PTO 2005-5329

S.T.I.C. Translations Branch

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2000-23696 (P2000-23696A)

最終質に続く

(43)公開日 平成12年1月25日(2000.1.25)

弁理士 髙木 千嘉 (外1名)

(51) Int.CL'	識別記号	ΡΙ	テーマコート*(参考)
C12Q 1/56		C12Q 1/56	
A61K 31/00	607	A61K 31/00 607B	,
38/46		C12N 9/50	
C12N 9/50		C 1 2 Q 1/37	
C12Q 1/37	•	G01N 33/566	
	審査請求	未請求 請求項の数27 OL (全 18 頁	() 最終頁に続く
(21)出願番号	特顧平 11-116411	(71) 出願人 597070264	
		ツエンテオン・フアルマ	・ゲゼルシヤフ
(22)出廣日	平成11年4月23日(1999.4.23)	ト・ミツト・ペシユレン	⁄クテル・ハフツン
		J J	
(31)優先権主張番号	19818495:6	CENTEON PHA	RMA GMBH
(32)優先日	平成10年4月24日(1998.4.24)	ドイツ連邦共和国デーー	35002マルプルク.
(33)優先權主張国	ドイツ (DE)	ポストフアハ1230	
(31)優先権主張番号	19851332:1	(72)発明者 イュルゲン・レーミシュ	•
(32)優先日	平成10年11月6日(1998.11.6)	ドイツ連邦共和国デーー	35041マルプルク.
(33)優先權主張国	ドイツ (DE)	ツム・アイゼンペルク8	;
(31)優先權主張番号	19851335:6	(74)代理人 100091731	

(54) 【発明の名称】 血液凝固第VII因子を活性化するプロテアーゼ

平成10年11月6日(1998.11.6)

(57)【要約】

(32) 優先日

(33) 優先権主張国

(修正有)

ドイツ (DE)

【課題】 新規なFVII活性化プロテアーゼの発見とそ の応用。

【解決手段】 a) アプロチニンの存在によって阻害さ れ、b) カルシウムイオンおよび/またはヘパリンもし くはヘパリン類縁物質によってその活性が上昇し、また c) SDS-PAGEにおいて、以後の非還元状態での 染色では分子量50~75kDaの範囲の1個もしくは 2個以上のバンドを示し、還元状態では分子量10~3 5kDaの範囲の1個もしくは2個以上のバンドを示 す、血液凝固第VII因子を活性化するプロテアーゼなら びにそのプロ酵素は、血漿またはプロトロンビン複合体 (PPSB) 濃縮物から予め陰イオン交換クロマトグラ フィーに付したのち、ヘパリンもしくはヘパリン類縁物 質またはデキストラン硫酸を用いる親和性クロマトグラ フィーによって得られる。

【特許請求の範囲】

【請求項1】 a)アプロチニンの存在によって阻害され、b)カルシウムイオンおよび/またはヘパリンもしくはヘパリン関連物質によりその活性は上昇し、c)SDS-PAGEにおいて、それに続く非還元状態での染色により分子量50~75kDaの範囲の1個もしくは2個以上のバンドを示し、還元状態では分子量40~55kDaに1個のバンドおよび分子量10~35kDaの範囲の1個または2個以上のバンドを示す血液凝固第VII因子を活性化するプロテアーゼ。

【請求項2】 SDS-PAGEにおいて還元状態で分子量60~65kDaおよび40~55kDaの範囲に得られるバンドはアミノ酸配列: LLESLDPを有し、分子量10~35kDaの範囲に得られるバンドはアミノ酸配列: IYGGFKSTAGKを有する請求項1記載のプロテアーゼ。

【請求項3】 血漿またはプロトロンビン複合体 (PPSB) 濃縮物の分画によって得られる請求項1または2 に記載のプロテアーゼ。

【請求項4】 SDS-PAGEにおいて還元状態で得 20 られるバンドは60~65kDaの範囲の分子量を有し、アミノ酸配列: LLESLDPおよびIYGGFK STAGKを含有する請求項1~3のいずれかに記載のプロテアーゼのプロ酵素。

【請求項5】 請求項1~3のいずれかに記載のプロテアーゼもしくは請求項4に記載のプロ酵素を取得または除去する方法において、それを血漿またはプロトロンビン(PPSB) 濃縮物から、それを前もって陰イオン交換クロマトグラフィーに付したのち、ヘパリンもしくはヘパリン関連物質またはデキストラン硫酸を用いる親和 30性クロマトグラフィーによって得る方法。

【請求項6】 請求項1~3のいずれかに記載のプロテアーゼもしくは請求項4に記載のプロ酵素を免疫学的に検出するための試薬において、プロテアーゼまたはプロ酵素に対するポリクローナル抗体またはモノクローナル抗体を含有する試薬。

【請求項7】 診断/分析の目的での試薬において、請求項1~3のいずれかに記載のプロテアーゼおよび/または請求項4に記載のプロ酵素を、所望によりプロ酵素のアクティベーターとともに含有する試薬。

【請求項8】 第VII因子の検出のための試薬において、請求項1~4に記載のプロテアーゼ/プロ酵素を、所望によりプロテアーゼ活性増強化合物とともに含有する試薬。

【請求項9】 請求項1に記載のプロテアーゼまたは請求項4に記載のそのプロ酵素の定性的および定量的検出のための試験システムにおいて、そのプロテアーゼ活性は、

a)血液凝固第VIII/VIIIa因子もしくは第V/Va因子を不活性化するその活性または

- b)包括的血液凝固試験における血液凝固時間を低下させるその活性または
- c) プラスミノーゲンアクティベーターを活性化するそ の活性または
- d) FVIIを活性化するその活性によって測定する試験 システム。

【請求項10】 請求項9に記載の試験システムにおいて、血液凝固時間を低下させる活性は、

- a)非活性化部分トロンボプラスチン時間(NAPT
- 10 T) または
 - b) プロトロンビン時間 (PT) または
 - c)血漿カルシウム再次着時間または
 - d) 活性化部分トロンボプラスチン時間 (APTT) によって測定する試験システム。

【請求項11】 請求項9および10に記載の試験システムにおいて、プラスミノーゲンアクティベーターを活性化および/または増強する活性は、

- a) 一本鎖ウロキナーゼPA (scuPA、一本鎖ウロキナーゼプラスミノーゲンアクティベーター) または
- 20 b) 一本鎖 tPA (sctPA、一本鎖組織プラスミノー ゲンアクティベーター)の活性化により測定する試験シ ステム。

【請求項12】 請求項9~11に記載の試験システムにおいてカルシウムイオン0.001mM以上の量、好ましくは0.005mM以上の量を含む試験システム。 【請求項13】 プロテアーゼおよび/またはプロ酵素と適当なプロ酵素アクティベーターの混合物をプロトロンビン時間置換組織因子/トロンボプラスチンの試験に使用するアッセイシステム。

30 【請求項14】 プロテアーゼおよび/またはプロ酵素 と適当なプロ酵素アクティベーターの混合物を、プラス ミノーゲンアクティベーターの機能性の試験ならびに一 本鎖プラスミノーゲンアクティベーター型の定量に使用 するアッセイシステム。

【請求項15】 請求項9~14に記載の試験システム において、プラスミノーゲンアクティベーターを増強す る活性は、

- a) 色素原試験を用いて測定するかまたは
- b) プラスミノーゲンの存在下におけるカップリング反 40 応でプラスミン自体の形成もしくはプラスミンによって もたらされるフィブリン凝血の溶解で測定する試験シス テム。

【請求項16】 血液凝固第VII因子を活性化するプロテアーゼの阻害の結果としての蛋白分解により形成される不活性な第VIII因子および第V因子フラグメントを含まない安定化第V因子および安定化第VIII因子プレパレーション

【請求項17】 血液凝固第VII因子を活性化するプロ テアーゼを阻害するために、第VIII因子または第V因子 50 プレパレーション中のカルシウムイオン濃度を1.0 m M未満、好ましくは0.5mM未満とする請求項16記 載の安定化プレパレーション。

【請求項18】 FVIIIまたはFV含有溶液を固定化へ パリン、固定化へパリン様物質または固定化デキストラ ン硫酸と接触させ、結果として完全にまたは部分的にプ ロテアーゼ/プロ酵素を含まない溶液を得る請求項17 に記載の安定化プレパレーション。

【請求項19】 天然または合成プロテアーゼインヒビ ターの添加によって血液凝固第VII因子を活性化するプ ロテアーゼによる蛋白分解から保護された請求項17お 10 よび18に記載の安定化プレパレーション。

【請求項20】 緩衝溶液の添加によりpHを4.0~ 9.0に調整し、および/またはエチレングリコールも しくはグリセロール5~80重量%を含有する請求項1 ~4に記載のプロテアーゼまたはプロ酵素の安定化溶

