Introduction à la recherche opérationnelle et à l'optimisation combinatoire

Cours RO202

Zacharie ALES (zacharie.ales@ensta.fr)

Adapté de cours de Marie-Christine Costa, Alain Faye et Sourour Elloumi

- Introduction
 - Exemples d'applications
- Optimisation dans les graphes
 - Vocabulaire
 - Arbre couvrant de poids minimal
 - Voyageur de commerce
 - Cheminement
- Java survival kit
- Matroïdes et algorithmes gloutons

Sommaire

- Introduction Exemples d'applications

Définition 1 [Wikipedia]

Ensemble des méthodes et techniques rationnelles orientées vers la recherche du meilleur choix

Recherche opérationnelle

Définition 1 [Wikipedia]

Ensemble des méthodes et techniques rationnelles orientées vers la recherche du meilleur choix

Définition 2

Mettre au point des méthodes, les implémenter au sein d'outils (logiciels) pour trouver des résultats ensuite confrontés à la réalité

Et repris jusqu'à satisfaction du demandeur

Discipline au carrefour entre

- Mathématiques
- Économie
- Informatique
- Par nature en prise directe avec l'industrie

Problème d'optimisation combinatoire

Caractéristiques

- 1 problème → grand nombre de solutions
- 1 solution → 1 valeur

Mais pas infini

Problème d'optimisation combinatoire

Caractéristiques

- 1 problème → grand nombre de solutions
- Mais pas infini 1 solution → 1 valeur

<u>Définition - Problème d'optimisation combinatoire</u>

Maximiser ou Minimiser une fonction objectif tout en respectant un ensemble de contraintes

Problème d'optimisation combinatoire

Caractéristiques

- 1 problème → grand nombre de solutions
- 1 solution → 1 valeur

 Mais pas infini

Définition - Problème d'optimisation combinatoire

Maximiser ou Minimiser une fonction objectif tout en respectant un ensemble de contraintes

Problème discret

Recherche d'une solution optimale entière

Les variables sont généralement dans {0, 1}, N ou Z

Sommaire

- Introduction
 - Exemples d'applications
- - Vocabulaire
 - Arbre couvrant de poids minimal
 - Voyageur de commerce
 - Cheminement
 - Algorithme de Dijkstra
 - Algorithme de Bellman
 - Algorithme de Roy-Warshall-Floyd

Premier exemple: cheminer

Solution trouvée facilement par un algorithme de graphes

Autres exemples

- Gestion des stocks
- Transport et logistique
- Router, relier
- ...

Entreprises très concernées par la RO

Optimisation dans les graphes

1.1 - Arbre couvrant

Sommaire

- Optimisation dans les graphes
 - Vocabulaire
 - Arbre couvrant de poids minimal
 - Voyageur de commerce
 - Cheminement

Sommaire

- - Exemples d'applications
- Optimisation dans les graphes
 - Vocabulaire
 - Arbre couvrant de poids minimal
 - Voyageur de commerce
 - Cheminement
 - Algorithme de Dijkstra
 - Algorithme de Bellman
 - Algorithme de Roy-Warshall-Floyd

Qu'est-ce qu'un graphe?

"Des points et des traits ou des flèches"

Point de vue mathématique

Une relation binaire

Point de vue pratique

Représentation abstraite d'un réseau

Ex : réseau de télécommunication

Permet de

- Visualiser des échanges
- Modéliser des systèmes réels
- Jouer
 Voir cours Jeux, Graphes et RO (RO203)

a

Domaines variés

- Économie
- Informatique
- Industrie
- Chimie
- Sociologie
- ...

Graphes orientés

Notation - Graphe orienté

$$G = (V, A)$$

Ensemble de sommets \square Ensemble d'arcs $\subseteq V \times V$

Exemple

- $V = \{a, b, c, d, e, f\}$
- $A = \{(ab), (ba), (bc), (ca), (cd), (af), ...\}$ Aussi noté: (a, b)

Vocabulaire

Extrémité initiale

Soit
$$h = (ab) \in A$$

Extrémité finale

- a et b sont adjacents ou voisins
- a est prédécesseur de b
- b est successeur de a

Définition - Graphe simple

Graphe ne possédant pas deux arcs ayant les même extrémités initiales et terminales

Définition - Multigraphe

Graphe non simple

Définition - Graphe valué

Graphe dont les arcs portent une valuation

Distance, coût, gain, ...

Prédécesseurs et successeurs

Définition - Successeur d'un sommet

$$\Gamma(\mathbf{v}) = \{\text{successeurs du sommet } \mathbf{v}\}$$

$$\downarrow \quad V \mapsto P(V) \text{ (aussi noté } \Gamma^+)$$

Définition - Prédécesseur d'un sommet

•
$$\Gamma(b) =$$

$$\bullet$$
 $\Gamma(f) =$

•
$$\Gamma^{-1}(b) = \dots$$

$$\bullet \ \Gamma^{-1}(d) = \dots$$

Chemin et circuit

Définition - Chemin

Suite d'arcs telle que l'extrémité terminale d'un arc coïncide avec l'extrémité initiale de l'arc suivant

- Chemin :
 -

Chemin et circuit

Définition - Chemin

Suite d'arcs telle que l'extrémité terminale d'un arc coïncide avec l'extrémité initiale de l'arc suivant

Définition - Circuit

Chemin dont les deux extrémités coïncident

- chemin simple : pas deux fois le même arc
- chemin élémentaire : pas deux fois le même sommet

- Chemin :
 -
- Circuit :
 -

Racine, degrés

Définition - Racine

Sommet r tel qu'

Exemples

Racine:

Racine, degrés

Définition - Racine

Sommet r tel qu'

Définition - Degré intérieur (resp. extérieur) d'un sommet x

Nombre d'arcs dont x est l'extrémité terminale (noté $d^-(x)$)

resp. initiale
$$\stackrel{\frown}{}$$
 resp. $d^+(x)$

- Racine : ____
- $d^-(a) = ... d^-(f) = ...$
- $d^+(a) = ..., d^+(b) = ...,$ $d^+(f) =$

Graphes non orientés

Définition - Arête

Arc "sans orientation"

Notation - Graphe non orienté

$$G = (V, E)$$

Ensemble de sommets ____ Ensemble d'arêtes

- V =
- *E* =

Définition - Chaîne

Séquence d'arêtes telle que toute arête est adjacente à l'arête qui la suit et à celle qui la précède

Exemple

Chaîne:

Définition - Voisinage

Les sommets x et y sont dits voisins si $[xy] \in E$

Exemple

• b est voisin de

Définition - Voisinage

Les sommets x et y sont dits voisins si $[xy] \in E$

Notation - N(x)

 $N(x) = \{ \text{voisins de } x \}$

- b est voisin de
- *N*(*c*) =

Définition - Voisinage

Les sommets x et y sont dits voisins si $[xy] \in E$

Notation - N(x)

 $N(x) = \{ \text{voisins de } x \}$

Définition - Degré

$$d(x) = |N(x)|$$

□ Nombre d'arêtes adjacentes à x

- b est voisin de
- *N*(*c*) =
- d(b) = .
- od(c) =

Cycle élémentaire

Définition - Cycle (élémentaire)

Chaîne dont les deux extrémités coïncident

(et qui ne passe pas 2 fois par le même sommet)

Exemple

Cycle

Définition - Cycle Hamiltonien

Cycle élémentaire passant par tous les sommets

Hypothèses pour la suite

- Les graphes sont simples
 - Une seule arête ou un seul arc entre deux sommets
- Les cycles sont élémentaires
- Les graphes sont sans boucle

Pas d'arête ou d'arc (x,x)

Définition - Relation de connexité \mathcal{R}

Soit x et y deux sommets d'un graphe G = (V, A)

• $xRy \Leftrightarrow x$ et y sont reliés par une chaîne

- aRg
- G₁ et G₂
- G

Définition - Relation de connexité R

Soit x et y deux sommets d'un graphe G = (V, A)

• $xRy \Leftrightarrow x$ et y sont reliés par une chaîne

Définition - Composante connexe

 \mathcal{R} est une relation d'équivalence dont les classes d'équivalences sont appelées composantes connexes

- aRg
- G₁ et G₂
- G

Définition - Relation de connexité R

Soit x et y deux sommets d'un graphe G = (V, A)

Optimisation dans les graphes

• $xRy \Leftrightarrow x$ et y sont reliés par une chaîne

Définition - Composante connexe

 \mathcal{R} est une relation d'équivalence dont les classes d'équivalences sont appelées composantes connexes

Définition - Graphe connexe G = (V, A)

G ne possède qu'une unique composante connexe

Exemple

- aRg
- G₁ et G₂

Arbre

Définition - Arbre

Grapheet

Optimisation dans les graphes

Définition - Forêt

Graphe

Exemple

Théorème

Soit G = (V, E) un graphe

Il y a équivalence entre les propriétés suivantes

- **1** G est connexe sans cycle (*i.e.*, G est un arbre)
- G est connexe minimal (i.e., retirer une arête rend G non connexe)
- G ne contient aucun circuit et possède n 1 arêtes
- G est sans cycle maximal (i.e., ajouter une arête forme un cycle)
- \bigcirc G est sans cycle et possède n-1 arcs
- Tous couples de sommets de G est relié par un unique chemin

Graphes orientés - Arborescence

Définition - Arborescence

- G = (V, A) arbre possédant une racine r telle que
 - r est reliée à tout $v \in V$ par un chemin unique

Exemple

Propriété

- $d^{-}(r) = .$
- \bullet $d^-(x) = \text{pour tout } v \neq r$

arborescence = "arbre enraciné" = "arbre" en informatique

arbre généalogique, tournois, arbre des espèces animales,...

