#### (19) World Intellectual Property Organization International Bureau





# (43) International Publication Date 15 February 2001 (15.02.2001)

#### PCT

# (10) International Publication Number WO 01/11029 A1

(51) International Patent Classification7: 15/82, C07K 14/24, C12N 15/11

C12N 9/52,

(21) International Application Number: PCT/US00/22237

(22) International Filing Date: 11 August 2000 (11.08.2000)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data: 60,148,356

11 August 1999 (11.08.1999) US

- (71) Applicant: DOW AGROSCIENCES LLC [US/US]; 9330 Zionsville Road, Indianapolis, IN 46268 (US).
- (72) Inventors: PETELL, James, K.; 16825 Meyer Lane, Grass Valley, CA 95949 (US). MERLO, Donald, J.; 11845 Durbin Drive, Carmel, IN 46032 (US). HERMAN, Rod, A.; 11153 West 500 South. New Ross, IN 47968 (US). ROBERTS, Jean, L.; 26035 State Road 19, Arcadia, IN 46030 (US). GUO, Lining; 3212 Summit Ridge Loop, Morrissville, NC 27560 (US). SCHAFER, Barry, W.; 1429 Lighthouse Point, Cicero, IN 46034 (US). SUKHAPINDA, Kitisri; 4748 Ashwood Court, Zionsville, IN 46077 (US). MERLO, Ann, Owens; 11845 Durbin Drive, Carmel, IN 46032 (US).

- (74) Agent: STUART, Donald, R.; Dow AgroSciences LLC. 9330 Zionsville Road, Indianapolis, IN 46268 (US).
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IS, JP, KE, KG, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW.
- (84) Designated States (regional): ARIPO patent (GH. GM, KE. LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

#### Published:

- With international search report.
- Before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments.

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

EST AVAILABLE COPY

(54) Title: TRANSGENIC PLANTS EXPRESSING PHOTORHABDUS TOXIN

(57) Abstract: Novel polynucleotide sequences that encode insect toxins TcdA and TcbA have base compositions that differ substantially from the native genes, making them more similar to plant genes. The new sequences are suitable for use for high expression in both monocots and dicots. Transgenic plants with a genome comprising a nucleic acid of SEQ ID NO: 3 or SEQ ID NO:4 are insect resistant.

# TRANSGENIC PLANTS EXPRESSING PHOTORHABDUS TOXIN BACKGROUND OF THE INVENTION

As reported in WO98/08932, protein toxins from the genus *Photorhabdus* have been shown to have oral toxicity against insects. The toxin complex produced by *Photorhabdus luminescens* (W-14), for example, has been shown to contain ten to fourteen proteins, and it is known that these are produced by expression of genes from four distinct genomic regions: *tca*, *tcb*, *tcc*, and *tcd*. WO98/08932 discloses nucleotide sequences for the native toxin genes.

Of the separate toxins isolated from Photorhabdus luminescens (W-14), those designated Toxin A and Toxin B are especially potent against target insect species of interest, for example corn rootworm. Toxin A is 15 comprised of two different subunits. The native gene tcdA (SEQ ID NO:1) encodes protoxin TcdA (see SEQ ID NO:1). As determined by mass spectrometry, TcdA is processed by one or more proteases to provide Toxin A. More specifically, TcdA is an approximately 282.9 kDA 20 protein (2516 aa) that is processed to provide TcdAii, an approximately 208.2 kDA (1849 aa) protein encoded by nucleotides 265-5811 of SEQ ID NO:1, and TcdAiii, an approximately 63.5 kDA (579 aa) protein encoded by nucleotides 5812-7551 of SEQ ID NO:1. 25

Toxin B is similarly comprised of two different subunits. The native gene tcbA (SEQ ID NO:2) encodes protoxin TcbA (see SEQ ID NO:2). As determined by mass spectrometry, TcbA is processed by one or more proteases to provide Toxin B. More specifically, TcbA is an approximately 280.6 kDA (2504 aa) protein that is processed to provide TcbAii, an approximately 207.7 kDA (1844 aa) protein encoded by nucleotides 262-5793 of SEQ ID NO:2 and TcbAiii, an approximately 62.9 kDA (573 aa) protein encoded by nucleotides 5794-7512 of SEQ ID NO:2.

30

35

5

The native tcdA and tcbA genes are not well suited for high level expression in plants. They encode multiple destabilization sequences, mRNA splice sites, polyA addition sites and other possibly detrimental sequence motifs. In addition, the codon compositions are not like those of plant genes. W098/08932 gives general guidance on how the toxin genes could be reengineered to more efficiently expressed in the cytoplasm of plants, and describes how plants can be transformed to incorporate the *Photorhabdus* toxin genes into their genomes.

## SUMMARY OF THE INVENTION

In a preferred embodiment, the invention provides novel polynucleotide sequences that encode TcdA and TcbA. The novel sequences have base compositions that differ substantially from the native genes, making them more similar to plant genes. The new sequences are suitable for use for high expression in both monocots and dicots, and this feature is designated by referring to the sequences as the "hemicot" criteria, which is set forth in detail hereinafter. Other important features of the sequences are that potentially deleterious sequences have been eliminated, and unique restriction sites have been built in to enable adding or changing expression elements, organellar targeting signals, engineered protease sites and the like, if desired.

In a particularly preferred embodiment, the invention provides polynucleotide sequences that satisfy hemicot criteria and that comprise a sequence encoding an endoplasmic reticulum signal or similar targeting sequence for a cellular organelle in combination with a sequence encoding TcdA or TdbA.

More broadly, the invention provides engineered nucleic acids encoding functional *Photorhabdus* toxins wherein the sequences satisfy hemicot criteria.

10

15

20

25

30

The invention also provides transgenic plants with genomes comprising a novel sequence of the invention that imparts functional activity against insects.

# 5 BRIEF DESCRIPTION OF SEQUENCES

SEQ ID NO:1 is the native tcdA DNA sequence together with the corresponding encoded amino acid sequence for TcdA.

SEQ ID NO:2 is the native *tcbA* DNA sequence together with the corresponding encoded amino acid sequence for TcbA.

SEQ ID NO:3 is an artificial sequence encoding TcdA that is suitable for expression in monocot and dicot . plants.

15 SEQ ID NO:4 is an artificial sequence encoding TdbA that is suitable for expression in monocot and dicot plants.

SEQ ID NO:5 is an artificial hemicot sequence that encodes the 21 amino acid ER signal peptide of 15 kDa zein from Black Mexican Sweet maize.

SEQ ID NO:6 is an artificial hemicot sequence that encodes for the full-length native TcdA protein (amino acids 22-2537) fused to the modified 15 kDa zein endoplasmic reticulum signal peptide (amino acids 1-21).

#### 25 DETAILED DESCRIPTION

The native *Photorhabdus* toxins are protein complexes that are produced and secreted by growing bacteria cells of the genus *Photorhabdus*. Of particular interest are the proteins produced by the species *Photorhabdus* luminescens. The protein complexes have a molecular size of approximately 1,000 kDa and can be separated by SDS-PAGE gel analysis into numerous component proteins. The toxins contain no hemolysin, lipase, type C phospholipase, or nuclease activities. The toxins exhibit significant toxicity upon ingestion by a number of insects.

20

30

A unique feature of *Photorhabdus* is its bioluminescence. *Photorhabdus* may be isolated from a variety of sources. One such source is nematodes, more particularly nematodes of the genus *Heterorhabditis*.

- Another such source is from human clinical samples from wounds, see Farmer et al. 1989 J. Clin. Microbiol. 27 pp. 1594-1600. These saprohytic strains are deposited in the American Type Culture Collection (Rockville, MD) ATCC #s 43948, 43949, 43950, 43951, and 43952, and are
- incorporated herein by reference. It is possible that other sources could harbor *Photorhabdus* bacteria that produce insecticidal toxins. Such sources in the environment could be either terrestrial or aquatic based.

The genus *Photorhabdus* is taxonomically defined as a member of the Family *Enterobacteriaceae*, although it has certain traits atypical of this family. For example, strains of this genus are nitrate reduction negative, yellow and red pigment producing and bioluminescent. This latter trait is otherwise unknown within the

- 20 Enterobacteriaceae. Photorhabdus has only recently been described as a genus separate from the Xenorhabdus (Boemare et al., 1993 Int. J. Syst. Bacteriol. 43, 249-255). This differentiation is based on DNA-DNA hybridization studies, phenotypic differences (e.g.,
- presence (Photorhabdus) or absence (Xenorhabdus) of catalase and bioluminescence) and the Family of the nematode host (Xenorhabdus; Steinernematidae, Photorhabdus; Heterorhabditidae). Comparative, cellular fatty-acid analyses (Janse et al. 1990, Lett. Appl.
- Microbiol 10, 131-135; Suzuki et al. 1990, J. Gen. Appl. Microbiol., 36, 393-401) support the separation of Photorhabdus from Xenorhabdus.

Currently, the bacterial genus *Photorhabdus* is comprised of a single defined species, *Photorhabdus luminescens* (ATCC Type strain #29999, Poinar et al., 1977, Nematologica 23, 97-102). A variety of related

strains have been described in the literature (e.g., Akhurst et al. 1988 J. Gen. Microbiol., 134, 1835-1845; Boemare et al. 1993 Int. J. Syst. Bacteriol. 43 pp. 249-255; Putz et al. 1990, Appl. Environ. Microbiol., 56, 181-186).

The following toxin producing *Photorhabdus* strains have been deposited:

| strain               | accession number             | date of deposit                  |
|----------------------|------------------------------|----------------------------------|
| W-14                 | ATCC 55397                   | March 5, 1993                    |
| WX1                  | NRRL B-21710                 | April 29, 1997                   |
| WX2                  | NRRL B-21711                 | April 29, 1997                   |
| WX3                  | NRRL B-21712                 | April 29, 1997                   |
| WX4                  | NRRL B-21713                 | April 29, 1997                   |
| WX5                  | NRRL B-21714                 | April 29, 1997                   |
| WX6                  | NRRL B-21715                 | April 29, 1997                   |
| WX7                  | NRRL B-21716                 | April 29, 1997<br>April 29, 1997 |
| WX8                  | NRRL B-21717                 | April 29, 1997                   |
| WX9                  | NRRL B-21718                 | April 29, 1997                   |
| WX10                 | NRRL B-21719                 | April 29, 1997                   |
| WX11                 | NRRL B-21720                 | April 29, 1997                   |
| WX12                 | NRRL B-21721                 | April 29, 1997                   |
| WX14                 | NRRL B-21722                 | April 29, 1997                   |
| WX15                 | NRRL B-21723                 | April 29, 1997                   |
| H9                   | NRRL B-21727                 | April 29, 1997                   |
|                      | NRRL B-21726                 | April 29, 1997                   |
| Hb                   | NRRL B-21725                 | April 29, 1997                   |
| Hm<br>HP88           | NRRL B-21723                 | April 29, 1997                   |
|                      | NRRL B-21724<br>NRRL B-21728 | April 29, 1997                   |
| NC-1                 | NRRL B-21728                 | April 29, 1997                   |
| W30                  | NRRL B-21729<br>NRRL B-21730 | April 29, 1997                   |
| WIR                  | NRRL B-21730<br>NRRL B-21731 | April 29, 1997                   |
| B2                   | ATCC 55878                   | November 5, 1996                 |
| ATCC 43948           | ATCC 55879                   | November 5, 1996                 |
| ATCC 43949           | ATCC 55880                   | November 5, 1996                 |
| ATCC 43950           | ATCC 55880                   | November 5, 1996                 |
| ATCC 53951           | ATCC 55881                   | November 5, 1996                 |
| ATCC 43952           |                              | April 29, 1997                   |
| DEPI                 | NRRL B-21707<br>NRRL B-21708 | April 29, 1997                   |
| DEP2                 | NRRL B-21708                 | April 29, 1997                   |
| DEP3                 | NRRL B-21709                 | April 29, 1997                   |
| P. zealandrica       | NRRL B-21683                 | April 29, 1997                   |
| P. hepialus          | NRRL B-21685                 | April 29, 1997                   |
| HB-Arg               | NRRL B-21686                 | April 29, 1997                   |
| HB Oswego            | NRRL B-21687                 | April 29, 1997                   |
| Hb Lewiston<br>K-122 | NRRL B-21688                 | April 29, 1997                   |
|                      | NRRL B-21689                 | April 29, 1997                   |
| HMGD<br>Indicus      | NRRL B-21689                 | April 29, 1997                   |
| GD                   | NRRL B-21690                 | April 29, 1997                   |
|                      | NRRL B-21691                 | April 29, 1997                   |
| PWH-5                | NRRL B-21692<br>NRRL B-21693 | April 29, 1997                   |
| Megidis              |                              | April 29, 1997                   |
| HF-85                | NRRL B-21694                 | April 29, 1997                   |
| A. Cows              | NRRL B-21695                 | April 29, 1997                   |
| MP1                  | NRRL B-21696                 | April 29, 1997<br>April 29, 1997 |
| MP2                  | NRRL B-21697                 | April 29, 1997 April 29, 1997    |
| MP3                  | NRRL B-21698                 | April 29, 1997 April 29, 1997    |
| MP4                  | NRRL B-21699                 | April 29, 1997                   |
| MP5                  | NRRL B-21700                 | April 29, 1997                   |
| GL98                 | NRRL B-21701                 |                                  |
| G1101                | NRRL B-21702                 | April 29, 1997                   |
| GL138                | NRRL B-21703                 | April 29, 1997                   |
| GL155                | NRRL B-21704                 | April 29, 1997                   |
| GL217                | NRRL B-21705                 | April 29, 1997                   |
| GL257                | NRRL B-21706                 | April 29, 1997                   |

All strains were deposited in accordance with the terms of the Budapest Treaty. Strains having

accession numbers prefaced by "ATTC" were deposited on the indicated date in the American Type Culture Collection, 12301 Parklawn Drive, Rockville, MD 20852 USA. Strains prefaced by "NRRL" were deposited on the indicated date in the Agricultural Research Service Patent Culture Collection (NRRL), National Center for Agricultural Utilization Research, ARS-USDA, 1815 North University St., Peoria IL 61604 USA.

The present invention provides hemicot nucleic acid sequences encoding toxins from any *Photorhabdus* species or strain that produces a toxin having functional activity. Hemicot nucleic acid sequences encoding proteins homologous to such toxins are also encompassed by the invention.

Several terms that are used herein have a particular meaning and are defined as follows:

By "functional activity" it is meant herein that the protein toxins) function as insect control agents in that the proteins are orally active, or have a toxic effect, or are able to disrupt or deter feeding, which may or may not cause death of the insect. When an insect comes into contact with an effective amount of toxin delivered via transgenic plant expression, formulated protein compositions), sprayable protein compositions), a bait matrix or other delivery system, the results are typically death of the insect, or the insects do not feed upon the source which makes the toxins available to the

By "homolog" it is meant an amino acid sequence that is identified as possessing homology to a reference Photorhabdus toxin polypeptide amino acid sequence.

By "homology" it is meant an amino acid sequence that has a similarity index of at least 33% and/or an identity index of at least 26% to a reference Photorhabdus toxin polypeptide amino acid sequence, as

35

20

25

insects.

scored by the GAP algorithm using the B10sum 62 protein scoring matrix Wisconsin Package Version 9.0, Genetics Computer Group GCG), Madison, WI).

By "identity" is meant an amino acid sequence that contains an identical residue at a given position, following alignment with a reference *Photrhabdus* toxin polypeptide amino acid sequence by the GAP algorithm.

By the use of the term "Photorhabdus toxin" it is meant any protein produced by a Photorhabdus microorganism strain which has functional activity against insects, where the Photorhabdus toxin could be formulated as a sprayable composition, expressed by a transgenic plant, formulated as a bait matrix, delivered via baculovirus, or delivered by any other applicable host or delivery system.

By the use of the term "toxic" or "toxicity" as used herein it is meant that the toxins produced by *Photorhabdus* have "functional activity" as defined herein.

By "substantial sequence homology" is meant either:
a DNA fragment having a nucleotide sequence sufficiently
similar to another DNA fragment to produce a protein
having similar biochemical properties; or a polypeptide
having an amino acid sequence sufficiently similar to
another polypeptide to exhibit similar biochemical
properties.

As with other bacterial toxins, the rate of mutation of the bacteria in a population causes many related toxins slightly different in sequence to exist. Toxins of interest here are those which produce protein complexes toxic to a variety of insects upon exposure, as described herein. Preferably, the toxins are active against Lepidoptera, Coleoptera, Homopotera, Diptera, Hymenoptera, Dictyoptera and Acarina. The inventions herein are intended to capture the protein toxins homologous to protein toxins produced by the strains

30

35

5

10

herein and any derivative strains thereof, as well as any protein toxins produced by *Photorhabdus*. These homologous proteins may differ in sequence, but do not differ in function from those toxins described herein. Homologous toxins are meant to include protein complexes of between 300 kDa to 2,000 kDa and are comprised of at least two 2) subunits, where a subunit is a peptide which may or may not be the same as the other subunit. Various protein subunits have been identified and are taught in the Examples herein. Typically, the protein subunits are between about 18 kDa to about 230 kDa; between about 160 kDa to about 230 kDa; and about 50 kDa to about 80 kDa.

As discussed above, some *Photorhabdus* strains can be isolated from nematodes. Some nematodes, elongated cylindrical parasitic worms of the phylum *Nematoda*, have evolved an ability to exploit insect larvae as a favored growth environment. The insect larvae provide a source of food for growing nematodes and an environment in which to reproduce. One dramatic effect that follows invasion of larvae by certain nematodes is larval death. Larval death results from the presence of, in certain nematodes, bacteria that produce an insecticidal toxin which arrests larval growth and inhibits feeding activity.

Interestingly, it appears that each genus of insect parasitic nematode hosts a particular species of bacterium, uniquely adapted for symbiotic growth with that nematode. In the interim since this research was initiated, the name of the bacterial genus Xenorhabdus was reclassified into the Xenorhabdus and the Photorhabdus. Bacteria of the genus Photorhabdus are characterized as being symbionts of Heterorhabditus nematodes while Xenorhabdus species are symbionts of the Steinernema species. This change in nomenclature is reflected in this specification, but in no way should a

10

15

20

25

30

change in nomenclature alter the scope of the inventions described herein.

The peptides and genes that are disclosed herein are named according to the guidelines recently published in the Journal of Bacteriology "Instructions to Authors" p. i-xii Jan. 1996), which is incorporated herein by reference.

Transformation methods useful in carrying out the invention are well known, and are described, for example, in WO98/08932.

## Hemicot tcdA and tcbA

SEQ ID NO: 3 is the nucleotide sequence for an engineered tcdA gene in accordance with the invention.

SEQ ID NO: 4 is the nucleotide sequence for an engineered tcbA gene in accordance with the invention.

The following Tables 1 and 2 identify significant features of the engineered tcdA and tcbA genes.

Table 1

| tcdA                         |                            |  |  |  |  |
|------------------------------|----------------------------|--|--|--|--|
| Feature                      | nucleotides of SEQ ID NO:3 |  |  |  |  |
| NcoI                         | 1-6                        |  |  |  |  |
| HindIII                      | 48-53                      |  |  |  |  |
| KpnI                         | 246-254                    |  |  |  |  |
| sequence encoding<br>TcbAii  | 267-5798                   |  |  |  |  |
| NheI                         | 333-338                    |  |  |  |  |
| BglII                        | 1215-1220                  |  |  |  |  |
| ClaI                         | 2604-2609                  |  |  |  |  |
| PstI                         | 4015-4020                  |  |  |  |  |
| AgeI                         | 5088-5093                  |  |  |  |  |
| MunI                         | 5598-5603                  |  |  |  |  |
| XbaI                         | 5778-5783                  |  |  |  |  |
| sequence encoding<br>TcbAiii | 5799-7517                  |  |  |  |  |
| AflII                        | 5853-5858                  |  |  |  |  |
| SphI                         | 6439-6444                  |  |  |  |  |
| SfuI                         | 7392-7397                  |  |  |  |  |
| SacI                         | 7519-7524                  |  |  |  |  |
| XhoI                         | 7522-7527                  |  |  |  |  |
| StuI                         | 7528-7533                  |  |  |  |  |
| NotI                         | 7533-7538                  |  |  |  |  |

20

Table 2 tcbA

| Feature | nucleotides of SEQ ID NO:5 |
|---------|----------------------------|
| Ncol    | 1-6                        |
| HindIII | 48-53                      |

| KpnI       246-251         sequence encoding       267-5798         TcbAii       333-338         BglII       1215-1220         ClaI       2604-2609         PstI       4015-4020         AgeI       5088-5093         MunI       5598-5603         XbaI       5778-5783         sequence encodingTcbAiii       5799-7517         encodingTcbAiii       6439-6444         SphI       6439-6444         SfuI       7392-7397         SacI       7519-7524         SfuI       7392-7397         SacI       7519-7524         XhoI       7522-7527         StuI       7528-7533         NotI       7535-7540 |                   |           |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-----------|
| TcbAii       333-338         BglII       1215-1220         ClaI       2604-2609         PstI       4015-4020         AgeI       5088-5093         MunI       5598-5603         XbaI       5778-5783         sequence       5799-7517         encodingTcbAiii       5853-5858         SphI       6439-6444         SfuI       7392-7397         SacI       7519-7524         SfuI       7529-7527         StuI       7522-7527         StuI       7528-7533                                                                                                                                               | KpnI              | 246-251   |
| NheI       333-338         BgIII       1215-1220         ClaI       2604-2609         PstI       4015-4020         AgeI       5088-5093         MunI       5598-5603         XbaI       5778-5783         sequence       5799-7517         encodingTcbAiii       853-5858         SphI       6439-6444         SfuI       7392-7397         SacI       7519-7524         XhoI       7522-7527         StuI       7528-7533                                                                                                                                                                               | sequence encoding | 267-5798  |
| ### ### ##############################                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | TcbAii            |           |
| Clai       2604-2609         Psti       4015-4020         Agel       5088-5093         Muni       5598-5603         Xbai       5778-5783         sequence       5799-7517         encodingTcbAiii       853-5858         Sphi       6439-6444         Sfui       7392-7397         Saci       7519-7524         Sfui       7522-7527         Stui       7528-7533                                                                                                                                                                                                                                        | NheI              |           |
| PstI     4015-4020       AgeI     5088-5093       MunI     5598-5603       XbaI     5778-5783       sequence     5799-7517       encodingTcbAiii     5853-5858       SphI     6439-6444       SfuI     7392-7397       SacI     7519-7524       SfuI     7392-7397       SacI     7519-7524       XhoI     7522-7527       StuI     7528-7533                                                                                                                                                                                                                                                            | BglII             | 1215-1220 |
| AgeI 5088-5093  MunI 5598-5603  XbaI 5778-5783  sequence 5799-7517 encodingTcbAiii 5853-5858  SphI 6439-6444  SfuI 7392-7397  SacI 7519-7524  SfuI 7392-7397  SacI 7519-7524  XhoI 7522-7527  StuI 7528-7533                                                                                                                                                                                                                                                                                                                                                                                             | ClaI              | 2604-2609 |
| MunI 5598-5603  XbaI 5778-5783  sequence 5799-7517 encodingTcbAiii 5853-5858  SphI 6439-6444  SfuI 7392-7397  SacI 7519-7524  SfuI 7392-7397  SacI 7519-7524  XhoI 7522-7527  StuI 7528-7533                                                                                                                                                                                                                                                                                                                                                                                                             | PstI              | 4015-4020 |
| MunI     5598-5603       XbaI     5778-5783       sequence     5799-7517       encodingTcbAiii     853-5858       SphI     6439-6444       SfuI     7392-7397       SacI     7519-7524       SfuI     7392-7397       SacI     7519-7524       XhoI     7522-7527       StuI     7528-7533                                                                                                                                                                                                                                                                                                               | AgeI              | 5088-5093 |
| Sequence       5799-7517         encodingTcbAiii       5853-5858         SphI       6439-6444         SfuI       7392-7397         SacI       7519-7524         SfuI       7392-7397         SacI       7519-7524         XhoI       7522-7527         StuI       7528-7533                                                                                                                                                                                                                                                                                                                              |                   | 5598-5603 |
| encodingTcbAiii  AflII 5853-5858  SphI 6439-6444  SfuI 7392-7397  SacI 7519-7524  SfuI 7392-7397  SacI 7519-7524  XhoI 7522-7527  StuI 7528-7533                                                                                                                                                                                                                                                                                                                                                                                                                                                         | XbaI              | 5778-5783 |
| Af1II     5853-5858       SphI     6439-6444       SfuI     7392-7397       SacI     7519-7524       SfuI     7392-7397       SacI     7519-7524       XhoI     7522-7527       StuI     7528-7533                                                                                                                                                                                                                                                                                                                                                                                                       | sequence          | 5799-7517 |
| SphI     6439-6444       SfuI     7392-7397       SacI     7519-7524       SfuI     7392-7397       SacI     7519-7524       XhoI     7522-7527       StuI     7528-7533                                                                                                                                                                                                                                                                                                                                                                                                                                 | encodingTcbAiii   |           |
| Sful     7392-7397       SacI     7519-7524       Sful     7392-7397       SacI     7519-7524       XhoI     7522-7527       Stul     7528-7533                                                                                                                                                                                                                                                                                                                                                                                                                                                          | AflII             | 5853-5858 |
| SacI     7519-7524       SfuI     7392-7397       SacI     7519-7524       XhoI     7522-7527       StuI     7528-7533                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | SphI              | 6439-6444 |
| SfuI     7392-7397       SacI     7519-7524       XhoI     7522-7527       StuI     7528-7533                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SfuI              | 7392-7397 |
| SacI     7519-7524       XhoI     7522-7527       StuI     7528-7533                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SacI              | 7519-7524 |
| XhoI     7522-7527       StuI     7528-7533                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | SfuI              | 7392-7397 |
| StuI 7528-7533                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SacI              | 7519-7524 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | XhoI              | 7522-7527 |
| NotI 7535-7540                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | StuI              |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | NotI              | 7535-7540 |

It should be noted that the proteins encoded by the plant-optimized tcdA (SEQ ID NO:3) and tcbA (SEQ ID NO:5) differ from the native proteins by the addition of an Ala residue at position #2. This modification was made to accommodate the NcoI site which spans the ATG start codon.

The following Table 3 compares the codon composition of the engineered tcdA gene of SEQ ID NO:3 and engineered tcbA gene of SEQ ID NO:5 with the codon compositions of the native genes, the typical dicot genes, and maize genes.

Table 3

| amino<br>acid | codon                                  | % in<br>SEQ<br>ID<br>NO:3 | % in<br>tcdA                  | % in<br>SEQ<br>ID<br>NO:5 | % in<br>tcbA             | % in<br>dicot                  | % in<br>maize              |
|---------------|----------------------------------------|---------------------------|-------------------------------|---------------------------|--------------------------|--------------------------------|----------------------------|
| Ala           | GCT<br>GCC<br>GCA<br>GCG               | 62<br>26<br>11<br>0       | 21<br>32<br>25<br>21          | 69<br>27<br>4<br>0        | 41<br>17<br>22<br>21     | 42<br>27<br>25<br>6            | 24<br>34<br>18<br>24       |
| Arg           | AGG<br>CGC<br>AGA<br>CGT<br>CGG<br>CGA | 48<br>22<br>20<br>11<br>0 | 0<br>36<br>11<br>39<br>7<br>8 | 60<br>18<br>15<br>7<br>0  | 2<br>16<br>6<br>57<br>13 | 25<br>11<br>30<br>21<br>4<br>8 | 26<br>24<br>15<br>11<br>15 |
| Asn           | AAC<br>AAT                             | 100                       | 32<br>68                      | 100                       | 33<br>67                 | 55<br>45                       | 68<br>32                   |
| Asp           | GAC                                    | 67                        | 22                            | 70                        | 25                       | 42                             | 63                         |

|          | and an      | % in     | % in     | % in | % in | % in  | % in  |
|----------|-------------|----------|----------|------|------|-------|-------|
| amino    | codon       | SEQ      |          | SEQ  | tcbA | dicot | maize |
| acid     |             | ID       | tcdA     | ID   | ECDA | dicoc | marze |
| 1        |             | NO:3     |          | NO:5 |      |       |       |
| 1        | GAT         | 33       | 78       | 30   | 75   | 58    | 37    |
| G:12     |             | 100      | 30       | 100  | 19   | 56    | 68    |
| Cys      | TGC         | 0        | 70       | 0    | 81   | 44    | 32    |
| <u> </u> | TGT         |          |          | 100  | 0    | 33    | 59    |
| End      | TGA         | 100      | 0        | 0    | Ö    | 19    | 21    |
| 1        | TAG         | 0        | 100      | 0    | 100  | 48    | 20    |
|          | TAA         |          |          | 74   | 53   | 59    | 38    |
| Gln      | CAA         | 65<br>35 | 61<br>39 | 26   | 47   | 41    | 62    |
|          | CAG         |          | 24       | 98   | 36   | 51    | 71    |
| Glu      | GAG         | 100      | 76       | 2    | 64   | 49    | 29    |
|          | GAA         | 0        | 37       | 64   | 44   | 33    | 20    |
| Gly      | GGT         | 67       |          | 36   | 22   | 16    | 42    |
| 1        | GGC         | 32<br>1  | 36<br>20 | 0    | 19   | 38    | 19    |
|          | -GGA<br>GGG | ō        | 8        | 0    | 16   | 12    | 20    |
| 113.0    |             | 62       | 40       | 72   | 31   | 46    | 62    |
| His      | CAC         | 38       | 60       | 28   | 69   | 54    | 38    |
|          | CAT         | 73       |          | 65   | 24   | 37    | 58    |
| Ile      | ATC         | 27       | 34<br>51 | 35   | 59   | 45    | 28    |
|          | ATT<br>ATA  | 0        | 15       | 0    | 17   | 18    | 14    |
| 17.      | CTC         | 54       | 11       | 59   | 7    | 28    | 26    |
| Leu      | TTG         | 29       | 17       | 25   | 32   | 26    | 15    |
|          | CTT         | 16       | 9        | 15   | 7    | 19    | 17    |
| 1        | TTA         | 0        | 18       | 0    | 19   | 10    | 5     |
| 1        | CTG         | 0        | 32       | 0    | 29   | 9     | 29    |
| 1        | CTA         | 0        | 13       | lő   | 7    | 8     | 8     |
| Lys      | AAG         | 99       | 79       | 99   | 75   | 61    | 78    |
| Lys      | AAA         | 1        | 21       | 1    | 25   | 39    | 22    |
| Met      | ATG         | 100      | 100      | 100  | 100  | 100   | 100   |
| Phe      | TTC         | 100      | 42       | 100  | 41   | 55    | 71    |
| 1        | TTT         | 0        | 58       | 0    | 59   | 45    | 29    |
| Pro      | CCA         | 74       | 30       | 91   | 26   | 42    | 26    |
| 1110     | CCT         | 22       | 28       | 7    | 20   | 32    | 22    |
|          | ccc         | 4        | 14       | 3    | 7    | 17    | 24    |
| }        | CCG         | 0        | 27       | 0    | 47   | 9     | 28    |
| Ser      | TCC         | 47       | 19       | 55   | 11   | 18    | 23    |
| 1 2 2 2  | TCT         | 35       | 15       | 30   | 15   | 25    | 15    |
| 1        | AGC         | 18       | 22       | 15   | 18   | 18    | 23    |
| 1        | AGT         | 0        | 20       | 0    | 31   | 14    | 9     |
| İ        | TCG         | 0        | 7        | 0    | 8    | 6     | 14    |
|          | TCA         | 0        | 17       | 0    | 17   | 19    | 16    |
| Thr      | ACC         | 60       | 41       | 64   | 31   | 30    | 37    |
|          | ACT         | 28       | 25       | 32   | 34   | 35    | 20    |
| 1        | ACA         | 12       | 21       | 4    | 18   | 27    | 21    |
|          | ACG         | 0        | 13       | 0    | 18   | 8     | 22    |
| Trp      | TGG         | 100      | 100      | 100  | 100  | 100   | 100   |
| Tyr      | TAC         | 100      | 24       | 100  | 19   | 57    | 73    |
| 1        | TAT         | 0        | 76       | 0    | 81   | 43    | 27    |
| Val      | GTC         | 69       | 27       | 73   | 11   | 20    | 31    |
| 1        | GTG         | 21       | 17       | 22   | 27   | 29    | 39    |
|          | GTT         | 10       | 34       | 3    | 48   | 39    | 21    |
| 1        | GTA         | 0        | 22       | 2    | 14   | 12    | 8     |

EXAMPLE 1
Design Of Plant Codon-Biased Genes Encoding W-14 Peptides
TcbA and TcdA

A. Gene Design

The coding strands of the native DNA sequences of the *Photorhabdus* W-14 genes encoding peptides TcbA and TcdA were scanned for the presence of deleterious sequences such as the Shaw/Kamen RNA destabilizing motif ATTTA, intron splice recognition sites, and poly A addition motifs. This was done using the MacVector Sequence Analysis Software (Oxford Molecular Biology Group, Symantec Corp.), using a custom Nucleic Acid Subsequence File. The native sequence was also searched for runs of 4 or more of the same base.

Motif searching of the native W-14 tcbA and tcdA genes revealed the presence of many potentially deleterious sequences in the protein coding strands, as summarized in Table 4. Not shown, but also present, were many runs of four or more single residues (e.g. the native tcbA gene has 81 runs of four A's).

Table 4

| Native | ATTTA | 5' Splice | 3' Splice | Poly A    | RNAP II term. |
|--------|-------|-----------|-----------|-----------|---------------|
| Gene   |       | ·         |           | Addition* |               |
| tcbA   | 18    | 7         | 17        | 46        | 0             |
| tcdA   | 18    | 7         | 13        | 77        | 1             |

\* Totals of 16 different motifs.

Analyses of eukaryotic genes and plant genes in particular have shown that CG & TA doublets are underrepresented, while the genes are enriched in CT & TG doublets. The sequences of the hemicot biased genes have accordingly been adjusted to encompass these base compositions and to have G+C compositions of about 53%, similar to many plant genes. When compared to the native W-14 tcbA and tcdA genes, the plant-biased genes have a much more uniform G+C distribution.

Nucleotide changes to remove potentially deleterious sequences were chosen to simultaneously adjust the codon composition of the coding region to more closely reflect that of plant genes. A framework for these changes was provided by the codon bias tables prepared for maize and dicot genes shown in Table 3.

10

15

20

25

Comparison of codon compositions of the native W-14genes to maize and dicot genes revealed that the W-14 genes contain a very different preference set of the degenerate codons for the 18 amino acids for which there is a choice (Table 3). For each of 8 amino acids (Phe, Tyr, Cys, Arg, Asn, Lys, Glu, and Gly) in both W-14 genes, the most abundant codon is different from the preferred codons found in either maize or dicot genes. One might expect that translational difficulties would be encountered in efforts to produce in plants proteins 10 (such as TcbA and TcdA) having high relative amounts of these amino acids from mRNAs having large numbers of nonpreferred codons. There is a marked difference in distribution of the codon compositions specifying the other 10 amino acids. For His, Gln, Ile, Val, and Asp, 15 the dicot-preferred codons are found as the most abundant ones in both W-14 genes. For Leu, Thr, Ser, and Ala, the maize preferred codons are the most abundant codon choices found in the tcdA gene. In contrast, the tcbA gene contains only the CCG (Pro) maize-preferred codon as 20 the highest abundance choice.

In making the codon choices, doublet contents were considered, so that adjacent codons preferably did not form CG or TA doublets (which are underrepresented in eukaryotic genes; 1, 4), while CT or TG doublets (which are enriched in eukaryotic genes <u>ibid</u>.) were created when possible.

Choices were also made to utilize a diversity of codons for Met, Trp, Asn, Asp, Cys, Glu, His, Ile, Lys, Phe, Thr, and Tyr.

The sequences were also designed to encode unique 6-bp recognition sites for restriction enzymes, spaced about every 1200 bp. Finally, an additional codon (GCT; Ala) was inserted at the second position to encode an Nco I recognition site encompassing the ATG (Met) start codon. Additional recognition sites were included after

25

30

the stop codon to facilitate subsequent cloning steps into expression vectors. These features are set forth above in Tables 1 and 2.

The new tcdA and tcbA genes of SEQ ID NO:3 and SEQ ID NO:4 share 73.5%, and 72.6%% identity, respectively, to their native W-14 counterparts (Wisconsin Genetics Computer Group, GAP algorithm).

# B. Gene Synthesis

The complete synthesis of the plant codon-biased tcbA and tcdA genes was performed under contract by 10 Operon Technologies, Inc. (OPTI, Alameda, CA). Basically, chemically synthesized oligonucleotides of appropriate sequence were assembled into DNA pieces about 500 bases long. These were joined together end-to-end (presumably by means of appropriately placed restriction 15 enzyme sites) into four larger pieces of roughly 2 kilobase pairs (kbp) each; therefore each comprised about 1/4 of the entire coding region of the particular gene. DNA sequence of the pieces was confirmed at this step. If mistakes in sequence were present, the appropriate 20 oligonucleotides were re-synthesized, and the assembly process was repeated. Once gene fractional parts were sequence verified, they were assembled in pairs to make the gene halves, and again sequence verified. Finally, the two halves were joined, and the sequences of the 25 junctions between the halves was verified. Therefore, each part of the new gene was sequence verified at least twice.

It should be noted that attempts to express the

native tcbA or tcdA genes in standard Escherichia coli

cloning strains suggests that production of these
proteins is lethal. Lethality problems may be
encountered if standard cloning vectors having leaky
expression from inherent lacZ promoters are used to
assemble these genes.

C. Addition Of Endoplasmic Reticulum Targeting Peptide To Tcda Coding Region It is known to those in the field of plant gene expression that proteins are specifically directed into the endoplasmic reticulum (ER) by means of a short signal peptide which is removed during or after the transport process through the ER membrane. The mature (processed) protein is incorporated into the ER endomembrane or is released into the ER lumen where the transported protein may be uniquely folded (aided by chaperonins), modified 10 by glycosylation, accumulated in the vacuole, or additionally translocated (by secretion). These processes are reviewed by Gomord and Faye [V. Gomord and L. Faye, (1996) Signals and mechanisms involved in intracellular transport of secreted proteins in plants. 15 Plant Physiol. Biochem. 34:165-181] and by Bar-Peled et al. [M. Bar-Peled, D. C. Bassham, and N. V. Raikhel, (1996) Transport of proteins in eukaryotic cells: more questions ahead. Plant Molec. Biology 32:223-249]. also known that the subcellular recognition mechanisms 20 for an ER signal peptide are evolutionarily somewhat conserved, since the ER signal for a protein normally produced in monocot (maize) cells is recognized and processed normally by dicot (tobacco) cells. This is exemplified by the maize 15 kDa zein ER signal peptide 25 [L. M. Hoffman, D. D. Donaldson, R. Bookland, K. Rashka, and E. M. Herman, (1987) Synthesis and protein body deposition of maize 15-kd zein in transgenic tobacco seeds. EMBO J. 6:3213-3221, and U.S. Patent 5589616]. Further, it is known that the ER signal peptide derived 30 from one protein can direct the translocation of a different protein if it is appropriately attached to the second protein by genetic engineering methods [D. C. Hunt and M. J. Chrispeels, (1991) The signal peptide of a vacuolar protein is necessary and sufficient for the 35 efficient secretion of a cytosolic protein. Plant

Physiol. 96:18-25, and Denecke, J., J. Botterman, and R. Deblaere (1990) Protein secretion in plants can occur via a default pathway. Plant Cell 2:51-59]. Therefore, one may expose a protein in vivo to different biochemical environments by directing its accumulation in the cytosol (by not providing a signal peptide sequence), or in the ER/vacuole (by provision of an appropriate signal peptide.)

The ER signal peptide of maize 15 kDa zein proteins

is known to comprise the first 20 amino acids encoded by
the zein coding region. Two examples of such signal
peptides the ER signal peptide of 15 kDa zein from A5707
maize, NCBI Accession # M72708, and the ER signal peptide
of 15 kDa zein from Black Mexican Sweet maize, NCBI
Accession # M13507. There is only a single amino acid
difference (Ser vs Cys at residue 17) between these
signal peptides.

SEQ ID NO:5 is a modified sequence coding the ER signal peptide of 15 kDa zein from Black Mexican Sweet maize. The modifications embodied in this sequence were made to accommodate the different monocot/dicot codon usages and other sequence motif considerations discussed above in the design of the plant-optimized tcdA coding region. The sequence includes an additional Ala residue at position #2 to accommodate the NcoI site which spans the ATG start codon.

SEQ ID NO:6 gives a sequence coding for the full-length native TcdA protein (amino acids 22-2537) fused to the modified 15 kDa zein endoplasmic reticulum signal peptide (amino acids 1-21).

#### Example 2

Transformation Of Tobacco With Agrobacterium Carrying
Plasmid pDAB2041 Encoding Photorhabdus Toxins
A. Plasmid pDAB2041

35 Preparation of tobacco transformation vectors was accomplished in three steps. First, a modified plant-optimized tcdA coding region was ligated into a tobacco

20

25

plant expression cassette plasmid. In this step, the coding region was placed under the transcriptional control of a promoter functional in tobacco plant cells. RNA transcription termination and polyadenylation were mediated by a downstream copy of the terminator region from the Agrobacterium nopaline synthase gene. plasmids designed to function in this role are pDAB1507 In the second step, the complete gene and pDAB2006. comprised of the promoter, coding region, and terminator region was ligated between the T-DNA borders of Agrobacterium binary vector, pDAB1542. Also positioned between the T-DNA borders was a plant selectable marker gene to allow selection of transformed tobacco plant cells. In the third step, the engineered binary vector plasmid was conjugated from its E. coli host strain into a disabled Agrobacterium tumefaciens strain capable of transforming tobacco plant cells that regenerate into fertile transgenic plants.

It is a feature of plasmid pDAB1507 that any coding region having an NcoI site at its 5' end and a SacI site 20 3' to the coding region, when cloned into the unique NcoIand SacI sites of pDAB1507, is placed under the transcriptional control of an enhanced version of the CaMV 35S promoter. It is also a feature of pDAB1507 that the 5' untranslated leader (UTR) sequence preceding the 25 NcoI site comprises a modified version of the 5' UTR of the MSV coat protein gene, into which has been cloned an internally deleted version of the maize Adh1S intron 1. pDAB1507 that of Additionally it is a feature transcription termination and polyadenylation of the mRNA 30 containing the introduced coding region are mediated by termination/Poly A addition sequences derived from the nopaline synthase (Nos) gene. Finally, it is a feature of pDAB1507 that the entire assembly of promoter/coding region/3'UTR can be obtained as a single DNA fragment by 35 cleavage at the flanking NotI sites.

