B9A4 Sei $(P_i)_{i \in I}$ eine Familie von Wahrscheinlichkeitsmaßen auf \mathbb{R}^d . Zeigen Sie, dass die folgenden Aussagen äquivalent sind:

- 1. $(P_i)_{i \in I}$ ist straff
- 2. Für alle Projektionen π_1, \ldots, π_d ist $(P_i^{\pi_k})_{i \in I}$ straff.

Sei zunächst $(P_i)_{i\in I}$ straff. Dann gibt es für alle $\varepsilon>0$ eine kompakte Menge $K\in\mathbb{R}^d$, sodass für alle $i\in I$ gilt $P_i(K)>1-\varepsilon$. Da für alle $k\leq d$ gilt, dass $K\subset\pi_k^{-1}\big(\pi_k(K)\big)$, gilt aufgrund der Monotonie des Maßes auch für alle $\varepsilon>0$ und alle $i\in I$ dass $P_i^{\pi_k}\big(\pi_k(K)\big)>1-\varepsilon$. Damit ist für $(P_i^{\pi_k})_{i\in I}$ für alle Projektionen π_1,\ldots,π_d straff.

Seien nun für alle Projektionen π_1, \ldots, π_d die Familien der Bildmaße $(P_i^{\pi_k})_{i \in I}$ straff. Dann gibt es für alle $\varepsilon > 0$ Kompakta K_1, \ldots, K_d , sodass für alle $i \in I$ gilt $P_i^{\pi_k}(K_k) = P_i(\pi_k^{-1}(K_k)) > 1 - \varepsilon$. Dann gibt es auch abgeschlossene Kugeln $\overline{B}_r(0) \supset K_k$, sodass $P_i^{\pi_k}(\overline{B}_r(0)) > 1 - \varepsilon$. Betrachte $K = \underset{k=1}{\overset{d}{\sum}} \overline{B}_r(0)$. Dann gilt für alle $i \in I$, dass $P_i(K) = P_i(\{\omega \in \mathbb{R}^d \mid \forall k \leq d \mid \omega_k \mid \leq r\})$. Entsprechend gilt, dass

$$P_i(K^c) = P_i \left(\bigcup_{k=1}^d \{ |\omega_k| > r \} \right).$$

durch die $\sigma\textsc{-Subadditivität}$ der Maße P_i können wir abschätzen

$$\leq \sum_{k=1}^{d} P_i(|\omega_k| > r)$$