1 The Photon

		$c = 2.998 \cdot 10^{\circ} \left[\frac{\text{m}}{\text{s}} \right]$
		$h = 6.626 \cdot 10^{-34} \left[\frac{\text{m}^2 \text{kg}}{\text{s}} \right]$
$c\left[\frac{\mathrm{m}}{\mathrm{s}}\right]$	speed of light	,
$h\left[\frac{\mathrm{m}^2\mathrm{kg}}{\mathrm{s}}\right]$	planc's constant	$\hbar = \frac{h}{2\pi}$
e [C]	electorn charge	$e = 1.602 \cdot 10^{-19} \text{ [C]}$
m_e [kg]	electron mass	$m_e = 9.109 \cdot 10^{-31} \text{ [kg]}$
$k_B \left[\frac{\mathrm{m}^2 \mathrm{kg}}{\mathrm{s}^2 \mathrm{K}} \right]$	bolzmann constant	$l_{2} = 1.291 \cdot 10^{-23} \left[\text{m}^{2} \text{kg} \right]$
$\epsilon_0 \left[\frac{\mathrm{F}}{\mathrm{m}} \right]$	vacuum permittivity	$k_B = 1.381 \cdot 10^{-23} \left[\frac{\text{m}^2 \text{ kg}}{\text{s}^2 \text{ K}} \right]$
[···]		$\epsilon_0 = 8.854 \cdot 10^{-12} \left[\frac{\mathrm{F}}{\mathrm{m}} \right]$
		$1 \text{ [eV]} = 1.602 \cdot 10^{-19} \text{ [J]}$

1.1 Photon & Electron

$$\lambda \text{ [m]}, \nu \text{ } \left[\frac{1}{\text{s}}\right] \text{ Wavelength, Freq.} \qquad \lambda = \frac{c}{\nu} \quad \nu = \frac{c}{\lambda} \quad \omega = 2\pi\nu$$

$$k \qquad \qquad \text{Wavenumber} \qquad \qquad k = \frac{2\pi\nu}{c}$$

$$E \text{ [J]} \qquad \text{Energy} \qquad \qquad E = h \cdot \nu = \hbar \cdot \omega$$

$$\vec{F_c} \text{ [N]} \qquad \text{Coulomb Force} \qquad \qquad \left|\vec{F_c}\right| = \frac{Q_1 \cdot Q_2}{4\pi\epsilon_0 r^2}$$

1.2 Photoelectric effect

$$\begin{array}{ll} V \ [\mathrm{V}] & \mathrm{Voltage} \\ \phi_0 \ [\mathrm{eV}] & \mathrm{Work \ function} \\ I \ [\mathrm{A}] & \mathrm{Photo-current} \\ n \ [\mathrm{m}^{-3}] & \mathrm{Volume \ density \ of \ electrons} \\ A \ [\mathrm{m}^2] & \mathrm{Area} \\ v \ [\frac{\mathrm{m}}{\mathrm{s}}] & \mathrm{velocity \ of \ electrons} \\ \end{array}$$

$$h\nu - \phi_0 = \frac{1}{2}mv^2 = eV$$
$$V(\nu) = \frac{h}{e}\nu - \frac{\phi_0}{e}$$
$$I = nAve$$

 $a = 2.009 \cdot 108 \text{ [m]}$

1.3 Blackbody Radiation

$$L$$
 [m] length of blackbody cube k_i wave constants E_x Electric field in x-direction $\langle E \rangle$ Average Energy N Number of states D Density of states U Blackbody radiation U Power radiated

$$E_x(x,y,z) = E_{0x}\cos(k_x x)\sin(k_y y)\sin(k_z z)$$

$$k_x = n\frac{\pi}{L} \quad k_y = m\frac{\pi}{L} \quad k_z = l\frac{\pi}{L} \qquad k = \sqrt{k_x^2 + k_y^2 + k_z^2}$$

$$N(k) = \frac{1}{3\pi^2}k^3L^3 \qquad D(k) = \frac{k^2}{\pi^2}$$

$$u(\omega) = \frac{\omega^2}{\pi^2 c^3} \cdot \frac{\hbar\omega}{\exp\left(\frac{-\hbar\omega}{kT}\right) - 1}d\omega \qquad u(\nu) = \frac{8\pi h\nu^3}{c^3\left(\exp\left(\frac{h\nu}{kT}\right) - 1\right)}d\nu$$

$$I(\omega) = c \cdot u(\omega)$$

Equipartition-Theorem: Each degree of Freedom has an energy of kT

1.4 Johnson-Noise

This is the noise created in a one-dimensional circuit (like a coax-cable).

