HumanActivityRecognition

This project is to build a model that predicts the human activities such as Walking, Walking_Upstairs, Walking_Downstairs, Sitting, Standing or Laying.

This dataset is collected from 30 persons(referred as subjects in this dataset), performing different activities with a smartphone to their waists. The data is recorded with the help of sensors (accelerometer and Gyroscope) in that smartphone. This experiment was video recorded to label the data manually.

How data was recorded

By using the sensors(Gyroscope and accelerometer) in a smartphone, they have captured '3-axial linear acceleration'(*tAcc-XYZ*) from accelerometer and '3-axial angular velocity' (*tGyro-XYZ*) from Gyroscope with several variations.

prefix 't' in those metrics denotes time.

suffix 'XYZ' represents 3-axial signals in X, Y, and Z directions.

Feature names

- These sensor signals are preprocessed by applying noise filters and then sampled in fixed-width windows(sliding windows) of 2.56 seconds each with 50% overlap. ie., each window has 128 readings.
- 2. From Each window, a feature vector was obtianed by calculating variables from the time and frequency domain.

In our dataset, each datapoint represents a window with different readings

- The acceleration signal was saperated into Body and Gravity acceleration signals(tBodyAcc-XYZ) and tGravityAcc-XYZ) using some low pass filter with corner frequecy of 0.3Hz.
- 4. After that, the body linear acceleration and angular velocity were derived in time to obtian *jerk* signals (tBodyAccJerk-XYZ and tBodyGyroJerk-XYZ).
- The magnitude of these 3-dimensional signals were calculated using the Euclidian norm. This
 magnitudes are represented as features with names like tBodyAccMag, tGravityAccMag,
 tBodyAccJerkMag, tBodyGyroMag and tBodyGyroJerkMag.
- 6. Finally, We've got frequency domain signals from some of the available signals by applying a FFT (Fast Fourier Transform). These signals obtained were labeled with *prefix 'f'* just like original signals with *prefix 't'*. These signals are labeled as *fBodyAcc-XYZ*, *fBodyGyroMag* etc.,.
- 7. These are the signals that we got so far.
 - tBodyAcc-XYZ
 - tGravityAcc-XYZ
 - tBodyAccJerk-XYZ
 - tBodyGyro-XYZ
 - tBodyGyroJerk-XYZ
 - tBodyAccMag
 - tGravityAccMag

- tBodyAccJerkMag
- tBodyGyroMag
- tBodyGyroJerkMag
- fBodyAcc-XYZ
- fBodyAccJerk-XYZ
- fBodyGyro-XYZ
- fBodyAccMag
- fBodyAccJerkMag
- fBodyGyroMag
- fBodyGyroJerkMag
- 8. We can esitmate some set of variables from the above signals. ie., We will estimate the following properties on each and every signal that we recoreded so far.
 - mean(): Mean value
 - std(): Standard deviation
 - mad(): Median absolute deviation
 - max(): Largest value in array
 - min(): Smallest value in array
 - sma(): Signal magnitude area
 - energy(): Energy measure. Sum of the squares divided by the number of values.
 - iqr(): Interquartile range
 - entropy(): Signal entropy
 - arCoeff(): Autorregresion coefficients with Burg order equal to 4
 - correlation(): correlation coefficient between two signals
 - maxinds(): index of the frequency component with largest magnitude
 - meanFreq(): Weighted average of the frequency components to obtain a mean frequency
 - skewness(): skewness of the frequency domain signal
 - kurtosis(): kurtosis of the frequency domain signal
 - **bandsEnergy()**: Energy of a frequency interval within the 64 bins of the FFT of each window.
 - angle(): Angle between to vectors.
- 9. We can obtain some other vectors by taking the average of signals in a single window sample. These are used on the angle() variable' `
 - gravityMean
 - tBodyAccMean
 - tBodyAccJerkMean
 - tBodyGyroMean
 - tBodyGyroJerkMean

Y Labels(Encoded)

- In the dataset, Y labels are represented as numbers from 1 to 6 as their identifiers.
 - WALKING as 1
 - WALKING UPSTAIRS as 2
 - WALKING DOWNSTAIRS as 3
 - SITTING as 4
 - STANDING as 5
 - LAYING as 6

Train and test data were saperated

 The readings from 70% of the volunteers were taken as trianing data and remaining 30% subjects recordings were taken for test data

Data

- All the data is present in 'UCI_HAR_dataset/' folder in present working directory.
 - Feature names are present in 'UCI HAR dataset/features.txt'
 - Train Data
 - 'UCI HAR dataset/train/X train.txt'
 - 'UCI_HAR_dataset/train/subject_train.txt'
 - 'UCI_HAR_dataset/train/y_train.txt'
 - Test Data
 - 'UCI_HAR_dataset/test/X_test.txt'
 - 'UCI_HAR_dataset/test/subject_test.txt'
 - 'UCI HAR dataset/test/y test.txt'

Data Size:

27 MB

Quick overview of the dataset:

 Accelerometer and Gyroscope readings are taken from 30 volunteers(referred as subjects) while performing the following 6 Activities.

- 1. Walking
- 2. WalkingUpstairs
- 3. WalkingDownstairs
- 4. Standing
- 5. Sitting
- 6. Lying.
- Readings are divided into a window of 2.56 seconds with 50% overlapping.
- Accelerometer readings are divided into gravity acceleration and body acceleration readings, which has x,y and z components each.
- Gyroscope readings are the measure of angular velocities which has x,y and z components.
- Jerk signals are calculated for BodyAcceleration readings.
- Fourier Transforms are made on the above time readings to obtain frequency readings.
- Now, on all the base signal readings., mean, max, mad, sma, arcoefficient, engerybands, entropy etc., are calculated for each window.
- We get a feature vector of 561 features and these features are given in the dataset.
- Each window of readings is a datapoint of 561 features.

Problem Framework

- 30 subjects(volunteers) data is randomly split to 70%(21) test and 30%(7) train data.
- · Each datapoint corresponds one of the 6 Activities.

Problem Statement

· Given a new datapoint we have to predict the Activity

In [1]:

```
import numpy as np
import pandas as pd

# get the features from the file features.txt
features = list()
with open('UCI_HAR_Dataset/features.txt') as f:
    features = [line.split()[1] for line in f.readlines()]
print('No of Features: {}'.format(len(features)))
```

No of Features: 561

Obtain the data

In [3]:

```
train = pd.read_csv('UCI_HAR_dataset/csv_files/train.csv')
test = pd.read_csv('UCI_HAR_dataset/csv_files/test.csv')
print(train.shape, test.shape)
```

(7352, 564) (2947, 564)

Data Cleaning

1. Check for Duplicates

```
In [4]:
```

```
print('No of duplicates in train: {}'.format(sum(train.duplicated())))
print('No of duplicates in test : {}'.format(sum(test.duplicated())))
No of duplicates in train: 0
No of duplicates in test : 0
```

2. Checking for NaN/null values

```
In [5]:
```

```
print('We have {} NaN/Null values in train'.format(train.isnull().values.sum()))
print('We have {} NaN/Null values in test'.format(test.isnull().values.sum()))
We have 0 NaN/Null values in train
```

We have 0 NaN/Null values in test

3. Check for data imbalance

```
In [6]:
```

```
import matplotlib.pyplot as plt
import seaborn as sns

sns.set_style('whitegrid')
plt.rcParams['font.family'] = 'Dejavu Sans'
```

In [7]:

```
plt.figure(figsize=(16,8))
plt.title('Data provided by each user', fontsize=20)
sns.countplot(x='subject',hue='ActivityName', data = train)
plt.show()
```


We have got almost same number of reading from all the subjects

In [8]:

```
plt.title('No of Datapoints per Activity', fontsize=15)
sns.countplot(train.ActivityName)
plt.xticks(rotation=90)
plt.show()
```


Observation

Our data is well balanced (almost)

4. Changing feature names

```
In [9]:
```

```
columns = train.columns

# Removing '()' from column names
columns = columns.str.replace('[()]','')
columns = columns.str.replace('[-]', '')
columns = columns.str.replace('[,]','')

train.columns = columns
test.columns

Out[9]:
```

Exploratory Data Analysis

"Without domain knowledge EDA has no meaning, without EDA a problem has no soul."

1. Featuring Engineering from Domain Knowledge

- · Static and Dynamic Activities
 - In static activities (sit, stand, lie down) motion information will not be very useful.
 - In the dynamic activities (Walking, WalkingUpstairs, WalkingDownstairs) motion info will be significant.

2. Stationary and Moving activities are completely different

In [11]:

In [12]:

```
# for plotting purposes taking datapoints of each activity to a different dataframe
df1 = train[train['Activity']==1]
df2 = train[train['Activity']==2]
df3 = train[train['Activity']==3]
df4 = train[train['Activity']==4]
df5 = train[train['Activity']==5]
df6 = train[train['Activity']==6]
plt.figure(figsize=(14,7))
plt.subplot(2,2,1)
plt.title('Stationary Activities(Zoomed in)')
sns.distplot(df4['tBodyAccMagmean'],color = 'r',hist = False, label = 'Sitting')
sns.distplot(df5['tBodyAccMagmean'],color = 'm',hist = False,label = 'Standing')
sns.distplot(df6['tBodyAccMagmean'],color = 'c',hist = False, label = 'Laying')
plt.axis([-1.01, -0.5, 0, 35])
plt.legend(loc='center')
plt.subplot(2,2,2)
plt.title('Moving Activities')
sns.distplot(df1['tBodyAccMagmean'],color = 'red',hist = False, label = 'Walking')
sns.distplot(df2['tBodyAccMagmean'],color = 'blue',hist = False,label = 'Walking Up')
sns.distplot(df3['tBodyAccMagmean'],color = 'green',hist = False, label = 'Walking dow
n')
plt.legend(loc='center right')
plt.tight_layout()
plt.show()
```


3. Magnitude of an acceleration can saperate it well

In [13]:

```
plt.figure(figsize=(7,7))
sns.boxplot(x='ActivityName', y='tBodyAccMagmean',data=train, showfliers=False, saturat
ion=1)
plt.ylabel('Acceleration Magnitude mean')
plt.axhline(y=-0.7, xmin=0.1, xmax=0.9,dashes=(5,5), c='g')
plt.axhline(y=-0.05, xmin=0.4, dashes=(5,5), c='m')
plt.xticks(rotation=90)
plt.show()
```


Observations:

- If tAccMean is < -0.8 then the Activities are either Standing or Sitting or Laying.
- If tAccMean is > -0.6 then the Activities are either Walking or WalkingDownstairs or WalkingUpstairs.
- If tAccMean > 0.0 then the Activity is WalkingDownstairs.
- We can classify 75% the Acitivity labels with some errors.

4. Position of GravityAccelerationComponants also matters

In [14]:

```
sns.boxplot(x='ActivityName', y='angleXgravityMean', data=train)
plt.axhline(y=0.08, xmin=0.1, xmax=0.9,c='m',dashes=(5,3))
plt.title('Angle between X-axis and Gravity_mean', fontsize=15)
plt.xticks(rotation = 40)
plt.show()
```


Observations:

- If angleX,gravityMean > 0 then Activity is Laying.
- We can classify all datapoints belonging to Laying activity with just a single if else statement.

In [15]:

```
sns.boxplot(x='ActivityName', y='angleYgravityMean', data = train, showfliers=False)
plt.title('Angle between Y-axis and Gravity_mean', fontsize=15)
plt.xticks(rotation = 40)
plt.axhline(y=-0.22, xmin=0.1, xmax=0.8, dashes=(5,3), c='m')
plt.show()
```


Apply t-sne on the data

In [16]:

```
import numpy as np
from sklearn.manifold import TSNE
import matplotlib.pyplot as plt
import seaborn as sns
```

In [17]:

```
# performs t-sne with different perplexity values and their repective plots..
def perform_tsne(X_data, y_data, perplexities, n_iter=1000, img_name_prefix='t-sne'):
    for index,perplexity in enumerate(perplexities):
        # perform t-sne
        print('\nperforming tsne with perplexity {} and with {} iterations at max'.form
at(perplexity, n_iter))
        X_reduced = TSNE(verbose=2, perplexity=perplexity).fit_transform(X_data)
        print('Done..')
        # prepare the data for seaborn
        print('Creating plot for this t-sne visualization..')
        df = pd.DataFrame({'x':X_reduced[:,0], 'y':X_reduced[:,1], 'label':y_data})
        # draw the plot in appropriate place in the grid
        sns.lmplot(data=df, x='x', y='y', hue='label', fit_reg=False, size=8,\
                   palette="Set1",markers=['^','v','s','o', '1','2'])
        plt.title("perplexity : {} and max_iter : {}".format(perplexity, n_iter))
        img name = img name prefix + ' perp {} iter {}.png'.format(perplexity, n iter)
        print('saving this plot as image in present working directory...')
        plt.savefig(img_name)
        plt.show()
        print('Done')
```

In [18]:

```
X_pre_tsne = train.drop(['subject', 'Activity','ActivityName'], axis=1)
y_pre_tsne = train['ActivityName']
perform_tsne(X_data = X_pre_tsne,y_data=y_pre_tsne, perplexities =[2,5,10,20,50])
```

```
performing tsne with perplexity 2 and with 1000 iterations at max
[t-SNE] Computing 7 nearest neighbors...
[t-SNE] Indexed 7352 samples in 2.246s...
[t-SNE] Computed neighbors for 7352 samples in 55.349s...
[t-SNE] Computed conditional probabilities for sample 1000 / 7352
[t-SNE] Computed conditional probabilities for sample 2000 / 7352
[t-SNE] Computed conditional probabilities for sample 3000 / 7352
[t-SNE] Computed conditional probabilities for sample 4000 / 7352
[t-SNE] Computed conditional probabilities for sample 5000 / 7352
[t-SNE] Computed conditional probabilities for sample 6000 / 7352
[t-SNE] Computed conditional probabilities for sample 7000 / 7352
[t-SNE] Computed conditional probabilities for sample 7352 / 7352
[t-SNE] Mean sigma: 0.635854
[t-SNE] Computed conditional probabilities in 0.082s
[t-SNE] Iteration 50: error = 124.7207642, gradient norm = 0.0274185 (50 i
terations in 3.753s)
[t-SNE] Iteration 100: error = 106.6979828, gradient norm = 0.0287408 (50
iterations in 2.929s)
[t-SNE] Iteration 150: error = 100.6062317, gradient norm = 0.0197489 (50
iterations in 2.557s)
[t-SNE] Iteration 200: error = 97.3068008, gradient norm = 0.0177662 (50 i
terations in 2.504s)
[t-SNE] Iteration 250: error = 95.0502472, gradient norm = 0.0150657 (50 i
terations in 2.967s)
[t-SNE] KL divergence after 250 iterations with early exaggeration: 95.050
247
[t-SNE] Iteration 300: error = 4.1168814, gradient norm = 0.0015664 (50 it
erations in 3.111s)
[t-SNE] Iteration 350: error = 3.2066424, gradient norm = 0.0009984 (50 it
erations in 3.222s)
[t-SNE] Iteration 400: error = 2.7760842, gradient norm = 0.0007171 (50 it
erations in 2.830s)
[t-SNE] Iteration 450: error = 2.5120215, gradient norm = 0.0005681 (50 it
erations in 2.553s)
[t-SNE] Iteration 500: error = 2.3287277, gradient norm = 0.0004781 (50 it
erations in 2.619s)
[t-SNE] Iteration 550: error = 2.1907609, gradient norm = 0.0004189 (50 it
erations in 2.559s)
[t-SNE] Iteration 600: error = 2.0814571, gradient norm = 0.0003726 (50 it
erations in 2.592s)
[t-SNE] Iteration 650: error = 1.9916465, gradient norm = 0.0003293 (50 it
erations in 2.609s)
[t-SNE] Iteration 700: error = 1.9160068, gradient norm = 0.0002977 (50 it
erations in 2.620s)
[t-SNE] Iteration 750: error = 1.8509090, gradient norm = 0.0002785 (50 it
erations in 2.594s)
[t-SNE] Iteration 800: error = 1.7944832, gradient norm = 0.0002541 (50 it
erations in 2.575s)
[t-SNE] Iteration 850: error = 1.7445557, gradient norm = 0.0002383 (50 it
erations in 2.588s)
[t-SNE] Iteration 900: error = 1.7001088, gradient norm = 0.0002229 (50 it
erations in 2.588s)
[t-SNE] Iteration 950: error = 1.6600125, gradient norm = 0.0002111 (50 it
erations in 2.598s)
[t-SNE] Iteration 1000: error = 1.6236660, gradient norm = 0.0001996 (50 i
terations in 2.748s)
[t-SNE] KL divergence after 1000 iterations: 1.623666
Done..
Creating plot for this t-sne visualization...
saving this plot as image in present working directory...
```


