Thesis/ Reports Byer, T.

BIOLOGICAL DIVERSITY

-1 5

TECHNICAL REPORT

for

THUNDER BASIN NATIONAL GRASSLAND

with recommendations for the

OIL AND GAS LEASING ENVIRONMENTAL IMPACT STATEMENT

MEDICINE BOW NATIONAL FOREST Laramie, WY

December 11, 1992

Prepared by:
Tim Byer, Wildlife Biologist
Malcom R. Edwards, Soil Scientist
Clay Speas, Fisheries Biologist
Judy von Ahlefeldt, Ecologist

EXECUTIVE SUMMARY

Biological diversity can be described at four scales on the Thunder Basin National Grassland. These are the landscape and community scales (Coarse Filter level) and the species and genetic scales (Fine Filter level). Biological diversity is expressed through attributes of ecosystem composition, structure, processes and functions at each scale. Composition, structure, processes and functions of ecosystems at the genetic and species scale, interact and aggregate upward to form functional ecosystems at the community and landscape levels.

Three hundred forty vertebrate animal species have been documented on the Thunder Basin National Grassland. This includes 29 species of fish, 6 amphibians, 15 reptiles, 228 birds (60 neotropical migrants) and 62 mammals. Little is known about terrestrial invertebrates, but information on species composition and distribution of aquatic invertebrates is available through several university studies, State of Wyoming and EPA water quality monitoring reports.

An estimated 250 species of vascular plants, representing floras from the Great Basin, northern and southern Rocky Mountains, Black Hills and Great Plains form a variety of plant communities. Twenty-two plant community types were identified in a formal classification study of the coal-bearing area of the upper Cheyenne River Basin. Additional community types, described from other areas, also occur here.

The plant community types can be grouped into large mapping units described by plant physiognomy. These useful descriptors for the landscape level include: deciduous riparian forest, deciduous riparian shrubland, riparian grassland, upland coniferous woodland, upland shrubland, shrub-steppe and upland grassland.

The matrix of the landscape consists of a mosaic of sagebrush shrubsteppe and upland grassland containing many community types. The matrix is divided along watercourses by corridors of deciduous riparian forest, deciduous riparian shrubland and riparian grassland. Coniferous woodlands and upland shrublands occur in patches in the matrix, forming islands of community mosaics differing sharply in species composition and physiognomy. These patches occur on outcrops of sandstone, scoria or shale bedrock along watershed divides. Coniferous woodland at the eastern border of the Black Hills forms a mosaic with sagebrush shrub-steppe in the transition to the matrix of the Powder River Basin.

Areas with special biological diversity were identified after coarsescale vegetation maps were prepared and information on terrestrial and aquatic vertebrate species and communities was evaluated. Features of Standards and Guidelines in the Forest Plan; Threatened and Endangered Species laws; Wyoming Water Quality Regulations; standard oil and gas lease terms and special lease stipulations were examined to evaluate how biological diversity in different ecosystems, at different scales, would be maintained. Characteristics considered for choosing areas with special biological diversity were: high species richness; unusual or uncommon species or communities; communities and species which occur on restrictive substrates; patch size, species and community composition, configuration, isolation and degree of landscape ecological integrity; estimated community sensitivity to change and recovery (resistance and resiliance); and quality of animal habitat.

Areas identified as having special biological diversity characteristics were patches containing mosaics of woody perennial plant communities of trees and/or shrubs. These patches confer biological diversity at the landscape scale because their species composition and the vertical and horizontal structure of communities differ from the sagebrush-grassland matrix.

Two strategies for maintaining biological diversity across scales are recommended. The Coarse Filter Approach perpetuates biological diversity at the landscape and community levels; the Fine Filter Approach perpetuates biological diversity at the species and genetic levels. Use of the two approaches in concert is recommended as the best way to maintain ecosystem structure, composition, processes and functions in both the matrix and patches throughout the Thunder Basin National Grassland.

Forest Plan Standards and Guidelines, Federal Threatened and Endangered Species laws, State Water Quality Regulations, the terms of the standard oil and gas lease and special stipulations involving Controlled Surface Use and Timing Limitations were deemed adequate to protect exisiting biological diversity in the matrix and the more developed woodland patches. These regulations mainly protect populations of managed species (Fine Filter level) and the abiotic conditions which help sustain functioning ecosystems.

Application of the No Surface Occupancy special stipulation to selected patches, is the Coarse Filter strategy. Used in conjunction with the Fine Filter strategy for protecting populations of specific managed species, the reservation of areas for No Surface Occupancy accomplishes the following:

- prevents the fragmentation of landscapes and communities with high ecological integrity;
- protects the interactions and processes among communities within specialized patch mosaics;
- protects landscapes and communities which are sensitive to erosion and difficult or impossible to regenerate;
- retains options for future management choices which would be lost if oil and gas development disrupted the present surface patterns;
- contributes to values for recreation and scenic beauty
- preserves substantial areas of wildlife habitat which has uncommon characteristics in the Powder River Basin context
- provides valuable habitat for neotropical migratory birds which require coniferous woodland and shrubland (hawks, flycatchers, hummingbirds, swallows, warblers and others)

Four areas are recommended for No Surface Occupancy stipulations for maintenance of biological diversity. These are:

- 1. The Miller Hills (3520 ac)
- 2. Cow Creek Buttes (6970 ac)
- 3. Duck Creek Breaks (8960 ac)
- 4. Downs Area (5080 ac)

These four areas total approximately 24,500 acres or 4.2% of the Thunder Basin National Grassland. Reservation of these areas from oil and gas surface development will maintain old growth ponderosa pine woodland, aspen groves, woody draws and big and little bluestem grassland in the Duck Creek Breaks; ponderosa pine woodland, juniper woodland and a variety of shrub and grass communities on specialized sandstone, scoria and shale substrates in the Cow Creek Buttes and Miller Hills complex; and the shrub communities on the restrictive badland and canyon substrates in the Downs area.

As per the recommendation in this report, oil and gas development can proceed with minimum restrictions on over 95% of the Federal Surface of Thunder Basin National Grassland. The 4.2% recommended for No Surface Occupancy will have dollar costs in foregone lease fees and possible royalties. Total annual foregone Federal lease fees are estimated to be \$120,949 (Reddick and Crockett, 1992) or about \$5.00 per acre. Not restricting oil and gas development will have both immediate and cumulative environmental costs which are difficult to quantify monetarily.

Maintenance of the biological diversity resource is the foundation for sustaining and enhancing many other resource values including wildlife, recreation, scenic values, and forage production which are part of the Multiple-Use policy. The recommendations in this report represent a possible balance between mineral development including oil and gas, coal, bentonite, uranium and scoria, and the protection of the composition, structure, function and processes of areas with special biological diversity on the Thunder Basin National Grassland.

TABLE OF CONTENTS

EXECUTIVE SUMMARY

	INTRODUCTION
PURPOSI	E AND NEED1
	ATIVE JUSTIFICATION FOR BIOLOGICAL DIVERSITY
	CONCERNS1
PHILOSO	OPHICAL AND ETHICAL JUSTIFICATION FOR BIOLOGICAL
1	DIVERSITY CONCERNS
DEFINIT	TIONS OF BIOLOGICAL DIVERSITY5
	S OF ANALYSIS5
SCOPE (OF THE BIOLOGICAL DIVERSITY ASSESSMENT
	BIOLOGICAL DIVERSITY AND ECOSYSTEM SCALES, STRUCTURE
FUNCTIO	ONS AND PROCESSES
	OCTION9
ECOSYST	TEM STRUCTURE / COMPOSITION AND BIOLOGICAL
	DIVERSITY11
	TEM PROCESSES AND BIOLOGICAL DIVERSITY12
	TEM FUNCTIONS AND BIOLOGICAL DIVERSITY
IMPORTA	ANCE OF BIOLOGICAL DIVERSITY AND APPLICATION
	TO ECOSYSTEM MANAGEMENT13
CHAPTER III	DESCRIPTION OF BIOLOGICAL DIVERSITY ON THE THUNDER
	BASIN NATIONAL GRASSLAND
	ATION15
	Geographic and watershed setting
	Geologic setting19
	Climatic setting
	Soils27
	TION BIOLOGICAL DIVERSITY27
	Regional and landscape biological diversity27
	Plant community biological diversity29
7	Threatened, endangered, candidate and
	disjunct plant species71
	TRIAL FAUNA BIOLOGICAL DIVERSITY71
	Life forms and indicator species
	Species-vegetation relationships
	Threatened, endangered and candidate
	vertebrate species
	BIOLOGICAL DIVERSITY93
	Aquatic ecosystem structure, process and function93
	Aquatic species composition94
46 St.	Algae94
	Amphibians94
	Fish95
	Macroinvertebrates95
	Streams95
	Reservoirs
	ICAL CONSIDERATIONS FOR BIOLOGICAL DIVERSITY100
	APE MODELS, DISTURBANCE AND BIOLOGICAL DIVERSITY102
THE TOTAL	TO THE PROPERTY OF THE PROPERTY DIABLETITO TAN

TABLE OF CONTENTS

CHAPTER IV AREAS WITH SPECIAL BIOLOGICAL DIVERSITY CHARACTERISTICS	
CRITERIA FOR AREA IDENTIFICATION	
Scale criteria105	
Composition, structure, process and function	
criteria106	
AREAS WITH SPECIAL BIOLOGICAL DIVERSITY	
SPECIAL STIPULATIONS AREAS AND BIOLOGICAL DIVERSITY109	
SPECIAL SITPULATIONS AREAS AND BIOLOGICAL DIVERSITI	
CHAPTER V ENVIRONMENTAL CONSEQUENCES TO BIOLOGICAL DIVERSITY FROM	
OIL AND GAS LEASING	
GENERAL CONSIDERATIONS	
ANALYSIS OF THE ALTERNATIVES	
DIRECT AND INDIRECT IMPACTS ON BIOLOGICAL DIVERSITY ON	
THE LANDSCAPE AND COMMUNITY SCALES	
IMPACTS TO TERRESTRIAL FAUNA BIOLOGICAL DIVERSITY	
IMPACTS TO AQUATIC BIOLOGICAL DIVERSITY	
Mechanisms and Probability of Impact	
Streamflow	
Changes in Energy Sources	
Riparian vegetation alteration	
Water Quality140)
Habitat Quality140)
Biotic interactions141	
SUMMARY OF ENVIRONMENTAL CONSEQUENCES143	
CHAPTER VI CUMULATIVE EFFECTS145	
CHAPTER VII RECOMMENDATIONS FOR MITIGATING EFFECTS OF OIL AND	
GAS LEASING ON BIOLOGICAL DIVERSITY	
INTRODUCTION15	1
RECOMMENDATIONS15	2
The Rochelle Hills and Upton-Osage Areas15	5
Inventoried Semi-Primitive Areas	5
SUMMARY16	0
LITERATURE CITED	1
APPENDIX16	9
List of Preparers17	1
Glossary	
TABLE 1 Vegetation Nomenclature for Large Map Units	
TABLE 2 Vegetation Nomenclature for Additional	-
Vegetation Classification Units	6
TABLE 3 Soil Types on the Thunder Basin National	U
Grassland and Nearby Areas	7
Grappidin Gin Medina Viego	-

TABLES

1.1	Synopsis of major legislation to conserve species
	and ecosystems1
1.2	Definitions of biological diversity5
2.1	Hierarchy of organization for description of biological diversity10
3.1	Climate profile for the Thunder Basin National Grassland26
3.2	Vegetation classification for large map units
3.2	hierarchy31
3.3	Vegetation classification of the Thunder Basin
3.3	National Grassland According to the Region 2 hierarchy32
3.4	5. () : [[[[[[[[[[[[[[[[[[
3.4	Characteristic vascular plant species of the Cheyenne River
2 -	Basin34
3.5	Vascular plant species richness by physiognomic type for the
	Cheyenne River Basin34
3.6	Additional vegetation classification units
3.7	Disjunct plant species74
3.8	Life form descriptions and representative species76
3.9	Ecological indicator species and representative habitat
	or ecological conditions
3.10	Terrestrial vertebrate fauna list68
3.11	Wildife species diversity in vegetation types88
3.12	Expected occurrence of Candidate Species in major
	vegetation types90
3.13	Wildlife exclosures on the Thunder Basin National Grassland92
3.14	
	benthic fauna from selected streams96
5.1	Ecological Indicator Species status
5.2	Biotic indices for stream pool habitat types
5.3	Pollution tolerance model for fish and invertebrates in
	permanent, clear-water pool habitats
5.4	Pollution tolerance model for fish and macroinvertebrates
	in ephemeral streams with ephemeral pool
5.5	Pollution tolerance model for fish and macroinvertebrates
	in permanent, turbid-water pool habitats
5.6	Pollution tolerance model for fish and macroinvertebrates
	in turbid-water pool habitats on severely incised
	streams133
5.7	Pollution tolerance model for fish and macroinvertebrates
	in turbid-water habitats of less severely incised
	perennial streams with lateral channel erosion135
5.8	Fish, macroinvertebrate and zooplankton fauna
	collectedfromreservoirs

FIGURES

3.1	U.S. Forest Service Ecoregions16
3.2	Reference Map for the Thunder Basin National Grassland17
3.3	Geologic model for the Thunder Basin National Grassland -
	Cheyenne River Basin and Upton-Osage area21
3.4	Geologic model of the Spring Creek Unit22
3.5	Technical range site precipitation zones24
3.6	Climatograms for the Thunder Basin National Grassland25
3.7	National Grasslands in the central and northern
27.05	Great Plains28
3.8	Vegetation model of the Cheyenne River Basin and
	Upton-Osage area30
3.9	Sagebrush shrub-steppe
3.10	Sagebrush steppe
3.11	Shrublands and woodlands - Spring Creek area
3.12	Shrublands - Cow Creek Buttes area
3.13	Shrublands and scoria buttes - Miller Hills area41
3.14	Erosional forms - Cheyenne River Basin41
3.15	Shrublands - Birdsfoot sagebrush - Downs area43
3.16	Shrublands - landscape view - Downs area
3.17	Coal bank draw
3.18	
3.19	View of shrublands - Cow Creek Buttes area45
	Scoria landforms - southern Cheyenne River Basin47
3.20	Scoria landforms - Spring Creek (Duck Creek Breaks)47
3.21	Grassland - Cheyenne river plains49
3.22	Grassland - prairie dog town and Rochelle Hills49
3.23	Grassland - little bluestem communities - Spring Creek45
3.24	Riparian shrubland - Cheyenne River plains51
3.25	Woodland and sagebrush-steppe - Upton-Osage area51
3.26	Woodland - Spring Creek area - Duck Creek Breaks53
3.27	Woodland on scoria islands - Dugout area53
3.28	Woodland on scoria - Miller hills area55
3.29	Drainage corridors and wetlands55
3.30	Playa - Cheyenne river basin59
3.31	Riparian deciduous forest - Cheyenne River59
3.32	Little Powder River wildlife exclosure61
3.33	Gleason reservoir wildlife exclosure61
3.34	Vegetation Model for the Spring Creek Unit63
3.35	Woodland - Spring Creek area65
3.36	Woody draws - Spring Creek area - Duck Creek breaks65
3.37	Corridors - woody draw - Spring Creek area67
3.38	Corridors - grassy swale - Dugout Creek area67
3.39	Pipeline and road corridors69
3.40	Oil field patch and pipline corridor69
3.41	Plant Collection sites - Cheyenne River Basin and Upton-
	Osage area72
3.42	Plant Collection sites - Spring Creek Unit

FIGURES

3.43	Distribution of prairie dog colonies - Cheyenne River
	Basin and Upton-Osage area79
3.44	Distribution of bald eagles, mountain plovers and
	sage grouse leks - Cheyenne River Basin
	and Upton-Osage area80
3.45	Distribution of golden eagles and ferruginous hawks -
	Cheyenne River BAsin and Upton-Osage area81
3.46	Spring Creek Unit distribution of indicator species and
	threatened and endangered species82
3.47	Wildlife exclosures91
3.48	State and transition model for sagebrush ecosystems103
4.1	Areas with Special biological diversity characteristics108
5.1	Oil and Gas fields of the Cheyenne River Basin115
5.2	Producing well and dry hole areas of the
	Cheyenne River Basin116
5.3	Reasonable Foreseeable Development model - Cheyenne River
	Basin117
5.4	Spring Creek Unit Oil and Gas Fields Map118
5.5	Spring Creek Unit producing well and dry hole map119
5.6	Reasonable Foreseeable Development model - Spring Creek120
6.1	Coal, uranium and bentonite mines and scoria or sand pits146
7.1	Miller Hills Biological Diversity NSO recommendation155
7.2	Cow Creek Buttes Biological Dieversity NSO recommendation157
7.3	Duck Breek Breaks Biological Diversity NSO recommendation158
7.4	Downs Area Biological Diversity NSO recommendation159

CHAPTER I INTRODUCTION

PURPOSE AND NEED

The purpose of this report is to describe the biological diversity of the Thunder Basin National Grassland; to identify gaps in knowledge of biological diversity; and to evaluate projected impacts of oil and gas leasing on biological diversity.

LEGISLATIVE JUSTIFICATION FOR BIOLOGICAL DIVERSITY CONCERNS

Legislative direction for conservation of biological diversity in the United States (Table 1.1), began with state game conservation laws and the Forest Reserve Act of the late 1800s. The Forest Reserve Act was a reaction to the rapid loss of forests on public land at that time (Forest Reserve Act, 1891).

The conservation of biological diversity was first articulated in legislation to conserve species, and more recently in legislation to conserve ecosystems. Although the term "biological diversity" does not appear directly in The National Forest Management Act (1976); the Multiple Use and Sustained Yield Act (1960) or the National Environmental Policy Act (1969) Act, concern for elements of biological diversity appear in many places in these legislative acts. The NEPA requirements for consideration of short term, long term and cumulative effects of projects relate to concerns which affect biological diversity. Added to past concerns for threatened and endangered species is growing awareness of the values of genetic biological diversity and the role of biological diversity at large (landscape) scales.

This biological diversity assessment document, is prepared in support of the EIS for Oil and Gas Leasing on the Thunder Basin National Grassland. The decision based on this EIS will amend the 1985 Medicine Bow National Forest Plan. The need for a biological diversity assessment arose from responses to the DEIS and is a logical part of the evolution of the process for seeking a balance between commodity resource use, economic development and the conservation of biological resources on National Forest System Lands.

PHILOSOPHICAL AND ETHICAL JUSTIFICATION FOR BIOLOGICAL DIVERSITY CONCERNS

In addition to legislative requirements for conservation of biological diversity, there are the dimensions of environmental philosophy and new Forest Service Program Direction which have coevolved with the legislation. Specific elements of new Forest Service Program Direction

TABLE 1.1 Synopsis of major legislation to conserve species and ecosystems (Adapted from Cooperrider, 1991)

Species

Large game mammals, birds & fish Wild animals Wild birds Fish

Plants & animals All species

Ecosystems

Forest Lands
Grazing Lands
Wildlife Sanctuaries
Wilderness
Rivers
Coastal Areas

Forest Lands

Rangeland

All ecosystems

Legislation

State Game Protection Laws (1700s)
Lacey Act (1900)
Migratory Bird Treaty Act (1918)
Fish Restoration and Management
Act (1950)
Endangered Species Act (1973)

Legislation

Forest Reserve Act (1891)
Taylor Grazing Act (1934)
Fish & Game Sanctuary Act (1934)
Wilderness Act (1964)
Wild and Scenic Rivers Act (1964)
Marine Protection Research and
Sanctuaries Act (1974)
National Forest Management Act
(1976)
Federal Land Management and
Policy Act (1976)
Multiple Use and Sustained Yield
Act (1960)
National Environmental Protection
Act (1969)

include the ecosystem management policy announced by Forest Service Chief Dale Robertson on June 4, 1992; the 1990 Recommended Resources Planning Program; and the 1992 Regional Guide for Region 2. The changes in attitudes and paradigms, from past views which were mainly oriented toward commodity production and economics, to an ecosystem management approach, has important implications for decisions on issues in which the interests of biological diversity may differ from the interests of resource extraction.

Hal Salwasser, director of the New Perspectives program from the Washington Office, said "we must put conservation of biological diversity into its right and proper context: stewardship of lands and resources to sustain the wide array of values and uses needed by this and future generations.....The goal is, in the words of Aldo Leopold, a state of harmony between people and the land." He also discussed sustainability - sustainability of the environmental security of the the region, sustainability of meeting the needs of people for commodities and spiritual growth, and sustainability of the resource for economic development. He said "..conserving biological diversity is the right thing to do for the land..and it is the right thing to do for people..." (Rocky Mountain Regional Biological Diversity Symposium; (Salwasser, 1991).

The 1990 Resources Planning Act (RPA) Recommended Program states "The USDA Forest Service has the responsibility to be a leader in the conservation of resources and environmental values of the Nation's forests and rangelands (S-1). The report cites biological diversity as a subject "where there is considerable uncertainty about the magnitude of future impacts and where knowledge for management is imperfect" (S-11). As a response to the contemporary issue of biological diversity, the direction is that "The Forest Service will increase its role in developing knowledge, implementing conservation measures, and demonstrating management approaches that conserve specific elements of biological diversity" (S18) (The Forest Service Program for Forest and Rangeland Resources: A long-term strategic plan (1990).

George Leonard, Associate Chief of the Forest Service, talked about the question of acceptable short-term social costs for the long-term investment in a biologically rich future. He said that conserving biological diversity will not be either cheap or without controversy. He said that "if we don't sustain diverse forests and rangelands we will not ultimately sustain meaningful human life". (Leonard, 1990)

An interagency report between the Forest Service and Bureau of Land Management entitled America's Biodiversity Strategy: Actions to Conserve Species and Habitats (1992) concluded that both the public and private sector have roles in maintaining and restoring, where practicable, biodiversity for its intrinsic worth, for ecosystem stability and for human health and well-being.

Special reports on biological diversity have been prepared for projects on the George Washington National Forest - Region 8 (1991); the Beaverhead National Forest - Region 1 (1991); and the Custer National Forest - Region 1 (1990). An ecosystem management approach prepared for the Umatilla, Malheur and Wallowa-Whitman National Forest - Region 6 (1992) includes many elements for prepetuation and protection of biological diversity and ecological function.

The importance of recognizing, understanding and managing for biological diversity on a variety of scales is an important component of the ecosystem management intiative in the Forest Service. Perpetuation of biological diversity at all scales is a critical element in attaining the goal to sustain diverse and resilient ecosystems with a desired mix of biological communities (Estill and Montrey, 1992).

Holmes Rolston III (1986), a noted environmental philosopher at Colorado State University, points out that while humans have the powerful ability to change the natural order, they are also equipped with a conscience, not given to non-human creatures. With this conscience, humans must wisely direct and balance resource budgets. These budgets include the business resource as well as the natural resource. (Rolston, 1986 pp. 164-175).

DEFINITIONS OF BIOLOGICAL DIVERSITY

There are many definitions of biological diversity. The theme common to all is the description of the variety of life. Some definitions focus on species, while others include larger scales, placing the species in the context of ecosystems within larger landscape units and processes which sustain these units over time. Some agency definitions of Biological Diversity are in Table 1.2.

Consideration of these three agency definitions of biological diversity reveals recognition not only of species population structure and composition, but also multiple scale considerations from genes to large landscapes and the importance of processes and functions. Processes and functions which cause change in biological diversity over time in defined spatial areas, are important considerations for management.

METHODS OF ANALYSIS

This biological diversity assessment was prepared by an interdisciplinary team consisting of the Medicine Bow National Forest Ecologist, Soil Scientist, and the Fisheries Biologist and the Douglas District Wildlife Biologist. Recent Oil and Gas FEIS documents and records of decision from the Custer National Forest (Little Missouri National Grasslands, 1991) and the Pike and San Isabel National Forest (Comanche and Cimarron National Grasslands, 1991) were reviewed.

TABLE 1.2 DEFINITIONS OF BIOLOGICAL DIVERSITY

Source	Definition
OTA (1987)	Biological diversity refers to the variety and variability among living organisms and the ecological complexes in which they occur. Diversity can be defined as the number of different items and their relative frequencies. Thus, the term encompasses different ecosystems, species, genes and their relative abundance.
R-2 (1992)	Biological diversity is the full variety of life in an area, including the ecosystems, plant and animal communities, species and genes, and the processes through which individual organisms interact with one another and with their environments.
BLM (1988)	Biodiversity is the aggregate of species assemblages (communities), individual species, and genetic variation within species and the processes by which these components interact within and among themselves; for purposes of
	classification, biodiversity can be divided into three levels: community diversity (habitat, ecosystem); 2. species diversity, and 3. genetic diversity within species; all three levels change with time.

OTA (Office of Technology Assessment); R-2 (Biological Diversity Assessment for the Regional Guide - Rocky Mountain Region, USDA Forest Service); BLM advisory committee, 1988 Davis, CA

Information on species, communities and landscapes was obtained from specialist reports prepared for the Oil and Gas EIS (Byer and Cartwright, 1992; Cartwright, 1992; Edwards, 1991A, 1991B; and Speas, 1991, 1992), special field work and literature reviews. Specific information on wildlife populations was obtained from the Wyoming State Game and Fish Department; the U.S. Fish and Wildlife Service; the coal mines on the Thunder Basin National Grassland and the Douglas Ranger District Files. Information on fish, amphibians and macroinvertebrates was obtained from the Wyoming Game and Fish Department; the Wyoming Water Center; the University of Wyoming; and special surveys. Information for the vegetation analysis was from floristic surveys conducted by the Rocky Mountain Herbarium at the University of Wyoming; field work for vegetation classification from the Rocky Mountain Station in Laramie, aerial photography and field ground-truthing.

Map overlays were prepared to analyze the patterns and interactions of the following information:

- 1. geologic substrate
- 2. oil and gas plays
- 3. currently producing wells and plugged holes
- 4. reasonable foreseeable development (RFD) from the Draft EIS
- 5. vegetation patterns
- species distribution for bald eagles, golden eagles and ferruginous hawks
- species distribution for sage grouse leks, mountain plovers and prairie dogs
- 8. wildlife exclosures
- 9. surface mining (coal, uranium, bentonite, scoria, sand)
- 10. wetlands associated with riparian areas
- 11. riparian corridors

Analysis procedures included:

- consideration of the direction in the Medicine Bow National Forest Plan, the National Forest Management Act, the National Environmental Protection Act and other applicable laws
- application of both the Coarse Filter Approach (landscape and community level) and the Fine Filter Approach (species) (Hunter, 1991)
- 3. consideration of information on biological diversity at the landscape, community, species and genetic level
- consideration of the relationship of biological diversity to the underlying geologic and geomorphic composition and structure of the landscape
- consideration of spatial and temporal scales and the influence of history on present biological diversity

- 6. identification of landscape areas of unique biological diversity; identification of community types with special biological diversity characteristics; identification of species which are most likely to be affected by changes in landscape or community patterns
- 7. comparison of present and projected oil and gas leasing areas to patterns of biological diversity at all scales
- evaluation of possible impacts on biological diversity from oil and gas leasing

SCOPE OF THE BIOLOGICAL DIVERSITY ASSESSMENT

Biological diversity for the Thunder Basin National Grassland was assessed in the context of four scales: 1. landscape; 2. community; 3. species and 4. genetic. Appropriate aspects of ecosystem process and function were considered for each scale.

Broad ecosystem approaches to biological diversity analyses may fail to accommodate habitat linkages, site specificity or spatial arrangement within landscapes. Single species approaches (threatened and endangered species, indicator species or featured species) may fail to represent habitats or conditions necessary for viability of all species and do not address habitat fragmentation or other spatial problems (Probst, 1991). The approach used for this biological diversity assessment is to assess biological diversity as completely as possible at four scales (landscape, community, species and genetic) to include both Coarsefilter and Fine-filter considerations (Hunter, 1991). Structure, composition, function and process attributes are considered for each scale. It is recognized that information is lacking in many areas. We attempted to identify critical information gaps and to clearly separate site specific data, from broad-scale data, or interpretations of data.

This biological diversity assessment is in the vangard for this kind of analysis for lands administered by National Forests. Identification of focal components, parts and processes at the landscape, community, species and genetic scales is a keystone of this document.

The relationship of the four scales to ecosystem structure and composition, process and function; why biological diversity is important and its application to ecosystem management are discussed in Chapter 2. Chapter 3 is a description of the biological diversity of the Thunder Basin National Grassland at the four scales, integrating available information on ecosystem structure and composition, process and function. Historical considerations and landscape models are also discussed in Chapter 3. Criteria for identifying areas with special biological diversity characteristics are presented in Chapter 4. Environmental Consequences of Oil and Gas Leasing to biological diversity are explored in Chapter 5. Cumulative Effects are discussed in Chapter 6. Chapter 7 contains recommendations for mitigating effects

of oil and gas development on biological diversity with repsect to the four scales and their attributes.

CHAPTER II

BIOLOGICAL DIVERSITY AND ECOSYSTEM SCALES, STRUCTURES, FUNCTIONS AND PROCESSES

INTRODUCTION

The Rocky Mountain Regional Guide provides direction for National Forest Plans in Region 2. The Biodiversity Assessment for the Rocky Moutain Regional Guide recognizes an organizational hierarchy for biological diversity based on the community, species and genetic scales. It recognizes the interrelated scales of the ragional, landscape, watershed and local site for ecosystem management (Biological Diversity Assessment, 1992).

For the Thunder Basin National Grassland Biological Diversity Assessment, the structure, process and function of specific ecosystems which have defineable biological diversity attributes are discussed for the landscape, community, species and genetic scales. Table 2.1, and the following discussion, summarize major features of specific attributes for biological diversity characteristic of each of these four levels of scale.

The Coarse-Filter Approach is a strategy for maintaining and managing biological diversity. This approach is based on articulation of landscape and community level land units. The premise is that maintenence of biological diversity at larger landscape and community levels should protect viable populations of most species. For the remaining species (those that "fall through" the pores of a coarse filter), a series of fine filters are needed. Fine filters are individually tailored conservation plans for those species requiring them. The federal endangered species program exemplifies the Fine-filter Approach (Hunter, 1991).

Advantages of the Coarse-Filter Approach are cost and efficiency - it is more cost-effective to manage ecosystem units than to manage a myriad of endangered species scattered over the landscape. The Coarse-Filter strategy also maintains the integrity of whole ecological systems, thereby sustaining the ecological and evolutionary context in which organisms exist (Hunter, 1991).

Ecosystems occur at all scales, from the genetic scale through the level of the large systems which are used to describe the biosphere. An ecosystem is a real time-space object with dimensions of soil and landform, organisms and climate as well as the processes which occur over time to make these into functional wholes (Rowe, 1992).

The genetic component and the physiological interactions of organisms and environment are contained within the organisms found in ecosystems. At larger scales, organisms occur in groups called communities. Communities, in turn, aggregate into landscapes. It is convenient to

Table 2.1 EIERARCHY OF ORGANISATION FOR DESCRIPTION OF BIOLOGICAL DIVERSITY

Level	Attribute	Attribute Descriptors
Landscape	Structure & Composition	Matrix; patch size, type and arrangement; corridors, nodes; heterogeneity; connectivity; fragmentation characteristics
	Process	Climate change; geomorphic processes; patch transitions; disturbance intensity, frequency, areal extent; patch persistence
	Function	Biomass production and nutrient cycles; energy flow
Community	Structure and Composition	Species composition; physical community structure; guilds; life form composition; physiognomic characteristics
	Process	Succession; herbivory; disturbance
	Function	Biomass production and nutrient cycles; energy flow
Species	Structure and Composition	Species richness and evenness
	Process	Competition; population dynamics; dispersal
	Function	Biomass production; nutrient cycles;
		energy flow
Genetic	Structure and Composition	Gene pool characteristics
	Process	Mutation; evolution; speciation; isolation
	Punction	Gene flow

The Coarse-Filter strategy for maintaining biological diversity is applied to the landscape and community scales; the Fine-Filter strategy is applied to the species and genetic levels.

define ecosystems in the context of a physical map unit composed of living and non-living parts at the community and landscape scales.

Ecosystem fragmentation occurs when portions of a landscape are biologically isolated, and biological processes or functions are impaired. This may occur on a landscape, watershed or Forest Plan Diversity Unit scale, where corridors are blocked, the matrix is fragmented or patch size, juxtaposition, seral stage or ecological condition are changed. Fragmentation may be expressed in the process and function contexts as genetic isolation, interference with gene flow, or changes affecting energy and material flows within ecosystems or across ecosystem boundaries (Knopf and Smith, 1992).

The maintenence of minimum viable populations is a concern for biological diversity. Comprehensive studies to determine minimum viable populations will be possible for only a few selected species. Much of the biological diversity responsible for ecosystem health and sustainability is "invisible diversity", found in microorganisms or invertebrate species. A practical alternative is managing for large and well-distributed populations, using a landscape and ecosystem approach (Probst and Crow, 1991).

The task of identifying functional ecological groups, minimal structure frameworks, animal guilds, keystone species, critical link species and process relationships which support ecosystem sustainability (West, 1993) lies largely in the future. The analyses presented in this document should provide a basis for future biological diversity evaluation to understand these factors and apply them to management.

ECOSYSTEM STRUCTURE/COMPOSITION AND BIOLOGICAL DIVERSITY

Biological diversity can be described with reference to the structure and composition of ecosystems. The kinds of descriptors and ways of measuring biological diversity differ depending on the scale being described (Magurran, 1988).

At the landscape level, which aggregates communities from a scale of a few square kilometers, to watersheds or regions, ecosystem structure and composition is described by characteristics of the matrix, patches, corridors and node structure of the landscape under consideration. Biological diversity at this scale is referred to as gamma diversity for units such as watersheds or islands. Regional diversity (also called epsilon diversity) is the total diversity for a group of areas for which gamma diversity has been assessed. Gamma and epsilon diversity are statistics which can be computed from measures of biological diversity at smaller scales, but they can also be used as conceptual qualitative descriptors.

At the community level, biological diversity of ecosystems can be described by evaluating species composition and physical community

structure. The variation in species composition between two communities along an environmental gradient is called beta diversity. It provides an index of species differences between contrasting communities.

At the species level, biological diversity can be described using species richness (kinds of species) or species evenness (distribution of abundance or importance of different species) in the context of communities. These measures can be combined into a single statistic that measures species diversity at the local (alpha) level. This provides a measurement of the numbers of kinds of items. Species richness or evenness can be evaluated in the context of the community scale or the landscape scale.

The structure and composition of the gene pool, and the presence and variation of configurations of DNA for a species, is the focus of biological diversity at the genetic scale.

The Forest Plan recognizes vertical diversity .. " the complexity of the above-ground structure of the vegetation" and horizontal diversity .. "the number of plant communities or successional stages or both". These concepts are both related to the structure and composition of ecosystems at the species and community levels and have their basis in the CFR Regulations (Section 219). They do not address ecosystem processes or functions.

ECOSYSTEM PROCESSES AND BIOLOGICAL DIVERSITY

Processes cause change in structure and composition of species, communities and landscapes over time. That change may be expressed as changes in patches which effect change in the matrix at the landscape level; as succession of species resulting in different community types at the community level; as population changes at the species level or as mutation, evolution, and speciation at the genetic level. As structure and composition changes, functions such as biomass production or energy flows will also change.

Specific processes which cause changes in landscape structure may include climate change, geomorphic processes, or large scale disturbances such as fire, grazing, or timber harvest. Similar smaller scale disturbances including fire, grazing or timber harvest, succession, and competition among populations are examples of processes affecting the community level. At the species level, the dynamics of populations, affected by birth, death, predation, disease, stress and competition among individuals of the same or different species, and dispersal, are the keystones of processes affecting the presence of species and subsequently the biological diversity charactersitics of communities and landscapes.

Processes are nested from the genetic to the landscape level and are intricately linked to ecosystem structure. For example, mutations which affect the ability of individuals (and therefore populations) to survive, compete and persist in the landscape, will affect species richness and evenness, and will be measured as changes in community composition and structure at local scales, and as landscape composition and structure changes at larger scales.

ECOSYSTEM FUNCTIONS AND BIOLOGICAL DIVERSITY

Ecosystem functions describe the flow of energy and materials within and between ecosystems at any scale. This may include the exchange and flow of genetic material, physiological exchange of energy and materials between an individual and the environment or the aggregation of these functions expressed as biomass production or nutrient cycling at the community or landscape level.

These functions of ecosystems are dependent on the structure and composition of the ecosystems, and the processes which occur as materials and energy are exchanged. The nature and stability of biological diversity is associated with the integrity of these ecosystem functions. For example, if there are changes in the flow of energy and materials within an ecosystem due to introduction of livestock, removal of livestock, predator control, surface mining, road construction, use of fertilizer, herbicides, changes in water flow or water quality, the result will be changes in the composition and structure of the communities and landscape with consequential changes in biological diversity.

IMPORTANCE OF BIOLOGICAL DIVERSITY AND APPLICATION TO ECOSYSTEM MANAGEMENT

The foregoing discussion demonstrates that biological diversity is not a simple concept which can be applied in a general sense to ecosystems. Rather, it is a suite of features of composition, structure, process and functions of ecosystems whose properties differ by scale. It is also interactive - the small scale structures, processes and functions affect the larger scales and vice versa. Biological diversity is a dynamic property of landscapes - change over time is to be expected and should be planned for.

Management has a direct effect on whether biological diversity is maintained, increased or decreased. By law, the Forest Service is directed to develop management prescriptions which "where appropriate and to the extend practicable shall preserve and enhance the diversity of plant and animal communities....so that it is at least as great as that which would be expected in a natural forest" (36 CFR 219.28). The overall concept with regard to biological diversity, may be interpreted as management of multiple uses within the range of natural variability of ecosystems to permit, as much as possible, the maintainence of natural biological diversity to minimize impacts on ecosystems.

Often the value placed on particular kinds of biological diversity is a function of management goals. Different species may have different values for different reasons when considered from a management viewpoint. In addition to the values placed on species from a management perspective there is also the viewpoint, held by some, that all species should have value and should have a right to exist, regardless of the goals and uses that humans make of them or their habitat (Sample, 1991).

Reasons to conserve and perpetuate biological diversity have been promoted recently in literature and at symposia (Hudson, 1991; Rolston, 1988). These reasons fall into three general categories: 1. direct benefits to humans (sources of medicines, new genes to improve domestic varieties of plants or animals, recreation and spiritual well-being) 2. indirect benefits to humans by preserving processes such as soil formation, water purification, atmospheric purification and other ecosystem level maintenence services 3. ethics and stewardship (the belief that allowing natural systems to structure themselves and function with a minimum of human interference is the right thing to do). The interactions of these reasons with specific management contexts forms the basis for decisions.

The bottom line for ecosystem management which considers biological diversity is whether or not viable populations of species persist on the landscape in a way that perpetuates the structure, processes and functions of ecosystems at all scales. Thus, each management decision must be evaulated in the context of its direct, indirect and cumulative effects on local populations of species as well as effects at larger scales (watersheds and regional scales which are part of the landscape scale concept). The impacts of these effects over time on biological diversity deserves careful considerations.

