Numerical Methods Assignment 1

Andrew Martin

August 14, 2017

Question 1

Given 3 potentially unevenly spaced points

$$(x_j, f_j), (x_{j+1}, f_{j+1}), (x_{j+2}, f_{j+2})$$

The general Lagrange polynomial has form:

$$p_n(x) = \sum_{j=0}^n f_j L_j(x), \qquad L_j(x) = \prod_{\substack{i=0 \ i \neq j}}^n \frac{x - x_i}{x_j - x_i}$$

So for quadratic polynomial interpolation we get:

$$p_2(x) = f_j(\frac{x - x_{j+1}}{x_j - x_{j+1}})(\frac{x - x_{j+2}}{x_j - x_{j+2}}) + f_{j+1}(\frac{x - x_j}{x_{j+1} - x_j})(\frac{x - x_{j+2}}{x_{j+1} - x_{j+2}}) + f_{j+2}(\frac{x - x_j}{x_{j+2} - x_j})(\frac{x - x_{j+1}}{x_{j+2} - x_{j+1}})$$

So the first derivative of this will be given by:

$$p_2'(x) = \frac{d}{dx} \left[f_j(\frac{x - x_{j+1}}{x_j - x_{j+1}}) (\frac{x - x_{j+2}}{x_j - x_{j+2}}) + f_{j+1}(\frac{x - x_j}{x_{j+1} - x_j}) (\frac{x - x_{j+2}}{x_{j+1} - x_{j+2}}) + f_{j+2}(\frac{x - x_j}{x_{j+2} - x_j}) (\frac{x - x_{j+1}}{x_{j+2} - x_{j+1}}) \right]$$

Noting that f_n , x_k are constants

$$\implies p_2'(x) = \frac{d}{dx} \left[f_j(\frac{x-x_{j+1}}{x_j-x_{j+1}})(\frac{x-x_{j+2}}{x_j-x_{j+2}}) + f_{j+1}(\frac{x-x_j}{x_{j+1}-x_j})(\frac{x-x_{j+2}}{x_{j+1}-x_{j+2}}) + f_{j+2}(\frac{x-x_j}{x_{j+2}-x_j})(\frac{x-x_{j+2}}{x_{j+2}-x_j}) \right] + f_{j+2}(\frac{x-x_{j+1}}{x_{j+2}-x_j}) + f_{j+2}(\frac{x-x_{j+2}}{x_{j+2}-x_j}) + f_{j+2}(\frac{x-x_{j+2}}$$

