

deeplearning.ai

### Overview

#### Some basic applications of word embeddings



Semantic analogies and similarity



Sentiment analysis



Classification of customer feedback

#### Advanced applications of word embeddings



Machine translation



Information extraction



Question answering

#### Learning objectives

Prerequisite: neural networks

- Identify the key concepts of word representations
- Generate word embeddings
- Prepare text for machine learning
- Implement the continuous bag-of-words model



deeplearning.ai

### Basic Word Representations

#### Outline

- Integers
- One-hot vectors
- Word embeddings

#### Integers

| Word  | Number |  |
|-------|--------|--|
| a     | 1      |  |
| able  | 2      |  |
| about | 3      |  |
| •••   | •••    |  |
| hand  | 615    |  |
| •••   | •••    |  |
| happy | 621    |  |
| •••   | •••    |  |
| zebra | 1000   |  |

#### Integers

+ Simple

- Ordering: little semantic sense

#### One-hot vectors



#### One-hot vectors

| Word  | Number | "happy" |   |       |
|-------|--------|---------|---|-------|
| а     | 1      |         | 0 | а     |
| able  | 2      |         | 0 | able  |
| about | 3      | 3       | 0 | about |
| •••   | •••    |         | : | •••   |
| hand  | 615    | 615     | 0 | hand  |
| •••   | /      | •••     | : | •••   |
| happy | 621 ←  | → 621   | 1 | happy |
| •••   |        |         | : | •••   |
| zebra | 1000   | 1000    | 0 | zebra |

#### One-hot vectors

- + Simple
- No implied ordering
- Huge vectors
- No embedded meaning







deeplearning.ai

### Word Embeddings

#### Meaning as vectors



#### Meaning as vectors



#### Word embedding vectors

- Low dimension
- + Embed meaning
  - o e.g. semantic distance

o e.g. analogies

Paris:France :: Rome:?



#### Terminology

word vectors

integers

one-hot vectors

word embedding vectors

"word vectors"

word embeddings

#### Summary

- Words as integers
- Words as vectors
  - One-hot vectors
  - Word embedding vectors
- Benefits of word embeddings for NLP



deeplearning.ai

# How to Create Word Embeddings

#### Word embedding process

#### **Hyperparameters**

Word embedding size

#### Corpus

General- Specialized purpose e.g. contracts, law books

Words in context

#### **Embedding method**

Machine learning model

Learning task

**Transformation** 

words

integers, vectors

Self-supervised

"I think [???] I am"

= unsupervised

+ supervised

Meaning



Word embeddings



deeplearning.ai

# Word Embedding Methods

#### Basic word embedding methods

- word2vec (Google, 2013)
  - Continuous bag-of-words (CBOW)
  - Continuous skip-gram / Skip-gram with negative sampling (SGNS)
- Global Vectors (GloVe) (Stanford, 2014)
- fastText (Facebook, 2016)
  - Supports out-of-vocabulary (OOV) words

#### Advanced word embedding methods

Deep learning, contextual embeddings

- BERT (Google, 2018)
- ELMo (Allen Institute for AI, 2018)
- GPT-2 (OpenAI, 2018)

Tunable pre-trained models available



deeplearning.ai

# Continuous Bag-of-Words Model

#### Continuous bag-of-words word embedding process





#### Center word prediction: rationale

The little is barking dog puppy hound terrier



#### Creating a training example





#### From corpus to training





Word embeddings

#### From corpus to training





#### From corpus to training

#### Corpus

I am happy because I am learning



Word embeddings

#### **CBOW** in a nutshell



Source: Mikolov, T., Chen, K., Corrado, G.S., & Dean, J. (2013). Efficient Estimation of Word Representations in Vector Space



deeplearning.ai

## Cleaning and Tokenization

Letter case

"The" == "the" == "THE"  $\rightarrow$  lowercase / upper case

Letter case

"The" == "the" == "THE"  $\rightarrow$  lowercase / upper case

Punctuation

```
, \; ! \; . \; ? \; \rightarrow . \qquad \qquad \text{`` `` } \quad \text{`` } \quad \text{`` } \quad \text{`` } \quad \Rightarrow \emptyset \qquad \qquad \dots \; !! \; ??? \; \rightarrow .
```

Letter case

"The" == "the" == "THE"  $\rightarrow$  lowercase / upper case

Punctuation

 $, \; ! \; . \; ? \; \rightarrow . \qquad \text{`` ` ` } \quad \text{`` } \quad \text{`` } \quad \text{`` } \quad \rightarrow \emptyset \qquad \dots \; !! \; ??? \; \rightarrow .$ 