Some management practices are already in place to conserve or enhance populations of plants or animals which are known to have narrow ecological requirements or which have low populations and/or low potential for population increase. In addition to consideration for these organisms, it is also important to evaluate potential changes in biological diversity for more common organisms with regard to their distributions and their occurrence on the landscape, and to consider the "big picture" of how different communities contribute to the biological diversity at the landscape scale.

CHAPTER III

DESCRIPTION OF BIOLOGICAL DIVERSITY ON THE THUNDER BASIN MATIONAL GRASSLAND

ORIENTATION

Geographic and Watershed Setting

Ecoregions are large biophysical regions defined by climate as the primary environmental factor. Large-scale geology, soil and vegetation patterns serve as secondary delineators for ecoregions.

The Forest Service uses the Bailey Ecoregion concept, in which climate is the primary divider for ecosystems, as a basis for National Land Classification (Bailey and Cushwa, 1982). Two Sections of this classification apply to the Thunder Basin National Grassland (Fig. 3.1):

Dry Domain

Steppe Division

Great Plains Short-grass prairie Province Grama-needlegrass-wheatgrass Section (3111) Wheatgrass-needlegrass Section (3112)

This classification system recognizes short-grass prairie, Palouse Grassland, Intermountain Sagebrush, and Mexican Highlands Shrub Steppe as provinces within the Dry Domain Steppe division. Figure 3.1 shows the relationship of the TBNG to this large-scale classification of Ecoregion and Land Surface Forms.

The Thunder Basin National Grassland (TBNG) is classified mostly in the western portion of the Northwestern Great Plains Ecoregion of the west-central United States using the EPA Ecoregion system (Omernik, 1987). The northeastern area of the Thunder Basin National Grassland, along the western boundary of the Black Hills uplift, is classified in the Middle Rockies Ecoregion using the EPA classification.

The TBNG is within the Missouri Drainage Basin. The major watershed on the TBNG is the Cheyenne River. Smaller areas lie within the Belle Fourche, Powder River and Little Missouri drainage systems. Elevations range from approximately 4000 feet at the southeast corner of the TBNG, to a maximum of 5200 feet on the surface of the Rochelle Hills. The maximum elevation in the Spring Creek area is about 4200 feet.

In this report the following areas will be referenced: 1. the Spring Creek Area; 2. the Cheyenne River basin (CR Basin) [exclusive of the Upton-Osage area in the Northeast corner] and; 3. the Upton-Osage area (U-O Area) which includes the part of the Thunder Basin National Grassland mostly on Cretaceous substrates in the northeast corner of the planning area. Most of the U-O area drains into the Cheyenne River, but it has a different geologic substrate (Figure 3.2).

ECOREGION Dry Domain Steppe Division

Great Plains Short-grass Prairie Province

3111 - grama-needlegrass-wheatgrass Section 3112 - wheatgrass-needlegrass section

LAND SURFACE FORM

B3b - Plains with hills (300-500 feet relief, 50-75% of gentle slopes on lowland) (Western portion of TBNG on Wasatch Formation)

B3c - Tablelands with moderate relief (300-500 feet relief, 50-75% of gentle slopes on upland) (Central and most of eastern portion of TBNG on Fort Union Formation and Cretaceous formations excluding the Black Hills uplift

C4b - Open high hills (500-1000 feet relief, 50-75% of gentle slopes os in lowland) (Spring Creek)

D5 - Low mountains (1000-3000 feet relief) Upton area

From: USFWS. 1982. Ecoregions and land-surface forms of the United States. Map produced by the USFWS Office of Biological Services, Eastern Energy and Land Use Team and the Rocky Mountain Forest and Range Experiment Station, Fort Collins, CO

U.S. FOREST SERVICE ECOREGIONS FOR THE THUNDER BASIN FIGURE 3.1 NATIONAL GRASSLAND

FIGURE 3.2 REFERENCE MAP FOR THUNDER BASIN NATIONAL GRASSLAND.

Major roads, towns, watersheds and landmarks shown on
this map are repeated in subsequent maps, without labels.

Geologic setting

The TBNG is in the Powder River Geologic Basin, a downwarp of sedimentary rocks between the Black Hills uplift and the Bighorn Mountains. The geologic basin filled with deep sediments during the Paleocene and Eocene epochs. The surface geology is shown in Figures 3.3 and 3.4.

The Wasatch Formation (Eocene) is the substrate for most of the southwestern and western portion of the CR Basin. The upper part of this formation, found in the western part of the Cheyenne River Basin forms uplands near the headwaters of the Cheyenne River. The lower members of the Wasatch formation contain coal beds, and sandstones which form the Rochelle Hills.

Older rocks of the Fort Union Formation (Paleocene) lie below the Wasatch Formation and are the substrate for most of the central and southeastern area of the Cheyenne River Basin. The Fort Union Formation consists of three members. The uppermost member is the Tongue River member, which contains coal, and yellowish colored sandstones which are also part of the Rochelle Hills. The contact of the Wasatch and Fort Union formations is where the coal mines are located in the central portion of the CR Basin. Below the Tongue River Member and geographically east is the older Lebo member consisting of grey shale and claystone with light colored sandstone beds and thin coal beds. In many areas the Tongue River and Lebo members are mixed together (undivided).

The Paleocene environment in which these formations were deposited is believed to have been a trunk river with many tribitaries flowing over a rather flat landscape with swampy vegetation (Moore, 1992). Shale and claystone sediments below ancient Lake Lebo form the badlands in the Downs Area. Coal beds developed where organic material accumulated. Much of the rest of the landscape was formed by river deposits which ranged from coarse sand to clays and silts. This ancient landscape is exposed by modern erosion to form "badlands" in Cow Creek Buttes, the Downs area, along the Cheyenne River and in the Spring Creek Unit.

The lowest and oldest member of the Fort Union Formation is the Tullock Member which is gray to yellow sandstone and light colored shales. This forms the substrate in the vicinity of the Lynch Road and eastward to approximately the alignment of State Highway 116. The Spring Creek area consists mostly of the Lebo and Tullock members, either alone or undivided. This contrasts with the more southerly CR Basin area where the younger Tongue River and Lebo members tend to be undivided and the light colored sandstones and interbedded shales of the Tullock member form a distinct north-south band 10-15 miles wide east of the Tongue River and Lebo members.

The northeastern third of the TBNG (Upton-Osage area) is underlain by several upper and lower Cretaceous Formations. The Lance Formation (Upper Cretaceous) contains non-marine concretionary sandstones and shale. It forms a wedge-shaped band 6 to 20 miles wide east of the

Ťw:	Wasatch Formation	Eocene
Tft[Fort Union Formation Tongue River & Lebo M	embers Paleocene
fft	Fort Union Formation Tullock Member	Paleocene
-k1	Lance Formation	Upper Cretaceous
Kfh	Fox Hills Sandstone	Upper Cretaceous
-Кр —	Pierre Shale	Upper Cretaceous
Km	Mowry Shale	Upper Cretaceous
Ksc.	Skull Creek Shale	Lower Cretaceous
Kjim',	Inyan Kara Group and Morrison Formation	Lower Cretaceous and Upper Jurassic

Sources: Love, J.D., Christiansen, A.C., and L. W. McGrew. 1987. Geologic Map of the Newcastle Quadrangle Geological Survey of WY Map MS-25I

Love, J.D., Christiansen, A.C., McGrew, L. W. and J.K. King. 1990. Geologic Map of the Gillette Quadrangle. Map MS-25G

FIGURE 3.3 GEOLOGIC MODEL FOR THE THUNDER BASIN NATIONAL GRASSLAND Cheyenne River Basin and Upton-Osage area.

Source: Love, J.D., Christensen, A.C., McGrew, L.W. and J.K. King. 1990. Geologic Map of the Gillette 1 by 2 Quadrangle, Northeastern Wyoming and Western South Dakota. Wyoming Geological Survey Map MS-25G

FIGURE 3.4 GEOLOGY MODEL FOR THE SPRING CREEK UNIT

State Highway 116 alignment. The other formations all formed under marine conditions during the Cretaceous period. The Fox Hills sandstone is east of the Lance Formation and the rest of the formations in the Upton-Osage Area are marine shales, many of which contain bentonite beds.

Erosion of geologic substrates depends on their position in the watershed. Where soft shales and claystones are drained by streams with a steep gradient to the baselevel stream (such as the Cow Creek Buttes or Spring Creek areas), badlands with considerable relief form and soils will be shallow or nonexistent. Where resistant sandstones are present, buttes, escarpments or plateaus may form (Miller Hills, Rochelle Hills, Duck Creek area).

The depositional environments of the millenia from the lower Cretaceous period to the Eocene Epoch produced a wide array of substrates. The modern landscape formed from erosion of these substrates is complex. The patterns of homogeneity and patchiness in these geologic substrates create the framework for contemporary biological diversity. Oil and gas plays are located in older formations 5000 to 7000 feet below the present landscape. The patterns of oil and gas occurrence in these formations bear no relationship to the surface geology, vegetation or other patterns of biological diversity.

Climatic setting

Climate forms the envelope in which plants and animals carry out physiological activity that allows them to persist in a landscape. Climate is a major constraint on the kinds of species and types of landscapes that make up biological diversity and it is a major limiting factor on the range of choices for reclamation on the Thunder Basin National Grassland.

The climate of the TBNG is interior continental with hot summers and cold winters. Wind is persistent and often strong. The average annual precipitation is 12" per year with an average annual snowfall of 40 inches.

Precipitation ranges from 10 to 19 inches per year, classified according to the Soil Conservation Service Technical Range site descriptions (Figure 3.5). Most of the CR Basin is in the 10-14" Northern Plains Precipitation Zone; the Spring Creek area is in the 15-17" Northern Plains Zone and a small part of the U-O area is in the 15-19" Black Hills Zone. Table 3.1 contains climate profiles comparing climate statistics for the Spring Creek Area (Gillette 2E), the Cheyenne River Basin (Dull Center) and Upton for the period 1951-1980.

Summarized statistics only provide information on means, ranges, or totals. Differences in pattern of precipitation distribution through the year in relation to temperature can be seen in climate diagrams for the Gillette, Upton and Dull Center stations in Figure 3.6. Patterns of spring precipitation are similar for all three areas, with the main difference being in the amount of snow received in the Spring Creek

Site	Description		Description		
12	15" - 17" Northern Plains				
13	10" - 14" Northern Plains				
14	15" - 19" Black Hills				
15	20" - 24" Black Hills				

Source: USDA Soil Conservation Service. 1988. Technical Range Site Guide - Northern Plains

PIGURE 3.5 TECHNICAL RANGE SITE PRECIPITATION SONES

FIGURE 3.6 CLINATOGRAMS
FOR THE THUNDER BASIN
MATIONAL GRASSLAND
(Martner, 1986)

TABLE 3.1 CLIMATE PROFILE FOR THE THUNDER BASIN NATIONAL GRASSLAND

	Spring Creek Area (Gillette 2E)	Northeastern Area (Upton)	Central Area (Dull Center)
Mean annual temperature (°F)	44.90	43.3°	46.6°
Highest temperature	104°	1100	109°
Lowest temperature	-34°	-42°	-47°
days min temp 32° or less	181	201	173
Mean annual precipitation (in)	15.8	14.1	11.8
Mean annual snowfall	63.3	43.5	44.7
Days snowcover 1" or more	85.6	85.5	54.8

area as compared to Dull Center. The July-December patterns for Spring Creek differ sharply from Upton and Dull Center, due to the much steeper drop in monthly precipitation from June to July than the areas farther south and east. This is due to the ability of Gulf moisture to penetrate into the northern Great Plains to produce convectional storms in the summer.

Soils

Soil surveys have been completed for Northern Converse and Weston Counties. Soil Surveys are in progress for Campbell County. Nearly 100 Soil Series have been identified from the completed surveys. Aridisols and Entisols have the greatest number of Series, followed by Mollisols, Alfisols and Inceptisols. Soils patterns are very complex and soil-vegetation correlations are limited. A list of Soil Orders and Soil Series in in Table 3 of the Appendix.

VEGETATION BIOLOGICAL DIVERSITY

Regional and Landscape Biological Diversity

The biological diversity of the Thunder Basin National Grassland can be considered in a regional and landscape setting from three aspects:

1. the contribution of this National Grassland to the array of biological diversity contained in the National Grasslands within the Great Plains;

2. the contribution of this National Grassland acreage to the biological diversity within the Powder River Geologic Basin;

3. the landscape scale biological diversity within the administrative boundary of the Thunder Basin National Grassland.

The Thunder Basin National Grassland is one of eleven National Grasslands, totalling approximately 3,371,700 acres in six states. Figure 3.7 shows the locations, size and associated National Forest units for National Grasslands in the Great Plains. Each of these grasslands contributes a particular suite of biological diversity components to the system of National Grasslands.

The Thunder Basin National Grassland is the westernmost grassland unit in the Great Plains. It is in the broad transition area from the plains of the central United States to the basin and range physiographic provinces to the west. The other Great Plains National Grasslands are located on mostly Paleozoic and Mesozoic substrates. Thunder Basin National Grassland is on younger rocks (Paleocene and Bocene).

Floristically the TBNG occupies a north-south transition area between the southern and middle Rocky Mountains. Because of this location, populations of plants characteristic of the Black Hills and northern Great Plains (for example hawthorne, big bluestem, little bluestem and creeping juniper) can be found along with plants characteristic of the southern and central Great Plains (buffalo grass, blue grama, prickly pear cactus) and plants characteristic of the intermountain basins to

Number	Name	Acres	Associated National Forest Unit
1	Little Missouri	1,028,000	Custer National Forest
2	Grand River	155,000	Custer National Forest
3	Cedar River	6,700	Custer National Forest
4	Sheyenne	71,000	Custer National Forest
5	Fort Pierre	116,000	Nebraska National Forest
6	Buffalo Gap	591,000	Nebraska Natioanl Forest
7	Ogalala	94,000	Nebraska National Forest
8	Thunder Basin	572,000	Medicine Bow National Forest
9	Pawnee	193,000	Arapaho-Roosevelt National Forest
10	Comanche	437,000	Pike-San Isabel National Forest
11	Cimarron	108,000	Pike San Isabel
Approxim	ate Total Acres	3,371,700 in	

(There are a total of 20 National Grasslands in other states, including Oklahoma (1); Texas (4); New Mexico (1); Oregon (1); Idaho (1) California (1)).

FIGURE 3.7 NATIONAL GRASSLANDS IN THE CENTRAL AND NORTHERN GREAT PLAINS

the west (greasewood, bluebunch wheatgrass). Foothill and lower elevation mountain species are also found in this landscape (ponderosa pine, Rocky Mountain juniper, oregon grape, boxelder).

The Thunder Basin National Grassland is at or near range limits for many species of plants and it also supports populations of disjunct species. The biological diversity of the Thunder Basin National Grassland is enhanced because of the floristic variety present due to the range limits and disjuncts. The diversity of floristic composition is shown in Table 3.3. Elements of Northwestern Ponderosa Forest, Eastern Ponderosa Forest, Black Hills Pine Forest, Juniper-steppe woodland, Plains Grassland, Palouse Prairie, Cold Desert Shrublands, Mountain and Foothills Mixed Shrublands and numerous riparian types are represented in the floristic biological diversity of the Thunder Basin National Grassland.

Scoria buttes, sandstone outcrops and badlands, which comprise a part of the 572,000 acres of Federal Land are important special habitat patches within the matrix of Paleocene, Eocene and Pleistocene sediments which form the landscape of this National Grassland. The Miller Hills area is the southernmost extent of scoria in the Great Plains. These landscape patches form small islands which are very important elements in the biological diversity of the Thunder Basin National Grassland. These patches contain remnant populations of woody perennial plants and substrates that restrict plant and animal species composition.

The Upton-Osage area is in the transition area (ecotone) between the Black Hills forests and the grassland and shrub-steppe of the Powder River Basin. The Spring Creek area is in the transition from the northern part of the Powder River Basin to the Williston Basin in Montana and North and South Dakota. The Thunder Basin National Grassland provides habitat to migratory birds along the Rocky Mountain flyway, including neotropical migrants and other birds which spend summer or winters in eastern Wyoming.

Plant Community Biological Diversity

The matrix, river corridors, and spatial arrangement of vegetation types forming large scale patches in the Cheyenne River Basin and Upton-Osage Areas of the Thunder Basin National Grassland are shown in Figure 3.8. This map was drawn from an aerial photomosaic and verified by ground observation. The classification is based on Table 3.2 and Table 1 (Appendix) which were developed from vegetation classification studies done by the Rocky Mountain Forest and Range Experiment Station (Thilenius, 1992), and the Region 2 Plant Associations Guide (Johnston, 1987).

The vegetation is classified by physiognomic type (forest, woodland, shrubland, grassland); by landscape position (upland or riparian) and by other descriptors as appropriate (deciduous, coniferous, saline, non-saline). Specific community types (Tables 3.4 and 3.5) are nested within the more general classification framework of physiognomic type/landscape position. Because many streams flow mainly underground

Source: Orthophotoquad aerial photointerpretation and field work, Douglas Ranger District and Medicine Bow National Forest Staff, 1992

FIGURE 3.8 VEGETATION MODEL FOR THE THUNDER BASIN NATIONAL GRASSLAND Cheyenne River Basin and Upton-Osage area.

TABLE 3.2 VEGETATION CLASSIFICATION FOR LARGE MAP UNITS

COMMUNITY TYPES* FOREST WOODLAND SHRUBLAND GRASSLAND

1	PARIAN DECIDUOUS FOREST Plains cottonwood/ western snowberry	X		
RIF	PARIAN WOODLAND		1.739	
2	chokecherry/snowberry-western wheatgrass***	X		
UPL	AND WOODLAND			
3	ponderosa pine/ bluebunch wheatgrass	×		
4	ponderosa pine/ Rocky Mountain juniper	X		
5	Rocky Mountain juniper	X		
RIP	ARIAN SHRUBLAND			
	(non-saline)			
6	silver sagebrush/ blue grama		X	
7	silver sagebrush/ blue grame-prairie sandreed		×	
	(saline)		1 17 14 .	
8	black greasewood/ western wheatgrass-blue grama		X	
UPL	AND SHRUBLAND			
	(Shrubland)			
9	birdfoot sagebrush		X	
10	fourwing saltbush		X	
11			X	
	(Shrub-steppe)			
12			X	
13	7		×	
14			X	
15			X	
16			X	
17			X	
18	big sagebrush/ blue grama-western wheatgrass**		×	
RIF	PARIAN GRASSLAND (non-saline)			
19	western wheatgrass			X
UPL	AND GRASSLAND			
20	little bluestem			X
21				X
22				X
23	needleandthread/ blue grama			X

^{*}Community Types from Thilenius, J. and G. Brown. 1992. Vegetation on Semi-Arid Rangelands, Cheyenne River Basin, Wyoming. Manuscript in Preparation. USDA Forest Service, Laramie, WY

^{**} These three community types also occur as shrub steppe, where sagebrush occurs as the dominante cover species. In steppe communities, grasses and sedges form the predominant cover type.

^{***}From: Johnston, B.C. 1987. Plant Associations of Region 2. R2-ECOL-87-2 Denver, Colorado USFS

TABLE 3.3 VEGETATION CLASSIFICATION OF THE THUNDER BASIN NATIONAL GRASSLAND ACCORDING TO THE REGION 2 HIERARCHY (Johnston, 1987). (Units applicable to the Thunder Basin National Grassland).

I. PLAINS GRASSLAND FORMATION

- 01. Tallgrass Prairie
 - B. Bluestem Prairie
- 02. Northern Mixed-grass (Midgrass) Prairie
 - A. Wheatgrass-Needlegrass
 - B. Bluestem-Grama Prairie
 - C. Wheatgrass-Bluestem Prairie
- 03. Shortgrass Prairie
 - A. Grama-Needlegrass-Wheatgrass
 - B. Grama-Buffalograss

II. PLAINS RIPARIAN, FLOODPLAIN, AND OTHER WATER-DOMINATED COMPUNITIES

- 05. Fresh-Water Riparian Grasslands
- 06. Salt Flats
- 07. Plains Deciduous Woody Riparian
 - A. Plains Cottonwood
 - B. Ash-Elm-Maple Bottoms

III. FOOTHILL AND MOUNTAIN GRASSLANDS

- 08. Palouse Prairie
 - A. Fescue-Whetgrass
 - B. Wheatgrass-Bluegrass
 - C. Foothills Prairie

IV. WOODLAND

- 12. Coniferous woodland
 - B. Juniper-steppe woodland

V. COLD DESERT SHRUBLAND

- 14. Desert alluvial salt-shrub
 - A. Saltbush and shadscale
 - B. Greasewood
- 15. Sagebrush
 - B. Basin Big Sagebrush
 - C. Mountain and Eastern Foothills Sagebrush

VI. MOUNTAIN AND FOOTHILLS MIXED SHRUBLAND

- 16. Deciduous Green shrubland
 - B. Serviceberry and Chokecherry
 - C. Snowberry

VII. MOUNTAIN CONIFEROUS FORESTS

- 19. Foothills and Plains Coniferous Forests
 - A. Eastern Ponderosa Forest
 - B. Black Hills Pine Forest
- 20. Montane Coniferous Forest
 - A. Northwestern Ponderosa Forest

in this high plains environment, riparian areas as differentiated from uplands on the map, may include deciduous forests, shrublands or grasslands which exist because of supplemental water because of topographic position and seeps.

The vegetation is classified as follows for the purpose of the largescale map:

Upland Areas

Upland Woodlands (ponderosa pine, juniper, ponderosa pine and juniper)

Upland Shrubland

Shrubland - birdsfoot sagebrush, four-wing saltbush,
Douglas rabbitbrush, skunkbrush sumac)

*Sagebrush shrub-steppe (sagebrush predominates with grass patches or corridors)

*Sagebrush steppe (grass predominates with sagebrush patches or corridors)

*Upland Grassland (blue grama, little bluestem, threadleaf sedge and needleandthread)

Riparian Areas

Riparian deciduous forest (plains cottonwood)
Riparian Woodland (woody draws - boxelder, hawthorne,
chokecherry)
Riparian Shrubland (black greasewood, silver sagebrush)
Riparian Grassland (playas)

* Sagebrush shrub-steppe, sagebrush steppe and upland grassland are the vegetation types which comprise the matrix of the TBNG landscape. This may also be called sagebrush-grassland.

Summarized characteristic plant species and plant species richness by physiognomic type for part of the Cheyenne River Basin are in Table 3.4 and 3.5.

The community types listed in Table 3.4 (with the exception of those in the Riparian Deciduous Woodland category) are based on field studies where plant species composition and cover was measured at many sites in the coal-bearing area of the Cheyenne River Basin (Thilenius, 1992). Additional community types characteristic of smaller patches or of the Upton-Osage and Spring Creek areas, which were not included in the field work for the Cheyenne River Basin (Thilenius, 1992) are listed in Table 3.6 and Table 2 (Appendix). These are described in the literature and summarized in Johnston (1987). A different broad-scale vegetation classification system for the entire eastern Powder River Basin was presented in the FEIS for proposed coal development (Eastern Powder River Basin FEIS, 1974).

The matrix of the Cheyenne River Basin and Upton-Osage portions of the Thunder Basin National Grassland consists of a shrubland and grassland vegetation containing sagebrush steppe, sagebrush shrub-steppe and upland grassland. Sagebrush shrub-steppe (where sagebrush forms a dense cover and grass patches and corridors are subordinate, or

TABLE 3.4 CHARACTERISTIC VASCULAR PLANT SPECIES OF THE CHEYENNE RIVER BASIN

Physiognomic Type	Common Name	Scientific Name
Trees	eastern cottonwood	Populus deltoides
	ponderosa pine	Pinus ponderosa
	rocky mountain juniper	Juniperus scopulorum
Shrubs	big sagebrush	Artemisia tridentata
	silver sagebrush	Artemisia cana
	soapweed yucca	Yucca glauca
	Douglas rabbitbrush	Chrysothamnus viscidiflorus
	fourwing saltbush	Atriplex canescens
	birdfoot sagebrush	Artemisia pedatifida
	skunkbrush sumac	Rhus trilobata
	black greasewood	Sarcobatus vermiculatus
ALCOHOL STATE OF THE STATE OF T	western snowberry	Symphoricarpos occidentalis
Grasses & Sedges	blue grama	Bouteloua gracilis
	western wheatgrass	Pascopyrum smithii
	needleandthread	Stipa comata
	prairie sandreed	Calamovilfa longifolia
	little bluestem	Schizachyrium scoparium
	green needlegrass	Stipa viridula
	threadleaf sedge	Carex filifolia

From Thilenius (1992). Scientific names have been updated to correspond to the Plant List of Accepted Nomenclature, Taxonomy and Symbols, January, 1992 USDA-SCS.

TABLE 3.5 VASCULAR PLANT SPECIES RICHNESS BY PHYSIOGNOMIC TYPE FOR THE COAL-BEARING REGION OF THE CHEYENNE RIVER BASIN

Physiognomic Type	Number of species	
Trees		
Deciduous trees	1	
Coniferous trees	2	
Shrubs	18	
Porbs	123	
Graminoids (grasses, sedges, rushes)	37	
Total	181	

This list is from Thilenius (1992) and applies to the area surveyed within Cheyenne River Basin for the classification study. Additional species are found in the Spring Creek Unit and in the Upton-Osage areas, but there is not specific documentation for plant species in these areas. Additional species not documented in the survey may also be found on the Thunder Basin National Grassland.

TABLE 3.6

ADDITIONAL VEGETATION CLASSIFICATION UNITS

The vegetation types listed below were listed for the Thunder Basin National Grassland in Johnston (1987) or noted by Douglas District Staff. In contrast to the Thilenius (1992) classification, no direct quantitative measurements were made for these types on the Thunder Basin National Grassland described from other areas. Many of these are closely related to the 22 major types described for the Cheyenne River Basin by Thilenius, but the list also includes some which are found in the Spring Creek or Upton-Sage areas which were outside of the Thilenius collection area in the central Cheyenne River Basin. They may occupy smaller patches than the community types listed in Table 3.3. Those marked with an asterisk are the same or similar to the major types described in the Thilenius classification which was used for the large map units. Thilenius includes patches of grasses within sagebrush areas containing mixtures of western wheatgrass, blue grama, green needlegrass, needleandthread and threadleaf sedge within the sagebrush shrub-steppe or sagebrush steppe mosaics. The Johnston classification places grass or grass-sedge patches in a grassland category.

	OMMUNITY OPES	FOREST	WOODLAND	SHRUBLAND	GRASSLAND
	PARIAN DECIDUOUS FOREST Plains cottonwood/western snowberry-basin wildrye*	x			
RIF	PARIAN DECIDUOUS MOODLAND			- 29X - 1 4 (2V)	
	green ash/chokecherry		X		
	chokecherry-snowberry/ western wheatgrass		X		
4	aspen/ oregongrape		X		
UPL	LAND CONTFEROUS MOODLAND		-		
5	ponderosa pine/ bluebunch wheatgrass*		X		
6	ponderosa pine/ sun sedge*		X		
	ponderosa pine/ little bluestem*	at the same	X		
	Rocky Mountain juniper/ western wheatgrass*		X		
9	Rocky Mountain juniper/ bluebunch wheatgrass*		X		
	PARIAN DECIDIOUS SHRUBLAND	27			
				x	
	silver sagebrush/ western wheatgrass*				
	black greasewood-big sagebrush/western wheatgrass* black greasewood/ alkali sacaton*			X	
		*		X	
13	black greasewood-fourwing saltbush/ sandberg bluegra	188-	19 19 19 19 19 19 19 19 19 19 19 19 19 1		
UPL	LAND DECIDUOUS SHRUBLAND				
	(steppe and shrub-steppe)				
14	big sagebrush/ western wheatgrass*			X	
	big sagebrush/ needleandthread*			X	
	big sagebrush/ bluebunch wheatgrass*			X	
	AND AND AND AND				
KIP	PARIAN GRASSLAND (non-saline)				
17	western wheatgrass/ needle spikesedge				×
	American bulrush/ sedge spp				â
10	(saline)				^
10	inland saltgrass/ Nuttall alkaligrass				X
	inland saltgrass/ western wheatgrass				x
	inland saltgrass/ alkalai sacaton-western wheatgras				Ŷ
- 1	intalio satiglassy atkatal sacator-western micatgras				^
UPL	AND GRASSLAND**				
Disno	big bluestem/ little bluestem				X
23					X
24	bluebunch wheatgrass/ blue grama				X
25	bluebunch wheatgrass/ threadleaf sedge				X
26					×
27					X
28	blue grama/ western wheatgrass*				X
29	blue grama/ winterfat				X
30	blue grama/ needleleaf sedge*				X
31	blue grama/ sun sedge				X
32	blue grama/ buffalograss				X
33	little bluestem/ blue grama*				X
34	little bluestem/ sideoats grama*				X
35	needleandthread/ blue grama				X
36					X
	western wheatgrass/ blue grama*				X

^{**} most of these are included in the sagebrush shrub-steppe or sagebrush steppe by the Thilenius classification (1992)

sagebrush steppe (where grass is dominant and sagebrush forms patches or follows depression contours) covers about 70% of the area within the administrative boundary of the Cheyenne River Basin and Upton-Osage area. This vegetation is found on uplands which are rolling or slightly dissected (Figures 3.9 and 3.10). The sagebrush vegetation forms a mosaic with grasslands where sagebrush is absent or of very minor importance. Within this matrix are patches of other kinds of shrublands and woodland. The matrix can also be called sagebrush-grassland.

The second largest general type of vegetation in the Cheyenne River Basin and Upton-Osage Areas is upland shrubland containing shrubs such as birdsfoot sagebrush, yucca, Douglas rabbitbrush or fourwing saltbush, with sparse grass or forb understories. Patches of sagebrush communities form a mosaic with these other upland shrubland communities. These mixed shrublands form large patches on about 10% of the Cheyenne River Basin and Upton-Osage areas area along the upper tributaries of the Cheyenne River, east and north of the Rochelle Hills and in the Cow Creek area. Shrublands occur on dissected, eroding substrates of claystone, shale, siltsone and sandstone, of the Tongue River and Lebo members of the Fort Union Formation or in association with scoria outcrops. (Figures 3.11 - 3.20).

Upland grasslands (in which sagebrush or other shrubs are absent or of minor occurrence) are found in the northwestern portion of the Wasatch Formation in association with numerous playas; in restricted flat former floodplain areas near the Cheyenne River, east of the Rochelle Hills, and on the Lance Creek formation south of Highway 450 in the east central area. Grasslands on these surfaces contain mostly blue grama, threadleaf sedge, and needleand thread. Grasslands with little bluestem are found in the Spring-Creek and Upton-Osage areas. Upland grasslands occupy about 10% of the area within the administrative boundary (Figures 3.21-3.24).

Patches of woodlands, which consist of ponderosa pine and/or juniper, occur on another 5% of the area within the Cheyenne River Basin and Upton-Osage area. These are associated with sandstone or scoria in the central part of the Cheyenne River Basin, and with sandstone, limestone and shale in the Upton-Osage Area. The woodlands are islands in the central part of the Cheyenne River Basin, but are penninsulas extending from the Black Hills in the Upton-Osage area. In the Spring Creek area, woodlands are found on about 20% of the area within the administrative boundary (Figures 3.25 - 3.28).

Corridors of deciduous riparian forest or deciduous riparian shrubland occupy about 5% of the area in the Cheyenne River Basin and Upton-Osage area. Riparian corridors are shown in Figure 3.29. Below the confluence of Antelope Creek and the Dry Fork of the Cheyenne River, the floodplain is wide, and gallery forests begin to develop. Along the eastern third of the river, the cottonwood riparian forest is well developed and stringers extend up Lodgepole Creek and Black Thunder Creek. Upstream areas of all the major tributaries of the Cheyenne River have relictual populations of old cottonwood trees. Figure 3.29

Fig. 3.9 Sagebrush shrub-steppe. Much of the matrix in the Cheyenne River Basin consists of sagebrush shrub-steppe. Tall, dense sagebrush develops in the absence of fire. Fire history, herbicide application, soil type and past land-uses such as farming, stocking levels and season of use affect the highly variable development of sagebrush density. 10/10/92 Western Cheyenne River Basin

Fig. 3.10 Sagebrush-steppe characterizes most of the eastern portion of the Cheyenne River Basin. Big sagebrush is smaller and forms discreet patches on uplands or along shallow drainages. This condition of sagebrush appears to be influenced by soil type, fire frequency and management. In some areas this appears to be seral to shrub-steppe, in others it appears to be very stable because of soil and climate. 10/10/92 Eastern Cheyenne River Basin

Fig. 3.11 Shrublands and woodlands in the Spring Creek Unit. Eroding members of the Fort Union Formation form high-relief badlands visible in the foreground and background. Shrubs colonize most of these areas, and sagebrush-steppe patches form where sediments have accumulated. Juniper woodlands are found in the valleys and along drainages. 10/22/92 west of Weston, WY

Fig. 3.12 These shrublands are in the Cow Creek Buttes area in the southeastern part of the TBNG. Highly erosive claystones, siltsones and shale components of the Lebo member of the Fort Union formation form the substrate for these shrublands. Yucca, fourwing saltbush, and birdsfoot sagebrush communities are found here. 10/10/92 Southeast of Bill, WY

Fig. 3.13 Scoria (porcellanite) forms when sandstone is heated by shallow subsurface coal. Scoria is found from the Miller Hills northward along the contact of the Fort Union and Wasatch Formation. Altered shales, claystones and siltstones are layered with scoria. The Miller Hills area is the southern-most occurrence of scoria in Wyoming. Shrublands with yucca, skunkbrush sumac, and little bluestem associate with scoria. 10/10/92 Miller Hills area.

Fig. 3.14 Sandstone erosion forms in the Cheyenne River Valley. The watershed of the Cheyenne River has badlands in some members of the Fort Union Formation. The Cheyenne River is in the midground and the Rochelle Hills escarpment is in the background. 10/22/92 Cheyenne River Basin

Fig. 3.15 Birdsfoot sagebrush shrubland in the Downs area, southeast of Bill and south of Cow Creek Buttes. Birdsfoot sagebrush grows in small patches on flat to gently rolling surfaces. This plant community type provides suitable habitat for mountain plovers because of its vertical structure. 10/10/92. Soouthern end of TBNG.

Fig. 3.16 Badlands in the Lebo member (Fort Union Formation) in the Downs area. Cow Creek Buttes are in the background. This is a landscape scale photograph of the same area shown in Figure 3.15. The highly erosive shales, claystones and siltstones today have upland shrubland plant communities. 10/10/92 Southern TBNG.

Fig. 3.17 Coal Bank Draw. This is within the Cow Creek Buttes Inventoried Semi-Primitive Area. Thick alluvial deposits overlay the coal, which lies above the white sandstone of the Lebo member.

Alluvial deposits such as this underlie relatively flat big sagebrush patches within badlands.

10/10/92 Cow Creek Buttes area.

Fig. 3.18 Yucca and prairie sandreed on a sandy soil patch in the Cow Creek Buttes area. The landscape here has more resistant rocks near the surface and is less dissected. Sagebrush shrub-steppe is highly intermingled with other kinds of upland shrublands. 10/10/92

FIG. 3.19 Scoria landforms in the southern Cheyenne River Basin. Scoria forms a transition between the eroding badlands along Cow Creek and the sandstone/scoria plateau at the crest of the Miller Hills. Ponderosa pine woodland grows on the sandstone, along with little bluestem and bluebunch wheatgrass. 10/10/92 Miller Hills area.

FIG. 3.20 Scoria and sandstone in the Duck Creek Breaks area of the Spring Creek Unit. Scoria and associated communities extends northward into Montana. This valley had a recent fire which removed much of the pondrosa pine woodland. Little bluestem communities are intermingled with sagebrush steppe. Big bluestem and bluebunch wheatgrass are also found here. 10/17/92 Norteastern part of Spring Creek Unit.

FIG. 3.21 Grassland on the flat plain east of the Rochelle Hills and north of the Cheyenne River.

These plains in the Rosecrans area have blue grama sodgrass and lack sagebrush. Many upland grasslands have been farmed, some have high populations of prickly pear cactus, and some have been planted with crested wheatgrass. 10/10/92 Cheyenne River Basin

FIG. 3.22 Prairie dog colony on blue grama grassland community southeast of the Rochelle Hills. 10/10/92 Cheyenne River Basin.

FIG. 3.23 Little bluestem grassland (red color) in York Road area of the Spring Creek Unit.

Sagebrush steppe forms patches in the little bluestem grassland. In the distance,
a striped pattern, probably from herbicide spraying or blading can be seen in the
sagebrush steppe matrix. 10/17/92 Spring Creek Unit.

FIG. 3.24 Riparian shrubland along the Cheyenne River. Foreground is western wheatgrass. Fourwing saltbush and black greasewood have a blue-grama sodgrass understory. Scoria at the south end of the Rochelle Hills is in the bakcgound. Riparian shrublands are found on terraces along the Cheyenne River and its larger tributaries. 10/10/92 Cheyenne River Basin 51

FIG. 3.25 Woodland and sagebrush steppe in the Upon-Osage area. Ponderosa pine-Rocky Mountain juniper woodland grows on shale and limestone, forming a mosaic in the broad ecotone between the Black Hills and the Powder River Geologic Basin. 10/22/92 Upton-Osage area.

Woodland in the Duck Creek Breaks, Spring Creek area. The ponderosa pine woodland here has more canopy cover and less juniper. A few disjunct aspen groves occur in draws. Little bluestem and bluebunch wheatgrass are found in the sagebrush steppe patches; oregon grape is associated with the ponderosa pine and aspen vegetation; big bluestem occurs nearby. 10/22/92 Northeastern part of the Spring Creek Unit.

FIG. 3.27 Ponderosa pine woodland on scoria landforms. This woodland is an island in the larger landscape matrix sagebrush - grassland. 10/10/92 North side of scoria outcrops in the Dugout Creek Inventoried Semi-Primitive Area.

FIG. 3.28 Woodland on scoria and sandstone, Miller Hills area. Sandstone-capped buttes of the Cow Creek Buttes area can be seen in the background. 10/10/92

also shows patches where large and/or numerous playas occur, embedded in grassland or sagebrush areas (Figures 3.30 - 3.33).

The landscape vegetation patterns of the Spring Creek Unit are illustrated in Figure 3.34. This landscape has a matrix of sagebrush steppe. Patches of woodland, shrubland and grassland are smaller, more numerous and combined in a more complex way in a smaller area, than in the larger administrative unit to the south, packing many community types into this part of the Thunder Basin National Grassland. The tributaries which head in the Spring Creek area flow into the Little Powder River, whose headwaters are many miles away and whose baselevel creates sharp gradients into the nearby uplands in contrast to the longer, gentler gradients in the Cheyenne River basin. The result is a landscape with substantial elevational differences and topographic diversity.

