Práctica 4. Resolución de ecuaciones

Matemáticas 2. Ingeniería Informática

- Introducción
- 2 Bisección
- Secante
- 4 Regula Falsi
- Series de Taylor
- 6 Método de Newton
- Ejercicios

Justificación

Dada una función f(x) el problema es **encontrar un valor** x_0 tal que $f(x_0) = 0$

Es interesante para

- Resolver problemas de optimización: Generalmente, se formulan tal que f'(x) = 0 (encontrar puntos críticos)
- Factorización de integrales: Dada una integral racional, descomponer el denominador en factores

$$\int \frac{a_0 x^m + a_1 x^{m-1} + \ldots + a_m}{b_0 x^n + b_1 x^{n-1} + \ldots + b_n} dx$$

• Valores propios de matrices: Dada la ecuación característica $q(\lambda) = |\mathbf{A} - \lambda \mathbf{I}|$, los valores propios reales λ de la matriz \mathbf{A} son las raíces reales de la citada ecuación.

Ejemplo

Encontrar un
$$x_0$$
 tal que $f(x_0) = 0$ para $f(x) = x^2 - \sin(x) - 0.5$

$$>>$$
 syms x ;

$$>> f(x) = x.^2 - \sin(x) - 0.5$$

Según el **Teorema de Bolzano**

Si
$$f(x)$$
 es continua en $[a,b]$ y $f(a)f(b) < 0$, entonces existe al menos un punto $c \in [a,b]$ tal que $f(c) = 0$

Ejemplo

Encontrar un x_0 tal que $f(x_0) = 0$ para $f(x) = x^2 - sin(x) - 0.5$

Ejemplo

Encontrar un x_0 tal que $f(x_0) = 0$ para $f(x) = x^2 - \sin(x) - 0.5$ El intervalo [0, 2] es adecuado ya que contiene una de las dos raíces

Si
$$a = 0$$
 y $b = 2$ comprobamos que $f(a)f(b) < 0$
>> $a = 0$; $b = 2$
>> $sign(subs(f, a) * subs(f, b))$
 $ans = -1$

Veamos que sucede en el punto medio del intervalo

$$>> c = (a+b)/2;$$

Ejemplo

Encontrar un x_0 tal que $f(x_0) = 0$ para $f(x) = x^2 - \sin(x) - 0.5$

- ¿Qué vale f(c)? >> double(subs(f,c)) ans = -0.3415
- Entonces: f(a) = -0.5, f(c) = -0.3415 y f(b) = 2.5907
- Luego la raíz está entre c y b puesto que f(b)f(c) < 0
- Por lo tanto c sustituye a a y el **nuevo intervalo** es [a=c,b]
- Este razonamiento conduce al Método de la Bisección

Bisección

Definición

- Entrada: f(x) y [a, b]
- Encontrar $[a_i, b_i] \subset [a_{i+1}, b_{i+1}]$, con $f(a_i)f(b_i) < 0$, $\forall i$
- Algoritmo
 - **1** Sea $c_i = (a_i + b_i)/2$
 - 2 Si $f(a_i)f(c_i) < 0$, entonces $b_{i+1} = c_i$, $a_{i+1} = a_i$ en caso contrario $a_{i+1} = c_i$, $b_{i+1} = b_i$
 - Paramos si
 - $h_i = |b_i a_i|/2 < \Delta$
 - $|f(c_i)| < \epsilon$
 - i = ciento valor dado
 - **①** En caso de que no se cumpla ninguna de las condiciones de parada i = i + 1 y volver al punto 1

Es un **método cerrado**, lo que significa que la raíz está en $[a_i, b_i]$

Bisección

Para $f(x) = x^2 - \sin(x) - 0.5$ en [0, 2] se tiene f(1.1963) = -0.0015836

а	С	b	(b - a)/2
0	1	2	1
1	1.5	2	0.5
1	1.25	1.5	0.25
1	1.125	1.25	0.125
1.125	1.1875	1.25	0.0625
1.1875	1.2188	1.25	0.03125
1.1875	1.2031	1.2188	0.015625
1.1875	1.1953	1.2031	0.0078125
1.1953	1.1992	1.2031	0.0039062
1.1953	1.1973	1.1992	0.0019531
1.1953	1.1963	1.1973	0.00097656
	0 1 1 1 1.125 1.1875 1.1875 1.1875 1.1953 1.1953	0 1 1 1.5 1 1.25 1 1.125 1.125 1.1875 1.1875 1.2188 1.1875 1.2031 1.1875 1.1953 1.1953 1.1992 1.1953 1.1973	0 1 2 1 1.5 2 1 1.25 1.5 1 1.125 1.25 1.125 1.1875 1.25 1.1875 1.2188 1.25 1.1875 1.2031 1.2188 1.1875 1.1953 1.2031 1.1953 1.1992 1.2031 1.1953 1.1973 1.1992

