

Anirudh Krishnan

October 8, 2021

Contents

1	Introduction to Statistics			
2	Des	Descriptive Statistics		
3	Elements of Probability			
4	Random Variables and Expectation			
5	Special Random Variables			
6	Distributions of Sampling Statistics			
7	Parameter Estimation			
8	Hypothesis Testing			
9	Regression			
	9.1	Introduction		
	9.2	Least squares estimators of regression parameters		
	9.3	Distribution of the estimators		
	9.4	Statistical Inferences about regression parameters		

	9.5	Coefficient of Determination and Sample correlation coefficient		
	9.6	Analysis of residuals: assessing the model		
	9.7	Transforming to linearity		
	9.8	Weighted Least Squares		
	9.9	Polynomial Regression		
	9.10	Multiple Linear Regression		
10	Ana	lysis of Variance		
	10.1	Introduction		
	10.2	Overview of the procedure		
	10.3	One-way ANOVA		
	10.4	Two-factor ANOVA		
	10.5	Two-factor ANOVA: Hypothesis testing		
	10.6	Two-way ANOVA with interaction		
11	Goo	dness of Fit Tests and Categorical Data Analysis		
	11.1	Introduction		
	11.2	Goodness of fit tests with all parameters specified		
	11.3	Goodness of fit tests with some parameters unspecified		
	11.4	Tests of independence in contingency tables		
	11.5	Tests of independence in contingency tables with fixed marginal totals		
	11.6	Kolmogorov-Smirnov goodness of fit test for continuous data		
12 Nonparameteric hypothesis tests				
	12.1	Introduction		

	12.2	Sign test
	12.3	Signed rank test
	12.4	Two-sample problem - ranked sum test
	12.5	Runs test for non-randomness
13	Qua	lity Control
	13.1	Introduction
	13.2	Average values - \overline{x} control chart
	13.3	S-control charts
	13.4	Control charts for the fraction defective
	13.5	Control charts for the number of defects
	13.6	Control charts for detecting drifts in population mean
14]	Life	Testing
	14.1	Introduction
	14.2	Hazard rate functions
	14.3	Exponential distributions in life testing

Chapter 14

Life Testing

"Ch14 Quote here."

14.1 Introduction

The general problem being considered here is a population of independent items having some common underlying distribution of lifetimes, which is known but for a single parameter.

The concept of a hazard rate is used in engineering to analyze this problem and the most common choice of *a-priori* distribution assumed is an exponential RV.

14.2 Hazard rate functions

Consider a positive RV X with some CDF (F) and PDF (f). The failure rate (also called hazard rate) function of F is now defined as

$$\lambda(t) = \frac{f(t)}{1 - F(t)} \tag{14.1}$$

 $\lambda(t)$ represents the conditional probability that an item of age t will fail imminently.

$$P\{X \in (t, t + dt) \mid X > t\} \approx \frac{f(t)}{1 - F(t)} dt$$
 (14.2)

For an underlying exponential distribution, which is memoryless, $\lambda(t) = \lambda$ constant equal to its rate. The rate function is uniquely able to determine an the underlying CDF for a positive continuous RV.

$$\lambda(s) = \frac{d F(s)}{ds} \frac{1}{1 - F(s)} = \frac{d}{ds} - \log[1 - F(s)] [1ex]$$
 (14.3)

$$1 - F(t) = \exp\left[-\int_{0}^{t} \lambda(s) \, \mathrm{d}s\right] \tag{14.4}$$

A special case of $\lambda(t) = bt$ is called the *Rayleigh* density function. A linear relationship between death rates between two conditions leads to a power law relationship between the probability of both conditions surviving to the same age.

$$\lambda_y = n\lambda_x$$

$$\implies P\{Y > b \mid Y > a\} = P\{X > b \mid X > a\}^n$$
(14.5)

Where b > a are some ages and X, Y are two categories being compared.

14.3 Exponential distributions in life testing

Stopping at the r^{th} failure: Consider a population of n items which are all IID using an exponential distribution with unknown mean θ . A problem of great interest is to attempt to estimate θ using observations about the time taken for r out of n simultaneously initialized items to fail.

The observed data takes the form of an ascending ordered set of failure times $\{x_1, \ldots, x_r\}$ along with a set of indices for the failing items $\{i_1 \ldots i_r\}$. If the lifetime of component i_j is denoted by X_{i_j} ,