Database systems I

Radim Bača

radim.baca@vsb.cz

VSB TECHNICAL | FACULTY OF ELECTRICAL | UNIVERSITY | ENGINEERING AND COMPUTER | SCIENCE

DEPARTMENT OF COMPUTER SCIENCE

Content

- 1NF
- 2NF
- 3NF
- BCNF
 - BCNF problem
- Database scheme decomposition
- Algorithm of a scheme decomposition
- Summary

Database Scheme Design

- There is a lot of ways how to design a database scheme corresponding to a particular assignment
- Some solutions are comparably good, others are considerably worse
- There exists an elegant theory for the database design

A table must satisfy the following to be in a first normal form:

• The values in each attribute has to be atomic

eID	eName	eSkill
1	Cayley	C++ Python
2	Laplace	C++ Java

A table must satisfy the following to be in a first normal form:

• The values in each attribute has to be atomic

eID	eName	eSkill
1	Cayley	C++ Python
2	Laplace	C++ Java

A table must satisfy the following to be in a first normal form:

• The values in each attribute has to be atomic

eID	eName	eSkill
1	Cayley	C++ Python
2	Laplace	C++ Java

eID	eName	eSkill
1	Cayley	C++
1	Cayley	Python
2	Laplace	C++
2	Laplace	Java

A table must satisfy the following to be in a first normal form:

The values in each attribute has to be atomic

eID	eName	eSkill
1	Cayley	C++ Python
2	Laplace	C++ Java

elD	eName	eSkill
1	Cayley	C++
1	Cayley	Python
2	Laplace	C++
2	Laplace	Java

Such table is considered to be in the first normal form

A table must satisfy the following to be in a second normal form:

- Table is in 1NF and
- there is no partial functional dependencies

A table must satisfy the following to be in a second normal form:

- Table is in 1NF and
- there is no partial functional dependencies

But what is a partial functional dependency?

A table must satisfy the following to be in a second normal form:

- Table is in 1NF and
- There is no partial functional dependencies

But what is a partial functional dependency?

It is closely related to the candidate keys ...

Candidate for a Key

- There can exist more keys for one table
- Candidates for a key of a scheme are all attributes \overline{K} for which there is no $\overline{K'} \subset \overline{K}$ representing also a key
- In other words, we speak about shortest keys

Let us slightly extend the previous employee table

eID	eEmail	eName	eSkill
1	cayley@vsb.cz	Cayley	C++
1	cayley@vsb.cz	Cayley	Python
2	laplace@vsb.cz	Laplace	C++
2	laplace@vsb.cz	Laplace	Java

- ullet eID o eName eEmail
- eEmail \rightarrow eID

Let us slightly extend the previous employee table

eID	eEmail	eName	eSkill
1	cayley@vsb.cz	Cayley	C++
1	cayley@vsb.cz	Cayley	Python
2	laplace@vsb.cz	Laplace	C++
2	laplace@vsb.cz	Laplace	Java

Functional dependencies:

- ullet eID o eName eEmail
- $\bullet \ eEmail \rightarrow eID$

What are the candidate keys in this example?

Let us slightly extend the previous employee table

eID	eEmail	eName	eSkill
1	cayley@vsb.cz	Cayley	C++
1	cayley@vsb.cz	Cayley	Python
2	laplace@vsb.cz	Laplace	C++
2	laplace@vsb.cz	Laplace	Java

- eID → eName eEmail
- eEmail → eID

```
\{eID\}+=\{eID, eName, eEmail\}
\{eEmail\}+=\{eID, eName, eEmail\}
```

Let us slightly extend the previous employee table

eID	eEmail	eName	eSkill
1	cayley@vsb.cz	Cayley	C++
1	cayley@vsb.cz	Cayley	Python
2	laplace@vsb.cz	Laplace	C++
2	laplace@vsb.cz	Laplace	Java

- eID → eName eEmail
- \bullet eEmail \rightarrow eID

```
\{eID, eSkill\} + = \{eID, eName, eEmail, eSkill\} 
\{eEmail, eSkill\} + = \{eID, eName, eEmail, eSkill\}
```

