

Parallel Computing GPU Program Flow

Streaming Multiprocessor (SM) → CUDA core **Terminology** Host **Device CPU** ALU **PCIe Bus** Control ALU ALU Cache **Device Memory Host Memory DRAM** DMA Engine H2D DRAM DMA Engine D2H

CUDA Processing Flow

- 1. Load data into Host Memory
 - CPU load
- 2. Copy data to Device using H2D
 - CPU load
 - H2D engine load
- 3. Execute kernel
 - GPU load (kernel engine)

^{*} Allocation step of memory is skipped in this drawing

CUDA Processing Flow

- 3. Execute kernel
 - Create result data
- 4. Copy result to Host using D2H
 - CPU load
 - D2H engine load
- 5. Do something with the result
 - CPU load

^{*} Allocation step of memory is skipped in this drawing

pac

CUDA Processing Flow

// Allocate host memory

```
int N = 1 << 20;
int* hostVectorA = new int[N];
// Allocate device memory
int* deviceVectorA;
cudaMalloc(&deviceVectorA,
           N * sizeof(int));
// Copy data from host to device
cudaMemcpy(deviceVectorA,
           hostVectorA,
           N * sizeof(int),
           cudaMemcpyHostToDevice);
// Run kernel "cudaAdd" on the GPU
cudaAdd <<<1, 1 >>> (deviceVectorA, ..., N);
```


08.04.2024 5

CUDA Processing Flow

CUDA Processing Flow

- All CUDA API calls return an error/success code
- We will use a C Macro to check if the CUDA calls worked
- Async CUDA calls (like kernel exec) need to be checked explicitly

```
// Copy data from device to host
gpuErrCheck(cudaMemcpy(...));

// Run kernel "cudaAdd" on the GPU
cudaAdd <<<1, 1 >>> (deviceVectorA, ..., N);
gpuErrCheck(cudaPeekAtLastError());

// Free memory on device
GpuErrCheck(cudaFree(deviceVectorA));
```

Observations

pac

- The CPU is busy while handling data transfers
- There are 2 different copy engines on the GPU, on for each direction
- The compute kernel on the GPU is idle during data transfer
- All CUDA calls on the GPU are pipelined

06_VectorAddNaive

Task:

- Get the code running using the slides above
- Run the code using the CUDA debugger
- Check the timeline of the execution and its calls using Nvidia Nsight Systems

Link:

https://classroom.github.com/a/BTkC-eHe

Goal:

- Get CUDA code running
- Implement a basic CUDA data flow
- Basic knowhow about the Nvidia tools

Parallel Computing CUDA execution model

CUDA execution model - SIMD

- The GPU is operating in the Single instruction, multiple data (SIMD) paradigm
- The current GPUs are running the same operation on 32 threads (this is called a warp)
 - E.g: int32 add operation

• If you branch, you lose performance:

```
1 if (threadId.x % 2 == 0) {
2    do_something_A();
3 } else {
4    do_something_B();
5 }
```


- In order to parallelize the computation, we need lots of threads.
- the number of threads is defined in the kernel execution configuration <<< >>>:
 - 1 kernel_launch<<<blocks, threads>>>(arguments)
- There will be multiple SIMD calls for each 32 coalesced threads to work through all the threads
 - 1 kernel_launch<<<blocks, 96>>>(arguments)
 - 2 // Do one operation for each thread:

The threads argument can also be 2D or 3D:

```
1 kernel_launch<<<blocks, dim3(16, 16)>>>(arguments)
```

- 2 kernel_launch<<<blocks, dim3(16, 16, 4)>>>(arguments)
- To identify the thread in the kernel code, use the CUDA provided special object threadIdx
 - 1 threadIdx.x
 - 2 threadIdx.y
 - 3 threadIdx.z
- The number of threads is limited because the number of registers that can be allocated is limited
- The number of threads should be a multiple of 32 as the warp size is 32.
- Max dimension size for (x, y, z) is (1024, 1024, 64) where x * y * z ≤ 1024 See https://en.wikipedia.org/wiki/CUDA#Version_features_and_specifications for the exact specs of the different architectures

- Execute and profile the 06_Threads program.
- It will launch the vector_add kernel with 2^M threads
- Near linear parallel scaling inside the kernel

