

Gate-Level Minimization

By:

Ratnakar Dash

August 17, 2022

Table of Contents

- 1 Introduction to Gate-Level Minimization
- 2 The Map Method
- 3 Don't-Care Conditions
- 4 EXCLUSIVE-OR FUNCTION
- 5 HARDWARE DESCRIPTION LANGUAGE

Gate-Level Minimization

2345

The Map Method

- The complexity of the digital logic gates that implement a Boolean function is directly related to the complexity of the algebraic expression from which the function is implemented.
- The map method presented here provides a simple, straightforward procedure for minimizing Boolean functions. This method may be regarded as a pictorial form of a truth table. The map method is also known as the Karnaugh map or K-map.

The Map Method (contd.)

- the complexity of the algebraic expression
- Logic minimization
 - algebraic approaches: lack specific rules
 - ♦ the Karnaugh map (or K-map)
 - a simple straight forward procedure
 - a pictorial form of a truth table
 - applicable if the number of variables < 7
- A diagram made up of squares
 - each square represents one minterm.

Boolean function

- sum of minterms
- sum of products (or product of sum) in the simplest form
- a minimum number of terms
- a minimum number of literals
- The simplified expression may not be unique

Two-Variable Map

Two-Variable Map

A two-variable map

- four minterms
- x' = row 0; x = row 1
- y' = column 0; y = column 1

a truth table in square diagram

- XY
- x+y =

Two-variable K-map

eight minterms

- the Gray code sequence
- any two adjacent squares in the map differ by only on variable
 - primed in one square and unprimed in the other
 - e.g. m₅ and m₇ can be simplified
 - $m_5 + m_7 = xy'z + xyz = xz (y'+y) = xz$

m_0	m_1	m_3	m_2
m_4	m_5	m_7	m_6

(a)

FIGURE 3.3
Three-variable K-map

Example 3-1

- $F(x,y,z) = \Sigma(2,3,4,5)$
- F = x'y + xy'

FIGURE 3.4

Map for Example 3.1,
$$F(x, y, z) = \Sigma(2, 3, 4, 5) = x'y + xy'$$

m₀ and m₂ (m₄ and m₆) are adjacent

Example (Cont...)

- $\mathbf{m}_0 + \mathbf{m}_2 = x'y'z' + x'yz' = x'z'(y'+y) = x'z'$
- $\mathbf{m}_4 + \mathbf{m}_6 = xy'z' + xyz' = xz'(y'+y) = xz'$

m_0	m_1	m_3	m_2
m_4	m_5	m_7	m_6

(a)

\ yz				<i>v</i>
x	00	01	11	10
0	x'y'z'		x'yz	x'yz'
$x \left\{ 1 \right\}$	xy'z'	m_5 $xy'z$	m ₇ xyz	m_6 xyz'

FIGURE 3.3

Three-variable K-map

Example (Cont...)

•
$$F(x,y,z) = \Sigma(3,4,6,7) = yz + xz'$$

Map for Example 3.2, $F(x, y, z) = \Sigma(3, 4, 6, 7) = yz + xz'$

Four adjacent squares

- 2, 4, 8 and 16 squares
- $m_0 + m_2 + m_4 + m_6 = x'y'z' + x'yz' + xy'z' + xyz'$ = x'z'(y'+y) + xz'(y'+y) = x'z' + xz' = z'

$$m_1 + m_3 + m_5 + m_7 = x'y'z + x'yz + xy'z + xyz$$

$$= x'z(y'+y) + xz(y'+y)$$

(a)

FIGURE 3.3

34

Three-variable K-map

Gate-Level Minimization 3-10

Example 3-3

- $F(x,y,z) = \Sigma(0,2,4,5,6)$
- F = z' + xy'

FIGURE 3.6

Map for Example 3.3, $F(x, y, z) = \Sigma(0, 2, 4, 5, 6) = z' + xy'$

- F = A'C + A'B + AB'C + BC
- express it in sum of minterms
- find the minimal sum of products expression

