Multiple Linear Regression II

Coefficient of Determination

General Linear Test

Multicollinearity

Lecture 8

Multiple Linear Regression II

Reading: Chapter 12

STAT 8020 Statistical Methods II September 6, 2019

> Whitney Huang Clemson University

Agenda

Multiple Linear Regression II

Coefficient of Determination

General Linear Test

ulticollinearity

Coefficient of Determination

2 General Linear Test

Multicollinearity

Coefficient of Determination

Coefficient of Determination

General Linear Test

 Coefficient of Determination R² describes proportional of the variance in the response variable that is predictable from the predictors

$$R^2 = \frac{\text{SSR}}{\text{SST}} = 1 - \frac{\text{SSE}}{\text{SSR}}, \quad 0 \le R^2 \le 1$$

- R² usually increases with the increasing p, the number of the predictors
 - Adjusted R^2 , denoted by $R_{\rm adj}^2 = \frac{{
 m SSR}/(n-p)}{{
 m SST}/(n-1)}$ attempts to account for p

Suppose the true relationship between response Y and predictors (X_1, X_2) is

$$Y = 5 + 2X_1 + \varepsilon,$$

where $\varepsilon \sim N(0, 1)$ and X_1 and X_2 are independent to each other. Let's fit the following two models to the "data"

Model 1:
$$Y = \beta_0 + \beta_1 X_1 + \varepsilon^1$$

Model 2:
$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \varepsilon^2$$

Question: Which model will "win" in terms of R^2 ?

Coefficient of Determination

General Linear Test

> summary(fit1)

Call:

 $lm(formula = y \sim x1)$

Residuals:

Min 1Q Median 3Q Max -1.6085 -0.5056 -0.2152 0.6932 2.0118

Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 5.1720 0.1534 33.71 < 2e-16 ***
x1 1.8660 0.1589 11.74 2.47e-12 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1

Residual standard error: 0.8393 on 28 degrees of freedom Multiple R-squared: 0.8313, Adjusted R-squared: 0.8253 F-statistic: 138 on 1 and 28 DF, p-value: 2.467e-12

> summary(fit2)

Call:

 $lm(formula = y \sim x1 + x2)$

Residuals:

Min 10 Median 30 Max -1.3926 -0.5775 -0.1383 0.5229 1.8385

Coefficients:

Estimate Std. Error t value Pr(>|t|)

0.1518 34.109 < 2e-16 *** (Intercept) 5.1792 x1 1.8994 0.1593 11.923 2.88e-12 *** x2 0.1797 -1.274 0.213 -0.2289

Signif. codes:

0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1

Residual standard error: 0.8301 on 27 degrees of freedom Multiple R-squared: 0.8408, Adjusted R-squared: 0.8291 F-statistic: 71.32 on 2 and 27 DF, p-value: 1.677e-11

Coefficient of Determination

General Linear Test

General Linear Test

UNIVERSIT

General Linear Test

- Comparison of a "full model" and "reduced model" that involves a subset of full model predictors
- Consider a full model with k predictors and reduced model with l predictors (l < k)
- Test statistic: $F^* = \frac{\text{SSE(R)} \text{SSE}(F)/(k-1)}{\text{SSE}(F)/(n-k-1)} \Rightarrow$ Testing H_0 that the regression coefficients for the extra variables are all zero

```
> summary(gala_fit1)
```

```
Call:
lm(formula = Species ~ Elevation)
```

Residuals:

```
Min 1Q Median 3Q Max -218.319 -30.721 -14.690 4.634 259.180
```

Coefficients:

```
Estimate Std. Error t value Pr(>|t|)
(Intercept) 11.33511 19.20529 0.590 0.56
Elevation 0.20079 0.03465 5.795 3.18e-06 ***
```

```
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Residual standard error: 78.66 on 28 degrees of freedom Multiple R-squared: 0.5454, Adjusted R-squared: 0.5291 F-statistic: 33.59 on 1 and 28 DF, p-value: 3.177e-06

```
Multiple Linear
Regression II
```

```
> summary(gala_fit2)
```

Call:

lm(formula = Species ~ Elevation + Area)

Residuals:

Min 10 Median 30 Max -192.619 -33.534 -19.199 7.541 261.514

Coefficients:

Signif. codes:

Estimate Std. Error t value Pr(>|t|) (Intercept) 17.10519 20.94211 0.817 0.42120 Elevation 0.17174 0.05317 3.230 0.00325 ** Area 0.01880 0.02594 0.725 0.47478 0 (***, 0.001 (**, 0.01 (*, 0.05 (', 0.1 (', 1

Residual standard error: 79.34 on 27 degrees of freedom Multiple R-squared: 0.554, Adjusted R-squared: 0.521 F-statistic: 16.77 on 2 and 27 DF, p-value: 1.843e-05

- $H_0: \beta_{\text{Area}} = 0 \text{ vs. } H_a: \beta_{\text{Area}} \neq 0$
- $F^* = \frac{(173254 169947)/(2-1)}{169947/(30-2-1)} = 0.5254$
- P-value: P[F > 0.5254] = 0.4748, where $F \sim F(1, 27)$

3307 0.5254 0.4748

> anova(gala_fit1, gala_fit2) Analysis of Variance Table

```
Model 1: Species ~ Elevation
Model 2: Species ~ Elevation + Area
  Res.Df RSS Df Sum of Sq F Pr(>F)
     28 173254
     27 169947 1
```

eneral Linear Test

ulticollinearity

P-value is the shaped area under the under the density curve

between response Y and predictors (X_1, X_2) is

 $Y = 4 + 0.8X_1 + 0.6X_2 + \varepsilon$.

Another Simulated Example: Suppose the true relationship

where $\varepsilon \sim N(0,1)$ and X_1 and X_2 are positively correlated with $\rho = 0.9$. Let's fit the following model:

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \varepsilon$$

Call:

 $lm(formula = Y \sim X1 + X2)$

Residuals:

Min 10 Median Max -1.63912 -0.59978 0.01897 0.58691 1.74518

Coefficients:

Estimate Std. Error t value Pr(>|t|) (Intercept) 4.0154 0.1646 24.390 < 2e-16 *** X1 -0.1032 0.3426 -0.301 0.766 X2 1.7471 0.3654 4.781 5.48e-05 ***

Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' '1

Residual standard error: 0.8601 on 27 degrees of freedom Multiple R-squared: 0.8166, Adjusted R-squared: 0.803 F-statistic: 60.12 on 2 and 27 DF, p-value: 1.135e-10

Multicollinearity cont'd

Determination

Beneral Linear Test

Multicollinearity

- Numerical issue \Rightarrow the matrix X^TX is nearly singular
- Statistical issue
 - β's are not well estimated
 - β 's may be meaningless
 - R² and predicted values are usually OK