import numpy as np
import matplotlib.pyplot as plt

import pandas as pd
import seaborn as sns

%matplotlib inline

csv\_url="/content/housing.csv"
data=pd.read\_csv(csv\_url)
data

| ₽ |     | RM    | LSTAT | PTRATIO | MEDV     |  |
|---|-----|-------|-------|---------|----------|--|
|   | 0   | 6.575 | 4.98  | 15.3    | 504000.0 |  |
|   | 1   | 6.421 | 9.14  | 17.8    | 453600.0 |  |
|   | 2   | 7.185 | 4.03  | 17.8    | 728700.0 |  |
|   | 3   | 6.998 | 2.94  | 18.7    | 701400.0 |  |
|   | 4   | 7.147 | 5.33  | 18.7    | 760200.0 |  |
|   |     |       |       |         |          |  |
|   | 484 | 6.593 | 9.67  | 21.0    | 470400.0 |  |
|   | 485 | 6.120 | 9.08  | 21.0    | 432600.0 |  |
|   | 486 | 6.976 | 5.64  | 21.0    | 501900.0 |  |
|   | 487 | 6.794 | 6.48  | 21.0    | 462000.0 |  |
|   | 488 | 6.030 | 7.88  | 21.0    | 249900.0 |  |
|   | 100 |       |       |         |          |  |

489 rows × 4 columns

dataset=pd.DataFrame(data)
dataset

|                      | RM    | LSTAT | PTRATIO | MEDV     |  |  |
|----------------------|-------|-------|---------|----------|--|--|
| 0                    | 6.575 | 4.98  | 15.3    | 504000.0 |  |  |
| 1                    | 6.421 | 9.14  | 17.8    | 453600.0 |  |  |
| 2                    | 7.185 | 4.03  | 17.8    | 728700.0 |  |  |
| 3                    | 6.998 | 2.94  | 18.7    | 701400.0 |  |  |
| 4                    | 7.147 | 5.33  | 18.7    | 760200.0 |  |  |
|                      |       |       |         |          |  |  |
| 484                  | 6.593 | 9.67  | 21.0    | 470400.0 |  |  |
| 485                  | 6.120 | 9.08  | 21.0    | 432600.0 |  |  |
| 486                  | 6.976 | 5.64  | 21.0    | 501900.0 |  |  |
| 487                  | 6.794 | 6.48  | 21.0    | 462000.0 |  |  |
| 488                  | 6.030 | 7.88  | 21.0    | 249900.0 |  |  |
| 489 rows × 4 columns |       |       |         |          |  |  |

dataset.head(n=5)

|   | RM    | LSTAT | PTRATIO | MEDV     |
|---|-------|-------|---------|----------|
| 0 | 6.575 | 4.98  | 15.3    | 504000.0 |
| 1 | 6.421 | 9.14  | 17.8    | 453600.0 |
| 2 | 7.185 | 4.03  | 17.8    | 728700.0 |
| 3 | 6.998 | 2.94  | 18.7    | 701400.0 |
| 4 | 7.147 | 5.33  | 18.7    | 760200.0 |

#### → Data Preprocessing

```
data.isnull().sum()
```

RM 0 LSTAT 0 PTRATIO 0 MEDV 0 dtype: int64

## **▼ Exploratory Data Analysis**

```
sns.set9rc={'figure.figsize':(11.7,8.27)}
sns.distplot(data['MEDV'],bins=30)
plt.show()
```

<ipython-input-13-72b58c8d7cac>:2: UserWarning:

`distplot` is a deprecated function and will be removed in seaborn v0.14.0.

Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

For a guide to updating your code to use the new functions, please see  $\underline{\text{https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751}}$ 

sns.distplot(data['MEDV'],bins=30)



correlation\_matrix=data.corr().round(2)
sns.heatmap(data=correlation\_matrix,annot=True)



plt.figure(figsize=(20,5))

features=['LSTAT','RM']

```
target=data['MEDV']

for i, col in enumerate(features):
   plt.subplot(1,len(features),i+1)
   x=data[col]
   y=target
   plt.scatter(x,y,marker='o')
   plt.title(col)
   plt.xlabel(col)
   plt.ylabel('MEDV')
LSTAT

LSTAT

LOG

RM
```





## - Splitting the data into training and testing

```
X= pd.DataFrame(np.c_[data['LSTAT'],data['RM']],columns=['LSTAT','RM'])
Y=data['MEDV']

from sklearn.model_selection import train_test_split

X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size = 0.2, random_state=5)
print(X_train.shape)
print(X_test.shape)
print(Y_train.shape)
print(Y_test.shape)

(391, 2)
(98, 2)
(391,)
(98,)
```

# Training and testing the model

```
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error
lin_model = LinearRegression()
lin_model.fit(X_train, Y_train)

* LinearRegression
LinearRegression()
```

#### Model evaluation

```
from sklearn.metrics import r2_score
# model evaluation for training set
y_train_predict = lin_model.predict(X_train)
```

```
rmse = (np.sqrt(mean_squared_error(Y_train, y_train_predict)))
r2 = r2_score(Y_train, y_train_predict)
print("The model performance for training set")
print("----")
print('RMSE is {}'.format(rmse))
print('R2 score is {}'.format(r2))
print("\n")
# model evaluation for testing set
y_test_predict = lin_model.predict(X_test)
rmse = (np.sqrt(mean_squared_error(Y_test, y_test_predict)))
r2 = r2_score(Y_test, y_test_predict)
print("The model performance for testing set")
print("----")
print('RMSE is {}'.format(rmse))
print('R2 score is {}'.format(r2))
    The model performance for training set
    RMSE is 95873.37016704663
    R2 score is 0.65444093465046
    The model performance for testing set
    RMSE is 95722.95711092254
    R2 score is 0.6944867306092937
```

• ×