

(12)特許協力条約に基づいて公開された国際出願

(19)世界知的所有権機関
国際事務局

(43)国際公開日
2005年10月27日 (27.10.2005)

PCT

(10)国際公開番号
WO 2005/100983 A1

(51)国際特許分類⁷: **G01N 33/15, 33/53, 33/574, 33/577**

(21)国際出願番号: PCT/JP2005/006634

(22)国際出願日: 2005年4月5日 (05.04.2005)

(25)国際出願の言語: 日本語

(26)国際公開の言語: 日本語

(30)優先権データ:
特願2004-121298 2004年4月16日 (16.04.2004) JP

(71)出願人および

(72)発明者: 岡部 英俊 (OKABE, Hidetoshi) [JP/JP]; 〒6128017 京都府京都市伏見区桃山南大島町101-5 Kyoto (JP).

(74)代理人: 庄司 隆, 外(SHOJI, Takashi et al.); 〒1010032 東京都千代田区岩本町3丁目2番10号 SN岩本町ビル6階 Tokyo (JP).

(81)指定国(表示のない限り、全ての種類の国内保護が可能): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR,

BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

(84)指定国(表示のない限り、全ての種類の広域保護が可能): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), ヨーラシア (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), ヨーロッパ (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

添付公開書類:
— 國際調査報告書

2文字コード及び他の略語については、定期発行される各PCTガゼットの巻頭に掲載されている「コードと略語のガイドスノート」を参照。

(54)Title: METHOD OF EXAMINING MALIGNANT TUMOR

(54)発明の名称: 悪性腫瘍の検査方法

A1

(57)Abstract: It is intended to provide a novel examination method for accurately judging the efficacy of a treatment with a carcinostatic agent in the administration of the carcinostatic agent targeting a tumor-associated factor receptor. In judging the efficacy of a carcinostatic agent trastuzumab (HerceptinTM), it is found out meaningful to examine the expression of MUC4 which is a substance interacting with HER2/c-erbB-2 belonging to the epithelial cell growth factor receptor family on the surface of a cell membrane and/or in a cell membrane. Based on this finding, there has been established the significance of a search for the expression of an intracellular ligand to a tumor-associated factor receptor as an examination method before the initiation of a treatment with a carcinostatic agent targeting the receptor for treating various types of cancer.

WO 2005/100983 A1

(57)要約: 腫瘍関連因子の受容体を標的とする制癌剤の投与に際し、制癌剤治療の有効性を正確に判定するための新たな検査方法を提供すること。制癌剤トラスツズマブ(ハーセプチニ^{登録商標})の有効性の判定に際し、上皮細胞増殖因子受容体ファミリーに属するHER2/c-erbB-2に細胞膜表面及び/又は細胞膜内で相互作用する物質であるMUC4の発現の検査の意義を見出した。このことから、諸種の癌において腫瘍関連因子の受容体を標的とする制癌剤による治療を開始する前の検査方法として、該受容体に対する細胞内リガンドの発現の検索の意義を確立し、本発明を完成した。

明 細 書

悪性腫瘍の検査方法

技術分野

[0001] 本発明は悪性腫瘍の検査方法に関するものであり、細胞増殖因子受容体の受容体機能をヒト化モノクローナル抗体によって阻害しようとする治療法の治療方針、予後予測、および治療効果予測のための検査方法に関するものである。

背景技術

[0002] 癌の分子標的治療剤は、新しいタイプの制癌剤として従来の細胞標的治療剤と対比してその意義が注目されている。その中でも特にシグナル伝達阻害作用を有する薬剤が注目されている。

[0003] c-erbB-2癌遺伝子は、細胞膜を貫通する受容体構造をもつ分子量185kDaの蛋白質(HER2/c-erbB-2)をコードしている(非特許文献1、2)。HER2/c-erbB-2はチロシンキナーゼ型受容体であり、ヒト上皮細胞増殖因子受容体(EGFR)遺伝子と類似の構造を有するEGFRファミリーに属する。HER2/c-erbB-2の細胞外ドメインはレセプター構造になっており、細胞外リガンドがこの細胞外ドメインと結合し、細胞内ドメインにあるチロシンキナーゼが活性化する。このことによりHER2/c-erbB-2の自己リン酸化およびHER2/c-erbB-2と細胞内で相互作用する物質のリン酸化が引き起こされ、細胞表面から核への増殖シグナルが伝達され、細胞の増殖・分化に関与していると考えられている(非特許文献3)。HER2/c-erbB-2蛋白質は種々のヒトの腫瘍で過剰発現している。特に乳癌においては、c-erbB-2遺伝子またはその蛋白質の過剰発現のある患者は予後不良であり、診断、予後あるいは治療方針を決める上でc-erbB-2遺伝子は重要な因子の1つである。

