Numerical Optimization

Shan-Hung Wu shwu@cs.nthu.edu.tw

Department of Computer Science, National Tsing Hua University, Taiwan

Machine Learning

Outline

- Numerical Computation
- Optimization Problems
- 3 Unconstrained Optimization
 - Gradient Descent
 - Newton's Method
- Optimization in ML: Stochastic Gradient Descent
 - Perceptron
 - Adaline
 - Stochastic Gradient Descent
- 5 Constrained Optimization
- 6 Optimization in ML: Regularization
 - Linear Regression
 - Polynomial Regression
 - Generalizability & Regularization
- 7 Duality*

Outline

- Numerical Computation
- 2 Optimization Problems
- 3 Unconstrained Optimization
 - Gradient Descent
 - Newton's Method
- 4 Optimization in ML: Stochastic Gradient Descent
 - Perceptron
 - Adaline
 - Stochastic Gradient Descent
- 5 Constrained Optimization
- 6 Optimization in ML: Regularization
 - Linear Regression
 - Polynomial Regression
 - Generalizability & Regularization
- 7 Duality*

Numerical Computation

- Machine learning algorithms usually require a high amount of numerical computation in involving real numbers
- However, real numbers cannot be represented precisely using a finite amount of memory
- Watch out the *numeric errors* when implementing machine learning algorithms

Overflow and Underflow I

• Consider the **softmax function softmax** : $\mathbb{R}^d \to \mathbb{R}^d$:

$$\operatorname{softmax}(\boldsymbol{x})_i = \frac{\exp(x_i)}{\sum_{j=1}^d \exp(x_j)}$$

- Commonly used to transform a group of real values to "probabilities"
- Analytically, if $x_i = c$ for all i, then $\operatorname{softmax}(\boldsymbol{x})_i = 1/d$
- Numerically, this may not occur when |c| is large
 - A positive c causes overflow
 - ullet A negative c causes underflow and divide-by-zero error
- How to avoid these errors?

Overflow and Underflow II

• Instead of evaluating softmax(x) directly, we can transform x into

$$z = x - \max_{i} x_{i} \mathbf{1}$$

and then evaluate softmax(z)

- softmax(z)_i = $\frac{\exp(x_i m)}{\sum \exp(x_j m)} = \frac{\exp(x_i)/\exp(m)}{\sum \exp(x_j)/\exp(m)} = \frac{\exp(x_i)}{\sum \exp(x_j)} = \text{softmax}(\boldsymbol{x})_i$
- No overflow, as $\exp(\text{largest attribute of } x) = 1$
- Denominator is at least 1, no divide-by-zero error
- What are the numerical issues of $\log \operatorname{softmax}(z)$? How to stabilize it? [Homework]

Poor Conditioning I

- The "conditioning" refer to how much the input of a function can change given a small change in the output
- Suppose we want to solve x in f(x) = Ax = y, where A^{-1} exists
- The *condition umber* of *A* can be expressed by

$$\kappa(\mathbf{A}) = \max_{i,j} \left| \frac{\lambda_i}{\lambda_j} \right|$$

- ullet We say the problem is **poorly** (or **ill-**) **conditioned** when $\kappa(A)$ is large
- Hard to solve $x = A^{-1}y$ precisely given a rounded y
 - ullet A^{-1} amplifies pre-existing numeric errors

Poor Conditioning II

• The contours of $f(x) = \frac{1}{2}x^{T}Ax + b^{T}x + c$, where A is symmetric:

- When $\kappa(A)$ is large, f stretches space differently along different attribute directions
 - Surface is flat in some directions but steep in others
- Hard to solve $f'(x) = \mathbf{0} \Rightarrow x = A^{-1}b$

Outline

- 1 Numerical Computation
- 2 Optimization Problems
- 3 Unconstrained Optimization
 - Gradient Descent
 - Newton's Method
- 4 Optimization in ML: Stochastic Gradient Descent
 - Perceptron
 - Adaline
 - Stochastic Gradient Descent
- 5 Constrained Optimization
- 6 Optimization in ML: Regularization
 - Linear Regression
 - Polvnomial Regression
 - Generalizability & Regularization
- 7 Duality*

Optimization Problems

• An *optimization problem* is to minimize a *cost function* $f : \mathbb{R}^d \to \mathbb{R}$:

$$\min_{\mathbf{x}} f(\mathbf{x})$$
 subject to $\mathbf{x} \in \mathbb{C}$

where $\mathbb{C} \subseteq \mathbb{R}^d$ is called the *feasible set* containing *feasible points*

- Or, maximizing an objective function
- Maximizing f equals to minimizing -f
- ullet If $\mathbb{C}=\mathbb{R}^d$, we say the optimization problem is unconstrained
- \mathbb{C} can be a set of function *constrains*, i.e., $\mathbb{C} = \{x : g^{(i)}(x) \leq 0\}_i$
- Sometimes, we single out equality constrains

$$\mathbb{C} = \{ \mathbf{x} : g^{(i)}(\mathbf{x}) \le 0, h^{(j)}(\mathbf{x}) = 0 \}_{i,j}$$

• Each equality constrain can be written as two inequality constrains

Minimums and Optimal Points

- Critical points: $\{x: f'(x) = 0\}$
 - Minima: $\{x: f'(x) = 0 \text{ and } H(f)(x) > 0\}$, where H(f)(x) is the Hessian matrix (containing curvatures) of f at point x
 - Maxima: $\{x: f'(x) = 0 \text{ and } H(f)(x) \prec 0\}$
 - Plateau or saddle points: $\{x : f'(x) = 0 \text{ and } H(f)(x) = 0 \text{ or indefinite}\}$
- $y^* = \min_{x \in \mathbb{C}} f(x) \in \mathbb{R}$ is called the **global minimum**
 - Global minima vs. local minima
- $x^* = \arg\min_{x \in \mathbb{C}} f(x)$ is called the *optimal point*

Convex Optimization Problems

- An optimization problem is convex iff
 - ① f is convex by having a "convex hull" surface, i.e.,

$$\boldsymbol{H}(f)(\boldsymbol{x}) \succeq \boldsymbol{0}, \forall \boldsymbol{x}$$

- 2 $g_i(x)$'s are convex and $h_i(x)$'s are affine
- Convex problems are "easier" since
 - Local minima are necessarily global minima
 - No saddle point
 - We can get the global minimum by solving f'(x) = 0

Analytical Solutions vs. Numerical Solutions I

Consider the problem:

$$\arg\min_{\mathbf{x}} \frac{1}{2} \left(\|A\mathbf{x} - \mathbf{b}\|^2 + \lambda \|\mathbf{x}\|^2 \right)$$

