Package 'PSDistr'

September 13, 2023

Title Dist	tributions Derived from Normal Distribution
Version (0.0.1
pon ily o tion tails bers	on Presentation of distributions such as: two-piece power normal (TPPN), plasticizing coment (PC), DS normal (DSN), expnormal (EN), Sulewski plasticizing component (SPC), easchangeable kurtosis (ECK) distributions. Density, distribution function, quantile function and random generation are presented. For deson this method see: Sulewski (2019) <doi:10.1080 03610926.2019.1674871="">, Sulewski (2021) <doi:10.1080 (2022)="" 03610926="" <doi:10.1134="" and="" applicative,="" dis-tributions:="" family="" johnson="" of="" probability="" properties="" s1995080222110270="" sulewski,="" the="" volodin="">, Sulewski (2023) <doi:10.17713 ajs.v52i3.1434="">.</doi:10.17713></doi:10.1080></doi:10.1080>
Depends	R (>= 3.5.0)
Imports	pracma
License (GPL-3
Language	e en-US
Encoding	UTF-8
Roxygen	Note 7.2.3
Suggests	testthat (>= 3.0.0), knitr, rmarkdown
VignetteF	Builder knitr
NeedsCo	mpilation no
Author P	Fiotr Sulewski [aut, cre] (https://orcid.org/0000-0002-0788-6567)
Maintain	er Piotr Sulewski <piotr.sulewski@apsl.edu.pl></piotr.sulewski@apsl.edu.pl>
Repositor	y CRAN
Date/Pub	lication 2023-09-13 09:50:05 UTC
R topic	cs documented:
(ddsn 2 deck 3 den 4 dpc 5 dspc 6 dtppn 7

2 ddsn

	pdsn		 		 			 																			 			8
	peck		 		 																						 			9
	pen				 																						 			10
	ppc				 																						 			11
	PSDistr		 		 																						 			12
	pspc		 		 																						 			13
	ptppn .		 		 																						 			14
	qdsn		 		 																						 			15
	qeck		 		 																						 			16
	qen		 		 																						 			17
	qpc																													
	qspc				 																						 			19
	qtppn .		 		 																						 		•	20
	rdsn		 		 								•						•		 •						 			21
	reck				 																						 			22
	ren		 		 								•						•		 •						 			23
	rpc																													
	rspc		 		 . .			 •					•			•			•		 •	•					 			25
	rtppn	•	 •	•	 	•	•	 •	•	•	•	 •	•	•	•	•	 •	•	•	•		•	•	•	•	•	 	•	•	26
Index																														28

ddsn

Description

DS Normal Distribution

_ .

Density, distribution function, quantile function and random generation for the DS normal distribution with parameters a, b, c and d.

Usage

```
ddsn(x, a, b, c, teta)
```

Arguments

Χ	real argument
а	non-negative multipurpose parameter and a+b>0
b	non-negative multipurpose parameter and a+b>0
С	real multipurpose parameter
teta	real position parameter

Details

Probability density function in Latex see formula (5) in the paper Cumulative distribution function in Latex see formula (6) Quantile function see formulas (8,9,10) Random number generator see Theorem (5)

deck 3

Value

The function returns the value of the probability density function for the DS normal distribution

Author(s)

Piotr Sulewski, <piotr.sulewski@upsl.edu.pl>, Pomeranian Uniwersity in Slupsk.

References

Sulewski P. (2021). *DS Normal Distribution: properties and applications*. Lobachevskii Journal of Mathematics 42(12), 2980-2999.

Examples

```
ddsn(-0.5,2,2,2,0)
pdsn(-0.5,2,2,2,0)
qdsn(0.5,2,2,2,0)
rdsn(10,2,2,2,0)
```

deck

Easily Changeable Kurtosis Distribution

Description

Density, distribution function, quantile function and random generation for the Easily Changeable Kurtosis Distribution with parameters a and p.

Usage

```
deck(x, a, p)
```

Arguments

```
x -a<x<a for -1<p<0 or -a<=x<=a for p>=1
a positive scale parameter
p shape parameter: p>-1
```

Details

Probability density function see formula (1) or (3) in the article Cumulative distribution function see formula (4) Quantile functon see formula (20) Random number generator see formula (41)

Value

The function returns the value of the probability density function for the Easily Changeable Kurtosis Distribution.

