Section 8.2

- 5. (Lawless) Let R be the quadratic integer ring $\mathbb{Z}[\sqrt{-5}]$. Define the ideals $I_2 = (2, 1 + \sqrt{-5})$, $I_3 = (3, 2 + \sqrt{-5})$, and $I_3' = (3, 2 \sqrt{-5})$.
 - (a) Prove that I_2 , I_3 , and I_3' are nonprincipal ideals in R.

Proof. Assume I_2 is a principal ideal. This would imply there is some $a + b\sqrt{-5}$ such that

$$2 = \alpha(a + b\sqrt{-5})\tag{1}$$

$$1 + \sqrt{-5} = \beta(a + b\sqrt{-5}) \tag{2}$$

Taking the norms on both side of equation (1) give us $4 = N(\alpha)(a^2 + 5b^2)$. So $a^2 + 5b^2 = 1,2$, or 4.

If the value of $a^2 + 5b^2$ is 4, then $N(\alpha) = 1$, and so $\alpha = \pm 1$. So $a + b\sqrt{-5} = \pm 4$. However, this is impossible, since 4 does not divide the coefficients of $1 + \sqrt{-5}$, as is required by (2).

The value of $a^2 + 5b^2$ cannot be 2, since there are no integer solutions to $a^2 + 5b^2 = 2$. This leaves $a^2 + 5b^2 = 1$. Then $a + b\sqrt{-5} = \pm 1$, and so $1 \in I_2$. Thus, there exists some $\gamma, \delta \in \mathbb{Z}[\sqrt{-5}]$ such that

$$2\gamma + (1 + \sqrt{-5})\delta = 1.$$

Multiplying both sides by $1 - \sqrt{-5}$ gives

$$(1 - \sqrt{-5})2\gamma + 6\delta = 1 - \sqrt{-5}$$
.

Since both terms on the left hand side are divisible by 2, this would imply $1 - \sqrt{-5}$ is a multiple of 2 in $\mathbb{Z}[\sqrt{-5}]$, a contradiction.

Therefore, $I_2 = (2, 1 + \sqrt{-5})$ is not a principal ideal. The proof that I_3 is not principal is given on p.273 in the book, and the proof that I_3' is nonprincipal is similar.

(b) Prove that the product of two nonprincipal ideals can be principal by showing I_2^2 is the principal ideal generated by 2.

Proof. We will show $(2)=I_2^2$. We first show $I_2\subseteq (2)$. Recall that if I,J are ideals in a ring R, then $IJ=(\{ab\ |\ a\in I,b\in J\})$. So I_2^2 is generated by the elements $2^2=4$, $2(1+\sqrt{-5})$, and $(1+\sqrt{-5})^2=1+2\sqrt{-5}+5=6+2\sqrt{-5}=2(3+\sqrt{-5})$. Thus I_2^2 is generated by elements of the form $2(a+b\sqrt{-5})$, for some $a,b\in \mathbb{Z}$. Therefore, $I_2^2\subseteq (2)$.

Since $1 + \sqrt{-5} \in I_2$, and $1 - \sqrt{-5} = 2 - (1 + \sqrt{-5}) \in I_2$, then $6 = (1 + \sqrt{-5})(1 - \sqrt{-5}) \in I_2^2$. So we have $6, 4 \in I_2^2$, and so $2 = 6 - 4 \in I_2^2$. Thus $(2) \subseteq I_2^2$, and so $(2) = I_2^2$.

