El criteio de Néron-Ogg-Shafarevich

2021

Índice

1	Forma de Weierstrass	1
2	Reducción	2
3	Inercia	5
4	El criterio	6
5	Comentarios	8
Rε	Referencias	

Estas notas fueron redactadas, originalmente, con el propósito de servir de ayuda para rendir el final de Aritmética de curvas elípticas (¿2014?). La idea es enunciar y tratar de demostrar un criterio que relaciona la reducción de una curva elíptica con la ramificación de cierta representación de Galois asociada.

1 Forma de Weierstrass

Sea \mathcal{K} un cuerpo completo respecto de una valuación discreta v y sean $\mathcal{R} = \{v \geq 0\}$ y $\mathcal{M} = \{v > 0\}$ su anillo de enteros y el ideal maximal del mismo, respectivamente. Sea π un generador de \mathcal{M} y sea $k = \mathcal{R}/\mathcal{M}$ el cuerpo residual. Sea E/\mathcal{K} una curva elíptica sobre \mathcal{K} dada por ecuación de Weierstrass:

$$E: y^2 + a_1 xy + a_3 y = x^3 + a_2 x^2 + a_4 x + a_6.$$
 (1)

Vía un cambio de variables $((x,y)=(u^2x',u^3y'),\ a_i'=a_i/u^i)$, (1) se puede llevar a una ecuación con coeficientes en \mathcal{R} . El discriminante Δ sería, entonces, un elemento de \mathcal{R} , de valuación no negativa. Como v es una valuación discreta, se deduce que existe una ecuación de la forma (1) con $v(\Delta)$ mínimo para la curva E.

Se puede demostrar que una ecuación con coeficientes en el anillo \mathcal{R} es minimal en este sentido, si vale que $v(\Delta) < 12$, $v(c_4) < 4$ y (¿o?) $v(c_6) < 6$, donde c_4 , c_6 y Δ se calculan a partir de los coeficientes a_i utilizando las expresiones:

$$b_{2} = a_{1}^{2} + 4a_{4} ,$$

$$b_{4} = 2a_{4} + a_{1}a_{3} ,$$

$$b_{6} = a_{3}^{2} + 4a_{6} ,$$

$$b_{8} = a_{1}^{2}a_{6} + 4a_{2}a_{6} - a_{1}a_{3}a_{4} + a_{2}a_{3}^{2} - a_{4}^{3} ,$$

$$c_{4} = b_{2}^{2} + 24b_{4} ,$$

$$c_{6} = -b_{2}^{3} + 36b_{2}b_{4} - 216b_{6} ,$$

$$\Delta = -b_{2}^{2}b_{8} - 8b_{4}^{3} - 27b_{6}^{2} + 9b_{2}b_{4}b_{6} .$$
(2)

Se cumple que

$$4b_8 = b_2b_6 - b_4^2 \quad y$$

$$1728 \cdot \Delta = c_4^3 - c_6^2 . \tag{3}$$

Finalmente, recordamos que una ecuación de Weierstrass es minimal para la curva E es única, salvo cambio de coordenadas de la forma

$$(x,y) = (u^2x' + r, u^3y' + u^2x's + t)$$
,

donde $u \in \mathcal{R}^{\times}$ es una unidad y $r, s, t \in \mathcal{R}$ son arbitrarios.

2 Reducción

Si E/\mathcal{K} viene dada por una ecuación minimal y $P \in \mathbb{P}^2(K)$, se pueden hallar coordenadas homogéneas $P = [x_0 : x_1 : x_2]$, con $x_i \in \mathcal{R}$ y, al menos, una en \mathcal{R}^{\times} . Se definen, entonces, los conjuntos

$$E_0(\mathcal{K}) := \left\{ P \in E(\mathcal{K}) : \widetilde{P} \in \widetilde{E}_{ns}(k) \right\} \quad \mathbf{y}$$

$$E_1(\mathcal{K}) := \left\{ P \in E(\mathcal{K}) : \widetilde{P} = O \right\}.$$

Estos conjuntos son, en realidad, grupos y existe una sucesión exacta corta

$$0 \longrightarrow E_1(\mathcal{K}) \longrightarrow E_0(\mathcal{K}) \longrightarrow \widetilde{E}_{\mathsf{ns}}(k) \longrightarrow 0$$

Se había visto en clase para $\mathcal{K} = \mathbb{Q}_p$, pero los argumentos valen en general. Otra cosa que se había visto en clase fue que, para $n \geq 1$ el conjunto

$$E_n(\mathcal{K}) := \{ P \in E_1(\mathcal{K}) : v(x(P))/v(y(P)) \ge n \} \cup \{O\}$$

es un subgrupo de $E_1(\mathcal{K})$ y se cumple:

(i)
$$E_n(\mathcal{K})/E_{n+1}(\mathcal{K}) \simeq (k,+)$$
 y

(ii)
$$\bigcap_{n>1} E_n(\mathcal{K}) = \{O\}$$
.

