Теория вероятностей и математическая статистика

1 семестр 2020 г. ФИТ НГУ

Лектор: Постовалов Сергей Николаевич

Содержание лекций

Раздел 1. Теория вероятностей

- 1. Основные понятия, аксиомы.
- 2. Вероятность событий.
- 3. Случайные величины.
- 4. Характеристики случайных величин.
- 5. Функции от случайных величин.
- 6. Условное распределение случайных величин.
- 7. Корреляция случайных величин.
- 8. Предельные теоремы.
- 9. Случайные процессы.
- 10. Элементы теории массового обслуживания.

Содержание лекций

■ Раздел 2. Математическая статистика

- 11. Основные понятия.
- 12. Статистическое оценивание.
- 13. Проверка статистических гипотез.
- 14. Корреляционный анализ
- 15. Регрессионный анализ.
- 16. Распознавание образов.
- 17. Кластерный анализ.

Литература

- 1. Гмурман В.Е. Теория вероятностей и математическая статистика. 9-е изд. М.: Высшая школа, 2003.
- 2. Гнеденко Б.В. Курс теории вероятностей. М.: Либроком, 2011.
- 3. Сборник задач по теории вероятностей, математической статистике и теории случайных функций, под редакцией А.А. Свешникова. М.: Наука, 1972.
- 4. Гмурман В.Е. Руководство к решению задач по теории вероятностей и математической статистике. М.: Высшая школа, 2004.
- 5. Флах П. Машинное обучение. Наука и искусство построения алгоритмов, которые извлекают знания из данных / пер. с англ. А.А. Слинкина. М.: ДМК Пресс, 2015.
- 6. Неделько В.М., Ступина Т.А. Основы теории вероятностей в примерах и задачах. Учебное пособие. НГУ, 2006.

Теория вероятностей -

раздел математики, изучающий математические модели случайных явлений, наблюдаемых при массовых повторениях испытаний.

Глава 1. Основные понятия

Глава 1. Основные понятия

Факты, события, явления:

Детерминированные

- Квадрат гипотенузы равен сумме квадратов катетов;
- Вода (без примесей)
 превращается в лед
 при температуре 0°С;

•

Глава 1. Основные понятия

Факты, события, явления:

Детерминированные

- Квадрат гипотенузы равен сумме квадратов катетов;
- Вода (без примесей)
 превращается в лед
 при температуре 0°С;
-

Вероятностные

- Лотерейный выигрыш;
- Результат
 измерений
 прибором в
 условиях шума;
- •

В теории вероятностей изучается не всякий эксперимент, результат которого непредсказуем, а только те из них, которые удовлетворяют следующим условиям:

В теории вероятностей изучается не всякий эксперимент, результат которого непредсказуем, а только те из них, которые удовлетворяют следующим условиям:

1) Эксперимент может быть повторен в одинаковых условиях достаточно большое число раз;

В теории вероятностей изучается не всякий эксперимент, результат которого непредсказуем, а только те из них, которые удовлетворяют следующим условиям:

- 1) Эксперимент может быть повторен в одинаковых условиях достаточно большое число раз;
- 2) Если А некоторое событие, то доля экспериментов, в которых А произошло, стремится с ростом числа экспериментов к некоторому постоянному числу вероятности события («статистическая устойчивость»).

Примеры

• Опыт 1. Подбрасывается 1 раз игральная кость; симметричная и однородная (условия опыта). Возможные исходы опыта: выпадение на верхней грани кости 1,2,3,4,5 и 6 очков. Все 6 исходов в условиях опыта равновозможны.

Примеры

- Опыт 1. Подбрасывается 1 раз игральная кость; симметричная и однородная (условия опыта). Возможные исходы опыта: выпадение на верхней грани кости 1,2,3,4,5 и 6 очков. Все 6 исходов в условиях опыта равновозможны.
- Опыт 2. Монета подбрасывается 2 раза; симметричная, однородная (условия). Возможные исходы подбрасывания: монета упала вверх гербом (Г); монета упала верх «решкой» (Р). Исходами являются события: ГГ; РР; ГР; РГ. Все 4 исхода равновозможны.

Опыт 3. Доска Гальтона

Возникновение теории вероятностей - 17 век объект - азартные игры;

задача - описание игр известными к тому времени математическими моделями.

Возникновение теории вероятностей - 17 век объект - азартные игры;

задача - описание игр известными к тому времени математическими моделями.

Пример: задача Шевалье де Мере.

Игральную кость бросают четыре раза.

На что выгоднее сделать ставку: на то, что при этом шестерка выпадет по крайней мере один раз, или на то, что шестерка не выпадет ни разу?

