Hands on advanced machine learning for information extraction from tweets tasks, data, and open source tools

Shubhanshu Mishra and Jana Diesner

School of Information Sciences, University of Illinois at Urbana-Champaign

Date: September 17, 2019

Time: 9:30 am - 1:00 pm

Venue: Hof University, IISYS building

Details: https://socialmediaie.github.io/tutorials/HT2019

Overview

- Introduction (15 mins)
- Applications of information extraction (15 mins)
- Responsible and compliant data use of tweets (15 mins)
- Break (15 mins)
- Hands on session (1 hr. 30 mins)
- Conclusion (15 mins)

Setup

- We will be using google colab for doing hands on tutorial
- Links to install instructions and google collaboratory notebooks at: https://socialmediaie.github.io/tutorials/HT2019/
- Please take a few minutes to startup the dependency install process.

Information extraction https://shubhanshu.com/phd thesis/

"Information Extraction refers to the automatic extraction of structured information such as entities, relationships between entities, and attributes describing entities from unstructured sources."

– (Sarawagi, 2008)

Digital Social Trace Data https://shubhanshu.com/phd thesis/

Digital Social Trace Data (DSTD) are digital activity traces generated by individuals as part of a social interactions, such as interactions on social media websites like Twitter, Facebook; or in scientific publications.

Inspired from Digital Trace Data (Howison et. al, 2011)

Digital Social Trace Data (DSTD)

Social media data Scholarly publishing data Location: Affiliation: Popularity: Gender: Verified: Ethnicity: gender: #hashtag **URL** Likes: Concepts: Replies: Venue: Time Time https://shubhanshu.com/phd_thesis/ Legend Creation References User # Hashtag 🔁 Article

Inferred attr.

☑ URL

☑ Tweet

••••• Interaction

Social connection

Information extraction tasks https://shubhanshu.com/phd thesis

Information extraction tasks for text

- **Text classification**: sentiment prediction, sarcasm detection, and abusive content detection.
- **Sequence tagging**: named entity detection and classification, part of speech tagging, chunking, and super-sense tagging.

https://shubhanshu.com/phd thesis/

Examples of information extraction for social media text

Coming up next

Text classification https://github.com/socialmediaie/SocialMedialE

Input

I know this tweet is late but I just want to say I absolutely fucking hated this season of

@GameOfThrones

what a waste of time.

Output

abusive

sentiment

uncertainity

Sequence tagging https://github.com/socialmediaie/SocialMedialE

Input

john oliver coined the term donal drumph as a joke on his show #LastWeekTonight

VP

VERB.COMMUNICATION

NP

Predict

Output

ritter chunk NP

ritter_ccg NOUN.PERSON

_					
tokens john	<u>oliver</u> <u>coined</u>	the term	<u>donal drumphas a joke</u>	<u>on his show</u>	<u>#LastWeekTonight</u>
ud_pos PROPN	PROPN VERB	DETNOUN	PROPN PROPN ADP DET NOUN	ADP PRON NOUN	X
ark_pos ^	^ V	D N	^	P D N	#
ptb_pos NNP	NNP VBD	DT NN	NNP NNP IN DT NN	IN PRP\$ NN	HT
multimodal_ner PER			PER		
broad_ner PER					
wnut17_ner PERSON					
ritter_ner PERSON					
yodie_ner PERSON					

NP

NOUN.COMMUNICATION

NOUN.COMMUNICATION

PP NP

NOUN.COMMUNICATION

Applications of information extraction

Index documents by entities

DocID	Entity	Entity type	WikiURL
1	Barack Obama	Person	URL1
2	Facebook	Organization	URL2
3	Katy Perry	Music Artist	URL3

Applications of information extraction

Entity mention clustering

Washington is a great place.

I just visited Washington.

Washington was a great president.

Washington made some good changes to constitution.

Applications of information extraction

Visualizing temporal trends in data:

https://shubhanshu.com/social-comm-temporal-graph/

Tool tips

Provide detail on demand about each point.

Links between components

Core communication is liked to its children

Activity timeline

This quantifies the temporal activity measurement

Responsible and compliant data use of tweets

- Always collect data via Twitter API
- Tweets are often shared via tweetID and the annotation.
- Never publicly share the full text or JSON of the tweet data.
- Some exceptions for academic usage.
 See: https://developer.twitter.com/en/developer-terms/more-on-restricted-use-cases.html
- When possible try to respect user privacy.
- When making inference from collected data be responsible. Think what if your data was collect, what all would you be OK with being inferred.

