

# **Exercise 4**

Introduction to Computational Astrophysics, SoSe 2024

### Seha Lee

**Task 1.** *Implement a complex data type* 

```
Solution.
  #include <iostream>
  using namespace std;
  class complex_d {
  public:
     double re, im;
     complex_d(double re, double im) : re(re), im(im) {}
     complex_d operator+(const complex_d& c) const {
         return complex_d(re + c.re, im + c.im);
     complex_d operator-(const complex_d& c) const {
        return complex_d(re - c.re, im - c.im);
     complex_d operator*(const complex_d& c) const {
        return complex_d(re * c.re - im * c.im, re * c.im + im * c.re);
16
     complex_d operator/(const complex_d& c) const {
        double den = c.re * c.re + c.im * c.im;
18
        return complex_d((re * c.re + im * c.im) / den, (im * c.re -
19
            re * c.im) / den);
20
     double absolute() const {
22
        return Heron_sqrt(re * re + im * im);
     double Heron_sqrt(double a) const {
        double x = a;
        for (int i = 0; i < 10; i++) {
27
            x = 0.5 * (x + a / x);
29
        return x;
30
```

```
32
  } ;
33
34
  int main(){
35
      //four integer numbers from input
36
      double a, b, c, d;
37
      cout << "Enter four integers, separated by space: ";</pre>
      cin >> a >> b >> c >> d;
39
      //print as complex number
40
      complex_d c1(a, b);
41
      complex_d c2(c, d);
      cout << "c1 = " << c1.re << " + " << c1.im << "i" << endl;</pre>
44
      cout << "c2 = " << c2.re << " + " << c2.im << "i" << endl;
45
46
      //arithmetics
47
      complex_d sum = c1 + c2;
      complex_d diff = c1 - c2;
49
      complex_d prod = c1 * c2;
50
      complex_d quot = c1 / c2;
51
      double abs_c1 = c1.absolute();
52
      double abs_c2 = c2.absolute();
53
54
      //print results
55
      cout << "c1 + c2 = " << sum.re << " + " << sum.im << "i" << endl;
56
      cout << "c1 - c2 = " << diff.re << " + " << diff.im << "i" <<
57
         endl;
      cout << "c1 * c2 = " << prod.re << " + " << prod.im << "i" <<
         endl;
      cout << "c1 / c2 = " << quot.re << " + " << quot.im << "i" <<
59
      cout << "|c1| = " << abs_c1 << endl;
60
      cout << "|c2| = " << abs c2 << endl;
61
62
      return 0;
  }
```

#### Task 2. Absorption

#### **Solution**. (a)

```
float y = 100000010.0f;
int start = 100000001, end = static_cast<int>(y);

for (int i = start; i <= end; ++i) {
    float x = static_cast<float>(i);
}
```

(b)

inc = 1.E-7 was added 1.E+7 times to yield the answer of 8.

| Method                     | Value        |
|----------------------------|--------------|
| Regular summation (float)  | 7.0000000000 |
| Kahan summation (float)    | 8.0000000000 |
| Regular summation (double) | 8.0000000117 |
| Kahan summation (double)   | 8.0000000117 |

Table 1: Summation Results

**Task 3.** *Minimize the error* 

#### Solution. (a)

The total error  $\epsilon_{\text{total}}$  is the sum of the approximation error and the machine error:

$$\epsilon_{\text{total}} = \epsilon_{\text{appr}} + \epsilon_m$$

Given  $\epsilon_{\rm appr} \approx \frac{1}{N}$  and  $\epsilon_m \approx 10^{-7}$ :

$$\epsilon_{\text{total}} = \frac{1}{N} + 10^{-7}$$

Differentiating:

$$\frac{d}{dN} \left( \frac{1}{N} + 10^{-7} \right) = -\frac{1}{N^2}$$

This means the larger the N, the smaller the error. However, the approximation error has upper bound of machine error.

Therefore, the minimum of the total error will be  $\epsilon = 2 \times 1^{-7}$  when  $N = 10^7$ .

(b)

With the same approach as above,

$$N = \frac{1}{10^{-15}} = 10^{15}$$

Total error:

$$\epsilon_{\rm total} = \frac{1}{10^{15}} + 10^{-15} = 2 \times 10^{-15}$$

## Task 4. Calculating a power series

**Solution**. The first approach is problematic for several reasons:

- Floating-point arithmetic can lose precision with very large or small numbers.
- Catastrophic cancellation can occur when summing terms of alternating signs.
- Calculating  $(-x)^n$  and n! from scratch in each iteration requires  $O(n^2)$  operations for each term, which means it's not an efficient algorithm.

