

Intro to SEM

with examples from Stata and Mplus

Christiane Grill

Nate Breznau

Mannheim Centre for European Social Research
Social Science Data Lab
29.11.2017

- Structural human built, constructed
- Equation
 - a logical statement ("=")
 - a mathematical statement (5x=2y)
 - statistical in some way

- Structural human built, constructed
- Equation
 - a logical statement ("=")
 - a mathematical statement (5x=2y)
 - statistical in some way
- Structural Equation one equation dependent on others
- Models descriptions of theory in mathematical terms

Model 1. Same Variables. Alternative Models.

Anti-immigrant attitudesCulture: value of cultural diversityContact with immigrants

Model 1. Same Variables. Alternative Models.

Anti-immigrant attitudesCulture: value of cultural diversityContact with immigrants

Mplus Code: M1a; M1b; M1c; M1d

Model 1. Same Variables. Alternative Models.

Anti-immigrant attitudesCulture: value of cultural diversityContact with immigrants

Code: fig1a; fig1b; fig1c; fig1d

Figure 2. Twelve Alternative Path Models for one Outcome (Y) and two Inputs (X, Z)

Figure 2. Twelve Alternative Path Models for one Outcome (Y) and two Inputs (X, Z)

Surprising but True. SEM...

- …is analysis of covariance structures
- ...does not minimize error terms
- ...cannot identify causality
- ...requires qualitative assumptions
- …'s structural coefficients ≠ regression coefficients
- ...any model can eventually fit the data perfectly

MPLUS

MPLUS

- Mplus editor
- Mplus input file: *.inp
- Mplus output file: *.out
- Input data file: *.dat
 - Define missings!
- Other software runs Mplus
 - runmplus (Stata)
 - MplusAutomation (R)

MPLUS Syntax

Command block	Options	Command block	Options
DATA	FILE IS	ANALYSIS	TYPE IS
	FORMAT IS		ESTIMATOR IS
	TYPE IS	MODEL	BY
			ON
VARIABLE	NAMES ARE		WITH
	USEVARIABLES		
		OUTPUT	STDYX
	USEOBSERVATIONS		RESIDUAL
	CATEGORICAL,		MODINDICES
	COUNT etc.		
DEFINE			CINTERVAL

MPLUS Syntax

TITLE: Einlesen des Datensatzes "GMF05_Querschnitt_CFA.dat"

DATA: FILE IS GMF05 Querschnitt CFA.dat;

VARIABLE: NAMES ARE qcp_ser he01hq4 sx03q4r sx04q4r he01oq4r

he02oq4r he02hq4r ff04dq4r ff08dq4r ev03q4r ev04q4r ra01q4r ra03q4r as01q4r as02q4r he05mq4r he12mq4r

ka05q4r zu01q4k;

USEVARIABLES ARE he01hq4 sx03q4r sx04q4r he01oq4r

he02oq4r he02hq4r ff04dq4r ff08dq4r ev03q4r ev04q4r

ra01q4r ra03q4r as01q4r as02q4r he05mq4r he12mq4r

ka05q4r zu01q4k;

MISSING ARE he0log4r he02og4r (99) zu01g4k (9 99);

ANALYSIS: TYPE IS BASIC;

Factor Analysis

(Kleinke et al 2017: Figure 2.1)

Factor Analysis

Element von GMF (in Klammern der Name der latenten Variablen in Mplus)	Indikatoren
Sexismus (sexism)	sx03q4r, sx04q4r
Homophobie (homoph)	he01hq4, he02hq4r
Antisemitismus (antisem)	as01q4r, as02q4r
Fremdenfeindlichkeit (fremdenf)	ff04dq4r, ff08dq4r
Rassismus (rass)	ra01q4r, ra03q4r
Abwertung von Obdachlosen (obdachl)	he01oq4r, he02oq4r
Islamophobie (islamph)	he05mq4r, he12mq4r
Etabliertenvorrechte (etabl)	ev03q4r, ev04q4r

Factor Analysis

Exploratory Factor Analysis	Confirmatory Factor Analysis		
no theoretical model	theoretical model		
Number of factors are extracted	Number of factors are restricted		
by statistical criteri a	before the analysis		
Factors are usually uncorrelated	Factors are usually correlated		
Matrix of factor loadings are	Matrix of factor loadings are		
estimated without restrictions	estimated with restrictions		

- Exploratory factor analysis (EFA) is used to determine the number of continuous latent variables that are needed to explain the correlations among a set of observed variables.
- The continuous latent variables are referred to as factors, and the observed variables are referred to as factor indicators (manifest variables). In EFA, factor indicators can be continuous, censored, binary, ordered categorical (ordinal), counts, or combinations of these variable types.

- Two main questions can be answered with exploratory factor analysis:
- How many factors are needed to explain the associations between the measurements (manifest variables)?
- How strong are the relationships between the factors and the measurements (manifest variables)?

