INEQUALITY CONSTRAINTS

Introduction of Slack Variables

- Consider the very general situation in which we have a nonlinear objective function, nonlinear equality, and nonlinear inequality constraints.
- The simplest way to handle inequality constraints is to convert them to equality constraints using *slack variables* and then use the Lagrange theory.
- Consider the inequality constraints

$$h_j(x) \ge 0$$
 $j = 1, 2..., r$

and define the real-valued slack variables θ_j such that

$$\theta_j^2 = h_j(x) \ge 0$$
 $j = 1, 2, ..., r$

but at the expense of introducing r new variables.

• If we now consider the general problem written as

subject to
$$h_j(x) \ge 0$$
 $j = 1(1)r$ (2)

• Introducing the slack variables:

$$h_j(\mathbf{x}) - \theta_j^2 = 0 \qquad \qquad j = 1(1)r$$

the Lagrangian is written as:

$$L(x, \lambda, \theta) = f(x) + \sum_{j=1}^{r} \lambda_j (h_j(x) - \theta_j^2)$$
(3)

• The *necessary conditions* for an optimum are:

$$\frac{\partial L}{\partial x_i} = \frac{\partial f}{\partial x_i} + \sum_{j=1}^r \lambda_j \frac{\partial h_j}{\partial x_i} \bigg|_{\substack{x = x^* \\ \lambda = \lambda^*}} = 0 \qquad i = 1(1)n$$
(4)

$$\frac{\partial L}{\partial \lambda_j} = h_j(\mathbf{x}) - \theta_j^2 \bigg|_{\substack{\mathbf{x} = \mathbf{x}^* \\ \theta = \theta^*}} = 0 \qquad j = 1(1)r \tag{5}$$

$$\frac{\partial L}{\partial \theta_j} = -2\lambda_j^* \theta_j^* = 0 j = 1(1)r (6)$$

• From the last expression (6), it is obvious that either $\lambda^* = 0$ or $\theta_i^* = 0$ or both.

• Case 1:
$$\lambda_j^* = 0$$
, $\theta_j^* \neq 0$

In this case, the constraint $h_j(x) \ge 0$ is ignored since $h_j(x^*) = (\theta_j^*)^2 > 0$ (*i.e.* the constraint is not binding).

If all $\lambda_j^* = 0$, then (4) implies that $\nabla f(x^*) = 0$ which means that the solution is the unconstrained minimum.

• Case 2: $\theta_j^* = 0$, $\lambda_j^* \neq 0$

In this case, we have $h_j(x^*) = 0$ which means that the optimal solution is on the boundary of the j^{th} constraint.

Since $\lambda_j^* \neq 0$ this implies that $\nabla f(\mathbf{x}^*) \neq 0$ and therefore we are not at the unconstrained minimum.

• Case 3: $\theta_j^* = 0$ and $\lambda_j^* = 0$ for all j.

In this case, we have $h_j(x^*) = 0$ for all j and $\nabla f(x^*) = 0$.

Therefore, the boundary passes through the unconstrained optimum which is also the constrained optimum.

Example: Now consider the problem

minimize
$$f(x) = (x-a)^2 + b$$

subject to: $x \ge c$

Sketch of the constrained one dimensional problem.

- The location of the minimum depends on whether or not the unconstrained minimum is inside the feasible region or not.
- If c > a then the minimum lies at x = c, which is the boundary of the feasible reagion defined by $x \ge c$.
- If $c \le a$ then the minimum lies at the unconstrained minimum, x = a.
- Introducing a single slack variable, $\theta^2 = x c \ge 0$:

$$x - c - \theta^2 = 0$$

and we can write the Lagrangian as

$$L(x, \lambda, \theta) = (x - a)^{2} + b + \lambda(x - c - \theta^{2})$$

where λ is the Lagrange multiplier.

$$\frac{\partial L}{\partial x} = 2(x^* - a) + \lambda^* = 0 \tag{7}$$

$$\frac{\partial L}{\partial \lambda} = x^* - c - \theta^{*2} = 0 \tag{8}$$

$$\frac{\partial L}{\partial \theta} = -2\lambda^* \theta^* = 0 \tag{9}$$

• In general, we need to know how c and a compare.

