0.1 Serii de numere reale

Definiția 1.1 SERIE DE NUMERE REALE= prechea ordonata $((u_n), (s_n))$

$$u_n \in R$$

$$s_n = u_1 + u_2 + \dots + u_n, \ \forall n \in N$$

si se noteaza cu $\sum\limits_{n=1}^{\infty}u_n=\sum\limits_{n\geq 1}u_n=\sum\limits_{n\in N}u_n=\sum\limits_nu_n.$

- $\forall n \in N$:

 u_n s.n. TERMENUL GENERAL al seriei

 s_n s.n. SUMA PARTIALA DE RANG n a seriei

- (u_n) s.n. sirul termenilor seriei
- (s_n) s.n. sirul sumelor partiale.

Definiția 1.2 Seria $\sum_{n} u_n$ s.n.CONVERGENTA daca sirul sumelor partiale, (s_n) e convergent.

Daca $\lim_{n\to\infty} s_n = s \in \overline{R}$ atunci $\sum_n u_n$ are suma s, si scriem $\sum_n u_n = s$.

Teorema 1.3 (CRITERIUL GENERAL DE CONVERGENTA AL LUI CAUCHY) $\sum_{n} u_n \ e \ convergenta \Longleftrightarrow$

$$\forall \varepsilon>0, \exists n_{\varepsilon}>0 \ a.i. \ \forall n,p\in N, \ n\geq n_{\varepsilon}, \ |u_{n+1}+u_{n+2}+\ldots+u_{n+p}|<\varepsilon.$$

Teorema 1.4

$$\sum_{n} u_n \ e \ convergenta \Longrightarrow \lim_{n \to \infty} u_n = 0.$$

Observația 1.5

a) Teorema de mai sus e in general folosita pentru a demonstra ca o serie nu este convergenta (vezi asemanarea cu criteriul lui Heine la siruri):adica, daca descoperim ca

$$\lim_{n\to\infty}u_n\neq0\Longrightarrow\sum_nu_n\text{ e divergenta}.$$

b) exista serii pentru care $\lim_{n\to\infty}u_n=0$ dar nu sunt convergente, de exemplu, seria armonica

$$\sum_{n=1}^{\infty} \frac{1}{n} = +\infty.$$

Teorema 1.6

$$\forall m \in \mathbb{N}, \sum_{n} u_n \ e \ convergenta \iff \sum_{n=m}^{\infty} u_n \ e \ convergenta.$$

Teorema 1.7 Daca
$$\sum_{n=1}^{\infty} u_n = s$$
 si $\sum_{n=1}^{\infty} v_n = t \Longrightarrow \sum_{n=1}^{\infty} (au_n + bv_n) = as + bt$.

Teorema 1.8 Daca $\sum_{n} u_n$ e convergenta, atunci $\lim_{n\to\infty} r_n = 0$, cand $r_n = s - s_n$.

Exemple importante de serii:

a) SERIA GEOMETRICA

$$\sum_{n=1}^{\infty} q^{n-1}, \ q \in R, \ fixat.$$

Atunci
$$s_n = 1 + q + \dots + q^{n-1} = \begin{cases} \frac{1-q^n}{1-q} : q \neq 1 \\ 1 : q = 1 \end{cases}$$

 \sin

$$\lim_{n \to \infty} s_n = \begin{cases} \frac{1}{1-q} : |q| < 1 \\ -\infty : q \ge 1 \\ \exists : q < -1 \end{cases}$$

atunci, seria e convergenta, cu suma $\frac{1}{1-q}$ daca |q|<1 si divergenta in rest.

b) SERIA ARMONICA

$$\sum_{n=1}^{\infty} \frac{1}{n} = +\infty \text{ deci e divergenta.}$$

Dem. se face usor cu criteriul lui Cauchy.

0.2 Serii cu termeni pozitivi

Definiția 2.1 $\sum_{n} u_n$ s.n. SERIE CU TERMENI POZITIVI daca $u_n > 0 \ \forall n \in \mathbb{N}$.

Teorema 2.2 $Daca \sum_{n} u_n \ e \ o \ stp \ atunci$

$$\sum_{n} u_n \ e \ convergenta \iff (s_n) \ e \ marginit.$$

(pt. ca daca avem o stp., (s_n) e stricit crescator).

Teorema 2.3 (PRIMUL CRITERIU AL COMPARATIEI)

Daca
$$\sum_{n} u_n$$
 si $\sum_{n} v_n$ sunt stp a.i. $\exists a > 0, \exists n_0 \in N$ cu

$$u_n \leq av_n \ \forall n \geq n_0$$

atunci

$$\sum_{n} v_n \text{ convergenta} \Longrightarrow \sum_{n} u_n \text{ convergenta.}$$

$$\sum_{n} u_n$$
 divergenta $\Longrightarrow \sum_{n} v_n$ divergenta.

Exemplul 2.4 $\sum_{n} \frac{1}{\sqrt{n}}$ e divergenta (comparatie cu $\sum_{n} \frac{1}{n}$).

