Algorithms Design Chap04-Greedy Algorithms

College of Computer Science

Nankai University

Tianjin, P.R.China

Chap04-Greedy Algorithms Outline

- 4.1 Interval Scheduling and Interval Partitioning
- 4.2 Scheduling to Minimize Lateness
- 4.3 Optimal Caching
- 4.4 Shortest Paths in a Graph
- 4.5 Minimum Spanning Tree
- 4.7 Clustering
- 4.8 Huffman Codes

Shortest path network.

- Directed graph G = (V, E).
- Source $s \in V$, destination $t \in V$.
- •Length l_e = length of edge $e.(l_e \ge 0)$

Goal

- find a shortest path from s to t.
- Cost of path = sum of edge costs in path

Suppose that you change the length of every edge of G as follows. For which is every shortest path in G a shortest path in G'?

- A. Add 17.
- B. Multiply by 17.
- C. Either A or B.
- D. Neither A nor B

Shortest path applications

- Map routing.
- Robot navigation.
- Texture mapping.
- Urban traffic planning.
- Network routing protocols (OSPF, BGP, RIP).

• . . .

Which variant in car GPS?

- A. Single source: from one node *s* to every other node.
- B. Single target: from every node to one node *t*.
- C. Source—target: from one node *s* to another node *t*.
- D. All pairs: between all pairs of nodes.

Dijkstra's algorithm

• single-source shortest paths problem

Greedy approach

- Maintain a set of explored nodes S for which algorithm has determined the shortest path distance d[u] from s to u.
- Initialize $S = \{s\}, d[s] = 0$.

- [continue]
- Repeatedly choose unexplored node $v \notin S$ which minimizes

$$\pi(v) = \min_{e=(u,v): u \in S} d[u] + l_e$$

Add v to S, and set $d[v] = \pi(v)$

• To recover path, set pred[v] ← e that achieves min.


```
S = \{0\}, d[0] = 0
\pi[1]=5, \pi[7]=8, \pi[4]=9, S=\{0,1\}, d[1]=5, pred[1]=0
\pi[7] = \min(8,9), \pi[3] = 15 + 5 = 20, \pi[2] = 17, |\pi[4] = 9,
S = \{0,1,7\}, d[7] = 8, pred[7] = 0
\pi[5] = 8+6=14, \pi[2]=\min(8+7, 5+12), |\pi[4]=9.
\pi[3]=20, S={0,1,4,7}, d[4]=9, pred[4]=0
\pi[5] = \min(9+4,14), \pi[6] = 9+20 = 29, |\pi[2]=15,
\pi[3]=20, S={0,1,4,5,7},d[5]=13, pred[5]=4
```

```
\pi[2]=\min(13+1,8+7), \pi[6]=\min(13+13,29), |
\pi[3]=20, S=\{0,1,2,4,5,7\}, d[2]=14, pred[2]=5
\pi[3]=\min(20, 14+3), \pi[6]=\min(26, 14+11),
S=\{0,1,2,3,4,5,7\}, d[3]=17, pred[3]=2
\pi[6]=\min(17+9, 14+11)=25,
S=\{0,1,2,3,4,5,6,7\}, d[6]=25, pred[6]=2
```

	V1	V2	V3	V4	V5	V6	V7	S
R1	5= 5 (<i>v</i> ₀)	∞	∞	9 (v ₀)	∞	∞	(v_0)	{0,1}
R2		$5+12=17$ (v_1)	5+15=20 (v ₁)	9 (v_0)	∞	∞	$min(9,8)$ =8(v_0)	{0,1,7}
R3		min(15,17) =15(v_7)	20 (v ₁)	9=9 (<i>v</i> ₀)	8+6=14 (<i>v</i> ₇)	∞		{0,1,4,7 }
R4		15 (v ₇)	20 (v ₁)		$min(13, 14)=13$ (v_4)	20+9=29 (v ₄)		{0,1,4,5, 7}
R5		min(14,15) =14(v_5)	20 (v ₁)			min(26,29) =26(v_5)		{0,1,2,4, 5,7}
R6			min(17,20) $=17(v_2)$			min(25,26) =25(v_2)		{0,1,2,3, 4,5,7}
R7						min(26,25) =25(v_2)		{0,1,2,3, 4,5,6,7}

Invariant. For each node $u \in S$, d[u] is the length of the shortest s-u path.

Pf. (by induction on |S|)

Base case: |S| = 1 is easy since $S = \{s\}$ and d[s] = 0.

Inductive hypothesis:

Assume true for $|S| = k \ge 1$.

- Let v be next node added to S, and let u-v be the chosen edge.
- The shortest s-u path plus (u, v) is an s-v path of length π (v).
- Consider any s-v path P. We'll see that it's no shorter than $\pi(v)$.
- Let x-y be the first edge in P that leaves S, and let P' be the subpath to x.
- *P* is already too long as soon as it leaves *S*.

