자율주행 및 C-ITS

- SLAM 개요 -

수업 개요

- □ 수업 내용
 - 동시적 위치 추정 및 지도 작성(Simultaneous localization and mapping, SLAM) 개요
 - □ 기존 SLAM
 - □ SLAM의 어려움
 - SLAM의 기술적 요소
 - SLAM의 이해
- □ 수업 목적

□ 자율주행에 사용되는 SLAM의 개념에 대하여 이해

3 SLAM

- □ 동시적 위치 추정 및 지도 작성(Simultaneous localization and mapping, SLAM)
 - 자율주행 차량에 사용되어 주변 환경 지도를 작성하는 동시에 차량의 위치를 작성된 지도 안에서 추정하는 방법
 - □ 처음 보는 환경에서 위치 추정을 하기 위한 로보틱스 기술

<출처: https://www.ifp.uni-stuttgart.de/en/research/photogrammetric_computer_vision/SLAM/>

- □ SLAM의 정의에 대한 두 가지 견해 존재
 - Cyrill Stachniss
 - 연속된 실시간 센서 데이터로 위치 추정과 지도 작성을 동시에 하면 SLAM임
 - Classical robotics 관점
 - 많은 LiDAR SLAM / LiDAR-Odometry가 이 정의를 따름
 - Davide Scaramuzza
 - 연속된 실시간 센서 데이터로 위치 추정과 지도 작성을 동시에 하면서, 내가 만든 지도 안에서 항상 정확한 위치 추정이 되어야함 (i.e., Global consistency)
 - Modern robotics 관점
 - Large-scale mapping
 - 최신 Visual-SLAM(카메라 기반)이 이 정의를 따름

- □ SLAM 사용 사례
 - □ 실내 모바일 로봇

- □ SLAM 사용 사례 (계속)
 - □ 도심자율주행

- □ SLAM 사용 사례 (계속)
 - □ 도심자율비행

Robust Stereo Visual Inertial Odometry for Fast Autonomous Flight

Ke Sun, Kartik Mohta, Bernd Pfrommer, Michael Watterson, Sikang Liu, Yash, Mulgaonkar, Camillo J. Taylor, Vijay Kumar

General Robotics, Automation, Sensing & Perception Lab

- □ SLAM 사용 사례 (계속)
 - □ VR / AR

- 🗖 기존의 Localization 방식의 한계점
 - Monte-Carlo Localization (Particle Filter)
 - Configuration space (i.e., Map) 정보를 알 때, particle filter를 이용해서 위치
 추정을 수행하는 방법
 - Map 의 정보가 정확하지 않을 때, 정확한 localization에 실패하게 됨
 - Map 이 없다면 사용할 수 없음
 - Discrete multi-modal 추정이기 때문에, 비슷한 맵 구간이 많으면 헷갈릴 수 있음

- □ SLAM 과정
 - □ 5개의 stage가 계속 반복됨

- □ 기존의 Localization 방식의 한계점 (계속)
 - Kalman filter (+ Extended Kalman filter)
 - Gaussian 분포의 motion model과 sensor measurement 값의 correlation을 구해 최적의 위치를 추정하는 방법
 - Kalman filter는 선형 시스템에서만 적용되기 때문에, 비선형 시스템을 선형 근사하는 Extended Kalman filter를 사용
 - 계산해야하는 state가 많아질수록 covariance matrix가 quadratic 하게 증가하기 때문에, 실시간 환경에서 모든 센서 데이터를 다 사용할 수 없음
 - EKF의 경우 선형근사를 하기 때문에, 매 state update 마다 에러가 쌓일 수 밖에 없음 (drift error)

- □ 기존의 Localization 방식의 한계점 (계속)
 - Kalman filter (+ Extended Kalman filter)

It's a weighted mean!

SLAM의 어려움

- SLAM이 어려운 문제인 이유
 - □ 기존의 단일 Localization / Mapping 기법들로 해결 불가능
 - Localization을 위해 (내 위치를 찾기 위해) 주변 지형의 위치를 알아야함
 - Monte-Carlo Localisation, Kalman Filter
 - Mapping을 위해 (주변 지형의 위치를 알기 위해) 내 위치를 알아야함
 - Localization이 먼저인가? Mapping이 먼저인가?

