Math 455: Analysis IV Summary Midterm Date: 27 April 2020 14.00 - 17.00 Key Results, Theorems, Definitions, etc. Shereen Elaidi

Abstract

This document contains a summary of all the key definitions, results, and theorems from class. There are probably typos, and so I would be grateful if you brought those to my attention :-).

Syllabus: L^p space, duality, weak convergence, Young, Holder, and Minkowski inequalities, point-set topology, topological space, dense sets, completeness, compactness, connectedness, path-connectedness, separability, Tychnoff theorem, Stone-Weierstrass Theorem, Arzela-Ascoli, Baire category theorem, open mapping theorem, closed graph theorem, uniform boudnedness principle, Hahn Banch theorem.

Contents

1	L^p Spaces: Completeness and Approximation	2
	1.1 Normed Vector Spaces	 2
	1.2 The Inequalities of Young, Hölder, and Minkowski	 3
	1.3 L^p is complete: the Reisz-Fischer Theorem	 4
	1.4 Approximation and Separability	 4
	1.5 Results from the Homework	 5
2	L^p Spaces: Duality and Weak Convergence	6
	2.1 Riesz Representation Theorem for the Dual of L^p , $1 \le p < \infty$	 6
	2.2 Weak Sequential Convergence in L^p	 7
	2.3 Weak Sequential Compactness ("Compactness Found!")	 8
	2.4 Results from the Homework	 8
3	Metric Spaces	9
	3.1 Examples of Metric Spaces	 9
	3.2 Open Sets, Closed Sets, and Convergent Sequences	 10
	3.3 Continuous Mappings Between Metric Spaces	 11
	3.4 Complete Metric Spaces	 11
	3.5 Compact Metric Spaces	 12
	3.6 Separable Metric Spaces	 13
	3.7 Results from the Homework	 14
4	Topological Spaces	14
	4.1 Open Sets, Closed Sets, Bases, and Sub-bases	 14
	4.2 Separation Properties	 16
	4.3 Countability and Separability	 16
	4.4 Continuous Mappings between Topological Spaces	 17
	4.5 Compact Topological Spaces	17
	4.6 Connected Topological Space	 18
	4.7 Results from Homework	 18
5	Metric Spaces: Three Fundamental Theorems	19
	5.1 The Arzela-Ascoli Theorem	19
	5.2 Baire Category Theorem	19
	5.3 The Banach Contraction Principle	 21

6	Topological Spaces: Three Fundamental Properties	21
	6.1 Ursohn's Lemma and the Tietze Extension Theorem	. 21
	6.2 The Tychnoff Product Theorem	. 22
	6.3 The Stone-Weierstrass Theorem	. 22
7	Continuous Linear Operators Between Banach Spaces	23

1. L^p Spaces: Completeness and Approximation

1.1. Normed Vector Spaces

Definition 1 (ℓ^p space). Let $(a_1, a_n, ...)$ be a sequence. Then, the ℓ^p -space is:

$$\ell^p := \left\{ (a_1, a_2, \dots) \mid \sum_{n=1}^{\infty} |a_n|^p < +\infty \right\}$$
 (1)

Theorem 1 (Riesz-Fisher). $L^p(X)$ is complete.

Definition 2 (L^p space). Let E be a measurable set and let $1 \le p < \infty$. Then, $L^p(E)$ is the collection of measurable functions f for which $|f|^p$ is Lebesgue integrable over E.

Definition 3 (Equivalent Functions). Let \mathcal{F} be the collection of all measurable extended real-valued functions on E that are finite a.e. on E. Define two functions f and g to be equivalent, and write $f \sim g$ if g(x) = f(x) a.e. on E.

Definition 4 (Essentially Bounded). We call a function $f \in \mathcal{F}$ to be **essentially bounded** if there exists some $M \geq 0$, called the **essential upper bound** for f, for which

$$|f(x)| \le M$$

for almost every $x \in E$. $L^{\infty}(E)$ is the collection of equivalence classes [f] for which f is essentially bounded.

Definition 5 (Norm). Let X be a linear space. A real-valued functional $||\cdot||$ on X is called a **norm** provided that for each f and g in X and each real number α ,

(1) (The Triangle Inequality).

$$||f + g|| \le ||f|| + ||g||$$

(2) (Positive Homogeneity).

$$||\alpha f|| = |\alpha|||f||$$

(3) (Non-Negativity).

$$||f|| > 0$$
 and $||f|| = 0$ if and only if $f = 0$

Definition 6 (Normed Linear Space). X is said to be a **normed linear space** if X is equipped with a norm.

Definition 7 (Essential Supremum). Let $f \in L^{\infty}(E)$. $||f||_{\infty}$ is called the **essential supremum** and is defined as:

$$||f||_{\infty} := \{M \mid M \text{ is an essential upper bound for } f\}$$

Theorem: $||\cdot||_{\infty}$ is a norm on $L^{\infty}(E)$.

1.2. The Inequalities of Young, Hölder, and Minkowski

Definition 8 (p-norm). Let E be a measurable set, $1 , and let <math>f \in L^p(E)$. Then, define the **p-norm** to be:

$$||f||_p := \left[\int_E |f|^p \right]^{\frac{1}{p}} \tag{2}$$

Definition 9 (Conjugate). The **conjugate** of a number $p \in]1, \infty[$ is the number q = p/(p-1), which is the unique number $q \in]1, \infty[$ for which

$$\frac{1}{p} + \frac{1}{q} = 1\tag{3}$$

The conjugate of 1 is defined to be ∞ and the conjugate of ∞ is defined to be 1.

Definition 10 (Young's Inequality). For 1 , <math>q the conjugate of p, and any two positive numbers a and b, we have:

$$ab \le \frac{a^p}{p} + \frac{b^q}{q} \tag{4}$$

Theorem 2 (Hölder's Inequality). Let $E \subseteq \mathbb{R}$ be measurable, $1 \le p < \infty$, and q the conjugate of p. If f belongs to $L^p(E)$, and g belongs to $L^q(E)$, then their product $f \cdot g$ is integrable over E and:

$$\int_{E} |f \cdot g| \le ||f||_p \cdot ||g||_q. \tag{5}$$

Moreover, if $f \neq 0$, then the function defined as:

$$f^* := ||f||_p^{1-p} \cdot \operatorname{sgn}(f) \cdot |f|^{p-1} \tag{6}$$

belongs to $L^q(E)$,

$$\int_{E} f \cdot f^* = ||f||_{p} \text{ and } ||f^*||_{q} = 1$$

We call f^* defined as above to be called the **conjugate function** of f.

Theorem 3 (Minkowski's Inequality). Let E be a measurable set and $1 \le p \le \infty$. If the functions f and g belong to $L^p(E)$, then so does their sum f + g. Moreover,

$$||f + g||_{p} \le ||f||_{p} + ||g||_{p} \tag{7}$$

Theorem 4 (Cauchy-Schwarz Inequality). Let E be a measurable set and let f and g be measurable functions over E for which f^2 and g^2 are integrable over E. Then, $f \cdot g$ is integrable over E and

$$\int_{E} |f \cdot g| \le \sqrt{\int_{E} f^{2}} \cdot \sqrt{\int_{E} g^{2}} \tag{8}$$

Corollary 1. Let E be a measurable set and $1 . Suppose <math>\mathcal{F}$ is a family of functions in $L^p(E)$ that is bounded in $L^p(E)$ in the sense that there is a constant M for which

$$||f||_p \leq M$$
 for all $f \in \mathcal{F}$

Then, the family \mathcal{F} is uniformly integrable over E.

Corollary 2. Let E be a measurable set of finite measure and $1 \le p_1 < p_2 \le \infty$. Then, $L^{p_2}(E) \subseteq L^{p_1}(E)$. Furthermore,

$$||f||_{p_1} \le c||f||_{p_2}$$

for all f in $L^{p_2}(E)$, where $c = [m(E)]^{\frac{p_2 - p_1}{q_1 p_2}}$ if $p_2 < \infty$ and $c = [m(E)]^{\frac{1}{p_1}}$ if $p_2 = \infty$.

1.3. L^p is complete: the Reisz-Fischer Theorem

Definition 11 (Converge). A sequence $\{f_n\}$ in a linear space X normed by $||\cdot||$ is said to converge to f in X provided:

$$\lim_{n \to \infty} ||f - f_n|| = 0$$

Definition 12 (Cauchy). A sequence $\{f_n\}$ in a linear space X that is normed by $||\cdot||$ is said to be Cauchy in X provided for each $\varepsilon > 0$, there exists a $N \in \mathbb{N}$ such that

$$||f_n - f_m|| < \varepsilon \ \forall \ m, n \ge N \tag{9}$$

Definition 13 (Complete). A normed linear space X is called **complete** if every Cauchy sequence in X converges to a function in X. A complete normed linear space is called a **Banach space**.

Proposition 1. Let X be a normed linear space. Then, every convergent sequence in X is Cauchy. Moreover, a Cauchy sequence in X converges if it has a convergent subsequence.

