Notes for libEMMI_MGFD

Pengliang Yang Harbin Institute of Technology, China E-mail: ypl.2100@gmail.com

April 22, 2024

1 Input parameters

```
run.sh
#!/bin/bash
export OMP_NUM_THREADS=2
mpirun -n 25 ../bin/main mode=1 \
       istretch=0 \
       addair=1 \
       freqs=0.25,1,2.75 \setminus
       chsrc=Ex \
       chrec=Ex ,Ey,Hx,Hy \
       nx=100 \
       ny=100 \
       nz=100 \
       dx=200 \
       dy=200 \
       dz=40 \
       ox=-10000 \
       oy=-10000 \
       oz=0 \
       fbathy=fbathy \
       frho11=frho_init \
       frho22=frho_init \
       frho33=frho_init \
       fsrc=sources.txt \
       frec=receivers.txt \
       fsrcrec=src_rec_table.txt \
       niter=30 \
       npar=2 \
       bound=1 \
       idxpar=1,2 \
       minpar=1.0,1.0 \
       maxpar=100.0,100.0 \
       gamma1=100 \
       gamma2=0
```

2 Source-receiver configuration

sources.txt

У	z	azimuth	dip	iTx
-8196.15234	903.652222	30.0000000	0	1
-6696.15234	870.258484	30.0000000	0	2
-5196.15234	834.029785	30.0000000	0	3
-3696.15234	810.434204	30.0000000	0	4
-2196.15234	809.226013	30.0000000	0	5
-5598.07617	865.961426	30.0000000	0	6
-4098.07617	832.172302	30.0000000	0	7
-2598.07617	807.180298	30.0000000	0	8
-1098.07617	802.881104	30.0000000	0	9
401.923828	821.753967	30.0000000	0	10
	-8196.15234 -6696.15234 -5196.15234 -3696.15234 -2196.15234 -5598.07617 -4098.07617 -2598.07617 -1098.07617	-8196.15234 903.652222 -6696.15234 870.258484 -5196.15234 834.029785 -3696.15234 810.434204 -2196.15234 809.226013 -5598.07617 865.961426 -4098.07617 832.172302 -2598.07617 807.180298 -1098.07617 802.881104	-8196.15234 903.652222 30.0000000 -6696.15234 870.258484 30.0000000 -5196.15234 834.029785 30.0000000 -3696.15234 810.434204 30.0000000 -2196.15234 809.226013 30.0000000 -5598.07617 865.961426 30.0000000 -4098.07617 832.172302 30.0000000 -2598.07617 807.180298 30.0000000 -1098.07617 802.881104 30.0000000	-8196.15234 903.652222 30.0000000 0 -6696.15234 870.258484 30.0000000 0 -5196.15234 834.029785 30.0000000 0 -3696.15234 810.434204 30.0000000 0 -2196.15234 809.226013 30.0000000 0 -5598.07617 865.961426 30.0000000 0 -4098.07617 832.172302 30.0000000 0 -2598.07617 807.180298 30.0000000 0 -1098.07617 802.881104 30.0000000 0

.

receivers.txt

x	У	z	azimuth	dip	iRx
-10000.0000	0.00000000	1000.00000	0	0	1
-9800.00000	0.00000000	1000.00000	0	0	2
-9600.00000	0.00000000	1000.00000	0	0	3
-9400.00000	0.00000000	1000.00000	0	0	4
-9200.00000	0.00000000	1000.00000	0	0	5
-9000.00000	0.00000000	1000.00000	0	0	6
-8800.00000	0.00000000	1000.00000	0	0	7
-8600.00000	0.00000000	1000.00000	0	0	8
-8400.00000	0.00000000	1000.00000	0	0	9
-8200.00000	0.00000000	1000.00000	0	0	10
-8000.00000	0.00000000	1000.00000	0	0	11
-7800.00000	0.00000000	1000.00000	0	0	12
-7600.00000	0.00000000	1000.00000	0	0	13
-7400.00000	0.00000000	1000.00000	0	0	14
-7200.00000	0.0000000	1000.00000	0	0	15
-7000.00000	0.0000000	1000.00000	0	0	16

.

src_rec_table.txt

isrc	irec
1	1
1	2
1	3
1	4
1	5
1	6
1	7
1	8
1	9
1	10

2

```
2
           1
2
           2
2
           3
2
           4
2
           5
2
           6
2
           7
2
           8
2
           9
2
          10
```

