Introduction to Machine Learning SS20 Let's learn some CBB

Basics

Fundamental Assumption

Data is iid for unknown $P: (x_i, y_i) \sim P(X, Y)$

True risk and estimated error

True risk: $R(w) = \int P(x,y)(y-w^Tx)^2 \partial x \partial y =$ $\mathbb{E}_{x,y}[(y-w^Tx)^2]$

Est. error: $\hat{R}_D(w) = \frac{1}{|D|} \sum_{(x,y) \in D} (y - w^T x)^2$

Standardization

Centered data with unit variance: $\tilde{x}_i = \frac{x_i - \hat{\mu}}{\hat{z}_i}$ $\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} x_i, \hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \hat{\mu})^2$

Cross-Validation

For all models m, for all $i \in \{1,...,k\}$ do:

- 1. Split data: $D = D_{train}^{(i)} \uplus D_{test}^{(i)}$ (Monte-Carlo or k-Fold)
- 2. Train model: $\hat{w}_{i,m} = \operatorname{argmin} \hat{R}_{train}^{(i)}(w)$
- 3. Estimate error: $\hat{R}_m^{(i)} = \hat{R}_{test}^{(i)}(\hat{w}_{i,m})$ Select best model: $\hat{m} = \operatorname{argmin} \frac{1}{k} \sum_{i=1}^{k} \hat{R}_{m}^{(i)}$

Parametric vs. Nonparametric models

Parametric: have finite set of parameters. e.g. linear regression, linear perceptron Nonparametric: grow in complexity with the size of the data, more expressive. e.g. k-NN

Gradient Descent

- 1. Pick arbitrary $w_0 \in \mathbb{R}^d$
- **2.** $w_{t+1} = w_t \eta_t \nabla R(w_t)$

Stochastic Gradient Descent (SGD)

- 1. Pick arbitrary $w_0 \in \mathbb{R}^d$
- 2. $w_{t+1} = w_t \eta_t \nabla_w l(w_t; x', y')$, with u.a.r. data point $(x',y') \in D$

Regression

Solve $w^* = \operatorname{argmin} R(w) + \lambda C(w)$

Linear Regression

$$\begin{split} \hat{R}(w) &= \sum_{i=1}^{n} (y_i - w^T x_i)^2 = ||Xw - y||_2^2 \\ \nabla_w \hat{R}(w) &= -2 \sum_{i=1}^{n} (y_i - w^T x_i) \cdot x_i \\ w^* &= (X^T X)^{-1} X^T y \end{split}$$

Ridge regression

$$\hat{R}(w) = \sum_{i=1}^{n} (y_i - w^T x_i)^2 + \lambda ||w||_2^2$$

$$\nabla_w \hat{R}(w) = -2 \sum_{i=1}^{n} (y_i - w^T x_i) \cdot x_i + 2\lambda w$$

$$w^* = (X^T X + \lambda I)^{-1} X^T y$$

L1-regularized regression (Lasso)

$$\hat{R}(w) = \sum_{i=1}^{n} (y_i - w^T x_i)^2 + \lambda ||w||_1$$

Classification

Solve $w^* = \operatorname{argmin} l(w; x_i, y_i)$; loss function l

o/1 loss

 $l_{0/1}(w;y_i,x_i) = 1$ if $y_i \neq \operatorname{sign}(w^T x_i)$ else 0

Perceptron algorithm

Use $l_P(w;y_i,x_i) = \max(0,-y_iw^Tx_i)$ and SGD $\nabla_{w} l_{P}(w; y_{i}, x_{i}) = \begin{cases} 0 & \text{if } y_{i} w^{T} x_{i} \geq 0 \\ -y_{i} x_{i} & \text{otherwise} \end{cases}$ Data lin. separable ⇔ obtains a lin. separa-

tor (not necessarily optimal) **Support Vector Machine (SVM)**

Hinge loss: $l_H(w;x_i,y_i) = \max(0,1-y_iw^Tx_i)$ $\nabla_w l_H(w;\!y,\!x) \!=\! \begin{cases} 0 & \text{if } y_i w^T x_i \!\geq\! 1 \\ -y_i x_i & \text{otherwise} \end{cases}$ $w^* = \operatorname{argmin} l_H(w; x_i, y_i) + \lambda ||w||_2^2$

