Appendix

Prof. Dr. Erich Walter Farkas https://www.math.ethz.ch/~farkas FS 2024

Kombinatorik kurz und knapp

Kombinatorik kurz und knapp

Diese Notizen geben einen kurzen Überblick über die (wenigen) Resultate aus der Kombinatorik, die man sich wirklich merken sollte.

Es gibt natürlich wesentlich mehr Formeln.

Aber es ist einfacher und effizienter, sich die Formeln von hier, inklusive ihrer Herleitungen, zu merken und sich andere Resultate bei Bedarf direkt zu überlegen.

Wir betrachten *n* verschiedene Objekte und die folgenden Fragen:

1. Auf wie viele Arten kann man diese n Objekte (z.B. nebeneinander) anordnen?

Diese Anzahl heisst die Anzahl der *Permutationen (ohne Wiederholung) von n Elementen* und ist

$$n! = n \cdot (n-1) \cdot (n-2) \cdot \ldots \cdot 2 \cdot 1$$
.

Das Argument für die Herleitung geht so:

- Das erste Objekt in der Anordnung kann man beliebig aus den insgesamt *n* wählen. Es gibt dafür also *n* Möglichkeiten.
- Das zweite Objekt kann man aus den noch verbleibenden n-1 Objekten wählen, also gibt es dafür noch n-1 Möglichkeiten.
- ightharpoonup Jede dieser n-1 Möglichkeiten kann man mit jeder der n Möglichkeiten für das erste Objekt kreuzen, so dass insgesamt n(n-1) Möglichkeiten für die ersten zwei Plätze entstehen.
- \triangleright Für das dritte Objekt hat man noch n-2 zur Auswahl, und so weiter. Das letzte (n-te) Objekt kann man nur noch auf eine Art wählen, weil nur noch eines da ist, und auf diese Art erhält man die Formel.

2. Auf wie viele Arten kann man $k \le n$ aus den n Objekten ohne Zurücklegen auswählen?

Diese Anzahl heisst die Anzahl der Kombinationen (ohne Wiederholung) und ist gegeben durch

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}.$$

Kombinatorik kurz und knapp: Kombinationen

Diese Formel wird sehr oft gebraucht. Ihre Herleitung geht wie folgt.

- ▶ Für die Auswahl des ersten Objektes stehen uns noch alle n zur Verfügung.
- Das zweite Objekt müssen wir dann aus den restlichen n-1 auswählen.
- Das dritte wählen wir aus den verbleibenden n-2, und so weiter, bis wir das k-te Objekt aus den restlichen n-(k-1)=n-k+1 Objekten auswählen müssen.
- ▷ Also können wir auf diesem Weg

$$n\cdot (n-1)\cdot \ldots \cdot (n-k+1) = \frac{n!}{(n-k)!}$$

Sequenzen der Länge k bilden.

- Nun interessieren wir uns aber nicht für die Reihenfolge, in der die Objekte gezogen worden sind. Wir identifizieren also alle Sequenzen, die durch reines Vertauschen der Reihenfolge ineinander überführt werden können.
- Nach Punkt 1. können die k gezogenen Objekte auf k! Arten angeordnet werden. Jede Menge von k Objekten erzeugt also die (k!)-fache Anzahl von Anordnungen, die wir miteinander identifizieren.
- Somit erhalten wir die gesuchte Anzahl, indem wir den obigen Wert noch durch *k*! dividieren.

Kombinatorik kurz und knapp: Variationen

3. Wie viele Sequenzen der Länge m kann man mit den n Elementen bilden?

Diese Anzahl heisst die Anzahl der Variationen (mit Wiederholung) und ist gegeben durch

 n^m .

Das ist ganz einfach herzuleiten.

- ▷ Für jeden der m Plätze in der Sequenz hat man jedes der n Elemente zur Verfügung (da man ja wiederholen darf), also jeweils n Möglichkeiten für jeden Platz, die man mit jeder Möglichkeit für die anderen Plätze kreuzen kann.
- Also gibt es $\underbrace{n \cdot n \cdot \ldots \cdot n}_{m \text{ Mal}} = n^m$ Möglichkeiten, eine Sequenz zu bilden.

Tabellen

Tabellen: Standard-Normalverteilung

z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
8.0	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767

Tabelle 1: Tabelle der Standard-Normalverteilungsfunktion $\Phi(z) = \mathbb{P}[Z \leq z]$ mit $Z \sim \mathcal{N}(0,1)$.

Tabellen: Chiquadrat-Verteilung

	p = 0.90	p = 0.95	p = 0.975	p = 0.999	p = 0.9995
v = 1	2.7055	3.8415	5.0239	10.8276	12.1157
v = 2	4.6052	5.9915	7.3778	13.8155	15.2018
v = 3	6.2514	7.8147	9.3484	16.2662	17.7300
v = 4	7.7794	9.4877	11.1433	18.4668	19.9974
v = 5	9.2364	11.0705	12.8325	20.5150	22.1053
v = 6	10.6446	12.5916	14.4494	22.4577	24.1028
v = 7	12.0170	14.0671	16.0128	24.3219	26.0178
v = 8	13.3616	15.5073	17.5345	26.1245	27.8680
v = 9	14.6837	16.9190	19.0228	27.8772	29.6658
v = 10	15.9872	18.3070	20.4832	29.5883	31.4198
v = 11	17.2750	19.6751	21.9200	31.2641	33.1366
v = 12	18.5493	21.0261	23.3367	32.9095	34.8213

Tabelle 2: Tabelle ausgewählter Quantile $\chi^2_{v,1-\alpha}$ der Chiquadrat-Verteilung. In der Tabelle ist $p=1-\alpha$.

