ELEC2400

ELECTRONIC CIRCUITS

FALL 2021-22

HOMEWORK 5

Issued on Nov. 21, 2021 (Sunday)
Due date: Nov. 30, 2020 (Tuesday), 11:59pm
[Please submit your homework online https://canvas.ust.hk]

Q1. Assume the switch has been open for a long time. The switch is closed at t = 0. Find the equation of the voltage $v_0(t)$ for t > 0.

Q2. Assume the switch has been closed for a long time. The switch is opened at t = 0. Find the equation of the voltage $v_0(t)$ for t > 0.

- Q3. Assume the switch has been open for a long time. The switch is closed at t = 0.
 - (a) Find the equation of the voltage $v_1(t)$ for t > 0.
 - (b) Plot $v_1(t)$ as a function of time starting from t < 0.

- Q4. Assume the switch has been open for a long time. The switch is closed at t = 0.
 - (a) Find the equation of the current $i_1(t)$ for t > 0.
 - (b) Plot $i_1(t)$ as a function of time starting from t < 0.

- Q5. Find V_0 and I_0 in the circuit below with
 - (i) ideal diode model,
 - (ii) offset diode model ($V_F = 0.5 \text{ V}$).

- Q6. Plot V_0 as a function of V_{IN} for V_{IN} from -5 V to 25 V in the circuit with
 - (i) ideal diode model,
 - (ii) offset diode model ($V_F = 0.5 \text{ V}$).

- Q7. In the figure, it shows a Zener diode voltage regulator circuit ($V_{Z0} = 5.6 \text{ V}$, $R_Z = 10 \Omega$).
 - (a) Determine the output voltage V_{o} if $V_{\text{IN}} = 6.5 \text{ V}$.
 - (b) Plot V_o as the function of V_{IN} for 6 V < V_{IN} < 8 V.

- Q8. Find V_0 assuming ideal op amp and offset diode model ($V_F = 0.5 \text{ V}$) for the case:
 - (i) when $V_{in} = 4 \text{ V}$,
 - (ii) when $V_{in} = -4 \text{ V}$.

