Logika - porządki, łańcuchy

Korepetycje.intro23wertyk@gmail.com Bartosz Pawliczak

2021-02-13

Pełne zestawienie materiałów (tylko dla kursantów): https://github.com/bpawliczak/intro23wertyk

Więcej informacji i inspiracji: https://www.facebook.com/intro23wertyk

 (X,\leq) nazywamy częściowym porządkiem, jeśli jest to relacja

■ zwrotna na X,

(X,≤) nazywamy częściowym porządkiem, jeśli jest to relacja

 \blacksquare zwrotna na X, $\forall (x \in X)(x \le x)$

(X,≤) nazywamy częściowym porządkiem, jeśli jest to relacja

- \blacksquare zwrotna na X, $\forall (x \in X)(x \le x)$
- słaboantysymetryczna,

 (X, \leq) nazywamy częściowym porządkiem, jeśli jest to relacja

- \blacksquare zwrotna na X, $\forall (x \in X)(x \le x)$
- słaboantysymetryczna, $(\forall x, y)(x \le y \land y \le x \Rightarrow x = y)$

 (X, \leq) nazywamy częściowym porządkiem, jeśli jest to relacja

- \blacksquare zwrotna na X, $\forall (x \in X)(x \le x)$
- słaboantysymetryczna, $(\forall x, y)(x \le y \land y \le x \Rightarrow x = y)$
- przechodnia,

(X,≤) nazywamy częściowym porządkiem, jeśli jest to relacja

- \blacksquare zwrotna na X, $\forall (x \in X)(x \le x)$
- \blacksquare słaboantysymetryczna, $(\forall x, y)(x \leq y \land y \leq x \Rightarrow x = y)$
- przechodnia, $(\forall x, y, z)(x \le y \land y \le z \Rightarrow x \le z)$.

 (X, \leq) nazywamy częściowym porządkiem, jeśli jest to relacja

- \blacksquare zwrotna na X, $\forall (x \in X)(x \leq x)$
- \blacksquare słaboantysymetryczna, $(\forall x, y)(x \leq y \land y \leq x \Rightarrow x = y)$
- przechodnia, $(\forall x, y, z)(x \le y \land y \le z \Rightarrow x \le z)$.

W ten sposób możemy porządkować elementy zbioru, ale czy wszystkie są porównywalne?

 (X, \leq) nazywamy częściowym porządkiem, jeśli jest to relacja

- \blacksquare zwrotna na X, $\forall (x \in X)(x \leq x)$
- \blacksquare słaboantysymetryczna, $(\forall x, y)(x \leq y \land y \leq x \Rightarrow x = y)$
- przechodnia, $(\forall x, y, z)(x \le y \land y \le z \Rightarrow x \le z)$.

W ten sposób możemy porządkować elementy zbioru, ale czy wszystkie są porównywalne? Otóż nie. W zbiorze częściowo uporządkowanym może być sytuacja, kiedy nie jesteśmy w stanie porównać dwóch elementów.

Cześciowe i liniowe porządki

 (X, \leq) nazywamy częściowym porządkiem, jeśli jest to relacja

- \blacksquare zwrotna na X, $\forall (x \in X)(x \leq x)$
- \blacksquare słaboantysymetryczna, $(\forall x, y)(x \leq y \land y \leq x \Rightarrow x = y)$
- przechodnia, $(\forall x, y, z)(x \le y \land y \le z \Rightarrow x \le z)$.

W ten sposób możemy porządkować elementy zbioru, ale czy wszystkie są porównywalne? Otóż nie. W zbiorze częściowo uporządkowanym może być sytuacja, kiedy nie jesteśmy w stanie porównać dwóch elementów. Jeżeli natomiast dodamy do tego spójność, czyli relację $R \subset X \times X$ taką, że $(\forall x, y \in X)(xRy \vee yRx)$, to wówczas **relacja porządku**

Cześciowe i liniowe porządki

 (X, \leq) nazywamy częściowym porządkiem, jeśli jest to relacja

- \blacksquare zwrotna na X, $\forall (x \in X)(x \leq x)$
- \blacksquare słaboantysymetryczna, $(\forall x, y)(x \leq y \land y \leq x \Rightarrow x = y)$
- przechodnia, $(\forall x, y, z)(x \le y \land y \le z \Rightarrow x \le z)$.

