NumPy Problems

1. Basic Array Operations

Convert the mpg column into a NumPy array and calculate:

- The mean, median, and standard deviation of mpg.
- The number of cars with mpg greater than 25.

2. Filtering

Using NumPy, filter all cars with more than 6 cylinders.

Return the corresponding car_name as a list.

3. Statistical Analysis

Compute the 25th, 50th, and 75th percentiles of the weight column using NumPy.

4. Array Manipulation

Convert the acceleration column into a NumPy array and normalize its values (scale between 0 and 1).

5. Broadcasting

Increase all horsepower values by 10% and store the updated values in a new NumPy array. Handle missing data (if any) by replacing it with the mean of the column before applying the increase.

6. Boolean Indexing

Find the average displacement of cars with an origin of 2 (Europe) using NumPy indexing.

7. Matrix Operations

Create a 2D NumPy array containing the columns mpg, horsepower, and weight. Compute the dot product of this matrix with a given vector [1, 0.5, -0.2].

8. Sorting

Use NumPy to sort the cars by model_year in descending order and display the first five car names.

9. Correlation

Compute the Pearson correlation coefficient between mpg and weight using NumPy.

10. Conditional Aggregates

Calculate the mean mpg for cars grouped by the number of cylinders using NumPy techniques.

Pandas Problems

1. Basic Exploration

Load the dataset into a Pandas DataFrame. Display:

- The first 10 rows
- The total number of rows and columns
- Summary statistics for numerical columns

2. Filtering and Indexing

Find all cars manufactured in 1975 with a weight less than 3000. Return the DataFrame with selected columns: car_name, weight, and mpg.

3. Handling Missing Data

Identify if there are any missing values in the dataset. Replace missing values in the horsepower column with the column's median.

4. Data Transformation

Add a new column power_to_weight_ratio, calculated as horsepower / weight.

5. Group By

Group the cars by origin and calculate the mean mpg for each group.

6. **Sorting**

Sort the DataFrame by mpg in descending order and display the top 10 cars with the highest mpg.

Apply Function

Create a new column performance_score using a custom function:

```
def performance_score(row):
    return row['mpg'] * row['acceleration'] / row['weight']
```

7. Apply this function to each row and store the result in the new column.

8. Visualization Preparation

Generate a summary DataFrame with:

• Average mpg, weight, and horsepower for each model year.

9. Exporting Data

Save a subset of the data containing only mpg, cylinders, horsepower, and weight for cars with mpg > 30 into a CSV file named high mpg cars.csv.

10. Finding Anomalies

Identify potential outliers in the mpg column using the **Interquartile Range (IQR)** method. Specifically:

- Calculate the IQR for mpg.
- Define outliers as values less than Q1 1.5 * IQR or greater than Q3 + 1.5 * IQR.

 Create a DataFrame of cars classified as outliers, displaying car_name, mpg, and model_year.

Matplotlib Problems

- 1. What is the distribution of miles per gallon (mpg) in the dataset? Plot a histogram of mpg values.
- 2. How does mpg vary with the number of cylinders?

 Use a boxplot to compare mpg across different cylinders.
- 3. Is there a relationship between horsepower and mpg? Summarize your observation

Plot a scatter plot of horsepower vs. mpg.

- **4.** How does car weight influence mpg? Plot a scatter plot with a trend line for weight vs. mpg.
- 5. What is the trend of average mpg across model years? Plot a line chart of average mpg per model year.
- 6. How is the count of cars distributed by origin?
 Use a bar chart to show the number of cars for each origin.
- 7. How do acceleration values vary across different cylinders? Use a boxplot of acceleration grouped by cylinders.
- 8. Which year had the most number of car entries?

 Plot a histogram or bar chart of car counts by model year.
- 9. Is there a clustering pattern among weight, horsepower, and mpg? Create a 3D scatter plot of these three variables.
- **10. Which 10 cars have the best fuel efficiency?**Plot a horizontal bar chart showing the top 10 car names with the highest mpg.