Nichtlineare Regelungstechnik 1 –SS 14 Dr.-Ing. J. Winkler Mitschrift

Bolor Khuu

16. September 2014

Inhaltsverzeichnis

1	Grundbegriffe und Eigenschaften nichtlinearer Systeme					
	1.1	Nichtlineare Übertragungsglieder	3			
	1.2	Typische Phänomene in nichtlinearen Systeme	4			
		1.2.1 Linearer Fall (Errinerung)	4			
		1.2.2 Nichtlinearer Fall	4			
	1.3	Lipschitz-Bedingung und Stetigkeit	5			
2	Analyse nichtlinearer Systeme 2. Ordnung in der Phasenebene bzw, Nähe					
		ihrer Ruhelagen, Phasenportraits				
	2.1	Einführung-Motivation	6			
	2.2	Qualitatives Verhalten linearer System	7			
	2.3	Qualatatives Verhalten nichtlinearer Systeme in der Nähe ihrer Ruhelage	8			
	2.4	Konstruktion des gesamten Phasenportraits	10			
	2.5	Existenz von Dauerschwingung, bzw. Grenzzyklen	10			
3	Methode der harmonische Balance					
	3.1		12			
	3.2	9 1	12			
		g .	12			
			13			
		3.2.3 Gleichung der harmonischen Balance	14			
	3.3	Berechnung der Beschreibungsfunktion	14			
	3.4		14			
	3.5	Stabilität von Dauerschwingungen	14			
4	Stal	bilität nach Ljapunov	15			
	4.1	• =	15			
	4.2		17			
		. , , , , , , , , , , , , , , , , , , ,	17			
			18			
		4.2.3 Stabilitätskriterium	19			
	4.3		20			
	4.4	Variable Gradientenmethode	20			
5	Inte	ergrator-Backstepping	22			
	5.1		22			
	5.2	9 •	23			

6	Sliding-Mode-Control						
	6.1	Sinführungsbeispiel					
	6.2	Verallgemeinerung					
7	Feedbacklinearisierung						
	7.1	ehlt etwas					
		.1.1 fehlt etwas					
		.1.2 Relativer Grad					
		.1.3 Verallgemeinerter Entwurf					

Grundbegriffe und Eigenschaften nichtlinearer Systeme 1

Nichtlineare Übertragungsglieder 1.1

Anordnung, die aus einem Eingangssignal u(t) ein Ausgangssignal y(t) erzeugt. y(t) mit Operator φ . $y(t) = \varphi(t)$

• Beispiel:

$$y(t) = \int_0^t u(\tau)d\tau \qquad \qquad \varphi \to \text{Ausf\"{u}hrungs der Integration}$$

$$\varphi(u+u^*) = \varphi(u) + \varphi(u^*).$$

$$\varphi(c \cdot u) = c \cdot \varphi(u).$$

$$\varphi(c \cdot u + c^* \cdot u^*) = c \cdot \varphi(u) + c^* \cdot \varphi(u^*).$$

• Beispiel 1:

Beispiel 1:
$$y = \varphi(\underline{u}) \qquad \underline{u} \in \mathbb{R}^2$$

$$= u_1 \cdot u_2 \qquad y \in \mathbb{R}$$

$$\varphi(\underline{u} + \underline{u}^*) = \varphi\begin{pmatrix} u_1 + u_1^* \\ u_2 + u_2^* \end{pmatrix} \qquad \underline{u} = \begin{pmatrix} u_1 \\ u_2 \end{pmatrix} \qquad = (u_1 + u_1^*) \cdot (u_2 + u_2^*)$$

$$\underbrace{u_1 \cdot u_2}_{\varphi(u)} + \underbrace{u_1^* \cdot u_2^*}_{\varphi(u^*)} + u_1 \cdot u_2^* + u_1^* u_2 \rightarrow \text{nicht linear}$$

• Beispiel 2:

$$y = m \cdot u + b =: f(u). \quad u, y, m, b \in \mathbb{R}$$

$$\varphi(u + u^*) = m(u + u^*) + b.$$

$$= mu + b + mu^*$$

$$= \varphi(u) + \underbrace{mu^*}_{\text{nicht linear} \to \text{affin in } u}$$

• Errinerung: Ein Übertragungsglied heißt zeitinvariant wenn für dieses das Verschiebungsprinzip gilt.

$$y(t) = \varphi(u(t))$$
 u -in t_0 nach rechts schieben $u(t - t_0)$ $\to \varphi(u(t - t_0)) = y(t - t_0) \to y$ auch um t_0 nach verschob.

- Folgerung: Da das Überlagerungsprinzip bei nicht linearen Systemen nicht gilt , läßt nicht der Zusammenhang zwischen den Ein und Ausgangsgrößen nicht durch ein Faltungsintegral darstellen.
- Folge:
 - keine komplexen Übertragungsfunktionen
 - kein Freqünzgang
 - kein Laplace-Transformation.
 - \rightarrow Hilfsmittel der komplexen Funktionentheorie nicht anwendbar!!
 - \rightarrow keine allgemein gültige Theorie \rightarrow Behandlung bestimmbar Systemklassen.
 - \rightarrow Systemtheoretische Eigenschaften, die für einen Unterraum des \mathbb{R}^n entwickelt wurden, gelten nicht notwendigerweise für den vollständigen \mathbb{R}^n lokale und globale Eigenschaften fallen nicht zusammen.

1.2 Typische Phänomene in nichtlinearen Systeme

1.2.1 Linearer Fall (Errinerung)

lineares System

$$\dot{x} = A \cdot x, \quad x(0) = x_0 \quad x, x_0 \in \mathbb{R}^n \quad A \in \mathbb{R}^{n \times n}$$
 (1.3)

Ruhelagen: Lösung von $A \cdot x = 0$.

- wenn A regulär (det $A \neq 0$) dann gibt es genau eine Ruhelage x_e mit $A \cdot x_e = 0$ und $x(t_0) = x_e \rightarrow x(t) = x_e \quad \forall \, t > t_0$
- wenn A singulär (det A = 0) dann gibt es unendlich viele Ruhelagen.
- Die Lösung des Anfangswertproblems (1.3) lautet mit der Transitionsmatrix $\varphi(t) = e^{A \cdot t} = \underline{T} + A \cdot t + \frac{1}{2} \cdot A^2 \cdot t^2$ wie folgt $x(t) = \phi(t) \cdot x_0$ Damit gilt: $a_1 \cdot e^{-\alpha \cdot t} \le ||x(t)|| \le a_2 \cdot e^{\alpha_2 \cdot t}$ mit $a_1, a_2, \alpha_1, \alpha_2 > 0$.
- Die Ruhelage x_e ist asymptotisch stabil. Wenn alle Eigenwerte von A einen negativen Realteil haben und unabhängig von den Angangsbedinungen.
- wenn

$$\dot{x} = A \cdot x + B \cdot u \quad x(0) = x_0 \qquad B \in \mathbb{R}^{n \times m}, u \in \mathbb{R}^m$$
 (1.4)

Asymptotisch Stabilität von $\dot{x} = A \cdot x$ impliziert BIBO -Stabilität von (1.4)

 \bullet sinusformiges Eingangssignal \rightarrow sinusförmiges Ausgangssignal

1.2.2 Nichtlinearer Fall

(A) Mehrfache Ruhelage (Gleichgewichtspunkte).

Nichtlinearer System , keine , eine, mehrere , unendliche viele Ruhelagen die auch abhängig von den Anfangsbedingung sein können.

Ruhelagen: $x_e: x(0) = x_e \rightarrow x(t) = x_e \ \forall \ t > 0.$

• Beispiel: $\dot{x}=-x+x^2$ $x(0)=x_0$ $x\in\mathbb{R}$ Lösung: $x(t)=\frac{x_0\cdot e^{-t}}{1-x_0+x_0\cdot e^{-t}}$

(B) Endliche Fluchtzeit

Die Trajektorie eines nichtlinearen Systems kann in endlicher Zeit gegen ∞ oder in die Ruhelage laufen.

• Beispiel: siehe A. mit $x_0 > 1$ $\dot{x} = -\sqrt{x}$ $x_0 > 0$.

$$x(t) = \begin{cases} (\sqrt{x_0} - \frac{t}{2})^2 & \text{für } 0 \le t \le 2 \cdot \sqrt{x_0} \\ 0 & \text{sonst} \end{cases}$$

Ruhelage: $x_e = 0$ in endlicher Zeit wird die Ruhelage aus jedem beliebig möglichichen Anfangszustand erreicht.

(C) Grenzzyklen

Anfangswert unabhängige Dauerschwingungen konstante Amplitude und T-Periodendauer ohne äußere Anregung.

• Beispiel:

van der Pol-Gleichung

$$m\ddot{x} + 2c \cdot (x^2 - 1) \cdot \dot{x} + kx = 0, \quad m, c, k > 0.$$

(Feder Masse System mit posivit abhängige Dämpung $2c \cdot (x^2 - 1)$)

 $\rightarrow x \gg 1$ Positive Dämpung, Energieverlust konvergierendes Verhalten.

 $\rightarrow x \ll 1$ Negative Dämpung, divirgierendes Verhalten.

weder unbegrenztes Wachstum, nach Konvergenz gegen 0.

1.3 Lipschitz-Bedingung und Stetigkeit

- Satz: Sind die Funktionen f(x,t) aus (1.7) und $\frac{\partial F}{\partial x}(x,t)$ auf der Menge $B \times [t_0,t_0+\delta]$ mit $B \in \mathbb{R}^n$ stetig dann erfüllt f(x,t) lokal Lipschitz-Bedingung (1.8)
 - -f(x,t) nicht stetig differenzierbar $\to f(x,t)$ kann durchaus Lipschitz-Stetig sein.
- Satz: Globale Exitenz und Eindeutigkeit
 - Ausgangspunkt:

f(x,t) aus (1.7) ist stückweise stetig int t, global Lipschitz $\forall t \in [t_0, t_0 + \tau] \Rightarrow$ (1.7) hat eine Lösung im Zeitintervall $[t_0, t_0 + \delta]$

Sind f(x,t) und $\frac{\partial F}{\partial x}(x,t)$ auf $\mathbb{R}^n \times [t_0,t_0+\tau]$ stetig, dann ist f(x,t) global Lipschitz, wenn $\frac{\partial f}{\partial x}(x,t)$ auf $\mathbb{R}^n \times [t_0,t_0+\tau]$ gleichmässig beschränkt ist.

