STOCHASTIC PROCESSES

STAT 150

Instructor: Benson Au

KELVIN LEE

Contents

1	Prol	bability Review
	1.1	Basic Definitions
	1.2	Overview
	1.3	Useful Properties
	1.4	Conditional Probability
	1.5	Random Variables
		1.5.1 Discrete Random Variables
		1.5.2 Indicator Random Variable
		1.5.3 Continuous Random Variables
		1.5.4 Cumulative Distribution Function (CDF)
		1.5.5 Expectation
		1.5.6 Variance
		1.5.7 Moments
		1.5.8 Joint Distribution
		1.5.9 Independence
		1.5.10 Linearity of Expectation
		1.5.11 Convolution
		1.5.12 Gamma Distribution
		1.5.13 Moment Generating Function
	1.6	Conditional Probability (Cont'd)

1 Probability Review

1.1 Basic Definitions

Definition 1.1.1 (Probability Space). A probability space $(\Omega, \mathcal{F}, \mathbb{P})$ is a triple consisting of a set Ω called the *sample space*, a set $\mathcal{F} \subseteq \Omega$ satisfying certain closure properties, and a function $\mathbb{P}: \mathcal{F} \to [0,1]$ that assigns probabilities to events in a coherent way.

Requirements for \mathcal{F} :

- (i) $\Omega \in \mathcal{F}$.
- (ii) If $E \in \mathcal{F}$, then $E^c \in \mathcal{F}$.
- (iii) If $\{E_i\}_{i=1}^{\infty} \subseteq \mathcal{F}$, then

$$\bigcap_{i=1}^{\infty} E_i \in \mathcal{F}.$$

Requirements for \mathbb{P} :

- (i) $\mathbb{P}(\Omega) = 1$.
- (ii) If $\{E_i\}_{i=1}^{\infty} \subseteq \mathcal{F}$ are pairwise disjoint (meaning $E_i \cap E_j = \emptyset$ for $i \neq j$, then

$$\mathbb{P}\left(\bigcup_{i=1}^{\infty} E_i\right) = \sum_{i=1}^{\infty} \mathbb{P}\left(E_i\right)$$

Definition 1.1.2 (Random Variable). A random variable is a function $X: \Omega \to \mathbb{R}$ such that $X^{-1}(B) \in \mathcal{F}$ whenever B is a "nice" subset of \mathbb{R} .

Example 1.1.3. $\Omega = \{H, T\}, \quad \mathcal{F} = 2^{\Omega}, \quad \mathbb{P}(\{H\}) = \frac{1}{2}. \ X(H) = 1, \quad X(T) = 0.$

$$\mathbb{P}(X=1) = \mathbb{P}(\{H\}) = \frac{1}{2}, \quad \mathbb{P}(X=0) = \mathbb{P}(\{T\}) = \frac{1}{2}.$$

1.2 Overview

Definition 1.2.1 (Stochastic Process). A stochastic process is a collection $\{X_t : t \in T\}$ of random variables $X_t : \Omega \to S \subseteq \mathbb{R}$ all defined on the some probability space $(\Omega, \mathcal{F}, \mathbb{P})$. Here T is some index set (typically representing time) and S is the state space. One write this as

 $X: \Omega \times T \to S$, $(w,t) \mapsto X_t(\omega)$. For a given outcome $\omega \in \Omega$, we get a sample path trajectory $X(\omega): T \to S, t \mapsto X_t(\omega)$. A stochastic process can then be thought of as a random function.

The theme of this course is what can we say about the distribution of trajectories?

Example 1.2.2 (Branching Process (DTDS)). $X_0 = 1$, one individual in the 0th generation individuals produce a random number of offspring, i.i.d. $(\xi_i^{(n)})_{i \in \mathbb{N}, n \in \mathbb{N}_0}$.

$$X_{n+1} = \sum_{i=1}^{X_n} \xi_i^{(n)}.$$

One interesting question would be what is $\mathbb{P}(X_n = 0 \text{ eventually})$, the probability of dying out?

Example 1.2.3 (Poisson Process (CTDS)). Recall that the Poisson distribution is used to model the number of occurrences of a rare event in some fixed period of time. The Poisson process $(N_t)_{t\geq 0}$ models the number of occurrences throughout time. $N_t = \#$ of occurrences by time t.