Эксперименты на статистическую устойчивость: многократное подбрасывание монеты

Экспериментатор	Число бросаний	Число выпадений герба	Относительная частота
Бюффон	4040	2048	0,5080
К. Пирсон	12000	6019	0,5016
К. Пирсон	24000	12012	0,5005

Далее почвой для развития теории вероятностей стали исследования в области страхования, демографии, статистической механики.

Далее почвой для развития теории вероятностей стали исследования в области страхования, демографии, статистической механики.

В настоящее время теория вероятностей продолжает развитие, например в области теории массового обслуживания, теории случайных процессов.

Основные понятия

Испытание	Осуществление некоторого комплекса условий	
	(или действие, результат	
	которого заранее неизвестен)	
Эксперимент (опыт)	Одно или несколько испытаний	
Исход эксперимента	Конкретный результат эксперимента	
Событие	Множество возможных исходов эксперимента	

Пример	Пример исхода	Пример события
эксперимента		
Двукратное	Выпадение орла,	Выпадение
подбрасывание	а затем решки	одинаковой
монеты		стороны монеты
		два раза подряд
Вынимание	Появление	Появление
карты из колоды	пиковой дамы	козырной карты
Страхование	Угон	Причинение
автомобиля		ущерба
Наблюдение за	Траектория	Частица
броуновским	броуновского	переместилась
движением	движения	больше чем на 1
частицы за 1 сек		СМ

Для того, чтобы ввести понятие вероятности событий, нужно:

• определить, что такое событие;

Для того, чтобы ввести понятие вероятности событий, нужно:

- определить, что такое событие;
- установить взаимоотношения между событиями;

Для того, чтобы ввести понятие вероятности событий, нужно:

- определить, что такое событие;
- установить взаимоотношения между событиями;
- определить числовую меру, характеризующую вероятность события.

Определение. Элементарным событием называется любой возможный исход опыта, неделимый в рамках данного опыта.

Определение. Элементарным событием называется любой возможный исход опыта, неделимый в рамках данного опыта.

Множество элементарных событий должно удовлетворять следующим условиям:

Определение. Элементарным событием называется любой возможный исход опыта, неделимый в рамках данного опыта.

Множество элементарных событий должно удовлетворять следующим условиям:

1) в результате опыта **обязательно** происходит только одно из этих событий (появление одного из них исключает появление других);

Определение. Элементарным событием называется любой возможный исход опыта, неделимый в рамках данного опыта.

Множество элементарных событий должно удовлетворять следующим условиям:

- 1) в результате опыта **обязательно** происходит только одно из этих событий (появление одного из них исключает появление других);
- 2) элементарные события не делятся на более «мелкие» события.

Элементарные события обозначаются: $\omega_1, \omega_2, ..., \omega_k, ...$

Элементарные события обозначаются: $\omega_1, \omega_2, ..., \omega_k, ...$

Событием называется подмножество пространства Ω.

Обозначение: A, B, C, ...

Элементарные события обозначаются: $\omega_1, \omega_2, ..., \omega_k, ...$

Событием называется подмножество пространства Ω.

Обозначение: A, B, C, ...

Будем говорить, что событие $A \subset \Omega$ произошло, если в результате случайного эксперимента реализовался хотя бы один элементарный исход $\omega \in A$.

Классификация событий

Достоверное -

событие, которое при повторении опыта **обязательно** произойдет

ullet совпадает с Ω

Классификация событий

Достоверное -

событие, которое при повторении опыта **обязательно** произойдет

ullet совпадает с Ω

Невозможное -

событие, которое при повторениях опыта никогда не происходит

• обозначим через Ø

Классификация событий

Достоверное -

событие, которое при повторении опыта **обязательно** произойдет

ullet совпадает с Ω

Невозможное -

событие, которое при повторениях опыта никогда не происходит

• обозначим через Ø

Случайное -

событие, которое при повторении опыта иногда происходит, иногда нет

Примеры событий:

B - выпадение четного числа очков: $B = \{\omega_2, \omega_4, \omega_6\}$;

Примеры событий:

B - выпадение четного числа очков: $B = \{\omega_2, \omega_4, \omega_6\}$;

C - выпадение более 7 очков: $C=\emptyset$;

Примеры событий:

B - выпадение четного числа очков: $B = \{\omega_2, \omega_4, \omega_6\}$;

C - выпадение более 7 очков: $C=\emptyset$;

D - выпадение не более 3 очков: D= $\{\omega_1, \omega_2, \omega_3\}$;

Примеры событий:

B - выпадение четного числа очков: $B = \{\omega_2, \omega_4, \omega_6\}$;

C - выпадение более 7 очков: $C=\emptyset$;

D - выпадение не более 3 очков: D= $\{\omega_1, \omega_2, \omega_3\}$;

E - выпадение не более 6 очков: $E=\Omega$;

Примеры событий:

B - выпадение четного числа очков: $B = \{\omega_2, \omega_4, \omega_6\}$;

C - выпадение более 7 очков: $C=\emptyset$;

D - выпадение не более 3 очков: D= $\{\omega_1, \omega_2, \omega_3\}$;

E - выпадение не более 6 очков: $E=\Omega$;

F - выпадение не менее 4 очков: $E = \{\omega_4, \omega_5, \omega_6\}$.

