Local to Global: An Introduction to Sheaves

E. Thompson¹

¹Faculty of Science University of Calgary

Math 511 Presentation

Motivation

Motivating Question

How can we study the relation between local and global properties of geometric spaces algebraically?

Motivation

Motivating Question

How can we study the relation between local and global properties of geometric spaces algebraically?

One Answer: Sheaves and sheaf cohomology!

2/1

What is a sheaf?

• Throughout let $(X, \tau) \in \mathbf{Top}$.

$$\mathcal{F}:\mathcal{O}(X)^{op}\to\mathcal{C}$$

What is a sheaf?

• Throughout let $(X, \tau) \in \mathbf{Top}$.

Defⁿ: (Sheaves)

A **pre-sheaf** on X with values in $\mathcal C$ is a functor

$$\mathcal{F}: \mathcal{O}(X)^{op} \to \mathcal{C}$$

What is a sheaf?

• Throughout let $(X, \tau) \in \mathbf{Top}$.

Defⁿ: (Sheaves)

A **pre-sheaf** on X with values in \mathcal{C} is a functor

$$\mathcal{F}: \mathcal{O}(X)^{op} \to \mathcal{C}$$

If $\forall U \in \mathcal{O}(X)$ \mathcal{F} satisfies

•
$$\forall U = \bigcup_{i \in I} U_i, \forall s_i \in \mathcal{F}(U_i)$$
,

$$\forall i, j \in I(s_i|_{U_i \cap U_j} = s_j|_{U_i \cap U_j}) \implies \exists ! s \in \mathcal{F}(U), \ \forall i \in I(s|_{U_i} = s_i)$$

it is called a sheaf

3/1

Example: Smooth Manifolds

Eg: Smooth Manifolds

A smooth manifold is a pair (M, \mathcal{O}_M) , with $M \in \mathbf{Top}$ and $\forall U \in M$, $\mathcal{O}_M(U) = \mathrm{smooth}$ real-valued functions, satisfying

ullet $\forall p \in M, \exists U, p \in U$, such that

$$(U, \mathcal{O}_M|_U) \cong (\mathbb{R}^n, \mathcal{O}_{C^{\infty}})$$

for some $n \in \mathbb{N}$

Maps of sheaves

Defⁿ: (Sheaf Map)

A map between sheaves $\mathcal{F}, \mathcal{G}: \mathcal{O}(X)^{op} \to \mathcal{C}$ is a collection

$$(\eta_U \in \operatorname{Hom}_{\mathcal{C}}(\mathcal{F}(U),\mathcal{G}(U)))_{U \in \mathcal{O}(X)}$$

such that the diagram commutes for any $U \subseteq V \in \mathcal{O}(X)$.

$$\begin{array}{ccc}
\mathcal{F}(V) & \xrightarrow{|_{U}} & \mathcal{F}(U) \\
\eta_{V} \downarrow & & & \downarrow \eta_{U} \\
\mathcal{G}(V) & \xrightarrow{|_{U}} & \mathcal{G}(U)
\end{array}$$

5/1

Maps of sheaves

Defⁿ: (Sheaf Map)

A map between sheaves $\mathcal{F},\mathcal{G}:\mathcal{O}(X)^{op}\to\mathcal{C}$ is a collection

$$(\eta_U \in \operatorname{Hom}_{\mathcal{C}}(\mathcal{F}(U),\mathcal{G}(U)))_{U \in \mathcal{O}(X)}$$

such that the diagram commutes for any $U \subseteq V \in \mathcal{O}(X)$.

$$\begin{array}{ccc}
\mathcal{F}(V) & \xrightarrow{|_{U}} & \mathcal{F}(U) \\
\eta_{V} \downarrow & & & \downarrow \eta_{U} \\
\mathcal{G}(V) & \xrightarrow{|_{U}} & \mathcal{G}(U)
\end{array}$$

