A班(电阻电路+动态电路)获得一学期学分同学,只能在A班获得另一学期学分目前A班有杨帆老师开设的平行班

本学期周三晚上习题课:线上

电子电路与系统基础II

理论课第1讲 晶体管数字门电路

李国林 清华大学电子工程系

课程安排

- 按既定计划推进
 - 教学进度计划见网络学堂

- 习题课
 - 每周周三晚上
 - -瞩目:课前20分钟微信群和雨课堂通知

晶体管数字门电路 大纲

- 基本逻辑
 - 与, 或, 非
 - 逻辑运算规则
- 门电路实现
 - 以非门为例,说明用 晶体管开关实现门电 路
 - BJT, MOSFET, CMOS
 - CMOS门电路
 - 非门、与非门,或非门

- 简单信号处理器
 - 数学运算
 - 加法器例
 - 编码
 - 奇偶校验例: 检错

- 总结
 - 数字化趋势
 - 模拟电路的必要性

一、基本逻辑运算

- 逻辑
 - logic: 是关于争执 argument的学问
 - 谁对谁错,孰真孰假?
 - true or false?

· 二进制01自然对应逻 辑01

二值逻辑	1	0
正反判断	true	false
	真	假
	正	反
	正确	错误
	同意	反对
	是	否
	许可	不可
	高电平	低电平
	•••	•••

布尔逻辑

Boolean logic

真值表

Α	not A
0	1
1	0

- George Boole 19世纪中 叶定义
- 布尔逻辑中的三种基本 运算
 - 非: NOT
 - 反着来,对着干
 - 与: AND
 - 两个人都同意才可行
 - 或: OR
 - 两个人中只要有一个同意就可行

Α	В	A and B
0	0	0
0	1	0
1	0	0
1	1	1

Α	В	A or B
0	0	0
0	1	1
1	0	1
1	1	1

逻辑运算电路符号

逻辑	逻辑表达式	常用电路符号	方块符号
非	$Z = \overline{A}$	非门	NOT gate Inverter
	Z = A $Z = not A$	$A \longrightarrow Z$	$\frac{A}{1}$
与	$Z = AB$ $Z = A \cdot B$	与门	AND gate
	$Z = A \wedge B$ $Z = A \text{ and } B$	$\frac{A}{B}$	$\frac{A}{B}$
或	Z = A + B	或门	OR gate
	$Z = A \lor B$ $Z = A \text{ or } B$	$\frac{A}{B}$	$A \ge 1$ Z

由逻辑表达式 获得真值表

Α	В	С	Z
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	0

真值表代表电路功能

由真值表获得逻辑表达式

Α	В	С	Z
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	0

$$Z = \overline{A} \cdot \overline{B} \cdot \overline{C} + \overline{A} \cdot \overline{B} \cdot C + \overline{A} \cdot B \cdot C$$

$$Z = \overline{A + B \cdot \overline{C}}$$

如何化简?

清华大学电子工程系 2020年秋季学期

9

 $Z = \overline{A} \cdot \overline{B} \cdot \overline{C} + \overline{A} \cdot \overline{B} \cdot C + \overline{A} \cdot B \cdot C$

逻辑运算的基本规则

A = A 双反律: double negation

$$A+0=A$$
 $A\cdot 1=A$ 恒等律: identity

$$A + A = A$$
 $A \cdot A = A$ **幂等律:** idempotence

$$A+1=1$$
 $A\cdot 0=0$ 湮灭律: annihilator

$$A + \overline{A} = 1$$
 $A \cdot \overline{A} = 0$

互补律: complementation

交换律: commutativity

$$AB = BA$$

$$A + B = B + A$$

$$(AB)C = A(BC)$$

$$(A+B)+C = A+(B+C)$$

结合律: associativity

分配律: distributivity
$$A(B+C) = AB + AC$$

$$A + \overline{AB} = A + B$$

吸收律: absorption A + AB = A

$$\frac{\overline{A \cdot B} = \overline{A} + \overline{B}}{\overline{A + B} = \overline{A} \cdot \overline{B}}$$

