实验五:逻辑门与触发器

专业班级:通信2101班

姓名: 罗畅

学号: U202113940

实验名称

逻辑门与触发器

实验目的

- 1. 掌握OC门电路设计测试方法;
- 2. 掌握用触发器设计实现时序逻辑电路 (计数器) ;
- 3. 掌握译码器的设计实现方法;
- 4. 掌握逻辑电路的调试和测试方法。

实验元器件

数字集成电路: 74LS03, 74HC00, 74HC74, 74HC10; 电阻510Ω, 1KΩ, 1.6KΩ; LED

实验原理

OC门电路

因OC门输出端是悬空的,使用时一定要在输出端与电源之间接一电阻 R_L 。

$$R_{Lmax} = rac{V_{CC} - V_{OH_{min}}}{nI_{OH} - m'I_{IH}} \ R_{Lmin} = rac{V_{CC} - V_{OL_{max}}}{I_{OL} - mI_{IL}}$$

流水灯电路

流水灯电路如图所示

用D触发器设计实现模4计数器

用与非门设计实现2-4线译码器

器件使用规则

TTL

1. 电源电压 $+V_{CC}$: 只允许在 $+5V\pm5\%$ 范围内,超过该范围可能会损坏器件或使逻辑功能混乱。

- 2. 电源滤波: TTL器件的高速切换,会产生电流跳变,其幅度约4mA~5mA。该电流在公共走线上的压降会引起噪声干扰,因此,要尽量缩短地线以减小干扰。可在电源端并接一个100uF的电容作为低频滤波及1个0.01uF-0.1uF的电容作为高频滤波。
- 3. 输出端的连接:不允许输出端直接接+5V或接地。除OC门和三态(TS)门外,其它门电路的输出端不允许并联使用,否则,会引起逻辑混乱或损坏器件。
- 4. 输入端的连接:输入端串入一只 $1kΩ \sim 10kΩ$ 电阻与电源连接或直接接电源电压+ V_{CC} 来获得高电平输入。直接接地为低电平输入。或门、或非门等TTL电路的多余的输入端不能悬空,只能接地;与门、与非门等TTL电路的多余输入端可以悬空(相当于接高电平),但易受到外界干扰,可将它们接+ V_{CC} 或与其它输入端并联使用,输入端并联时,从信号获取的电流将增加。

CMOS

- 1. 平均传输延迟时间 t_{pd} : CMOS电路的平均传输延迟时间比TTL电路的长得多,通常 t_{pd} ~200ns。目前74HC系列与TTL基本相当
- 2. 直流噪声容限 V_{NH} 和 V_{NL} : CMOS器件的噪声容限通常以电源电压+ V_{DD} 的30%来估算。当 + V_{DD} =5V时, $V_{NH} \approx V_{NL}$ =1.5V,可见CMOS器件的噪声容限比TTL电路的要大得多,因 此,抗干扰能力也强得多。提高电源电压+ V_{DD} 是提高CMOS器件抗干扰能力的有效措施。
- 3. 电源电压 $+V_{DD}$: 电源电压不能接反,规定 $+V_{DD}$ 接电源正极, V_{SS} 接电源负极(通常接地)。
- 4. 输出端的连接:输出端不允许直接接 $+V_{DD}$ 或地,除三态门外,不允许两个器件的输出端连接使用。
- 5. 输入端的连接:输入信号 V_i ,应为 $V_{SS} \leq V_i \leq +V_{DD}$,超出该范围会损坏器件内部的保护二极管或绝缘栅极,可在输入端串接一只限流电阻(10~100)k Ω ;多余的输入端不能悬空,应按逻辑要求直接接 V_{DD} 或 V_{SS} (地);工作速度不高时,允许输入端并联使用。

