Međuispit iz Kvantnih računala (21. studenog 2019.)

Ime, prezime i JMBAG:

Uputa:

- Ispit se sastoji od 10 zadataka u obliku pitanja s ponuđenim odgovorima.
- Odgovore koje smatrate točnima označite (zacrnite) na posebnom obrascu. Mogu se pojaviti zadaci u kojima je potrebno označiti više od jednog ponuđenog odgovora.
- U praznom prostoru pored zadatka ili na dodatnim papirima napišite obrazloženje ili računski postupak koji vas je doveo do rješenja koje smatrate točnim.
- Točno riješeni zadatak donosi 4 boda. Kazneni (negativni) bodovi se ne obračunavaju.

Notacija i terminologija:

- Vektori $|0\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ i $|1\rangle = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ čine ortonormiranu bazu u $\mathcal{H}^{(2)}$.
- Pri realizaciji qubita stanjima polarizacije fotona, vektori $|0\rangle = |x\rangle$ i $|1\rangle = |y\rangle$ odgovaraju stanjima linearne polarizacije u x-smjeru i u y-smjeru, bazu $\{|x\rangle, |y\rangle\}$ obilježavamo simbolom \bigoplus , a bazu $\{\frac{1}{\sqrt{2}}(|x\rangle \pm |y\rangle)\}$ obilježavamo simbolom \bigotimes .
- Pri realizaciji qubita projekcijom spina čestice spinskog kvantnog broja s=1/2 na z-os uzimamo da $|0\rangle$ i $|1\rangle$ odgovarju projekcijama $\hbar/2$ i $-\hbar/2$.
- Računalnu bazu u prostoru stanja dvaju qubitova obilježavamo s $\{|ij\rangle = |i\rangle \otimes |j\rangle$; $i, j = 0, 1\}$.

- 1 Koji od navedenih vektora nije jedinični vektor?
 - (a) $\frac{1}{\sqrt{2}} |0\rangle i \frac{1}{\sqrt{2}} |1\rangle$
 - (b) $\frac{2}{3}|0\rangle + \frac{3}{4}|1\rangle$ točno
 - (c) $\frac{1}{2}|0\rangle \frac{\sqrt{3}}{2}i|1\rangle$
 - (d) $\frac{3}{5}|0\rangle + \frac{4}{5}|1\rangle$
 - (e) $\frac{5}{13} |0\rangle \frac{12}{13} i |1\rangle$
- 2 Koji od ponuđenih vektora predstavlja stanje kvantnog bita koje je različito od sva četiri preostala stanja?
 - (a) $i\frac{1}{\sqrt{2}}|0\rangle \frac{1}{\sqrt{2}}|1\rangle$
 - (b) $-\frac{1}{\sqrt{2}}|0\rangle i\frac{1}{\sqrt{2}}|1\rangle$
 - (c) $\frac{1}{\sqrt{2}}|0\rangle + i\frac{1}{\sqrt{2}}|1\rangle$
 - (d) $-\frac{1}{\sqrt{2}}|0\rangle + i\frac{1}{\sqrt{2}}|1\rangle$ točno
 - (e) $-i\frac{1}{\sqrt{2}}|0\rangle + \frac{1}{\sqrt{2}}|1\rangle$
- 3 Qubit se nalazi u stanju

$$\frac{1}{\sqrt{2}}\ket{0} + \frac{\mathrm{i}}{\sqrt{2}}\ket{1}$$
.