Teorema 2.5 (AL DOILEA CRITERIU AL COMPARATIE) $Daca \sum_{n} u_n \ si \sum_{n} v_n \ sunt \ stp \ a.i. \exists \ \lim_{n \to \infty} \frac{u_n}{v_n} \in [0, +\infty] \ atuncis$

1.
$$\lim_{n\to\infty} \frac{u_n}{v_n} \in [0,+\infty] \Longrightarrow \sum_n u_n \text{ si } \sum_n v_n \text{ au aceeasi natura;}$$

$$2. \lim_{n \to \infty} \frac{u_n}{v_n} = 0 \Longrightarrow \begin{cases} a) \sum_{n} v_n \ convergenta \Longrightarrow \sum_{n} u_n \ convergenta; \\ b) \sum_{n}^{n} u_n \ divergenta \Longrightarrow \sum_{n}^{n} v_n \ divergenta; \end{cases}$$

$$3. \lim_{n \to \infty} \frac{u_n}{v_n} = +\infty \Longrightarrow \begin{cases} a) \sum_{n} u_n \ convergenta \Longrightarrow \sum_{n} v_n convergenta; \\ b) \sum_{n}^{n} v_n \ divergenta \Longrightarrow \sum_{n}^{n} u_n \ divergenta; \end{cases}$$

Teorema 2.6 (AL TREILEA CRITERIU AL COMPARATIE)

 $Daca \sum_{n} u_n \ si \sum_{n} v_n \ sunt \ stp \ a.i.$

$$\exists n_0 \in N \ a.i. \ \frac{u_{n+1}}{u_n} \le \frac{v_{n+1}}{v_n}, \ \forall n \ge n_0$$

atunci:

$$1. \sum_{n} v_{n} \ convergenta \Longrightarrow \sum_{n} u_{n} \ convergenta.$$

$$2. \sum_{n} u_{n} \ divergenta \Longrightarrow \sum_{n} v_{n} \ divergenta.$$

Exemplul 2.7 $\sum_{n} \frac{1}{n^2}$ e convergenta (comparatie cu $\sum_{n} \frac{1}{n(n+1)}$).

Teorema 2.8 (CRITERIUL RAPORTULUI, AL LUI D'ALAMBERT) $\sum_{n} u_n$ e o stp. Atunci:

- **1.** Daca $\exists q \in [0, 1[, \exists n_0 \in N \text{ a.i. } \frac{u_{n+1}}{u_n} \leq q, \forall n \geq n_0 \Longrightarrow \sum_n u_n \text{ e convergenta.}$
- **2.** Daca $\exists n_0 \in N \text{ a.i. } \frac{u_{n+1}}{u_n} \geq 1, \ \forall n \geq n_0 \implies \sum_n u_n \text{ e divergenta.}$

Propoziția 2.9 (CONSECINTA CRITERIULUI RAPORTULUI)
$$\sum_{n} u_n \ e \ o \ stp \ a.i. \ \exists \lim_{n\to\infty} \frac{u_{n+1}}{u_n}. \ Atunci$$

- 1. $Daca \lim_{n\to\infty} \frac{u_{n+1}}{u_n} < 1 \Longrightarrow \sum_n u_n \ e \ convergenta.$
- **2.** $Daca \lim_{n\to\infty} \frac{u_{n+1}}{u_n} > 1 \implies \sum_n u_n \ e \ divergenta.$

Exemplul 2.10 $\sum_{n} \frac{2^{n} n!}{n^{n}}$ e convergenta.

Exemplul 2.11 $\sum_{n} \frac{3^{n} n!}{n^{n}}$ e divergenta.

Observația 2.12 daca $\lim_{n\to\infty}\frac{u_n}{u_{n+1}}=1$ nu putem aplica consecinta criteriului raportului (de ex. $\sum_n \frac{1}{n}$ e divergenta si $\sum_n \frac{1}{n(n+1)}$ e convergenta).

Teorema 2.13 (CRITERIUL RADACINII, AL LUI CAUCHY)
$$\sum_{n} u_n \ e \ o \ stp. \ Atunci:$$

- **1.** Daca $\exists q \in [0, 1[, \exists n_0 \in N \text{ a.i. } \sqrt[n]{u_n} \leq q \ \forall n \geq n_0 \implies \sum_n u_n \text{ e convergenta.}$
- **2.** Daca $\exists n_0 \in N \text{ a.i. } \sqrt[n]{u_n} \ge 1, \ \forall n \ge n_0 \implies \sum_n u_n \text{ e divergenta.}$

Teorema 2.14 (CONSECINTA CRITERIULUI RADACINII)
$$\sum_{n} u_n \ e \ o \ stp \ a.i. \exists \lim_{n\to\infty} \sqrt[n]{u_n}. \ Atunci:$$

1.
$$Daca \lim_{n\to\infty} \sqrt[n]{u_n} < 1 \Longrightarrow \sum_n u_n \ e \ convergenta.$$

$$2.Daca \lim_{n\to\infty} \sqrt[n]{u_n} > 1 \Longrightarrow \sum_n u_n \ e \ divergenta.$$

Exemplul 2.15 $\sum_{n} \frac{n^{r}}{2^{n}}, r > 0$ e convergenta.

