Uber/wa Price Prediction

Brown University Data Science Institute Winnie Zhang 10-19-2023

https://github.com/WWWW0203/data1030Project

Introduction

Uber & Lyft - Ride Sharing company that bridge the gap between private transportation service and people needing a ride.

Predict Uber/Lyft ride price based on features such as distance travelled, weather, time of day, surge multiplier, etc. (Regression)

Why is it important?

- Understanding how the prices of Uber & Lyft changes under different circumstances will give us better insights & help determine our travel plans
 - For example, it can help us decide whether to take uber/lyft, rent a car, or take other public transportations when we travel to different places.

How Data Was Collected?

- This dataset is not from Uber/Lyft because they do not make their data publicly available
- The author of the dataset collected real time data using Uber & Lyft API queries and corresponding weather conditions.
- Data was collected in a few hot spot in Boston (as shown in the map) for over a week from Nov.18, 2018.

Kaggle link of the data:

https://www.kaggle.com/datasets/ravi72munde/uber-lyft

Our guess:

 a clear positive linear relationship between distance and price

Finding:

- Linear relationship seems not clear
- Uber price tends to be more affected by the distance of the trip than Lyft

- As the ride type changes from 'regular' to 'premium', price of the trip also increases.
- Lyft tends to be cheaper overall than Uber for 'regular' ride types.

Distribution of Price for Surge Multiplier from Lowest to Highest

- When demand for rides is higher than the supply of cars, surge pricing comes in, increasing the price.
- Distribution of price is skewed to the right at the lowest surge multiplier ...
- And becomes more like normal distribution as the surge multiplier increases.

Splitting the Data

- Data Dimension: 637,976 x 15 (Large Data Set)
- Each row represents one trip (i.i.d)
- Target variable is price in USD, X variables are columns in the dataset excluding price.
- Basic split to split the data randomly into train (60%), validation (20%), and test set (20%)
 - o Training: 382785 x 15, Validation: 127595 x 15, Test: 127595 x 15

	distance	cab_type	destination	source	price	surge_multiplier	name	Hour	temp	clouds	pressure	rain	humidity	wind	day_of_week
0	0.44	Lyft	North Station	Haymarket Square	5.0	1.0	Shared	9	38.460	0.290000	1022.25	NaN	0.760000	7.68	Sunday
1	0.44	Lyft	North Station	Haymarket Square	11.0	1.0	Lux/Black	2	44.065	0.995000	1002.88	0.106	0.895000	12.63	Tuesday
2	0.44	Lyft	North Station	Haymarket Square	7.0	1.0	Standard	1	NaN	NaN	NaN	NaN	NaN	NaN	Wednesday
3	0.44	Lyft	North Station	Haymarket Square	26.0	1.0	Lux/Black XL	4	35.080	0.000000	1013.71	NaN	0.700000	5.25	Friday
4	0.44	Lyft	North Station	Haymarket Square	9.0	1.0	XL	3	37.680	0.433333	998.42	NaN	0.706667	11.16	Thursday

Preprocessing

OrdinalEncoder

Ride Type	Surge Multiplier	Hour of Day	Day of Week		
Shared	1.0	0 (12 am)	Monday		
Standard	1.25	1	Tuesday		
XL	1.5	2	Wednesday		
Luxury or Black	1.75	:	Thursday		
Luxury and Black	2.0	•	Friday		
Luxury or Black XL	2.5	23 (11 pm)	Saturday		
	3.0		Sunday		

OneHotEncoder

Cab Type

Uber Lyft

Destination

Financial District

Back Bay

Theatre District Haymarket Square

Boston University

Fenway

Northeastern University

North End

South Station

West End

Beacon Hill

North Station

Source

Financial District

Back Bay

Theatre District

Boston University

North End

Fenway

Northeastern University

South Station

Haymarket Square

West End

Beacon Hill

North Station

MinMaxScaler

Distribution plot of Temperature, Pressure, Humidity, and Wind (Continuous & Bounded in a range)

StandardScaler

Distribution plot of Distance, Clouds, and Rain (Heavy Tailed Distribution)

Data Dimensions & Missing Data

Training Set Before Preprocessing: 14 features
Training Set After Preprocessing: 37 features

Fraction of missing values in features (continuous):

Temperature: 4%
Clouds: 4%
Pressure: 4%
Humidity: 4%
Wind: 4%
Rain: 83%

83% of all data points have missing values.

THANKS

Questions?

CREDITS: This presentation template was created by **Slidesgo**, including icons by **Flaticon**, infographics & images by **Freepik**

