数值代数大作业报告

黄天域 2300010720

2025.02.07

1 引言

1.1 问题背景介绍

大作业主要关心的问题是数值求解 MAC 格式的离散 Stokes 方程,Stokes 方程的具体内容如下。

$$\begin{cases} -\Delta \vec{u} + \nabla p = \vec{F}, & (x, y) \in (0, 1) \times (0, 1), \\ \operatorname{div} \vec{u} = 0, & (x, y) \in (0, 1) \times (0, 1), \end{cases}$$
 (1)

其中边界条件为

$$\frac{\partial u}{\partial \vec{n}} = b, \quad y = 0, \quad \frac{\partial u}{\partial \vec{n}} = t, \quad y = 1,$$

$$\frac{\partial v}{\partial \vec{n}} = l, \quad x = 0, \quad \frac{\partial v}{\partial \vec{n}} = r, \quad x = 1,$$

$$u = 0, \quad x = 0, 1, \quad v = 0, \quad y = 0, 1,$$

其中 $\vec{u} = (u, v)$ 为速度, p 为压力, $\vec{F} = (f, g)$ 为外力, \vec{n} 为外法向方向, 这里边界定向取逆时针方向.

利用交错网格上的 MAC 格式离散 Stokes 方程 (1), 可得到如下线性方程组

$$\begin{pmatrix} \mathbf{A} & \mathbf{B} \\ \mathbf{B}^{\mathrm{T}} & \mathbf{0} \end{pmatrix} \begin{pmatrix} \mathbf{U} \\ \mathbf{P} \end{pmatrix} = \begin{pmatrix} \mathbf{F} \\ \mathbf{0} \end{pmatrix}. \tag{2}$$

这里交错网格的 MAC 格式展开如下,其思路是在内部格点利用有限差分离散原方程,在 Neumann 边界处利用边界条件离散,在强制边界为 0 处不列方程。方程 (2) 中 (使用 matlab 的语

$$\mathbf{U} = [u; v], \mathbf{F} = [f; g]$$

将 $(0,1) \times (0,1)$ 的方格分拆为 $N \times N$ 的方格表, 从左下角起, 第 k 列 (从左往右) 记为列 i=k, 第 j 行 (从下往上) 记为 j=k ($1 \le k \le N+1$)。由此可将 (x,y) 坐标系转换为 (i,j) 坐标系,那么 (x,y) 对应 (i,j) 坐标系中的 $(1+\frac{x}{h},1+\frac{y}{h})$, u,v,f,g 分别为 Stokes 方程 (1)中的 $\vec{u}=(u,v),\vec{F}=(f,g)$ 分量在网格的指定位置的值,下标取在 (i,j) 坐标系中代表位置。其具体可见下面的示意图。

图 1: MAC 交错网格

关于 u 的方程 (h = 1/N):

 $(1) \stackrel{\text{def}}{=} 2 \le i \le N, 2 \le j \le N - 1,$

$$-\frac{u_{i+1,j+\frac{1}{2}}-2u_{i,j+\frac{1}{2}}+u_{i-1,j+\frac{1}{2}}}{h^2}-\frac{u_{i,j+\frac{3}{2}}-2u_{i,j+\frac{1}{2}}+u_{i,j-\frac{1}{2}}}{h^2}+\frac{p_{i+\frac{1}{2},j+\frac{1}{2}}-p_{i-\frac{1}{2},j+\frac{1}{2}}}{h}=f_{i,j+\frac{1}{2}};$$

$$-\frac{u_{i,\frac{5}{2}}-u_{i,\frac{3}{2}}}{h^2}-\frac{b_{i,1}}{h}-\frac{u_{i+1,\frac{3}{2}}-2u_{i,\frac{3}{2}}+u_{i-1,\frac{3}{2}}}{h^2}+\frac{p_{i+\frac{1}{2},\frac{3}{2}}-p_{i-\frac{1}{2},\frac{3}{2}}}{h}=f_{i,\frac{3}{2}};$$

(3) $\stackrel{\text{def}}{=}$ 2 ≤ i ≤ N(j = N),

$$\frac{u_{i,N+\frac{1}{2}}-u_{i,N-\frac{1}{2}}}{h^2}-\frac{t_{i,N+1}}{h}-\frac{u_{i+1,N+\frac{1}{2}}-2u_{i,N+\frac{1}{2}}+u_{i-1,N+\frac{1}{2}}}{h^2}+\frac{p_{i+\frac{1}{2},N+\frac{1}{2}}-p_{i-\frac{1}{2},N+\frac{1}{2}}}{h}=f_{i,N+\frac{1}{2}};$$

$$(4) \stackrel{\underline{u}}{=} i = 1, N+1, 1 \leq j \leq N, u_{i,j+\frac{1}{2}} = 0.$$

关于 ν 的方程 (h = 1/N):

(1) $\stackrel{\text{def}}{=}$ 2 ≤ j ≤ N, 2 ≤ i ≤ N − 1,

$$-\frac{v_{i+\frac{3}{2},j}-2v_{i+\frac{1}{2},j}+v_{i-\frac{1}{2},j}}{h^2}-\frac{v_{i+\frac{1}{2},j+1}-2v_{i+\frac{1}{2},j}+v_{i+\frac{1}{2},j-1}}{h^2}+\frac{p_{i+\frac{1}{2},j+\frac{1}{2}}-p_{i+\frac{1}{2},j-\frac{1}{2}}}{h}=g_{i+\frac{1}{2},j};$$

(2) $\stackrel{\text{def}}{=}$ 2 ≤ j ≤ N(i = 1),

$$-\frac{v_{\frac{5}{2},j}-v_{\frac{3}{2},j}}{h^2}-\frac{l_{1,j}}{h}-\frac{v_{\frac{3}{2},j+1}-2v_{\frac{3}{2},j}+v_{\frac{3}{2},j-1}}{h^2}+\frac{p_{\frac{3}{2},j+\frac{1}{2}}-p_{\frac{3}{2},j-\frac{1}{2}}}{h}=g_{\frac{3}{2},j};$$

 $(3) \stackrel{\text{def}}{=} 2 \leq j \leq N(i = N)$,

$$\frac{v_{N+\frac{1}{2},j}-v_{N-\frac{1}{2},j}}{h^2}-\frac{r_{N+1,j}}{h}-\frac{v_{N+\frac{1}{2},j+1}-2v_{N+\frac{1}{2},j}+v_{N+\frac{1}{2},j-1}}{h^2}+\frac{p_{N+\frac{1}{2},j+\frac{1}{2}}-p_{N+\frac{1}{2},j-\frac{1}{2}}}{h}=g_{N+\frac{1}{2},j};$$

(4) $\stackrel{.}{=}$ j = 1 $\stackrel{.}{=}$ $N + 1, 1 \le i \le N, v_{i+\frac{1}{2},j} = 0.$