- Execute and profile the 06_Threads program.
- It will launch the vector_add kernel with 2^M threads
- Amdahl's law hits
 - Near linear parallel scaling inside the kernel doesn't matter

06_Threads

Task:

- Run the code using the CUDA debugger get some hands on
- Change #Threads from 1 to 1024
- Check the scaling using Nsight Systems

Link:

https://classroom.github.com/a/mrB-yk8X

Goal:

pac

- Basic knowhow about the Nvidia tools
- Understand the basic scaling of #Threads used

CUDA execution model - Blocks

- A GPU has multiple Streaming Multiprocessors (SM)
- Each can run multiple concurrent thread blocks
- We define the thread blocks in a 1D, 2D or 3D grid where the dimensions are limited as
 x ≤ 2³¹-1 and y, z ≤ 65535
- To utilize the GPU, we must create lots of thread blocks

block 0	block 1	block 2	block 3	} send to SM0*
block 4	block 5	block 6	block 7	} send to SM3*
block 8	block 9	block 10	block 11	} send to SM2*
block 12	block 13	block 14	block 15	} send to SM1*

Device (simplified view) SM₀ SM1 SM2 SM3 **Device Memory DRAM** DMA Engine H2D DMA Engine D2H

^{* =} no particular order or allocation rules, just an example

CUDA execution model - Blocks

- To identify the thread in the kernel code, use threadIdx, blockIdx, blockDim and gridDim
- Example <<<dim3(4, 1, 1), dim3(8, 1, 1)>>>

globalThreadID = blockIdx.x * blockDim.x + threadIdx.x

19 = 2 * 8 + 3

global thread ID (.x)

threadIdx.x

0	1	2	3	4	5	6	7	0	1	2	3	4	5	6	7	0	1	2	3	4	5	6	7	0	1	2	3	4	5	6	7
blockldx.x = 0 blockldx.x = 1											blc		dx.x	= 2					blc	cklc	lx.x	= 3									

CUDA execution model - Blocks

CUDA execution model

- Latency hiding is a major design principal of GPGPU
- Zero overhead thread scheduling
 - Tolerate long latency operations
 - Reason why GPUs have lower chip area for cache and branch prediction
 --> And more area for floating point execution

- Example: Hardware limits are 8 blocks/SM or 1024 Threads/SM and 512 Threads/block
 - 8x8 thread block: 64 Threads * 8 Blocks = 512 Threads on SM
 - 16x16 thread block: 256 Threads * 4 blocks = 1024 Threads on SM
 - 32x32 thread block: 1024 Threads --> Too much for 1 block

CUDA execution model - SIMD

- Latency hiding during parallel data loading
- The more warps (and thus threads) are in the game the higher the changes one has work to do

08.04.2024

CUDA dynamic parallelism

- A fixed sized grid can lead to bad utilization of resources depending on the algorithm and used data
- Especially if we have nested parallelism:
 - Algorithms using recursion
 - Algorithms with independent batched work
 - Algorithms using hierarchical data structures
- CUDA allows to start new kernels from running kernels

Task vs Data parallelism

pac

- GPUs are handling data parallelism very well
- The bigger the data size the more potential data parallelism is there
 - Free scaling with better hardware as more execution hardware is available
- Task parallelism is exposed through task decomposition of applications
 --> e.g. data flow graph
- We can also use Task parallelism within GPU code to enhance the parallelism
 --> e.g. CUDA streams (see in a few weeks)

Observations

- Use lots of threads inside a block to make use of latency hiding
- Use lots of thread blocks on the GPU to utilize all Streaming Multiprocessors
- threadIdx, blockIdx, blockDim and gridDim are used to identify a thread in the global scope
- Speedups in the kernel code alone do not necessarily increase the overall performance significantly
 --> Amdahl's Law

--> Think about 2D structures of threads and blocks. How do you do the mapping of the Ids?

06_Blocks

Task:

- Use 1<<20 Threads but with different grid and block sizes
- Implement the VectorAdd CUDA kernel using the theory of above
- Measure the execution speed and check out Nsight Compute and Nsight Systems
- Think about the reasons why the execution speed of the kernel differs?

Link:

https://classroom.github.com/a/3hYUBx-_

Goal:

- Hands on CUDA code and Nvida Tools
- Understand the theory of above

08.04.2024

25