$$\langle V^2 \rangle$$
 Noise Voltage

$$\Delta \nu$$
 Bandwidth

$$E = E_0 \cdot \sin(k_x \cdot x)$$

$$\langle V^2 \rangle = 4R \cdot k_B T \cdot \Delta \nu$$

1.5 Momentum of a photon

1.6 Absorption, spontaneous and stimulated emission

absorbtion spontaneous emission stimulated emission

 n_1 Number of electrons in the lower energy state

 n_2 Number of electrons in the higher energy state

$$\frac{dn_2}{dt} = \underbrace{n_1 \cdot u(\nu) \cdot B_{12}}_{\text{absorbtion}} - \underbrace{n_2 \cdot u(\nu) \cdot B_{21}}_{\text{stimulated emission}} - \underbrace{n_2 \cdot A_{21}}_{\text{spontaneous emission}}$$

$$\frac{n_2}{n_1} = e^{-\frac{h\nu}{k_B T}} = \frac{u(\nu)B_{12}}{u(\nu)B_{21} + A_{21}}$$

$$B_{21} = B_{12} = B \qquad A_{21} = \frac{8\pi h\nu^3}{c^3}$$

1.7 Laser-optical amplification

Electrons are excited from the ground state "0" to the level "3" by pumping through incoherent radiation. The electrons then fall onto a long-lived state n_2 (State "2") from level "3". The pumping can be done either optically by shining a strong incoherent light or by passing a current. It is also assumed that the lower state is quickly emptied by a fast process with lifetime τ_1 . As a result, the population in state "2" is:

$$n_2 = \frac{R}{A_{21}}$$
 whereas $n_1 \approx 0$ because $A_{21} < \frac{1}{\tau_1}$

We have rherefore a population inversion between the two states. The likelihood of a stimulated emission process is larger than the one of absorbtion. If we enclose the system in an optical cavity, we can achieve self-sustained oscillation at the frequency ν .

2 Wave mechanics

	frequency	wavelength	momentum	energy
Particle		$\lambda_b = \frac{h}{p}$	p = mv	$E = \frac{1}{2}mv^2$
Wave	ω	$\lambda = \frac{2\pi c}{\omega}$	$p = \frac{\hbar\omega}{c}$	$E=\hbar\omega$

2.1 Compton Scattering

2.2 Double Slit and Bragg Diffraction

2.3 Single slit and uncertainty relation

2.4 Bohr-Sommerfeld quantisation

Every single particle must satisfy the following equation. The quantized energy levels below relate to the hydrogen atom

p Momentum of particle E_n Energy of the nth state E_{ry} Rydberg Energy a_0 Bohr-radius E_{ry} Number of protons $\begin{aligned} &\int_{length} p \cdot ds = n \cdot h & n \in \mathbb{N} \\ &E_n = -\frac{Z^2}{n^2} \cdot \frac{m_e e^4}{8\epsilon_0^2 h^2} = -\frac{Z^2}{n^2} \cdot E_{ry} \\ &r_n = \frac{n^2}{Z} \cdot \frac{2\epsilon_0 h}{m_e e^2} = \frac{n^2}{Z} \cdot a_0 \\ &E_{ry} = 13.6 \text{ [eV]} \end{aligned}$

3 Quantum Mechanics

3.1 Wave function

$$\psi(\boldsymbol{x},t) : \mathbb{R}^4 \to \mathbb{C} \qquad \iiint |\psi(\boldsymbol{x},t)|^2 d^3 r = 1$$

$$\psi(\boldsymbol{x},t) = a\psi_1(\boldsymbol{x},t) + b\psi_2(\boldsymbol{x},t), \qquad |a|^2 + |b|^2 = 1$$

$$P(x)dx = |\psi(x)|^2 dx \qquad P_{ab} = \int_a^b |\psi(x)|^2 dx \qquad \langle x \rangle = \int_{-\infty}^\infty x |\psi(x)|^2 dx$$

3.2 The Schrödinger equation

$$V(x,t) \quad \text{potential} \quad m \quad \text{mass}$$

$$i\hbar \cdot \frac{\partial \Psi}{\partial t}(\boldsymbol{x},t) = -\frac{\hbar^2}{2m} \cdot \nabla^2 \Psi(\boldsymbol{x},t) + V(\boldsymbol{x},t) \Psi(\boldsymbol{x},t)$$

$$\nabla^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$$

$$\Psi = A \cdot e^{i(\boldsymbol{k}\boldsymbol{x} - \omega t)} \qquad \boldsymbol{k} = \begin{bmatrix} k_x & k_y & k_z \end{bmatrix}, \quad \boldsymbol{x} = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

$$E = \omega \hbar = \frac{\hbar^2 k^2}{2m}, \qquad k^2 = |k|^2$$

$$V(r) = -\frac{e^2}{4\pi\epsilon_0 |r|}$$

3.2.1 Phase and Group Velocity

The phase velocity v_{φ} describes how fast the phase of the wave moves forward. The group velocity v_q describes how fast the energy is moving forward.

