Speed up and Efficiency 3— but to be the cycle time of an instruction pipeline.

	Time													
	1	2	3	4	5	6	7	8	9	10	11	12	13	14
Instruction 1	FI	DI	co	FO	EI	wo								
Instruction 2		FI	DI	со	FO	EI	wo							
Instruction 3			FI	DI	со	FO	EI	wo						
Instruction 4				FI	DI	со	FO	EI	wo					
Instruction 5					FI	DI	со	FO	EI	wo				
Instruction 6						FI	DI	co	FO	EI	wo			
Instruction 7							FI	DI	со	FO	EI	wo		
Instruction 8								FI	DI	со	FO	EI	wo	
Instruction 9									FI	DI	со	FO	EI	wo

Figure 14.10 Timing Diagram for Instruction Pipeline Operation

T= max
$$[\tau_i]$$

= τ_m

I $\leq i \leq k$
 $\tau_i \Rightarrow$ time in the ith stage of pipeline

 $\tau_m \Rightarrow$ maximum stage delay.

 $k \Rightarrow$ number of stages.

Let in be the number of inst^n processed.

 $\tau_{k,n} \Rightarrow$ time required for a pipeline with k stages to execute n instructions.

 $\tau_{k,n} = [k + (n-i)] \tau$

In the example, $(6 + (9-1)) \tau$

No pipeline
$$\Rightarrow k=1$$

Speed-up, $S_k = \frac{T_{l,n}}{T_{k,n}} = \frac{nkz}{(k+(n-i))} = \frac{nk}{k+(n-i)}$

Figure 14.14 Speedup Factors with Instruction Pipelining