(Kleinke et al 2017: Figure 2.2)

```
TITLE: EFA basierend auf den Elementen Fremdenfeindlichkeit,
```

Rassismus und Islamophobie

DATA: FILE IS GMF05 Querschnitt CFA.dat;

VARIABLE: NAMES ARE qcp ser he01hq4 sx03q4r sx04q4r he01oq4r

 $\label{eq:condition} $$he020q4r$ he02hq4r$ ff04dq4r$ ff08dq4r$ ev03q4r$ ev04q4r$ ra01q4r$ ra03q4r$ as01q4r$ as02q4r$ he05mq4r$ he12mq4r$$

ka05q4r zu01q4k;

USEVARIABLES ARE as01q4r as02q4r ra01q4r ra03q4r

he05mq4r he12mq4r;

ANALYSIS: TYPE IS EFA 1 3;

Note: oblique rotation of geomin per default

Specification of rotation:

ANALYSIS: ROTATION = GEOMIN (OBLIQUE, .5);

ANALYSIS: ROTATION = CF-VARIMAX (ORTHOGONAL);

Code: M2, taken from Kleinke (et al 2017).

Model 2. Results for Exploratory Factor Analysis

Code: M2, taken from Kleinke (et al 2017).

EVELOPATORY EACTOR ANALYSIS WITH 2 FACTOR(S).

EXPLORATORY FACTOR ANALYSIS WITH 1 FACTOR(S):			EXPLORATORY FACTOR ANALYSIS WITH 2 FACTOR(S):					
MODEL FI	Γ INFORMATION		TESTS OF MODEL FIT					
Number o	f Free Parameters	18	Chi-Square Test of Model Fit					
Loglikel:	ihood		Value Degrees of Freedom	98.888 4				
	H0 Value H1 Value	-12195.173 -11999.859	P-Value	0.0000				
Informati	ion Criteria		Chi-Square Test of Model Fit for the E	Baseline Model				
	Akaike (AIC) Bayesian (BIC) Sample-Size Adjusted BIC (n* = (n + 2) / 24)	24426.346 24525.044 24467.860	Value Degrees of Freedom P-Value CFI/TLI	2404.353 15 0.0000				
Chi-Squa	re Test of Model Fit		CFI	0.960				
	Value Degrees of Freedom P-Value	390.628 9 0.0000	TLI Loglikelihood	0.851				
RMSEA (Ro	oot Mean Square Error Of Appr	oximation)	H0 Value H1 Value	-12049.303 -11999.859				
	Estimate 90 Percent C.I. Probability RMSEA <= .05	0.154 0.142 0.168 0.000	Information Criteria	-113331033				
CFI/TLI	CFI	0.840	Number of Free Parameters Akaike (AIC) Bayesian (BIC) Sample-Size Adjusted BIC	23 24144.606 24270.720 24197.651				
Chi-Squa	TLI re Test of Model Fit for the	0.734 Baseline Model	(n* = (n + 2) / 24)					
	Value Degrees of Freedom P-Value	2404.353 15 0.0000	RMSEA (Root Mean Square Error Of Appro Estimate 90 Percent C.I. Probability RMSEA <= .05	0.116	0.136			
SRMR (Sta	andardized Root Mean Square R	esidual)	·					
	V-1	0.061	SRMR (Standardized Root Mean Square Re	:Sidual)				

0.061

Value

GEOMIN ROTATED LOADINGS (* significant at 5% level) 1 0.696* Jews have too much influence

AS02Q4R	0.714*	Jews responsible for own persecution
RA01Q4R	0.413*	German ancestry immigrants should be better off than others
RA03Q4R	0.530*	White people should rule the world
HE05MQ4R	0.542*	Muslims make me feel like a stranger
HE12MQ4R	0. 569*	Muslims should be prohibited

GEOMIN ROTATED LOADINGS (* significant at 5% level) 1 2

AS01Q4R	0.529*	0.224*
AS02Q4R	0.937*	-0.003*
RA01Q4R	0.101*	0.361*
RA03Q4R	0.248*	0.332*
HE05MQ4R	-0.006	0.677*
HE12MQ4R	0.001	0.719*

AS0104R

(Kleinke et al 2017: Figure 2.3)

(Kleinke et al 2017: Figure 2.4)

Model 3. CFA

```
Konfirmatorische Faktorenanalyse in Mplus
TITLE:
          FILE IS GMF05 Querschnitt CFA.dat;
DATA:
VARIABLE: NAMES ARE gcp ser he01hq4 sx03q4r sx04q4r he01oq4r
          he02og4r he02hg4r ff04dg4r ff08dg4r ev03g4r ev04g4r
          ra01q4r ra03q4r as01q4r as02q4r he05mq4r he12mq4r
          ka05q4r zu01q4k;
          USEVARIABLES ARE he01hg4 sx03g4r sx04g4r he01og4r
          he02og4r he02hg4r ff04dg4r ff08dg4r ev03g4r ev04g4r
          ra01g4r ra03g4r as01g4r as02g4r he05mg4r he12mg4r;
          MISSING ARE he0log4r he02og4r (99);
          sexism BY sx03q4r sx04q4r; ! Spezifikation der
MODEL:
          homoph BY he01hq4 he02hq4r;
                                            ! Faktoren 1. Ordnung
          antisem BY as01q4r as02q4r;
          fremdenf BY ff04dq4r ff08dq4r;
          rass BY ra01q4r ra03q4r;
          obdachl BY he0log4r he02og4r;
          islamph BY he05mg4r he12mg4r;
          etabl BY ev03q4r ev04q4r;
          qmf BY sexism homoph antisem fremdenf ! Spezifikation
          rass obdachl islamph etabl;
                                               ! des Faktors 2. Ordnung
OUTPUT:
          STDYX:
```

Code: M3, taken from Kleinke (et al 2017).

