Grundbegriffe der Informatik Einheit 11: Graphen

Thomas Worsch

Karlsruher Institut für Technologie, Fakultät für Informatik

Wintersemester 2009/2010

Graphische Darstellung von Zusammenhängen

schon an vielen Stellen Gebilde durch Linien miteinander verbunden, z. B.

- in dieser Vorlesung
 - Pfeile zwischen Mengen
 - Huffman-Bäume
- ▶ in "Programmieren"
 - "Kästen" für Objekte und Klassen, Pfeile dazwischen
- im realen Leben
 - Stadtpläne, Landkarten, . . .

Nun

- Untersuchungsgegenstand
- manchmal mit Richtungen, manchmal ohne
- manchmal zusätzliche Beschriftunger

Graphische Darstellung von Zusammenhängen

schon an vielen Stellen Gebilde durch Linien miteinander verbunden, z. B.

- in dieser Vorlesung
 - Pfeile zwischen Mengen
 - ► Huffman-Bäume
- ▶ in "Programmieren"
 - "Kästen" für Objekte und Klassen, Pfeile dazwischen
- ▶ im realen Leben
 - Stadtpläne, Landkarten, . . .

Nun

- Untersuchungsgegenstand
- manchmal mit Richtungen, manchmal ohne
- manchmal zusätzliche Beschriftungen

Königsberg, 1652 (heute Kaliningrad)

Leonard Euler (1736): Es gibt keinen Spaziergang, bei dem man über jede Brücke genau einmal geht.

Königsberg, 1652 (heute Kaliningrad)

Leonard Euler (1736): Es gibt keinen Spaziergang, bei dem man über jede Brücke genau einmal geht.

Gerichtete Graphen

Graphen und Teilgraphen Pfade und Erreichbarkeit Isomorphie von Graphen Ein Blick zurück auf Relationen

Ungerichtete Graphen

Ubertragung der Grundbegriffe aus dem gerichteten Fall Eine Anmerkung zu Relationen

Graphen mit Knoten- oder Kantenmarkierungen

Gewichtete Graphen

Überblick 4/58

Gerichtete Graphen

Graphen und Teilgraphen Pfade und Erreichbarkeit Isomorphie von Graphen Ein Blick zurück auf Relationen

Ungerichtete Graphen

Übertragung der Grundbegriffe aus dem gerichteten Fall Eine Anmerkung zu Relationen

Graphen mit Knoten- oder Kantenmarkierunger Gewichtete Graphen

Gerichtete Graphen

Graphen und Teilgraphen

Pfade und Erreichbarkeit Isomorphie von Graphen Ein Blick zurück auf Relationen

Ungerichtete Graphen

Ubertragung der Grundbegriffe aus dem gerichteten Fall Eine Anmerkung zu Relationen

Graphen mit Knoten- oder Kantenmarkierunger Gewichtete Graphen

Gerichteter Graph

gerichteter Graph

- festgelegt durch ein Paar G = (V, E)
- V nichtleere, endliche Knotenmenge
- ► E Kantenmenge; darf leer sein
- ▶ $E \subseteq V \times V$ (also auch endlich)

üblich: graphische Darstellung, also nicht

$$V = \{0, 1, 2, 3, 4, 5\}$$

$$E = \{(0, 1), (0, 3), (1, 2), (1, 3), (4, 5), (5, 4)\}$$

sondern . . .

Beispielgraph

▶ statt

$$V = \{0, 1, 2, 3, 4, 5\}$$

$$E = \{(0, 1), (0, 3), (1, 2), (1, 3), (4, 5), (5, 4)\}$$

► lieber

Beispielgraph

statt

$$V = \{0, 1, 2, 3, 4, 5\}$$

$$E = \{(0, 1), (0, 3), (1, 2), (1, 3), (4, 5), (5, 4)\}$$

▶ lieber

oder

der gleiche Beispielgraph (nur anders hingemalt)

Anordnung der Knoten in der Darstellung irrelevant zwei Darstellungen des gleichen Graphen:

Beispielgraph 2: ein Baum

- G = (V, E) mit
 - $V = \{1\} \left(\bigcup_{i=0}^{2} \{0, 1\}^{i} \right)$ $= \{1, 10, 11, 100, 101, 110, 111\}$ $E = \{(w, wx) \mid x \in \{0, 1\} \land w \in V \land w \in V \}$
 - $E = \{(w, wx) \mid x \in \{0, 1\} \land w \in V \land wx \in V\}$ $= \{(1, 10), (1, 11), (10, 100), (10, 101), (11, 110), (11, 111)\}$
- graphisch

Beispielgraph 3: ein de Bruijn-Graph

- G = (V, E) mit
 - $V = \{0,1\}^3 = \{000, 001, 010, 011, 100, 101, 110, 111\}$
 - ► $E = \{(xw, wy) \mid x, y \in \{0, 1\} \land w \in \{0, 1\}^2\} = \{(000, 000), \dots, (010, 101), \dots\}$
- graphisch

- ▶ Kante der Form $(x, x) \in E$ heißt *Schlinge*
- ► Graph ohne Schlingen heißt schlingenfrei

Teilgraph

$$G' = (V', E')$$
 ist ein *Teilgraph* von $G = (V, E)$, wenn

- $ightharpoonup V' \subseteq V$
- \triangleright $E' \subseteq E \cap V' \times V'$,
- also
 - Knoten- bzw. Kantenmenge von G' muss Teilmenge von Knoten- bzw. Kantenmenge von G sein, und
 - ightharpoonup die Endpunkte jeder Kante von E' müssen auch zu V' gehören.

