

Bor-shen Lin bslin@cs.ntust.edu.tw http:www.cs.ntust.edu.tw/~bslin

CLUSTER ANALYSIS

- A form of unsupervised learning
- Automatic classification of samples into a number of groups using a measure of association
 - Data in each group are similar
- Input
 - A set of samples: X
 - A measure of similarity: s
- Output
 - A number of groups
 - A partition $\Lambda = \{ G_1, G_2, ..., G_N \}$ $G_1 \cup G_2 \cup ... \cup G_N = X \text{ and } G_i \cap G_j = \emptyset$

EXAMPLE

CLUSTERING FOR ANYTHING

- Clustering for customers
- Clustering for documents
- Clustering for words
- Clustering for images
- Clustering for melodies
- Clustering for objects
- Clustering for design patterns
- Clustering for styles

CLUSTERING OF DESIGN PATTERNS

Basic Concept of Cluster Analysis

- Sample
 - A point in a multi-dimensional space
- Objective of Cluster Analysis
 - Construct decision boundaries (classification surfaces) based on unlabeled training data set (Unsupervised learning)
 - Appropriate for exploration of interrelationships among samples to make a preliminary assessment of the sample structure

DIFFICULTIES OF CLUSTERING

- Shape and size of data
- Number of clusters
 - Determined according to desired resolution
 - There might be different results for the same data (different # of clusters)
- Human can visualize the data with dimension at most 3. Visualization of high dimensional data need to rely on clustering algorithms

FEATURES

- Quantitative features
 - Continuous values: R, R⁺
 - Discrete values: { 0, 1 }, Z
 - Interval values: $\{x \le 20, 20 < x \le 40, x > 40\}$
- Qualitative features
 - Nominal or unordered: color is "blue" or "red"
 - Ordinal: military rank: "general" and "colonel"

SIMILARITY/DISTANCE MEASURE

- Similarity
 - Symmetric: $s(\mathbf{x}, \mathbf{x}') = s(\mathbf{x}', \mathbf{x})$ for all \mathbf{x}, \mathbf{x}' in X
 - Normalized: $0 \le s(\mathbf{x}, \mathbf{x'}) \le 1$
- Distance (dissimilarity) measure
 - $d(\mathbf{x}, \mathbf{x}') \ge 0 (d(\mathbf{x}, \mathbf{x}) = 0)$
 - $d(\mathbf{x}, \mathbf{x'}) = d(\mathbf{x'}, \mathbf{x})$
 - Called metric distance measure if triangular inequality holds:

$$d(\mathbf{x}, \mathbf{x''}) \leq d(\mathbf{x}, \mathbf{x'}) + d(\mathbf{x'}, \mathbf{x''})$$

METRICS FOR CONTINUOUS VALUES

- Euclidean distance
 - $d_2(\mathbf{x_i}, \mathbf{x_j}) = [\Sigma_k(x_{ik} x_{jk})^2]^{1/2}$
- Block distance (L1 metric)
 - $d_1(\mathbf{x_i}, \mathbf{x_j}) = \Sigma_k | \mathbf{x_{ik}} \mathbf{x_{jk}} |$
- Minkowski metric
 - $d_p(\mathbf{x_i}, \mathbf{x_j}) = [\Sigma_k | x_{ik} x_{jk} | p]^{1/p}$
- Cosine similarity
 - $s_{cos}(\mathbf{x_i}, \mathbf{x_j}) = [\Sigma_k(\mathbf{x_{ik}} \cdot \mathbf{x_{jk}})] / [\Sigma_k \mathbf{x_{ik}}^2 \cdot \Sigma_k \mathbf{x_{jk}}^2]^{1/2}$
 - $s_{cos}(\mathbf{x_i}, \mathbf{x_j}) = 1 \text{ if } x_i = c \cdot x_j, c > 0$

METRICS FOR DISCRETE VALUES

- \circ X_i , X_j
 - (1, 1) : a, (1, 0) : b
 - (0, 1): c, (0, 0): d
- Simple Matching Coefficient (SMC)
 - $S_{smc}(\mathbf{x_i}, \mathbf{x_j}) = (a + d) / (a + b + c + d)$
- Jaccard Coefficient
 - $S_{jc}(\mathbf{x_i}, \mathbf{x_j}) = a / (a + b + c)$
- Rao's Coefficient
 - $S_{rc}(\mathbf{x_i}, \mathbf{x_j}) = a / (a + b + c + d)$