Let us slightly extend the previous employee table

eID	eEmail	eName	eSkill
1	cayley@vsb.cz	Cayley	C++
1	cayley@vsb.cz	Cayley	Python
2	laplace@vsb.cz	Laplace	C++
2	laplace@vsb.cz	Laplace	Java

- eID → eName eEmail
- \bullet eEmail \rightarrow eID

```
\{elD, eSkill\} + = \{elD, eName, eEmail, eSkill\} 
\{eEmail, eSkill\} + = \{elD, eName, eEmail, eSkill\}
```

Functional dependencies:

- eID → eName eEmail
- eEmail → eID

```
\{eID, eSkill\} + = \{eID, eName, eEmail, eSkill\} 
\{eEmail, eSkill\} + = \{eID, eName, eEmail, eSkill\}
```

Ok, but what is a partial functional dependency?

Functional dependencies:

- eID → eName eEmail
- $eEmail \rightarrow eID$

```
\{eID, eSkill\} + = \{eID, eName, eEmail, eSkill\} 
\{eEmail, eSkill\} + = \{eID, eName, eEmail, eSkill\}
```

Partial functional dependency

In this case the first *functional dependency is partial* because has a proper subset of a candidate key on the left side and non-key attribute on the right side (attribute *eName*).

Functional dependencies:

- eID → eName eEmail
- eFmail → eID

```
\{eID, eSkill\} + = \{eID, eName, eEmail, eSkill\} 
\{eEmail, eSkill\} + = \{eID, eName, eEmail, eSkill\}
```

Partial functional dependency

In this case the first *functional dependency is partial* because has a proper subset of a candidate key on the left side and non-key attribute on the right side (attribute *eName*).

We need to decompose the relation in order to have a relation in 2NE.

A table must satisfy the following to be in a second normal form:

- Table is in 1NF and
- there is no partial functional dependencies

dID	dName	eID	eName	eSkill
1	Export	1	Cayley	C++
1	Export	1	Cayley	Python
1	Export	2	Laplace	C++
1	Export	2	Laplace	Java

 $dID \rightarrow dName$

 $eID \rightarrow eName \ dID$

A table must satisfy the following to be in a second normal form:

- Table is in 1NF and
- there is no partial functional dependencies

dID	dName	eID	eName	eSkill
1	Export	1	Cayley	C++
1	Export	1	Cayley	Python
1	Export	2	Laplace	C++
1	Export	2	Laplace	Java

 \rightarrow

dID → dName eID → eName dID

	dID	dName	eID	eName
ſ	1	Export	1	Cayley
	1	Export	2	Laplace

eID	eSkill
1	C++
1	Python
2	C++
2	Java

A table must satisfy the following to be in a third normal form:

- Table is in 2NF and
- No non-key attributes are transitively dependent

A table must satisfy the following to be in a third normal form:

- Table is in 2NF and
- No non-key attributes are transitively dependent

dID	dName	eID	eName
1	Export	1	Cayley
1	Export	2	Laplace

 $\begin{array}{l} \text{dID} \rightarrow \text{dName} \\ \text{eID} \rightarrow \text{eName dID} \end{array}$

Is this relation in 3NF?

A table must satisfy the following to be in a third normal form:

- Table is in 2NF and
- No non-key attributes are transitively dependent

dID	dName	eID	eName
1	Export	1	Cayley
1	Export	2	Laplace

 $\begin{array}{l} \text{dID} \rightarrow \text{dName} \\ \text{eID} \rightarrow \text{eName} \ \text{dID} \end{array}$

No, there is a transitive relationship, we need to decompose it

A table must satisfy the following to be in a third normal form:

- Table is in 2NF and
- No non-key attributes are transitively dependent

dID	dName	eID	eName
1	Export	1	Cayley
1	Export	2	Laplace

dID	dName
1	Export

eID	eName	dID
1	Cayley	1
2	Laplace	1

Boyce-Codd Normall Form

A table must satisfy the following to be in a Boyce-Codd normal form (BCNF):