[0004] トラスツズマブ(ハーセプチ^{登録商標})はHER2/c-erbB-2蛋白質に特異的に結合するヒト化モノクローナル抗体である。トラスツズマブ(ハーセプチ^{登録商標})はHER2/c-erbB-2蛋白質を過剰発現している腫瘍細胞を標的として特異的に結合する。このことによりHER2/c-erbB-2蛋白質の受容体機能を阻害し、シグナル伝達を阻害することにより腫瘍細胞の増殖を阻害する。したがって、トラスツズマブ(ハーセプ

チン^{登録商標})による治療対象患者の同定には、癌組織におけるHER2/c-erbB-2蛋白質の過剰発現あるいはc-erbB-2遺伝子増幅の状況についての検査が必要となる(非特許文献4)。

- [0005] 現在、HER2/c-erbB-2の発現検査方法として、免疫組織化学法と蛍光in situハイブリダイゼーション法(FISH法)による方法が実施されている。
- [0006] HER2/c-erbB-2の発現の判定は、腫瘍細胞の膜における染色性およびその染色強度のみを対象とし、細胞質における反応は判定対象外とする。細胞膜における反応性は以下の基準でスコア0から3+のカテゴリーに分類される。
 - [0007] スコア0;細胞膜に陽性染色がない、あるいは細胞膜の陽性染色がある腫瘍細胞<10%。
 - スコア1+;ほとんど識別できないほどかすかな細胞膜の染色がある腫瘍細胞≥10%。
 - スコア2+;弱～中程度の完全な細胞膜の陽性染色がある腫瘍細胞≥10%。
 - スコア3+;強い完全な細胞膜の陽性染色がある腫瘍細胞≥10%。
- [0008] 上記の基準に基づくHER2/c-erbB-2の発現の判定により、3+の場合はトラスツズマブ(ハーセプチ^{登録商標}ン)による治療の有用性があると評価されるが、2+の場合については評価が分かれている。つまり、3+の場合はトラスツズマブ(ハーセプチ^{登録商標}ン)による治療に一定の効果が認められているが、2+の場合は必ずしもトラスツズマブ(ハーセプチ^{登録商標}ン)による治療が有効な症例は多くない。これに対し、FISH法で陽性の場合は一定の割合においてトラスツズマブ(ハーセプチ^{登録商標}ン)による治療が有効であるとされている。
- [0009] 組織切片の免疫組織化学的染色は、異種組織の蛋白質の変化を評価する確実な方法であることが示されている。免疫組織化学法は、抗体をプローブに利用し、一般的には発色法又は蛍光法によってin situで細胞に存在する抗原を視覚化して検査する方法である。
- [0010] 蛍光in situハイブリダイゼーション法(FISH法)は、近年、無傷の細胞にある遺伝子の存在を直接評価する方法を発達させている。FISH法とは、蛍光色素やハプロテンで標識したDNAやRNAプローブを用いて、スライドに固定された細胞又は組織切片内

の細胞RNA又は細胞DNAに結合させ、その後蛍光顕微鏡下で、その遺伝子を蛍光シグナルとして検出する方法である。

[0011] 免疫組織化学法とFISH法について、HER2/c-erbB-2の発現の検査における有効性の比較が行われた。その結果、FISH法の方が免疫組織化学法より再現性に優れており、HER2/c-erbB-2の発現の状態をより正確に判断できる、という結論が出ている。さらに、FISH法で陽性の場合におけるトラスツズマブ(ハーセプチ^{登録商標})による治療の有効例の比率は、免疫組織化学法で陽性の場合より多いとされている。しかし、FISH法は手数およびコストがかかることから、免疫組織化学法で2+の場合にのみFISH法を実施して、トラスツズマブ(ハーセプチ^{登録商標})による治療の有用性を決めるのが良い、という結論が出されている(非特許文献5)。

[0012] ムチン4(MUC4)は細胞膜内HER2/c-erbB-2結合体である(非特許論文6)。さらに、HER2/c-erbB-2を発現し、MUC4/シアロムチンのない細胞にMUC4/シアロムチンをトランスフェクトするとHER2/c-erbB-2の1248番目のチロシンがリン酸化されることから、MUC4/シアロムチンはHER2/c-erbB-2のリン酸化にも関係している(非特許論文6)。

