

BIRLA INSTITUTE OF TECHNOLOGY & SCIENCE, PILANI WORK INTEGRATED LEARNING PROGRAMMES COURSE HANDOUT

Part A: Content Design

Course Title	Mathematical Foundations for Data Science
Course No(s)	DSECL ZC416
Credit Units	4
Course Author	G Venkiteswaran
Version No	3
Date	15.04.2021
Lead Instructor	Jyotsana Grover

Course Description

Vector and matrix algebra, systems of linear algebraic equations and their solutions; eigenvalues, eigenvectors and diagonalization of matrices; Calculus and optimization; Counting principles and combinatorics

Course Objectives

No	Objective- The course aims to	
CO1	Introduce concepts in linear algebra and to use it as a platform to model physical	
	problems.	
CO2	Provide techniques for analytical and numerical solutions of linear equations	
CO3	Utilize concepts of linear algebra and calculus in solving optimization problems.	
CO4	Introduce combinatorics, induction and counting principles	

Text Book(s)

_			
	No	Author(s), Title, Edition, Publishing House	
	T1	Erwin Kreyszig, Advanced Engineering Mathematics, Wiley India, 10th Edition, 2015 (earlier	
		editions are also okay)	
	T2	Kenneth H. Rosen, Discrete Mathematics and its Applications, Tata McGraw Hill, 7th Ed., 2011.	

Reference Book(s) & other resources

No	Author(s), Title, Edition, Publishing House	
R1	K Hoffman and R Kunze, Linear Algebra, Pearson Education, 2 nd Edition, 2005.	
R2	Kolman, Busby, Ross and Rehman, Discrete Mathematical Structures for Computer Science,	
	Pearson Education, 6th Edition, 2017	
R3	Operations Research: An Introduction, Pearson Education, 10th Edition, 2017. (Earlier editions	
	are also okay)	

Content Structure

No	Title of the module	References
M1	1. Matrices, rank, determinants, solution of linear systems – analytical	T1: Sec 7.3,
	techniques	20.1, 20.2,
	1.1. Solution of linear systems $(A (m \times n) \times (n \times 1) = b (m \times 1); A has$	20.3
	rank r.) – just a recapitulation	
	1.2. Solution using Gauss elimination with and without pivoting and	
	operations count	
	1.3 LU decomposition methods	
	1.4 Iterative methods for linear systems	
M2	2. Vector spaces and subspaces, basis and dimensions, Linear	T1: Sec 7.4,
	transformations and properties	7.9
	2.1 Vector spaces, inner product spaces, properties, LI and LD, bases and dimensions, LT	
	2.2. LT and Rank-Nullity theorem	
	• NS(A), RS(A) and CS(A) – illustration	
M3	3. Eigenvalues, Eigenvectors and singular values	T1: Sec
		8.1,8.7, 20.7,
	3.1. Eigenvalues and eigenvectors of special matrices and their properties	20.8
	3.2. Eigenbases and diagonalization	
	3.3. Gerschgorin's Theorem	
	3.4 Power Method	

M4	4. Decomposition methods (Eigenvalue, decomposition, QR and SVD)	T1: Sec 20.9
	Gram-Schmidt Orthogonalization procedure	Class notes
	QR decomposition	
	• SVD	
	Dimensionality reduction	
M5	Linear programming problems	Class notes
	• Motivation – 3 problems	
	Application of LA to Simplex method	
M6	6. Calculus and Optimization (applications from probability theory to be used for exemplification in Calculus)	Class notes
	6.1 Continuous functions on closed intervals, differentiation (1d case) 6.2 Taylor series expansion	
	6.3 Maxima and minima 6.4 Integral properties (cdf and pdf, even and odd integrands, integration by parts and so on) for 1d	
	7. Calculus of several variables	
	 Review limits, continuity and differentiability (graphically and algebraically) 	
	Vector calculus and some of the identities	
	Maxima and minima (unconstrained)Steepest gradient method	
	Lagrange multipliers (for more number of constraints)	

M7	8. Counting principles and combinatorics	T2: 5.1-5.3	Sec
	Induction principle		
	Mathematical induction		
	Strong induction		
	Recursive definition and structural induction		
		T2:	Sec
	Counting Principles	6.1-6.4	
	Basics of counting		
	Pigeonhole principle	T2. C.	0.1
	Permutations and combinations	T2: Sec 8.2, 8.4	8.1,
	Binomial coefficients and identities		
	Advanced counting		
	Application of recurrence relations		
	Solving linear recurrence relations		
	Generating functions		

Learning Outcomes:

Dear ming (Bear ming Outcomes.	
No	Learning Outcomes	
LO1	Students will be able to effectively use matrix algebra tools to analyse and solve systems of linear	
	equations.	
LO2	Students will be able to use some numerical methods to solve linear systems of equations	
LO3	Students would be able to use methods in linear algebra to solve linear programming problems	
	and methods in calculus to solve non-linear optimization problems.	
LO4	Students will be able to use the methods of counting principles and combinatorics	