De Morgan's law

A	В	\overline{AB}	$A + \overline{AB}$	A + B
0	0	0	0	0
0	1	1	1	1
1	0	0	1	1
1	1	0	1	1

两个逻辑相同,只要它们的真值表相同

De Morgan律的电路符号表述

NOR gate

或非门

对De Morgan律的直观理解

 \boldsymbol{Z}

$$\overline{A \cdot B} = \overline{A} + \overline{B}$$

$$A + B = A \cdot B$$

$$A \cdot B = \overline{A + B}$$

换句话说

则不同意

 \boldsymbol{A}

两个人中只要有 同意了则同意

换句话说

两个人都不同意则不 同意

逻辑表达式化简

$$Z = \overline{A} \cdot \overline{B} \cdot \overline{C} + \overline{A} \cdot \overline{B} \cdot C + \overline{A} \cdot B \cdot C$$

?

$$Z = A + B \cdot \overline{C}$$

$$Z = \overline{A} \cdot \overline{B} \cdot \overline{C} + \overline{A} \cdot \overline{B} \cdot C + \overline{A} \cdot B \cdot C$$

$$= \overline{A} \cdot \overline{B} \cdot \overline{C} + (\overline{A} \cdot \overline{B} \cdot C + \overline{A} \cdot \overline{B} \cdot C) + \overline{A} \cdot B \cdot C$$

$$= (\overline{A} \cdot \overline{B} \cdot \overline{C} + \overline{A} \cdot \overline{B} \cdot C) + (\overline{A} \cdot \overline{B} \cdot C + \overline{A} \cdot B \cdot C)$$

$$= \overline{A} \cdot \overline{B} \cdot (\overline{C} + C) + \overline{A} \cdot C \cdot (\overline{B} + B)$$

$$= \overline{A} \cdot \overline{B} + \overline{A} \cdot C$$

$$= \overline{A} \cdot (\overline{B} + C)$$

$$= \overline{A} \cdot \overline{B} + \overline{C}$$

幂等律

结合律

分配律

互补律,恒等律

分配律

De Morgan律

是否是最简式?
不够直观?最终结果不确定

卡诺图 Karnaugh Maps

$$Z = \overline{A} \cdot \overline{B} \cdot \overline{C} + \overline{A} \cdot \overline{B} \cdot C + \overline{A} \cdot B \cdot C$$

C \AB	00	01	11	10
0	1	0	0	0
1		1	0	0

$$Z = \overline{A \cdot B} + \overline{A \cdot C}$$

$$= \overline{A \cdot (B + C)}$$

$$= \overline{A \cdot B \cdot C}$$

卡诺图适用于3输入、4输入变量的逻辑运算

简单明了

多于4变量的逻辑运算化简方法,后续数字逻辑与处理器基础课程中学习

卡诺图训练

AB \ CD	00	01	11	10	
00	1	0	0	0	
01	1	1	*(不在意	(1)	
11		1	1	1	<
10	1	1	1	1	

$$Z = \overline{C} \cdot \overline{D} + A + B$$

AB \ CD	00	01	11	10
00	1	0	0	1
01	1	0	*	*
11	1	0	1	1
10	1	0	4	1

$$Z = \overline{D} + A \cdot C$$

二、门电路的实现

- 逻辑门电路如何实现呢?
 - -逻辑有0、1之分,对应开关的开、关两个状态, 因此逻辑门电路可以用开关实现
 - 基本门电路的开关实现
 - 与, 或, 非
 - 与非,或非

与运算的开关实现方案

定义或实现:

逻辑0: 开关断开

逻辑1: 开关闭合

开关串联与运算

只有两个开关都闭合 灯泡才是亮的

只有两个输入都是逻辑1 输出才是逻辑1

	R_{I}
-	

Z = AB

定义或实现:

灯泡亮:逻辑1

灯泡灭:逻辑0

Α	В	AB
0	0	0
0	1	0
1	0	0
1	1	1

李国林 电子电路与系统基础

或运算的开关实现方案

Α	В	A+B
0	0	0
0	1	1
1	0	1
1	1	1

李国林 电子电路与系统基础

清华大学电子工程系 2020年秋季学期

非运算的旁路开关实现方案

Bypass Switch

开关旁路非运算

输入逻辑0: 开关断开

$$V_L = \frac{R_L}{R_L + R_D} V_{DD}$$

灯泡亮:输出逻辑1

输入逻辑1: 开关闭合

$$V_L = 0$$

灯泡灭:输出逻辑0

Α	not A
0	1
1	0

与非运算的旁路开关实现方案

只有两个开关都闭合 灯泡才是灭的

只有两个输入都是逻辑1 输出才是逻辑0

$$Z = \overline{A \cdot B}$$

两个开关只要一个是断开的 灯泡则是亮的

两个输入只要一个是逻辑**0** 输出就是逻辑**1**

$$Z = \overline{A} + \overline{B}$$

或非运算的 旁路开关实现方案

两个开关只要一个闭合 灯泡则是灭的

两个输入只要一个是逻辑1 输出就是逻辑0

$$Z = \overline{A + B}$$

只有两个开关都断开 灯泡才是亮的

只有两个输入都是逻辑**0** 输出才是逻辑**1**

$$Z = \overline{A} \cdot \overline{B}$$

Α	В	A+B
0	0	1
0	1	0
1	0	0
1	1	0

开关如何实现?

• 机械开关不适宜自动控制

- BJT有'饱和导通态'和'截止态'对应于 开关的'闭合态'和'断开态'
- · MOSFET有'线性电阻区'和'截止区'对 应于开关的'闭合'和'断开'

• 用晶体管实现开关是自然的选择

MOSFET开关

$$V_{out} = \begin{cases} +5V \\ 0.5V \end{cases}$$

 $V_{out} = \begin{cases} +5V & 逻辑1: V_{in} = 低电平(逻辑0) \\ 0.5V & 逻辑0: V_{in} = 高电平(逻辑1) \end{cases}$

清华大学电子工程系 2020年秋季学期

截止区: 电压大, 电流小 对应开关断开态 23

电阻负载的 功耗问题

暂不考虑外接负载影响,输出悬空,外接负载为无穷大 开关断开时,晶体管截止,无电流,非门无功耗 开关闭合时,晶体管饱和导通,有大电流流过偏置电阻

$$P_{DC} = V_{DD}I_{DC} = 5V \times 1.8mA = 9mW$$

CMOS非门 Complementary MOS

如果开关是理想的:导通U=0,关断I=0:无论导通或关断,P=UI=0

实际MOS开关并不十分理想,但足够接近理想开关,其静态功耗极低

CMOS门电路

PMOS逻辑与NMOS逻辑输出可点接:端口并联

两个逻辑输出可点接并联的前提条件:输出完全一致或一个输出是悬空的

CMOS NOT Gate PMOS和NMOS,一个饱和导通时另一个截止,消耗功率很小

NMOS正向开关旁路 输入高电平时,输 出低电平,求非 输入低电平时,输 出悬空 PMOS反向开关 输入低电平时,输 出高电平,求非 输入高电平时,输 出悬空

相同逻辑符 号表明它们 连在一起, 免除连线过 多头晕

CMOS与非门

$$Z_P = \begin{cases} \frac{\mathbb{R} \mathcal{P} \tilde{B} \mathbb{R} \tilde{B}}{A + B} & A \cdot B = 1 \\ A \cdot B = 1 = A \cdot B & A \cdot B = 0 \end{cases}$$

开关并联或运算,反向开关先求非

开关串联与运算,旁路开关后求非

悬空如弃权默认,由并联电压决定最终逻辑输出

CMOS或非门

$$Z_{P} = \begin{cases} \overline{A} \cdot \overline{B} = 1 = \overline{A + B} & A + B = 0 \\ \mathbb{A} \neq B = 1 & A + B = 1 \end{cases}$$

开关串联与运算,反向开关先求非

$$Z_N = \begin{cases} \frac{\mathbb{R}}{\mathbb{R}} & A + B = 0 \\ \frac{A + B}{A + B} = 0 & A + B = 1 \end{cases}$$