【請求項21】 フィブリン含有血栓の溶解に適当な量 の、血液凝固第VII因子を活性化するプロテアーゼおよ び/またはそのプロ酵素を含有する医薬製剤。

【請求項22】 血液凝固第VII因子を活性化するプロ テアーゼおよび/またはそのプロ酵素のほかに、一本鎖 または二本鎖プラスミノーゲンアクティベーター(P A) および/または抗血液凝固剤を含有する請求項21 記載の医薬製剤。

【請求項23】 さらに可溶性カルシウム塩および/ま たはヘパリンもしくはヘパリン様物質を含有する請求項 21または22に記載の医薬製剤。

【請求項24】 請求項1~4に記載のプロテアーゼお よび/またはそのプロ酵素の阻害のために、プロテアー ゼインヒビターたとえばアプロチニンおよび/またはC 30 1-インヒビターおよび/またはα2-アンチプラスミン および/またはインターα-トリプシンインヒビターお よび/またはATIII/へパリンを含有する血液の凝固 性を低下させるための医薬製剤。

【請求項25】 請求項1~4に記載のプロテアーゼお よび/またはそのプロ酵素からなる医薬製剤の製造方法 において、滅菌条件下で、

- a) pH範囲は3.5~8.0とし、
- b) 1種または2種以上のアミノ酸>0.01mol/L量 を加え、および/または
- c)糖もしくは多数の糖の組合せ総量>0.05g/ml 量を加え、および/または
- d) カルシウムイオンと錯体を形成できる物質1種また は2種以上を加えることからなる方法。

【請求項26】 請求項25に記載の方法によって得ら れる医薬製剤。

【請求項27】 請求項1~4に記載のように血漿もし くはプロトロンビン複合体(PPSB)濃縮物から調製 されるかまたは組換えもしくは遺伝子導入によって発現 プロ酵素アクティベーターとともに、フィブリンに基づ く迅速な創傷閉鎖に適当なフィブリン接着もしくは被覆 または他の放出系の添加物として創傷治療および止血の 促進のため、このプロテアーゼまたはそのプロ酵素の先 天的または後天的欠損状態の置換のため、血液凝固第VI II 因子に対する抗体の存在下、または血液凝固第VII 因 子のインビトロ活性化のための使用。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は血液凝固第VII因子 の活性化のためのプロテアーゼ、それを単離、検出およ び不活性化する方法ならびにこのプロテアーゼからなる 医薬製剤に関する。

[0002]

【従来技術】血液凝固系は、血漿中に存在する血液凝固 因子を活性化する2つの異なるカスケード様経路から構 成される。その誘導機構によって、内因系または外因系 経路が血液凝固の開始に優先的に使用される。

【0003】組織が傷害された場合、トロンポプラスチ ン (組織因子、TFとリン脂質) が外因性凝血経路のス ターターとして冒された細胞により暴露される。膜局在 性のトロンボプラスチンは、血液凝固第VII因子(FVI I) および循環する、活性化FVII (FVIIa)の両者を 結合することができる。カルシウムイオンおよび脂質の 存在下に、このTF-FVIIa複合体はFXの結合を招 き、これは限定された蛋白分解によってその活性化型 (FXa) に変換される。続いてFXaはプロトロンビ ンを活性化してトロンビンを形成させることにより、フ ィブリンの形成を招来し、それによって最終的に創傷の 閉鎖が起こる。

【0004】トロンポプラスチン結合FVIIの更なる活 性化は最初は自触反応によって起こるが、特に、凝血力 スケードの開始後には、それはFXaおよびトロンビン によって支持され、特に反応カスケードの著しい強化を 招くことになる。

【0005】FVIIaまたはFVIIa含有濃縮物の投与は ある種の臨床状態に適用されている。たとえば、血友病 Aに冒されFVIII投与の結果としてFVIIIに対する抗体 が発生している患者では、FVIIaのいわゆるFVIII副 経路活性 (FEIBA) が用いられる。現時点で分かっ ている所見によれば、FVIIaはこの関係で十分な耐容 性を有し、それは血栓傾向を生じることはなく、限られ ているが適切な程度の凝血が起こることを保証するのに 適している。組換えFVIIaは既に治療的におよび予防 的に使用されている。血漿から単離されたFVIIはま た、活性化されてから用いることもできる。トロンビン のようなプロテアーゼをこの活性化に使用できるが、し かしながら、これらのプロテアーゼは、それら自体凝血 を強力に活性化することが可能で、血栓の危険を招くこ させたプロテアーゼまたはそのプロ酵素の、所望により 50 とがある。この理由から、以後のトロンビンの除去また は不活性化が必要であり、損失を生じることになる。そ れに伴う血栓の危険の結果として、多くの場合、FXa もしくはFIIa(トロンピン)の使用は禁忌とされ、緊 急時、たとえば血液の著しい喪失および止血不能の出血 の関連でのみ適用される。

[0006]

【発明が解決しようとする課題】FVIIaは、健康人の 血漿中にはきわめて低濃度でしか見出されない。血液中 を循環する FVII a の形成および起源についてはこれま でほとんど知られていない。細胞の破壊に伴って発現ま たは放出された痕跡のトロンボプラスチンはこの関連で ある役割を果たしている可能性がある。第XIIa因子 は、たとえばある種の条件下にFVIIの活性化を生じる ことが知られているが、この反応の生理学的な関連はま だ明らかにされていない。

【0007】驚くべきことに今回、従来知られているす べてのプロテアーゼとは異なるFVII活性化プロテアー ゼが、ヒト血漿およびある種のプロトロンビン複合体濃 縮物の分画に関連し発見された。このプロテアーゼの検 討から、それは ChromogenixAB, Swedenからのペプチド 基質S2288 (HD-イソロイシルーL-プロリルー L-アルギニン-pNA) に対して特に高いアミド分解 活性を示すことが示された。このプロテアーゼの特殊な 性質は、そのアミド分解活性がアプロチニンによって効 果的に阻害されることである。他のインヒビター、たと えばアンチトロンビンIII/へパリン複合体もその阻害 に適している。他方、その活性はヘパリンおよびヘパリ ン関連物質たとえばヘパリン硫酸またはデキストラン硫 酸およびカルシウムイオンにより上昇する。最後に、こ のプロテアーゼは、時間およびその濃度に依存する様式 30 でFVIIをFVIIaに変換できることが見出された。この 反応もアプロチニンによって阻害される。

[0008]

【課題を解決するための手段】したがって、本発明の主 題の一部は、

- a) アプロチニンの存在によって阻害され、
- b) その活性はカルシウムイオンおよび/またはヘパリ ンもしくはヘパリン関連物質によって上昇し、そして c) SDS-PAGEにおいて、以後の非還元状態での 染色では分子量50~75kDaの範囲に1個もしくは 40 2個以上のバンドを示し、還元状態では分子量40~5 5kDaに1個のバンドならびに分子量10~35kD aの範囲の1個もしくは2個以上のバンドを示す、血液 凝固第VII因子を活性化するプロテアーゼである。

[0009]

【発明の実施の形態】以下の明細書においては、そのプ ロテアーゼの活性化型を「プロテアーゼ」と呼び、非活 性化型を「プロ酵素」と呼ぶ。

【0010】このプロテアーゼについてさらに検討し、

20mM tris、0.15M NaClを含有するp H7.5の溶液中で観察された。 濃度0.1%のアルブミ ンの添加も、このプロテアーゼの活性が室温で1時間後 に50%まで低下するのを防止することはできなかっ た。他方、50mMのクエン酸ナトリウムによりpH 6.5に緩衝化した溶液中では、このプロテアーゼのき わめて良好な安定化が観察された。溶液をpH4~7. 2好ましくはpH5.0~7.0に調整すると、プロテア ーゼ溶液に特に安定剤を加えなくても活性の喪失は全く またはきわめてわずかしか認められなかった。しかしな がら、溶液には安定化剤を添加することが得策であり、 適当な安定剤としてはクエン酸塩のほかに、特にグルタ メート、アミノ酸たとえばアルギニン、グリシンまたは リジン、カルシウムイオンおよび糖たとえばグルコー ス、アラビノースまたはマンノースの1~200mol/ L好ましくは5~100mol/L量を挙げることができ る。有効な安定化は、グリコールたとえばエチレングリ コールまたはグリセロール5~80重量%の添加によっ ても達成され、好ましくは10~60重量%が使用され る。その場合、安定化された溶液のpH値は4~9でな ければならない。

【0011】新規なプロテアーゼ、および同じくそのプ ロ酵素は、組換えDNA法、またはたとえば適当なトラ ンスジェニック動物の乳汁中における産生によって得ら れ、特に血漿もしくはプロトロンビン複合体(PPS B) 濃縮物の分画化によって得ることができる。出発原 料をついで最初に陰イオン交換クロマトグラフィーに付 し、続いて、溶出液の親和性クロマトグラフィーを行 う。親和性クロマトグラフィーにはマトリックス上に固 定化されたヘパリンまたはヘパリン関連物質たとえばヘ パリン硫酸またはデキストラン硫酸が特に適している。 このようなクロマトグラフィー法を用いた場合、新規な プロテアーゼおよび/またはプロ酵素は選択的に結合さ れ、ついで既知の方法を用いて再び溶出することができ る。マトルックスにリガンドをカップリングするために は、スペーサーの使用を推薦できる。新規プロテアーゼ の単離にはヘパリンーリジンマトリックスが特に適して いることが見出されている。

