Kapitola XI. Vlastnosti regulárních jazyků

Pumping lemma pro RJ

Myšlenka: Pumping lemma ukazuje nekonečné iterace některých podřetězců v řetězcích v RJ.

Nechť L je RJ. Pak existuje k≥ 1 takové, že:
pokud z ∈ L a |z| ≥ k, pak existuje u,v,w: z = uvw,
1) v ≠ ε 2) |uv| ≤ k
3) pro každé m ≥ 0, uv^mw ∈ L

Příklad: pro RV $r = ab^*c$, L(r) je **regulární**. Pro tento jazyk existuje k = 3 takové, že 1), 2) a 3) platí.

- pro z = abc: $z \in L(r)$ a $|z| \ge 3$: $uv^0w = ab^0c = ac \in L(r)$ $uv^1w = ab^1c = abc \in L(r)$ $uv^2w = ab^2c = abbc \in L(r)$ $v \ne \varepsilon$, $|uv| = 2 \le 3$
- pro z = abbc: $z \in L(r)$ a $|z| \ge 3$: $uv^0w = ab^0bc = abc \in L(r)$ • $uv^1w = ab^1bc = abbc \in L(r)$ • $uv^2w = ab^2bc = abbbc \in L(r)$
 - $v \neq \varepsilon$, $|uv| = 2 \le 3$

Pumping lemma: Ilustrace

• L = libovolný regulární jazyk:

Důkaz pumping lemmy 1/3

- Nechť L je libovolný regulární jazyk. Potom existuje DKA $M = (Q, \Sigma, R, s, F)$ a L = L(M).
- Pro $z \in L(M)$, M provede |z| přechodů a M navštíví |z| + 1 stavů:

Důkaz pumping lemmy 2/3

- Necht' $k = \operatorname{card}(Q)$ (celkový počet stavů v M). Pro každé $z \in L$ a $|z| \ge k$, M navštíví nejméně k+1 stavů. Protože $k+1 > \operatorname{card}(Q)$, musí existovat stav q, který M navštíví nejméně dvakrát.
- Pro z existuje u, v, w takové, že: z = uvw:

$$sz = suvw \mid -iqvw \mid -jqw \mid -*f, f \in F$$

Důkaz pumping lemmy 3/3

- Obecně tedy M může provést přechody:
 - 1. $su \vdash q$; 2. $qv \vdash q$; 3. $qw \vdash *f, f \in F$, tedy:
- pro m = 0, $uv^m w = uv^0 w = uw$,

$$suw \mid -iqw \mid -*f, f \in F$$

• pro každé m > 0,

Celkově:

- 1) $qv \mid -j q, j \geq 1$; proto $|v| \geq 1$, tedy $v \neq \varepsilon$
- 2) $suv \mid -i qv \mid -j q, i+j \leq k$; proto $|uv| \leq k$
- 3) Pro každé $m \ge 0$: $suv^m w \vdash f, f \in F$, proto $uv^m w \in L$

Pumping lemma: Aplikace I.

 Pomocí pumping lemmy pro RJ často provádíme důkaz sporem, že daný jazyk <u>není</u> regulární:

Předpokládejme, že L je regulární

Uvažujme PL konstantu k a vyberme $z \in L$, jehož délka je závislá na k tak, že $|z| \ge k$ je vždy pravdivé

Pro <u>všechny</u> dekompozice z na uvw, $v \neq \varepsilon$, $|uv| \leq k$ ukážeme: existuje $m \geq 0$, pro které $uv^m w \notin L$; ale podle PL platí vztah: $uv^m w \in L$

špatný předpoklad

Proto **L není regulární**

Pumping Lemma: Příklad

Dokažme, že $L = \{ a^n b^n : n \ge 0 \}$ není regulární:

- 1) Předpokládejme, že L je regulární. Nechť $k \ge 1$ je konstanta z pumping lemmy pro jazyk L.
- 2) Nechť $z = a^k b^k$: $a^k b^k \in L$, $|z| = |a^k b^k| = 2k \ge k$
- 3) Všechny dekompozice z na uvw, $v \neq \varepsilon$, $|uv| \leq k$:

4) Proto L není regulární jazyk

Poznámka k použití pumping lemmy

• Pumping lemma:

Základní aplikace pumping lemmy:

- důkaz sporem, že L není regulární jazyk.
- Ale následující implikace je špatná:

 Nelze použít pumping lemmy k dokázání, že daný jazyk L je regulární!!