开关并联或运算,旁路开关后求非

$$Z = Z_P + Z_N = \overline{A + B} = \overline{A} \cdot \overline{B}$$

悬空如弃权默认,由并联电压决定最终逻辑输出

CMOS门电路的

一般框架

注意:上P下N保共源组态,晶体管不能随意调换位置

三、简单数字信号处理器设计例

用基本逻辑门电路搭建简单数字信号处理器

• 两个例子

- 以二进制加法器的实现例来说明用逻辑运算可实现数学运算
- 奇偶校验码可实现一定程度的检错

3.1 加法器

· 现欲实现两个8bit二进制数的相加功能,如何实现?

10110100	180
+11101101	+237
110100001	417

从后到前,一位一位地加,可能需要处理进位

符号运算抽象

	C_8	C_7	C_6	C_5	C_4	C_3	C_2	C_1	0
	0	A_7	A_6	A_5	A_4	A_3	A_2	A_1	A_0
+	0	B_7	B_6	B_5	B_4	B_3	B_2	B_1	B_0
	C_8	S_7	S_6	S_5	S_4	S_3	S_2	S_1	S_0

对每一位i,都是 $A_i+B_i+C_i$,产生和 S_i 以及进位 C_{i+1}

加法器系统结构

- 一位一位地加,同时考虑进位
 - 8个一位全加器级联,即可实现两个8位二进制数的相 加功能

如何实现一位全加器

A _i	B _i	C _i	C _{i+1}	S _i
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

$$S_{i} = \overline{A_{i}} \cdot \overline{B_{i}} \cdot C_{i} + \overline{A_{i}} \cdot B_{i} \cdot \overline{C_{i}}$$
$$+ A_{i} \cdot \overline{B_{i}} \cdot \overline{C_{i}} + A_{i} \cdot B_{i} \cdot C_{i}$$

$$\begin{split} C_{i+1} &= \overline{A_i} \cdot B_i \cdot C_i + A_i \cdot \overline{B_i} \cdot C_i \\ &+ A_i \cdot B_i \cdot \overline{C_i} + A_i \cdot B_i \cdot C_i \end{split}$$

卡诺图化简

$$S_{i} = \overline{A_{i}} \cdot \overline{B_{i}} \cdot C_{i} + \overline{A_{i}} \cdot B_{i} \cdot \overline{C_{i}} + A_{i} \cdot \overline{B_{i}} \cdot \overline{C_{i}} + A_{i} \cdot \overline{B_{i}} \cdot C_{i}$$

C \AB	00	01	11	10
0	0 (1	0	(1)
1	1	0	1	0

$$\begin{split} C_{i+1} &= \overline{A_i} \cdot B_i \cdot C_i + A_i \cdot \overline{B_i} \cdot C_i \\ &+ A_i \cdot B_i \cdot \overline{C_i} + A_i \cdot B_i \cdot C_i \end{split}$$

C \AB	00	01	11	10
0	0	0	1	0
1	0	\bigcirc 1 ($\begin{bmatrix} 1 \end{bmatrix}$	1)

$$C_{i+1} = A_i B_i + B_i C_i + A_i C_i$$

一位全加器电路

$$\begin{split} S_i &= \overline{A_i} \cdot \overline{B_i} \cdot C_i + \overline{A_i} \cdot B_i \cdot \overline{C_i} \\ &+ A_i \cdot \overline{B_i} \cdot \overline{C_i} + A_i \cdot B_i \cdot C_i \end{split}$$

$$C_{i+1} = B_i \cdot C_i + A_i \cdot C_i + A_i \cdot B_i$$

李国林 电子电路与系统基础

进位

晶体管级的CMOS电路实现

进位逻辑的CMOS电路实现

$$C_{i+1} = B_i C_i + A_i C_i + A_i B_i = (A_i + B_i)C_i + A_i B_i$$

$$S_i = \overline{A_i} \cdot \overline{B_i} \cdot C_i + \overline{A_i} \cdot B_i \cdot \overline{C_i} + A_i \cdot \overline{B_i} \cdot \overline{C_i} + A_i \cdot B_i \cdot C_i = A_i \cdot B_i \cdot C_i + \left(A_i + B_i + C_i\right) \cdot \overline{C_{i+1}}$$