Sommaire

- - Exemples d'applications
- Optimisation dans les graphes
 - Vocabulaire
 - Arbre couvrant de poids minimal
 - Voyageur de commerce
 - Cheminement
 - Algorithme de Dijkstra
 - Algorithme de Bellman
 - Algorithme de Roy-Warshall-Floyd

Problème

Comment relier des objets en minimisant la longueur totale des liens?

Problème

Comment relier des objets en minimisant la longueur totale des liens?

Donnée - Graphe non orienté valué

Objets à relier ___ Liens possibles

$$G = (V, E, p)$$

Longueur du lien

Problème

Comment relier des objets en minimisant la longueur totale des liens?

Donnée - Graphe non orienté valué

Formulation du problème

Sélectionner des arêtes d'un graphe orienté valué G = (V, E, p) afin de former un arbre :

- couvrant chaque sommet et
- dont la somme des poids des arêtes est minimale

Graphe initial

Solution optimale - Arbre couvrant de poids minimal

- Arbre→ graphe sans cycle et connexe
- Couvrant → passant par tous les sommets
- Minimal → de longueur totale min

Exemple

Arbre couvrant de poids minimal

Comment obtenir un arbre couvrant de poids minimal?

Algorithme de Kruskal

Résultat $-E_2 \subseteq E$

• $H = (V, E_2)$: arbre couvrant de poids minimal de G

Algorithme de Kruskal

Données : G = (V, E, p)

Résultat : Arbre couvrant de poids minimal de G

 $k \leftarrow 0$

 $E_2 \leftarrow \emptyset$

 $L \leftarrow$ Liste des arêtes de E triées par ordre de poids croissant

Nombre de sommets du graphe

pour k allant de 1 à n-1 **faire**

 $w \leftarrow 1^{\text{ère}}$ arête de L ne formant pas de cycle avec E_2

 $E_2 \leftarrow E_2 \cup \{w\}$

retourner $H = (V, E_2)$

Tri

Complexité $\mathcal{O}(m \log m)$

m: nombre d'arêtes

Quelques notions de complexité

Complexité $\mathcal{O}(n)$ d'un algorithme \mathcal{A}

Dans le pire des cas, $\mathcal A$ s'exécute en un nombre d'étapes proportionnel à $n\in\mathbb N$

Quelques notions de complexité

Complexité $\mathcal{O}(n)$ d'un algorithme \mathcal{A}

Dans le pire des cas, $\mathcal A$ s'exécute en un nombre d'étapes proportionnel à $n\in\mathbb N$

Problème "facile" *P* (ou problème polynomial)

Polynomial par rapport à la taille des données d'entrée -

On connaît un algorithme résolvant P de complexité polynomiale Ex : $\mathcal{O}(\log n)$, $\mathcal{O}(n^2)$, $\mathcal{O}(n^{10} + 3n^2)$, ...

Quelques notions de complexité

Complexité $\mathcal{O}(n)$ d'un algo<u>rithme</u> \mathcal{A}

Dans le pire des cas, A s'exécute en un nombre d'étapes proportionnel à $n \in \mathbb{N}$

Problème "facile" P (ou problème polynomial)

Optimisation dans les graphes

Polynomial par rapport à la taille des données d'entrée -

On connaît un algorithme résolvant P de complexité polynomiale Ex: $\mathcal{O}(\log n)$, $\mathcal{O}(n^2)$, $\mathcal{O}(n^{10} + 3n^2)$, ...

Problème "difficile" P

On ne connaît aucun algorithme permettant de résoudre P en un nombre polynomial d'étapes

Ex : problème dont les seuls algorithmes connus sont de complexité $\mathcal{O}(e^n)$, $\mathcal{O}(n!)$

Arête	ah	de	di	ei	hi	fg	ab	bh	ci	cd	bc	ch	ef	gh	ag	ge
Poids	1	1	1	1	1	1	2	2	2	2	3	3	3	3	4	4
k																

Arête	ah	de	di	ei	hi	fg	ab	bh	ci	cd	bc	ch	ef	gh	ag	ge
Poids	1	1	1	1	1	1	2	2	2	2	3	3	3	3	4	4
k	1															

• $n = 9 \rightarrow \text{stop après 8 sélections}$

Arête	ah	de	di	ei	hi	fg	ab	bh	ci	cd	bc	ch	ef	gh	ag	ge
Poids	1	1	1	1	1	1	2	2	2	2	3	3	3	3	4	4
k	1	2														

Arête	ah	de	di	ei	hi	fg	ab	bh	ci	cd	bc	ch	ef	gh	ag	ge
Poids	1	1	1	1	1	1	2	2	2	2	3	3	3	3	4	4
k	1	2	3													

• $n = 9 \rightarrow \text{stop après 8 sélections}$

Arête	ah	de	di	ei	hi	fg	ab	bh	ci	cd	bc	ch	ef	gh	ag	ge
Poids	1	1	1	1	1	1	2	2	2	2	3	3	3	3	4	4
k	1	2	3	×												

Arête	ah	de	di	ei	hi	fg	ab	bh	ci	cd	bc	ch	ef	gh	ag	ge
Poids	1	1	1	1	1	1	2	2	2	2	3	3	3	3	4	4
k	1	2	3	×	4											

Arête	ah	de	di	ei	hi	fg	ab	bh	ci	cd	bc	ch	ef	gh	ag	ge
Poids	1	1	1	1	1	1	2	2	2	2	3	3	3	3	4	4
k	1	2	3	×	4	5										

Arête	ah	de	di	ei	hi	fg	ab	bh	ci	cd	bc	ch	ef	gh	ag	ge
Poids	1	1	1	1	1	1	2	2	2	2	3	3	3	3	4	4
k	1	2	3	×	4	5	6									

Arête	ah	de	di	ei	hi	fg	ab	bh	ci	cd	bc	ch	ef	gh	ag	ge
Poids	1	1	1	1	1	1	2	2	2	2	3	3	3	3	4	4
k	1	2	3	×	4	5	6	×								

• $n = 9 \rightarrow \text{stop après 8 sélections}$

Arête	ah	de	di	ei	hi	fg	ab	bh	ci	cd	bc	ch	ef	gh	ag	ge
Poids	1	1	1	1	1	1	2	2	2	2	3	3	3	3	4	4
k	1	2	3	×	4	5	6	×	7							

• $n = 9 \rightarrow \text{stop après 8 sélections}$

Arête	ah	de	di	ei	hi	fg	ab	bh	ci	cd	bc	ch	ef	gh	ag	ge
Poids	1	1	1	1	1	1	2	2	2	2	3	3	3	3	4	4
k	1	2	3	×	4	5	6	×	7	×						

Arête	ah	de	di	ei	hi	fg	ab	bh	ci	cd	bc	ch	ef	gh	ag	ge
Poids	1	1	1	1	1	1	2	2	2	2	3	3	3	3	4	4
k	1	2	3	×	4	5	6	×	7	×	×					

Arête	ah	de	di	ei	hi	fg	ab	bh	ci	cd	bc	ch	ef	gh	ag	ge
Poids	1	1	1	1	1	1	2	2	2	2	3	3	3	3	4	4
k	1	2	3	×	4	5	6	×	7	×	×	×				

Arête	ah	de	di	ei	hi	fg	ab	bh	ci	cd	bc	ch	ef	gh	ag	ge
Poids	1	1	1	1	1	1	2	2	2	2	3	3	3	3	4	4
k	1	2	3	×	4	5	6	×	7	×	×	×	8			

• $n = 9 \rightarrow \text{stop après 8 sélections}$

Arête	ah	de	di	ei	hi	fg	ab	bh	ci	cd	bc	ch	ef	gh	ag	ge
Poids	1	1	1	1	1	1	2	2	2	2	3	3	3	3	4	4
k	1	2	3	×	4	5	6	×	7	×	×	×	8			

- n = 9 → stop après 8 sélections
- p(H) = (1+1+1+1+1+2+2+3) = 12

Quiz!