Pumping lemma: Aplikace II. 1/3

• Pumping lemmu je možné použít k dokazování dalších tvrzení.

Ilustrace:

• Necht' M je DKA a k konstanta z pumping lemmy (k je počet stavů v M). Potom platí: L(M) je nekonečný \Leftrightarrow existuje $z \in L(M)$, $k \le |z| < 2k$

Důkaz:

1) existuje $z \in L(M)$, $k \le |z| < 2k \Rightarrow L(M)$ je nekonečný: pokud $z \in L(M)$, $k \le |z|$, potom podle PL: z = uvw, $v \ne \varepsilon$ a dále pro každé $m \ge 0$: $uv^m w \in L(M)$

L(M) je nekonečný

Pumping Lemma: Aplikace II. 2/3

- 2) L(M) je nekonečný \Rightarrow existuje $z \in L(M)$, $k \le |z| < 2k$:
- Dokážeme sporem, že platí:

- a) Dokážeme sporem, že:
- L(M) je nekonečný \Rightarrow existuje $z \in L(M)$, $|z| \ge k$ Předpokládme, že L(M) je nekonečný a neexistuje $z \in L(M)$, $|z| \ge k$

Pumping Lemma: Aplikace II. 3/3

- b) Dokážeme sporem:
- existuje $z \in L(M)$, $|z| \ge k \Rightarrow$ existuje $z \in L(M)$, $k \le |z| < 2k$

Předpokl., že existuje $z \in L(M)$, $|z| \ge k$ a neexistuje $z \in L(M)$, $k \le |z| < 2k$

Nechť z_0 je nejkratší řetězec splňující $z_0 \in L(M), |z_0| \ge k$

Protože neexistuje $z \in L(M)$, $k \le |z| < 2k$, musí: $|z_0| \ge 2k$

Pokud $z_0 \in L(M)$ a $|z_0| \ge k$, PL zaručuje: $z_0 = uvw$,

 $|uv| \le k$ a pro každé $m \ge 0$, $uv^m w \in L(M)$

$$\geq 2k \leq k$$

$$|uw| = |z_0| - |v| \ge k$$

pro
$$m = 0$$
: $uv^m w = uw \in L(M)$

Celkově: $uw \in L(M)$, $|uw| \ge k$ a $|uw| < |z_0|$!

 z_0 není nejkratší řetězec splňující $z_0 \in L(M)$, $|z_0| \ge k$

SPOR!

Uzávěrové vlastnosti 1/2

Definice: Třída regulárních jazyků je uzavřená vůči operaci o, pokud výsledek operace o na libovolné regulární jazyky je opět regulární jazyk.

Ilustrace:

Třída regulárních jazyků je uzavřená vůči sjednocení.
 To znamená:

Uzávěrové vlastnosti 2/2

Tvrzení: Třída regulárních jazyků je uzavřena vůči: sjednocení, konkatenaci, iteraci.

Důkaz:

- Nechť L_1 , L_2 jsou dva regulární jazyky
- Potom existují dva RV r_1, r_2 : $L(r_1) = L_1, L(r_2) = L_2$;
- Podle definice regulárních výrazů:
 - $r_1.r_2$ je RV značící L_1L_2
 - $r_1 + r_2$ je RV značící $L_1 \cup L_2$
 - r_1^* je RV značící L_1^*
- Každý RV značí regulární jazyk, tedy
- L_1L_2 , $L_1 \cup L_2$, L_1^* jsou regulární jazyky

Algoritmus: KA pro doplněk

- Vstup: Úplný KA: $M = (Q, \Sigma, R, s, F)$
- Výstup: Úplný KA: $M' = (Q, \Sigma, R, s, F'),$ $L(M') = \overline{L(M)}$
- Metoda:
- $\bullet F' := Q F$

Příklad:

 $L(M) = \{x: ab \text{ je podřetězec } x\}; L(M') = \{x: ab \text{ není podřetězec } x\}$

KA pro doplněk: Problém

- Předchozí algoritmus vyžaduje úplný KA
- Pokud *M* není úplný KA, potom *M* musí být převed na úplný KA a pak může být použit předchozí algoritmus

Uzávěrové vlastnosti: Doplněk

Tvrzení: Třída regulárních jazyků je uzavřena vůči doplňku.

