

Predicitve Analysis for XYZ's Marketing Campaign

Ssu Hsien Lee, Alan Chen, Kasturi Pal, Deepanshu Kataria

Who is likely to become a premium subscriber?

XYZ needs **new subscribers** to take up the monthly subscription plan to increase revenue.

However, for the next marketing campaign, we don't know which current non-subscribers are likely to respond to the marketing campaign and convert to premium subscribers

We analyze previous marketing campaign data and develop a predictive model to help the executives of XYZ better predict which existing users are most likely to take up their subscriptions.

Analytics- enabled Marketing Campaign Stategy

Predictive Model

Prospective users

Data Description

Overview of Data:

- Total of 41,540 records
- 25 attributes
- Subscribers proportions after previous marketing campaign

96.3%

Solution Map -Model Building Process

We build different models. However, which model is the best?

Identify evaluation performance metrics

- scale-invariant
- classification-threshold -invariant

The most suitable metric for this markegint campaign analysis

- ROC curve **ranks** the **predictive probabilities** of all the data points.
- AUC is used to correctly rank the probability of converting to subscribers ahead of the maintain as free users.
- AUC value should > 0.5(random model performance)
- AUC is used to predict what percentage of users has a higher predictive probability of being likely to subscribe over the not subscribers records.

Implication of the Model - Revelant features

Six most relevant features:

- Delta_songs_listened: changes in the number of listening songs
- Subscriber_friend_count: number of friends who are subscribers of the premium service
- lovedTracks: total number of different songs that the user "liked"
- Age: ages of users
- delta_shouts: changes in the number of wall posts received by the user
- good_country: countries where free usage is more limited, 1 – less limited

Implication of the Model - 4 Types of users are more likely to sbuscribe

Four types of users are more likely to convert to premium subscribers

Delta_songs_listened < 8

Delta_songs_listened > 8

Subscriber_friend_count < 1

Subscriber_friend_count >1

age > 25 loved Tracks > 34 Less limited free usage coutnry

age > 22 loved Tracks > 48

loved Tracks < 101 delta_shouts > 2

age > 19 loved Tracks > 101

Implication of the Model - Model Performance

	Decision TreeModel	BaseLine Model
AUC	0.77	0.5

The area under this ROC curve, **AUC**, equates to the model's **ability to predict classes correctly.** As a significant AUC would show that the model can achieve a high true positive rate with a correspondingly low false positive rate.

Application of the Model

Data Input

New
Marketing
Data

Decision Tree Model

Model Prediction

Outcome

predicted premium subscribers

important features of predicted premium subscribers

THANK YOU