EXAMPLE

ADVANCED DISTANCE MEASURES

- Consider the effect of the context (relative distance)
- Mutual neighbor distance (MND)

$$MND(\mathbf{x_i}, \mathbf{x_j}) = NN(\mathbf{x_i}, \mathbf{x_j}) + NN(\mathbf{x_j}, \mathbf{x_i})$$

 $NN(\mathbf{x_i}, \mathbf{x_j})$: the neighbor number of $\mathbf{x_i}$ with respect to $\mathbf{x_j}$ $\mathbf{x_i}$ is the n-th closest point for $\mathbf{x_i}$

$$NN(A, B) = 1, NN(B, A) = 1$$

 $NN(B, C) = 1, NN(C, B) = 2$
 $MND(A,B) = 2, MND(B,C) = 3$

$$NN(A, B) = 1, NN(B, A) = 4$$

 $NN(B, C) = 1, NN(C, B) = 2$
 $MND(A,B) = 5, MND(B,C)=3$

Positions of A & B are the same, but with different distances!

CLUSTERING ALGORITHMS

- Hierarchical Clustering Algorithm
 - Producing the hierarchy (dendrogram)
- Partitional Clustering algorithm
 - Producing the partition of the data

HIERARCHICAL CLUSTERING ALGORITHMS

- Divisible algorithm
 - A Top-down process
 - Example: CART for clustering
 - Divided by discrete properties
 - Starts from the entire set of samples
 - Divides it into a partition of subsets
- Agglomerative algorithm (aggregation)
 - A bottom-up process
 - o Rain drops (small → big)
 - Regards each object as a cluster initially
 - The clusters are merged into larger clusters
 - A dendrogram is constructed

DISTANCE BETWEEN CLUSTERS

- $\mathbf{o} \ D_{mean}(C_i, \ C_j) = \|\mathbf{m_i} \mathbf{m_j}\|,$ for centroids $\mathbf{m_i}$ and $\mathbf{m_j}$
- o $D_{avg}(C_i, C_j) = 1/(n_i n_j) \sum_i \sum_j |\mathbf{x_i} \mathbf{x_j}|$, for $\mathbf{x_i}$ in C_i , $\mathbf{x_j}$ in C_j

AGGLOMERATIVE CLUSTERING

- 1. Place each sample in its own cluster. Construct a list of inter-cluster distances for all pairs of samples, and sort this list in ascending order.
- Step through the sorted list of distances, forming for each distinct threshold value d_k a graph of the samples where pairs of samples closer than d_k are connected into a new cluster by a graph edge. If all the samples are members of a connected graph, stop. Otherwise, repeat this step.
- 3. The output of the algorithm is a nested hierarchy of graphs, which can be cut at the desired dissimilarity level forming a partition (clusters) identified by simple connected components in the corresponding subgraph.

EXAMPLE

- Samples
 - $x_1 = (0,2), x_2 = (0,0), x_3 = (1.5,0), x_4 = (5,0), x_5 = (5,2)$
- o $d(x_1, x_2) = 2$, $d(x_1, x_3) = 2.5$, $d(x_1, x_4) = 5.39$, $d(x_1, x_5) = 5$, $d(x_2, x_3) = 1.5$, $d(x_2, x_4) = 5$, $d(x_2, x_5) = 5.29$, $d(x_3, x_4) = 3.5$, $d(x_3, x_5) = 4.03$, $d(x_4, x_5) = 2$

MERGING OF CLUSTERS

CHAMELEON ALGORITHM

- Basic idea: Improve the clustering quality by using a more elaborate criterion when merging two clusters
 - C_i and C_j will be merged if the interconnectivity and closeness of the merged cluster is very similar to that of C_i and C_j before merging
- Min-cut on a graph (of cluster C_i)
 - Partitioning a graph into two parts of close, equal size such that the total weight of the edges being cut is minimized.
 - Total weight of the edges: stand for total interconnectivity (c.f. inner links in political parties)
 - min-cut: minimize loss of connectivity for the graph after being cut
 - Interconnectivity I(C_i): total weight of edges being cut (total loss)
 - Closeness $C(C_i)$: average weight of edges being cut (average loss)