Důkaz:

- Nechť L je regulární jazyk
- Pak existuje úplný DKA M: L(M) = L
- Můžeme sestrojit úplný DKA M': L(M') = L užitím předchozího algoritmu
- Každý KA definuje regulární jazyk, tedy
 L je regulární jazyk

Uzávěrové vlastnosti: Průnik

Tvrzení: Třída regulárních jazyků je uzavřena vůči průniku.

Důkaz:

- Nechť L_1 , L_2 jsou dva regulární jazyky
- L_1 , L_2 jsou regulární jazyky (třída regulárních jazyků je uzavřena vůči doplňku)
- $L_1 \cup L_2$ je regulární jazyk (třída regulárních jazyků je uzavřena vůči sjednocení)
- $\overline{L_1} \cup \overline{L_2}$ je regulární jazyk (třída regulárních jazyků je uzavřena vůči doplňku)
- $L_1 \cap L_2 = \overline{L_1} \cup \overline{L_2}$ je **regulární jazyk** (De-Morganovy zákony)

Boolova algebra jazyků

Definice: Nechť je třída jazyků uzavřena vůči sjednocení, průniku a doplňku. Potom tato třída tvoří *Boolovu algebru jazyků*.

Tvrzení: Třída regulárních jazyků tvoří Booleovu algebru jazyků.

Důkaz:

• Třída regulárních jazyků je uzavřená vůči sjednocení, průniku a doplňku.

Minimalizace: Rozlišitelné stavy

Myšlenka: Řetězec *w rozlišuje* stavy *p* a *q*, pokud se DSKA "dostane" z <u>právě z jedné</u> z konfigurací *pw* a *qw* do koncového stavu.

Definice: Necht' $M = (Q, \Sigma, R, s, F)$ je DSKA a necht' $p, q \in Q, p \neq q$. Stavy p a q jsou rozlišiteln'e pokud existuje řetězec $w \in \Sigma^*$ takový, že: $pw \vdash p'$ and $qw \vdash p'$, $q' \in Q$ a $((p' \in F \text{ a } q' \notin F) \text{ nebo } (p' \notin F \text{ a } q' \in F))$. Jinak stavy p a q jsou nerozlišiteln'e.

Rozlišitelné stavy: Příklad

• s a q_1 jsou rozlišitelné, protože např. pro w = a:

$$sa \vdash s, s \notin F$$
 $q_1a \vdash q_2, q_2 \in F$

• q_2 a q_3 jsou **nerozlišitelné**, protože pro každé $w \in \Sigma^*$:

$$q_2w \vdash^* q_2, q_2 \in F$$

 $q_3w \vdash^* q_3, q_3 \in F$

• Ostatní dvojice stavů jsou triviálně **rozlišitelné** pro $w = \varepsilon$.

Minimální KA

Definice: Nechť *M* je **DSKA**. Potom, *M* je *minimální KA*, pokud *M* obsahuje pouze rozlišitelné stavy.

Tvrzení: Pro každý DSKA M, existuje ekvivalentní minimální KA M_m .

Důkaz: Použij následující algoritmus.

Algoritmus: Minimalizace KA

- Vstup: DSKA $M = (Q, \Sigma, R, s, F)$
- Výstup: Minimální KA $M_m = (Q_m, \Sigma, R_m, s_m, F_m)$
- Metoda:
- $Q_m = \{ \{p: p \in F\}, \{q: q \in Q F\} \};$
- repeat

if existuje $X \in Q_m$, $d \in \Sigma$, $X_1, X_2 \subset X$ takové, že:

$$X = X_1 \cup X_2, X_1 \cap X_2 = \emptyset$$
 and

$$\{q_1: p_1 \in X_1, p_1 d \to q_1 \in R\} \subseteq Q_1, Q_1 \in Q_m,$$

$$\{q_2: p_2 \in X_2, p_2 d \to q_2 \in R\} \cap Q_1 = \emptyset$$

then rozštěp X na X_1 a X_2 v Q_m

until není možné provést další štěpení;

- $R_m = \{ Xa \rightarrow Y: X, Y \in Q_m, pa \rightarrow q \in R, p \in X, q \in Y, a \in \Sigma \};$
- $s_m = X$: $s \in X$; $F_m := \{X : X \in Q_m, X \cap F \neq \emptyset\}$.

