Exercise

For this exercise, you will be working with the House Price Dataset.

Please grab the train.csv file from Kaggle and explore this dataset. You need to perform explroatory data analysis and see if there is any correlation between the variables and analyze the distribution of the dataset. The question is open-ended and basically you're asked to perform EDA.

- 1- Write a summary of your findings in one page (e.g., summary statistics, plots) and submit the pdf file. Therefore, for part 3 of your assignment, you need to submit at least one jupyter notebook file and one pdf file.
- 2- Push your code and project to github and provide the link to your code here. Ensure that your github project is organized to at least couple of main folders, ensure that you have the README file as well:
 - Src
 - Data
 - Docs
 - Results

Read this link for further info:

https://gist.github.com/ericmjl/27e50331f24db3e8f957d1fe7bbbe510

```
import pandas as pd
In [4]:
            import numpy as np
            import seaborn as sns
            df = pd.read csv('train.csv')
            df.columns
           Index(['Id', 'MSSubClass', 'MSZoning', 'LotFrontage', 'LotArea', 'Street',
Out[4]:
                      'Alley', 'LotShape', 'LandContour', 'Utilities', 'LotConfig',
                     'LandSlope', 'Neighborhood', 'Condition1', 'Condition2', 'BldgType',
'HouseStyle', 'OverallQual', 'OverallCond', 'YearBuilt', 'YearRemodAdd',
'RoofStyle', 'RoofMatl', 'Exterior1st', 'Exterior2nd', 'MasVnrType',
                     'MasVnrArea', 'ExterQual', 'ExterCond', 'Foundation', 'BsmtQual',
                     'BsmtCond', 'BsmtExposure', 'BsmtFinType1', 'BsmtFinSF1',
                     'BsmtFinType2', 'BsmtFinSF2', 'BsmtUnfSF', 'TotalBsmtSF', 'Heating', 'HeatingQC', 'CentralAir', 'Electrical', '1stFlrSF', '2ndFlrSF',
                     'LowQualFinSF', 'GrLivArea', 'BsmtFullBath', 'BsmtHalfBath', 'FullBath', 'HalfBath', 'BedroomAbvGr', 'KitchenAbvGr', 'KitchenQual',
                     'TotRmsAbvGrd', 'Functional', 'Fireplaces', 'FireplaceQu', 'GarageType', 'GarageYrBlt', 'GarageFinish', 'GarageCars', 'GarageArea', 'GarageQual',
                     'GarageCond', 'PavedDrive', 'WoodDeckSF', 'OpenPorchSF',
                     'EnclosedPorch', '3SsnPorch', 'ScreenPorch', 'PoolArea',
                     'Fence', 'MiscFeature', 'MiscVal', 'MoSold', 'YrSold', 'SaleType',
                     'SaleCondition', 'SalePrice'],
                    dtype='object')
In [5]:
           df.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1460 entries, 0 to 1459
Data columns (total 81 columns):

Jaca	columns (total	81 columns):	
#	Column	Non-Null Count	Dtype
0	Id	1460 non-null	int64
1	MSSubClass	1460 non-null	int64
2			
	MSZoning		object
3	LotFrontage	1201 non-null	float64
4	LotArea	1460 non-null	int64
5	Street	1460 non-null	object
6	Alley	91 non-null	object
7	LotShape	1460 non-null	object
8	LandContour	1460 non-null	object
9	Utilities	1460 non-null	object
10	LotConfig	1460 non-null	object
	_		-
11	LandSlope	1460 non-null	object
12	Neighborhood	1460 non-null	object
13	Condition1	1460 non-null	object
14	Condition2	1460 non-null	object
15	BldgType	1460 non-null	object
16	HouseStyle	1460 non-null	object
17	OverallQual	1460 non-null	int64
18	OverallCond	1460 non-null	int64
19	YearBuilt	1460 non-null	int64
20	YearRemodAdd	1460 non-null	int64
21	RoofStyle	1460 non-null	object
22	RoofMatl	1460 non-null	object
23	Exterior1st	1460 non-null	object
24	Exterior2nd	1460 non-null	object
25	MasVnrType	1452 non-null	object
26	MasVnrArea	1452 non-null	float64
27	ExterQual	1460 non-null	object
28	ExterCond	1460 non-null	object
29	Foundation	1460 non-null	object
			-
30	BsmtQual		object
31	BsmtCond	1423 non-null	object
32	BsmtExposure	1422 non-null	object
33	BsmtFinType1	1423 non-null	object
34	BsmtFinSF1	1460 non-null	int64
35	BsmtFinType2	1422 non-null	object
36	BsmtFinSF2	1460 non-null	int64
37	BsmtUnfSF	1460 non-null	int64
38	TotalBsmtSF	1460 non-null	int64
39	Heating	1460 non-null	object
	•		
40	HeatingQC	1460 non-null	object
41	CentralAir	1460 non-null	object
42	Electrical	1459 non-null	object
43	1stFlrSF	1460 non-null	int64
44	2ndFlrSF	1460 non-null	int64
45	LowQualFinSF	1460 non-null	int64
46	GrLivArea	1460 non-null	int64
47	BsmtFullBath	1460 non-null	int64
48	BsmtHalfBath	1460 non-null	int64
49	FullBath	1460 non-null	int64
50	HalfBath	1460 non-null	int64
51	BedroomAbvGr	1460 non-null	int64
52	KitchenAbvGr	1460 non-null	int64
	KitchenQual	1460 non-null	object
53	KICCHCHQUUI		
53 54	TotRmsAbvGrd	1460 non-null	int64
	_	1460 non-null 1460 non-null	int64 object
54	TotRmsAbvGrd		
54 55 56	TotRmsAbvGrd Functional Fireplaces	1460 non-null 1460 non-null	object int64
54 55	TotRmsAbvGrd Functional	1460 non-null	object