El iso viene dado por $E_u(\mathcal{K}) \xrightarrow{\phi_u} k$, donde

$$\begin{cases} \phi_u(x,y) = \pi^{-u}x/y\\ \phi_u(O) = 0 \end{cases}$$

Proposición 1. Sea $m \in \mathbb{Z}$ coprimo con car(k). Entonces

- (i) $E_1(\mathcal{K})$ no tiene puntos de m-torsión y
- (ii) si \widetilde{E} es no singular, $E(\mathcal{K})[m] \hookrightarrow \widetilde{E}(k)$.

Demostración. Sea $P \in E(\mathcal{K})[m]$ y supongamos que $P \in E_n(\mathcal{K})$. Entonces $[m] \cdot P = O$ y, en particular,

$$m \phi_n(P) = \phi_n([m] \cdot P) = 0.$$

Como $\operatorname{car}(k) \nmid m, m \in k^{\times} \text{ y } \phi_n(P) = 0$. Esto quiere decir que $P \in E_{n+1}(\mathcal{K})$. En particular, por inducción, $E_1(\mathcal{K})$ no tiene puntos de m-torsión. Para la segunda parte, el núcleo de la redución es $E_1(\mathcal{K})$, pero $E(\mathcal{K})[m] \cap E_1(\mathcal{K}) = \{O\}$.

Definición 2. Sea E/\mathcal{K} una curva elíptica dada por ecuación minimal. Se dice que la curva (i) tiene buena reducción, si $\widetilde{E}(k)$ es no singular; (ii) tiene reducción multiplicativa, si la curva reducida es nodal; (iii) tiene reducción aditiva, si la curva reducida es cuspidal. Cuando la reducción es multiplicativa, se dice, además, que es (a) split, si las pendientes de las tangentes a $\widetilde{E}(k)$ en el nodo están definidas sobre k; (b) non-split, en caso contrario.

Observación 3. Una curva dada por ecuación de Weierstrass es no singular, si y sólo si su discriminante es no nulo. En caso contrario, tiene un nodo, si $(\Delta = 0 \text{ y})$ $c_4 \neq 0$, y el punto singular es una cúspide, si $(\Delta = 0 \text{ y})$ $c_4 = 0$.

La curva E/\mathcal{K} tiene vuena reducción, si y sólo si $v(\Delta) > 0$ (equivalentemente, $\Delta \in \mathcal{R} \setminus \mathcal{M} = \mathcal{R}^{\times}$). Si $\Delta \equiv 0 \pmod{\mathcal{M}}$, entonces la reducción es multiplicativa, si $v(c_4) = 0$ y es aditiva, si $v(c_4) > 0$.

Definición 4. Se dice que E/\mathcal{K} tiene mala reducción potencialmente buena, si, vista como una curva sobre \mathcal{K}'/\mathcal{K} , alguna extensión finita, tiene buena reducción.

Proposición 5. Sea E/K una curva elíptica y sea K'/K una extensión de cuerpos.

- (i) Si la extensión es no ramificada, es decir, [K':K] = [k':k], o, equivalentemente, $\mathcal{R}'\pi = \mathcal{M}'$, entonces el tipo de reducción de E en tanto curva sobre K' es el mismo que en tanto curva sobre K;
- (ii) $si \mathcal{K}'/\mathcal{K}$ es finita y la reducción de E sobre \mathcal{K} es buena, o bien mala y multiplicativa, entonces la reducción sobre \mathcal{K}' es buena, o, respectivamente, mala y multiplicativa;

- (iii) en cualquier caso, existe K'/K finita tal que E/K' tiene reducción buena o bien split multiplicativa;
- (iv) la reducción es potencialmete buena, si y sólo si $j(E) \in \mathcal{R}$.