Publicly available Twitter data

- Many researchers make annotated Twitter data publicly available for academic research.
- Good place for benchmarking or evaluating your models.
- Many datasets available for text classification.
- Few for information extraction via sequence tagging (but still enough)
- Varied annotation practices and data scope:
- See here: https://socialmediaie.github.io/datasets.html

Tagging data

Part of speech tagging

Super sense tagging

data	split	labels	sequences	vocab	tokens
	train	40	551	3174	10652
	dev	37	118	1014	2242
Ritter	test	40	118	1011	2291
Johannsen2014	test	37	200	1 249	3064

data	split	labels	seq	uences	vocab	tokens
	train	25		1547	657 2	<mark>2</mark> 2326
	dev	23		327	2036	4823
Owoputi	test	23		500	2 754	7152
	dev	43		269	1229	2998
TwitlE	test	45		632	<mark>3</mark> 539	12196
	train	45		632	<mark>3</mark> 539	12196
	dev	38		71	695	1362
Ritter	test	42		84	735	1627
	dev	17		710	<mark>3</mark> 271	11759
	train	17		1639	<mark>56</mark> 32	<mark>2</mark> 4753
Tweetbankv2	test	17		1201	46 99	1 9095
	train	17		4799	9113	73826
DiMSUM2016	test	17		1000	<mark>4</mark> 010	1 6500
Foster	test	12		250	1068	2841
lowlands	test	12		1318	<mark>48</mark> 05	1 9794

Chunking

data	split	boundaries	labels	labels	sequences	vocab	tokens
	train	[I, B, O]	[ADJP, PP, INTJ, ADVP, PRT, NP, SBAR, VP, CONJP]	9	551	3158	10584
	dev	[I, B, O]	[ADJP, PP, INTJ, ADVP, PRT, NP, SBAR, VP]	8	118	994	2317
Ritter	test	[I, B, O]	[ADJP, PP, INTJ, ADVP, PRT, NP, SBAR, VP]	8	119	988	2310

Named entity recognition

data	split	lab	els	sec	quences	vocab	tokens
	train		13		396	2554	7905
YODIE	test		13		397	2578	8032
	train		1 0		1900	<mark>7</mark> 695	36936
	dev		1 0		240	1731	4612
Ritter	test		1 0		254	1776	4921
	train		1 0		2394	<mark>9</mark> 068	46469
	test		1 0		3850	<mark>1601</mark> 2	<mark>6</mark> 1908
WNUT2016	dev		<mark>1</mark> 0		1000	5563	16261
	train		6		3394	<mark>128</mark> 40	<mark>6</mark> 2730
	dev		6		1009	3538	15733
WNUT2017	test		6		1287	5759	23394
	train		7		2588	<mark>9</mark> 731	5 1669
	dev		7		88	762	1647
NEEL2016	test		7		2663	<mark>9</mark> 894	4 7488
	train		3		10000	19663	172188
Finin	test		3		5369	130 27	<mark>975</mark> 25
Hege	test		3		1545	4552	20664
	train		3		5605	19523	<mark>90</mark> 060
	dev		3		933	5312	15169
BROAD	test		3		2802	<mark>117</mark> 72	4 5159
	train		4		4000	20221	<mark>6</mark> 4439
	dev		4		1000	<mark>6</mark> 832	16178
MultiModal	test		4		3257	17381	5 2822
	train		4		2815	<mark>8</mark> 514	<mark>5</mark> 1521
MSM2013	test		4		1450	5701	29089

Classification data

data	split	tokens	tweets	vocab
Airline	dev	20079	981	3273
	test	50777	2452	5630
	train	182040	8825	11697
Clarin	dev	80672	4934	15387
	test	205126	12334	31373
	train	732743	44399	84279
GOP	dev	16339	803	3610
	test	41226	2006	6541
	train	148358	7221	14342
Healthcare	dev	15797	724	3304
	test	16022	717	3471
	train	14923	690	3511
Obama	dev	3472	209	1118
	test	8816	522	2043
	train	31074	1877	4349
SemEval	dev	105108	4583	14468
	test	<mark>5282</mark> 34	<mark>2</mark> 3103	<mark>4</mark> 3812
	train	<mark>2</mark> 81468	12245	29673

data	split	tokens	tweets	vocab
Founta	dev	102534	4663	22529
	test	256569	11657	44540
	train	922028	41961	118349
WaseemSRW	dev	25588	1464	5907
	test	64893	3659	10646
	train	234550	13172	23042

