widely used for analysis of sample melting, glass transitions, heat history, crystallization, hardening reaction, Curie point, oxidation stability, heat instability and others. Calculation of derived data and graphical display thereof will be described using a method stipulated in JIS K 7121 for calculating an extrapolated melting start temperature for plastic from a DSC curve, as an example. An extrapolated melting start temperature is obtained as a temperature corresponding to a point of intersection of a tangent for a stable region of a lower temperature side of a DSC curve and a tangent in the vicinity of the maximum inclination on the lower temperature side of the curve. In a method that is well known and broadly utilized, when the DSC curve shown in FIG. 3A is displayed and the user determines points (mark x) on the screen for stable regions positioned on both side of inflection on the lower temperature side of the curve, and specifies these points, the computer calculates tangents occurring at these points and displays these tangents. X-axis coordinate values for points where two tangents intersect, i.e. temperature values, are then displayed as numerical values in the vicinity of these intersecting points. this derived data is graphically displayed on a display using analysis apparatus and this is being finished off by adjusting the displaying of a graphical report, it is necessary for the

user to make the following designations at the computer.

- 1) Which type of derived data should be calculated within a plurality of different types of derived data calculations?
- 2) Which derived data should be calculated within a plurality of data sets? (It is customary to display a plurality of items of data in a superimposed manner for comparison in this analysis. Refer to FIG. 4B).
- 3) Specifying a necessary parameter for calculating derived data such as calculation range and calculation point.
- 4) Adjustment after calculating derived data by fine adjusting derived data, preventing derived data and original data from overlapping on the screen and etc.--

Please replace the paragraph at page 3, lines 13-19, with the following rewritten paragraph:

--However, with this related derived data calculating user interface, after selecting whether calculation of the derived data or adjustment of the derived data is to be performed using some kind of known method, the target is then designated (which calculation source data or which derived data) and the operation (derived data calculation or derived data adjustment) is carried out.--

Please replace the paragraph at page 4, lines 13-16, with the following rewritten paragraph:

to

--(2) The user selects interpolated temperature calculation on a menu. (This enables specification of the derived data type to be calculated, and, at this time, the analysis apparatus is in a state capable of receiving a calculation.) [Step 2 (S2)]--

Please replace the paragraph at page 5, lines 1-8, with the following rewritten paragraph:

--(6) When interpolated temperature calculations other than interpolated melting start temperature calculations, such as interpolated crystallization start temperature, etc., are successively made using the same DSC curve, (5) and (6) are repeated, and if a desired calculation finishes, the user designates ending of calculations using the menu and calculation mode ends. The analysis apparatus then goes back to adjustment mode [Step 6 (S6)]--

Please replace the paragraph at page 6, lines 6-20, with the following rewritten paragraph:

--When analyzing, it is well often desired to create the same type of derived data for a plurality of different data sets to be compared. In the case of the related art, the

calculating a selection [step 2] of a derived data type is carried out after first implementing designation [step 1] as to whether or not to perform calculations on derived data, and which data to perform calculations on. When calculations are then performed for the same derived data with respect to other data, alterations are again performed after designating other interfering data from when calculation/adjustment of the derived data is completed with respect to this data. In the aforementioned example, it is necessary to repeat the operation from (1) to (11) for every DSC curve, so that when calculating derived data for many curves, it takes time to

designation of the necessary parameters [step 4] for

Please replace the paragraphs beginning at page 13, line 25 and ending at page 17, line 8, with the following rewritten paragraphs:

perform the above operation every time. --

--A specific example of a derived data display adjustment system of the present invention is now described giving an example of data for a differential scanning calorimeter constituting a thermal analysis apparatus. The kind of characteristic curve shown in FIG. 4A is obtained by the DSC for each item of data. The display then becomes as shown in FIG. 4B when DSC curves obtained for a plurality of

items of data at the analysis apparatus are displayed at the display. There are also demands where interpolation melting start temperatures are calculated for each item of data for comparison and investigation, with it being wished to give notification of this in the form of a graphical display for ease of understanding.

