YARN-HADOOP (Also called Mapreduce2)

2CEIT702 - Big Data Analytics

Book:

Big Data and Analytics by Seema Acharya, Subhashini Chellappan, Paperback

Reference book:

https://www.uvpce.ac.in/content/syllabus-ce

MapReduce	YARN
Part of Hadoop 1.x	Part of Hadoop 2.x

MapReduce	YARN
Part of Hadoop 1.x	Part of Hadoop 2.x
Single process handle (Job Tracker): Resource-	One process handle (YARN): Resource management,
allocation, Job Scheduling & process of Map-Reduce	Job scheduling & Monitoring.
Job	Other process handle (MapReduce): Data processing

MapReduce	YARN
Part of Hadoop 1.x	Part of Hadoop 2.x
Single process handle (Job Tracker): Resource-	One process handle (YARN): Resource management,
allocation, Job Scheduling & process of Map-Reduce	Job scheduling & Monitoring.
Job	Other process handle (MapReduce): Data processing
Single Point of Failure: When Map-reduce stops	Execution Continue: It has 'Active name' node and
working then slave nodes will stop working	'standby name node'. When active node stop working,
automatically.	passive node starts working as active node.

MapReduce	YARN
Part of Hadoop 1.x	Part of Hadoop 2.x
Single process handle (Job Tracker): Resource-	One process handle (YARN): Resource management,
allocation, Job Scheduling & process of Map-Reduce	Job scheduling & Monitoring.
Job	Other process handle (MapReduce): Data processing
Single Point of Failure: When Map-reduce stops	Execution Continue: It has 'Active name' node and
working then slave nodes will stop working	'standby name node'. When active node stop working,
automatically.	passive node starts working as active node.
MapReduce has single master and multiple slave	It has the concept of multiple master and slave, if one
architecture, If master goes down then entire slave	master goes down then another master will resume
will stop working (Single point of failure)	its process and continue the execution.

MapReduce	YARN
Part of Hadoop 1.x	Part of Hadoop 2.x
Single process handle (Job Tracker): Resource-	One process handle (YARN): Resource management,
allocation, Job Scheduling & process of Map-Reduce	Job scheduling & Monitoring.
Job	Other process handle (MapReduce): Data processing
Single Point of Failure: When Map-reduce stops	Execution Continue: It has 'Active name' node and
working then slave nodes will stop working	'standby name node'. When active node stop working,
automatically.	passive node starts working as active node.
MapReduce has single master and multiple slave	It has the concept of multiple master and slave, if one
architecture, If master goes down then entire slave	master goes down then another master will resume
will stop working (Single point of failure)	its process and continue the execution.
You can run only MapReduce jobs with Hadoop.	You can run MapReduce jobs and also run different
	types of distributed applications.

MapReduce	YARN
Part of Hadoop 1.x	Part of Hadoop 2.x
Single process handle (Job Tracker): Resource-	One process handle (YARN): Resource management,
allocation, Job Scheduling & process of Map-Reduce	Job scheduling & Monitoring.
Job	Other process handle (MapReduce): Data processing
Single Point of Failure: When Map-reduce stops	Execution Continue: It has 'Active name' node and
working then slave nodes will stop working	'standby name node'. When active node stop working,
automatically.	passive node starts working as active node.
MapReduce has single master and multiple slave	It has the concept of multiple master and slave, if one
architecture, If master goes down then entire slave	master goes down then another master will resume
will stop working (Single point of failure)	its process and continue the execution.
You can run only MapReduce jobs with Hadoop.	You can run MapReduce jobs and also run different
	types of distributed applications.
Facing issues: Delaying batch processing, Scalability	YARN solved these issues

