### MA2202

- To prove uniqueness, suppose not unique and try to show equality.
- To prove equality of two sets, show that each is a subset of the other. To show that two groups are not isomorphic,
- prove by contradiction. • Element x has finite order  $\implies x^a = e$  for some
- Intersection with  $A_n \implies$  only take even permutations, which have sgn(x) = 1.

Let A, B be sets, and let  $f: A \to B$  be a function. • For  $a \in A$ , denote  $f(a) = b \in B$ .

- The set A is called the domain, and the set B is
- called the co-domain. • The range/image of f is

$$\{b \in B : b = f(a) \text{ for some } a \in A\}$$

$$\{b\in D: b=f(a)\}$$

• Let 
$$B' \subseteq B$$
. Define

$$f^{-1}(B') = \{a \in A : f(a) \in B'\}$$

• If 
$$g: C \to D$$
 is another function, then we say  $f = g \iff A = C, B = D$  and  $f(a) = g(a) \ \forall a \in A$ 

• If  $h: B \to C$ , then the composite of h and f is a function  $h \circ f : A \to C$  given by  $(h \circ f)(a) = h(f(a)) \quad \forall a \in A$ 

$$(n \circ f)(a) = n(f(a)) \quad \forall a \in I$$

## Notable examples

• The identity fn on A is  $f: A \to A$  defined by  $f(x) = x \quad \forall x \in A$ 

$$f(w) = w \quad \forall w \in \mathbb{N}$$

We also denote the identity function on 
$$A$$
 by  $\mathrm{id}_A$ .

• The inclusion fn on  $Y$  for some  $Y \subset X$  is the

- function  $h: Y \to X$  defined by  $h(y) = y \ \forall y \in Y$ .
- Injection/Surjection/Bijection Let  $f: A \rightarrow$ B be a function.

# 1. f is an injection if $f(a) = f(a') \implies a = a'$ .

- 2. f is a surjection if  $\forall b \in B, \exists a \in A \text{ s.t. } f(a) = b$ .
- 3. f is a bijection if it is both an injection and a
- 4. If f is a bijection, we can define the inverse func
  - tion  $f^{-1}: B \to A$  in the following way:  $\forall b \in B, \exists \text{ unique } a \in A \text{ such that } f(a) = b. \text{ Then}$
- A fn is a bijection ⇐⇒ its inverse fn exists.

# Integers

# Divisibility

Given  $a, b \in \mathbb{Z}$  where  $a \neq 0$ .

- We say a divides b if b = ma for some  $m \in \mathbb{Z}$ . The integer b is a multiple of a, and we write a|b.
- An integer n is called a unit if it divides 1. Hence n=1 or -1.
- Transitivity holds, i.e. a|b and  $b|c \implies a|c$

### Prime

A nonzero  $p \in \mathbb{Z}$  is called a prime integer if:

- 1. p is not a unit (i.e  $p \neq \pm 1$ ), and
- 2. if p divides ab for some  $a, b \in \mathbb{Z}$ , then p|a or p|b.
- A positive prime integer is called a prime number.

# Irreducible

A nonzero  $p \in \mathbb{Z}$  is called a irreducible integer if:

- 1. p is not a unit (i.e  $p \neq \pm 1$ ), and
- 2. if p divides xy for some  $x, y \in \mathbb{Z}$ , then either x or y is a unit, i.e. x or y is  $\pm 1$ .

# Prime vs irreducible

Let p be an integer. It is an irreducible integer  $\iff$ it is a prime integer.

# The Euclidean algorithm Let $x, y \in \mathbb{Z}$ with $y \neq 0$ . Then there exist unique

integers q and r such that x = qy + r and  $0 \le r < |y|$ 

$$x = qy + r$$
 and  $0 \le r < |y|$   
This is also known as the division algorithm.

Common divisor

divisor.

Given two integers x and y where  $y \neq 0$ .

- $\bullet$  A nonzero integer m is called a common divisor if m|x and m|y.
- 1 is always a common divisor.
- If m is a common divisor, -m is also a common
- Every common divisor lies bewtween -|y| and |y|.
- There are only finitely many common divisors.
- Greatest common divisor

y. Denote it by  $d = \gcd(x, y)$ .

There is a largest number d among the common divisors of x and y, which we call the GCD of x and

- Since 1 is always a common factor,  $d \ge 1$ • gcd(0, y) = |y|
- $\gcd(x, y) = \gcd(y, x) = \gcd(x, |y|)$
- $= \gcd(|x|, y) = \gcd(|x|, |y|)$ • gcd(cx, cy) = |c| gcd(x, y)
- gcd(x,y) = gcd(x+y,y) = gcd(x-y,y)
- Connection with Euclidean algorithm Let

x, y be integers where  $y \neq 0$ . Let x = qy + r where  $0 \le r < |y|$ . Then  $\gcd(x,y) = \gcd(y,r)$ 

$$x_2 \neq 0$$
.

Since  $\gcd(x_1, x_2) = \gcd(x_1, x_2)$ 

### Computing GCD Given $x_1, x_2 \in \mathbb{Z}$ . If $x_2 = 0$ , then $gcd(x_1, x_2) = |x_1|$ .

Else,  $x_2 \neq 0$ . Assume  $x_2 \neq 0$ . Since  $gcd(x_1, x_2) = gcd(x_1, |x_2|)$ ,

suppose  $x_2 > 0$ . By the division algorithm,  $x_1 = qx_2 + x_3$  for some  $0 \le x_3 < x_2$ 

$$gcd(x_1, x_2) = gcd(x_2, x_3)$$
  
Doing this repeatedly, we get

 $\gcd(x_1,x_2)=\gcd(x_2,x_3)=\cdots$  $= \gcd(x_m, 0) = x_m$ 

where 
$$|x_2| > x_3 > x_4 > \dots \ge 0$$
.

