INTEGRATED CIRCUITS

DATA SHEET

For a complete data sheet, please also download:

- The IC06 74HC/HCT/HCU/HCMOS Logic Family Specifications
- The IC06 74HC/HCT/HCU/HCMOS Logic Package Information
- The IC06 74HC/HCT/HCU/HCMOS Logic Package Outlines

74HC/HCT173

Quad D-type flip-flop; positive-edge trigger; 3-state

Product specification
File under Integrated Circuits, IC06

December 1990

Quad D-type flip-flop; positive-edge trigger; 3-state

74HC/HCT173

FEATURES

- · Gated input enable for hold (do nothing) mode
- · Gated output enable control
- · Edge-triggered D-type register
- · Asynchronous master reset
- · Output capability: bus driver
- · Icc category: MSI

GENERAL DESCRIPTION

The 74HC/HCT173 are high-speed Si-gate CMOS devices and are pin compatible with low power Schottky TTL (LSTTL). They are specified in compliance with JEDEC standard no. 7A.

The 74HC/HCT173 are 4-bit parallel load registers with clock enable control, 3-state buffered outputs (Q_0 to Q_3) and master reset (MR).

When the two data enable inputs (\overline{E}_1 and \overline{E}_2) are LOW, the data on the D_n inputs is loaded into the register

synchronously with the LOW-to-HIGH clock (CP) transition. When one or both \overline{E}_n inputs are HIGH one set-up time prior to the LOW-to-HIGH clock transition, the register will retain the previous data. Data inputs and clock enable inputs are fully edge-triggered and must be stable only one set-up time prior to the LOW-to-HIGH clock transition.

The master reset input (MR) is an active HIGH asynchronous input. When MR is HIGH, all four flip-flops are reset (cleared) independently of any other input condition.

The 3-state output buffers are controlled by a 2-input NOR gate. When both output enable inputs $(\overline{OE}_1 \text{ and } \overline{OE}_2)$ are LOW, the data in the register is presented to the Q_n outputs. When one or both \overline{OE}_n inputs are HIGH, the outputs are forced to a high impedance OFF-state. The 3-state output buffers are completely independent of the register operation; the \overline{OE}_n transition does not affect the clock and reset operations.

QUICK REFERENCE DATA

GND = 0 V; T_{amb} = 25 °C; t_r = t_f = 6 ns

SYMBOL	DADAMETED	CONDITIONS	TY	TYPICAL			
	PARAMETER	CONDITIONS	нс	нст	UNIT		
t _{PHL} / t _{PLH}	propagation delay CP to Q _n MR to Q _n	C _L = 15 pF; V _{CC} = 5 V	17 13	17 17	ns ns		
f _{max}	maximum clock frequency		88	88	MHz		
CI	input capacitance		3.5	3.5	pF		
C _{PD}	power dissipation capacitance per flip-flop	notes 1 and 2	20	20	pF		

Notes

C_{PD} is used to determine the dynamic power dissipation (P_D in ∞W):

 $P_D = C_{PD} \cdot V_{CC}^2 \cdot f_i + \sum (C_L \cdot V_{CC}^2 \cdot f_o)$ where:

f_i = input frequency in MHz

fo = output frequency in MHz

 $\sum (C_L \cdot V_{CC}^2 \cdot f_0) = \text{sum of outputs}$

C_L = output load capacitance in pF

V_{CC} = supply voltage in V

For HC the condition is V_I = GND to V_{CC}
 For HCT the condition is V_I = GND to V_{CC} -1.5 V

ORDERING INFORMATION

See "74HC/HCT/HCU/HCMOS Logic Package Information".