• Case 1:

From (9), assume $\lambda^* = 0$, $\theta^* \neq 0$.

Therefore, from (7) $x^* = a$ and thus from (8), $a - c - \theta^{*2} = 0$ which gives that $\theta^{*2} = a - c$ and we have that θ^* is real only for $c \le a$.

Now since $\lambda^* = 0$ we have

$$L(x^*, \lambda^*, \theta^*) = f(x^*) \text{ and } \frac{\partial f}{\partial x}\Big|_{x^*} = 0$$

This tells us that the unconstrained minimum is the constrained minimum.

• Case 2: Now let us assume that $\lambda^* \neq 0$, $\theta^* = 0$.

From (8) we have $x^* = c$ and from (7) $\lambda^* = 2(a-c)$.

Since $\lambda^* \neq 0$ and in the previous case we had $c \leq a$, now we have c > a.

• Case 3: For the case $\lambda^* = \theta^* = 0$, (7) tells us that $x^* - a = 0$ and therefore $x^* = a$.

From (8) we have x - c = 0 and therefore $x^* = a = c$. The uncostrained minimum lies on the boundary since from (7)

$$\left. \frac{\partial L}{\partial x} \right|_{x^*} = \left. \frac{\partial f}{\partial x} \right|_{x^*} = 0.$$

Example: As a two dimensional example, consider

minimize
$$f(x) = (x_1 - 3)^2 + 2(x_2 - 5)^2$$

subject to:
$$g(x) = 2x_1 + 3x_2 - 5 \le 0$$

Contours and feasible region for the example problem.

- Unless one was to draw a very accurate contour plot, it is hard to find the minimum from such a graphical method.
- It is obvious from the graph though, that the minimum will lie on the line g(x) = 0.
- We introduce a single slack variable, θ^2 , and construct the Lagrangian as $L(\mathbf{x}, \lambda, \theta) = (x_1 3)^2 + 2(x_2 5)^2 + \lambda(2x_1 + 3x_2 5 + \theta^2).$
- The inequality constraint was changed to the equality constraint $g(x) + \theta^2 = 0$, using the slack variable $\theta^2 = -g(x) \ge 0$.

• The necessary conditions become

$$\frac{\partial L}{\partial x_1} = 2(x_1^* - 3) + 2\lambda^* = 0 \tag{10}$$

$$\frac{\partial L}{\partial x_2} = 4(x_2^* - 5) + 3\lambda^* = 0 \tag{11}$$

$$\frac{\partial L}{\partial \theta} = 2\theta^* \lambda^* = 0 \tag{12}$$

$$\frac{\partial L}{\partial \lambda} = 2x_1^* + 3x_2^* - 5 + \theta^{*2} = 0 \tag{13}$$

From (10) and (11):

$$x_1^* = 3 - \lambda^*$$

$$* \qquad 3.$$

$$x_2^* = 5 - \frac{3}{4}\lambda^*$$

substituting these expressions in (13) we have:

$$2(3 - \lambda^*) + 3\left(5 - \frac{3}{4}\lambda^*\right) - 5 + \theta^{*2} = 0$$
$$16 - \frac{17}{4}\lambda^* + \theta^{*2} = 0.$$

If $\lambda^* = 0$ then θ^* will be complex. If $\theta^* = 0$ then $\lambda^* = 64/17$ and therefore

$$x_1^* = -\frac{13}{17}$$
 $x_2^* = \frac{37}{17}$

 $\theta^* = 0$ means there is no slack in the constraint as expected from the plot.

