Домашнее задание 2. Курс «Алгебра». 2022—2023 учебный год. БПИ-228. Вариант 31

- 1. Пусть $z=\frac{3}{2}-\frac{3\sqrt{3}i}{2}$. Вычислить значение $\sqrt[4]{z^2}$, для которого число $\frac{\sqrt[4]{z^2}}{1-\sqrt{3}i}$ имеет аргумент $\frac{7\pi}{6}$.
- 2. Решить систему уравнений:

$$\begin{cases} x(4-7i) + y(14-7i) = 140 - 110i \\ x(-5-11i) + y(8+6i) = 298 + 16i \end{cases}$$

- 3. Найти корни многочлена $x^6 + 10x^5 + 44x^4 + 86x^3 137x^2 1584x 3060$ и разложить его на множители над \mathbb{R} и \mathbb{C} , если известны корни $x_1 = -4 + 2i$, $x_2 = -1 + 4i$, $x_3 = 3$.
- 4. Даны 3 комплексных числа: 16+7i, 16-24i, -25+22i. Найти число z, образующее параллелограмм с данными тремя на комплексной плоскости.
- 5. Даны числа $z_1=1, z_2=\frac{\sqrt{3}}{2}+\frac{i}{2}$ соседние комплексные корни степени n числа z. Найти степень n и исходное число.
- 6. На комплексной плоскости нарисуйте область, заданную системой $(arg(z) \in (-\pi, \pi])$:

$$\begin{cases} |z - 1 - 2i| < 2\\ |arg(z + 2 + 3i)| < \frac{2\pi}{3} \end{cases}$$

7. Даны 3 некомпланарных вектора a = (0, -3, 3), b = (-7, -8, 2), c = (-2, -10, 8). Найдите вектор x, удовлетворяющий системе уравнений:

$$(a, x) = \alpha, \quad (b, x) = \beta, \quad (c, x) = \gamma$$

- 8. Дана точка A(4, -3, 4) и плоскость P: 4x 16y + 18z + 162 = 0. Найти координаты точки A_0 , расположенной симметрично точке A относительно плоскости P.
- 9. Даны точки A(2, -7, 8), $M_1(-3, 3, 4)$, $M_2(1, 0, 4)$. Написать каноническое уравнение прямой L, проходящей через точки M_1 и M_2 . Найти координаты точки A_0 , расположенной симметрично точки A относительно прямой L.
- 10. Заданы две прямые L_1 и L_2 своими общими уравнениями

$$L_1: \begin{cases} 23x + 9y + 28z - 280 = 0 \\ 18x + 11y + 12z - 130 = 0 \end{cases} \qquad L_2: \begin{cases} 5x - 2y + 16z - 1005 = 0 \\ -15x - 2y - 11z + 926 = 0 \end{cases}$$

Написать каноническое уравнение прямой, являющейся общим перпендикуляром к L_1 и L_2 .