수치해석 Project1 eigenface

2016025478 컴퓨터전공서경욱

목표

- Cropped face image(real data)를 data set으로 가지고 SVD(singular value decomposition)을 통해서 eigenvector인 basis vector를 구한다.
- 32*32 image를 다루는데 1024개의 basis가 아닌 eigenvalue가 가장 큰 45개의 basis의 linear combination을 통해 image를 구성하는 식으로 바꾼다.
- 사람 10명의 5장씩의 image를 가지고 45개의 basis로 eigenface, coefficient를 이용해 image를 generate, recognize 해본다.

개발 환경

- Python 3.8
- 사용한 Library
- Numpy : 행렬 연산, 벡터 연산, SVD, covariance matrix 구하기, 내적
- Opencv : image file 처리(0~256 값으로 읽어 오기, image 출력)

Data Set

- 좌측과 같이 face만 crop 된 image들을 사용했습니다
- 다만, image크기가 64*64이므로 resize해서 data를 과제 명세에 맞게 32*32로 바꿔주는 과정이 필요했습니다.

- 같은 사람으로 recognize하기 위해 올바른 coefficient 값을 구했는지 비교하기 위해 한사람당 5장의 image를 따로 구성해주었습니다.
- 제가 구한 data set은 무표정에 가깝지만 좀 다른 사진들도 있어 오차의 요인으로 고려해주었습니다

1. Collect face images

Crop the same image size for face area

- 저는 eigenface를 생성하기 위해 3000장의 image를 사용했습니다
- 32*32라 1024 dimensional의 data를 다루나 1024개의 independent vector 가 일반적으로 존재하지 않기 때문에 충분한 개수의 image를 사용했습니다.

2. Construct data matrix, A

- 우선 처음 받아온 image를 읽어오면 32*32 꼴 행렬로 읽혀지므로 1024 dimensional vector로 형태를 바꿔줍니다.
- 그리고 A라는 행렬(3000*1024)의 row vector에 3000개의 image를 읽은 vector들을 넣어줍니다.(이유는 뒤에서 설명하겠습니다)

```
_M = np.mean(A)
M = [_M] * 1024
M = np.array(M)
```

- 그 후 A의 mean vector을 생성해줍니다.

2. Construct data matrix, A

- 앞에서 A의 row vector에 관측치를 넣어준 이유는 covariance matrix와 관련이 있습니다.
- Covariance matrix는 A^tA 의 형태로 symmetric한 형태를 지닙니다. 또한 eigenvalue가 non-zero라는 특징을 가집니다.
- 후에 SVD에서 관측치를 row vector로 둔지, col vector로 둔지에 따라 basis vector를 구하는 출처가 달라집니다.
- $A^t A$ 형태는 \mathbf{row} 가 큰 경우 더 작은 크기를 가지므로 연산 속도에서의 이 득을 볼 수 있습니다.

3. Apply SVD

```
# covariance matrix
# True -> row가 변수, col이 관측치
# False -> row가 관측치, col이 변수
# C.shape : (1024, 1024)
C = np.cov(A.astype(float), rowvar=False)
```

- Library의 함수를 이용해 covariance 함수를 만들 어주었습니다.생성된 C의 크기는 1024*1024의 크기를 가집니다
- 함수 내에서 **mean vector**를 빼주는 과정을 진행 하므로 따로 작성하지 않았습니다.

```
# #s = singular values 1차원 1024개 나옴
# V- row space basis U - col space basis
# orthonormal 값 return

U,s,Vh = np.linalg.svd(C, full_matrices = True)
# V is unitary, Vt 안에는 row vector로 row space basis 들어있음
```

- Library의 함수를 이용해 SVD를 진행해줍니다.
- 이 함수에서는 singular value들을 내림차순으로 저장하고 있는 S, 그 크기 순서의 column space basis를 저장하는 U, row space basis를 저장 하는 V의 hermite된 V^H가 return됩 니다.

3. Apply SVD

- Eigenface의 개수는 45개로 설정했습니다.
- Eigenface의 해당하는 basis(row space basis)들은 V^H 의 row vector(V의 column vector)들로 구성되어 있을 것입니다. (A의 row에 data vector들을 넣었으므로)
- <u>또한 라이브러리 함수의 policy에 따라</u> eigenvector들의 순서도 singular value가 큰 순으로 나열되어 있으므로 1~45행의 eigenvector를 eigenface로 사용할 것입니다. 그리고 eigenvector들은 normalize된 상태로 return됩니다.(orthonormal basis)

4. Test face recognition

• Coefficient를 비교하기 위해 c_1 ,, c_{45} 까지를 구하는 과정이 필요합니다.

```
test_path = 'test'
files = [ f for f in listdir(test_path) if isfile(join(test_path,f)) ]
res = []
for i in range(10):
    c = [[0 for _ in range(45)] for _ in range(5)]
    for j in range(5):
        img = cv2.imread(join(test_path,files[i*5 + j]) ,0)
        resize_img = cv2.resize(img,(32,32))
```

- Test file(50장)을 가진 폴더를 읽어와 처리합니다. Size의 변환까지이뤄집니다. C에는 45개의 coefficient를 한사람당 5개 저장하는 배열을 만듭니다.

```
test = []
for k in range(32):
    for l in range(32):
        test.append(resize_img[k][l].astype(float))
test = np.array(test)
test -= M
for k in range(45):
    c[j][k] = np.dot(test,Vh[k])
res.append(c[j])
```

- Test file을 1024 dimensional vector로 변환 해준 되 Mean값을 빼줍니다.
- Original face에 mean값을 빼준 뒤 basis vector 와 내적을 해주면 k번째 coefficient를 가진 항 외에는 **orthonormal**하므로 날아가고 c_k 만 남게 되고 이를 c에 저장해주었습니다.

