Tentative

Panasonic Liquid Crystal Display Co.,Ltd. TECHNICAL DATA

VVX21F136J00

CONTENTS

No.	Item		Э.	Page	
-	COVER	ATD-8507-1	2601	VVX21F136J00	1-1/1
-	RECORD OF REVISION	ATD-8507-1	2602	VVX21F136J00	2-1/1
-	DESCRIPTION	ATD-8507-1	2603	VVX21F136J00	3-1/1
1	ABSOLUTE MAXIMUM RATINGS	ATD-8507-1	2604	VVX21F136J00	4-1/2~2/2
2	INITIAL OPTICAL CHARACTERIST	ATD-8507-1	2605	VVX21F136J00	5-1/3~3/3
3	ELECTRICAL CHARACTERISTICS	ATD-8507-1	2606	VVX21F136J00	6-1/1
4	BLOCK DIAGRAM	ATD-8507-1	2607	VVX21F136J00	7-1/1
5	INTERFACE PIN ASSIGNMENT	ATD-8507-1	2608	VVX21F136J00	8-1/6~6/6
6	INTERFACE TIMING	ATD-8507-1	2609	VVX21F136J00	9-1/3~3/3
7	LABEL FORMAT	ATD-8507-1	2610	VVX21F136J00	10-1/1
8	COSMETIC SPECIFICATIONS	ATD-8507-1	2611	VVX21F136J00	11-1/2~2/2
9	PRECAUTION	ATD-8507-1	2612	VVX21F136J00	12-1/3~3/3
10	PACKING	ATD-8507-1	2613	VVX21F136J00	13-1/1
11	RELIABILITY TEST	ATD-8507-1	2614	VVX21F136J00	14-1/1
12	DIMENSIONAL OUTLINE	ATD-8507-1	2615	VVX21F136J00	15-1/2~2/2

			RECO	RD OF RE	VISION			
Date	The upper s	ection : I	Previous revision	on		Summary		
Date	Shee	t No.	Pag	ge		Summary		
					_		, ,	
asonic Liquid Cry	ystal Display Co.,Ltd.	Date	Jan.21,2014	Sheet No.	ATD-8507-1 2	602 VVX21F136J00	Page	2-1

DESCRIPTION

The following specifications are applied to the following IPS-TFT LCD module.

Product Name: VVX21F136J00

<u>Product Factory:</u> Panasonic Liquid Crystal Display Co.,Ltd.

General Specifications

Effective display area : (H) $432 \times (V) 324$ (mm)

Number of pixels : (H) $1,600 \times (V) 1,200$ (pixels)

Pixel pitch : (H) $0.270 \times (V) 0.270$ (mm)

Color pixel arrangement : R+G+B vertical stripe

Display mode : Transmissive mode

Normally black mode

Top polarizer type : Anti-Glare

Number of colors : 16,777,216 (colors)

Viewing angle range : Wide version

(Horizontal & Vertical : 178° at φ =0°,90°,180°,270°, CR \geq 10)

Input signal : LVDS (LVDS : Low voltage differential signaling)

Backlight : 55 pcs of LED (LED : Light-emitting diode)

External dimensions : Typ. (H) $456 \times (V) 349.5 \times (T)22$ (mm)

Weight : Typ. 2750 (g)

1. ABSOLUTE MAXIMUM RATINGS

1. 1 Environmental Absolute Maximum Ratings

ITEM	Operating		Sto	rage	UNIT	NOTE	
I I EWI	Min.	Min. Max.		Max.	UNII	NOIL	
Temperature	0	50	-20 60		$^{\circ}\! \mathbb{C}$	1),5),6)	
Humidity	2	2)	2)		%RH	1)	
Vibration	-	4.9(0.5 G)	-	14.7(1.5 G)	m/s^2	3)	
Shock	-	29.4(3 G)	-	294(30 G)	m/s^2	4),5)	
Corrosive Gas	Not Ac	ceptable	Not Ac	ceptable	-	-	
Illumination at LCD Surface	-	50,000	-	50,000	1x	-	

Note 1) Temperature and Humidity should be applied to the glass surface of a TFT LCD module, not to the system installed with a module.

2) Ta \leq 40 °C·····Relative humidity should be less than 85 %RH max. Dew is prohibited. Ta>40 °C·····Relative humidity should be lower than the moisture of the 85 %RH at 40 °C.

3) Frequency of the vibration is between 15 Hz and 100 Hz. (Remove the resonance point) 1 hour.

4) Direction: $\pm X$, $\pm Y$, $\pm Z$ (One time each direction)

5) Pulse width of the shock is 10 ms.

6) The temperature of LCD front surface would be 65 $^{\circ}$ C in operating, it may affect the optical characteristics however it does not damage the function of the module.