Bisección

Para
$$f(x) = x^2 - \sin(x) - 0.5$$
 en $[-1, 0]$ se tiene $f(-0.37012) = -0.00128$

i	а	С	b	(b - a)/2
1	-1	-0.5	0	0.5
2	-0.5	-0.25	0	0.25
3	-0.5	-0.375	-0.25	0.125
4	-0.375	-0.3125	-0.25	0.0625
5	-0.375	-0.34375	-0.3125	0.03125
6	-0.375	-0.35938	-0.34375	0.015625
7	-0.375	-0.36719	-0.35938	0.0078125
8	-0.375	-0.37109	-0.36719	0.0039062
9	-0.37109	-0.36914	-0.36719	0.0019531
10	-0.37109	-0.37012	-0.36914	0.00097656

Definición

- Entrada: f(x) y [a, b]
- Encontrar $[a_i, b_i] \subset [a, b]$
- Algoritmo
 - **1** Si $|f(a_i)| > |f(b_i)|$ entonces intercambiar a_i y b_i
 - 2 Sea $c_i = a_i h_i$ donde $h_i = \frac{f(a_i)(b_i a_i)}{f(b_i) f(a_i)}$

 - Paramos si
 - $h_i < \Delta$
 - $|f(c_i)| < \epsilon$
 - *i* = ciento valor dado
 - **5** En caso de que no se cumpla ninguna de las condiciones de parada i = i + 1 y volver al punto 1

Es un **método abierto**, lo que significa que no se tiene seguridad de que la raíz está en $[a_i, b_i]$

Para $f(x) = x^2 - \sin(x) - 0.5$ en [0, 2] se tiene $f(-0.3709) = 2.119 * 10^{-5}$

i	а	b	h	С	f(c)
1	0	2	-0.3236	0.3236	-0.7133
2	0	0.3236	0.7586	-0.7586	0.7634
3	0	-0.7586	0.3002	-0.3002	-0.1141
4	-0.3002	0	0.0888	-0.3890	0.0306
5	-0.3890	-0.3002	-0.0188	-0.3702	-0.0011
6	-0.3702	-0.3890	6.4446e-04	-0.3709	2.119e-05

Para
$$f(x) = x^2 - \sin(x) - 0.5$$
 en $[-1, 0]$ se tiene $f(-0.3709) = 2.1 * 10^{-5}$

i	a	b	h	С	f(c)
1	0	-1	0.2715	-0.2715	-01581
2	-0.2715	0	0.1255	-0.3971	0.0444
3	-0.3971	-0.2715	-0.0275	-0.3695	-0.0022
4	-0.3695	-0.3971	0.0013	-0.3709	2.12e-05

En ambos casos el Método Secante converge a la misma raíz, pero en **menos iteraciones** que en el Método de la Bisección

Gráfica

Resolución
$$f(x) - x^2 - sin(x) - 0.5 = 0$$
 en $[a, b] = [0, 2]$

Gráfica

Resolución
$$f(x) - x^2 - sin(x) - 0.5 = 0$$
 en $[a, b] = [-1, 0]$

Definición

- Entrada: f(x) y [a, b].
- Encontrar $[a_i, b_i] \subset [a_{i+1}, b_{i+1}]$, con $f(a_i)f(b_i) < 0 \ \forall i$
- Algoritmo:
 - **1** Si $|f(a_i)| > |f(b_i)|$ entonces intercambiar a_i y b_i .
 - 2 Sea $c_i = a_i h_i$ donde $h_i = \frac{f(a_i)(b_i a_i)}{f(b_i) f(a_i)}$
 - 3 Si $f(a_i)f(c_i) < 0$ entonces $b_{i+1} = c_i$, $a_{i+1} = a_i$; en caso contrario $a_{i+1} = c_i$, $b_{i+1} = b_i$;
 - Paramos si
 - $h_i < \Delta$
 - $|f(c_i)| < \epsilon$
 - i = ciento valor dado.
 - **5** En caso de que no se cumpla ninguna de las condiciones de parada i = i + 1 y volver al punto 1

Es un método **cerrado**, lo que significa que la raíz está en $[a_i, b_i]$

Para
$$f(x) = x^2 - \sin(x) - 0.5$$
 en $[0, 2]$, $f(1.1958) = -5.7133 * 10^{-4}$