$$p_2'(x) = \frac{f_j}{(x_j - x_{j+1})(x_j - x_{j+2})} \frac{d}{dx} \left[(x - x_{j+1})(x - x_{j+2}) \right] + \frac{f_{j+1}}{(x_{j+1} - x_j)(x_{j+1} - x_{j+2})} \frac{d}{dx} \left[(x - x_j)(x - x_{j+2}) \right] + \frac{f_{j+1}}{(x_{j+1} - x_j)(x_{j+1} - x_{j+2})} \frac{d}{dx} \left[(x - x_j)(x - x_{j+2}) \right] + \frac{f_{j+1}}{(x_{j+1} - x_j)(x_{j+1} - x_{j+2})} \frac{d}{dx} \left[(x - x_j)(x - x_{j+2}) \right] + \frac{f_{j+1}}{(x_{j+1} - x_j)(x_{j+1} - x_{j+2})} \frac{d}{dx} \left[(x - x_j)(x - x_{j+2}) \right] + \frac{f_{j+1}}{(x_{j+1} - x_j)(x_{j+1} - x_{j+2})} \frac{d}{dx} \left[(x - x_j)(x - x_{j+2}) \right] + \frac{f_{j+1}}{(x_{j+1} - x_j)(x_{j+1} - x_{j+2})} \frac{d}{dx} \left[(x - x_j)(x - x_{j+2}) \right] + \frac{f_{j+1}}{(x_{j+1} - x_j)(x_{j+1} - x_{j+2})} \frac{d}{dx} \left[(x - x_j)(x - x_{j+2}) \right] + \frac{f_{j+1}}{(x_{j+1} - x_j)(x_{j+1} - x_{j+2})} \frac{d}{dx} \left[(x - x_j)(x - x_{j+2}) \right] + \frac{f_{j+1}}{(x_{j+1} - x_j)(x_{j+1} - x_{j+2})} \frac{d}{dx} \left[(x - x_j)(x - x_{j+2}) \right] + \frac{f_{j+1}}{(x_{j+1} - x_j)(x_{j+1} - x_{j+2})} \frac{d}{dx} \left[(x - x_j)(x - x_{j+2}) \right] + \frac{f_{j+1}}{(x_{j+1} - x_j)(x_{j+1} - x_{j+2})} \frac{d}{dx} \left[(x - x_j)(x - x_{j+2}) \right] + \frac{f_{j+1}}{(x_{j+1} - x_j)(x_{j+1} - x_{j+2})} \frac{d}{dx} \left[(x - x_j)(x - x_{j+2}) \right] + \frac{f_{j+1}}{(x_{j+1} - x_j)(x_{j+1} - x_{j+2})} \frac{d}{dx} \left[(x - x_j)(x - x_{j+2}) \right] + \frac{f_{j+1}}{(x_{j+1} - x_j)(x_{j+1} - x_{j+2})} \frac{d}{dx} \left[(x - x_j)(x - x_{j+2}) \right] + \frac{f_{j+1}}{(x_{j+1} - x_j)(x_{j+1} - x_{j+2})} \frac{d}{dx} \left[(x - x_j)(x - x_j)(x - x_j) \right] + \frac{f_{j+1}}{(x_{j+1} - x_j)(x_{j+1} - x_j)} \frac{d}{dx} \left[(x - x_j)(x - x_j)(x - x_j) \right] + \frac{f_{j+1}}{(x_{j+1} - x_j)(x_{j+1} - x_j)} \frac{d}{dx} \left[(x - x_j)(x - x_j)(x - x_j) \right] + \frac{f_{j+1}}{(x_{j+1} - x_j)(x_{j+1} - x_j)} \frac{d}{dx} \left[(x - x_j)(x - x_j)(x - x_j) \right] + \frac{f_{j+1}}{(x_{j+1} - x_j)(x_{j+1} - x_j)} \frac{d}{dx} \left[(x - x_j)(x - x_j)(x - x_j) \right] + \frac{f_{j+1}}{(x_{j+1} - x_j)(x_{j+1} - x_j)} \frac{d}{dx} \left[(x - x_j)(x - x_j)(x - x_j) \right] + \frac{f_{j+1}}{(x_{j+1} - x_j)(x_{j+1} - x_j)} \frac{d}{dx} \left[(x - x_j)(x - x_j)(x - x_j) \right] + \frac{f_{j+1}}{(x_{j+1} - x_j)(x - x_j)} \frac{d}{dx} \left[(x - x_j)(x - x_j) \right] + \frac{f_{j+1}}{(x_{j+1} - x_j)} \frac{d}{dx} \left[$$

$$\implies p_2'(x) = \frac{f_j\left(2x - x_{j+1} - x_{j+2}\right)}{(x_j - x_{j+1})(x_j - x_{j+2})} + \frac{f_{j+1}\left(2x - x_j - x_{j+2}\right)}{(x_{j+1} - x_j)(x_{j+1} - x_{j+2})} + \frac{f_{j+2}\left(2x - x_j - x_{j+1}\right)}{(x_{j+2} - x_j)(x_{j+2} - x_{j+1})}$$