Question 1

Voici la liste des arêtes de ce graphe ordonnées par poids croissant : (F, C), (A, C), (A, F), (B, G), (C, D), (D, E), (H, G), (A, H), (C, E)

Indiquer les 4 premières arêtes ajoutées à l'arbre lorsqu'on applique l'algorithme de Kruskal

Question 2

Voici la liste des arêtes de ce graphe ordonnées par poids croissant : (D, B), (D, C), (C, B), (G, C), (H, A), (C, F), (E, C), (B, A), (E, G)

Indiquer les 4 premières arêtes ajoutées à l'arbre lorsqu'on applique l'algorithme de Kruskal

Preuve d'optimalité - Algorithme de Kruskal

Notations

- G = (V, E, p) : graphe initial
- $H = (V, E_2)$: arbre couvrant obtenu par l'algorithme de Kruskal

Propriété 1

Soient

•
$$w = [xy] \in E \setminus E_2$$

μ_w : chaîne de x à y dans H

alors,
$$p(w) \ge \max_{u \in u_w} p(u)$$

Preuve d'optimalite - Algorithme de Kruskal

Notations

- H: arbre obtenu par l'algorithme de Kruskal de poids p(H)
- $H^{(1)}$: arbre optimal de poids $p(H^{(1)})$
- $u \in H^{(1)} \setminus H$ reliant V_1 et V_2 Avec $V_1 \cup V_2 = V$
- $v \in H \setminus H^{(1)}$ reliant V_1 et V_2

Montrons que $p(H) = p(H^{(1)})$

Preuve d'optimalite - Algorithme de Kruskal

Notations

- H: arbre obtenu par l'algorithme de Kruskal de poids p(H)
- $H^{(1)}$: arbre optimal de poids $p(H^{(1)})$
- $u \in H^{(1)} \setminus H$ reliant V_1 et V_2 Avec $V_1 \cup V_2 = V$
- $v \in H \setminus H^{(1)}$ reliant V_1 et V_2

Montrons que $p(H) = p(H^{(1)})$

Optimal - H(1) V_2

On répète le processus...

Considérons $w \in H^{(2)} \setminus H$ On a donc $p(H^{(3)}) = p(H^{(1)})$

On répète jusqu'à ce que $H^{(...)} = H$

Algorithme de Kruskal

Remarque

L'algorithme de Kruskal est un algorithme glouton

Définition - Algorithme glouton

A chaque étape, faire le choix le plus intéressant à cet instant et ne plus le remettre en question

Caractéristiques des algorithmes gloutons

- Facile
- Rapide Algorithme dit heuristique
- Rarement optimale

L'abre couvrant de poids minimal est une exception

Algorithmes gloutons

Choix glouton = Choix **localement** optimal

Optimum local \(\neq \) Optimum global

• x₂: optimum global

Arbre couvrant de poids maximal

Maximisation

Même algorithme en triant les arêtes par ordre de poids décroissant

Difficulté de l'implémentation

Détection des cycles

Fonction fournie dans le TP

Sommaire

- Introduction
 - Exemples d'applications
 - Optimisation dans les graphes
 - Vocabulaire
 - Arbre couvrant de poids minimal
 - Voyageur de commerce
 - Cheminement
 - Algorithme de Dijkstra
 - Algorithme de Bellman
 - Algorithme de Rov-Warshall-Flovd
- Java survival kit
- Matroïdes et algorithmes gloutons

Le voyageur de commerce

Problème du voyageur de commerce

Comment passer une fois par chaque ville tout en minimisant la longueur totale parcourue?

Graphe valué associé

Villes - Routes possibles

$$G = (V, E, p)$$

Longueur des routes

Source: Wikipedia

Le voyageur de commerce

Problème du voyageur de commerce

Comment passer une fois par chaque ville tout en minimisant la longueur totale parcourue?

Graphe valué associé

Villes - Routes possibles

$$G = (V, E, \rho)$$

Longueur des routes

On cherche un cycle hamiltonien de valeur minimale

Passant par tous les sommets

Graphe initial

Solution

Source : Wikipedia

Données : G = (V, E, p) : graphe initial **Résultat**: $H(V, E_2)$: cycle hamiltonien

$$E_2 \leftarrow \emptyset$$

L ← Liste des arêtes de G triées par ordre de longueur croissante

pour k allant de 1 à n faire

 $w \leftarrow$ 1ère arête de L ne formant pas de sous-cycle avec E_2 et telle que les degrés des sommets restent ≤ 2 $E_2 \leftarrow E_2 \cup \{w\}$

Données : G = (V, E, p) : graphe initial **Résultat :** $H(V, E_2)$: cycle hamiltonien

$$E_2 \leftarrow \emptyset$$

 $L \leftarrow \text{Liste}$ des arêtes de G triées par ordre de longueur croissante

pour k allant de 1 à n faire

 $w \leftarrow$ 1ère arête de L ne formant pas de sous-cycle avec E_2 et telle que les degrés des sommets restent ≤ 2 $E_2 \leftarrow E_2 \cup \{w\}$

Données : G = (V, E, p) : graphe initial **Résultat :** $H(V, E_2)$: cycle hamiltonien

$$k \leftarrow 0$$

$$E_2 \leftarrow \emptyset$$

 $L \leftarrow \text{Liste}$ des arêtes de G triées par ordre de longueur croissante

pour k allant de 1 à n faire

 $w \leftarrow$ 1ère arête de L ne formant pas de sous-cycle avec E_2 et telle que les degrés des sommets restent ≤ 2 $E_2 \leftarrow E_2 \cup \{w\}$

Données : G = (V, E, p) : graphe initial **Résultat :** $H(V, E_2)$: cycle hamiltonien

$$k \leftarrow 0$$

$$E_2 \leftarrow \emptyset$$

 $L \leftarrow \text{Liste}$ des arêtes de G triées par ordre de longueur croissante

pour k allant de 1 à n faire

 $w \leftarrow$ 1ère arête de L ne formant pas de sous-cycle avec E_2 et telle que les degrés des sommets restent ≤ 2 $E_2 \leftarrow E_2 \cup \{w\}$

Données : G = (V, E, p) : graphe initial **Résultat :** $H(V, E_2)$: cycle hamiltonien

$$k \leftarrow 0$$

$$E_2 \leftarrow \emptyset$$

 $L \leftarrow \text{Liste}$ des arêtes de G triées par ordre de longueur croissante

pour k allant de 1 à n faire

 $w \leftarrow$ 1ère arête de L ne formant pas de sous-cycle avec E_2 et telle que les degrés des sommets restent ≤ 2 $E_2 \leftarrow E_2 \cup \{w\}$

Données : G = (V, E, p) : graphe initial **Résultat :** $H(V, E_2)$: cycle hamiltonien

$$k \leftarrow 0$$

$$E_2 \leftarrow \emptyset$$

L ← Liste des arêtes de G triées par ordre de longueur croissante

pour k allant de 1 à n faire

 $w \leftarrow$ 1ère arête de L ne formant pas de sous-cycle avec E_2 et telle que les degrés des sommets restent ≤ 2 $E_2 \leftarrow E_2 \cup \{w\}$

Données : G = (V, E, p) : graphe initial **Résultat :** $H(V, E_2)$: cycle hamiltonien

$$k \leftarrow 0$$

$$E_2 \leftarrow \emptyset$$

 $\label{eq:Listedes} \textit{L} \leftarrow \textit{Liste des arêtes de G triées par} \\ \textit{ordre de longueur croissante}$

pour k allant de 1 à n faire

 $w \leftarrow 1$ ère arête de L ne formant pas de sous-cycle avec E_2 et telle que les degrés des sommets restent ≤ 2 $E_2 \leftarrow E_2 \cup \{w\}$

Données : G = (V, E, p) : graphe initial **Résultat :** $H(V, E_2)$: cycle hamiltonien

$$k \leftarrow 0$$

$$E_2 \leftarrow \emptyset$$

 $L \leftarrow \text{Liste}$ des arêtes de G triées par ordre de longueur croissante

pour k allant de 1 à n faire

 $w \leftarrow$ 1ère arête de L ne formant pas de sous-cycle avec E_2 et telle que les degrés des sommets restent ≤ 2 $E_2 \leftarrow E_2 \cup \{w\}$

Données : G = (V, E, p) : graphe initial **Résultat :** $H(V, E_2)$: cycle hamiltonien

$$k \leftarrow 0$$

$$E_2 \leftarrow \emptyset$$

L ← Liste des arêtes de G triées par ordre de longueur croissante

pour k allant de 1 à n faire

 $w \leftarrow$ 1ère arête de L ne formant pas de sous-cycle avec E_2 et telle que les degrés des sommets restent ≤ 2 $E_2 \leftarrow E_2 \cup \{w\}$