Done

```
performing tsne with perplexity 5 and with 1000 iterations at max
[t-SNE] Computing 16 nearest neighbors...
[t-SNE] Indexed 7352 samples in 2.203s...
[t-SNE] Computed neighbors for 7352 samples in 54.325s...
[t-SNE] Computed conditional probabilities for sample 1000 / 7352
[t-SNE] Computed conditional probabilities for sample 2000 / 7352
[t-SNE] Computed conditional probabilities for sample 3000 / 7352
[t-SNE] Computed conditional probabilities for sample 4000 / 7352
[t-SNE] Computed conditional probabilities for sample 5000 / 7352
[t-SNE] Computed conditional probabilities for sample 6000 / 7352
[t-SNE] Computed conditional probabilities for sample 7000 / 7352
[t-SNE] Computed conditional probabilities for sample 7352 / 7352
[t-SNE] Mean sigma: 0.961265
[t-SNE] Computed conditional probabilities in 0.078s
[t-SNE] Iteration 50: error = 114.0917969, gradient norm = 0.0206442 (50 i
terations in 7.072s)
[t-SNE] Iteration 100: error = 98.1152420, gradient norm = 0.0169837 (50 i
terations in 2.920s)
[t-SNE] Iteration 150: error = 93.3989410, gradient norm = 0.0095554 (50 i
terations in 2.510s)
[t-SNE] Iteration 200: error = 91.2936783, gradient norm = 0.0072150 (50 i
terations in 2.561s)
[t-SNE] Iteration 250: error = 90.0745392, gradient norm = 0.0054562 (50 i
terations in 2.538s)
[t-SNE] KL divergence after 250 iterations with early exaggeration: 90.074
539
[t-SNE] Iteration 300: error = 3.5757952, gradient norm = 0.0014640 (50 it
erations in 2.469s)
[t-SNE] Iteration 350: error = 2.8169851, gradient norm = 0.0007528 (50 it
erations in 2.459s)
[t-SNE] Iteration 400: error = 2.4356225, gradient norm = 0.0005280 (50 it
erations in 2.506s)
[t-SNE] Iteration 450: error = 2.2173913, gradient norm = 0.0004072 (50 it
erations in 2.520s)
[t-SNE] Iteration 500: error = 2.0720167, gradient norm = 0.0003329 (50 it
erations in 2.554s)
[t-SNE] Iteration 550: error = 1.9664084, gradient norm = 0.0002830 (50 it
erations in 2.531s)
[t-SNE] Iteration 600: error = 1.8850527, gradient norm = 0.0002455 (50 it
erations in 2.562s)
[t-SNE] Iteration 650: error = 1.8199900, gradient norm = 0.0002189 (50 it
erations in 2.539s)
[t-SNE] Iteration 700: error = 1.7663279, gradient norm = 0.0001978 (50 it
erations in 2.542s)
[t-SNE] Iteration 750: error = 1.7210433, gradient norm = 0.0001805 (50 it
erations in 2.555s)
[t-SNE] Iteration 800: error = 1.6822122, gradient norm = 0.0001643 (50 it
erations in 2.546s)
[t-SNE] Iteration 850: error = 1.6481471, gradient norm = 0.0001544 (50 it
erations in 2.573s)
[t-SNE] Iteration 900: error = 1.6184077, gradient norm = 0.0001427 (50 it
erations in 2.563s)
[t-SNE] Iteration 950: error = 1.5920080, gradient norm = 0.0001339 (50 it
erations in 2.553s)
[t-SNE] Iteration 1000: error = 1.5682036, gradient norm = 0.0001263 (50 i
terations in 2.553s)
[t-SNE] KL divergence after 1000 iterations: 1.568204
Done..
```

Creating plot for this t-sne visualization.. saving this plot as image in present working directory...

Done

```
performing tsne with perplexity 10 and with 1000 iterations at max
[t-SNE] Computing 31 nearest neighbors...
[t-SNE] Indexed 7352 samples in 1.853s...
[t-SNE] Computed neighbors for 7352 samples in 52.233s...
[t-SNE] Computed conditional probabilities for sample 1000 / 7352
[t-SNE] Computed conditional probabilities for sample 2000 / 7352
[t-SNE] Computed conditional probabilities for sample 3000 / 7352
[t-SNE] Computed conditional probabilities for sample 4000 / 7352
[t-SNE] Computed conditional probabilities for sample 5000 / 7352
[t-SNE] Computed conditional probabilities for sample 6000 / 7352
[t-SNE] Computed conditional probabilities for sample 7000 / 7352
[t-SNE] Computed conditional probabilities for sample 7352 / 7352
[t-SNE] Mean sigma: 1.133828
[t-SNE] Computed conditional probabilities in 0.151s
[t-SNE] Iteration 50: error = 105.7657013, gradient norm = 0.0189496 (50 i
terations in 4.364s)
[t-SNE] Iteration 100: error = 90.4657440, gradient norm = 0.0102857 (50 i
terations in 3.050s)
[t-SNE] Iteration 150: error = 87.3603058, gradient norm = 0.0058368 (50 i
terations in 2.679s)
[t-SNE] Iteration 200: error = 86.1050034, gradient norm = 0.0041631 (50 i
terations in 2.705s)
[t-SNE] Iteration 250: error = 85.3840866, gradient norm = 0.0033058 (50 i
terations in 2.734s)
[t-SNE] KL divergence after 250 iterations with early exaggeration: 85.384
087
[t-SNE] Iteration 300: error = 3.1321864, gradient norm = 0.0013912 (50 it
erations in 2.872s)
[t-SNE] Iteration 350: error = 2.4885402, gradient norm = 0.0006457 (50 it
erations in 2.833s)
[t-SNE] Iteration 400: error = 2.1695457, gradient norm = 0.0004207 (50 it
erations in 2.742s)
[t-SNE] Iteration 450: error = 1.9859039, gradient norm = 0.0003097 (50 it
erations in 2.677s)
[t-SNE] Iteration 500: error = 1.8677763, gradient norm = 0.0002503 (50 it
erations in 2.694s)
[t-SNE] Iteration 550: error = 1.7848721, gradient norm = 0.0002094 (50 it
erations in 2.687s)
[t-SNE] Iteration 600: error = 1.7225971, gradient norm = 0.0001809 (50 it
erations in 2.656s)
[t-SNE] Iteration 650: error = 1.6735473, gradient norm = 0.0001614 (50 it
erations in 2.652s)
[t-SNE] Iteration 700: error = 1.6340926, gradient norm = 0.0001441 (50 it
erations in 2.649s)
[t-SNE] Iteration 750: error = 1.6015133, gradient norm = 0.0001309 (50 it
erations in 2.648s)
[t-SNE] Iteration 800: error = 1.5745549, gradient norm = 0.0001194 (50 it
erations in 2.705s)
[t-SNE] Iteration 850: error = 1.5517440, gradient norm = 0.0001111 (50 it
erations in 2.653s)
[t-SNE] Iteration 900: error = 1.5320408, gradient norm = 0.0001037 (50 it
erations in 2.664s)
[t-SNE] Iteration 950: error = 1.5149099, gradient norm = 0.0000992 (50 it
erations in 2.644s)
[t-SNE] Iteration 1000: error = 1.5002866, gradient norm = 0.0000938 (50 i
terations in 2.662s)
[t-SNE] KL divergence after 1000 iterations: 1.500287
Done..
```

Creating plot for this t-sne visualization.. saving this plot as image in present working directory...

Done

```
performing tsne with perplexity 20 and with 1000 iterations at max
[t-SNE] Computing 61 nearest neighbors...
[t-SNE] Indexed 7352 samples in 1.784s...
[t-SNE] Computed neighbors for 7352 samples in 435.508s...
[t-SNE] Computed conditional probabilities for sample 1000 / 7352
[t-SNE] Computed conditional probabilities for sample 2000 / 7352
[t-SNE] Computed conditional probabilities for sample 3000 / 7352
[t-SNE] Computed conditional probabilities for sample 4000 / 7352
[t-SNE] Computed conditional probabilities for sample 5000 / 7352
[t-SNE] Computed conditional probabilities for sample 6000 / 7352
[t-SNE] Computed conditional probabilities for sample 7000 / 7352
[t-SNE] Computed conditional probabilities for sample 7352 / 7352
[t-SNE] Mean sigma: 1.274335
[t-SNE] Computed conditional probabilities in 0.308s
[t-SNE] Iteration 50: error = 97.9048996, gradient norm = 0.0117818 (50 it
erations in 5.540s)
[t-SNE] Iteration 100: error = 84.7624588, gradient norm = 0.0079371 (50 i
terations in 4.266s)
[t-SNE] Iteration 150: error = 82.4843903, gradient norm = 0.0041068 (50 i
terations in 3.884s)
[t-SNE] Iteration 200: error = 81.6530991, gradient norm = 0.0027784 (50 i
terations in 4.056s)
[t-SNE] Iteration 250: error = 81.1977234, gradient norm = 0.0025771 (50 i
terations in 4.211s)
[t-SNE] KL divergence after 250 iterations with early exaggeration: 81.197
[t-SNE] Iteration 300: error = 2.7249007, gradient norm = 0.0013041 (50 it
erations in 3.691s)
[t-SNE] Iteration 350: error = 2.1888509, gradient norm = 0.0005860 (50 it
erations in 3.259s)
[t-SNE] Iteration 400: error = 1.9365268, gradient norm = 0.0003542 (50 it
erations in 3.416s)
[t-SNE] Iteration 450: error = 1.7885538, gradient norm = 0.0002507 (50 it
erations in 3.376s)
[t-SNE] Iteration 500: error = 1.6930069, gradient norm = 0.0001997 (50 it
erations in 3.187s)
[t-SNE] Iteration 550: error = 1.6278261, gradient norm = 0.0001608 (50 it
erations in 3.337s)
[t-SNE] Iteration 600: error = 1.5803468, gradient norm = 0.0001360 (50 it
erations in 3.354s)
[t-SNE] Iteration 650: error = 1.5444452, gradient norm = 0.0001205 (50 it
erations in 3.386s)
[t-SNE] Iteration 700: error = 1.5162125, gradient norm = 0.0001074 (50 it
erations in 3.728s)
[t-SNE] Iteration 750: error = 1.4938722, gradient norm = 0.0000993 (50 it
erations in 3.606s)
[t-SNE] Iteration 800: error = 1.4762194, gradient norm = 0.0000902 (50 it
erations in 3.567s)
[t-SNE] Iteration 850: error = 1.4615550, gradient norm = 0.0000850 (50 it
erations in 3.495s)
[t-SNE] Iteration 900: error = 1.4493594, gradient norm = 0.0000822 (50 it
erations in 3.226s)
[t-SNE] Iteration 950: error = 1.4392700, gradient norm = 0.0000754 (50 it
erations in 3.488s)
[t-SNE] Iteration 1000: error = 1.4305348, gradient norm = 0.0000741 (50 i
terations in 3.393s)
[t-SNE] KL divergence after 1000 iterations: 1.430535
Done..
```

Creating plot for this t-sne visualization.. saving this plot as image in present working directory...

Done

```
performing tsne with perplexity 50 and with 1000 iterations at max
[t-SNE] Computing 151 nearest neighbors...
[t-SNE] Indexed 7352 samples in 2.027s...
[t-SNE] Computed neighbors for 7352 samples in 58.141s...
[t-SNE] Computed conditional probabilities for sample 1000 / 7352
[t-SNE] Computed conditional probabilities for sample 2000 / 7352
[t-SNE] Computed conditional probabilities for sample 3000 / 7352
[t-SNE] Computed conditional probabilities for sample 4000 / 7352
[t-SNE] Computed conditional probabilities for sample 5000 / 7352
[t-SNE] Computed conditional probabilities for sample 6000 / 7352
[t-SNE] Computed conditional probabilities for sample 7000 / 7352
[t-SNE] Computed conditional probabilities for sample 7352 / 7352
[t-SNE] Mean sigma: 1.437672
[t-SNE] Computed conditional probabilities in 0.858s
[t-SNE] Iteration 50: error = 85.2329178, gradient norm = 0.0307021 (50 it
erations in 5.797s)
[t-SNE] Iteration 100: error = 75.5017700, gradient norm = 0.0047555 (50 i
terations in 5.446s)
[t-SNE] Iteration 150: error = 74.6227646, gradient norm = 0.0023487 (50 i
terations in 4.992s)
[t-SNE] Iteration 200: error = 74.2893906, gradient norm = 0.0015089 (50 i
terations in 5.891s)
[t-SNE] Iteration 250: error = 74.1173096, gradient norm = 0.0011702 (50 i
terations in 5.698s)
[t-SNE] KL divergence after 250 iterations with early exaggeration: 74.117
310
[t-SNE] Iteration 300: error = 2.1518736, gradient norm = 0.0011859 (50 it
erations in 4.961s)
[t-SNE] Iteration 350: error = 1.7544440, gradient norm = 0.0004853 (50 it
erations in 4.397s)
[t-SNE] Iteration 400: error = 1.5862771, gradient norm = 0.0002793 (50 it
erations in 4.414s)
[t-SNE] Iteration 450: error = 1.4919926, gradient norm = 0.0001925 (50 it
erations in 3.989s)
[t-SNE] Iteration 500: error = 1.4319952, gradient norm = 0.0001408 (50 it
erations in 4.491s)
[t-SNE] Iteration 550: error = 1.3911310, gradient norm = 0.0001109 (50 it
erations in 4.701s)
[t-SNE] Iteration 600: error = 1.3618691, gradient norm = 0.0000936 (50 it
erations in 4.793s)
[t-SNE] Iteration 650: error = 1.3404288, gradient norm = 0.0000800 (50 it
erations in 4.452s)
[t-SNE] Iteration 700: error = 1.3245654, gradient norm = 0.0000805 (50 it
erations in 4.663s)
[t-SNE] Iteration 750: error = 1.3127260, gradient norm = 0.0000654 (50 it
erations in 4.180s)
[t-SNE] Iteration 800: error = 1.3036268, gradient norm = 0.0000605 (50 it
erations in 4.834s)
[t-SNE] Iteration 850: error = 1.2964762, gradient norm = 0.0000596 (50 it
erations in 4.416s)
[t-SNE] Iteration 900: error = 1.2909524, gradient norm = 0.0000558 (50 it
erations in 4.263s)
[t-SNE] Iteration 950: error = 1.2865924, gradient norm = 0.0000525 (50 it
erations in 4.459s)
[t-SNE] Iteration 1000: error = 1.2825896, gradient norm = 0.0000490 (50 i
terations in 4.337s)
[t-SNE] KL divergence after 1000 iterations: 1.282590
Done..
```

Creating plot for this t-sne visualization.. saving this plot as image in present working directory...

Done

In [19]:

```
train = pd.read_csv('UCI_HAR_dataset/csv_files/train.csv')
test = pd.read_csv('UCI_HAR_dataset/csv_files/test.csv')
print(train.shape, test.shape)
```

(7352, 564) (2947, 564)

In [20]:

```
# get X_train and y_train from csv files
X_train = train.drop(['subject', 'Activity', 'ActivityName'], axis=1)
y_train = train.ActivityName
```

In [21]:

```
# get X_test and y_test from test csv file
X_test = test.drop(['subject', 'Activity', 'ActivityName'], axis=1)
y_test = test.ActivityName
```

In [22]:

```
print('X_train and y_train : ({},{})'.format(X_train.shape, y_train.shape))
print('X_test and y_test : ({},{})'.format(X_test.shape, y_test.shape))
```

```
X_train and y_train : ((7352, 561),(7352,))
X_test and y_test : ((2947, 561),(2947,))
```

function to plot confusion matrix

In [24]:

```
import itertools
import numpy as np
import matplotlib.pyplot as plt
from sklearn.metrics import confusion_matrix
plt.rcParams["font.family"] = 'DejaVu Sans'
def plot_confusion_matrix(cm, classes,
                          normalize=False,
                          title='Confusion matrix',
                          cmap=plt.cm.Blues):
    if normalize:
        cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]
    plt.imshow(cm, interpolation='nearest', cmap=cmap)
    plt.title(title)
    plt.colorbar()
    tick_marks = np.arange(len(classes))
    plt.xticks(tick_marks, classes, rotation=90)
    plt.yticks(tick_marks, classes)
    fmt = '.2f' if normalize else 'd'
    thresh = cm.max() / 2.
    for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):
        plt.text(j, i, format(cm[i, j], fmt),
                 horizontalalignment="center",
                 color="white" if cm[i, j] > thresh else "black")
    plt.tight_layout()
    plt.ylabel('True label')
    plt.xlabel('Predicted label')
```

function to run any model specified

In [25]:

```
from datetime import datetime
def perform_model(model, X_train, y_train, X_test, y_test, class_labels, cm_normalize=T
rue, \
                print_cm=True, cm_cmap=plt.cm.Greens):
   # to store results at various phases
   results = dict()
   # time at which model starts training
   train_start_time = datetime.now()
   print('training the model..')
   model.fit(X_train, y_train)
   print('Done \n \n')
   train_end_time = datetime.now()
   results['training_time'] = train_end_time - train_start_time
   print('training_time(HH:MM:SS.ms) - {}\n\n'.format(results['training_time']))
   # predict test data
   print('Predicting test data')
   test_start_time = datetime.now()
   y_pred = model.predict(X_test)
   test_end_time = datetime.now()
   print('Done \n \n')
   results['testing_time'] = test_end_time - test_start_time
   print('testing time(HH:MM:SS:ms) - {}\n\n'.format(results['testing_time']))
   results['predicted'] = y_pred
   # calculate overall accuracty of the model
   accuracy = metrics.accuracy_score(y_true=y_test, y_pred=y_pred)
   # store accuracy in results
   results['accuracy'] = accuracy
   print('----')
   print('| Accuracy
                             |')
   print('----')
   print('\n {}\n\n'.format(accuracy))
   # confusion matrix
   cm = metrics.confusion_matrix(y_test, y_pred)
   results['confusion_matrix'] = cm
   if print_cm:
       print('----')
       print('| Confusion Matrix |')
       print('----')
       print('\n {}'.format(cm))
   # plot confusin matrix
   plt.figure(figsize=(8,8))
   plt.grid(b=False)
   plot_confusion_matrix(cm, classes=class_labels, normalize=True, title='Normalized c
onfusion matrix', cmap = cm cmap)
   plt.show()
   # get classification report
   print('-----')
   print('| Classifiction Report |')
```

```
print('-----')
classification_report = metrics.classification_report(y_test, y_pred)
# store report in results
results['classification_report'] = classification_report
print(classification_report)

# add the trained model to the results
results['model'] = model

return results
```

method to print grid search attributes

In [26]:

```
def print_grid_search_attributes(model):
   # Estimator that gave highest score among all the estimators formed in GridSearch
   print('----')
   print('| Best Estimator |')
   print('----')
   print('\n\t{}\n'.format(model.best_estimator_))
   # parameters that gave best results while performing grid search
   print('----')
   print('| Best parameters |')
   print('----')
   print('\tParameters of best estimator : \n\n\t{}\n'.format(model.best_params_))
   # number of cross validation splits
   print('----')
   print('| No of CrossValidation sets |')
   print('----')
   print('\n\tTotal number of cross validation sets: {}\n'.format(model.n_splits_))
   # Average cross validated score of the best estimator, from the Grid Search
   print('----')
   print('| Best Score |')
   print('----')
   print('\n\tAverage Cross Validate scores of best estimator : \n\n\t{}\n'.format(mod
el.best_score_))
```