MapReduce	YARN
Part of Hadoop 1.x	Part of Hadoop 2.x
Single process handle (Job Tracker): Resource-	One process handle (YARN): Resource management,
allocation, Job Scheduling & process of Map-Reduce	Job scheduling & Monitoring.
Job	Other process handle (MapReduce): Data processing
Single Point of Failure: When Map-reduce stops	Execution Continue: It has 'Active name' node and
working then slave nodes will stop working	'standby name node'. When active node stop working,
automatically.	passive node starts working as active node.
MapReduce has single master and multiple slave	It has the concept of multiple master and slave, if one
architecture, If master goes down then entire slave	master goes down then another master will resume
will stop working (Single point of failure)	its process and continue the execution.
You can run only MapReduce jobs with Hadoop.	You can run MapReduce jobs and also run different
	types of distributed applications.
Facing issues: Delaying batch processing, Scalability	YARN solved these issues
Fixed slot of map & reduce tasks. so while map is	There is a concept of container. Any task can be run in
running you can't use reduce slots for map tasks	it.
because of that slots go waste.	

Strom, \$4....

MapReduce

Tez

HBase

Giraph

Spark

LASR, HPA

Limitation of Apache Hadoop 1.x

YARN Infrastructure

- YARN infrastructure and HDFS are completely independent. YARN provides computational resources (CPUs or memory) needed for application executions while HDFS provides storage.
- The MapReduce framework is only one of the many possible frameworks that run on YARN.
- The fundamental idea of MapReduce version-2 is to split the two major functionalities of **Resource management, Job scheduling & Monitoring** and **Processing unit** into separate daemons.

YARN Infrastructure

• The three important elements of the YARN architecture are:

YARN Infrastructure (Resource Manager)

- The Resource Manager (RM), which is usually one per cluster, is the master server.
- Responsible for managing several other applications and allocation of the available resources such as CPU and memory to applications. It is used for job scheduling.
- RM knows the location of the DataNode and how many resources they have. (Rack Awareness).
- It keeps all resources in the cluster in use and hence enhances system utilization.
- Resource Manager has two components:
 - **Scheduler:** Scheduler is distribute resources to the running applications only. Do not tracking and monitoring of applications.
 - **Application Manager:** It is start the application master, manages applications in the cluster and monitor it.

YARN Infrastructure (Node Manager)

- The Node Manager works based on the instructions given by the Resource Manager.
- Node Manager is the slave daemon of YARN.
- Node Manager monitors the container's resource usage and reporting to the RM.
- The health of the node on which YARN is running is tracked by the Node Manager.
- It takes care of each node in the cluster while managing the workflow, along with user jobs on a particular node.
- It keeps the data in the Resource Manager updated
- Node Manager can also destroy or kill the container if it gets an order from the Resource Manager to do so.
- Each machine has a node manager. The node managers create containers to execute the programs.

YARN Infrastructure (Application Masters)

- Every job submitted to the framework is an application, and every application has a specific Application Master associated with it.
- It coordinates the execution of the application in the cluster, along with managing the faults.
- It negotiates resources from the Resource Manager.
- It works with the Node Manager for executing and monitoring other components' tasks.
- At regular intervals, heartbeats are sent to the Resource Manager for checking its health, along with updating records according to its resource demands.
- Application Masters are the programs per application that are executed inside the containers. Examples of Application Masters are Mapreduce-AM and Spark-AM.
- Each Application Master requests resources from the Resource Manager and then works with containers provided by Node Managers.

YARN Infrastructure (Container)

- Physical unit with fixed resources of RAM, CPU cores, etc. on a single node in cluster.
- It grants rights to an application to use a specific amount of resources (memory, CPU, etc.) on a specific host.
- Each container will take care of the execution of a single entity (single unit of work) like the MapReduce. In MapReduce, a container can be said as a map or a reduce task.
- In Hadoop 1.x a slot is allocated by the JobTracker to run each MapReduce task. Then the TaskTracker generate a separate JVM for each task(unless JVM reuse is not enabled).
- In Hadoop 2.x, Container is a place where a unit of work is executed. For instance, each MapReduce task(not the entire job) runs in one container.
- An application/job will run on one or more containers.
- Each node in a Hadoop cluster can run several containers.

Working steps of YARN

THANKYOU