·种方式

$$\begin{split} S_i &= \overline{A_i} \cdot \overline{B_i} \cdot C_i + \overline{A_i} \cdot B_i \cdot \overline{C_i} + A_i \cdot \overline{B_i} \cdot \overline{C_i} + A_i \cdot B_i \cdot C_i \\ &= A_i \cdot B_i \cdot C_i + \left(A_i + B_i + C_i\right) \cdot \overline{C_{i+1}} \\ &= \left(A_i + B_i + C_i\right) \cdot \left(A_i \cdot B_i \cdot C_i + \overline{C_{i+1}}\right) \end{split}$$

功能完全一样

后者更对称,更紧致 结构不具互补特征, 但逻辑 功能是互补的,故而可点接

一种一位全加器的CMOS实现方案

$$C_{i+1} = B_i C_i + A_i C_i + A_i B_i = (A_i + B_i) C_i + A_i B_i$$

$$\begin{split} S_{i} &= \overline{A_{i}} \cdot \overline{B_{i}} \cdot C_{i} + \overline{A_{i}} \cdot B_{i} \cdot \overline{C_{i}} + A_{i} \cdot \overline{B_{i}} \cdot \overline{C_{i}} + A_{i} \cdot B_{i} \cdot C_{i} = A_{i} \cdot B_{i} \cdot C_{i} + \left(A_{i} + B_{i} + C_{i}\right) \cdot \overline{C_{i+1}} \\ &= \left(A_{i} + B_{i} + C_{i}\right) \cdot \left(A_{i} \cdot B_{i} \cdot C_{i} + \overline{C_{i+1}}\right) \end{split}$$

- 1、用了28个晶体管实现了一位全加器;晶体管数目少
- 2、输出用反相器,犹如缓冲器,输出逻辑电平更稳定

4.2 奇偶校验可检部分错

- 发送端,对n位数据,加1位奇偶校验位,变成 n+1位数据
 - 规则: 偶数个1
- n+1位数据传输,噪声、干扰等导致误码
- 接收端接收到数据后,进行奇偶校验,满足则认为传输正确,不满足则告警---传输出现错误
 - 不告警未必传输正确,但告警一定出现传输错误
 - 两位同时出错,仍然满足规则,传输错误但没有告警

奇偶校验位的形成

A_0	A ₁	J
0	0	0
0	1	1
1	0	1
1	1	0

$$J = \overline{A_0} A_1 + A_0 \overline{A_1} = A_0 \oplus A_1$$

异或门:有不同意见则通过,意见一致则否决

XOR: Exclusive OR

传输数据J-A1-A0

奇偶校验可检奇数位错 偶数位错不可检

A ₀	A_1	J	M
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

无法卡诺图化简的交错形态

$$\begin{split} M &= \overline{A_0} \cdot \overline{A_1} \cdot J + \overline{A_0} \cdot A_1 \cdot \overline{J} + A_0 \cdot \overline{A_1} \cdot \overline{J} + A_0 \cdot A_1 \cdot J \\ &= J \cdot \left(\overline{A_0} \cdot \overline{A_1} + A_0 \cdot A_1 \right) + \overline{J} \cdot \left(\overline{A_0} \cdot A_1 + A_0 \cdot \overline{A_1} \right) \\ &= J \cdot \left(\overline{A_0} \oplus A_1 \right) + \overline{J} \cdot \left(A_0 \oplus A_1 \right) \\ &= J \oplus \left(A_0 \oplus A_1 \right) \end{split}$$

