HPSC

Result presentation

06.01.2025

Audric Demeure and Luca Santoro

Serial Code

Interpolation methods

Let the grid position given by: $i = \left\lfloor \frac{x}{\Delta x} \right\rfloor, \ j = \left\lfloor \frac{y}{\Delta y} \right\rfloor.$

Nearest Neighbor

Simply rounds the coordinates pair $\left(\frac{x}{\Delta x}, \frac{y}{\Delta y}\right)$ to the nearest integer index (i, j) and returns the data value at that single grid point:

$$Q(x,y) = Q_{i,j}$$

Bilinear interpolation

Using the interpolation points: $(x_1,y_1)=(i\Delta x,j\Delta y)$ and $(x_2,y_2)=((i+1)\Delta x,(j+1)\Delta y)$, the weighted coefficients are: $w_x=\frac{x_2-x}{\Delta x},\ w_y=\frac{y_2-y}{\Delta y}$. The interpolated value is then:

$$Q(x,y) = w_x w_y Q_{11} + (1-w_x) w_y Q_{21} + w_x \big(1-w_y\big) Q_{12} + (1-w_x) \big(1-w_y\big) Q_{22}$$

Note: $Q(x, y) = Q_{i,j}$ if (i, j) outside domain.

Analysis of η Evaluation

Initial η Evaluation

$$\eta_{i,j}^{n+1} = \eta_{i,j}^{n} - \Delta t \cdot h_{i,j} \left(\frac{u_{i+1,j} - u_{i,j}}{\Delta x} + \frac{v_{i,j+1} - v_{i,j}}{\Delta y} \right)$$

Corrected η Evaluation

$$\frac{\eta_{i,j}^{n+1} - \eta_{i,j}^n}{\Delta t} = -\frac{h\Big(x_{u_{i+1,j}}\Big)u_{i+1,j} - h\Big(x_{u_{i,j}}\Big)u_{i,j}}{\Delta x} - \frac{h\Big(x_{v_{i,j+1}}\Big)v_{i,j+1} - h\Big(x_{v_{i,j}}\Big)v_{i,j}}{\Delta y}$$

$$\Longleftrightarrow \eta_{i,j}^{n+1} = \eta_{i,j}^{n} - \Delta t \left(\frac{h\left(x_{u_{i+1,j}}\right)u_{i+1,j} - h\left(x_{u_{i,j}}\right)u_{i,j}}{\Delta x} + \frac{h\left(x_{v_{i,j+1}}\right)v_{i,j+1} - h\left(x_{v_{i,j}}\right)v_{i,j}}{\Delta y} \right)$$

Arithmetic Intensity

In the algorithm, the most computationally intensive routines occur in the double-nested loops of update_eta and update_velocities that loops over $i=0,...,n_x-1$ and $j=0,...,n_y-1$.

update eta:

Roughly 10 FLOPs per grid cell (i,j).

Arithmetic Intensity (ii)

update_velocities

Roughly 8 FLOPs per cell.

Putting both together, we have:

$$\left(10_{\{\text{update_eta}\}} + 8_{\{\text{update_velocities}\}}\right) * nx * ny = 18 * (nx * ny) \text{ FLOPs per timestep.}$$

Over nt timesteps, the total is $\approx 18 * nx * ny * nt$ FLOPs.

Arithmetic Intensity (iii)

Memory Accesses per Kernel

- update_eta ~13 reads + 1 write ≈ 14 total memory operations
- update_velocities ~5 reads + 2 writes ≈ 7 total memory operations

So combined we have $7+14\approx 21$ memory access. Then each double is 8 byte so we have 21 memory ops per cell * $8\frac{\text{byte}}{\text{op}}=168$ bytes.

Arithmetic Intensity With 18 FLOPs per cell and 168 bytes per cell:

$$\frac{18 \text{ FLOPs}}{168 \text{ bytes}} \approx 0.11 \text{ FLOPs/byte}$$

Such a low Arithmetic intensity ≈0.1 usually indicates <u>memory-bound behavior</u>.

Arithmetic Intensity (iv)

Comparing CPU vs. Memory Time

CPU-limited time:
$$T_{\mathrm{CPU}} = \frac{\mathrm{FLOPs}}{\mathrm{Peak\ FLOP\ Rate}} = \frac{18 \times (\mathrm{Nx} \times \mathrm{Ny})}{2.8 \times 10^{12}\ \mathrm{FLOPs/s}}$$

For Nx = 100 and Ny = 100 and total FLOPs $\approx 1.8 \times 10^5$ per timestep.

