Package 'SCclust'

May 23, 2018

Type rackage
Title Clustering of Single Cell Sequencing Copy Number Profiles to Identify Clones
Date 2018-05-13
Version 1.0.0
Author Alex Krasnitz, Jude Kendall, Junyan Song, Lubomir Chorbadjiev
Maintainer Lubomir Chorbadjiev < lubomir.chorbadjiev@gmail.com>
Description The SCclust package implements feature selection based on breakpoints, permutations for FDRs for Fisher test p-values and identification of the clone structure in single cell copy number profiles.
License MIT file LICENSE
LazyData TRUE
RoxygenNote 6.0.1
Suggests knitr, rmarkdown, testthat
VignetteBuilder knitr
Imports DNAcopy, futile.logger, tools, parallel, assertthat
<pre>URL https://github.com/KrasnitzLab/SCclust</pre>
BugReports https://github.com/KrasnitzLab/SCclust/issues
R topics documented:
calc_pinmat 2 find_clones 2 find_subclones 3 fisher_dist 4 fisher_fdr 4 hclust_tree 5 segment_varbin_files 5

find_clones

gains_pipeline	6
sim_fisher_wrapper	6
ree_py	7
varbin_input_files	7

Index 8

calc_pinmat

Select features and generate the incidence table.

Description

Select features (called as pins), generate the binary matrix with rows as pins and columns as cells.

Usage

```
calc_pinmat(gc_df, segment_df, homoloss = 0, dropareas = NULL)
```

Arguments

gc_df bining schema used for the analysis

segment_df the breakpoint table generated by segment_varbin_files.

homoloss drop out boundary

dropareas areas of the chromosomes that should be excluded from further analysis (e.g.

centromeres)

Value

a list of pinmat and pins objects. pinmat is the incidence table; pins is the bin location

find_clones

Identify clones in hierarchical tree.

Description

Based on hierarchical clustering, identify the hard/soft clones.

Usage

```
find_clones(hc, fdrthresh = -2, sharemin = 0.85, nshare = 3, bymax = T,
  climbfromsize = 2, climbtoshare = 3)
```

find_subclones 3

Arguments

hc The hclust objects with new items added generated by hclust_tree.

fdrthresh FDR criterion for clone nodes. Default: -2.

sharemin A feature is considered shared if present in share_min fraction of leaves in a

node.Default: 0.90.

nshare Minimal number of shared features in a clone node. Default: 3.

bymax Logical. If TRUE (Default), use maximal of mean FDR for the node to find

clones.

climbfromsize An integer. climbtoshare An integer.

Value

A hclust object.

Description

Based on hierarchical clustering, identify the hard/soft clones.

Usage

```
find_subclones(hc, pinmat, pins, nmin = -6, nsim = 500, lmmax = 0.001,
hcmethod = "average", baseshare = 3, fdrthresh = -2, sharemin = 0.85,
bymax = T, climbfromsize = 2, climbtoshare = 3, clonetype = "soft")
```

Arguments

hc The hclust objects with clones identified.

pinmat The pinmat. pins The pins.

nmin An integer. Default: 6. The minimum node size for a subclone.

nsim The number of permutation simulations for subclone identification. Default:

500.

1mmax Numeric value. Default: 0.001. The threshold parameter for the linear fit to

identify subclones.

hcmethod Default: average

baseshare An integer. Default: 3. A balance parameter for controlling minimal number of

shared features in a subclone node.

fdrthresh FDR criterion for subclone nodes. Default: -2.

sharemin A feature is considered shared if present in sharemin fraction of leaves in a

node.Default: 0.85.

bymax Logical. If TRUE (Default), use maximal of mean FDR for the node to find

subclones.

climbfromsize An integer. Default: 2. climbtoshare An integer. Default: 3.

clonetype Default: 'soft'.

4 fisher_fdr

Value

A list of helust objects for clones.

fisher_dist

Calculates a distance matrix given Fisher FDR true p-values.

Description

Calculates a distance matrix given Fisher FDR true p-values.

Usage

```
fisher_dist(true_pv, cell_names)
```

Arguments

true_pv The Fisher's test p-values for the observation.

cell_names A character vector. The names of cells.

Value

distance matrix based on Fisher's test p-values (mat_dist).

fisher_fdr

Compute FDRs for Fisher's test p-values.