TESTS OF MODEL FIT

Chi-Square Test of Model Fit

Value 2412.577
Degrees of Freedom 104
P-Value 0.0000

Chi-Square Test of Model Fit for the Baseline Model

Value 9064.830
Degrees of Freedom 120
P-Value 0.0000

CFI/TLI

CFI 0.742 TLI 0.702

Loglikelihood

H0 Value -34249.455 H1 Value -33043.166

Information Criteria

Number of Free Parameters 48
Akaike (AIC) 68594.909
Bayesian (BIC) 68858.105
Sample-Size Adjusted BIC 68705.612
(n* = (n + 2) / 24)

RMSEA (Root Mean Square Error Of Approximation)

Estimate 0.112 90 Percent C.I. 0.108 0.116 Probability RMSEA <= .05 0.000

SRMR (Standardized Root Mean Square Residual)

Value 0.071

Code: M3, taken from Kleinke (et al 2017).

Model 3. Results for Confirmatory Factor Analysis, STDYX

STANDARDIZED MODEL RESULTS

STDYX Standard:	ization								
				Two-Tailed					
	Estimate	S.E.	Est./S.E.	P-Value					
SEXISM BY									
SX03Q4R	0.795	0.020	39.880	0.000					
SX04Q4R	0.780	0.020	39.196	0.000	ISLAMPH BY				
HOMOPH BY					HE05MQ4R	0.684	0.017	40.870	0.000
HE01HQ4	0.620	0.024	25.773	0.000	HE12MQ4R	0.728	0.016	45.036	0.000
HE02HQ4R	0.820	0.026	30.969	0.000	ETABL BY				
ANTISEM BY					EV03Q4R	0.512	0.023	22.088	0.000
AS01Q4R	0.789	0.017	46.603	0.000	EV04Q4R	0.699	0.024	29.026	0.000
AS02Q4R	0.760	0.017	44.454	0.000					
FREMDENF BY					GMF BY				
FF04DQ4R	0.790	0.013	61.986	0.000	SEXISM	0.569	0.023	25.121	0.000
_					HOMOPH	0.552	0.025	21.655	0.000
FF08DQ4R	0.784	0.013	61.090	0.000	ANTISEM	0.700	0.019	36.101	0.000
RASS BY					FREMDENF	0.929	0.013	71.190	0.000
RA01Q4R	0.570	0.023	24.838	0.000	RASS	0.795	0.026	30.712	0.000
RA03Q4R	0.647	0.023	27.860	0.000	OBDACHL	0.543	0.026	21.206	0.000
					ISLAMPH	0.931	0.016	56.495	0.000
OBDACHL BY			00 550		ETABL	0.798	0.026	30.399	0.000
HE010Q4R	0.880	0.029	30.779	0.000					
HE020Q4R	0.584	0.024	24.001	0.000					

Code: M3, taken from Kleinke (et al 2017).

MPLUS Diagrammer

Model 4. Alternative CFA

TITLE:

Prüfung eines alternativen Messmodells FILE IS GMF05 Querschnitt CFA.dat; DATA: VARIABLE: NAMES ARE qcp ser he01hq4 sx03q4r sx04q4r he01oq4r he02oq4r he02hq4r ff04dq4r ff08dq4r ev03q4r ev04q4r ra01q4r ra03q4r as01q4r as02q4r he05mq4r he12mq4r ka05q4r zu01q4k; USEVARIABLES ARE he01hq4 sx03q4r sx04q4r he01oq4r he02oq4r he02hq4r ff04dq4r ff08dq4r ev03q4r ev04q4r ra01q4r ra03q4r as01q4r as02q4r he05mq4r he12mq4r; MISSING ARE he0log4r he02og4r (99); qmf BY sx03q4r sx04q4r ! Spezifikation einer MODEL: he01hq4 he02hq4r ! latenten Variablen as01g4r as02g4r ff04dq4r ff08dq4r ra01q4r ra03q4r he0log4r he02og4r he05mq4r he12mq4r ev03q4r ev04q4r; OUTPUT: STDYX:

Code: M4, taken from Kleinke (et al 2017).

MODEL FIT INFORMATION Number of Free Parameters 48 Loglikelihood H0 Value -34249,455 H1 Value -33043.166 Information Criteria Akaike (AIC) 68594.909 Bayesian (BIC) 68858.105 Sample-Size Adjusted BIC 68705.612 (n* = (n + 2) / 24)Model 4. Alternative CFA Chi-Square Test of Model Fit 2412.577 Value Degrees of Freedom 104 P-Value 0.0000 RMSEA (Root Mean Square Error Of Approximation) Estimate 0.112 90 Percent C.I. 0.108 0.116 Probability RMSEA <= .05 0.000 CFI/TLI CFI 0.742 TLI 0.702 Chi-Square Test of Model Fit for the Baseline Model 9064.830 Value Degrees of Freedom 120 P-Value 0.0000 SRMR (Standardized Root Mean Square Residual) Value 0.071

Code: M4, taken from Kleinke (et al 2017).