5/1

Example: Smooth Manifolds

Eg: Smooth Manifolds

A smooth manifold is a pair (M, \mathcal{O}_M) , with $M \in \mathbf{Top}$ and $\forall U \in M, \ \mathcal{O}_M(U) = \mathrm{smooth}$ real-valued functions, satisfying

ullet $\forall p \in M, \exists U, p \in U$, such that

$$(U, \mathcal{O}_M|_U) \cong (\mathbb{R}^n, \mathcal{O}_{C^\infty})$$

for some $n \in \mathbb{N}$

Thompson (UofC) Sheaves E.T. 2022 6/1

Example: Smooth Manifolds

Eg: Smooth Manifolds

A smooth manifold is a pair (M, \mathcal{O}_M) , with $M \in \mathbf{Top}$ and $\forall U \in M, \ \mathcal{O}_M(U) = \mathrm{smooth}$ real-valued functions, satisfying

ullet $\forall p \in M, \exists U, p \in U$, such that

$$(U, \mathcal{O}_M|_U) \cong (\mathbb{R}^n, \mathcal{O}_{C^{\infty}})$$

for some $n \in \mathbb{N}$

Observation: Differentiation and other operations on functions depend only on local behaviour

6/1

Characterizing Locality Through Universality: Stalks

• Fix a sheaf $\mathcal{F}: \mathcal{O}(X)^{op} \to \mathcal{C}$

Defⁿ: (Stalks)

The **stalk** of \mathcal{F} at $x \in X$ is **colimit**

$$\mathcal{F}_x := \varinjlim_{x \in U} \mathcal{F}(U)$$

Important example: Stalks

ullet Fix a sheaf $\mathcal{F}:\mathcal{O}(X)^{op}
ightarrow\mathcal{C}$

Defⁿ: (Stalks)

The **stalk** of \mathcal{F} at $x \in X$ is **colimit**

$$\mathcal{F}_x := \varinjlim_{x \in U} \mathcal{F}(U)$$

8/1

Important example: Stalks

ullet Fix a sheaf $\mathcal{F}:\mathcal{O}(X)^{op}
ightarrow\mathcal{C}$

Defⁿ: (Stalks)

The **stalk** of \mathcal{F} at $x \in X$ is **colimit**

$$\mathcal{F}_x := \varinjlim_{x \in U} \mathcal{F}(U) \cong \coprod_{x \in U} \mathcal{F}(U) / \sim$$

8/1

Important example: Stalks

ullet Fix a sheaf $\mathcal{F}:\mathcal{O}(X)^{op}
ightarrow\mathcal{C}$

Defⁿ: (Stalks)

The **stalk** of \mathcal{F} at $x \in X$ is **colimit**

$$\mathcal{F}_x := \underset{x \in U}{\xrightarrow{\prod}} \mathcal{F}(U) \cong \underset{x \in U}{\coprod} \mathcal{F}(U) / \sim$$

9/1

Exact

A sequence of sheaves on X, $0 \to \mathcal{H} \xrightarrow{\eta} \mathcal{F} \xrightarrow{\mu} \mathcal{G} \to 0$, induces a sequence

Thompson (UofC) Sheaves E.T. 2022 10 / 1

Exact

A sequence of sheaves on X, $0 \to \mathcal{H} \xrightarrow{\eta} \mathcal{F} \xrightarrow{\mu} \mathcal{G} \to 0$, induces a sequence

Remark. The original sequence is exact if and only if

$$0 \to \mathcal{H}_x \to \mathcal{F}_x \to \mathcal{G}_x \to 0$$

is exact $\forall x \in X$.

Thompson (UofC) Sheaves E.T. 2022 10/1

Exact

A sequence of sheaves on X, $0 \to \mathcal{H} \xrightarrow{\eta} \mathcal{F} \xrightarrow{\mu} \mathcal{G} \to 0$, induces a sequence

Remark. The original sequence is exact if and only if

$$0 \to \mathcal{H}_x \to \mathcal{F}_x \to \mathcal{G}_x \to 0$$

is exact $\forall x \in X$.

Note

Surjectivity is local!