有了这些准备,我们可以来解释离散 Stokes 方程中的变量 **U**, **P**, 这里 **U** 是由 $u_{i,j+\frac{1}{2}}(2 \le i \le N, 1 \le j \le N)$ 和 $v_{i+\frac{1}{2},j}(1 \le i \le N, 2 \le j \le N)$ 构成的,而 **P** 由 f,g 构成。这里我们排除了 u,v 在 边界处被强制设置为 0 的部分,这将为我们的理论推导部分带来一定帮助。

1.2 记号约定与测试设备说明

在开始具体讨论我的算法前,我需要约定一些记号,它们与我在代码中使用的记号是一致的,我使用 matlab 语言编程,下面讨论中一些矩阵的切片操作等表达含义与相应的 matlab 代码一致。

我使用 $(N+1) \times N$ 的矩阵 U, F_U 分别表示速度分量 u 和外力分量 f。

 $N \times (N+1)$ 的矩阵 V, F_V 表示速度分量 V 和外力分量 g。

 $N \times N$ 的矩阵 P(是否为粗体表示的都是离散压力矩阵) 表示压力 p。

$$\begin{split} &U(i,j) = u_{i+\frac{1}{2},j}, F_U(i,j) = f_{i+\frac{1}{2},j} (1 \le i \le N+1, 1 \le j \le N) \\ &V(i,j) = u_{i,j+\frac{1}{2}}, F_V(i,j) = f_{i,j+\frac{1}{2}} (1 \le i \le N, 1 \le j \le N+1) \\ &P(i,j) = p_{i+\frac{1}{2},j+\frac{1}{2}} (1 \le i \le N, 1 \le j \le N) \end{split}$$

注意到这里的矩阵 U,V 和矩阵 A 的尺寸并不符合,这是因为我保留了 u,v 中在边界强制为 0 的部分,但这主要是为了编写代码中能够减少分类,简化代码。本质上并不会影响矩阵 A,B,B^T 等矩阵的作用。(换言之,我们将是否保留强制为 0 的边界的两个矩阵等同起来)

本大作业使用的测试解如下: 在区域 $\Omega = (0,1) \times (0,1)$ 上, 外力为

$$f(x, y) = -4\pi^2 (2\cos(2\pi x) - 1)\sin(2\pi y) + x^2$$
$$g(x, y) = 4\pi^2 (2\cos(2\pi y) - 1)\sin(2\pi x).$$

此时 Stokes 方程的真解为

$$u(x, y) = (1 - \cos(2\pi x))\sin(2\pi y),$$

$$v(x, y) = -(1 - \cos(2\pi y))\sin(2\pi x),$$

$$p(x, y) = \frac{x^3}{3} - \frac{1}{12}.$$

此外,以下代码运行所使用的 CPU 为 I5-1335U,基本频率 (最大频率) 为 1.30 GHz(4.60 GHz), GPU 为 RTX 2050, 用于并行加速计算。

1.3 算法思路说明

在实现要求的算法同时,我注重提升算法的效率,并尝试利用 GPU 加速运算。为此我需要避免使用 for 循环,利用矢量化操作或者 matlab 提供的兼容 GPU 的函数代替 for 循环操作,例如矩阵卷积。同时我还修改了第一题中 DGS 迭代变量的遍历次序,使用使用红黑 GS 迭代,并在后续更新速度、压力分量时也采取红黑遍历顺序。除此以外,我的算法与课堂以及 ppt 上所述一致。

此外,我还针对使用是否使用 GPU 分别进行了针对优化, 在使用 GPU 加速的前提下,我第一问的算法在 N=2048 的情况下只需要几秒钟便可以收敛到指定精度。

2 准备工作

在详细介绍我对三个问题的算法前,我先进行一些准备工作的说明。它们构成了我的三个 算法的基石。

2.1 提升限制算子

提升限制算子我参考图片2中给出的提升限制算子完成。

图 2: 提升限制算子的实现

2.1.1 提升算子

注意到切片操作在 CPU 和 GPU 上都能够比较高效的运行,故我使用切片操作实现提升算子如下 (仅展示核心计算代码)。

Listing 1: 提升算子

```
function [U_lift, V_lift, P_lift] = lift(U, V, P, N, device)
 1
2
       P_{lift}(1:2:end, 1:2:end) = P;
       P_{lift}(1:2:end, 2:2:end) = P;
3
       P_1ift(2:2:end, 1:2:end) = P;
4
       P \ lift(2:2:end, 2:2:end) = P;
5
       U_1ift(1:2:end, 1:2:(N*2)) = U;
6
7
       U_1ift(1:2:end, 2:2:(N*2)) = U;
8
       U_1ift(2:2:N*2, 1:2:N*2) = (U(1:N, 1:N) + U(2:N+1, 1:N)) / 2;
9
       U_1ift(2:2:N*2, 2:2:N*2) = U_1ift(2:2:N*2, 1:2:N*2);
10
       V = 1 + (1:2:N*2, 1:2:end) = V;
       V_{lift}(2:2:N*2, 1:2:end) = V;
11
       V_1ift(2:2:N*2, 2:2:N*2) = (V(:, 1:N) + V(:, 2:N+1)) / 2;
12
13
       V_{lift}(1:2:N*2, 2:2:N*2) = V_{lift}(2:2:N*2, 2:2:N*2);
14
   end
```

2.1.2 限制算子

完全类似地,我们可以只使用矩阵的切片等高效操作实现限制算子,其思路与提升算子的实现完全一致,只需注意边界处需要额外处理即可。具体地讲,u,v 在边界处的限制 u_{res},v_{res} 为最近的两个 u,v 节点的平均值。经过实验这个限制算子是高效的,为了使报告简洁,我没有贴这部分的代码,您可以在提交的代码文件"restrict.m" 中查看其具体实现。

2.2 矩阵 A, B, B^T 的作用

通过观察离散 Stokes 方程的展开格式,我们便可得到矩阵 \mathbf{A} , \mathbf{B} , $\mathbf{B}^{\mathbf{T}}$ 作用的具体公式。具体地讲 \mathbf{A} 在 U, V 上的作用会分别得到 $(N+1)\times N$ 和 $N\times (N+1)$ 维的向量 A_U , A_V (本质是只作用其中除去强制为 0 边界的部分,但是作用可以开拓到整个矩阵 U, V 上)。其具体公式即为离散 Stokes 方程展开式左边由 u, v 分量构成的部分。类似地我们可以得到 \mathbf{B} , $\mathbf{B}^{\mathbf{T}}$ 的作用。

2.2.1 矩阵 A 的作用

其核心部分可以利用卷积操作快速得到。

$$kernel = \begin{pmatrix} 0 & 1 & 0 \\ 1 & -4 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$

$$A_{U}(2:N,2:N-1) = \frac{1}{h^{2}}conv2(U, kernel, 'valid');$$

$$A_{V}(2:N-1,2:N) = \frac{1}{h^{2}}conv2(V, kernel, 'valid');$$

这里 conv2 为 matlab 的内置卷积函数。对于 C = conv2(A, B) 有

$$C(j,k) = \sum_{p} \sum_{q} A(p,q) B(j-p+1,k-q+1)$$

其中(默认模式下), p 和 q 取遍所有使得 A(p,q) 和 B(j-p+1,k-q+1) 的下标合法的值。若设置模式为 'valid'(默认模式为'full')则 j,k 需要满足 p,q 可以分别取遍 $1,\ldots,j$ 和 $1,\ldots,k$ 。因而 C 的尺寸需要相应缩小。

