

ROYAL INSTITUTE OF TECHNOLOGY

ON THE IMPACT OF SPATIAL CORRELATION AND PRECODER DESIGN ON THE PERFORMANCE OF MIMO SYSTEMS WITH SPACE-TIME CODING

TECHNISCHE UNIVERSITÄT DRESDEN

Emil Björnson, Björn Ottersten ACCESS Linnaeus Center Royal Institute of Technology (KTH) Stockholm, Sweden

Eduard Jorswieck Communications Theory Dresden University of Technology Dresden, Germany

How does spatial correlation impact the performance? With and without statistical CSI at transmitter.

Introduction

We consider a single-user communication system:

- Multiple antennas: n_T at transmitter, n_R at receiver.
- Perfect channel state information (CSI) at receiver.
- No instantaneous CSI at transmitter.

Statistical channel properties important for performance:

- Some spatial directions might on average be more favorable.
- Transmission should be designed based on the statistics.

Original model:

Are Channel Gain & Spatial Direction Correlated?

How will spatial correlation affect the system performance?

System model

 $\mathbf{H} = \mathbf{R}_R^{1/2} \, \widetilde{\mathbf{H}} \, \mathbf{R}_T^{1/2}$,

ullet ${f R}_T$ transmit correlation matrix, ${f R}_R$ receive correlation matrix.

• H i.i.d. zero-mean complex Gaussian matrix with unit variance.

Transmission with orthogonal space-time block codes (OSTBCs):

Y = HWC(s) + N,

• K symbols over T slots: $\mathbf{s} = [s_1, ..., s_K]^T$ (coding rate: $\frac{K}{T}$).

• Average symbol power $E\{|s_k|^2\} = \gamma$, spatial dimension B.

• Linear precoder, $\mathbf{W} \in \mathbb{C}^{n_T \times B}$, power constraint $\|\mathbf{W}\|^2 = 1$.

Rayleigh fading channel with Kronecker structure:

Probability that receiver makes an error in symbol detection.

Symbol Error Rate (SER) is the performance measure:

Performance Measure: SER

Depends on type of symbol constellation, SNR, and statistics.

Definition. Let $\mathbf{\Phi} = \mathbf{R}_R \otimes (\mathbf{W}\mathbf{W}^H\mathbf{R}_T)$ and define

$$F_{a,b}(g) = \frac{1}{\pi} \int_a^b \frac{d\theta}{\det\left(\mathbf{I} + \frac{\gamma g}{\sin^2(\theta)}\mathbf{\Phi}\right)}, \quad g \ge 0, b \ge a.$$

SER for M-PAM, M-PSK, and M-QAM symbol constellations:

SER_{PAM} =
$$\frac{2(M-1)}{M} F_{0,\frac{\pi}{2}}(g_{PAM})$$
,

$$SER_{PSK} = F_{0,\frac{M-1}{M}\pi}(g_{PSK}),$$

SER_{QAM} =
$$\frac{4(\sqrt{M}-1)}{M} (F_{0,\frac{\pi}{4}}(g_{\text{QAM}}) + \sqrt{M}F_{\frac{\pi}{4},\frac{\pi}{2}}(g_{\text{QAM}})),$$

with $g_{\text{PAM}} = \frac{3}{M^2 - 1}$, $g_{\text{PSK}} = \sin^2(\frac{\pi}{M})$, and $g_{\text{QAM}} = \frac{3}{2(M - 1)}$.

Precoding Design

Goal: Minimize SER by design of linear precoder W.

- Without CSI at transmitter: Minimize worst-case SER by $B = n_T$ and $\mathbf{W} = \frac{1}{\sqrt{n_T}}\mathbf{I}$.
- With statistical CSI at transmitter: Adapt **W** and $B \leq n_T$ to the spatial properties.

Optimal precoder structure: $\mathbf{W} = \mathbf{U}_T \boldsymbol{\Delta}$.

- $\Delta \Delta^T = \text{diag}(\sqrt{p_1},...,\sqrt{p_B},0,...,0), \sum_{k=1}^B p_k = 1.$
- ullet \mathbf{U}_T contain eigenvectors of \mathbf{R}_T , decreasing in dominance.

