GSERM - St. Gallen 2024 Analyzing Panel Data

June 14, 2024

Logit/Probit Redux

Start with:

$$Y_i^* = \mathbf{X}_i \boldsymbol{\beta} + u_i$$

$$Y_i = 0 \text{ if } Y_i^* < 0$$

 $Y_i = 1 \text{ if } Y_i^* \ge 0$

So:

$$Pr(Y_i = 1) = Pr(Y_i^* \ge 0)$$

$$= Pr(\mathbf{X}_i \beta + u_i \ge 0)$$

$$= Pr(u_i \ge -\mathbf{X}_i \beta)$$

$$= Pr(u_i \le \mathbf{X}_i \beta)$$

$$= \int_{-\infty}^{\mathbf{X}_i \beta} f(u) du$$

"Standard logistic" PDF:

$$Pr(u) \equiv \lambda(u) = \frac{\exp(u)}{[1 + \exp(u)]^2}$$

CDF:

$$\Lambda(u) = \int \lambda(u) du$$

$$= \frac{\exp(u)}{1 + \exp(u)}$$

$$= \frac{1}{1 + \exp(-u)}$$

Logistic → "Logit"

$$Pr(Y_i = 1) = Pr(Y_i^* > 0)$$

$$= Pr(u_i \le \mathbf{X}_i \beta)$$

$$= \Lambda(\mathbf{X}_i \beta)$$

$$= \frac{\exp(\mathbf{X}_i \beta)}{1 + \exp(\mathbf{X}_i \beta)}$$

(equivalently) = $\frac{1}{1 + \exp(-\mathbf{X}_i \beta)}$

Likelihoods

$$L_i = \left(\frac{\exp(\mathbf{X}_i\boldsymbol{\beta})}{1 + \exp(\mathbf{X}_i\boldsymbol{\beta})}\right)^{Y_i} \left[1 - \left(\frac{\exp(\mathbf{X}_i\boldsymbol{\beta})}{1 + \exp(\mathbf{X}_i\boldsymbol{\beta})}\right)\right]^{1 - Y_i}$$

$$L = \prod_{i=1}^{N} \left(\frac{\exp(\mathbf{X}_{i}\boldsymbol{\beta})}{1 + \exp(\mathbf{X}_{i}\boldsymbol{\beta})} \right)^{Y_{i}} \left[1 - \left(\frac{\exp(\mathbf{X}_{i}\boldsymbol{\beta})}{1 + \exp(\mathbf{X}_{i}\boldsymbol{\beta})} \right) \right]^{1 - Y_{i}}$$

$$\ln L = \sum_{i=1}^{N} Y_i \ln \left(\frac{\exp(\mathbf{X}_i \boldsymbol{\beta})}{1 + \exp(\mathbf{X}_i \boldsymbol{\beta})} \right) + \\
(1 - Y_i) \ln \left[1 - \left(\frac{\exp(\mathbf{X}_i \boldsymbol{\beta})}{1 + \exp(\mathbf{X}_i \boldsymbol{\beta})} \right) \right]$$

Probit...

$$\Pr(u) \equiv \phi(u) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{u^2}{2}\right)$$

$$\Phi(u) = \int_{-\infty}^{u} \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{u^2}{2}\right) du$$

Standard Normal and Logistic PDFs

Standard Normal and Logistic CDFs

Probit (continued...)

$$\begin{array}{lcl} \Pr(Y_i = 1) & = & \Phi(\mathbf{X}_i \boldsymbol{\beta}) \\ & = & \int_{-\infty}^{\mathbf{X}_i \boldsymbol{\beta}} \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{(\mathbf{X}_i \boldsymbol{\beta})^2}{2}\right) d\mathbf{X}_i \boldsymbol{\beta} \end{array}$$

$$L = \prod_{i=1}^{N} \left[\Phi(\mathbf{X}_i \boldsymbol{\beta}) \right]^{Y_i} \left[1 - \Phi(\mathbf{X}_i \boldsymbol{\beta}) \right]^{(1-Y_i)}$$

$$\ln L = \sum_{i=1}^{N} Y_i \ln \Phi(\mathbf{X}_i \boldsymbol{\beta}) + (1 - Y_i) \ln [1 - \Phi(\mathbf{X}_i \boldsymbol{\beta})]$$

One-way unit effects:

$$Y_{it} = f(\mathbf{X}_{it}\beta + \alpha_i + u_{it})$$

So, think about logit first:

$$\Pr(Y_{it} = 1) = \frac{\exp(\mathbf{X}_{it}\beta + \alpha_i)}{1 + \exp(\mathbf{X}_{it}\beta + \alpha_i)} \equiv \Lambda(\mathbf{X}_{it}\beta + \alpha_i)$$

Incidental Parameters:

- Nonlinearity \rightarrow inconsistency in both $\hat{\alpha}$ s and $\hat{\beta}$.
- Anderson's unconditional estimator:

$$L^{U} = \prod_{i=1}^{N} \prod_{t=1}^{T} \Lambda(\mathbf{X}_{it} + \alpha_i)^{\mathbf{Y}_{it}} [1 - \Lambda(\mathbf{X}_{it} + \alpha_i)]^{1 - \mathbf{Y}_{it}}$$

Chamberlain's conditional estimator:

$$L^{C} = \prod_{i=1}^{N} \Pr\left(Y_{i1} = y_{i1}, Y_{i2} = y_{i2}, ... Y_{iT} = y_{iT} \mid \sum_{t=1}^{T} Y_{it}\right)$$

Fixed-Effects (continued)

Intuition: Suppose we have T=2. That means that:

•
$$Pr(Y_{i1} = 0 \text{ and } Y_{i2} = 0 \mid \sum_{T} Y_{it} = 0) = 1.0$$

•
$$Pr(Y_{i1} = 1 \text{ and } Y_{i2} = 1 \mid \sum_{T} Y_{it} = 2) = 1.0$$

and:

$$\Pr\left(Y_{i1} = 0 \text{ and } Y_{i2} = 1 \mid \sum_{\mathcal{T}} Y_{it} = 1\right) = \frac{\Pr(0,1)}{\Pr(0,1) + \Pr(1,0)}$$

with a similar statement for $Pr(Y_{i1} = 1 \text{ and } Y_{i2} = 0 \mid \sum_{T} Y_{it} = 1)$.

The Point:

 $\sum_{t=1}^{T} Y_{it}$ is a sufficient statistic for α_i , so conditioning on it \equiv "fixed effects."

Notes On Fixed-Effects

Things to bear in mind:

- Fixed effects = no estimates for β_b
- Interpretation: per logit, but $|\hat{\alpha}_i|$.
- Everything above is for **logit**...
 - · For FE probit, there is no conditional model
 - · Unconditional / "brute force" FE probit is biased (see here and here)
- BTSCS in international relations: Green et al. (2001) vs. Beck & Katz (2001) ("Dirty Pool" debate)

Model is:

$$Y_{it}^* = \mathbf{X}_{it}\beta + u_{it}$$

 $Y_{it} = 0 \text{ if } Y_{it}^* \le 0 ;$
 $= 1 \text{ if } Y_{it}^* > 0$

with:

$$u_{it} = \alpha_i + \eta_{it}$$

with $\eta_{it} \sim \text{i.i.d. N(0,1)}$, and $\alpha_i \sim N(0, \sigma_{\alpha}^2)$. This implies:

$$Var(u_{it}) = 1 + \sigma_{\alpha}^2$$

and so:

$$\mathsf{Corr}(u_{it}, u_{is}, \ t \neq s) \equiv
ho = rac{\sigma_{lpha}^2}{1 + \sigma_{lpha}^2}$$

which means that we can write $\sigma_{\alpha}^2 = \left(\frac{\rho}{1-\rho}\right)$.