Numbers

1 2 3 5 8  $\rightarrow \emptyset$  3.14159 90210  $\rightarrow as is/<NUMBER>$ 

Letter case

"The" == "the" == "THE"  $\rightarrow$  lowercase / upper case

Punctuation

$$, \; ! \; . \; ? \; \rightarrow . \qquad \qquad \text{`` `` } \quad \text{`` } \quad \text$$

Numbers

1 2 3 5 8 
$$\rightarrow \emptyset$$
 3.14159 90210  $\rightarrow as is/\langle NUMBER \rangle$ 

Special characters

 ∇ \$ € § ¶ \*\* → ∅

Letter case

"The" == "the" == "THE"  $\rightarrow$  lowercase / upper case

Punctuation

 $, \; ! \; . \; ? \; \rightarrow . \qquad \qquad `` \; ` \; " \; \rightarrow \emptyset \qquad \qquad ... \; !! \; ??? \; \rightarrow .$ 

Numbers

- 1 2 3 5 8  $\rightarrow \emptyset$  3.14159 90210  $\rightarrow as is/<NUMBER>$
- Special characters

   ∇ \$ € § ¶ \*\* → ∅

Special words

(3) #nlp  $\rightarrow$  :happy: #nlp

#### Example in Python: corpus



#### Example in Python: libraries

```
# pip install nltk
# pip install emoji

import nltk
from nltk.tokenize import word_tokenize
import emoji

nltk.download('punkt') # download pre-trained Punkt tokenizer for English
```

#### Example in Python: code

```
corpus = 'Who ♡ "word embeddings" in 2020? I do!!!'

data = re.sub(r'[,!?;-]+', '.', corpus)

→ Who ♡ "word embeddings" in 2020. I do.
```

#### Example in Python: code

```
corpus = 'Who ♡ "word embeddings" in 2020? I do!!!'

data = re.sub(r'[,!?;-]+', '.', corpus)
data = nltk.word_tokenize(data) # tokenize string to words

→ ['Who', '♡', '``', 'word', 'embeddings', "''", 'in', '2020', '.', 'I',
'do', '.']
```

#### Example in Python: code

```
corpus = 'Who ♥ "word embeddings" in 2020? I do!!!'
data = re.sub(r'[,!?;-]+', '.', corpus)
data = nltk.word tokenize(data) # tokenize string to words
data = [ ch.lower() for ch in data
         if ch.isalpha()
        or ch == '.'
        or emoji.get_emoji_regexp().search(ch)
```

```
\rightarrow ['who', '\heartsuit', 'word', 'embeddings', 'in', '.', 'i', 'do', '.']
```



# Sliding Window of Words in Python

#### Sliding window of words in Python

```
def get_windows(words, C):
    i = C
    while i < len(words) - C:
        center_word = words[i]
        context_words = words[(i - C):i] + words[(i+1):(i+C+1)]
        yield context_words, center_word
        i += 1</pre>
```

| I | am | happy | because | - 1 | am | learning |
|---|----|-------|---------|-----|----|----------|
| 0 | 1  | 2     | 3       | 4   | 5  | 6        |

#### Sliding window of words in Python

```
def get_windows(words, C):
     ...
     yield context_words, center_word
```

#### Sliding window of words in Python

```
→ ['I', 'am', 'because', 'I'] happy
['am', 'happy', 'I', 'am'] because
['happy', 'because', 'am', 'learning'] I
```



## Transforming Words into Vectors

#### Transforming center words into vectors

Corpus I am happy because I am learning

Vocabulary am, because, happy, I, learning

One-hot vector









#### Transforming context words into vectors

Average of individual one-hot vectors

### Final prepared training set

| Context words  | Context words vector    | Center word | Center word vector |
|----------------|-------------------------|-------------|--------------------|
| I am because I | [0.25; 0.25; 0; 0.5; 0] | happy       | [0; 0; 1; 0; 0]    |



# Architecture of the CBOW Model

#### Architecture of the CBOW model

#### **Hyperparameters**

N: Word embedding size

...





