

# Using Linear Regression to Predict the Streams of a Song on Spotify MVP

## Abstract

This project was conducted for the T5 Data Science Boot Camp, it aims to give a linear regression model to predict the number of streams of the top 200 songs on Spotify each year from 2016-2021 based on many features the song has.

## **Data**

#### **About Spotify:**

Spotify is a digital music, podcast, and video service that gives you access to millions of songs and other content and currently it has around 365 million active users

#### **Data Description:**

The First Data set was gathered by Scraping the Spotify Charts website <a href="https://spotifycharts.com/regional">https://spotifycharts.com/regional</a> using BeautifulSoup library, 1200 data point and the main features were gathered from the website including Song name, Artist name, Popularity and Streams

The second dataset was scraped from <a href="https://kworb.net/spotify/artists.html">https://kworb.net/spotify/artists.html</a> it shows the total streams per artist on Spotify, this dataset was used to get the Artist Rank

The third and final dataset gives all Songs/Audio Features Using Spotify API, many different continues features was gathered Including danceability, energy, loudness and many other features

#### Scope:

- Top 200 songs in the end of each year from 2016- 2021
- 1200 data point

# **Columns description:**

| Field Name    | Description                                                 |
|---------------|-------------------------------------------------------------|
| Features      |                                                             |
| popularity    | represents the rank of the song based on the top 200 list   |
| artist_rank   | shows the artist rank based on his total streams on Spotify |
| danceability  | how suitable a song is for dancing                          |
| energy        | how energetic tracks feel fast, loud, and noisy.            |
| Loudness      | overall loudness of a track in decibels (dB)                |
| speechiness   | detects the presence of spoken words in a track             |
| acoustics     | a measure from 0.0 to 1.0 of whether the track is acoustic. |
| instrumentals | predicts whether a track contains vocal                     |
| liveness      | presence of an audience in the recording                    |
| valence       | positiveness conveyed by a track                            |
| tempo         | estimated tempo of a track in beats per minute (BPM)        |
| duration      | the time of song measured in ms                             |
| Target        |                                                             |
| streams       | shows the number of streams for a song                      |

# **Algorithms**

- 1. Problem Understanding
- 2. Dataset Exploration (Data Cleansing)
  - Null Values
  - structural errors
  - Outliers
  - Duplicated rows
- 3. Exploratory Data Analysis (EDA)
- 4. Feature Engineering
- 5. Modeling
  - o Linear Regression
  - o Log Regression
  - o Polynomial regression
  - Lasso regression
  - o Ridge regression
- **6.** Conclusion

# **Tools:**

- Technologies: Python, Jupyter Notebook
- Libraries: Numby, Pandas, Matplotlib, Seaborn, sqlalchemy, sklearn, BeautifulSoup, requests, spotipy, sklearn,

# **Communication**

#### - Charts:



Fig a. Actual Vs Predicted values of the baseline model



Fig b. Actual Vs Predicted values after improving the model

# - Presentation snips:







