ICSE - X

1.

Topic: Quadratic Equations

2.	A quadratic equation (a) $x^2 + 4 = 0$							
3.	If one root of the equal (a) 3:1	s three times the other, (c) 16:3	other, then b^2 : ac = (d) 16: 1					
4.	If one root of the equation (a) 6	ation $2x^2 + kx + 4 = 0$ is (b) - 6	s 2, then the other root (c) - 1	is (d) 1				
5.	If one root of the equation (a) 3	ation $x^2 + ax + 3 = 0$ is (b) -3	1, then its other root is (c) 2	s (d) -2				
6.	If a and b are roots of (a) a	The equation $x^2 + ax - b$ (b) b	+ b = 0, then a . b = (c) -b	(d) -a				
7.	The values of k for whoots are	ne values of k for which the quadratic equation $16x^2 + 4kx + 9 = 0$ has real and equal ots are						
	(a) $6, -\frac{1}{6}$	(b) 36, - 36	(c) 6, - 6	(d) $\frac{3}{4}$, $-\frac{3}{4}$				
8. If th	e equation $x^2 + 4x + k$ (a) $k < 4$	$t = 0$ has real and distinct (\mathbf{b}) k > 4	nct roots, then (c) $k \ge 4$	(d) $k \le 4$				
9.		$a + 1 = 0$ has two disting $(\mathbf{b}) a < 2$	ct roots, then (c) $ a > 2$	(d) None of these				
10.	If the equation $9x^2 + 6$	6kx + 4 = 0 has equal r	oots, then the roots are	both equal to				
	$(a) \pm \frac{2}{3}$	(b) $\pm \frac{3}{2}$	(c) 0	(d) <u>+</u> 3				
11.	If $ax^2 + bx + c = 0$ has	$ax^2 + bx + c = 0$ has equal roots, then $c =$						
	(a) $\frac{-b}{2a}$	(b) $\frac{b}{2a}$	(c) $\frac{-b^2}{4a}$	(d) $\frac{b^2}{4a}$				
12.	If the equation $ax^2 + 2$ (a) $a = \pm 1$	2x + a = 0 has two disti (b) $a = 0$		(d) a = -1, 0				
13.	The positive value of k for which the equation $x^2 + kx + 64 = 0$ and $x^2 - 8x + k = 0$ will both have real roots, is							
	(a) 4	(b) 8	(c) 12	(d) 16				
14.	The value of $\sqrt{6+\sqrt{6}}$		(a) 2	(d) 2.5				
	(a) 4	(b) 3	(c) - 2	(d) 3.5				

If a and b are roots of the equation $x^2 + ax + b = 0$, then a + b =

(c) -b

(d) -a

(b) b

15. If 3 and -5 are the root of QE then it satisfy the

(a) x^2-9	$(b) x^2 - 9$ (b) $x^2 - 25$		(d) $x^2 + 2x - 15$					
16. Find the values of k if the roots of the given x^2 - Ka + 625 = 0 are equal.								
(a) 30	(b) 20	(c) 60	(d) 50					
17. If sum of roots is 4 and product is also 4 find QE								
(a) $x^2-4x+4=0$	(b) $x^2+4x+4=0$	(c) $x^2-2x+4=0$	(d) $x^2-4x-4=0$					
18. If one root of the quadra								
(a) 10	(b) -10	e) 5 (d) - 5					
19. If the equation $kx^2 - 2kx$	r + 6 = 0 has equal	roots than find the v	alue of k					
(a) 4	(b) 6	(c) 8	(d) 10					
20. Find the values of p^2 for	which the quadrat	ic equation $4x^2 + px$	+3 = 0 has equal roots.					
(a) 36	(b) 24	(c) 48	(d) 72					
21. Find the nature of the ro			$-10x + \sqrt{3} = 0$					
(a) real	(b) real and equa	al						
(c) unreal	(d) rational							
22. Determine the positive v	value of ' k ' for wh	nich the equation x^2 +	kx + 64 = 0 and					
$x^2 - 8x + k = 0 \text{ will both ha}$	ve real and equal r	roots						
(a) 20	(b) 16	(c) 32	(d) 8					
23. $3x^2 - 4\sqrt{3}x + 4 = 0$ has	real solution	ns						
(a) 0	(b) 1	(c) 2	(d) 3					
24. Sum of two number is 29	0 and their product	t is 96. Find the number	ers					
(a) 15,5	(b) 6,14	(c) 16,6	(d) 12,8					
25. If 8 is a member of m ² -1	, $2m$ and m^2+1 , fin	nd m						
(a) 15	(b) 4	(c) 8	(d) 19					

1	D	2	В	3	С	4	D	5	Α
6	В	7	С	8	Α	9	С	10	Α
11	D	12	Α	13	D	14	В	15	С
16	D	17	Α	18	В	19	В	20	С
21	С	22	Α	23	С	24	D	25	В