Tabellen: t-Verteilung I

n l	t _{0.60}	t _{0.70}	t _{0.80}	t _{0.90}	t _{0.95}	t _{0.975}	t _{0.99}	t _{0.995}
1	0.325	0.727	1.376	3.078	6.314	12.706	31.821	63.657
2	0.323	0.727	1.061	1.886	2.920	4.303	6.965	9.925
3	0.239	0.584	0.978	1.638	2.353	3.182	4.541	5.841
4			0.941					
	0.271	0.569		1.533	2.132	2.776	3.747	4.604
5	0.267	0.559	0.920	1.476	2.015	2.571	3.365	4.032
6	0.265	0.553	0.906	1.440	1.943	2.447	3.143	3.707
7	0.263	0.549	0.896	1.415	1.895	2.365	2.998	3.499
8	0.262	0.546	0.889	1.397	1.860	2.306	2.896	3.355
9	0.261	0.543	0.883	1.383	1.833	2.262	2.821	3.250
10	0.260	0.542	0.879	1.372	1.812	2.228	2.764	3.169
11	0.260	0.540	0.876	1.363	1.796	2.201	2.718	3.106
12	0.259	0.539	0.873	1.356	1.782	2.179	2.681	3.055
13	0.259	0.538	0.870	1.350	1.771	2.160	2.650	3.012
14	0.258	0.537	0.868	1.345	1.761	2.145	2.624	2.977
15	0.258	0.536	0.866	1.341	1.753	2.131	2.602	2.947
16	0.258	0.535	0.865	1.337	1.746	2.120	2.583	2.921
17	0.257	0.534	0.863	1.333	1.740	2.110	2.567	2.898
18	0.257	0.534	0.862	1.330	1.734	2.101	2.552	2.878
19	0.257	0.533	0.861	1.328	1.729	2.093	2.539	2.861
20	0.257	0.533	0.860	1.325	1.725	2.086	2.528	2.845
20	0.231	0.333	0.000	1.323	1.723	2.000	2.320	2.043
:				:				
.				•				

487/489

n	t _{0.60}	t _{0.70}	t _{0.80}	t _{0.90}	t _{0.95}	t _{0.975}	t _{0.99}	t _{0.995}
:				:				
21	0.257	0.532	0.859	1.323	1.721	2.080	2.518	2.831
22	0.256	0.532	0.858	1.321	1.717	2.074	2.508	2.819
23	0.256	0.532	0.858	1.319	1.714	2.069	2.500	2.807
24	0.256	0.531	0.857	1.318	1.711	2.064	2.492	2.797
25	0.256	0.531	0.856	1.316	1.708	2.060	2.485	2.787
26	0.256	0.531	0.856	1.315	1.706	2.056	2.479	2.779
27	0.256	0.531	0.855	1.314	1.703	2.052	2.473	2.771
28	0.256	0.530	0.855	1.313	1.701	2.048	2.467	2.763
29	0.256	0.530	0.854	1.311	1.699	2.045	2.462	2.756
30	0.256	0.530	0.854	1.310	1.697	2.042	2.457	2.750
31	0.255	0.530	0.853	1.309	1.696	2.040	2.452	2.744
32	0.255	0.530	0.853	1.309	1.694	2.037	2.449	2.738
33	0.255	0.530	0.853	1.308	1.693	2.035	2.445	2.733
34	0.255	0.529	0.852	1.307	1.691	2.032	2.441	2.728
35	0.255	0.529	0.852	1.306	1.690	2.030	2.438	2.724
40	0.255	0.529	0.851	1.303	1.684	2.021	2.423	2.704
60	0.254	0.527	0.848	1.296	1.671	2.000	2.390	2.660
120	0.254	0.526	0.845	1.289	1.658	1.980	2.358	2.617
∞	0.253	0.524	0.842	1.282	1.645	1.960	2.326	2.576

Tabelle 3: Tabelle ausgewählte Quantile $t_{n,1-\alpha}$ der t-Verteilung. Für $n=\infty$ erhält man die Quantile $z_{1-\alpha}$ der Standard-Normalverteilung.

Tabellen: Binomialkoeffizienten

$n \setminus k$	Ιo	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
1	1	1														
2	1	2	1													
3	1	3	3	1												
4	1	4	6	4	1											
5	1	5	10	10	5	1										
6	1	6	15	20	15	6	1									
7	1	7	21	35	35	21	7	1								
8	1	8	28	56	70	56	28	8	1							
9	1	9	36	84	126	126	84	36	9	1						
10	1	10	45	120	210	252	210	120	45	10	1					
11	1	11	55	165	330	462	462	330	165	55	11	1				
12	1	12	66	220	495	792	924	792	495	220	66	12	1			
13	1	13	78	286	715	1287	1716	1716	1287	715	286	78	13	1		
14	1	14	91	364	1001	2002	3003	3432	3003	2002	1001	364	91	14	1	
15	1	15	105	455	1365	3003	5005	6435	6435	5005	3003	1365	455	105	15	1

Tabelle 4: Tabelle der Binomialkoeffzienten $\binom{n}{k}$ bis n=15.