241030095 CE613A

ASSIGNMENT 11

Step 1: Download DEM & LULC Data from Google Earth Engine (GEE)

- 1. Use the coordinates: Latitude, Longitude.
- 2. Export:
 - o **DEM**
 - LULC
- 3. Export data as .tif to Google Drive and downloaded it.

Step 2: Delineate Pandu River Watershed in QGIS

- 1. Load world map with osm.
- 2. Load the DEM in QGIS.
- 3. Reprojected and subset our dem.
- 4. Use Fill sinks tool (Processing Toolbox → SAGA NEXT GEN → Terrain analysis-Hydrology → Fill Sinks wang liu) to preprocess DEM. SLOPE=0.01
- 5. Use Strahler Order tool (Processing Toolbox → SAGA → Terrain Analysis Channels → Strahler Order) To assign a hierarchical order to the stream. If stream order matches actual channel then it will opted for further calculation.
- 6. Use Channel network and Drainage Basin tool (Processing Toolbox → SAGA NEXT GEN→ Terrain analysis-Channel → Channel network and Drainage Basin) for flow accumulation, to create basins and channel in catchment. Threshold = 8
- 7. Define the outlet point.
- 8. Use Upslope Area tool (QGIS → Processing Toolbox → SAGA → Terrain Analysis Hydrology → Upslope Area) To compute the contributing area to outlet.
- 9. Clip all feature for contributing area like DEM, CHANNEL, BASIN

Step 3: Clip LULC Raster to Watershed

- 1. Load your LULC .tif raster.
- 2. Use Clip raster by mask layer tool.
 - o Input: LULC raster
 - o Mask: Watershed boundary
 - o Save as LULC Clipped.tif

Step 4: Convert Raster to Polygon

1. Use Raster to Vector tool.

241030095 CE613A

- o Input: Kanpur LULC Clipped.tif
- o Field: DN (land cover classes)
- 2. Name the output: LULC PANDU VECTOR.shp.

Step 5: Add Area Column

- 1. Open Attribute Table of LULC PANDU VECTOR.shp.
- 2. Toggle Editing \rightarrow Field Calculator:
 - o New Field: area ha
 - o Formula: \$area / 10000 (for hectares)

Step 6: Calculate Area by Land Class

- 1. Search "Statistics by Categories" in the Processing Toolbox.
- 2. Input:
 - Layer: LULC_PANDU_VECTOR.shp
 - o Category Field: DN
 - o Value Field: area ha
- 3. Output \rightarrow Save as CSV: LULC Stats.csv

Step 7: Calculate Percentage in QGIS

- 1. Open CSV as a layer (Layer \rightarrow Add Layer \rightarrow Add Delimited Text Layer).
- 2. Open Attribute Table \rightarrow Field Calculator:
 - o New Field: percentage
 - o Formula: "sum" / total_area * 100
 - Replace total area with the sum.

Step 8: Add LULC Class Names

- 1. Add a new field: LULC TYPE.
- 2. Manually assign values based on your LULC classification (e.g.):

Step 9: Dam Simulation & Volume Estimation

- 1. Use Raster Surface Volume tool:
 - o Input: Clipped DEM (use raster calculator to mask DEM with inundation extent).
 - Method: below a reference level (115 m HFL).---- 115 adopted because lowe maximum elevation than 150.
 - o Output: Save volume table and HTML report.

241030095 CE613A

- 2. Note values:
 - o Volume (m³)----- MCM
 - o Pixel Count
 - o Total Inundated Area (m²) ----- ha

Step 10: Create Maps in Layout Manager

For each map (LULC, Stream, Flood):

- 1. Go to Project \rightarrow New Print Layout.
- 2. Add Map Frame \rightarrow Adjust to region of interest.
- 3. Add Elements:
 - North Arrow
 - Scale Bar
 - Legend
 - o Title
 - o Labels
- 4. To add LULC table from Excel:
 - Save Excel as CSV.
 - o Import CSV as a Layer or take a screenshot and add as Image.

MAPS ARE ATTACHED IN ZIP FILE.