

Tema da aula **Regressão Linear**

02/09/2020

ESTATÍSTICA APLICADA EAD AO VIVO

Professora:

Dr^a Karin Ayumi Tamura

Coordenadores:

Prof^a Dr^a Alessandra de Álvila Montini Prof^a Dr. Adolpho Walter Pimazoni Canton

SulAmérica

Bradesco

Allianz (II)

FORMAÇÃO ACADÊMICA | EXPERIÊNCIA PROFISSIONAL

Karin Ayumi Tamura

"Tenho duas paixões no meu trabalho: dados e pessoas. Voltar a lecionar no LABDATA FIA está sendo a realização de um sonho planejado desde a minha época de aluna de pós-graduação. Meu objetivo como professora é integrar a visão do mercado com as técnicas e tecnologias de análise de dados, por meio de

uma atuação humanista no ensino aos alunos"

Contato: karin.tamura@fia.com.br

- FORMAÇÃO ACADÊMICA: Pós-doutora (2015), Doutora (2012), mestre (2007) e bacharel (2003) em Estatística pelo Instituto de Matemática e Estatística da USP, tendo como área de pesquisa modelos de regressão, análise multivariada de dados e algoritmos de machine learning.
- **ATUAÇÃO PROFISSINAL:** Foi *Head* de *Analytics* por 14 anos, e atualmente é Conselheira Executiva e *Head* de Inovação na Marketdata Solutions, uma empresa do grupo WPP, e Professora Doutora no LABDATA FIA.
- HISTÓRICO: Atuação no mercado por 17 anos, com experiência profissional no segmento bancário (Bradesco) e consultoria (Marketdata Solutions). Atuou como docente em cursos de pós-graduação (2010-16) no LABDATA FIA e ABEMD. Especialista em Estatística e Advanced Analytics trabalhando em projetos de diversos segmentos do mercado. Participante de congressos nacionais e internacionais voltados a área de Estatística, Dados e Algoritmos de Machine Learning.

Projetos atendidos

BUSINESS SCHOOL

Graduação, pós-graduação, MBA, Pós- MBA, Mestrado Profissional, Curso In Company e EAD

CONSULTING

Consultoria personalizada que oferece soluções baseada em seu problema de negócio

RESEARCH

Atualização dos conhecimentos e do material didático oferecidos nas atividades de ensino

Líder em Educação Executiva, referência de ensino nos cursos de graduação, pós-graduação e MBA, tendo excelência nos programas de educação. Uma das principais escolas de negócio do mundo, possuindo convênios internacionais com Universidades nos EUA, Europa e Ásia. +8.000 projetos de consultorias em organizações públicas e privadas.

Único curso de graduação em administração a receber as notas máximas

A primeira escola brasileira a ser finalista da maior competição de MBA do mundo

Única Business School brasileira a figurar no ranking LATAM

Signatária do Pacto Global da ONU

Membro fundador da ANAMBA -Associação Nacional MBAs

Credenciada pela AMBA -Association of MBAs

Credenciada ao Executive MBA Council

Filiada a AACSB
- Association to
Advance
Collegiate
Schools of
Business

Filiada a EFMD - European Foundation for Management Development

Referência em cursos de MBA nas principais mídias de circulação

O Laboratório de Análise de Dados – LABDATA é um Centro de Excelência que atua nas áreas de ensino, pesquisa e consultoria em análise de informação utilizando técnicas de *Big Data*, *Analytics* e Inteligência Artificial.

O LABDATA é um dos pioneiros no lançamento dos cursos de *Big Data* e *Analytics* no Brasil

Os diretores foram professores de grandes especialistas do mercado

- +10 anos de atuação
- +1000 alunos formados

- Sólida formação acadêmica: doutores e mestres em sua maioria
- Larga experiência de mercado na resolução de *cases*
- Participação em Congressos Nacionais e Internacionais
- > Professor assistente que acompanha o aluno durante todo o curso

Estrutura

- > 100% das aulas realizadas em laboratórios
- Computadores para uso individual durante as aulas
- ➤ 5 laboratórios de alta qualidade (investimento +R\$2MM)
- 2 Unidades próximas a estação de metrô (com estacionamento)