- Table is in 3NF and
- every functional dependency must have a key on the left side

Sometimes it is not possible to achieve the BCNF and we are satisfied with 3NF

Boyce-Codd Normall Form

A table must satisfy the following to be in a Boyce-Codd normal form (BCNF):

- Table is in 3NF and
- every functional dependency must have a key on the left side

Sometimes it is not possible to achieve the BCNF and we are satisfied with 3NF

BCNF Problem

- A relational scheme R with a set of FDs is in BCNF if for every FD $\overline{A} \to \overline{B}$ it holds that \overline{A} is a key
- However, there are cases when the BCNF condition cannot be satisfied
- Consider R(J, K, L) and $FDs = \{JK \rightarrow L, L \rightarrow K\}$
 - There are two candidates for a key: JK and JL
 - R is not in BCNF and none of its decompositions will satisfy the JK → L dependency!
 - There is no decomposition which would be in BCNF and all the dependencies would be satisfied

- One decomposition step decomposes an original table into two
- Every decomposition of a relational scheme $R(\overline{A})$ into two relational schemes $R_1(\overline{B})$ and $R_2(\overline{C})$ with a minimal cover F has to satisfy the following rules:
 - $\overline{B} \cup \overline{C} = \overline{A}$
 - We try to keep all functional dependencies, i.e. it is not necessary to join R₁ and R₂ to check a FD.
 - $R_1 \bowtie R_2 = R$ (lossless join)

- One decomposition step decomposes an original table into two
- Every decomposition of a relational scheme $R(\overline{A})$ into two relational schemes $R_1(\overline{B})$ and $R_2(\overline{C})$ with a minimal cover F has to satisfy the following rules:
 - $\overline{B} \cup \overline{C} = \overline{A}$
 - We try to keep all functional dependencies, i.e. it is not necessary to join R₁ and R₂ to check a FD.
 - $R_1 \bowtie R_2 = R$ (lossless join)

- One decomposition step decomposes an original table into two
- Every decomposition of a relational scheme $R(\overline{A})$ into two relational schemes $R_1(\overline{B})$ and $R_2(\overline{C})$ with a minimal cover F has to satisfy the following rules:
 - $\overline{B} \cup \overline{C} = \overline{A}$
 - We try to keep all functional dependencies, i.e. it is not necessary to join R₁ and R₂ to check a FD.
 - $R_1 \bowtie R_2 = R$ (lossless join)

- One decomposition step decomposes an original table into two
- Every decomposition of a relational scheme $R(\overline{A})$ into two relational schemes $R_1(\overline{B})$ and $R_2(\overline{C})$ with a minimal cover F has to satisfy the following rules:
 - $\overline{B} \cup \overline{C} = \overline{A}$
 - We try to keep all functional dependencies, i.e. it is not necessary to join R₁ and R₂ to check a FD.
 - $R_1 \bowtie R_2 = R$ (lossless join)

Example - Lossless decomposition

• Purchase (cName, email, pID, pCathegory, pLabel, when, price)

Purchase

zName	email	pID	pCath.	pLabel	when	price
Radim	Radim.B@vsb.cz	1	hairdryer	Electrolux	1.8.2012	520
Radim	R_Moskva@a.cz	2	vacuum	Hoover	3.9.2012	3500
Li	Jet.li@email.hk	5	toothpick	WoodOva	1.10.2012	5

We perform the scheme decomposition

Customer

zName	email
Radim	Radim.B@vsb.cz
Radim	R_Moskva@a.cz
Li	Jet.li@email.hk

ProductPurchase

i reddeti drendse							
email	pID	pCath.	pLabel	when	price		
Radim.B@vsb.cz	1	hairdryer	Electrolux	1.8.2012	520		
R_Moskva@a.cz	2	vacuum	Hoover	3.9.2012	3500		
Jet.li@email.hk	5	toothpick	WoodOva	1.10.2012	5		

Example - Lossless decomposition

• Purchase (cName, email, pID, pCathegory, pLabel, when, price)