Données : G = (V, E, p) : graphe initial **Résultat :** $H(V, E_2)$: cycle hamiltonien

$$k \leftarrow 0$$

$$E_2 \leftarrow \emptyset$$

 $\label{eq:Listedes} \begin{aligned} \textit{L} \leftarrow \textit{Liste des arêtes de G triées par} \\ \textit{ordre de longueur croissante} \end{aligned}$

pour k allant de 1 à n faire

 $w \leftarrow$ 1ère arête de L ne formant pas de sous-cycle avec E_2 et telle que les degrés des sommets restent ≤ 2 $E_2 \leftarrow E_2 \cup \{w\}$

Données : G = (V, E, p) : graphe initial **Résultat :** $H(V, E_2)$: cycle hamiltonien

$$k \leftarrow 0$$

$$E_2 \leftarrow \emptyset$$

 $L \leftarrow \text{Liste}$ des arêtes de G triées par ordre de longueur croissante

pour k allant de 1 à n faire

 $w \leftarrow$ 1ère arête de L ne formant pas de sous-cycle avec E_2 et telle que les degrés des sommets restent ≤ 2 $E_2 \leftarrow E_2 \cup \{w\}$

Données : G = (V, E, p) : graphe initial **Résultat**: $H(V, E_2)$: cycle hamiltonien

$$k \leftarrow 0$$

$$E_2 \leftarrow \emptyset$$

L ← Liste des arêtes de G triées par ordre de longueur croissante

pour k allant de 1 à n faire

 $w \leftarrow$ 1ère arête de L ne formant pas de sous-cycle avec E_2 et telle que les degrés des sommets restent ≤ 2 $E_2 \leftarrow E_2 \cup \{w\}$

retourner $H = (V, E_2)$

Solution heuristique de valeur

L'algorithme ne donne pas la solution optimale

- solution gloutonne : longueur 13
- solution optimale : longueur 12

Le problème du voyageur de commerce est un problème « difficile »

Sommaire

- - Exemples d'applications
- Optimisation dans les graphes
 - Vocabulaire
 - Arbre couvrant de poids minimal
 - Voyageur de commerce
 - Cheminement
 - Algorithme de Dijkstra
 - Algorithme de Bellman
 - Algorithme de Roy-Warshall-Floyd

Problèmes de cheminement

Problème 2

Trouver les plus courts chemins d'un sommet à tous les autres

Problème 3

Trouver un plus court chemin pour toutes paires de sommets

Applications du routage

- Réseaux de télécommunications
- GPS routier
- Distribution d'eau, de gaz
- •

Définition - Circuit absorbant

Circuit

Théorème

• Il existe un chemin de longueur minimale finie de r à tous les sommets du graphe

si et seulement si

 r est une racine du graphe et le graphe ne contient pas de circuit absorbant

Cas où l'on est sûr de l'absence de circuit absorbant

- Toutes les longueurs sont positives ou nulles
- Le graphe est sans circuit

Sommaire

- Introduction
 - Exemples d'applications
- Optimisation dans les graphes
 - Vocabulaire
 - Arbre couvrant de poids minimal
 - Voyageur de commerce
 - Cheminement
 - Algorithme de Dijkstra
 - Algorithme de Bellman
 - Algorithme de Roy-Warshall-Floyd
- Java survival kit
- Matroïdes et algorithmes gloutons

Algorithme de Dijkstra

Cas des valuations positives

Principe de l'algorithme

Construire une arborescence $H(V, A_2)$

- dont r est la racine et
- correspondant au plus court chemin entre r et les autres sommets

Idée de l'algorithme

- Le plus court chemin entre r et son sommet le plus proche v est p(r, v)
- Même raisonnement pour le sommet le plus proche de r ou v
- On répète cette idée jusqu'à ce que
 - Problème 1 : le sommet cible soit atteint
 - Problème 2 : tous les sommets soient atteints

Algorithme de Dijkstra Problème 1 et 2 Cas des valuations positives

Notation

Prédécesseur de x sur le meilleur chemin connu de r à x

Soient les applications pred(x) et $\pi(x)$

Longueur du meilleur chemin connu entre r et x

Données :

retourner $H(V, A_2)$

Algorithme de Dijkstra Problème 1 et 2

Cas des valuations positives

```
G = (V, A, p): graphe de poids positifs
                                     r \in V: sommet origine
                                     Résultat : H = (V, A_2) arborescence des plus courts chemins
Sommets déjà considérés comme pivot -
                    Origine des arcs ___ Arêtes de l'arbre
                                     (pivot, V_2, \pi(r), A_2) \leftarrow (r, r, 0, \emptyset)
                                     pour v \in V \setminus \{r\} faire \leftarrow Initialisation de \pi (aucun sommet de V \setminus \{r\} n'est pour l'instant atteint)
                                       \pi(\mathbf{v}) \leftarrow +\infty
                                     pour j allant de 1 à n-1 faire \leftarrow Pour tout pivot
                                            pour y \in V \setminus V_2 tel que (pivot, y) \in A faire
                                                   si \pi(\text{pivot}) + p(\text{pivot}, y) < \pi(y) alors \leftarrow Si utiliser (pivot, y) fournit un meilleur chemin vers y
                                                     \pi(y) \leftarrow \pi(\mathsf{pivot}) + p(\mathsf{pivot}, y)
                                                     pred(y) \leftarrow pivot
                                           pivot \leftarrow argmin_{z \notin V_2} \pi(z)
                                        V_2 \leftarrow V_2 \cup \{\text{pivot}\}
                                     pour tout x \in V \setminus \{r\} faire \leftarrow Construire A_2 à partir de pred
                                       A_2 \leftarrow A_2 \cup \{(\operatorname{pred}(x), x)\}
```

 $\begin{aligned} \textbf{Donn\'ees}: & G = (V, A, p) : \text{graphe de poids positifs} \\ \textbf{R\'esultat}: & H = (V, A_2) \text{ arborescence des plus courts} \\ & \text{chemins} \end{aligned}$

$$(\textit{V}_{\textit{2}}, \mathsf{pivot}, \pi(\textit{r}), \textit{A}_{\textit{2}}) \leftarrow (\textit{r}, \textit{r}, \textit{0}, \varnothing)$$

pour $\underline{v \in V \setminus \{r\}}$ faire

 $\pi(v) \leftarrow +\infty$

pour j allant de 1 à n-1 faire

 $\begin{aligned} & \textbf{pour tout sommet } y \not\in V_2 \text{ tel que } y \in \Gamma^+(\text{pivot}) \\ & \textbf{faire} \\ & = \underbrace{\mathbf{si} \, \pi(\text{pivot}) + p(\text{pivot}, y) < \pi(y)}_{\text{fivot}} \, \mathbf{alors} \\ & = \underbrace{\frac{\pi(p) \leftarrow \pi(\text{pivot}) + p(\text{pivot}, y)}_{\text{pred}(y) \leftarrow \text{pivot}}}_{\text{pivot} \leftarrow argmin_{Z \not\in V_2} \, \pi(z)} \end{aligned}$

 $V_2 \leftarrow V_2 \cup \{\mathsf{pivot}\}$

pour $\underline{\text{tout } x \in V \backslash \{r\}}$ faire

 $A_2 \leftarrow A_2 \cup \{(\mathsf{pred}(x), x)\}$

Données : G = (V, A, p) : graphe de poids positifs **Résultat :** $H = (V, A_2)$ arborescence des plus courts chemins

$$(\textit{V}_{\textit{2}}, \mathsf{pivot}, \pi(\textit{r}), \textit{A}_{\textit{2}}) \leftarrow (\textit{r}, \textit{r}, \textit{0}, \varnothing)$$

 $\begin{array}{c|c}
\operatorname{pour} \underline{v \in V \setminus \{r\}} \text{ faire} \\
\pi(v) \leftarrow +\infty
\end{array}$

_

pour \underline{j} allant de 1 à n-1 faire

pour tout sommet $y \notin V_2$ tel que $y \in \Gamma^+$ (pivot)

 $\begin{array}{l} \mathsf{pivot} \leftarrow \mathit{argmin}_{\mathsf{Z} \not\in \mathsf{V}_{\mathsf{2}}} \pi(\mathsf{z}) \\ \mathsf{V}_{\mathsf{2}} \leftarrow \mathsf{V}_{\mathsf{2}} \cup \{\mathsf{pivot}\} \end{array}$

pour tout $x \in V \setminus \{r\}$ faire

 $A_2 \leftarrow A_2 \cup \{(\mathsf{pred}(x), x)\}$

 $\label{eq:Données:G} \begin{aligned} & \textbf{Données:} \ G = (V, A, p) \ : \ \text{graphe de poids positifs} \\ & \textbf{Résultat:} \ H = (V, A_2) \ \text{arborescence des plus courts} \\ & \text{chemins} \end{aligned}$

$$(\textit{V}_{\textit{2}}, \mathsf{pivot}, \pi(\textit{r}), \textit{A}_{\textit{2}}) \leftarrow (\textit{r}, \textit{r}, \textit{0}, \varnothing)$$