(c) Prove that $I_2I_3=(1-\sqrt{-5})$ and $I_2I_3'=(1+\sqrt{-5})$ are principal. Conclude $(6)=I_2^2I_3I_3'$. First, we show $I_2I_3=(1-\sqrt{-5})$. Notice I_2I_3 will be generated by the elements $(2)(3)=6=(1-\sqrt{-5})(1+\sqrt{-5}), 2(2+\sqrt{-5})=4+2\sqrt{-5}=(1-\sqrt{-5})(-1+\sqrt{-5}), 3(1+\sqrt{-5})=3+3\sqrt{-5}=(1-\sqrt{-5})(-2+\sqrt{-5})$ and $(2+\sqrt{-5})(1+\sqrt{-5})=-3+3\sqrt{-5}=(1-\sqrt{-5})(-3)$. So every element in I_2I_3 can be written in the form $(1-\sqrt{-5})(a+b\sqrt{-5})$ for $a,b\in\mathbb{Z}$, and so $I_2I_3\subseteq (1-\sqrt{-5})$. Since $1-\sqrt{-5}=4+2\sqrt{-5}-(3+3\sqrt{-5})\in I_2I_3$, we get $(1-\sqrt{-5})\subseteq I_2I_3$, and so $(1-\sqrt{-5})=I_2I_3$, and so I_2I_3 is principal.

By a similar argument, we also get $I_2I_3'=(1+\sqrt{-5})$ is also principal. It remains to show $(6)=I_2^2I_3I_3'$. Since Z is commutative, we have $(I_2I_3)(I_2I_3')=I_2^2I_3I_3'$. Thus, $I_2^2I_3I_3'$ is generated by $(1-\sqrt{-5})(1+\sqrt{-5})=6$. As such, $I_2^2I_3I_3'=(6)$.

Section 8.3

3. Determine all the representations of the integer $2130797 = 17^2 \cdot 73 \cdot 101$ as a sum of two squares.

$$(\pm 851)^{2} + (\pm 1186)^{2}$$
$$(\pm 1069)^{2} + (\pm 994)^{2}$$
$$(\pm 1411)^{2} + (\pm 374)^{2}$$
$$(\pm 1309)^{2} + (\pm 646)^{2}$$
$$(\pm 1421)^{2} + (\pm 334)^{2}$$
$$(\pm 1459)^{2} + (\pm 46)^{2}$$

Each of the six equations above gives us four representations. We can also swap the order of the terms to double the number of representations. This gives us a total of 48 representations.

- 6. (a) Prove that the quotient ring $\mathbb{Z}[i]/(1+i)$ is a field of order 2.
 - (b) Let $q \in \mathbb{Z}$ be a prime with $q \equiv 3 \mod 4$. Prove that the quotient ring $\mathbb{Z}[i]/(q)$ is a field with q^2 elements.
 - (c) Let $p \in \mathbb{Z}$ be a prime with $p \equiv 1 \mod 4$ and write $p = \pi \bar{\pi}$ as in Proposition 18. Show that the hypotheses for the Chinese Remainder Theorem (Theorem 17 in Section 7.6) are satisfied and that $\mathbb{Z}[i]/(p) \cong \mathbb{Z}[i]/(\pi) \times \mathbb{Z}[i]/(\bar{\pi})$ as rings. Show that the quotient ring $\mathbb{Z}[i]/(p)$ has order p^2 and conclude that $\mathbb{Z}[i]/(\pi)$ and $\mathbb{Z}[i]/(\bar{\pi})$ are both fields of order p.
 - (a) Proof. (Bastille) By Proposition 18, 1+i is irreducible in $\mathbb{Z}[i]$, therefore it is prime since $\mathbb{Z}[i]$ is a PID (p.290 and Proposition 11). So (1+i) is a prime ideal, and hence by Proposition 7, (1+i) is a maximal ideal. Therefore $\mathbb{Z}[i]/(1+i)$ is a field. We now show that it is of order 2. Long version Consider the following map:

$$\varphi: \quad \mathbb{Z}[i] \to Z_2$$

$$\varphi(a+bi) = (a^2+b^2) \bmod 2.$$

We verify that φ is a surjective ring homomorphism since for all $a + bi, c + di \in \mathbb{Z}[i]$:

$$\varphi((a+bi)+(c+di)) = \varphi(a+c+(b+d)i) = ((a+c)^2+(b+d)^2) \bmod 2$$

$$= (a^2+2ac+c^2+b^2+2bd+d^2) \bmod 2 = (a^2+b^2+c^2+d^2) \bmod 2$$

$$= (a^2+b^2) \bmod 2 + (c^2+d^2) \bmod 2 = \varphi(a+bi) + \varphi(c+di);$$

$$\varphi((a+bi)(c+di)) = \varphi(ac-bd+(ad+bc)i) = ((ac-bd)^2+(ad+bc)^2) \bmod 2$$

$$= (a^2c^2-2abcd+b^2d^2+a^2d^2+2abcd+b^2c^2) \bmod 2$$

$$= (a^2(c^2+d^2)+b^2(c^2+d^2)) \bmod 2 = ((a^2+b^2)(c^2+d^2)) \bmod 2$$

$$= (a^2+b^2) \bmod 2 \cdot (c^2+d^2) \bmod 2 = \varphi(a+bi)\varphi(c+di);$$

$$\varphi(1) = 1 \quad \varphi(2) = 0.$$

We claim that $\ker \varphi = (1+i)$. Note that because norms are multiplicative, if $a+bi = \alpha(1+i)$ for some $\alpha \in \mathbb{Z}[i]$, then $a^2+b^2=N(a+bi)=N(\alpha)N(1+i)=2N(\alpha)$ and therefore $a+bi \in \ker \varphi$. Thus $(1+i) \subseteq \ker \varphi$. Conversely, if $a^2+b^2=2k$, then either both a,b are odd or both a,b are even. In both cases, a+b, b-a are even and

$$a+bi = \left(\frac{a+b}{2} + \frac{b-a}{2}i\right)(1+i),$$

hence $a+bi \in (1+i)$ and $\ker \varphi \subseteq (1+i)$. Thus $\ker \varphi = (1+i)$. Therefore, by the First Isomorphism Theorem, $\mathbb{Z}[i]/(1+i) \cong \mathbb{Z}_2$ so $\mathbb{Z}[i]/(1+i)$ is a field of order 2.

Short version Because $\mathbb{Z}[i]$ is a Euclidean domain, for any $c \in \mathbb{Z}[i]$, there exist $\alpha, r \in \mathbb{Z}[i]$ such that:

$$c = \alpha(1+i) + r$$
 where $r = 0$ or $N(r) < N(1+i) = 2$.

If r = 0 then $c \in (1+i)$, and if N(r) = 1 then r is a unit, i.e. $r = \pm 1, \pm i$. We claim 1 + (1+i) = i + (1+i) = -1 + (1+i) = -i + (1+i). Indeed note that $1 - i = -i(1+i) \in (1+i)$ so 1 + (1+i) = i + (1+i), and similarly $1 + i = 1 - (-i) = i - (-1) \in (1+i)$ so 1 + (1+i) = -i + (1+i) and i + (1+i) = -1 + (1+i). So all these cosets are equal. Hence

$$\mathbb{Z}[i]/(1+i) = \{(1+i), 1+(1+i)\},\$$

and so $\mathbb{Z}[i]/(1+i)$ is a field of order 2.

(b) Proof. (Bastille) By Proposition 18, q is irreducible in $\mathbb{Z}[i]$ so q is prime since $\mathbb{Z}[i]$ is a PID. Furthermore, the prime ideal (q) is maximal by Proposition 7. Therefore $\mathbb{Z}[i]/(q)$ is a field. Because \mathbb{Z} is a Euclidean domain, for any $c, d \in \mathbb{Z}$, there exist $b_1, b_2, r_1, r_2 \in \mathbb{Z}$ such that:

$$c = b_1 q + r_1$$
 and $0 \le r_1 < q$,
 $d = b_2 q + r_2$ and $0 \le r_2 < q$.

