Importing Libraries

```
In [466]:
```

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sb
import statsmodels.api as sm
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_absolute_error
from sklearn.metrics import mean_squared_error
```

Reading Data

```
In [467]:
```

```
df=pd.read_excel("slr-cyrogenic-flows.xls")
df.head()

*** No CODERNCE record no engoding everyide: will use lasgii!
```

*** No CODEPAGE record, no encoding_override: will use 'ascii'

Out[467]:

X Y 0 75.1 577.8

- 1 74.3 577.0
- 2 88.7 570.9
- 3 114.6 578.6
- 4 98.5 572.4

shape of the data(rows and columns)

```
In [468]:
```

```
df.shape
```

Out[468]:

(30, 2)

Statistical values of data

```
In [469]:
```

```
df.describe()
```

Out[469]:

	X	Y
count	30.000000	30.000000
mean	90.273333	514.963333
std	16.986078	39.535096
min	62.200000	406.700000
25%	75.300000	505.250000
50%	89.150000	510.100000

```
75% 104.37500% 519.85000% max 120.000000 578.600000
```

Checking for null values

```
In [470]:
```

```
df.isnull().sum()
```

Out[470]:

X 0 Y 0

dtype: int64

Histogram

In [471]:

```
df.hist()
```

Out[471]:

Boxplot

In [472]:

```
plt.figure()
plt.title("pressure (lb/sq in) of liquid nitrogen")
sb.boxplot(y=df["X"], data=df)
plt.show()
```



```
In [473]:
```

```
plt.figure()
plt.title("weight in pounds of liquid nitrogen passing through flow meter each second")
sb.boxplot(y=df["Y"], data=df)
plt.show()
```

weight in pounds of liquid nitrogen passing through flow meter each second

Outlier detection and handeling

```
In [474]:
```

```
q1=np.quantile(df["Y"],.25)
print("Q1 is",q1)
q3=np.quantile(df["Y"],.75)
print("Q3 is",q3)
interqar=q3-q1
print("Interquartile range ",interqar)
lowerb=q1-(interqar*1.5)
print("Lower bound ",lowerb)
upperb=q3+(interqar*1.5)
print("Upper bound",upperb)
Q1 is 505.25
```

Q1 is 505.25 Q3 is 519.85 Interquartile range 14.600000000000023 Lower bound 483.3499999999997 Upper bound 541.75

In [475]:

```
outlier =[]
for x in df["Y"]:
    if ((x> upperb) or (x<lowerb)):
        outlier.append(x)
if outlier==[]:
    print("No outlier present")
else:
    print(outlier)</pre>
```

[577.8, 577.0, 570.9, 578.6, 572.4, 411.2, 563.9, 406.7]

In [476]:

```
df["Y"].median()
```

Out[476]:

510.1

In [477]:

```
df["Y"]=df["Y"].replace([577.8, 577.0, 570.9, 578.6, 572.4, 411.2, 563.9, 406.7],510.1)
df.head()
```

```
X
   75.1 510.1
   74.3 510.1
2 88.7 510.1
3 114.6 510.1
   98.5 510.1
In [478]:
outlier2 =[]
for x in df["Y"]:
    if ((x>upperb) or (x<lowerb)):</pre>
          outlier2.append(x)
if outlier2==[]:
    print("No outlier Present")
else:
    print(outlier2)
No outlier Present
Corelation and Heatmap
In [479]:
corr=df.corr()
corr
Out[479]:
         X
                 Y
X 1.000000 0.262252
Y 0.262252 1.000000
In [480]:
plt.figure()
sb.heatmap(corr,annot=True)
plt.show()
                                           - 1.0
                                           - 0.9
           1
                            0.26
\times
                                           - 0.8
                                           - 0.7
                                           - 0.6
                                           - 0.5
          0.26
                                           - 0.4
           x
```

Scatter plot

```
In [481]:
```

Out[477]:

```
plt.figure()
plt.title("pressure (lb/sq in) of liquid nitrogen VS weight in pounds of liquid nitrogen
```

```
passing through flow meter each second")
sb.regplot(x="X",y="Y",data=df)
plt.show()
```

pressure (lb/sq in) of liquid nitrogen VS weight in pounds of liquid nitrogen passing through flow meter each second

Summary

In [495]:

```
X=sm.add_constant(df["X"])
y=df["Y"]
a=sm.OLS(y,X)
lrmodel=a.fit()
print(lrmodel.summary())
```

OLS Regression Results

Dep. Variable:	Y	R-squared:	0.069
Model:	OLS	Adj. R-squared:	0.036
Method:	Least Squares	F-statistic:	2.068
Date:	Sat, 08 May 2021	<pre>Prob (F-statistic):</pre>	0.162
Time:	00:52:05	Log-Likelihood:	-98.117
No. Observations:	30	AIC:	200.2
Df Residuals:	28	BIC:	203.0
Df Model:	1		

Covariance Type: nonrobust

	=========					
	coef	std err	t	P> t	[0.025	0.975]
const X	499.6824 0.1037	6.618 0.072	75.508 1.438	0.000 0.162	486.127 -0.044	513.238
Omnibus: Prob(Omnib Skew: Kurtosis:	us):	0.		,	:	1.526 11.698 0.00288 505.

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specifie d.

Note

- We can't Perform Linear regression on the given data set, because Adj. R-squared: 0.071 which is less than 0.65.
 - As mention in the description
- Find weight in pounds of liquid nitrogen passing through flow meter each second when pressure is60, 70, 80, 90, 100, 110 and 120

```
X=df["X"].values.reshape(-1,1)
y=df["Y"].values
In [497]:
# ### Linear Regression Model
model=LinearRegression()
model.fit(X,y)
Out[497]:
LinearRegression()
In [498]:
predict=model.predict(X)
df["predict"] = predict
In [499]:
df.head()
Out[499]:
     X
           Υ
                predict
   75.1 510.1 507.467151
   74.3 510.1 507.384224
   88.7 510.1 508.876910
3 114.6 510.1 511.561673
   98.5 510.1 509.892766
In [500]:
plt.figure()
sb.regplot(x="Y", y="predict", data=df)
plt.show()
  512
  511
  510
  509
  508
  507
  506
       495
            500
                  505
                        510
                             515
                                   520
                                        525
                                              530
In [501]:
mae = mean absolute error(df["Y"], df['predict'])
print (mae)
4.2242746041896355
In [502]:
mse = mean_squared_error(df["Y"], df['predict'])
print(mse)
40.57814586388558
TE FEAST.
```

```
II [SUS]:
rmse = np.sqrt(mse)
print(rmse)
6.370097790763151
In [504]:
print(df["Y"].mean())
print(df['predict'].mean())
509.0399999999985
509.0399999999996
In [505]:
scatterin = rmse/df["Y"].mean()
print(scatterin)
0.012513943483347386
In [506]:
find= np.array([[60],[70],[80],[90],[100],[110],[120]])
print(find.flatten())
[ 60 70 80 90 100 110 120]
In [507]:
prd2 = model.predict(find)
print(prd2)
[505.90190283 506.93849075 507.97507868 509.0116666 510.04825452
511.08484244 512.12143036]
In [ ]:
```