The Kuhn-Tucker Theorem

- Kuhn-Tucker theorem gives the necessary conditions for optimum of a nonlinear objective function constrained by a set of nonlinear inequality constraints.
- The general problem is written as

minimize
$$f(x)$$
 $x \in \mathcal{L}^n$
subject to: $g_i(x) \le 0$ $i = 1, 2, ... r$

If we had equality constraints, then we could introduce two inequality constraints in place of it.

For instance if it was required that h(x) = 0, then we could just impose $h(x) \le 0$ and $h(x) \ge 0$ or $-h(x) \le 0$.

• Now assume that f(x) and $g_i(x)$ are differentiable functions; The Lagrangian is:

$$L(x, \lambda) = f(x) + \sum_{i=1}^{r} \lambda_{i} g_{i}(x)$$

The necessary conditions for x^* to be the solution to the above problem are:

$$\frac{\partial}{\partial x_j} f(\mathbf{x}^*) + \sum_{i=1}^r \lambda_i^* \frac{\partial}{\partial x_j} g_i(\mathbf{x}^*) = 0 \quad j = 1, 2, ..., n$$
(14)

$$g_i(x^*) \le 0$$
 $i = 1(1)r$ (15)

$$\lambda_i^* g_i(x^*) = 0$$
 $i = 1(1)r$ (16)

$$\lambda_i^* \ge 0 \qquad \qquad i = 1(1)r \tag{17}$$

• These are known as the Kuhn-Tucker stationary conditions; written compactly as:

$$\nabla_{\mathbf{r}} L(\mathbf{x}^*, \boldsymbol{\lambda}^*) = \mathbf{0} \tag{18}$$

$$\nabla_{\lambda} L(\boldsymbol{x}^*, \boldsymbol{\lambda}^*) = \boldsymbol{g}(\boldsymbol{x}^*) \le \boldsymbol{0}$$
 (19)

$$(\lambda^*)^T g(x^*) = \mathbf{0} \tag{20}$$

$$\lambda^* \ge \mathbf{0} \tag{21}$$

• If our problem is one of maximization instead of minimization then

maximize
$$f(x)$$
 $x \in \mathcal{L}^n$
subject to: $g_i(x) \le 0$ $i = 1, 2, ... r$

we can replace f(x) by -f(x) in the first condition

$$-\frac{\partial}{\partial x_j} f(\mathbf{x}^*) + \sum_{i=1}^r \lambda_i^* \frac{\partial}{\partial x_j} g_i(\mathbf{x}^*) = 0 \quad j = 1, 2, ..., n$$
 (22)

$$\frac{\partial}{\partial x_j} f(\mathbf{x}^*) + \sum_{i=1}^r (-\lambda_i^*) \frac{\partial}{\partial x_j} g_i(\mathbf{x}^*) = 0 \quad j = 1, 2, ..., n.$$
 (23)

• For the maximization problem is one of changing the sign of λ_i^* :

$$\nabla_{\mathbf{r}} L(\mathbf{x}^*, \boldsymbol{\lambda}^*) = \mathbf{0} \tag{24}$$

$$\nabla_{\lambda} L(x^*, \lambda^*) = g(x^*) \le \mathbf{0}$$
(25)

$$(\lambda^*)^T g(x^*) = \mathbf{0} \tag{26}$$

 $\lambda^* \le \mathbf{0} \tag{27}$

Transformation via the Penalty Method

- The Kuhn-Tucker necessary conditions give us a theoretical framework for dealing with nonlinear optimization
- From a practical computer algorithm point of view we are not much further than we were when we started.
- We require practical methods of solving problems of the form:

$$\underset{x}{\text{minimize}} \qquad f(x) \qquad \qquad x \in \mathcal{L}^{n} \tag{28}$$

subject to
$$g_j(x) \le 0$$
 $j = 1(1)J$ (29)

$$h_k(\mathbf{x}) = 0 \quad k = 1(1)K$$
 (30)

• We introduce a new objective function called the *penalty function*

$$P(x;R) = f(x) + \Omega(R, g(x), h(x))$$

where the vector \mathbf{R} contains the penalty parameters and

$$\Omega(\mathbf{R}, \mathbf{g}(\mathbf{x}), \mathbf{h}(\mathbf{x}))$$

is the penalty term.