10

PCT/US00/22237 WO 01/11029

It is a feature of plasmid pDAB2006 that any coding region having an NcoI site at its 5' end and a SacI site 3' to the coding region, when cloned into the unique NcoI and SacI sites of pDAB2006, is placed under the 5 transcriptional control of the CaMV 35S promoter. It is also a feature of pDAB2006 that the 5' untranslated leader (UTR) sequence preceding the NcoI site comprises a polylinker. Additionally it is a feature of pDAB2006 that transcription termination and polyadenylation of the mRNA containing the introduced coding region are mediated by termination/Poly A addition sequences derived from the nopaline synthase (Nos) gene. Finally, it is a feature of pDAB2006 that the entire assembly of promoter/coding region/3'UTR can be obtained as a single DNA fragment by cleavage at the flanking NotI sites.

It is a feature of pDAB1542 that any DNA fragment flanked by NotI sites can be cloned into the unique NotI site of pDAB1542, thus placing the introduced fragment between the T-DNA borders, and adjacent to the neomycin phosphotransferase II (kanamycin resistance) gene.

To prepare a plant-expressible gene to produce the non-targeted TcdA protein in tobacco plant cells, DNA of a plasmid (pA0H\_4-OPTI) containing the plant-optimized tcdA coding region, (SEQ ID No:3) was cleaved with restriction enzymes NcoI and SacI, and the large 7550 bp fragment was ligated to similarly-cut DNA of plasmid pDAB1507 to produce plasmid pDAB2040. DNA of pDAB2040 was then digested with NotI, and the 8884 bp fragment was ligated to NotI digested DNA of pDAB1542 to produce plasmid pDAB2041. This plasmid was then conjugated by triparental mating [Firoozabady, E., D. L. DeBoer, D. J. Merlo, E. L. Halk, L. N. Amerson, K. E. Rashka, and E. E. Murray (1987) Transformation of cotton (Gossypium hirsutum L.) by Agrobacterium tumefaciens and regeneration of transgenic plants. Plant Molec. Biol.

10

15

20

25

30

10:105-116] from the host Escherichia coli strain (XL1-Blue, Stratagene, La Jolla, CA), into the nontumorigenic Agrobacterium tumefaciens strain EHA101S, which is a spontaneous streptomycin-resistant mutant of strain EHA101 (Hood, E. E., G. L. Helmer, R. T. Fraley, and M.-D. Chilton (1986) The hypervirulence of Agrobacterium tumefaciens A281 is encoded in a region of pTiBo542 outside of T-DNA. J. Bacteriol. 168:1291-1301). Strain EHA101S(pDAB2041) was then used to produce transgenic tobacco plants that expressed the TcdA protein.

### B. Plasmid pRK2013

To prepare a plant-expressible gene to produce the endoplasmic reticulum-targeted TcdA protein in tobacco plant cells, DNA of a plasmid (pAOH 4-ER) containing the plant-optimized, ER-targeted tcdA coding region, (SEQ ID 15 No:6) was cleaved with restriction enzymes NcoI and SacI, and the large 7610 bp fragment was ligated to similarlycut DNA of plasmid pDAB2006 to produce plasmid pDAB1833. DNA of pDAB1833 was then digested with NotI, and the 8822 bp fragment was ligated to NotI digested DNA of pDAB1542 20 to produce plasmid pDAB2052. This plasmid was then conjugated by triparental mating from the host Escherichia coli strain (XL1-Blue), into the nontumorigenic Agrobacterium tumefaciens strain EHA101S. Strain EHA101S(pDAB2052) was then used to produce 25 transgenic tobacco plants that expressed the TcdA protein containing an amino terminus endoplasmic reticulum targeting peptide.

30 C. Transfer of Plasmid pDAB2041 Into Agrobacterium Strain EHA101S

Cultures of *E. coli* carrying the engineered Ti plasmid pDAB2041 (plasmid containing the rebuilt Toxin A gene, *tcdA*), *E. coli* carrying the plasmid pRK2013, and Agrobacterium strain EHA101S were grown overnight, then mixed 1:1:1 on plain LB medium solidified with agar and -20-

cultured in the dark at 28°C. Two days later, the lawn of bacteria was scraped up with a loop, suspended in plain LB medium, vortexed, and then diluted  $1:10^4$  ,  $1:10^5$ , and 1:106 fold in plain LB liquid medium. Aliquots of these dilutions were spread on selective plates containing medium YEP plus erythromycin (100 mg/L) and streptomycin (250 mg/L) and grown at 28°C. Two days later, single colonies were picked and streaked onto the same medium, then spread to give single colonies. Single colonies were picked again and streaked, then spread for single colonies. Single colonies were picked a third time, grown as streaks, then subjected to a quality analysis involving growth on lactose medium and chromogenic assay with Benedict's reagent. Of ten strains developed in this way, the fastest coloring colony was chosen for further work.

D. Transformation Of Tobacco With Agrobacterium Carrying Plasmid pDAB2041

Tobacco transformation with Agrobacterium 20 tumefaciens was carried out by a method similar, but not identical, to published methods (R Horsch et al, 1988. Plant Molecular Biology Manual, S. Gelvin et al, eds., Kluwer Academic Publishers, Boston). To provide source tissue for the transformation, tobacco seed (Nicotiana 25 tabacum cv. Kentucky 160) were surface sterilized and planted on the surface of TOB- , which is a hormone-free Murashige and Skoog medium (T. Murashige and F. Skoog, 1962). A revised medium for rapid growth and bioassays with tobacco tissue culture. Plant Physiol. 75: 473-497) 30 solidified with agar. Plants were grown for 6-8 weeks in a lighted incubator room at 28-30°C and leaves were collected sterilely for use in the transformation protocol. Approximately one cm2 pieces were sterilely cut from these leaves, excluding the midrib. Cultures of the 35

10

Agrobacterium strains (EHA101S containing pDAB2041), which had been grown overnight on a rotor at 28°C, were pelleted in a centrifuge and resuspended in sterile Murashige & Skoog salts, adjusted to a final optical density of 0.7 at 600 nm. Leaf pieces were dipped in this bacterial suspension for approximately 30 seconds, then blotted dry on sterile paper towels and placed right side up on medium TOB+ (Murashige and Skoog medium containing 1 mg/L indole acetic acid and 2.5 mg/L benzyladenine) and incubated in the dark at 28°C. Two 10 days later the leaf pieces were moved to medium TOB+ containing 250 mg/L cefotaxime (Agri-Bio, North Miami, Florida) and 100 mg/L kanamycin sulfate (AgriBio) and incubated at 28-30°C in the light. Leaf pieces were moved to fresh TOB+ with cefotaxime and kanamycin twice per 15 week for the first two weeks and once per week thereafter. Leaf pieces which showed regrowth of the Agrobacterium strain were moved to medium TOB+ with cefotaxime and kanamycin, plus 100 mg/l carbenicillin (Sigma). Four to six weeks after the leaf pieces were 20 treated with the bacteria, small plants arising from transformed foci were removed from this tissue preparation and planted into medium TOB- containing 250 mg/L cefotaxime and 100 mg/L kanamycin in Magenta GA7 boxes (Magenta Corp., Chicago). These plantlets were 25 grown in a lighted incubator room. After 3-4 weeks the primary transgenic plants had rooted and grown to a size sufficient that leaf samples could be analyzed for expression of protein from the transgene. Twenty-five independent transgenic events were recovered as single 30 plants from the pDAB2041 transformation.

Eight independent lines expressing various levels of transgenic protein from the T-DNA of pDAB2041 were propagated in vitro from leaf pieces as follows. Twelve to sixteen approximately one cm<sup>2</sup> pieces were sterilely cut from leaves of each primary transgenic plant, excluding -22-

the midrib and all naturally occurring edges. These leaf pieces were placed on medium TOB+ containing 250 mg/L cefotaxime and 100 mg/L kanamycin, and cultured in the lighted incubator at 28-30°C for 3-4 weeks, at which time small plants could be cut from the proliferating tissue mass. Several small plantlets from each transgenic line were moved into Magenta boxes containing medium TOB- plus cefotaxime and kanamycin and allowed to root and grow. The proliferating tissue mass was further cultured on medium TOB+ with cefotaxime and kanamycin, and additional plants could be cut out and grown up as needed.

Plants were moved into the greenhouse by washing the agar from the roots, transplanting into soil in 5 ½" square pots, placing the pot into a Ziploc bag

(DowBrands), placing plain water into the bottom of the bag, and placing in indirect light in a 30°C greenhouse for one week. After one week the bag could be opened; the plants were fertilized and allowed to grow further, until the plants were acclimated and the bag was removed.

Plants were grown under ordinary warm greenhouse conditions (30°C, 16 H light). Plants were suitable for sampling four weeks post transplant.

Example 3

Chacterization Of Transgenic Tobacco Plants Expressing
Photorhabdus Toxin That Confer Insect Control.

#### A. Polyclonal Antibody Production

The *E. coli* produced recombinant TcdA protein was purified by a series of column purification. The protein was sent to Berkley Antibody Company (Richmond, CA) for the production of antiserum in a rabbit. Inoculations with the antigen were initiated with 0.5 mg of protein followed by four boosting injections of 0.25 mg each at about three week intervals. The rabbit serum was tested by the standard Western analysis using the recombinant TcdA protein as the antigen and enhanced chemi-

30

35

luminescens, ECL method (Amersham, Arlington Heights, IL ). The antibodies (PAb-EA $_0$ ) were purified using a PURE I antibody purification kit (Sigma, St. Luis, MO). PAb-EA $_0$  antibodies recognize the full-length TcdA and its processed components.

B. Expression Of TcdA Protein In Tobacco
Protein was extracted from the leaf tissue of
transformed and non-transformed tobacco plants following
the procedure described immediately below.

Two leaf disks of 1.4 cm in diameter were harvested 10 from the middle portion of a fully expanded leaf. disks were placed on a 1.6 x 4 cm piece of 3M Whatman paper. The paper was folded lengthwise and inserted in a flexible straw. Four hundred micro liters of the extraction buffer (9.5 ml of 0.2 M  $NaH_2PO_4$ , 15.5 ml of 0.2 15 M  $Na_2HPO_4$ , 2 ml of 0.5 M  $Na_2EDTA$ , 100 ml of Triton X100, 1 ml of 10% Sarkosyl, 78 ml of beta-mercaptoethanol, H<sub>2</sub>O to bring total volume to 100 ml) was pipetted on to the paper. The straw containing the sample was then passed through a rolling device used for squeezing out the 20 extract 1.5 mL micro centrifuge tube was placed at the other end of the straw to collect the extract. extract was centrifuged for 10 minutes at 14,000 rpm in an Eppendorf regrigerated microcentrifuge. The 25\_ supernatant was transferred into a new tube. Protein quantitation analysis was performed using the standard Bio-Rad Protein Analysis protocol (Bio-Rad Laboratories, Hercules, CA). The extract was diluted to 2 mg/ml of

For the detection of transgenic protein, Western blot analysis was performed. Following a standard procedure for protein separation (Laemmli, 1970), 40 μg of protein was loaded in each well of 4-20% gradient polyacrylamide gel (Owl Scientific Co., MA) for electrophoresis. Subsequently, the protein was

total protein using the extraction buffer.

-24-

transferred onto a nitrocellulose membrane using a semidry electroblotter (Pharmacia LKB Biotechnology, Piscataway, NJ). The membrane was incubated for one hour in Blotto (5% milk in TBST solution; 25 mM Tris HCL pH 7.4, 136 mM NaCl, 2.7 mM KCl, 0.1% Tween 20). Thereafter 5 , Blotto was replaced by the primary antibody solution (in Blotto). After one hour in the primary antibody, the membrane was washed with TBST for five minutes three times. Then the secondary antibody in Blotto (1:2000 10 dilution of goat anti-rabbit IgG conjugated to horseradish peroxidase; Bio-Rad Laboratories). was added to the membrane. After one hour of incubation, the membrane was washed with an excess amount of TBST for 10 minutes four times. The protein was visualized by using the enhanced chemi-luminescens, ECL method (Amersham, 15 Arlington Heights, IL ). The differential intensity of the protein bands were measured using densitometer (Molecular Dynamics Inc., Sunnyvale, CA).

To determine the expression of TcdA protein in tobacco transformed with pDAB2041, PAb-EA<sub>0</sub> antibodies were 20 used as the primary antibodies. The expression levels of TcdA protein varied among independent transformation events. The primary plant generated from the event #2041-13 showed the highest level of pre-pro TcdA expression of extractable protein. When the leaf pieces 25 from this plant (#2041-13) were used in in vitro propagation, several plants were obtained. Seven of these plants were analyzed for the expression of the TcdA protein. All but one plant produced the full-length TcdA protein as well as some processed peptide components. 30 Using the antibodies specific to Neomycin phosphotransferase, NPT (5 prime-3 prime, Boulder, Co), the expression the selectable marker gene (npt II) was Similar results were obtained for #2041-29. detected.

35

Table 5

Western analysis of plants derived from event #2041-13.

|           |      | NPT (selectable marker) |
|-----------|------|-------------------------|
| Plant #   | TcdA |                         |
| 2041-13A  | +    | not done                |
| 2041-13B  | +    | not done                |
| 2041-13-1 | -    | +                       |
| 2041-13-2 | +    | +                       |
| 2041-13-3 | +    | +                       |
| 2041-13-4 | +    | +                       |
| 2041-13-5 | +    | +                       |

Nucleic Acid Analysis of Transgenic Tobacco Lines Genomic DNA was prepared from a group of 2041 transgenic events. The lines included Magenta box stage 5 2041-13, and greenhouse stage plants 2041-13-1, 2041-13-2, 2041-13-5, 2041-9, 2041-20A and 2041-20B. A transgenic GUS line (2023) was included as a negative control. Southern analysis of these lines was performed. The genomic tobacco DNA was restricted with the enzyme 10 SstI which should result in a 8.9 kb hybridization product when hybridized to a tcdA gene specific probe. The 8.9 kb hybridization product should consist of the 35T promoter and the tcdA coding region. All 2041 plants contained a band of the expected size. Events 2041-9 and 15 -20 appear to be the same line with 5 identical hybridizing bands. Event 2041-13 produced 6 hybridization fragments with the tcdA coding region probe. Magenta box and various greenhouse plants of 2041-13 all produced the same hybridization profile. 20 This hybridization pattern was different from that of events 2041-9 and -20.

RNA analysis, using the *tcdA* coding region probe, was performed on the same group of greenhouse 2041 plants. Immunoblot analysis had revealed that plants 2041-9, 2041-20A, 2041-20B, and 2041-13-1 produced no detectable TcdA protein; while 2041-13-2 and 2041-13-5 produced substantial amounts of full-length TcdA. Northern analysis was in agreement with the immunoblot

result. A faint RNA signal was detected for plants 2041-9, 2041-20A, 2041-20B, and 2041-13-1. Only faintly visible was a band corresponding to full-length tcdA transcript in plant 2041-13.1. In contrast, for plants 2041-13-2 and 2041-13-5 a strong RNA signal was detected, with a substantial amount of full-length size (~8.0 kb) tcdA transcript. These data support the observed bioassay activity for this group of plants.

Genomic DNA was prepared from a second functionally active 2041 transgenic event, 2041-29. Southern analysis of this line was performed. A transgenic GUS line (2023) was included as a negative control, DNA of line 2041-9 was included as a positive control.

The genomic tobacco DNAs were restricted with the

enzyme SstI which should result in a 8.9 kb hybridization
product when hybridized to a tcdA gene specific probe.
The 8.9 kb hybridization product should consist of the
35T promoter and the tcdA coding region. For plant 204129-5, three hybridization products larger than 8.9 kb the
were detected with the tcdA gene specific probe.
Immunoblot analysis has demonstrated pre-pro TcdA protein
is made by this plant, it is therefore likely that a
restriction site was lost during transformation or
regeneration, or the 2041-29 genomic DNA was not
thoroughly digested.

D. Tobacco Leaf-Disk Tests With Tobacco Hornworm Exhibiting Insect Control

Leaves were sampled from tobacco plants, Nicotiana tabaco, previously transplanted into the greenhouse. A single leaf was sampled from each plant on each test date. Leaves were selected from the zone where younger elongate leaves transition into older ovate leaves. Excised leaves were placed into 12 oz. cups with the petiole submerged in water to maintain turgor, and transported to the laboratory.

30

35

Eight, 1.4 cm disks were cut from the center portion of one side of each leaf (right adaxial side up, with distal portion facing away from the observer). Each disk was placed individually into a well of a C-D

International 128 well tray (Pitman, NJ.) into which 0.5 ml of a 1.6% aqueous agar solution had been previously pipetted. The solidified agar prevented the leaf disks from drying out. The adaxial surface of the disk was always oriented up.

10 A single neonate tobacco hornworm, Manduca sexta, was placed on each disk and the wells were sealed with vented plastic lids. The assay was held at 27°C and 40% RH. Larval mortality and live-weight data were collected after 3 days. Data were subjected to analysis of variance and Duncan's multiple range test ( $\alpha$  = 0.05) (Proc GLM, SAS Institute Inc., Cary, NC.). Data were transformed using a logarithmic function to correct a correlation between the magnitude of the mean and variance.

Table 6
Results of leaf-disk assays from greenhouse grown tobacco plants with event 2041-13.

|     | Weight of Surviving Larvae (mg) & Duncan's Group l |       |        |           |         | Group l  |        |
|-----|----------------------------------------------------|-------|--------|-----------|---------|----------|--------|
| TRT | Plant                                              | Plant | Pretes | Test 1    | Test 2  | Test 3   | 3 Test |
| 1   |                                                    | Age   | t      |           |         |          | Sum.   |
| 13  | non-transformed - 2                                | young |        |           |         | 18.8 a*  |        |
| 14  | non-transformed - 3                                | young |        |           |         | 17.0 ab  |        |
| 16  | non-transformed - 5                                | young |        |           |         | 16.4 ab  |        |
| 3   | 2041-13-1 (western -)                              | young |        | 17.6 a    | 18.2 a  | 16.1 ab  | 17.3 a |
| 9   | Gus Control                                        | old   | 19.3 a | 14.6 a    | 16.3 a  | 14.5 ab  | 15.1 a |
| 10  | non-transformed - 1                                | young |        | 8.3 Ъ     | 16.8 a  | 13.9 b   | 13.0 в |
| 11  | 2041-20B (western -)                               | old   |        | 10.0 b*   | 13.7 ab | 14.6 ab  | 12.9 b |
| 15  | non-transformed - 4                                | young |        |           |         | 13.0 bc  |        |
| 8   | 2041-20A (western -)                               | old   | 15.7 a | 8.3 Ъ     | 11.3 bc | 9.2 cd   | 9.6 c  |
| 12  | 2041-9 (western -)                                 | old   | 19.5 a |           |         | 7.9 d    |        |
| 7   | 2041-13-5 (western +)                              | young |        | 6.3 bc    | 9.6 cd  | 7.2 de   | 7.7 d  |
| 5   | 2041-13-3 (western +)                              | young |        | 6.4       | 6.2 e   | 6.8 de** | 6.4 de |
|     |                                                    |       |        | bc****    |         |          |        |
| 1   | 2041-13A (western +)                               | old   | 7.2 b  | 6.8 bc*   | 7.0 de* | 5.4 e    | 6.4 de |
| 6   | 2041-13-4 (western +)                              | young |        | 4.9 c**** | 5.8 e   | 7.6 d    | 6.4 de |
| 4   | 2041-13-2 (western +)                              | young |        | 5.7 bc    | 5.7 e** | 7.5 d    | 6.3 de |
| 2   | 2041-13B (western +)                               | old   |        | 4.7 c**   | 5.6 e   | 7.2 de   | 5.9 e  |

<sup>\*</sup> Number of stars corresponds to the number of dead larvae per 8 tested.

1. Data transformed (logarithm) for analysis. Means followed by the same letter are not significantly different (alpha = 0.05).

TABLE 7
Results Of Leaf-Disk Assays From Greenhouse Grown Tobacco
Plants

With Event 2041-29.

|              | MEAN WGT (MG) / Duncan's Group |          |            |            |                      |  |
|--------------|--------------------------------|----------|------------|------------|----------------------|--|
| Plant        | Test 1                         | Test 2   | Test 3     | Test 4     | Four Test<br>Summary |  |
| 2014-6 GUS 1 | 15.8 a                         | 16.6a    | **5.5bc    | *12.9ab    | 13.2 a               |  |
| 2014-6 GUS 2 | 14.4 a                         | *6.6 bc  | *13.4a     | 15.2a      | 12.6 a               |  |
| KY-160 NTC   | 13.4 a                         | 6.7 bc   | 7.9Ъ       | 8.5bc      | 9.1 b                |  |
| 2041-29 4P   | *4.9 b                         | *7.3b    | ****6.9b   | *****      | 6.3 c                |  |
| 2041-29 7    | *5.9 b                         | 5.1bc    | ***6.7b    | ***7.2c    | 6.1 c                |  |
| 2041-29 3P   | *5.6 b                         | **7.9b   | *****6.5b  | ***3.6d    | 5.9 c                |  |
| 2041-29 2P   | 6.3 b                          | ****4.7c | ******4.1c | ******4.6d | 5.4 c                |  |

\* Number of stars corresponds to the number of dead larvae per 8 tested.

1. Data transformed (logarithm) for analysis.

Means followed by the same letter are not significantly different (alpha = 0.05).

All event 2041-29 plants significantly depressed THW

larval weight gain compared to control plants. Average
weight depression was 49%. Statistically significant
mortality occurred in THW larvae exposed to foliage from
2041-29 plants. Mortality averaged 37.5% compared to
5.2% in controls.

20

25

30

5

E. Isolation and Characterization of Functional Photorhabdus Toxin Protein From Transgenic Plants

Seven grams of transgenic tobacco plants (2041-13) expressing TcdA (Toxin A) gene were homogenized with 10 ml 50 mM Potassium Phosphate buffer, pH 7.0 using a bead beater (Biospec Products, Bartlesville, OK) according to manufacturer's instructions. The homogenate was filtered through four layers of cheese cloth and then centrifuged at 35,000 g for 15 min. The supernant was collected and filtered through 0.22  $\mu$ m Millipore Express<sup>TM</sup> membrane. It was then applied to a Superdex 200 cloumn (2.6 × 40  $\mu$ cm)

which had been equilibrated with 20 mM Tris buffer, pH 8.0 (Buffer A). The protein was eluted in Buffer A at a flow rate of 3 ml/min. Fractions with 3 ml each were collected and subjected to southern corn rootworm (SCR) bioassay. It was found that fractions corresponding to a native molecular weight around 860 kDa had the highest insecticidal activity. Western analysis of the active fraction using a polyclonal antibody specific to Toxin  $\hat{\mathbf{A}}$ indicated the presence of full-length TcdA peptide. active fractions were further combined and applied to a 10 Mono Q 10/10 column which had been equilibrated with Buffer A. Proteins bound to the column were then eluted by a linear gradient of 0 to 1 M NaCl in Buffer A. Fractions with 2 ml each were collected and analyzed by both SCR bioassay and Western using antibody specific to 15 The results again demonstrated the correlation between insecticidal activity and presence of full-length TcdA peptide.

F. Characterization of Progeny Transgenic Plants 20 The inheritability of the genetically engineering plants containing the Photorhabdus toxin gene was evaluated by generating F1 progeny. Progeny was generated from 2041-13 event by selfing expression positive plants. The 2041-13 plants in the greenhouse 25 were allowed to self-pollinate. Seed capsules were collected when mature and were allowed to dry and afterripen on the laboratory bench for two weeks. Seed from plant designated 2041-13A was surface-sterilized and distributed on the surface of medium TOB- without 30 selection, to allow recovery of nonexpressing or nontransgenic progeny as well as expressing and segregating transgenic siblings. Seed was germinated in a C lighted incubator room (16 H light, 28 C). After 1 month, fifty-one seedlings, designated 2041-13A-S1 35 through S51, were distributed into Magenta boxes

self-fertilized 2041-13 plants genetically engineered to produce the "204" A toxin. The tests included 6 non-expressing progeny (protein-negative controls), 45 toxin A expressors, and 4 non-transformed controls (KY-160).

Results are from three leaf-disk assays (method previously outlined) where eight disks were used per test. The data were analyzed using analysis of variance and were blocked by test.

The treatment effect for each of these analyses indicated the Pr > F was less than 0.0001. The Toxin A 10 expressors produced significant control of tobacco hornworm compared to each of the control groups based on each of the three measures of efficacy. The two control groups behaved similarly. Statistical analysis using ANOVA and an LSD test with alpha equal to 0.01 (or 1%) 15 showed differences between the 3 groups. The LSD test indicated that the non-expressors and the non-transformed plants were similar in larvae weights but the expressors gave weights significantly lower than either of the other two groups of plants. These data demonstrated that the 20 genetic basis for insect control was inheritable and corresponded to the presence of expressed toxin gene.

Table 8
Tobacco hornworm results from F1 progeny of selffertilized

25 fertilized 2041-13 tobacco plants.

|                          | Mean                           | Value and Duncan's Grouping | ng <sup>a</sup>                           |
|--------------------------|--------------------------------|-----------------------------|-------------------------------------------|
| Treatment Group          | Total Weight (mg) <sup>a</sup> | Survivor Weight (mg)b       | Leaf Area (cm <sup>2</sup> ) <sup>c</sup> |
| Non-transformed Control  | 15.8 a                         | 15.8 a                      | 1.2 a                                     |
| Protein-negative Control | 16.4 a                         | 16.5 a                      | 1.2 a                                     |
| Toxin A Expressor        | 8.1 b                          | 9.2 b                       | 4.9 b                                     |

<sup>&</sup>lt;sup>a</sup> Average insect weight with dead insects considered to weigh nothing.

b Average insect weight with dead insects excluded from 30 analysis.

<sup>&</sup>lt;sup>c</sup> Total leaf area remaining per eight leaf disks. Initial area was approximately 12 cm<sup>2</sup>.

different (alpha = 0.05).

#### Example 4

Transformation Of Maize With a Vector Carrying Plasmid pDAB1834 Encoding Photorhabdus Toxins

A. Preparation Of Maize Transformation Vectors

Containing Modified Plant-Optimized *Tcda* Coding Regions:

Plasmid Pdab1834

10

15

20

25

30

35

Preparation of maize transformation vectors was accomplished in two steps. First, a modified plantoptimized tcdA coding region was ligated into a plant expression cassette plasmid. In this step, the coding region was placed under the transcriptional control of a promoter functional in maize plant cells. RNA transcription termination and polyadenylation were mediated by a downstream copy of the terminator region from the Agrobacterium nopaline synthase gene. One plasmid designed to function in this role is pDAB1538. In the second step, the complete gene comprised of the promoter, coding region, and 3' UTR terminator region was ligated to a plant transformation vector that contained a plant expressible selectable marker gene which allowed the selection of transformed maize plant cells amongst a background of nontransformed cells. An example of such a vector is pDAB367.

It is a feature of plasmid pDAB1538 that any coding region having an NcoI site at its 5' end and a SacI site 3' to the coding region, when cloned into the unique NcoI and SacI sites of pDAB1538, is placed under the transcriptional control of the maize ubiquitin1 (ubil) promoter. It is also a feature of pDAB1538 that the 5' untranslated leader (UTR) sequence preceding the NcoI site comprises a polylinker. Additionally it is a feature of pDAB1538 that transcription termination and polyadenylation of the mRNA containing the introduced coding region are mediated by termination/Poly A addition

sequences derived from the nopaline synthase (Nos) gene. Finally, it is a feature of pDAB1538 that the entire assembly of promoter/coding region/3'UTR can be obtained as a single DNA fragment by cleavage at the flanking NotI sites.

It is a feature of pDAB367 that the phosphinothricin acetyl transferase protein, which has as its substrate phosphinothricin and related compounds, is produced in plant cells through transcription of its coding region mediated by the Cauliflower Mosaic Virus 35S promoter and that termination of transcription plus polyadenylation are mediated by the nopaline synthase terminator region. It is further a feature of pDAB367 that any DNA fragment containing flanking NotI sites can be cloned into the unique NotI site of pDAB367, thus physically linking the introduced DNA fragment to the aforementioned selectable marker gene.

To prepare a maize plant-expressible gene to produce the endoplasmic reticulum-targeted TcdA protein in plant cells, DNA of a plasmid (pAOH\_4-ER) containing the plant-optimized, ER-targeted tcdA coding region, (SEQ ID No:6) was cleaved with restriction enzymes NcoI and SacI, and the large 7610 bp fragment was ligated to similarly-cut DNA of plasmid pDAB1538 to produce plasmid pDAB1832. DNA of pDAB1832 was then digested with NotI, and the 9984 bp NotI fragment was ligated into the unique NotI site of pDAB367 to produce plasmid pDAB1834.

It is a feature of plasmids pDAB1834 that the ubil and 35S promoters are encoded on the same DNA strand.

B. Transformation and Regeneration of Transgenic Maize Isolates

Type II callus cultures were initiated from immature zygotic embryos of the genotype "Hi-II." (Armstrong et al, (1991) Maize Genet. Coop. Newslett., 65: 92-93). Embryos were isolated from greenhouse-grown ears from

5

10

15

20

25

30

crosses between Hi-II parent A and Hi-II parent B or F2 embryos derived from a self- or sib-pollination of a Hi-II plant. Immature embryos (1.5 to 3.5 mm) were cultured on initiation medium consisting of N6 salts and vitamins (Chu et al, (1978) The N6 medium and its application to anther culture of cereal crops. Proc. Symp. Plant Tissue Culture, Peking Press, 43-56), 1.0 mg/L 2,4-D, 25mM L-proline, 100 mg/L casein hydrolysate, 10 mg/L AgNO<sub>3</sub>, 2.5 g/L GELRITE (Schweizerhall, South Plainfield, NJ), and 20 g/L sucrose, with a pH of 5.8. After four to six weeks callus was subcultured onto maintenance medium (initiation medium in which AgNO<sub>3</sub> was omitted and L-proline was reduced to 6 mM). Selection for Type II callus took place for ca. 12-16 weeks.

Plasmid pDAB1834 was transformed into embryogenic callus. For blasting, 140 µg of plasmid DNA was precipitated onto 60 mg of alcohol-rinsed, spherical gold particles (1.5 - 3.0 µm diameter, Aldrich Chemical Co., Inc., Milwaukee, WI) by adding 74 µL of 2.5M CaCl<sub>2</sub> H<sub>2</sub>O and 30 µL of 0.1M spermidine (free base) to 300 µL of plasmid DNA and H<sub>2</sub>O. The solution was immediately vortexed and the DNA-coated gold particles were allowed to settle. The resulting clear supernatant was removed and the gold particles were resuspended in 1 ml of absolute ethanol.

This suspension was diluted with absolute ethanol to obtain 15 mg DNA-coated gold/mL.

Approximately 600 mg of embryogenic callus tissue was spread over the surface of Type II callus maintenance medium as described herein lacking casein hydrolysate and L-proline, but supplemented with 0.2 M sorbitol and 0.2 M mannitol as an osmoticum. Following a 4 h pre-treatment, tissue was transferred to culture dishes containing blasting medium (osmotic media solidified with 20 g/L TC agar (*Phyto*Technology Laboratories, LLC, Shawnee Mission, KS) instead of 7 g/L GELRITE. Helium blasting accelerated suspended DNA-coated gold particles towards

30

35

and into the prepared tissue targets. The device used was an earlier prototype of that described in US Patent 5,141,131 which is incorporated herein by reference. Tissues were covered with a stainless steel screen (104  $\mu\text{m}$  openings) and placed under a partial vacuum of 25 inches of Hg in the device chamber. The DNA-coated gold particles were further diluted 1:1 with absolute ethanol prior to blasting and were accelerated at the callus targets four times using a helium pressure of 1500 psi, with each blast delivering 20 µL of the DNA/gold suspension. Immediately post-blasting, the tissue was transferred to osmotic media for a 16-24 h recovery period. Afterwards, the tissue was divided into small pieces and transferred to selection medium (maintenance medium lacking casein hydrolysate and L-proline but containing 30 mg/L BASTA® (AgrEvo, Berlin, Germany)). Every four weeks for 3 months, tissue pieces were nonselectively transferred to fresh selection medium. 7 weeks and up to 22 weeks, callus sectors found proliferating against a background of growth-inhibited tissue were removed and isolated. The resulting BASTA®resistant tissue was subcultured biweekly onto fresh selection medium. Following western analysis, positive transgenic lines were identified and transferred to regeneration media. Western-negative lines underwent subsequent RNA spot blot analysis to identify negative controls for regeneration.

Regeneration was initiated by transferring callus tissue to cytokinin-based induction medium, which consisted of Murashige and Skoog salts, hereinafter MS salts, and vitamins (Murashige and Skoog, (1962) Physiol. Plant. 15: 473-497) 30 g/L sucrose, 100 mg/L myo-inositol, 30 g/L mannitol, 5 mg/L 6-benzylaminopurine, hereinafter BAP, 0.025 mg/L 2,4-D, 30 mg/L BASTA®, and 2.5 g/L GELRITE at pH 5.7. The cultures were placed in low light (125 ft-candles) for one week followed by one

-36-

10

15

20

week in high light (325 ft-candles). Following a two week induction period, tissue was non-selectively transferred to hormone-free regeneration medium, which was identical to the induction medium except that it lacked 2,4-D and BAP, and was kept in high light. Small 5 (1.5-3 cm) plantlets were removed and placed in 150x25 mmculture tubes containing SH medium (SH salts and vitamins (Schenk and Hildebrandt, (1972) Can. J. Bot. 50:199-204), 10 g/L sucrose, 100 mg/L myo-inositol, 5 mL/L FeEDTA, and 2.5 g/L GELRITE, pH 5.8). Plantlets were transferred to 10 12 cm pots containing approximately 0.25 kg of METRO-MIX 360 (The Scotts Co. Marysville, OH) in the greenhouse as soon as they exhibited growth and developed a sufficient root system. They were grown with a 16 h photoperiod supplemented by a combination of high pressure sodium and 15 metal halide lamps, and were watered as needed with a combination of three independent Peters Excel fertilizer formulations (Grace-Sierra Horticultural Products Company, Milpitas, CA). At the 6-8 leaf stage, plants were transplanted to five gallon pots containing 20 approximately 4 kg METRO-MIX 360, and grown to maturity.

# EXAMPLE 5

Characterization Of Transgenic Maize Plants

Expressing Photorhabdus Toxin That Confer Insect Control.

A. Insect Bioassays

A single leaf was sampled from each plant in each test. Eight, 1.4 cm disks were cut from the outer portion of each leaf (approximately 30cm long) avoiding the center vein. Each disk was placed individually into a well of a C-D International 128 well tray (Pitman, NJ.) into which 0.5 ml of a 1.6% aqueous agar solution had been previously pipetted. The solidified agar prevented the leaf disks from drying out. The adaxial surface of the disk was always oriented up.

30

35

Five neonate southern corn rootworms, Diabrotica undecimpunctata howardi, were placed on each disk and the wells were sealed with vented plastic lids. The assay was held at 27°C and 40% RH. Larval mortality and liveweight data were collected after 3 days. Data were subjected to analysis of variance and Duncan's multiple range test ( $\alpha = 0.05$ ) (Proc GLM, SAS Institute Inc., Cary, NC.). Weight data were transformed using a logarithmic function to correct a correlation between the magnitude of the mean and variance.

TABLE 9
Results of Maize Leaf-disk Test vs SCR

| Treatment    | Mean % Kill<br>(Duncan's) | Mean Survival<br>Weight (mg)<br>(Duncan's) |
|--------------|---------------------------|--------------------------------------------|
| 1834 - 11    | 68 A***                   | 0.064 A                                    |
| 1834 - 17    | 44 B                      | 0.098 B                                    |
| 1834 - 15    | 26 BC                     | 0.127 C                                    |
| HiII control | 13 C                      | 0.161 C                                    |

Note: Means followed by the same letter are not

significantly different based on Duncan's multiple range test (alpha=0.05). Insect groups weighing less than 0.1 mg were set to 0.03 mg instead of zero to conduct a more conservative analysis. Mortality (arcsin(sqrt)) and weight(log10) data were transformed for analyses.

20

25

15

10

The results shown in Table 9 demonstrated that two events expressing TcdA protein were statistically distinct from control lines bioassayed using SCR neonates by mortality and survival weight criteria. These results demonstrated that southern corn rootworm were functionally effected by feeding on maize plants containing and expressing the *tcdA* gene. Those plants from 1834-11 were used to generate progeny for testing of inheritability of transgene.

B. PRODUCTION AND PROGENY TEST OF tcdA TRANSGENIC MAIZE

Origin and growth of progeny plants: Sibling plants 1834-11-07 and 1834-11-08, clonally derived by regeneration from the callus of transgenic maize event 1834-11, were transplanted to the greenhouse and pollinated with inbred OQ414. Seeds obtained from these crosses, comprising seed lots 1834-11-07A and 1834-11-08A, were planted in Rootrainers (1 ½ inch x 2 inch x 8 inch deep, product #647, C. Hummert Intl., Earth City, Mo.) filled with Metro-Mix 360 soilless mix (Scotts Terra-Lite, available from Hummert Intl.) and top irrigated with Hoagland's nutrient solution. (Hoagland's solution contains 229 ppm nitrogen as nitrate, 24.6 ppm nitrogen as ammonium, 26 ppm P, 157 ppm K, 187 ppm Ca, 49 ppm Mg. and 30 ppm Na.) Greenhouse conditions for this trial were: 16 hour days, daylight supplemented by metal halide lamps as needed to achieve a minimum of 600 ?Einsteins/cm² PAR, and ambient temperature 30 C days, 22 C nights.

20

10

15

Leaves were sampled for protein determination approximately one week after planting. Leaf bioassays were conducted 2-3 weeks after planting; root bioassays were initiated approximately 3 weeks post planting.

25

30

35

Protein analysis of progeny plants: Protein was extracted from leaf and root samples harvested from transgenic plants, line 1834-11 progenies, and non-transformed plants. Each sample was placed on a 1.6 x 4 cm piece of 3M Whatman paper. The paper was folded lengthwise and inserted in a flexible straw. A volume of 350  $\mu$ l of an extraction buffer (9.5 ml of 0.2 M NaH<sub>2</sub>PO<sub>4</sub>, 15.5 ml of 0.2 M Na<sub>2</sub>HPO<sub>4</sub>, 2 ml of 0.5 M Na<sub>2</sub>EDTA, 100 ml of Triton X-100, 1 ml of 10% Sarkosyl, 78 ml of beta-mercaptoethanol, H<sub>2</sub>O to bring total volume to 100 ml, 50  $\mu$ g/ml Antipain, 50  $\mu$ g/ml Leupeptin, 0.1 mM Chymostatin, 5  $\mu$ g/ml Pepstatin) was pipetted on to the paper. The straw containing the

sample was then passed through a rolling device used for squeezing the extract into a 1.5 ml microcentrifuge tube. The extract was centrifuged for 10 minutes at 14,000 rpm in an Eppendorf refrigerated micro-centrifuge. The supernatant was transferred into a new tube. The amount of the total extractable protein was determined using a standard BioRad Protein Analysis protocol (BioRad Laboratories, Hercules, CA).

The presence of the TcdA protein was visualized by Western blot analysis following a standard procedure for 10 protein separation (Laemmli, 1970). A volume of twenty μl of extract was loaded in each well of 4-20% gradient polyacrylamide gel (Owl Scientific Co., MA) for electrophoresis. Subsequently, the protein was transferred onto a nitrocellulose membrane using a semi-15 dry electroblotter (Pharmacia LKB Biotechnology, Piscataway, NJ). The membrane was incubated for one hour in TBST-M solution (10% milk in TBST solution; 25 mM Tris HCL pH 7.4, 136 mM NaCl, 2.7 mM KCl, 0.1% Tween 20). Thereafter, the primary antibody (Anti-TcdA in TBST-M) 20 was added. After one hour, the membrane was washed with TBST for five minutes, three times. Then the secondary antibody solution (goat anti-rabbit IgG conjugated to horseradish peroxidase; Bio-Rad Laboratories, in TBST-M) was added to the membrane. After one hour of incubation, 25 the membrane was washed with an excess amount of TBST for 10 minutes, four times. The protein was visualized using the Super Signal® West Pico chemiluminescence method (Pierce Chemical Co., Rockford, IL). The protein blot was exposed on a Hyper-film (Amersham, Arlington Heights, 30 IL) and was developed within 3 minutes. The intensity of the protein band was measured using a densitometer (Molecular Dynamics Inc., Sunnyvale, CA) and compared to

Three of six plants from seed lot 1834-11-07A and three of six plants from seed lot 1834-11-08A produced

standards.

detectable levels of TcdA protein (Table 1).

Approximately 3.8 to 13.3 ppm of TcdA were detected in the leaf blades and 4.1 to 8.4 ppm were detected in the leaf tips of the protein-positive plants. The amounts of TcdA protein detected in the roots were slightly lower than those found in the leaves.

Insect bioassays with progeny plants: Plants were selected for bioassay based on results from Western blot analysis. Twelve (12), 6.4 mm diameter leaf discs were 10 cut from the youngest leaf of each 2 week old seedling. Each disc was placed in a well of a 128-well tray (CD International) containing approximately 0.5mL of a Two neonate solidified 2% agar in water solution. southern corn rootworm, Diabrotica undecimpunctata 15 howardi (Barber) (SCR), were placed in each well with a leaf disc. Trays were covered with perforated lids and maintained under a controlled environment for 3 days (28 C; 16 hours light: 8 hours dark; approx. 60% relative humidity). Living larvae from 4 leaf discs were pooled 20 and weighed producing 3 weight determinations per plant. Average weights were calculated by dividing the pooled weight by the number of survivors. Differences in average weights of SCR fed leaf discs from protein positive and protein negative plants were assessed using 25 analysis of variance on the natural log-transformed average weights (Minitab, v. 12.2, Minitab Inc., State College, PA).

Root bioassays were initiated approximately 1 week after the initiation of the leaf disc bioassays. Approximately 24h prior to eclosion, SCR eggs were suspended in a 0.15% solution of agar in water to a concentration of 100 eggs/ml. Plants were inoculated with SCR eggs by pipetting 2.0 ml of the egg suspension (ie., approximately 200 eggs) just below the soil surface at the base of each plant. Two weeks after inoculation, plants were removed from their Rootrainer pots, their

30

35

roots washed free of potting mix, and scored for rootworm damage based on a 1 (resistant) to 9 (susceptible) rating system (Welch, 1977). The results of the root ratings were examined using non-parametric tests to determine if the distribution of root ratings from the protein positive plants was the same as the distribution of the ratings from the protein negative plants. Testing was done at the 5% significance level. (StatXact v.3, CYTEL Software Corporation, Cambridge MA)

10

15

Results from leaf and root bioassays of tcdA protein positive and protein negative progeny plants are summarized in Table 10. The average weights of SCR larvae fed leaf discs from protein positive plants were significantly lower than those of larvae fed leaf discs from protein negative plants (F = 4.6; d.f. = 1, 34;  $P \leq 0.001$ . The Kolmogorov-Smirnov 2 sample test (p=0.04) and the Wald Wolfowitz runs test (p=0.001) indicated that the protein positive and protein negative root rating distributions were not similar. The Wilcoxon-Mann-Whitney test (p=0.0206) and the Normal Scores test (p=0.206) indicated that the average score for the protein positive plants was lower than the average root rating from the protein negative plants.

