M2.2.2 Modelos Supervisados y No Supervisados

Programa Big Data y Business Intelligence

Enrique Onieva

enrique.onieva@deusto.es
https://twitter.com/EnriqueOnieva
https://www.linkedin.com/in/enriqueonieva/

Ensemble Learning

- Motivación e ideas básicas
- Modelos de ensemble
 - Bagging
 - Boosting
 - Stacking
- Random Forest

Motivación

- Imaginemos que quiero una sistema de predicción de peso
- ¿Cuánto pesan estas naranjas?
 - Puedo tantear a toda la clase a ver
 - ¿Quién cocina? ¿Quién come fruta? ¿Quién hace la compra normalmente? ¿Quién compra fruta al peso? ¿A quién le gustan las naranjas? ¿Alguien ha trabajado en una frutería?...
 - Con el fin de escoger a la persona (sistema) de predicción
 - También puedo preguntaros a todos y tomar el promedio

3

¿Ventajas e inconvenientes de cada enfoque?

Motivación

- Buscar un "experto"
 - Necesito mucho tiempo para elegirlo
 - Su predicción puede que no sea buena (igual no está inspirado)
- Preguntar al grupo
 - Es rápido
 - Es sencillo
- Muchas versiones de este "experimento"

http://www.npr.org/sections/money/2015/08/07/429720443/17-205-people-guessed-the-weight-of-a-cow-heres-how-thev-did

Motivación

- Haciendo números
 - Imaginemos que tenemos 25 modelos de clasificación (binaria)
 - Cada uno tiene una tasa de acierto del 65% (muy malos)
 - Son independientes entre sí
 - Todos votan sobre el resultado a dar
 - La probabilidad de que la mayoría (13 o más) se equivoquen en su predicción es del 6%
- Entre todos, tienen una tasa de acierto del 94%!
 - Es más sencillo encontrar 25 modelos con un 65% de acierto que un único modelo con un 94% de acierto

$$\sum_{i=13}^{25} \epsilon^i (1 - \epsilon)^{25 - i} = 0.06$$

Idea básica

• Idea básica:

- Construir un conjunto de sistemas diferentes
- Preguntarle a todos y tomar la decisión
 - Por lo general, mejora la capacidad de predicción.
 - (Muy) Fácilmente paralelizable
- Inconveniente:
 - El resultado puede ser difícilmente analizable

Idea básica

3 enfoques diferentes

- Bagging (Bootstrap Aggregating)
 - Dividimos el conjunto de datos en porciones
 - Utilizamos cada porción para entrenar un sistema (normalmente del mismo tipo)
- Boosting
 - Construimos diferentes modelos (del mismo tipo)
 - Cada uno intenta "enmendar" los errores de los previos
- Stacking
 - Construimos diferentes modelos (de diferentes tipos)
 - Se construye un "supervisor" que elija la salida a dar a partir de los votos

Bagging

- Analogía: predicción según votación mayoritaria
- Entrenamiento
 - En cada iteración, se toma una porción de los datos (aleatoriamente), y se usa para entrenar un modelo
 - Un modelo se genera en cada iteración
- Predicciones
 - Clasificación: Normalmente por voto mayoritario
 - Regresión: Normalmente por promedio de salidas
- ¿Cuándo creéis que funcionará mejor?
 - ¿Cuándo las muestras que obtengamos de los datos de entrenamiento sean parecidas o distintas?

Bagging

- Mejora los resultados si el método es "inestable"
 - Un pequeño cambio en los datos puede variar mucho la salida del modelo (árboles, redes neuronales,...)
- Extensión:
 - Se puede aleatorizar el método, en lugar de los datos
 - Pesos iniciales en redes neuronales
 - Dar a cada modelo ciertas "columnas" de los datos

Boosting

- Analogía: votación donde cada votante sabe el voto de los votantes anteriores
- Funcionamiento
 - Asignamos pesos a los ejemplos
 - Se entrenan k clasificadores
 - Los pesos de los datos donde un clasificador acierta, disminuyen, los datos donde falla, aumentan
 - La salida final es el voto ponderado (en función del acierto)

Boosting

Ejemplo

- Tenemos 5 ejemplos {1,2,3,4,5}
- Inicialmente cada uno tiene un peso de 0.2
 - (probabilidad de ser elegidos)
- Elegimos datos aleatoriamente {2, 4, 4, 3, 2}
- Entrenamos un clasificador, lo probamos con los datos
 - Acierta en datos 2, 3 y 5 \rightarrow reducimos sus pesos
 - Falla en 1 y 4 \rightarrow aumentamos sus pesos
- En la siguiente ronda, se vuelven a elegir 5 ejemplos, pero ahora, 1 y 4 se escogerán con más probabilidad
 - El siguiente clasificador se "fijará" más en ellos

Ejemplo: Datos iniciales

Ejemplo: Primer clasificador

Ejemplo: Segundo clasificador

15

Ejemplo: Tercer clasificador

16

Ejemplo: Resultado Final

Resumen

- También utiliza un esquema de votos
- Pondera a los modelos según su calidad
- Iterativo: nuevos modelos se influencian de la calidad de los anteriores
 - Guían al nuevo modelo a ser "experto" en los datos para los que otros fallan
 - Justificación intuitiva: los modelos deben de complementarse los unos a los otros
 - Variantes:
 - Boosting por datos: los pesos influyen en los ejemplos para entrenar
 - Boosting por peso: los pesos son usados por el método de aprendizaje

Random Forest

- Es una variante de algoritmo Bagging basado en árboles
 - Se basa en la combinación de árboles de decisión
 - Cada árbol depende de los valores de datos elegidos aleatoriamente
 - Cada árbol se construye con una porción de todos los atributos disponibles
 - Observar que:
 - Los datos que entrena cada árbol pueden variar
 - Las variables que utiliza cada árbol pueden variar
 - Se evita el overfitting

Copyright (c) University of Deusto

This work (but the quoted images, whose rights are reserved to their owners*) is licensed under the Creative Commons "Attribution-ShareAlike" License. To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/3.0/

Enrique Onieva

enrique.onieva@deusto.es
https://twitter.com/EnriqueOnieva
https://www.linkedin.com/in/enriqueonieva/

