor, then we will discuss as a class.

A note on parameters

$$Y_i \sim Bernoulli(\pi_i) \quad \logigg(rac{\pi_i}{1-\pi_i}igg) = eta_0 + eta_1 \; Age_i$$

- lacktriangledown π_i : parameter for the distribution of Y_i . Depends on Age_i
- β_0, β_1 : parameters for the (unknown) relationship between Age_i and π_i

Modeling π_i

$$Y_i \sim Bernoulli(\pi_i) \quad \logigg(rac{\pi_i}{1-\pi_i}igg) = eta_0 + eta_1 \; Age_i.$$

What if I want the model in terms of π_i , instead of the log odds?

Shape of the regression curve

$$\logigg(rac{\pi_i}{1-\pi_i}igg)=eta_0+eta_1\,X_i \qquad \pi_i=rac{e^{eta_0+eta_1\,X_i}}{1+e^{eta_0+eta_1\,X_i}}$$

$$\left(\frac{1}{1-\pi_i}\right) = \beta_0 + \beta_1 X_i$$

$$\pi_i = rac{e^{eta_0+eta_1\,X_i}}{1+e^{eta_0+eta_1\,X_i}}$$

Shape of the regression curve

How does the shape of the fitted logistic regression depend on β_0 and β_1 ?

$$\pi_i = rac{\exp\{eta_0 + x_i\}}{1 + \exp\{eta_0 + x_i\}} \quad ext{for} \qquad \pi_i = rac{\exp\{-1 + eta_1 \ x_i\}}{1 + \exp\{-1 + eta_1 \ x_i\}} \ eta_0 = -3, -1, 1 \qquad \qquad ext{for} \ eta_1 = 0.5, 1, 2$$

$$\pi_i = rac{\exp\{-1+eta_1\ x_i\}}{1+\exp\{-1+eta_1\ x_i\}}$$
 for $eta_1=0.5,1,2$

Parametric modeling

$$Y_i = \text{contraceptive use (0 = none, 1 = some)}$$

$$Age_i =$$
wife's age (in years)

Step 1:
$$Y_i \sim Bernoulli(\pi_i)$$

Step 2:
$$\log \left(\frac{\pi_i}{1-\pi_i} \right) = \beta_0 + \beta_1 \ Age_i$$

Step 3: Fitting the model

$$\log\!\left(rac{\widehat{\pi}_i}{1-\widehat{\pi}_i}
ight) = -0.976 + 0.052~Age_i$$

Class Activity, Part I

https://sta214-f22.github.io/class_activities/ca_lecture2.html

- Spend 5--7 minutes working in pairs on questions 1 -- 5
- Solutions are provided for 1 -- 3
- We will discuss 4 and 5 as a class.

Class Activity

What is the predicted probability of contraception use if the wife is 30 years old?

Class Activity

Suppose that researchers want to follow up with couples for whom the probability of contraception use is less than 60%. Which age range should they target?

Class Activity, Part II

https://sta214-f22.github.io/class_activities/ca_lecture2.html

- Spend 3--5 minutes working in pairs on questions 6 -- 8
- Solutions are provided for 6 and 7
- We will discuss 8 as a class

Interpretation

Fitted model: log odds form

$$\log\!\left(rac{\widehat{\pi}_i}{1-\widehat{\pi}_i}
ight) = -0.976 + 0.052~Age_i$$

Interpretation: For every one-year increase in age, we predict that the log odds of contraception use increase by 0.052

Interpretation

Fitted model: log odds form

$$\log\!\left(rac{\widehat{\pi}_i}{1-\widehat{\pi}_i}
ight) = -0.976 + 0.052~Age_i$$

Interpretation: For every one-year increase in age, we predict that the log odds of contraception use increase by 0.052

Fitted model: odds form

$$rac{\widehat{\pi}_i}{1-\widehat{\pi}_i} = e^{-0.976+0.052\,Age_i} = e^{-0.976}e^{0.052\,Age_i}$$

Interpretation: For every one-year increase in age, we predict that the odds of contraception use get multiplied by $e^{0.052}=1.053$

Comparing linear and logistic regression

- We built the logistic regression model using steps for building a parametric model
- We can use the same steps for linear regression:
 - lacktriangle Step 1: $Y_i \sim N(\mu_i, \sigma^2)$
 - Step 2: $\mu_i = \beta_0 + \beta_1 X_i$
- Choosing logistic vs. linear regression depends on the distribution of Y_i
 - lacktriangle As we move through the course, we will see other distributions for Y_i too