From the results, it can be seen that the good algorithm converges for negative x's, but only the small ones get to the correct answer.

# **Good Algorithm**

x = 0.1

| N | Sum(N)       | Relative Error |
|---|--------------|----------------|
| 0 | 1.0000000000 | 0.1051709181   |
| 7 | 0.9048374181 | 0.0000000000   |

x = 0.1000000000

Calculated: 0.9048374181 Exact: 0.9048374180

Relative Error: 0.00000000000

x = 1.0000000000

| N  | Sum(N)       | Relative Error |
|----|--------------|----------------|
| 0  | 1.0000000000 | 1.7182818285   |
| 13 | 0.3678794413 | 0.0000000004   |

x = 1.0000000000 Calculated: 0.3678794413

Exact: 0.3678794412

Relative Error: 0.0000000004

x = 10.0000000000

| N  | Sum(N)       | Relative Error   |
|----|--------------|------------------|
| 0  | 1.0000000000 | 22025.4657948067 |
| 48 | 0.0000453999 | 0.0000000035     |

x = 10.0000000000

Calculated: 0.0000453999

Exact: 0.0000453999

Relative Error: 0.0000000035

x = 100.0000000000

| N   | Sum(N)       | Relative Error |
|-----|--------------|----------------|
| 0   | 1.0000000000 | 2.6881e40      |
| 224 | 8.1447e25    | 2.1893e67      |

x = 100.0000000000

Calculated: 8.1447e25 Exact: 0.0000000000 Relative Error: 2.1893e67

x = 1000.0000000000

| N   | Sum(N)       | Relative Error |
|-----|--------------|----------------|
| 0   | 1.0000000000 | inf            |
| 348 | -inf         | inf            |

x = 1000.0000000000

Calculated: -inf

Exact: 0.00000000000 Relative Error: inf

## **Checking Convergence for Small Negative x**

#### x = -0.0100000000

| 1 0001000000  | •            |                |
|---------------|--------------|----------------|
| X             | Calculated   | Relative Error |
| -0.0100000000 | 1.0100501671 | 0.0000000000   |

#### x = -0.1000000000

| X             | Calculated   | Relative Error |
|---------------|--------------|----------------|
| -0.1000000000 | 1.1051709181 | 0.0000000000   |

#### x = -1.00000000000

| X             | Calculated   | Relative Error |
|---------------|--------------|----------------|
| -1.0000000000 | 2.7182818262 | 0.0000000008   |

# Checking Convergence for Increasing |x|

### x = -10.0000000000

| N  | Sum(N)           | Relative Error |
|----|------------------|----------------|
| 0  | 1.0000000000     | 0.9999546001   |
| 34 | 22026.4657475864 | 0.0000000021   |

x = -10.0000000000

Calculated: 22026.4657475864 Exact: 22026.4657948067 Relative Error: 0.0000000021

### x = -100.0000000000

| N   | Sum(N)       | Relative Error |
|-----|--------------|----------------|
| 0   | 1.0000000000 | 1.0000000000   |
| 161 | 2.6881e40    | 0.0000000126   |

x = -100.0000000000

Calculated: 2.6881e40

Exact: 2.6881e40

Relative Error: 0.0000000126

# **Bad Algorithm**

| X                | Sum              | Relative Error |
|------------------|------------------|----------------|
| -100.0000000000  | nan              | nan            |
| -10.0000000000   | 22026.4656324230 | 0.0000000074   |
| -1.0000000000    | 2.7182818011     | 0.0000000100   |
| -0.1000000000    | 1.1051709167     | 0.0000000013   |
| -0.0100000000    | 1.0100501667     | 0.0000000004   |
| 0.1000000000     | 0.9048374167     | 0.0000000015   |
| 1.0000000000     | 0.3678794392     | 0.0000000053   |
| 10.0000000000    | 0.0000453999     | 0.00000000002  |
| 100.0000000000   | nan              | nan            |
| 1000.00000000000 | nan              | nan            |

**Task 5.** Graphical output in an X window with Xgraphics and a simple makefile **Solution**. □