

MINISTÉRIO DA EDUCAÇÃO

UNIVERSIDADE FEDERAL DO PIAUÍ

CAMPUS SENADOR HELVÍDIO NUNES DE BARROS

Curso: Sistemas de Informação Período: 2022.1

Disciplina: Banco de Dados I

Professor: Francisco das Chagas Imperes Filho

Equipe: Annyel Cordeiro da Silva

Clístenes Rodger Granja Barreto

Hector José Rodrigues Salgueiros

Lizzandro Welson Holanda de Carvalho Galdino

Willians Silva Santos

Teoria da Normalização

1. Introdução

Quando se constrói um projeto de um banco de dados, é preciso que exista uma forma de avaliar se o projeto está bom ou não, a ideia desse assunto é ter a noção para analisar esquemas de relações por meios de medidas formais.

2. Objetivo da utilização das Formas Normais

Avaliar a qualidade do projeto de esquemas de relações por meio de medidas formais.

2.1 Dois níveis de boas práticas de esquema

2.1.1 Nível lógico (ou conceitual)

Como interpretar o esquema de relações e o significado de seus atributos.

2.1.2 Nível de implementação (ou armazenamento físico)

Como as tuplas são armazenadas e atualizadas.

2.2 Objetivos implícitos

2.2.1 Preservação da informação

Manter os conceitos capturados originalmente no projeto conceitual.

2.2.2 Redundância mínima

Diminuir o armazenamento redundante, ou seja, armazenar o mesmo dado mais de uma vez, da mesma informação e reduzir a necessidade de múltiplas atualizações.

3. Fundamentos

3.1 Formas Normais definidas por Ted Codd

3.1.1 Primeira Forma Normal (1FN)

Uma relação R está na Primeira Forma Normal (1FN) se seus atributos incluírem apenas valores atômicos (simples, indivisíveis) e se o valor de qualquer atributo em uma tupla for um único valor do domínio desse atributo, de uma forma mais simplificada: Não são permitidos atributos multivalorados, atributos compostos e suas combinações, além de não serem permitidas relações aninhadas

3.1.2 Segunda Forma Normal (2FN)

Uma relação R está na Segunda Forma Normal (2FN) se estiver na 1FN e nenhum atributo não principal de R possuir Dependência Funcional Parcial em relação a qualquer chave candidata (primária ou secundária).

Seja Dependência Funcional Parcial, se X determina Y, e caso seja possível remover um atributo de X, e ainda Y ainda possuir dependência de X.

3.1.3 Terceira Forma Normal (3FN)

Uma relação R está na Terceira Forma Normal (3FN) se estiver na 2FN e nenhum atributo não principal de R possuir Dependência Transitiva de alguma chave candidata (primária ou secundária).

Seja Dependência Transitiva, uma dependência funcional que X determina Y em um esquema R houver um outro conjunto de atributos Z em R que não seja chave candidata e nem um subconjunto de qualquer chave de R, onde X determina Z e Z determina Y.

3.1.4 Forma Normal Bovce-Codd (FNBC)

Uma relação R está na Forma Normal de Boyce-Codd (FNBC) se estiver na 3FN e para toda dependência funcional X determina A e X é uma chave candidata (primária ou secundária) de R, de uma maneira mais simples, nenhum atributo não principal de R pode determinar outro atributo (principal ou não principal).

3.1.5 Quarta Forma Normal (4FN)

Uma relação R está na Quarta Forma Normal (4FN) se estiver na FNBC e não possuir Dependência Multivalorada.

Seja Dependência Multivalorada, se para cada valor de um atributo A, há um conjunto de valores para outros atributos B e C (independentes entre si) que estão associados a A.

3.1.6 Quinta Forma Normal (5FN)

Uma relação R está na Quinta Forma Normal (5FN) se estiver na \$FN e não existir Dependência de Junção.

Seja Dependência de Junção, determina uma restrição sobre os estados de uma relação R, indicando que a relação pode ser decomposta em n (n > 2) outras relações e em seguida juntadas sem geração de tuplas falsas.