(Kleinke et al 2017: Figure 3.1)

Model 5. SEM

```
Title:
          SEM Intergruppenkontakt und GMF
Data:
          FILE IS GMF07 Querschnitt SEM.dat;
VARIABLE: NAMES ARE qcp ser sx03q6r sx04q6r he01oq6r he02oq6r
          he01hq6 he02hq6r ff04dq6r ff08dq6r he05mq6r he12mq6r
          ev03g6r ev04g6r ra01g6r ra03g6r as01g6r as02g6r
          dy04q6r dy02q6r ka03nq4r;
          USEVARIABLES sx03q6r sx04q6r he0loq6r he02oq6r
          he01hq6 he02hq6r ff04dq6r ff08dq6r he05mq6r he12mq6r
          ev03q6r ev04q6r ra01q6r ra03q6r as01q6r as02q6r ka03nq4r;
          MISSING ARE ALL (99);
          sexism BY sx03q6r sx04q6r; ! Messmodelle für die Elemente
MODEL:
          homoph BY he01hq6 he02hq6r; ! von GMF
          antisem BY as01q6r as02q6r;
          fremdenf BY ff04dq6r ff08dq6r;
          rass BY ra01q6r ra03q6r;
          obdachl BY he0log6r he02og6r;
          islamph BY he05mq6r he12mq6r;
          etabl BY ev03q6r ev04q6r;
          GMF BY sexism homoph antisem fremdenf rass ! Messmodell GMF
          obdachl islamph etabl;
          GMF ON ka03ng4r; ! Regression von GMF auf Intergruppenkontakt
          STDYX MODINDICES;
OUTPUT:
```

STANDARDIZED MODEL RESULTS

ς-	יחד	VX.	Sta	nd	larr	H	izati	Λn

	Estimate	S.E.	Est./S.E.	Two-Tailed P-Value
SEXISM BY				
SX03Q6R	0.703	0.034	20.379	0.000
SX04Q6R	0.839	0.037	22.613	0.000
номорн ву				
HE01HQ6 HE02HQ6R	0.732 0.762	0.034 0.034	21.832 22.395	0.000 0.000
•	01702	0.054	221333	0.000
ANTISEM BY AS0106R	0.769	0.028	27.578	0.000
AS02Q6R	0.749	0.028	26.695	0.000
FREMDENF BY				
FF04DQ6R	0.770	0.019	40.122	0.000
FF08DQ6R	0.753	0.020	38.225	0.000
RASS BY				
RA01Q6R	0.529	0.033	16.264	0.000
RA03Q6R	0.667	0.033	20.253	0.000
OBDACHL BY				
HE010Q6R	0.789	0.040	19.567	0.000
HE020Q6R	0.588	0.036	16.232	0.000
ISLAMPH BY				
HE05MQ6R	0.698	0.022	31.579	0.000
HE12MQ6R	0.831	0.019	43.408	0.000
ETABL BY				
EV03Q6R	0.615	0.032	19.149	0.000
EV04Q6R	0.655	0.032	20.304	0.000
GMF BY				
SEXISM	0.485	0.036	13.428	0.000
HOMOPH	0.532	0.035	15.174	0.000
ANTISEM	0.643	0.031	20.852	0.000
FREMDENF	0.972	0.019	51.173	0.000
RASS	0.853	0.037	22.820	0.000
OBDACHL	0.560	0.038	14.820	0.000
ISLAMPH ETABL	0.896 0.760	0.021 0.035	43.371 21.674	0.000 0.000
	0.700	0.033	21.0/4	0.000
GMF ON	0.244	0.025	7 015	0.000
KA03NQ4R	-0.244	0.035	-7.015	0.000

Model 5. Full SEM – Measurement plus Path Model

Code: M5, taken from Kleinke (et al 2017).

```
MODEL FIT INFORMATION
Number of Free Parameters
                                                 57
Loglikelihood
          H0 Value
                                         -15742.260
          H1 Value
                                         -15552.900
Information Criteria
          Akaike (AIC)
                                          31598.519
          Bayesian (BIC)
                                          31869.929
          Sample-Size Adjusted BIC
                                          31688.912
            (n* = (n + 2) / 24)
Chi-Square Test of Model Fit
                                            378.719
          Value
          Degrees of Freedom
                                                111
          P-Value
                                             0.0000
RMSEA (Root Mean Square Error Of Approximation)
          Estimate
                                              0.053
          90 Percent C.I.
                                              0.047
                                                     0.059
          Probability RMSEA <= .05
                                              0.205
CFI/TLI
          CFI
                                              0.937
          TLI
                                              0.923
Chi-Square Test of Model Fit for the Baseline Model
          Value
                                           4397.721
          Degrees of Freedom
                                                136
          P-Value
                                             0.0000
SRMR (Standardized Root Mean Square Residual)
          Value
                                              0.045
```

Code: M5, taken from Kleinke (et al 2017).

MODEL MODIFICATION INDICES

NOTE: Modification indices for direct effects of observed dependent variables regressed on covariates may not be included. To include these, request MODINDICES (ALL).

Minimum M.I. value for printing the modification index 10.000

		M.I.	E.P.C.	Std E.P.C.	StdYX E.P.C.				
BY Statements									
SEXISM BY I SEXISM	HE01HQ6 FF04DQ6R FF08DQ6R SX03Q6R SX04Q6R HE05MQ6R HE12MQ6R EV04Q6R HE02HQ6R HE02HQ6R FF04DQ6R FF04DQ6R	23.846 11.084 17.361 25.657 25.445 17.292 23.200 24.957 12.285 14.116 28.100 14.995	0.322 -0.188 -0.218 0.234 -2.074 2.580 2.620 1.430 0.206 -0.652 0.925 0.620	0.192 -0.112 -0.129 0.176 -1.527 1.900 1.930 0.601 0.158 -0.452 0.642 0.430	0.186 -0.117 -0.148 0.208 -2.059 1.911 2.155 0.608 0.155 -0.445 0.671 0.493				
ON/BY Stateme	RA01Q6R ents	42.358	0.701	0.425	0.535				
HOMOPH BY	HOMOPH / SEXISM FREMDENF /	60.058	0.330	0.418	0.418				
FREMDENF BY SEXISM ON F	SEXISM RASS / SEXISM	40.796 14.219	-2.869 0.788	-3.553 0.557	-3.553 0.557				

Code: M5, taken from Kleinke (et al 2017).

