

Alhona queremos excontrar el punto XES que sea más cercano a (1,1,1), para saber esto usamos la distancia entre 2 pontar y monimizarnar la foncida, ds,m) = 11(-3y-22, 4, 2)-(1,1,1)11=1(-3y-27-1, y-1, 2-1)11 Antes verificamor que (1,1,1) & su que s, y=1, 2=1 => x=-5 =. (1,1,1) \$5 . Querens minimizar 11/~ F(4, 2) = \(1-34-22-1)^2 + (4-1)^2 + (2-1)^2 = \((34+22+1)^2 + (4-1)+(2-1)^2 = \((34+22+1)^2 + (4-1)+(2-1)^2 = (34+22+1)^2 + (4-1)+(2-1)^2 = (34+22+1)^2 + (4-1)+(2-1)^2 = (34+22+1)^2 + (4-1)+(2-1)^2 = (34+22+1)^2 + (4-1)+(2-1)^2 = (34+22+1)^2 + (4-1)+(2-1)^2 = (34+22+1)^2 + (4-1)+(2-1)^2 = (34+22+1)^2 + (4-1)+(2-1)^2 = (34+22+1)^2 + (4-1)+(2-1)^2 = (34+22+1)^2 + (4-1)^2 + (4-1 Dervamos ty = 1 . [2(3++2+1)-3 + 2(4-1)] = 0 tz = 1 [2(3++2++1).2 + 2(2-1)]=0 => 94 + 62 +3 +4-1=0 64 +42+2+2-1=0 104+62+2=0=> 604+362+12=0=142+2=0=> 2=7 7 6y+5z+1=0-10-60y-50z-10=0 sustituy endo en (1) => 10x + 6+2=0 => 10y=-20 · · · · · · Verificamos que sea un minimo, podríames usar el criterio All hessaro pero como t(x,2) 20 dado que o la distancia y 1=-= 1 == = o ponto crítico se deduce que es un minimo

 $+ \gamma \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix} + 2 \begin{pmatrix} 3 \\ 3 \\ 1 \end{pmatrix}$ Si A. 7 = 0 3 · . 5. 2 # 0 X+24+37=0 = x+2=0 = x=-2 2 X 7 \$0 x+24+37=0 4+2=0 -> Y=-Z $a = a \left(\frac{1}{3} \right) + b \left(\frac{2}{1} \right) = \frac{13(a+b)}{1}$ $= \begin{vmatrix} a+2b \\ a+2b \end{vmatrix} \implies b=1 + a=1$ -= S= {(x, y, t) EIR3 | x=a+16, y=a+26, 2=6 con a, bend-Lo cual o un plano generalo por (3) y (2) [3] (0 0 0) (x) = (0) Es claro que el conjunto do llegada el el vector O 5= { (x, 4, 2) 6112 (x= y= 2 = 0 }

Problems 5.3 Sean A una matriz de mxn. Responde verdadero (V) o Falso (F) 2 Si para un vector x en el dominio de A, Ax es una combinación lineal de columnas de A. A.X = b siempre tiene colución si es una matriz cuadrada A. X = b there solución si y solo si b pertenece al espacio columna de A LE espacio columna de A es el mismo que el espacio columna de ZA. Es, nom entonces las columnas de A son linealmente dependientes Isi mon entonces ATA es una matriz invertible. (Atgumentor a) depende de lavo se define west ble $M = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$ ¿ Que efecto tiene la matrit M sobre un vector en IR3? Considere la ecuación Mx=b, para un b EIR3 dado, C Esda cucerción trave solvais, para todo b? Si si, establezca una regla especifica de tipo : « dado in bell existe x = dal que Mx = b? Notamos que intercambia las coordenadas x, & mientras que la coxdenada 4 permanece invariante

DIA MES ANO (Rank (D. D)) r= Rank (C) = Rank (D. Dt) = Rank (B. A. At-Bt) = Rank (A. At) -- Pank (A. A)= Y Ga que By Bt vo alteran Rank) Para Rank (At. A) Podemos considerar una matrit tal que Coxm = Boxn A donde Ci; = 1 para isr 4 0 em otro caso or decor C' or my mytriz con r columnas Uncolmente independentes YC' = A. B't -> c'·c't = D tambien or claro que Di, 21 para i Er y o en otro caso, & dear, también se comple ... Runh(D)=r => Runk(D) = Runk(C'-C't) = Rank(B.A.A.B't) = = Rank(A.A)= r -: rank(A) = rank(A.A) = rank(A.A) = +