Panasonic Liquid Crystal Display Co.,Ltd.	Date	Jan.21,2014	Sheet No.	ATD-8507-1 2604	VVX21F136J00	Page	4-1/2	
---	------	-------------	-----------	-----------------	--------------	------	-------	--

1. 2 Electrical Absolute Maximum Ratings

(1)TFT-LCD module

GND=0V

ITEM	SYMBOL	Min.	Max.	UNIT	NOTE
Power supply voltage	VDD	-0.3	6.5	V	ı
Input Voltage for logic	V1	-0.3	4.0	V	1)
Electrostatic Durability	VESD0	±1	00	V	2),3)
Electrostatic Durability	VESD1	±4		kV	4),5)

Note 1) It is applied to pixel data signal, clock signal and other control signals.

- 2) Constant discharge: 200pF-0 Ω (GRD=0V), Environment: 15-35 $^{\circ}$ C/30-60%RH, Contact Discharge.
- 3) It is applied to I/F connector pins. Non-operating.
- 4) Constant discharge: $150 pF-330\Omega$, Environment: $15-35^{\circ}C/30-60^{\circ}RH$, Aerial discharge.
- 5) It is applied to the surface of a metallic bezel and a LCD panel. Operating.

(2) Backlight unit

ITEM	SYMBOL	Max.	UNIT	NOTE
Temperature Junction of LED	Tj	120	$^{\circ}\!\mathbb{C}$	1)
Forward Current	If	90	mA/string	2)

Note 1) The specification shall be applied to each LED.

2) The specification shall be applied at connector pins for LED at start-up.

Panasonic Liquid Crystal Display Co.,Ltd.	Date	Jan.21,2014	Sheet No.	ATD-8507-1 2604	VVX21F136J00	Page	4-2/2	ĺ
---	------	-------------	-----------	-----------------	--------------	------	-------	---

2. INITIAL OPTICAL CHARACTERISTICS

The following optical characteristics are measured under stable conditions. It takes about 30 minutes to reach stable conditions. The measuring point is the center of display area unless otherwise noted.

The optical characteristics should be measured in a dark room or equivalent state.

Measuring equipment: CS-1000A, or equivalent

Ambient Temperature =25 $^{\circ}$ C , f V=60 Hz ,

If c = 60 mA/string

ITEM		SYMBOL	CONDITION	Min.	Тур.	Max.	UNIT	NOTE	
Contrast r	atio	CR		1000	1500	-	-	2)	
Response	Rise	ton		1	11	20	ms	3)	
time	Fall	toff		ı	9	20	ms	3)	
Brightness of	f white	Bwh		350	440	-	cd/m ²	-	
Brightness uni	formity	Buni		•	-	25	%	4)	
	Red	X	θ = 0 °	0.625	0.655	0.685			
	Keu	у	1)	0.300	0.330	0.360		【Gray scale =255】	
	Green	X	1)	0.275	0.305	0.335			
Color chromaticity	Green	у		0.595	0.625	0.655	-		
(CIE)	Blue	X		0.120	0.150	0.180	Ī		
(CIL)	Blue	у		0.045	0.075	0.105	Ì		
	Wilsian	X		0.270	0.300	0.330	Ì		
	White	у		0.310	0.340	0.370	Ì		
	Dad	Δx	$\theta = 50^{\circ}$ $\phi = 0^{\circ}$, 90° ,	-	-	0.04			
	Red	Δy		-	-	0.04] -		
	Casaa	Δx		-	-	0.04			
Variation of	Green	Δy		-	-	0.04		5) [Gray scale =255]	
color position (CIE)	Blue	Δx	180 °,	-	-	0.04	Ì		
(CIL)	Blue	Δy	270°	-	-	0.04	Ì	2331	
	White	Δx	1)	_	_	0.04			
	white	Δy		_	_	0.04			
Contrast ratio	Contrast ratio at 89 °		φ=0°,90°, 180°,270° 6)	10	-	-	-	Estimated value	
Image sticking		-	Mosaic pattern		Invisible		-	7)	
Gray Scale	Gray Scale Level		θ= 0° 1)		-		-	8)	

Note 2) Definition of contrast ratio (CR)

 $CR = \frac{\text{(Luminance at displaying WHITE)}}{\text{(Luminance at displaying BLACK)}}$

3) Definition of response time

4) Definition of brightness uniformity

Display pattern is white (255 level). The brightness uniformity is defined as the following equation. Brightness at each point is measured, and average, maximum and minimum brightness is calculated.

$$Buni = \frac{Bmax - Bmin}{Bmax} \times 100$$

$$where, Bmax = Maximum brightness$$

$$Bmin = Minimum brightness$$

5) Variation of color position on CIE

Variation of color position on CIE is defined as difference between colors at θ = 0° and at θ = 50°& ϕ = 0°, 90°, 180°, 270°.

