

Dataset Cleaning and Analysis

21/03/2025

Analyze the provided dataset to identify its key characteristics for data-driven decision-making. Upon receiving a specific analytical question, address it strictly using the dataset. Your deliverables must include a clear, concise answer to the question and the Python code that extracts and processes the data used to derive your answer. The dataset should be cleaned by filtering admission_period to include only values between 2006.1 and 2019.2, removing entries where enrollment_type is labeled as "Exempted", and excluding those where situation is "In Progress". The resulting cleaned dataset should be stored in a new DataFrame named df_filtered.

qwen-max-latest

To analyze the provided dataset and answer specific analytical questions, we will first clean the dataset according to the specified criteria:

- 1. Filter admission_period to include only values between 2006.1 and 2019.2.
- 2. Remove entries where enrollment_type is labeled as "Exempted".
- 3. Exclude entries where situation is "In Progress".

The cleaned dataset will be stored in a new DataFrame named df_filtered. Below is the Python code to perform these steps, followed by an example of how to address a specific analytical question using the cleaned dataset.

Python Code for Data Cleaning

```
python
1 import pandas as pd
3 # Load the dataset
 4 file_path = 'stratified_history.csv'
5 df = pd.read_csv(file_path)
7 # Clean the dataset based on the specified criteria
8 df_filtered = df[
       (df['admission_period'] >= 2006.1) &
10
        (df['admission_period'] <= 2019.2) &</pre>
11
       (df['enrollment_type'] != 'Exempted') &
        (df['situation'] != 'In Progress')
12
13 1
14
15 # Display the first few rows of the cleaned dataset
16 print(df_filtered.head())
```

Example Analytical Question and Solution

Question:

What is the average grade (final_grade) of students who graduated (situation == 'Graduate') from the "Academic Unit of Systems and Computing" (academic_unit) in the cleaned dataset?

Solution:

We will filter the df_filtered DataFrame to include only rows where situation is "Graduate" and academic_unit is "Academic Unit of Systems and Computing". Then, we calculate the mean of the final_grade column.

Explanation of the Code

- 1. Data Cleaning :
 - The dataset is filtered to include only rows where admission_period is between 2006.1 and 2019.2.

- Rows with enrollment_type labeled as "Exempted" are removed.
- Rows where situation is "In Progress" are excluded.

2. Analytical Query:

- The cleaned dataset is further filtered to focus on students who graduated (situation == 'Graduate') and belong to the "Academic Unit of Systems and Computing".
- The mean of the final_grade column is calculated to determine the average grade.

This approach ensures that the analysis is performed on a clean and relevant subset of the data, providing accurate insights for data-driven decision-making.

> What is the proportion of student dropouts for each year of admission, considering dropout rate as a proportion of total admissions in that year?

qwen-max-latest

To calculate the proportion of student dropouts for each year of admission, we need to:

- 1. Group the data by admission_year .
- 2. Count the total number of students admitted in each year.
- 3. Count the number of students who dropped out (situation == 'Dropout') in each year.
- 4. Compute the dropout rate as the ratio of dropouts to total admissions for each year.

Here is the Python code to compute this:

```
python
1 import pandas as pd
 3 # Load the dataset
 4 file_path = 'stratified_history.csv'
 5 df = pd.read_csv(file_path)
 7 # Clean the dataset based on the specified criteria
 8 df filtered = df[
        (df['admission_period'] >= 2006.1) &
9
10
        (df['admission_period'] <= 2019.2) &</pre>
        (df['enrollment_type'] != 'Exempted') &
11
        (df['situation'] != 'In Progress')
12
13 ]
14
15 # Extract the admission year from admission_period (assuming it's in the format YYYY.X)
16 df_filtered['admission_year'] = df_filtered['admission_period'].astype(str).str.split('.').str[@
18 # Group by admission_year and calculate total admissions and dropouts
19 dropout_rate_by_year = df_filtered.groupby('admission_year').apply(
      lambda group: {
20 ,,
            'total_admissions': len(group),
21
            'dropouts': (group['situation'] == 'Dropout').sum(),
22
23
            'dropout_rate': (group['situation'] == 'Dropout').mean()
24
25 ).apply(pd.Series) # Convert the result into a DataFrame
26
27 # Reset index for better readability
28 dropout_rate_by_year = dropout_rate_by_year.reset_index()
29
30 # Display the resulting DataFrame
31 print(dropout_rate_by_year)
```

Explanation of the Code:

1. Data Cleaning:

- The dataset is filtered to include only rows where admission_period is between 2006.1 and 2019.2.
- Rows with enrollment_type labeled as "Exempted" are removed.
- Rows where situation is "In Progress" are excluded.

2. Extract Admission Year:

• The admission_period column is split to extract the year (e.g., 2006.1 becomes 2006).

3. Group by Admission Year:

- For each admission year, the total number of students is counted.
- The number of students who dropped out (situation == 'Dropout') is counted.
- The dropout rate is calculated as the proportion of dropouts to total admissions.

4. Output:

• A DataFrame is created with columns: admission_year , total_admissions , dropouts , and dropout_rate .

Example Output:

Assuming the dataset contains sufficient data for years 2006 to 2019, the output might look like this:

ADMISSION_YEAR	TOTAL_ADMISSIONS	DROPOUTS	DROPOUT_RATE
2006	500	150	0.30
2007	600	200	0.33
2008	550	180	0.33

This table shows the dropout rate for each admission year, enabling analysis of trends over time.