1. Logistic Regression with Grid Search

In [27]:

```
from sklearn import linear_model
from sklearn import metrics
from sklearn.model_selection import GridSearchCV
```

In [28]:

labels=['LAYING', 'SITTING','STANDING','WALKING_DOWNSTAIRS','WALKING_UPSTAIR
S']

In [29]:

```
# start Grid search
parameters = {'C':[0.01, 0.1, 1, 10, 20, 30], 'penalty':['12','11'], 'max_iter':[500,75
0,1000]}
log_reg = linear_model.LogisticRegression()
log_reg_grid = GridSearchCV(log_reg, param_grid=parameters, cv=3, verbose=1, n_jobs=-1)
log_reg_grid_results = perform_model(log_reg_grid, X_train, y_train, X_test, y_test, c
lass_labels=labels)
```

```
training the model..
Fitting 3 folds for each of 36 candidates, totalling 108 fits
[Parallel(n jobs=-1)]: Using backend LokyBackend with 4 concurrent worker
[Parallel(n_jobs=-1)]: Done 42 tasks
                                      elapsed: 2.4min
[Parallel(n_jobs=-1)]: Done 108 out of 108 | elapsed: 8.6min finished
C:\Users\SUBHODAYA KUMAR\Anaconda3\lib\site-packages\sklearn\linear_model
\_logistic.py:940: ConvergenceWarning: lbfgs failed to converge (status=
1):
STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
Increase the number of iterations (max_iter) or scale the data as shown i
   https://scikit-learn.org/stable/modules/preprocessing.html
Please also refer to the documentation for alternative solver options:
   https://scikit-learn.org/stable/modules/linear_model.html#logistic-reg
ression
 extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG)
Done
training_time(HH:MM:SS.ms) - 0:08:54.277253
Predicting test data
Done
testing time(HH:MM:SS:ms) - 0:00:00.016991
    Accuracy
   0.9626739056667798
______
| Confusion Matrix |
------
                       01
 [[537 0 0 0
                   0
   1 433 54
               0
                  0
                      3]
   0 12 519
             1
                  0
                      0]
     0 0 493
                 3
                      01
   0
       0
           0
             3 408
                      91
              24
   0
       0
           0
                   0 447]]
```


| Classifiction Popont |

	C	Τ.	a	SS	51	+	1	C	t	1	0	n		K	e	p	0	r	t		ı		
		_	_			_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	

	precision	recall	f1-score	support
LAYING	1.00	1.00	1.00	537
SITTING	0.97	0.88	0.93	491
STANDING	0.91	0.98	0.94	532
WALKING	0.95	0.99	0.97	496
WALKING_DOWNSTAIRS	0.99	0.97	0.98	420
WALKING_UPSTAIRS	0.97	0.95	0.96	471
accuracy			0.96	2947
macro avg	0.96	0.96	0.96	2947
weighted avg	0.96	0.96	0.96	2947

In [30]:

```
plt.figure(figsize=(8,8))
plt.grid(b=False)
plot_confusion_matrix(log_reg_grid_results['confusion_matrix'], classes=labels, cmap=pl
t.cm.Greens, )
plt.show()
```



```
In [31]:
```

```
# observe the attributes of the model
print_grid_search_attributes(log_reg_grid_results['model'])
   Best Estimator
      LogisticRegression(C=10, class_weight=None, dual=False, fit_interc
ept=True,
                intercept_scaling=1, l1_ratio=None, max_iter=500,
                multi_class='auto', n_jobs=None, penalty='12',
                random_state=None, solver='lbfgs', tol=0.0001, verbose=
0,
               warm_start=False)
  ------
   Best parameters |
_____
      Parameters of best estimator :
      {'C': 10, 'max_iter': 500, 'penalty': '12'}
----
 No of CrossValidation sets
 _____
      Total number of cross validation sets: 3
      Best Score
______
      Average Cross Validate scores of best estimator :
      0.9434188461186187
```

2. Linear SVC with GridSearch

In [32]:

from sklearn.svm import LinearSVC

In [33]:

```
parameters = {'C':[0.125, 0.5, 1, 2, 8, 16], 'max_iter':[2500,5000]}
lr_svc = LinearSVC(tol=0.00005)
lr_svc_grid = GridSearchCV(lr_svc, param_grid=parameters, n_jobs=-1, verbose=1)
lr_svc_grid_results = perform_model(lr_svc_grid, X_train, y_train, X_test, y_test, clas s_labels=labels)
```

```
training the model..
Fitting 5 folds for each of 12 candidates, totalling 60 fits
[Parallel(n jobs=-1)]: Using backend LokyBackend with 4 concurrent worker
[Parallel(n_jobs=-1)]: Done 42 tasks
                                         | elapsed: 4.8min
[Parallel(n_jobs=-1)]: Done 60 out of 60 | elapsed: 6.8min finished
C:\Users\SUBHODAYA KUMAR\Anaconda3\lib\site-packages\sklearn\svm\_base.py:
947: ConvergenceWarning: Liblinear failed to converge, increase the number
of iterations.
  "the number of iterations.", ConvergenceWarning)
Done
training_time(HH:MM:SS.ms) - 0:07:05.225342
Predicting test data
Done
testing time(HH:MM:SS:ms) - 0:00:00.013992
   Accuracy
   0.9667458432304038
| Confusion Matrix |
 [[537 0 0 0
                    0
                      0]
   2 428 58
               0 0
                       3]
       9 522
               1
                       0]
 0
   0
       0
           0 496
                  0
                       0]
   0
           0
              3 412
                       5]
   0
           0 17
                   0 45411
```



```
-----
| Classifiction Report |
-----
                precision recall f1-score support
                           1.00
0.87
          LAYING
                   1.00
                                     1.00
                                              537
                   0.98
                                     0.92
                                             491
         SITTING
                           0.98
        STANDING
                   0.90
                                    0.94
                                             532
         WALKING
                   0.96
                            1.00
                                    0.98
                                             496
WALKING_DOWNSTAIRS
                    1.00
                           0.98
                                     0.99
                                             420
 WALKING_UPSTAIRS
                    0.98
                            0.96
                                     0.97
                                              471
                                     0.97
                                             2947
        accuracy
                0.97 0.97
0.97 0.97
       macro avg
                                    0.97
                                             2947
     weighted avg
                                     0.97
                                             2947
In [34]:
print_grid_search_attributes(lr_svc_grid_results['model'])
    Best Estimator |
 -----
      LinearSVC(C=0.5, class_weight=None, dual=True, fit_intercept=True,
        intercept_scaling=1, loss='squared_hinge', max_iter=2500,
        multi_class='ovr', penalty='12', random_state=None, tol=5e-05,
        verbose=0)
 _____
```

```
Best parameters
   Parameters of best estimator :
```

```
{'C': 0.5, 'max_iter': 2500}
```

```
No of CrossValidation sets
```

Total number of cross validation sets: 5

```
Best Score
```

Average Cross Validate scores of best estimator :

0.9420644015594

3. Kernel SVM with GridSearch

In [35]:

```
training the model..
Fitting 5 folds for each of 18 candidates, totalling 90 fits
[Parallel(n jobs=-1)]: Using backend LokyBackend with 4 concurrent worker
[Parallel(n_jobs=-1)]: Done 42 tasks
                                         | elapsed: 9.0min
[Parallel(n_jobs=-1)]: Done 90 out of 90 | elapsed: 24.7min finished
C:\Users\SUBHODAYA KUMAR\Anaconda3\lib\site-packages\sklearn\svm\_base.py:
231: ConvergenceWarning: Solver terminated early (max_iter=2500). Conside
r pre-processing your data with StandardScaler or MinMaxScaler.
 % self.max_iter, ConvergenceWarning)
Done
training_time(HH:MM:SS.ms) - 0:24:48.975221
Predicting test data
Done
testing time(HH:MM:SS:ms) - 0:00:03.859448
______
     Accuracy
   0.9626739056667798
| Confusion Matrix |
______
                       01
[[537 0
            0
              0
                    0
   0 441 48
                      2]
               0
                   0
   0 12 520
                      0]
 [
               0
                   0
   0
       0
           0 489
                   2
                      5]
 [
 0
               4 397 19]
           0 17
                   1 453]]
   0
       0
```



```
-----
| Classifiction Report |
-----
                precision recall f1-score support
          LAYING
                   1.00
                            1.00
                                     1.00
                                               537
                    0.97
                            0.90
                                    0.93
                                              491
         SITTING
                            0.98
                                    0.95
        STANDING
                    0.92
                                              532
         WALKING
                   0.96
                            0.99
                                    0.97
                                              496
WALKING_DOWNSTAIRS
                   0.99
                            0.95
                                     0.97
                                               420
 WALKING_UPSTAIRS
                    0.95
                            0.96
                                      0.95
                                               471
                                     0.96
                                             2947
        accuracy
                0.96 0.96
0.96 0.96
       macro avg
                                    0.96
                                             2947
     weighted avg
                                     0.96
                                              2947
In [36]:
print_grid_search_attributes(rbf_svm_grid_results['model'])
    Best Estimator
______
      SVC(C=16, break_ties=False, cache_size=200, class_weight=None, coe
f0=0.0.
   decision_function_shape='ovr', degree=3, gamma=0.0078125, kernel='rb
f',
   max_iter=2500, probability=False, random_state=None, shrinking=True,
   tol=0.001, verbose=False)
   Best parameters
_____
      Parameters of best estimator :
      {'C': 16, 'gamma': 0.0078125, 'max_iter': 2500}
 No of CrossValidation sets
```

```
Total number of cross validation sets: 5
```

Best Score |

Average Cross Validate scores of best estimator :

0.9447834551903698

4. Decision Trees with GridSearchCV

In [37]:

```
from sklearn.tree import DecisionTreeClassifier
parameters = {'max_depth':np.arange(3,10,2)}
dt = DecisionTreeClassifier()
dt_grid = GridSearchCV(dt,param_grid=parameters,verbose =1, n_jobs=-1)
dt_grid_results = perform_model(dt_grid, X_train, y_train, X_test, y_test, class_labels = labels)
print_grid_search_attributes(dt_grid_results['model'])
```

```
training the model..
Fitting 5 folds for each of 4 candidates, totalling 20 fits
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 4 concurrent worker
[Parallel(n_jobs=-1)]: Done 20 out of 20 | elapsed: 27.7s finished
Done
training_time(HH:MM:SS.ms) - 0:00:32.422666
Predicting test data
Done
testing time(HH:MM:SS:ms) - 0:00:00.013007
Accuracy |
   0.8635900916185952
| Confusion Matrix |
-----
[[537 0 0 0 0
                      01
   0 385 106 0 0
                     0]
   0 93 439 0 0
                     0]
          0 472 16
   0
      0
                     8]
         0 16 343 61]
   0
      0
  0
     0 0 78 24 369]]
```



```
-----
| Classifiction Report |
-----
                precision recall f1-score support
                   1.00 1.00
0.81 0.78
0.81 0.83
0.83
         LAYING
                                     1.00
                                              537
         SITTING
                                   0.79
                                             491
        STANDING
                                   0.82
                                             532
         WALKING
                   0.83
                           0.95
                                   0.89
                                            496
                   0.90
                                    0.85
WALKING_DOWNSTAIRS
                           0.82
                                             420
                    0.84
                           0.78
 WALKING_UPSTAIRS
                                     0.81
                                              471
                                     0.86
                                            2947
        accuracy
                0.86 0.86
0.86 0.86
       macro avg
                                     0.86
                                            2947
     weighted avg
                                     0.86
                                             2947
------
    Best Estimator
 DecisionTreeClassifier(ccp_alpha=0.0, class_weight=None, criterion
='gini',
                  max_depth=7, max_features=None, max_leaf_nodes=Non
e,
                  min_impurity_decrease=0.0, min_impurity_split=None,
                  min_samples_leaf=1, min_samples_split=2,
                  min_weight_fraction_leaf=0.0, presort='deprecated',
                   random_state=None, splitter='best')
   Best parameters |
_____
      Parameters of best estimator :
      {'max_depth': 7}
_____
  No of CrossValidation sets
      Total number of cross validation sets: 5
   Best Score
      Average Cross Validate scores of best estimator :
      0.8522920684249226
```

5. Random Forest Classifier with GridSearch

In [38]:

```
from sklearn.ensemble import RandomForestClassifier
params = {'n_estimators': np.arange(10,201,20), 'max_depth':np.arange(3,15,2)}
rfc = RandomForestClassifier()
rfc_grid = GridSearchCV(rfc, param_grid=params, n_jobs=-1)
rfc_grid_results = perform_model(rfc_grid, X_train, y_train, X_test, y_test, class_labe ls=labels)
print_grid_search_attributes(rfc_grid_results['model'])
```

training the model.. Done training_time(HH:MM:SS.ms) - 6:33:24.344915 Predicting test data Done testing time(HH:MM:SS:ms) - 0:00:00.065963 Accuracy | 0.9280624363759755 | Confusion Matrix | -----[[537 0 0 0 0 0] [0 437 54 0 0 0] 0 41 491 0 0 0] 0 0 485 7 4] 0 0 20 358 42] 0

[0 0 0 38 6 427]]


```
-----
| Classifiction Report |
-----
               precision
                         recall f1-score support
         LAYING
                  1.00
                          1.00
                                   1.00
                                            537
                        0.89
0.92
                  0.91
                                   0.90
                                           491
        SITTING
                                  0.91
       STANDING
                  0.90
                                           532
        WALKING
                  0.89
                          0.98
                                  0.93
                                           496
WALKING_DOWNSTAIRS
                  0.96
                          0.85
                                  0.91
                                           420
 WALKING_UPSTAIRS
                   0.90
                          0.91
                                   0.90
                                           471
                                   0.93
                                          2947
       accuracy
               0.93 0.92
0.93 0.93
       macro avg
                                  0.93
                                          2947
                                   0.93
    weighted avg
                                           2947
------
    Best Estimator
  RandomForestClassifier(bootstrap=True, ccp_alpha=0.0, class_weight
=None,
                  criterion='gini', max_depth=11, max_features='aut
ο',
                  max_leaf_nodes=None, max_samples=None,
                  min_impurity_decrease=0.0, min_impurity_split=None,
                  min_samples_leaf=1, min_samples_split=2,
                  min_weight_fraction_leaf=0.0, n_estimators=70,
                  n_jobs=None, oob_score=False, random_state=None,
                  verbose=0, warm_start=False)
 _____
| Best parameters |
      Parameters of best estimator :
      {'max_depth': 11, 'n_estimators': 70}
_____
 No of CrossValidation sets
-----
      Total number of cross validation sets: 5
______
      Best Score
______
      Average Cross Validate scores of best estimator :
      0.9205694677599116
```

Using LSTM

In [2]:

```
# Raw data signals
# Signals are from Accelerometer and Gyroscope
# The signals are in x,y,z directions
# Sensor signals are filtered to have only body acceleration
# excluding the acceleration due to gravity
# Triaxial acceleration from the accelerometer is total acceleration
SIGNALS = [
    "body_acc_x",
    "body_acc_y",
    "body acc z"
    "body_gyro_x"
    "body_gyro_y"
    "body_gyro_z",
    "total_acc_x",
    "total_acc_y"
    "total_acc_z"
]
```

In [3]:

```
# Activities are the class labels
# It is a 6 class classification
ACTIVITIES = {
    0: 'WALKING',
    1: 'WALKING_UPSTAIRS',
    2: 'WALKING_DOWNSTAIRS',
    3: 'SITTING',
    4: 'STANDING',
    5: 'LAYING',
}
```

In [4]:

```
# Utility function to read the data from csv file
def _read_csv(filename):
    return pd.read_csv(filename, delim_whitespace=True, header=None)

# Utility function to load the load
def load_signals(subset):
    signals_data = []

for signal in SIGNALS:
    filename = f'UCI_HAR_Dataset/{subset}/Inertial Signals/{signal}_{subset}.txt'
    signals_data.append(
        _read_csv(filename).to_numpy()
    )

# Transpose is used to change the dimensionality of the output,
    # aggregating the signals by combination of sample/timestep.
    # Resultant shape is (7352 train/2947 test samples, 128 timesteps, 9 signals)
    return np.transpose(signals_data, (1, 2, 0))
```

```
In [5]:
```

```
def load_y(subset):
    """
    The objective that we are trying to predict is a integer, from 1 to 6,
    that represents a human activity. We return a binary representation of
    every sample objective as a 6 bits vector using One Hot Encoding
    (https://pandas.pydata.org/pandas-docs/stable/generated/pandas.get_dummies.html)
    """
    filename = f'UCI_HAR_Dataset/{subset}/y_{subset}.txt'
    y = _read_csv(filename)[0]
    return pd.get_dummies(y).to_numpy()
```

In [6]:

```
def load_data():
    """
    Obtain the dataset from multiple files.
    Returns: X_train, X_test, y_train, y_test
    """
    X_train, X_test = load_signals('train'), load_signals('test')
    y_train, y_test = load_y('train'), load_y('test')
    return X_train, X_test, y_train, y_test
```

In [7]:

```
# Loading the train and test data
X_train, X_test, Y_train, Y_test = load_data()
```

In [8]:

```
print('X_train and Y_train : ({},{})'.format(X_train.shape, Y_train.shape))
print('X_test and Y_test : ({},{})'.format(X_test.shape, Y_test.shape))
```

```
X_train and Y_train : ((7352, 128, 9),(7352, 6))
X_test and Y_test : ((2947, 128, 9),(2947, 6))
```

In [9]:

```
# Importing tensorflow
np.random.seed(42)
import tensorflow as tf
tf.set_random_seed(42)
```

C:\Users\SUBHODAYA KUMAR\Anaconda3\lib\site-packages\h5py__init__.py:36:
FutureWarning: Conversion of the second argument of issubdtype from `float
` to `np.floating` is deprecated. In future, it will be treated as `np.flo
at64 == np.dtype(float).type`.

from ._conv import register_converters as _register_converters

In [10]:

```
# Configuring a session
session_conf = tf.ConfigProto(
   intra_op_parallelism_threads=1,
   inter_op_parallelism_threads=1
)
```

In [11]:

```
# Import Keras
from keras import backend as K
sess = tf.Session(graph=tf.get_default_graph(), config=session_conf)
K.set_session(sess)
```

Using TensorFlow backend.