 $\begin{array}{c|c}
\operatorname{pour} \underline{v \in V \setminus \{r\}} \text{ faire} \\
 & \pi(v) \leftarrow +\infty
\end{array}$

pour j allant de 1 à n-1 faire

 $\begin{aligned} & \textbf{pour } \underbrace{\mathsf{tout} \ \mathsf{sommet} \ y \not\in V_2 \ \mathsf{tel} \ \mathsf{que} \ y \in \Gamma^+(\mathsf{pivot}) }_{\textbf{faire}} \\ & & \textbf{si} \ \underline{\pi(\mathsf{pivot}) + \rho(\mathsf{pivot}, y) < \pi(y)} \ \mathsf{alors} \\ & & \underline{\pi(y) \leftarrow \pi(\mathsf{pivot}) + \rho(\mathsf{pivot}, y)} \\ & & \underline{\pi(y) \leftarrow \pi(\mathsf{pivot}) + \rho(\mathsf{pivot}, y)} \\ & & \underline{\mathsf{pred}(y) \leftarrow \mathsf{pivot}} \end{aligned}$

 $\begin{array}{l} \mathsf{pivot} \leftarrow \mathit{argmin}_{\mathsf{Z} \not\in \mathsf{V}_{\mathsf{2}}} \pi(\mathsf{z}) \\ \mathsf{V}_{\mathsf{2}} \leftarrow \mathsf{V}_{\mathsf{2}} \cup \{\mathsf{pivot}\} \end{array}$

pour tout $x \in V \setminus \{r\}$ faire

 $A_2 \leftarrow A_2 \cup \{(\operatorname{pred}(x), x)\}$

	pivot				pred			
1	pivot	b	С	d	е	f	g	h
1	r	r	r					
2	С	- 1	- 1	С	С			

 $\begin{aligned} \textbf{Donn\'ees}: G &= (V, A, p) : \text{graphe de poids positifs} \\ \textbf{R\'esultat}: H &= (V, A_2) \text{ arborescence des plus courts} \\ &\qquad \qquad \text{chemins} \end{aligned}$

$$(\textit{V}_{\textit{2}}, \mathsf{pivot}, \pi(\textit{r}), \textit{A}_{\textit{2}}) \leftarrow (\textit{r}, \textit{r}, \textit{0}, \varnothing)$$

$$\begin{array}{c|c}
\operatorname{pour} \underline{v \in V \setminus \{r\}} \text{ faire} \\
 & \pi(v) \leftarrow +\infty
\end{array}$$

_ ...

 $\begin{aligned} & \textbf{pour } \underbrace{\text{j allant de 1 å $n-1$ faire}}_{\textbf{pour tout sommet } y \notin V_2 \text{ tel que } y \in \Gamma^+(\text{pivot}) \\ & \textbf{faire} \\ & = \underbrace{\textbf{si } \pi(\text{pivot}) + \rho(\text{pivot}, y) < \pi(y) \text{ alors}}_{\pi(y) \leftarrow \pi(\text{pivot}) + \rho(\text{pivot}, y)} \\ & = \underbrace{\text{pred}(y) \leftarrow \pi(\text{pivot}) + \rho(\text{pivot}, y)}_{\text{pred}(y) \leftarrow \text{pivot}} \end{aligned}$

$$\begin{array}{l} \mathsf{pivot} \leftarrow \mathit{argmin}_{\mathsf{Z} \not\in \mathsf{V}_{\mathsf{2}}} \pi(\mathsf{z}) \\ \mathsf{V}_{\mathsf{2}} \leftarrow \mathsf{V}_{\mathsf{2}} \cup \{\mathsf{pivot}\} \end{array}$$

pour tout $x \in V \setminus \{r\}$ faire

$$A_2 \leftarrow A_2 \cup \{(\operatorname{pred}(x), x)\}$$

	nivet	. pred						
1	pivot	b	С	d	е	f	g	h
1	r	r	r					
2	С	- 1		С	С			
3	е					е		

Données : G = (V, A, p) : graphe de poids positifs **Résultat :** $H = (V, A_2)$ arborescence des plus courts chemins

$$(\textit{V}_{\textit{2}}, \mathsf{pivot}, \pi(\textit{r}), \textit{A}_{\textit{2}}) \leftarrow (\textit{r}, \textit{r}, \textit{0}, \varnothing)$$

$$\begin{array}{c|c}
\text{pour } \underline{v \in V \setminus \{r\}} \text{ faire} \\
& \pi(v) \leftarrow +\infty
\end{array}$$

pour j allant de 1 à n - 1 faire

 $\begin{aligned} & \text{pour tout sommet } y \notin V_2 \text{ tel que } y \in \Gamma^+(\text{pivot}) \\ & \text{faire} \\ & \text{si } \frac{\pi(\text{pivot}) + \rho(\text{pivot}, y) < \pi(y)}{\pi(y) \leftarrow \pi(\text{pivot}) + \rho(\text{pivot}, y)} \\ & \text{pred}(y) \leftarrow \text{pivot} \end{aligned}$ $\text{pivot} \leftarrow \underset{Z \not\in V_2}{\operatorname{argmin}} \frac{\pi(y)}{\pi(z)} \times \frac{\pi(y)}{$

pour tout $x \in V \setminus \{r\}$ faire

$$A_2 \leftarrow A_2 \cup \{(\operatorname{pred}(x), x)\}$$

J	pivot	b	С	d	е	f	g	h
1	r	r	r					
2	С			С	С			
3	е					е		
4	d	d					d	

Données : G = (V, A, p) : graphe de poids positifs **Résultat :** $H = (V, A_2)$ arborescence des plus courts chemins

$$(\textit{V}_{\textit{2}}, \mathsf{pivot}, \pi(\textit{r}), \textit{A}_{\textit{2}}) \leftarrow (\textit{r}, \textit{r}, \textit{0}, \varnothing)$$

$$\begin{array}{c|c}
\text{pour } \underline{v \in V \setminus \{r\}} \text{ faire} \\
 & \pi(v) \leftarrow +\infty
\end{array}$$

pour j allant de 1 à n-1 faire

 $\begin{aligned} & \text{pour tout sommet } y \not \in V_2 \text{ tel que } y \in \Gamma^+(\text{pivot}) \\ & \textbf{faire} \\ & \text{si } \pi(\text{pivot}) + \rho(\text{pivot}, y) < \pi(y) \text{ alors} \\ & \pi(y) \leftarrow \pi(\text{pivot}) + \rho(\text{pivot}, y) \\ & \text{pred}(y) \leftarrow \text{pivot} \end{aligned}$ $\text{pivot} \leftarrow \underset{Z \not \in V_2}{\operatorname{argmin}}_{Z \not \in V_2} \pi(z)$ $V_2 \leftarrow V_2 \cup \{\text{pivot}\}$

pour tout $x \in V \setminus \{r\}$ faire

$$A_2 \leftarrow A_2 \cup \{(\operatorname{pred}(x), x)\}$$

					pred			
- 1	pivot	b	С	d	е	f	g	h
1	r	r	r					
2	С			С	С			
3	е	Ĺ	Ì	- 1	- 1	е		
4	d	d	Ì	- İ	j		d	
5	f	1	- Î	- i	i	Ĺ	1	f

Données : G = (V, A, p) : graphe de poids positifs **Résultat :** $H = (V, A_2)$ arborescence des plus courts chemins

$$(\textit{V}_{\textcolor{red}{2}}, \mathsf{pivot}, \pi(\textit{r}), \textit{A}_{\textcolor{red}{2}}) \leftarrow (\textit{r}, \textit{r}, \texttt{0}, \varnothing)$$

pour
$$\underline{v \in V \backslash \{r\}}$$
 faire

$$\pi(v) \leftarrow +\infty$$

pour j allant de 1 à n-1 faire

 $\begin{aligned} & \textbf{pour tout sommet } y \not\in V_2 \text{ tel que } y \in \Gamma^+(\text{pivot}) \\ & \textbf{faire} \\ & \textbf{si } \pi(\text{pivot}) + p(\text{pivot}, y) < \pi(y) \text{ alors} \\ & \pi(y) \leftarrow \pi(\text{pivot}) + p(\text{pivot}, y) \\ & \text{pred}(y) \leftarrow \text{pivot} \end{aligned}$

pivot
$$\leftarrow \operatorname{argmin}_{z \notin V_2} \pi(z)$$

 $V_2 \leftarrow V_2 \cup \{\text{pivot}\}$

pour tout $x \in V \setminus \{r\}$ faire

$$A_2 \leftarrow A_2 \cup \{(\operatorname{pred}(x), x)\}$$

		pred							
j	pivot	b	С	d	е	f	g	h	
1	r	r	r						
2	С	1		С	С				
3	е	i	ĺ	- 1	- 1	е			
4	d	d	i	i i	i	- 1	d		
5	f	1	i	i i	i	i i	- 1	f	
6	h	i	i i	i i	i	i i	h	- 1	

