Sallitut apuvälineet: MAOL-taulukot, kirjoitusvälineet, laskin sekä itse laadittu, A4-kokoinen lunttilappu.

1. Satunnaismuuttujien X ja Y yhteistiheysfunktio on

$$f(x,y) = k x y,$$
 kun $0 < y < x < 1,$

ja nolla muualla.

- a) Ratkaise vakion k arvo.
- b) Laske $P(0 < X < \frac{1}{2} \text{ ja } Y < X^2)$.
- 2. Olkoot X ja Y riippumattomia eksponenttijakaumaa $\mathrm{Exp}(1)$ noudattavia satunnaismuuttujia. (Tämän jakauman tiheysfunktio on $f(z)=\mathrm{e}^{-z}$, kun z>0.) Määritellään positiiviset satunnaismuuttujat U ja V kaavoilla

$$U = XY$$
, $V = X^2$.

Laske satunnaismuuttujien U ja V yhteistiheysfunktio $f_{U,V}(u,v)$, satunnaismuuttujan V reunatiheysfunktio $f_V(v)$ sekä $f_{U|V}(u \mid v)$ eli satunnaismuuttujan U ehdollinen tiheysfunktio, kun V = v (jossa v > 0).

3. Tarkastellaan hierarkkista mallia

$$X \mid Y \sim N(0, (Y^2)^2)$$

 $Y \sim U(0, 1).$

 $N(\mu, \sigma^2)$ on normaalijakauma odotusarvolla μ ja varianssilla σ^2 , ja U(a, b) on tasajakauma välillä (a, b).

- a) Laske EX.
- b) Laske $\operatorname{var} X$.
- c) Kerro perustelun kera, onko satunnaismuuttujien X ja Y yhteisjakauma kaksiulotteinen normaalijakauma
- **4.** Olkoon n-ulotteisella satunnaisvektorilla \mathbf{X} standardinormaalijakauma $N_n(\mathbf{0}, \mathbf{I})$. Olkoon $\mathbf{Q} \in \mathbb{R}^{n \times n}$ ortogonaalinen vakiomatriisi (ts. $\mathbf{Q}^{-1} = \mathbf{Q}^T$). Määritellään $\mathbf{Y} = \mathbf{Q}\mathbf{X}$.

Jaetaan $\mathbf{Y}=(Y_1,\ldots,Y_n)$ kahtia siten, että $\mathbf{U}=(Y_1,\ldots,Y_k)$ koostuu sen k ensimmäisestä komponentista (jossa $1\leq k< n$) ja $\mathbf{V}=(Y_{k+1},\ldots,Y_n)$ sen lopuista komponenteista. Määritellään lopuksi satunnaismuuttujat Z_1 ja Z_2 kaavoilla

$$Z_1 = \mathbf{U}^T \mathbf{U}, \qquad Z_2 = \mathbf{V}^T \mathbf{V}.$$

- a) Mikä on satunnaisvektorin Y jakauma?
- b) Perustele, miksi Z_1 ja Z_2 ovat riippumattomia.
- c) Mitkä ovat satunnaismuuttujien Z_1 ja Z_2 jakaumat?