Examenul de bacalaureat national 2020 Proba E. d)

Fizică

Filiera teoretică – profilul real, Filiera vocaţională – profilul militar

• Sunt obligatorii toate subiectele din două arii tematice dintre cele patru prevăzute de programă, adică: A. MECANICĂ, B. ELEMENTE DE TERMODINAMICĂ, C. PRODUCEREA ŞI UTILIZAREA CURENTULUI CONTINUU, D. OPTICĂ

Se acordă 10 puncte din oficiu.

Timpul de lucru efectiv este de 3 ore. A. MECANICA

Varianta 6

Se consideră accelerația gravitațională $g = 10 \,\mathrm{m/s}^2$.

- I. Pentru itemii 1-5 scrieți pe foaia de răspuns litera corespunzătoare răspunsului corect. (15 puncte)
- 1. O viteză de 7,2 km corespunde, în unități din S.I., unei valori egale cu:

a. 12m · s⁻¹

- **d.** 0,2m·s⁻¹

(3p)

2. Un corp de masă m se deplasează pe o suprafață orizontală sub acțiunea unei forțe rezultante constante \dot{F} care formează cu direcția deplasării unghiul α . Expresia lucrului mecanic efectuat de forță este:

a. $L = \mathbf{F} \cdot \Delta t$

- **b.** $L = F \cdot v$
- **c.** $L = Fd \sin \alpha$
- **d.** $L = Fd \cos \alpha$

(3p)

- 3. Asupra unui corp acționează o forță rezultantă constantă \vec{F} , orientată pe direcția și în sensul vitezei corpului. În aceste condiții, se poate afirma că impulsul mecanic al corpului:
- a. îsi modifică atât orientarea cât si modulul
- b. își modifică orientarea, dar își păstrează modulul constant
- c. își păstrează orientarea, dar modulul crește
- **d.** îsi păstrează orientarea, dar modulul scade.

(3p)

4. Un corp coboară liber pe un plan înclinat cu unghiul $\alpha \cong 37^{\circ}$ față de orizontală ($\sin \alpha = 0.6$). Coeficientul de frecare la alunecare între corp și suprafața planului este μ = 0,5. Accelerația corpului este:

a. 2m/s²

- **b.** 4 m/s^2
- **c.** 5 m/s^2
- d. $6m/s^2$

(3p)

- 5. Viteza unui metrou între două stații variază în timp conform graficului din figura alăturată. Distanța parcursă de metrou între cele două stații este:
- **a.** 0,5 km
- **b.** 1,0 km
- **c.** 1,5 km
- **d.** 2,0 km

II. Rezolvati următoarea problemă:

Două lăzi având mase M = 6 kg și m = 2 kg, legate printr-un resort orizontal de masă neglijabilă și constantă elastică $k = 600 \,\mathrm{N/m}$, sunt tractate pe o suprafată orizontală, ca în figura alăturată. Coeficientul de frecare la alunecare dintre lăzi și suprafată are valoarea $\mu = 0.2$.

- a. Determinați valoarea forței de apăsare normală a lăzii de masă *M* asupra suprafeței orizontale.
- b. Calculați alungirea resortului în cazul în care cele două lăzi se deplasează uniform.
- c. Calculati valoarea fortei \bar{F} pentru care cele două lăzi se deplasează cu viteză constantă.
- **d.** Când viteza celor două lăzi este $v = 2 \text{ m} \cdot \text{s}^{-1}$, lada având masa M se desprinde de resort. Calculați intervalul de timp scurs din momentul desprinderii si până la oprirea lăzii de masă M.

III. Rezolvaţi următoarea problemă:

(15 puncte)

(15 puncte)

O sanie are masa $m = 20 \,\mathrm{kg}$. Sub acțiunea unei forțe de tracțiune orizontale, sania se deplasează cu viteza constantă $v = 10 \,\text{m/s}$ pe porțiunea orizontală de drum AB, ca în figura alăturată. Începând din punctul B, când sania intră pe trambulina de forma unui plan înclinat cu unghiul

 $\alpha(\sin \alpha = 0.1; \cos \alpha = 1)$, acțiunea forței de tracțiune încetează, dar sania își continuă deplasarea. Lungimea trambulinei este $BC = d = 40 \,\mathrm{m}$. Coeficientul de frecare la alunecarea saniei pe suprafața orizontală este $\mu_1 = 0.05$.

Trecerea pe planul înclinat se face lin, fără modificarea modulului vitezei. Calculați:

- a. valoarea forței de tracțiune pe porțiunea orizontală de drum AB;
- b. puterea dezvoltată pentru tractarea saniei pe porțiunea orizontală de drum AB;
- c. lucrul mecanic efectuat de greutatea saniei la urcarea acesteia pe trambulină, până în punctul C;
- d. valoarea coeficientului de frecare la alunecare dintre sanie și trambulină, știind că sania se oprește în punctul C.

