EXPERIMENT 6

Demonstration of:

- a) DC-DC convertor (Chopper)
- b) DC –AC converter-PWM waveform (Sine PWM Inverter)
- c) Use of DC-AC converter for speed control of induction motor (VFD)

(Chopper), (Chopper)

Theory:

A chopper is a static device that converts fixed dc input voltage to a variable dc output voltage directly. A chopper is a high-speed on/off semiconductor switch. It connects source to load and disconnects the load from source at high-speed. Also known as dc-to-dc converter. Widely used for motor control. Also used in regenerative braking.

Types of Chopper:

1. Step-up choppers: In step up chopper output voltage is more than input voltage.

2. Step-down choppers: In step down chopper output voltage is less than input voltage.

Basic Block Diagram of Chopper:

Fig Block diagram of Chopper

Basic principal behind the chopper is it converts Fix DC input voltage to Variable DC output voltage.

High power application:

Applications of Chopper:

- 1. They are used for DC motor control (battery-supplied vehicles), solar energy conversion and wind energy conversion.
- 2. Choppers are used in electric cars, airplanes and spaceships, where onboard-regulated DC power supplies are required.
- 3. In general, Chopper circuits are used as power supplies in computers, commercial electronics, and electronic instruments.
- 4. DC Motor Speed Control
- 5. Battery Chargers
- 6. DC Voltage Boosting
- 7. Battery Operated Electric Cars

Comparison (step down chopper and step up chopper)

Comparison between step up and step down chopper:

Sr no	parameters	Step down chopper	Step up chopper
1	Range of output voltage	0 to V volts	V to +∞ volts
2	Position of chopper switch	In series with load	In parallel with load
3	Expression for output voltage	VL dc = D × V volts	$V_o = V/(1 - D)$ volts
4	Use	For motoring operation, for motor load	For regenerative braking for motor load.
5	Applications	Motor speed control	Battery charging/voltage boosters

Result: The study of DC-DC chopper has been done.