Módulo B - ESCOAMENTO

I – BALANÇO HÍDRICO II – PERDAS

III - MEDIDAS DO ESCOAMENTO

IV - CURVA DE DESCARGA

V - SEPARAÇÃO DO ESCOAMENTO

I - BALANÇO HÍDRICO

MB.01. Estudos realizados na bacia do "Alto Iguaçu" mostram que o coeficiente de **escoamento superficial** na região e da ordem de 30%. Este coeficiente representa a relação entre o volume que escoa pela exutória da bacia e o volume precipitado. Em 1986 o total precipitado foi 1230 mm. Despreze a variação no volume armazenado na bacia.

- Calcule a vazão média anual em 1986 na seção do rio Iguaçu logo à jusante da confluência dos rios Palmital e Iraí (veja figura).
- Apresente sua resposta nas seguintes unidades: m³/s e l/s.km².

- **MB.02.** Uma bacia hidrográfica de 25 km² de área recebe uma precipitação média anual de 1200 mm. Considerando que as perdas médias anuais por evapotranspiração valem 800 mm, determinar a **vazão média** de longo período na exutória, em m³/s.
- **MB.03.** Deduzir uma fórmula que expresse a nova **vazão média** de longo período que a bacia hidrográfica da questão anterior produzirá depois da implantação de um reservatório que inunda **x** km².
- **MB.04.** Em uma bacia hidrográfica a precipitação média anual é de 1500 mm e as perdas por evapotranspiração valem 1000 mm. Qual é a **vazão específica**, na exutória da bacia, em l/s.km²?
- **MB.05.** Qual será a nova **vazão específica**, no caso da questão anterior, se for implantado um reservatório que inunde 15% da área total, sujeito a taxas de evaporação anual da ordem de 1200 mm?
- **MB.06.** A vazão específica média de longo período de uma bacia hidrográfica era, antes da implantação de um reservatório, 19 l/s.km². Depois da implantação do reservatório, passou a ser de 18 l/s.km². Sabendo que a precipitação média anual é de 1500 mm, e que a evaporação calculada pela fórmula de Penman vale, em média, 1000 mm por ano, calcular a **percentagem da área** da bacia que foi inundada pelo reservatório.
- **MB.07.** Determinar a **área de uma bacia hidrográfica**, sabendo que a precipitação média anual é de 1300 mm, as perdas médias anuais por evapotranspiração são de 850 mm e a vazão média de longo período na exutória da bacia é de 30 m³/s.
- **MB.08.** Em uma pequena bacia hidrográfica o total precipitado no ano passado foi de 1326 mm e as perdas por evapotranspiração foram avaliadas em 875 mm. Para uma vazão média anual na exutória de 14,3 l/s.km², determinar a **área da bacia hidrográfica.**
- **MB.09.** Em determinada bacia de drenagem a vazão específica na exutória é de 15 l/s.km². Após a construção de um lago, inundando metade da área da bacia, houve um decréscimo de 20% no valor desta vazão. Considerando um total anual precipitado de 1500 mm, calcule a **altura de água evaporada** da superfície do lago.
- **MB.10.** Calcular as perdas anuais por **evapotranspiração** em uma bacia hidrográfica cuja vazão média de longo termo é de 18 l/s.km², sabendo que a precipitação média anual vale 1100 mm.
- **MB.11.** Calcular a nova **vazão média de longo termo** que será observada na bacia hidrográfica do exercício anterior, após a implantação de um reservatório que inunda 15% da área total, sabendo que as perdas médias anuais por evaporação de água do lago foram avaliadas em 700 mm.
- **MB.12.** Determinar a **alteração percentual da vazão** média anual de longo período de uma bacia hidrográfica, decorrente da implantação de um reservatório que inunda 5% da área da bacia, sabendo que o coeficiente de escoamento, antes da implantação do reservatório, era de 30% e as perdas por evaporação são 20% maiores que as perdas por evapotranspiração.

MB.13. Pretende-se construir um reservatório de 5 km² de superfície, localizado numa região onde a precipitação média anual é de 1800 mm e a evaporação média anual é 1485 mm .Nas condições naturais, 50% da precipitação escoa para o rio. Definir o **acréscimo ou decréscimo de vazão**, resultante da instalação do reservatório.

MB.14. Examine a frase abaixo, extraída de um relatório técnico:

"A vazão média na seção considerada foi, para o ano de 1989, igual a 50 m³/s. A bacia localiza-se no estado do Paraná e possue área de 100 km²."

Esta frase é realista ? Porque ?

- **MB.15.** Em uma bacia hidrográfica de área **A** (km²), o total anual precipitado é **P** (mm). Adote um coeficiente de escoamento superficial igual a 0,7 pois trata-se de uma bacia urbana.
- a) Derive uma **fórmula** que permita calcular a vazão unitária **q** (l/s.km²) na exutória da bacia em função da precipitação **P** (mm), e do coeficiente de escoamento superficial **c** (adimensional);
- b) Derive uma **fórmula** que permita calcular as perdas por evapotranspiração **EVT** (mm) em função da precipitação **P** (mm) e do coeficiente de escoamento superficial **c** (adimensional);

P (mm)	q (l/s.km ²)	EVT (mm)
1000		
1200		
1600		
1800		

MB.16. Ocorreu uma precipitação de "P" mm sobre uma bacia hidrográfica onde o coeficiente de escoamento superficial é igual a "C". O hidrograma de **escoamento superficial** observado na exutória da bacia, em consequência dessa precipitação, pode ser considerado triangular. Calcule a **área da bacia** hidrográfica.