Definition 14. Let X be a linear space normed by $||\cdot||$. A sequence $\{f_n\}$ in X is said to be rapidly Cauchy if there is a convergent series of positive numbers $\sum_{k=1}^{\infty} \varepsilon_k$ for which

$$||f_{k+1} - f_k|| \le \varepsilon_k^2$$
 for all k

Proposition 2. Let X be a normed linear space. Then, every rapidly Cauchy sequence in X is Cauchy. Furthermore, every Cauchy sequence has a rapidly Cauchy subsequence.

Proposition 3. Let E be a measurable set and $1 \le p \le \infty$. Then, every rapidly Cauchy sequence in $L^p(E)$ converges with respect to the $L^p(E)$ norm and pointwise a.e. on E to a function in $L^p(E)$.

Theorem 5 (Riesz-Fischer Theorem). Let E be a measurable set and $1 \le p \le \infty$. Then $L^p(E)$ is a Banach space. Moreover, if $\{f_n\} \to f$ in $L^p(E)$, a subsequence of $\{f_n\}$ converges pointwise a.e. on E to f.

Theorem 6. Let E be a measurable set and $1 \le p < \infty$. Suppose $\{f_n\}$ is a sequence in $L^p(E)$ that converges pointwise a.e. on E to the function f which belongs to $L^p(E)$. Then:

$$\{f_n\} \to f \text{ in } L^p(E) \iff \lim_{n \to \infty} \int_E |f_n|^p = \int_E |f|^p$$

Definition 15 (Tight). A family \mathcal{F} of measurable functions on E is said to be **tight** over E provided that for each $\varepsilon > 0$, there exists a subset E_0 of E of finite measure for which

$$\int_{E \setminus E_0} |f| < \varepsilon \text{ for all } f \in \mathcal{F}$$

Theorem 7. Let E be a measurable set and let $1 \le p < \infty$. Suppose $\{f_n\}$ is a sequence in $L^p(E)$ that converges pointwise a.e. on E to the function f which belongs to $L^p(E)$. Then, $\{f_n\} \to f$ in $L^p(E) \iff \{|f_n|^p\}$ is uniformly integrable and tight over E.

1.4. Approximation and Separability

Definition 16 (Dense). Let X be a normed linear space with norm $||\cdot||$. Given two subsets \mathcal{F} and \mathcal{G} of X with $\mathcal{F} \subseteq \mathcal{G}$, we say that \mathcal{F} is **dense** in \mathcal{G} provided for each function g in \mathcal{G} and $\varepsilon > 0$, there is a function $f \in \mathcal{F}$ for which $||f - g|| < \varepsilon$.

Proposition 4. Let E be a measurable set and let $1 \le p \le \infty$. Then, the subspace of simple functions in $L^p(E)$ is dense in $L^p(E)$.

Proposition 5. Let [a,b] be a closed, bounded interval and $1 \le p < \infty$. Then, the subspace of step functions on [a,b] is dense in $L^p[a,b]$.

Definition 17 (Separable). A normed linear space X is said to be **separable** provided there is a countable subset that is dense in X.

Theorem 8. Let E be a measurable set and $1 \leq p < \infty$. Then, the normed linear space $L^p(E)$ is separable.

Theorem 9. Suppose E is measurable and let $1 \leq p < \infty$. Then, $C_c(E)$ (the set of all continuous functions with compact support on E) is dense in $L^p(E)$.

1.5. Results from the Homework

(1) (When Hölder's inequality \rightarrow equality): There is equality in Hölder's Inequality \iff there exists constants α , β , both of which non-zero, for which:

$$\alpha |f|^p = \beta |g|^q$$

a.e. on E.

(2) (Extension of Hölder's Inequality for 3 functions): Let $E \subseteq \mathbb{R}$ be measurable, let $1 \leq p < \infty$, $1 \leq q < \infty$, $1 \leq r < \infty$ such that:

$$\frac{1}{p} + \frac{1}{q} + \frac{1}{r} = 1$$

If $f \in L^p(E)$, $q \in L^q(E)$, and $h \in L^r(E)$, then $fgh \in L^(E)$ and:

$$\int_{E} |fgh| \le ||f||_{p} ||g||_{q} ||h||_{r}$$

(3) For $1 \le p \le \infty$, q conjugate of $p, f \in L^p(E)$:

$$||f||_p = \max_{g \in L^q(E), ||g||_q \le 1} \int_E fg$$

- (4) (L^p dominated convergence theorem): Let $\{f_n\}$ be a sequence of measurable functions that converge pointwise a.e. on E to f. For $1 \leq p < \infty$, suppose \exists a function $g \in L^p(E)$ such that $\forall n \in \mathbb{N}$, $|f_n| \leq g$ a.e. on E. Then, $\{f_n\} \to f$ in $L^p(E)$.
- (5) Assume $1 \leq p < \infty$, if $E \subseteq \mathbb{R}$ has finite measure, $1 \leq p < \infty$, and $\{f_n\}$ is a sequence of measurable functions which converge pointwise a.e. on E to f, then $\{f_n\} \to f$ in $L^p(E)$ if \exists a $\theta > 0$ such that $\{f_n\}$ belongs to and is bounded as a subset of $L^{p+\theta}(E)$.
- (6) The space c of all convergent sequences of real numbers and the space c_0 of all sequences which converge to zero are Banach spaces with respect to the ℓ^{∞} norm.
- (7) Let $E \subseteq \mathbb{R}$ be measurable, $1 \leq p \leq \infty$, q the conjugate of p, and S a dense subset of $L^q(E)$. If $g \in L^p(E)$ and $\int_E g \cdot g = 0$ for all $g \in S$, then g = 0.
- (8) (Separability of ℓ^p): For $1 \leq p < \infty$, ℓ^p is separable. ℓ^∞ is not separable.

- 2. L^p Spaces: Duality and Weak Convergence
- 2.1. Riesz Representation Theorem for the Dual of L^p , $1 \le p < \infty$

Definition 18 (Linear Functional). A linear functional on a linear space X is a real-valued function T on X such that for f and g in X and α and β real numbers,

$$T(\alpha \cdot g + \beta \cdot h) = \alpha \cdot T(g) + \beta \cdot T(h) \tag{10}$$

Definition 19 (Bounded). For a normed linear space X, a linear functional T on X is said to be bounded provided there is an $M \ge 0$ for which

$$|T(f)| \le M \cdot ||f|| \text{ for all } f \in X$$
 (11)

The infimum of all such M is called the **norm** of T and is denoted by $||T||_*$.

Proposition 6 (Continuity Property of a Bounded Linear Functional). Let T be a bounded linear functional on the normed space X. Then, if $\{f_n\} \to f$ in X, then $\{T(f_n)\} \to \{T(f)\}$.

Proposition 7. Let X be a normed vector space. Then, the collection of bounded linear functionals on X is a linear space which is normed by $||\cdot||_*$. This normed vector space is called the **dual space** of X, and is denoted by X^* .

Proposition 8. Let $E \subseteq \mathbb{R}$ be measurable, $1 \leq p < \infty$, q the conjugate of $p, g \in L^q(E)$. Define the functional T on $L^p(E)$ by:

$$T(f) := \int_{E} g \cdot f \,\,\forall f \in L^{p}(E) \tag{12}$$

Then, T is a bounded linear functional on $L^p(E)$ and $||T||_* = ||g||_q$.

Proposition 9. Let T, S be bounded linear functionals on the normed vector space X. If T = S on a dense subset X_0 of X, then T = S.

Lemma 10. Let $E \subseteq \mathbb{R}$ be measurable, $1 \le p < \infty$. Suppose that g is integrable over E and there exists a $M \ge 0$ for which

$$\left| \int_{E} g \cdot f \right| \leq M ||f||_{p} \, \forall f \in L^{p}(E), \, f \text{ simple}$$

Then, $g \in L^q(E)$, where q is the conjugate of p. Moreover, $||g||_q \leq M$.

Theorem 11. Let [a,b] be a closed, bounded interval, and $1 \le p < \infty$. Suppose that T is a bounded linear functional on $L^p[a,b]$. Then, there is a functional $g \in L^q[a,b]$, where q is the conjugate of p, for which:

$$T(f) = \int_{a}^{b} g \cdot f \,\,\forall f \in L^{p}[a, b] \tag{13}$$

Theorem 12 (Riesz-Representation Theorem for the Dual of $L^p(E)$). Let $E \subseteq \mathbb{R}$ be measurable, $1 \leq p < \infty$, and q the conjugate of p. For all $g \in L^q(E)$, define the bounded linear functional \mathcal{R}_g on $L^p(E)$ by:

$$\mathcal{R}_g := \int_E g \cdot f \ \forall f \in L^p(E) \tag{14}$$

Then, for each bounded linear functional T on $L^p(E)$, there exists a unique $g \in L^q(E)$ for which

- (1) $\mathcal{R}_g = T$ and
- (2) $||T||_* = ||g||_q$

2.2. Weak Sequential Convergence in L^p

Definition 20 (Converge Weakly). Let X be a normed vector space. A sequence $\{f_n\}$ in X is said to converge weakly in X to f provided that

$$\lim_{n \to \infty} T(f_n) = T(f) \ \forall T \in X^*$$
 (15)

we write

$$\{f_n\} \rightharpoonup f$$

to mean that f and each f_n belong to X and $\{f_n\}$ converges weakly in X to f.