Kernels

efficient, implicit inner products

Properties of kernel

 $k:\mathcal{X}\times\mathcal{X}\to\mathbb{R}$, k must be some inner product (symmetric, positive-definite, linear) for some space V. i.e. $k(\mathbf{x}, \mathbf{x}') =$ $\langle \varphi(\mathbf{x}), \varphi(\mathbf{x}') \rangle_{\mathcal{V}} \stackrel{Eucl.}{=} \varphi(\mathbf{x})^T \varphi(\mathbf{x}') \text{ and } k(\mathbf{x}, \mathbf{x}') =$ $k(\mathbf{x}',\mathbf{x})$

Kernel matrix

$$K = \begin{bmatrix} k(x_1, x_1) & \dots & k(x_1, x_n) \\ \vdots & \ddots & \vdots \\ k(x_n, x_1) & \dots & k(x_n, x_n) \end{bmatrix}$$

Positive semi-definite matrices \Leftrightarrow kernels k

Important kernels

Linear: $k(x,y) = x^T y$ Polynomial: $k(x,y) = (x^Ty+1)^d$ Gaussian: $k(x,y) = exp(-||x-y||_2^2/(2h^2))$ Laplacian: $k(x,y) = exp(-||x-y||_1/h)$

Composition rules

Valid kernels k_1, k_2 , also valid kernels: $k_1 + k_2$; $k_1 \cdot k_2$; $c \cdot k_1$, c > 0; $f(k_1)$ if f polynomial with pos. coeffs. or exponential

Reformulating the perceptron

Ansatz: $w^* \in \operatorname{span}(X) \Rightarrow w = \sum_{i=1}^n \alpha_i y_i x_i$ $\alpha^* = \underset{\alpha \in \mathbb{R}^n}{\operatorname{argmin}} \sum_{i=1}^n \max(0, -\sum_{j=1}^n \alpha_j y_i y_j x_i^T x_j)$

Kernelized perceptron and SVM

Use $\alpha^T k_i$ instead of $w^T x_i$, use $\alpha^T D_u K D_u \alpha$ instead of $||w||_2^2$ $k_i = [y_1 k(x_i, x_1), ..., y_n k(x_i, x_n)], D_y = \text{diag}(y)$ Prediction: $\hat{y} = \operatorname{sign}(\sum_{i=1}^{n} \alpha_i y_i k(x_i, \hat{x}))$ SGD update: $\alpha_{t+1} = \alpha_t$, if mispredicted: $\alpha_{t+1,i} = \alpha_{t,i} + \eta_t$ (c.f. updating weights towards mispredicted point)

Kernelized linear regression (KLR)

Ansatz: $w^* = \sum_{i=1}^n \alpha_i x$ $\alpha^* = \operatorname{argmin} ||\alpha^T K - y||_2^2 + \lambda \alpha^T K \alpha$ $=(K+\lambda I)^{-1}y$ Prediction: $\hat{y} = \sum_{i=1}^{n} \alpha_i k(x_i, \hat{x})$

k-NN

 $y = \operatorname{sign} \left(\sum_{i=1}^{n} y_i [x_i \text{ among } k \text{ nearest neigh-} \right)$ bours of x]) – No weights \Rightarrow no training! But depends on all data :(

Imbalance

up-/downsampling

Cost-Sensitive Classification

Scale loss by cost: $l_{CS}(w;x,y) = c_{\pm}l(w;x,y)$

Metrics

 $n = n_{+} + n_{-}, n_{+} = TP + FN, n_{-} = TN + FP$ Accuracy: $\frac{TP+TN}{n}$, Precision: $\frac{TP}{TP+FP}$ Recall/TPR: $\frac{TP}{n_+}$, FPR: $\frac{FP}{n_-}$ F1 score: $\frac{2TP}{2TP+FP+FN} = \frac{2}{\frac{1}{prec} + \frac{1}{rec}}$