События наглядно удобно представлять диаграммами Венна.

Пусть некоторая фигура (например, прямоугольник) обозначает пространство Ω . Каждое элементарное событие ω – это точка в прямоугольнике Ω , а некоторое подмножество Ω соответствует некоторому событию A.

События наглядно удобно представлять диаграммами Венна.

Пусть некоторая фигура (например, прямоугольник) обозначает пространство Ω . Каждое элементарное событие ω – это точка в прямоугольнике Ω , а некоторое подмножество Ω соответствует некоторому событию A.

Операциям над событиями соответствуют операции с множествами.

Определение. Событие A включено в событие B ($A \subset B$), если каждый элементарный исход ω , принадлежащий событию A, обязательно принадлежит и событию B.

Событие A включено в событие $B \equiv$ событие A влечет событие B.

Определение. Событие A включено в событие B ($A \subset B$), если каждый элементарный исход ω , принадлежащий событию A, обязательно принадлежит и событию B.

Событие A включено в событие $B \equiv$ событие A влечет событие B.

Для любого события A справедливо: $A \subset \Omega$.

Определение. Событие A включено в событие B ($A \subset B$), если каждый элементарный исход ω , принадлежащий событию A, обязательно принадлежит и событию B.

Событие A включено в событие $B \equiv$ событие A влечет событие B.

Для любого события A справедливо: $A \subset \Omega$.

Если $A \subset B$ u $B \subset A$, то события A и B называются равными.

Пример (игральная кость).

Событие B — выпадение четного числа очков, $B = \{\omega_2, \omega_4, \omega_6\}$

Пример (игральная кость).

Событие B — выпадение четного числа очков, $B = \{\omega_2, \omega_4, \omega_6\}$

Событие G — выпадение более одного очка, т.е. $G = \{\omega_2, \omega_3, \omega_4, \omega_5, \omega_6\}$.

Пример (игральная кость).

Событие B — выпадение четного числа очков $B = \{\omega_2, \omega_4, \omega_6\}$

Событие G – выпадение более одного очка, т.е $G = \{\omega_2, \omega_3, \omega_4, \omega_5, \omega_6\}$.

Тогда $B \subset G$, то есть если происходит событие B то происходит и событие G.

Определение. Произведением (пересечением) двух событий A и B называют событие C, которое состоит из тех и только тех элементарных исходов, которые принадлежат одновременно событиям A и B.

Определение. Произведением (пересечением) двух событий A и B называют событие C, которое состоит из тех и только тех элементарных исходов, которые принадлежат одновременно событиям A и B. Обозначение: C = AB ($C = A \cap B$).

То есть событие C происходит, если происходят оба события A и B.

Определение. Произведением (пересечением) двух событий A и B называют событие C, которое состоит из тех и только тех элементарных исходов, которые принадлежат одновременно событиям A и B. Обозначение: C = AB ($C = A \cap B$).

То есть событие C происходит, если происходят оба события A и B.

Определение. Произведением (пересечением) двух событий A и B называют событие C, которое состоит из тех и только тех элементарных исходов, которые принадлежат одновременно событиям A и B. Обозначение: C = AB ($C = A \cap B$).

То есть событие C происходит, если происходят оба события A и B.

Справедливы соотношения:

$$\emptyset A = \emptyset$$
, $\Omega A = A$, $AB = A$, если $A \subset B$.

Пример.

События B,G — как в предыдущем примере. $B = \{\omega_2, \omega_4, \omega_6\}, G = \{\omega_2, \omega_3, \omega_4, \omega_5, \omega_6\}.$

Пример.

События B,G – как в предыдущем примере. $B = \{\omega_2, \omega_4, \omega_6\}, G = \{\omega_2, \omega_3, \omega_4, \omega_5, \omega_6\}.$

Тогда $C=BG=\left\{\omega_2,\omega_4,\omega_6\right\}$. Если же $B'=\left\{\omega_1,\omega_3,\omega_5\right\}$, то $C=B'G=\left\{\omega_3,\omega_5\right\}$.