(Kleinke et al 2017: Figure 3.2)

Model 6. Direct and Indirect

```
Title:
          SEM Intergruppenkontakt und GMF, Model Indirect
          Sobel-Test
          FILE IS GMF07 Querschnitt SEM.dat;
Data:
VARIABLE: NAMES ARE gcp ser sx03q6r sx04q6r he01oq6r he02oq6r
          he01hq6 he02hq6r ff04dq6r ff08dq6r he05mq6r he12mq6r
          ev03q6r ev04q6r ra01q6r ra03q6r as01q6r as02q6r
          dy04q6r dy02q6r ka03nq4r;
          USEVARIABLES sx03q6r sx04q6r he01oq6r he02oq6r
          he01hq6 he02hq6r ff04dq6r ff08dq6r he05mq6r he12mq6r
          ev03q6r ev04q6r ra01q6r ra03q6r as01q6r as02q6r ka03nq4r
          dy04q6r dy02q6r;
          MISSING ARE ALL (99);
MODEL:
          sexism BY sx03q6r sx04q6r; ! Messmodelle für die Elemente
         homoph BY he01hq6 he02hq6r; ! von GMF
          antisem BY as01q6r as02q6r;
          fremdenf BY ff04dq6r ff08dq6r;
          rass BY ra01q6r ra03q6r;
```

Code: M6, taken from Kleinke (et al 2017).

Model 6

OUTPUT:

```
obdachl BY he0log6r he02og6r;
islamph BY he05mg6r he12mg6r;
etabl BY ev03q6r ev04q6r;
GMF BY sexism homoph antisem fremdenf rass! Messmodell GMF
obdachl islamph etabl;
wertsch BY dy04q6r dy02q6r; ! Messmodell für Wertschätzung
                              ! kultureller Vielfalt
GMF ON ka03nq4r; ! Direkter Effekt von Kontakt auf GMF (c')
wertsch ON ka03nq4r; ! Effekt von Kontakt auf Wertschätzung
                     ! kultureller Vielfakt (a)
                     ! Effekt von Wert, kultureller Vielfalt
GMF ON wertsch;
                     ! auf GMF (b)
MODEL INDIRECT:
GMF IND ka03nq4r;
                     ! Prüfung des indirekten Effekts von Kontakt
                      ! auf GMF
STDYX;
```

Code: M6, taken from Kleinke (et al 2017).

Model 6. Direct and Indirect Effects

STANDARDIZED TOTAL, TOTAL INDIRECT, SPECIFIC INDIRECT, AND DIRECT EFFECTS

STDYX Standardization

	Estimate	S.E.	Est./S.E.	Two-Tailed P-Value
Effects from KA03NQ	4R to GMF			
Total Total indirect	-0.245 -0.162	0.035 0.025	-7.074 -6.467	0.000 0.000
Specific indirect				
GMF WERTSCH KA03NQ4R	-0.162	0.025	-6.467	0.000
Direct GMF KA03NQ4R	-0.083	0.033	-2.484	0.013

Code: M6, taken from Kleinke (et al 2017).

MODEL FIT	INFORMATION		
Number of	Free Parameters	65	
Loglikeli	hood		
	HO Value	-15751.784	
	H1 Value	-15545.122	
Tofouncti	on Criteria		
Informaci	on Criteria		
	Akaike (AIC)	31633.569	
	Bayesian (BIC)	31936.172	
	Sample-Size Adjusted BIC	31729.766	
	(n* = (n + 2) / 24)		
Chi-Squar	e Test of Model Fit		
	Value	413.324	
	Degrees of Freedom	142	
	P-Value	0.0000	
RMSEA (Ro	ot Mean Square Error Of Approx	imation)	
	Estimate	0.050	
	90 Percent C.I.	0.044	0.055
	Probability RMSEA <= .05	0.538	
CFI/TLI			
	CFI	0.940	
	TLI	0.928	
Chi-Squar	e Test of Model Fit for the Ba	seline Model	
	Value	4684.962	
	Degrees of Freedom	171	
	P-Value	0.0000	
SRMR (Sta	ndardized Root Mean Square Res	idual)	
	Value	0.044	

Model 7. Exact Fit Test. Fit
Statistics for Mediation Model

Models must be nested for chi-square tests!

Code: M7, data from Kleinke (et al 2017).

