

Prof. Dr.-Ing. Frank Neitzel, M.Sc. Anastasia Pasioti

	- Non-linea	r adjustment problem -	
roup:	Surname, First name:	Matriculation number:	Signature*:
	* With my signature I declare that	I was involved in the elaboration of th	is homework.
	Submi	ission until: 13.01.2022	

Objective

This exercise deals with the adjustment of non-linear observation equations. The objective function of the non-linear adjustment problem from task 1 is depicted in Figure 1. The minimum of this function is the solution of the linearized problem.

Figure 1: Objective function of the equation system of task 1

Prof. Dr.-Ing. Frank Neitzel, M.Sc. Anastasia Pasioti

Task 1:

Solve the following over-determined, non-linear equation system via least-squares adjustment applying matrix notation (example from the lecture).

$$-4.0 = x + y - 2y^{2}$$
$$8.0 = x^{2} + y^{2}$$
$$7.7 = 3x^{2} - y^{2}$$

- The values -4.0, 8.0 and 7.7 are equally weighted, uncorrelated measurements.
- The parameters x and y are unknowns.
- Solve the normal equation system and determine the estimated parameters.

Task 2 (Homework):

The side length a and the mass m of a cube of copper were measured. The density $\rho=8.93~{\rm g/cm^3}$ of copper is error free and the temperature effect can be neglected.

- Calculate the adjusted volume *V* of the cube via least-squares adjustment.
 - Setup the functional model.
 - Which parameters are observations, error-free or unknown parameters?
 - o Why it is a non-linear adjustment problem? Please give a short explanation.

Table 1: Measurements

	L_i	σ_{L_i}
а	11.60 mm	0.05 mm
m	15.15 g	0.05 g