W ten sposób możemy porządkować elementy zbioru, ale czy wszystkie są porównywalne? Otóż nie. W zbiorze częściowo uporządkowanym może być sytuacja, kiedy nie jesteśmy w stanie porównać dwóch elementów. Jeżeli natomiast dodamy do tego spójność, czyli relację $R \subset X \times X$ taką, że $(\forall x, y \in X)(xRy \vee yRx)$, to wówczas relacja porządku jest liniowa.

Rysunek: Przykład: relacja podzielności, inkluzji są porządkami częściowymi. Częściowe porządki (X,R_1) , (Y,R_2) są izomorficzne, jeśli istnieje bijekcja f taka, że $\forall x,y\in X:xR_1y\Leftrightarrow f(x)R_2f(y)$. Co to oznacza w kontekście diagramu? Co będzie jeśli weźmiemy podzbiór częściowego porządku?

Rysunek: Przykład: relacja podzielności, inkluzji są porządkami częściowymi. Częściowe porządki (X,R_1) , (Y,R_2) są izomorficzne, jeśli istnieje bijekcja f taka, że $\forall x,y \in X: xR_1y \Leftrightarrow f(x)R_2f(y)$. Co to oznacza w kontekście diagramu? Co będzie jeśli weźmiemy podzbiór częściowego porządku?

Rysunek: Przykład: relacja podzielności, inkluzji są porządkami częściowymi. Częściowe porządki (X,R_1) , (Y,R_2) są izomorficzne, jeśli istnieje bijekcja f taka, że $\forall x,y \in X: xR_1y \Leftrightarrow f(x)R_2f(y)$. Co to oznacza w kontekście diagramu? Co będzie jeśli weźmiemy podzbiór częściowego porządku?

Rysunek: Przykład: relacja podzielności, inkluzji są porządkami częściowymi.

Rysunek: Przykład: relacja podzielności, inkluzji są porządkami częściowymi. Częściowe porządki (X, R_1) , (Y, R_2) są izomorficzne, jeśli istnieje bijekcja f taka, że $\forall x, y \in X : xR_1y \Leftrightarrow f(x)R_2f(y)$.

Rysunek: Przykład: relacja podzielności, inkluzji są porządkami częściowymi. Częściowe porządki (X,R_1) , (Y,R_2) są izomorficzne, jeśli istnieje bijekcja f taka, że $\forall x,y \in X: xR_1y \Leftrightarrow f(x)R_2f(y)$. Co to oznacza w kontekście diagramu?

Rysunek: Przykład: relacja podzielności, inkluzji są porządkami częściowymi. Częściowe porządki (X, R_1) , (Y, R_2) są izomorficzne, jeśli istnieje bijekcja f taka, że $\forall x, y \in X : xR_1y \Leftrightarrow f(x)R_2f(y)$. Co to oznacza w kontekście diagramu? Co będzie jeśli weźmiemy podzbiór częściowego porządku?

Niech (X, \leq) będzie częściowym porządkiem. Wtedy:

- m jest \leq -najmniejszy jeśli $\forall x \in X : m \leq x$;
- M jest \leq -najwiekszy, jeśli $\forall x \in X : x \leq M$;
- m jest \leq -minimalny, jeśli $\neg(\exists x \in X)(x \leq m \land x \neq a)$;
- M jest \leq -maksymalny, jeśli $\neg(\exists x \in X)(M \leq x \land x \neq M)$.

Rysunek: Ile mamy tu elementów największych, najmniejszych, minimalnych, maksymalnych?

Podaj przykład Diagramu Hassego, w którym będą 2 elementy maksymalne, 1 minimalny, 0 największych, 0 najmniejszych.

Podaj przykład Diagramu Hassego, w którym będą 2 elementy maksymalne, 1 minimalny, 0 największych, 0 najmniejszych.

Niech (X, \leq) będzie częściowym porządkiem. Wówczas

■ $L \in X$ nazywamy łańcuchem, jeśli $\forall (a, b \in L)(a \leq b \lor b \leq a)$,

Niech (X, \leq) będzie częściowym porządkiem. Wówczas

- $L \in X$ nazywamy łańcuchem, jeśli $\forall (a, b \in L)(a \leq b \lor b \leq a)$,
- $A \in X$ nazywamy antyłańcuchem, jeśli $\forall (a, b \in A)(a \le b \Rightarrow a = b)$.

