GPV SIGNATURES (HASH-THEN-SIGN SIGNATURES)

ADVANCED TOPICS IN CYBERSECURITY CRYPTOGRAPHY (7CCSMATC)

Martin R. Albrecht

From Wikipedia, the free encyclopedia

Falcon is a post-quantum signature scheme selected by the NIST at the fourth round of the post-quantum standardisation process. It was designed by Thomas Prest, Pierre-Alain Fouque, Jeffrey Hoffstein, Paul Kirchner, Vadim Lyubashevsky, Thomas Pornin, Thomas Ricosset, Gregor Seiler, William Whyte, and Zhenfei Zhang. [1][2][3] It relies on the hash-and-sign technique over the Gentry, Peikert, and Vaikuntanathan framework [4] over NTRU lattices. The name *Falcon* is an acronym for *Fast Fourier lattice-based compact signatures over NTRU*.

OUTLINE

Lattices

q-ary Lattices

GPV Signatures

Security Proof

LATTICES

LATTICES

A lattice Λ is a discrete subgroup of \mathbb{R}^d .

Picture credit: Léo Ducas

LATTICE BASES

G → B : easy (compute Hermite Normal form);

 $\mathsf{B} \ \to \ \mathsf{G}$: hard (BKZ, lattice sieve ...).

Picture credit: Léo Ducas

LATTICE VOLUME I

The volume of a lattice is the volume of its fundamental domain.

LATTICE VOLUME II

For any two bases G, B of the same lattice Λ :

$$\det(\mathbf{G}\cdot\mathbf{G}^{\mathsf{T}})=\det(\mathbf{B}\cdot\mathbf{B}^{\mathsf{T}}).$$

We can therefore define:

$$Vol(\Lambda) = \sqrt{\det(\mathbf{B} \cdot \mathbf{B}^T)}.$$

Picture credit: https://tex.stackexchange.com/a/42559

LENGTH OF GRAM-SCHMIDT VECTORS

It will be useful to consider the lengths of the Gram-Schmidt vectors.

The vector \mathbf{b}_i^* is the orthogonal projection of \mathbf{b}_i to the space spanned by the vectors $\mathbf{b}_0, \dots, \mathbf{b}_{i-1}$.

Informally, this means taking out the contributions in the directions of previous vectors $\mathbf{b}_0, \dots, \mathbf{b}_{i-1}$.

LENGTH OF GRAM-SCHMIDT VECTORS

It will be useful to consider the lengths of the Gram-Schmidt vectors.

The vector \mathbf{b}_i^* is the orthogonal projection of \mathbf{b}_i to the space spanned by the vectors $\mathbf{b}_0, \dots, \mathbf{b}_{i-1}$.

Informally, this means taking out the contributions in the directions of previous vectors $\mathbf{b}_0, \dots, \mathbf{b}_{i-1}$.

GRAM-SCHMIDT VECTORS AND LATTICE VOLUMES

Let B^* be the Gram–Schmidt Orthogonalisation of B. The matrix B^* is **not** a basis for Λ , but

$$\mathsf{Vol}(\mathsf{\Lambda}) = \sqrt{\mathsf{det}(\mathsf{B}^\star \cdot \mathsf{B}^{\star^\intercal})} = \prod \|\mathsf{b}_i^\star\|\,.$$

"GOOD" BASES

Recall that, independently of the basis **B** it hold that:

$$\operatorname{vol}(\Lambda) = \prod \|b_i^\star\|.$$

Therefore, it is somehow equivalent that

- $\max_i \|\mathbf{b}_i^*\|$ is small
- $\min_i \|\mathbf{b}_i^*\|$ is large
- $\cdot \kappa(B) = \min_i \|\mathbf{b}_i^{\star}\| / \max_i \|\mathbf{b}_i^{\star}\| \text{ is small }$

Good Basis

$$\kappa(G) = \text{poly}(d), \qquad \forall i : \|\mathbf{g}_i^{\star}\| = \text{poly}(d) \cdot \text{Vol}(\Lambda)^{1/d}.$$