Problema 9: Suponda que A e mes motor de nem con nom lie A e ma matriz vertical). Si rank A=m, ATA es definida positiva, ie. +x 61Rm (vector en vertical) x A Ax > 0 a) Prueba en este caso que toos los autovalores de ATA son positivos sea x un vector propio de AA, entances se cumple (ATA) X = XX y multiplicando por X ambas evaciones $x^{T}(A^{T}A)\bar{x} = x^{T}\lambda\bar{x} = \lambda x^{T}.\bar{x} = \lambda ||x||^{2}$ \Rightarrow $(x^T A^T)(Ax) = \lambda ||x||^2$ 4 como XTATAX>0 YXEIRM >> > 1 11 x 12 > 0 y como 11x 112 > 0 concluimos Como se cumplica para cualquier vector propio concluinos que todas los contovalores son positivos b) ils cierto que si todos los autoralores de AA son pesitivos entonces os definida positiva? Si, ya que podemos verques: X es autovector $= \frac{1}{2} \frac{$ O VAAX O

DIA MES ANO () ¿ Que pasa os vank A < m? El apacio de llegada ya no seria todo IRM sino un suberpacio de IRM, por lo tento à podría tomar valorer de cero en el polinomio caracteristico 10 - Sea 5 una matriz simétrica (a) c Countar autoralors realer tienes (contando su multiplicida)? por multiplicidad de un autorajor à de S nos reterimor a la demension del Kerr 5- XI Como S sob tiene la restricción de ser sinétrica supergamas que el campo de S son los numeros complejos y ademas que les un autovalor propio complejo. como X & autovalor > 5x = Xx para x autovector Notemar que al hacer el producto ponto $\langle \mathcal{S}_{x}, x \rangle = \langle \lambda x, x \rangle = \lambda \langle x, x \rangle$ Pero per otro lado LSTX, X7 = LX, SX> y como \rightarrow $(5,\overline{x},\overline{x}) = (\overline{x},5\overline{x}) = (\overline{x},\lambda\overline{x}) = (\overline{x},\overline{x})$ · · \= \ , & decir, \ de igual a su conjugado !! -- LER

1 (6) Verifique que si VI et autovector de 11, 12 es autoverda de 12 con 1, + 12 -> < V., V2> = 0 Su= /v1 Svz= ZVZ Al hacer (SV1, V2>= <)V1, V2>= 1, 2V1, V2>
como S es simetrica S=51 => < SV1 V27 = < V1 ST V27 = 4V1, SV27 = 4V1, V27 /2 (YZEIR) >> < SV1, V2> - < SV1, V2> = 0 11 < V1, V27 - 12 < V1, V27 = 0 => (2, -12) EV1, V27=0 y como 2, # X2 >> < V1, V27 = 0// C) Para la matriz S= (4 2). Encuentra manalmente una decomposiçãos espectral para s. Notamer que 5 es sinétrica y de 2x2m2 la podemas descomponer con P una matriz ostogonal cayas columnas son lor autovectores de: Des una matriz diagonal expos elementos en la diagonal son los gutovalores de S. > Primero calculamor los autovabres, esto es det(S-)[1-)=0> | 11-x 4)= (11-x)(2-x)-16=0 => 22-13×+×2-16 = 0 7 12-13/16=0

	DIA	MES ANO	
16 m 1 and 1		Name of Street, or other Parks	
(3) VEIR V=(V, Vm) A = (and and)			
(3) V612 V=(V,,,,Vm) Amen = (an to - am)	113 10		
fy)= (Ax, V) = (an - an) (x)	v x v		
am a ly	totalo		
fy)= CAx, v7 = (an - an) (xn)			
= (\(\frac{1}{2}\argama_1 \times \frac{1}{1=1}\argama_1 \times \f	V. V	(Vm)	
1=1 (1=1 1)		(48)	
$= \sqrt{\sum_{i=1}^{n} a_{ii} x_{i}} + \sqrt{\sum_{i=1}^{n} a_{ii} x_{i}} + \sqrt{\sum_{i=1}^{n} a_{ii} x_{i}} + \sqrt{\sum_{i=1}^{n} a_{ii} x_{i}}$	2 = 5	> a, V; X;	
i=1 12 21 21 21 21 21 21 21 21 21 21 21 21) j=1	1=1	
=> V(cx) = (= anv, - = 15=1 ain vi) (que	1 200	de de x	1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	no ach	A	1
0 1 1- 1911 ami) = 1= x			
Por other perite A= (911 ami) => AFEX		A (3)	
27 At. V= (an - an) (vn) - (Zaj, v), - , Zo	1.		
1 - and vn - (0=1 01 3)	r con		
Utca) = A.V	(10		Ī
Agen 1- M. A			No.
> 0 +(a) · x = (\(\tilde{\tiilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tii	7 9	7	
> 0 +(a) · x = (2 9 1 V) - (2 a) () · (x 1 (, X)			
$= \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} a_{ji} V_{j} X_{i} = X_{i} \sum_{j=1}^{\infty} a_{ji} V_{j} + \cdots +$	v Za	V.	
- = = = = = = = = = = = = = = = = = = =	x n Za),,)	
= MV)X/			
How TCX = CAX, X	13	73 7 7	
	-		
	-		