Example gcd(6804, -930) = gcd(6804, 930).

6804 = 7(930) + 294

294 = 6(48) + 6

48 = 8(6) + 0

$$930 = 3(294) + 48$$

gcd(6804, -930) = gcd(6804, 930) = gcd(930, 294) $= \gcd(294, 48) = \gcd(48, 6) = \gcd(6, 0) = 6$ 

$$= \gcd(294, 48) = \gcd(48, 6) = \gcd(6, 0) = 6$$
  
Then, by reverse engineering,

by reverse engineering,  

$$6 = 294 - 6(48)$$

$$= 294 - 6(930 - 3(294))$$

$$= -6(930) + (19)(294)$$
  
= -6(930) + (19)(6804 - 7(930))

$$= (19)(6804) + 139(-930)$$
 Hence,  $6 = a(6804) + b(-930)$  for some  $a, b \in \mathbb{Z}$ .

**Proposition** Let  $d = \gcd(x, y)$  where  $y \neq 0$ . Then

= 19(6804) - 139(930)

# 1. We have d = ax + by for some $a, b \in \mathbb{Z}$

- 2. Let  $I = \{mx + ny \in \mathbb{Z} : m, b \in \mathbb{Z}\}$ . Then  $I = d\mathbb{Z}$ is the set of all the multiples of d.
- 3. If an integer c divides both x and y, then c divides d.

# GCD of 3 or more integers

Let  $x, y, z \in \mathbb{Z}$ , and not all are 0. We say c is a common divisor of x, y, z if c divides x, y, z. The GCD of x, y, z is denoted by  $d = \gcd(x, y, z)$ .

- 1. If c divides x, y, z then c divides gcd(x, y) and z. 2. gcd(x, y, z) = gcd(gcd(x, y), z)
- 3. d = mx + ny + pz for some  $m, n, p \in \mathbb{Z}$ 4.  $I = \{mx + ny + pz : m, n, p \in \mathbb{Z}\} = d\mathbb{Z}$

### Tut 1 Q2 (GCD given prime factorization) Suppose

$$x = p_1^{e_1} p_2^{e_2} \cdots p_s^{e_s}, y = p_1^{f_1} p_2^{f_2} \cdots p_s^{f_s}$$
$$d = p_1^{g_1} p_2^{g_2} \cdots p_s^{g_s}$$

are prime factorizations of x, y, d, with  $p_i$  being distinct positive prime integers, and  $e_i, f_i, g_i \geq 0$ . Then

• If d|x and d|y, then  $g_i \leq \min\{e_i, f_i\}$  for all i. • GCD is

• The integer d divides  $x \iff g_i \leq e_i$  for all i.

 $\gcd(x,y) = p_1^{\min\{e_1,f_1\}} p_2^{\min\{e_2,f_2\}} \cdots p_s^{\min\{e_s,f_s\}}$ • If d|x and d|y, then  $d|\gcd(x,y)$ 

### The fundamental theorem of arithmetic Let n > 1 be a positive integer. Then there exists a

factorization  $n = p_1 p_2 \cdots p_s$ where  $p_i$  is a (positive) prime number for all i, and

$$p_1 \le p_2 \le \cdots \le p_s$$
. This factorization is unique.

Mathematical induction

Let P(1) be a property that depends on  $n \in \mathbb{N}$ . If

1. P(1) holds and 2. if P(k) holds, then P(k+1) holds

then P(n) holds  $\forall n \in \mathbb{N}$ .

# Strong MI

Let P(1) be a property that depends on  $n \in \mathbb{N}$ . If 1. P(1) holds and

- 2. if P(i) holds for  $1 \le i \le k$ , then P(k+1) holds then P(n) holds  $\forall n \in \mathbb{N}$ .
- Binomial theorem  $(a+b)^n = \sum_{i=0}^n \binom{n}{i} a^{n-i} b^i \quad \forall n \in \mathbb{N}$

# Fermat's little theorem

Let p be a prime number. Then  $p|(n^p-n) \quad \forall n \in \mathbb{Z}$ 

 $n^p \equiv n \pmod p \implies n^{p-1} \equiv 1 \pmod p$ Applying this idea,

$$n^{a(p-1)+b} \equiv n^b \pmod{p}$$

Let A be a set. A subset R of  $A \times A$  is a relation

### Relation

Equivalence relations

on A. For  $a, b \in A$ ,  $a \sim b \iff (a, b) \in R$ . We may write it as  $a \sim_R b$ . Equivalence relation

Let A be a set. A relation R on A (i.e.  $R \subseteq A \times A$ ) is an equivalence relation on A if for all a, b, c,

• (E1)  $a \sim a$  (reflexive)

• (E2)  $a \sim b \implies b \sim a$  (symmetric)

# • (E3) $a \sim b \wedge b \sim c \implies a \sim c$ (transitive)

Equivalence class Let R be an equivalence relation on a set A. Let

$$a \in A.$$
 The equivalence class of  $a \in A$  is the subset 
$$\{x \in A: a \sim x\}$$

Let A be a set and let  $\{A_i : i \in I, A_i \subseteq A\}$  be a collection of subsets of A. We say that the collection

and we denote it by Cl(a). Partition

### $\{A_i : i \in I\}$ forms a partition of A if • (P1) $A = \bigcup_{i \in I} A_i$ , and

• (P2)  $A_i \cap A_j = \emptyset$  for all  $i, j \in I$  and  $i \neq j$ Alternatively, P2 can be stated as: If  $A_i \cap A_j$  is a

nonempty subset, then  $A_i = A_j$ . Collection of all equivalence classes

# Let R be an equivalence relation on a set A. The

set of equivalence classes  $\{Cl(a) : a \in A\}$  is denoted by A/R,  $A/_{\sim_R}$ , or simply  $A/\sim$ . • The collection of all equivalence classes forms a

• The map  $p: A \to A/R$  given by p(a) = Cl(a) is called the quotient map. Linear Congruences

partition of A.