CALGARÝ

Defⁿ: (Ringed Space)

A **ringed space** is a pair (X, \mathcal{O}_X) of $X \in \mathbf{Top}$, and $\mathcal{O}_X : \mathcal{O}(X)^{op} \to \mathbf{Ring}$ a sheaf of rings

Defⁿ: (Ringed Space)

A **ringed space** is a pair (X, \mathcal{O}_X) of $X \in \mathbf{Top}$, and $\mathcal{O}_X : \mathcal{O}(X)^{op} \to \mathbf{Ring}$ a sheaf of rings

Defⁿ: (Maps of Ringed Spaces)

A map of ringed spaces $(X,\mathcal{O}_X) \to (Y,\mathcal{O}_Y)$ is a pair of maps $\varphi:X \to Y$ and $\varphi^\#:\mathcal{O}_Y \to \varphi_*\mathcal{O}_X$

11/1

4 D F 4 B F 4 E F 4 E F

Inducing Sheaves

ullet Fix a continuous map f:X o Y and a sheaf ${\mathcal F}$ on X over ${\mathcal C}$

Inducing Sheaves

• Fix a continuous map $f: X \to Y$ and a sheaf \mathcal{F} on X over \mathcal{C}

Defⁿ: (Push-forward)

The push-forward of \mathcal{F} along f is the pre-sheaf

$$f_*\mathcal{F}:\mathcal{O}(Y)^{op}\to\mathcal{C}$$

given by $f_*\mathcal{F}(V) = \mathcal{F}(f^{-1}(V))$

12/1

Defⁿ: (Maps of Ringed Spaces)

A map of ringed spaces $(X,\mathcal{O}_X) \to (Y,\mathcal{O}_Y)$ is a pair of maps $\varphi:X \to Y$ and $\varphi^\#:\mathcal{O}_Y \to \varphi_*\mathcal{O}_X$

Defⁿ: (Maps of Ringed Spaces)

A map of ringed spaces $(X, \mathcal{O}_X) \to (Y, \mathcal{O}_Y)$ is a pair of maps $\varphi: X \to Y$ and $\varphi^\#: \mathcal{O}_Y \to \varphi_* \mathcal{O}_X$

Defⁿ: (Sheaf of \mathcal{O}_X -modules)

A sheaf of \mathcal{O}_X -modules on (X,\mathcal{O}_X) is a sheaf $\mathcal{F}:\mathcal{O}(X)^{op}\to \mathbf{Ab}$ for which $\forall U\in\mathcal{O}(X),\ \mathcal{F}(U)\in\mathcal{O}_X(U)$ -Mod

13/1

UofC) Sheaves E.T. 2022

Defⁿ: (Maps of Ringed Spaces)

A map of ringed spaces $(X,\mathcal{O}_X) \to (Y,\mathcal{O}_Y)$ is a pair of maps $\varphi:X \to Y$ and $\varphi^\#:\mathcal{O}_Y \to \varphi_*\mathcal{O}_X$

Defⁿ: (Sheaf of \mathcal{O}_X -modules)

A sheaf of \mathcal{O}_X -modules on (X,\mathcal{O}_X) is a sheaf $\mathcal{F}:\mathcal{O}(X)^{op}\to \mathbf{Ab}$ for which $\forall U\in\mathcal{O}(X),\ \mathcal{F}(U)\in\mathcal{O}_X(U)$ -Mod

$$\mathcal{O}_X(V) \times \mathcal{F}(V) \longrightarrow \mathcal{F}(V) \\
\downarrow_{U} \downarrow_{U} \downarrow_{U} \\
\mathcal{O}_X(U) \times \mathcal{F}(U) \longrightarrow \mathcal{F}(U)$$

Thompson (UofC) Sheaves E.T. 2022 14/1

Example: Smooth Manifolds Revisited

Eg: Smooth Manifolds Revisited

- Let (M, \mathcal{O}_M) be a smooth manifold
- ullet Let $TM = \coprod_{p \in M} T_pM$ denote the tangent bundle
- ullet The sheaf $V:\mathcal{O}(M)^{op} o \mathbf{Ab}$ of smooth vector fields is a $\mathcal{O}_M ext{-}\mathbf{Mod}$

