IDENTIFY CRITICAL PATIENTS PREDICTION MODEL

PREPARED BY:

- Darshan Jayantbhai Bhatt
- Harsh Chaudhary
- Mohini Pujari
- Pranit Jadhav
- Sujitha L

BUSINESS PROBLEMS

TECHNOLOGICAL PROBLEM

- 1.DEVELOP AND VALIDATE A PREDICTION MODEL
- 2.CONTAINS INFORMATION ABOUT ADMITTED PATEINTS.
- 3.FOR THE VARIOUS PURPOSES SUCH AS LEARNING, RESEARCH AND APPLICATION
- 4. PREDICTING PATEINT CONDITION BASED ON FACTORS RECORDED DURING HOSPITALIZATION .
 BY ANALYSUIING DATR WE CAN UNDERSTAND WHERE SPEACIAL ATTENTION IS NEEDED

DEVELOPING A MACHINE LEARNING MODEL TO PREDICT PATEINT SURVIVAL INVOLVES VARIOUS DATA SOURCES, INCLUDING ELECTRONIC HEALTH RECORDS, MEDICAL HISTORY, DIAGNOSTIC TESTS AND TREATMENT INFORMATION. THE CHALLENGE IS TO PROCESS AND ANALYZE THIS VAST AND COMPLEX DATASET TO BUILD AN ACCURATE PREDICTIVE MODEL

IMPORTANCE

Reduced Healthcare Costs
Medical Research
Reduced Healthcare Costs
Challenges in Healthcare
Ilmproved Patient Care

VALUE ADDITION

Data-Driven Healthcare
Resource Optimization
Interdisciplinary Collaboration
Continous Monitoring

SUGGESTED SOLUTION

Resource Optimization: Hospitals often face resource constraints, such as a limited number of intensive care unit (ICU) beds or specialized medical staff. Predictive models can help allocate these resources effectively, reducing strain on healthcare facilities.

Data-Driven Healthcare: The healthcare industry is increasingly adopting data-driven approaches to enhance patient care. Developing predictive models for patient conditions is in line with this trend, promoting more efficient and effective healthcare delivery.

Identifying Critical Patients dataset is collected. From hospitals across U.S regarding patients admitted for various reasons.

EDA DONE IS -

```
Remove id columns and unnamed column
   df.shape
                                            df.drop('Unnamed: 83',axis=1,inplace=True)
   (91713, 84)
                                                                   df.isnull().sum().sum
dtypes: float64(70), int64(7), object(7)
memory usage: 58.8+ MB
                                                                   196333
                                                      df.describe()
 df cat=df.select dtypes(include=object)
  df cat.columns
  df_num_only.fillna(df_num_only.median(),inplace=True,axis=0)
  df num only.isnull().sum()
```

:	df_num_only.fillna(df_num_only.median(),inplace=True,axis=0)
	<pre>df_num_only.isnull().sum()</pre>

	encounter_id	patient_id	hospital_id	age	bmi	elective_surgery	height	icu_id	pre_icu_los_days	weight
count	91713.000000	91713.000000	91713.000000	91713.000000	91713.000000	91713.000000	91713.000000	91713.000000	91713.000000	91713.000000
mean	65606.079280	65537.131464	105.669262	62.435881	29.101322	0.183736	169.648256	508.357692	0.841238	83.848824
std	37795.088538	37811.252183	62.854406	16.387168	8.002081	0.387271	10.716719	228.989661	2.481865	24.000953
min	1.000000	1.000000	2.000000	18.000000	14.844926	0.000000	137.200000	82.000000	0.000000	45.000000
25%	32852.000000	32830.000000	47.000000	53.000000	23.787760	0.000000	162.560000	369.000000	0.035417	67.300000
50%	65665.000000	65413.000000	109.000000	65.000000	27.654655	0.000000	170.100000	504.000000	0.138889	80.300000
75%	98342.000000	98298.000000	161.000000	75.000000	32.653061	0.000000	177.800000	679.000000	0.409028	96.300000
max	131051.000000	131051.000000	204.000000	89.000000	63.000000	1.000000	195.590000	927.000000	159.090972	167.000000

