Instructions for Lab Session7: Deep Q Network

For this lab session, you will be following and filling out a Jupyter notebook.

You will have to submit back this notebook, with your plots visible, and an analysis in a cell below containing

- A short summary of the experiment (or what is different from before, explanation of the new method)
- An analysis of the plot performance, speed, and why you think it is so
- If you changed a hyper-parameter (or did a study), an explanation of it.
- A final single plot comparing the performance of all agents playing cartpole 30 times. (use test function to get a agent's performance)

Section wise detailed instructions follow on next page.

The deadline of assignment is 9th of april.

For those who are using jupyter for first time

You can run the notebook document step-by-step (one cell a time) by pressing **shift + enter**.

You can run the whole notebook in a single step by clicking on the menu Run -> Run All Cells.

To restart the kernel (i.e. the computational engine), click on the menu **Kernel -> Restart Kernel**. This can be useful to start over a computation from scratch (e.g. variables are deleted, open files are closed, etc...).

Environment

The CartPole environment is quite simple: you have to balance a pole on a moving cart.

General Description: https://gym.openai.com/envs/CartPole-v0/

Use https://github.com/openai/gym/wiki/CartPole-v0 to understand the state space, action space, dynamics and reward function

Useful Reminders and details

Loss function's done signal

QLearning used so far used target R + gamma*max a' Q(s',a').

When s' is a terminal state, we know by construction that $q^*(s', .)=0$. Until now, we initialized our Q estimates at 0, so this was verified. However, our network will be initialized randomly, so it will most likely not give a 0 value to terminal states. Note that we do never update a terminal state (learn from a s=terminal, s'=?? Transition), therefore we cannot learn this. In order to incorporate this

information, the learn method takes in the **done** signal, which is a boolean indicating whether next_state is a terminal state.

Do not forget to use this signal in the computation of the expected_q_value, or the agent will rely on wrong estimates of the terminal state values!

Instructions

Go through the boxes one by one to understand what is going on in each of them.

You will have to implement the missing parts indicated by **TODO** flags in the code. A bullet in the following list indicated a cell you have to fill in:

- In **Computing Temporal Difference Loss** (in compute_td_loss_dqn function). There, you have to
 - Predict the q_values for this state
 - Predict the q_values for the next state
 - o Extract the q value of the action performed
 - Compute the QLearning target "expected q value"
 - o Compute the MSE loss
- The associated plots, and in a cell below, your analysis
- DQN with Replay Buffer / Compute TD Loss (in compute_td_loss_batch): same work as before, but now the inputs come in a batch, since we're sampling experiences from the buffer.
 - Predict the q_values for this state
 - o Predict the q values for the next state
 - o Extract the q value of the action performed
 - Compute the QLearning target "expected q value"
 - Compute the MSE loss
- The associated plots, and in a cell below, your analysis
- DQN with Target Network / Compute TD Loss (in compute_td_loss_target): same work as before, but now using a target network. Be careful, you now need to write the next_q_value yourself!
 - Predict the q_values for this state
 - Predict the q_values for the next state
 - Extract the q_value of the action performed
 - !NEW! Next Q value
 - Compute the QLearning target "expected q value"
 - Compute the MSE loss
- The associated plots, and in a cell below, your analysis
- DQN with Target Network and Replay Buffer / Compute TD Loss (in compute_td_loss_target_batch): same work as DQN alone, but now using both improvements.
 - Predict the q_values for this state
 - Predict the q_values for the next state
 - Extract the q value of the action performed
 - Next O value
 - o Compute the QLearning target "expected q value"
 - o Compute the MSE loss

• The associated plots, and in a cell below, your analysis

From now on, always include both improvements in the following

- **Double DQN / Compute TD Loss** (in compute_td_loss_doubleDQN): using the target net to estimate the value of the best action according to the model.
 - Predict the q_values for this state
 - Predict the q_values for the next state using model
 - Predict the q_values for the next state using target
 - o Next Q value
 - Compute the QLearning target "expected q value"
 - o Compute the MSE loss
- The associated plots, and in a cell below, your analysis
- **Dueling DQN / Compute TD Loss** (in compute_td_loss_duelingDQN): decoupling q value into state value and action advantage.
 - Predict the q_values for this state
 - Predict the q_values for the next state
 - o Extract the q_value of the action performed
 - Next Q value
 - o Compute the QLearning target "expected q value"
 - Compute the MSE loss
- The associated plots, and in a cell below, your analysis
- **Plot comparison of all agents**: Use the **test** function defined at the starting of notebook to collect each agent's performance individually. Plot their comparison here.
- Playing Atari with Double DQN: last panel: Based on Td_loss functions you have worked with write or choose a function to reuse here and justify your choice?
- The associated plots, and in a cell below, your analysis