Probit:

$$L_{i} = \text{Prob}(Y_{i1} = y_{i1}, Y_{i2} = y_{i2}, ... Y_{iT} = y_{iT})$$

$$= \int_{-\infty}^{X_{i1}\beta} \int_{-\infty}^{X_{i2}\beta} ... \int_{-\infty}^{X_{iT}\beta} \phi(u_{i1}, u_{i2}...u_{iT}) du_{iT}... du_{i2} du_{i1}$$

Logit:

$$L_{i} = \text{Prob}(Y_{i1} = y_{i1}, Y_{i2} = y_{i2}, ... Y_{iT} = y_{iT})$$

$$= \int_{-\infty}^{X_{i1}\beta} \int_{-\infty}^{X_{i2}\beta} ... \int_{-\infty}^{X_{iT}\beta} \lambda(u_{i1}, u_{i2}...u_{iT}) du_{iT}... du_{i2} du_{i1}$$

Solution?

$$\phi(u_{i1}, u_{i2}, ... u_{iT}) = \int_{-\infty}^{\infty} \phi(u_{i1}, u_{i2}, ... u_{iT} \mid \alpha_i) \phi(\alpha_i) d\alpha_i$$

Practical Things

- $\hat{\rho}$ = proportion of the variance due to the α_i s.
- Implementation: Gauss-Hermite guadrature or MCMC.
- Best with N large and T small.
- Critically requires $Cov(\mathbf{X}, \alpha) = 0$ (see notes re: Chamberlain's CRE Estimator).

Unit Effects in Practice - Some Simulations

Start with:

$$Y_{it}^* = 0 + (1 \times X_{it}) + (1 \times D_{it}) + (1 \times \alpha_i) + u_{it}$$

 $Y_{it} \in \{0,1\} = f(Y_{it}^*)$

where:

- $\alpha_i \sim N(0,1)$
- $X_{it} \sim N(0, \sigma_X^2)$
- $D_{it} \in \{0, 1\}$
- $Cov(X_{it}, \alpha_i) = \{0, 0.69\}$
- $Cov(D_{it}, \alpha_i) = 0$
- $f(\cdot) = \{ logit, probit \}$ (as appropriate)

and N = T = 100.

Logit $\hat{\beta}_X$ s for $Cov(X_{it}, \alpha_i) = 0$

Logit $\hat{\beta}_X$ s for $Cov(X_{it}, \alpha_i) \approx 0.69$

Logit $\hat{\beta}_X$ s for $Cov(X_{it}, \alpha_i) \approx 0.69$

Same Plot, but with T = 5...

Software

R

- pglm (panel GLMs) (maximum likelihood + quadrature)
- bife (fixed-effects logit / probit only)
- glmer (general mixed-effects models, including RE)
- glmmML (via Gauss-Hermite quadrature)
- MCMCpack (MCMChlogit)
- Various user-generated functions (e.g., here).
- Interpretation via modelsummary and marginaleffects

Stata

- xtprobit, xtlogit, xtcloglog
- Plus xttrans (transition probabilities), quadchk (quadrature checking), xtrho / xtrhoi (estimation of within-unit covariances)

Example: WDI "Plus"

Data from the WDI, plus POLITY and the UCDP:

- ISO3 The country's International Standards Organization (ISO) three-letter identification code.
- Year The year that row of data applies to (1960=1).
- CivilWar Civil conflict indicator: 1 if there was a civil conflict in that country in that year;
 0 otherwise. From the UCDP.
- OnsetCount The sum of new conflict episodes in that country / year. From UCDP.
- LandArea Land area (sq. km).
- PopMillions Popluation (in millions).
- PopGrowth Population Growth (percent).
- UrbanPopulation Urban Population (percent of total).
- GDPPerCapita GDP per capita (constant 2010 \$US).
- GDPPerCapGrowth GDP Per Capita Growth (percent annual).
- PostColdWar 1 if Year > 1989, 0 otherwise.
- POLITY The POLITY score of democracy/autocracy. Scaled so that 0 = most autocratic, 10 = most democratic.

 $N=215, \ \bar{T}=64, \ NT$ varies (due to missingness).

Model and Data

Model:

$$\begin{aligned} \text{Civil War}_{it} &=& f[\beta_0 + \beta_1 In(\text{Land Area}_{it}) + \beta_2 In(\text{Population}_{it}) + \\ &+ \beta_3 \text{Urban Population}_{it} + \beta_4 In(\text{GDP}_{it}) + \beta_5 \text{GDP Growth}_{it} + \\ &+ \beta_6 \text{Post-Cold War}_{it} + \beta_7 \text{POLITY}_{it} + \beta_5 \text{POLITY}_{it}^2 + u_{it}] \end{aligned}$$

> describe(DF,skew=FALSE)									
	vars	n	mean	sd	median	min	max	range	se
IS03*	1	13822	108.49	62.35	108.00	1.00	216.0	215.00	0.53
Year*	2	13822	32.50	18.47	32.00	1.00	64.0	63.00	0.16
YearNumeric	3	13760	1991.50	18.47	1991.50	1960.00	2023.0	63.00	0.16
country*	4	13760	108.00	62.07	108.00	1.00	215.0	214.00	0.53
CivilWar	5	9052	0.13	0.34	0.00	0.00	1.0	1.00	0.00
OnsetCount	6	9394	0.05	0.24	0.00	0.00	4.0	4.00	0.00
LandArea	7	11941	605302.93	1639812.91	107160.00	2.03	16389950.0	16389947.97	15006.31
PopMillions	8	13515	25.11	104.75	4.29	0.00	1417.2	1417.17	0.90
UrbanPopulation	9	13482	51.72	25.74	50.92	2.08	100.0	97.92	0.22
GDPPerCapita	10	10099	12088.98	19130.23	3891.83	122.88	228667.9	228545.05	190.36
GDPPerCapGrowth	11	10074	1.95	6.21	2.11	-64.43	140.5	204.91	0.06
PostColdWar	12	13760	0.53	0.50	1.00	0.00	1.0	1.00	0.00
POLITY	13	8279	5.55	3.71	6.50	0.00	10.0	10.00	0.04
POLITYSquared	14	8279	44.57	40.24	42.25	0.00	100.0	100.00	0.44