Therefore for any $c + di \in \mathbb{Z}[i]$, we have that $c + di + (q) = b_1q + r_1 + (b_2q + r_2)i + (q) = (b_1 + b_2i)q + r_1 + r_2i + (q) = r_1 + r_2i + (q)$. So

$$\mathbb{Z}[i]/(q) = \{r_1 + r_2 i \mid r_1, r_2 \in \mathbb{Z}, \quad 0 \le r_1, r_2 < q\}.$$

So we have q choices for r_1 , and q choices for r_2 so we need only show that all q^2 cosets thus formed are distinct. Assume $r_1, r_1^{'}, r_2, r_2^{'} \in \mathbb{Z}$ such that $0 \leq r_1, r_1^{'}, r_2, r_2^{'} < q$. Then

$$r_{1} + r_{2}i + (q) = r_{1}^{'} + r_{2}^{'}i + (q) \quad \Leftrightarrow \quad r_{1} - r_{1}^{'} + (r_{2} - r_{2}^{'})i \in (q)$$

$$\Leftrightarrow \quad r_{1} - r_{1}^{'} + (r_{2} - r_{2}^{'})i = q(a + bi) = qa + qbi \text{ where } a, b \in \mathbb{Z}.$$

But $0 \le r_1 - r_1' < q$, and $0 \le r_2 - r_2' < q$ so we must have a = b = 0 and hence $r_1 = r_1'$ and $r_2 = r_2'$. This in turns implies that all cosets described are distinct, and therefore $|\mathbb{Z}[i]/(q)| = q^2$.

(c) Proof. (Bastille) To verify the hypotheses of the Chinese Remainder Theorem, we need only show that (π) and $(\bar{\pi})$ are comaximal ideals in $\mathbb{Z}[i]$ since we aready have that $\mathbb{Z}[i]$ is a commutative ring with 1. Note that, as in part (a), because $\pi = a + bi$ and $\bar{\pi} = a - bi$ are irreducible in $\mathbb{Z}[i]$, a PID, (π) , $(\bar{\pi})$ are maximal ideals in $\mathbb{Z}[i]$ (by Proposition 18, 11, and 7). So we need only show that one is not a subset of the other to conclude that their sum is the whole ring. Suppose to the contrary that $\pi = \alpha \bar{\pi}$, then α would have to be a unit since π is irreducible. But we are given that they are distinct irreducible, hence they cannot be associates. Therefore $\pi \notin (\bar{\pi})$ and hence, $(\pi) + (\bar{\pi}) = \mathbb{Z}[i]$, i.e. (π) and $(\bar{\pi})$ are comaximal. Then it follows from the Chinese Remainder Theorem that the map $\mathbb{Z}[i] \to \mathbb{Z}[i]/(\pi) \times \mathbb{Z}[i]/(\bar{\pi})$ defined by $r \longmapsto (r + (\pi), r + (\bar{\pi}))$ is a surjective ring homomorphism with kernel: $(\pi) \cap (\bar{\pi}) = (\pi)(\bar{\pi}) = (p)$. So by the First Isomorphism Theorem,

$$\mathbb{Z}[i]/(p) \cong \mathbb{Z}[i]/(\pi) \times \mathbb{Z}[i]/(\bar{\pi}).$$

Using the division algorithm in \mathbb{Z} – the same argument as in part (b) but for p instead of q – we can conclude that $\mathbb{Z}[i]/(p)$ has order p^2 . And because $(\pi), (\bar{\pi})$ are maximal ideals in $\mathbb{Z}[i]$, we can conclude again that $\mathbb{Z}[i]/(\pi)$ and $\mathbb{Z}[i]/(\bar{\pi})$ are fields. Furthermore $|\mathbb{Z}[i]/(\pi)| \neq 1$, $|\mathbb{Z}[i]/(\bar{\pi})| \neq 1$ otherwise (π) (respectively $(\bar{\pi})$) equals $\mathbb{Z}[i] = (1)$ but 1 and π (resp. $\bar{\pi}$) can not be associates since π (resp. $\bar{\pi}$) is irreducible and 1 is a unit. Therefore we must have $|\mathbb{Z}[i]/(\pi)| = |\mathbb{Z}[i]/(\bar{\pi})| = p$. \square

Section 9.1

4. Prove that the ideals (x) and (x,y) are prime ideals in $\mathbb{Q}[x,y]$ but only the latter ideal is a maximal ideal.

