ECE 322L Electronics 2

02/25/20 - Lecture 10
Cascode Amplifiers
The Bipolar Junction Transistor

Updates and overview

- ➤ I have posted two handouts within Lecture 10 folder:
 - Handout about p-n junctions
 - > Handout about the cascode amplifier.
- Cascode amplifiers (Neamen 4.8.2)
- ➤ The Bipolar Junction Transistor (BJT):
 - Structure, Operating regions, DC analysis, Load lines (Neamen-From 5.1.1 to 5.1.5)

Multi-stage amplifiers

It is important to understand which basic configurations to select per each stage, and how placing two basic configurations in series affects their performance

Cascode amplifier: conceptual circuit

Cascode Configuration

Signal circuit: Current source becomes an open circuit

Cascode amplifier is a two-stage, CS-CG configuration

Small Signal Model

Set v_i = 0, attach a voltage source v_x , compute i_x , R_o = v_x / i_x

 $v_i = v_{gs1} = 0 \ \rightarrow g_{m1} \ v_{gs1}$ current source becomes open circuit

By KCL around Q2

KVL:
$$v_{gs2} = -i_x r_{o1}$$

KCL:
$$i_2 = i_x - g_{m2}v_{gs2} = i_x + i_x g_{m2}r_{o1} = i_x (1 + g_{m2}r_{o1})$$

KVL:
$$v_x = i_2 r_{o2} + i_x r_{o1} = i_x (1 + g_{m2} r_{o1}) r_{o2} + i_x r_{o1}$$

 $v_x = i_x [(1 + g_{m2} r_{o1}) r_{o2} + r_{o1}]$

$$R_o = \frac{v_x}{i_x} = r_{o1} + r_{o2} + g_{m2} r_{o1} r_{o2}$$

Note:
$$A_v = A_{vo} \times \frac{R_L' + R_o}{R_L'}$$

Small Signal Model

For simplicity assume
$$r_{o1} = r_{o2} = r_o$$
 and $g_{m1} = g_{m2} = g_m$

$$\infty$$
 $g_m r_o$ ∞ $-g_m r_o$ $-(g_m r_o)^2$ Max. Gain

^{*}The cascode provides a high gain to large loads (i.e., loads that are comparable to or larger than to r_o). Later on we'll see that the cascode configuration provides a high bandwidth.

Cascode amplifier: practical circuit

2/25/2020

circuit analysis.

Take-home problem 1

The transistor parameters of the NMOS cascode circuit below are $V_{TN1}=V_{TN2}=0.8$ V, $K_{n1}=K_{n2}=3$ mA/V², $\lambda_1=\lambda_2=0.02$ V¹. The coordinates of the Q point are the following: $I_{DQ}=0.471$ mA, $V_{DSQ1}=2.5$ V, $V_{DSQ2}=1.61$ V. Calculate the small-signal voltage gain of stage 1 and 2 when isolated and when connected.

Take-home problem 1, Sol

To coloulate the foir we can report to as a load and model

12

Take-home problem 1, Sol

Take-home problem 1, Sol

$$Ro = \frac{Sx}{Cx} = 20 + 202 + 602 + 6012 = 2012 = 2012 = 202 = 202 = 202 = 202 = 200$$

Bipolar junction transistor: structure

Bipolar junction transistor: structure

 W_B : Width of the quasi-neutral region in the base L_n : Diffusion length of minority carriers in the base

- Base is narrow (<10s μm) so the two p-n junctions can interact (W_B<< L_n).
- Doping decreases from the emitter to the collector so that switching the polarity of the two ends will lead to a drastically different behavior

Bipolar junction transistor: operation

Bipolar junction transistor: operation

Note: Replace v_{BC} by v_{CB} and v_{BE} by v_{EB} for pnp transistor

BJT in forward-active mode

Operation in forward-active region or mode

BJT in forward active mode: currents

Emitter current:

Holes injected from B to E +Electrons injected from E to B. The latter is dominant as the emitter is more highly doped than the base

Base current:

Holes injected from B to E+Holes recombining with electrons injected from E to B **Collector current**:

Holes drifting from C to B+Electrons injected from E to B, diffusing across the base and swept towards C by the high electric field across the B-C junction. The latter is dominant as the collector is lightly doped.

