MATH 370 lecture 9

Chris Camano: ccamano@sfsu.edu

September 22, 2022

Analysis

Definition 1. : Tail of a sequence:

A tail of a sequence where a sequence a_n is seen as a function as follows:

$$a: \mathbb{N} \mapsto \mathbb{R}$$

is restricted to:

$$\mathbb{N} - \{1, ..., k-1\}$$

Let a_n be a sequence . A tail for this sequence can be expressed as :

$$(a_n)_{n=k}^{\infty}$$

Recall the definitions of

- $\lim_{n\to\infty}\inf a_n = \lim_{k\to\infty}u_k$ Where U_k is the sequence of influmums of a_n .
- $\lim_{n\to\infty} \sup a_n = \lim_{k\to\infty} v_k$ Where v_k is the sequence of supermums of a_n .

If $\lim_{n\to\infty}\inf a_n=\lim_{n\to\infty}\sup a_n$ then $\lim_{n\to\infty}a_n$ exists

Let $S=\lim_{n\to\infty} a_n$ By definition of $\liminf \forall \varepsilon > 0 \exists N \forall n > N : |a_n-s| < \varepsilon$ we Know that $\lim_{n\to\infty} \sup a_n < V_N < s+\varepsilon$ and that we Know that $\lim_{n\to\infty} \inf a_n > U_N > s-\varepsilon$