Variation

Variable	Dim	Mean	SD	Min	Max	Observations
Year	overall	1991.5	18.474	1960	2023	N = 13760
	between		0	1991.5	1991.5	n = 215
	within		18.474	1960	2023	T = 64
CivilWar	overall	0.134	0.341	0	1	N = 9052
	between		0.221	0	1	n = 172
	within		0.255	-0.783	1.117	T = 52.628
OnsetCount	overall	0.049	0.242	0	4	N = 9394
	between		0.083	0	0.597	n = 172
	within		0.227	-0.548	3.92	T = 54.616
LandArea	overall	605302.933	1639812.915	2.027	16389950	N = 11941
	between		1756124.731	2.028	16379341.333	n = 215
	within		14364.404	180581.622	688581.622	T = 55.54
PopMillions	overall	25.109	104.751	0.003	1417.173	N = 13515
	between		100.983	0.009	1104.338	n = 215
	within		28.291	-436.87	534.349	T = 62.86
UrbanPopulation	overall	51.717	25.74	2.077	100	N = 13482
	between		24.154	6.912	100	n = 214
	within		9.043	5.953	86.692	T = 63
GDPPerCapita	overall	12088.981	19130.234	122.885	228667.935	N = 10099
	between		21061.499	330.723	167809.27	n = 210
	within		6930.784	-37755.586	118168.443	T = 48.09
GDPPerCapGrowth	overall	1.952	6.215	-64.426	140.48	N = 10074
	between		1.782	-8.078	9.247	n = 212
	within		6.017	-66.481	133.991	T = 47.519
PostColdWar	overall	0.531	0.499	0	1	N = 13760
	between		0	0.531	0.531	n = 215
	within		0.499	0	1	T = 64
POLITY	overall	5.551	3.708	0	10	N = 8279
	between		2.985	0	10	n = 165
	within		2.229	-1.431	12.319	T = 50.176

Pooled Logit

```
> Logit<-glm(CivilWar~log(LandArea)+log(PopMillions)+UrbanPopulation+log(GDPPerCapita)+
             GDPPerCapGrowth+PostColdWar+POLITY+POLITYSquared,data=DF,family="binomial")
> summarv(Logit)
Call:
glm(formula = CivilWar ~ log(LandArea) + log(PopMillions) + UrbanPopulation +
   log(GDPPerCapita) + GDPPerCapGrowth + PostColdWar + POLITY +
   POLITYSquared, family = "binomial", data = DF)
Coefficients:
                                            Pr(>|z|)
               Estimate Std. Error z value
                          0.52665 -1.54
(Intercept)
               -0.81201
                                            0.12312
log(LandArea)
               0.00183 0.03230 0.06
                                            0.95487
log(PopMillions) 0.66738 0.03685 18.11
                                           < 2e-16 ***
UrbanPopulation 0.01195 0.00335 3.57
                                           0.00036 ***
GDPPerCapGrowth -0.04027 0.00651 -6.19 0.00000000061 ***
PostColdWar
             -0.32313 0.08606 -3.75 0.00017 ***
               0.66857 0.06140 10.89 < 2e-16 ***
PULTLY
POLITYSquared -0.06460 0.00581 -11.12
                                          < 2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
   Null deviance: 5829.3 on 6984 degrees of freedom
Residual deviance: 4615.6 on 6976 degrees of freedom
  (6837 observations deleted due to missingness)
ATC: 4634
Number of Fisher Scoring iterations: 6
```

Fixed Effects

```
> FELogit<-bife(CivilWar~log(LandArea)+log(PopMillions)+UrbanPopulation+log(GDPPerCapita)+
             GDPPerCapGrowth+PostColdWar+POLITY+POLITYSquared | ISO3.data=DF.model="logit")
> summary(FELogit)
binomial - logit link
CivilWar ~ log(LandArea) + log(PopMillions) + UrbanPopulation +
   log(GDPPerCapita) + GDPPerCapGrowth + PostColdWar + POLITY +
   POLITYSquared | ISO3
Estimates:
                 Estimate Std. error z value Pr(> |z|)
log(LandArea)
                -13.81071
                            8.22081 -1.68 0.093 .
log(PopMillions) 0.66428 0.29457 2.26 0.024 *
UrbanPopulation
                0.01785 0.01239 1.44 0.150
log(GDPPerCapita) -0.33280 0.17452 -1.91 0.057 .
GDPPerCapGrowth
                -0.05128 0.00845 -6.07 1.3e-09 ***
PostColdWar
                -0.21860 0.17884 -1.22 0.222
                POI.TTY
POLITYSquared -0.07364
                           0.00890 -8.27
                                            < 2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
residual deviance= 2835.
null deviance= 4408,
n= 3962, N= 83
( 6837 observation(s) deleted due to missingness )
( 3023 observation(s) deleted due to perfect classification )
Number of Fisher Scoring Iterations: 6
Average individual fixed effect= 172.4
```

Alternative Fixed Effects (using feglm)

```
> FELogit2<-feglm(CivilWar~log(LandArea)+log(PopMillions)+UrbanPopulation+log(GDPPerCapita)+
             GDPPerCapGrowth+PostColdWar+POLITY+POLITYSquared | ISO3, data=DF, family="binomial")
NOTES: 6,837 observations removed because of NA values (LHS: 4,770, RHS: 6,837).
      77 fixed-effects (3,023 observations) removed because of only 0 (or only 1) outcomes.
> summary(FELogit2)
GLM estimation, family = binomial, Dep. Var.: CivilWar
Observations: 3.962
Fixed-effects: ISO3: 83
Standard-errors: Clustered (ISO3)
                  Estimate Std. Error z value Pr(>|z|)
log(LandArea) -13.81263 9.31735 -1.4825 0.138216796
log(PopMillions) 0.66427 0.76041 0.8736 0.382352433
UrbanPopulation 0.01785 0.03673 0.4860 0.626988502
log(GDPPerCapita) -0.33280 0.41724 -0.7976 0.425097622
GDPPerCapGrowth -0.05128 0.01266 -4.0508 0.000051037 ***
PostColdWar -0.21860 0.48166 -0.4538 0.649940396
POLITY
                0.71095 0.24874 2.8582 0.004260535 **
POLITYSquared -0.07364
                            0.02453 -3.0018 0.002683538 **
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
Log-Likelihood: -1,417.4 Adj. Pseudo R2: 0.316066
          BIC: 3,588.7 Squared Cor.: 0.400104
```

Random Effects

Estimates:

10 free parameters

	Estimate	Std. error	t value	Pr(> t)	
(Intercept)	-3.34254	2.34543	-1.43	0.15	
log(LandArea)	-0.01437	0.09710	-0.15	0.88	
log(PopMillions)	1.17645	0.08545	13.77	< 2e-16 **	*
UrbanPopulation	0.00686	0.02895	0.24	0.81	
log(GDPPerCapita)	-0.39269	0.25443	-1.54	0.12	
GDPPerCapGrowth	-0.05400	0.01200	-4.50	0.0000068 **	*
PostColdWar	-0.31271	0.20671	-1.51	0.13	
POLITY	0.76234	0.07210	10.57	< 2e-16 **	*
POLITYSquared	-0.07769	0.00663	-11.72	< 2e-16 **	*
sigma	2.21027	0.12320	17.94	< 2e-16 **	*

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Nice Table...