### Congruent modulo m

Let m be a positive integer. Let  $a, b \in \mathbb{Z}$ . Then  $a \equiv b \pmod{m}$  if m | (a - b).

- $\equiv$  is an equivalence relation on  $\mathbb{Z}$ .
- If  $x \equiv y \pmod{m}$  and  $z \equiv w \pmod{m}$ , then  $x + z \equiv y + w \pmod{m}$  and  $xz = yw \pmod{m}$ .

# ${\bf Simultaneous\ congruence\ equations}$

### Solution to congruence equation

Suppose gcd(a, m) = 1. For  $b \in \mathbb{Z}$ , the congruence equation

$$ax \equiv b \pmod{m}$$

has a solution  $x \in \mathbb{Z}$ , that is unique modulo m, i.e.  $x' \in \mathbb{Z}$  is another solution iff

$$x \equiv x' \pmod{m}$$

**Solving** We can find a solution by writing 1 =az + my, then b = b(az + my), then  $b \equiv a(bz)$  $\pmod{m}$ . Then bz is a solution.

### Chinese Remainder Theorem

Suppose gcd(m, m') = 1. Then the congruence equations

$$x \equiv b \pmod{m}$$
$$x \equiv b' \pmod{m'}$$

have a common solution  $x \in \mathbb{Z}$ , that is unique modulo mm', i.e. if  $x' \in \mathbb{Z}$  is another solution, then

$$x \equiv x' \pmod{mm'}$$

# Solving simultaneous congruence equations

Solve the simultaneous congruence equations  $x \equiv 3 \pmod{13}$ 

$$x \equiv 5 \pmod{13}$$
  
 $x \equiv 5 \pmod{11}$ 

By the division algorithm, we have 13 = 11 + 2 and 11 = 5(2) + 1. Hence,

$$\gcd(13,11) = 1 = 11 - 5(2)$$

$$= 11 - 5(13 - 11) = -5(13) + 6(11)$$

This implies

$$6(11) \equiv 1 \pmod{13}$$

$$-5(13) \equiv 1 \pmod{11}$$

Consider x = 5(-5)(13) + 3(6)(11) = -127. We can show that this is a solution, and then by the Chinese Remainder Theorem, all solutions are of the form x = -127 + k(13)(11).

### Binary operations

### Definition

Let G be a set. A binary op \* on G is a function

$$*:G\times G\to G$$

- For  $(x, y) \in G$ , we denote \*(x, y) by x \* y.
- Associative if  $\forall a, b, c \in G$ , (a \* b) \* c = a \* (b \* c).
- Commutative/abelian if  $\forall a, b \in G, a * b = b * a$ .

### Multiplication table

Let  $G = \{a, b, c\}$ . We can represent a binary operation \* with a multiplication table:

| x * y | y = a | b | c |
|-------|-------|---|---|
| x = a | a     | a | b |
| b     | a     | c | c |
| c     | b     | a | c |

For \* to be abelian, the multiplication table should be symmetric along the diagonal. In this case, \* is not abelian because b \* c = c but c \* b = a.

Let (G, \*) be a set with a binary op. Let  $e \in G$ .

- e is a left identity element if  $\forall a \in G, e * a = a$ .
- e is a right identity element if  $\forall a \in G, \ a * e = a$ .
- e is an identity element if  $\forall a \in G, e*a = a*e = a$ .

#### Groups

#### Group axioms

A group (G, \*) consists of a set G and a binary operation \* on G which satisfies four axioms:

- (G1) (Closure) For all  $a, b \in G$ ,  $a * b \in G$ .
- (G2) (Associativity) For all  $a, b, c \in G$ ,

$$(a*b)*c = a*(b*c)$$

• (G3) (Existence of identity element)  $\exists e \in G$  such that for all  $a \in G$ ,

$$e * a = a * e = a$$

Note that the identity element is unique. • (G4) (Existence of inverse element) For each  $a \in$ 

 $G, \exists b \in G \text{ such that }$ 

a \* b = b \* a = ewhere e is the identity element in (G3). Note that the inverse of an element is unique.

#### Order

The number of elements in G is called the order of G. We denote it by |G|. If |G| is finite, then we call G a finite group. Otherwise it is an infinite group.

# Abelian group

A group (G, \*) is called an abelian group if a\*b = b\*afor all  $a, b \in G$ .

### Some theorems

Let (G, \*) be a group. Let  $a, b, c \in G$ . Then

- $(a^{-1})^{-1} = a$
- $(a*b)^{-1} = b^{-1}*a^{-1}$
- $a^{-1} * \cdots * a^{-1} = (a * \cdots * a)^{-1}$  where there are ncopies of  $a^{-1}$  and a on both sides.
- (Cancellation Law) If a \* c = b \* c, then a = b. If c \* a = c \* b, then a = b.
- Given  $a, b \in G$ , the equation a \* x = b (and respectively x \* a = b) has a unique solution  $x \in G$ .
- $a^n * a^m = a^{n+m}$  for  $n, m \in \mathbb{Z}$ .

# Weakened axioms

For (G3) and (G4), if we show either

- just right identity + right inverse,
- or just left identity + left inverse,

and if (G1) and (G2) are already proven, then we have a group.

# Product group

Let (G,\*) and (H,\*) be two groups. Consider the Cartesian product  $G \times H = \{(g, h) : g \in G, h \in H\}.$ Define binary operation  $\cdot$  on  $G \times H$  by

$$(g,h)\cdot(g',h')=(g*g',h\star h')$$

for all  $(g,h), (g',h') \in G \times H$ . Then  $(G \times H, \cdot)$ forms a group, called the product group of (G, \*)and  $(H, \star)$ .