Part B: Contact Session Plan

Academic Term	First Semester 2021-2022	
Course Title	Mathematical Foundations for Data Science	
Course No	DSECL ZC416	
Lead Instructor	Jyotsana Grover	

Course Contents

Contact Hours (Week)	List of Topic Title	Text/Ref Book/external resource
1	 Matrices, rank, determinants, solution of linear systems – analytical techniques Solution of linear systems (A (m x n) x (n x 1) = b (m x 1); A has rank r.) – just a recapitulation Solution using Gauss elimination with and without pivoting and operations count LU decomposition methods 	T1: Sec 7.3, 20.1, 20.2
2	Numerical solution for linear systems • LU decomposition methods (Continued) • Iterative methods for linear systems	T1: Sec 20.2, 20.3
3	Vector spaces and subspaces, basis and dimensions, Linear transformations and properties • Vector spaces, inner product spaces, properties, LI and LD, bases and dimensions, LT • LT and Rank-Nullity theorem • NS(A), RS(A) and CS(A) – illustration	T1: Sec 7.9

4	Eigenvalues and eigenvectors	T1: Sec 8.1,8.7, 20.7, 20.8
	• Eigenvalues and eigenvectors of special matrices and their properties	
	Eigenbases and diagonalization	
	Gerschgorin's Theorem	
	Power Method	
5-6	Decomposition methods (Eigenvalue, decomposition, QR and SVD)	T1: Sec 20.9
	Gram-Schmidt Orthogonalization procedure	Class notes
	QR decomposition	
	• SVD	
	Dimensionality reduction	
7 -8	Application of linear algebra in optimization. Modelling linear programming problem and the basics of Simplex algorithm and sensitivity analysis.	Class notes
	Model a LPP in construction of buildings.	
	 Model the currency arbitrage optimization problem. Work out the graphical method of solution in the case 	
	of 2 variable case	
	Simplex method for simple cases	
	• Outline how Gauss Jordan produces the inverse matrix.	
	Mid-Semester exam; all the topics covered above would be there for the test.	
9	Properties of functions	Class notes
	 Continuous functions on closed intervals, differentiation (1d case) 	
	Taylor series expansion	
	Maxima and minima	
	• Integral properties (cdf and pdf, even and off integrands, integration by parts and so on) for 1d	
10	Calculus of several variables	Class notes
	 Review limits, continuity and differentiability (graphically and algebraically) 	
	Vector calculus and some of the identities	
	Maxima and minima (unconstrained)Steepest gradient method	
	 Lagrange multipliers (for more number of constraints) 	

11-12	Induction principle	T2: Sec 5.1, 5.2, 5.3,
	Recursive definition and structural induction	
	Mathematical induction	
	Strong induction	
13-14	Counting Principles	T2: Sec 6.1, 6.2, 6.3,6.4
	Basics of counting	
	Pigeonhole principle	
	Permutations and combinations	
	Binomial coefficients and identities	
15-16	Advanced counting	T2: Sec 8.1, 8.2, 8.4
	Application of recurrence relations	
	Solving linear recurrence relations	
	Generating functions	

Evaluation Scheme

Legend: EC = Evaluation Component

No	Name	Type	Duration	Weight	Day, Date, Session, Time
1	Assignment 1	Online		10%	To be announced
2	Assignment 2	Online		10%	
3	Quiz 1	Online	*	5%	
4	Quiz 2	Online	*	5%	
5	Quiz 3	Online		5%	
6	Mid-Semester Exam	Open book	120 min	30%	
7	Comprehensive Exam	Open book	120 min	40%	

Important Information

Syllabus for Mid-Semester Test (Open Book): Topics in Weeks 1-8

Syllabus for Comprehensive Exam (Open Book): All topics (in sessions 1 to 16) given in plan of study

Evaluation Guidelines:

- EC-1 consists of two Assignments and two Quizzes (best two out of the three would be taken for grading). Announcements regarding the same will be made in a timely manner.
- For Closed Book tests: No books or reference material of any kind will be permitted. Laptops/Mobiles of any kind are not allowed. Exchange of any material is not allowed.
- For Open Book exams: Use of prescribed and reference text books, in original (not photocopies) is permitted. Class notes/slides as reference material in filed or bound form is permitted. However, loose sheets of paper will not be allowed. Use of calculators is permitted in all exams. Laptops/Mobiles of any kind are not allowed. Exchange of any material is not allowed.
- If a student is unable to appear for the Regular Test/Exam due to genuine exigencies, the student should follow the procedure to apply for the Make-Up Test/Exam. The genuineness of the reason for absence in the Regular Exam shall be assessed prior to giving permission to appear for the Make-up Exam.

It shall be the responsibility of the individual student to be regular in maintaining the self-study schedule as given in the course handout, attend the lectures, and take all the prescribed evaluation components such as Assignment/Quiz, Mid-Semester Test and Comprehensive Exam according to the evaluation scheme provided in the handout.