Amplituda vjerojatnosti nalaženja tog qubita u stanju

$$\frac{1}{\sqrt{2}}\ket{0} - \frac{\mathrm{i}}{\sqrt{2}}\ket{1}$$

je:

- (a) 0 **točno**
- (b) 1
- (c) -1
- (d) i
- (e) -i

4 Kvantni bit nalazi se u stanju

$$\cos \frac{\vartheta}{2} |0\rangle + e^{i\alpha} \sin \frac{\vartheta}{2} |1\rangle, \qquad \vartheta, \alpha \in \mathbb{R}.$$

Vjerojstnost da taj kvantni bit bude izmjeren u stanju

$$\cos \frac{\vartheta}{2} |0\rangle + e^{i\beta} \sin \frac{\vartheta}{2} |1\rangle, \qquad \beta \in \mathbb{R},$$

(zaokruži istinitu tvrdnju)

- (a) ovisi o kutevima α i β , a ne ovisi o kutu ϑ .
- (b) ovisi o kutu ϑ , a ne ovisi o kutevima α i β .
- (c) može se izraziti kao funkcija kuta ϑ i zbroja kutova α i β .
- (d) može se izraziti kao funkcija kuta ϑ i razlike kutova α i β **točno**.
- (e) ništa od gore navedenog nije istinito.
- 5 Očekivana vrijednost operatora

$$|0\rangle\langle 1| + |1\rangle\langle 0|$$

u sustavu koji se nalazi u stanju

$$\frac{1}{\sqrt{2}}(|0\rangle + i\,|1\rangle)$$

je:

- (a) 1
- (b) $1/\sqrt{2}$
- (c) 0 **točno**
- (d) $-1/\sqrt{2}$
- (e) -1
- 6 Alice i Bob uspostavljaju tajni ključ protokolom BB84. Ako Alice za neki bit ključa odabere bazu ⊕, a Bob odabere bazu ⊗, kolika je vjerojatnost da će Bob za vrijednost tog bita dobiti vrijednost 0?
 - (a) 0
 - (b) 1/4
 - (c) 1/2 točno
 - (d) 3/4
 - (e) 1

7 Neka su stanja $|0\rangle$ i $|1\rangle$ svojstvena stanja operatora energije (hamiltonijana) qubita pri čemu stanju $|0\rangle$ odgovara energija $\hbar\omega$, a stanju $|1\rangle$ odgovara energija 0. Ako se qubit početno nalazi u stanju

$$\frac{1}{\sqrt{2}}(|0\rangle + |1\rangle),$$

on će se u istom stanju po prvi puta naći nakon vremena

- (a) $2\pi/\omega$ točno
- (b) $\sqrt{2}\pi/\omega$
- (c) π/ω
- (d) $\pi/(2\omega)$
- (e) ∞ (neće se naći u tom stanju)
- 8 Izbacimo li jedan od pet ponuđenih vektora, preostala četiri čine ortonormiranu bazu u prostoru \mathcal{H}^4 . Koji vektor treba izbaciti?
 - (a) $\frac{1}{\sqrt{2}} (|00\rangle + i|11\rangle)$
 - (b) $\frac{1}{\sqrt{2}} (|00\rangle i|11\rangle)$
 - (c) $\frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$ točno
 - (d) $\frac{1}{\sqrt{2}} (|01\rangle + |10\rangle)$
 - (e) $\frac{1}{\sqrt{2}} (|01\rangle |10\rangle)$

9 Ako se sustav dvaju qubitova početno nalazi u stanju

$$\frac{1}{\sqrt{2}}\big(\ket{00}+\ket{11}\big)$$

te ako mjerenjem prvog qubita dobijemo vrijednost 0, kolika je vjerojatnost da nakon toga mjerenjem drugog qubita dobijemo vrijednost 1?

- (a) 0 **točno**
- (b) 1/4
- (c) 1/2
- (d) 3/4
- (e) 1
- 10 Matrica

$$\frac{1}{2} \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

prikazuje operator projekcije na stanje

- (a) $\frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$
- (b) $\frac{1}{\sqrt{2}}(|00\rangle |11\rangle)$
- (c) $\frac{1}{\sqrt{2}}(|01\rangle + |10\rangle)$
- (d) $\frac{1}{\sqrt{2}}(|01\rangle |10\rangle)$ točno
- (e) nijedno od navedenih.