Введение в молекулярную биологию

Лекция 3. Структура ДНК, репликация и репарация

Hershey and Chase Experiment Diagram

Введение в структуру ДНК

Courtesy of Cold Spring Harbor Archives. Noncommercial, educational use only.

Нуклеотиды: основные строительные блоки

Химическое строение нуклеотидов

Химическое строение нуклеотидов

Сахарно-фосфатный остов ДНК

Химическое строение нуклеотидов

Азотистые основания и комплементарность

а

adenine: thymine

guanine: cytosine

Азотистые основания и комплементарность

adenine: thymine

guanine: cytosine

b
$$\frac{N}{2}$$
 $\frac{N}{N}$ $\frac{$

2-aminoadenine: thymine pre-replicative modification

guanine: 5-hydroxymethylcytosine pre- and post-replicative modification

archaeosine : cytosine pre-replicative modification

Правило Чаргаффа

Erwin Chargaff (1953) %G = %C and %A = %T

Source	%A	%T	%G	%C	%G+C
Virus Phage T2	33	33	18	17	35
Bacteria E. coli	26	24	25	25	50
Fungi S. cerevisiae	32	33	18	17	35
Higher Eukaryote human	30	30	20	20	40

A + G = T + C purines = pyrimidines

Двойная спираль Уотсона и Крика

Антипараллельность цепей ДНК

Конформации ДНК: А-, В- и Z-формы

Большая и малая бороздки ДНК

Большая и малая бороздки ДНК

Большая и малая бороздки ДНК

Developing cyanine dyes as fluorescent probes for nucleic acid staining

Emission wavelength

465 nm 535 nm

Twist = 0, Writhe = +2.

Денатурация и ренатурация ДНК

Figure. 7.8 Denaturation and renaturation of DNA

Геномы вирусов: особенности и разнообразие

Жизненный цикл оцДНК (ssDNA)

Компактность вирусных геномов и перекрывающиеся гены

Hepatitis B virus (HBV) DNA 3.2 kb

Leaky scanning

Бактериальный геном: строение и организация

Опероны и регуляция генов у прокариот

Плазмиды и горизонтальный перенос генов

Геном человека

- Размер генома: примерно 3 миллиарда пар оснований.
- **Хромосомный набор:** 23 пары хромосом (22 пары аутосом и 1 пара половых хромосом).
- **Количество генов:** около 20 000—25 000 генов, кодирующих белки.
- Некодирующая ДНК:
 - Интроны внутри генов.
 - Повторяющиеся последовательности и транспозоны.
- Генетическая вариабельность: различия между индивидуумами составляют около 0,1% генома.

Хромосомная организация у человека

Повторяющиеся последовательности и транспозоны

Экзоны, интроны и сплайсинг

Альтернативный сплайсинг

Эухроматин и гетерохроматин

Эпигенетическая регуляция у эукариот

Эпигенетическая регуляция у эукариот

Нуклеосомы и роль гистонов

Организация хроматина

Центромеры

Теломеры

Хромосомные территории в ядре

Общий обзор репликации ДНК

Общий обзор репликации ДНК

Полуконсервативная репликация

Точки начала репликации (Ori)

Точки начала репликации (Ori)

Репликационная вилка и репликационный пузырь

Репликация у про- и эукариот

Разница в репликации ДНК у про- и эукариот

Прокариоты	Эукариоты
Пять полимераз (I, II, III, IV, V)	Пять полимераз (α, β, γ, δ, ε)
Функции полимераз: I участвует в репликации, коррекции, репарации и удалении РНК-праймеров II -фермент репарации III - главный фермент репликации IV - V - участвуют в репарации	Функции полимераз: α – синтез праймера β – синтез праймера, застраивание бреши γ – репликация митохондриальной ДНК δ – основной фермент репликации ε – фермент, реплицирующий отстающую цепь ДНК
Полимеразы являются также экзонуклеазами	Не все полимеразы обладают экзонуклеазной активностью
Один ориджин репликации	Несколько ориджинов репликации
Фрагменты Оказаки длиной 1000- 2000 нуклеотидов	Фрагменты Оказаки длиной 150- 200 нуклеотидов
ДНК не связана с белками	ДНК в комплексе с гистонами

Механизмы коррекции ошибок (proofreading)

proofreading. The 3' → 5' exonuclease activity of DNA polymerase I removes nucleotides from the 3' end of the growing DNA chain.

Репликация теломер и роль теломеразы

Репликация теломер и роль теломеразы

Виды повреждений ДНК

Ошибки репликации

- Неправильное включение нуклеотидов
- Пропуск или вставка оснований

Алкилирование оснований

- Присоединение алкильных групп
- Образование аномальных пар

Окислительные повреждения

- Влияние активных форм кислорода
- Образование 8-оксогуанина

Дезаминирование

- Превращение цитозина в урацил
- Изменение свойств спаривания

УФ-излучение: тиминовые димеры

• Склеивание соседних тиминов

Ионизирующее излучение: разрывы цепей

• Одно- и двуцепочечные разрывы

Межцепочечные сшивки

- Ковалентные связи между цепями
- Затруднение репликации и транскрипции

Репарация оснований

Репарация двойных разрывов: гомологичная рекомбинация

Негомологичное соединение концов (NHEJ)

Роль белка р53 в ответе на повреждения ДНК

- Активируется при повреждениях ДНК и клеточном стрессе.
- Останавливает клеточный цикл в фазах G1/S и G2/M для репарации.
- Инициирует экспрессию генов, отвечающих за репарацию ДНК.
- При необратимых повреждениях запускает апоптоз.
- Мутации в гене ТР53 связаны с развитием многих видов рака.

Вопросы и обсуждение