Purchase

zName	email	pID	pCath.	pLabel	when	price
Radim	Radim.B@vsb.cz	1	hairdryer	Electrolux	1.8.2012	520
Radim	R_Moskva@a.cz	2	vacuum	Hoover	3.9.2012	3500
Li	Jet.li@email.hk	5	toothpick	WoodOva	1.10.2012	5

We perform the scheme decomposition

Customer

zName	email
Radim	Radim.B@vsb.cz
Radim	R_Moskva@a.cz
Li	Jet.li@email.hk

ProductPurchase

1 Toddott dronase								
email	pID	pCath.	pLabel	when	price			
Radim.B@vsb.cz	1	hairdryer	Electrolux	1.8.2012	520			
R_Moskva@a.cz	2	vacuum	Hoover	3.9.2012	3500			
Jet.li@email.hk	5	toothpick	WoodOva	1.10.2012	5			

Example - Lossless decomposition

• Purchase (cName, email, pID, pCathegory, pLabel, when, price)

Purchase

zName	email	pID	pCath.	pLabel	when	price
Radim	Radim.B@vsb.cz	1	hairdryer	Electrolux	1.8.2012	520
Radim	R_Moskva@a.cz	2	vacuum	Hoover	3.9.2012	3500
Li	Jet.li@email.hk	5	toothpick	WoodOva	1.10.2012	5

We perform the scheme decomposition

Customer

ProductPurchase

zName	email		email	pID	pCath.	pLabel	when	
Radim	Radim.B@vsb.cz	 	Radim.B@vsb.cz	1	hairdryer	Electrolux	1.8.2012	520
Radim	R_Moskva@a.cz	<u> </u>	R_Moskva@a.cz	2	vacuum	Hoover	3.9.2012	3500
Li	Jet.li@email.hk	-	Jet.li@email.hk	5	toothpick	WoodOva	1.10.2012	5

After joining the Customer and ProductPurchase relations,
 we get the original relation Purchase

Example - Lossy decomposition

• Purchase (cName, email, pID, pCathegory, pLabel, when, price)

Purchase

zName	email	pID	pCath.	pLabel	when	price
Radim	Radim.B@vsb.cz	1	hairdryer	Electrolux	1.8.2012	520
Radim	R_Moskva@a.cz	2	vacuum	Hoover	3.9.2012	3500
Li	Jet.li@email.hk	5	toothpick	WoodOva	1.10.2012	5

We perform another decomposition of the scheme

Customer

zName	email
Radim	Radim.B@vsb.cz
Radim	R_Moskva@a.cz
Li	Jet.li@email.hk

ProductPurchase

i loddeli dichase								
zName	pID	pCath.	pLabel	when	price			
Radim	1	hairdryer	Electrolux	1.8.2012	520			
Radim	2	vacuum	Hoover	3.9.2012	3500			
Li	5	toothpick	WoodOva	1.10.2012	5			

Example - Lossy decomposition

• Purchase (cName, email, pID, pCathegory, pLabel, when, price)

Purchase

zName	email	pID	pCath.	pLabel	when	price
Radim	Radim.B@vsb.cz	1	hairdryer	Electrolux	1.8.2012	520
Radim	R_Moskva@a.cz	2	vacuum	Hoover	3.9.2012	3500
Li	Jet.li@email.hk	5	toothpick	WoodOva	1.10.2012	5

We may test a different decomposition of the scheme

Customer

ProductPurchase

zName	email		zName	pID	pCath.	pLabel	when	price
Radim	Radim.B@vsb.cz		Radim	1	hairdryer	Electrolux	1.8.2012	520
Radim	R_Moskva@a.cz		Radim	2	vacuum	Hoover	3.9.2012	3500
Li	Jet.li@email.hk		Li	5	toothpick	WoodOva	1.10.2012	5

 After joining the Customer and ProductPurchase relations, we do NOT get the original Purchase relation!