FIGURE 3.7

Map of Example 3.4, A'C + A'B + AB'C + BC = C + A'B

Four-Variable Map

- 16 minterms
- combinations of 2, 4, 8, and 16 adjacent squares

•
$$F(w,x,y,z) = \Sigma(0,1,2,4,5,6,8,9,12,13,14)$$

•
$$F = y' + w'z' + xz'$$

Note:
$$w'y'z' + w'yz' = w'z'$$

 $xy'z' + xyz' = xz'$

FIGURE 3.9

Map for Example 3.5,
$$F(w, x, y, z) = \Sigma(0,1, 2, 4, 5, 6, 8, 9, 12, 13, 14) = y' + w'z' + xz'$$

Simplify the Boolean function

A'B'D' + AB'D' = B'D'

A'B'C' + AB'C' = B'C'

FIGURE 3.10

Map for Example 3.6, A'B'C' + B'CD' + A'BCD' + AB'C' = B'D' + B'C' + A'CD'

Prime Implicants

- all the minterms are covered
- minimize the number of terms
- a prime implicant: a product term obtained by combining the maximum possible number of adjacent squares (combining all possible maximum numbers of squares)
- essential: a minterm is covered by only one prime implicant
- the essential P.I. must be included.

- the simplified expression may not be unique
- F = BD+B'D'+CD+AD = BD+B'D'+CD+AB'= BD+B'D'+B'C+AD = BD+B'D'+B'C+AB'

AB'C'D' + AB'CD' = AB'D'A'B'D' + AB'D' = B'D'(a) Essential prime implicants

BD and $B^{\dagger}D'$

(b) Prime implicants CD, B'C, AD, and AB'

Five-Variable Map

Inverse

- Map for more than four variables becomes complicated
- five-variable map: two four-variable map (one on the top of the other)

•
$$F = \Sigma(0,2,4,6,9,13,21,23,25,29,31)$$

Map for Example 3-7; F = A'B'E' + BD'E + ACE

F = A'B'E' + BD'E + ACE

- Simplified F' in the form of sum of products
- Apply DeMorgan's theorem F = (F')'
- F': sum of products => F: product of sums
- Approach 2: duality
 - combinations of maxterms (it was minterms)

■
$$M_0M_1 = (A+B+C+D)(A+B+C+D')$$

= $(A+B+C)+(DD')$ CD
= $A+B+C$ AB 00 01 11 10
00 M_0 M_1 M_3 M_2
01 M_4 M_5 M_7 M_6
11 M_{12} M_{13} M_{15} M_{14}
10 M_8 M_9 M_{11} M_{10}

• $F = \Sigma(0,1,2,5,8,9,10)$

FIGURE 3.12

Note:
$$BC'D' + BCD' = BD'$$

Map for Example 3.7,
$$F(A, B, C, D) = \Sigma(0.1, 2.5, 8.9, 10) = B'D' + B'C' + A'C'D = (A' + B')(C' + D')(B' + D)$$

- F' = AB+CD+BD'
- Apply DeMorgan's theorem; F=(A'+B')(C'+D')(B'+D)
- Or think in terms of maxterms

Gate implementation of the function of Example 3-7

Consider the function defined in Table 3.1.

In sum-of-minterm:

$$F(x, y, z) = \sum (1, 3, 4, 6)$$

In sum-of-maxterm:

$$F'(x, y, z) = \Pi(0, 2, 5, 7)$$

Taking the complement of F'

$$F(x, y, z) = (x' + z')(x + z)$$

Table 3.1 Truth Table of Function F

Tath Table of Tanction 1				
X	y	Z	F	
0	0	0	0	
0	0	1	1	
0	1	0	0	
0	1	1	1	
1	0	0	1	
1	0	1	0	
1	1	0	1	
1	1	1	0	

Consider the function defined in Table 3.1.

Combine the 1's:

$$F(x, y, z) = x'z + xz'$$

Combine the 0's:

$$F(x, y, z) = xz + x'z'$$

- The value of a function is not specified for certain combinations of variables
- BCD; 1010-1111: don't care
- The don't care conditions can be utilized in logic minimization (can be implemented as 0 or 1)
- Example 3-8
 - $F(w, x, y, z) = \sum (1, 3, 7, 11, 15)$
 - \bullet $d(w, x, y, z) = \sum (0, 2, 5)$

- Figure 3.15(a): F = yz + w'x'
- Figure 3.15(b) : F = yz + w'z
- $F = \Sigma(0,1,2,3,7,11,15)$; $F = \Sigma(1,3,5,7,11,15)$
- either expression is acceptable