- correlation between numeric columns
- heat map of numeric columns
- Bivariate analysis boxplot for categorical variables and target column
- Check outliers in the numerical column
- box plot of categorical columns for checking outliers
- Univariate analysis Histogram plots
- Findings -
- High correlation between noninvasive and invasive measurements of blood pressure. With correlation coefficient bet 0.7 and 0.9.
- eg 1.)d1_diasbp_min and d1_diasbp_max are correlated with d1_diasbp_noninvasive_min and d1 diasbp_noninvasive max with correlation coefficient as 1.
- 2.) d1_mbp max highly correlated with d1_mbp_noninvasive_max
 with correlation coefficient as 0.98. Similarly d1_mbp min highly correlated
 with d1 mbp noninvasive min with correlation coefficient as 1.

CHALLENGES

- apache_4a_icu_death_prob, apache_4a_hospital_death_prob, and pre_icu_los_days had negative values values, so we removed those rows.
- Unnamed: 83 columns was a redundant columns with 100% null values, so we dropped that column.
- Out of all numerical columns none of them are normally distributed.
- Many of the columns show huge spike at one place eg age column indicate 65 as highest number of population
- Data imbalance in the dataset

Hypothesis testing

performing chi-continegency test on age and target variable

```
Chi-square statistic: 1203.131695692268
P-value: 4.3986226670688454e-204
There is significant association between 'age ' and 'hospital_death'
```

performing chi-continegency test on gender and target variable

```
Chi-square statistic: 4.205486236689309
P-value: 0.040293421082557034
There is significant association between 'gender' and 'hospital_death'
```

performing chi-continegency test on bmi and target variable

```
Chi-square statistic: 35221.10746789586
P-value: 0.10323036630688469
There is significant association between 'bmi ' and 'hospital_death'
```

performing chi-continegency test on ethinicity and all the disease variable

```
Chi-square statistic for 'ethnicity' and 'aids': 57.197820387430525
P-value: 4.603756741047879e-11
There is significant association between 'ethnicity' and 'aids'
Chi-square statistic for 'ethnicity' and 'cirrhosis': 286.76088200110155
P-value: 7.019396933504672e-60
There is significant association between 'ethnicity' and 'cirrhosis'
Chi-square statistic for 'ethnicity' and 'diabetes mellitus': 244.8298824906402
P-value: 7.067935701744601e-51
There is significant association between 'ethnicity' and 'diabetes mellitus'
Chi-square statistic for 'ethnicity' and 'hepatic failure': 234.32186334813406
P-value: 1.2668936853455252e-48
There is significant association between 'ethnicity' and 'hepatic failure'
Chi-square statistic for 'ethnicity' and 'immunosuppression': 12.25661629339409
P-value: 0.03143580136822404
There is significant association between 'ethnicity' and 'immunosuppression'
Chi-square statistic for 'ethnicity' and 'leukemia': 6.4632513452456175
P-value: 0.263714113944348
There is no significant association between 'ethnicity' and 'leukemia'
Chi-square statistic for 'ethnicity' and 'lymphoma': 17.40054942884735
P-value: 0.0037995751257215216
There is significant association between 'ethnicity' and 'lymphoma'
Chi-square statistic for 'ethnicity' and 'solid tumor with metastasis': 24.10924158091857
P-value: 0.00020686537511766326
There is significant association between 'ethnicity' and 'solid tumor with metastasis'
```

Algorithms

- Logisitic regression -
- Naïve bais -
- K nearest neighbour

	precision	recall	f1-score	support
9	0.92	1.00	0.96	32373
1	0.62	0.05	0.09	3067
accuracy			0.92	35440
macro avg	0.77	0.52	0.52	35440
eighted avg	0.89	0.92	0.88	35440

class 1 has low scores because of imbalanced data.