LLL-reduced Basis

$$\kappa(\mathsf{G}) \approx (1.04)^d, \qquad \max_i \|\mathbf{g}_i^\star\| \approx (1.02)^d \cdot \mathsf{Vol}(\Lambda)^{1/d}.$$

EXAMPLE GRAM-SCHMIDT "SHAPE"

```
A = IntegerMatrix.random(120, "qary", k=60, bits=20)[::-1]
M = GSO.Mat(A, update=True)
line([(i,log(r_, 2)/2) for i, r_ in enumerate(M.r())], **plot_kwds)
```


EXAMPLE GRAM-SCHMIDT "SHAPE" AFTER LLL

```
A = LLL.reduction(A)
M = GSO.Mat(A, update=True)
line([(i,log(r_, 2)/2) for i, r_ in enumerate(M.r())], **plot_kwds)
```


BASES AND FUNDAMENTAL DOMAINS

Round'off Algorithm [Lenstra, Babai]:

Given a target t, find $v \in \Lambda$ at the center the tile.

Round Off Algorithm [Lenstra,Babai]:

Round Off Algorithm [Lenstra, Babai]:

• Use **B** to switch to the lattice \mathbb{Z}^d $\mathbf{t}' = \mathbf{B}^{-1} \cdot \mathbf{t}$

Round Off Algorithm [Lenstra, Babai]:

- Use **B** to switch to the lattice \mathbb{Z}^d $\mathbf{t}' = \mathbf{B}^{-1} \cdot \mathbf{t}$
- Round each coordinate $v' = \lfloor t' \rceil$

Round Off Algorithm [Lenstra, Babai]:

- Use **B** to switch to the lattice \mathbb{Z}^d $\mathbf{t}' = \mathbf{B}^{-1} \cdot \mathbf{t}$
- Round each coordinate $v' = \lfloor t' \rfloor$
- Switch back to Λ $\mathbf{v} = \mathbf{B} \cdot \mathbf{v}'$

NEAREST-PLANE ALGORITHM

There is a better algorithm (Nearest Plane) based on Gram–Schmidt Orthogonalisation:

- Worst-case distance: $\frac{1}{2}\sqrt{\sum \|\mathbf{b}_{i}^{*}\|^{2}}$
- Correct decoding of $\mathbf{t} = \mathbf{v} + \mathbf{e}$ for $\mathbf{v} \in \Lambda$ if $\|\mathbf{e}\| \le \min \|\mathbf{b}_i^{\star}\|$

(Approx-CVP)

(BDD)

TRAPDOORS FROM LATTICES?

Good basis **G**: can solve Approx-CVP / BDD.

Bad basis **B**: solving CVP is **hard**.

Can we use this as a trapdoor?

SIGNATURES

Sign:

- 1. Hash the message to a random vector \mathbf{m} .
- 2. Apply Nearest Plane with a good basis G: find $s \in \Lambda$ close to m.

Credit: Léo Ducas

Verify:

- 1. Check that $s \in \Lambda$ using the bad basis B
- 2. Check that **m** is close to **s**.

A STATISTICAL ATTACK

The difference s-m is always inside the parallelepiped spanned by the good basis G or its Gram-Schmidt Orthogonalisation G^* :

- Each signatures (s, m) leaks information about G.
- Learning a parallepiped from few signatures [NR06]
- Total break of original GGH and NTRUSign schemes

GAUSSIAN SAMPLING

The distribution s-m can be made independent of G by randomising the above algorithms:

Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for hard lattices and new cryptographic constructions. In: 40th ACM STOC. ed. by Richard E. Ladner and Cynthia Dwork. ACM Press, May 2008, pp. 197–206. DOI: 10.1145/1374376.1374407

Q-ARY LATTICES

Construction of q-ary Lattices (Primal / Construction A)

- Let q be a prime integer¹ and n < m two positive integers.
- The matrix $\mathbf{A} \in \mathbb{Z}_q^{m \times n}$ spans the q-ary lattice:

$$\Lambda_q(\mathsf{A}) \coloneqq \{\mathsf{x} \in \mathbb{Z}^m \,|\, \exists\, \mathsf{y} \in \mathbb{Z}_q^n,\, \mathsf{x} \equiv \mathsf{A} \cdot \mathsf{y} \bmod q\} = \ \mathsf{A} \cdot \mathbb{Z}_q^n + q\mathbb{Z}^m$$

Lattice Parameters

Assuming A is full-rank:

- · dim($\Lambda_a(A)$) = m
- · Vol($\Lambda_a(\mathbf{A})$) = q^{m-n}

¹for simplicity

EXAMPLE

```
q = 7; n = 3; m = 7
A = random_matrix(GF(q), n, m)
B = A.lift().stack(q * identity_matrix(m)); B
```

```
[3 3 2 1 2 6 2]
[2 6 1 2 5 5]
[1 3 6 4 4 3]
[7 ]
[ 7 ]
[ 7 ]
[ 7 ]
[ 7 ]
[ 7 ]
[ 7 ]
[ 7 ]
[ 7 ]
```

```
B.echelon_form()[:B.rank()]
```

```
[1 3 4 5 ]
[ 1 2 5 4]
[ 1 3 6 2 2]
[ 7 ]
[ 7 ]
[ 7]
```

Row-Based

SageMath's convention is "row based", i.e. it considers combinations of rows not columns. The literature on lattices favours column-based notation, i.e. combinations of columns. You'll need to transpose the above picture to make it consistent with the slide before.

Construction of q-ary Lattices (Dual / Parity-Check)

- Let q be a prime integer² and n < m two positive integers.
- The matrix $A \in \mathbb{Z}_q^{n \times m}$ is the parity-check of the lattice:

$$\Lambda_q^{\perp}(\mathsf{A}) \coloneqq \{\mathsf{X} \in \mathbb{Z}^m \,|\, \mathsf{A} \cdot \mathsf{X} \equiv \mathsf{0} \bmod q\} = \ker(\mathsf{X} \mapsto \mathsf{A} \cdot \mathsf{X} \bmod q)$$

Lattice parameters

Assuming A is full-rank:

- · $\dim(\Lambda_q^{\perp}(A)) = m$
- · $Vol(\Lambda_q^{\perp}(A)) = q^n$

²for simplicity

EXAMPLE

```
q = 7; n = 3; m = 7
A = random_matrix(GF(q), n, m)
K = A.right_kernel().basis_matrix()
B = K.lift().stack(q * identity_matrix(m)); B
```

B.echelon_form()[:B.rank()]

```
[1 2 6 6]

[ 1 6 3]

[ 1 4 1 ]

[ 1 4 1 1]

[ 7 ]

[ 7 ]
```

THE SHORT INTEGER SOLUTION PROBLEM (SIS)

Definition (SIS Assumption)

Given a random matrix $\mathbf{A} \in \mathbb{Z}_q^{n \times m}$, finding a small non-zero $\mathbf{x} \in \mathbb{Z}^m$ such that

 $\mathbf{A} \cdot \mathbf{x} \equiv \mathbf{0} \mod q$ is hard.³

Lattice Formulation

Solving Approx-SVP in $\Lambda_a^{\perp}(\mathbf{A})$ is hard.

In [Ajt98], Ajtai established that if solving SIS is easy then solving Approx-SVP for any lattice is also easy.

³Also on a quantum computer!

A SIMPLE APPLICATION OF SIS

Consider the function:

$$f_{\mathsf{A}}: \{0,1\}^m \to \mathbb{Z}_q^n, \qquad \mathsf{x} \mapsto \mathsf{A} \cdot \mathsf{x} \bmod q$$

$SIS \Rightarrow Collision$ Resistant Hashing and One-Way Function

Finding collisions is as hard as SIS⁴

(take the difference)

Moreover, if $m \gg n \log q$:

• f_A is highly surjective

(many pre-images for any image)

Finding pre-images is hard

(show it!)

⁴Collisions must exist when $m > n \log q$.

OUTLINE

KeyGen generate a random (looking) matrix **A** together with a short basis td for the lattice $\Lambda_a^{\perp}(\mathbf{A}) \coloneqq \{\mathbf{x} \in \mathbb{Z}^m | \mathbf{A} \cdot \mathbf{x} \equiv \mathbf{0} \bmod q\}.$

Sign Compute H(m).