```
59 GarageYrBlt
                 1379 non-null
                                float64
60 GarageFinish
                 1379 non-null
                                object
61 GarageCars
                 1460 non-null
                                int64
                 1460 non-null
                                int64
62 GarageArea
63 GarageQual
                 1379 non-null
                                object
64 GarageCond
                 1379 non-null
                                object
65 PavedDrive
                1460 non-null
                                object
66 WoodDeckSF
                 1460 non-null
                                int64
67 OpenPorchSF
                 1460 non-null
                                int64
68 EnclosedPorch 1460 non-null
                                int64
69 3SsnPorch
                 1460 non-null
                                int64
70 ScreenPorch 1460 non-null int64
71 PoolArea 1460 non-null int64
72 PoolQC
                7 non-null
                                object
73 Fence
                281 non-null
                                object
74 MiscFeature 54 non-null
                                object
75 MiscVal 1460 non-null
                                int64
76 MoSold
                1460 non-null
                                int64
77 YrSold
                1460 non-null
                                int64
78 SaleType
                1460 non-null
                                object
79 SaleCondition 1460 non-null
                                object
80 SalePrice
                 1460 non-null
                                int64
dtypes: float64(3), int64(35), object(43)
```

memory usage: 924.0+ KB

Summary of SalePrice

```
In [23]:
          df.describe()['SalePrice']
          #describe(df['SalePrice'])
                     1460.000000
          count
Out[23]:
                   180921.195890
          mean
          std
                   79442.502883
          min
                    34900.000000
          25%
                   129975.000000
          50%
                   163000.000000
          75%
                   214000.000000
          max
                   755000.000000
         Name: SalePrice, dtype: float64
          The average Sale price for the house is 163k. The maximum price is 755k and the minimum
          price is 34k
          sns.histplot(df['SalePrice'])
 In [6]:
          <AxesSubplot:xlabel='SalePrice', ylabel='Count'>
 Out[6]:
```


From the histogram above, the distribution of our variable-- SalePrice is skewed to right. Thus, a log term of SalePrice should be generated for linear regression.

Distribution of SalePrice by MSZoning

MSZoning: Identifies the general zoning classification of the sale. A Agriculture C Commercial FV Floating Village Residential I Industrial RH Residential High Density RL Residential Low Density RP Residential Low Density Park RM Residential Medium Density

comparing Salesprice with MSZoning

Out[14]: <AxesSubplot:xlabel='MSZoning', ylabel='SalePrice'>

The graph above shows the distribution of SalePrice by MSZoning. The sales in "Floating Village Residential" area have the highest average sale price, and then "Residential Low Density". While "Commercial" sales have the lowest average sale price.

It is surprising that commercial area has the lowest average Sale Price while village area has the highest. One possible explanation could be SalePrice is also related to the size of houses.

Distribution of SalePrice by BldgType

Describing SalePrice by different cateogries of BldfType.

BldgType: Type of dwelling 1Fam Single-family Detached
2FmCon Two-family Conversion; originally built as one-family dwelling Duplx Duplex TwnhsE
Townhouse End Unit TwnhsI Townhouse Inside Unit