【0012】SDS-PAGEとそれに続く染色では、 この方法によって単離されたプロテアーゼは、非還元状 態において、分子量55~75kDaの範囲の互いに接 近した存在する1個から数個のバンドを示す。 還元後に は、分子量15~35kDaの範囲に1個から数個のバ ンドが観察され、1個のバンドが40~55kDaに観 察された。60~65kDaのさらに1個のバンドは、 走査および定量的評価後、総タンパク質の5~10%を 構成し、非活性化プロ酵素も存在することが示された。 この結果は、このプロテアーゼに対するモノクローナル 抗体を使用する適当な検討によって支持された。したが 濃縮または単離後には急速な活性の喪失を受け、それは 50 って、このプロテアーゼのプロ酵素もまた、本発明の方 法により調製し、滅菌し、使用することができると結論された。本発明の主題の一部は、したがって、血液凝固第VII因子を活性化するプロテアーゼのプロ酵素である。プロ酵素の比率は60~65kDaのバンドにより指示される。プロ酵素の適当な生理学的アクティベーターの例は、それらの基質特異性に応じて、プロ酵素、トロンビン、カリクレインまたはFVIIaの活性化領域を構成するアミノ酸配列に相当する。

【0013】上述した新規なプロテアーゼの性質の一部、すなわちそれが血漿または血漿に由来するプロトロ 10ンビン複合体(PPSB)濃縮物から単離できるという事実、そのアミド分解活性のアプロチニンによる阻害ならびに還元および非還元状態の両者でのSDS-PAGEにおける上述の泳動挙動は、Hunfeldら(Ann. Hemato 1. 1997、74: A87、113; Ann. Hematol. 1998、76: A10

1, P294 および Etscheidら, Ann. Hematol. 1999, 7

8: A42) によって詳細は定義されていないPPSB濃縮*

*物から単離されたプロテアーゼを想起させる。その場合は、調製は主としてアプロチニンマトリックスを用いて達成された。ある種のペプチド基質のアミド分解による切断の結果として、活性はトロンビン様活性と記述されている。Hunfeld らは包括的な血液凝固パラメーターたとえばプロトロンビン時間、クウイックまたは血小板凝集に対する影響は全く見出していない。

【0014】Hunfeldらにより記載されたプロテアーゼのN末端配列決定は、そのcDNAがChoiーMiuraら(J. Biochem. 119:1157-1165, 1996)により報告されたタンパク質の場合と一致を示す。その一次構造では、相当するタンパク質が肝細胞増殖因子活性化酵素(HGFA)と命名されている酵素とホモロジーを示す。

【0015】SDS-PAGEから還元条件下に単離された2つのバンドをN末端配列決定に付し、以下の一致が確立された。

ハンドの分子重範囲	アミノ酸批列	報宣有
10~35kDa	IYGGFKSTAGK	本発明
3 OkDa	IYGGFKSTAG	Hunfeldら
17kDa	I YGGFKST AGKH	Choi—Miuraら
$40\sim55$ kDa	LLESLDP	本発明
5 OkDa	SLDP	Hunfeldら
57kDa	SLLESLDPWTPD	Choi—Miuraら

一致は他の試験結果たとえば基質特異性および阻害される活性の能力にも見出される。それにもかかわらず、現時点ではこれらのタンパク質が同一であるとの推定はなお不可能である。いずれにしても、以前に研究された上述のタンパク質にはFVII a または他の因子の活性化の性質をもつことは報告されていない(下記参照)。

【0016】その上述の性質に基づいて、その新規なプロテアーゼは診断的におよび治療的に使用することができる。

【0017】1. 新規なプロテアーゼを用いる試験システム

新規なプロテアーゼは試験試薬中に診断的に使用することができる。すなわち第VII因子の存在は新規なプロテアーゼの添加により血液凝固試験において定性的および定量的に決定することができる。

【0018】それとは逆に、FVIIの活性化を測定する 40 ために開発されたこの試験システムはプロテアーゼの検 出および定量にも使用することができる。このためには、プロテアーゼを含有する溶液をFVII含有溶液と混合し、適当なインキュベーション時間後に生成したFVI Iaの両を定量する。これは、たとえば Staclot(R) FVI IaーrTFテスト (Stago/Boehringer Mannheim)を 用いて実施できる。好ましい操作を用いた場合は、この 試験は供給されるFVIIの濃度には限定されない。総タンパク質の比率の型でのプロテアーゼ量を知る場合には、その比率は:一純粋なプロテアーゼプレパレーショ※50

※ン中、キエルダール法または本技術分野の熟練者には周 知の他のタンパク質のアッセイ法により、または一たと えば特異的な抗体に基づく抗原試験および適当な免疫化 学的測定方法たとえばELISAを用いて決定すること が可能であり、ついでプロテアーゼプレパレーションの 30 比活性を相当する様式で測定することができる。

【0019】驚くべきことに、プロテアーゼの特性の更なる解明に伴い、付加的な測定を可能にする性質が新たに見出された。上記プロテアーゼと血液凝固VIII/VIII aおよびV/Va因子のインキュベーション、それに続く定量に関連して、上記血液凝固因子はプロテアーゼ濃度およびインキュベーションの長さには無関係な様式で不活性化されることが明らかにされた。

【0020】本発明の主題の他の一部は、したがって、血液凝固第VII因子を活性化するプロテアーゼを定性的および定量的に検出する新規な試験システムであり、このシステムにおいては、プロテアーゼは血液凝固第VIII / VIIIaまたはV / Va 因子を不活性化するその活性によって定量することができる。この試験システムは、プロテアーゼを含有する溶液を第VIII / VIIIaまたはV / Va 因子とインキュベートして、残留した第V / Vi II a 因子とインキュベートして、残留した第V / Vi II a 因子の量または残留した第V / Va 因子の量を慣用の活性試験によって測定し、ついでこれからプロテアーゼの量を標準曲線との比較により決定する操作に基づくものである。この試験の実施に際し、プロテアーゼ活性のインキュベーションを予め定められた時間、限られた量のアプ

ロチニンの添加によって阻害すると、これらの濃度では 試験システムの以後の測定に影響しないという利点があ る。その後、血液凝固因子の残留活性を本技術分野の熟 練者に周知の試験方法で測定する。このためには、主と して第IXおよびX因子を含有し、得られたFX aの量を トロンビンインヒビターの存在下に色素原基質の変換に より定量するいわゆる Coamatic(R) 第VIII因子テスト (Chromogenix AB) を使用可能にする点で([000 7]の記述参照)、特に試験システムの価値が証明され ている。一方、この量は、FVIIまたはFVII aの量に比 10 例する。ついで、残留するFVIII活性を決定すれば、存 在するプロテアーゼの濃度を帰納することが可能にな る。

【0021】蛋白分解作用によるFVIII/FVIIIaまた はFV/FVa因子の分解は、SDS-PAGEによって 明瞭に証明できる。プロテアーゼをたとえばFVIII濃縮 物とインキュベートした時間に依存して、FVIIIに典型 的なバンドは消失し、一方、他の新しいバンドが発生 し、または弱いバンドの強度が増大する。したがって、 プロテアーゼの活性はまた、バンドの減弱または増強を 20 定量することにより関連づけることが可能で、その結 果、たとえばプロテアーゼ標品を用いて定量的に測定す ることができる。SDS-PAGE電気泳動図における バンドの強度、または他の電気泳動法によるバンドの強 度の変化を、本技術分野の熟練者には周知のたとえばス キャナーおよび適当なプログラムを用いて定量すること ができる。これに加えて、上記血液凝固因子に対する抗 体はウエスタンブロットに使用可能であり、また上述の 方法における評価に採用することができる。 減弱したバ ンドまたは、特に発生したバンドを特異的に検出する抗 30 体が特に適している。これに関連して、これらの抗体は 他の免疫化学的試験、たとえばELISAの確立にも使 用することができる。

【0022】FVIII/FVIIIaの場合に記載された蛋白 分解的不活性化はまた、FVIIIとある程度の構造的ホモロジーを示す第V/Va因子とプロテアーゼをインキュベートした場合にも観察される。分解は適当な活性試験システムおよびSDS-PAGE/ウエスタンブロッティングにおいてモニターできる。