Efficient implementation

• For each unexplored node $v \notin S$: explicitly maintain $\pi[v]$ instead of computing directly from definition

$$\pi(v) = \min_{e=(u,v): u \in S} d[u] + l_e$$

- The set of unexplored nodes can only decrease because set *S* increases.
- Specifically, it suffices to update: $\pi[v] = \min(\pi[v], \pi[u] + l_e)$

Efficient implementation

Use a min-oriented priority queue (PQ) to choose an unexplored node that minimizes $\pi[v]$.

Efficient Implementation.

- Algorithm maintains $\pi[v]$ for each node v.
- Priority Queue(PQ) stores unexplored nodes, using $\pi[]$ as priorities.
- •Once u is deleted from the PQ, $\pi[u] =$ length of a shortest s-u path.

DIJKSTRA (V, E, ℓ, s)

FOREACH $v \neq s$: $\pi[v] \leftarrow \infty$, $pred[v] \leftarrow null$; $\pi[s] \leftarrow 0$.

Create an empty priority queue pq.

FOREACH $v \in V$: INSERT $(pq, v, \pi[v])$.

WHILE (IS-NOT-EMPTY(pq))

 $u \leftarrow \text{DEL-MIN}(pq)$.

FOREACH edge $e = (u, v) \in E$ leaving u:

IF $(\pi[v] > \pi[u] + \ell_e)$

DECREASE-KEY(pq, v, $\pi[u] + \ell_e$).

 $\pi[v] \leftarrow \pi[u] + \ell_e$; $pred[v] \leftarrow e$.

Performance. n INSERT, n DELETE-MIN, $\leq m$ DECREASE-KEY.

priority queue	Insert	DELETE-MIN	Decrease-Key	total
node-indexed array (A[i] = priority of i)	<i>O</i> (1)	O(n)	<i>O</i> (1)	$O(n^2)$
binary heap	$O(\log n)$	$O(\log n)$	$O(\log n)$	$O(m \log n)$
d-way heap (Johnson 1975)	$O(d \log_d n)$	$O(d \log_d n)$	$O(\log_d n)$	$O(m \log_{m/n} n)$
Fibonacci heap (Fredman-Tarjan 1984)	<i>O</i> (1)	$O(\log n)^{\dagger}$	O(1) †	$O(m + n \log n)$
integer priority queue (Thorup 2004)	<i>O</i> (1)	$O(\log \log n)$	<i>O</i> (1)	$O(m + n \log \log n)$

Dijkstra's algorithm and proof extend to several related problems

- Shortest paths in undirected graphs: $\pi[v] \leq \pi[u] + \ell(u, v)$.
- Maximum capacity paths: $\pi[v] \ge \min(\pi[u], c(u, v))$.
- Maximum reliability paths: $\pi[v] \ge \pi[u] \times \gamma(u, v)$.

• • • •

Chap04-Greedy Algorithms Outline

- 4.1 Interval Scheduling and Interval Partitioning
- 4.2 Scheduling to Minimize Lateness
- 4.3 Optimal Caching
- 4.4 Shortest Paths in a Graph
- 4.5 Minimum Spanning Tree
- 4.7 Clustering
- 4.8 Huffman Codes

Def.(4.5.2) A path is a sequence of edges which connects a sequence of nodes.

Def.(4.5.3) A cycle is a path with no repeated nodes or edges other than the starting and ending nodes.


```
path P = { (1, 2), (2, 3), (3, 4), (4, 5), (5, 6) }

cycle C = { (1, 2), (2, 3), (3, 4), (4, 5), (5, 6), (6, 1) }
```

Def. A cut is a partition of the nodes into two nonempty subsets S and V-S.

Def. The cutset of a cut S is the set of edges with exactly one endpoint in S.

Quiz(4.5.1)

Consider the cut $S = \{1, 4, 6, 7\}$. Which edge is in the cutset of S?

A. S is not a cut (not connected)

B. 1–7

C. 5–7

D. 2-3

Quiz(4.5.2)

Let *C* be a cycle and let *D* be a cutset. How many edges do *C* and *D* have in common? Choose the best answer.

A. 0

B. 2

C. not 1

D. an even number

Proposition. A cycle and a cutset intersect in an even number of edges.

Proposition. A cycle and a cutset intersect in an even number of edges.

Pf. [by picture]

Def. Let H = (V, T) be a subgraph of an undirected graph G = (V, E). H is a spanning tree of G if H is both acyclic and connected.

graph G = (V, E)
spanning tree H = (V, T)

Proposition.

Let H = (V, T) be a subgraph of an undirected graph G = (V, E).