ROC Curve: u = TPR. x = FPR

Multi-class

one-vs-all (c), one-vs-one ($\frac{c(c-1)}{2}$), encoding

Multi-class Hinge loss

$$l_{MC-H}(w^{(1)},...,w^{(c)};x,y) = \max_{j \in \{1,\dots,y-1,y+1,\dots,c\}} w^{(j)T}x - w^{(y)T}x)$$

Neural networks

Parameterize feature map with θ : $\phi(x,\theta) =$ $\varphi(\theta^T x) = \varphi(z)$ (activation function φ)

$$\Rightarrow w^* = \underset{w,\theta}{\operatorname{argmin}} \sum_{i=1}^n l(y_i; \sum_{j=1}^m w_j \phi(x_i, \theta_j))$$
$$f(x; w, \theta_{1:d}) = \sum_{j=1}^m w_j \varphi(\theta_j^T x) = w^T \varphi(\Theta x)$$

Activation functions

Sigmoid: $\frac{1}{1+exp(-z)}$, $\varphi'(z) = (1-\varphi(z))\cdot\varphi(z)$ tanh: $\varphi(z) = tanh(z) = \frac{exp(z) - exp(-z)}{exp(z) + exp(-z)}$ ReLU: $\varphi(z) = \max(z,0)$

Predict: forward propagation

 $v^{(0)} = x$: for l = 1,...,L-1: $v^{(l)} = \varphi(z^{(l)}), z^{(l)} = W^{(l)}v^{(l-1)}$ $f = W^{(\hat{L})} v^{(\hat{L}-1)}$

Predict f for regression, sign(f) for class.

Compute gradient: backpropagation

Output layer: $\delta_j = l'_j(f_j)$, $\frac{\partial}{\partial w_{i,i}} = \delta_j v_i$ Hidden layer l = L-1,...,1: $\delta_j = \varphi'(z_j) \cdot \sum_{i \in Lauer_{l+1}} w_{i,j} \delta_i, \frac{\partial}{\partial w_{i,i}} = \delta_j v_i$

Learning with momentum

 $a \leftarrow m \cdot a + \eta_t \nabla_W l(W; y, x); W_{t+1} \leftarrow W_t - a$

Clustering

k-mean

 $\hat{R}(\mu) = \sum_{i=1}^{n} \min_{j \in \{1, \dots k\}} ||x_i - \mu_j||_2^2$ $\hat{\mu} = \operatorname{argmin} \hat{R}(\mu)$...non-convex, NP-hard

Algorithm (Lloyd's heuristic): Choose starting centers, assign points to closest center, update centers to mean of each cluster, repeat

Dimension reduction

 $D\!=\!x_1,\!...,\!x_n\!\subset\!\mathbb{R}^d$, $\Sigma\!=\!rac{1}{n}\!\sum_{i=1}^n\!x_ix_i^T$, $\mu\!=\!0$ $(W,z_1,...,z_n) = \operatorname{argmin} \sum_{i=1}^n ||Wz_i - x_i||_2^2$ $W = (v_1|...|v_k) \in \mathbb{R}^{d \times k}$, orthogonal; $z_i = W^T x_i$ v_i are the eigen vectors of Σ

Kernel PCA

Kernel PC: $\alpha^{(1)},...,\alpha^{(k)} \in \mathbb{R}^n$, $\alpha^{(i)} = \frac{1}{\sqrt{\lambda_i}}v_i$, $K = \sum_{i=1}^{n} \lambda_i v_i v_i^T, \lambda_1 \geq ... \geq \lambda_d \geq 0$ New point: $\hat{z} = f(\hat{x}) = \sum_{i=1}^{n} \alpha_i^{(i)} k(\hat{x}, x_i)$

Autoencoders

Find identity function: $x \approx f(x;\theta)$ $f(x;\theta) = f_{decode}(f_{encode}(x;\theta_{encode});\theta_{decode})$

Probability modeling

Find $h: X \to Y$ that min. pred. error: $R(h) = \int P(x,y)l(y;h(x))\partial yx\partial y = \mathbb{E}_{x,y}[l(y;h(x))]$