Description

Linear fit to the tail of empirical null distribution of Fisher p-values; FDR computation: compare true to simulated CDF(empirical null).

Usage

```
fisher_fdr(true_pv, sim_pv, cell_names, lmmax = 0.001)
```

Arguments

true_pv The Fisher's test p-values for the observation.
sim_pv The Fisher's test p-values for the permutations.

cell_names A character vector. The names of cells.

1mmax Numeric value. Default: 0.001. The threshold parameter for the linear fit.

Value

A list containing the matrix of the FDR values (mat_fdr)

hclust_tree 5

hclust_tree Build the hierarchical clustering tree.

Description

Hierarchical clustering with Fisher's test p-values as distance matrix. Also add feature coverage information for each node in the tree.

Usage

```
hclust_tree(pinmat, mat_fdr, mat_dist, hcmethod = "average")
```

Arguments

pinmat The incidence table generated by calc_pinmat.

mat_fdr The FDR matrix generated by fisher_fdr

mat_dist The dissmilarity based on Fisher's test p-values for hierarchical clustering.

hcmethod Default: average

Value

A helust objects with new items added.

```
segment_varbin_files Generate the segmented profile for each cell.
```

Description

Generate the segmented profile for each cell in the input directory using CBS.

Usage

```
segment_varbin_files(varbin_files, gc_df, badbins = NULL)
```

Arguments

varbin_files list of bin count files for all cells produced by 'varbin' step of 'sgains' package.

gc_df binning scheme used for the analysis.

badbins list of bins that should be excluded from the analysis.

Value

The list containing seg quantal and ratio quantal matrix for all cells.

6 sim_fisher_wrapper

ipeline Integration to 'sGAINS' to

Description

This function is called by sGAINS tools to perform final step in preparation of results.

Usage

```
sgains_pipeline(scgv_dir, case_name, varbin_dir, varbin_suffix, bins_boundaries,
 cytoband, badbins = NULL, nsim = 150, sharemin = 0.85)
```

Arguments

scgv_dir	directory where the results of the analysis should be stored
case_name	name of the case to be used for storing results of the analysis
varbin_dir	directory where are located results from 'varbin' step of sGAINS
varbin_suffix	common suffix for files produced from 'varbin' step of sGAINS
bins_boundaries	
	file name for binning scheme to use in the analysis
cytoband	file name where is located the description of cyto bands for the version of genome we are using
badbins	a file name were the defenition of bad bins for the specified binning schema could be found
nsim	number of simulations to run for calculating simulated FDR distribution
sharemin	a feature is considered shared if present in sharemin fraction of leaves in a node

sim_fisher_wrapper	Simulate the Fisher's test p-values.
--------------------	--------------------------------------

Description

Given the incidence table for selected features (i.e. pinmat generated by calc_pins), computes the Fisher's test p-values for pairwise comparisons. Also perform permutations on the incidence table and compute a set of Fisher's test p-values for each permutation.

Usage

```
sim_fisher_wrapper(pinmat_df, pins_df, njobs = NULL, nsim = 150,
 nsweep = 200, seedme = 123)
```

Arguments

pinmat_df	The incidence table generated by findpins.
pins_df	The pin generated by findpins. The bin information for the selected feature set.
nsim	the number of permutations/simulations. Default value: 150.

tree_py 7

Value

a list of two numeric vector objects. The Fisher's test p-values for the observation (true) and for the permutations (sim).

tree_py

Builds HC tree representation based on the distance matrix computed by fisher_dist export

Description

Builds HC tree representation based on the distance matrix computed by fisher_dist export

Usage

```
tree_py(mdist, method, metric = "euclidean")
```

varbin_input_files

Collects all bin count files from given directory

Description

Collects all bin count files from given directory

Usage

```
varbin_input_files(input_file_dir, suffix_pattern = "")
```

Arguments

```
input_file_dir directory to scan for bin count files
suffix_pattern suffix to select files from input directory
```

Value

data frame with filenames, cell names and file basenames.

Index

```
calc_pinmat, 2
find_clones, 2
find_subclones, 3
fisher_dist, 4
fisher_fdr, 4
hclust_tree, 5
segment_varbin_files, 5
sgains_pipeline, 6
sim_fisher_wrapper, 6
tree_py, 7
varbin_input_files, 7
```