$$v_{\varphi} = \frac{\omega}{k}$$
 $v_{g} = \frac{\partial \omega}{\partial k}$

For a particle wave, the phase velocity v_{φ} is half the group velocity v_{g}

$$v_{\varphi} \cdot 2 = v_g$$

3.2.2 Stationary (Time independent) States

In a stationary state, the wave function is a product of a function $\varphi(x)$ independent of time and a function $\chi(t)$ independent of space.

$$\Psi_n(\boldsymbol{x},t) = \psi_n(\boldsymbol{x}) \cdot \chi_n(t) = \psi_n(\boldsymbol{x}) \cdot e^{-i\frac{E_n}{\hbar}t}$$

$$-\frac{\hbar^2}{2m} \nabla^2 \psi_n(\boldsymbol{x}) + V(\boldsymbol{x})\psi_n(\boldsymbol{x}) = \psi_n(\boldsymbol{x}) \cdot E_n$$

$$\iiint |\Psi|^2 d^3 \boldsymbol{x} = \iiint |\psi|^2 d^3 \boldsymbol{x} = 1$$

$$\Psi(\boldsymbol{x},t) = \sum a_n \psi_n(\boldsymbol{x}) \cdot e^{-i\frac{E_n}{\hbar}t} \sum |a_n|^2 = 1$$

Requirements: The wave function must be continous, as well as it's derivative

Example: 1D infinite potential well

$$\begin{array}{c|c}
V(x) & \Psi_1 = \Psi_3 = 0 \\
 & -\frac{\hbar^3}{2m} \frac{\partial^2}{\partial x^2} \psi_2(x, t) = E \psi_2(x, t) \\
\psi_2 = A \sin(kx) + B \cos(kx)
\end{array}$$

Boundary cond.: $\psi_2(0) = \psi_2(L) = 0$

$$\psi_{2n} = A \cdot \sin(k_n x) \quad \Psi_{2n} = A \cdot \sin(k_n x) \cdot e^{-i\frac{E_n}{\hbar}x}, \quad \text{Normalize:} \quad A = \sqrt{\frac{2}{L}}$$

$$E_n = n^2 \cdot \frac{\hbar^2 \pi^2}{2mL} = n^2 \cdot E_0, \qquad k_n = \frac{n\pi}{L}$$

3.2.4Example: 1D finite potential well

The Energy E can be either bigger or smaller than 0. If E > 0, the wave function will decay exponentially in region 1 and 3. If E < 0, the wave will propagate away from the potential well.

Inside the well: The general solution to the rearranged Schrödinger's is:

$$-\frac{\hbar^2}{2m}\frac{\partial^2}{\partial x^2}\psi_2(x) = (E - V_0)\psi_2(x)$$

$$\psi_2(x) = A_2 e^{ikx} + A_2' e^{-ikx} \qquad E = \frac{k^2 \hbar^2}{2m} \quad k = \sqrt{\frac{2m(E - V_0)}{\hbar^2}}$$

Outside the well: There are two cases, which can apply:

$$-\frac{\hbar}{2m}\frac{\partial^2}{\partial x^2}\psi_1(x) = E\psi_1(x)$$

1. E > 0:Unbound state

$$\psi_1 = A_1 e^{ikx} + A_1' e^{-ikx}$$
 $k = \sqrt{\frac{2mE}{\hbar^2}}$

The unbound state does not make sense to be investigated, because the particle is free to be anywhere. In the following, only the unbound state is considered.

2. E < 0: Bound state

$$\psi_1 = B_1 e^{\delta x} + B_1' e^{-\delta x} \qquad \delta = \sqrt{-\frac{2mE}{\hbar^2}}$$

We see that as $x \to -\infty$, the Term B'_1 , as well as B_3 approaches ∞ . Since the wave function cannot approach ∞ , $B'_1 = B_3 = 0$ is a condition.

$$\psi = \begin{cases} \psi_1 = B_1 e^{\delta x} & x < -L \\ \psi_2 = A_2 e^{ikx} + A_2' e^{-ikx} & -L < x < L \\ \psi_3 = B_3' e^{-\delta x} & L < x \end{cases}$$

Boundary conditions: We require, that the wave function is continuous, as well as it's spacial derivative. Therefore, we have:

$$\psi_1(-L) = \psi_2(-L) \qquad \psi_2(L) = \psi_3(L)$$
$$\frac{\partial}{\partial x}\psi_1(-L) = \frac{\partial}{\partial x}\psi_2(-L) \qquad \frac{\partial}{\partial x}\psi_2(L) = \frac{\partial}{\partial x}\psi_3(L)$$