类似地, A_U , A_V 的边界 $A_U[2:N,[1,N]]$, $A_V[[1,N],2:N]$ 也可以由 U,V 相应部分与某些 kernel 卷积得到。例如

$$kernel = \begin{pmatrix} 0 & 1 & 0 \\ 1 & -3 & 1 \end{pmatrix}$$

$$A_V(1, 2: N) = \frac{1}{h^2} \text{conv2}(V(1: 2, 1: N+1), kernel, 'valid');$$

其余的情况是类似可得。

此后我们约定记号 $*_f$ 为模式为 full 模式的矩阵卷积, $*_v$ 为模式为 valid 的矩阵卷积。

2.2.2 矩阵 B 的作用

B作用在压力矩阵 P上得到 B_{Pu} , B_{Pv} 分别为 P在 U, V 分量上的投影。则我们有

$$B_{Pu}(2:N,:) = \frac{1}{h}P *_{\nu} \begin{pmatrix} 1\\ -1 \end{pmatrix}$$
$$B_{P\nu}(:,2:N) = \frac{1}{h}P *_{\nu} \begin{pmatrix} 1\\ -1 \end{pmatrix}$$

2.2.3 矩阵 B^T 的作用

 \mathbf{B}^{T} 作用在速度 (U,V) 上得到 $N \times N$ 的矩阵 P 有

$$P = -\frac{1}{h} \left(U *_{v} \begin{pmatrix} 1 \\ -1 \end{pmatrix} + V *_{v} \begin{pmatrix} 1 \\ -1 \end{pmatrix} \right)$$

3 第一题

3.1 问题描述

分别取 N=64,128,256,512,1024,2048,以 DGS 为磨光子,用基于 V-cycle 的多重网格方法求解离散问题 2,停机标准为 $\frac{\|r_h\|_2}{\|r_0\|_2} \le 10^{-8}$,对不同的 ν_1,ν_2,L ,比较 V-cycle 的次数和 CPU 时间,并计算误差

$$e_N = h \left(\sum_{i=1}^N \sum_{i=2}^N \left| u_{i,j+\frac{1}{2}} - u((i-1)h, (j-\frac{1}{2})h) \right|^2 + \sum_{i=2}^N \sum_{i=1}^N \left| v_{i+\frac{1}{2},j} - v((i-\frac{1}{2})h, (j-1)h) \right|^2 \right)^{\frac{1}{2}}.$$

3.2 红黑 GS 迭代以及红黑 DGS 迭代

为了并行加速,我没有使用顺序的 GS 迭代或 DGS 迭代,而使用了红黑 GS 迭代和红黑 DGS 迭代。下面我将介绍它们的细节。

注意到 GS 迭代 (或 DGS 迭代) 即按照某种顺序依次更新解,但是新更新的解分量需要利用上这一轮已经更新过的解分量。因此更新顺序对与能否并行运算有很大影响。基于 Stokes 方程的特点,红黑遍历的方式恰好能够满足我们的需求。

具体地讲红黑 GS 迭代在更新 U, V 时采取如下的更新顺序, 更新分为两轮, 第一轮更新

$$U(i, j)$$
, $V(i, j)(i + j \equiv 1 \mod 2)$

当然对于 U, V 来讲 (i,j) 的定义域是不同的,它们在这里分别取遍使得它们有定义且不被强制为 0 的区域。再更新

$$U(i, j)$$
, $V(i, j)(i + j \equiv 0 \mod 2)$

注意到 **A** 的特殊性,离散 Stokes 方程中每个 U(i,j), V(i,j) 都分别只会和与之相邻的 U, V 分量同时出现在一个式子中。这意味着在两轮更新中,需要被更新的分量都是互相不会影响的,因此在每一轮中,可以并行地同时处理所有需要更新的分量。

对于红黑 DGS 迭代, 处理是类似地。将 $N \times N$ 个格子以左下角顶点编号为 (i,j) $1 \le i,j \le N$,则第一轮更新 $i+j \equiv 1 \mod 2$ 的格子,第二轮更新 $i+j \equiv 1 \mod 2$ 的格子。与前面相同的,其中的每一轮更新都是可以并行处理的。

3.2.1 算法实现

接下来我先给出伪代码以展示算法的整体框架,再讨论如何进行并行计算。

Algorithm 1 以 DGS 迭代法为磨光子的 V-cycle 多重网格算法

- 1: **while** $||r_h||_2/||r_0||_2 > 10^{-8}$ **do**
- 2: repeat
- 3: 使用红黑 DGS 迭代 ν₁ 次, 计算残量并限制到下一层.
- 4: **until** 到达底层网格,网格尺寸为 bottom × bottom.
- 5: repeat
- 6: 使用红黑 DGS 迭代 v₂ 次, 计算残量并提升到上一层.
- 7: until 到达顶层
- 8: end while

红黑 GS 迭代的并行实现利用了 matlab 的广播机制,通过创建一个与 U, V 相同尺寸的 true false 掩码矩阵,筛选出每一轮需要更新的解分量,再依次加上他们的残差。这里我对使用设备 device 为 GPU 还是 CPU 分别进行处理,在使用设备为 CPU 时,因为并行计算算法在设计时只能利用 matlab 的广播机制或者兼容 GPU 的函数,灵活性受限,因此设计出的并行算法相比 for 循环的时间复杂度会更高一些,经过实验我最终决定采取 for 循环的方式完成红黑 GS 迭代。下面我主要展示 GPU 版本的核心实现代码。

Listing 2: 红黑 GS 迭代

```
7
       [A_U, A_V] = apply_A(U_ite, V_ite, N, device); %计算A作用在U, V上的结果
8
       [B_Pu, B_Pv] = apply_B(P_ite, N, device); %计算B作用在P上的结果
9
       residual_U = F_U - (A_U + B_Pu); %F_U为外力的U分量, 这里是U分量对应的残差
       residual_V = F_V - (A_V + B_Pv); %F_V为外力的V分量, 这里是V分量对应的残差
10
11
       h_{temp} = h_{sq} / 4;
12
       % 更新内部红色节点(i + j mod 2 == 1)
13
       U_ite(red_mask_U) = U_ite(red_mask_U) + h_temp * residual_U(red_mask_U);
14
       V_ite(red_mask_V) = V_ite(red_mask_V) + h_temp * residual_V(red_mask_V);
15
       h_{temp} = h_{sq} / 3;
       %边界处理
16
17
       U_{ite}(2:2:end, 1) = U_{ite}(2:2:end, 1) + h_{temp} * residual_U(2:2:end, 1);
       U_{ite}(end-2:-2:3, N) = U_{ite}(end-2:-2:3, N) + h_{temp} * residual_U(end)
18
          -2:-2:3, N);
19
       V_{ite}(1, 2:2:end) = V_{ite}(1, 2:2:end) + h_{temp} * residual_V(1, 2:2:end);
       V_{ite}(N, end-2:-2:3) = V_{ite}(N, end-2:-2:3) + h_{temp} * residual_V(N, end
20
          -2:-2:3);
21
       %黑色节点更新逻辑与红色节点完全一致,这里为从简便省略了。
22
   end
```