非特許文献1:Biochem. et Biophys.Acta,1198, 165–184 (1994)

非特許文献2:Oncogene, 9, 2109–2123 (1994)

非特許文献3:Brit. J. Cancer, 72, 1259–1266 (1995)

非特許文献4:Science, 235, 177–182 (1987)

非特許文献5:J. Pathology, 199, 411–417 (2003)

非特許文献6:J. Biol. Chem., 278, 30142–30147 (2003)

発明の開示

発明が解決しようとする課題

[0013] 本発明が解決しようとする課題は、腫瘍関連因子の受容体を標的とする制癌剤治療の有効性を正確に判定するための新たな検査方法を提供することである。

課題を解決するための手段

[0014] 上記課題を解決するため、本発明者は腫瘍関連因子の受容体であるHER2/c-erbB-2を標的とする制癌剤であるトラスツズマブ(ハーセプチ^{登録商標})の有

効性を正確に判定するための検査方法について検討した。

[0015] ト拉斯ツズマブ(ハーセプチン^{登録商標})の有効性の判定は、現在はHER2/c-erbB-2の過剰発現を免疫組織化学法、FISH法等で検査している。前記の検査方法では、蛋白質が細胞膜において染色されている場合にのみ陽性と判断し、細胞質内のみの染色性は陰性とする。ここで、ト拉斯ツズマブ(ハーセプチン^{登録商標})による治療が有効に作用する条件として、過剰発現したHER2/c-erbB-2が細胞膜上で受容体として機能的に存在している必要がある。したがって、前記の検査方法ではc-erbB-2遺伝子がいくら過剰発現され、HER2/c-erbB-2が多量に作成されたとしても、細胞膜に上手くアンカーされていなければト拉斯ツズマブ(ハーセプチン^{登録商標})による治療の有効性が無いということになる、と本発明者は考えた。

[0016] また、HER2/c-erbB-2の過剰発現を高頻度に認める癌はかなり多種にわたる。現在、乳ガンでト拉斯ツズマブ(ハーセプチン^{登録商標})による治療が実用化されているものの、他臓器の癌では該治療が有効な症例比率が低く、ほとんど実用化されていない。本発明者は、この理由として過剰発現しているHER2/c-erbB-2が細胞膜上で機能していない可能性を推定した。したがって、HER2/c-erbB-2が細胞膜での機能を果たすために重要である、細胞膜表面及び／又は細胞膜内でHER2/c-erbB-2に相互作用する物質の有無を個々の癌について予め検討しておくことは、ト拉斯ツズマブ(ハーセプチン^{登録商標})による治療効果を推定する上で非常に有用であると本発明者は考えた。

[0017] そこで、HER2/c-erbB-2を過剰発現した癌に対しト拉斯ツズマブ(ハーセプチン^{登録商標})による治療を受けた症例について、HER2/c-erbB-2が細胞膜上で受容体として有効に機能するために細胞膜表面及び／又は細胞膜内でHER2/c-erbB-2に相互作用する物質MUC4の発現状況とト拉斯ツズマブ(ハーセプチン^{登録商標})による治療の有効性との関係を検討した。

[0018] その結果、腫瘍関連因子の受容体を標的とする制癌剤治療の有用性判定の検査方法における、細胞膜表面及び／又は細胞膜内で受容体に相互作用する物質の遺伝子及び／又は該遺伝子の発現産物を検査することの意義を見出し、本発明を完成了。

[0019] つまり、本発明は以下からなる；

1. 腫瘍関連因子の受容体を標的とする制癌剤の投与に際し行われる検査方法であって、該受容体の遺伝子及び／又は該遺伝子の発現産物の検査に加えて、細胞膜表面及び／又は細胞膜内で受容体に相互作用する物質の遺伝子及び／又は該遺伝子の発現産物を検査することを特徴とする制癌剤治療の有用性判定のための検査方法。
2. 前記腫瘍関連因子の受容体が細胞増殖因子受容体である前項1に記載の検査方法。
3. 前記細胞増殖因子受容体が上皮細胞増殖因子受容体ファミリーに属する受容体である前項2に記載の検査方法。
4. 前記上皮細胞増殖因子受容体ファミリーに属する受容体がHER2/c-erbB-2である前項3に記載の検査方法。
5. 前記細胞膜表面及び／又は細胞膜内で受容体に相互作用する物質が糖蛋白質である前項1から4のいずれか一に記載の検査方法。
6. 前記糖蛋白質がムチン類である前項5に記載の検査方法。
7. 前記ムチン類がムチン4(MUC4)である前項6に記載の検査方法。
8. 前記制癌剤が当該受容体に対する抗体である前項1から7のいずれか一に記載の検査方法。
9. 前記抗体がヒト化モノクローナル抗体である前項8に記載の検査方法。
10. 前記ヒト化モノクローナル抗体がトラスツズマブ(ハーセプチ^{登録商標})である前項9に記載の検査方法。
11. 前項1から10のいずれか一に記載の検査方法に使用する試薬。
12. 前項1から10のいずれか一に記載の検査方法に使用する試薬キット。

