

Stark 101: Part 3

FRI Commitment

Recap

Goal: prove a statement on FibonacciSq

- Trace in 1023 points
- Create *Trace* polynomial (Lagrange interpolation)
- Evaluate and commit on a larger domain

Recap

• 3 constraints on f(x):

$$f(x) - 1 = 0$$
, for $x = 1$...

3 rational functions from the constraints:

$$p_0(x) = \frac{f(x) - 1}{x - g^0}$$

• • •

Recap

• Composition Polynomial:

$$CP(x) = \alpha_0 \cdot p_0(x) + \alpha_1 \cdot p_1(x) + \alpha_2 \cdot p_2(x)$$

- Prover commits on CP
- Goal show that CP is a polynomial
- CP is a **polynomial** → All constraints satisfied

What Will We Do?

Goal:

Prove that CP is a **polynomial**

Instead:

Prove that CP is **close** to a **polynomial** of **low degree**

What is close?

What is low degree?

Proximity to Polynomials

Distance (def):

Distance between a function $f: D \to F$ to a polynomial p:

 $D(f,p) := \# \text{ points } x \in D \text{ such that } f(x) \neq p(x)$

$$D(\mathbf{f},\,\mathbf{p})=5$$

Proximity to Polynomials

Distance (def):

Distance between a function $f: D \to F$ to a polynomial p:

 $D(f,p) := \# \text{ points } x \in D \text{ such that } f(x) \neq p(x)$

Proximity

A function $f: D \to F$ is **close** to α polynomial p if: D(f,p) is **small**

FRI

Fast Reed-Solomon Interactive Oracle Proofs of Proximity

By Ben-Sasson, E., Bentov, I., Horesh, Y., & Riabzev, M. https://eccc.weizmann.ac.il/report/2017/134/

FRI

Prover convinces verifier:

"The commitment is close to a low degree polynomial"

Without Using FRI

FRI Operator - The Reduction

FRI Operator

Goal:

Prove that a function is close to a polynomial of a bounded degree **D**

Applying the FRI operator

New Goal:

Prove that a **new** function is close to a **new** polynomial

Half of the domain size

Degree bound **D/2**

FRI Operator - Example

Before applying FRI operator

Prove:

A function is close to a polynomial of a bounded degree 1024

where domain size = **8192**

FRI Operator - Example

Before After applying FRI operator

Prove:

A function is close to a polynomial of a bounded degree 1024 512

where domain size = **8192 4096**

FRI Overview

FRI - The Protocol

- Receives random β
- Computes the next polynomial
- Commit
- Lastly the prover sends the constant

Do it repeatedly until: deg(poly) < 1 where

domain size is 8

FRI - Illustration

Showing that *deg(CP)<1024*, *|D|=8192*

Deep Into FRI

FRI Operator - How Does it Work?

Split to even and odd powers

$$P_0(x) = g(x^2) + xh(x^2)$$

• Get a random β

Consider the new function:

$$P_{1}(y) = g(y) + \beta h(y)$$

• Example:

FRI Operator - How Does it Work?

Split to even and odd powers

$$P_0(x) = g(x^2) + xh(x^2)$$

• Get a random β

Consider the new function:

$$P_1(y) = g(y) + \beta h(y)$$

Example:

$$P_{0}(x) = 5x^{5} + 3x^{4} + 7x^{3} + 2x^{2} + x + 3$$

$$g(y) \qquad 3y^{2} \qquad 2y \qquad 3$$

$$h(y) \qquad 5y^{2} \qquad 7y \qquad 1$$

•
$$P_1(y) = 3y^2 + 2y + 3 + \beta(5y^2 + 7y + 1)$$

= $(3+5\beta)y^2 + (2+7\beta)y + 3 + \beta$

FRI - The Protocol - Reminder

- Receives random β
- Computes the next polynomial
- Commit
- Lastly the prover sends the constant

Do it repeatedly until: deg(poly) < 1 where

domain size is 8

FRI - The Protocol - A Single Step

Thank you