Quad D-type flip-flop; positive-edge trigger; 3-state

74HC/HCT173

PIN DESCRIPTION

PIN NO.	SYMBOL	NAME AND FUNCTION
1, 2	\overline{OE}_1 , \overline{OE}_2	output enable input (active LOW)
3, 4, 5, 6	Q ₀ to Q ₃	3-state flip-flop outputs
7	CP	clock input (LOW-to-HIGH, edge-triggered)
8	GND	ground (0 V)
9, 10	\overline{E}_1 , \overline{E}_2	data enable inputs (active LOW)
14, 13, 12, 11	D ₀ to D ₃	data inputs
15	MR	asynchronous master reset (active HIGH)
16	V _{CC}	positive supply voltage

Quad D-type flip-flop; positive-edge trigger; 3-state

74HC/HCT173

FUNCTION TABLE

REGISTER OPERATING MODES		11		OUTPUTS		
REGISTER OPERATING MODES	MR	MR CP		E ₂	D _n	Q _n (register)
reset (clear)	Н	Х	Х	Х	X	L
parallel load	L L	↑ ↑	1	1	l h	L H
hold (no change)	L L	X	h X	X h	X	q _n q _n

2 STATE BUSEED OPERATING MODES	INPU	INPUTS					
3-STATE BUFFER OPERATING MODES	Q _n (register)	ŌE ₁	ŌĒ ₂	Q ₀	Q ₁	Q ₂	Q ₃
å	L	L	L	L	L	L	L
read	Н	L	L	Н	Н	Н	Н
disabled	X	Н	Χ	Z	Z	Z	Z
disabled	X	X	Н	Z	Z	Z	Z

Notes

- 1. H = HIGH voltage level
 - h = HIGH voltage level one set-up time prior to the LOW-to-HIGH CP transition
 - L = LOW voltage level
 - I = LOW voltage level one set-up time prior to the LOW-to-HIGH CP transition
 - q = lower case letters indicate the state of the referenced input (or output) one set-up time prior to the LOW-to-HIGH CP transition
 - X = don't care
 - Z = high impedance OFF-state
 - ↑ = LOW-to-HIGH CP transition

Quad D-type flip-flop; positive-edge trigger; 3-state

74HC/HCT173

Quad D-type flip-flop; positive-edge trigger; 3-state

74HC/HCT173

DC CHARACTERISTICS FOR 74HC

For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications".

Output capability: bus driver

I_{CC} category: MSI

AC CHARACTERISTICS FOR 74HC

GND = 0 V; $t_r = t_f = 6 \text{ ns}$; $C_L = 50 \text{ pF}$

				0.0	T _{amb} (°		TEST CONDITIONS					
CVMDOL	DADAMETER				74HC	:						
SYMBOL	PARAMETER		+25		-40 t	to +85	-40 t	o +125	UNIT	V _{CC} (V)	WAVEFORMS	
		min.	typ.	max.	min.	max.	min.	max.]	(*)		
t _{PHL} / t _{PLH}	propagation delay CP to Q _n		55 20 16	175 35 30	1	220 44 37		265 53 45	ns	2.0 4.5 6.0	Fig.6	
t _{PHL}	propagation delay MR to Q _n		44 16 13	150 30 26		190 38 33		225 45 38	ns	2.0 4.5 6.0	Fig.7	
t _{PZH} / t _{PZL}	3-state output enable time \overline{OE}_{n} to Q_{n}		52 19 15	150 30 26		190 38 33		225 45 38	ns	2.0 4.5 6.0	Fig.8	
t _{PHZ} / t _{PLZ}			52 19 15	150 30 26		190 38 33		225 45 38	ns	2.0 4.5 6.0	Fig.8	
t _{THL} / t _{TLH}	output transition time		14 5 4	60 12 10		75 15 13	ic	90 18 15	ns	2.0 4.5 6.0	Fig.6	
t _W	clock pulse width HIGH or LOW	80 16 14	14 5 4		100 20 17		120 24 20		ns	2.0 4.5 6.0	Fig.6	
t _W	master reset pulse width; HIGH	80 16 14	14 5 4		100 20 17		120 24 20		ns	2.0 4.5 6.0	Fig.7	
t _{rem}	removal time MR to CP	60 12 10	-8 -3 -2		75 15 13		90 18 15		ns	2.0 4.5 6.0	Fig.7	
t _{su}	set-up time E _n to CP	100 20 17	33 12 10		125 25 21		150 30 26		ns	2.0 4.5 6.0	Fig.9	
t _{su}	set-up time D _n to CP	60 12 10	17 6 5		75 15 13		90 18 15		ns	2.0 4.5 6.0	Fig.9	