MODEL FIT	INFORMATION		
Number of	Free Parameters	65	
Loglikeli	hood		
	HO Value	-15751.784	
	H1 Value	-15545.122	
Informatio	on Criteria		
	Akaike (AIC)	31633.569	
	Bayesian (BIC)	31936.172	
	Sample-Size Adjusted BIC $(n* = (n + 2) / 24)$	31729.766	
Chi-Square	e Test of Model Fit		
	Value	413.324	
	Degrees of Freedom	142	
	P-Value	0.0000	
RMSEA (Roo	ot Mean Square Error Of Approxi	imation)	
	Estimate	0.050	
	90 Percent C.I.	0.044	0.055
	Probability RMSEA <= .05	0.538	
CFI/TLI			
	CFI	0.940	
	TLI	0.928	
	ILI	0.928	
Chi-Square	e Test of Model Fit for the Bas	seline Model	
	Value	4684.962	
	Degrees of Freedom	171	
	P-Value	0.0000	
SRMR (Star	ndardized Root Mean Square Resi	idual)	

Value

Model 7. Exact Fit Test. Fit
Statistics for Mediation Model

Code: M7, data from Kleinke (et al 2017).

0.044

			VIOGCITIC
MODEL FIT	INFORMATION		
Number of	Free Parameters	65	
Loglikeli	hood		Model 7. Exact Fit Test. Fit
	HO Value	-15751.784	
	H1 Value	-15545.122	Statistics for Mediation Model
Informatio	on Criteria		
	Akaike (AIC)	31633.569	
	Bayesian (BIC) Sample-Size Adjusted BIC	31936.172 31729.766	
	(n* = (n + 2) / 24)	31/29./66	Chi-Square (χ²)
Chi-Square	e Test of Model Fit		Degrees of Freedom
	Value	413,324	
	Degrees of Freedom	142)
	P-Value	0.0000	
			model fits the data worse than the
RMSEA (Roo	ot Mean Square Error Of Appro	oximation)	baseline model. A significant p
	Estimate	0.050	means it does not fit worse.
	90 Percent C.I.		0.055
	Probability RMSEA <= .05	0.538	
CFI/TLI			
	CFI	0.940	
	TLI	0.928	
Chi-Square	e Test of Model Fit for the I	Baseline Model	1
	Value	4684.962	
	Degrees of Freedom	171	
	P-Value	0.0000	
SRMR (Star	ndardized Root Mean Square Re	esidual)	Code: M7, data from Kleinke (et al 2017).
	Value	0.044	

	ON WERTSCH / BY RASS	12.885	0.166	0.254	0.254
	ON ISLAMPH /	12.005	0.100	0.234	0.231
	BY OBDACHL	11.405	-0.842	-0.784	-0.784
	ON FREMDENF /				
FREMDENF	BY ISLAMPH	26.270	3.866	4.056	4.056
ISLAMPH	ON OBDACHL /				
OBDACHL	BY ISLAMPH	11.403	-0.149	-0.160	-0.160
ISLAMPH	ON ETABL /				
ETABL	BY ISLAMPH	14.083	-0.372	-0.319	-0.319
	ON WERTSCH /				
	BY ISLAMPH	34.958	-0.334	-0.311	-0.311
	ON RASS /				
	BY ETABL	30.631	1.248	0.885	0.885
	ON ISLAMPH /	44 000	0.701	0.010	0.010
	BY ETABL ON RASS /	14.083	-0.781	-0.912	-0.912
	BY GMF	11.604	0.434	0.708	0.708
	ON ISLAMPH /	11.004	0.454	0.700	0.700
	BY GMF	30.548	-0.650	-1.744	-1.744
	ON RASS /	00.010	0.000	2.7.11	2.,11
	BY WERTSCH	11.949	1.172	0.766	0.766
WERTSCH	ON ISLAMPH /				
ISLAMPH	BY WERTSCH	33.683	-1.795	-1.930	-1.930
WITH Stat	ements				
	WITH SX03Q6R	17.478	0.086	0.086	0.201
	WITH HE020Q6R	12.866	0.084	0.084	0.169
	WITH SX04Q6R	15.463	-0.051	-0.051	-0.240
	WITH HE010Q6R	12.072	0.088	0.088	0.185
	WITH EV04Q6R	33.236	0.122	0.122	0.250
~	WITH RA03Q6R WITH HE02HQ6R	11.293	0.040	0.040 0.065	0.163 0.182
-	WITH REUZHQOK	11.931 43.934	0.065 0.115	0.065	0.162
	WITH SEXISM	30.182	-0.070	-0.951	-0.951
	WITH FREMDENF	26.283	0.082	2.134	2.134
	WITH OBDACHL	11.403	-0.058	-0.354	-0.354
	WITH RASS	30.632	0.065	0.748	0.748
	WITH ISLAMPH	14.083	-0.054	-0.539	-0.539
	WITH RASS	11.605	0.023	0.506	0.506
	WITH ISLAMPH	30.545	-0.045	-0.872	-0.872
	WITH RASS	11.948	0.061	0.426	0.426
WERTSCH	WITH ISLAMPH	33.685	-0.125	-0.750	-0.750

Model 7. Exact Fit Test. Fit
Statistics for Mediation Model

Modification Indices ('MODINDICES')

Savedata: 'DIFFTEST' (for MLMV WLSMV)

OUTPUT: STDYX MODINDICES;

SAVEDATA: DIFFTEST is semindir.dat;

Code: M7, data from Kleinke (et al 2017).

