

Analyse I Série de révision Automne 2017

- Pour les questions à **choix multiple**, on comptera :
 - +3 points si la réponse est correcte,
 - 0 point si la question n'est pas répondue ou s'il y a plusieurs croix,
 - -1 point si la réponse est incorrecte.
- Pour les questions de type **vrai-faux**, on comptera :
 - +1 point si la réponse est correcte,
 - 0 point si la question n'est pas répondue ou s'il y a plusieurs croix,
 - -1 point si la réponse est incorrecte.

Première partie, questions à choix multiple

Pour chaque question mettre une croix dans la case correspondante à la réponse correcte sans faire de ratures. Il n'y a qu'une seule réponse correcte par question.

Question 1: La limite
$$\lim_{n\to+\infty} \frac{\sqrt{n^3+3n}-\sqrt{n^3+2n^2+3}}{\sqrt{n+2}}$$
 vaut

- $+\infty$
- -2
- $\prod 0$

Question 2: Parmi les séries numériques

- $a) \quad \sum_{n=0}^{+\infty} \frac{n!}{(2n)!}$
- b) $\sum_{n=0}^{+\infty} \frac{(n!)^2}{(2n)!}$ c) $\sum_{n=0}^{+\infty} \frac{(n!)^3}{(2n)!}$

déterminer celles qui sont convergentes:

- uniquement a) et b)
- uniquement c)
- uniquement a)
- toutes les trois

Question 3: Soit la fonction $f: [-1,1] \setminus \{0\} \to \mathbb{R}$ définie par $f(x) = \frac{e^{3x} - 1}{\sin(2x)}$. S'il existe, soit $g: [-1,1] \to \mathbb{R}$ le prolongement par continuité en 0 de f.

Alors

- g existe et g(0) = 1
- $\int f$ n'admet pas de prolongement par continuité en 0
- \blacksquare g existe et $g(0) = \frac{3}{2}$

Question 4: La série entière $\sum_{k=0}^{+\infty} \frac{(-1)^k}{k^4+2} (x+3)^k$ converge si, et seulement si

- $x \in [-4, -2]$
- $x \in [2,4[$
- $x \in [2,4]$

Question 5: Soit la fonction $f:]0, +\infty[\to \mathbb{R}$ définie par $f(x) = 3x^2 \sin(e^{\sqrt{x}}) + x$. Alors

- $f'(x) = \frac{3}{2}x^{3/2} e^{\sqrt{x}}\cos\left(e^{\sqrt{x}}\right) + 3x\sin\left(e^{\sqrt{x}}\right) + 1$
- $f'(x) = 3x^{3/2} e^{\sqrt{x}} \cos\left(e^{\sqrt{x}}\right) + 1$
- $f'(x) = \frac{3}{2}x^{3/2} e^{\sqrt{x}} \cos(e^{\sqrt{x}}) + 6x \sin(e^{\sqrt{x}}) + 1$
- $f'(x) = 3x^{3/2} e^{\sqrt{x}} \cos\left(e^{\sqrt{x}}\right) + 6x \sin\left(e^{\sqrt{x}}\right)$

Question 6: Soit la fonction $f: \mathbb{R} \setminus \{0\} \to \mathbb{R}$ définie par $f(x) = \frac{\sin(x)}{|x|}$. S'il existe, soit $g: \mathbb{R} \to \mathbb{R}$ le prolongement par continuité en 0 de f.

- f n'admet pas de prolongement par continuité en 0
- \Box g existe et g(0) = 0
- g existe et g(0) = -1
- g existe et g(0) = 1

Question 7: Soit la fonction $f: [-1,3] \to \mathbb{R}$ définie par f(x) = x |x-2|. Alors

- f atteint son minimum en x = -1, atteint son maximum en x = 3, admet un maximum local en x = 1 et admet un minimum local en x = 2
- \Box f atteint son maximum en x=3 et admet un minimum local en x=1
- f atteint son minimum en x = 1, atteint son maximum en x = 3 et admet un minimum local en x = 2

Question 8 : Pour quels choix de $\alpha \in \mathbb{R}$ et $\beta \in \mathbb{R}$ la fonction $f : \mathbb{R} \to \mathbb{R}$ définie par

$$f(x) = \begin{cases} \beta x & \text{pour } x < 2\\ \sqrt{x^2 + 5} + \alpha & \text{pour } x \ge 2 \end{cases}$$

est-elle dérivable sur \mathbb{R} ?

Question 9: Le nombre complexe $\frac{\mathrm{i}^{251} - e^{-\mathrm{i}\pi}}{\sqrt{2}\,\mathrm{i} - e^{\mathrm{i}\pi/4}}$ vaut

- $-\sqrt{2}$
- $-i\sqrt{2}$
- $-(1+i)\sqrt{2}$

Question 10 : Soit une suite de nombres réels (a_n) telle que $\frac{1}{4} \le |a_n| \le \frac{1}{2}$ pour tout $n \ge 0$.

