

Institut d'Optique Graduate School TP d'Opto-Électronique

OPTO-ÉLECTRONIQUE

Travaux Pratiques

Semestre 5

Documentations techniques

- SFH206K
- LED Rouge
- TL081

Les documentations techniques sont disponibles sur le site des constructeurs.

Radial Sidelooker

SFH 206 K

Silicon PIN Photodiode

Applications

- Access Control & Security

- Appliances & Tools

Features

- Package: clear epoxy
- ESD: 2 kV acc. to ANSI/ESDA/JEDEC JS-001 (HBM, Class 2)
- Especially suitable for applications from 400 nm to 1100 nm
- Short switching time (typ. 20 ns)
- 5 mm LED plastic package
- Also available on tape and reel

Maximum Ratings

T_A = 25 °C

Parameter	Symbol		Values		
Operating Temperature	T _{op}	min. max.	-40 °C 100 °C		
Storage temperature	T_{stg}	min. max.	-40 °C 100 °C		
Reverse voltage	V_R	max.	32 V		
Total power dissipation	P _{tot}	max.	150 mW		
ESD withstand voltage acc. to ANSI/ESDA/JEDEC JS-001 (HBM, Class 2)	V_{ESD}	max.	2 kV		

Characteristics

T_A = 25 °C

Parameter	Symbol		Values
Spectral sensitivity $V_R = 5 \text{ V}$; Std. Light A; T = 2856 K	S	min. typ.	50 nA/lx 80 nA/lx
Wavelength of max sensitivity	$\lambda_{_{Smax}}$	typ.	920 nm
Spectral range of sensitivity	λ _{10%}	typ.	420 1120 nm
Radiant sensitive area	А	typ.	7.02 mm²
Dimensions of active chip area	L×W	typ.	2.65 x 2.65 mm x mm
Half angle	φ	typ.	60 °
Dark current V _R = 10 V	I _R	typ. max.	2 nA 30 nA
Spectral sensitivity of the chip $\lambda = 850 \text{ nm}$	S _λ	typ.	0.62 A / W
Quantum yield of the chip λ = 850 nm	η	typ.	0.90 Electrons / Photon
Open-circuit voltage $E_v = 1000 \text{ lx}$; Std. Light A; $V_R = 0 \text{ V}$	V _o	min. typ.	310 mV 365 mV
Short-circuit current $E_v = 1000 \text{ lx}$; Std. Light A; $V_R = 0 \text{ V}$	I _{sc}	typ.	80 μΑ
Rise time $V_R = 5 \text{ V}$; $R_L = 50 \Omega$; $\lambda = 850 \text{ nm}$; $I_P = 800 \mu\text{A}$	t _r	typ.	0.02 µs
Fall time $V_R = 5 \text{ V}$; $R_L = 50 \Omega$; $\lambda = 850 \text{ nm}$; $I_P = 800 \mu\text{A}$	t _f	typ.	0.02 µs
Forward voltage I _F = 100 mA; E = 0	V_{F}	typ.	1.3 V
Capacitance $V_R = 0 \text{ V}; f = 1 \text{ MHz}; E = 0$	C _o	typ.	72 pF
Temperature coefficient of voltage	TC _v	typ.	-2.6 mV / K
Temperature coefficient of short-circuit current Std. Light A	TC ₁	typ.	0.18 % / K
Noise equivalent power $V_R = 10 \text{ V}; \lambda = 850 \text{ nm}$	NEP	typ.	0.041 pW / Hz ^{1/2}
Detection limit $V_R = 10 \text{ V}; \lambda = 850 \text{ nm}$	D*	typ.	6.5e12 cm x Hz ^{1/2} / W

Relative Spectral Sensitivity 2), 3)

 $S_{rel} = f(\lambda)$

Directional Characteristics 2), 3)