Niech (X, \leq) będzie częściowym porządkiem. Wówczas

- $L \in X$ nazywamy łańcuchem, jeśli $\forall (a, b \in L)(a \leq b \lor b \leq a)$,
- $A \in X$ nazywamy antyłańcuchem, jeśli $\forall (a, b \in A)(a \le b \Rightarrow a = b)$.

Intuicyjnie, zbiór jest łańcuchem gdy da się porównać każde 2 jego elementy.

Niech (X, \leq) będzie częściowym porządkiem. Wówczas

- $L \in X$ nazywamy łańcuchem, jeśli $\forall (a, b \in L)(a \le b \lor b \le a)$,
- $A \in X$ nazywamy antyłańcuchem, jeśli $\forall (a, b \in A) (a \le b \Rightarrow a = b)$.

Intuicyjnie, zbiór jest łańcuchem gdy da się porównać każde 2 jego elementy.

Każdy zbiór jednoelementowy jest

Niech (X, \leq) będzie częściowym porządkiem. Wówczas

- $L \in X$ nazywamy łańcuchem, jeśli $\forall (a, b \in L)(a \le b \lor b \le a)$,
- $A \in X$ nazywamy antyłańcuchem, jeśli $\forall (a, b \in A) (a \le b \Rightarrow a = b)$.

Intuicyjnie, zbiór jest łańcuchem gdy da się porównać każde 2 jego elementy.

Każdy zbiór jednoelementowy jest łańcuchem

Niech (X, \leq) będzie częściowym porządkiem. Wówczas

- $L \in X$ nazywamy łańcuchem, jeśli $\forall (a, b \in L)(a \le b \lor b \le a)$,
- $A \in X$ nazywamy antyłańcuchem, jeśli $\forall (a, b \in A) (a \le b \Rightarrow a = b)$.

Intuicyjnie, zbiór jest łańcuchem gdy da się porównać każde 2 jego elementy.

Każdy zbiór jednoelementowy jest łańcuchem i jednocześnie antyłańcuchem.

Niech (X, \leq) będzie częściowym porządkiem. Wówczas

- $L \in X$ nazywamy łańcuchem, jeśli $\forall (a, b \in L)(a \leq b \lor b \leq a)$,
- $A \in X$ nazywamy antyłańcuchem, jeśli $\forall (a, b \in A) (a \le b \Rightarrow a = b)$.

Intuicyjnie, zbiór jest łańcuchem gdy da się porównać każde 2 jego elementy.

Każdy zbiór jednoelementowy jest łańcuchem i jednocześnie antyłańcuchem.

Porządek cześciowy jest porządkiem liniowym wtedy i tylko wtedy, gdy każdy antyłańcuch w tym porządku jest jednoelementowy

Udowodnij, że •0

Jak podchodzić do dowodów?

Udowodnij, że

Jak podchodzić do dowodów?

Korzystamy z definicji. Wykorzystujemy intuicje, aby ukierunkować rozważania. Jeżeli dowodzimy równoważności obiektów, to trzeba pokazać wynikanie jednej z charakterystycznych cech pierwszego obiektu w drugi obiekt.

Korzystamy z definicji. Wykorzystujemy intuicje, aby ukierunkować rozważania. Jeżeli dowodzimy równoważności obiektów, to trzeba pokazać wynikanie jednej z charakterystycznych cech pierwszego obiektu w drugi obiekt.

Jeżeli nie mamy pomysłu, to zwykle udowadniamy dwie implikacje, z czego obie możemy robić niewprost (choć najczęściej jedna z implikacji jest oczywista).

Korzystamy z definicji. Wykorzystujemy intuicje, aby ukierunkować rozważania. Jeżeli dowodzimy równoważności obiektów, to trzeba pokazać wynikanie jednej z charakterystycznych cech pierwszego obiektu w drugi obiekt.

Jeżeli nie mamy pomysłu, to zwykle udowadniamy dwie implikacje, z czego obie możemy robić niewprost (choć najczęściej jedna z implikacji jest oczywista).

Warto zaczynać od prostych przypadków i korzystać z indukcji, a także wykorzystywać kontrprzykłady.

Korzystamy z definicji. Wykorzystujemy intuicje, aby ukierunkować rozważania. Jeżeli dowodzimy równoważności obiektów, to trzeba pokazać wynikanie jednej z charakterystycznych cech pierwszego obiektu w drugi obiekt.