Abusive content identification

data	split	tokens	tweets	vocab
Riloff	dev	2126	145	1002
	test	5576	362	1986
	train	19652	1301	5090
Swamy	dev	1597	73	738
	test	3909	183	1259
	train	140 26	655	2921

Sentiment classification

Uncertainty indicator classification

Collecting new twitter data

- Twarc is a good tool to collect Twitter data https://github.com/DocNow/twarc
- It requires that you have a Twitter Developer API key
- It also allows you to also hydrate tweet IDs to tweet json in a way compliant with Twitter's terms of service
- Often a file with one tweet ID per line can be hydrated as: twarc hydrate ids.txt > tweets.jsonl
- Can also search & collect new data, followers, etc.

Hands on session

Links to install instructions and google colaboratory notebooks at: https://socialmediaie.github.io/tutorials/HT2019/

Rule based Twitter NER Mishra & Diesner (2016).

https://github.com/napsternxg/TwitterNER

Evaluating Twitter NER (F1-score) Mishra & Diesner (2016).

Rank	1	2	3	4	5	6	7	8	9	10	TD	TDT _E
10-types	52.4	46.2	44.8	40.1	39.0	37.2	37.0	36.2	29.8	19.3	46.4	47.3
No-types	65.9	63.2	60.2	59.1	55.2	51.4	47.8	46.7	44.3	40.7	57.3	59.0
company	57.2	46.9	43.8	31.3	38.9	34.5	25.8	42.6	24.3	10.2	42.1	46.2
facility	42.4	31.6	36.1	36.5	20.3	30.4	37.0	40.5	26.3	26.1	37.5	34.8
geo-loc	72.6	68.4	63.3	61.1	61.1	57.0	64.7	60.9	47.4	37.0	70.1	71.0
movie	10.9	5.1	4.6	15.8	2.9	0.0	4.0	5.0	0.0	5.4	0.0	0.0
musicartist	9.5	8.5	7.0	17.4	5.7	37.2	1.8	0.0	2.8	0.0	7.6	5.8
other	31.7	27.1	29.2	26.3	21.1	22.5	16.2	13.0	22.6	8.4	31.7	32.4
person	59.0	51.8	52.8	48.8	52.0	42.6	40.5	52.3	34.1	20.6	51.3	52.2
product	20.1	11.5	18.3	3.8	10.0	7.3	5.7	15.4	6.3	0.8	10.0	9.3
sportsteam	52.4	34.2	38.5	18.5	34.6	15.9	9.1	19.7	11.0	0.0	31.3	32.0
tvshow	5.9	0.0	4.7	5.4	7.3	9.8	4.8	0.0	5.1	0.0	5.7	5.7
Rank	1	2	3	4	5	6	7	8	9	10	~2	~2

Multi-task-multi-dataset learning Mishra 2019, HT' 19

https://socialmediaie.github.io/tutorials/

MTL – Multi task Stacked (Layered)

Evaluating MTL models Mishra 2019, HT' 19

Part of speech tagging (overall accuracy)

Data	Our best	SOTA	Diff %	
DiMSUM2016	86.77	82.49	5%	
Owoputi	91.76	88.89	3%	
TwitlE	91.62	89.37	3%	
Ritter	92.01	90	2%	
Tweetbankv2	92.44	93.3	-1%	
Foster	69.34	90.4	-23%	
lowlands	68.1	89.37	-24%	

Super sense tagging (micro f1)

Data	Our best	SOTA	Diff %
Ritter	59.16	57.14	3.5%
Johannsen2014	42.38	42.42	-0.1%

Chunking (micro f1)

Data	Our best	SOTA	Diff %
Ritter ⁹	88.92	None	https: NsA ci

Named entity recognition (micro f1)

Data	Our best	SOTA	Diff %	
BROAD	77.40	None	NA	
YODIE	65.39	None	NA	
Finin	56.42	32.43	74.0%	
MSM2013	80.46	58.72	37.0%	
Ritter	86.04	82.6	4.2%	
MultiModal	73.39	70.69	3.8%	
Hege	89.45	86.9	2.9%	
WNUT2016	53.16	52.41	1.4%	
WNUT2017	49.86	49.49	0.8%	

Shubhanshu Mishra. 2019. Multi-dataset-multi-task Neural Sequence Tagging for Information Extraction from Tweets. In Proceedings of the 30th ACM Conference on Hypertext and Social Media (HT '19). ACM, New York, NY, USA, 283-284. DOI: https://doi.org/10.1145/3342220.3344929

