Práctico 4 ALGABO: Introducción a la programación dinámica.

Mauricio Velasco

- 1. Se G_n el grafo de cadena no dirigido con vértices 1, 2, ..., n (es decir el que tiene aristas $E(G) = \{(j, j+1) : j = 1, ..., n-1\}$ y sus reversas). Suponga que G tiene pesos en los vértices dados por la función $w: V(G_n) \to \mathbb{R}$ especificada mediante la fórmula w(j) = j para j = 1, 2, ..., n
 - a) Cuál cree usted que es el peso máximo posible de un subconjunto independiente de vértices de G_n ? La respuesta debe depender del índice n.
 - b) Utilice inducción y la formulación del problema mediante programación dinámica para demostrar que la respuesta que propuso en la parte (a) es correcta.
- 2. Máximo conjunto independiente para grafos generales. Para un grafo G y un subconjunto $W \subseteq V(G)$ definimos el grafo $G \setminus W$ como aquel que tiene vértices $V(G) \setminus W$ y cuyas aristas son las aristas de G que tienen ambos extremos en $V(G) \setminus W$.

Si G es un grafo no dirigido finito con vértices v_1,\ldots,v_n dotado de una función de pesos positivos en los vértices w defina el problema de optimización

$$\Lambda(G):=\max\left\{w(T): T\subseteq V(G) \text{ y } T \text{ es independiente en } G\right\}.$$
donde $w(T):=\sum_{t\in T}w(t).$

a) Demuestre que la siguiente ecuación de Bellman se cumple

$$\Lambda(G) = \max(\Lambda(G \setminus \{v_n\}), w(v_n) + \Lambda(G \setminus \text{star}(v_n)))$$

donde $star(v_n)$ es el conjunto que consiste de v_n y de todos los vértices adyacentes a v_n .

- b) Proponga un algoritmo de programación dinámica para calcular $\Lambda(G)$ usando la ecuación del renglón anterior.
- c) Verdadero ó Falso? El algoritmo propuesto permite calcular $\Lambda(G)$ en tiempo lineal O(n) para cualquier grafo?
- 3. Knapsack. Considere la siguiente instancia del problema de Knapsack para un saco con capacidad C=9

Item	Valor	Tamaño
1	1	1
2	2	3
3	3	2
4	4	5
5	5	4

- a) Escriba el código en Python de una implementación de la solución del problema de Knapsack dada la capacidad, los items y los valores.
- b) Usando su programa encuentre el valor óptimo del problema de arriba y los items que constituyen una solución de máximo valor.
- c) Escriba la sucesión de subproblemas que su implementación resuelve con sus respectivos valores óptimos.
- 4. Proponga un algoritmo de programación dinámica y encuentre la ecuación de Bellman correspondiente para resolver el siguiente problema: Dadas capacidades enteras positivas C_1 y C_2 y una colección de n items con sus tamaños y capacidades (enteras, positivas), encuentre dos subconjuntos disjuntos de items S_1 y S_2 con valor máximo total posible, entre aquellos que pueden meterse en los sacos. Es decir (S_1, S_2) es un maximizador de la función $W(T_1, T_2) := \sum_{i \in T_1} w(i) + \sum_{i \in T_2} w(i)$ entre las parejas (T_1, T_2) de conjuntos de [n] tales que $T_1 \cap T_2 = \emptyset$ y $\sum_{v \in T_i} w(v) \leq C_i$ para i = 1, 2.