治理技术专题

定量政治分析方法 Quantitative Analysis II

苏 毓 淞

清华大学社会科学院政治学系

第一讲 回顾统计推断和回归分析

线性回归模型基本假定

- **I** 因变量 y 和自变量 x 之间的关系是线性的 (linearity)、相加性的 (additivity):
- 2 余数项 (residual errors) 间是彼此独立的。
- ③ 余数项具同质性,也就是方差是固定的 (constant) variance), $var(y_1) = var(y_2) \dots var(y_n)$ 。
- 4 余数项的分布呈正态分布, $E(\epsilon_i) = 0, var(\epsilon_i) = \sigma^2$, $\epsilon \sim N(0, \sigma^2)$

回归系数检验

$$y_i = \alpha + \beta x_i + \epsilon_i$$

■ 原假设
$$H_0: \beta = 0$$

■ 备择假设
$$H_a: \beta \neq 0$$

■ 统计量
$$t = \frac{\beta}{SE_{\beta}}$$

回归系数的信用区间 (confidence interval)

- β 的信用区间: $\beta \pm t \times SE_{\beta}$
- 95% 信用区间: $\beta \pm 1.96 \times SE_{\beta}$
- 90% 信用区间: $\beta \pm 1.64 \times SE_{\beta}$
- 99% 信用区间: $\beta \pm 2.58 \times SE_{\beta}$
- 以上 3 组信用区间的前提是 $n \approx \infty$, 通常情况下,我们使用 $\beta \pm 2 \times SE_{\beta}$ 的信用区间。

OLS 回归系数解读

- $y = \alpha + \beta x$
- 每增加 1 单位的 x, y 就增加 $\alpha + \beta$ 。
- 比较两个单元,如果彼此的 x 相差 1 单位, y 就相差 β 。
- $\log(y) = \alpha + \beta x$
- 比较两个单元,如果彼此的 x 相差 1 单位,y 就相差 β %。
- $\log(y) = \alpha + \beta \log(x)$
- 比较两个单元,如果彼此的 x 相差 1%, y 就相差 β %。

OLS 回归范例

Source	SS	df		MS		Number of obs F(1, 10318)		10320 883.91
Model Residual	1396.07808 16296.6801	1 10318	1396	3.07808 7944177 		Prob > F R-squared Adj R-squared	= = =	0.0000 0.0789 0.0788
Total	17692.7582	10319	1.7	7145807		Root MSE	=	1.2568
loginc	Coef.			t	P> t	[95% Conf.	In	terval]
english _cons	.5259646 9.300303	.017		29.73 345.46	0.000 0.000	.4912867 9.247533		5606424 . 353074

回归系数解读

■ kid.score: 小孩的考试成绩

■ mom.hs: 母亲是否高中毕业 (1: 毕业; 2: 没毕业)

■ mom.iq: 母亲的 IQ

■ 研究问题: 先天遗传的基因是否注定小孩的考试成绩?

回归系数解读 (二元自变量)

. reg kid_score mom_hs

Source	SS	df	MS		Number of obs		434
Model Residual	10124.9661 170261.191	1 432	10124.966 394.12312	1 6	F(1, 432) Prob > F R-squared	=	25.69 0.0000 0.0561
Total	180386.157		416.59620		Adj R-squared Root MSE		0.0539 19.853
kid_score	Coef.		Err.			In	terval]
mom_hs _cons	11.77126 77.54839	2.322 2.058	427 5.	0.000	7.206598 73.50225	_	6.33592 1.59453

回归系数解读 (二元自变量)

- 拟合的模型为: kid.score = $78+12 \times \text{mom.hs} + \epsilon$
- 预测结果: $kid.score = 78 + 12 \times mom.hs$
- 系数解读
 - 回归系数 12 表示: 比较母亲高中有毕业与没毕业的小孩, 其成绩平均差为 12 分:
 - 回归常数项 78 表示: 母亲高中没有毕业的小孩, 其成绩的 预测值为 78 分。
 - 母亲高中有毕业的小孩,其成绩的平均预测值为 $78 + 12 \times 1 = 91$ 分。

回归图解(二元自变量)

```
twoway (scatter kid_score mom_hs, msize(small) jitter(4) jitterseed(1))
   (lfit kid_score mom_hs, range(-0.5 1.5)),
   ytitle(Child test scores)
   xtitle(Mother completed high school)
   xscale(range(1.2 -0.2))
   xlabel(0 "No" 1 "Yes")
   legend(off)
```