1.3 Useful Properties

(i) (DeMorgan) $(E \cup F)^c = E^c \cap F^c, \quad (E \cap F)^c = E^c \cup F^c.$

- (ii) (Complementation) $\mathbb{P}(E) = 1 \mathbb{P}(E^c).$
- (iii) (Inclusion-exclusion) $\mathbb{P}(E \cup F) = \mathbb{P}(E) + \mathbb{P}(F) \mathbb{P}(E \cap F)$ $\mathbb{P}\left(\bigcup_{i=1}^{n} E_i\right) = \sum_{j=1}^{n} (-1)^{j-1} \sum_{S \in [n]: |S| = j} \mathbb{P}\left(\bigcap_{i \in S} E_i\right).$
- (iv) (Partitioning) If $\bigsqcup_{i=1}^{\infty} E_i = \Omega$, then

$$\mathbb{P}(F) = \mathbb{P}\left(\bigsqcup_{i=1}^{\infty} (F \cap E_i)\right) = \sum_{i=1}^{\infty} \mathbb{P}(F \cap E_i)$$

1.4 Conditional Probability

Conditioning: For $\mathbb{P}(F) > 0$,

$$\mathbb{P}(E \mid F) = \frac{\mathbb{P}(E \cap F)}{\mathbb{P}(F)}.$$

 $\mathbb{P}(\cdot \mid F)$ defines a new probability measure on (Ω, \mathcal{F}) .

Multiplication rule:

$$\mathbb{P}(E \cap F) = \mathbb{P}(F)\mathbb{P}(E \mid F).$$

If $\bigsqcup_{i=1}^{\infty} F_i = \Omega$, then

$$\mathbb{P}(E) = \sum_{i=1}^{\infty} \mathbb{P}(E \cap F_i) = \sum_{i=1}^{\infty} \mathbb{P}(F_i) \mathbb{P}(E \mid F_i).$$

Bayes' rule:

$$\mathbb{P}(F_j \mid E) = \frac{\mathbb{P}(F_j)\mathbb{P}(E \mid F_j)}{\sum_{i=1}^{\infty} \mathbb{P}(F_i)\mathbb{P}(E \mid F_i)}$$

1.5 Random Variables

1.5.1 Discrete Random Variables

If $X:\Omega\to S\subseteq\mathbb{R}$ is discrete,

$$\mathbb{P}(X \in E) = \sum_{x \in E} \mathbb{P}(X = x) = \sum_{x \in E \cap S} \mathbb{P}(X = x).$$

1.5.2 Indicator Random Variable

$$X(\omega) = \mathbb{I}_E(\omega) = \begin{cases} 1 & \omega \in E \\ 0 & \omega \notin E. \end{cases}$$

1.5.2.1 Binomial Random Variable

$$X = \sum_{i=1}^{n} \mathbb{I}_{E_i}, \quad \mathbb{P}(E_i) = p.$$

$$p_X(x) = \mathbb{P}(X = x) = \binom{n}{x} p^x (1-p)^{n-x}.$$

1.5.3 Continuous Random Variables

If X continuous,

$$\mathbb{P}(X \in E) = \int_{E} f_{X}(x)dx.$$

$$\mathbb{P}(X \in [a, b]) = \int_{a}^{b} f_{X}(x)dx.$$

1.5.3.1 Exponential Random Variable

$$f_X(x) = \lambda e^{-\lambda x} \mathbb{I}_{x \ge 0}.$$

1.5.3.2 Gaussian Random Variable

$$f_X(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-(x-\mu)^2/2\sigma^2}.$$