- Analytical solutions?
- The cost function $f(x) = \frac{1}{2}x^{\top} \left(A^{\top}A + \lambda I\right)x b^{\top}Ax + \frac{1}{2}\|b\|^2$ is convex
- Solving $f'(\mathbf{x}) = \mathbf{x}^{\top} (\mathbf{A}^{\top} \mathbf{A} + \lambda \mathbf{I}) \mathbf{b}^{\top} \mathbf{A} = 0$, we have

$$\boldsymbol{x}^* = \left(\boldsymbol{A}^{\top} \boldsymbol{A} + \lambda \boldsymbol{I}\right)^{-1} \boldsymbol{A}^{\top} \boldsymbol{b}$$

Analytical Solutions vs. Numerical Solutions II

• Problem $(A \in \mathbb{R}^{n \times d}, b \in \mathbb{R}^n, \lambda \in \mathbb{R})$:

$$\arg\min_{\boldsymbol{x}\in\mathbb{R}^d}\frac{1}{2}\left(\|\boldsymbol{A}\boldsymbol{x}-\boldsymbol{b}\|^2+\lambda\|\boldsymbol{x}\|^2\right)$$

- Analytical solution: $\mathbf{x}^* = (\mathbf{A}^{\mathsf{T}} \mathbf{A} + \lambda \mathbf{I})^{-1} \mathbf{A}^{\mathsf{T}} \mathbf{b}$
- In practice, we may not be able to solve f'(x) = 0 analytically and get x in a closed form
 - E.g., when $\lambda = 0$ and n < d
- Even if we can, the computation cost may be too hight
 - E.g, inverting $A^{\top}A + \lambda I \in \mathbb{R}^{d \times d}$ takes $O(d^3)$ time
- Numerical methods: since numerical errors are inevitable, why not just obtain an approximation of x^* ?
- Start from $x^{(0)}$, iteratively calculating $x^{(1)}, x^{(2)}, \cdots$ such that $f(x^{(1)}) \ge f(x^{(2)}) \ge \cdots$
 - ullet Usually require much less time to have a good enough $oldsymbol{x}^{(t)}pproxoldsymbol{x}^*$

Outline

- 1 Numerical Computation
- 2 Optimization Problems
- 3 Unconstrained Optimization
 - Gradient Descent
 - Newton's Method
- 4 Optimization in ML: Stochastic Gradient Descent
 - Perceptro
 - Adaline
 - Stochastic Gradient Descent
- 5 Constrained Optimization
- 6 Optimization in ML: Regularization
 - Linear Regression
 - Polynomial Regression
 - Generalizability & Regularization
- 7 Duality*

Unconstrained Optimization

Problem:

$$\min_{\boldsymbol{x}\in\mathbb{R}^d} f(\boldsymbol{x}),$$

where $f:\mathbb{R}^d \to \mathbb{R}$ is not necessarily convex

General Descent Algorithm

```
Input: \mathbf{x}^{(0)} \in \mathbb{R}^d, an initial guess repeat
```

Determine a descent direction $\boldsymbol{d}^{(t)} \in \mathbb{R}^d$; Line search: choose a step size or learning rate $\boldsymbol{\eta}^{(t)} > 0$ such that $f(\boldsymbol{x}^{(t)} + \boldsymbol{\eta}^{(t)}\boldsymbol{d}^{(t)})$ is minimal along the ray $\boldsymbol{x}^{(t)} + \boldsymbol{\eta}^{(t)}\boldsymbol{d}^{(t)}$; Update rule: $\boldsymbol{x}^{(t+1)} \leftarrow \boldsymbol{x}^{(t)} + \boldsymbol{\eta}^{(t)}\boldsymbol{d}^{(t)}$;

until convergence criterion is satisfied;

- Convergence criterion: $\|\mathbf{x}^{(t+1)} \mathbf{x}^{(t)}\| \le \varepsilon$, $\|\nabla f(\mathbf{x}^{(t+1)})\| \le \varepsilon$, etc.
- ullet Line search step could be skipped by letting $oldsymbol{\eta}^{(t)}$ be a small constant

Outline

- 1 Numerical Computation
- 2 Optimization Problems
- 3 Unconstrained Optimization
 - Gradient Descent
 - Newton's Method
- 4 Optimization in ML: Stochastic Gradient Descent
 - Perceptron
 - Adaline
 - Stochastic Gradient Descent
- 5 Constrained Optimization
- 6 Optimization in ML: Regularization
 - Linear Regression
 - Polynomial Regression
 - Generalizability & Regularization
- 7 Duality*

Gradient Descent I

• By Taylor's theorem, we can approximate f locally at point $x^{(t)}$ using a linear function \tilde{f} , i.e.,

$$f(\boldsymbol{x}) \approx \tilde{f}(\boldsymbol{x}; \boldsymbol{x}^{(t)}) = f(\boldsymbol{x}^{(t)}) + \nabla f(\boldsymbol{x}^{(t)})^{\top} (\boldsymbol{x} - \boldsymbol{x}^{(t)})$$

for x close enough to $x^{(t)}$

- This implies that if we pick a close $x^{(t+1)}$ that decreases \tilde{f} , we are likely to decrease f as well
- We can pick $\mathbf{x}^{(t+1)} = \mathbf{x}^{(t)} \boldsymbol{\eta} \nabla f(\mathbf{x}^{(t)})$ for some small $\boldsymbol{\eta} > 0$, since

$$\tilde{f}(\mathbf{x}^{(t+1)}) = f(\mathbf{x}^{(t)}) - \eta \|\nabla f(\mathbf{x}^{(t)})\|^2 \le \tilde{f}(\mathbf{x}^{(t)})$$

Gradient Descent II

Input: $\mathbf{x}^{(0)} \in \mathbb{R}^d$ an initial guess, a small $\eta > 0$ repeat $| \mathbf{x}^{(t+1)} \leftarrow \mathbf{x}^{(t)} - \eta \nabla f(\mathbf{x}^{(t)}) ;$ until convergence criterion is satisfied;

Is Negative Gradient a Good Direction? I

Update rule:

$$\mathbf{x}^{(t+1)} \leftarrow \mathbf{x}^{(t)} - \eta \nabla f(\mathbf{x}^{(t)})$$

- Yes, as $\nabla f(\mathbf{x}^{(t)}) \in \mathbb{R}^d$ denotes the steepest ascent direction of f at point $\mathbf{x}^{(t)}$
- $-\nabla f(\mathbf{x}^{(t)}) \in \mathbb{R}^d$ the steepest descent direction
- But why?

Is Negative Gradient a Good Direction? II

- Consider the slope of f in a given direction u at point $x^{(t)}$
- This is the *directional derivative* of f, i.e., the derivative of function $f(\mathbf{x}^{(t)} + \varepsilon \mathbf{u})$ with respect to ε , evaluated at $\varepsilon = 0$
- By the chain rule, we have $\frac{\partial}{\partial \varepsilon} f(\mathbf{x}^{(t)} + \varepsilon \mathbf{u}) = \nabla f(\mathbf{x}^{(t)} + \varepsilon \mathbf{u})^{\top} \mathbf{u}$, which equals to $\nabla f(\mathbf{x}^{(t)})^{\top} \mathbf{u}$ when $\varepsilon = 0$

Theorem (Chain Rule)

Let $g: \mathbb{R} \to \mathbb{R}^d$ and $f: \mathbb{R}^d \to \mathbb{R}$, then

$$(f \circ \mathbf{g})'(x) = f'(\mathbf{g}(x))\mathbf{g}'(x) = \nabla f(\mathbf{g}(x))^{\top} \begin{bmatrix} g'_1(x) \\ \vdots \\ g'_n(x) \end{bmatrix}.$$

Is Negative Gradient a Good Direction? III

• To find the direction that decreases f fastest at $x^{(t)}$, we solve the problem:

$$\arg\min_{\boldsymbol{u}, \|\boldsymbol{u}\| = 1} \nabla f(\boldsymbol{x}^{(t)})^{\top} \boldsymbol{u} = \arg\min_{\boldsymbol{u}, \|\boldsymbol{u}\| = 1} \|\nabla f(\boldsymbol{x}^{(t)})\| \|\boldsymbol{u}\| \cos \theta$$

where θ is the the angle between \boldsymbol{u} and $\nabla f(\boldsymbol{x}^{(t)})$

This amounts to solve

$$\underset{u}{\operatorname{arg\,min\,cos}} \theta$$

ullet So, $oldsymbol{u}^* = -
abla f(oldsymbol{x}^{(t)})$ is the steepest descent direction of f at point $oldsymbol{x}^{(t)}$

How to Set Learning Rate η ? I

- ullet Too small an η results in slow descent speed and many iterations
- ullet Too large an η may overshoot the optimal point along the gradient and goes uphill
- ullet One way to set a better η is to leverage the *curvatures* of f
 - ullet The more curvy f at point $oldsymbol{x}^{(t)}$, the smaller the $oldsymbol{\eta}$

How to Set Learning Rate η ? II

 \bullet By Taylor's theorem, we can approximate f locally at point $\pmb{x}^{(t)}$ using a quadratic function \tilde{f} :

$$f(\mathbf{x}) \approx \tilde{f}(\mathbf{x}; \mathbf{x}^{(t)}) = f(\mathbf{x}^{(t)}) + \nabla f(\mathbf{x}^{(t)})^{\top} (\mathbf{x} - \mathbf{x}^{(t)}) + \frac{1}{2} (\mathbf{x} - \mathbf{x}^{(t)})^{\top} H(f) (\mathbf{x}^{(t)}) (\mathbf{x} - \mathbf{x}^{(t)})$$

for x close enough to $x^{(t)}$

$$ullet$$
 $m{H}(f)(m{x}^{(t)}) \in \mathbb{R}^{d imes d}$ is the (symmetric) Hessian matrix of f at $m{x}^{(t)}$

• Line search at step t:

$$\underset{\boldsymbol{\eta}}{\arg\min_{\boldsymbol{\eta}}} \tilde{f}(\boldsymbol{x}^{(t)} - \boldsymbol{\eta} \nabla f(\boldsymbol{x}^{(t)})) = \\ \underset{\boldsymbol{\eta}}{\arg\min_{\boldsymbol{\eta}}} f(\boldsymbol{x}^{(t)}) - \boldsymbol{\eta} \nabla f(\boldsymbol{x}^{(t)})^{\top} \nabla f(\boldsymbol{x}^{(t)}) + \frac{\eta^2}{2} \nabla f(\boldsymbol{x}^{(t)})^{\top} \boldsymbol{H}(f)(\boldsymbol{x}^{(t)}) \nabla f(\boldsymbol{x}^{(t)})$$

• If $f(\mathbf{x}^{(t)})^{\top} \mathbf{H}(f)(\mathbf{x}^{(t)}) \nabla f(\mathbf{x}^{(t)}) > 0$, we can solve $\frac{\partial}{\partial \mathbf{n}} \tilde{f}(\mathbf{x}^{(t)} - \boldsymbol{\eta} \nabla f(\mathbf{x}^{(t)})) = 0$ and get:

$$\boldsymbol{\eta}^{(t)} = \frac{\nabla f(\boldsymbol{x}^{(t)})^{\top} \nabla f(\boldsymbol{x}^{(t)})}{\nabla f(\boldsymbol{x}^{(t)})^{\top} \boldsymbol{H}(f)(\boldsymbol{x}^{(t)}) \nabla f(\boldsymbol{x}^{(t)})}$$

Problems of Gradient Descent

- ullet Gradient descent is designed to find the steepest descent direction at step $oldsymbol{x}^{(t)}$
 - **Not aware of the conditioning** of the Hessian matrix $H(f)(x^{(t)})$
- If $H(f)(x^{(t)})$ has a large condition number, then f is curvy in some directions but flat in others at $x^{(t)}$
- E.g., suppose f is a quadratic function whose Hessian has a large condition number
- A step in gradient descent may overshoot the optimal points along flat attributes
 - "Zig-zags" around a narrow valley
- Why not take conditioning into account when picking descent directions?

Outline

- 1 Numerical Computation
- 2 Optimization Problems
- 3 Unconstrained Optimization
 - Gradient DescentNewton's Method
- 4 Optimization in ML: Stochastic Gradient Descent
 - Perceptroi
 - Adaline
 - Stochastic Gradient Descent
- 5 Constrained Optimization
- 6 Optimization in ML: Regularization
 - Linear Regression
 - Polynomial Regressio
 - Generalizability & Regularization
- 7 Duality*

Newton's Method I

• By Taylor's theorem, we can approximate f locally at point $\mathbf{x}^{(t)}$ using a quadratic function \tilde{f} , i.e.,

$$f(\mathbf{x}) \approx \tilde{f}(\mathbf{x}; \mathbf{x}^{(t)}) = f(\mathbf{x}^{(t)}) + \nabla f(\mathbf{x}^{(t)})^{\top} (\mathbf{x} - \mathbf{x}^{(t)}) + \frac{1}{2} (\mathbf{x} - \mathbf{x}^{(t)})^{\top} H(f) (\mathbf{x}^{(t)}) (\mathbf{x} - \mathbf{x}^{(t)})$$

for x close enough to $x^{(t)}$

- If f is strictly convex (i.e., $H(f)(a) \succ O, \forall a$), we can find $x^{(t+1)}$ that minimizes \tilde{f} in order to decrease f
- Solving $\nabla \tilde{f}(x^{(t+1)};x^{(t)}) = \mathbf{0}$, we have

$$\mathbf{x}^{(t+1)} = \mathbf{x}^{(t)} - \mathbf{H}(f)(\mathbf{x}^{(t)})^{-1} \nabla f(\mathbf{x}^{(t)})$$