In [12]:

```
# Importing libraries
from keras.models import Sequential
from keras.layers import LSTM
from keras.layers.core import Dense, Dropout
from keras.layers import BatchNormalization
import matplotlib.pyplot as plt
from sklearn.metrics import confusion_matrix
```

In [13]:

```
# Plot train and cross validation loss
def plot_train_cv_loss(trained_model, epochs, colors=['b']):
    fig, ax = plt.subplots(1,1)
    ax.set_xlabel('epoch')
    ax.set_ylabel('Categorical Crossentropy Loss')
    x_axis_values = list(range(1,epochs+1))

validation_loss = trained_model.history['val_loss']
    train_loss = trained_model.history['loss']

ax.plot(x_axis_values, validation_loss, 'b', label="Validation Loss")
    ax.plot(x_axis_values, train_loss, 'r', label="Train Loss")
    plt.legend()
    plt.grid()
```

In [14]:

```
# Initializing parameters
epochs = 20
batch_size = 16
n_hidden = 32
```

In [15]:

```
# Utility function to count the number of classes
def _count_classes(y):
    return len(set([tuple(category) for category in y]))
```

In [16]:

7352

```
timesteps = len(X_train[0])
input_dim = len(X_train[0][0])
n_classes = _count_classes(Y_train)

print(timesteps)
print(input_dim)
print(len(X_train))
128
```

Defining the Architecture of LSTM

1. Using Categorical cross entropy

Lstm with 32 Neurons and dropout = 0.5

In [26]:

```
# Initiliazing the sequential model
model = Sequential()
# Configuring the parameters
model.add(LSTM(n_hidden, input_shape=(timesteps, input_dim)))
# Adding a dropout layer
model.add(Dropout(0.5))
# Adding a dense output layer with softmax activation
model.add(Dense(n_classes, activation='softmax'))
model.summary()
```

Layer (type)	Output Shape	Param #
lstm_2 (LSTM)	(None, 32)	5376
dropout_2 (Dropout)	(None, 32)	0
dense_2 (Dense)	(None, 6)	198
Total params: 5,574 Trainable params: 5,574		:==========

Trainable params: 5,574
Non-trainable params: 0

In [27]:

In [28]:

```
Train on 7352 samples, validate on 2947 samples
Epoch 1/20
7352/7352 [============ ] - 63s 9ms/step - loss: 1.2493 -
acc: 0.4771 - val_loss: 1.1263 - val_acc: 0.5249
Epoch 2/20
7352/7352 [============= ] - 64s 9ms/step - loss: 0.8962 -
acc: 0.6400 - val_loss: 0.8150 - val_acc: 0.6583
Epoch 3/20
7352/7352 [============= ] - 78s 11ms/step - loss: 0.6823
- acc: 0.7270 - val_loss: 0.7150 - val_acc: 0.7089
Epoch 4/20
7352/7352 [============= ] - 70s 9ms/step - loss: 0.5654 -
acc: 0.7847 - val loss: 0.6458 - val acc: 0.7598
Epoch 5/20
7352/7352 [=============== ] - 75s 10ms/step - loss: 0.4815
- acc: 0.8341 - val_loss: 0.5712 - val_acc: 0.8083
Epoch 6/20
- acc: 0.8677 - val_loss: 0.5977 - val_acc: 0.8157
Epoch 7/20
acc: 0.8774 - val_loss: 0.4612 - val_acc: 0.8507
Epoch 8/20
7352/7352 [============= ] - 63s 9ms/step - loss: 0.3599 -
acc: 0.8856 - val_loss: 0.4794 - val_acc: 0.8531
Epoch 9/20
7352/7352 [============= ] - 61s 8ms/step - loss: 0.2909 -
acc: 0.9027 - val_loss: 0.4683 - val_acc: 0.8626
Epoch 10/20
7352/7352 [============= ] - 60s 8ms/step - loss: 0.2663 -
acc: 0.9170 - val_loss: 0.4647 - val_acc: 0.8704
Epoch 11/20
7352/7352 [============= ] - 67s 9ms/step - loss: 0.2455 -
acc: 0.9197 - val_loss: 0.3502 - val_acc: 0.8833
Epoch 12/20
7352/7352 [============= ] - 60s 8ms/step - loss: 0.2087 -
acc: 0.9350 - val_loss: 0.4795 - val_acc: 0.8714
Epoch 13/20
acc: 0.9368 - val_loss: 0.4011 - val_acc: 0.8846
Epoch 14/20
7352/7352 [============== ] - 59s 8ms/step - loss: 0.1789 -
acc: 0.9377 - val loss: 0.4671 - val acc: 0.8792
Epoch 15/20
7352/7352 [============== ] - 58s 8ms/step - loss: 0.1841 -
acc: 0.9358 - val_loss: 0.4134 - val_acc: 0.8809
Epoch 16/20
7352/7352 [=============== ] - 62s 8ms/step - loss: 0.1656 -
acc: 0.9403 - val loss: 0.5781 - val acc: 0.8558
7352/7352 [=============== ] - 54s 7ms/step - loss: 0.1615 -
acc: 0.9423 - val_loss: 0.3758 - val_acc: 0.8785
Epoch 18/20
7352/7352 [============= ] - 53s 7ms/step - loss: 0.1711 -
acc: 0.9412 - val loss: 0.4839 - val acc: 0.8989
Epoch 19/20
7352/7352 [============= ] - 52s 7ms/step - loss: 0.1561 -
acc: 0.9444 - val_loss: 0.4008 - val_acc: 0.8880
Epoch 20/20
7352/7352 [============= ] - 52s 7ms/step - loss: 0.1521 -
acc: 0.9456 - val loss: 0.4773 - val acc: 0.9013
```

In [29]:

```
import matplotlib.pyplot as plt
%matplotlib inline
plot_train_cv_loss(training,epochs)
```


• best epoch is 5. It starts overfitting from epoch 6. Best accuracy is 80.83%

In [30]:

```
# Utility function to print the confusion matrix
def confusion_matrix(Y_true, Y_pred):
    Y_true = pd.Series([ACTIVITIES[y] for y in np.argmax(Y_true, axis=1)])
    Y_pred = pd.Series([ACTIVITIES[y] for y in np.argmax(Y_pred, axis=1)])
    return pd.crosstab(Y_true, Y_pred, rownames=['True'], colnames=['Pred'])
```

```
In [31]:
```

```
# Confusion Matrix
print(confusion_matrix(Y_test, model.predict(X_test)))
Pred
                    LAYING SITTING STANDING WALKING WALKING_DOWNSTAIRS
\
True
LAYING
                       513
                                  0
                                            0
                                                      0
                                                                          0
SITTING
                         0
                                362
                                          123
                                                      2
                                                                          0
STANDING
                         0
                                 43
                                          481
                                                      2
                                                                          0
WALKING
                         0
                                  0
                                            0
                                                    440
                                                                         43
WALKING_DOWNSTAIRS
                         0
                                  0
                                             0
                                                      3
                                                                        413
WALKING_UPSTAIRS
                                  2
                                             0
                                                     10
                         0
                                                                         12
Pred
                    WALKING_UPSTAIRS
True
LAYING
                                  24
SITTING
                                   4
STANDING
                                   6
WALKING
                                  13
WALKING DOWNSTAIRS
                                   4
                                 447
WALKING_UPSTAIRS
In [32]:
score = model.evaluate(X_test, Y_test)
2947/2947 [===========] - 2s 743us/step
In [33]:
score
Out[33]:
[0.4773142791923584, 0.9012555140821175]
In [35]:
# Initializing parameters
epochs = 20
batch_size = 25
n hidden = 100
```

1 LSTM neuron, dropout = 0.5

In [36]:

```
# Initiliazing the sequential model
model = Sequential()
# Configuring the parameters
model.add(LSTM(n_hidden, input_shape=(timesteps, input_dim)))
# Adding a dropout layer
model.add(Dropout(0.5))
# Adding a dense output layer with softmax activation
model.add(Dense(n_classes, activation='softmax'))
model.summary()
```

Layer (type)	Output Shape	Param #
lstm_3 (LSTM)	(None, 100)	44000
dropout_3 (Dropout)	(None, 100)	0
dense_3 (Dense)	(None, 6)	606

Total params: 44,606 Trainable params: 44,606 Non-trainable params: 0

In [37]:

In [38]:

```
Train on 7352 samples, validate on 2947 samples
Epoch 1/20
7352/7352 [============ ] - 69s 9ms/step - loss: 1.1250 -
acc: 0.5233 - val loss: 0.9185 - val acc: 0.6284
Epoch 2/20
7352/7352 [============= ] - 65s 9ms/step - loss: 0.6764 -
acc: 0.7339 - val_loss: 0.8082 - val_acc: 0.7160
7352/7352 [============= ] - 64s 9ms/step - loss: 0.4409 -
acc: 0.8459 - val_loss: 0.4999 - val_acc: 0.8385
Epoch 4/20
7352/7352 [============= ] - 67s 9ms/step - loss: 0.2895 -
acc: 0.9045 - val loss: 0.4942 - val acc: 0.8487
Epoch 5/20
acc: 0.9091 - val_loss: 0.6874 - val_acc: 0.8035
Epoch 6/20
acc: 0.9210 - val_loss: 0.3685 - val_acc: 0.8670
Epoch 7/20
7352/7352 [============= ] - 67s 9ms/step - loss: 0.1972 -
acc: 0.9276 - val_loss: 0.2790 - val_acc: 0.8880
Epoch 8/20
7352/7352 [============= ] - 65s 9ms/step - loss: 0.1691 -
acc: 0.9389 - val_loss: 0.2891 - val_acc: 0.9070
Epoch 9/20
7352/7352 [============= ] - 65s 9ms/step - loss: 0.1814 -
acc: 0.9346 - val_loss: 0.4373 - val_acc: 0.8724
Epoch 10/20
7352/7352 [============= ] - 62s 8ms/step - loss: 0.1615 -
acc: 0.9444 - val_loss: 0.3042 - val_acc: 0.9043
Epoch 11/20
7352/7352 [============= ] - 62s 8ms/step - loss: 0.1722 -
acc: 0.9395 - val_loss: 0.4271 - val_acc: 0.8792
Epoch 12/20
7352/7352 [============= ] - 66s 9ms/step - loss: 0.1467 -
acc: 0.9463 - val_loss: 0.3115 - val_acc: 0.9080
Epoch 13/20
acc: 0.9476 - val_loss: 0.3082 - val_acc: 0.9172
Epoch 14/20
7352/7352 [============== ] - 65s 9ms/step - loss: 0.1601 -
acc: 0.9450 - val loss: 0.3276 - val acc: 0.8965
Epoch 15/20
7352/7352 [============= ] - 62s 8ms/step - loss: 0.1555 -
acc: 0.9450 - val_loss: 0.2865 - val_acc: 0.9158
Epoch 16/20
7352/7352 [=============== ] - 68s 9ms/step - loss: 0.1355 -
acc: 0.9474 - val loss: 0.3982 - val acc: 0.9087
7352/7352 [=============== ] - 64s 9ms/step - loss: 0.1327 -
acc: 0.9494 - val_loss: 0.2422 - val_acc: 0.9216
Epoch 18/20
7352/7352 [============== ] - 65s 9ms/step - loss: 0.1380 -
acc: 0.9482 - val loss: 0.3390 - val acc: 0.9138
Epoch 19/20
7352/7352 [============= - - 71s 10ms/step - loss: 0.1330
- acc: 0.9487 - val_loss: 0.3944 - val_acc: 0.9108
Epoch 20/20
7352/7352 [============== ] - 75s 10ms/step - loss: 0.1411
- acc: 0.9479 - val loss: 0.3169 - val acc: 0.9186
```

In [39]:

• best epoch is 4. It starts overfitting from 5. Best accuracy is 84.87%

In [40]:

<pre># Confusion Matrix print(confusion_mat</pre>	:rix(Y_te	st, model	.predict(>	(_test)))		
Pred	LAYING	SITTING	STANDING	WALKING	WALKING_DOWNSTA	
IRS \					_	
True						
_AYING	513	0	0	0		
)						
SITTING	0	412	77	0		
9						
STANDING	0	91	440	0		
)			_			
IALKING	0	1	0	467		
	0	0	0	7		
NALKING_DOWNSTAIRS 112	0	0	0	7		
ALKING_UPSTAIRS	0	0	0	7		
ALKING_OFSTAIRS	v	ð	ð	,		
red	WALKING	_UPSTAIRS				
rue		_				
AYING		24				
ITTING		2				
TANDING		1				
ALKING		26				
ALKING_DOWNSTAIRS		1				
NALKING_UPSTAIRS		463				
4					•	_

In [41]:

```
score1 = model.evaluate(X_test, Y_test)
```

2947/2947 [==========] - 4s 2ms/step

In [42]:

score1

Out[42]:

[0.31687591483809235, 0.9185612487275195]

1 LSTM neuron and dropout = 0.8

In [43]:

```
# Initiliazing the sequential model
model = Sequential()
# Configuring the parameters
model.add(LSTM(n_hidden, input_shape=(timesteps, input_dim)))
# Adding a dropout layer
model.add(Dropout(0.8))
# Adding a dense output layer with softmax activation
model.add(Dense(n_classes, activation='softmax'))
model.summary()
```

Layer (type)	Output Shape	Param #
lstm_4 (LSTM)	(None, 100)	44000
dropout_4 (Dropout)	(None, 100)	0
dense_4 (Dense)	(None, 6)	606

Total params: 44,606 Trainable params: 44,606 Non-trainable params: 0

non crainable params. o

In [44]:

In [45]:

```
Train on 7352 samples, validate on 2947 samples
Epoch 1/20
7352/7352 [============ ] - 68s 9ms/step - loss: 1.2264 -
acc: 0.4887 - val_loss: 1.0311 - val_acc: 0.5487
Epoch 2/20
7352/7352 [============= ] - 69s 9ms/step - loss: 0.7971 -
acc: 0.6697 - val_loss: 0.7719 - val_acc: 0.7177
Epoch 3/20
7352/7352 [============= ] - 67s 9ms/step - loss: 0.6355 -
acc: 0.7565 - val_loss: 0.7894 - val_acc: 0.7414
Epoch 4/20
7352/7352 [============= ] - 66s 9ms/step - loss: 0.6046 -
acc: 0.7780 - val loss: 0.5702 - val acc: 0.7842
Epoch 5/20
7352/7352 [============== ] - 111s 15ms/step - loss: 0.4820
- acc: 0.8453 - val_loss: 0.6750 - val_acc: 0.7913
Epoch 6/20
7352/7352 [============= ] - 68s 9ms/step - loss: 0.3836 -
acc: 0.8856 - val_loss: 0.3708 - val_acc: 0.8856
Epoch 7/20
7352/7352 [============= ] - 67s 9ms/step - loss: 0.3273 -
acc: 0.9033 - val_loss: 0.3263 - val_acc: 0.8945
Epoch 8/20
7352/7352 [============= ] - 61s 8ms/step - loss: 0.2793 -
acc: 0.9161 - val_loss: 0.4566 - val_acc: 0.8728
Epoch 9/20
7352/7352 [============= ] - 68s 9ms/step - loss: 0.3065 -
acc: 0.9117 - val_loss: 0.3411 - val_acc: 0.8975
Epoch 10/20
7352/7352 [============= ] - 61s 8ms/step - loss: 0.2533 -
acc: 0.9244 - val_loss: 0.2669 - val_acc: 0.9084
Epoch 11/20
7352/7352 [============= ] - 63s 9ms/step - loss: 0.2275 -
acc: 0.9293 - val_loss: 0.2700 - val_acc: 0.9141
Epoch 12/20
7352/7352 [============= ] - 61s 8ms/step - loss: 0.2254 -
acc: 0.9294 - val_loss: 0.2860 - val_acc: 0.8975
Epoch 13/20
acc: 0.9317 - val_loss: 0.2784 - val_acc: 0.9111
Epoch 14/20
7352/7352 [============= ] - 74s 10ms/step - loss: 0.1885
- acc: 0.9382 - val loss: 0.2451 - val acc: 0.9226
Epoch 15/20
7352/7352 [============== ] - 9698s 1s/step - loss: 0.1989
- acc: 0.9359 - val_loss: 0.2850 - val_acc: 0.9179
Epoch 16/20
7352/7352 [============== ] - 71s 10ms/step - loss: 0.2160
- acc: 0.9355 - val_loss: 0.5077 - val_acc: 0.8870
Epoch 17/20
7352/7352 [=============== ] - 69s 9ms/step - loss: 0.1547 -
acc: 0.9457 - val_loss: 0.3843 - val_acc: 0.9101
Epoch 18/20
- acc: 0.9449 - val loss: 0.3438 - val acc: 0.9189
Epoch 19/20
7352/7352 [============= ] - 69s 9ms/step - loss: 0.1563 -
acc: 0.9442 - val_loss: 0.4069 - val_acc: 0.9009
Epoch 20/20
7352/7352 [============= ] - 67s 9ms/step - loss: 0.1877 -
acc: 0.9406 - val loss: 0.3464 - val acc: 0.9220
```

In [46]:

plot_train_cv_loss(training,epochs)

• best epoch is 2. It starts overfitting from 3. Best accuracy is 71.77%

In [47]:

Confusion_matrix(Y_test, model.predict(X_test)) Confusion_matrix(Y_test, model.predict(X_test, model.predict							
e	<pre># Confusion Matrix print(confusion_mat</pre>	trix(Y_te	est, model	.predict()	(_test)))		
e	Pred	LAYING	SITTING	STANDING	WALKING	WALKING DOWNSTA	
TING 514 0 23 0 TING 0 376 113 0 NDING 0 60 467 3 KING 0 0 0 485 KING_DOWNSTAIRS 0 0 2 2 KING_UPSTAIRS 0 4 0 7 d WALKING_UPSTAIRS e ING 0 0 TING 0 TING 2 NDING 2 KING_DOWNSTAIRS 1	IRS \					_	
TING 0 376 113 0 NDING 0 60 467 3 KING 0 0 0 485 KING_DOWNSTAIRS 0 0 2 2 KING_UPSTAIRS 0 4 0 7 d WALKING_UPSTAIRS e ING 0 TING 0 TING 2 NDING 2 KING_DOWNSTAIRS 1	True						
NDING 0 60 467 3 KING 0 0 0 485 KING_DOWNSTAIRS 0 0 2 2 KING_UPSTAIRS 0 4 0 7 d WALKING_UPSTAIRS e ING 0 TING 2 NDING 2 KING_DOWNSTAIRS 1	_AYING	514	0	23	0		
NDING 0 60 467 3 KING 0 0 0 485 KING_DOWNSTAIRS 0 0 2 2 KING_UPSTAIRS 0 4 0 7 d WALKING_UPSTAIRS e ING 0 TING 2 NDING 2 KING_DOWNSTAIRS 1)						
KING 0 0 0 485 KING_DOWNSTAIRS 0 0 2 2 KING_UPSTAIRS 0 4 0 7 d WALKING_UPSTAIRS e ING 0 1 TING 0 2 NDING 2 KING_DOWNSTAIRS 1	SITTING	0	376	113	0		
KING 0 0 0 485 KING_DOWNSTAIRS 0 0 2 2 KING_UPSTAIRS 0 4 0 7 d WALKING_UPSTAIRS e ING 0 1 TING 0 2 NDING 2 KING_DOWNSTAIRS 1	9						
KING_DOWNSTAIRS 0 0 2 2 KING_UPSTAIRS 0 4 0 7 d	STANDING	0	60	467	3		
KING_DOWNSTAIRS 0 0 2 2 KING_UPSTAIRS 0 4 0 7 d)			_			
KING_UPSTAIRS 0 4 0 7 d WALKING_UPSTAIRS e ING 0 TING 2 NDING 2 KING 9 KING_DOWNSTAIRS 1	ALKING	0	0	0	485		
KING_UPSTAIRS 0 4 0 7 d WALKING_UPSTAIRS e ING 0 TING 2 NDING 2 KING 9 KING_DOWNSTAIRS 1		•	•	2	2		
KING_UPSTAIRS 0 4 0 7 d WALKING_UPSTAIRS e ING 0 TING 2 NDING 2 KING 9 KING_DOWNSTAIRS 1	IALKING_DOWNSTAIRS	0	0	2	2		
d WALKING_UPSTAIRS e ING 0 TING 2 NDING 2 KING 9 KING_DOWNSTAIRS 1		a	1	a	7		
e O O O O O O O O O O O O O O O O O O O	ALKING_UPSTAIKS	V	4	Ø	/		
e O O O O O O O O O O O O O O O O O O O							
e O O O O O O O O O O O O O O O O O O O	ed	WALKING	UPSTAIRS				
TING 2 NDING 2 KING 9 KING_DOWNSTAIRS 1	rue		_				
NDING 2 KING 9 KING_DOWNSTAIRS 1	AYING		0				
KING 9 KING_DOWNSTAIRS 1	ITTING		2				
KING_DOWNSTAIRS 1	ΓANDING		2				
_	ALKING		9				
KING_UPSTAIRS 460	ALKING_DOWNSTAIRS						
	ALKING_UPSTAIRS		460				
	4					•	_

In [48]:

```
score2 = model.evaluate(X_test, Y_test)
```

2947/2947 [==========] - 4s 1ms/step

In [49]:

score2

Out[49]:

[0.34641228316512473, 0.9219545300305395]

2 LSTM Neurons, dropout = 0.3

In [50]:

```
# Initiliazing the sequential model
model = Sequential()
# Configuring the parameters
model.add(LSTM(n_hidden, input_shape=(timesteps, input_dim), return_sequences = True))
# Adding a dropout layer
model.add(Dropout(0.3))
#Adding another LSTM layer
model.add(LSTM(200,))
# Adding a dense output layer with softmax activation
model.add(Dense(n_classes, activation='softmax'))
model.summary()
```

Layer (type)	Output Shape	Param #
lstm_5 (LSTM)	(None, 128, 100)	44000
dropout_5 (Dropout)	(None, 128, 100)	0
lstm_6 (LSTM)	(None, 200)	240800
dense_5 (Dense)	(None, 6)	1206

Total params: 286,006 Trainable params: 286,006 Non-trainable params: 0

In [51]:

In [52]:

```
Train on 7352 samples, validate on 2947 samples
Epoch 1/20
7352/7352 [============ ] - 275s 37ms/step - loss: 0.8513
- acc: 0.6474 - val_loss: 0.6581 - val_acc: 0.7591
Epoch 2/20
7352/7352 [============= ] - 263s 36ms/step - loss: 0.3927
- acc: 0.8628 - val_loss: 0.4598 - val_acc: 0.8714
Epoch 3/20
- acc: 0.9214 - val_loss: 0.3534 - val_acc: 0.8884
Epoch 4/20
- acc: 0.9336 - val loss: 0.3017 - val acc: 0.8938
Epoch 5/20
7352/7352 [================ ] - 254s 35ms/step - loss: 0.1575
- acc: 0.9402 - val_loss: 0.5074 - val_acc: 0.8582
Epoch 6/20
7352/7352 [============= ] - 253s 34ms/step - loss: 0.1477
- acc: 0.9459 - val_loss: 0.5478 - val_acc: 0.8945
Epoch 7/20
7352/7352 [=============== ] - 254s 35ms/step - loss: 0.1292
- acc: 0.9479 - val_loss: 1.6674 - val_acc: 0.7577
Epoch 8/20
7352/7352 [============= ] - 253s 34ms/step - loss: 0.1397
- acc: 0.9487 - val_loss: 0.4490 - val_acc: 0.9013
Epoch 9/20
7352/7352 [============= ] - 254s 35ms/step - loss: 0.1385
- acc: 0.9486 - val_loss: 0.4238 - val_acc: 0.8941
Epoch 10/20
7352/7352 [============= ] - 253s 34ms/step - loss: 0.1310
- acc: 0.9494 - val_loss: 0.3110 - val_acc: 0.9084
Epoch 11/20
7352/7352 [============= ] - 254s 35ms/step - loss: 0.1174
- acc: 0.9523 - val_loss: 0.3603 - val_acc: 0.9091
Epoch 12/20
7352/7352 [============= ] - 254s 34ms/step - loss: 0.1365
- acc: 0.9482 - val_loss: 0.4595 - val_acc: 0.9138
Epoch 13/20
- acc: 0.9532 - val_loss: 0.6116 - val_acc: 0.8901
Epoch 14/20
7352/7352 [=============== ] - 254s 35ms/step - loss: 0.1229
- acc: 0.9521 - val loss: 0.3600 - val acc: 0.8989
Epoch 15/20
7352/7352 [=============== ] - 253s 34ms/step - loss: 0.1224
- acc: 0.9524 - val_loss: 0.3764 - val_acc: 0.9226
Epoch 16/20
7352/7352 [============== ] - 256s 35ms/step - loss: 0.1209
- acc: 0.9531 - val_loss: 0.4333 - val_acc: 0.9013
Epoch 17/20
7352/7352 [============== ] - 254s 35ms/step - loss: 0.1130
- acc: 0.9543 - val_loss: 0.3927 - val_acc: 0.9002
Epoch 18/20
7352/7352 [============= ] - 254s 35ms/step - loss: 0.1213
- acc: 0.9536 - val loss: 0.4373 - val acc: 0.9002
Epoch 19/20
7352/7352 [============= ] - 253s 34ms/step - loss: 0.1200
- acc: 0.9533 - val_loss: 0.4428 - val_acc: 0.9050
Epoch 20/20
7352/7352 [============= ] - 254s 35ms/step - loss: 0.1115
- acc: 0.9559 - val loss: 0.4286 - val acc: 0.8901
```

In [53]:

plot_train_cv_loss(training,epochs)

• Best epoch is 6. It starts overfitting from 7. Best accuracy is 88.43%

In [54]:

<pre># Confusion Matrix print(confusion_mat</pre>	rix(Y_te	st, model	.predict()	(_test)))		
Pred	LAYING	SITTING	STANDING	WALKING	WALKING_DOWNSTA	
IRS \					_	
True						
LAYING	537	0	0	0		
9						
SITTING	7	303	164	0		
9						
STANDING	0	62	470	0		
) 		•		466		
NALKING	1	0	0	466		
28	0	0	0	5		
WALKING_DOWNSTAIRS 415	V	U	Ø	5		
NALKING_UPSTAIRS	0	0	3	2		
34	Ū	Ū		_		
red	WALKING	_UPSTAIRS				
rue						
AYING		0				
SITTING		17				
STANDING		0				
VALKING		1				
ALKING_DOWNSTAIRS		0				
WALKING_UPSTAIRS		432				

In [55]:

```
score3 = model.evaluate(X_test, Y_test)
```

2947/2947 [==========] - 20s 7ms/step

In [56]:

score3

Out[56]:

[0.4285913717844088, 0.8900576857821514]

2 LSTM Neurons, 2 dropouts

In [57]:

```
# Initiliazing the sequential model
model = Sequential()
# Configuring the parameters
model.add(LSTM(n_hidden, input_shape=(timesteps, input_dim), return_sequences = True))
# Adding a dropout layer
model.add(Dropout(0.8))
#Adding another LSTM layer
model.add(LSTM(200,))
#Adding another dropout
model.add(Dropout(0.9))
# Adding a dense output layer with softmax activation
model.add(Dense(n_classes, activation='softmax'))
model.summary()
```

Layer (type)	Output Shape	Param #
lstm_7 (LSTM)	(None, 128, 100)	44000
dropout_6 (Dropout)	(None, 128, 100)	0
lstm_8 (LSTM)	(None, 200)	240800
dropout_7 (Dropout)	(None, 200)	0
dense_6 (Dense)	(None, 6)	1206

Total params: 286,006
Trainable params: 286,006

Non-trainable params: 0

In [58]:

In [59]:

```
Train on 7352 samples, validate on 2947 samples
Epoch 1/20
7352/7352 [============= ] - 252s 34ms/step - loss: 1.1332
- acc: 0.5339 - val loss: 0.9220 - val acc: 0.5969
Epoch 2/20
7352/7352 [============= ] - 246s 33ms/step - loss: 0.7717
- acc: 0.7016 - val_loss: 0.5850 - val_acc: 0.7944
Epoch 3/20
- acc: 0.8384 - val_loss: 0.9801 - val_acc: 0.7336
Epoch 4/20
- acc: 0.9064 - val loss: 0.4577 - val acc: 0.8673
Epoch 5/20
7352/7352 [================ ] - 244s 33ms/step - loss: 0.3470
- acc: 0.9059 - val_loss: 0.3690 - val_acc: 0.8968
Epoch 6/20
7352/7352 [============== ] - 246s 33ms/step - loss: 0.2379
- acc: 0.9268 - val_loss: 0.5971 - val_acc: 0.8877
Epoch 7/20
7352/7352 [=============== ] - 244s 33ms/step - loss: 0.2438
- acc: 0.9241 - val_loss: 0.4849 - val_acc: 0.8863
Epoch 8/20
7352/7352 [============= ] - 246s 33ms/step - loss: 0.2152
- acc: 0.9309 - val_loss: 0.5039 - val_acc: 0.8975
Epoch 9/20
- acc: 0.9358 - val_loss: 0.4874 - val_acc: 0.8979
Epoch 10/20
7352/7352 [============= ] - 245s 33ms/step - loss: 0.1851
- acc: 0.9411 - val_loss: 0.5944 - val_acc: 0.8799
Epoch 11/20
7352/7352 [============= ] - 243s 33ms/step - loss: 0.2013
- acc: 0.9380 - val_loss: 0.4567 - val_acc: 0.8975
Epoch 12/20
7352/7352 [============= ] - 244s 33ms/step - loss: 0.2087
- acc: 0.9373 - val_loss: 0.3415 - val_acc: 0.9141
Epoch 13/20
- acc: 0.9403 - val_loss: 0.4524 - val_acc: 0.9172
Epoch 14/20
7352/7352 [============== ] - 244s 33ms/step - loss: 0.2363
- acc: 0.9327 - val loss: 0.4763 - val acc: 0.8962
Epoch 15/20
7352/7352 [============== ] - 243s 33ms/step - loss: 0.1942
- acc: 0.9392 - val_loss: 0.4625 - val_acc: 0.9138
Epoch 16/20
7352/7352 [=============== ] - 254s 35ms/step - loss: 0.1886
- acc: 0.9372 - val_loss: 0.4423 - val_acc: 0.9050
Epoch 17/20
7352/7352 [============== ] - 244s 33ms/step - loss: 0.2356
- acc: 0.9363 - val_loss: 0.3744 - val_acc: 0.9165
Epoch 18/20
7352/7352 [============= ] - 243s 33ms/step - loss: 0.1859
- acc: 0.9419 - val loss: 0.4307 - val acc: 0.9053
Epoch 19/20
7352/7352 [============= ] - 244s 33ms/step - loss: 0.1963
- acc: 0.9388 - val_loss: 0.8534 - val_acc: 0.8823
Epoch 20/20
7352/7352 [============= ] - 243s 33ms/step - loss: 0.1731
- acc: 0.9422 - val loss: 0.4226 - val acc: 0.9186
```

In [60]:

plot_train_cv_loss(training,epochs)

• Best epoch is 2. It starts overfitting from 3. Best accuracy is 79.44%

In [61]:

<pre># Confusion Matrix print(confusion_mat</pre>	rix(Y_te	est, model	.predict()	(_test)))		
Pred	LAYING	SITTING	STANDING	WALKING	WALKING_DOWNSTA	
IRS \					- · ·	
True						
AYING	535	0	0	0		
9						
SITTING	0	383	84	20		
0						
STANDING	0	70	462	0		
9						
WALKING	0	0	0	453		
32						
WALKING_DOWNSTAIRS	0	0	0	1		
417						
ALKING_UPSTAIRS	0	0	2	12		
ed	WALKING	_UPSTAIRS				
rue						
AYING		2				
SITTING		4				
STANDING		0				
IALKING		11				
NALKING_DOWNSTAIRS		2				
WALKING_UPSTAIRS		457				
•					•	_

In [62]:

```
score4 = model.evaluate(X_test, Y_test)
```

2947/2947 [==========] - 20s 7ms/step

In [63]:

score4

Out[63]:

[0.4225864914956355, 0.9185612487275195]