A special feature of the Spring Creek Unit is the presence of woody draws (classed as Riparian Deciduous Woodland). These draws are at a range limit - similar vegetation is characteristic of North and South Dakota and the Black Hills. A few remnant aspen groves are also found here, adding to the unique biological diversity of the ecotone at the eastern border of the Duck Creek Breaks (Figures 3.35 - 3.37).

Figures 3.37 - 3.40 illustrate some of the forms that patches and corridors may take on the Thunder Basin National Grassland. Woody draws provide important corridors with cover and protection for animal movement. The grassy swales in the Cheyenne River headwaters add biological diversity, especially in a temporal framework when water is seasonally present. Human-created corridors and patches can be seen in the matrix in Figures 3.39 and 3.40.

Migration and the use of corridors on TBNG can be related to the landscape and the local levels. At the landscape level the TBNG is part of the Rocky Mountain Flyway for waterfowl. It also has bird species which migrate to the TBNG for both winter and summer use. Examples of birds migrating to the TBNG are the rough-legged hawk and the bald eagle in the winter, and the mountain plover and ferruginous hawk in the summer. Most of the annual migrations into and out of the TBNG are associated with birds. The rest of the wildlife species stay in the general vicinity of the TBNG. Migrations within the TBNG are related to seasonal movements of big game animals. Mule deer are the only species with a specific winter range. The rest of the big game animals tend to use their range year long.

Corridors within the TBNG may consist of natural or manmade corridors. Natural corridors can be riparian corridors associated with river bottoms; ridges, or stands of vegetation which connect separate habitat sites. Manmade corridors include roads, pipelines, or irrigation canals. These all may link habitats together and be used as travelways.

There is no official list of plant species for the Thunder Basin National Grassland. Thilenius (1992) recorded 181 species of vascular plants from the coal-bearing area of the Cheyenne River Basin used in the classification study. Hartman and Dueholm (1979) prepared a

FIG. 3.30 Playas create riparian patches which are seasonally wet. Western wheatgrass is characteristic of playas. They may occur in grassland, sagebrush steppe or sagebrush shrub-steppe. Playa areas are mainly west and south of the Rochelle Hills. 10/22/92 South of the Rochelle Hills and NE of Bill.

FIG. 3.31 The Cheyenne River Deciduous Riparian Forest Corridor. Cottonwood stands are patchy along the river, but increase in size and density downstream. Although cottonwoods are reproducing in areas along the Cheyenne River, most populations in tributaries are composed of old trees and this vegetation type is disappearing on the tributaries. 10/22/92 Lynch Road

59

FIG. 3.32 Aquatic and riparian habitat in the Little Powder River Reservoir wildlife exclosure. The majority of the wildlife exclosures are associated with man-made riparian areas. These are important patches for waterfowl. The native riparian area along the drainage is outside of the exclosure where the decadent cottonwood trees are beyond the dam in the background. 10/17/92 Spring Creek area.

FIG. 3.33 Gleason Reservoir (seasonally dry) in the Spring Creek area. Willows were planted along the perimeter. The flat bottom has developed because of sediment aggradation from the eroding badlands upstream. 10/17/92 Quintana oil field area, Spring Creek.

Upland Shrubland

Sagebrush steppe

Shrubland with soapweed yucca, fourwing saltbush, birdsfoot sagebrush or Douglas rabbitbrush as major species.

Source: Orthophotoquad aerial photointerpretation and field work, Douglas Ranger District and Medicine Bow National Forest Staff, 1992

FIG. 3.35 Old ponderosa pine trees, Spring Creek area. Populations of large, old ponderosa pines are found in the northern part of the Duck Creek Breaks. This site is adjcent to two remnant aspen stands. 10/17/92 Northern Spring Creek Unit.

FIG. 3.36 Woody draws with hawthorne, chokecherry, snowberry, currant, whitestem goosberry and rose are found in the Spring Creek Unit. Deeper draws also support relict boxelder populations. Similar vegetation is characteristic of North and South Dakota and Nebraska. It is unusual for Wyoming. 10/17/92 Northern Spring Creek Unit.

65

FIG. 3.37 Woody draws create corridors with cover and food for wildlife in the sagebrush steppe matrix of the eastern part of the Spring Creek Unit. 10/17/92

FIG. 3.38 Corridors in badland areas are usually vegetated with grasses. Farther down the drainages cottonwood trees will grow in these riparian corridors in the sagebrush-grassland matrix. Where floodplain terraces occur, riparian shrubland will also develop. 10/10/92 Dugout area, Cheyenne River Basin.

FIG. 3.39 Human-created corridors. Road and Panhandle Eastern Pipeline. The pipeline corridor forms a grassy lane in the sagebrush shrub-steppe. Cattle have worn a trail down the center and antelope use the cattle trail. Prairie dogs may also colonize these kinds of areas. 10/22/92 Cheyenne River Basin

FIG. 3.40 Patches and corridors associated with oil fields in sagebrush shrubland. These change biological diversity on a small scale. 10/22/92 NE of Bill.

catalogue of plants for the entire Powder River Basin. Additional species from the Upton-Osage and Spring Creek areas would bring the total to an estimated 250 vascular plant species. Figures 3.41 and 3.42 show where collections have been made by the Rocky Mountain Herbarium staff (1978-79 and 1983-84) and the Thilenius (1992) study. More information on plant species is needed for the Cow Creek Buttes area, the Upton-Osage area and the Spring Creek area, especially for the woody draws and woodlands. Also the classification database needs to be extended to the areas not included in the Thilenius (1992) study.

Threatened, Endangered, Candidate and Disjunct Plant Species

There are no listed (C1) Threatened or Endangered plant species known from the Thunder Basin National Grassland. Two Candidate Threatened and Endangered plant species are found on or near the TBNG. Candidate species are classified as C2 or C3 depending on criteria listed in the Endangered Species Act. C2 species are eligible for further study; C3 species are likely to be removed from the list in the future because survey work indicates that they are not at critical population levels. Astragalus barrii (Barr's milkvetch) is presently a C2 species but will be reclassified as C3 species in 1993, based on 1991 survey work by the Nature Conservancy. Oryzopsis contracta (contracted Indianricegrass) is known from scattered areas of the Powder River Basin and expected to occur on the Thunder Basin National Grassland. classified as a C2 species. Six other species currently being tracked by the Wyoming Natural Diversity Database are disjuncts which are more plentiful in other parts of the Great Plains (Table 3.7) (Fertig, 1992).

TERRESTRIAL FAUNA BIOLOGICAL DIVERSITY

Life forms and indicator species

This section contains information on the biological diversity of terrestrial vertebrate animals. There is no information available in Forest Service or Wyoming State Game and Fish records on the biological diversity of terrestrial invertebrates on the Thunder Basin National Grassland.

The preceeding description of plant biological diversity on the Thunder Basin National Grassland was based mostly on geology, landform, landscapes and plant communities. This exemplifies mainly a Coarse-Filter approach. The broad-scale descriptions are an appropriate framework for plant community and plant species biological diversity. Those descriptions also provide a useful framework in which to place animal community and animal species biological diversity.

Wildlife populations of birds, reptiles and mammals (terrestrial vertebrates) have many complex relationships to vegetation and landforms. Each wildlife species has particular preferences and/or requirements for species survival. Some requirements are very narrow and others can be met by a variety of vegetation types or landforms with associated habitat features. Wildlife biologists often use the

- Solid polygons denote sections where floristic collections were made by the Rocky Mountain Herbarium staff in 1978-79 for the Powder River Basin Study, and 1983-84 for the Black Hills Study. Source: Rocky Mountain Herbarium, Laramie, WY
- Points denote approximate locations of sites where species composition and cover measurements were made by staff from the Rocky Mountain Forest and Range Experiment Station in Laramie, WY, for the purposes of a vegetation classification for the Cheyenne River Basin.

 Source: Thilenius, J. and G. Brown. 1992. Vegetation on semi-arid rangelands, Cheyenne River Basin, Wyoming. RMFRES Fort Collins USDA Forest Service (in press)

FIGURE 3.41 PLANT COLLECTION SITES
Cheyenne River Basin and Upton-Osage area

Sections where floristic surveys were made by the Rocky Mountain Herbarium staff in 1978-79 for the Powder River Basin Study. Source: Rocky Mountain Herbarium, Laramie, WY

FIGURE 3.42 PLANT COLLECTION SITES Spring Creek Unit

TABLE 3.7 DISJUNCT PLANT SPECIES

Common name	Scientific name	Range & Occurrence
old-field toad-flax	Linaria canadensis var texana	One population from Spring Creek area. Common in central & southern Great Plains
cut-leaved evening primrose	Oenothera laciniata	Northern Converse County. Rare in WY but common in the Great Plains
rosy palafoxia	Palafoxia rosea var macrolepis	Northern Converse County. Collected 5 times in WY. Mainly found in Oklahoma and the Texas Panhandle
crown-seed fetid marigold	Pectis angustifolia	One population on TBNG near the Jacobs land exchange site. Found in Kansas and Nebraska.
round woolly-heads	Psilocarphus brevissimus	One collection on TBNG in SE Campbell County. Rare composite on dry shores and ponds.
small-flowered fame flower	Talinum parviflorum	One collection near Bill. Mainly found in the eastern and central Great Plains

Source: Wyoming Natural Diversity Database, 1992

life form system developed by Jack Ward Thomas (Thomas, 1979) to group wildlife species with similar habitat requirements for feeding and reproduction into a level comparable to the concept represented by plant community types. This system does not differentiate plant community types as descriptors, but rather depends on habitat structure which is partly a function of the physiognomic characteristics of the vegetation (tree, shrub, grass).

There are sixteen life form categories. Table 3.8 provides a life form list with examples of species from the Thunder Basin National Grassland. A list for all species in the TBNG, assigned to life form categories, can be found in Blunt (1980).

The life form concept is a very useful management tool and is one of the foundations for the concept of using Indicator Species in Forest Plans. Indicator species in the Medicine Bow National Forest Plan (1985) are of three types: 1. featured species 2. ecological indicator species 3. threatened and endangered species. This exemplifies the fine-filter strategy. Management efforts have historically been directed toward indicator species on the premise that management for these would insure habitat management for the other wildlife represented by that species.

Ecological Indicator species recognized in the 1985 Medicine Bow National Forest and Thunder Basin National Grassland Land and Resource Management Plan are listed in Table 3.9.

A biological diversity assessment should properly include all species. At present, the information on many species, including some of the indicator species is nonexistent or very sparse both spatially and temporally. Much of the population data needed to evaluate wildlife biological diversity is obtained through Wyoming State Game and Fish Department Surveys. The kinds of wildlife evaluated and the kinds of information they collect fills only part of the needs of the Forest Service for information on wildlife biological diversity. Censusing of populations by Forest Service biologists has been limited by funding.

A prairie dog management plan was developed in 1981 for the TBNG. In that plan, guidelines were established for the management of prairie dogs in two separate areas. These areas are: 1. the Rosecrans Blackfooted Ferret Potential Habitat Area, and: 2. the rest of the Thunder Basin National Grassland. The management plan designates criteria for the control or reduction of prairie dog town size through U.S. Fish and Wildlife Service approved techniques using zinc phosphide poison approved by the U.S. Fish and Wildlife Service and the EPA (see Prairie Dog Management Plan for the Thunder Basin National Grassland, Appendix G pages 107-110).

This plan also calls for the establishment of retention areas "for threatened or endangered species habitat and for general wildlife habitat" (Revised Prairie Dog Management Plan for Thunder Basin National Grassland, 1991) The Plan states that within the Rosecrans Black-Footed Ferret Potential Habitat Area " a maximum of 2240 acres"

TABLE 3.9 LIFE FORM DESCRIPTIONS AND REPRESENTATIVE SPECIES OF THUNDER BASIN NATIONAL GRASSLAND

Form	Reproduces	Feeds	Examples
1	in water	in water	all fish
2	in water	on ground, in shrubs and/or trees	tiger salamander Woodhouse's toad ²
	on ground around water or on floating or emergent vegetation	in water, on ground in shrubs and trees	snapping turtle, western garter snake, mtn. plover ^{2,4} , long-billed curlew ^{2,4} , black tern ⁴ , Preble's jumping mouse ⁴
4	in cliffs, caves, rims or talus	on ground or in air	ferruginous hawk ^{2,4} peregrine fatcon ³
	on ground without specific water, cliff rim or talus association	on ground	western rattlesnake, bull snake sage grouse ² , upland sandpiper ⁴ Black Hills redbelly snake ⁴ elk ¹ , mule deer ¹ , antelope ¹
6	on ground .	in shrubs, trees, or air	common nighthawk
7	in shrubs	on ground, in water or air	Brewer's sparrow ² loggerhead shrike ⁴
8	în shrubs	in shrubs, trees or air	yellow-breasted chat ² willow flycatcher ²
9 1	primarily in deciduous trees	in shrubs, trees or air	cedar waxwing
10	primarily in conifers	in shrubs, trees or air	red crossbill ²
11	in trees	on ground, in shrubs, trees or air	merlin
12 (on very thick branches	on ground or on water	golden eagle ² , bald eagle ³ white-faced ibis ⁴
13 6	makes own hole in tree	on ground, in shrubs, trees or air	red-headed woodpecker ²
	in a hole made by another species or naturally occurring	on ground, in water or air	house wren ² , fringed myotis ⁴
15	underground burrow	on or underground	black-tailed prairie dog ² black-footed ferret ³ , swift swift fox ⁴
16 L	underground burrow	in water, on ground or in air	beaver

from: Life form categories from Maser, Thomas and Anderson (1984) Wildlife species examples from Medicine Bow National Forest Plan (1985); Douglas District records and Blunt (1980).

TABLE 3.9 ECOLOGICAL INDICATOR SPECIES AND REPRESENTATIVE HABITAT OR ECOLOGICAL CONDITION

Species	Representative Habitat or Ecological Condition		
prairie vole	dense grass cover.		
black-tailed prairie dog	short grass prairie and specific ecological range conditions.		
Bage grouse	sagebrush community.		
yellow-breasted chat	only species in its life form (*) riparian thickets with surrounding grassland in satisfactory condition.		
golden eagle	sensitive to disturbance in nesting and roosting areas.		
Brewers sparrow	representative of large shrub communities.		
willow flycatcher	representative of brush thickets near water and at least moderate riparian ecological condition.		
mountain plover	listed as a sensitive species by the State of Wyoming short-midgrassland in satisfactory condition.		
upland sandpiper	listed as a sensitive species by the State of Wyoming mid-tall moist grasslands in satisfactory condition.		
ferruginous hawk	only species representative of its life form.*		
red crossbill	only species representative of its life form.*		
nouse wren	only species representative of its life form.*		
long-billed curlew	listed as a sensitive species by the State of Wyoming.		
red-headed woodpecker	representative of late successional cottonwood and ponderosa pine stages. optimum habitat capability in riparian and snags.		
woodhouse toad	representative of permanent water and associated herbaceous cover.		

Source: Medicine Bow National Forest Land and Resource Management Plan, FEIS 1985 page III-41

^{*} Life form is defined by Thomas, 1979 as "a group of wildlife species whose requirements for habitat are satisfied by similar successional stages within given plant communities."

of prairie dog towns will be maintained. 3160 acres are to be maintained outside of the Rosecrans on the rest of the TBNG to give a total of 5400 acres of retained prairie dog towns. Towns not meeting specific retention criteria are available for control. As of 1990, 14,374 acres prairie dog towns existed on TBNG. In 1991 and 1992 prairie dog towns generally experienced significant growth and subsequent control. In 1991 approximately 7200 acres were treated with zinc phosphide and about 4300 acres were treated 1992. Prairie dog populations are routinely treated on intermingled private lands. In the past, poisons such as strychnine, not currently licensed by EPA, were used to control prairie dogs.

The USDA Animal and Plant Health Inspection Service, Animal Damage Control Division (APHIS-ADC) conducts other animal damage control activities on Federal, State and private lands which affect populations of specific predatory species. APHIS-ADC has the primary responsibility for animal damage control on National Forest System Lands but the methods must comply with the Medicine Bow National Forest Plan. Coyotes are the only predatory animals currently controlled under this program. Aerial gunning is the primary means of control. In the past, poison baits and traps were also used. County Boards of Predator Control, which operate both separately and in cooperation with APHIS-ADC also carry out animal damage control. Any carnivorous animal deemed to cause damage can be targeted for control by these programs.

Population information on raptors and mountain plovers and location and population information on sage grouse leks has been assembled by the coal mines and the Douglas Ranger District since 1981. This information was combined with Wyoming Game and Fish data to produce the wildife distribution maps. Information on population distribution for bald eagles, mountain plovers, sage grouse leks, golden eagles, ferruginous hawks and prairie dogs was used to create the distribution maps shown in Figures 3.43 - 3.46.

Information on Threatened and Endangered Species (both listed species and candidate species), is presented in detail in two specialist reports prepared in 1992 for the Gas and Oil EIS (Byer and Cartwright, 1992; Cartwright, 1992). A summary of wildlife biological diversity and a summary of the information on Threatened and Endangered Species is presented below.

Species-vegetation relationships

There are approximatly 311 vertebrate wildlife species (birds, mammals, reptiles, and amphibians) which occur on TBNG. There are 220 birds, 62 mammals, 15 reptiles, and 6 amphibians. There are 29 species of fishes. These numbers represent approximate species numbers based on known or potential species occurances. Amphibians and fish will be discussed further in the aquatic vertebrate and invertebrate section. A terrestrial fauna list is in Table 3.10.

Blunt (1980) listed species by life form stratified by general vegetation categories. These categories were adapted to nest into the large scale vegetation classification concept used earlier in this

Prairie Dog Colony Areas (1976-1992)

Sources: Douglas Ranger District Records, Coal Mine Records, Wyoming Game and Fish Department

FIGURE 3.43 MODEL OF DISTRIBUTION OF PRAIRIE DOG COLONIES
Cheyenne River Basin and Upton-Osage area

Bald Eagles (1981-1992)

Mountain Plovers (1981-1992)

Sage Grouse Leks (1981-1992)

Sources: Douglas Ranger District Records, Coal Mine Records, Wyoming Game and Fish Department Record

FIGURE 3.44 MODEL OF DISTRIBUTION OF BALD EAGLES, MOUNTAIN PLOVERS AND SAGE GROUSE LEKS
Cheyenne River Basin and Upton-Osage area

Ferruginous Hawks (1981-1992)

Sources: Douglas Ranger District Records, Coal Mine Records, Wyoming Game and Fish Department

FIGURE 3.45 MODEL OF DISTRIBUTION OF GOLDEN EAGLES and FERRUGINOUS HAWKS
- Cheyenne River Basin and Upton-Osage areas

Prairie Dogs (1976-1992)

Sage Grouse (1992)

Golden Eagle (1982-1991) (to be inspected in 1993)

Ferruginous Hawk (verified in 1992 - length of record unknown)

Sources: Douglas Ranger District Records, Wyoming State Game and Fish Dept.

FIGURE 3.46 DISTRIBUTION OF GOLDEN EAGLES AND FERRUGINOUS HAWKS
Spring Creek Unit

VERTEBRATE FAUNA SPECIES LIST

* denotes management indicator species for TBNG

FISH 29 species

goldeye brown trout rainbow trout brook trout carp flathead chub plains minnow brassy minnow sand shiner golden shiner fathead minnow Longnose dace horneyhead chub

mountain sucker northern redhorse channel catfish black bullhead stonecat plains killfish plains topminnow largemouth bass small mouth bass green sunfish bluegill rock bass crappie yellow perch

AMPHIBIANS

tiger salamander plains spadefoot toad Great Plains toad

river carpsucker

white sucker

Woodhouse's toad* chorus frog leopard frog

REPTILES

15 species painted turtle

6 species

snapping turtle spiny soft-shell turtle sagebrush lizard eastern short-horned lizard plains hog-nose snake western smooth green snake*

red-bellied snake bullsnake red-sided garter snake wandering garter snake western plains garter snake prairie rattlesnake

eastern yellow-bellied racer

pale milk snake

BIRDS

228 species, 60 neotropical migrants

See Thunder Basin National Grassland Checklist of Birds, 1992 common toon Pacific Loon pied-billed grebe horned grebe eared grebe western grebe American white pelican double-crested cormorant great blue heron green-backed heron black-crowned night heron Amerian bittern white-faced ibis Canada goose snow goose greater white-fronted goose green-winged teal

blue-winged teal

hooded merganser

common merganser

red-breasted merganser

cinnamon teal

white-throated swift broad-tailed hummingbird belted kingfisher red-headed woodpecker* downy woodpecker hairy woodpecker* Lewis' woodpecker yellow-bellied sapsucker* northern flicker olive-sided flycatcher willow flycatcher* least flycatcher Hammond's flycatcher dusky flycatcher cordillerian flycatcher ash-throated flycatcher western wood-pewee Say's phoebe Cassin's kingbird western kingbird eastern kingbird

horned lark

TABLE 3.10 contd. Vertebrate Fauna Species List

* denotes management indicator species for TBNG

BIRDS (contd)

northern shoveler gadwall canvasback ring-necked duck ruddy duck lesser scaup common goldeneve mallard northern pintail bufflehead turkey vulture osprey bald eagle* golden eagle* northern harrier sharp-shinned hawk . Cooper's Hawk Swainson's hawk red-tailed hawk ferruginous hawk* northern goshawk* American kestral merlin peregrine falcon* gyrfalcon prairie falcon gray partridge chukar sage grouse* wild turkey* Virginia rail SOLS American coot Sandhill crane* black-bellied plover semi-palmated plover mountain plover* killdeer American avocet greater yellowlegs lesser yellowlegs solitary sandpiper spotted sandpiper upland sandpiper* western sandpiper least sandpiper Baird's sandpiper pectoral sandpiper stilt sandpiper willet long-billed curlew* **Hudsonian** godwit marbled godwit

short-billed dowitcher

Wilson's phalarope

common snipe

tree swallow violet-green swallow northern rough-winged swallow hank suallow cliff swallow barn swallow Steller's jay blue jay pinyon jay Clark's nutcracker black-billed magpie American crow common raven Black-capped chickadee red-breasted nuthatch white-breasted nuthatch pygmy nuthatch rock wren Bewick's wren house wren* Ruby-crowned kinglet eastern bluebird western bluebird mountain bluebird Townsend's solitaire VEETV Swainson's thrush hermit thrush gray-cheeked thrush American robin gray catbird northern mockingbird sage thrasher brown thrasher American pipit Sprague's pipit Bohemian waxwing cedar waxwing northern shrike loggerhead shrike European starling solitary vireo warbling vireo red-eyed vireo orange-crowned warbler yellow warbler yellow-rumped warbler Townsend's warbler Blackpoll warbler black and white warbler MacGillivray's warbler American redstart ovenbird northern waterthrush common yellowthroat yellow breasted chat*

BIRDS (contd)

red-necked phalarope Franklin's gull Bonaparte's gull California gull herring gull ring-billed gull Forster's tern black tern common tern yellow-billed cuckoo rock dove mourning dove barn owl western screech owl great-horned owl snowy owl burrowing owl long-eared owl short-eared owl northern saw-whet owl common nighthawk common porwill

western tanager house sparrow snow bunting bobolink red-winged blackbird western meadowlark yellow-headed blackbird Brewer's blackbird common grackle brown-headed cowbird Orchard oriole northern oriole rosy finch purple finch house finch red crossbill* common redpoll pine siskin lesser goldfinch American goldfinch evening grosbeak black-headed grosbeak rose-breasted grosbeak Lazuli bunting rufous-sided towhee American tree sparrow chipping sparrow clay-colored sparrow Brewer's sparrow* vesper sparrow lark sparrow sage sparrow savanna sparrow Baird's sparrow grasshopper sparrow song sparrow Lincoln's sparrow white-throated sparrow white-crowned sparrow Harris's sparrow lark bunting dark-eyed junco McCown's longspur lapland longspur chestnut-collared longspur MAMMALS 62 species

Small mammals (57 species)

vagrant shrew masked shrew Merriam shrew little brown myotis Keen's myotis long-eared myotis

long-legged myotis small-footed myotis big-brown bat hoary bat red bat spotted bat fringed myotis desert cottontail Nuttall's cottontail white-tailed jackrabbit

black-tailed jackrabbit least chipmunk

thirteen-lined ground squirrel

fox squirrel black-tailed prairie dog*

red squirrel

Northern flying squirrel Plains pocket gopher

northern pocket gopher Olive-backed mouse

Ord's Kangaroo rat beaver*

western harvest mouse

Plains harvest mouse

deer mouse

white-footed mouse

northern grasshopper mouse

bushy-tailed woodrat

meadow vole long-tailed vole* silky pocket mouse hispid pocket mouse prairie vole* sagebrush vole muskrat sagebrush vole

Preble's meadow jumping mouse

porcupine coyote red fox swift fox raccoon ermine

house mouse

long-tailed weasel

mink

black-footed ferret (extirpated)*

badger spotted skunk striped skunk

bobcat

Large mammals (5 species)

elk* mule deer* mountain lion white-tailed deer pronghorn antelope*

Sources: Blunt, 1980; Thunder Basin National Grassland Checklist of Birds, 1992; Land and Resource Management Plan, Medicine Bow National Forest, 1985; 1992 List of Migrants, Partners in Flight Newsletter Vol 2 No. 1 and Byer and Carturight, 1992.

report. One difficulty with this is that while the uplands are differentiated according to physiognomic type (shrubland, woodland and grassland); the riparian areas could not be categorized by physiognomic type because the life-form -vegetation classification in Blunt (1980) did not permit that. Analysis to evaluate the relationship of community types to wildlife habitat as expressed through life form has not been done but would be very useful for relating plant and animal biological diversity. This has been done in Region 6 for Rangelands in southeastern Oregon (Thomas et al, 1984; Maser et al, 1984).

Table 3.11 is a model of wildlife diversity and vegetation type developed by aggregating species from the life form categories /vegetation type relationships in Blunt (1980). In the TBNG ecosystems, upland vegetation has less vertical and horizontal structure than riparian vegetation which can include tree, shrub and grass categories. The riparian category has the greatest wildlife species richness, when compared by this method, to the upland categories, which are divided by physiognomic type. It has the highest species richness for birds and nearly the highest other species groups. The grasslands have the next highest species diversity. It was difficult to evaluate sagebrush steppe in this system since it has characteristics of both both shrubland and grassland, depending on the scale and patch structure. Shrublands and woodlands have less wildlife species richness, but contain species with special ecological requirements or adaptations, such as salt tolerance, requirements for vertical structure or specialized food sources.

Threatened, Endangered and Candidate Vertebrate Species

There are three Threatened or Endangered (T&E) species which may occur on TBNG according to the U.S. Fish and Wildlife Service. They are the bald eagle, the peregrine falcon, and the black-footed ferret. At this time the bald eagle is the only T&E species to spend significant time on the TBNG. It is a winter resident of the TBNG. There are 14 known bald eagle winter roost areas and known nest sites where bald eagles have attempted to nest. As of the summer of 1992, no bald eagles have successfully fledged young on the TBNG, however bald eagle activity has been increasing. Based on wintering censusing done by the Douglas Ranger District, a definite upward trend has been decernible over the past several years (Medicine Bow NF annual monitoring report, 1991). Reported sightings of bald eagles remaining on TBNG through all or part of the summers have also increased. Peregrine falcons are considered to be migratory transients.

Based on ten years of extensive summer searches on the TBNG, the Forest Service has concluded that the black-footed ferret is not known to exist presently on the TBNG. The Wyoming Game and Fish Department concurred with the Forest Service findings (memo to the U.S. Fish and Wildlife Service, 3/5/91) stating "Based upon survey information presented at our January 15, 1991 meeting, it is obvious that black-footed ferrets no longer occur in the area."

There are also 10 Threatened or Endangered Candidate species which the U.S. Fish and Wildlife Service believes may exist on the TBNG. These

Species Group	(Number)	Upland Shrubland (%)		Upland Woodland		Upland Grassland		Riparian (Deciduous Forest, Forest, Shrubland and Grassland)		
Large mammals	(4)	4	(100%)	2	(50%)		4	(100%)	3	(75%)
Small mammals	(56)	23	(41%)	30	(54%)		37	(66%)	35	(63%)
Birds	(220)	75	(34%)	84	(35%)		111	(50%	136	(62%)
Reptiles	(15)	7	(47%)	12	(80%)		10	(67%)	10	(67%)
Amphibians	(6)	0	(0%)	4	(67%)		6	(100%)	6	(100%)
TOTAL		109		132			168		190	

Adapted from Blunt(1980) using Douglas Ranger District 1992 data. This chart is an general model of species richness in vegetation types based on the relationship of the life form classification and vegetation categoires which are based on physiognomic type and landscape position. Species may be counted for more than one vegatation type since requirements for feeding and/or reproduction (life form) are used as criteria and species a species may use more than one kind of area for feeding and reproduction.

are species classified as Category 1 or 2 by the U.S. Fish and Wildlife Service. Further information is contained in Specialist's Report and Biological Evaluation (Byer and Cartwright, 1992). These species include the mountain plover, swift fox, ferruginous hawk, black tern, loggerhead shrike, long-billed curlew, white-faced ibis, Black Hills redbelly snake, fringed myotis, and Preble's meadow jumping mouse.

The use of different vegetation types within Region 2, by threatened, endangered, and vulnerable species, was evaluated by Finch (1992). Finch (1992) determined the per cent of T&E or vulnerable species that occur in five broad vegetation categories; wetland and riparian - 55%, plains and upland grassland - 49%, mountain coniferous and deciduous forest - 42%, foothills shrublands and woodlands - 39%, specialized habitats like talus slopes, caves, and alpine - 20%. Table 3.12 models the general vegetation types Candidate species would use on the Thunder Basin National Grassland.

Information on these species indicates that listing these species may be appropriate but in most cases more information is still needed on populations and distribution. Further analysis is also needed to evaluate which community types provide important habitat.

Wildlife exclosures and biological diversity

Thirty small areas, totaling about 570 acres, have been fenced to exclude domestic livestock. These exclosures range in size from 2 to 100 acres. About half are less than 10 acres. Most are associated with ponds or seep areas. The majority are associated with man-made ponds or reservoirs. The names and locations of these exclosures is shown in Figure 3.47. These small patches make a small but valuable contribution to biological diversity, especially for wetland plant and animal species.

Other habitat improvement projects have been done in addition to the construction of wildlife exclosures. These projects include the construction of raptor perches in various habitats, the installation of man-made wildlife watering stations (guzzlers and water tanks from pipelines), and controlled burning for sage grouse habitat improvement. A series of waterfowl nesting structures and brushpiles for small mammals have also been established. Vegetation plantings have been done for bald eagle winter roost replacements (ponderosa pine); small mammal and bird habitat)willows, cottonwoods, chokecherry, rose and juniper), and riparian improvement (willow, cottonwood and cattails).

On TBNG there are several man-made reservoirs which support fisheries. Many of these are inside wildlife exclosures (Table 3.13).

TABLE 3.12 EXPECTED OCCURRENCE OF CANDIDATE SPECIES IN MAJOR VEGETATION TYPES

Species	Upland Shrubland	Upland Woodland	Upland Grassland	Riparian Deciduous Forest
Mountain plover*	X		X	
swift fox			X	
ferruginous hawk*			X	
black tern*				x
loggerhead shrike*	x	X	X	x
long-billed curlew*	x		x	
white-faced ibis*				x
Black Hills red-bellied snake		X	×	x
fringed myotis	x	x	x	
Preble's meadow jumping mouse				x

Adapted from Finch (1992) using Blunt (1980) and Douglas District information. * = known occurrence. Others are within ranges but have no known populations on Thunder Basin National Grassland.

T45 N

T44N

- 7. Hansen Creek (Kegley Draw) 17. Meadow Creek 27. Centennial Park 8. Harrison Draw 18. Rosecrans windbreak 28. Rankin Dam 9. Hayes Draw 19. Rough Draw 29. Brown Reservoir 10. Jacob's Reservoir 20. Sandy Draw 30. Upton Clay Pits
 - Monitored in 1992
 - Not monitored in 1992

Source: Douglas Ranger District Maps

FIGURE 3.47 WILDLIFE EXCLOSURES

TABLE 3.13 RESERVOIRS AND WILDLIFE EXCLOSURES ON THE THUNDER BASIN NATIONAL GRASSLAND

Reservoir	Wildlife Exclosure
Weston Reservoir	Little Powder Exclosure
Upton Centennial Reservoirs	Centennial Park Exclosure
Upton Bass Ponds	Upton Clay Pits Exclosure
Kellogg Reservoir	Kellogg Exclosure
Kettleson Reservoir	Kettleson Exclosure
Little Thunder Reservoir	Little Thunder Exclosure

AQUATIC BIOLOGICAL DIVERSITY

Aquatic Ecosystem Structure, Process and Function

The purpose of this section is to describe existing aquatic biological diversity on Thunder Basin National Grasslands (TBNG). Data displayed and discussed within this report was obtained from a variety of sources. It must be stressed however, that the amount of aquatic biota sampling on TBNG is very limited and some of the data used in this report is in excess of 15 years old. Despite this, the information is believed to reflect the types of aquatic organisms occurring there.

Data on amphibians was obtained from Wyoming Game and Fish Department, Baxter and Stone (1980), Douglas District Records and from surveys conducted by the Medicine Bow National Forest in the summer of 1992 (Rahel and Keleher, 1992). Fish population data was obtained from historical surveys conducted from the Wyoming Game and Fish Department University of Wyoming Water Center and the Medicine Bow National Forest. Wyoming Game and Fish lake and stream database was queried for more recent fish population data (within the last 15 years). No data was available. Fish population surveys conducted on several Thunder Basin reservoirs in 1992 by the Medicine Bow National Forest was also used. Macroinvertebrate data was obtained by conducting a literature search at the University of Wyoming and from United States Geological Survey (USGS). Information on the type and abundance of algae from selected streams within TBNG was also obtained from USGS. Further information on fish, amphibians and macroinvertebrates is in the Aquatic and Riparian Report (Speas, 1992).

Aquatic ecosystems on Thunder Basin have evolved over millions of years. Many factors can affect the structure, processes and function of aquatic ecosystems. Karr et. al.,(1983) grouped these factors into the following 5 classes:

1. energy source - the type, amount and size of organic material entering a stream from the riparian zone verses primary production of the stream and the seasonal availability of those energy sources.

Mechanism of impact:

- * decreased coarse particulate organic matter
- * increased fine particulate organic matter
- * increased algal production
- 2. water quality temperature, turbidity, dissolved oxygen, nutrients, heavy metals and toxic substances, etc.
 - * expanded temperature extremes
 - * increased turbidity
 - * organic and inorganic chemicals, natural and synthetic
 - * heavy metals and toxic substances
 - # pH

- 3. habitat quality diversity (pools, riffles), substrate type, water depth and velocity.
 - * substrate type
 - * water depth and velocity
 - * diversity (pools, riffles, woody debris)
- 4. flow regime water volume, temporal distribution of floods and low flows.
 - * water volume
 - * temporal distribution of floods and low flows
- 5. biotic interactions competition, predation, disease, parasitism.
 - * competition
 - * disease
 - * predation
 - * parasitism

The landscape pattern of a watershed including its regional topography, soil, vegetation types and land uses determine to a large extent the biological integrity of waterways. Human activities can alter the temporal and spatial landscape pattern and thus the biotas of streams and rivers. To a great extent, the impact of human activities vary among stream and other waterbodies based on their size and the magnitude of the impact. Despite this, these five classes of environmental factors that affect biota can work together to drastically alter ecological health of a watershed.

Aquatic Species Composition

Algae

Information on algae is sparse. United States Geological Survey have collected phytoplankton or periphyton data on six streams in TBNG. Diatoms are a algae in periphyton (algae attached to objects, such as rocks and logs) and phytoplankton (algae suspended in water) communities in the area, which usually dominate the communities in perennial streams. Green algae, blue-green algae, and euglenoids commonly dominate the periphyton and phytoplankton communities of ephemeral and intermittent streams, which represents the vast majority of streams on TBNG. Dominance of green and blue-green algae generally is considered to be a sign of organic enrichment whereas a relatively diverse diatom community generally indicates an enriched environment. No streams on TBNG receive sewage effluent, the commoness of green and blue-green algae is most likely the result of natural environmental conditions (e.g. high water temperatures) and fecal waste from livestock and wildlife.

Amphibians

Amphibians on Thunder Basin National Grasslands include salamanders, spadefoot, true toads, true and tree frogs (Table 3.10). The only

salamander on the Grasslands (tiger salamander) generally requires a moist environment but will inhabit both terrestrial and aquatic habitats during various stages of it life history. Neotenic tiger salamanders have been documented to occupy small fishless reservoirs on the TBNG (Rahel and Keleher, 1992). The plains spadefoot toad, Great Plains toad, and the Woodhouse's toad all inhabit neighboring grassland and/or sage brush communities. Breeding typically occurs in temporary water habitats with the exception of the Woodhouse's toad which is known to use perennial ponds associated with floodplains (Baxter and Stone 1980). Both species of frogs located on the Grasslands are found in or near permanent water. All amphibian species found on the Grasslands are considered common.

Fish

All known fish species on Thunder Basin National Grassland are listed in Table 3.10. Twenty-three species are believed to be endemic to Thunder Basin National Grasslands streams. Additional species have been introduced to the area; the majority within impoundments and small stock ponds.

Macroinvertebrates

Macroinvertebrate sampling within TBNG has been conducted by USGS, Wesche and Johnson (1980), and Wangsness and Peterson (1980). Table 3.14 is a list of invertebrates collected from streams and reservoirs on TBNG. The major macroinvertebrate types expected in any streams throughout Thunder Basin are: snails (Physa, Lymnaea, Gryaulus), mayfly nymphs (Caenis), beetle larvae (primarily Dubiraphia), shrimp (Hyallela azteca), clams (Sphaerium and Pisidium), oligochaete worms and damselfly nymphs (primarily Ischnura). These invertebrates are common forms living in or near mud substrates of ponds, lakes and streams in much of the United States where organic debris is available as a food source (Hynes 1970; Pennak 1953). They are tolerant of a wide range of environmental conditions, including such things as high turbidities and temperatures, low dissolved oxygen and poor diversity of aquatic habitats.

Streams

Streams on TBNG can be divided into 5 broad types each of which reflect specific fish assemblages (Wesche and McTernan, 1977). These categories are:

- 1. permanent clear water pools on ephemeral or intermittent streams
- 2. ephemeral pools on ephemeral streams
- 3. permament turbid water pools on intermittent streams
- 4. turbid water perennial streams with deeply incised channels
- 5. turbid water perennial streams with less incised channels.

TABLE 3.14 Taxonomic classification of macroinvertebrate benthic fauna from selected streams in Thunder Basin National Grassland.