NAND and **NOR** Implementation

Two graphic symbols for a NAND gate

- two-level logic
- NAND-NAND = sum of products
- Example: F = AB+CD
- F = ((AB)' (CD)')' =AB+CD

The procedure

- simplified in the form of sum of products
- a NAND gate for each product term; the inputs to each NAND gate are the literals of the term
- a single NAND gate for the second sum term
- A single literal requires an inverter in the first level

Multilevel NAND Circuits

- Boolean function implementation
- AND-OR logic ⇒ NAND-NAND logic
- AND ⇒ NAND + inverter
- \blacksquare OR: inverter + OR = NAND

NOR Implementation

- NOR function is the dual of NAND function
- The NOR gate is also universal

Two graphic symbols for a NOR gate

$$x$$
 y
 z

(a) OR-invert
 $(x + y + z)'$

FIGURE 3.23

Two graphic symbols for the NOR gate

Example:
$$F = (A + B)(C + D)E$$

FIGURE 3.24

Implementing F = (A + B)(C + D)E

Two graphic symbols for a NOR gate

FIGURE 3.25

Implementing F = (AB' + A'B)(C + D') with NOR gates

Other Two-level Implementations

Wired logic

- a wire connection between the outputs of two gates
- open-collector TTL NAND gates: wired-AND logic
- the NOR output of ECL gates: wired-OR logic

Other Two-level Implementations

Nondegenerate Forms

- 16 possible combinations of two-level forms
- The eight nondegenerate forms
 - ◆ AND-OR, OR-AND, NAND-NAND, NOR-NOR, NOR-OR, NAND-AND, OR-AND, AND-OR
 - ◆ AND-OR and NAND-NAND = sum of products
 - ◆ OR-AND and NOR-NOR = product of sums
 - ◆ NOR-OR, NAND-AND, OR-AND, AND-OR = ?

AND-OR-Invert Implementation

- AND-OR-INVERT (AOI) Implementation
 - ◆ NAND-AND = AND-NOR = AOI
 - ◆ F = (AB+CD+E)'
 - ◆ F' = AB+CD+E(sum of products)

OR-AND-INVERT (OAI) Implementation

- OR-AND-INVERT (OAI) Implementation
 - ◆ OR-NAND = NOR-OR = OAL
 - ◆ F = ((A+B)(C+D)E)'
 - F' = (A+B)(C+D)E (product of sums)

OR-AND-INVERT (OAI) Implementation

Tabular Summary and Examples

Table 3.2 Implementation with Other Two-Level Forms

Equivalent Nondegenerate Form		Implements	Simplify	To Get
(a)	(b)*	the Function	into	an Output of
AND-NOR	NAND-AND	AND-OR-INVERT	Sum-of-products form by combining 0's in the map.	F
OR-NAND	NOR-OR	OR-AND-INVERT	Product-of-sums form by combining 1's in the map and then complementing.	F

6

Example

- F' = x'v+xv'+z (F': sum of products)
- F = (x'y+xy'+z)' (F: AOI implementation)
- F = x'y'z' + xyz' (F: sum of products)
- F' = (x+y+z)(x'+y'+z) (F': product of sums)
- F = ((x+y+z)(x'+y'+z))' (F: OAI)

Example

EXCLUSIVE-OR FUNCTION

The exclusive-OR (XOR), denoted by the symbol \oplus , is a logical operation that performs the following Boolean operation:

$$x \oplus y = xy' + x'y$$

The exclusive-OR is equal to 1 if only x is equal to 1 or if only y is equal to 1 (i.e., x and y differ in value), but not when both are equal to 1 or when both are equal to 0. The exclusive-NOR, also known as equivalence, performs the following Boolean operation:

$$(x \oplus y)' = xy + x'y'$$

The exclusive-NOR is equal to 1 if both x and y are equal to 1 or if both are equal to 0. The exclusive-NOR can be shown to be the complement of the exclusive-OR by means of a truth table or by algebraic manipulation:

$$(x \oplus y)' = (xy' + x'y)' = (x' + y)(x + y') = xy + x'y'$$

1 Example 2 3 4 5

FIGURE 3.30 Exclusive-OR implementations

Odd function

■ The exclusive-OR operation with three or more variables can be converted into an ordinary Boolean function by replacing the \oplus symbol with its equivalent Boolean expression.