• $H(f)(x^{(t)})^{-1}$ as a "corrector" to the negative gradient

Newton's Method II

```
Input: \mathbf{x}^{(0)} \in \mathbb{R}^d an initial guess, \eta > 0 repeat \mathbf{x}^{(t+1)} \leftarrow \mathbf{x}^{(t)} - \eta \mathbf{H}(f)(\mathbf{x}^{(t)})^{-1} \nabla f(\mathbf{x}^{(t)}); until convergence criterion is satisfied;
```

ullet In practice, we multiply the shift by a small $\eta>0$ to make sure that $m{x}^{(t+1)}$ is close to $m{x}^{(t)}$

Newton's Method III

ullet If f is positive definite quadratic, then only one step is required

General Functions

- Update rule: $\mathbf{x}^{(t+1)} \leftarrow \mathbf{x}^{(t)} \eta \mathbf{H}(f)(\mathbf{x}^{(t)})^{-1} \nabla f(\mathbf{x}^{(t)})$
- What if f is not strictly convex?
 - $H(f)(x^{(t)}) \leq O$ or indefinite
- The Levenberg–Marquardt extension:

$$\mathbf{x}^{(t+1)} = \mathbf{x}^{(t)} - \eta \left(\mathbf{H}(f)(\mathbf{x}^{(t)}) + \alpha \mathbf{I} \right)^{-1} \nabla f(\mathbf{x}^{(t)})$$
 for some $\alpha > 0$

 \bullet With a large $\alpha,$ degenerates into gradient descent of learning rate $^1\!/\alpha$

Input: $\pmb{x}^{(0)} \in \mathbb{R}^d$ an initial guess, $\pmb{\eta} > 0$, $\pmb{\alpha} > 0$ repeat

$$x^{(t+1)} \leftarrow x^{(t)} - \eta \left(H(f)(x^{(t)}) + \alpha I \right)^{-1} \nabla f(x^{(t)}) ;$$

until convergence criterion is satisfied;

Gradient Descent vs. Newton's Method

ullet Steps of Gradient descent when f is a Rosenbrock's banana:

- Steps of Newton's method:
 - Only 6 steps in total

Problems of Newton's Method

- Computing $H(f)(x^{(t)})^{-1}$ is slow
 - Takes $O(d^3)$ time at each step, which is **much slower** then O(d) of gradient descent
- Imprecise $\mathbf{x}^{(t+1)} = \mathbf{x}^{(t)} \eta \mathbf{H}(f)(\mathbf{x}^{(t)})^{-1} \nabla f(\mathbf{x}^{(t)})$ due to numerical errors
 - $H(f)(x^{(t)})$ may have a large condition number
- Attracted to saddle points (when f is not convex)
 - The $x^{(t+1)}$ solved from $\nabla \tilde{f}(x^{(t+1)};x^{(t)}) = \mathbf{0}$ is a critical point

Outline

- 1 Numerical Computation
- 2 Optimization Problems
- 3 Unconstrained Optimization
 - Gradient Descent
 - Newton's Method
- Optimization in ML: Stochastic Gradient Descent
 - Perceptron
 - Adaline
 - Stochastic Gradient Descent
- 5 Constrained Optimization
- 6 Optimization in ML: Regularization
 - Linear Regression
 - Polvnomial Regression
 - Generalizability & Regularization
- 7 Duality*

Who is Afraid of Non-convexity?

- In ML, the function to solve is usually the cost function C(w) of a model $\mathbb{F} = \{f : f \text{ parametrized by } w\}$
- Many ML models have convex cost functions in order to take advantages of convex optimization
 - E.g., perceptron, linear regression, logistic regression, SVMs, etc.
- However, in deep learning, the cost function of a neural network is typically not convex
 - We will discuss techniques that tackle non-convexity later

Assumption on Cost Functions

- In ML, we usually assume that the (real-valued) cost function is
 Lipschitz continuous and/or have Lipschitz continuous derivatives
- I.e., the rate of change of C if bounded by a *Lipschitz constant* K:

$$|C(\mathbf{w}^{(1)}) - C(\mathbf{w}^{(2)})| \le K ||\mathbf{w}^{(1)} - \mathbf{w}^{(2)}||, \forall \mathbf{w}^{(1)}, \mathbf{w}^{(2)}|$$

- 1 Numerical Computation
- 2 Optimization Problems
- 3 Unconstrained Optimization
 - Gradient Descent
 - Newton's Method
- 4 Optimization in ML: Stochastic Gradient Descent
 - Perceptron
 - Adaline
 - Stochastic Gradient Descent
- 5 Constrained Optimization
- 6 Optimization in ML: Regularization
 - Linear Regression
 - Polynomial Regression
 - Generalizability & Regularization
- 7 Duality*

Perceptron & Neurons

- Perceptron, proposed in 1950's by Rosenblatt, is one of the first ML algorithms for binary classification
- Inspired by McCullock-Pitts (MCP) neuron, published in 1943
 - Our brains consist of interconnected neurons
 - Each neuron takes signals from other neurons as input
 - If the accumulated signal exceeds a certain threshold, an output signal is generated

Model

- Binary classification problem:
 - Training dataset: $\mathbb{X} = \{(\pmb{x}^{(i)}, y^{(i)})\}_i$, where $\pmb{x}^{(i)} \in \mathbb{R}^D$ and $y^{(i)} \in \{1, -1\}$
 - Output: a function $f(x) = \hat{y}$ such that \hat{y} is close to the true label y
- Model: $\{f: f(\mathbf{x}; \mathbf{w}, b) = \operatorname{sign}(\mathbf{w}^{\top} \mathbf{x} b)\}$
 - sign(a) = 1 if $a \ge 0$; otherwise 0
 - For simplicity, we use shorthand $f(x; w) = \operatorname{sign}(w^{\top}x)$ where $w = [-b, w_1, \cdots, w_D]^{\top}$ and $x = [1, x_1, \cdots, x_D]^{\top}$