Lossless join

- There exists a simple criterion $R(\overline{A})$ to $R_1(\overline{B})$ and $R_2(\overline{C})$ is lossless if one of the following FD is satisfied:
 - $\overline{B} \cap \overline{C} \to \overline{B}$
 - $\overline{B} \cap \overline{C} \to \overline{C}$

Decomposition

- A correct decomposition is based on functional dependencies (FDs) above a relational scheme
- Having an FD picked, one from the resulting relational schemes has to have only this FD's attributes and common attributes of the resulting schemes have to be on the left hand side of this FD

Decomposition - Flashback Example

• For the Purchase scheme, consider this set of FDs: email → cName pID → pCathegory, pLabel email, pID, when → price Why has the first decomposition been correct?

- In the first example, the decomposition was done with respect to the rule $email \rightarrow cName$
- The Customer scheme consists of the attributes {email, cName}
- The common attribute is email

Decomposition - Flashback Example

• For the Purchase scheme, consider this set of FDs: email → cName pID → pCathegory, pLabel email, pID, when → price Why has the first decomposition been correct?

- In the first example, the decomposition was done with respect to the rule $email \rightarrow cName$
- The Customer scheme consists of the attributes {email, cName}
- The common attribute is email

```
We find keys for an original relational scheme R;
```

```
D = \{R\};
```

while there exists a scheme $R' \in D$ not being in BCNF do

We choose $\overline{A} \to \overline{B}$ for R' not satisfying the BCNF condition

We decompose R' into $R_1(\overline{A}, \overline{B})$ and $R_2(\overline{A}, remaining attributes);$

We assign FDs to the new schemes R_1 and R_2 ;

We find keys for R_1 and R_2 :

We remove R' from the D set and add R_1 and R_2 there

```
We find keys for an original relational scheme R; D = \{R\};
```

while there exists a scheme $R' \in D$ not being in BCNF do

We choose $\overline{A} \to \overline{B}$ for R' not satisfying the BCNF condition;

We decompose R' into $R_1(A, B)$ and $R_2(A, remaining attributes);$

We assign FDs to the new schemes R_1 and R_2 ;

We find keys for R_1 and R_2 ;

We remove R' from the D set and add R_1 and R_2 there


```
We find keys for an original relational scheme R; D = \{R\}; while there exists a scheme R' \in D not being in BCNF do

We choose \overline{A} \to \overline{B} for R' not satisfying the BCNF condition; We decompose R' into R_1(\overline{A}, \overline{B}) and R_2(\overline{A}, remaining attributes);

We assign FDs to the new schemes R_1 and R_2;
```

```
We find keys for an original relational scheme R; D = \{R\}; while there exists a scheme R' \in D not being in BCNF do

We choose \overline{A} \to \overline{B} for R' not satisfying the BCNF condition; We decompose R' into R_1(\overline{A}, \overline{B}) and R_2(\overline{A}, remaining attributes);
```

We assign FDs to the new schemes R_1 and R_2 ;

We find keys for R_1 and R_2 ;

We remove R' from the D set and add R_1 and R_2 there

```
We find keys for an original relational scheme R; D = \{R\}; while there exists a scheme R' \in D not being in BCNF do

We choose \overline{A} \to \overline{B} for R' not satisfying the BCNF condition; We decompose R' into R_1(\overline{A}, \overline{B}) and R_2(\overline{A}, remaining attributes);

We assign FDs to the new schemes R_1 and R_2; We find keys for R_1 and R_2;
```

```
We find keys for an original relational scheme R; D = \{R\}; while there exists a scheme R' \in D not being in BCNF do

We choose \overline{A} \to \overline{B} for R' not satisfying the BCNF condition; We decompose R' into R_1(\overline{A}, \overline{B}) and R_2(\overline{A}, remaining attributes);
```

We assign FDs to the new schemes R_1 and R_2 ;

We find keys for R_1 and R_2 ;

We remove R' from the D set and add R_1 and R_2 there;

- Purchase(cName, email, pID, pCathegory, pLabel, when, price)
 {email → cName; pID → pCathegory, pLabel; email, pID, when → price}
- {email, pID, when} is the key