Thus we have : $T_{\text{CPU}} \approx \frac{1.8 \times 10^5}{2.8 \times 10^{12}} = 6.4 \times 10^{-8} \, s \approx 0.06 \, \mu \, \text{s per timestep.}$

Memory-limited time:

$$T_{\rm memory} = \frac{\rm bytes~accessed}{\rm Memory~Bandwidth} = \frac{168 \times (\rm nx \times \rm ny)}{200 \times 10^9 \, \rm bytes/s}$$

with nx=ny=100, total byte $\approx 168 * 10^4 = 1.68 * 10^4$ bytes.

$$T_{\rm memory} \approx \frac{1.68 \times 10^6}{2 \times 10^{11}} = 8.4 \times 10^{-6} \, s = 8.4 \, \mu \, \text{s per timestep.}$$

 $T_{\rm CPU} \ll T_{\rm memory}$ so we can conclude that the code is memory-bounded.

Note: $T(n) = \alpha + \beta n \approx \beta n$ since $\alpha \ll \beta n$ (for large data size) \rightarrow focus on the bandwidth-limited part.

Memory Access Bottleneck

Problem: In the original code, loops were written with indices in the wrong order, causing non-contiguous memory access. This led to excessive cache misses and poor performance.

Solution: By reordering the loops to match the fastest-moving index in the innermost loop, the CPU can fetch data more efficiently from cache.

Indexing Order	Speedup
i, j	1.00
j, i	2,41

Keynote: Contiguous memory access leverages cache lines more effectively, drastically reducing memory latency and increasing overall speed.

Numerical Stability

Theoretical CFL Analysis

The CFL (Courant-Friedrichs-Lewy) condition applied to shallow water equations takes the following form:

$$\lambda \propto c \left(\frac{\Delta t}{\Delta x}\right) \le 1$$

where:

• $c \approx \sqrt{gh}$ represents the characteristic velocity.

In two dimensions, this condition is modified to:

$$\lambda \approx \sqrt{2}c \left(\frac{\Delta t}{\Delta x}\right) \le 1$$

For our analysis, we selected a maximum bathymetric value of $h_{\rm max} \approx 21.875$ m, which allows us to express the timestep condition as:

$$\Delta t \le \frac{\Delta x}{\sqrt{2}c} \approx 0.048 \Delta x$$

Numerical Investigation

We conducted multiple simulations with varying Δt and Δx (resp. Δy) to experimentally determine the relationship between Δx and Δt :

Figure 1: Numerical CFL condition determination.

Findings and Implementation

The results confirm that the CFL relationship is indeed linear between Δx and Δt . However, we observe a difference between the theoretical and numerical relationships, which might be partially explained by the approximation $h \to h_{\rm max}$.

For the following analysis, we used the following parameters:

- Spatial steps: $\Delta x = \Delta y = 25$
- A more conservative CFL condition:

$$\lambda = c \left(\frac{\Delta t}{\Delta x} \right) \le \frac{1}{2}$$

This conservative condition was proposed by A.I. Delis and Th. Katsaounis in their 2005 paper "Numerical solution of the two-dimensional shallow water equations by the application of relaxation methods".

MPI Parallelization

Principle

The computational domain is divided into $P_x \times P_y$ partitions, where each MPI process operates on a distinct subdomain, reducing computation time by distributing the workload while minimizing interprocess communication through strategic splitting in both x and y directions.

Domain Decomposition: Cartesian Topology

- MPI_Dims_create: Determines a suitable 2D factorization of the total number of processes, giving us $dims[0] = P_x$ and $dims[1] = P_y$.
- MPI Cart create: Creates a 2D Cartesian communicator (cart comm).
- MPI_Cart_coords: Retrieves each process's (x, y) coordinates in the 2D grid.
- MPI_Cart_shift: Identifies neighbors (LEFT, RIGHT, UP, DOWN) needed for sending/receiving ghost cells.
 - These function were used to *minimize inter-process communication*.
- Our configuration: Each MPI rank holds local arrays for η , u, v, and the interpolated bathymetry h_interp.

