MATH 501, Section 27 Solutions

2. Find all prime and maximal ideals in \mathbb{Z}_{12} .

Maximal Ideals: $N = \{0, 2, 4, 6, 8, 10\}$ and $N = \{0, 3, 6, 9\}$. Prime Ideals: $N = \{0, 2, 4, 6, 8, 10\}$ and $N = \{0, 3, 6, 9\}$.

Reason: In each case \mathbb{Z}_{12}/N is isomorphic to the field (and integral domain) \mathbb{Z}_2 or \mathbb{Z}_3 . For any other ideal N, \mathbb{Z}_{12}/N is not an integral domain.

4. Find all prime and maximal ideals in $\mathbb{Z}_2 \times \mathbb{Z}_4$.

Maximal ideals: $N = \{(0,0), (0,1), (0,2), (0,3)\}$ and $N = \{(0,0), (0,2), (1,0), (1,2)\}$. The prime ideals are the same.

Reason: In each case $(\mathbb{Z}_2 \times \mathbb{Z}_4)/N \cong \mathbb{Z}_2$, a field and integral domain.

8. Find all $c \in \mathbb{Z}_5$ for which $\mathbb{Z}_5[x]/\langle x^2 + x + c \rangle$ is a field.

By Theorem 27.2, this will be a field provided $x^2 + x + c$ is irreducible.

Checking:

 $x^2 + x + 0 = x(x+1)$ is reducible.

 $x^2 + x + 1$ is irreducible because it has no zeros in \mathbb{Z}_5 .

 $x^2 + x + 2$ is irreducible because it has no zeros in \mathbb{Z}_5 .

 $x^{2} + x + 3 = (x + 4)(x + 2)$ is reducible.

 $x^{2} + x + 4 = (x+3)(x+3)$ is reducible.

Thus $\mathbb{Z}_5[x]/\langle x^2+x+c\rangle$ is a field provided c=1 or c=2.

24. Let R be a finite commutative ring with unity. Show that every prime ideal in R is a maximal ideal.

Proof. Suppose N is a prime ideal in the finite commutative ring R.

Thus R/N must be a finite integral domain by Theorem 27.15.

Then Theorem 19.11 says any finite integral domain is a field, so R/N is a field.

But then, by Theorem 27.9, N must be maximal.