15/1

Example: Smooth Manifolds Revisited

Eg: Smooth Manifolds Revisited

- Let (M, \mathcal{O}_M) be a smooth manifold
- Let $TM = \coprod_{p \in M} T_pM$ denote the tangent bundle
- ullet The sheaf $V:\mathcal{O}(M)^{op} o \mathbf{Ab}$ of smooth vector fields is a $\mathcal{O}_M ext{-}\mathbf{Mod}$

Thompson (UofC) Sheaves E.T. 2022 15/1

• The global sections functor, $\Gamma: \mathcal{O}_X\operatorname{-Mod} \to \mathcal{O}_X(X)\operatorname{-Mod}$, is given by $\Gamma(\mathcal{F}) = \mathcal{F}(X)$

• The global sections functor, $\Gamma: \mathcal{O}_X\operatorname{-Mod} \to \mathcal{O}_X(X)\operatorname{-Mod}$, is given by $\Gamma(\mathcal{F}) = \mathcal{F}(X)$

Example of Surjectivity Failure:

 $\bullet \ \ \mathsf{Let} \ X = \mathbb{C} \cup \{\infty\},$

16/1

• The global sections functor, $\Gamma: \mathcal{O}_X\operatorname{-Mod} \to \mathcal{O}_X(X)\operatorname{-Mod}$, is given by $\Gamma(\mathcal{F}) = \mathcal{F}(X)$

Example of Surjectivity Failure:

- Let $X = \mathbb{C} \cup \{\infty\}$,
- Let $\mathcal{A}_0, \mathcal{A}_\infty, \mathcal{A}: \mathcal{O}(X)^{op} \to \mathbf{Ab}$ be sheaves of analytic functions, with the ones in \mathcal{A}_0 vanishing at 0 and the ones in \mathcal{A}_∞ vanishing at ∞

E.T. 2022

• The global sections functor, $\Gamma: \mathcal{O}_X\text{-Mod} \to \mathcal{O}_X(X)\text{-Mod}$, is given by $\Gamma(\mathcal{F}) = \mathcal{F}(X)$

Example of Surjectivity Failure:

- Let $X = \mathbb{C} \cup \{\infty\}$,
- Let $\mathcal{A}_0, \mathcal{A}_{\infty}, \mathcal{A} : \mathcal{O}(X)^{op} \to \mathbf{Ab}$ be sheaves of analytic functions, with the ones in A_0 vanishing at 0 and the ones in A_{∞} vanishing at ∞
- Take the map $\mathcal{A}_0 \oplus \mathcal{A}_{\infty} \to \mathcal{A}$ given by addition

16/1

• The global sections functor, $\Gamma: \mathcal{O}_X\operatorname{-Mod} \to \mathcal{O}_X(X)\operatorname{-Mod}$, is given by $\Gamma(\mathcal{F}) = \mathcal{F}(X)$

Example of Surjectivity Failure:

- Let $X = \mathbb{C} \cup \{\infty\}$,
- Let $\mathcal{A}_0, \mathcal{A}_\infty, \mathcal{A}: \mathcal{O}(X)^{op} \to \mathbf{Ab}$ be sheaves of analytic functions, with the ones in \mathcal{A}_0 vanishing at 0 and the ones in \mathcal{A}_∞ vanishing at ∞
- ullet Take the map ${\cal A}_0 \oplus {\cal A}_\infty o {\cal A}$ given by addition

Figure: Riemann Sphere

Thompson (UofC) Sheaves E.T. 2022 16/1

• The global sections functor, $\Gamma: \mathcal{O}_X\operatorname{-Mod} \to \mathcal{O}_X(X)\operatorname{-Mod}$, is given by $\Gamma(\mathcal{F}) = \mathcal{F}(X)$

Example of Surjectivity Failure:

- Let $X = \mathbb{C} \cup \{\infty\}$,
- Let $\mathcal{A}_0, \mathcal{A}_\infty, \mathcal{A}: \mathcal{O}(X)^{op} \to \mathbf{Ab}$ be sheaves of analytic functions, with the ones in \mathcal{A}_0 vanishing at 0 and the ones in \mathcal{A}_∞ vanishing at ∞
- Take the map $\mathcal{A}_0 \oplus \mathcal{A}_\infty o \mathcal{A}$ given by addition
- By Liouville's Theorem $\mathcal{A}(X)$ consists of all constant functions

Figure: Riemann Sphere

• The global sections functor, $\Gamma: \mathcal{O}_X\operatorname{-Mod} \to \mathcal{O}_X(X)\operatorname{-Mod}$, is given by $\Gamma(\mathcal{F}) = \mathcal{F}(X)$

Prop

 Γ is a left-exact functor

Proof Idea: Let $0 \to \mathcal{H} \xrightarrow{\eta} \mathcal{F} \xrightarrow{\mu} \mathcal{G} \to 0$ be a SES. This induces a diagram

$$\Gamma(\mathcal{H}) \xrightarrow{\eta_X} \Gamma(\mathcal{F}) \xrightarrow{\mu_X} \Gamma(\mathcal{G})$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$0 \longrightarrow \mathcal{H}_x - \eta_x \longrightarrow \mathcal{F}_x - \mu_x \longrightarrow \mathcal{G}_x \longrightarrow 0$$

Thompson (UofC) Sheaves E.T. 2022 17/1

Sheaf Cohomology

Remark. We want to measure the failure of Γ to be right-exact.

18/1

Sheaf Cohomology

Remark. We want to measure the failure of Γ to be right-exact.

Construction. To extend Γ , for each $\mathcal{F} \in \mathcal{O}_X$ -Mod we "take an injective resolution" $0 \to \mathcal{F} \to \mathcal{I}_{\bullet}$ and set

$$R^n\Gamma(\mathcal{F}) = H^n(\Gamma(\mathcal{I}_{\bullet}))$$

for $n \in \mathbb{Z}_{\geq 0}$.

E.T. 2022

Sheaf Cohomology

Remark. We want to measure the failure of Γ to be right-exact.

Construction. To extend Γ , for each $\mathcal{F} \in \mathcal{O}_X$ -Mod we "take an injective resolution" $0 \to \mathcal{F} \to \mathcal{I}_{\bullet}$ and set

$$R^n\Gamma(\mathcal{F}) = H^n(\Gamma(\mathcal{I}_{\bullet}))$$

for $n \in \mathbb{Z}_{\geq 0}$.

Question. Does every $\mathcal{F} \in \mathcal{O}_X$ -Mod have an injective resolution?

Thompson (UofC) Sheaves E.T. 2022 18/1

Thm

The category \mathcal{O}_X -**Mod** has enough injectives.

19/1

Thm

The category \mathcal{O}_X -**Mod** has enough injectives.

Proof Sketch. Fix $\mathcal{F} \in \mathcal{O}_X$ -Mod.

Thm

The category \mathcal{O}_X -**Mod** has enough injectives.

Proof Sketch. Fix $\mathcal{F} \in \mathcal{O}_X$ -Mod.

• $\forall x \in X$, $\mathcal{O}_{X,x}$ -**Mod** has enough injectives.

Thm

The category \mathcal{O}_X -**Mod** has enough injectives.

Proof Sketch. Fix $\mathcal{F} \in \mathcal{O}_X$ -Mod.

- $\forall x \in X$, $\mathcal{O}_{X,x}$ -**Mod** has enough injectives.
- $\bullet \implies \forall x \in X, \ \exists \iota_x : \mathcal{F}_x \hookrightarrow \mathcal{I}(x) \ \text{in} \ \mathcal{O}_{X,x}\text{-}\mathbf{Mod}$

Thm

The category \mathcal{O}_X -**Mod** has enough injectives.

Proof Sketch. Fix $\mathcal{F} \in \mathcal{O}_X$ -Mod.

