NYC Restaurant Inspections

Analysis and k-Means Clustering

Andrew Kaluzny

November 2, 2014

Sources

- MacQueen, J. (1967) "Some Methods for Classification and Analysis of Multivariate Observations." In *Proceedings of the* Fifth Berkeley Symposium on Mathematical Statistics and Probability, eds L. M. Le Cam and J. Neyman. Berkeley, CA: University of California Press.
- (2014) "Determining the number of clusters in a data set." Wikipedia. Wikimedia Foundation, Inc. http://en.wikipedia.org/wiki/Determining_the_ number_of_clusters_in_a_data_set
- ► (2014) "k-means clustering." Wikipedia. Wikimedia Foundation, Inc. http://en.wikipedia.org/wiki/K-means_clustering
- ► R Core Team. (2014) "R: A Language and Environment for Statistical Computing." R Foundation for Statistical Computing. Vienna, Austria. http://www.R-project.org

Sources: Data

- ▶ (2014) "DOHMH New York City Restaurant Inspection Results." NYC Open Data. New York, NY: The City of New York. https://data.cityofnewyork.us/Health/ DOHMH-New-York-City-Restaurant-Inspection-Results/ xx67-kt59
- ▶ (2012) "How We Score and Grade." New York City Department of Health and Mental Hygiene. New York, NY: The City of New York. http://www.nyc.gov/html/doh/downloads/pdf/ rii/how-we-score-grade.pdf
- ▶ (2010) "Self-Inspection Worksheet for Food Service Establishments." Bureau of Food Safety and Community Sanitation. New York, NY: The City of New York. http://www.nyc.gov/html/doh/downloads/pdf/ rii/self-inspection-worksheet.pdf

Restaurant Inspections

- ▶ Began July 2010
- Itemized violations contribute to a score based on severity
 - ▶ 2B: Hot food not held at or above 140°F, 7 to 28 points
 - ▶ 10J: "Wash Hands" sign not posted at hand-wash facility, 2 points
 - etc.
- ► A: 0–13, B: 14–27, C: 28 and higher
- Not all inspections are graded, low grades lead to re-inspection

Getting and Cleaning the Data

- Data set available through NYC Open Data
- Data needs to be cleaned
 - lacktriangle e.g. Fontana's ightarrow Fontana's
- Data needs to be parsed
- Code performance concerns
 - $\triangleright \approx 24,500$ rows of data
 - R quirks

Preliminary Analysis

Time between inspections

- Mean time between inspections around 130 days
- Inspections that end in an A grade have a shorter time since last inspection (about 120 days)

Number of inspections

Mean of about 7 inspections per restaurant

Score

- Mean score of 16
- time averaged to 12

Brough Differences

Brooklyn and Queens have higher avg. scores

Staten Island has lower avg, but higher time-avg.

Relative frequencies of cuisines

Multiple Location

Restaurants with multiple locations

- Lower scores
- Longer times between inspections
- Pancakes/Waffles, Donuts, Hamburgers, Sandwiches

Time between inspections for all restaurants

Time between inspections for restaurants with multiple locations

Where are Restaurants with Multiple Locations?

Starbucks

- ▶ 229 locations
- avg. score 8.7, time-avg.6.9
- avg. 250 days between inspections
- avg. 4.5 inspections

Time between inspections for all restaurants

sinceLast

Clustering

Why do we cluster things?

- Exploratory analysis
- Classification

k-Means clustering

- Clusters defined by their means
- Originated as an information theory problem (S. P. Lloyd, 1957)
- Analogy to the case of estimating a single mean

k-Means Clustering

Notation

Event space
$$E$$

Probability mass function
$$p$$

$$\{z_i\}_{i=1}^{\infty}$$
 random points in E

$$x = \{x_i\}_{i=1}^k, x_i \in E$$

Given x, define $S(x) = \{S_i(x)\}_{i=1}^k$ the minimum distance partition of E

Partition $S = \{S_i\}_{i=1}^k$

 $\mu_i = \frac{\int_{S_i} z \, dp(z)}{p(S_i)}$

Algorithm (MacQueen)

At each step n we have the k-means $x^n = \{x_i^n\}_{i=1}^k$, (integer) weights $w^n = \{w_i^n\}_{i=1}^k$, and partition $S^n = S(x^n)$