Examenul de bacalaureat naţional 2020 Proba E. d)

Fizică

- Filiera teoretică profilul real, Filiera vocaţională profilul militar

 Sunt obligatorii toate subiectele din două arii tematice dintre cele patru prevăzute de programă, adică: A. MECANICĂ,

 B. ELEMENTE DE TRANSICIA, C. PRODUCEREA ŞI UTILIZAREA CURENTULUI CONTINUU, D. OPTICĂ
- Se acordă 10 puncte din oficiu.

Timpul de lucru efectiv este de 3 ore. B. ELEMENTE DE TERMODINAMICĂ

Varianta 6

Se consideră: numărul lui Avogadro $N_A = 6.02 \cdot 10^{23} \text{mol}^{-1}$, constanta gazelor ideale $R = 8.31 \text{J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1}$. Între parametrii de stare ai gazului ideal într-o stare dată există relația: $p \cdot V = vRT$.

- I. Pentru itemii 1-5 scrieți pe foaia de răspuns litera corespunzătoare răspunsului corect. (15 puncte)
- 1. În procesul de comprimare la presiune constantă a unei cantități date de gaz ideal:
- a. energia internă a gazului crește
- b. densitatea gazului scade
- c. gazul cedează căldură mediului exterior
- d. gazul cedează lucrul mecanic mediului exterior.

- 2. Căldura molară la volum constant a unui gaz ideal se exprimă, în funcție de exponentul adiabatic γ (egal cu raportul dintre căldura molară la presiune constantă și căldura molară la volum constant), prin relația:
- **a.** $C_V = \frac{\gamma R}{\gamma 1}$
- **b.** $C_v = \gamma R R$ **c.** $C_v = \frac{R}{\gamma 1}$ **d.** $C_v = \gamma R + R$
 - (3p)
- 3. Simbolurile mărimilor fizice fiind cele utilizate în manualele de fizică, unitatea de măsură în S.I. a mărimii fizice exprimate prin raportul $\rho RT/\mu$ este:
- a. N⋅m²
- b. Pa
- c. J

d. J/mol

- (3p)
- 4. Randamentul unui motor termic real este egal cu 40% din randamentul ciclului Carnot care ar funcționa între temperaturile extreme $t_1 = 27\,^{\circ}\text{C}$ și $t_2 = 427\,^{\circ}\text{C}$. Știind că motorul termic real primește în decursul unui ciclu căldura Q = 140kJ, lucrul mecanic efectuat de motor este:
- **a.** 32kJ
- **b.** 45 kJ
- **d.** 80kJ

- (3p)
- 5. O cantitate constantă de gaz ideal evoluează între starea inițială (A) și cea finală (B) prin patru procese termodinamice reprezentate în coordonate p-V în graficul din figura alăturată. Lucrul mecanic schimbat de gaz cu mediul exterior are cea mai mare valoare în procesul:

- **a.** A1B
- **b.** A2B
- **c.** A3B
- **d.** A4B

(3p)(15 puncte)

II. Rezolvaţi următoarea problemă:

Un cilindru orizontal, închis la ambele capete, de lungime L = 1,2m și secțiune $S = 35 \text{ cm}^2$, este împărțit în două compartimente cu ajutorul unui piston subțire, termoizolator care se poate deplasa fără frecare. Un compartiment, de lungime $L_1 = 48 \, \text{cm}$, conține azot $(\mu_{N_2} = 28 \, \text{g/mol})$, iar în cel de-al doilea compartiment se

află oxigen $\left(\mu_{\mathrm{O_2}}=32\,\mathrm{g/mol}\right)$. Cele două gaze, considerate ideale, au căldura molară izocoră $C_V=2.5R$. Iniţial cele două gaze se află la temperatura $t = 27^{\circ}\text{C}$ și la presiunea p = 166,2kPa.

- a. Determinați raportul dintre cantitatea de azot și cea de oxigen din cilindru.
- b. Calculați numărul de molecule de oxigen din cilindru.
- c. Se micșorează temperatura unui compartiment cu ΔT și în același timp se mărește temperatura celuilalt compartiment cu ΔT , până când pistonul ajunge în echilibru mecanic la mijlocul cilindrului. Aflați variația ΔT a temperaturii azotului.
- d. Calculați raportul dintre energia internă a azotului și energia internă a oxigenului în momentul în care pistonul se află în echilibru mecanic la mijlocul cilindrului.