	Mês	Aula		
_ ^		71010	EAD Ao Vivo	Plantão Prof. Stephan
5 A	Agosto	Introdução ao Curso e Análise Exploratória de Dados	Aula Prof. Karin	06/ago
12 A	Agosto	Análise Exploratória de Dados	Aula Prof. Karin	13/ago
19 A	Agosto	Análise Exploratória de Dados - Introdução ao R	Aula Prof. Karin	20/ago
26 A	Agosto	Lista de Exercícios em Sala de Aula (19hs-23hs - com presença obrigatória)	-	27/ago
2 S	Setembro	Regressão Linear Simples	Aula Prof. Karin	03/set
9 5	Setembro	Regressão Linear Simples e Múltipla	Aula Prof. Karin	10/set
16 S	Setembro	Regressão Linear Simples e Múltipla	Aula Prof. Karin	17/set
23 S	Setembro	Lista de Exercícios em Sala de Aula (19hs-23hs - com presença obrigatória)	-	24/set
30 S	Setembro	Análise de Cluster	Aula Prof. Karin	01/out
7	Outubro	Análise de Cluster	Aula Prof. Karin	08/out
14	Outubro	Lista de Exercícios em Sala de Aula (19hs-23hs - com presença obrigatória)	-	15/out
21 (Outubro	Arvore de Decisão	Aula Prof. Karin	22/out
28	Outubro	Lista de Exercícios em Sala de Aula (19hs-23hs - com presença obrigatória)	-	29/out
4	Novembro	Regressão Logística	Aula Prof. Karin	05/nov
11 N	Novembro	Regressão Logística	Aula Prof. Karin	11/nov
18 N	Novembro	Lista de Exercícios em Sala de Aula (19hs-23hs - com presença obrigatória)	-	19/nov
	Novembro	estudo de caso	Aula Prof. Karin	26/nov
2 N	Novembro	estudo de caso	Aula Prof. Karin	30/dez
9 [Dezembro	estudo de caso	Aula Prof. Karin	10/dez
	Dezembro	Análise de Série Temporal - modelo auto regressivo	Aula Prof. Karin	17/dez
23 E	Dezembro	Lista de Exercícios em Sala de Aula (Frequência Liberada - véspera Natal)	-	-
Racas	sso Escolar	EAD - INTRODUÇÃO AO PYTHON	EAD Video Aula	-
Neces	SSO ESCOIAI	EAD - INTRODUÇÃO AO PYTHON	(8 horas)	-
6 J	Janeiro	Modelos estatísticos em Python	Aula Prof. Karin	07/jan
	Janeiro	Modelos estatísticos em Python	Aula Prof. Karin	14/jan
	Janeiro	Modelos estatísticos em Python	Aula Prof. Karin	20/jan
27 J	Janeiro	Introdução a Big Data - Aplicações de Machine Learning e Deep Learning	Aula Prof. Karin	28/jan
	Fevereiro	Aplicações de Machine Learning	Aula Prof. Karin	04/fev
	Fevereiro	Aplicações de Machine Learning	Aula Prof. Karin	11/fev
	Fevereiro	Lista de Exercícios (Frequência Liberada - quarta de cinzas)	-	18/fev
24 F	Fevereiro	EXERCICIOS DE REVISÃO - EAD (19hs e 23hs - com presença obrigatória)	-	24/fev
3 N	Março	Prova (Plataforma On Line: 19hs e 23hs)	-	

Conteúdo da Aula

- 1. Introdução
- 2. Coeficiente de correlação
- 3. Regressão Linear Simples
- 4. Regressão Linear Múltipla
 - i. Multicolinearidade
 - ii. Variáveis explicativas qualitativas
- 5. Exercícios para casa
 - i. CASE: Limite de Crédito
 - ii. CASE: Predição de valor de imóveis

1. Introdução

1. INTRODUÇÃO | REGRESSÃO LINEAR SIMPLES

Exemplo

Predizer o valor do limite do cartão de crédito em função da renda do cliente.

Aplicação

Área de Crédito do Segmento Bancário (Emissores de cartão de crédito).

Case SAC em Empresas de Serviço 1. INTRODUÇÃO | REGRESSÃO LINEAR SIMPLES

Exemplo

Predizer a quantidade de chamados finalizados com sucesso no SAC de uma empresa de serviços com base na quantidade de atendentes contratados.

Aplicação

Área de Ouvidoria de empresas de serviços (p.e. Telcom, Bancos, Seguradoras, etc.)

Exemplo

Predizer o percentual de rematrículas em uma escola de Idiomas com base nas notas dos alunos do ano anterior.

Aplicação

Áreas de Marketing e Vendas de Instituição de Ensino.

Case Venda de Seguros 1. INTRODUÇÃO | REGRESSÃO LINEAR SIMPLES

Exemplo

Predizer a quantidade de vendas de Seguros do time Comercial com base na quantidade de corretores ativos.

Aplicação

Área de Planejamento Comercial.

1. INTRODUÇÃO | REGRESSÃO LINEAR SIMPLES

Exemplo

Predizer o volume (R\$) de vendas em eletrônicos em função do investimento (R\$) em Mídia Digital (Facebook, Instagram, Mídia Programática, *Search*).

Aplicação

Área de Mídias Digitais.

Exemplo

Predizer a quantidade de infectados de COVID-19 numa certa região com base nos dados de mobilidade.

Aplicação

Área de Saúde Pública.

2. Coeficiente de correlação

Existe relação entre pontualidade dos voos e reclamação dos passageiros?

2. COEFICIENTE DE CORRELAÇÃO | CASE COMPANHIA AÉREA

Uma pesquisa deseja estimar a taxa de reclamação em função do percentual de pontualidade das saídas dos voos de companhias aéreas. Existe relação entre as duas informações?