Exemplul 2.16 $\sum_{n} (\sqrt[3]{n^3 + 3n^2 + 1} - \sqrt[3]{n^3 - n^2 + 1})^n$ e divergenta.

Observația 2.17 Daca $\lim_{n\to\infty} \sqrt[n]{u_n} = 1$ criteriul radacinii nu ne ofera nici o conluzie.

Teorema 2.18 (CRITERIUL LUI E.E. KUMMER) $\sum_{n} u_n \ e \ o \ stp. \ Atunci:$

1. $Daca \exists (a_n) \subseteq R_+, \exists r > 0, \exists n_0 \in N \ a.i.$

$$a_n \frac{u_n}{u_{n+1}} - a_{n+1} > r$$
, $\forall n \ge n_0 \Longrightarrow \sum_n u_n \ e \ convergenta$.

2. $Daca \exists (a_n) \subseteq R_+ \ a.i. \sum_{n = 1 \ a_n} e \ divergenta \ si \ \exists n_0 \in N \ a.i.$

$$a_n \frac{u_n}{u_{n+1}} - a_{n+1} \le 0$$
, $\forall n \ge n_0 \Longrightarrow \sum_n u_n$ e divergenta.

Teorema 2.19 (CRITERIUL LUI J.L. RAABE-J.DUHAMEL) $\sum_{n} u_n \ e \ o \ stp. \ Atunci:$

1. $Daca \exists q \in]1, +\infty[, \exists n_0 \in N \ a.i.$

$$n\left(\frac{u_n}{u_{n+1}}-1\right) \ge q$$
, $\forall n \ge n_0 \Longrightarrow \sum_n u_n \ e \ convergenta$.

2. $Daca \exists n_0 \in N \ a.i.$

$$n\left(\frac{u_n}{u_{n+1}}-1\right) \le 1$$
, $\forall n \ge n_0 \Longrightarrow \sum_n u_n \ e \ divergenta.$

Teorema 2.20 (CONSECINTA CRITERIULUI LUI RAABE-DUHAMEL) $\sum_{n} u_n \ e \ o \ stp \ a.i. \ \exists \lim_{n\to\infty} n\left(\frac{u_n}{u_{n+1}}-1\right) A tunci:$

$$1.Daca \lim_{n\to\infty} n\left(\frac{u_n}{u_{n+1}}-1\right) > 1 \Longrightarrow \sum_n u_n \ e \ convergenta.$$

2.
$$Daca \lim_{n\to\infty} n\left(\frac{u_n}{u_{n+1}}-1\right) < 1 \Longrightarrow \sum_n u_n \ e \ divergenta.$$

Exemplul 2.21 $\sum_{n} \frac{n!}{a(a+1)...(a+n-1)}$ e convergenta $\iff a > 2$.

Teorema 2.22 (CRITERIUL CONDENSARII, A LUI A.L.CAUCHY)

 $\sum_{n} u_n$ o stp a.i. (u_n) e descrescator. Atunci

$$\sum_{n} u_n \ si \ \sum_{n} 2^n u_{2^n} \ au \ aceeasi \ natura.$$

Exemplul 2.23 SERIA ARMONICA GENERALIZATA

$$\sum_{N} \frac{1}{n^a}$$

ea are acceasi natura cu $\sum_n 2^n \frac{1}{(2^n)^a} = \sum_n \left(\frac{1}{2^{a-1}}\right)^n,$

convergenta $\iff a > 1$

divergenta $\iff a \leq 1$.

0.3 Serii cu termeni oarecare

Teorema 3.1 (CRITERIUL LUI ABEL-DIRICHLET)

 $\sum_{n} u_n$ a.i. (s_n) e marginit. Atunci

 $Daca\ (a_n) \subseteq R\ e\ un\ sir \ - descrescator \ - \lim_{n \to \infty} a_n = 0 \implies seria\ \sum_n a_n u_n\ e\ convergenta.$

Definiția 3.2 Se numeste SERIE ALTERNATA o serie de forma

$$\sum_{n} (-1)^n u_n, \text{ cu } u_n > 0 \ \forall n \in \mathbb{N}.$$

Teorema 3.3 (TEOREMA LUI LEIBNIZ)

Daca sirul
$$(u_n)$$
 e $-$ descrescator $-$ lim $_{n\to\infty}u_n=0$ \Longrightarrow seria alternata $\sum_n (-1)^n u_n$ e convergenta.

Exemplul 3.4 SERIA ARMONICA ALTERNATA

$$\sum_{n} \frac{(-1)^{n+1}}{n}$$

e convergenta, pentru ca $\frac{1}{n} \to 0$.

Definiția 3.5 $\sum_n u_n$ s.n. ABSOLUT CONVERGENTA daca $\sum_n |u_n|$ e convergenta.

Teorema 3.6 Daca o serie de numere reale e abosolut convergenta \implies e convergenta.

Definiția 3.7 O serie s.n. SEMICONVERGENTA daca e convergenta, dar nu e si absolut convergenta.

Exemplul 3.8 $\sum_{n} \frac{(-1)^{n+1}}{n}$ e semiconvergenta.