PG-SDF

论文: 《Small Steps and Level Sets: Fitting Neural Surface Models with Point Guidance》

地址: https://ieeexplore.ieee.org/document/10656020

年份: CVPR 2024

Introduction

任务: 表面重建

技术贡献:

(1) 提出新的算法流程,通过逐步移动点来引导 SDF 的拟合,防止模型陷入 local minima。

Method

文章认为当 SDF 初始化的形状与目标形状相差太大时,标准的 loss 不能给出很好的梯度下降方向,导致模型会陷入 local minima (如上图 No Guidance 部分所示)。因此为了防止上述情况的出现,文章设计了一个流程,通过逐步引导的方式使得模型慢慢收敛到目标形状。

这里只关注核心的算法流程,关于 Shape Reachability 等内容可以看原文。

记输入的点云数据为 \mathcal{X} ,重建的表面为 \mathcal{R} ,模型为 $\Phi(x,\theta)$, \hat{v} 表示单位化的向量。文章想要用一些 guiding points \mathcal{Y} 逐步地引导模型靠近 \mathcal{X} ,如上图右侧所示。

Initialization

首先是对点云做 recenter 和 scale 处理,然后对于 $x\in\mathcal{X}$,取 4 个最近邻的距离,然后取这些距离中前 5% 的平均值作为采样半径 $\delta_{\mathcal{X}}$ 。

然后就是对模型的几何初始化,不同于以往的参数初始化,这里相当于要去得到原始的 guiding points $\mathcal Y$,然后用这些点训练模型,得到初始的形状。由于后续步骤需要用到法向,因此初始化时也需要计算相应的法向。我们想让模型初始化为 exterior level set of radius $\delta_{\mathrm{init}}=16\delta_{\mathcal X}$ 。取这样大的一个半径有 2 个好处: (1) 因为 $\delta_{\mathrm{init}}\gg\delta_{\mathcal X}$ 对于任何的 $y\in\Omega_{\delta_{\mathrm{init}}}$,都能得到比较好的法向近似值;(2) 大的半径初始化的形状不会很复杂。

得到 \mathcal{Y} 的具体做法是,先从包围 \mathcal{X} 的一个球开始,进行稠密采样,然后将这些点朝**随机方向**向内移动直到距离 $d(y,\mathcal{X}) \leq \delta_{\text{init}}$ 。然后针对这些点,找到其在 \mathcal{X} 上的最近点 $x_{\mathcal{X}}^{\star}(y)$,将 y 沿着两点形成的直线方向向外移动直到离 \mathcal{X} 的最近点的距离恰好是 δ_{init} 。下图就是一个初始化的例子。

Moving the Guiding Points

现在描述朝着 $\mathcal X$ 如何移动 guiding points $y\in\mathcal Y$ 。我们将 guiding points 按小步长 (方便模型优化) 一步步移动到

exterior level set of radius δ 即 Ω_{δ} ,使 SDF 先收敛到 Ω_{δ} ,然后再缩小 δ 再进行下一阶段的一步步移动。

在这个阶段中 y 的移动方向是 $\mathcal R$ 的内法线方向,然后由于我们想要移动的位置是 $\mathcal X$ 的 exterior level set Ω_δ ,所以我们会为每个 y 沿着内法线方向找到 $\mathcal X$ 上最近点 $x^\star(y)\in\mathcal X$,然后用这个点来确定在 Ω_δ 上的目标位置 $\omega^\star(y)$ 。

首先要在内法线方向 $-n_y$ $(n_y=\widehat{\nabla_y\Phi(y)})$ 上找到 $\mathcal X$ 的最近点,我们的搜索范围是一个圆锥 + 一个半球 (上图红线部分),半球的作用是防止 y 距离 $\mathcal X$ 过近导致有些点不在圆锥范围内。 定义一个阈值 $a_y\geq 0$ 和余弦相似度 s,圆锥区域为

$$C_y = \{z | s(-n_y, z-y) \geq a_y\}$$

半球区域为

$$H_y=\{z|\|x-y\|_2\leq 2\delta_{\mathcal{X}}\wedge s(-n_y,z-y)\geq 0\}$$

在这个范围内找到 $x^*(y)$

然后就是将 y 移动到 Ω_δ 上,由于 $\mathcal X$ 代表 zero level set,因此 Ω_δ 的近似位置可以是从 x^\star 向 y 移动 δ 距离得到 :

$$\omega^{\star}(y) = (\|x^{\star} - y\|_2 - \delta)(\widehat{x^{\star} - y})$$

然后设置一个最大步长 s_m 使得移动的距离小方便优化:

$$y' = y - \operatorname{clip}(\langle \omega^\star(y), -n_y
angle, s_m) n_y$$

最后是我们要重复多少个阶段,我们设置 $\delta=\delta_0$ 作为第一个阶段的目标,然后进行一步一步的移动和优化,当 \mathcal{R} 在 Ω_δ 处收敛时,将 δ 减半作为下一个阶段的目标,不断重复这样的循环直到 $\delta=\delta_f$ 。我们设置 $\delta_0=4\delta_\mathcal{X}$, $\delta_f=\delta_\mathcal{X}$ 。到达 $\delta=\delta_f$ 后就不再通过 y 进行优化,直接在 \mathcal{X} 上进行优化。

Optimizing the Network

这一节讲了在移动过程中损失函数的设置,详见原文。 整个算法流程如下:

```
Algorithm 1 Point-Guided SDF
  1: procedure PG-SDF(\mathcal{X})
            Center \mathcal{X}, scale \mathcal{X} and compute sampling radius \delta_{\mathcal{X}}
           \mathcal{Y}, \mathcal{N}_{\mathcal{Y}}, \Phi \leftarrow \text{Initialization}(\mathcal{X}, \delta_{\text{init}})
 3:
           \delta \leftarrow \delta_0
 4:
           while \delta > \delta_f do
 5:
                 Move \mathcal{Y} using Eq. (14)
                                                                              ⊳See Sec. 4.1
 6:
 7:
                 Optimize \Phi to match \mathcal{Y}
                                                                              See Sec. 4.2
                 Resample \mathcal{Y} on new \mathcal{R}
 8:
                 Query \Phi for normals \mathcal{N}_{\mathcal{V}}
 9:
10:
                 if \Phi's zero level set has not changed then
                       \delta \leftarrow \frac{1}{2}\delta
11:
                 end if
12:
13:
           end while
            Optimize \Phi on \mathcal{X}
                                                                               See Sec. 4.2
14:
            return \Phi
15:
16: end procedure
```

Interpretation as a Homotopy Method

关于方法可行性的理论证明。TBD.

EXPERIMENTS

评估指标: squared Chamfer Distance (CD), intersection-over-union (IoU)

数据集: ShapeNet 中的一个预处理好的 watertight 子集

Ablation Study

Guidance	Squared Chamfer ↓			IoU ↑		
$\mathcal{V}_0 \ \mathcal{Y} \ \delta_0 \ \delta_f$	Mean	Median	Std	Mean	Median	Std
x x	2.41e-3	1.18e-3	2.65e-3	0.2795	0.2255	0.2078
✓ x	2.63e-4	1.91e-4	2.31e-4	0.5694	0.6091	0.2278
√ √ 4 2	9.89e-5	7.70e-5	7.95e-5	0.8657	0.9163	0.1219
√ √ 1 1	8.08e-5	7.52e-5	5.66e-5	0.8538	0.9386	0.1602
√ √ 4 1	5.51e-5	4.87e-5	3.12e-5	0.9153	0.9598	0.0906

从 IoU 的指标来看,使用本文初始化的方法而非球初始化会显著提高效果,提早结束一步步移动的阶段会损害效果。