Even solutions: only even (cosine) components

$$|\cos(kL)| = \frac{k}{k_o}, \quad \tan(kL) > 0$$

$$k_0 = \sqrt{\frac{2mV_0}{\hbar^2}}$$

$$|\cos(kL)|$$

$$k_0 = \sqrt{\frac{k_o}{\hbar^2}}$$

 $\begin{array}{c} \textbf{Odd solutions: only odd (sine)} \\ \textbf{components} \end{array}$

$$\left|\sin\left(kL\right)\right| = \frac{k}{k_o}, \quad \tan(kL) > 0$$

$$k_0 = \sqrt{\frac{2mV_0}{\hbar^2}}$$

$$\left|\sin(kL)\right|$$

$$1$$

$$k_0$$

$$k_0$$

$$k_0$$

3.3 Example: 1D potential step function

An incoming plane wave from the left hits a potential step at x = 0. In region 1, two waves are added together, one is traveling to the right and one to the left. If $E > V_0$, the wave is transmitted to region 2. if $E < V_0$, the wave decays exponentially in region 2.

In **Region 1**, the general solution to the Schrödinger equation is:

$$\frac{-\hbar^2}{2m}\frac{\partial^2}{\partial x^2}\psi_1(x) = E\psi_1(x), \quad \psi_1(x) = Ae^{ik_1x} + Be^{-ik_1x}, \quad k = \sqrt{\frac{2mE}{\hbar^2}}$$

In $\mathbf{Region}\ \mathbf{2}$, there are two cases, which can apply:

$$-\frac{\hbar^2}{2m}\frac{\partial^2}{\partial x^2}\psi_2 = (E - V_0)\psi_2(x)$$

1. $E > V_0$: Transmission

$$\psi_2 = Ce^{ik_2x}, \qquad k_2 = \sqrt{\frac{2m(E - V_0)}{\hbar^2}}$$

2. $E < V_0$: Complete reflection

$$\psi_2 = Ce^{\delta_2 x}, \qquad \delta_2 = \sqrt{\frac{2m(V_0 - 2)}{\hbar^2}}$$

Applying the **initial conditions**, which require the wave function and it's derivative to be continuous at x = 0, we get the following expression for A, B, C:

$$\psi_1(x=0) = \psi_2(x=0) \qquad \frac{\partial}{\partial x} \psi_1(x=0) = \frac{\partial}{\partial x} \psi_2(x=0)$$

$$\mathbf{E} > \mathbf{V_0} \qquad \mathbf{E} < \mathbf{V_0}$$

$$A + B = C \qquad A + B = C$$

$$k_1(A-B) = k_2C \qquad A = B$$

The **probability density function** $|\psi(x,t)|^2 = |\varphi(x)|^2 = \varphi \cdot \varphi^*$ can then be computed and sketched:

To find the **transmission coefficient** T and the **reflection coefficient** R, we normalize A=1. Then, we can define $B=\sqrt{R}$ and $C=\sqrt{T}$. Then, we can solve for R and T:

$$T = \frac{4k_1k_2}{(k_1 + k_2)^2} \qquad R = \left(\frac{k_1 - k_2}{k_1 + k_2}\right)^2$$

If $E < V_0$, nothing is transmitted and therefore T = 0 and R = 1.

3.3.1 Example: 1D finite potential barrier

An incoming plane wave from the left hits a potential barrier with length l. The Transmission coefficient tells, how much of the wave can continue at the other side of the barrier (quantum tunneling).

In **Region 1** and 3, the general expression for the wave equation is the following:

$$\psi_j(x) = A_j e^{ik_j x} + A'_j e^{-ik_j x}, \qquad k_j = \sqrt{\frac{2mE}{\hbar^2}}, \quad j \in \{1, 3\}$$

In **Region 2**, the expression is depending on V_0 . There are two cases:

1.
$$\mathbf{E} < \mathbf{V_0}$$
: $\varphi_2 = B_2 e^{\delta_2 x} + B_2' e^{-\delta_2 x}, \qquad \delta_2 = \sqrt{\frac{2m(V_0 - E)}{\hbar^2}}$

2.
$$\mathbf{E} > \mathbf{V_0}$$
: $\varphi_2 = A_2 e^{ik_2 x} + A_2' e^{-ik_2 x}, \qquad k_2 = \sqrt{\frac{2m(E - V_0)}{\hbar^2}}$

Apply boundary conditions at $x = -\ell/2$ and $x = \ell/2$ in order to determine all constants. If the wave is only traveling from left to right, then $A_3' = 0$.