Определение. Если $AB = \emptyset$, то события A и B называются **несовместными** (непересекающимися).

В противном случае события называются совместными.

Определение. Если $AB = \emptyset$, то события A и B называются **несовместными** (непересекающимися).

В противном случае события называются совместными.

Пример.

События $B = \{\omega_2, \omega_4, \omega_6\}, B' = \{\omega_1, \omega_3, \omega_5\},$ тогда $B'B = \emptyset$.

Определение. Суммой (объединением) двух событий A и B называется событие C, состоящее из тех и только тех элементарных исходов, которые принадлежат хотя бы одному из событий A или B. $C = A \cup B$ или C = A + B.

Определение. Суммой (объединением) двух событий A и B называется событие C, состоящее из тех и только тех элементарных исходов, которые принадлежат хотя бы одному из событий A или B. $C = A \cup B$ или C = A + B.

Событие С происходит, если происходит событие A или событие B или оба вместе.

Определение. Суммой (объединением) двух событий A и B называется событие C, состоящее из тех и только тех элементарных исходов, которые принадлежат хотя бы одному из событий A или B. $C = A \cup B$ или C = A + B.

Событие С происходит, если происходит событие A или событие B или оба вместе.

Справедливы соотношения:

$$\emptyset \cup A = A$$
, $\Omega \cup A = \Omega$, $A \cup B = B$, если $A \subset B$.

Пример.

События
$$B = \{\omega_2, \omega_4, \omega_6\}, F = \{\omega_4, \omega_5, \omega_6\}.$$

Тогда
$$B + F = \{\omega_2, \omega_4, \omega_5, \omega_6\}$$
.

Событие C происходит тогда и только тогда, когда происходит событие A и не происходит событие B.

Событие C происходит тогда и только тогда, когда происходит событие A и не происходит событие B.

Обозначение: $C = A \setminus B$.

Событие C происходит тогда и только тогда, когда происходит событие A и не происходит событие B.

Обозначение: $C = A \setminus B$.

Справедливы соотношения: $\emptyset \backslash A = \emptyset$, $A \backslash \emptyset = A$, $A \backslash \Omega = \emptyset$.

Пример.

События
$$B = \{\omega_2, \omega_4, \omega_6\}, F = \{\omega_4, \omega_5, \omega_6\}.$$

Тогда
$$B \setminus F = \{\omega_2\}$$
.

Обозначение: $\overline{B} = \Omega \setminus B$.

Обозначение: $\overline{B} = \Omega \setminus B$.

 \overline{B} происходит тогда и только тогда, когда **не** происходит событие B.

Обозначение: $\overline{B} = \Omega \setminus B$.

 \overline{B} происходит тогда и только тогда, когда **не** происходит событие B.

Справедливо соотношение: $A \backslash B = A \overline{B}$.

Свойства операций над событиями.

1. Коммутативность сложения и умножения: $A \cup B = B \cup A$; AB = BA.

Свойства операций над событиями.

- 1. Коммутативность сложения и умножения: $A \cup B = B \cup A$; AB = BA.
- 2. Ассоциативность сложения и умножения: $(A \cup B) \cup C = A \cup (B \cup C); \ (AB)C = A(BC).$

Свойства операций над событиями.

- 1. Коммутативность сложения и умножения: $A \cup B = B \cup A$; AB = BA.
- 2. Ассоциативность сложения и умножения: $(A \cup B) \cup C = A \cup (B \cup C); \ (AB)C = A(BC).$
- 3. Первый распределительный закон: $(A \cup B)C = AC \cup BC$.

4. Второй распределительный закон: $AB \cup C = (A \cup C)(B \cup C)$.

4. Второй распределительный закон: $AB \bigcup C = (A \bigcup C)(B \bigcup C)$.

4. Второй распределительный закон: $AB \cup C = (A \cup C)(B \cup C)$.

5. Из условия $A \subset B$ следует $\overline{B} \subset \overline{A}$.

4. Второй распределительный закон: $AB \cup C = (A \cup C)(B \cup C)$.

5. Из условия $A \subset B$ следует $\overline{B} \subset \overline{A}$.

6. $\frac{=}{A} = A$.

6.
$$\overline{\overline{A}} = A$$
.

7.
$$A \cup A = A$$
, $AA = A$.

6.
$$\bar{A} = A$$
.

7.
$$A \cup A = A$$
, $AA = A$.

8. Законы де Моргана: a) $\overline{A \cup B} = \overline{A} \ \overline{B}$.

б) $\overline{AB} = \overline{A} \cup \overline{B}$.