- Identity element is  $(e_G, e_H)$  where  $e_G$  and  $e_H$  are the identity elements of G and H respectively.
- Inverse element of (q,h) is  $(q^{-1},h^{-1})$ .

### Group isomorphisms

#### Definition

Let (G,\*) and (H,\*) be two groups. We say that these two groups are isomorphic if there exists a bijection  $\phi: G \to H$  such that

$$\phi(g_1 * g_2) = \phi(g_1) \star \phi(g_2)$$

for all  $g_1, g_2 \in G$ .

- The bijection  $\phi$  is called a group isomorphism.
- We denote  $(G,*) \simeq (H,*)$  and  $\phi : (G,*) \stackrel{\sim}{\to}$
- If (G, \*) and (H, \*) are isomorphic finite groups, then they have the same order.
- If (G,\*) is an abelian group, then (H,\*) is an abelian group.
- $\phi: G \to G$  given by  $\phi(g) = g^{-1}$  is a group isomorphism  $\iff$  G is an abelian group.

# Two isomorphisms

Suppose  $\phi: (G, *) \to (H, \star)$  and  $\psi: (H, \star) \to (K, \cdot)$ are two isomorphisms of groups. Then

- the inverse function  $\phi^{-1}:(H,\star)\to(G,*)$  and
- the composite function  $\psi \circ \phi : (G, *) \to (K, \cdot)$

are group isomorphisms.

# Subgroups

## Definition

Let (G,\*) be a group. Let  $H \subseteq G$  be a nonempty subset. Suppose (H, \*) forms a group, i.e. it satisfies the four group axioms. Then (H, \*) is called a subgroup of (G, \*). Note that the binary operation is the same for G and H.

**Integer multiple** Suppose (I, +) is a subgroup of  $(\mathbb{Z}, +)$ . Then  $I = d\mathbb{Z}$  for some integer  $d \geq 0$ .

**Roots of unity**  $(\mu_m, \times)$  is a subgroup of  $(\mu_n, \times)$ 

## Properties of subgroups

# Proposition 30

Let (G, \*) be a group and let  $H \subseteq G$  be a nonempty subset. Then (H, \*) is a subgroup iff:

- (S1) For all  $a, b \in H$ , we have  $a * b \in H$ .
- (S2) For all  $a \in H$ , we have  $a^{-1} \in H$ .

### Proposition 31 Let (G, \*) be a group and let $H \subseteq G$ be a nonempty

subset. Then (H, \*) is a subgroup iff:

• (S) For all  $a, b \in H$ , we have  $a * b^{-1} \in H$ .

# Proposition 32

Let (G, \*) be a group and let  $H \subseteq G$  be a nonempty finite subset. Then (H, \*) is a subgroup iff

• (S1) For all  $a, b \in H$ , we have  $a * b \in H$ .

#### Intersection of subgroups

If  $\{(H_i, *) : i \in I\}$  is a collection of subgroups of (G,\*), then

$$\left(\bigcap_{i\in I} H_i,*\right)$$
 is a non-empty subgroup of  $(G,*).$ 

# Proposition 34

Let (H, \*) and (K, \*) be subgroups of (G, \*). If  $(H \cup K, *)$  is a subgroup, then either  $H \subseteq K$  or  $K \subseteq H$ .

# Symmetric groups

# $(S_n, \circ)$

Let  $X = \{1, 2, \dots, n\}.$ 

$$S_n = \{f: X \to X: f \text{ is a bijection}\}\$$

- Let o be the composition of functions. Then  $(S_n, \circ)$  is the symmetric group (or permutation group on n letters). • We can denote an element  $k \in S_3$  by
- $k = \begin{pmatrix} 1 & 2 & 3 \\ k(1) & k(2) & k(3) \end{pmatrix}$

• The order of 
$$S_n$$
 is  $n!$ .

 $(S_V,\star)$ 

 $S_Y = \{f : Y \to Y : f \text{ is a bijection}\}\$ Let  $\star$  be the composition of functions. Then  $(S_Y, \star)$ 

Let Y be an arbitrary set, not necessarily finite.

forms a group. • Let  $Y = \{y_1, y_2, \dots, y_n\}$  be a finite set of n elements. Then  $(S_n, \circ)$  and  $(S_Y, \star)$  are isomorphic

# $(S_n'', \times)$

groups.

trices (columns are a permutation of the standard basis vectors). Let × denote the usual matrix multiplication. Then  $(S''_n, \times)$  forms a group.

Let  $S_n''$  be the set of all n by n permutation ma-

• The groups  $(S_n, \circ)$  and  $(S''_n, \times)$  are isomorphic.

# Cyclic notations

Fix  $f \in S_n$ . Let  $x \in X = \{1, \dots, n\}$ . Consider the sequence of integers in  $X: x_0, x_1, x_2, \cdots$ , where  $x_0 = x$  and  $x_i = f^i(x) \in X$ .

- Since X is finite, the sequence will repeat. Let  $x_r$ be the first integer that repeats in the sequence. Can be shown that  $x_r = x_0 = x$ .
- $\mathcal{O} = \{x_0, x_1, \dots, x_{r-1}\}$  is an orbit of the powers
- The sequence  $(x_0x_1\cdots x_{r-1})$  is called a cycle.
- $X = \coprod_{i} \mathcal{O}_{i}$

### **Example** f = (16)(24)(3789)(5)

- f is also equal to (61)(24)(8937)(5). We can rotate within the cycle.
- f is also equal to (16)(24)(3789). We can drop singleton cycles.
- h = (16) is the bijection in  $S_9$  such that h(1) = $6, h(6) = 1 \text{ and } h(x) = x \text{ for } x \neq 1, 6.$ • f is also equal to (24)(16)(3789)(5). We can swap
- the cycles because they represent bijections in  $S_9$ which are disjointed cycles and they are commutative.