6) Contrast ratio at 89 °

Evaluation conditions are on horizontal & vertical axis

7) Image sticking

Condition: Operating mosaic pattern for 2 hours and gray (128/255 Gray Scale) for 1 hour.

8) Gray Scale Level (Typ.)

Gray Level	Relative Brightness (%) (Typ.)
0	0.1%
16	0.3%
32	1.0%
48	2.4%
64	4.6%
80	7.7%
96	11.6%
112	16.1%
128	21.5%
144	28.4%
160	36.0%
176	44.5%
192	53.7%
208	63.9%
224	74.9%
240	88.1%
255	100.0%

3. ELECTRICAL CHARACTERISTICS

3. 1 TFT-LCD module

$T_2 =$	25 ℃	G	ND =	0 V
1 a –	Z.) (/ . (I	1117 —	· () V

ITEM	SYMBOL	Min.	Тур.	Max.	UNIT	NOTE
Power supply voltage	VDD	4.5	5.0	5.5	V	-
Power supply current	IDD	ı	0.75	1.15	Α	1),2)
Ripple voltage of power supply	VDDR	ı	ı	500	mV	-

Note 1) fV=60.0Hz, DCLK=65.125MHz, VDD=5.0V, and display pattern is white.

2) Current fuse is built in a module. Current capacity of power supply for VDD should be larger than 4[A], so that the fuse can be opened at the trouble of electrical circuit of module.

3. 2 Backlight unit

 $Ta = 25 \,^{\circ}C$, $Vss = 0 \,^{\circ}V$

3. 2 Dacking it unit		1 u 25 C , V 35 O V					
ITEM		SYMBOL	Min.	Тур.	Max.	UNIT	NOTE
Forward Currnet	Anode	Ifa	-	300	315	mA/array	-
(One LED Assembly)	Cathode	Ifc	=	60	63	mA/string	-
Γ 1 1/ - 1/	String	Vf	60.7	65.2	69.6	V	Ifc=60mA/string
Forward Voltage	Variation	Vf(unit)	-	-	3	V	One BL unit
Power Consumption		Pbl	-	20	21	W	Ifc=60mA/string
LED Life time		-	30000	-	-	h	2)

One Backlight Unit: 1 LED Array.
One LED Array: 5 LED String.
One LED String: :11 LED package.

Note 1) This characteristics should be applied putting on the LED about 60 minutes later with ambient temperature.

(Ta = 25 $^{\circ}$ C ± 2 $^{\circ}$ C)

2) Life time of a LED is defined as follows. The life is determined as the time at which brightness of the LED is 50 % compared to that of initial value at that typical forward current on condition of continuous operating at 25 ± 2 °C.

Panasonic Liquid Crystal Display Co.,Ltd.	Date	Jan.21,2014	Sheet No.	ATD-8507-1 2606	VVX21F136J00	Page	6-1/1	
---	------	-------------	-----------	-----------------	--------------	------	-------	--

4. BLOCK DIAGRAM

4. 1 TFT-LCD module

4. 2 Backlight unit

5. INTERFACE PIN ASSIGNMENT

5. 1 TFT-LCD module

<CN1:JAE FI-X30SSLA-HF>

\CIVI	:JAE FI-X30	SSLA-III /	
PIN No.	SYMBOL	DESCRIPTION	NOTE
1	RxA0-	LVDS	
2	RxA0+	Odd Pixel Data	1)
3	RxA1-	LVDS	
4	RxA1+	Odd Pixel Data	1)
5	RxA2-	LVDS	1)
6	RxA2+	Odd Pixel Data	1)
7	GND	Ground(0V)	2)
8	RxAC-	LVDS	1)
9	RxAC+	Odd Pixel Clock	1)
10	RxA3-	LVDS	1)
11	RxA3+	Odd Pixel Data	1)
12	RxB0-	LVDS	1)
13	RxB0+	Even Pixel Data	,
14	GND	Ground(0V)	2)
15	RxB1-	LVDS	1)
16	RxB1+	Even Pixel Data	,
17	GND	Ground(0V)	2)
18	RxB2-	LVDS	1)
19	RxB2+	Even Pixel Data	1)
20	RxBC-	LVDS	1)
21	RxBC+	Even Pixel Clock	- /
22	RxB3-	LVDS	1)
23	RxB3+	Even Pixel Data	,
24	GND	Ground(0V)	2)
25	NC	No Connection	-
26	NC	No Connection	-
27	NC	No Connection	-
28	VDD		
29	VDD	Power Supply	3)
30	VDD		

- 1) RxAn+/-, RxBn+/-, (n=0~5), CLKA+/- and CLKB+/- should be wired by side-by-side FPC patterns, rest
- 2) All GND pins shall be grounded. Metal bezel is internally connected to GND.
- 3) All VDD pins shall be connected to +5.0V(Typ.).