3 Output EMF files

emf_XXXX.txt

iTx	iRx	chrec	frequency/	Hz Real{E/H	<pre>} Imag{E/H}</pre>
1	1	Ex	0.25	-8.794095e	-15 2.336085e-14
1	2	Ex	0.25	-8.236141e	-15 2.632050e-14
1	3	Ex	0.25	-7.451898e	-15 2.954083e-14
1	4	Ex	0.25	-6.390576e	-15 3.306965e-14
1	5	Ex	0.25	-4.998464e	-15 3.694922e-14
1	6	Ex	0.25	-3.228805e	-15 4.118009e-14
1	7	Ex	0.25	-1.026235e	-15 4.577336e-14
1	8	Ex	0.25	1.681961e-	15 5.075206e-14
1	9	Ex	0.25	4.974577e-	15 5.613805e-14
1	10	Ex	0.25	8.933074e-	15 6.194364e-14
1	1	Ex	1	-1.045790e-12	9.924710e-13
1	2	Ex	1	-1.119678e-12	1.968149e-12
1	3	Ex	1	-8.904390e-13	3.433207e-12
1	4	Ex	1	-1.103422e-13	6.096019e-12
1	5	Ex	1	1.431065e-12	1.066018e-11
1	6	Ex	1	6.458673e-12	2.313294e-11
1	7	Ex	1	2.208377e-11	5.329251e-11
1	8	Ex	1	1.162063e-10	1.498437e-10
1	9	Ex	1	3.530520e-10	3.849713e-10
1	10	Ex	1	-1.178124e-09	6.435691e-10

4 Convergence information on CSEM inversion

iterate.txt

1-BFGS memory length: 5

Maximum number of iterations: 30 Convergence tolerance: 1.00e-06 maximum number of line search: 5

initial step length: alpha=1

=====		=======			=====	
iter	fk	fk/f0	gk	alpha	nls	ngrad
0	1.08e+03	1.00e+00	5.30e+00	1.00e+00	0	0
1	9.16e+02	8.49e-01	4.50e+00	4.00e+00	2	3
2	6.48e+02	6.01e-01	5.15e+00	2.50e-01	2	6
3	5.96e+02	5.52e-01	8.72e+00	1.00e+00	0	7
4	4.35e+02	4.03e-01	4.40e+00	1.00e+00	0	8
5	3.35e+02	3.11e-01	3.20e+00	1.00e+00	0	9
6	2.58e+02	2.39e-01	5.29e+00	5.00e-01	1	11
7	2.09e+02	1.94e-01	3.69e+00	1.00e+00	0	12
8	1.71e+02	1.58e-01	2.00e+00	1.00e+00	0	13
9	1.44e+02	1.34e-01	1.53e+00	1.00e+00	0	14
10	1.23e+02	1.14e-01	2.09e+00	1.00e+00	0	15
11	1.16e+02	1.07e-01	2.28e+00	1.00e+00	0	16
12	8.96e+01	8.31e-02	2.02e+00	1.00e+00	0	17
13	7.71e+01	7.15e-02	1.77e+00	1.00e+00	0	18
14	6.27e+01	5.82e-02	8.97e-01	1.00e+00	0	19
15	5.48e+01	5.08e-02	1.11e+00	1.00e+00	0	20
16	4.93e+01	4.57e-02	7.89e-01	1.00e+00	0	21
17	4.45e+01	4.13e-02	6.47e-01	1.00e+00	0	22
18	4.06e+01	3.76e-02	7.92e-01	1.00e+00	0	23
19	3.69e+01	3.42e-02	6.41e-01	1.00e+00	0	24
20	3.42e+01	3.17e-02	7.62e-01	1.00e+00	0	25
21	3.30e+01	3.06e-02	9.15e-01	1.00e+00	0	26
22	3.01e+01	2.79e-02	6.26e-01	1.00e+00	0	27
23	2.80e+01	2.60e-02	6.31e-01	1.00e+00	0	28
24	2.66e+01	2.47e-02	6.19e-01	1.00e+00	0	29
25	2.60e+01	2.41e-02	7.20e-01	1.00e+00	0	30
26	2.58e+01	2.40e-02	1.13e+00	1.00e+00	0	31
27	2.50e+01	2.31e-02	8.96e-01	2.00e+00	1	38
28	2.44e+01	2.26e-02	8.16e-01	1.00e+00	0	39
29	2.35e+01	2.18e-02	4.30e-01	1.00e+00	0	40

==>Maximum iteration number reached!