For least squares regression

Best h: $h^*(x) = \mathbb{E}[Y|X=x]$ Pred.: $\hat{y} = \hat{\mathbb{E}}[Y|X=\hat{x}] = \int \hat{P}(y|X=\hat{x})y\partial y$

Maximum Likelihood Estimation (MLE)

 $\theta^* = \underset{\theta}{\operatorname{argmax}} \hat{P}(y_1, ..., y_n | x_1, ..., x_n, \theta)$

E.g. lin. + Gauss: $y_i = w^T x_i + \varepsilon_i, \varepsilon_i \sim \mathcal{N}(0, \sigma^2)$ i.e. $y_i \sim \mathcal{N}(w^T x_i, \sigma^2)$, With MLE (use $\underset{w}{\operatorname{argmin}} -\log$): $w^* = \underset{w}{\operatorname{argmin}} \sum (y_i - w^T x_i)^2$

Bias/Variance/Noise

Prediction error = $Bias^2 + Variance + Noise$

Maximum a posteriori estimate (MAP)

Assume bias on parameters, e.g. $w_i \in \mathcal{N}(0.\beta^2)$

Bay.:
$$P(w|x,y) = \frac{P(w|x)P(y|x,w)}{P(y|x)} = \frac{P(w)P(y|x,w)}{P(y|x)}$$

Logistic regression

Link func.: $\sigma(w^Tx) = \frac{1}{1+exp(-w^Tx)}$ (Sigmoid) $P(y|x,w) = Ber(y;\sigma(w^Tx)) = \frac{1}{1+exp(-yw^Tx)}$ Classification: Use P(y|x,w), predict most likely class label.

MLE: $\underset{w}{\operatorname{argmax}} P(y_{1:n}|w, x_{1:n})$ $\Rightarrow w^* = \underset{i=1}{\operatorname{argmin}} \sum_{i=1}^n log(1 + exp(-y_i w^T x_i))$

SGD update: $w=w+\eta_t yx\hat{P}(Y=-y|w,x)$ $\hat{P}(Y=-y|w,x)=\frac{1}{1+exp(uw^Tx)}$

MAP: Gauss. prior $\Rightarrow ||w||_2^2$, Lap. p. $\Rightarrow ||w||_1$ SGD: $w = w(1-2\lambda\eta_t) + \eta_t yx \hat{P}(Y=-y|w,x)$

Bayesian decision theory

- Conditional distribution over labels P(y|x)
- Set of actions ${\cal A}$
- Cost function $C: Y \times A \to \mathbb{R}$ $a^* = \underset{a \in A}{\operatorname{argmin}} \mathbb{E}[C(y,a)|x]$

Calculate \mathbb{E} via sum/integral.

Classification: $C(y,a) = [y \neq a]$; asymmetric:

$$C(y,a) = \begin{cases} c_{FP} \text{, if } y = -1, a = +1 \\ c_{FN} \text{, if } y = +1, a = -1 \\ 0 \text{, otherwise} \end{cases}$$

Regression: $C(y,a) = (y-a)^2$; asymmetric: $C(y,a) = c_1 \max(y-a,0) + c_2 \max(a-y,0)$ E.g. $y \in \{-1,+1\}$, predict + if $c_+ < c_-$,

$$c_+=\mathbb{E}(C(y,+1)|x)=P(y=1|x)\cdot 0+P(y=-1|x)\cdot c_{FP}$$
, c_- likewise

Discriminative / generative modeling

Discr. estimate P(y|x), generative P(y,x) Approach (generative): $P(x,y) = P(x|y) \cdot P(y)$ - Estimate prior on labels P(y)

- Estimate cond. distr. P(x|y) for each class y
- Pred. using Bayes: $P(y|x) = \frac{P(y)P(x|y)}{P(x)}$ $P(x) = \sum_{y} P(x,y)$

Examples

$$\begin{split} & \text{MLE for } P(y) = p = \frac{n_+}{n} \\ & \text{MLE for } P(x_i|y) = \mathcal{N}(x_i; \mu_{i,y}, \sigma_{i,y}^2) \text{:} \\ & \hat{\mu}_{i,y} = \frac{1}{n_y} \sum_{x \in D_{x_i|y}} x \\ & \hat{\sigma}_{i,y}^2 = \frac{1}{n_y} \sum_{x \in D_{x_i|y}} (x - \hat{\mu}_{i,y})^2 \\ & \text{MLE for Poi.: } \lambda = \operatorname{avg}(x_i) \\ & \mathbb{R}^d \text{: } P(X = x|Y = y) = \prod_{i=1}^d Pois(\lambda_y^{(i)}, x^{(i)}) \end{split}$$

