Do not be seduced by the lotus-eaters into infatuation with untethered abstraction. ¹

Fix a field K.

Notation. Given vector spaces V and W, we write $V \otimes W$ as the tensor product of V and W. For $v \in V$, $w \in W$, we write $v \otimes w = \pi([v \mid w])^2$, this is called a *pure tensor*.

Remark. Pure tensors span the tensor product, but not every element of the tensor product is a pure tensor.

Recall. Let U, V be vector spaces. We defined $U \otimes V$ equipped with a bilinear map $\varphi : U \times V \to U \otimes V$ that is universal, i.e., given any bilinear map $\psi : U \times V \to W$, there exists a unique linear map $\rho : U \otimes V \to W$ such that $\psi = \rho \circ \varphi$, and it maps (u, v) to $u \otimes v$.

$$U\times V \xrightarrow{\varphi} U\otimes V$$

$$\downarrow^{\psi}$$

$$W$$

Proposition. $(V_1 \oplus V_2) \otimes W \cong (V_1 \otimes W) \oplus (V_2 \otimes W)$.

Proof. Define $\tilde{\alpha}: (V_1 \oplus V_2) \times W \to (V_1 \otimes W) \oplus (V_2 \otimes W)$ by $(v_1 + v_2, w) \mapsto v_1 \otimes w + v_2 \otimes w$.

 $\tilde{\alpha}$ is bilinear, so we apply the universal property of tensor product and obtain linear map $\alpha: (V_1 \oplus V_2) \otimes W \to (V_1 \otimes W) \oplus (V_2 \otimes W)$ such that $\alpha((v_1 + v_2) \otimes w) = v_1 \otimes w + v_2 \otimes w$.

Next we define $\beta_1: V_1 \times W \to (V_1 \oplus V_2) \otimes W$ by $(v_1, w) \mapsto v_1 \otimes w$.

Again by the universal property of tensor product we get a linear map β_1 : $V_1 \otimes W \to (V_1 \oplus V_2) \otimes W$ such that $\beta_1(v_1 \otimes w) = v_1 \otimes w$.

Similarly we have $\beta_2: V_2 \otimes W \to (V_1 \oplus V_2) \otimes W$ such that $\beta_2(v_2 \otimes w) = v_2 \otimes w$. Together β_1, β_2 gives $\beta: (V_1 \otimes W) \oplus (V_2 \otimes W) \to (V_1 \oplus V_2) \otimes W$, where $\beta(v_1 \otimes w + v_2 \otimes w') = v_1 \otimes w + v_2 \otimes w'$.

Since the pure tensors span, we can check that α and β are inverse to each other by checking on the pure tensors.

Remark. This works for infinite direct sums:

$$(\bigoplus_{i\in I} V_i) \otimes W \cong \bigoplus_{i\in I} (V_i \otimes W).$$

¹Ravi Vakil, The Rising Sea: Foundations of Algebraic Geometry.

²This notation is from the construction presented in discussion on Feb. 19th.

Proposition. $K \otimes K$ is one dimensional.

Proof. An element of $K \otimes K$ has the form $\sum_{i=1}^{n} a_i \otimes b_i$ for $a_i, b_i \in K$. $\sum_{i=1}^{n} a_i \otimes b_i = \sum_{i=1}^{n} a_i b_i (1 \otimes 1) = (\sum_{i=1}^{n} a_i b_i) (1 \otimes 1)$, so $1 \otimes 1$ spans $K \otimes K$, and $K \otimes K$ has dimension at most 1.

Suppose $K \otimes K = 0$. Then consider a bilinear map $\psi : K \times K \to W$.

 $K \otimes K = 0$ would imply that $\psi = 0$. Therefore, if we can construct any nonzero bilinear map out of $K \times K$, then $K \otimes K \neq 0$.

The multiplication map $K \times K \to K$ given by $(a,b) \mapsto ab$ is a nonzero bilinear map, so $K \otimes K \neq 0$ and $K \otimes K$ has dimension 1.

Remark. The multiplication map induces isomorphism $K \otimes K \xrightarrow{\sim} K$.

Proposition. Let e_1, \ldots, e_n be a basis for V, f_1, \ldots, f_m be a basis for W. Then $e_i \otimes f_j$ for $1 \leq i \leq n$, $1 \leq j \leq m$ forms a basis for $V \otimes W$.

Proof.

$$V \otimes W = (\bigoplus_{i=1}^{n} Ke_i) \otimes (\bigoplus_{j=1}^{m} Kf_j)$$
$$= \bigoplus_{i=1}^{n} \bigoplus_{j=1}^{m} (Ke_i \otimes Kf_j)$$
$$= \bigoplus_{i=1}^{n} \bigoplus_{j=1}^{m} Ke_i \otimes f_j$$

Corollary. $\dim(V \otimes W) = \dim(V) \times \dim(W)$.

Proposition. (Tensor product is functorial) Let $f: V_1 \to V_2$ and $g: W_1 \to W_2$ be linear maps. There exists a unique linear map $V_1 \otimes W_1 \to V_2 \otimes W_2$ denoted $f \otimes g$ with the property that $v \otimes w \mapsto f(v) \otimes g(w)$.

Proof. We have a map $V_1 \times W_1 \to V_2 \otimes W_2$ that takes $(v, w) \mapsto f(v) \otimes g(w)$ that is bilinear, so universal property once again gives us what we want.