Definition 21. Let $E \subseteq \mathbb{R}$ be measurable, $1 \leq p < \infty$, q the conjugate of p. Then, $\{f_n\} \to f$ in $L^p(E)$ \iff

$$\lim_{n \to \infty} \int_{E} g \cdot f_n = \int_{E} g \cdot f \ \forall g \in L^q(E)$$
 (16)

Theorem 13. Let $E \subseteq \mathbb{R}$ be measurable, $1 \leq p < \infty$. Suppose that $\{f_n\} \rightharpoonup f$ in $L^p(E)$. Then:

$$\{f_n\}$$
 is bounded and $||f||_p \leq \liminf ||f_n||_p$

Corollary 3. Let $E \subseteq \mathbb{R}$ be measurable, $1 \leq p < \infty$, q the conjugate of p. Suppose $\{f_n\}$ converges weakly to f in $L^p(E)$ and $\{g_n\}$ converges strongly to $g \in L^q(E)$. Then:

$$\lim_{n \to \infty} \int_{E} g_n \cdot f_n = \int_{E} g \cdot f \tag{17}$$

Definition 22 (Linear Span). Let X be a normed vector space, and let $S \subseteq X$. Then, the linear span of S is the vector space consisting of all linear functionals of the form:

$$f = \sum_{k=1}^{n} \alpha_k \cdot f_k \tag{18}$$

where each $\alpha_k \in \mathbb{R}$ and $f_k \in S$. It is the set of all *finite linear combinations of elements in S*. We care about this since L^p is an infinite dimensional space, so we want to find a way to approximate it with finitely many elements.

Proposition 10 (Characterisation of Weak Convergence in $L^p(E)$). Let $E \subseteq \mathbb{R}$ be measurable, $1 \leq p < \infty$, q the conjugate of P. Assume that $\mathcal{F} \subseteq L^q(E)$ whose linear span is dense in $L^q(E)$. Let $\{f_n\}$ be a bounded sequence in $L^p(E)$, and let $f \in L^p(E)$. Then, $\{f_n\} \rightharpoonup f$ in $L^p(E) \iff$

$$\lim_{n \to \infty} \int_{E} f_n \cdot g = \int_{E} f \cdot g \,\,\forall g \in \mathcal{F} \tag{19}$$

Theorem 14. Let $E \subseteq \mathbb{R}$ be measurable, $1 \leq p < \infty$. Suppose that $\{f_n\}$ is a bounded sequence in $L^p(E)$ and f belongs to $L^p(E)$. Then, $\{f_n\} \to f$ in $L^p(E) \iff \forall$ measurable sets $A \subseteq E$:

$$\lim_{n \to \infty} \int_A f_n = \int_A f \tag{20}$$

if p > 1, then it is sufficient to consider sets A of finite measure.

Theorem 15. Let [a,b] be a closed and bounded interval, $1 . Suppose that <math>\{f_n\}$ is a bounded sequence in $L^p[a,b]$ and $f \in L^p[a,b]$. Then, $\{f_n\} \rightharpoonup f$ in $L^p[a,b]$ in $L^p[a,b]$ \iff

$$\lim_{n \to \infty} \left[\int_{a}^{x} f_n \right] = \int_{a}^{x} f \ \forall x \in [a, b]$$
 (21)

Lemma 16 (Riemann-Lebesgue Lemma; used in Fourier Series :-)). Let $I = [-\pi, \pi]$, $1 \le p < \infty$. $\forall n \in \mathbb{N}$, define $f_n(x) := \sin(nx)$ for $x \in I$. Then, $\{f_n\}$ converges weakly in $L^p(I)$ to $f \equiv 0$.

Theorem 17. Let $E \subseteq \mathbb{R}$ be measurable, $1 . Suppose that <math>\{f_n\}$ is a bounded sequence in $L^p(E)$ that converges pointwise a.e. on E to f. Then, $\{f_n\} \rightharpoonup f$ in $L^p(E)$.

This theorem was used in the proof but was not covered in Analysis 3:

Theorem 18 (Vitali Convergence Theorem). Let $E \subseteq \mathbb{R}$ be measurable and of finite measure. Suppose that the sequence of functions $\{f_n\}$ is uniformly integrable over E. Then, if $\{f_n\} \to f$ pointwise a.e. on E, then f is integrable over E and $\lim_{n\to\infty} \int_E f_n = f$.

Theorem 19 (Radon-Riesz Theorem). Let $E \subseteq \mathbb{R}$ be measurable, $1 . Suppose that <math>\{f_n\} \to f$ in $L^p(E)$. Then:

$$\{f_n\} \to f \text{ in } L^p(E) \iff \lim_{n \to \infty} ||f_n||_p = ||f||_p$$
 (22)

Corollary 4. (Not Covered in Class): Let $E \subseteq \mathbb{R}$ be measurable and $1 . Suppose that <math>\{f_n\} \rightharpoonup f$ in $L^p(E)$. Then, a subsequence of $\{f_n\}$ converges strongly to $f \iff ||f||_p = \liminf ||f_n||_p$.

2.3. Weak Sequential Compactness ("Compactness Found!")

Theorem 20. Let $E \subseteq \mathbb{R}$ be measurable, $1 . Then, every bounded sequence in <math>L^p(E)$ has a subsequence that converges weakly in $L^p(E)$ to a function in $L^p(E)$.

Theorem 21 (Helly's Theorem). Let X be a SEPARABLE normed vector space and $\{T_n\}$ a sequence in its dual space X^* that is bounded; that is, \exists a M > 0 for which

$$|T_n(f)| \leq M \cdot ||f|| \ \forall f \in X, \ \forall n \in \mathbb{N}$$

Then, there is a subsequence $\{T_{n_k}\}$ of $\{T_n\}$ and $T \in X^*$ for which

$$\lim_{k \to \infty} T_{n_k}(f) = T(f) \ \forall f \in X$$
 (23)

Definition 23 (Weakly Sequentially Compact (Compact in the "weak topology"). Let X be a normed vector space. Then, a subset $K \subseteq X$ is **weakly sequentially compact** in X provided that every sequence $\{f_n\}$ in K has a subsequence that converges weakly to $f \in K$.

Theorem 22 (The Unit Ball is Weakly Sequentially Compact). Let $E \subseteq \mathbb{R}$ be measurable, 1 . Define:

$$B_1 := \{ f \in L^p(E) \mid ||f||_p \le 1 \}. \tag{24}$$

 B_1 is weakly sequentially compact in $L^p(E)$.

2.4. Results from the Homework

(1) (Reisz-Representation Theorem for the Dual of ℓ^p): Let $1 \leq p < \infty$, q the conjugate of p. Then for all $\{g_n\} \in \ell^q$, define the bounded linear functional \mathcal{R}_q on ℓ^p by:

$$\mathcal{R}_g := T(\{f_n\}) = \sum_{n=1}^{\infty} g_n f_n \tag{25}$$

 $\forall \{f_n\} \in \ell^p$. Then, for each bounded linear functional T on ℓ^p , there exists a unique $\{g_n\} \in \ell^q$ for which:

- (1) $\mathcal{R}_g = T$ (2) $||T||_* = ||\{g_n\}||_q$
- (2) Let c be the vector space of all real sequences that converge to a real number and let c_0 be the subspace of c comprising of all sequences that converge to zero. Norm each vector space with the ℓ^{∞} norm. Then, $c^* = \ell^1$ and $c_0^* = \ell^1$.
- (3) Assume that h is a continuous function defined on all of \mathbb{R} that is periodic with period T and $\int_0^T h = 0$. Let [a, b] be a closed + bounded interval. For each $n \in \mathbb{N}$, define $f_n(x) := h(nx)$. Define $f \equiv 0$ on [a, b]. Then, $\{f_n\}$ converges weakly to f in $L^p[a, b]$.
- (4) Let $1 , assume <math>f_0 \in L^p(\mathbb{R})$. For each $n \in \mathbb{N}$, define $f_n(x) := f_0(x n)$. Define $f \equiv 0$ on \mathbb{R} . Then, $\{f_n\}$ converges weakly to f in $L^p(\mathbb{R})$. Not true for p=1!
- (5) For $1 \leq p < \infty$, for each $n \in \mathbb{N}$, let $e_n \in \ell^p$ be the standard basis sequence. If p > 1, then $\{e_n\}$ converges weakly to zero in ℓ^p , but no subsequence converges strongly to zero. $\{e_n\}$ does not converge at all in ℓ^1 .
- (6) (Uniform Boundedness Principle): Let $E \subseteq \mathbb{R}$ be measurable, $1 \le p < \infty$, and q the conjugate of p. Suppose that $\{f_n\}$ is a sequence in $L^p(E)$ for which for each $g \in L^q(E)$, the sequence $\{\int_E g f_n\}$ is bounded. Show that $\{f_n\}$ is bounded in $L^p(E)$.
- (7) $\{x^n\}$ in C[0,1] fails to have a strongly convergent subsequence. Suitably modify this to work in any C[a,b] by:

$$f_n := \left(\frac{x-a}{b-a}\right)^n$$

- (8) In ℓ^p , $1 , every bounded sequence in <math>\ell^p$ has a weakly convergent subsequence.
- (9) Let X be a normed vector space, and let $\{T_n\}$ be a sequence in X^* for which there exists an $M \geq 0$ such that $||T_n||_* \leq M$ for all $n \in \mathbb{N}$. Let $S \subseteq X$ be a dense subset such that $\{T_n(g)\}$ is Cauchy for all $q \in \mathcal{S}$. Then:
 - (1) $\{T_n(g)\}\$ is Cauchy for all $g \in X$.
 - (2) The limiting functional is linear and bounded.
- (10) Helly's theorem fails when $X = L^{\infty}[0,1]$. To see why, consider a sequence of linear functionals induced by the Rademacher functions.