MODEL FIT	INFORMATION		
Number of	Free Parameters	76	
Loglikeli	hood		
	HO Value	-16467.809	
	H1 Value	-16375.733	
Information	on Criteria		
	Akaike (AIC)	33087.619	
	Bayesian (BIC)	33441.432	
	Sample-Size Adjusted BIC	33200.095	
	(n* = (n + 2) / 24)	332337333	
Chi-Square	e Test of Model Fit		
	Value	184.153	
	Degrees of Freedom	133	
	P-Value	0.0022	
RMSEA (Roo	ot Mean Square Error Of Appro	ximation)	
	Estimate	0.022	
	90 Percent C.I.	0.014	0.030
	Probability RMSEA <= .05	1.000	
CFI/TLI			
	CFI	0.989	
	TLI	0.985	
Chi-Square	e Test of Model Fit for the E	Baseline Model	
	Value	4684.962	
	Degrees of Freedom	171	
	P-Value	0.0000	

Model 8. Equal Fit Test after Modifications

Table 1. Chi-Square Tests for M7 and M8

χ^2	M7	M8	M7-M8
value	413.3	184.2	229.2
df	142	133	9
p-value	0.0000	0.0022	0.0000
test type	Exact	Exact	Equal

Table 1. Excel Chi-Square Calculator

MODEL FIT	INFORMATION		
Number of	Free Parameters	76	
Loglikelih	nood		
	HO Value	-16467.809	
	H1 Value	-16375.733	
Informatio	on Criteria		
	Akaike (AIC)	33087.619	
	Bayesian (BIC)	33441.432	
	Sample-Size Adjusted BIC $(n* = (n + 2) / 24)$	33200.095	
Chi-Square	e Test of Model Fit		
	Value	184.153	
	Degrees of Freedom	133	
	P-Value	0.0022	
RMSEA (Roo	ot Mean Square Error Of Approxi	imation)	
	Estimate	0.022	
	90 Percent C.I.	0.014	0.030
	Probability RMSEA <= .05	1.000	
CFI/TLI			
	CFI	0.989	
	TLI	0.985	
Chi-Square	e Test of Model Fit for the Bas	seline Model	
	Value	4684.962	
	Degrees of Freedom	171	
	P-Value	0.0000	

Model 8. Equal Fit Test after Modifications

Table 1. Chi-Square Tests for M7 and M8

X ²	M7	M8	M7-M8
value	413.3	184.2	229.2
df	142	133	9
p-value	0.0000	0.0022	0.0000
test type	Exact	Exact	Equal

Exact Fit Hypothesis:

That the tested model is significantly different from the baseline (p>0.05 rejects; supports tested model)

Equal Fit Hypothesis:

That the larger model (less df) is significantly better fitting than the smaller model (more df) (p>0.05 rejects; supports the smaller model)

MODEL FIT	INFORMATION		
Number of	Free Parameters	76	
Loglikeli	hood		
	HO Value	-16467.809	
	H1 Value	-16375.733	
Informati	on Criteria		
	Akaike (AIC)	33087.619	
	Bayesian (BIC)	33441.432	
	Sample-Size Adjusted BIC	33200.095	
	$(n^* = (n + 2) / 24)$		
Chi-Squar	e Test of Model Fit		
	Value	184.153	
	Degrees of Freedom	133	
	P-Value	0.0022	
RMSEA (Ro	ot Mean Square Error Of Appro	ximation)	
	Estimate	0.022	
	90 Percent C.I.	0.014	0.030
	Probability RMSEA <= .05	1.000	
CFI/TLI			
	CFI	0.989	
	TLI	0.985	
Chi-Squar	e Test of Model Fit for the B	aseline Model	

Value

P-Value

Degrees of Freedom

Model 8. Equal Fit Test after Modifications

RMSEA:

Reviewer approved... < 0.05

$$\frac{\sqrt{(\chi^2 - df)}}{\sqrt{[df(N - 1)]}}$$

(where df = Model df (i.e., "moments" or estimated "parameters"))

Note: Universal cutoffs are a 'bad' idea (Chen et al 2008)

4684.962

0.0000

171

MODEL FIT INFORMATION		
Number of Free Parameters	76	
Loglikelihood		
HO Value	-16467.809	
H1 Value	-16375.733	
Information Criteria		
Akaike (AIC)	33087.619	
Bayesian (BIC)	33441.432	
Sample-Size Adjusted BIC $(n* = (n + 2) / 24)$	33200.095	
Chi-Square Test of Model Fit		
Value	184.153	
Degrees of Freedom	133	
P-Value	0.0022	
RMSEA (Root Mean Square Error Of Appro	ximation)	
Estimate	0.022	
90 Percent C.I.	0.014	0.030
Probability RMSEA <= .05	1.000	
CFI/TLI		
CFI	0.989	
TLI	0.985	
Chi-Square Test of Model Fit for the B	aseline Model	
Value	4684.962	

Degrees of Freedom

P-Value

Model 8. Equal Fit Test after Modifications

Paradigm Shift Looming... or, Chi-square is THE ONLY global fit test one needs

"A telling anecdote in this regard comes from Dag Sorböm, a long-time collaborator of Karl Joreskög, one of the key pioneers of SEM and creator of the LISREL software package. In recounting a LISREL workshop that he jointly gave with Joreskög in 1985, Sorböm notes that, in his lecture Karl would say that the Chi-square is all you really need. One participant then asked 'Why have you then added GFI [goodness-of-fit index]?' Whereupon Karl answered 'Well, users threaten us saying they would stop using LISREL if it always produces such large Chi-squares. So we had to invent something to make people happy. GFI serves that purpose'" (McIntosch 2012:10)

