

Прибор ОСД

Основные характеристики

Macca (*z*) 650

Энергопотребление (*Bm*) 2,5

Габариты *(мм)* 120 х 112 х 72,5

Поле зрения *(град.)* 120 x 60

Частота обновления

информации (Гц) 4,0

Выходные данные Координаты вектора направления

на Солнце в виде направляющих косинусов

Точность 3 (угл.мин) 3

Два прибора ОСД установлены на конце солнечной панели перелетного модуля КА «Фобос-Грунт». Угол между осями Z приборов составляет 70° . Каждый прибор имеет поле зрения 120×60 град. Вместе два прибора имеют совокупное поле зрения $190 \times 60^{\circ}$. Расположение приборов ОСД на солнечной панели иллюстрируется рис.1 и фото 1.

Фото 1

Рис.1 Схема размещения приборов ОСД на борту КА «Фобос-Грунт»

ВСК – визирная система координат КА, совпадает со связанной системой координат КА.

ОСД1 — 1-й оптический солнечный датчик. ОСД2 — 2-й оптический солнечный датчик. Телеметрия, характеризующая работу оптических солнечных датчиков (ОСД), охватывает отрезок времени от 23.29.49 (08.11.2011 г.) до 01.10.34 (09.11.2011 г.) (ДМВ). Перечень событий, происходивших на этом отрезке времени приведен в таблице 1.

Таблица 1

Nº	Описание события	ДМВ 8.11.11
t ₁	Начало ТМИ	23:29:49
t ₂	Начало поиска Солнца	23:36:31
t ₃	Первое приведение в СО	23:38:11
t ₄	Первое поддержание СО	23:42:31
		ДМВ 9.11.11
t ₅	Вход в тень Земли	00:30:27
t ₆	Выход из тени Земли	01:02:14
	Второе приведение в СО	01:02:15
t ₇	Второе поддержание СО	01:07:01
t ₈	Окончание зоны радиовидимости	01:10:34

На приводимых ниже графиках отображена следующая информация, полученная из телеметрии КА:

- показания ОСД по его осям «альфа» и «гамма» (рис. 2 и 3);
- угловая скорость движения КА (рис. 4, 5, 6 и 7);
- угловое движение КА (рис. 8 и 9).

Рис. 2

Рис. 3

 ω_{y} - угловая скорость вращения аппарата вокруг оси Y ССК по данным БИБ

8

 ω_z - угловая скорость вращения аппарата вокруг оси Z ССК по данным БИБ

9

Рис. 6

Рис. 7

UG_Y - угол между проекцией направления на Солнце в ССК на плоскость XOZ и направлением оси X НС - признак наличия Солнца по данным ОСД

Рис. 8

UG_Z - угол между проекцией направления на Солнце в ССК на плоскость XOY и направлением оси X НС - признак наличия Солнца по данным ОСД

Рис. 9

На основании полученной телеметрической информации в её графическом отображении можно сделать следующие выводы:

- 1 КА отделился от носителя с очень малыми остаточными угловыми скоростями порядка единиц угловых минут в секунду времени.
- 2 Поиск Солнца не потребовался, так как оно сразу оказалось в поле зрения солнечных датчиков.
- 3 Приведение КА к Солнцу заняло около 3-х минут времени.
- 4 Поддержание солнечной ориентации на отрезке времени $t_4 t_5$ (около 48 минут) до входа в тень Земли требовало включения двигателей ориентации для парирования аэродинамического воздействия на КА.
- 5 После выхода из тени Земли потребовалось повторное приведение КА к Солнцу.

- На графиках, отображающих угловую скорость движения КА рис. 4, 5, 6, 7, видно, что прежде чем выполнить приведение к Солнцу, система ориентации сначала разгоняет аппарат по осям ω_y и ω_z до скорости почти 30 угл.мин/сек, а затем гасит угловую скорость практически до 0, что не предусматривалось алгоритмом управления.
- Анализ обнаруженного эффекта показал, что заложенная в документации и хранящаяся в памяти БЦВМ матрица ориентации по оси *Z* обоих приборов ОСД составляет 110 угл.град. и отличается от фактически исполненной на 40 угл.град. В результате показания каждого прибора ОСД корректировались БЦВМ с ошибкой на ±20 угл.град.
- Ошибка в знании матриц ориентации приводит к ошибке в построении ориентации в случае, когда захват Солнца осуществляется одним прибором. Когда Солнце оказывается в поле зрения обоих приборов, ошибка компенсируется и ориентация строится правильно.

Поскольку приборы ОСД развернуты по оси Z друг относительно друга на угол 70° (см. рис. 1) при каждом заходе в тень и выходе из неё один из приборов раньше другого находит или теряет Солнце. При этом ошибка в значении матриц ориентации приводит при выходе КА из тени к кратковременному, примерно на 4 мин., нарушению солнечной ориентации. Заход в тень Земли, скорее всего, сопровождается отклонением КА от направления на Солнце на 20 угл.град. в ту или иную сторону в зависимости от того, какой прибор ОСД последним наблюдает Солнце.

На отрезке времени $t_6 - t_7$ ориентация КА на Солнце была восстановлена и сохранялась до окончания зоны радиовидимости t_8 . Можно предположить, что она сохранялась и дальше до следующего захода в тень Земли.

Заключение

- 1 На охваченном телеметрией отрезке времени оба прибора ОСД отработали штатно.
- 2 Имеющая место в документации и в памяти БЦВМ ошибка в записи матриц ориентации приборов ОСД могла отразиться на ориентации КА в случае выключения или выхода из строя одного из них.
- Однако на анализируемом отрезке времени, с учетом штатного функционирования обоих приборов, она не могла повлиять на дальнейшее функционирование КА.