Metric Spaces

This section was not covered in class, but since we have homework on this chapter I figured having this as a review from analysis 2 might be helpful. Also, there are a few terms/results that I don't think we covered in analysis 2.

Examples of Metric Spaces

Definition 24 (Metric Space). Let X be a non-empty set. A function $\rho: X \times X \to \mathbb{R}$ is called a metric if $\forall x, y \in X$:

- (1) $\rho(x,y) \geq 0$
- (2) $\rho(x,y) = 0 \iff x = y$
- (3) $\rho(x, y) = \rho(y, x)$

(4) $\rho(x,z) \le \rho(x,y) + \rho(y,z)$ (Triangle Inequality).

A non-empty set together with a metric, denoted (X, ρ) is called a **metric space**.

Definition 25 (Discrete Metric). For any non-empty set X, the discrete metric ρ is defined by setting $\rho(x,y)=0$ if x=y and $\rho(x,y)=1$ if $x\neq y$.

Definition 26 (Metric Subspace). For any metric space (X, ρ) , let $Y \subseteq X$ be non-empty. Then, the restriction of ρ to $Y \times Y$ defines a metric on Y. We define this induced metric space as a **metric subspace**.

Example 3.1 (Examples of metric spaces). The following are examples of metric spaces:

- (1) Every non-empty subset of a Euclidean space.
- (2) $L^p(E)$, where $E \subseteq \mathbb{R}$ is a measurable set.
- (3) C[a, b].

Definition 27 (Product Metric). For metric spaces (X_1, ρ_1) and (X_2, ρ_2) , we define the **product metric** τ on the cartesian product $X_1 \times X_2$ by setting, for (x_1, x_2) and (y_1, y_2) in $X_1 \times X_2$:

$$\tau((x_1, x_2), (y_1, y_2)) := \{ [\rho_1(x_1, x_2)]^2 + [\rho_2(y_1, y_2)]^2 \}^{1/2}$$
(26)

Definition 28. Two metrics ρ and σ on a set X are said to be equivalent if there are positive numbers c_1 and c_2 such that $\forall x_1, x_2 \in X$,

$$c_1 \sigma(x_1, x_2) \le \rho(x_1, x_2) \le c_2 \sigma(x_1, x_2)$$

Definition 29 (Isometry). A mapping $f:(X,\rho)\to (Y,\sigma)$ between two metric spaces is called an **isometry** provided that f is surjective and $\forall x_1,x_2\in X$:

$$\sigma(f(x_1), f(x_2)) = \rho(x_1, x_2) \tag{27}$$

We say that two metric spaces are **isometric** if there is an isometry from one to another.

3.2. OPEN SETS, CLOSED SETS, AND CONVERGENT SEQUENCES

Definition 30 (Open Ball). Let (X, ρ) be a metric space. For a point $x \in X$ and r > 0, the set:

$$B(x,r) := \{ x' \in X \mid \rho(x',x) < r \}$$
 (28)

is called the **open ball** centred at x of radius r. A subset $\mathcal{O} \subseteq X$ is said to be **open** if $\forall x \in \mathcal{O}$, there exists an open ball centred at x and contained in \mathcal{O} . For a point $x \in X$, an open set containing x is called a **neighbourhood** of x.

Proposition 11. Let X be a metric space. The whole set X and the empty set \emptyset are open. The intersection of any two open sets is open. The union of any collection of open sets is open.

Proposition 12. Let X be a subspace of a metric space Y and $E \subseteq X$. Then, E is **open in** $X \iff E = X \cap \mathcal{O}$, where \mathcal{O} is open in Y.

Definition 31 (Closure). For a subset $E \subseteq X$, a point $x \in X$ is called a **point of closure** of E provided that every neighbourhood of x contains a point in E. The collection of the points of closure of E is called the **closure** of E and is denoted by \overline{E} .

Proposition 13. For $E \subseteq X$, where X is a metric space, its closure \overline{E} is closed. Moreover, \overline{E} is the smallest closed subset of X containing E in the sense that if F is closed and if $E \subseteq F$, then $\overline{E} \subseteq F$.

Definition 32 (Converge). A sequence $\{x_n\}$ in a metric space (X, ρ) is said to **converge** to the point $x \in x$ provided that:

$$\lim_{n \to \infty} \rho(x_n, x) = 0$$

that is, $\forall \varepsilon > 0$, \exists an index N such that $\forall n \geq N$, $\rho(x_n, x) < \varepsilon$.

Proposition 14. Let ρ and σ be equivalent metrics on a non-empty set X. Then, a subset X is open in a metric space $(X, \rho) \iff$ it is open in (X, σ) .

3.3. Continuous Mappings Between Metric Spaces

Definition 33 (Continuous). A mapping f from a metric space X to a metric space Y is continuous at the point $x \in X$ if $\{x_n\} \in X$, if $\{x_n\} \to x$, then $\{f(x_n)\} \to f(x)$. f is said to be **continuous** if it is continuous at every point in X.

Proposition 15 (ε - δ criteria for continuity). A mapping from a metric space (X, ρ) to a metric (Y, σ) is continuous at the point $x \in X \iff \forall \varepsilon > 0, \exists \delta > 0$ such that if $\rho(x, x') < \delta$, then $\sigma(f(x), f(x')) < \varepsilon$. That is:

$$f(B(x,\delta)) \subseteq B(f(x),\varepsilon)$$
 (29)

Proposition 16. A mapping f from a metric space X to a metric space Y is continuous $\iff \forall$ open subsets $\mathcal{O} \subseteq Y$, the inverse image under f of \mathcal{O} , $f^{-1}(\mathcal{O})$, is an open subset of X.

Proposition 17. The composition of continuous mappings between metric spaces, when defined, is continuous.

Definition 34 (Uniformly Continuous). A mapping from a metric space (X, ρ) to a metric space (Y, σ) is said to be **uniformly continuous** if $\forall \varepsilon > 0$, $\exists \delta > 0$ such that $\forall u, v \in X$, if $\rho(u, v) < \delta$, $\sigma(f(u), f(v)) < \varepsilon$.

Definition 35 (Lipschitz). A mapping $f:(X,\rho)\to (Y,\sigma)$ is said to be **Lipschitz** if \exists a $c\geq 0$ such that \forall $u,v\in X$:

$$\sigma(f(u), f(v)) \le c\rho(u, v)$$

3.4. Complete Metric Spaces

Definition 36 (Cauchy). A sequence $\{x_n\}$ in a metric space (X, ρ) is said to be a Cauchy sequence if $\forall \varepsilon > 0$, there exists a $N \in \mathbb{N}$ such that if $m, n \geq N$, then $\rho(x_n, x_m) < \varepsilon$.

Definition 37 (Complete). A metric space X is said to be **complete** if every Cauchy sequence in X converges to a point in X.

Proposition 18. Let [a, b] be a closed and bounded interval of real numbers. Then, C[a, b] with the metric induced by the max norm is complete.

Proposition 19 (Characterisation of Complete Subspaces of Metric Spaces). Let $E \subseteq X$, where X is a complete metric space. Then, the metric subspace E is complete $\iff E$ is a closed subset of X.

Theorem 23. The following are complete metric spaces:

- (1) Every non-empty closed subset of \mathbb{R}^n .
- (2) $E \subseteq \mathbb{R}$ measurable, $1 \le p \le \infty$, each non-empty closed subset of $L^p(E)$.
- (3) Each non-empty closed subset of C[a, b].

Definition 38 (Diameter). Let E be a non-empty subset of a metric space (X, ρ) . We define the **diameter** of E, denoted by diam(E), by:

$$\operatorname{diam}(E) := \sup \left\{ \rho(x, y) \mid x, y \in E \right\} \tag{30}$$

We say that E is **bounded** if it has finite diameter.

