然而,允许来自全世界的外部者接入你的 Web 服务器仍存在其他必要的、决定性的步骤。考虑下列情况,假设 Alice 知道你 Web 服务器的 IP 地址,当她向那个 IP 地址发送一个 IP 数据报(如一个 TCP SYN 报文段)。这个报文段将通过因特网进行路由,访问位于许多不同 AS 中的一系列路由器,并最终到达你的 Web 服务器。当这些路由器中的任一个接收到该报文段,将去其转发表中查找表项,以决定它转发该报文段的出口。因此,每台路由器需要知道你公司的/24 前缀(或某些聚合项)的存在。一台路由器怎样才能知道你公司的前缀呢?如我们刚才所见,它从 BGP 知道了前缀!特别是,当你的公司联系一个本地 ISP 并分配到一个前缀(如一个地址范围)时,你的本地 ISP 将使用 BGP 来向它连接的 ISP 通告该前缀。那些 ISP 则将依次使用 BGP 来传播该通告。最终,所有的因特网路由器将知道你的前缀(或包括你的前缀的某些聚合),因而能够以你的 Web 和邮件服务器为目的地适当地转发数据报。

BGP 使得每个 AS 知道经过其相邻 AS 可达哪些目的地。在 BGP 中,目的地不是主机而是 CDIR 化的**前缀**(prefix),每个前缀表示一个子网或一个子网的集合。因此,例如假定有 4 个子网与 AS2 相连: 138.16.64/24,138.16.65/24,138.16.66/24 和 138.16.67/24。则 AS2 能为这 4 个子网聚合这些前缀,并使用 BGP 向 AS1 通告单一前缀 138.16.64/22。举另一个例子,假定这 4 个子网中的前 3 个在 AS2 中,第四个子网 138.16.67/24 位于 AS3 中。则如 4.4.2 节中的实践原则所述,因为路由器使用最长前缀匹配来转发数据报,所以 AS3 向 AS1 通告更特定的前缀 138.16.67/24,而 AS2 仍然向 AS1 通告聚合的前缀 138.16.64/22。

现在我们研究一下 BGP 是怎样经显示在图 4-40 中的 BGP 会话来分发前缀可达性信息的。正如你所预想的那样,在网关路由器 3a 和 1c 之间使用 eBGP 会话,AS3 向 AS1 发送经 AS3 可达的前缀列表;AS1 向 AS3 发送经 AS1 可达的前缀列表。类似地,AS1 和 AS2 通过它们的网关路由器 1b 和 2a 交换其可达性信息。同样如你预期的那样,在任何 AS 中的网关路由器接收到 eBGP 学习到的前缀后,该网关路由器使用它的 iBGP 会话来向该 AS中的其他路由器发布这些前缀。因此,在 AS1 中的所有路由器将得知 AS3 的前缀,包括网关路由器 1b 也将得知这些前缀。在 AS1 中的网关路由器 1b 因此能向 AS2 重新通告 AS3 的前缀。当一台路由器(网关或不是网关)得知一个新前缀时,它为该前缀在其转发表中创建一个项,如 4.5.3 所述的那样。

2. 路径属性和 BGP 路由

在对 BGP 有了一些基本了解后,下面我们更深入地学习它(在此过程中将同时增加一些较为不重要的技术细节!)。在 BGP 中,一个自治系统由其全局唯一的自治系统号(Autonomous System Number,ASN) [RFC 1930] 所标识。(从技术上讲,并非每个 AS 都有一个 ASN。特殊是有一种所谓桩(stub) AS 通常就没有 ASN,这种桩 AS 仅承载源地址或目的地址为本 AS 的流量。我们将在下面讨论中忽略这种特殊情况,以便能从全局看问题。) 就像 IP 地址一样,AS 号由 ICANN 地区注册机构分配 [ICANN 2012]。

当一台路由器通过 BGP 会话通告一个前缀时,它在前缀中包括一些 BGP 属性 (BGP attribute)。用 BGP 术语来说,带有属性的前缀被称为一条路由 (route)。因此,BGP 对等方彼此通告路由。两个较为重要的属性是 AS-PATH 和 NEXT-HOP。