 $S_{rel} = f(\phi)$

Photocurrent/Open-Circuit Voltage 2), 3) Dark Current 2), 3)

$$I_P (V_R = 5 \text{ V}) / V_O = f (E_v)$$

$$I_{R} = f(V_{R}); E = 0$$

Capacitance 2), 3)

C = f (
$$V_R$$
); f = 1MHz; E = 0; T_A = 25°C

Dark Current 2)

$$I_{R} = f(T_{A}); E = 0; V_{R} = 10 V$$

T-1 3/4 (5mm) SOLID STATE LAMP

Part Number: L-1503ID

High Efficiency Red

Features

- Low power consumption.
- Versatile mounting on P.C. board or panel.
- T-1 3/4 diameter flangeless package.
- Reliable and rugged.
- RoHS compliant.

Description

The High Efficiency Red source color devices are made with Gallium Arsenide Phosphide on Gallium Phosphide Orange Light Emitting Diode.

Package Dimensions

SPEC NO: DSAA5995

APPROVED: WYNEC

- 1. All dimensions are in millimeters (inches).
- 2. Tolerance is $\pm 0.25(0.01")$ unless otherwise noted.
- 3. Lead spacing is measured where the leads emerge from the package.4. The specifications, characteristics and technical data described in the datasheet are subject to change without prior notice.

REV NO: V.14A CHECKED: Allen Liu

DATE: MAR/11/2013 DRAWN: Y.Liu

PAGE: 1 OF 6 ERP: 1101001576

Kingbright

Selection Guide

Part No.	Dice	Lens Type	lv (mc @ 10		Viewing Angle [1]	
			Min.	Тур.	201/2	
1 4F02ID	High Efficiency Dod (CoAsD(CoD)	Dad Differend	25	50	000	
L-1503ID	High Efficiency Red (GaAsP/GaP)	Red Diffused	*12	*40	60°	

Notes:

- $1.\,\theta1/2$ is the angle from optical centerline where the luminous intensity is 1/2 of the optical peak value.
- Luminous intensity/ luminous Flux: +/-15%.
 * Luminous intensity value is traceable to the CIE127-2007 compliant national standards.

Electrical / Optical Characteristics at TA=25°C

	<u> </u>					
Symbol	Parameter	Device	Тур.	Max.	Units	Test Conditions
λpeak	Peak Wavelength	High Efficiency Red	627		nm	IF=20mA
λD [1]	Dominant Wavelength	High Efficiency Red	617		nm	IF=20mA
Δλ1/2	Spectral Line Half-width	High Efficiency Red	45		nm	IF=20mA
С	Capacitance	High Efficiency Red	15		pF	VF=0V;f=1MHz
VF [2]	Forward Voltage	High Efficiency Red	2	2.5	V	IF=20mA
lr	Reverse Current	High Efficiency Red		10	uA	VR = 5V

Notes:

- 1.Wavelength: +/-1nm. 2. Forward Voltage: +/-0.1V.
- 3. Wavelength value is traceable to the CIE127-2007 compliant national standards.

Absolute Maximum Ratings at TA=25°C

Parameter	High Efficiency Red					
Power dissipation	75	mW				
DC Forward Current	30	mA				
Peak Forward Current [1]	160	mA				
Reverse Voltage	5	V				
Operating/Storage Temperature	-40°C To +85°C	<u>.</u>				
Lead Solder Temperature [2]	260°C For 3 Seconds					
Lead Solder Temperature [3]	260°C For 5 Seconds					

- 1. 1/10 Duty Cycle, 0.1ms Pulse Width.
 2. 2mm below package base.
 5mm below package base.