III. Rezolvaţi următoarea problemă:

(15 puncte)

O cantitate de gaz ideal poliatomic $(C_V = 3R)$ parcurge succesiunea de transformări $1 \rightarrow 2 \rightarrow 3 \rightarrow 4$ reprezentată în coordonate p-V în figura alăturată. Transformarea $2 \rightarrow 3$ are loc la temperatură constantă. Parametrii gazului în starea inițială sunt $p_1 = 10^5$ Pa și $V_1 = 5$ L. Se cunoaște $\ln 3 \approx 1,1$.

- a. Calculați variația energiei interne a gazului între starea 1 și starea 4.
- b. Calculați valoarea căldurii cedate de gaz mediului exterior în procesul descris.
- c. Determinați valoarea lucrului mecanic total schimbat de gaz cu mediul exterior.
- **d.** Reprezentaţi grafic succesiunea de transformări în coordonate V-T.

Examenul de bacalaureat naţional 2020

Proba E. d) Fizică

- Filiera teoretică profilul real, Filiera vocaţională profilul militar

 Sunt obligatorii toate subiectele din două arii tematice dintre cele patru prevăzute de programă, adică: A. MECANICĂ,

 B. ELEMENTE DE TRANSICIA, C. PRODUCEREA ŞI UTILIZAREA CURENTULUI CONTINUU, D. OPTICĂ
- Se acordă 10 puncte din oficiu. Timpul de lucru efectiv este de 3 ore.

C. PRODUCEREA ȘI UTILIZAREA CURENTULUI CONTINUU

Varianta 6

- I. Pentru itemii 1-5 scrieți pe foaia de răspuns litera corespunzătoare răspunsului corect.
- (15 puncte) **1.** În figura alăturată este reprezentată schema unui circuit electric. Bateria are rezistența interioară rnenulă. Indicația voltmetrului ideal $(R_{V} \to \infty)$ este egală cu tensiunea electromotoare E a

bateriei dacă:

- **b.** circuitul exterior are rezistența R = 2r
- c. întrerupătorul k este deschis
- d. întrerupătorul k este închis

- 2. Un consumator alcătuit din n rezistoare identice înseriate, având fiecare rezistența electrică R, este conectat la bornele unei baterii cu tensiunea electromotoare E și rezistența interioară r. Intensitatea curentului electric prin consumator este:
- a. $\frac{E}{nR+r}$
- **b.** $\frac{E}{n^2R+r}$
- **c.** $\frac{nE}{R+n^2r}$
- d. $\frac{nE}{nR+r}$ (3p)
- 3. Sarcina electrică ce străbate secțiunea transversală a unui conductor variază în timp după legea $q = A + B \cdot t$. Unitatea de măsură în S.I. a mărimii B este:
- a. C

- **4.** Două fire conductoare, cu aceeași rezistență electrică, au raportul ariilor secțiunilor transversale $\frac{S_1}{S_2} = 3$ și

raportul lungimilor $\frac{L_1}{L_2} = 2$. Raportul rezistivităților materialelor din care sunt confecționate cele două

rezistoare, $\frac{\rho_1}{\rho_2}$, are valoarea:

- 5. În graficul din figura alăturată este reprezentată dependența tensiunii măsurate la bornele unui generator de intensitatea curentului electric prin acesta. Rezistenta interioară a generatorului este:
- a. 0.8Ω
- b. 1Ω
- c. 1.25 Ω
- d. 2Ω

II. Rezolvaţi următoarea problemă:

(15 puncte)

În figura alăturată este reprezentată schema unui circuit electric. Se cunosc tensiunile electromotoare ale generatoarelor $E_1 = 20 \text{ V}$ şi $E_2 = 30 \text{ V}$ precum şi rezistenţa interioară $r_1 = 4 \Omega$. Rezistoarele au rezistenţele

electrice $R_1 = 25\Omega$, $R_2 = 30\Omega$ și $R_3 = 60\Omega$. Ampermetrul, considerat ideal $(R_A \cong 0 \Omega)$, indică I = 1 A. Conductoarele de legătură au rezistența electrică nulă. Determinați:

- a. rezistența echivalentă a grupării celor trei rezistoare;
- **b.** rezistenţa interioară r_2 ;
- **c.** indicația unui voltmetru ideal $(R_V \to \infty)$ conectat între bornele M și N;
- **d.** intensitatea curentului electric ce străbate rezistorul R_2 .

III. Rezolvaţi următoarea problemă:

In circuitul electric prezentat în figura alăturată se cunosc: $E_1 = 13 \,\text{V}$, $r_1 = 2 \,\Omega$, $E_2 = 36 \,\mathrm{V}$, $r_2 = 5 \,\Omega$, $R_1 = 8 \,\Omega$, $R_2 = 35 \,\Omega$. Ampermetrul ideal montat în circuit $(R_A \cong 0 \ \Omega)$ indică curentul electric cu intensitatea $I_2 = 0.5 \ {\rm A}$, având sensul indicat în figură. Calculați:

- **b.** puterea totală dezvoltată de sursa având t.e.m. E_2 ;
- **c.** energia electrică consumată de rezistorul R_1 în timpul $\Delta t = 10 \, \text{min}$;
- **d.** rezistența electrică a rezistorului R_2 .

