Math2033 TA note 11

Yang Yunfei, Chen Yipei, Liu Ping April 29, 2019

1 MEAN VALUE THEOREM

Example 1. Let $f : \mathbb{R} \to \mathbb{R}$ be a continuous function such that $|f(x) - f(y)| \ge |x - y|$ for all $x, y \in \mathbb{R}$. Show that f is bijective.

Solution: Firstly, if f(x) = f(y) and $x \neq y$, then 0 = |f(x) - f(y)| < |x - y| which contradicts to the condition. Hence, f is injective. So f(x) is monotone. For any $w \in \mathbb{R}$, we define M = |w - f(0)|. Then by $|f(M) - f(0)| \ge |M| = |w - f(0)|$ and $|f(-M) - f(0)| \ge |M| = |w - f(0)|$. Together with f is monotone, we have w is contained in [f(-M), f(M)]. So f is surjective. Therefore, f is bijective.

Example 2. Find the derivatives of the function $f(x) = \begin{cases} x^2 & if x \neq 0 \\ x & if x = 0 \end{cases}$, $g(x) = |\cos x|$ and $h(x) = \begin{cases} \frac{\sin x}{x} & if x \neq 0 \\ 1 & if x = 0 \end{cases}$.

Solution: For $x \neq 0$, using derivative formula. For x = 0, using the definition of derivative.

Example 3. Let $f : \mathbb{R} \to \mathbb{R}$ be differentiable. If f' is differentiable at x_0 , show that

$$\lim_{h \to 0} \frac{f(x_0 + h) + f(x_0 - h) - 2f(x_0)}{h^2} = f''(x_0)$$

Solution: Using L'Hopital's rule

$$\lim_{h \to 0} \frac{f(x_0 + h) + f(x_0 - h) - 2f(x_0)}{h^2}$$

$$= \lim_{h \to 0} \frac{f'(x_0 + h) - f'(x_0 - h)}{2h}$$

$$= \lim_{h \to 0} \frac{f'(x_0 + h) - f'(x_0) + f'(x_0) - f'(x_0 - h)}{2h}$$

$$= f''(x_0) \qquad \text{(by defintion of derivative)}$$

Example 4. Let $f: \mathbb{R} \to \mathbb{R}$ be differentiable at c and $I_n = [a_n, b_n]$ be such that $I_1 \supseteq I_2 \supseteq I_3 \supseteq \cdots$ and $\bigcap_{n=1}^{\infty} [a_n, b_n] = \{c\}$. Prove that if $a_n < b_n$ for all $n \in \mathbb{N}$, then $f'(c) = \lim_{n \to \infty} \frac{f(b_n) - f(a_n)}{b_n - a_n}$.

Solution: It is easy to see that $\lim_{n\to\infty}a_n=\lim_{n\to\infty}b_n=c$. By sequential limit theorem,

$$f'(c) = \lim_{n \to \infty} \frac{f(b_n) - f(c)}{b_n - c} = \lim_{n \to \infty} \frac{f(c) - f(a_n)}{c - a_n}.$$

We calculate

$$\frac{f(b_n) - f(a_n)}{b_n - a_n} - f'(c) = \left(\frac{f(b_n) - f(c)}{b_n - a_n} + \frac{f(c) - f(a_n)}{b_n - a_n}\right) - f'(c)
= \frac{f(b_n) - f(c)}{b_n - c} \frac{b_n - c}{b_n - a_n} + \frac{f(c) - f(a_n)}{c - a_n} \frac{c - a_n}{b_n - a_n} - f'(c) \left(\frac{b_n - c}{b_n - a_n} + \frac{c - a_n}{b_n - a_n}\right)
= \left(\frac{f(b_n) - f(c)}{b_n - c} - f'(c)\right) \frac{b_n - c}{b_n - a_n} + \left(\frac{f(c) - f(a_n)}{c - a_n} - f'(c)\right) \frac{c - a_n}{b_n - a_n}$$

Therefore,

$$\left| \frac{f(b_n) - f(a_n)}{b_n - a_n} - f'(c) \right| \le \left| \frac{f(b_n) - f(c)}{b_n - c} - f'(c) \right| + \left| \frac{f(c) - f(a_n)}{c - a_n} - f'(c) \right| \to 0.$$

Example 5. Let n be a positive integer and $f(x) = (x^2 - 1)^n$. Show that $f^{(n)}$ has n distinct roots.