25

20

Table 10. Protein analysis and insect bioassay results with progeny of TcdA transgenic maize.

| Plant          | TcdA    | Leaf Disc     | Root Bioassay |
|----------------|---------|---------------|---------------|
|                |         | Bioassay      |               |
| Number         | Protein | Avg. Wt. (mg) | Root Rating   |
|                |         |               | (1-9)         |
| 1834-11-07A-30 | PRO-    | 0.190         | 8             |
| 1834-11-08A-21 | PRO-    | 0.196         | 9             |
| 1834-11-08A-16 | PRO-    | 0.195         | 9             |
| 1834-11-08A-14 | PRO-    | 0.137         | 9             |
| 1834-11-07A-22 | PRO-    | 0.208         | 9             |
| 1834-11-07A-20 | PRO-    | 0.175         | 9             |

| 1834-11-07A-26 | PRO+ | 0.118 | 9 |
|----------------|------|-------|---|
| 1834-11-08A-17 | PRO+ | 0.132 | 8 |
| 1834-11-07A-14 | PRO+ | 0.110 | 2 |
| 1834-11-07A-11 | PRO+ | 0.106 | 4 |
| 1834-11-08A-28 | PRO+ | 0.129 | 8 |
| 1834-11-08A-27 | PRO+ | 0.108 | 4 |

DNA analysis of progeny plants: Leaf samples from 1834-11.7A and 1834-11.8A progeny plants were in conical 50 ml polypropylene tubes and dried in a Labconco Freeze Dry Lyophilizer (Kansas City, MO) for 1-2 days. Lyophilized 5 leaves were then ground in a Tecator Cyclotec 1093 Sample mill grinder (Hoganas, Sweden) and stored at -20C. Genomic DNA was extracted by the following procedure: (1) to a 25 ml Conical tube containing 300-500 mg of ground tissue, 9 ml of CTAB (cetyl trimethylammonium bromide 10 solution) was added, and incubated at 65°C for 1 hour; (2) 4.5 ml of chloroform: octanol (24:1) was added and mixed gently for 5 minutes; (3) samples were centrifuged at 2000 rpm and DNA was precipitated from the supernatant 15 with an equal volume of isopropanol; (4) DNA was collected on a glass hook, washed in ethanol, and dissolved in TE (10 mM Tris.HCl, 0.5 mM EDTA, pH8.0).

Genomic DNA was digested at 37 °C. for 2 hours in an Eppendorf tube containing the following mixture: 20 8 µl of 800ug/ml DNA, 2 µl 1 mg/ml BSA (Bovine serum albumin),2 μl 10x buffer, 1 μl SacI, 1 μl EcoRI, and 6 μl H2O. Digested DNA samples were electrophoresed overnight at 40 mA in a 0.85% SeaKem LE agarose gel (FMC, Rockland, Maine). The gel was blotted onto Millipore Immobilon-Ny+ 25 (Bedford, MA) membrane overnight in 20X SSC (NaCl 175.2 q/l, Na citrate 88 g/l). The probe DNA was cut with BamHI/SacI (NEB, Beverly, MA) from pDAB1551 plasmid, which released a 7356 bp fragment containing the open reading frame of the rebuilt tcdA gene. This 7356 bp 30 fragment was labeled with P32 using a Stratagene Prime-it

PCT/US00/22237 WO 01/11029

RmT dCTP-Labeling Reactions kit (La Jolla, CA) and used for Southern hybridization. Hybridization was conducted in hybridization buffer (10% polyethylene glycol, 7% SDS [Sodium dodecyl sulfate], 0.6X SSC, 10 mM  $NaPO_4$ , 5 mM EDTA, 10 µg/ml denatured salmon sperm) at 60 °C overnight. After hybridization, the membrane was washed with 10X SSC plus 0.1% SDS at 60 °C for 30 min and exposed to X ray film (Hyperfilm® MP, Amershan Life Sciences, Piscataway, NJ) for 1-2 days.

10

15

20

30

5

Results summarized indicate that a pattern of 8 hybridizing bands (the size of the expected fragment and larger) cosegregated with protein expression in 50% of all progeny assayed. These results are characteristic of a complex insertion at a single site. All seedlings containing the insert also expressed toxin protein.

Example 6 Transformation Of Rice With a Vector Carrying Plasmid pDAB1553 Encoding Photorhabdus Toxins

#### Plasmid pDAB1553 Α.

Plasmid pDAB1553 containing tcdA driven by the maize ubiquitin1 promoter and hpt (hygromycin

phosphotransferase providing resistance to the antibiotic 25 hygromycin) under the control of 35T (a modified 35S promoter), was used for transformation.

vectors rice transformation was Preparation of accomplished in two steps. First, a modified plantoptimized tcdA coding region was ligated into a rice plant expression cassette plasmid. In this step, transcriptional placed under the coding region was control of a promoter functional in plant cells. RNA polyadenylation transcription termination and were 35 mediated by a downstream copy of the terminator region from the Agrobacterium nopaline synthase gene. One

plasmid designed to function in this role is plasmid the section on pDAB1538 (described in transformation vectors). In the second step, complete gene comprised of the promoter, coding region, and terminator region was ligated to a rice plant transformation vector that contained a plant expressible selectable marker gene which allowed the selection of transformed rice plant cells amongst a background of nontransformed cells. An example of such a vector is pDAB354-Not1.

It is a feature of pDAB354-Not1 that the hygromycin phosphotransferase protein, which has as its substrate hygromycin B and related compounds, is produced in plant cells through transcription of its coding region mediated by the Cauliflower Mosaic Virus 35S promoter and that termination of transcription plus polyadenylation are mediated by the nopaline synthase terminator region. It is further a feature of pDAB354-Not1 that any DNA fragment containing flanking NotI sites can be cloned into the unique NotI site of pDAB354-Not1, thus physically linking the introduced DNA fragment to the aforementioned selectable marker gene.

To prepare a plant-expressible gene to produce the non-targeted TcdA protein in rice plant cells, DNA of a plasmid (pAOH\_4-OPTI) containing the plant-optimized tcdA coding region, (SEQ ID No:3) was cleaved with restriction enzymes NcoI and SacI, and the large 7550 bp fragment was ligated to similarly-cut DNA of plasmid pDAB1538 to produce plasmid pDAB1551. DNA of pDAB1551 was then digested with NotI, and the large 9933 bp fragment was ligated to NotI digested DNA of pDAB354-Not1 to produce plasmid pDAB1553.

It is a feature of plasmid pDAB1553 that the ubil and 35S promoters are encoded on the same DNA strand.

35 B. Production of Rice transgenics

5

10

15

20

25

30

For initiation of embryogenic callus, mature seeds of a Japonica cultivar, Taipei 309 were dehusked and surface-sterilized in 70% ethanol for 2-5 min. followed by a 30-45 min soak in 50% commercial bleach (2.6% sodium hypochlorite) with a few drops of 'Liquinox' soap. 5 seeds were then rinsed 3 times in sterile distilled water and placed on filter paper before transferring to 'callus induction' medium (i.e., NB). The NB medium consisted of N6 macro elements (Chu, 1978, The N6 medium and its application to anther culture of cereal crops. Proc. 10 Symp. Plant Tissue Culture, Peking Press, p43-56), B5 micro elements and vitamins (Gamborg et al., 1968, Nutrient requirements of suspension cultures of soybean root cells. Exp. Cell Res. 50: 151-158), 300 mg/L casein hydrolysate, 500 mg/L L-proline, 500 mg/L L-glutamine, 30 15 g/L sucrose, 2 mg/L 2,4-dichloro-phenoxyacetic acid (2,4-D), and 2.5 g/L gelrite (Schweizerhall, NJ) with the pH adjusted to 5.8. The mature seed cultured on 'induction' media were incubated in the dark at 28°C. After 3 weeks of culture, the emerging primary callus induced from the 20 scutellar region of mature embryo was transferred to fresh NB medium for further maintenance.

About 140  $\mu g$  of plasmid pDAB1553 DNA was precipitated onto 60 mg of 1.0 micron (Bio-Rad) gold particles as described herein.

For helium blasting, actively growing embryogenic callus cultures, 2-4 mm in size, were subjected to a high osmoticum treatment. This treatment included placing of callus on NB medium with 0.2 M mannitol and 0.2 M sorbitol (Vain et al., 1993, Osmoticum treatment enhances particle bombardment-mediated transient and stable transformation of maize. Plant Cell Rep. 12: 84-88) for 4 h before helium blasting. Following osmoticum treatment, callus cultures were transferred to 'blasting' medium (NB+2% agar) and covered with a stainless steel screen (230 micron). The callus cultures were blasted at

25

30

35

2,000 psi helium pressures twice per target. After blasting, callus was transferred back to the media with high osmoticum overnight before placing on selection medium, which consisted NB medium with 30 mg/L  $\,$ 

- 5 hygromycin. After 2 weeks, the cultures were transferred to fresh selection medium with a higher concentration of selection agent, i.e., NB+50mg/L hygromycin (Li et al., 1993, An improved rice transformation system using the biolistic method. Plant Cell Rep. 12: 250-255).
- Compact, white-yellow, embryogenic callus cultures, 10 recovered on NB+50 mg/L hygromycin, were regenerated by transferring to 'pre-regeneration' (PR) medium + 50 mg/L hygromycin. The PR medium consisted of NB medium with 2 mg/L benzyl aminopurine (BAP), 1 mg/L naphthalene acetic acid (NAA), and 5 mg/L abscisic acid (ABA). After 2 15 weeks of culture in the dark, they were transferred to 'regeneration' (RN) medium . The composition of RN medium is NB medium with 3 mg/L BAP, and 0.5 mg/L NAA. The cultures on RN medium were incubated for 2 weeks at 28° C under high fluorescent light (325-ft-candles). 20 plantlets with 2 cm shoot were transferred to 1/2 MS medium (Murashige and Skoog, 1962, A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant.15:473-497) with 1/2 B5 vitamins, 10 g/L sucrose, 0.05 mg/L NAA, 50 mg/L hygromycin and 2.5 g/L 25 gelrite adjusted to pH 5.8 in magenta boxes. When plantlets were established with well-developed root systems, they were transferred to soil (1 metromix: 1 top soil) and raised in the greenhouse (29/24°C day/night cycle, 50-60% humidity, 12 h photoperiod) until maturity. 30

# EXAMPLE 7

Chacterization Of Transgenic Rice Plants Expressing
35 Photorhabdus Toxin That Confer Insect Control.

### A. Insect bioassays

Insect bioassays were performed using leaf discs and shown to be highly effective in controlling Southern corn rootworm. Diabrotica undecimpunctata howardi eggs are obtained from French Ag Research and hatched in petri dishes held at 28.5°C and 40° RH. The aerial parts are sampled from the transgenic plants and placed, singly into inverted petri dishes (100x15mm) containing 15ml of 1.6% aqueous agar in the bottom to provide humidity and filter paper in the top to absorb condensation. These preparations are infested with five neonate larvae per dish and held at 28.5°C and 40% RH for 3 days. Mortality and larval weights are recorded. Weight data were transformed using a logarithmic function to correct a correlation between the magnitude of the mean and variance.

Table 11

| Treatment      | Average Survivor Weight in mg¹ (Duncan's Grouping) | Presence TcdA greenhouse-grown plants (number of +/number of plants tested) |
|----------------|----------------------------------------------------|-----------------------------------------------------------------------------|
| GUS<br>Control | 0.390 A                                            | -                                                                           |
| 1553-33        | 0.170 BCD                                          | ++                                                                          |
| 1553-44        | 0.167 BCD                                          | +++                                                                         |
| 1553-62        | 0.125 CD                                           | +++                                                                         |
| 1553-41        | 0.100 D                                            | +++                                                                         |

Note: Means followed by the same letter are not significantly different based on Duncan's multiple range test (alpha=0.05).

Insect groups weighing less than 0.1 mg were set to 0.03 mg instead of zero to conduct a more conservative analysis.

Weight data were transformed (Log10) for analyses. A single replicate was used on each of three test dates. Plants were sampled from magenta boxes.

The results demonstrate that in leaf disc bioassays, several rice events derived by transformation with *tcdA* gene were demonstrated to statistically have a functional affect on corn rootworm neonate.

30

20

5

10

15

# Claims

- 1. An isolated nucleic acid of SEQ ID NO: 3 or SEQ ID NO: 4.
- 2. A transgenic monocot cell having a genome comprising SEQ ID NO:3 or SEQ ID NO:4.
  - 3. A transgenic dicot cell having a genome comprising SEQ ID NO:3 or SEQ ID NO:4.
  - 4. A transgenic plant with a genome comprising a nucleic acid of SEQ ID NO: 3 or SEQ ID NO:4 that imparts insect resistance.
  - 5. A transgenic plant of claim 4 wherein the plant is rice.
  - 6. A transgenic plant of claim 4 wherein the plant is maize.
- 15 7. A transgenic plant of claim 4 wherein the plant is tobacco.

10

# SEQUENCE LISTING

| <110>                            | Me:<br>Rol<br>Gu<br>Sc:<br>Su | tell rlo, rman bert o, L hafe khap ens | Don., Ros<br>s, J<br>ininer, B<br>inda | ald<br>d<br>ean<br>g<br>arry<br>, Ki | tisr             | i                |                  |                  |                  |                  |                  |                  |                  |                  |                  |     |
|----------------------------------|-------------------------------|----------------------------------------|----------------------------------------|--------------------------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|-----|
| <120>                            | Tr                            | ansg                                   | enic                                   | Pla                                  | nts              | Expr             | essi             | ng P             | hoto             | rhab             | dus              | Toxi             | n                |                  |                  |     |
| <130>                            | 50                            | 698                                    |                                        |                                      |                  |                  |                  |                  |                  |                  |                  |                  |                  |                  |                  |     |
| <140><br><141>                   |                               |                                        |                                        |                                      |                  |                  |                  |                  |                  |                  |                  |                  |                  |                  |                  |     |
| <150><br><151>                   |                               |                                        |                                        |                                      |                  |                  |                  |                  |                  |                  |                  |                  | •                |                  |                  |     |
| <160>                            | > 8                           |                                        |                                        |                                      |                  |                  |                  |                  |                  |                  |                  |                  |                  |                  |                  |     |
| <170>                            | > Pa                          | tent                                   | In V                                   | er.                                  | 2.0              |                  |                  |                  |                  |                  |                  |                  |                  |                  |                  |     |
| <2102<br><2112<br><2122<br><2132 | > 75<br>> DN                  | Α                                      | habd                                   | lus 1                                | umin             | iesce            | ens              |                  |                  |                  |                  |                  |                  |                  |                  |     |
| <220<br><221<br><222             | > CD                          |                                        | 7548                                   | ;)                                   |                  |                  |                  |                  |                  |                  |                  |                  |                  |                  |                  |     |
| <4002<br>atg a                   |                               | a2a                                    | tot                                    | ata                                  | 222              | aaa              | at a             | cct              | gat              | σtá              | tta              | aaa              | agc              | caq              | tat              | 48  |
| Met A                            | Asn                           | Glu                                    | Ser                                    | Val<br>5                             | Lys              | Glu              | Ile              | Pro              | Asp<br>10        | Val              | Leu              | Lys              | Ser              | Gln<br>15        | Cys              |     |
| ggt 1<br>Gly 1                   | ttt<br>Phe                    | aat<br>Asn                             | tgt<br>Cys<br>20                       | ctg<br>Leu                           | aca<br>Thr       | gat<br>Asp       | att<br>Ile       | agc<br>Ser<br>25 | cac<br>His       | agc<br>Ser       | tct<br>Ser       | ttt<br>Phe       | aat<br>Asn<br>30 | gaa<br>Glu       | ttt<br>Phe       | 96  |
| cgc (                            | cag<br>Gln                    | caa<br>Gln<br>35                       | gta<br>Val                             | tct<br>Ser                           | gag<br>Glu       | cac<br>His       | ctc<br>Leu<br>40 | tcc<br>Ser       | tgg<br>Trp       | tcc<br>Ser       | gaa<br>Glu       | aca<br>Thr<br>45 | cac<br>His       | gac<br>Asp       | tta<br>Leu       | 144 |
| tat (                            | cat<br>His<br>50              | gat<br>Asp                             | gca<br>Ala                             | caa<br>Gln                           | cag<br>Gln       | gca<br>Ala<br>55 | caa<br>Gln       | aag<br>Lys       | gat<br>Asp       | aat<br>Asn       | cgc<br>Arg<br>60 | ctg<br>Leu       | tat<br>Tyr       | gaa<br>Glu       | gcg<br>Ala       | 192 |
| cgt<br>Arg<br>65                 | att<br>Ile                    | ctc<br>Leu                             | aaa<br>Lys                             | cgc<br>Arg                           | gcc<br>Ala<br>70 | aat<br>Asn       | ccc<br>Pro       | caa<br>Gln       | tta<br>Leu       | caa<br>Gln<br>75 | aat<br>Asn       | gcg<br>Ala       | gtg<br>Val       | cat<br>His       | ctt<br>Leu<br>80 | 240 |
| gcc<br>Ala                       | att<br>Ile                    | ctc<br>Leu                             | gct<br>Ala                             | ccc<br>Pro<br>.85                    | aat<br>Asn       | gct<br>Ala       | gaa<br>Glu       | ctg<br>Leu       | ata<br>Ile<br>90 | ggc<br>Gly       | tat<br>Tyr       | aac<br>Asn       | aat<br>Asn       | caa<br>Gln<br>95 | ttt<br>Phe       | 288 |
| agc<br>Ser                       | ggt<br>Glv                    | aga<br>Arg                             | gcc<br>Ala                             | agt<br>Ser                           | caa<br>Gln       | tat<br>Tvr       | gtt<br>Val       | gcg<br>Ala       | ccg<br>Pro       | ggt<br>Glv       | acc<br>Thr       | gtt<br>Val       | tct<br>Ser       | tcc<br>Ser       | atg<br>Met       | 336 |

|   |   | 100 |   |   |   |   | 105 |   |   |   |   | 110               |   |      |
|---|---|-----|---|---|---|---|-----|---|---|---|---|-------------------|---|------|
|   |   |     |   |   |   |   |     |   |   |   |   | gca<br>Ala        |   | 384  |
|   |   |     |   |   |   |   |     |   |   |   |   | cgc<br>Arg        |   | 432  |
|   |   |     |   |   |   |   |     |   |   |   |   | gaa<br>Glu        |   | 480  |
|   |   |     |   |   |   |   |     |   |   |   |   | aaa<br>Lys        |   | 528  |
|   |   |     |   |   |   |   |     |   |   |   |   | tcc<br>Ser<br>190 |   | 576  |
|   |   |     |   |   |   |   |     |   |   |   |   | aat<br>Asn        |   | 624  |
| - | _ | -   |   |   | _ |   |     |   |   |   |   | aat<br>Asn        | _ | 672  |
| - | - | _   |   | _ | _ |   |     | - |   |   | _ | ggt<br>Gly        |   | 720  |
| _ |   | -   |   |   |   |   |     |   | - | _ |   | gag<br>Glu        |   | 768  |
| - |   | -   | _ | _ |   |   | -   |   |   |   |   | aat<br>Asn<br>270 |   | 816  |
| - | _ | _   | - | _ | _ | _ |     |   |   | - |   | tat<br>Tyr        |   | 864  |
|   |   |     |   |   |   |   |     |   |   |   |   | aat<br>Asn        |   | 912  |
|   |   |     |   |   |   |   |     |   |   |   |   | gtc<br>Val        |   | 960  |
|   |   |     |   |   |   |   |     |   |   |   |   | tat<br>Tyr        |   | 1008 |
|   |   |     |   |   |   |   |     |   |   |   |   | ggt<br>Gly<br>350 |   | 1056 |

| tat<br>Tyr        | cgg<br>Arg        | tta<br>Leu<br>355 | gat<br>Asp         | tat<br>Tyr        | aaa<br>Lys        | ttc<br>Phe        | aaa<br>Lys<br>360 | aat<br>Asn        | ttt<br>Phe        | tat<br>Tyr        | aat<br>Asn        | gcc<br>Ala<br>365 | tct<br>Ser        | tat<br>Tyr        | tta<br>Leu        | 1104 |
|-------------------|-------------------|-------------------|--------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------|
| tcc<br>Ser        | atc<br>Ile<br>370 | aag<br>Lys        | tta<br>Leu         | aat<br>Asn        | gat<br>Asp        | aaa<br>Lys<br>375 | aga<br>Arg        | gaa<br>Glu        | ctt<br>Leu        | gtt<br>Val        | cga<br>Arg<br>380 | act<br>Thr        | gaa<br>Glu        | ggc<br>Gly        | gct<br>Ala        | 1152 |
| cct<br>Pro<br>385 | caa<br>Gln        | gtc<br>Val        | aat<br>Asn         | ata<br>Ile        | gaa<br>Glu<br>390 | tac<br>Tyr        | tcc<br>Ser        | gca<br>Ala        | aat<br>Asn        | atc<br>Ile<br>395 | aca<br>Thr        | tta<br>Leu        | aat<br>Asn        | acc<br>Thr        | gct<br>Ala<br>400 | 1200 |
| gat<br>Asp        | atc<br>Ile        | agt<br>Ser        | caa<br>Gln         | cct<br>Pro<br>405 | ttt<br>Phe        | gaa<br>Glu        | att<br>Ile        | ggc<br>Gly        | ctg<br>Leu<br>410 | aca<br>Thr        | cga<br>Arg        | gta<br>Val        | ctt<br>Leu        | cct<br>Pro<br>415 | tcc<br>Ser        | 1248 |
| ggt<br>Gly        | tct<br>Ser        | tgg<br>Trp        | gca<br>Ala`<br>420 | tat<br>Tyr        | gcc<br>Ala        | gcc<br>Ala        | gca<br>Ala        | aaa<br>Lys<br>425 | ttt<br>Phe        | acc<br>Thr        | gtt<br>Val        | gaa<br>Glu        | gag<br>Glu<br>430 | tat<br>Tyr        | aac<br>Asn        | 1296 |
| caa<br>Gln        | tac<br>Tyr        | tct<br>Ser<br>435 | ttt<br>Phe         | ctg<br>Leu        | cta<br>Leu        | aaa<br>Lys        | ctt<br>Leu<br>440 | aac<br>Asn        | aag<br>Lys        | gct<br>Ala        | att<br>Ile        | cgt<br>Arg<br>445 | cta<br>Leu        | tca<br>Ser        | cgt<br>Arg        | 1344 |
|                   |                   |                   |                    |                   |                   |                   |                   |                   |                   |                   |                   | gtg<br>Val        |                   |                   |                   | 1392 |
| aat<br>Asn<br>465 | cta<br>Leu        | caa<br>Gln        | ctg<br>Leu         | gat<br>Asp        | atc<br>Ile<br>470 | aac<br>Asn        | aca<br>Thr        | gac<br>Asp        | gta<br>Val        | tta<br>Leu<br>475 | ggt<br>Gly        | aaa<br>Lys        | gtt<br>Val        | ttt<br>Phe        | ctg<br>Leu<br>480 | 1440 |
| act<br>Thr        | aaa<br>Lys        | tat<br>Tyr        | tat<br>Tyr         | atg<br>Met<br>485 | cag<br>Gln        | cgt<br>Arg        | tat<br>Tyr        | gct<br>Ala        | att<br>Ile<br>490 | cat               | gct<br>Ala        | gaa<br>Glu        | act<br>Thr        | gcc<br>Ala<br>495 | ctg<br>Leu        | 1488 |
| ata<br>Ile        | cta<br>Leu        | tgc<br>Cys        | aac<br>Asn<br>500  | gcg<br>Ala        | cct<br>Pro        | att<br>Ile        | tca<br>Ser        | caa<br>Gln<br>505 | cgt<br>Arg        | tca<br>Ser        | tat<br>Tyr        | gat<br>Asp        | aat<br>Asn<br>510 | caa<br>Gln        | cct<br>Pro        | 1536 |
| agc<br>Ser        | caa<br>Gln        | ttt<br>Phe<br>515 | gat<br>Asp         | cgc<br>Arg        | ctg<br>Leu        | ttt<br>Phe        | aat<br>Asn<br>520 | acg<br>Thr        | cca<br>Pro        | tta<br>Leu        | ctg<br>Leu        | aac<br>Asn<br>525 | gga<br>Gly        | caa<br>Gln        | tat<br>Tyr        | 1584 |
| ttt<br>Phe        | tct<br>Ser<br>530 | acc<br>Thr        | ggc<br>Gly         | gat<br>Asp        | gag<br>Glu        | gag<br>Glu<br>535 | att<br>Ile        | gat<br>Asp        | tta<br>Leu        | aat<br>Asn        | tca<br>Ser<br>540 | ggt<br>Gly        | agc<br>Ser        | acc<br>Thr        | Gly               | 1632 |
| gat<br>Asp<br>545 | tgg<br>Trp        | cga<br>Arg        | aaa<br>Lys         | acc<br>Thr        | ata<br>Ile<br>550 | ctt<br>Leu        | aag<br>Lys        | cgt<br>Arg        | gca<br>Ala        | ttt<br>Phe<br>555 | Asn               | att<br>Ile        | gat<br>Asp        | gat<br>Asp        | gtc<br>Val<br>560 | 1680 |
| tcg<br>Ser        | ctc<br>Leu        | ttc<br>Phe        | cgc<br>Arg         | ctg<br>Leu<br>565 | ctt<br>Leu        | aaa<br>Lys        | att<br>Ile        | acc<br>Thr        | gac<br>Asp<br>570 | His               | gat<br>Asp        | aat<br>Asn        | aaa<br>Lys        | gat<br>Asp<br>575 | Gly               | 1728 |
| aaa<br>Lys        | att<br>Ile        | aaa<br>Lys        | aat<br>Asn<br>580  | Asn               | cta<br>Leu        | aag<br>Lys        | aat<br>Asn        | ctt<br>Leu<br>585 | Ser               | aat<br>Asn        | tta<br>Leu        | tat<br>Tyr        | att<br>Ile<br>590 | Gly               | aaa<br>Lys        | 1776 |

| tta<br>Leu        | ctg<br>Leu        | gca<br>Ala<br>595 | gat<br>Asp        | att<br>Ile        | cat<br>His        | caa<br>Gln        | tta<br>Leu<br>600 | acc<br>Thr        | att<br>Ile        | gat<br>Asp        | gaa<br>Glu        | ctg<br>Leu<br>605 | gat<br>Asp        | tta<br>Leu        | tta<br>Leu        | 1824  |
|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------|
| ctg<br>Leu        | att<br>Ile<br>610 | gcc<br>Ala        | gta<br>Val        | ggt<br>Gly        | gaa<br>Glu        | gga<br>Gly<br>615 | aaa<br>Lys        | act<br>Thr        | aat<br>Asn        | tta<br>Leu        | tcc<br>Ser<br>620 | gct<br>Ala        | atc<br>Ile        | agt<br>Ser        | gat<br>Asp        | 1872  |
|                   |                   |                   |                   |                   |                   |                   |                   | aaa<br>Lys        |                   |                   |                   |                   |                   |                   |                   | 1920  |
| cta<br>Leu        | cat<br>His        | aca<br>Thr        | cag<br>Gln        | aag<br>Lys<br>645 | tgg<br>Trp        | agt<br>Ser        | gta<br>Val        | ttc<br>Phe        | cag<br>Gln<br>650 | cta<br>Leu        | ttt<br>Phe        | atc<br>Ile        | atg<br>Met        | acc<br>Thr<br>655 | tcc<br>Ser        | 1968  |
| acc<br>Thr        | agc<br>Ser        | tat<br>Tyr        | aac<br>Asn<br>660 | aaa<br>Lys        | acg<br>Thr        | cta<br>Leu        | acg<br>Thr        | cct<br>Pro<br>665 | gaa<br>Glu        | att<br>Ile        | aag<br>Lys        | aat<br>Asn        | ttg<br>Leu<br>670 | ctg<br>Leu        | gat<br>Asp        | 2016  |
| acc<br>Thr        | gtc<br>Val        | tac<br>Tyr<br>675 | cac<br>His        | ggt<br>Gly        | tta<br>Leu        | caa<br>Gln        | ggt<br>Gly<br>680 | ttt<br>Phe        | gat<br>Asp        | aaa<br>Lys        | gac<br>Asp        | aaa<br>Lys<br>685 | gca<br>Ala        | gat<br>Asp        | ttg<br>Leu        | 2064  |
| cta<br>Leu        | cat<br>His<br>690 | gtc<br>Val        | atg<br>Met        | gcg<br>Ala        | ccc<br>Pro        | tat<br>Tyr<br>695 | att<br>Ile        | gcg<br>Ala        | gcc<br>Ala        | acc<br>Thr        | ttg<br>Leu<br>700 | caa<br>Gln        | tta<br>Leu        | tca<br>Ser        | tcg<br>Ser        | 21.12 |
| gaa<br>Glu<br>705 | aat<br>Asn        | gtc<br>Val        | gcc<br>Ala        | cac<br>His        | tcg<br>Ser<br>710 | gta<br>Val        | ctc<br>Leu        | ctt<br>Leu        | tgg<br>Trp        | gca<br>Ala<br>715 | gat<br>Asp        | aag<br>Lys        | tta<br>Leu        | cag<br>Gln        | ccc<br>Pro<br>720 | 2160  |
| ggc<br>Gly        | gac<br>Asp        | ggc<br>Gly        | gca<br>Ala        | atg<br>Met<br>725 | aca<br>Thr        | gca<br>Ala        | gaa<br>Glu        | aaa<br>Lys        | ttc<br>Phe<br>730 | tgg<br>Trp        | gac<br>Asp        | tgg<br>Trp        | ttg<br>Leu        | aat<br>Asn<br>735 | act<br>Thr        | 2208  |
| aag<br>Lys        | tat<br>Tyr        | acg<br>Thr        | ccg<br>Pro<br>740 | ggt<br>Gly        | tca<br>Ser        | tcg<br>Ser        | gaa<br>Glu        | gcc<br>Ala<br>745 | gta<br>Val        | gaa<br>Glu        | acg<br>Thr        | cag<br>Gln        | gaa<br>Glu<br>750 | cat<br>His        | atc<br>Ile        | 2256  |
| gtt<br>Val        | cag<br>Gln        | tat<br>Tyr<br>755 | tgt<br>Cys        | cag<br>Gln        | gct<br>Ala        | ctg<br>Leu        | gca<br>Ala<br>760 | caa<br>Gln        | ttg<br>Leu        | gaa<br>Glu        | atg<br>Met        | gtt<br>Val<br>765 | tac<br>Tyr        | cat<br>His        | tcc<br>Ser        | 2304  |
| acc<br>Thr        | ggc<br>Gly<br>770 | atc<br>Ile        | aac<br>Asn        | gaa<br>Glu        | aac<br>Asn        | gcc<br>Ala<br>775 | ttc<br>Phe        | cgt<br>Arg        | cta<br>Leu        | ttt<br>Phe        | gtg<br>Val<br>780 | Thr               | aaa<br>Lys        | cca<br>Pro        | gag<br>Glu        | 2352  |
| atg<br>Met<br>785 | Phe               | ggc               | gct<br>Ala        | gca<br>Ala        | act<br>Thr<br>790 | Gly               | gca<br>Ala        | gcg<br>Ala        | Pro               | gcg<br>Ala<br>795 | His               | gat<br>Asp        | gcc<br>Ala        | ctt<br>Leu        | tca<br>Ser<br>800 | 2400  |
| ctg<br>Leu        | att<br>Ile        | atg<br>Met        | ctg<br>Leu        | aca<br>Thr<br>805 | Arg               | ttt<br>Phe        | gcg<br>Ala        | gat<br>Asp        | tgg<br>Trp<br>810 | Val               | aac<br>Asn        | gca<br>Ala        | cta<br>Leu        | ggc<br>Gly<br>815 | Glu               | 2448  |
| aaa<br>Lys        | gcg<br>Ala        | tcc<br>Ser        | Ser<br>820        | Val               | cta<br>Leu        | gcg<br>Ala        | gca<br>Ala        | ttt<br>Phe<br>825 | Glu               | gct<br>Ala        | aac<br>Asn        | tcg<br>Ser        | tta<br>Leu<br>830 | Thr               | gca<br>Ala        | 2496  |
| gaa               | caa               | ctg               | gct               | gat               | gco               | ato               | , aat             | ctt               | gat               | gct               | aat               | : ttg             | ctg               | ttg               | caa               | 2544  |

| Glu               | Gln                | Leu<br>835        | Ala                | Asp                | Ala                | Met                | Asn<br>840         | Leu                | Asp                | Ala                | Asn                | Leu<br>845        | Leu                | Leu                | Gln                |      |
|-------------------|--------------------|-------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|-------------------|--------------------|--------------------|--------------------|------|
| gcc<br>Ala        | agt<br>Ser<br>850  | att<br>Ile        | caa<br>Gln         | gca<br>Ala         | caa<br>Gln         | aat<br>Asn<br>855  | cat<br>His         | caa<br>Gln         | cat<br>His         | ctt<br>Leu         | ccc<br>Pro<br>860  | cca<br>Pro        | gta<br>Val         | act<br>Thr         | cca<br>Pro         | 2592 |
| gaa<br>Glu<br>865 | aat<br>Asn         | gcg<br>Ala        | ttc<br>Phe         | tcc<br>Ser         | tgt<br>Cys<br>870  | tgg<br>Trp         | aca<br>Thr         | tct<br>Ser         | atc<br>Ile         | aat<br>Asn<br>875  | act<br>Thr         | atc<br>Ile        | ctg<br>Leu         | caa<br>Gln         | tgg<br>Trp<br>880  | 2640 |
| gtt<br>Val        | aat<br>Asn         | gtc<br>Val        | gca<br>Ala         | caa<br>Gln<br>885  | caa<br>Gln         | ttg<br>Leu         | aat<br>Asn         | gtc<br>Val         | gcc<br>Ala<br>890  | cca<br>Pro         | cag<br>Gln         | ggc<br>Gly        | gtt<br>Val         | tcc<br>Ser<br>895  | gct<br>Ala         | 2688 |
| ttg<br>Leu        | gtc<br>Val         | G] À<br>aaa       | ctg<br>Leu<br>900  | gat<br>Asp         | tat<br>Tyr         | att<br>Ile         | caa<br>Gln         | tca<br>Ser<br>905  | atg<br>Met         | aaa<br>Lys         | gāg<br>Glu         | aca<br>Thr        | ccg<br>Pro<br>910  | acc<br>Thr         | tat<br>Tyr         | 2736 |
| gcc<br>Ala        | cag<br>Gln         | tgg<br>Trp<br>915 | gaa<br>Glu         | aac<br>Asn         | gcg<br>Ala         | gca<br>Ala         | ggc<br>Gly<br>920  | gta<br>Val         | tta<br>Leu         | acc<br>Thr         | gcc<br>Ala         | ggg<br>Gly<br>925 | ttg<br>Leu         | aat<br>Asn         | tca<br>Ser         | 2784 |
| caa<br>Gln        | cag<br>Gln<br>930  | gct<br>Ala        | aat<br>Asn         | aca<br>Thr         | tta<br>Leu         | cac<br>His<br>935  | gct<br>Ala         | ttt<br>Phe         | ctg<br>Leu         | gat<br>Asp         | gaa<br>Glu<br>940  | tct<br>Ser        | cgc<br>Arg         | agt<br>Ser         | gcc<br>Ala         | 2832 |
| gca<br>Ala<br>945 | tta<br>Leu         | agc<br>Ser        | acc<br>Thr         | tac<br>Tyr         | tat<br>Tyr<br>950  | atc<br>Ile         | cgt<br>Arg         | caa<br>Gln         | gtc<br>Val         | gcc<br>Ala<br>955  | aag<br>Lys         | gca<br>Ala        | gcg<br>Ala         | gcg<br>Ala         | gct<br>Ala<br>960  | 2880 |
| att<br>Ile        | aaa<br>Lys         | agc<br>Ser        | cgt<br>Arg         | gat<br>Asp<br>965  | gac<br>Asp         | ttg<br>Leu         | tat<br>Tyr         | caa<br>Gln         | tac<br>Tyr<br>970  | tta<br>Leu         | ctg<br>Leu         | att<br>Ile        | gat<br>Asp         | aat<br>Asn<br>975  | cag<br>Gln         | 2928 |
| gtt<br>Val        | tct<br>Ser         | gcg<br>Ala        | gca<br>Ala<br>980  | ata<br>Ile         | aaa<br>Lys         | acc<br>Thr         | acc<br>Thr         | cgg<br>Arg<br>985  | atc<br>Ile         | gcc<br>Ala         | gaa<br>Glu         | gcc<br>Ala        | att<br>Ile<br>990  | gcc<br>Ala         | agt<br>Ser         | 2976 |
| att<br>Ile        | caa<br>Gln         | ctg<br>Leu<br>995 | tac<br>Tyr         | gtc<br>Val         | aac<br>Asn         | Arg                | gca<br>Ala<br>1000 | Leu                | Glu                | Asn                | gtg<br>Val         | Glu               | Glu                | aat<br>Asn         | gcc<br>Ala         | 3024 |
| Asn               | tcg<br>Ser<br>1010 | Gly               | gtt<br>Val         | atc<br>Ile         | Ser                | cgc<br>Arg<br>1015 | caa<br>Gln         | ttc<br>Phe         | ttt<br>Phe         | Ile                | gac<br>Asp<br>1020 | tgg<br>Trp        | gac<br>Asp         | aaa<br>Lys         | tac<br>Tyr         | 3072 |
| aat<br>Asn<br>102 | aaa<br>Lys<br>5    | cgc<br>Arg        | tac<br>Tyr         | agc<br>Ser         | act<br>Thr<br>1030 | tgg<br>Trp         | gcg<br>Ala         | ggt<br>Gly         | Val                | tct<br>Ser<br>1035 | Gln                | tta<br>Leu        | gtt<br>Val         | tac<br>Tyr         | tac<br>Tyr<br>1040 | 3120 |
| ccg<br>Pro        | gaa<br>Glu         | aac<br>Asn        | tat<br>Tyr         | att<br>Ile<br>1045 | Asp                | ccg<br>Pro         | acc<br>Thr         | atg<br>Met         | cgt<br>Arg<br>1050 | Ile                | gga<br>Gly         | caa<br>Gln        | acc<br>Thr         | aaa<br>Lys<br>1055 | Met                | 3168 |
| atg<br>Met        | gac<br>Asp         | Ala               | tta<br>Leu<br>1060 | Leu                | caa<br>Gln         | tcc<br>Ser         | gtc<br>Val         | agc<br>Ser<br>1065 | Gln                | agc<br>Ser         | caa<br>Gln         | tta<br>Leu        | aac<br>Asn<br>1070 | Ala                | gat<br>Asp         | 3216 |
| acc<br>Thr        | gtc<br>Val         | gaa<br>Glu        | gat<br>Asp         | gcc<br>Ala         | ttt<br>Phe         | atg<br>Met         | tct<br>Ser         | tat<br>Tyr         | ctg<br>Leu         | aca<br>Thr         | tcg<br>Ser         | ttt<br>Phe        | gaa<br>Glu         | caa<br>Glr         | gtg<br>Val         | 3264 |

