Mathematical Derivations from the EISA-RIA Framework

Extracted from EISA-RIA Collaboration Papers

1 Algebraic Structure and Fundamental Definitions

1.1 The EISA Superalgebra

The framework is built upon the triple-graded superalgebra:

$$\mathcal{A}_{ ext{EISA}} = \mathcal{A}_{ ext{SM}} \otimes \mathcal{A}_{ ext{Grav}} \otimes \mathcal{A}_{ ext{Vac}}$$

where the tensor product is defined over the representation spaces. The full Hilbert space is:

$$\mathcal{H} = \mathcal{H}_{\mathrm{SM}} \otimes \mathcal{H}_{\mathrm{Grav}} \otimes \mathcal{H}_{\mathrm{Vac}}$$

1.2 Vacuum Sector Generators

The vacuum sector is generated by 16 anticommuting operators:

$$\{\zeta^k, \zeta^l\} = 2\delta^{kl}I, \quad k, l = 1, \dots, 16$$

From these, a composite scalar field emerges:

$$\phi \sim \text{Tr}(\zeta^{\dagger}\zeta)$$

The vacuum density matrix is defined as:

$$\rho_{\text{vac}} = \frac{\exp(-\beta \sum_{k} \zeta^{k} \zeta^{k\dagger})}{Z}, \quad Z = \text{Tr}\left[\exp\left(-\beta \sum_{k} \zeta^{k} \zeta^{k\dagger}\right)\right]$$

1.3 Super-Jacobi Identity

Mathematical consistency is ensured by the graded Super-Jacobi identity:

$$(-1)^{|X||Z|}[X,[Y,Z]] + (-1)^{|Y||X|}[Y,[Z,X]] + (-1)^{|Z||Y|}[Z,[X,Y]] = 0$$

for all generators X, Y, Z with grades |X|, |Y|, |Z|.

2 Recursive Info-Algebra (RIA) and Entropy Minimization

2.1 Loss Function

The core of the RIA mechanism is the minimization of the composite loss function:

$$\mathcal{L} = S_{\text{vN}}(\rho) + (1 - F(\rho, \rho_{\text{target}})) + \frac{1}{2}(1 - \text{Tr}(\rho^2))$$

where:

- $S_{\rm vN}(\rho) = -\operatorname{Tr}(\rho\log\rho)$ is the von Neumann entropy
- $F(\rho, \sigma) = \left[\text{Tr} \sqrt{\sqrt{\rho} \sigma \sqrt{\rho}} \right]^2$ is the fidelity
- The purity term $\frac{1}{2}(1-\text{Tr}(\rho^2))$ penalizes mixed states.

2.2 Variational Quantum Circuit (VQC) Ansatz

Optimization is performed using a classically simulated VQC with a layered structure:

$$U(\vec{\theta}, \vec{\phi}) = \prod_{l=1}^{N_{\text{layers}}} \left[\bigotimes_{q=1}^{d/2} U_{\text{RX}}^{(q)}(\theta_{l,q}) U_{\text{RY}}^{(q)}(\phi_{l,q}) \right] \cdot U_{\text{ENT}}$$

where $U_{\rm RX/RY}$ are single-qubit rotations and $U_{\rm ENT}$ provides entanglement.

3 Modified Dirac Equation and Fermion Mass Generation

3.1 Origin of the Scalar Coupling

A Yukawa-like coupling emerges from integrating out high-energy modes via the Operator Product Expansion (OPE):

$$(\bar{\psi}\psi)(\zeta^{\dagger}\zeta) \to \kappa(\bar{\psi}\psi)|\phi|^2$$

Dimensional analysis confirms $[\kappa] = [\text{mass}]^{-1}$. The matching condition gives:

$$\kappa \approx \frac{g^2}{\Lambda^2}$$

3.2 Modified Dirac Equation

The equation for a fermion field ψ becomes:

$$(iD - m - \kappa |\phi|^2)\psi = 0$$

This increases the effective mass:

$$m_{\rm eff} = m + \kappa \langle |\phi|^2 \rangle$$

3.3 Sourcing Spacetime Curvature

The scalar field ϕ sources curvature through its energy-momentum tensor. Under the approximation of slow variation ($|\partial_{\mu}\phi| \ll m_{\phi}|\phi|$) and dominance of vacuum energy, the trace-reversed Einstein equations yield:

$$R \approx \kappa^2 |\phi|^2$$

A more complete derivation including a non-minimal coupling term $-\frac{1}{2}\xi R|\phi|^2$ in the action gives:

 $\xi = \frac{\kappa^2}{16\pi G}$

4 Gravitational Wave Background from Vacuum Fluctuations

4.1 Evolution of the Scalar Field

The dynamics of the composite scalar field ϕ are governed by:

$$\frac{\partial \phi}{\partial t} = \mathcal{D}[\phi] + \alpha \left(\int |\phi|^2 d^3x \right) \cdot \left(1 + \beta \ln(|\phi|^2 + \epsilon) \right) + \kappa \nabla^2 \phi$$

where $\mathcal{D}[\phi]$ represents dissipative terms.

4.2 Gravitational Wave Spectrum

The resulting stochastic GW background spectrum is given by:

$$\frac{d\Omega_{\rm GW}(f)}{d\ln f} = \frac{1}{\rho_c} \left(\frac{f}{f_{\rm ref}}\right)^{n_t} \int d\tau \, a^4(\tau) \langle \delta T_{ij} \delta T^{ij} \rangle$$

where:

$$ho_c = rac{3H_0^2}{8\pi G}$$
 (critical density)
 $f_{
m ref} \sim 10^{-8} \, {
m Hz}$ (reference frequency)
 $n_t \approx 0$ (tilt)

The stress-energy tensor correlation $\langle \delta T_{ij} \delta T^{ij} \rangle$ is sourced by vacuum fluctuations.

4.3 Characteristic Strain

The characteristic strain for PTA observations is:

$$h_c(f) = A \left(\frac{f}{f_{\text{ref}}}\right)^{\frac{3-n_t}{2}}$$

with an amplitude:

$$A \approx \sqrt{\frac{2}{3\pi^2} \frac{\Omega_{\rm GW} h^2}{H_0^2}} f_{\rm ref}^2 \sim 10^{-15}$$

for $\Omega_{\rm GW} h^2 \approx 10^{-10}$.

5 Cosmological Evolution and Hubble Tension

5.1 Modified Friedmann Equation

The cosmic evolution includes a transient vacuum energy component $\Omega_v(\tau)$:

$$\left(\frac{da}{d\tau}\right)^2 = a^2 \left(\frac{\Omega_m}{a^3} + \frac{\Omega_r}{a^4} + \Omega_\Lambda + \Omega_v(\tau) + \delta(\tau)\right)$$

A common parameterization is:

$$\Omega_v(\tau) = A_v \exp(-\tau/\tau_{\text{decay}})$$

5.2 Resolution of the Hubble Tension

The model adds a correction to the Hubble parameter:

$$\Delta H^2 \approx \frac{8\pi G}{3} \langle T_{\mu\nu} \rangle g^{\mu\nu} \sim \frac{\kappa^2 \langle |\phi|^2 \rangle}{\Lambda^2}$$

Numerically, this yields:

$$\Delta H \approx 3 \, \text{km/s/Mpc}$$

leading to a revised Hubble constant:

$$H_0^{\rm EISA} \approx \sqrt{(67.4)^2 + (3)^2} \approx 70 \pm 1 \, {\rm km/s/Mpc}$$

which alleviates the tension between Planck and SH0ES measurements.

6 CMB Power Spectrum Modifications

6.1 Angular Power Spectrum

The CMB temperature anisotropy power spectrum is:

$$D_{\ell} = \frac{\ell(\ell+1)}{2\pi} C_{\ell}, \quad C_{\ell} = \frac{2}{\pi} \int_{0}^{\infty} dk \, k^{2} P(k) |\Theta_{\ell}(k)|^{2}$$

The transfer function is approximated by:

$$\Theta_{\ell}(k) \propto \int d\tau \, a(\tau)^2 \Omega_v(\tau) j_{\ell}(k\tau)$$