	Percentual de	Taxa de
Linha aérea	Pontualidade	reclamação
1	81,8	0,21
2	76,6	0,58
3	76,6	0,85
4	75,7	0,68
5	73,8	0,74
6	72,2	0,93
7	71,2	0,72
8	70,8	1,22
9	68,5	1,25

Quanto maior o percentual de pontualidade, menor a taxa de reclamação.

Mede a associação linear entre duas variáveis quantitativas.

O coeficiente r varia entre -1 a 1, sendo:

- valores próximos a 1: forte correlação linear positiva (diretamente proporcional).
- valores próximos a -1: forte correlação linear negativa (inversamente proporcional).
- valores próximos a **0**: não existe associação linear entre as variáveis.

O coeficiente também é conhecido como CORRELAÇÃO DE PEARSON

Karl Pearson (Londres, 1857-1936)

Vamos calcular a correlação linear?

2. COEFICIENTE DE CORRELAÇÃO | MOTIVAÇÃO

18

Uma pesquisa deseja estimar a taxa de reclamação em função do percentual de pontualidade das saídas dos voos de companhias aéreas. Existe relação entre as duas informações?

Vamos fazer juntos?

	Percentual de	Taxa de
Linha aérea	Pontualidade	reclamação
1	81,8	0,21
2	76,6	0,58
3	76,6	0,85
4	75,7	0,68
5	73,8	0,74
6	72,2	0,93
7	71,2	0,72
8	70,8	1,22
9	68,5	1,25

Existe uma forte associação NEGATIVA (r=-0,88) entre as duas variáveis, ou seja, quanto maior o percentual de pontualidade, menor a taxa de reclamação.

- Excel: CORREL(col1, col2)
- R: cor(var1, var2)

2. COEFICIENTE DE CORRELAÇÃO | INTERPRETAÇÃO

Na prática, consideramos valores acima de |r| > 0.7 como alta correlação linear e valores abaixo de |r| < 0.3 como baixa correlação linear.

https://lytongblog.wordpress.com/2018/12/21/correlation-between-two-variables/

Correlação de Pearson: somente relação LINEAR 2. COEFICIENTE DE CORRELAÇÃO | INTERPRETAÇÃO

https://en.wikipedia.org/wiki/Correlation_and_dependence#/media/File:Correlation_examples2.svg

2. Regressão Linear Simples

É possível expressar essa relação por meio de um modelo estatístico?

3. REGRESSÃO LINEAR SIMPLES | MODELO ESTATÍSTICO

Quando se realiza uma análise de dados, busca-se de alguma forma um padrão ou modelo presente nas observações.

Relação entre DADO, MODELO E ERRO:

PERGUNTA DE NEGÓCIO:

Se aumentar o percentual de voos saídos com pontualidade, em quanto diminui a taxa de reclamação?

O modelo de regressão linear simples é dado por:

y: variável resposta, variável dependente ou target

$$y = \beta_0 + \beta_1 x + \varepsilon$$

x: variável explicativa, variável auxiliar, variável independente ou covariável

Em que:

- ✓ β_0 e β_1 são chamados **parâmetros do modelo**.
- $\checkmark \varepsilon$ é uma variável aleatória chamada de erro ou resíduo.

Ele estudava junto com seu discípulo, Karl Pearson, a relação entre a altura do pai

Explicou pela 1^a vez por meio de um modelo

Francis Galton (Londres, 1822-1911)

3. REGRESSÃO LINEAR SIMPLES | CARACTERÍSTICAS

A equação de regressão linear simples **estimada** é dada por:

$$\hat{y} = b_0 + b_1 x$$

$$\hat{y} = b_0 + b_1 x$$

Em que:

- \checkmark b_0 e b_1 são chamados de **parâmetros estimados do modelo**.
- $\checkmark \hat{y}$ é a resposta estimada.

Sendo:

- ✓ b_0 é o valor do intercepto (x=0).
- $✓ b_1$ é coeficiente angular (inclinação da reta).

Interpretação gráfica da equação 3. REGRESSÃO LINEAR SIMPLES | CARACTERÍSTICAS

A equação de regressão linear simples **estimada** é dada por:

$$\hat{y} = b_0 + b_1 x$$

Animação - Valores de intercepto e inclinação 3. REGRESSÃO LINEAR SIMPLES | CARACTERÍSTICAS

https://towardsdatascience.com/linear-regression-using-least-squares-a4c3456e8570

Modelo de Regressão Linear Simples **Modelo teórico**

$$Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i$$

X

Modelo de Regressão Linear Simples **Modelo ajustado**

$$\hat{y}_i = b_0 + b_1 x_i$$

Um gestor de uma instituição de ensino está planejando a abertura de novas vagas para cursos de ensino superior, e gostaria de utilizar os dados de aprovados no ensino médio do ano anterior para estimar o potencial de público alvo que teria para trabalhar com ações de marketing. Para isso, ele analisou os dados disponíveis dos estudantes aprovados, por Estado do Brasil, dos últimos 2 anos (2015 e 2016). Ele gostaria de saber se é possível utilizar os dados do último ano para estimar o percentual de aprovados no ano corrente (2017).