Then, the following are equivalent:

- *H* is a spanning tree of *G*.
- *H* is acyclic and connected.
- H is connected and has |V| 1 edges.
- H is acyclic and has |V| 1 edges.
- *H* is minimally connected: removal of any edge disconnects it.
- *H* is maximally acyclic: addition of any edge creates a cycle.

Minimum Spanning Tree(MST).

Def. Given a connected, undirected graph G = (V, E) with edge weights c_e , a MST is a spanning tree of G such that the sum of edge weights of tree is minimized.

• Note that the set of edges of a MST is a subset of the edges *E*.

MST cost = 50 = 4 + 6 + 8 + 5 + 11 + 9 + 7

Simplifying assumption.

• All edge costs c_e are distinct.

Cut property.

•Let S be any subset of nodes, and let e be the min cost edge with exactly one endpoint in S. Then the MST contains e.

e is in the MST

Simplifying assumption.

• All edge costs c_e are distinct.

Cycle property.

•Let *C* be any cycle, and let *f* be the max cost edge belonging to *C*. Then the MST does not contain *f*.

f is not in the MST

Cut property. Let S be any subset of nodes, and let e be the min cost edge with exactly one endpoint in S. Then the MST contains e.

Pf.

- Suppose e does not belong to T^* , and let's see what happens.
- Adding e to T^* creates a cycle C in T^* .
- Edge *e* is both in the cycle *C* and in the cutset *D* corresponding to $S \Rightarrow$ there exists another edge, say f, that is in both C and D.
- $T' = T^* \cup \{e\} \{f\}$ is also a spanning tree.
- Since $c_e < c_f$, $cost(T') < cost(T^*)$.
- This is a contradiction.

Cycle property. Let C be any cycle, and let f be the max cost edge belonging to C. Then the MST does not contain f.

Pf.

- Suppose f belongs to T^* , and let's see what happens.
- Deleting f from T^* creates a cut S in T^* .
- Edge f is both in the cycle C and in the cutset D corresponding to $S \Rightarrow$ there exists another edge, say e, that is in both C and D.
- $T' = T^* \cup \{e\} \{f\}$ is also a spanning tree.
- Since $c_e < c_f$, $cost(T') < cost(T^*)$.
- This is a contradiction.

- Prim's algorithm. [Jarn & 1930, Dijkstra 1957, Prim 1959]
 - •Initialize $S = \{s\}$ for any node s, $T = \emptyset$.
 - Repeat n-1 times:
 - Add to *T* a min-cost edge in the cutset corresponding to *S*.
 - Add the other endpoint to *S*.

Theorem. Prim's algorithm can be implemented to run in $O(m \log n)$ time.

Pf. Implementation almost identical to Dijkstra's algorithm.

```
PRIM (V, E, c)
S \leftarrow \emptyset, T \leftarrow \emptyset.
s \leftarrow any node in V.
FOREACH v \neq s: \pi[v] \leftarrow \infty, pred[v] \leftarrow null; \pi[s] \leftarrow 0.
Create an empty priority queue pq.
FOREACH v \in V: INSERT(pq, v, \pi[v]).
WHILE (IS-NOT-EMPTY(pq))
                                                           \pi[v] = \text{cost of cheapest}
                                                        known edge between v and S
   u \leftarrow \text{DEL-MIN}(pq).
   S \leftarrow S \cup \{u\}, T \leftarrow T \cup \{pred[u]\}.
   FOREACH edge e = (u, v) \in E with v \notin S:
       IF (c_e < \pi[v])
           DECREASE-KEY(pq, v, c_e).
           \pi[v] \leftarrow c_e; pred[v] \leftarrow e.
```

Kruskal's algorithm. [Kruskal, 1956]

- Sort edges in ascending order of cost
- Repeat *m* times:
 - Select the min-cost edge e so far
 - If adding *e* to *T* creates a cycle, discard *e* according to cycle property.
 - Otherwise, insert e = (u, v) into T according to cut property where S = set of nodes in u's connected component.

E.g.

Theorem. Kruskal's algorithm can be implemented to run in $O(m \log m)$ time.

- Sort edges by cost.
- Use union—find data structure to dynamically maintain connected components.

```
Kruskal(G, c) {
    Sort edges weights so that c_1 \le c_2 \le \ldots \le c_m.
    T ← b
    foreach (u ∈ V) make a set containing singleton u
    for i = 1 to m are u and v in different connected components?
        (\mathbf{u},\mathbf{v}) = \mathbf{e},
       if (u and v are in different sets) {
           T \leftarrow T \cup \{e_i\}
           merge the sets containing u and v
                          merge two components
    return T
```

Reverse-delete algorithm

- Start with all edges in *T* and consider them in descending order of cost
- Delete edge from T unless it would disconnect T

Thanks for Listening

College of Computer Science
Nankai University
Tianjin, P.R.China