$$A \oplus B \oplus C = (AB' + A'B)C' + (AB + A'B')C$$

= $AB'C' + A'BC' + ABC + A'B'C$
= $\Sigma(1, 2, 4, 7)$

Lxample

234

$$A \oplus B \oplus C \oplus D = (AB' + A'B) \oplus (CD' + C'D)$$

= $(AB' + A'B)(CD + C'D') + (AB + A'B')(CD' + C')$
= $\Sigma(1, 2, 4, 7, 8, 11, 13, 14)$

(b) Even function $F = (A \oplus B \oplus C)'$

FIGURE 3.31

Map for a three-variable exclusive-OR function

FIGURE 3.32

Logic diagram of odd and even functions

Example

(a) Odd function $F = A \oplus B \oplus C \oplus D$

(b) Even function $F = (A \oplus B \oplus C \oplus D)'$

FIGURE 3.33

Map for a four-variable exclusive-OR function

Parity Generation and Checking

■ The exclusive-OR operation with three or more variables can be converted into an ordinary Boolean function by replacing the \oplus symbol with its equivalent Boolean expression.

Example

Table 3.3 **Even-Parity-Generator Truth Table**

Three-Bit Message			Parity Bit	
x	y	Z	P	
0	0	0	0	
0	0	1	1	
0	1	0	1	
0	1	1	0	
1	0	0	1	
1	0	1	0	
1	1	0	0	
1	1	1	1	

HARDWARE DESCRIPTION LANGUAGE

- A hardware description language (HDL) is a computer-based language that describes the hardware of digital systems in a textual form.
- It resembles an ordinary computer programming language, such as C, but is specifically oriented to describing hardware structures and the behavior of logic circuits.
- It can be used to represent logic diagrams, truth tables, Boolean expressions, and complex abstractions of the behavior of a digital system.


```
HDL Example 3.1 (Combinational Logic Modeled with Primitives)
```

// Verilog model of circuit of Figure 3.35. IEEE 1364–1995 Syntax

module Simple_Circuit (A, B, C, D, E);

output

D, E;

A, B, C; input wire

w1;

and

G1 (w1, A, B); // Optional gate instance name

not

G2 (E, C);

or

G3 (D, w1, E);

endmodule

Table 3.5 **Output** of Gates after Delay

	Time Units	Input	Output E w1 D	
	(ns)	ABC		
Initial	_	000	1 0 1	
Change	_	111	1 0 1	
	10	111	0 0 1	
	20	111	0 0 1	
	30	111	0 1 0	
	40	111	0 1 0	
	50	111	0 1 1	


```
Gate Delays
```

HDL Example 3.2 (Gate-Level Model with Propagation Delays)

```
// Verilog model of simple circuit with propagation delay
module Simple Circuit prop delay (A, B, C, D, E);
 output D, E;
 input A, B, C;
 wire w1;
 and
                    #(30) G1 (w1, A, B);
 not
                    #(10) G2 (E, C);
                    #(20) G3 (D, w1, E);
 or
endmodule
```



```
Gate Delays
```

HDL Example 3.3 (Test Bench)

```
// Test bench for Simple_Circuit_prop_delay
module t Simple Circuit prop delay;
 wire D, E;
 reg A, B, C:
```

Simple_Circuit_prop_delay M1 (A, B, C, D, E); // Instance name required

```
initial
 begin
  A = 1'b0: B = 1'b0: C = 1'b0:
  #100 A = 1'b1: B = 1'b1: C = 1'b1:
 end
```

initial #200 \$finish; endmodule

Gate Delays

HDL Example 3.4 (Combinational Logic Modeled with Boolean Equations)

```
// Verilog model: Circuit with Boolean expressions
module Circuit_Boolean_CA (E, F, A, B, C. D):
 output E, F;
 input A, B, C, D;
 assign E = A || (B \&\& C) || ((!B) \&\& D);
 assign F = ((!B) \&\& C) || (B \&\& (!C) \&\& (!D));
endmodule
```


- The logic gates used in Verilog descriptions with keywords and, or, etc., are defined by the system and are referred to as system primitives.
- The user can create additional primitives by defining them in tabular form. These types of circuits are referred to as userdefined primitives (UDPs).

FIGURE 3.37

Schematic for Circuit with_UDP_02467

References I

[1] M. M. Mano and M. D. Ciletti, *Digital Design (4th Edition)*. USA: Prentice-Hall, Inc., 2006.