Teilgraph: Beispiel

ein Teilgraph des de Bruijn-Graphen von vorhin:

Gerichtete Graphen

Graphen und Teilgraphen

Pfade und Erreichbarkeit

Isomorphie von Graphen
Ein Blick zurück auf Relationen

Ungerichtete Graphen

Ubertragung der Grundbegriffe aus dem gerichteten Fall Eine Anmerkung zu Relationen

Graphen mit Knoten- oder Kantenmarkierunger Gewichtete Graphen

Pfade

- schreibe $M^{(+)}$ für die Menge aller nichtleeren Listen von Elementen aus M.
- ▶ Pfad in einem gerichteten Graphen
 - ▶ nichtleere Liste $p = (v_0, ..., v_n) \in V^{(+)}$ von Knoten
 - ▶ wobei für alle $i \in \mathbb{G}_n$ gilt: $(v_i, v_{i+1}) \in E$
- ▶ Länge eines Pfades: Anzahl n = |p| 1 der Kanten (!)
- ▶ Wenn $p = (v_0, ..., v_n)$ ein Pfad ist, heißt v_n von v_0 aus erreichbar
- ▶ Pfad $(v_0, ..., v_n)$ heißt wiederholungsfrei, wenn gilt:
 - ▶ Die Knoten v_0, \ldots, v_{n-1} sind paarweise verschieden und
 - ightharpoonup die Knoten v_1, \ldots, v_n sind paarweise verschieden.
 - \triangleright v_0 und v_n dürfen gleich sein
- ▶ Pfad mit $v_0 = v_n$ heißt geschlossen oder auch Zyklus
- ein wiederholungsfreier Zyklus heißt auch einfacher Zyklus

Pfade

- ▶ schreibe $M^{(+)}$ für die Menge aller nichtleeren Listen von Elementen aus M.
- Pfad in einem gerichteten Graphen
 - ▶ nichtleere Liste $p = (v_0, ..., v_n) \in V^{(+)}$ von Knoten
 - ▶ wobei für alle $i \in \mathbb{G}_n$ gilt: $(v_i, v_{i+1}) \in E$
- ▶ Länge eines Pfades: Anzahl n = |p| 1 der Kanten (!)
- ▶ Wenn $p = (v_0, ..., v_n)$ ein Pfad ist, heißt v_n von v_0 aus erreichbar
- ▶ Pfad $(v_0, ..., v_n)$ heißt wiederholungsfrei, wenn gilt:
 - ▶ Die Knoten v_0, \ldots, v_{n-1} sind paarweise verschieden und
 - die Knoten v_1, \ldots, v_n sind paarweise verschieden.
 - ▶ v₀ und v_n dürfen gleich sein
- ▶ Pfad mit $v_0 = v_n$ heißt geschlossen oder auch Zyklus
- ein wiederholungsfreier Zyklus heißt auch einfacher Zyklus

- ▶ (100) ist Pfad der Länge 0
- ▶ (100,001) ist Pfad der Länge 1
- ▶ (100,000,001) ist Pfad der Länge 2
- ► (110, 101, 011, 111, 111, 111) ist Pfad der Länge 5
- ▶ (011, 110, 101, 011) ist einfacher Zyklus der Länge 3.

- ▶ (100) ist Pfad der Länge 0
- ▶ (100,001) ist Pfad der Länge 1
- ▶ (100,000,001) ist Pfad der Länge 2
- ► (110, 101, 011, 111, 111, 111) ist Pfad der Länge 5
- ▶ (011, 110, 101, 011) ist einfacher Zyklus der Länge 3.

- ▶ (100) ist Pfad der Länge 0
- ▶ (100,001) ist Pfad der Länge 1
- ▶ (100,000,001) ist Pfad der Länge 2
- ► (110, 101, 011, 111, 111, 111) ist Pfad der Länge 5
- ▶ (011, 110, 101, 011) ist einfacher Zyklus der Länge 3.

- ▶ (100) ist Pfad der Länge 0
- ▶ (100,001) ist Pfad der Länge 1
- ▶ (100,000,001) ist Pfad der Länge 2
- ► (110, 101, 011, 111, 111, 111) ist Pfad der Länge 5
- ▶ (011, 110, 101, 011) ist einfacher Zyklus der Länge 3.

- ▶ (100) ist Pfad der Länge 0
- ▶ (100,001) ist Pfad der Länge 1
- ▶ (100,000,001) ist Pfad der Länge 2
- ► (110, 101, 011, 111, 111, 111) ist Pfad der Länge 5
- ▶ (011, 110, 101, 011) ist einfacher Zyklus der Länge 3.

