Keras Tutorial

Tutorial przygotowany z:

- Python 3.7
- Jupyter Labs
- Virutal Environment
- · Tensorflow backend

Spis treści:

- Keras Tutorial
- Instalacja z Repozytorium
- Keras
- Teoria
- Użycie

Repozytorium z kodem: Github (https://github.com/lsur/keras-training)

Instalacja z Repozytorium

Środowisko Wirtualne

Tworzenie

Linux: python3.7 -m venv venv
Windows: py -m venv venv

Aktywacja

Linux: source ./venv/bin/activate
Windows: .\venv\Scripts\activate

Instalacja paczek

pip install -r req.txt

Struktura projektu

venv - folder środowiska wirtualnego
docs - jupyter notebooks, dokumentacja
src - pliki źródłowe
req.txt - zależności
app.py - plik wejściowy, do uruchomienia aplikacji

Keras

Czym jest Keras

Keras jest wysokopoziomowym API dla sieci neuronowych, działa z wykorzystaniem TensorFlow , CNTK lub Theano .

Dokumentacja Keras.io (https://keras.io/)

Keras znaczy "róg" w języku greckim.

Cechy

- · łatwy i szybki w implementacji przyjazny dla użytkowników, modularny, rozszerzalny
- wspiera konwolucyjne oraz rekurencyjne sieci jak i ich kombinacje
- · wykorzystuje CPU oraz GPU

Podstawy & teoria

Modele

Podstawa jest model, za pomocą którego możemy organizować warstwy.

Podstawowym modelem jest Sequential - linowy stos wartsw.

Możemy stworzyć model przez przekazanie listy warstw do konstruktora.

In [1]:

```
from keras.models import Sequential
from keras.layers import Dense, Activation
model = Sequential([
    Dense(32, input_shape=(784,)),
    Activation('relu'),
    Dense(10),
    Activation('softmax'),
])
```

Using TensorFlow backend.

Można również skorzystać z funkcjonalnego API, które daje więcej możliwości, lub od podstaw stworzyć własny model.

Dodawanie kolejnych warstw odbywa się przez metodę .add().

In [2]:

```
model.add(Dense(32, input_dim=784))
model.add(Activation('relu'))
```

Kształt wejścia

Dla modelu musi zostać określony kształt (input shape). Wystarczy to określić dla pierwszej warstwy. Jest kilka możliwości aby to zrobić:

- przekazanie input_shape jako argument dla pierwszej warstwy,
- przekazanie input_dim jako argument dla niektórych warstw 2D takich jak Dense, niektóre warstwy
 3D przyjmują również input length,
- gdy trzeba określić rozmiar zestawu danych (fixed batch size) można przekazać argument batch_size. W przypadku podania batch_size=32 oraz input_shape(6,8) do warstwy, to każdy zestaw danych będzie wymagał kształtu (32, 6, 8)

Przykład warstw, które będą identyczne:

In [31:

```
model = Sequential()
model.add(Dense(32, input_shape=(784,)))
```

In [4]:

```
model = Sequential()
model.add(Dense(32, input_dim=784))
```

Warstwy

Warstwy są podstawowymi blokami sieci neuronowych, składają się z funkcji obliczeniowych wejściowych i wyjściowych oraz stanu (wagi). Instancje warstwy można wywołać jak funkcje.

In [5]:

```
from keras import layers
import tensorflow as tf
layer = layers.Dense(32, activation='relu')
inputs = tf.random.uniform(shape=(10, 20))
outputs = layer(inputs)
```

Funkcja aktywacji

Na podstawie tej funkcji obliczane są wartości wyjścia z neruonu sieci. Dostępne funkcje to:

- relu
- sigmoid
- softmax
- softplus
- softsign
- tanh
- selu
- elu
- exponential Istnieje również możliwośc tworzenie własnych funkcji, lub korzystanania np. z funckji Tensorflow.

Funkcja straty

Zwana również funkcją kosztu (loss function, cost function). Celem jest utworzenie takiego modelu, aby wartość tej funckji była jak najniższa. Dostepne funkcje dziela się na trzy kategorie:

- · straty probabilistyncze,
- straty regresji,
- straty dla klasyfikacji maksymalnego marginesu (hinge losses for maximum-margin classification)

Optymalizatory

Wybranie optymalizatora (optimizer) jest konieczne do kompilacji modelu. Można go przekazać jako instancje albo identyfikator. Przy tworzeniu optymalizatora można określi jego tempo uczenia się.