5. 2 Back light unit

CN1:(JST PHR-10)

(Matching connector : JST S10B-PH)

(0	
PIN No.	DESCRIPTION	NOTE
1	Cathode	-
2	Cathode	-
3	Cathode	-
4	Cathode	-
5	Cathode	-
6	NC	ı
7	NC	-
8	NC	=
9	Anode	-
10	Anode	-
	<u> </u>	

5. 3 Block diagram of interface

RA0 \sim RA7, RB0 \sim RB7 : Pixel R Data (7; MSB, 0; LSB) GA0 \sim GA7, GB0 \sim GB7 : Pixel G Data (7; MSB, 0; LSB) BA0 \sim BA7, BB0 \sim BB7 : Pixel B Data (7; MSB, 0; LSB)

DE : Data Enable

Note 1) The system must have the transmitter to drive the module.

2) LVDS cable impedance shall be 50 ohms per signal line or about 100 ohms per twist-pair line when it is used differentially.

Panasonic Liquid Crystal Display Co.,Ltd.	Date	Jan.21,2014	Sheet No.	ATD-8507-1 2608	VVX21F136J00	Page	8-3/6

5. 4 LVDS interface

		TRA	NSMITTER	INTEDEACE	CONNECTOR	DI	ECEIVER	TFT
	SIGNAL	THC6	3LVDM83A	INTERFACE	CONNECTOR	KI	ECEIVER	CONTROL
		PIN	INPUT	Monitor Set	TFT-LCD	PIN	OUTPUT	INPUT
	RA0/RB0	51	Tx IN0			27	Rx OUT0	RA0/RB0
	RA1/RB1	52	Tx IN1			29	Rx OUT1	RA1/RB1
	RA2/RB2	54	Tx IN2	TA OUT0+	RxA/B 0+	30	Rx OUT2	RA2/RB2
	RA3/RB3	55	Tx IN3			32	Rx OUT3	RA3/RB3
	RA4/RB4	56	Tx IN4			33	Rx OUT4	RA4/RB4
	RA5/RB5	3	Tx IN6	TA OUT0-	RxA/B 0-	35	Rx OUT6	RA5/RB5
	GA0/GB0	4	Tx IN7			37	Rx OUT7	GA0/GB0
	GA1/GB1	6	Tx IN8			38	Rx OUT8	GA1/GB1
	GA2/GB2	7	Tx IN9			39	Rx OUT9	GA2/GB2
	GA3/GB3	11	Tx IN12	TA OUT1+	RxA/B 1+	43	Rx OUT12	GA3/GB3
	GA4/GB4	12	Tx IN13			45	Rx OUT13	GA4/GB4
	GA5/GB5	14	Tx IN14			46	Rx OUT14	GA5/GB5
	BA0/BB0	15	Tx IN15	TA OUT1-	RxA/B 1-	47	Rx OUT15	BA0/BB0
24bit	BA1/BB1	19	Tx IN18			51	Rx OUT18	BA1/BB1
24011	BA2/BB2	20	Tx IN19			53	Rx OUT19	BA2/BB2
	BA3/BB3	22	Tx IN20		RxA/B 2+	54	Rx OUT20	BA3/BB3
	BA4/BB4	23	Tx IN21	TA OUT2+		55	Rx OUT21	BA4/BB4
	BA5/BB5	24	Tx IN22			1	Rx OUT22	BA5/BB5
	HSYNC or RSVD1)	27	Tx IN24			3	Rx OUT24	HSYNC or RSVD1)
	VSYNC or RSVD1)	28	Tx IN25	TA OUT2-	RxA/B 2-	5	Rx OUT25	VSYNC or RSVD1)
	DE/DE	30	Tx IN26			6	Rx OUT26	DE/DE
	RA6/RB6	50	Tx IN27			7	Rx OUT27	RA6/RB6
	RA7/RB7	2	Tx IN5			34	Rx OUT5	RA7/RB7
	GA6/GB6	8	Tx IN10	TA OUT3+	RxA/B 3+	41	Rx OUT10	GA6/GB6
	GA7/GB7	10	Tx IN11			42	Rx OUT11	GA7/GB7
	BA6/BB6	16	Tx IN16			49	Rx OUT16	BA6/BB6
	BA7/BB7	18	Tx IN17	TA OUT3-	RxA/B 3-	50	Rx OUT17	BA7/BB7
	RSVD 1)	25	Tx IN23			2	Rx OUT23	RSVD 1)
	DCLK	31	TxCLK IN	TxCLK OUT+ TxCLK OUT-	RxCLKA/B IN+ RxCLKA/B IN-	26	RxCLK OUT	DCLK