Fonte: https://seriesestatisticas.ibge.gov.br/series.aspx?no=7&op=2&vcodigo=M13&t=aprovacao-serie-ensino-medio-serie-nov

Existe uma forte associação POSITIVA (r=0,84) entre as duas variáveis, ou seja, os estados que apresentaram maior nota em 2015 também apresentaram maior nota em 2016.

No EXCEL, é possível incluir uma linha de tendência, e ele fornece a estimação dos parâmetros do modelo e o valor R².

 R^2 é o **coeficiente de determinação**, que pode ser calculado pelo **quadrado do coeficiente de correlação**. Quanto maior o valor de R^2 , mais bem ajustado é o modelo regressão. Valores de R^2 acima de 0,5 já indicam bom ajuste, $0 < R^2 < 1$. Ele pode ser interpretado com o % da variabilidade explicada da variável y pela x.

INTERPRETAÇÃO:

- $\checkmark b_0$ é 15,91: quando o percentual de aprovados em 2015 é zero, em 2016 é 15,91.
- ✓ **b**₁ **é 0,84**: quando aumenta 1 p.p. no percentual de aprovação no ano de 2015, aumenta em 0,84 o percentual de aprovação no ano de 2016.
- ✓ **R² é 0,71:** 71% da variabilidade do percentual de aprovados de 2016 é explicado pelo percentual de aprovados de 2015, indicando um excelente ajuste do modelo aos dados.

Percentual de aprovados em 2016 = 15,914 + 0,8391*Percentual de aprovados em 2015.

O gestor percebeu que o modelo foi ajustado sem o Estado do Acre, uma vez que os dados de 2016 não vieram preenchidos. Seria possível predizer o valor do percentual de aprovados do Estado do Acre para 2016, dado que em 2015 o percentual de aprovação foi de 71,6?

Pelo modelo, a predição para o AC do percentual de aprovação em 2016 é de **75,99**.

$$Y = b_0 + b_1 X$$

Faça a predição do percentual de aprovados no Ensino Médio para ano corrente (2017).

Estado	2015	2016	Modelo Erro
Alagoas	66,1	72,4	71,4 1,0
Amapa	68,8	70,5	73,6 -3,2
Amazonas	78,6	84,7	81,9 2,8
Bahia	67,2	69,6	72,3 -2,7
Ceara	80,4	82,8	83,4 -0,6
DF	74,9	79,6	78,8 0,8
Espirito Santo	70,0	74,5	74,7 -0,2
Goias	80,1	84,7	83,1 1,5
M. G. do Sul	64,8	73,6	70,3 3,3
Maranhao	74,5	77,9	78,4 -0,6
Mato Grosso	56,5	60,9	63,3 -2,5
Minas Gerais	75,0	77,2	78,8 -1,7
Para	68,0	73,5	73,0 0,5
Paraiba	71,0	72,7	75,5 -2,8
Parana	75,4	76,3	79,2 -2,9
Pernambuco	84,1	90,9	86,5 4,4
Piaui	72,7	77,3	76,9 0,4
R. G. do Norte	66,1	70,0	71,4 -1,4
R. G. do Sul	65,2	63,2	70,6 -7,5
Rio de Janeiro	76,5	73,7	80,1 -6,4
Rondonia	67,3	80,8	72,4 8,4
Roraima	72,8	77,6	77,0 0,6
Santa Catarina	62,7	77,9	68,5 9,3
Sao Paulo	82,3	84,4	85,0 -0,6
Sergipe	60,5	66,4	66,7 -0,3
Tocantins	72,6	77,2	76,8 0,3

A média dos erros é igual a ZERO, pois a reta é ajustada de tal forma que fique centralizada aos dados.

DADOS = MODELO + ERRO

ERRO = DADOS - MODELO $ERRO_i = y_i$ (observado)- y_i (predito)

i-esimo indivíduo da amotra de dados, onde i=1,, n.

Formalização do modelo teórico

3. REGRESSÃO LINEAR SIMPLES | SUPOSIÇÕES DO MODELO

$$Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i$$
, $i=1,...,n$

em que

 Y_i : é o valor associado a i-ésima observação da variável resposta; β_0 e β_1 : são parâmetros;

 X_i : é o valor associado a i-ésima observação da variável explicativa; ϵ_i : é o erro (resíduo) aleatório associado a i-ésima observação; n : número de observações.

Suposições do modelo:

Sendo a variável X fixa ou determinística (não está sujeita a variações aleatórias):

- A média dos resíduos é zero.
- 2. Os **resíduos** tem a **variabilidade constante** torno de X.
- 3. ε_i e ε_i são **não correlacionados**, com i \neq j.
- 4. Os resíduos seguem uma **distribuição Normal**.

Distribuição Normal (Gaussiana) dos resíduos

Fazer um histograma dos resíduos e verificar:

- Simetria
- Distribuição dos dados na proporção ao lado e ao redor da média.

