

HEXFET® Power MOSFET

V _{DS}	-30	V
R _{DS(on) max} (@V _{GS} = 10V)	4.6	$\mathbf{m}\Omega$
Q _{g (typical)}	110	nC
R _{G (typical)}	2.8	Ω
I _D (@T _A = 25°C)	-21	A

Applications

• Charge and Discharge Switch for Notebook PC Battery Application

Features and Benefits

Features

Low R_{DSon} ($\leq 4.6m\Omega$)
Industry-Standard PQFN Package
RoHS Compliant Containing no Lead, no Bromide and no Halogen

Resulting Benefits

results in	Lower Conduction Losses
	Multi-Vendor Compatibility
\Rightarrow	Environmentally Friendlier

Orderable part number	Package Type	Standard Pack		Note
-		Form	Quantity	
IRFH9310TRPBF	PQFN 5mm x 6mm	Tape and Reel	4000	

Absolute Maximum Ratings

	Parameter	Max.	Units	
V_{DS}	Drain-to-Source Voltage	-30	V	
V_{GS}	Gate-to-Source Voltage	± 20		
I _D @ T _A = 25°C	Continuous Drain Current, V _{GS} @ -10V	-21		
I _D @ T _A = 70°C	Continuous Drain Current, V _{GS} @ -10V	-17		
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ -10V (Silicon Limited)	-107	┐ ,	
$I_D @ T_C = 70^{\circ}C$	Continuous Drain Current, V _{GS} @ -10V (Silicon Limited)	- 86	A	
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ -10V (Package Limited)	-40	7	
I _{DM}	Pulsed Drain Current ①	-170		
P _D @T _A = 25°C	Power Dissipation @	3.1	W	
P _D @ T _A = 70°C	Power Dissipation @	2.0	v	
	Linear Derating Factor	0.025	W/°C	
T_J	Operating Junction and	-55 to + 150	°C	
T _{STG}	Storage Temperature Range			

Notes ① through ⑥ are on page 2

Static @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
BV _{DSS}	Drain-to-Source Breakdown Voltage	-30			V	$V_{GS} = 0V, I_D = -250\mu A$
$\Delta BV_{DSS}/\Delta T_{J}$	Breakdown Voltage Temp. Coefficient		0.020		V/°C	Reference to 25°C, I _D = -1mA
R _{DS(on)}	Static Dynin to Source On Desistance		3.7	4.6	0	V _{GS} = -10V, I _D = -21A ③
	Static Drain-to-Source On-Resistance		5.7	7.1	mΩ	$V_{GS} = -4.5V, I_D = -17A$ ③
V _{GS(th)}	Gate Threshold Voltage	-1.3	-1.9	-2.4	V	$V_{DS} = V_{GS}$, $I_D = -100\mu A$
$\Delta V_{GS(th)}$	Gate Threshold Voltage Coefficient		-5.8		mV/°C	$V_{DS} = V_{GS}, I_D = -100\mu A$
I _{DSS}	Drain-to-Source Leakage Current			-1.0		$V_{DS} = -24V, V_{GS} = 0V$
				-150	μA	$V_{DS} = -24V, V_{GS} = 0V, T_{J} = 125^{\circ}C$
I _{GSS}	Gate-to-Source Forward Leakage			-100	^	V _{GS} = -20V
	Gate-to-Source Reverse Leakage			100	nA	V _{GS} = 20V
gfs	Forward Transconductance	39			S	$V_{DS} = -10V, I_{D} = -17A$
Q_g	Total Gate Charge ©		58		nC	$V_{DS} = -15V, V_{GS} = -4.5V, I_{D} = -17A$
Q _g	Total Gate Charge ®	T	110	165		V _{GS} = -10V
Q_{gs}	Gate-to-Source Charge ®	_	17		nC	V _{DS} = -15V
Q_{gd}	Gate-to-Drain Charge ®	_	28			I _D = -17A
R_G	Gate Resistance ©		2.8		Ω	
t _{d(on)}	Turn-On Delay Time		25			$V_{DD} = -15V, V_{GS} = -4.5V$ ③
t _r	Rise Time	_	47		ns	$I_D = -1.0A$
t _{d(off)}	Turn-Off Delay Time		65		l lis	$R_G = 1.8\Omega$
t _f	Fall Time	_	70			See Figs. 19a & 19b
C _{iss}	Input Capacitance	_	5250			$V_{GS} = 0V$
C _{oss}	Output Capacitance	_	1300		pF	V _{DS} = -15V
C _{rss}	Reverse Transfer Capacitance		880			f = 1.0MHz

Avalanche Characteristics

	Parameter	Тур.	Max.	Units
E _{AS}	Single Pulse Avalanche Energy ②		170	mJ
I _{AR}	Avalanche Current ①		-17	Α

