Homework #2

Math 3607

Ian McCamey

Table of Contents

```
Problem 2. 2
Problem 5. 4
Functions Used 5
```

Problem 1.

```
y1 = 2020;
isLeapYear(y1)
ans = logical
  1
y2 = 1900;
isLeapYear(y2)
ans = logical
y3 = 2000;
isLeapYear(y3)
ans = logical
leapYears = [];
for i = 1900:2023
```

```
if isLeapYear(i)
        leapYears = [leapYears, [i]];
    end
end
disp(reshape(leapYears, 6, 5)')
```

1904	1908	1912	1916	1920	1924
1928	1932	1936	1940	1944	1948
1952	1956	1960	1964	1968	1972
1976	1980	1984	1988	1992	1996
2000	2004	2008	2012	2016	2020

Problem 2.

Problem 2

X= p sin & cos &

Y= psin & sind

= p cos \$

- P is the distance from the origin to (x,y,z). So, $P = \sqrt{x^2 + y^2 + z^2}$

-\$\phi\$ is therefore found by $\frac{2}{2} = \sqrt{x^2 + y^2 + z^2} \cos(\phi)$ $\phi = \arccos\left(\frac{z}{\sqrt{x^2 + y^2 + z^2}}\right)$

$$\phi = \arctan\left(\frac{\sqrt{\chi^2 + y^2}}{2}\right)$$

- - O can be found in two ways:

 $X = \sqrt{\chi^2 + \gamma^2 + 2^2} \sin \phi \cos \theta$ $X = \sqrt{\chi^2 + \gamma^2 + 2^2} \cdot \sqrt{\chi^2 + \gamma^2} \cdot \cos \theta$ $X = \sqrt{\chi^2 + \gamma^2} \cos \theta$ $X = \sqrt{\chi^2 + \gamma^2} \cos \theta$

$$\theta = \arccos\left(\frac{x}{\sqrt{x^2+1^2}}\right)$$

$$\theta = \arctan\left(\frac{y}{x}\right)$$

2 $y = \sqrt{x^2 + y^2 + 2^2} \sin \phi \sin \theta$ $y = \sqrt{x^2 + y^2 + 2^2} \cdot \frac{\sqrt{x^2 + y^2}}{\sqrt{x^2 + y^2}} \cdot \sin \theta$

where \$ € [0, 17], Ø € [0,211), p≥ 0


```
[rho, phi, theta] = toSpherical(1, 2, -2)
rho = 3
phi = 2.3005
theta = 1.1071
[rho, phi, theta] = toSpherical(0, -3, 4)
rho = 5
phi = 0.6435
theta = 4.7124
[rho, phi, theta] = toSpherical(-5, -12, 1)
rho = 13.0384
phi = 1.4940
theta = 1.1760
[rho, phi, theta] = toSpherical(0, 0, -7)
rho = 7
phi = 0
theta = 0
```

Problem 3.

```
format shortE
points = [-30 -3 3 30];
myexp(points)

ans = 1×4
   9.3576e-14   4.9787e-02   2.0086e+01   1.0686e+13
```

Problem 4.

```
format default
wins = 0;
trials = 0;

while(trials < 1000000)
    trials = trials + 1;
    stick1 = rand();
    stick2 = rand();
    stick3 = rand();

    if(stick1 < stick2 + stick3 && stick2 < stick1 + stick3 && stick3 < stick1 + stick2)
        wins = wins + 1;
    end
end

winprob = wins/trials;
fprintf('Estimated win probability: %.2f%%', winprob * 100)</pre>
```

Estimated win probability: 49.97%

Problem 5.

```
p heads = 1/3;
p_{tails} = 2/3;
for i = 1:10
    countHeads = 0;
    countTails = 0;
    while (abs(countTails - countHeads) < 10)</pre>
        toss = rand();
        if(toss < 2/3)
            countTails = countTails + 1;
        else
            countHeads = countHeads + 1;
        end
    end
    trials = countHeads + countTails;
    fprintf('Simulation %2.15g done in %2.15g tosses.\n', i, trials)
end
```

```
Simulation 1 done in 32 tosses.
Simulation 2 done in 36 tosses.
Simulation 3 done in 50 tosses.
Simulation 4 done in 14 tosses.
Simulation 5 done in 30 tosses.
Simulation 6 done in 20 tosses.
Simulation 7 done in 24 tosses.
Simulation 8 done in 22 tosses.
Simulation 9 done in 34 tosses.
Simulation 10 done in 14 tosses.
```

Problem 6.

```
n = 0;
a_n = 0;
while abs(a_n - pi) > 10^-6
    a_n = 0;
    for k = 0:n
        a_n = a_n + (6/sqrt(3))*((-1)^k)/(3^k*(2*k+1));
    end
    fprintf('a_%d = %4.4f\n', n, a_n)
    n = n + 1;
end
```

```
a_0 = 3.4641

a_1 = 3.0792

a_2 = 3.1562

a_3 = 3.1379

a_4 = 3.1426

a_5 = 3.1413

a_6 = 3.1417

a_7 = 3.1416

a_8 = 3.1416
```

```
a_9 = 3.1416
a_10 = 3.1416

n = 0;
b_n = 0;
while abs(b_n - pi) > 10^-6
    b_n = 0;
for k = 0:n
    b_n = b_n + 16*((-1)^k)/(5^(2*k+1)*(2*k+1)) - 4*((-1)^k)/(239^(2*k+1)*(2*k+1));
end
fprintf('b_%d = %4.4f\n', n, b_n)
    n = n + 1;
end

b_0 = 3.1833
b_1 = 3.1406
b_2 = 3.1416
```

Functions Used

 $b_3 = 3.1416$

```
function [result] = isLeapYear(year)
   if mod(year, 100) == 0 && mod(year, 400) == 0
       result = true;
   elseif mod(year, 100) ~= 0 && mod(year, 4) == 0
       result = true;
   else
       result = false;
   end
end
```

```
NOTE: \arctan(x): \mathbb{R} \to \left(-\frac{\pi}{2}, \frac{\pi}{2}\right), \ \phi \in [0, \pi], \ \theta \in [0, 2\pi).
```

```
function[rho, phi, theta] = toSpherical(x, y, z)
    rho = sqrt(x^2 + y^2 + z^2);
    phi = atan(sqrt(x^2+y^2)/z);
    theta = atan(y/x);

if phi < 0
        phi = phi + pi;
    end
    if theta < 0
        theta = theta + 2*pi;
    end
    if x == 0 && y == 0
        theta = 0;
    end
end</pre>
```

```
function[results] = myexp(points)
    polynomial = zeros(1, 16);
    results = zeros(1, length(points));
    dividedBy2 = zeros(1, length(points));
   % calculating 16 Taylor Series coefficients
   for i = 1:16
        polynomial(i) = 1/factorial(i-1);
    end
   % dividing each input by 2 until absolute value < 0.5
   for j = 1:length(points)
       while abs(points(j)) >= 0.5
            points(j) = points(j) / 2;
            dividedBy2(j) = dividedBy2(j) + 1;
        end
    end
    % evaluating Taylor Series at each input, squaring repeatedly
    polynomial = flip(polynomial);
    for k = 1:length(results)
        results(k) = polyval(polynomial, points(k));
       for x = 1:dividedBy2(k)
            results(k) = results(k)^2;
        end
    end
end
```