1075 1080 1085

|                                    | Lys Val Ile S                          |                                      | cac gat aat att<br>His Asp Asn Ile<br>1100 |                                        | 3312 |
|------------------------------------|----------------------------------------|--------------------------------------|--------------------------------------------|----------------------------------------|------|
|                                    |                                        |                                      | agt gaa act gat<br>Ser Glu Thr Asp<br>1115 |                                        | 3360 |
|                                    |                                        | Asp His Ser                          | aaa ttc aac gad<br>Lys Phe Asn Asp<br>130  |                                        | 3408 |
| Ala Ala Asn                        |                                        |                                      | aaa att gat tgt<br>Lys Ile Asp Cys         |                                        | 3456 |
|                                    |                                        |                                      | ata tat aaa too<br>Ile Tyr Lys Sen<br>1169 | Arg Leu Tyr                            | 3504 |
|                                    | Leu Glu Gln 1                          |                                      | acc aaa cag aca<br>Thr Lys Gln Thi<br>1180 |                                        | 3552 |
| aaa gat ggc<br>Lys Asp Gly<br>1185 | tat caa act o<br>Tyr Gln Thr (         | gaa acg gat<br>Glu Thr Asp           | tat cgt tat gad<br>Tyr Arg Tyr Glo<br>1195 | a cta aaa ttg<br>1 Leu Lys Leu<br>1200 | 3600 |
|                                    |                                        | Gly Thr Trp                          | aat acg cca ato<br>Asn Thr Pro Ilo<br>210  |                                        | 3648 |
| Val Asn Lys                        | aaa ata tcc (<br>Lys Ile Ser (<br>1220 | gag cta aaa<br>Glu Leu Lys<br>1225   | ctg gaa aaa aa<br>Leu Glu Lys As:          | t aga gcg ccc<br>n Arg Ala Pro<br>1230 | 3696 |
| gga ctc tat<br>Gly Leu Tyr<br>1235 | tgt gcc ggt<br>Cys Ala Gly             | tat caa ggt<br>Tyr Gln Gly<br>. 1240 | gaa gat acg tt<br>Glu Asp Thr Le<br>124    | u Leu Val Met                          | 3744 |
|                                    | Gln Gln Asp                            |                                      | agt tat aaa aa<br>Ser Tyr Lys As<br>1260   |                                        | 3792 |
| caa gga cta<br>Gln Gly Leu<br>1265 | tat atc ttt<br>Tyr Ile Phe<br>1270     | gct gat atg<br>Ala Asp Met           | gca tcc aaa ga<br>Ala Ser Lys As<br>1275   | t atg acc cca<br>p Met Thr Pro<br>1280 | 3840 |
| gaa cag agc<br>Glu Gln Ser         | aat gtt tat<br>Asn Val Tyr<br>1285     | Arg Asp Asn                          | agc tat caa ca<br>Ser Tyr Gln Gl<br>.290   | a ttt gat acc<br>n Phe Asp Thr<br>1295 | 3888 |
| Asn Asn Val                        |                                        |                                      | tat gca gag ga<br>Tyr Ala Glu As           |                                        | 3936 |
|                                    | Val Ser Ser                            |                                      | tat ggt tgg gg<br>Tyr Gly Trp Gl<br>132    | y Asp Tyr Tyr                          | 3984 |

| ctc agc atg gta<br>Leu Ser Met Val<br>1330 | tat aac gga<br>Tyr Asn Gly<br>1335 | gat att co<br>Asp Ile Pr         | ca act atc aat<br>co Thr Ile Asn<br>1340   | tac aaa gcc<br>Tyr Lys Ala         | 4032 |
|--------------------------------------------|------------------------------------|----------------------------------|--------------------------------------------|------------------------------------|------|
| gca tca agt gat<br>Ala Ser Ser Asp<br>1345 | tta aaa atc<br>Leu Lys Ile<br>1350 | tat atc to<br>Tyr Ile Se         | ca cca aaa tta<br>er Pro Lys Leu<br>1355   | aga att att<br>Arg Ile Ile<br>1360 | 4080 |
| cat aat gga tat<br>His Asn Gly Tyr         | gaa gga cag<br>Glu Gly Gln<br>1365 | aag cgc aa<br>Lys Arg As         | sn Gln Cys Asn                             | ctg atg aat<br>Leu Met Asn<br>1375 | 4128 |
| aaa tat ggc aaa<br>Lys Tyr Gly Lys<br>1380 | cta ggt gat<br>Leu Gly Asp         | aaa ttt at<br>Lys Phe II<br>1385 | le Val Tyr Thr                             | agc ttg ggg<br>Ser Leu Gly<br>.390 | 4176 |
| gtc aat cca aat<br>Val Asn Pro Asn<br>1395 | Asn Ser Ser                        | aat aag ct<br>Asn Lys Le<br>1400 | tc atg ttt tac<br>eu Met Phe Tyr<br>1405   | ccc gtc tat<br>Pro Val Tyr         | 4224 |
| caa tat agc gga<br>Gln Tyr Ser Gly<br>1410 | aac acc agt<br>Asn Thr Ser<br>1415 | gga ctc aa<br>Gly Leu As         | at caa ggg aga<br>sn Gln Gly Arg<br>1420   | cta cta ttc<br>Leu Leu Phe         | 4272 |
| cac cgt gac acc<br>His Arg Asp Thr<br>1425 | act tat cca<br>Thr Tyr Pro<br>1430 | tct aaa g<br>Ser Lys V           | ta gaa gct tgg<br>al Glu Ala Trp<br>1435   | att cct gga<br>Ile Pro Gly<br>1440 | 4320 |
| gca aaa cgt tct<br>Ala Lys Arg Ser         | cta acc aac<br>Leu Thr Asn<br>1445 | caa aat go<br>Gln Asn A          | la Ala Ile Gly                             | gat gat tat<br>Asp Asp Tyr<br>1455 | 4368 |
| gct aca gac tct<br>Ala Thr Asp Ser<br>1460 | ctg aat aaa<br>Leu Asn Lys         | ccg gat g<br>Pro Asp A<br>1465   | sp Leu Lys Gln                             | tat atc ttt<br>Tyr Ile Phe<br>1470 | 4416 |
| atg act gac agt<br>Met Thr Asp Ser<br>1475 | Lys Gly Thr                        | gct act g<br>Ala Thr A<br>1480   | at gtc tca ggc<br>sp Val Ser Gly<br>. 1485 | cca gta gag<br>Pro Val Glu         | 4464 |
| att aat act gca<br>Ile Asn Thr Ala<br>1490 | att tct cca<br>Ile Ser Pro<br>1495 | Ala Lys V                        | tt cag ata ata<br>al Gln Ile Ile<br>1500   | gtc aaa gcg<br>Val Lys Ala         | 4512 |
| ggt ggc aag gag<br>Gly Gly Lys Glu<br>1505 | caa act ttt<br>Gln Thr Phe<br>1510 | acc gca g<br>Thr Ala A           | at aaa gat gtc<br>sp Lys Asp Val<br>1515   | tcc att cag<br>Ser Ile Gln<br>1520 | 4560 |
| cca tca cct agc<br>Pro Ser Pro Ser         | ttt gat gaa<br>Phe Asp Glu<br>1525 | Met Asn T                        | at caa ttt aat<br>'yr Gln Phe Asn<br>330   | gcc ctt gaa<br>Ala Leu Glu<br>1535 | 4608 |
| ata gac ggt tct<br>Ile Asp Gly Ser<br>1540 | Gly Leu Asn                        | ttt att a<br>Phe Ile A<br>1545   | aac aac tca gcc<br>Asn Asn Ser Ala         | agt att gat<br>Ser Ile Asp<br>1550 | 4656 |
| gtt act ttt acc<br>Val Thr Phe Thr<br>1555 | gca ttt gcg<br>Ala Phe Ala         | gag gat g<br>Glu Asp G<br>1560   | ggc cgc aaa ctg<br>Gly Arg Lys Leu<br>1565 | Gly Tyr Glu                        | 4704 |

| agt ttc agt att cct gtt acc ctc aag gta agt acc gat aat gcc ctg<br>Ser Phe Ser Ile Pro Val Thr Leu Lys Val Ser Thr Asp Asn Ala Leu<br>1570 1575 1580      | 4752 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| acc ctg cac cat aat gaa aat ggt gcg caa tat atg caa tgg caa tcc<br>Thr Leu His His Asn Glu Asn Gly Ala Gln Tyr Met Gln Trp Gln Ser<br>1585 1590 1595 1600 | 4800 |
| tat cgt acc cgc ctg aat act cta ttt gcc cgc cag ttg gtt gca cgc Tyr Arg Thr Arg Leu Asn Thr Leu Phe Ala Arg Gln Leu Val Ala Arg 1605 1610 1615            | 4848 |
| gcc acc acc gga atc gat aca att ctg agt atg gaa act cag aat att Ala Thr Thr Gly Ile Asp Thr Ile Leu Ser Met Glu Thr Gln Asn Ile 1620 1625 1630            | 4896 |
| cag gaa ccg cag tta ggc aaa ggt ttc tat gct acg ttc gtg ata cct<br>Gln Glu Pro Gln Leu Gly Lys Gly Phe Tyr Ala Thr Phe Val Ile Pro<br>1635 1640 1645      | 4944 |
| ccc tat aac cta tca act cat ggt gat gaa cgt tgg ttt aag ctt tat<br>Pro Tyr Asn Leu Ser Thr His Gly Asp Glu Arg Trp Phe Lys Leu Tyr<br>1650 1655 1660      | 4992 |
| atc aaa cat gtt gtt gat aat aat tca cat att atc tat tca ggc cag<br>Ile Lys His Val Val Asp Asn Asn Ser His Ile Ile Tyr Ser Gly Gln<br>1665 1670 1675 1680 | 5040 |
| cta aca gat aca aat ata aac atc aca tta ttt att cct ctt gat gat<br>Leu Thr Asp Thr Asn Ile Asn Ile Thr Leu Phe Ile Pro Leu Asp Asp<br>1685 1690 1695      | 5088 |
| gtc cca ttg aat caa gat tat cac gcc aag gtt tat atg acc ttc aag<br>Val Pro Leu Asn Gln Asp Tyr His Ala Lys Val Tyr Met Thr Phe Lys<br>1700 1705 1710      | 5136 |
| aaa tca cca tca gat ggt acc tgg tgg ggc cct cac ttt gtt aga gat<br>Lys Ser Pro Ser Asp Gly Thr Trp Trp Gly Pro His Phe Val Arg Asp<br>1715 1720 1725      | 5184 |
| gat aaa gga ata gta aca ata aac cct aaa tcc att ttg acc cat ttt<br>Asp Lys Gly Ile Val Thr Ile Asn Pro Lys Ser Ile Leu Thr His Phe<br>1730 1735 1740      | 5232 |
| gag agc gtc aat gtc ctg aat aat att agt agc gaa cca atg gat ttc Glu Ser Val Asn Val Leu Asn Asn Ile Ser Ser Glu Pro Met Asp Phe 1745 1750 1755 1760       | 5280 |
| age gge get aac age etc tat tte tgg gaa etg tte tae tat ace eeg<br>Ser Gly Ala Asn Ser Leu Tyr Phe Trp Glu Leu Phe Tyr Tyr Thr Pro<br>1765 1770 1775      | 5328 |
| atg ctg gtt gct caa cgt ttg ctg cat gaa cag aac ttc gat gaa gcc<br>Met Leu Val Ala Gln Arg Leu Leu His Glu Gln Asn Phe Asp Glu Ala<br>1780 1785 1790      | 5376 |
| aac cgt tgg ctg aaa tat gtc tgg agt cca tcc ggt tat att gtc cac<br>Asn Arg Trp Leu Lys Tyr Val Trp Ser Pro Ser Gly Tyr Ile Val His<br>1795 1800 1805      | 5424 |
|                                                                                                                                                           |      |

| Gly Gln Ile Gln Asn Tyr Gln Trp Asn Val Arg Pro Leu Leu Glu Asp<br>1810 1815 1820                                                                         |      |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| acc agt tgg aac agt gat cct ttg gat tcc gtc gat cct gac gcg gta Thr Ser Trp Asn Ser Asp Pro Leu Asp Ser Val Asp Pro Asp Ala Val 1825 1830 1835 1840       | 5520 |
| gca cag cac gat cca atg cac tac aaa gtt tca act ttt atg cgt acc<br>Ala Gln His Asp Pro Met His Tyr Lys Val Ser Thr Phe Met Arg Thr<br>1845 1850 1855      | 5568 |
| ttg gat cta ttg ata gca cgc ggc gac cat gct tat cgc caa ctg gaa<br>Leu Asp Leu Leu Ile Ala Arg Gly Asp His Ala Tyr Arg Gln Leu Glu<br>1860 1865 1870      | 5616 |
| cga gat aca ctc aac gaa gcg aag atg tgg tat atg caa gcg ctg cat<br>Arg Asp Thr Leu Asn Glu Ala Lys Met Trp Tyr Met Gln Ala Leu His<br>1875 1880 1885      | 5664 |
| cta tta ggt gac aaa cct tat cta ccg ctg agt acg aca tgg agt gat<br>Leu Leu Gly Asp Lys Pro Tyr Leu Pro Leu Ser Thr Thr Trp Ser Asp<br>1890 1895 1900      | 5712 |
| cca cga cta gac aga gcc gcg gat atc act acc caa aat gct cac gac<br>Pro Arg Leu Asp Arg Ala Ala Asp Ile Thr Thr Gln Asn Ala His Asp<br>1905 1910 1915 1920 | 5760 |
| agc gca ata gtc gct ctg cgg cag aat ata cct aca ccg gca cct tta<br>Ser Ala Ile Val Ala Leu Arg Gln Asn Ile Pro Thr Pro Ala Pro Leu<br>1925 1930 1935      | 5808 |
| tca ttg cgc agc gct aat acc ctg act gat ctc ttc ctg ccg caa atc<br>Ser Leu Arg Ser Ala Asn Thr Leu Thr Asp Leu Phe Leu Pro Gln Ile<br>1940 1945 1950      | 5856 |
| aat gaa gtg atg atg aat tac tgg cag aca tta gct cag aga gta tac<br>Asn Glu Val Met Met Asn Tyr Trp Gln Thr Leu Ala Gln Arg Val Tyr<br>1955 1960 1965      | 5904 |
| aat ctg cgt cat aac ctc tct atc gac ggc cag ccg tta tat ctg cca<br>Asn Leu Arg His Asn Leu Ser Ile Asp Gly Gln Pro Leu Tyr Leu Pro<br>1970 1975 1980      | 5952 |
| atc tat gcc aca ccg gcc gat ccg aaa gcg tta ctc agc gcc gcc gtt<br>Ile Tyr Ala Thr Pro Ala Asp Pro Lys Ala Leu Leu Ser Ala Ala Val<br>1985 1990 1995 2000 | 6000 |
| gcc act tct caa ggt gga ggc aag cta ccg gaa tca ttt atg tcc ctg<br>Ala Thr Ser Gln Gly Gly Gly Lys Leu Pro Glu Ser Phe Met Ser Leu<br>2005 2010 2015      | 6048 |
| tgg cgt ttc ccg cac atg ctg gaa aat gcg cgc ggc atg gtt agc cag<br>Trp Arg Phe Pro His Met Leu Glu Asn Ala Arg Gly Met Val Ser Gln<br>2020 2025 2030      | 6096 |
| ctc acc cag ttc ggc tcc acg tta caa aat att atc gaa cgt cag gac<br>Leu Thr Gln Phe Gly Ser Thr Leu Gln Asn Ile Ile Glu Arg Gln Asp<br>2035 2040 2045      | 6144 |
| gcg gaa gcg ctc aat gcg tta tta caa aat cag gcc gcc gag ctg ata<br>Ala Glu Ala Leu Asn Ala Leu Leu Gln Asn Gln Ala Ala Glu Leu Ile                        | 6192 |

2050 2055 2060

| ttg act aac ctg a<br>Leu Thr Asn Leu S<br>2065 |                                    | Asp Lys Thr                        |                                    |                                    | 6240 |
|------------------------------------------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------|------|
| gag aaa acg gtg t<br>Glu Lys Thr Val I<br>20   | tg gaa aaa<br>Leu Glu Lys<br>085   | tcc aaa gcg<br>Ser Lys Ala<br>2090 | gga gca caa<br>Gly Ala Gln         | tcg cgc ttt<br>Ser Arg Phe<br>2095 | 6288 |
| gat agc tac ggc a<br>Asp Ser Tyr Gly I<br>2100 |                                    |                                    | Ile Asn Ala                        |                                    | 6336 |
| caa gcc atg acg c<br>Gln Ala Met Thr I<br>2115 | Leu Arg Ala                        |                                    |                                    |                                    | 6384 |
| cag gca tcc cgt o<br>Gln Ala Ser Arg I<br>2130 | ctg gcc ggt<br>Leu Ala Gly<br>2135 | gcg gcg gct<br>Ala Ala Ala         | gat ctg gtg<br>Asp Leu Val<br>2140 | cct aac atc<br>Pro Asn Ile         | 6432 |
| ttc ggc ttt gcc c<br>Phe Gly Phe Ala C<br>2145 |                                    | Ser Arg Trp                        |                                    |                                    | 6480 |
| aca ggt tat gtg a<br>Thr Gly Tyr Val N         | atg gaa ttc<br>Met Glu Phe<br>165  | tcc gcg aat<br>Ser Ala Asn<br>2170 | gtt atg aac<br>Val Met Asn         | acc gaa gcg<br>Thr Glu Ala<br>2175 | 6528 |
| gat aaa att agc o<br>Asp Lys Ile Ser o<br>2180 |                                    |                                    | Arg Arg Arg                        |                                    | 6576 |
| gag atc cag cgg a<br>Glu Ile Gln Arg i<br>2195 | Asn Asn Ala                        | gaa gcg gaa<br>Glu Ala Glu<br>200  | ttg aag caa<br>Leu Lys Gln<br>2205 | atc gat gct<br>Ile Asp Ala         | 6624 |
| cag ctc aaa tca o<br>Gln Leu Lys Ser 1<br>2210 | ctc gct gta<br>Leu Ala Val<br>2215 | cgc cgc gaa<br>Arg Arg Glu         | gcc gcc gta<br>Ala Ala Val<br>2220 | ttg cag aaa<br>Leu Gln Lys         | 6672 |
| acc agt ctg aaa a<br>Thr Ser Leu Lys '<br>2225 |                                    | Glu Gln Thr                        |                                    |                                    | 6720 |
| ctg caa cgt aag<br>Leu Gln Arg Lys<br>2        | ttc agc aat<br>Phe Ser Asn<br>245  | cag gcg tta<br>Gln Ala Leu<br>2250 | tac aac tgg<br>Tyr Asn Trp         | ctg cgt ggt<br>Leu Arg Gly<br>2255 | 6768 |
| cga ctg gcg gcg<br>Arg Leu Ala Ala<br>2260     |                                    |                                    | Asp Leu Ala                        |                                    | 6816 |
| tgc ctg atg gca<br>Cys Leu Met Ala<br>2275     | Glu Gln Ala                        |                                    |                                    |                                    | 6864 |
| gcc cgc ttc att<br>Ala Arg Phe Ile<br>2290     |                                    |                                    |                                    |                                    | 6912 |

| ctt gca ggt gaa<br>Leu Ala Gly Glu<br>2305 | acc ttg atg<br>Thr Leu Met<br>2310 | ctg agt ct<br>Leu Ser Le         | g gca caa atg g<br>u Ala Gln Met G<br>2315   | aa gac gct 696<br>lu Asp Ala<br>2320     | 0              |
|--------------------------------------------|------------------------------------|----------------------------------|----------------------------------------------|------------------------------------------|----------------|
| cat ctg aaa cgc<br>His Leu Lys Arg         | gat aaa cgc<br>Asp Lys Arg<br>2325 | gca tta ga<br>Ala Leu Gl<br>233  | u Val Glu Arg T                              | ca gta tcg 700<br>hr Val Ser<br>2335     | 8              |
| ctg gcc gaa gtt<br>Leu Ala Glu Val<br>2340 | tat gca gga<br>Tyr Ala Gly         | tta cca aa<br>Leu Pro Ly<br>2345 | s Asp Asn Gly P                              | ca ttt tcc 705<br>ro Phe Ser<br>50       | 6              |
| ctg gct cag gaa<br>Leu Ala Gln Glu<br>2355 | Ile Asp Lys                        | ctg gtg ag<br>Leu Val Se<br>2360 | t caa ggt tca g<br>r Gln Gly Ser G<br>2365   | gc agt gcc 710<br>Dy Ser Ala             | 4              |
| ggc agt ggt aat<br>Gly Ser Gly Asn<br>2370 | aat aat ttg<br>Asn Asn Leu<br>2375 | gcg ttc gg<br>Ala Phe Gl         | oc gcc ggc acg g<br>y Ala Gly Thr A<br>2380  | ac act aaa 715<br>sp Thr Lys             | 2              |
| acc tct ttg cag<br>Thr Ser Leu Gln<br>2385 | gca tca gtt<br>Ala Ser Val<br>2390 | tca ttc gc<br>Ser Phe Al         | t gat ttg aaa a<br>a Asp Leu Lys I<br>2395   | tt cgt gaa 720<br>le Arg Glu<br>2400     | 0 (            |
| gat tac ccg gca<br>Asp Tyr Pro Ala         | tcg ctt ggc<br>Ser Leu Gly<br>2405 | aaa att cg<br>Lys Ile Ar<br>241  | g Arg Ile Lys G                              | ag atc agc 724<br>In Ile Ser<br>2415     | 8 .            |
| gtc act ttg ccc<br>Val Thr Leu Pro<br>2420 | gcg cta ctg<br>Ala Leu Leu         | gga ccg ta<br>Gly Pro Ty<br>2425 | r Gln Asp Val G                              | ag gca ata 729<br>In Ala Ile<br>30       | )6             |
| ttg tct tac ggc<br>Leu Ser Tyr Gly<br>2435 | Asp Lys Ala                        | gga tta go<br>Gly Leu Al<br>2440 | et aac ggc tgt o<br>.a Asn Gly Cys O<br>2445 | gaa gcg ctg 734<br>Slu Ala Leu           | 14             |
| gca gtt tct cac<br>Ala Val Ser His<br>2450 | ggt atg aat<br>Gly Met Asn<br>2455 | gac agc gg<br>Asp Ser Gl         | gc caa ttc cag o<br>ly Gln Phe Gln I<br>2460 | etc gat ttc 739<br>Leu Asp Phe           | <del>)</del> 2 |
| aac gat ggc aaa<br>Asn Asp Gly Lys<br>2465 | ttc ctg cca<br>Phe Leu Pro<br>2470 | ttc gaa go<br>Phe Glu Gl         | gc atc gcc att q<br>ly Ile Ala Ile A<br>2475 | gat caa ggc 744<br>Asp Gln Gly<br>2480   | 10             |
| acg ctg aca ctg<br>Thr Leu Thr Leu         | agc ttc cca<br>Ser Phe Pro<br>2485 | aat gca to<br>Asn Ala Se<br>249  | er Met Pro Glu 1                             | aaa ggt aaa   748<br>Lys Gly Lys<br>2495 | 38             |
| caa gcc act atg<br>Gln Ala Thr Met<br>2500 | Leu Lys Thr                        | ctg aac ga<br>Leu Asn As<br>2505 | sp Ile Ile Leu I                             | cat att cgc 753<br>His Ile Arg<br>510    | 36             |
| tac acc att aaa<br>Tyr Thr Ile Lys<br>2515 | taa                                |                                  |                                              | 755                                      | 51             |

<210> 2

<211> 7515 <212> DNA <213> Photorhabdus luminescens <220> <221> CDS <222> (1)..(7512) <400> 2 48 atg caa aac tca tta tca agc act atc gat act att tgt cag aaa ctg Met Gln Asn Ser Leu Ser Ser Thr Ile Asp Thr Ile Cys Gln Lys Leu caa tta act tgt ccg gcg gaa att gct ttg tat ccc ttt gat act ttc 96 Gln Leu Thr Cys Pro Ala Glu Ile Ala Leu Tyr Pro Phe Asp Thr Phe 144 cgg gaa aaa act cgg gga atg gtt aat tgg ggg gaa gca aaa cgg att Arg Glu Lys Thr Arg Gly Met Val Asn Trp Gly Glu Ala Lys Arg Ile tat gaa att gca caa gcg gaa cag gat aga aac cta ctt cat gaa aaa 192 Tyr Glu Ile Ala Gln Ala Glu Gln Asp Arg Asn Leu Leu His Glu Lys 240 cqt att ttt gcc tat gct aat ccg ctg ctg aaa aac gct gtt cgg ttg Arg Ile Phe Ala Tyr Ala Asn Pro Leu Leu Lys Asn Ala Val Arg Leu ggt acc cgg caa atg ttg ggt ttt ata caa ggt tat agt gat ctg ttt 288 Gly Thr Arg Gln Met Leu Gly Phe Ile Gln Gly Tyr Ser Asp Leu Phe 336 ggt aat cgt gct gat aac tat gcc gcg ccg ggc tcg gtt gca tcg atg Gly Asn Arg Ala Asp Asn Tyr Ala Ala Pro Gly Ser Val Ala Ser Met 100 384 ttc tca ccg gcg gct tat ttg acg gaa ttg tac cgt gaa gcc aaa aac Phe Ser Pro Ala Ala Tyr Leu Thr Glu Leu Tyr Arg Glu Ala Lys Asn 115 120 ttg cat gac agc tca att tat tac cta gat aaa cgt cgc ccg gat 432 Leu His Asp Ser Ser Ser Ile Tyr Tyr Leu Asp Lys Arg Arg Pro Asp 140 130 135 tta gca agc tta atg ctc agc cag aaa aat atg gat gag gaa att tca 480 Leu Ala Ser Leu Met Leu Ser Gln Lys Asn Met Asp Glu Glu Ile Ser 155 150 145 acg ctg gct ctc tct aat gaa ttg tgc ctt gcc ggg atc gaa aca aaa 528 Thr Leu Ala Leu Ser Asn Glu Leu Cys Leu Ala Gly Ile Glu Thr Lys 170 165 576 aca gga aaa tca caa gat gaa gtg atg gat atg ttg tca act tat cgt Thr Gly Lys Ser Gln Asp Glu Val Met Asp Met Leu Ser Thr Tyr Arg 180 624 tta agt gga gag aca cct tat cat cac gct tat gaa act gtt cgt gaa Leu Ser Gly Glu Thr Pro Tyr His His Ala Tyr Glu Thr Val Arg Glu 205 195

|                   |            |            |                   | cgt<br>Arg        |                   |            |                         |                   |                   |                   |            |            |                   |                   |                   | 672  |
|-------------------|------------|------------|-------------------|-------------------|-------------------|------------|-------------------------|-------------------|-------------------|-------------------|------------|------------|-------------------|-------------------|-------------------|------|
| att<br>Ile<br>225 | gtt<br>Val | gct<br>Ala | gct<br>Ala        | aag<br>Lys        | ctc<br>Leu<br>230 | gat<br>Asp | cct<br>Pro <sub>j</sub> | gtg<br>Val        | act<br>Thr        | ttg<br>Leu<br>235 | ttg<br>Leu | ggt<br>Gly | att<br>Ile        | agc<br>Ser        | tcc<br>Ser<br>240 | 720  |
| cat<br>His        | att<br>Ile | tcg<br>Ser | cca<br>Pro        | gaa<br>Glu<br>245 | ctg<br>Leu        | tat<br>Tyr | aac<br>Asn              | ttg<br>Leu        | ctg<br>Leu<br>250 | att<br>Ile        | gag<br>Glu | gag<br>Glu | atc<br>Ile        | ccg<br>Pro<br>255 | gaa<br>Glu        | 768  |
| aaa<br>Lys        | gat<br>Asp | gaa<br>Glu | gcc<br>Ala<br>260 | gcg<br>Ala        | ctt<br>Leu        | gat<br>Asp | acg<br>Thr              | ctt<br>Leu<br>265 | tat<br>Tyr        | aaa<br>Lys        | aca<br>Thr | aac<br>Asn | ttt<br>Phe<br>270 | ggc<br>Gly        | gat<br>Asp        | 816  |
|                   |            |            |                   | cag<br>Gln        |                   |            |                         |                   |                   |                   |            |            |                   |                   |                   | 864  |
|                   |            |            |                   | gaa<br>Glu        |                   |            |                         |                   |                   |                   |            |            |                   |                   |                   | 912  |
|                   |            |            |                   | agt<br>Ser        |                   |            |                         |                   |                   |                   |            |            |                   |                   |                   | 960  |
| ggt<br>Gly        | aag<br>Lys | atg<br>Met | gaa<br>Glu        | gta<br>Val<br>325 | gtt<br>Val        | cgt<br>Arg | gtt<br>Val              | acc<br>Thr        | cga<br>Arg<br>330 | aca<br>Thr        | cca<br>Pro | tcg<br>Ser | gat<br>Asp        | aat<br>Asn<br>335 | tat<br>Tyr        | 1008 |
|                   |            |            |                   | aat<br>Asn        |                   |            |                         |                   |                   |                   |            |            |                   |                   |                   | 1056 |
|                   | _          |            |                   | tac<br>Tyr        |                   |            | _                       |                   | _                 |                   |            |            |                   |                   |                   | 1104 |
|                   | _          |            |                   | aaa<br>Lys        | -                 |            |                         | -                 | _                 |                   |            |            |                   | _                 |                   | 1152 |
|                   |            |            |                   | gat<br>Asp        | -                 | _          |                         |                   |                   | -                 |            | _          |                   | -                 | -                 | 1200 |
|                   |            |            | _                 | agt<br>Ser<br>405 | _                 |            | -                       |                   |                   |                   | -          |            |                   |                   |                   | 1248 |
|                   |            |            |                   | ggt<br>Gly        |                   |            |                         |                   |                   |                   |            |            |                   |                   |                   | 1296 |
| _                 |            |            |                   | ccg<br>Pro        |                   | _          |                         | _                 |                   |                   | -          |            |                   |                   |                   | 1344 |
| cgg               | ttg        | ctc        | aaa               | gct               | acc               | ggc        | ctc                     | tct               | ttt               | gct               | acg        | ttg        | gag               | cgt               | att               | 1392 |

| Arg | Leu<br>450 | Leu | Lys | Ala | Thr | Gly<br>455 | Leu               | Ser | Phe | Ala | Thr<br>460 | Leu | Glu | Arg | Ile |      |
|-----|------------|-----|-----|-----|-----|------------|-------------------|-----|-----|-----|------------|-----|-----|-----|-----|------|
|     |            |     |     |     |     |            | aaa<br>Lys        |     |     |     |            |     |     |     |     | 1440 |
|     |            |     |     |     |     |            | tat<br>Tyr        |     |     |     |            |     |     |     |     | 1488 |
|     |            |     |     |     |     |            | aat<br>Asn        |     |     |     |            |     |     |     |     | 1536 |
|     |            |     |     |     |     |            | gag<br>Glu<br>520 |     |     |     |            |     |     |     |     | 1584 |
|     |            |     |     |     |     |            | agt<br>Ser        |     |     |     |            |     |     |     |     | 1632 |
|     |            |     |     |     |     |            | cca<br>Pro        |     |     |     |            |     |     |     |     | 1680 |
|     |            |     |     |     |     |            | ttt<br>Phe        |     |     |     |            |     |     |     |     | 1728 |
| _   | _          |     | -   |     |     | _          | cgt<br>Arg        |     | -   | _   |            | _   |     |     |     | 1776 |
|     |            |     |     |     |     |            | ctg<br>Leu<br>600 |     |     |     |            |     |     |     |     | 1824 |
| Ile |            | Asn | Leu | Thr | Ile | Ala        | gaa<br>Glu        | Leu | Asn | Ile | Leu        | Leu |     |     |     | 1872 |
|     |            |     |     |     |     |            | tat<br>Tyr        |     |     |     |            |     |     |     |     | 1920 |
|     |            |     |     |     |     |            | tgg<br>Trp        |     |     |     |            |     |     |     |     | 1968 |
|     |            |     |     |     |     |            | ttt<br>Phe        |     |     |     |            |     |     |     |     | 2016 |
|     |            |     |     |     |     |            | agc<br>Ser<br>680 |     |     |     |            |     |     |     |     | 2064 |
|     |            |     |     |     |     |            | ctg<br>Leu        |     |     |     |            |     |     |     |     | 2112 |

|                   | 690               |                   |                   |                   |                   | 695               |                   |                   |                   |                   | 700               |                   |                   |                   |                   |      |
|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------|
| atg<br>Met<br>705 | gcg<br>Ala        | cct<br>Pro        | tgc<br>Cys        | ttc<br>Phe        | act<br>Thr<br>710 | tcg<br>Ser        | gct<br>Ala        | ttg<br>Leu        | cat<br>His        | ttg<br>Leu<br>715 | act<br>Thr        | tct<br>Ser        | caa<br>Gln        | gaa<br>Glu        | gtt<br>Val<br>720 | 2160 |
| gcg<br>Ala        | tat<br>Tyr        | gac<br>Asp        | ctg<br>Leu        | ctg<br>Leu<br>725 | ttg<br>Leu        | tgg<br>Trp        | ata<br>Ile        | gac<br>Asp        | cag<br>Gln<br>730 | att<br>Ile        | caa<br>Gln        | ccg<br>Pro        | gca<br>Ala        | caa<br>Gln<br>735 | ata<br>Ile        | 2208 |
| act<br>Thr        | gtt<br>Val        | gat<br>Asp        | ggg<br>Gly<br>740 | ttt<br>Phe        | tgg<br>Trp        | gaa<br>Glu        | gaa<br>Glu        | gtg<br>Val<br>745 | caa<br>Gln        | aca<br>Thr        | aca<br>Thr        | cca<br>Pro        | acc<br>Thr<br>750 | agc<br>Ser        | ttg<br>Leu        | 2256 |
| aag<br>Lys        | gtg<br>Val        | att<br>Ile<br>755 | acc<br>Thr        | ttt<br>Phe        | gct<br>Ala        | cag<br>Gln        | gtg<br>Val<br>760 | ctg<br>Leu        | gca<br>Ala        | caa<br>Gln        | ttg<br>Leu        | agc<br>Ser<br>765 | ctg<br>Leu        | atc<br>Ile        | tat<br>Tyr        | 2304 |
| cgt<br>Arg        | cgt<br>Arg<br>770 | att<br>Ile        | ggg<br>Gly        | tta<br>Leu        | agt<br>Ser        | gaa<br>Glu<br>775 | acg<br>Thr        | gaa<br>Glu        | ctg<br>Leu        | tca<br>Ser        | ctg<br>Leu<br>780 | atc<br>Ile        | gtg<br>Val        | act<br>Thr        | caa<br>Gln        | 2352 |
| tct<br>Ser<br>785 | tct<br>Ser        | ctg<br>Leu        | cta<br>Leu        | gtg<br>Val        | gca<br>Ala<br>790 | ggc<br>Gly        | aaa<br>Lys        | agc<br>Ser        | ata<br>Ile        | ctg<br>Leu<br>795 | gat<br>Asp        | cac<br>His        | ggt<br>Gly        | ctg<br>Leu        | tta<br>Leu<br>800 | 2400 |
| acc<br>Thr        | ctg<br>Leu        | atg<br>Met        | gcc<br>Ala        | ttg<br>Leu<br>805 | gaa<br>Glu        | ggt<br>Gly        | ttt<br>Phe        | cat<br>His        | acc<br>Thr<br>810 | tgg<br>Trp        | gtt<br>Val        | aat<br>Asn        | ggc<br>Gly        | ttg<br>Leu<br>815 | ggg               | 2448 |
| caa<br>Gln        | cat<br>His        | gcc<br>Ala        | tcc<br>Ser<br>820 | ttg<br>Leu        | ata<br>Ile        | ttg<br>Leu        | gcg<br>Ala        | gcg<br>Ala<br>825 | ttg<br>Leu        | aaa<br>Lys        | gac<br>Asp        | ggä<br>Gly        | gcc<br>Ala<br>830 | ttg<br>Leu        | aca<br>Thr        | 2496 |
| gtt<br>Val        | acc<br>Thr        | gat<br>Asp<br>835 | gta<br>Val        | gca<br>Ala        | caa<br>Gln        | gct<br>Ala        | atg<br>Met<br>840 | aat<br>Asn        | aag<br>Lys        | gag<br>Glu        | gaa<br>Glu        | tct<br>Ser<br>845 | ctc<br>Leu        | cta<br>Leu        | caa<br>Gln        | 2544 |
| atg<br>Met        | gca<br>Ala<br>850 | gct<br>Ala        | aat<br>Asn        | cag<br>Gln        | gtg<br>Val        | gag<br>Glu<br>855 | aag<br>Lys        | gat<br>Asp        | cta<br>Leu        | aca<br>Thr        | aaa<br>Lys<br>860 | Leu               | acc<br>Thr        | agt<br>Ser        | tgg<br>Trp        | 2592 |
| aca<br>Thr<br>865 | cag<br>Gln        | att<br>Ile        | gac<br>Asp        | gct<br>Ala        | att<br>Ile<br>870 | ctg<br>Leu        | caa<br>Gln        | tgg<br>Trp        | tta<br>Leu        | cag<br>Gln<br>875 | Met               | tct<br>Ser        | tcg<br>Ser        | gcc<br>Ala        | ttg<br>Leu<br>880 | 2640 |
| gcg<br>Ala        | gtt<br>Val        | tct<br>Ser        | cca<br>Pro        | ctg<br>Leu<br>885 | gat<br>Asp        | ctg<br>Leu        | gca<br>Ala        | ggg<br>Gly        | atg<br>Met<br>890 | Met               | -gcc<br>Ala       | ctg<br>Leu        | aaa<br>Lys        | tat<br>Tyr<br>895 | Gly<br>ggg        | 2688 |
| ata<br>Ile        | gat<br>Asp        | cat<br>His        | aac<br>Asn<br>900 | Tyr               | gct<br>Ala        | gcc<br>Ala        | tgg<br>Trp        | caa<br>Gln<br>905 | Ala               | gcg<br>Ala        | gcg<br>Ala        | gct<br>Ala        | gcg<br>Ala<br>910 | Leu               | atg<br>Met        | 2736 |
| gct<br>Ala        | gat<br>Asp        | cat<br>His<br>915 | Ala               | aat<br>Asn        | cag<br>Gln        | gca<br>Ala        | Cag<br>Gln<br>920 | Lys               | aaa<br>Lys        | ctg<br>Leu        | gat<br>Asp        | gag<br>Glu<br>925 | Thr               | ttc<br>Phe        | agt<br>Ser        | 2784 |
| aag<br>Lys        | gca<br>Ala<br>930 | Leu               | tgt<br>Cys        | aac<br>Asn        | tat<br>Tyr        | tat<br>Tyr<br>935 | Ile               | aat<br>Asn        | gct<br>Ala        | gtt<br>Val        | gto<br>Val<br>940 | . Asp             | agt<br>Ser        | gct<br>Ala        | gct<br>Ala        | 2832 |

|                 | cgt aac ggt tta ta<br>Arg Asn Gly Leu Ty<br>950  |                    | <b>9</b> | 2880 |
|-----------------|--------------------------------------------------|--------------------|----------|------|
| Gln Val Ser Ala | gat gtg atc act to<br>Asp Val Ile Thr Se<br>965  |                    |          | 2928 |
|                 | tac gtt aac cgg go<br>Tyr Val Asn Arg Al<br>98   | a Leu Asn Arg Asp  |          | 2976 |
|                 | gtt agt acc cgt ca<br>Val Ser Thr Arg Gl<br>1000 |                    |          | 3024 |
|                 | tac agt act tgg go<br>Tyr Ser Thr Trp Al<br>1015 |                    |          | 3072 |
|                 | tat gtt gat ccc ac<br>Tyr Val Asp Pro Th<br>1030 |                    |          | 3120 |
| Met Met Asp Ala | ctg ttg caa tcc at<br>Leu Leu Gln Ser Il<br>045  |                    |          | 3168 |
|                 | gat gct ttc aaa ac<br>Asp Ala Phe Lys Th<br>106  | ir Tyr Leu Thr Ser |          | 3216 |
|                 | aaa gta att agt go<br>Lys Val Ile Ser Al<br>1080 |                    |          | 3264 |
|                 | act tat ttt atc go<br>Thr Tyr Phe Ile Gl<br>1095 |                    |          | 3312 |
|                 | cgt agt gtt gat ca<br>Arg Ser Val Asp Hi<br>1110 |                    |          | 3360 |
| Phe Ala Ala Asn | gct tgg ggt gag to<br>Ala Trp Gly Glu Tr<br>125  |                    |          | 3408 |
|                 | aat atc atc cgt co<br>Asn Ile Ile Arg Pi<br>114  | o Val Val Tyr Met  |          | 3456 |
|                 | ctg gag cag caa to<br>Leu Glu Gln Gln So<br>1160 |                    |          | 3504 |
|                 | caa tat aac tta aa<br>Gln Tyr Asn Leu Ly<br>1175 |                    |          | 3552 |

| ggt agt<br>Gly Ser<br>1185                                                            | tgg aat<br>Trp Asn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | aca cca<br>Thr Pro<br>1190                                                                                | ttt act<br>Phe Thr                                                                    | Phe Asp                                                                      | gtg aca (<br>Val Thr (<br>.195                                                        | gaa aag<br>Glu Lys                                                                        | gta aaa<br>Val Lys<br>1200                                                     | 3600                 |
|---------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|----------------------|
| aat tac<br>Asn Tyr                                                                    | acg tcg<br>Thr Ser                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | agt act<br>Ser Thr<br>1205                                                                                | gat gct<br>Asp Ala                                                                    | gct gaa<br>Ala Glu<br>1210                                                   | tct tta<br>Ser Leu                                                                    | Gly Leu                                                                                   | tat tgt<br>Tyr Cys<br>.215                                                     | 3648                 |
| act ggt<br>Thr Gly                                                                    | tat caa<br>Tyr Gln<br>1220                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Gly Glu                                                                                                   | Asp Thr                                                                               | cta tta<br>Leu Leu<br>1225                                                   | gtt atg<br>Val Met                                                                    | ttc tat<br>Phe Tyr<br>1230                                                                | tcg atg<br>Ser Met                                                             | 3696                 |
| Gln Ser                                                                               | agt tat<br>Ser Tyr<br>235                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | agc tcc<br>Ser Ser                                                                                        | tat acc<br>Tyr Thr<br>1240                                                            | gat aat<br>Asp Asn                                                           | aat gcg<br>Asn Ala<br>1                                                               | ccg gtc<br>Pro Val<br>245                                                                 | act ggg<br>Thr Gly                                                             | 3744                 |
| cta tat<br>Leu Tyr<br>1250                                                            | att tto<br>Ile Phe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Ala Asp                                                                                                   | atg tca<br>Met Ser<br>1255                                                            | tca gac<br>Ser Asp                                                           | aat atg<br>Asn Met<br>1260                                                            | acg aat<br>Thr Asn                                                                        | gca caa<br>Ala Gln                                                             | 3792                 |
| gca act<br>Ala Thr<br>1265                                                            | aac tat<br>Asn Tyr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | tgg aat<br>Trp Asn<br>1270                                                                                | aac agt<br>Asn Ser                                                                    | Tyr Pro                                                                      | caa ttt<br>Gln Phe<br>1275                                                            | gat act<br>Asp Thr                                                                        | gtg atg<br>Val Met<br>1280                                                     | 3840                 |
| gca gat<br>Ala Asp                                                                    | ccg gat<br>Pro Asp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | agc gac<br>Ser Asp<br>1285                                                                                | aat aaa<br>Asn Lys                                                                    | aaa gtc<br>Lys Vál<br>1290                                                   | ata acc<br>Ile Thr                                                                    | Arg Arg                                                                                   | gtt aat<br>Val Asn<br>1295                                                     | 3888                 |
| aac cgt<br>Asn Arg                                                                    | tat gcg<br>Tyr Ala<br>1300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Glu Asp                                                                                                   | Tyr Glu                                                                               | att cct<br>Ile Pro<br>1305                                                   | tcc tct<br>Ser Ser                                                                    | gtg aca<br>Val Thr<br>1310                                                                | agt aac<br>Ser Asn                                                             | 3936                 |
| Ser Asn                                                                               | tat tct<br>Tyr Sei<br>1315                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | tgg ggt<br>Trp Gly                                                                                        | gat cac<br>Asp His<br>1320                                                            | agt tta<br>Ser Leu                                                           | acc atg<br>Thr Met<br>1                                                               | ctt tat<br>Leu Tyr<br>.325                                                                | ggt ggt<br>Gly Gly                                                             | 3984                 |
|                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                           |                                                                                       |                                                                              |                                                                                       |                                                                                           |                                                                                |                      |
| agt gtt<br>Ser Val<br>1330                                                            | cct aat<br>Pro Asr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | lle Thr                                                                                                   | ttt gaa<br>Phe Glu<br>1335                                                            | tcg gcg<br>Ser Ala                                                           | gca gaa<br>Ala Glu<br>1340                                                            | gat tta<br>Asp Leu                                                                        | agg cta<br>Arg Leu                                                             | 4032                 |
| Ser Val<br>1330<br>tct acc                                                            | Pro Asr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | lle Thr                                                                                                   | Phe Glu<br>1335<br>agt att<br>Ser Ile                                                 | Ser Ala att cat Ile His                                                      | Ala Glu                                                                               | Asp Leu tat gcg                                                                           | Arg Leu<br>gga acc                                                             | 4032                 |
| Ser Val<br>1330<br>tct acc<br>Ser Thr<br>1345<br>cgc cgt                              | aat ato                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | g gca ttg<br>g Ala Leu<br>1350                                                                            | Phe Glu<br>1335<br>agt att<br>Ser Ile<br>ctt atg                                      | Ser Ala att cat Ile His aaa caa                                              | Ala Glu<br>1340<br>aat gga<br>Asn Gly<br>1355<br>tac gct<br>Tyr Ala                   | Asp Leu tat gcg Tyr Ala tca tta Ser Leu                                                   | gga acc<br>Gly Thr<br>1360<br>ggt gat                                          |                      |
| Ser Val<br>1330<br>tct acc<br>Ser Thr<br>1345<br>cgc cgt<br>Arg Arg                   | aat ato<br>Asn Met<br>ata caa<br>Ile Gli                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | g gca ttg g Ala Leu 1350 a tgt aat n Cys Asn 1365 c tat gat                                               | Phe Glu 1335  agt att Ser Ile  ctt atg Leu Met  tca tca Ser Ser                       | att cat Ile His aaa caa Lys Gln 1370                                         | Ala Glu<br>1340<br>aat gga<br>Asn Gly<br>1355<br>tac gct<br>Tyr Ala                   | Asp Leu tat gcg Tyr Ala tca tta Ser Leu aac cgt                                           | gga acc<br>Gly Thr<br>1360<br>ggt gat<br>Gly Asp<br>1375<br>ttt aat<br>Phe Asn | 4080                 |
| Ser Val 1330  tct acc Ser Thr 1345  cgc cgt Arg Arg  aaa ttt Lys Phe  ctg gtg Leu Val | aat ato Asn Med ata caa Ile Gli ata ati Ile Ile Ile Ile Caata ato | g gca ttg g gca ttg Ala Leu 1350 a tgt aat n Cys Asn 1365 c tat gat g Tyr Asp                             | Phe Glu 1335  agt att Ser Ile  ctt atg Leu Met  tca tca Ser Ser  ttc gga              | att cat Ile His  aaa caa Lys Gln 1370  ttt gat Phe Asp 1385  aaa gac Lys Asp | Ala Glu 1340  aat gga Asn Gly 1355  tac gct Tyr Ala  gat gca Asp Ala  gag aac Glu Asn | tat gcg<br>Tyr Ala<br>tca tta<br>Ser Leu<br>aac cgt<br>Asn Arg<br>1390<br>tca gat         | gga acc<br>Gly Thr<br>1360<br>ggt gat<br>Gly Asp<br>1375<br>ttt aat<br>Phe Asn | 4080                 |
| Ser Val 1330  tct acc Ser Thr 1345  cgc cgt Arg Arg  aaa ttt Lys Phe  ctg gtg Leu Val | aat atcaalle Gli ata atcille Ile 1380 cca ttc Pro Lee 1395 ata ta Ile Ty                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | g gca ttg gca ttg Ala Leu 1350 a tgt aat n Cys Asn 1365 c tat gat e Tyr Asp g ttt aaa n Phe Lys t aat gat | Phe Glu 1335  agt att Ser Ile  ctt atg Leu Met  tca tca Ser Ser  ttc gga Phe Gly 1400 | att cat Ile His  aaa caa Lys Gln 1370  ttt gat Phe Asp 1385  aaa gac Lys Asp | Ala Glu 1340  aat gga Asn Gly 1355  tac gct Tyr Ala  gat gca Asp Ala  gag aac Glu Asn | Asp Leu tat gcg Tyr Ala tca tta Ser Leu aac cgt Asn Arg 1390 tca gat Ser Asp 1405 aag aag | gga acc Gly Thr 1360 ggt gat Gly Asp 1375 ttt aat Phe Asn gat agt Asp Ser      | 4080<br>4128<br>4176 |