Cyclic permutation A bijection  $h \in S_n$  which is represented by a single cycle is called a cyclic permutation or cycle. Two cycles  $h = (i_1 \cdots i_r)$  and  $h' = (j_1 \cdots j_s)$ 

are called disjointed cycles if 
$$i_{\alpha} \neq j_{\beta}$$
 for all  $\alpha =$ 

 $1, \dots, r$  and  $\beta = 1, \dots, s$ . **Theorem 23** Let  $f \in S_n$ . Then

### • $f = h_1 \circ h_2 \circ \cdots \circ h_r$ can be factorized into a

- product of mutually disjointed cycles. • The factorization is unique up to an ordering of
- the product of cycles, i.e. if  $f = h_1 \circ h_2 \circ \cdots \circ h_r = k_1 \circ k_2 \circ \cdots \circ k_s$

cles, then by renaming the cycles  $k_i$  if necessary, we have r = s and  $h_i = k_i$  for  $i = 1, \dots, r$ . **Transpositions** A cycle  $h \in S_n$  of the form h =

# (ij) is a transposition. • $(i_1 i_2 \cdots i_r) = (i_1 i_r)(i_1 i_{r-1}) \cdots (i_1 i_2)$ . Hence, a

cycle is a product of transpositions. • Since  $f \in S_n$  is a product of cycles, f is also a

# The sign character **Lemma** For all permutation matrices $F, H \in S''_n$ ,

product of transpositions.

# • $\det(F) = \det(F^T) = \pm 1$ .

- $\det(FH) = \det(F) \det(H)$ .
- **Proposition 25** Let  $P(\mathbf{x}) = P(x_1, \dots, x_n) =$  $\prod (x_i - x_j). \text{ For } f \in S_n, \text{ let}$

$$1 \le i < j \le n$$

$$P_f(\mathbf{x}) = P_f(x_1, \dots, x_n) = P(x_{f(1)}, \dots, x_{f(n)})$$

$$= \prod_{1 \le i < j \le n} (x_{f(i)} - x_{f(j)})$$
  
•  $P_f(x) = P(x)$  or  $-P(x)$ . We write  $P_f(x) =$ 

- sgn(f)P(x), where  $sgn(f) = \pm 1$ . •  $\operatorname{sgn}(f \circ h) = \operatorname{sgn}(f)\operatorname{sgn}(h)$ .
- **Even/odd** Let  $f, h \in S_n$ .

# • f is an even permutation if sgn(f) = 1, and odd

- if sgn(f) = -1. • If f and h are both even (odd), then  $f \circ h$  is even
- (odd). • If f is odd and h is even, then  $f \circ h$  is odd.
- A transposition is an odd permutation.
- A product of an even (odd) number of transpositions is even (odd).
- f is even  $\iff f$  is a product of an even number of transpositions. Alternating group Let

 $A_n = \{ f \in S_n : \operatorname{sgn}(f) = 1 \} = \{ f \in S_n : f \text{ even} \}$ be the set of all even permutations in  $S_n$ . Then  $(A_n, \circ)$  is a subgroup of  $(S_n, \circ)$ .

 The subset of odd permutations is not a subgroup. Cayley's theorem

# Let (G,\*) be a finite group of order n. Then (G,\*)

is isomorphic to a subgroup of  $(S_n, \circ)$ .

# • We know that $(S_Y, \circ)$ is isomorphic to $(S_n, \circ)$ .

- Let Y = G. For every  $g \in G$ , define function
- $f_q: Y \to Y$  by  $f_q(y) = g * y \text{ for all } Y = G$ Then construct  $\phi: G \to S_Y$  by  $\phi(g) = f_g$ .  $\phi$

is an injective group homomorphism, so G is isomorphic to the image G' which is a subset of  $S_Y$ , i.e. G is isomorphic to a subgroup of  $(S_Y, \circ)$ .

# Cosets and Lagrange's theorem Coset

# Let H be a subgroup of G. For $g \in G$ , denote

 $gH = \{gh : h \in H\} \text{ and } Hg = \{hg : h \in H\}$ These are called a left coset and a right coset of H

in G respectively. Note that eH = He = H.

 $\bullet$  If G is abelian, then a left coset is also a right

### Mutually disjointed subsets Let S be a set, and let $\{S_i : i \in I\}$ be a collection

of subsets of S. • We say that  $\{S_i : i \in I\}$  is a collection of mu-

tually disjointed subsets if  $S_i \cap S_j = \emptyset$  for every distinct  $i, j \in I$ .

We say that  $\{S_i : i \in I\}$  forms a partition of S

if it is a collection of mutually disjointed subsets, and  $S = \bigcup_{i \in I} S_i$ . We write  $S = \prod_{i \in I} S_i$ . Proposition 37

# Let G be a group and let H be a subgroup. Let

 $x, y, z \in G$ . i. If  $z \in xH$ , then zH = xH.

ii. If  $xH \cap yH \neq \emptyset$ , then xH = yH.

a partition of G.

- iii. The collection of left cosets  $\{xH:x\in G\}$  forms
- iv. Every coset xH is of the same cardinality as H, i.e. there is a bijection  $f: H \to xH$ . If H
- is a finite group, then |H| = |xH|. • Denote  $G/H = \{xH : x \in G\}$  and  $H\backslash G = \{Hx : A \in G\}$

• Let [G:H] denote the number of distinct left cosets of H in G, i.e. [G:H] = |G/H|. It is

called the index of H in G. Lagrange's Theorem

### Let G be a finite group and let H be a subgroup.

• |H| divides |G|. • [G:H] = |G/H| = |G|/|H|.