Models of Civil War

	Logit	FE Logit	FEs+Robust	RE Logit
Intercept	-0.81			-3.34
	(0.53)			(2.35)
In(Land Area)	0.00	-13.81	-13.81	-0.01
	(0.03)	(8.22)	(9.32)	(0.10)
In(Population)	0.67*	0.66*	0.66	1.18*
	(0.04)	(0.29)	(0.76)	(0.09)
Urban Population	0.01*	0.02	0.02	0.01
	(0.00)	(0.01)	(0.04)	(0.03)
n(GDP Per Capita)	-0.52*	-0.33	-0.33	-0.39
	(0.06)	(0.17)	(0.42)	(0.25)
GDP Growth	-0.04^{*}	-0.05^*	-0.05*	-0.05*
	(0.01)	(0.01)	(0.01)	(0.01)
Post-Cold War	-0.32*	-0.22	-0.22	-0.31
	(0.09)	(0.18)	(0.48)	(0.21)
POLITY	0.67*	0.71*	0.71*	0.76*
	(0.06)	(0.09)	(0.25)	(0.07)
POLITY Squared	-0.06*	-0.07^*	-0.07*	-0.08*
	(0.01)	(0.01)	(0.02)	(0.01)
Estimated Sigma	,	` /	, ,	2.21*
Ü				(0.12)
AIC	4633.63			3299.59
BIC	4695.30			
Log Likelihood	-2307.82	-1417.42	-1417.42	-1639.80
Deviance	4615.63	2834.83	2834.83	
Num. obs.	6985	3962	3962	
Num. groups: ISO3			83	
Pseudo R ²			0.32	
*p < 0.05				
•				

Models For Event Counts

Event Counts

Properties:

- Discrete / integer-values
- Non-negative
- "Cumulative"

Motivation:

Arrival Rate =
$$\lambda$$

$$Pr(Event)_{t,t+h} = \lambda h$$

$$Pr(No Event)_{t,t+h} = 1 - \lambda h$$

$$Pr(Y_t = y) = \frac{\exp(-\lambda h)\lambda h^y}{y!}$$
$$= \frac{\exp(-\lambda)\lambda^y}{y!}$$

Poisson: Assumptions and Motivations

Three key assumptions:

- No Simultaneous Events
- Constant Arrival Rate
- Independent Event Arrivals

Another motivation: For M independent Bernoulli trials with (sufficiently small) probability of success π and where $M\pi \equiv \lambda > 0$,

$$Pr(Y_i = y) = \lim_{M \to \infty} \left[\binom{M}{y} \left(\frac{\lambda}{M} \right)^y \left(1 - \frac{\lambda}{M} \right)^{M-y} \right]$$
$$= \frac{\lambda^y \exp(-\lambda)}{y!}$$

Poisson: Characteristics

Characteristics:

- Discrete
- $E(Y) = Var(Y) = \lambda$
- Is not preserved under affine transformations...
- For $X \sim \mathsf{Poisson}(\lambda_X)$ and $Y \sim \mathsf{Poisson}(\lambda_Y)$, $Z = X + Y \sim \mathsf{Poisson}(\lambda_{X+Y})$ iff X and Y are independent but
- ...same is not true for differences.
- $\lambda \to \infty \iff Y \sim N$

Poisson Regression

Suppose

$$\mathsf{E}(Y_i) \equiv \lambda_i = \exp(\mathbf{X}_i \boldsymbol{\beta})$$

then

$$\Pr(Y_i = y | \mathbf{X}_i, \boldsymbol{\beta}) = \frac{\exp[-\exp(\mathbf{X}_i \boldsymbol{\beta})][\exp(\mathbf{X}_i \boldsymbol{\beta})]^y}{y!}$$

with likelihood:

$$L = \prod_{i=1}^{N} \frac{\exp[-\exp(\mathbf{X}_{i}\beta)][\exp(\mathbf{X}_{i}\beta)]^{Y_{i}}}{Y_{i}!}$$

and log-likelihood:

$$\ln L = \sum_{i=1}^{N} \left[-\exp(\mathbf{X}_{i}\boldsymbol{\beta}) + Y_{i}\mathbf{X}_{i}\boldsymbol{\beta} - \ln(Y_{i}!) \right]$$

Event Counts: Unit Effects

The Poisson model:

$$Y_{it} \sim \mathsf{Poisson}(\mu_{it} = \alpha_i \lambda_{it})$$

with $\lambda_{it} = \exp(\mathbf{X}_{it}\boldsymbol{\beta})$ implies:

$$E(Y_{it} \mid \mathbf{X}_{it}, \alpha_i) = \mu_{it}$$

$$= \alpha_i \exp(\mathbf{X}_{it}\beta)$$

$$= \exp(\delta_i + \mathbf{X}_{it}\beta)$$

where $\delta_i = \ln(\alpha_i)$.

Fixed-Effects Poisson:

- ...has no "incidental parameters" problem (see e.g. Cameron and Trivedi, pp. 281-2)
- This means "brute force" approach works
- Fitted via glmmML in R, xtpoisson (and xtnbreg) in Stata

Random-Effects Models

The Poisson with random effects is:

$$Pr(Y_{i1} = y_{i1}, ... Y_{iT} = y_{iT}) = \int_0^\infty Pr(Y_{i1} = y_{i1}, ... Y_{iT} = y_{iT}) f(\alpha_i) d\alpha_i$$
$$= \int_0^\infty \left[\prod_{t=1}^T Pr(Y_{it} \mid \alpha_i) \right] f(\alpha_i) d\alpha_i$$

- Simplest to assume $\alpha_i \sim \Gamma(\theta)$
- Yields a model with $\mathsf{E}(Y_{it}) = \lambda_{it}$ and $\mathsf{Var}(Y_{it}) = \lambda_{it} + \frac{\lambda_{it}^2}{\theta}$
- Via glmmML or glmer in R, or xtpois, re in Stata
- ∃ random effects negative binomial too...

Panel Models: Software

R:

- Tobit = censReg (in censReg)
- Poisson (random effects) = glmmML in glmmML or glmer in Ime4
- Poisson (fixed effects) = glmmML or "brute force"
- Poisson + negative binomial (FE, RE) = pglm

Stata:

- Tobit = xttobit (re only)
- Poisson / negative binomial = xtpoisson, xtnbreg (both with fe, re options)

Conflict Onsets: Pooled Poisson

```
> xtabs(~DF$OnsetCount)
DF$OnsetCount
  0 1
8981 375
           30
                 7
> Poisson<-glm(OnsetCount~log(LandArea)+log(PopMillions)+UrbanPopulation+log(GDPPerCapita)+
              GDPPerCapGrowth+PostColdWar+POLITY+POLITYSquared,data=DF,family="poisson")
> summary(Poisson)
Call.
glm(formula = OnsetCount ~ log(LandArea) + log(PopMillions) +
   UrbanPopulation + log(GDPPerCapita) + GDPPerCapGrowth + PostColdWar +
   POLITY + POLITYSquared, family = "poisson", data = DF)
Coefficients:
                 Estimate Std. Error z value
                                               Pr(>|z|)
(Intercept)
                 -1.99988
                            0.72467 -2.76
                                             0.00579 **
log(LandArea)
                 0.06397
                            0.04707 1.36
                                             0.17417
log(PopMillions) 0.42562
                            0.04573 9.31
                                             < 2e-16 ***
UrbanPopulation
                  0.00804
                            0.00472 1.70
                                                0.08879 .
log(GDPPerCapita) -0.47969
                            0.08043 -5.96 0.0000000025 ***
GDPPerCapGrowth
                 -0.03581
                            0.00668 -5.36 0.0000000817 ***
PostColdWar
                  0.25159
                            0.12064
                                       2 09
                                                0.03703 *
POLITY
                 0.30534
                            0.08363
                                       3.65
                                                0.00026 ***
POLITYSquared -0.03366
                            0.00799 -4.21 0.0000254512 ***
Signif. codes: 0 '***, 0.001 '**, 0.01 '*, 0.05 '., 0.1 ', 1
(Dispersion parameter for poisson family taken to be 1)
    Null deviance: 2371.5 on 6984 degrees of freedom
Residual deviance: 1931.5 on 6976 degrees of freedom
  (6837 observations deleted due to missingness)
ATC: 2679
Number of Fisher Scoring iterations: 6
```