$$\psi_1(-\ell/2) = \psi_2(-\ell/2), \quad \psi_2(\ell/2) = \psi_3(\ell/2)$$
$$\frac{\partial}{\partial x}\psi_1(-\ell/2) = \frac{\partial}{\partial x}\psi_2(-\ell/2), \quad \frac{\partial}{\partial x}\psi_2(\ell/2) = \frac{\partial}{\partial x}\psi_3(\ell/2)$$

Then, the transmission coefficient T and the reflection coefficient R can be calculated as following:

$$R = \left(\frac{A_1}{A_1'}\right)^2, \qquad T = \left(\frac{A_3}{A_1}\right)^2$$

$$T = \frac{4E(V_0 - E)}{4E(V_0 - E) + V_0^2 \sinh^2(\delta_2 \ell)} \qquad T = \frac{4E(V_0 - E)}{4E(V_0 - E) + V_0^2 \sin^2(k_2 \ell)}$$

If $\mathbf{E} > \mathbf{V_0}$, the transmission coefficient has a maximum. If $k_2 \ell = n\pi \Rightarrow T = 1$ (**resonance**). The minimum of $T\mathbf{u}$ is at: $k_2 \ell = \pi/2 + n\pi$.

4 Wave Function Space (Hilbert Space)

4.1 Inner Product

The inner product $\langle \psi_1 | \psi_2 \rangle$ is defined like the scalar product for vectors. If the inner product of two wave functions is 0, those two wave functions are **orthogonal**.

$$\langle \psi_1 | \psi_2 \rangle = \int_{-\infty}^{\infty} \psi_1^*(\boldsymbol{x}, t) \psi_2(\boldsymbol{x}, t) d^3 \boldsymbol{x}$$
$$\langle \psi | \psi \rangle = \int_{-\infty}^{\infty} \psi^*(\boldsymbol{x}, t) \psi(\boldsymbol{x}, t) d^3 \boldsymbol{x} = \int_{-\infty}^{\infty} |\psi(\boldsymbol{x}, t)|^2 d^3 \boldsymbol{x} = 1$$

4.2 Fourier Transform

$$\psi(x) = \frac{1}{\sqrt{2\pi\hbar}} \int_{-\infty}^{\infty} e^{\frac{ipx}{\hbar}} \varphi(p) dp, \quad \varphi(p) = \frac{1}{\sqrt{2\pi\hbar}} \int_{-\infty}^{\infty} e^{\frac{ipx}{\hbar}} \psi(x) dx$$

$$\psi(\vec{x}) = \frac{1}{(2\pi\hbar)^{3/2}} \int_{-\infty}^{\infty} e^{\frac{i\vec{p}\vec{x}}{\hbar}} \varphi(\vec{p}) d\vec{p}, \quad \varphi(\vec{p}) = \frac{1}{(2\pi\hbar)^{3/2}} \int_{-\infty}^{\infty} e^{\frac{i\vec{p}\vec{x}}{\hbar}} \psi(\vec{x}) d\vec{x}$$

$$\int_{-\infty}^{\infty} \psi_1^*(x) \cdot \psi_2(x) \cdot dx = \int_{-\infty}^{\infty} \varphi_1^*(p) \cdot \varphi_2(p) \cdot dp$$

5 Observable Measurements, Time-dependence

Doing a measurement in quantum mechanics (observable) can be interpreted as applying an operator \widehat{A} on the wave function $\psi(\boldsymbol{x},t)$. For example, tu o compute the expected position $\langle \boldsymbol{x} \rangle_{\psi}$, we apply the operator $\widehat{\boldsymbol{x}} = \boldsymbol{x}$ to average the wave function:

$$\langle \boldsymbol{x} \rangle_{\Psi} = \iiint \Psi^*(\boldsymbol{x}, t) \cdot \boldsymbol{x} \cdot \Psi(\boldsymbol{x}, t) d^3 \boldsymbol{x} = \iiint \boldsymbol{x} \cdot |\Psi(\boldsymbol{x}, t)|^2 d^3 \boldsymbol{x}$$

Name	Operator	
Position	$\widehat{m{x}} = [m{x}]$	
Momentum	$\widehat{\boldsymbol{p}} = [-i\hbar\boldsymbol{\nabla}]$	$oldsymbol{ abla} = egin{bmatrix} rac{\partial}{\partial x} & rac{\partial}{\partial y} & rac{\partial}{\partial z} \end{bmatrix}^T$
Hamiltonian	$\widehat{H} = \left[-rac{\hbar^2}{2m} abla^2 + V(oldsymbol{x}) ight]$	

Canonical commutation relation: $[\widehat{A},\widehat{B}] = \widehat{A}\widehat{B} - \widehat{B}\widehat{A}$