発明の効果

[0020] 本発明により、腫瘍関連因子の受容体を標的とする制癌剤治療の有用性判定の予測がより確実に可能となる。さらに、このことにより的確な治療方針の立案が可能となり、治療効果が期待できない癌に対する過剰な投薬を抑制できる等、医療経済に対しても効果が期待できる。

発明を実施するための最良の形態

[0021] 以下、本発明を詳しく説明するが、本明細書中で使用されている技術的および科学的用語は、別途定義されない限り、本発明の属する技術分野において通常の知識を有する者により普通に理解される意味を持つ。

[0022] 本発明は腫瘍関連因子の受容体を標的とする制癌剤の投与に際し行われる、制癌剤治療の有用性判定のための検査方法であり、該受容体の遺伝子及び／又は該遺伝子の発現産物の検査に加えて、細胞膜表面及び／又は細胞膜内で受容体に相互作用する物質の遺伝子及び／又は該遺伝子の発現産物を検査することを特徴とする。

[0023] 腫瘍とは、生体内においてその個体自身に由来する細胞でありながら、その個体全体としての調和を破り、他からなんら制御を受けることなく自らの規律に従い、過剰の発育を遂げる組織をいう。腫瘍関連因子とは、腫瘍形成に関与する因子をいう。腫瘍関連因子としては、サイトカインが好ましい。サイトカインには、これに限られないが、増殖因子、インターフェロン(IFN)、腫瘍壞死因子(TNF)、インターロイキン(IL)等が含まれる。サイトカインのなかでも増殖因子がさらに好ましい。増殖因子には、これに限られないが、上皮細胞増殖因子、肝細胞増殖因子、纖維芽細胞増殖因子、血小板由来増殖因子、インシュリン様増殖因子、血管内皮増殖因子等が含まれる。

[0024] 受容体とは、細胞が特定の化学物質を認識するための蛋白質よりなる構造体をいう。化学伝達物質、各種細胞成長因子等は細胞膜上に存在するそれぞれに特異的な受容体と結合することにより、細胞内への効率的な取り込み、細胞内へのシグナル伝達等を発揮している。腫瘍関連因子の受容体としては、細胞増殖因子受容体が好ましく、上皮細胞増殖因子受容体及びそのファミリーに属する受容体がより好ましい。上皮細胞増殖因子受容体ファミリーに属する受容体として、HER2/c-erbB-2が好適な例として挙げられる。

[0025] 細胞膜表面及び／又は細胞膜内で受容体に相互作用する物質とは、細胞膜表面及び／又は細胞膜内において受容体に相互作用し、受容体の機能を発現あるいは増強させる役割を担う物質をいう。細胞膜表面及び／又は細胞膜内で受容体に相互作用する物質としては、糖蛋白質が好ましく、ムチン類がより好ましい。ムチン類の

一部は癌抗原として知られている。ムチン類の中でも、MUC4は細胞内でHER2/c-erbB-2蛋白質と相互作用することが知られており、好適な例として挙げられる。

[0026] 制癌剤とは、悪性腫瘍に対して用いられる薬物の総称であり、癌遺伝子の発現及び／又は発現産物の機能を抑制する。本発明の制癌剤は、腫瘍関連因子の受容体を標的とする。この各定義は上述した。このような制癌剤としては、癌の分子標的治療剤が例示される。特にシグナル伝達作用を阻害する薬剤が代表的であり、いわゆるチロシンキナーゼ阻害剤等が例示される。そのようなものには例えば、微生物由来のアーブスタチン(Erbstatin)、ラベンダスチン(Lavendustin)、ハービマイシンA(Herbimycin A)、ゲニステイン(Genistein)等、化学合成品では、ベンジリデンマロンニトリル誘導体(特開平2-138238号公報、Journal of Medical Chemistry, 32, 2344 (1989); 同34,1896(1991))、 α -シアノケイ皮酸アミド誘導体(特開昭63-222153号公報)、3, 5-ジイソプロピル-4-ヒドロキシスチレン誘導体(特開昭62-39522号公報)、3, 5-ジープチル-4-ヒドロキシスチレン誘導体(特開昭62-39523号公報)、アーブスタチン類縁化合物(特開昭62-277347号公報)等がある。