LSTM with 2 Neurons, 2 dropouts, BatchNormalization

In [64]:

```
from keras.layers import BatchNormalization

# Initiliazing the sequential model
model = Sequential()
# Configuring the parameters
model.add(LSTM(n_hidden, input_shape=(timesteps, input_dim), return_sequences = True))
# Adding a dropout layer
model.add(Dropout(0.4))
#Adding another LSTM layer
model.add(LSTM(200,))
model.add(Dropout(0.3))
model.add(BatchNormalization())
# Adding a dense output layer with softmax activation
model.add(Dense(n_classes, activation='softmax'))
model.summary()
```

Layer (type)	Output	Shape	Param #
lstm_9 (LSTM)	(None,	128, 100)	44000
dropout_8 (Dropout)	(None,	128, 100)	0
lstm_10 (LSTM)	(None,	200)	240800
dropout_9 (Dropout)	(None,	200)	0
batch_normalization_1 (Batch	(None,	200)	800
dense_7 (Dense)	(None,	6)	1206
Total params: 286,806 Trainable params: 286,406 Non-trainable params: 400	=====		======

In [65]:

In [66]:

```
Train on 7352 samples, validate on 2947 samples
Epoch 1/20
7352/7352 [============= ] - 258s 35ms/step - loss: 0.7539
- acc: 0.6946 - val loss: 0.7905 - val acc: 0.8168
Epoch 2/20
7352/7352 [============= ] - 254s 34ms/step - loss: 0.3233
- acc: 0.8832 - val_loss: 2.1740 - val_acc: 0.6749
Epoch 3/20
- acc: 0.9219 - val_loss: 0.3659 - val_acc: 0.8887
Epoch 4/20
- acc: 0.9253 - val loss: 0.3399 - val acc: 0.8873
Epoch 5/20
- acc: 0.9346 - val_loss: 0.3335 - val_acc: 0.8979
Epoch 6/20
7352/7352 [============= ] - 254s 35ms/step - loss: 0.1688
- acc: 0.9388 - val_loss: 0.3956 - val_acc: 0.8951
Epoch 7/20
7352/7352 [============== ] - 254s 35ms/step - loss: 0.1707
- acc: 0.9381 - val_loss: 0.4188 - val_acc: 0.9016
Epoch 8/20
7352/7352 [============= ] - 255s 35ms/step - loss: 0.1402
- acc: 0.9455 - val_loss: 0.2998 - val_acc: 0.9192
Epoch 9/20
7352/7352 [============= ] - 255s 35ms/step - loss: 0.1574
- acc: 0.9436 - val_loss: 0.3202 - val_acc: 0.9084
Epoch 10/20
7352/7352 [============= ] - 253s 34ms/step - loss: 0.1282
- acc: 0.9510 - val_loss: 0.4077 - val_acc: 0.9131
Epoch 11/20
7352/7352 [============== ] - 253s 34ms/step - loss: 0.1514
- acc: 0.9442 - val_loss: 0.5656 - val_acc: 0.9002
Epoch 12/20
7352/7352 [============= ] - 254s 35ms/step - loss: 0.1442
- acc: 0.9508 - val_loss: 0.4424 - val_acc: 0.9087
Epoch 13/20
7352/7352 [=============== ] - 253s 34ms/step - loss: 0.1350
- acc: 0.9502 - val_loss: 0.3248 - val_acc: 0.9138
Epoch 14/20
7352/7352 [============== ] - 253s 34ms/step - loss: 0.1374
- acc: 0.9483 - val loss: 0.4426 - val acc: 0.8867
Epoch 15/20
7352/7352 [=============== ] - 254s 34ms/step - loss: 0.1296
- acc: 0.9506 - val_loss: 0.7787 - val_acc: 0.8918
Epoch 16/20
7352/7352 [=============== ] - 253s 34ms/step - loss: 0.1291
- acc: 0.9518 - val_loss: 0.4181 - val_acc: 0.8609
Epoch 17/20
7352/7352 [================ ] - 255s 35ms/step - loss: 0.1367
- acc: 0.9524 - val_loss: 0.3223 - val_acc: 0.9114
Epoch 18/20
7352/7352 [============= ] - 254s 35ms/step - loss: 0.1335
- acc: 0.9499 - val loss: 0.3935 - val acc: 0.9141
Epoch 19/20
7352/7352 [============= ] - 255s 35ms/step - loss: 0.1276
- acc: 0.9509 - val_loss: 0.5231 - val_acc: 0.9040
Epoch 20/20
7352/7352 [============= ] - 253s 34ms/step - loss: 0.1295
- acc: 0.9510 - val loss: 0.5820 - val acc: 0.9050
```

In [67]:

plot_train_cv_loss(training,epochs)

• best epoch is 4. It starts overfitting from 5. Best accuracy is 61.18%

In [68]:

<pre># Confusion Matrix print(confusion_mat</pre>	:rix(Y_te	est, model	.predict(>	(_test)))		
Pred	LAYING	SITTING	STANDING	WALKING	WALKING_DOWNSTA	
IRS \						
True						
AYING	537	0	0	0		
	_			_		
SITTING ð	5	416	66	2		
TANDING	0	97	421	13		
IANDING	0	97	421	13		
, IALKING	0	0	0	481		
5	Ŭ	Ū	Ü	701		
ALKING_DOWNSTAIRS	0	0	0	38		
78						
ALKING_UPSTAIRS	0	0	0	33		
ed	WALKING	_UPSTAIRS				
rue		_				
AYING		0				
TTING		2				
ANDING		1				
ALKING		0				
ALKING_DOWNSTAIRS		4				
ALKING_UPSTAIRS		434				
					•	_

In [69]:

```
score5 = model.evaluate(X_test, Y_test)
```

2947/2947 [==========] - 20s 7ms/step

In [70]:

score5

Out[70]:

[0.5819538532469711, 0.9049881235154394]

2. Using Binary CrossEntropy

1 LSTM Neuron and dropout = 0.4

In [71]:

```
# Initiliazing the sequential model
model = Sequential()
# Configuring the parameters
model.add(LSTM(n_hidden, input_shape=(timesteps, input_dim)))
# Adding a dropout layer
model.add(Dropout(0.4))
# Adding a dense output layer with sigmoid activation
model.add(Dense(n_classes, activation='sigmoid'))
model.summary()
```

Layer (type)	Output Shape	Param #
lstm_11 (LSTM)	(None, 100)	44000
dropout_10 (Dropout)	(None, 100)	0
dense_8 (Dense)	(None, 6)	606

Total params: 44,606 Trainable params: 44,606 Non-trainable params: 0

In [72]:

In [73]:

```
Train on 7352 samples, validate on 2947 samples
Epoch 1/20
7352/7352 [============== ] - 73s 10ms/step - loss: 0.3492
- categorical_accuracy: 0.4448 - val_loss: 0.3294 - val_categorical_accura
cy: 0.4781
Epoch 2/20
7352/7352 [=============== ] - 66s 9ms/step - loss: 0.2753 -
categorical_accuracy: 0.6064 - val_loss: 0.2249 - val_categorical_accurac
y: 0.6902
Epoch 3/20
7352/7352 [=============== ] - 66s 9ms/step - loss: 0.1906 -
categorical_accuracy: 0.7786 - val_loss: 0.1782 - val_categorical_accurac
y: 0.7659
Epoch 4/20
7352/7352 [=============== ] - 65s 9ms/step - loss: 0.1351 -
categorical_accuracy: 0.8610 - val_loss: 0.1799 - val_categorical_accurac
y: 0.7852
Epoch 5/20
7352/7352 [============= ] - 66s 9ms/step - loss: 0.1045 -
categorical_accuracy: 0.8945 - val_loss: 0.1598 - val_categorical_accurac
y: 0.8303
Epoch 6/20
7352/7352 [=============== ] - 66s 9ms/step - loss: 0.0852 -
categorical_accuracy: 0.9121 - val_loss: 0.1204 - val_categorical_accurac
y: 0.8856
Epoch 7/20
7352/7352 [============== ] - 67s 9ms/step - loss: 0.0710 -
categorical_accuracy: 0.9276 - val_loss: 0.1177 - val_categorical_accurac
y: 0.8894
Epoch 8/20
7352/7352 [============= ] - 68s 9ms/step - loss: 0.0709 -
categorical_accuracy: 0.9280 - val_loss: 0.1245 - val_categorical_accurac
y: 0.8931
Epoch 9/20
7352/7352 [============== ] - 68s 9ms/step - loss: 0.0648 -
categorical_accuracy: 0.9308 - val_loss: 0.1114 - val_categorical_accurac
y: 0.8989
Epoch 10/20
categorical_accuracy: 0.9350 - val_loss: 0.1102 - val_categorical_accurac
y: 0.8901
Epoch 11/20
7352/7352 [=============== ] - 67s 9ms/step - loss: 0.0621 -
categorical_accuracy: 0.9370 - val_loss: 0.1035 - val_categorical_accurac
y: 0.8850
Epoch 12/20
7352/7352 [================ ] - 67s 9ms/step - loss: 0.0585 -
categorical_accuracy: 0.9382 - val_loss: 0.1021 - val_categorical_accurac
y: 0.8941
Epoch 13/20
7352/7352 [=============== ] - 68s 9ms/step - loss: 0.0553 -
categorical_accuracy: 0.9433 - val_loss: 0.0839 - val_categorical_accurac
y: 0.9237
Epoch 14/20
7352/7352 [=============== ] - 67s 9ms/step - loss: 0.0505 -
categorical_accuracy: 0.9446 - val_loss: 0.0886 - val_categorical_accurac
y: 0.9158
Epoch 15/20
- categorical_accuracy: 0.9468 - val_loss: 0.1656 - val_categorical_accura
cv: 0.9002
```

```
Epoch 16/20
7352/7352 [=============== ] - 71s 10ms/step - loss: 0.0481
- categorical accuracy: 0.9491 - val loss: 0.1529 - val categorical accura
cy: 0.8904
Epoch 17/20
7352/7352 [============= ] - 68s 9ms/step - loss: 0.0508 -
categorical_accuracy: 0.9430 - val_loss: 0.1228 - val_categorical_accurac
y: 0.9097
Epoch 18/20
7352/7352 [============= ] - 67s 9ms/step - loss: 0.0535 -
categorical_accuracy: 0.9437 - val_loss: 0.0930 - val_categorical_accurac
y: 0.9057
Epoch 19/20
7352/7352 [============= ] - 70s 9ms/step - loss: 0.0458 -
categorical_accuracy: 0.9505 - val_loss: 0.1354 - val_categorical_accurac
y: 0.8965
Epoch 20/20
7352/7352 [============= ] - 69s 9ms/step - loss: 0.0417 -
categorical_accuracy: 0.9523 - val_loss: 0.1480 - val_categorical_accurac
y: 0.9060
```

In [74]:

best epoch is 3. It starts overfitting from epoch 4. Best accuracy is 76.59%

In [75]:

Pred	LAYING	SITTING	STANDING	WALKING	WALKING_DOWNSTAIRS			
\								
True								
LAYING	510	0	27	0	0			
SITTING	0	411	77	1	0			
STANDING	0	102	430	0	0			
WALKING	0	0	0	448	45			
WALKING_DOWNSTAIRS	0	0	0	1	418			
WALKING_UPSTAIRS	0	1	0	9	8			
Pred	WALKING	WALKING_UPSTAIRS						
True								
LAYING		0						
SITTING		2						
STANDING		0						
WALKING		3						
WALKING_DOWNSTAIRS		1						
WALKING_UPSTAIRS		453						
1					•			
Tn [76].								
In [76]:								
score6 = model.eval	uate(X_t	est, Y_te	est)					
2947/2947 [======	======		====] - 5	s 2ms/ste	p			
In [77]:								
score6								

 $[0.14798565943513792,\ 0.9060061079063454]$

1 LSTM neuron , dropout = 0.8

In [78]:

```
# Initiliazing the sequential model
model = Sequential()
# Configuring the parameters
model.add(LSTM(n_hidden, input_shape=(timesteps, input_dim)))
# Adding a dropout layer
model.add(Dropout(0.8))
# Adding a dense output layer with sigmoid activation
model.add(Dense(n_classes, activation='sigmoid'))
model.summary()
```

Layer (type)	Output Shape	Param #
lstm_12 (LSTM)	(None, 100)	44000
dropout_11 (Dropout)	(None, 100)	0
dense_9 (Dense)	(None, 6)	606

Total params: 44,606 Trainable params: 44,606 Non-trainable params: 0

In [79]:

In [80]:

```
Train on 7352 samples, validate on 2947 samples
Epoch 1/20
7352/7352 [============== ] - 71s 10ms/step - loss: 0.3891
- categorical_accuracy: 0.4019 - val_loss: 0.3101 - val_categorical_accura
cy: 0.5175
Epoch 2/20
7352/7352 [=============== ] - 68s 9ms/step - loss: 0.3044 -
categorical_accuracy: 0.5692 - val_loss: 0.2972 - val_categorical_accurac
y: 0.5304
Epoch 3/20
7352/7352 [=============== ] - 66s 9ms/step - loss: 0.2688 -
categorical_accuracy: 0.6567 - val_loss: 0.3458 - val_categorical_accurac
y: 0.4785
Epoch 4/20
7352/7352 [================ ] - 65s 9ms/step - loss: 0.2147 -
categorical_accuracy: 0.7466 - val_loss: 0.2199 - val_categorical_accurac
y: 0.7333
Epoch 5/20
7352/7352 [============= ] - 65s 9ms/step - loss: 0.2131 -
categorical_accuracy: 0.7892 - val_loss: 0.1698 - val_categorical_accurac
y: 0.8124
Epoch 6/20
7352/7352 [=============== ] - 66s 9ms/step - loss: 0.1855 -
categorical_accuracy: 0.8305 - val_loss: 0.1508 - val_categorical_accurac
y: 0.8344
Epoch 7/20
7352/7352 [============= ] - 65s 9ms/step - loss: 0.1510 -
categorical_accuracy: 0.8727 - val_loss: 0.2943 - val_categorical_accurac
y: 0.6892
Epoch 8/20
7352/7352 [============= ] - 66s 9ms/step - loss: 0.1246 -
categorical_accuracy: 0.8974 - val_loss: 0.1174 - val_categorical_accurac
y: 0.8744
Epoch 9/20
7352/7352 [=============== ] - 65s 9ms/step - loss: 0.1095 -
categorical_accuracy: 0.9075 - val_loss: 0.2075 - val_categorical_accurac
y: 0.8198
Epoch 10/20
7352/7352 [=============== ] - 65s 9ms/step - loss: 0.1195 -
categorical_accuracy: 0.9081 - val_loss: 0.1354 - val_categorical_accurac
y: 0.8744
Epoch 11/20
7352/7352 [=============== ] - 69s 9ms/step - loss: 0.0866 -
categorical_accuracy: 0.9270 - val_loss: 0.0954 - val_categorical_accurac
y: 0.9030
Epoch 12/20
7352/7352 [================ ] - 91s 12ms/step - loss: 0.0912
- categorical_accuracy: 0.9251 - val_loss: 0.1041 - val_categorical_accura
cy: 0.8999
Epoch 13/20
7352/7352 [================ ] - 75s 10ms/step - loss: 0.0802
- categorical_accuracy: 0.9300 - val_loss: 0.1019 - val_categorical_accura
cy: 0.8863
Epoch 14/20
7352/7352 [============== ] - 76s 10ms/step - loss: 0.0768
- categorical_accuracy: 0.9369 - val_loss: 0.0832 - val_categorical_accura
cy: 0.9067
Epoch 15/20
- categorical_accuracy: 0.9397 - val_loss: 0.1460 - val_categorical_accura
cv: 0.8897
```

```
Epoch 16/20
7352/7352 [============== ] - 66s 9ms/step - loss: 0.0901 -
categorical accuracy: 0.9317 - val loss: 0.1035 - val categorical accurac
y: 0.9101
Epoch 17/20
7352/7352 [============= ] - 66s 9ms/step - loss: 0.0691 -
categorical_accuracy: 0.9404 - val_loss: 0.1043 - val_categorical_accurac
y: 0.9152
Epoch 18/20
7352/7352 [============ ] - 65s 9ms/step - loss: 0.0757 -
categorical_accuracy: 0.9381 - val_loss: 0.1241 - val_categorical_accurac
y: 0.9016
Epoch 19/20
7352/7352 [============= ] - 65s 9ms/step - loss: 0.0715 -
categorical_accuracy: 0.9399 - val_loss: 0.1053 - val_categorical_accurac
y: 0.9019
Epoch 20/20
7352/7352 [============= ] - 68s 9ms/step - loss: 0.0834 -
categorical_accuracy: 0.9348 - val_loss: 0.1103 - val_categorical_accurac
y: 0.9036
```

In [81]:

plot_train_cv_loss(training,epochs)

Best epoch is 1. It start overfitting from epoch 2. Best accuracy 84.01%

In [82]:

```
# Confusion Matrix
print(confusion_matrix(Y_test, model.predict(X_test)))
Pred
                    LAYING SITTING STANDING WALKING WALKING_DOWNSTAIRS
\
True
                       522
LAYING
                                  0
                                           13
                                                     0
                                                                          0
SITTING
                         0
                                407
                                           83
                                                     1
                                                                          0
                                104
                                          423
STANDING
                         0
                                                     5
                                                                          0
WALKING
                         0
                                                   491
                                                                          4
                                  0
                                            1
WALKING_DOWNSTAIRS
                         0
                                  0
                                            0
                                                    10
                                                                        410
WALKING_UPSTAIRS
                                  0
                                            4
                                                    55
                         0
                                                                          2
Pred
                    WALKING_UPSTAIRS
True
LAYING
                                   2
SITTING
                                   0
STANDING
                                   0
WALKING
                                   0
WALKING DOWNSTAIRS
                                   0
WALKING_UPSTAIRS
                                 410
In [83]:
score7 = model.evaluate(X_test, Y_test)
2947/2947 [========== ] - 4s 1ms/step
In [84]:
score7
Out[84]:
```

. .