 $\begin{aligned} \textbf{Donn\'ees}: G &= (V, A, p) : \text{graphe de poids positifs} \\ \textbf{R\'esultat}: H &= (V, A_2) \text{ arborescence des plus courts} \\ &\qquad \qquad \text{chemins} \end{aligned}$

$$(\textit{V}_{\textcolor{red}{2}}, \mathsf{pivot}, \pi(\textit{r}), \textit{A}_{\textcolor{red}{2}}) \leftarrow (\textit{r}, \textit{r}, \texttt{0}, \varnothing)$$

 $\operatorname{pour} \underline{v \in \mathit{V} \backslash \{\mathit{r}\}} \operatorname{faire}$

 $\pi(\mathbf{v}) \leftarrow +\infty$

pour j allant de 1 à n-1 faire

 $\begin{aligned} & \textbf{pour tout sommet } y \not\in V_2 \text{ tel que } y \in \Gamma^+(\text{pivot}) \\ & \textbf{faire} \\ & & \textbf{si } \pi(\text{pivot}) + p(\text{pivot}, y) < \pi(y) \text{ alors} \\ & & \pi(y) \leftarrow \pi(\text{pivot}) + p(\text{pivot}, y) \\ & & \text{pred}(y) \leftarrow \text{pivot} \end{aligned}$

pivot $\leftarrow \operatorname{argmin}_{z \notin V_2} \pi(z)$ $V_2 \leftarrow V_2 \cup \{\text{pivot}\}$

pour tout $x \in V \setminus \{r\}$ faire

 $A_2 \leftarrow A_2 \cup \{(\operatorname{pred}(x), x)\}$

Vale	urs de p	ored								
	j	pivot	b	С	d	pred e	f	g	h	
	1	r	r	r						
	2	С	- 1	- 1	С	С				
	3	е	i	i	- 1	1	е			
	4	d	d	- İ	İ	İ		d		
	5	f	- 1	i	i	Ĺ	- i	1	f	
	6	h	i	i	i	Ĺ	- i	h	- 1	
	7	g	j	j	İ	Ĺ	İ		j	

Données : G = (V, A, p) : graphe de poids positifs **Résultat :** $H = (V, A_2)$ arborescence des plus courts chemins

$$(\textit{V}_{\textit{2}}, \mathsf{pivot}, \pi(\textit{r}), \textit{A}_{\textit{2}}) \leftarrow (\textit{r}, \textit{r}, \textit{0}, \varnothing)$$

 $\operatorname{pour}\,\underline{v\in\mathit{V}\backslash\{\mathit{r}\}}\operatorname{faire}$

 $\pi(\mathbf{v}) \leftarrow +\infty$

 $\begin{aligned} & \textbf{pour } \underbrace{\text{j allant de 1 å $n-1$ faire}}_{\textbf{pour tout sommet } y \notin V_2 \text{ tel que } y \in \Gamma^+(\text{pivot}) \\ & \textbf{faire} \\ & = \underbrace{\textbf{si } \pi(\text{pivot}) + \rho(\text{pivot}, y) < \pi(y) \text{ alors}}_{\pi(y) \leftarrow \pi(\text{pivot}) + \rho(\text{pivot}, y)} \\ & = \underbrace{\text{pred}(y) \leftarrow \pi(\text{pivot}) + \rho(\text{pivot}, y)}_{\text{pred}(y) \leftarrow \text{pivot}} \end{aligned}$

$$\begin{aligned} & \mathsf{pivot} \leftarrow \mathit{argmin}_{\mathbf{Z} \notin V_{\mathbf{2}}} \pi(\mathbf{z}) \\ & V_{\mathbf{2}} \leftarrow V_{\mathbf{2}} \cup \{\mathsf{pivot}\} \end{aligned}$$

pour tout $x \in V \setminus \{r\}$ faire

 $A_2 \leftarrow A_2 \cup \{(\operatorname{pred}(x), x)\}$

Valeur	s de p	ored								
	j	pivot	b	С	d	pred e	f	q	h	
-	1	r	r	r						
	2	С	- 1	1	С	С				
	3	е	i	i i		- 1	е			
	4	d	d	- i	İ	ĺ		d		
	5	f							f	
	6	h						h		
	7	g				1				

Quiz!

Question 3

Déterminer la plus courte distance pour atteindre chaque sommet à partir du sommet D en utilisant l'algorithme de Dijkstra.

Algorithme de Dijkstra

Problème 1 et 2

Cas des valuations positives

Preuve

Récurrence sur j

Complexité de l'algorithme

- Actualisation de π
 - à une itération : O(d⁺(pivot))
 - nombre total d'opérations : $\mathcal{O}(\sum_{v \in V} d^+(v)) = \mathcal{O}(|A|)$
- Détermination du pivot
 - recherche du plus petit élément parmi q (q allant de n-1 à 1)
 - nombre total d'opérations : $\mathcal{O}(\sum\limits_{q=1}^{n-1}q)=\mathcal{O}(\frac{n(n-1)}{2})=\mathcal{O}(n^2)$

 $m := |A| \le n^2$ donc complexité globale : $\mathcal{O}(n^2)$

En pratique $\mathcal{O}(n+m\ln(n))$ avec implémentation adéquate

Utilisation de tas de Fibonacci pour calculer l'argmin

Cas où l'algorithme de Dijkstra ne fonctionne pas

Minimisation avec valeurs négatives

Maximisation

Sommaire

- Introduction
 - Exemples d'applications
 - Optimisation dans les graphes
 - Vocabulaire
 - Arbre couvrant de poids minimal
 - Voyageur de commerce
 - Cheminement
 - Algorithme de Dijkstra
 - Algorithme de Bellman
 - Algorithme de Roy-Warshall-Floyd
- Java survival kit
- Matroïdes et algorithmes gloutons

Définition - **Tri topologique** des sommets d'un graphe G = (V, A)

Ordre total sur V tel que i précède j pour tout $ij \in A$

Propriété

On peut toujours trier topologiquement les sommets d'un graphe sans circuit

- Le sommet de départ a pour valeur 0 ; les autres ne sont pas valués
- À chaque itération : on value un sommet non valué dont tous les prédécesseurs sont valués

Définition - **Tri topologique** des sommets d'un graphe G = (V, A)

Ordre total sur V tel que i précède j pour tout $ij \in A$

Propriété

On peut toujours trier topologiquement les sommets d'un graphe sans circuit

- Le sommet de départ a pour valeur 0 ; les autres ne sont pas valués
- A chaque itération : on value un sommet non valué dont tous les prédécesseurs sont valués

Définition - **Tri topologique** des sommets d'un graphe G = (V, A)

Ordre total sur V tel que i précède j pour tout $ij \in A$

Propriété

On peut toujours trier topologiquement les sommets d'un graphe sans circuit

- Le sommet de départ a pour valeur 0 ; les autres ne sont pas valués
- A chaque itération : on value un sommet non valué dont tous les prédécesseurs sont valués

Définition - **Tri topologique** des sommets d'un graphe G = (V, A)

Ordre total sur V tel que i précède j pour tout $ij \in A$

Propriété

On peut toujours trier topologiquement les sommets d'un graphe sans circuit

- Le sommet de départ a pour valeur 0 ; les autres ne sont pas valués
- À chaque itération : on value un sommet non valué dont tous les prédécesseurs sont valués

Définition - **Tri topologique** des sommets d'un graphe G = (V, A)

Ordre total sur V tel que i précède j pour tout $ij \in A$

Propriété

On peut toujours trier topologiquement les sommets d'un graphe sans circuit

- Le sommet de départ a pour valeur 0 ; les autres ne sont pas valués
- À chaque itération : on value un sommet non valué dont tous les prédécesseurs sont valués

Définition - **Tri topologique** des sommets d'un graphe G = (V, A)

Ordre total sur V tel que i précède j pour tout $ij \in A$

Propriété

On peut toujours trier topologiquement les sommets d'un graphe sans circuit

- Le sommet de départ a pour valeur 0 ; les autres ne sont pas valués
- A chaque itération : on value un sommet non valué dont tous les prédécesseurs sont valués

Définition - **Tri topologique** des sommets d'un graphe G = (V, A)

Optimisation dans les graphes

Ordre total sur V tel que i précède j pour tout $ij \in A$

Propriété

On peut toujours trier topologiquement les sommets d'un graphe sans circuit

- Le sommet de départ a pour valeur 0 ; les autres ne sont pas valués
- À chaque itération : on value un sommet non valué dont tous les prédécesseurs sont valués

Problème 1 et 2, Graphes sans circuits

<u>Définition - Tri topologique</u> des sommets d'un graphe G = (V, A)

Ordre total sur V tel que i précède j pour tout $ij \in A$

Propriété

On peut toujours trier topologiquement les sommets d'un graphe sans circuit

- Le sommet de départ a pour valeur 0 ; les autres ne sont pas valués
- A chaque itération : on value un sommet non valué dont tous les prédécesseurs sont valués

Quiz!

