ivp1-otchet-checkpoint

May 11, 2024

1

```
[9]: import numpy as np
     import matplotlib.pyplot as plt
     def solve ode(start, end, h, max_calls, eps, fs, initial_conditions):
         t = start
         v = np.array(initial_conditions)
         kounter = [0]
         print(f''(t_0:13.6f)(h:13.6f)(0:13d)(0:13d)'', *[f''(x:12.6f)'' for x in v])
         def heun_step(t, v, h):
             k1 = fs(t, v, kounter)
             k2 = fs(t + h, v + h * k1, kounter)
             return v + (h / 2) * (k1 + k2)
         steps = []
         min_steps = []
         num_steps = []
         solutions = []
         while t < end and kounter[0] < max_calls:</pre>
             k1 = fs(t, v, kounter)
             k2 = fs(t + h, v + h * k1, kounter)
             v1 = v + (h / 2) * (k1 + k2)
             k2 = fs(t + h/2, v + h/2 * k1, kounter)
             v2 = v + (h / 4) * (k1 + k2)
             v2 = heun_step(t + h/2, v2, h/2)
             r = np.linalg.norm(v2 - v1) / 3
             if r > eps:
                 h /= 2
                 steps.append(h)
```

2

```
[10]: t_0 = 1.5

T = 2.5

h_0 = 0.1

N_x = 10000

eps = 0.0001

n = 3
```

```
[11]: def fs(t, v, kounter):
    A = np.array([[-0.4, 0.02, 0], [0, 0.8, -0.1], [0.003, 0, 1]])
    kounter[0] += 1
    return np.dot(A, v)

initial_conditions = [1, 1, 2]
```

3

```
[12]: steps, min_steps, num_steps, solutions = solve_ode(t_0, T, h_0, N_x, eps, fs,__
initial_conditions)
```

```
0.100000
    1.500000
                                                        1.000000
                                                                     1.000000
2.000000
    1.600000
                 0.100000 8.45154e-05
                                                  5
                                                        0.962820
                                                                     1.061398
2.210309
                 0.100000 9.33737e-05
                                                        0.927221
                                                                    1.125613
    1.700000
                                                 10
2.442690
    1.750000
                 0.050000 1.28171e-05
                                                 20
                                                        0.909992
                                                                     1.158775
```

2.568019					
1.800000	0.050000	1.34742e-05	25	0.893138	1.192634
2.699768					
1.850000	0.050000	1.41654e-05	30	0.876652	1.227187
2.838267					
1.900000	0.050000	1.48925e-05	35	0.860527	1.262426
2.983862					
1.950000	0.050000	1.56573e-05	40	0.844756	1.298342
3.136916					
2.000000	0.050000	1.64617e-05	45	0.829333	1.334924
3.297812					
2.050000	0.050000	1.73079e-05	50	0.814253	1.372157
3.466951	0.050000	1 01070 05		0 700500	4 440000
2.100000	0.050000	1.81979e-05	55	0.799508	1.410026
3.644757 2.150000	0.050000	1.91341e-05	60	0.785092	1.448511
3.831672	0.050000	1.91541e-05	00	0.765092	1.440511
2.200000	0.050000	2.01189e-05	65	0.771001	1.487590
4.028165	0.000000	2.011000 00	00	0.771001	1.10/000
2.250000	0.050000	2.11548e-05	70	0.757227	1.527236
4.234726			. •	0110122	2702.200
2.300000	0.050000	2.22444e-05	75	0.743766	1.567420
4.451871					
2.350000	0.050000	2.33906e-05	80	0.730612	1.608110
4.680143					
2.400000	0.050000	2.45962e-05	85	0.717758	1.649267
4.920111					
2.450000	0.050000	2.58644e-05	90	0.705200	1.690849
5.172377					
2.500000	0.050000	2.71984e-05	95	0.692932	1.732810
5.437568					
2.500000	0.000000	2.86017e-05	100	0.680948	1.775097
5.716349					

4

```
plt.figure(figsize=(12, 8))

plt.subplot(2, 2, 1)
plt.plot(range(len(steps)), steps)
plt.xlabel(' ')
plt.ylabel(' ')
plt.title(' ')
```

```
[13]: Text(0.5, 1.0, ' ')
```



```
[14]: plt.figure(figsize=(12, 8))
      plt.subplot(2, 2, 2)
      plt.plot(num_steps, min_steps)
      plt.xlabel('
      plt.ylabel('
                           ')
      plt.title('
                                          ')
```



```
[15]: plt.figure(figsize=(12, 8))
    plt.subplot(2, 2, 3)
    plt.plot(num_steps, num_steps)
    plt.xlabel(' ')
    plt.ylabel(' ')
    plt.title(' ')
[15]: Text(0.5, 1.0, ' ')
```



```
[16]: plt.figure(figsize=(12, 8))

plt.subplot(2, 2, 4)

t = np.linspace(t_0, T, len(solutions[0]))

for i, sol in enumerate(solutions):
    plt.plot(t, sol, label=f"eps={eps*(2**i):.4f}")
    plt.xlabel('t')
    plt.ylabel(' ')
    plt.title(' ')
    plt.legend()
```

