

Radhakrishnan S, Ph.D.

Department of Science and Humanities

Unit II: Quantum Mechanics of simple systems

Class #17

- Bound particle system
- 1D infinite potential well
- Solution of the Schrodinger's wave equation
- Characteristics of the wave function

Unit II: Quantum Mechanics of simple systems

- > Suggested Reading
 - 1. Concepts of Modern Physics, Arthur Beiser, Chapter 5
 - 2. Learning Material prepared by the Department of Physics
- > Reference Videos
 - 1. Video lectures: MIT 8.04 Quantum Physics I
 - 2. Engineering Physics Class #12-14

Particle in an 1D infinite potential well

The binding comes from an infinite potential (wall) existing at the boundaries at $x = \pm \frac{a}{2}$

$$V = 0 \quad for -\frac{a}{2} < x < +\frac{a}{2}$$

$$V = \infty \quad at \quad x = \pm \frac{a}{2}$$

$$V = \infty$$
 at $x = \pm \frac{a}{2}$

Particle has zero probability

of being outside the bound region

1D infinite potential Schrodinger's wave equation

$$\frac{\partial^2 \psi(x)}{\partial x^2} + \frac{2m}{\hbar^2} (E - V)\psi(x) = 0$$

between
$$-\frac{a}{2}$$
 and $+\frac{a}{2}$ with $V=0$

e = CosO + i Lind

The general solution could be written as

$$\psi(x) = Asin(kx) + Bcos(kx)$$

where
$$k = \sqrt{\frac{2mE}{\hbar^2}}$$
 which gives the energy of the particle

$$E=\frac{\hbar^2k^2}{2m}$$

1D infinite potential Schrodinger's wave equation

the boundary conditions for the problem

$$\psi = 0$$
 and $d\psi = 0$ at $x = -\frac{a}{2}$ and $x = \frac{a}{2}$

Additionally the wave function has to be normalizable

At
$$x = -\frac{a}{2}$$

$$\psi\left(x = -\frac{a}{2}\right) = Asin\left(-k\frac{a}{2}\right) + Bcos\left(k\frac{a}{2}\right) = 0$$

$$results\ in\ -Asin\left(k\frac{a}{2}\right) + Bcos\left(k\frac{a}{2}\right) = 0$$

$$At\ x = \frac{a}{2}$$

$$\psi\left(x = \frac{a}{2}\right) = Asin\left(k\frac{a}{2}\right) + Bcos\left(k\frac{a}{2}\right) = 0$$

$$results\ in\ Asin\left(k\frac{a}{2}\right) + Bcos\left(k\frac{a}{2}\right) = 0$$
[2]

1D infinite potential Schrodinger's wave equation

[1] and [2] indicate the two distinct possibilities

either
$$A = 0$$
 if $B \neq 0$ or $B = 0$ if $A \neq 0$

if
$$A = 0$$
 then $B \neq 0$

[1] leads to
$$cos\left(k\frac{a}{2}\right) = 0$$
 $k\frac{a}{2} = n\frac{\pi}{2}$

where n is an odd number n=1,3,5,7,...

$$k = n_{odd} \frac{\pi}{a}$$

if
$$A \neq 0$$
 then $B = 0$

[2] leads to
$$sin\left(k\frac{a}{2}\right) = 0$$
 $k\frac{a}{2} = n\pi$

where n is an integer

$$k = n_{even} \frac{\pi}{a}$$

1D infinite potential Schrodinger's wave equation

The general solution ...

$$\psi_n(x) = B \cos(kx) = B \cos\left(n\frac{\pi}{a}x\right)$$
 for nodd

and

$$\psi_n(x) = Asin(kx) = Asin(n\frac{\pi}{a}x)$$
 for n even

n = 1, 2, 3, 4, 5... correspond to the allowed wave functions of the particle

n describes the state of the system

1D infinite potential Schrodinger's wave equation

The constant A and B can be evaluated by normalizing the wave function i.e.,

integrating the wave function between limits of $-\frac{a}{2}$ and $\frac{a}{2}$

$$\int \boldsymbol{\psi}^* \boldsymbol{\psi} dx = \mathbf{1}$$

$$\int_{-a/2}^{a/2} \left[A \sin(\frac{n\pi}{a}x) \right]^2 dx = \frac{A^2}{2} \int_{-a/2}^{a/2} \left[1 - \cos(\frac{2n\pi}{a}x) \right] dx$$

$$\frac{A^2}{2} \left[x - \frac{L}{2n\pi} \sin(\frac{2n\pi}{a}x) \right]_{-a/2}^{a/2} = \frac{A^2}{2} \left[a - 0 \right] = 1 \implies A = \sqrt{\frac{2}{a}}$$

In a very similar way the second wave function can be

normalized to get
$$B = \sqrt{\frac{2}{a}}$$

1D infinite potential Schrodinger's wave equation

The eigen wave function becomes

$$\psi_n(x) = \sqrt{\frac{2}{a}} \cos\left(\frac{n\pi}{a}x\right)$$
 for n odd (even parity)

$$\psi_n(x) = \sqrt{\frac{2}{a}} sin\left(\frac{n\pi}{a}x\right)$$
 for $n \ even$ (odd parity)

The propagation constant
$$k=\sqrt{\frac{2mE}{\hbar^2}}=\frac{n\pi}{a}$$
 is quantized and

hence the momentum and energy of the particle are also quantized.

The energy of the allowed states

of the allowed states
$$E_n = \frac{\hbar^2 k^2}{2m} = \frac{\hbar^2 n^2 \pi^2}{2ma^2} = \frac{\hbar^2 n^2}{8ma^2}$$
 he eigen energy values of the bound particle.

These are the eigen energy values of the bound particle.

Class #17 Quiz....

The concepts which are true of a particle in a box...

- 1. Particle in a box is an example of a bound particle system
- 2. The eigen function of the particle in the second state is an even parity function
- The propagation constant is determined by the width of the box.
- 4. The energy of the particle in the ground state is non zero
- 5. Particle can have any momentum inside the box
- The de Broglie wavelength depends on the size of the box

THANK YOU

Radhakrishnan S, Ph.D.

Professor, Department of Science and Humanities

sradhakrishnan@pes.edu

+91 80 21722683 Extn 759