In [6]:

```
import keras
model = keras.Sequential()
opt = keras.optimizers.Adam(learning_rate=0.01)
model.compile(loss="categorical_crossentropy", optimizer=opt)
model.compile(loss="categorical_crossentropy", optimizer="adam")
```

Dostepne optymaliztory to:

- SGD
- RMSprop
- Adam
- Adadelta
- Adagrad
- Adamax
- Nadam
- Ftrl

Metryki (wskaźniki)

Metryki są wykorzystywane do oceny wydajności modelu. Podział metryk:

- · wskaźniki dokładności,
- · wskaźniki probabilistyczne,
- wskaźniki regresyjne,
- klasyfikacja prawda/fałsz,
- · wskaźniki segmentacji obrazu
- hinge metrics dla maksymalnego marginesu

Użycie

Wymagane importy

W tym przykładzie wykorzystany będzie do wczytania danych $\ \, \text{numpy} \, , \, \text{oraz modele} \, (\, \text{models} \,) \, \text{i} \, \, \text{warstwy} \, (\, \text{layers} \,) \, \text{z} \, \, \, \text{keras} \, .$

In [7]:

```
from numpy import loadtxt
from keras.models import Sequential
from keras.layers import Dense
```

Wczytywanie danych

Jako przykładowe dane został wykorzystany dataset: Prima Indians Diabetes

(https://raw.githubusercontent.com/jbrownlee/Datasets/master/pima-indians-diabetes.data.csv) (Szczegóły (https://raw.githubusercontent.com/jbrownlee/Datasets/master/pima-indians-diabetes.names))

Do wczytania danych z pliku wykorzystujemy bibliotekę numpy i jej metodę loadtxt.

In [8]:

```
dataset = loadtxt("pima-indians-diabetes.data.csv", delimiter=",")
x = dataset[:,0:8]
y = dataset[:,8]
```

Dane wczytane do x to nasze zmienne wejściowe, a y to zmienna wyjściowa. y = f(x). Opis kolejnych kolumn z pliku csv: Wejściowe (x):

- 1. Number of times pregnant
- 2. Plasma glucose concentration a 2 hours in an oral glucose tolerance test
- 3. Diastolic blood pressure (mm Hg)
- 4. Triceps skin fold thickness (mm)
- 5. 2-Hour serum insulin (mu U/ml)
- 6. Body mass index (weight in kg/(height in m)^2)
- 7. Diabetes pedigree function
- 8. Age (years) Wyjściowe (y):
- 9. Class variable (0 or 1)

Naszym celem będzie nauczyć sieć aby na podstawie podanych danych, dopasować klasę (0 lub 1).

Tworzenie modelu

Model za pomocą którego będziemy organizować warstwy to Sequential . Należy pamiętać o tym, aby wejściowa warstwa posiadała argument input_dim zgodny z liczbą danych wejściowych, czyli w naszym przypadku 8 ponieważ mamy 8 zmiennych. Dla przykładu wykorzystamy strukturę z w pełni połączonymi trzema warstwami (rozmiar sieci jest zależny od problemu jaki ma ona rozwiązywać). Połączone warstwy zapewnia nam klasa Dense , w której możemy sprecyzować liczbę neuronów i funkcję aktywacji. Jako funkcję aktywacji dla pierwszych dwóch warstw wykorzystamy ReLu (Rectified Linear Unit), a dla ostatniej funkcję sigmoidalną, która zapewni nam wynik między 0 a 1.

In [91:

```
model = Sequential()
model.add(Dense(16, input_dim=8, activation='relu'))
model.add(Dense(8, activation='relu'))
model.add(Dense(1, activation='sigmoid'))
```

Tak zdefiniowany model daje nam 3 warstwy, gdzie wejściem jest 8 zmiennych,

- pierwsza warstwa obsługuje 16 neuronów oraz wykorzystuje funkcje aktywacji relu, tutaj należy pamietać o tym, aby pierwsza warstwa miała zdefiniowane wejście.
- druga warstwa obsługuje 8 neuronów oraz wykorzystuje funkcje aktywacji relu,
- trzecia, ostatnia warstwa z jednym neuronem z funkcją sigmoidalną.

