Nama: Kefilino Khalifa Filardi

NPM : 140810180028

Tugas 7

Tugas Anda

1. Cari minimum spanning tree pada graf di bawah dengan Algoritma Kruskal. Jelaskan langkah demi langkah sampai graf membentuk minimum spanning tree.

Jawaban:

Langkah 1 – Menghapus semua loop dan parallel edges.

Langkah 2 – Mengatur semua edge pada graf dari yang terkecil ke terbesar.

1,2	10
3,6	15
4,6	20
2,6	25
1,4	30
3,5	35
2,5	40
2,6	45
2,3	50
5,6	55

Langkah 3 – Menambahkan edge dengan bobot paling kecil yaitu 1,2.

Langkah 4 – Menambahkan edge dengan bobot 15.

Langkah 5 – Menambahkan edge dengan bobot 20.

Langkah 6 – Menambahkan edge dengan bobot 25.

Langkah 6 – Menambahkan edge dengan bobot 25.

Langkah 7 – Jika bobot 30 ditambah maka akan ada siklus jadi edge bobot 30 tidak ditambah. Menambahkan edge dengan bobot 35.

Langkah 8 – Minimum spanning tree terbentuk.

2. Gambarkan 3 buah minimum spanning tree yang berbeda beserta bobotnya untuk graf di bawah dengan Algoritma Prim. Jelaskan setiap langkah untuk membangun minimum spanning tree.

Jawaban:

Langkah 1 – Menentukan titik awal (misal a) lalu mencari bobot terkecil yaitu 3 ke b.

Langkah 2 – Menentukan simpul dengan bobot terkecil dan belum termasuk ke minimum spanning tree.

Langkah 3 – Mengulangi langkah 2 sampai dengan minimum spanning tree mencakup semua simpul yang ada pada graf awal. Sehingga, mendapatkan minimum spanning tree sebagai berikut.

Minimum spanning tree 1:

Minimum spanning tree 2:

Minimum spanning tree 3:

3. Apakah semua minimum spanning tree T dari graf terhubung G harus mengandung jumlah sisi yang sama? Jelaskan alasannya (bukan dengan contoh).

Jawaban:

Ya, karena minimum spanning tree memiliki syarat acyclic dimana setiap vertex memiliki edge / sisi tetapi tidak membentuk sebuah siklus yang berarti jumlah edge / sisi minimum spanning tree selalu sama dengan aturan :

$$|E| = |V| - 1$$

Dimana : |E| = jumlah edge / sisi

 $|V| = jumlah \ vertex / node$