Definition 39 (Contracting Sequence). A decreasing sequence $\{E_n\}$ of non-empty subsets of X is called a contracting sequence if:

$$\lim_{n \to \infty} \operatorname{diam}(E_n) = 0 \tag{31}$$

Theorem 24 (Cantor Intersection Theorem). Let X be a metric space. Then, X is complete \iff whenever $\{F_n\}$ is a contracting sequence of non-empty closed subsets of X, there is a point $x \in X$ for which:

$$\bigcap_{n=1}^{\infty} F_n = \{x\} \tag{32}$$

Theorem 25. Let (X, ρ) be a metric space. Then, there is a complete metric space $(\widetilde{X}, \widetilde{\rho})$ for which X is a dense subset of \widetilde{X} and

$$\rho(u,v) = \tilde{\rho}(u,v) \ \forall \ u,v \in X \tag{33}$$

we call such a space the **completion** of (X, ρ) .

3.5. Compact Metric Spaces

Definition 40 (Compact Metric Space). A metric space X is called **compact** if every open cover of X has a finite sub-cover. A subset $K \subseteq X$ is compact if K, considered as a metric subspace of X, is compact.

Formulation of compactness in terms of closed sets: Let \mathcal{T} be a collection of open subsets of a metric space X. Define \mathcal{F} to be the collection of the complements of elements in \mathcal{T} . Since the elements of \mathcal{T} are open, the elements of \mathcal{F} are closed. Thus, \mathcal{T} is a cover \iff the elements of \mathcal{F} have *empty intersection*. By deMorgan's law, we can formulate compactness in terms of closed sets as:

A metric space X is compact \iff every collection of closed sets with empty intersection has a finite sub-collection whose intersection is non-empty.

This property is called the **finite intersection property**.

Definition 41 (Finite Intersection Property). A collection of sets \mathcal{F} is said to have the **finite intersection** property if any finite sub-collection of \mathcal{F} has a non-empty intersection.

Proposition 20 (Compactness in terms of closed sets). A metric space X is compact \iff every collection \mathcal{F} of closed subsets of X with the finite intersection property has a non-empty intersection.

Definition 42 (Totally Bounded). A metric space X is **totally bounded** if $\forall \varepsilon > 0$, the space X can be covered by a finite number of open balls of radius ε . A subset $E \subseteq X$ is said to be **totally bounded** if E, as a subspace of the metric space X, is totally bounded.

Definition 43 (ε -net). Let E be a subset of a metric space X. A ε -net for R is a finite collection of open balls $\{B(x_k, \varepsilon)\}_{k=1}^n$ with centres $x_k \in X$ whose union covers E.

Proposition 21. A metric space E is totally bounded $\iff \forall \varepsilon > 0$, there is a finite ε -net for E.

Proposition 22. A subset of Euclidean space \mathbb{R}^n is bounded \iff it is totally bounded.

Definition 44 (Sequentially Compact). A metric space X is sequentially compact if every sequence in X has a subsequence that converges to a point in X.

Theorem 26 (Characterisation of Compactness for a metric space). Let X be a metric space. Then, TFAE:

- (1) X is complete and totally bounded.
- (2) X is compact.
- (3) X is sequentially compact.

The following three propositions of this chapter are just breaking down these equivalences, so I will not write them.

Theorem 27. Let $K \subseteq \mathbb{R}^n$. Then, TFAE:

- (1) K is closed and bounded.
- (2) K is compact.
- (3) K is sequentially compact.

Observe: The equivalence $(1) \iff (2)$ is the Heine-Borel theorem. The equivalence $(2) \iff (3)$ is the Bolzano-Weierstrass theorem.

Proposition 23. Let f be a continuous mapping from a compact metric space X to a compact metric space Y. Then, its image f(X) is compact.

Theorem 28 (Extreme Value Theorem). Let X be a metric space. Then, X is compact \iff every continuous real-valued function on X attains a minimum and maximum value.

Definition 45 (Lebesgue Number). Let X be a metric space, and let $\{\mathcal{O}_{\lambda}\}_{{\lambda}\in\Lambda}$ be an open cover of X. Thus, each $x\in X$ is contained in a member of the cover, \mathcal{O}_{λ} . Since \mathcal{O}_{λ} is open, $\exists \ \varepsilon > 0$ such that:

$$B(x,\varepsilon)\subseteq\mathcal{O}_{\lambda}$$

In general, ε on X, but for compact metric spaces we can get uniform control. This ε that uniformly works is called the **Lebesgue number** for the cover $\{\mathcal{O}_{\lambda}\}_{{\lambda}\in\Lambda}$.

Lemma 29. Let $\{\mathcal{O}_{\lambda}\}_{{\lambda}\in\Lambda}$ be an open cover of a compact metric space X. Then, there is a number $\varepsilon>0$ such that for each $x\in X$, the open ball $B(x,\varepsilon)$ is contained in some member of the cover.

Proposition 24. A continuous mapping from a compact space (X, ρ) to a metric space (Y, σ) is uniformly continuous.

3.6. Separable Metric Spaces

Definition 46 (Dense & Separable). A subset D of a metric space X is **dense** in X if every non-empty subset of X contains a point of D. A metric space is **separable** if there is a countable subset of X that is dense in X.

The Weierstrass Approximation Theorem states that polynomials are dense in C[a, b]. So, C[a, b] is separable, with the countable dense set being the set of polynomials with rational coefficients.

Proposition 25. A compact metric space is separable.

Proposition 26. A metric space X is separable \iff there is a countable collection of $\{\mathcal{O}_n\}$ of open subsets of X such that any open subset of X is the union of a sub-collection of $\{\mathcal{O}_n\}$.

Proposition 27. Every subspace of a separable metric space is separable.

Theorem 30. Each of the following are separable metric spaces:

- (1) Every non-empty subset of Euclidean space \mathbb{R}^n .
- (2) $1 \le p < \infty$, $L^p(E)$ and all non-empty subsets of $L^p(E)$.
- (3) Each non-empty subset of C[a, b].

3.7. Results from the Homework

(1) $\{(X_n, \rho_n)\}_{n=1}^{\infty}$ a countable collection of metric spaces. Then, the following is a metric on the Cartesian product:

$$\rho_*(x,y) = \sum_{n=1}^{\infty} \frac{1}{2^n} \cdot \frac{\rho_n(x_n, y_n)}{1 + \rho_n(x_n + y_n)}$$

- (2) A continuous mapping between metric spaces remains continuous if an equivalent metric is imposed on the domain and an equivalent metric is imposed on the domain.
- (3) The distance function (from a point to a set) is continuous.
- $(4) \{x \in X \mid \operatorname{dist}(x, E) = 0\} = \overline{E}.$
- (5) (Sequential Definition of Uniform Continuity): For a mapping f of a metric space (X, ρ) to the metric space (Y, σ) , f is uniformly continuous \iff for all sequences $\{u_n\}$ and $\{v_n\}$ in X:

if
$$\lim_{n\to\infty} \rho(u_n, v_n) = 0$$
 then $\lim_{n\to\infty} \sigma(f(u_n), f(v_n)) = 0$

- (6) If X and Y are metric spaces, with Y complete, and f a uniformly continuous mapping from $E \subseteq X \to Y$, then f has a uniquely uniformly continuous extension mapping \overline{f} of \overline{E} to Y.
- (7) Let $E \subseteq X$, X a compact metric space. Then, the metric subspace E is compact $\iff E$ is a closed subset of X.
- (8) $E \subseteq X$, X complete. Then, E is totally bounded $\iff \overline{E}$ is totally bounded.
- (9) The closed unit ball in ℓ^2 is not compact.

4. Topological Spaces

4.1. Open Sets, Closed Sets, Bases, and Sub-bases

Definition 47 (Open Sets). Let X be a non-empty set. A **topology** \mathcal{T} for X is a collection of subsets of X, called **open sets**, possessing the following properties:

- (1) The entire set X and the empty set \emptyset are open.
- (2) The finite intersection of open sets are open.
- (3) The union of any collection of open sets is open.

A non-empty set X, together with a topology on X, is called a **topological space**. For a point $x \in X$, an open set that contains x is called a **neighbourhood** of x.

Proposition 28. A subset $E \subseteq X$ is open \iff for each $x \in E$, there exists a neighbourhood of x that is contained in E.

Example 1 (Metric Topology). Let (X, ρ) be a metric space. Let $\mathcal{O} \subseteq X$ be open if for all $x \in \mathcal{O}$, \exists an open ball at x that is contained in \mathcal{O} . This collection of open sets forms a topology; we call this the **metric topology** induced by ρ .

Example 2 (Discrete Topology). This topology is "too much." Let X be a non-empty subset. Let $\mathcal{T} := \mathcal{P}(X)$. Then, every set containing a point is a neighbourhood of that point. This is induced by the discrete metric.

Example 3 (Trivial Topology). Let X be non-empty. Define $\mathcal{T} := \{X, \emptyset\}$. The only neighbourhood of any point is the whole set X.

Definition 48 (Topological Subspaces). Let (X, \mathcal{T}) be a topological space and let E be a non-empty subset of X. The inherited topology \mathcal{S} for E is the set of all sets of the form $E \cap \mathcal{T}$, where $\mathcal{O} \in \mathcal{T}$. The topological space (E, \mathcal{S}) is called a **subspace** of (X, \mathcal{T}) .