- Gleichmässig beschränkt:

 $\frac{\partial f}{\partial x}(x,t)$ ist gleichmässig beschränkt, wenn gilt. Zu jeder positiv finiten Konstante a existiert ein $\beta(a)$ mit unabhängig von t_0 !

$$\left| \left| \frac{\partial f}{\partial x}(x(t_0), t_0) \right| \right| \le a \Rightarrow \left| \left| \frac{\partial f}{\partial x}(x(t), t) \right| \right| \le \beta(a) \quad \forall t \in [t_0, t_0 + \tau], x \in \mathbb{R}^n$$

- Beispiel:

$$\begin{array}{ll} \dot{x}_1 & = & -x_1 + x_1 \, x_2 \\ \dot{x}_2 & = & x_2 + x_1 \, x_2 \end{array} \right\} f(x) \rightarrow \frac{\partial f}{\partial x} = \begin{pmatrix} -1 + x_2 & x_1 \\ -2 + x_2 & 1 - x_1 \end{pmatrix} \quad f(x) \text{ ist nicht stetig differenzierbar,} \\ & \text{gleichmässig beschränkt?} \end{array}$$

$$\left\| \begin{pmatrix} -1 + x_2 & x_1 \\ -2 + x_2 & 1 - x_1 \end{pmatrix} \right\|_{\infty} = \max \left\{ \left| -1 + x_2 \right|, \left| x_2 \right| + \left| 1 - x_1 \right| \right\}$$

$$\Rightarrow \text{ nicht gleichmässig beschränkt, nicht global Lipschitz.}$$

- Beispiel:

$$\begin{array}{rcl} \dot{x_1} & = & -x_1 + x_1 \cdot x_2 \\ \dot{x_2} & = & x_2 - x_1 \cdot x_2 \end{array} \right\} f(x)$$

$$\frac{\partial f}{\partial x} = \begin{pmatrix} -1 + x_2 & x_1 \\ -x_2 & 1 - x_1 \end{pmatrix} \qquad \frac{f(x)}{\partial x} \to \text{ stetig differenzierbar } \begin{cases} f(x) \to \text{ stetig differenzierbar } \\ \frac{\partial f}{\partial x} \to \text{ nicht global Lipschitz} \end{cases} f \text{ ist lokal Lipschitz}$$

$$\left\| \begin{pmatrix} -1 + x_2 & x_1 \\ -x_2 & 1 - x_1 \end{pmatrix} \right\|_{-x_2} = \left\{ |-1 + x_2| + |x_1|, |x_2| + |1 - x_1| \right\}$$

2 Analyse nichtlinearer Systeme 2. Ordnung in der Phasenebene bzw, Nähe ihrer Ruhelagen, Phasenportraits

2.1 Einführung-Motivation

System der Form

$$\dot{x}_1 = f_1(x_1, x_2) \quad x_1(0) = x_{10}$$
 (2.1a)

$$\dot{x}_2 = f_2(x_1, x_2) \quad x_2(0) = x_{20}$$
 (2.1b)

mit $x_1, x_2 \in \mathbb{R}$ Phasenebene $x_1 - x_2$ -Ebene

Lösung von (2.1) liefert $x(t) = (x_1(t), x_2(t))^T$ anschaulich darstellbar in der Ebene! Rechte Seite von (2.1) Tangentenvektor an der jeweiligen Lösungskurve. Jedem Punkt ist eindeutig ein Vektor $f(x) = (f_1(x), f_2(x))^T$ zugeordnet.

Ziel: Konstruktion von Phasenportraits

- Menge von Anfangswerten in der $x_1 x_2$ -Ebene
- Trajektorien berechnen \(\hat{\(\)}\) Lösung von 2.1
- Familie von Trajektorien = Phasenprotrait, Zeitinformation geht verloren

2.2 Qualitatives Verhalten linearer System

linearisiertes System (2.1) um die Ruhelage x_{1e}, x_{2e}

$$\dot{\tilde{x}} = A \, \tilde{x} \text{ mit } A = \underbrace{\begin{pmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} \end{pmatrix}}_{x_{1e}, x_{2e}} \qquad \tilde{x} = \begin{pmatrix} x_1 - x_{1e} \\ x_2 - x_{2e} \end{pmatrix}$$

. Jakobi-Matrix

A läßt sich in Jordan Normalform transfonieren.(RT2)

$$z = T \cdot x$$
 $\rightarrow \dot{z} = T^{-1} \cdot A \cdot T \cdot z = J \cdot z$

A habe die Eigenwerte λ_1, λ_2 . Dann gibt's 4 Fälle

- A). $J = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}$ 2 Verschiedene reelle Eigenwerte
- B). $J = \begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix}$ 1 Doppelter Eigenwerte $\lambda \in \mathbb{R}$
- C). $J = \begin{pmatrix} a & -b \\ b & a \end{pmatrix}$ 1 konjugiert komplexe Eigenwertpaar $\lambda = a \pm jb$
- D). Spezialfall: mindestens 1 Eigenwert ist 0 Fall A). Beide Eigenwerte reell, A ist diagonalähnlich $\dot{z} = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}$ $z(0) = \begin{pmatrix} z_{10} \\ z_{20} \end{pmatrix}$ $\begin{cases} \dot{z}_1(t) &= \lambda_1 z_1(t) \\ \dot{z}_2(t) &= \lambda_2 z_2(t) \end{cases} \Rightarrow \begin{cases} \dot{z}_1(t) &= z_{10} e^{\lambda_1 t} \\ \dot{z}_2(t) &= z_{20} e^{\lambda_2 t} \end{cases}$

$$\begin{bmatrix}
\dot{z}_1(t) &= \lambda_1 z_1(t) \\
\dot{z}_2(t) &= \lambda_2 z_2(t)
\end{bmatrix} \Rightarrow \begin{bmatrix}
\dot{z}_1(t) &= z_{10} e^{\lambda_1 t} \\
\dot{z}_2(t) &= z_{20} e^{\lambda_2 t}
\end{bmatrix}$$
(2.2)

Eliminieren von $t:\frac{1}{\lambda_1}\ln\frac{z_1}{z_{10}}=\frac{1}{\lambda_2}\ln\frac{z_2}{z_{20}}$

$$z_{2} = \frac{z_{20}}{z_{10}^{(\frac{\lambda_{2}}{\lambda_{1}})}} z_{1}^{(\frac{\lambda_{2}}{\lambda_{1}})}$$
 (2.3)

Steigung:
$$\frac{dz_2}{dz_1} = \frac{z_{20}}{z_{10}^{\lambda_2/\lambda_1}} \frac{\lambda_2}{\lambda_1} z_1^{\frac{\lambda_2}{\lambda_1} - 1}$$
 (2.4)

•
$$\lambda_2 < \lambda_1 < 0$$
 $(\lambda_2 = \text{schnell }, \lambda_1 = \text{langsam })$
 $|z_1| \to 0$ $\left|\frac{dz_1}{dz_2}\right| \to 0$
 $|z_1| \to \infty$ $\left|\frac{dz_1}{dz_2}\right| \to \infty$

 v_i die durch den zum Eigenwert λ_i gehörigen Eigenvektor definierte Richtung

• $\lambda_2 > \lambda_1 > 0$ instabile Knoten wie stabile Knoten, nur Pfeile andersum

$$\bullet \ \lambda_2 < 0 < \lambda_1 \quad \begin{array}{ll} z_1(t) & = & z_{10} \cdot e^{\lambda_1 t} \to \infty \\ z_2(t) & = & z_{20} \cdot e^{\lambda_2 t} \to 0 \end{array} \right\} \ \text{für} \ t \to \infty$$

• konjugiert komplexer Fall $\lambda = a \pm jb$

2.3 Qualatatives Verhalten nichtlinearer Systeme in der Nähe ihrer Ruhelage

$$\dot{x}_1 = f_1(x_1, x_2) \quad x_1(0) = x_{10} \quad \dot{x}_2 = f_2(x_1, x_2) \quad x_2(0) = x_{20}$$
 (2.6)

Taylor-Reihen-Entwicklung um Ruhelage
$$(x_{1e}, x_{2e})$$

$$\dot{x}_{i} = \underbrace{f_{i}(x_{1e}, x_{2e})}_{=0} + \frac{\partial f_{i}}{\partial x_{1}}\Big|_{(x_{1e}, x_{2e})} (x_{1} - x_{1e}) + \frac{\partial f_{i}}{\partial x_{2}}\Big|_{(x_{1e}, x_{2e})} (x_{2} - x_{2e}) + \text{T.h.O}$$

$$\begin{pmatrix} \dot{x}_{1} \\ \dot{x}_{2} \end{pmatrix} = \begin{pmatrix} \frac{\partial f_{1}}{\partial x_{1}} & \frac{\partial f_{1}}{\partial x_{2}} \\ \frac{\partial f_{2}}{\partial x_{1}} & \frac{\partial f_{2}}{\partial x_{2}} \end{pmatrix}\Big|_{(x_{1e}, x_{2e})} \cdot \begin{pmatrix} \tilde{x}_{1} \\ \tilde{x}_{2} \end{pmatrix} \qquad \tilde{x}_{i} = x_{i} - x_{ie}$$

$$(2.7)$$

• Satz von Hartmann-Grobmann

Wenn die 2.6 gehörige Jakobi-Matrix keine Eigenwerte mit verschwindenden Realteil hat, so existiert ein Homöomorphismus in der Umgebung U um die Ruhelage zwischen den Trajektorien des nichtlinearen Systems $\dot{x} = A \cdot \tilde{x}$ $h:U\to\mathbb{R}^2$ Ruhelagen, deren Jacobi-Matrix Eigenwerte mit nicht verschwindend Realteil haben heißen hyperbolisch. Jordan-Form im Falle eines Wirbels (nicht hyperbolische RL).