TEMPO (horas)	zero	10	50
Q (m ³ /s)	0,0	82,5	0,0

- **MB.17.** Uma bacia hidrográfica com determinada área de drenagem ÁREA, recebe uma precipitação anual média **PRE**. Considerando perdas anuais por evapotranspiração **EVT**, e desprezando variações no volume de água acumulado na bacia:
- a) deduzir uma fórmula que expresse a vazão média de longo período na exutória da bacia;
- b) deduzir nova fórmula que expresse a vazão média na mesma bacia caso se crie um lago de área Z.
- Em ambas as fórmulas indique as unidades de cada uma das variáveis envolvidas. Se fizer hipóteses, indique-as.

MB.18. Procurando uma fórmula para expressar a diminuição percentual de vazão causada pela implantação de um reservatório que inunda 100.& % de uma bacia hidrográfica, chegou-se ao resultado:

$$\frac{\boldsymbol{E_1} - \boldsymbol{E_2}}{\boldsymbol{E_1}} = \frac{\boldsymbol{EV} - \boldsymbol{\phi}.\boldsymbol{EVT}}{\boldsymbol{P} - \boldsymbol{EV}}$$

• onde E₁ é a vazão na exutória da bacia antes da implantação do reservatório,

E₂ é a vazão depois da implantação,

EV é a taxa anual de evaporação,

EVT é a taxa anual de evapotranspiração e

P é o total médio anual de precipitação.

Infelizmente, erros foram cometidos na derivação. Qual o resultado correto ?

MB.19. O quadro abaixo reproduz algumas informações relativas às vazões no rio Iguaçu no dia 29 de maio de 1992 - sexta feira.

ΔΤ	Vazão saindo de Foz do Areia	Vazão chegando em Segredo	Vazão saindo de Segredo
(hora)	(m ³ /s)	(m ³ /s)	(m ³ /s)
00:00 - 02:00	8080	13170	5560
02:00 - 04:00	8030	13650	5770
04:00 - 06:00	8120	12960	5990
06:00 - 08:00	8190	13180	6090
08:00 - 10:00	8060	14140	6160
10:00 - 12:00	8200	13210	6270
12:00 - 14:00	8180	11920	6340
14:00 - 16:00	8070	13506	6420
16:00 - 18:00	8090	11350	6480
18:00 - 20:00	8000	9600	6500
20 00 - 22:00	7660	11570	6580
22:00 - 24:00	7760	10830	6600
total	96440	149086	74760

- Considere a área da bacia incremental igual a 4000 km².
- Desconsiderando evapotranspiração & infiltração,

CALCULAR:

- a) O volume $\triangle V$ (m³) adicionado no período ao reservatório de Segredo;
- A precipitação efetiva (mm) sobre a bacia incremental (área da bacia do Iguaçu entre Foz do Areia e Segredo) que ocasionou o acréscimo de vazões em Segredo;
- c) A contribuição média da bacia incremental (vazão) no dia 29 em l/s.km².

- **MB.20.** Supondo que a vazão de um rio, na ausência de escoamento superficial, é diretamente proporcional à quantidade de água armazenada a montante : $\mathbf{Q} = \alpha . \mathbf{V}$, usar a equação da continuidade $\mathbf{Q} = -\frac{\mathbf{d}\mathbf{V}}{\mathbf{d}\mathbf{t}}$ para deduzir a equação da curva de depleção da água armazenada no solo. A seguir, calcular o **volume de água drenada** do solo durante uma semana (dentro de uma longa estiagem), tal que a vazão inicial era de 100 m³/s e a vazão final era de 94,1313 m³/s.
- **MB.21.** Durante o ano de 1974 a vazão média de um rio que drena uma área de 3500 km² foi de 46,5 m³/s. O total anual precipitado foi de 1500 mm e as perdas por evapotranspiração foram de 1000 mm. Não choveu durante dezembro de 1973 nem durante dezembro de 1974. A vazão média no dia 01.01.74 foi de 21,65 m³/s e no dia 01.01.75 foi de 50 m³/s. Caso não houvesse chovido durante o mês de janeiro de 1975, qual teria sido a **vazão média** do dia 01.02.75 ? Comentar as hipóteses simplificadoras utilizadas na solução deste problema.
- MB.22. Em uma bacia hidrográfica com 9000 km² de área de drenagem, o total médio precipitado em 1984 foi de 1800 mm. A vazão média neste ano na exutória foi de 174 m³/s. A vazão do dia 01.01.84 foi de 90 m³/s, com certeza, proveniente do lençol subterrâneo, assim como a de 01.01.85 foi de 95,6 m³/s. Calcule as **perdas por evapotranspiração** desta bacia em 1984, considerando que existe um lago na bacia com 100 km² de área onde a evaporação anual é, em média, de 2000 mm.
- O coeficiente da curva de depleção da água do sub-solo foi estimado em 0.005 dias⁻¹ e pode-se supor o reservatório como linear.
- **MB.23.** O quadro abaixo indica a precipitação variável ocorrida ao longo de várias horas sobre uma pequena bacia de drenagem com 1,3 km² de área. Estes dados também são mostrados esquematicamente na figura abaixo. Note que são valores de intensidade de precipitação em mm/h. No mesmo quadro se apresentam as vazões observadas na exutória da bacia (médias horárias) como consequência desta precipitação.
- Determine o volume de água infiltrada ou retida na vegetação e depressões do terreno (sem considerar evaporação).