CHAMELEON ALGORITHM

- 1. Divide all data into *highly dense* sub-clusters.
 - Construct initial graph G=(V,E) by KNN with weighted edge e(v_i,v_j): closeness between two samples
 - Recursively partition G into many small, unconnected subgraphs by doing min-cut
 - Stopped when certain criteria are satisfied
- 2. Merge sub-clusters into larger clusters.
 - For C_i and C_j , compute $RI(C_i, C_j)$ and $RC(C_i, C_j)$
 - Relative interconnectivity $RI(C_i, \, C_j) \equiv I(C_i \cup C_j) \, / \, [0.5 \cdot (I(C_i) + I(C_j))]$
 - Relative closeness $RC(C_i,\,C_j) \equiv C(C_i \cup C_j) \: / \: [0.5 \cdot (C(C_i) + C(C_j))]$
 - $s(C_i, C_j) \equiv RC(C_i, C_j) \cdot RI(C_i, C_j)^{\alpha}, 0 \le \alpha \le 1$ Minimizing the decrease after being merged

PARTITIONAL CLUSTERING

- Why?
 - Construction of dendrogram is computationally complex for large data set
- Global criterion
 - Euclidean square-error measure E^2 for k-th cluster $E^2 = \Sigma_k d_k$, $d_k = \Sigma_i (x_{ik} M_k)^2$, $\mathbf{m_k} = (1/n_k) \Sigma_i \mathbf{x_{ik}}$
 - Euclidean distance cannot be used if the dimensions have different physical meaning → using stochastic model
- Local criterion
 - Minimal mutual neighbor distance (MND)
 - Utilizing the local structure or context in the data

K-Means Clustering Algorithm

- A partitional clustering algorithm employing a square-error criterion
- Simplest & most commonly used
 - Easy to implement
 - Time and space complexity is relatively small
 - Gives surprisingly good result if the clusters are compact, hyperspherical in shape, and well separated in the feature space
- Work well for data that are far apart
- Equivalent to Kohonen net in ANN
- Similar methods (e.g. C-means, K-mediods)

REDISTRIBUTION OF SAMPLES

K-Means Algorithm

- 1. Select an *initial partition* with k clusters containing randomly chosen samples, and compute the centroids of the clusters.
- Generate a new partition by (re-distributing) assigning each sample to its closest cluster center $k^* = argmin_k d(\mathbf{x}, \mathbf{m}_k)$ for every \mathbf{x}
- 3. Compute new centroids of the clusters $m_k = (1/n)\Sigma x_i$ for cluster k
- 4. Repeat steps 2 and 3 until an optimum value of the criterion function is found.

CHARACTERISTICS OF K-MEANS

• Time complexity: O(nkl)

n: number of samples

k: number of clusters

l: number of iterations

- Space complexity: O(k+n)
- Order-independent
 - It generates the same partition of the data at the end of the partitioning process irrespective of the order in which the samples are presented to the algorithm

ORDER-DEPENDENT INCREMENTAL CLUSTERING

- 1. Initially, there is no cluster.
- 2. For every point, compute the distance between the point and any existing cluster.
- 3. If the minimum distance does exist, raise a new cluster with the point and go to step 2. Otherwise, go to step 3.
- 4. If the minimum distance is smaller than a threshold, add that point to the corresponding cluster.

 Otherwise raise a new cluster with the point.
- 5. Go to step 2.
- Order dependent
 - The order that data are presented influences the result

MAJOR PROBLEMS OF K-MEANS

- Sensitive to the selection of the initial partition
- May converge to a local minimum
- Lack of available guidelines for
 - Choosing the initial partition
 - Adjusting the number of clusters
 - Selecting the stopping criterion
- Very sensitive to noise and outlier data points
 - Every point has the same contribution to the centroid
 - K-mediods method: remove the outliers when computing the centroids
 - → less sensitive to noise and outliers
- Based on global distance
 - Might not work well for the data with locally connected patterns

K-Means for Categorical Data

- Centroids for clusters can NOT be computed
 - $d(\mathbf{x}, \mathbf{m}_k)$ cannot be calculated without \mathbf{m}_k , but $d(\mathbf{x}_i, \mathbf{x}_i)$ or $s(\mathbf{x}_i, \mathbf{x}_i)$ can still be found
- Use *K-nearest neighbor (KNN)* for reclustering data
 - **x** can be clustered according to the clusters of its **KNNs** through majority voting
 - Do not compute the distance between x and centroid
 - My choice → according to the choices of K-best friends
- Use the distribution of cluster for reclustering data
 - $P(\mathbf{x} \mid C_k)$ could be trained for each cluster
 - Example: customer **x** = [gender=male, age=20, occupation=engineer, income=900k, ...]

