Séance 2.1: Transformation et exploration des données

Visseho Adjiwanou, PhD.

SICSS-Montréal

08 June 2021

Plan de présentation

- Manipuler et transformer les données avec base R
- 2 Manipuler et transformer les données avec Tidyverse
- 3 Exploration des données

Introduction

Figure 1

└─1. Manipuler et transformer les données avec base R

1. Manipuler et transformer les données avec base R

Opération sur les fichiers de données

```
UNpop_URL <- "https://raw.githubusercontent.com/kosukeimai,
UNpop <- read.csv(UNpop_URL)</pre>
```

Opération sur les fichiers de données

head(UNpop)

```
## year world.pop
## 1 1950 2525779
## 2 1960 3026003
## 3 1970 3691173
## 4 1980 4449049
## 5 1990 5320817
## 6 2000 6127700
```

1. Manipuler et transformer les données avec base R

Fichier/base de données - Opération sur les fichiers de données

```
#Kenya <- read.csv("/Users/visseho/Documents/Documents - M
#head(Kenya)
```

└1. Manipuler et transformer les données avec base R

Fichier/base de données - Opérations sur les bases de données

```
class(UNpop)
## [1] "data.frame"
names(UNpop)
## [1] "year"
                    "world.pop"
nrow(UNpop)
## [1] 7
ncol(UNpop)
```

[1] 2

Fichier/base de données - Opérations sur les bases de données

```
dim(UNpop)
## [1] 7 2
length(UNpop)
```

Fichier/base de données - Opérations sur les bases de données

summary(UNpop)

```
##
        year
                  world.pop
   Min. :1950
                Min. :2525779
##
##
   1st Qu.:1965
                 1st Qu.:3358588
   Median:1980
                 Median: 4449049
##
##
   Mean :1980
                 Mean :4579529
##
   3rd Qu.:1995
                 3rd Qu.:5724258
##
   Max. :2010
                 Max. :6916183
```

Fichier/base de données - Opérations sur les bases de données

- L'opérateur \$ est un moyen d'accéder à une variable individuelle à partir d'un objet fichier de données.
- Il renvoie un vecteur contenant la variable spécifiée.

```
UNpop[c(1, 2, 3), ]
```

```
## year world.pop
## 1 1950 2525779
## 2 1960 3026003
## 3 1970 3691173
```

└─1. Manipuler et transformer les données avec base R

Fichier/base de données - Opérations sur les bases de données

```
# Selectionner une variable
UNpop[, "world.pop"]
```

```
## [1] 2525779 3026003 3691173 4449049 5320817 6127700 6910
```

```
UNpop$world.pop
## [1] 2525779 3026003 3691173 4449049 5320817 6127700 6910
```

UNpop[["world.pop"]]

[1] 2525779 3026003 3691173 4449049 5320817 6127700 6910 select(UNpop, world.pop) marche aussi mais, select vient d'un

Fichier/base de données - Opérations sur les bases de données

```
UNpop[1:3, "year"]
```

```
## [1] 1950 1960 1970
```

- Que fait la commande?
- select(slice(UNpop, 1:3), year) marche aussi mais. select vient d'un autre package

Fichier/base de données - Opérations sur les bases de données

Sélectionner les observations impaires

```
UNpop$world.pop[seq(from = 1, to = nrow(UNpop), by = 2)]
```

[1] 2525779 3691173 5320817 6916183

Fichier/base de données - création de nouvelles variables

- Quand vous créez une nouvelle variable, il est important de la créer dans la même base de données.
- Exemple: Calculer le taux de croissance

```
UNpop$taux <- UNpop$world.pop / UNpop$world.pop[1]
head(UNpop)</pre>
```

```
## year world.pop taux
## 1 1950 2525779 1.000000
## 2 1960 3026003 1.198047
## 3 1970 3691173 1.461400
## 4 1980 4449049 1.761456
## 5 1990 5320817 2.106604
## 6 2000 6127700 2.426063
```

Fichier/base de données - Statistique

- Quand vous désirez calculer une statistique sur une variable, il faut créer un objet différent.
- Exemple : calculer la population mondiale totale

```
pop_totale <- sum(UNpop$world.pop)
pop_totale</pre>
```

```
## [1] 32056704
```

Fichier/base de données - Statistique

pop_moyenne <- pop_totale / 6</pre>

■ Exemple : calculer la population mondiale moyenne

```
pop_moyenne

## [1] 5342784

pop_moyenne1 <- mean(UNpop$world.pop)
pop_moyenne1</pre>
```

[1] 4579529

2. Manipuler et transformer les données avec Tidyverse

2. Manipuler et transformer les données avec Tidyverse

Tidyverse comprend un ensemble de packages qui suivent la même philosophie dont le but est de vous aider à répondre à chaque étape de votre processus d'analyse des données.

Résumons ce processus:

- Résumons ce processus:
- Où sont les données? Vous devez les importer (read) pour les analyser. La manière dont vous allez les importer dépend du type de fichier.