Eigenstates and Eigenvalues

An Observable has an Operator \widehat{A} a state $u_n(x)$ is called an eigenstate the operator applied on the wave function acts like a scalar multiplication to it. Then, the measurement of the general state $\psi(x)$ is a superposition of all the eigenstates.

$$\widehat{A}u_n(x) = a_n u_n(x), \quad \int_{-\infty}^{\infty} u_n^*(x) \widehat{A}u_n(x) dx = a_n$$

$$\widehat{A}\psi(x) = \sum_n c_n u_n(x)$$

5.2Harmonic Oscillator

A Quantum mechanical harmonic oscillator can be interpreted as the solution to the Schrödinger equation:

$$\left[\frac{-\hbar^2}{2m}\frac{\partial^2}{\partial x^2} + V(x)\right]\psi(x) = E\psi(x), \quad V(x) = \frac{1}{2}kx^2 = \frac{m\omega^2}{2}x^2$$

To simplify the equation, we define a new length scale and energy:

$$a = \sqrt{\frac{\hbar}{m\omega}}, \quad \tilde{x} = \frac{x}{a}, \quad \tilde{E} = \frac{E}{\hbar\omega} \Rightarrow \frac{1}{2} \left[-\frac{\partial^2}{\partial \tilde{x}^2} + \tilde{x}^2 \right] \varphi(\tilde{x}) = \tilde{E}\varphi(\tilde{x})$$

Then, the solutions to the equation is:

$$E_n = \left(n + \frac{1}{2}\right)\hbar\omega, \quad \psi(\tilde{x}) = c_n H_n(\tilde{x})e^{-\tilde{x}/2}, \quad H_n(\tilde{x}) = (-1)^n e^{\tilde{x}^2} \cdot \frac{\partial^n}{\partial \tilde{x}^n} e^{-\tilde{x}^2}$$

$$H_0(\tilde{x}) = 1, \quad H_1(\tilde{x}) = 2\tilde{x}, \quad H_2(\tilde{x}) = 4\tilde{x}^2 - 2, \quad H_3(\tilde{x}) = 8\tilde{x}^3 - 12\tilde{x}$$

$$\Psi_n(x) = \frac{1}{\sqrt[4]{\pi}\sqrt{2^n n! a}} \cdot H_n\left(\frac{x}{a}\right) e^{-\frac{x^2}{2a^2}}$$

$$\uparrow E \qquad \qquad \uparrow$$

The coupled quantum well

This is the simplified potential of an ammonia molecule NH₃. The wave function outside the well $(|x| > b + \frac{a}{2})$ is zero. There exists a symmetric, as well as an antisymmetric solution. We consider the case: $E < V_0$

$$\psi_{\rm II} = \begin{cases} \mu \cosh(\delta x) & \text{symmetric} \\ \mu \sinh(\delta x) & \text{antisymmetric} \end{cases} \quad k = \sqrt{\frac{2mE}{\hbar^2}}, \quad \delta = \sqrt{\frac{2m(V_0 - E)}{\hbar^2}}$$

$$k = \sqrt{\frac{2mE}{\hbar^2}}, \quad \delta = \sqrt{\frac{2m(V_0 - E)}{\hbar^2}}$$

$$\tan(ka)$$

symmetric:
$$\varepsilon_s = \frac{1 + e^{-\delta \Delta}}{\delta a}$$
antisymmetric: $\varepsilon_a = \frac{1 - e^{-\delta \Delta}}{\delta a}$

$$\tan(ka) = -ka\varepsilon = -ka\frac{1 \pm e^{-\delta \Delta}}{\delta a}$$

Now, we can create a superposition of both the symmetric and the antisymmetric case:

$$\psi_{s_{\mathrm{I}}} = +\lambda \sin\left(k\left(b - \frac{a}{2} + x\right)\right), \quad \psi_{s_{\mathrm{III}}} = +\lambda \sin\left(k\left(b - \frac{a}{2} + x\right)\right)$$

$$\psi_{a_{\mathrm{I}}} = -\lambda \sin\left(k\left(b - \frac{a}{2} + x\right)\right), \quad \psi_{a_{\mathrm{III}}} = +\lambda \sin\left(k\left(b - \frac{a}{2} + x\right)\right)$$

$$\Psi_{L} = \frac{1}{\sqrt{2}}(\Psi_{s} - \Psi_{a}), \quad \Psi_{R} = \frac{1}{\sqrt{2}}(\Psi_{s} + \Psi_{a})$$

$$\Psi_{L}(x, t) = \frac{1}{\sqrt{2}}e^{-i\omega_{s}t}\left(\psi_{s}(x) - e^{-i(\omega_{a} - \omega_{s})t}\psi_{a}(x)\right)$$

$$\omega_{a} = \frac{E_{a}}{\hbar}, \quad \omega_{s} = \frac{E_{a}}{\hbar}, \quad E_{a} - E_{s} = \frac{\hbar^{2}\pi^{2}}{2m\delta a^{2}} \cdot 8e^{-\delta\Delta}$$

