EXPERIMENT-7 REALIZATION OF FLIP FLOPS

- **1.** AIM: To Design, simulate and implement Flip Flops in Behavioral Flow Modeling
- 2. SOFTWARE USED: Xilinx Vivado 2022.2

3. PROCEDURE:

- Open the Xilinx Vivado project navigator.
- Open the Design source and go to add / create sources
- Create new file, give appropriate name save it.
- Open the file in the editor and write the Verilog code.
- Open the Design source and go to add / create sources to create the test bench
- Open the editor and write the Verilog code for test bench.
- After completion of Verilog code set your test bench as top module in simulation settings and Run Simulation.
- To view RTL schematic, select RTL Analysis in which select open elaborate design, select Schematic.

Flip Flops

1.1 AIM: SR Flip Flop

1.2 SOFTWARE USED: Xilinx Vivado 2022.2

1.3 RTL Schematic:

1.4 TRUTH TABLE:

INPUT			OUTPUT
Clk	S	R	Q_{n+1}
0	X	X	Q _n
1	0	0	Q _n
1	0	1	0
1	1	0	1
1	1	1	Invalid

```
module srff(q,qb,s,r,clk,rst);
       output q,qb;
       input s,r,clk,rst;
       reg q;
       assign qb = \sim q;
       always@(posedge clk)
       begin
       if(clk)
        q=1'b0;
       else
       case({s,r})
       2'b00: q<=q;
       2'b01: q<=1'b0;
        2'b10: q<=1'b1;
       2'b11: q<=1'bx;
       endcase
       end
       endmodule
Dept. of ECE, VNR VJIET
```

1.6 TEST BENCH:

module srff_tb(); reg s,r,clk,rst; wire q,qb; srff x1(q,qb,s,r,clk,rst); initial clk=0; always#10clk=~clk;

initial

begin rst=1'b1;

#10 rst=1'b0;

#10 {s,r}=2'b00;

#10 $\{s,r\}=2'b01;$

#10 $\{s,r\}=2'b10;$

#10 {s,r}=2'b11;

#10\$finish;

end

endmodule

1.7 WAVEFORM:

1.8 RESULT:

SR Flip Flop is implemented.

1.1 AIM: JK Flip Flop

1.2 SOFTWARE USED: Xilinx Vivado 2022.2

1.3 RTL Schematic:

1.4 TRUTH TABLE:

INPUT			OUTPUT
Clk	S	R	Q_{n+1}
0	X	X	Q _n
1	0	0	Qn
1	0	1	0
1	1	0	1
1	1	1	$\overline{\mathbf{Q_n}}$

```
module srff(q,qb,s,r,clk,rst);
output q,qb;
input s,r,clk,rst;
reg q;
assign qb=~q;
always@(posedge clk)
begin
if(clk)
q=1'b0;
else
case({s,r})
2'b00: q<=q;
2'b01: q<=1'b0;
2'b10: q<=1'b1;
2'b11: q <= 1'bx;
endcase
end
endmodule
```

1.6 TEST BENCH:

module jkff_tb(); reg j,k,clk,rst; wire q,qb; jkff_bf x1(q,qb,j,k,clk,rst); initial clk=0; always #10 clk=~clk; initial begin rst=1'b1; #10 rst=1'b0; $#10 \{j,k\}=2'b00;$ $#10 {j,k}=2'b01;$ #10 {j,k}=2'b10; $#10 {j,k}=2b11;$ rst=1'b1; #10 rst=1'b0; $#10 {j,k}=2b00;$ $#10 {j,k}=2b01;$ $#10 \{i,k\}=2'b10;$ #10 {j,k}=2'b11; #10 \$finish; end

endmodule **1.7 WAVEFORM:**

1.8 RESULT:

JK Flip Flop is implemented.

1.1 AIM: T Flip Flop

1.2 SOFTWARE USED: Xilinx Vivado 2022.2

1.3 RTL Schematic:

1.4 TRUTH TABLE:

INPUT		OUTPUT
Clk	S	Q_{n+1}
0	X	Qn
1	0	Qn
1	1	$\overline{\mathbf{Q}}_{\mathbf{n}}$

```
module tff_bf(q,qb,t,clk,rst);
output q,qb;
input t,clk,rst;
reg q;
assign qb=~q;
always@(posedge clk)
begin
if(rst)
q=1'b0;
else
case({t})
1'b0: q<=1'b1;
1'b1: q<=1'b0;
endcase
end
endmodule
```

1.6 TEST BENCH:

module tff_tb();
reg t,clk,rst;

wire q,qb;

tff_bf x1(q,qb,t,clk,rst);

initial clk=0;

always #10 clk=~clk;

initial

begin

rst=1'b1;

#15 rst=1'b0;

 $#10 \{t\}=1'b1;$

 $#10 \{t\}=1'b0;$

 $#10 \{t\}=1'b0;$

 $#10 {t}=1'b1;$

#10 {t}=1'b0;

 $#10 \{t\}=1'b1;$

#10 \$finish;

end

endmodule

1.7 WAVEFORM:

1.8 RESULT:

T Flip Flop is implemented.

LOGIC DESIGN LAB **1.1 AIM:** D Flip Flop

1.2 SOFTWARE USED: Xilinx Vivado 2022.2

1.3 RTL Schematic:

1.4 TRUTH TABLE:

INPUT		OUTPUT
Clk	S	Q_{n+1}
0	X	Qn
1	0	0
1	1	1

```
module dff_bf(q,qb,d,clk,rst);
output q,qb;
input d,clk,rst;
reg q;
assign qb=~q;
always@(posedge clk)
begin
if(rst)
q=1'b0;
else
case({d})
1'b0: q<=1'b0;
1'b1: q<=1'b1;
endcase
end
endmodule
```

1.6 TEST BENCH:

module dff_tb();

reg d,clk,rst;

wire q,qb;

dff_bf x1(q,qb,d,clk,rst);

initial clk=0;

always #10 clk=~clk;

initial

begin

rst=1'b1;

#10 rst=1'b0;

 $#10 {d}=1'b1;$

#10 {d}=1'b0;

#10 {d}=1'b1;

#10 {d}=1'b0;

rst=1'b1;

#10 rst=1'b0;

 $#10 {d}=1'b0;$

 $#10 {d}=1'b1;$

 $#10 \{d\}=1'b0;$

#10 \$finish;

end

endmodule

1.7 WAVEFORM:

1.8 RESULT:

D Flip Flop is implemented.