Find an arbitrary, not-necessarily short, preimage $\mathbf{u} : \mathbf{A} \cdot \mathbf{u} \equiv H(m) \mod q$. Use the trapdoor td to solve Approx-CVP for \mathbf{u} on $\Lambda_q^{\perp}(\mathbf{A})$, call it \mathbf{z} . By construction $\mathbf{A} \cdot \mathbf{z} \equiv \mathbf{0} \mod q$. Output $\mathbf{v} := \mathbf{u} - \mathbf{z}$. By construction $\|\mathbf{v}\|$ is small.

Vorific Charlethat A w — 11(m) made a and that IIvil is an

Verify Check that $\mathbf{A} \cdot \mathbf{y} \equiv H(m) \mod q$ and that $\|\mathbf{y}\|$ is small.

SCHEME

KeyGen(1^{λ})

A, td \leftarrow \$ TrapGen(1ⁿ, 1^m, q, β) return vk := A, sk := td

Sign(m, sk)

$$r \leftarrow s \{0,1\}^{\lambda}$$

 $y \leftarrow s \text{SampPre(td}, H(m, r), \beta')$
 $return \sigma := (v, r)$

Verify(vk, σ , m)

return $\|\mathbf{y}\| \stackrel{?}{\leq} \beta' \wedge H(m, \mathbf{r}) \stackrel{?}{=} \mathbf{A} \cdot \mathbf{y}$

- (A, td) \leftarrow TrapGen(1ⁿ, 1^m, q, β) takes dimensions $n, m \in \mathbb{N}$, a modulus $q \in \mathbb{N}$ and a norm bound $\beta \in \mathbb{R}$ and generates a matrix $\mathbf{A} \in \mathbb{Z}_q^{n \times m}$ and a trapdoor td.
 - When $\ell > 2m \log q$, the distribution of **A** is within $\operatorname{negl}(\lambda)$ statistical distance to the uniform distribution on $\mathbb{Z}_q^{n \times m}$.
- $\mathbf{u} \leftarrow \mathsf{SampD}(1^n, 1^m, \beta')$ outputs an element in $\mathbf{u} \in \mathbb{Z}^m$ with norm bound $\beta' \geq \beta$. • $\mathbf{v} := \mathbf{A} \cdot \mathbf{u} \mod a$ is within $\mathsf{negl}(\lambda)$ statistical distance to the
 - $\mathbf{v} \coloneqq \mathbf{A} \cdot \mathbf{u} \mod q$ is within $\operatorname{negl}(\lambda)$ statistical distance to the uniform distribution on \mathbb{Z}_q^n .
- $\mathbf{u} \leftarrow \text{SampPre}(\mathsf{td}, \mathbf{v}, \beta')$ takes a trapdoor td , a vector $\mathbf{v} \in \mathbb{Z}_q^n$ and a norm bound $\beta' \geq \beta$ and samples $\mathbf{u} \in \mathbb{Z}^\ell$ satisfying $\mathbf{A} \cdot \mathbf{u} \equiv \mathbf{v} \mod q$ and $\|\mathbf{u}\| \leq \beta'$.
 - \mathbf{u} is within $\operatorname{negl}(\lambda)$ statistical distance to $\mathbf{u} \leftarrow \operatorname{SampD}(1^n, 1^m, \mathcal{R}, \beta')$ conditioned on $\mathbf{v} \equiv \mathbf{A} \cdot \mathbf{u} \mod q$.

