Optimizing financial effects of health information exchanges: a multi-party linear programming approach

Srikrishna Sridhar, Patricia F. Brennan, Stephen J. Wright, Stephen M. Robinson

University of Wisconsin, Madison

objective

Is sharing health care data of financial value to an institution?

We propose an analytical framework to:

- namel quantify both societal and institutional consequences of health information exchange (HIE)
- design pricing policies for sustainable HIEs.

background

HIEs efficiently share health care data across institutions.

Accurate financial models assist policy making concerning HIEs

We build on Dixon et al. to address: cost, effort and value of an HIE

How can an agent make optimal decisions?

In linear programming (LP); an agent seeks to

- identify the **optimal** decisions maximize an **objective**
- * satisfy a set of **constraints**.

model requirements

Accurate financial models for HIE must address the following issues

- * account for uncoordinated actions of multiple agents
- ★ acquire enough trustable data to instantiate the model
- ★ apply to health care systems of different complexities occurring in different geographical regions.

methods

Our LP framework was populated with **patient data**!

We tested robustness against various modeling assumptions.

We considered three desired outcomes of HIE-related emergency care

- preventing unrequired hospitalizations (UH)
- reducing duplicative medical work (DUP)
- reducing repeat emergency department visits (AED)

In our LP model:

- the **objective** was to maximize financial benefits of HIE.
- the decisions were HIE charging & subscription policies.
- the **constraints** were financial sustainability of the HIE & minimum financial benefit for each agent in the system.

We considered three pricing policies for providers: fixed annual subscription, per-visit or per-lookup charge or subsidy.

data

We considered **4369 ED** visits in a **12-month** period in **three** large EDs in Milwaukee, Wisconsin.

Our LP framework aggregated data from various sources.

results

- HIE data produced financial savings to all agents.
- HIE savings significant for hospitals with more HMO patients.
- AED & UH created 70% of the savings.
- Results were robust to modeling uncertainties.

8% 10% 12% 14% hospitals govt com

sources of HIE savings

Unrequired hospitalizations

10% 15% 20% 25% 30%

discussion

Fixed annual subscriptions can **sustain this HIE**, while ensuring financial gains to all participants.

Pricing recommendations arise from and apply only to the **study population**.

The **merit** of this study is in the modeling approach, which is applicable to other settings

Repeat ED visits

acknowledgements

This work was supported by a grant from the National Library of Medicine, LM 8949.

The contributions of **David Haight and Michael Ferris** are greatly appreciated.

Data access supported by a grant from the Center for Medicaid & Medicare services to the State of Wisconsin (0705WITRA1).