【0023】FVおよびFVIIIの不活性化にもかかわら 40 ず、今回、血液、血小板濃縮血漿または血漿へのプロテアーゼの添加は血液凝固時間を短縮すること、すなわち各種のいわゆる「包括的血液凝固試験」において卓越したプロコアギュラント活性を示すことが見出された。これらの試験システムは、たとえば、非活性化部分トロンボプラスチン時間(NAPTT)、プロトロンビン時間(PT)およびカルシウム再沈着時間であると理解される。たとえばいわゆる血液凝固計において、血栓弾性記録計により、またはほかに色素原試験で測定されるこれらの時間の短縮化は、血液凝固促進物質の濃度と相関す 50

るので、サンプル中のその物質の濃度は、血液凝固時間の検量曲線を使用して逆に推論することができる。「FVIIアクティベーター」の濃度は同様、選択された包括的血液凝固試験を用いて決定することができる。

10

【0024】「FVIIアクティベーター」は同様に、単一鎖ウロキナーゼ(scuPA、単一鎖ウロキナーゼブラスミノーゲンアクティベーター)、および単一鎖 tPA(sctPA、単一鎖組織プラスミノーゲンアクティベーター)の効果的なアクティベーターをもたらすことができること、すなわちプラスミノーゲンアクティベーターアクティベーター(PAA)として作用できることがまた驚くべきことに見出された。活性化PAの活性はたとえば、色素原物質を用いて測定できる。すなわちこの性質は、したがって、「FVIIアクティベーター」の検出および定量化に使用することができる。プラスミノーゲンアクティベーターの活性化はまた、プラスミノーゲンの存在下、プラスミンそれ自身の形成によりまたはプラスミンによってもたらされるフィブリン凝血の溶解により、カップリング反応で決定することができる。

【0025】したがって、要約すれば、プロテアーゼはそれをFVIIIまたはFVIIIaを含有する溶液とインキュベートし、ついでFVIII/FVIIIaの残留量を適当な活性試験により検出および定量の両者が可能であるということができる。同じ方法でFVまたはFVaをプロテアーゼとインキュベートし、FV/FVaの残留量をついで定量することができる。未知のプロテアーゼ濃度は試験に包含されるプロテアーゼの量の上昇を標準曲線と比較して定量的に決定することができる。様々な包括的血液凝固試験が同様に定量化に適当であり、プロテアーゼ濃度は凝固時間の短縮に基づいて検量曲線から読み取られる。プロテアーゼのPAA活性も定量の目的に使用することができる。

【0026】これらの試験の特徴は、FVおよびFVIII 不活性化ならびにPAA活性が適当な高濃度のカルシウム、好ましくは>0.001 mM、特に好ましくは>0.005 mMをCaCl2の形で存在させると、特に良好に発揮されることである。上述のように、ヘパリンおよびヘパリン様物質の両者およびカルシウムもプロテアーゼ活性を上昇させる直接的な色素原アッセイの場合とは対照的に、FV/FVIIIの不活性化はヘパリンによっては促進されないか、または有意ではない促進が認められるにすぎない。これに反し、PAA活性はいずれの物質の存在でも、すなわちカルシウムおよび/またはヘパリンもしくはヘパリン様物質によって刺激される。

【0027】プロテアーゼ誘導反応は、プロテアーゼをインヒビター特にヘパリンまたはヘパリン様物質の存在下(好ましくはヘパリンの存在下)アンチトロンビンIII、C1-エステラーゼインヒビター、α2-アンチプラスミン、インターαートリプシンインヒビターまたは既知の低分子量プロテアーゼインヒビターたとえば商品名

FOY(R)として入手できるグアニジノカプロン酸-P-エトキシカルボニルフェニルエステルとインキュベートすることによってきわめて効率的に減弱または防止することができる。これらの物質は、したがって、たとえばインキュベーション時間を正確に決定するため、または試験の特異性をさらに上昇させる目的で、反応を停止させるために使用することができる。混合物中の遊離のカルシウムイオンをたとえばキレート剤で減少させると、この目的に使用することもできる。

【0028】2. 第Vおよび第VIII因子の安定化されたプレパレーション

血液凝固第Vおよび第VIII因子に対する新規プロテアーゼの蛋白分解活性に関する上述の観察からプロテアーゼ活性の阻害またはその活性の減弱の課題が、生成の喪失および、多分妨害性タンパク質のフラグメントと考えられる断片の形成を回避するために生じる。これはすべて、FVおよびFVIIIが血漿より得られた寒冷沈殿物からカルシウムイオンの存在下に通常調製され、後者はタンパク質のコンフォーメーションの維持に要求されることから、益々重要である。

【0029】本発明の主題の他の部分は、したがって、 血液凝固第VII因子を活性化するプロテアーゼが阻害さ れるとい事実の結果としての蛋白分解により形成された 第Vおよび第VIII因子フラグメントを含まないFVまたは FVIIIの安定化されたプレパレーションである。さらに 詳細な検討によって、上記プロテアーゼによる第Vおよ び第VIII因子の不活性化は特に0.5mM以上の濃度の カルシウムイオンの存在下において効率的に起こること が示されたことから、血液凝固第VII因子を活性化する プロテアーゼの阻害のために第Vまたは第VIII因子プレ パレーション中のカルシウムイオンの濃度を1.0mM 未満、好ましくはO.5mM未満に調整すると第Vおよび 第VIII因子のプレパレーションを効率的に安定化するこ とができる。プロテアーゼの第Vおよび第VIII因子不活 性化作用はこれらの濃度で著しく低下するが、カルシウ ムイオンの量はFVおよびFVIII分子のコンフォーメー ションを安定化するのになお十分である。上述のカルシ ウムイオン量は、単に最終製品においてのみではなく、 寒冷沈殿物自体および以後の精製工程でも過剰になって はならない。

【0030】プロテアーゼまたはプロ酵素のヘパリンおよびヘパリン様物質に対する上述の親和性により、プロテアーゼ/プロ酵素はFVIIIまたはFV含有溶液から、固定化ヘパリンまたは他の免疫性もしくは親和性吸着物質とインキュベートすることによって除去できる。免疫性吸着物質の調製に有用なポリクローナルまたはモノクローナル抗体、それぞれの抗体フラグメントは本技術分野において既知の技術により、プロテアーゼまたはプロ酵素の全体または部分を抗原として用い、容易に入手することができる。

【0031】しかしながら、FVまたはFVIIIの蛋白分解を防止するためには、カルシウムイオン量の低下に加え適宜、天然または合成プロテアーゼインヒビターを使用することもできる。アプロチニン、α2-アンチブラスミン、C1-エステラーゼインヒビターまたはインタートリプシンインヒビターのような蛋白質もインヒビターとして使用できる。本技術分野の熟練者には合成セリンプロテアーゼインヒビターとして知られている低分子量物質もこれに関連して使用することができる。阻害強10度がヘパリンまたはヘパリノイドによって上昇するアンチトロンビンIIIのようなインヒビターも同様に添加できる。すなわち、ヘパリンはそれ自身、小色素原物質に対するプロテアーゼのアミド分解活性を増大できるが、それはFV/FVIIIの不活性化を支持しないことが驚く

べきことに見出された。

12

【0032】3. 新規プロテアーゼからなる医薬 新規なプロテアーゼおよび/またはプロ酵素は治療的に 用いることができる。それらはそれら単独、またはプロ テアーゼの活性を増大させる物質、たとえばヘパリンま たはヘパリン関連物質、たとえばヘパリン硫酸、および 20 /またはカルシウムイオンとともに使用することができ る。この薬剤にはさらに、第VII因子を同様に添加する ことも可能である。そのFVIII副経路活性(FEIB A) を利用するこのような薬剤の使用は、たとえば、F VIIIおよび/またはFIXおよび/またはFXIおよび/ま たは接触相タンパク質たとえばFXIIに対してたとえば 抗体の存在のために耐容性が存在する場合、または他の タイプの欠損状態が存在する場合に適用することができ る。この関連で、FVIIはインビトロ、血漿中、濃縮分 画中のいずれかまたは精製FVII上に対する作用により 活性化することができる。また、新規な血液凝固剤は、 全身性の出血の予防のためまたは出血を停止させるため にエキソビボで使用することも可能である。

ターによる新規プロテアーゼの観察された阻害は、プロ テアーゼインヒビターからなり血液を凝固させる能力が 減弱した薬剤の開発に使用できる。これに加えて、新規 なプロテアーゼはまた、それらのプロテアーゼ阻害作用 によって血液凝固を損なう生理学的および非生理学的因 40 子たとえば合成ペプチドを同定するためにも使用でき る。特に効率的にトランスフォームされる色素原基質、 たとえばS2288(詳細は上記参照)のペプチド配列 はこのための構造的基盤として使用することができる。 これらのプレパレーションが蛋白分解活性を含まない場 合には、凝血プレパレーションに対する適当なインヒビ ターの添加が、それらの調製時にも必要なことがある。 【0034】プロテアーゼの特性がさらに解明されるに 伴い、いわゆる「第VII因子アクティベーター」プロテ アーゼとしての付加的用途の可能性を開く性質が発見さ 50 れた。一本鎖プラスミノーゲンアクティベーター、たと