Jeżeli nie mamy pomysłu, to zwykle udowadniamy dwie implikacje, z czego obie możemy robić niewprost (choć najczęściej jedna z implikacji jest oczywista).

Warto zaczynać od prostych przypadków i korzystać z indukcji, a także wykorzystywać kontrprzykłady.

PRZYKŁAD NIE JEST DOWODEM! INTUICJA JEST WSKAZÓWKĄ, ale ma wartość dopiero gdy zapiszemy ją formalnie.

Korzystamy z definicji. Wykorzystujemy intuicje, aby ukierunkować rozważania. Jeżeli dowodzimy równoważności obiektów, to trzeba pokazać wynikanie jednej z charakterystycznych cech pierwszego obiektu w drugi obiekt.

Jeżeli nie mamy pomysłu, to zwykle udowadniamy dwie implikacje, z czego obie możemy robić niewprost (choć najczęściej jedna z implikacji jest oczywista).

Warto zaczynać od prostych przypadków i korzystać z indukcji, a także wykorzystywać kontrprzykłady.

PRZYKŁAD NIE JEST DOWODEM! INTUICJA JEST WSKAZÓWKĄ, ale ma wartość dopiero gdy zapiszemy ją formalnie.

Chyba, że wystarczy przykład. Pytanie: czy każdy liniowy porządek jest dobrym porządkiem (posiada element najmniejszy)?

Korzystamy z definicji. Wykorzystujemy intuicje, aby ukierunkować rozważania. Jeżeli dowodzimy równoważności obiektów, to trzeba pokazać wynikanie jednej z charakterystycznych cech pierwszego obiektu w drugi obiekt.

Jeżeli nie mamy pomysłu, to zwykle udowadniamy dwie implikacje, z czego obie możemy robić niewprost (choć najczęściej jedna z implikacji jest oczywista).

Warto zaczynać od prostych przypadków i korzystać z indukcji, a także wykorzystywać kontrprzykłady.

PRZYKŁAD NIE JEST DOWODEM! INTUICJA JEST WSKAZÓWKĄ, ale ma wartość dopiero gdy zapiszemy ją formalnie.

Chyba, że wystarczy przykład. Pytanie: czy każdy liniowy porządek jest dobrym porządkiem (posiada element najmniejszy)? Nie, ponieważ wystarczy rozważyć naturalny porządek na liczbach całkowitych.

Udowodnij, że

Dobry porządek a porządek liniowy

Udowodnij, że każdy dobry porządek jest porządkiem liniowym.

Udowodnij, że każdy dobry porządek jest porządkiem liniowym.

Przypomnijmy, że dobry porządek to taki rodzaj częściowego porządku, w którym każdy niepusty podzbiór ma element najmniejszy.

Udowodnij, że

Udowodnij, że każdy dobry porządek jest porządkiem liniowym.

Przypomnijmy, że dobry porządek to taki rodzaj częściowego porządku, w którym każdy niepusty podzbiór ma element najmniejszy.

Udowodnij, że

Niech (X, \leq) będzie dobrym porządkiem. Zbiór pusty, jednoelementowy oczywiste, że jest dobrze uporządkowany.

Udowodnij, że każdy dobry porządek jest porządkiem liniowym.

Przypomnijmy, że dobry porządek to taki rodzaj częściowego porządku, w którym każdy niepusty podzbiór ma element najmniejszy. Niech (X, \leq) będzie dobrym porządkiem. Zbiór pusty, jednoelementowy oczywiste, że jest dobrze uporządkowany. Dla większych zbiorów prowadzimy następujące rozumowanie: weźmy dowolne dwa różne elementy $x, y \in X$.

Udowodnij, że

Udowodnij, że każdy dobry porządek jest porządkiem liniowym.

Przypomnijmy, że dobry porządek to taki rodzaj częściowego porządku, w którym każdy niepusty podzbiór ma element najmniejszy. Niech (X, \leq) będzie dobrym porządkiem. Zbiór pusty, jednoelementowy oczywiste, że jest dobrze uporządkowany. Dla większych zbiorów prowadzimy następujące rozumowanie: weźmy dowolne dwa różne elementy $x, y \in X$. Wówczas istnieje element minimalny, czyli $x \leq y$ lub y < x. Wobec tego dowolne dwa elementy X sa porównywalne, co jest równoważne tezie.

Udowodnij, że

Notatki podczas korków