Hora	Intensidade de chuva (mm/h)	Vazão na exutória (m ³ /s)
2 - 3	26,7	0
3 - 4	32,5	1,0
4 - 5	20,3	2,0
5 - 6	19,1	1,5
6 - 7	17,8	1,0
7 - 8	15,2	0,5
8 - 9	0	0
total	131,6	6

II - PERDAS: EVAPORAÇÃO E EVAPOTRANSPIRAÇÃO

MB.24. Tendo em vista as informações abaixo (temperaturas médias mensais em Londrina - PR, e número de horas do dia médio de cada mês), calcular a evapotranspiração potencial para cada mês, usando as fórmulas empíricas de **Thornthwaite**.

MÊS	t (°C)	T	MÊS	t (°C)	T
janeiro	23,9	13,3	julho	16,9	10,9
fevereiro	23,5	12,7	agosto	18,5	11,4
março	22,4	11,6	setembro	20,3	12,0
abril	20,8	11,6	outubro	20,8	12,7
maio	17,0	11,0	novembro	23,1	13,2
junho	16,0	10,7	dezembro	23,0	13,6

MB.25. Repita o exercício anterior utilizando as fórmulas de Serra para a avaliação dos parâmetros J e a dados por:

$$J = \sum_{i=1}^{12} (0.09 \cdot t_i^{3/2})$$

$$a = 0,016 \cdot J + 0,5$$

MB.26. Tendo em vista os valores da radiação solar tabelados abaixo, usar o ábaco anexo para resolução da equação de **PENMAN (Ábaco anexo)**, para calcular a evaporação (mm/dia) em um reservatório situado a 20° de latitude sul, no mês de março, sabendo que a temperatura média foi de 18 °C, o sol brilhou 40% das horas do dia, a umidade relativa do ar foi de 60%, e a velocidade do vento, 2 metros acima da superfície líquida, foi de 3 m/s.

• Radiação $R_{\pmb{A}}$ no limite externo da atmosfera em grama-caloria/cm 2 /dia.

Latitude	jan	fev	mar	abr	mai	jun	jul	ago	set	out	nov	dez
N90	0	0	55	518	903	1077	944	605	136	0	0	0
80	0	3	143	518	875	1060	930	600	219	17	0	0
60	86	234	424	687	866	983	892	714	494	258	113	55
40	358	538	663	847	930	1001	941	843	719	528	397	318
20	631	795	821	914	912	947	912	887	856	740	666	599
EQUADOR	844	963	878	876	803	803	792	820	891	866	873	829
20	970	1020	832	737	608	580	588	680	820	892	986	978
40	998	963	686	515	358	308	333	453	648	817	994	1033
60	947	802	459	240	95	50	77	187	403	648	920	1013
80	981	649	181	9	0	0	0	0	113	459	917	1094
S90	995	656	92	0	0	0	0	0	30	447	932	1110

MB.27. Faça uma análise de sensibilidade em relação ao exercício anterior. Verifique a influência de variações nas variáveis t (temperatura), h (umidade relativa), n/D (% insolação direta) e V₂ (velocidade do vento).

MB.28. O quadro abaixo reproduz os resultados obtidos em teste realizado com um **infiltrômetro** cilíndrico de 35 cm de diâmetro. Avalie a variação da capacidade de infiltração do solo ao longo do tempo e represente graficamente os resultados.

I	T (minutos)	0	2	5	10	20	30	60	90	150
	Volume TOTAL Adicionado (cm ³)	0	278	658	1173	1924	2500	3345	3875	4595

Ábaco para aplicação da Fórmula de Penman - EVAPORAÇÃO - mm/dia n/D n/D n/D 03 U2 E4 ħ n/D E₂ h E, Ė, n/D R G, 1.0-26_ 0.01 8.0 1000. 1.0 1.0-8.0 Q10 081 0.9 -50 **-5.5** -70 0.9-28 1.0. 0.82 26_ 25. 27 24-0.7. 0.8 26. 22 25 22 3.0 23.. 24 0.50 0.7_ 20_ 19_ 18_ 17_ 16_ 22-23_ 19. 05 22 -3.0_ 21_ 0.6... 17. 04] -1.0 -0.9 -0.8 -0.7 15_ 0.5_ 0.6 12_ 0.5 0.2 0.80 0.4 11-500-10-15. _0.3 -1.3. 0.2 0.3 ... -1.0n/D -0.9_ Lo.1 0.2 -0.8 10_ Loo Loo Ė, -0.05 0.9 -0.7 0.8 0.1--0.6 0.95 0.3_ Lo.7 -0.5 0.96 ٥-0.97 0.2 0.98 0.0_ n/D [ووه 0.1 n/D .0.1 M1-P12 100_

https://d.docs.live.net/fd6ffdf84664def2/Documents/UFPR/DHS/2021/TH024 - Hidrologia (ERE3)/Materiais de apoio/Manual de Sobrevivência/Problemas B.docPágina 8 de 13

III - MEDIDAS DO ESCOAMENTO

MB.29. O quadro abaixo apresenta os valores da batimetria da seção transversal de um rio e das velocidades medidas a 20% da profundidade ($V_{0,2}$) e a 80% da profundidade ($V_{0,8}$). Avalie a **vazão**.

• Para compreender melhor o método desenhe a seção transversal do rio.

