

Yanyan Jiang

Introduction

- Most people (80%, 2019 survey) buy a diamond engagement ring
- Build a model that can predict diamonds' market prices and give customers advices on how to pick the best diamond without overpaying too much

Dataset Preparation

- Collect data from the official BlueNile website: https://www.bluenile.com/diamond-search
- Download HAR files for diamonds that are larger than 1.2 carat
- Keep the diamonds whose prices are lower than \$30,000
- Data size: **9,985** unique diamonds with 10 different features

Feature	Numerical type
Carat	Float
Clarity	Category (['FL', 'IF', 'VVS1', 'VVS2', 'VS1', 'VS2', 'SI1', 'SI2'])
Color	Category (['D', 'E', 'F', 'G', 'H', 'I', 'J', 'K'])
Culet	Category (['None', 'Pointed, 'Very Small, 'Small', 'Medium', 'Slightly Large', 'Large'])
Cut	Category (['Astor Ideal', 'Ideal', 'Very Good', 'Good'])
Depth	Float
Fluorescence	Category (['None', 'Faint', 'Faint Blue', 'Medium', 'Medium' Blue', 'Strong', 'Strong White', 'Strong Yellow', 'Strong Blue', 'Very Strong Blue', 'Very Strong'])
IxwRatio	Float
Polish	Category (['Excellent', 'Very Good', 'Good'])
Symmetry	Category (['Excellent', 'Very Good', 'Good'])
Table	Float

Data Statistics

Label	Mean	Std	Min	Max
Price	14,387.39	6,592.27	3,375.00	29,995.00
Carat	1.56	0.33	1.20	3.06
Clarity	5.56	1.70	1	8
Color	4.54	2.08	1	8
Culet	1.09	0.43	1	5
Cut	2.12	0.37	2	4
Depth	62.16	1.20	55.30	71.20
Fluorescence	2.23	2.08	1	11
IxwRatio	1.00	0.004	1.00	1.03
Polish	1.05	0.25	1	3
Symmetry	1.13	0.37	1	3
Table	58.09	1.85	50.00	79.00

Train set & Test set

- Randomly split the data into train set and test set
- Train/Test size: 8,986/999

Linear Regression

Support Vector Machine

XGBoost

XGBoost