At the start

$$x_i^1 = z_i \qquad \qquad w_i^1 = 1$$

For each subsequent step, we incorporate a new point z_{k+n} and update

$$\begin{array}{l} \text{if } z_{k+n} \in S_i^n \text{ then } x_i^{n+1} = \frac{x_i^n w_i^n + z_{k+n}}{w_i^n + 1} \\ w_i^{n+1} = w_i^n + 1 \\ x_j^{n+1} = x_j^n \text{ and } w_j^{n+1} = w_j^n \text{ for } j \neq i \end{array}$$

Pseudocode Algorithm

Convergence of k-Means

We define

$$W(x) = \sum_{i=1}^k \int_{S_i} |z - x_i| dp(z)$$

$$V(x) = \sum_{i=1}^{\kappa} \int_{S_i} |z - \mu_i(x)| dp(z)$$

Theorem

The sequence $\{W(x^1), W(x^2), ...\}$ of random variables converges and $\lim_{n\to\infty} W(x^n) = V(x)$ for some x where $x_i = \mu_i$ and $x_i \neq x_j$ for $i \neq j$.

A sketch of the proof

A Helpful Lemma

Lemma

For sequences of random variables t_1, t_2, \ldots and $\epsilon_1, \epsilon_2, \ldots$ with a monotone increasing set of events β_1, β_2, \ldots , if

$$|t_n| \le K < \infty$$

 $\epsilon_n \ge 0, \sum_{n=0}^{\infty} \epsilon_n < \infty$
 $E(t_{n+1}|\beta_n) \le t_n + \epsilon_n$

Then t_1, t_2, \ldots and s_0, s_1, \ldots converge, where $s_0 = 0$ and $s_n = \sum_{i=1}^n (t_i - E(t_{i+1}|\beta_i))$

Pathological Distributions

► Circle

Square

Rectangle

What do we want to cluster?

Frequency of violations

- ► Tally occurrences of each violation
- Scale by number of inspections

Transitions between grades

- Treat the grades as a Markov chain
- Build a matrix of transition probabilities
- How to treat transitions we don't have data for?

Tabulating Violation Frequencies

```
for id in restaurantIDs {
    get violations for id
    for v in violations {
        result[v, id]++
    }
    scale result[, id] by number of inspections
}
result <- transpose(result)</pre>
```

Creating Transition Matrices

```
for id in restaurantIDs {
    get grades for id
    create empty 3 by 3 transMatrix
    for ii in 2:n {
        lastGrade <− grades[ii −1]
        curGrade <- grades[ii]</pre>
        increment transMatrix[curGrade, lastGrade]
    for ii in 1:3 {
        scale transMatrix[, ii] by sum of column
    result[, id] <- transMatrix
result <- transpose(result)</pre>
```

Finding k

How do we find k?

► Increasing *k* will always reduce sum-of-squares

The elbow method

► Find where increasing *k* has less of an impact (the "elbow")

Clustering Results

Violation frequencies

- Very sparse data
- Clusters don't account for much of the variance (about 25%)
- Hard to interpret

Transition matrices

- Good accounting of the variance (about 60%)
- Can interpret cluster centers
- Problems of scaling from missing data

Visualizing Clusters

Transition clusters (k=5) plotted on the first two principal components

Visualizing Clusters

Transition clusters (k=5) plotted on the first and third principal components

Visualizing Clusters

Transition clusters (k=9) plotted on the first two principal components

Transition Clusters

k = 5

- ▶ $A \rightarrow A$, $B \rightarrow B$, and $C \rightarrow C$ dominated restaurants all end up clustered together (#4)
- ▶ Two clusters with dominant $B \rightarrow A$ transitions
 - ▶ one has notable $A \rightarrow A$ and $A \rightarrow B$ transitions, with barely any transitions to C (#2)
 - ▶ other splits evenly from A, when at C, the $C \rightarrow A$ transition is dominant (#5)

Cluster Properties

Clusters 2, 4, 5 are the tightest

Cluster 4 averages only 3.4 inspections

4 has lowest avg. scores, 1 the highest

time-avg. score: 16.0

time-avg. score: 10.4

time-avg. score: 13.4

time-avg. score: 9.0

time-avg. score: 11.5

Transition Clusters

k = 9

- ightharpoonup A
 ightharpoonup A dominated cluster is identifiable
- "re-scaling" of matrices helps make sense of centers
- ▶ Clusters with dominant $B \rightarrow A$ transitions still identifiable
 - ▶ Third one appears that drifts down, with relatively small $A \rightarrow A$ transition
- Sizeable cluster with a strong C → A transition that then goes between A and B with slight chances of dropping to C
 - ► Looking at unscaled version, see most of the data comes from transitions out of *C*

Conclusion

Conclusions!

Questions?