Demostración. Los items (i) y (ii) se desprenden de la minimalidad de la ecuación que define a E, de que $v'|_{\mathcal{K}} = v$, si \mathcal{K}'/\mathcal{K} es no ramificada, y de que $v'|_{\mathcal{K}}$ es un múltiplo no nulo de v en el caso finito, haciendo cambios de variable que preserven la forma de Weierstrass. Para ver (iii), asumiendo característica distinta de 2, en cierta extensión finita \mathcal{K}'/\mathcal{K} , la curva E/\mathcal{K}' se puede expresar en forma de Legendre:

$$E: y^2 = x(x-1)(x-\lambda),$$

con $\lambda \neq 0, 1$. Entonces

$$c_4 = 16(\lambda^2 - \lambda + 1)$$
 y $\Delta = 16\lambda^2(\lambda - 1)^2$.

- (i) Si $\lambda \in \mathcal{R}'$ y $\lambda \neq 0, 1$ en k', entonces $\Delta \not\equiv 0 \pmod{\mathcal{M}'}$ y $\Delta \in \mathcal{R}'^{\times}$;
- (ii) si $\lambda = 0$ o $\lambda = 1$ en k', $\Delta \equiv 0 \pmod{\mathcal{M}}$, pero $c_4 \in \mathcal{R}'^{\times}$;
- (iii) si $\lambda \notin \mathcal{R}'^{\times}$, pasa a ser una unidad en \mathcal{R}' , si se lo multiplica por alguna potencia positiva del uniformizadr π' .

Se hace el cambio $x = x'\pi'^{-r}$, $y = y'\pi'^{-3r/2}$, donde r es tal que $\lambda \pi'^r \in \mathcal{R}'^{\times}$. Reemplazando, posiblemente, \mathcal{K}' por una extensión cuadrática,

$$y'^2 {\pi'}^{-3r} = x' {\pi'}^{-r} (x' {\pi'}^{-r} - 1) (x' {\pi'}^{-r} - \lambda)$$
 o bien,
 $y'^2 = x' (x' - {\pi'}^r) (x' - \lambda {\pi'}^r)$.

Si $\Delta' = u^{-12} \Delta$ y $c_4' = u^{-4} c_4$ son los valores asociados a esta ecuación, entonces $\Delta' \in \mathcal{M}'$ y $c_4' \in \mathcal{R}'^{\times}$. En (i) la reducción es buena, en (ii) es multiplicativa y en (iii) es multiplicativa en una extensión, a lo sumo, cuadrática de \mathcal{K}' . Por otro lado, reducción non-split pasa a ser split en alguna extensión cuadrática.

Para (d), asumiendo de nuevo $\mathsf{car}(k) \neq 2$ y llevando la curva a forma de Legendre, se puede verificar que

$$256 (1 - \lambda (1 - \lambda))^3 - j \lambda^2 (1 - \lambda)^2 = 0.$$

En particular, $v(\lambda(1-\lambda)) \ge 0$. Si $v(\lambda) < 0$, entonces $v(\lambda(1-\lambda)) = v(\lambda) + v(1-\lambda) = v(\lambda) + v(\lambda) < 0$, lo que es absurdo. Entonces

$$v(\lambda) > 0$$
.

Como 256 es una unidad en \mathcal{R} , reduciendo, tiene que ser $\lambda \not\equiv 0, 1 \pmod{\mathcal{M}}$, y la reducción es buena.

Si, recíprocamente, la reducción es potencialmente buena, y buena sobre una extensión finita \mathcal{K}'/\mathcal{K} , denotando con Δ' el discriminante minimal de E/\mathcal{K}' y c_4' el otro valor asociado a la ecuación minimal, se deduce que

$$j(E/\mathcal{K}') = c_4'^3/\Delta'.$$

Como $c'_4 \in \mathcal{R}'$ y la reducción es buena sobre \mathcal{K}' , el discriminante minimal es una unidad y $j(E/\mathcal{K}') \in \mathcal{R}'$. Como E está definida sobre \mathcal{K} , vale que $j \in \mathcal{R}' \cap \mathcal{K} = \mathcal{R}$.

3 Inercia

Sea $\overline{\mathcal{K}}/\mathcal{K}$ una clausura algebraica de \mathcal{K} y sea $\mathcal{K}^{\mathsf{nr}}/\mathcal{K}$ la máxima extensió no ramificada en $\overline{\mathcal{K}}$ ($\pi \in \mathcal{K}$ es generador de \mathcal{M} y también genera el ideal maximal en el anillo de enteros de $\mathcal{K}^{\mathsf{nr}}$). Sean $G = \mathsf{Gal}(\overline{\mathcal{K}}/\mathcal{K})$ e $I_v \equiv I := \mathsf{Gal}(\overline{\mathcal{K}}/\mathcal{K}^{\mathsf{nr}})$ el subgrupo de inercia ($I \triangleleft G$). Hay una correspondencia entre extensiones no ramificadas de \mathcal{K} y extensiones de su cuerpo residual k. En particular, el cuerpo residual de $\mathcal{K}^{\mathsf{nr}}$ es \overline{k} , una clausura de k.