DISTÂNCIA (m)	0=ME	2	4	6	8	10	12	14	16	18	20	22=MD
PROFUNDIDADE (m)	-	1,0	4,3	7,2	8,5	7,4	5,6	4,7	3,5	2,1	1,4	-
V _{0,2} (m/s)	-	1,4	1,9	2,6	2,9	2,7	2,5	2,3	2,1	1,8	1,5	-
V _{0,8} (m/s)	-	0,7	1,2	1,8	2,0	1,9	1,7	1,5	1,3	1,1	1,0	-

MB.30. Quando o hidrometrista mede velocidade com molinete e deseja avaliar apenas uma velocidade em cada vertical, recomenda-se que tal avaliação seja feita a uma distância da superfície livre igual a 60% da profundidade. Supondo que a distribuição de velocidades na vertical é logarítmica, justifique teoricamente esta recomendação.

MB.31. Ao efetuar-se a medição de vazões em um rio, encontraram-se os resultados do quadro abaixo. Pelo processo das velocidades e áreas, determinar a vazão.

DISTÂNCIA (m)	ME = 0	2	4	6	8	10	12 = MD
PROFUNDIDADE (m)	0	1,0	3,0	5,5	4,0	1,5	0
v (20%) (m/s)	0,0	1,4	2,0	3,0	2,4	1,5	0,0
v (80%) (m/s)	0,0	0,6	1,2	2,0	1,6	1,1	0,0
vmv (m/s)							
vma (m/s)							
A (m ²)							
q (m ³ /s)							

- MB.32. O quadro abaixo reproduz os dados de campo de uma medição de vazão executada no Posto Araucária Rio Iguaçu, PR.
 - a) Desenhe a seção transversal em escala apropriada.
 - b) Represente graficamente a variação da área do escoamento com a cota do N.A.
 - c) Calcule a vazão e a velocidade média nesta seção.

COMPANHIA PARANAENSE DE ENERGIA - COPEL - SEP/DPHE CONSISTÊNCIA E BANCO DE DADOS HIDROLÓGICOS MEDIÇÃO DE VAZÃO

COD/DN	AEE 65	020000	POSTO A	ARAUC	ÁRIA			RI	O IGUAÇ	U				BACIA I	IGUAÇU
MOLINE HÉLICE LASTRO	40	083 ROT	-4092 Г- 10 I0 KG		HORÁR	A MEDIÇ IO - 11.00 - 1,38 l	0 H	17/01/83 11.50 H 1,38 M		(OBS SO	-JOÃO M BRE A SE AO- 0,247	ÇÃO-PI	ORTIANO ME 0051)
								DA	DOS DA	MEDIC	ÃO				
					1. PONTO)	- 2	2. PONTO			3. PONT	0	4.	PONTO	
VERT.	DIST.	PROFUN.	N.TOM.	POS	TOQ	TEMP	POS	TOQ	TEMP	POS	TOQ	TEMP	POS	TOQ	TEMP
1	2,50	0,0	0												
2	4,00	0,90	2	0,72	0	48,4	0,18	0	46,2						
3	7,00	2,14	2	1,71	3	52,2	0,43	3	61,6						
4	10,00	2,36	2	1,89	7	43,6	0,47	6	45,4						
5	13,00	2,50	2	2,00	9	42,0	0,50	12	43,6						
6	16,00	2,54	2	2,03	12	44,8	0,51	15	40,2						
7	19,00	2,46	2	1,97	12	41,8	0,49	16	41,6						
8	22,00	2,46	2	1,97	11	45,0	0,49	17	42,6						
9	25,00	2,30	2	1,84	11	43,2	0,46	16	41,6						
10	28,00	2,20	2	1,76	9	40,2	0,44	16	40,8						
11	31,00	2,10	2	1,68	11	41,2	0,42	16	42,0						
12	34,00	2,10	2	1,68	10	40,0	0,42	14	43,2						
13	37,00	1,96	2	1,57	10	40,8	0,39	12	41,6						
14	40,00	1,94	2	1,55	11	41,8	0,39	13	41,8						
15	43,00	1,92	2	1,54	9	42,0	0,38	11	43,2						
16	46,00	1,60	2	1,28	6	43,6	0,32	7	44,0						
17	47,00	1,50	2	1,20	3	40,0	0,30	3	42,2						
18	48,50	0,0	0												

IV- CURVA DE DESCARGA

MB.33. O quadro abaixo apresenta resultados de diversas medições de vazão efetuadas no rio Iguaçu em seção transversal localizada no município de São Mateus do Sul - PR, no posto de Fluviópolis.

- a) Definir a curva de descarga para esta seção.
- d) Extrapolar a curva para cotas de N.A. superiores e inferiores aos valores observados, descrevendo a técnica utilizada.

