Chapter 1

Regular Languages

1.1 Deterministic Finite State Automata

Definition 1.1.1. An alphabet Σ is a finite set of symbols.

- A string over Σ is a finite sequence of symbols from Σ .
- The **length** of a string w, denoted by |w|, is the number of symbols it contains.
- The string of length 0 is called the **empty string**, denoted by ϵ .

Definition 1.1.2. Let Σ be an alphabet.

- For any nonnegative integer n, Σ^n denotes the set of words of length n.
- Σ^* denotes the set of all strings over Σ .
- A language over Σ is a subset of Σ^* .

Definition 1.1.3. A deterministic finite state automaton (DFA) is a system $\mathcal{A} = (\Sigma, Q, q_0, F, \delta)$, where each component is as follows.

- Σ is the alphabet.
- Q is a finite set of **states**.
- $q_0 \in Q$ is the **initial** state.
- $F \subseteq Q$ is the set of **accepting** states.
- δ is the **transition function** from $Q \times \Sigma$ to Q.

Definition 1.1.4. The **run** of DFA $\mathcal{A} = (\Sigma, Q, q_0, F, \delta)$ on an input string $w = a_1 \cdots a_n$ over Σ is the sequence of states

$$r = (r_0, r_1, \dots, r_n)$$

where $r_0 = q_0$ and $\delta(r_{i-1}, a_i) = r_i$ for each $i \in \{1, \ldots, n\}$.

- r is an **accepting** run if $r_n \in F$.
- We say that \mathcal{A} accepts w if the run of \mathcal{A} on w is an accepting run.

- The language of all strings accepted by \mathcal{A} is denoted by $L(\mathcal{A})$.
- A language L is **regular** if there is a DFA \mathcal{A} with $L = L(\mathcal{A})$.

Remark.

• For DFA $\mathcal{A} = (\Sigma, Q, q_0, F, \delta)$, the empty string ϵ is accepted by \mathcal{A} if and only if $q_0 \in F$.

1.2 Nondeterministic Finite State Automata

Definition 1.2.1. A nondeterministic finite state automaton (NFA) is a system $\mathcal{A} = (\Sigma, Q, q_0, F, \delta)$, where each component is as follows.

- Σ is the alphabet.
- Q is a finite set of **states**.
- $q_0 \in Q$ is the **initial** state.
- $F \subseteq Q$ is the set of **accepting** states.
- $\delta \subseteq Q \times \Sigma \times Q$ is the **transition relation**.

Definition 1.2.2. A run of NFA $\mathcal{A} = (\Sigma, Q, q_0, F, \delta)$ on an input string $w = a_1 \cdots a_n$ over Σ is the sequence of states

$$r = (r_0, r_1, \dots, r_n)$$

where $r_0 = q_0$ and $(r_{i-1}, a_i, r_i) \in \delta$ for each $i \in \{1, \ldots, n\}$.

- r is an **accepting** run if $r_n \in F$.
- We say that \mathcal{A} accepts w if there is an accepting run of \mathcal{A} on w.
- The language of all strings accepted by A is denoted by L(A).

Theorem 1.2.3. For every NFA \mathcal{A} , there is a DFA $\widehat{\mathcal{A}}$ with $L(\mathcal{A}) = L(\widehat{\mathcal{A}})$.

Proof. Let $\mathcal{A} = (\Sigma, Q, q_0, F, \delta)$. We construct $\widehat{\mathcal{A}} = (\Sigma, \widehat{Q}, \widehat{q_0}, \widehat{F}, \widehat{\delta})$ as follows.

- $\widehat{Q} = \mathcal{P}(Q)$.
- $\bullet \ \widehat{q_0} = \{q_0\}.$
- $\widehat{F} = \{\widehat{q} \in \widehat{Q} : q \in \widehat{q} \text{ for some } q \in F\}.$
- $\widehat{\delta}:\widehat{Q}\times\Sigma\to\widehat{Q}$ is the transition function such that

$$\widehat{\delta}(\widehat{q},a) = \{q \in Q : (p,a,q) \in \delta \text{ for some } p \in \widehat{q} \}.$$

holds for each $\widehat{q} \in \widehat{Q}$ and $a \in \Sigma$.

Now we prove that $L(\mathcal{A}) = L(\widehat{\mathcal{A}})$. For $w \in \Sigma^*$, let $\widehat{r} = (\widehat{r}_0, \widehat{r}_1, \dots, \widehat{r}_n)$ be the run of $\widehat{\mathcal{A}}$ on w

- (i) Suppose that $r = (r_0, r_1, \ldots, r_n)$ is an accepting run of \mathcal{A} on w, and we prove that \widehat{r} is an accepting run on w. It is obvious that $r_0 \in \widehat{r}_0$. If $r_{i-1} \in \widehat{r}_{i-1}$ for some $i \in \{1, \ldots, n\}$, then we have $r_i \in \widehat{\delta}(\widehat{r}_{i-1}, a_i) = \widehat{r}_i$ since $(r_{i-1}, a_i, r_i) \in \delta$. Thus, $r_n \in \widehat{r}_n$, and it follows that $\widehat{r}_n \in \widehat{F}$. Therefore, we have $L(\mathcal{A}) \subseteq L(\widehat{\mathcal{A}})$.
- (ii) Suppose that \hat{r} is an accepting run. Then due to the construction of \hat{F} and $\hat{\delta}$, we can construct an accepting run $r = (r_0, r_1, \dots, r_n)$ of \mathcal{A} on w as follows.
 - Let r_n be a state in $\widehat{r}_n \cap F$.
 - For $i \in \{0, \ldots, n-1\}$, let r_i be a state in \widehat{r}_i such that $(r_i, a_{i+1}, r_{i+1}) \in \delta$.

Thus, we have $L(\widehat{\mathcal{A}}) \subseteq L(\mathcal{A})$, which completes the proof.