Local and Global Indices

- Each rank r computes the start_i, start_j, end_i, and end_j of its subdomain.
- The local arrays are sized:

• Conversion between global (i, j) and $local(i_{rank}, j_{rank})$ is done by:

$$i_{\rm rank} = i - {\tt start_i}, \quad j_{\rm rank} = j - {\tt start_j} \ . \label{eq:irank}$$

Ghost Cells and Boundary Exchange

• To update η , u, and v near boundaries, we use neighboring data (ghost cells).

- MPI_Isend / MPI_Irecv: Non-blocking send/receive pairs exchange boundary rows or columns with adjacent ranks.
- After posting sends and receives, calls to **MPI_Waitall** ensure data arrival before the next computation step.
- This approach *hides* some communication time by overlapping with computations.

Updating η and u, v in Parallel

• Each rank performs the same numerical updates on η , u, and v, but restricted to its subdomain.

• update_eta:

Uses local arrays plus ghost cells from neighbors:

$$\eta_{i,j}^{n+1} = \eta_{i,j}^n - \Delta t \left[\frac{\partial (h \, u)}{\partial x} + \frac{\partial (h \, v)}{\partial y} \right].$$

update_velocities:

• Uses local η -values to compute velocity changes, e.g.

$$u_{i,j}^{n+1} = \left(\ 1 - \gamma \Delta t \ \right) u_{i,j}^n - \frac{g \ \Delta t}{\Delta x} \ \left(\ \eta_{i,j} - \eta_{i-1,j} \ \right) \ .$$

Gathering and Output

- MPI_Gatherv: Rank 0 collects all subdomains' final η -, u-, and v-fields into global arrays.
- Displacements and sizes:
 - We compute each rank's portion size and displacement in the global buffer (using arrays like recv_size_eta and displacements_eta).

Conclusion for MPI Parallelization

- Create a 2D Cartesian topology to split the domain.
- Each process stores only a local subdomain plus ghost cells.
- Non-blocking communications (MPI_Isend, MPI_Irecv) exchange the necessary boundary information.
- Local updates of η , u, and v proceed in parallel.
- Rank 0 gathers and outputs the final results.
- This method *minimizes communication* by ensuring only boundary data is exchanged among neighbors.

OMP Parallelization

Serial code to OMP Parallelization code

- We used #pragma omp parallel for for our main loops in these function:
 - interp_bathy()
 - update_eta()
 - update velocities ()
 - boundary conditions ()(partially)
- As far as we tested, (considering only CPU code), using collapse was slowing down our result so we took the decision to not use them.

GPU Parallelization

GPU Parallelization

- Data mapping:
 - Fields like all_data->eta, u, v are transferred from CPU to GPU using #pragma omp target teams distribute parallel for collapse(2) map(...) in routines such as update_eta() and update_velocities().
 - Example in update_eta():

```
#pragma omp target teams distribute parallel for \
collapse(2)
map(tofrom: eta_gpu[0:nx*ny]) map(to: h_interp_gpu[], u_gpu[], v_gpu[])
```

• **Boundary conditions** and **source terms** also use #pragma omp target to update velocities or apply external forcing on the device.

GPU Parallelization

- We also define a custom mapper for our data_t struct to specify how arrays are moved to/from the GPU.
- During each timestep, certain arrays are copied *back* to the host for output:

```
#pragma omp target update from(*all_data->eta, *all_data->u, *all_data->v)
```

• This transfer ensures the most up-to-date GPU results are written to disk.

Nb of GPU	Speedup
1	1.33

Table 2: Speedup against serial code.

Tracing

Scaling Parameters

Following figures were computed using specific parameters to optimize resource utilization:

For the strong scaling dx = 2, dy = 2, dt = 0.05 and $max_t = 600$.

For the **weak scaling**: dx = 5, dy = 5, dt = 0.02 and $max_t = 600$. We halved until we reached: dx = 0.3125, dy = 0.3125, dt = 0.02 and $max_t = 600$.

MPI Scaling

Strong Scaling

Figure 4: MPI strong scaling 1 and 2 nodes.

MPI Scaling (ii)

Weak Scaling

Figure 5: MPI weak scaling close and spread.

OpenMP Scaling

Strong Scaling

Figure 6: OpenMP strong scaling close and spread.

OpenMP Scaling (ii)

Weak Scaling

Figure 7: OpenMP weak scaling close and spread.