Solution: By induction, we can prove that $f^{(j)}(x) = (x^2 - 1)^{n-j} P_j(x)$, where $1 \le j \le n$ and $P_j(x)$ is a polynomial. So $f(\pm 1) = f'(\pm 1) = \cdots = f^{(n-1)}(\pm 1) = 0$. Since f(1) = f(-1) = 0, by Roller's theorem, there is $x_0 \in (-1,1)$ such that $f'(x_0) = 0$. Thus, f' has at least 3 distinct roots. By Roller's theorem, f'' has at least 4 distinct roots. By induction, we can show that $f^{(n-1)}$ has at least n+1 distinct roots. So by Roller's theorem, $f^{(n)}$ has at least n+1 distinct roots. Since $f^{(n)}$ is a polynomial of degree n, it has exactly n distinct roots.

Example 6. If $f:(0,+\infty)\to\mathbb{R}$ is differentiable and $|f'(x)|\leq 2$ for all x>0, then show that the sequence $x_n=f(\frac{1}{n})$ converges. Also, show $\lim_{x\to 0} f(x)$ exits.

Solution: We first show $x_n = f(\frac{1}{n})$ is a Cauchy sequence. For every $\epsilon > 0$, let $K \in \mathbb{N}$ such that $K > \frac{2}{\epsilon}$ (by Archimedian principle). By mean-value theorem, m, n > K implies

$$|x_m - x_n| = \left| f(\frac{1}{m}) - f(\frac{1}{n}) \right| = |f'(x_0)| \left| \frac{1}{m} - \frac{1}{n} \right| \le 2 \left| \frac{1}{m} - \frac{1}{n} \right| \le 2 \left(\frac{1}{K} - 0 \right) = \frac{2}{K} < \epsilon.$$

Next, to show $\lim_{x\to 0_+} f(x)$ exits, it is enough to show $\lim_{n\to\infty} f(t_n)$ exits for every $t_n\to 0$ in $(0,+\infty)$ by the sequential limit theorem.

Otherwise, if there are two sequences in $(0, +\infty)$ such that $\lim_{n \to \infty} y_n = \lim_{n \to \infty} z_n = 0$, but $\lim_{n \to \infty} f(y_n) \neq \lim_{n \to \infty} f(z_n)$. We can construct a sequence such that $t_n = y_n$, if n is odd, $t_n = z_n$, if n is even and it converged to 0 but $f(t_n)$ is a divergent sequence.

For every $t_n \to 0$ in $(0, +\infty)$, $\{t_n\}$ is a Cauchy sequence by Cauchy's theorem. We will show $\lim_{n \to \infty} f(t_n)$ exits by showing $\{f(t_n)\}$ is a Cauchy sequence. For every $\epsilon > 0$, since $\{t_n\}$ is a Cauchy sequence, $\exists K_1 \in \mathbb{N}$ such that $m, n > K_1$

$$|t_m - t_n| < \frac{\epsilon}{2} \implies |f(t_m) - f(t_n)| = |f'(t_c)(t_m - t_n)| \le 2|t_m - t_n| < 2\frac{\epsilon}{2} = \epsilon.$$

Example 7. Prove that if $0 \le \theta \le \frac{\pi}{2}$, then

$$1 - \frac{\theta^2}{2} \le \cos \theta \le 1 - \frac{\theta^2}{2} + \frac{\theta^4}{24}.$$

Solution: Since $\frac{d^4\cos\theta}{d\theta^4} = \cos\theta$, by Taylor's theorem, there is $\theta_0 \in (0,\theta)$ such that

$$\cos\theta = 1 + 0(\theta - 0) - \frac{1}{2!}(\theta - 0)^2 + \frac{0}{3!}(\theta - 0)^3 + \frac{\cos\theta_0}{4!}(\theta - 0)^4.$$

Since $0 \le \theta_0 \le \theta \le \frac{\pi}{2}$, so $0 \le \cos \theta_0 \le 1$. Therefore,

$$1 - \frac{\theta^2}{2} \le \cos \theta \le 1 - \frac{\theta^2}{2} + \frac{\theta^4}{24}.$$