Probability 2

王胤雅

25114020018

yinyawang25@m.fudan.edu.cn

2025年10月14日

 \mathbb{R}^{OBEM} I 举例说明半集代数 \mathcal{T} 生成的 σ -代数不能一般性地表述为

$$\sigma(\mathcal{T}) = \{ \sum_{n=1}^{\infty} A_n : \forall n \ge 1, A_n \in \mathcal{T} \}.$$

但如果 Ω 至多可数时,如上表述是正确的.

SOUTION. 下证如上表述在 Ω 可数时,不正确。考虑 $\mathcal{T} := \{A \subset \mathbb{N} : 0 \in A, |A^c| < \infty \neq 0 \neq A, |A| < \infty \}$ 。令 $\mathcal{A} := \{\sum_{n=1}^{\infty} A_n : \forall n \geq 1, A_n \in \mathcal{T}\}$,先证 \mathcal{T} 为半集代数。

- 由于 $0 \notin \emptyset$, 且 $|\emptyset| = 0$, 那么 $\emptyset \in \mathcal{T}$ 。又由于 $0 \in \mathbb{N}$, 且 $|\mathbb{N}^c| = |\emptyset| = 0$, 那么 $\mathbb{N} \in \mathcal{T}$ 。
- $\forall A, B \in \mathcal{T}$, 若 $0 \in A, 0 \in B$, 那么 $0 \in A \cap B$ 。由于 $|A^c|, |B^c| < \infty$, 那么 $|(A \cap B)^c| = |A^c \cup B^c| \le |A^c| + |B^c| < \infty$ 。故 $A \cap B \in \mathcal{T}$ 。若 $0 \in A, 0 \notin B$,那么 $0 \notin A \cap B$ 。由于 $|A^c|, |B| < \infty$,那么 $|A \cap B| \le |B| < \infty$ 。从而 $A \cap B \in \mathcal{T}$ 。若 $0 \notin A, 0 \notin B$,那么 $0 \notin A \cap B$ 。 又由于 $|A|, |B| < \infty$,那么 $|A \cap B| \le |A| < \infty$ 。从而 $|A \cap B| \in \mathcal{T}$ 。综上, $|A \cap B| \in \mathcal{T}$ 。
- $\forall A \in \mathcal{T}$,若 $0 \in A$,那么 $|A^c| < \infty$ 。又由于 $0 \notin A^c$,那么 $A^c \in \mathcal{T}$ 。若 $0 \notin A$,那么 $|A| < \infty$ 。 又由于 $0 \in A^c$,那么 $|(A^c)^c| < \infty$ 。故 $A^c \in \mathcal{T}$ 。综上, $A^c \in \mathcal{T}$ 。

下证 $\sigma(\mathcal{T}) \neq \mathcal{A}$ 。事实上, $\{0\} \in \sigma(\mathcal{T}) \setminus \mathcal{A}$ 。若 $\{0\} \in \mathcal{A}$,那么 $\exists A_n \in \mathcal{T}, n \geq 1, A_i \cap A_j = \emptyset, i \neq j$,使得 $\{0\} = \sum_{n=1}^{\infty} A_n$ 。由于 $|\{0\}| = 1 < \infty$,那么 $|A_n| < \infty, \forall n \geq 1$ 。故 $0 \notin A_n, \forall n \geq 1$ 。从而 $0 \notin \bigcup_{n \geq 1} A_n$ 。故 $\{0\} \notin \mathcal{A}$ 。而 $\{0\} = (\bigcup_{k \geq 1} \{k\})^c$, $\{k\} \in \mathcal{T}, k \geq 1$ 。故 $\{0\} \in \sigma(\mathcal{T})$ 。

 \mathbb{R}^{O} BEM II 设 μ^* 为 μ 生成的外测度,则测度空间 $(\Omega, \mathcal{A}, \mu)$ 是完全的 \iff $\mathcal{A} \supset \{A \subset \Omega : \mu^*(A) = 0\}.$

SOUTION. 由于 $(\Omega, \mathcal{A}, \mu)$ 为测度空间,那么 μ 的外侧度 μ^* 可定义为

$$\mu^*(A) := \{ \sum_n \mu(A_n) : A \subset \cup_n A_n, A_n \in \mathcal{A} \}, A \subset \Omega$$

" ⇒ ": 由于 $(\Omega, \mathcal{A}, \mu)$ 为完全的,那么 $\forall N$ 满足 $\exists B \in \mathcal{A}, \ N \subset B, \ \mu(B) = 0$,都有 $N \in \mathcal{A}$ 。 若 $\mu^*(A) = 0$,那么 $\forall k \in \mathbb{N}_+$, $\exists A_{n,k} \in \mathcal{A}, n \in \mathbb{N}$,满足 $\cup_n A_{n,k} \supset A$, $\mu(\cup_n A_{n,k}) \leq \sum_n \mu(A_{n,k}) < \infty$

 $\mu^*(A) + \frac{1}{k} = \frac{1}{k}$ 。那么 $A \ni B := \bigcap_k \bigcup_n A_{n,k} \supset A$ 。而由于 $\mu(\bigcap_k^m \bigcup_n A_{n,k}) < \frac{1}{m} < \infty, m \in \mathbb{N}$,由 μ 的 连续性可知, $0 \le \mu(B) = \mu(\bigcap_k \bigcup_n A_{n,k}) = \lim_{m \to \infty} \mu(\bigcap_k^m \bigcup_n A_{n,k}) \le \lim_{m \to \infty} \frac{1}{m} = 0$ 。故 $\mu(B) = 0$. 从而 $A \ni \mu$ 零测集。故 $A \in \mathcal{A}$ 。