4 den

Author(s)

Piotr Sulewski, <piotr.sulewski@upsl.edu.pl>, Pomeranian UNiwersity in Slupsk.

References

Sulewski, P. (2022). Easily Changeable Kurtosis Distribution. Austrian Journal of Statistics 52, 1-24.

Examples

```
deck(1,2,3)
peck(1,2,3)
qeck(0.5,2,3)
reck(10,2,3)
```

den

Expnormal Distribution

Description

Density, distribution function, quantile function and random generation for the Expnormal distribution with parameters a1, b1, a2, b2 and c.

Usage

```
den(x, a1, b1, a2, b2, c)
```

Arguments

X	real argument
a1	position parameter
b1	positive scale parameter
a2	position parameter
b2	positive scale parameter
С	semi-fraction parameter

Details

Probability density function see formula (2.1) in the article Cumulative distribution function see formula (2.3) Quantile function see proposition (2.2) Random number generator see proposition (2.6)

Value

The function returns the value of the probability density function for the Expnormal distribution.

dpc 5

Author(s)

Piotr Sulewski, <piotr.sulewski@upsl.edu.pl>, Pomeranian UNiwersity in Slupsk.

References

Sulewski, P. (2022). New Members of The Johnson Family of Probability Distributions: Properties and Application, Accepted: February 2022. REVSTAT-Statistical Journal.

Examples

```
den(1,1,2,2,2,1)
pen(1,1,2,2,2,1)
qen(0.5,1,2,2,2,1)
ren(10,1,2,2,2,1)
```

dpc

Plasticizing Component

Description

Density, distribution function, quantile function and random generation for the plasticizing component with parameters teta, s2 and c.

Usage

```
dpc(x, teta, s2, c)
```

Arguments

X	real argument
teta	position parameter
s2	positive scale parameter
С	shape parameter (c>=1)

Details

Probability density function see formula (2) in the article Cumulative distribution function see formula (4) Quantile function see formula (9) Random number generator see formula (23)

Value

The function returns the value of the probability density function for the plasticizing component.

Author(s)

6 dspc

References

Sulewski, P. (2020). *Normal Distribution with Plasticizing Component*, Communications in Statistics? Theory and Method 51(11), 3806-3835.

Examples

```
dpc(0,1,2,2)
ppc(0,1,2,2)
qpc(0.5,1,2,2)
rpc(10,1,2,2)
```

dspc

Sulewski Plasticizing Component Distribution

Description

Density, distribution function, quantile function and random generation for the Sulewski plasticizing component distribution with parameters a, b, c, d and teta.

Usage

```
dspc(x, a, b, c, d, teta)
```

Arguments

X	real argument
а	multipurpose parameter (a>=0)
b	multipurpose parameter (b>=0, a+b>0)
С	multipurpose parameter
d	multipurpose parameter (d>=1)
teta	position parameter

Details

Probability density function see formula (2.1) in the article Cumulative distribution function see formula (2.2) Quantile function see formulas (2.3-2.5) Random number generator see proposition (4)

Value

The function returns the value of the probability density function for the Sulewski plasticizing component distribution.

Author(s)

dtppn 7

References

Sulewski, P., Volodin, A. (2022). *Sulewski Plasticizing Component Distribution: properties and applications*. Lobachtetavskii Journal of Mathtetamatics 43(8), 2286-2300.

Examples

```
dspc(0,1,1,1,1,0)
pspc(0,1,1,1,1,0)
qspc(0.5,1,1,1,1,0)
rspc(10,1,1,1,1,0)
```

dtppn

Two-Piece Power Normal Distribution

Description

Density, distribution function, quantile function and random generation for the two-piece power normal distribution with parameters teta, s1, s2 and c.

Usage

```
dtppn(x, teta, s1, s2, c)
```

Arguments

X	real argument
teta	position parameter
s1	positive scale parameter
s2	positive scale parameter
С	shape parameter ($c >= 1$)

Details

Probability density function see formula (4) in the article Cumulative distribution function see formula (5) Quantile function see formula (10) Random number generator see formula (21)

Value

The function returns the value of the probability density function for the two-piece power normal distribution.

Author(s)

8 pdsn

References

Sulewski, P. (2021). *Two-Piece Power Normal Distribution*, Communications in Statistics - Theory and Method 50(11), 2619-2639.