【0033】他方、アプロチニンまたは上述のインヒビ

えば、プロウロキナーゼ(一本鎖ウロキナーゼ、sucP A、一本鎖ウロキナーゼプラスミノーゲンアクティベー ター) または sctPA (一本鎖組織プラスミノーゲンア クティベーター) をインキュベートすると、「第VII因 子アクティベーター」がこれらのプラスミノーゲンアク ティベーター (PA) の活性化をもたらす。 これに関連 して、一本鎖PAの蛋白分解には限界があり、二重鎖プ ロテアーゼの形成を生じ、これは特にプラスミノーゲン の活性化に適している。生成したプラスミンはフィブリ ン溶解のエフェクター、すなわち血栓の溶解に関与する 10 生理学的システムである。 プロウロキナーゼまたは t P AのようなPAは、必要に応じて放出され、また既知の ようにプラスミンまたはカリクレイン (scuPA) によ って活性化される内因性タンパク質である。健康状態に おいてscuP Aが活性化される機構は、まだ完全には解 明されていない。

13

【0035】 プラスミノーゲンアクティベーターは、血 栓性疾患または併発症たとえば大腿静脈血栓症、心筋梗 塞または卒中に関連した医薬製剤中において、単離もし くは粗換えによって調製されたタンパク質として治療的 20 に使用することができる。

【0036】今回発見された「第VII因子アクティベー ター」の性質により、後者はプラスミノーゲンアクティ ベーターたとえばウロキナーゼまたはsctPAのインビ ボまたはエキソビボ活性化に使用することができる。 こ の活性はまたこのプロテアーゼを、特に一本鎖または二 本鎖プラスミノーゲンアクティベーターまたは抗凝固剤 と組合わせて同様に、血栓塞栓性疾患の予防または治療 のための使用に適用できる。この使用の可能性は、プロ テアーゼがまたプロコアグラント様式で作用できる事実 30 と矛盾しない。2つの反応のどちらが優先するかの問題 は牛理学的物質の利用性によって多分解決される。現時 点での知識によれば、第VII因子は血漿中で中程度に活 性化されて、突然の血管障害に直ちに対処できるように ある濃度に絶えず維持されている。他方、組織プラスミ ノーゲンアクティベーターならびにウロキナーゼプラス ミノーゲンアクティベーターは血漿1回1中にわずかナノ グラム単位の量で存在するのみである。その濃度がプラ スミノーゲンアクティベーターの分泌または合成によっ て上昇するのはフィブリンの沈着または血栓が起こった 場合のみで、それらはついで、局所的に特にそれらが血 栓に結合した場合に活性化されたのち、プラスミノーゲ ンを活性化して、それらの血栓溶解作用を発揮する。一 本鎖PAが存在する場合、特に局所的に限定された様式 ではそれらの活性化がFVIIの活性化を上回り、それに より生理学的状態への調整が可能になる。したがって、 このプロテアーゼはまた止血を調整し、それによって先 天的または後天的欠損状態の症例におけるプロテアーゼ および/またはプロ酵素による置換に適用される可能性 がある。

14 【0037】したがって本発明の主題の他の部分は、血 液凝固第VII因子活性化プロテアーゼおよび/またはそ のプロ酵素型の、フィブリン含有血栓を溶解するのに十 分な量からなる医薬製剤である。この製剤はさらに、一 本鎖プラスミノーゲンアクティベーター (PA) および /または抗凝固剤を含有させることもできる。プロ酵素 が存在する場合には、上述の医薬製剤内にまたはそれと ともに、適当な活性化剤を使用することも有利である。 【0038】「FVIIアクティベーター」のプラスミノ ーゲンアクティベーター増強作用は、特にカルシウムお よび/またはヘパリンおよびヘパリン様物質たとえばデ キストラン硫酸によって促進されることが見出されたこ とから、さらに可溶性カルシウム塩および/または~パ リンもしくはヘパリン様物質を含有する医薬製剤は、フ ィブリン含有血栓を本発明によって溶解するために有利 に使用できる。これに関連して、プロテアーゼ/プロ酵 素はその単独または一本鎖または二本鎖プラスミノーゲ ンアクティベーターと組合わせ、所望によりプロテアー

ゼに対して特定の親和性を発揮し、それによって血漿中

半減期を延長する担体物質としてまたは表面へのメディ

エーターとしてその活性を増大させる物質とともに使用

することができる。 【0039】血液凝固第VII因子活性化プロテアーゼか らなる医薬製剤は、その特異的なフィブリン溶解作用に より、フィブリン含有血栓によって引き起こされる疾患 の処置に使用することができる。フィブリン溶解過程は また創傷治癒過程に関与する。この関連で、上記プロテ アーゼおよび/またはプロ酵素は、静脈内もしくは局部 的、皮下、皮内または筋肉内あるいは傷害もしくは創傷 の場合は局所的にまたは適当な担体マトリックスに結合 させて投与することができる。体液たとえば血液または 血漿から単離されたプロテアーゼ/プロ酵素および粗換 えまたは遺伝子導入により調製されたプロテアーゼ/プ 口酵素はいずれもこの関連で使用できる。プロテアーゼ /プロ酵素はまた、いわゆるフィブリン接着剤の成分と しても適当で、これにはアプロチニンのようなプロテア ーゼ/プロ酵素を阻害する物質を含有してはならない。 この場合、プロテアーゼの凝血短縮作用が利用される。 【0040】上記プロテアーゼ/プロ酵素は、先天性ま たは後天性止血欠損、(汎発性)出血の発生、各種血栓 関連併発症に使用することができる。出血の処置に使用 する場合は、プロテアーゼ/プロ酵素をFVIIIととも に、所望により、さらに他の凝血因子を付加することが 有利である。

【0041】4. FVII活性化プロテアーゼを滅菌する

ヒト血漿から単離されたタンパク質であるから、新規な プロテアーゼおよび/またはそのプロ酵素は、予めウイ ルスを不活性化する処理に付した場合にのみ、医薬製剤 50 として使用することができる。滅菌過程が特にウイルス の不活性化に最も重要な過程として認識されている。しかしながら、処理すべきタンパク質には約60℃で10時間までの過熱に適当な安定性が要求される。各タンパク質について至適な安定剤を別個に決定し、それらの濃度を至適化しなければならない。新規なプロテアーゼおよび/またはそのプロ酵素の場合、滅菌は行わない溶液中のタンパク質を安定化する条件は既に上述した。この場合わずかに酸性のpHが特に有利なことが証明されている。しかしながら、これらの条件下に滅菌を行うと、新規なプロテアーゼおよび/またはそのプロ酵素では通10常、元の活性の50%以上が失われる。

【0042】新規なプロテアーゼおよび/またはそのプロ酵素からなる医薬製剤の減菌は、プレパレーションをa) pH範囲3.5~8.0、好ましくはpH範囲4.0~6.8:

- b)添加した1種または2種以上のアミノ酸0.01mol/L以上、好ましくは0.05mol/L以上の存在下;および/または
- c) 添加した1種の糖または異なる糖の組合わせ、総濃度0.05g/ml以上、好ましくは0.2g/ml以上の存 20 在下: および/または
- d) 添加したカルシウムイオンと錯体を形成できる物質 たとえばクエン酸、シュウ酸、エチレンジアミン四酢酸 等1種または2種以上の存在下に調製されると、至適な 安定化結果が保証される。

【0043】添加物たとえばアルブミン、Haemacce 1(R)、ヘパリンおよびヘパリノイド、グリセロール、グリコールおよびポリエチレングリコールを別個にまたは一緒に混合して使用することができる。滅菌が完了したのち、安定剤として添加した糖、アミノ酸および他の添 30 加物は、本技術分野の熟練者には周知の方法を用いてプレバレーションから減量または完全に除去することができる。滅菌過程の結果は実施例12および13に示す。【0044】

【実施例】実施例1

調製されたプロテアーゼによるFVIIの活性化を、Staclot(R) FVIIaーrTFテストシステム (Stago/Boehrin ger Mamheim) を用いて証明した。この検出システムは、予め形成された活性化FVII (FVIIa)を外因系凝固経路の阻害にのみ使用できる特定の性質の(組換え)可溶性組織因子(rTF)に基づくものである。これは、完全な組織因子を用いた場合とは異なり、FVIIaの実際の含有量を正確に決定することを可能にする。【0045】単離されたFVII (Enzyme Research Labs)を用いて活性化実験を行った。このFVII自体はヒト血漿から単離されたために痕跡のFVIIaを含んでいる。緩衝液で希釈して濃度をFVII 0.05IU/mlに調整した。FVIIを試験物質と室温で10分間インキュベートし、ついで真のFVIIa含量を試験した。FVIIa含量は平行して構築した標準曲線を用いて定量した。

【0046】本明細書には記載していない予備実験で、 用いた濃度ではアプロチニンは調製されたプロテアーゼ の活性を完全に阻害したが、FVIIaに直接の作用をも たず、FVIIaーrTFテストシステムに有意な影響を 示さないことが確認された。以下に掲げる結果は、各場

