

MESSI: Multiomics Experiments with SyStematic Interrogation A Nextflow pipeline for benchmarking multiomics integration methods

UBC W/S

Chunqing Tony Liang ^{1,3} , Tajveer Grewal², Asees Singh², Amrit Singh ^{1,2,3}

¹ Faculty of Science, Bioinformatics , ² Faculty of Medicine, Anesthesiology, Pharmacology and Therapeutics, ³Centre for Heart Lung Innovation

INTRODUCTION

- Omics is the comprehensive study of all molecules of a particular type within an organism (e.g. proteins, metabolites, genes)
- Multiomics compensates for missing or unreliable information in any single omics data

- Many integration methods: which to use?
- How to reproduce method and get same results?
- We introduce *Multiomics Experiments with SyStematic Interrogation* (MESSI).
- Tool to assist in the development and evaluation of new/existing multiomics integration methods.

METHODS

- Looking into multiview (3), DIABLO (4), RGCCA (5), MOFA (6), MOGONET (7)
- Using a **5-fold** cross validation (cv) with are under the curve (AUC) score as metric
- Validating with known ground truth data from 500+ simulated data with varying parameters
- Evaluate on 6 real world datasets

Dataset	# of subjects	Disease	Prop(Y=1)	Omics	# of predictors
GSE71669	33	Bladder cancer	0.424	mrna	5831
				cpg	8915
				СС	10
ROSMAP	351	Alzheimer Disease	0.519	epigenomics	58
				genomics	74
				transcriptomics	90
TCGA-BLCA	336	Bladder cancer	0.685	Methylation_HM450K	8072
				miRNA	285
				RPPA	44
				RNAseq_HiSeq	6376
TCGA-BRCA	109	Breast cancer	0.358	Methylation_HM450K	7985
				miRNA_GA	282
				RPPA	43
				RNAseq_HiSeq	6191
TCGA-KIPAN	123	Kidney cancer	0.520	Methylation_HM450K	7914
				miRNA_GA_miR	225
				RPPA	60
				RNAseq_HiSeq	6145
TCGA-THCA	217	Thyroid cancer	0.318	Methylation_HM450K	6367
				miRNA	256
				RPPA	25
				RNAseq_HiSeq	5692

Table1: Real world dataset description. Each dataset is a public source multiomics dataset that studies one disease. Prop(Y=1) represents the proportion of positive cases in the dataset. # of predictors are number of molecular measurements in individual omics. # of subjects represent the size of study performed.

RESULTS

Figure 1: Overview of MESSI Workflow. Data are standardized into MuData and MultiAssayExperiemnt, then passed to methods for cross-validation in a parallel and fully isolated through processes and containers. Then each performance will be assessed by its task (classification or clustering) corresponding metrics.

Figure 2: Evaluation of simulated datasets with varying parameters. Boxplot represents mean AUC score distributions from 5-fold CV, with controlled signal and correlation inside the datasets.

Figure 3: Performance of methods over real world datasets.
Lighter color indicates better AUC score, numbers are exact score.

RESULTS

Figure 4: Spearman rank correlation on ranking biomarkers identified between methods.

Darker color indicates higher similarity between the rankings of important biomarkers across method and dataset.

CONCLUSION

- No method works universally well on all datasets
- Pipeline proves way to reproducibly benchmark different aspects of integration methods
- GNN like MOGONET, overcomplicated yet low performance
- **DIABLO** is the best at moment
- Methods overall work better with higher effect, and less sensitive to correlation between omics
- Need to generalize for more datasets, at sc or spatial level
- Add in other methods (like bayesian, other DLs)

REFERENCES

- 1. Di Tommaso P, Chatzou M, Floden EW, Barja PP, Palumbo E, Notredame C. Nextflow enables reproducible computational workflows. Nature biotechnology. 2017;35(4):316–9.
- 2. Ewels PA, Peltzer A, Fillinger S, Patel H, Alneberg J, Wilm A, et al. The nf-core framework for community-curated bioinformatics pipelines. Nature biotechnology. 2020;38(3):276–8.
- 3. Ding DY, Li S, Narasimhan B, Tibshirani R. Cooperative learning for multiview analysis. Proceedings of the National Academy of Sciences. 2022;119(38):e2202113119.
- 4. Singh A, Shannon CP, Gautier B, Rohart F, Vacher M, Tebbutt SJ, et al. DIABLO: An integrative approach for identifying key molecular drivers from multi-omics assays. Bioinformatics. 2019;35(17):3055–62.
- 5. Girka F, Camenen E, Peltier C, Gloaguen A, Guillemot V, Le Brusquet L, et al. Multiblock data analysis with the RGCCA package. Journal of Statistical Software. 2023;1–36.
- 6. Argelaguet R, Velten B, Arnol D, Dietrich S, Zenz T, Marioni JC, et al. Multi-omics factor analysis—a framework for unsupervised integration of multi-omics data sets. Molecular systems biology. 2018;14(6):e8124.
- 7. Wang T, Shao W, Huang Z, Tang H, Zhang J, Ding Z, et al. MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications. 2021;12(1):3445.

ACKNOWLEDGEMENTS