El grupo de Galois G actúa sobre los puntos de m-torsión E[m], para cada m y sobre los m'odulos de Tate

$$\mathsf{T}_l(E) := \lim_{\leftarrow} E[l^r] , \qquad (4)$$

para cada l.

Proposición 6. Sea E/K una curva elíptica con buena reducción $(\widetilde{E}/k$ no singular). Sean $m, l \geq 1$ enteros coprimos con car(k), con l primo. Entonces

- (i) el grupo I_v actúa trivialmente sobre E[m] y
- (ii) la acción de I_v sobre $T_l(E)$ es trivial.

Definición 7. Sea Σ un conjunto sobre el cual G actúa $(\rho: G \to \operatorname{Aut}(\Sigma))$. Si la acción del subgrupo de inercia es trivial $(I_v \subset \ker(\rho))$, se dice que Σ es no ramificado (en v).

Demostración (de 6). El ítem (ii) se deduce de (i). Para demostrar (i), supongamos que \mathcal{K}'/\mathcal{K} es una extensión (finita) que contiene a toda la m-torsión/ Si la ecuación que define a E está en forma de Weierstrass (y es minimal), como la curva tiene buena reducción, tiene que ser $v_{\mathcal{K}}(\Delta) = 0$. Como el grado de \mathcal{K}' sobre \mathcal{K} es finito,

$$v_{\mathcal{K}'}(\Delta) = e \cdot v_{\mathcal{K}}(\Delta) = 0$$

Como los coeficientes de la ecuación para E pertenecen a \mathcal{R}' , la misma es una ecuación minimal sobre \mathcal{K}' . Además, la curva E/\mathcal{K}' tiene buen a reducción, con lo que \widetilde{E}/k' es no singular y

$$E[m] = E(\mathcal{K}')[m] \hookrightarrow \widetilde{E}(k') . \tag{5}$$

Sea $P \in E[m]$ y sea $\sigma \in I$. Se tiene que

$$[m](P^{\sigma} - P) = ([m]P)^{\sigma} - [m]P = 0$$

lo que implica $P^{\sigma} - P \in E[m]$. Ahora,

$$\widetilde{P^{\sigma} - P} = \widetilde{P}^{\sigma} - \widetilde{P} = 0 ,$$

pues I actúa trivialmente en $\widetilde{E}(k')$ (por definición). La inclusión (5), implica, finalmente, que $P^{\sigma} = P$.

4 El criterio

Proposición 8. Sea E/K una curva elíptica tal quie los grupos de m-torsión E[m] son no ramificados para una cantidad infinita de enteros $m \ge 1$ y coprimos con $\mathsf{car}(k)$. Entonces E tiene buena reducción.

Demostración. Se tienen dos sucesiones exactas cortas de grupos

$$0 \longrightarrow E_0 \longrightarrow E \longrightarrow E/E_0 \longrightarrow 0$$
 y

$$0 \longrightarrow E_1 \longrightarrow E_0 \longrightarrow \widetilde{E}_{\mathsf{ns}} \longrightarrow 0$$

Si \mathcal{K}^{nr} es la extensión no ramificada maximal de \mathcal{K} en $\overline{\mathcal{K}}$, el cuerpo residual de \mathcal{K}^{nr} es \overline{k} . Usando la de modelos de Néron para una curva elíptica, "esquemas en grupos con fibra geométrica E/k", se puede decir lo siguiente:

- (i) Si E/\mathcal{K} tiene reducción split multiplicativa, entonces $E(\mathcal{K})/E_0(\mathcal{K})$ es cíclico de orden $v(\Delta)$;
- (ii) en cualquier otro caso, dicho cociente es un grupo finito de orden, a lo sumo, 4.

Algo de esto se había demostrado en clase, pero la demostración se basaba en la finitud del cuerpo residual, que, ciertamente, no se cumple para \mathcal{K}^{nr} . Bajo las hipótesis de la proposición, se puede deducir que existe un (existen infinitos) enteros $m \geq 1$ que cumple(n) simultáneamente con:

- (i) (m, car(k)) = 1,
- (ii) $m > \#(E(\mathcal{K}^{\mathsf{nr}})/E_0(\mathcal{K}^{\mathsf{nr}}))$ y
- (iii) E[m] es no ramificado.