- Purchase(cName, email, pID, pCathegory, pLabel, when, price)
 {email → cName; pID → pCathegory, pLabel; email, pID, when → price}
- {email, pID, when} is the key

- Purchase(cName, email, pID, pCathegory, pLabel, when, price)
 {email → cName; pID → pCathegory, pLabel; email, pID, when → price}
- {email, pID, when} is the key
- There are two FDs violationg the BCNF condition;
 let us choose, e.g., email → cName
- We decompose the original Purchase scheme into two:
 - Customer (email, cName)
 - Purchase(email, pID, pCathegory, pLabel, when, price)

- Purchase(cName, email, pID, pCathegory, pLabel, when, price)
 {email → cName; pID → pCathegory, pLabel; email, pID, when → price}
- {email, pID, when} is the key
- There are two FDs violationg the BCNF condition;
 let us choose, e.g., email → cName
- We decompose the original Purchase scheme into two:
 - Customer(email, cName)
 - Purchase(email, pID, pCathegory, pLabel, when, price)

- We decompose the original Purchase scheme into two:
 - Customer (email, cName)
 - Purchase(email, pID, pCathegory, pLabel, when, price)
- The attributes {email, pID, when} are still the key of the Purchase scheme

- We decompose the original Purchase scheme into two:
 - Customer (email, cName)
 - Purchase(email, pID, pCathegory, pLabel, when, price)
- The attributes {email, pID, when} are still the key of the Purchase scheme
- pID → pCathegory, pLabel violates the BCNF condition
- We docompose the new Purchase scheme:
 - Product(pID, pCathegory, pLabel)
 - Purchase (email, pID, when, price)

- We decompose the original Purchase scheme into two:
 - Customer (email, cName)
 - Purchase(email, pID, pCathegory, pLabel, when, price)
- The attributes {email, pID, when} are still the key of the Purchase scheme
- pID → pCathegory, pLabel violates the BCNF condition
- We docompose the new Purchase scheme:
 - Product (pID, pCathegory, pLabel)
 - Purchase (email, pID, when, price)

- We decompose the original Purchase scheme into two:
 - Customer (email, cName)
 - Purchase (email, pID, pCathegory, pLabel, when, price)
- The attributes {email, pID, when} are still the key of the Purchase scheme
- pID → pCathegory, pLabel violates the BCNF condition
- We docompose the new Purchase scheme:
 - Product (pID, pCathegory, pLabel)
 - Purchase (email, pID, when, price)

- Please recall that there are two requirements:
 - The decomposition satisfies the requirement on lossless join (i.e., $R_1 \bowtie R_2 \bowtie \cdots \bowtie R_n = R$)
 - All functional dependecies has to be satisfied
- The first requirement is always satisfied if we use the decomposition to BCNF
- The resulting scheme produced by the algorithm is dependent on an order in which we pick FDs
- We start with FD where attributes on the right side never occur on the left side in any other FD
- The problem is that sometimes we can not perform a decomposition to BCNF and keep all FDs

- Please recall that there are two requirements:
 - The decomposition satisfies the requirement on lossless join (i.e., $R_1 \bowtie R_2 \bowtie \cdots \bowtie R_n = R$)
 - All functional dependecies has to be satisfied
- The first requirement is always satisfied if we use the decomposition to BCNF
- The resulting scheme produced by the algorithm is dependent on an order in which we pick FDs
- We start with FD where attributes on the right side never occur on the left side in any other FD
- The problem is that sometimes we can not perform a decomposition to BCNF and keep all FDs

- Please recall that there are two requirements:
 - The decomposition satisfies the requirement on lossless join (i.e., $R_1 \bowtie R_2 \bowtie \cdots \bowtie R_n = R$)
 - All functional dependecies has to be satisfied
- The first requirement is always satisfied if we use the decomposition to BCNF
- The resulting scheme produced by the algorithm is dependent on an order in which we pick FDs
- We start with FD where attributes on the right side never occur on the left side in any other FD
- The problem is that sometimes we can not perform a decomposition to BCNF and keep all FDs