N.	DATA DD/MM/AA	SEQ	ALT.RÉGUA (M)	DESCARGA (M3/S)	VELOCIDADE (M/S)	ÁREA SEÇÃO (M2)	PROF.MÉDIA (M)	LARGURA RIO (M)
1	29/08/63	00	0.420	59.038	0.185	319.980	1.620	197.600
2	29/08/63 29/08/63	01 02	0.420 0.420	63.114 61.299	0.237 0.226	266.570 270.920	1.280 1.300	207.700 207.700
4	30/08/63	00	0.425	60.493	0.225	269.370	1.300	207.700
5	04/10/63	00	2.130	479.713	0.680	705.410	3.260	216.300
6 7	05/10/63 20/10/63	00 00	2.140 1.710	494.838 375.403	0.699 0.632	708.180 594.020	3.270 2.800	216.500 212.400
8	20/10/63	01	1.710	371.857	0.627	592.890	2.790	212.400
9 10	05/04/68 09/11/70	00	1.090 1.070	226.558 214.420	0.500 0.483	452.920 443.660	2.150 2.100	211.000 211.500
11	27/10/72	00	2.335	570.404	0.792	719.989	3.342	215.399
12 13	26/11/72 27/11/72	00 00	2.070 1.990	498.585 463.959	0.746 0.725	667.838 639.339	3.104 3.011	215.100 212.300
14	27/11/72	01	1.955	468.749	0.742	831.116	2.951	213.800
15	18/12/72	00	1.590	343.141	0.663	517.025	2.434	212.399
16 17	19/12/72 12/01/73	01 00	1.435 1.575	304.597 370.985	0.633 0.645	480.539 574.719	2.264 2.577	212.200 223.000
18	13/01/73	00	1.605	377.370	0.655	575.359	2.580	223.000
19 20	26/02/73 27/02/73	00 00	1.640 1.615	384.946 380.028	0.673 0.668	571.158 568.721	2.629 2.618	217.199 217.199
21	17/03/73	00	1.040	200.946	0.482	416.634	1.994	208.900
22 23	18/03/73	00	0.990 1.340	193.503	0.471 0.585	410.399 487.247	1.997 2.315	208.500 210.400
24	30/04/73 01/05/73	00 00	1.265	285.515 265.091	0.565	468.468	2.226	210.400
25	18/05/73	00	1.105	214.772	0.496	432.893	2.075	208.600
26 27	19/05/73 29/06/73	00	1.062 3.175	203.080 806.069	0.478 0.912	424.805 881.929	2.038 3.946	208.400 223.700
28	14/07/73	00	2.580	653.000	0.845	772.000	3.538	218.200
29 30	15/07/73 13/08/73	00	2.380 1.260	584.000 252.000	0.803 0.527	727.000 478.000	3.369 2.278	215.700 210.000
31	14/08/73	00	1.350	277.000	0.558	496.000	2.362	210.000
32	16/09/73	00	3.460	898.000	0.944	951.000	4.320	220.000
33 34	17/09/73 27/10/73	00	3.450 2.050	904.000 478.000	0.950 0.738	952.000 648.000	4.326 3.084	220.000 210.000
35	28/10/73	00	1.980	456.000	0.719	634.000	3.020	210.000
36 37	15/11/73 16/11/73	00 00	1.450 1.390	313.000 292.000	0.595 0.572	527.000 509.000	2.496 2.420	211.000 210.500
38	31/01/74	00	2.930	747.000	0.905	825.000	3.733	221.000
39 40	01/02/74 08/03/74	00	2.850 2.210	731.000 530.000	0.908 0.718	805.000 678.000	3.650 3.170	220.500 214.000
41	09/03/74	00	2.180	517.000	0.770	672.000	3.144	214.000
42	01/04/74	00	2.190	527.000	0.764	690.000	3.232	214.000
43 44	02/04/74 16/05/74	00 00	2.060 0.710	497.000 118.000	0.735 0.324	676.000 365.000	3.165 1.775	214.000 206.000
45	16/05/74	01	0.700	115.000	0.316	364.000	1.769	206.000
46 47	23/05/74 24/05/74	00	0.750 0.740	127.000 122.000	0.344 0.332	370.000 367.000	1.798 1.780	206.000 206.000
48	15/06/74	00	1.250	257.000	0.521	493.000	2.354	210.000
49	16/06/74	00	1.220	251.000	0.514	489.000	2.333	210.000
50 51	17/07/74 18/07/74	00	0.800 0.780	139.000 137.000	0.353 0.349	395.000 392.000	1.898 1.886	208.000 208.000
52	10/08/74	00	1.200	235.000	0.485	484.000	2.303	210.000
53 54	11/08/74 16/09/74	00	1.140 1.290	203.000 265.000	0.441 0.538	460.000 492.000	2.197 2.350	210.000 209.000
55	17/09/74	00	1.170	235.000	0.495	475.000	2.279	208.000
56 57	17/01/75 18/01/75	00 00	1.240 1.240	242.000 245.000	0.524 0.523	461.000 468.000	2.175 2.209	212.000 212.000
58	08/02/75	00	1.150	244.000	0.503	486.000	2.314	210.000
59	09/02/75	00	1.160	228.000	0.504	452.000	2.152	210.000
60 61	24/03/75 25/03/75	00	1.020 1.040	192.000 203.000	0.438 0.451	438.000 449.000	2.127 2.181	206.000 206.000
62	26/04/75	00	0.700	108.000	0.294	366.000	1.775	206.000
63 64	27/04/75 18/05/75	00	0.690 0.610	105.000 84.200	0.284 0.254	368.000 332.000	1.783 1.610	206.000 206.000
65	19/05/75	00	0.750	102.000	0.294	345.000	1.672	206.000
66 67	21/06/75 22/06/75	00	0.580 0.580	82.000 83.400	0.241 0.246	340.000 339.000	1.648 1.645	206.000 206.000
68	21/07/75	00	1.460	298.000	0.573	520.000	2.447	213.000
69	22/07/75	00	1.460	300.000	0.580	517.000	2.434	213.000
70 71	29/08/75 30/08/75	00 00	1.060 1.040	197.000 190.000	0.444 0.431	443.000 442.000	2.125 2.118	209.000 209.000
72	21/09/75	00	1.360	266.000	0.544	489.000	2.330	210.000
73 74	22/09/75 16/11/75	00	1.380 1.500	274.000 312.000	0.552 0.588	497.000 531.000	2.360 2.500	210.000 212.000
75	16/11/75	01	1.510	320.000	0.594	539.000	2.540	212.000
76 77	10/01/76 11/01/76	00	2.030 2.090	519.000 517.000	0.787 0.784	659.000 659.000	2.620 2.620	251.000 251.000
77 78	21/02/76	00	1.740	394.000	0.784	575.000	2.300	250.000
79	22/02/76	00	1.790	395.000	0.685	577.000	2.310	250.000
80 81	20/03/76 21/03/76	00 00	2.080 2.140	485.000 502.000	0.750 0.754	647.000 661.000	3.050 3.100	213.000 213.000
82	21/05/76	00	1.280	256.000	0.535	478.000	2.290	209.000
83 84	22/05/76 23/06/76	00 00	1.280 3.710	267.000 986.000	0.549 0.974	487.000 1012.000	2.330 3.880	209.000 261.000
85	23/08/76	01	3.740	1001.000	0.971	1032.000	3.960	261.000
86 87	15/07/76 16/07/76	00	1.700	370.000 355.000	0.641	577.000 563.000	2.720	212.000 212.000
88	19/08/76	00 00	1.700 3.580	968.000	0.631 1.100	563.000 883.000	2.650 3.800	233.000
89	19/08/76	01	3.580	967.000	1.070	900.000	3.870	233.000
90 91	25/09/76 26/09/76	00 00	2.380 2.320	587.000 574.000	0.819 0.812	717.000 708.000	3.350 3.300	214.000 214.000
92	09/10/76	00	1.400	328.000	0.640	513.000	2.440	210.000
93 94	09/10/76 25/01/77	01 00	1.400 2.810	303.000 709.000	0.598 0.891	507.000 796.000	2.410 3.620	210.000 220.000
95	26/01/77	00	2.830	721.000	0.893	807.000	3.660	221.000
96 97	25/03/77	00	1.720	390.000	0.667	585.000 587.000	2.770	211.000 211.000
97 98	26/03/77 22/04/77	00 00	1.720 1.880	386.000 437.000	0.658 0.704	587.000 621.000	2.780 2.930	211.000
99	23/04/77	00	1.880	427.000	0.695	614.000	2.900	212.000
100 101	18/05/77 19/05/77	00	0.900 0.900	171.000 168.000	0.409 0.402	418.000 417.000	1.990 1.990	210.000 210.000
102	10/06/77	00	0.660	110.000	0.304	360.000	1.730	208.000
103	10/06/77	01	0.660	105.000	0.295	355.000	1.710	208.000