Fixed Effects Poisson

```
> FEPoisson<-pglm(OnsetCount~log(LandArea)+log(PopMillions)+UrbanPopulation+
               log(GDPPerCapita)+GDPPerCapGrowth+PostColdWar+POLITY+
               POLITYSquared.data=DF.family="poisson".effect="individual".
               model="within")
> summary(FEPoisson)
Maximum Likelihood estimation
Newton-Raphson maximisation, 3 iterations
Return code 8: successive function values within relative tolerance limit (reltol)
Log-Likelihood: -1013
8 free parameters
Estimates:
                Estimate Std. error t value Pr(> t)
log(LandArea)
               -2.82014 2.86711 -0.98 0.32530
log(PopMillions) 0.61597 0.31877 1.93 0.05332 .
UrbanPopulation
               -0.04529 0.01338 -3.38 0.00071 ***
GDPPerCapGrowth -0.02872 0.00686 -4.19 0.0000282 ***
               0.47277 0.19572 2.42 0.01571 *
PostColdWar
POT.TTY
               0.51291
                         0.10812 4.74 0.0000021 ***
POLITYSquared -0.05185
                          0.01061 -4.89 0.0000010 ***
---
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' '1
```

Equivalent Fixed Effects Poisson (using feglm)

```
> FEPoisson2<-feglm(OnsetCount~log(LandArea)+log(PopMillions)+UrbanPopulation+
                   log(GDPPerCapita)+GDPPerCapGrowth+PostColdWar+POLITY+
                     POLITYSquared | ISO3, data=DF, family="poisson")
NOTES: 6,837 observations removed because of NA values (LHS: 4,428, RHS: 6,837).
      67 fixed-effects (2.495 observations) removed because of only 0 outcomes.
> summary(FEPoisson2,cluster="IS03")
GLM estimation, family = poisson, Dep. Var.: OnsetCount
Observations: 4.490
Fixed-effects: ISO3: 93
Standard-errors: Clustered (ISO3)
                 Estimate Std. Error z value
                                               Pr(>|z|)
log(LandArea) -2.82014 3.675097 -0.7674 0.4428652862
log(PopMillions) 0.61597 0.347129 1.7745 0.0759873451 .
UrbanPopulation -0.04529 0.019638 -2.3061 0.0211045803 *
log(GDPPerCapita) -0.10765
                           0.153162 -0.7029 0.4821364556
GDPPerCapGrowth -0.02872
                           0.006582 -4.3638 0.0000127806 ***
PostColdWar
             0.47277
                           0.295534 1.5997 0.1096591753
POLITY
           0.51291
                           0.111671 4.5931 0.0000043681 ***
POLITYSquared
                 -0.05185
                           0.011586 -4.4757 0.0000076159 ***
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
Log-Likelihood: -1.148.7
                        Adi. Pseudo R2: 0.093386
          BIC: 3,146.7
                           Squared Cor.: 0.163105
```

Random Effects Poisson

```
> REPoisson<-pglm(OnsetCount~log(LandArea)+log(PopMillions)+UrbanPopulation+
                log(GDPPerCapita)+GDPPerCapGrowth+PostColdWar+POLITY+
                POLITYSquared.data=DF.family="poisson".effect="individual".
                model="random")
> summary(REPoisson)
Maximum Likelihood estimation
Newton-Raphson maximisation, 4 iterations
Return code 8: successive function values within relative tolerance limit (reltol)
Log-Likelihood: -1283
10 free parameters
Estimates:
                Estimate Std. error t value Pr(> t)
                           1.04013 -3.34
(Intercept)
                -3.47867
                                              0.00082 ***
log(LandArea)
               0.05347 0.07261 0.74
                                              0.46146
log(PopMillions) 0.44330 0.07919 5.60 0.000000022 ***
UrbanPopulation
                -0.00471 0.00639 -0.74
                                              0.46120
log(GDPPerCapita) -0.22335 0.10250 -2.18
                                              0.02934 *
GDPPerCapGrowth
                -0.03367
                          0.00683 -4.93 0.000000828 ***
                          0.12865 2.19
PostColdWar
                 0.28226
                                              0.02823 *
POT.TTY
                 0.45969
                          0.09613 4.78 0.000001734 ***
POLITYSquared -0.05071 0.00931 -5.45 0.000000050 ***
                 1.77551
                           0.44025
                                    4.03 0.000055069 ***
sigma
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
```

Negative Binomial: Fixed Effects

Table!

Models of Civil War Onset Counts

	Poisson	FE Poisson	RE Poisson
Intercept	-2.00*		-3.48*
	(0.72)		(1.04)
In(Land Area)	0.06	-2.82	0.05
	(0.05)	(2.87)	(0.07)
In(Population)	0.43*	0.62	0.44*
	(0.05)	(0.32)	(80.0)
Urban Population	0.01	-0.05*	-0.00
	(0.00)	(0.01)	(0.01)
In(GDP Per Capita)	-0.48*	-0.11	-0.22^{*}
	(0.08)	(0.15)	(0.10)
GDP Growth	-0.04*	-0.03*	-0.03*
	(0.01)	(0.01)	(0.01)
Post-Cold War	0.25*	0.47*	0.28*
	(0.12)	(0.20)	(0.13)
POLITY	0.31*	0.51*	0.46*
	(0.08)	(0.11)	(0.10)
POLITY Squared	-0.03*	-0.05*	-0.05*
	(0.01)	(0.01)	(0.01)
Estimated Sigma			1.78*
			(0.44)
AIC	2679.09	2041.78	2585.34
BIC	2740.75		
Log Likelihood	-1330.54	-1012.89	-1282.67
Deviance	1931.52		
Num. obs.	6985		
p < 0.05			

Wrap-Up: Some Useful Packages

• pglm

- · Workhorse package for panel (FE, RE, BE) GLMs
- · Binary + ordered logit/probit, Poisson / negative binomial
- Discussed + used extensively in Croissant and Millo (2018) Panel Data Econometrics with R
- The one thing it won't (apparently) do is fixed-effects, binary-response models

• fixest

- · Fast / efficient fitting of FE models
- · Fits linear models, logit, Poisson, and negative binomial
- Includes easy coefficient plots & tables; simple multi-threading; built-in "robust" S.E.s

alpaca

- · Fast / efficient fitting of GLMs with high-dimensional fixed effects
- Includes bias correction for incidental parameters after binary-response models
- Also includes useful panel data simulation routines + average partial effects

Generalized Estimating Equations

Quick GLM review

Linear-normal model is:

$$Y_i = \mu_i + u_i$$

with:

$$\mu_i = \mathbf{X}_i \boldsymbol{\beta}.$$

Generalize:

$$g(\mu_i) = \mathbf{X}_i \boldsymbol{\beta}$$

and:

$$Y_i \sim \text{i.i.d.} F[\mu_i, \mathbf{V}_i].$$

GLM Estimation

"Score" equations:

$$\mathbf{U}(\beta) = \sum_{i=1}^{N} \mathbf{D}'_{i} \mathbf{V}_{i}^{-1} [Y_{i} - \mu_{i}] = \mathbf{0}.$$

with:

- $\mathbf{D}_i = \frac{\partial \mu_i}{\partial \beta}$,
- $\mathbf{V}_i = rac{h(\mu_i)}{\phi}$, and
- $(Y_i \mu_i) \approx$ a "residual."
- Known as "quasi-likelihood" (e.g. Wedderburn 1974 Biometrika).