1.5.4 Cumulative Distribution Function (CDF)

 $F_X: \mathbb{R} \to [0,1],$

$$F_X(r) = \mathbb{P}(X \le r) = \mathbb{P}(X \in (-\infty, r]).$$

If X is discrete,

$$F_X(r) = \sum_{x_i \le r} p_X(x_i).$$

If X is continuous,

$$F_X(r) = \int_{-\infty}^r f_X(x) dx.$$

$$\frac{d}{dr}F_X(r) = f_X(r).$$

1.5.5 Expectation

1.5.5.1 Discrete case

$$\mathbb{E}[X] = \sum_{x_i \in S} x_i \mathbb{P}(X = x_i).$$

$$\mathbb{E}[X] = \sum_{n=1}^{\infty} \mathbb{P}(X \ge n).$$

$$\mathbb{E}[g(X)] = \sum_{x_i \in S} g(x_i) \mathbb{P}(X = x_i).$$

1.5.5.2 Continuous case

$$\mathbb{E}[X] = \int_{-\infty}^{\infty} x f_X(x) dx.$$

$$\mathbb{E}[X] = \int_{-\infty}^{\infty} x \mathbb{P}(X \ge x) dx.$$

$$\mathbb{E}[g(X)] = \int_{-\infty}^{\infty} g(x) f_X(x) dx.$$

1.5.6 Variance

$$var(X) = \mathbb{E}[X^2] - \mathbb{E}[X]^2.$$

1.5.7 Moments

$$\mathbb{E}[X^m] = \int_0^\infty mx^{m-1} \mathbb{P}(X \ge x) dx.$$

1.5.8 Joint Distribution

1.5.8.1 Discrete

$$p_{X,Y}(x,y) = \mathbb{P}(X=x,Y=y)$$

1.5.8.2 Continuous

$$\mathbb{P}((X,Y) \in E) = \int \int_{E} f_{X,Y}(x,y) dx dy$$

1.5.8.3 Marginal Distribution

$$p_X(x) = \sum_{y \in S_Y} p_{X,Y}(x,y).$$

$$f_X(x) = \int_{y \in S_Y} f_{X,Y}(x,y)dy$$

1.5.9 Independence

$$p_{X,Y}(x,y) = p_X(x)p_Y(y).$$

$$f_{X,Y}(x,y) = f_X(x)f_Y(y).$$

$$\mathbb{P}(X \le x, Y \le y) = F_X(x)F_Y(y).$$

1.5.10 Linearity of Expectation

$$\mathbb{E}\left[\sum_{i=1}^{n} c_i X_i\right] = \sum_{i=1}^{n} c_i \mathbb{E}[X_i]$$

If $(X_i)_{i=1}^n$ independent,

$$\left(g\left(X_{i}\right)\right)_{i=1}^{n}$$

independent.

$$\mathbb{E}\left[\prod_{i=1}^{n} g(X_i)\right] = \prod_{i=1}^{n} \mathbb{E}\left[g\left(x_i\right)\right]$$

$$\operatorname{Var}\left(\sum_{i=1}^{n} x_i\right) = \sum_{i=1}^{n} \operatorname{Var}\left(x_i\right)$$

In general,

$$\operatorname{Var}\left(\sum_{i=1}^{n} x_{i}\right) = \sum_{i,j=1}^{n} \operatorname{Cov}\left(x_{i}, x_{j}\right)$$

1.5.11 Convolution

Discrete case: X, Y discrete $X \perp \!\!\! \perp Y$

$$\begin{split} \mathbb{P}(X+Y=z) &= \sum_{Y} \mathbb{P}(X+Y=z,Y=y) \\ &= \sum_{y} \mathbb{P}(X=z-y,Y=y) \\ &= \sum_{y} \mathbb{P}(X=z-y) \mathbb{P}(Y=y) \quad (= \sum_{x} \mathbb{P}(X=x) \mathbb{P}(Y=z-x)). \end{split}$$

If X, Y are \mathbb{Z} -valued, this becomes

$$\mathbb{P}(X+Y=n) = \sum_{k=-\infty}^{\infty} \mathbb{P}(X=n-k)\mathbb{P}(Y=y)$$
$$= \sum_{k=-\infty}^{\infty} \mathbb{P}(X=k)\mathbb{P}(Y=n-k)$$
$$= (\mathbb{P}_X * \mathbb{P}_Y)(n)$$

Example 1.5.1 (Poisson). $X \sim \text{Poisson } (\lambda), \quad Y \sim \text{Poisson } (\mu), \quad X + Y \sim \text{Poisson } (\lambda + \mu)$

$$\mathbb{P}(X+Y=n) = \sum_{h=0}^{n} \mathbb{P}(X=k)P(Y=n-k)$$

$$= \sum_{k=0}^{n} e^{-\lambda} \frac{\lambda^{k}}{\mu!} e^{-\mu} \frac{\mu^{n-\mu}}{n-k!}$$

$$= e^{-(\lambda+\mu)} \sum_{k=0}^{n} \frac{n!}{k!(n-k)!} \lambda^{k} \mu^{n-k}$$

$$= \frac{e^{-(\lambda+\mu)}}{n!} (\lambda+\mu)^{n}$$

$$= \mathbb{P}(Z=n)$$

where $Z \sim \text{Poisson}(\lambda + \mu)$.

Continuous case: X, Y continuous

$$\mathbb{P}(X+Y\leqslant z) = \int_{-\infty}^{\infty} \int_{-\infty}^{z-x} f_X(x) f_Y(y) dy dx$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{z} f_X(x) f_Y(y-x) dy dx$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_X(x) f_Y(y-x) dx dy$$

$$f_{X+Y}(z) = \int_{-\infty}^{\infty} f_X(x) f_Y(z-x) dx = \int_{-\infty}^{\infty} f_Y(y) f_X(z-y) dy = f_X * f_Y.$$

