Engenharia de Software II

Aula 13

http://www.ic.uff.br/~bianca/engsoft2/

Ementa

- Processos de desenvolvimento de software (Caps. 2, 3 e 4 do Pressman)
- Estratégias e técnicas de teste de software (Caps. 13 e 14 do Pressman)
- Métricas para software (Cap. 15)
- Gestão de projetos de software: conceitos, métricas, estimativas, cronogramação, gestão de risco, gestão de qualidade e gestão de modificações
- Reengenharia e engenharia reversa

Métricas para Software

- Métricas para o modelo de análise
 - Métricas baseadas em função
 - Métricas de qualidade de especificação
- Métricas para o modelo de projeto
- Métricas de código fonte
- Métricas para teste

Métricas para o Modelo de Análise

- Examinam o modelo de análise com um dos seguintes objetivos:
 - 1. Prever o "tamanho" ou "complexidade" do sistema resultante.
 - O tamanho é um indicador do esforço de codificação, integração e teste.
 - 2. Avaliar a qualidade do modelo de análise e da correspondente especificação de requisitos.

Métricas Baseadas em Função

- Métrica ponto por função (ou FP=function points)
 - Usada para a medir a funcionalidade entregue por um sistema.
- Usando dados históricos, o FP pode ser usado para:
 - Estimar o custo ou esforço necessário para projetar, codificar e testar o software.
 - Prever o número de erros que v\u00e3o ser encontrados durante o teste.
 - Prever o número de componentes e/ou o número de linhas de código.
- Pontos por função são derivados usando uma relação empírica baseada em medidas de contagem direta de características do software.

Características consideradas no cálculo de FP

- Número de entradas externas (Els)
- Número de saídas externas (EOs)
- Número de consultas externas (EQs)
- Número de arquivos lógicos internos (ILFs)
- Número de arquivos de interface externa (EIFs)

Entradas Externas (Els)

- Se originam de um usuário ou outra aplicação.
- Fornecem dados distintos orientados à aplicação do software ou informação de controle.
- São frequentemente usadas para atualizar arquivos lógicos internos.
- Devem ser distinguidas de consultas, que são contadas separadamente.

Saídas Externas (EOs)

- São derivadas de dentro da aplicação e fornecem informação para o usuário.
- Referem-se a relatórios, telas, mensagens de erro, etc.
- Itens de dados individuais dentro de um relatório não são contados individualmente.

Consultas Externas (EQs)

- São entradas on-line, que resultam na geração de alguma saída imediata do software.
- A entrada não modifica nenhum arquivo.
- A saída não contém dados derivados.

Arquivos Lógicos Internos (ILFs)

- Agrupamentos lógicos de dados que residem dentro das fronteiras da aplicação.
- Mantidos por entradas externas.

Arquivos de Interface Externa (EIFs)

- São agrupamentos lógico de dados que residem externamente à aplicação.
- Fornecem dados que podem ser úteis à aplicação.

Cálculo de Pontos por Função

Fator de Ponderação
Contagem Simples Médio Complexo Total

Total de Contagem

Cálculo de Pontos por Função

- FP = Total de Contagem \times [0,65 + 0,01 \times Σ (F_i)]
- Os F_i são fatores de ajuste baseados nas respostas a perguntas como:
 - O sistema requer backup e recovery?
 - Existem funções de processamento distribuído?
 - O desempenho é crítico?
 - O sistema será executado em um ambiente operacional existente, intensamente utilizado?
 - O sistema requer entrada de dados on-line?
 - A entrada de dados on-line exige várias telas?
 - Os ILFs são atualizados on-line?
 - O código é projetado para ser reusado?
- Cada uma das questões é respondida usando uma escala de 0 a 5.

Exemplo: Diagrama de Fluxo de Dados

Exemplo: Pontos por Função

Fator de Ponderação
Contagem Simples Médio Complexo Total

Els	3	x 3	4	6	=	9
EOs	2	× (4)	5	7	=	8
EQs	2	× 3	4	6	=	6
ILFs	1	× (7)	10	15	=	7
EIFs	4	× (5)	7	10	=	20

Total de Contagem =

50

Exemplo

 Supondo-se que, respondendo às perguntas, estimou-se que Σ(F_i) é 46, temos:

$$FP = 50 \times [0.65 + 0.01 \times 46] = 56$$

 Supondo-se que dados anteriores indiquem que 12 FPs são produzidos para cada pessoa-mês de esforço, pode-se fazer um planejamento para o projeto.