5 The Green's function and the reciprocity

Assume only electrical current $J_j(x_s,\omega)=\delta(x-x_s)e_j$ where e_j is the j-directed unit vector. We have

$$\begin{cases} \nabla \times G_{ij}^{E|E} - i\omega \mu G_{ij}^{H|E} &= 0\\ \nabla \times G_{ij}^{H|E} - \sigma G_{ij}^{E|E} &= \delta(x - x_s)e_j \end{cases}, \tag{1}$$

which defines two Green's function $G_{ij}^{E|E}$ and $G_{ij}^{H|E}$: $G_{ij}^{E|E}$ is the ith electrical (E) component of Green's function induced by jth component of electrical (E) source; $G_{ij}^{H|E}$ is the ith magnetic (H) component of Green's function induced by jth component of electrical (E) source. The representation theorem gives

$$E_i = G_{ij}^{E|E} J_j, H_i = G_{ij}^{H|E} J_j.$$
 (2)

We can do the same assuming only a magnetic source $M_j = \delta(x - x_s)e_j$: $G_{ij}^{E\mid H}$ is the ith electrical (E) component of Green's function induced by jth component of magnetic (H) source; $G_{ij}^{H|H}$ is the *i*th magnetic (H) component of Green's function induced by *j*th component of magnetic (H) source.

$$\begin{cases} \nabla \times G_{ij}^{E|H} - i\omega\mu G_{ij}^{H|H} &= \delta(x - x_s)e_j \\ \nabla \times G_{ij}^{H|H} - \sigma G_{ij}^{E|H} &= 0 \end{cases},$$
(3)

which defines another two Green's function $G_{ij}^{E|H}$ and $G_{ij}^{H|H}$. Similar to equation (2), the representation theorem gives

$$E_i = G_{ij}^{E|H} M_j, H_i = G_{ij}^{H|H} M_j.$$
(4)

The total electrical and magnetic fields in the coupled system is then the superposition of two contributions:

$$E_{i} = \sum_{j} G_{ij}^{E|E} J_{j} + G_{ij}^{E|H} M_{j}, \quad H_{i} = \sum_{j} G_{ij}^{H|E} J_{j} + G_{ij}^{H|H} M_{j}.$$
 (5)

It is shown that the reciprocity for EM system holds in the following form

$$\begin{cases}
G_{ij}^{E|E}(x_s|x_r) = G_{ji}^{E|E}(x_r|x_s), \\
G_{ij}^{H|H}(x_s|x_r) = G_{ji}^{H|H}(x_r|x_s), \\
G_{ij}^{H|E}(x_s|x_r) = -G_{ji}^{E|H}(x_r|x_s).
\end{cases} (6)$$

Without magnetic source, we have

$$\underbrace{\begin{bmatrix} E_{x} \\ E_{y} \\ E_{z} \end{bmatrix}}_{E} = \underbrace{\begin{bmatrix} G_{xx}^{E|E} & G_{xy}^{E|E} & G_{xz}^{E|E} \\ G_{yx}^{E|E} & G_{yy}^{E|E} & G_{yz}^{E|E} \\ G_{zx}^{E|E} & G_{zy}^{E|E} & G_{zz}^{E|E} \end{bmatrix}}_{G^{E|E}} \underbrace{\begin{bmatrix} J_{x} \\ J_{y} \\ J_{z} \end{bmatrix}}_{J_{s}}, \underbrace{\begin{bmatrix} H_{x} \\ H_{y} \\ H_{z} \end{bmatrix}}_{H} = \underbrace{\begin{bmatrix} G_{xx}^{H|E} & G_{xy}^{H|E} & G_{xz}^{H|E} \\ G_{yx}^{H|E} & G_{yy}^{H|E} & G_{yz}^{H|E} \\ G_{zx}^{H|E} & G_{zy}^{H|E} & G_{zz}^{H|E} \end{bmatrix}}_{G^{H|E}} \underbrace{\begin{bmatrix} J_{x} \\ J_{y} \\ J_{z} \end{bmatrix}}_{J_{s}}.$$

$$\underbrace{(7)}$$

If $J_s|_{x=x_s} = (1,0,0)^{\mathrm{T}}$, we have the 1st column of the matrix $G^{E|E}$ and $G^{H|E}$ extracted from vector field T_s . extracted from vector fields E and H