(15 puncte)

Examenul de bacalaureat national 2020 Proba E. d)

Fizică

Filiera teoretică – profilul real, Filiera vocaţională – profilul militar

• Sunt obligatorii toate subiectele din două arii tematice dintre cele patru prevăzute de programă, adică: A. MECANICĂ,

B. ELEMENTE DE TRANSICIA, C. PRODUCEREA ŞI UTILIZAREA CURENTULUI CONTINUU, D. OPTICĂ

Se acordă 10 puncte din oficiu.

 Timpul de lucru efectiv este de 3 ore. D. OPTICA Varianta 6

Se consideră: viteza luminii în vid $c = 3.10^8$ m/s, constanta Planck $h = 6.6.10^{-34}$ J·s.

I. Pentru itemii 1-5 scrieți pe foaia de răspuns litera corespunzătoare răspunsului corect. (15 puncte)

- 1. O radiație incidentă pe suprafața unui catod produce efect fotoelectric extern. Creșterea numărului de fotoni incidenti în unitatea de timp pe suprafata catodului, cu mentinerea constantă a frecventei, conduce la:
- a. creșterea numărului de electroni extrași din catod în unitatea de timp
- b. scăderea numărului de electroni extrași din catod în unitatea de timp
- c. creșterea energiei cinetice a electronilor extrași din catod
- d. scăderea energiei cinetice a electronilor extrași din catod

(3p)

- 2. Un sistem optic centrat este alcătuit din două lentile subțiri alipite având convergențele C₁ și respectiv C_2 . Convergența sistemului optic este dată de relația:
- **a.** $C = C_1 C_2$
 - **b.** $C = C_1 + C_2$
- **c.** $C = \frac{C_1 \cdot C_2}{C_1 + C_2}$ **d.** $C = \frac{C_1 \cdot C_2}{C_1 C_2}$ (3p)
- 3. Simbolurile fiind cele utilizate în manualele de fizică, unitatea de măsură în S.I. a energiei unui foton este:
- **a.** m
- **b.** Hz
- c. W

- 4. Un sistem optic afocal este format din două lentile convergente identice, având fiecare distanța focală f și centrate pe aceeași axă optică principală. Distanța d dintre aceste lentile este dată de relația:
- **a.** d = 0
- **b.** d = f
- **c.** d = 2f
- **d.** d = 4f
- (3p)

5. Graficul din figura alăturată redă dependența energiei cinetice maxime a electronilor extrași prin efect fotoelectric extern de frecvența radiației electromagnetice incidente pe suprafața unui metal. Lucrul mecanic de extracție pentru acest metal are valoarea:

b.
$$6,6 \cdot 10^{-19}$$
 J

II. Rezolvati următoarea problemă:

(15 puncte)

- O lentilă convergentă, considerată subțire, are distanța focală $f = 20 \,\mathrm{cm}$. Un obiect luminos liniar cu înălțimea $y_1 = 2$ cm este plasat în fața acestei lentile, perpendicular pe axa optică principală. Distanța de la obiect la lentilă este de 30 cm.
- a. Calculati convergența lentilei.
- b. Realizați un desen în care să evidentiati construcția imaginii obiectului prin lentilă.
- c. Determinați distanța de la lentilă la imagine.
- d. Determinaţi înălţimea imaginii.

III. Rezolvaţi următoarea problemă:

(15 puncte)

În cadrul unui experiment de interferență a luminii se utilizează un dispozitiv Young plasat în aer, având distanța dintre fante $2\ell = 0.25\,\mathrm{mm}$ și distanța de la planul fantelor la ecran $D = 2\,\mathrm{m}$. Dispozitivul este iluminat de o sursă luminoasă care emite radiație monocromatică și coerentă cu lungimea de undă $\lambda = 500 \, \text{nm}$. Sursa este situată pe axa de simetrie a dispozitivului, la distanța $d = 10 \, \text{cm}$ de planul fantelor. Calculati:

- a. valoarea interfranjei observate pe ecran;
- **b.** distanța la care se formează maximul de ordinul k = 3 față de maximul central;
- c. diferența de drum optic dintre undele care, prin suprapunere, formează pe ecran franja luminoasă de ordinul k = 2:
- **d.** deplasarea Δx a figurii de interferență, dacă sursa de lumină se deplasează pe distanța y = 2mm, perpendicular pe axa de simetrie a dispozitivului și perpendicular pe fante.