(Data from Wesche and McTernan, 1977; Wangsness and Peterson, 1980)

Order	Family	Genus
Diptera (two-winged flies)	Chironomidae	Chironomus sp. Pentaneura sp.
	Ceratopogonidae	Palpomyia sp. Dasyhela sp.
	Tabanidae	Chrysops sp. Tabanus sp.
	Culicidae	Chaoborus sp.
	Dolichopodidae	
Manager The Control of the Adv.	Glossiphonidae	
	Stratiomyidae	
Coleoptera (beetles)	Elmidae	Dubiraphia sp.
	Hydrophilidae	Berosus sp.
	Dytiscidae	Hydaticus sp.
	Haliplidae	Haliplus sp.
Ephemeroptera (mayfly)	Caenidae	Caenis sp.
Dodonata (damsel and dragonf		Name of the second
	Coenagrionidae	Ischnura sp. Argia sp.
	Libellulidae	Somatochlora sp.
	Gomphidoe	Gomphus sp.
	Aeshnidae	Aeshna sp.
Pricoptera (caddisfly)	Psychomyiidae	Polycentropus sp.
	Lymnephilidae	Lymnephilus sp.
	Phrygameidae	Phryganea sp.
	Hydropsychidae	Cheymatophysche sp.
Hemiptera (water bugs)	Corixidae	_
	Gerridae	
	Veliidae	Microvelia sp.
Amphipoda (shrimp)	Talitridae	Hyallela azteca
Hydracarina (water mites)	Limnocharidae	Lymnochares sp.
ligocheata (worms)	Tubificidae	
irudinea (leeches)	Glossiphoniidae	water the second
ulmonata (snails)	Physidae	Physa sp.
	Planorbidae	Gyraulus sp.
	Lymnacidae	Lymnaea sp.
	Ancylidae	Ferrissia sp.
Sphaeriacea (clams)	Sphaeriidae	Sphaerium sp.
Megaloptua(hellgramites)	Sialidae	Sialis fuliginosa

Shannon-Weaver Diversity Index values and stream condition are based on Magnum (1975). Biological diversity of each habitat type is discussed below.

Diversity Index	Stream Condition
3-4	Excellent
2-3	Good
1-2	Fair
<1	Poor

Habitat Type 1

On permanent, clear water pools on ephemeral or intermittent streams, fish communities are variable depending upon whether game fish have been introduced. Fish communities within these habitats tend to be some of most diverse on the TBNG with an excess of 6 species present. On perennial reaches of Little Thunder Creek, carnivores such as green sunfish, largemouth bass and bluegill have been collected. These introduced predators are believed to have originated from reservoirs existing within the drainages. The only endemic predator collected from streams having permanent clear water pools are black bullhead. Herbivores such as fathead minnow exist in variable numbers depending upon the proportion of predators within the local community. Omnivores such as sand shiner and white sucker exist in lower numbers and constitute less than 20 percent of the community composition. All of the fish taxa collected in these habitat types have an intermediate to high tolerance to non-point or point pollution.

Macroinvertebrate communities in permanent clear water pool habitats are some of the most diverse on the TBNG, with over thirty taxa. Freshwater snails (primarily Physa and Lymnaea typically dominate by numbers and biomass). Other taxa that commonly appear in samples include freshwater clams (Pisidium), freshwater shrimp (Hyallela azteca), midge larvae (Chironimids) mayfly numphs (Caenis), and at least three species of caddisflies.

The presence of aquatic vegetation, more stable substrate and typically less turbid water conditions in this habitat type, provide conditions for a greater abundance of invertebrates than the other aquatic habitat types. Macroinvertebrate diversity values range from 2.0 to 2.5 indicating high-fair to low-good stream condition.

Habitat Type 2

On ephemeral pools on ephemeral streams fish communities are not diverse and generally composed of three or less species. On areas in which fish population data has been collected (e.g. School Creek), white suckers dominate both numbers and biomass. Black bullhead and fathead minnows exist in lower numbers. The reduced diversity of fish species is most likely attributed to extensive channel dewatering.

During late summer, only shallow pools with poor water quality remain within these habitat types.

The ephemeral pool and ephemeral stream habitat type has twenty-two macroinvertebrate taxa. Freshwater snails constitute the predominant Other taxa include Chironomid larvae, oligochaetes amd caddisfly larvae. Wesche and Johnson (1980) found the general trend for macroinvertebrates in such habitats was for lower biomass and numbers in spring and early summer with increase peak annual concentrations in fall and winter. He hypothesized these fluctuations to result from adaptations in invertebrate life history patterns which cope with the intermittency of water supply. This strategy involves overwintering in the late stages of larval development, followed by emergence of adults in the spring to coincide with periods of runoff. Adults reproduce when the availability of water insures both hatching success and distribution of the species. Under such extreme conditions, diversity of macroinvertebrates is low and diversity values range from 0.5 to 1.5, indicating stream conditions from poor to highfair.

Habitat Type 3

Permanent, turbid water pools on intermittent streams probably constitute the vast majority of fish bearing streams on the TBNG. Lower reaches of Antelope Creek and much of the Cheyenne River within the Grasslands contain this type of habitat. Fish communities are again variable but are less diverse than areas on Antelope Creek where permanent clear water pools exist. Sand shiners and fathead minnows dominate these fish communities. These fish represent both herbivorous and omnivorous trophic classes. Flathead chub and plains killifish are carnivorous species within these habitats. Both species feed primarily on insects while flathead chub also feed on small fish.

Nineteen macroinvertebrate taxa have been collected from permanent, turbid water pools on intermittent streams. These stream types have aquatic faunal assemblages similar to streams with ephemeral pools. An example is the intermittent reaches of Antelope Creek near its confluence with the Cheyenne River, and the Cheyenne River main trunk). Freshwater snails (Physa) are the most abundant by number. Chironomid larvae, Dipteran larvae, mayfly larvae, freshwater clams and oligochaete worms are commonly found in these habitats. Numbers of individuals tend to be low. Diversity values range from 1.5 to 2.0, indicating high-fair stream conditions.

Habitat Type 4

Perennial reaches, with turbid water pools and a deeply incised channel, are another habitat type on the Grasslands. Examples are reaches of Little Powder River upstream of Weston, Wyoming and Beaver Creek within the grasslands boundary. Eleven species have been collected from these habitat types. Sand shiners (omnivore) and fathead minnows (herbivore) comprise the greatest proportion of the fish species collected in Little Powder by number (> 95 percent).

Carnivores include black bullhead and green sunfish. The latter of which have been introduced within many areas in both drainages. Carnivores comprise less than 3 percent of the populations sampled. White sucker (omnivore) and northern redhorse (omnivore) have been collected in the Little Powder River near Weston. These seem to be transitory.

Macro-invertebrate communities in turbid-water pools in deeply incised perennial streams tend to vary more with seasonality than do invertebrate communities in other habitat types. For example, macroinvertebrate sampling conducted by USGS and Wesche and McTernan (1977) revealed that beetle larve (Dubiraphis) were most abundant in the spring on reaches of the Little Powder River near Weston, Wyoming. In fall and winter, Chironomid larvae were most abundant. Freshwater snails (Lymnae and Physa) and oligochaete worms were abundant throughout the year. Other taxa sampled in these habitat types include mayfly numphs (Caenis), alderfly larvae (Sialis), water mites (Neumania and giant water beetles (Belastoma). At least nineteen taxa have been collected from this habitat type. Species diversity values range from less than 1.0 in the spring to 1.0 - 1.5 in the fall. These range indicate low-fair conditions.

Habitat Type 5

The final stream habitat type existing on Thunder Basin National Grassland is turbid water pool on perennial streams with less severely incised channel. Examples of a stream which contains these habitat types are lower sections of the Little Powder River near Weston, Wyoming. A total of 9 species have been collected at one time or another on this section of stream. Fish populations tend to be highly variable however due to the natural movement of fish into and out of these stream sections. Carnivores occurring in these waters are black bullhead, flathead chub, green sunfish, goldeye and stonecat. Carnivores represented less than 15 percent of the fish communities sampled. Omnivores such as sand shiner and white sucker and northern redhorse comprise the highest percentage (> 60%) of the community followed by herbivores such as fathead minnow, plains minnow, and river carpsucker. As in other sections of the Little Powder River, northern redhorse are in low numbers and appear to be transitory to the area. Goldeye is considered rare by Wyoming Game and Fish Department.

Similar trends in macroinvertebrate communities for perennial reaches with turbid water pools along deeply incised channels are also seen on perennial reaches less deeply incised. Chrionomid larvae are the most abundant year-round and beetles are numerous. Caddisflies, mayflies and dragonflies have also been collected, but generally occur in low numbers. At least twenty-one taxa have been collected from this habitat type.

Reservoirs

Reservoirs on the Grasslands can be categorized into 3 groups based on their ability to support fish populations. Two of these types (warmwater and coldwater) support fish. The third type does not.

Warmwater fisheries reservoirs typically contain largemouth bass, green sunfish, black bullhead and in some instances white sucker and common carp. These reservoirs usually thermally stratify during the summer months with deeper portions of these reservoirs becoming anoxic (lacking oxygen). Alkalinities are moderate to high as is hardness. Cold water fisheries are much fewer in number than warmwater fisheries and usually contain brook or rainbow trout. These reservoirs are usually spring fed, deep (>15 feet), and contain hard waters. Despite their depth, many of the cold water reservoirs are susceptible to winter kill. The last type of reservoir existing on the Grasslands are fishless. These reservoirs historically supported fish populations but have filled from sediment produced from the drainage. Turbidities are high unless sufficient aquatic vegetation has developed to stabilize the shoreline. In instances where sufficient shoreline vegetation has developed, these reservoirs have developed into excellent wetlands. Amphibians such as leopard frogs and tiger salamanders utilize these habitats.

Benthic invertebrate communities are similar for fishless and fishbearing reservoirs. Snails, midge larvae, dragonfly and damselfly larvae and amphipods typically occur. Zooplankton typically consist of copepods, cladocerans (water fleas) and corixid beetles. Zooplankton in fishless reservoirs generally have large body size because of lack of predation by fish.

HISTORICAL CONSIDERATIONS FOR BIOLOGICAL DIVERSITY

The Thunder Basin National Grassland is one of many areas purchased by the Federal Government beginning in 1934 under the Agricultural Adjustment Administration. These lands were acquired by the government during the drought period of the 1930s to enable rehabilitation programs primarily involving erosion control and the return of cultivated lands to range uses.

The lands were transferred to the U.S. Forest Service in 1954 and the Thunder Basin National Grassland became an official unit of the Medicine Bow National Forest in 1960.

A biological diversity assessment must consider the history of the land, because the present state of biological diversity (the full variety of life on the landscape) is a function not only of evolution and environmental constraints, but also of land use history and changes effected by the settlement of the west beginning in the mid 1800s.

The present composition of species, the pattern of plant communities on the landscape, and successional states of these communities has been changed from its presettlement condition because of direct and indirect effects of modern human presence (Cooperrider, 1991). Presettlement

data for plant community composition and structure or wildlife populations and distribution does not exist for the Thunder Basin National Grassland, or for other areas in the Great Plains or Intermountain West, but it is generally recognized that the widespread and pervasive forces of livestock grazing, fire suppression, predator control, herbicide and pesticide spraying, introduction of exotic plants and noxious weeds, water diversion and impoundment projects have caused change. More recently, coal extraction has added a new dimension to biological diversity through total removal of patches of landscape and reclamation of those areas into new landforms reclaimed by reseeding with both native and introduced species.

The effects of these activities are difficult to quantify. Many have caused the alteration or loss of distinct populations or communities. In some cases, for example the bison and black-footed ferret, entire species have been extirpated from their historical range. Alterations of natural ecosystems are less easy to detect and determination of the range of natural variability is more difficult to determine in a grassland or steppe environment than in a forested environment because the effects of change are not as obvious. Grasses or forbs readily recolonize damaged areas and the constant effects of livestock grazing and wildlife use often prevent the establishment and survival of shrub or tree species which would normally form later seral stages. Without fenced exclosures and monitoring data, it is only possible to infer what communities of plants and animals would be present without existing grazing and/or wildlife herbivory. Few studies have been conducted on landscape scale effects of fire suppression in steppe environments in the United States. To the best of our knowledge, no studies have ever been done on the Thunder Basin National Grassland on the effects on biological diversity of the other human-induced activities cited above.

Livestock grazing, prairie dog control by poisoning, shooting, herbicide application to control sagebrush, fire suppression and bounty hunting of predators are specific human activities which directly affect biological diversity by impacting specific populations or by having landscape-wide effects on energy flow, plant species composition and structure and nutrient cycling.

Six areas containing long-term study sites, designed to evaluate the recovery of vegetation after the 1930s drought years, were established in 1936. Each site was 1 square mile in size, and the sites were located in different vegetation types according to the criteria at the time. Iron pipes, placed 0.1 mile apart formed a permanent sampling grid on each site. Species composition and cover was read for a 100 square foot area around each pipe from 1936 until 1943, again in 1965 (Lang, 1973) and they are currently being read again by researchers from the University of Wyoming and the University of Idaho (Fisser et al, 1989). Exclosures were placed at each site between 1941 and 1943.

Lang's evaluation in 1965 on five of the six areas revealed that blue grama (shortgrass) had increased and western wheatgrass, needleandthread and junegrass (midgrasses) had decreased since 1943 on four of five sites which were unplowed rangeland. The previously

farmed site was heavily grazed and there was less perennial grass cover in 1965 than in 1943. Big sagebrush and cactus had both increased both inside and outside of exclosures. The 1987 study (Fisser et al, 1989) on one site, indicated that grass cover thad increased threefold and sagebrush and other woody shrubs had increased four-fold since 1936. Cactus cover increased almost nine-fold.

Aquatic systems have been greatly altered with the loss of much of the riparian cottonwood forest and riparian shrublands of larger streams, the building of reservoirs, increased sedimentation and the introduction of alien fish species. A salient discussion of biological diversity and aquatic management is in Williams and Neves (1992).

The historical considerations are discussed here because biological diversity is a dynamic property of ecosystems at all scales. It has been changed in the past, and it can be changed in the future. We are only beginning to understand the enormity of change that has been brought about by human activities.

LANDSCAPE MODELS, DISTURBANCE AND BIOLOGICAL DIVERSITY

Past models of plant community successional behavior have been based on the succession and climax theory proposed by Clements in 1920 in his classic work on plant succession. Over the years, this linear model of plant community behavior has almost achieved the status of natural law among range managers and its concept and terminology have been incorporated into National Forest Plans for evaluation of vegetation (Moir, 1989).

The climax model assumes that plant communities replace each other over time in an orderly fashion called progression. The stages are called early, mid or late seral stages to describe their relative positions between a denuded state and a climax state. The final community in the series, which will self-perpetuate, is called the climax community. It is also known as potential natural vegetation and is described by a particular community type called a plant association. The progressive succession of communities can be reversed (retrogression). This occurs in the presence of some factor (such as grazing) which presumably moves the communities backwards through succession. Disturbances such as fire or plowing can move the system to an earlier seral stage, but it is assumed that the ecosystem will continue to progress toward the late seral or climax stages.

Another model of vegetation behavior, developed mostly in Australia after several decades of research on arid and semiarid desert, grassland and shrubland, is called the state and transition model (Westoby et al, 1989). Seral stages are recognized in these models, but there can be multiple stable states and application of some forceful event (fire, seeding) may be needed to transition between the stable states. A state-and transition model for a sagebrush-grass ecosystem type has been proposed recently by Laycock (1991). This model is presented in Figure 3.48.

STATE-AND-TRANSITION MODEL FOR A SAGEBRUSH GRASS ECOSYSTEM

(After Westoby, Walker and Noy-Meir, 1989)

Fig. 3. State-and-transition diagram for sagebrush-grass vegetation.

Catalogue of Transitions

- Transition 1—Heavy continued grazing. Rainfall conducive for sagebrush seedlings.
- Transition 2—Difficult threshold to cross. Transitions usually will go through T3 and T5.
- Transition 3—Fire kills sagebrush. Biological agents such as insects, disease or continued heavy browsing of the sagebrush by ungulates could have the same effect over a longer period of time. Perennial herbaceous species regain vigor.
- Transition 4—Uncontrolled heavy grazing favors sagebrush and reduces perennial herbaceous vigor.
- Transition 5—Light grazing allows herbaceous perennials to compete with sagebrush and to increase.

If climate is favorable for annuals such as cheatgrass, the following transitions may occur:

- Transition 6—Continued heavy grazing favors annual grasses which replace perennials.
- Transition 7—Difficult threshold to cross. Highly unlikely if annuals are adapted to area.
- Transition 8—Burning removes adult sagebrush plants. Sagebrush in seed bank.
- Transition 9—In absence of repeated fires, sagebrush seedlings mature and again dominate community.
- Transition 10—Repeated burns kill sagebrush seedlings and remove seed source.
- Transition 11—Difficult threshold to cross if large areas affected. Requires sagebrush seed source.
- Transition 12—Intervention by man in form of seeding of adapted perennials.

Thorough exploration of this concept is beyond the scope of the biological diversity assessment. This information is presented here as a beginning for discussion of the relationship of successional states to biological diversity. The Medicine Bow National Forest Plan has management criteria regarding "horizontal diversity" (successional stages) and also vertical diversity (which is a structural attribute of plant communities and may vary with succession among herbaceous, shrub and tree communities). For this report, it is sufficient to point out that models of successional behavior are important to the interpretation of descriptions of biological diversity and the formulation of management goals for the desired future condition of biological diversity. The landscape mosaic of the Thunder Basin National Grassland is very complex at the community level which is most directly related to projects and management.

CHAPTER IV

AREAS WITH SPECIAL BIOLOGICAL DIVERSITY CHARACTERISTICS

CRITERIA FOR AREA IDENTIFICATION

The descriptions and general discussion of the overall biological diversity characteristics of the Thunder Basin National Grassland presented in Chapter 3 form the basis for the identification of areas with special biological diversity characteristics. Identification of these areas containing uncommon or specialized plant and animal communities with their attendant ecosystem processes and functions, will facilitate development of special ecosystem management considerations which are expected to maintain biological diversity characteristics.

Criteria for identifying areas with special biological diversity characteristics are listed below according to scale, and available information on composition, structure, process and function. These criteria include providing special consideration for: uncommon communities and landscapes; communities and landscapes which are believed to contain sensitive ecosystems; and communities and landscapes which contribute significantly to the mix of biological communities on the Thunder Basin National Grassland.

Scale criteria

Landscape scale (Coarse Filter Approach)

- Patch and/or corridor size
- Patch and/or corridor composition and structure characteristics (community composition, vertical and horizontal diversity)
- Patch and/or corridor position in the matrix
- Degree of isolation of patch or corridor
- Estimated coupling of communities within patch or corridor
- Estimated sensitivity of the patch or corridor to change and recovery (resistance and resiliance of the whole system)
- Existing landscape ecological integrity of the patch and/or corridor (Degree of existing fragmentation and human influences)
- Quality of animal habitat provided by plant communities in the landscape context
- Ecosystem management direction from the Regional and Washington Offices

Community scale (Coarse Filter Approach)

- Kinds of plant and animal communities
- Spatial relationship and size and plant and animal communities
- Condition of plant and animal communities (Existing community ecological integrity and seral stage condition)

Species scale (Fine Filter Approach)

- Plant-and animal species richness
- Plant and animal species with specialized or restricted habitat requirements
- Plant and animal species with small populations or low potential for population increase

Genetic scale (Fine Filter Approach)

- Barriers to movement of individuals or populations
- Factors which may increase the background mutation rate
- Factors which may exterminate or decrease populations which are isolated or have low numbers of individuals.

Composition, Structure, Process and Function Criteria

- Landscape and Community Scales (Coarse Filter Approach)
 - Provision of integrated communities types in specialized, unique landscape patches
 - Maintenence of future options for management of environmentally sensitive areas
 - Provision of current protection against unknown effects for small landscape patches, where intrusions from oil and gas leasing activities and subsequent increased human presence will be likely to cause more impact than on large matrix areas.
- Species and Genetic Scales (Fine Filter Approach)
 - Protection of complexity and interaction of habitat characteristics so that species existing in isolated patches or with special requirements can continue to maintain viable populations.

Vegetation with greater spatial continuity provides a more valuable reservior for biological diversity than small areas with special management for specific species. However, both approaches (Coarse and Fine Filter) have roles as ecosystem management strategies which recognize and perpetuate the biological diversity of particular National Forest management units.

The effects of fragmentation are difficult to assess because they vary with scale; with the needs of species; and with cumulative effects on ecosystem processes and functions. Attributes of fragments include density, isolation, size, shape, aggregation and boundary characteristics. The primary impact of fragmentation at any scale is loss of habitat continuity (Lord and Nelson, 1990).

Although data on the specific effects of fragmentation are sparse for Thunder Basin National Grassland ecosystems, there is a body of scientific studies on many other systems that indicate how complex systems are more likely to be disrupted at a given scale of fragmentation than simpler systems (Harris, 1984; MacArthur and Levins, 1964; Pickett, S.T.A. and P. S. White, 1985; Saunders et al, 1987; and Wilcove et al, 1986). This was an important consideration in identifying areas on Thunder Basin National Grassland needing special biological diversity consideration. Patches of specialized vegetation, and riparian systems have more complexity in a small area than the

matrix and are therefore expected to be more sensitive to both known and unknown effects of fragmentation than the matrix.

AREAS WITH SPECIAL BIOLOGICAL DIVERSITY

The results of the analysis revealed that species richness (numbers of species), as an indicator of biological diversity, should only be one factor considered in evaluating the importance of an area for special management consideration. Some areas which have low species diversity and/or numbers contribute significant biological diversity to the Thunder Basin National Grassland at the community and landscape levels because they have species whose populations, patch size or territories are small and/or whose ecological requirements are highly specialized.

Areas with significant species diversity; areas with patches containing horizontal and vertical structural characteristics different than the matrix of the area; areas with patches where specialized animal and plant species, or uncommon communities are found; and areas where many different plant community types occur in proximity to one another, make significant contribution to the biological diversity of Thunder Basin National Grassland.

The condition of specific areas with regard to impacts from livestock grazing and roads was also a factor for evaluating areas with important biological diversity characteristics. Some attributes which contribute to good land condition and high quality habitat for wildlife species included land areas which: 1. lack public access; 2. occur on clay or shale substrates on which roads become unuseable during wet weather; 3. have rugged topography and 4: have good livestock management.

Other places which have significant biological diversity are lands which have wetland or riparian characteristics. These are all small patches or narrow corridors, and the analysis concluded that biological diversity in these could be adequately protected from oil and gas impacts by Forest Plan Standards and Guidelines and by the siting conditions in the lease terms. Such areas include playas, riparian corridors and habitat for Threatened and Endangered species.

All of the areas identified as having special biological diversity form patches in the landscape matrix of sagebrush steppe and grassland. They are characterized, as a group, by discontinuities in the geologic substrate and by plant and animal communities which represent range limits or remnants of communities which are characteristic of ecosystems east or north of the Powder River Basin, which occur on substrates which are limiting to plant species composition or which contain animal specialists which need communities occurring as islands in the matrix.

Figure 4.1 shows the location and character of the patches which are considered to have special biological diversity characteristics. Riparian corridors and patches also have special biological diversity characteristics, but are not included as specific areas for special management with regard to Oil and Gas Leasing because they already have special management under Forest Plan Standards and Guidelines, EPA

FIGURE 4.1 AREAS WITH SPECIAL BIOLOGICAL DIVERSITY CHARACTERISTICS

- Upton-Osage area: woodland-sagebrush mosaic
 Duck Creek Breaks: woodlands, woody draws, aspen groves, and tallgrass prairie remnants
- 3. Rochelle Hills: woodland-grassland mosaic
- 4. Miller Hills, Cow Creek Buttes and Downs Area: scoria buttes, sandstones, clay and shale badlands, shrubland-woodland mosaic

Regulations, Wyoming State Water Quality Standards and standard oil and gas lease terms.

The general areas with special biological diversity characteristics are:

- The landscape of the Upton-Osage area which includes the woodland-sagebrush mosaic on Cretaceous sandstones, limestones and shales
- 2. The landscape of the Duck Creek Breaks which includes the mosaic of woodlands, woody draws, tall grass prairie remnants, aspen and a variety of grassland and shrub-steppe communities on primarily sandstone substrates
- 3. The Rochelle Hills landscape which includes a woodlandgrassland mosaic on sandstone and scoria substrates
- 4. The landscape complex formed by the Miller Hills, Cow Creek Buttes and Downs Area which includes major scoria buttes, sandstones and the clay and shale badlands formed by eroding Lebo Formation deposits. These areas collectively form landscapes with distinctive biological diversity based in the large number of plant communities which occur on diverse substrates.

SPECIAL STIPULATIONS AREAS AND BIOLOGICAL DIVERSITY

Three kinds of Special Stipulations were identified in Alternatives 3 and 4 of the DEIS. These are: Controlled Surface Use; Timing Limitations; and No Surface Occupancy. Controlled Surface Use stipulations limit road densities and provide for stricter controls on surface disturbance than standard lease terms; Timing Limitations are designed mainly to protect isolated small patches for wildlife nesting or breeding sites; No Surface Occupancy can reserve an array of patch sizes from oil and gas development.

The special stipulations were developed primarily for protection of specific wildlife habitat needs and recreation values. Many of the areas identified in the DEIS for application of special stipulations for recreation, wildlife or soil mass wasting protection were also identified as having special biological diversity characteristics.

Land attributes such as scenic value, quality wildlife habitat, tree and shrub cover and plant community diversity which create value for recreation in the Thunder Basin National Grassland landscape are intimately linked to the biological diversity characteristics discussed earlier. In particular, four of the five Inventoried Semi-Primitive Motorized Areas identified through the Recreational Opportunities Spectrum Process for the DEIS were also found to have biological diversity characteristics which could only be perpetuated by No Surface Occupancy stipulations protecting the existing ecological integrity. Recommendations for use of special stipulations to perpetuate biological diversity on these and additional areas are in Chapter 7.

The second second second

CHAPTER V

ENVIRONMENTAL CONSEQUENCES TO BIOLOGICAL DIVERSITY FROM OIL AND GAS LEASING

GENERAL CONSIDERATIONS

It should be emphasized that the Oil and Gas Leasing EIS is a document that considers environmental, social and other consequences of leasing. Lands available for leasing, are discussed in the DEIS. Please consult the DEIS for more information on the need for oil and gas leasing, the history of past use patterns and a full discussion of Alternatives. Other specialist reports include information on impacts to specific resources such as threatened and endangered species, aquatic and riparian systems, soil and water resources (Byer and Cartwright, 1992; Cartwright, 1992; Speas, 1992; Edwards, 1991).

The environmental consequences to biological diversity from oil and gas leasing must be considered for each scale of biological diversity (landscape, community, species and genetic). Environmental consequences from oil and gas leasing must address impacts on composition, structure, process and function at each scale. Knowledge of direct and indirect environmental effects is minimal to absent for some components of biological diversity. Data with adequate temporal and spatial characteristics to predict and evaluate change is lacking for landscapes and communitis (Coarse Filter levels). Changes in these systems may be subtle and not be evident immediately.

Direct and indirect effects at the landscape scale are primarily on the integrity of whole ecosystems consisting of multiple plant communities; on habitat for wide-ranging species; and portions of aquatic ecosystems where chemicals or sediments tend to accumulate. At the community and species scales impacts of oil and gas leasing are on specific vegetation communities and individual species of plants and wildlife. These impacts will vary according to the life cycle requirements of particular species and the role they play in the structure, process and function of communities with which they interact. Both terrestrial and aquatic species can be affected.

Genetic biological diversity of plant or animal species is not expected to be altered or impacted adversely under any of the Alternatives because there are no significant destabilizing effects on populations, barriers to movements of individuals which might adversely interrupt gene flow, isolating effects, or production of chemicals which would increase the background mutation rate. Gene flow among plant and animal populations is expected to continue at a level which will maintain the present levels of biological diversity if populations are maintained.

ANALYSIS OF THE ALTERNATIVES

The continued leasing Alternatives (1, 2, 3, 4 and 6) differ in the degree to which exploration and development would be allowed. Alternative 5 (No new leasing) would result in the eventual discontinuation of oil and gas leasing as existing leases expire. Direct and indirect impacts apply to all the alternatives with continued leasing.

It is expected that up to 20 wells per year would be constructed under any of the continuing lease alternatives (1,2,3,4 and 6). This would cause an estimated direct disturbance of 20 to 50 acres per year. A summary of the Alternatives with regard to leasing and special stipulations imposed for No Surface Occupancy (NSO); Controlled Surface Use (CSU) or Timing Limitations (TL) as presented in the DEIS is below.

Alternative 1: (No Action) About 320 acres at the Walker Teepee Ring Archaeological Site would be placed under the NSO stipulation. All other areas would be available for leasing under Forest Plan direction. Special protection is provided for nesting and breeding grounds of selected wildlife indicator species, Threatened and Endangered Species and other special interest wildlife species through Forest Plan Standards and Guidelines and Federal Endangered Species Laws.

Alternative 2: (Leasing with standard and special stipulations) About 320 acres at the Walker Teepee Ring Archaeological Site would be placed under the NSO stipulation. Additional smaller sites would be placed under NSO, CSU or TL stipulations for reasons of soil mass wasting or habitat protection for nest sites, breeding sites or critical time periods for wildlife. (Map for Alternative 2 - Appendix E DEIS)

Alternative 3: (Leasing with standard and special stipulations, recreation emphasis). About 320 acres at the Walker Teepee Ring Archaeological ste would be placed under the NSO stipulation. No acres would be placed under CSU for reasons of recreation but about 15,693 acres would have an NSO stipulation applied to Inventoried Semi-Primitive Areas at Cow Creek Buttes and the Miller Hills. About 33 acres of waterbodies in existing reservoirs would be placed under a CSU stipulation. Additional smaller sites would be placed under NSO, CSU or TL stipulations for reasons of soil mass wasting or habitat protection for nest sites, breeding sites or critical time periods for wildlife. (Map for Alternative 3 - Appendix E DEIS and Revisions to ISPM-NSO Areas after the DEIS).

Alternative 4: (Leasing with standard and special stipulations, greater recreation emphasis). About 320 acres at the Walker Teepee Ring Archaeological Site would be placed under the NSO stipulation. About 53,639 acres would be placed under the CSU stipulations for recreation and about 24,304 acres would have an NSO stipulation for Inventoried Semi-primitive Areas at Cow Creek Buttes, the Miller Hills and Duck Creek. About 33 acres of waterbodies in existing reservoirs would be placed under a CSU stipulation. Additional smaller sites would be placed under NSO, CSU or timing limitations for reasons of soil mass wasting, protection for nest sites and breeding sites or critical time

periods for wildlife. (Map for Alternative 4 - Appendix E DEIS and Revisions to ISPM-NSO Areas after the DEIS).

Alternative 5: (No new leasing). Special stipulations are applicable only to new leases. No special stipulations would be needed because no new leases would occur. Forest Indicator species, Threatened and Endangered Species and other selected wildlife species would continue to receive protection under Forest Plan Standards and Guidelines.

Alternative 6: (Leasing with standard and special stipuations only). About 320 acres at the Walker Teepee Ring Archaeological Site would be placed under the NSO stipulation. Threatened and Endangered Species would be protected by laws pertaining to the Endangered Species Act. Forest Plan Sandards and Guideline would be met only to the extent allowed with standard lease stipulations. Thus, no special consideration or protection would be offered to indicator species, Candidate species or other wildlife species under this Alternative.

The features of these Alternatives that interact with biological diversity considerations are:

- 1. The location and numer of acres available for leasing.
- How many acres are affected by special stipulations (NSO, CSU or Timing Limitations) which may eliminate or reduce impacts from oil and gas leasing activities.
- 3. The relationship of areas recommended for special stipulations (NSO, CSU or TL) for reasons of soil mass wasting, archaeology, or wildlife nesting, breeding or critical timing, to:
 - a. landscape patches or corridors with important or unique biological diversity characteristics;
 - communities with unique species composition or sensitive processes and functions;
 - c. species with small populations, specialized habitat or parts of their life cycle sensitive to disruption by indirect, direct or cumulative effects of oil and gas leasing.

On a general scale the continued leasing Alternatives (1,2,3,4 and 6) can be ranked from the most to the least direct and indirect impacts on biological diversity as follows. The criterion used is numbers of acres in each Alternative which limit or prohibit oil and gas exploration and development for both large areas (Coarse Filter level) and individual species (Fine Filter level).

Most

- 5 leasing with standard stipulations only
- 1 leasing consistent with the Forest Plan (No Action)
- 2 leasing with standard and special stipulations consistent with the Forest Plan
- 3 leasing with standard and special stipulationsrecreation emphasis

Least 4 - leasing with standard and special stipulations, greater recreation emphasis

Alternative 5 (No new leasing) may have more short-term impacts because of possible intensified activity before leases expire. Since most of the Thunder Basin National Grassland is currently under lease, these impacts could be substantial if increased exploration and drilling should occur in the near future prior to lease expiration. These impacts could also occur for all other alternatives also.

The scenario for impacts to biological diversity also varies with the likelihood of oil and gas development. The pattern of occurrence of oil and gas plays in upper or lower Cretaceous, or Permian-Pennsylvanian strata a mile or more below the present surface, has no relationship to the patterns on the modern landscape. Known patterns of oil and gas fields, the patterns of producing wellfields and dry hole areas, and the reasonable foreseeable development model developed for the Gas and Oil EIS are shown in Figures 5.1 - 5.6.

These maps are drawn to the same scale as the maps for vegetation, geology, and wildlife distribution presented earlier. The degree of impacts of oil and gas development on biological diversity varies among alternatives as shown above. It also varies with the probability of development as that relates to specific areas and their characteristics of biological diversity.

DIRECT AND INDIRECT IMPACTS ON BIOLOGICAL DIVERSITY ON THE LANDSCAPE AND COMMUNITY SCALES

Special stipulations for CSU and Timing Limitations, Forest Plan Standards and Guidelines and EPA requirements adequately mitigate impacts on individual species and genes (Fine Filter approach). In cases where communities occur in narrow corridors or small patches special stipulations and regulations may be used to protect specific plant community types. They effectively protect a small number of wildlife species with identified nesting or breeding areas.

However, these stipulations and regulations do not address creation of conditions for maintenence of the integrity of whole ecological systems, thereby sustaining the ecological and evolutionary context in which organisms exist and carry out integrated, uninterruped processes. They do not perpetuate the integrated ecosystems which have developed as isolated patches or on specialized substrates.

From a landscape and community (Coarse Filter) standpoint, ecosystem disruption from oil and gas exploration and development of small patches of the matrix (sagebrush -grassland); does not pose substantial threats to the biological diversity of these ecosystems.

The sagebrush-grassland matrix is more dynamic than other shrublands or the woodlands. Patch transitions from grass-dominated communities to sagebrush steppe or vice versa, or recovery from denudation back to grassland or sagebrush steppe are common, and the mosaic in these areas

Upper Cretaceous rocks producing primarily oil
Lower Cretaceous rocks producing primarily oil

Source: Debruin, R. H. and C.S. Boyd. 1990. Oil and Gas Fields Map of the Powder River Basin, Wyoming Geological Survey of Wyoming Map MS-31

FIGURE 5.1 OIL AND GAS FIELDS OF THE CHEYENNE RIVER BASIN

Dry Hole areas (wells that are plugged which are either no longer in production or which were not producing wells)

Source: Douglas Ranger District Maps, 1992

FIGURE 5.2 PRODUCING WELL AND DRY HOLE AREAS Cheyenne River Basin

Source: Oil and Gas Leasing on the Thunder Basin National Grassland Draft EIS June 4, 1992

FIGURE 5.3 REASONABLE FORESEEABLE DEVELOPMENT MODEL Cheyenne River Basin

Lower Cretaceous rocks producing primarily oil

Permian-Pennsylvanian rocks producing primarily oil

Source: DeBruin, R.H. and C.S. Boyd. 1990. Oil and Gas Fields Map of the Powder River Basin, Wyoming. Geological Survey of Wyoming
Map MS-31

FIGURE 5.4 OIL AND GAS FIELDS OF THE SPRING CREEK UNIT

Producing well areas

Dry Hole areas (wells that are plugged which are either no longer in production or which were not producing wells

Source: Douglas Ranger District Maps, 1992

FIGURE 5.5 PRODUCING WELLS AND DRY HOLE AREAS OF THE SPRING CREEK UNIT

Medium Development Potential

Source: Oil and Gas Leasing on the Thunder Basin National Grassland Draft EIS June 4, 1992

FIGURE 5.6 REASONABLE FORSEEABLE DEVELOPMENT MODEL - Spring Creek Unit

can accommodate this type of disturbance easily. Animals displaced by oil and gas activities have choices of nearby similar habitats.

The direct impacts to vegetation on the landscape and community scales are caused by the proliferation of roads and patches of disturbed areas due to the siting of drilling activities and production sites. Since both roads (which are corridors) and drill sites (which are patches) involve removal of the existing vegetation, there is potential for the spread of exotic species and noxious weeds.

Present exotic species and noxious weeds, which are aggressive invaders of disturbed land, include cheat grass, Russian thistle, kochia, leafy spurge and spotted knapweed. To date, none of these has posed a serious problem on existing sites. For information on control of undesireable plant species see Forest Wide Undesirable Plant Species and Noxious Weed Management Program (MBNF Environmental Analysis Report, 1992). (They have been controlled mechanically or by herbicides. Reclaimed sites are required to be seeded by native species. This results in small patches with initially lower biological diversity and areas which will undergo succession affecting horizontal diversity characteristics. The acreages affected are very small in relation to the area of the sagebrush shrub-steppe and sagebrush steppe matrix and grassland areas.

In contrast to the matrix, the impacts of oil and gas leasing on the biological diversity of patches of shrublands and woodlands within the matrix may be more disruptive to ecological compostion, structure, processes and functions. These kinds of communities and landscapes are composed of long-lived woody perennial species and shrubs. Upland shrublands consisting of communities with Douglas rabbitbrush, birdsfoot sagebrush, fourwing saltbush, or skunkbrush sumac, and woodlands with ponderosa pine and juniper, are not as dynamic with regard to patch transitions as the sagebrush matrix, nor is succession as rapid. Many of these communities have not been shown to be replaced in kind after disturbance from road building or drill pads. If parts of these communities are removed, replacement by reclamation and succession is expected to be very slow and may not be achieved within a temporal framework appropriate for management (10 to 50 years).

Certain shrubland communities generally occur on shale or clay substrates, scoria, or soft sandstones. The flatter surfaces within these areas often supports birdsfoot sagebrush, which is a plant community highly specialized to its substrate, of patchy occurrence and uncommon. Areas of shrubland on the eroding Fort Union Formation, in particular the Lebo member in the Cheyenne River Basin, are more likely to be adversely impacted by oil and gas activities than the sagebrush and grassland types.