$$J = \begin{pmatrix} \mu & 1 \\ -1 & \mu \end{pmatrix} \qquad \begin{cases} \mu = 0 \to \text{Wirbel} \\ \mu < 0 \to \text{stabiler Strudel} \end{cases}$$

• Beispiel:

$$\dot{x}_1 = -x_2 - \mu x_1 (x_1^2 + x_2^2)
\dot{x}_2 = x_1 - \mu x_2 (x_1^2 + x_2^2)$$
(2.8)

Ruhelagen $x_{1e} = 0, x_{1e} = 0$

Ruhelagen
$$x_{1e} = 0, x_{1e} = 0$$

Jakobi-Matrix $= \frac{\partial f}{\partial x} = \begin{pmatrix} -\mu(3x_1^2 - x_2^2) & -(1 + 2\mu x_1 x_2) \\ 1 - 2\mu x_1 x_2 & -\mu(x_1^2 + 3x_2^2) \end{pmatrix}$
Auswertung in Ursprung (Ruhelage).

$$\frac{\partial f}{\partial x}\Big|_{(0,0)} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \text{ Eigenwert: } \det \begin{pmatrix} s & 1 \\ -1 & s \end{pmatrix} = s^2 + 1 = 0 \quad s_{1,2} = \pm j$$

• Beispiel Nichtlineares System: $t \to \infty$

Konstruktion des gesamten Phasenportraits

- A Ruhelagen bestimmen
- B Linearisierung von (2.1) um Ruhelagen, Bestimmung des Typs der Ruhelagen
- C Untersuchung auf Symmetrien Symmetrie zur x_1 -Achse

$$\dot{x}_1 = \varphi_1(x_1, x_2)$$
$$\dot{x}_2 = \varphi_2(x_1, x_2)$$

$$f_2(\varphi_1, \varphi_2) = f_2(\varphi_1, \varphi_2)$$

$$f_1(\varphi_1, \varphi_2) = f_2(\varphi_1, \varphi_2)$$

Es muss gelten

$$\varphi_1 = \varphi_1$$

$$\varphi_2 = -\varphi$$

$$\varphi_2 = -\varphi_2$$

$$f_1(\bar{\varphi}_1, \bar{\varphi}_2) = f_1(\varphi_1, -\varphi_2) = f_1(\varphi_1, \varphi_2) f_2(\bar{\varphi}_1, \bar{\varphi}_2) = f_2(\varphi_1, -\varphi_2) = -f_2(\varphi_1, \varphi_2)$$

- **D** Bestimmung von bestimmten Isoklinen (Punkte gleicher Steigung $\frac{dx_2}{dx_1}$) z.B: $\frac{dx_2}{dx_1} = \frac{\dot{x}_2}{\dot{x}_1} = 0$ (Fluß parallel x_1 -Achse) $\frac{dx_2}{dx_1} = 0$
- E Prüfen, ob es Trajektorien gibt, die ausgewiesenen Mengen genügen, z.B. Trajektorien, für die gilt: $h(x_1, x_2) = 0$ mit ausgewiesen Fkt. $h: x_2 = \tanh(x_1)$ Prüfung, Wenn es Trajektorien gibt die $h(x_1, x_2)$ genügen, so muß die Richtungsableitung von h entlang f immer 0 sein!.

- Also:
$$\frac{\partial h}{\partial x} \cdot f(x) = 0$$
, $x = (x_1, x_2)^T$
- Bsp: $\dot{x_1} = 2x_2^2 - 2x_2$ $h(x_1, x_2) = x_1 - x_2^2 + 1 = 0$
 $\dot{x_2} = x_1$, $x_1 = x_2^2 - 1$
 $\frac{\partial h}{\partial h} f(x) = (1 - 2x_2) {2x_2^3 - 2x_2 \choose x_1} = 2x_2^3 - 2x_2 - 2x_1x_2 = 2x_2^3 - 2x_2 - 2x_2^3 + 2x_2 = 0$

Existenz von Dauerschwingung, bzw. Grenzzyklen

[Bilder]

- Grenzzyklus: -Isolierte geschlossene Kurve 3 Typen:
 - 1. stabile Grenzzyklus
 - 2. instabile
 - $\left.\begin{array}{l} \text{innenstabile}\\ \text{aussen instabile} \end{array}\right\} \text{ aber auch umgekehrt.}\\ \text{semistabile} \end{array}$ 3.

$$\int f_2\,dx_1-f_2\,dx_2=\iint (\frac{\partial f_1}{\partial x_1}+\frac{\partial f_2}{\partial x_2})\,dx_1\,dx_2=0$$
kein Vorzeichenwechsel

10

• Beispiel:

$$\dot{x}_1 = g(x_2) + 4x_1x_2^2$$

$$\dot{x}_2 = h(x_1) + 4x_1^2x_2$$

$$\frac{\partial f_2}{\partial x_1} + \frac{\partial f_2}{\partial x_2} = 4x_2^2 + 4x_1^2 > 0 \quad \forall (x_1, x_2) = (0, 0) \Rightarrow \text{kein Grenzzyklus}$$

• Satz: Index-Theorem

Sei N die Anzahl von Knoten, wirbeln und Strudeln, die von einem Grenzzyklus (GZ) umschloßen werden und S die Anzahl der Sattelpunkte dann gilt wenn ein GZ existiert, dann N=S+1

• Satz: Poincare-Bendixson

Wenn die Trajektorie T eines Systems vom $\mathrm{Typ}(2.1)$ in einer endl. Umgebung Ω verbleibt, dann ist folgendes wahr:

- a T geht gegen eine Ruhelage
- b T geht gegen einen asymptot. stabilen GZ
- c T ist ein Grenzzyklus

• Satz: Bendixson

Für ein System vom Typ(2.1) existiert kein GZ in einer Umgebung Ω , wenn in dieser Umgebung $\frac{df_1}{dx_1} + \frac{df_1}{dx_2}$ nicht verschwinden und Vorzeichen nicht ändern.

– Beweis: $\dot{x_1}=f_1(x_1,x_2)$ $\dot{x_2}=f_2(x_1,x_2)$ $f_2(x_1,x_2)dx_1-f_1(x_1,x_2)dx_2=0$ Sei L geschl. Kurve eines GZ. $\int_f \left(f_2dx_1-f_1dx_2\right)=0$ Stokescher Integralsatz. $\int_\alpha \left(f_2dx_2-f_2dx_2\right)=0 \iint \left(\frac{df_1}{dx_1}+\frac{df_2}{dx_2}\right)=0$ damit kein GZ , auf Ausdruck nicht 0 sein, wenn nicht =0 , dann keine VZ wechsel, damit kein GZ

3 Methode der harmonische Balance

(auch. Methode der Beschreibungs-Funktionen)

- Idee: Frequenzbereichsmethoden aus linearer Theorie zur (näherungsweisen) Beschreibung bestimmter nichtlinearer Systeme verwenden.
- Ziel: Vorhersage von Dauerschwingungen (DS), Amplitude, Periodendauer
- Konzept: Fourierreihenentwicklung periodischer Zeitvorgänge ein System jelignente Vernachläßigungen führen zur. sog. Beschreibungsfunktion, die einfache Analyse ermöglicht.
- Bezug: Nichtlinearer Standartregelkreis

dann geeignete Ausdruck ersetzen, so daß Beschreibung im Freqünzbereich möglich

11

3.1 Einführungsbeispiel

Annahme Dauerschwingungen vorhanden→

$$e(t) = A \cdot \sin(wt)$$

$$\dot{e}(t) = A \cdot w \cdot \cos(wt)$$

$$w(t) = A^3 w \sin^2(wt) \cos(wt) = A^3 w (1 - \cos^2(wt)) \cos(wt) = \frac{A^3 w}{4} (\underbrace{\cos(wt)}_{\text{Grundschwingung}} - \underbrace{\cos(3wt)}_{\text{Oberschwingung}})$$

Tiefpaßcharakter des lin. Übertragungsglied unterdrückt die Oberschwingung mithin:

$$w \approx \frac{A^3}{4}w\cos(wt) = \frac{A^2}{4}\frac{d}{dt}(A\sin(wt)) = \frac{A^2}{4}\frac{d}{dt}e(t)$$

Bildbereich : $\frac{W(s)}{E(s)} = \frac{A^2}{4}s$ Übertragungsverhalten des neün Blocks, somit

$$w = (\underbrace{\frac{A^2}{4}jw})(-x), \quad e(t) = A\sin(wt)$$

$$\Leftrightarrow e = -G(-jw)w = -G(jw)N(A, w) e \Rightarrow \left(1 + G(jw)N(A, w)\right)e = 0$$

$$\Leftrightarrow 1 + G(jw)N(A, w) = 0 \rightarrow 1 + (\frac{A^2}{4}jw)(\underbrace{\frac{\alpha}{(jw)^2 - \alpha jw + 1}}) = 0$$
Dauerschwingung mit Amplitude $A = 2$ und $w = 1$

3.2 Grundlagen der Methoden

Annahme: es existiert eine Dauerschwingung im nichtlinearen Standartregelkreis.

3.2.1 Vorraußetzung

1. Lineares System

- L1 $G(s) = \frac{Z(s)}{N(s)}e^{-T_t s}$ $T_t > 0$, G(0) > 0, $N(s), Z(s) \in \mathbb{R}[s]$
- L2 Pole von Z(s)/N(s) liegen links der j-Achse, 1 einfacher Pol in s=0 erlaubt
- L3 G(jw) hat genügend Tiefpaßcharakter grad $Z \leq \operatorname{grad} N 2$

2. Nichtlineares System

- **N1** $f(-e, -\dot{e}) = -f(e, \dot{e})$
 - \rightarrow eindeutige Kennline \Rightarrow ungerade Fkt.
 - \rightarrow Hysterese \Rightarrow Spiegelung am Ursprung
- N2 f(e) bzw. $f_u(e), f_o(e)$ sind monoton steigend!