DATE: MAR/11/2013 SPEC NO: DSAA5995 **REV NO: V.14A** PAGE: 2 OF 6 APPROVED: WYNEC **CHECKED: Allen Liu** DRAWN: Y.Liu ERP: 1101001576

Kingbright

RELATIVE INTENSITY Vs. WAVELENGTH

High Efficiency Red L-1503ID

SPATIAL DISTRIBUTION

 SPEC NO: DSAA5995
 REV NO: V.14A
 DATE: MAR/11/2013
 PAGE: 3 OF 6

 APPROVED: WYNEC
 CHECKED: Allen Liu
 DRAWN: Y.Liu
 ERP: 1101001576

TL081, TL081A, TL081B, TL082, TL082A TL082B, TL084, TL084A, TL084B

SLOS081I-FEBRUARY 1977-REVISED MAY 2015

TL08xx JFET-Input Operational Amplifiers

Features

- Low Power Consumption: 1.4 mA/ch Typical
- Wide Common-Mode and Differential Voltage Ranges
- Low Input Bias Current: 30 pA Typical
- Low Input Offset Current: 5 pA Typical
- **Output Short-Circuit Protection**
- Low Total Harmonic Distortion: 0.003% Typical
- High Input Impedance: JFET Input Stage
- Latch-Up-Free Operation
- High Slew Rate: 13 V/µs Typical
- Common-Mode Input Voltage Range Includes V_{CC+}

Applications

- **Tablets**
- White goods
- Personal electronics
- Computers

3 Description

The TL08xx JFET-input operational amplifier family is designed to offer a wider selection than any previously developed operational amplifier family. Each of these JFET-input operational amplifiers incorporates well-matched, high-voltage JFET and bipolar transistors in a monolithic integrated circuit. The devices feature high slew rates, low input bias offset currents, and low offset-voltage temperature coefficient.

Device Information⁽¹⁾

PART NUMBER	PACKAGE	BODY SIZE (NOM)				
TL084xD	SOIC (14)	8.65 mm × 3.91 mm				
TL08xxFK	LCCC (20)	8.89 mm × 8.89 mm				
TL084xJ	CDIP (14)	19.56 mm × 6.92 mm				
TL084xN	PDIP (14)	19.3 mm × 6.35 mm				
TL084xNS	SO (14)	10.3 mm × 5.3 mm				
TL084xPW	TSSOP (14)	5.0 mm × 4.4 mm				

(1) For all available packages, see the orderable addendum at the end of the data sheet.

Schematic Symbol

5 Pin Configuration and Functions

TL081 and TL081x D, P, and PS Package 8-Pin SOIC, PDIP, and SO Top View

TL082 and TL082x D, JG, P, PS and PW Package 8-Pin SOIC, CDIP, PDIP, SO, and TSSOP Top View

TL084 and TL084x D, J, N, NS and PW Package 14-Pin SOIC, CDIP, PDIP, SO, and TSSOP Top View

Pin Functions

	T III T GIICUOTIS												
		PII	N										
	TL081	TLO)82	TL	.084								
NAME	SOIC, PDIP, SO	SOIC, CDIP, PDIP, SO, TSSOP	LCCC	SOIC, CDIP, PDIP, SO, TSSOP	LCCC	I/O	DESCRIPTION						
1IN-	_	2	5	2	3	I	Negative input						
1IN+	_	3	7	3	4	I	Positive input						
1OUT	_	1	2	1	2	0	Output						
2IN-	_	6	15	6	9	I	Negative input						
2IN+	_	5	12	5	8	I	Positive input						
2OUT	_	7	17	7	10	0	Output						
3IN-	_	_	_	9	13	I	Negative input						
3IN+	_	_	_	10	14	I	Positive input						
3OUT	_	_	_	8	12	0	Output						
4IN-	_	_	_	13	19	I	Negative input						
4IN+	_	_	_	12	18	I	Positive input						
4OUT	_	_	_	14	20	0	Output						

Copyright © 1977–2015, Texas Instruments Incorporated

Submit Documentation Feedback

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1)

