Miejsce na naklejkę z kodem szkoły

MIN-R1A1P-061

ARKUSZ I

STYCZEŃ

ROK 2006

EGZAMIN MATURALNY Z INFORMATYKI

Arkusz I

POZIOM ROZSZERZONY

Czas pracy 90 minut

Instrukcja dla zdającego

- 1. Sprawdź, czy arkusz egzaminacyjny zawiera 8 stron. Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego egzamin.
- 2. Rozwiązania i odpowiedzi zamieść w miejscu na to przeznaczonym.
- 3. Pisz czytelnie. Używaj długopisu/pióra tylko z czarnym tuszem/atramentem.
- 4. Nie używaj korektora, a błędne zapisy wyraźnie przekreśl.
- 5. Pamietaj, że zapisy w brudnopisie nie podlegają ocenie.
- 6. Wypełnij tę część karty odpowiedzi, którą koduje zdający. Nie wpisuj żadnych znaków w części przeznaczonej dla egzaminatora.
- 7. Na karcie odpowiedzi wpisz swoją datę urodzenia i PESEL. Zamaluj pola odpowiadające cyfrom numeru PESEL. Błędne zaznaczenie otocz kółkiem i zaznacz właściwe.

Życzymy powodzenia!

Za rozwiązanie wszystkich zadań można otrzymać

łącznie **40 punktów**

W	ypełr	nia z	dają	су р	rzed	rozj	ocz	ęcie	m pı	acy
		PE	SEI	[, Z]	DA	JA	CE	GO		

KOD ZDAJĄCEGO

Zadanie 1. (13 pkt)

a) Dobierz odpowiednie określenia z listy znaczeń dla podanych terminów:

TERMINY:

A - protokół sieciowy G - tracert / traceroute

B - LAN H - router

C - MAN I - koncentrator (hub)
D - klient-serwer J - przełącznik (switch)

E - peer-to-peer K - modem

F - ping

LISTA ZNACZEŃ:

I	architektura sieci, w której każdy komputer (program) jest albo jednostką pobierającą informacje albo jednostką udostępniającą dane			
II	polecenie wysyłające pakiet informacji do dowolnego komputera w sieci z żądaniem odesłania go do wysyłającego			
III	"język" porozumiewania się komputerów w sieci			
IV	sieć miejska, charakteryzująca się dużą przepustowością, obejmująca swoim zasięgiem pewną ilość sieci lokalnych			
V	steruje przepływem pakietów pomiędzy różnymi sieciami, również rozległymi, wybierając optymalną drogę			
VI	steruje ruchem pakietów w sieci lokalnej, kierując go do odpowiedniego segmentu sieci			
VII	urządzenia zamieniające sygnał analogowy na cyfrowy i na odwrót			
VIII	architektura sieci, w której każde urządzenie może być zarówno klientem, jak i serwerem			
IX	odbiera sygnał od stacji roboczej i przesyła go dalej do wszystkich segmentów sieci			
X	sieć lokalna obejmująca swym zasięgiem niewielki obszar np. firmę, szkołę			
XI	polecenie służące do śledzenia trasy pakietów między komputerem, a wskazanym - testowanym serwerem			

ODPOWIEDZI:

Np. A - III

B –	G
C –	Н

D –

 $E-\ldots\ldots \qquad \qquad J \quad - \ldots \ldots$

 $F-\dots \qquad \qquad K - \dots \dots$

b) Naszkicuj schematy łączenia komputerów w sieciach znanych pod nazwami:

- szyna (magistrala)

- gwiazda

- pierścień

Punktacja:

Część zadania	Maks.
a)	10
b)	3
Razem	13

Zadanie 2. (15 pkt)

Przeanalizuj działanie poniższego algorytmu, jeżeli tablica A zawiera n liczb całkowitych z zakresu <0, k>.

```
for i \leftarrow 0 to k
1
2
            do B[i] \leftarrow 0;
         pozycja ←0;
3
4
         for i \leftarrow 1 to n
5
            do B[A[i]] \leftarrow B[A[i]] + 1;
6
         for i \leftarrow 0 to k
7
             do for j \leftarrow 1 to B[i]
8
                do begin pozycja ← pozycja + 1;
                     A[pozycja] \leftarrow i \text{ end};
9
```

a) Uzupełnij tabelę – określ typy zmiennych: *i, j, A, B, pozycja* i opisz ich przeznaczenie:

Zmienna	Тур	Przeznaczenie
i, j		
A		
В		
pozycja		

b)	Opisz znaczenie czynności wykonywanych w wierszach o numerach:
4-	5 :
•••	
	9:
•••	
•••	

c) Uzupełnij podane niżej zdania:

d) Przeprowadź analizę złożoności czasowej algorytmu i uzupełnij poniższy wniosek.

Załóżmy, że *k* jest ustalone, np. zawsze równe 5. Wówczas:

- złożoność czasowa przedstawionego algorytmu ma charakter: (podkreśl prawidłową odpowiedź)
 - liniowy
 - kwadratowy,
 - sześcienny,
 - wykładniczy;
- symbolicznie złożoność taką można zapisać jako

Punktacja:

Część zadania	Maks.
a)	6
b)	4
c)	3
d)	2
Razem	15

Zadanie 3. (12 pkt)

Obliczanie wartości wielomianu dla zadanej wartości zmiennej można wykonać za pomocą tzw. schematu Hornera. Jednym z możliwych zastosowań schematu Hornera jest przeliczanie liczby zapisanej w dowolnym systemie liczbowym na jej wartość w systemie dziesiętnym.

a) Opisz schemat Hornera, a następnie zapisz w wybranej przez siebie notacji (w postaci schematu blokowego, listy kroków lub w języku programowania) algorytm przeliczania liczby 10-cyfrowej zapisanej w systemie o podstawie n takiej, że $n \in \mathbb{N} \land n \in \{2, 9\}$, na jej wartość w systemie dziesiętnym. W algorytmie wykorzystaj schemat Hornera. Opisz znaczenie użytych zmiennych.

Dane wejściowe:

n − podstawa systemu liczbowego, w którym podana jest liczba,

tablica C[0..9] zawierająca 10 liczb odpowiadających kolejnym cyfrom liczby zapisanej w systemie o podstawie n. Cyfry podane są od najbardziej do najmniej znaczącej, tzn. że C[0]jest liczbą odpowiadającą najbardziej znaczącej cyfrze.

w – wartość liczby przeliczona na system dziesiętny.

Przykład:

Dane wejściowe:

n=2

C=[1,0,0,1,0,0,1,1,1,1]

Wynik:

w = 591

Opis schematu Hornera

b) Uzupełnij zdanie:

Podczas obliczania wartości liczby 10-cyfrowej za pomocą schematu Hornera zostanie wykonanych dodawań i mnożeń.

Punktacja:

Część zadania	Maks.
a)	10
b)	2
Razem	12

BRUDNOPIS