回归系数解读 (连续型变量)

. reg kid_score mom_iq

Source	SS	df	MS		Number of obs		434
Model Residual 	36248.8202 144137.336	1 432	36248.8202 333.651242 		F(1, 432) Prob > F R-squared Adj R-squared Root MSE	=	108.64 0.0000 0.2010 0.1991 18.266
kid_score	Coef.	Std. E	Err. t	P> t	[95% Conf.	In	terval]
mom_iq _cons	.6099746 25.79978	.05852 5.9174	209 10.42	0.000	.4949534 14.16928	-	7249957 7.43028

回归系数解读 (连续型自变量)

- 拟合的模型为: kid.score = $26+0.6 \times \text{mom.iq} + \epsilon$
- 预测结果: $\widehat{\text{kid.score}} = 26 + 0.6 \times \text{mom.iq}$
- 系数解读
 - 回归系数 0.6 表示:比较两个小孩,其母亲 IQ 相差 1 分,他们成绩平均差为 0.6 分;比较两个小孩,其母亲 IQ 相差 10 分,他们成绩平均差为 6 分。
 - 回归常数项 26 表示: 母亲 IQ 0 分的小孩, 其成绩的预测值为 26 分(没有意义)。
 - 日亲 IQ 为 100 分的小孩,其成绩的平均预测值为 $26 + 0.6 \times 100 = 86$ 分。

回归图解(连续型自变量)

```
twoway (scatter kid_score mom_iq, msize(small))
  (lfit kid_score mom_iq),
    ytitle(Child test scores)
    xtitle(Mother IQ score)
    legend(off)
```


回归系数解读 (多变量)

. reg kid_score mom_iq mom_hs

Source	SS	df	MS		Number of obs = 434 F(2, 431) = 58.72
Model Residual Total	38629.0672 141757.089 180386.157	2 431	19314.5336 328.90276		Prob > F = 0.0000 R-squared = 0.2141 Adj R-squared = 0.2105 Root MSE = 18.136
kid_score	Coef.	Std. E	rr. t	P> t	[95% Conf. Interval]
mom_iq mom_hs _cons	.563906 5.950117 25.73154	.06057 2.2118 5.8752	12 2.69	0.000 0.007 0.000	.4448487 .6829634 1.602837 10.2974 14.18391 37.27916

回归系数解读(多变量)

- 拟合的模型为: kid.score = $26 + 0.6 \times \text{mom.iq} + \times 6 \text{mom.hs} + \epsilon$
- 预测结果: $\widehat{\text{kid.score}} = 26 + 0.6 \times \text{mom.iq} + \times 6 \text{mom.hs}$
- 系数解读
 - 回归常数项 26 表示:一个高中没有毕业, IQ 0 分的母亲, 其小孩成绩的预测值为 26 分(没有意义)。
 - 回归系数 0.6 表示: 比较两个小孩, 母亲高中都没有毕业,但是 IQ 相差 1 分, 他们成绩平均差为 0.6 分。
 - 回归系数 6表示:比较两个小孩,母亲的 IQ 相同,母亲高中有毕业的小孩比母亲高中没有毕业的小孩成绩平均高为 6分。


```
predict predkidscore, xb
gen p0=predkidscore if mom_hs==0
gen p1=predkidscore if mom_hs==1
twoway (scatter kid_score mom_iq if mom_hs ==0, mcolor(black) msize(small) msymbol(circle_hollow))
       (scatter kid score mom_iq if mom_hs==1, mcolor(red) msize(small) msymbol(circle))
       (line p0 p1 mom_iq, sort lcolor(black red)),
         ytitle(Child test scores)
         xtitle(Mother IQ scores)
         legend(off)
```


回归系数解读(不可能控制其他变量不变)

- $y = \alpha + \beta_1 x_1 + \beta_2 x_2$
- holding all others constant...
- 在控制其他变量不变的情况下, x_1 每增加 1 单位, y 增加 $\alpha + \beta_1$ 单位。
- 有时候不可能控制其他变量不变, 例如:
 - $y = \alpha + \beta_1 x_1 + \beta_2 x_1^2$

回归系数解读(不可能控制其他变量不变)

- $y = \alpha + \beta_1 x_1 + \beta_2 x_2$
- holding all others constant...
- 在控制其他变量不变的情况下, x_1 每增加 1 单位, y 增加 $\alpha + \beta_1$ 单位。
- 有时候不可能控制其他变量不变,例如:

$$y = \alpha + \beta_1 x_1 + \beta_2 x_1^2$$

$$y = \alpha + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_1 \times x_2$$