3. Die Frequnz der Dauerschwingung liegt

• Z1 im Bereich der Knickfreqünzen des linearen Teilsystems

3.2.2 Beschreibungsfunktion

Es gilt: $u(t) = \frac{b_0}{2} + \sum_{n=1}^{\infty} (a_n \sin(nwt) + b_n \cos(nwt))$

$$b_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} u(t) d(wt), \quad a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} u(t) \sin(nwt) d(wt), \quad b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} u(t) \cos(nwt) d(wt) \quad (3.1)$$

wegen $b_0 = 0$ wenn (L3) und (Z1) erfüllt, dann können Oberschwingungen vernachläßigt werden, damit

$$u(t) = a_1 \sin(wt) + b_1 \cos(wt) = M \sin(wt + \varphi), \quad \text{mit } M = \sqrt{a_1^2 + b_1^2} \quad \varphi = \arctan(\frac{b_1}{a_1})$$

$$U = Me^{j(wt + \varphi)} = (a_1 + jb_1)e^{jwt}e(t) = A \sin(wt) \Rightarrow \quad E = Ae^{jwt}$$
Beschreibungsfunktion $N(A, w) = \frac{U}{E} = \frac{a_1 + jb_1e^{jwt}}{Ae^{jwt}}$

$$N(A, w) = \frac{a_1 + jb_1}{A}$$
Beschreibungsfunktion

A: Amplitude der Dauerschwingung

B: Kreisfreqünz

 a_1, b_1 aus (3.1)

Hinweis: Wenn f keine DGL in e, \dot{e} ist, so hängt N nur von A ab.

3.2.3 Gleichung der harmonischen Balance

Im Schwingungsgleichgewicht gilt nach * $G(jw) \cdot U = -E$ mit U = N(A, w)E

$$\Rightarrow (G(jw)N(A,w)+1)E=0$$

$$\Rightarrow G(jw)N(A,w) + 1 = 0$$

Gleichung der harm. Balance komplexe Gleichung in den Variablen A, w Lösung liefert, A, w der möglichen Dauerschwingung.

3.3 Berechnung der Beschreibungsfunktion

Es gilt: $a_{1} = \frac{1}{\pi} \int_{0}^{2\pi} u(t) \sin(wt) d(wt)$ $a_{1} = \frac{2}{\pi} \int_{0}^{\pi} u(t) \sin(wt) d(wt)$ $a_{1} = \frac{2}{\pi} \int_{\varphi_{2}}^{\pi} u(t) \sin(wt) d(wt) = \frac{2b}{\pi} (\cos \varphi_{1} - \cos \varphi_{2})$ $a_{1} = \frac{2}{\pi} \int_{\varphi_{1}}^{\pi} u(t) \sin(wt) d(wt) = \frac{2b}{\pi} (\cos \varphi_{1} - \cos \varphi_{2})$ $a_{1} = \frac{2b}{\pi} \left[\sin(\varphi_{2}) - \sin(\varphi_{1}) \right]$ Bestimmung $\varphi_{1}, \varphi_{2}, \quad A \sin \varphi_{1} = a \leftrightarrow \varphi_{1} = \arcsin \frac{a}{A}$

$$\cos \varphi_1 = +\sqrt{1 - \sin^2 \varphi_1}$$

$$\cos \varphi_1 = \sqrt{1 - \left(\frac{a}{A}\right)^2}$$

$$A \sin \varphi_2 = qa > \frac{\pi}{2}$$

$$\cos \varphi_2 = -\sqrt{1 - \left(\frac{qa}{A}\right)^2}$$

$$A\sin\varphi_2 = qa > \frac{\pi}{2}$$

$$\cos\varphi_2 = -\sqrt{1 - (\frac{qa}{A})^2}$$

$$a_{1} = \frac{2b}{\pi} \left(\sqrt{1 - (\frac{a}{A})^{2}} + \sqrt{1 - (\frac{qa}{A})^{2}} \right)$$

$$b_{1} = \frac{2b}{\pi} \left(\frac{qa}{A} - \frac{a}{A} \right) = \frac{2ba}{\pi A} (q - 1)$$

$$N(A) = \frac{a_{1} + jb_{1}}{A}$$

$$N(A) = \frac{a_1 + \jmath b_1}{A}$$

Spezialfälle

- q = 1 Dreipunktglied ohne Hysterese $N(A) = \frac{4b}{\pi A} \sqrt{1 (\frac{a}{A})^2}$ A > a
- $q=1, a=0 \Rightarrow$ Zweipunktglied ohne Hysterese $N(A)=\frac{4b}{\pi A} \quad A>0$
- q=-1 Zweipunktglied mit Hysterese $N(A)=\frac{4b}{\pi A}=\sqrt{1-(\frac{a}{A})^2}-j\frac{4ab}{\pi A^2}$ Allgemein: wenn keine Hysterese, dann Imaginäranteil (b_1) Null!

Lösung der Gleichung der harmonischen Balance 3.4

3.5 Stabilität von Dauerschwingungen

k:N(A)

$$G(jw) + N(A, w) + 1 = 0$$

analytisch:
 $N(A, w) = -\frac{1}{G(jw)} \Rightarrow \text{Re}(N(A, w)) = \text{Re}(-\frac{1}{G(jw)})$
 $\text{Re}(N(A, w)) = \text{Re}(-\frac{1}{G(jw)})$
graphisch in der komplexen Zahlenebene
 $G(jw) = -\frac{1}{N(A, w)}$

$$G(jw) = -\frac{1}{N(A, w)}$$
tive inverse Beschreibungsfunl

Dauerschwingungen? $Im(G(jw_0)) = 0$

 $\operatorname{Re}(G(jw_0)) < -a$

•
$$A = A_p \to \text{Dauerschwingung} \to N(A_p) = K_p$$

 $A = A_p + \Delta A$ keine Dauerschwingung mehr

4 Stabilität nach Ljapunov

bisher behandelt:

• Systeme 2. Ordnung

 $K = N(A_p + \Delta A)$

- Verhalten von Systemen höherer Ordnung schwer zu beurteilen
- Linearisierung von Ruhelagen Aussagen in Umgebung

Ljapunov-Theorie:

- Untersuchung der Stabilität von Ruhelagen, ohne die Trajektorie (Lösung) zu kennen
 - 1. indirekte Methode (Linearisierung)
 - 2. direkte Methode

4.1 Stabilitätsbegriff

Wir betrachten autonomes System der Form:

$$\dot{x} = f(x) \tag{4.1}$$

$$f: \mathbb{R}^n \to \mathbb{R}^n, x(0) = x_0 \in \mathbb{R}^n \text{ Anfangswert}$$

$$\phi_t(x)\dots$$
 Fluss von (4.1)), d.h. allgemeine Lösung Ruhelage $x^e \in \mathbb{R}^n$ $\dot{x} = 0 \Longrightarrow f(x^e) = 0 \Leftrightarrow \phi_t(x^e) = x^e$

Annahme (ohne Einschränkung): $x^e = 0$

(wenn $x^e \neq 0$, : Koordinatentransformation $\tilde{x} = x - x^e \Rightarrow \tilde{x}^e = 0$)

• **Definition 4.1:** Die Ruhelage $x^e = 0$ von (4.1)) heisst stabil (im Sinne von Ljapunov), wenn zu jedem $\varepsilon > 0$ ein $\delta(\varepsilon) > 0$ existiert, so dass

$$||x_0|| < \delta \Rightarrow ||\phi_t(x_0)|| < \varepsilon \quad \forall t \ge 0.$$

- Anschaulich: Wenn die Trajektorie $\phi_t(x_0)$ die Umgebung mit dem Radius ε nicht verlassen soll, so muss man nahe genug an der Ruhelage $x^0 = 0$ starten, nähmlich in einer Umgebung mit Radius δ .
- Bemerkung: Instabilität heisst hier nicht , dass die Trajektorie über alle Grenzen wächst,
- Stabilität heisst hier nicht, dass die Trajektorie gegen einem Punkt konvergiert bzw. einläuft.
- **Definition 4.2:** Die Ruhelage $x^0 = 0$ von (4.1))heisst, attraktiv/anziehend, wenn es eine Zahl $\delta > 0$ gibt, so dass

$$||x_0|| < \delta \Rightarrow \lim_{t \to \infty} \phi_t(x_0) = 0.$$

- **Definition 4.3:** Ist die Ruhelage $x^e = 0$ von 4.1 stabil und anziehend, dann nennt man sie asymptotisch stabil.
 - Hinweis: Eine anziehende Ruhelage muss nicht notwendigerweise stabil i.s. *Ljapunov* sein.

Problem bei Definition 4.3: Keine Zeitaussage wie schnell konvergiert das?

• **Definition 4.4:** Die Ruhelage $x^e = 0$ von (4.1)) heisst exponentiell stabil, wenn gilt

$$\exists \alpha, \lambda > 0, \quad \forall t \ge 0 : \underbrace{||\phi_t(x_0)||}_{x(t)} \le \alpha \underbrace{||x_0||}_{x(0)} e^{-\lambda t}$$

in einer Umgebung B im den Ursprung.