- Résumons ce processus:
- Où sont les données? Vous devez les importer (read) pour les analyser. La manière dont vous allez les importer dépend du type de fichier.

- Résumons ce processus:
- 1 Où sont les données? Vous devez les importer (read) pour les analyser. La manière dont vous allez les importer dépend du type de fichier.
- Est-ce que vous avez besoin de l'ensemble des variables du fichier de données? pas nécessairement. Vous devez sélectionner (select) celles qui vous intéresse

- Résumons ce processus:
- 1 Où sont les données? Vous devez les importer (read) pour les analyser. La manière dont vous allez les importer dépend du type de fichier.
- Est-ce que vous avez besoin de l'ensemble des variables du fichier de données? pas nécessairement. Vous devez sélectionner (select) celles qui vous intéresse

- Résumons ce processus:
- 1 Où sont les données? Vous devez les importer (read) pour les analyser. La manière dont vous allez les importer dépend du type de fichier.
- Est-ce que vous avez besoin de l'ensemble des variables du fichier de données? pas nécessairement. Vous devez sélectionner (select) celles qui vous intéresse
- Est-ce que vous travaillez sur l'ensemble de l'échantillon ou uniquement sur les femmes? Vous devez les filtrer (filter)

■ Résumons ce processus:

- Résumons ce processus:
- Devez-vous utiliser les groupes d'âges ou les âges réels? Vous devez créer de nouvelles variables (mutate)

- Résumons ce processus:
- Devez-vous utiliser les groupes d'âges ou les âges réels? Vous devez créer de nouvelles variables (mutate)

- Résumons ce processus:
- Devez-vous utiliser les groupes d'âges ou les âges réels? Vous devez créer de nouvelles variables (mutate)
- Que faites-vous des individus qui n'ont pas répondu à certaines questions? leur attribuer une valeur (impute) ou les enlever (na.rm pour remove na)

- Résumons ce processus:
- Devez-vous utiliser les groupes d'âges ou les âges réels? Vous devez créer de nouvelles variables (mutate)
- Que faites-vous des individus qui n'ont pas répondu à certaines questions? leur attribuer une valeur (impute) ou les enlever (na.rm pour remove na)

- Résumons ce processus:
- Devez-vous utiliser les groupes d'âges ou les âges réels? Vous devez créer de nouvelles variables (mutate)
- Que faites-vous des individus qui n'ont pas répondu à certaines questions? leur attribuer une valeur (impute) ou les enlever (na.rm pour remove na)
- Que savons-nous sur les variables? Vous devez produire des statistiques descriptives (summarize)

- Les gras dans le diapositif précédent indique le langage que le logiciel comprend pour faire les étapes décrites plus haut
- Il comprend que l'Anglais. Chaque fois que vous voulez faire quelque chose, chercher le mot en anglais
- Il respecte une certaine manière de parler. Il va utiliser des symbole pour se simplifier la vie comme celui-ci par exemple %>%

Packages de Tidyverse

```
## v ggplot2 3.3.3 v purrr 0.3.4

## v tibble 3.1.2 v dplyr 1.0.6

## v tidyr 1.1.3 v stringr 1.4.0

## v readr 1.4.0 v forcats 0.4.0
```

Warning: package 'tibble' was built under R version 3.6

Warning: package 'ggplot2' was built under R version 3.0

Warning: package 'tidyr' was built under R version 3.6.2

- Comme dit plus haut, Tidyverse va nous servir à faire tout ce travail.
- Comme toujours, imitez au maximum ce que je fais

Figure 2

Chaque élément est associé à un package donné.

- Importer (readr)
- Transformation des données (data wrangling)
 - Arranger (tidyr)
 - Transformer (dplyr)
- 3 Analyse des donnés
- Visualisation (ggplot2)
- Modélisation
- Communication (rmarkdown: ceci n'est pas un package de tidyverse)

PS. Intéressant sur data wrangling https://www.lemagit.fr/conseil/Quest-ce-que-le-Data-Wrangling

- Les autres packages de tidyverse
 - sringr : pour travailler avec les données caractères
 - **forcat** : pour travailler avec les facteurs : http://perso.ens-lyon. fr/lise.vaudor/manipulation-de-facteurs-avec-forcats/
 - **purrr**: pour travailler avec les fonctions
 - **tibble** : transformer les données en tribble.

La documentation est éparse sur chacun de ces packages.

Différences dans les codes

	Base r	Tidyverse
	. (ex. read.csv)	_ (ex. read_csv)
pipes	()	%>%
Creer variable	()	mutate
Position	mean()	summarise
	median()	
Dispersion	var()	summarise
	sd()	
Analyse/groupe		group_by
graphique	hist	ggplot

1. Sélection des variables

2. Sélection des observations

Séance 2.2

3. Créations de nouvelles variables

- Variables quantitatives
- Variables factorielles

Séance 2.2

☐3. Exploration des données

3. Exploration des données

1. Variables factorielles

■ Tableau de fréquences

2. Variables quantitatives

- Paramètres de tendances centrales
- Paramètres de dispersion

3. Relations entre deux variables