Quad D-type flip-flop; positive-edge trigger; 3-state

74HC/HCT173

SYMBOL		T _{amb} (°C)								TEST CONDITIONS	
	DADAMETED		74HC						<u>.</u>		
	PARAMETER		+25		-40 t	o +85	-40 t	o +125	UNIT	V _{CC} (V)	WAVEFORMS
		min.	typ.	max.	min.	max.	min.	max.	1	(•)	
t _h	hold time E _n to CP	0 0 0	-17 -6 -5		0 0 0		0 0 0		ns	2.0 4.5 6.0	Fig.9
t _h	hold time D _n to CP	1 1 1	-11 -4 -3		1 1 1		1 1 1		ns	2.0 4.5 6.0	Fig.9
f _{max}	maximum clock pulse frequency	6.0 30 35	26 80 95		4.8 24 28		4.0 20 24	3	MHz	2.0 4.5 6.0	Fig.6

Quad D-type flip-flop; positive-edge trigger; 3-state

74HC/HCT173

DC CHARACTERISTICS FOR 74HCT

For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications".

Output capability: bus driver

I_{CC} category: MSI

Note to HCT types

The value of additional quiescent supply current (ΔI_{CC}) for a unit load of 1 is given in the family specifications. To determine ΔI_{CC} per input, multiply this value by the unit load coefficient shown in the table below.

INPUT	UNIT LOAD COEFFICIENT
OE _{1,} OE ₂	0.50
MR E ₁ , E ₂	0.60
$ \overline{E}_1,\overline{E}_2 $	0.40
Dn	0.25
D _n CP	1.00

Quad D-type flip-flop; positive-edge trigger; 3-state

74HC/HCT173

AC CHARACTERISTICS FOR 74HCT

GND = 0 V; $t_r = t_f = 6 \text{ ns}$; $C_L = 50 \text{ pF}$

				E A	T _{amb} (°0	C)			TEST CONDITION					
SYMBOL	PARAMETER				74HC	Γ			UNIT	NIT Van WAVEFORM				
STIVIBOL	PARAMETER		+25		-40 t	o +85	-40 to	+125	UNIT	V _{CC} (V)	WAVEFORWS			
		min.	typ.	max.	min.	max.	min.	max.		(-,				
t _{PHL} / t _{PLH}	propagation delay CP to Q _n		20	40		50		60	ns	4.5	Fig.6			
t _{PHL}	propagation delay MR to Q _n		20	37		46		56	ns	4.5	Fig.7			
t _{PZH} / t _{PZL}	$\frac{\text{3-state output enable time}}{\overline{\text{OE}}_{n} \text{ to } Q_{n}}$		20	35		44		53	ns	4.5	Fig.8			
t _{PHZ} / t _{PLZ}			19	30		38		45	ns	4.5	Fig.8			
t _{THL} / t _{TLH}	output transition time		5	12		15		19	ns	4.5	Fig.6			
t _W	clock pulse width HIGH or LOW	16	7		20		24		ns	4.5	Fig.6			
t _W	master reset pulse width; HIGH	15	6		19		22		ns	4.5	Fig.7			
t _{rem}	removal time MR to CP	12	-2		15		18		ns	4.5	Fig.7			
t _{su}	set-up time E _n to CP	22	13		28		33		ns	4.5	Fig.9			
t _{su}	set-up time D _n to CP	12	7		15		18		ns	4.5	Fig.9			
t _h	hold time E _n to CP	0	-6		0		0		ns	4.5	Fig.9			
t _h	hold time D _n to CP	0	-3		0		0		ns	4.5	Fig.9			
f _{max}	maximum clock pulse frequency	30	80		24		20		MHz	4.5	Fig.6			

Quad D-type flip-flop; positive-edge trigger; 3-state

74HC/HCT173

AC WAVEFORMS

(1) HC : V_M = 50%; V_I = GND to V_{CC} . HCT: V_M = 1.3 V; V_I = GND to 3 V.

Fig.6 Waveforms showing the clock (CP) to output (Q_n) propagation delays, the clock pulse width, the output transition times and the maximum clock pulse frequency.

pulse width, the master reset to output (Qn)

propagation delays and the master reset to

clock (CP) removal time.

PACKAGE OUTLINES

See "74HC/HCT/HCU/HCMOS Logic Package Outlines".