Práctica de vectores- Ejercitación adicional – Intersección entre planos y rectas

1) Dados los vectores en \mathbb{R}^3 **v** = (1, -2, 2), **w** = (-1, 5, 0), **u** = (0,4,3)

- a) Hallar su módulo y dirección
- b) Hallar los vectores unitarios asociados a v, w y u
- c) Hallar los vectores que tienen:
 - Igual dirección y sentido que v pero módulo 5 i)
 - ii) Igual módulo y dirección que w pero sentido opuesto
 - Igual dirección que **u** pero sentido opuesto y módulo 1 iii)

2) Graficar en el plano y expresar en coordenadas polares los vectores en \mathbb{R}^2

$$\mathbf{a} = (3,3), \ \mathbf{b} = \left(-1,\sqrt{3}\right), \ \mathbf{c} = \left(-\frac{3}{2}\sqrt{3}, -\frac{3}{2}\right)$$

3) En \mathbb{R}^3 dos planos distintos (no coincidentes) o son paralelos o se intersectan en una recta. Determinar cuál es el caso para los siguientes pares de planos

a)
$$\Pi_1$$
: $2x + y - 3z = 1$ Π_2 : $y + 2z$

b)
$$\Pi_1$$
: $x - 2y + z = 0$ Π_2 : $x - 2y + 2z = 1$

c)
$$\Pi_1$$
: $-6x + 4y + z = 7$ Π_2 : $12x - 8y - 2z = 1$

a)
$$\Pi_1$$
: $2x + y - 3z = 1$
b) Π_1 : $x - 2y + z = 0$
c) Π_1 : $-6x + 4y + z = 7$
d) Π_1 : $7x - 7y - z = 134$
 Π_2 : $y + 2z = 1$
 Π_2 : $x - 2y + 2z = 1$
 Π_2 : $12x - 8y - 2z = 1$
 Π_2 : $12x - 8y - 2z = 1$

e)
$$\Pi_1$$
: $3x - y + 4z = 3$ Π_2 : $-4x - 2y + 7z = 8$

f) En casos en que los planos no sean paralelos, hallar las ecuaciones paramétricas de la recta donde se intersectan.

4) Determinar en cada caso si la recta L y el plano Π se intersectan. En caso afirmativo, hallar los puntos de intersección

a)
$$\Pi$$
: $-x + 6y - 2z = 10$ L: $x = 2t$, $y = 1 - t$, $z = -1 + 3t$, $t \in \mathbb{R}$

b)
$$\Pi$$
: $y + 3z = 0$ L: $x = -1$, $y = 2 - t$, $z = t$, $t \in \mathbb{R}$

e)
$$\Pi$$
: $-4x + 2y + 6z - 6 = 0$ L: $x = 4t$, $y = 5 + 2t$, $z = -1 + 2t$, $t \in \mathbb{R}$

f) Cómo son el plano y la recta en el inciso d? y en el e?