文件在外存中的分配方式

第6组 20121034 胡才郁 20121706 张俊雄

操作系统对磁盘块的管理

文件的物理结构

对非空闲磁盘块的分配叫做文件的分配方式

顺序分配

每个文件在磁盘上占有一组连续的块。

文件A

0

3

文件B

0

2

文件名称	起始块号	文件长度
Α	4	4
В	12	3

文件目录

文件的物理结构

顺序分配

文件的物理结构

顺序分配的优缺点

优点: 读写速度最快

缺点:不方便拓展

链接分配--隐式链接

除文件的最后一个盘块之外, 每个盘块都存有指向下一个盘块的指针。

文件名称	起始块号	结束块号
Α	0	4
В	2	18

文件目录

文件的物理结构

链接分配--隐式链接

除文件的最后一个盘块之外, 每个盘块都存有指向下一个盘块的指针。

文件名称	起始块号	结束块号
Α	0	4
В	2	18

文件目录

- ❖ 优点: 方便文件扩展,空间利用率高, 不产生外部碎片。
- ❖ 缺点: 只支持顺序访问, 不支持随机访问, 查找效率低。

文件的物理结构

链接分配--显式链接

把用于链接文件各物理块的指针显式地存放 在一张表中,即文件分配表。

(FAT, File Allocation Table)

物理块号	下一块的物理块号
0	4
1	16
3	-1
4	9
9	14
10	3
11	-1
14	11
16	10

FAT 开机后常驻

链接分配--显式链接

把用于链接文件各物理块的指针显式地存放 在一张表中,即文件分配表。 (FAT, File Allocation Table)

物理块号	下一块的物理块号
0	4
1	16
3	-1
4	9
9	14
10	3
11	-1
14	11
16	10

FAT 开机后常驻

优点: 方便文件扩展, 空间利用率高, 空间利用率高, 不产生外部碎片。相比于隐式链接来说, 地址转换时不需要访问磁盘, 因此文件的访问效率更高。

缺点: FAT需要占 用一定的存储空间。

系统为每个文件建立一张索引表,记录文件的各个逻辑块对应的物理块。

索引表存放的磁盘块称为索引块。文件存放的磁盘块称为数据块。

文件的物理结构

系统为每个文件建立一张索引表,记录文件的各个逻辑块对应的物理块。

索引表存放的磁盘块称为索引块。文件存放的磁盘块称为数据块。

文件名称	索引块
Α	6

逻辑 块号	物理 块号
0	2
1	5
2	12
3	10

文件的物理结构

系统为每个文件建立一张索引表,记录文件的各个逻辑块对应的物理块。

索引表存放的磁盘块称为索引块。文件存放的磁盘块称为数据块。

文件名称	索引块
Α	6
В	18

逻辑	物理块号	
块号	文件A	文件B
0	2	3
1	5	9
2	12	7
3	10	14

- ❖ 在索引分配方式中, 索引表每个**文件**对 应一张
- ❖ 在显式连接的链式 分配方式中,文件 分配表FAT每个磁 盘对应一张

文件的物理结构

系统为每个文件建立一张索引表,记录文件的各个逻辑块对应的物理块。

索引表存放的磁盘块称为索引块。文件存放的磁盘块称为数据块。

文件名称	索引块	
Α	6	
В	18	

逻辑 块号	物理块号		
	文件A	文件B	
0	2	3	
1	5	9	
2	12	7	
3	10	14	

可以用固定的长度表示物理块号。

如:若磁盘总容量为 1TB=2³⁰个磁盘块, 则可用4B表示磁盘 块号

索引表中的逻辑块号可被隐含。

文件的物理结构

总结&对比

类	型	分配方式	目录项内容	优点	缺点
顺序	分配	为文件发分配的必须是 连续的磁盘块	起始块号 文件长度	顺序存取速度快 支持随机访问	会产生碎片 不利于文件扩展
	隐式 链接	除文件的最后一块盘块之外 每个盘块都存有指向 下一个盘块的指针	起始块号 结束块号	可解决碎片问题 外存利用率高 文件拓展实现方便	只能顺序访问 不能随机访问
链接 分配	显式 链接	。 显式记录盘换的先后主义 起始块 石	起始块号	除了拥有隐式链接的 优点之外,还可以通 过查询内存中的FAT 实现随机访问	FAT需要占用 一定的存储空间
索引	分配	为文件数据块建立索引表	索引块的块号	支持随机访问 易于实现文件的拓展	索引表需占用一 定的存储空间 访问数据块前需 要先读入索引块

谢谢观看

文件在外存中的分配方式

第6组 20121034 胡才郁 20121706 张俊雄