§3 概率测度

第一章概率

概率论公理化的三种学派

① 1921年以凯恩斯(J. M. Keynes) 为代表的"主观概率学派"

凯恩斯主张把任何命题都看作事件,例如"明天将下雨","土星上有生命"等等都是事件,人们对这些事件的可信程度就是概率,而与随机试验无关,通常称为主观概率.

② 1928年以冯. 米泽斯 (von Mises) 为代表的"客观概率学派"

米泽斯定义事件的概率为该事件出现的频率的极限,而作为公理就必须把这一极限的存在作为第一条公理,通常称为客观概率..

③ 1933年以柯尔莫哥洛夫为代表的"以测度论为基础的概率公理化体系" 目前,绝大多数教科书都是采用柯尔莫哥洛夫的概率公理 化体系. 概率论 研究随机现象的统计规律性的数学学科

间题— 什么是统计规律性?

统计规律性是指在大量试验中呈现出的数量规律

间题二 什么是概率?

概率是指刻划随机事件在一次试验中发生的可能性 大小的数量指标,这个数量指标应该满足:

- ② 它是事件固有的,不随人们主观意愿而改变;可以 在相同条件下通过大量重复试验予以识别和检验
- ② 符合常情:事件发生可能性大,该值就大,反之 就小:不可能事件的值最小(0):必然事件的值最大(1)

频率

设分为一随机事件,在相同条件下进行的次重复试验

\$

$$n_A = n$$
 次试验中A 发生的次数

$$f_n(A) = \frac{n_A}{n}$$

称 n_A 为事件A的 频数, $f_n(A)$ 为事件A 的频率.

频率的一般特性

- 一般地n 越大,则₄ 越大
- $n_A, f_n(A)$ 的值是"随机的"
- \bullet $0 \le f_n(A) \le 1$

如河 频率是否有统计规律性?

实例—"抛硬币"试验

将一枚硬币连续抛n 次,记

 $H = \{$ 出现正面 $\}$

问f_n(H)有什么规律?

历史上有名的"抛硬币"试验

实验者	n	n_H	$f_n(H)$	
徳・摩根	2048	1061	0.5181	
蒲丰	4048	2048	0.5069	
皮尔逊	12000	6019	0.5016	
皮尔逊	24000	12012	0.5005	

实例二"蒲丰投针试验"

记投针的总数为n,针与平行线相交的次数为 n_A

则

$$\frac{n_A}{n} \approx \frac{1}{\pi}$$

$$\therefore \quad \frac{n}{n_A} \approx \pi$$

http://www.math.uah.edu/stat/apps/ BuffonNeedleExperiment.html 实例三 考察英语文章中26个字母出现的频率, 当观察次数n 较大时,每个字母出现的频率呈现稳定性,下面是 Dewey 统计了438023个字母得到的统计表

字母	频率	字母	频率	字母	频率	字母	频率
E	0.1268	R	0.0594	M	0.0244	K	0.0060
T	0.0978	Ħ	0.0573	W	0.0214	X	0.0016
A	0.0788	L	0.0394	Y	0.0202	J	0.0010
0	0.0776	D	0.0389	G	0.0187	Q	0.0009
1	0.0707	U	0.0280	P	0.0186	Z	0.0006
N	0.0706	C	0.0268	В	0.0156		
S	0.0634	F	0.0256	V	0.0102		

字母统计表的应用 ? 密码破译

实例四 在"掷骰子"试验中,记事件

 $A_i = \{ 出现 i 点 \}$, i = 1, 2, 3, 4, 5, 6

将一颗骰子连续掷n 次, $\mathbf{M}_i(A_i)$ 有什么规律?

分析 如果一颗骰子六个面是均匀的,则当n 很大时有应有

$$f_n(A_i) = \frac{n_{A_i}}{n} \approx \frac{1}{6}$$
 $(i = 1, 2, 3, 4, 5, 6)$

随机事件的统计规律性

当n 很大时,事件A 的频素(A) 接近一,作精 数 $f_n(A) \to p \ (n \to +\infty)$

频率的稳定性

- \boldsymbol{z} **②** 常数 \boldsymbol{p} 就是事件 \boldsymbol{A} 发生的可能性大小,即概率
 - ② 由于频率的取值是"随机的",那么极限

$$f_n(A) \to p \quad (n \to +\infty)$$

是什么意思值得研究(第五章讨论该问题)

频率的基本性质

- $0 \le f_n(A) \le 1$

$$\forall i \neq j, i, j = 1, 2, \dots, M$$

$$A_i \cap A_j = \Phi$$

是两两不相容则

 $f_n(\bigcup_{i=1}^m A_i) = \sum_{i=1}^m f_n(A_i)$ 有限可加性

这三条性质刻画了频 率的本质特征,启发 我们定义事件的概率

频率的基本性质

- $\oint_n f_n(\Omega) = 1$
- \Rightarrow 若 A_1, A_2, \dots, A_m 是两两不相容则 事件 $f_n(\bigcup_{i=1}^m A_i) = \sum_{i=1}^m f_n(A_i)$ 有限可加性

概率的公理化定义

定义 设A为样本空间 Ω 上的事件域, $\forall A \in A$,若存在实数P(A)与之对应,且满足

- ② 非负性: $P(A) \ge 0$ ($\forall A \in A$)
- ② 规范性: $P(\Omega) = 1$
- ② 可列可加性:对两两不相容的事件列 $\{A_k\}_{k=1}^{\infty}$ 有

$$P(\bigcup_{k=1}^{\infty} A_k) = \sum_{k=1}^{\infty} P(A_k)$$
 可加性

则称 P(A) 为事件 A 的概率, 称 $\{\Omega, A, P\}$ 为概率 空间.