	precision	recall	f1-score	support
9	0.95	0.88	0.92	32373
1	0.30	0.52	0.38	3067
accuracy			0.85	35440
macro avg	0.63	0.70	0.65	35440
eighted avg	0.90	0.85	0.87	35440

In [301];	# summarize t print(metrics			t(y_test,	predicted_labe	ls)) #k neares	t neighbour
		precision	recall	f1-score	support		
	0 1	0.91	0.98	0.94	32373		
	1	0.10	0.03	0.05	3067		
	accuracy			0.89	35440		
	macro avg	0.51	0.50	0.49	35440		
	weighted avg	0.84	0.89	0.87	35440		

Algorithms with scaling

- K- NEAREST NEIGBOUR WITH SCALING
- DECISION TREE
- RANDOM FOREST
- ENSEMBLE
- BAGGING

	precision	recall	f1-score	support	
0	0.93	0.99	0.96	32373	
1	0.55	0.19	0.28	3867	
accuracy			0.92	35440	
macro avg	0.74	0.59	0.62	35440	
weighted avg	0.90	8.92	0.98	35440	

recall f1-score

0.96

0.29

0.92

0.62

0.90

support

24251

2329

26580

26580

26580

In [311]: print(metrics.classification_report(y_test,y_pred)) # decision tree

0.99

0.18

0.59

0.92

print(metrics.classification_report(y_test, predicted_labels)) #k nearest ne

: # summarize the fit of the model

precision

0

1

accuracy

macro avg

weighted avg

0.93

0.69

0.81

0.91

support	f1-score	recall	precision	
24251	0.96	0.99	0.93	0
2329	0.35	0.23	0.71	1
26580	0.92			accuracy
26580	0.66	0.61	0.82	macro avg
26580	0.91	0.92	0.91	weighted avg
support	f1-score	recall	precision	
24251	0.96	0.99	0.93	9
2329	0.27	0.17	0.72	1
26580	0.92			accuracy
26580	0.62	0.58	0.82	macro avg
26580	0.90	0.92	0.91	weighted avg
support	f1-score	recall	precision	
24251	0.96	0.99	0.93	9
2329	0.30	0.19	0.71	1
26580	0.92			accuracy
26580	0.63	0.59	0.82	macro avg
26580	0.90	0.92	0.91	weighted avg
support	f1-score	recall	precision	
24251	0.96	0.99	0.93	9
2329	0.29	0.18	0.69	1
26580	0.92			accuracy
26580	0.62	0.59	0.81	macro avg
26580	0.90	0.92	0.91	weighted avg
support	f1-score	recall	precision	
24251	0.94	0.98	0.91	9
27232				

BOOSTING

In [330]:	print(metrics	.classificat	ion_repor	t(y_train,	_trained_pred)) #adabo	osting
		precision	recall	f1-score	support	
	9	0.94	0.99	0.96	56692	
	1	0.67	0.30	0.42	5326	
	accuracy			0.93	62018	
	macro avg	0.80	9.64	0.69	62018	
	weighted avg	0.91	0.93	0.91	62018	
In [332]:	print(metrics	.classificat	ion_repor	t(y_test,y	test_pred)) Wadaboosti	ng
In [332]:	print(metrics	classificat precision		t(y_test,y f1-score	test_pred)) Wadaboost(support	ng
In [332]:				f1-score		ng
In [332]:		precision	recall	f1-score 0.96	support	ng
In [332]:		precision 0.94	recall 0.99	f1-score 0.96	support 24251	ng
In [332]:	e 1	precision 0.94	recall 0.99	f1-score 0.96 0.40 0.92	support 24251 2329	ng