- ▶ (100) ist Pfad der Länge 0
- ▶ (100,001) ist Pfad der Länge 1
- ▶ (100,000,001) ist Pfad der Länge 2
- ► (110, 101, 011, 111, 111, 111) ist Pfad der Länge 5
- ▶ (011, 110, 101, 011) ist einfacher Zyklus der Länge 3.

strenger Zusammenhang

- ▶ gerichteter Graph heißt streng zusammenhängend, wenn für jedes Knotenpaar $(x, y) \in V^2$ einen Pfad in G von x nach y existiert
- ► Beispiel:

 hier existiert sogar ein einfacher Zyklus, der alle Knoten enthält

strenger Zusammenhang

- ▶ gerichteter Graph heißt streng zusammenhängend, wenn für jedes Knotenpaar $(x, y) \in V^2$ einen Pfad in G von x nach y existiert
- Beispiel:

 hier existiert sogar ein einfacher Zyklus, der alle Knoten enthält

strenger Zusammenhang

- ▶ gerichteter Graph heißt streng zusammenhängend, wenn für jedes Knotenpaar $(x, y) \in V^2$ einen Pfad in G von x nach y existiert
- Beispiel:

 hier existiert sogar ein einfacher Zyklus, der alle Knoten enthält (gerichteter) Baum ist ein Graph G = (V, E), in dem es einen Knoten $r \in V$ gibt mit der Eigenschaft:

- ▶ Zu jedem $x \in V$ gibt es in G genau einen Pfad von r nach x.
- r heißt die Wurzel des Baumes.
 - ▶ gleich: die Wurzel ist immer eindeutig
- Beispiel:

(gerichteter) Baum ist ein Graph G = (V, E), in dem es einen Knoten $r \in V$ gibt mit der Eigenschaft:

- ▶ Zu jedem $x \in V$ gibt es in G genau einen Pfad von r nach x.
- r heißt die Wurzel des Baumes.
 - gleich: die Wurzel ist immer eindeutig
- ▶ Beispiel: Die Wurzel ist Knoten 1.

Eindeutigkeit der Wurzel

Lemma. Die Wurzel eines gerichteten Baumes ist eindeutig.

Beweis

- ► Angenommen, *r* und *r'* wären verschiedene Wurzeln
- Dann gäbe es
 - einen Pfad von r nach r', weil r Wurzel ist, und
 - einen Pfad von r' nach r, weil r' Wurzel ist.
- "Hintereinanderhängen" dieser Pfade der Länge > 0
 - ergäbe Pfad von r nach r,
 - ▶ der vom Pfad (r) verschieden wäre.
- ▶ Also wäre der Pfad von *r* nach *r* gar nicht eindeutig.

Knotengrad

Für gerichtete Graphen definiert man:

► *Eingangsgrad* eines Knoten *y* ist

$$d^{-}(y) = |\{x \mid (x, y) \in E\}|$$

Ausgangsgrad eines Knoten x ist

$$d^+(x) = |\{y \mid (x, y) \in E\}|$$

Grad eines Knotens ist

$$d(x) = d^-(x) + d^+(x)$$

Bäume: Blätter und innere Knoten

bei einem Baum heißen

- ► Knoten mit Ausgangsgrad = 0 *Blätter*
- ► Knoten mit Ausgangsgrad > 0 innere Knoten

Gerichtete Graphen

Graphen und Teilgraphen Pfade und Erreichbarkeit

Isomorphie von Graphen

Ein Blick zurück auf Relationen

Ungerichtete Graphen

Übertragung der Grundbegriffe aus dem gerichteten Fall Eine Anmerkung zu Relationen

Graphen mit Knoten- oder Kantenmarkierunger Gewichtete Graphen

Was ist die "Struktur" eines Graphen?

- ▶ Das, was gleich bleibt, wenn man die Knoten umbenennt, man definiere also *Umbenennung der Knoten*
- ▶ Graph $G_1 = (V_1, E_1)$ heißt isomorph zu Graph $G_2 = (V_2, E_2)$, wenn es eine Bijektion $f: V_1 \to V_2$ gibt mit der Eigenschaft:

$$\forall x \in V_1 : \forall y \in V_1 : (x, y) \in E_1 \iff (f(x), f(y)) \in E_2$$

- ▶ f heißt dann auch ein (Graph-)Isomorphismus
- ► Beispiel:

Was ist die "Struktur" eines Graphen?

- ▶ Das, was gleich bleibt, wenn man die Knoten umbenennt, man definiere also Umbenennung der Knoten
- ▶ Graph $G_1 = (V_1, E_1)$ heißt *isomorph* zu Graph $G_2 = (V_2, E_2)$, wenn es eine Bijektion $f : V_1 \to V_2$ gibt mit der Eigenschaft:

$$\forall x \in V_1 : \forall y \in V_1 : (x, y) \in E_1 \iff (f(x), f(y)) \in E_2$$

- ▶ f heißt dann auch ein (Graph-)Isomorphismus
- ► Beispiel:

und

Eigenschaften von Graphisomorphie

- ▶ Wenn G_1 isomorph zu G_2 , dann auch G_2 isomorph zu G_1 :
 - ▶ f^{-1} leistet das Gewünschte.
- ▶ Jeder Graph ist isomorph zu sich selbst:
 - ightharpoonup wähle $f = \mathrm{Id}_V$
- ▶ Wenn G_1 isomorph zu G_2 (dank f) und G_2 isomorph zu G_3 (dank g), dann auch G_1 isomorph zu G_3 :
 - ▶ betrachte die Abbildung g ∘ f

Eigenschaften von Graphisomorphie

- ▶ Wenn G_1 isomorph zu G_2 , dann auch G_2 isomorph zu G_1 :
 - ▶ f^{-1} leistet das Gewünschte.
- Jeder Graph ist isomorph zu sich selbst:
 - wähle $f = \operatorname{Id}_V$
- Wenn G_1 isomorph zu G_2 (dank f) und G_2 isomorph zu G_3 (dank g), dann auch G_1 isomorph zu G_3 :
 - ▶ betrachte die Abbildung g ∘ f