SLAM의 어려움

- □ SLAM이 어려운 문제인 이유 (계속)
 - 완벽한 state-estimation이 나올 수 없음
 - Monte-Carlo localisation의 경우, sampling을 통한 particle selection이기 때문에 optimal value를 얻을 수 없음
 - KF / EKF의 경우, 선형 근사를 하기 때문에 근사 에러가 생길 수 밖에 없음 (보통 비선형 데이터)
 - □ 시간이 지날수록 에러가 누적되며 추정된 global 위치 값에 큰 오차를 줌

- □ SLAM은 이 문제를 어떻게 해결하나?
 - □ 연속된 센서 데이터로부터 가장 정확한 Localization 값과 가장 정확한
 Mapping 값을 도출해낼 수 있는 최적화 문제로 (i.e. Least squares problem)
 문제를 재정의함
 - □ Least-squares란?
 - Over-determined system의 해를 구하기 위한 방법
 - (거의 모든 상황의 SLAM 문제는 over-determined system임)
 - Over-determined system == 미지수의 수 보다 식의 수가 더 많은 경우
 - i.e., state의 수 보다 센서 값의 수가 더 많음
 - 실제 센서 값과 현재 state 값에서 예상되는 센서 값의 차이를 최소화

- □ Least-squares란?
 - 현재 로봇의 센서 값과 예상 센서 값을 최소화 할 수 있는 로봇의 위치 + 맵의 위치 값은 무엇인가?

state (unknown) predicted measurements

real measurements

- □ Least-squares란?
 - LiDAR SLAM Iterative Closest Point (ICP)
 - Visual SLAM Bundle Adjustment (BA)

- Graph-based SLAM Least-squares을 SLAM에 적용하는 방법
 - □ 로봇의 움직임과 위치를 Node와 Edge로 구성
 - □ 로봇이 odometry 정보로 움직이면서 motion constraint를 구성

- □ Least-squares 문제를 구성하기 위해 Graph-based SLAM이 사용됨
 - □ 추가 constraint (e.g. loop closure) 등이 생성되면 최적화 수행 가능

- □ Graph-SLAM의 프로그램 플로우
 - Front-end = 그래프 생성
 - □ Back-end = 그래프 최적화

- □ Graph-SLAM의 프로그램 플로우 (계속)
 - □ Global graph optimization이 없으면 odometry
 - Global graph optimization이 있으면 SLAM (비선형성, 다중구간 최적화를 고려)
 - Scaramuzza 의 SLAM 정의를 따름

Visual odometry

Visual SLAM

- □ SLAM의 종류
 - Visual-SLAM (카메라 only)
 - LiDAR-SLAM (2D/3D LiDAR only)

SLAM 알고리즘의 종류

- □ 세부적 SLAM 기술 요소:
 - □ 다른 센서를 조합하는가?
 - Camera + IMU (Visual-Inertial Odometry)
 - LiDAR + IMU (LiDAR-Inertial Odometry)
 - Radar, GNSS... (...Sensor Fusion)
 - □ 여러 개의 센서를 융합 사용하는가?
 - Multi-camera SLAM
 - Collaborative SLAM
 - 특수 센서를 사용하는가?
 - Omnidirectional camera

SLAM의 이해

- □ SLAM에 대한 오해 1: Mapping 하는 데에 쓰기 좋음
 - Map 데이터도 least-squares에서 최적화하기는 함
 - □ 하지만 진짜로 정확한 Mapping이 필요하다면 실시간성 제한이 없는 Structure-from-Motion (SfM)을 사용하면 됨
- □ SLAM에 대한 오해 2: Data-driven 방식이 아니라 어디서든 잘됨
 - 환경이 바뀌면 파라미터 튜닝을 다시 해야할 수도 있음
 - □ 움직이는 물체가 있으면 안될 수 있고, 없어도 안될 수 있음
 - 딥러닝 기반이면 데이터에 의존성을 가질 수 있음
- SLAM에 대한 오해 3: CPU만 씀
 - 알고리즘에 따라 GPU를 써야하기도 함
 - Stereo visual-SLAM
 - RGB-D SLAM
 - LiDAR SLAM