MB.34.O quadro abaixo apresenta as leituras diárias da régua localizada no posto de Fluviópolis, no rio Iguaçu, estado do Paraná.

- a) Utilizando a curva-chave definida no exercício anterior, transforme as cotas diárias em vazões diárias.
- **b)** Trace o respectivo fluviograma.

DATA 06/04/8 BACIA DO RIO		CENTRO DE HIDRÁULICA E HIDROLOGIA PROF. PARIGOT DE SOUZA - CEHPAR POSTO FLUVIÓPOLIS ALTURAS LINIMÉTRICAS (METRO)							AR			PAG. 21 AEE 65220000	
ANO 1983													18700.00 KM2
DIA	JAN	FEV	MAR	ABR	MAI	JUN	JUL	AGO	SET	OUT	NOV	DEZ	DIA
1	2.66	2.12	2.14	1.28	2.24	6.12	4.17	6.40	1.40	5.09	2.08	1.17	1
2	2.52	2.18	2.21	1.28	2.28	6.04	4.28	6.27	1.38	5.19	2.05	1.12	2
3	2.40	2.15	2.36	1.26	2.24	5.99	4.33	6.20	1.38	5.13	1.00	1.08	3
4	2.25	2.08	2.48	1.19	2.16	5.90	4.39	6.04	1.38	5.05	1.88	1.08	4
5	1.98	1.98	2.56	1.18	2.10	5.76	4.45	5.75	1.38	5.75	1.88	1.08	5
6	1.90	1.91	2.66	1.22	2.04	5.60	4.54	5.55	1.40	5.55	1.88	1.08	6
7	1.98	1.86	2.73	1.30	2.00	5.44	4.75	5.35	1.43	5.35	1.85	1.07	7
8	2.07	1.80	2.82	1.39	2.04	###	5.08	5.19	1.51	5.05	1.79	1.07	8
9	2.18	1.82	2.96	1.42	2.12	###	5.55	5.12	1.56	4.75	1.65	1.07	9
10	2.14	1.81	3.08	1.40	2.23	###	6.94	4.45	1.54	3.59	1.54	1.06	10
11	2.03	1.79	3.14	1.40	2.36	###	7.92	4.80	1.53	3.39	1.47	1.05	11
12	1.91	1.74	3.21	1.38	2.52	4.79	###	4.57	1.55	3.15	1.44	1.15	12
13	1.82	1.68	3.26	1.37	2.58	4.63	###	4.38	1.57	2.80	1.50	1.28	13
14	1.80	1.64	3.28	1.34	2.62	4.56	###	4.22	1.54	2.55	1.50	1.38	14
15	1.80	1.58	3.26	1.31	2.61	4.51	###	3.92	1.49	2.35	1.50	1.48	15
16	1.82	1.46	3.18	1.30	2.58	4.50	###	3.54	1.87	2.15	1.48	1.53	16
17	1.80	1.40	3.07	1.28	2.56	4.42	###	3.34	2.25	1.20	1.44	1.56	17
18	1.83	1.40	2.96	1.33	2.52	4.26	###	3.09	2.60	1.68	1.39	1.56	18
19	1.90	1.44	2.88	1.52	2.71	4.20	###	2.90	2.88	1.85	1.39	1.67	19
20	1.96	1.51	2.78	1.73	3.17	4.27	###	2.65	2.98	1.93	1.40	1.95	20
21	1.96	1.66	2.69	1.92	3.61	4.40	###	2.30	3.48	2.25	1.47	2.06	21
22	1.98	1.78	2.60	2.06	4.00	4.52	###	2.04	3.58	2.36	1.50	2.15	22
23	1.98	1.86	2.44	2.06	4.43	4.43	###	1.85	3.67	2.52	1.50	2.30	23
24	1.93	1.92	2.24	2.08	4.81	4.34	###	1.77	3.73	2.62	1.50	2.38	24
25	1.76	1.97	2.04	2.11	5.10	4.29	###	1.73	3.84	2.74	1.48	2.40	25
26	1.62	2.04	1.84	2.16	5.44	4.24	7.88	1.70	4.03	2.74	1.44	2.39	26
27	1.52	2.08	1.71	2.22	5.78	4.19	7.67	1.68	4.25	2.54	1.37	2.32	27
28	1.51	2.10	1.58	2.22	###	4.14	7.38	1.61	4.53	2.28	1.30	2.26	28
29	1.64		1.48	2.26	###	4.12	7.15	1.54	4.75	2.21	1.22	2.18	29
30	1.82		1.38	2.24	###	4.10	6.95	1.47	4.95	2.18	1.18	2.05	30
31	2.00		1.30		###		6.62	1.43		2.11		1.89	31
MAX	2.66	2.16	3.28	2.26	5.78	6.12	7.92	6.40	4.95	5.75	2.08	2.40	MAX
MIN	1.51	1.40	1.30	1.18	2.00	4.10	4.17	1.43	1.38	1.20	1.00	1.05	MIN