Generate face image using eigenfaces

```
show = np.zeros(1024)
res = np.array(res)
for k in range(45):
    data = res[1][k] * Vh[k]
    show += data
show = show.reshape(32,32)
cv2.imshow('image', show)
cv2.waitKey(0)
cv2.destroyAllWindows()
```

- 좌측과 같은 연산을 통해서 구해준 coefficient와 basis를 가지고 다시 원래의 image를 만들어 볼 수 있습니다.

동일 인물

orthonormal basis vector using SVD

- Real data는 32*32 인 1024 dimensional vector이고 이들의 vector space를 다루려면 1024개의 orthogonal한 basis가 필요합니다.
- SVD를 통해 구한 basis vector들을 eigenvalue가 큰 N(< 1024)개 만큼 뽑는다면 N개만으로 1024 dimensional을 근사하여 다룰 수 있게 됩니다.
- 또한 eigenface를 저장할 때 1024개가 아닌 N개의 저장으로 처리할 수 있으므로 **Data compression** 효과도 있습니다.

How to compare the identity of faces

- 구해진 coefficient들은 각 face의 identity입니다.
- 같은 사람의 얼굴에서는 다른 사람과 구분되는 coefficient들의 특징이 있을 것이고 그것을 구해보겠습니다.
- 우선, coefficient들의 차이를 기준으로 분석해보았습니다. (각 coefficient element들의 차의 제곱의 합)

How to compare the identity of faces

	case1	case2	case3	case4	case5	case6	case7	case8	case9	case10
Min	1188728 .38 2131625	968157 .89 666638	959818 .267 0403817	862563 .599 6891961	574340 .319 3817368	428710 .481 3321352	972001 .053 9061085	822445 .536 9504367	871119 .703 4460879	715245 .329 60419
Max	3240681 .06 83010714	4766375 .1 52521488	2449717 .19 1647623	8761882 .35 8880356	3144126 .02 5213473	5464182 .54 5276318	4538396 .01 8659971	6343168 .42 85601545	4855311 .54 28323755	3326781 .59 7087886

	3-1	3-2	3-4	3-5	3-6	3-7	3-8	3-9	3-10
Min	1475510 .196 5318355	1466165.077 5925685	686915.86164 20296	1511653.0391 142073	939476.3348 603544	906753.14002 81844	2450311.0372 979953	1162403.5455 89016	840448.66093 31636
max	4400787 .985 939894	3231960 .477 152646	7910298 .655 865726	3880156 .918 701375	3471225 .423 2052383	4530364 .098 228127	6112850 .957 720483	4552336 .371 027894	5321478 .700 995225

coefficient끼리의 차이가 가장 적은 case3의 경우를 예로 들겠습니다. 이 경우 case3과 나머지 coefficient와의 차이를 각 element들의 차의 제곱으로 보면 아래 표와 같습니다. 이 경우 case 3-4, cas3-8, case3-10 끼리는 차이가심해 기준치를 case3의 max값으로 두면 distance만으로도 recognize를 확률 높게 할 수 있습니다.

How to compare the identity of faces

```
# 자기 자신 중 가장 variance 작은 coefficient

for i in range(10):

   tmp = [0 for _ in range(45)]
   for j in range(len(comb)):

        #tmp = [0 for _ in range(45)]
        a,b = comb[j]
        for k in range(45):
            tmp[k] += (res[5*i+a][k] - res[5*i+b][k]) ** 2

        print("min distance at %d" %(i+1),tmp.index(min(tmp))+1)
```

- 동일 인물의 coefficient 정보에서 어떤 coefficient의 variance가 작은 지 구하는 과정입니다.

```
min distance at 1 12
min distance at 2 32
min distance at 3 17
min distance at 4 39
min distance at 5 40
min distance at 6 45
min distance at 7 27
min distance at 8 36
min distance at 9 35
min distance at 10 44
```

- 구한 coefficient의 차이가 가장 작은 index를 구했습니다.
- 예를 들어 case1인지 recognize하고 싶을 때는 c_{12} 에 가중치를 높게 둬서 coefficient의 element의 차로 분류할 때 case1이 아닌 경우로 쉽게 분류할 수 있겠습니다 (dominant / main coefficient)

오차 요인

- Element가 1024개인 vector를 크기가 1인 vector로 normalize 해주다보니(계산의 편의상) basis vector의 element가 굉장히 작은 값으로 이루어지게 됩니다.
- 이로 인해 floating point 문제로 후의 연산에서 truncate된 부분이 있을 것이고 오차가 생길 수 있다고 생각합니다.
- 마지막으로 data image에서 완전히 비슷한 각도, 표정이 아니기에 생기는 오차도 있다고 생각합니다