

Motivation

The beauty of telecommunications:

- Beautiful mathematical theory, very abstract
- Very concrete software/hardware system you can play with

Some more theory and math...

- Some more theory
- Main intuition and practical aspects

You will soon put this into practice in Lab1!

- Hands on practice
- Complete TX -> RX chain over the air

But we will soon see some very concrete applications of DSSS!

- GPS
- Robust communications
- Hands on practice

We have seen narrow-band modulations

Let's spread it at the transmitter

Let's de-spread it at the receiver

Processing gain: chip rate / symbol rate

De-spreading "Digging the signal out of noise"

Noise floor

For now just assume local synchronized copies

What happens to narrow-band interference?

Despreading a NB signal = spreading it

Example

Example

symbol rate is 2

symbol rate is 16

main lobe is 2Hz wide

How do we generate spreading codes?

Refresher on correlation

Cross-correlation

Measures the "similarity" among two signals for many possible time shifts

- High if the signals are similar
- High if the signals are aligned in time

Refresher on correlation

Cross-correlation 2D

Measures the "similarity" among two signals for many possible time shifts and Doppler shifts

- High if the signals are similar
- High if the signals are aligned in time and frequency

Refresher on correlation

Autocorrelation

Measures how good is the cross-correlation of a signals with a delayed copy of itself

Summing up

Spreading code

- Fast chipping rate
- High auto-correlation peak only when perfectly aligned
- No cross-correlation with other codes (orthogonality)

Spread signal power over a large spectrum

- Robust to narrow-band noise
- Works even below the noise floor

Easy to find with cross-correlation

- Find if there is a signal
- Find Doppler shift and arrival time

Multiple access

- Different transmitters use different codes
- Multiple transmitters can use the same frequency

How to synchronize the copies?

Acquisition and tracking

Use cross-correlation!

- Compare local copy of the spreading code for each possible frequency shift and time delay
- Find the peak
- Bonus: you known when the signal arrived compared to your local time reference

Use control loops!

- Use a feedback loop to keep tracking shifts in time and frequency
- Bonus: use the local copy to despread and get the data bits

Putting all together: the receiver

This is the basic building block for a GPS DSSS BPSK receiver that we will see next

In the lab you will experiment with a QPSK DSSS tx/rx chain and explore a different receiver