- $[H:G] = |H\backslash G| = |G|/|H|$ .
- Corollary Let p be a prime integer, and let G be
- a group of order p. • The only subgroups of G are  $\{e\}$  or G.
- Let  $x \in G$  and  $x \neq e$ . Let  $x = \langle x \rangle = \{x^n : n \in \mathbb{Z}\}$
- be the cyclic subgroup of G generated by x. Then  $G = \langle x \rangle$ . Corollary If H is a subgroup of G and K is a sub-

group of H, then  $[G:K] = [G:H][H:K] \label{eq:G}$ 

**Subgroup** Let G be a group, and let  $X \subseteq G$ . Let  $S = \{H : H \text{ subgroup of } G, H \supseteq X\}.$  We define

$$\langle X\rangle = \bigcap_{H\in S} H$$
 and we call  $\langle X\rangle$  the subgroup of  
  $G$  generated by  $X.$ 

• If H is a subgroup of G containing X, then by

- definition, H contains  $\langle X \rangle$ . Hence,  $\langle X \rangle$  is also called the smallest subgroup of G containing X. • If the subgroup  $\langle X \rangle = G$ , then we say that G is
- generated by X.
- We say that a group G is finitely generated if it is generated by some finite subset. G could still be infinite, e.g.  $G = (\mathbb{Z}, +)$  is generated by  $X = \{1\}$ .

**Word** A word on X is either e or a finite product  $x_1^{r_1}x_2^{r_2}\cdots x_n^{r_n}\in G$  where  $x_i\in X$  and  $r_i\in \mathbb{Z}$  for  $i=1,\cdots,n.$ 

- Some  $x_i$  can be the same. • Some  $r_i$  may be negative integers.
- $\bullet$  If G is non-abelian, order of multiplication mat-
- Two different words may represent the same ele-
- ment in G. Proposition 39

#### Let X be a subset of a group G. Let W be the set of words on X. Then W is a subgroup and $W = \langle X \rangle$ .

Cyclic groups **Proposition** Let (G, \*) be a group. Pick  $a \in G$ .

The subset  $\langle a \rangle = \{ a^n \in G : n \in \mathbb{Z} \}$  is a subgroup of (G,\*). It is called the cyclic subgroup of G generated by a.

- $\langle a \rangle = \langle a^{-1} \rangle$ .
- **Proposition 40** The order of the subgroup  $|\langle a \rangle|$ is equal to the order o(a).

 $a \in G$ . Then o(a) divides |G|. Corollary 42 Let G be a finite group of order pwhere p is a prime number. Pick  $a \in G$  and  $a \neq e$ .

**Proposition 41** Let G be a finite group. Let

Then 
$$G=\langle a
angle=\{e,a,\cdots,a^{p-1}\}$$

Cyclic group

Let 
$$(G, *)$$
 be a group and let  $x \in G$ . A group  $(G, *)$ 

# is called a cyclic gp if $G = \langle x \rangle$ for some $x \in G$ , i.e.

 $G = \langle x \rangle = \{ x^n \in G : n \in \mathbb{Z} \}$ • Group G is cyclic  $\implies$  some element  $x \in G$  has

order 
$$|G|$$

Group homomorphisms

Let 
$$(G,*)$$
 and  $(H,*)$  be two groups. A function  $\phi:G\to H$  is called a group homomorphism if

 $\phi(x * y) = \phi(x) \star \phi(y)$ for all  $x, y \in G$ . • There is no requirement on  $\phi$  to be injective or surjective. But if  $\phi$  is a bijection, then we have a

- group isomorphism instead. • Composition of group homomorphisms is a group homomorphism.
- Let  $\phi:(G,*)\to (H,\star)$  be an injective group homomorphism. Then (G,\*) is isomorphic to its image which is a subgroup of  $(H, \star)$ .

**Proposition 43** Let  $\phi: (G,*) \rightarrow (H,\star)$  be a group homomorphism.

i. Let  $e_G$  and  $e_H$  be identity elements of the

groups G and H respectively. Then  $\phi(e_G)$  =

- ii. For all  $g \in G$ ,  $\phi(g^{-1}) = (\phi(g))^{-1}$ . iii. Let G' be a subgroup of G. Then the image
- $\phi(G')$  is a subgroup of H.

morphism. The kernel of  $\phi$  is defined as

iv. Let H' be a subgroup of H. Then  $\phi^{-1}(H')$  is a subgroup of G.

 $\ker \phi = \phi^{-1}(e_H) = \{ g \in G : \phi(g) = e_H \}$ It is the set of elements in G that is sent to  $e_H$  under

**Kernel** Let  $\phi: (G, *) \to (H, \star)$  be a group homo-

the mapping  $\phi$ .

**Prop.** 44 Let  $\phi: (G,*) \to (H,*)$  be a group homomorphism and let K be the kernel of  $\phi$ . i. The kernel K is a subgroup of G.

- ii.  $\forall g_0 \in K$  and  $g \in G$ , we have  $gg_0g^{-1} \in K$ .
- iii. For  $g_0 \in G$ , we have

 $\{g \in G : \phi(g) = \phi(g_0)\} = g_0 K = K g_0$ i.e. every left coset of K is also a right coset.

Corollary 45 Let  $\phi: (G,*) \to (H,*)$  be a group homomorphism. Then  $\phi$  is injective (as a function)

# $\iff \ker \tilde{\phi} = \{e_G\}.$ Group homomorphisms and subgps

Let (G,\*) and (H,\*) be two groups and let  $\phi$ 

 $(G,*) \to (H,*)$  be a group homomorphism. Let  $K = \ker \phi$ . Define •  $\mathbf{Sub}(G, K) = \{G' : G' \text{ subgroup of } G, G' \supset K\}$ which contains all the subgroups of  ${\cal G}$  which con-

- tain K and•  $Sub(H) = \{H' : H' \text{ subgroup of } H\}$

Define a function  $\Phi : \mathbf{Sub}(G, K) \to \mathbf{Sub}(H)$  by  $\Phi(G') = \phi(G')$  where  $G' \in \mathbf{Sub}(G, K)$ . By proposition 43(iii),  $\phi(G')$  is a subgroup of H, so  $\Phi(G') \in$ Sub(H). **Theorem 46** Suppose  $\phi$  is a surjective homomor-

phism. Then  $\Phi$  is a bijection.

