I Restitution du cours

- 1- Donner la définition de la trace d'un endomorphisme en dimension finie et énoncer le théorème du rang.
- 2 Donner la définition d'un polynôme annulateur d'un endomorphisme et énoncer le théorème d'interpolation de Lagrange.
- 3 Donner la définition d'être semblable à une matrice et énoncer le théorème de conditions nécessaires de similitude.

II Questions de cours

- 1 Montrer que les matrices $A = \begin{pmatrix} 0 & 1 \\ -9 & 6 \end{pmatrix}$ et $B = \begin{pmatrix} 3 & 2 \\ 0 & 3 \end{pmatrix}$ sont semblables.
- 2 Montrer que la relation de similitude est une relation d'équivalence.
- 3 Soient $n \in \mathbb{N}^*$ et $A, B, C, D \in \mathcal{M}_n(\mathbb{R})$.
- a) On suppose que D est inversible et que C et D commutent.

Trouver deux matrices T et T', triangulaires par blocs, telles que $\begin{pmatrix} A & B \\ C & D \end{pmatrix} \times T = T'$.

- b) En déduire que $\det \begin{pmatrix} A & B \\ C & D \end{pmatrix} = \det(AD BC)$.
- c) Le résultat est-il encore vrai si l'on ne suppose plus que C et D commutent?

III Exercices

Exercice 1:

Soit
$$A = \frac{1}{3} \begin{pmatrix} 2 & -1 & 2 \\ 1 & 0 & 2 \\ 1 & -1 & 3 \end{pmatrix}$$
.

- 1 Vérifier que le polynôme $P = (X 1)\left(X \frac{1}{3}\right)$ annule A.
- 2 Pour tout $n \in \mathbb{N}$, exprimer A^n en fonction de A et I_3
- 3 Préciser $\lim_{n\to+\infty} A^n$.

Exercice 2:

Soit
$$A = \begin{pmatrix} -1 & -1 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 1 \end{pmatrix}$$
.

1 - Montrer que A n'a pas de polynôme annulateur (non nul) de degré inférieur ou égal à 2.

- 2 Trouver un polynôme annulateur de A.
- 3 Montrer que A est inversible et préciser A^{-1} .

Exercice 3:

Soit $J \in \mathcal{M}_n(\mathbb{R})$ la matrice ne comportant que des 1.

Déterminer un polynôme annulateur pour J et en déduire la valeur de J^k pour $k \in \mathbb{N}$.

Exercice 4:

Soient $n \in \mathbb{N}^*$ et $(A, B) \in (\mathcal{M}_n(\mathbb{K}))^2$.

On pose $\Omega = \{ M \in \mathcal{M}_n(\mathbb{K}) \text{ tq } MA = BM \}.$

- 1 Montrer que Ω est un sous-espace vectoriel de $\mathcal{M}_n(\mathbb{K})$.
- 2 À quelle condition, nécessaire et suffisante, Ω contient-il une matrice inversible?

Exercice 5

Soit u l'application linéaire de \mathbb{R}^3 dans \mathbb{R}^2 dont la matrice dans leur base canonique respective est :

$$A = \begin{pmatrix} 2 & -1 & 1 \\ 3 & 2 & -3 \end{pmatrix}$$

On appelle (e_1, e_2, e_3) la base canonique de \mathbb{R}^3 et (f_1, f_2) la base canonique de \mathbb{R}^2 et on pose :

$$e_1' = e_2 + e_3, \ e_2' = e_3 + e_1, \ e_3' = e_1 + e_2 \text{ et } f_1' = \frac{1}{2}(f_1 + f_2), \ f_2' = \frac{1}{2}(f_1 - f_2)$$

- 1 Montrer que la famille (e'_1, e'_2, e'_3) est une base de \mathbb{R}^3 et que (f'_1, f'_2) en est une de \mathbb{R}^2 .
- 2 Quelle est la matrice de u dans ces nouvelles bases?

Exercice 6:

Prouver qu'une matrice $A \in \mathcal{M}_{n,p}(\mathbb{K})$ de rang r s'écrit comme somme de r matrices de rang 1.

Exercice 7:

Soient
$$M = \begin{pmatrix} 0 & 2 & -1 \\ 3 & -2 & 0 \\ -2 & 2 & 1 \end{pmatrix}$$
 et $D = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & -4 \end{pmatrix}$. On note f l'endomorphisme de

 \mathbb{R}^3 dont la matrice dans la base canonique est M

- 1 Démontrer qu'il existe $u_1 \in \mathbb{R}^3$ tel que $\operatorname{Vect}(u_1) = \operatorname{Ker}(f \operatorname{Id}_{\mathbb{R}^3})$. De même, démontrer qu'il existe $u_2, u_{-4} \in \mathbb{R}^3$ tels que l'on ait $\operatorname{Vect}(u_2) = \operatorname{Ker}(f 2\operatorname{Id}_{\mathbb{R}^3})$ et $\operatorname{Vect}(u_{-4}) = \operatorname{Ker}(f + 4\operatorname{Id}_{\mathbb{R}^3})$.
- 2 Démontrer que (u_1, u_2, u_{-4}) est une base de \mathbb{R}^3 .
- 3 Conclure.