Woodland communities in the Rochelle Hills, Miller Hills, Cow Creek Buttes and Duck Creek areas form even smaller patches than the shrublands discussed above, and occur as isolated islands. The perennial woody plants which characterize these patches reproduce sporadically in response to mast seed years and climate constraints. Ponderosa pines and junipers in these ecosystems are at species

tolerance limits and may only produce replacement individuals in significant numbers a few times each century. The shrub and herbaceous communities which form a mosaic with these woodlands, create a tight system which provides specialized habitats for animals which have very limited choices for migration if they are displaced by human activities. The limited size of these patches makes then especially sensitive to disruption by roads, drill pads and subsequent human activity which may include increased hunting pressure, poaching or disturbance to restricted wildlife populations.

Woodlands or shrublands on steep slopes will not be affected by oil and gas leasing because soil conservation requirements will prevent roads and drill pads from occurring in those vegetation community types. Woodlands on flatter surfaces and which have dense canopies are likely to be more adversely affected by oil and gas leasing activities than more open woodland types where roads and drill pads may be located in grassy areas of the mosaic.

Birdsfoot sagebrush is the only major plant species which is expected to be directly impacted by oil and gas leasing. Birdsfoot sagebrush communities form small patches on flat or gently sloping surfaces in the badlands of the Fort Union Formation. These are also attractive areas for drill pad sites. Impacts to the populations of Candidate and disjunct plant species can be avoided by inventorying proposed site for these species. For some sites, specific mitigation measures may be possible at the APD stage.

In general, riparian areas, including playas, stream corridors and the riparian deciduous forest type, are not expected to be adversely impacted by oil and gas activities because regulations in the present Forest Plan and stipulations in Alternatives 2, 3, 4 and 6 provide adequate protection from road building and drill pad siting.

IMPACTS TO TERRESTRIAL FAUNA BIOLOGICAL DIVERSITY

Oil and gas leasing activities are not expected to have any direct significant impacts on terrestrial vertebrate species biological diversity, but indirect impacts are anticipated. Impacts on terrestrial invertebrates cannot be evaluated specifically because of lack of information, but no significant impacts are anticipated.

The indirect effects of oil and gas leasing include habitat loss, displacement of populations from road building and drill pad establishment, and increased mortality from road kills, breeding disturbance, harassment and increasing hunting pressure because of the proliferation of roads and ease of access by humans to previously unroaded or poorly accessible areas.

Trends in populations of Ecological Indicator Species are followed because they are expected to indicate trends in succession or condition of various vegetation types. Population changes for Indicator Species may possibly also represent population trends for other wildlife species with similar habitat requirements or life form characteristics.

Table 5.1 illustrates the trends in these indicator species for continental, regional, state, and TBNG populations. Those columns that are blank indicate species for which insufficient data was available to determine trends.

The following Candidate Species are sensitive to impacts by human activities (Finch, 1992);

Ferruginous hawk

Long-billed Curlew

Mountain Plover

Swift fox

Preble's Meadow Jumping Mouse

The types of human impacts to these species are not directly associated with oil and gas development, however, such impacts as hunting/trapping and mortalities increase due to more numerous and improved roads because of oil and gas activities.

Other Candidate Species are listed as likely to be impacted by human activities by Finch (1992) because their habitats are limited or vulnerable to disturbance:

Black Tern Mountain Plover Ferruginous Hawk Loggerhead Shrike White-faced Ibis Fringed Myotis

Preble's Meadow Jumping Mouse.

These habitat impacts are related mainly to agriculture/grazing practices or pest control because they affect large areas. Oil and gas developement is expected to have less impact on these species since ground disturbances associated with oil and gas developement tends to be limited in size to small patches (approximately two acres with associated roads) (see Reasonable Foreseeable Development section of EIS).

With existing proposed stipulations designed to prevent unacceptable impacts to wildlife populations, oil and gas leasing is not expected to have a unacceptable negative impact on wildlife migrations or on corridor use.

Oil and gas leasing and the resulting potential for road development and human intrusion into previously unroaded areas may increase the mortality of many species. Game animal harvest may increase due to the increased accessibility due to new roads and increased human presence. Mortalities are expected to increase for many species due to collisions with vehicles associated with the increased activity.

Oil and gas leasing is not expected to have an effect on the genetic diversity of wildlife populations on the TBNG. Isolated populations already exist, caused by the scattered nature of natural habitat islands. The Black Hills Red-bellied snake is believed to be one such population (Finch, 1992; Behler and King, 1979), and the fringed myotis is also considered to be an isolated population on the TBNG. Based on the Reasonable Foreseeable Development scenerio, these populations should not be adversely affected by oil and gas leasing.

TABLE 5.1 ECOLOGICAL INDICATOR SPECIES STATUS

Species	Continental (%)	Regional (%)	State (%)	TBNG (%)
prairie vole	437 <u>-</u> 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		inc	-
black tailed prairie dog			of - 100 €	inc
sage grouse	-		-	decr
yellow breasted chat	decr (-0.8)	inc (16.3)	decr (-10.7)	-
golden eagle	decr (-0.7)	decr (12.8)	decr (-8.8)	decr
Brewer's sparrow	decr (-3.5)	decr (-10.6)	decr (-9.4)	-
willow flycatcher	-		•	-
house wren	inc (1.4)	inc (0.5)	decr (-6.8)	-
ferruginous hawk	inc (0.5)	inc (3.2)	decr (-4.0)	decr
red crossbill	inc (1.1)	inc (22.3)	decr (-2.7)	-
mountain plover	<u>-</u>	decr	decr (-2.2)	decr
upland sanpdiper	inc (3.7)	decr (-0.2)	inc (0.5)	•
longbilled curlew	decr (-0.7)	decr (-10.4)		-
red-headed woodpecker	decr (-1.2)	decr (-3.0)	decr (-1.8) (1966-1989)	-

Compiled from: National Breeding Bird Surveys; State of Wyoming Game and Fish Department Surveys for Sage Grouse (WY G&F, 1992 Personal communication); Douglas Ranger District Wildlife constract surveys for Golden eagle and ferruginous hawk (1981-1992); Antelope Coal Mine for mountain plover.

inc = increasing
decr = decreasing

^{- =} insufficient data to evaluate population trends

X = no data available

All of the analysis regarding wildlife is done at the Fine Filter (species and genes) level. Mitigation in the Alternatives (CSU, Timing Limitations) is also at the Fine Filter Level.

IMPACTS TO AQUATIC BIOLOGICAL DIVERSITY

A discussion of the potential impacts of oil and gas activities on aquatic community and species diversity is presented below. Aquatic habitat types and the biological communities associated with these habitat types may reflect degradation differently depending upon the current condition of the habitat type and current water quality.

Fish and macroinvertebrate taxa have been classified as tolerant or intolerant according to their presence or absence in various aquatic habitats. Clean water taxa (those which have an assigned tolerance of 4 [Speas, 1992]) or less are given twice the weight as tolerant organisms in the formula:

2(n Intolerant) + (n Tolerant) = Biotic Index

where "n" is the number of taxa in that class (Beck, 1955). Biotic Index Values less than 10 are considered to indicate a polluted stream. Table 5.2 is a general model of habitat type ranges of sensitivity to change in environmental quality.

Tolerance to environmental change is modeled by the presence or absence of invertebrate taxa that are generally believed to be pollution-sensitive such as Ephemeroptera (mayflies), Plecoptera (stoneflies), helgrammites and Trichoptera (caddis flies) or the excess dominance of any particular taxon, especially pollution tolerant forms such as Chironomidae (midges) and Oligocheata (worms). Other indicators of ecosystem health include the composition of algal and fish populations. For example, an overabundance of filamentous algae, green, or blue-green algae is indicative of a nutrient rich environment and usually is indicative of lessened ecosystem health.

Fish species richness and composition provide information on watershed condition because various fish occupy specific positions in the aquatic food web. The array of fishes generally includes species that represent a variety of feeding levels (ominivores, herbivores, insectivores, planktivores, piscivores).

Macroinvertebrate and fish populations as well as water quality, channel form and flow regimes (Wesche and McTernan (1977) were all used to develop the following Pollution Tolerance Models. Because the data presented in these models is an aggregate of data from various sources it is not strictly quantitative. Pollution tolerance levels for macroinvertebrates known to exist in Wyoming have been developed by Plafkin et al (1989), Klemm et al (1990) and from King (1991). Tables 5.3 - 5.8 provide pollution tolerance levels for fish and macroinvertebrates collected on the Thunder Basin National Grassland.

TABLE 5.2 BIOTIC INDICES FOR STREAM POOL HABITAT TYPES. Diversity Index, condition and tolerance of biological communities to environmental change.

STREAM HABITAT	SHANNON-WEAVER INDEX RANGE	STREAM CONDITION	BIOTIC INDEX ²	TOLERANCE
Permanent, clear-water pool on ephemeral or intermittent stream -Little Thunder Creek -portions of Antelope Creek	1.5-2.0	low-good	35	moderate
Ephemeral pool on ephemeral stream -School Creek	0.5-1.5	low-fair	22	high
Permanent, turbid water pool on intermittent stream -portions of Antelope Creek -Cheyenne River	0.5-1.0	low-fair	11	high
Turbid water pool in severely incised reach of perennial stream -portions of Little Powder -Beaver Creek	1.0-1.5	fair	18	moderate
Turbid water pool on perennial stream; less severely incised with lateral erosion -portions of Little Powder	2.0-2.5	Lou-good	22	moderate

¹ representative examples; a comprehensive listing of habitat types for all drainages is not available.

² Biotic index from Beck (1955).

TABLE 5.3 POLLUTION TOLERANCE MODEL FOR FISH AND MACROINVERTEBRATES IN PERMANENT, CLEAR-WATER POOL HABITAT TYPES ON THUNDER BASIN NATIONAL GRASSLAND

STREAM HABITAT TYPE	FISH TAXA	POLLUTION TOLERANCE	MACROINVERTEBRATE TAXA	POLLUTION TOLERANCE
Permanent clear water pools on ephemeral or intermittent stream	Fathead minnow	tolerant	Two-winged flies	
	White sucker	tolerant	Pentaneura sp.	
	Black bullhead	intermediate	Palpomyia sp.	6
	Green sunfish	tolerant	Probezzia sp.	
	Bluegill	tolerant	Dasyhella sp.	
	Largemouth bass	tolerant	Chrysops sp.	6
	Plains minnow		Tabanus sp.	
	Sand shiner	intermediate	Dixe sp.	
	7. 7		Beetles	
			Haliplus sp.	5
			Berosus sp.	
			Hydroporus sp.	5
			<u>Dubiraphia</u> sp.	6
			Donacia sp.	
			Mayflies	
			<u>Caenis</u> sp.	7
AND THE STATE OF			Caddisflies	
			Polycentropus sp.	
			Phryganea sp.	4
			<u>Limnephilus</u> sp.	3
			Damsel and dragonflies	
			Ischnura sp.	9
			Anomalagrion sp.	
			Cordulia sp.	4

STREAM HABITAT TYPE	FISH TAXA	POLLUTION TOLERANCE	MACROINVERTEBRATE TAXA	POLLUTION TOLERANCE
			Water bugs	
	A SHANDS	A STATE OF THE STATE OF	Corixidae	8
			Shrimp	
		g nedle The	Mysliela sztecs	8
			Water mites	
			Neumania sp.	5
			Megapus sp.	5
			<u>Leberta</u> sp.	5
and the state of			<u>Limnesia</u> sp.	5
			Morms	Wall of the same
			Tubidificidae	6-10
			Hirudinea	10
			Sneils	
			Physa sp.	8
			Gyraulus sp.	6
			Lymnaea sp.	6
100			Ferrissia sp.	6
			Clams	
			Pisidium sp.	8

Pollution tolerance levels were obtained from Plafkin et al. (1989), Klemm et al. (1990) and from King (1991).

TABLE 5.4 POLLUTION TOLERANCE MODEL FOR FISH AND MACROINVERTEBRATES
COLLECTED FROM EPHEMERAL STREAMS WITH EPHEMERAL POOLS ON THUNDER
BASIN NATIONAL GRASSLAND

STREAM HABITAT TYPE	FISH TAXA	POLLUTION TOLERANCE	MACROINVERTEBRATE TAXA	POLLUTION TOLERANCE
Ephemeral pool on ephemeral stream	Black bullhead	intermediate	Nidge	
	Fathead minnow	tolerant	Chironomus sp.	10
	White sucker	tolerant	Pentaneura sp.	
91			Palpomyia sp.	6
			Dasyhelea sp.	6
			Chrysops sp.	6 ′
			Nematelus sp.	8
			Beetles	
			<u>Dubiraphia</u> sp.	6
	4		Maliplus sp.	5
81			Celina sp.	6
			Coptotomus sp.	6
		Berosus sp.	5	
			Mayflies	
			Caenis sp.	7
	ACM TO THE REST		Caddisflies	
			<u>Limnephilus</u> sp.	3
4			Water bugs	
			Dipsocoridae	79.
			Damsel and dragonflies	
			Lestes sp.	
			Ischnura sp.	9
			Morms	
			Tubidificidae	6-10
			Sneils	
		The second second	Physa sp.	8
			Gyraulus sp.	6

STREAM HABITAT TYPE	FISH TAXA	POLLUTION TOLERANCE	MACROINVERTEBRATE TAXA	POLLUTION TOLERANCE
Manual Towns			Lymnaea sp.	6
			Clams	
The state of the s			Pisidium sp.	8

Pollution tolerance levels are from Plafkin et al. (1989), Klemm et al. (1990) and from King (1991).

TABLE 5.5 POLLUTION TOLERANCE MODEL FOR FISH AND MACROINVERTEBRATES IN PERMANENT, TURBID-WATER POOL HABITATS ON INTERMITTENT STREAMS ON THUNDER BASIN NATIONAL GRASSLAND, WYOMING

STREAM HABITAT TYPE	FISH TAXA	POLLUTION TOLERANCE	MACROINVERTEBRATES	POLLUTION TOLERANCE
Permanent turbid water pool on intermit-tent stream	Sand shiner	intermediate	Nidge	
	Fathead minnow	tolerant	Pentaneura sp.	
	Flathead chub		Chironomus sp.	10
	Plains killifish		Palpomyia sp.	6
	black bullhead	intermediate	Mayflies	
			Caenis sp.	
			Damsel and dragonflies	
			Coenagrionidae	9
			Water bugs	
			Dipsocoridae	
			Shrimp	
			Hyallela azteca	8
			Moras	
			Tubidificidae	6-10
			Sneils	
			Physa sp.	8
		ra v	Lymnaea sp.	6
Reg.			Class	
			Pisidium sp.	8

Pollution tolerance levels are from Plafkin et al. (1989), Klemm et al. (1990) and King (1991).

TABLE 5.6 POLLUTION TOLERANCE MODEL FOR FISH AND MACROINVERTEBRATES IN TURBID-WATER POOL HABITATS IN SEVERELY INCISED REACHES OF PERENNIAL STREAMS ON THUNDER BASIN NATIONAL GRASSLAND

STREAM HABITAT	FISH TAXA	POLLUTION TOLERANCE	MACROINVERTEBRATE TAXA	POLLUTION TOLERANCE
Turbid water pool on severely incised perennial stream	Black bullhead	intermediate	Nidge	
	Green sunfish	tolerant	Pentaneura sp.	
	River carp- sucker		Chironomus sp.	10
	Northern redhorse		Palpomyia sp.	6
	White sucker	tolerant	Beetles	
	Plains minnow		<u>Dubiraphia</u> sp.	6
	Sand shiner	intermediate	Caddisflies	
	Carp	tolerant	Polycentropus sp.	6
	Flathead chub		Mayflies	
	Fathead minnow	tolerant	<u>Caenis</u> sp.	7
	Longnose dace	intermediate	Damsel and dragonflies	
			Coenagrionidae	9
			Water bugs	
			Corixidae	8
			Belostomatidae	8
			Mellgrammites	
			Sialis fuliginosa	4
			Shrimp	
			Hyallela azteca	8
			Water mites	
			<u>Neumania</u> sp.	5
			Mores	
			Tubificidae	6-10
			Sneils	
			Physa sp.	8
			Lymnaea sp.	6

STREAM HABITAT TYPE	FISH TAXA	POLLUTION TOLERANCE	MACROINVERTEBRATE TAXA	POLLUTION TOLERANCE
		100	Gryaulus sp.	6
			Clams	
			Pisidium sp.	8

Pollution tolerance levels are from Plafkin et al. (1989), Klemm et al. (1990) and King (1991).

TABLE 5.7 POLLUTION TOLERANCE MODEL FOR FISH AND MACROINVERTEBRATE FAUNA IN TURBID-WATER POOL HABITATS OF PERENNIAL STREAMS that are less severely incised and have lateral erosion of the channel. Thunder Basin National Grassland.

STREAM HABITAT TYPE	FISH TAXA	POLLUTION TOLERANCE	MARCOINVERTEBRATE TAXA	POLLUTION TOLERANCE
Turbid water pool on less severly incised perennial stream	Black bullhead	intermediate	Midges	
	Green sunfish	tolerant	Chironomus sp.	10
	White sucker	tolerant	Pentaneura sp.	
	River carpsucker		Palpomyia sp.	6
	Northern redhorse		Chrysops sp.	8
	White sucker	tolerant	Beetles	
	Plains minnow		<u>Dubiraphia</u> sp.	6
	Sand shiner	intermediate	<u>Haliplus</u> sp.	5
4	Carp	tolerant	Mayflies	
	Flathead chub		Caenis sp.	7
	Fathead minnow	tolerant	Water bugs	
	Longnose dace	intermediate	Corixidae	8
	Stonecat	intolerant	Dipsocoridae	799
	gold eye	intolerant	Caddisflies	lag 1-1
			Ptilostomis sp.	5
			Damsel and dragonflies	
			Ischnura sp.	9
			Progomphus sp.	4
	3-39		Macromia sp.	9
			Water mites	
		12.00	Limnochares sp.	5
			Neumania sp.	5
			Shrimp	
			Hyallela azteca	8
			Worms	
			Tubificidae	6-10

TABLE 5.8 FISH, MACROINVERTEBRATE AND SOOPLANKTON FAUNA COLLECTED FROM RESERVOIRS AND STOCKPONDS ON THUNDER BASIN MATIONAL GRASSLAND POLLUTION TOLERANCE MODEL IS ONLY FOR FISH

FISH TAXA	POLLUTION TOLERANCE	MACROINVERTEBRATE TAXA*	200PLANKTON TAXA
Brown trout	intermediate	Ephemeroptera (mayflies)	Copepods
Rainbow trout	intermediate	Odonata (Damsel and dragonflies)	Acanthocyclops vernalis
Brook trout	intermediate	Diptera (Two-winged flies)	Diacyclops bicuspidatus thomasi
Channel catfish	intermediate	Amphipoda (Shrimp)	Diaptomus clavipes
Black bullhead	intermediate	Pulmonata (Snails)	Diaptomus sicilis
Largemouth bass	intermediate	Trichoptera (Caddisflies)	Diaptomus siciloides
Smallmouth bass	intermediate	er er gart er	Eucyclops agilis
Green sunfish	tolerant		Eucyclops speratus
Bluegill	intermediate		Macrocyclops albidus
Black crappie	intermediate		Cladocera
Common carp	tolerant		Alona rectangula
White sucker	tolerant		Alona rustica
Yellow perch	intermediate		Bosmina longirostris
Rock bass	intermediate		Ceriodaphnia guadrangula
			Chydorus sphaericus
			Daphnia pulex
3			Daphnia rosea
			Diaphanosoma brachyuru
			<u>Leydigia laticornis</u>
			Moina micrura
		1	Moina macropoda
			Pleuroxus denticulatus
			Simocephalus vetulus
			Rotifera
			Anuraeopsis sp.
			Ascomorpha sp.
			Asplanchna spp.
			Brachionus spp.

FISH TAXA	POLLUTION TOLERANCE	MACROINVERTEBRATE TAXA*	ZOOPLANKTON TAX
	A DEPOSIT OF THE PROPERTY.		Cephalodella spp.
No. of Coppe			Colurella spp.
			Conochilus sp.
and the second			Epiphanes sp.
			Euchlanis spp.
			<u>Filinia</u> sp.
			<u>Hexarthra</u> sp.
			Keratella spp.
		70	Lecane spp.
			Lepadella spp.
			Lophocharis sp.
			Monostyla spp.
		Same and the great	Platyias sp.
			Polyarthra spp.
			Synchaeta sp.
and the second			<u>Testudinella</u> sp.
			Trichocerca spp.

^{*} Macroinvertebrate identification has only been conducted down to the Order level of taxonomic classification.

Data from Rahel and Keleher (1992) and King (1990) and Douglas Ranger District files. Pollution tolerance levels for fish are from Plafkin et al. (1989).

Mechanisms and Probability of impact

Human induced alterations, including oil and gas activities, could impact the ecological health of aquatic systems on Thunder Basin. The sensitivity of various aquatic habitats presented in Table 5.2 provides a guide to which aquatic habitats are most susceptible to stress from environmental disturbance resulting from introduced point and non-point pollution sources. If oil and gas activities are determined to pose a threat to water quality, specific mitigation measures for aquatic communities may be required under Section 6 of the Standard Lease Terms. These threats may include impacts to flow regimes or physical, chemical and biological components of the water resource. Mechanisms and probability of impact are discussed below:

Streamflow

Alteration of streamflow regime could alter the types and quantity of aquatic fauna expected in stream habitats currently existing on the Grasslands. For example, if streamflows in perennial streams such as the Little Powder River became intermittent then fish and invertebrates that require habitats associated with perennial streams would decline or be eliminated. Communities inhabiting ephemeral streams are adapted to life in lentic (standing water) habitats, such as pools. The body structure, feeding habits, and respiratory system of invertebrates adapted to lentic environments are different than invertebrates adapted to life in a lotic (flowing water) habitat. Invertebrates adapted to lentic habitats can survive in pools of perennial or intermittent streams, but invertebrates adapted to lotic environments have a large mortality rate in lentic habitats.

The amount of additional disturbed area in Alternatives 1,2,3,4,and 6 would be 20 to 50 acres annually or a total of 300 to 750 acres for the 15-year planning period. In 15 years only 0.05 to 0.12 of the federally owned surface on TBNG would be disturbed from oil and gas activities. Ziemer (1987) found that in areas with precipitation less than 15 inches annually, little (not measurable) effect on peak streamflows occurs. The average annual precipitation for Thunder Basin is approximately 12 inches. There is also no evidence that the removal of grass and shrubs common to TBNG will have any effect on the amounts and timing of waterflow. No direct, or indirect effects to water quantity and flow characteristics is expected from surface disturbance resulting from oil and gas activities.

Changes in Energy Sources

Energy becomes available to aquatic systems from two main sources: photosynthesis by aquatic plants in the stream or lake itself (autochthonous) and decomposition of organic matter imported from outside the stream (allochthonous). These energy sources have a major influence on the structure and function of stream ecosystems. Energy sources can be affected in the following manner.

Riparian Vegetation Alteration

Riparian vegetation may be affected through the construction of roads. Such instances would be rare since every attempt will be made to avoid riparian, wetland and riparian areas as specified by the Controlled Surface Use stipulation for these areas. If riparian vegetation is removed then amount of litterfall from streamside vegetation would be reduced. Macroinvertebrates dependent upon this energy source for food (e.g. shredders) could potentially be reduced. These impacts would be localized and very minimal.

Changes in autochthonous energy sources could occur if the removal of riparian vegetation resulted in an increase in stream temperatures. Under such circumstances, increases in algal growth, especially green and blue-green algae, could occur. Those macroinvertebrates and fish species that are more tolerant of such changes could dominate the community. On Thunder Basin National Grassland streams, temperatures during the summer months commonly approach 30 degrees Celsius (See Appendix I-3 FEIS). This combined with organic enriched waters result in the vast majority of algae communities existing on the Grasslands to be dominated by green, blue-green, and euglenoid algae. Further changes in stream temperature that could result in a significant change in the type and quantity of algae or vascular plants is not likely.

Water Quality

Mechanisms of impact to water quality have been discussed under the Water Quality, Environmental Consequences section of the EIS. Streamflows on Thunder Basin fluctuate widely in water quality depending upon discharge and time of the year (see Appendix G - Oil and Gas Leasing FEIS for TBNG). Most streams are highly buffered, moderately alkaline and can contain high concentrations of calcium, magnesium, sodium and sulfate. Fish and invertebrate communities have adapted to these highly variable water quality conditions. Most macroinvertebrate and fish species occurring within the Thunder Basin National Grassland are considered tolerant to moderate to high concentrations of heavy metals and organic wastes (Plafkin et al., 1989 and Klemm et al., 1990). Through proper mitigation and strict adherence to the CSU stipulation for riparian, floodplains and wetlands, neither water quality nor stream flow are expected to be adversely impacted from oil and gas leasing.

Habitat Quality

Stream habitat conditions range from low-fair to low-good based on visual observations of habitat conditions, the range of macroinvertebrate diversity values and the existence of intolerant fish and macroinvertebrate taxa (Tables 5.2 - 5.8). The mechanisms of impact to aquatic habitat quality are discussed in the Water Quality, Environmental Consequences Section of the DEIS. Generally, streams that have clear water will be the most susceptible to impact from ground disturbing activities. If roads, oil pads, etc. were

constructed adjacent to these habitats increased sedimentation could reduce taxa more sensitive to sediment (e.g mayflies). Aquatic biota in streams that carry high quantities of suspended sediment (e.g. Cheyenne River) would be less affected since these communities have adapted to such conditions.

Produced waters from oil production facilities can exhibit both acute and chronic toxicity to macroinvertebrate, zooplankton and certain fish species (e.g. fathead minnows). Surface discharge from produced waters from oil facilities in Wyoming are regulated through the National Pollution Discharge Elimination System (NPDES) under the auspices of the U.S. EPA and Wyoming Department of Environmental Quality (WDEQ). Studies have been conducted on reservoir aquatic fauna receiving such effluent within the affected watersheds (King, 1990). These studies indicate no change in the abundance or type of aquatic fauna in reservoirs and ponds receiving produced water as compared to those that do not. The type of aquatic communities are more associated with the physical lake environment rather than effects of production water induced changes in water quality.

With close adherence to the CSU stipulation for riparian, wetlands, and floodplains and continued enforcement by WDEQ of the NPDES permitting system little change in water quality that would alter aquatic biota assemblages is expected.

Biotic Interactions

Management activities, including those associated with oil and gas, could alter aquatic fauna species composition and thus biotic interactions through the following mechanisms:

- 1. increased frequency of diseased fish due to reduced water or changes in physical stream habitat.
- 2. increased primary production from algal blooms resulting from increased organic enrichment (e.g. livestock, increased sewage from increased human inhabitation of the area). Under such circumstances, invertebrate functional groups could change (increased numbers of scrapers which utilize algae for food and decreased numbers of shredders who rely primarily on leaves and twigs for food).
- 3. shifts in species composition and relative abundances due to reduced water quality or changes in physical stream habitat. Fish communities would be altered by increased numbers of ominivores and a decrease in carnivores, particularly fish eaters. Those macroinvertebrates more tolerant of reduced water quality (e.g. chironomids) would increase and pollution sensitive species (e.g. mayflies, caddisflies and helgrammites) would decrease or be eliminated.

Management activities, including those associated with oil and gas are not expected to significantly affect water quality or physical stream

habitat. No significant changes in species composition or relative abundance of organisms is expected to occur.

SUMMARY OF ENVIRONMENTAL CONSEQUENCES

The mitigation measures contained in Forest Plan Standards and Guidelines and standard lease terms address mitigation for biological diversity concerns mainly at the species level for specific species, or at the community levels for some communities, in particular, aquatic communities. Special stipulations for controlled surface use and timing limitations are applicable mainly to species biological diversity concerns. These special stipulations have some limited applicability to community level concerns for both plant and animal biological diversity components for both terrestrial and aquatic systems.

Adverse impacts at the Coarse Filter Level (landscape and community) visibly affect groups of terrestrial plant communities which collectively form patches of landscape which are different from the sagebrush-steppe matrix of the Thunder Basin National Grassland. These adverse effects include fragmentation of these landscapes, degredation of existing ecological integrity and unknown effects on other dimensions of ecosystems such as soils, energy and nutrient flows and organisms interactions. As a result of changes in composition, structure, processes and functions of the vegetation landscape components, animal populations in these patches may be directly or indirectly adversely affected.

Adverse impacts at the Fine Filter Level for some terrestrial vertebrates (threatened and endangered species, some indicator species, other selected species) and aquatic organisms, can be mitigated adequately using Forest Plan Standards and Guidelines, standard and special lease stipulations (CSU and Timing Limitations) and Threatened and Endangered Species Laws. Since few data exist on many species, including some National Forest indicator species, specific adverse effects cannot be predicted for most species. Populations of animal species which can utilize early seral stages or which are tolerant of noise and human activity may increase.

Adverse impacts on aquatic landscapes and communities and their associated ecosystem functions can be adequately mitigated through Forest Plan Standards and Guidelines, State Water Quality regulations, standard lease terms and special stipulations.

Alternatives 1 and 5 provide the least mitigation for direct and indirect impacts of oil and gas leasing on biological diversity because only the provisions of standard lease terms, Forest Plan Standards and guidelines and provisions of laws such as the Clean Water Act, the Endangered Species Act and State Laws would be applied. Alternative 2 provides more mitigation than Alternatives 1 or 5 because of the application of special stipulations for Controlled Surface Use, Timing Limitations and No Surface Occupancy for specific species or restricted, specific sites. All three of these alternatives contain

mitigation measures focused mainly at the species (Fine-filter) level of biological diversity.

Alternatives 3 and 4, because of the larger patches to which Controlled Surface Use or Timing Limitaitons would be applied, provide the best mitigation for impacts to biological diversity. Alternative 4 was the preferred Alternative presented in the DEIS, for perpetuation of biological diversity. The application of No Surface Occupancy to landscape patches, the size of which permits inclusion of whole or nearly whole ecosystem units (consisting of interacting communities of organisms which differ in composition, structure, processes and functions from the surrounding landscape matrix), promotes the perpetuation of biological diversity better than the Alternatives which have mitigation measures applicable only to specific species or small areas. We recommend modification of boundaries and addition of another area to those proposed in Alternative 4, in order to adequately mitigate impacts on biological diversity.

CHAPTER VI

CUMULATIVE EFFECTS

Cumulative effects on biological diversity, from human activities, result from impacts through time from grazing of domestic animals, hunting, animal damage management, fire suppression, water diversion and water development, coal, uranium and bentonite mining, use of herbicides, roads, off-road vehicles, and oil and gas leasing. These effects cause changes in the natural order on many different scales.

The effects range from changes in gene pools and differential selection of animal or plant species to landscape scale changes which are based on changes in the composition and structure of plant and animal communities. Changes in composition and structure may be from direct changes in the condition, seral stage or type of plant communities; from the interactions of plant and animal communities or from changes in aquatic and riparian systems discussed in the previous chapter.

Cumulative effects are unavoidable because of co-occurring activities and the interactions of different activities over time. The existing biological diversity is partly a function of the summation of previous cumulative effects. The issue is how much alteration of the present biological diversity conditions is acceptable because of the additional effects of continued oil and gas leasing.

The areas affected by coal, uranium, bentonite mining and scoria pits are shown in Figure 6.1. The coal mines affect shrublands with Douglas rabbitbush, yucca, birdsfoot sagebrush, skunkbrush sumac; communities on scoria and riparian areas and dissected sideslopes especially along Antelope Creek, Porcupine Creek and Black Thunder Creek. Plant and animal communities in the coal-mined areas are being completely removed. Replacement is generally with simpler systems which are basically grasslands with minor shrub and forb components. Although the land is being returned to productive use, the manmade ecosystems do not replace the former biological diversity. Birdsfoot sagebrush, Douglas rabbitbrush and skunkbrush sumac are three community types which occur in small patches on specialized substrates and which are being decreased in both size and extent due to coal mining.

The uranium mine is located mainly in the sagebrush matrix. The bentonite mines are located in the woodland-sagebrush mosaic of the Upton-Osage areas and scoria pits form very small patches of disturbance in scattered locations, mostly near the coal mines.

Cumulative impacts from the mining activities are restricted to very specific locations because of the distribution of the locatable minerals. In contrast, oil and gas leasing cumulative effects, while not affecting as many actual acres as mineral mining, affect the whole landscape because the roads, drill sites and pipelines accumulate as many small sites and corridors over the entire area. Thus, the impacts

- Coal Mine Lease Boundaries
- Bentonite Mine General Areas
- Uranium Mine Lease Boundary
- · Scoria Pits

Scoria Pits:

- 1. Steckley Road Pit
- 2. School Creek Pit
- 3. Dull Center Pit
- 4a. Lady Bird Pit
- 4b. Lady Bird Pit
- 5. Keyton Pit
- 6. Down-by-the Railroad Pit
- 7. Beckwith Pit
- 8. Wyoming Highway Dept. Pit
- 9. Wyoming Highway Dept. Pit

Source: Douglas Ranger District Maps and Files, 1992

FIGURE 6.1 LOCATIONS OF COAL, OIL AND BENTONITE MINES AND SCORIA OR SAND PITS

146

to landscape, community, species and genetic biological diversity are inherently different because of the different spatial patterns of the activities.

From 1986 through near present, about 37 wells were drilled in the TBNG. Of these, only 7 were producing wells. The individual well sites averaged about 73,000 square feet or between 1.5 to 2.0 acres each. New roads to the sites usually affect 0.36 miles distance on federal surfaces. (A factor of 1.455 acres per mile of road may be used for low-specification road disturbance estimates). The gas pipelines have a 20 feet ROW and usually average just under 1000 feet distance on National Grassland surfaces. For each well site, one can estimate the usual area affected by the disturbance.

The MBNF staff estimates between 10 to 20 wells per year (or less) would normally be constructed (based on previous APDs). On a cumulative basis then, one can predict that between 20 and 50 acres of soil-plant (biological) resource would be disturbed yearly. In Plant Community Development on Petroleum Drill Sites in Northwestern Wyoming, Smith and others (1988) found that "Both soils and vegetation were altered by drilling activities. It was also found that all of the drilling-activity disturbed sites had successionally different vegetation than the undisturbed sites. The sagebrush disturbed sites were progressing faster to undisturbed conditions as compared to the coniferous sites. Also, "seeding and establishment of introduced grass species on disturbed sites did not prevent natural recolonization of native species".

One study suggests that in stripped topsoil (stored for several years), the viable seed count will be decreased significantly, except that seed within the stored-topsoil surface. Similiarly soil biological diversity, expressed as the number of plant species (richness) represented may also decrease in that time period (Dickie, et al, 1988). The stored topsoil seed bank can be maintained largely intact, if the storage period is no longer than a few months. Soil mycorrhizal components are also diminished in stored soils.

Reclamation is required for oil and gas sites and pipelines as well as for locatable mineral mining. Reclamation generally results in a change in biological diversity and simplification of plant communities.

For a discussion of longer-term effects of soil-biological resource, refer to Schafer, et.al. (1980). Reclaimed mine sites were examined one (1) to fifty years after reclamation. The morphology and genesis of the minesoils were found to have unique morphological properties. "Organic C content from 0-10 cm soil depth reached levels found in natural soils within 30 years..." The equilibrium of the 20-50 cm depth may take another 400 years or so. "Litter accumulation was common under pioneer vegetation on minesoils resulting in wide C:N ratios; reduction inavailable N; successional stagnation; and reduced plant community production. Soluble salts were leached downward in minesoils in tens of years, but thousands of years will probably be required for carbonate removal to occur in the upper 50 cm. Soil structure developed more quickly near the soil surface (10-50 years)

than below 10 cm (50-200 years), and was attained sooner in clayey than in sandy minesoils. Many characteristics of minesoils are expected to always be different from natural soils. Well-designed minesoils can be highly productive, however, in a few cases perhaps exceeding the potential of natural soils" (Schafer 1980).

Mitigation measures applied at the APD stage are contained in Appendix E of the DEIS. Rehabilitation measures are designed stabilized soils and to reclaim the sites to productive rangeland and/or wildlife habitat. Under leasing Alternatives, rehabilitation of disturbed lands, whether linear or spatial, will emphasize "natural" or somewhat pre-existing conditions. Cut and fill areas will be re-contoured to a specified gradient consistent with the natural landscape.

Creation of landform diversity enhances potential for biological diversity when reclaiming disturbed lands. Use of native grass, forb or shrub species will be emphasized, as will be non-competing or non-increasing annuals. The following guidelines are from Edwards and Sullivan 1992, Sample Mitigation Measures which may be Applied at the APD Development Stage:

"Recontour disturbed areas to roughly pre-existing topographical conditions, unless otherwise approved by the FS Administrator. The reclaimed area must be meta-stable and not have large rills (or gullies) evident.

"Residual highwalls or bluffs (if applicable) may be approved on a case-by-case basis by the FS Administrator.

"Insure that mass wasting potential is minimized (meta-stable) or the potential is at least similiar or better to pre-existing conditions.

"Establish an acceptable level of long-term visual quality by mitigating the visual contrast created by surface disturbance and the reclamation. Soil colors exposed by cut slopes shall meet visual requirements (post rehabilitation) as mandated by the FS Administrator. The reclaimed landscape should have characteristics that approximate the visual quality of the adjacent area with regard to location, scale, shape, color, and orientation of major landscape features. The reclaimed landscape should meet the needs of the post disturbance land use. Further information is found in LANDSCAPE DESIGN GUIDELINES.

"The <u>Standard Lease Terms</u> require that the operator '...conducts operations in a manner that minimizes adverse impacts to the land, air and water...and other resources...' (40CFR 1505.2 and 1508.20).

"Seeding: "The following species are generally approved. Other seed mixes may be approved or required by the FS Administrator:

Artemisia frigida
Rosa woodsii
Regreen (lingering annual)
Agropyron smithii
Stipa viridula
Bouteloua gracilis
Eurotia lanata
Artemisia ludoviciana

Grazing of domestic livestock has created long-standing and pervasive changes to the biological diversity of the Thunder Basin National Grassland, affecting plant community composition, seral stage, vegetation condition, nutrient cycles, biomass production, and ecosystem energy flows for both terrestrial and aquatic ecosystems. Oil and gas leasing is not expected to significantly change the patterns already in place due to livestock grazing. Livestock grazing affects landscape, community and species biological diversity by direct, differential impacts on plant and animal species. These effects aggregate through the community and landscape levels over all land areas, as contrasted with the landscape wide-patch and corridor effects of oil and gas leasing and concentrated patch effects of coal, bentonite and uranium mining.

Fire suppression and use of herbicides are two other contibuting factors to cumulative effects on biological diversity. Oil and gas leasing is not expected to alter the patterns from these activities.

Hunting and animal damage control affect the population structure and distribution of specific animal species. Oil and gas leasing is not expected to alter patterns created by these ongoing activities.