DATA 06/04/8 BACIA DO RIG ANO 1987					PAG. 25 AEE 65220000 18700.00 KM2								
DIA	JAN	FEV	MAR	ABR	MAI	URAS LINIMĖ JUN	JUL	AGO	SET	OUT	NOV	DEZ	DIA
1	3.66	1.36	1.86	0.65	0.86	5.35	2.59	1.10	1.04	1.08	1.18	###	1
2	3.49	1.32	1.74	0.64	0.81	5.04	2.40	1.07	1.00	1.24	1.11	###	2
3	3.35	1.45	1.63	0.64	0.78	4.76	2.27	1.04	0.98	1.43	1.05	###	3
4	3.14	1.74	1.50	0.70	0.77	4.34	2.13	1.04	0.96	1.61	0.99	###	4
5	2.83	1.83	1.39	0.75	0.76	3.96	1.98	1.02	0.96	1.68	0.93	###	5
6	2.59	1.95	1.30	0.86	0.75	3.58	1.82	1.06	0.94	1.64	0.89	###	6
7	2.36	2.00	1.17	0.96	0.86	3.11	1.59	1.18	0.92	1.56	0.88	###	7
8	2.19	1.97	1.08	0.94	1.52	2.87	1.50	1.27	0.91	1.49	0.90	###	8
9	2.06	1.93	0.99	0.89	2.49	2.52	1.64	1.34	0.90	1.44	1.18	###	9
10	2.02	1.87	0.95	0.83	2.84	2.26	1.85	1.36	0.88	1.36	1.40	###	10
11	2.00	1.83	0.94	0.76	3.02	2.06	2.00	1.32	0.87	1.29	1.47	###	11
12	1.99	1.80	0.94	0.71	3.18	1.85	2.06	1.24	0.87	1.22	1.45	###	12
13	2.15	1.75	0.94	0.74	3.37	1.69	2.05	1.18	0.88	1.16	1.36	###	13
14	2.22	1.67	0.89	0.92	3.67	1.78	1.99	1.13	0.98	1.11	1.23	###	14
15	2.33	1.63	0.86	1.06	4.01	2.10	1.88	1.08	1.02	1.08	1.15	###	15
16	2.39	1.74	0.82	1.23	4.24	2.48	1.75	1.04	1.09	1.08	1.05	###	16
17	2.58	1.99	0.80	1.31	4.35	2.70	1.66	1.06	1.24	1.10	0.99	###	17
18	2.61	2.18	0.76	1.35	4.37	2.84	1.54	1.24	1.40	1.10	0.95	###	18
19	2.64	2.32	0.75	1.35	4.44	2.94	1.45	1.58	1.58	1.18	0.92	###	19
20	2.68	2.40	0.74	1.28	4.54	3.04	1.44	1.84	1.60	1.34	0.91	###	20
21	2.63	2.47	0.74	1.23	4.72	3.14	1.46	1.92	1.56	1.56	0.87	###	21
22	2.59	2.51	0.74	1.20	4.96	3.22	1.50	1.86	1.48	1.76	0.84	###	22
23	2.52	2.52	0.72	1.20	5.24	3.32	1.49	1.76	1.39	1.80	0.79	###	23
24	2.50	2.50	0.70	1.24	5.50	3.38	1.43	1.63	1.33	1.79	0.78	###	24
25	2.39	2.39	0.67	1.26	5.75	3.39	1.34	1.48	1.27	1.72	0.78	###	25
26	2.20	2.24	0.66	1.23	5.93	3.35	1.29	1.36	1.19	1.68	0.80	###	26
27	2.11	2.10	0.64	1.18	6.01	3.27	1.24	1.26	1.14	1.58	0.81	###	27
28	2.01	1.97	0.59	1.09	6.01	3.14	1.20	1.20	1.10	1.50	0.79	###	28
29	1.91		0.55	1.01	5.93	2.98	1.16	1.15	1.09	1.42	0.76	###	29
30	1.70		0.55	0.95	5.77	2.78	1.15	1.11	1.05	1.35	0.74	###	30
31	1.50		0.63		5.57		1.10	1.07		1.25		###	31
MAX	3.66	2.52	1.86	1.35	6.01	5.35	2.59	1.92	1.60	1.80	1.47	###	MAX
MIN	1.50	1.32	0.55	0.64	0.75	1.69	1.10	1.02	0.87	1.08	0.74	###	MIN