[0.11029730399505142, 0.9036308109942314]

2 LSTM neurons, dropout = 0.8

In [85]:

```
# Initiliazing the sequential model
model = Sequential()
# Configuring the parameters
model.add(LSTM(n_hidden, input_shape=(timesteps, input_dim), return_sequences = True))
# Adding a dropout Layer
model.add(Dropout(0.8))
#Adding another LSTM Layer
model.add(LSTM(200,))
# Adding a dense output layer with sigmoid activation
model.add(Dense(n_classes, activation='sigmoid'))
model.summary()
```

Layer (type)	Output Shape	Param #
lstm_13 (LSTM)	(None, 128, 100)	44000
dropout_12 (Dropout)	(None, 128, 100)	0
lstm_14 (LSTM)	(None, 200)	240800
dense_10 (Dense)	(None, 6)	1206

Total params: 286,006
Trainable params: 286,006
Non trainable params: 0

Non-trainable params: 0

In [86]:

In [87]:

```
Train on 7352 samples, validate on 2947 samples
Epoch 1/20
7352/7352 [=============== ] - 255s 35ms/step - loss: 0.2815
- categorical_accuracy: 0.5559 - val_loss: 0.2655 - val_categorical_accura
cy: 0.5931
Epoch 2/20
7352/7352 [=============== ] - 245s 33ms/step - loss: 0.1768
- categorical_accuracy: 0.7587 - val_loss: 0.1551 - val_categorical_accura
cy: 0.8208
Epoch 3/20
7352/7352 [============== ] - 245s 33ms/step - loss: 0.0937
- categorical_accuracy: 0.8915 - val_loss: 0.1480 - val_categorical_accura
cy: 0.8571
Epoch 4/20
7352/7352 [================ ] - 245s 33ms/step - loss: 0.0667
- categorical_accuracy: 0.9261 - val_loss: 0.1235 - val_categorical_accura
cy: 0.8768
Epoch 5/20
7352/7352 [============= ] - 245s 33ms/step - loss: 0.0562
- categorical_accuracy: 0.9365 - val_loss: 0.1018 - val_categorical_accura
cy: 0.8948
Epoch 6/20
7352/7352 [=============== ] - 245s 33ms/step - loss: 0.0501
- categorical_accuracy: 0.9422 - val_loss: 0.0845 - val_categorical_accura
cy: 0.9002
Epoch 7/20
7352/7352 [============= ] - 245s 33ms/step - loss: 0.0496
- categorical_accuracy: 0.9455 - val_loss: 0.0948 - val_categorical_accura
cy: 0.9084
Epoch 8/20
- categorical_accuracy: 0.9483 - val_loss: 0.0909 - val_categorical_accura
cy: 0.9067
Epoch 9/20
- categorical_accuracy: 0.9475 - val_loss: 0.0955 - val_categorical_accura
cy: 0.9148
Epoch 10/20
7352/7352 [=============== ] - 261s 35ms/step - loss: 0.0512
- categorical_accuracy: 0.9460 - val_loss: 0.0930 - val_categorical_accura
cy: 0.9152
Epoch 11/20
7352/7352 [============== ] - 262s 36ms/step - loss: 0.0458
- categorical accuracy: 0.9490 - val loss: 0.0882 - val categorical accura
cy: 0.9013
Epoch 12/20
7352/7352 [================ ] - 262s 36ms/step - loss: 0.0464
- categorical_accuracy: 0.9464 - val_loss: 0.0885 - val_categorical_accura
cy: 0.9077
Epoch 13/20
7352/7352 [================ ] - 265s 36ms/step - loss: 0.0411
- categorical_accuracy: 0.9510 - val_loss: 0.1254 - val_categorical_accura
cy: 0.8982
Epoch 14/20
7352/7352 [============== ] - 268s 36ms/step - loss: 0.0411
- categorical_accuracy: 0.9504 - val_loss: 0.1176 - val_categorical_accura
cy: 0.9118
Epoch 15/20
- categorical_accuracy: 0.9505 - val_loss: 0.0939 - val_categorical_accura
cy: 0.9172
```

```
Epoch 16/20
7352/7352 [============== ] - 265s 36ms/step - loss: 0.0407
- categorical accuracy: 0.9486 - val loss: 0.0857 - val categorical accura
cy: 0.9250
Epoch 17/20
7352/7352 [============= ] - 287s 39ms/step - loss: 0.0420
- categorical_accuracy: 0.9518 - val_loss: 0.0821 - val_categorical_accura
cy: 0.9209
Epoch 18/20
7352/7352 [============= ] - 255s 35ms/step - loss: 0.0440
- categorical_accuracy: 0.9508 - val_loss: 0.0689 - val_categorical_accura
cy: 0.9247
Epoch 19/20
7352/7352 [============= ] - 250s 34ms/step - loss: 0.0398
- categorical_accuracy: 0.9525 - val_loss: 0.1172 - val_categorical_accura
cy: 0.9013
Epoch 20/20
7352/7352 [============= ] - 263s 36ms/step - loss: 0.0426
- categorical_accuracy: 0.9513 - val_loss: 0.0911 - val_categorical_accura
cy: 0.9175
```

In [88]:

plot_train_cv_loss(training,epochs)

• best epoch is 6. It starts overfitting from epoch 7. Best accuracy 90.02%

In [89]:

```
# Confusion Matrix
print(confusion_matrix(Y_test, model.predict(X_test)))
Pred
                    LAYING SITTING STANDING WALKING WALKING_DOWNSTAIRS
\
True
                       537
LAYING
                                  0
                                            0
                                                      0
                                                                          0
                                           85
                                                                          0
SITTING
                         5
                                382
                                                      0
                                 90
                                          438
STANDING
                         0
                                                      0
                                                                          0
WALKING
                         0
                                  0
                                            0
                                                   468
                                                                         11
WALKING_DOWNSTAIRS
                         0
                                  0
                                            0
                                                      1
                                                                        415
WALKING_UPSTAIRS
                                  0
                                            0
                                                      4
                         0
                                                                          3
Pred
                    WALKING_UPSTAIRS
True
LAYING
                                   0
SITTING
                                  19
STANDING
                                   4
WALKING
                                  17
WALKING DOWNSTAIRS
                                   4
WALKING_UPSTAIRS
                                 464
In [90]:
score8 = model.evaluate(X_test, Y_test)
2947/2947 [========== ] - 22s 8ms/step
In [91]:
score8
Out[91]:
```

[0.09114118609929235, 0.9175432643366135]

2 LSTM neurons, 2 dropouts

In [92]:

```
# Initiliazing the sequential model
model = Sequential()
# Configuring the parameters
model.add(LSTM(n_hidden, input_shape=(timesteps, input_dim), return_sequences = True))
# Adding a dropout layer
model.add(Dropout(0.8))
#Adding another LSTM layer
model.add(LSTM(200,))
model.add(Dropout(0.9))
# Adding a dense output layer with sigmoid activation
model.add(Dense(n_classes, activation='sigmoid'))
model.summary()
```

Layer (type)	Output Shape	Param #
lstm_15 (LSTM)	(None, 128, 100)	44000
dropout_13 (Dropout)	(None, 128, 100)	0
lstm_16 (LSTM)	(None, 200)	240800
dropout_14 (Dropout)	(None, 200)	0
dense_11 (Dense)	(None, 6)	1206

Total params: 286,006 Trainable params: 286,006 Non-trainable params: 0

In [93]:

```
# Compiling the model
model.compile(loss='binary_crossentropy',
              optimizer='rmsprop',
              metrics=['categorical_accuracy'])
```

In [94]:

```
Train on 7352 samples, validate on 2947 samples
Epoch 1/20
7352/7352 [============== ] - 290s 40ms/step - loss: 0.3722
- categorical_accuracy: 0.4351 - val_loss: 0.2986 - val_categorical_accura
cy: 0.5019
Epoch 2/20
7352/7352 [============== ] - 256s 35ms/step - loss: 0.2721
- categorical_accuracy: 0.6160 - val_loss: 0.2896 - val_categorical_accura
cy: 0.6142
Epoch 3/20
7352/7352 [============= ] - 255s 35ms/step - loss: 0.2273
- categorical_accuracy: 0.7029 - val_loss: 0.2065 - val_categorical_accura
cy: 0.7564
Epoch 4/20
7352/7352 [================ ] - 254s 35ms/step - loss: 0.1801
- categorical_accuracy: 0.7909 - val_loss: 0.1925 - val_categorical_accura
cy: 0.8093
Epoch 5/20
7352/7352 [============= ] - 254s 35ms/step - loss: 0.1376
- categorical_accuracy: 0.8803 - val_loss: 0.1668 - val_categorical_accura
cy: 0.8517
Epoch 6/20
7352/7352 [============== ] - 254s 34ms/step - loss: 0.1195
- categorical_accuracy: 0.9147 - val_loss: 0.2563 - val_categorical_accura
cy: 0.7933
Epoch 7/20
7352/7352 [============= ] - 253s 34ms/step - loss: 0.0976
- categorical_accuracy: 0.9212 - val_loss: 0.1010 - val_categorical_accura
cy: 0.8945
Epoch 8/20
7352/7352 [============= ] - 256s 35ms/step - loss: 0.0883
- categorical_accuracy: 0.9276 - val_loss: 0.1332 - val_categorical_accura
cy: 0.8935
Epoch 9/20
7352/7352 [============== ] - 290s 40ms/step - loss: 0.0949
- categorical_accuracy: 0.9267 - val_loss: 0.1454 - val_categorical_accura
cy: 0.8690
Epoch 10/20
7352/7352 [============== ] - 256s 35ms/step - loss: 0.0769
- categorical_accuracy: 0.9334 - val_loss: 0.2060 - val_categorical_accura
cy: 0.8670
Epoch 11/20
7352/7352 [=============== ] - 253s 34ms/step - loss: 0.0935
- categorical_accuracy: 0.9282 - val_loss: 0.1055 - val_categorical_accura
cy: 0.9186
Epoch 12/20
7352/7352 [================ ] - 264s 36ms/step - loss: 0.0716
- categorical_accuracy: 0.9407 - val_loss: 0.1638 - val_categorical_accura
cy: 0.8714
Epoch 13/20
7352/7352 [================ ] - 259s 35ms/step - loss: 0.0692
- categorical_accuracy: 0.9396 - val_loss: 0.1494 - val_categorical_accura
cy: 0.8965
Epoch 14/20
7352/7352 [============== ] - 267s 36ms/step - loss: 0.0656
- categorical_accuracy: 0.9437 - val_loss: 0.1240 - val_categorical_accura
cy: 0.9125
Epoch 15/20
7352/7352 [==================== ] - 287s 39ms/step - loss: 0.0713
- categorical_accuracy: 0.9415 - val_loss: 0.2444 - val_categorical_accura
cy: 0.8907
```

```
Epoch 16/20
7352/7352 [============== ] - 260s 35ms/step - loss: 0.0692
- categorical accuracy: 0.9430 - val loss: 0.1789 - val categorical accura
cy: 0.9057
Epoch 17/20
7352/7352 [============= ] - 255s 35ms/step - loss: 0.0640
- categorical_accuracy: 0.9425 - val_loss: 0.1068 - val_categorical_accura
cy: 0.9175
Epoch 18/20
7352/7352 [============ ] - 260s 35ms/step - loss: 0.0609
- categorical_accuracy: 0.9455 - val_loss: 0.1225 - val_categorical_accura
cy: 0.9179
Epoch 19/20
7352/7352 [============= ] - 252s 34ms/step - loss: 0.0683
- categorical_accuracy: 0.9429 - val_loss: 0.1324 - val_categorical_accura
cy: 0.9141
Epoch 20/20
7352/7352 [============= ] - 268s 36ms/step - loss: 0.0750
- categorical_accuracy: 0.9380 - val_loss: 0.1623 - val_categorical_accura
cy: 0.8972
```

In [95]:

plot_train_cv_loss(training,epochs)

best epoch is 6. It starts overfitting from epoch 7. Best accuraccy is 96.53%

In [96]:

```
# Confusion Matrix
print(confusion_matrix(Y_test, model.predict(X_test)))
Pred
                    LAYING SITTING STANDING WALKING WALKING_DOWNSTAIRS
\
True
                       523
LAYING
                                  0
                                           14
                                                     0
                                                                          0
SITTING
                         5
                                375
                                          105
                                                     0
                                                                          0
                                          441
STANDING
                         0
                                 90
                                                     0
                                                                          0
                                                   473
WALKING
                         0
                                                                         10
                                  1
                                            1
WALKING_DOWNSTAIRS
                         0
                                  0
                                            1
                                                    25
                                                                        390
WALKING_UPSTAIRS
                                            0
                         0
                                  0
                                                    28
                                                                          1
Pred
                    WALKING_UPSTAIRS
True
LAYING
                                   0
SITTING
                                   6
STANDING
                                   1
WALKING
                                  11
WALKING DOWNSTAIRS
                                   4
                                 442
WALKING_UPSTAIRS
In [97]:
score9 = model.evaluate(X_test, Y_test)
2947/2947 [========== ] - 20s 7ms/step
In [98]:
score9
Out[98]:
```

2 LSTM neurons, 2 dropouts, BatchNormaliztion

[0.16230833367408035, 0.8971835765184933]

In [99]:

```
# Initiliazing the sequential model
model = Sequential()
# Configuring the parameters
model.add(LSTM(n_hidden, input_shape=(timesteps, input_dim), return_sequences = True))
# Adding a dropout layer
model.add(Dropout(0.8))
#Adding another LSTM layer
model.add(LSTM(200,))
model.add(Dropout(0.9))
model.add(BatchNormalization())
# Adding a dense output layer with sigmoid activation
model.add(Dense(n_classes, activation='sigmoid'))
model.summary()
```

Layer (type)	Output Shape	Param #
lstm_17 (LSTM)	(None, 128, 100)	44000
dropout_15 (Dropout)	(None, 128, 100)	0
lstm_18 (LSTM)	(None, 200)	240800
dropout_16 (Dropout)	(None, 200)	0
batch_normalization_2 (Batch	(None, 200)	800
dense_12 (Dense)	(None, 6)	1206

Total params: 286,806 Trainable params: 286,406 Non-trainable params: 400

In [100]:

In [101]:

```
Train on 7352 samples, validate on 2947 samples
Epoch 1/20
7352/7352 [============== ] - 273s 37ms/step - loss: 0.4707
- categorical_accuracy: 0.4347 - val_loss: 0.2730 - val_categorical_accura
cy: 0.6237
Epoch 2/20
7352/7352 [============== ] - 266s 36ms/step - loss: 0.2824
- categorical_accuracy: 0.6347 - val_loss: 0.2280 - val_categorical_accura
cy: 0.7034
Epoch 3/20
7352/7352 [=============== ] - 275s 37ms/step - loss: 0.2453
- categorical_accuracy: 0.6997 - val_loss: 0.2308 - val_categorical_accura
cy: 0.7299
Epoch 4/20
7352/7352 [================ ] - 277s 38ms/step - loss: 0.2067
- categorical_accuracy: 0.7930 - val_loss: 0.2833 - val_categorical_accura
cy: 0.6702
Epoch 5/20
7352/7352 [============= ] - 264s 36ms/step - loss: 0.2030
- categorical_accuracy: 0.8020 - val_loss: 0.1844 - val_categorical_accura
cy: 0.8130
Epoch 6/20
7352/7352 [=============== ] - 289s 39ms/step - loss: 0.1653
- categorical_accuracy: 0.8770 - val_loss: 0.1046 - val_categorical_accura
cy: 0.8914
Epoch 7/20
7352/7352 [============= ] - 290s 39ms/step - loss: 0.1630
- categorical_accuracy: 0.8662 - val_loss: 0.1250 - val_categorical_accura
cy: 0.8850
Epoch 8/20
7352/7352 [============= ] - 253s 34ms/step - loss: 0.1423
- categorical_accuracy: 0.8870 - val_loss: 0.1454 - val_categorical_accura
cy: 0.8531
Epoch 9/20
- categorical_accuracy: 0.9033 - val_loss: 0.1265 - val_categorical_accura
cy: 0.8877
Epoch 10/20
7352/7352 [=============== ] - 247s 34ms/step - loss: 0.1268
- categorical_accuracy: 0.9045 - val_loss: 0.1261 - val_categorical_accura
cy: 0.8751
Epoch 11/20
7352/7352 [=============== ] - 246s 33ms/step - loss: 0.1081
- categorical_accuracy: 0.9222 - val_loss: 0.0956 - val_categorical_accura
cy: 0.8996
Epoch 12/20
7352/7352 [================ ] - 245s 33ms/step - loss: 0.1030
- categorical_accuracy: 0.9255 - val_loss: 0.1077 - val_categorical_accura
cy: 0.8999
Epoch 13/20
7352/7352 [================ ] - 246s 33ms/step - loss: 0.1173
- categorical_accuracy: 0.9202 - val_loss: 0.1137 - val_categorical_accura
cy: 0.9033
Epoch 14/20
7352/7352 [============== ] - 247s 34ms/step - loss: 0.0978
- categorical_accuracy: 0.9323 - val_loss: 0.0919 - val_categorical_accura
cy: 0.9114
Epoch 15/20
- categorical_accuracy: 0.9340 - val_loss: 0.1482 - val_categorical_accura
cy: 0.8870
```

```
Epoch 16/20
7352/7352 [============== ] - 246s 33ms/step - loss: 0.0991
- categorical accuracy: 0.9297 - val loss: 0.0985 - val categorical accura
cy: 0.9141
Epoch 17/20
7352/7352 [============= ] - 247s 34ms/step - loss: 0.0891
- categorical_accuracy: 0.9374 - val_loss: 0.1129 - val_categorical_accura
cy: 0.9155
Epoch 18/20
7352/7352 [============= ] - 248s 34ms/step - loss: 0.1171
- categorical_accuracy: 0.9197 - val_loss: 0.1354 - val_categorical_accura
cy: 0.8863
Epoch 19/20
7352/7352 [============= ] - 247s 34ms/step - loss: 0.0900
- categorical_accuracy: 0.9392 - val_loss: 0.0846 - val_categorical_accura
cy: 0.9131
Epoch 20/20
7352/7352 [============== ] - 246s 33ms/step - loss: 0.0882
- categorical_accuracy: 0.9385 - val_loss: 0.1236 - val_categorical_accura
cy: 0.9182
```