Examples

```
dtppn(2,1,1,1,2)
ptppn(2,1,1,1,2)
qtppn(0.5,1,1,1,2)
rtppn(10,1,1,1,2)
```

pdsn

DS Normal Distribution

Description

Density, distribution function, quantile function and random generation for the DS normal distribution with parameters a, b, c and d.

Usage

```
pdsn(x, a, b, c, teta)
```

Arguments

Χ	real argument
a	non-negative multipurpose parameter and a+b>0
b	non-negative multipurpose parameter and a+b>0
С	real multipurpose parameter
teta	real position parameter

Details

Probability density function in Latex see formula (5) in the paper Cumulative distribution function in Latex see formula (6) Quantile function see formulas (8,9,10) Random number generator see Theorem (5)

Value

The function returns the value of the cumulative distribution function for the DS normal distribution

Author(s)

peck 9

References

Sulewski P. (2021). *DS Normal Distribution: properties and applications*. Lobachevskii Journal of Mathematics 42(12), 2980-2999.

Examples

```
ddsn(-0.5,2,2,2,0)
pdsn(-0.5,2,2,2,0)
qdsn(0.5,2,2,2,0)
rdsn(10,2,2,2,0)
```

peck

Easily Changeable Kurtosis Distribution

Description

Density, distribution function, quantile function and random generation for the Easily Changeable Kurtosis Distribution with parameters a and p.

Usage

```
peck(x, a, p)
```

Arguments

```
x -a<x<a for -1<p<0 or -a<=x<=a for p>=1
a positive scale parameter
p shape parameter: p>-1
```

Details

Probability density function see formula (1) or (3) in the article Cumulative distribution function see formula (4) Quantile functon see formula (20) Random number generator see formula (41)

Value

The function returns the value of the cumulative distribution function for the Easily Changeable Kurtosis Distribution.

Author(s)

Piotr Sulewski, <piotr.sulewski@upsl.edu.pl>, Pomeranian UNiwersity in Slupsk.

References

Sulewski, P. (2022). *Easily Changeable Kurtosis Distribution*. Austrian Journal of Statistics 52, 1-24.

10 pen

Examples

```
deck(1,2,3)
peck(1,2,3)
qeck(0.5,2,3)
reck(10,2,3)
```

pen

Expnormal Distribution

Description

Density, distribution function, quantile function and random generation for the Expnormal distribution with parameters a1, b1, a2, b2 and c.

Usage

```
pen(x, a1, b1, a2, b2, c)
```

Arguments

X	real argument
a1	position parameter
b1	positive scale parameter
a2	position parameter
b2	positive scale parameter
С	semi-fraction parameter

Details

Probability density function see formula (2.1) in the article Cumulative distribution function see formula (2.3) Quantile function see proposition (2.2) Random number generator see proposition (2.6)

Value

The function returns the value of the cumulative distribution function for the Expnormal distribution.

Author(s)

Piotr Sulewski, <piotr.sulewski@upsl.edu.pl>, Pomeranian UNiwersity in Slupsk.

References

Sulewski, P. (2022). *New Members of The Johnson Family of Probability Distributions: Properties and Application*, Accepted: February 2022. REVSTAT-Statistical Journal.

ppc 11

Examples

```
den(1,1,2,2,2,1)
pen(1,1,2,2,2,1)
qen(0.5,1,2,2,2,1)
ren(10,1,2,2,2,1)
```

ppc

Plasticizing Component

Description

Density, distribution function, quantile function and random generation for the plasticizing component with parameters teta, s2 and c.

Usage

```
ppc(x, teta, s2, c)
```

Arguments

Х	real argument
teta	position parameter
s2	positive scale parameter
С	shape parameter ($c>=1$)

Details

Probability density function see formula (2) in the article Cumulative distribution function see formula (4) Quantile function see formula (9) Random number generator see formula (23)

Value

The function returns the value of the cumulative distribution function for the plasticizing component.

Author(s)

Piotr Sulewski, <piotr.sulewski@upsl.edu.pl>, Pomeranian UNiwersity in Slupsk.

References

Sulewski, P. (2020). *Normal Distribution with Plasticizing Component*, Communications in Statistics? Theory and Method 51(11), 3806-3835.