From the formula describing the wave equation, we can see that at t_0 , the particle can only be found in region I, and after some time $t_{1/2}$, the particle can only be found in region III. The particle has tunneled from one side to the other. Now, we can define a period T:

$$T = \frac{2\pi\hbar}{E_a - E_s}$$

6 Schrödinger Equation in 3D

This equation can be separated into three smaller equations for every spacial dimension x_i

$$-\frac{\hbar^2}{2m}\frac{\partial^2}{\partial x_i^2}\psi_i(x_i) + V(x_i)\psi_i(x_i) = E_i\psi_i(x_i)$$
$$E_i^{(n_i)} = n_i^2 \frac{\hbar^2 \pi^2}{2mL_i^2}, \qquad \psi_i^{(n_1)} = A \cdot \sin\left(\frac{\pi n_i x}{L_i}\right)$$

After normalizing, the wave function can be written as:

$$\psi(x_1, x_2, x_3) = \sqrt{\frac{8}{L_1 L_2 L_3}} \sin\left(\frac{\pi n_1 x_1}{L_1}\right) \sin\left(\frac{\pi n_2 x_2}{L_2}\right) \sin\left(\frac{\pi n_3 x_3}{L_3}\right)$$

When $L_1 = L_2 = L_3$, there sometimes exists multiple states (**degeneracies**) for the same energy $E = E_1 + E_2 + E_3$. Now, we can generate new solutions to the wave function via superposition of those states. In general, degeneracies arise from symmetries (obvious or hidden).

6.1 Schrödinger Equation in spherical coordinates

$$\psi_{n\ell m}(r,\theta,\varphi) = R_{n\ell}(r) \cdot Y_{\ell}^{m}(\theta,\varphi) = R_{n\ell}(r) \cdot P_{\ell}^{m}(\cos\theta)e^{im\varphi}$$

The angular part $Y_{\ell}^{m}(\theta,\varphi)$ can be written as:

$$P_{\ell}^{m}(x) = (i - x^{2})^{\frac{|m|}{2}} \frac{d^{|m|}}{dx^{|m|}} P_{\ell}(x) \qquad P_{\ell}(x) = \frac{1}{2^{\ell} \cdot \ell!} \frac{\partial^{\ell}}{dx^{\ell}} (x^{2} - 1)^{\ell}$$

The solution to Y will be a **spherical harmonic**. Finally, we must apply the normalization

$$\int_0^\infty \left| R(r) \right|^2 r^2 dr = 1, \qquad \int_{\theta=0}^\pi \int_{\varphi=-\pi}^\pi \left| Y_\ell^m(\theta, \varphi) \right|^2 \sin \theta d\varphi d\theta = 1$$

These solutions are the same as **spherical harmonics**. They form an **orthogonal basis**, meaning that every well-behaved function $f(\theta, \varphi)$ can be expressed as a superposition of those harmonics.

6.1.1 Hydrogen Atom

The radial part $R_{n\ell}$ of the hydrogen atom with potential $V(r) = \frac{-e^2}{4\pi\epsilon_0 r}$ can be written as:

$$R_{n\ell}(r) = \frac{1}{r} \rho^{\ell+1} e^{-\rho} v(\rho), \quad \rho = \frac{r}{na_0}, \quad a_0 = \frac{4\pi\epsilon_0 \hbar^2}{me^2} \approx 5.29 \cdot 10^{-11} \text{ [m]}$$

$$\psi_{n\ell m}(r, \theta, \varphi) = R_{n\ell}(r) Y_{\ell}^m(\theta, \varphi) \qquad j_{max} = (n - \ell - 1) \ge 0 \qquad |m| \le \ell$$

 $v(\rho)$ is a polynomial of degree j_{max} with coefficients: $C_{g+1} = \frac{2(g+l+1-n)}{(g+1)(g+2l+2)}C_g$. For state n, there are $d(n) = n^2$ different solutions (**degeneracies**). The **effective radius** is na_0 . The **probability** of of finding an electron between r and r + dr is:

$$p(r)dr = r^2 \left| R_{n\ell}(r) \right|^2 dr$$

6.1.2 Quantum Numbers

n is the main quantum number, ℓ is the orbital quantum number and m is the magnetic quantum number (projection of angular momentum). Chemists give the different ℓ 's different names.

- $\ell = 0$: the orbital is called an s-state $(\max p(r)dr$ is at r = 0).
- $\ell = 1$: the orbital is called an p-state (p(r=0)dr = 0).
- $\ell = 2$: the orbital is called an d-state.