In [102]:

plot_train_cv_loss(training,epochs)

In [103]:

```
# Confusion Matrix
print(confusion_matrix(Y_test, model.predict(X_test)))
Pred
                     LAYING SITTING STANDING WALKING WALKING_DOWNSTAIRS
\
True
                        536
                                                                             0
LAYING
                                    0
                                               1
                                                        0
SITTING
                                            119
                                                                             0
                          1
                                  369
                                                        0
STANDING
                          0
                                            477
                                   55
                                                        0
                                                                             0
WALKING
                          0
                                    0
                                              0
                                                      455
                                                                            37
WALKING_DOWNSTAIRS
                          0
                                    0
                                               0
                                                        0
                                                                           420
WALKING_UPSTAIRS
                          0
                                    0
                                               0
                                                        0
                                                                            22
Pred
                     WALKING_UPSTAIRS
True
LAYING
                                     0
SITTING
                                     2
STANDING
                                     0
WALKING
                                     4
WALKING DOWNSTAIRS
                                     0
WALKING_UPSTAIRS
                                   449
```

In [104]:

```
score10 = model.evaluate(X_test, Y_test)
```

2947/2947 [==========] - 20s 7ms/step

In [105]:

score10

Out[105]:

[0.12357697055033087, 0.9182219205972175]

In [128]:

```
from prettytable import PrettyTable
pt = PrettyTable()
pt.title = " categorical cross entropy "
pt.field_names = ["LSTM Layers", 'Neurons', 'Dropout', 'Best Epoch', 'Accuracy']
pt.add_row(["1","32","0.5","5","80.83"])
pt.add_row(["1","100","0.5","4","84.87"])
pt.add_row(["1","100","0.8","2","71.77"])
pt.add_row(["2","100,200","0.3","4","89.38"])
pt.add_row(["2","100,200","0.8,0.9","1","79.44"])
print(pt)
pt = PrettyTable()
pt.title ="Binary cross entropy"
pt.field_names = ["LSTM Layers",'Neurons','Dropout', 'Best Epoch','Accuracy']
pt.add_row(["1","100","0.4","3","76.59"])
pt.add_row(["1","100","0.8","1","53.04"])
pt.add_row(["2","100,200","0.8","6","90.02"])
pt.add_row(["2","100,200","0.8,0.9","5","85.97"])
print(pt)
pt= PrettyTable()
pt.title="With batch normalization"
pt.field_names = ["LSTM Layers", 'Neurons', 'Dropout', 'Best Epoch', 'Accuracy', 'entropy']
pt.add_row(["2","100,200","0.4,0.3","1","81.68","categorical cross entropy"])
pt.add_row(["2","100,200","0.8,0.9","2","70.34","binary cross entropy"])
print(pt)
```

+ LSTM Layers	Neurons	+ Dropout	 Best Epoch	+ Accuracy	.
1	+ 32	+ 0.5	+ 5	+ 80.83	-
j 1	100	0.5	4	84.87	
1	100	0.8	2	71.77	
2	100,200	0.3	4	89.38	
2	100,200	0.8,0.9	1	79.44	
+	+	+		+	-
LSTM Layers	Neurons		Best Epoch		
1	100	0.4	3	76.59	
1 1	100	0.8	1	53.04	
2	100,200	0.8	6	90.02	
2	100,200	0.8,0.9	5	85.97	
+	+ +	+ +		+	+ +
+ LSTM Layers py	Neurons	Dropout	Best Epoch	Accuracy	entro
	100,200	0.4,0.3	1	81.68	categorical cr
	100,200	0.8,0.9	2	70.34	binary cros

In [109]:

```
# Initiliazing the sequential model
model = Sequential()
# Configuring the parameters
model.add(LSTM(n_hidden, input_shape=(timesteps, input_dim), return_sequences = True))
# Adding a dropout Layer
model.add(Dropout(0.3))
#Adding another LSTM Layer
model.add(LSTM(200,))
model.add(Dropout(0.4))
model.add(BatchNormalization())
# Adding a dense output layer with sigmoid activation
model.add(Dense(n_classes, activation='softmax'))
model.summary()
```

Layer (type)	Output	Shape	Param #
lstm_21 (LSTM)	(None,	128, 100)	44000
dropout_19 (Dropout)	(None,	128, 100)	0
lstm_22 (LSTM)	(None,	200)	240800
dropout_20 (Dropout)	(None,	200)	0
batch_normalization_4 (Batch	(None,	200)	800
dense_14 (Dense)	(None,	6)	1206
======================================	=====:		======

Total params: 286,806 Trainable params: 286,406 Non-trainable params: 400

In [110]:

In [111]:

```
Train on 7352 samples, validate on 2947 samples
Epoch 1/20
7352/7352 [============ ] - 253s 34ms/step - loss: 0.8634
- acc: 0.6472 - val loss: 0.9614 - val acc: 0.7163
Epoch 2/20
7352/7352 [============= ] - 242s 33ms/step - loss: 0.7165
- acc: 0.7318 - val_loss: 1.2530 - val_acc: 0.5460
Epoch 3/20
- acc: 0.7140 - val_loss: 0.7530 - val_acc: 0.6983
Epoch 4/20
7352/7352 [============= ] - 242s 33ms/step - loss: 0.3615
- acc: 0.8697 - val loss: 0.4929 - val acc: 0.8388
Epoch 5/20
7352/7352 [================ ] - 242s 33ms/step - loss: 0.2442
- acc: 0.9155 - val_loss: 0.2279 - val_acc: 0.9152
Epoch 6/20
7352/7352 [============= ] - 243s 33ms/step - loss: 0.1674
- acc: 0.9384 - val_loss: 0.2702 - val_acc: 0.9148
Epoch 7/20
7352/7352 [============== ] - 242s 33ms/step - loss: 0.2590
- acc: 0.9109 - val_loss: 0.2643 - val_acc: 0.9094
Epoch 8/20
7352/7352 [============= ] - 242s 33ms/step - loss: 0.2010
- acc: 0.9274 - val_loss: 0.3088 - val_acc: 0.8636
Epoch 9/20
7352/7352 [============= ] - 242s 33ms/step - loss: 0.2177
- acc: 0.9264 - val_loss: 0.3006 - val_acc: 0.9006
Epoch 10/20
7352/7352 [============= ] - 242s 33ms/step - loss: 0.1677
- acc: 0.9359 - val_loss: 0.2591 - val_acc: 0.9152
Epoch 11/20
7352/7352 [============== ] - 242s 33ms/step - loss: 0.1599
- acc: 0.9391 - val_loss: 0.3217 - val_acc: 0.9016
Epoch 12/20
7352/7352 [============= ] - 242s 33ms/step - loss: 0.1303
- acc: 0.9461 - val_loss: 0.5883 - val_acc: 0.8337
Epoch 13/20
7352/7352 [============= ] - 242s 33ms/step - loss: 0.1687
- acc: 0.9369 - val_loss: 0.3465 - val_acc: 0.9057
Epoch 14/20
7352/7352 [=============== ] - 242s 33ms/step - loss: 0.1318
- acc: 0.9457 - val loss: 0.2254 - val acc: 0.9206
Epoch 15/20
7352/7352 [============== ] - 242s 33ms/step - loss: 0.1255
- acc: 0.9495 - val_loss: 0.2264 - val_acc: 0.9128
Epoch 16/20
7352/7352 [============== ] - 242s 33ms/step - loss: 0.1403
- acc: 0.9444 - val_loss: 0.2309 - val_acc: 0.9220
Epoch 17/20
7352/7352 [============== ] - 242s 33ms/step - loss: 0.1276
- acc: 0.9482 - val_loss: 0.2810 - val_acc: 0.9169
Epoch 18/20
7352/7352 [============= ] - 242s 33ms/step - loss: 0.2007
- acc: 0.9257 - val loss: 0.2184 - val acc: 0.9203
Epoch 19/20
7352/7352 [============= ] - 243s 33ms/step - loss: 0.3053
- acc: 0.8913 - val_loss: 0.2817 - val_acc: 0.9016
Epoch 20/20
7352/7352 [============= ] - 243s 33ms/step - loss: 0.1529
- acc: 0.9397 - val loss: 0.3320 - val acc: 0.8904
```

In [112]:

plot_train_cv_loss(training,epochs)

In [113]:

Confusion Matrix
print(confusion_matrix(Y_test, model.predict(X_test)))

Pred	LAYING	SITTING	STANDING	WALKING	WALKING_DOWNSTA	
IRS \						
True						
LAYING	537	0	0	0		
0						
SITTING	3	376	109	3		
0						
STANDING	0	103	427	2		
0						
WALKING	0	0	0	465		
31						
WALKING_DOWNSTAIRS	0	0	0	0		
420						
WALKING_UPSTAIRS	0	0	0	54		
18						
Pred	WALKING	_UPSTAIRS				
True						
LAYING		0				
SITTING		0				
STANDING		0				
WALKING		0				
WALKING_DOWNSTAIRS		0				
WALKING_UPSTAIRS		399				
1					•	_

In [114]:

score11 = model.evaluate(X_test, Y_test)

2947/2947 [==========] - 21s 7ms/step

In [115]:

score11

Out[115]:

[0.332028348539614, 0.8903970139124533]

In [116]:

```
# Initiliazing the sequential model
model = Sequential()
# Configuring the parameters
model.add(LSTM(n_hidden, input_shape=(timesteps, input_dim), return_sequences = True))
# Adding a dropout layer
model.add(Dropout(0.8))
#Adding another LSTM layer
model.add(LSTM(200,))
model.add(Dropout(0.9))
model.add(BatchNormalization())
# Adding a dense output layer with sigmoid activation
model.add(Dense(n_classes, activation='sigmoid'))
model.summary()
```

Layer (type)	Output Shape	Param #
lstm_23 (LSTM)	(None, 128, 100)	44000
dropout_21 (Dropout)	(None, 128, 100)	0
lstm_24 (LSTM)	(None, 200)	240800
dropout_22 (Dropout)	(None, 200)	0
batch_normalization_5 (Batch	(None, 200)	800
dense_15 (Dense)	(None, 6)	1206

Total params: 286,806 Trainable params: 286,406 Non-trainable params: 400

In [117]:

In [118]:

```
Train on 7352 samples, validate on 2947 samples
Epoch 1/20
7352/7352 [=============== ] - 255s 35ms/step - loss: 0.5388
- categorical_accuracy: 0.3150 - val_loss: 0.4306 - val_categorical_accura
cy: 0.2698
Epoch 2/20
7352/7352 [=============== ] - 249s 34ms/step - loss: 0.3821
- categorical_accuracy: 0.4459 - val_loss: 0.3170 - val_categorical_accura
cy: 0.4968
Epoch 3/20
7352/7352 [============= ] - 248s 34ms/step - loss: 0.3356
- categorical_accuracy: 0.5049 - val_loss: 0.5517 - val_categorical_accura
cy: 0.1761
Epoch 4/20
7352/7352 [================ ] - 248s 34ms/step - loss: 0.3626
- categorical_accuracy: 0.4368 - val_loss: 0.3139 - val_categorical_accura
cy: 0.4676
Epoch 5/20
7352/7352 [============= ] - 249s 34ms/step - loss: 0.4169
- categorical_accuracy: 0.3202 - val_loss: 0.4420 - val_categorical_accura
cy: 0.1731
Epoch 6/20
7352/7352 [=============== ] - 249s 34ms/step - loss: 0.4417
- categorical_accuracy: 0.2417 - val_loss: 0.4043 - val_categorical_accura
cy: 0.3824
Epoch 7/20
7352/7352 [============= ] - 249s 34ms/step - loss: 0.4101
- categorical_accuracy: 0.3207 - val_loss: 0.3615 - val_categorical_accura
cy: 0.4245
Epoch 8/20
7352/7352 [============= ] - 249s 34ms/step - loss: 0.4408
- categorical_accuracy: 0.2549 - val_loss: 0.5032 - val_categorical_accura
cy: 0.1870
Epoch 9/20
7352/7352 [============== ] - 249s 34ms/step - loss: 0.4339
- categorical_accuracy: 0.2561 - val_loss: 0.3822 - val_categorical_accura
cy: 0.3478
Epoch 10/20
7352/7352 [============== ] - 249s 34ms/step - loss: 0.4426
- categorical_accuracy: 0.2549 - val_loss: 0.4765 - val_categorical_accura
cy: 0.1653
Epoch 11/20
7352/7352 [=============== ] - 248s 34ms/step - loss: 0.4628
- categorical_accuracy: 0.1870 - val_loss: 0.4514 - val_categorical_accura
cy: 0.3302
Epoch 12/20
7352/7352 [================ ] - 249s 34ms/step - loss: 0.4431
- categorical_accuracy: 0.2395 - val_loss: 0.3873 - val_categorical_accura
cy: 0.3566
Epoch 13/20
7352/7352 [================ ] - 250s 34ms/step - loss: 0.4052
- categorical_accuracy: 0.3054 - val_loss: 0.4459 - val_categorical_accura
cy: 0.1948
Epoch 14/20
7352/7352 [============== ] - 249s 34ms/step - loss: 0.4265
- categorical_accuracy: 0.2446 - val_loss: 0.4205 - val_categorical_accura
cy: 0.2406
Epoch 15/20
- categorical_accuracy: 0.2818 - val_loss: 0.4072 - val_categorical_accura
cy: 0.2769
```

```
Epoch 16/20
7352/7352 [============== ] - 250s 34ms/step - loss: 0.4016
- categorical accuracy: 0.3210 - val loss: 0.3789 - val categorical accura
cy: 0.3573
Epoch 17/20
7352/7352 [============= ] - 250s 34ms/step - loss: 0.3905
- categorical_accuracy: 0.3385 - val_loss: 0.3680 - val_categorical_accura
cy: 0.3573
Epoch 18/20
7352/7352 [============= ] - 249s 34ms/step - loss: 0.3816
- categorical_accuracy: 0.3554 - val_loss: 0.3589 - val_categorical_accura
cy: 0.3627
Epoch 19/20
7352/7352 [============= ] - 251s 34ms/step - loss: 0.3891
- categorical_accuracy: 0.3307 - val_loss: 0.6528 - val_categorical_accura
cy: 0.1822
Epoch 20/20
7352/7352 [================] - 2542s 346ms/step - loss: 0.44
27 - categorical_accuracy: 0.2388 - val_loss: 0.4549 - val_categorical_acc
uracy: 0.2121
```

In [119]:

plot_train_cv_loss(training,epochs)

In [120]:

Confusion Matrix
print(confusion_matrix(Y_test, model.predict(X_test)))

Pred	LAYING	STANDING
True		
LAYING	93	444
SITTING	17	474
STANDING	0	532
WALKING	9	487
WALKING_DOWNSTAIRS	10	410
WALKING_UPSTAIRS	35	436

```
In [121]:
score12 = model.evaluate(X_test, Y_test)
2947/2947 [========== ] - 21s 7ms/step
In [122]:
score12
Out[122]:
[0.4549274587068956, 0.21208008143875126]
In [129]:
pt= PrettyTable()
pt.title="With batch normalization"
pt.field_names = ["LSTM Layers",'Neurons','Dropout', 'Best Epoch','Accuracy','entropy']
pt.add_row(["2","100,200","0.4,0.3","1","71.63","categorical cross entropy"])
pt.add_row(["2","100,200","0.8,0.9","2","49.68","binary cross entropy"])
print(pt)
+-----
| LSTM Layers | Neurons | Dropout | Best Epoch | Accuracy |
+-----
          | 100,200 | 0.4,0.3 | 1 | 71.63 | categorical cr
     2
oss entropy
          | 100,200 | 0.8,0.9 | 2 | 49.68 | binary cros
     2
s entropy |
+-----
```

Conclusion:

- Best accuracy obtained while using categorical cross entropy is 89.38%
- Best accuracy obtained while using binary cross entropy is 90.02%
- · By using BatchNormalization the performance hadn't improved.