[0027] 制癌剤としては、シグナル伝達系に関与する産物に対する抗体が好ましく、ヒト化モノクローナル抗体がより好ましい。シグナル伝達系に関与する産物としては各受容体があり、各受容体に対する抗体が例示される。代表的な受容体としては、HER2/c-erbB-2が例示される。さらに、HER2/c-erbB-2に対するヒト化モノクローナル抗体であるトラスツズマブ(ハーセプチ^{登録商標})が好適に例示される。この他、本発明の対象となる制癌剤の分子標的治療剤としては、ZD1839(イレッサ^{登録商標})、STI-571等が例示される。ZD1839(イレッサ^{登録商標})はEGFRのチロシンキナーゼ活性の阻害剤であり、STI-571はBCR-Abl及びc-kitのチロシンキナーゼ活性の阻害剤である。

[0028] ガン(癌)とは、典型的には調節されない細胞成長を特徴とする、哺乳動物における生理学的状態をいう。ガンの例には、これらに限定されるものではないが、ガン腫、リンパ腫、芽細胞腫、肉腫、黒色腫及び白血病が含まれる。このようなガンのより特定の例には、扁平細胞ガン、小細胞肺ガン、非小細胞肺ガン、肺の腺ガン、肺の扁平

ガン腫、腹膜ガン、肝細胞ガン、胃腸ガン、膵臓ガン、神経膠芽細胞腫、子宮頸管ガン、非小細胞肺ガン、卵巣ガン、肝臓ガン、膀胱がん、肝ガン、乳ガン、大腸ガン、結腸直腸ガン、子宮内膜ガン又は子宮ガン、唾液腺ガン、腎臓ガン、前立腺ガン、産卵口ガン、甲状腺ガン、並びに様々な型の頭部及び頸部のガンが含まれる。

[0029] シグナル伝達系に関する産物をコードする遺伝子としては、細胞が癌化する際に癌化の指令を発する遺伝子が例示される。このような遺伝子には、これらに限定されるものではないが、増殖因子機能を有するsis、int-2、hst、受容体型チロシンキナーゼ機能を有するerbB、erbB-2/neu、ros、fms、kit、ret、非受容体型チロシンキナーゼ機能を有するsrc、yes、fgr、lck、fps/fes、abl、セリン・スレオニンキナーゼ機能を有するc-raf、その他ras、bcl、int-1、crk、核内蛋白質であるmyc、fos、jun、erbA等が含まれる。これらの各遺伝子の中で、その機能あるいは発現産物の機能を抑制させる物質が開発され、医薬品として用いられる。代表例として、抗体薬剤として用いられている、erbB-2/neuの遺伝子産物であるHER2/c-erbB-2に対するトラスツズマブ(ハーベプチン^{登録商標})が好適な例として挙げられる。

[0030] 本発明に使用される検体試料としては対象からのあらゆる組織試料が用いられる。組織試料は、好ましくは染色体物質を有する有核細胞を含む、対象又は患者の組織から得られた類似細胞の集合を意図している。組織試料は、保存料、抗凝固剤、バッファー、固定剤、栄養分、抗生物質等の天然で組織に本質的に混入しない成分を含んでいてもよい。使用される組織試料の例には、これに限られないが、乳房、前立腺、卵巣、大腸、肺、子宮内膜、胃、唾液腺、又は脾臓が含まれる。組織試料はこれに限られないが、外科的切除、吸引、又はバイオプシーを含む様々な方法で得ることができる。組織は生でも凍結されていてもよい。

[0031] 組織試料は、従来からの方法によって固定することができる。固定剤は組織が組織学的に染色されるように又は他の方法で分析されるように決定される。また、固定の長さは組織試料の大きさ及び使用される固定剤による。

一般に組織試料を初めに固定し、次いでアルコールの上昇系列で脱水し、パラフィン又は組織試料を切片にできるような他の切片法媒体を浸透して包埋する。あるいは、組織を切片化し、得られた切片を固定できるようにする。例えば、組織試料は從

来からの方法によりパラフィンで包埋及び加工されうる。組織試料が包埋されると、試料はミトクローム等により切片化されうる。切片化されると、切片は幾つかの標準的な方法でスライドに貼り付けられうる。