| Phe Ser Ser Lys Asp Asp Asn Lys Thr Ala Asp Tyr Asn Gly Gly Thr 1425 1430 1435 1440                                                                       |      |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| caa tgt ata gat gct gga acc agt aac aaa gat ttt tat tat aat ctc<br>Gln Cys Ile Asp Ala Gly Thr Ser Asn Lys Asp Phe Tyr Tyr Asn Leu<br>1445 1450 1455      | 4368 |
| cag gag att gaa gta att agt gtt act ggt ggg tat tgg tcg agt tat<br>Gln Glu Ile Glu Val Ile Ser Val Thr Gly Gly Tyr Trp Ser Ser Tyr<br>1460 1465 1470      | 4416 |
| aaa ata tcc aac ccg att aat atc aat acg ggc att gat agt gct aaa<br>Lys Ile Ser Asn Pro Ile Asn Ile Asn Thr Gly Ile Asp Ser Ala Lys<br>1475 1480 1485      | 4464 |
| gta aaa gtc acc gta aaa gcg ggt ggt gac gat caa atc ttt act gct<br>Val Lys Val Thr Val Lys Ala Gly Gly Asp Asp Gln Ile Phe Thr Ala<br>1490 1495 1500      | 4512 |
| gat aat agt acc tat gtt cct cag caa ccg gca ccc agt ttt gag gag<br>Asp Asn Ser Thr Tyr Val Pro Gln Gln Pro Ala Pro Ser Phe Glu Glu<br>1505 1510 1515 1520 | 4560 |
| atg att tat cag ttc aat aac ctg aca ata gat tgt aag aat tta aat<br>Met Ile Tyr Gln Phe Asn Asn Leu Thr Ile Asp Cys Lys Asn Leu Asn<br>1525 1530 1535      | 4608 |
| ttc atc gac aat cag gca cat att gag att gat ttc acc gct acg gca<br>Phe Ile Asp Asn Gln Ala His Ile Glu Ile Asp Phe Thr Ala Thr Ala<br>1540 1545 1550      | 4656 |
| caa gat ggc cga ttc ttg ggt gca gaa act ttt att atc ccg gta act<br>Gln Asp Gly Arg Phe Leu Gly Ala Glu Thr Phe Ile Ile Pro Val Thr<br>1555 1560 1565      | 4704 |
| aaa aaa gtt ctc ggt act gag aac gtg att gcg tta tat agc gaa aat<br>Lys Lys Val Leu Gly Thr Glu Asn Val Ile Ala Leu Tyr Ser Glu Asn<br>1570 1575 1580      | 4752 |
| aac ggt gtt caa tat atg caa att ggc gca tat cgt acc cgt ttg aat<br>Asn Gly Val Gln Tyr Met Gln Ile Gly Ala Tyr Arg Thr Arg Leu Asn<br>1585 1590 1595 1600 | 4800 |
| acg tta ttc gct caa cag ttg gtt agc cgt gct aat cgt ggc att gat<br>Thr Leu Phe Ala Gln Gln Leu Val Ser Arg Ala Asn Arg Gly Ile Asp<br>1605 1610 1615      | 4848 |
| gca gtg ctc agt atg gaa act cag aat att cag gaa ccg caa tta gga<br>Ala Val Leu Ser Met Glu Thr Gln Asn Ile Gln Glu Pro Gln Leu Gly<br>1620 1625 1630      | 4896 |
| gcg ggc áca tat gtg cag ctt gtg ttg gat aaa tat gat gag tct att<br>Ala Gly Thr Tyr Val Gln Leu Val Leu Asp Lys Tyr Asp Glu Ser Ile<br>1635 1640 1645      | 4944 |
| cat ggc act aat aaa agc ttt gct att gaa tat gtt gat ata ttt aaa<br>His Gly Thr Asn Lys Ser Phe Ala Ile Glu Tyr Val Asp Ile Phe Lys<br>1650 1655 1660      | 4992 |
| gag aac gat agt ttt gtg att tat caa gga gaa ctt agc gaa aca agt<br>Glu Asn Asp Ser Phe Val Ile Tyr Gln Gly Glu Leu Ser Glu Thr Ser                        | 5040 |

caa act gtt gtg aaa gtt ttc tta tcc tat ttt ata gag gcg act gga Gln Thr Val Val Lys Val Phe Leu Ser Tyr Phe Ile Glu Ala Thr Gly aat aag aac cac tta tgg gta cgt gct aaa tac caa aag gaa acg act Asn Lys Asn His Leu Trp Val Arg Ala Lys Tyr Gln Lys Glu Thr Thr gat aag atc ttg ttc gac cgt act gat gag aaa gat ccg cac ggt tgg Asp Lys Ile Leu Phe Asp Arg Thr Asp Glu Lys Asp Pro His Gly Trp ttt ctc agc gac gat cac aag acc ttt agt ggt ctc tct tcc gca cag Phe Leu Ser Asp Asp His Lys Thr Phe Ser Gly Leu Ser Ser Ala Gln qca tta aag aac gac agt gaa ccg atg gat ttc tct ggc gcc aat gct Ala Leu Lys Asn Asp Ser Glu Pro Met Asp Phe Ser Gly Ala Asn Ala ctc tat ttc tgg gaa ctg ttc tat tac acg ccg atg atg gct cat Leu Tyr Phe Trp Glu Leu Phe Tyr Tyr Thr Pro Met Met Ala His cgt ttg ttg cag gaa cag aat ttt gat gcg gcg aac cat tgg ttc cgt Arg Leu Leu Gln Glu Gln Asn Phe Asp Ala Ala Asn His Trp Phe Arg tat gtc tgg agt cca tcc ggt tat atc gtt gat ggt aaa att gct atc Tyr Val Trp Ser Pro Ser Gly Tyr Ile Val Asp Gly Lys Ile Ala Ile tac cac tgg aac gtg cga ccg ctg gaa gaa gac acc agt tgg aat gca Tyr His Trp Asn Val Arg Pro Leu Glu Glu Asp Thr Ser Trp Asn Ala caa caa ctg gac tcc acc gat cca gat gct gta gcc caa gat gat ccg Gln Gln Leu Asp Ser Thr Asp Pro Asp Ala Val Ala Gln Asp Asp Pro atg cac tac aag gtg gct acc ttt atg gcg acg ttg gat ctg cta atg \_ 5568 Met His Tyr Lys Val Ala Thr Phe Met Ala Thr Leu Asp Leu Leu Met gcc cgt ggt gat gct gct tac cgc cag tta gag cgt gat acg ttg gct Ala Arg Gly Asp Ala Ala Tyr Arg Gln Leu Glu Arg Asp Thr Leu Ala gaa gct aaa atg tgg tat aca cag gcg ctt aat ctg ttg ggt gat gag Glu Ala Lys Met Trp Tyr Thr Gln Ala Leu Asn Leu Leu Gly Asp Glu cca caa gtg atg ctg agt acg act tgg gct aat cca aca ttg ggt aat Pro Gln Val Met Leu Ser Thr Thr Trp Ala Asn Pro Thr Leu Gly Asn gct gct tca aaa acc aca cag cag gtt cgt cag caa gtg ctt acc cag Ala Ala Ser Lys Thr Thr Gln Gln Val Arg Gln Gln Val Leu Thr Gln 

| ttg cgt ctc aat<br>Leu Arg Leu Asn         | agc agg gta<br>Ser Arg Val<br>1925 | aaa acc ccg<br>Lys Thr Pro<br>1930 | Leu Leu Gly                            | aca gcc aat<br>Thr Ala Asn<br>1935 | 5808 |
|--------------------------------------------|------------------------------------|------------------------------------|----------------------------------------|------------------------------------|------|
| tcc ctg acc gct<br>Ser Leu Thr Ala<br>1940 | tta ttc ctg<br>Leu Phe Leu         | ccg cag gaa<br>Pro Gln Glu<br>1945 | Asn Ser Lys                            | ctc aaa ggc<br>Leu Lys Gly<br>950  | 5856 |
| tac tgg cgg aca<br>Tyr Trp Arg Thr<br>1955 | Leu Ala Gln                        | cgt atg ttt<br>Arg Met Phe<br>1960 | aat tta cgt<br>Asn Leu Arg<br>1965     | cat aat ctg<br>His Asn Leu         | 5904 |
| tcg att gac ggc<br>Ser Ile Asp Gly<br>1970 | cag ccg ctc<br>Gln Pro Leu<br>1975 | tcc ttg ccg<br>Ser Leu Pro         | ctg tat gct<br>Leu Tyr Ala<br>1980     | aaa ccg gct<br>Lys Pro Ala         | 5952 |
| gat cca aaa gct<br>Asp Pro Lys Ala<br>1985 | tta ctg agt<br>Leu Leu Ser<br>1990 | gcg gcg gtt<br>Ala Ala Val         | tca gct tct<br>Ser Ala Ser<br>1995     | caa ggg gga<br>Gln Gly Gly<br>2000 | 6000 |
| gcc gac ttg ccg<br>Ala Asp Leu Pro         | aag gcg ccg<br>Lys Ala Pro<br>2005 | ctg act att<br>Leu Thr Ile<br>2010 | His Arg Phe                            | cct caa atg<br>Pro Gln Met<br>2015 | 6048 |
| cta gaa ggg gca<br>Leu Glu Gly Ala<br>2020 | cgg ggc ttg<br>Arg Gly Leu         | gtt aac cac<br>Val Asn Glr<br>2025 | Leu Ile Gln                            | ttc ggt agt<br>Phe Gly Ser<br>2030 | 6096 |
| tca cta ttg ggg<br>Ser Leu Leu Gly<br>2035 | Tyr Ser Glu                        | cgt cag gat<br>Arg Gln Asg<br>2040 | geg gaa get<br>Ala Glu Ala<br>2045     | atg agt caa<br>Met Ser Gln         | 6144 |
| cta ctg caa acc<br>Leu Leu Gln Thr<br>2050 | caa gcc agc<br>Gln Ala Ser<br>2055 | gag tta ata<br>Glu Leu Ile         | e ctg acc agt<br>E Leu Thr Ser<br>2060 | att cgt atg<br>Ile Arg Met         | 6192 |
| cag gat aac caa<br>Gln Asp Asn Gln<br>2065 | ttg gca gag<br>Leu Ala Glu<br>2070 | ctg gat tcg<br>Leu Asp Ser         | g gaa aaa acc<br>Glu Lys Thr<br>2075   | gcc ttg caa<br>Ala Leu Gln<br>2080 | 6240 |
| gtc tct tta gct<br>Val Ser Leu Ala         | gga gtg caa<br>Gly Val Gln<br>2085 | caa cgg tt<br>Gln Arg Pho<br>2090  | e Asp Ser Tyr                          | agc caa ctg<br>Ser Gln Leu<br>2095 | 6288 |
| tat gag gag aac<br>Tyr Glu Glu Asn<br>2100 | atc aac gca<br>Ile Asn Ala         | ggt gag cad<br>Gly Glu Glu<br>2105 | n Arg Ala Leu                          | gcg tta cgc<br>Ala Leu Arg<br>2110 | 6336 |
| tca gaa tct gct<br>Ser Glu Ser Ala<br>2115 | Ile Glu Ser                        | cag gga gc<br>Gln Gly Al<br>2120   | g cag att tcc<br>a Gln Ile Ser<br>2125 | cgt atg gca<br>Arg Met Ala         | 6384 |
| ggc gcg ggt gtt<br>Gly Äla Gly Val<br>2130 | gat atg gca<br>Asp Met Ala<br>2135 | Pro Asn Il                         | c ttc ggc ctg<br>e Phe Gly Leu<br>2140 | gct gat ggc<br>Ala Asp Gly         | 6432 |
| ggc atg cat tat<br>Gly Met His Tyr<br>2145 | ggt gct att<br>Gly Ala Ile<br>2150 | gcc tat gc<br>Ala Tyr Al           | c atc gct gac<br>a Ile Ala Asp<br>2155 | ggt att gag<br>Gly Ile Glu<br>2160 | 6480 |

ttg agt gct tct gcc aag atg gtt gat gcg gag aaa gtt gct cag tcg Leu Ser Ala Ser Ala Lys Met Val Asp Ala Glu Lys Val Ala Gln Ser gaa ata tat cgc cgt cgc cgt caa gaa tgg aaa att cag cgt gac aac Glu Ile Tyr Arg Arg Arg Gln Glu Trp Lys Ile Gln Arg Asp Asn gca caa gcg gag att aac cag tta aac gcg caa ctg gaa tca ctg tct Ala Gln Ala Glu Ile Asn Gln Leu Asn Ala Gln Leu Glu Ser Leu Ser att cgc cgt gaa gcc gct gaa atg caa aaa gag tac ctg aaa acc cag Ile Arg Arg Glu Ala Ala Glu Met Gln Lys Glu Tyr Leu Lys Thr Gln caa gct cag gcg cag gca caa ctt act ttc tta aga agc aaa ttc agt Gln Ala Gln Ala Gln Leu Thr Phe Leu Arg Ser Lys Phe Ser aat caa gcg tta tat agt tgg tta cga ggg cgt ttg tca ggt att tat Asn Gln Ala Leu Tyr Ser Trp Leu Arg Gly Arg Leu Ser Gly Ile Tyr ttc cag ttc tat gac ttg gcc gta tca cgt tgc ctg atg gca gag caa Phe Gln Phe Tyr Asp Leu Ala Val Ser Arg Cys Leu Met Ala Glu Gln tcc tat caa tgg gaa gct aat gat aat tcc att agc ttt gtc aaa ccg Ser Tyr Gln Trp Glu Ala Asn Asp Asn Ser Ile Ser Phe Val Lys Pro ggt gca tgg caa gga act tac gcc ggc tta ttg tgt gga gaa gct ttg Gly Ala Trp Gln Gly Thr Tyr Ala Gly Leu Leu Cys Gly Glu Ala Leu ata caa aat ctg gca caa atg gaa gag gca tat ctg aaa tgg gaa tct Ile Gln Asn Leu Ala Gln Met Glu Glu Ala Tyr Leu Lys Trp Glu Ser cgc gct ttg gaa gta gaa cgc acg gtt tca ttg gca gtg gtt tat gat Arg Ala Leu Glu Val Glu Arg Thr Val Ser Leu Ala Val Val Tyr Asp tca ctg gaa ggt aat gat cgt ttt aat tta gcg gaa caa ata cct gca Ser Leu Glu Gly Asn Asp Arg Phe Asn Leu Ala Glu Gln Ile Pro Ala tta ttg gat aag ggg gag gga aca gca gga act aaa gaa aat ggg tta Leu Leu Asp Lys Gly Glu Gly Thr Ala Gly Thr Lys Glu Asn Gly Leu tca ttg gct aat gct atc ctg tca gct tcg gtc aaa ttg tcc gac ttg Ser Leu Ala Asn Ala Ile Leu Ser Ala Ser Val Lys Leu Ser Asp Leu aaa ctg gga acg gat tat cca gac agt atc gtt ggt agc aac aag gtt Lys Leu Gly Thr Asp Tyr Pro Asp Ser Ile Val Gly Ser Asn Lys Val cgt cgt att aag caa atc agt gtt tcg cta cct gca ttg gtt ggg cct 

THE THE

| Arg Arg Ile Lys Gln Ile Ser Val Ser Leu Pro Ala Leu Val Gly Pro 2405 2410 2415                                                                              |    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| tat cag gat gtt cag gct atg ctc agc tat ggt ggc agt act caa ttg 729 Tyr Gln Asp Val Gln Ala Met Leu Ser Tyr Gly Gly Ser Thr Gln Leu 2420 2425 2430          | 16 |
| ccg aaa ggt tgt tca gcg ttg gct gtg tct cat ggt acc aat gat agt 734 Pro Lys Gly Cys Ser Ala Leu Ala Val Ser His Gly Thr Asn Asp Ser 2435 2440 2445          | 4  |
| ggt cag ttc cag ttg gat ttc aat gac ggc aaa tac ctg cca ttt gaa 739 Gly Gln Phe Gln Leu Asp Phe Asn Asp Gly Lys Tyr Leu Pro Phe Glu 2450 2455 2460          | )2 |
| ggt att gct ctt gat gat cag ggt aca ctg aat ctt caa ttt ccg aat 744 Gly Ile Ala Leu Asp Asp Gln Gly Thr Leu Asn Leu Gln Phe Pro Asn 2465 2470 2475 2480     | 10 |
| gct acc gac aag cag aaa gca ata ttg caa act atg agc gat att att 748 Ala Thr Asp Lys Gln Lys Ala Ile Leu Gln Thr Met Ser Asp Ile Ile 2485 2490 2495          | }8 |
| ttg cat att cgt tat acc atc cgt taa 751 Leu His Ile Arg Tyr Thr Ile Arg 2500                                                                                | 5. |
| <210> 3 <211> 7577 <212> DNA <213> Artificial Sequence                                                                                                      |    |
| <220> <221> CDS <222> (3)(7553)                                                                                                                             |    |
| <220> <223> Description of Artificial Sequence:hemicot tcdA                                                                                                 |    |
| <pre>&lt;400&gt; 3 cc atg gct aac gag tcc gtc aag gag atc cca gac gtc ctc aag tcc    Met Ala Asn Glu Ser Val Lys Glu Ile Pro Asp Val Leu Lys Ser    1</pre> |    |
| caa tgc ggt ttc aac tgc ctc act gac atc tcc cac agc tcc ttc aac 95<br>Gln Cys Gly Phe Asn Cys Leu Thr Asp Ile Ser His Ser Ser Phe Asn<br>20 25 30           |    |
| gag ttc aga caa caa gtc tct gag cac ctc tcc tgg tcc gag acc cat Glu Phe Arg Gln Gln Val Ser Glu His Leu Ser Trp Ser Glu Thr His 35 40 45                    | 3  |
| gac ctc tac cat gac gct cag caa gct cag aag gac aac agg ctc tac 19 Asp Leu Tyr His Asp Ala Gln Gln Ala Gln Lys Asp Asn Arg Leu Tyr 50 55 60                 | 1  |
| gag gct agg atc ctc aag agg gct aac cca caa ctc cag aac gct gtc 23<br>Glu Ala Arg Ile Leu Lys Arg Ala Asn Pro Gln Leu Gln Asn Ala Val<br>65 70 75           | 9  |

| cac<br>His<br>80  | ctc<br>Leu        | gcc<br>Ala        | atc<br>Ile        | ttg<br>Leu        | gct<br>Ala<br>85  | cca<br>Pro        | aac<br>Asn        | gct<br>Ala        | gag<br>Glu        | ttg<br>Leu<br>90  | att<br>Ile         | ggt<br>Gly        | tac<br>Tyr        | aac<br>Asn        | aac<br>Asn<br>95  | 287 |
|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|--------------------|-------------------|-------------------|-------------------|-------------------|-----|
| cag<br>Gln        | ttc<br>Phe        | tct<br>Ser        | ggc<br>Gly        | aga<br>Arg<br>100 | gct<br>Ala        | agc<br>Ser        | cag<br>Gln        | tac<br>Tyr        | gtg<br>Val<br>105 | gct<br>Ala        | cct<br>Pro         | ggt<br>Gly        | aca<br>Thr        | gtc<br>Val<br>110 | tcc<br>Ser        | 335 |
| tcc<br>Ser        | atg<br>Met        | ttc<br>Phe        | agc<br>Ser<br>115 | cca<br>Pro        | gcc<br>Ala        | gct<br>Ala        | tac<br>Tyr        | ctc<br>Leu<br>120 | act<br>Thr        | gag<br>Glu        | ttg<br>Leu         | tac<br>Tyr        | cgc<br>Arg<br>125 | gag<br>Glu        | gct<br>Ala        | 383 |
| agg<br>Arg        | aac<br>Asn        | ctt<br>Leu<br>130 | cat<br>His        | gct<br>Ala        | tct<br>Ser        | gac<br>Asp        | tcc<br>Ser<br>135 | gtc<br>Val        | tac<br>Tyr        | tac<br>Tyr        | ttg<br>Leu         | gac<br>Asp<br>140 | aca<br>Thr        | cgc<br>Arg        | aga<br>Arg        | 431 |
| cca<br>Pro        | gac<br>Asp<br>145 | ctc<br>Leu        | aag<br>Lys        | agc<br>Ser        | atg<br>Met        | gcc<br>Ala<br>150 | ctc<br>Leu        | agc<br>Ser        | caa<br>Gln        | cag<br>Gln        | aac<br>Asn<br>155  | atg<br>Met        | gac<br>Asp        | att<br>-Ile       | gag<br>Glu        | 479 |
| ttg<br>Leu<br>160 | tcc<br>Ser        | acc<br>Thr        | ctc<br>Leu        | tcc<br>Ser        | ttg<br>Leu<br>165 | agc<br>Ser        | aac<br>Asn        | gag<br>Glu        | ctt<br>Leu        | ctc<br>Leu<br>170 | ttg<br>Leu         | gag<br>Glu        | tcc<br>Ser        | atc<br>Ile        | aag<br>Lys<br>175 | 527 |
| act<br>Thr        | gag<br>Glu        | agc<br>Ser        | aag<br>Lys        | ttg<br>Leu<br>180 | gag<br>Glu        | aac<br>Asn        | tac<br>Tyr        | acc<br>Thr        | aag<br>Lys<br>185 | gtc<br>Val        | atg<br>Met         | gag<br>Glu        | atg<br>Met        | ctc<br>Leu<br>190 | tcc<br>Ser        | 575 |
| acc<br>Thr        | ttc<br>Phe        | aga<br>Arg        | cca<br>Pro<br>195 | agc<br>Ser        | ggt<br>Gly        | gca<br>Ala        | act<br>Thr        | cca<br>Pro<br>200 | tac<br>Tyr        | cat<br>His        | gat<br>Asp         | gcc<br>Ala        | tac<br>Tyr<br>205 | gag<br>Glu        | aac<br>Asn        | 623 |
| gtc<br>Val        | agg<br>Arg        | gag<br>Glu<br>210 | gtc<br>Val        | atc<br>Ile        | caa<br>Gln        | ctt<br>Leu        | caa<br>Gln<br>215 | gac<br>Asp        | cct<br>Pro        | ggt<br>Gly        | ctt<br>Leu         | gag<br>Glu<br>220 | caa<br>Gln        | ctc<br>Leu        | aac<br>Asn        | 671 |
| gct<br>Ala        | tct<br>Ser<br>225 | cca<br>Pro        | gcc<br>Ala        | att<br>Ile        | gct<br>Ala        | ggt<br>Gly<br>230 | ttg<br>Leu        | atg<br>Met        | cac<br>His        | cag<br>Gln        | gca<br>Ala<br>235  | tcc<br>Ser        | ttg<br>Leu        | ctc<br>Leu        | ggt<br>Gly        | 719 |
| atc<br>Ile<br>240 | Asn               | gcc<br>Ala        | tcc<br>Ser        | atc<br>Ile        | tct<br>Ser<br>245 | cct<br>Pro        | gag<br>Glu        | ttg<br>Leu        | ttc<br>Phe        | aac<br>Asn<br>250 | atc<br>Ile         | ttg<br>Leu        | act<br>Thr        | gag<br>Glu        | gag<br>Glu<br>255 | 767 |
| atc<br>Ile        | act<br>Thr        | gag<br>Glu        | ggc<br>Gly        | aac<br>Asn<br>260 | Ala               | gag<br>Glu        | gag<br>Glu        | ttg<br>Leu        | tac<br>Tyr<br>265 | Lys               | aag<br>Lys         | aac<br>Asn        | ttc<br>Phe        | ggc<br>Gly<br>270 | Asn               | 815 |
| att<br>Ile        | gag<br>Glu        | cca<br>Pro        | gcc<br>Ala<br>275 | Ser               | ctt<br>Leu        | gca<br>Ala        | atg<br>Met        | cct<br>Pro<br>280 | Glu               | tac<br>Tyr        | ctc<br>Leu         | aag<br>Lys        | agg<br>Arg<br>285 | Tyr               | tac<br>Tyr        | 863 |
| aac<br>Asn        | ttg<br>Leu        | tct<br>Ser<br>290 | Asp               | gag<br>Glu        | gag<br>Glu        | ctt<br>Lev        | tct<br>Ser<br>295 | Gln               | tto<br>Phe        | att<br>Ile        | ggc<br>Gly         | aag<br>Lys<br>300 | Ala               | tcc<br>Ser        | aac<br>Asn        | 911 |
| tto<br>Phe        | ggt<br>Gly<br>305 | , Glr             | caç<br>Glr        | g gag<br>n Glu    | tac<br>Tyr        | ago<br>Ser<br>310 | Asn               | aac<br>Asn        | caç<br>Glr        | r cto<br>Leu      | atc<br>111e<br>315 | Thr               | cca<br>Pro        | a gtt<br>o Val    | gtg<br>Val        | 959 |

| aac<br>Asn<br>320 | tcc<br>Ser        | tct<br>Ser        | gat<br>Asp        | ggc<br>Gly        | act<br>Thr<br>325 | gtg<br>Val        | aag<br>Lys        | gtc<br>Val        | tac<br>Tyr        | cgc<br>Arg<br>330 | atc<br>Ile        | aca<br>Thr        | cgt<br>Arg        | gag<br>Glu        | tac<br>Tyr<br>335 | 1007 |
|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------|
| acc<br>Thr        | aca<br>Thr        | aac<br>Asn        | gcc<br>Ala        | tac<br>Tyr<br>340 | caa<br>Gln        | atg<br>Met        | gat<br>Asp        | gtt<br>Val        | gag<br>Glu<br>345 | ttg<br>Leu        | ttc<br>Phe        | cca<br>Pro        | ttc<br>Phe        | ggt<br>Gly<br>350 | ggt<br>Gly        | 1055 |
| gag<br>Glu        | aac<br>Asn        | tac<br>Tyr        | aga<br>Arg<br>355 | ctt<br>Leu        | gac<br>Asp        | tac<br>Tyr        | aag<br>Lys        | ttc<br>Phe<br>360 | aag<br>Lys        | aac<br>Asn        | ttc<br>Phe        | tac<br>Tyr        | aac<br>Asn<br>365 | gcc<br>Ala        | tcc<br>Ser        | 1103 |
| tac<br>Tyr        | ctc<br>Leu        | tcc<br>Ser<br>370 | atc<br>Ile        | aag<br>Lys        | ttg<br>Leu        | aac<br>Asn        | gac<br>Asp<br>375 | aag<br>Lys        | agg<br>Arg        | gag<br>Glu        | ctt<br>Leu        | gtc<br>Val<br>380 | agg<br>Arg        | act<br>Thr        | gag<br>Glu        | 1151 |
| ggt<br>Gly        | gct<br>Ala<br>385 | cct<br>Pro        | caa<br>Gln        | gtg<br>Val        | aac<br>Asn        | att<br>Ile<br>390 | gag<br>Glu        | tac<br>Tyr        | tct<br>Ser        | gcc<br>Ala        | aac<br>Asn<br>395 | atc<br>Ile        | acc<br>Thr        | ctc<br>Leu        | aac<br>Asn        | 1199 |
|                   |                   |                   |                   |                   |                   |                   |                   |                   |                   | ggt<br>Gly<br>410 |                   |                   |                   |                   |                   | 1247 |
| ccc<br>Pro        | tct<br>Ser        | ggc<br>Gly        | tcc<br>Ser        | tgg<br>Trp<br>420 | gcc<br>Ala        | tac<br>Tyr        | gct<br>Ala        | gca<br>Ala        | gcc<br>Ala<br>425 | aag<br>Lys        | ttc<br>Phe        | act<br>Thr        | gtt<br>Val        | gag<br>Glu<br>430 | gag<br>Glu        | 1295 |
| tac<br>Tyr        | aac<br>Asn        | cag<br>Gln        | tac<br>Tyr<br>435 | tct<br>Ser        | ttc<br>Phe        | ctc<br>Leu        | ttg<br>Leu        | aag<br>Lys<br>440 | ctc<br>Leu        | aac<br>Asn        | aag<br>Lys        | gca<br>Ala        | att<br>Ile<br>445 | cgt<br>Arg        | ctc<br>Leu        | 1343 |
| agc<br>Ser        | aga<br>Arg        | gcc<br>Ala<br>450 | act<br>Thr        | gag<br>Glu        | ttg<br>Leu        | tct<br>Ser        | ccc<br>Pro<br>455 | acc<br>Thr        | atc<br>Ile        | ttg<br>Leu        | gag<br>Glu        | ggc<br>Gly<br>460 | att<br>Ile        | gtg<br>Val        | agg<br>Arg        | 1391 |
|                   |                   |                   |                   |                   |                   |                   |                   |                   |                   | gat<br>Asp        |                   |                   |                   |                   |                   | 1439 |
| ttc<br>Phe<br>480 | ctc<br>Leu        | acc<br>Thr        | aag<br>Lys        | tac<br>Tyr        | tac<br>Tyr<br>485 | atg<br>Met        | caa<br>Gln        | cgc<br>Arg        | tac<br>Tyr        | gcc<br>Ala<br>490 | atc<br>Ile        | cat<br>His        | gct<br>Ala        | gag<br>Glu        | act<br>Thr<br>495 | 1487 |
|                   |                   |                   |                   |                   |                   |                   |                   |                   |                   | caa<br>Gln        |                   |                   |                   |                   |                   | 1535 |
| cag<br>Gln        | cct<br>Pro        | tcc<br>Ser        | cag<br>Gln<br>515 | ttc<br>Phe        | gac<br>Asp        | agg<br>Arg        | ctc<br>Leu        | ttc<br>Phe<br>520 | aac<br>Asn        | act<br>Thr        | cct<br>Pro        | ctc<br>Leu        | ttg<br>Leu<br>525 | Asn               | ggc<br>Gly        | 1583 |
| cag<br>Gln        | tac<br>Tyr        | ttc<br>Phe<br>530 | tcc<br>Ser        | act<br>Thr        | ggt<br>Gly        | gat<br>Asp        | gag<br>Glu<br>535 | gag<br>Glu        | att<br>Ile        | gac<br>Asp        | ctc<br>Leu        | aac<br>Asn<br>540 | tct<br>Ser        | ggc<br>Gly        | tcc<br>Ser        | 1631 |
|                   |                   |                   |                   |                   |                   |                   | Ile               |                   |                   | agg<br>Arg        |                   | Phe               |                   |                   |                   | 1679 |
| gat               | gtc               | tct               | ctc               | ttc               | cgt               | ctc               | ttg               | aag               | atc               | aca               | gat               | cac               | gac               | aac               | aag               | 1727 |

|   | Asp<br>560        | Val               | Ser               | Leu               | Phe               | Arg<br>565        | Leu               | Leu               | Lys               | Ile               | Thr<br>570        | Asp               | His               | Asp               | Asn               | Lys<br>575        |      |
|---|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------|
| , | gat<br>Asp        | ggc<br>Gly        | aag<br>Lys        | atc<br>Ile        | aag<br>Lys<br>580 | aac<br>Asn        | aac<br>Asn        | ttg<br>Leu        | aag<br>Lys        | aac<br>Asn<br>585 | ctt<br>Leu        | tcc<br>Ser        | aac<br>Asn        | ctc<br>Leu        | tac<br>Tyr<br>590 | att<br>Ile        | 1775 |
| , | ggc<br>Gly        | aag<br>Lys        | ttg<br>Leu        | ctt<br>Leu<br>595 | gca<br>Ala        | gac<br>Asp        | atc<br>Ile        | cac<br>His        | caa<br>Gln<br>600 | ctc<br>Leu        | acc<br>Thr        | att<br>Ile        | gat<br>Asp        | gag<br>Glu<br>605 | ttg<br>Leu        | gac<br>Asp        | 1823 |
|   | ctc<br>Leu        | ttg<br>Leu        | ctc<br>Leu<br>610 | att<br>Ile        | gca<br>Ala        | gtc<br>Val        | ggt<br>Gly        | gag<br>Glu<br>615 | ggc<br>Gly        | aag<br>Lys        | acc<br>Thr        | aac<br>Asn        | ctc<br>Leu<br>620 | tct<br>Ser        | gca<br>Ala        | atc<br>Ile        | 1871 |
|   | tct<br>Ser        | gac<br>Asp<br>625 | aag<br>Lys        | cag<br>Gln        | ttg<br>Leu        | gca<br>Ala        | acc<br>Thr<br>630 | ctc<br>Leu        | atc<br>Ile        | agg<br>Arg        | aag<br>Lys        | ttg<br>Leu<br>635 | aac<br>Asn        | acc<br>Thr        | atc<br>Ile        | acc<br>Thr        | 1919 |
|   | tcc<br>Ser<br>640 | tgg<br>Trp        | ctt<br>Leu        | cac<br>His        | acc<br>Thr        | cag<br>Gln<br>645 | aag<br>Lys        | tgg<br>Trp        | tct<br>Ser        | gtc<br>Val        | ttc<br>Phe<br>650 | caa<br>Gln        | ctc<br>Leu        | ttc<br>Phe        | atc<br>Ile        | atg<br>Met<br>655 | 1967 |
|   | acc<br>Thr        | agc<br>Ser        | acc<br>Thr        | tcc<br>Ser        | tac<br>Tyr<br>660 | aac<br>Asn        | aag<br>Lys        | acc<br>Thr        | ctc<br>Leu        | act<br>Thr<br>665 | cct<br>Pro        | gag<br>Glu        | atc<br>Ile        | aag<br>Lys        | aac<br>Asn<br>670 | ctc<br>Leu        | 2015 |
|   | ttg<br>Leu        | gac<br>Asp        | aca<br>Thr        | gtc<br>Val<br>675 | tac<br>Tyr        | Cac               | ggt<br>Gly        | ctc<br>Leu        | caa<br>Gln<br>680 | ggc               | ttc<br>Phe        | gac<br>Asp        | aag<br>Lys        | gac<br>Asp<br>685 | aag<br>Lys        | gct<br>Ala        | 2063 |
|   | gac<br>Asp        | ttg<br>Leu        | ctt<br>Leu<br>690 | cat<br>His        | gtc<br>Val        | atg<br>Met        | gct<br>Ala        | ccc<br>Pro<br>695 | tac<br>Tyr        | att<br>Ile        | gca<br>Ala        | gcc<br>Ala        | acc<br>Thr<br>700 | ctc<br>Leu        | caa<br>Gln        | ctc<br>Leu        | 2111 |
|   | tcc<br>Ser        | tct<br>Ser<br>705 | gag<br>Glu        | aac<br>Asn        | gtg<br>Val        | gct<br>Ala        | cac<br>His<br>710 | tct<br>Ser        | gtc<br>Val        | ttg<br>Leu        | ctc<br>Leu        | tgg<br>Trp<br>715 | gct<br>Ala        | gac<br>Asp        | aag<br>Lys        | ctc<br>Leu        | 2159 |
|   | caa<br>Gln<br>720 | cct<br>Pro        | ggt<br>Gly        | gat<br>Asp        | ggt<br>Gly        | gcc<br>Ala<br>725 | Met               | act<br>Thr        | gct<br>Ala        | gag<br>Glu        | Lys               | Phe               | tgg<br>Trp        | gac<br>Asp        | tgg<br>Trp        | ctc<br>Leu<br>735 | 2207 |
|   | aac<br>Asn        | acc<br>Thr        | aag<br>Lys        | tac<br>Tyr        | aca<br>Thr<br>740 | cca<br>Pro        | ggc<br>Gly        | tcc<br>Ser        | tct<br>Ser        | gag<br>Glu<br>745 | gct<br>Ala        | gtt<br>Val        | gag<br>Glu        | act<br>Thr        | caa<br>Gln<br>750 | gag<br>Glu        | 2255 |
|   |                   |                   |                   |                   |                   |                   |                   |                   | ctt<br>Leu<br>760 | Ala               |                   |                   |                   |                   |                   |                   | 2303 |
|   |                   |                   |                   |                   |                   |                   |                   |                   | gct<br>Ala        |                   |                   |                   |                   | Val               |                   |                   | 2351 |
|   |                   |                   |                   |                   |                   |                   |                   |                   | ggt<br>Gly        |                   |                   |                   | Ala               |                   |                   |                   | 2399 |
|   |                   |                   |                   |                   |                   |                   |                   |                   | ttc<br>Phe        |                   |                   |                   |                   |                   |                   |                   | 2447 |

| 800        |                    |            |                   |            | 805        |                    |            |                    |            | 810        |                    |            |                    |                   | 815        |      |
|------------|--------------------|------------|-------------------|------------|------------|--------------------|------------|--------------------|------------|------------|--------------------|------------|--------------------|-------------------|------------|------|
| ggt<br>Gly |                    |            |                   |            |            |                    |            |                    |            |            |                    |            |                    |                   |            | 2495 |
| act<br>Thr | gct<br>Ala         | gag<br>Glu | caa<br>Gln<br>835 | ctt<br>Leu | gct<br>Ala | gat<br>Asp         | gcc<br>Ala | atg<br>Met<br>840  | aac<br>Asn | ctt<br>Leu | gat<br>Asp         | gcc<br>Ala | aac<br>Asn<br>845  | ctc<br>Leu        | ttg<br>Leu | 2543 |
|            |                    |            |                   |            |            |                    |            |                    |            |            |                    |            |                    | cct<br>Pro        |            | 2591 |
| act<br>Thr | cca<br>Pro<br>865  | gag<br>Glu | aac<br>Asn        | gct<br>Ala | ttc<br>Phe | tcc<br>Ser<br>870  | tgc<br>Cys | tgg<br>Trp         | acc<br>Thr | tcc<br>Ser | atc<br>Ile<br>875  | aac<br>Asn | acc<br>Thr         | atc<br>Ile        | ctc<br>Leu | 2639 |
|            |                    |            |                   |            |            |                    |            |                    |            |            |                    |            |                    | ggt<br>Gly        |            | 2687 |
|            |                    |            |                   |            |            |                    |            |                    |            |            |                    |            |                    | aca<br>Thr<br>910 |            | 2735 |
| acc<br>Thr | tac<br>Tyr         | gct<br>Ala | caa<br>Gln<br>915 | tgg<br>Trp | gag<br>Glu | aac<br>Asn         | gca<br>Ala | gct<br>Ala<br>920  | ggt<br>Gly | gtc<br>Val | ttg<br>Leu         | act<br>Thr | gct<br>Ala<br>925  | ggt<br>Gly        | ctc<br>Leu | 2783 |
|            |                    |            |                   |            |            |                    |            |                    |            |            |                    |            |                    | tct<br>Ser        |            | 2831 |
|            |                    |            |                   |            |            |                    |            |                    |            |            |                    |            |                    | gca<br>Ala        |            | 2879 |
|            |                    |            |                   |            |            |                    |            |                    |            |            |                    |            |                    | att<br>Ile        |            | 2927 |
|            |                    |            |                   |            |            |                    |            |                    |            |            |                    |            |                    | gcc<br>Ala<br>990 |            | 2975 |
| gct<br>Ala | tcc<br>Ser         | atc<br>Ile | caa<br>Gln<br>995 | ctc<br>Leu | tac<br>Tyr | gtc<br>Val         | Asn        | cgc<br>Arg<br>1000 | gct<br>Ala | ctt<br>Leu | gag<br>Glu         | Asn        | gtt<br>Val<br>1005 | gag<br>Glu        | gag<br>Glu | 3023 |
|            | Āla                |            |                   |            |            | Ile                |            | Arg                |            |            | Phe                |            |                    | tgg<br>Trp        |            | 3071 |
| Lys        | tac<br>Tyr<br>1025 | aac<br>Asn | aag<br>Lys        | agg<br>Arg | Tyr        | tcc<br>Ser<br>1030 | acc<br>Thr | tgg<br>Trp         | gct<br>Ala | Gly        | gtc<br>Val<br>1035 | tct<br>Ser | caa<br>Gln         | ctt<br>Leu        | gtc<br>Val | 3119 |
|            | Tyr                |            |                   | Asn        |            | Ile                |            |                    | Thr        |            | Arg                |            |                    | cag<br>Gln        |            | 3167 |