Minimalizace: Příklad 1/4

1)
$$X = \{s, f\}$$
: Z jedné množiny $d = a$: $sa \rightarrow f$ $d = b$: $sb \rightarrow q_3$ q_4

2)
$$X = \{q_1, q_2, q_3, q_4\}$$
: Z jedné množiny $d = a$: $q_1 a \to q_1$ $d = b$: $\{q_1 b \to g_1\}$ $\{q_2 a \to g_2\}$ $\{q_2 b \to g_1\}$ $\{q_3 b \to g_2\}$ $\{q_4 b \to g_2\}$ $\{q_4 b \to g_2\}$ Štěpení: $\{q_1, q_2, q_3, q_4\}$ $\{q_1, q_2\}$, $\{q_3, q_4\}$ $\{q_1, q_2\}$ $\{q_1, q_2\}$

Minimalizace: Příklad 2/4

$$Q_m = \{\{s,f\}, \{q_1,q_2\}, \{q_3,q_4\}\}$$

- 1) $X = \{s, f\}$: Z jedné množiny Z jedné množiny d = a: $sa \to f$ d = b: $sb \to q_3$ $fb \to q_4$
- 2) $X = \{q_1, q_2\}$: Z jedné množiny d = a: $q_1 a \rightarrow q_1$ $q_2 a \rightarrow q_2$ d = b: $q_1 b \rightarrow s$ $q_2 b \rightarrow f$
- 3) $X = \{q_3, q_4\}$: Z jedné množiny d = a: $q_3 a \rightarrow q_4$ d = b: $q_3 b \rightarrow q_1$ $q_4 a \rightarrow q_4$ d = b: $q_4 b \rightarrow q_2$

Žádné další štěpení !!!

Minimalizace: Příklad 3/4

$$Q_m = \{ \{ s, f \}, \{ q_1, q_2 \}, \{ q_3, q_4 \} \}$$

$$\begin{array}{l} sa & \rightarrow f \in R: \\ fa & \rightarrow s \in R: \end{array} \} \Longrightarrow \{s,f\}a & \rightarrow \{s,f\} \in R_m \\ sb & \rightarrow q_3 \in R: \\ fb & \rightarrow q_4 \in R: \end{array} \} \Longrightarrow \{s,f\}b & \rightarrow \{q_3,q_4\} \in R_m \\ q_1a & \rightarrow q_1 \in R: \\ q_2a & \rightarrow q_2 \in R: \end{array} \} \Longrightarrow \{q_1,q_2\}a & \rightarrow \{q_1,q_2\} \in R_m \\ q_1b & \rightarrow s \in R: \\ q_2b & \rightarrow f \in R: \end{cases} \Longrightarrow \{q_1,q_2\}b & \rightarrow \{s,f\} \in R_m \\ q_2b & \rightarrow f \in R: \end{cases} \Longrightarrow \{q_3,q_4\}a & \rightarrow \{q_3,q_4\} \in R_m \\ q_3a & \rightarrow q_3 \in R: \\ q_4a & \rightarrow q_4 \in R: \end{cases} \Longrightarrow \{q_3,q_4\}a & \rightarrow \{q_3,q_4\} \in R_m \\ q_3b & \rightarrow q_1 \in R: \\ q_4b & \rightarrow q_2 \in R: \end{cases} \Longrightarrow \{q_3,q_4\}b & \rightarrow \{q_1,q_2\} \in R_m \end{array}$$

Minimalizace: Příklad 4/4

$$\mathbf{s} \in \{\mathbf{s},\mathbf{f}\} \implies s_m := \{\mathbf{s},\mathbf{f}\}$$

$$s \in F$$
:
 $f \in F$:
 $s \in F$:
 s

$$\begin{split} &M_{m} = (Q_{m}, \Sigma, R_{m}, s_{m}, F_{m}), \text{ kde: } \Sigma = \{a, b\}, s_{m} = \{s, f\} \\ &Q_{m} = \{\{s, f\}, \{q_{1}, q_{2}\}, \{q_{3}, q_{4}\}\}, F_{m} = \{\{s, f\}\} \} \\ &R_{m} = \{\{s, f\}a \rightarrow \{s, f\}, \{s, f\}b \rightarrow \{q_{3}, q_{4}\}, \{q_{1}, q_{2}\}a \rightarrow \{q_{1}, q_{2}\}, \{q_{1}, q_{2}\}b \rightarrow \{s, f\}, \{q_{3}, q_{4}\}a \rightarrow \{q_{3}, q_{4}\}, \{q_{3}, q_{4}\}b \rightarrow \{q_{1}, q_{2}\} \} \end{split}$$