回归系数解读: 预测型与因果型

- $y = \alpha + 2x_1 + 0.5x_2$
- 预测型: 比较两个单元,在拥有相同的 x_2 情况下,它们的 x_1 相差 1 单位,它们的 y 平均会相差 2 单位。
- 因果型:在其他变量不变的情况下,某单元的 x_1 每增加 1 单位,其 y 预期会增加 2 单位。
- 避免因果型的系数解读,因为因果推论需要更多的前提和 假设。

回归系数解读:交叉项

. reg kid_score mom_iq mom_hs momiqhs

Source	SS	df	MS	Number of obs =	43
				F(3, 430) =	42.8
Model	41507.51	3	13835.8367	Prob > F =	0.000
Residual	138878.647	430	322.973597	R-squared =	0.230
				Adj R-squared =	0.224
Total	180386.157	433	416.596205	Root MSE =	17.97

kid_score	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
+-						
mom_iq	.9688893	.1483437	6.53	0.000	.6773203	1.260458
mom_hs	51.26823	15.33758	3.34	0.001	21.12227	81.41419
momiqhs	4842747	.1622171	-2.99	0.003	8031118	1654377
_cons	-11.48203	13.75797	-0.83	0.404	-38.52327	15.55922

回归系数解读:交叉项

■ 系数解读

- 回归常数项-11 表示: 母亲高中没有毕业, IQ 为 0 分的小孩, 其成绩的预测值为-11 分 (没有意义)。
- mom_iq 系数 0.96 表示: 比较两个母亲高中没有毕业的小孩, 当他们的母亲 IQ 相差 1 分, 其成绩的平均相差为 0.96 分。
- mom_hs 系数 51 表示:比较两个母亲 IQ 分相同的小孩,母亲高中有毕业的小孩比母亲高中没有毕业的小孩,其成绩的平均高为 51 0.5 分。
- 如果某变量的系数统计显著性非常的高,那它极有可能与其他变量对于自变量有交互作用;但是,即便它的系数统计显著性不高,我们也不能排除它与其他变量对于因变量有交互作用的可能性。


```
predict yhat, xb
separate yhat, by(mom_hs)
twoway (scatter kid score mom iq if mom hs ==0, mcolor(black) msize(small) msymbol(circle hollow))
       (scatter kid score mom_iq if mom_hs==1, mcolor(red) msize(small) msymbol(circle))
       (line yhat0 yhat1 mom_iq, sort lcolor(black red)),
         ytitle(Child test scores)
         xtitle(Mother IQ scores)
         legend(off)
```


回归图解

- 收入 = -5000 + 1000身高 (米) + ϵ
- 收入 = -5000 + 10身高 (公分) + ϵ
- 标准化调整: (身高 身高的均值)/身高的标准差
- 另一种标准化调整:(身高 身高的均值)/2×身高的标准差
- 合理的调整: 例如 GDP/1000, 收入/10000, IQ 100

- . egen s_mom_iq = sd(mom_iq)
- . gen stdmom_iq = cmom_iq / s_mom_iq
- . egen s_mom_hs = sd(mom_hs)
- . gen stdmom_hs = cmom_hs/s_mom_hs
- . gen stdmomiqhs = stdmom_iq*stdmom_hs
- . reg kid_score cmom_iq cmom_hs cmomiqhs

Source	SS	df	MS		Number of obs = 434 F(3, 430) = 42.84	_
Model Residual	41507.509 138878.648	3 1383 430 322	35.8363 .973599		Prob > F = 0.0000 R-squared = 0.2301 Adj R-squared = 0.2247) [
Total	180386.157	433 416	596205		Root MSE = 17.971	
kid_score	Coef.	Std. Err.	t	P> t	[95% Conf. Interval]	
cmom_iq	.5883877	.0605832	9.71	0.000	.4693117 .7074637	,
cmom_hs	2.840757	2.42667	1.17	0.242	-1.928854 7.610368	3
cmomiqhs	4842747	.1622171	-2.99	0.003	80311171654376	ò
_cons	87.63892	.907562	96.57	0.000	85.85511 89.42273	3

- R^2 没有变化。
- 交叉项的标准误没有变化。
- 但是其他回归系数产生大的变化。

- . gen std2mom_iq = cmom_iq / (2*s_mom_iq)
- . gen std2mom_hs = cmom_hs/(2*s_mom_hs)
- . gen std2momiqhs = std2mom_iq*std2mom_hs
- . reg kid_score std2mom_iq std2mom_hs std2momiqhs