Perhaps the most important cumulative effect of oil and gas leasing is the increase in roaded areas and drill pad sites which fragment communities and landscapes. While these activities are not expected to cause serious disruption at the species level, especially with the application of CSU and timing stipulations to protect wildlife species of concern, they do physically fragment communities and landscapes. The total spectrum of effects of this fragmentation is not known.

Consideration of these cumulative effects on the range of natural variability of seral stages and community types for the matrix and patches; and retention of the existing biological diversity and ecological integrity for identified patches of special biological diversity suggests that a combination of Coarse and Fine Filter Approaches is appropriate.

The evaluation of the Alternatives proposed in the DEIS with regard to mitigation of cumulative effects on oil and gas leasing on biological diversity is the same as for direct and indirect effects discussed in the previous chapter. Alternative 4 of the DEIS was the preferred Alternative for biological diversity considerations and we recommend some adjustments in the boundaries of the NSO areas and addition of an another area.

CHAPTER VII

RECOMMENDATIONS FOR MITIGATING EFFECTS OF OIL AND GAS LEASING ON BIOLOGICAL DIVERSITY

INTRODUCTION

The specific recommendations in this chapter are based on an analysis of the environmental consequences of oil and gas leasing on biological diversity at the landscape and community (Coarse Filter) and species and genetic (Fine Filter) levels. No impacts on biological diversity are anticipated at the genetic level.

A combination of Coarse and Fine Filter Approaches is recommended to maintain biological diversity. The recommendations for perpetuation of biological diversity are based on:

- Retention of the existing biological diversity and ecological integrity for identified patches of special biological diversity;
- Consideration of direct and indirect environmental consequences and cumulative effects of oil and gas leasing on the range of natural variability of seral stages and community types for the matrix and patches,
- Special consideration for ecotones (edges) where there is high species richness
- Protection of the interactions of communities with each other
- Prevention of loss of, or high impacts to, communities where community interactions are unknown
- Prevention of the loss of multiple-use management opportunities because of disruption or destruction of uncommon communities
- Prevention of damage to existing uncommon communities
- Consideration of needs of specific species
- Perpetuation of small and/or isolated populations
- Allowing oil and gas exploration and development within the interior of the extensiive matrix where the overall impact is expected to be less

The Coarse Filter Approach is to recommend No Surface Occupancy Stipulations for several landscape patches with special biological diversity characteristics. The Fine Filter Approach is to apply Controlled Surface Use and Timing Stipulations in conjunction with Forest Plan Regulations and Guidelines, EPA and Wyoming Water Quality Regulations and the terms in the

standard lease for protection of specific species and small patches and corridors.

The biological diversity in riparian corridors less than 400 m wide, and playas, is expected to be protected adequately by requirements for protection of wetland, riparian and wildlife areas in the Forest Plan, by constraints for drill pad siting in the lease terms, and special stipulations. There should not be negative impacts to aquatic biological diversity if EPA regulations and Forest Plan standards and guidelines are followed.

Biological diversity in the matrix of sagebrush shrub-steppe, sagebrush steppe and grassland, is not expected to be significantly disturbed by oil and gas leasing activities. The direct impacts will consist mainly of small patches from drill pad sites, road corridors and pipeline corridors. Reclamation of drill pad sites for these areas results in patches which will undergo secondary succession producing communities which integrate into the matrix in 10 to 20 years. Most direct and indirect impacts are related to the proliferation of roads.

Wildlife populations will be impacted locally in the matrix, but regulations protecting Threatened and Endangered species, and Forest Plan standards and guidleines together with lease term constraints, is expected to protect indicator and other managed species. The areas recommended for controlled surface use stipulations in Alternative 4 should adequately address biological diversity considerations for managed wildlife populations.

Cumulative impacts to biological diversity from oil and gas leasing are not expected to create significant negative effects when added to other ongoing land uses over time in the matrix.

In some areas with woodland vegetation, and areas of high relief, sensitive soils and uncommon vegetation types, negative impacts from oil and gas leasing can degrade ecological integrity and the values associated with biological diversity at landscape, community and species scales.

RECOMMENDATIONS

Alternative Four of the Draft EIS (leasing with standard and special stipulations, greater recreation emphasis) was the Preferred Alternative for biological diversity considerations. We recommend broadening it to include special stipulations to perpetuate biological diversity. Modification of previously proposed boundaries and additional areas for application of No Surface Occupancy stipulations are recommended for maintaining biological diversity.

Areas with important biological diversity characteristics at the landscape, community and species level, are generally coincident with areas that have high scenic and recreational value. In the Powder River Basin landscape, these are areas with discontinuous substrates, high relief, unique erosional forms and plant communities with shrub and tree components providing color, form and texture within the landscape matrix and which provide special habitat variety for animals. Thus, some areas previously identified in the DEIS for wildlife concerns, soil protection and recreational emphasis, and which have been recommended for restricted exploration and drilling

activities through Controlled Surface Use or No Occupancy stipulations, are some of the same areas identified in the biological diversity assessment.

Our recommendations for No Surface Occupancy protect areas where surface disturbance would directly affect landscape scale biological diversity for terrestrial plant and animal communities, terrestrial plant and animal species and the ecological integrity of specific landscape units on the Thunder Basin National Grassland.

Oil and gas production will always have the highest dollar value when compared to all other resources on the basis of small land areas (unit of land). Resource values related to biological diversity are usually based on larger land units involving areas with specific plant and animal communities and species. Dollar values can be placed on some of these resource values (for example hunting or fishing). It is difficult to place dollar values on non-commercial species or on ecological integrity of larger landscape units, yet these need to be included in decisions for land use. The results of the analysis concluded that physical surface disturbance and increased human presence would have greater impacts on some ecosystems than on others.

The total acreage recommended for No Surface Occupancy based on the biological diversity analysis is approximately 24,500 acres, or about 4.2% of the total acreage of the Thunder Basin National Grassland. The Miller Hills and most of Cow Creek Buttes are in areas forecast for low development potential for oil and gas (DEIS). The Downs area is in a medium development potential area. The Duck Creek area includes both medium and high development potential areas (Reasonable Foreseeable Development Model - DEIS). About 44% of the lands in this 4.2% recommendation are in areas with low development potential for oil and gas leasing. Within the approximately 1,800,000 acres inside the planning area boundary of the TBNG, the lands recommended for NSO total about 1%.

Low Development Potential	Acres	% of TBNG
Miller Hills	3,520 ac	0.6%
Cow Creek Buttes	6,970 ac	1.2%
Medium Development Potential		
Downs area	5,080 ac	0.8%
Medium or High Development		
Potential		
Duck Creek Breaks	8,960 ac	1.6%
Total	24,530 ac	4.28

Exploration and development of oil and gas can denigrate biological diversity and ecological integrity of landscapes and communities in both short-term and long-term frameworks for certain ecosystems. In some ecosystems and landform contexts, effects of oil and gas development will have little short-term or long-term effects on biological diversity and landscape integrity because landforms are disturbed very little and succession erases the effects of mechanical disturbance. In other ecosystems, the effects of mechanical surface disturbance severely impact

species, community and landscape biological diversity in both the short and long term.

The Rochelle Hills and Upton Osage Areas

Application of Controlled Surface Use and Timing Limitation stipulations, Forest Plan Standards and Guidelines and the constraints in the lease terms were deemed adequate for protection of biological diversity for the Upton-Osage and Rochelle Hills Areas. Controlled surface use areas have been identified in the DEIS. Patch size characteristics and the somewhat developed condition of these areas suggest that the existing level of biological diversity can be maintained using the Fine Filter Approach features of the Special Stipulations in conjunction with regulations that protect against mass wasting.

Inventoried Semi-Primitive Areas

Inventoried semi-primitive areas (ISPM) are identified based on criteria in the Recreational Opportunities Spectrum Guidelines (ROS) (FS Manual 2300). These criteria include visual values and road development. Four ISPM areas were identified: 1. The Miller Hills 2. Cow Creek Buttes 3. Dugout 4. Duck Creek. Three of these ISPM areas; Miller Hills, Cow Creek Buttes and Duck Creek have been proposed for No Surface Occupancy (NSO) based on recreational opportunities spectrum (ROS) criteria. The Downs area was assessed for an ISPM, but was classified as a roaded rural area based on the presence of one road, oil and gas well, which exceeded ISPM standards.

The three areas recommended for No Surface Occupancy using ROS guidelines make important contributions to biological diversity at the landscape, community and species levels. These three areas (Miller Hills, Cow Creek Buttes and Duck Creek Breaks) were also identified as having special biological diversity using the criteria listed in Chapter 4. Additionally we recommend boundary adjustments to the Miller Hills ISPM - NSO area; an additional NSO area near the the Duck Creek ISPM - NSO area and application of No Surface Occupancy to the Downs area. The reasons are discussed below.

1. The Miller Hills

The Miller Hills, with its scoria buttes and remnant sandstone, are an island of woodland communities. Shrublands are found in the canyons on the north side of the Miller Hills around the base of the elevated plateau. The woodlands provide important habitat for bald eagle winter roosts. This is especially important because similar habitat in the Rochelle Hills, which is also an isolated woodland, was lost in the 1988 fire.

Figure 7.1 shows the recommendation for adjustment to the ISPM-NSO boundary. This recommendation is to place the NSO boundary to include areas north of the Forest boundary down to the 4600 foot contour line so that more areas of topographic relief and more acreage of shrubland communities will be included. This unites the woodland-bearing communities in an NSO area that also includes a diversity of shrubland types and avoids fragmentation of quality habitat. It also provides a larger area free of disturbance for bald eagles. The total acreage is approximately 3520 acres.

FIGURE 7.1 Miller Hills Biological Diversity No Surface Occupancy Recommendation

1 mile North

2. Cow Creek Buttes

The ISPM - NSO boundary for Cow Creek Buttes is adequate for inclusion of important biological diversity characteristics of this area with the exception that we recommend moving the northwest boundary to the road. We recommend No Surface Occupancy boundary for reasons of biological diversity to be the same as for the ISPM - NSO. (Figure 7.2)

The northern part of this area has scoria landforms which support remnant coniferous woodlands of ponderosa pine and juniper. These scoria buttes are near the southernmost extent of scoria buttes in Wyoming. Several shrubland community types are represented here also. Cow Creek Buttes is different geologically. A resistant sandstone cap has protected softer strata of shale, sandstone, claystone and siltsone from eroding. These buttes and the nearby badlands, included in the ISPM-NSO boundary, contain a good representation of plant communities which are not common in the Thunder Basin National Grassland landscape; they are vegetated with plant species which do not occur in large numbers throughout the administrative unit and they generally have good quality habitat. The area included in our recommendation is 6,970 acres.

3. Duck Creek Breaks

The area within the ISPM - NSO boundary in the Duck Creek area contains ponderosa pine woodland, several kinds of shrubland, little bluestem grassland and patches of sagebrush steppe. This area has many community types occurring together which differ sharply in their structural and species composition characteristics. The area is in excellent condition and provides good quality habitat.

We support No Surface Occupancy within the ISPM-NSO boundary. We also recommend the addition of 792 acres of NFS to the northeast (Sections 2, the east half of Section 3 and part of Section 4) (Figure 7.3). This additional NSO area is recommended to preserve the ecological integrity of this area. Some vegetation communities in this additional are area unique to the Thunder Basin National Grassland. Woody draws, aspen groves, large ponderosa pine trees and remnant tall-grass prairie species (big bluestem) occur here. The area is characterized by not only the excellent condition and unusual plant species composition, but also by its wholeness and lack of surface disturbance from human activity. The total acreage is 8960 acres.

4. Downs Area

The Downs area (Figure 7.4) is recommended as a No Surface Occupancy area in addition to the three ISPM areas discussed above. The Downs area is an outstanding area of badlands formed in the Lebo shale member of the the Fort Union Formation. There are canyons and rugged badlands which are unique to the Thunder Basin National Grasslands. The landscape has a high degree of patchiness due to the substrate and many shrubland communities occur here. Outstanding among these is the occurrance of substantial patches of the birdsfoot sagebrush community. This uncommon community type grows only on specialized clay and shale exposures. It is found on flat to gently slopig surfaces. In this rugged topography, birdsfoot sagebrush is at high risk

FIGURE 7.2 Cow Creek Buttes Biological Diversity No Surface Occupancy Recommendation

FIGURE 7.3 Duck Creek Breaks Biological Diversity No Surface Occupancy Recommendation

FIGURE 7.4 Down's Area Biological Diversity No Surface Occupancy Recommendation

for removal due to oil and gas leasing operations, because it occurs on sites highly suitable for drill pads. The total acreage here is 5080 acres.

In addition to the presence of the birdsfoot sagebrush community, which is a species and community level consideration, this landscape contributes significantly to the biological diversity of the Thunder Basin National Grassland because of its unusual landforms and substrates. It is especially senstive to soil erosion if the surface is disturbed and has been identified for potential NSO on 75% of the area because of potential Mass Wasting (Mass wasting Map - Edwards, 1992 DEIS). Because of the unusual landforms and specialized plant communities, surface disturbance from Oil and Gas leasing (roads and drill pads) will cause more changes to the natural condition, than these activites would in sagebrush steppe, grassland or shrublands on less rugged terrain. The habitat here is of exceptionally good quality for wildlife. This area has a high degree of ecological integrity and is especially susceptible to degradation of biological diversity from surface-disturbing uses.

Dugout

The Dugout area was the fourth inventoried semi-primitive area. It is mainly a shrubland on a low-relief surface. This area is not recommended for No Surface Occupancy. Similar terrain is widespread in nearby parts of the Cheyenne River Valley. The main kinds of shrubland plant communities found here are represented in the Cow Creek Buttes, Miller Hills and Downs area. Forest Plan guidelines and constraints in lease terms are sufficient to protect the biological diversity of this area.

SUMMARY

The areas recommended for No Surface Occupancy as a result of the Biological Diversity Analysis are:

- 1. The Miller Hills (part of ISPM area) (Map 7.1) approx 3520 ac
- 2. Cow Creek Buttes (ISPM area) (Map 7.2) approx 6,970 ac
- 3. Duck Creek (ISPM area and additional area) (Map 7.3) approx 8,960 ac
- 4. Downs area (Map 7.4) approx 5080 ac

Use of Controlled Surface Use and Timing Limitation (Fine Filter Approach) as identified in Alternative Four, are also recommended to accompany the Coarse Filter Strategy (No Surface Occupancy) to comprehensively address biological diversity concerns for oil and gas leasing on Thunder Basin National Grassland.

LITERATURE CITED

- Bailey, R.G. and C.T. Cushwa. 1982. Ecoregion, land-surface form and hydrologic unit maps of the United States. U.S. Fish and Wildlife Service FWS/OBS-82/09
- Baxter, G.T. and M.D. Stone, 1980. Amphibians and Reptiles of Wyoming. Wyoming Game and Fish Department. 137 pp.
- Beck, W.M., Jr. 1955. Suggested method for reporting biotic data. Sewage Ind. Wastes 27 (10):1193-1197.
- Behler, J.L. and F.W. King. 1979. The Audubon Society Field Guide to North American Reptiles and Amphibians. A. Knopf Inc., NY
- Blunt, W.H. 1980. Management Opportunities for Creating Wildlife
 Habitat Through Surface Mining. Medicine Bow National Forest
 Laramie, WY
- Byer, T. and L.T. Cartwright. 1992. Terrestrial Wildlife Specialists Report for Oil and Gas Leasing EIS, Thunder Basin National Grassland. Medicine Bow National Forest. Laramie, WY
- Cartwright, T. 1992. Biological Assessment for Proposed Oil and Gas Leasing, Thunder Basin National Grassland. Medicine Bow National Forest. Laramie, WY
- Clements. F. C. 1920. Plant Indicators. The Relation of Plant Communities to Process and Practice. Carnegie Institution of Washington D.C.
- Code of Federal Regulations. 1991. Parks, Forests and Public Property. Part 219.27.
- Cooperrider, A. 1991. Conservation of biodiversity on western rangelands. In: Landscape Linkages and Biodiversity. Ed. by W. Hudson Island Press, Washington, DC
- Dickie, J.B. and K.H. Gajjar. 1988. The survival of viable seeds in stored topsoil from opencast coal workings and its implications for site restoration. Biological Conservation 43:257-265.
- Edwards, M.R. 1991A. The Soil Resource Existing Condition Soil, Climate and Geology. Specialist Report for the Gas and Oil DEIS. Laramie, WY
- Edwards, M.R. 1991B. The Alternatives and Described Effects on the Soil Resource. Specialist Report for the Gas & Oil DEIS Laramie, WY

- Edwards, M.R. and K. Sullivan. 1992. Sample mitigation measures which may be applied at the APD Development Stage. Oil and Gas Leasing FEIS Appendix E. Medicine Bow National Forest Laramie, WY
- Estill, E. and Montrey. H. 1992. The Rocky Mountain Station Joint Strategy for Implementing Ecosystem Management. Letter to the Chief. Sept. 3, 1992 Denver, CO
- FEIS Proposed Development of Coal Resources in the Eastern Powder River Basin of Wyomng. 1974. U.S. Department of the Interior
- Fisser, H.G., Johnson, K. Moore, and G.E. Plumb. 1989. 51-year change in the shortgrass prairie of eastern Wyoming. In: Proceedings of the 11th Annual North American Prairie Conference. Ed by Bragg, T. and J. Steubbendieck. Univ. of Nebraska printing Lincoln, NE
- Fertig, W. 1992. Letter to the Medicine Bow National Forest describing disjunct populations on the Thunder Basin National Grassland. Wy. Natural Diversity Database, THE Nature Conservancy, Laramie, WY
- Finch, D.M. 1992. Threatened, Endangered and Vulnerable Species of Terrestrial Vertebrates in the Rocky Mountain Region. GTR RM-215 Fort Collins, CO
- Harris, L.D. 1984. The Fragmented Forest; island biogeography theory and the preservation of biotic diversity. University of Chicago Press, Chicago, IL.
- Hartman, R.L. and K. Dueholm. 1979. Catalogue of Vascular Plants of the Powder River Basin, Wyoming. Industrial Fund Final Report.
- Helms, W. 1992. Personal Communication regarding grouse.
 WY Game and Fish
- Hunter, M.L. 1991. Coping with ignorance: The Coarse-Filter Strategy for Maintaining Biodiversity. In Kohm, K.A. (Ed) Balancing on the Brink of Extinction - the Endangered Species Act and Lessons for the Future. Island Press. Washington, D.C.
- Hynes, H.B.N. 1970. The Ecology of Running Waters. Toronto: University of Toronto Press.
- Johnston, B. C. 1987. Plant Associations of Region 2. Ed. 4 USDA Forest Service, Rocky Mountain Region. R2-ECOL-87-2 Denver, CO
- Karr, J.R., K.D. Fausch, P.L. Angermeier, P.R. Yant and I. J. Schlosser, 1983. Assessing Biological Integrity in Running Waters A method and its rationale. Illinois Natural History Survey Special Publication 5.

- King, K.W. 1990. Effects of Oil Field Produced Water Discharges on Pond Zooplankton Populations. Wyoming DEQ, Water Quality Division. 26 pp.
- King, K. W. 1991. Bioassessment Methods for use in Wyoming Stream and River Quality Investigations. Wyoming Department of Environmental Quality, Water Quality Division.
- Klemm, D. J., P. A. Lewis, F. Fulk, and J.M. Lazorchak, 1990.

 Macroinvertebrate Field and Laboratory Methods for Evaluating
 the Biological Integrity of Surface Waters. U.S. Environmental
 Protection Agency (EPA) publication No. EPA/600/4-90/030. 256
 pp.
- Knopf, F.L. and M.H. Smith. 1992. Biological Diversity in Wildlife Management. Wildlife Management Institute Washington, DC.
- Lang, R. 1973. Vegetation changes between 1943 and 1965 on the shortgrass plains of Wyoming. Journal of Range Management 26(6):407 -409.
- Laycock, W.A. 1991. Stable states and thresholds of range condition on North American rangelands: a viewpoint. Journal of Range Management 44(5):427-433.
- Leonard, G. M. 1990. The Land Manager's Need for Science. 19th International Union of Forestry Research Organizations (IUFRO) World Congress, Montreal, Canada August 8, 1990
- Lord, J.M. and D.A. Norton. 1990. Scale and the spatial concept of fragmentation. Conservation Biology 4(2):197-202
- MacArthur, R. and R. Levins. 1964. Competition, habitat selection, and character displacement in a patchy environment. Proceedings of the National Academy of Science of the U.S.A. 51:1207-1210.
- Mangum, F.A. 1975. Analysis of Macroinvertebrate Samples from Ten Rocky Mountain Streams. Ph.D. Dissertation, Brigham Young University. 245 pp.
- Magurran, A.E. 1988. Ecological diversity and its measurement.

 Princeton University Press, Princeton, NJ 179p
- Martner, B.E. 1986. Wyoming Climate Atlas. University of Nebraska Press. Lincoln, NE.
- Maser, C, Thomas, J. and R.G. Anderson. 1984. Wildlife Habitats in Managed Rangelands The Great Basin of Southeastern Oregon. The relationship of Terrestrial Vertebrates to Plant Communities, Part 1 GTR PNW-174

- Moir, W. H. 1989. History and development of site and condition criteria for range condition within the U.S. Forest Service. In; Secondary Succession and the Evaluation of Rangeland Condition. Lauenroth, W.K. and W. A. Laycock (eds.) Westview Press Boulder, CO
- Moore, T. 1992. Personal Communication regarding TBNG geologic history. WY Geological Survey Laramie
- Multiple-Use Sustained-Yield Act of 1960. PL 86-517.
- Office of Technology Assessment. 1987. Technologies to maintain biological diversity. U.S. Congress. Report OTA-F-330. Government Printing Office, Washington, DC
- Omernik, J.M. 1987. Ecoregions of the conterminous United States.

 Annals of the Association of American Geographers 77:118-125.
- Pennak, R. W. 1953. Freshwater Invertebrates of the United States. New York: The Ronald Press.
- Pickett, S.T.A. and P.S. White. 1985. The Ecology of Natural Disturbance and Patch Dynamics. Academic Press, San Diego, CA
- Pistara, R. Personal Communication with reference to amphibians. Wyoming Game and Fish.
- Plafkin, J. L., M. T. Barbour, K. D. Porter, S. K. Gross, R. M. Hughes, 1989. Rapid Bioassessment Protocols for Use in Streams and Rivers Benthic Macroinvertebrates and Fish. U.S. EPA. Publication No. EPA/440/4-89/001.
- Probst, J.R. and T.R. Crow. 1991. Integrating Biological Diversity and Resource Mnagement. Journal of Forestry. Feb., 1991: 12-17
- Rahel, F.J. and C.J. Keleher, 1992. Survey of Reservoirs in the Thunder Basin National Grasslands, Medicine Bow National Forest. Department of Zoology and Physiology, University of Wyoming. 69 pp.
- Reddick, J. and F. Crockett. 1992. Inventoried Semi-Primitive Motorized Recreation and Unique Recreation Task Force Recommendation. Medicine Bow National Forest. Laramie, WY
- Rolston, H., III. 1986. Philosophy Gone Wild Essays in Environmental Ethics. Prometheus Books, Buffalo, NY
- Rowe, J.S. 1988. Landscape Ecology: The Study of Terrain Ecosystems. In: Landscape Ecology and Management. Ed. by M. Moss Polyscience Publications, Montreal, Canada

- Salwasser, H. 1991. Where do we go from here on biodversity. USDA Forest Service Keynote Speaker - Symposium on Biodiversity. Fort Collins, CO March, 1991
- Sample, V.A. 1991. Land Stewardship in the Next Era of Conservation. Gray Towers Press Milford, PA
- Saunders, D.A., Arnold, G.W., Burbidge, A.A. and A.J. M. Hopkins. 1987. Nature Conservation; the role of remnants of native vegetation. Surrey Beatty and Son, Chipping Norton, N.S. W. Australia
- Schafer, W.M., Neilson, G.A. and W.D. Nettleton. 1980. Minesoil genesis and morphology on a spoil chronosequence in Montana. Soil Science Society of America Journal 44:802-807.
- Smith, P.W., Depuit, E. J. and B.Z. Richardson. 1988. community development on petroleum drill sites in northwestern Wyoming. Journal of Range Management 41(5):372-377.

....

- 991. Aquatic and Riparian Resources Affected Speas, C.C. 1991. Environment, Alternative Analysis and Environmental Consequences for Oil and Gas Leasing EIS Thunder Basin National Grasslands. USDA Forest Service, Medicine Bow National Forest. 16 pp.
- Speas, C.C. 1992. Aquatic and Riparian Resources Current Conditions for Oil and Gas Leasing EIS, Thunder Basin National Grasslands. 12 pp.
- Theil, D. 1992. Personal Communication for grouse populations. WY Game and Fish Dept.
- Thilenius, J.F. and G.R. Brown. 1992. Vegetation on Semi-arid Rangelands, Cheyenne River Basin, WY. RMFRES Fort Collins In Press
- Thomas, J.W. 1979. The Wildlife Habitat in Managed Forests Blue Mountains of Oregon and Washington. Agriculture Handbook 554
- Thomas, J.W., C. Maser and R.G. Anderson. 1984. Wildlife Habitat in Managed Rangelands - The Great Basin of Southeastern Oregon. GTR PNW 172
- USDA Forest Service 1985. Medicine Bow National Forest. Resource Management Plan for the Medicine Bow National Forest and Thunder Basin National Grassland. Laramie, WY
- USDA Forest Service. 1990. RPA. The Forest Service Program for Forest and Rangeland Resources: A long-term Strategic Plan. Washington, DC

- USDA Forest Service. 1990. Custer National Forest. Trail Creek Supplemental Information Report. FEIS - Trail Creek Timber Sale. USDA Forest Service Northern Region
- USDA Forest Service. 1991. Prairie Dog Management Plan 1991 Revision. Medicine Bow National Forest Laramie, WY
- USDA Forest Service. 1991. Annual Monitoring Report. Medicine Bow National Forest. Laramie, WY
- USDA Forest Service. 1991. Biological Diversity Protection on the George Washington National Forest. Technical Report 91-1 George Washington National Forest Harrisonberg, VA
- USDA Forest Service. 1991. Custer National Forest Final EIS Oil and Gas Leasing Northern Little Missouri National Grassland. USDA Forest Service Northern Region
- USDA Forest Service. 1992. Biological Diversity Assessment. Rocky Mountain Region. USFS, Denver, CO
- USDA Forest Service. 1992. Medicine Bow National Forest. Draft EIS
 Oil and Gas Leasing on the Thunder Basin National Grassland.
 Medicine Bow National Forest Laramie, WY
- USDA Forest Service. 1992. Thunder Basin National Grassland Checklist of Birds. Ed. by von Ahlefeldt, J.; Byer, T. and McLaughlin, P. Medicine Bow National Forest Laramie, WY
- USDA Forest Service. 1992. Forest-Wide Undesireable Plant Species and Noxious Weed Management Program. Environmental Aanalysis. Medicine Bow National Forest Laramie, WY
- USDI, USDA. 1992. America's Biodiversity Strategy: Actions to Conserve Species and Habitats. USDI Office of Program Analysis and USDA Natural Resources and Environment Preprint 6/15/92 Washington, DC
- USDI. BLM. 1988. Report from the Advisory Committee on Biological Diversity. Davis, CA
- U.S. Fish and Wildlife Service. 1992. Breeding Bird Survey.
- von Ahlefeldt, J. 1991. Landscape Design Guidelines for Reclaimed Coal-Mined Land. Medicine Bow National Forest Douglas RD.
- Wangsness, D. J. and D.A. Peterson, 1980. Behavioral and Catastrophic Drift of Invertebrates in Two Streams in Northeastern Wyoming. USGS Open-file Report 80-1101.
- Wesche, T.A. and W.F. McTernan, 1977. Aquatic Biota and Abiota of selected streams on Thunder Basin National Grasslands, Wyoming. Completion Report, Water Resources Research Institute University of Wyoming. 204 pp.

- Wesche, T.A. and L.S. Johnson, 1980. Aquatic Biota and Abiota of selected streams on Thunder Berin National Grasslands, Wyoming. In: Riparian and Wetland Habitats of the Great Plains: Proceedings of the 31st Annual Meeting of the Forestry Committee, Great Plains Agricultural Council, June 18-21, 1979.
- Westoby, M., Walker, B. and I. Noy-Meir. 1989. Opportunistic management for rangelands not at equilibrium. Journal of Range Management 42(4):266-274
- West, N.E. 1993. Biodiversity of Rangelands. Journal of Range Management 46:2-13
- Wilcove, D.S., C.H. McLellan and A.P. Dobson. 1986. Habitat fragmentation in the temperate zone. Pages 237-256 IN M.E. Soule (ed). Conservation Biology: the Science of Scarcity and Diversity. Sinaur Associates, Sunderland, Massachusettes.
- Williams, J.E. and R.J. Neves. 1992. Biological Diversity in Aquatic Management. Wildlife Management Institute Washington, DC
- Wyoming Natural Diversity Database. 1992. THE Nature Conservancy Laramie, WY

APPENDIX

LIST OF PREPARERS

United States Department of Agriculture, Forest Service

Name	Title	Credentials	Years
Experience			
Tim Byer	District Wildlife		
	Biologist	B.S. wildlife management	9
Malcom Edwards	Forest Soil and Air		
	Scientist	B.S. in soils	16
Clay Speas	Forest Fisheries		
	Biologist	M.S. in aquatic ecology	4
Judy von Ahlefeldt	Forest Ecologist	PhD in landscape ecology	2
Team Leader			

Special thanks to Marla Wertz for assistance in preparing the illustrations.

GLOSSARY

- allochthnous originating elsewhere, with reference to energy or materials for an ecosystem
- autochthnous originating within, with reference to energy or materials for an ecosystem
- benthic an adjective referring to the bottom of a body of water, i.e. benthic organisms
- corridor a landscape element that connects similar patches through a matrix or an aggregaration of patches. Rivers and pipelines are corridors.
- disjunct species a species that has a population or populations disconnected from its main home range.
- ecotone a transition area between different ecosystems. Ecotones can vary in scale from sharp ecotones between community types to broad ecotones on the landscape scale.
- endemic native to a particular place; used to refer to plants and
 animals
- fragmentation a process (or condition), which causes (or describes) the breakup of the matrix, isolation of patches or discontinuity in a corridor. Fragmentation affects composition, strucuture, process and function of ecosystems at all scales.
- landscape a heterogeneous land area composed of a cluster of interacting ecosystems. Landscapes can vary in scale from a few hundred acres to many thousands of acres.
- macroinvertebrate any of the larger invertebrate animals, many belong to the molluscs, arthropod or worm taxonomic groups.
- matrix a term referring to the vegetation that is most contiguous in a landscape. The matrix has strong connectivity characteristics and exerts strong control over ecosystem processes and functions.
- patches areas of vegetation that are relatively homogeneous internally but differ from their surroundings (the matrix or other patches)
- remnant a term which refers to a population of organisms which remains after the main population has been exterminated.

GLOSSARY (concl.)

riparian - referring to an area of land with vegetation different than upland, because of supplemental water. On the Thunder Basin National Grassland riparian areas may be associated with drainages, springs, playas and reservoirs.

steppe - a dry grassland

succession - a process which is described by replacement of one community by another over time

TABLE 3 MAJOR SOIL TYPES ON THUNDER BASIN NATIONAL GRASSLAND AND NEARBY AREAS

Order	Great Group or Subgroup	Series	Order	Great Group or Subgroup	Series
ALFISOLS	Typic Eutroboralis	Gateson Variant Citadel Lakoa	ARIDISOLS	Camborthids	Cadoma Heldt Rekop (Variant)
	Mollic Cryoboralfs	Wages Variant Stovho (& Variant)			Silhoutte Snomo Turnback Thermopolis
MOLLISOLS	Maploborolls	Chinook Cordeston Paunsaugunt			Twotop Winler Zigweid
	Argiborolls	Pesowyo Nilrap Noorcool Nunston Onita Variant	****	Paleorgids	Bidman Demar Parmaleed
		Reicess Sugakool Tanna Vassett	ENTISOLS	Torriorthents	Bahl Bone Colhill Colnevee(& variant) Colsavage
	Aridic Naplustolls	Alice Variant Maggin			Crownest Grummit Gypnevee Variant
INCEPTISOLS	Maplaquepts Aeric Maplaquepts	Higgins Variant			Milight Keeline Kishona
ARIDISOLS	Ustollic Naplergids	Bowbac Cambria (& Variant) Cushman			Orella Petrie Samday
		Forkwood (& Variant) Hiland Renohill Sear Terro			Samoist Shingle Tassell (& variant) Theedle Topeman
		Ulm Vonalee Worf			Turnercrest Wibaux
	Borollic Haplargids	Worfka Regnaps		Torrifluvents	Clarkelen(+ variant) Draknab Haverdad
	Matragids	Absted Arvada Lohsman			Lohmiller Stetter
				Paraments	Dwyer McCaffery Orpha Tullock

Source: USDA SCS Soil Survey Reports for Northern Converse County and Campbell County. See the reports for extent of the Soil Series.

TABLE 1

VEGETATION NOMENCLATURE

Acronym	PLANTS* Database name	Synonym	Acronym	PLANTS Database name	Synonym
Arca13	Artemisia cana		Pipo	Pinus ponderosa	
Arpe6	Artemisia pedatifida		Pode3	Populus deltoides	Populus sargentii
Artr	Artemisia tridentata		Pssp6	Pseudoroegnaria spicata	Agropyron spicatum
Atca2	Atriplex canescens		Rhtr	Rhus trilobata	
Bogr2	Bouteloua gracilis		Save4	Sarcobatus vermiculatus	
Cafi	Carex filifolia		Scsc	Schizachyrium scoparium	Andropogon scoparius
Calo	Calamovilfa longifolia		Stco4	Stipa comata	
Chvi8	Chrysothamnus viscidifle	orus	Stvi4	Stipa viridula	
Jusc2	Juniperus scopulorum		Syoc	Symphoricarpos occidenta	lis
Pasm	Pascopyrum smithii	Agropyron smithii	Yugl	Yucca glauca	

^{*}USDA Soil Conservation Service. 1992. PLANTS - Plant list of Accepted Nomenclature, Taxonomy, & Symbols.
Alphabetical Listing Report. National Plant Materials Center, Beltsville, MD

TABLE 2 VEGETATION NOMENCLATURE FOR ADDITIONAL VEGETATION CLASSIFICATION UNITS

Acronym	PLANTS* Database name	Synonyms	Common Name	
-	A CONTRACTOR OF THE PERSON OF			
Ange	Andropogon gerardii		big bluestem	
Arca13	Artemisia cana		silver sagebrush	
Artr	Artemisia tridentata		big sagebrush	
Atca2	Atriplex canescens		fourwing saltbush	
Bocu	Boutelous curtipendula		sideoats grama	
Bogr2	Bouteloua gracilis		blue grama	
Buda	Buchloe dactyloides		buffalograss	
Caduó	Carex duriuscula	Carex eleocharis	needleleaf sedge	
Cafi	Carex filifolia		threadleaf sedge	
Cainh2	Carex inops	Carex heliophila	sun sedge	
Disp	Distichlis spicata		inland saltgrass	
Elac	Eleocharis acicularis		needle spikesedge	
Frpe	Fraxinus pensylvanica		green ash	
Jusc2	Juniperus scopulorum		Rocky Mountain juniper	
Krla2	Krascheninnikovia lanata		winterfat	
Leci4	Leymus cinereus		basin wildrye	
Mare11	Mahonia repens		Oregongrape	
Mucu3	Muhlenbergia cuspidata		plains muhly	
Pasm	Pascopyrum smithii	Agropyron spicatum	western wheatgrass	
Pipo	Pinus ponderosa		ponderosa pine	
Pode3	- Populus deltoides			
Pose	Poa secunda		Sandberg bluegrss	
Potr5	Populus tremuloides		quaking aspen	
Prvi	Prunus virginiana		common chokecherry	
Psspó	Pseudogoegneria spicata	Agropyron spicatum	bluebunch wheatgrass	
Punu2	Puccinellia nuttaliana	Puccinellia nuttallii	Nuttall alkaligrass	
Save4	Sarcobatus vermiculatus		black greasewood	
Scam2	Scirpus americanus		American bulrush	
Scsc	Schizachyrium scoparium		little bluestem	
Spai	Sporobolus airoides		alkali sacaton	
Stco4	Stipa comata		needleandthread	
Syoc	Symphoricarpos occidental	ie	western snowberry	

USDA Soil Conservation Service. 1992. PLANTS - Plant List of Accepted Nomenclature, Taxonomy, and Symbols. Siphabetical Listing Report. National Plant Materials Center, Beltsville, MD

From: Judy von Ahlefeldt
Forest Ecologist
Medicine Bow National Forest
January, 1993

To:

Attached please find documents which I have prepared for use on the MBNF as support documents for the riparian initiative (riparian polygon mapping); as reference documents for the Plant Association Field for the datasheets for Stage II Inventory and the RIS database; and for use in describing biological diversity for vegetation at the community and landscape scales. Plant species lists for the Sierra Madre and Medicine Bow Mountains, the Sherman Mountains and the northern unit of the Laramie Mountains are in preparation as support documents for the community type lists.

The attachments include:

- 1. Plant Community types MBNF from Johnston (1987) and Alexander et al. (1986). This list consists of community types actually described from the MBNF or considered to occur here in Johnston (1987).
- 2. Interim List of Plant Community Types

A. References and discussion

B. Name Dictionary for MBNF Community Types

- C. The list of community types stratified according to the classification presented (in 3) below.
- 3. Working Vegetation Classification Hierarchy for IRI Mapping on the MBNF

These are provided for your information and in the interest of sharing knowledge and methods as our information base is expanded and reorganized in the future.