- Anschaulich: Trajektorie konvergiert mindestens so schnell gegen Ursprung wie eine Exponentialfunktion
- Beispiel: $\dot{x} = -(1 + \sin^2(x))x$

$$\Rightarrow x(t) = x(0) \cdot \exp\left(\int_{0}^{t} \underbrace{(1 + \sin^{2} x(\tau))}_{t} d\tau\right)$$

- $\Rightarrow |x(t)| \le x(0)e^{-t}$
- $\Rightarrow x^e = 0$ ist exponentiellstabil

Bisher nur lokale Aussagen

- **Definition 4.5:** Wenn die Eigenschaften der asympt./exp.Stabilität eine Ruhelage für alle Anfangsbedingungen (= auf ganz \mathbb{R}) gilt, so heisst die Ruhelage gloabl asympt./exp stabil.
 - Hinweis:
 - 1. linear: lokal = global
 - 2. nichtlinear: global eher selten
 - 3. asympt.: nur, wenn es genau 1 Ruhelage gibt

4.2 Direkte (zweite) Methode von Ljapunov

- Ziel: Stabilitätsaussage , ohne Trajektorie (Lösung) zu kennen.
- Grundidee:
 - Wenn Gesammtenergie eins mechan. elektr. chem. kontinuierlich abnimmt, dann muss das System zur Ruhelage kommen
 - Gesammtenergie: Skalar

4.2.1 Einführungsbeispiel

$$\begin{array}{ll} u_c = u - R \cdot i_R - L \frac{di_R}{dt} & G(u_c) > 0 \\ i_R = G \, u_c + C \frac{d \, u_c}{dt} & R(i_R) > 0 \\ \dot{u}_c = \frac{1}{C} (-G u_c + i_R) & C(u_c) > 0 \\ \dot{i}_R = \frac{1}{L} (-u_c - R \, i_R + U) & L(i_R) > 0 \end{array}$$

Kurzschluss : U = 0

Energie:

$$\begin{split} V &= \frac{1}{2} C u_c^2 + \frac{1}{2} L \, i_R^2 \\ \dot{V} &= C u_c \cdot \dot{u}_c + L i_R \dot{i}_R \\ &= u_c (-G u_c + i_R) + i_R (-U_L - R i_R) \\ &= -G u_c^2 + i_R u_c - i_R u_c - R i_R^2 \\ &= -G u_c^2 - R \, i_R^2 < 0 \text{ für } (u_c, i_R) \neq (0, 0) \end{split}$$

 \Rightarrow Energei wird kontinuierlich abgebaut!

Verallgemeinerung: Ljapunov-Methode

4.2.2 Positiv Definite Funktionen

- **Definition 4.5:** Sei $D \leq \mathbb{R}^n$ eine offene Umgeb. von 0. Eine Funktion $V: D \to \mathbb{R}$ heisst lokal positiv definit wenn
 - 1. V(x) ist stetig differenzierbar
 - 2. V(0)
 - 3. V(x) > 0 für alle $x \in D0$ gilt zusätztlich $D = \mathbb{R}^n$ und $\exists d > 0$ und $inf \quad V(x) > 0$, dann heisst V positiv definit ||x|| > dGenügt V in 3. lediglich der Bed.
 - 3' $V(x) \ge 0 \quad \forall x \in D0$ dann heisst V (lokal) positiv semidefinit
 - V(x) heisst (lokal) negativ (semi-) definit, wenn V(x) (lokal) positiv (semi) definit!
- Beispiel:
 - -V(x) aus Abschnitt 4.2.1 ist positiv definit
 - mechanische Energie eines Fadenpendels

Bewegungsgleichung

$$ml^2\ddot{x} + mgl\sin(x) = 0$$

 $V(x, \dot{x}) = \frac{1}{2}ml^2\dot{x}^2 + mgl(1 - \cos(x))$ positiv definit

– kinetische Energie des Fadenpendels:

$$V^*(x, \dot{x}) = \frac{1}{2}ml^2\dot{x}^2 \ge 0$$

nur positiv semidefinit: $V(x, \dot{x}) = 0$ für $\dot{x} = 0, x \neq 0$

- $V(x_1, x_2, x_3) = (x_1 + x_2)^2$ positiv semidefinit
- $-V(x_1,x_2,x_3)=x_1-2x_2+x_3^2$ nicht positiv semidefinit \Rightarrow nicht pos. definit

4.2.3 Stabilitätskriterium

- Satz 4.1: Sei $x^e = 0$ eine Ruhelage von (4.1) und $D \in \mathbb{R}^n$ eine offene Umgebung von 0. Existiert eine Funktion $D \to \mathbb{R}$ derart, dass
 - -V(x) ist auf D positiv definit L
 - $-\dot{V}(x)$ ist auf D negativ semidefinit

dann ist $x^e = 0$ lokal stabil

ist $\dot{V}(x)$ auf D sogar negtativ definit , dann ist x^e lokal asymptotisch stabil. Zu dem Fall heisst V Ljapunov Funktion

- Hinweis: $\dot{V}(x) = \mathbb{L}_f V(x)$ ist Lie-Ableitung von V entlang des Vektorfeldes f
- Vorgehen: Konstruiere zu einem System (4.1) eine Funktion V(x) und zeige, dass es sich um eine Ljapunov-Funktion handelt.
- Achtung: Kriterium ist nur hinreichend (wenn V(x) keine Ljapunov-Funktion, dann folgt daraus nicht, das $x_e = 0$ instabil!)
 - Beispiel: $\dot{x} = -g(x)$
 - * g(x) lokal Lipschitz auf (-a,a)
 - * $g(0) = 0 \text{ img1 } xg(x) > 0 \quad \forall x \neq 0 \land x \in (-a, a)$

$$V(x) = \int_{0}^{x} g(\xi)d\xi \rightarrow \text{positiv definit}$$

 $\dot{V}(x)=\mathbb{L}_g V(x)=\frac{\partial V}{\partial x}\dot{x}=\frac{\partial V}{\partial x}(-g(x))=-g^2(x)<0 \forall x\neq 0 \rightarrow \text{negativ definit}$ $x_e=0$ lokal asymptotisch stabil.

* Beispiel:
$$\begin{pmatrix} \dot{x}_1 = x_2 \\ \dot{x}_2 = -a\sin(x_1) - bx_2 \end{pmatrix}$$
 $a, b > 0$

Fadenpendel mit Reibung , $a = \frac{g}{7}, \dot{b}$: Reibung

Ljapunov-Funktion Kandidat

$$V(x) = a(1 - \cos(x_1)) + \frac{1}{2}x_2^2 \rightarrow \text{positiv definit}$$

$$\dot{V}(x) = a\sin(x_1)\dot{x}_1 + x_2\dot{x}_2 = ax_2\sin(x_1) - ax_2\sin(x_1) - bx_2^2$$

 $\dot{V}(x) = -bx_2^2$ negativ semidefinit $\dot{V}(x) = 0 \Leftrightarrow x_2 = 0 \land x_1 \in \mathbb{R}$ img2 negativ semidefinit (nur Stabilität nachgewiesen!)

- **Definition:** Sei $x_e = 0$ eine asymptotisch stabile Ruhelage von (4.1). Man nennt die Menge $B = \{x_0 \in \mathbb{R}^n | \lim_{t \to \infty} \phi_t(x_0) = 0\}$ den Einzugsbereich von x_e img3 Ist $B = \mathbb{R}^n$, so ist die Ruhelage global asymptotisch stabil
- **Definition:** Eine Menge $M \in \mathbb{R}^n$ heisst positiv invariante Menge des Systems $\dot{x} = f(x)$, wenn das Bild der Menge M under dem Fluss ϕ_t die Menge M selbst ist, d.h. $\phi_t(M) = M \,\forall t > 0$ img4 alles, was in M startet, (oder in M hineinläuft), verbleibt in M
- Satz 4.2: Sei $x_e = 0$ eine Ruhelage von (4.1). Existiert eine Funktion $V : \mathbb{R}^n \to \mathbb{R}$ mit
 - -V(x) positiv definit (global)
 - $-\dot{V}(x)$ negativ definit (global)
 - -V(x) radial unbeschränkt $\to \lim_{\|x\|\to 0} V(x) \to \infty$ Dann ist $x_e=0$ global asymptotisch stabil.
- Satz 4.3: Sei $x_e = 0$ Ruhelage des Sysems (4.1) und $V: D \to \mathbb{R}$ wenn

- $-V(x_e)=0$
- -V(x) > 0 für ||x|| klein
- $-\dot{V}(x)$ lokal positiv definit ist dann ist x_e instabil

4.3 Invarianzprinzip (Satz von La Salle)

- Problem: Direkte Methode von Ljapuvon weist häufig nur Stabilität, aber keine asymptotische Stabilität nach (wenn $\dot{V}(x)$ nur negativ semidefinit)
- Satz 4.4: für ein System des Typs (4.1) sei eine Funktion $V: \mathbb{R}^n \to \mathbb{R}$ gegeben
 - Für ein l > 0 ist $\Omega_e = \{x \in \mathbb{R}^n | V(x) \le l\}$ kompakt (abgeschlossen/beschränkt)
 - $\forall x \in \Omega_e \text{ gilt } \dot{V}(x) \leq 0$
 - $-R = \{x \in \Omega_e | \dot{V}(x) = 0\}$
 - grösste positiv invariante Menge M in R bestimmen \Rightarrow dann strebt für $t \to \infty$ jede Trajektorie, die in Ω_e startet, gegen M wenn $M = x_e$ dann ist x_e lokal asymptotisch stabil img5

$$\dot{x}_1 = x_2 \tag{a}$$

$$\dot{x}_2 = -a\sin(x_1) - bx_2 \tag{b}$$

$$R = \{ x \in \Omega_e | x_2 = 0 \}$$

(1)

$$x_2 \equiv 0$$
 \Rightarrow $\dot{x}_1 = 0$ $\dot{x}_2 = 0$ $(b) \Rightarrow x_1 = 0 \Rightarrow M = (0,0) = x_e$ $x_e = 0$ lokal asymptotisch stabil

4.4 Variable Gradientenmethode

- Ziel: Systematische Konstruktion einer Ljapunov-Funktion.
- Beispiel:

$$\dot{x}_1 = x_2$$
 ((4.3) Ruhelage $x_e = (0,0)$)
 $\dot{x}_2 = -x_2 - x_1^3$ (2)