Eigenschaften von Graphisomorphie

- ▶ Wenn G_1 isomorph zu G_2 , dann auch G_2 isomorph zu G_1 :
 - ▶ f^{-1} leistet das Gewünschte.
- Jeder Graph ist isomorph zu sich selbst:
 - wähle $f = \operatorname{Id}_V$
- ▶ Wenn G_1 isomorph zu G_2 (dank f) und G_2 isomorph zu G_3 (dank g), dann auch G_1 isomorph zu G_3 :
 - ▶ betrachte die Abbildung g ∘ f

Überblick

Gerichtete Graphen

Graphen und Teilgraphen Pfade und Erreichbarkeit Isomorphie von Graphen

Ein Blick zurück auf Relationen

Ungerichtete Graphen

Ubertragung der Grundbegriffe aus dem gerichteten Fall Eine Anmerkung zu Relationen

Graphen mit Knoten- oder Kantenmarkierunger Gewichtete Graphen

- ▶ G = (V, E) mit $E \subseteq V \times V$
- ▶ Also ist *E* binäre Relation auf *V*.
- Frage: Bedeutung von E^i ?
- ► Antwort: Zusammenhang mit Pfaden der Länge i
- ▶ Betrachten zunächst den Fall i = 2:
 - $ightharpoonup E^2 = E \circ E^1 = E \circ E \circ \mathrm{Id} = E \circ E$, wobei

$$E \circ E = \{(x, z) \in V \times V \mid \exists y \in V : (x, y) \in E \land (y, z) \in E\}$$

▶ Pfad der Länge 2: Knotenliste $p = (v_0, v_1, v_2)$ mit der Eigenschaft, dass $(v_0, v_1) \in E \land (v_1, v_2) \in E$.

Also:

► Ein Paar von Knoten ist *genau dann* in der Relation *E*², *wenn* die beiden durch Pfad der Länge 2 verbunden sind.

- ▶ G = (V, E) mit $E \subseteq V \times V$
- ▶ Also ist *E* binäre Relation auf *V*.
- Frage: Bedeutung von E^i ?
- ► Antwort: Zusammenhang mit Pfaden der Länge i
- ▶ Betrachten zunächst den Fall i = 2:
 - $ightharpoonup E^2 = E \circ E^1 = E \circ E \circ \mathrm{Id} = E \circ E$, wobei

$$E \circ E = \{(x, z) \in V \times V \mid \exists y \in V : (x, y) \in E \land (y, z) \in E\}$$

▶ Pfad der Länge 2: Knotenliste $p = (v_0, v_1, v_2)$ mit der Eigenschaft, dass $(v_0, v_1) \in E \land (v_1, v_2) \in E$.

Also:

▶ Ein Paar von Knoten ist genau dann in der Relation E^2 , wenn die beiden durch Pfad der Länge 2 verbunden sind.

- ▶ G = (V, E) mit $E \subseteq V \times V$
- ▶ Also ist *E* binäre Relation auf *V*.
- Frage: Bedeutung von E^i ?
- Antwort: Zusammenhang mit Pfaden der Länge i
- ▶ Betrachten zunächst den Fall i = 2:
 - $E^2 = E \circ E^1 = E \circ E \circ \mathrm{Id} = E \circ E$, wobei

$$E \circ E = \{(x,z) \in V \times V \mid \exists y \in V : (x,y) \in E \land (y,z) \in E\}$$

▶ Pfad der Länge 2: Knotenliste $p = (v_0, v_1, v_2)$ mit der Eigenschaft, dass $(v_0, v_1) \in E \land (v_1, v_2) \in E$.

Also:

▶ Ein Paar von Knoten ist *genau dann* in der Relation E^2 , *wenn* die beiden durch Pfad der Länge 2 verbunden sind.

- ▶ G = (V, E) mit $E \subseteq V \times V$
- ▶ Also ist *E* binäre Relation auf *V*.
- Frage: Bedeutung von E^i ?
- Antwort: Zusammenhang mit Pfaden der Länge i
- ▶ Betrachten zunächst den Fall i = 2:
 - $E^2 = E \circ E^1 = E \circ E \circ \mathrm{Id} = E \circ E$, wobei

$$E \circ E = \{(x,z) \in V \times V \mid \exists y \in V : (x,y) \in E \land (y,z) \in E\}$$

▶ Pfad der Länge 2: Knotenliste $p = (v_0, v_1, v_2)$ mit der Eigenschaft, dass $(v_0, v_1) \in E \land (v_1, v_2) \in E$.

Also:

▶ Ein Paar von Knoten ist *genau dann* in der Relation E^2 , *wenn* die beiden durch Pfad der Länge 2 verbunden sind.

- ▶ Ein Paar von Knoten genau dann in der Relation E^2 , wenn die beiden durch Pfad der Länge 2 verbunden sind.
- Man sieht leicht:
 Das Analoge gilt für i = 0 und i = 1.
 Spätestens vollständige Induktion lehrt
- ▶ **Lemma.** Es sei G = (V, E) ein gerichteter Graph. Für alle $i \in \mathbb{N}_0$ gilt: Ein Paar von Knoten (x, y) ist genau dann in der Relation E^i , wenn x und y in G durch einen Pfad der Länge i miteinander verbunden sind.
- **Korollar.** Es sei G = (V, E) ein gerichteter Graph. Ein Paar von Knoten (x, y) ist genau dann in der Relation E^* , wenn x und y in G durch einen Pfad (evtl. der Länge 0) miteinander verbunden sind
- ▶ **Korollar.** Ein gerichteter Graph G = (V, E) ist genau dann streng zusammenhängend, wenn $E^* = V \times V$ ist.