PSDistr 12

Examples

```
dpc(0,1,2,2)
ppc(0,1,2,2)
qpc(0.5,1,2,2)
rpc(10,1,2,2)
```

PSDistr

The list of package functions and their demonstration

Description

The **PSDistr** presents the following distribution derived from the normal distribution: two-piece power normal (TPPN), plasticizing component (PC), DS normal (DSN), expnormal (EN), Sulewski plasticizing component (SPC), easily changeable kurtosis (ECK) distributions. Density, distribution function, quantile function and random generation are presented. The list of package functions is as follows:

Functions for the two-piece power normal distribution

dtppn ptppn

qtppn

rtppn

Functions for the plasticizing component distribution

dpc

ррс

qpc

rpc

Functions for the DS normal distribution

ddsn

pdsn

qdsn

rdsn

#' @section Functions for the expnormal distribution:

den

pen

qen

ren

pspc 13

```
#' @section Functions for the Sulewski plasticizing component distribution:
```

dspc

pspc

qspc

rspc

#' @section Functions for the easily changeable kurtosis distribution:

deck

peck

qeck

reck

pspc

Sulewski Plasticizing Component Distribution

Description

Density, distribution function, quantile function and random generation for the Sulewski plasticizing component distribution with parameters a, b, c, d and teta.

Usage

```
pspc(x, a, b, c, d, teta)
```

Arguments

X	real argument
а	multipurpose parameter (a>=0)
b	multipurpose parameter (b>=0, a+b>0)
С	multipurpose parameter
	1.1

d multipurpose parameter (d>=1)

teta position parameter

Details

Probability density function see formula (2.1) in the article Cumulative distribution function see formula (2.2) Quantile function see formulas (2.3-2.5) Random number generator see proposition (4)

Value

The function returns the value of the cumulative distribution function for the Sulewski plasticizing component distribution.

14 ptppn

Author(s)

Piotr Sulewski, <piotr.sulewski@upsl.edu.pl>, Pomeranian UNiwersity in Slupsk.

References

Sulewski, P., Volodin, A. (2022). *Sulewski Plasticizing Component Distribution: properties and applications*. Lobachtetavskii Journal of Mathtetamatics 43(8), 2286-2300.

Examples

```
dspc(0,1,1,1,1,0)
pspc(0,1,1,1,1,0)
qspc(0.5,1,1,1,1,0)
rspc(10,1,1,1,1,0)
```

ptppn

Two-Piece Power Normal Distribution

Description

Density, distribution function, quantile function and random generation for the two-piece power normal distribution with parameters teta, s1, s2 and c.

Usage

```
ptppn(x, teta, s1, s2, c)
```

Arguments

x	real argument
teta	position parameter
s1	positive scale parameter
s2	positive scale parameter
С	shape parameter $(c>=1)$

Details

Probability density function see formula (4) in the article Cumulative distribution function see formula (5) Quantile function see formula (10) Random number generator see formula (21)

Value

The function returns the value of the cumulative distribution function for the two-piece power normal distribution.

qdsn 15

Author(s)

Piotr Sulewski, <piotr.sulewski@upsl.edu.pl>, Pomeranian UNiwersity in Slupsk.

References

Sulewski, P. (2021). *Two-Piece Power Normal Distribution*, Communications in Statistics - Theory and Method 50(11), 2619-2639.

Examples

```
dtppn(2,1,1,1,2)
ptppn(2,1,1,1,2)
qtppn(0.5,1,1,1,2)
rtppn(10,1,1,1,2)
```

qdsn

DS Normal Distribution

Description

Density, distribution function, quantile function and random generation for the DS normal distribution with parameters a, b, c and d.

Usage

```
qdsn(p, a, b, c, teta)
```

Arguments

p	probability between 0 and 1
a	non-negative multipurpose parameter and a+b>0
b	non-negative multipurpose parameter and a+b>0
С	real multipurpose parameter
teta	real position parameter

Details

Probability density function in Latex see formula (5) in the paper Cumulative distribution function in Latex see formula (6) Quantile function see formulas (8,9,10) Random number generator see Theorem (5)

Value

The function returns the value of the quantile function for the DS normal distribution

16 qeck

Author(s)

Piotr Sulewski, <piotr.sulewski@upsl.edu.pl>, Pomeranian UNiwersity in Slupsk.