红黑 DGS 后续的压力更新以及速度更新与红黑 GS 的思路一致。注意到 DGS 更新压力与速度的方式如下: (u,v) 是已经使用红黑 GS 迭代更新得到的速度分量,再设散度方程为(实际过程中由于提升限制散度方程不一定与原始离散 Stokes 方程一致)

$$\mathbf{B}^{\mathsf{T}}\mathbf{U} = D =: d_{i,j} (1 \leq i, j \leq N)$$

并记 $U = (u_{i,j}), V = (v_{i,j}), 则 DGS 更新的公式为:$

1. 对内部单元 (i,j) (四个顶点 ((i-1)h,(j-1)h),(ih,(j-1)h),((i-1)h,jh),((i-1)h,(j-1)h)), $2 \le i,j \le N-1$, 计算散度方程的残量

$$r_{i,j} = -\frac{u_{i+1,j} - u_{i,j}}{h} - \frac{v_{i,j+1} - v_{i,j}}{h} - d_{i,j},$$

并令 $\delta = r_{i,i}h/4$ 。

更新内部单元速度:

$$u_{i,j} = u_{i,j} - \delta, \quad u_{i+1,j} = u_{i+1,j} + \delta,$$

 $v_{i,j} = v_{i,j} - \delta, \quad v_{i,j+1} = v_{i,j+1} + \delta$

更新内部单元的压力:

$$p_{i,j} = p_{i,j} + r_{i,j},$$

$$p_{i+1,j} = p_{i+1,j} - r_{i,j}/4,$$

$$p_{i,j+1} = p_{i,j+1} - r_{i,j}/4,$$

$$p_{i-1,j} = p_{i-1,j} - r_{i,j}/4,$$

$$p_{i,j-1} = p_{i,j-1} - r_{i,j}/4$$

2. 对边界单元 (i, N) (四个顶点 ((i-1)h, (N-1)h), ((i-1)h, Nh), (ih, (N-1)h), (ih, Nh)), $2 \le i \le N-1$, 先计算散度的残量 $r_{i,N}$, 计算公式如前, 并令 $\delta = r_{i,N}h/3$ 。

更新速度如下:

$$u_{i,N} = u_{i,N} - \delta, \ u_{i+1,N} = u_{i+1,N} + \delta,$$

$$v_{i,N} = v_{i,N} - \delta.$$

更新边界单元 (i, N) 的压力:

$$p_{i,N} = p_{i,N}^k + r_{i,N},$$

$$p_{i+1,N} = p_{i+1,N} - r_{i,N}/3,$$

$$p_{i-1,N} = p_{i-1,N} - r_{i,N}/3,$$

$$p_{i,N-1} = p_{i,N-1} - r_{i,N}/3$$

对于其余三个边界更新是类似地。

3. 对顶点单元 (1,1), 计算散度残量 $r_{1,1}$, 计算公式如前, 令 $\delta = r_{1,1}h/2$ 。更新速度如下:

$$u_{2,1} = u_{2,1} + \delta, \quad v_{1,2} = v_{1,2} + \delta.$$

更新压力如下:

$$p_{1,1} = p_{1,1} + r_{1,1},$$

$$p_{1,2} = p_{1,2} - \frac{r_{1,1}}{2},$$

$$p_{2,1} = p_{2,1} - \frac{r_{1,1}}{2}.$$

对其他顶点单元 (1,N), (N,1) 和 (N,N), 类似更新速度和压力。

类似于矩阵作用的部分,这里仍然可以通过卷积加速最主要的内部格子更新,对于第一轮 红色格点的更新:

这里⊙指 Hadmard 乘积。对于边界以及角部格子的更新则完全类似提升算子的实现,可以直接通过矩阵切片的方式进行更新。至此我们完成了第一问算法的 GPU 版本的实现,CPU版本则是完全将其中的更新部分转换为 for 循环并适当减少不必要的计算得到的。

3.2.2 GPU 并行加速的补充说明

由于在规模较小的计算问题中,GPU 版本的代码因为灵活性受限导致时间复杂度更高、还有 CPU 以及 GPU 间数据传输等问题会导致 GPU 加速效果并不明显,有使用 GPU 计算时间甚至超过纯 CPU 计算的情况出现。对此,在设置 device = 'gpu' 时,我提供了参数 tol 以决定从哪 Vcycle 一层开始进行 GPU 加速。经过实验 $N \le 1024$ 时,只加速最顶层是比较合适的,当 N = 2048,4096 时,加速最上面两层是比较合适的。此外由于 CUDA 启动等原因,使用 GPU 计算一系列任务时,最开始的几个任务可能会稍慢。

3.3 数值结果

由于我的算法优化较好,即使是 N = 4096 也能较快地收敛,因此下面给出的数值结果均 会包含 N = 4096 的测试数据,同时每一组测试数据我会分别给出只使用 CPU 和使用 GPU 加

速的运行时间。

3.3.1 和真实解的误差

表 1: 误差

N	64	128	256	512	1024	2048	4096
误差	1.4951e-03	3.7363e-04	9.3399e-05	2.3349e-05	5.8372e-06	1.4593e-06	3.6483e-07

以上误差为参数 $\nu_1=1, \nu_2=1, L=\frac{N}{4}$ 下的结果,由于不同超参的选择对于误差的影响不大,便一这一组数据为参考进行分析。

图 3: Enter Caption

在绘制的对数-对数图中,可以轻松看出其规律:误差与 $\frac{1}{N^2}$ 成正比, N 每乘 2,误差变为原来的 $\frac{1}{4}$.(事实上是应当与某个 N^a 成正比,经过计算发现 a=-2)

3.3.2 不同超参 ν_1, ν_2, L 对于 Vcycle 迭代次数以及计算时间的影响

表 2: $v_1 = 1, v_2 = 1, N/L = 4$, 底层网格为 4×4 .

N	64	128	256	512	1024	2048	4096
求解时间-GPU 加速 (s)	0.585156	0.666738	0.785708	0.890858	1.617643	4.870252	35.596113
求解时间-CPU(s)	0.007870	0.024075	0.097521	0.604895	3.884930	25.512464	161.447916
V-cycle 次数	10	10	11	11	11	11	12

表 3: $v_1 = 1, v_2 = 1, N/L = 2$, 底层网格为 2×2 .