Proof. (Mobley) Let $\varphi: \mathbb{Q}[x,y] \to \mathbb{Q}[y]$ such that $\varphi(x) = 0$, $\varphi(y) = y$ and $\varphi(q) = q$ for all $q \in \mathbb{Q}$. Then any polynomial in $\mathbb{Q}[x,y]$ with a term that has an x will go to zero and the only terms that remain are those with y's and constants. We compute the $\ker \varphi = (x)$. By the First Isomorphism Theorem, $\mathbb{Q}[x,y]/(x) \cong \mathbb{Q}[y]$. Since $\mathbb{Q}[y]$ is an integral domain, it follows that $\mathbb{Q}[x,y]/(x)$ is as well. By Proposition 13 on page 255 of the text (x) is a prime ideal.

Now consider $\Gamma: \mathbb{Q}[x,y] \to \mathbb{Q}$ such that $\Gamma(x) = 0$, $\Gamma(y) = 0$ and $\Gamma(1) = 1$. Thus any term in $\mathbb{Q}[x,y]$ that has an x or y will go to zero and only rationals are left. We can see that $\ker \Gamma = (x,y)$. Using the First Isomorphism Theorem again, we have that $\mathbb{Q}[x,y]/(x,y) \cong \mathbb{Q}$. Since \mathbb{Q} is a field so is $\mathbb{Q}[x,y]/(x,y)$. Then it follows that (x,y) is a maximal ideal and also a prime ideal.

9. Prove that a polynomial ring in infinitely many variables with coefficients in any commutatitive ring contains ideals that are not finitely generated.

Proof. (Mobley) Let $R[x_1, x_2, ...]$ be a commutative ring. We need to show that the ideal $I = (x_1, x_2, ..., x_n, ...) \subseteq R[x_1, x_2, ...]$ is not finitely generated. To this end, suppose to the contrary that I is finitely generated. Then I is generated by a finite number of polynomials, $I = \langle p_1, p_2, ..., p_n \rangle$. Note that there is a finite number of variables x_i appearing in any p_i . Assume $k = \max\{i \mid x_i \text{ such that } x_i \text{ is a variable in } p_i\}$. Then $I \subseteq \langle x_1, x_2, ..., x_k \rangle$.

We claim that $x_{k+1} \notin \langle x_1, x_2, ..., x_k \rangle$ and therefore $x_{k+1} \notin I$. Suppose $x_{k+1} \in I$. Then for ring elements g_i ,

$$x_{k+1} = \sum_{i=1}^{n} g_i p_i.$$

First we collect all the terms on the right side of the equation that have an x_1 in them. After factoring out the x_1 term from these, we have c_1x_1 such that

$$\sum_{i=1}^{n} g_i p_i - c_1 x_1$$

where $\sum_{i=1}^n g_i p_i - c_1 x_1$ no longer contains the variable x_1 . We continue doing this again for the next variable x_2 which results in $\sum_{i=1}^n g_i p_i - c_2 x_2 - c_1 x_1$. Notice that $\sum_{i=1}^n g_i p_i - c_2 x_2 - c_1 x_1$ no longer contains the variables x_1 or x_2 . We follow the same procedure for x_3 (which results in $\sum_{i=1}^n g_i p_i - c_3 x_3 - c_2 x_2 - c_1 x_1$) and so on until we have finished the process with x_k . Then we have

$$x_{k+1} = \sum_{i=1}^{n} g_i p_i = c_1 x_1 + c_2 x_2 + \dots + c_k x_k.$$

But we realize that on the left most side of the equation there are no terms with x_1 and therefore $c_1 = 0$. This is true for all x_i with $i = \{1, 2, ..., k\}$ and therefore $c_i = 0$ for $i = \{1, 2, ..., k\}$. But then $x_{k+1} = 0$ and we have a contradiction. Therefore a polynomial ring in infinitely many variables with coefficients in any commutatitive ring contains ideals that are not finitely generated.