Definition 49 (Base for the Topology). The building blocks of a topology is called a base. Let (X, \mathcal{T}) be a topological space. For a point $x \in X$, a collection of neighbourhoods of x, B_x , is called a base for the topology at X if \forall neighbourhoods \mathcal{U} of x, there exists a set B in the collection B_x for which $B \subseteq \mathcal{U}$.

A collection of open sets \mathcal{B} is called a base for the topology \mathcal{T} provided it contains a base for the topology at each point.

A base for a topology completely determines a topology, alongside \emptyset and X.

Proposition 29. For a non-empty set X, let \mathcal{B} be a collection of subsets of X. Then, \mathcal{B} is a base for a topology for $X \iff$:

(1) \mathcal{B} covers X. That is:

$$X = \bigcup_{B \in \mathcal{B}} B \tag{34}$$

(2) If $B_1, B_2 \in \mathcal{B}$, and $x \in B_1 \cap B_2$, then there is a set $B_3 \in \mathcal{B}$ for which $x \in B_3 \subseteq B_1 \cap B_2$.

The unique topology that has \mathcal{B} as its base consists of \emptyset and unions of sub-collections of \mathcal{B} .

Definition 50 (Product Topology). Let (X, \mathcal{T}) and (Y, \mathcal{S}) be two topological spaces. In the cartesian product $X \times Y$, consider the collection of sets \mathcal{B} containing the products $\mathcal{O}_1 \times \mathcal{O}_2$, where \mathcal{O}_1 is open in X and \mathcal{O}_2 is open in Y. Then, \mathcal{B} is a base for a topology on $X \times Y$, which we call the **product topology**.

Definition 51 (Sub-base). Let (X, \mathcal{T}) be a topological space. The collection of \mathcal{S} of \mathcal{T} that covers X is called a sub-base for the topology \mathcal{T} provided intersections of finite collections of \mathcal{S} are a base for \mathcal{T} .

Definition 52 (Closure). Let $E \subseteq X$ be a subset of a topological space. A point $x \in E$ is called a **point** of closure of E if every neighbourhood of x contains a point in E. The collection of the points of closure of E is called the closure of E, denoted \overline{E} .

Proposition 30. Let X be a topological space, $E \subseteq X$. Then, \overline{E} is closed. Moreover, \overline{E} is the smallest closed subset of X containing E in the sense that if F is closed and $E \subseteq F$, then $\overline{E} \subseteq F$.

Proposition 31. A subset of a topological space X is open \iff its complement is closed.

Proposition 32. Let X be a topological space. Then, (a) \emptyset and X are closed, (b) the union of a finite collection of closed sets is closed, (c) the intersection of any collection of closed sets in X is closed.

4.2. Separation Properties

Motivation: Separation properties for a topology allow us to discriminate between which topologies discriminate between certain disjoint pairs of sets, which will then allow us to study a robust collection of cts real-valued functions on X.

Definition 53 (Neighbourhood). A neighbourhood of K for a subset $K \subseteq X$ is an open set that contains K.

Definition 54 (Separated by Neighbourhoods). We say that two disjoint sets A and B in X can be separated by disjoint neighbourhoods provided that there exists neighbourhoods of A and B, respectively, that are disjoint.

Definition 55 (Separation Properties of Topological Spaces). In the order of most general to least general, they are:

- (1) Tychonoff Separation Property: For each two points $u, v \in X$, there exists a neighbourhood of u that does not contain v and a neighbourhood of v that does not contain u.
- (2) **Hausdorff Separation Property**: Each two points in X can be separated by disjoint neighbourhoods.
- (3) Regular Separation Property: Tychonoff + each closed set and a point not in the set can be separated by disjoint neighbourhoods.
- (4) Normal Separation Property: Tychonoff + each two disjoint closed sets can be separated by disjoint neighbourhoods.

Proposition 33. A topological space is Tychonoff \iff every set containing a single point, $\{x\}$, is closed.

Proposition 34. Every metric space is normal.

Lemma 31. F is closed \iff dist $(x, F) > 0 \ \forall \ x \notin F$.

Proposition 35. Let X be a Tychonoff topological space. Then, X is normal \iff whenever \mathcal{U} is a neighbourhood of a closed subset of F of X, there is another neighbourhood of F whose closure is contained in \mathcal{U} . that is, there is an open set \mathcal{O} for which:

$$F \subseteq \mathcal{O} \subseteq \overline{\mathcal{O}} \subseteq \mathcal{U} \tag{35}$$

4.3. Countability and Separability

Definition 56 (Converge, Limit). A sequence $\{x_n\}$ in a topological space X is said to **converge** to the point $x \in X$ if for each neighbourhood \mathcal{U} of x, there exists an index $N \in \mathbb{N}$ such that if $n \geq N$, then x_n belongs to \mathcal{U} . This point is called a **limit** of the sequence.

Definition 57 (First and Second Countable). A topological space X is first countable if there is a countable base at each point. A space X is said to be **second countable** if there is a countable base for the topology.

Example 4. Every metric space is first countable.

Proposition 36. Let X be a first countable topological space. For a subset $E \subseteq X$, a point $x \in X$ is called a point of closure of $E \iff$ it is a limit of a sequence in E. Thus, a subset E of X is closed \iff whenever a sequence in E converges to $x \in X$, we have that $x \in E$.

Definition 58 (Dense/Separable). A subset $E \subseteq X$ is dense in X if every open set in X contains a point of E. We call X separable if it has a countable dense subset.

Definition 59 (Metrisable). A topological space X is said to be **metrisable** if the topology is induced by the metric.

Theorem 32. Let X be a second countable topological space. Then, X is metrisable \iff it is normal.

4.4. Continuous Mappings between Topological Spaces

Definition 60 (Continuous). For topological spaces (X, \mathcal{T}) , (Y, \mathcal{S}) , a mapping $f: X \to Y$ is said to be **continuous** at the point x_0 in X if, for every neighbourhood \mathcal{O} if $f(x_0)$, there is a neighbourhood \mathcal{U} of x_0 for which $f(\mathcal{U}) \subseteq \mathcal{O}$. We say that f is continuous provided it is continuous at each point in X.

Proposition 37. A mapping $f: X \to Y$ between topological spaces X and Y is continuous \iff for any open subset \mathcal{O} in Y, its inverse image under f, $f^{-1}(\mathcal{O})$, is an open subset of X.

Proposition 38. The composition of continuous mappings between topological spaces, when defined, is continuous.

Definition 61 (Stronger). Given two topologies \mathcal{T}_1 and \mathcal{T}_2 for a set X, if $\mathcal{T}_2 \subseteq \mathcal{T}_1$, then we say that \mathcal{T}_2 is weaker than \mathcal{T}_1 , and that \mathcal{T}_1 is stronger than \mathcal{T}_2 .

Proposition 39. Let X be a non-empty set and let S be a collection of subsets of X that covers X. The collection of subsets of X consisting of intersections of finite collections of S is a base for a topology T of X. It is the weakest topology containing S in the sense that if T' is any other topology for X containing S, then $T \subseteq T'$.

Definition 62 (Weak Topology). Let X be a non-empty set and $\mathcal{F} := \{f_{\alpha} \mid X \to X_{\alpha}\}_{{\alpha} \in \Lambda}$ a collection of mappings, where each X_{α} is a topological space. The weakest topology for X that contains the collection of sets

$$\{f_{\alpha}^{-1}(\mathcal{O}_{\alpha}) \mid f_{\alpha} \in \mathcal{F}, \ \mathcal{O}_{\alpha} \text{ open in } X_{\alpha}\}$$
 (36)

is called the weak topology for X induced by \mathcal{F} .

Proposition 40. Let X be a non-empty set, $\mathcal{F} := \{f_{\lambda} \mid X \to X_{\lambda}\}_{{\lambda} \in \Lambda}$ a collection of mappings where each X_{λ} is a topological space. The weak topology for X induced by \mathcal{F} is the topology on X that has the fewest number of sets covering the topologies on X for which each mapping $f_{\lambda} : X \to X_{\lambda}$ is continuous.

Definition 63 (Homeomorphism). A mapping from a topological space $X \to Y$ is said to be a **homeomorphism** if it is bijective and has a continuous inverse $f^{-1}: Y \to X$. Two topological spaces are said to be **homeomorphic** if there exists a homeomorphism between them. The notion of homeomorphism induces a notion of an equivalence relation between spaces.

4.5. Compact Topological Spaces

Definition 64 (Cover). A collection of sets $\{E_{\lambda}\}_{{\lambda}\in\Lambda}$ is said to be a **cover** of a set E if $E\subseteq\bigcup_{{\lambda}\in\Lambda}E_{\lambda}$.

Definition 65 (Compact). A topological space X is said to be **compact** if every open cover of X has a finite sub-cover. A subset $K \subseteq X$ is compact if K, considered as a topological space with the subspace topology inherited from X, is compact.

Proposition 41. A topological space X is compact \iff every collection of closed subsets of X that possesses the finite intersection property has non-empty intersection.

Proposition 42. A closed subset K of a compact topological space is compact.

Proposition 43. A compact subspace K of a Hausdorff topological space is a closed subset of X.