实验任务

OC门实验

- 1. 组装如图5.1.16所示电路,取发光二极管D正向导通压降 V_F =1.5V,导通电流 I_F =2mA,为使电路正常工作,限流电阻 R_D =____,负载电阻 R_{Lmax} =___, R_L min=__,最后选取 R_d =___ R_L =___。
- 2. 调整信号源,使其输出1kHz、 $4V正方波,将其连接到<math>v_i$ 点,使用示波器"直流耦合"输入方式观测波形,在坐标纸上画出 v_i, v_o, v_{o1} 及 v_{o2} 的波形,并标出 V_{OH} 、 V_{OL} 的电平值。

图 5.1.16 OC 门驱动负载的实验电路

流水灯电路设计

用触发器和逻辑门设计一个流水灯电路。电路框图如图5.3.6所示,其中 CLR 为异步清零端, CLR = 0时,计数器清零, CLR = 1时,计数器正常计数。译码器的真值表如表5.3.2所示。设计要求为:

- 1. 列出计数器电路的状态转换表,写出状态方程和驱动方程,画出逻辑电路图和时序图;
- 2. 列出译码器的逻辑方程, 画出逻辑电路图;
- 3. 根据图5.3.6,将计数器模块和译码器模块连接起来, CP 接1Hz正方波,对设计结果进行实验测试;
- 4. 将 CP 改为1kHz正方波,示波器用"直流耦合"输入方式,用 Y_3 作为触发源,在坐标纸上画出 EN =0时 CP、 Q_1 、 Q_0 及译码器输出 Y_0 ~ Y_3 的波形,并总结观测多个相关信号时序关系的方法。

表 5.3.2 2/4 线译码器真值表

EN	Q ₁	Q ₀	Y ₃	Y ₂	Y_1	Y_0
0	0	0	1	1	1	0
0	0	1	1	1,5	0	1
0	1,	0	1	0	1	4
0	1	1	0	1	1	1
1	×	×	-15	1	1	1

实验记录

OC门实验

计算 R_L 、 R_D

$$R_d = rac{V_{OH_{min}} - V_F}{I_F} = rac{(2.4 - 1.5)V}{2mA} = 450\Omega$$
 $R_{L_{max}} = rac{V_{CC} - V_{OH_{min}}}{nI_{OH} + m'I_{IH}} = rac{(5 - 2.4)V}{(1 imes 100 + 2 imes 50)\mu A} = 1200\Omega$ $R_{L_{min}} = rac{V_{CC} - V_{OL_{max}}}{I_{OL} - mI_{IL}} = rac{(5 - 0.4)V}{(8 - 2 imes 0.4)\mu A} = 639\Omega$

最后选取 R_d =510 Ω , R_L =1k Ω 。

 v_i, v_o, v_{o1}, v_{o2} 的波形

各波形如下图所示:

流水灯电路设计

模4计数器

模4计数器状态转换表:

$Q_1^nQ_0^n$	$Q_1^{n+1}Q_0^{n+1}$
00	01
01	10
10	11
11	00

状态方程:

$$Q_1^{n+1}=Q_0^n\oplus Q_1^n$$
 $Q_0^{n+1}=\overline{Q_0^n}$

驱动方程:

$$D_1 = Q_0 \oplus Q_1$$
$$D_0 = \overline{Q_0}$$

逻辑电路图:

状态图:

2/4线译码器

逻辑方程:

$$egin{aligned} Y_0 &= \overline{En\overline{Q_1}\ \overline{Q_0}} \ Y_1 &= \overline{En\overline{Q_1}\ Q_0} \ Y_2 &= \overline{EnQ_1}\overline{Q_0} \ Y_3 &= \overline{EnQ_1Q_0} \end{aligned}$$

逻辑电路图

$\mathsf{CP},\ Q_0,\ Q_1,\ Y_0~Y_3$ 波形

实验小结

通过本实验,我增强了对数字电路的理解,熟悉了数字元器件和仪器的特点和用法,复习并更好的理解了数电的知识。

数电实验和模电实验最大的不同,我认为在插板接线,模电实验的插板接线有很多各种各样的元器件,而数电实验插板主要是接线比较多,如果接线不仔细,很容易出现错误,需要格外小心。