 $RA0 \sim RA7, RB0 \sim RB7 : Pixel R Data (7; MSB, 0; LSB)$ $GA0 \sim GA7, GB0 \sim GB7 : Pixel G Data (7; MSB, 0; LSB)$ $BA0 \sim BA7, BB0 \sim BB7 : Pixel B Data (7; MSB, 0; LSB)$

DE : Data Enable

Note 1) RSVD(reserved) pins on the transmitter shall be tied to "H"or "L".

Panasonic Liquid Crystal Display Co.,Ltd.	Date	Jan.21,2014	Sheet No.	ATD-8507-1 2608	VVX21F136J00	Page	8-4/6

5. 6 Relationship between display colors and input signals

	Input				Red	Data	ı		_			(Green	ı Dat	ta						Blue	Data	a		
`		R7	R6	R5	R4	R3	R2	R1	R0	G7	G6	G5	G4	G3	G2	G1	G0	В7	B6	В5	B4	В3	B2	B1	В0
Color		MSI	В]	LSB	MS	В]	LSB	MSI	В]	LSB
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(255)	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green(255)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
Basic	Blue(255)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
Color	Cyan	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Magenta	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
	Yellow	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red (1)	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red (2)	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Red	:	:	:	:	:	:	:	:	:	:	:	÷	:	:	:	÷	:	:	÷	:	:	:	:	:	:
	:	• •	:	:	:	:	:	:	:	••	:	:	:	:	:	:	:	• •	:	:	:	:	:	:	:
	Red(254)	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(255)	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green (1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
	Green (2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
Green	:	:	:	:	:	÷	÷	:	:	:	:	÷	÷	:	÷	÷	:	:	÷	:	:	:	:	:	:
	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
	Green(254)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0
	Green(255)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Blue (1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
	Blue (2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
Blue	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
	Blue (254)		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0
	Blue (255)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1

Note 1) Definition of gray scale:

 $Color(n) \cdot \cdot \cdot \cdot Number \ in \ parenthesis \ indicates \ gray \ scale \ level.$

Larger n corresponds to brighter level.

2) Data: 1: High, 0: Low

Panasonic Liquid Crystal Display Co.,Ltd.	Date	Jan.21,2014	Sheet No.	ATD-8507-1 2608	VVX21F136J00	Page	8-6/6
Tumbome Equit Cryotal Elspiny Co.,Eta.	Date	Juii.21,2014	Sheet 140.	711D 0307 1 2000	V V 71211 130300	1 age	0 0/0

ITEM		SYMBOL	Min.	Тур.	Max.	UNIT	NOTE
CLK -	Frequency	DCLK	62.0	65.125	67.5	MHz	-
	CLK Skew	tSC	- 4.0	0	+ 4.0	ns	-
	0 data position	tRP0	1/7tCLK - 0.4	1/7tCLK	1/7tCLK + 0.4		
	1st data position	tRP1	- 0.4	0	+ 0.4		
Rx*0	2nd data position	tRP2	6/7tCLK - 0.4	6/7tCLK	6/7tCLK + 0.4		
Rx*1 Rx*2	3rd data position	tRP3	5/7tCLK - 0.4	5/7tCLK	5/7tCLK + 0.4	ns	-
Rx*3	4th data position	tRP4	4/7tCLK - 0.4	4/7tCLK	4/7tCLK + 0.4		
Tur 5	5th data position	tRP5	3/7tCLK - 0.4	3/7tCLK	3/7tCLK + 0.4		
	6th data position	tRP6	2/7tCLK - 0.4	2/7tCLK	2/7tCLK + 0.4		

sonic Liquid Crystal Display Co.,Ltd.

DE Contraction signal timing tV tH tHD

Note 1) The timing of DCLK to other signals conforms to the specifications of LVDS transmitter.

2pxl/clk

	ITEM		Min.	Typ.	Max.	UNIT	NOTE
	Vertical Frequency	fV	58	60	63	Hz	-
	Vertical Period	tV	1229	1233	-	tΗ	-
	Vertical Valid	tVD		1200		tΗ	-
DE	V-Blanking	-	29	33	_	tΗ	-
DE	Horizontal Frequency	fH	71.5	74	78	kHz	-
	Horizontal Period	tH	850	880	940	tCLK	-
ľ	Horizontal Valid	tHD		800		tCLK	-
	H-Blanking	-	50	80	140	tCLK	-

Panasonic Liquid Crystal Display Co.,Ltd. Date Jan.2	,2014 Sheet No. ATD-8507-1	2609 VVX21F136J00 Page 9	9-2/3
--	----------------------------	--------------------------	-------

7. LABEL FORMAT

7.1 Label

The label is on the metallic bezel as shown in 12. Dimensional Outline.

