Programación Paralela (2015-2016)

LENGUAJES Y SISTEMAS DE INFORMACIÓN

Grado en Ingeniería Informática

E. T. S. DE INGENIERÍAS INFORMÁTICA Y DE TELECOMUNICACIÓN UNIVERSIDAD DE GRANADA

Trabajo propuesto: Cómo afecta el tamaño del problema y el número de procesadores a la eficiencia de un algoritmo paralelo

> Francisco Javier Bolívar Lupiáñez 8 de marzo de 2016

Índice

1.	Plan	iteamiento del problema	2
2.	2.1.	Modelo matemático	
ĺn	dice	e de figuras	
	2.1.	Patrón de once puntos, tamaño de la malla y reparto de ésta entre los procesos	2
		La eficiencia disminuye conforme se aumenta el número de procesadores . La eficiencia aumenta conforme se aumenta el tamaño del problema	4

1. Planteamiento del problema

Se pretende demostrar por qué la eficiencia (E) tiende a aumentar al aumentar el tamaño del problema (N) y a disminuir al aumentar el número de procesadores (P).

2. Demostración

2.1. Modelo matemático

Para demostrarlo se va a plantear un ejemplo y se utilizará el del **algoritmo del patrón de once puntos** visto en clase con una pequeña modificación: **la matriz tiene el mismo tamaño en todas las direcciones** (NxNxN). Este algoritmo realiza operaciones sobre una matriz 3D y para computar cada punto hace falta conocer el valor de sus vecinos de arriba y abajo, dos a la izquierda, dos a la derecha, dos hacia delante y dos hacia atrás, además del propio punto (Figura 2.1).

Figura 2.1: Patrón de once puntos, tamaño de la malla y reparto de ésta entre los procesos

El tiempo de un algoritmo secuencial sería (T_1) :

$$T_1 = t_c N^3 \tag{2.1}$$

Cuando se paraleliza, se reparten bloques de la matriz como se muestra en la Figura 2.1, por tanto cada proceso necesitará intercambiar $2N^2$ puntos con dos vecinos. Lo que hace que el tiempo de comunicación (T_{comm}) sea:

$$T_{comm} = 2(t_s + t_w 2N^2) (2.2)$$

Y el tiempo de computación (T_{comp}) :

$$T_{comp} = \frac{t_c N^3}{P} \tag{2.3}$$

Por tanto el tiempo del algoritmo paralelizado (T_p) sería:

$$T_p = T_{comp} + T_{comm} = \frac{t_c N^3}{P} + 2t_s + t_w 4N^2$$
 (2.4)

La ganancia de velocidad (S) se calcula como la división del algoritmo secuencial (T_1) entre el paralelo (T_p) :

$$S = \frac{T_1}{T_p} = \frac{t_c N^3}{\frac{t_c N^3}{P} + 2t_s + t_w 4N^2}$$
 (2.5)

Y la eficiencia (E), finalmente, se calcularía como la división entre la ganancia de velocidad (S) entre el número de procesadores (P):

$$E = \frac{S}{P} = \frac{t_c N^3}{P(\frac{t_c N^3}{P} + 2t_s + t_w 4N^2)} = \frac{N^3 t_c}{N^3 t_c + 2P t_s + 4P N^2 t_w}$$
(2.6)

En esta función resultante contamos con cinco variables:

- t_c : tiempo de computación por punto.
- t_s : tiempo de inicialización de comunicación.
- t_w : tiempo de comunicación por palabra.
- N: tamaño de la matriz.
- P: número de procesadores.

Las tres primeras no varían, y se va a suponer que $t_c = 1$ y $t_s = t_w = 0.5$. Por lo que vamos a utilizar la siguiente función para obtener los tiempos variando N y P:

$$f(N,P) = \frac{N^3}{N^3 + P + 2PN^2}$$
 (2.7)

2.2. Mediciones y resultados

Se toman tiempos con 10, 40, 70 y 100 procesadores y con tamaños de 100, 400, 700 y 1000. Obteniendo los siguientes resultados:

Figura 2.2: La eficiencia disminuye conforme se aumenta el número de procesadores

Figura 2.3: La eficiencia aumenta conforme se aumenta el tamaño del problema