References

Sulewski P. (2021). *DS Normal Distribution: properties and applications*. Lobachevskii Journal of Mathematics 42(12), 2980-2999.

Examples

```
ddsn(-0.5,2,2,2,0)
pdsn(-0.5,2,2,2,0)
qdsn(0.5,2,2,2,0)
rdsn(10,2,2,2,0)
```

qeck

Easily Changeable Kurtosis Distribution

Description

Density, distribution function, quantile function and random generation for the Easily Changeable Kurtosis Distribution with parameters a and p.

Usage

```
qeck(q, a, p)
```

Arguments

q	probability between 0 and 1
а	positive scale parameter
р	shape parameter: p>-1

Details

Probability density function see formula (1) or (3) in the article Cumulative distribution function see formula (4) Quantile functon see formula (20) Random number generator see formula (41)

Value

The function returns the value of the quantile function for the Easily Changeable Kurtosis Distribution.

Author(s)

qen 17

References

Sulewski, P. (2022). Easily Changeable Kurtosis Distribution. Austrian Journal of Statistics 52, 1-24.

Examples

```
deck(1,2,3)
peck(1,2,3)
qeck(0.5,2,3)
reck(10,2,3)
```

qen

Expnormal Distribution

Description

Density, distribution function, quantile function and random generation for the Expnormal distribution with parameters a1, b1, a2, b2 and c.

Usage

```
qen(p, a1, b1, a2, b2, c)
```

Arguments

p	probability between 0 and 1
a1	position parameter
b1	positive scale parameter
a2	position parameter
b2	positive scale parameter
С	semi-fraction parameter

Details

Probability density function see formula (2.1) in the article Cumulative distribution function see formula (2.3) Quantile function see proposition (2.2) Random number generator see proposition (2.6)

Value

The function returns the value of the quantile function for the Expnormal distribution.

Author(s)

18 qpc

References

Sulewski, P. (2022). New Members of The Johnson Family of Probability Distributions: Properties and Application, Accepted: February 2022. REVSTAT-Statistical Journal.

Examples

```
den(1,1,2,2,2,1)
pen(1,1,2,2,2,1)
qen(0.5,1,2,2,2,1)
ren(10,1,2,2,2,1)
```

qpc

Plasticizing Component

Description

Density, distribution function, quantile function and random generation for the plasticizing component with parameters teta, s2 and c.

Usage

```
qpc(p, teta, s2, c)
```

Arguments

p	probability between 0 and 1
teta	position parameter
s2	positive scale parameter
С	shape parameter $(c>=1)$

Details

Probability density function see formula (2) in the article Cumulative distribution function see formula (4) Quantile function see formula (9) Random number generator see formula (23)

Value

The function returns the value of the quantile function for the plasticizing component.

Author(s)

Piotr Sulewski, <piotr.sulewski@upsl.edu.pl>, Pomeranian UNiwersity in Slupsk.

References

SSulewski, P. (2020). *Normal Distribution with Plasticizing Component*, Communications in Statistics? Theory and Method 51(11), 3806-3835.

qspc 19

Examples

```
dpc(0,1,2,2)
ppc(0,1,2,2)
qpc(0.5,1,2,2)
rpc(10,1,2,2)
```

qspc

Sulewski Plasticizing Component Distribution

Description

Density, distribution function, quantile function and random generation for the Sulewski plasticizing component distribution with parameters a, b, c, d and teta.

Usage

```
qspc(p, a, b, c, d, teta)
```

Arguments

р	probability between 0 and 1
а	multipurpose parameter (a>=0)
b	multipurpose parameter (b>=0, a+b>0)
С	multipurpose parameter
d	multipurpose parameter (d>=1)
teta	position parameter

Details

Probability density function see formula (2.1) in the article Cumulative distribution function see formula (2.2) Quantile function see formulas (2.3-2.5) Random number generator see proposition (4)

Value

The function returns the value of the quantile function for the Sulewski plasticizing component distribution.

Author(s)

Piotr Sulewski, <piotr.sulewski@upsl.edu.pl>, Pomeranian UNiwersity in Slupsk.

References

Sulewski, P., Volodin, A. (2022). *Sulewski Plasticizing Component Distribution: properties and applications*. Lobachtetavskii Journal of Mathtetamatics 43(8), 2286-2300.