3. REGRESSÃO LINEAR SIMPLES | OBTENÇÃO DAS ESTIMATIVAS

Busca encontrar o melhor ajuste para um conjunto de dados minimizando a **soma dos quadrados dos resíduos** (das diferenças entre o valor estimado e os valores observados), de forma a maximizar o grau de ajuste do modelo aos dados observados.

MÉTODO DOS MÍNIMOS QUADRADOS

$$Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i$$

$$\varepsilon_i^2 = [Y_i - (\beta_0 + \beta_1 X_i)]^2$$

- Minimizar o erro é equivalente a calcular a derivada da função.
- Igualar o erro a ZERO e encontrar os valores de β_1 e β_0 .

$$\beta_1 = \frac{\sum_{i=1}^n (X_i - \bar{X})(Y_i - \bar{Y})}{\sum_{i=1}^n (X_i - \bar{X})^2}$$

$$\beta_0 = \bar{Y} - \beta_1 \bar{X}$$

em que

n : número de observações

 $ar{X}$: média amostral da variável X

 $ar{Y}$: média amostral da variável Y

Propôs os Método dos Mínimos Quadrados

Carl Friedrich Gauss (Alemanha, 1777-1855)

Modelo de Regressão Linear Simples **Modelo teórico**

$$Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i$$

Hipóteses de Interesse sob β_1

 $H_0: \beta_1 = 0$

(não existe relação linear entre as variáveis)

Hipóteses de Interesse sob β_0

 $H_0: \beta_0 = 0$

(passa pela origem (x=0, y=0))

$$H_1$$
: $\beta_1 \neq 0$

(existe relação linear entre as variáveis)

$$H_1$$
: $\beta_0 \neq 0$

(não passa pela origem (x=0, y= β_0))

3. REGRESSÃO LINEAR SIMPLES | CASE CAPTAÇÃO DE ALUNOS

Calcule a reta de regressão e o coeficiente de determinação no software R e compare os resultados com o Excel.

Interpretação do output do R

Call:lm(formula = Y2016 ~ X2015, data = dados_rls)

Residuals: Min 1Q Median 3Q Max
-7.4526 -2.2583 -0.2446 0.9462 9.3451 → Distribuição dos resíduos.

0,0000000736

Coefficients: Estimate Std. Error t value Pr(>|t|)
(Intercept) 15.9139 7.8860 2.018 0.0549 .

X2015 0.8391 0.1101 7.621 7.36e-08 ***
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1

Testa a hipótese se cada coeficiente é diferente de zero. P-valor <0,10, indica se a estimativa é diferente de zero.

Residual standard error: 3.782 on 24 degrees of freedom

Multiple R-squared: 0.7076, Adjusted R-squared: 0.6954

F-statistic: 58.09 on 1 and 24 DF, p-value: 7.362e-08

Coeficiente de determinação

3. REGRESSÃO LINEAR SIMPLES | CASE IMOBILIÁRIO

De acordo com a localização de um imóvel, sabe-se que o valor do mesmo pode variar substancialmente. Na base de dados disponibilizada, são fornecidas as informações sobre o valor do imóvel (R\$) por mil m², a distância para estação de metrô (km), a quantidade de comércios próximos, e a idade (anos) do imóvel, em um bairro bem localizado de um grande centro urbano. Um cliente a procura de um imóvel faz questão de morar perto do metrô. Explique para o cliente se existe a relação entre preço do imóvel e localização próxima a estação de metrô.

Fonte Adaptada: https://www.kaggle.com/quantbruce/real-estate-price-prediction?select=Real+estate.csv

Siga as seguintes instruções para solução do case:

- (a) Existe relação entre preço do imóvel e distância para o metrô? Qual tipo de relação seria?
- (b) Calcule a correlação de Pearson entre as duas variáveis e interprete o coeficiente.
- (c) Rode o modelo de regressão linear simples. Realize os testes de hipóteses sob os parâmetros, ao nível de 10% de significância.
- (d) Interprete os parâmetros do modelo e o coeficiente de determinação.
- (e) Apresente a equação do modelo estimada.
- (f) Estime o valor do imóvel caso o cliente desejasse morar há 1 km do metrô em um apartamento de 70 m².

Correlação = -0,76

Output do modelo de Regressão Linear Simples

```
Call:
lm(formula = Mil_reais_m2 ~ Distancia_metro_Km, data = imobiliario)
Residuals:
   Min
            10 Median
                                  Max
-6.7759 -0.9554 -0.1587 0.7327 6.9331
Coefficients:
                  Estimate Std. Error t value Pr(>|t|)
(Intercept)
                 18.8154
                              0.4882 38.54 <2e-16 ***
                              0.3082 -23.41 <2e-16 ***
Distancia metro Km -7.2166
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' '1
Residual standard error: 1.71 on 411 degrees of freedom
Multiple R-squared: 0.5715, Adjusted R-squared: 0.5705
F-statistic: 548.2 on 1 and 411 DF, p-value: < 2.2e-16
```

Interprete o *output* do modelo destacado em verde.