| aag atg atg gat gct                                | Leu Leu Gln Ser                               | gtc tcc caa agc                                | caa ctc aac 3215                |
|----------------------------------------------------|-----------------------------------------------|------------------------------------------------|---------------------------------|
| Lys Met Met Asp Ala                                |                                               | Val Ser Gln Ser                                | Gln Leu Asn                     |
| 1060                                               |                                               | 1065                                           | 1070                            |
| gct gac act gtg gag                                | gat gcc ttc atg                               | Ser Tyr Leu Thr                                | tcc ttc gag 3263                |
| Ala Asp Thr Val Glu                                | Asp Ala Phe Met                               |                                                | Ser Phe Glu                     |
| 1075                                               | 1080                                          |                                                | 085                             |
| caa gtt gcc aac ctc<br>Gln Val Ala Asn Lec<br>1090 | aag gtc atc tct<br>Lys Val Ile Ser<br>1095    | gct tac cat gac<br>Ala Tyr His Asp<br>1100     | aac atc aac 3311<br>Asn Ile Asn |
| aac gac caa ggt ctc<br>Asn Asp Gln Gly Led<br>1105 | acc tac ttc att<br>Thr Tyr Phe Ile<br>1110    | ggt ctc tct gag<br>Gly Leu Ser Glu<br>1115     | act gat gct 3359<br>Thr Asp Ala |
| ggt gag tac tac tgg                                | g aga tee gtg gad                             | cac agc aag ttc                                | aac gat ggc 3407                |
| Gly Glu Tyr Tyr Trp                                | o Arg Ser Val Asp                             | His Ser Lys Phe                                | Asn Asp Gly                     |
| 1120                                               | 1125                                          | 1130                                           | 1135                            |
| aag ttc gct gca aac                                | Ala Trp Ser Glu                               | tgg cac aag att                                | gac tgc cct 3455                |
| Lys Phe Ala Ala Asr                                |                                               | Trp His Lys Ile                                | Asp Cys Pro                     |
| 1140                                               |                                               | 1145                                           | 1150                            |
| atc aac cca tac aag                                | g too acc atc aga                             | Pro Val Ile Tyr                                | aag agc cgc 3503                |
| Ile Asn Pro Tyr Lys                                | s Ser Thr Ile Arc                             |                                                | Lys Ser Arg                     |
| 1155                                               | 1160                                          |                                                | 165                             |
| ctc tac ttg ctc tgg<br>Leu Tyr Leu Leu Trp<br>1170 | g ctt gag cag aac<br>Leu Glu Gln Lys<br>1175  | g gag atc acc aag<br>s Glu Ile Thr Lys<br>1180 | caa act ggc 3551<br>Gln Thr Gly |
| aac tcc aag gat ggt<br>Asn Ser Lys Asp Gly<br>1185 | tac caa act gag<br>Tyr Gln Thr Glu<br>1190    | g act gac tac cgc<br>i Thr Asp Tyr Arg<br>1195 | tac gag ttg 3599<br>Tyr Glu Leu |
| aag ttg gct cac ato                                | c cgc tac gat ggt                             | acc tgg aac act                                | cca atc acc 3647                |
| Lys Leu Ala His Ile                                | Arg Tyr Asp Gly                               | Thr Trp Asn Thr                                | Pro Ile Thr                     |
| 1200                                               | 1205                                          | 1210                                           | 1215                            |
| . ttc gat gtc aac aac                              | s Lys Ile Ser Glu                             | g ttg aag ttg gag                              | aag aac cgt 3695                |
| Phe Asp Val Asn Ly:                                |                                               | 1 Leu Lys Leu Glu                              | Lys Asn Arg                     |
| 1220                                               |                                               | 1225                                           | 1230                            |
| gct cct ggt ctc tac                                | c tgc gct ggt tac                             | r Gln Gly Glu Asp                              | acc ctc ttg 3743                |
| Ala Pro Gly Leu Ty:                                | c Cys Ala Gly Ty:                             |                                                | Thr Leu Leu                     |
| 1235                                               | 1240                                          |                                                | 1245                            |
| gtc atg ttc tac aad<br>Val Met Phe Tyr Ass<br>1250 | c cag caa gac acc<br>n Gln Gln Asp Th<br>1255 | c ctt gac tcc tac<br>r Leu Asp Ser Tyr<br>1260 | aag aac gct 3791<br>Lys Asn Ala |
| tcc atg caa ggt ctc<br>Ser Met Gln Gly Le<br>1265  | tac atc ttc gc<br>I Tyr Ile Phe Ala<br>1270   | t gac atg gct tcc<br>a Asp Met Ala Ser<br>1275 | aag gac atg 3839<br>Lys Asp Met |
| act cca gag caa ag                                 | c aac gtc tac cg                              | t gac aac tcc tac                              | caa cag ttc 388°                |
| Thr Pro Glu Gln Se                                 | r Asn Val Tyr Ar                              | g Asp Asn Ser Tyr                              | Gln Gln Phe                     |
| 1280                                               | 1285                                          | 1290                                           | 1295                            |

| gac acc aac acc gtc agg cgt gtc aac aac aga tac gct gag gac tac<br>Asp Thr Asn Asn Val Arg Arg Val Asn Asn Arg Tyr Ala Glu Asp Tyr<br>1300 1305 1310      | 3935 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| gag atc cca agc tct gtc agc tct cgc aag gac tac ggc tgg ggt gac Glu Ile Pro Ser Ser Val Ser Ser Arg Lys Asp Tyr Gly Trp Gly Asp 1315 1320 1325            | 3983 |
| tac tac ctc agc atg gtg tac aac ggt gac atc cca acc atc aac tac Tyr Tyr Leu Ser Met Val Tyr Asn Gly Asp Ile Pro Thr Ile Asn Tyr 1330 1335 1340            | 4031 |
| aag get gee tet tee gae ete aaa ate tae ate age eea aag ete agg<br>Lys Ala Ala Ser Ser Asp Leu Lys Ile Tyr Ile Ser Pro Lys Leu Arg<br>1345 1350 1355      | 4079 |
| atc atc cac aac ggc tac gag ggt cag aag agg aac cag tgc aac ttg Ile Ile His Asn Gly Tyr Glu Gly Gln Lys Arg Asn Gln Cys Asn Leu 1360 1365 1370 1375       | 4127 |
| atg aac aag tac ggc aag ttg ggt gac aag ttc att gtc tac acc tct<br>Met Asn Lys Tyr Gly Lys Leu Gly Asp Lys Phe Ile Val Tyr Thr Ser<br>1380 1385 1390      | 4175 |
| ctt ggt gtc aac cca aac aac agc tcc aac aag ctc atg ttc tac cca<br>Leu Gly Val Asn Pro Asn Asn Ser Ser Asn Lys Leu Met Phe Tyr Pro<br>1395 1400 1405      | 4223 |
| gtc tac caa tac tct ggc aac acc tct ggt ctc aac cag ggt aga ctc<br>Val Tyr Gln Tyr Ser Gly Asn Thr Ser Gly Leu Asn Gln Gly Arg Leu<br>1410 1415 1420      | 4271 |
| ttg ttc cac agg gac acc acc tac cca agc aag gtg gag gct tgg att<br>Leu Phe His Arg Asp Thr Thr Tyr Pro Ser Lys Val Glu Ala Trp Ile<br>1425 1430 1435      | 4319 |
| cct ggt gcc aag agg tcc ctc acc aac cag aac gct gcc att ggt gat<br>Pro Gly Ala Lys Arg Ser Leu Thr Asn Gln Asn Ala Ala Ile Gly Asp<br>1440 1445 1450 1455 | 4367 |
| gac tac gcc aca gac tcc ctc aac aag cct gat gac ctc aag cag tac<br>Asp Tyr Ala Thr Asp Ser Leu Asn Lys Pro Asp Asp Leu Lys Gln Tyr<br>1460 1465 1470      | 4415 |
| atc ttc atg act gac tcc aag ggc aca gcc act gat gtc tct ggt cca<br>Ile Phe Met Thr Asp Ser Lys Gly Thr Ala Thr Asp Val Ser Gly Pro<br>1475 1480 1485      | 4463 |
| gtg gag atc aac act gca atc agc cca gcc aag gtc caa atc att gtc<br>Val Glu Ile Asn Thr Ala Ile Ser Pro Ala Lys Val Gln Ile Ile Val<br>1490 1495 1500      | 4511 |
| aag gct ggt ggc aag gag caa acc ttc aca gct gac aag gat gtc tcc<br>Lys Ala Gly Gly Lys Glu Gln Thr Phe Thr Ala Asp Lys Asp Val Ser<br>1505 1510 1515      | 4559 |
| atc cag cca agc cca tcc ttc gat gag atg aac tac caa ttc aac gct Ile Gln Pro Ser Pro Ser Phe Asp Glu Met Asn Tyr Gln Phe Asn Ala 1520 1525 1530 1535       |      |
| ctt gag att gat ggt tct ggc ctc aac ttc atc aac aac tct gct tcc                                                                                           | 4655 |

| _                                                                                                     | ly Ser Gly Leu Asn<br>40                                                                                                        | Phe Ile Asn Asn<br>1545                                                                                                | Ser Ala Ser<br>1550                                                                             |
|-------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
| att gat gtc acc t<br>Ile Asp Val Thr P<br>1555                                                        | tc act gcc ttc gct<br>The Thr Ala Phe Ala<br>1560                                                                               | Glu Asp Gly Arg                                                                                                        | aag ttg ggt 4703<br>Lys Leu Gly<br>565                                                          |
| tac gag agc ttc t<br>Tyr Glu Ser Phe S<br>1570                                                        | cc atc cca gtc acc<br>er Ile Pro Val Thr<br>1575                                                                                | ctt aag gtt tcc<br>Leu Lys Val Ser<br>1580                                                                             | act gac aac 4751<br>Thr Asp Asn                                                                 |
| gca ctc acc ctt c<br>Ala Leu Thr Leu H<br>1585                                                        | at cac aac gag aac<br>is His Asn Glu Asn<br>1590                                                                                | ggt gct cag tac<br>Gly Ala Gln Tyr<br>1595                                                                             | atg caa tgg 4799<br>Met Gln Trp                                                                 |
| caa agc tac cgc a<br>Gln Ser Tyr Arg T<br>1600                                                        | cc agg ttg aac acc<br>hr Arg Leu Asn Thr<br>1605                                                                                | ctc ttc gca agg<br>Leu Phe Ala Arg<br>1610                                                                             | caa ctt gtg 4847<br>Gln Leu Val<br>1615                                                         |
| Ala Arg Ala Thr T                                                                                     | aca ggc att gac acc<br>Thr Gly Ile Asp Thr<br>520                                                                               | atc ctc agc atg<br>Ile Leu Ser Met<br>1625                                                                             | gag acc cag 4895<br>Glu Thr Gln<br>1630                                                         |
| aac atc caa gag c<br>Asn Ile Gln Glu P<br>1635                                                        | cca cag ttg ggc aag<br>Pro Gln Leu Gly Lys<br>1640                                                                              | Gly Phe Tyr Ala                                                                                                        | acc ttc gtc 4943<br>Thr Phe Val                                                                 |
| atc cca cct tac a<br>Ile Pro Pro Tyr A<br>1650                                                        | aac ctc agc act cat<br>Asn Leu Ser Thr His<br>1655                                                                              | ggt gat gag agg<br>Gly Asp Glu Arg<br>1660                                                                             | tgg ttc aag 4991<br>Trp Phe Lys                                                                 |
| ctc tac atc aag c<br>Leu Tyr Ile Lys H<br>1665                                                        | cac gtg gtt gac aac<br>His Val Val Asp Asr<br>1670                                                                              | aac tcc cac atc<br>Asn Ser His Ile<br>1675                                                                             | atc tac tct 5039<br>Ile Tyr Ser                                                                 |
| ggt caa ctc act g<br>Gly Gln Leu Thr A<br>1680                                                        | gac acc aac atc aac<br>Asp Thr Asn Ile Asn<br>1685                                                                              | atc acc ctc ttc<br>lle Thr Leu Phe<br>1690                                                                             | atc cca ctt 5087<br>Ile Pro Leu<br>1695                                                         |
| Asp Asp Val Pro I                                                                                     | ctc aac cag gac tac<br>Leu Asn Gln Asp Tyr<br>700                                                                               | cat gcc aag gtc<br>His Ala Lys Val<br>1705                                                                             | tac atg acc 5135<br>Tyr Met Thr<br>1710                                                         |
| ttc aag aag tct c                                                                                     |                                                                                                                                 |                                                                                                                        |                                                                                                 |
| Phe Lys Lys Ser E<br>1715                                                                             | eca tot gat ggc acc<br>Pro Ser Asp Gly Thr<br>1720                                                                              | Trp Trp Gly Pro                                                                                                        | cac ttc gtc 5183<br>His Phe Val<br>1725                                                         |
| 1715                                                                                                  | Pro Ser Asp Gly Thi                                                                                                             | Trp Trp Gly Pro                                                                                                        | His Phe Val<br>1725<br>atc ctc acc 5231                                                         |
| cgt gat gac aag g<br>Arg Asp Asp Lys C<br>1730<br>cac ttc gag tct g                                   | Pro Ser Asp Gly Thi<br>1720<br>ggc atc gtc acc atc<br>Gly Ile Val Thr Ile                                                       | : Trp Trp Gly Pro : aac cca aag tcc : Asn Pro Lys Ser 1740 : aac atc tcc tct                                           | His Phe Val<br>1725<br>atc ctc acc 5231<br>Ile Leu Thr<br>gag cca atg 5279                      |
| cgt gat gac aag g Arg Asp Asp Lys 0 1730  cac ttc gag tct g His Phe Glu Ser N 1745  gac ttc tct ggt g | ero Ser Asp Gly Thi<br>1720<br>ggc atc gtc acc atc<br>Gly Ile Val Thr Ile<br>1735<br>gtc aac gtt ctc aac<br>Val Asn Val Leu Ass | E Trp Trp Gly Pro  E aac cca aag tcc E Asn Pro Lys Ser 1740  E aac atc tcc tct Asn Ile Ser Ser 1755  E ttc tgg gag ttg | His Phe Val 1725  atc ctc acc 5231  Ile Leu Thr  gag cca atg 5279 Glu Pro Met  ttc tac tac 5327 |

1780 1785 1790 gag gcc aac agg tgg ctc aag tac gtc tgg agc cca tct ggt tac att Glu Ala Asn Arg Trp Leu Lys Tyr Val Trp Ser Pro Ser Gly Tyr Ile 1795 1800 gtg cat ggt caa atc cag aac tac caa tgg aac gtc agg cca ttg ctt 5471 Val His Gly Gln Ile Gln Asn Tyr Gln Trp Asn Val Arg Pro Leu Leu 1810 1815 gag gac acc tcc tgg aac tct gac cca ctt gac tct gtg gac cct gat 5519 Glu Asp Thr Ser Trp Asn Ser Asp Pro Leu Asp Ser Val Asp Pro Asp 1825 1830 5567 gct gtg gct caa cat gac cca atg cac tac aag gtc tcc acc ttc atg Ala Val Ala Gln His Asp Pro Met His Tyr Lys Val Ser Thr Phe Met 1840 1845 1850 agg acc ttg gac ctc ttg att gcc aga ggt gac cat gct tac cgc caa 5615 Arg Thr Leu Asp Leu Leu Ile Ala Arg Gly Asp His Ala Tyr Arg Gln 1860 1865 ttg gag agg gac acc ctc aac gag gca aag atg tgg tac atg caa gct 5663 Leu Glu Arg Asp Thr Leu Asn Glu Ala Lys Met Trp Tyr Met Gln Ala 1875 5711 ctc cac ctc ttg ggt gac aag cca tac ctc cca ctc agc acc act tgg Leu His Leu Leu Gly Asp Lys Pro Tyr Leu Pro Leu Ser Thr Thr Trp 1890 tcc gac cca agg ttg gac cgt gct gct gac atc acc act cag aac gct 5759 Ser Asp Pro Arg Leu Asp Arg Ala Ala Asp Ile Thr Thr Gln Asn Ala 1905 1910 cat gac tot goo att gtt got ote agg cag aac atc coa act cot got His Asp Ser Ala Ile Val Ala Leu Arg Gln Asn Ile Pro Thr Pro Ala 1920 1925 5855 cca ctc tcc ctc aga tct gct aac acc ctc act gac ttg ttc ctc cca Pro Leu Ser Leu Arg Ser Ala Asn Thr Leu Thr Asp Leu Phe Leu Pro 1940 cag atc aac gag gtc atg atg aac tac tgg caa acc ttg gct caa agg 5903 Gln Ile Asn Glu Val Met Met Asn Tyr Trp Gln Thr Leu Ala Gln Arg 1955 1960 5951 gtc tac aac ctc aga cac aac ctc tcc att gat ggt caa cca ctc tac Val Tyr Asn Leu Arg His Asn Leu Ser Ile Asp Gly Gln Pro Leu Tyr 1970 1975 ctc cca atc tac gcc aca cca gct gac cca aag gct ctt ctc tct gct 5999 Leu Pro Ile Tyr Ala Thr Pro Ala Asp Pro Lys Ala Leu Leu Ser Ala 1990 6047 get gtg get acc age caa ggt ggt gge aag ete eea gag tee tte atg Ala Val Ala Thr Ser Gln Gly Gly Gly Lys Leu Pro Glu Ser Phe Met 2010 6095 tee etc tgg agg tte cea cac atg ttg gag aac gee egt gge atg gte Ser Leu Trp Arg Phe Pro His Met Leu Glu Asn Ala Arg Gly Met Val

2025

2020

| tcc<br>Ser         | caa<br>Gln         | Leu                | acc<br>Thr<br>2035 | cag<br>Gln         | ttc<br>Phe         | ggt<br>Gly         | Ser                | acc<br>Thr<br>040  | ctc<br>Leu         | cag<br>Gln         | aac<br>Asn         | Ile                | att<br>Ile<br>045  | gag<br>Glu         | agg<br>Arg         | 6143  |
|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|-------|
| caa<br>Gln         | Asp                | gct<br>Ala<br>2050 | gag<br>Glu         | gct<br>Ala         | ctc<br>Leu         | Asn                | gct<br>Ala<br>2055 | ttg<br>Leu         | ctc<br>Leu         | cag<br>Gln         | Asn                | cag<br>Gln<br>060  | gca<br>Ala         | gct<br>Ala         | gag<br>Glu         | 6191  |
| Leu                | atc<br>Ile<br>2065 | ctc<br>Leu         | acc<br>Thr         | aac<br>Asn         | Leu                | tcc<br>Ser<br>2070 | atc<br>Ile         | caa<br>Gln         | gac<br>Asp         | aag<br>Lys<br>2    | acc<br>Thr<br>2075 | att<br>Ile         | gag<br>Glu         | gag<br>Glu         | ctt<br>Leu         | 6239  |
| gat<br>Asp<br>2080 | Ala                | gag<br>Glu         | aag<br>Lys         | Thr                | gtc<br>Val<br>2085 | ctt<br>Leu         | gag<br>Glu         | aag<br>Lys         | Ser                | aag<br>Lys<br>2090 | gct<br>Ala         | ggt<br>Gly         | gcc<br>Ala         | Gln                | tct<br>Ser<br>2095 | 6287  |
| cgc<br>Arg         | ttc<br>Phe         | gac<br>Asp         | Ser                | tac<br>Tyr<br>2100 | ggc<br>Gly         | aag<br>Lys         | ctc<br>Leu         | Tyr                | gat<br>Asp<br>2105 | gag<br>Glu         | aac<br>Asn         | atc<br>Ile         | Asn                | gct<br>Ala<br>2110 | ggt<br>Gly         | 6335  |
| gag<br>Glu         | aac<br>Asn         | Gln                | gcc<br>Ala<br>2115 | atg<br>Met         | acc<br>Thr         | ctc<br>Leu         | Arg                | gct<br>Ala<br>2120 | tcc<br>Ser         | gca<br>Ala         | gct<br>Ala         | Gly                | ctc<br>Leu<br>2125 | acc<br>Thr         | act<br>Thr         | 6383  |
| gct<br>Ala         | Val                | caa<br>Gln<br>2130 | gcc<br>Ala         | tct<br>Ser         | cgc<br>Arg         | Leu                | gct<br>Ala<br>2135 | ggt<br>Gly         | gca<br>Ala         | ġct<br>Ala         | Ala                | gac<br>Asp<br>2140 | ctc<br>Leu         | gtt<br>Val         | cca<br>Pro         | 6431  |
| Asn                | atc<br>Ile<br>2145 | ttc<br>Phe         | ggt<br>Gly         | ttc<br>Phe         | Ala                | ggt<br>Gly<br>2150 | ggt<br>Gly         | ggc<br>Gly         | tcc<br>Ser         | aga<br>Arg         | tgg<br>Trp<br>2155 | ggt<br>Gly         | gcc<br>Ala         | att<br>Ile         | gct<br>Ala         | 6479  |
| gag<br>Glu<br>216  | Āla                | acc<br>Thr         | ggt<br>Gly         | Tyr                | gtc<br>Val<br>2165 | atg<br>Met         | gag<br>Glu         | ttc<br>Phe         | Ser                | gcc<br>Ala<br>2170 | aac<br>Asn         | gtc<br>Val         | atg<br>Met         | Asn                | act<br>Thr<br>2175 | 6527  |
| gag<br>Glu         | gct<br>Ala         | gac<br>Asp         | Lys                | atc<br>Ile<br>2180 | agc<br>Ser         | caa<br>Gln         | tct<br>Ser         | Glu                | acc<br>Thr<br>2185 | tac<br>Tyr         | aga<br>Arg         | agg<br>Arg         | Arg                | cgt<br>Arg<br>2190 | caa<br>Gln         | 6575  |
| gag<br>Glu         | tgg<br>Trp         | gag<br>Glu         | atc<br>Ile<br>2195 | Gln                | agg<br>Arg         | aac<br>Asn         | Asn                | gct<br>Ala<br>2200 | Glu                | gca<br>Ala         | gag<br>Glu         | Leu                | aag<br>Lys<br>2205 | caa<br>Gln         | atc<br>Ile         | 6623  |
| gat<br>Asp         | Ala                | caa<br>Gln<br>2210 | Leu                | aag<br>Lys         | tcc<br>Ser         | Leu                | gct<br>Ala<br>2215 | Val                | aga<br>Arg         | agg<br>Arg         | Glu                | gct<br>Ala<br>2220 | Ala                | gtc<br>Val         | ctc<br>Leu         | 6671  |
| Gln                | aag<br>Lys<br>2225 | Thr                | tcc<br>Ser         | ctc<br>Leu         | Lys                | acc<br>Thr<br>2230 | Gln                | cag<br>Gln         | gag<br>Glu         | caa<br>Gln         | acc<br>Thr<br>2235 | cag<br>Gln         | tcc<br>Ser         | cag<br>Gln         | ttg<br>Leu         | 6719  |
| gct<br>Ala<br>224  | Phe                | cto<br>Leu         | caa<br>Gln         | agg<br>Arg         | aag<br>Lys<br>2245 | Phe                | tcc                | aac<br>Asn         | Gln                | gct<br>Ala<br>2250 | Leu                | tac<br>Tyr         | aac<br>Asn         | Trp                | ctc<br>Leu<br>2255 | 67 67 |
| aga<br>Arg         | ggc                | cgc<br>Arg         | ttg<br>Leu         | gct<br>Ala<br>2260 | Ala                | atc<br>Ile         | tac<br>Tyr         | Phe                | caa<br>Gln<br>2265 | ttc<br>Phe         | tac<br>Tyr         | gac                | ctt<br>Leu         | gct<br>Ala<br>2270 | Val                | 6815  |

| gcc agg tgc ctc atg gct gag caa gcc tac cgc tgg gag ttg aac gat<br>Ala Arg Cys Leu Met Ala Glu Gln Ala Tyr Arg Trp Glu Leu Asn Asp<br>2275 2280 2285      | 6863 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| gac tcc gcc agg ttc atc aag cca ggt gct tgg caa ggc acc tac gct<br>Asp Ser Ala Arg Phe Ile Lys Pro Gly Ala Trp Gln Gly Thr Tyr Ala<br>2290 2295 2300      | 6911 |
| ggt ctc ctt gct ggt gag acc ctc atg ctc tcc ttg gct caa atg gag<br>Gly Leu Leu Ala Gly Glu Thr Leu Met Leu Ser Leu Ala Gln Met Glu<br>2305 2310 2315      | 6959 |
| gat gct cac ctc aag agg gac aag agg gct ttg gag gtg gag agg aca<br>Asp Ala His Leu Lys Arg Asp Lys Arg Ala Leu Glu Val Glu Arg Thr<br>2320 2325 2330 2335 | 7007 |
| gtc tcc ctt gct gag gtc tac gct ggt ctc cca aag gac aac ggt cca<br>Val Ser Leu Ala Glu Val Tyr Ala Gly Leu Pro Lys Asp Asn Gly Pro<br>2340 2345 2350      | 7055 |
| ttc tcc ctt gct caa gag att gac aag ttg gtc agc caa ggt tct ggt Phe Ser Leu Ala Gln Glu Ile Asp Lys Leu Val Ser Gln Gly Ser Gly 2355 2360 2365            | 7103 |
| tct gct ggt tct ggt aac aac ttg gct ttc ggc gct ggt act gac<br>Ser Ala Gly Ser Gly Asn Asn Asn Leu Ala Phe Gly Ala Gly Thr Asp<br>2370 2375 2380          | 7151 |
| acc aag acc tcc ctc caa gcc tct gtc tcc ttc gct gac ctc aag atc<br>Thr Lys Thr Ser Leu Gln Ala Ser Val Ser Phe Ala Asp Leu Lys Ile<br>2385 2390 2395      | 7199 |
| agg gag gac tac cca gct tcc ctt ggc aag atc agg cgc atc aag caa<br>Arg Glu Asp Tyr Pro Ala Ser Leu Gly Lys Ile Arg Arg Ile Lys Gln<br>2400 2405 2410 2415 | 7247 |
| atc tct gtc acc ctc cca gct ctc ttg ggt cca tac caa gat gtc caa<br>Ile Ser Val Thr Leu Pro Ala Leu Leu Gly Pro Tyr Gln Asp Val Gln<br>2420 2425 2430      | 7295 |
| gca atc ctc tcc tac ggt gac aag gct ggt ttg gcg aac ggt tgc gag<br>Ala Ile Leu Ser Tyr Gly Asp Lys Ala Gly Leu Ala Asn Gly Cys Glu<br>2435 2440 2445      | 7343 |
| gct ctt gct gtc tct cat ggc atg aac gac tct ggt caa ttc caa ctt<br>Ala Leu Ala Val Ser His Gly Met Asn Asp Ser Gly Gln Phe Gln Leu<br>2450 2455 2460      | 7391 |
| gac ttc aac gat ggc aag ttc ctc cca ttc gag ggc att gcc att gac<br>Asp Phe Asn Asp Gly Lys Phe Leu Pro Phe Glu Gly Ile Ala Ile Asp<br>2465 2470 2475      | 7439 |
| caa ggc acc ctc acc ctc tcc ttc cca aac gct tcc atg cca gag aag<br>Gln Gly Thr Leu Thr Leu Ser Phe Pro Asn Ala Ser Met Pro Glu Lys<br>2480 2485 2490 2495 | 7487 |
| gga aag caa gcc acc atg ctc aag acc ctc aac gat atc atc ctc cac<br>Gly Lys Gln Ala Thr Met Leu Lys Thr Leu Asn Asp Ile Ile Leu His<br>2500 2505 2510      | 7535 |
| atc agg tac acc atc aag tgagctcgag aggcctgcgg ccgc                                                                                                        | 7577 |

Ile Arg Tyr Thr Ile Lys 2515

<210> 4 <211> 7541 <212> DNA <213> Artificial Sequence <220> <221> CDS <222> (3)..(7517) <220> <223> Description of Artificial Sequence: hemicot tcbA <400> 4 cc atg gct cag aac tcc ctc agc tcc acc att gac acc atc tgc cag 47 Met Ala Gln Asn Ser Leu Ser Ser Thr Ile Asp Thr Ile Cys Gln 95 aag ctt caa ctc acc tgc cca gct gag atc gcc ctc tac cca ttc gac Lys Leu Gln Leu Thr Cys Pro Ala Glu Ile Ala Leu Tyr Pro Phe Asp ace tto cgt gag aag ace aga gge atg gte aac tgg ggt gag gee aag 143 Thr Phe Arg Glu Lys Thr Arg Gly Met Val Asn Trp Gly Glu Ala Lys agg atc tac gag att gct caa gct gag caa gac agg aac ctc ctt cat 191 Arg Ile Tyr Glu Ile Ala Gln Ala Glu Gln Asp Arg Asn Leu Leu His 239 gag aag agg atc ttc gcc tac gct aac cca ttg ctc aag aac gct gtc Glu Lys Arg Ile Phe Ala Tyr Ala Asn Pro Leu Leu Lys Asn Ala Val agg ctt ggt acc agg caa atg ttg ggt ttc atc caa ggt tac tct gac 287 Arg Leu Gly Thr Arg Gln Met Leu Gly Phe Ile Gln Gly Tyr Ser Asp 335 ttg ttc ggc aac agg gct gac aac tac gca gct cct ggt tct gtt gct Leu Phe Gly Asn Arg Ala Asp Asn Tyr Ala Ala Pro Gly Ser Val Ala 100 105 age atg tte age cea get gee tae etc act gag ttg tae egt gag gee 383 Ser Met Phe Ser Pro Ala Ala Tyr Leu Thr Glu Leu Tyr Arg Glu Ala 120 431 aaq aac ctc cat gac agc tcc agc atc tac tac ctt gac aag agg cgc Lys Asn Leu His Asp Ser Ser Ser Ile Tyr Tyr Leu Asp Lys Arg Arg 135 479 cca gac ctt gct tcc ttg atg ctc tcc cag aag aac atg gat gag gag Pro Asp Leu Ala Ser Leu Met Leu Ser Gln Lys Asn Met Asp Glu Glu ate age ace ttg get etc tee aac gag ett tge ttg get gge att gag 527 Ile Ser Thr Leu Ala Leu Ser Asn Glu Leu Cys Leu Ala Gly Ile Glu 175

170

165

160

| , | acc<br>Thr        | aag<br>Lys        | act<br>Thr        | ggc<br>Gly        | aag<br>Lys<br>180 | tcc<br>Ser        | caa<br>Gln        | gat<br>Asp        | gag<br>Glu        | gtc<br>Val<br>185 | atg<br>Met        | gac<br>Asp        | atg<br>Met        | ctc<br>Leu        | tcc<br>Ser<br>190 | acc<br>Thr        | 575  |
|---|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------|
|   | tac<br>Tyr        | cgc<br>Arg        | ctc<br>Leu        | tct<br>Ser<br>195 | ggt<br>Gly        | gag<br>Glu        | act<br>Thr        | cca<br>Pro        | tac<br>Tyr<br>200 | cac<br>His        | cat<br>His        | gct<br>Ala        | tac<br>Tyr        | gag<br>Glu<br>205 | act<br>Thr        | gtc<br>Val        | 623  |
|   | agg<br>Arg        | gag<br>Glu        | att<br>Ile<br>210 | gtc<br>Val        | cat<br>His        | gag<br>Glu        | agg<br>Arg        | gac<br>Asp<br>215 | cca<br>Pro        | ggt<br>Gly        | ttc<br>Phe        | cgc<br>Arg        | cac<br>His<br>220 | ctc<br>Leu        | tcc<br>Ser        | caa<br>Gln        | 671  |
|   | gct<br>Ala        | ccc<br>Pro<br>225 | att<br>Ile        | gtg<br>Val        | gct<br>Ala        | gcc<br>Ala        | aag<br>Lys<br>230 | ttg<br>Leu        | gac<br>Asp        | cca<br>Pro        | gtc<br>Val        | acc<br>Thr<br>235 | ctc<br>Leu        | ttg<br>Leu        | ggc<br>Gly        | atc<br>Ile        | 719  |
|   | tcc<br>Ser<br>240 | agc<br>Ser        | cac<br>His        | atc<br>Ile        | agc<br>Ser        | cca<br>Pro<br>245 | gag<br>Glu        | ttg<br>Leu        | tac<br>Tyr        | aac<br>Asn        | ctt<br>Leu<br>250 | ctc<br>Leu        | att<br>Ile        | gag<br>Glu        | gag<br>Glu        | atc<br>Ile<br>255 | 767  |
|   | cca<br>Pro        | gag<br>Glu        | aag<br>Lys        | gat<br>Asp        | gag<br>Glu<br>260 | gca<br>Ala        | gct<br>Ala        | ttg<br>Leu        | gac<br>Asp        | acc<br>Thr<br>265 | ctc<br>Leu        | tac<br>Tyr        | aag<br>Lys        | acc<br>Thr        | aac<br>Asn<br>270 | ttc<br>Phe        | 815  |
|   | ggt<br>Gly        | gac<br>Asp        | atc<br>Ile        | acc<br>Thr<br>275 | act<br>Thr        | gct<br>Ala        | caa<br>Gln        | ctc<br>Leu        | atg<br>Met<br>280 | agc<br>Ser        | cca<br>Pro        | tcc<br>Ser        | tac<br>Tyr        | ttg<br>Leu<br>285 | gcc<br>Ala        | agg<br>Arg        | 863  |
|   | tac<br>Tyr        | tac<br>Tyr        | ggt<br>Gly<br>290 | gtc<br>Val        | tct<br>Ser        | cca<br>Pro        | gag<br>Glu        | gac<br>Asp<br>295 | att<br>Ile        | gct<br>Ala        | tac<br>Tyr        | gtc<br>Val        | acc<br>Thr<br>300 | aca<br>Thr        | agc<br>Ser        | ctc<br>Leu        | 911  |
|   | tcc<br>Ser        | cat<br>His<br>305 | gtg<br>Val        | ggt<br>Gly        | tac<br>Tyr        | tcc<br>Ser        | tct<br>Ser<br>310 | gac<br>Asp        | atc<br>Ile        | ctt<br>Leu        | gtc<br>Val        | atc<br>Ile<br>315 | cca<br>Pro        | ctc<br>Leu        | gtg<br>Val        | gat<br>Asp        | 959  |
|   | ggt<br>Gly<br>320 | gtg<br>Val        | ggc<br>Gly        | aag<br>Lys        | atg<br>Met        | gag<br>Glu<br>325 | gtt<br>Val        | gtc<br>Val        | agg<br>Arg        | gtc<br>Val        | acc<br>Thr<br>330 | agg<br>Arg        | act<br>Thr        | cca<br>Pro        | tct<br>Ser        | gac<br>Asp<br>335 | 1007 |
|   | aac<br>Asn        | tac<br>Tyr        | acc<br>Thr        | tcc<br>Ser        | cag<br>Gln<br>340 | acc<br>Thr        | aac<br>Asn        | tac<br>Tyr        | att<br>Ile        | gag<br>Glu<br>345 | ttg<br>Leu        | tac<br>Tyr        | cca<br>Pro        | caa<br>Gln        | ggt<br>Gly<br>350 | Gly               | 1055 |
|   | gac<br>Asp        | aac<br>Asn        | tac<br>Tyr        | ctc<br>Leu<br>355 | atc<br>Ile        | aag<br>Lys        | tac<br>Tyr        | aac<br>Asn        | ctc<br>Leu<br>360 | tcc<br>Ser        | aac<br>Asn        | tct<br>Ser        | ttc<br>Phe        | ggt<br>Gly<br>365 | Leu               | gat<br>Asp        | 1103 |
|   | gac<br>Asp        | ttc<br>Phe        | tac<br>Tyr<br>370 | Leu               | cag<br>Gln        | tac<br>Tyr        | aag<br>Lys        | gat<br>Asp<br>375 | Gly               | tct<br>Ser        | gct<br>Ala        | gac<br>Asp        | tgg<br>Trp<br>380 | Thr               | gag<br>Glu        | att<br>Ile        | 1151 |
|   | gct<br>Ala        | cac<br>His<br>385 | Asn               | cca<br>Pro        | tac<br>Tyr        | cca<br>Pro        | gac<br>Asp<br>390 | Met               | gtc<br>Val        | atc<br>Ile        | aac<br>Asn        | cag<br>Gln<br>395 | Lys               | tac<br>Tyr        | gag<br>Glu        | tcc<br>Ser        | 1199 |
|   | caa<br>Gln<br>400 | Ala               | acc<br>Thr        | atc               | aag<br>Lys        | aga<br>Arg<br>405 | Ser               | gac<br>Asp        | tct<br>Ser        | gac<br>Asp        | aac<br>Asn<br>410 | Ile               | ctc<br>Leu        | tcc<br>Ser        | att<br>Ile        | ggt<br>Gly<br>415 | 1247 |
|   | ctc               | caa               | agg               | tgg               | cac               | tct               | ggt               | tcc               | tac               | aac               | ttc               | gct               | gct               | gcc               | aac               | ttc               | 1295 |

| Leu               | Gln               | Arg               | Trp               | His<br>420        | Ser               | Gly               | Ser               | Tyr               | Asn<br>425        | Phe               | Ala               | Ala               | Ala               | Asn<br>430        | Phe               |      |
|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------|
| aag<br>Lys        | att<br>Ile        | gac<br>Asp        | caa<br>Gln<br>435 | tac<br>Tyr        | tct<br>Ser        | cca<br>Pro        | aag<br>Lys        | gct<br>Ala<br>440 | ttc<br>Phe        | ctc<br>Leu        | ttg<br>Leu        | aag<br>Lys        | atg<br>Met<br>445 | aac<br>Asn        | aag<br>Lys        | 1343 |
| gcc<br>Ala        | atc<br>Ile        | agg<br>Arg<br>450 | ctc<br>Leu        | ttg<br>Leu        | aag<br>Lys        | gcc<br>Ala        | act<br>Thr<br>455 | ggt<br>Gly        | ctc<br>Leu        | tcc<br>Ser        | ttc<br>Phe        | gcc<br>Ala<br>460 | acc<br>Thr        | ctt<br>Leu        | gag<br>Glu        | 1391 |
| agg<br>Arg        | att<br>Ile<br>465 | gtg<br>Val        | gac<br>Asp        | tct<br>Ser        | gtc<br>Val        | aac<br>Asn<br>470 | tcc<br>Ser        | acc<br>Thr        | aag<br>Lys        | tcc<br>Ser        | atc<br>Ile<br>475 | act<br>Thr        | gtg<br>Val        | gag<br>Glu        | gtc<br>Val        | 1439 |
| ctc<br>Leu<br>480 | aac<br>Asn        | aag<br>Lys        | gtc<br>Val        | tac<br>Tyr        | aga<br>Arg<br>485 | gtc<br>Val        | aag<br>Lys        | ttc<br>Phe        | tac<br>Tyr        | att<br>Ile<br>490 | gac<br>Asp        | cgc<br>Arg        | tac<br>Tyr        | ggc<br>Gly        | atc<br>Ile<br>495 | 1487 |
| tct<br>Ser        | gag<br>Glu        | gag<br>Glu        | act<br>Thr        | gct<br>Ala<br>500 | gcc<br>Ala        | atc<br>Ile        | ctt<br>Leu        | gcc<br>Ala        | aac<br>Asn<br>505 | atc<br>Ile        | aac<br>Asn        | atc<br>Ile        | tcc<br>Ser        | cag<br>Gln<br>510 | caa<br>Gln        | 1535 |
| gct<br>Ala        | gtc<br>Val        | ggc<br>Gly        | aac<br>Asn<br>515 | cag<br>Gln        | ctc<br>Leu        | tcc<br>Ser        | caa<br>Gln        | ttc<br>Phe<br>520 | gag<br>Glu        | caa<br>Gln        | ctc<br>Leu        | ttc<br>Phe        | aac<br>Asn<br>525 | cac<br>His        | cct<br>Pro        | 1583 |
| cca<br>Pro        | ctc<br>Leu        | aac<br>Asn<br>530 | ggc<br>Gly        | atc<br>Ile        | cgc<br>Arg        | tac<br>Tyr        | gag<br>Glu<br>535 | atc<br>Ile        | agc<br>Ser        | gag<br>Glu        | gac<br>Asp        | aac<br>Asn<br>540 | tcc<br>Ser        | aag<br>Lys        | cac<br>His        | 1631 |
| ctc<br>Leu        | cca<br>Pro<br>545 | aac<br>Asn        | cca<br>Pro        | gac<br>Asp        | ctc<br>Leu        | aac<br>Asn<br>550 | ctc<br>Leu        | aag<br>Lys        | cca<br>Pro        | gac<br>Asp        | tcc<br>Ser<br>555 | act<br>Thr        | ggt<br>Gly        | gat<br>Asp        | gac<br>Asp        | 1679 |
| caa<br>Gln<br>560 | agg<br>Arg        | aag<br>Lys        | gct<br>Ala        | gtc<br>Val        | ctc<br>Leu<br>565 | aag<br>Lys        | agg<br>Arg        | gct<br>Ala        | ttc<br>Phe        | caa<br>Gln<br>570 | Val               | aac<br>Asn        | gct<br>Ala        | tct<br>Ser        | gag<br>Glu<br>575 | 1727 |
| ctt<br>Leu        | tac<br>Tyr        | caa<br>Gln        | Met               | ctc<br>Leu<br>580 | Leu               | Ile               | act<br>Thr        | Asp               | Arg               | Lys               | Glu               | Asp               | Gly               | Val               | Ile.              | 1775 |
| aag<br>Lys        | aac<br>Asn        | aac<br>Asn        | ttg<br>Leu<br>595 | gag<br>Glu        | aac<br>Asn        | ctc<br>Leu        | tct<br>Ser        | gac<br>Asp<br>600 | ctc<br>Leu        | tac<br>Tyr        | ctt<br>Leu        | gtc<br>Val        | Ser<br>605        | ctc<br>Leu        | ttg<br>Leu        | 1823 |
| gcc<br>Ala        | caa<br>Gln        | atc<br>Ile<br>610 | His               | aac<br>Asn        | ttg<br>Leu        | acc<br>Thr        | att<br>Ile<br>615 | Ala               | gag<br>Glu        | ttg<br>Leu        | aac<br>Asn        | atc<br>Ile<br>620 | Leu               | ttg<br>Leu        | gtc<br>Val        | 1871 |
| atc<br>Ile        | tgc<br>Cys<br>625 | Gly               | tac<br>Tyr        | ggt<br>Gly        | gac<br>Asp        | acc<br>Thr<br>630 | Asn               | atc               | tac<br>Tyr        | caa<br>Gln        | atc<br>Ile<br>635 | Thr               | gac<br>Asp        | gac<br>Asp        | aac<br>Asn        | 1919 |
| ctt<br>Leu<br>640 | Ala               | aag<br>Lys        | att<br>Ile        | gtg<br>Val        | gag<br>Glu<br>645 | Thr               | cto<br>Leu        | ttg<br>Leu        | tgg<br>Trp        | ato<br>Ile<br>650 | Thr               | caa<br>Glr        | tgg<br>Trp        | cto<br>Lev        | aag<br>Lys<br>655 | 1967 |
| acc<br>Thr        | cag<br>Gln        | aag<br>Lys        | tgg<br>Trp        | act<br>Thr        | gtc<br>Val        | aca<br>Thr        | gac               | cto<br>Lev        | tto<br>Phe        | cto<br>Leu        | atg<br>Met        | acc<br>Thr        | act<br>Thr        | gco<br>Ala        | acc<br>Thr        | 2015 |