Typy KA: Shrnutí

	KA	KA bez e-přech.	DKA	Úplný KA	DSKA	Minimální KA
Počet všech pravidel tvaru $p \rightarrow q$, kde $p, q \in Q$	0-n	0	0	0	0	0
Počet pravidel tvaru $pa \rightarrow q$, pro libovolné $p \in Q$ a libovolné $a \in \Sigma$	0-n	0-n	0-1	1	1	1
Počet všech nedostupných stavů	0-n	0-n	0-n	0-n	0	0
Počet všech neukončujících stavů	0-n	0-n	0-n	0-n	0-1	0-1
Počet všech možných těchto automatů pro jeden regulární jazyk	8	8	8	8	8	1

Hlavní rozhodnutelné problémy

1. Problém členství:

• Instance: FA $M, w \in \Sigma^*$; Otázka: $w \in L(M)$?

2. Problém prázdnosti:

• Instance: FA M; Otázka: $L(M) = \emptyset$?

3. Problém konečnosti:

• Instance: FA M; Otázka: Je L(M) konečný?

4. Problém ekvivalence:

• Instance: FA M_1 , M_2 ; Otázka: $L(M_1) = L(M_2)$?

Algoritmus: Problém členství

- Vstup: DKA $M = (Q, \Sigma, R, s, F); w \in \Sigma^*$
- Výstup: ANO, pokud $w \in L(M)$ NE, pokud $w \notin L(M)$
- Metoda:
- if $sw \vdash f, f \in F$ then napiš('ANO')
 else napiš('NE')

Celkově:

Problém členství je pro KA rozhodnutelný

Algoritmus: Problém prázdnosti

- Vstup: KA $M = (Q, \Sigma, R, s, F)$;
- Výstup: ANO, pokud $L(M) = \emptyset$ NE, pokud $L(M) \neq \emptyset$
- Metoda:
- if s je neukončující then napiš('ANO')
 else napiš('NE')

Celkově:

Problém prázdnosti je pro KA rozhodnutelný

Algoritmus: Problém konečnosti

- Vstup: DKA $M = (Q, \Sigma, R, s, F)$;
- Výstup: ANO, pokud L(M) je konečný NE, pokud L(M) je nekonečný
- Metoda:
- Necht' $k = \operatorname{card}(Q)$
- if existuje $z \in L(M)$, $k \le |z| < 2k$ then napiš('NE')
 else napiš('ANO')

Pozn.: Tento algoritmus je založen na tvrzení: L(M) je nekonečný \Leftrightarrow existuje z: $z \in L(M)$, $k \le |z| < 2k$

Celkově:

Problém konečnosti je pro KA rozhodnutelný

Rozhodnutelné problémy: Příklad

$$M: a$$
 b b a

```
Otázka: ab \in L(M)?

sab \mid -sb \mid -f, f \in F
```

Odpověď: ANO, protože sab $|-^*f, f \in F$

Otázka: $L(M) = \emptyset$?

$$Q_0 = \{ f \}$$

1. $qa' \rightarrow f$; $q \in Q$; $a' \in \Sigma$: $sb \rightarrow f$, $fa \rightarrow f$ $Q_1 = \{f\} \cup \{s, f\} = \{f, s\}$... s je ukončující

Odpověď: NE, protože s je ukončující

Otázka: Je L(M) konečný? k = Card(Q) = 2Všechny řetězce $z \in \Sigma^*$: $2 \le |z| < 4$: $aa, bb, ab \in L(M)$, ...

Odpověď: NE, protože existuje $z \in L(M)$, $k \le |z| < 2k$

Algoritmus: Problém ekvivalence

- Vstup: Dva minimální KA, M_1 a M_2
- Výstup: ANO, pokud $L(M_1) = L(M_2)$ NE, pokud $L(M_1) \neq L(M_2)$
- Metoda:
- if M₁ má stejnou strukturu jako M₂ až na pojmenování stavů
 then napiš('ANO')
 else napiš('NE')

Celkově:

Problém ekvivalence je pro KA rozhodnutelný

Problém ekvivalence: Příklad

Otázka: $L(M_1) = L(M_2)$?

Minimální KA

Odpověď: ANO, protože M_{min1} má stejnou strukturu jako M_{min2}