SECURITY PROOF

EUF-CMA IN THE ROM

$$\mathsf{Adv}^{\mathrm{euf\text{-}cma}}_{\mathcal{A},\Sigma}(\lambda) \coloneqq \mathsf{Pr}[\mathsf{EUF\text{-}CMA}^{\mathcal{A}}_{\Sigma}(\lambda) \Rightarrow 1]$$

INLINING GPV SIGNATURES

CHANGING THE RO

Game ₁	S(m)	H(<i>m</i> , r)
$\mathcal{Q}, \mathcal{H}, \mathcal{P} \leftarrow \emptyset, \emptyset, \emptyset;$	$r \leftarrow \$ \{0,1\}^{\lambda}$	if $(m, r) \notin \mathcal{H}$ then
A, td ←\$ TrapGen(···)	$y \leftarrow s SampPre(td, H(m, r), \beta')$	$\mathbf{y} \leftarrow \$ \operatorname{SampD}(\cdots, \beta')$
$(m^*, (\mathbf{y}^*, \mathbf{r}^*)) \leftarrow \mathcal{A}^{S,H}(vk);$	$\sigma := (y,r)$	$t \coloneqq A \cdot y \bmod q$
$b_0 \coloneqq (m^\star, \cdot) \notin \mathcal{Q}$	$\mathcal{Q} \leftarrow \mathcal{Q} \cup \{(m, \sigma)\}$	$\mathcal{H}[m, \mathbf{r}] \leftarrow t$
$b_1 \coloneqq \ \mathbf{y}^{\star}\ \le \beta'$	return σ	$\mathcal{P}[m, r] \leftarrow y$
$b_2 := H(m^*, \mathbf{r}^*) \equiv \mathbf{A} \cdot \mathbf{y}^*$		return $\mathcal{H}[m,r]$
$b_0 \wedge b_1 \wedge b_2$		

By the Leftover Hash Lemma the distributions of Game₀ and Game₁ are statistically close.

BOOKKEEPING

Game ₂	S(<i>m</i>)	$H(m, \mathbf{r})$
$\overline{\mathcal{Q},\mathcal{H},\mathcal{P}\leftarrow\emptyset,\emptyset,\emptyset;}$	$r \leftarrow \$ \{0,1\}^{\lambda}$	if $(m, r) \notin \mathcal{H}$ then
bad ← false	if $(m, r) \in \mathcal{H}$ then	$y \leftarrow \$ SampD(\cdots, \beta')$
$A, td \leftarrow s TrapGen(\cdots)$	bad ← true	$t := A \cdot y \bmod q$
$(m^*,(\mathbf{y}^*,\mathbf{r}^*))\leftarrow \mathcal{A}^{S,H}(vk);$	$y \leftarrow s SampPre(td, H(m, r), \beta')$	$\mathcal{H}[m, r] \leftarrow t$
$b_0 \coloneqq (m^\star, \cdot) \notin \mathcal{Q}$	$\sigma \coloneqq (y,r)$	$\mathcal{P}[m, \mathbf{r}] \leftarrow \mathbf{y}$
$b_1 := \ \mathbf{y}^\star\ \le \beta'$	$\mathcal{Q} \leftarrow \mathcal{Q} \cup \{(m,\sigma)\}$	return $\mathcal{H}[m,r]$
$b_2 := H(m^*, \mathbf{r}^*) \equiv \mathbf{A} \cdot \mathbf{y}^*$	return σ	
$b_0 \wedge b_1 \wedge b_2$		

No change in behaviour.

AVOID COLLISIONS

Game ₃	S(<i>m</i>)	$H(m, \mathbf{r})$
$\mathcal{Q}, \mathcal{H}, \mathcal{P} \leftarrow \emptyset, \emptyset, \emptyset;$	$r \leftrightarrow \{0,1\}^{\lambda}$	if $(m, r) \notin \mathcal{H}$ then
bad ← false	if $(m, r) \in \mathcal{H}$ then	$y \leftarrow \$ SampD(\cdots, \beta')$
A , td ←\$ TrapGen(···)	$bad \leftarrow true$	$t \coloneqq A \cdot y \bmod q$
$(m^*, (\mathbf{y}^*, \mathbf{r}^*)) \leftarrow \mathcal{A}^{S,H}(vk);$	abort	$\mathcal{H}[m, \mathbf{r}] \leftarrow t$
$b_0 \coloneqq (m^*, \cdot) \notin \mathcal{Q}$	$y \leftarrow s SampPre(td, H(m, r), \beta')$	$\mathcal{P}[m, \mathbf{r}] \leftarrow \mathbf{y}$
$b_1 \coloneqq \ \mathbf{y}^{\star}\ \le \beta'$	$\sigma := (y,r)$	return $\mathcal{H}[m,r]$
$b_2 := H(m^*, \mathbf{r}^*) \equiv \mathbf{A} \cdot \mathbf{y}^*$	$\mathcal{Q} \leftarrow \mathcal{Q} \cup \{(m, \sigma)\}$	
$b_0 \wedge b_1 \wedge b_2$	return σ	

Apply Fundamental Lemma of Game Playing with $Pr[bad] \approx |Q|/2^{\lambda/2}$.

