

Lab I: Computer Vision Marc Fraile

Digital Imaging

- Human vision
- Color is an illusion
- Faking color for monkey brains
- Raster images

structure of the eye

light spectrum

Human vision

distribution of cones in the retina

Color is an illusion

light spectrum: linear

Purple and red are completely different!

color perception: circular

Pink closes the gap.

Color perception is not physical reality

Faking color for monkey brains

From far away, colored light mixes.

Always need more precision on Green.

Great! We can fake it!

Raster images

3D arrays: (height, width, channels)

Computer Vision

- What is computer vision?
- Feature extraction
- End-to-End
- Which approach is best?

What is computer vision?

Any approach that lets a computer interpret images and video!

What is computer vision?

Classic approach: use math to capture texture

Uppsala Social Robotics Lab

Feature extraction

End-to-End

Which approach is best?

Feature Extraction

- Needs reasonable amounts of data.
- Classic methods tend to run fast in the CPU.
- Easy to anonymize samples.

End-to-End

- Needs LOTS of data.
- Neural networks need GPU acceleration to run, and are resource-intensive.
- Usually contain identifying data.

Context is king!