- \square la série $\sum_{n=0}^{+\infty} a_n$ converge
- \blacksquare la série $\sum_{n=0}^{+\infty} a_n^n$ converge et $\left|\sum_{n=0}^{+\infty} a_n^n\right| \le 2$
- \square la série $\sum_{n=0}^{+\infty} a_n^n$ diverge

Question 11: L'équation $x(e^x - e^{-x}) - e^x = 0$

- $\hfill \square$ n'a pas de solution appartenant à l'intervalle $[0,+\infty[$
- possède exactement une solution réelle
- n'a pas de solution appartenant à l'intervalle $]-\infty,0[$
- possède au moins deux solutions réelles

Question 12: L'intégrale $\int_0^1 \frac{x}{e^{2x}} dx$ vaut

- $\frac{1}{4} + \frac{1}{4}e^{-2}$
- $\frac{1}{4} \frac{3}{4}e^{-2}$

Question 13 : Soit la fonction bijective $f: \mathbb{R} \to \mathbb{R}$ définie par f(x) = sh(sh(x)) et soit a = f(1). Alors la dérivée de la fonction réciproque f^{-1} de f en a vaut

- $(f^{-1})'(a) = \frac{1}{\operatorname{ch}(\operatorname{sh}(1)) \operatorname{ch}(1)}$

Question 14: La limite $\lim_{n \to +\infty} \left(\frac{n}{n+1} \right)^n$ vaut

- \square $+\infty$
- $\prod 1$
- e^{-1}
- $\overline{ }$ -e

Question 15: La limite $\lim_{x\to 0} \frac{e^{|x|}-1-|x|}{x^2}$

- vaut 0
- vaut 1
- \blacksquare vaut $\frac{1}{2}$
- n'existe pas

Question 16: La partie imaginaire du nombre complexe $\frac{\sqrt{3}i^{99}-i}{\sqrt{5}+i}$ vaut

Question 17: La limite $\lim_{x \to -1} \left(\frac{1}{x+1} - \frac{4}{(x-1)(x^2-1)} \right)$

- vaut -1
- \bigcap vaut $-\infty$
- vaut 0
- n'existe pas

Question 18 : L'équation $z^{-1} = \overline{z}$, où \overline{z} est le complexe conjugué de z, admet

- une infinité de solutions dans $\mathbb C$
- \square exactement une solution dans $\mathbb C$
- \square aucune solution dans $\mathbb C$
- \square exactement deux solutions dans $\mathbb C$

Question 19: La limite $\lim_{n\to+\infty} \frac{\sqrt[3]{n+2}}{\sqrt[2]{n+3}}$ vaut

- 1
- $\square \frac{2}{3}$
- 0

Question 20 : Soit la fonction $f \colon \mathbb{R} \to \mathbb{R}$ définie par $f(x) = e^{(e^x - 1)}$. Le développement limité d'ordre 2 de f autour de x = 0 est

- $f(x) = 1 + x + x^2 + x^2 \epsilon(x)$
- $f(x) = 2x + x^2 + x^2 \epsilon(x)$
- $f(x) = 1 + x + 2x^2 + x^2 \epsilon(x)$

avec $\lim_{x\to 0} \epsilon(x) = 0$.

Question 21 : L'intégrale $\int_0^1 \frac{\sqrt{\operatorname{Arctg}(x)}}{x^2 + 1} dx$ vaut

- $=\frac{\pi^{3/2}}{12}$
- $\frac{\sqrt{\pi}}{2}$

Deuxième partie, questions du type Vrai ou Faux

Pour chaque question, mettre une croix (sans faire de ratures) dans la case VRAI si l'affirmation est **toujours vraie** ou dans la case FAUX si elle **n'est pas toujours vraie** (c'est-à-dire, si elle est parfois fausse).

Question 22: Pour a < b dans \mathbb{R} , soit une fonction $f: [a, b] \to \mathbb{R}$ continue sur [a, b] et deux fois dérivable sur [a, b]. Si f(a) = f(b) = 0, alors il existe $c \in [a, b]$ tel que f''(c) = 0.

VRAI FAUX

Question 23: Soit la fonction $f: \mathbb{R} \to \mathbb{R}$ définie par $f(x) = \int_0^x |t| \, dt$. Alors f'(x) = x pour tout $x \in \mathbb{R}$.

VRAI FAUX

Question 24 : Soit une fonction $f: I \to \mathbb{R}$ dérivable sur un intervalle ouvert $I \subset \mathbb{R}$. Alors la dérivée de f au point $g \in I$ satisfait

$$f'(y) = \lim_{x \to 0} \frac{f(y+x) - f(y)}{x}$$

VRAI FAUX

Question 25: Soient $f: \mathbb{R} \to \mathbb{R}$ et $g: \mathbb{R} \to \mathbb{R}$ deux fonctions définies sur tout \mathbb{R} . Si $f \circ g$ est injective, alors g est injective.

VRAI FAUX

Question 26: Soit $f:]0,1[\to \mathbb{R}$ une fonction dérivable sur]0,1[. Alors la fonction $f':]0,1[\to \mathbb{R}$ est dérivable sur]0,1[.

VRAI FAUX

Question 27: Soit (a_n) une suite numérique et soit (b_n) la suite numérique définie par $b_n = |a_n|$. Si $\lim_{n \to +\infty} b_n = b \in \mathbb{R}$, alors la suite (a_n) est convergente.

VRAI FAUX

Question 28 : Soit une fonction $f: \mathbb{R} \to \mathbb{R}$ qui a, pour tout $\epsilon > 0$ et tout $x, y \in \mathbb{R}$, la propriété suivante :

$$|x - y| \le 2\epsilon \implies |f(x) - f(y)| \le \epsilon.$$

Alors f est continue sur \mathbb{R} .

VRAI FAUX

Question 32 : La série numérique $\sum_{k=0}^{+\infty} \frac{3\cos(\pi k)}{k+1}$ est absolument convergente. \square VRAI \blacksquare FAUX