24

Training Mishra 2019, HT' 19

- Sample mini-batches from a task/data
- Compute loss for the mini-batch
- Individual loss is the log loss for conditional random field
- Update the model except the Elmo module
- During an epoch go through all tasks and datasets
- Train for a max number of epochs
- Use early stopping to stop training

- Models trained on single datasets have prefix S
- Models trained on all datasets of same task have prefix MD
- Models trained on all datasets have prefix MTS for multitask models with shared module, and MTL for stacked modules
- Models with LR=1e-3 and no L2 regularization have suffix "*"
- Models trained without NEEL2016 have suffix "#"

Label embeddings (POS)

Label embeddings (NER)

label type PER LOC ORG MISC **PERSON** LOCATION **GROUP** CORPORATION **CREATIVE PRODUCT OTHER GEO COMPANY FACILITY MUSICARTIST SPORTSTEAM** MOVIE **TVSHOW ORGANIZATION** UNK task multimodal ner broad_ner wnut17 ner ritter_ner yodie_ner

Label embeddings (chunking)

Label embeddings (super-sense tagging)

Label embeddings (super-sense tagging)

Web based UI https://github.com/socialmediaie/SocialMediaIE

Input

Multi-task-multi-dataset learning - classification

data	split	tokens	tweets	vocab
Airline	dev	20079	981	3273
	test	50777	2452	5630
	train	182040	8825	11697
Clarin	dev	80672	4934	15387
	test	205126	12334	31373
	train	732743	44399	84279
GOP	dev	16339	803	3610
	test	41226	2006	6541
	train	148358	7221	14342
Healthcare	dev	15797	724	3304
	test	16022	717	3471
	train	14923	690	3511
Obama	dev	3472	209	1118
	test	8816	522	2043
	train	31074	1877	4349
SemEval	dev	105108	4583	14468
	test	<mark>5282</mark> 34	<mark>2</mark> 3103	<mark>4</mark> 3812
	train	<mark>2</mark> 81468	12245	29673

data	split	tokens	tweets	vocab
Founta	dev	102534	4663	22529
	test	256569	11657	44540
	train	922028	41961	118349
WaseemSRW	dev	25588	1464	5907
	test	64893	3659	10646
	train	234550	13172	23042

Abusive content identification

data	split	tokens	tv	veets	vocab
Riloff	dev	2126		145	1002
	test	5576		362	1986
	train	19652		1301	5090
Swamy	dev	1597		73	738
	test	3909		183	1259
	train	140 26		655	2 921

Sentiment classification

Uncertainty indicator classification

https://github.com/socialmediaie/SocialMediaIE

Sentiment classification results https://github.com/socialmediaie/SocialMedialE

file	A	Airline		Clarin		GOP	Hea	althcare	0	bama	Se	mEval
model	r	V	r	V	r	V	r	V	r	V	r	V
S bilstm	8	80.46	8	65.71	5	67.05	6	63.88	9	59.0	9	65.57
MD bilstm	9	79.77	9	65.28	8	65.95	9	60.95	8	59.6	6	67.05
MTS bilstm	11	63.21	10	47.37	10	56.78	10	60.25	11	38.9	11	40.43
MTL bilstm	10	63.70	11	47.00	11	45.21	11	59.69	10	44.6	10	49.92
S bilstm *	6	81.69	3	67.71	3	67.55	3	65.97	1	62.6	7	66.47
MD bilstm *	5	81.85	7	66.23	7	66.50	4	64.85	3	61.7	3	68.98
MTS bilstm *	7	81.65	6	66.55	4	67.45	2	66.81	7	60.3	1	69.52
MTL bilstm *	2	82.22	4	67.60	2	68.10	1	67.09	6	61.3	2	69.10
S cnn *	3	82.10	1	68.18	1	68.89	8	62.34	1	62.6	8	66.19
MD cnn *	1	82.54	5	67.01	6	66.65	7	63.18	5	61.5	4	68.04
MTS cnn *	4	82.06	2	67.72	9	64.81	5	64.57	3	61.7	5	67.63

https://github.com/socialmediaie/SocialMediaIE

Abusive content identification

file	Fo	ounta	Wasee	emSRW
model	r	V	r	V
S bilstm	8	79.33	8	81.72
MD bilstm	9	79.03	9	81.31
MTS bilstm	11	61.48	11	68.57
MTL bilstm	10	69.26	10	70.13
S bilstm *	1	80.6	3	82.95
MD bilstm *	2	80.35	2	83.22
MTS bilstm *	6	80.11	7	81.99
MTL bilstm *	4	80.23	5	82.78
S cnn *	3	80.25	4	82.89
MD cnn *	5	80.18	1	84.42
MTS cnn *	7	79.92	6	82.67