# Normal subgroups Let G be a group and let N be a subgroup.

• N is called a normal subgroup of G if for all  $n \in N$ 

- and  $g \in G$ ,  $gng^{-1} \in N$ .
- We denote a normal subgroup N of G by  $N \triangleleft G$ .
- Suppose G is abelian. Then every subgroup N of G is a normal subgroup.

Prop. 48 The kernel of a group homomorphism  $\phi: (G, *) \to (H, \star)$  is a normal subgroup of G.

Center Let (G, \*) be a group. Let

 $Z = \{ z \in G : zg = gz \text{ for all } g \in G \}$ Z is a normal subgroup of G and it is called the

**Proposition 49** Let K be a subgroup of G. The following statements are equivalent.

- i. The subgroup K is normal, i.e. for all  $k \in K$ and  $g \in G$ ,  $gkg^{-1} \in K$ .
- ii. For all  $q \in G$ ,  $qKq^{-1} = K$ .
- iii. For all  $g \in G$ , gK = Kg, i.e. every left coset is also a right coset.
- iv. For all  $g \in G$ , (gK)(g'K) = (gg')K.

**Notation** If K is a subgroup of G and gK = g'Kfor some  $g, g' \in G$ , we write

$$g \equiv g' \pmod{LK}$$

The subscript L in  $mod_L$  denotes left cosets.

# Simple groups

A group G is simple if its normal subgroups are only its trivial normal subgroups  $\{e\}$  and G.

• Let p be a prime number.  $\mathbb{Z}/p\mathbb{Z}$  is a simple group.

### Theorem 50 Let

 $A_n = \{ f \in S_n : \operatorname{sgn}(f) = 1 \} = \{ f \in S_n : f \text{ even} \}$ be the set of all even permutations in  $S_n$ .

- $(A_n, \circ)$  is a subgroup of  $(S_n, \circ)$ .
- For  $n \neq 4$ , the alternating group  $A_n$  is a simple

**Lemma 51** Let H be a normal subgroup of  $A_n$ where  $n \geq 5$ . If H contains a 3-cycle,  $H = A_n$ .

H contains a 3-cycle  $\implies$  H contains all the 3-cycles of  $A_n$ . Every even permutation is the product of 3-cycles. Hence  $H = A_n$ .

**Definition** Let  $X_n = \{1, 2, \dots, n\}$ . Recall that  $A_n$  is the set of even permutations on  $X_n$ . We can identify  $A_{n-1}$  as a subgroup of  $A_n$  by

$$A_{n-1} = \{ \sigma \in A_n : \sigma(n) = n \}$$

**Lemma 52** Let H be a normal subgroup of a group A. For subgroup A' of A,  $H \cap A'$  is a normal subgroup of A'.

# Quotient groups

Let (G,\*) be a group and let K be a normal subgroup. By proposition 49(iv), for all  $g_1, g_2 \in G$ , define the binary operation

$$(g_1K)\diamond (g_2K)=(g_1g_2)K$$

for  $g_1K, g_2K \in G/K$ .

### Theorem 56

- i. The pair  $(G/K, \diamond)$  forms a group. It is called the quotient group of G by K.
- ii. The function  $\pi:(G,\star)\to (G/K,\diamond)$  defined by  $\pi(g) = gK$  for all  $g \in G$  is a surjective group homomorphism. It is called the quotient map or quotient homomorphism.
- iii. The kernel of  $\pi$  is K.

# The First Isomorphism Theorem

In this section, (G, \*) and (H, \*) are (possibly infinite) groups. Let  $\phi: (G, *) \to (H, \star)$  be a surjective group homomorphism. Let K be the kernel of  $\phi$ .

- Suppose  $\phi(g) = h$  where  $h \in H$  and  $g \in G$ . Then  $\{x \in G : \phi(x) = h\} = gK$
- i.e. the whole of qK is sent to h under  $\phi$ .

### First Isomorphism Theorem

Let  $\phi:(G,*)\to (H,\star)$  be a surjective group homomorphism. Let K be the kernel of  $\phi$ . Then the function  $\bar{\phi}:(G/K,\diamond)\to (H,\star)$  given by  $\bar{\phi}(gK) = \phi(g)$ 

$$\phi(gK) = \phi(g)$$
 is a well-defined group isomorphism.



• If  $\phi$  is not surjective, then replace H with the image  $H' = \phi(G)$  in the definition of  $\bar{\phi}$ .

Corollary Let  $\phi: G \to H$  and  $\psi: G \to H'$  be two group homomorphisms.

- Suppose  $\phi$  and  $\psi$  have the same kernel K. Then, the images  $\phi(G)$  and  $\psi(G)$  are isomorphism
- If G is a finite group, then

$$|\phi(G)| = |\psi(G)| = |G/K| = |G|/|K|$$
The Second Isomorphism Theorem

### In this section, G is a group, M is a subgroup of G, and K is a normal subgroup of G.

**Prop. 59** MK = KM and it is a subgroup of G.

# Proposition 60

- i. The function  $\phi: M \to MK/K$  defined by  $\phi(m) = mK$  is a surjective group homomor-
- ii. The kernel of  $\phi$  is  $M \cap K$ . In particular, it is a normal subgroup of M.

### Second Isomorphism Theorem $M/(M \cap K) \simeq (MK)/K$

Let G be a group. Let M and K be normal subgroups of G such that  $M \supseteq K$ . Then M/K is a normal subgroup of G/K and

$$(G/K)/(M/K) \simeq G/M$$

If  $M \not\supseteq K$ , then replace K by  $M \cap K$ , which is a normal subgroup of G contained in M.