## Architecture of the CBOW Model:

**Dimensions** 

#### Dimensions (single input)



#### Dimensions (single input)

Column vectors

Row vectors

$$\mathbf{z_1} = \mathbf{x} \mathbf{W_1}^\mathsf{T} + \mathbf{b_1}$$
  $\mathbf{b_1} = \left(\begin{array}{c} \mathbf{1} \times \mathbf{N} \end{array}\right)$   $\mathbf{W_1} = \left(\begin{array}{c} \mathbf{N} \times \mathbf{V} \end{array}\right)$   $\mathbf{b_1} = \left(\begin{array}{c} \mathbf{1} \times \mathbf{N} \end{array}\right)$   $\mathbf{x} = \left(\begin{array}{c} \mathbf{1} \times \mathbf{N} \end{array}\right)$ 



# Architecture of the CBOW Model:

Dimensions 2

### Dimensions (batch input)

$$\begin{bmatrix} b_1 \end{bmatrix} \rightarrow B_1 = \begin{bmatrix} b_1 \\ m \end{bmatrix} \dots \begin{bmatrix} b_1 \\ m \end{bmatrix}$$
 N broadcasting



#### Dimensions (batch input)





## Architecture of the CBOW Model

**Activation Functions** 

#### Rectified Linear Unit (ReLU)

h



$$z_1 = W_1 x + b_1$$

$$h = ReLU(z_1)$$



$$ReLU(x) = max(0, x)$$



X

#### Softmax

Hidden layer Output layer



$$z = W_2h + b_2$$

$$\hat{\mathbf{y}} = \text{softmax}(\mathbf{z})$$





Probabilities of being center word

#### Softmax: example







### Training a CBOW Model

**Cost Function** 

#### Loss



#### **Cross-entropy loss**

$$J = -\sum_{k=1}^{V} y_k \log \hat{y}_k$$



I am happy because I am learning

#### **Cross-entropy loss**

$$J = -\sum_{k=1}^{V} y_k \log \hat{y}_k$$



#### Cross-entropy loss

$$J = -\log \hat{y}_{actual}$$
word

| У |          | ŷ    |                        |
|---|----------|------|------------------------|
| 0 | am       | 0.96 |                        |
| 0 | because  | 0.01 |                        |
| 1 | happy    | 0.01 | $\rightarrow$ J = 4.61 |
| 0 | I        | 0.01 |                        |
| 0 | learning | 0.01 |                        |

$$J = -\sum_{k=1}^{V} y_k \log \hat{y}_k$$





### Training a CBOW Model

Forward Propagation

#### Training process

- Forward propagation
- Cost
- Backpropagation and gradient descent

#### Forward propagation

$$Z_1 = W_1X + B_1$$
  $Z_2 = W_2H + B_2$   
 $H = ReLU(Z_1)$   $\hat{Y} = softmax(Z_2)$ 



#### Cost

$$J = -\sum_{k=1}^{V} y_k \log \hat{y}_k$$

#### Cost: mean of losses

$$J_{batch} = -\frac{1}{m} \sum_{i=1}^{m} \sum_{j=1}^{V} y_j^{(i)} \log \hat{y}_j^{(i)}$$

$$J_{batch} = -\frac{1}{m} \sum_{i=1}^{m} J^{(i)}$$

**Predicted** center word matrix

$$\hat{\mathbf{Y}} = \left( \begin{bmatrix} \hat{\mathbf{y}}^{(1)} & \cdots & \hat{\mathbf{y}}^{(m)} \end{bmatrix} \right) \qquad \qquad \mathbf{Y} = \left( \begin{bmatrix} \mathbf{y}^{(1)} & \cdots & \mathbf{y}^{(m)} \end{bmatrix} \right)$$

Actual center word matrix

$$Y = \left( y^{(1)} \cdots y^{(m)} \right)$$



### Training a CBOW Model

Backpropagation and Gradient Descent

### Minimizing the cost

$$J_{batch} = f(\mathbf{W_1}, \mathbf{W_2}, \mathbf{b_1}, \mathbf{b_2})$$

 Backpropagation: calculate partial derivatives of cost with respect to weights and biases

$$\frac{\partial J_{batch}}{\partial \mathbf{W_1}}, \frac{\partial J_{batch}}{\partial \mathbf{W_2}}, \frac{\partial J_{batch}}{\partial \mathbf{b_1}}, \frac{\partial J_{batch}}{\partial \mathbf{b_2}}$$

### Minimizing the cost

 Backpropagation: calculate partial derivatives of cost with respect to weights and biases

$$\frac{\partial J_{batch}}{\partial \mathbf{W_1}}, \frac{\partial J_{batch}}{\partial \mathbf{W_2}}, \frac{\partial J_{batch}}{\partial \mathbf{b_1}}, \frac{\partial J_{batch}}{\partial \mathbf{b_2}}$$