En particular, la *m*-torsión está contenida en $E(\mathcal{K}^{\mathsf{nr}})$ y $E(\mathcal{K}^{\mathsf{nr}})$ contiene un subgrupo A isomorfo a $(\mathbb{Z}/m\mathbb{Z})^2$. Ahora bien,

$$E_0(\mathcal{K}^{\mathsf{nr}}) \cap A \leq A \simeq \mathbb{Z}/m\mathbb{Z} \times \mathbb{Z}/m\mathbb{Z}$$
,

lo que implica que

$$E_0(\mathcal{K}^{\mathsf{nr}}) \cap A \simeq \mathbb{Z}/a\mathbb{Z} \times \mathbb{Z}/b\mathbb{Z}$$
,

con $a, b \mid m$. Además,

$$E(\mathcal{K}^{\mathsf{nr}})/E_0(\mathcal{K}^{\mathsf{nr}}) \supset E_0(\mathcal{K}^{\mathsf{nr}}) \cdot A/E_0(\mathcal{K}^{\mathsf{nr}}) \simeq A/E_0(\mathcal{K}^{\mathsf{nr}}) \cap A$$
.

Así, $m > \frac{m^2}{ab}$, lo quje fuerza que exista un primo l que divida tanto a a como a b. En definitiva, existe un subgrupo B de $E_0(\mathcal{K}^{\mathsf{nr}})$ isomorfo a $(\mathbb{Z}/l\mathbb{Z})^2$. Usando

$$0 \longrightarrow E_1(\mathcal{K}^{\mathsf{nr}}) \longrightarrow E_0(\mathcal{K}^{\mathsf{nr}}) \longrightarrow \widetilde{E}_{\mathsf{ns}}(\overline{k}) \longrightarrow 0 ,$$

que $l \neq \operatorname{car}(k)$ y que $E_1(\mathcal{K}^{\operatorname{nr}})$ no tiene puntos de orden l,

$$E_1(\mathcal{K}^{\mathsf{nr}}) \cap B = 1$$
,

y, entonces, este grupo pasa a la curva reducida, a sus puntos no singulares. Ahora, si E tuviese mala reducción, habría dos posibilidades:

- (i) $\widetilde{E}_{\mathsf{ns}}(\overline{k}) \simeq \overline{k}^{\times}$ (red. mult.), o bien
- (ii) $\widetilde{E}_{ns}(\overline{k}) \simeq (\overline{k}, +)$ (red. ad.).

El segundo caso no es viable, porque no hay l-torsión en $(\overline{k}, +)$. Por otra parte, en \overline{k}^{\times} , la l-torsión consiste en las raíces l-ésimas de la unidad en \overline{k} , y éstas constituyen un grupo cíclico de orden l. La primera de las opciones, tampoco es posible. En consecuencia, $E/\mathcal{K}^{\mathsf{nr}}$ tiene buena reducción. Como bajo toda extensión no ramificada, el tipo de reducción se preserva, E tampoco tiene mala reducción sobre \mathcal{K} .

Teorema 9. Las siguientes son equivalentes:

- (i) E tiene buena reducción;
- (ii) E[m] es no ramificado para todo $m \ge 1$ coprimo con car(k);
- (iii) $T_l(E)$ es no ramificado para (algún) primo l coprimo con car(k);
- (iv) E[m] es no ramificado para infinitos enteros $m \ge 1$ coprimos con car(k).

Éste es el criterio de Néron-Ogg-Shafarevich. Este "criterio" se puede ver desde el lado de las representaciones.

Sea E/\mathbb{Q} una curva elíptica dada por ecuación de Weierstrass, (1), con $a_i \in \mathbb{Q}$. Haciendo cambios de variable de la forma

$$(x,y) = (u^2x', u^3y'),$$

se obtiene una nueva ecuación con coeficientes

$$a_i' = a_i/u^i$$
.