Kompilacja

Po zdefiniowaniu modelu możemy go skompilować. Wykorzystany do tego jest backend w postaci biblioteki Tensorflow, Theano lub CNTK. Pozwala on na odpowiednie wykorzystanie naszego sprzętu (CPU, GPU). Podczas kompilacji należy sprecyzować pewne ustawienia dla naszej sieci, a sa to:

- funckja staty loss wykorzystawana do oszacowania zestawu wag, w tym przypadku będzie to funkcja krzyżowej entropii (cross entropy), gdzie w bibliotece Keras jest zdefiniowana jako binary crossentropy.
- optymalizator optimizer wybór algorytmu optymalizacyjnego, w tym przypadku będzie to adam,
- metryki metrics metryki, które zbieramy jako wynik, w tym przypadku będzie to accuracy, czyli trafność dopasowań.

In [10]:

```
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'
])
```

Dopasowanie

Zdefiniowany i skompilowany model jest teraz gotowy do obliczeń. Możemy nauczyć go wykorzystując metodę fit . Musimy ustalić:

- epochs liczba przejść przez wszystkie wiersze trenowanego modelu,
- batch liczba próbek rozważanych przy każdym przejściu przed aktualizacja wag,
- · wejście kolumny wejściowe,
- wyjście wyniki Liczby epoch i batch możemy dobierać metodą prób i błędów, aż uda nam się wystarczająco dobrze wytrenować model. Dla tego przykładu użyjemy następujących ustawień:

In [11]:

```
model.fit(x, y, epochs=250, batch_size=10, verbose=0)
Out[11]:
```

<keras.callbacks.callbacks.History at 0x7f4258742f90>

Ustawienie verbose=0 powoduje, że konsola nie wypisuje każdego przejścia.

Oszacowanie

Wytrenowany model można teraz wykorzystać do oszacowania danych. Zbiór danych można podzielić na dane treningowe i dane do oceny, albo do obu przypadków wykorzystać ten sam zestaw danych.

Szacowanie da nam stary modelu oraz trafność.

In [12]:

```
loss, accuracy = model.evaluate(x,y, verbose=0)
print(f"Accuracy: {accuracy}")
print(f"Data loss: {loss}")
```

Accuracy: 0.7578125

Data loss: 0.4812524691224098

Idealna sytuacja byłaby wtedy, gdy trafność naszego modelu wynosiła bo 100%, a stata 0%, jednak jest to praktycznie niemożliwe.

Prognozy

Wykorzystując metodę predict, gdzie dzięki wykorzystaniu funkcji sigmoidalnej mamy wyniki między 0 a 1, możemy je zaokrąglić i wykorzystać, lub predict classes możemy wyznaczyć prognozy dla danych.

```
In [13]:
```

```
predictions = model.predict(x)
rounded = [round(x[0]) \text{ for } x \text{ in } predictions]
for i in range(7):
    print('%s => %d (expected %d)' % (x[i].tolist(), rounded[i], y[i]))
[6.0, 148.0, 72.0, 35.0, 0.0, 33.6, 0.627, 50.0] \Rightarrow 1 \text{ (expected 1)}
[1.0, 85.0, 66.0, 29.0, 0.0, 26.6, 0.351, 31.0] \Rightarrow 0 \text{ (expected 0)}
[8.0, 183.0, 64.0, 0.0, 0.0, 23.3, 0.672, 32.0] \Rightarrow 1 (expected 1)
[1.0, 89.0, 66.0, 23.0, 94.0, 28.1, 0.167, 21.0] => 0 (expected 0)
[0.0, 137.0, 40.0, 35.0, 168.0, 43.1, 2.288, 33.0] \Rightarrow 1 (expected
1)
[5.0, 116.0, 74.0, 0.0, 0.0, 25.6, 0.201, 30.0] \Rightarrow 0 \text{ (expected 0)}
[3.0, 78.0, 50.0, 32.0, 88.0, 31.0, 0.248, 26.0] \Rightarrow 0 \text{ (expected 1)}
In [14]:
predictions = model.predict classes(x)
for i in range(7):
    print('%s => %d (expected %d)' % (x[i].tolist(), predictions[i], y[i]))
[6.0, 148.0, 72.0, 35.0, 0.0, 33.6, 0.627, 50.0] \Rightarrow 1 \text{ (expected 1)}
[1.0, 85.0, 66.0, 29.0, 0.0, 26.6, 0.351, 31.0] \Rightarrow 0 \text{ (expected 0)}
[8.0, 183.0, 64.0, 0.0, 0.0, 23.3, 0.672, 32.0] \Rightarrow 1 (expected 1)
[1.0, 89.0, 66.0, 23.0, 94.0, 28.1, 0.167, 21.0] \Rightarrow 0 \text{ (expected 0)}
[0.0, 137.0, 40.0, 35.0, 168.0, 43.1, 2.288, 33.0] => 1 (expected
1)
[5.0, 116.0, 74.0, 0.0, 0.0, 25.6, 0.201, 30.0] \Rightarrow 0 \text{ (expected 0)}
[3.0, 78.0, 50.0, 32.0, 88.0, 31.0, 0.248, 26.0] \Rightarrow 0 \text{ (expected 1)}
```

