# ECE 417/598: Null space, Singular Value Decompsition

Vikas Dhiman.

March 2, 2022

### Homogeneous representation of lines

$$\mathbb{P}^2 = \mathbb{R}^3 - \{(0, 0, 0)^\top\}$$

$$ax + by + 1.c = 0$$

$$\mathbf{I} = \begin{bmatrix} a \\ b \\ c \end{bmatrix}$$

$$\mathbf{x} = \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

The point  $\mathbf{x} \in \mathbb{P}^2$  lies on a line  $\mathbf{I}$  if and only if

$$\boldsymbol{I}^{\top}\boldsymbol{x}=0$$

## Points are rays and lines are planes



#### Intersection of lines

Two line  $\mathbf{I_1}$  and  $\mathbf{I_2}$  intersect at  $\mathbf{x} \in \mathbb{P}^2$ 

$$\mathbf{x} = \mathbf{I}_1 \times \mathbf{I}_2$$

#### Line joining points

Two point  $\mathbf{x}_1$  and  $\mathbf{x}_2$  form a  $\mathbf{I} \in \mathbb{P}^2$ 

$$\mathbf{I} = \mathbf{x}_1 \times \mathbf{x}_2$$



$$\underline{\mathbf{u}}_1 = [100, 98, 1]^{\top}$$
 $\underline{\mathbf{u}}_2 = [105, 95, 1]^{\top}$ 
 $\underline{\mathbf{u}}_3 = [107, 90, 1]^{\top}$ 
 $\underline{\mathbf{u}}_4 = [110, 85, 1]^{\top}$ 

Find the line I such that it is the "closest line" passing through  $u_1, \ldots, u_4$ .

$$U = \int_{0}^{\infty}$$

We want to solve for I such that

$$UI = 0$$

The column space (also called the range) of matrix  $A \in \mathbb{R}^{m \times n}$ , denoted by  $\mathcal{R}(A)$  is defined as the set of all vectors  $\mathbf{b} \in \mathbb{R}^m$  that can be generated by  $\mathbf{b} = A\mathbf{x}$  where  $\mathbf{x} \in \mathbb{R}^n$ , that is,

$$\mathcal{R}(A) = \{ \mathbf{b} \mid \mathbf{b} = A\mathbf{x} \text{ for all } \mathbf{x} \in \mathbb{R}^n \}. \tag{1}$$

The nullspace of  $A \in \mathbb{R}^{m \times n}$  is defined as the set of all vectors  $\mathbf{x} \in \mathbb{R}^n$  such that  $A\mathbf{x} = \mathbf{0}_m$ . In other words,

$$\mathcal{N}(A) = \{ \mathbf{x} \in \mathbb{R}^n \mid \mathbf{0}_m = A\mathbf{x} \}. \tag{2}$$

The task of finding the column space or the null space is the task of finding the minimal set of vectors that *span* the vector spaces  $\mathcal{R}(A)$  or  $\mathcal{N}(A)$  respectively.

Find the  $\mathcal{R}(A)$  and  $\mathcal{N}(A)$  of the matrix A

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 2 & 4 & 6 \end{bmatrix} = \begin{bmatrix} \mathbf{r}_1^\top \\ \mathbf{r}_2^\top \\ \mathbf{r}_3^\top \end{bmatrix}$$

Four fundamental subspaces of matrix  $A \in \mathbb{R}^{m \times n}$ :

- 1. Column space: All possible values of  $\mathbf{b} = A\mathbf{x}$  for any  $\mathbf{x} \in \mathbb{R}^n$ .
- 2. Null space: All possible values of  $\mathbf{x} \in \mathbb{R}^n$  so that  $A\mathbf{x} = \mathbf{0}_m$ .
- 3. Row space: Column space of  $A^{\top}$ . All possible values of  $\mathbf{b} = A^{\top} \mathbf{x}$  for any  $\mathbf{x} \in \mathbb{R}^m$ .
- 4. Left Null space: Null space of  $A^{\top}$ . All possible values of  $\mathbf{y} \in \mathbb{R}^m$  so that  $\mathbf{y}^{\top} \mathbf{A} = 0$ .