- ▶ Ein Paar von Knoten genau dann in der Relation E^2 , wenn die beiden durch Pfad der Länge 2 verbunden sind.
- Man sieht leicht:
 Das Analoge gilt für i = 0 und i = 1.
 Spätestens vollständige Induktion lehrt:
- ▶ **Lemma.** Es sei G = (V, E) ein gerichteter Graph. Für alle $i \in \mathbb{N}_0$ gilt: Ein Paar von Knoten (x, y) ist genau dann in der Relation E^i , wenn x und y in G durch einen Pfad der Länge i miteinander verbunden sind.
- ▶ Korollar. Es sei G = (V, E) ein gerichteter Graph. Ein Paar von Knoten (x, y) ist genau dann in der Relation E^* , wenn x und y in G durch einen Pfad (evtl. der Länge 0) miteinander verbunden sind.
- ▶ **Korollar.** Ein gerichteter Graph G = (V, E) ist genau dann streng zusammenhängend, wenn $E^* = V \times V$ ist.

- ▶ Ein Paar von Knoten genau dann in der Relation E^2 , wenn die beiden durch Pfad der Länge 2 verbunden sind.
- Man sieht leicht:
 Das Analoge gilt für i = 0 und i = 1.
 Spätestens vollständige Induktion lehrt:
- ▶ **Lemma.** Es sei G = (V, E) ein gerichteter Graph. Für alle $i \in \mathbb{N}_0$ gilt: Ein Paar von Knoten (x, y) ist genau dann in der Relation E^i , wenn x und y in G durch einen Pfad der Länge i miteinander verbunden sind.
- ▶ Korollar. Es sei G = (V, E) ein gerichteter Graph. Ein Paar von Knoten (x, y) ist genau dann in der Relation E^* , wenn x und y in G durch einen Pfad (evtl. der Länge 0) miteinander verbunden sind.
- ▶ **Korollar.** Ein gerichteter Graph G = (V, E) ist genau dann streng zusammenhängend, wenn $E^* = V \times V$ ist.

- ▶ Ein Paar von Knoten genau dann in der Relation E^2 , wenn die beiden durch Pfad der Länge 2 verbunden sind.
- Man sieht leicht:
 Das Analoge gilt für i = 0 und i = 1.
 Spätestens vollständige Induktion lehrt:
- ▶ **Lemma.** Es sei G = (V, E) ein gerichteter Graph. Für alle $i \in \mathbb{N}_0$ gilt: Ein Paar von Knoten (x, y) ist genau dann in der Relation E^i , wenn x und y in G durch einen Pfad der Länge i miteinander verbunden sind.
- ▶ Korollar. Es sei G = (V, E) ein gerichteter Graph. Ein Paar von Knoten (x, y) ist genau dann in der Relation E^* , wenn x und y in G durch einen Pfad (evtl. der Länge 0) miteinander verbunden sind.
- ▶ **Korollar.** Ein gerichteter Graph G = (V, E) ist genau dann streng zusammenhängend, wenn $E^* = V \times V$ ist.

Was ist wichtig

Das sollten Sie mitnehmen:

- gerichtete Graphen drücken Beziehungen aus (Relationen)
- Pfade
- strenger Zusammenhang
- Bäume

Das sollten Sie üben:

- ▶ Benutzung der neuen Begriffe beim Reden
- Malen von Graphen
- sehen, wann Graphen isomorph sind

Überblick

Gerichtete Grapher

Graphen und Teilgraphen Pfade und Erreichbarkeit Isomorphie von Graphen Ein Blick zurück auf Relationen

Ungerichtete Graphen

Übertragung der Grundbegriffe aus dem gerichteten Fall Eine Anmerkung zu Relationen

Graphen mit Knoten- oder Kantenmarkierunger Gewichtete Graphen

Überblick

Gerichtete Grapher

Graphen und Teilgraphen Pfade und Erreichbarkeit Isomorphie von Graphen Ein Blick zurück auf Relationen

Ungerichtete Graphen

Übertragung der Grundbegriffe aus dem gerichteten Fall Eine Anmerkung zu Relationen

Graphen mit Knoten- oder Kantenmarkierungen Gewichtete Graphen

Graphen ohne Richtung

- ▶ Manchmal gibt es in einem Graphen zu jeder Kante $(x, y) \in E$ auch die Kante $(y, x) \in E$ in umgekehrter Richtung
- ▶ dann oft graphische Darstellung der Kanten (x, y) und (y, x) nur durch einen Strich ohne Pfeilspitzen
- Man spricht dann auch nur von einer Kante.
- Beispiel

Ungerichtete Graphen: formal

Ein *ungerichteter Graph* ist eine Struktur U = (V, E) mit

- V: endliche nichtleere Menge von Knoten
- ► E: Menge von Kanten mit

$$E \subseteq \{ \{x, y\} \mid x \in V \land y \in V \}$$

- adjazente Knoten: durch eine Kante miteinander verbunden
- Schlinge
 - ► Kante mit identischen Start- und Zielknoten
 - formal ergibt sich $\{x, y\}$ mit x = y, also einfach $\{x\}$
- Graph ohne Schlingen heißt schlingenfrei

Teilgraph im ungerichteten Fall

U' = (V', E') ist *Teilgraph* eines ungerichteten Graphen U = (V, E), wenn

- $ightharpoonup V' \subseteq V$ und
- $E' \subseteq E \cap \{ \{x,y\} \mid x,y \in V' \}.$
- also
 - ► Knoten- bzw. Kantenmenge von *G'* muss Teilmenge von Knoten- bzw. Kantenmenge von *G* sein, und
 - ightharpoonup die Endpunkte jeder Kante von E' müssen auch zu V' gehören.

