Vehicle Detection System Overview

Automated detection technology for efficient traffic management in urban areas

Key Features of the Vehicle Detection System

This section outlines the main features provided

Detection Capabilities of the System

Automated detection of cars and trucks

Traffic Adaptations for Various Conditions

Handles auto-rickshaws and SUVs smoothly

System Architecture Overview

This section provides a comprehensive flowchart illustrating the vehicle detection process from input to output using YOLOv8 technology.

Input → YOLOv8 → Output

The system receives raw traffic images as input, which are processed through the YOLOv8 algorithm to identify and detect various vehicles.

Icon Descriptions

• main.py: The core script driving the system's functionality.

Specs

The system specifications include YOLOv81 model processing at 15 FPS with a remarkable 92% accuracy in detecting cars.

In the Model Configuration, we define the vehicle_classes dictionary, which plays a crucial role in identifying different vehicle types.

Notably, we skip buses to focus on more prevalent vehicles in our dataset.

Additionally, a 0.3 confidence threshold significantly boosts motorcycle detection accuracy by 18%, enhancing overall system reliability in Indian traffic conditions.

Precision Rates of Vehicle Detection by Class

The bar chart illustrates the **precision**rates achieved for cars and bikes,
highlighting that cars have a precision of
92% while bikes have 85%. This data
emphasizes the system's effectiveness in
detecting various vehicle types.

Challenges in Vehicle Detection Systems

This comparison highlights key issues affecting detection accuracy.

Blurry images due to occlusion and low lighting Both experience misclassification and reduced detection rates

Auto-rickshaws frequently misidentified as cars or bikes

Future Developments

Custom Dataset

The **custom dataset** will enhance detection accuracy by including diverse traffic scenarios specific to Indian roads, making the model more resilient to variations in vehicle types and appearances.

Web Interface

A user-friendly web
interface will be
developed to allow
stakeholders to interact
with the system,
visualize data, and
access reports,
improving the overall
user experience and
accessibility.

Real-Time Analytics

The implementation of real-time analytics will enable immediate feedback on vehicle detection performance, allowing for swift adjustments and improvements in operational efficiency based on live data.

Future Enhancements

continued future
enhancements will
focus on refining
detection capabilities
and expanding the
system's features,
ensuring it remains
cutting-edge and
meets evolving urban
traffic management
needs.

Thank you for your attention!