Deriving decision rule

$$\begin{split} &P(y|x) \! = \! \frac{1}{Z}P(y)P(x|y), Z \! = \! \sum_{y}\! P(y)P(x|y) \\ &y^* \! = \! \max_{y} P(y|x) \! = \! \max_{y} P(y)\prod_{i=1}^{d}\! P(x_i|y) \end{split}$$

Gaussian Bayes Classifier

$$\begin{split} \hat{P}(x|y) &= \mathcal{N}(x; \hat{\mu}_y, \hat{\Sigma}_y) \\ \hat{P}(Y &= y) &= \hat{p}_y = \frac{n_y}{n} \\ \hat{\mu}_y &= \frac{1}{n_y} \sum_{i:y_i = y} x_i \in \mathbb{R}^d \\ \hat{\Sigma}_y &= \frac{1}{n_y} \sum_{i:y_i = y} (x_i - \hat{\mu}_y) (x_i - \hat{\mu}_y)^T \in \mathbb{R}^{d \times d} \end{split}$$

Fisher's lin. discrim. analysis (LDA, c=2)

Assume: p = 0.5; $\hat{\Sigma}_{-} = \hat{\Sigma}_{+} = \hat{\Sigma}$ discriminant function: $f(x) = \log \frac{p}{1-p} + \frac{1}{2} [\log \frac{|\hat{\Sigma}_{-}|}{|\hat{\Sigma}_{+}|} + \left((x - \hat{\mu}_{-})^{T} \hat{\Sigma}_{-}^{-1} (x - \hat{\mu}_{-}) \right) - \left((x - \hat{\mu}_{+})^{T} \hat{\Sigma}_{+}^{-1} (x - \hat{\mu}_{+}) \right)]$ Predict: $y = \text{sign}(f(x)) = \text{sign}(w^{T} x + w_{0})$ $w = \hat{\Sigma}^{-1} (\hat{\mu}_{+} - \hat{\mu}_{-})$; $w_{0} = \frac{1}{2} (\hat{\mu}_{-}^{T} \hat{\Sigma}^{-1} \hat{\mu}_{-} - \hat{\mu}_{+}^{T} \hat{\Sigma}^{-1} \hat{\mu}_{+})$

Outlier Detection

 $P(x) \le \tau$

Categorical Naive Bayes Classifier

MLE for feature distr.: $\hat{P}(X_i = c|Y = y) = \theta_{c|y}^{(i)}$ $\theta_{c|y}^{(i)} = \frac{Count(X_i = c, Y = y)}{Count(Y = y)}$ Prediction: $y^* = argmax \hat{P}(y|x)$

Missing data

Mixture modeling

Model each c. as probability distr. $P(x|\theta_j)$ $P(D|\theta) = \prod_{i=1}^n \sum_{j=1}^k w_j P(x_i|\theta_j)$ $L(w,\theta) = -\sum_{i=1}^n \log \sum_{j=1}^k w_j P(x_i|\theta_j)$

Gaussian-Mixture Bayes classifiers

Estimate prior P(y); Est. cond. distr. for each class: $P(x|y) = \sum_{i=1}^{k_y} w_i^{(y)} \mathcal{N}(x; \mu_i^{(y)}, \Sigma_i^{(y)})$

Hard-EM algorithm

Initialize parameters $\theta^{(0)}$ E-step: Predict most likely class for each point: $z_i^{(t)} = \operatorname{argmax} P(z|x_i, \theta^{(t-1)})$

= argmax $P(z|\tilde{\theta^{(t-1)}})P(x_i|z,\theta^{(t-1)});$

M-step: Compute the MLE: $\theta^{(t)}$ $\underset{\theta}{\operatorname{argmax}} P(D^{(t)}|\theta)$, i.e. $\mu_j^{(t)} = \frac{1}{n_j} \sum_{i:z_i=jx_j}$