Métricas de Qualidade de Especificação

- Supondo que há n_r requisitos em uma especificação:
 - $n_r = n_f + n_{nf}$
 - onde n_f é o número de requisitos funcionais,
 - onde n_{nf} é o número de requisitos não-funcionais.
- Especificidade (não-ambigüidade) pode ser determinada por:
 - $Q_e = n_{ui}/n_r$
 - $-\,$ onde $n_{\mbox{\tiny ui}}$ é o número de requisitos para quais revisores diferentes dão a mesma interpretação.
- Completeza pode ser determinada por:
 - $Q_c = n_u/[n_i \times n_s]$
 - onde n_u é o número de requisitos funcionais únicos, n_i é o número de entradas especificadas e n_s é o número de estados especificados.
- Completeza global pode ser determinada por:
 - $Q_3 = n_c/[n_c \times n_{nv}]$
 - onde n_c é o número de requisitos que já foram validados como corretos e n_{nv} é o número de requisitos que ainda não foram validados.

Métricas para Modelo de Projeto

- Métricas de projeto arquitetural
- Métricas para o modelo de projeto OO

Métricas de Projeto Arquitetural

- Focalizam as características da arquitetura com ênfase na estrutura e efetividade dos módulos ou componentes.
- São "caixa-preta".
- Três indicadores da complexidade do projeto:
 - Complexidade estrutural
 - Complexidade dos dados
 - Complexidade de sistema
- DSQI: indicador da qualidade de estrutura do projeto.

Complexidade Estrutural

- Serve para arquiteturas hierárquicas.
- A complexidade estrutural é dada por:

$$S(i) = f_{out}^2(i)$$

onde f_{out}(i) é o *fan-out* do módulo i; *fan-out* é o número de módulos diretamente subordinados ao módulo i.

Complexidade dos Dados

 Fornece uma indicação da complexidade na interface interna de um módulo i e é definida como:

$$D(i) = v(i)/[f_{out}(i) + 1]$$

onde v(i) é o número de variáveis de entrada e saída que são passadas para e do módulo i.

Complexidade do Sistema

 É definida como a soma da complexidade estrutural e de dados.

$$C(i) = S(i) + D(i)$$

• À medida que complexidade global aumenta, maior a probabilidade de aumento do esforço de integração e teste.

DSQI

- DSQI = Design Structure Quality Index = Índice de qualidade da estrutura do projeto
- DSQI = Σ w_iD_i
 onde w_i é um peso e os valores D_i é são dados
 por:
 - − D₁: Estrutura de programa
 - D₂: Independência modular
 - D₃: Módulos não dependentes de processamento anterior
 - D₄: Tamanho da base de dados
 - D₅: Compartimentalização da base de dados
 - D₆: Característica de entrada/saída do módulo

DSQI

- D₁: Estrutura de programa
 - Se um método específico foi utilizado para o projeto então D_1 = 1, senão D_1 = 0.
- D₂: Independência modular
 - $-D_2 = 1 (S_2/S_1) \text{ senão } D_1 = 0.$
 - S₁ é o número total de módulos do programa.
 - S₂ é o número de módulos cujo funcionamento correto depende da fonte de entrada de dados ou que produz dados a serem usados em outro lugar.
- D₃: Módulos independentes de processamento anterior
 - $-D_3 = 1 (S_3/S_1) \text{ senão } D_1 = 0.$
 - S₁ é o número total de módulos do programa.
 - S₃ é o número de módulos cujo funcionamento correto depende de processamento anterior.

DSQI

- D₄: Tamanho da base de dados
 - $-D_4 = 1 (S_5/S_4)$
 - S₅ é o número total de itens únicos na base de dados.
 - S₄ é o número de itens na base de dados.
- D₅: Compartimentalização da base de dados

$$-D_5 = 1 - (S_6/S_4)$$

- S₆ é o número de segmentos da base de dados.
- S₄ é o número de itens na base de dados.
- D₆: Característica de entrada/saída do módulo

$$-D_6 = 1 - (S_7/S_1)$$

- S₇ é o número de módulos com uma única entrada e saída.
- S₁ é o número total de módulos do programa.

Métricas para o modelo de projeto OO

- Métricas CK
- Métricas MOOD
- Métricas de Lorenz e Kidd

Métricas CK

- A classe é a unidade fundamental de um sistema OO.
 - Métricas para uma classe individual, para a hieraquia de classes e para as colaborações entre classes são de grande valor.
- O conjunto CK (Chidamber e Kernerer) contém seis métricas para projeto OO.
 - Métodos ponderados por classe (WMC)
 - Profundidade da árvore de herança (DIT)
 - Número de filhos (NOC)
 - Acoplamento entre as classes de objetos (CBO)
 - Resposta de uma classe (RFC)
 - Falta de coesão de métodos (LCOM)