13. Prove that the rings $F\left[x,y\right]/\left(y^2-x\right)$ and $F\left[x,y\right]/\left(y^2-x^2\right)$ are not isomorphic for any field F.

Proof (Granade). Note that $(y^2 - x^2) = (y - x)(y + x)$ is reducible. Thus, $F[x, y] / (y^2 - x^2)$ contains zero-divisors. Concretely, $\overline{(y - x)(y + x)} = \overline{y^2 - x^2} = \overline{0}$.

By contrast, we claim that $y^2 - x$ is not reducible, and hence $F[x,y]/(y^2 - x)$ is a field. To see this, suppose that $y^2 - x = f(x,y)g(x,y)$ is a non-trivial factorization for some $f,g \in F[x,y]$. Then, since $y^2 - x$ has multidegree (1,2), we must have that one of f and g has degree 0 in x and that the other must have degree 1 in x. Without loss of generality, let f(x,y) have degree 1 in x. Thus, g(x,y) = g(y). Since this factorization is non-trivial, deg $g(y) \ge 1$, and so $y^2 - x = f(x,y) \cdot yg_0(y)$ for some $g_0 \in F[y]$. This is a contradiction, as $y \nmid x$. We conclude that $y^2 - x$ is irreducible as claimed.

Since $F[x,y]/(y^2-x)$ is a field but $F[x,y]/(y^2-x^2)$ has zero-divisors, they cannot be isomorphic for any field F.

Section 9.2

1. Let $f(x) \in F[x]$ be a polynomial of degree $n \geq 1$ and let bars denote passage to the quotient F[x]/(f(x)). Prove that for each g(x) there is a unique polynomial $g_0(x)$ of degree $\leq n-1$ such that $g(x) = g_0(x)$ (equivilantly, the elements $\overline{1}, \overline{x}, \ldots, \overline{x^{n-1}}$ are a basis of the vectorspace F[x]/(f(x)) over F— in particular, the dimension of this space is n).

Proof (Granade). Let $\overline{g(x)} \in F[x]/(f(x))$. Then, by the division algorithm on F[x], there exist unique polynomials g(x) and f(x) such that:

$$g(x) = q(x) f(x) + r(x)$$

 $\deg r(x) < \deg f(x)$

Thus, $\overline{g(x)} = \overline{q(x) f(x) + r(x)} = \overline{q(x)} f(x) + \overline{r(x)} = \overline{r(x)}$. Since r(x) is unique, we are done. \square

9.2.2 Let F be a finite field of order q and let f(x) be a polynomial in F[x] of degree $n \ge 1$, then F[x]/(f(x)) has q^n elements.

Proof. (Gillispie) Let $f(x) = a_n x^n + \cdots + a_0 \in F[x]$ and let I = (f(x)). By problem 9.2.1 we know that the elements $\bar{1}, \bar{x}, \cdots, x^{\bar{n}-1}$ form a basis for the vector space F[x]/I over F. So every element of this vector space may be expressed as a linear combination of $\bar{1}, \bar{x}, \cdots, x^{\bar{n}-1}$ with coefficients from F. Since there are n elements in the basis, and q elements in F, there are q^n elements in the vector space, and hence q^n elements in F[x]/I.

9.2.3 Let f(x) be a polynomial in F[x], then F[x]/(f(x)) is a field if and only if f(x) is irreducible.

Proof. (Gillispie) We may assume $f(x) \neq 0$, since f(x) = 0 is not irreducible element and F[x]/(0) is not a field.

Since F is a field, from Cor. 9.4 we know that F[x] is a PID.

Since F[x] is a PID by Prop. 7.12 and $f(x) \neq 0$, F[x]/(f(x)) is a field if and only if (f(x)) is a maximal ideal. By corollary 7.14 and Prop. 8.7 (f(x)) is maximal if and only if it is a prime ideal. We also know that (f(x)) is prime in F[x] if and only if f(x) is prime in F[x]. Finally from Prop. 8.11 since F[x] is a PID, f(x) is prime if and only if it is irreducible.

6. Describe (briefly) the ring structure of the following rings:

a.
$$\mathbb{Z}[x]/(2)$$
 b. $\mathbb{Z}[x]/(x)$ c. $\mathbb{Z}[x]/(x^2)$ d. $\mathbb{Z}[x]/(x^2, y^2, 2)$

Show that $\alpha^2 = 0$ or 1 for every α in the last ring and determine those elements with $\alpha^2 = 0$. Determine the characteristics of each of these rings. (Baggett)

- a. $\mathbb{Z}[x]/(2) \cong \mathbb{Z}/2\mathbb{Z}[x]$ Since $\mathbb{Z}/2\mathbb{Z}$ is a field, $\mathbb{Z}[x]/(2)$ is a ED, a PID, and a UFD with characteristic 2.
- b. $\mathbb{Z}[x]/(x) \cong \mathbb{Z}$ $\mathbb{Z}[x]/(x)$ is a ED, a PID, and a UFD with characteristic 0.
- c. $\mathbb{Z}[x]/(x^2) \cong \{a+bx \mid a,b \in \mathbb{Z} \text{ and } x^2=0\}$ $\mathbb{Z}[x]/(x)$ has characteristic 0.

d. $\mathbb{Z}[x]/(x^2, y^2, 2) \cong \{a + bx + cy + dxy \mid a, b, c, d \in \mathbb{Z}/2\mathbb{Z} \text{ and } x^2 = y^2 = 0\}.$ Let $\alpha \in \mathbb{Z}[x]/(x^2, y^2, 2)$. Let α' be the image of α under the above isomorphism, i.e. $\alpha' = a + bx + cy + dxy$ with $a, b, c, d \in \mathbb{Z}/2\mathbb{Z}$. Then

$$(\alpha')^2 = (a + bx + cy + dxy)(a + bx + cy + dxy) = a^2 + 2abx + 2acy + 2(ad + bc)xy = a^2.$$

If $a = \overline{0}$, then $(\alpha')^2 = \overline{0}$. If $a = \overline{1}$, then $(\alpha')^2 = \overline{1}$. Hence, $\alpha^2 = 0$ or 1. We have that $\alpha^2 = 0$ if $\alpha = p(x) + (x^2, y^2, 2)$ with the constant term of p(x) being even. Lastly, $\mathbb{Z}[x]/(x^2, y^2, 2)$ has characteristic 2.

7. Determine all the ideals of the ring $\mathbb{Z}[x]/(2, x^3 + 1)$.

(Schamel) Note $(2)(x^3+1)/(2) \equiv (x^3+1)$ so the third isomorphism theorem for rings and proposition 2 of section 9.1 give us

$$\mathbb{Z}[x]/(2)(x^3+1) \equiv (\mathbb{Z}[x]/(2))/((2)(x^3+1)/(2)) \equiv (\mathbb{Z}/2\mathbb{Z})[x]/(x^3+1).$$

In $(\mathbb{Z}/2\mathbb{Z})[x]$ (a U.F.D by corollary 4 of 9.2), we can factor (x^3+1) into $(x+1)(x^2+x+1)$. Since $\mathbb{Z}/2\mathbb{Z}$ is a field, factoring into irreducibles must reduce degree. Hence, x+1 is irreducible since it has degree one, and x^2+x+1 must factor into two degree one polynomials. The only degree one polynomials in $(\mathbb{Z}/2\mathbb{Z})[x]$ are x and x+1, but $x \cdot x = x^2$, $x(x+1) = x^2+x$ and x+1 will be distinct proper ideals of $\mathbb{Z}[x]/(2,x^3+1)$, along with (x-1)/(2) and (x-1)/(2) for the more, since (x-1)/(2) is a U.F.D., it is also a P.I.D, and hence the only proper ideals of (x-1)/(2) containing (x^3+1) are $(x+1)/(x^2+x+1)$. The correspondence isomorphism theorem for rings then gives us that there are exactly two non-trivial proper ideals of (x-1)/(2)/(2), so we have completed our search.