Question 4

Déterminer l'ordre topologique des sommets de ce graphe.

 $\begin{array}{ll} \textbf{Donn\'ees}: G = (V,A,p): \text{graphe sans circuit} \\ T \leftarrow \text{Sommets de } V \text{ ordonn\'es selon le tri topologique} \\ \pi(t) \leftarrow 0 \end{array}$

 $\begin{array}{l} \mathbf{pour} \ \underline{j} \ \mathbf{all} \mathbf{ant} \ \mathbf{de} \ 1 \ \underline{a} \ \underline{n} \ \mathbf{faire} \\ \\ \boxed{ \quad \pi(T[i]) \leftarrow \min_{\boldsymbol{v} \in \Gamma^{-}(T[i])} (\pi(\boldsymbol{v}) + p(\boldsymbol{v}, T[i])) } \end{array}$

		r	b	С	е	f	d	h	g
	Ordre	0	1	2	3	4	5	5	6
_	b	0	8	~	~	∞	∞	∞	∞

Données : G = (V, A, p) : graphe sans circuit $T \leftarrow$ Sommets de V ordonnés selon le tri topologique $\pi(r) \leftarrow 0$

pour j allant de 1 à n faire $\pi(\textit{T}[\textit{i}]) \leftarrow \min_{\textit{v} \in \Gamma^{-}(\textit{T}[\textit{i}])}(\pi(\textit{v}) + \textit{p}(\textit{v}, \textit{T}[\textit{i}]))$

	r	b	С	е	f	d	h	g
Ordre	0	1	2	3	4	5	5	6
b	0	8	∞	∞	∞	∞	∞	∞
С	- 1		1					- 1

Données : G = (V, A, p) : graphe sans circuit $T \leftarrow$ Sommets de V ordonnés selon le tri topologique $\pi(r) \leftarrow 0$

pour j allant de 1 à n faire

$$\pi(T[i]) \leftarrow \min_{\mathbf{v} \in \Gamma^{-}(T[i])} (\pi(\mathbf{v}) + \mathbf{p}(\mathbf{v}, T[i]))$$

	r	b	С	е	f	d	h	g
Ordre	0	1	2	3	4	5	5	6
b	0	8	∞	∞	∞	∞	∞	∞
С	- 1	- 1	1					- 1
е	- 1	- 1		2				- 1

Algorithme de Bellman Problème 1 et 2

Graphes sans circuits

Données : G = (V, A, p) : graphe sans circuit $T \leftarrow$ Sommets de V ordonnés selon le tri topologique $\pi(r) \leftarrow 0$

pour j allant de 1 à n faire $\pi(\textit{T}[\textit{i}]) \leftarrow \min_{\textit{v} \in \Gamma^{-}(\textit{T}[\textit{i}])}(\pi(\textit{v}) + \textit{p}(\textit{v}, \textit{T}[\textit{i}]))$

	r	b	С	е	f	d	h	g
Ordre	0	1	2	3	4	5	5	6
b	0	8	∞	∞	∞	∞	∞	∞
С	- 1	- 1	1					
е	- 1	- 1		2				
f			- 1	- 1	3	- 1	- 1	

Données : G = (V, A, p) : graphe sans circuit $T \leftarrow$ Sommets de V ordonnés selon le tri topologique $\pi(r) \leftarrow 0$

pour j allant de 1 à n faire $\pi(\textit{T}[\textit{i}]) \leftarrow \min_{\textit{v} \in \Gamma^{-}(\textit{T}[\textit{i}])}(\pi(\textit{v}) + \textit{p}(\textit{v}, \textit{T}[\textit{i}]))$

	r	b	С	е	f	d	h	g
Ordre	0	1	2	3	4	5	5	6
b	0	8	∞	∞	∞	∞	∞	∞
С		- 1	1	- 1	- 1	- 1		- 1
е		- 1	- 1	2	- 1	- 1		- 1
f		- 1	- 1	- 1	3	- 1		- 1
d		- 1	- 1	- 1	- 1	4		

Données : G=(V,A,p) : graphe sans circuit $T\leftarrow$ Sommets de V ordonnés selon le tri topologique $\pi(r)\leftarrow$ 0

pour j allant de 1 à n faire

$$\pi(T[i]) \leftarrow \min_{\mathbf{v} \in \Gamma^{-}(T[i])} (\pi(\mathbf{v}) + p(\mathbf{v}, T[i]))$$

	r	b	С	е	f	d	h	g
Ordre	0	1	2	3	4	5	5	6
b	0	8	∞	∞	∞	∞	∞	∞
C		- 1	1				- 1	
е		- 1		2			- 1	
f		- 1			3		- 1	- 1
d		- 1				4	- 1	- 1
h		- 1					4	- 1

Données : G = (V, A, p) : graphe sans circuit $T \leftarrow$ Sommets de V ordonnés selon le tri topologique $\pi(r) \leftarrow 0$

pour j allant de 1 à n faire $\pi(\textit{T}[\textit{i}]) \leftarrow \min_{\textit{v} \in \Gamma^{-}(\textit{T}[\textit{i}])}(\pi(\textit{v}) + \textit{p}(\textit{v}, \textit{T}[\textit{i}]))$

	r	b	С	е	f	d	h	g
Ordre	0	1	2	3	4	5	5	6
b	0	8	∞	∞	∞	∞	∞	∞
С	-1	- 1	1					- 1
е	-1	- 1		2				- 1
f	- 1				3			- 1
d	- 1	- 1				4		- 1
h	- 1	- 1					4	- 1
g	-1				- 1			5

Quiz!

Question 5

Déterminer la plus courte distance pour atteindre chaque sommet à partir du sommet F en utilisant l'algorithme de Bellman.

L'ordre topologique des sommets est le suivant : F1 - G2 - C3 - E3 - H3 - A4 - B4 -D4

Question 6

Déterminer la plus courte distance pour atteindre chaque sommet à partir du sommet E en utilisant l'algorithme de Bellman.

L'ordre topologique des sommets est le suivant : E1 - B2 - C2 - D2 - F3 - H3 - A4 -G4

Remarques

- Pour maximiser : remplacer min par max
- Gère les longueurs négatives Contrairement à l'algorithme de Dijkstra
- Très bonne complexité : $\mathcal{O}(m)$

Sommaire

- - Exemples d'applications
- Optimisation dans les graphes
 - Vocabulaire
 - Arbre couvrant de poids minimal
 - Voyageur de commerce
 - Cheminement
 - Algorithme de Dijkstra
 - Algorithme de Bellman
 - Algorithme de Roy-Warshall-Floyd

Algorithme de Roy-Warshall-Floyd Problèmes 1, 2 et 3

Objectif

Trouver le cheminement minimal entre toute paire de sommets Pas de contraintes sur le graphe

Principe

$$M = \{m(x,y)\}_{x,y \in V}$$

Longueur du plus court chemin actuellement connu entre x et y

• Initialement m(x, y) = p(x, y)

- À chaque étape on considère $z \in V$ et, pour tout : $(xy) \in A$
 - si "passer par z" améliore le chemin actuel de x à y, m(x, y) est mis à jour
- A la fin de l'algorithme :
 - m(x, y) =plus court chemin de x à y

Variable de l'algorithme

- préd(x, y) = prédécesseur de y sur le chemin minimum de x à y

• préd : tableau de taille $|V| \times |V|$

- Initialement : préd(x, y) = x si (xy) ∈ A et \emptyset sinon

Algorithme de Roy-Warshall-Floyd Problèmes 1, 2 et 3

Étape 1 (z=1)

L'arc (x,y) est ajouté s'il n'existait pas

Étape z

• Au début de l'étape z, chaque arc représente un chemin d'au plus z arcs

sommets entre 1 et z - 1

• Si passer par z améliore le chemin de x à y, on modifie m et préd $préd(x,y) \leftarrow préd(z,y)$