Zgodnie z wcześniej wyznaczona trafnością, cześć danych może nie zostać przewidziana tak jak powinna.

Zapis modelu

Model można zapisać do pliku w celu późniejszego użycia. Wykorzystując metode save możemy zapisać cały model wraz z:

- · wagami
- · architekturą
- ustawieniami kompliacji
- stanem optymalizatora

In [15]:

```
model.save("./saved.h5")
```

Można również zapisać dany model do pliku j son:

In [16]:

```
model_json = model.to_json()
with open("./model.json", "w") as json_file:
    json_file.write(model_json)
```

Wczytywanie modelu

Wczytanie istniejącego modelu jest możliwe z wykorzystaniem metody load model:

```
In [17]:
```

```
from keras.models import load_model
loaded_model = load_model("./saved.h5")
```

Możemy wyświetlić podsumowanie z informacjami na temat danego modelu:

In [18]:

Output Shape	Param #
(None, 16)	144
(None, 8)	136
(None, 1)	9
	(None, 16)

Teraz możemy wykorzystać wczytany model:

In [19]:

```
new dataset = loadtxt("pima-indians-diabetes.data.csv", delimiter=",")
i = dataset[:,0:8]
i = dataset[:.8]
score = loaded model.evaluate(i, j, verbose=0)
print("%s: %.2f%%" % (loaded model.metrics names[1], score[1]*100))
predicts = loaded model.predict classes(i)
for k in range(15):
    print('%s => %d (expected %d)' % (i[k].tolist(), predicts[k], j[k]))
accuracy: 75.78%
[6.0, 148.0, 72.0, 35.0, 0.0, 33.6, 0.627, 50.0] \Rightarrow 1 \text{ (expected 1)}
[1.0, 85.0, 66.0, 29.0, 0.0, 26.6, 0.351, 31.0] \Rightarrow 0 \text{ (expected 0)}
[8.0, 183.0, 64.0, 0.0, 0.0, 23.3, 0.672, 32.0] \Rightarrow 1 (expected 1)
[1.0, 89.0, 66.0, 23.0, 94.0, 28.1, 0.167, 21.0] \Rightarrow 0 \text{ (expected 0)}
[0.0, 137.0, 40.0, 35.0, 168.0, 43.1, 2.288, 33.0] \Rightarrow 1 (expected
1)
[5.0, 116.0, 74.0, 0.0, 0.0, 25.6, 0.201, 30.0] \Rightarrow 0 \text{ (expected 0)}
[3.0, 78.0, 50.0, 32.0, 88.0, 31.0, 0.248, 26.0] => 0 (expected 1)
[10.0, 115.0, 0.0, 0.0, 0.0, 35.3, 0.134, 29.0] \Rightarrow 1 \text{ (expected 0)}
[2.0, 197.0, 70.0, 45.0, 543.0, 30.5, 0.158, 53.0] => 1 (expected
1)
[8.0, 125.0, 96.0, 0.0, 0.0, 0.0, 0.232, 54.0] \Rightarrow 0 \text{ (expected 1)}
[4.0, 110.0, 92.0, 0.0, 0.0, 37.6, 0.191, 30.0] \Rightarrow 0 \text{ (expected 0)}
[10.0, 168.0, 74.0, 0.0, 0.0, 38.0, 0.537, 34.0] \Rightarrow 1 (expected 1)
[10.0, 139.0, 80.0, 0.0, 0.0, 27.1, 1.441, 57.0] => 0 (expected 0)
[1.0, 189.0, 60.0, 23.0, 846.0, 30.1, 0.398, 59.0] \Rightarrow 1 (expected
[5.0, 166.0, 72.0, 19.0, 175.0, 25.8, 0.587, 51.0] \Rightarrow 0 (expected
```