Definition 66 (Sequentially Compact). A topological space X is said to be sequentially compact if every sequence in X has a subsequence that converges to a point in X.

Proposition 44. Let X be a second countable topological space. Then, X is compact \iff it is sequentially compact.

Theorem 33. A compact Hausdorff space is normal.

Proposition 45. A continuous one-to-one mapping f of a compact space X onto a Hausdorff space Y is a homeomorphism.

Proposition 46. The continuous image of a compact topological space is compact.

Corollary 5. A continuous real-valued function on a compact topological space takes on a minimum and maximum functional value.

Definition 67 (Countably Compact). A topological space is **countably compact** if every countable open cover has a finite subcover.

4.6. Connected Topological Space

Definition 68 (Separated). Two non-empty subsets of a topological space separate X if they are disjoint and their union is X.

Definition 69 (Connected). A topological space which cannot be separated by open sets is said to be **connected**. A subset $E \subseteq X$ is **connected** if there do NOT exist open subsets \mathcal{O}_1 , \mathcal{O}_2 of X for which:

$$\mathcal{O}_1 \cap E \neq \emptyset$$

$$\mathcal{O}_2 \cap E \neq \emptyset$$

$$E \subseteq \mathcal{O}_1 \cup \mathcal{O}_2,$$

$$E \cap \mathcal{O}_1 \cap \mathcal{O}_2 = \emptyset$$

Proposition 47. Let f be a continuous mapping of a connected space X to a topological space Y. Then, its image f(X) is connected.

Proposition 48. For A set $C \in \mathbb{R}$, the following are equivalent.

- (1) C is an interval.
- (2) C is convex.
- (3) C is connected.

Definition 70 (Intermediate Value Property). A topological space X has the intermediate value property if the image of any continuous real-valued function on X is an interval.

Proposition 49. A topological space has the intermediate value property \iff it is connected.

Definition 71 (Arcwise connected). A topological space X is arcwise connected if, for each pair $u, v \in X$, there exists a continuous map $f : [0,1] \to X$ for which f(0) = u and f(1) = v. Note:

- (1) Connected \iff arcwise connected in \mathbb{R}^n .
- (2) Arcwise connected \Rightarrow connected (in general)
- (3) There exist connected but non-arcwise connected spaces (in general).

4.7. Results from Homework

- (1) Let X be a topological space. Then, X is Hausdorff \iff the diagonal $D := \{(x_1, x_2) \in X \times X \mid x_1 = x_2\}$ is closed as a subset of $X \times X$.
- (2) The Moore plane is separable. The subspace $\mathbb{R} \times \{0\}$ is not separable. Thus, the Moore plane is not metrisable and not second countable.
- (3) Let X and Y be topological spaces. Then, you can construct a continuous map from a Hausdorff space to a non-Hausdorff space, and you can do the same for a normal space to a non-normal space.

(4) If ρ_1 and ρ_2 are metrics on a set X that induce topologies \mathcal{T}_1 and \mathcal{T}_2 , respectively, then if they generate the same topology $\mathcal{T}_1 = \mathcal{T}_2$, then they are <u>NOT</u> necessarily equivalent. A counter example would be:

$$\rho_1 := |x - y|$$

$$\rho_2 := \frac{|x - y|}{1 + |x - y|}$$

- 5. Metric Spaces: Three Fundamental Theorems
- 5.1. The Arzela-Ascoli Theorem

Proposition 50. Let X be a compact metric space. Then C(X) is complete.

Definition 72 (Epicontinuous). A collection \mathcal{F} of real-valued functions on a metric space X is said to be epicontinuous at the point $x \in X$ provided that $\forall \varepsilon > 0$, $\exists \delta > 0$ such that $\forall f \in \mathcal{F}, x' \in X$:

if
$$\rho(x', x) < \delta$$
 then $|f(x') - f(x)| < \varepsilon$

The collection \mathcal{F} is said to be epicontinuous on X if it is epicontinuous at every point in X.

- Any finite collection of continuous functions will be epicontinuous.
- In general, infinite collections of epicontinuous functions are not epicontinuous. For example, consider $f_n := x^n$ where $x \in [0,1]$. This collection fails to be epicontinuous at x = 1.

Definition 73 (Pointwise bounded). A sequence $\{f_n\}$ of real-valued functions on a set X are said to be **pointwise bounded** if $\forall x \in X$, the sequence $\{f_n\}$ is bounded. A sequence is **uniformly bounded** if $\exists M \geq 0$ for which

$$|f_n| \leq M$$
 on X for all $n \in \mathbb{N}$

Lemma 34 (The Arzela-Ascoli Lemma). Let X be a separable metric space. Let $\{f_n\}$ be an equicontinuous sequence in X that is pointwise bounded. Then a subsequence $\{f_n\}$ converges pointwise on all of X to a real-valued function f on X.

Definition 74 (Uniformly Epicontinuous). Let X be a compact metric space, \mathcal{F} an epicontinuous collection of real-valued functions on X. Then, \mathcal{F} is <u>uniformly equicontinuous</u> in the sense that $\forall \ \varepsilon > 0, \ \exists \ \delta > 0$ such that $\forall \ u,v \in X, \ \forall f \in \mathcal{F}$ if

$$\rho(u,v) < \delta \ \Rightarrow |f(u) - f(v)| < \varepsilon$$

Theorem 35 (Arzela-Ascoli Theorem). Let X be a compact metric space, $\{f_n\}$ a uniformly bounded, equicontinuous sequence of real-valued functions on X. Then $\{f_n\}$ has a subsequence that converges uniformly on X to a continuous function f on X.

Theorem 36. Let X be a compact metric space and $\mathcal{F} \subseteq C(X)$. Then, \mathcal{F} is a compact subspace of C(X) $\iff \mathcal{F}$ is closed, uniformly bounded, and epicontinuous.

5.2. Baire Category Theorem

Definition 75 (Hallow). A subset of a metric space X is <u>hallow</u> if it has an empty interior.

• For $E \subseteq X$, E is **hallow** in $X \iff$ its complement is dense in X.

• Let X be a metric space. Let $0 < r_1 < r_2$. Bu the continuity of the metric, $\overline{B(x,r_1)} \subseteq B(x,r_2)$. Thus, $B(x, r_1)$ is a closed set for which the following holds:

$$B(x, r_1) \subseteq \overline{B(x, r_1)} \subseteq B(x, r_2) \tag{37}$$

Theorem 37 (Baire Category Theorem). Let X be a complete metric space.

- (1) Let $\{\mathcal{O}_n\}_{n=1}^{\infty}$ be a countable collection of open, dense subsets of X. Then, the intersection $\bigcap_{n=1}^{\infty} \mathcal{O}_n$ is also dense.
- (2) Let $\{F_n\}_{n=1}^{\infty}$ be a countable collection of closed, hallow subsets of X. Then, their union $\bigcup_{n=1}^{\infty} F_n$ is also hallow.

Equivalent formulation:

• In a complete metric space, the union of a countable collection of nowhere dense sets is hallow.

Definition 76 (Nowhere Dense). A subset $E \subseteq X$, X a metric space, is called <u>nowhere dense</u> provided that its closure \overline{E} is hallow. We have the following equivalence:

• A subset $E \subseteq X$ is nowhere dense \iff for each open subset \mathcal{O} of $X, E \cap \mathcal{O}$ is not dense in X.

Corollary 6. Let X be a complete metric space and $\{F_n\}_{n=1}^{\infty}$ a countable collection of closed subsets of X. If $\bigcup_{n=1}^{\infty} F_n$ has a non-empty interior, then at least one of the F_n 's has a non-empty interior. In particular, if $X = \bigcup_{n=1}^{\infty} F_n$, then at least one of the $F'_n s$ has empty interior.

Corollary 7. Let X be a complete metric space and $\{F_n\}_{n=1}^{\infty}$ a countable collection of closed subsets of X. Then $\bigcup_{n=1}^{\infty} \partial F_n$ is hallow.

Theorem 38. Let \mathcal{F} be, family of continuous real-valued functions on a complete metric space X that is pointwise bounded in the sense that $\forall x \in X, \exists$ a constant M_x for which

$$|f(x)| \le M_x \ \forall f \in \mathcal{F} \tag{38}$$

Then, there is a non-empty open subset \mathcal{O} of X on which \mathcal{F} is uniformly bounded in the sense that \exists a constant M such that

$$|f| \le M \text{ on } \mathcal{O} \ \forall f \in \mathcal{F}$$
 (39)

Theorem 39. Let X be a complete metric space and let $\{f_n\}$ be a sequence of continuous real-valued functions on X that converges pointwise on X to the real-valued function f. Then, there is a dense set $D \subseteq X$ for which $\{f_n\}$ is epicontinuous and f is continuous at each point in D.

Some standard terminology:

- First Category/Meger: a subset $E \subseteq X$ is of the first category if E is the union of a countable collection of nowhere dense subsets of X.
- Second Category/Non-Meger a set that is not of the second category.
- **Residual**: the complement of a set of the first category.