20 qtppn

Examples

```
dspc(0,1,1,1,1,0)
pspc(0,1,1,1,1,0)
qspc(0.5,1,1,1,1,0)
rspc(10,1,1,1,1,0)
```

qtppn

Two-Piece Power Normal Distribution

Description

Density, distribution function, quantile function and random generation for the two-piece power normal distribution with parameters teta, s1, s2 and c.

Usage

```
qtppn(p, teta, s1, s2, c)
```

Arguments

p	probability between 0 and 1
teta	position parameter
s1	positive scale parameter
s2	positive scale parameter
С	shape parameter $(c>=1)$

Details

Probability density function see formula (4) in the article Cumulative distribution function see formula (5) Quantile function see formula (10) Random number generator see formula (21)

Value

The function returns the value of the quantile function for the two-piece power normal distribution.

Author(s)

Piotr Sulewski, <piotr.sulewski@upsl.edu.pl>, Pomeranian UNiwersity in Slupsk.

References

Sulewski, P. (2021). *Two-Piece Power Normal Distribution*, Communications in Statistics - Theory and Method 50(11), 2619-2639.

rdsn 21

Examples

```
dtppn(2,1,1,1,2)
ptppn(2,1,1,1,2)
qtppn(0.5,1,1,1,2)
rtppn(10,1,1,1,2)
```

rdsn

DS Normal Distribution

Description

Density, distribution function, quantile function and random generation for the DS normal distribution with parameters a, b, c and d.

Usage

```
rdsn(n, a, b, c, teta)
```

Arguments

n	positive number of observations
a	non-negative multipurpose parameter and a+b>0
b	non-negative multipurpose parameter and a+b>0
С	real multipurpose parameter
teta	real position parameter

Details

Probability density function in Latex see formula (5) in the paper Cumulative distribution function in Latex see formula (6) Quantile function see formulas (8,9,10) Random number generator see Theorem (5)

Value

The function returns random generator values for the DS normal distribution

Author(s)

Piotr Sulewski, <piotr.sulewski@upsl.edu.pl>, Pomeranian UNiwersity in Slupsk.

References

Sulewski P. (2021). *DS Normal Distribution: properties and applications*. Lobachevskii Journal of Mathematics 42(12), 2980-2999.

22 reck

Examples

```
ddsn(-0.5,2,2,2,0)
pdsn(-0.5,2,2,2,0)
qdsn(0.5,2,2,2,0)
rdsn(10,2,2,2,0)
```

reck

Easily Changeable Kurtosis Distribution

Description

Density, distribution function, quantile function and random generation for the Easily Changeable Kurtosis Distribution with parameters a and p.

Usage

```
reck(n, a, p)
```

Arguments

n positive number of observations
a positive scale parameter
p shape parameter: p>-1

Details

Probability density function see formula (1) or (3) in the article Cumulative distribution function see formula (4) Quantile function see formula (20) Random number generator see formula (41)

Value

The function returns random generation values for the Easily Changeable Kurtosis Distribution.

Author(s)

Piotr Sulewski, <piotr.sulewski@upsl.edu.pl>, Pomeranian UNiwersity in Slupsk.

References

Sulewski, P. (2022). *Easily Changeable Kurtosis Distribution*. Austrian Journal of Statistics 52, 1-24.

ren 23

Examples

```
deck(1,2,3)
peck(1,2,3)
qeck(0.5,2,3)
reck(10,2,3)
```

ren

Expnormal Distribution

Description

Density, distribution function, quantile function and random generation for the Expnormal distribution with parameters a1, b1, a2, b2 and c.

Usage

```
ren(n, a1, b1, a2, b2, c)
```

Arguments

n	positive number of observations
a1	position parameter
b1	positive scale parameter
a2	position parameter
b2	positive scale parameter
С	semi-fraction parameter

Details

Probability density function see formula (2.1) in the article Cumulative distribution function see formula (2.3) Quantile function see proposition (2.2) Random number generator see proposition (2.6)

Value

The function returns random generator values for the Expnormal distribution

Author(s)

Piotr Sulewski, <piotr.sulewski@upsl.edu.pl>, Pomeranian UNiwersity in Slupsk.

References

Sulewski, P. (2022). *New Members of The Johnson Family of Probability Distributions: Properties and Application*, Accepted: February 2022. REVSTAT-Statistical Journal.

