

Welcome to:

Cloud and Distributed Computing in Cognitive Computing, Business Implications of Cognitive Computing

Unit objectives

After completing this unit, you should be able to:

- Understand the concepts of leveraging distributed computing for shared resources
- Learn about cloud services
- Gain knowledge on cloud computing models
- Gain an insight into virtualization and software-defined environment
- Understand the concept of security and governance
- Learn about data integration and management in the cloud
- Gain knowledge on cognitive services on cloud

Leveraging distributed computing for shared resources

IBM ICE (Innovation Centre for Education)

- Distributed computing is a model in which components of a software system are shared among multiple computers to improve efficiency and performance.
- In the enterprise, distributed computing has often meant putting various steps in business
 processes at the most efficient places in a network of computers. For example, in the typical
 distribution using the 3-tier model, user interface processing is performed in the PC at the
 user's location, business processing is done in a remote computer, and database access and
 processing is conducted in another computer that provides centralized access for many
 business processes. Typically, this kind of distributed computing uses the client/server
 communications model.
- The Distributed Computing Environment (DCE) is a widely-used industry standard that supports this kind of distributed computing. On the Internet, third-party service providers now offer some generalized services that fit into this model.

Cloud services: Cognitive computing foundation (1 of 2)

IBM ICE (Innovation Centre for Education)

What is cloud computing?

Figure: Cloud Computing framework
Source: https://images.app.goo.gl/YHneFLuNCzCo2Gug5

IBM ICE (Innovation Centre for Education)

Cloud services: Cognitive computing foundation (2 of 3)

Characteristics of cloud computing from NIST.

Cloud Characteristic	Description	Application	
On-demand self-service	For automatically providing a consumer with provisioning capabilities as needed.	Server, Time, Network and Storage	
Broad network access	For heterogeneous thin or thick client platforms.	Smartphones, tablets, PCs, wide range of locations	
Resource pooling	The provider's computing resources are pooled to serve multiple consumers using a multi-tenant model.	Physical and virtual resources with dynamic provisioning	
Rapid elasticity	Capabilities can be elastically provisioned and released, in some cases automatically, to scale rapidly outward and inward with demand.	Adding or removing nodes, servers, resource or instances	

Figure: Cloud Computing characteristics
Source: https://images.app.goo.gl/wCaqa24LQWysbn9A8

Cloud services: Cognitive computing foundation (2 of 2)

IBM ICE (Innovation Centre for Education)

- ISO 17788 six necessary features of cloud computing.
 - On demand self-service
 - Broad network access
 - Resource pooling
 - Rapid Elasticity
 - Measured service
 - Multi-tenancy

Cloud computing models (1 of 2)

Figure: Cloud Computing Models
Source: https://images.app.goo.gl/Ve3Hwr2p5YJtk7Zg6

Cloud computing models (2 of 4)

laaS (Infrastructure as A Service).

Infrastructure-as-a-Service (IaaS)

Automating and orchestrating the compute platform and foundation services

Application
Data
Runtime
Middleware
os
Virtualization
Servers
Storage
Networking

SERVICE UNIT	Virtual machine(s)
ABSTRACTION	Physical infrastructure components
PRIMARY USE CASE	Automated provisioning of virtual Linux/Windows servers on private cloud
ADVANCE USE CASES	Policy-based provision workflow Multi-machine profiles Decommissioning workflows Hybrid cloud provisioning
TOOLS	vCloud Suite (vCOPS, vCAC, vSphere, vCO) EMC Hybrid Cloud vBlock or other converged infrastructure

Figure: laaS

Source: https://images.app.goo.gl/GDzqG4F9pjscen1Q6

Cloud computing models (2 of 2)

PaaS (Platform as A Service).

Platform-as-a-Service (PaaS)

Cloud-enabled automation and orchestration of app services and containers

Application	
Data	
Runtime	
Middleware	
os	
Virtualization	
Servers	
Storage	
Networking	

SERVICE UNIT	 Application services (e.g. Messaging) and containers (e.g. Redhat, tcServer, Weblogic)
ABSTRACTION	Physical infrastructure, OS, Middleware, and Runtime are abstracted
PRIMARY USE CASE	 Provide standard application and containers to developers and testers Dynamic management of infrastructure resources supporting horizontal scaling and bursting capabilities
ADVANCE USE CASES	 Automated testing (performance, functional, security, compliance, etc.) Integration with continuous integration and deployment systems
TOOLS	Cloud FoundryvSphere

Figure: PaaS

Source: https://infocus.delltechnologies.com/wp-content/uploads/2014/09/PaaS-BD.png

Cloud computing models (4 of 4)

SaaS (Software as A Service).

