

CHESSA Océane MOULET Jean-Baptise TAZI Yassine GUEYE Mame-Binta KABORE Anthyme

Manuel d'utilisation de l'interface graphique

Supervisé par : NETTER Denis FONTCHASTAGNER Julien

Nomenclature :

Variables matlab	unité	Vale	Expression	Explica
	(MK SA)	ur par		tion
		défa ut		
Entrées				
angle_de_racourcissement				
B_entrefer		0,9		
Diametre_externe_r	m			
Diametre_interne_s	m			
freq_reseau (=50 Hz)	Hz			
hauteur_tete_bobine_r	m			
hauteur_tete_bobine_s	m			
Largeur_dent_rotor	m			
Largeur_dent_stator				
Largeur_encoche_r	m			
Largeur_encoche_s				
Longueur_dent_rotor	m			
Longueur_dent_stator	m			
Longueur_rotor	m			
N_bobines_par_encoches_ r				
N_bobines_par_encoches_ s				
Nombre_de_tours_par_bob ines_r				
Nombre_de_tours_par_bob ines_s				
Nombre_encoches_par_pol e_par_phase				Nombre d'encoch e par pole et par phase au stator
Nombre_paires_de_poles_r				
Nombre_paires_de_pole s_s				
Nombre_phases				
Profondeur_moteur	m			
q_r				Nombre d'encoc he par pole et par phase au rotor
Rayon_machine				
Section_fil_r	m²			
Section_fil_s	m²			

Temperature_enroulement_ r	K			
Temperature_enroulement_ s	K			
Sorties				
cos_phi				
couple	N.m			
Pertes_fer	W			
Rendement				
R_r	Ω			
R_s	Ω			
Tension_stator	V			
Xm	Ω			
Xr	Ω			
Xs	Ω		_	
	n vis	ibles	, utilisées dans le code)	
a_1 (=1.575*10^(-2))				
a_B_ds				
Ampere-	Α			
tours_culasse_rotor				
Ampere- tours_culasse_stator	Α			
Ampere-	Α			
tours_dans_un_pôle				
Ampere-tours_dent_rotor	Α			
Ampere-tours_dent-stator	Α			
Ampere-tours_entrefer	Α			
angle_ouverture_pole				
b_1 (=1.22*10^(-3))				
b_B_ds				
B_culasse_rotor	Tesla			
B_culasse_stator	Tesla			
B_dent_rotor	Tesla			
B_dent_stator	Tesla			
B_denture	Tesla			
B_entrefer	Tesla	1		
becquet	m			
champ_excitation	V			
champ_magnetique				
coefficient_de_bobinage				
coefficient_foisonnement				
Diametre_externe_stator	m			
Diametre_interne_rotor	m			
Foisonnement_stator	···	0,75		
glissement (=3%)		5,75		
H_culasse_rotor	A/m²			
H_culasse_rotor H_culasse_stator	A/III ² A/m ²			
	A/m²			
H_dent_rotor	A/III²			

H_dent_stator	A/m²			
H_entrefer	A/m²			
I_r	Α			
I_s	Α			
k_cs (=2)				
k_ds (=2)				
L_entre_poles	m		Diametre_interne_stator*pi/Nombre_paires	
l totala fil atatar			_de_poles_stator_s	
L_totale_fil_stator				
Longueur_d_une_spire	m			
Longueur_entrefer	m	7.05		.01
Masse_volumique_fer	kg/m ^3	7,65		tôle magnéti que FeV 1000 65 HD
Nbre_dents_pole_s				
Nbre_dents_pole_s				
Nbre_spires_phases				
Nombre_de_bobines				
Nombre_encoches_rotor				N_phas es_r = N_phas es_s
Nombre_encoches_s				
Nombre_encoches_stator				
Nombre_spires_stator				
Rayon_du_rotor	m			
Rayon_interne_stator	m			
Resistivite_cuivre	Ω·m			
Resistivite_cuivre_normale	Ω·m	17*1 0-9		
Section_denture	m²			
Section_encoche	m²			
Section_pole	m²			
Surface_culasse_rotor	m²			
Surface_culasse_stator	m²			
Surface_dent_rotor	m²			
Surface_dent_stator	m²			
Temperature_caracteristiqu e_cuivre	K	38,7		
Temperature_reference	K	300		
W_fe_B_cs_f	J/Kg			
W_fe_B_ds_f	J/Kg			
X_r	Ω			
X_s	Ω			
μ0 (perméabilité = 4*π*10^(-7))	H/m			

Interface graphique:

L'interface graphique a été créée à partir du logiciel Matlab R2023a.

Etape 1:

Il suffit de double-cliquer depuis le gestionnaire de fichiers (Windows ou autre) sur le fichier « Dimensionnement_moteur.mlapp » fourni avec ce manuel.

(N.b. L'application ne fonctionnera pas si elle n'est pas contenue dans le dossier dans lequel elle a été fournie, car les fonctions nécessaires à son fonctionnement s'y trouvent)

Etape 2:

- Remplir les différents paramètres dans les cases associées (partie supérieure de la fenêtre).
- Ou cliquer sur le bouton « Charger », pour charger automatiquement un lot de paramètres prédéfinis depuis le fichier create_u_test.m

Etape 3:

Appuyez ensuite sur le bouton « Calculer » ou « Tout calculer » et les résultats des calculs apparaîtront en bas de la page :

- Au centre les B et H sont calculés, et la courbe associée au type de tôles utilisées est disponible afin de pouvoir vérifier quelles zones de la machine sont plus ou moins saturées (et de pouvoir y planifier des augmentation ou réduction de la quantité de fer à utiliser)
- A droite, nous avons tous les paramètres du schéma équivalent de la machine asynchrone
- Et à gauche, les performances (Puissance, Rendement, Couple...) de la machine.

(N.b.lors de l'appui sur un bouton « Calculer » la valeur retournée sera NaN si les paramètres d'entrée nécessaires aux calculs n'ont pas été entrés »)

Etape 4:

- Vous avez également la possibilité de sauvegarder l'ensemble des paramètres géométriques présents sur l'interface en appuyant sur le bouton « Sauvegarder » qui placera ces-derniers dans le fichier create_u_test.m. C'est également de ce fichier d'où seront extraits les paramètres lors d'un appui sur le bouton « Charger »
- Attention : le bouton « Sauvegarder » écrase les valeurs étant dans le fichier create_u_test.m .

- Si les variables que vous souhaitez déterminer ne sont pas sur cette interface. Il sera toujours possible d'évaluer les valeurs de ces variables intermédiaires en :
 - \circ Chargeant le vecteur u dans le workspace en entrant la commande : u= create_u_test()
 - o En ouvrant la fonction dans laquelle se trouve la variable recherchée, et en sélectionnant le contenu de la fonction jusqu'à la variable souhaitée via un clic gauche prolongé, puis clic droit / evaluate selection
 - o En ouvrant la fonction dans laquelle se trouve la variable recherchée, et en y supprimant le point-virgule de sa ligne, la valeur s'affichera lors de l'execution de la fonction via l'entrée dans la console de : nom_de_fonction(u)