Source	SS	df	MS		Number of obs	
Model Residual	41507.509 138878.648	430 322	35.8363 .973599		Prob > F	= 0.0000 = 0.2301
Total	180386.157	433 416	. 596205			= 17.971
kid_score	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
std2mom_iq std2mom_hs std2momiqhs _cons	17.65163 2.333963 -11.93639 87.63892	1.817496 1.993749 3.998321 .907562	9.71 1.17 -2.99 96.57	0.000 0.242 0.003 0.000	14.07935 -1.584744 -19.79507 85.85511	21.22391 6.25267 -4.077701 89.42273

- 除以 1 个标准差:比较两个母亲高中没有毕业的小孩,当他们的母亲 IQ 分数相差 1 个标准差,其成绩的平均相差为 0.6 分
- 除以 2 个标准差:比较两个母亲高中没有毕业的小孩,IQ 值最高的母亲和 IQ 值最低的母亲,其小孩成绩的平均相差为 18 分

. reg kid_score std2mom_iq mom_hs zmomiqhs

Source	SS	df	MS		Number of obs = 434 F(3, 430) = 42.84
Model Residual	41507.5091 138878.648 180386.157	3 1383 430 322.	973599		F(3, 430) = 42.84 Prob > F = 0.0000 R-squared = 0.2301 Adj R-squared = 0.2247 Root MSE = 17.971
kid_score	Coef.	Std. Err.		P> t	[95% Conf. Interval]
std2mom_iq mom_hs zmomiqhs _cons	29.06668 2.840757 -14.52824 85.4069	4.450311 2.42667 4.866512 2.218222	6.53 1.17 -2.99 38.50	0.000 0.242 0.003 0.000	20.31961 37.81375 -1.928854 7.610368 -24.09335 -4.963129 81.04699 89.76681

标准回归系数 (standardize beta)

. reg kid_score mom_iq mom_hs, beta

Source	SS	df		MS		Number of obs = F(2, 431) =	434
Model Residual 	38629.0672 141757.089	2 431	1931 328	4.5336 3.90276		Prob > F = R-squared = Adj R-squared =	58.72 0.0000 0.2141 0.2105 18.136
kid_score	Coef.				P> t		Beta
mom_iq mom_hs _cons	.563906 5.950117 25.73154	.0605 2.211 5.875	741 812	9.31 2.69 4.38	0.000 0.007 0.000	-	4144197 1197561

标准回归系数

- 自变量和因变量都标准化。
- ■回归系数可以相互比较。
- 不受变量调整的影响。
- mom.iq 对于 kid.score 的影响是 mom.hs 的四倍。

. reg log_kid_score mom_iq mom_hs

Source	SS	df	MS		Number of obs F(2, 431)	
Model Residual 	6.54500056 24.9484346	2 3.27 431 .057	250028 884999		Prob > F R-squared Adj R-squared Root MSE	= 0.0000 = 0.2078
log_kid_sc~e	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
mom_iq mom_hs _cons	.0071241 .0917175 3.646382	.0008036 .0293425 .0779422	8.87 3.13 46.78	0.000 0.002 0.000	.0055446 .0340452 3.493188	.0087035 .1493897 3.799576

比较两个母亲都没有高中毕业的小孩,其中母亲智商较高 1 分的小孩, 他的成绩也会高 0.7%。

. reg kid_score log_mom_iq mom_hs

Source	SS	df	MS		Number of obs	= 434
+-					F(2, 431)	= 61.57
Model	40084.7157	2 2004:	2.3579		Prob > F	= 0.0000
Residual	140301.441	431 325.	525385		R-squared	= 0.2222
+-					Adj R-squared	= 0.2186
Total	180386.157	433 416.	596205		Root MSE	= 18.042
kid_score	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
+-						
log_mom_iq	58.8715	6.136609	9.59	0.000	46.8101	70.9329
mom hs	5.590164	2.206811	2.53	0.012	1.252712	9.927615
_cons	-188.0619	27.74965	-6.78	0.000	-242.6034	-133.5204