The Bipolar Junction Transistor (BJT)

Operation in forward active region or mode

BJT in forward active mode: currents

Emitter current:

$$i_E = I_{EO}[e^{v_{BE}/V_T} - 1] \cong I_{EO}e^{v_{BE}/V_T}$$

$$v_{BE} \gg V_T$$

Notes:

- The base current is much smaller than the emitter and the collector current.
- I_{EO}, I_{BO}, and I_s
 depend on
 doping levels,
 device
 geometry, and
 temperature.

Base current:

$$i_B = i_{BI} + i_{B2}$$
: $i_{B1} \propto e^{v_{BE}/V_T}$ $i_{B2} \propto e^{v_{BE}/V_T}$ $i_B = I_{BO}e^{v_{BE}/V_T}$

Collector current:

$$i_C = I_S e^{v_{BE}/V_T}$$

BJT in forward-active mode: currents

As all terminal currents in a BJT have an exponential dependence on V_{BE} , they will be linearly related.

$$\frac{i_C}{i_B} = \beta$$
 (β =I_s/I_{BO} varies with transistor parameters and temperature)

$$i_{E} = i_{C} + i_{B}$$

$$i_{E} = (1 + \beta)i_{B}$$

$$i_{C} = \left(\frac{\beta}{1 + \beta}\right)i_{E} \quad i_{C} = \alpha i_{E}$$

$$\alpha = \frac{\beta}{1 + \beta}$$

β: Common-emitter current gain- 50 < β < 300

α: Common-base current gain- α ≈0.99

BJT in forward-active mode

Current-voltage relationships in the forward-active operating region*

Table 5.1

Summary of the bipolar current-voltage relationships in the active region

pnp

npn

$$i_C = I_S e^{v_{BE}/V_T}$$
 $i_C = I_S e^{v_{EB}/V_T}$ $i_E = \frac{i_C}{\alpha} = \frac{I_S}{\alpha} e^{v_{BE}/V_T}$ $i_E = \frac{i_C}{\alpha} = \frac{I_S}{\alpha} e^{v_{EB}/V_T}$ $i_B = \frac{i_C}{\beta} = \frac{I_S}{\beta} e^{v_{EB}/V_T}$

For both transistors

$$i_E = i_C + i_B$$
 $i_C = \beta i_B$ $i_E = (1 + \beta)i_B$ $i_C = \alpha i_E = \left(\frac{\beta}{1+\beta}\right)i_E$ $\alpha = \frac{\beta}{1+\beta}$ $\beta = \frac{\alpha}{1-\alpha}$

* The Early effect is neglected here

BJT in forward active mode

Current-voltage relationships in the forward-active operating region

Common emitter configuration

BJT current-voltage characteristics (Active mode): Early effect

BJT in forward active mode: DC model

Common emitter configuration (npn) (w/ Early effect)

BJT in saturation: characteristics and DC model

BJT in cut-off: DC model

Cutoff

EJB: Reverse Biased

CBJ: Reverse Biased

BJT: DC models-Summary

Cutoff

EJB: Reverse Biased CBJ: Reverse Biased

Active

EBJ: Forward Biased

CBJ: Reverse Biased

Saturation

EBJ: Forward Biased

CBJ: Forward Biased

Condition for forward-active mode

B-E junction in forward bias & B-C junction in reverse bias

$$V_{BE} > V_{BEon}$$
, $V_{BC} < V_{BCon}$, $V_{CE} > V_{CESAT} = V_{BEon} - V_{BCon}$

 v_{BEon} ~0.6-0.7 V, v_{BCon} ~0.4-0.5 V, $v_{CE.sat}$ ~0.1-0.3 V

$$I_B > 0$$
, and $I_C = \beta I_B$

Additional conditions for active operation

*Practice writing the conditions for FA operation of a pnp

BJTs configurations

Common emitter

Both the input and output share the base "in common"

Both the input and output share the emitter "in common"

Both the input and output share the Collector "in common"

I/O current-voltage characteristics

Holes

 l_{B1}

 $\uparrow i_B$

Bo

Input characteristics

Output characteristics

I/O current-voltage characteristics

34

Overview of lecture 11

- > Lecture 11-
- The Bipolar Junction Transistor (BJT):
 Structure, Operating regions, DC analysis,

Load lines (Neamen-From 5.1.1 to 5.1.5)