如果校验位正确,则不报警 $J=A_0\oplus A_1$ M=0

异或门、异或非门

Α	В	А⊕В
0	0	0
0	1	1
1	0	1
1	1	0

异或门:加法和位

Α	В	A⊕B
0	0	1
0	1	0
1	0	0
1	1	1

异或非门:简单乘法

异或门:两个不同则正确,两个相同则错误 **XOR: Exclusive OR**

异或非门:两个相同则正确,两个不同则错误 **XNOR: Exclusive NOR**

数字电路的优势

- 数字电路的优势是可大规模集成
 - 数字电路只需两个状态(容差性强)
 - CMOS电路功耗极低
 - 面积极小
 - 英特尔·酷睿™2四核处理器含有5.8亿多个晶体管
 - · 大规模集成数字电路(VLSI: Very Large Scale Integrated Circuit)可实现复杂的运算、处理和控制功能
- 大规模模拟电路很难设计和调试,完成的信号 处理功能也相对单一

信息化社会是数字化的

- 数字电路的优势
 - 抗干扰能力强: 容差性强
 - 功耗低
 - -面积小
 - 可大规模集成: 构建复杂的信息处理系统

• 信息化社会是数字化的

但是,信息系统的构建不可能是数字电路可以单挑的

- 射频电路/能量转换电路无法数字化
 - 含无线通信: 4G/5G通信,可植入医疗设备,...
 - 含能量转换: 电源管理系统,放大器,振荡器,传感器和激励器(触摸屏,指纹识别,加速度计,屏幕驱动,音频驱动,...),...
- 即使是数字电路,也需模拟电路的设计技术才能有效处理高速问题
 - 处理器时钟 ~GHz: 高频下的寄生电容、寄生电感效应和传输线效应,使得我们必须用模拟电路设计理念去设计数字系统,系统才能正常工作
- 有些问题用模拟电路可能较数字电路更有效,如模糊计算等
- 模拟电路和数字电路是相辅相成的关系
 - 模拟电路面向实际的物理世界进行信息处理,数字电路则是面向数字化信息 世界的通道,两者缺一不可构建信息化社会,毕竟世界本身是模拟的,但纯 模拟的信息无法传承

- 与、或、非是布尔二值逻辑的基本运算
- 真值表是逻辑运算结果的表格表述
 - 如果两个逻辑表达式的真值表一样,这两个表达式则等价
- 卡诺图是三输入、四输入逻辑运算化简的基本手段
- 二值逻辑运算可以通过开关通断实现
 - 旁路开关后求非,反相开关先求非
 - 开关并联或运算,开关串联与运算
- CMOS门电路的PMOS开关电路是NMOS开关电路的互补, 是德摩根律的具体应用
- 各种数字信号处理功能均可通过逻辑运算实现
- 信息化社会是数字化社会,但对于信息处理系统构建而言,模拟电路和数字电路相辅相成缺一不可

本讲小结

作业1: 一位全加器

- 证明一位全加器的两个逻辑表达式是成立的
 - 根据逻辑表达式,复画CMOS电路
 - 思考:考察这样的逻辑表达式在CMOS门电路实现上有何好处?为什么这样表述?

$$C_{i+1} = B_i C_i + A_i C_i + A_i B_i = (A_i + B_i)C_i + A_i B_i$$

$$\begin{split} S_i &= \overline{A_i} \cdot \overline{B_i} \cdot C_i + \overline{A_i} \cdot B_i \cdot \overline{C_i} + A_i \cdot \overline{B_i} \cdot \overline{C_i} + A_i \cdot B_i \cdot C_i = A_i \cdot B_i \cdot C_i + \left(A_i + B_i + C_i\right) \cdot \overline{C_{i+1}} \\ &= \left(A_i + B_i + C_i\right) \cdot \left(A_i \cdot B_i \cdot C_i + \overline{C_{i+1}}\right) \end{split}$$

真值表一致 或者运用逻辑运算规则证明

思考:很多种表达式代表同一逻辑运算,但哪种是最适宜于CMOS电路实现的呢?

