aa4.2

Automatic analysis (aa):

newest features for efficient multimodal neuroimaging workflows

. Tasklist

<module><name>aamod newsubi init</name></module>

<module><name>aamod autoidentifyseries_timtrio</name></module>

<module><name>aamod_get_dicom_structural</name></module>

<module><name>aamod biascorrect structural</name></module>

<module><name>aamod_segment8_multichan</name></module>

<module><name>aamod_get_dicom_epi</name></module>

<module><name>aamod convert epis</name></module>

<module><name>aamod_tsdiffana</name></module>

<module><name>aamod_slicetiming</name></module>

<module><name>aamod tsdiffana</name></module>

<module><name>aamod_smooth</name></module>

<module><name>aamod firstlevel model</name></module>

<module><name>aamod firstlevel contrasts</name></module> <module><name>aamod_firstlevel_threshold</name></module>

<module><name>aamod secondlevel GIFT</name></module>

<module><name>aamod_realignunwarp</name></module>

<module><name>aamod_get_dicom_fieldmap</name></module>

<module><name>aamod coreg extended 2epi</name></module> <module><name>aamod_norm_write_dartel</name></module>

<module><name>aamod_norm_write_meanepi_dartel</name></module>

<module><name>aamod_firstlevel_threshold_register2FS</name></module>

aamod_freesurfer_initialise_00001

aamod_freesurfer_autorecon_all_00001

<module><name>aamod convertfieldmaps</name></module> <module><name>aamod fieldmap2VDM</name></module>

<module><name>aamod_dartel_createtemplate</name></module> <module><name>aamod dartel norm write</name></module>

<module><name>aamod freesurfer autorecon all</name></module>

<module><name>aamod_convert_structural</name></module> <module><name>aamod_coreg_extended_1</name></module>

<?xml version="1.0" encoding="utf-8"?>

<!-- Functional -->

<!-- Modelling -->

Tibor Auer¹, Jonathan E. Peelle², Alejandro Vicente-Grabovetsky³, Daniel J. Mitchell¹, Conor Wild⁴, Annika C. Linke⁴, Rhodri Cusack⁴

Washington University in St. Louis

aamod_get_dicom_epi_00001

aamod_realignunwarp_00001

aamod_slicetiming_00001

aamod_tsdiffana_00002

aamod_firstlevel_model_00001

aamod_coreg_extended_2epi_00001

aamod fieldmap2VDM_00001

t1totemplate_xfm

2. Concept map

aamod_get_dicom_structural_00003

aamod_convert_structural_00001

aamod_coreg_extended_1_00001

aamod segment8 multichan 00001

dartelimported_white dartelimported_grey

aamod_dartel_createtemplate_00001

aamod_norm_write_dartel_00001

aamod_secondlevel_GIFT_0000:

aamod_firstlevel_threshold_0000

dartel flowfield

aamod_biascorrect_structural_00001

aamod_coreg_extended_1_00001.structural

aamod dartel norm write 00001

New modules and solutions

- Global GM, WM, CSF signal extraction

- Fractional masking threshold for first-level masking (SPM12)

- Automatic slice time detection from DICOM header

- Excluding subjects from template creation

aamod_dartel_norm_write_00001.dartel_templatetomni_xfm

- 1. MRC Cognition and Brain Sciences Unit, Cambridge, United Kingdom
- 2. Department of Otolaryngology, Washington University in St. Louis, Saint Louis, MO, United States 3. Donders Institute for Cognitive Neuroimaging, Nijmegen, The Netherlands
- 4. Brain and Mind Institute, Western University, London, Canada.

aa

Automatic analysis (aa) is an open-source, high-level framework written in MATLAB, that provides an efficient solution^{1,2} to integrate neuroimaging analysis methods and results. It is beneficial even for simple, single subject studies, and especially useful for large, multimodal studies³. Flexibility and workflow integration is strongly supported by pipeline branching and connection.

Provenance

It relies on pipelines described by XML tasklists and run with a short user script. Together, these provide an accurate, easy-to-read, distributable summary of the methods. They not only allow re-creation of the whole analysis, but also serve as Supplementary Material for publication, facilitating transparency^{4,5}.

fMRI

- Modeling noise

- Easy PPI

- GIFT⁸

- Spike detection

- GLMDenoise⁶

- Motion Fingerprint⁷

- Easy temporal modulation

Structural and registration

- Save first-level residual (SPM12)

- Overlay onto FreeSurfer surface

- Easy access to DARTEL⁹ features

- Using external template

Robustness and versatility

Pipeline connection

- Improved flexibility
- Improved control via fully specified stream names

Configuration

- Improved flexibility and robustness of redefinition of parameter subset via XML inheritance.

Parallel computing

- Improved accessibility via MATLAB's Parallel Computing Toolbox
- Improved control via explicit declariation of local execution for individual modules
- Improved job diagnistics via global "taskqueue"

http://automaticanalysis.org/

References

- Cusack R. et al. (2012), 18th Annual Meeting of the OHBM, Beijing, China.
- Cusack, R. (2015), Front Neuroinf 8:90.
- Auer, T. (2014), 20th Annual Meeting of the OHBM, Hamburg, Germany.
- Begley, CG. (2012), Nature 483:531–3.
- Keator, DB. (2013), NeuroImage, 82:647-61.
- Kay, KN. (2013), Front Neurosci, 7:247.
- Wilke, M. (2014), PLoS One, 9 (10):e106498.
- http://mialab.mrn.org/software/gift/index.html Ashburner, J. (2007), NeuroImage, 38(1):95-113.
- 10. Henriques, RN. (2014), Joint Annual Meeting ISMRM-ESMRMB 2014, Milan, Italy. 11. Taylor, J. (2014), The 19th International conference on biomagnetism, Halifax, Canada.

- Nonlinear fitting for DTI¹⁰

- Fitting diffusion kurtosis¹¹ and estimating orientation distribution function

- Integrating DARTEL into other modalities' workflow (see above)

- Three-stage registration via intermediate volume (~FSL)

- Registering only the first-level contrast images (~FSL)

- Summaries for FSL probabilistic tractography

MEG

Diffusion

- Maxfilter (Elekta Neuromag)
- ICA denoise¹⁰

Code available (on GitHub)