1 Proof of the Second Order Sufficient Conditions (June 11)

1.1 Second Order Sufficient Conditions

Theorem 1.1. (Second order sufficient conditions for a minimizer under inequality constraints) Suppose $\Omega \subseteq \mathbb{R}^n$ is open and $f, h_1, \ldots, h_k, g_1, \ldots, g_l \in C^2(\Omega)$. Consider the minimization problem

minimize
$$f(x)$$

subject to $h_1(x) = \cdots = h_k(x) = 0$
 $g_1(x) \le 0, \dots, g_l(x) \le 0$

Suppose x_0 is a feasible point of the constraints. If the following three conditions are satisfied:

1. There exist $\lambda_1, \ldots, \lambda_k \in \mathbb{R}$ and $\mu_1, \ldots, \mu_l \geq 0$ such that

$$\nabla f(x_0) + \sum_{i} \lambda_i \nabla h_i(x_0) + \sum_{j} \mu_j \nabla g_j(x_0) = 0,$$

- 2. $\mu_{i}g_{i}(x_{0}) = 0$ for each j.
- 3. The matrix

$$L(x_0) = \nabla^2 f(x_0) + \sum_{i} \lambda_i \nabla^2 h_i(x_0) + \sum_{j} \mu_j \nabla^2 g_j(x_0)$$

is positive definite on the tangent space to the "strongly active constraints" at x_0 . That is, it is positive definite on the space

$$\widetilde{T_{x_0}} = \{ v \in \mathbb{R}^n : \nabla h_i(x_0) = 0 \text{ for all } i, \text{ and } \nabla g_j(x_0) = 0 \text{ for all } 1 \le k \le l'' \},$$

where $\{1, \ldots, l''\}$ is the set of all indices of active constraints whose Lagrange multipliers are positive.

then x_0 is a strict local minimizer of f.

Proof. Suppose x_0 is not a strict local minimizer of f. We claim that there then exists a unit vector $v \in \mathbb{R}^n$ such that

- (a) $\nabla f(x_0) \cdot v < 0$.
- (b) $\nabla h_i(x_0) \cdot v = 0$ for each $i = 1, \dots, k$.
- (c) $\nabla g_j(x_0) \cdot v \leq 0$ for all the active constraints (hereafter labelled by $j = 1, \ldots, l'$).

Intuitively, (a) says that f is non-increasing in the direction of $v \neq 0$, and (b) and (c) say that v is a feasible direction. Let us prove the claim.

Since x_0 is not a strict local minimizer, there exists a sequence x_k of feasible points unequal to x_0 converging to x_0 such that $f(x_k) \leq f(x_0)$. Then $f(x_k) - f(x_0) \leq 0$ for each k. Let $v_k = \frac{x_k - x_0}{\|x_k - x_0\|}$, and let $s_k = \|x_k - x_0\|$. Then $x_k = x_0 + s_k v_k$, with which we may rewrite the inequality as $f(s_k v_k + x_0) - f(x_0) \leq 0$. Since each $v_k \in S^1$, we may assume that the sequence v_k is convergent and that it converges to some $v \in S^1$. We claim that this vector v has the three desired properties.

By Taylor's theorem we have

$$0 \ge f(s_k v_k + x_0) - f(x_0) = s_k \nabla f(x_0) \cdot v_k + o(s_k)$$
(A)

$$0 = h_i(s_k v_k + x_0) - h_i(x_0) = s_k \nabla h_i(x_0) \cdot v_k + o(s_k)$$
(B)

$$0 \ge g_k(s_k v_k + x_0) - g_j(x_0) = s_k \nabla g_j(x_0) \cdot v_k + o(s_k)$$
 (C)

(The last equation is ≤ 0 because $g_j(x_0) = 0$.) Divide everything by s_k and take the limit as $k \to \infty$. Then

$$0 \ge \nabla f(x_0) \cdot v \tag{a}$$

$$0 = \nabla h_i(x_0) \cdot v \tag{b}$$

$$0 \ge \nabla g_j(x_0) \cdot v,\tag{c}$$

which proves the earlier claim.

We now claim that equality actually holds in (c). Suppose for the sake of contradiction that there is some $1 \le k \le l'$ such that $\nabla g_j(x_0) \cdot v < 0$ for some j for which g_j is strongly active at x_0 . By the first condition of the theorem,

$$0 \ge \underbrace{\nabla f(x_0) \cdot v}_{\ge 0 \text{ by (a)}} = -\underbrace{\sum \lambda_i \nabla h_i(x_0) \cdot v}_{= 0 \text{ by (b)}} - \underbrace{\sum \mu_j \nabla g_j(x_0) \cdot v}_{\ge 0 \text{ by (c)}},$$

and so the right hand side is strictly greater than zero, because we only considered strongly active constraints. This is a contradiction, so we conclude that $\nabla g_j(x_0) = 0$ for all j such that g_j is strongly active at x_0 . Therefore $v \in \widetilde{T_{x_0}}$.

Again, by Taylor's theorem

$$0 \ge f(s_k v_k + x_0) - f(x_0) = s_k \nabla f(x_0) \cdot v_k + \frac{1}{2} s_k^2 v_k^T \nabla^2 f(x_k) \cdot v_k + o(s_k^2)$$

$$0 = h_i(s_k v_k + x_0) - h_i(x_0) = s_k \nabla h_i(x_0) \cdot v_k + \frac{1}{2} s_k^2 v_k^T \nabla^2 h_i(x_k) \cdot v_k + o(s_k^2)$$

$$0 \ge g_k(s_k v_k + x_0) - g_j(x_0) = s_k \nabla g_j(x_0) \cdot v_k + \frac{1}{2} s_k^2 v_k^T \nabla^2 g_j(x_k) \cdot v_k + o(s_k^2)$$

Multiply the second line by λ_i and the third by μ_i and add everything up to get

$$0 \ge s_k \underbrace{\left[\nabla f(x_0) + \sum \lambda_i \nabla h_i(x_0) + \sum \mu_j \nabla g_j(x_0)\right]}_{= 0 \text{ by condition 1}} v_k + \frac{s_k^2}{2} v_k^T \underbrace{\left[\nabla^2 f(x_0) + \sum \lambda_i \nabla^2 h_i(x_0) + \sum \mu_j \nabla^2 g_j(x_0)\right]}_{= L(x_0)} v_k + o(s_k^2 + v_k^2) v_k + o(s_k^2 + v_k^2)$$

Divide everything by s_k^2 to get

$$0 \ge \frac{1}{2} v_k^T \left[\nabla^2 f(x_0) + \sum_{i} \lambda_i \nabla^2 h_i(x_0) + \sum_{i} \mu_j \nabla^2 g_j(x_0) \right] \cdot v_k + \frac{o(s_k^2)}{s_k^2}$$

Taking the limit $k \to \infty$ gives

$$0 \le v^T L(x_0) \cdot v,$$

which violates condition 3 of the theorem. We have a contradiction, so we conclude that x_0 must be a strict local minimizer.

1.2 A Quick Example

Consider the example from last class:

minimize
$$f(x,y) = -x$$

subject to $g_1(x,y) = x^2 + y^2 - 1 \le 0$
 $g_2(x,y) = y + x - 1 \le 0$

We found that (1,0) was a good candidate: that it satisfied the necessary conditions. Recall that $\mu_1 = 1/2$, $g_1(1,0) = 0$ and $\mu_2 = 0$, $g_2(1,0) = 0$. Therefore the first constraint is strongly active. The Lagrangian is the identity matrix, so the second order sufficient conditions are satisfied. Therefore (1,0) is a strict local minimizer of f.