MB.35. A tabela 1 abaixo resume medições de vazão efetuadas em determinada estação hidrométrica.

- a) Construir, em papel milimetrado, a curva de descarga correspondente.
- b) Extrapolar a curva de descarga obtida, para valores inferiores aos medidos, utilizando os valores da tabela 2.
- c) Preencher a tabela 3, indicando a vazão correspondente às leituras de régua indicadas.

TABEL	41
LEITURA DE	Q
RÉGUA (m)	(m ³ /s)
2,10	340,95
2,50	442,50
4,90	1852,50
7,00	4275,00
3,60	900,00
2,90	571,50
4,40	1437,75
6,40	3465,00
6,00	2947,50
4,00	1152,00
3,20	710,25
5,60	2520,00

TABELA 2											
h	V	А	Q								
(m)	(m/s)	(m ²)	(m ³ /s)								
2,00	0,345	926	319,47								
1,75	0,322	865	278,53								
1,50	0,305	800	244,00								
1,25	0,291	745	216,79								
1,00	0,285	688	196,08								
0,75	0,278	633	175,97								
0,50	0,271	580	157,18								

TABELA	\ 3
LEITURA DE	Q
RÉGUA (m)	(m ³ /s)
0,50	
0,75	
1,00	
1,20	
1,40	
1,70	
2,60	
4,80	
5,90	

IV- SEPARAÇÃO DO ESCOAMENTO

MB.36. Considere as vazões em m³/s apresentadas no quadro abaixo. São valores diários de um rio que drena uma bacia de 2600 km². Separar o escoamento superficial usando 3 técnicas usuais.

- a) Locar o hidrograma utilizando escalas aritméticas para vazões e para tempos.
- b) Locar o trecho de depleção, usando escala logarítmica para vazões e aritmética para tempos.
- c) Identificar no 2^o. gráfico, o ponto em que o escoamento superficial cessou.
- d) Transferir esse ponto para o 1º. gráfico.
- e) Separar o escoamento superficial, calculando o volume resultante.

DIA	12	13	14	15	5	16	17	7	18	19	20
VAZÃO (m ³ /s)	278	264	251	23	8	226	215	5 5	5350	8150	6580
DIA	21	22	23	24	25	26	ĵ	27	28	29	30

MB.37. O quadro abaixo indica as vazões instantâneas obtidas na exultória de uma bacia de drenagem de 1000 km^2 , onde o coeficiente de escoamento superficial adotado é igual a 0,2.

- a) Calcular a constante de depleção relativa ao escoamento da água subterrânea, individualizando dia e hora em que cessa a contribuição do escoamento sub-superficial.
- b) Separar, pelo método da linha reta, a contribuição devida a água subterrânea.
- c) Calcular o volume total escoado.
- d) Calcular a precipitação (em mm) que deu origem ao hidrograma apresentado.
- e) Definir o hidrograma resultante somente em termos de escoamento superficial caso o total precipitado, já descontada a altura de chuva infiltrada, tivesse sido de 10 mm.

DIA	5	6		7		8		9		10		11		12	
HORA	12	0	12	0	12	0	12	0	12	0	12	0	12	0	12
VAZÃO (m ³ /s)	5,6	5,0	4,5	10	39,5	75	82	74	62	43	20	14,5	8	7,2	6,5

MB.38. Ocorreu uma precipitação média de 100 mm sobre uma bacia hidrográfica e 40% desta precipitação transformou-se em escoamento superficial. O hidrograma observado na exutória da bacia é apresentado abaixo em forma tabular.

Tempo (horas)	0	10	20	30	40	50	60	70	80
Vazão (m ³ /s)	20,0	130,0	102,5	75,0	47,5	20,0	16,0	12,9	10,2

- Calcule a área da bacia em km².
- Considere que o efeito da precipitação em termos de escoamento superficial cessou após 50 horas.

MB.39. Ocorreu uma precipitação de 20 mm sobre uma certa bacia hidrográfica, e 30% desta precipitação transformou-se em escoamento superficial. O hidrograma observado na exultória desta bacia, resultante desta precipitação, é dado abaixo, na forma tabular. Qual é a área de drenagem desta bacia, em km² ?

• Utilize o método da linha reta para a separação do escoamento superficial.

TEMPO (horas)	0	5	10	15	20	25	30	35	40	45	50
VAZÃO (m ³ /s)	31,25	25,00	20,00	130,00	102,50	75,00	47,50	20,00	16,00	12,80	10,24