FAKE SIGNATURES

Game ₄	S(<i>m</i>)	$H(m, \mathbf{r})$
$\overline{\mathcal{Q},\mathcal{H},\mathcal{P}\leftarrow\emptyset,\emptyset,\emptyset;}$	$r \leftarrow \$ \{0,1\}^{\lambda}$	if $(m, r) \notin \mathcal{H}$ then
bad ← false	if $(m, r) \in \mathcal{H}$ then	$y \leftarrow \$ SampD(\cdots, \beta')$
$A, td \leftarrow s TrapGen(\cdots)$	$bad \leftarrow true$	$t \coloneqq A \cdot y \bmod q$
$(m^*,(\mathbf{y}^*,\mathbf{r}^*))\leftarrow \mathcal{A}^{S,H}(vk);$	abort	$\mathcal{H}[m,r] \leftarrow t$
$b_0 := (m^\star, \cdot) \notin \mathcal{Q}$	$H(m, \mathbf{r})$	$\mathcal{P}[m, \mathbf{r}] \leftarrow \mathbf{y}$
$b_1 := \ \mathbf{y}^\star\ \le \beta'$	$\mathbf{y} \leftarrow \mathcal{P}[m, \mathbf{r}]$	return $\mathcal{H}[m,r]$
$b_2 := H(m^*, \mathbf{r}^*) \equiv \mathbf{A} \cdot \mathbf{y}^*$	$\sigma := (y,r)$	
$b_0 \wedge b_1 \wedge b_2$	$\mathcal{Q} \leftarrow \mathcal{Q} \cup \{(m,\sigma)\}$	
	return σ	

Use SampPre \approx SampD.

THROW AWAY TRAPDOOR

Game ₅	S(<i>m</i>)	$H(m, \mathbf{r})$
$\mathcal{Q}, \mathcal{H}, \mathcal{P} \leftarrow \emptyset, \emptyset, \emptyset;$	$r \leftarrow \$ \{0,1\}^{\lambda}$	if $(m, r) \notin \mathcal{H}$ then
bad ← false	if $(m, r) \in \mathcal{H}$ then	$y \leftarrow \$ SampD(\cdots, \beta')$
$A \leftarrow \sharp \mathbb{Z}_q^{n \times 2 n \lceil \log q \rceil}$	$bad \leftarrow true$	$t \coloneqq A \cdot y \bmod q$
$(m^*,(\mathbf{y}^*,\mathbf{r}^*))\leftarrow \mathcal{A}^{S,H}(vk);$	abort	$\mathcal{H}[m, r] \leftarrow t$
$b_0 \coloneqq (m^\star, \cdot) \notin \mathcal{Q}$	<i>H</i> (<i>m</i> , r)	$\mathcal{P}[m, \mathbf{r}] \leftarrow \mathbf{y}$
$b_1 \coloneqq \ \mathbf{y}^\star\ \le \beta'$	$\mathbf{y} \leftarrow \mathcal{P}[m, \mathbf{r}]$	return $\mathcal{H}[m,r]$
$b_2 := H(m^*, \mathbf{r}^*) \equiv \mathbf{A} \cdot \mathbf{y}^*$	$\sigma := (y,r)$	
$b_0 \wedge b_1 \wedge b_2$	$\mathcal{Q} \leftarrow \mathcal{Q} \cup \{(m,\sigma)\}$	
	return σ	

Use that TrapGen produces pseudorandom A.

INVOKE SIS

We turn an adversary A that wins Game₅ into an adversary that breaks SIS for A.