Gradient descent: update weights and biases

#### **Backpropagation**

$$\frac{\partial J_{batch}}{\partial \mathbf{W_1}} = \frac{1}{m} (\mathbf{W_2}^{\mathsf{T}} (\hat{\mathbf{Y}} - \mathbf{Y}) \cdot \text{step}(\mathbf{Z_1})) \mathbf{X}^{\mathsf{T}}$$

$$\frac{\partial J_{batch}}{\partial \mathbf{W_2}} = \frac{1}{m} (\mathbf{\hat{Y}} - \mathbf{Y}) \mathbf{H}^{\mathsf{T}}$$

$$\frac{\partial J_{batch}}{\partial \mathbf{b_1}} = \frac{1}{m} (\mathbf{W_2}^{\mathsf{T}} (\mathbf{\hat{Y}} - \mathbf{Y}) \cdot \text{step}(\mathbf{Z_1})) \mathbf{1}_m^{\mathsf{T}}$$

$$\frac{\partial J_{batch}}{\partial \mathbf{b_2}} = \frac{1}{m} (\hat{\mathbf{Y}} - \mathbf{Y}) \mathbf{1}_m^{\mathsf{T}}$$



#### Gradient descent

Hyperparameter: learning rate  $\alpha$ 

$$\mathbf{W_1} := \mathbf{W_1} - \alpha \frac{\partial J_{batch}}{\partial \mathbf{W_1}}$$

$$\mathbf{W_2} := \mathbf{W_2} - \alpha \frac{\partial J_{batch}}{\partial \mathbf{W_2}}$$

$$\mathbf{b_1} := \mathbf{b_1} - \alpha \frac{\partial J_{batch}}{\partial \mathbf{b_1}}$$

$$\mathbf{b_2} := \mathbf{b_2} - \alpha \frac{\partial J_{batch}}{\partial \mathbf{b_2}}$$



# Extracting Word Embedding Vectors

# Extracting word embedding vectors: option 1



# Extracting word embedding vectors: option 2



# Extracting word embedding vectors: option 3





# Evaluating Word Embeddings

**Intrinsic Evaluation** 

#### Test relationships between words

Analogies

```
Semantic analogies
```

```
"France" is to "Paris" as "Italy" is to <?>
```

#### Syntactic analogies

```
"seen" is to "saw" as "been" is to <?>
```

```
Ambiguity
```

"wolf" is to "pack" as "bee" is to <?> → swarm? colony?

#### Test relationships between words

Analogies

| Relationship         | Example 1           | Example 2         | Example 3            |
|----------------------|---------------------|-------------------|----------------------|
| France - Paris       | Italy: Rome         | Japan: Tokyo      | Florida: Tallahassee |
| big - bigger         | small: larger       | cold: colder      | quick: quicker       |
| Miami - Florida      | Baltimore: Maryland | Dallas: Texas     | Kona: Hawaii         |
| Einstein - scientist | Messi: midfielder   | Mozart: violinist | Picasso: painter     |
| Sarkozy - France     | Berlusconi: Italy   | Merkel: Germany   | Koizumi: Japan       |
| copper - Cu          | zinc: Zn            | gold: Au          | uranium: plutonium   |
| Berlusconi - Silvio  | Sarkozy: Nicolas    | Putin: Medvedev   | Obama: Barack        |
| Microsoft - Windows  | Google: Android     | IBM: Linux        | Apple: iPhone        |
| Microsoft - Ballmer  | Google: Yahoo       | IBM: McNealy      | Apple: Jobs          |
| Japan - sushi        | Germany: bratwurst  | France: tapas     | USA: pizza           |

#### Test relationships between words

- Analogies
- Clustering

Source: Michael Zhai, Johnny Tan, and Jinho D. Choi. 2016. <u>Intrinsic and extrinsic</u> evaluations of word embeddings



#### Test relationships between words

- Analogies
- Clustering
- Visualization

```
village
city town
gas country
oil happy
petroleum sad joyful
```



# Evaluating Word Embeddings

**Extrinsic Evaluation** 

#### Extrinsic evaluation

Named entity

Andrew works at deeplearning.ai

person organization

Test word embeddings on external task e.g. named entity recognition, parts-of-speech tagging

#### Extrinsic evaluation

Test word embeddings on external task e.g. named entity recognition, parts-of-speech tagging

+ Evaluates actual usefulness of embeddings

- Time-consuming
- More difficult to troubleshoot



# Conclusion

### Recap and assignment

- Data preparation
- Word representations
- Continuous bag-of-words model
- Evaluation

# Going further

- Advanced language modelling and word embeddings
- NLP and machine learning libraries

```
Keras # from keras.layers.embeddings import Embedding
embed_layer = Embedding(10000, 400)

PyTorch # import torch.nn as nn
embed_layer = nn.Embedding(10000, 400)
```