171

Non-Convergence

- Identification?
 - Under-identified
 - See discussion of "counting rule" in Kline (2016:145)
- Mplus identifies parameter problems
 - TECH 4 in Mplus
- More iterations?
- Start Values
 - Maximum Likelihood, depends on
 - *# ...in Mplus
 - (var, init(#)) ...in Stata

Thank You

- <u>Technical appendix</u> with Stata syntax and a dictionary of SEM terms (still under construction)
- Follow all hyperlinks in the slides, or find all examples in <u>this folder</u>
- <u>SEMNET</u>, a vibrant listserv for SEM questions and discussion
- Mplus discussion forum at <u>www.statmodel.com</u>

References

- Bollen, Kenneth A. 1989. Structural Equations with Latent Variables. New York, NY: John Wiley & Sons.
- Bollen, Kenneth A, and Judea Pearl. 2013. "Eight Myths about Causality and Structural Equation Models." In *Handbook of Causal Analysis for Social Research*, ed. Stephen L. Morgan. Dordrecht, Netherlands: Springer Science & Business Media, 301–28.
- Chen, Feinian, Patrick J. Curran, Kenneth A. Bollen, James Kirby, and Pamela Paxton. 2008. "An Empirical Evaluation of the Use of Fixed Cutoff Points in RMSEA Test Statistic in Structural Equation Models." Sociological Methods & Research 36(4):462–94.
- Kline, Rex B. 2016. *Principles and Practice of Structural Equation Modeling*. 4th Edition. New York and London: Guilford Press.
- Kleinke, Kristian, Elmar Schlüter, and Oliver Christ. 2017. Strukturgleichungsmodelle Mit Mplus: Eine Praktische Einführung. Oldenburg: Walter de Gruyter.
- McIntosh, Cameron N. 2012. "Improving the Evaluation of Model Fit in Confirmatory Factor Analysis: A Commentary on Gundy, C.M., Fayers, P.M., Groenvold, M., Petersen, M. Aa., Scott, N.W., Sprangers, M.A.J., Velikov, G., Aaronson, N.K. (2011). Comparing Higher-Order Models for the EORTC QLQ-C30. Quality of Life Research, doi:10.1007/s11136-011-0082-6." Quality of Life Research 21(9):1619–21.

Further Reading

- Hayduk, Leslie A. and H. Pazderka-Robinson. 2007. "Fighting to Understand the World Causally: Three Battles Connected to the Causal Implications of Structural Equation Models." in Sage Handbook of Social Science Methodology, edited by W. Outhwaite and S. Turner. London: Sage Publications.
- Hayduk, Leslie A., Greta Cummings, Kwame Boadu, Hannah Pazderka-Robinson, and Shelley Boulianne. 2007. "Testing! Testing! One, Two, Three – Testing the Theory in Structural Equation Models!" *Personality and Individual Differences* 42(5):841–50.
- Hayduk, Leslie A. 2014. "Seeing Perfectly Fitting Factor Models That Are Causally Misspecified: Understanding That Close-Fitting Models Can Be Worse." Educational and Psychological Measurement 74(6):905–26.

SEM History

- Pearl, Judea. 2015. "Trygve Haavelmo and the Emergence of Causal Calculus." *Economic Theory* 31:152–79.
- Wright, Sewall. 1934. "The Method of Path Coefficients." The Annals of Mathematical Statistics 5(3):161–215.

(Kleinke et al 2017)

Tabelle 2.1: Variablennamen und Variablenlabels des Datensatzes "GMF05_Querschnitt_CFA.sav"

v1 * v2 v3 v4	Id-Nr. des Datensatzes Gleichgeschlechtliche Ehen erlaubt Frauen wieder Rolle der Ehefrau u. Mutter Für Frau sollte es wichtiger sein, dem Mann bei der Karriere zu helfen
v2 v3	Frauen wieder Rolle der Ehefrau u. Mutter
v3	
4	Für Frau sollte es wichtiger sein, dem Mann hei der Karriere zu helfen
v4	Tai Tiaa some es wichinger sein, aem mann bei aer hannere zu neuen
	Obdachlose aus Fußgängerzonen entfernen
v5	Obdachlose in den Städten unangenehm
v6	Ekelhaft, wenn Homosexuelle sich in der Öffentlichkeit küssen
v8	Es leben zu viele Ausländer in Deutschland
v9	Wenn Arbeitsplätze knapp werden, sollte man die Ausländer in die Heimat schicke
v12	Wer neu ist, sollte sich mit weniger zufrieden geben
v13	Wer schon immer hier lebt, sollte mehr Rechte haben
v14	Aussiedler sollten besser gestellt werden als Ausländer, da deutscher
	Abstammung
v15	Die Weißen sind zurecht führend in der Welt
v16	Juden haben in Deutschland zu viel Einfluss
v17	Juden sind an ihren Verfolgungen mitschuldig
v10	Durch die vielen Muslime fühle ich mich wie ein Fremder
v11	Muslimen sollte die Zuwanderung untersagt werden
v20	Hatten Sie schon einmal Kontakt zu Ausländern?
	Schulabschluss, gruppiert nach 3 Kategorien
\ \ \ \ \ \ \ \	713 714 715 716 717 710 711

A Stata Example

Code: <u>StataModel</u>, or see Technical Appendix, data from Kleinke (et al 2017).