|       |   |   | 660 |   |   | 665 |   |   |     | 670               |   |      |
|-------|---|---|-----|---|---|-----|---|---|-----|-------------------|---|------|
|       |   |   |     |   | - |     |   |   | -   | acc<br>Thr        |   | 2063 |
|       |   |   |     |   |   |     |   |   |     | ctc<br>Leu        |   | 2111 |
| <br>- | - | - |     | - |   | _   |   |   |     | tcc<br>Ser        |   | 2159 |
| <br>- | - |   | -   |   |   |     | - |   |     | cca<br>Pro        | - | 2207 |
|       |   |   |     |   |   |     |   |   | Thr | cca<br>Pro<br>750 |   | 2255 |
|       | _ | - |     |   | _ | -   | _ | - |     | tcc<br>Ser        |   | 2303 |
|       | - |   |     |   |   |     |   | - |     | att<br>Ile        | - | 2351 |
|       |   |   |     |   |   |     |   |   |     | cat<br>His        |   | 2399 |
|       |   |   |     |   |   |     |   |   |     | aac<br>Asn        |   | 2447 |
|       |   |   |     |   |   |     |   |   |     | ggt<br>Gly<br>830 |   | 2495 |
|       |   |   |     |   |   |     |   |   |     | tcc<br>Ser        |   | 2543 |
|       |   |   |     |   |   |     |   |   |     | ctc<br>Leu        |   | 2591 |
|       |   |   |     |   |   |     |   |   |     | tcc<br>Ser        |   | 2639 |
|       |   |   |     |   |   |     |   |   |     | ctc<br>Leu        |   | 2687 |
|       |   |   |     |   |   |     |   |   |     | gct<br>Ala<br>910 |   | 2735 |

| ctc atg gct ga<br>Leu Met Ala As<br>91   | p His Ala Asn                            | cag gct cag<br>Gln Ala Gln<br>920      | aag aag ttg<br>Lys Lys Leu             | gat gag acc<br>Asp Glu Thr<br>925  | 2783 |
|------------------------------------------|------------------------------------------|----------------------------------------|----------------------------------------|------------------------------------|------|
| ttc tcc aag gc<br>Phe Ser Lys Al<br>930  | t ctc tgc aac<br>a Leu Cys Asn           | tac tac atc<br>Tyr Tyr Ile<br>935      | aac gcc gtg<br>Asn Ala Val<br>940      | gtt gac tct<br>Val Asp Ser         | 2831 |
| gct gcc ggt gt<br>Ala Ala Gly Va<br>945  | c agg gac agg<br>l Arg Asp Arg<br>950    | aac ggt ctc<br>Asn Gly Leu             | tac acc tac<br>Tyr Thr Tyr<br>955      | ctc ttg att<br>Leu Leu Ile         | 2879 |
| gac aac cag gt<br>Asp Asn Gln Va<br>960  | c tct gct gat<br>l Ser Ala Asp<br>965    | gtc atc acc<br>Val Ile Thr             | tcc aga att<br>Ser Arg Ile<br>970      | gct gag gcc<br>Ala Glu Ala<br>975  | 2927 |
| att gct ggc at<br>Ile Ala Gly Il         | c caa ctc tac<br>e Gln Leu Tyr<br>980    | gtc aac agg<br>Val Asn Arg<br>985      | Ala Leu Asn                            | agg gat gag<br>Arg Asp Glu<br>990  | 2975 |
| ggt cag ttg gc<br>Gly Gln Leu Al<br>99   | a Ser Asp Val                            |                                        | Gln Phe Phe                            |                                    | 3023 |
| gag agg tac aa<br>Glu Arg Tyr As<br>1010 | n Lys Arg Tyr                            |                                        |                                        |                                    | 3071 |
| gtc tac tac co<br>Val Tyr Tyr Pr<br>1025 | a gag aac tac<br>o Glu Asn Tyr<br>1030   | Val Asp Pro                            | acc caa agg<br>Thr Gln Arg<br>1035     | att ggt cag<br>Ile Gly Gln         | 3119 |
| acc aag atg at<br>Thr Lys Met Me<br>1040 | g gat gct ttg<br>t Asp Ala Leu<br>1045   | ctc caa tcc<br>Leu Gln Ser             | atc aac cag<br>Ile Asn Gln<br>1050     | tcc caa ctc<br>Ser Gln Leu<br>1055 | 3167 |
| aac gct gac ac<br>Asn Ala Asp Th         | t gtg gag gat<br>r Val Glu Asp<br>1060   | gct ttc aag<br>Ala Phe Lys<br>1065     | Thr Tyr Leu                            | acc tcc ttc<br>Thr Ser Phe<br>1070 | 3215 |
| gag caa gtg gc<br>Glu Gln Val Al<br>107  | a Asn Leu Lys                            | gtc atc tct<br>Val Ile Ser<br>1080     | Ala Tyr His                            | gac aac gtc<br>Asp Asn Val<br>1085 | 3263 |
| aac gtg gac ca<br>Asn Val Asp Gl<br>1090 | a ggt ctc acc<br>n Gly Leu Thr           | tac ttc att<br>Tyr Phe Ile<br>1095     | ggc att gac<br>Gly Ile Asp<br>1100     | caa gcc gct<br>Gln Ala Ala         | 3311 |
| cct ggc acc ta<br>Pro Gly Thr Ty<br>1105 | c tac tgg agg<br>r Tyr Trp Arg<br>1110   | Ser Val Asp                            | c cac tcc aag<br>His Ser Lys<br>1115   | tgc gag aac<br>Cys Glu Asn         | 3359 |
| ggc aag ttc go<br>Gly Lys Phe Al<br>1120 | et gee aac get<br>.a Ala Asn Ala<br>1125 | tgg ggt gag<br>Trp Gly Gli             | g tgg aac aag<br>1 Trp Asn Lys<br>1130 | atc acc tgc<br>Ile Thr Cys<br>1135 | 3407 |
| gct gtc aac co<br>Ala Val Asn Pi         | et tgg aag aac<br>o Trp Lys Asr<br>1140  | e atc atc ago<br>n Ile Ile Arc<br>1149 | g Pro Val Val                          | tac atg tcc<br>Tyr Met Ser<br>1150 | 3455 |

| aga ctc tac ttg ctc tgg ctt gag caa cag tcc aag aag tct gat gac<br>Arg Leu Tyr Leu Leu Trp Leu Glu Gln Gln Ser Lys Lys Ser Asp Asp<br>1155 1160 1165      | 3503 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| ggc aag aca act atc tac cag tac aac ctc aag ttg gct cac atc cgc Gly Lys Thr Thr Ile Tyr Gln Tyr Asn Leu Lys Leu Ala His Ile Arg 1170 1175 1180            | 3551 |
| tac gat ggt tcc tgg aac act cca ttc acc ttc gat gtc act gag aag Tyr Asp Gly Ser Trp Asn Thr Pro Phe Thr Phe Asp Val Thr Glu Lys 1185 1190 1195            | 3599 |
| gtc aag aac tac acc tcc agc act gat gca gct gag tcc ctt ggt ctc<br>Val Lys Asn Tyr Thr Ser Ser Thr Asp Ala Ala Glu Ser Leu Gly Leu<br>1200 1205 1210 1215 | 3647 |
| tac tgc act ggt tac caa ggt gag gac acc ctc ttg gtc atg ttc tac<br>Tyr Cys Thr Gly Tyr Gln Gly Glu Asp Thr Leu Leu Val Met Phe Tyr<br>1220 1225 1230      | 3695 |
| tcc atg caa tcc agc tac tcc agc tac act gac aac aac gct cca gtc<br>Ser Met Gln Ser Ser Tyr Ser Ser Tyr Thr Asp Asn Asn Ala Pro Val<br>1235 1240 1245      | 3743 |
| act ggt ctc tac atc ttc gct gac atg tcc tct gac aac atg acc aac Thr Gly Leu Tyr Ile Phe Ala Asp Met Ser Ser Asp Asn Met Thr Asn 1250 1255 1260            | 3791 |
| gct caa gcc acc aac tac tgg aac aac tcc tac cca caa ttc gac act Ala Gln Ala Thr Asn Tyr Trp Asn Asn Ser Tyr Pro Gln Phe Asp Thr 1265 1270 1275            | 3839 |
| gtc atg gct gac cca gac tct gac aac aag aag gtc atc acc agg cgt Val Met Ala Asp Pro Asp Ser Asp Asn Lys Lys Val Ile Thr Arg Arg 1280 1285 1290 1295       | 3887 |
| gtc aac aac cgc tac gct gag gac tac gag atc cca agc tct gtc acc<br>Val Asn Asn Arg Tyr Ala Glu Asp Tyr Glu Ile Pro Ser Ser Val Thr<br>1300 1305 1310      | 3935 |
| tcc aac agc aac tac tcc tgg ggt gac cac tcc ctc acc atg ctc tac<br>Ser Asn Ser Asn Tyr Ser Trp Gly Asp His Ser Leu Thr Met Leu Tyr<br>1315 1320 1325      | 3983 |
| ggt ggc tct gtc cca aac atc acc ttc gag tct gca gct gag gac ctc<br>Gly Gly Ser Val Pro Asn Ile Thr Phe Glu Ser Ala Ala Glu Asp Leu<br>1330 1335 1340      | 4031 |
| agg ctc tcc acc aac atg gct ctc tcc atc att cac aac ggt tac gct Arg Leu Ser Thr Asn Met Ala Leu Ser Ile Ile His Asn Gly Tyr Ala 1345 1350 1355            | 4079 |
| ggc acc agg cgc atc caa tgc aac ctc atg aag caa tac gct tcc ctt<br>Gly Thr Arg Arg Ile Gln Cys Asn Leu Met Lys Gln Tyr Ala Ser Leu<br>1360 1365 1370 1375 | 4127 |
| ggt gac aag ttc att atc tac gac tcc agc ttc gat gac gcc aac agg<br>Gly Asp Lys Phe Ile Ile Tyr Asp Ser Ser Phe Asp Asp Ala Asn Arg<br>1380 1385 1390      | 4175 |
| ttc aac ttg gtc cca ctc ttc aag ttc ggc aag gat gag aac tct gat                                                                                           | 4223 |

| Phe Asn Leu Val Pro Leu Pi<br>1395                                                                                                                                                                                                                                                                                               | he Lys Phe Gly L<br>1400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Lys Asp Glu Asn Ser Asp<br>1405                                                                                                                                                                                                                                                                                                                                       |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| gac tcc atc tgc atc tac ac<br>Asp Ser Ile Cys Ile Tyr A<br>1410                                                                                                                                                                                                                                                                  | ac gag aac cca a<br>sn Glu Asn Pro S<br>1415                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | agc tct gag gac aag aag 4271<br>Ser Ser Glu Asp Lys Lys<br>1420                                                                                                                                                                                                                                                                                                       |
| tgg tac ttc agc tcc aag g<br>Trp Tyr Phe Ser Ser Lys A<br>1425                                                                                                                                                                                                                                                                   | sp Asp Asn Lys T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | act gct gac tac aac ggt 4319<br>Thr Ala Asp Tyr Asn Gly<br>1435                                                                                                                                                                                                                                                                                                       |
| ggc acc caa tgc att gat g<br>Gly Thr Gln Cys Ile Asp A<br>1440 1445                                                                                                                                                                                                                                                              | la Gly Thr Ser A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                       |
| aac ctc caa gag att gag g<br>Asn Leu Gln Glu Ile Glu V<br>1460                                                                                                                                                                                                                                                                   | tc atc tct gtc a<br>al Ile Ser Val T<br>1465                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | act ggt ggc tac tgg tcc 4415<br>Thr Gly Gly Tyr Trp Ser<br>1470                                                                                                                                                                                                                                                                                                       |
| agc tac aag atc agc aac c<br>Ser Tyr Lys Ile Ser Asn P<br>1475                                                                                                                                                                                                                                                                   | cc atc aac atc a<br>ro Ile Asn Ile A<br>1480                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | aac act ggc att gac tct 4463<br>Asn Thr Gly Ile Asp Ser<br>1485                                                                                                                                                                                                                                                                                                       |
| gcc aag gtc aag gtc act g<br>Ala Lys Val Lys Val Thr V<br>. 1490                                                                                                                                                                                                                                                                 | tc aag gct ggt o<br>'al Lys Ala Gly 0<br>1495                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ggc gat gac caa atc ttc 4511<br>Gly Asp Asp Gln Ile Phe<br>1500                                                                                                                                                                                                                                                                                                       |
| act gct gac aac tcc acc t<br>Thr Ala Asp Asn Ser Thr T<br>1505 15                                                                                                                                                                                                                                                                | ac gtc cca cag o<br>'yr Val Pro Gln (<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | caa cct gct cca tcc ttc 4559<br>Gln Pro Ala Pro Ser Phe<br>1515                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                       |
| gag gag atg atc tac caa t<br>Glu Glu Met Ile Tyr Gln P<br>1525                                                                                                                                                                                                                                                                   | he Asn Asn Leu 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | acc att gac tgc aag aac 4607<br>Thr Ile Asp Cys Lys Asn<br>530 1535                                                                                                                                                                                                                                                                                                   |
| Glu Glu Met Ile Tyr Gln P                                                                                                                                                                                                                                                                                                        | The Asn Asn Leu 1<br>15<br>ag gct cac att 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Thr Ile Asp Cys Lys Asn 530 1535 gag att gac ttc act gcc 4655                                                                                                                                                                                                                                                                                                         |
| Glu Glu Met Ile Tyr Gln P 1520 1525  ctc aac ttc att gac aac c Leu Asn Phe Ile Asp Asn G 1540  aca gct caa gat ggc cgc t Thr Ala Gln Asp Gly Arg P                                                                                                                                                                               | The Asn Asn Leu 15 cag gct cac att of lin Ala His Ile 0 1545                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Thr Ile Asp Cys Lys Asn 1535  gag att gac ttc act gcc 4655  Glu Ile Asp Phe Thr Ala 1550  gag acc ttc atc att cca 4703  Glu Thr Phe Ile Ile Pro                                                                                                                                                                                                                       |
| Clu Glu Met Ile Tyr Gln P 1520 1525  ctc aac ttc att gac aac c Leu Asn Phe Ile Asp Asn G 1540  aca gct caa gat ggc cgc t Thr Ala Gln Asp Gly Arg P                                                                                                                                                                               | cag gct cac att of the state of | Thr Ile Asp Cys Lys Asn 1535  gag att gac ttc act gcc 4655  Glu Ile Asp Phe Thr Ala 1550  gag acc ttc atc att cca 4703  Glu Thr Phe Ile Ile Pro 1565  gtc att gct ctc tac tct 4751                                                                                                                                                                                    |
| Glu Glu Met Ile Tyr Gln P 1520 1525  ctc aac ttc att gac aac c Leu Asn Phe Ile Asp Asn G 1540  aca gct caa gat ggc cgc t Thr Ala Gln Asp Gly Arg P 1555  gtc acc aag aag gtc ctt g Val Thr Lys Lys Val Leu G 1570  gag aac aac ggt gtc cag t Glu Asn Asn Gly Val Gln T                                                           | cag gct cac att of the state of | Thr Ile Asp Cys Lys Asn 1535  gag att gac ttc act gcc 4655  Glu Ile Asp Phe Thr Ala 1550  gag acc ttc atc att cca 4703  Glu Thr Phe Ile Ile Pro 1565  gtc att gct ctc tac tct 4751  Val Ile Ala Leu Tyr Ser 1580  ggt gct tac aga acc agg 4799                                                                                                                        |
| Glu Glu Met Ile Tyr Gln P 1520 1525  ctc aac ttc att gac aac c Leu Asn Phe Ile Asp Asn G 1540  aca gct caa gat ggc cgc t Thr Ala Gln Asp Gly Arg P 1555  gtc acc aag aag gtc ctt g Val Thr Lys Lys Val Leu G 1570  gag aac aac ggt gtc cag t Glu Asn Asn Gly Val Gln T                                                           | cag gct cac att can also also also also also also also also                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Thr Ile Asp Cys Lys Asn 1535  gag att gac ttc act gcc 4655  Glu Ile Asp Phe Thr Ala 1550  gag acc ttc atc att cca 4703  Glu Thr Phe Ile Ile Pro 1565  gtc att gct ctc tac tct 4751  Val Ile Ala Leu Tyr Ser 1580  ggt gct tac aga acc agg 4799  Gly Ala Tyr Arg Thr Arg 1595  tcc cgt gcc aac aga ggc 4847                                                            |
| Glu Glu Met Ile Tyr Gln P 1520 1525  ctc aac ttc att gac aac c Leu Asn Phe Ile Asp Asn G 1540  aca gct caa gat ggc cgc t Thr Ala Gln Asp Gly Arg P 1555  gtc acc aag aag gtc ctt g Val Thr Lys Lys Val Leu G 1570  gag aac aac ggt gtc cag t Glu Asn Asn Gly Val Gln T 1585  ctc aac acc ctc ttc gct c Leu Asn Thr Leu Phe Ala G | cag gct cac att of 15 ag gct cac att of 1545  tct ttg ggt gct of 1545  tc ttg ggt gct of 1560  ggc act gag aac of 1560  ggc act gag aac of 1575  tac atg caa att of 1575  tac atg caa att of 1590  caa cag ttg gtc of 1590  caa cag ttg gtc of 1590  catg gag act cag of 1545                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Thr Ile Asp Cys Lys Asn 1535  gag att gac ttc act gcc 4655  Glu Ile Asp Phe Thr Ala 1550  gag acc ttc atc att cca 4703  Glu Thr Phe Ile Ile Pro 1565  gtc att gct ctc tac tct 4751  Val Ile Ala Leu Tyr Ser 1580  ggt gct tac aga acc agg 4799  Gly Ala Tyr Arg Thr Arg 1595  tcc cgt gcc aac aga ggc 4847  Ser Arg Ala Asn Arg Gly 610  aac atc caa gag cca caa 4895 |

1635 1640 1645 tcc att cat ggc acc aac aag tcc ttc gcc att gag tac gtg gac atc Ser Ile His Gly Thr Asn Lys Ser Phe Ala Ile Glu Tyr Val Asp Ile 1650 1655 ttc aag gag aac gac tcc ttc gtc atc tac caa ggt gag ttg tct gag 5039 Phe Lys Glu Asn Asp Ser Phe Val Ile Tyr Gln Gly Glu Leu Ser Glu 1665 1670 acc tee caa act gtg gte aag gte tte ete tee tae tte att gag gee 5087 Thr Ser Gln Thr Val Val Lys Val Phe Leu Ser Tyr Phe Ile Glu Ala 1685 1690 1680 acc ggt aac aag aac cac ctc tgg gtc agg gcc aag tac cag aag gag 5135 Thr Gly Asn Lys Asn His Leu Trp Val Arg Ala Lys Tyr Gln Lys Glu 1705 1700 acc act gac aag atc ctc ttc gac agg act gat gag aag gac cca cat 5183 Thr Thr Asp Lys Ile Leu Phe Asp Arg Thr Asp Glu Lys Asp Pro His 1725 1715 1720 5231 ggt tgg ttc ctc tct gat gac cac aag acc ttc tct ggt ctc agc tct Gly Trp Phe Leu Ser Asp Asp His Lys Thr Phe Ser Gly Leu Ser Ser 1730 1735 1740 gct caa gct ctc aag aac gac tct gag cca atg gac ttc tct ggt gcc 5279 Ala Gln Ala Leu Lys Asn Asp Ser Glu Pro Met Asp Phe Ser Gly Ala 1750 1745 aac gct ctc tac ttc tgg gag ttg ttc tac tac act cca atg atg atg 5327 Asn Ala Leu Tyr Phe Trp Glu Leu Phe Tyr Tyr Thr Pro Met Met Met 1760 1765 5375 gct cac agg ctc ctt caa gag cag aac ttc gat gct gcc aac cac tgg Ala His Arg Leu Leu Gln Glu Gln Asn Phe Asp Ala Ala Asn His Trp 1780 1785 5423 ttc cgc tac gtc tgg agc cca tct ggt tac att gtg gat ggc aag att Phe Arg Tyr Val Trp Ser Pro Ser Gly Tyr Ile Val Asp Gly Lys Ile 1795 1800 5471 gcc atc tac cac tgg aac gtc agg cca ttg gag gag gac acc tcc tgg Ala Ile Tyr His Trp Asn Val Arg Pro Leu Glu Glu Asp Thr Ser Trp 1815 1810 aac gct cag caa ctt gac tcc act gac cca gat gct gtg gct caa gat 5519 Asn Ala Gln Gln Leu Asp Ser Thr Asp Pro Asp Ala Val Ala Gln Asp 1830 5567 gac cca atg cac tac aag gtg gcc acc ttc atg gcc acc ttg gac ctt Asp Pro Met His Tyr Lys Val Ala Thr Phe Met Ala Thr Leu Asp Leu

ttg gct gag gcc aag atg tgg tac acc caa gct ctc aac ttg ctg ggt 5663 Leu Ala Glu Ala Lys Met Trp Tyr Thr Gln Ala Leu Asn Leu Leu Gly 1875 1880 1885

ctc atq qcc aga qqt gat gct gcc tac cgc caa ttg gag agg gac acc

Leu Met Ala Arg Gly Asp Ala Ala Tyr Arg Gln Leu Glu Arg Asp Thr

1845

1850

5615

1840

| gat gag cca<br>Asp Glu Pro<br>1890 | caa gtc atg<br>Gln Val Met         | ctc tcc aca<br>Leu Ser Thr<br>1895 | Thr Trp Ala                            | aac cca acc<br>Asn Pro Thr<br>900  | ttg 5711<br>Leu          |
|------------------------------------|------------------------------------|------------------------------------|----------------------------------------|------------------------------------|--------------------------|
| ggc aac gct<br>Gly Asn Ala<br>1905 | Ala Ser Lys                        | acc aca caa<br>Thr Thr Gln<br>910  | cag gtc agg<br>Gln Val Arg<br>1915     | caa cag gtc<br>Gln Gln Val         | ctc 5759<br>Leu          |
| acc caa ctc<br>Thr Gln Leu<br>1920 | agg ctc aac<br>Arg Leu Asn<br>1925 | tct aga gtc<br>Ser Arg Val         | aag act cca<br>Lys Thr Pro<br>1930     | Leu Leu Gly                        | act 5807<br>Thr<br>L935  |
| gcc aac tcc<br>Ala Asn Ser         | ctc act gct<br>Leu Thr Ala<br>1940 | Leu Phe Leu                        | cca caa gag<br>Pro Gln Glu<br>1945     | aac tcc aaa<br>Asn Ser Lys<br>1950 | ctt 5855<br>Leu          |
| Lys Gly Tyr                        | tgg agg acc<br>Trp Arg Thr<br>955  | ctt gct caa<br>Leu Ala Gln<br>1960 | cgc atg ttc<br>Arg Met Phe             | aac ctc agg<br>Asn Leu Arg<br>1965 | cac 5903<br>His          |
| aac ctc tcc<br>Asn Leu Ser<br>1970 | att gat ggt<br>Ile Asp Gly         | caa cca ctc<br>Gln Pro Leu<br>1975 | tcc ttg cca<br>Ser Leu Pro<br>1        | ctc tac gct<br>Leu Tyr Ala<br>.980 | aag 5951<br>Lys          |
| cca gct gac<br>Pro Ala Asp<br>1985 | Pro Lys Ala                        | ctc ctt tcc<br>Leu Leu Ser<br>1990 | gct gct gtc<br>Ala Ala Val<br>1995     | tcc gca tcc<br>Ser Ala Ser         | caa 5999<br>Gln          |
| ggt ggt gct<br>Gly Gly Ala<br>2000 | gac ctc cca<br>Asp Leu Pro<br>2005 | aag gct cca<br>Lys Ala Pro         | ctc acc atc<br>Leu Thr Ile<br>2010     | His Arg Phe                        | cca 6047<br>Pro<br>2015  |
| caa atg ttg<br>Gln Met Leu         | gag ggt gcc<br>Glu Gly Ala<br>2020 | cgt ggt ctt<br>Arg Gly Leu         | gtc aac cag<br>Val Asn Gln<br>2025     | ctc atc caa<br>Leu Ile Gln<br>2030 | Phe                      |
| Gly Ser Ser                        | ctc ctt ggt<br>Leu Leu Gly<br>2035 | tac tct gag<br>Tyr Ser Glu<br>2040 | agg caa gat<br>Arg Gln Asp             | gct gag gcc<br>Ala Glu Ala<br>2045 | atg 6143<br>Met          |
| tcc caa ctc<br>Ser Gln Leu<br>2050 | ttg caa acc<br>Leu Gln Thr         | cag gct tct<br>Gln Ala Ser<br>2055 | gag ttg atc<br>Glu Leu Ile             | ctc acc tcc<br>Leu Thr Ser<br>2060 | atc 6191<br>Ile          |
| agg atg caa<br>Arg Met Gln<br>2065 | Asp Asn Gln                        | ctt gct gad<br>Leu Ala Glu<br>2070 | ttg gac tct<br>Leu Asp Ser<br>2075     | gag aag act<br>Glu Lys Thr         | gct 6239<br>Ala          |
| ctc caa gtc<br>Leu Gln Val<br>2080 | tcc ctt gct<br>Ser Leu Ala<br>2085 | ggt gtc caa<br>Gly Val Glr         | a cag agg ttc<br>n Gln Arg Phe<br>2090 | gac agc tac<br>Asp Ser Tyr         | stcc 6287<br>Ser<br>2095 |
| caa ctc tac<br>Gln Leu Tyr         | gag gag aac<br>Glu Glu Asn<br>2100 | atc aac gct<br>Ile Asn Ala         | ggt gag caa<br>Gly Glu Gln<br>2105     | agg gct ttg<br>Arg Ala Leu<br>2110 | ı Ala                    |
| Leu Arg Ser                        | gag tot goo<br>Glu Ser Ala<br>2115 | att gag to<br>Ile Glu Se<br>212    | c caa ggt gct<br>r Gln Gly Ala<br>)    | caa atc tcc<br>Gln Ile Ser<br>2125 | c cgc 6383<br>Arg        |

| atg gct ggt gct<br>Met Ala Gly Ala<br>2130 | Gly Val Asp                        | atg gct cca<br>Met Ala Pro<br>2135 | aac atc ttc ggt<br>Asn Ile Phe Gly<br>2140 | ctt gct 6431<br>Leu Ala         |
|--------------------------------------------|------------------------------------|------------------------------------|--------------------------------------------|---------------------------------|
| gat ggt ggc atg<br>Asp Gly Gly Met<br>2145 | cac tac ggt<br>His Tyr Gly<br>2150 | gcc att gct<br>Ala Ile Ala         | tac gcc att gct<br>Tyr Ala Ile Ala<br>2155 | gat ggc 6479<br>Asp Gly         |
| att gag ctt tct<br>Ile Glu Leu Ser<br>2160 | gct tct gcc<br>Ala Ser Ala<br>2165 | Lys Met Val                        | gat gct gag aag<br>Asp Ala Glu Lys<br>2170 | gtg gct 6527<br>Val Ala<br>2175 |
| Gln Ser Glu Ile                            | tac cgt cgc<br>Tyr Arg Arg<br>2180 | aga cgc caa<br>Arg Arg Gln<br>2185 | gaa tgg aag atc<br>Glu Trp Lys Ile<br>2    | caa agg 6575<br>Gln Arg<br>190  |
| gac aac gct caa<br>Asp Asn Ala Gln<br>2195 | gct gag atc<br>Ala Glu Ile         | aac cag ctc<br>Asn Gln Leu<br>2200 | aac gct caa ctt<br>Asn Ala Gln Leu<br>2205 | gag tcc 6623<br>Glu Ser         |
| ctc agc atc agg<br>Leu Ser Ile Arg<br>2210 | Arg Glu Ala                        | gct gag atg<br>Ala Glu Met<br>2215 | cag aag gag tac<br>Gln Lys Glu Tyr<br>2220 | ctc aag 6671<br>Leu Lys         |
| acc caa cag gct<br>Thr Gln Gln Ala<br>2225 | caa gct cag<br>Gln Ala Gln<br>2230 | gct caa ctc<br>Ala Gln Leu         | acc ttc ctc agg<br>Thr Phe Leu Arg<br>2235 | tcc aag 6719<br>Ser Lys         |
| ttc tcc aac cag<br>Phe Ser Asn Gln<br>2240 | gct ctc tac<br>Ala Leu Tyr<br>2245 | Ser Trp Leu                        | aga ggc cgc ctc<br>Arg Gly Arg Leu<br>2250 | tct ggc 6767<br>Ser Gly<br>2255 |
| Ile Tyr Phe Gln                            | ttc tac gac<br>Phe Tyr Asp<br>2260 | ttg gct gtc<br>Leu Ala Val<br>2265 | tcc cgc tgc ctc<br>Ser Arg Cys Leu         | atg gct 6815<br>Met Ala<br>2270 |
| gag caa tcc tac<br>Glu Gln Ser Tyr<br>2275 | Gln Trp Glu                        | gcc aac gac<br>Ala Asn Asp<br>2280 | aac agc atc tcc<br>Asn Ser Ile Ser<br>2285 | ttc gtc 6863<br>Phe Val         |
| aag cca ggt gct<br>Lys Pro Gly Ala<br>2290 | Trp Gln Gly                        | acc tac gct<br>Thr Tyr Ala<br>2295 | ggt ctc ctt tgc<br>Gly Leu Leu Cys<br>2300 | ggt gag 6911<br>Gly Glu         |
| gct ctc atc cag<br>Ala Leu Ile Gln<br>2305 | aac ttg gct<br>Asn Leu Ala<br>2310 | caa atg gag<br>Gln Met Glu         | gag gct tac ctc<br>Glu Ala Tyr Leu<br>2315 | aag tgg 6959<br>Lys Trp         |
| gag tcc aga gct<br>Glu Ser Arg Ala<br>2320 | ttg gag gta<br>Leu Glu Val<br>2325 | Glu Arg Thr                        | gtc tcc ctt gct<br>Val Ser Leu Ala<br>2330 | gta gtc 7007<br>Val Val<br>2335 |
| tac gac tcc ttg<br>Tyr Asp Ser Leu         | gag ggc aac<br>Glu Gly Asn<br>2340 | gac agg ttc<br>Asp Arg Phe<br>2345 | aac ctt gct gag<br>Asn Leu Ala Glu         | caa atc 7055<br>Gln Ile<br>2350 |
| cca gct ctc ttg<br>Pro Ala Leu Leu<br>2355 | Asp Lys Gly                        | gag ggc act<br>Glu Gly Thr<br>2360 | gct ggc acc aag<br>Ala Gly Thr Lys<br>2365 | gag aac 7103<br>Glu Asn         |
| ggt ctc tcc ttc                            | gee aae gee                        | atc ctc tct                        | gct tct gtc aag                            | ctc tct 7151                    |

| Gly I                        |                   | Ser<br>370         | Leu                | Ala                  | Asn                |                    | Ile<br>375         | Leu                | Ser                | Ala                |                    | Val<br>2380        | Lys                | Leu                | Ser                |      |
|------------------------------|-------------------|--------------------|--------------------|----------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|------|
| gac (<br>Asp 1<br>23         | ctc<br>Leu<br>385 | aag<br>Lys         | ttg<br>Leu         | ggt<br>Gly           | Thr                | gac<br>Asp<br>2390 | tac<br>Tyr         | cca<br>Pro         | gac<br>Asp         | Ser                | att<br>Ile<br>2395 | gtg<br>Val         | ggt<br>Gly         | tcc<br>Ser         | aac<br>Asn         | 7199 |
| aag (<br>Lys \<br>2400       | gtc<br>Val        | aga<br>Arg         | agg<br>Arg         | Ile                  | aag<br>Lys<br>2405 | caa<br>Gln         | atc<br>Ile         | tct<br>Ser         | Val                | tcc<br>Ser<br>2410 | ctc<br>Leu         | cca<br>Pro         | gct<br>Ala         | Leu                | gtg<br>Val<br>2415 | 7247 |
| ggt (<br>Gly !               | cca<br>Pro        | tac<br>Tyr         | Gln                | gat<br>Asp<br>2420   | gtc<br>Val         | caa<br>Gln         | gcc<br>Ala         | Met                | ctc<br>Leu<br>2425 | tcc<br>Ser         | tac<br>Tyr         | ggt<br>Gly         | Gly                | tcc<br>Ser<br>2430 | acc<br>Thr         | 7295 |
| caa (<br>Gln )               | ctc<br>Leu        | Pro                | aag<br>Lys<br>2435 | ggt<br>Gly           | tgc<br>Cys         | tct<br>Ser         | Ala                | ttg<br>Leu<br>2440 | gct<br>Ala         | gtc<br>Val         | tcc<br>Ser         | His                | ggc<br>Gly<br>2445 | acc<br>Thr         | aac<br>Asn         | 7343 |
| gac<br>Asp                   | Ser               | ggt<br>Gly<br>2450 | caa<br>Gln         | ttc<br>Phe           | caa<br>Gln         | Leu                | gac<br>Asp<br>2455 | ttc<br>Phe         | aac<br>Asn         | gat<br>Asp         | Gly                | aag<br>Lys<br>2460 | tac<br>Tyr         | ctc<br>Leu         | cca<br>Pro         | 7391 |
| ttc<br>Phe<br>2              | gaa<br>Glu<br>465 | ggc<br>Gly         | att<br>Ile         | gct<br>Ala           | Leu                | gat<br>Asp<br>2470 | gac<br>Asp         | caa<br>Gln         | ggc<br>Gly         | Thr                | ctc<br>Leu<br>2475 | aac<br>Asn         | ctc<br>Leu         | caa<br>Gln         | ttc<br>Phe         | 7439 |
| cca<br>Pro<br>2480           | Asn               | gcc<br>Ala         | act<br>Thr         | Asp                  | aag<br>Lys<br>2485 | cag<br>Gln         | aag<br>Lys         | gcc<br>Ala         | Ile                | ctc<br>Leu<br>2490 | caa<br>Gln         | acc<br>Thr         | atg<br>Met         | Ser                | gac<br>Asp<br>2495 | 7487 |
| atc<br>Ile                   | atc<br>Ile        | ctc<br>Leu         | His                | atc<br>Ile<br>2500   | Arg                | tac<br>Tyr         | acc<br>Thr         | Ile                | agg<br>Arg<br>2505 | tga                | gctc               | gag                | aggc               | ctgc               | gg                 | 7537 |
| ccgc                         | :                 |                    |                    |                      |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    | 7541 |
| <210<br><211<br><212<br><213 | > 6<br>> D        | NA                 | icia               | l Se                 | dneu               | .ce                |                    |                    |                    |                    |                    |                    |                    |                    |                    |      |
| <220<br><223                 | 3> D<br>e         | ncod               | ing                | on c<br>ER s<br>weet | igna               | tifi<br>l fr       | cial<br>om 1       | Seq<br>5 kD        | uenc<br>a ze       | e:he               | mico               | t se<br>Blac       | quen<br>k          | ce                 |                    |      |
| <220<br><221<br><222         | .> C              |                    | (63)               |                      |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |      |
| <400<br>atg<br>Met<br>1      | gct               | aag                | atg<br>Met         | gto<br>Val           | . Ile              | gtg<br>Val         | ctt<br>Leu         | gtç<br>Val         | g gtc<br>Val       | . Cys              | ttç<br>Lev         | g gct<br>1 Ala     | cto<br>Lev         | tct<br>Ser<br>15   | gct<br>Ala         | 48   |
|                              |                   |                    |                    | gco<br>Ala           |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    | 63   |

<210> 6 <211> 7621 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence:hemicot tcdA fused to the modified 15 kDa zein endoplasmic reticulum signal peptide <220> <221> CDS <222> (4)..(7614) <400> 6 nce atg get aag atg gte att gtg ett gtg gte tge ttg get ete tet Met Ala Lys Met Val Ile Val Leu Val Val Cys Leu Ala Leu Ser gct gcc tgt gct tca gcc atg aac gag tcc gtc aag gag atc cca gac Ala Ala Cys Ala Ser Ala Met Asn Glu Ser Val Lys Glu Ile Pro Asp 20 qtc ctc aaq tcc caa tqc qqt ttc aac tqc ctc act gac atc tcc cac 1.44 Val Leu Lys Ser Gln Cys Gly Phe Asn Cys Leu Thr Asp Ile Ser His 35 age tee tte aac gag tte aga caa caa gte tet gag cae ete tee tgg 192 Ser Ser Phe Asn Glu Phe Arg Gln Gln Val Ser Glu His Leu Ser Trp 50 too gag acc cat gac ctc tac cat gac gct cag caa gct cag aag gac 240 Ser Glu Thr His Asp Leu Tyr His Asp Ala Gln Gln Ala Gln Lys Asp aac agg ctc tac gag gct agg atc ctc aag agg gct aac cca caa ctc 288 Asn Arg Leu Tyr Glu Ala Arg Ile Leu Lys Arg Ala Asn Pro Gln Leu . 85 336 cag aac gct gtc cac ctc gcc atc ttg gct cca aac gct gag ttg att Gln Asn Ala Val His Leu Ala Ile Leu Ala Pro Asn Ala Glu Leu Ile 100 384 ggt tac aac aac cag ttc tct ggc aga gct agc cag tac gtg gct cct Gly Tyr Asn Asn Gln Phe Ser Gly Arg Ala Ser Gln Tyr Val Ala Pro 115 ggt aca gtc tcc tcc atg ttc agc cca gcc gct tac ctc act gag ttg 432 Gly Thr Val Ser Ser Met Phe Ser Pro Ala Ala Tyr Leu Thr Glu Leu 130 135 480 tac ege gag get agg aac ett eat get tet gae tee gte tac tac ttg Tyr Arg Glu Ala Arg Asn Leu His Ala Ser Asp Ser Val Tyr Tyr Leu 150 528 gac aca cgc aga cca gac ctc aag agc atg gcc ctc agc caa cag aac Asp Thr Arg Arg Pro Asp Leu Lys Ser Met Ala Leu Ser Gln Gln Asn 165 170 576 atg gac att gag ttg tcc acc ctc tcc ttg agc aac gag ctt ctc ttg

| Met               | Asp               | Ile               | Glu               | Leu<br>180        | Ser               | Thr               | Leu               | Ser               | Leu<br>185        | Ser               | Asn               | Glu               | Leu               | Leu<br>190        | Leu               |      |
|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------|
| gag<br>Glu        | tcc<br>Ser        | atc<br>Ile        | aag<br>Lys<br>195 | act<br>Thr        | gag<br>Glu        | agc<br>Ser        | aag<br>Lys        | ttg<br>Leu<br>200 | gag<br>Glu        | aac<br>Asn        | tac<br>Tyr        | acc<br>Thr        | aag<br>Lys<br>205 | gtc<br>Val        | atg<br>Met        | 624  |
| gag<br>Glu        | atg<br>Met        | ctc<br>Leu<br>210 | tcc<br>Ser        | acc<br>Thr        | ttc<br>Phe        | aga<br>Arg        | cca<br>Pro<br>215 | agc<br>Ser        | ggt<br>Gly        | gca<br>Ala        | act<br>Thr        | cca<br>Pro<br>220 | tac<br>Tyr        | cat<br>His        | gat<br>Asp        | 672  |
| gcc<br>Ala        | tac<br>Tyr<br>225 | gag<br>Glu        | aac<br>Asn        | gtc<br>Val        | agg<br>Arg        | gag<br>Glu<br>230 | gtc<br>Val        | atc<br>Ile        | caa<br>Gln        | ctt<br>Leu        | caa<br>Gln<br>235 | gac<br>Asp        | cct<br>Pro        | ggt<br>Gly        | ctt<br>Leu        | 720  |
| gag<br>Glu<br>240 | caa<br>Gln        | ctc<br>Leu        | aac<br>Asn        | gct<br>Ala        | tct<br>Ser<br>245 | cca<br>Pro        | gcc<br>Ala        | att<br>Ile        | gct<br>Ala        | ggt<br>Gly<br>250 | ttg<br>Leu        | atg<br>Met        | cac<br>His        | cag<br>Gln        | gca<br>Ala<br>255 | 768  |
| tcc<br>Ser        | ttg<br>Leu        | ctc<br>Leu        | ggt<br>Gly        | atc<br>Ile<br>260 | aac<br>Asn        | gcc<br>Ala        | tcc<br>Ser        | atc<br>Ile        | tct<br>Ser<br>265 | cct<br>Pro        | gag<br>Glu        | ttg<br>Leu        | ttc<br>Phe        | aac<br>Asn<br>270 | atc<br>Ile        | 816  |
| ttg<br>Leu        | act<br>Thr        | gag<br>Glu        | gag<br>Glu<br>275 | atc<br>Ile        | act<br>Thr        | gag<br>Glu        | ggc<br>Gly        | aac<br>Asn<br>280 | gct<br>Ala        | gag<br>Glu        | gag<br>Glu        | ttg<br>Leu        | tac<br>Tyr<br>285 | aag<br>Lys        | aag<br>Lys        | 864  |
| aac<br>Asn        | ttc<br>Phe        | ggc<br>Gly<br>290 | aac<br>Asn        | att<br>Ile        | gag<br>Glu        | cca<br>Pro        | gcc<br>Ala<br>295 | tct<br>Ser        | ctt<br>Leu        | gca<br>Ala        | atg<br>Met        | cct<br>Pro<br>300 | gag<br>Glu        | tac<br>Tyr        | ctc<br>Leu        | 912  |
| aag<br>Lys        | agg<br>Arg<br>305 | tac<br>Tyr        | tac<br>Tyr        | aac<br>Asn        | ttg<br>Leu        | tct<br>Ser<br>310 | gat<br>Asp        | gag<br>Glu        | gag<br>Glu        | ctt<br>Leu        | tct<br>Ser<br>315 | caa<br>Gln        | ttc<br>Phe        | att<br>Ile        | ggc<br>Gly        | 960  |
| aag<br>Lys<br>320 | gct<br>Ala        | tcc<br>Ser        | aac<br>Asn        | ttc<br>Phe        | ggt<br>Gly<br>325 | caa<br>Gln        | cag<br>Gln        | gag<br>Glu        | tac<br>Tyr        | agc<br>Ser<br>330 | Asn               | aac<br>Asn        | cag<br>Gln        | ctc<br>Leu        | atc<br>Ile<br>335 | 1008 |
|                   |                   |                   | Val               |                   | Ser               |                   | Asp               | Gly               | Thr               | Val               | Lys               | Val               | Tyr               | Arg               | atc<br>Ile        | 1056 |
| aca<br>Thr        | cgt<br>Arg        | gag<br>Glu        | tac<br>Tyr<br>355 | acc<br>Thr        | aca<br>Thr        | aac<br>Asn        | gcc<br>Ala        | tac<br>Tyr<br>360 | Gln               | atg<br>Met        | gat<br>Asp        | gtt<br>Val        | gag<br>Glu<br>365 | ttg<br>Leu        | ttc<br>Phe        | 1104 |
| cca<br>Pro        | ttc<br>Phe        | ggt<br>Gly<br>370 | Gly               | gag<br>Glu        | aac<br>Asn        | tac<br>Tyr        | aga<br>Arg<br>375 | Leu               | gac<br>Asp        | tac<br>Tyr        | aag<br>Lys        | ttc<br>Phe<br>380 | Lys               | aac<br>Asn        | ttc<br>Phe        | 1152 |
| tac<br>Tyr        | aac<br>Asn<br>385 | gcc<br>Ala        | tcc<br>Ser        | tac<br>Tyr        | ctc<br>Leu        | tcc<br>Ser<br>390 | Ile               | aag<br>Lys        | ttg<br>Leu        | aac<br>Asn        | gac<br>Asp<br>395 | Lys               | agg<br>Arg        | gag<br>Glu        | ctt<br>Leu        | 1200 |
| gtc<br>Val<br>400 | Arg               | act<br>Thr        | gag<br>Glu        | ggt<br>Gly        | gct<br>Ala<br>405 | Pro               | caa<br>Gln        | gtg<br>Val        | aac<br>Asn        | att<br>11e<br>410 | Glu               | tac<br>Tyr        | tct<br>Ser        | gcc               | aac<br>Asn<br>415 | 1248 |
|                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   | ttg<br>Leu        | 1296 |

