

CENTRE NATIONAL D'ORIENTATION ET DE PREPARATION AUX
CONCOURS D'ENTREE DANS LES GRANDES ECOLES ET FACULTES
DU CAMEROUN

Préparation au Concourt d'Entrée en Troisième Année de l'ENSP et FGI

Travaux Dirigés

SYSTÈME D'EXPLOITATION

Avec Intelligentsia Corporation, Il suffit d'y croire!!!

698 222 277 / 671 839 797 **fb:** Intelligentsia Corporation

email: contact@intelligentsia-corporation.com

"Vous n'êtes pas un passager sur le train de la vie, vous êtes l'ingénieur."

-- Elly Roselle --

Instructions:

Il est recommandé à chaque étudiant de traiter les exercices de ce recueil (du moins ceux concernés par la séance) avant chaque séance car **le temps ne joue pas en notre faveur**.

Exercice 1:

- 1) Quel est le rôle d'un système d'exploitation ? Les interpréteurs de commandes et les compilateurs font-ils parties du système d'exploitation ?
- 2) Qu'est ce qu'un système multiprogrammé ? Un système de traitement par lots ? Un système en temps partagé ?
- 3) Dans le système UNIX, les véritables appels système sont effectués à partir
 - d'un programme utilisateur
 - d'une commande shell
 - d'une procédure de la bibliothèque standard
 Sont-ils exécutés en mode superviseur ou en mode utilisateur ?
- 4) Comment sont organisés les fichiers dans le système UNIX ? Un utilisateur peut-il accéder à un fichier d'un autre utilisateur ? Si oui, comment ?
- 5) Dans le système UNIX, est-ce que tout processus a un père ? Que se passe-t-il lorsqu'un processus devient orphelin (mort de son père) ? Quand est-ce un processus passe à l'état Zambie ?
- 6) Pour lancer en parallèle plusieurs traitements d'une même application, vous avez le choix entre les appels système fork() et pthread_create(). Laquelle des deux possibilités choisir pourquoi?
- 7) Citez quatre événements qui provoquent l'interruption de l'exécution d'un processus en cours, dans le système UNIX.
- 8) Quel est le rôle de l'ordonnanceur ? Décrire brièvement l'ordonnanceur du système UNIX ? Favorise-t-il les processus interactifs ?
- 9) Pourquoi le partage de données pose des problèmes dans un système multiprogrammé en temps partagé ? Le système UNIX permet-il de contrôler les accès aux données partagées ? Qu'est-ce qu'une section critique ?

Exercice 2: ORDONNANCEMENT DES PROCESSUS

Considérons n processus p1, p2, ..., pn, arrivent en même temps et insèrent dans cet ordre dans la file des processus prêts. Ces processus ne font pas d'e/s et leurs temps d'exécution sont respectivement c1,

- ... et cn. le temps de commutation est supposé nul.
- 1) quel est le temps d'attente moyen des n processus dans chacun des cas suivants :
- d'un ordonnanceur circulaire avec un quantum qt.
- d'un ordonnanceur sans préemption fonctionnant selon la

discipline premier arrive, premier servi.

dans quel cas, obtient-on un meilleur temps d'attente moyen?

2) supposons que le nombre de processus est 5 et que leurs temps d'exécution sont égaux a :

2*qt+ r avec r<qt.

- montrez comment les processus vont utiliser le processeur dans le cas d'un ordonnanceur circulaire avec un quantum qt. calculer le temps moyen de séjour des processus.
- quel serait le temps moyen de séjour des 5 processus dans le cas d'un ordonnanceur sans préemption fonctionnant selon la discipline premier arrive, premier servi.

dans quel cas, obtient-on un meilleur temps de séjour moyen?

Exercice 3: ORDONNANCEMENT DES PROCESSUS

On considère 4 processus, A, B, C, D. On suppose que l'exécution des processus nécessite :

- Pour A: 7 unités de temps CPU, 3 unités de temps d'E/S et 5 unités de temps CPU.
- Pour B : 6 unités de temps CPU, 4 unités de temps d'E/S, 4 unités de temps CPU.
- Pour C: 5 unités de temps CPU.
- Pour D : 1 unité de temps CPU, 4 unités de temps d'E/S et 2 unités de temps CPU.

On suppose que:

- A se présente en premier, à l'instant 0,
- B se présente à l'instant 1,
- C se présente à l'instant 9,
- D se présente à l'instant 12.

Montrez comment les 4 processus vont utiliser le processeur dans chacun des cas suivants :

- 1) Chaque processus a son propre périphérique d'E/S et l'ordonnanceur fonctionne selon Premier Arrivée Premier Servi PAPS (sans préemption).
- 2) Chaque processus a son propre périphérique d'E/S et l'ordonnanceur utilise l'algorithme du tourniquet, avec un quantum de 5. Le temps de commutation est égal à 0. Donnez, dans ce cas, les temps de séjour des processus A, B, C et D.
- 3) Les trois processus utilisent le même périphérique d'E/S dont la file d'attente est gérée premier arrivé premier servi. L'ordonnanceur du processeur utilise l'algorithme du tourniquet, avec un quantum de 5. Le temps de commutation est supposé égal à 0.

Exercise 4: SYNCHRONISATION DES PROCESSUS

Deux villes A et B sont reliés par une seule voie de chemin de fer. Les trains peuvent circuler dans le même sens de A vers B ou de B vers A. Mais, ils ne peuvent pas circuler dans les sens opposés. On considère deux classes de processus : les trains allant de A vers B (Train AversB) et les trains allant de B vers A (Train BversA). Ces processus se décrivent comme suit :

Train AversB:

Demande d'accès à la voie par A;

Circulation sur la voie de A vers B:

Sortie de la voie par B;

Train BversA:

Demande d'accès à la voie par B;

Circulation sur la voie de B vers A;

Sortie de la voie par A;

- 1) Parmi les modèles étudiés en classe (producteur/consommateur, lecteur/rédacteur, les philosophes), ce problème correspond à quel modèle ?
- 2) Ecrire sous forme de commentaires en utilisant les sémaphores, les opérations P et V, les codes de demandes d'accès et de sorties, de façon à ce que les processus respectent les règles de circulation sur la voie unique.