確認問題(1)

- 1.図1.9のプロトタイプから、横方向・縦方向の 簡易ヒストグラムを特徴ベクトルとして抽出せ よ。ただし、簡易ヒストグラムとはある方向の 5マス中、3マス以上が黒のものを1, それ以下 のものを0とする方法である。
 - 例) プロトタイプ0: (1,0,0,0,1,1,0,0,0,1)
- 2.1.で抽出した特徴ベクトルを用いて、最近傍決定則で入力パターンを識別せよ。
- 3.2.の方法でうまく識別できなかった場合、その理由を考察せよ。

確認問題(1) 解答例

- 1.特徴ベクトルは、それぞれ
 - $\lceil 0 \rfloor = (1,0,0,0,1,1,0,0,0,1)$
 - $\lceil 1 \rfloor = (0,0,0,0,0,0,0,1,0,0)$
 - $\lceil 2 \rfloor = (1,0,0,0,1,0,1,1,1,0)$
 - $\lceil 3 \rfloor = (1,0,0,0,1,0,0,1,1,0)$
 - 「4」=(0,0,0,1,0,0,0,0,1,0)となる。
- 2.入力パターンは (0,0,0,0,0,0,0,0,0,1,0) となり、各プロトタイプとの距離は、 $\sqrt{5},\sqrt{2},2,\sqrt{3},1$ となる。これより、プロトタイプ「4」と最短距離(距離=1)となり、「4」と認識される。
- 3.パターンの変動に強い特徴ではない。

確認問題(2)

- 1.画像のノイズを除去するにあたって、メディアンフィルタと平均値フィルタの違いを考察せよ。
- 2.エッジフィルタを用いた線の検出は、その線の位置に依存した結果となり、パターンの変動に強い特徴とはいえないように見える。この検出結果を、線の位置の変動に強い特徴に変えるには、エッジ検出結果に対してどのような処理を加えればよいか。

確認問題(2) 1. 解答例

	メディアンフィルタ	平均値フィルタ
適したノイズの種類	ごま塩ノイズ	一般的なノイズ
元画像の変化	エッジがぼけにくい	全体的にぼけてしまう

確認問題(2) 2. 解答例

2. エッジの検出結果を画像と見なし、その画像に対して、たとえば2×2の範囲で平均値や最大値を計算し、全画素の値をその値で置き換える。そうすると、その2x2の範囲内では、どこのその特徴があってもよいことになる。このような処理をプーリングとよぶ。

確認問題 (3)

- 携帯電話などに搭載されている顔認証システムの特 徴抽出について、以下の問いに答えよ。
- 1.この場合のパターンの変動はどのような要因が考えられるか。
- 2.変動に影響されない特徴としてどのようなものが考えられるか。

確認問題 (3) 解答例

1.パターンの変動の例

髪型の違い、眼鏡の有無、照明や撮像角度の違い など

2.変動に強い特徴の例

瞳と瞳の間の長さ、小鼻の幅、顔の凹凸 など

確認問題 (4)

 例題4.2の識別関数の学習過程を、重みベクトルが変化してゆく様子を図示して追跡せよ (教科書 演習問題4.1)。

確認問題 (4) 解答例

確認問題 (5)

誤差関数の最適化における(1) 最急降下法、(2) 確率的最急降下法、(3) ミニバッチ法の違いを説明せよ。

確認問題(5) 解答例

(1) 最急降下法

安定的に局所最適解に近づくが、データが多い場合には 適用できない場合がある

(2) 確率的最急降下法

大量のデータやオンライン学習も可能であるが、解への 収束が不安定であり、学習係数を減衰させるなどの工夫 が必要

(3) ミニバッチ法

確率的最急降下法よりは安定的に解に近づき、バッチサイズをGPUの演算サイズに合わせると高速に計算できる

確認問題(6)

SVMは基本的に2クラスの分類を行うものである。2クラス分類器を用いて、3クラス以上の分類を行う方法を考えよ。
 (教科書 演習問題6.2)

確認問題(6) 解答例(1/2)

- one-versus-rest法
 - 各クラスについて、そのクラスに属するかど うかを識別するSVMを作る
 - 2つ以上のクラスに属すると判定された場合 は識別面からの距離が大きいものに分類する

確認問題(6) 解答例(2/2)

- ペアワイズ法
 - クラス対ごとに識別器を作る
 - 判定は多数決を取る

確認問題 (7)