Software as a service, or SaaS, is a cloud computing solution companies can license and access via the Internet, where a third-party provider hosts and manages all hardware and software. A basic example is web-based email, like Gmail, but SaaS can range from productivity applications to customer relationship management tools to content delivery networks.

When considering a SaaS application, it's important to consider all implications – licensing fees, maintenance and upgrade timing, and options for customization to meet your business needs.

Figure: SaaS

Source: https://images.app.goo.gl/ko4GFmZHnUtkHzXZ7

Example of cloud model

New Pizza as a Service

Figure: Pizza as a service overview Source: https://images.app.goo.gl/iZo1ESkXdd8JkVUJ8

Difference between laaS and PaaS

Type of Cloud Service	What it Offers	Use This Service If:	Leading Service Providers
Infrastructure as a Service (IaaS)	 Computing infrastructure, including servers, storage, platform virtualization environments, network connectivity, and operating systems Hardware and data center maintained by service provider while resources on machine, such as memory and CPU, are left to management of user Flexibility 	 Upfront capital or space for infrastructure is unavailable Maintaining control over resources is viable and beneficial for the project 	Amazon EC2, Windows Azure, Rackspace, Google Compute Engine, Digital Ocean, Linode
Platform as a Service (PaaS)	 Services to develop, test, deploy, host, and maintain applications CPU, memory usage, infrastructure, operating system, programming language execution environment, database, web server, and security maintained by service provider Access for multiple concurrent users to the same development application Support for development team collaboration Ability to the use software components controlled by a third-party Convenience 	 Customizing hardware and software is not necessary for application development Decreasing time-to- market is a priority 	AWS Elastic Beanstalk, Windows Azure, Heroku, Salesforce1, Google App Engine, Apache Stratos, EngineYard

Figure: laaS and PaaS comparison

Source: https://images.app.goo.gl/gP96rrt9SMxzA5Es6

Figure: Cloud Types

Source: https://images.app.goo.gl/h39wsV9rt5pSow3W9

Types of cloud deployment models (2 of 5)

IBM ICE (Innovation Centre for Education)

- A private cloud consists of computing resources used exclusively by one business or organization. The private cloud can be physically located at your organization's on-site datacenter or it can be hosted by a third-party service provider. But in a private cloud, the services and infrastructure are always maintained on a private network and the hardware and software are dedicated solely to your organization. In this way, a private cloud can make it easier for an organization to customize its resources to meet specific IT requirements.
- Private clouds are often used by government agencies, financial institutions, any other midto large-size organizations with business-critical operations seeking enhanced control over their environment.

Types of cloud deployment models (3 of 5)

IBM ICE (Innovation Centre for Education)

Public cloud

- Public clouds are the most common way of deploying cloud computing. The cloud resources
 (like servers and storage) are owned and operated by a third-party cloud service provider
 and delivered over the Internet. Microsoft Azure, AWS, IBM cloud are an example of a public
 cloud. With a public cloud, all hardware, software and other supporting infrastructure is
 owned and managed by the cloud provider. In a public cloud, you share the same hardware,
 storage and network devices with other organisations or cloud "tenants."
- You access services and manage your account using a web browser. Public cloud deployments are frequently used to provide web-based email, online office applications, storage and testing and development environments

IBM ICE (Innovation Centre for Education)

Types of cloud deployment models (4 of 5)

Hybrid cloud

- Often called "the best of both worlds," hybrid clouds combine on-premises infrastructure, or private clouds, with public clouds so organisations can reap the advantages of both.
- In a hybrid cloud, data and applications can move between private and public clouds for greater flexibility and more deployment options. For instance, you can use the public cloud for high-volume, lower-security needs such as web-based email and the private cloud (or other on-premises infrastructure) for sensitive, business-critical operations like financial reporting.
- In a hybrid cloud, "cloud bursting" is also an option. This is when an application or resource
 runs in the private cloud until there is a spike in demand (such as seasonal event like online
 shopping or tax filing), at which point the organization can "burst through" to the public cloud
 to tap into additional computing resources.

Types of cloud deployment models (5 of 5)

IBM ICE (Innovation Centre for Education)

Community cloud.

- Community cloud computing refers to a shared cloud computing service environment that is targeted to a limited set of organizations or employees (such as banks or heads of trading firms).
- The organizing principle for the community will vary, but the members of the community generally share similar security, privacy, performance and compliance requirements. Community members may wish to invoke a mechanism that is often run by themselves (not just the provider) to review those seeking entry into the community.