The style of character will be changed without notice.

7.2 Revision (REV.) control

REV. is the column for manufacturing convenience. A-Z except I and O may be written on this column.

7.3 Lot mark

Year of production 1)

Notes 1)

Mark	Year
12	2012
13	2013
14	2014

Mark	Month	Mark	Month
01	1	07	7
02	2	08	8
03	3	09	9
04	4	10	10
05	5	11	11
06	6	12	12

Week mark	Day
1	1~7
2	8~14
3	15~21
4	22~28
5	29~31

3)

4) J : Made by Panasonic Liquid Crystal Display Co., Ltd.

2)

8. COSMETIC SPECIFICATIONS

8.1 Condition for cosmetic inspection

(1) Viewing zone

a) The figure shows the correspondence between eyes (of inspector) and TFT-LCD module.

 $\theta\!\leq\!45^{\circ}$: when non-operating inspection $\label{eq:bound}$ when operating MURA inspection

 $\theta \leq 5^{\circ}$: when operating inspection

b) Inspection should be executed only from front side and only A-zone.Cosmetic of B-zone and C-zone are ignore.

(refer to 8.2 Definition of zone)

(2) Environmental

a) Temperature : 25 degrees

b) Ambient light : about 100 lx and non-directive when operating inspection.

: about 1000 lx and non-directive when non-operating inspection.

c) Backlight : when non-operating inspection, backlight should be off.

8.2 Definition of zone

·A-zone : Display area (pixel area)

·B-zone : Area between A-zone and C-zone

·C-zone : Metallic bezel area

8.3 Cosmetic specifications

When displaying conditions are not stable (ex. at turn on or off), the following specifications are not applied.

					Max. accep	table number			
	No.	I	ГЕМ		Bright defect	Low bright defect	Unit	Note	
			01.1.	1-dot	0	12	pcs	1),3)	
			Sparkle mode	2-dots	0	-	Units	1) 4)	
			mode	3-dots	0	-	Ullits	1),4)	
	1	Dot defect		1-dot		7	pcs	2),3)	
	1		Black mode	2-dots	1		Units	2) (1) (1)	
				3-dots	0			2),4),9)	
Operating				Density	3		pcs/\phi20mm	2),5)	
inspection				Total	7		pcs	2)	
	2 Uneven Brightness	Unavan Brightness	Kumi mura		mura is under brightness of	htness of Kumi der 300% of the of Center within ek Screen.			
		Others		Mura is basically judged OK if invisible with 5%ND Filter. Limit sample is set up if needed after deliberations.		-	-		

c Liquid Crystal Display Co.,Ltd	Ltd. Date Jan.21,20	Sheet No. AT	TD-8507-1 2611 VVX21F136J00	Page	11-1/2	
----------------------------------	---------------------	--------------	-----------------------------	------	--------	--

						Max. acceptable number			
	No.	I	ГЕМ		Bright defect Low bright defect		Unit	Note	
		Stain inclusion	W≦0.01	L< 0.3	Ig	nore			
	3	Line shape	W≦0.1	L≦5.0		3	nes	6)	
)	(W: width (mm)	W ≅ 0.1	L>5.0		0	pcs	0)	
		L: length (mm)	W>0.1	-		0			
		Stain inclusion	D≦	0.22	Ig	nore			
On anatin a	4		D≦0.5		3		pcs	6)	
Operating inspection		(D : ave. dia (mm)	D>0.5		0				
mspection	5	Scratch on polarizer	W≦0.01	L≦0.3	Ig	gnore			
		Line shape W: width (mm)	W≦0.07	L≦0.5		3	pcs	7)	
		L: length (mm)	W>0.07	L>5.0		0			
		Scratch on polarizer	D≦0.2		Ig	nore			
	6	1 .	D≦0.5		3		pcs	7)	
		D: ave. dia (mm)	D>0.5		0				
		Bubbles, peeling	D≦	0.2	Ignore				
Non	7	in polarizer	D≦	0.5	10		pcs	7)	
operating		[D : ave. dia (mm)]	[D : ave. dia (mm)] D>			0			
inspection	8	Wrinkles	on polarizer		Serious one is not allowed.		-	-	