[0032] パラフィンが包埋の材料として使用された場合、組織切片は一般に脱パラフィンし、水で再水和する。組織切片は幾つかの従来からの標準的な方法で脱パラフィンをすることができる。例えば、キシレン及び緩やかな下降系列アルコールを使用することができます。

[0033] 遺伝子及び／又は該遺伝子の発現産物の検査方法として、遺伝子検査法と免疫学的検査法が挙げられる。さらに、本発明には、遺伝子検査法と免疫学的検査法の併用、さらに他の検査方法との併用も含まれる。

[0034] 遺伝子検査法とは、遺伝子増幅を検査する方法であり、FISH法、RT-PCR法、サザンブロッティング等の従来からの方法が用いられる。ここで、遺伝子増幅とは、染色補体の腫瘍抗原コーディング遺伝子の一以上の付加的な遺伝子複製物の存在を意図している。遺伝子増幅は蛋白質の過剰発現を生じうる。遺伝子検査法に用いるプローブは、RNA又はDNAのオリゴヌクレオチドでもポリヌクレオチドでもよい。プローブは、安定した特異的な結合が標的核酸プローブとの間に生じるように、対象とする標的核酸配列と十分な相補性を有しうる。安定したハイブリダイゼーションに必要な相同性の程度は、ハイブリダイゼーション媒体及び／又は洗浄媒体の厳密性により変化する。プローブの選択は標的遺伝子の性質に依存する。

[0035] 免疫学的検査法とは、遺伝子の発現産物を抗体により検査する方法であり、免疫組織化学法、EIA法等の従来からの方法が用いられる。免疫学的検査法に使用する抗体類には、これに限定されないが、モノクローナル抗体類、ポリクローナル抗体類及びその断片が含まれる。

[0036] 以下の方法は、HER2/c-erbB-2を特異的に認識する抗体を利用する免疫組織化学染色法の一例である；
通常の方法に従い調製されたパラフィン包埋された組織の切片を、キシレン溶液及び下降系列アルコール溶液により脱パラフィンし、蒸留水で洗浄する。次に、内在性的ペルオキシダーゼ活性を除去する為に、室温で30分間0.3% 過酸化水素を含むメ

タノールで前記切片を反応させ、0.1 M PBSで5分間3回洗浄する。次に、非特異的な反応を阻害するため前記切片を2–10%の正常血清を含む0.1 M PBSで室温にて30–60分間インキュベートした後、HER2/c-erbB-2を認識する一次抗体で室温にて1時間又は4°Cで一昼夜インキュベートする。その後、前記切片を0.1 M PBSで5分間3回洗浄した後、ペルオキシダーゼ標識二次抗体とともに室温にて30分間インキュベートする。次に0.1 M PBSで前記切片を5分間3回洗浄後、DAB反応液(DAB四塩酸塩10 mg、PBS 50 ml、1.5% H₂O₂ 50 μl)で3–10分間インキュベートして発色させ、10分間流水洗浄して発色反応を停止させる。

[0037] 本発明の一実施態様では、腫瘍関連因子の受容体の遺伝子及び／又は該遺伝子の発現産物の検査方法により、該受容体の遺伝子及び／又は該遺伝子の発現産物に加えて細胞膜表面及び／又は細胞膜内で受容体に相互作用する物質の遺伝子及び／又は該遺伝子の発現産物が検体試料において検出される症例では、該受容体を標的とする制癌剤治療の有用性があると判定することができる。

[0038] その一例として、HER2/c-erbB-2は、乳ガンに限らず多くの癌で過剰発現しているにもかかわらず、治療が実用化されているのは乳ガンのみである。これは、乳ガン以外のHER2/c-erbB-2を高発現する癌における治療の有効率が低いためである。大腸ガンなどは、HER2/c-erbB-2の過剰発現が高頻度であるが、基本的にMUC4は大腸の上皮では腫瘍も含め陰性であることがわかっており、治療効果が出にくいためである。しかしながら、MUC4陽性である臓器の癌においてはHER2/c-erbB-2を高度発現するものもある。それらの癌については、MUC4とHER2/c-erbB-2をともに発現している症例を選んでトラスツズマブ(ハーセプチ^{登録商標})による治療を試行により高い治療効果が得られる可能性があると判定することができる。したがって、MUC4とHER2/c-erbB-2の検査の併用により、トラスツズマブ(ハーセプチ^{登録商標})による治療の適応の範囲を広げることが可能となる。

[0039] さらに、本発明の一実施態様では、本発明の検査方法に使用することができる試薬および試薬キットを含む。試薬および試薬キットは製造品の形で提供されてもよく、製造品は容器、場合によってはラベル及びパッケージ挿入物を具備する。