比较两个母亲都没有高中毕业的小孩,其中母亲智商较高 1% 的小孩,他的成绩也会高 59 分。

. reg log_kid_score log_mom_iq mom_hs

Source	SS	df		MS		Number of obs F(2, 431)		434 59.71
Model Residual + Total	6.83304068 24.6603945	2 431	3.41	652034 216692 733107		Prob > F R-squared Adj R-squared Root MSE	= =	0.0000 0.2170 0.2133
log_kid_sc~e	Coef.	Std.		t	P> t	[95% Conf.	In	terval]
log_mom_iq mom_hs _cons	.7480717	.0813 .0292 .3678	3575 2573	9.19 2.96 2.52	0.000 0.003 0.012	.5881649 .0292117 .2028412		9079784 1442211 .649033

比较两个母亲都没有高中毕业的小孩,其中母亲智商较高 1% 的小孩, 他的成绩也会高 74%。

- $\log(y) = \alpha + \beta x$
- 比较两个单元,其中 A 单元比 B 单元多一单位的 x, A 的 y 也会较 B 的 y 多 $\beta \times 100\%$ 。
- $y = \alpha + \beta \log(x)$
- 比较两个单元,其中 A 单元比 B 单元多 1% 的 x, A 的 y 也会较 B 的 y 多 β 单位。
- $\log(y) = \alpha + \beta \log(x)$
- 比较两个单元,其中 A 单元比 B 单元多 1% 的 x, A 的 y 也会较 B 的 y 多 $\beta \times 100\%$ 。

- 在两党竞争下,各州投票率是连续型变量,避免将它变成二元变量。尤其是结果接近的情况下:
- 比较左撇子和右撇子的差异,二元变量可以提供的信息少于 连续型变量,我们可以问他们不同情况下使用那只手,然后 加总成为一个连续型变量:

定类变量比连续型变量好的情况

- 当一个定序的数值型变量,假设各个数值间的差异并无实质 上的意义时,可以重新编码成为连续型变量;
- 年龄: 可以编码成为 18-29, 29-44, 45-64, 65+ 的变量:
- 收入:太过离散的收入分布,可以重新编码成为连续型变量:

回归系数 (多元定类变量)

mom.work:

- 1: 母亲在小孩 2-3 岁时没有工作;
- 2: 母亲在小孩 2-3 岁时有工作;
- 3: 母亲在小孩 1 岁时有兼职工作;
- 4: 母亲在小孩 1 岁时有全职工作;

回归系数 (多元定类变量)

. reg kid score i.mom work

Source	SS	df	MS		Number of obs	
Model Residual	4408.21786 175977.939		69.40595 9.251021		F(3, 430) Prob > F R-squared Adj R-squared	= 0.0138 = 0.0244
Total	180386.157	433 41	6.596205		Root MSE	= 20.23
kid_score	Coef.	Std. Err		P> t		Interval]
mom_work						
2	3.854167	3.094831	1.25	0.214	-2.228712	9.937045
3	11.5	3.552886	3.24	0.001	4.516815	18.48318
4	5.209756	2.703941	1.93	0.055	1048289	10.52434
cons	82	2.305417	35.57	0.000	77.46871	86.53129

比较母亲在小孩 1 岁时有兼职工作母亲在小孩 2-3 岁时有工作的小孩,前者的成绩平均高 11.5 分。

回归系数 (多元定类变量)

```
. xi: reg kid_score i.mom_work*cmom_iq
i.mom_work
               _Imom_work_1-4
                                 (naturally coded; Imom_work_1 omitted)
i.mom ~k*cmom~a ImomXcmom #
                                 (coded as above)
                                                Number of obs =
     Source I
                                                               434
                                                F(7, 426) = 17.32
              39960.3852
                                                Prob > F = 0.0000
      Model |
                           7 5708.62646
   Residual | 140425.771
                                                R-squared = 0.2215
                              329.637961
                                                Adj R-squared =
                                                               0.2087
                                                Root MSE
      Total |
              180386.157
                         433 416 596205
                                                             = 18.156
             Coef. Std. Err. t
                                           P>|t|
                                                   [95% Conf. Interval]
   kid score |
 _Imom_work_2 | 4.602302
                         2.834022 1.62
                                           0.105
                                                   -.9681055
                                                               10.17271
 Imom work 3 | 6.459458
                        3.32877 1.94
                                           0.053
                                                   -.0834005
                                                              13.00232
 Imom work 4 |
               2.924889
                         2.452488 1.19
                                           0.234
                                                   -1.895594
                                                              7 745372
     cmom_iq |
             .6869395
                        .1272921 5.40
                                           0.000
                                                  . 4367407
                                                              .9371382
ImomXcmom 2
                        .1982299 1.06
                                           0.289
             .2103731
                                                   -.1792573
                                                              . 6000035
ImomXcmom 3 | -.1119503
                           .20568 -0.54
                                           0.587
                                                   -.5162243
                                                               .2923237
ImomXcmom_4 | -.2188253
                         .1524072 -1.44
                                           0.152
                                                   -.5183891
                                                              .0807384
                 83.871
                         2.097907
                                    39.98
                                           0.000
                                                    79.74746
                                                               87.99454
       cons
```