" \leftarrow ": $\forall N$ 满足 $\exists B \in \mathcal{A}, \ N \subset B, \ \mu(B) = 0, \ 都有 \ \mu^*(N) \leq \mu(B) = 0.$ 那么 $\mu^*(N) = 0.$ 从而 $N \in \mathcal{A}$ 。故 $(\Omega, \mathcal{A}, \mu)$ 为完全测度空间。

 \mathbb{R}^{O} BEM III \mathcal{T} 为半集代数, μ 为 \mathcal{T} 上的有限测度。记 $(\Omega, \mathcal{A}^*, \mu^*)$ 为 μ 扩张至 $\sigma(\mathcal{T})$ 的完全化,令

$$\mu_*(A) := \sup\{\sum_n \mu(A_n) : A_n \in \mathcal{T}$$
两两不交, $\sum_n A_n \subset A\}$,
$$\mathcal{A}_* := \{A \subset \Omega : \mu^*(A) = \mu_*(A)\}.$$

证明: $\mathcal{A}^* \supset \mathcal{A}_*$ 。

SOLTION . $\forall A \in \mathcal{A}_*$,那么 $\mu_*(A) = \mu^*(A)$ 。由 μ_* 的定义及 μ 有限知, $\forall k \in \mathbb{N}_+$, $\exists A_{n,k} \in \mathcal{T}, n \in \mathbb{N}$,两两不交,且 $\cup_n A_{n,k} \subset A$,满足 $\sum_n \mu(A_{n,k}) > \mu_*(A) - \frac{1}{k}$ 。由于 $A_{n,k}$ 两两不交,那么 $\mu(\cup_n A_{n,k}) = \sum_n \mu(A_{n,k})$ 。由于书本定理 1.51 知, μ^* 即为 μ 的外测度, A^* 上的 测度。故 $\mu^*(\cup_n A_{n,k}) = \mu(\cup_n A_{n,k}) = \sum_n \mu(A_{n,k})$ 。令 $B := \cup_k \cup_n A_{n,k} \in \sigma(\mathcal{T}) \subset A^*$,那么 $B = \bigcup_{m=1}^{\infty} \bigcup_{n=0}^{m} A_{n,k} \subset A \subset \Omega$, $\mu^*(B) \leq \mu^*(A) \leq \mu^*(\Omega) < \infty$ 。且 $A_{n,k}$ 两两不交 $\forall n,k$ 。由于 $\mu^*(B) = \lim_{m\to\infty} \mu^*(\bigcup_{k=1}^{m} \bigcup_{n=0}^{\infty} A_{n,k}) \geq \lim_{m\to\infty} \mu^*(\bigcup_n A_{n,m}) = \lim_{m\to\infty} \mu(\bigcup_n A_{n,m}) = \lim_{m\to\infty} \mu_*(A) - \frac{1}{m} = \mu_*(A)$,从而 $\mu^*(B) \geq \mu_*(A) = \mu^*(A)$ 。故 $\mu^*(B) = \mu^*(A)$ 。令 $C = A \setminus B$,由于 $B \in \mathcal{A}^*$,那么 $\mu^*(A) = \mu^*(A \cap B) + \mu^*(A \cap B^c) = \mu^*(B) + \mu^*(C)$ 。从而 $\mu^*(C) = 0$ 。那么 C 为 μ^* -零测集。故 $A = B \cup C$ 。由 $(\Omega, \mathcal{A}^*, \mu^*)$ 完全及书本定理 1.51 知, $\mathcal{A}^* = \{B \cup N : B \in \mathcal{A}^*, N \ni \mu^*$ 零测集}。从而, $A \in \mathcal{A}^*$ 。

ℝ^OBEM IV 设 $(\Omega, \mathcal{A}, \mu)$ 为测度空间, μ^* 为由 μ 生成的外测度。证明 $N \subset \Omega$ 为 μ 零测集当且仅 当 $\mu^*(N) = 0$.

SOLTION. " \Longrightarrow ": 若 N 为 μ 零测集,那么 $\exists B \in \mathcal{A}$, $\mu(B) = 0$, $N \subset B$ 。那么 $\mu^*(N) \leq \mu(B) = 0$ 。故 $\mu^*(N) = 0$ 。

" \Leftarrow ": 若 $\mu^*(N) = 0$,那么 $\mu^*(N) = \inf\{\sum_n \mu(A_n) : A_n \in \mathcal{A}, n \in \mathbb{N}, \cup_n A_n \supset N\} = 0$ 。 故 $\forall k \geq 1, \exists A_{n,k} \in \mathcal{A}, n \geq 1$,满足 $\cup_n A_{n,k} \supset N, \sum_n \mu(A_{n,k}) < \mu^*(N) + \frac{1}{k} = \frac{1}{k}$ 。令 $B := \bigcap_k \cup_n A_{n,k}$,则 $B \supset N, B \in \mathcal{A}$ 。那么 $\mu(B) = \mu(\bigcap_m \bigcap_{1 \leq k \leq m} \bigcup_n A_{n,k}) = \lim_{m \to \infty} \mu(\bigcap_{1 \leq k \leq m} \bigcup_n A_{n,k}) \leq \lim_{m \to \infty} \mu(\bigcup_n A_{n,m}) = \lim_{m \to \infty} \frac{1}{m} = 0$ 。那么 N 为 μ 零测集。