Kingdom of Saudi Arabia King-Saud University College of computer and information system Computer Science Department 1443-1444



# CSC220 Computer organization Lab project

## Arithmetic And logic unit (ALU) with Shifter

Name: Amal almuarik

ID: 442200454

Section : 61032

Course name / code : CSC220

Instructor: Dr. Norah Alfantoukh.



#### **Project Description:**

We will build an ALU with a shifter that takes in two 8-bit values and 4 control lines. Depending on the value of the control line the operation will be performed.

Schematically, here is what we want to build:



The Block-Diagram of 8-bit function unit

This Block diagram is an interface of the ALU . It shows the ALU as an Abstraction we can't see how it works but we do know what it does

What we need to know is that there is 3 status bits that are related to the aritmetic operations which are:

- Overflow (V): set to 1 if the input operands have the same sign, and the result has a different sign.
- Carry (C): set to 1 if there is a carry in the most-significant bit.
- Negative (N): set to 1 when the most-significant bit is 1.

One status bit that is related to the Aritmetic and Logic operations:

• Zero (Z): This is only true if all of the bits of the result are zero

The Default Input To test all the cases are:

- Default input for X : 10001111

- Default input for Y: 10000001

# **Test cases:**

| T     |    |    |    |                                 | Input     |           | Expected Output |   |   |   |   |
|-------|----|----|----|---------------------------------|-----------|-----------|-----------------|---|---|---|---|
| Input |    |    | S0 | Operation                       | X         | Y         | G               | С | V | N | Z |
| 33    | 52 | 51 | 50 |                                 |           |           |                 |   |   |   |   |
| 0     | 0  | 0  | 0  | G=X+Y'                          | 1000 1111 | 1000 0001 | 0000 1101       | 1 | 0 | 0 | 0 |
| 0     | 0  | 0  | 1  | G=X-Y                           | 1000 1111 | 1000 0001 | 0000 1110       | 1 | 0 | 0 | 0 |
| 0     | 0  | 1  | 0  | G=X                             | 1000 1111 | 1000 0001 | 1000 1111       | 0 | 0 | 1 | 0 |
| 0     | 0  | 1  | 1  | G=X+1                           | 1000 1111 | 1000 0001 | 1001 0000       | 0 | 0 | 1 | 0 |
| 0     | 1  | 0  | 0  | G=X+2                           | 1000 1111 | 1000 0001 | 1001 0001       | 0 | 0 | 1 | 0 |
| 0     | 1  | 0  | 1  | G=X+3                           | 1000 1111 | 1000 0001 | 1001 0010       | 0 | 0 | 1 | 0 |
| 0     | 1  | 1  | 0  | G=X*2                           | 1000 1111 | 1000 0001 | 0001 1110       | 1 | 1 | 0 | 0 |
| 0     | 1  | 1  | 1  | G=X*2+1                         | 1000 1111 | 1000 0001 | 0001 1111       | 1 | 1 | 0 | 0 |
| 1     | 0  | 0  | 0  | G=X XOR Y                       | 1000 1111 | 1000 0001 | 0000 1110       | X | X | X | 0 |
| 1     | 0  | 0  | 1  | G=X OR Y'                       | 1000 1111 | 1000 0001 | 1111 1111       | X | X | X | 0 |
| 1     | 0  | 1  | 0  | G=X NAND Y                      | 1000 1111 | 1000 0001 | 0111 1110       | X | X | X | 0 |
| 1     | 0  | 1  | 1  | G = X'                          | 1000 1111 | 1000 0001 | 0111 0000       | X | X | X | 0 |
| 1     | 1  | 0  | 0  | G = Y                           | 1000 1111 | 1000 0001 | 1000 0001       | X | X | X | 0 |
| 1     | 1  | 0  | 1  | G = Arithmetic<br>Shift Right Y | 1000 1111 | 1000 0001 | 1100 0000       | X | X | X | 0 |
| 1     | 1  | 1  | 0  | G = Logical<br>Shift Right Y    | 1000 1111 | 1000 0001 | 0100 0000       | X | X | X | 0 |
| 1     | 1  | 1  | 1  | G= Switch Tail<br>Left Y        | 1000 1111 | 1000 0001 | 0000 0010       | X | X | X | 0 |

## Circuit diagram:

