BALKAN OLYMPIAD Udine, 27 September 2025

popswap ● EL

PopSwap (popswap)

Για έναν ακέραιο N που σας δίνεται, το S_N είναι το σύνολο με όλες τις μεταθέσεις του (0,...,N-1). Επιπλέον, το E_N είναι το σύνολο όλων των διατεταγμένων ζευγών (p,q) όπου:

- τα p και q είναι στοιχεία του S_N :
- το ένα μπορεί να προκύψει από το άλλο αν ανταλλάξεις δύο διπλανά στοιχεία.

Προσέξτε πως, αν το $(p,q) \in E_N$, τότε και το $(q,p) \in E_N$.

Ο στόχος σου είναι να αντιστοιχίσεις σε κάθε στοιχείο του S_N έναν μοναδικό φυσικό αριθμό στο διάστημα $[0,2^{60})$. Με άλλα λόγια, πρέπει να φτιάξεις μια συνάρτηση ένα-προς-ένα $\mathcal L$ (που την ονομάζουμε labeling ή ετικετοποίηση) από το S_N στο σύνολο των φυσικών αριθμών που είναι μικρότεροι από 2^{60} .

Η ποιότητα μιας τέτοιας ετικετοποίησης (labeling) μετριέται με δύο παραμέτρους, που πρέπει να προσπαθήσεις να κάνεις όσο πιο μικρές γίνεται:

- το μέγεθος (magnitude) $M(\mathcal{L})$, που ορίζεται ως ο μικρότερος φυσικός αριθμός k τέτοιος ώστε $2^k > \mathcal{L}(p)$ για όλα τα στοιχεία p του S_N .
- η εγγύτητα (closeness), που ορίζεται ως:

$$C(\mathcal{L}) = \sum_{(u,v) \in E_N} \operatorname{popcount}(\mathcal{L}(u) \oplus \mathcal{L}(v)).$$

όπου το \oplus είναι η πράξη bitwise exclusive or, και το popcount(x) είναι το πόσα 1 έχει ο αριθμός x όταν γραφτεί στο δυαδικό σύστημα.

Η αποστολή σου είναι να βρεις μια ετικετοποίηση $\mathcal L$ που πετυχαίνει χαμηλές τιμές και για το $M(\mathcal L)$ και για το $C(\mathcal L)$. Σημείωσε ότι δεν απαιτείται να βρεις τη βέλτιστη λύση.

Υλοποίηση

Αυτό είναι ένα πρόβλημα μόνο-εξόδου (output-only). Πρέπει να υποβάλεις ένα ξεχωριστό αρχείο εξόδου για κάθε αρχείο εισόδου. Τα αρχεία εισόδου και εξόδου πρέπει να ακολουθούν την παρακάτω μορφή.

Μορφή εισόδου

Τα αρχεία εισόδου αποτελούνται από μια μόνο γραμμή που περιέχει έναν ακέραιο N και τον δείκτη G του αρχείου εισόδου.

Μορφή εξόδου

Τα αρχεία εξόδου πρέπει να αποτελούνται από N! γραμμές. Η i-οστή γραμμή πρέπει να περιέχει την ετικέτα της i-οστής μετάθεσης σε λεξικογραφική σειρά.

popswap Σ ελίδα 1 από 2

¹Μια συνάρτηση λέγεται ένα-προς-ένα (injective) αν αντιστοιχίζει διαφορετικά στοιχεία σε διαφορετικά στοιχεία

 $^{^2}$ Επίσημα, για δύο μεταθέσεις $p \neq q$, λέμε ότι η p είναι λεξικογραφικά μικρότερη από την q αν και μόνο αν $p_k < q_k$ όπου k είναι ο μικρότερος δείκτης για τον οποίο ισχύει $p_k \neq q_k$.

Βαθμολογία

Αυτό το πρόβλημα έχει ακριβώς 2 περιπτώσεις ελέγχου (test cases): input000.txt και input001.txt. Και στις δύο περιπτώσεις, N=10.

Το σκορ για τη λύση σου σε κάθε test case καθορίζεται ως $S_M(\mathcal{L})$ επί $S_C(\mathcal{L})$, όπου το $S_C(\mathcal{L})$ και το $S_M(\mathcal{L})$ είναι συναρτήσεις της ετικετοποίησης \mathcal{L} που έδωσες στην έξοδο.

- $S_C(\mathcal{L}) = \left(\min(1, 36 \cdot 10^6/C(\mathcal{L}))\right)^2$ για κάθε είσοδο.
- Το $S_M(\mathcal{L})$ είναι διαφορετικό για κάθε είσοδο, σύμφωνα με τους παρακάτω πίνακες. Ανάμεσα στις τιμές που καθορίζονται στους πίνακες, το S_M μεταβάλλεται γραμμικά.

Μια έξοδος με λάθος μορφοποίηση παίρνει πάντα μηδέν βαθμούς.

input000.txt		input001.txt	
$M(\mathcal{L})$	$S_M(\mathcal{L})$	$M(\mathcal{L})$	$S_M(\mathcal{L})$
> 60	0	> 25	0
60	6	25	0
≤ 25	60	≤ 22	40

Το συνολικό σκορ για το πρόβλημα είναι το άθροισμα των σκορ σε κάθε test case.

Παραδείγματα εισόδου/εξόδου

input	output	
3 -1	32	
	16	
	8	
	4	
	2	
	1	

Εξήγηση

Σημείωσε ότι το πρώτο παράδειγμα δεν είναι επίσημο test case, αφού $N \neq 10$ και $G \notin \{0,1\}$. Η έξοδος του παραδείγματος αντιπροσωπεύει την ακόλουθη ετικετοποίηση (labeling):

$$\mathcal{L}(p) = \begin{cases} 32 \ \text{an} \ p = (0, 1, 2) \\ 16 \ \text{an} \ p = (0, 2, 1) \\ 8 \ \text{an} \ p = (1, 0, 2) \\ 4 \ \text{an} \ p = (1, 2, 0) \\ 2 \ \text{an} \ p = (2, 0, 1) \\ 1 \ \text{an} \ p = (2, 1, 0) \end{cases}$$

Επειδή $2^5 \not\geqslant 32$ αλλά $2^6 > 32$, το μέγεθος (magnitude) της ετικετοποίησης είναι $M(\mathcal{L}) = 6$. Επειδή υπάρχουν $3! \cdot (3-1) = 12$ στοιχεία στο E_3 και επειδή popcount $(\mathcal{L}(p), \mathcal{L}(q)) = 2$ για όλα τα $p,q \in S_N$, η εγγύτητα (closeness) της ετικετοποίησης είναι $C(\mathcal{L}) = 12 \cdot 2 = 24$.

popswap Σ ελίδα 2 από 2