OA-4603 DL EXAM II

Name:	_Steve Mazza	
-------	--------------	--

12. (7 pts) To compare five different formulations of fuel, seven different armored vehicles drove the identical route once with each fuel type. For each vehicle/fuel-type combination a fuel cost-of-operation value was determined. These numbers were analyzed with a standard Two-Factor ANOVA model yielding the table which is partially filled in below. 35-6x4 = 11

		26	WSX	
D.F.	Sums of Squares	Mean Squares	Fs	$F \alpha = .05$
6	82	13,667	3,417	0.0372
4	48	12	3	0.0669
11	44	4		
34	174			
	6	6 82 H 48 II 44	D.F. Sums of Squares Mean Squares 6 82 13,667 4 44 12 11 44 4	D.F. Sums of Squares Mean Squares Fs 6 82 13.667 3,417 4 48 12 3 11 44 4

A) Fill in the missing entries.

B) Making the normal assumptions, would you accept the hypothesis that there is no significant difference between the fuel cost of operations for each <u>vehicle type</u>, with $\alpha = .05$? Why?

Reject due to prabe 0.0372 forvehicle type

13. (10) A reduced regression model for predicting Sonar Detection Range included Water Depth (w), Sensor Modification (s), and Water Depth/SensorMod (ws) Interactions in the form:

$$\hat{Y} = \beta_0 + \beta_1 w + \beta_2 s + \beta_{12} w s + e$$

$$\text{The 2}^k \text{ factor settings, calculated factor effects and the grand mean of the data are below:}$$

Factor	Settings		
Meter Denth (W)	200 ft (-)		
Water Depth (w)	900 ft (+)		
Sensor	Mod I (-)		
Modifications (s)	Mod II (+)		

Factor Effects:	
Grand Mean of Data	41.0
Water Depth (w):	3.8
Sensor Modification (s):	- 5.2
Water/Sensor Interaction (ws)	- 2.4
Water/Sensor Interaction (ws)	- 2.4

1. (3) Determine the coefficients for the reduced Regression Equation:

$$\beta_0 = 41$$
 $\beta_1 = 19$ $\beta_2 = 20$ $\beta_{12} = 19$

2. (5) Predict the result for Run (5) (200 ft and Mod II):

$$9 = 41 + 1.9(-1) - 12.6 - 1.2(-1)$$

= $41 - 1.9 - 2.6 + 1.2 = 37.7$

3. (2) The result for Run (5) was 35.5, what was the residual for Run (5)?