N	64	128	256	512	1024	2048	4096
求解时间-GPU 加速 (s)	0.594296	0.627040	0.796226	0.928459	1.633581	4.894184	38.740656
求解时间-CPU(s)	0.007531	0.023540	0.094621	0.605630	3.904031	25.693468	164.185407
V-cycle 次数	10	10	11	11	11	11	12

误差与 **3.3.1** 中的一致。此外当 N/L=8 时,所需迭代次数 (除了 N=4096 时迭代次数增加到 12) 与 N/L=4 的情形一致,求解时间相近,但是当 N/L=16 时,所需迭代次数将大大增加,详见下面 $\nu_1=2, \nu_2=2$ 的情形 (表 5)

表 4: $v_1 = 2$, $v_2 = 2$, N/L = 4, 底层网格为 4×4 .

N	64	128	256	512	1024	2048	4096
求解时间-GPU 加速 (s)	0.886221	0.888649	0.900877	1.090027	1.778190	5.456692	36.195024
求解时间-CPU(s)	0.007691	0.022006	0.091151	0.586066	4.316558	30.263790	172.858025
V-cycle 次数	7	7	7	7	7	7	7
误差	1.4951e-3	3.7363e-4	9.3399e-5	2.3349e-5	5.8373e-6	1.4593e-6	3.6486e-7

表 5: $v_1 = 2$, $v_2 = 2$, N/L = 16, 底层网格为 16×16 .

N	64	128	256	512	1024	2048	4096
求解时间-GPU 加速 (s)	2.590333	2.599041	2.604565	3.106615	5.051227	14.704554	116.321746
求解时间-CPU(s)	0.031651	0.064984	0.274295	1.698034	10.975851	82.930114	490.921569
V-cycle 次数	21	21	20	20	19	19	19
误差	1.4951e-3	3.7363e-4	9.3399e-5	2.3349e-5	5.8373e-6	1.4593e-6	3.6486e-7

表 6: $v_1 = 8$, $v_2 = 8$, N/L = 4, 底层网格为 4×4 .

N	64	128	256	512	1024	2048	4096
求解时间-GPU 加速 (s)	1.817362	1.925761	1.971945	2.132085	3.629367	11.227309	88.413729
求解时间-CPU(s)	0.017133	0.038751	0.164940	1.071890	8.692657	67.754301	369.508251
V-cycle 次数	4	4	4	4	4	4	4
误差	1.4951e-3	3.7363e-4	9.3398e-5	2.3349e-5	5.8374e-6	1.4610e-6	3.7229e-7

表 7: $v_1 = 4$, $v_2 = 2$, N/L = 4, 底层网格为 4×4 .

N	64	128	256	512	1024	2048	4096
求解时间-GPU 加速 (s)	0.981314	1.078697	1.164756	1.356919	2.251776	6.734809	58.382104
求解时间-CPU(s)	0.016822	0.034868	0.110544	0.712314	5.211267	39.760339	218.432401
V-cycle 次数	6	6	6	6	6	6	6
误差	1.4951e-3	3.7363e-4	9.3399e-5	2.3349e-5	5.8374e-6	1.4610e-6	3.6512e-7

根据上面的数据可以知道 GPU 加速在问题规模较大的时候能够相当程度上加速计算过程,但在规模较小时可能会适得其反,还有一些容易发现的规律,例如 ν_1,ν_2 与迭代次数成负相关关系等。最后, $\nu_1=1,\nu_2=1,L=\frac{N}{4}$ 是一组比较不错的超参数,其在各个 N 上均有相当不错的表现。

4 第二题

4.1 问题描述

分别取 N=64,128,256,512,以 Uzawa Iteration Method 求解上述离散问题,停机标准为 $\frac{\|p_n\|_2}{\|p_n\|_2} \le 10^{-8}$,并计算误差

$$e_N = h \left(\sum_{j=1}^N \sum_{i=2}^N \left| u_{i,j+\frac{1}{2}} - u((i-1)h, (j-\frac{1}{2})h) \right|^2 + \sum_{j=2}^N \sum_{i=1}^N \left| v_{i+\frac{1}{2},j} - v((i-\frac{1}{2})h, (j-1)h) \right|^2 \right)^{\frac{1}{2}}.$$

4.2 Uzawa Iteration Method

我使用共轭梯度法在 Uzawa 迭代中精确求解方程 $AU = \mathbf{F} - \mathbf{B}P$, 其为代码如下

Algorithm 2 Uzawa 迭代法

Require: P_0 , k = 0

1: **while** $||r_h||_2/||r_0||_2 > 10^{-8}$ **do**

2: 利用共轭梯度法求解 $\mathbf{AU}_{k+1} = \mathbf{F} - \mathbf{B}P_k$

3: 更新压力 $P_{k+1} = P_k + \alpha(\mathbf{B}^T \mathbf{U}_{k+1})$

4: end while

注意到共轭梯度法中只需要用到 A 在速度分量 U,V 上的作用,并不需要真正计算出 A,并且向量之间的点积事实上可以使用 hadamard 乘积与 matlab 的 sum 函数结合完成。从而 Uzawa 迭代法仍然能够并行地实现。这里我参照书上给出的共轭梯度法适当修改,在当前残差 2 范数小于迭代初始残差 2 范数的 $\frac{1}{100}$ 或迭代次数超过 $3 \times N$ 时跳出迭代。

最后,我们需要确定参数 α 如何选取。

4.3 最优参数 α_s 的选取

注意到 $P_{k+1} = P_k + \alpha (\mathbf{B^T U}_{k+1}) = P_k + \alpha \mathbf{B^T A^{-1} (F - B} P_k) = (I - \alpha \mathbf{B^T A^{-1} B}) P_k + \alpha \mathbf{B^T A^{-1} F}$ 。所以 Uzawa 迭代中更新 P 的部分可以视为松弛迭代。这要求我们研究矩阵 $C := \mathbf{B^T A^{-1} B}$

引理 4.1. $rank(\mathbf{B}) = N^2 - 1$, 且 \mathbf{B} 的零空间由所有元素均相等的 $N \times N$ 矩阵构成, 因而维数是 1。

引理的证明: 注意到 **B** 作用在 $N \times N$ 矩阵 P 上给出 P 在列、行方向上的差分 (B_{Pu}, B_{Pv}), 根据 **2.2.2** 小节的讨论 (B_{Pu}, B_{Pv}) = **0** 当且仅当 P 的所有元素均相等,证毕。

引理 4.2. $AB = BB^TB$

注意到 **A** 是 $-\Delta$ 的离散化,**B** 是 ∇ 的离散化,**B**^T 是 -div 的离散化。对于 $(0,1) \times (0,1)$ 上的光滑函数 p,

$$-\Delta(\nabla p) = -\left(\frac{\partial^3 p}{\partial x^2 \partial x} + \frac{\partial^3 p}{\partial y^2 \partial x}, \frac{\partial^3 p}{\partial x^2 \partial y} + \frac{\partial^3 p}{\partial y^2 \partial y}\right) = \nabla((-\operatorname{div}) \cdot \nabla(p))$$