- The penalty term is a function of R and the constraint functions, g(x), h(x).
- The purpose of the addition of this term to the objective function is to **penalize** the objective function when a set of decision variables, *x*, which are not feasible are chosen.

Use of a parabolic penalty term

- Consider the minimization of an objective function, f(x) with equality constraints, h(x).
- We create a penalty function by adding a positive coefficient times each constraint, that is

minimize
$$P(x; \mathbf{R}) = f(x) + \sum_{k=1}^{K} R_k \{h_k(x)\}^2$$
. (31)

As the penalty parameters $R_k \to \infty$, more weight is attached to satisfying the k^{th} constraint.

If a specific parameter is chosen as zero, say $R_k = 0$, then the k^{th} equality constraint is ignored.

The user specifies value of R_k according to the importance of satisfying each equality constraint.

Example:

$$\begin{array}{ccc}
\text{minimize} & x_1^2 + x_2^2
\end{array}$$

subject to:
$$x_2 = 1$$

We construct a penalty function as:

$$P(x;R) = x_1^2 + x_2^2 + R(x_2 - 1)^2$$

and we proceed to minimizing P(x;R) for particular values of R.

• We proceed analytically; first order necessary conditions for a minimum

$$\frac{\partial P}{\partial x_1} = 2x_1^* = 0 \qquad \Rightarrow x_1^* = 0$$

$$\frac{\partial P}{\partial x_2} = 2x_2^* + 2R(x_2^* - 1) = 0 \qquad \Rightarrow x_2^* = \frac{R}{1 + R}$$

If we now take the limit as $R \to \infty$, we have

$$x_2^* = \lim_{R \to \infty} \frac{R}{1 + R} = 1$$
.

• In a numerical procedure, the value of the *R* would be increased gradually and the numerical optimization would be performed several times.

Example of the use of a parabolic penalty function.

Inequality constrained problems

- Consider the penalty method for inequality constrained problems.
- The general nonlinear objective function with J nonlinear inequality constraints is written as

minimize
$$f(x)$$
 $x \in \mathbb{R}^n$ (32)
subject to $g_j(x) \le 0$ $j = 1(1)J$ (33)

subject to
$$g_j(\mathbf{x}) \le 0$$
 $j = 1(1)J$ (33)

A penalty function can be constructed as

$$P(x;R) = f(x) + \sum_{i=1}^{J} R_i [g_i(x)]^2 u(g_i)$$
 (34)

where $u(g_i)$ is the step-function defined by

$$u(g_i) = \begin{cases} 0 & \text{if } g_i(x) \le 0\\ 1 & \text{if } g_i(x) > 0 \end{cases}$$

$$(35)$$

and the penalty parameter is chosen as a positive number, $R_i > 0$.

• The term $[g_i(x)]^2 u(g_i)$ is sometimes called the *bracket operator* and is denoted

$$\langle g_i(x) \rangle$$

• The step-function is used to ignore the constraint when it is satisfied by the decision variables and to treat it as a penalty term when it is not satisfied.

- When this type of penalty term is used, the method is referred to as an exterior penalty method since points outside the feasible region are allowed, but are penalized.
- As the penalty parameter increases, the feasibility region is "pushed in".

Exterior penalty method.

Inverse penalty term

- An alternate method which is commonly used is the inverse penaly method.
- If we have a nonlinear optimization problem written as

minimize
$$f(x)$$
 $x \in \mathbb{R}^n$ (36)
subject to $g_j(x) \ge 0$ $j = 1(1)J$ (37)

subject to
$$g_j(x) \ge 0$$
 $j = 1(1)J$ (37)

then we can construct a penalty function as

$$P(x;R) = f(x) + R \sum_{i=1}^{J} \frac{1}{g_i(x)}$$

where only **one** penalty parameter is used.