```
In [43]: #sns.jointplot(x = 'BldgType',y = 'SalePrice', data = df, color = 'red')
sns.histplot(data=df,x='SalePrice',hue='BldgType',multiple="stack").set_title('Sale
Text(0.5, 1.0, 'Saleprice by BldgType')
```

Out[43]: Text(0.5, 1.0, 'Saleprice by BldgType')

For houses with type of Single-family, most of their prices are within the range from 50000 to 300000 For Two-family Conversion, Duplex, Townhouse End Unit and Townhouse Inside Unit, most of house prices are ranging from 75000 to 210000 The highest and lowest house price both come to Single-family house type

Distribution of SalePrice by OverallQuality

OverallQual: Rates the overall material and finish of the house

10 Very Excellent 9 Excellent 8 Very Good 7 Good 6 Above Average 5 Average 4 Below Average 3 Fair 2 Poor 1 Very Poor

```
In [45]: sns.histplot(data=df,x='SalePrice',hue='OverallQual',multiple="stack").set_title('Solut[45]: Text(0.5, 1.0, 'Saleprice by OverAll Quality')
```


Most houses fall in the categories 4,5,6,7 i.e "Below Average", "Average", "Above Average" and "Good". The higher rate of overall quality, higher its sale price For each rate level of overall quality, the distribution of house price is almost symmetric

Heatmap based on SalePrice

```
In [59]: corrm = df.corr()
    cols = corrm.nlargest(10, 'SalePrice')['SalePrice'].index
    cm = np.corrcoef(df[cols].values.T)
    sns.set(font_scale=1.25)
    f,ax=plt.subplots(figsize=(12,9))
    hm = sns.heatmap(cm, cbar=True, annot=True, square=True, fmt='.2f', annot_kws={'sixplt.show()}
```


Correlation between SalePrice and some numeric variables

Scatterplot of SalePrice and GrLivArea

SalePrice is positively correlated with GrLivArea(Above grade (ground) living area square

feet). There are few outliers on the top left and right corner

Scatterplot of SalePrice and TotalBsmtSF

TotalBsmtSF

SalePrice is positively correlated with TotalBsmtSF(Total square feet of basement area). There is one outlier in the right corner.

5000

6000

Scatterplot of SalePrice and GarageArea

2000

1000

0

0

```
In [70]: sns.scatterplot(data=df, y="SalePrice", x="GarageArea")
Out[70]: <AxesSubplot:xlabel='GarageArea', ylabel='SalePrice'>
600000
200000
200000
```

SalePrice is positively correlated with GarageArea(Size of garage in square feet). There is are few outliers on the top and the right.

1000

1200

Scatterplot of SalePrice and TotRmsAbvGrd

400

```
In [72]: sns.scatterplot(data=df, y="SalePrice", x="TotRmsAbvGrd")
```

GarageArea

Out[72]: <AxesSubplot:xlabel='TotRmsAbvGrd', ylabel='SalePrice'>

SalePrice is positively correlated with TotRmsAbvGrd(Total rooms above grade (does not include bathrooms)). We can see increase in Saleprice with increase in TotRmsAbvGrd.

Please find the code pushed to GIT in the below given URL https://github.com/sameekshamendon/Python_Assignment3_Part3.git