# Introduction to Tree-based Methods Machine Learning for Ecology workshop



SEEC - Statistics in Ecology, Environment and Conservation

## What are trees? :)

- ▶ Trees are a type of supervised statistical learning method
- Very general: methods that relate a response variable y to a set of predictors X, with the aim of predicting the response for future observations
- Alternative to linear and logistic regression, neural networks, etc
- Regression trees for continuous response, classification for discrete

#### What we'll cover

- Classification and regression tree basics model fitting and interpretation
- Model validation (training/test, cross-validation) and tree pruning
- Extensions to bagged trees, random forests, boosted trees
- Interpreting variable effects importance and nature of relationships
- Acknowledgement! These slides adapted from UCT Stats Hons Analytics course developed by Miguel Lacerda and Stefan Britz

#### Some resources

http://www-bcf.usc.edu/~gareth/ISL/



- ▶ Death et al. (2000). Classification and regression trees: A powerful yet simple technique for ecological data analysis. Ecology 81:3178-3192.
- Cutler et al. (2007). Random forests for classification in ecology. Ecology 88(11): 2783–2792.
- Elith et al. (2008). A working guide to boosted regression trees. Journal of Animal Ecology 77: 802-813.
- Jack, S. L., Hoffman, M. T., Rohde, R. F., & Durbach, I. (2016). Climate change sentinel or false prophet? The case of *Aloe dichotoma*. Diversity and Distributions, 22(7), 745–757.
- iandurbach/trees-tutorial

#### Example

- We will look at counts of Aloe dichotoma (now Aloidendron dichotomum) collected by Jack et al. (2016)
- Extensive roadside survey returned 1,138/3,061 transects containing aloes
- ► Goal 1: to predict the presence of trees in a transect (classification)
- ► Goal 2: to predict the number of trees in transects containing at least one (regression)
- Predictors are latitude, longitude, MAP, MAT (and others)

#### Example

- > aloe <- read.csv("aloedichotoma.csv", header=TRUE)</pre>
- > head(aloe)

|   | ntrees | latitude  | longitude | MAP | MAT  |
|---|--------|-----------|-----------|-----|------|
| 1 | 4      | -21.14909 | 14.69328  | 111 | 21.7 |
| 2 | 129    | -21.47578 | 15.04399  | 101 | 22   |
| 3 | 25     | -21.47936 | 15.1299   | 130 | 21.6 |
| 4 | 245    | -21.49967 | 15.04117  | 95  | 21.9 |
| 5 | 6      | -21.18775 | 14.67602  | 108 | 21.6 |

We begin by considering only latitude and longitude as potential predictors

## Example

#### Observed numbers of Aloe dichotoma











## Partitioned Feature Space

#### **Predicted Log Abundance**



Regression Tree



Partitioned Feature Space



Need to choose **splitting criterion** (RSS)

Regression Tree



#### Partitioned Feature Space



#### Regression Tree



#### Partitioned Feature Space







#### Partitioned Feature Space



Need to choose stopping criterion

#### Classification Trees

- Used to predict a categorical response
- Similar to regression trees, except the predicted value in a region will now be the most commonly occurring class
- ► The *class proportions* in each terminal node give us an indication of the reliability of the prediction
- Suggested splitting criteria: Gini index, deviance (not % correct)

## Example Classification Tree



## Splitting Criteria

- ► Residual sums of squares
- Classification error
- ▶ Gini index
- Deviance

#### Gini Index

- Measures node impurity or variability of response within the terminal nodes
- ▶ Total Gini = sum of Gini across all terminal nodes  $(G_j)$
- ▶ For a binary response  $G_j = 2p_j(1 p_j)$
- Minimized when each terminal node include observations of only one class

#### **Deviance**

- A probability or likelihood-based measure
- $\blacktriangleright$  Observations in node j come from a binomial distribution with parameter  $p_j$
- Likelihood in node j is  $L_j = p_j^{n_{j1}} (1 p_j)^{n_{j2}}$
- Overall likelihood L is product of L<sub>j</sub>
- ▶ Deviance is  $D = -2 \log L$
- We want the model that makes the data most probable i.e. minimizes deviance

#### Trees versus Linear Models

- We could use either logistic regression or decision trees for classification
- Which is better depends on the problem



## Summary

- ▶ Introduced *trees* binary recursive splitting methods
- Regression trees for continuous response, classification for discrete
- ► Tuning parameters: how to choose split, when to stop

Next: Model validation and tree pruning