Homework 6

Problem 1. Prove that any natural number $n \in \mathbb{N}$ can be written as a sum of mutually distinct Fibonacci numbers.

Solution. [Hint (from the textbook *Invitation to Discrete Mathematics*)] Induction on n. Call a representation of n as a sum of distinct Fibonacci numbers reduced if it uses no two consecutive Fibonacci numbers. Any representation can be converted to a reduced one by repeatedly replacing the largest two consecutive Fibonacci numbers by their sum. To go from n to n + 1 consider a reduced representation of n, add a 1 to it, and make it reduced again. Let us remark that a reduced representation is unique.

Problem 2. Express the n^{th} term of the sequences given by the following recurrence relations

1.
$$a_0 = 2$$
, $a_1 = 3$, $a_{n+2} = 3a_n - 2a_{n+1}$ $(n = 0, 1, 2, ...)$.

2.
$$a_0 = 1, a_{n+1} = 2a_n + 3 (n = 0, 1, 2, ...).$$

Solution.

1. Characteristic function is $x^2 + 2x - 3 = (x + 3)(x - 1) = 0$. Let $f_n = a(-3)^n + b \cdot 1^n$. Then $\begin{cases} 2 = a + b \\ 3 = -3a + b \end{cases} \Rightarrow a = -1/4, b = 9/4.$ $\therefore \text{ the } n\text{-th term is } f_n.$

2. Characteristic function for the homogeneous part is x = 2. Take $a_n = p2^n + \lambda$ $a_0 = 1, a_1 = 5$. Now $\begin{cases} 1 &= p + \lambda \\ 5 &= 2p + \lambda \end{cases} \Rightarrow p = 4, \lambda = -3.$

Problem 3. Solve the recurrence relation $a_{n+2} = \sqrt{a_{n+1}a_n}$ with initial conditions $a_0 = 2$, $a_1 = 8$ and find $\lim_{n\to\infty} a_n$.

Solution. Consider the sequence $b_n = \log_2 a_n$. Then

$$2\log_2 a_{n+2} = \log_2 a_{n+1} + \log_2 a_n$$

i.e. $2b_{n+2} = b_{n+1} + b_n$. $b_0 = 1, b_1 = 3$. One can find $b_n = (-\frac{4}{3})(-\frac{1}{2})^n + \frac{7}{3}$. $\therefore a_n = 2^{(-\frac{4}{3})(-\frac{1}{2})^n + \frac{7}{3}}$. $\lim_{n \to \infty} a_n = 2^{\frac{7}{3}}$.

Problem 4. Show that for any $n \ge 1$, the number $\frac{1}{2}[(1 + \sqrt{2})^n + (1 - \sqrt{2})^n]$ is an integer.

Solution. Consider $\lambda_1 = (1 + \sqrt{2})^n$, $\lambda_2 = (1 - \sqrt{2})^n$. They are solutions to the characteristic function $(x - 1 - \sqrt{2}) \cdot (x - 1 + \sqrt{2}) = x^2 - 2x - 1$.

Thus the original sequence satisfies the recurrence $a_{n+2}=2a_{n+1}+a_n$, with $a_0=a_1=1$.