Corollary Let M and K be normal subgroups of G such that  $M \supseteq K$ . Then there is a surjective group homomorphism

$$\phi: G/K \to G/M$$

given by  $\phi(gK) = gM$ .

### Euler's totient function

Let n be a positive integer. If n = 1, set  $\Phi(1) = \{1\}$ .

$$\Phi(n) = \{x \in \mathbb{Z} : 0 \le x \le n, \gcd(x, n) = 1\}$$

- Let \* denote multiplication modulo n. Then  $(\Phi(n),*)$  is a group.
- Let  $\phi(n)$  denote the number of elements in  $\Phi(n)$ .
- For prime number p,  $\Phi(p) = \{1, 2, \dots p 1\}$ , so  $\phi(p) = p - 1.$

• For prime number 
$$p$$
, let  $n=p^r$ . 
$$\phi(p^r)=n-\frac{n}{p}=p^r\left(1-\frac{1}{p}\right)=p^{r-1}(p-1)$$

#### Euler's theorem

Let x be an integer such that gcd(x, n) = 1. Then  $x^{\phi(n)} \equiv 1 \pmod{n}$ 

#### Calculating $\phi(n)$

Suppose  $n = p_1^{r_1} p_2^{r_2} \cdots p_n^{r_n}$ . Then

$$\phi(n) = n \left( 1 - \frac{1}{p_1} \right) \left( 1 - \frac{1}{p_2} \right) \cdots \left( 1 - \frac{1}{p_k} \right)$$
$$= \phi(p_1^{r_1}) \phi(p_2^{r_2}) \cdots \phi(p_k^{r_k})$$

Example Compute  $43^{866} \pmod{360}$ .

- $360 = 2^3 \cdot 3^2 \cdot 5$  so  $\phi(360) = 360 \left(1 - \frac{1}{2}\right) \left(1 - \frac{1}{3}\right) \left(1 - \frac{1}{5}\right) = 96$
- Since gcd(43,360) = 1, Euler's theorem gives  $43^{96} \equiv 1 \pmod{360}$ .

• We have 866 = 96(9) + 2 so  $43^{866} \equiv 43^{96(9)+2} \equiv (43^{96})^9 43^2$  $\equiv 1^9 43^2 \equiv 49 \pmod{360}$ 

### Automorphism groups

Let (G,\*) be a group. An isomorphism  $\phi: G \to G$ is called an automorphism of G. We denote the set of automorphisms of G by

 $\operatorname{Aut}(G) = \{ \phi : G \to G : \phi \text{ is an isomorphism} \}$ 

# Isomorphism facts

- Identity map  $id_G$  is an isomorphism.
- Composition of isomorphisms is an isomorphism, i.e.  $\circ$  is a binary operation on Aut(G).
- Inverse of an isomorphism is an isomorphism.

**Proposition**  $(Aut(G), \circ)$  forms a group.

- It is called the automorphism group of G.
- A subgroup A of  $(\operatorname{Aut}(G), \circ)$  is called an automorphism subgroup.

### Inner automorphism Let G be a group and let $g \in G$ . Then $\phi_g : G \to G$

given by

 $\phi_g(x) = gxg^{-1}$ is a group automorphism. It is called an inner automorphism of G.

- Let  $Inn(G) = \{\phi_g : g \in G\}$  be the set of inner automorphisms.
- The subset Inn(G) is a normal subgroup of  $(\operatorname{Aut}(G), \circ).$

**Proposition** The map  $T: G \to \text{Inn}(G)$  given by  $T(g) = \phi_g$  is a surjective group homomorphism whose kernel is the center of the group

 $Z(G) = \{ z \in G : gz = zg \text{ for all } g \in G \}$ By the first isomorphism theorem,

 $G/Z(G) \simeq \operatorname{Inn}(G)$ 

# The Sylow Theorems

**Notation** Let n be a positive integer. Suppose  $p^e$ divides n, but  $p^{e+1}$  does not divide n. We write  $p^e||n$ . Alternatively,  $n = p^e m$  where  $p \nmid m$ .

### Definition

Let G be a finite group of order n. Let p be a prime divisor of n. Let H be a subgroup of order of  $p^e$ .

- H is called a p-subgroup of G.
- If  $p^e||n$ , then H is called a Sylow p-subgroup of

**Example** Let  $G = S_9$ . It has order  $9! = 2^7 3^4 5^1 7^1$ .

- A subgroup of order 2<sup>5</sup> is a 2-subgroup.
- A subgroup of order 2<sup>7</sup> is a Sylow 2-subgroup.

### First Sylow Theorem

Let G be a group of order n. Let p be a prime divisor of n. Then G contains a Sylow p-subgroup.

Corollary Let G be a finite group of order n. Let p be a prime divisor of n. If  $p^d|n$ , then G contains a subgroup of order  $p^d$ .

# Definition

Let P be a subgroup of G. Let  $g \in G$ . Then  $gPg^{-1}$ is a subgroup of G called a conjugate of P. Let Pbe a Sylow p-subgroup. Then a conjugate  $gPg^{-1}$  is also a Sylow p-subgroup.

#### Theorem 94

Let G be a group of order n. Let  $\{P_1, P_2, \dots, P_r\}$ be all the distinct conjugates of a Sylow p-subgroup  $P = P_1$ .

- i. Let Q be a p-subgroup of G. Then  $Q \subseteq P_i$  for
- (Second) If Q is a Sylow p-subgroup of G, then  $Q = P_i$  for some i.

iii. (Third) Let r denote the number of Sylow p-

subgroups of G. Then  $r \equiv 1 \pmod{p}$  and r|[G:P]

Corollary 95 Let P be a Sylow p-subgroup of a finite group G. Then P is a normal subgroup  $\iff P$ is the unique Sylow p-subgroup of G.