ı	a	b	n	С	f(c)
1	0	2	-0.3236	0.3236	-0.7133
2	0.3236	2	-0.3619	0.6855	-0.6632
3	0.6855	2	-0.2679	0.9534	-0.4064
4	0.9534	2	-0.1419	1.0953	-0.1894
5	1.0953	2	-0.0616	1.1569	-0.0771
6	1.1569	2	-0.0244	1.1813	-0.0296
7	1.1813	2	-0.0093	1.1906	-0.0112
8	1.1906	2	-0.0035	1.1940	-0.0042
10	1.1953	2	-4.8592e-04	1.1958	-5.7133e-04

f(a)

Gráfica

Encontrar
$$f(x) - x^2 - \sin(x) - 0.5 = 0$$
 en $[a, b] = [0, 2]$

Para
$$f(x) = x^2 - \sin(x) - 0.5$$
 en $[-1, 0]$, $f(-0.3707) = -3.1354 * 10^{-4}$

i	а	b	h	С	f(c)
1	0	-1	0.2715	-0.2715	-01581
2	-0.2715	-1	0.0768	-0.3483	-0.0374
3	-0.3483	-1	0.0177	-0.3660	-0.0082
4	-0.3660	-1	0.0039	-0.3698	-0.0018
5	-0.3698	-1	8.3164e-04	-0.3707	-3.1354e-04

El Método converge a la misma raíz, pero en **más iteraciones** que las obtenidas en el Método de la Secante

Gráfica

Resolución
$$f(x) - x^2 - \sin(x) - 0.5 = 0$$
 en $[a, b] = [-1, 0]$

Segundo orden en la Serie de Taylor

- **1** Sea $a = x_0$
- 2 $f(x) \approx f(a) + f'(a)(x a)$
- **3** Sea x = a h
- 5 Si x es la raíz que estamos buscando, entonces

$$f(x) = 0$$
 and $h = \frac{f(a)}{f'(a)}$

Definición

- Entrada: f(x), a_1
- Algoritmo:

2 Sea
$$c_i = a_i - h_i$$

- Paramos si
 - $h_i < \Delta$
 - $|f(c_i)| < \epsilon$
 - i = ciento valor dado
- **1** En caso de que no se cumpla ninguna de las condiciones de parada i = i + 1, $a_i = c_i$ y volver al punto 1

Es un método abierto, no es seguro que se alcance la raíz!

Para $a_1 = 2$ tenemos f(1.1966) = 0.0010

i	а	h	С	f(c)
1	2	0.5866	1.4134	0.5099
2	1.4134	0.1910	1.2224	0.0543
3	1.2224	0.0258	1.1966	0.0010

En solo 3 iteraciones se puede aproximar la raíz y f(c) disminuye un orden de magnitud por cada iteración!

Dibujar tangentes

- >> ezplot(f)
- >> hold on;
- $>> line([XNewton{1}.a XNewton{2}.a],[XNewton{1}.fa 0],'color','r')$
- $>> line([XNewton{2}].a XNewton{3}.a], [XNewton{2}].fa 0], color', g')$

Gráfica

Resolución
$$f(x) - x^2 - sin(x) - 0.5 = 0$$
 para $a_1 = 2$

Para
$$a_1 = -1$$
 tenemos $f(-0.3709) = 1.5645 * 10^{-5}$

i	а	h	С	f(c)
1	-1	-0.5281	-0.4719	0.1773
2	-0.4719	-0.0967	-0.3753	0.0074
3	-0.3709	-0.0044	-0.3709	1.5645e-05

En solo 3 iteraciones se alcanza una buena aproximación

Gráfica

Resolución
$$f(x) - x^2 - \sin(x) - 0.5 = 0$$
 para $a_1 = -1$

Ejercicio #1

Construir una función llamada

Bisection(f,a,b,tolerancia,errorfun,maxiter) que implemente el

Método de la Bisección, teniendo en cuenta que el error en la raíz es la $tolerancia = \Delta$, el error en la función es $errorfun = \epsilon$ y el número máximo de iteraciones es e

- Probarlo con la función $f(x) = f(x) = x^2 \sin(x) 0.5$
- Implementar la iteración con: while...end
- Obtener el valor de la raíz c para
 - Cuando $\Delta \leq 10^{-3}$
 - Cuando $\epsilon < 10^{-3}$
 - Cuando se realicen 4 iteraciones
- Probar los intervalos [0,2] y [-1,0]
- ¿Cuantas iteraciones se necesitan si $\Delta \leq 10^{-5}$?