作业2:卡诺图化简

AB \ CD	00	01	11	10
00	1	0	0	1
01	0	1	*	*
11	1	1	*	1
10	1	*	0	1

化简卡诺图,写出输出Z用ABCD表述的逻辑表达式

用PMOS互补NMOS的CMOS电路形态(上P下N,形式互补)实现这些逻辑运算,画出CMOS晶体管级电路图

FLASH

ADC

模拟输入电压	$C_2C_1C_0$	数字输出码D ₁ D ₀
	000	00
		01
		10
		11

作业3:编码器设计

- 已知flash-ADC的码表 如左图
- · 设计编码器,实现 flash-ADC的正确输出, 并画出编码器的 CMOS实现方案
 - 用卡诺图进行化简
 - CMOS: 上P下N,形 式互补
 - C₂、C₁、C₀已经经过 电平转换电路,使 得逻辑1对应电压 V_{DD},逻辑0则对应 地电压

$C_2C_1C_0$	数字输出码D ₁ D ₀
000	00
001	01
011	10
111	11

三个输入变量,共8种情况,这里仅有4种情况剩下4种情况真值表中都是*(是0是1不在乎),因为在实际电路中,这4种情况不会也不应该出现

作业4: 信号传输路径上的传输开关

- · 图示为经典的传输开关CMOS实现方案
 - 假设A接逻辑1源(输入端),B接负载电阻/电容(输出端)
 - · 当C为高电平(逻辑1)时,(NMOS栅极电压高电平,NMOS恒流导通,) PMOS栅极电压低电平,PMOS欧姆导通,等效为开关的闭合状态,负载电压高电平(逻辑1传输)
 - · 当C为低电平(逻辑0)时,NMOS和 PMOS均截至,输出悬空(负载电阻接 地,逻辑0)
 - 假设A接逻辑0源(输入端),B接负 载电阻/电容(输出端)
 - · 当C为高电平(逻辑1)时,NMOS栅极电压高电平,NMOS欧姆导通(PMOS栅极电压低电平,PMOS恒流导通),等效为开关的闭合状态,负载电压低电平(逻辑0传输)

• ...

CMOS传输开关符号

双向导通

假设A为输入(A之前 电路可等效为源)

B为输出(B之后电路可等效为负载)

$$B = \begin{cases} CA & C = 1 \\ \text{悬空} & C = 0 \end{cases}$$

$$B = \begin{cases} \overline{C}A & C = 0 \\ \mathbb{悬} 空 & C = 1 \end{cases}$$

C为0时允许A过去

作业:多路选择器Multiplexer设计

- · 4、用CMOS电路实现一个双路选择器,里面采用CMOS传输开关,画出晶体管级CMOS电路图
 - 如果控制端C=1,则传输A
 - 如果控制端C=0,则传输B

- · 5、请设计一个4路选择器,画出 CMOS实现电路图
 - 如果控制端 $C_1C_0=00$,则传输 D_0
 - 如果控制端 $C_1C_0=01$,则传输 D_1
 - 如果控制端 $C_1C_0=10$,则传输 D_2
 - 如果控制端 $C_1C_0=11$,则传输 D_3

作业6:逻辑运算分析

- 请分析如图所示电路实现的是什么逻辑运算?
 - 给出详尽的分析过程

CAD仿真作业

- 仿真确认CMOS传输开关比单独 NMOS/PMOS晶体管开关更优
 - 自选晶体管参量
 - 研究开关闭合时的静态传输情况
 - 激励源为方波恒压源,在逻辑1电压和逻辑0电压之间变化
 - 负载分两种: 电阻负载和电容负载
 - 研究负载波形与激励源波形,分析差异原因
 - 调换激励源和负载位置,说明双向开关的优越性
 - 研究开关的动态特性
 - 激励源分别为逻辑1电平恒压源和正 弦波恒压源两种情况
 - 开关控制信号为逻辑1电平和逻辑0电平之间转换的方波信号
 - 研究开关的动态特性
 - 研究开关控制信号的频率多大时,可确保信号的有效传输

PMOS的衬底始终接最高电平 NMOS的衬底始终接最低电平

三种开关:

- 1、单NMOS开关
- 2、单PMOS开关
- 3、CMOS传输开关

两种负载:

- 1、电阻负载
- 2、电容负载