Wege

- ► Weg in einem ungerichteten Graphen
 - ▶ nichtleere Liste $p = (v_0, ..., v_n) \in V^{(+)}$ von Knoten
 - ▶ wobei für alle $i \in \mathbb{G}_n$ gilt: $\{v_i, v_{i+1}\} \in E$
- ▶ Länge eines Weges: Anzahl n = |p| 1 der Kanten (!)
- ▶ Wenn $p = (v_0, ..., v_n)$ ein Weg ist, heißt v_n von v_0 aus erreichbar
- ▶ Weg $(v_0, ..., v_n)$ heißt wiederholungsfrei, wenn gilt:
 - ▶ Die Knoten v_0, \ldots, v_{n-1} sind paarweise verschieden und
 - die Knoten v_1, \ldots, v_n sind paarweise verschieden.
 - \triangleright v_0 und v_n dürfen gleich sein

- ▶ im gerichteten Fall:
 - E binäre Relation auf V
 - ightharpoonup alle E^i und E^* haben anschauliche Bedeutung
- ▶ im ungerichteten Fall: E keine binäre Relation, aber:
- ▶ zu U = (V, E) definiere Kantenrelation $E_g \subseteq V \times V$:

$$E_g = \{(x, y) \mid \{x, y\} \in E\}$$

- ▶ $G = (V, E_g)$ ist der zu U gehörende gerichtete Graph mit gleicher Knotenmenge V wie U.
- ► Wenn in *U* Knoten *x* und *y* durch Kante verbunden sind, dann gibt es in *G*
 - \blacktriangleright Kante (x, y) von x nach y und
 - ► Kante (y, x) von y nach x (denn $\{x, y\} = \{y, x\}$).

- ▶ im gerichteten Fall:
 - E binäre Relation auf V
 - ightharpoonup alle E^i und E^* haben anschauliche Bedeutung
- ▶ im ungerichteten Fall: E keine binäre Relation, aber:
- ▶ zu U = (V, E) definiere Kantenrelation $E_g \subseteq V \times V$:

$$E_g = \{(x, y) \mid \{x, y\} \in E\}$$

- ▶ $G = (V, E_g)$ ist der zu U gehörende gerichtete Graph mit gleicher Knotenmenge V wie U.
- ► Wenn in *U* Knoten *x* und *y* durch Kante verbunden sind, dann gibt es in *G*
 - ► Kante (x, y) von x nach y und
 - ► Kante (y, x) von y nach x (denn $\{x, y\} = \{y, x\}$).

- im gerichteten Fall:
 - E binäre Relation auf V
 - ightharpoonup alle E^i und E^* haben anschauliche Bedeutung
- ▶ im ungerichteten Fall: E keine binäre Relation, aber:
- ▶ zu U = (V, E) definiere Kantenrelation $E_g \subseteq V \times V$:

$$E_g = \{(x, y) \mid \{x, y\} \in E\}$$

- ▶ $G = (V, E_g)$ ist der zu U gehörende gerichtete Graph mit gleicher Knotenmenge V wie U.
- ► Wenn in *U* Knoten *x* und *y* durch Kante verbunden sind, dann gibt es in *G*
 - \blacktriangleright Kante (x, y) von x nach y und
 - ► Kante (y, x) von y nach x (denn $\{x, y\} = \{y, x\}$).

- im gerichteten Fall:
 - E binäre Relation auf V
 - ightharpoonup alle E^i und E^* haben anschauliche Bedeutung
- ▶ im ungerichteten Fall: E keine binäre Relation, aber:
- ▶ zu U = (V, E) definiere Kantenrelation $E_g \subseteq V \times V$:

$$E_g = \{(x, y) \mid \{x, y\} \in E\}$$

- ▶ $G = (V, E_g)$ ist der zu U gehörende gerichtete Graph mit gleicher Knotenmenge V wie U.
- ▶ Wenn in *U* Knoten *x* und *y* durch Kante verbunden sind, dann gibt es in *G*
 - ▶ Kante (x, y) von x nach y und
 - ► Kante (y, x) von y nach x (denn $\{x, y\} = \{y, x\}$).

Zusammenhang

• ungerichteter Graph (V, E) heißt zusammenhängend, wenn der zugehörige gerichtete Graph (V, E_g) streng zusammenhängend ist.