6.2 Vacuum Contribution to Primordial Power Spectrum

Vacuum fluctuations from \mathcal{A}_{Vac} modify the primordial power spectrum:

$$P(k) \sim k^{n_s - 1} + \Delta P(k), \quad \Delta P(k) \sim \frac{\kappa^2 \langle |\phi|^2 \rangle}{k\Lambda^2}$$

The relative deviation is:

$$\frac{\Delta P(k)}{P(k)} \sim 10^{-7}$$
 at $k \sim 0.01 \, {\rm Mpc}^{-1}$

This translates to a deviation in the angular power spectrum:

$$\frac{\Delta C_{\ell}}{C_{\ell}} \sim 10^{-7}$$
 at low multipoles (ℓ)

7 Renormalization Group Flow and Asymptotic Safety

7.1 Beta Functions

The RG flow of the Yukawa-like coupling g is given by:

$$\beta(g) = \mu \frac{dg}{d\mu} = -\frac{bg^3}{16\pi^2}$$

The coefficient b=7 is derived from the group theory of \mathcal{A}_{EISA} :

$$b = \frac{11}{3}C_G - \frac{2}{3}\sum_f T(R_f) - \frac{1}{6}\sum_s T(R_s)$$

Contributions come from:

$$b_{\rm SM} \approx 8.35$$

 $\Delta b_{\rm Grav} \sim -0.35$
 $\Delta b_{\rm Vac} \sim -1.0$
 $\Rightarrow b = 8.35 - 0.35 - 1.0 = 7$

7.2 Extended System and UV Fixed Point

The system is extended to include couplings $g_i = \{g, \kappa, \lambda, \xi\}$. Their one-loop beta functions are:

$$\beta(g) = -\frac{7g^3}{16\pi^2} + \frac{32g\lambda}{16\pi^2} + \frac{g\xi\kappa^2}{32\pi^2}$$

$$\beta(G') = 2G' + \frac{20G'^2}{16\pi^2} + \frac{G'g^2\Lambda^2}{16\pi^2}, \quad G' = \kappa^2\mu^2$$

$$\beta(\lambda) = \frac{10\lambda^2 + 2\lambda g^2 + 4g^4}{16\pi^2} + \frac{\xi^2\mu^2}{16\pi^2}$$

$$\beta(\xi) = \frac{5\xi\lambda + 3\xi g^2}{16\pi^2} + \frac{\xi^2}{16\pi^2}$$

This system exhibits a UV fixed point at:

$$g^* \approx 0.04$$
, $G'^* \approx 0.28$, $\lambda^* \approx 0.018$, $\xi^* \approx 0.009$

The negative eigenvalues of the stability matrix $M_{ij} = \partial \beta(g_i)/\partial g_j|_{g_i^*}$ indicate UV attractiveness.

8 LHC Phenomenology: $t\bar{t}$ Production Anomaly

8.1 Effective Operator

A dimension-6 operator contributes to $t\bar{t}$ production:

$$\mathcal{O}_6 = \frac{c_6}{\Lambda^2} (\bar{t} \gamma^\mu t) (\partial_\mu \phi)$$

The Wilson coefficient is estimated as:

$$c_6 = \frac{g^2}{16\pi^2} \int \frac{d^4k}{(2\pi)^4} \frac{1}{(k^2 - m_\phi^2)(k^2 - m_t^2)} \approx 0.1$$

8.2 Cross-Section Enhancement

The EISA-RIA amplitude adds to the SM amplitude:

$$\mathcal{A}_{\mathrm{EISA}} pprox rac{c_6}{\Lambda^2} \langle \partial_{\mu} \phi \rangle (\bar{t} \gamma^{\mu} t), \quad \langle \partial_{\mu} \phi \rangle \sim rac{\kappa \langle |\phi|^2 \rangle}{\Lambda}$$

This leads to a relative enhancement in the cross-section:

$$\frac{\Delta\sigma}{\sigma_{\rm SM}} \approx \frac{2c_6\kappa\langle|\phi|^2\rangle}{g_s^2\Lambda} \approx 0.15$$

Thus:

$$\sigma_{\rm EISA}/\sigma_{\rm SM} \approx 1.15$$

This corresponds to a $\sim 7.5\sigma$ significance against NRQCD predictions at $m_{tt} \approx 345$ GeV.