Now suppose:

$$Y_{it} = \mu_{it} + u_{it}$$

where

- $i \in \{1,...N\}$ are i.i.d. "units,"
- $t \in \{1, ... T\}$, T > 1 are "time points,"
- we want $g(\mu_{it}) = \mathbf{X}_{it}\boldsymbol{\beta}$.

Key issue: Accounting for (conditional) dependence in *Y* over time.

GEE Basics

Full joint distributions over T are hard. But...

Define:

$$\mathbf{R}_{i}(\boldsymbol{\alpha}) = \begin{pmatrix} 1.0 & \alpha_{12} & \cdots & \alpha_{1,T} \\ \alpha_{21} & 1.0 & \cdots & \alpha_{2,T} \\ \vdots & \vdots & \ddots & \vdots \\ \alpha_{T,1} & \cdots & \alpha_{T,T-1} & 1.0 \end{pmatrix},$$

- \rightarrow "working correlation" matrix.
 - Completely defined by α ,
 - Structure specified by the analyst.

GEE Origins

Liang and Zeger (1986): We can decompose the variance of Y_{it} as:

$$\mathbf{V}_i = \mathsf{diag}(\mathbf{V}_i^{\frac{1}{2}}) \, \mathbf{R}_i(\alpha) \, \mathsf{diag}(\mathbf{V}_i^{\frac{1}{2}})$$

With a standard GLM assumption about the mean and variance, this is:

$$\mathbf{V}_i = \frac{\left(\mathbf{A}_i^{\frac{1}{2}}\right) \mathbf{R}_i(\alpha) \left(\mathbf{A}_i^{\frac{1}{2}}\right)}{\phi}$$

where

$$\mathbf{A}_i = egin{pmatrix} h(\mu_{i1}) & 0 & \cdots & 0 \\ 0 & h(\mu_{i2}) & \cdots & 0 \\ dots & dots & \ddots & dots \\ 0 & \cdots & 0 & h(\mu_{iT}) \end{pmatrix}$$

What does that mean?

$$\mathbf{V}_i = \text{Var}(Y_{it}|\mathbf{X}_{it},\boldsymbol{\beta})$$
 has two parts:

- \mathbf{A}_i = unit-level variation,
- $R_i(\alpha)$ = within-unit temporal variation.

Specifying $\mathbf{R}_i(\alpha)$

Independent:
$$\mathbf{R}_i(\alpha) = \begin{pmatrix} 1.0 & 0 & \cdots & 0 \\ 0 & 1.0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & 0 & 1.0 \end{pmatrix}$$

- Assumes no within-unit temporal correlation.
- Equivalent to GLM on pooled data.

Exchangeable:
$$\mathbf{R}_{i}(\alpha) = \begin{pmatrix} 1.0 & \alpha & \cdots & \alpha \\ \alpha & 1.0 & \cdots & \alpha \\ \vdots & \vdots & \ddots & \vdots \\ \alpha & \cdots & \alpha & 1.0 \end{pmatrix}$$

- One free parameter in $\mathbf{R}_i(\alpha)$ ($\alpha_{ts} = \alpha \ \forall \ t \neq s$)
- Temporal correlation within units is constant across time points.
- Akin (in some respects) to a random-effects model...

Specifying $\mathbf{R}_i(\alpha)$

$$AR(p) \text{ (e.g., } AR(1)): \qquad \mathbf{R}_{i}(\alpha) = \begin{pmatrix} 1.0 & \alpha & \alpha^{2} & \cdots & \alpha^{T-1} \\ \alpha & 1.0 & \alpha & \cdots & \alpha^{T-2} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ \alpha^{T-1} & \cdots & \alpha^{2} & \alpha & 1.0 \end{pmatrix}$$

- One free parameter in $\mathbf{R}_i(\alpha)$ ($\alpha_{ts} = \alpha^{|t-s|} \ \forall \ t \neq s$).
- Conditional within-unit correlation an exponential function of the lag.

$$Stationary(p): \qquad \mathbf{R}_i(\alpha) = \begin{pmatrix} 1.0 & \alpha_1 & \cdots & \alpha_p & 0 & \cdots & 0 \\ \alpha_1 & 1.0 & \alpha_1 & \cdots & \cdots & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & \cdots & 0 & \alpha_p & \cdots & \alpha_1 & 1.0 \end{pmatrix}$$

- AKA "banded," or "p-dependent."
- $p \leq T 1$ free parameters in $\mathbf{R}_i(\alpha)$.
- Conditional within-unit correlation an exponential function of the lag, up to lag p, and zero thereafter.

Specifying $\mathbf{R}_i(\alpha)$

Unstructured:
$$\mathbf{R}_{i}(\alpha) = \begin{pmatrix} 1.0 & \alpha_{12} & \alpha_{13} & \cdots & \alpha_{1,\tau-1} \\ \alpha_{12} & 1.0 & \alpha_{23} & \cdots & \alpha_{2,\tau-1} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ \alpha_{1,\tau-1} & \alpha_{2,\tau-1} & \cdots & \alpha_{\tau-1,\tau-1} & 1.0 \end{pmatrix}$$

- $\frac{T(T-1)}{2}$ free parameters in $\mathbf{R}_i(\alpha)$.
- Conditional within-unit correlation is completely data-dependent.

Score equations:

$$\boldsymbol{U}_{GEE}(\beta_{GEE}) = \sum_{i=1}^{N} \mathbf{D}_{i}^{\prime} \left[\frac{(\mathbf{A}_{i}^{\frac{1}{2}}) \, \mathbf{R}_{i}(\boldsymbol{\alpha}) \, (\mathbf{A}_{i}^{\frac{1}{2}})}{\phi} \right]^{-1} \left[Y_{i} - \mu_{i} \right] = \mathbf{0}$$

Two-step estimation:

- For fixed values of α_s and ϕ_s at iteration s, use Newton scoring to estimate $\hat{\beta}_s$,
- Use $\hat{\beta}_s$ to calculate standardized residuals $(Y_i \hat{\mu}_i)_s$, from which consistent estimates of α_{s+1} and ϕ_{s+1} can be estimated.

Inference

Liang & Zeger (1986):

$$\hat{eta}_{ extit{GEE}} \mathop{\sim}\limits_{N o \infty} extbf{N}(eta, oldsymbol{\Sigma}).$$

For $\hat{\Sigma}$, two options:

$$\hat{\mathbf{\Sigma}}_{\mathsf{Model}} = N \left(\sum_{i=1}^{N} \hat{\mathbf{\mathcal{D}}}_i' \hat{\mathbf{\mathcal{V}}}_i^{-1} \hat{\mathbf{\mathcal{D}}}_i \right)$$

$$\hat{\boldsymbol{\Sigma}}_{\mathsf{Robust}} = N \left(\sum_{i=1}^{N} \hat{\boldsymbol{D}}_{i}^{\prime} \hat{\boldsymbol{V}}_{i}^{-1} \hat{\boldsymbol{D}}_{i} \right)^{-1} \left(\sum_{i=1}^{N} \hat{\boldsymbol{D}}_{i}^{\prime} \hat{\boldsymbol{V}}_{i}^{-1} \hat{\boldsymbol{S}}_{i} \hat{\boldsymbol{V}}_{i}^{-1} \hat{\boldsymbol{D}}_{i} \right) \left(\sum_{i=1}^{N} \hat{\boldsymbol{D}}_{i}^{\prime} \hat{\boldsymbol{V}}_{i}^{-1} \hat{\boldsymbol{D}}_{i} \right)^{-1}$$

where $\hat{\boldsymbol{S}}_i = (Y_i - \hat{\mu}_i)(Y_i - \hat{\mu}_i)'$.