- The adversary outputs $(m^*, (\mathbf{y}^*, \mathbf{r}^*))$ s.t. $H(m^*, \mathbf{r}^*) \equiv \mathbf{A} \cdot \mathbf{y}^*$ and $\|\mathbf{y}^*\| \leq \beta'$.
- If \mathcal{A} has not called $H(m^*, r^*)$ before producing its forgery, $\mathbf{t} := H(m^*, r^*)$ is unknown and (close to) uniformly random: it succeeds with probability $1/q^n < 2^{-\lambda}$.
- If \mathcal{A} has called $H(m^*, r^*)$ then $\mathbf{y} \leftarrow \mathcal{P}[m^*, r^*]$ with $\|\mathbf{y}\| \leq \beta'$ and with high probability $\mathbf{y} \neq \mathbf{y}^*$.

$$H(m^*, r^*) \equiv A \cdot y^* \equiv A \cdot y \quad \Rightarrow \quad 0 \equiv A \cdot (y^* - y) \text{ and } ||y^* - y|| \le 2 \beta'$$

THE ROLE OF r

If the signing algorithm did not sample a fresh ${\bf r}$ for each signature, then

- Game₃ would output new, fresh **y** on each call, but
- · Game₄ would output the same **y** on each call.

which is easy to distinguish by just calling the signing algorithm twice.

Corresponding Attack

Without \mathbf{r} , when \mathcal{A} calls the signing oracle twice on the same m, it would get two different preimages $\mathbf{y}_0, \mathbf{y}_1$ for H(m):

$$H(m) \equiv \mathbf{A} \cdot \mathbf{y}_0 \equiv \mathbf{A} \cdot \mathbf{y}_1 \quad \Rightarrow \quad \mathbf{0} \equiv \mathbf{A} \cdot (\mathbf{y}_0 - \mathbf{y}_1) \text{ and } \|\mathbf{y}_0 - \mathbf{y}_1\| \le 2 \, \beta'.$$

• This solves SIS, which is supposed to be hard for our security proof to work.

THE ROLE OF r

If the signing algorithm did not sample a fresh ${\bf r}$ for each signature, then

- Game₃ would output new, fresh **y** on each call, but
- · Game₄ would output the same **y** on each call.

which is easy to distinguish by just calling the signing algorithm twice.

Corresponding Attack

Without \mathbf{r} , when \mathcal{A} calls the signing oracle twice on the same m, it would get two different preimages $\mathbf{y}_0, \mathbf{y}_1$ for H(m):

$$H(m) \equiv \mathbf{A} \cdot \mathbf{y}_0 \equiv \mathbf{A} \cdot \mathbf{y}_1 \quad \Rightarrow \quad \mathbf{0} \equiv \mathbf{A} \cdot (\mathbf{y}_0 - \mathbf{y}_1) \text{ and } \|\mathbf{y}_0 - \mathbf{y}_1\| \le 2 \, \beta'.$$

- This solves SIS, which is supposed to be hard for our security proof to work.
- This gives a short vector in $\Lambda_q^{\perp}(\mathbf{A})$, such short vectors make up our trapdoor!

IN THE RANDOM ORACLE MODEL WE CAN CHOOSE WHAT THE HASH FUNCTION OUTPUTS.

REFERENCES I

- [Ajt98] Miklós Ajtai. The Shortest Vector Problem in L2 is NP-hard for Randomized Reductions (Extended Abstract). In: 30th ACM STOC. ACM Press, May 1998, pp. 10–19. DOI: 10.1145/276698.276705.
- [GPV08] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for hard lattices and new cryptographic constructions. In: 40th ACM STOC. Ed. by Richard E. Ladner and Cynthia Dwork. ACM Press, May 2008, pp. 197–206. DOI: 10.1145/1374376.1374407.
- [NR06] Phong Q. Nguyen and Oded Regev. Learning a Parallelepiped: Cryptanalysis of GGH and NTRU Signatures. In: EUROCRYPT 2006. Ed. by Serge Vaudenay. Vol. 4004. LNCS. Springer, Berlin, Heidelberg, 2006, pp. 271–288. DOI: 10.1007/11761679_17.