Ejercicio #1 (cont)

Construir una estructura llamada X que almacene la tabla que almacena los resultados intermedios. Esta estructura se devuelve junto con r

- Al principio i = 1
- Para el primer intervalo $X\{i\}.a = a1; X\{i\}.b = b1;$
- Al calcular c = (a1 + b1)/2 realizar $X\{i\}.c = c$; $X\{i\}.fa = double(subs(f, a))$; $X\{i\}.fc = double(subs(f, c))$; $X\{i\}.fb = double(subs(f, b))$;
- Después de decidir el nuevo intervalo, incrementar i y almacenarlo en $X\{i\}.a = a1; X\{i\}.b = b1;$

Ejercicio #2

Construir un programa llamado

Secant(f,a,b,tolerancia,errorfun,maxiter) que implemente el Método de la Secante, teniendo en cuenta que el error en la raíz es la tolerancia $= \Delta$, el error en la función es errorfun $= \epsilon$ y el número máximo de iteraciones es maxiter

- Probarlo con la función $f(x) = f(x) = x^2 \sin(x) 0.5$
- Implementar la iteración con: while... end
- Obtener el valor de la raíz c
 - Cuando $\Delta \leq 10^{-3}$
 - Cuando $\epsilon \le 10^{-3}$
 - Cuando se realicen 4 iteraciones
- Probar los intervalos [0,2] y [-1,0]
- ¿Cuantas iteraciones se necesitan si $\Delta \leq 10^{-5}$?

Ejercicio #2 (cont)

Construir una estructura X que almacene la tabla como en la práctica #1 y usarla para mostrar las gráficas de las secantes. De forma que, si Xsec es la estructura para el intervalo [0,2]

```
>> explot(f); hold on;

>> line([Xsec{1}.a Xsec{1}.b], [Xsec{1}.fa Xsec{1}.fb],' color',' r')

>> line([Xsec{2}.a Xsec{2}.b], [Xsec{2}.fa Xsec{2}.fb],' color',' g')

>> line([Xsec{3}.a Xsec{3}.b], [Xsec{3}.fa Xsec{3}.fb],' color',' black')

>> line([Xsec{4}.a Xsec{4}.b], [Xsec{4}.fa Xsec{4}.fb],' color',' magenta')

>> line([Xsec{5}.a Xsec{5}.b], [Xsec{5}.fa Xsec{5}.fb],' color',' yellow')
```

Ejercicio #3

Construir una función llamada

RegulaFalsi(f,a,b,tolerancia,errorfun,maxiter) que implemente el Método de Regula Falsi, teniendo en cuenta que el error en la raíz es la $tolerancia = \Delta$, el error en la función es $errorfun = \epsilon$ y el número máximo de iteraciones es errorfun es erro

- Probarlo con la función $f(x) = f(x) = x^2 \sin(x) 0.5$
- Implementar la iteración con: while...end
- Tiene que devolver c
 - Cuando $\Delta < 10^{-3}$
 - Cuando $\epsilon < 10^{-3}$
 - Cuando se realicen 4 iteraciones
- Probar dos intervalos [0,2] y [-1,0]
- ¿Cuántas iteraciones necesita si $\Delta \leq 10^{-5}$?

Ejercicio #4

Construir una función llamada

Newton(f,a,tolerancia,errorfun,maxiter) que implemente el Método de Newton, teniendo en cuenta que el error en la raíz es la *tolerancia* $= \Delta$, el error en la función es *errorfun* $= \epsilon$ y el número máximo de iteraciones es *maxiter*

- Probarla con $f(x) = f(x) = x^2 \sin(x) 0.5$
- Implementar el bucle con: while...end
- Devolver c
 - Cuando $\Delta \leq 10^{-3}$
 - Cuando $\epsilon \le 10^{-3}$
 - Cuando se realicen 4 iteraciones
- Probar para $a_1 = 2$ y $a_1 = -1$
- ¿Cuántas iteraciones se necesita para $\epsilon = 10^{-5}$?

Ejercicio #5

Considerar la función $f(x) = \exp^x - 4x^2$, cuyas raíces están en los intervalos [-1,0],[0,1] y [4,4.5]. Encontrar la primera raíz usando el método de la Bisección, la segunda con el método de Regula Falsi y la tercera con el método de Newton

Ejercicio #6

Construir una función llamada

Steffensen(f,a,tolerancia,errorfun,maxiter) para implementar el Método de Steffensen.

En este método las iteraciones siguen la fórmula

$$x_{k+1} = x_k - \frac{(f(x_k))^2}{f(x_k + f(x_k)) - f(x_k)}, \ k \ge 0$$