Vorgabe eines Gradienten für skalare Funktion V(x)

$$(\frac{\partial V}{\partial \underline{x}})^T = \begin{pmatrix} \frac{\partial V}{\partial x_1} \\ \frac{\partial V}{\partial x_2} \end{pmatrix} = \begin{pmatrix} V_{11}(\underline{x})x_1 + V_{12}(\underline{x})x_2 \\ V_{21}(\underline{x})x_1 + V_{22}(\underline{x})x_2 \end{pmatrix}$$
 Integrabilitätsbedingungen müssen erfüllt sein
$$\frac{\partial}{\partial x_i} \frac{\partial V}{\partial x_j} = \frac{\partial}{\partial x_j} \frac{\partial V}{\partial x_i} \quad i \neq j$$

• Erinnerung: Ist $(\frac{\partial V}{\partial \underline{x}})^T$ ein Gradient von $V(\underline{x})$ so ist das Integral über $(\frac{\partial V}{\partial \underline{x}})^T$ wegunabhängig Für (4.3) lauten Integrabilitätsbedingung

$$\frac{\partial}{\partial x_2} = (V_{11}(\underline{x})x_1 + V_{12}(\underline{x})x_2) = \frac{\partial}{\partial x_1}(V_{21}(\underline{x})x_1 + V_{22}(\underline{x})x_2)$$

$$\frac{V_{11}(\underline{x})}{\partial x_2}x_1 = \underbrace{\frac{\partial V_{12}(\underline{x})}{\partial x_2}}_{=0} x_2 + V_{12}(\underline{x}) = \underbrace{\frac{\partial V_{21}(\underline{x})}{\partial x_1}}_{=0} x_1 + V_{21}(\underline{x}) + \underbrace{\frac{\partial V_{22}(\underline{x})}{\partial x_1}}_{=0} x_2$$

$$\begin{array}{rcl} V_{12}(\underline{x}) & = & V_{21}(\underline{x}) = b \\ \bullet \text{ Wahl: } V_{11}(\underline{x}) & = & a(x_1) \\ V_{22}(\underline{x}) & = & c(x_2) \end{array} \right\} \Rightarrow \frac{\partial V}{\partial \underline{x}} = \begin{pmatrix} a(x_1)x_1 + bx_2 \\ bx_1 + c(x_2)x_2 \end{pmatrix}$$

Festlegung von $a(x_1), c(x_2)$ und b, so dass V negativ definit

$$\dot{V} = \frac{\partial V}{\partial x_1} \dot{x}_1 + \frac{\partial V}{\partial x_2} \dot{x}_2 = -bx_1^4 + (b - c(x_2))x_2^2 + \underbrace{(a(x_1) - b - c(x_2)x_1^2)x_1x_2}_{term0}$$

muss negativ definit sein!

$$a(x_1) = b + c(x_2)x_1^2$$

 $c(x_2) = d$ damit $term0 = 0$

• liefert:
$$\dot{V} = -bx_1^4 + \underbrace{(b-d)}_{term1} x_2^2$$

• Wahl: $d > b \to \text{damit } term1 < 0$ negativ definit Bestimmung von V Integration von $(\frac{\partial V}{\partial x})^T$ über x_1, x_2 da wegunabhängig

$$V(x) = \int_{0}^{x_1} \frac{\partial V}{\partial x_1}(\xi, 0) + \int_{0}^{x_2} \frac{\partial V}{\partial x_2}(x_1, \xi) d\xi$$

$$\begin{split} V(x) = & \frac{d}{4}x_1^2 + \frac{b}{2}x_1^2 + bx_1x_2 + \frac{d}{2}x_2^2 \text{ muss positiv definit sein!} \\ = & \frac{b}{2}(x_1^2 + 2x_1x_2 + x_2^2) - \frac{b}{2}x_2^2 + \frac{d}{2}x_2^2 \\ = & \frac{d}{2}(x_1 + x_2)^2 + (\frac{d}{2} - \frac{b}{2})x_2^2 \end{split}$$

positiv deinit für b>0 und d>b

B: Regelung nichtlinearer Systeme

B.1: Stabilisierungsprobleme

- Asymptotische Stabilisierung Nichtlinearer System: $\dot{x} = f(x, u, t)$ Regelgesetz finden $u = g(\cdot, t)$ so dass wenn $x_0 \in \Omega$, $\phi_t(x_0) \to 0$ für $t \to \infty$ $u = g(x, t) \to \text{statisches Regelgesetz } \dot{u} = g(u, x, \dot{x}, t) \to \text{dynamisches Regelgesetz}$ wenn $\phi_t(x_0) \to x_d$ gewünscht, dann Transformation $x^* = x - x_d$
- $\bullet \ \ Folgerege lungsproblem$

System: $\dot{x} = f(x, u, t)$ y = h(x)

Solltrajektorie für $y: y_d(t)$

Regelgesetz $u = g(\cdot, t)$, so dass, wenn $x_0 \in \Omega$ $y(t) - y_d(t) \to 0$ für $t \to \infty$ und x beschränkt.

B.2: Einführungbeispiel

System:

$$\dot{x} = ax - bx^3 + u$$

$$y = x$$

$$a, b > 0$$

$$x, u \in \mathbb{R}$$

Regelgesetz 1 Wunsch u so dass geschlossene Kreis folgender Dynamik genügt

$$\dot{x} = -kx \quad k > 0$$

Wahl:

$$u = -ax + bx^3 - kx$$
 Reglerparameter: k
 $u = -(k+a)x + bx^3$ $k > 0$

Regelgesetz kompensiert auch den Term $-bx^3$.

Sinnvoll? Nein, denn $-bx^3$ ist eine nichtlineare Dämpfung, die dafür sorgt dass x stets beschränkt ist, auch wenn ax für Instabilität sorgt.

Folgendes Regelgesetz 2 reicht

$$u = -(k+a)x$$
 $\rightarrow \dot{x} = -kx - bx^3$ $x = 0$ asymptotisch stabil

	+Vorteil	-Nachteil
Regelgesetz 1	exponentielle Stabilisierung	Implementierungsaufwand
Regelgesetz 2	Einfachheit	nur asymptotisch Stabilisierung

B.3: Vorsteuerung

In nichtlinearer Regelungsaufgaben ist die Vorsteuerung häufig wichtig

- liefert Information für Überführungsaufgaben
- kompensiert bekannte Störungen Bild1. Regler kompensiert nur Fehler in der Steuerung und Störungen Bild2

5 Intergrator-Backstepping

5.1 Einführungsbeispiel

System:

$$\dot{x}_1 = x_1^2 - x_1^3 + x_2 \tag{5.3a}$$

$$\dot{x}_2 = u \tag{5.3b}$$

 \bullet Schritt 1: Stabilisierung des 1. Teilsystems

 $\dot{x}_1 = x_1^2 - x_1^3 + \underbrace{x_2}_{=\alpha(x_1)}$ \rightarrow Betrachtung als neuer Eingang mit dem Regelgesetz $x_2 = \alpha(x_1)$

$$\rightarrow \dot{x}_1 = x_1^2 - x_1^3 + \alpha(x_1) \tag{5.4}$$

sinnvolle Wahl (vergl. Abschnitt **B.2**)

$$\alpha(x_1) = -x_1^2 - k_1 x_1 \qquad k_1 > 0$$

Damit Dynamik geschlossenen Kreises des 1. Teilsystems: $\dot{x}_1 = -x_1^3 - k_1 x_1$ Stabil?

$$V_1(x_1) = \frac{1}{2}x_1^2$$
 positiv definit radial unschränkt $V_1(x_1) = \frac{1}{2}x_1^2$

$$\dot{V}_1(x_1) = x_1 \dot{x}_1 = -x_1^4 - k_1 x_1^2$$
 negativ definit

ja global asymptotisch stabil

• Schritt 2: Fehler in $\alpha(x_1)$ $\rightarrow x_2$ muss sich so verhalten , wie durch $\alpha(x_1)$ gefordert. Real ergibt sich jedoch Fehler:

$$z_2 := x_2 - \alpha(x_1)$$

= $x_2 + x_1^2 + k_1 x_1$

 z_2 muss gegen Null gehen, damit $x_2=\alpha(x_1)$ erfüllt und somit auch $x_1\to 0$ geht. Also wird Differentialgleichung für z_2 benötigt

$$\dot{z}_2 = \dot{x}_2 + 2x_1\dot{x}_1 + k_1\dot{x}_1
= \underbrace{\dot{x}_2}_{5.3b} + (2x_1 + k_1)\underbrace{\dot{x}_1}_{5.3a}
= \underbrace{\dot{x}_2}_{2} = u + (2x_1 + k_1)(x_1^2 - x_1^3 + \underbrace{z_2 + \alpha(x_1)}_{2})$$

System in neuen Koordinaten

$$\dot{x}_1 = x_1^2 - x_1^3 + z_2 - \underbrace{x_1^2 - k_1 x}_{\alpha(x_1)}$$

$$\dot{x}_1 = -x_1^3 - k_1 x_1 + z_2$$

$$\dot{z}_2 = u + (2x_1 + k_1)(-x_1^3 - k_1 x_1 + z_2)$$
(5.5a)
$$(5.5b)$$

• Schritt 3: Wie u wählen , damit $z_2 \to 0$

$$V_2(x_1, z_2) = V_1(x_1) + \frac{1}{2}z_2^2$$

$$\dot{V}_2(x_1, z_2) = x_1\dot{x}_1 + z_2\dot{z}_2 = \underbrace{-x_1^4 - k_1x_1^2 + x_1z_2 + z_2(u + (2x_1 + k_1)(-x_1^3 - k_1x_1 + z_2))}_{\rightarrow \text{ muss negativ definit sein } \rightarrow u!}$$

$$\begin{array}{l} \dot{V}_2 \text{ ist zum Beispiel wie folgt negativ definit} \\ \dot{V}_2(x_1,z_2) = -x_1^4 - k_1 x_1^2 - \underbrace{k_2 z_2^2}_{u \text{ so wählen,dass das gilt}} k_1, k_2 > 0 \\ u \text{ so wählen,dass das gilt} \\ u = -k_2 z_2 - (2x_1 + k_1)(-x_1^3 - k_1 x_1 + z_2) - x_1 \\ \rightarrow \text{Regelgesetz mit } z_2 = x_2 + x_1^2 + k_1 x_1 \text{ und Parameter } k_1, k_2 > 0 \end{array}$$