					MIN	MAX	UNIT	
V _{CC+}	Quantum (2)					18	V	
V _{CC} -	Supply voltage ⁽²⁾					-18	V	
V _{ID}	Differential input voltage (3)					±30	V	
V_{l}	Input voltage (2)(4)					±15	V	
	Duration of output short circuit (5)	ation of output short circuit (5)						
	Continuous total power dissipation	Continuous total power dissipation						
			TL08_C TL08_AC TL08_BC		0	70		
T_A	Operating free-air temperature		TL08_I		-40	85	°C	
			TL084Q		-40	125	,	
			TL08_M		- 55	125	,	
	Operating virtual junction temperat	ure				150	°C	
T _C	Case temperature for 60 seconds	FK package	TL08_M			260	°C	
	Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds	J or JG package	TL08_M			300	°C	
T _{stg}	Storage temperature				- 65	150	°C	

⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

- (2) All voltage values, except differential voltages, are with respect to the midpoint between V_{CC+} and V_{CC-}.
- 3) Differential voltages are at IN+, with respect to IN-.
- (4) The magnitude of the input voltage must never exceed the magnitude of the supply voltage or 15 V, whichever is less.
- (5) The output may be shorted to ground or to either supply. Temperature and/or supply voltages must be limited to ensure that the dissipation rating is not exceeded.

6.2 ESD Ratings

			VALUE	UNIT
		Human body model (HBM), per ANSI/ESDA/JEDEC JS-001 (1)	1000	
V _{(E}	ESD) Electrostatic discharge	Charged-device model (CDM), per JEDEC specification JESD22-C101 (2)	1500	V

- (1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
- (2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

			MIN	MAX	UNIT
V_{CC+}	Supply voltage		5	15	V
V_{CC-}	Supply voltage		- 5	-15	V
V_{CM}	Common-mode voltage	V _{CC-} + 4	V _{CC+} – 4	V	
		TL08xM	-55	125	
_	Amphicant tompopulative	TL08xQ	-40	125	°C
T _A	Ambient temperature	TL08xI	-40	85	
		TL08xC	0	70	

6.4 Thermal Information

		TL08xx									
-	THERMAL METRIC ⁽¹⁾	D (SOIC)		N (PDIP)	NS (SO)	P (PDIP)	PS (SO)	PS (SO) PW (TSSO			
		8 PINS	14 PINS	14 PINS	14 PINS	{PIN COUNT} PINS	{PIN COUNT} PINS	8 PINS	14 PINS	UNIT	
$R_{\theta JA}$	Junction-to-ambient thermal resistance (2)(3)	97	86	76	80	85	95	149	113	°C/W	

- (1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953.
- Maximum power dissipation is a function of $T_{J(max)}$, $R_{\theta JA}$, and T_A . The maximum allowable power dissipation at any allowable ambient temperature is $P_D = (T_{J(max)} T_A) / R_{\theta JA}$. Operating at the absolute maximum T_J of 150°C can affect reliability. The package thermal impedance is calculated in accordance with JESD 51-7.