16

示さないことが確認された。以下に掲げる結果は、各場合、三重の測定に関する。すなわち、以下の実験は次のようにセットアップされた。

【0047】1. FVII:対照アッセイとしては非活性 化FVIIを使用した。これは、既に痕跡のFVIIaを(上 記参照)をFVIIa 10mIU/mIのオーダーで含有して いる。

【0048】2. FVII+アプロチニン: このアッセイでは、FVIIはアプロチニンの存在下にインキュベートし、FVIIa自体は阻害されないことまたテストは用いたアプロチニンによって影響されないことを証明するために、FVIIa-rTFアッセイを使用した。これは確認された(アッセイ1との比較で)。

【0049】3. プロテアーゼ+FVII (インキュベート) ついでアプロチニンの添加:

20 結果: FVIIa 18mIU/ml

この場合、プロテアーゼにはFVIIaを活性化する時間を与えた。アプロチニンはプロテアーゼをそがいするために単に添加し、10分間のインキュベーション後に行われた。得られたFVIIaをFVIIaーrTFアッセイで定量した。すなわち、FVIIaの基底値(アッセイ1)を差し引くと、選択された条件下でのプロテアーゼの活性によってFVIIa 8mIU/mIが形成された。

【0050】4. プロテアーゼ+アプロチニン、ついで FVIIの添加:

30 結果:FVIIa 11mIU/ml

このアッセイでは、プロテアーゼをFVIIと接触させる前にアプロチニンで阻害した。以後のFVIIとのインキュベーションでもまた続くFVIIaの定量でも、有意なFVIIa含量の上昇は生じなかった(アッセイにおける変動の範囲、すなわち、アッセイ1における11と10mlU/mlは有意とはみなされない)。

【0051】5. プロテアーゼ:

結果: FVIIa OmIU/ml

このアッセイでは、選択された濃度においてプロテアー 40 ゼはそれ自体FVIIaーrTFテストシステムに何ら影響を与えないことが証明された。要約すれば、以上から 一記述したプロテアーゼはFVIIを活性化する;

- ープロテアーゼによるFVIIの活性化は「直接」、すな わち、rTFの存在とは独立に起こる;
- FVIIの活性化はアプロチニンによって阻害される; アプロチニンそれ自体はテストシステムに何ら有意な影響は与えない;と結論される。

【0052】実施例2

この実施例はプロテアーゼの濃度およびプロテアーゼが 50 FVIIとインキュベートされた時間とは独立の反応にお いて、FVIIがいかにして活性化されるかを説明する。 テストシステムおよび試薬は実施例1の記載に相当する ように選択された。最初のシリーズの実験では、最初に 導入されたFVIIは様々な希釈度(1:5、1:10お よび1:20)のプロテアーゼ含有溶液とプレインキュ ベートし (室温5分) 、 ついでアプロチニン (プロテア ーゼを阻害する)で処理し、続いて、そのFVIIa含量 をFVIIaーrTFアッセイにおいて試験した。この場 合も、プロテアーゼをFVIIと接触させる前にアプロチ ニンによって阻害したアッセイを平行して行い、対照と 10 【表3】 した。

17

【0053】結果は活性化係数として与える。すなわ ち、上述の対照アッセイで測定された値のx倍に相当す

アッセイ:プロテアーゼ+FVII、インキュベーショ ン、+アプロチニン

対照:プロテアーゼ+アプロチニン、インキュベーショ ン+FVII

【表1】

	<u> 若性化</u>	<u> </u>
プロテアーゼ溶液の希釈度	アッセイ	対 照
1:5	2.6	1.0
1:10	2.0	1.0
1:20	1.6	1.0

これから、FVIIはプロテアーゼにより、プロテアーゼ の濃度に依存する様式で活性化されると結論される。 【0054】共反応物質の濃度を一定に保持した場合、 FVIIはインキュベーションの長さとは独立の様式で、 プロテアーゼによって活性化されることも同様に証明さ 30 れた。FVII 0.2IU/mlおよび1:10-希釈プロテ アーゼ溶液を含有する溶液の等容量を一緒にインキュベ ートした場合には、相当時間のインキュベーション後に アプロチニンを添加して(活性化を停止させるため)、以 下のFVIIa含量が得られた。

【表2】

インキュペーションの長さ	活性化係数
0 分	1.0
2.5 /3	1.3
5.0 <i>分</i>	2. 0
10.0分	2. 8
40.0 / 3	> 3.8

これから、FVIIは、プロテアーゼによって時間依存性 の様式で活性化されると結論される。

【0055】実施例3

この実施例を用い、FVIIのプロテアーゼによる活性化 はカルシウムイオンおよびヘパリンの存在によって増大 することを証明することとする。25μ1のプロテアー ゼ含有溶液を、50μ1の

-緩衝液(対照)

- -15mM CaCl2
- -~パリン 50USP単位/■
- -Pathroutin (脂質混合物、アリコートを製造業者の指 示書に従って溶解)と室温で5分間混合し、ついで15 Oulのtris/NaCl緩衝液(pH8.2)および2 5μ1の色素原基質S2288 (3m)で処理し、つい で405mmにおける吸光度の経時的変化を測定した(3 7℃)。緩衝液対照に対する活性化係数 (x倍)は下表 に示す。

	アッセイ	活性化係数(裁衡液 対照に対する倍数 x)
	級貨液対照	1.0
	+CaCl;	3.6
	+ヘイリン	2.6
	+脂質	0.9
	+CaCls+ヘパリン	4.3
	+CaCl ₂ +脂質	3.3
	+ヘパリン+脂質	2.7
20	+ CaCl ₂ +へパリン+脂質	3.7

この実施例で用いた条件下には、プロテアーゼ活性の著 しい上昇をカルシウムイオンおよび/またはヘパリンの 存在下に観察することができる。

【0056】実施例4

いずれの場合も、プロテアーゼ10、1または0.1 µg /mlを含有する溶液を、25μlのFVII(2IU/ml)と 混合したのち、25µ1のCaCl2 (25mm) および25 μ1のPathromtin^(R) (Dade Behring GmbH) を加えた。3 7℃において0、3、10および20分間インキュベー トしたのち、400μ1のアプロチニン(500KIU/■ g) を添加して反応を停止させた。アプロチニンを最初 に添加したサンプルを対照として用いた。

【0057】各サンプルをtris緩衝液/BSAに希 釈した。各場合、この溶液50 m1を因子試薬 [主とし てFIXa、FXおよびトロンピンインヒビターからな り、Cosmatic(R) FVIIIテスト、Chromogenix AB に従っ て改変] 50µ1と混合し、37℃において10分間イ ンキュベートした。50μ1の基質 (たとえばS276 40 5、N-a-Cbo-D-Arg-Gly-Arg-pNA)を 加えてたのち、既定時間のインキュベーション後に50 μ1の酢酸 (50%) を添加して反応を停止させ、つい でOD405naを測定した。FVIIIの標準曲線を用いてサ ンプル中の濃度を決定した。

【0058】結果: 最初のアッセイでは、プロテアーゼ をFVIII (2IU/nl) とインキュベートする時間を一定 (10分) に保持したが、プロテアーゼの濃度は変動さ せた (0.1、1および10 µg/ml)。反応を停止さ せ、活性なFVIIIの残留濃度を測定した。プロテアーゼ 50 濃度が上昇すると、それに対応してFVIIIは不活性化さ

れた(図1)。サンプルのプロテアーゼ含量は適当な標 準曲線を用いて定量化できる。第二のアッセイではプロ テアーゼの濃度を一定に保持して(10μg/ml)、FV III (2IU/ml) とインキュベーション時間を変動させ た。活性なFVIIIの残留濃度の著しい低下がインキュベ ーション時間の延長とともに認められた(図2).