•	GRAI	JIENIT	$R \cap C$	NITZ	\Box

ADA-BOOSTING

		precision	recall	f1-score	support	
	0	0.94	0.99	0.96	24251	
	0	0.68	0.29	0.41	2329	
	accuracy			0.93	26580	
	macro avg	0.81	0.64	0.68	26580	
	weighted avg	0.91	0.93	0.91	26580	
n [322]:	y_train_pred=	gb_model.pre	dict(X_tr	ain)		
SELECTION OF THE PERSON OF THE				1274.6	_train_pred)) #gr	adient boosting tr
anners and I			ion_repor	1274.6		adient boosting tr
erasmas [print(metrics	.classificat	ion_repor	t(y_train,) f1-score		adient boosting tr
erases p		.classificat	ion_repor	t(y_train,) f1-score 0.96	support	adient boosting tr
anners and I	print(metrics	.classificat precision 0.94	ion_repor recall 0.99	t(y_train,) f1-score 0.96	support 56692	adient boosting tr
erasanas p	print(metrics 0 1	precision 0.94 0.75	ion_repor recall 0.99	t(y_train,) f1-score 0.96 0.46 0.93	support 56692 5326	adient boosting tr

BALANCING DONE

- LOGISTIC REGRESSION
- RANDOM FOREST
- ENSEMBLE
- BAGGING
- DECISION TREE
- K-NEARST NEIOGBOUR

		% B	(202)	25	8			
	pr	ecision	recall	f1-score	support			
	0	0.91	1.00	0.95	24251			
	1	0.66	0.01	0.03	2329			
accui	racy			0.91	26580			
macro	(1000)	0.79	0.51	0.49	26580	y_predict	=clf.predict	(X_test)
weighted	avg	0.89	0.91	0.87	26580	print(met	rics.classif	ication_re
							precision	recall
						9	0.93	0.99
						1	0.71	0.23
						accuracy		
						macro avg	0.82	0.61
						weighted avg	0.91	0.92
							precision	recall
						9	0.93	0.99
						1	0.73	0.18
						accuracy		
						macro avg	0.83	0.58
		1 233576	4	240 BOARDE	2	weighted avg	0.91	0.92
P	recision	recall	11-500	re suppor			precision	recall

24251

2329

26580

26580

26580

0.91

0.50

macro ave

weighted avg

0.98

0.89

	precision	recall	f1-score	support
9	0.93	0.99	0.96	24251
1	0.71	0.23	0.35	2329
accuracy			0.92	26580
macro avg	0.82	0.61	0.66	26580
weighted avg	0.91	0.92	0.91	26580
	precision	recall	f1-score	support
9	0.93	0.99	0.96	24251
1	0.73	0.18	0.28	2329
accuracy			0.92	26580
macro avg	0.83	0.58	0.62	26580
weighted avg	0.91	0.92	0.90	26580
	precision	recall	f1-score	support
0	0.93	0.99	0.96	24251
1	0.71	0.21	0.32	2329
accuracy			0.92	26580
macro avg	0.82	0.60	0.64	26580
weighted avg	0.91	0.92	0.90	26580
	precision	recall	f1-score	support
9	0.94	0.99	0.96	24251
1	0.68	0.29	0.41	2329
accuracy			0.93	26580
macro avg	0.81	0.64	0.68	26580
weighted avg	0.91	0.93	0.91	26580

PARAMETER TUNNING

RANDOM FOREST

In [347]:	print(metrics	.classificat	ion_repor	t(y_test,y	_pred))	#best model	after	parameter	tuning	Random	forest.
	71:	precision	recall	f1-score	support	<u> </u>					
	0	0.93	0.99	0.96	24251	Ê					
	1	0.72	0.24	0.37	2329	į.					
	accuracy			0.93	26580	3					
	macro avg	0.83	0.62	0.66	26586	3.					
	weighted ave	0.91	0.93	0.91	26580	4					

- SUNCE THE DATA IS IMBALANCED. HENCE IT IS NOT GET GOOD PRECISION AND RECALL SCORE FOR TARGET CLASS.
- BALANCING WE PERFORM SMOTE
 BALANCING PERCISION OF THE TARGET CLASS
 IMPROVED BUT THE RECALL SCORE IS LOW.
- WE ALSO PERFORMED PARAMETER
 TUNNUNING AND USING RANDOM FOREST
 MODEL WE GOT GOOD PRECSION AND
 RECALL SCORE.