LARSON—MATH 511—CLASSROOM WORKSHEET 22 Low-Rank and Compressed Sensing

Outer-Product Expansion

1. Let $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$ and $B = \begin{bmatrix} 5 & 6 \\ 7 & 8 \end{bmatrix}$. Check that:

$$AB = \hat{a}_1 \hat{b}_1^T + \hat{a}_2 \hat{b}_2^T,$$

where \hat{a}_i 's are the columns of A and \hat{b}_i^T are the rows of B.

2. **Why** is it true that, for an $m \times n$ matrix A with columns $\hat{a}_1, \ldots, \hat{a}_n$, and $n \times t$ matrix B, with rows $\hat{b}_1^T, \ldots, \hat{b}_n^T$, that:

$$AB = \hat{a}_1 \hat{b}_1^T + \hat{a}_2 \hat{b}_2^T + \ldots + \hat{a}_n \hat{b}_n^T.$$

Changes in A^{-1} from Changes in A

- 3. (Rank-1 changes) Let $\hat{u} = \begin{bmatrix} 1 \\ 3 \end{bmatrix}$ and $\hat{v} = \begin{bmatrix} 5 \\ 6 \end{bmatrix}$. Find $M = I \hat{u}\hat{v}^T$ (where it is implicit that $I = I_2$).
- 4. Find $I + \frac{\hat{u}\hat{v}^T}{1 \hat{u}^T\hat{v}}$.
- 5. Check that $M^{-1} = I + \frac{\hat{u}\hat{v}^T}{1 \hat{u}^T\hat{v}}$.
- 6. Show that if $M = I \hat{u}\hat{v}^T$ is invertible then $M^{-1} = I + \frac{\hat{u}\hat{v}^T}{1 \hat{u}^T\hat{v}}$.
- 7. (Rank-k changes). Let $UV^T = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$ (rank-2). How does subtraction of UV^T change the inverse of I? (We know the inverse of I is itself. What is the inverse of $I UV^T$?)
- 8. (Sherman-Morrison formula) Show that if $M = I UV^T$ (with rank-k U) is invertible then $M^{-1} = I_n + U(I_k V^T U)^{-1}V^T$.
- 9. (Sherman-Morrison-Woodbury formula) Show that if $M = A UV^T$ (with rank-k U) is invertible then $M^{-1} = A^{-1} + A^{-1}U(I V^TA^{-1}U)^{-1}V^TA^{-1}$.

Sage/CoCalc

- 10. (a) Start the Chrome browser.
 - (b) Go to http://cocalc.com
 - (c) Login (likely using your VCU email address).
 - (d) You should see an existing Project for our class. Click on that.
 - (e) Click "New", then "Sage Worksheet", then call it c22.
- 11. (Rank-1 changes) Let $\hat{u} = \begin{bmatrix} 1 \\ 3 \end{bmatrix}$ and $\hat{v} = \begin{bmatrix} 5 \\ 6 \end{bmatrix}$. Find $M = I \hat{u}\hat{v}^T$ (where it is implicit that $I = I_2$).
- 12. Check that $M^{-1} = I + \frac{\hat{u}\hat{v}^T}{1 \hat{u}^T\hat{v}}$.
- 13. (**Rank-k changes**). Let $UV^T = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$ (rank-2). How does subtraction of UV^T change the inverse of I? (We know the inverse of I is itself. What is the inverse of $I UV^T$?)
- 14. (Sherman-Morrison formula) Check the formula $M^{-1} = I_n + U(I_k V^T U)^{-1}V^T$ with $M = I UV^T$ and U, V^T from the previous example.

Getting your classwork recorded

When you are done, before you leave class...

- 1. Click the "Make pdf" (Adobe symbol) icon and make a pdf of this worksheet. (If CoCalc hangs, click the printer icon, then "Open", then print or make a pdf using your browser).
- 2. Send me an email with an informative header like "Math 511—c22 worksheet attached" (so that it will be properly recorded).
- 3. Remember to attach today's classroom worksheet!