Inference (aka, magic!)

- \bullet $\hat{\Sigma}_{\mathsf{Model}}$
 - Requires that $\mathbf{R}_i(\alpha)$ be "correct" for consistency.
 - Is slightly more efficient than $\hat{\Sigma}_{\text{Robust}}$ if so.

- ullet $\hat{\Sigma}_{\mathsf{Robust}}$
 - Is consistent even if $R_i(\alpha)$ is misspecified.
 - ullet Is slightly less efficient than $\hat{\Sigma}_{\mathsf{Model}}$ if $\mathbf{R}_i(lpha)$ is correct.

Moral: Use $\hat{\Sigma}_{Robust}$.

Summary

GEEs:

- Are a straightforward variation on GLMs, and so
- Can be applied to a range of data types (continuous, binary, count, proportions, etc.),
- Yield robustly consistent point estimates of β s,
- Account for within-unit correlation in an informed way, but also
- Yield consistent inferences even if the correlation is misspecified.

Practical Issues: Model Interpretation

- In general, GEEs = GLMs.
- GEEs are marginal models, so:
 - \cdot $\hat{\beta}$ s have an interpretation as average / total effects.
 - Estimates / effect sizes generally be smaller than conditional (e.g. fixed/random) effects models.
 - · E.g., for logit, $\hat{\beta}_M \approx \frac{\hat{\beta}_C}{\sqrt{1+0.35\sigma_\eta^2}}$, where $\sigma_\eta^2 > 0$ is the variance of the unit effects.
 - See (e.g.) Gardiner et al. (2009) or Koper and Manseau (2009) for expositions.

Practical Issues: Specifying $\mathbf{R}_i(\alpha)$

- Has been called "more art than science."
- Pointers:
 - · Choose based on substance of the problem.
 - · Remember that $\mathbf{R}_i(\alpha)$ is conditional on \mathbf{X} , $\hat{\boldsymbol{\beta}}$.
 - \cdot Consider unstructured when T is small and N large.
 - · Try different ones, and compare.
- In general, it shouldn't matter terribly much...

GEEs: Software

Software	${\sf Command}(s)/{\sf Package}(s)$			
R	<pre>gee / geepack / geeM / multgeeB / orth / repolr</pre>			
Stata	<pre>xtgee / xtlogit / xtprobit / xtpois / etc.</pre>			
SAS	genmod (w/ repeated)			

GEEs: Software Tips

- Generally follow GLMs (specify "family" + "link")
- Certain combinations not possible/recommended
- Estimation: Fisher scoring, MLE, etc. (MCMC?)

From the geepack manual:

Warning

Use "unstructured" correlation structure only with great care. (It may cause R to crash).

Civil War Redux... GEE: Independence

```
> GEE.ind<-geeglm(CivilWar~log(LandArea)+log(PopMillions)+UrbanPopulation+
              log(GDPPerCapita)+GDPPerCapGrowth+PostColdWar+POLITY+
              POLITYSquared, data=DF, id=ISO3, family="binomial",
+
              corstr="independence")
> summary(GEE.ind)
Call.
geeglm(formula = CivilWar ~ log(LandArea) + log(PopMillions) +
   UrbanPopulation + log(GDPPerCapita) + GDPPerCapGrowth + PostColdWar +
   POLITY + POLITYSquared, family = "binomial", data = DF, id = ISO3,
   corstr = "independence")
 Coefficients:
                 Estimate Std.err Wald Pr(>|W|)
(Intercept)
               -0.81201 2.02183 0.16 0.68796
log(LandArea)
               0.00183 0.12331 0.00 0.98817
log(PopMillions) 0.66738 0.15618 18.26 0.000019 ***
UrbanPopulation 0.01195 0.01405 0.72 0.39489
log(GDPPerCapita) -0.52155 0.25237 4.27 0.03877 *
GDPPerCapGrowth -0.04027 0.01302 9.57 0.00198 **
PostColdWar -0.32313 0.26138 1.53 0.21637
POT.TTY
                0.66857 0.21145 10.00 0.00157 **
POLITYSquared -0.06460 0.01951 10.97 0.00093 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Correlation structure = independence
Estimated Scale Parameters:
           Estimate Std.err
                     0.295
(Intercept)
              0.805
Number of clusters:
                     160 Maximum cluster size: 57
```

GEE: Exchangeable

```
> GEE.exc<-geeglm(CivilWar~log(LandArea)+log(PopMillions)+UrbanPopulation+log(GDPPerCapita)+GDPPerCapGrowth+
                  PostColdWar+POLITY+POLITYSquared,data=DF,id=ISO3,family="binomial",corstr="exchangeable")
> summary(GEE.exc)
Call.
geeglm(formula = CivilWar ~ log(LandArea) + log(PopMillions) +
    UrbanPopulation + log(GDPPerCapita) + GDPPerCapGrowth + PostColdWar +
    POLITY + POLITYSquared, family = "binomial", data = DF, id = ISO3,
    corstr = "exchangeable")
 Coefficients:
                 Estimate Std.err Wald Pr(>|W|)
(Intercept)
                 -2.67543 2.04945 1.70 0.19174
log(LandArea)
                0.03410 0.15498 0.05 0.82585
log(PopMillions) 0.55616 0.16182 11.81 0.00059 ***
UrbanPopulation 0.00542 0.01168 0.22 0.64247
log(GDPPerCapita) -0.22187 0.17520 1.60 0.20538
GDPPerCapGrowth -0.03599 0.00911 15.62 0.000078 ***
PostColdWar
               -0.14495 0.23381 0.38 0.53528
POT.TTY
                0.55143 0.17124 10.37 0.00128 **
POLITYSquared -0.05620 0.01675 11.26 0.00079 ***
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
Correlation structure = exchangeable
Estimated Scale Parameters:
           Estimate Std err
(Intercept) 0.729 0.178
  Link = identity
Estimated Correlation Parameters:
     Estimate Std.err
alpha
        0.342 0.112
Number of clusters: 160 Maximum cluster size: 57
```

GEE: AR(1)

```
> GEE.ar1<-geeglm(CivilWar~log(LandArea)+log(PopMillions)+UrbanPopulation+log(GDPPerCapita)+GDPPerCapGrowth+
                  PostColdWar+POLITY+POLITYSquared,data=DF,id=ISO3,family="binomial",corstr="ar1")
> summary(GEE.ar1)
Call.
geeglm(formula = CivilWar ~ log(LandArea) + log(PopMillions) +
    UrbanPopulation + log(GDPPerCapita) + GDPPerCapGrowth + PostColdWar +
    POLITY + POLITYSquared, family = "binomial", data = DF, id = ISO3,
    corstr = "ar1")
 Coefficients:
                 Estimate Std.err Wald Pr(>|W|)
(Intercept)
                 -1.14508 3.06369 0.14 0.709
log(LandArea)
               0.08037 0.21013 0.15 0.702
log(PopMillions) 0.37575 0.21730 2.99 0.084 .
UrbanPopulation -0.00320 0.01795 0.03 0.858
log(GDPPerCapita) -0.35783 0.27098 1.74 0.187
GDPPerCapGrowth -0.01643 0.00793 4.30 0.038 *
PostColdWar
               0.20467 0.24582 0.69 0.405
POT.TTY
                0.19608 0.12482 2.47 0.116
POLITYSquared -0.02126 0.01309 2.64 0.104
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
Correlation structure = ar1
Estimated Scale Parameters:
           Estimate Std err
(Intercept) 0.818 0.374
  Link = identity
Estimated Correlation Parameters:
     Estimate Std.err
alpha
        0.922 0.039
Number of clusters: 160 Maximum cluster size: 57
```