6.5 Electrical Characteristics for TL08xC, TL08xxC, and TL08xI

 $V_{CC\pm} = \pm 15 \text{ V} \text{ (unless otherwise noted)}$

PAF	RAMETER	TEST CONDITIONS	T _A ⁽¹⁾	TL081C, TL082C, TL084C			AC, TL08 L084AC			TL081BC, TL082BC, TL084BC		TL081I, TL082I, TL084I			UNIT	
		CONDITIONS		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	
	Input offset	V _O = 0,	25°C		3	15		3	6		2	3		3	6	
V _{IO}	voltage	$R_S = 50 \Omega$	Full range			20			7.5			5			9	mV
α_{VIO}	Temperature coefficient of input offset voltage	$V_O = 0$, $R_S = 50 \Omega$	Full range		18			18			18			18		μV/°C
	Input offset		25°C		5	200		5	100		5	100		5	100	pA
I _{IO}	current ⁽²⁾	V _O = 0	Full range			2			2			2			10	nA
	Input bias		25°C		30	400		30	200		30	200		30	200	pΑ
I _{IB}	current ⁽²⁾	V _O = 0	Full range			10			7			7			20	nA
V _{ICR}	Common- mode input voltage range		25°C	±11	–12 to 15		±11	–12 to 15		±11	–12 to 15		±11	–12 to 15		V
	Maximum	$R_L = 10 \text{ k}\Omega$	25°C	±12	±13.5		±12	±13.5		±12	±13.5		±12	±13.5		
V _{OM}	peak output	R _L ≥ 10 kΩ	Full	±12			±12			±12			±12			V
OW	voltage swing	R _L ≥ 2 kΩ	range	±10	±12		±10	±12		±10	±12		±10	±12		-
	Large-signal		25°C	25	200		50	200		50	200		50	200		
A _{VD}	differential voltage amplification	$V_O = \pm 10 \text{ V},$ $R_L \ge 2 \text{ k}\Omega$	Full range	15			15			25			25			V/mV
B ₁	Unity-gain bandwidth		25°C		3			3			3			3		MHz
r _i	Input resistance		25°C		10 ¹²			10 ¹²			10 ¹²			10 ¹²		Ω
CMRR	Common- mode rejection ratio	$V_{IC} = V_{ICR}min,$ $V_{O} = 0,$ $R_{S} = 50 \Omega$	25°C	70	86		75	86		75	86		75	86		dB
k _{SVR}	Supply- voltage rejection ratio (ΔV _{CC±} /ΔV _{IO})	$V_{CC} = \pm 15 \text{ V to}$ $\pm 9 \text{ V},$ $V_{O} = 0,$ $R_{S} = 50 \Omega$	25°C	70	86		80	86		80	86		80	86		dB

All characteristics are measured under open-loop conditions with zero common-mode voltage, unless otherwise specified. Full range for T_A is 0°C to 70°C for TL08_C, TL08_BC and -40°C to 85°C for TL08_I.
 Input bias currents of an FET-input operational amplifier are normal junction reverse currents, which are temperature sensitive, as

shown in Figure 13. Pulse techniques must be used that maintain the junction temperature as close to the ambient temperature as possible.

Electrical Characteristics for TL08xC, TL08xxC, and TL08xI (continued)

 $V_{CC\pm} = \pm 15 \text{ V} \text{ (unless otherwise noted)}$

PARAMETER		TEST CONDITIONS	T _A ⁽¹⁾	TL081C, TL082C, TL084C		TL081AC, TL082AC, TL084AC		TL081BC, TL082BC, TL084BC		TL081I, TL082I, TL084I		UNIT				
		CONDITIONS		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	
I _{CC}	Supply current (each amplifier)	V _O = 0, No load	25°C		1.4	2.8		1.4	2.8		1.4	2.8		1.4	2.8	mA
V _{O1} /V _{O2}	Crosstalk attenuation	A _{VD} = 100	25°C		120			120			120			120		dB

6.6 Electrical Characteristics for TL08xM and TL084x

 $V_{CC+} = \pm 15 \text{ V}$ (unless otherwise noted)