Iterative Training Algorithm I

- ① Initiate $\mathbf{w}^{(0)}$ and learning rate $\eta > 0$
- 2 Epoch: for each example $(x^{(t)}, y^{(t)})$, update w by

$$\mathbf{w}^{(t+1)} = \mathbf{w}^{(t)} + \eta (y^{(t)} - \hat{y}^{(t)}) \mathbf{x}^{(t)}$$

where
$$\hat{\mathbf{y}}^{(t)} = f(\mathbf{x}^{(t)}; \mathbf{w}^{(t)}) = \text{sign}(\mathbf{w}^{(t)\top}\mathbf{x}^{(t)})$$

3 Repeat epoch several times (or until converge)

Iterative Training Algorithm II

Update rule:

$$\mathbf{w}^{(t+1)} = \mathbf{w}^{(t)} + \eta (y^{(t)} - \hat{y}^{(t)}) \mathbf{x}^{(t)}$$

- If $\hat{y}^{(t)}$ is correct, we have $\mathbf{w}^{(t+1)} = \mathbf{w}^{(t)}$
- If $\hat{y}^{(t)}$ is incorrect, we have $\mathbf{w}^{(t+1)} = \mathbf{w}^{(t)} + 2\eta y^{(t)} \mathbf{x}^{(t)}$
 - If $y^{(t)} = 1$, the updated prediction will more likely to be positive, as $\operatorname{sign}(\mathbf{w}^{(t+1)\top}\mathbf{x}^{(t)}) = \operatorname{sign}(\mathbf{w}^{(t)\top}\mathbf{x}^{(t)} + c)$ for some c > 0
 - If $y^{(t)} = -1$, the updated prediction will more likely to be negative
- Does not converge if the dataset cannot be separated by a hyperplane

- 1 Numerical Computation
- 2 Optimization Problems
- 3 Unconstrained Optimization
 - Gradient Descent
 - Newton's Method
- 4 Optimization in ML: Stochastic Gradient Descent
 - Perceptroi
 - Adaline
 - Stochastic Gradient Descent
- 5 Constrained Optimization
- 6 Optimization in ML: Regularization
 - Linear Regression
 - Polvnomial Regression
 - Generalizability & Regularization
- 7 Duality*

ADAptive Linear NEuron (Adaline)

- Proposed in 1960's by Widrow et al.
- Defines and minimizes a cost function for training:

$$\arg\min_{\mathbf{w}} C(\mathbf{w}; \mathbb{X}) = \arg\min_{\mathbf{w}} \frac{1}{2} \sum_{i=1}^{N} \left(y^{(i)} - \mathbf{w}^{\top} \mathbf{x}^{(i)} \right)^{2}$$

- Links numerical optimization to ML
- Sign function is only used for binary prediction after training

Training Using Gradient Descent

Update rule:

• Since the cost function is convex, the training iterations will converge

- 1 Numerical Computation
- 2 Optimization Problems
- 3 Unconstrained Optimization
 - Gradient Descent
 - Newton's Method
- Optimization in ML: Stochastic Gradient Descent
 - Perceptron
 - Stochastic Gradient Descent.
- 5 Constrained Optimization
- 6 Optimization in ML: Regularization
 - Linear Regression
 - Polynomial Regression
 - Generalizability & Regularization
- 7 Duality*

Cost as an Expectation

- In ML, the cost function to minimize is usually a sum of losses over training examples
- E.g., in Adaline: sum of square losses (functions)

$$\arg\min_{\mathbf{w}} C(\mathbf{w}; \mathbb{X}) = \arg\min_{\mathbf{w}} \frac{1}{2} \sum_{i=1}^{N} \left(y^{(i)} - \mathbf{w}^{\top} \mathbf{x}^{(i)} \right)^{2}$$

- Let examples be i.i.d. samples of random variables (\mathbf{x}, \mathbf{y})
- We effectively minimize the estimate of E[C(w)] over the distribution P(x,y):

$$\arg\min_{\mathbf{w}} \mathbf{E}_{\mathbf{x},\mathbf{y}\sim \mathbf{P}}[C(\mathbf{w})]$$

- \bullet P(x,y) may be unknown
- Since the problem is stochastic by nature, why not make the training algorithm stochastic too?

Stochastic Gradient Descent

```
\begin{array}{l} \textbf{Input: } \textbf{\textit{w}}^{(0)} \in \mathbb{R}^d \text{ an initial guess, } \eta > 0, \textit{M} \geq 1 \\ \textbf{repeat} \\ & \textbf{epoch:} \\ & \text{Randomly partition the training set } \mathbb{X} \text{ into the } \textbf{\textit{minibatches}} \\ & \{\mathbb{X}^{(j)}\}_{j}, \ |\mathbb{X}^{(j)}| = \textit{M}; \\ & \textbf{foreach } j \textbf{ do} \\ & & | \quad \textbf{\textit{w}}^{(t+1)} \leftarrow \textbf{\textit{w}}^{(t)} - \eta \nabla C(\textbf{\textit{w}}^{(t)}; \mathbb{X}^{(j)}) \ ; \\ & \textbf{end} \end{array}
```

• $C(w; \mathbb{X}^{(j)})$ is still an estimate of $E_{x,v\sim P}[C(w)]$

until convergence criterion is satisfied;

- $\mathbb{X}^{(j)}$ are samples of the same distribution $P(\mathbf{x}, \mathbf{y})$
- It's common to set M=1 on a single machine
 - E.g., update rule for Adaline: $\mathbf{w}^{(t+1)} = \mathbf{w}^{(t)} + \eta(\mathbf{y}^{(t)} \mathbf{w}^{(t)\top}\mathbf{x}^{(t)})\mathbf{x}^{(t)}$, which is similar to that of Perceptron

SGD vs. GD

- Each iteration can run **much faster** when $M \ll N$
- Converges faster (in both #epochs and time) with large datasets
- Supports online learning
- But may wander around the optimal points
 - In practice, we set $\eta = O(t^{-1})$

- 1 Numerical Computation
- 2 Optimization Problems
- 3 Unconstrained Optimization
 - Gradient Descent
 - Newton's Method
- 4 Optimization in ML: Stochastic Gradient Descent
 - Perceptron
 - Adaline
 - Stochastic Gradient Descent
- 5 Constrained Optimization
- 6 Optimization in ML: Regularization
 - Linear Regression
 - Polynomial Regression
 - Generalizability & Regularization
- 7 Duality*

Constrained Optimization

Problem:

$$\min_{\mathbf{x}} f(\mathbf{x})$$
 subject to $\mathbf{x} \in \mathbb{C}$

- ullet $f: \mathbb{R}^d o \mathbb{R}$ is not necessarily convex
- $\mathbb{C} = \{ \mathbf{x} : g^{(i)}(\mathbf{x}) \le 0, h^{(j)}(\mathbf{x}) = 0 \}_{i,j}$
- Iterative descent algorithm?