5.2 Verallgemeinerung

Systemklasse

$$\frac{\dot{x}_1}{\dot{x}_2} = \underline{f}(\underline{x}_1) + \underline{g}(\underline{x}_1)x_2$$

$$\underline{x}_1 \in \mathbb{R}^n$$

$$x_2 \in \mathbb{R}, u \in \mathbb{R}$$

• Schritt 1: Stabilisierung 1.Teilsystem $x_2 = \alpha(\underline{x}_1)$ fiktives Regelgezetz $\underline{\dot{x}}_1 = \underline{f}(\underline{x}_1) + \underline{g}(\underline{x}_1)\alpha(\underline{x}_1)$ Ruhelage $\underline{x}_1 = 0$ ist zu stabilisieren $\Rightarrow \alpha(\underline{x}_1)$ entsprechend wählen. Ljapunov-Funktion $V(\underline{x}_1)$ positiv definit üblicherweise:

$$V(\underline{x}_1) = \frac{1}{2}x_{11}^2 + \dots + \frac{1}{2}x_{1n}^2$$

$$\dot{V}(\underline{x}_1) = \frac{\partial}{\partial \underline{x}_1}V(\underline{x}_1)(\underline{f}(\underline{x}_1) + \underline{g}(\underline{x}_1)\alpha(\underline{x}_1))$$

 $\alpha(\underline{x}_1)$ so, dass gilt $\dot{V}(\underline{x}_1) \leq W(\underline{x}_1) \leq 0$

• Schritt 2: Fehler zwischen x_2 und $\alpha(\underline{x}_1)$ Fehler: $z_2 = x_2 - \alpha(\underline{x}_1) \to$ neue Koordinate alte Koordinaten. (\underline{x}_1, x_2) neue Koordinaten. (\underline{x}_1, z_2) Stabilisieren:

$$\underline{x}_1 = 0$$
$$z_2 = 0$$

siehe oben damit Fehler zwischen x_2 und $\alpha(\underline{x}_1) = 0$ System in neuen Koordinaten

$$\begin{split} & \underline{\dot{x}_1} = \underline{f}(\underline{x}_1) + \underline{g}(\underline{x}_1)(z_2 + \alpha(\underline{x}_1)) \\ & \dot{z}_2 = \dot{x}_2 - \dot{\alpha}(\underline{x}_1) \\ & = u - \frac{\partial \alpha(\underline{x}_1)}{\partial \underline{x}_1} (f(\underline{x}_1) + \underline{g}(\underline{x}_1)(z_2 + \alpha(\underline{x}_1))) \end{split}$$

• Schritt 3: Wahl von u so, dass auch $z_2=0$ asymptotisch stabil. $V_2(\underline{x}_1,z_2)=V_1(\underline{x}_1)+\frac{1}{2}z_2^2$ positiv definit, radial unbeschränkt

$$\begin{split} \dot{V}_2(\underline{x}_1,z_2) = & \frac{\partial V_1}{\partial \underline{x}_1} \dot{\underline{x}}_1 + z_2 \dot{z}_2 \\ = & \frac{\partial V_1}{\partial \underline{x}_1} \left(\underline{f}(\underline{x}_1) + \underline{g}(\underline{x}_1)(z_2 + \alpha(\underline{x}_1)) \right) + z_2 \left(u - \frac{\partial \alpha(\underline{x}_1)}{\partial \underline{x}_1} (\underline{f}(\underline{x}_1) + \underline{g}(\underline{x}_1)(z_2 + \alpha(\underline{x}_1))) \right) \\ = & \underbrace{\frac{\partial V_1}{\partial x_1} (\underline{f}(\underline{x}_1) + \underline{g}(\underline{x}_1)\alpha(\underline{x}_1))}_{\leq W_1(\underline{x}_1) \text{ negativ definit}} + \underbrace{\frac{\partial V_1}{\partial \underline{x}_1} \underline{g}(\underline{x}_1)z_2 + z_2 \left(u - \frac{\partial \alpha(\underline{x}_1)}{\partial \underline{x}_1} (\underline{f}(\underline{x}_1) + \underline{g}(\underline{x}_1))(z_2 + \alpha(\underline{x}_1)) \right)}_{\text{negativ definit}} \end{split}$$

 $u \to \text{so, dass } \dot{V}_2$ negativ definit fehlt etwas hier

Anmerkungen:

a) Systeme des Typs

$$\underline{x}_1 \in \mathbb{R}^n$$

 $x_2, u \in \mathbb{R}$

$$\begin{aligned} \underline{\dot{x}_1} &= \underline{f}(\underline{x}_1) + \underline{g}(\underline{x}_1)x_2 \\ \dot{x}_2 &= f_2(\underline{x}_1, x_2) + g_2(\underline{x}_1, x_2)u \end{aligned}$$

Wahl eines neuen Eingangs u^* mit $u^* = \frac{1}{g_2(\underline{x}_1,x_2)}(u-f_2(\underline{x}_1,x_2))$ führt auf

$$\frac{\dot{x}_1}{\dot{x}_2} = \underline{f}(\underline{x}_1) + \underline{g}(\underline{x}_1)x_2$$

$$\dot{x}_2 = u^*$$

b) Systeme in strict feedback form

Backsteppingschnitte mehrfach von oben nach unten wiederholen. Einführungsbeispiel:

$$\dot{x}_1 = ax_1^2 - x_1^3 + x_2$$
 a ist unbestimmmt
$$\dot{x}_2 = u$$

$$0 < a_{min} \le a \le a_{max} \text{ Normalwert für Entwurf } a_0$$

1. Fiktiver Eingang: $x_2 = \alpha(x_1)$

$$V_1(x_1) = \frac{1}{2}x_1^2$$

$$\dot{V}_1 = x_1(ax_1^2 - x_1^3 + \alpha(x_1))$$

$$= -x_1^4 + ax_1^3 + x_1\alpha(x_1)$$

Wahl: $\alpha(x_1) = -a_0 x_1^2 - k_1 x_1$ $\dot{V}_1 = -x_1^4 - k_1 x_1^2 +$ $\underbrace{(a-a_0)x_1^3}_{\text{kann negativ Definitheit von \dot{V} zerstören}$

kann k_1 so gewählt werden, dass

 \dot{V}_1 negativ definit?

$$\dot{V}_1 = -x_1^4 + (a - a_0)x_1^3 - k_1x_1^2
= -x_1^2(x_1^2 - (a - a_0)x_1 + k_1)
= -x_1^2(x_1^2 - (a - a_0)x_1 + \frac{(a - a_0)^2}{4} - \frac{(a - a_0)^2}{4} + k_1)
= -x_1^2\left((x_1 - \frac{a - a_0}{2})^2 + k_1 - \frac{(a - a_0)^2}{4}\right)$$

fehlt einiges

Sliding-Mode-Control 6

Gleitregime-Regelung!

Grundidee: Es ist einfacher ein System erster Ordnung zu regeln, als ein System n ter Ordnung n > 1

• Problem n—ter Ordnung in Problem 1.Ordnung überführen. Vorgehen: System auf Gleitfläche bringen und entlang dieser in die Ruhelage überführen. Im1.

6.1Einführungsbeispiel

System:

$$\dot{x}_1 = x_2 \tag{6.1a}$$

$$\dot{x}_2 = f(x) + q(x)u$$
 $q(x) > 0$ (6.1b)

Ruhelage: $\underline{x}_e = (0,0)$

Ruhelage von $x_1:0$ stabil, wenn gelten würde

$$\dot{x}_1 = -ax_1 \qquad a > 0$$

Wie Realisierung? Definition einer Gleitfläche

$$s = x_2 + ax_1 \tag{6.2}$$

Dann gilt mit (6.1a)

$$\dot{x}_1 = x_2 = s - ax_1$$

Wenn sichergestellt wird, dass s=0, dann gilt tatsächlich $\dot{x}_1=-ax_1$ $\Rightarrow x_1\to 0$ für $t\to \infty$, da s=0 gilt auch wegen (6.2). $x_2\to 0$ für $x_1\to 0$ Wie stellt man sicher, dass s=0? Es gilt:

$$s = x_2 + ax_1$$

$$\dot{s} = \dot{x}_2 + ax_1 - f(x) + g(x)u + ax_2$$
(6.3)

Es soll gelten: s=0, also Stabilität von s=0 mit (6.3) untersuchen. Direkte Methode von Ljapunov

 $V = \frac{1}{2}s^2$

$$\dot{V} = s\dot{s} = s(f(x) + g(x)u + ax_2) < 0 \qquad \forall \quad s \neq 0$$

$$f(x) + g(x)u + ax_2 \begin{cases} < 0 & \text{für } s > 0 \\ > 0 & \text{für } s < 0 \end{cases}$$

$$u \begin{cases} < -\frac{f(x) + ax_2}{g(x)}g(x) & \text{für } s > 0 \\ > -\frac{f(x) + ax_2}{g(x)} & \text{für } s < 0 \end{cases}$$
(6.4)

$$u = -\frac{f(x) + ax_2}{g(x)} - Ksgn(s) \qquad K > 0$$

$$\text{mit } s = ax_1 + x_2$$

$$(6.4)$$

6.2 Verallgemeinerung

Systemklasse:

 $f(\underline{x})$ nicht genau bekannt, aber nach oben durch stetige Funktion beschränkt g(x) nicht genau bekannt, aber von bekannten festen Vorzeichen und durch bekannte stetige Funktion beschränkt!

Ziel: Zustand $\underline{x} = (x_1, \dots, x_n)^T$ einer Solltrajektorie $\underline{x}_{ref} = (x_{1,ref}, \dots, x_{n,ref})^T$ nichtführen.