通过这个转换思路, 我们能够直接验证引理 4.2

引理 4.2 的证明: 对 $N \times N$ 矩阵 P, 记 $P_1 = \mathbf{AB}P$, $P_2 = \mathbf{BB}^T\mathbf{B}P$, 由对称性,只需证明 P_1 , P_2 在 U 分量的投影相等 (那么在 V 分量上的投影也同理相等), 根据算子 \mathbf{A} , \mathbf{B} , \mathbf{B}^T 与其连续形式 $-\Delta$, ∇ , $-\mathrm{div}$ 的对应, 我们可以自然的记 (∂x 指的是沿列方向的差分例如 $P_{i+1,i} - P_{i,j}$, ∂y 则反之)

$$\mathbf{A} =: -(\frac{\partial_A^2}{\partial x^2} + \frac{\partial_A^2}{\partial y^2})$$

$$\mathbf{B} =: (\frac{\partial_B}{\partial x}, \frac{\partial_B}{\partial y})$$

$$\mathbf{B}^{\mathbf{T}} =: -(\frac{\partial_{B^T}}{\partial x}, \frac{\partial_{B^T}}{\partial x}) \cdot (使用向量 - (\frac{\partial_{B^T}}{\partial x}, \frac{\partial_{B^T}}{\partial x}) \cdot 与矩阵做 "点积")$$

那么 P_1 在 U 方向的投影即为 $-\frac{\partial^2_A}{\partial x^2}\frac{\partial_B}{\partial x}P - \frac{\partial^2_A}{\partial y^2}\frac{\partial_B}{\partial x}P$, P_2 在 U 方向投影即为 $-\frac{\partial_B}{\partial x}\frac{\partial_B T}{\partial x}\frac{\partial_B}{\partial x}P - \frac{\partial_B}{\partial x}\frac{\partial_B T}{\partial y}\frac{\partial_B}{\partial y}P$ 从而只用分别证明

$$\frac{\partial_A^2}{\partial x^2} \frac{\partial_B}{\partial x} = \frac{\partial_B}{\partial x} \frac{\partial_{B^T}}{\partial x} \frac{\partial_B}{\partial x}, \frac{\partial_A^2}{\partial y^2} \frac{\partial_B}{\partial x} = \frac{\partial_B}{\partial x} \frac{\partial_{B^T}}{\partial y} \frac{\partial_B}{\partial y}$$

回顾我们对于速度分量 U,V 的约定,它们与 A 的尺寸不符合但是由于强制边界为 0, 我们仍然可以考虑 A,B^T 等在其上的作用。

那么对于前者: 设 $\tilde{U} = \frac{\partial_B}{\partial x} P$ 是一个 $(N+1) \times N$ 的矩阵 (最上最下两行为 0), 则根据 **2.2** 小节, 我们有

$$\left(\frac{\partial_A^2}{\partial x^2}\tilde{U}\right)(2:N,:) = \frac{1}{h^2}\tilde{U} *_v \begin{pmatrix} -1\\2\\-1 \end{pmatrix} = \frac{1}{h^2}(\tilde{U} *_v \begin{pmatrix} 1\\-1 \end{pmatrix}) *_v \begin{pmatrix} 1\\-1 \end{pmatrix} = \frac{\partial_B}{\partial x}\frac{\partial_{B^T}}{\partial x}\tilde{U}$$

得证

对于后者:

$$\hat{V} := \frac{\partial_B}{\partial y} P \quad \hat{V}(i,j) = \frac{1}{h} (P(i,j) - P(i,j-1)) \quad (i = 1, ..., N, j = 2, ..., N)$$

$$\hat{P} := \frac{\partial_{B^T}}{\partial y} \hat{V} \quad \hat{P}(i,j) = \frac{1}{h} (\hat{V}(i,j+1) - \hat{V}(i,j)) \quad (i = 1, ..., N, j = 1, ..., N)$$

$$\hat{U} := \frac{\partial_B}{\partial x} \hat{P} \quad \hat{U}(i,j) = \frac{1}{h} (\hat{P}(i,j) - \hat{P}(i-1,j)) \quad (i = 2, ..., N, j = 1, ..., N)$$

$$U_{1} := \frac{\partial_{B}}{\partial x} \hat{P} \quad U_{1}(i,j) = \frac{1}{h} (P(i,j) - P(i-1,j)) \quad (i = 2, ..., N, j = 1, ..., N)$$

$$U := \frac{\partial_{A}^{2}}{\partial x^{2}} U_{1} \quad U(i,j) = \begin{cases} \frac{1}{h} (U_{1}(i,j-1) + U_{1}(i,j+1) - 2U_{1}(i,j) & (i = 2, ..., N, j = 2, ..., N-1)) \\ \frac{1}{h} (U_{1}(i,2) - U_{1}(i,1)) & j = 1 \\ \frac{1}{h} (-U_{1}(i,N) + U_{1}(i,N-1)) & j = N \end{cases}$$

则将 U, \hat{U} 根据上面的式子展开,结合立刻有 $U = \hat{U}$ 。综上,**引理 4.2 得证**

定理 4.3. $B^TA^{-1}B$ 的特征值只有 1 和 0, 且其中 0 特征值的重数为 1.

定理 4.3 的证明: 由引理 4.2

$$AB = BB^TB$$

回忆 $C := \mathbf{B}^{\mathsf{T}} \mathbf{A}^{-1} \mathbf{B}$, 利用上面的式子, 我们有

$$\mathbf{B}^{\mathsf{T}}\mathbf{B} = (\mathbf{B}^{\mathsf{T}}\mathbf{A}^{-1}\mathbf{B})\mathbf{B}^{\mathsf{T}}\mathbf{B} = C\mathbf{B}^{\mathsf{T}}\mathbf{B}$$

注意到线性代数中的熟知结论以及引理 4.1,有

$$rank(\mathbf{B}^{\mathsf{T}}\mathbf{B}) = rank(\mathbf{B}) = N^2 - 1$$

这说明 C 的特征值为 1 的子空间维数至少为 $N^2 - 1$, 而由 A 正定对称, 所以

$$rank(\mathbf{B}^{\mathsf{T}}\mathbf{A}^{-1}\mathbf{B}) = rank(\mathbf{B}) = N - 1$$

所以 C 的特征值只有 0 或 1,且其中特征值为 0 的特征子空间维数为 1。**证毕!**

有了上面的准备工作,我们可以开始讨论最优 α 的选取问题。注意到原 Stokes 方程以及离散 Stokes 方程中压力 P(每个元素) 整体加上一个常数仍然是解,因此我们可以商掉常值矩阵 (函数) 张成的空间讨论收敛性问题,在这个商空间上,C 的特征值只有 1,则 I-C 的谱半径相应为 0,达到最好的效果 (事实上 $I-\alpha B^T A^{-1} B$ 的特征值为 $1-\alpha$, 1, 在 $\alpha=1$ 时变为秩 1 矩阵,此时收敛最快),综上最优参数 $\alpha_*=1$.