Note

1) Sparkle mode:

bright defect $G \ge 96$ (Gray scale $0 \sim 255$) $R \ge 96$ $B \ge 96$ low bright defect $96 > G \ge 25$ $96 > R \ge 25$ $96 > B \ge 49$

- 2) Black mode: brightness of dot is less than 70% at white. (visible to eye)
- 3) 1 dot: defect dot is isolated, not attached to other defect dot.
- 4) N dots: N defect dots are consecutive. (N means the number of defects dots)
- 5) Density: number of defect dots inside φ 20mm
- 6) Those stains which can be wiped out easily are acceptable.
- 7) Polarizer area inside of B-zone is not applied.
- 8) No major (serious) defects when viewed in gray scale mode.
- 9) Regarding 2-dots defect of black mode, when the pixel of the black dot is seen as the low bright dot in the other pattern (each RGB plain color,etc.) except white raster and black raster, this low bright dot shall be ignored.

Panasonic Liquid Crystal Display Co.,Ltd. Dat	Jan.21,2014 Sheet No.	ATD-8507-1 2611 VVX21F136J00	Page	11-2/2
---	-----------------------	------------------------------	------	--------

9. PRECAUTION

Please pay attention to the followings when a TFT module with a backlight unit is used, handled and mounted.

9.1 Precaution to handling and mounting

- (1) Applying strong force to a part of the module may cause partial deformation of frame or mold, and cause damage to the display.
- (2) The module should gently and firmly be held by both hands. Never hold by just one hand in order to avoid any internal damage. Never drop or hit the module.
- (3) The module should be installed with mounting holes of a module.
- (4) Uneven force such as twisted stress should not be applied to a module when a module is mounted on the cover case. The cover case must have sufficient strength so that external force can not be transmitted directly to a module.
- (5) It is recommended to leave a space between a module and a holding board of a module so that partial force is not applied to a module.

 B-zone

 Effective display area

Fig.1 Cross sectional view of a monitor set

- (6) The edge of a cover case should be located inside more than 1mm from the edge of a module front frame.
- (7) A transparent protective plate should be added on the display area of a module in order to protect a polarizer and TFT cell. The transparent protective plate should have sufficient strength so that the plate can not touch a module by external force.
- (8) Materials included acetic acid and choline should not be used for a cover case as well as other parts and boards near a module. Acetic acid attacks a polarizer. Choline attacks electric circuits due to electro-chemical reaction.
- (9) The polarizer on a TFT cell should carefully be handled due to its softness, and should not be touched, pushed or rubbed with glass, tweezers or anything harder than HB pencil lead. The surface of a polarizer should not be touched and rubbed with bare hand, greasy clothes or dusty clothes.
- (10) The surface of a polarizer should be gently wiped with absorbent cotton, chamois or other soft materials slightly contained petroleum benzene when the surface becomes dirty. Normal-hexane or Isopropyl alcohol as cleaning chemicals is recommended in order to clean adhesives which fix front/rear polarizers on a TFT cell. Other cleaning chemicals such as acetone, toluen and alcohol should not be used to clean adhesives because they cause chemical damage to a polarizer.
- (11) Saliva or water drops should be immediately wiped off. Otherwise, the portion of a polarizer may be deformed and its color may be faded.
- (12) The module should not be opened or modified. It may cause not to operate properly.
- (13) Metallic bezel of a module should not be handled with bare hand or dirty gloves. Otherwise, color of a metallic frame may become dirty during its storage. It is recommended to use clean soft gloves and clean finger stalls when a module is handled at incoming inspection process and production (assembly) process.
- (14) LED cables should not be pulled and held.

9.2 Precaution to operation

- (1) The ambient temperature near the operated module should be satisfied with the absolute maximum ratings. Unless it meets the specifications, sufficient cooling system should be adopted to system.
- (2) The spike noise causes the mis-operation of a module. The level of spike noise should be as follows:

 $-200 \text{mV} \le \text{over-}$ and under- shoot of VDD $\le +200 \text{mV}$

VDD including over- and under- shoot should be satisfied with the absolute maximum ratings.

Panasonic Liquid Crystal Display Co.,Ltd.	Date	Jan.21,2014	Sheet No.	ATD-8507-1 2612	VVX21F136J00	Page	12-1/3	
---	------	-------------	-----------	-----------------	--------------	------	--------	--

- (3) Optical response time, luminance and chromaticity depend on the temperature of a TFT module.
- (4) Sudden temperature change may cause dew on and/or in the a module. Dew makes damage to a polarizer and/or electrical contacting portion. Dew causes fading of displayed quality.
- (5) Fixed patterns displayed on a module for a long time may cause after-image. It will be recovered soon.
- (6) A module has high frequency circuits. Sufficient suppression to electromagnetic interference should be done by system manufacturers. Grounding and shielding methods may be effective to minimize the interference.
- (7) Noise may be heard when a backlight is operated. If necessary, sufficient suppression should be done by system manufacturers.
- (8) The module should not be connected or removed while a main system works.
- (9) Inserting or pulling I/F connectors causes any trouble when power supply and signal data are on-state. I/F connectors should be inserted and pulled after power supply and signal data are turned off.