Gerichtete und ungerichtete Graphen: hin und her

nun umgekehrt:

▶ Ist G = (V, E) ein gerichteter Graph, dann definiere

$$E_u = \{ \{x, y\} \mid (x, y) \in E \}$$

- $ightharpoonup U = (V, E_u)$ ist der zu G gehörige ungerichtete Graph
- ▶ *U* entsteht aus *G* durch "Entfernen" der Pfeilspitzen

ungerichtete Bäume

- ungerichteter Graph U = (V, E) heißt ein (ungerichteter) Baum, wenn es einen gerichteten Baum G = (V, E') gibt mit $E = E'_u$.
- Beispiele: zwei Bäume

ungerichtete Bäume

- ungerichteter Graph U = (V, E) heißt ein (ungerichteter) Baum, wenn es einen gerichteten Baum G = (V, E') gibt mit $E = E'_u$.
- Beispiele: zwei Bäume

Ungerichtete Bäume

- Aus verschiedenen gerichteten Bäumen entsteht durch weglassen der Pfeilspitzen der gleiche ungerichtete Baum.
- Wurzel
 - gerichteter Fall: Wurzel leicht zu identifizieren.
 - ungerichteter Fall:
 - Von jedem Knoten führt ein Weg (sogar viele) zu jedem anderen Knoten.
 - trotzdem manchmal ausgezeichneter Knoten "irgendwie klar"
 - falls nötig, explizit dazu sagen

Knotengrad

- bei ungerichteten Graphen ein heikles Thema:
 - Was macht man mit Schlingen?
 - ▶ in der Literatur: verschiedene Vorgehensweisen
- ▶ Der *Grad* eines Knotens $x \in V$ in einem ungerichteten Graphen ist

$$d(x) = |\{y \mid y \neq x \land \{x, y\} \in E\}| + \begin{cases} 2 & \text{falls } \{x, x\} \in E \\ 0 & \text{sonst} \end{cases}$$

Überblick

Gerichtete Graphen

Graphen und Teilgraphen Pfade und Erreichbarkeit Isomorphie von Graphen Ein Blick zurück auf Relationen

Ungerichtete Graphen

Übertragung der Grundbegriffe aus dem gerichteten Fall Eine Anmerkung zu Relationen

Graphen mit Knoten- oder Kantenmarkierungen Gewichtete Graphen

Symmetrische Relationen

- ▶ Kantenrelation eines ungerichteten Graphen hat die Eigenschaft: Wenn $(x,y) \in E_g$, dann immer auch $(y,x) \in E_g$.
- So etwas kommt öfter vor und verdient einen Namen:
- ▶ Relation $R \subseteq M \times M$ heißt symmetrisch, wenn für alle $x \in M$ und $y \in M$ gilt:

$$(x,y) \in R \Longrightarrow (y,x) \in R$$
.

Äquivalenzrelationen

- ► Eine Relation, die
 - reflexiv,
 - transitiv und
 - symmetrisch

ist, heißt Äquivalenzrelation.

Beispiel: Isomorphie von Graphen

Was ist wichtig

Das sollten Sie mitnehmen:

- ungerichtete Graphen:
 - Unterschiede zu gerichteten Graphen
 - Gemeinsamkeiten mit gerichteten Graphen

Das sollten Sie üben:

- Benutzung der Begriffe
- ▶ Malen von Graphen, hübsche und hässliche

Überblick

Gerichtete Grapher

Graphen und Teilgraphen Pfade und Erreichbarkeit Isomorphie von Graphen Ein Blick zurück auf Relationen

Ungerichtete Graphen

Übertragung der Grundbegriffe aus dem gerichteten Fall Eine Anmerkung zu Relationen

Graphen mit Knoten- oder Kantenmarkierungen Gewichtete Graphen

Beschriftungen

- Manchmal beinhaltet die Graphstruktur nicht alle Informationen, die von Interesse sind.
 - bei Huffman-Bäumen: Symbole als Beschriftungen an den Kanten, Zahlen als Gewichte an den Knoten
 - ▶ Straßenkarten: Entfernungsangaben an Kanten
 - **.**..
- ► Ein knotenmarkierter Graph ist ein Graph G = (V, E) (gerichtet oder ungerichtet), bei dem zusätzlich
 - ▶ eine Menge *M_V* von (*Knoten-*)*Markierungen* und
 - lacktriangleright eine Markierungsfunktion $m_V:V o M_V$

gegeben sind.

- ► Ein kantenmarkierter Graph ist ein Graph G = (V, E) (gerichtet oder ungerichtet), bei dem zusätzlich
 - ▶ eine Menge *M_E* von (Kanten-)Markierungen und
 - eine Markierungsfunktion $m_E : E \rightarrow M_E$

gegeben sind.

weitere Beispiele für allgemeine Markierungen

- Landkarte als Graph
 - Jeder Knoten entspricht einem Land.
 - ► Eine Kante verbindet zwei verschiedene Knoten, wenn die repräsentierten Länder "benachbart sind", d. h. ein Stück gemeinsame Grenzen haben.
- Färbung der Landkarte:
 - benachbarte Länder in verschiedenen Farben gefärbt
- Färbung des Graphen:
 - adjazente Knoten haben verschiedenen Farben als Markierung
- Färbung $m_V:V\to M_V$ heißt *legal*, wenn gilt

$$\{x,y\} \in E \Longrightarrow m_V(x) \neq m_V(y)$$

- ▶ Wieviele Farben braucht man für eine legale Färbung?
 - ▶ höchstens |V|
 - ▶ mindestens ?
 - dieses Problem taucht in Compilern wieder auf . . .

weitere Beispiele für allgemeine Markierungen

- ► Landkarte als Graph
 - Jeder Knoten entspricht einem Land.
 - Eine Kante verbindet zwei verschiedene Knoten, wenn die repräsentierten Länder "benachbart sind", d. h. ein Stück gemeinsame Grenzen haben.
- Färbung der Landkarte:
 - benachbarte Länder in verschiedenen Farben gefärbt
- Färbung des Graphen:
 - adjazente Knoten haben verschiedenen Farben als Markierung
- ▶ Färbung $m_V: V \to M_V$ heißt *legal*, wenn gilt

$$\{x,y\}\in E\Longrightarrow m_V(x)\neq m_V(y)$$

- ▶ Wieviele Farben braucht man für eine legale Färbung?
 - ▶ höchstens | V |
 - mindestens 1
 - dieses Problem taucht in Compilern wieder auf . . .