	DADAMETED	TEST CONDITIONS(1)	_	TL081M, TL082M			TL084Q, TL084M			
PARAMETER		TEST CONDITIONS ⁽¹⁾	T _A	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
	land offer at well-	V 0 D 50 0	25°C		3	6		3	9	\/
V_{IO}	Input offset voltage	$V_{O} = 0, R_{S} = 50 \Omega$	Full range			9			15	mV
α_{VIO}	Temperature coefficient of input offset voltage	$V_{O} = 0, R_{S} = 50 \Omega$	Full range		18			18		μV/°C
		V 0	25°C		5	100		5	100	pА
I _{IO}	Input offset current ⁽²⁾	V _O = 0	125°C			20			20	nA
	Input bias current (2)	V 0	25°C		30	200		30	200	pА
I _{IB}	input bias current	V _O = 0	125°C			50			50	nA
V _{ICR}	Common-mode input voltage range		25°C	±11	-12 to 15		±11	-12 to 15		٧
	Maximum peak output voltage swing	$R_L = 10 \text{ k}\Omega$	25°C	±12	±13.5		±12	±13.5		
V_{OM}		R _L ≥ 10 kΩ	- ·	±12			±12			V
		R _L ≥ 2 kΩ	Full range	±10	±12		±10	±12		
^	Large-signal differential voltage amplification	$V_O = \pm 10 \text{ V}, R_L \ge 2 \text{ k}\Omega$	25°C	25	200		25	200		V/mV
A_{VD}			Full range	15			15			V/m V
B ₁	Unity-gain bandwidth		25°C		3			3		MHz
ri	Input resistance		25°C		10 ¹²			10 ¹²		Ω
CMRR	Common-mode rejection ratio	$V_{IC} = V_{ICR}min,$ $V_{O} = 0, R_{S} = 50 \Omega$	25°C	80	86		80	86		dB
k _{SVR}	Supply-voltage rejection ratio $(\Delta V_{CC} \pm /\Delta V_{IO})$	$V_{CC} = \pm 15 \text{ V to } \pm 9 \text{ V},$ $V_{O} = 0, R_{S} = 50 \Omega$	25°C	80	86		80	86		dB
Icc	Supply current (each amplifier)	V _O = 0, No load	25°C		1.4	2.8		1.4	2.8	mA
V _{O1} /V _{O2}	Crosstalk attenuation	A _{VD} = 100	25°C		120	-		120		dB

6.7 Operating Characteristics

 $V_{CC+} = \pm 15 \text{ V}, T_A = 25^{\circ}\text{C}$ (unless otherwise noted)

- 00±	, ,,	,				
	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
		V_I = 10 V, R_L = 2 k Ω , C_L = 100 pF, See Figure 19	8 ⁽¹⁾	13		
SR	Slew rate at unity gain	V_{l} = 10 V, R_{L} = 2 k Ω , C_{L} = 100 pF, T_{A} = -55°C to 125°C, See Figure 19	5 ⁽¹⁾			V/µs

(1) On products compliant to MIL-PRF-38535, this parameter is not production tested.

 ⁽¹⁾ All characteristics are measured under open-loop conditions, with zero common-mode input voltage, unless otherwise specified.
 (2) Input bias currents of a FET-input operational amplifier are normal junction reverse currents, which are temperature sensitive, as shown in Figure 13. Pulse techniques must be used that maintain the junction temperatures as close to the ambient temperature as possible.

6.9 Typical Characteristics

Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. The Figure numbers referenced in the following graphs are located in Parameter Measurement Information.

Table 1. Table of Graphs

			Figure
V _{OM}	Maximum peak output voltage	versus Frequency versus Free-air temperature versus Load resistance versus Supply voltage	Figure 1, Figure 2, Figure 3 Figure 4 Figure 5 Figure 6
	Large-signal differential voltage amplification	versus Free-air temperature versus Load resistance	Figure 7 Figure 8
A _{VD}	Differential voltage amplification	versus Frequency with feed-forward compensation	Figure 9
P _D	Total power dissipation	versus Free-air temperature	Figure 10
I _{CC}	Supply current	versus Free-air temperature versus Supply voltage	Figure 11 Figure 12
I _{IB}	Input bias current	versus Free-air temperature	Figure 13
	Large-signal pulse response	versus Time	Figure 14
Vo	Output voltage	versus Elapsed time	Figure 15
CMRR	Common-mode rejection ratio	versus Free-air temperature	Figure 16
V _n	Equivalent input noise voltage	versus Frequency	Figure 17
THD	Total harmonic distortion	versus Frequency	Figure 18

Frequency

INSTRUMENTS

7 Parameter Measurement Information

Figure 19. Test Figure 1

Figure 21. Test Figure 3

Figure 20. Test Figure 2

Figure 22. Test Figure 4