比较智商都在均值的母亲,在小孩 1 岁时有兼职工作的比在小孩

2-3 岁时有工作的小孩。前者的成绩平均高 5 分。

建模基本建议

- 加入一切可能影响自变量的变量。
- 在一些情况下, 可以合并数个自变量。
- 显著性高而且回归系数大的变量,考虑与其他自变量交叉项的可能性。
- 如何选择该排除或保留自变量:
 - 符号正确,统计不显著,保留!
 - 统计不显著,符号不正确,排除!
 - 统计显著,符号不正确,仔细检查是否有遗漏变量或者编码 错误!
 - 符号正确,统计显著,当然保留!

一个 M 行 N 列 ($M \times N$) 的矩阵 A 表示为:

$$\mathbf{A} = [a_{ij}] = \begin{bmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1N} \\ a_{21} & a_{22} & a_{23} & \dots & a_{2N} \\ \dots & \dots & \dots & \dots \\ a_{M1} & a_{M2} & a_{M3} & \dots & a_{MN} \end{bmatrix}$$
(1)

矩阵转置 (Transposition)

矩阵 A 的转置表示为 A':

$$\mathbf{A}_{3\times 2} = \begin{bmatrix} 4 & 5 \\ 3 & 1 \\ 5 & 0 \end{bmatrix} \qquad \mathbf{A}'_{2\times 3} = \begin{bmatrix} 4 & 3 & 5 \\ 5 & 1 & 0 \end{bmatrix}$$
(2)

方阵 (Square Matrix)

行列长度相同的矩阵, 是为方阵。

$$\mathbf{A}_{2\times2} = \begin{bmatrix} 2 & 4 \\ 7 & 3 \end{bmatrix} \qquad \mathbf{B}_{3\times3} = \begin{bmatrix} -1 & 8 & 1 \\ 2 & 4 & 6 \\ 5 & 4 & 2 \end{bmatrix}$$
(3)

对角矩阵 (Diagonal Matrix)

方阵中,除了左上至右下的要素不为 0 外,其余为 0 的矩阵是为对角矩阵。

$$\mathbf{A}_{2\times 2} = \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix} \qquad \mathbf{B}_{3\times 3} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 2 \end{bmatrix} \tag{4}$$

纯量矩阵 (Scalar Matrix)

对角矩阵的对角要素均相等时,是为纯量矩阵,如方差-协方差 矩阵。

$$\operatorname{var-cov}(\boldsymbol{u}) = \begin{bmatrix} \sigma^2 & 0 & 0 & 0 & 0 \\ 0 & \sigma^2 & 0 & 0 & 0 \\ 0 & 0 & \sigma^2 & 0 & 0 \\ 0 & 0 & 0 & \sigma^2 & 0 \\ 0 & 0 & 0 & 0 & \sigma^2 \end{bmatrix}$$
 (5)

对角矩阵的对角要素均 1 时,是为单位矩阵。

$$\mathbf{A}_{2\times 2} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$\mathbf{A}_{2\times 2} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \qquad \mathbf{B}_{3\times 3} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 2 & 3 & 4 & 5 \\ 6 & 7 & 8 & 9 \end{bmatrix} + \begin{bmatrix} 1 & 0 & -1 & 3 \\ -2 & 0 & 1 & 5 \end{bmatrix} = \begin{bmatrix} 3 & 3 & 3 & 8 \\ 4 & 7 & 9 & 14 \end{bmatrix}$$
 (7)

$$\begin{bmatrix} 3 & 4 & 7 \\ 5 & 6 & 1 \end{bmatrix} \times \begin{bmatrix} 2 & 1 \\ 3 & 5 \\ 6 & 2 \end{bmatrix}$$

$$= \begin{bmatrix} (3 \times 2) + (4 \times 3) + (7 \times 6) & (3 \times 1) + (4 \times 5) + (7 \times 2) \\ (5 \times 2) + (6 \times 3) + (1 \times 6) & (5 \times 1) + (6 \times 5) + (1 \times 2) \end{bmatrix}$$

$$= \begin{bmatrix} 60 & 37 \\ 34 & 37 \end{bmatrix}$$

(8)