Uncertainty indicators

file	F	Riloff	S۱	wamy
model	r	V	r	V
S bilstm	6	81.22	5	38.80
MD bilstm	9	79.28	1	39.34
MTS bilstm	10	58.84	10	27.87
MTL bilstm	11	58.01	11	23.50
S bilstm *	3	83.43	1	39.34
MD bilstm *	7	80.94	1	39.34
MTS bilstm *	5	82.60	6	38.25
MTL bilstm *	2	83.98	1	39.34
S cnn *	1	85.64	7	35.52
MD cnn *	4	83.15	8	32.79
MTS cnn *	8	80.11	9	31.15

User interface https://github.com/socialmediaie/SocialMedialE

Input

I know this tweet is late but I just want to say I absolutely fucking hated this season of

@GameOfThrones

what a waste of time.

Predict

Output

abusive

sentiment

uncertainity

Incremental learning of text classifiers with human-in-the-loop

- Given a large unlabeled corpus, can we label it efficiently using fewer human annotations?
- Can existing models be updated efficiently to work with new data?
- Proposal:
 - Use active learning for data labeling
 - Use incremental learning algorithms for model updates
- Highly application to social media data:
 - Streaming data
 - Model should adapt to new data

Mishra, Shubhanshu, Jana Diesner, Jason Byrne, and Elizabeth Surbeck. 2015. "Sentiment Analysis with Incremental Human-in-the-Loop Learning and Lexical Resource Customization." In *Proceedings of the 26th ACM Conference on Hypertext & Social Media - HT '15*, 323–25. New York, New York, USA: ACM Press. https://doi.org/10.1145/2700171.2791022.

Active Learning

- 1. Given a model and unlabeled data
- 2. Select samples from the unlabeled data to be annotated, based on selection criterion
- 3. Update model with collected labeled examples
- Repeat steps 2 to 3 till desired accuracy is reached or data exhausted

Mishra et al. (2015)

Data ordered alphabetically and X and Y axes are not shared. https://github.com/socialmediaie/SocialMedialE

References

- Mishra, Shubhanshu (2019): Trained models for multi-task multi-dataset learning for text classification as well as sequence tagging in tweets. University of Illinois at Urbana-Champaign. https://doi.org/10.13012/B2IDB-1094364 V1
- Mishra, Shubhanshu (2019): Trained models for multi-task multi-dataset learning for text classification in tweets. University of Illinois at Urbana-Champaign. https://doi.org/10.13012/B2IDB-1917934 V1
- Mishra, Shubhanshu (2019): Trained models for multi-task multi-dataset learning for sequence prediction in tweets. University of Illinois at Urbana-Champaign. https://doi.org/10.13012/B2IDB-0934773 V1
- Shubhanshu Mishra. 2019. Multi-dataset-multi-task Neural Sequence Tagging for Information Extraction from Tweets. In Proceedings of the 30th ACM Conference on Hypertext and Social Media (HT '19). ACM, New York, NY, USA, 283-284. DOI: https://doi.org/10.1145/3342220.3344929
- Mishra, Shubhanshu, & Diesner, Jana (2016). Semi-supervised Named Entity Recognition in noisy-text. In Proceedings of the 2nd Workshop on Noisy User-generated Text (WNUT) (pp. 203–212). Osaka, Japan: The COLING 2016 Organizing Committee. Retrieved from https://aclweb.org/anthology/papers/W/W16/W16-3927/
- Mishra, Shubhanshu, Diesner, Jana, Byrne, Jason, & Surbeck, Elizabeth (2015). Sentiment Analysis with Incremental Human-in-the-Loop Learning and Lexical Resource Customization. In Proceedings of the 26th ACM Conference on Hypertext & Social Media - HT '15 (pp. 323–325). New York, New York, USA: ACM Press. https://doi.org/10.1145/2700171.2791022

Thanks

- Project page: https://socialmediaie.github.io/
- TwitterNER: https://github.com/napsternxg/TwitterNER
- Social Communication Temporal Graph: https://shubhanshu.com/social-comm-temporal-graph/
- SocialMedialE for multi-task learning: https://github.com/socialmediaie/SocialMedialE
- For queries please send a tweet or DM at: <u>@TheShubhanshu</u>