Common Methods

- **Projective gradient descent**: if $x^{(t)}$ falls outside \mathbb{C} at step t, we "project" back the point to the tangent space (edge) of \mathbb{C}
- Penalty/barrier methods: convert the constrained problem into one or more unconstrained ones
- And more...

Karush-Kuhn-Tucker (KKT) Methods I

Converts the problem

$$\min_{\pmb{x}} f(\pmb{x})$$
 subject to $\pmb{x} \in \{\pmb{x}: g^{(i)}(\pmb{x}) \leq 0, h^{(j)}(\pmb{x}) = 0\}_{i,j}$

into

$$\begin{aligned} \min_{\boldsymbol{x}} \max_{\alpha,\beta,\alpha \geq \boldsymbol{0}} L(\boldsymbol{x},\alpha,\beta) &= \\ \min_{\boldsymbol{x}} \max_{\alpha,\beta,\alpha \geq \boldsymbol{0}} f(\boldsymbol{x}) + \sum_{i} \alpha_{i} g^{(i)}(\boldsymbol{x}) + \sum_{j} \beta_{j} h^{(j)}(\boldsymbol{x}) \end{aligned}$$

- $\min_x \max_{\alpha,\beta} L$ means "minimize L with respect to x, at which L is maximized with respect to α and β "
- The function $L(x, \alpha, \beta)$ is called the (generalized) Lagrangian
- α and β are called KKT multipliers

Karush-Kuhn-Tucker (KKT) Methods II

Converts the problem

$$\min_{\pmb{x}} f(\pmb{x})$$
 subject to $\pmb{x} \in \{\pmb{x}: g^{(i)}(\pmb{x}) \leq 0, h^{(j)}(\pmb{x}) = 0\}_{i,j}$

into

$$\begin{array}{l} \min_{\pmb{x}} \max_{\pmb{\alpha},\pmb{\beta},\pmb{\alpha} \geq \pmb{0}} L(\pmb{x},\pmb{\alpha},\pmb{\beta}) = \\ \min_{\pmb{x}} \max_{\pmb{\alpha},\pmb{\beta},\pmb{\alpha} \geq \pmb{0}} f(\pmb{x}) + \sum_{i} \alpha_{i} g^{(i)}(\pmb{x}) + \sum_{j} \beta_{j} h^{(j)}(\pmb{x}) \end{array}$$

ullet Observe that for any feasible point x, we have

$$\max_{\alpha,\beta,\alpha>0} L(\mathbf{x},\alpha,\beta) = f(\mathbf{x})$$

- The optimal feasible point is unchanged
- \bullet And for any infeasible point x, we have

$$\max_{\alpha,\beta,\alpha>0} L(\mathbf{x},\alpha,\beta) = \infty$$

• Infeasible points will never be optimal (if there are feasible points)

Alternate Iterative Algorithm

$$\min_{\mathbf{x}} \max_{\alpha,\beta,\alpha \geq \mathbf{0}} f(\mathbf{x}) + \sum_{i} \alpha_{i} g^{(i)}(\mathbf{x}) + \sum_{j} \beta_{j} h^{(j)}(\mathbf{x})$$

ullet "Large" lpha and eta create a "barrier" for feasible solutions

```
Input: x^{(0)} an initial guess, \alpha^{(0)} = \mathbf{0}. \beta^{(0)} = \mathbf{0}
repeat
      Solve x^{(t+1)} = \arg\min_{x} L(x; \alpha^{(t)}, \beta^{(t)}) using some iterative
      algorithm starting at x^{(t)};
     if x^{(t+1)} \notin \mathbb{C} then
            Increase \alpha^{(t)} to get \alpha^{(t+1)};
            Get oldsymbol{eta}^{(t+1)} by increasing the magnitude of oldsymbol{eta}^{(t)} and set
            \operatorname{sign}(\boldsymbol{\beta}_{i}^{(t+1)}) = \operatorname{sign}(h^{(j)}(\boldsymbol{x}^{(t+1)}));
until x^{(t+1)} \in \mathbb{C}:
```

KKT Conditions

Theorem (KKT Conditions)

If x^* is an optimal point, then there exists KKT multipliers α^* and β^* such that the Karush-Kuhn-Tucker (KKT) conditions are satisfied:

Lagrangian stationarity: $\nabla L(\mathbf{x}^*, \boldsymbol{\alpha}^*, \boldsymbol{\beta}^*) = 0$

Primal feasibility: $g^{(i)}(\mathbf{x}^*) \leq 0$ and $h^{(j)}(\mathbf{x}^*) = 0$ for all i and j

Dual feasibility: $\alpha^* \geq 0$

Complementary slackness: $\alpha_i^* g^{(i)}(\mathbf{x}^*) = 0$ for all i.

- ullet Only a necessary condition for x^* being optimal
- Sufficient if the original problem is convex

Complementary Slackness

- Why $\alpha_i^* g^{(i)}(x^*) = 0$?
- For x^* being feasible, we have $g^{(i)}(x^*) \leq 0$
- If $g^{(i)}$ is **active** (i.e., $g^{(i)}(x^*) = 0$) then $\alpha_i^* g^{(i)}(x^*) = 0$
- If $g^{(i)}$ is **inactive** (i.e., $g^{(i)}(\mathbf{x}^*) < 0$), then
 - To maximize the $\alpha_i g^{(i)}(x^*)$ term in the Lagrangian in terms of α_i subject to $\alpha_i \geq 0$, we have $\alpha_i^* = 0$
 - Again $\alpha_i^* g^{(i)}(\mathbf{x}^*) = 0$
- So what?
 - $\alpha_i^* > 0$ implies $g^{(i)}(x^*) = 0$
 - Once x^* is solved, we can quickly find out the active inequality constrains by checking $\alpha_i^* > 0$

- 1 Numerical Computation
- 2 Optimization Problems
- 3 Unconstrained Optimization
 - Gradient Descent
 - Newton's Method
- 4 Optimization in ML: Stochastic Gradient Descent
 - Perceptron
 - Adaline
 - Stochastic Gradient Descent
- 5 Constrained Optimization
- 6 Optimization in ML: Regularization
 - Linear Regression
 - Polynomial Regression
 - Generalizability & Regularization
- 7 Duality*

- 1 Numerical Computation
- 2 Optimization Problems
- 3 Unconstrained Optimization
 - Gradient Descent
 - Newton's Method
- 4 Optimization in ML: Stochastic Gradient Descent
 - Perceptron
 - Adaline
 - Stochastic Gradient Descent
- 5 Constrained Optimization
- 6 Optimization in ML: Regularization
 - Linear Regression
 - Polynomial Regression
 - Generalizability & Regularization
- 7 Duality*

