Worksheet 7.1: Solutions

CO₂-producing reactions

No.	Answer
1	It changes straight from solid to gas without passing through the liquid phase.
2	It dissolves in water to produce a weak acid: $CO_2(g) + H_2O(l) \rightarrow H_2CO_3(aq)$
3	$ \begin{array}{ll} \textbf{a} & C_6H_{12}O_6(aq) + 6O_2(g) \rightarrow 6CO_2(g) + 6H_2O(l) \\ \textbf{b} & \text{In the mitochondria of cells} \end{array} $
4	$n(C_6H_{12}O_6) = \frac{m}{M} = \frac{500}{180.156} = 2.775$ $n(CO_2) = 6 \times n(C_6H_{12}O_6) = 6 \times 2.775 = 16.65 \text{ mol}$ $\therefore m(CO_2) = n \times M = 16.65 \times 44.01 = 732.8 \text{ g}$ $\therefore \text{ per week} = 7 \times 732.8 = 5.13 \times 10^3 \text{ g}$
5	a CaCO ₃ (s) \bot CaO(s) + CO ₂ (g) b CH ₄ (g) + 2H ₂ O(g) → 4H ₂ (g) + CO ₂ (g)
6	a 2HNO ₃ (aq) + Li ₂ CO ₃ (s) → 2LiNO ₃ (aq) + CO ₂ (g) + H ₂ O(l) b $n(\text{Li}_2\text{CO}_3) = \frac{m}{M} = \frac{20.0}{73.892} = 0.2707$ $n(\text{HNO}_3) = 2 \times n(\text{Li}_2\text{CO}_3) = 2 \times 0.2707 = 0.5414 \text{ mol}$ ∴ $V(\text{HNO}_3) = \frac{n}{c} = \frac{0.5414}{0.304} = 1.78 \text{ L}$
7	a $n(CO_2) = \frac{m}{M} = \frac{5.0 \times 10^3}{44.01} = 114$ $n(CH_4) = n(CO_2) = 114$ $\therefore m(CH_4) = n \times M = 114 \times 16.042 = 1.8 \times 10^3 \text{ g} = 1.8 \text{ kg}$ b Combustion/redox
8	a $2C_4H_{10}(g) + 13O_2(g) \rightarrow 8CO_2(g) + 10H_2O(l)$ b $n(C_4H_{10})$ in 2 hours = $\frac{\text{m per sec}}{M} \times \text{time} = \frac{0.0050 \times 60 \times 60 \times 2}{58.12} = 0.619$
	$n(O_2) = \frac{13}{2} \times n(C_4H_{10}) = 4.02$ $m(O_2) = n \times M = 4.02 \times 32.0 = 1.3 \times 10^2 \text{ g}$
9	$H^+(aq) + HCO_3^-(aq) \rightarrow H_2O(l) + CO_2(g)$
10	a