(Se puede llevar a una ecuación con coeficientes enteros). Sea $m_p(E)$ la menor potencia de p que divide al discriminante Δ de alguna de las ecuaciones con coeficientes enteros

equivalente a la ecuación que define a E —dos ecuaciones se dicen equivalentes, si están relacionadas por un cambio de variables "admisible". Se define el discriminante global de E como

$$\Delta_{\min}(E) := \prod_{p} \, p^{m_p(E)}$$

(si $p \nmid \Delta(E)$, entonces $m_p(E) := 0$). Es posible llevar la ecuación de E, vía cambios de variable admisibles, a una cuyo discriminante minimice todas las valuaciones, es decir, existe una ecuación equivalente E' tal que $m_p(E) = v_p(\Delta(E'))$. Así, $\Delta(E') = \Delta_{\min}(E)$. Una ecuación E' con estas características se denomina ecuación de Weierstrass minimal global.

Sea N el conductor de E, divisible exactamente por los primos de mala reducción. Dado un primo l, el módulo de Tate $\mathsf{T}_l(E)$ proporciona una representación de $G = \mathsf{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$, un morfismo continuo

$$\rho = \rho_{E,l} : G \to \mathsf{GL}_2(\mathbb{Z}_l) \subset \mathsf{GL}_2(\mathbb{Q}_l) .$$

Sea $p \in \mathbb{Z}$ un primo arbitrario y sea $\mathfrak{p} \subset \overline{\mathbb{Z}}$ primo maximal arriba de p ($\mathfrak{p} = \ker(\overline{\mathbb{Z}} \to \overline{\mathbb{F}_p})$). Se definen

$$\begin{split} D_{\mathfrak{p}} \, &:= \, \left\{ \sigma \in G \, : \, \mathfrak{p}^{\sigma} = \mathfrak{p} \right\} \quad \mathbf{e} \\ I_{\mathfrak{p}} \, &:= \, \left\{ \sigma \in D_{\mathfrak{p}} \, : \, x^{\sigma} \equiv x \, (\mathsf{mod} \, \mathfrak{p}) \, \forall x \in \overline{\mathbb{Z}} \right\} \, , \end{split}$$

respectivamente, el grupo de descomposición de \mathfrak{p} y el subgrupo de inercia. Alternativamente, $I_{\mathfrak{p}}$ se puede describir como el núcleo de un morfismo sobreyectivo $D_{\mathfrak{p}} \to \operatorname{Gal}(\overline{\mathbb{F}_p}/\mathbb{F}_p)$. Sea $\sigma_p: x \mapsto x^p$ y se $\operatorname{Frob}_{\mathfrak{p}} \in D_{\mathfrak{p}}$ cualquier preimagen de σ_p por este morfismo sobre.

Una representación $\rho: G \to \mathsf{GL}_d(L)$ (morfismo continuo, $d \geq 1, L/\mathbb{Q}_l$ extensión finita) se dice no ramificada en p, si $I_{\mathfrak{p}} \subset \ker(\rho)$, cualquiera sea \mathfrak{p} arriba de p. Entonces, usando esta terminología, el criterio de Néron-Ogg-Shafarevich, Teorema 9, dice que

Teorema 10. la rep. $\rho_{E,l}$ es no ramificada en todo primo p que no divide a $l \cdot N$.

5 Comentarios

A modo de comentario, este criterio, junto con otros resultados no del todo triviales, permite deducir el siguiente teorema.

Teorema 11. Sean E, E' curvas elípticas sobre \mathbb{Q} (o sobre un cuerpo de números arbitrario) y sean $V_l(E), V_l(E')$ las representaciones asociadas vía el módulo de Tate. Si los módulos –es decir, las representaciones– son isomorfos y j(E) no es un entero, entonces las curvas E y E' son isógenas.

Hay, también, otros resultados simpáticos que relacionan buena reducción con isogenía:

Teorema 12 (Shafarevich). Sea $S \subset V^{\mathcal{K}}$, $\#S < \infty$, entonces el conjunto de clases de \mathcal{K} -isomorfismo de curvas elípticas con buena reducción fuera de S es finito.

Teorema 13. Dos curvas isógenas dan representaciones isomorfas.

En particular, esto implica que, si E y E' son \mathcal{K} -isógenas, buena reducción de una en un lugar v es acompañada de buena reducción de la otra en el mismo lugar.

Teorema 14. Sea E/\mathcal{K} una curva elíptica. Salvo isomorfismo, hay una cantidad finita de curvas \mathcal{K} -isógenas a E.

En otras palabras, cada clase de \mathcal{K} -isogenía está compuesta por una cantidad finita de clases de isomorfismo.

Referencias

[1] J. H. Silverman. *The Arithmetic of Elliptic Curves*. 2nd ed. Vol. 106. New York, NY: Springer, 2009, pp. xx + 513.