24 rpc

Examples

```
den(1,1,2,2,2,1)
pen(1,1,2,2,2,1)
qen(0.5,1,2,2,2,1)
ren(10,1,2,2,2,1)
```

rpc

Plasticizing Component

Description

Density, distribution function, quantile function and random generation for the plasticizing component with parameters teta, s2 and c.

Usage

```
rpc(n, teta, s2, c)
```

Arguments

n	positive number of observations
teta	position parameter
s2	positive scale parameter
С	shape parameter (c>=1)

Details

Probability density function see formula (2) in the article Cumulative distribution function see formula (4) Quantile function see formula (9) Random number generator see formula (23)

Value

The function returns random generator values for the plasticizing component.

Author(s)

Piotr Sulewski, <piotr.sulewski@upsl.edu.pl>, Pomeranian UNiwersity in Slupsk.

References

Sulewski, P. (2020). *Normal Distribution with Plasticizing Component*, Communications in Statistics? Theory and Method 51(11), 3806-3835.

rspc 25

Examples

```
dpc(0,1,2,2)
ppc(0,1,2,2)
qpc(0.5,1,2,2)
rpc(10,1,2,2)
```

rspc

Sulewski Plasticizing Component Distribution

Description

Density, distribution function, quantile function and random generation for the Sulewski plasticizing component distribution with parameters a, b, c, d and teta.

Usage

```
rspc(n, a, b, c, d, teta)
```

Arguments

n	positive number of observations
а	multipurpose parameter (a>=0)
b	multipurpose parameter (b>=0, a+b>0)
С	multipurpose parameter
d	multipurpose parameter (d>=1)
teta	position parameter

Details

Probability density function see formula (2.1) in the article Cumulative distribution function see formula (2.2) Quantile function see formulas (2.3-2.5) Random number generator see proposition (4)

Value

The function returns random generator values for the Sulewski plasticizing component distribution.

Author(s)

Piotr Sulewski, <piotr.sulewski@upsl.edu.pl>, Pomeranian UNiwersity in Slupsk.

References

Sulewski, P., Volodin, A. (2022). *Sulewski Plasticizing Component Distribution: properties and applications*. Lobachtetavskii Journal of Mathtetamatics 43(8), 2286-2300.

26 rtppn

Examples

```
dspc(0,1,1,1,1,0)
pspc(0,1,1,1,1,0)
qspc(0.5,1,1,1,1,0)
rspc(10,1,1,1,1,0)
```

rtppn

Two-Piece Power Normal Distribution

Description

Density, distribution function, quantile function and random generation for the two-piece power normal distribution with parameters teta, s1, s2 and c.

Usage

```
rtppn(n, teta, s1, s2, c)
```

Arguments

n	positive number of observations
teta	position parameter
s1	positive scale parameter
s2	positive scale parameter
С	shape parameter $(c>=1)$

Details

Probability density function see formula (4) in the article Cumulative distribution function see formula (5) Quantile function see formula (10) Random number generator see formula (21)

Value

The function returns random generator values for the two-piece power normal distribution.

Author(s)

Piotr Sulewski, <piotr.sulewski@upsl.edu.pl>, Pomeranian UNiwersity in Slupsk.

References

Sulewski, P. (2021). *Two-Piece Power Normal Distribution*, Communications in Statistics - Theory and Method 50(11), 2619-2639.

rtppn 27

Examples

```
dtppn(2,1,1,1,2)
ptppn(2,1,1,1,2)
qtppn(0.5,1,1,1,2)
rtppn(10,1,1,1,2)
```

Index

```
ddsn, 2, 12
deck, 3, 13
den, 4, 12
dpc, 5, 12
dspc, 6, 13
dtppn, 7, 12
pdsn, 8, 12
peck, 9, 13
pen, 10, 12
ppc, 11, 12
PSDistr, 12
PSDistr-package (PSDistr), 12
pspc, 13, 13
ptppn, 12, 14
qdsn, 12, 15
qeck, 13, 16
qen, 12, 17
qpc, 12, 18
qspc, 13, 19
qtppn, 12, 20
rdsn, 12, 21
reck, 13, 22
ren, 12, 23
rpc, 12, 24
rspc, 13, 25
rtppn, 12, 26
```