PLANT COMMUNITY TYPES - MBNF- FROM JOHNSTON (1987) AND Alexander et al (1986)

PLANTS ACRONYM

JOHNSTON ACRONYM

CON	TEER	OUS	FOREST

(Upland)

Abla-Pien/MOSS Abla-Pien1/moss

Abla-Pien/Vace
Abla-Pien/Vasc
Abla-Pien/Cage2
Abla-Pien/Cage1
Abla-Pien/Caru3
Abla-Pien1/Caru1

Pico/Vasc
Pico/Cage2
Pico/Caro5
Pico/Juco6
Pico/Arav
Pico/Shca
Pico/Shca
Pico/Shca
Pico/Shca
Pico/Vasc
Pico/Cage1
Pico/Caro3
Pico/Juco
Pico/Arad
Pico/Shca

Pifl2/Leki2 Pifl/Leki Pifl2/Juco6 Pifl/Juco

Pipo/Caro5 Pipo/Caro3 Pipo/Cage2 Pipo/Cage1 Pipo/Aruv Pipo/Arad

Psme/Phmo4 Psme/Phmo

(Riparian)

Alba-Pien/Caca4 Abla-Pien1/Caca

Pipu/Arco2 Pipu/Arco2

DECIDUOUS FOREST

(Upland)
Potr5/Cage2 Potr1/Cage1
Potr5/Lala3 Potr1/Lale
Potr5/Juco6 Potr1/Juco
Potr5/Caro5 Potr1/Caro3

(Riparian)
Potr5/LIGUS
Potr5/Amal2-Prvi
Potr1/LIGU
Potr1/Amal-Pavi

Poan3/Saex-Becc2 Poan3/Saex-Befo Pofr2/Syoc-Saex Posa/Syoc-Saex

WOODLAND

(Upland)
Jusc2-Pssp Jusc-Rosp
Quga Series Quga

SHRUBLAND

(Upland)
AMELA/Cage2
AMEL/Cage1
AMELA/Putr2-Pssp
AMEL/Putr-Rosp
AMEL/Syor1-Artrv

Artr2/Feid Artr1-Feid
Artr2/Pssp Artrv-Rosp
Artr2/Stco4 Artr1-Stco1
Artr2-Putr2/Agda Artrv-Putr/Elda

Putr-Artrv/Feid Putr2-Artr2/Feid Putr2-Artr2/Pssp Putr-Artr2/Rosp Cemo2/Feid Cemo/Feid Cemo/Pssp Cemo/Rosp (Riparian - non-willow) Alin2-Beoc2/SALIX Alint-Befo/SALI Pofr4/Dece Pefl/Dece (Riparian - Willow) Tall Willow Sage2-SALIX/Caca4 Sage-SALI/Caca Saex-SALI/POA Saex-SALIX/POA Saex-SALIX/Caca4-Eqar Saex-SALI/Caca-Eqar Sabo2-SALIX/Caro6 Sabol-SALI/Caut Sabo2-SALIX/Caca4 Sabol-SALI/Caca Sapl2/Caaq Saphp/Caaq Sage2/Popa2 Salu2/Egar Salu/Egar Short Willow Sawo/Caro3 Sawo/Caut Sawo/Dece Sawo/Dece Sawo/Frvi Sawo/Frvi Sawo/Caca4 Sawo/Caca Sawo/Caaq Sawo/Caaq FORBLAND (Upland) Geror-TRIFO/Dece Acro-TRIF/Dece Geror/Trda2 Acro/Trda Sipr/Caeb Sipr/Caeb GRASSLAND (Upland) Dece/Geror Dece/Geror Stco4/Caeb Stcol/Caeb Stco4/Bogr Stcol/Bogr Dapa2/Feid Dapa1/Feid Pssp/Pose Rosp/Pose (Riparian) Elpa3/CAREX Elpa/CARE Dece/CAREX Dece/CARE

Caaq/Caut

Cami4/Dece

Casi/Dece

Caaq/Caro6

Cami7/Dece

Casi2/ Dece

INTERIM LIST OF PLANT COMMUNITY TYPES - MEDICINE BOW NATIONAL FOREST 12/92

Sierra Madre Range Medicine Bow Range Sherman Mountains Hayden District

Laramie District and Hayden District

Sherman Mountains Laramie District Laramie Range Douglas District

- Base List compiled from lists for the Medicine Bow National Forest in:
 Johnston, B.C. 1987. Plant Associations of Region 2. R2-ECOL-87-2
 Denver
 - Alexander, R.R., Hoffmann, G.R. and J.M. Wirsing. 1986. Forest Vegetation of the Medicine Bow National Forest in Southeastern WY: A Habitat Type Classification. RM-271 RMFRES Fort Collins, CO
 - * indicates additional community types from:
 Alexander, R.R. 1985. Major Habitat Types, Community Types
 and Plant Communities in the Rocky Mountains. GTR-RM-123
 Fort Collins, CO
 - Cooper, D.J. 1990. Ecology of Wetlands in Big Meadows, Rocky Mountain National Park. USDI FWS Biological Report 90(15).
 - DeVelice, R.L., Ludwig, J.A., Moir, W.H. and F. Ronco, Jr. 1986. A classification of Forest Habitat Types of Northern New Mexico and Southern Colorado. GTR-RM-131. Fort Collins, CO
 - Hansen, P., Pfister, R., Joy, J., Svboda, D., Boggs, K.
 Myers, L., Chadde, S. and J. Pierce. 1989.
 Classification and Management of Riparian Sites in
 Southwestern Montana (SW MT)
 Draft Version 2. Montana Riparian Assn School of
 Forestry U. of MT. Missoula
 - Hansen, P., Boggs, K., Pfister, R. and J. Joy. 1990. Classification and Management of Riparian and Wetland Sites in Central and Eastern Montana. (CN MT) Draft Version 2. Montana Riparian Assn, Montana Conservation Expt. Station, School of Forestry and U. of Mont. Missoula
 - Integrated Riparian Evaluation Guide (R-4) 1992
 - Johnston, B.C. 1987. Plant Associations of Region 2. R2-ECOL-87-2 Denver
 - Jones, G. 1992. A Preliminary Classification of Riparian Vegetation Types of the Medicine Bow Range and the Sierra Madre. Laramie
 - Acronym Symbols are from: PLANTS Plant List of Accepted Nomenclature, Taxonomy and Symbols Alphabetical Listing Report. 1992. USDA Soil Conservation Service Beltsville, MD
 - Common names are mainly from: Standardized Plant Names for Wyoming with automatic data processing codes. (SCS) (1986). Some common names are from Johnston (1987).

This draft model for the vegetation of the Medicine Bow National Forest is based on a compilation of described community types from the above sources. Upland types are from Forest Service literature only, based on vegetation classifications for forest types throughout Region 2. Some community types found on the MBNF were not included in the report by Alexander et al (1986), but were described for other areas, in particular the Routt NF and the Arapaho-Roosevelt

Many riparian community types have been added to the literature since Johnston (1987) was published. Selected community types from the sources listed above were included in this Interim List. It is likely that most vegetation types found on the Medicine Bow National Forest have been described in the literature. More community types will undoubtedly be added to this list as more becomes known about plant communities, and some adjustments are expected in the allocation between upland and riparian types, but in the meantime, this list should contain most of the major types on the Medicine Bow National Forest.

This list, utilizing existing information is not meant to denigrate the need for field work on classification on the Medicine Bow National Forest. Rather, it provides a needed communication framework using community types, until field studies can be done. Field studies will verify many of these types; may show that some are not found or are of minor importance or may add new types. This list may also suggest some community types which might be used for monitoring or for which additional information on production or other attributes could be measured. The accompanying classification hierarchy fits these community types into a classification framework which is crosswalked with the RIS database.

The classification used for this list is integrated with the RIS DATABASE structure to form an hierarchy from specific community types to larger landscape units of physiognomic types suitable for photointerpretation and mapping. The RIS database categories do not include all community types because RIS categories are formed partly on the basis of generic series, partly on environmental descriptions and partly on plant physiognomy. Nonetheless, specific instances where problems occur in fitting community types into RIS or fitting RIS into the comprehensive framework of Level 4 (proposed here), can be identified. Ways to modify or add RIS categories and/or to track this can be done within computer databases.

The intent of this model is to devise a way to fit vegetation classification, which is primarily taxonomic, floristic and ecological, in a practical way into the existing RIS database so that existing vegetation attributes of polygons can be labeled using consistent general categories descriptive of the landscape. Species and communities can be cleanly aggregated upward to form physiognomic vegetation units for descriptions of larger scales. The framework can be used equally well for description of existing vegetation in the CVU layer of IRI as well as for inference and polygon labeling for PNV for the CLU unit.

It should be pointed out that common water unit attributes, existing vegetation and the soils, geology and landscape components of the CLU are observeable attributes of landscapes. PNV is an inferred category. It is not an attribute than can be observed for all polygons and at best serves as a model of vegetation behavior, not as a descriptor of landscapes mapped from aerial photos and ground truthing.

Many of the community types listed below were described as plant associations, with the inference that these are climax or at least late seral communities. They are described from actual sites and as such, qualify as community types. Many of the observable community types on the landscape are not climax or late seral, but they are necessary to ecosystem description and management. All plant

associations are community types but not all community types are plant associations. Much of the landscape is in seral stages where two species occur as co-dominants during succession. Especially important are aspen-lodgepole pine; aspen-subalpine fir; lodgepole pine-Engelmann spruce; lodgepole pine subalpine fir and lodgepole pine with both Engelmann spruce and subalpine fir. Additional community type descriptors need to be developed for these vegetation units which cover extensive acreages.

This document is a draft to provide a framework for imminent classification, mapping and riparian inventory projects on the Medicine Bow National Forest, which will be compatible with RIS and which are anticipated to be compatible with IRI as it develops. RIS vegetation categories not shown in this model could be added for use as appropriate to other National Forests or National Grasslands. New community types can also be fitted into this framework. The framework lends itself nicely to database fields and attribute files. It is anticipated that the riparian mapping to be done in FY93 would be done to level 4 with RIS categories at level 5 included as appropriate and available. If community type information (plant association) is available, it could be included; if not it could be added at a later time after ground-truthing or walkthrough inventories. This system provides a comprehensive framework into which any vegetation can be systematically nested because it uses all combinations of physiognomic descriptors which are part of community type (plant assocation) names (i.e. and overstory/understory method which also accommodates co-dominance).

There is a pertinent discussion about the differences between site classification for its own sake and using these for mapping functions in: Jones, R.K. 1990. Role of site classification in predicting the consequences of management on forest response. Pp. 19-38 IN: W.J. Dyck and C.A. Mees (Ed.). Impact of Intensive harvesting on Forest Site Productivity. Report No. 2. Forest Research Institute, Rotura, New Zealand. FRI Bulletin No. 159. Jones explains that a classification system can be used to characterize conditions about points on the ground or used as a legend (or key) for describing land features delineated on a map. It is hoped that the system suggested here, may facilitate integration of RIS, IRI and the large existing literature on classification and will provide a workable basis for polygon vegetation labels.

Judy von Ahlefeldt Ecologist Medicine Bow NF

1/93

with concurrence from:

Carol Tolbert (GIS Coordinator)
John Varner (IRI-DPD Model project)
Clay Speas (Riparian Coordinator)
Malcom Edwards (Soil Scientist)
Phil Krueger (Silviculturist)
Jerry Mastel (Brush Creek District Ecologist)

NAME DICTIONARY FOR MEDICINE BOW NATIONAL FOREST COMMUNITY TYPES

JVA 1/93

Scientific names are from the PLANTS (1992) Database List. Synonyms from Johnston (1987) are also listed. Common names are from: USDA Soil Conservation Service 1986. Standardized Plant Names for Wyoming with Automatic Dataprocessing codes. Casper, WY

PLANTS DB	Synonym	Scientific Name	Common Name
Acronym			

MDEEC
IREES

Abla		Abies lasiocarpa	subalpine fir
Acne2	Acne	Acer negundo	boxelder
Pien	Pien1	Picea engelmannii	Engelmann spruce
Pico		Pinus contorta	lodgepole pine
Pifl2	Pifl	Pinus flexilus	limber pine
Pipo		Pinus ponderosa	ponderosa pine
Pipu		Picea pungens	blue spruce
Poan3		Populus angustifolia	narrowleaf cottonwood
Poba2	Poba	Populus balsamifera	balsam poplar
Podem	Posa	Populus deltoides	plains cottonwood
Potr5	Potr1	Populus tremuloides	quaking aspen
Psme		Pseudotsuga menziesii	Douglas-fir

SHRUBS

Alin2 Amal2 AMELA Artr2 Aruv Beoc2	Alint Amal AMEL Artr(t,v,w) Arad Befo	Alnus tenuifolia Amelanchier alnifolia Amelanchier spp. Artemisia tridentata Arctostaphylos uva-ursi Betula occidentalis	thinleaf alder Saskatoon serviceberry serviceberry big sagebrush kinnikinnik water birch
Cemo2	Cemo	Cercocarpus montanus	true mountain mahogany
Ceve Cose16 Hodu	Swse	Ceanothus velutinus Cornus sericea Holodiscus dumosus	snowbrush ceanothus red-osier dogwood ocean spray
Jaam4	Jaam	Jamesia americana	jamesia
Juco6	Juco	Juniperus communis	common juniper
Jusc2	Jusc	Juniperus scopulorum	Rocky Mountain juniper
Marel1	Mare	Mahonia repens	Oregon grape
Phmo4	Phmo	Physocarpus monogynus	mountain ninebark
Pofr4	Pefl	Potentilla fruticosa	shrubby cinquefoil
Prvi	Pavi	Prunus virginiana	common chokecherry
Putr2	Putr	Purshia tridentata	antelope bitterbrush
Quga	Quga	Quercus gambellii	Gambel oak
Rhtr	Rhart	Rhus trilobata	skunkbrush sumac
RIBES	RIBE	Ribes spp.	wild currant
Rice		Ribes cereum	wax currant
Rowo		Rosa woodsii	Wood's rose
Saar4	Saar	Salix arctica	arctic willow
Sabe2	Sade	Salix bebbiana	Bebb willow
Sabo1		Salix boothii	Booth willow
Sabr	Sabr1	Salix brachycarpa	barrenground willow
Saca4		Salix candida	sageleaf willow
Sadr		Salix drummondiana	Drummond willow
Saex		Salix exigua	coyote willow
Sage2		Salix geyeriana	Geyer willow
Sagl	Sagl1	Salix glauca	grayleaf willow

SALIX	SALI	Salix spp.	willow
Sala		Salix lasiandra	Pacific willow
Salu		Salix lutea	yellow willow
Sapl2	Saphp	Salix planifolia	planeleaf willow
Sawo		Salix wolfii	wolf willow
Shca		Shepherdia canadensis	russett buffaloberry
Syoc		Symphoricarpos occidentalis	western snowberry
Syor2	Syor1	Symphoricarpos oreophilus	whortleleaf snowberry
Vace	_	Vaccinium cespitosum	dwarf huckleberry
Vasc		Vaccinium scoparium	grouse whortlebery

FORBS

Acru2	Acru	Actaea rubra	red baneberry
	nciu	Aquilegia coerulea	Colorado columbine
Aqco Arco9	Arco2	Arnica cordifolia	heartleaf arnica
Arla8		Arnica latifolia	broadleaf arnica
	Arla		
Cale4	Cale1	Caltha leptosepala	elkslip marshmarigold
Caco6	Caco2	Cardamine cordifolia	heartleaf bittercress
Ciar4	Ciarl	Cirsium arvense	Canada thistle
Cisc3	Cisc	Cirsium scopulorum	alpine thistle
Droc	Droc	Dryas octopetala	mountain dryad
Erex4	Erex	Erigeron eximius	forest fleabane
Erpe3	Erpe1	Erigeron perigrinus	peregrine fleabane
Eqar		Equisetum arvense	field horsetail
Gatr3	Gatr2	Galium triflorum	sweetscented bedstraw
Geca3	Gecaa	Geranium caespitosum	Fremont geranium
Gevi2	Gevi	Geranium viscossissimum	sticky geranium
Geror	Acrot	Geum rossii	golden avens
Lala3	Lale	Lathyrus lanzwertii	aspen peavine
Libo3	Libo	Linnaea borealis	twinflower
Lifi		Ligusticum filicinium	fernleaf ligusticum
Lipo		Ligusticum porteri	Porter ligusticum
LIGUS	LIGU	Ligusticum spp.	ligusticum
Luar		Lupinus argenteus	silvery lupine
Lupa8	Lupa3	Lupinus parviflorus	lodgepole lupine
Mast4	Smst	Maianthemum stellatum	wild lily-of-the-valley
Mear4		Mentha arvensis	field mint
Meci3	Meci	Mertensia ciliata	mountain bluebells
Migu	Migu	Mimulus guttatus	common monkeyflower
Овос	94	Osmorhiza occidentalis	western sweetroot
Pamy		Paxistima myrsinites	myrtle paxistima
Pegr2	Pegr1	Pedicularis groenlandica	elephanthead lousewort
Pera	Pera3	Pedicularis racemosa	sickletop lousewort
Pobi6	Bibi1	Polygonum bistortoides	America bistort
Podi2	Podi	Potentilla diversifolia	
16.5	FOUL		varileaf cinquefoil
Prpa2		Primula parryi	Parry primrose
Ptaq Raal		Pteridium aquilinum	bracken fern
		Ranunculus aslimaefolius	plaintain-leaf buttercup
Raaq		Ranunculus aquatilis	aquatic buttercup
Rona2	Wind	Rorippa nasturtium-aquaticu	
Saod2	Miod	Saxifraga odolontoloma	brook saxifrage
Sede2	Sede	Selaginella densa	small clubmoss
Serh	Clrh1	Sedum rhodanthum	rose-crown
Setr		Senecio triangularis	arrowleaf groundsel
Sipr	m) c 1	Sibbaldia procumbens	creeping sibbaldia
Thfe	Thfel	Thalictrum fendleri	Fendler meadowrue
Trda2	Trda	Trifolium dasyphyllum	whiproot clover
TRIFO	TRIF	Trifolium spp.	clover
Trla2	Tral	Trollius laxus	American globeflower
Trpa5	Trpa	Trifolium parryi	Parry clover
Tyla		Typha latifolia	common cattail
Veca2	Vete	Veratrum californicum	flase hellebore
Wyam		Wyethia amplexifolius	mulesears wyethia

GRAMINOIDS

(Gı	ca	S	S	e	8	1
---	----	----	---	---	---	---	---

Agsc5	Aghy	Agrostis scabra	ticklegrass
Agst2		Agrostis stolonifera	carpet bentgrass
Alae		Alopecurus aequalis	shortawn foxtail
Ange		Andropogon gerardii	big bluestem
Bogr		Bouteloua gracilis	blue grama
Caaq3	Caaq1	Catabrosa aquatica	brookgrass
Caca4	Caca	Calamagrostis canadensis	bluejoint reedgrass
Capu		Calamagrostis purpurascens	purple reedgrass
Caru	Carul	Calamagrostis rubescens	pinegrass
Dain		Danthonia intermedia	timber danthonia
Dapa2	Dapa1	Danthonia parryi	Parry danthonia
Dece		Deschampsia cespitosa	tufted hairgrass
Ellal	Elda	Elymus dasystachyum	thickspike wheatgrass
Feid		Festuca idahoensis	Idaho fescue
Glbo		Glyceria borealis	northern mannagrass
GLYCE	GLYC	Glyceria spp.	mannagrass
Hobr2		Hordeum brachyantherum	meadow barley
Leci4		Leymus cinereus	basin wildrye
Leki2	Leki	Leucopoa kingii	king spikefescue
Mumo	Mumo1	Muhlenbergia montana	Mountain muhly
Orhy	11411101	Oryzopsis micrantha	indian ricegrass
Pssp	Elsm	Pascopyrum smithii	western wheatgrass
POA	POA	Poa spp.	bluegrass
Pofe	FOR	Poa fendleriana	muttongrass
Popa2	Popa	Poa palustris	fowl bluegrass
_	ropa	Poa pratensis	Kentucky bluegrass
Popr Pose		Poa secunda	
	Boan		Sandberg bluegrass
Pssp	Rosp	Pseudoroegnaria spicata	bluebunch wheatgrass
Stco4	Stco	Stipa comata	needleandthread
Stne3	Stre1	Stipa comata Stipa nelsonii	columbia needlegrass
Stne3	Stne1	Stipa nelsonii	
Stne3 (Sedges,	Stne1	Stipa nelsonii other graminoids and moss)	columbia needlegrass
Stne3 (Sedges, Caaq	Stne1	Stipa nelsonii other graminoids and moss) Carex aquatilis	columbia needlegrass
Stne3 (Sedges, Caaq Caca12	Stnel Rushes,	Stipa nelsonii other graminoids and moss) Carex aquatilis Carex capillaris	columbia needlegrass water sedge hairlike sedge
Stne3 (Sedges, Caaq	Stnel Rushes, Cadi	Stipa nelsonii other graminoids and moss) Carex aquatilis Carex capillaris Carex disperma	water sedge hairlike sedge softleaved sedge
Stne3 (Sedges, Caaq Caca12 Cadi6 Cadu6	Stnel Rushes,	Stipa nelsonii other graminoids and moss) Carex aquatilis Carex capillaris Carex disperma Carex duriuscula	water sedge hairlike sedge softleaved sedge needlleaf sedge
Stne3 (Sedges, Caaq Caca12 Cadi6 Cadu6 Caeb	Stnel Rushes, Cadi Cael	Stipa nelsonii other graminoids and moss) Carex aquatilis Carex capillaris Carex disperma Carex duriuscula Carex ebenea	water sedge hairlike sedge softleaved sedge needlleaf sedge ebony sedge
Stne3 (Sedges, Caaq Caca12 Cadi6 Cadu6 Caeb Cafo3	Stnel Rushes, Cadi Cael Cafo	Stipa nelsonii other graminoids and moss) Carex aquatilis Carex capillaris Carex disperma Carex duriuscula Carex ebenea Carex foena	water sedge hairlike sedge softleaved sedge needlleaf sedge ebony sedge wind sedge
Stne3 (Sedges, Caaq Caca12 Cadi6 Cadu6 Caeb Cafo3 Cage2	Rushes, Cadi Cael Cafo Cagel	Stipa nelsonii other graminoids and moss) Carex aquatilis Carex capillaris Carex disperma Carex duriuscula Carex ebenea Carex foena Carex geyeri	water sedge hairlike sedge softleaved sedge needlleaf sedge ebony sedge wind sedge elk sedge
Stne3 (Sedges, Caaq Caca12 Cadi6 Cadu6 Caeb Cafo3 Cage2 Caho5	Rushes, Cadi Cael Cafo Cagel Cahol	Stipa nelsonii other graminoids and moss) Carex aquatilis Carex capillaris Carex disperma Carex duriuscula Carex ebenea Carex foena Carex geyeri Carex hoodii	water sedge hairlike sedge softleaved sedge needlleaf sedge ebony sedge wind sedge elk sedge Hood sedge
Stne3 (Sedges, Caaq Caca12 Cadi6 Cadu6 Caeb Cafo3 Cage2 Caho5 Cain9	Rushes, Cadi Cael Cafo Cagel Cahol Cahe	Stipa nelsonii other graminoids and moss) Carex aquatilis Carex capillaris Carex disperma Carex duriuscula Carex ebenea Carex foena Carex geyeri Carex hoodii Carex inops	water sedge hairlike sedge softleaved sedge needlleaf sedge ebony sedge wind sedge elk sedge Hood sedge sun sedge
Stne3 (Sedges, Caaq Caca12 Cadi6 Cadu6 Caeb Cafo3 Cage2 Caho5 Cain9 Cami7	Rushes, Cadi Cael Cafo Cagel Cahol Cahe Cami4	Stipa nelsonii other graminoids and moss) Carex aquatilis Carex capillaris Carex disperma Carex duriuscula Carex ebenea Carex foena Carex geyeri Carex hoodii Carex inops Carex microptera	water sedge hairlike sedge softleaved sedge needlleaf sedge ebony sedge wind sedge elk sedge Hood sedge sun sedge smallwing sedge
Stne3 (Sedges, Caaq Caca12 Cadi6 Cadu6 Caeb Cafo3 Cage2 Caho5 Cain9 Cami7 Cane2	Rushes, Cadi Cael Cafo Cagel Cahol Cahe Cami4 Cane	Stipa nelsonii other graminoids and moss) Carex aquatilis Carex capillaris Carex disperma Carex duriuscula Carex ebenea Carex foena Carex geyeri Carex hoodii Carex inops Carex microptera Carex nebraskensis	water sedge hairlike sedge softleaved sedge needlleaf sedge ebony sedge wind sedge elk sedge Hood sedge sun sedge smallwing sedge Nebraska sedge
Stne3 (Sedges, Caaq Caca12 Cadi6 Cadu6 Caeb Cafo3 Cage2 Caho5 Cain9 Cami7 Cane2 Capy3	Rushes, Cadi Cael Cafo Cagel Cahol Cahe Cami4 Cane Capy	Stipa nelsonii other graminoids and moss) Carex aquatilis Carex capillaris Carex disperma Carex duriuscula Carex ebenea Carex foena Carex geyeri Carex hoodii Carex inops Carex microptera Carex pyraenica	water sedge hairlike sedge softleaved sedge needlleaf sedge ebony sedge wind sedge elk sedge Hood sedge sun sedge smallwing sedge Nebraska sedge pyrenean sedge
Stne3 (Sedges, Caaq Caca12 Cadi6 Cadu6 Caeb Cafo3 Cage2 Caho5 Cain9 Cami7 Cane2 Capy3 CAREX	Rushes, Cadi Cael Cafo Cagel Cahol Cahe Cami4 Cane Capy CARE	Stipa nelsonii other graminoids and moss) Carex aquatilis Carex capillaris Carex disperma Carex duriuscula Carex ebenea Carex foena Carex geyeri Carex hoodii Carex inops Carex microptera Carex nebraskensis Carex spp.	water sedge hairlike sedge softleaved sedge needlleaf sedge ebony sedge wind sedge elk sedge Hood sedge sun sedge smallwing sedge Nebraska sedge pyrenean sedge sedge
Stne3 (Sedges, Caaq Caca12 Cadi6 Cadu6 Caeb Cafo3 Cage2 Caho5 Cain9 Cami7 Cane2 Capy3 CAREX Caro5	Rushes, Cadi Cael Cafo Cagel Cahol Cahe Cami4 Cane Capy CARE Caro3	Stipa nelsonii other graminoids and moss) Carex aquatilis Carex capillaris Carex disperma Carex duriuscula Carex ebenea Carex foena Carex geyeri Carex hoodii Carex inops Carex microptera Carex nebraskensis Carex pyraenica Carex spp. Carex rossii	water sedge hairlike sedge softleaved sedge needlleaf sedge ebony sedge wind sedge elk sedge Hood sedge sun sedge smallwing sedge Nebraska sedge pyrenean sedge sedge Ross sedge
Stne3 (Sedges, Caaq Caca12 Cadi6 Cadu6 Caeb Cafo3 Cage2 Caho5 Cain9 Cami7 Cane2 Capy3 CAREX Caro5 Caro6	Rushes, Cadi Cael Cafo Cagel Cahol Cahe Cami4 Cane Capy CARE Caro3 Caut	Stipa nelsonii other graminoids and moss) Carex aquatilis Carex capillaris Carex disperma Carex duriuscula Carex ebenea Carex foena Carex foena Carex inops Carex inops Carex microptera Carex nebraskensis Carex pyraenica Carex spp. Carex rossii Carex rostrata	water sedge hairlike sedge softleaved sedge needlleaf sedge ebony sedge wind sedge elk sedge Hood sedge sun sedge smallwing sedge Nebraska sedge pyrenean sedge sedge Ross sedge beaked sedge
Stne3 (Sedges, Caaq Caca12 Cadi6 Cadu6 Caeb Cafo3 Cage2 Caho5 Cain9 Cami7 Cane2 Capy3 CAREX Caro5 Caro6 Caru3	Rushes, Cadi Cael Cafo Cagel Cahol Cahe Cami4 Cane Capy CARE Caro3 Caut Caru	Stipa nelsonii other graminoids and moss) Carex aquatilis Carex capillaris Carex disperma Carex duriuscula Carex ebenea Carex foena Carex foena Carex inops Carex inops Carex microptera Carex nebraskensis Carex pyraenica Carex rossii Carex rossii Carex rupestris	water sedge hairlike sedge softleaved sedge needlleaf sedge ebony sedge wind sedge elk sedge Hood sedge sun sedge smallwing sedge Nebraska sedge pyrenean sedge sedge Ross sedge beaked sedge rock sedge
Stne3 (Sedges, Caaq Caca12 Cadi6 Cadu6 Caeb Cafo3 Cage2 Caho5 Cain9 Cami7 Cane2 Capy3 CAREX Caro5 Caro6 Caru3 Casc12	Rushes, Cadi Cael Cafo Cagel Cahol Cahe Cami4 Cane Capy CARE Caro3 Caut	Stipa nelsonii other graminoids and moss) Carex aquatilis Carex capillaris Carex disperma Carex duriuscula Carex ebenea Carex foena Carex foena Carex inops Carex inops Carex microptera Carex nebraskensis Carex pyraenica Carex spp. Carex rossii Carex rostrata Carex scopulorum	water sedge hairlike sedge softleaved sedge needlleaf sedge ebony sedge wind sedge elk sedge Hood sedge sun sedge smallwing sedge Nebraska sedge pyrenean sedge sedge Ross sedge beaked sedge cliff sedge
Stne3 (Sedges, Caaq Caca12 Cadi6 Cadu6 Caeb Cafo3 Cage2 Caho5 Cain9 Cami7 Cane2 Capy3 CAREX Caro5 Caro6 Caru3 Casc12 Casi2	Rushes, Cadi Cael Cafo Cagel Cahol Cahe Cami4 Cane Capy CARE Caro3 Caut Caru Casc2	Stipa nelsonii other graminoids and moss) Carex aquatilis Carex capillaris Carex disperma Carex duriuscula Carex ebenea Carex foena Carex foena Carex inops Carex inops Carex microptera Carex nebraskensis Carex pyraenica Carex spp. Carex rossii Carex rostrata Carex scopulorum Carex simulata	water sedge hairlike sedge softleaved sedge needlleaf sedge ebony sedge wind sedge elk sedge Hood sedge sun sedge smallwing sedge Nebraska sedge pyrenean sedge sedge Ross sedge beaked sedge rock sedge analogne sedge
Stne3 (Sedges, Caaq Caca12 Cadi6 Cadu6 Caeb Cafo3 Cage2 Caho5 Cain9 Cami7 Cane2 Capy3 CAREX Caro5 Caro6 Caru3 Casc12 Casi2 Elpa3	Rushes, Cadi Cael Cafo Cagel Cahol Cahe Cami4 Cane Capy CARE Caro3 Caut Caru Casc2 Elpal	Stipa nelsonii other graminoids and moss) Carex aquatilis Carex capillaris Carex disperma Carex duriuscula Carex ebenea Carex foena Carex foena Carex inops Carex inops Carex microptera Carex nebraskensis Carex pyraenica Carex spp. Carex rossii Carex rossii Carex rupestris Carex scopulorum Carex simulata Eleocharis palustris	water sedge hairlike sedge softleaved sedge needlleaf sedge ebony sedge wind sedge elk sedge Hood sedge sun sedge smallwing sedge Nebraska sedge pyrenean sedge sedge Ross sedge beaked sedge rock sedge analogne sedge common spikesedge
Stne3 (Sedges, Caaq Caca12 Cadi6 Cadu6 Caeb Cafo3 Cage2 Caho5 Cain9 Cami7 Cane2 Capy3 CAREX Caro5 Caro6 Caru3 Casc12 Casi2 Elpa3 Juba	Rushes, Cadi Cael Cafo Cagel Cahol Cahe Cami4 Cane Capy CARE Caro3 Caut Caru Casc2	Stipa nelsonii other graminoids and moss) Carex aquatilis Carex capillaris Carex disperma Carex duriuscula Carex ebenea Carex foena Carex foena Carex inops Carex inops Carex microptera Carex nebraskensis Carex pyraenica Carex spp. Carex rossii Carex rossii Carex rupestris Carex scopulorum Carex simulata Eleocharis palustris Juncus balticus	water sedge hairlike sedge softleaved sedge needlleaf sedge ebony sedge wind sedge elk sedge Hood sedge sun sedge smallwing sedge Nebraska sedge pyrenean sedge sedge Ross sedge beaked sedge rock sedge cliff sedge analogne sedge common spikesedge baltic rush
Stne3 (Sedges, Caaq Caca12 Cadi6 Cadu6 Caeb Cafo3 Cage2 Caho5 Cain9 Cami7 Cane2 Capy3 CAREX Caro5 Caro6 Caru3 Casc12 Casi2 Elpa3 Juba Judr	Rushes, Cadi Cael Cafo Cagel Cahol Cahe Cami4 Cane Capy CARE Caro3 Caut Caru Casc2 Elpal	Stipa nelsonii other graminoids and moss) Carex aquatilis Carex capillaris Carex disperma Carex duriuscula Carex ebenea Carex foena Carex foena Carex inops Carex inops Carex microptera Carex nebraskensis Carex pyraenica Carex spp. Carex rossii Carex rossii Carex rostrata Carex rupestris Carex scopulorum Carex simulata Eleocharis palustris Juncus drummondii	water sedge hairlike sedge softleaved sedge needlleaf sedge ebony sedge wind sedge elk sedge Hood sedge sun sedge smallwing sedge Nebraska sedge pyrenean sedge sedge Ross sedge beaked sedge rock sedge cliff sedge analogne sedge common spikesedge baltic rush Drummond rush
Stne3 (Sedges, Caaq Caca12 Cadi6 Cadu6 Caeb Cafo3 Cage2 Caho5 Cain9 Cami7 Cane2 Capy3 CAREX Caro5 Caro6 Caru3 Casc12 Casi2 Elpa3 Juba Judr Juen	Rushes, Cadi Cael Cafo Cagel Cahol Cahe Cami4 Cane Capy CARE Caro3 Caut Caru Casc2 Elpal	Stipa nelsonii other graminoids and moss) Carex aquatilis Carex capillaris Carex disperma Carex duriuscula Carex ebenea Carex foena Carex foena Carex inops Carex inops Carex microptera Carex nebraskensis Carex pyraenica Carex spp. Carex rossii Carex rossii Carex rupestris Carex scopulorum Carex simulata Eleocharis palustris Juncus drummondii Juncus ensifolius	water sedge hairlike sedge softleaved sedge needlleaf sedge ebony sedge wind sedge elk sedge Hood sedge sun sedge smallwing sedge Nebraska sedge pyrenean sedge sedge Ross sedge beaked sedge rock sedge cliff sedge analogne sedge common spikesedge baltic rush Drummond rush swordleaf rush
Stne3 (Sedges, Caaq Caca12 Cadi6 Cadu6 Caeb Cafo3 Cage2 Caho5 Cain9 Cami7 Cane2 Capy3 CAREX Caro5 Caro6 Caru3 Casc12 Casi2 Elpa3 Juba Judr Juen Komy	Rushes, Cadi Cael Cafo Cagel Cahol Cahe Cami4 Cane Capy CARE Caro3 Caut Caru Casc2 Elpal Juara	Stipa nelsonii other graminoids and moss) Carex aquatilis Carex capillaris Carex disperma Carex duriuscula Carex ebenea Carex foena Carex foena Carex inops Carex inops Carex microptera Carex nebraskensis Carex pyraenica Carex spp. Carex rossii Carex rossii Carex rupestris Carex scopulorum Carex simulata Eleocharis palustris Juncus drummondii Juncus ensifolius Kobresia myosuroides	water sedge hairlike sedge softleaved sedge needlleaf sedge ebony sedge wind sedge elk sedge Hood sedge sun sedge smallwing sedge Nebraska sedge pyrenean sedge sedge Ross sedge beaked sedge rock sedge cliff sedge analogne sedge common spikesedge baltic rush Drummond rush swordleaf rush kobresia
Stne3 (Sedges, Caaq Caca12 Cadi6 Cadu6 Caeb Cafo3 Cage2 Caho5 Cain9 Cami7 Cane2 Capy3 CAREX Caro5 Caro6 Caru3 Casc12 Casi2 Elpa3 Juba Judr Juen	Rushes, Cadi Cael Cafo Cagel Cahol Cahe Cami4 Cane Capy CARE Caro3 Caut Caru Casc2 Elpal	Stipa nelsonii other graminoids and moss) Carex aquatilis Carex capillaris Carex disperma Carex duriuscula Carex ebenea Carex foena Carex foena Carex inops Carex inops Carex microptera Carex nebraskensis Carex pyraenica Carex spp. Carex rossii Carex rossii Carex rupestris Carex scopulorum Carex simulata Eleocharis palustris Juncus drummondii Juncus ensifolius	water sedge hairlike sedge softleaved sedge needlleaf sedge ebony sedge wind sedge elk sedge Hood sedge sun sedge smallwing sedge Nebraska sedge pyrenean sedge sedge Ross sedge beaked sedge rock sedge cliff sedge analogne sedge common spikesedge baltic rush Drummond rush swordleaf rush

For the community type list below Level 1 (Zone) and Level 2 (Landscape Position) can be applied to polygons described for Levels 3, 4, 5, and 6. The list has level 2 (upland vs riparian) built into it as an infomration layer, but would be tracked separately in an attribute file. The general type vegetation categories in CAPITAL LETTERS (level 4) crosswalk into the RIS DATABASE (Level 5) and aggregate into Physiognomic Type (Level 3).

Community types are fitted to Levels 4 and 5. In each genus (overstory) group, the understories are grouped in the order of shrub, forb or graminoid i.e. CF/S; CF/F; CF/G and so forth. The genus group corresponds to the concept of Series as used in the literature for forests. Within each understory group, the community types are listed alphabetically by the genus of the understory. This list shows how level 6 fits into level 4. Level 6 also fits into level 5 (RIS categories) as explained in the attached classification hierarchy.

INTERIM LIST OF COMMUNITY TYPES - MEDICINE BOW NATIONAL FOREST

Classification levels 2,3,4 and 6

PLANTS ACROMYN

SYNONYM from Johnston (1987) or other source. No asterisk indicates that the type was listed in Johnston (1987) or Alexander et al (1986).