GEE: Unstructured (2013-2017)

```
> GEE.unstr<-geeglm(CivilWar^log(LandArea)+log(PopMillions)+UrbanPopulation+log(GDPPerCapita)+GDPPerCapGrowth+POLITY+
                  POLITYSquared,data=DF5,id=ISO3,family="binomial",corstr="unstructured")
> summary(GEE.unstr)
Call:
geeglm(formula = CivilWar ~ log(LandArea) + log(PopMillions) +
   UrbanPopulation + log(GDPPerCapita) + GDPPerCapGrowth + POLITY +
   POLITYSquared, family = "binomial", data = DF5, id = ISO3.
    corstr = "unstructured")
Coefficients:
                Estimate Std.err Wald Pr(>|W|)
(Intercept)
                -1.9922 3.1555 0.40 0.52782
log(LandArea)
                0.1442 0.1930 0.56 0.45489
log(PopMillions) 0.8840 0.2488 12.62 0.00038 ***
UrbanPopulation
                0.0354 0.0171 4.27 0.03884 *
log(GDPPerCapita) -0.8469 0.3089 7.52 0.00611 **
GDPPerCapGrowth -0.0125 0.0297 0.18 0.67372
POT TTY
                0.5091 0.4071 1.56 0.21111
POLITYSquared -0.0588 0.0359 2.69 0.10094
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
Correlation structure = unstructured
Estimated Scale Parameters:
           Estimate Std.err
(Intercept)
              0.675 0.813
 Link = identity
Estimated Correlation Parameters:
         Fetimate Std err
alpha.1:2 0.389 0.490
alpha.1:3 0.409 0.515
alpha.1:4 0.341
                  0.433
alpha.1:5 0.334
                  0.423
alpha.2:3 0.728
                  0.849
alpha.2:4 0.276
                  0.354
alpha.2:5 0.503 0.588
alpha.3:4 0.396
                  0.508
alpha.3:5
          0.741
                  0.875
alpha.4:5
           0.432 0.548
```

Number of clusters: 159 Maximum cluster size: 5

GEE Model Comparison

GEE Models of Civil War Onset

	Independence	Exchangeable	AR(1)	Unstructured (2013-17)
(Intercept)	-0.812	-2.675	-1.145	-1.992
	(2.022)	(2.049)	(3.064)	(3.155)
In(Land Area)	0.002	0.034	0.080	0.144
	(0.123)	(0.155)	(0.210)	(0.193)
In(Population)	0.667***	0.556***	0.376+	0.884***
	(0.156)	(0.162)	(0.217)	(0.249)
Urban Population	0.012	0.005	-0.003	0.035*
	(0.014)	(0.012)	(0.018)	(0.017)
In(GDP Per Capita)	-0.522*	-0.222	-0.358	-0.847**
	(0.252)	(0.175)	(0.271)	(0.309)
GDP Growth	-0.040**	-0.036***	-0.016*	-0.013
	(0.013)	(0.009)	(800.0)	(0.030)
Post-Cold War	-0.323	-0.145	0.205	
	(0.261)	(0.234)	(0.246)	
POLITY	0.669**	0.551**	0.196	0.509
	(0.211)	(0.171)	(0.125)	(0.407)
POLITY Squared	-0.065***	-0.056***	-0.021	-0.059
	(0.020)	(0.017)	(0.013)	(0.036)
NT	6985	6985	6985	790

Note: + p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001

GEEs: Wrap-Up

GEEs are:

- Robust
- Flexible
- Extensible beyond panel/TSCS context

Appendix: Discrete-Time Survival Models

Survival Analysis

Survival models:

- ...are models for time-to-event data.
- ...have their roots in biostats/epidemiology, plus engineering, sociology, economics.
- Examples...
 - Political careers, confirmation durations, position-taking, bill cosponsorship, campaign contributions, policy innovation/adoption, etc.
 - Cabinet/government durations, length of civil wars, coalition durability, etc.
 - War duration, peace duration, alliance longevity, length of trade agreements, etc.
 - · Strike durations, work careers (including promotions, firings, etc.), criminal careers, marriage and child-bearing behavior, etc.

Time-To-Event Data

Characteristics:

- *Discrete* events (i.e., not continuous),
- Take place over time,
- May not (or <u>never</u>) experience the event (i.e., possibility of censoring).

Terminology:

 Y_i = the duration until the event occurs,

 Z_i = the duration until the observation is "censored"

 $T_i = \min\{Y_i, Z_i\},$

 $C_i = 0$ if observation *i* is *censored*, 1 if it is not.

Density:

$$f(t) = Pr(T_i = t)$$

CDF:

$$Pr(T_i \le t) \equiv F(t) = \int_0^t f(t) dt$$

Survival function:

$$Pr(T_i \ge t) \equiv S(t) = 1 - F(t)$$

= $1 - \int_0^t f(t) dt$

Hazard:

$$Pr(T_i = t | T_i \ge t) \equiv h(t) = \frac{f(t)}{S(t)}$$
$$= \frac{f(t)}{1 - \int_0^t f(t) dt}$$

Grouped-Data Survival Approaches

Model:

$$\Pr(C_{it}=1)=f(\mathbf{X}_{it}\beta)$$

Advantages:

- Easily estimated, interpreted and understood
- Natural interpretations:
 - $\hat{\beta}_0 \approx$ "baseline hazard"
 - · Covariates shift this up or down.
- Can incorporate data on time-varying covariates
- Lots of software

Potential Disadvantages:

- Requires time-varying data
- Must deal with time dependence explicitly

Temporal Issues in Grouped-Data Models

(Implicit) "Baseline" hazard:

$$h_0(t) = \frac{\exp(\beta_0)}{1 + \exp(\beta_0)}$$

→ No temporal dependence / "flat" hazard

Time trend:

$$\Pr(Y_{it} = 1) = f(\mathbf{X}_{it}\beta + \gamma T_{it})$$

- ullet $\hat{\gamma} > 0 \,
 ightarrow \, \mathrm{rising} \, \, \mathrm{hazard}$
- $\hat{\gamma} < 0 \rightarrow$ declining hazard
- ullet $\hat{\gamma}=0$ ightarrow "flat" (exponential) hazard

Variants/extensions: Polynomials...

$$Pr(Y_{it} = 1) = f(\mathbf{X}_{it}\beta + \gamma_1 T_{it} + \gamma_2 T_{it}^2 + \gamma_3 T_{it}^3 + ...)$$

Temporal Issues in Grouped-Data Models

"Time dummies":

$$Pr(Y_{it} = 1) = f[\mathbf{X}_{it}\beta + \alpha_1 I(T_{i1}) + \alpha_2 I(T_{i2}) + \dots + \alpha_{t_{max}} I(T_{it_{max}})]$$

- → Beck, Katz, and Tucker's (1998) cubic splines; might also use:
 - Fractional polynomials
 - Smoothed duration
 - Loess/lowess fits
 - Other splines (B-splines, P-splines, natural splines, etc.)