|   |                   |   |   | 420 |   |   |   |   | 425 |   |   |   |   | 430 |   |      |
|---|-------------------|---|---|-----|---|---|---|---|-----|---|---|---|---|-----|---|------|
|   | aga<br>Arg        |   |   |     |   |   |   |   |     |   |   |   |   |     |   | 1344 |
|   | gtt<br>Val        |   |   |     |   |   |   |   |     |   |   |   |   |     |   | 1392 |
| _ | att<br>Ile<br>465 | - |   | _   | _ | _ |   | - | _   |   |   |   |   | _   |   | 1440 |
|   | att<br>Ile        |   |   |     | - |   |   |   |     |   |   |   |   |     |   | 1488 |
|   | ggc<br>Gly        | _ | - |     |   |   | - |   |     | - |   | _ |   | -   |   | 1536 |
|   | gct<br>Ala        |   |   | -   |   |   |   | - |     | - |   |   |   |     |   | 1584 |
|   | tac<br>Tyr        |   |   |     |   |   |   |   |     |   |   |   |   |     |   | 1632 |
|   | ttg<br>Leu<br>545 |   |   | -   |   |   |   |   |     | - |   |   |   |     |   | 1680 |
|   | tct<br>Ser        |   |   |     |   |   |   |   |     |   |   |   |   |     |   | 1728 |
|   | aac<br>Asn        |   | - | -   | - |   |   |   | -   |   | _ | - |   |     | - | 1776 |
|   | gac<br>Asp        |   |   |     |   |   |   |   |     |   |   |   |   |     |   | 1824 |
|   | ctc<br>Leu        |   |   |     |   |   |   |   |     |   |   |   |   |     |   | 1872 |
|   | gag<br>Glu<br>625 |   |   |     |   |   |   |   |     |   |   |   |   |     |   | 1920 |
|   | tct<br>Ser        |   |   |     |   |   |   |   |     |   |   |   |   |     |   | 1968 |
|   | acc<br>Thr        |   |   |     |   |   |   |   | _   | _ |   |   | - |     |   | 2016 |

|                   | ttc<br>Phe        |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   | 2064 |
|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------|
| atc<br>Ile        | aag<br>Lys        | aac<br>Asn<br>690 | ctc<br>Leu        | ttg<br>Leu        | gac<br>Asp        | aca<br>Thr        | gtc<br>Val<br>695 | tac<br>Tyr        | cac<br>His        | ggt<br>Gly        | ctc<br>Leu        | caa<br>Gln<br>700 | ggc<br>Gly        | ttc<br>Phe        | gac<br>Asp        | 2112 |
| aag<br>Lys        | gac<br>Asp<br>705 | aag<br>Lys        | gct<br>Ala        | gac<br>Asp        | ttg<br>Leu        | ctt<br>Leu<br>710 | cat<br>His        | gtc<br>Val        | atg<br>Met        | gct<br>Ala        | ccc<br>Pro<br>715 | tac<br>Tyr        | att<br>Ile        | gca<br>Ala        | gcc<br>Ala        | 2160 |
|                   | ctc<br>Leu        |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   | 2208 |
|                   | gac<br>Asp        |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   | 2256 |
| tgg<br>Trp        | gac<br>Asp        | tgg<br>Trp        | ctc<br>Leu<br>755 | aac<br>Asn        | acc<br>Thr        | aag<br>Lys        | tac<br>Tyr        | aca<br>Thr<br>760 | cca<br>Pro        | ggc<br>Gly        | tcc<br>Ser        | tct<br>Ser        | gag<br>Glu<br>765 | gct<br>Ala        | gtt :<br>Val      | 2304 |
|                   | act<br>Thr        |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   | 2352 |
| gag<br>Glu        | atg<br>Met<br>785 | gtc<br>Val        | tac<br>Tyr        | cac<br>His        | tcc<br>Ser        | act<br>Thr<br>790 | ggc<br>Gly        | atc<br>Ile        | aac<br>Asn        | gag<br>Glu        | aac<br>Asn<br>795 | gct<br>Ala        | ttc<br>Phe        | aga<br>Arg        | ctc<br>Leu        | 2400 |
| ttc<br>Phe<br>800 | gtc<br>Val        | acc<br>Thr        | aag<br>Lys        | cct<br>Pro        | gag<br>Glu<br>805 | atg<br>Met        | ttc<br>Phe        | ggt<br>Gly        | gct<br>Ala        | gcc<br>Ala<br>810 | aca<br>Thr        | ggt<br>Gly        | gct<br>Ala        | gca<br>Ala        | cct<br>Pro<br>815 | 2448 |
| gct<br>Ala        | cat<br>His        | gat<br>Asp        | gct<br>Ala        | ctc<br>Leu<br>820 | tcc<br>Ser        | ctc<br>Leu        | atc<br>Ile        | atg<br>Met        | ttg<br>Leu<br>825 | acc<br>Thr        | agg<br>Arg        | ttc<br>Phe        | gct<br>Ala        | gac<br>Asp<br>830 | tgg<br>Trp        | 2496 |
| gtc<br>Val        | aac<br>Asn        | gct<br>Ala        | ctt<br>Leu<br>835 | ggt<br>Gly        | gag<br>Glu        | aag<br>Lys        | gct<br>Ala        | tcc<br>Ser<br>840 | tct<br>Ser        | gtc<br>Val        | ttg<br>Leu        | gct<br>Ala        | gcc<br>Ala<br>845 | ttc<br>Phe        | gag<br>Glu        | 2544 |
| gcc<br>Ala        | aac<br>Asn        | tcc<br>Ser<br>850 | ctc<br>Leu        | act<br>Thr        | gct<br>Ala        | gag<br>Glu        | caa<br>Gln<br>855 | ctt<br>Leu        | gct<br>Ala        | gat<br>Asp        | gcc<br>Ala        | atg<br>Met<br>860 | aac<br>Asn        | ctt<br>Leu        | gat<br>Asp        | 2592 |
| gcc<br>Ala        | aac<br>Asn<br>865 | ctc<br>Leu        | ttg<br>Leu        | ctc<br>Leu        | caa<br>Gln        | gct<br>Ala<br>870 | tcc<br>Ser        | att<br>Ile        | caa<br>Gln        | gct<br>Ala        | cag<br>Gln<br>875 | aac<br>Asn        | cac<br>His        | caa<br>Gln        | cac<br>His        | 2640 |
|                   | cca<br>Pro        |                   |                   |                   |                   |                   |                   |                   |                   |                   | Cys               |                   |                   |                   |                   | 2688 |
|                   | acc<br>Thr        |                   |                   |                   |                   |                   |                   |                   |                   | Gln               |                   |                   |                   |                   | Ala               | 2736 |

| cca<br>Pro        | caa<br>Gln         | ggt<br>Gly         | gtc<br>Val<br>915  | tct<br>Ser         | gct<br>Ala         | ttg<br>Leu         | gtc<br>Val         | ggt<br>Gly<br>920  | ctt<br>Leu         | gac<br>Asp         | tac<br>Tyr         | atc<br>Ile         | cag<br>Gln<br>925  | tcc<br>Ser         | atg<br>Met         | 2784 |
|-------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|------|
| aag<br>Lys        | gag<br>Glu         | aca<br>Thr<br>930  | cca<br>Pro         | acc<br>Thr         | tac<br>Tyr         | gct<br>Ala         | caa<br>Gln<br>935  | tgg<br>Trp         | gag<br>Glu         | aac<br>Asn         | gca<br>Ala         | gct<br>Ala<br>940  | ggt<br>Gly         | gtc<br>Val         | ttg<br>Leu         | 2832 |
| act<br>Thr        | gct<br>Ala<br>945  | ggt<br>Gly         | ctc<br>Leu         | aac<br>Asn         | tcc<br>Ser         | caa<br>Gln<br>950  | cag<br>Gln         | gcc<br>Ala         | aac<br>Asn         | acc<br>Thr         | ctc<br>Leu<br>955  | cat<br>His         | gct<br>Ala         | ttc<br>Phe         | ttg<br>Leu         | 2880 |
| gat<br>Asp<br>960 | gag<br>Glu         | tct<br>Ser         | cgc<br>Arg         | tct<br>Ser         | gct<br>Ala<br>965  | gcc<br>Ala         | ctc<br>Leu         | tcc<br>Ser         | acc<br>Thr         | tac<br>Tyr<br>970  | tac<br>Tyr         | atc<br>Ile         | agg<br>Arg         | caa<br>Gln         | gtc<br>Val<br>975  | 2928 |
| gcc<br>Ala        | aag<br>Lys         | gca<br>Ala         | gct<br>Ala         | gct<br>Ala<br>980  | gcc<br>Ala         | atc<br>Ile         | aag<br>Lys         | tct<br>Ser         | cgc<br>Arg<br>985  | Asp                | gac<br>Asp         | ctc<br>Leu         | tac<br>Tyr         | caa<br>Gln<br>990  | tac<br>Tyr         | 2976 |
| ctc<br>Leu        | ctc<br>Leu         | att<br>Ile         | gac<br>Asp<br>995  | aac<br>Asn         | cag<br>Gln         | gtc<br>Val         | Ser                | gct<br>Ala<br>1000 | gcc<br>Ala         | atc<br>Ile         | aag<br>Lys         | Thr                | acc<br>Thr<br>1005 | agg<br>Arg         | atc<br>Ile         | 3024 |
| gct<br>Ala        | gag<br>Glu         | gcc<br>Ala<br>1010 | atc<br>Ile         | gct<br>Ala         | tcc<br>Ser         | Ile                | caa<br>Gln<br>1015 | ctc<br>Leu         | tac<br>Tyr         | gtc<br>Val         | Asn                | cgc<br>Arg<br>1020 | gct<br>Ala         | ctt<br>Leu         | gag<br>Glu         | 3072 |
| Asn               | gtt<br>Val<br>1025 | gag<br>Glu         | gag<br>Glu         | aac<br>Asn         | Ala                | aac<br>Asn<br>1030 | tct<br>Ser         | ggt<br>Gly         | gtc<br>Val         | Ile                | tct<br>Ser<br>1035 | cgc<br>Arg         | caa<br>Gln         | ttc<br>Phe         | ttc<br>Phe         | 3120 |
| atc<br>Ile<br>104 | Asp                | tgg<br>Trp         | gac<br>Asp         | Lys                | tac<br>Tyr<br>1045 | aac<br>Asn         | aag<br>Lys         | agg<br>Arg         | Tyr                | tcc<br>Ser<br>1050 | acc<br>Thr         | tgg<br>Trp         | gct<br>Ala         | Gly                | gtc<br>Val<br>1055 | 3168 |
| tct<br>Ser        | caa<br>Gln         | ctt<br>Leu         | Val                | tac<br>Tyr<br>1060 | tac<br>Tyr         | cca<br>Pro         | gag<br>Glu         | Asn                | tac<br>Tyr<br>1065 | att<br>Ile         | gac<br>Asp         | cca<br>Pro         | acc<br>Thr         | atg<br>Met<br>1070 | agg<br>Arg         | 3216 |
| att<br>Ile        | ggt<br>Gly         | Gln                | acc<br>Thr<br>1075 | Lys                | atg<br>Met         | atg<br>Met         | Asp                | gct<br>Ala<br>1080 | ctc<br>Leu         | ttg<br>Leu         | caa<br>Gln         | tct<br>Ser         | gtc<br>Val<br>1085 | Ser                | caa<br>Gln         | 3264 |
| agc<br>Ser        | Gln                | ctc<br>Leu<br>1090 | Asn                | gct<br>Ala         | gac<br>Asp         | Thr                | gtg<br>Val<br>1095 | Glu                | gat<br>Asp         | gcc<br>Ala         | Phe                | atg<br>Met<br>1100 | Ser                | tac<br>Tyr         | ctc<br>Leu         | 3312 |
| acc<br>Thr        | tcc<br>Ser<br>1105 | Phe                | gag<br>Glu         | caa<br>Gln         | gtt<br>Val         | gcc<br>Ala<br>1110 | Asn                | ctc<br>Leu         | aag<br>Lys         | Val                | atc<br>Ile<br>1115 | Ser                | gct<br>Ala         | tac<br>Tyr         | cat<br>His         | 3360 |
| gac<br>Asp<br>112 | Asn                | atc<br>Ile         | aac<br>Asn         | aac<br>Asn         | gac<br>Asp<br>1125 | Gln                | ggt<br>Gly         | ctc<br>Leu         | acc                | tac<br>Tyr<br>1130 | Phe                | att<br>Ile         | ggt<br>Gly         | cto<br>Leu         | tct<br>Ser<br>1135 | 3408 |
| gaç<br>Glu        | act<br>Thr         | gat<br>Asp         | gct<br>Ala         | ggt<br>Gly<br>1140 | Glu                | tac<br>Tyr         | tac<br>Tyr         | tgg<br>Trp         | aga<br>Arg<br>1145 | Ser                | gtg<br>Val         | gac<br>Asp         | cac<br>His         | ago<br>Sei<br>1150 | aag<br>Lys         | 3456 |
| tto               | aac                | gat                | ggc                | aag                | ttc                | gct                | gca                | aac                | gct                | tgg                | tct                | gaç                | g tgg              | g cad              | c aag              | 3504 |

| P | he                 | Asn                 |                     | Gly<br>1155         | Lys                    | Phe                 | Ala                    | Ala i              | Asn<br>160         | Ala '               | Trp                    | Ser                   | Glu '                  | Trp<br>165           | His                 | Lys                    |      |
|---|--------------------|---------------------|---------------------|---------------------|------------------------|---------------------|------------------------|--------------------|--------------------|---------------------|------------------------|-----------------------|------------------------|----------------------|---------------------|------------------------|------|
| a | itt<br>:le         | Asp                 | tgc<br>Cys<br>1170  | cct<br>Pro          | atc<br>Ile             | aac<br>Asn          | Pro                    | tac<br>Tyr<br>175  | aag<br>Lys         | tcc<br>Ser          | acc<br>Thr             | TTe                   | aga<br>Arg<br>180      | cct<br>Pro           | gtc<br>Val          | atc<br>Ile             | 3552 |
| t | ľyr                | aag<br>Lys<br>185   | agc<br>Ser          | cgc<br>Arg          | ctc<br>Leu             | Tyr                 | ttg<br>Leu<br>1190     | ctc<br>Leu         | tgg<br>Trp         | ctt<br>Leu          | GLu                    | cag<br>Gln<br>195     | aag<br>Lys             | gag<br>Glu           | atc<br>Ile          | acc<br>Thr             | 3600 |
| 1 | aag<br>Lys<br>120( | Gln                 | act<br>Thr          | ggc<br>Gly          | Asn                    | tcc<br>Ser<br>1205  | aag<br>Lys             | gat<br>Asp         | ggt<br>Gly         | Tyr                 | caa<br>Gln<br>210      | act<br>Thr            | gag<br>Glu             | act<br>Thr           | vab                 | tac<br>Tyr<br>215      | 3648 |
|   | cgc<br>Arg         | tac<br>Tyr          | gag<br>Glu          | ttg<br>Leu          | aag<br>Lys<br>1220     | ttg<br>Leu          | gct<br>Ala             | cac<br>His         | Ile                | cgc<br>Arg<br>1225  | tac<br>Tyr             | gat<br>Asp            | ggt<br>Gly             | inr                  | tgg<br>Trp<br>L230  | aac<br>Asn             | 3696 |
|   | act<br>Thr         | cca<br>Pro          | ato                 | acc<br>Thr<br>1235  | Phe                    | gat<br>Asp          | gtc<br>Val             | Asn                | aag<br>Lys<br>L240 | aag<br>Lys          | atc<br>Ile             | agc<br>Ser            | gag<br>Glu             | ttg<br>Leu<br>1245   | aag<br>Lys          | ttg<br>Leu             | 3744 |
|   | gag<br>Glu         | aag<br>Lys          | aac<br>Asr<br>1250  | Arg                 | gct<br>Ala             | cct<br>Pro          | Gly                    | ctc<br>Leu<br>1255 | tac<br>Tyr         | tgc<br>C <u>y</u> s | gct<br>Ala             | GIY                   | tac<br>Tyr<br>1260     | caa<br>Gln           | ggt<br>Gly          | gag<br>Glu             | 3792 |
|   | gac<br>Asp         | acc<br>Thr<br>1265  | Le                  | tto<br>1 Lei        | g gtc<br>ı Val         | atg<br>Met          | ttc<br>Phe<br>1270     | Tyr                | aac<br>Asn         | cag<br>Gln          | GIN                    | gac<br>Asp<br>1275    | acc<br>Thr             | ctt<br>Leu           | gac<br>Asp          | tcc<br>Ser             | 3840 |
|   | tac<br>Tyr<br>128  | Lys                 | g aad<br>s Asi      | c gct<br>n Ala      | t tcc<br>a Ser         | atg<br>Met<br>1285  | Gln                    | ggt<br>Gly         | ctc<br>Leu         | Tyr                 | atc<br>Ile<br>1290     | Pne                   | gct<br>Ala             | gac<br>Asp           | atg<br>Met          | gct<br>Ala<br>1295     | 3888 |
|   | tcc                | aaq<br>Lys          | g ga<br>s As        | c ato<br>p Me       | g act<br>t Thi<br>1300 | r Pro               | a gag<br>o Glu         | caa<br>Gln         | ago<br>Ser         | aac<br>Asn<br>1305  | vaı                    | tac<br>Tyr            | cgt<br>Arg             | gac<br>Asp           | aac<br>Asn<br>1310  | tcc<br>Ser             | 3936 |
|   | tac<br>Ty:         | caa<br>Gl           | a ca<br>n Gl        | g tt<br>n Ph<br>131 | e Asp                  | c acc               | c aac<br>c Asr         | : aac<br>n Asn     | gtc<br>Val<br>1320 | . Arç               | g cgt<br>g Arg         | gto<br>g Val          | c aac<br>l Asn         | : aac<br>Asn<br>1325 | HT                  | tac<br>Tyr             | 3984 |
|   | gct<br>Ala         | ga<br>a Gl          | g ga<br>u As<br>133 | р Ту                | c gad<br>r Gl          | g ato<br>u Ile      | c cca<br>e Pro         | ago<br>Ser<br>1335 | Sei                | gto<br>Val          | ago<br>L Sei           | tci<br>Se:            | t cgc<br>r Arc<br>1340 | PAS                  | g gad<br>s Asp      | tac<br>Tyr             | 4032 |
|   | gg<br>Gl           | c tg<br>y Tr<br>134 | p Gl                | t ga<br>y As        | c ta<br>p Ty           | c tac<br>r Ty:      | c cto<br>r Leu<br>1350 | ı Ser              | ato<br>Me          | g gto<br>t Val      | g tad<br>L Tyi         | c aac<br>r As:<br>135 | u eta                  | gao<br>Y Asi         | c ato               | c cca<br>e Pro         | 4080 |
|   | ac<br>Th<br>13     | r Il                | c aa<br>e As        | ic ta<br>in Ty      | c aa<br>r Ly           | g gc<br>s Al<br>136 | a Ala                  | c tct<br>a Sei     | t to               | c gad<br>r Asj      | c cto<br>p Let<br>1370 | u Ly                  | a ato                  | c tac<br>e Ty:       | c ate               | c agc<br>e Ser<br>1375 | 4128 |
|   | cc<br>Pr           | a aa<br>o Ly        | ig ct<br>vs Le      | c aç<br>eu Ar       | gg at<br>gg Il<br>138  | e Il                | c ca<br>e Hi           | c aa<br>s As       | c gg<br>n Gl       | c ta<br>y Ty<br>138 | r Gl                   | g gg<br>u Gl          | rt ca<br>y Gl:         | g aa<br>n Ly         | g ag<br>s Ar<br>139 | g aac<br>g Asn<br>O    | 4176 |
|   | ca<br>Gl           | g to<br>n Cy        | gc aa<br>/s A:      | ac tt<br>sn Le      | g at                   | g aa<br>et As       | c aa<br>n Ly           | g ta<br>s Ty       | c gg<br>r Gl       | с аа<br>у Ly        | g tt<br>s Le           | g gg<br>u Gl          | gt ga<br>Ly As         | c aa<br>p Ly         | g tt<br>s Ph        | c att<br>e Ile         | 4224 |

1395 1400 1405

| 1393                                       |                                    | 1400                               |                                          | , 3                              |      |
|--------------------------------------------|------------------------------------|------------------------------------|------------------------------------------|----------------------------------|------|
| gtc tac acc tct<br>Val Tyr Thr Ser<br>1410 | Leu Gly Val                        | aac cca aac<br>Asn Pro Asn<br>415  | aac agc tcc aa<br>Asn Ser Ser As<br>1420 | ic aag ctc<br>sn Lys Leu         | 4272 |
| atg ttc tac cca<br>Met Phe Tyr Pro<br>1425 |                                    |                                    |                                          |                                  | 4320 |
| cag ggt aga ctc<br>Gln Gly Arg Leu<br>1440 | ttg ttc cac<br>Leu Phe His<br>1445 | Arg Asp Thr                        | acc tac cca ac<br>Thr Tyr Pro Se<br>1450 | gc aag gtg<br>er Lys Val<br>1455 | 4368 |
| gag gct tgg att<br>Glu Ala Trp Ile         | cct ggt gcc<br>Pro Gly Ala<br>1460 | aag agg tcc<br>Lys Arg Ser<br>1465 | ctc acc aac ca<br>Leu Thr Asn G          | ag aac gct<br>In Asn Ala<br>1470 | 4416 |
| gcc att ggt gat<br>Ala Ile Gly Asp<br>1475 | gac tac gcc<br>Asp Tyr Ala         | aca gac tcc<br>Thr Asp Ser<br>1480 | ctc aac aag co<br>Leu Asn Lys Pi<br>148  | ro Asp Asp                       | 4464 |
| ctc aag cag tac<br>Leu Lys Gln Tyr<br>1490 | Ile Phe Met                        | act gac tcc<br>Thr Asp Ser<br>495  | aag ggc aca go<br>Lys Gly Thr Al<br>1500 | cc act gat<br>La Thr Asp         | 4512 |
| gtc tct ggt cca<br>Val Ser Gly Pro<br>1505 | gtg gag atc<br>Val Glu Ile<br>1510 | aac act gca<br>Asn Thr Ala         | atc agc cca go<br>Ile Ser Pro Al<br>1515 | cc aag gtc<br>la Lys Val         | 4560 |
| caa atc att gtc<br>Gln Ile Ile Val<br>1520 |                                    | Gly Lys Glu                        |                                          |                                  | 4608 |
| aag gat gtc tcc<br>Lys Asp Val Ser         | atc cag cca<br>Ile Gln Pro<br>1540 | agc cca tcc<br>Ser Pro Ser<br>1545 | ttc gat gag at<br>Phe Asp Glu Me         | tg aac tac<br>et Asn Tyr<br>1550 | 4656 |
| caa ttc aac gct<br>Gln Phe Asn Ala<br>1555 |                                    |                                    |                                          | he Ile Asn                       | 4704 |
| aac tct gct tcc<br>Asn Ser Ala Ser<br>1570 | Ile Asp Val                        |                                    |                                          |                                  | 4752 |
| cgc aag ttg ggt<br>Arg Lys Leu Gly<br>1585 | tac gag agc<br>Tyr Glu Ser<br>1590 | ttc tcc atc<br>Phe Ser Ile         | cca gtc acc c<br>Pro Val Thr L<br>1595   | tt aag gtt<br>eu Lys Val         | 4800 |
| tcc act gac aac<br>Ser Thr Asp Asn<br>1600 |                                    |                                    |                                          |                                  | 4848 |
| tac atg caa tgg<br>Tyr Met Gln Trp         | =                                  | -                                  | Leu Asn Thr L                            |                                  | 4896 |
| agg caa ctt gtg<br>Arg Gln Leu Val<br>1635 | Ala Arg Ala                        |                                    |                                          | le Leu Ser                       | 4944 |

| atg gag acc cag<br>Met Glu Thr Gln<br>1650 | Asn Ile Gln                        | gag cca cag<br>Glu Pro Gln<br>1655 | ttg ggc aag<br>Leu Gly Lys<br>1660 | ggt ttc tac<br>Gly Phe Tyr         | 4992      |
|--------------------------------------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------|-----------|
| gcc acc ttc gtc<br>Ala Thr Phe Val<br>1665 | atc cca cct<br>Ile Pro Pro<br>1670 | tac aac ctc<br>Tyr Asn Leu         | agc act cat<br>Ser Thr His<br>1675 | ggt gat gag<br>Gly Asp Glu         | 5040      |
| agg tgg ttc aag<br>Arg Trp Phe Lys<br>1680 | ctc tac atc<br>Leu Tyr Ile<br>1685 | Lys His Val                        | gtt gac aac<br>Val Asp Asn<br>1690 | aac tcc cac<br>Asn Ser His<br>1695 | 5088      |
| atc atc tac tct<br>Ile Ile Tyr Ser<br>1    | ggt caa ctc<br>Gly Gln Leu<br>.700 | act gac acc<br>Thr Asp Thr<br>1705 | aac atc aac<br>Asn Ile Asn         | atc acc ctc<br>Ile Thr Leu<br>1710 | 5136      |
| ttc atc cca ctt<br>Phe Ile Pro Leu<br>1715 | gac gat gtc<br>Asp Asp Val         | cca ctc aac<br>Pro Leu Asn<br>1720 | Gln Asp Tyr                        | cat gcc aag<br>His Ala Lys<br>1725 | 5184      |
| gtc tac atg acc<br>Val Tyr Met Thr<br>1730 | Phe Lys Lys                        | tct cca tct<br>Ser Pro Ser<br>1735 | gat ggc acc<br>Asp Gly Thr<br>1740 | tgg tgg ggt<br>Trp Trp Gly         | 5232      |
| cca cac ttc gtc<br>Pro His Phe Val<br>1745 |                                    |                                    |                                    |                                    | 5280      |
| tcc atc ctc acc<br>Ser Ile Leu Thr<br>1760 | cac ttc gag<br>His Phe Glu<br>1765 | Ser Val Asn                        | gtt ctc aac<br>Val Leu Asn<br>1770 | aac atc tcc<br>Asn Ile Ser<br>1775 | 5328      |
| tct gag cca atg<br>Ser Glu Pro Met         |                                    |                                    |                                    |                                    | 5376      |
| ttg ttc tac tac<br>Leu Phe Tyr Tyr<br>1795 | aca cca atg<br>Thr Pro Met         | ctt gtg gct<br>Leu Val Ala<br>1800 | Gln Arg Leu                        | ctc cat gag<br>Leu His Glu<br>1805 | 5424      |
| cag aac ttc gat<br>Gln Asn Phe Asp<br>1810 | Glu Ala Asn                        | agg tgg ctc<br>Arg Trp Leu<br>1815 | aag tac gtc<br>Lys Tyr Val<br>1820 | tgg agc cca<br>Trp Ser Pro         | 5472      |
| tct ggt tac att<br>Ser Gly Tyr Ile<br>1825 | gtg cat ggt<br>Val His Gly<br>1830 | Gln Ile Gln                        | aac tac caa<br>Asn Tyr Gln<br>1835 | tgg aac gtc<br>Trp Asn Val         | 5520      |
| agg cca ttg ctt<br>Arg Pro Leu Leu<br>1840 | gag gac acc<br>Glu Asp Thr<br>1845 | tcc tgg aac<br>Ser Trp Asn         | tct gac cca<br>Ser Asp Pro<br>1850 | ctt gac tct<br>Leu Asp Ser<br>1855 | 5568<br>- |
| gtg gac cct gat<br>Val Asp Pro Asp         | gct gtg gct<br>Ala Val Ala<br>1860 | caa cat gac<br>Gln His Asp<br>1865 | Pro Met His                        | tac aag gtc<br>Tyr Lys Val<br>1870 | 5616      |
| tcc acc ttc atg<br>Ser Thr Phe Met<br>1875 |                                    |                                    | ı Ile Ala Arg                      |                                    | 5664      |

| gct tac cgc caa t<br>Ala Tyr Arg Gln L<br>1890   |                |                                    |                                         |             |
|--------------------------------------------------|----------------|------------------------------------|-----------------------------------------|-------------|
| tac atg caa gct c<br>Tyr Met Gln Ala L<br>1905   |                | Gly Asp Lys                        |                                         |             |
| agc acc act tgg to<br>Ser Thr Thr Trp So<br>1920 |                |                                    |                                         |             |
| act cag aac gct c<br>Thr Gln Asn Ala H<br>19     | is Asp Ser Ala | att gtt gct<br>Ile Val Ala<br>1945 | ctc agg cag aa<br>Leu Arg Gln As<br>195 | sn Ile      |
| cca act cct gct c<br>Pro Thr Pro Ala P<br>. 1955 | ro Leu Ser Leu |                                    |                                         |             |
| ttg ttc ctc cca c<br>Leu Phe Leu Pro G<br>1970   |                |                                    |                                         |             |
| ttg gct caa agg g<br>Leu Ala Gln Arg V<br>1985   |                | Arg His Asn                        |                                         |             |
| caa cca ctc tac c<br>Gln Pro Leu Tyr L<br>2000   |                |                                    |                                         |             |
| ctt ctc tct gct g<br>Leu Leu Ser Ala A<br>20     | la Val Ala Thr |                                    |                                         | eu Pro      |
| gag tcc ttc atg t<br>Glu Ser Phe Met S<br>2035   | er Leu Trp Arg |                                    |                                         |             |
| cgt ggc atg gtc t<br>Arg Gly Met Val S<br>2050   |                | Gln Phe Gly                        |                                         |             |
| atc att gag agg c<br>Ile Ile Glu Arg G<br>2065   |                | Ala Leu Asn                        |                                         |             |
| cag gca gct gag t<br>Gln Ala Ala Glu L<br>2080   |                |                                    | Ile Gln Asp L                           |             |
| att gag gag ctt g<br>Ile Glu Glu Leu A<br>21     | sp Ala Glu Lys |                                    |                                         | ys Ala      |
| ggt gcc caa tct c<br>Gly Ala Gln Ser A<br>2115   | rg Phe Asp Ser |                                    |                                         |             |
| atc aac gct ggt g                                | ag aac cag gcc | atg acc ctc                        | agg gct tcc g                           | ca gct 6432 |

Ile Asn Ala Gly Glu Asn Gln Ala Met Thr Leu Arg Ala Ser Ala Ala 2135 6480 ggt etc acc act get gtc caa gec tet ege ttg get ggt gea get get Gly Leu Thr Thr Ala Val Gln Ala Ser Arg Leu Ala Gly Ala Ala Ala 2150 2145 gac etc gtt eca aac atc tte ggt tte get ggt gge tee aga tgg 6528 Asp Leu Val Pro Asn Ile Phe Gly Phe Ala Gly Gly Ser Arg Trp 2170 2160 ggt gcc att gct gag gct acc ggt tac gtc atg gag ttc tct gcc aac 6576 Gly Ala Ile Ala Glu Ala Thr Gly Tyr Val Met Glu Phe Ser Ala Asn 2185 2180 gtc atg aac act gag gct gac aag atc agc caa tct gag acc tac aga 6624 Val Met Asn Thr Glu Ala Asp Lys Ile Ser Gln Ser Glu Thr Tyr Arg 2200 2195 6672 agg cgc cgt caa gag tgg gag atc caa agg aac aac gct gag gca gag Arg Arg Arg Gln Glu Trp Glu Ile Gln Arg Asn Asn Ala Glu Ala Glu 2215 2210 ttg aag caa atc gat gct caa ctc aag tcc ttg gct gtc aga agg gag 6720 Leu Lys Gln Ile Asp Ala Gln Leu Lys Ser Leu Ala Val Arg Arg Glu 2230 2225 get get gtc etc cag aag ace tec etc aag ace caa cag gag caa ace 6768 Ala Ala Val Leu Gln Lys Thr Ser Leu Lys Thr Gln Gln Glu Gln Thr 2250 2240 2245 6816 cag tcc cag ttg gct ttc ctc caa agg aag ttc tcc aac cag gct ctc Gln Ser Gln Leu Ala Phe Leu Gln Arg Lys Phe Ser Asn Gln Ala Leu 2265 2260 tac aac tgg ctc aga ggc cgc ttg gct gcc atc tac ttc caa ttc tac 6864 Tyr Asn Trp Leu Arg Gly Arg Leu Ala Ala Ile Tyr Phe Gln Phe Tyr 2280 gac ctt gct gtg gcc agg tgc ctc atg gct gag caa gcc tac cgc tgg 6912 Asp Leu Ala Val Ala Arg Cys Leu Met Ala Glu Gln Ala Tyr Arg Trp 2300 2290 2295 6960 gag ttg aac gat gac tcc gcc agg ttc atc aag cca ggt gct tgg caa Glu Leu Asn Asp Asp Ser Ala Arg Phe Ile Lys Pro Gly Ala Trp Gln 2305 2310 ggc acc tac gct ggt ctc ctt gct ggt gag acc ctc atg ctc tcc ttg 7008 Gly Thr Tyr Ala Gly Leu Leu Ala Gly Glu Thr Leu Met Leu Ser Leu 2335 2330 2320 2325 gct caa atg gag gat gct cac ctc aag agg gac aag agg gct ttg gag 7056 Ala Gln Met Glu Asp Ala His Leu Lys Arg Asp Lys Arg Ala Leu Glu 2350 2340 7104 gtg gag agg aca gtc tcc ctt gct gag gtc tac gct ggt ctc cca aag Val Glu Arg Thr Val Ser Leu Ala Glu Val Tyr Ala Gly Leu Pro Lys 2355 2360 gac aac ggt cca ttc tcc ctt gct caa gag att gac aag ttg gtc agc 7152 Asp Asn Gly Pro Phe Ser Leu Ala Gln Glu Ile Asp Lys Leu Val Ser

| 2370                                               | 2375                                       | 2380                                                                    |             |
|----------------------------------------------------|--------------------------------------------|-------------------------------------------------------------------------|-------------|
| caa ggt tct ggt tct<br>Gln Gly Ser Gly Ser<br>2385 | gct ggt tct ggt<br>Ala Gly Ser Gly<br>2390 | aac aac aac ttg gct ttc ggc<br>Asn Asn Asn Leu Ala Phe Gly<br>2395      | 7200        |
| Ala Gly Thr Asp Thr                                |                                            | caa gcc tct gtc tcc ttc gct<br>Gln Ala Ser Val Ser Phe Ala<br>2410 2415 | 1           |
| gac ctc aag atc agg<br>Asp Leu Lys Ile Arg<br>2420 | Glu Asp Tyr Pro                            | gct tcc ctt ggc aag atc agg<br>Ala Ser Leu Gly Lys Ile Arg<br>2425 2430 | 7296<br>1   |
| cgc atc aag caa atc<br>Arg Ile Lys Gln Ile<br>2435 | tct gtc acc ctc<br>Ser Val Thr Leu<br>2440 | cca gct ctc ttg ggt cca tac<br>Pro Ala Leu Leu Gly Pro Tyr<br>2445      | 7344        |
| caa gat ĝtc caa gca<br>Gln Asp Val Gln Ala<br>2450 | atc ctc tcc tac<br>Ile Leu Ser Tyr<br>2455 | ggt gac aag gct ggt ttg gc<br>Gly Asp Lys Ala Gly Leu Ala<br>2460       | g 7392<br>a |
|                                                    |                                            | cat ggc atg aac gac tct gg<br>His Gly Met Asn Asp Ser Gl<br>2475        |             |
| Gln Phe Gln Leu Asp                                | ttc aac gat ggc<br>Phe Asn Asp Gly<br>2485 | aag tto cto cca tto gag ggo<br>Lys Phe Leu Pro Phe Glu Gl<br>2490 2499  | Y           |
|                                                    | Gly Thr Leu Thr                            | ctc tcc ttc cca aac gct tcc<br>Leu Ser Phe Pro Asn Ala Se:<br>2505 2510 |             |
| atg cca gag aag gga<br>Met Pro Glu Lys Gly<br>2515 | aag caa gcc acc<br>Lys Gln Ala Thr<br>2520 | atg ctc aag acc ctc aac ga<br>Met Leu Lys Thr Leu Asn As<br>2525        | t 7584<br>P |
| atc atc ctc cac atc<br>Ile Ile Leu His Ile<br>2530 |                                            | • • •                                                                   | 7621        |

### INTERNATIONAL SEARCH REPORT

pplication No PCT/US 00/22237

| A. CLASSIF<br>IPC 7                                                        | FICATION OF SUBJECT MATTER C12N9/52 C12N15/82 C07K14/24                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C12N15/11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|----------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                            | International Patent Classification (IPC) or to both national classification                                                                                                                                                                                                                                                                                                                                                                                                                                  | on and IPC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                            | SEARCHED cumentation searched (classification system followed by classification C12N C07K                                                                                                                                                                                                                                                                                                                                                                                                                     | symbols)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Documentat                                                                 | ion searched other than minimum documentation to the extent that su                                                                                                                                                                                                                                                                                                                                                                                                                                           | ch documents are included in the fields searched                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Electronic da                                                              | ata base consulted during the international search (name of data base                                                                                                                                                                                                                                                                                                                                                                                                                                         | e and, where practical, search terms used)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| STRAND                                                                     | , EPO-Internal, WPI Data, PAJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| C. DOCUMI                                                                  | ENTS CONSIDERED TO BE RELEVANT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Category °                                                                 | Citation of document, with indication, where appropriate, of the rele                                                                                                                                                                                                                                                                                                                                                                                                                                         | vant passages Relevant to claim No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| X                                                                          | WO 98 08932 A (DOW AGROSCIENCES L; WISCONSIN ALUMNI RES FOUND (US)) 5 March 1998 (1998-03-05) cited in the application SEQ ID NO:11 in this document is unmodified version of SEQ ID NO:3 present application. SEQ ID NO:46 corresponds to SEQ I page 16, line 31 -page 19, line 3                                                                                                                                                                                                                            | the<br>of the<br>D NO:5.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| A                                                                          | WO 97 13402 A (DOWELANCO) 17 April 1997 (1997-04-17) the whole document                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1-7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Fur                                                                        | ther documents are listed in the continuation of box C.                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Y Patent family members are listed in annex.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| "A" docum consi "E" earlier filing "L" docum which citatis "O" docum other | ategories of cited documents:  nent defining the general state of the art which is not idered to be of particular relevance.  document but published on or after the international date.  nent which may throw doubts on priority claim(s) or in is cited to establish the publication date of another on or other special reason (as specified).  nent referring to an oral disclosure, use, exhibition or means.  nent published prior to the international filing date but than the priority date claimed. | <ul> <li>"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention</li> <li>"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone</li> <li>"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.</li> <li>"&amp;" document member of the same patent family</li> </ul> |
| Date of the                                                                | e actual completion of the international search                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Date of mailing of the international search report  08/12/2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                            | 1 December 2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Name and                                                                   | mailing address of the ISA  European Patent Office, P.B. 5818 Patentlaan 2  NL - 2280 HV Rijswijk  Tel. (+31-70) 340-2040, Tx. 31 651 epo nl.  Fax: (+31-70) 340-3016                                                                                                                                                                                                                                                                                                                                         | Authorized officer  Sprinks, M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

Form PCT/ISA/210 (second sheet) (July 1992)

#### INTERNATIONAL SEARCH REPORT

information on patent ramily members

Interna pplication No
PCT/US 00/22237

| Patent document<br>cited in search report | ì | Publication date | Patent family member(s) |              | Publication date |
|-------------------------------------------|---|------------------|-------------------------|--------------|------------------|
| WO 9808932                                | Α | 05-03-1998       | AU                      | 1050997 A    | 29-05-1997       |
|                                           |   |                  | AU                      | 2829997 A    | 19-03-1998       |
|                                           |   |                  | BR                      | 9606889 A    | 28-10-1997       |
|                                           |   |                  | BR                      | 9711441 A    | 24-10-2000       |
|                                           |   |                  | CA                      | 2209659 A    | 15-05-1997       |
|                                           |   |                  | EP                      | 0797659 A    | 01-10-1997       |
|                                           |   |                  | EP                      | 0970185 A    | 12-01-2000       |
|                                           |   |                  | HU                      | 9900768 A    | 28-06-1999       |
|                                           |   |                  | PL                      | 321212 A     | 24-11-1997       |
|                                           |   |                  | PL                      | 332033 A     | 16-08-1999       |
|                                           |   |                  | SK                      | 93197 A      | 06-05-1998       |
|                                           |   |                  | WO                      | 9717432 A    | 15-05-1997       |
| WO 9713402                                |   | 17-04-1997       | AU                      | 708256 B     | 29-07-1999       |
|                                           |   | 2. 2. 2          | AU                      | 7446796 A    | 30-04-1997       |
|                                           |   |                  | BR                      | 9611000 A    | 28-12-1999       |
|                                           |   |                  | CN                      | 1199321 A    | 18-11-1998       |
|                                           |   |                  | EP                      | 0861021 A    | 02-09-1998       |
|                                           |   |                  |                         | 2000507808 T | 27-06-2000       |

Form PCT/ISA/210 (patent family annex) (July 1992)

# This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

### **BEST AVAILABLE IMAGES**

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

□ BLACK BORDERS
□ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
□ FADED TEXT OR DRAWING
□ BLURRED OR ILLEGIBLE TEXT OR DRAWING
□ SKEWED/SLANTED IMAGES
□ COLOR OR BLACK AND WHITE PHOTOGRAPHS
□ GRAY SCALE DOCUMENTS
□ LINES OR MARKS ON ORIGINAL DOCUMENT
□ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

## IMAGES ARE BEST AVAILABLE COPY.

OTHER: \_\_\_

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.