Difference between cloud deployment models

IBM ICE (Innovation Centre for Education)

Difference	Private	Public	Hybrid
Tenancy	Single tenancy: there's only the data of a single organization stored in the cloud.	Multi-tenancy: the data of multiple organizations in stored in a shared environment.	The data stored in the public cloud is usually multi-tenant, which means the data from multiple organizations is stored in a shared environment. The data stored in private cloud is kept private by the organization.
Exposed to the Public	No: only the organization itself can use the private cloud services.	Yes: anyone can use the public cloud services.	The services running on a private cloud can be accessed only the organization's users, while the services running on public cloud can be accessed by anyone.
Data Center Location	Inside the organization's network.	Anywhere on the Internet where the cloud service provider's services are located.	Inside the organization's network for private cloud services as well as anywhere on the Internet for public cloud services.
Cloud Service Management	The organization must have their own administrators managing their private cloud services.	The cloud service provider manages the services, where the organization merely uses them.	The organization itself must manage the private cloud, while the public cloud is managed by the CSP.
Hardware Components	Must be provided by the organization itself, which has to buy physical servers to build the private cloud on.	The CSP provides all the hardware and ensures it's working at all times.	The organization must provide hardware for the private cloud, while the hardware of CSP is used for public cloud services.
Expenses	Can be quite expensive, since the hardware, applications and network have to be provided and managed by the organization itself.	The CSP has to provide the hardware, set-up the application and provide the network accessibility according to the SLA.	The private cloud services must be provided by the organization, including the hardware, applications and network, while the CSP manages the public cloud services.

Figure: Difference between Cloud deployment models

Source: https://blog.higcom/enterprise-collaboration/whats-difference-public-private-hybrid-cloudhq.

What is a multi-cloud model?

IBM ICE (Innovation Centre for Education)

- Multi-cloud is the use of two or more cloud computing services from any number of different cloud vendors.
- A multi-cloud environment could be all-private, all-public or a combination of both.
 Companies use multi-cloud environments to distribute computing resources and minimize the risk of downtime and data loss.
- They can also increase the computing power and storage available to a business.
 Innovations in the cloud in recent years have resulted in a move from single-user private clouds to multi-tenant public clouds and hybrid clouds, a heterogeneous environment that leverages different infrastructure environments like the private and public cloud.
- Vendors:
 - AWS | Google Cloud Platform | IBM Cloud | Microsoft Azure | Openstack (private cloud) |
 Rackspace | VMware Cloud

Hybrid cloud vs multi-cloud: Which one is right?

IBM ICE (Innovation Centre for Education)

Basic cloud use: run an application in a single cloud environment, whether private or public

Allows you to run an application simultaneously and seamlessly in a public cloud and on-premises

Allows you to use the most appropriate or beneficial cloud option – public, on-premises, or private – for each separate application

Figure: Hybrid and Multicloud model Source: https://images.app.goo.gl/3AnqvXZVYyhnFtTs6

Applying cloud computing to clinical research

IBM ICE (Innovation Centre for Education)

Figure: Cloud computing in Healthcare

Source: https://images.app.goo.gl/e9du9o5vdeQDw6D49

Self evaluation: Exercise 15

IBM ICE (Innovation Centre for Education)

- To continue with the training, after learning the various steps involved in cognitive analytics and cloud operations, it is instructed to utilize the concepts of Genetic Algorithms to perform the following activity.
- You are instructed to write the following activities using Python code.
- Exercise 15: Cognitive Genetic Algorithms

laaS

SaaS

PaaS

Figure: Delivery models of the cloud

Delivery models of the cloud (2 of 4)

Virtualization.

Figure: Virtualization Architecture

Source: https://images.app.goo.gl/fNkYDL8J4HScBpr19

Delivery models of the cloud (2 of 2)

Containers.

Figure: Containers in cloud

Source: https://images.app.goo.gl/pbUwkyFSB33CSdL49

Why containers?

Figure: Why Containers?

Source: https://images.app.goo.gl/aiyxJmtgFtS6jd6k7

Manage

Business Alignment

Criticality

\$

Document the criticality and relative business value of each workload.

Impact

Establish clear performance expectations and business interruption time/value metrics.

Commitment

Document, track, and report on commitments to cost and performance

Cloud Operations Disciplines

Establish a defined inventory of assets. Develop visibility into the asset telemetry.

Operational Compliance

Manage configuration drift and standards. Apply management automation and controls.