R Studio

4. Regressão Linear Múltipla

Forma geral do modelo

4. REGRESSÃO LINEAR MÚLTIPLA | MODELO ESTATÍSTICO

42)

O modelo de <u>regressão linear múltipla teórica</u> é dado por:

$$Y = \beta_0 + \beta_1 X_1 + ... + \beta_p X_p + \epsilon$$
 com, $\epsilon \sim N(0, \sigma^2)$

Y: variável dependente.

X₁,..., X_p: variáveis independentes.

ε: erro aleatório associado ao modelo.

A equação de <u>regressão linear múltipla estimada</u> é dada por:

$$\hat{y} = b_0 + b_1 x_1 + b_2 x_2 + \dots + b_p x_p$$

Modelo tridimensional (Y, X₁ e X₂)

$$y=b_0+b_1X_1+b_2X_2$$

https://commons.wikimedia.org/wiki/File:2d multiple linear regression.gif

Case: Predição de Limite de Cheque Especial

3. REGRESSÃO LINEAR MÚLTIPLA | CASE FINANCEIRO

Uma instituição financeira tem objetivo de estimar o valor de **Limite de Cheque Especial** para seus novos clientes, com base em informações disponíveis em seu banco de dados. Para o estudo, foi disponibilizado uma amostra histórica de clientes com as informações de **Idade**, **Rendimento Total**, **Salário**, **Limite de Crédito Imediato** para investigar se é possível estimar o Limite do Cheque Especial com base nas características disponibilizadas. Avalie a possibilidade de fornecer uma "regra" por meio de um modelo estatístico, interprete como as informações predizem o evento de interesse e qual a performance desta "regra".

Fonte: Base de dados inspirada em cases reais.

Utilize todas as ferramentas aprendidas até o momento para tirar suas conclusões de negócio.

Vamos fazer juntos?

Case: Predição de Limite de Cheque Especial

3. REGRESSÃO LINEAR MÚLTIPLA | ANÁLISE BIDIMENSIONAL

Antes de partir para o modelo, fazer a Análise Exploratória de Dados (AED).

Passo 1: Fazer a Análise Exploratória Univariada.

Passo 2: Fazer a análise bidimensional (ou bivariada) da resposta vs variável explicativa para investigar as relações lineares ou não, e investigar o quanto as covariáveis auxiliariam na explicação da resposta.

library(GGally)
ggpairs(dados_lim_cred, title="correlogram with ggpairs()")

Passo 3: Fazer a análise bidimensional das covariáveis entre si para identificar correlação entre elas utilizando a correlação de Pearson e gráfico de dispersão.

Relação entre as variáveis explicativas

4.i. MULTICOLINEARIDADE | REGRESSÃO LINEAR MÚLTIPLA

- A multicolinearidade refere-se a correlação entre as variáveis explicativas do modelo.
- Quando as variáveis explicativas são altamente correlacionadas, não é possível determinar o efeito separado de uma particular variável explicativa na variável resposta.
- Quando a multicolinearidade é grave, pode ocorrer troca do sinal de alguns parâmetros do modelo. Neste caso, os coeficientes individuais tornam-se questionáveis na presença da multicolinearidade.
- É considerada alta a correlação entre as variáveis explicativas quando |r| > 0,7, sendo r o coeficiente de correlação linear de Pearson.

Output do Regressão Linear Múltipla- SEM RENDIMENTO TOTAL

```
Call:
lm(formula = LimitedoChequeEspecial ~ Idade + Salario + LimitedeCreditoImediato, data = dados lim cred)
Residuals:
   Min
             10 Median
                                     Max
-7078.6 -1302.6 -220.6 1047.9
                                  6201.9
Coefficients:
                           Estimate Std. Error t value Pr(>|t|)
(Intercept)
                         -2.887e+03 1.876e+03 -1.539
                                                           0.1311
                                                                                Realizar o processo de redução,
Idade
                          4.320e+00 2.658e+01
                                                  0.163
                                                          Q.8716
                                                                                iniciando pela variável com maior nível
Salario
                          5.753e-01
                                     4.292e-02 13.402
                                                           <2e-16 ***
                                                                                descritivo, e rodar o modelo novamente.
LimitedeCreditoImediato 1.011e+00 4.270e-01 2.368
                                                           0.0223 *
                0 (***, 0.001 (**, 0.01 (*, 0.05 (., 0.1 (, 1
Signif. codes:
                                                                        Coeficiente de
```

Residual standard error: 2732 on 44 degrees of freedom Multiple R-squared: 0.8141, Adjusted R-squared:

F-statistic: 64.23 on 3 and 44 DF, p-value: 4.093e-16-

> Coeficiente de Determinação: usar para RL Simples.

Determinação Ajustado: usar para RL Múltipla.

