PRACTICAL-5(a): GAUSS JACOBI METHOD

NAME:-NITISH KUMAR

ROLL NO:-20201453

COURSE:- B.Sc.(H) COMPUTER SCIENCE

```
GaussJacobi[A0_, b0_, X0_, maxiter_] :=
  Module [A = N[A0], b = N[b0], xk = X0, xk1, i, j, k = 0, n, m]
     OutputDetails},
    size = Dimensions[A];
    n = size[[1]];
    m = size[[2]];
   If [n \neq m]
     Print[
      "Not a square matrix, cannot proceed with gauss jacobi method"];
     Return[]];
    OutputDetails = {xk};
    xk1 = Table[0, {n}];
    While[k < maxiter,
     For [i = 1, i \le n, i++,
      xk1[[i]] = \frac{1}{A[[i,i]]} * \left(b[[i]] - \sum_{i=1}^{i-1} A[[i,j]] * xk[[j]] - \sum_{i=i+1}^{n} A[[i,j]] * xk[[j]]\right);
     OutputDetails = Append[OutputDetails, xk1];
     xk = xk1;;
    colHeading = Table[X[s], {s, 1, n}];
    Print[NumberForm[TableForm[OutputDetails,
       TableHeadings → {None, colHeading}], 6]];
    Print["No of iterations performed", maxiter];];
A = \{\{5, 1, 2\}, \{-3, 9, 4\}, \{1, 2, -7\}\};
b = \{10, -14, -33\};
X0 = \{0, 0, 0\};
GaussJacobi[A, b, X0, 15]
```

X[1]	X[2]	X[3]
0	0	0
2.	-1.55556	4.71429
0.425397	-2.98413	4.55556
0.774603	-3.43845	3.92245
1.11871	-3.04067	3.84253
1.07112	-2.89044	4.00534
0.975953	-2.97867	4.04146
0.979148	-3.02644	4.00266
1.00422	-3.00813	3.98947
1.00584	-2.99391	3.99828
0.99947	-2.99729	4.00257
0.998428	-3.00132	4.0007
0.999985	-3.00083	3.9994
1.00041	-2.99974	3.99976
1.00004	-2.99976	4.00013
0.999898	-3.00004	4.00008

No of iterations performed15

Gauss Jacobi with error

```
GaussJacobiwithErr[A0_, b0_, X0_, maxiter_] :=
  Module [A = N[A0], b = N[b0], xk = X0, xk1, i, j, k = 0, n, m,
    OutputDetails},
   size = Dimensions[A];
   n = size[[1]];
   m = size[[2]];
   If[n ≠ m,
    Print[
      "Not a square matrix, cannot proceed with gauss jacobi method"];
    Return[]];
   OutputDetails = {xk};
   maxNorm = .001;
   xk1 = Table[0, {n}];
   While maxNorm > error,
     For [i = 1, i \le n, i++,
      xk1[[i]] = \frac{1}{A[[i,i]]} * \left(b[[i]] - \sum_{j=1}^{i-1} A[[i,j]] * xk[[j]] - \sum_{j=i+1}^{n} A[[i,j]] * xk[[j]]\right); ];
    maxNorm = Max[Abs[xk1 - xk]];
    OutputDetails = Append[OutputDetails, xk1];
    xk = xk1;;
   colHeading = Table[X[s], {s, 1, n}];
   Print[NumberForm[TableForm[OutputDetails,
       TableHeadings → {None, colHeading}], 6]];
   Print["No of iterations takens to acheive desired accuracy=", k];
   Print["Max norm at", k, "th iterations=", maxNorm];];
A = \{\{5, 1, 2\}, \{-3, 9, 4\}, \{1, 2, -7\}\};
b = \{10, -14, -33\};
X0 = \{0, 0, 0\}
error = 10^{-4}
GaussJacobiwithErr[A, b, X0, error]
```

{**0**, **0**, **0**}

 $\frac{1}{10\,000}$

X[1]	X[2]	X[3]
0	0	0
2.	-1.55556	4.71429
0.425397	-2.98413	4.55556
0.774603	-3.43845	3.92245
1.11871	-3.04067	3.84253
1.07112	-2.89044	4.00534
0.975953	-2.97867	4.04146
0.979148	-3.02644	4.00266
1.00422	-3.00813	3.98947
1.00584	-2.99391	3.99828
0.99947	-2.99729	4.00257
0.998428	-3.00132	4.0007
0.999985	-3.00083	3.9994
1.00041	-2.99974	3.99976
1.00004	-2.99976	4.00013
0.999898	-3.00004	4.00008
0.999979	-3.00007	3.99997
1.00002	-2.99999	3.99998

No of iterations takens to acheive desired accuracy=17

Max norm at17th iterations=0.000072592