Equivalent formulation of the Baire Category Theorem: A non-empty set of a complete metric space is of the second category

5.3. The Banach Contraction Principle

Definition 77 (Fixed Point). A point $x \in X$ is called a <u>fixed point</u> of the mapping $T: X \to X$ provided that T(x) = x.

Definition 78 (Convex). A subset $K \subseteq \mathbb{R}^n$ is said to be **convex** provided that whenever $u, v \in K$, the segment $\{tu + (1-t)v \mid 0 \le t \le 1\} \subseteq K$.

Theorem 40 (Brouwer's Fixed Point Theorem). If $K \subseteq \mathbb{R}^n$ is a compact, convex subset of \mathbb{R}^n , and if the mapping $T: K \to K$ is continuous, then T has a fixed point.

Definition 79 (Lipschitz). A mapping T from a metric space (X, ρ) to itself is said to be <u>Lipschitz</u> provided that there is a number $c \ge 0$, called a Lipschitz constant for the mapping, for which

$$\rho(T(u), T(v)) \le c\rho(u, v) \ \forall u, v \in X \tag{40}$$

If c < 1, then the Lipschitz mapping is called a **contraction**

Theorem 41 (Banach Contraction Principle). Let X be a complete metric space and the mapping $T: X \to X$ a contraction. Then, $T: X \to X$ has exactly one fixed point.

Theorem 42 (Picard Local Existence Theorem). Let $\mathcal{O} \subseteq \mathbb{R}^n$ be open, $(x_0, y_0) \in \mathcal{O}$. Let $g : \mathcal{O} \to \mathbb{R}$ be a function. Suppose we want to find an open interval of real numbers I containing the point x_0 and a differentiable function $f : I \to \mathbb{R}$ such that

$$\begin{cases} f'(x) = g(x, f(x)) \ \forall x \in I \\ f(x_0) = y_0 \end{cases}$$

$$\tag{41}$$

Suppose the function $g: \mathcal{O} \to \mathbb{R}$ is continuous and there is a positive number M for which the following Lipschitz property holds:

$$|g(x, y_1) - g(x, y_2)| \le M|y_1 - y_2| \ \forall (x, y_1), (x, y_2) \in \mathcal{O}$$

Then, \exists an open interval I containing x_0 on which the ODE above has a unique solution.

6. Topological Spaces: Three Fundamental Properties

6.1. Ursohn's Lemma and the Tietze Extension Theorem

Lemma 43 (Urysohn's Lemma). Let A, B, be two non-empty, disjoint closed subsets of a normal space X. Then, for any closed, bounded interval of real numbers [a, b], \exists a continuous real-valued function f defined on X that takes values in [a, b], while f = A on A and f = b on B.

Definition 80 (Normally Ascending). Let X be a topological space and Λ a set of numbers. A collection of open subsets of X indexed by Λ , $\{\mathcal{O}_{\lambda}\}_{{\lambda}\in\Lambda}$, is said to be **normally ascending** provided that for any $\lambda_1 < \lambda_2$:

$$\overline{\mathcal{O}_{\lambda_1}}\subseteq\mathcal{O}_{\lambda_2}$$

Lemma 44. Let X be a topological space. For Λ a dense subset of the open, bounded interval]a, b[, let $\{\mathcal{O}_{\lambda}\}_{{\lambda}\in\Lambda}$, be a normally ascending collection of open subsets of X. Define the function $f:X\to\mathbb{R}$ by setting f=b on $X\setminus\bigcup_{{\lambda}\in\Lambda}\mathcal{O}_{\lambda}$ and otherwise setting:

$$f(x) := \inf\{\lambda \in \Lambda \mid x \in \mathcal{O}_{\lambda}\}$$
(42)

Then, $f: X \to [a, b]$ is continuous.

Lemma 45. Let X be a normal topological space, F a closed subset of X, and \mathcal{U} a neighbourhood of F. For any open, bounded interval]a,b[there exists a dense subset Λ of]a,b[and a normally ascending collection of open subsets of X, $\{\mathcal{O}_{\lambda}\}_{{\lambda}\in\Lambda}$ for which

$$F \subseteq \mathcal{O}_{\lambda} \subseteq \overline{\mathcal{O}}_{\lambda} \subseteq \mathcal{U} \tag{43}$$

Theorem 46 (Tietze Extension Theorem). Let X be a normal topological space, F a closed subset of X, and f a continuous real-valued function on F that takes values in the closed, bounded interval [a, b]. Then, f has a continuous extension of all of X that also takes values in [a, b].

Theorem 47 (Urysohn Metrization Theorem). Let X be a second countable topological space. Then X is metrisable $\iff X$ is normal.

6.2. The Tychnoff Product Theorem

Definition 81 (Product Topology). Let $\{(X_{\lambda}, \mathcal{T}_{\lambda})\}_{\lambda \in \Lambda}$ be a collection of topological spaces indexed by a set Λ . The **product topology** on the cartesian product $\prod_{\lambda \in \Lambda} \mathcal{O}_{\lambda}$, where $\mathcal{O}_{\lambda} \in \mathcal{T}_{\lambda}$ and $\mathcal{O}_{\lambda} = X_{\lambda}$ except for finitely many λ .

Proposition 51. Let X be a topological space. A sequence $\{f_n \mid \Lambda \to X\}$ converges to f in the product space $X^{\Lambda} \iff \{f_n(\lambda)\}$ converges to $f(\lambda)$ for all $\lambda \in \Lambda$. Thus, convergence of a sequence wrt the product topology is pointwise convergence.

Proposition 52. The product topology on the cartesian product of topological spaces $\prod_{\lambda \in \Lambda} X_{\lambda}$ is the weak topology associated to the collection of projections $\{\pi_{\lambda} \mid \prod_{\lambda \in \Lambda} X_{\lambda} \to X_{\lambda}\}_{\lambda \in \Lambda}$, that is, the topology on the cartesian product that has the fewest number of sets among the topologies for which all projection mappings are continuous.

Lemma 48. Let \mathcal{A} be a collection of subsets of a set X that possesses the finite intersection property. Then, there exists a collection \mathcal{B} of subsets of X which contains \mathcal{A} , has the finite intersection property, and is maximal with respect to this property.

Lemma 49. Let \mathcal{B} be a collection of subsets of X of a set that is maximal with respect to the finite intersection property. Then, each intersection of a finite number of sets in \mathcal{B} is again in \mathcal{B} , and each subset of X that has non-empty intersection with each set in \mathcal{B} is itself in \mathcal{B} .

Theorem 50 (Tychnoff Product Theorem). Let $\{X_{\lambda}\}_{{\lambda}\in\Lambda}$ be a collection of compact topological spaces indexed by the set Λ . Then, the cartesian product $\prod_{{\lambda}\in\Lambda} X_{\lambda}$ with the product topology is compact.

6.3. The Stone-Weierstrass Theorem

Theorem 51 (Weierstrass Approximation Theorem). Let f be a continuous real-valued function on a closed, bounded interval [a, b]. Then, $\forall \varepsilon > 0$, \exists a polynomial p for which

$$|f(x) - p(x)| < \varepsilon \ \forall x \in [a, b] \tag{44}$$

Definition 82 (Algebra). A vector subspace $A \leq C(X)$ is called an <u>algebra</u> provided that the product of any two functions in A is in A.

Definition 83 (Separate Points). A collection \mathcal{A} of real-valued functions on X is said to <u>separate points</u> in X provided that for any two distinct points $u, v \in X$, $\exists f \in \mathcal{A}$ such that $f(u) \neq f(v)$.

Theorem 52 (Stone-Weierstrass Approximation Theorem). Let X be a compact Hausdorff space. Suppose that \mathcal{A} is an algebra of continuous real-valued functions on X that separates points in X and contains the constant functions. Then, \mathcal{A} is dense in C(X).

Lemmas used in the proof of the Stone-Weierstrass theorem:

Lemma 53. Let X be a compact Hausdorff space and \mathcal{A} an algebra of continuous functions on X that separates points and contains the constant functions. Then, for each closed subset F of X and point $x_0 \in X \setminus F$ there exists a neighbourhood \mathcal{U} of x_0 that is disjoint from F with the following property: $\forall s > 0, \exists h \in \mathcal{A}$ for which

$$h < \varepsilon \text{ on } \mathcal{U}, h > 1 - \varepsilon \text{ on } F, \text{ and } 0 \le h \le 1 \text{ on } X$$
 (45)

Lemma 54. Let X be a compact Hausdorff space and \mathcal{A} an algebra of continuous functions on X that separates points and contains the constant functions. Then, for each pair of disjoint and closed subsets A and B of X and E > 0, $\exists h \in \mathcal{A}$ for which

$$h < \varepsilon \text{ on } A, h > 1 - \varepsilon \text{ on } B, \text{ and } 0 \le h \le 1 \text{ on } X$$
 (46)

Theorem 55 (Borsuk's Theorem). Let X be a compact Hausdorff topological space. Then, the normed vector space C(X) is separable \iff the topology on X is metrisable.

7. CONTINUOUS LINEAR OPERATORS BETWEEN BANACH SPACES