Protect & Recover

Implement solutions to minimize performance interruptions and ensure rapid recovery when needed.

PlatformOperations

Customize operations to improve performance of the common platforms that support multiple workloads.

Workload Operations

Understand workload telemetry. Align workload operations to performance and reliability commitments.

Figure: Managing workload in cloud model

Source: https://images.app.goo.gl/ZnxNKsd3Hzzt4KvY9

Security and governance

Figure: Security and governance
Source: https://images.app.goo.gl/36EeW7gSf5yXnKhYA

Data integration and management in the cloud

IBM ICE (Innovation Centre for Education)

Figure: Data Integration and Management in cloud

Source: https://images.app.goo.gl/7nSrhFnMV6GRQpcq5

Cognitive computing's business implications

IBM ICE (Innovation Centre for Education)

A platform-centric business model

Figure: Cognitive computing's business implications

Source: https://images.app.goo.gl/AmmVZFPQWm38Z8ao7

Change preparation for business segment

IBM ICE (Innovation Centre for Education)

Figure: Change Preparation for business segment
Source: https://images.app.goo.gl/8Jd4o1cfPwy9CwEk9

Benefits of new disruptive models

Figure: Disruptive Models

Source: https://images.app.goo.gl/kPvNYPL56xCUGfAx7

Self evaluation: Exercise 16

IBM ICE (Innovation Centre for Education)

- To continue with the training, after learning the various steps involved in cognitive analytics and cloud operations, it is instructed to utilize the concepts of ML Algorithms to perform the following activity.
- You are instructed to write the following activities using Python code.
- Exercise 16: Fraud Detection

Knowledge means to the business

Business Intelligence	Knowledge Management
Explicit in nature	Tacit in nature
Both internal and external	Only internal
Only structured information	Both structured and unstructured information
Technology Management and operationalization of Information	Identification, acquisition, application and construction of new knowledge
Business oriented, descriptions, forecasting, analysis and decision making	Organizational processes, dynamic learning, existing knowledge to support decision making

Figure: Business and Knowledge intelligence

Source: https://images.app.goo.gl/bkWKEuBmwA7uLBdw8

The discrepancy in the approach to cognitive systems

IBM ICE (Innovation Centre for Education)

Figure: The discrepancy in the approach to cognitive systems

Source: https://images.app.goo.gl/Ey4vkUAct6RkmQ2d6

Figure: Data mesh platform

Source: https://images.app.goo.gl/NYnbx5GJYbaYRA3p6

The four stages of maturity in analytics

Figure: The four stages of maturity in analytics

Source: https://lh3.googleusercontent.com/x87KGOreKiKKwtTOK4KVChBVLJfET5-477hHQwOi3ggkwsgfObQaLw189AFkJDJxvw8lg=s142

Answering business questions in new ways

IBM ICE (Innovation Centre for Education)

Figure: Business Answer technique
Source: https://images.app.goo.gl/87oHR3BK5WerVBcKA

Building business specific solutions

Figure: Building Business Specific Solutions
Source: https://images.app.goo.gl/R3RZKXgNrhbRdXsn9

Self evaluation: Exercise 17

IBM ICE (Innovation Centre for Education)

- To continue with the training, after learning the various steps involved in cognitive analytics and cloud Business operations, it is instructed to utilize the concepts of ML Algorithms to perform the following activity.
- You are instructed to write the following activities using Python code.
- Exercise 17: Text Analytics

Figure: Cognitive computing a reality Source: https://images.app.goo.gl/xJgiejrfNeBAZQ1Q8

In what way a cognitive application can bring variation in a marketplace

IBM ICE (Innovation Centre for Education)

within business applications.

Technologies Driving AI Business Focus Areas Insights **Machine Learning and Deep** Using predictive analytics, ML and **Neural Networks** deep neural networks (DNNs) to Pattern recognition, data mining, identify patterns and trends. training on large datasets. Basis for For example, modeling, optimizing, advances in NLP, computer vision, forecasting, personalization and analytics. fraud detection. User Experience Leveraging natural language processing (NLP) and computer **Natural Language Processing** vision (CV) to improve the user (NLP) experience. Conversational platforms: Translation, speech transcription, human-like interaction, text virtual assistants, sentiment analytics and summarization. analysis, language generation, content moderation. building knowledge hubs. Image classification, streaming video analysis for security, and fraud and intelligence use cases. Process Automation **Computer Vision** Implementing a broad range of Al Label extraction from image (car, capabilities for process automation. person, tree, etc.), face recognition, image attributes (face gender), For example, the IoT, automated OCR to text, streaming video contact centers and AI embedded analysis, content moderation.