weitere Beispiele für allgemeine Markierungen

- Landkarte als Graph
 - Jeder Knoten entspricht einem Land.
 - Eine Kante verbindet zwei verschiedene Knoten, wenn die repräsentierten Länder "benachbart sind", d. h. ein Stück gemeinsame Grenzen haben.
- Färbung der Landkarte:
 - benachbarte Länder in verschiedenen Farben gefärbt
- Färbung des Graphen:
 - adjazente Knoten haben verschiedenen Farben als Markierung
- ▶ Färbung $m_V: V \to M_V$ heißt *legal*, wenn gilt

$$\{x,y\}\in E\Longrightarrow m_V(x)\neq m_V(y)$$

- Wieviele Farben braucht man für eine legale Färbung?
 - ► höchstens |V|
 - mindestens ?
 - dieses Problem taucht in Compilern wieder auf . . .

Überblick

Gerichtete Grapher

Graphen und Teilgraphen Pfade und Erreichbarkeit Isomorphie von Graphen Ein Blick zurück auf Relationen

Ungerichtete Graphen

Übertragung der Grundbegriffe aus dem gerichteten Fall Eine Anmerkung zu Relationen

Graphen mit Knoten- oder Kantenmarkierungen Gewichtete Graphen

Wenn die Knoten- oder Kantenmarkierungen Zahlen sind, dann spricht man auch von gewichteten Graphen.

- ► Verkehrsnetz:
 - ► Kantengewichte sind Entfernungen
 - ▶ Problem: finde kürzesten Weg von x nach y
 - ▶ Problem: finde kürzeste Rundreise (einfachen Zyklus)
- ► Kabelnetz:
 - ► Kantengewichte sind Baukosten
 - ► Problem: finde billigste Möglichkeit, alle miteinander" zu verbinden
 - ▶ Lösung von Borůvka (1926) für die Stromversorgung in Mähren
- ► Rohrleitungsnetz:
 - ► Kantengewichte sind Rohrquerschnitte
 - ▶ Problem: finde maximal möglichen Fluss von x nach y

Wenn die Knoten- oder Kantenmarkierungen Zahlen sind, dann spricht man auch von gewichteten Graphen.

- Verkehrsnetz:
 - Kantengewichte sind Entfernungen
 - ▶ Problem: finde kürzesten Weg von *x* nach *y*
 - Problem: finde kürzeste Rundreise (einfachen Zyklus)
- ► Kabelnetz:
 - ► Kantengewichte sind Baukosten
 - ► Problem: finde billigste Möglichkeit,
 - ▶ Lösung von Borůvka (1926) für die Stromversorgung in Mähren
- ► Rohrleitungsnetz:
 - ► Kantengewichte sind Rohrquerschnitte
 - ▶ Problem: finde maximal möglichen Fluss von x nach y

Wenn die Knoten- oder Kantenmarkierungen Zahlen sind, dann spricht man auch von gewichteten Graphen.

- Verkehrsnetz:
 - Kantengewichte sind Entfernungen
 - ▶ Problem: finde kürzesten Weg von x nach y
 - Problem: finde kürzeste Rundreise (einfachen Zyklus)
- Kabelnetz:
 - Kantengewichte sind Baukosten
 - Problem: finde billigste Möglichkeit, "alle miteinander" zu verbinden
 - ▶ Lösung von Borůvka (1926) für die Stromversorgung in Mähren
- ► Rohrleitungsnetz:
 - ► Kantengewichte sind Rohrquerschnitte
 - ▶ Problem: finde maximal möglichen Fluss von x nach y

Wenn die Knoten- oder Kantenmarkierungen Zahlen sind, dann spricht man auch von gewichteten Graphen.

- Verkehrsnetz:
 - Kantengewichte sind Entfernungen
 - Problem: finde kürzesten Weg von x nach y
 - Problem: finde kürzeste Rundreise (einfachen Zyklus)
- Kabelnetz:
 - Kantengewichte sind Baukosten
 - Problem: finde billigste Möglichkeit, "alle miteinander" zu verbinden
 - ▶ Lösung von Borůvka (1926) für die Stromversorgung in Mähren
- Rohrleitungsnetz:
 - ► Kantengewichte sind Rohrquerschnitte
 - ▶ Problem: finde maximal möglichen Fluss von x nach y

Nichtbeispiel: Königsberger Brückenproblem

- Brücken
 - können in beide Richtungen benutzt werden
 - also ungerichtet
- aber
 - das können wir gar nicht als Graph formalisieren,
 - denn von einem Knoten zu einem anderen kann es höchstens eine Kante geben

Was ist wichtig

Das sollten Sie mitnehmen:

- vielfältige Beispiele für Knoten- und Kantenmarkierungen
- man stößt leicht auf diverse Optimierungsprobleme

Das sollten Sie üben:

an einfachen Beispielen Optimierungen versuchen (leicht? schwer?)

Zusammenfassung

- gerichtete und ungerichtete Graphen
 - wichtige Begriffe (Pfad, Zyklus, Baum, . . .)
 - ► Gemeinsamkeiten und Unterschiede
- Relationen
 - symmetrische Relationen
 - Äquivalenzrelationen