7 Useful formulas

$$\int_{-\infty}^{\infty} e^{-ax^2} dx = \sqrt{\frac{\pi}{a}} \qquad \int_{0}^{\infty} x e^{-ax^2} dc = \frac{1}{2a} \qquad \int_{-\infty}^{\infty} x^2 e^{-ax^2} = \frac{\sqrt{\pi}}{2a^{3/2}}$$

$$\int x^n e^{cx} = e^{cx} \sum_{i=0}^{n} (-1)^{n-i} \frac{n!}{i!c^{n-i+1}} x^i \qquad \int_{0}^{\infty} x^n e^{-cx} = \frac{n!}{c^{n+1}}$$

Gaussian: $G = A \cdot e^{\frac{-x^2}{2\sigma^2}}$

7.1 Trigonometry

$$\sin \beta = \frac{b}{a} = \frac{\text{Gegenkathete}}{\text{Hypotenuse}} \\ \cos \beta = \frac{c}{a} = \frac{\text{Ankathete}}{\text{Hypotenuse}} \\ \cot \beta = \frac{c}{b} = \frac{\text{Gegenkathete}}{\text{Ankathete}} \\ \cot \beta = \frac{c}{b} = \frac{\text{Gegenkathete}}{\text{Gegenkathete}}$$

$$\cos(a+k\cdot 2\pi) = \cos(a) \qquad \sin(a+k\cdot 2\pi) = \sin(a) \qquad (k \in \mathbb{Z})$$

$$\sin(a\pm b) = \sin(a)\cdot \cos(b) \pm \cos(a)\cdot \sin(b)$$

$$\cos(a\pm b) = \cos(a)\cdot \cos(b) \mp \sin(a)\cdot \sin(b)$$

$$\tan(a\pm b) = \frac{\tan(a) \pm \tan(b)}{1 \mp \tan(a)\cdot \tan(b)}$$

$$\sin(2a) = 2\sin(a)\cos(a)$$

$$\cos(2a) = \cos^2(a) - \sin^2(a) = 2\cos^2(a) - 1 = 1 - 2\sin^2(a)$$

$$c^2 = a^2 + b^2 - 2\cdot a\cdot b\cdot \cos\gamma$$

$$c^{2} = a^{2} + b^{2} - 2 \cdot a \cdot b \cdot \cos \gamma$$

$$\frac{a}{\sin \alpha} = \frac{b}{\sin \beta} = \frac{c}{\sin \gamma} = 2r = \frac{u}{\pi}$$

$$\sin(a)\sin(b) = \frac{1}{2}(\cos(a-b) - \cos(a+b))$$

$$\cos(a)\cos(b) = \frac{1}{2}(\cos(a-b) + \cos(a+b))$$

$$\sin(a)\cos(b) = \frac{1}{2}(\sin(a-b) + \sin(a+b))$$

$$\cos^{2}\left(\frac{a}{2}\right) = \frac{1+\cos(a)}{2} \qquad \sin^{2}\left(\frac{a}{2}\right) = \frac{1-\cos(a)}{2}$$

$$\sin(a) + \sin(b) = 2 \cdot \sin\left(\frac{a+b}{2}\right) \cdot \cos\left(\frac{a-b}{2}\right)$$

$$\sin(a) - \sin(b) = 2 \cdot \sin\left(\frac{a-b}{2}\right) \cdot \cos\left(\frac{a+b}{2}\right)$$

$$\cos(a) + \cos(b) = 2 \cdot \cos\left(\frac{a+b}{2}\right) \cdot \cos\left(\frac{a-b}{2}\right)$$

$$\cos(a) - \cos(b) = -2 \cdot \sin\left(\frac{a+b}{2}\right) \cdot \sin\left(\frac{a-b}{2}\right)$$

$$\tan(a) \pm \tan(b) = \frac{\sin(a\pm b)}{\cos(a)\cos(b)}$$

$$\sin(x) = \frac{1}{2j} \left(e^{jx} - e^{-jx}\right) \qquad \cos(x) = \frac{1}{2} \left(e^{jx} + e^{-jx}\right)$$

$$e^{x+jy} = e^{x} \cdot e^{jy} = e^{x} \cdot (\cos(y) + j\sin(y))$$

8 Periodic Table of the Elements

Standard atomic weights taken from the Commission on Isotopic Abundances and Atomic Weights (ciaaw.org/atomic-weights.htm). Adapted from Ivan Griffin's L^xT_EX Periodic Table. © 2017 Paul Danese

An asterisk (*) next to a subshell indicates an anomalous (Aufbau rule-breaking) ground state electron configuration.