Figure: Al and Business Area

Source: https://images.app.goo.gl/BM9XosYRxAvh8Uvi9

IBM ICE (Innovation Centre for Education)

Figure: Cloud market share providers

Source: Gartner, Goldman Sachs, 2019.

Cognitive computing using cloud-based resources (2 of 4)

IBM ICE (Innovation Centre for Education)

Figure: Data insights for Business
Source: https://images.app.goo.gl/YqiX41fWQxffLEpR7

Cognitive computing using cloud-based resources (2 of 2)

IBM ICE (Innovation Centre for Education)

Figure: User experience

Source: https://images.app.goo.gl/XoVBp1DTaBh4KevF6

Cognitive computing using cloud-based resources (4 of 4)

IBM ICE (Innovation Centre for Education)

Figure: RPA

Source: https://images.app.goo.gl/GqMqfR498SerJ6KF7

Self evaluation: Exercise 18

IBM ICE (Innovation Centre for Education)

- To continue with the training, after learning the various steps involved in cognitive analytics and cloud Business operations, it is instructed to utilize the concepts of ML Algorithms to perform the following activity.
- You are instructed to write the following activities using Python code.
- Exercise 18: Image Analytics

Checkpoint (1 of 2)

Multiple choice questions:

- 1. Which of the following is Cloud Platform by Amazon?
 - a) Azure
 - b) AWS
 - c) Cloudera
 - d) All the above
- 2. Which of the following is essential concept related to Cloud?
 - a) Reliability
 - b) Productivity
 - c) Abstraction
 - d) All the above
- 3. Which of the following cloud concept is related to pooling and sharing of resources?
 - a) Polymorphism
 - b) Abstraction
 - c) Virtualization
 - d) None of the above

Checkpoint solutions (1 of 2)

- 1. Which of the following is Cloud Platform by Amazon?
 - a) Azure
 - b) AWS
 - c) Cloudera
 - d) All the above
- 2. Which of the following is essential concept related to Cloud?
 - a) Reliability
 - b) Productivity
 - c) Abstraction
 - d) All the above
- 3. Which of the following cloud concept is related to pooling and sharing of resources?
 - a) Polymorphism
 - b) Abstraction
 - c) Virtualization
 - d) None of the above

Checkpoint (2 of 2)

Fill in the blanks:

• •	companing refere to approximate and controlled that rain on a distributed from
	using virtualized resources.
2.	as a utility is a dream that dates from the beginning of the computing industry
	itself.
3.	has many of the characteristics of what is now being called cloud computing.
4.	Cloud computing is an abstraction based on the notion of pooling physical resources and
	presenting them as a resource.

computing refers to applications and services that run on a distributed network

True or False:

- 1. Scalability in the cloud allows users to expand or contract when they need to. True/False
- 2. High availability is a build in feature of cloud load balancers. True/False
- 3. In cloud computing, cloud refer to laptop. True/False

Checkpoint solutions (2 of 2)

Fill in the blanks:

- 1. <u>Cloud</u> computing refers to applications and services that run on a distributed network using virtualized resources.
- 2. <u>Computing</u> as a utility is a dream that dates from the beginning of the computing industry itself.
- Internet has many of the characteristics of what is now being called cloud computing.
- 4. Cloud computing is an abstraction based on the notion of pooling physical resources and presenting them as a <u>virtual</u> resource.

True or False:

- 1. Scalability in the cloud allows users to expand or contract when they need to. True
- 2. High availability is a build in feature of cloud Load Balancers. True
- In cloud computing, cloud refer to laptop. False

Question bank

Two mark question:

- 1. What is cloud computing?
- 2. What is the importance of cloud computing?
- 3. What is public cloud?
- 4. What is community cloud?

Four mark question:

- Difference between Internal and external cloud.
- 2. Explain cloud architecture.
- 3. Explain business application on cloud model.
- Describe any 3 public cloud vendors name.

Eight mark question:

- 1. Explain the difference between SaaS, Paas and laas model.
- 2. Explain business benefit with cloud model for cognitive applications.

Unit summary

Having completed this unit, you should be able to:

- Understand the concepts of leveraging distributed computing for shared resources
- Learn about cloud services
- Gain knowledge on cloud computing models
- Gain an insight into virtualization and software-defined environment
- Understand the concept of security and governance
- Learn about data integration and management in the cloud
- Gain knowledge on cognitive services on cloud