Comparing the performance of image registration frameworks (Voxelmorph, SPAM, Airlab) on video of retinal

Anh Quang

January 10, 2024

Agenda

- Introduction: Voxelmorph, SPAM, Airlab
 - Problem: does not work when directly apply on retina video
- Experiment 1: MNIST data
 - A. Moving images are affine transformations of fixed image (rigid)
 - B. Moving images are non-rigid transformation of fixed image
- Experiment 2: simpler image of retina vessel (Airlab only)
 - A. Moving images are affine transformations of fixed image
 - B. Add additional specific patterns to fixed image

Evaluation

Evaluation by mean squared error over all pixels intensity between the fixed image (F) and the transformed of moving image (G')

$$MSE = \frac{1}{XY} \sum_{x=1}^{X} \sum_{y=1}^{Y} (F(x,y) - G'(x,y))^{2}$$

Experiment 1: MNIST data

a. Moving images are affine transformations of fixed image (rigid)

Airlab

Translation x = -2Translation y = -2

Fixed image

Rotation angle = -20 degree

Moving image

Overlay fixed and moving image

Transformed image

Overlay fixed and transformed image

Comparison

 $t_x \in [-5, 5]$ $t_y \in [-5, 5]$ $\phi \in [-60, 60]$

Registration Loss

Rotation Loss

b. Moving images are non-rigid transformation of fixed image

Original MNIST data set number 5

	Airlab	SPAM	Voxelmorph
Loss (mean for 1000 pairs)	0.09	4909 (diverge)	0.002
Speed(frame/second)	0.128	37.43	14.83

Experiment 2: simpler image of retina (Airlab only)

- Input: original fixed image
- X_trans = 10
- Y_trans = 5
- Rotation = 1 deg
- → well registered
- X_trans = 10
- Y_trans = 5
- Rotation = 2
- → does not work

- Overlay of fixed and moving image
- Overlay of fixed and transformed image

- Input: fixed image with rectangles
- X_trans = 10
- Y_trans = 5
- Rotation = 4 deg
- → well registered up to 4 deg rotation
- X_trans = 10
- Y_trans = 5
- Rotation = 5 deg
- → does not work

 Overlay of original images Overlay of fixed and transformed image

- Inputs are images with random lines
- X_trans = 10
- Y_trans = 5
- Rotation = 7 deg
- → well registered up to 4 deg rotation
- X_trans = 10
- Y_trans = 5
- Rotation = 8
- → does not work from 8 deg rotation
- Airlab applied on retinal images works even worst, increase the number of iteration does not help

 Overlay of original images Overlay of fixed and transformed image