- $\forall x \in X$, $\mathcal{O}_{X,x}$ -**Mod** has enough injectives.
- $\implies \forall x \in X, \; \exists \iota_x : \mathcal{F}_x \hookrightarrow \mathcal{I}(x) \text{ in } \mathcal{O}_{X,x}\text{-}\mathsf{Mod}$
- Define $\mathcal{I}: \mathcal{O}(X)^{op} \to \mathbf{Ab}$ by $\mathcal{I}(U) = \prod_{x \in U} \mathcal{I}(x)$

Thompson (UofC) Sheaves E.T. 2022 19/1

Thm

The category \mathcal{O}_X -**Mod** has enough injectives.

Proof Sketch. Fix $\mathcal{F} \in \mathcal{O}_X$ -Mod.

- $\forall x \in X$, $\mathcal{O}_{X,x}$ -**Mod** has enough injectives.
- $\Longrightarrow \forall x \in X, \; \exists \iota_x : \mathcal{F}_x \hookrightarrow \mathcal{I}(x) \text{ in } \mathcal{O}_{X,x}\text{-}\mathbf{Mod}$
- Define $\mathcal{I}: \mathcal{O}(X)^{op} \to \mathbf{Ab}$ by $\mathcal{I}(U) = \prod_{x \in U} \mathcal{I}(x)$
- It can be shown $\mathcal{I} \in \mathcal{O}_X$ -Mod is injective, and the induced map $\iota: \mathcal{F} \hookrightarrow \mathcal{I}$ is a monomorphism

Thompson (UofC) Sheaves E.T. 2022 19/1

Applications

Cor

A SES of \mathcal{O}_X -modules, $0 \to \mathcal{F} \to \mathcal{H} \to \mathcal{G} \to 0$, induces a long-exact sequence

$$0 \longrightarrow \Gamma(\mathcal{F}) \longrightarrow \Gamma(\mathcal{H}) \longrightarrow \Gamma(\mathcal{G})$$

$$\delta^{0} \longrightarrow R^{1}\Gamma(\mathcal{F}) \longrightarrow R^{1}\Gamma(\mathcal{H}) \longrightarrow R^{1}\Gamma(\mathcal{G})$$

$$R^{n}\Gamma(\mathcal{F}) \longrightarrow R^{n}\Gamma(\mathcal{H}) \longrightarrow R^{n}\Gamma(\mathcal{G})$$

20 / 1

Applications

Cor

A SES of \mathcal{O}_X -modules, $0 \to \mathcal{F} \to \mathcal{H} \to \mathcal{G} \to 0$, induces a long-exact sequence

$$0 \longrightarrow \Gamma(\mathcal{F}) \longrightarrow \Gamma(\mathcal{H}) \longrightarrow \Gamma(\mathcal{G})$$

$$\delta^{0} \longrightarrow R^{1}\Gamma(\mathcal{F}) \longrightarrow R^{1}\Gamma(\mathcal{H}) \longrightarrow R^{1}\Gamma(\mathcal{G})$$

$$R^{n}\Gamma(\mathcal{F}) \longrightarrow R^{n}\Gamma(\mathcal{H}) \longrightarrow R^{n}\Gamma(\mathcal{G})$$

Canonical Example:

Studying global properties of the complex logarithm

Thompson (UofC) Sheaves E.T. 2022 20 / 1

Thank you for your time! Any questions?

$$0 \longrightarrow \Gamma(\mathcal{F}) \longrightarrow \Gamma(\mathcal{H}) \longrightarrow \Gamma(\mathcal{G})$$

$$\uparrow R^{1}\Gamma(\mathcal{F}) \longrightarrow R^{1}\Gamma(\mathcal{H}) \longrightarrow R^{1}\Gamma(\mathcal{G})$$

$$R^{n}\Gamma(\mathcal{F}) \longrightarrow R^{n}\Gamma(\mathcal{H}) \longrightarrow R^{n}\Gamma(\mathcal{G})$$

21/1

References I

