

Reinforcement Learning

Machine Learning Decal

Hosted by Machine Learning at Berkeley

Agenda

What is Reinforcement Learning?
Useful Concepts in Reinforcement Learning
Techniques for Reinforcement Learning

Value Iteration

Policy Iteration

Approximate Methods

Q Learning

Deep Reinforcement Learning

Demo

Questions

Game

But first a game

Did you figure it out?

- It was a game called Frozen Lake.
- S represented start.
- F represented frozen so you could walk on it. (reward 1)
- H represented hole so you would fall in. (reward -10)
- ullet G represented the goal. (reward +10)

What is Reinforcement Learning?

Reinforcement Learning Problems

Some Examples: Toy Environments

Acrobot-v1 Swing up a two-link robot.

CartPole-v1 Balance a pole on a cart.

MountainCar-v0 Drive up a big hill.

MountainCarContinuousv0 Drive up a big hill with continuous control.

Pendulum-v0 Swing up a pendulum.

Some Examples: Robotics

https://www.youtube.com/watch?v=ZtP-I_Bpibs

Some Examples: Video Games

https://www.youtube.com/watch?v=OWEIM2wXyuE

Some Examples: Supervised Learning

Formalization: Markov Decision Process (MDP)

- Reinforcement Learning problems can be modelled as a MDP
- MDP can be thought of as the collection of the following 5 things
- S a set of states
- A a set of actions
- $p(s_{t+1}|s_t, a_t)$, how we move between states
- $p(r_{t+1}|s_t, a_t)$, how we model reward
- ullet γ , how we model the importance of reward in the future.

Solution to an MDP: A Policy

- The "Policy" is the way an agent chooses its actions
- Can be thought of as a function that maps states to actions

$$\pi(s):S\to A$$

.

Useful Concepts in Reinforcement Learning

Idea of Value of a "Policy"

- We get a reward at each timestep
- But we need to encode future reward as well
- I.e. taking the action that will give us the most immediate reward is not always the best in the long run (HINT: this can be true in life as well)

Discounted Expected Future Reward

- Define value of a policy as the expectation over the total reward we will receive if we use that policy
- We need an expectation because our environment might not be deterministic.
- In math terms we can define value as

$$V^{\pi}(s) = \mathbb{E}\left[\sum_{i=1}^{T} \gamma^{i-1} r_i\right]$$

.

Q Function

- Q Function is very similar to expected future reward.
- Just also considers the reward at your current time step.
- In math,

$$Q(s,a) = R(s,a) + \mathbb{E}_{s'}[V(s')]$$

٠

Idea of Optimal

- There is an "optimal" value function.
- The optimal value function that has the highest value for all states.
- In math $V^*(s) = \max_{\pi} V^{\pi}(s)$.
- The optimal policy is then the policy that corresponds to this optimal value function.
- In math $\pi^*(s) = \arg \max_{\pi} V^{\pi}(s)$.

Optimal Value vs optimal Q

- Natural correspondence between optimal value function and optimal Q function
- In math, $V^*(s) = \max_a Q^*(s, a)$.
- In the same way as with value the optimal policy can be related to the optimal Q function.

$$\pi^*(s) = \arg\max_{a} Q^*(s, a)$$

Techniques for Reinforcement

Learning

Do we know the MDP?

- The first techniques we will look at assumes we know how are actions affect the state.
- In other words, these techniques assume we know exactly how the environment works.
- This is not often the case.
- For example, how would you go about explicitly stating the transistion function of Doom?

Value Iteration

- Basic Idea: compute the optimal value and Q functions.
- If we have the optimal Q function we can design a policy vary easily.
- Our policy is simply to take the action at a given state that leads to the highest Q function value.
- Recall this equation:

$$\pi^*(s) = \arg\max_{a} Q^*(s, a)$$

How do we compute the optimal values

• Store current estimates of values and iteratively update them.

```
Initialize V(s) to arbitrary values Repeat For all s \in S For all a \in \mathcal{A} Q(s,a) \leftarrow E[r|s,a] + \gamma \sum_{s' \in S} P(s'|s,a)V(s') V(s) \leftarrow \max_a Q(s,a) Until V(s) converge
```

Policy Iteration

- Basic Idea: Instead of computing optimal value, compute optimal policy directly.
- We iteratively update our policy.
- \bullet Each time we recompute our value function for our current policy, or $V^\pi(s)$
- Then improve our policy based on this value function.


```
Initialize a policy \pi' arbitrarily Repeat \pi \leftarrow \pi' Compute the values using \pi by solving the linear equations V^{\pi}(s) = E[r|s,\pi(s)] + \gamma \sum_{s' \in S} P(s'|s,\pi(s)) V^{\pi}(s') Improve the policy at each state \pi'(s) \leftarrow \arg\max_a (E[r|s,a] + \gamma \sum_{s' \in S} P(s'|s,a) V^{\pi}(s')) Until \pi = \pi'
```

What is wrong with these methods?

- These methods rely on being able to see the results of each action in a given state
- Usually we only get to see the result of the action we take.

Model Based vs Model Free Methods

Model Based vs Model Free Methods

Model Based RL

- Learns a model of the environment
- In technical language: models the transistion function of the MDP.
- Using the model of the environment compute optimal policy under that model
- Could use policy iteration or other methods.

Model Free RL

- No model of the system
- Directly learns a policy based off the reward signal.
- We are going to talk about model-free methods.

Q Learning: A model-free method

- Very similar to Value Iteration
- Iteratively update Q(s, a), then use Q(s, a) to create our policy.
- We can store the values of Q in a table, and then iteratively update them.

Tabular Q Learning

Back to the game of Frozen Lake we played before.

Frozen Lake: Tabular Q Learning

0	0	0	0	
0	0	0	0	
0	0	0	0	
0	0	0	0	

Think of each

square as storing q value for each possible action in that square.

Frozen Lake

[0, -10]	0	0	0
0	0	0	0
0	0	0	0
0	0	0	0

We get -10 reward so we update the Q-value for the square we were in. We use the equation $Q(s, a) = R(s, a) + max'_aQ(s', a')$

Frozen Lake

[1, -10]	0	0	0
0	0	0	0
0	0	0	0
0	0	0	0

Deep Reinforcement Learning

Deep Q Learning (DQN)

- Approximate the Q-function with a Neural Network
- Each output neuron corresponds to one possible action
- Policy is to take the action corresponding to the neuron with the highest value.
- Network can often be convolutional.

DQN playing Atari Games

https://www.youtube.com/watch?v=LJ4oCb6u7kk

Policy Gradient Methods

Policy Gradient Methods

- Let a neural network directly represent our policy.
- Number of output neurons is the number of possible actions.
- The output neurons represent probability of taking a certain action.
- Update our network using gradient ascent over the value of our policy.

• REINFORCE

- REINFORCE
- Deep Deterministic Policy Gradients

- REINFORCE
- Deep Deterministic Policy Gradients
- Trust Region Policy Optimization

- REINFORCE
- Deep Deterministic Policy Gradients
- Trust Region Policy Optimization
- Natural Policy Gradients

- REINFORCE
- Deep Deterministic Policy Gradients
- Trust Region Policy Optimization
- Natural Policy Gradients
- Proximal Policy Gradients

- REINFORCE
- Deep Deterministic Policy Gradients
- Trust Region Policy Optimization
- Natural Policy Gradients
- Proximal Policy Gradients
- And many more...

Demo

Questions

questions?