$$p_2'(x) = \sum_{j=0}^{2} \left(f_j \sum_{\substack{i=0\\i\neq j}}^{2} \frac{x - x_i}{x_j - x_i} \right)$$

```
Question 2
     function [p, px] = quadinterp(x,xj,fj)
 2
      \square %[p, px] = quadinterp(x,xj,fj)
 3
       %Function quadinterp uses piecewise Lagrange quadratic interpolation t
 4
       %find values for [xj,fj] over x.
5
       %INPUTS ----
 6
       %x - row vector of points to calculate the interpolant on
7
        %xj - row vector of x values corresponding to the known function value
8
       %ascending order
9
       %fj - row vector containing the data values for xj values
10
       %OUTPUTS ----
11
       %p - row vector of the value of the piecewise quadratic interpolant a
12
        px - row vector of the first derivative or p at each value x
13
       %The outputs p and px will both have length x
14
15
       %Andrew Martin
16
       %a1704466
17
       %14/08/2017
18
       -%matrix to compare X and XJ
19 -
        [X,XJ] = meshgrid(x,xj);
20
       %largest corresponding j for each point
21 -
       j=sum(XJ<=X);
22
       %j must be 1,3,5,7,...,N-2
23
       %so reduces j by l if it is the endpoint, and by l if it is even
24 -
       j=j-(j==length(xj));
25 -
       j=j-(mod(j,2)==0);
26
27
28
       %application of the equations found in 1.1
29 -
       p=f_j(j).*(x-x_j(j+1))./(x_j(j)-x_j(j+1)).*(x-x_j(j+2))./(x_j(j)-x_j(j+2));
30 -
       p=p+fj(j+1).*(x-xj(j))./(xj(j+1)-xj(j)).*(x-xj(j+2))./(xj(j+1)-xj(j+2))
31 -
       p=p+fj(j+2).*(x-xj(j))./(xj(j+2)-xj(j)).*(x-xj(j+1))./(xj(j+2)-xj(j+1)).
32
       %Derivative
33 -
       px=fj(j).*(2*x-xj(j+1)-xj(j+2))./((xj(j)-xj(j+1)).*(xj(j)-xj(j+2)));
34 -
       px=px+fj(j+1).*(2*x-xj(j)-xj(j+2))./((xj(j+1)-xj(j)).*(xj(j+1)-xj(j+2)
35 -
       px=px+fj(j+2).*(2*x-xj(j)-xj(j+1))./((xj(j+2)-xj(j)).*(xj(j+2)-xj(j+1)
36
37
```

38 39 -

end

Given equally-spaced data points find N_{min} to approximate $f(x) = \cos^2(x)$ over $0 \le x \le 2\pi$ to an accuracy of 10^{-1} .

Polynomial interpolation error has form:

$$\epsilon_n(x) = f(x) - p_n(x) = \frac{f^{(n+1)}(t_x)}{(n+1)!} \prod_{j=0}^n (x - x_j)$$

with n points.. We want

$$\epsilon \le 10^{-1}$$

$$\implies \max\left(\frac{f^{(n+1)}(t_x)}{(n+1)!} \prod_{j=0}^{n} (x - x_j)\right) \le 10^{-1}$$

Since we are using quadratic interpolation, this gives:

$$= \max\left(\frac{4\sin(2t_x)}{3!}(x-x_0)(x-x_1)(x-x_2)\right) \le 10^{-1}$$
$$= \max\left(\frac{4\sin(2t_x)}{6}(x-x_0)(x-x_1)(x-x_2)\right) \le 10^{-1}$$

This can be transformed by letting $x - x_1 = y$ i.e. $x = y + x_1$ and since $\pi/2$ is contained in the interval, sin can be maximised to 1.

$$\implies = \max\left(\frac{4}{6}(y + x_1 - x_0)(y)(y + x_1 - x_2)\right) \le 10^{-1}$$

Since the points are equally spaced, let $h = x_{j+1} - x_j$

$$\implies = \max\left(\frac{2}{3}(y+h)(y)(y-h)\right) \le 10^{-1}$$

$$= \max\left(\frac{2}{3}(y^3 - yh^2)\right) \le 10^{-1}$$

$$\max y^3 - yh^2 \implies 3y^2 - h^2 = 0 \implies y = \frac{h}{\sqrt{3}}$$

$$= \max\left(\frac{2}{3}((\frac{h}{3\sqrt{3}})^3 - \frac{h}{\sqrt{3}}h^2)\right) \le 10^{-1}$$

$$= \max\left(\frac{2h^3}{9\sqrt{3}} - \frac{2h^3}{3\sqrt{3}}\right) \le 10^{-1}$$