4.4 数值结果

根据上面三个小节的讨论,我们已经完成了 Uzawa 迭代法的复现,以下是我得到的数值结果,与第一问类似,我统计了完全使用 GPU 进行计算和使用 CPU 进行计算的运行时间,此外我还额外尝试了 N=1024,2048 的情形,实验证明使用 GPU 加速在这样大规模的问题下求解时间仍在可接受范围内,而 CPU 版本则求解时间过长。

N	64	128	256	512	1024	2048
求解时间-GPU(s)	1.269186	1.822200	3.690446	7.068894	26.167055	177.178170
求解时间-CPU(s)	0.024223	0.139926	0.750014	11.267029	95.587917	751.479234
Uzawa 迭代次数	2	2	2	2	2	2
共轭梯度法迭代次数	(192, 129)	(384, 258)	(768, 517)	(1536, 1032)	(3072, 1992)	(6144, 3984)
误差	1.4951e-3	3.7363e-4	9.3399e-5	2.3349e-5	5.8372e-6	1.4593e-6

表 8: Uzawa 迭代数值结果

这里得到的误差与第一问得到的几乎完全一致,再次说明了误差应当与 $\frac{1}{N^2}$ 成正比.

5 第三题

5.1 问题描述

分别取 N=64,128,256,512,1024,2048,以 Inexact Uzawa Iteration Method 为迭代法求解上述离散问题,停机标准为 $||r_h||_2/||r_0||_2 \le 10^{-8}$,其中以 V-cycle 多重网格方法为预条件子求解每一步的子问题 $\mathbf{AU}_{k+1} = \mathbf{F} - \mathbf{B}P_k$,对不同的 $\alpha, \tau, \nu_1, \nu_2, L$,比较外循环的迭代次数和 CPU 时间,并计算误差

$$e_N = h \left(\sum_{j=1}^N \sum_{i=2}^N \left| u_{i,j+\frac{1}{2}} - u((i-1)h, (j-\frac{1}{2})h) \right|^2 + \sum_{j=2}^N \sum_{i=1}^N \left| v_{i+\frac{1}{2},j} - v((i-\frac{1}{2})h, (j-1)h) \right|^2 \right)^{\frac{1}{2}}.$$

5.2 Inexact Uzawa Iteration Method

与第一问不同的是,这里 Vcycle 多重网格求解子问题 $\mathbf{AU}_{k+1} = \mathbf{F} - \mathbf{B}P_k$ 时没用使用 (对称) 红黑 GS 迭代,而是使用了 (对称) 顺序 GS 迭代,因为通过实验,(对称) 红黑 GS 迭代在这个问

题中的收敛效率相当程度上慢于 (对称) 顺序 GS 迭代,即需要更多次迭代才能收敛。这里顺序 GS 迭代的遍历顺序 U 按照先列后行 (列标从小到大,固定列标时,行标从小到大遍历), V 按照 先行后列的顺序遍历,遍历完第一遍后,按照第一轮遍历的顺序的逆序,反向更新 U,V. 我实现的 Inexact Uzawa 迭代的伪代码如下:

Algorithm 3 Inexact Uzawa 迭代法

Require: $P_0, k = 0.$

- 1: **while** $||r_h||_2/||r_0||_2 > 10^{-8}$ **do**
- 2: 以 V-cycle 预优共轭梯度法求解 $\mathbf{AU}_{k+1} = \mathbf{F} \mathbf{B}P_k$,得到近似解 $\hat{\mathbf{U}}_{k+1}$.
- 3: 更新压力 $P_{k+1} = P_k + \alpha(\mathbf{B}^T \hat{\mathbf{U}}_{k+1})$.
- 4: end while

其中 V-cycle 预优共轭梯度法如下:

Algorithm 4 V-cycle 预优共轭梯度法

Require: x

1:
$$k = 0$$
; $r = b - \mathbf{A}x$; $\rho = r^T r$

2: **for** k = 1: PCG_ite_max **do**

3: **if**
$$\left(\sqrt{r^T r} < \tau \|B^T \hat{U}_k\|_2\right)$$
 或 $\left(\sqrt{r^T r} < \varepsilon \|b\|_2\right)$ **then**

4: break

5: end if

6: 以对称顺序 Gauss-Seidel 迭代法为磨光子,利用 Veycle 多重网格方法求解 Az = r.

7: **if** k = 1 **then**

8: p = z; $\rho = r^T z$;

9: **else**

10: $\tilde{\rho} = \rho$; $\rho = r^T z$; $\beta = \rho/\tilde{\rho}$; $p = z + \beta p$;

11: **end if**

12: $w = \mathbf{A}p$; $\alpha = \rho/p^T w$; $x = x + \alpha p$; $r = r - \alpha w$;

13: **end for**

上面伪代码中 τ 的含义见下面的解释:设 $\hat{\mathbf{U}}_{k+1}$ 是方程 $\mathbf{A}\mathbf{U}_{k+1} = \mathbf{F} - \mathbf{B}P_k$ 的近似解。定义

$$\delta_k = \mathbf{A}\mathbf{\hat{U}}_{k+1} - \mathbf{F} + \mathbf{B}P_k$$

若总有

$$\|\boldsymbol{\delta}_k\|_2 \le \tau \|\mathbf{B}^{\mathsf{T}}\mathbf{\hat{U}}_k\|_2$$

根据课上所讲,当 7 充分小时,上述迭代方法是收敛的。

对预优共轭梯度法的 Vcycle 多重网格, 其至多求解 Vcycle_ite_max 轮, 此外当多重网格当前残差 2 范数小于初始残差 2 范数乘 Vcycle_error 时, 也跳出 Vcycle 迭代。

此外我还在 V-cycle 预优共轭梯度法中引入了参数 ε , 这是预优共轭梯度法中的收敛条件, 经过实验, 它的引入能够加速收敛 (有时 $\mathbf{B}^{\mathbf{T}}\mathbf{U}_{\mathbf{k}}$ 已经足够小, 再乘上 τ 导致算法难已收敛)。

综上所述,我的算法能够调节的参数共有以下几个: $v_1, v_2, \alpha, L, \tau, \varepsilon, PCG_ite_max, Vcycle_ite_max, Vcycle_error$ 。其中 PCG_ite_max 对收敛速度不起本质作用,其设置是为了防止预优共轭梯度算法未能收敛导致程序陷入死循环。

5.3 数值结果

表 9: $v_1 = 4$, $v_2 = 4$, $\alpha = 1$, N/L = 4, $\tau = 1e - 3$, $\varepsilon = 1e - 6$, $PCG_ite_max = 2$, $Vcycle_ite_max = 2$, $Vcycle_error = 1e - 6$