$$\begin{bmatrix}
E_{x}(x_{r}) \\
E_{y}(x_{r}) \\
E_{z}(x_{r})
\end{bmatrix} = \begin{bmatrix}
G_{xx}^{E|E}(x_{r}|x_{s}) \\
G_{yx}^{E|E}(x_{r}|x_{s}) \\
G_{zx}^{E|E}(x_{r}|x_{s})
\end{bmatrix} = \begin{bmatrix}
G_{xy}^{E|E}(x_{s}|x_{r}) \\
G_{xy}^{E|E}(x_{s}|x_{r}) \\
G_{xz}^{E|E}(x_{s}|x_{r})
\end{bmatrix},$$
(8a)
$$\begin{bmatrix}
H_{x}(x_{r}) \\
H_{y}(x_{r}) \\
H_{z}(x_{r})
\end{bmatrix} = \begin{bmatrix}
G_{xx}^{H|E}(x_{r}|x_{s}) \\
G_{yx}^{H|E}(x_{r}|x_{s}) \\
G_{xy}^{H|E}(x_{s}|x_{r})
\end{bmatrix} = - \begin{bmatrix}
G_{xx}^{E|H}(x_{s}|x_{r}) \\
G_{xy}^{E|H}(x_{s}|x_{r}) \\
G_{xy}^{E|H}(x_{s}|x_{r})
\end{bmatrix},$$
(8b)

$$\begin{bmatrix} H_x(x_r) \\ H_y(x_r) \\ H_z(x_r) \end{bmatrix} = \begin{bmatrix} G_{xx}^{H|E}(x_r|x_s) \\ G_{yx}^{H|E}(x_r|x_s) \\ G_{zx}^{H|E}(x_r|x_s) \end{bmatrix} = - \begin{bmatrix} G_{xx}^{E|H}(x_s|x_r) \\ G_{xy}^{E|H}(x_s|x_r) \\ G_{xz}^{E|H}(x_s|x_r) \end{bmatrix},$$
(8b)

where the last equality comes from the reciprocity in (6). It implies that by switching the source and receiver position, we can reproduce the E_x , E_y and E_z response from the E_x -channel of the receiver at source position by repeating the modeling using the electrical sources at receiver location, i.e., $J_s|_{x=x_r} = (1,0,0)^{\mathrm{T}}$, $J_s|_{x=x_r} = (0,1,0)^{\mathrm{T}}$ and $J_s|_{x=x_r} = (0,0,1)^{\mathrm{T}}$. Similarly, we should reproduce $-H_x$, $-H_y$ and $-H_z$ response from the E_x -channel of the receiver at source position by repeating the modeling using the magnetic sources at receiver location, i.e., $M_s|_{x=x_r} = (1,0,0)^T$, $M_s|_{x=x_r} = (0,1,0)^T$ and $M_s|_{x=x_r} = (0,0,1)^T$.

If $J_s|_{x=x_s}=(0,1,0)^{\rm T}$, we have the 2nd column of the matrix $G^{E|E}$ and $G^{H|E}$ extracted from vector fields E and H

$$\begin{bmatrix} E_x(x_r) \\ E_y(x_r) \\ E_z(x_r) \end{bmatrix} = \begin{bmatrix} G_{xy}^{E|E}(x_r|x_s) \\ G_{yy}^{E|E}(x_r|x_s) \\ G_{zy}^{E|E}(x_r|x_s) \end{bmatrix} = \begin{bmatrix} G_{yx}^{E|E}(x_s|x_r) \\ G_{yy}^{E|E}(x_s|x_r) \\ G_{yz}^{E|E}(x_s|x_r) \end{bmatrix},$$
(9a)

$$\begin{bmatrix}
H_x(x_r) \\
H_y(x_r) \\
H_z(x_r)
\end{bmatrix} = \begin{bmatrix}
G_{xy}^{H|E}(x_r|x_s) \\
G_{yy}^{H|E}(x_r|x_s) \\
G_{zy}^{H|E}(x_r|x_s)
\end{bmatrix} = - \begin{bmatrix}
G_{yx}^{E|H}(x_s|x_r) \\
G_{yy}^{E|H}(x_s|x_r) \\
G_{yz}^{E|H}(x_s|x_r)
\end{bmatrix}.$$
(9b)

By switching the source and receiver position, we obtain the E_x , E_y and E_z response from the E_y -channel of the receiver at source position by repeating the modeling placing the sources at receiver location, i.e., $J_s|_{x=x_r}=(1,0,0)^{\rm T}$, $J_s|_{x=x_r}=(0,1,0)^{\rm T}$ and $J_s|_{x=x_r}=(0,0,1)^{\rm T}$. Also, we obtain $-H_x$, $-H_y$ and $-H_z$ response from the E_y -channel of the receiver at source position by repeating the modeling placing the magnetic sources at receiver location, i.e., $M_s|_{x=x_r}=(1,0,0)^{\rm T}$, $M_s|_{x=x_r}=(0,1,0)^{\rm T}$ and $M_s|_{x=x_r}=(0,0,1)^{\rm T}$.