The Regression Problem

- Given a training dataset: $X = \{(x^{(i)}, y^{(i)})\}_{i=1}^{N}$
 - $\mathbf{x}^{(i)} \in \mathbb{R}^D$, called explanatory variables (attributes/features)
 - $y^{(i)} \in \mathbb{R}$, called response/target variables (labels)
- Goal: to find a function $f(x) = \hat{y}$ such that \hat{y} is close to the true label y
- Example: to predict the price of a stock tomorrow
- Could you define a model $\mathbb{F} = \{f\}$ and cost function C[f]?
- How about "relaxing" the Adaline by removing the sign function when making the final prediction?
 - Adaline: $\hat{y} = \operatorname{sign}(\mathbf{w}^{\top}\mathbf{x} b)$
 - Regressor: $\hat{y} = \mathbf{w}^{\top} \mathbf{x} b$

Linear Regression I

- Model: $\mathbb{F} = \{f : f(\mathbf{x}; \mathbf{w}, b) = \mathbf{w}^{\top} \mathbf{x} b\}$
 - Shorthand: $f(\mathbf{x}; \mathbf{w}) = \mathbf{w}^{\top} \mathbf{x}$, where $\mathbf{w} = [-b, w_1, \cdots, w_D]^{\top}$ and $x = [1, x_1, \cdots, x_D]^{\top}$
- Cost function and optimization problem:

$$\arg\min_{\mathbf{w}} \frac{1}{2} \sum_{i=1}^{N} \| \mathbf{y}^{(i)} - \mathbf{w}^{\top} \mathbf{x}^{(i)} \|^{2} = \arg\min_{\mathbf{w}} \frac{1}{2} \| \mathbf{y} - \mathbf{X} \mathbf{w} \|^{2}$$

•
$$X = \begin{bmatrix} 1 & x^{(1)\top} \\ \vdots & \vdots \\ 1 & x^{(N)\top} \end{bmatrix} \in \mathbb{R}^{N \times (D+1)}$$
 the design matrix

ullet $\mathbf{y} = [y^{(1)}, \cdots, y^{(N)}]^{\top}$ the label vector

Linear Regression II

$$\arg\min_{\mathbf{w}} \frac{1}{2} \sum_{i=1}^{N} \| \mathbf{y}^{(i)} - \mathbf{w}^{\top} \mathbf{x}^{(i)} \|^2 = \arg\min_{\mathbf{w}} \frac{1}{2} \| \mathbf{y} - \mathbf{X} \mathbf{w} \|^2$$

- Basically, we fit a hyperplane to training data
 - Each $f(x) = \mathbf{w}^{\top} \mathbf{x} b \in \mathbb{F}$ is a hyperplane in the graph

Training Using Gradient Descent

$$\arg\min_{\mathbf{w}} \frac{1}{2} \sum_{i=1}^{N} \| \mathbf{y}^{(i)} - \mathbf{w}^{\top} \mathbf{x}^{(i)} \|^{2} = \arg\min_{\mathbf{w}} \frac{1}{2} \| \mathbf{y} - \mathbf{X} \mathbf{w} \|^{2}$$

Batch:

$$\mathbf{w}^{(t+1)} = \mathbf{w}^{(t)} + \eta \sum_{i=1}^{N} (y^{(i)} - \mathbf{w}^{(t)\top} \mathbf{x}^{(i)}) \mathbf{x}^{(i)} = \mathbf{w}^{(t)} + \eta \mathbf{X}^{\top} (\mathbf{y} - \mathbf{X} \mathbf{w})$$

• Stochastic (with minibatch size |M| = 1):

$$\mathbf{w}^{(t+1)} = \mathbf{w}^{(t)} + \mathbf{n}(\mathbf{v}^{(t)} - \mathbf{w}^{(t)\top}\mathbf{x}^{(t)})\mathbf{x}^{(t)}$$

Evaluation Metrics of Regression Models

- Given a training/testing set $\mathbb{X} = \{(\mathbf{x}^{(i)}, \mathbf{y}^{(i)})\}_{i=1}^N$
- How to evaluate the predictions $\hat{y}^{(i)}$ made by a function f?
- Sum of Square Errors (SSE): $\sum_{i=1}^{N} (y^{(i)} \hat{y}^{(i)})^2$
- Mean Square Error (MSE): $\frac{1}{N}\sum_{i=1}^{N}(y^{(i)}-\hat{y}^{(i)})^2$
- Relative Square Error (RSE):

$$\frac{\sum_{i=1}^{N}(y^{(i)}-\hat{y}^{(i)})^2}{\sum_{i=1}^{N}(y^{(i)}-\bar{y}^{(i)})^2},$$

where
$$\bar{y} = \frac{1}{N} \sum_{i} y^{(i)}$$

- ullet What does it mean? Compares f with a dummy prediction $ar{y}$
- Coefficient of Determination: $R^2 = 1 RSE \in [0, 1]$
 - Higher the better

- 1 Numerical Computation
- 2 Optimization Problems
- 3 Unconstrained Optimization
 - Gradient Descent
 - Newton's Method
- 4 Optimization in ML: Stochastic Gradient Descent
 - Perceptron
 - Adaline
 - Stochastic Gradient Descent
- 5 Constrained Optimization
- 6 Optimization in ML: Regularization
 - Linear Regression
 - Polynomial Regression
 - Generalizability & Regularization
- 7 Duality*

Polynomial Regression

- In practice, the relationship between explanatory variables and target variables may not be linear
- Polynomial regression fits a high-order polynomial to the training data
- How?

Data Augmentation

- Suppose D = 2, i.e., $\mathbf{x} = [x_1, x_2]^{\top}$
- Linear model:

$$\mathbb{F} = \{ f : f(\mathbf{x}; \mathbf{w}) = \mathbf{w}^{\top} \mathbf{x} + w_0 = w_0 + w_1 x_1 + w_2 x_2 \}$$

• Quadratic model:

$$\mathbb{F} = \{ f : f(\mathbf{x}; \mathbf{w}) = w_0 + w_1 x_1 + w_2 x_2 + w_3 x_1^2 + w_4 x_1 x_2 + w_5 x_2^2 \}$$

- We can simply augment the data dimension to reduce a quadratic model to a linear one
 - A general technique in ML to "transform" a linear model into a nonlinear one
- How many variables to solve in w for a polynomial regression problem of degree P? [Homework]

- 1 Numerical Computation
- 2 Optimization Problems
- 3 Unconstrained Optimization
 - Gradient Descent
 - Newton's Method
- 4 Optimization in ML: Stochastic Gradient Descent
 - Perceptron
 - Adaline
 - Stochastic Gradient Descent
- 5 Constrained Optimization
- 6 Optimization in ML: Regularization
 - Linear Regression
 - Polynomial Regression
 - Generalizability & Regularization
- 7 Duality*