We want the maximum value so we can take the absolute value of $-4h^3$

$$= \max\left(\frac{|-4h^3|}{9\sqrt{3}}\right) \le 10^{-1}$$
$$= \max\left(\frac{4h^3}{9\sqrt{3}}\right) \le 10^{-1}$$

$$\begin{split} N &= 1 + \frac{2\pi}{h} \implies h = \frac{2\pi}{N-1} \\ &= \left(\frac{2\pi}{N-1}\right)^3 \left(\frac{4}{9\sqrt{3}}\right) \le 10^{-1} \\ &\qquad \frac{2\pi}{N-1} \le \sqrt[3]{\frac{9\sqrt{3}}{4}10^{-1}} \\ &\qquad 2\pi \le \sqrt[3]{\frac{9\sqrt{3}}{4}10^{-1}} (N-1) \\ &\qquad \frac{2\pi}{\sqrt[3]{\frac{9\sqrt{3}}{4}10^{-1}}} \le (N-1) \\ &\qquad N \ge \frac{2\pi}{\sqrt[3]{\frac{9\sqrt{3}}{4}10^{-1}}} + 1 \end{split}$$

N min when this is equality (or as close to as possible). $N_{min} = 9.60...$ But N_{min} must be an integer so the minimum value, and it must be odd since we are using interpolation so:

$$N_{min} = 11$$

MATLAB script quadtest to sample $f(x) = \cos^2(x)$ over $0 \le x \le 2\pi$ then calls quadinterp from 1.2 to evaluate the interpolant and its first derivative on 1000 equi-spaced points over the same interval.

Create two plots

(a) The absolute error i.e. |f(x)-P(x)| over the domain (check the absolute error is bounded above by 10^{-1}).

Over the domain $0 \le x \le 2\pi$, this is always under 0.1.

Andrew Martin 5 10/8/2017

(b) The first derivatives f'(x), P'(x) over the interval

From this it is quite visible that there is significant error in the interpolated derivative.

Andrew Martin 6 10/8/2017

Using more points $N > N_{min}$, discuss the accuracy of the interpolant and derivative as N increases. Explain why the derivative P'(x) generically doesn't match f'(x) as well as P(x) matches f(x)

```
26
        %N comparison
        xj=linspace(0,2*pi,2*Nmin-1);
27 -
28 -
        fj=cos(xj).^2;
29
30 -
        [p2, \sim] = quadinterp(x,xj,fj);
31 -
        error2 = abs(fx-p2);
32 -
        xj=linspace(0,2*pi,4*Nmin-3);
33 -
        fj=cos(xj).^2;
34 -
        [p3, \sim] = quadinterp(x, xj, fj);
35
36 -
        error3=abs(fx-p3);
37 -
        figure
        plot(x,error, 'b-',x,error2, 'y-',x,error3, 'r-');
38 -
39 -
        title("Comparison of varying Ns");
40 -
        xlabel('x');
41 -
        ylabel('approximation');
42 -
        legend('N=11','N=21','N=41')
        axis([0,2*pi , 0 ,0.15]);
43 -
```

From the maths done in question 3, and from the plot above, it is apparent that As N increases, the error of the approximation decreases. Doubling N (and subtracting 1 to keep it odd), approximately decreases the error by a factor of

```
>> max(error)

ans =

0.0577

>> max(error2)

ans =

0.0076

>> max(error3)

ans =

9.8800e-04
```

8.

The derivative P'(x) won't usually match f'(x). This is due to points where the derivative isn't defined - P'(x) will have 2 values at the same point. I.e. for x_j , j = 1, 3, 5... the j values 3, 5, 7, 9... will have 2 values for the derivative. which

means these points will have an undefined slope.

As shown in the figure, close to the values x = 1, 2.5, 3.5, 5 the derivative has two values, which is apparent by the vertical lines.

Andrew Martin 8 10/8/2017

This image makes it clearer, as gaps are evident in the plot.

Andrew Martin 9 10/8/2017

Question 6 Add more code to quadtest which loads bay_city.dat and then calls quadinterp to interpolate the data and plot the elevation every h=1m along the course. Plot the original points as circles or crosses and label axes meaningfully.

Plot of an approximation of the height map of the bay-city run.

Andrew Martin 10 10/8/2017

add code which uses logical indexing to answer:

(a) How far into the course is the highest elevation (function)

As shown in the graphic in question 6, indicated with a red circle, the maximum height of the bay-city race is approximately 10800m in or 10.8Km, with an approximate height of 43m.