Chapter 9.3

1. Let R be an integral domain with quotient field F and let p(x) be a monic polynomial in R[x]. Assume that p(x) = a(x)b(x) where a(x) and b(x) are monic polynomials in F[x] of smaller degree than p(x). Prove that if $a(x) \notin R[x]$ then R is not a Unique Factorization Domain. Deduce that $\mathbb{Z}[2\sqrt{2}]$ is not a U.F.D.

Proof. (Schamel) By way of contradiction, suppose R is a U.F.D. Then, by Gauss' Lemma, there exist non-zero $\alpha, \beta \in F$ such that $\alpha a(x) = \tilde{a}(x)$ and $\beta b(x) = \tilde{b}(x)$ for some $\tilde{a}(x), \tilde{b}(x) \in R[x]$ such that $p(x) = \tilde{a}(x)\tilde{b}(x)$. In particular, $p(x) = \alpha\beta a(x)b(x)$. Since a(x) and b(x) are monic, we have that a(x)b(x) is also monic, and the highest degree coefficients of p(x) and a(x)b(x) give us that $1 = \alpha\beta \cdot 1$. Hence $\beta = \alpha^{-1}$ and both are units. But we also have that a(x) and b(x) are monic, so the coefficients of the largest terms of $\tilde{a}(x)$ and $\tilde{b}(x)$ are given by α and β respectively, so $\alpha, \beta \in R$. Hence α and β are units in R, so $p(x) = \beta \tilde{a}(x)\alpha \tilde{b}(x) = a(x)b(x)$ gives a factorization of p(x) in R[x], and thus $a(x), b(x) \in R[x]$, a contradiction.

Now let $R = \mathbb{Z}[2\sqrt{2}] = \{a + 2b\sqrt{2} : a, b \in \mathbb{Z}\}$. The field of fractions of R is then $F = \mathbb{Q}[\sqrt{2}]$. Then the polynomial $p(x) = x^2 - 2$ is reducible in F[x] to monic terms by $p(x) = (x + \sqrt{2})(x + \sqrt{2})$. However, $x + \sqrt{2} \notin R[x]$, so by our previous result, $\mathbb{Z}[2\sqrt{2}]$ is not a U.F.D.

3. Let F be a field. Prove that the set R of polynomials in F[x] whose coefficient of x is equal to 0 is a subring of F[x] and that R is not a U.F.D.

Proof. (Buchholz)

Let R be a set of polynomials in F[x] whose coefficient of x is equal to 0. First note that $0 \in R$ and therefore non-empty. Now we must show that R is closed under subtraction and multiplication. Let

$$f(x), g(x) \in R$$
 where $f(x) = a_0 + a_2 x^2 + a_3 x^3 + \cdots$ and $g(x) = b_0 + b_2 x^2 + b_3 x^3 + \cdots$. Then
$$f(x) - g(x) = (a_0 + a_2 x^2 + a_3 x^3 + \cdots) - (b_0 + b_2 x^2 + b_3 x^3 + \cdots)$$
$$= (a_0 - b_0) + (a_2 - b_2) x^2 + (a_3 - b_3) x^3 + \cdots,$$

which is contained in R. Hence $f(x) - g(x) \in R$. Now consider,

$$f(x)g(x) = (a_0 + a_2x^2 + a_3x^3 + \cdots)(b_0 + b_2x^2 + b_3x^3 + \cdots)$$

= $(a_0b_0) + (a_2b_2)x^2 + \cdots$,

which is contained in R. Hence $f(x)g(x) \in R$. Therefore R is a subring of F[x]. Now we must show that R is not a U.F.D. First note that x^2 and x^3 are irreducible elements since $x \notin R$. So x^6 can be written as $(x^2)^3 = x^2x^2x^2$ and $(x^3)^2 = x^3x^3$. But x^2 and x^3 are not associates. Hence R is not a U.F.D.