Problema 13. ansidere Fine ->12 la función fix)=11x11, e f(x,--,xn)=(x,1+1x2+++1xn) Describe el conjunto de puntor a EIR para les que Vfia) no existe. Para las puntas donde existe el guadiente, encuentra una formo la o manera de calcular lo. Persondernou que fyj=(x) no a derivable en O, er decir (cx) = { 1 51 x 20 = x x t0 v cons ther) = (2f , ..., 2f) motumos que el conjunto de puntos donde no existe of son de la forma (x1/- /xn) EIR's S= 0 {(x,-,x,) ER \ X, = 0} que serian hiperplanos de 112h Donde también están inclidos los pontos de la forma (0,0,-, An) es decis con mas ceres en las entradas. > V+(x)= (xi) +x; \$0 con=1-10

Problem 14. Para los puntos donde es posible, da Loss (0) = 11 Ab- 411, donde A & va matriz. Aman, Deir, yeirm $A \cdot \theta = \begin{pmatrix} a_{11} & a_{11} & b_{11} \\ a_{m1} & a_{m1} \end{pmatrix} - \begin{pmatrix} \sum_{i=1}^{n} a_{ii} & b_{i} \\ b_{i} & b_{i} \end{pmatrix} - \begin{pmatrix} \sum_{i=1}^{n} a_{ii} & b_{i} \\ b_{i} & b_{i} \end{pmatrix} = \begin{pmatrix} a_{11} & b_{11} & b_{12} \\ b_{11} & b_{12} & b_{13} \\ b_{11} & b_{12} & b_{13} \end{pmatrix}$ · 11 AD-411 = 12 a, 0, -4, 1+ - + 12 a, 0, -4 ml = 2(0) como V= (ch) si purarra en una variable V= (co) y f(0)=1

=> y= |V| > Y= VI. V por regla de la cadena. (ono Vf = () () () () () () () tenemes que DI = (v1 ant + + vm am1, - - - , V1 am + - + vm amm) $= \left(\frac{2}{2} \frac{10}{100} a_{j1} + \frac{2}{100} \frac{1}{100} a_{j1} + \frac{2}{100} a_{j1} + \frac{2}{10$

et algoritmo de descenso de gradiente básico tenemos el Vn+= Vn - a V(Vn) - (1) Para cada Heración VI, sea ax ma tasa de aprendizare que minimiza: t(x)=f(vn-x Tf(vn)) Este de establece en cada paso K la tasa de aprendição e optima, en el sentido que hace que el valor f(ver) sea el más pequeño posible. Prueba que si reemplazamo (1) por Van= Vn-dx Ofiva) entoncer direcciones de descerso ansecutivas son ortogonato cen otras pulabras: <Tf(va), Tf(ve+1)>=0 Tito re conoce como la propiedad zing-zing Come vp+= Vk- a Ttun > Vn=Vk+1 + a Ttun Usando la aproximación por taylor f(xtp) × f(x) + Tf(x) · p Tenemos que f(vn) = f(vn+1 + a Tf(vn1) × f(vn+1) + Tf(vn+1) · a Tf(vn) > fermin = fermin - 2 Ttermin ofter - Yea)=fevx-attern)=fevners to podernes aproximent 4(a) ~ + (vn) - a of (vn) - of(vn)

Argunanto problema 5, $x_{GR}^{n} = (x_{n})$ A= $\begin{bmatrix} a_{n} & a_{n} & x_{n} \\ a_{m} & a_{m} & x_{n} \end{bmatrix}$ $A = \begin{bmatrix} a_{n} & a_{m} \\ a_{m} & a_{m} \end{bmatrix}$ $A = \begin{bmatrix} a_{n} & a_{m} \\ a_{m} & a_{m} \end{bmatrix}$ $A = \begin{bmatrix} a_{n} & a_{m} \\ a_{m} & a_{m} \end{bmatrix}$ $A = \begin{bmatrix} a_{n} & a_{m} \\ a_{m} & a_{m} \end{bmatrix}$ $A = \begin{bmatrix} a_{n} & a_{m} \\ a_{m} & a_{m} \end{bmatrix}$ $A = \begin{bmatrix} a_{n} & a_{m} \\ a_{m} & a_{m} \end{bmatrix}$ busta conque la matriz A no tenga invava est considerar A=(1) > Ax=(1) no trene solveres por 1) subernos que Ax o combinación lineal de columbar de A y s. Ax time rolución 20 b pertenece al o pacro colvera de A y 5. 6 pertance of espacio columna de A bousta con regher la matriz A a pentir de las columnas para ver go AV= b time solution. El opació dung de A e iparal que el de ZA ya que tendiamon una combinación de colunar de A en 2Ax - generan el mimo opricio 5) F (m=n)
Considerar A= (33) => A A= (100)(100) = (60)
no tiene
Truerse 6719 inversa