(b) How far in is the steepest uphill part (derivative)

It was found (and is shown in the graph above) that the point with the maximum slope is $x=8400\mathrm{m}$ into the bay-city run. The slope at this point is $0.0093\mathrm{m}$.

Andrew Martin 11 10/8/2017

${\bf Question}~8$

Comment on a potential numerical issue with quadratic interpolation as defined in quadinterp in finding the steepest section of the course.

As discussed in question 5 the derivative is not defined on the points j=3,5,7,9,11

Another issue is there is no reference to compare the slope generated this way to the actual slope of the race. There is no given slope.

Andrew Martin 12 10/8/2017

Complete quadtest code:

```
%Andrew Martin
       %a1704466
3
       %14/08/2017
4 -
       Nmin=11;
5 -
       x=linspace(0,10,1000);
6 -
       xj=linspace(0,2*pi,Nmin);
       fj=cos(xj).^2;
8 -
       fx=cos(x).^2;
9 -
       fprimej=-2*sin(2*x);
10
11 -
       [p, px] = quadinterp(x,xj,fj);
12
13
       %removes graphs for tidyness
14 -
       close all
15
16
       %error plot
17 -
       error = abs(fx-p);
18 -
       figure
19 -
       plot(x,error)
20 -
       title ("Error of the interpolant")
21 -
       axis([0,2*pi , 0 ,0.15]);
22 -
       xlabel('x');
23 -
       ylabel('Error');
24
25
26
       %N comparison
       xj=linspace(0,2*pi,2*Nmin-1);
27 -
28 -
       fj=cos(xj).^2;
29
30 -
       [p2, \sim] = quadinterp(x,xj,fj);
31 -
       error2 = abs(fx-p2);
32 -
       xj=linspace(0,2*pi,4*Nmin-3);
33 -
       fj=cos(xj).^2;
34 -
       [p3,~]= quadinterp(x,xj,fj);
35
36 -
       error3=abs(fx-p3);
37 -
       figure
       plot(x,error, 'b-',x,error2, 'y-',x,error3, 'r-');
38 -
39 -
       title("Comparison of varying Ns");
40 -
       xlabel('x');
41 -
       ylabel('approximation');
       legend('N=11','N=21','N=41')
42 -
43 -
       axis([0,2*pi , 0 ,0.15]);
```

```
47
      %Graph of the function
48 -
       figure
49 -
       plot(x,p,'-',xj,fj,'o');
50 -
       title("Known data points and the Interpolated function");
51 -
       xlabel('x');
52 -
       ylabel('approximation');
53
       %Graph of the derivatives
54
55 -
       figure
56 -
       plot(x,px,'b-',x,fprimej,'r-');
57 -
       title ("Interpolated function's derivative");
58 -
       xlabel('x');
59 -
       ylabel('Approximation of slope at x');
60 -
       legend('Approximation of derivative', 'Actual derivative')
61
62
63
64
       %Bay city section
65
       %note baydata is in metres
66 -
       baydata=importdata('bay_city.dat');
67 -
      N=11;
68 -
       xj=baydata(1,:);
69 -
       fj=baydata(2,:);
70 -
       x=linspace(0,12000,N); %given the race is a 12Km race
71 -
       [p, px] = quadinterp(x,xj,fj);
72
73
       %max elevation
74 -
       [mx, indx] = max(p);
75 -
       maxpoint=x(indx);
76 -
       figure
77 -
       plot(x,p,'-',xj,fj,'bo',maxpoint,mx,'ro');
78 -
       title("Bay city race height map");
79 -
      xlabel('x');
80 -
       ylabel('Height');
81 -
       legend('Approximation','Known Values','Max height','location','southeas
82
83
```

Andrew Martin 14 10/8/2017

```
84
85
       %max slope
86 -
       [ma, ind] = max(px);
87 -
       maxslopepoint =x(ind);
88
89 -
       figure
90 -
       plot(x,px,'-',maxslopepoint,ma,'o');
91 -
      title("Bay city race slope map");
92 -
      xlabel('x');
93 -
      ylabel('Slope');
94 -
       legend('Approximation of derivative','Max','Location','southeast')
95
```

Andrew Martin 15 10/8/2017