Diode Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions
Is	Continuous Source Current			-3.1		MOSFET symbol
	(Body Diode)			-0.1	A	showing the
I _{SM}	Pulsed Source Current			-170	_ ^	integral reverse
	(Body Diode) ①		-170	-170		p-n junction diode.
V_{SD}	Diode Forward Voltage			-1.2	V	$T_J = 25^{\circ}C$, $I_S = -3.1A$, $V_{GS} = 0V$ ③
t _{rr}	Reverse Recovery Time		42	63	ns	$T_J = 25^{\circ}C$, $I_F = -3.1A$, $V_{DD} = -24V$
Q _{rr}	Reverse Recovery Charge		42	63	nC	di/dt = 100/µs ③

Thermal Resistance

	Parameter	Тур.	Max.	Units
$R_{\theta JC}$	Junction-to-Case ®		1.6	
$R_{\theta JA}$	Junction-to-Ambient		40	°C/W
$R_{\theta JA}$	Junction-to-Ambient (t<10s) @		35	

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature.
- \odot Starting T_J = 25°C, L = 1.1mH, R_G = 50 Ω , I_{AS} = -17A.
- ③ Pulse width \leq 400 μ s; duty cycle \leq 2%.
- 4 When mounted on 1 inch square copper board.
- © For DESIGN AID ONLY, not subject to production testing.

Fig 1. Typical Output Characteristics

Fig 3. Typical Transfer Characteristics

Fig 5. Typical Capacitance vs.Drain-to-Source Voltage

Fig 2. Typical Output Characteristics

Fig 4. Normalized On-Resistance vs. Temperature

Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage

Fig 7. Typical Source-Drain Diode Forward Voltage

Fig 9. Maximum Drain Current vs. Ambient Temperature

Fig 8. Maximum Safe Operating Area

Fig 10. Threshold Voltage vs. Temperature

Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient

Fig 12. On-Resistance vs. Gate Voltage

Fig 14. Maximum Avalanche Energy vs. Drain Current

Fig 13. Typical On-Resistance vs. Drain Current

Fig 15. Typical Power vs. Time

^{*} Reverse Polarity of D.U.T for P-Channel

* V_{GS} = 5V for Logic Level Devices

Fig 16. Diode Reverse Recovery Test Circuit for P-Channel HEXFET® Power MOSFETs

Fig 17a. Gate Charge Test Circuit

Fig 18a. Unclamped Inductive Test Circuit

Fig 19a. Switching Time Test Circuit

Fig 17b. Gate Charge Waveform

Fig 18b. Unclamped Inductive Waveforms

Fig 19b. Switching Time Waveforms

PQFN Package Details

DIM	INCH	IES	MILLIN	METERS
DIM	MIN	MAX	MIN	MAX
Α	.0315	.0394	0.800	1,000
A1	.0000	.0020	0.000	0.050
ь	.0140	.0180	0.356	0.456
С	.0080	REF.	0.203	REF.
D	.2362 BASIC		6.0	BASIC
E	.1969 BASIC		5.0 [BASIC
е	.0500 BASIC		1.270	BASIC
e1	.0250	BASIC	0.635	BASIC

PQFN Part Marking

TOP MARKING (LASER)

Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/

PQFN Tape and Reel

Ao	6.30 +/- 0.1
Во	5.30 +/- 0.1
Ко	1.20 +/- 0.1
F	5.50 +/- 0.1
P1	8.00 +/- 0.1
W	12.00 +/- 0.3

- (I) Measured from centerline of sprocket hole to centerline of pocket.
- (II) Cumulative tolerance of 10 sprocket hole is ±0.20.
- (III) Measured from centerline of sprocket hole to centerline of pocket.
- (IV) Other material available.
- (V) Typical SR of form tape Max $10^9\,\Box$ HM/SQ.

ALL DIMENSIONS IN MILLIMETERS UNLESS OTHERWISE STATED.

Note: For the most current drawing please refer to IR website at: $\underline{\text{http://www.irf.com/package/}}$

Qualification Information[†]

Qualification level	Cor	nsumer ^{††}		
Qualification level	(per JEDEC JESD47F ^{†††} guidelines)			
Moisture Sensitivity Level	PQFN 5mm x 6mm	MSL2		
	PQFN 5IIIII X 6IIIIII	(per JEDEC J-STD-020D ^{†††})		
RoHS Compliant	Yes			

- † Qualification standards can be found at International Rectifier's web site http://www.irf.com/product-info/reliability
- †† Higher qualification ratings may be available should the user have such requirements. Please contact your International Rectifier sales representative for further information: http://www.irf.com/whoto-call/salesrep/
- **†††** Applicable version of JEDEC standard at the time of product release.
- †††† Higher MSL ratings may be available for the specific package types listed here. Please contact your International Rectifier sales representative for further information: http://www.irf.com/whoto-call/salesrep/

Revision History

	ricvision riistory	
	Date	Comments
	8/19/2014	Updated datasheet as per new IR Corporate Template
		Updated data sheet with latest PQFN Tape and Reel Diagram.

IMPORTANT NOTICE

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie").

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com).

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Infineon:

IRFH9310TRPBF