Expectation

STAT 211 - 509

2018/09/13

Expectation of discrete random variables

- The expected value is a one-number summary of the distribution of a random variable. Think of it as the average, $\frac{1}{n}\sum_{i=1}^n X_i$ of a large number of IID draws X_1, X_2, \ldots, X_n .
- The **expected value** (or **mean**) of a discrete random variable X with pmf f is

$$\mathbb{E}[X] = \sum_x x f(x)$$

Depending on the situation, we may use the Greek symbol μ_x (or just μ , if the context is clear) in place of $\mathbb{E}[X]$.

Let $X \sim Bernoulli(p)$, with pmf

$$f(x)=p^x(1-p)^{1-x},\quad x\in\{0,1\},\quad p\in[0,1]$$

Thus X takes the value 1 with probability p and 0 with probability 1-p. We have

$$\mathbb{E}[X] = \sum_{x=0}^1 x f(x) = (0 imes(1-p)) + (1 imes p) = p$$

Properties of Expectations

• Let Y = g(X), for some function g. Then

$$\mathbb{E}[Y] = \mathbb{E}[g(X)] = \sum_x g(x) f(x)$$

• If X_1, X_2, \ldots, X_n are random variables and $a_1, a_2, \ldots a_n$ are constants, then

$$\mathbb{E}igg[\sum_i a_i X_iigg] = \sum_i a_i \mathbb{E}[X_i]$$

• For some constant *a*,

$$\mathbb{E}[a] = a$$

Let $X \sim Binomial(n,p)$. What is $\mathbb{E}[X]$? Applying the expectation definition directly is challenging, because of the complicated form of the pmf. Instead, note that we can write

$$X = \sum_{i=1}^n X_i$$

where X_i equals 1 if the ith trial is a success and 0 if it is a failure. Then $\mathbb{E}[X_i] = p$ and

$$\mathbb{E}[X] = \mathbb{E}igg[\sum_i X_iigg] = \sum_i \mathbb{E}[X_i] = np$$

Variance

- Another important way to characterize a distribution is in terms of "spread." The most common measure of spread is called the variance.
- Let be a random variable with mean. The variance of X is

$$Var(X) = \mathbb{E}(X - \mathbb{E}[X])^2 = \sum_x (x - \mathbb{E}[X])^2 f(x)$$

• The **standard deviation** is

$$\sqrt{Var(X)}$$

Depending on the situation, we may use the Greek symbol σ_X^2 , or just σ^2 , if the context is clear, in place of Var(X). Similarly, σ_X or σ may be used to indicate the standard deviation.

Properties of Variance

$$Var(X) = \mathbb{E}[X^2] - (\mathbb{E}[X])^2$$

• If a and b are constants, then

$$Var(aX+b) = a^2 Var(X)$$

• If X_1, X_2, \dots, X_n are independent and $a_1, a_2, \dots a_n$ are constants, then

$$Varigg(\sum_{i=1}^n a_i X_iigg) = \sum_{i=1}^n a_i^2 Var(X_i)$$

Let $X \sim Binomial(n, p)$. What is Var(X)? Again write

$$X = \sum_{i=1}^n X_i$$

where X_i equals 1 if the nth trial is a success and 0 if it is a failure. Then $E[X_i] = p$ and

$$E[X_i^2] = (p imes 1^2) + ((1-p) imes 0^2) = p$$

So

$$Var(X_i) = E[X_i^2] - p^2 = p(1-p)$$

and

$$Var(X) = Varigg(\sum_i X_iigg) = \sum_i Var(X_i) = np(1-p)$$

Sample Mean and Variance

For the random variables X_1, X_2, \dots, X_n , we define the **sample mean** to be

$$ar{X} = rac{1}{n} \sum_{i=1}^n X_i$$

and the sample variance to be

$$S^2 = rac{1}{n-1} \sum_{i=1}^n (X_i - ar{X})^2$$

Properties of Sample Mean and Variance

For X_1, X_2, \dots, X_n IID, we have the following:

$$lacksquare \mathbb{E}[ar{X}] = \mathbb{E}[X] = \mu$$

$$ullet Var(ar{X}) = rac{VarX}{n} = rac{\sigma^2}{n}$$

$$lackbox{\mathbb{E}}[S^2] = Var(X) = \sigma^2$$

Because the expected values of \bar{X} and S^2 equal their target parameters, we say that they are **unbiased estimators** .

Binomial MLE Revisited

• Recall that with $X \sim Binomial(n,p)$, the MLE of p is

$$\hat{p} = \frac{X}{n}$$

• We have:

$$\mathbb{E}[\hat{p}]=rac{X}{n}=rac{np}{n}=p$$
 $Var(\hat{p})=rac{Var(X)}{n^2}=rac{np(1-p)}{n^2}=rac{p(1-p)}{n}$

Moment Generating Functions

• The moment generating function (mgf) of a random variable X is

$$M(t)=\mathbb{E}[e^{tX}]$$

• Let $M^{(k)}(t)$ be the kth derivative of M(t) with respect to t. We have that

$$M^{(k)}(0)=\mathbb{E}[X^k]$$

• The mgf can be used to compute **moments**, the expectations of the powers of the random variable:

$$E[X^k], \quad k=1,2,\ldots$$

• If X_1, X_2, \ldots, X_n are independent and $Y = \sum_i X_i$, then

$$M_Y(t) = \prod_i M_{X_i}(t)$$

where $M_{X_i}(t)$ is the mgf of X_i .

- Let $X \sim Binomial(n, p)$. Again write $X = \sum_{i=1}^{n} X_i$, where the X_i are independent Bernoulli(p) random variables.
- We have:

$$M_{X_i}(t) = \mathbb{E}[e^{tX_i}] = pe^t + (1-p)(1) = pe^t + 1-p$$

So

$$M_X(t) = \prod_i M_{X_i}(t) = (pe^t+1-p)^n$$

Example (Cont.)

Compute the mean and variance for a binomial random variable using the mgf:

$$M_X'(0) = np = \mathbb{E}[X]$$

and

$$M_X''(0)=np((n-1)p+1)=\mathbb{E}[X^2]$$

SO

$$Var(X) = \mathbb{E}[X^2] - (\mathbb{E}[X])^2 = np(1-p)$$