Algorithme de Roy-Warshall-Floyd Problèmes 1, 2 et 3

```
Données : G = (V, A, p) : graphe quelconque
Résultat : M = m(x, y) : valeur d'un plus court chemin de x à y
pour (x, y) \in A faire
     m(x, y) \leftarrow p(x, y)
     préd(x, y) \leftarrow x
pour tout (x, y) \notin A faire
     m(x, y) \leftarrow \infty
     préd(x, y) \leftarrow \emptyset
pour tout z \in V faire
     pour tout x \in V faire
            pour tout y \in V faire
                 si m(x, y) > m(x, z) + m(z, y) alors
                        m(x, y) \leftarrow m(x, z) + m(z, y)
                       préd(x, y) \leftarrow préd(z, y)
            si m(x,x) < 0 alors
                 STOP (il y a un circuit absorbant)
```

d

-4, b -3, c

C

2, a

-2, b

Algorithme de Roy-Warshall-FLoyd Problèmes 1, 2 et 3

Tableau final <i>m</i> , prèd										
	а	b	С	d						
а	3, c	4, a	2, b	-1, c						
b	-1, c	3, c	3, c	-5, c						
С	1, c	5, a	3, b	-3, c						
d										

Caractéristiques

Détecte les circuits négatifs

Valeur négative sur des termes de la diagonale

- \circ $\mathcal{O}(n^3)$
- 3 boucles imbriquées
- En cas de maximisation
 - remplacer ∞ par -∞
 - échanger < et >

Preuve d'optimalité par récurrence

 Au début de l'étape z on a les plus courts chemins passant par les z sommets déjà considérés

De longueur au plus z

• A la fin dernière étape on a donc considéré tous les chemins

Quel algorithme pour trouver le chemin de valeur minimale?

Caractéristique	Dijkstra	Bellman	Roy-Warshall-Floyd
Entre 2 sommets	х	Х	Х
Entre 1 sommets et tous les autre	es x	х	Х
Entre tous les couples de somme	ts		Х
Gère les chemins maximaux		Х	Х
Poids négatifs		Х	Х
Graphe avec circuits	X		X
Gère les circuits absorbants			X
Complexité C	$\mathcal{O}(n+m\ln(n))$	$\mathcal{O}(\textit{m})$	$\mathcal{O}(n^3)$

Remarque

Il existe d'autres algorithmes

Problèmes difficiles

- Trouver un chemin de longueur maximale dans un graphe avec valuations positives et circuits

En résumé

Notions abordées

Plusieurs problèmes d'optimisation dans les graphes

Arbres couvrants de poids minimal Plus courts chemins

Voyageur de commerce

Classes d'algorithmes

Algorithmes gloutons Programmation dynamique

- Classe de problèmes
 - Problèmes faciles (ou polynomiaux) Une solution optimale peut être obtenue par un algorithme de complexité polynomiale
 - Problèmes "difficiles"

Java survival kit

Sommaire

- Java survival kit

HelloWorld.java

Différences avec le C++

Fichiers

.h et .cpp \rightarrow .java

Deux types de variables

- Types primitifs int, float, double, long, bool, ...
 - Passé par valeur en argument des méthodes
- Objets

String, List, tableaux...

Passé par référence en argument des méthodes

Pas de gestion des pointeurs!

Gestion de la mémoire

Création d'objets par le mot-clé new

Exemple: int t[] = new int[10]; // Tableau de 10 entiers

Destruction d'objets effectuée automatiquement par le garbage collector

Différences avec le C++

bool → boolean

boolean b = true;

Les tableaux

```
// Definition d'un tableau de taille 10
int t[] = new int[10];
// Modification d'un element
t[0] = 3;
// Taille du tableau (affiche 10)
System.out.println(t.length);
```

Différences avec le C++

Les listes

```
// Definition d'une liste vide
List<String> 1 = new ArrayList<>();
// Ajout d'un element
l.add("Test");
// Acces a un element (affiche "Test")
System.out.println(l.get(0));
// Taille de la liste (affiche 1)
System.out.println(l.size());
```

Java - Premières méthodes

```
Point2D.java
public class Point2D {
        public int x;
        public int y;
        public Point2D(int xArg, int yArg) { /** Constructeur */
                x = xAra:
                v = vArq;
        public void updateX(int x2) { /** Mise a jour de x */
                x = x + x2;
        public int xPlusY() { /** Calcul de x + y */
                return x + v;
        public static void main(String[] args) {
                Point2D p = new Point2D(1, 2); // Cree le point (1, 2)
                System.out.println(p.x + " " + p.v); // Affiche "1 2"
                p.updateX(10);
                System.out.println(p.x + "." + p.y); // Affiche "11 2"
                System.out.println(p.xPlusY()); // Affiche "12"
```

Java - Classe Graph

Graph.java

```
public class Graph {
  public int n; // Nombre de sommets du graphe
  // Tableau 1D contenant le nom des sommets du graphe
  public String[] nodes;
  // Tableau 2D de taille n*n contenant les liens du graphe
  public double[][] adjacency;
  // Cree un graphe a partir d'un tableau de noms de sommets
  public Graph(String[] sNames) {
        nodes = sNames.clone();
        n = nodes.length;
        adjacency = new double[n][n];
                               Initialise un tableau de taille n \times n avec
                                des cases de valeurs 0.0
  // Permet d'ajouter une arete au graphe
  public void addEdge(int id1, int id2, double weight) {
        adjacency[id1][id2] = weight;
        adjacency[id2][id1] = weight;
```

Java - Classe Graph

Exemple d'utilisation

Sommaire

- Matroïdes et algorithmes gloutons

Matroïdes

Notations

- $E = \{e_1, e_2, ..., e_n\}$: ensemble d'éléments fini et non vides $E \neq \emptyset$
- $I \subset \mathcal{P}(E)$

Définition - Matroïde

Couple M = (E, I) tel que

- $I \neq \emptyset$ $(F \in I \text{ et } F' \subset F) \Rightarrow F' \in I$
- I famille de sous-ensembles indépendants
- Soient $F \in I$ et $H \in I$ tels que card(F) < card(H), $\exists x \in H \setminus F$ tel que $F \cup \{x\} \in I$ Propriété d'échange

Matroïdes

Définition - Base

Ensemble indépendant maximal pour l'inclusion

Propriété

Toutes les bases d'un matroïde ont le même cardinal

Exemple - Matroïde matriciel (H. Whitney)

- A : matrice donnée
- E : ensemble de lignes de A
- $H \in I$: ensemble de lignes de A linéairement indépendantes

Couple M = (E, I) ne définissant pas un matroïde

- E : ensemble des sommets d'un graphe
- I: ensemble des ensembles stables de ce graphe

Stable : ensemble de sommets deux à deux non adjacents

Exemple

- Tout ensemble inclus dans un stable est stable mais...
 - {a, c, e}, {a, d} et {b} sont des stables maximaux qui n'ont pas le même cardinal

Exemple de matroïde

Soient:

- ullet $G = (V_G, E_G)$: graphe connexe
- $I_G = \{F \subset E_G \text{ tel que } G' = (V_G, F) \text{ sans cycle}\}$
- $M_G = (E_G, IG)$: matroïde graphique

Matroïdes pondérés

M = (E, I, w) tel que

• $w_e > 0$: poids de $e \in E$

Poids de $F \subset E$

$$w(F) = \sum_{e \in F} w(e)$$

Problème

Trouver $F \subset I$ tel que w(F) est maximal (ou minimal)

Algorithme glouton - Matroïde pondérés

Données : M = (E, I, w) : matroïde

Résultat : $F \in I$

 $F \leftarrow \emptyset$

 $L \leftarrow$ éléments de E ordonnés par poids décroissant

pour i = 1 à n faire

si
$$F \cup \{e_i\} \subset I$$
 alors $F \leftarrow F \cup \{e_i\}$

retourner F

Théorème

L'algorithme glouton donne toujours l'optimum pour le problème du matroïde pondéré

Complexité

Complexité du tri
$$\bigcup_{\mathcal{O}(n \log n) + \mathcal{O}(n \times f(n))}$$
 Complexité du test

• $\mathcal{O}(n \times f(n))$: complexité de la boucle "pour"

Remarque

Si on connaît la taille K d 'une base on peut remplacer la boucle par "tant que card F < K"

Conséquence

L'algorithme de Kruskal pour la recherche d'un arbre couvrant est optimal

Ø9: E0-B4-C8-D5-E14-H8-P3-G10 Ø9: E0-G2-C2-E10-H2-P15-B3-D12 Ø4: P5-B3-C8-D1-E2-E4-G5-H5 Ø3: D0-∀e-C\-E8-B9-E11-H13-G19 Ø5: BD-CD-CG-∀H Ø1: CE-∀C-BG-CD