- 1.1990年代から近年まで、ニューラルネット ワークがあまり注目されてこなかった理由を考 えよ。
- 2.1990年代以降、サポートベクトルマシンが流行した理由を考えよ。

確認問題 (7) 解答例

1. NN

- 1.非線形識別面を学習するため、学習データに適応し すぎる過学習の問題があった
- 2.局所最適解に陥る場合が多かった

2.SVM

- 1.多次元の特徴に対して頑健で、汎化能力が高かった
- 2.凸最適化問題であるため、大域的最適解が存在した

確認問題 (8)

- 1.以下の2クラスの2次元データの平均ベクトルと共分散行列を求めよ。
- 2.各クラスのクラス分布を正規分布と仮定し、事前確率を等しいとしたときの識別境界の概形を描け。
- 3. 問題2の条件で定まる識別境界の式を求めよ。

確認問題 (8) 解答例

- 共分散行列が等しいので、識別面は直線
- 共分散行列が単位行列の定数倍なので、平均ベクトルをプロトタイ プとするNN法

$$m_{1} = \begin{pmatrix} 5 \\ 6 \end{pmatrix}, m_{2} = \begin{pmatrix} 3 \\ -2 \end{pmatrix}$$

$$\sum_{1} = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}$$

$$\sum_{2} = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}$$

$$\sum_{2} = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}$$

$$\frac{1}{3} = \frac{3}{5} = \frac{7}{3} \times \frac{1}{3} \times$$

確認問題 (9)

- 1.特徴の評価法としての、クラス内分散・クラス間分散比とベイズ誤り確率の長所短所を比較せよ。
- 2.最適なハイパーパラメータ(HP)を探索する方法として、グリッド法とランダム法がある。たとえば、100回の試行で最適なHPを決定するとし、連続値をとるHPが2つあるとする。グリッド法は各HPの最小値から最大値までを10分割し、そのすべての組み合わせに対して識別率を求める。一方、ランダム法は、100回ともすべてのHPの値に乱数を用いる。このとき、ランダム法の方がよいHPを求めることができる場合は、HPにどのような特性があるときか考察せよ。

確認問題 (9) 解答例

1.

	長所	短所
クラス内分散・クラス間分散比	特徴空間の情報 だけで計算できる	分布の重なりを 評価していない
ベイズ誤り確率	理論上の誤識別率の 上下限が評価できる	識別部の実装が必要

確認問題 (9) 解答例

2. 性能に与える影響が、HP毎に大きく異なるとき。たとえば1つめのHPが支配的な場合、グリッド法では10種類の値しか試せないが、ランダム法では100種類試すことができる。

確認問題(10)

- 1.データ(数値・カテゴリ)の欠損値を補う方法を複数 考案し、その特質を論ぜよ。
- 2.WekaのReutersCorn-trainデータに対し
 - て、SMO(poly kernel 1次)で10-fold CVを行った結果、以下の混同行列が得られた(値1が抽出したいクラス)。正解率・精度・再現率・F値を求め、この結果をどう説明すべきかを考えよ。

a b <-- classified as
$$1509$$
 0 | $a = 0$ 23 22 | $b = 1$

確認問題(10) 解答例

- 1.欠損値を補う方法
- 数値データ
 - 平均値:はずれ値に弱い
 - 中央値:観測値への集中を高めてしまう
- カテゴリカルデータ
 - 最頻値:観測値への集中を高めてしまう
- 最近傍データで補う
 - 主として数値に適用可能
 - 処理に時間がかかる

確認問題(10) 解答例

a b <-- classified as
$$1509$$
 0 | $a = 0$ 23 22 | $b = 1$

2.

全データ数:1509+23+22=1554

正解率: (1509+22)/1554=0.985

精度: 22/(22+0)=1.000

再現率: 22/(22+23)=0.489

F値:2*1*0.489/(1+0.489)=0.657

再現率が低く、あまりよい結果とはいえない。

確認問題(11)

1. 音声認識におけるヒューリスティック探索で、それぞれの候補の今後の予測スコアを求める方法を考えよ。

確認問題(11) 解答例

- 1. 探索を2回行う。
- 例) Juliusにおける2パスサーチ
- 第1パス(フレーム同期ビーム探索)
 - 言語モデルを2グラムとするなどの工夫をして高速に処理
 - 各時点でのスコアをあらゆる単語について残しておく
- 第2パス(スタックデコーディング)
 - 第1パスの結果を逆方向に見てヒューリスティックスとする
 - 言語モデルに3グラムを使うなどして詳細な処理を行っても 候補数が少ないので、実行時間は短い