Example 1.5.2 (Convolution in uniform distributions). $X, Y \sim U[0, 1], X \perp\!\!\!\perp Y.$

$$f_{X+Y}(z) = \int_{-\infty}^{\infty} f_X(x) f_Y(z - x) dx.$$

$$f_X(x) = \mathbb{I}_{[0,1]}(x) \qquad f_Y(y) = \mathbb{I}_{[0,1]}(y)$$

SO

$$f_{X+Y}(z) = \int_{x \in [0,1], z-x \in [0,1]} 1 dx$$

$$= \int_{x \in [0,1], x \in [-1+z,z]} 1 dx$$

$$= \int_{\max(0,-1+z)}^{\min(1,z)} 1 dx$$

$$= \min(1,z) - \max(0,-1+z).$$

1.5.12 Gamma Distribution

Definition 1.5.3 (Gamma function). Let $\alpha > 0$. The gamma function $\Gamma : (0, \infty) \to (0, \infty)$ is defined by

$$\Gamma(\alpha) = \int_0^\infty x^{\alpha - 1} e^{-x} dx = \mathbb{E}[X^{\alpha - 1}]$$

where $X \sim \text{Exp}(1)$ Let $\alpha, \lambda > 0$. The Gamma (α, λ) distribution is defined by

$$f(x) = \frac{\lambda^{\alpha} x^{\alpha - 1}}{\Gamma(\alpha)} e^{-\lambda x} \mathbb{I}_{x \ge 0}.$$

Exercise 1.5.4. $\Gamma(n) = (n-1)!$ for $n \in \mathbb{N}$. (Hint: use induction)

1.5.13 Moment Generating Function

Definition 1.5.5 (MGF). For a random variable X, the moment generating function (MGF) is the function $M_X : \mathbb{R} \to \mathbb{R}_{\geq 0} \cup \{+\infty\}$,

$$M_X(t) = \mathbb{E}[e^{tX}].$$

If $M_X(t) < +\infty$ for $t \in (-\epsilon, \epsilon)$, then

$$M_x(t) = \sum_{k=0}^{\infty} \frac{t^k \mathbb{E}[x^k]}{k!} \text{ for } |t| < \epsilon$$

For independent RVs $(X_i)_{i=1}^n$,

$$M_{\sum_{i=1}^{n} X_i}(t) = \prod_{i=1}^{n} M_{X_i}(t)$$

Exercise 1.5.6. If $X \sim \text{Exp}(\lambda)$, then $M_x(t) = \frac{\lambda}{\lambda - t}$ if $t < \lambda, +\infty$ otherwise. If $X \sim \text{Gamma}(n, \lambda)$, then

$$M_x(t) = \left(\frac{\lambda}{\lambda - t}\right)^n.$$

If $X \sim \text{Gamma}(\alpha, \lambda)$, then

$$M_x(t) = \left(\frac{\lambda}{\lambda - t}\right)^{\alpha}.$$

1.6 Conditional Probability (Cont'd)

Exercise 1.6.1 (Generalization). $(X_i)_{i=1}^n, (Y_j)_{i=1}^m$

$$p_{X_1,...,X_n|Y_1,...,Y_m}(x_1,...,x_n \mid y_1,...,y_m) = ?$$

Example 1.6.2. Let $M \in \mathbb{N}$ and $p, q \in (0, 1)$. Consider $N \sim \text{Bin}(M, q)$ and $X \sim \text{Bin}(N, p)$. What is the distribution of X? Why does this answer make sense?

$$\begin{split} \mathbb{P}(X=k) &= \sum_{n=0}^{M} \mathbb{P}(N=n) \mathbb{P}(X=k \mid N=n) \\ &= \sum_{n=0}^{M} \binom{M}{n} q^n (1-n)^{M-n} \binom{n}{k} p^k (1-p)^{n-k} \\ &= \frac{p^k}{k!} \sum_{n=k}^{M} \frac{M!}{(M-n)!(n-k)!} q^n (1-q)^{M-n} (1-p)^{n-k} \\ &= \frac{p^k}{k!(M-k)!} \sum_{n=k}^{M} \frac{M!(M-k)!}{(M-n)!(n-k)!} q^n (1-q)^{M-n} (1-p)^{n-k} \\ &= \binom{M}{k} p^k q^k \sum_{n=k}^{M} \binom{M-k}{n-k} q^{n-k} (1-q)^{M-j} (1-p)^{n-k} \\ &= \binom{M}{k} p^k q^k \sum_{t=0}^{M-k} \binom{M-k}{t} (q(1-p))^t (1-q)^{M-k-t} \\ &= \binom{M}{k} (pq)^k (q(1-p) + (1-q))^{M-k} \\ &= \binom{M}{k} (pq)^k (1-pq)^{M-k}. \end{split}$$

Thus, $X \sim \text{Bin}(M, pq)$.

Remark. What if k > n in $\mathbb{P}(X = k \mid N = n)$ above in the first line? The probability is simply 0.