- (a) First, the user clicks the DSC curve constituting the calculation source. Data from the plurality of data that is to constitute the current subject of calculation is then specified as the curve shown by the arrow in FIG. 4B.
- (b) The user selects interpolated temperature calculation from a menu on the screen. In this way, the operation to be carried out is a derived data calculation/adjustment operation and the type of this derived data is specified as an interpolated temperature calculation.
- (c) The analysis apparatus receives the specification of the data that is to constitute the calculation target and displays an X-Y cursor on the screen. This is achieved by displaying a derived data calculation user interface.
- (d) The user then operates the cursor to designate two points for calculating the interpolated melting start temperature. In this case the derived data to be investigated is the interpolated melting start temperature. The two points selected are self-evident as the stabilization point for both

sides of the point of inflection of the low temperature side curve and the maximum gradient point for the root diameter DSC curve. This selection is therefore appointed as a user operation. This is achieved through input of the operation parameters.

(e) Calculation is then possible when the parameters are

- specified. The analysis apparatus then draws a line connecting the two points and displays the points of intersection with this line, and displays the temperature constituted by the X-coordinate value in a numerical manner in the vicinity of this point of intersection as shown in FIG.

 4C. This is achieved by calculating the derived data. However, the interpolated melting start temperature displayed numerically is displayed in such a manner as to be superimposed with other data curves, making the graph difficult to see. It is therefore wished to move the position of displaying these numerical values prior to executing interpolated temperature calculations for other data.
- (f) In the present invention, the user can select numerical displays for interpolated melting start temperatures on the screen prior to selecting other data curves. This is achieved by the selection of graphical elements.
- (g) The selected graphical elements are numerical displays for the derived data. The analysis apparatus therefore recognizes

this as information indicating that calculation is not possible, changes over to adjustment mode, and displays a rectangular-shaped image region for the numeric display as shown in FIG. 4D. This is achieved by displaying an adjustment user interface when it is determined that calculation is possible.

(h) The user can then drag the rectangular region to a preferred position so that the numerical display does not overlap with the DSC curve, as shown in FIG. 4E. This is achieved by adjusting the derived data.

In the above operation, derived data calculation and adjustment is completed for one item of data. The procedure in (a) to (h) is also repeated for other items of data. Finally, a graphical display that is easy to see as shown in FIG. 4F can be made. In the above procedure, that operated by the operator is (a), (b), (d), (f), (h), with (c), (e) and (g) being automatically executed in the process flow of the analysis apparatus. In this embodiment, interpolated melting start temperature of a DSC is given as an example of derived data but a wide variety of other data types may also be adopted. For example, with JIS K7121, in addition to the melting temperature there are a melting peak temperature and an interpolation melting start temperature, giving three types. In addition, a liquid crystal temperature and a glass

\$

transfer temperature are also obtained as derived data.

Further, in the field of thermal analysis, with regards to DSC's, thermogravimetry (TG) and thermo-mechanical analysis (TMA) etc., a plurality of JIS's are defined according to the object of utilization of a multiplicity of derived data.

First order differentiation data and integration data obtained using differentiation or integration operations can also be utilized. There is also derived data decided upon between participants that is not publicly defined. The example described here is not limited in this respect, and the present invention may also be applied to calculation and adjustment of derived data for this kind of broader range.—

IN THE CLAIMS:

Kindly amend claims 1-4 as follows:

Sold Ale

1. Amended) A derived data display adjustment system for a sample analyzer having a computer which enables user selection of new graph elements from a plurality of displayed sample characteristics to be subjected to derived data calculation or adjustment when calculation or adjustment of derived data of a previously selected graph element is executed, comprising: a display screen for displaying the plurality of sample characteristics; means for displaying on