Soft-EM algorithm

E-step: Calc p for each point and cls.: $\gamma_{j}^{(t)}(x_{i})$ M-step: Fit clusters to weighted data points: $w_{j}^{(t)} = \frac{1}{n} \sum_{i=1}^{n} \gamma_{j}^{(t)}(x_{i}); \mu_{j}^{(t)} = \frac{\sum_{i=1}^{n} \gamma_{j}^{(t)}(x_{i})x_{i}}{\sum_{i=1}^{n} \gamma_{j}^{(t)}(x_{i})}$ $\sigma_{j}^{(t)} = \frac{\sum_{i=1}^{n} \gamma_{j}^{(t)}(x_{i})(x_{i} - \mu_{j}^{(t)})^{T}(x_{i} - \mu_{j}^{(t)})}{\sum_{i=1}^{n} \gamma_{j}^{(t)}(x_{i})}$

Soft-EM for semi-supervised learning

labeled y_i : $\gamma_j^{(t)}(x_i) = [j = y_i]$, unlabeled: $\gamma_j^{(t)}(x_i) = P(Z = j | x_i, \mu^{(t-1)}, \Sigma^{(t-1)}, w^{(t-1)})$

Useful math

Probabilities

$$\begin{array}{lll} \mathbb{E}_x[X] = \begin{cases} \int x \cdot p(x) \partial x & \text{if continuous} \\ \sum_x x \cdot p(x) & \text{otherwise} \end{cases} \\ \operatorname{Var}[X] & = & \mathbb{E}[(X - \mu_X)^2] & = & \mathbb{E}[X^2] - \\ \mathbb{E}[X]^2 \\ P(A|B) & = & \frac{P(B|A) \cdot P(A)}{P(B)}; \quad p(Z|X, \ \theta) & = \\ \frac{p(X,Z|\theta)}{p(X|\theta)} \\ P(x,\ y) & = & P(y|x) \cdot P(x) & = & P(x|y) \cdot P(y) \end{cases}$$

Bayes Rule

 $P(A|B) = \frac{P(B|A) \cdot P(A)}{P(B)}$

P-Norm

 $||x||_p = (\sum_{i=1}^n |x_i|^p)^{\frac{1}{p}}, 1 \le p < \infty$

Some gradients

$$\begin{split} & \nabla_x ||x||_2^2 \! = \! 2x \\ & f(x) \! = \! x^T A x \text{; } \nabla_x f(x) \! = \! (A \! + \! A^T) x \\ & \text{E.g. } \nabla_w \! \log(1 \! + \! \exp(\! - \! y w^T x)) \! = \\ & \frac{1}{1 \! + \! \exp(\! - \! y w^T x)} \! \cdot \! (-y x) \! = \\ & \frac{1}{1 \! + \! \exp(\! y w^T x)} \! \cdot \! (-y x) \end{split}$$

Convex / Jensen's inequality

 $\begin{array}{l} \mathbf{g(x)} \ \mathsf{convex} \Leftrightarrow g''(x) > 0 \Leftrightarrow x_1, x_2 \in \mathbb{R}, \lambda \in [0,1] : \\ g(\lambda x_1 + (1-\lambda)x_2) \leq \lambda g(x_1) + (1-\lambda)g(x_2) \end{array}$

Gaussian / Normal Distribution

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$

Multivariate Gaussian

$$\begin{split} \Sigma &= \text{covariance matrix, } \mu \text{ = mean} \\ f(x) &= \frac{1}{2\pi\sqrt{|\Sigma|}} e^{-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)} \end{split}$$

Empirical: $\hat{\Sigma} = \frac{1}{n} \sum_{i=1}^{n} x_i x_i^T$ (needs centered data points)

Positive semi-definite matrices

 $M \in \mathbb{R}^{n \times n}$ is psd \Leftrightarrow $\forall x \setminus \{0\} \in \mathbb{R}^n : x^T M x \ge 0 \Leftrightarrow$ all eigenvalues of M are positive: $\lambda_i \ge 0$