実施例

[0040] 以下、本発明を実施例によりさらに具体的に説明するが、これらは本発明の技術的範囲を限定するものではない。

[0041] 実施例1

乳癌患者の組織について、上述の免疫組織化学的染色によりHER2/c-erbB-2を検出した症例について、トラスツズマブ(ハーセプチ^{登録商標})による治療効果と免疫組織化学法によるMUC4の染色性の関係について調べた。

その結果、表1に示すような結果が得られた。HER2/c-erbB-2が(++)以上である6例うち、MUC4陽性は3例中1例が(++)、2例中2例が(++)であった。この結果から、HER2/c-erbB-2とMUC4の発現は相関しないことが明らかになった。従って、HER2/c-erbB-2とMUC4のそれぞれを検査する意義があることが示された。

HER2/c-erbB-2陽性(++)の3例のうち完全寛解した1例はMUC4陽性で、効果なしであった1例はMUC4陰性であり余り効果がなく、トラスツズマブ(ハーセプチ^{登録商標})による治療の拒絶が1例であった。HER2/c-erbB-2陽性(++)である2例はいずれもMUC4陽性であり、うち1例はStageが早いためトラスツズマブ(ハーセプチ^{登録商標})による治療をしていないが、トラスツズマブ(ハーセプチ^{登録商標})による治療例は完全寛解であった。

以上より、MUC4の発現とHER2/c-erbB-2の発現は必ずしも平行関係になく、MUC4陽性かつHER2/c-erbB-2陽性(++)以上の症例はトラスツズマブ(ハーセプチ^{登録商標})に対する反応性が良いが、MUC4陰性の場合はHER2/c-erbB-2陽性でもトラスツズマブ(ハーセプチ^{登録商標})による治療が効果的でないことが判った。したがって、HER2/c-erbB-2とMUC4を組み合わせて検査することによりトラスツズマブ(ハーセプチ^{登録商標})による治療効果を予測できることが判った。

[0042] [表1]

乳癌の種類	HER2/C-erbB-2	MUC-4	トラスツズマブ(ハーセプチ <small>登録商標</small>)による治療効果
乳頭腺管癌	(-)	(-)	適応外
乳頭腺管癌	(-)	(+)	適応外
乳頭腺管癌	(-)	(-)	適応外
硬癌	(-)	(-)	適応外
硬癌	(+++)	(-)	余り奏効せず、患者が治療を続行拒否、死亡
乳頭腺管癌	(+++)	(-)	効果なし: 注:タモキシフェン・ハーセプチ <small>登録商標</small> 奏効後、タモキシフェン抜去で効果消失
乳頭腺管癌	(+++)	(+)	完全寛解
乳頭腺管癌	(+++)	(-)	効果なし
乳頭腺管癌	(++)	(+)	完全寛解
乳頭腺管癌	(++)	(+)	治療せず
硬癌	(+)	(-)	治療せず
乳頭腺管癌	(+)	(-)	治療せず
乳頭腺管癌	(+)	(+)	治療せず

産業上の利用可能性

[0043] 本発明により、腫瘍関連因子の受容体を標的とする制癌剤治療の有用性判定の予測がより確実に可能となり、制癌剤治療を受ける対象の選別及び選択の確実性を著しく向上させる可能性をもたらす。このことにより、的確な治療方針を提供し、制癌剤の治療の適用の範囲を広げることが可能となる。さらに、治療効果が期待できない癌に対する過剰な投薬を抑制できる等、医療経済に対しても効果が期待できる。

請求の範囲

- [1] 腫瘍関連因子の受容体を標的とする制癌剤の投与に際し行われる検査方法であつて、該受容体の遺伝子及び／又は該遺伝子の発現産物の検査に加えて、細胞膜表面及び／又は細胞膜内で受容体に相互作用する物質の遺伝子及び／又は該遺伝子の発現産物を検査することを特徴とする制癌剤治療の有用性判定のための検査方法。
- [2] 前記腫瘍関連因子の受容体が細胞増殖因子受容体である請求項1に記載の検査方法。
- [3] 前記細胞増殖因子受容体が上皮細胞増殖因子受容体又は上皮細胞増殖因子受容体ファミリーに属する受容体である請求項2に記載の検査方法。
- [4] 前記上皮細胞増殖因子受容体ファミリーに属する受容体がHER2/c-erbB-2である請求項3に記載の検査方法。
- [5] 前記細胞膜表面及び／又は細胞膜内で受容体に相互作用する物質が糖蛋白質である請求項1から4のいずれか一に記載の検査方法。
- [6] 前記糖蛋白質がムチン類である請求項5に記載の検査方法。
- [7] 前記ムチン類がムチン4(MUC4)である請求項6に記載の検査方法。
- [8] 前記制癌剤が当該受容体に対する抗体である請求項1から7のいずれか一に記載の検査方法。
- [9] 前記抗体がヒト化モノクローナル抗体である請求項8に記載の検査方法。
- [10] 前記ヒト化モノクローナル抗体がトラスツズマブ(ハーセプチ^{登録商標})である請求項9に記載の検査方法。
- [11] 請求項1から10のいずれか一に記載の検査方法に使用する試薬。
- [12] 請求項1から10のいずれか一に記載の検査方法に使用する試薬キット。