概率的公理化定义

定义 设A为样本空间 Ω 上的事件域, $\forall A \in A$,若存在实数P(A)与之对应,且满足

- ② 非负性: $P(A) \ge 0 \ (\forall A \in A)$
- ② 规范性: $P(\Omega) = 1$
- ③ 可列可加性:对两两不相容的事件列 $\{A_k\}_{k=1}^{\infty}$ 有

$$P(\bigcup_{k=1}^{\infty} A_k) = \sum_{k=1}^{\infty} P(A_k)$$
 可加性

则称 P(A) 为事件 A 的 概率, 称 $\{\Omega, A, P\}$ 为概率 空间.

进记

- 1933年苏联的柯尔莫哥洛夫在测度论基础上提出的概率论公理化体系
- 概率是定义在事件域上的特殊函数
- ◆ 物体的长度,区域的面积都具有"非负性"与"可加性",故"概率" 实际上是对"事件"发生可能性大小的一种"度量"

例(见特的奇论)在半径为r的圆C内"任意"作一弦,试求此弦长度l大于圆内接等边三角形边长 $\sqrt{3}r$ 的概率p.

解一:作半径为r/2的同心圆 C_1 设弦AB的中点M"任意"落于圆 C_1 内若M落于圆 C_1 内,则 $l>\sqrt{3}r$,于是

$$p = \frac{\pi (r/2)^2}{\pi r^2} = \frac{1}{4}$$

考虑等边 ΔADE ,如B落于角A对应的弧DE上,则 $l>\sqrt{3}r$,于是

$$p = \frac{DE$$
的弧长 $= \frac{1}{3}$

 $\{\Omega, \mathcal{A}, P\}$

例 设某地夏季天气只有3种状态: 晴、阴(多云)、雨. 已知晴的可能性是阴的2倍,雨的可能性只有阴的一半,问三种天的概率为多少?

概率的基本性质

性质
$$\mathcal{O}$$
 $P(\Phi) = 0$

$$\therefore \Phi = \Phi \cup \Phi \cup \cdots$$

$$\therefore P(\Phi) = P(\Phi) + P(\Phi) + \cdots$$

因为概率为实数, 故 $P(\Phi) = 0$.

性质② 若 $A_1, A_2 \dots, A_n$ 是两两不相容的事件,则

$$P(\bigcup_{k=1}^{n} A_k) = \sum_{k=1}^{n} P(A_k)$$
 有限可加性

$$\therefore \bigcup_{k=1}^n A_k = A_1 \bigcup \cdots \bigcup A_n \bigcup \Phi \bigcup \Phi \cdots$$

故由可列可加性,有

$$P(\bigcup_{k=1}^{n} A_k) = P(A_1) + \dots + P(A_n) + P(\Phi) + P(\Phi) + \dots = 0$$

= $P(A_1) + \dots + P(A_n)$

性质 若 $A \subset B$,则

$$P(B-A) = P(B) - P(A)$$

$$P(B) \ge P(A)$$

$$A \subset B$$
 $B = A \cup (B - A)$

因 A, B-A 互不相容, 故由有限可加性有

$$P(B-A) = P(B) - P(A)$$

再由概率非负性得 $P(B) \ge P(A)$

事件与概率的图示

概率解释为区域面积

性质②
$$0 \le P(A) \le 1$$

性质⑥
$$P(\overline{A}) = 1 - P(A)$$

性质@ (加法定律)对任何事件 A,B有

$$P(A \cup B) = P(A) + P(B) - P(AB)$$

对于三事件 A_1, A_2, A_3 有

$$P(A_1 \cup A_2 \cup A_3) = P(A_1) + P(A_2) + P(A_3)$$
$$-P(A_1A_2) - P(A_2A_3) - P(A_1A_3)$$
$$+P(A_1A_2A_3)$$

挖补原理 多事件的加法定律

对于n个事件,有

$$P(A_1 \cup A_2 \cup \cdots \cup A_n) = \sum_{i=1}^n P(A_i) - \sum_{1 \le i < j \le n} P(A_i A_j) + \sum_{1 \le i < j < k \le n} P(A_i A_j A_k)$$

$$-\sum_{1 \leq i < j < k < l \leq n} P(A_i A_j A_k A_l)$$

$$+\cdots+(-1)^{n-1}P(A_1A_2\cdots A_n)$$

挖补规律: 如奇斌偈

它则 已知空气中PM2.5含量一般在0.0-120.4 (μg/m³)之间,SO₂含量一般在0.000-0.304 (ppm)之间,假设在上述范围内取值为等可能的. 一般认为,PM2.5含量在100.5μg/m³以上或SO₂含量在0.225ppm以上为对人体有害. 问空气质量为有害的概率是多少?

课后作业

P20: 4, 7

补充题: ←

1. 设 A, B, C 是 三 个 随 机 事 件 ,且 $P(A) = P(B) = P(C) = \frac{1}{4}$, P(AB) = P(BC) = 0 , $P(AC) = \frac{1}{8}, \ \bar{x}A, B, C$ 至少有一个发生的概率. \leftarrow

2. 已知 A,B 两个事件满足条件 $P(AB) = P(\overline{AB})$,且 P(A) = p.求 P(B).

H