FOREST

CONIFEROUS FOREST	(CF)				
(Upland)					
Abla-Pien/Vace	Abla-Pien1/Vace	spruce-fir/dwarf huckleberry	CF/S		
Abla-Pien/Vasc	Abla-Pien1/Vasc	spruce-fir/grouse whortleberry	CF/S		
Abla-Pien/Cage2	Abla-Pien1/Cage1	spruce-fir/elk sedge	CF/G		
*Abla-Pien/Caro5	Abla-Pien1/Caro3	spruce-fir/Ross sedge	CF/G		
Abla-Pien/Caru3	Abla-Pien1/Caru	spruce-fir/rock sedge	CF/G		
*Abla/Juco6	Alexander	fir/common juniper	CF/S		
*Abla/Marel1	Alexander	fir/Oregon grape	CF/S		
*Abla/Vasc	Cooper	fir/grouse whortleberry	CF/S		
*Abla/Acru2	Alexander	fir/red baneberry	CF/F		
*Abla/Arco9	Alexander	fir/heartleaf arnica	CF/F		
*Abla/Erex4	Alexander	fir/fleabane	CF/F		
*Abla/Caru	Alexander	fir/pinegrass	CF/G		
*Abla/Cage2	Alexander	fir/elk sedge	CF/G		
*Abla/Caro5	Alexander	fir/Ross sedge	CF/G		
*Pien/Juco6	Pien1/Juco	spruce/common juniper	CF/S		
*Pien/Vasc	Pien1/Vasc	spruce/grouse whortleberry	CF/S		
*Pien/Arco9	Pien1/Arco2	spruce/heartleaf arnica	CF/F	and so forth	

Pico/Juco6	Pico/Juco	lodgepole pine/common juniper
Pico/Aruv	Pico/Arad	lodgepole pine/kinnikinnik
*Pico/Putr2	Pico/Putr	lodgepole pine/antelope bitterbrush
Pico/Shca	Pico/Shca	lodgepole pine/russett buffaloberry
Pico/Vasc	Pico/Vasc	lodgepole pine/grouse whortleberry
*Pico/Arco9	Pico/Arco2	lodgepole pine/heartleaf arnica
*Pico/Geca3	Alexander	lodgepole pine/ Fremont geranium
*Pico/Pamy	Alexander	loegepole pine/paxistima
*Pico/Feid	Pico/Feid	lodgepole pine/Idaho fescue
*Pico/Caru	Alexander	lodgepole pine/pinegrass
Pico/Cage2	Pico/Cage1	lodgepole pine/elk sedge
Pico/Caro5	Pico/Caro3	lodgepole pine/Ross sedge
*Pico/lichen	Alexander	lodgepole pine/lichen
rico/ richen	HICKUNGCI	rougepoie pine/fichen
Pif12/Juco6	Pifl/Juco	limber pine/common juniper
*Pifl2/Aruv	Pifl/Arad	limber pine/kinnikinnik
*Pifl2/Capu	Pifl/Capu	limber pine/purple reedgrass
Pifl2/Leki2	Pifl/Leki	limber pine/king spikefescue
*Pifl2/Pssp	Pifl/Pssp	limber pine/bluebunch wheatgrass
, -	,	, , , , , , , , , , , , , , , , , , , ,
*Pipo/Jusc2	Pipo/Jusc	ponderosa pine/Rocky Mtn. juniper
*Pipo/Juco6	Pipo/Juco	ponderosa pine-common juniper
Pipo/Aruv	Pipo/Arad	ponderosa pine/kinnikinnik
		보다 발생하다 하는 사람이 되었다면 하는데 다른데 다른데 다른데 다른데 다른데 다른데 다른데 다른데 다른데 다른
*Pipo/Cemo	Pipo/Cemo	ponderosa pine-mountain mahogany
*Pipo/Phmo4	Pipo/Phmo	ponderosa pine/mountain ninebark
*Pipo/Putr2	Pipo/Putr	ponderosa pine/bitterbrush
*Pipo/Artr2-Feid	Pipo/Artr2-Feid	ponderosa pine/big sagebrush-Idaho fescue
*Pipo/Feid	Pipo/Feid	ponderosa pine/Idaho fescue
*Pipo/Leki2	Pipo/Leki	ponderosa pine/king spikefescue
Pipo/Cage2	Pipo/Cage1	ponderosa pine/elk sedge
Pipo/Caro5	Pipo/Caro3	ponderosa pine/Ross sedge
*Pipo/Cain9	Alexander	ponderosa pine/sun sedge
*Pipo-Psme/Phmo4	Pipo-Psme/Phmo	ponderosa pine-Dougas-fir/mountain ninebark
*Pipo-Psme/Mumo	Pipo-Psme/Mumo1	ponderosa pine-Douglas-fir/mountain muhly
*Psme/Aruv-Juco6	Psme/Arad-Juco	Douglag-fir/kinnikinnik-gommon-juninor
*Psme/Cemo2	Psme/Cemo	Douglas-fir/kinnikinnik-common-juniper Douglas-fir/mountain mahogany
*Psme/Jaam4	Psme/Jaam	Douglas-fir/cliff jamesia
*Psme/Mare11 Psme/Phmo4	Alexander	Douglas-fir/Oregon-grape
	Psme/Phmo	Douglas-fir/mountain ninebark
*Psme/Caru	Alexander	Douglas-fir/pinegrass
*Psme/Feid	Alexander	Douglas-fir/Idaho fescue
*Psme/Cage2	Alexander	Douglas-fir/elk sedge
*Psme/Caro5	Psme/Caro3	Douglas-fir/Ross sedge

(Riparian)		
*Abla-Pien/RIBES	Abla-Pien1/RIBE	spruce-fir/currant
*Abla-Pien/Sagl	Abla-Pien1/Sagl	spruce-fir/grayleaf willow
*Abla-Pien/Arla8	Abla-Pien1/Arla	spruce-fir/broadleaf arnica
*Abla-Pien/Libo3	Abla-Pien1/Libo	spruce-fir/twinflower
*Abla-Pien/Meci3	Abla-Pien1/Meci	spruce-fir/mountain bluebells
*Abla-Pien/Setr	Abla-Pien1/Setr	spruce-fir/arrowleaf groundsel
Abla-Pien/Caca4	Abla-Pien1/Caca4	spruce-fir/bluejoint reedgrass
*Abla-Pien/moss	Abla-Pien1/moss	spruce-fir/moss
	,	1
*Abla/Arla8	Alexander	fir/broadleaf arnica
*Abla/Gatr3	MT	fir/sweet-scented bedstraw
*Abla/Libo3	Alexander	fir/twinflower
*Abla/Pera	Alexander	fir/sickletop lousewort
*Abla/Caca4	MT	fir/bluejoint reedgrass
*Abla/moss	Alexander	fir/moss
*Pico/Libo3	Alexander	lodgepole pine/twinflower
*Pico/Casc12	IREG	lodgepole pine/Holm's Rocky Mountain sedge
*Pien/Cale4	Pien1/Cale1	Engelmann spruce/elkslip marshmarigold
*Pien/Eqar	Alexander	Engelmann spruce/field horsetail
*Pien/Gatr3	Jones	Engelmann spruce/sweet-scented bedstraw
*Pien/Libo3	Pien1/Libo	Engelmann spruce/twinflower
*Pien/Mast4	Alexander	Engelmann spruce/wild lily-of-the-valley
*Pien/Cadi6	Pien1/Cadi	Engelmann spruce/softleaved sedge
*Pien/moss	Alexander	Engelmann spruce/moss
		•
*Pien-Pipu/Gatr3	Pien1-Pipu/Gatr3	Engelmann spruce-blue spruce/sweet-scented bedstraw
*Pipu/Alin2	Pipu/Alint	blue spruce/thinleaf alder
*Pipu/Amal2-Cose16	Pipu/Amal-Swse	blue spruce/Saskatoon serviceberry-red-osier dogwood
*Pipu/Cose16	Alexander	blue spruce/red-osier dogwood
Pipu/Arco9	Pipu/Arco2	blue spruce/heartleaf arnica
*Pipu/Eqar	Alexander	blue spruce/field horsetail
*Pipu/Popr	Alexander	blue spruce/Kentucky bluegrass
*Pipu-Pien1/Eqar	Pipu-Pien1/Eqar	blue spruce-Engelmann spruce/field horsetail
	<u>11011</u>	
*Pipo/Cose16	SW MT	ponderosa pine/red-osier dogwood
*Pipo/Prvi	CN MT	ponderosa pine/common chokecherry
*Pipo/Popr	DeVelice 1986	ponderosa pine/Kentucky bluegrass
*Psme/Cose16	MT	Douglas-fir/red-osier dogwood

DECIDUOUS FOREST (DF) (Upland) Potr5/Juco Potr1/Juco aspen/common juniper *Potr5/Amal2-Prvi Potr1/Amal-Pavi aspen/S.serviceberry-common chokecherry *Potr5/Artr2 Potr1/Artr aspen/big sagebrush Potr1/Ceve aspen/snowbrush ceanothus *Potr5/Ceve Potr1/Svor1 aspen/whortleleaf snowberry *Potr5/Syor2 Potr1/Lale3 aspen/aspen peavine Potr5/Lala3 Alexander *Potr5/Luar aspen/silvery lupine *Potr5/Raal Alexander aspen/plantainleaf buttercup Alexander aspen/mulesears wyethia *Potr5/Wyam Potr5/Caru3 Potr1/Caru aspen/rock sedge Potr5/Cage2 Potr1/Cage1 aspen/elk sedge *Potr5-Abla/Mare11 Alexander aspen-subalpine fir/Oregon grape Alexander aspen-subalpine fir/common chokecherry *Potr5-Abla/Prvi Alexander aspen-subalpine fir/russett buffaloberry *Potr5-Abla/Shca *Potr5-Abla/Svor2 Alexander aspen-subalpine fir/whortleleaf snowberry *Potr5-Abla/Arco9 Alexander aspen-subalpine fir/heartleaf arnica Alexander aspen-subalpine fir/fernleaf ligusticum *Potr5-Abla/Lifi *Potr5-Abla/Pera Alexander aspen-subalpine fir/sickletop lousewort *Potr5-Pico/Caru Alexander aspen-lodgepole pine/pinegrass Alexander aspen-Douglas-fir/Saskatoon serviceberry *Potr5-Psme/Amal2 Alexander *Potr5-Psme/Caru aspen-Douglas-fir/pinegrass (Riparian) *Acne2/Cose16 IREG boxelder/red-osier dogwood *Acne2/Prvi CN MT boxelder/common chokecherry narrowleaf cottonwood/S. serviceberry-red-osier dogwood *Poan3/Alin2-Cose16 Poan3/Alint-Swse narrowleaf cottonwood/water birch *Poan3/Beoc2 IREG *Poan3/Cose16 IREG narrowleaf cottonwood/red-osier dogwood *Poan3/Rhtr IREG narrowleaf cottonwood/skunkbrush sumac narrowleaf cottonwood/Wood's rose *Poan3/Rowo IREG Poan3/Saex-Beoc2 Poan3/Saex-Befo narrowleaf cottonwood/coyote willow-water birch *Poan/Popr Jones, MT, IREG narowleaf cottonwood/Kentucky bluegrass *Poba2/Cose16 Poba/Swse balsam popular/red-osier dogwood plains cottonwood/western snowberry-coyote willow Podem/Syoc-Saex Posa/Syoc-Saex *Potr5/Beoc2 IREG aspen/water birch *Potr5/Cose16 aspen/red-osier dogwood MT, IREG *Potr5/Mare11 CN MT aspen/Oregon grape

*Potr5/Rowo *Potr5/Sage2 *Potr5/Gevi2 *Potr5/Hesp6 Potr5/Lipo *Potr5/Osoc *Potr5/Ptaq *Potr5/Thfe *Potr5/Veca2 *Potr5/Popr *Potr5/Eqar	IREG SW MT Alexander Potr1/Hesp Potr1/LIGU CN MT Potr1/Ptaq Potr1/Thfe Alexander MT Alexander	aspen/Wood's rose aspen/Geyer willow aspen/sticky geranium aspen/cow parsnip aspen/Porter's ligusticum aspen/western sweetroot aspen/bracken fern aspen/Fendler meadowrue aspen/false hellebore aspen/Kentucky bluegrass aspen/field horsetail
*Potr5-Abla/Thfe	Alexander	aspen-subalpine fir/Fendler meadowrue

WOODLAND

CONIFEROUS	WOODLAND	(CW)
(Upland)		

*Jusc2/Artr2	Jusc/Artr	Rocky Mountain juniper/big sagebrush
*Jusc2/Cemo2	Jusc/Cemo	Rocky Mountain juniper/mountain mahogany
*Jusc2/Putr2	Jusc/Putr	Rocky Mountain juniper/antelope bitterbrush
Jusc2-Pssp	Jusc/Rosp	Rocky Mountain juniper/bluebunch wheatgrass

DECIDUOUS WOODLAND (DW) (Upland)

*Quga/Amal2	Quga/Amal	Gambel oak/Saskatoon serviceberry
*Quga-Prvi/Pamy	Quga-Pavy/Pamy	Gambel oak-common chokecherry/myrtle paxistima
*Quga/Syor2	Quga/Syor1	Gambel oak/whortleleaf snowberry

SHRUBLAND

SHRUBLAND NON-WILLOW (SHNW) (Upland)

(Upland)		
*Amal2-Prvi/Viam	Amal-Pavi/Viam	S.serviceberry-common chokecherry/American vetch
Amal2/Putr2-Pssp	AMEL/Putr-Rosp	S.serviceberry/antelope bitterbrush-bluebunch wheatgrass
Amal2/Syor2-Artr2	AMEL/Syor1-Artr	S.serviceberry/whortleleaf snowberry-big sagebrush
Amal2/Cage2	AMEL/Cage1	Saskatoon Serviceberry/elk sedge
Artr2-Putr2/Ellal	Artr-Putr/Elda	big sagebrush-antelope bitterbrush/thickspike wheatgrass

Artr2-Putr2/Ellal	Artr-Putr/Elda	big sagebrush-antelope bitterbrush/thickspike wheatgras
*Artr2-Putr2/Pssm	Artr-Putr/Agsm	big sagebrush-antelope bitterbrush/western wheatgrass
Artr2/Feid	Artr/Feid	big sagebrush/Idaho fescue
*Artr2/Leki2	Artr/Leki	big sagebrush/king spikefescue
Artr2/Pssp	Artr/Rosp	big sagebrush/bluebunch wheatgrass
*Artr2/Pssm	Artr/Agsm	big sagebrush/western wheatgrass

*Artr2/Orhy Artr2/Stco4 *Artr2/Stne3	Artr/Orhy Artr/Stco1 Artr/Stne	<pre>big sagebrush/indian ricegrass big sagebrush/needleandthread big sagebrush/Columbia needlegrass</pre>
Putr2-Artr2/Feid Putr2-Artr2/Pssp *Putr2/Mumo *Putr2/Stco4	Putr-Artr/Feid Putr-Artr/Agsm Putr/Mumo1 Putr/Stco1	antelope bitterbrush-big sagebrush/Idaho fescue antelope bitterbrush-big sagebrush/western wheatgrass antelope bitterbrush/mountain muhley antelope bitterbrush/needleandthread
*Cemo2-Rhtr/Ange *Cemo2/Ellal Cemo2/Feid Cemo2/Pssp *Cemo2/Stco4	Cemo-Rhart/Ange Cemo/Elda Cemo/Feid Cemo/Rosp Cemo/Stcol	mountain mahogany-skunkbrush sumac/big bluestem mountain mahogany/thickspike wheatgrass mountain mahogany/Idaho fescue mountain mahogany/bluebunch wheatgrass mountain mahogany/needleandtrhead
*Droc/Caru3	Droc/Caru	mountain dryad/rock sedge
*Hodu/Rice	Hodu/Rice	ocean-spray/wax currant
*Syoc/Pssm	Syoc/Agsm	western snowberry/western wheatgrass

SHRUBLAND NON-WILLOW (Riparian)

*Acgl/Cose16	Acgl/Swse	Mountain maple/red-osier dogwood
Alin2-Beoc2/SALIX *Alin2-Beoc2/Caaq *Alin2/Eqar	Alint-Befo/SALI Alint-Befo/Caaq IREG	thinleaf alder-water birch/willow thinleaf alder-water birch/water sedge thinleaf alder/field horsetail
*Arca13/Feid *Arca13/Pssm	Arca3/Feid Arca3/Agsm	silver sagebrush/Idaho fescue silver sagebrush/western wehatgrass
*Artr2/Leci4	Artr/Leci	big sagebrush/basin wildrye
*Beoc/Cose16	IREG	water birch/red-osier dogwood
*Cose16/Gatr3 *Cose16/Hesp	IREG Cose/Hesp	red-osier dogwood/sweet-scented bedstraw red-osier dogwood/cow parsnip
*Droc/Caru3	Droc/Caru	Mtn. dryad/rock sedge
*Prvi-Syoc/Pssm	Pavi-Syoc/Elsm	chokecherry-western snowberry/western wheatgrass

*Prvi/Rowo	CN MT	chokecherry/Wood's rose
*Pofr4/Feid	Pefl/Feid	shrubby cinquefoil/Idaho fescue
Pofr4/Dece	Pefl/Dece	shrubby cinquefoil/tufted hairgrass
*Pofr4/Popr	CN MT	shrubby cinquefoil/Kentucky bluegrass
*POIT4/POPT	CN MI	shrubby Cinqueloli/Kentucky bluegrass
SHRUBLAND WILLOW (SHW)		
(Riparian - Willow)		
Tall Willow		
*Sabe2	IREG	Bebb willow
Sabo2-SALIX/Caca4	Sabo1-SALI/Caca	Booth willow-willow/bluejoint reedgrass
Sabo2-SALIX/Caro6	Sabol-SALI/Caut	Booth willow-willow/beaked sedge
*Sadr/Caca4	Sadr/Caca	Drummond willow/bluejoint reedgrass
Coor-Cally/Doa	Saar-Sal I /Doa	goveta willow-willow/Mentucky bluegrage
Saex-SALIX/POA	Saex-SALI/POA	coyote willow-willow/Kentucky bluegrass coyote willow-willow/bluejoint reedgrass-field horsetail
	rSaex-SALI/Caca-Eqar IREG	coyote willow/Wood's rose
*Saex/Rowo		
*Saex/Popr	IREG	coyote willow/Kentucky bluegrass
Sage2-SALIX/Caca4	Sage-SALI/Caca	Geyer willow-willow/bluejoint reedgrass
*Sage2-SALIX/Caro6	Sage-SALI/Caut	Geyer willow-willow/beaked sedge
*Sage2/Caca4	MT, IREG	Geyer willow/bluejoint reedgrass
*Sage2/Dece	CN MT	Geyer willow/tufted hairgrass
Sage2/Popa2	Sage/Popa	Geyer willow/fowl bluegrass
*Sage2/Popr	Jones, MT, IREG	Geyer willow/Kentucky bluegrass
*Sage2/Caaq	IREG	Geyer willow/water sedge
*Sage2/Caro6	Jones, MT, IREG	Geyer willow/beaked sedge
*Sala	MT	Pacific willow
*Salu/Caca4	CN MT	yellow willow/bluejoint reedgrass
*Salu/Popr	CN MT	yellow willow/Kentucky bluegrass
*Salu/Caro6	CN MT	yellow willow/beaked sedge
Salu/Egar	Salu/Eqar	yellow willow/field horsetail
/-4	,	102204 42204 4020042
*Sapl2/Cale4	Saphp/Cale1	planeleaf willow/elkslip marigold
*Sapl2/Caca4	IREG	planeleaf willow/bluejoint reedgrass
*Sapl2/Dece	Saphp/Dece	planeleaf willow/tufted hairgrass
Sap12/Caaq	Saphp/Caaq	planeleaf willow/water sedge
*Sapl2/Casc12	Saphp/Casc2	planeleaf willow/Holm's Rocky mountain sedge
	• • •	
Short Willow		
*Saar4/Geror	Saar/Acro	arctic willow/golden avens
Baar4/Geror	Saar/Acro	arctic willow/gorden avens

*Saca4-SALIX/Caaq	Saca-SALI/Caaq	sageleaf willow-willow/water sedge
*Sagl-SALIX/CAREX	Sagl1-SALI/CARE	grayleaf willow-willow/sedge
*Sagl-Sabr/Dece	Sagl1-Sabr/Dece	grayleaf willow-barrenground willow/tufted hairgrass
*Sagl/Geror	Sagl1/Acro	grayleaf willow/golden avens
bug1/de101	bagii/Nero	grayrear willow/golden avens
Sawo/Frvi	Sawo/Frvi	wolf willow/Virginia strawberry
Sawo/Dece	Sawo/Dece	wolf willow/tufted hairgrass
Sawo/Caca4	Sawo/Caca	wolf willow/bluejoint reedgrass
Sawo/Caaq	Sawo/Caaq	wolf willow/water sedge
Sawo/Caro6	Sawo/Caut	wolf willow/beaked sedge
	FORBLAND	
FORBLAND (FO)	TORDIZARD	
(Upland)		
*Droc/Caru	Droc/Caru	mountain dryad/pinegrass
Geror-TRIFO/Dece	Acro-TRIF/Dece	golden avens-clover/tufted hairgrass
Geror/Trda2	Acro/Trda	golden avens/whiproot clover
*Geror/Pobi6	Acro/Bibi2	golden avens/American bistort
Sipr/Caeb	Sipr/Caeb	sibbaldia/ebony sedge
*Sipr/Capy3	Sipr/Capy	sibbaldia/pyrenean sedge
(Riparian)		
*Caco6/Cale4	Caco2/Cale1	brook-cress/elkslip marshmarigold
*Cale4	IREG	elkslip marigold
*Cale4/Serh	Cale1/Clrh	elkslip marshmarigold/rose-crown
*Ciar4	IREG	cirsium arvense
*Cisc3/Aqco	Cisc/Aqco	alpine thistle/Colorado columbine
*Eqar	IREG	field horsetail
*Lipo/Lupa8	Lipo/Lupa3	Porter ligusticum/lodgepole lupine
*Mear4	IREG	field mint
*Meci3	IREG	mountain bluebells
*Meci3/Dece	Meci/Dece	mountain bluebells/tufted hairgrass
*Migu	IREG	yellow monkeyflower
*Rona2	IREG	watercress
*Prpa2/Dece	Prpa/Dece	Parry primrose/tufted hairgrass
*Raaq	IREG	aquatic buttercup
*Saod2/Dece	Miod/Dece	brook saxifrage/tufted hairgrass
*Setr/Lifi	Setr/Lifi	arrowleaf groundsel/fernleaf ligusticum
*Trla2-Lifi/Erpe3	Tral-Lifi/Erpel	globeflower-fernleaf ligusticum/peregrine fleabane
"Triaz-Lill/Erpes	ILUI BILI/BIPCI	
*Trpa5/Dece	Trpa/Dece	Parry clover/tufted hairgrass

GRASSLAND

GRASSLAND (GRS)		
(Upland)		
Dece/Geror	Dece/Acro	tufted hairgrass/golden avens
Dapa2/Feid	Dapa1/Feid	Parry danthonia/Idaho fescue
*Dain/Podi2	Dain/Podi	timber oatgrass/varileaf cinquefoil
*Feid/Dece	Feid/Dece	Idaho fescue/tufted hairgrass
*Mumo/Ellal	Mumo1/Elda	mountain muhley/thickspike wheatgrass
Stco4/Caeb	Stco1/Caeb	needleandthread/ebony sedge
Stco4/Bogr	Stco1/Bogr	needleandthread/blue grama
*Pssm/Pofe	Agsm/Pofe	western wheatgrass/muttongrass
*Pssm/Stco4	Agsm/Stco1	western wheatgrass/needlegrass
Pssp/Pose	Rosp/Pose	bluebunch wheatgrass/sandberg bluegrass
27	27	
GRASSLAND (GRM)		
(Upland)		
*Cadu6/Sede2	Cael/Sede	needleleaf sedge/selaginella
*Cafo3/Geror	Cafo/Acro	wind sedge/golden avens
*Caru3/Komy	Caru/Komy	rock sedge/kobresia
*Caru3/Trda2	Caru/Trda	rock sedge/whiproot clover
*Komy/Geror-Caru3	Komy/Acro-Caru	Kobresia/golden avens-rock sedge
*Komy/Trda2	Komy/Trda	Kobresia/whiproot clover
(Riparian) (GRS)		
*Agsc5	IREG	ticklegrass
*Agst2	MT, IREG	carpet bentgrass
*Alae	IREG	shortawn foxtail
*Caaq3/Caaq	Caaq1/Caaq	brookgrass/water sedge
*Dain	IREG	timber danthonia
*Dece	MT, IREG	tufted hairgrass
Dece/CAREX	Dece/CARE	tufted hairgrass/sedge
*Dece/Cale4	Dece/Cale1	tufted hairgrass/marsh marigold
*Caca4	MT, IREG	bluejoint reedgrass
*Caca4-Casc12/Meci3	Caca-Casc2/Meci	bluejoint reedgrass-Holm's Rocky Mountain Sedge/mtn. bluebells
*GLYCE	IREG	mannagrass
*Glbo	SW MT	northern mannagrass
*Hobr2	IREG	meadow barley
*Popa2	MT	fowl bluegrass
*Popr	MT, IREG	Kentucky bluegrass
	,	

(GRM)

*Caaq Jones, MT, IREG water sedge water sedge/beaked sedge Caaq/Caro6 Caaq/Caut *Caaq/Pegr2 Caaq/Pegr1 water sedge/elephanthead lousewort *Caaq/Caho5 Caaq/Caho1 water sedge/Hood sedge *Caca12/Povi6 Caca3/Bivi hairlike sedge/American bistort *Caro6 Jones, MT, IREG beaked sedge *Cami7 Jones smallwing sedge smallwing sedge/tufted hairgrass Cami7/Dece Cami4/Dece *Cane2 MT, IREG Nebraska sedge *Cane2/Caaq3-Juba Cane/Caag1-Juar Nebraska sedge/brookgrass-Baltic rush *Cane2/Dece Cane/Dece Nebraska sedge/tufted hairgrass Casi2/Dece Casi/Dece short-beaked sedge/tufted hairgrass *Casc12 MT, IREG Holm's Rocky Mountain sedge Holm's Rocky Mountain sedge/tufted hairgrass *Casc12/Dece Casc2/Dece Holm's Rocky Mountain sedge/elkslip marshmarigold *Casc12/Cale4 Casc2/Cale1 *Elpa3 MT, IREG creeping spikerush *Elpa3/CAREX Elpa/CARE creeping spikerush/sedge *Juba Jones, MT, IREG Baltic rush Baltic rush/sedge *Juba/CAREX Juar/CARE *Judr/CAREX Judr/CARE Drummond rush/sedge *Juen IREG swordleaf rush *Scmi2 IREG panicled bulrush

WORKING VEGETATION CLASSIFICATION HIERARCHY FOR IRI MAPPING ON THE MBNF 1/93 Version

Level 1 (Zone)	Level 2 (Landscape Position)		Level 3 (Physiognomic Type)	Level 4 (General Type)	Level 5 (RIS)	Level 6 (Community Type)
D C D	02 03 0F = co 0F = de 0W = co 0W = de	Upland Freshwater Riparian Saline Riparian niferous forest ciduous forest niferous woodland ciduous woodland	01 Forest 02 Woodland 03 Shrubland 04 Forbland 05 Grassland	01 CF 02 DF 03 CW 04 DW 05 SHNW 06 SHW 07 FO 08 GR 09 CF/S 10 CF/F 11 CF/G 12 DF/S 13 DF/F 14 DF/G 15 CW/S 16 CW/F 17 CW/G 18 DW/S 19 DW/F 20 DW/G 21 SHNW/S 22 SHNW/F 23 SHNW/G 24 SHW/S 25 SHW/F 26 SHW/F 26 SHW/G 27 FO/F 28 FO/G 29 GRS 30 GRM	TRE SHR FOR GRA (OTHER RIS TYPES ALSO i.e. TSF TLP SSA SWI GPO GHA etc	See list of community types nested into levels 4 and 05 5.
S F G	HW = s O = fo R = gr RS = g	shrubland (non-willow hrubland (willow) rbland assland rassland with grasses rassland - graminoids	(Poaceae)	Ferns are ground non-graminoid ses (Juncaceae	grass types.	
S	s = shr	ubs F = forbs (and f	erns) G = grass	es or other gr	aminoid (unde	rstories)

CROSSWALK OF RIS CATEGORIES INTO VEGETATION CLASSIFICATON FRAMEWORK

FORE	EST	WOODLAND		SHRUBLAND		FORBLAND	GRASSLA	AND
TRE		TRE & SH	R	SHR		FOR	GF	RA
Coniferous Forest	Deciduous Forest	Coniferous Woodland	Deciduous Woodland	non-willow	willow	forbland	grass	graminoids
TSF TLP TLI TPP TDF	TCW TAA	*TPJ	*TGO *SGO	SSA SMS SSC SSE SSN SGR SAD SAL	SWI	FAV FLI FCL FNA	GNE GWH GPO GMU GFE GPG GRG GHA	GKO GWE
<	<		<	*SKR			GOA	

^{*} There is no Woodland category in RIS. Pinyon-juniper is considered Forest, and Gambel Oak is divided among shrubland and Forest depending on the form of the plant; krumholz is placed in the shrubland category. I would recommend that krumholz be placed with forest and that pinyon, juniper and Gambel oak be considered woodlands for vegetation classification purposes.

VEGETATION CLASSIFICATION FRAMEWORK

STRATIFY BY ZONE (Alpine, Subalpine, Montane, Foothills, Great Basin, Great Plains)

STRATIFY BY Upland vs Riparian (freshwater or saline)

Apply the following as appropriate to all of the above combinations of categories.

Level				FOREST	FOREST				WOODLAND				
Gen. Type	F	Conifer	CF/S CF/F CF/G	rest	(CF)	Dec	iduous For DF/I DF/I	S F	Conifero	us Woodland (CWO) CWO/S CWO/F CWO/G	Deciduous	Woodl DWO/ DWO/	S F
RIS	TSF	TLP	TLI 	TPP	TDF	*SKR	TWC	TAA 	,	TPJ 		TGO	sgo //
community t	ypes												

Level	SHRUBLAND					FORBLAND				GRASSLAND											
Gen. Type	e	No	n-wil SHNW, SHNW, SHNW,	/S /F	(SHNW)	willow (SHW) SHW/S SHW/F SHW/G			forl FO		(FO)			(assla GR GRM	and	(G)			
RIS	SSA	sms 	ssc	SSE	ssn 	SAD	swi 	FAV 	FLI (FCL	FNA	FWE 	FCA //	GNE (11)	GWH 	GPO [GMU 	GFE //	GRG ///	GHA 	GOA
CT																					

GKO GWE

Note: This is a DRAFT list of selected examples to illustrate how this works. All community types can be fitted to this framework.

NESTING OF COMMUNITY TYPES INTO THE VEGETATION CLASSIFICATION

		CONIFER	ROUS FOREST			
TSF		TBS	TLP	TLI	TPP	TDF
Engelmann spruce subalpine fir for spruce-fir forest Engelmann-spruce-	est	blue spruce forest	lodgepole pine forest	limber pine forest	ponderosa pine forest	Douglas-fir forest
(Pien; Abla; Abla-Pien; Pien-	Pipu)	(Pipu)	(Pico)	(Pifl)	(Pipo)	(Psme)
(upland) (CF/S) A-P/Vace A-P/Vasc P/Vasc P/Juco6 (CF/F) A-P/Arla8 A-P/Libo3 (CF/G) A-P/Caru3 A-P/Caro5 A-P/Cage2		(riparian) (CF/S) P/Alin2 P/Amal2-Cosel (CF/F) P/Arco9 (CF/G) P-P/Eq	(upland) (CF/S) P/Juco6 P/Vasc P/Aruv P/Shca P/Putr2 (CF/F) P/Arco9	(upland) (CF/S) P/Juco6 P/Aruv (CF/G) P/Capu P/Leki2 P/Pssp	(upland) (CF/S) P/Jusc P/Juco6 P/Cemo P/Putr2 P/Artr2 P/Phmo4 (CF/G) P/Caro5 P/Cage2 P/Leki2 P/Feid P/Popr	(upland) (CF/S) P/Phmo4 P/Aruv-Juco6 P/Cemo P/Jaam P/Caro6 P-P/Phmo4 (CF/G) P-P/Mumo
(riparian) (CF/S) A-P/Sagl (CF/F) A-P/Meci3 A-P/Setr			P/Feid (riparian) (CF/G) P/Casc12		(riparian) (CF/F) P/Ptaq (CF/G) P/Popr	
(CF/G) A-P/Caca4 A-P/Moss	(CF/F) P-P/Gatr3 P/Libo3 P/Gatr3	P/Cale4 P/Ca P/Arco9	G) adi6			

DECIDOUS FOREST

TCW	TAA
cottonwood forest	aspen forest
(Poan3; Poba; Podem)	(Potr5)
(riparian)	(upland)
(DF/S)	(DF/S)
Poan3/Saex-Beoc2	P/Ceve
Poan3/Alin2-Cose16	P/Juco &
	P/Artr2
Poba/Cose16	P/Syor2
	P/Amal-Pavi
Podem/Syoc-Saex	
Podem/Saex	(DF/F)
	P/Lale3
	(DF/G)
	P/Caru3
	P/Cage2
	(riparian)
	(DF/S)
	P/Sage2
	P/Beoc2
	P/Mare11
	P/Cose16
	P/Rowo
	(DF/F)
	P/Osoc
	P/Lipo
	P/Ptaq
	P/Thefe
	P/Hesp
	(DE/G)
	(DF/G)
	P/Popr

WOODLAND

Coniferous woodland TRE - TPJ Juniper woodland (Jusc) (upland) (CWO/S) Jusc/Artr2 Jusc/Cemo2 Jusc/Putr2 Quga/Prvi-Pami (WO/G) Jusc/Pssp

Deciduous woodland TRE - TGO and SHR - SGO Gambel oak woodland (Quga) (upland) (DWO/S) Quga/Amal2 Quga/Syor2

SHRUBLAND

non-willow shrubland

		i			
SSA	SMS	SSC	SSE	SSN	SAD
Sagebrush	Mtn. mahogany,	shrubby cinquefoil	serviceberry	snowberry	dryad
	bitterbrush,				
	skunkbrush sumac				
(3-t-2- 312)	(Games) - Post-12 -	(Dof-1)	(212)	(0	(D)
(Artr2; Arca13)	(Cemo2; Putr2; Rhar)	(Pofr4)	(Amal2)	(Syoc)	(Droc)
	Rhar)				
(upland)	(upland)	(upland)	(upland)	(upland)	(upland)
(SHNW/G)	(SHNW/G)	(SHNW/G)	(SHNW/S)	(SHNW/G)	(SHNW/G)
Artr2-Putr2/Ellal	Putr2-Artr2/Feid		A/Syor2-Artr2	Syoc/Pssm	Droc/Caru3
Artr2-Putr2/Pssm	Putr2-Artr2/Pssp		A/Putr2-Pssp	1	,
	Putr2-Artr2/Mumo		A/Prvi/Viam		
A/Feid	Putr2-Artr2/Stcc				
A/Feth			(SHNW/G)		
A/Pssm	Cemo2-Rhar4/Ange		A//Cage2		1
A/PSsp	Cemo2/Feid				
A/Orhy	Cemo2/Pssp				
A/Stco4	Cemo2/Ellal				
A/Stne	Cemo2/Stco4				
(riparian)	*Hodu/Rice				
(SHNW/G)					
Arca13/Feid					
Arca13/Pssm					
Artr2/Leci4					
* Hodu not in a RIS cate	gory.				

SHRUBLAND

SAL SWI thinleaf alder; willows water birch (Alin2; Beoc2) (SALIX) (riparian) (riparian) TALL WILLOWS SHORT WILLOWS (SHNW/S) *Acql/Cose16 (SHW/S) (SHW/F) Saar/Geror Sabe2 Alin2-Beoc2/SALIX Saex/Rowo Sagl/Geror Beoc2/Cose16 Sawo-Frvi Prvi/Rowo (SHW/G) Sabo2-SALIX/Caca4 Sabo2-SALIX/Caro6 (SHW/G) Saca4-SALIX/Caaq (SHNW/F) Cose16/Gatr3 Sadr/Caca4 Cose16/Hesp Sagl-SALIX/CAREX Saex-SALIX/POA Sagl-Sabr/Dece Saex-SALIX/Caca4-Egar (SHNW/G) Alin2-Beoc2/Caaq Sawo/Dece Alin2/Beoc2/Egar Sage2-SALIX/Caca4 Sawo/Caca4 Sage2-SALIX/Caro6 Sawo/Caro6 Sage2/Caca4 Prvi-Syoc/Pssm Sawo/Caaq Sage2/Popa2 Sage2/Caaq Sage2/Caro6 Sage2/Dece Sage2/Popr Sala Salu/Caca4 Salu/Caro6 Salu/Popr Salu/Egar Sapl2/Cale4 Sapl2/Dece Sapl2/Caca4 Sapl2/Caaq Sapl2/Casc12

^{*}Acgl not in a RIS category.

FORBLAND

FAV (golden avens)	FLI (ligusticum)	FCL (clover)	FNA (Other native	FWE (thistle and others)	FCA (cattail)
,,			forbs)		
(Geror)	(Lipo)	(TRIFO)		(CIRSI + other weedy, exotic forbs)	(TYLA)
(upland) (FO/F) G/Trda2 G/Pobi6 (FO/G) G-TRIFO/Dece	(riparian) (FO/F) Lipo/Lupa8	(upland) (FO/F) Trpa5/Geror (riparian) (FO/G) Trpa5/Dece	(upland) (FO/G) Sipr/Caeb Sipr/Capy3 (riparian) (FO/F) Caco6/Cale4 Cale4 Cale4/Clrh *Cisc3/Aqco Eqar Mear Meci3 Migu Rona2 Raaq (FO/G) Meci3/Dece	(riparian) (FO/F) Ciar	(riparian) (FO/F) Tyla
			Prpa/Dece Saod2/Dece Setr/Lifi		

GRASSLAND

GRA

Taxonomic grasslands

GNE	GWH	GPO	GMU	GFE	GRG	GHA	GOA
needlegrass	wheatgrass	bluegrass	muhley	fescues	bluejoint reedgrass	hairgrass	oatgrass
(STIPA; Stco4; Stne)	(Pssm; Pssp)	(POA; Popr) Popa2)	(Mumo1)	(Feid)	(Caca4)	(Dece)	(Dain; Dapa2)
(upland) GR Stco4/Caeb Stco4/Bogr	(upland) GR Pssp/Pose Pssp/Pofr	(riparian) GR Popr Popa2	(upland) GR Mumo1/Ellal	(upland) GR L Feid/Dece	(riparian) GR Caca4-Casc12/ Meci3	(riparian) GR Dece/Geror Dece/Cale4 Dece/CAREX	(upland) GR Dapa2/Feid Dain/Podi2
	Pssme/Stco	4					

Grasslands named for other graminoid species (sedges, rushes)

```
GKO
                                          GWE
 (kobresia)
                                    (sedgelands, rushlands)
  (Komy)
                                    (CAREX, JUNCUS, ELEOCHARIS)
(upland)
                                    (upland)
 GRM
                                      GRM
   Komy-Geror-Caru3
                                        Cadu6/Sede2
   Komy/Trda
                                        Cafo3/Geror
                                        Caru3/Komy
                                        Caru3/Trda2
                                      (riparian)
                                       GRM
                                          Elpa3/CAREX
                                                              Casc12/Dece
                                          Caca12/Povi6
                                                              Casc12/Cal4
                                          Caaq/Caro
                                                              Juba/CAREX
                                          Caaq/Pegr2
                                                              Judr/CAREX
                                          Cami7/Dece
                                          Cane2/Dece
                                          Casi2/Dece
```

describes a subalpine spruce- fir forest, a montane riparian area + a subalpine lodgepole pine forest. The community types specify the vegetation within a RIS category and the RIS categories nest into physiognomic levels. The same septem can be used for existing or Potential valual vegetation description

Level -> Polygm	- 1	2	3	4 5 6	
Polygon	02	02	01	09 [CF/s] TSF Abla-Pien/N	leci3
2	OZ	02	01	09 [CF/S] TSF Abla-Pien/	Fatr 3
3	03			24 [SHW/G] SWI Sapl2/ Ca	ag
4	03	02	05	29 [Gr] GHA Dece/CAR	EX
5	03	01	01	08 ECF/S] TLP Pico/Ju	
6	02	01	01	08 [CF/s] TSF Abla-Pien	