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP2005/006634

A. CLASSIFICATION OF SUBJECT MATTER
Int.Cl⁷ G01N33/15, 33/53, 33/574, 33/577

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
Int.Cl⁷ G01N33/15, 33/53, 33/574, 33/577

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
Jitsuyo Shinan Koho 1922-1996 Jitsuyo Shinan Toroku Koho 1996-2005
Kokai Jitsuyo Shinan Koho 1971-2005 Toroku Jitsuyo Shinan Koho 1994-2005

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
BIOSIS (STN), CAPplus (STN)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	Shari A. PRICE-SCHIAVI, RAT MUC4 REDUCES BINDING OF ANTI-ERBB2 ANTIBODIES TO TUMOR CELL SURFACES, A POTENTIAL MECHANISM FOR HERCEPTIN RESISTANCE, International Journal of Cancer, Vol.99, 2002, pages 783 to 791, see Abstract	1-12

 Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents:

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier application or patent but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search
14 June, 2005 (14.06.05)

Date of mailing of the international search report
28 June, 2005 (28.06.05)

Name and mailing address of the ISA/
Japanese Patent Office

Authorized officer

Faxsimile No.

Telephone No.

A. 発明の属する分野の分類(国際特許分類(IPC))

Int.Cl.⁷ G01N33/15, 33/53, 33/574, 33/577

B. 調査を行った分野

調査を行った最小限資料(国際特許分類(IPC))

Int.Cl.⁷ G01N33/15, 33/53, 33/574, 33/577

最小限資料以外の資料で調査を行った分野に含まれるもの

日本国実用新案公報	1922-1996年
日本国公開実用新案公報	1971-2005年
日本国実用新案登録公報	1996-2005年
日本国登録実用新案公報	1994-2005年

国際調査で使用した電子データベース(データベースの名称、調査に使用した用語)

BIOSIS(STN)、CAplus(STN)

C. 関連すると認められる文献

引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
X	Shari A. PRICE-SCHIAVI, RAT MUC4 REDUCES BINDING OF ANTI-ERBB2 ANTIBODIES TO TUMOR CELL SURFACES, A POTENTIAL MECHANISM FOR HERCEPTIN RESISTANCE, International Journal of Cancer, Vol. 99, 2002, p783-791, see Abstract	1-12

〔〕 C欄の続きにも文献が列挙されている。

〔〕 パテントファミリーに関する別紙を参照。

* 引用文献のカテゴリー

「A」特に関連のある文献ではなく、一般的技術水準を示すもの
 「E」国際出願日前の出願または特許であるが、国際出願日以後に公表されたもの
 「L」優先権主張に疑義を提起する文献又は他の文献の発行日若しくは他の特別な理由を確立するために引用する文献(理由を付す)
 「O」口頭による開示、使用、展示等に言及する文献
 「P」国際出願日前で、かつ優先権の主張の基礎となる出願

の日の後に公表された文献

「T」国際出願日又は優先日後に公表された文献であって出願と矛盾するものではなく、発明の原理又は理論の理解のために引用するもの
 「X」特に関連のある文献であって、当該文献のみで発明の新規性又は進歩性がないと考えられるもの
 「Y」特に関連のある文献であって、当該文献と他の1以上の文献との、当業者にとって自明である組合せによって進歩性がないと考えられるもの
 「&」同一パテントファミリー文献

国際調査を完了した日 14.06.2005	国際調査報告の発送日 28.6.2005
国際調査機関の名称及びあて先 日本国特許庁 (ISA/JP) 郵便番号100-8915 東京都千代田区霞が関三丁目4番3号	特許庁審査官(権限のある職員) 加々美 一恵 電話番号 03-3581-1101 内線 3252