REDISTRIBUTION OF CATEGORICAL DATA (KNN)

o
$$\mathbf{x}_{1}$$
 = (A,B,A,B,C,B)
 \mathbf{x}_{2} = (A,A,A,B,A,B)
 \mathbf{x}_{3} = (B,B,A,B,A,B)
 \mathbf{x}_{4} = (B,C,A,B,B,A)
 \mathbf{x}_{5} = (B,A,B,A,C,A)
 \mathbf{x}_{6} = (A,C,B,A,B,B)
o \mathbf{C}_{1} = { \mathbf{x}_{1} , \mathbf{x}_{2} , \mathbf{x}_{3} }, \mathbf{C}_{2} = { \mathbf{x}_{4} , \mathbf{x}_{5} , \mathbf{x}_{6} }
o For \mathbf{y} = { A, C, A, B, C, A }
 $\mathbf{s}_{smc}(\mathbf{y}, \mathbf{x}_{1})$ =0.66, $\mathbf{s}_{smc}(\mathbf{y}, \mathbf{x}_{2})$ =0.50, $\mathbf{s}_{smc}(\mathbf{y}, \mathbf{x}_{3})$ =0.33
 $\mathbf{s}_{smc}(\mathbf{y}, \mathbf{x}_{4})$ =0.66, $\mathbf{s}_{smc}(\mathbf{y}, \mathbf{x}_{5})$ =0.33, $\mathbf{s}_{smc}(\mathbf{y}, \mathbf{x}_{6})$ =0.33
o KNN for K=3 are \mathbf{x}_{1} , \mathbf{x}_{2} , \mathbf{x}_{4} → voting \mathbf{C}_{1} for \mathbf{y}

K-Means vs. GMM Training

K-Means

- Distance: Euclidean distance (for homogenous data)
- Objective function: square error
- Clusters have *mutually exclusive* data
- Each point has equal contribution (weight) to mean

$$\boldsymbol{m}_k = \frac{1}{n_k} \sum_{\boldsymbol{x}_i \in C_k} \boldsymbol{x}_i$$

• GMM

- Similarity: Gaussian probability (distance is normalized by convariance $(\mathbf{x} \boldsymbol{\mu}_k)^t \Sigma^{-1} (\mathbf{x} \boldsymbol{\mu}_k)$)
- Objective function: expectation of log probabilities
- All data points contribute to each cluster

$$\boldsymbol{\mu}_k = \frac{\sum_i l_i(k) x_i}{\sum_{i,k} l_i(k)}, \, \boldsymbol{\Sigma}_k = \frac{\sum_i l_i(k) (x_i - \mu_k) (x_i - \mu_k)^t}{\sum_{i,k} l_i(k)}$$

K-Means for Vector Quantization

- Select a set of prototype vectors to represent a large vector space
- Vectors in vector space are encoded into a discrete symbols
- Codebook: a set of codewords (vectors)
- Example: data compression

EVALUATION FOR CLUSTER ANALYSIS

- Assessment of the data domain
 - estimating the data in advance(how many clusters, distance between clusters, ...)
- Cluster validity (verification on the results)
 - External assessment of validity
 - Compare the discovered structure to an a priori structure
 - Internal examination of validity
 - Determine if the discovered structure is intrinsically appropriate or meaningful
 - Relative test
 - Adjust the algorithms and parameters to produce different clusters. Compare the results to judge which is more applicable

SUMMARY

- There is NO clustering technique that is universally applicable in uncovering the variety of structures present in multidimensional data sets.
- User's understanding of the problem and the corresponding data types will be the best criteria to select the appropriate method.
- The data should be subjected to tests for clustering tendency before applying a clustering algorithm, followed by a validation of the clusters generated by the algorithm
- There is no best clustering algorithm. Try several ones.
- Clustering analysis might be used as processing techniques in intermediate level.
 - e.g. word class n-gram (sharing probabilities)

REFERENCE

 Data Mining: Concepts, Models, Methods and Algorithms
 Mehmed Kantardzic, Wiley Inter-science