- Please recall that there are two requirements:
 - The decomposition satisfies the requirement on lossless join (i.e., $R_1 \bowtie R_2 \bowtie \cdots \bowtie R_n = R$)
 - All functional dependecies has to be satisfied
- The first requirement is always satisfied if we use the decomposition to BCNF
- The resulting scheme produced by the algorithm is dependent on an order in which we pick FDs
- We start with FD where attributes on the right side never occur on the left side in any other FD
- The problem is that sometimes we can not perform a decomposition to BCNF and keep all FDs

- Please recall that there are two requirements:
 - The decomposition satisfies the requirement on lossless join (i.e., $R_1 \bowtie R_2 \bowtie \cdots \bowtie R_n = R$)
 - All functional dependecies has to be satisfied
- The first requirement is always satisfied if we use the decomposition to BCNF
- The resulting scheme produced by the algorithm is dependent on an order in which we pick FDs
- We start with FD where attributes on the right side never occur on the left side in any other FD
- The problem is that sometimes we can not perform a decomposition to BCNF and keep all FDs

- Functional dependencies (FDs)
 - represent a relationship among attributes, which can cause redundancy in data
 - By using FDs, we find a closure for some attributes and also a key of a scheme
- Optimization of a set of FDs
- 1NF, 2NF, 3NF, BCNF
- Relational scheme decomposition
- BCNF:
 - form of relational scheme that is lossless
 - decomposition into BCNF with respect to FDs

- Functional dependencies (FDs)
 - represent a relationship among attributes, which can cause redundancy in data
 - By using FDs, we find a closure for some attributes and also a key of a scheme
- Optimization of a set of FDs
- 1NF, 2NF, 3NF, BCNF
- Relational scheme decomposition
- BCNF:
 - form of relational scheme that is lossless
 - decomposition into BCNF with respect to FDs

- Functional dependencies (FDs)
 - represent a relationship among attributes, which can cause redundancy in data
 - By using FDs, we find a closure for some attributes and also a key of a scheme
- Optimization of a set of FDs
- 1NF, 2NF, 3NF, BCNF
- Relational scheme decomposition
- BCNF:
 - form of relational scheme that is lossless
 - decomposition into BCNF with respect to FDs

- Functional dependencies (FDs)
 - represent a relationship among attributes, which can cause redundancy in data
 - By using FDs, we find a closure for some attributes and also a key of a scheme
- Optimization of a set of FDs
- 1NF, 2NF, 3NF, BCNF
- Relational scheme decomposition
- BCNF:
 - form of relational scheme that is lossless
 - decomposition into BCNF with respect to FDs

- Functional dependencies (FDs)
 - represent a relationship among attributes, which can cause redundancy in data
 - By using FDs, we find a closure for some attributes and also a key of a scheme
- Optimization of a set of FDs
- 1NF, 2NF, 3NF, BCNF
- Relational scheme decomposition
- BCNF:
 - form of relational scheme that is lossless
 - decomposition into BCNF with respect to FDs

- Functional dependencies (FDs)
 - represent a relationship among attributes, which can cause redundancy in data
 - By using FDs, we find a closure for some attributes and also a key of a scheme
- Optimization of a set of FDs
- 1NF, 2NF, 3NF, BCNF
- Relational scheme decomposition
- BCNF:
 - form of relational scheme that is lossless
 - decomposition into BCNF with respect to FDs

Denormalization

- Main goal of normalization is to reduce redundancy and avoid anomalies
- Normalization is always the major goal at the very beginning of a database design
- However, sometimes it may be required to denormalize a database in order to achieve higher performance:
 - Avoiding joins
 - Precompute values

Denormalization

- Main goal of normalization is to reduce redundancy and avoid anomalies
- Normalization is always the major goal at the very beginning of a database design
- However, sometimes it may be required to denormalize a database in order to achieve higher performance:
 - Avoiding joins
 - Precompute values

References

- Jennifer Widom. Introduction to Databases.
 https://www.coursera.org/course/db
- Course home pages http://dbedu.cs.vsb.cz