Example of precoder power allocation:

Measure of Spatial Correlation

How to analyze the impact of spatial correlation?

• The determinant in $F_{a,b}(g)$ depends on the eigenvalues of Φ :

$$\det\left(\mathbf{I} + \frac{\gamma g}{\sin^2(\theta)}\mathbf{\Phi}\right) = \prod_{k=1}^{n_T n_R} \left(1 + \frac{\gamma g}{\sin^2(\theta)}\lambda_k(\mathbf{\Phi})\right),\,$$

Different spatial correlations = Different eigenvalue distributions.

Majorization: If two vectors x and y, with ordered elements $x_1 \ge x_2 \ge ... \ge x_M$ and $y_1 \ge y_2 \ge ... \ge y_M$, satisfy

$$\sum_{k=1}^m x_k \ge \sum_{k=1}^m y_k \text{, for } m = 1, \dots, M-1 \text{, and } \sum_{k=1}^M x_k = \sum_{k=1}^M y_k \text{,}$$

then x majorizes y. Notation: $x \succeq y$.

Interpretation for eigenvalues of correlation matrices:

- ${\bf x}$ and ${\bf y}$ contain eigenvalues of correlation matrices ${\bf R}_1$ and ${\bf R}_2$.
- $\mathbf{x} \succeq \mathbf{y}$ means \mathbf{R}_1 is more spatially correlated than \mathbf{R}_2 .

Schur-convex and Schur-concave: A function $f(\cdot)$: $\mathbb{R}^M \to \mathbb{R}$ is

- Schur-convex if $\mathbf{x} \succeq \mathbf{y}$ implies $f(\mathbf{x}) \geq f(\mathbf{y})$.
- Schur-concave if $\mathbf{x} \succeq \mathbf{y}$ implies $f(\mathbf{x}) \leq f(\mathbf{y})$.

Dependence on Spatial Correlation

Without CSI at transmitter:

Theorem 1. The function $F_{a,b}(g)$ is Schur-convex with respect to

- ullet Eigenvalues of ${f R}_T$ for fixed ${f R}_R$.
- ullet Eigenvalues of ${f R}_R$ for fixed ${f R}_T$.

With statistical CSI at transmitter:

Theorem 2. The function $F_{a,b}(g)$ with optimal precoding is

- ullet Schur-concave w.r.t. eigenval. of ${f R}_T$ for fixed ${f R}_R$ at low SNR.
- ullet Schur-convex w.r.t. eigenval. of ${f R}_T$ for fixed ${f R}_R$ at high SNR.
- ullet Schur-convex w.r.t. eigenval. of ${f R}_R$ for fixed ${f R}_T$ at all SNRs.

Numerical Examples

When is spatial correlation useful in practice?

- Transmit side correlation shown to be desirable at low SNR.
- How to interpret this in practice?
- At least $\gamma \leq \frac{1}{g \operatorname{tr}(\mathbf{R}_T) \operatorname{tr}(\mathbf{R}_R)}$ corresponds to low SNR.
- From simulation: Approximate low SNR behavior at all SNRs.

The SER as function of correlation between adjacent receive antennas in a four-antenna array. The transmitter has $n_T = 4$ and a fixed correlation of 0.5. The SER is Schur-convex at all SNRs.

The SER as function of correlation between adjacent transmit antennas in a four-antenna array. The receiver has $n_R = 4$ and a fixed correlation of 0.5. The SER is Schur-concave at low and medium SNR and becomes Schur-convex at high SNR.

Conclusions & Contributions

Analysis of impact of spatial correlation with different CSI on

• Symbol Error Rate of M-PAM, M-PSK, and M-QAM.

Without CSI at transmitter:

Spatial correlation always degrades performance.

With statistical CSI at transmitter and optimal precoding:

- Spatial correlation at *transmitter* improves performance.
- Spatial correlation at *receiver* still degrades performance.

Equivalent model: Equivalent Channel