19

【0059】実施例5

第V因子の活性に対する「FVIIアクティベーター」の影 響を検討した。25μ1のプロテアーゼ含有溶液(0~ 100 μg/ml)を50 μlのFV(5 IU/ml)および2 *10 【表4】

* 5µ1のCaCl2 とインキュベートし(0~20分)、 ついで100KIU/mlのアプロチニンを含む緩衝液40 0μ1を加えた。いずれの場合も、各100μ1のインキ ュベーションアッセイをついで100μlのFV欠乏血漿 と37℃で1分間インキュベートし、次に200µ1のT hromborel S(R)を加えて混合し、Schnitger & Gross 血 液凝固計で血液凝固時間を測定した。FVの残留活性を 決定した。

結果:

FVの残留活性

29

プロテアーゼ濃度	プロテアーゼと	FVのインキ	ュペー <u>ト時間(分)</u>
(µg/ml)	0	10	20
10	93	91	100
30	100	93	28

100

この実施例では、FVがプロテアーゼによって経時的に 不活性化されたことが証明される。

100

【0060】実施例6

「FVIIアクティベーター」のいわゆる包括的試験にお ける血液凝固時間に対する影響を、Schnitger & Gross 血液凝固計を用いて検討した。掲げた差の値は、すべて この量で短縮された血液凝固時間に相当する。

【0061】NAPTT (非活性化部分トロンポプラス チン時間)

プロテアーゼ含有溶液を緩衝液で100、30、10お※

※よび3μg/mlに希釈した。これらの溶液それぞれ10 0μ1を、100μ1の加クエン酸血漿(標準血漿プール または個々のドナーから) および100µ1のPathronti 20 n^(R)と37℃で2分間インキュベートし、ついで100 μ1の25mM CaCl2を加え、ついで血液凝固時間を 測定した。これらの測定値とプロテアーゼに代えて緩衝 液を用いて得られた相当する血液凝固時間の間の差を求 めた。

13

【表5】

	血液凝固時間の差(緩衝被-サンブル、杪)				
		プロテ	アーゼ濃度	ξ (μg/m)	1)
サンプル番号	0_	_3_	<u>10</u>	<u>3 0</u>	100
標準ヒト血漿(213秒)	0	13	20	4 2	43
1	0	20	33	42	41
2	0	27	3 1	4 5	47
3	0	13	14	23	29
4	0	18	37	5 1	50
5	0	25	49	54	46

FVIIアクティベーターの添加はNAPTTの濃度依存 性の短縮を生じた。

【0062】血漿カルシウム再沈殿時間

よび3 μg/mlに希釈した。これらの溶液それぞれ10 0μ1を、100μ1の加クエン酸血漿 (標準血漿プー ★

★ルまたは個々のドナーから)と37℃で1分間インキュ ベートし、ついで100µlの25mM CaClzを加 え、ついで血液凝固時間を測定した。これらの測定値と プロテアーゼ含有溶液を緩衝液で100、30、10お 40 プロテアーゼに代えて緩衝液を用いて得られた相当する 血液凝固時間の間の差を求めた。

【表6】

血液凝固時間の差(緩衝液ーサンプル、秒)

	プロテアーゼ濃度 (μg/ml)				
サンプル番号	0_	_3_	10	30	100
標準ヒト血漿(283秒)	0	17. 2	15. 1	30. 5	50. 4
1	0	29. 8	51. 7	60. 3	90. 1
2	0	25. 2	51. 7	69. 5	101. 3
3	0	28. D	_	39. 0	74.6
4	0	27. 3	42.7	55. 6	91.8
5	0	44. 3	69. 1	101, 2	134. 2

【0063】PT (プロトロンビン時間) プロテアーゼ含有溶液を緩衝液で100、30、10お よび3μg/mlに希釈した。これらの溶液それぞれ10 0μlを、100μlの加クエン酸血漿(標準血漿プール または個々のドナーから)と37℃で1分間インキュベ* *一トし、ついで200μ1のThrombore1 S^(R) (Dade Behring GmbH)を加え、ついで血液凝固時間を測定した。 これらの測定値とプロテアーゼに代えて緩衝液を用いて 得られた相当する血液凝固時間の間の差を求めた。

【表7】

血液凝固時間の差(緩衝液ーサンプル、砂) プロテアーゼ濃度(μg/wl) 100 0 _3_ 10 30 サンプル番号 1.0 1.7 1.5 24 0 標準ヒト血漿(13.6秒) 27 0.7 1.3 2, 4 0 1 3.1 0.3 0.4 1.7 2 0.4 0.7 1.5 1.8 0 3 1.8 3.1 D. 1 0.7 4 0 0. 3 0.5 1. 2 28 5

【0064】実施例7

「FVIIアクティベーター」のプラスミノーゲンアクティベーター活性化作用を一本鎖ウロキナーゼ(scuPA)および一本鎖 t PA(sctPA)を使用して検討した。

アッセイ:

- 0.1 ml PA溶液 (20μg/mlのscuPAまたは100μg/mlのsctPA)
- +0.1ml 試験緩衝液または試験緩衝液中100U/m 1のヘパリンまたは試験緩衝液中20mM CaCl2
- +0.5ml 試験緩衝液
- +0.1ml プロテアーゼ/サンプル (濃度上昇; 2~1 0μg/mlのscuPAまたは50~200μg/mlのsctPA) 37℃でインキュベーション

- ※+0.1ml 試験緩衝液中100KIU/mlのアプロチニン 37℃で2分間インキュベーション
- +0.1ml 基質S-2444 (3m)
- 対照としては、最初のインキュベーションの前に、プラ30 スミノーゲンアクティベーター (PA) に代えてアプロチニンを最初に導入し、以下、各場合を通して同様に実施する。一方、PAは、以後アプロチニンの代わりに添加するまで加えなかった。測定値の差 (Δ) ΔΟD 405nnを光学的に測定した。得られた対照値をサンプル/プロテアーゼ値から差し引き、この方法で、PAA活性によって生じたPA活性を測定した (mIU/分)。【0065】結果:scuPAの活性化(20μg/mlのscuPA、2~10μg/mlの「FVIIアクティベーター」)

※ 【表8】

23 A. 刺激物質:なし

	得られたP	A枯性(Δm	<u>.IU/分)</u>	
インキュペーション時間	FVIIアクティベーター (μg/ml)			
(分)	2_	<u> 5</u>	10	
2	2 5	60	117	
5	79	179	165	
10	186	449	517	

B. 刺激物質: ヘパリン

	得られたドス石在 (Δm I U/分) FVIIアクティベーター (μg/ml)			
インキュペーション時間				
(分)	2	_5_	10	
2	190	332	425	
5	330	455	458	
10	417	462	460	

C. 刺激物質: CaCla

得られた FA荷住(40110/万)			
FVIIT 25	ティベーター	(μg/ml)	
2_	5	10	
255	370	401	
338	424	438	
416	445	448	
	FVII775 2 255 338	FVIIアクティペーター 2 5 255 370 338 424	

表は、scuPAが「FVIIアクティベーター」の濃度およ びインキュベーションの長さに依存する様式で活性化さ れる事実を例示する。同時に、ヘパリンおよびカルシウ ムの両者がプロテアーゼによってもたらされたPAの活 性化に刺激作用を示した。

【0066】scuPAの活性化(100μg/mlのsctPA、50 * 30 ~200µg/mlの「FVIIアクティベーター」)

*活性化tPAの代謝回転速度はtPAプロ酵素に比較し て係数3~4まで上昇するにすぎない(uPAの場合は 係数1000~1500上昇する)ので、分析可能な測 定シグナルを得るために、2種の共反応物質の高い濃度 を選択しなければならなかった。

【表9】

2.6

インキュペーション時間 得られたPA活性 (Δm [U/分) FVIIアクティベーター(200 μg/ml) (分) 10.2 1 2 16.8 38.8 5 60.2 10 73.3 20

B.「FVIIアクティベーター」の濃度依存性(インキュベーション、 時間:20分、37℃)、刺激物質:へパリン(100Ⅳ/□1)

FVIIアクティペーター	
(μg/ml)	PA活性(Δ=IU/分)
50	33.6
100	51.0
200	71.9

C. 刺激物質 (インキュペーション、時間:20分、37℃)

刺激物質	PA括性(ΔmIU/分)
なし	5.9
CaC1 ₂	25.3
ヘパリン	63.8

表は sctPAもプロテアーゼの濃度およびインキュベー ション時間に依存する様式で活性化されたことを証明す る。ヘパリンおよびカルシウムイオンの両者が「FVII アクティベーター」のPAの活性化能力に対して刺激作 用を示した。

【0067】実施例8

2種のFVIII含有溶液、一方はフォン・ヴィルブラント 上述のプロテアーゼとカルシウムの存在下にインキュベ ートした。予め定められた時間後に、色素原試験によっ て残留FVIII活性を測定し、プロテアーゼを含まない対 照アッセイと関連させた。

【0068】このためには、0.1 IU/mlのFVIIIを含 有する溶液25μ1を同容量のプロテアーゼ溶液 (με/ al) で処理し、全体を25μlのCaCl2 (25m) と混 合した。0、5、10および20分間37℃でインキュ ベートしたのち、プロテアーゼの蛋白分解活性を停止さ せるために各場合、200KIU/mlのアプロチニンを含 有する溶液400μ1で処理した。予備実験では、アプ * *ロチニンのこの濃度はいかに記述する FVIII 活性試験 (アッセイ1+3)に有意な干渉作用をもたないことが 示された。アッセイ2においては、プロテアーゼをFVI IIと接触させる前にアプロチニンとインキュベートし、 ついで上述のように操作した。