The four fundamental subspaces of A

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 2 & 4 & 6 \end{bmatrix}$$



#### Eigenvalues and Eigenvectors

For a square matrix A, the  $\lambda_i$  and  $\mathbf{x}_i$  that satisfy the following equation are called eigenvalues and eigenvectors respectively.

$$A\mathbf{x} = \lambda \mathbf{x} \text{ or } (A - \lambda I)\mathbf{x} = 0 \tag{3}$$

 $\lambda$  is chosen to ensure that  $A-\lambda I$  has null space, hence, characteristic equation

$$\det(A - \lambda I) = 0 \tag{4}$$

For symmetrix matrix  $A = A^{\top}$ , eigenvalues are real, and eigenvectors are orthonormal,

$$A[\mathbf{x}_1, \dots, \mathbf{x}_n] = [\mathbf{x}_1, \dots, \mathbf{x}_n] \begin{bmatrix} \lambda_1 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & \lambda_n \end{bmatrix}$$
 (5)

$$AS = S\Lambda \tag{6}$$

if 
$$A = A^{\top}$$
 then  $A = S\Lambda S^{\top}$  (7)

#### Numerical example

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 2 & 4 & 6 \end{bmatrix}$$

Find eigen values and eigen vectors.

# Singular Value Decomposition (SVD)

$$A = U \begin{bmatrix} \Sigma & 0 \\ 0 & 0 \end{bmatrix} V^{\top}$$

$$A^{\top}A = V\Sigma^{2}V^{-1}$$

$$A^{\top}A\mathbf{v}_{i} = \lambda_{i}\mathbf{v}_{i}$$

$$AV = U \begin{bmatrix} \Sigma & 0 \\ 0 & 0 \end{bmatrix}$$

$$U^{+} = \Sigma^{-1}AV^{+}$$

$$(8)$$

$$\lambda_{i} = \sigma_{i}^{2}$$

$$(10)$$

$$(11)$$

#### Numerical example

Find singular value decomposition

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 2 & 4 & 6 \end{bmatrix}$$

# Homography



# Examples of Homography





# Computing Homography



# Computing Homography



# Solving for Homography derivation

#### Direct Linear Transformation (DLT) algorithm

#### Objective

Given  $n \geq 4$  2D to 2D point correspondences  $\{\mathbf{x}_i \leftrightarrow \mathbf{x}_i'\}$ , determine the 2D homography matrix H such that  $\mathbf{x}_i' = \mathrm{H}\mathbf{x}_i$ .

#### Algorithm

- (i) For each correspondence x<sub>i</sub> ↔ x'<sub>i</sub> compute the matrix A<sub>i</sub> from (4.1). Only the first two rows need be used in general.
- (ii) Assemble the  $n \ 2 \times 9$  matrices  $A_i$  into a single  $2n \times 9$  matrix A.
- (iii) Obtain the SVD of A (section A4.4(p585)). The unit singular vector corresponding to the smallest singular value is the solution h. Specifically, if A = UDV<sup>T</sup> with D diagonal with positive diagonal entries, arranged in descending order down the diagonal, then h is the last column of V.
- (iv) The matrix H is determined from  $\mathbf{h}$  as in (4.2).

#### 2D homography

Given a set of points  $\mathbf{x}_i \in \mathbb{P}^2$  and a corresponding set of points  $\mathbf{x}_i' \in \mathbb{P}^2$ , compute the projective transformation that takes each  $\mathbf{x}_i$  to  $\mathbf{x}_i'$ . In a practical situation, the points  $\mathbf{x}_i$  and  $\mathbf{x}_i'$  are points in two images (or the same image), each image being considered as a projective plane  $\mathbb{P}^2$ .

#### 3D to 2D camera projection matrix estimation

Given a set of points  $X_i$  in 3D space, and a set of corresponding points  $x_i$  in an image, find the 3D to 2D projective P mapping that maps  $X_i$  to  $x_i = PX_i$ .