N	64	128	256	512	1024	2048	4096
求解时间-CPU(s)	0.026898	0.034526	0.133297	0.666368	3.792414	22.239338	111.622652
Inexact Uzawa 迭代次数	2	2	2	2	2	2	2
PCG 迭代次数	2, 2	2, 2	2, 2	2, 2	2, 2	2, 2	2, 2
误差	1.4951e-3	3.7364e-4	9.3407e-5	2.3357e-5	5.8456e-6	1.4677e-6	3.7325e-7

表 10: $v_1 = 4$, $v_2 = 4$, $\alpha = 1$, N/L = 8, $\tau = 1e - 3$, $\varepsilon = 1e - 6$, $PCG_ite_max = 2$, $Vcycle_ite_max = 3$, $Vcycle_error = 1e - 6$

N	64	128	256	512	1024	2048	4096
求解时间-CPU(s)	0.032328	0.085980	0.290237	1.443217	8.137539	49.195681	175.623284
Inexact Uzawa 迭代次数	3	3	3	3	3	3	2
PCG 迭代次数	2, 2, 2	2, 2, 2	2, 2, 2	2, 2, 2	2, 2, 2	2, 2, 2	2, 2
误差	1.4951e-3	3.7363e-4	9.3399e-5	2.3350e-5	5.8380e-6	1.4601e-6	5.8166

表 11: $v_1=2, v_2=2, \alpha=1, N/L=2, \tau=1e-3, \varepsilon=1e-6,$ $PCG_ite_max=10, Vcycle_ite_max=3, Vcycle_error=1e-6$

N	64	128	256	512	1024	2048	4096
求解时间-CPU(s)	0.024467	0.032684	0.116778	0.588672	3.187337	18.480399	91.595735
Inexact Uzawa 迭代次数	2	2	2	2	2	2	2
PCG 迭代次数	2, 2	2, 2	2, 2	2, 2	2, 2	2, 2	2, 2
误差	1.4951e-3	3.7363e-4	9.3399e-5	2.3350e-5	5.8377e-6	1.4597e-6	3.6524e-7

表 12: $v_1 = 2$, $v_2 = 2$, $\alpha = 0.95$, N/L = 2, $\tau = 1e - 3$, $\varepsilon = 1e - 8$, $PCG_ite_max = 10$, $Vcycle_ite_max = 2$, $Vcycle_error = 1e - 6$

N	64	128	256	512	1024	2048	4096
求解时间-CPU(s)	0.061697	0.177659	0.463412	1.930474	10.646236	47.124055	256.556398
Inexact Uzawa 迭代次数	6	6	6	5	5	5	5
PCG 迭代次数	3,5 个 4	3,5个4	3,5 个 4	3,4 1 4	3,4个4	5个3	5个3
误差	1.4951e-3	3.7363e-4	9.3399e-5	2.3350e-5	5.8398e-6	1.4696e-6	4.0405e-7

表 13: $v_1=2, v_2=2, \alpha=1, N/L=2, \tau=1e-3, \varepsilon=1e-8,$ $PCG_ite_max=10, Vcycle_ite_max=2, Vcycle_error=1e-6$

N	64	128	256	512	1024	2048	4096
求解时间-CPU(s)	0.041779	0.050313	0.143194	0.708133	3.808762	19.228862	117.304201
Inexact Uzawa 迭代次数	2	2	2	2	2	2	2
PCG 迭代次数	3, 4	3, 4	3, 4	3, 4	3, 4	3, 3	3,3
误差	1.4951e-3	3.7363e-4	9.3399e-5	2.3349e-5	5.8372e-6	1.4593e-6	3.5485e-7

表 14: $v_1 = 2$, $v_2 = 2$, $\alpha = 1.05$, N/L = 2, $\tau = 1e - 3$, $\varepsilon = 1e - 8$, $PCG_ite_max = 10$, $Vcycle_ite_max = 2$, $Vcycle_error = 1e - 6$

N	64	128	256	512	1024	2048	4096
求解时间-CPU(s)	0.054376	0.142346	0.458875	1.906460	10.490952	59.588960	242.850367
Inexact Uzawa 迭代次数	6	6	6	5	5	5	5
PCG 迭代次数	3,5个4	3,5 14	3,5个4	3,4 1 4	3,4个4	5个3	5个3
误差	1.4951e-3	3.7363e-4	9.3399e-5	2.3349e-5	5.8398e-6	1.4696e-6	4.0405e-7

表 15: $v_1 = 3$, $v_2 = 2$, $\alpha = 1$, N/L = 4, $\tau = 1e - 1$, $\varepsilon = 1e - 6$, $PCG_ite_max = 10$, $Vcycle_ite_max = 3$, $Vcycle_error = 1e - 6$

N	64	128	256	512	1024	2048	4096
求解时间-CPU(s)	0.026522	0.047398	0.172523	0.824278	4.670473	28.225284	115.017383
Inexact Uzawa 迭代次数	3	3	3	3	3	3	2
PCG 迭代次数	1, 2, 2	1, 2, 2	1, 2, 2	1, 2, 2	1, 2, 2	1, 2, 2	2,2
误差	1.4951e-3	3.7363e-4	9.3399e-5	2.3349e-5	5.8373e-6	1.4594e-6	3.6492e-7

5.3.1 数值结果总结

从上面给出的几组数值结果可以给出几个参数的合理选择,首先通过比较表 12,13,14 容易 发现 α 仍然是取 1 最好,稍微偏离 1 一点都会导致相当大的额外迭代次数,比较让我奇怪的是 N=4096 且 $\alpha \neq 1$ 时的计算误差相比其他结果的有较大的差异,这说明 α 的错误选择还会导致可能的误差放大。

而较小的误差与我们之前的得到的结果并无区别,这再一次验证了误差的收敛阶为 $\frac{1}{N^2}$ 再比较表 9,10, 容易得到 N/L 最好取为 2,4 而不要更大,同时观察其他数据发现 N/L 取 2 还是 4 对于迭代次数影响极小。最后提出上面说的 3 组参数选择有误的数据,从整体分析的角度看容易发现,Inexact Uzawa 迭代在正确的超参数下收敛速度其实相当快,如表 9,11 只需两次迭代便可收敛。此外还能定性分析迭代次数与超参数之间的关系。大致如下

1. τ, ε 的增加会导致 PCG 的迭代次数增加

- 2. 增加预优共轭梯度法的多重网格的迭代次数,能够使外循环的迭代次数以及 PCG 迭代次数减少。
- 3. 增大 ν_1, ν_2 在一定范围内能够减少迭代次数。

以及我发现了一个看起来比较奇怪的地方,似乎 N 越大需要的迭代次数越小,我没有想到比较合理的解释。

最后,我认为最好的一组超参数为表 11 的超参数 $v_1 = 2, v_2 = 2, \alpha = 1, N/L = 2, \tau = 1e - 3, \varepsilon = 1e - 6, PCG_ite_max = 10, Vcycle_ite_max = 3, Vcycle_error = 1e - 6, 在这一组 超参下,Inexact Uzawa 迭代的速度已经较为显著地超过了 CPU 版本的 DGS 迭代,这体现出了 Inexact Uzawa 迭代地优越性。$