UIU users

United International University

School of Science and Engineering

Mid- term Examination Trimester: Spring-2024 Course Title: Calculus and Linear Algebra

Course Code: MATH 2183 Marks: 30 Time: 1 Hour 30 Minutes

Answer all the questions

1.	For the function (i) (ii) (iii) (iv) (v)	on $f(x) = x^3 - 4x^2 + 8$ find, It's critical, and inflection points. The intervals on which $f(x)$ is increasing and decreasing. The intervals on which $f(x)$ is concave up and down. It's relative maximum and minimum by using 1^{st} and 2^{nd} derivative test. It's x -intercepts and y -intercepts. Finally draw the graph of $f(x)$ using the above information.	[10]
2.	 (i) Find the slope of the surface z = f(x, y) in the x and y direction at the point (2,1) (ii) Verify mixed second order partial derivatives [f_{xy}(x,y) = f_{yx}(x,y)] are the same or not? 		[6]
	(b) Using the chain rule find $\frac{\partial T}{\partial y}$, where $T = p^3 q r + \sqrt{pqr}$, $p = sin(xy)$, $q = ln(x^2 + y^3)$, $r = y + 2x$		[2]
	(c) Use implicit differentiation to find $\frac{dy}{dx}$, where $x^2 - y^3 + 5xy = 6$		[2]
3.	Find the s	olution of the given differential equations $x \frac{dy}{dx} + 2y = x^2 - x + 1; y(1) = \frac{1}{2}$	[5]
	ii)	y'-6y=4	[2.5]
	iii)	$y' = \frac{(1+y^2)\sin 2t}{2y}$	[2.5]