Hybrid Scaling

Strong Scaling

Figure 8: Hybrid strong scaling.

Hybrid Scaling (ii)

Weak Scaling

Figure 9: Hybrid weak scaling.

Hybrid Tracing

Eta analysis

Figure 10: Eta tracing on hybrid code.

Hybrid Tracing (ii)

Velocities analysis

Figure 11: Velocity tracing on hybrid code.

Transparent boundaries

Principle

To simulate the "outer domain", the transparent boundaries may be implemented using the **Perfectly Matched Layer** (PML) method. Basically, we add a damping term in boundary regions:

Figure 12: PML layer presentation and example on dummy function.

Calculation

The PML is applied to a distance relative to the boundaries:

$$\mathrm{PML}_{\mathrm{width}} \equiv d_{\mathrm{PML}} = \min \big(0.08 N_x, 0.08 N_y \big)$$

The damping amplitude coefficient is assumed dependent of the grid resolution:

$$\sigma_{
m max} = 20.0 \left(rac{25.0}{\Delta x}
ight)$$

Cubic damping profile has been used:

$$\sigma = \max \left(\sigma_x, \sigma_y\right) \longrightarrow \sigma_{x,y} = \begin{cases} \sigma_{\max} \Big(\frac{d_{\text{PML}} - d_{x,y}}{d_{\text{PML}}}\Big)^3 \text{ if } d_{x,y} < d_{\text{PML}} \\ 0 \text{ otherwise} \end{cases}$$

Final PML application: $u \to u \times \exp(-\sigma \Delta t)$

Results

Here is depicted the final timestep for the OMP/MPI code with and without the PML applied:

Figure 13: Boundary types comparison with $(\Delta x, \Delta y) = (25m, 25m)$; $\Delta t = 0.05s$ and $t_{\text{max}} = 600s$. Reflective boundaries on the left and transparent boundaries on the right.

Coriolis Forces

Principle

The previously neglected Coriolis forces are now taken into account:

$$\frac{\partial \mathbf{u}}{\partial t} = -g\nabla \eta - \gamma \mathbf{u} \pm \mathbf{f} \mathbf{u}$$

Where:

- $f = 2\Omega \sin(\varphi) \rightarrow f_{\text{max}} = 2 \times 7.2931 \times 10^{-5}$ (Coriolis coefficient)
- $\Omega = \pi/12$ radians/hour (angular rotation rate of the Earth)

When discretized (example on u):

$$\frac{u_{i,j}^{n+1} - u_{i,j}^n}{\Delta t} = -g \frac{\eta_{i,j}^{n+1} - \eta_{i-1,j}^{n+1}}{\Delta x} - \gamma u_{i,j}^n + f v_{i,j}^n$$

To account for this additional contribution and improve the model, we average actual coupled velocities as:

$$v_{i,j}^n \approx v_{\text{averaged}} = \frac{v_{i-1,j} + v_{i-1,j+1} + v_{i,j} + v_{i,j+1}}{4}$$

Assumptions

Physical Coriolis effects

Realistic Coriolis force ($f = 2 \times 7.2921 \times 10^{-5}$) becomes significant at:

- Spatial scale: L > 100 km
- Time scale: T > 17 h (inertial period at mid-latitudes)

Our simulation parameters Current numerical setup:

- Domain size: 160×160 points, $dx = dy = 25m \rightarrow 4km \times 4km$ domain
- Time span: $t_max = 600s (10 min)$, dt = 0.05s

Therefore, with scales 25 times too small spatially and 100 times too short temporally, three options exist:

- **1.** Ignore Coriolis (f = 0)
- **2.** Use realistic f (effect negligible)
- **3.** Artificially increase f for testing \rightarrow chosen

This amplification compensates for our reduced scales to observe and validate the implementation:

$$f_{\text{modified}} = 2 \times 7.2921 \times 10^{-2}$$

Results

Figure 14: Water elevation profile at mid-domain.

After 10 minutes of simulation, we can observe modifications in the water elevation pattern: a decrease in water levels on the left side and an increase on the right side. This asymmetric distribution indicates the presence of a rotational motion induced by the Coriolis force.

Erratum

During code review, a critical issue was discovered:

- F_CORIOLIS was not properly defined in the code
- As a result, the Coriolis contribution was exactly zero