INFO-H-303 Bases de données Séance d'exercices 4 Algèbre relationnelle : première partie

F. Servais et B. Verhaegen

19 octobre 2009

Algèbre relationnelle

- Collection d'opérations sur une ou deux relations.
- ► Chaque opération retourne une relation.
- Opérations principales :
 - Sélection (restriction)
 - Projection
 - Union, intersection, différence
 - Jointure
 - Jointure naturelle
 - Renommage
 - Division (prochain TP)

Sélection (restriction)

- ► Selectionne les tuples satisfaisant une condition.
- ightharpoonup Syntaxe : $\sigma_{
 m condition}({
 m relation})$
- ► Condition simple : comparaison $(=, \neq, <, \leq, >, \geq)$ d'un attribut avec un attribut ou une valeur
- ► Condition composée : conditions simples séparées par ∨ ou ∧.

Sélection : Exemple

	R	
Α	В	С
1	а	1
2	a	1
3	С	2
4	d	2

$$\sigma_{\rm C=2}({\rm R})$$

Α	В	С
3	С	2
4	d	2

Projection

- ▶ Selectionne un sous ensemble d'attributs d'une relation.
- \triangleright Syntaxe : $\pi_{\text{attributs}}(\text{relation})$
- La projection implique la suppression des doublons.

Projection : Exemple

	R	
Α	В	С
1	а	1
2	а	1
2 3 4	С	$\begin{bmatrix} 1 \\ 2 \end{bmatrix}$
4	d	2

$\pi_{\mathrm{B,C}}(\mathrm{R})$

В	С
а	1
С	2
d	2

Union, intersection, différence

- Opérations ensemblistes sur deux relations compatibles
- Compatible = même nombre d'attributs et attributs de même domaine (type)
- ► Union : relation ∪ relation
- ▶ Intersection : $relation \cap relation$
- ▶ Différence : relation relation

Union, intersection, différence : Exemples

C

Student			
FName	LName		
Susan	Yao		
Ramesh	Shah		
Barbara	Jones		
Amy	Ford		
Jimmy	Wang		

Prof		
FName	LName	
John	Smith	
Ricardo	Brown	
Susan	Yao	
Francis	Johnson	
Ramesh	Shah	

$Student \cup Prof$

FName	LName	
Susan	Yao	
Ramesh	Shah	
Barbara	Jones	
Amy	Ford	
Jimmy	Wang	
John	Smith	
Ricardo	Brown	
Francis	Johnson	

$\mathsf{Student} \, \cap \, \mathsf{Prof}$

Student III 101		
FName	LName	
Susan	Yao	
Ramesh	Shah	

Student - Prof

FName	LName
Barbara	Jones
Amy	Ford
Jimmy	Wang

Produit cartésien

- Chaque tuple d'une relation est associé à chaque tuple de l'autre
- ► Syntaxe : relation × relation
- ► Le résultat est une relation contennant les attributs des deux relations (attention aux attributs de même nom).

Produit cartésien : Exemple

R		S		
Α	В		С	D
A1	B1		C1	D1
A2	B2		C2	D2

$R \times S$					
A B C D					
A1	B1	C1	D1		
A1	B1	C2	D2		
A2	B2	C1	D1		
A2	B2	C2	D2		

Jointure

- Une jointure combine deux relations sur base d'une condition.
- ► Syntaxe : relation ⋈_{condition} relation
- ► Condition simple : comparaison $(=, \neq, <, \leq, >, \geq)$ de deux attributs
- Condition composée : combinaison de conditions simples séparées par ∧
- Attention aux attributs de même nom

Jointure : Exemple

R		S		
Α	В		С	D
а	b		b	С
С	b		e	а
c d	e		e b	d

$R \bowtie_{B=C} S$					
Α	В	С	D		
a	b	b	С		
a	b	b	d		
С	b	b	С		
С	b	b	d		
d	e	е	а		

Jointure naturelle

- ► Une jointure naturelle combine deux relations sur base de l'égalité de leur attribut commun.
- ► Syntaxe : relation * relation
- ► Il existe d'autres types de jointures (voir cours)

Jointure naturelle : Exemple

Combinaison des opérations

- Les opérations peuvent être imbriquées ou en séquence
- ► Imbrication :

$$\blacktriangleright \ \pi_{A,B}(\sigma_{C=2}(R))$$

- ► Séquence :
 - ▶ $Temp \leftarrow \sigma_{C=2}(R)$
 - $\pi_{A,B}(Temp)$

Renommage

- ▶ Renomme un attribut d'une relation.
- Syntaxe:
 - $ightharpoonup \alpha_{
 m attribut:attribut}({
 m relation})$
 - ▶ ou relation(nouveauxAttributs) ← relation

Renommage: Exemple

	R	
Α	В	С
1	а	1
2	а	1
3	С	2
4	d	2

$$\begin{aligned} \alpha_{C:D}(R) \\ \text{ou} \\ R(A,B,D) \leftarrow R \end{aligned}$$

	R	
Α	В	D
1	а	1
2	a	1
3	С	2
4	d	2

Rappel des notations

- Sélection : $\sigma_{
 m condition}({
 m relation})$
- ightharpoonup Projection : $\pi_{\rm attributs}({\rm relation})$
- ightharpoonup Union: relation \cup relation
- ightharpoonup Intersection : relation \cap relation
- ▶ Différence : relation relation
- ▶ Produit cartésien : relation × relation
- ▶ Jointure : relation $\bowtie_{condition}$ relation
- ▶ Jointure naturelle : relation * relation
- Renommage :
 - \bullet $\alpha_{\rm attribut:attribut}$ (relation)
 - ightharpoonup ou relation(nouveauxAttributs) \leftarrow relation