Hipótese de Interesse

 H_0 : $\beta_1 = \beta_2 = ... = \beta_n = 0$

 $H_1: \beta_1 \neq 0 \text{ ou } \beta_2 \neq 0 \text{ ou ou } \beta_n \neq 0$

Testa a hipótese de que existe relação linear de pelo menos uma variável explicativa pela variável resposta. Quando este valor for < 0,10 concluímos que existe relação linear de pelo menos uma variável explicativa em relação a variável resposta.

0.8014

Coeficiente de Determinação R²: proporção da variabilidade da resposta explicada pela equação de regressão múltipla estimada. Em geral, sempre <u>se eleva quando são adicionadas variáveis explicativas</u> no modelo.

Para evitar superestimação do impacto de se adicionar mais uma variável independente no modelo, usamos a seguinte correção do **R**²:

$$R^2$$
-ajustado = 1- (1- R^2) $(n - 1)$ $(n-p-1)$

Sendo n a quantidade de observações e p a quantidade de parâmetros estimados pelo modelo.

3. REGRESSÃO LINEAR MÚLTIPLA | PROCESSO DE REDUÇÃO DE VARIÁVEIS

Output do Regressão Linear Múltipla- SEM IDADE

```
Call:
lm(formula = LimitedoChequeEspecial ~ Salario + LimitedeCreditoImediato,
   data = dados lim cred)
Residuals:
   Min
            10 Median
                            30
                                  Max
-7043.8 -1313.0 -249.4 1028.4 6209.2
Coefficients:
                         Estimate Std. Error t value Pr(>|t|)
(Intercept)
                       -2.637e+03 1.061e+03 -2.486
                                                      0.0167 *
                                                     <2e-16 ***
Salario
                       5.757e-01 4.239e-02 13.582
LimitedeCreditoImediato 1.015e+00 4.217e-01 2.408
                                                     0.0202 *
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' '1
Residual standard error: 2703 on 45 degrees of freedom
Multiple R-squared: 0.814, Adjusted R-squared: 0.8057
F-statistic: 98.47 on 2 and 45 DF, p-value: < 2.2e-16
```

Adotando, nível de significância de 0,10, todas os parâmetros são diferentes de zero.

Interpretação do Modelo Final (escolhido).

Limite do Cheque Especial = -0,002637 + 0,5757*Salário + 1,015*Limite de Crédito Imediato

R²-ajustado: 0,8057

Interpretação do coeficiente de regressão:

- 0,5757 é o aumento do Limite do Cheque Especial correspondente ao aumento de 1 unidade no Salário, quando seu Limite de Crédito Imediato é considerado constante.
- Similarmente, 1,015 é o aumento do Limite do Cheque Especial correspondente ao aumento de 1 unidade do Limite de Crédito Imediato, quando o Salário é mantido constante.

Interpretação do R²-ajustado:

81% da variabilidade do Limite do Cheque Especial é explicada pelas variáveis Salário e Limite de Crédito Imediato pela Regressão Linear Múltipla.

- Utilizamos até agora no modelo Regressão Linear apenas para covariáveis quantitativas.
- Quando as **covariáveis são qualitativas**, é necessário transformar as características em variáveis indicadoras (*dummies*), atribuindo a presença ou não da característica.

Sexo: feminino e masculino.

Sexo_M: 0 – feminino e 1 – masculino.

Estado Civil: solteiro, casado e outros.

Est civil O: 1 – outros e 0 – demais.

Est_civil_S: 1 – solteiro e 0 – demais.

Note que a quantidade de dummies é 'quantidade de categorias – 1'.

Codificação das variáveis qualitativas:

cliente	Sexo	Estado Civil	Sexo_M	Est_civil_O	Est_civil_S
1	feminino	solteiro	0	0	1
2	masculino	casado	1	0	0
3	feminino	outros	0	1	0
4	masculino	solteiro	1	0	1
5	masculino	solteiro	1	0	1
6	masculino	solteiro	1	0	1
7	feminino	casado	0	0	0

• No R, caso a variável seja qualitativa (*string*), o *software* já vai "entender" e faz a atribuição da primeira categoria (pela ordem alfabética) como sendo a **categoria de referência (recebe valor zero)**, e as subsequentes receberão valor 1.

4. REGRESSÃO LINEAR MÚLTIPLA | DESCRITIVA DE ESCOLARIDADE

Nunca esquecer de fazer AED da variável nova.

A variável Escolaridade parece discriminar, sendo os clientes com curso superior ou pós-graduação com valores maiores de limite de cheque especial. Ela também mostra relação com as variáveis Idade e Limite de cheque imediato.