9.3 Electrostatic discharge control

- (1) Since a module consists of a TFT cell and electronic circuits with CMOS-ICs, which are very weak to electrostatic discharge, persons who are handling a module should be grounded through adequate methods such as a list band. I/F connector pins should not be touched directly with bare hands.
- (2) Protection film for a polarizer on a module should be slowly peeled off so that the electrostatic charge can be minimized.

9.4 Precaution to strong light exposure

(1) A module should not be exposed under strong light. Otherwise, characteristics of a polarizer and color filter in a module may be degraded.

9.5 Precaution to storage

When modules for replacement are stored for a long time, following precautions should be taken care of:

- (1) Modules should be stored in a dark place. It is prohibited to apply sunlight or fluorescent light during storage. Modules should be stored at 0 to 35°C at normal humidity (60%RH or less).
- (2) The surface of polarizers should not come in contact with any other object. It is recommended that modules should be stored in the shipping box of Panasonic Liquid Crystal Display Co.,Ltd.

9.6 Precaution to handling protection film

- (1) The protection film for polarizers should be pealed off slowly and carefully by persons who are electrically grounded with adequate methods such as a list band. Besides, ionized air should be blown over during peeling action. Dusts on a polarizer should be blown off by an ionized nitrogen gun and so on.
- (2) The protection film should be peeling off without rubbing it to the polarizer. Because, if the film is rubbed together with the polarizer, since the film is attached to the polarizer with a small amount of adhesive, the adhesive may remain on a polarizer.
- (3) The module with protection film should be stored on the conditions explained in 9.5 (1). However, in case that the storage time is too long, adhesive may remain on a polarizer even after a protection film is peeled off. Besides, in case that a module is stored at higher temperature and/or higher humidity, adhesive may remain on a polarizer. The remained adhesive may cause non-uniformity of display image.
- (4) The adhesive can be removed easily with Normal-Hexane or Isopropyl alcohol. The remained adhesive or its vestige on the polarizer should be wiped off with absorbent cotton or other soft materials such as chamois slightly contained Normal-Hexane or Isopropyl alcohol.

9.7 Precaution to fluid

(1) Since a module consists of a TFT cell and electronic circuits, which are very weak to fluid, keep fluid from entering between the frame and the polarizing plate.

Panasonic Liquid Crystal Display Co.,Ltd. Da	Jan.21,2014	Sheet No.	ATD-8507-1 2612	VVX21F136J00	Page	12-2/3	
--	-------------	-----------	-----------------	--------------	------	--------	--

9.8 Safety

- (1) Since a TFT cell is made of glass, handling to the broken module should be taken care sufficiently in order not to be injured. Hands touched liquid crystal from a broken cell should be washed sufficiently.
- (2) The module should not be taken apart during operation so that backlight drives by voltage.

9.9 Environmental protection

Flexible printed circuits and printed circuits board used in a module contain small amount of lead. Please follow local ordinance or regulations for its disposal.

9.10 Use restrictions and limitations

- (1) This product is not authorized for use in life support devices or systems, military applications or other applications which pose a significant risk of personal injury.
- (2) In no event shall Panasonic Liquid Crystal Display Co.,Ltd. be liable for any incidental, indirect or consequential damages in connection with the installation or use of this product, even if informed of the possibility thereof in advance. These limitations apply to all causes of action in the aggregate, including without limitation breach of contact, breach of warranty, negligence, strict liability, misrepresentation and other torts.

9.11 Others

Electrical components which may not affect electrical performance are subjective to change without notice because of their availability.

11. Reliability test

No.	Item	condition	Period		
NO.	item	condition	determination	end	
1	Low Temperature / Operating	Ta=0°C	500h	1000h	
2	High Temperature / Operating	Ta=45℃	500h	1000h	
3	High Temperature High Humidity / Operating	65℃ 85%RH	500h	500h	
4	Low Temperature / Strage	Ta=-20°C	500h	1000h	
5	High Temperature / Strage	Ta=70°C	500h	1000h	
6	High Temperature High Humidity / Strage	40℃ 80%RH	500h	1000h	
7	Heat shock	-25/70℃ 30min./30min.	100cy.	200cy.	
8	Heat shock test for solder	-35/85℃ 30min./30min.	200cy.	500cy.	

Result Evaluation

Display function should be kept.