Regelabweichung:

$$\frac{\underline{x}}{\underline{x}} = \underline{x} - \underline{x}_{ref}$$

$$\tilde{y} = x_1 - x_{1,ref}$$

$$s(\underline{x}, t) = \left(\frac{t}{dt} + \right)^{n-1} \tilde{y}$$
(6.7)

$$= \frac{d^2}{dt^2}\tilde{y} + 2\lambda \frac{d}{dt}\tilde{y} + \lambda^2 \tilde{y}$$

Es soll gelten: $s(\underline{x},t)=0\approx$ Bewegung auf der Gleitfläche $s=0\Rightarrow (\frac{d}{dt}+\lambda)^{n-1}\tilde{y}=0$ lineare Differenzialgleichung (n-1) ter Ordnung Lösung: $\tilde{y}=0\Rightarrow \underline{\tilde{x}}=0$

 \rightarrow Skalarer s auf 0 halten, Reduktion eines Problems n.ter Ordnung ($\underline{x} = \underline{x}_{ref}$) auf ein Problem 1.Ordnung (s = 0)

Forderung, damit s = 0 gehalten wird.

$$V = \frac{1}{2}s^2 \to V = s\dot{s} < 0 \qquad \forall \quad s \neq 0$$

bzw. mit Sicherheitsabstand $\dot{V} = s\dot{s} \le -\eta |s| < 0 \qquad \forall \quad s \ne 0$

$$\frac{1}{2}\frac{d}{dt}s^2 \le -\eta|s| \text{ sogenannte Gleitbedingung} \tag{6.8}$$

Reglerentwurf auf Basis von (6.7) und (6.8) Beispiel:

$$\ddot{x} = f(x, \dot{x}, t) + u$$
mit $f(x, \dot{x}, t) = -a(t)\dot{x}^2 \cos(3x)$

$$y = x$$

$$1 \le a(t) \le 2$$

- 1. Wahl der Gleitfläche (n = 2) $s = (\frac{d}{dt} + \lambda)\tilde{y} = \dot{\tilde{y}} + \lambda \tilde{y} \qquad \tilde{y} = y y_{ref}$ $\dot{s} = \ddot{\tilde{y}} + \lambda \ddot{\tilde{y}}$ $\dot{s} = \underbrace{f(x, \dot{x}, t) + u \ddot{x}_{ref}(t) + \lambda \dot{\tilde{x}}(t)}_{\ddot{x} = \ddot{\tilde{y}}} + \lambda \dot{\tilde{x}}$
- 2. Gleitbedingung $\frac{1}{2}\frac{d}{dt}s^2 \leq -\eta |s|$ $s\dot{s} = s(f(x,\dot{x},t) + u \ddot{x}_{ref}(t) + \lambda \dot{\tilde{x}}(t)) \leq \eta |s|$ $-a(t)\dot{x}^2\cos(3x) + u \ddot{x}_{ref} + \lambda \tilde{x} \begin{cases} \leq -\eta & \text{für } s > 0 \\ \geq \eta & \text{für } s < 0 \end{cases}$ $a(t) \to \text{nicht genau bekannt } a \text{ darf nicht explizit im Regelgesetz vorkommen}$ $u\begin{cases} \leq \ddot{x}_{ref} \lambda \tilde{x} + a\dot{x}^2\cos(3x) \eta & \text{für } s > 0 \\ \geq \ddot{x}_{ref} \lambda \tilde{x} + a\dot{x}^2\cos(3x) + \eta & \text{für } s < 0 \end{cases}$ $u\begin{cases} \leq \ddot{x}_{ref} \lambda \tilde{x} \dot{x}^2a|\cos(3x)| \eta \\ \geq \ddot{x}_{ref} \lambda \tilde{x} + \dot{x}^2a|\cos(3x)| + \eta \end{cases}$

 $1 \le a \le 2$ worstcase a = 2

$$1 \le a \le 2 \text{ worstcase } a = 2$$

$$u \begin{cases} \le \ddot{x}_{ref} - \lambda \tilde{x} - \dot{x}^2 2 |\cos(3x)| - \eta \\ \ge \ddot{x}_{ref} - \lambda \tilde{x} + \dot{x}^2 2 |\cos(3x)| + \eta \end{cases} \Rightarrow u = x_{ref} - \lambda \tilde{x} - (2\dot{x}^2 |\cos(3x)| + \eta) sgn(s) \text{ mit } s = \dot{y} + \lambda y$$

 $u \leq \ddot{x}_{ref} - \lambda \tilde{x} - 2\dot{x}^2 |\cos(3x)| - \eta \leq \ddot{x}_{ref} - \lambda \tilde{x} - \dot{x}^2 |\cos(3x)| - \eta \leq \ddot{x}_{ref} - \lambda \tilde{x} + a\dot{x}^2 \cos(3x) - \eta$ Reglerparameter:

 $\eta \to \text{stellt ein wie schnell } s \to 0$

 λ stellt Fehlerparameter in \tilde{y} ein

Feedbacklinearisierung 7

7.1Fehlt etwas

fehlt etwas 7.1.1

System:

$$\dot{x}_1 = \sin(\dot{x}_2) + (x_2 + 1)x_3
\dot{x}_2 = \dot{x}_1^2 + u
y = x_1$$
(7.5)

Schritt 1: y solange ableiten, bis u auftaucht.

$$y = x_{1}$$

$$\dot{y} = \dot{x}_{1} = \sin x_{2} + (x_{2} + 1)\dot{x}_{3}$$

$$= \underbrace{(\cos(x_{2}) + x_{3})(x_{1}^{5} + x_{3}) + (x_{2} + 1)x_{1}^{2} + (x_{2} + 1)u}_{f_{1}(\underline{x})}$$
(7.6)

u taucht in 2. Ableitung von y auf \Rightarrow man sagt, das System habe den relativen Grad 2. Schritt 2:

Wahl von u so, dass ein linearer Zusammenhang zwischen \ddot{y} und einem neuen (fiktiven) Eingang

Einfachst möglichstes Wunschsystem: $\ddot{y} = v$

Also Wahl u:

$$u = \frac{1}{x_2 + 1} (v - f_1(\underline{x})) \tag{7.7}$$

$$\Rightarrow \ddot{y} = v \tag{7.8}$$

Schritt 3: Stabilisierung von (7.8) durch geeignete Wahl von v (lineare Methoden!) $y \to y_{ref}$ für $t \to \infty$

$$v = \ddot{y}_{ref} - K_1(\dot{y} - \dot{y}_{ref}) - K_0(y - y_{ref}) = 0$$
 (7.9b)
 $K_1, K_0 > 0 \Rightarrow \text{ stabil } = y \rightarrow y_{ref}$

Schritt 4: Stellgesetz angeben (7.9a) in (7.7)

$$u = \frac{1}{x_2 + 1} (\ddot{\tilde{y}} + K_1 \dot{\tilde{y}} + K_0 \tilde{y} - f_1(\underline{x}))$$

$$\tilde{y} = y - y_{ref}$$
(7.10)

den System wird eine lineare Fehlerdynamik aufgeprägt Schritt 5: Überprüfung 2 Probleme

- a) wenn $x_2 = -1$ dann Stellgesetz (7.10) bzw. (7.7) nicht definiert! Ausserdem ist der relative Grad dann nicht mehr 2 (nicht wohldefiniert)
- b) Regler sorgt für eine stabile Dynamik 2.Ordnung, das System ist jedoch 3.Ordnung ⇒ Es gibt eine interne Dynamik, die durch die Eingangs-Ausgangs-Linearisierung (unsichtbar) wird, wenn diese instabil, so ist der Regler damit ungeeignet!

7.1.2 Relativer Grad

Das System (7.4) hat an der Stelle $x_0 \in D$ den relativen Grad r, wenn gilt

$$L_g L_F^K h(\underline{x}) = 0 \text{ für } K = 0, 1, \dots, r-2$$

$$L_G L_F^{r-1} h(\underline{x}) \neq 0 \qquad \forall x \in D$$

Erinnerung $L_fh(x)=\Delta h\underline{f}=\frac{\partial h}{\partial x}\underline{f}(x)$ entlang des Vektorfeldes \overline{f}

$$\begin{split} L_f{}^ih = & L_f(L_f{}^{i-1}h) \\ L_gL_fh = & \Delta(L_fh)g \\ y = & h(\underline{x}) \\ \dot{y} = & \frac{\partial h}{\partial \underline{x}} \cdot \dot{\underline{x}} = \frac{\partial h}{\partial \underline{x}} (\underline{f}(\underline{x}) + \underline{g}(x)u) \\ = & \frac{\partial h}{\partial \underline{x}} \underline{f}(x) + \underbrace{\frac{\partial h}{\partial \underline{x}} \underline{g}(x)}_{0} u \\ \ddot{y} = & L_f{}^2h(\underline{x}) + \underbrace{L_gL_fh(\underline{x})}_{=0} u \end{split}$$

fehlt einiges

7.1.3 Verallgemeinerter Entwurf

System (7.4), r < n

Schritt 1: Eingangs-Ausgangs-Zusammenhang erzeugen (y solange ableiten, bis u auftaucht)

$$y = h(\underline{x})$$

$$\vdots$$

$$y^{(r)} = L_f^r h(\underline{x}) + L_g L_f^{r-1} h(\underline{x}) u$$

mit $L_g L_f^{r-1} h(\underline{x}) \neq 0$ $\forall x \in D$ Schritt 2: u so, dass ein Zusammenhang entsteht. Wunsch:

$$y^{(r)} = V \Rightarrow u = \frac{1}{L_g L_f^{r-1} h(\underline{x})} (V - L_f^r h(\underline{x}))$$
 (7.11)

Schritt 3: Stabilisierung von (7.11) durch Wahl von V $V=y_{ref}^{(r)}-K_{r-1}\tilde{y}^{(r-1)}-\cdots-K_1\tilde{\tilde{y}}-K_0\tilde{y}$ $\tilde{y}=y-y_{ref}$ mit K_{r-1},\ldots,K_0 so, dass Wurzeln des char. Polynoms alle in der LHE liegen!