4. Exemplos de aplicabilidade

4.1 Exemplo 1FN

Departamento

Departamento			
Dnome	Dnumero	cpf_gerente	Dlocal
Pesquisa	5	33344555587	Santo André, Itu, São Paulo
Administração	4	8765432168	Mauá
Matriz	1	88868555578	São Paulo

Departamento

Departamento		
Dnome	Dnumero	cpf_gerente
Pesquisa	5	33344555587
Administração	4	8765432168
Matriz	1	88868555578

Localizacao_Dep

Localizacao_Dep	
Dnumero	Dlocal
5	São Paulo
5	Santo André
5	Itu
4	Mauá
1	São Paulo

4.2 Exemplo 2FN

N_pedido	Cod_produ	Produto	Quantidade	Valor_uni	Subtotal
1005	1-934	Impressora laser	5	1.500,00	7.500,00
1006	1-956	Impressora desjet	3	350,00	1.050,00
1007	1-923	Impressora matricial	1	190,00	190,00
1008	1-908	Impressora mobile	6	980,00	5.889,00

2fn

Cod_produ	Produto
1-934	Impressora laser
1-956	Impressora desjet
1-923	Impressora matricial
1-908	Impressora mobile

N_pedido	Cod_produ	Quantidade	Valor_uni	Subtotal
1005	1-934	5	1.500,00	7.500,00
1006	1-956	3	350,00	1.050,00
1007	1-923	1	190,00	190,00
1008	1-908	6	980,00	5.889,00

4.3 Exemplo 3FN

N_pedido	Cod_produ	Quantidade	Valor_uni	Subtotal
1005	1-934	5	1.500,00	7.500,00
1006	1-956	3	350,00	1.050,00
1007	1-923	1	190,00	190,00
1008	1-908	6	980,00	5.889,00

3fn

N_pedido	Cod_produ	Quantidade	Valor_uni
1005	1-934	5	1.500,00
1006	1-956	3	350,00
1007	1-923	1	190,00
1008	1-908	6	980,00

4.4 Exemplo FNBC

Fnbc

Aluno	Disciplina	Professor
Lima	Banco de dados	Marcos
Silva	Banco de dados	Narvalhe
Silva	Sistemas operacionais	Ormar
Silva	Teoria	Charles
Souza	Banco de dados	Marcos
Souza	Sistemas operacionais	Antonio
Wong	Banco de dados	Gomes
Zelaya	Banco de dados	Navalhe
Lima	Sistemas operacionais	Ormar

4.5 Exemplo 4FN

Func

runc		
Fnome	Projnome	Dnome
Silva	X	João
Silva	Y	Ana
Silva	X	Ana
Silva	Y	João

Fn4

func projetos

Fnome	Projnome
Silva	X
Silva	Y

Func dependentes

Fnome	nome_Dependente
Silva	João
Silva	Ana

4.6 Exemplo 5FN

Fornece

Nome_fornece	Nome_peca	Nome_proj
Silva	Peneira	ProjX
Silva	Porca	ProjY
Adam	Peneira	ProjY
Water	Porca	ProjZ
Adam	Prego	ProjX
Adam	Peneira	ProjX
Silva	Porca	ProjY

R1

Nome_fornece	OR_proj
Silva	Peneira
Silva	Porca
Adam	Peneira
Water	Porca
Adam	Prego

R2

Nome_fornece	OR_proj
Silva	ProjX
Silva	ProjY
Adam	ProjY
Water	ProjZ
Adam	ProjX

R3

Nome_peca	OR_proj
Peneira	ProjX
Porca	ProjY
Peneira	ProjY
Porca	ProjZ
Prego	ProjX

Fornece

Nome_fornece	Nome_peca	Nome_proj
Silva	Peneira	ProjX
Silva	Porca	ProjY
Adam	Peneira	ProjY
Water	Porca	ProjZ
Adam	Prego	ProjX

Decomposição

R:

Nome_fornece	OR_proj
Silva	Peneira
Silva	Porca
Adam	Peneira
Water	Porca
Adam	Prego

R2

Nome_fornece	OR_proj
Silva	ProjX
Silva	ProjY
Adam	ProjY
Water	ProjZ
Adam	ProjX

R3

Nome_peca	OR_proj
Peneira	ProjX
Porca	ProjY
Peneira	ProjY
Porca	ProjZ
Prego	ProjX

Nome_fornece	Nome_peca	Nome_proj
Silva	Peneira	ProjX
Silva	Porca	ProjY
Adam	Peneira	ProjY
Water	Porca	ProjZ
Adam	Prego	ProjX
Adam	Peneira	ProjX
Silva	Porca	ProjY

5. Conclusão

Todas são um total de situações raras, onde quanto mais se avança nas Formas Normais mais raros vão se tornando as práticas, logo com esse raciocínio, a Quinta Forma (5FN) ocorre em situações mínimas.

6. Referências

ELMASRI, Ramez; NAVATHE, Shamkant B. Sistemas de Banco de Dados, Pearson Education, 6^a edição. 2011.

Capítulo 15.