【0069】いずれの場合も、50µ1の停止したサン プル (またはさらに希釈後) をついで主としてFIX、F 因子を本質的に含まず、他方はvWFを含有する溶液を 30 Xおよびトロンビンインヒビターからなる、いわゆる因 子試薬で処理し、37℃において10分間インキュベー トした。活性化FXによって切断される色素原基質50 μ1の添加に続いて5分間インキュベートしたのち50 μ1の酢酸(50%)を添加して反応を停止させ、つい でΔOD405nmを測定した。FVIII活性 (mIU) は、FVI II濃縮物から調製し、テストに包含された希釈系列を用 いて構築した標準曲線を利用して確認した。

> 【0070】FVIII活性はプロテアーゼを添加しなかっ た対照に対する百分率で示す。

40 結果:

【表10】 FYIII活性(%)

		インキュベーション時間(分)			
	アッセイ	_0_	_5_	<u>10</u>	20
1.	FVIII	97	27	11	< 1
2.	FVIII/アプロチニン	98	97	97	96
3.	FVIII/vWF	98	16	1 4	1

CaCl₂ (この場合は6.25mM) の存在下には、FVI 川はプロテアーゼにより、インキュベーションの長さに 依存した様式で不活性化された。vWFは、プロテアー※50 ると、前者の不活性化は防止された。

※ゼによる不活性化からFVIIIを保護しなかった。FVIII と接触させる前にアプロチニンでプロテアーゼを阻害す

【0071】実施例9

このシリーズの実験では、実施例1/アッセイ1を実施 したが、この場合は、プロテアーゼとFVIIIの混合物中 のカルシウム濃度を変動させた。このためには、CaCl 2をカルシウム保存溶液から図3に示す最終濃度まで添 加した。

27

結果:アッセイ中のカルシウム濃度を1mM未満に低下 させると、これらの条件下に約50%のFVIIIが残留す る。0.5mM未満のカルシウムでは残留百分率は60 %以上である(図1)。

【0072】実施例10

「FVIIアクティベーター」のいわゆる包括的試験にお ける血液凝固時間に対する影響を血栓弾性記録法によっ て検討した。関連血餅の剪断弾性または強度の変化を、

Hilgard TEGメーター(!

*記録した。いわゆるrおよびk値、それぞれ血液の停止 の開始からおよび血液凝固反応の開始からの時間であ り、加クエン酸血漿の場合にはTEG曲線までの再カル シウム沈殿の時間は1mmまで広がり、r値の終点から曲 線までの時間は20㎜に広がった(血餅形成時間)。 【0073】このためには、5例のドナーからの血液ま たは血漿の150μ1のアリコートを各場合、測定キュ ーベット中37℃で2分間インキュベートし、ついで5 0 μ1のサンプル (プロテアーゼ) を加え混合した。1 10 00μlの25mM CaCl2を加え、反応を開始させ た。アッセイ中「FVIIアクティベーター」の終濃度は 15μg/mlであった。r時間の短縮をサンプルに代え て緩衝液を含有するアッセイに関して測定した。 結果:

HelligeL	り)を用いて連	遠的に*	【表11】	
血液番号	サンプル	r時間(分)	k時間(分)	<u>r+k時間(分)</u>
1	プロテアーゼ	5. 2	3.4	8.6
1	緩衝液	7.8	5.6	13.4
2	プロテアーゼ	5.2	5.1	10.3
2	緩衝液	6.8	7.1	13.9
3	プロテアーゼ	4.0	5.2	9. 2
3 .	緩衝液	6.5	6.3	12.8
4	プロテアーゼ	4.5	4.8	9.3
4	緩衝液	4.8	6.0	10.8
5	プロテアーゼ	4.2	3.8	8.0
5	緩衝液	7.0	5. 8	12.8

血漿番号	サンブル	r 時間(分)
1	プロテアーゼ	9.0
1	极 衝液	11.3
2	プロテアーゼ	9. 2
2	緩衝液	12.5
3	プロテアーゼ	9.5
3	殺衝液	9.6
4	プロテアーゼ	8.2
4	級衝液	12.1
5	プロテアーゼ	9.7
5	緩衝液	14.1

【0074】この実施例は、ほとんどすべての場合、プ ロテアーゼの添加は血液凝固時間の著しい短縮を起こす ことを明らかにするものである。ここに示した例では 「FVIIアクティベーター」のフィブリン溶解作用はバ ックグランド中に隠れてしまっていた。この理由は「正 常対象」では血漿中のプラスミノーゲンアクティベータ ーの濃度がナノグラムの領域にあり、インビトロでの血 液凝固試験には全く影響しないからである。

※【0075】実施例11

プロテアーゼのFVIII副経路活性は以下の実験的アッセ イによって証明された。すなわち、測定技術として血栓 弾性記録法を用いた。 r時間を評価した (実施例10参 照)。全血サンプルを、天然のFVIIIインヒビターの存 在を刺激するために、そのFVIII活性阻害作用が分かっ ているモノクローナル抗体 (FVIIIに対する抗体)とイ ※50 ンキュベートした。サンプルを全血サンプル対照 (Ma 29

bに代えて緩衝液)と比較した。プロテアーゼのFEIB活性を、Mabによって阻害された全血サンプルにプロテアーゼ(終濃度17μg/ml)を加えて試験した。さらにサンプルにプロテアーゼを加え、プロテアーゼ自体の r 時間に対する影響を測定した。

【0076】結果:

【表12】

	r時間
全血対照	8.0
全血+mAb	11.0
全血+mAb+プロテアーゼ	8.0
全血+プロテアーゼ	3.5

抗-FVIII mAbによって引き起こされるr時間の延 長はこの場合もプロテアーゼの存在により正常化され、 これはプロテアーゼのFEIB活性を例示するものであ る。既に上に証明したように、プロテアーゼそれ自体は 血液凝固時間を短縮した。

【0077】実施例12

50μg/mlのFVII活性化プロテアーゼを含有する溶液 20 に、以下の物質を相当する終濃度になるように加えた。 25mM クエン酸ナトリウム

25mM HEPES

100mM アルギニン

0.75g/ml スクロース

この溶液を部分に分割し、各場合、アリコートを5.0~8.6の様々なpH値に調製し、ついで60℃に10時間加熱した。加熱したプロテアーゼ溶液の活性は色素原試験により測定し色素原基質S2288(H-D-Ile-Pro-Arg-pHA×2HC1、Chromogenix AB, Sw 30 eden)の経時的なアミド分解を記録した。この活性は加熱しないで平行して測定されたアリコートの百分率として表示した。*

*【0078】結果:

【表13】

	アッセイ	活性(%)
	出発原料	100
	pH5.0	76
	p H 5. 5	6 5
	pH6.1	8 1
	pH6.5	50
	pH7.1	43
10	pH7.5	4 6
	рН8.1	4 6
	pH8.6	3 2

この一連の実験は、特に酸性のpH範囲における安定化はプロテアーゼの不活性化を著しく低下させた。pH 5.5におけるわずかな「ブレークスルー」はこの範囲にプロテアーゼの等電点があるという事実によって説明できる。クエン酸ナトリウムは好ましいpH範囲で起こる>50%の活性の喪失を防止する。

20 【0079】実施例13

p H 6.1 におけるアッセイ (実施例1) はプロテアーゼの最良の安定化を示した。したがって、様々な活性を実施例1 に記載のように p H 6.0 で試験して評価した。以下の終濃度をセットし、プロテアーゼの濃度ほう。 0 μg/mlとした。

50mM クエン酸ナトリウム/50mM NaCl、pH 6.0

0.75g/mlのスクロース

100mMのグリシン

100mMのアルギニン

【0080】結果:

【表14】

アッセイ	估性(%)
出発原料	100
クエン酸ナトリウム/NaC1	5 4
クエン酸ナトリウム/NaCl/スクロース	8 5
クエン酸ナトリウム/NaC1/スクロース/グリシン	9 2
クエン酸ナトリウム/NaC1/スクロース/アルギニン	97

スクロースおよび各場合1種のアミノ酸の添加によって 40%【図2】プロテアーゼ濃度を一定とし、FVIIIを様々な プロテアーゼの著しい安定化が証明された。 時間インキュベートした場合のFVIIIの不活性化を示

【図面の簡単な説明】

【図1】プロテアーゼとFVIIIを一定時間インキュベートした場合のプロテアーゼ濃度とFVIIIの不活性化を示す。

【図3】プロテアーゼとFVIIIを混合物中におけるカルシウム濃度を変動させインキュベートした場合のFVIIIの不活性化を示す。

フロントページの続き

FI デーマコート' (参考 G01N 33/573 A A61K 37/54 (31)優先権主張番号 19827734:2 (32)優先日 平成10年6月22日(1998. 6. 22)

ドイツ (DE)

(31)優先権主張番号 19903693:4

(32)優先日

平成11年2月1日(1999. 2. 1)

(33)優先権主張国 ドイツ(DE)

(72)発明者 ハンスーアルノルト・シュテーア

ドイツ連邦共和国デー-35083ヴェター.

シュールシュトラーセ66

(72) 発明者 アネッテ・フォイスナー

ドイツ連邦共和国デー-35043マルブルク.

ランゲヴィーゼンヴェーク10