Output do Regressão Linear Múltipla- COM Escolaridade

```
Call:
```

```
lm(formula = LimitedoChequeEspecial ~ Escolaridade + Salario +
    LimitedeCreditoImediato, data = dados lim cred)
```

Residuals:

```
Min 1Q Median 3Q Max -5785.9 -1014.5 -36.8 843.6 7077.9
```

Coefficients:

```
Estimate Std. Error t value Pr(>|t|)

(Intercept) -2.322e+03 9.964e+02 -2.330 0.02445 *

EscolaridadeSuperior_Pos 2.445e+03 8.832e+02 2.768 0.00821 **

Salario 5.171e-01 4.487e-02 11.524 7.05e-15 ***

LimitedeCreditoImediato 7.322e-01 4.066e-01 1.801 0.07860 .

---

Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

Residual standard error: 2522 on 44 degrees of freedom

Multiple R-squared: 0.8416, Adjusted R-squared: 0.8308

F-statistic: 77.92 on 3 and 44 DF, p-value: < 2.2e-16

Interpretação do coeficiente associado a Escolaridade:

R\$2.445 é o valor atribuído ao Limite de Cheque Especial para os clientes com escolaridade Superior ou Pós, quando as demais covariáveis do modelo são mantidas constantes.

Como interpretar a categoria de Escolaridade Fundamental e Médio?

5. Exercícios para casa

5. Exercícios para casa

DATA DE ENTREGA 04/10/2020 | 2 EXERCÍCIOS-CASE

- i. CASE: Limite de Crédito (4,0 ponto)
- ii. CASE: Predição de valor de imóvel (6,0 pontos)

Instruções importantes:

- A lista vale nota (0-10) e deve ser entregue <u>até 04/10/2020</u>. Lista entregue até 11/10/2020 valerá 80% da nota. Posteriormente, não será mais aceita a lista para correção. Não serão aceitas listas parciais.
- O exercício será considerado como "realizado", quando tiver, além das análises, a interpretação do resultados.
- Disponibilização apenas do código, tabelas e gráficos mesmo se estiverem corretos, serão considerados na correção como "meio certo", pois o mais importante é a interpretação do resultado.
- Soluções técnicas "elegantes e mais completas" serão consideradas como ponto extra para o aluno (+0,5 na lista geral).
- A lista é individual. No caso de detecção de plágio, lista não será considerada para correção.

BOM ESTUDO ©

5.i. Case: Predição de Limite de Cheque Especial

BANCO DE DADOS EM .TXT | FAZER ANÁLISE NO R

Uma instituição financeira tem objetivo de estimar o valor de **Limite de Cheque Especial** para seus novos clientes, com base em informações disponíveis em seu banco de dados. Para o estudo, foi disponibilizado uma amostra histórica de clientes com as informações de **Idade**, **Rendimento Total**, **Salário**, **Limite de Crédito Imediato e Escolaridade** para investigar se é possível estimar o Limite do Cheque Especial com base nas características disponibilizadas. Avalie a possibilidade de fornecer uma "regra" por meio de um modelo estatístico, interprete como as informações que predizem o evento de interesse e qual a performance desta "regra".

Utilize todas as ferramentas aprendidas até o momento para tirar suas conclusões de negócio.

Siga as seguintes instruções para solução do case:

- (a) Construa o gráfico de dispersão entre as variáveis.
- (b) Calcule a correlação de Pearson entre elas.
- (c) Rode o modelo de regressão linear.
- (d) Interprete os parâmetros do modelo e o coeficiente de determinação.
- (e) Apresente a equação do modelo estimado.
- (f) Estime o valor do limite de cheque especial para um cliente que tem salário de R\$4850.
- (g) Faça comentários em relação ao uso dessa "regra de predição" do Limite de Cheque Especial. Você acredita ser um boa regra a ser utilizada pela instituição financeira?

5.ii. CASE: Predição de preço de imóvel

BANCO DE DADOS EM .TXT | FAZER ANÁLISE NO R

De acordo com a localização de um imóvel, sabe-se que o valor do mesmo pode variar substancialmente. Na base de dados disponibilizada são fornecidas informações sobre o valor do imóvel (R\$) por mil m², a distância para estação de metrô (km), a quantidade comércios próximos, e a idade (anos) do imóvel, em um bairro bem localizado de grande centro urbano. Quais são as características relacionadas ao imóvel que predizem seu valor?

Fonte Adaptada: https://www.kaggle.com/quantbruce/real-estate-price-prediction?select=Real+estate.cs

Siga as seguintes instruções para solução do case:

- (a) Existe relação linear das covariáveis e preço do imóvel (variável resposta)? Qual tipo de relação seria?
- (b) Calcule a correlação de Pearson entre todas as variáveis do banco de dados. Interprete os coeficientes.
- (c) Realize a análise bidimensional entre as covariáveis existentes e investigue possíveis problemas de multicolinearidade.
- (d) Rode o modelo de regressão linear múltipla, considerando um nível de significância de 5% para seleção de variáveis.
- (e) Interprete os parâmetros do modelo e o coeficiente de determinação.
- (f) Apresente a equação do modelo estimado.
- (g) Caso um comprador esteja procurando um imóvel há 1 km do metrô, com 5 comércios próximos e que tenha 5 anos, qual valor ele pagaria em um imóvel de 85 m²?
- (h) De acordo com a medida de qualidade do modelo, ele prediz de forma satisfatória o valor do imóvel? Justifique.

1. Anderson, R. A., Sweeney, J. D. e Williams, T. A. *Estatística Aplicada à Administração e Economia*. Editora Cengage. 4ª edição, 2019.