Regularization

- There's another major difference between the ML algorithms and optimization techniques:
- We usually care about the testing performance rather than the training performance
 - E.g., in classification, we report the testing accuracy
- Goal: to learn a function that generalizes to unseen data well
- Regularization: techniques that improve the generalizability of the learned function
- How to regularize the linear regression?

$$\arg\min_{\mathbf{w}} \frac{1}{2} \|\mathbf{y} - \mathbf{X}\mathbf{w}\|^2$$

Regularized Linear Regression

ullet One way to improve the generalizability of f is to make it "flat:"

$$\underset{\mathsf{subject to}}{\arg\min_{\pmb{w} \in \mathbb{R}^D, b} \frac{1}{2} \| \pmb{y} - (\pmb{X} \pmb{w} - b) \|^2}{\text{subject to}} \ = \ \underset{\mathsf{subject to}}{\arg\min_{\pmb{w} \in \mathbb{R}^{D+1}} \frac{1}{2} \| \pmb{y} - (\pmb{X} \pmb{w}) \|^2}}{\arg\min_{\pmb{w} \in \mathbb{R}^{D+1}} \frac{1}{2} \| \pmb{y} - (\pmb{X} \pmb{w}) \|^2}$$

- $S = \operatorname{diag}([0, 1, \dots, 1]^{\top}) \in \mathbb{R}^{(D+1) \times (D+1)}$ (b is not regularized)
- We will explain why this works later
- How to solve this problem?
- Using the KKT method, we have

$$\arg\min_{\mathbf{w}} \max_{\alpha,\alpha \geq 0} L(\mathbf{w},\alpha) = \arg\min_{\mathbf{w}} \max_{\alpha,\alpha \geq 0} \frac{1}{2} \left(\|\mathbf{y} - \mathbf{X}\mathbf{w}\|^2 + \alpha (\mathbf{w}^{\top} \mathbf{S}\mathbf{w} - T) \right)$$

Alternate Iterative Algorithm

$$\arg\min_{\mathbf{w}}\max_{\alpha,\alpha\geq 0}L(\mathbf{w},\alpha) = \arg\min_{\mathbf{w}}\max_{\alpha,\alpha\geq 0}\frac{1}{2}\left(\|\mathbf{y}-\mathbf{X}\mathbf{w}\|^2 + \alpha(\mathbf{w}^{\top}\mathbf{S}\mathbf{w}-T)\right)$$

 $\begin{aligned} &\textbf{Input: } \textbf{\textit{w}}^{(0)} \in \mathbb{R}^d \text{ an initial guess, } \boldsymbol{\alpha}^{(0)} = 0, \ \delta > 0 \\ &\textbf{repeat} \\ & & | & \text{Solve } \textbf{\textit{w}}^{(t+1)} = \arg\min_{\textbf{\textit{w}}} L(\textbf{\textit{w}}; \boldsymbol{\alpha}^{(t)}) \text{ using some iterative algorithm} \\ & & \text{starting at } \textbf{\textit{w}}^{(t)}; \\ & & \textbf{if } \textbf{\textit{w}}^{(t+1)\top} \textbf{\textit{w}}^{(t+1)} > T \text{ then} \\ & & | & \alpha^{(t+1)} = \alpha^{(t)} + \delta \text{ in order to increase } L(\alpha; \textbf{\textit{w}}^{(t+1)}); \\ & \textbf{end} \\ & \textbf{until } \textbf{\textit{w}}^{(t+1)\top} \textbf{\textit{w}}^{(t+1)} < T; \end{aligned}$

• We could also solve $w^{(t+1)}$ analytically from $\frac{\partial}{\partial x}L(w;\alpha^{(t)}) = 0$:

$$\boldsymbol{w}^{(t+1)} = \left(\boldsymbol{X}^{\top} \boldsymbol{X} + \boldsymbol{\alpha}^{(t)} \boldsymbol{S}\right)^{-1} \boldsymbol{X}^{\top} \boldsymbol{y}$$

- 1 Numerical Computation
- 2 Optimization Problems
- 3 Unconstrained Optimization
 - Gradient Descent
 - Newton's Method
- 4 Optimization in ML: Stochastic Gradient Descent
 - Perceptro
 - Adaline
 - Stochastic Gradient Descent
- 5 Constrained Optimization
- 6 Optimization in ML: Regularization
 - Linear Regression
 - Polynomial Regression
 - Generalizability & Regularization
- 7 Duality*

Dual Problem

Given a problem (called primal problem):

$$p^* = \min_{\mathbf{x}} \max_{\alpha, \beta, \alpha \ge \mathbf{0}} L(\mathbf{x}, \alpha, \beta)$$

We define its dual problem as:

$$d^* = \max_{\alpha, \beta, \alpha > 0} \min_{\mathbf{x}} L(\mathbf{x}, \alpha, \beta)$$

- By the max-min inequality, we have $d^* \leq p^*$ [Homework]
- $(p^* d^*)$ is called the **duality gap**
 - p^* and d^* are called the **primal** and **dual values**, respectively

Strong Duality

- **Strong duality** holds if $d^* = p^*$
- When will it happen?
- If the primal problem has solution and convex
- Why considering dual problem?

Example

Consider a primal problem:

$$\underset{\mathsf{subject to } Ax \geq b, A \in \mathbb{R}^{n \times d}}{\arg \min_{\mathbf{x} \in \mathbb{R}^d} \frac{1}{2} \|\mathbf{x}\|^2} = \arg \min_{\mathbf{x}} \max_{\alpha, \alpha \geq \mathbf{0}} \frac{1}{2} \|\mathbf{x}\|^2 - \alpha^\top (A\mathbf{x} - \mathbf{b})$$

- Convex, so strong duality holds
- We can get the same solution via the dual problem:

$$\arg\max_{\alpha,\alpha\geq\mathbf{0}}\min_{\mathbf{x}}\frac{1}{2}\|\mathbf{x}\|^2-\alpha^{\top}(\mathbf{A}\mathbf{x}-\mathbf{b})$$

- Solving $\min_{\mathbf{x}} L(\mathbf{x}, \alpha)$ analytically, we have $\mathbf{x}^* = \mathbf{A}^\top \alpha$
- Substituting this into the dual, we get

$$\arg \max_{\alpha,\alpha>0} -\frac{1}{2} ||A^{\top}\alpha||^2 + b^{\top}\alpha$$

• We now solve n variables instead of d (beneficial when $n \ll d$)