• The method is easy to visualize if we consider the case of only one constraint, J = 1. Then the penalty term is simply

$$\Omega = \frac{R}{g(x)}$$

where g(x) is the single constraint.

Inverse penalty term.

- As can be deduced from the figure, it is important that only feasible points be started with; because of this, this method is classified as an *interior method*.
- With *exterior penalties* the parameter R is steadily increased with $R \to \infty$ in the limit so as to exclude infeasible points.
- With *interior penalties*, the parameter R is steadily decreased with R → 0 in the limit. Otherwise, you may artificially exclude a minimum located on the boundary.

Example:

In the following problem, solve it using both an interior and exterior method.

minimize
$$f(x) = (x_1 - 4)^2 + (x_2 - 4)^2$$

subject to:
$$g(x) = 5 - x_1 - x_2 \ge 0$$

solve using the "bracket operator"

$$P(x;R) = f(x) + R[g(x)]^{2}u(-g(x))$$

we have

$$P(x;R) = (x_1 - 4)^2 + (x_2 - 4)^2 + R(5 - x_1 - x_2)^2 u(-g(x))$$

- Thus, when g(x) < 0, *i.e.* the decision variables are infeasible, then a penalty of $R(5-x_1-x_2)^2$ is applied.
- Proceeding analytically to find the necessary conditions for a minimum, we have

$$\frac{\partial P}{\partial x_1} = 2(x_1^* - 4) + (2R)(5 - x_1^* - x_2^*)(-1) = 0$$

$$\frac{\partial P}{\partial x_2} = 2(x_2^* - 4) + (2R)(5 - x_1^* - x_2^*)(-1) = 0$$

subtracting these two equations

$$2(x_1^* - 4) - 2(x_2^* - 4) = 0 \Rightarrow x_1^* = x_2^*$$

From the first above, we get

$$(x_1 - 4) - R(5 - 2x_1) = 0$$

and therefore

$$x_1 = \frac{5R + 4}{2R + 1}$$

• Increasing the penalty parameter to ∞ , we have

$$\lim_{R \to \infty} x_1 = \frac{5}{2}$$

and the constrained minimum is:

$$x^* = \left(\frac{5}{2}, \frac{5}{2}\right)$$

Since the constraint, $g(x^*) = 0$ this implies that the constaint is *tight*.

The unconstrained minimum is at x = (4, 4).

• Now solve using the *inverse penalty*:

$$P(x;R) = f(x) + R[g(x)]^{-1}$$

we have

$$P(x;R) = (x_1 - 4)^2 + (x_2 - 4)^2 + R(5 - x_1 - x_2)^{-1}$$

Whether or not g(x) < 0, *i.e.* whether or not the decision variables are infeasible, a penalty of $R(5-x_1-x_2)^{-1}$ is applied.

• We must make sure that we remain feasible during the execution of any algorithm we may employ.

• Proceeding analytically to find the necessary conditions for a minimum, we have

$$\frac{\partial P}{\partial x_1} = 2(x_1^* - 4) + \frac{R}{(5 - x_1^* - x_2^*)^2} = 0$$

$$\frac{\partial P}{\partial x_2} = 2(x_2^* - 4) + \frac{R}{(5 - x_1^* - x_2^*)^2} = 0$$

subtracting these two equations, we again get $x_1^* = x_2^*$ and we also have

$$4(x_1^*)^3 - 36(x_1^*)^2 + 105x_1^* - 100 + \frac{R}{2} = 0$$

• This equation can be solved, for its roots, and the minimum of P(x;R) for particular values of R can be found.

Minimum for different values of R

R	x_1^*, x_2^*	$f(x^*)$
100	0.5864	23.3053
10	1.7540	10.0890
1	2.2340	6.32375
0.1	2.4113	5.0479
0.01	2.4714	4.6732
0.001	2.4909	4.5548
0	2.5000	4.5000

• For each value of the penalty parameter, an unconstrained optimization problem must be solved.