HW3: Occupation Dataset

Tingyi Lu 804817032

Introduction:

Special thanks to: https://github.com/guipsamora) for sharing his datasets, materials, and questions.

• https://github.com/justmarkham (https://github.com/justmarkham) for sharing the dataset and materials.

Out[3]:

age	gender	occupation	zip	code
ugu	gonaci	oooapation	P_	_0040

user_id				
1	24	М	technician	85711
2	53	F	other	94043
3	23	М	writer	32067
4	24	М	technician	43537
5	33	F	other	15213

```
In [4]: # Step 2. How many observations and columns are in the data?
print(users.shape)
(943, 4)
```

```
In [5]: # Step 3. How many different occupations there are in this dataset?
        len(users.loc[:,'occupation'].unique())
Out[5]: 21
In [6]: # Step 4. What is the most frequent occupation?
        users.occupation.value counts().idxmax()
Out[6]: 'student'
In [7]: # Step 5. Discover what is the mean age per occupation.
        # Sort the results and find the 3 occupations with the lowest mean age a
        nd the 3 with the highest
        users['age'].groupby(users['occupation']).mean().sort values().head(3)
Out[7]: occupation
        student
                         22.081633
        none
                         26.55556
        entertainment
                         29.22222
        Name: age, dtype: float64
In [8]: users['age'].groupby(users['occupation']).mean().sort_values().tail(3)
Out[8]: occupation
        educator
                    42.010526
        doctor
                    43.571429
        retired
                    63.071429
        Name: age, dtype: float64
```

Out[9]: occupation doctor 100.000000 engineer 97.014925 technician 96.296296 92.857143 retired programmer 90.909091 executive 90.625000 scientist 90.322581 entertainment 88.88889 lawyer 83.333333 salesman 75.000000 educator 72.631579 student 69.387755 other 65.714286 marketing 61.538462 writer 57.77778 none 55.55556 administrator 54.430380 artist 53.571429 librarian 43.137255 healthcare 31.250000 homemaker 14.285714 Name: gender, dtype: float64

In [10]: # Step 7. For each occupation, calculate the minimum and maximum ages
See groupby and agg() to perform multiple aggregate functions at once
users['age'].groupby(users['occupation']).agg(['min', 'max'])

Out[10]:

occupation		
administrator	21	70
artist	19	48
doctor	28	64
educator	23	63
engineer	22	70
entertainment	15	50
executive	22	69
healthcare	22	62
homemaker	20	50
lawyer	21	53
librarian	23	69
marketing	24	55
none	11	55
other	13	64
programmer	20	63
retired	51	73
salesman	18	66
scientist	23	55
student	7	42
technician	21	55
writer	18	60

In [11]: # Step 8. For each combination of occupation and gender, calculate the m
 ean age.
 # Arrange the results in a table so each row is an occupation, and you h
 ave a
 # column of the average male age and another column with the average fem
 ale age.
 # Sort the resulting table by Female mean age from least to greatest
 users['age'].groupby([users['occupation'], users['gender']]).mean().unst
 ack().sort_values(by = 'F')

Out[11]:

gender	F	M
occupation		
student	20.750000	22.669118
salesman	27.000000	38.555556
scientist	28.333333	36.321429
engineer	29.500000	36.600000
artist	30.307692	32.333333
entertainment	31.000000	29.000000
programmer	32.166667	33.216667
homemaker	34.166667	23.000000
other	35.472222	34.028986
none	36.500000	18.600000
marketing	37.200000	37.875000
writer	37.631579	35.346154
technician	38.000000	32.961538
educator	39.115385	43.101449
lawyer	39.500000	36.200000
healthcare	39.818182	45.400000
librarian	40.000000	40.000000
administrator	40.638889	37.162791
executive	44.000000	38.172414
retired	70.000000	62.538462
doctor	NaN	43.571429

Out[12]:

gender	F	М
occupation		
administrator	36.0	43.0
artist	13.0	15.0
doctor	NaN	7.0
educator	26.0	69.0
engineer	2.0	65.0
entertainment	2.0	16.0
executive	3.0	29.0
healthcare	11.0	5.0
homemaker	6.0	1.0
lawyer	2.0	10.0
librarian	29.0	22.0
marketing	10.0	16.0
none	4.0	5.0
other	36.0	69.0
programmer	6.0	60.0
retired	1.0	13.0
salesman	3.0	9.0
scientist	3.0	28.0
student	60.0	136.0
technician	1.0	26.0
writer	19.0	26.0

Out[13]:

gender	F	М
occupation		
homemaker	0.857143	0.142857
healthcare	0.687500	0.312500
librarian	0.568627	0.431373
artist	0.464286	0.535714
administrator	0.455696	0.544304
none	0.444444	0.55556
writer	0.422222	0.577778
marketing	0.384615	0.615385
other	0.342857	0.657143
student	0.306122	0.693878
educator	0.273684	0.726316
salesman	0.250000	0.750000
lawyer	0.166667	0.833333
entertainment	0.111111	0.888889
scientist	0.096774	0.903226
executive	0.093750	0.906250
programmer	0.090909	0.909091
retired	0.071429	0.928571
technician	0.037037	0.962963
engineer	0.029851	0.970149
doctor	NaN	1.000000

```
In [14]: # Create a stacked barchart showing the results above
    step10.plot.bar(stacked = True)
```

Out[14]: <matplotlib.axes._subplots.AxesSubplot at 0x11e5b4c50>


```
In [15]: # Extract the first digit of each zip code
    # and create a new column called 'region' that maps the
    # first digit of the zip to new values using this dictionary:
    d = {'0': 'New England',
        '1': 'Mid-Atlantic',
        '2': 'Central East Coast',
        '3': 'The South',
        '4': 'Midwest',
        '5': 'Northern Great Plains',
        '6': 'Central Great Plains',
        '7': 'Southern Central',
        '8': 'Mountain Desert',
        '9': 'West Coast'}

# print the first 5 rows of the result
```

```
In [16]: users['region'] = users.zip_code.str[0].map(d)
users.head()
```

Out[16]:

	age	gender	occupation	zip_code	region
user_id					
1	24	М	technician	85711	Mountain Desert
2	53	F	other	94043	West Coast
3	23	М	writer	32067	The South
4	24	М	technician	43537	Midwest
5	33	F	other	15213	Mid-Atlantic

```
In [17]: # for the occuptation 'retired', find the mean age of each region
    users[users['occupation']=='retired']['age'].groupby(users['region']).me
    an()
```

Out[17]: region

```
Central East Coast
                          60.0
Central Great Plains
                         59.5
Mid-Atlantic
                          60.0
Midwest
                          69.0
New England
                          65.0
Northern Great Plains
                         61.0
The South
                          73.0
West Coast
                          60.5
Name: age, dtype: float64
```