Informe Parcial 2

Informática II

Daniel Perez Gallego CC. 1193088770 Jorge Montaña Cisneros CC. 1007327968

Departamento de Ingeniería Electrónica y
Telecomunicaciones
Universidad de Antioquia
Medellín
Septiembre de 2021

Contents

1	Análisis	1
	1.1 Análisis del problema	1
	1.2 Tareas a realizar	2
	1.3 Algoritmo implementado	2
	1.4 Consideraciones	3
2	Clases implementadas	4
	2.1 Imagen	4
	2.2 RGB	4
3	Esquema de las clases	4
4	Código	4
5	Estructura del circuito montado	4
6	Problemas presentados	4

1 Análisis

1.1 Análisis del problema

Al analizar detenidamente el parcial y las instrucciones planteadas, observamos que el mayor reto consistiría en la modificación del tamaño de las imágenes, adaptándolo a un tamaño específico, ya sea aumentando o disminuyendo la proporción.

Si la imagen dada tiene un tamaño menor al esperado, se hará un proceso parecido al de eliminar, pero en este caso se aumentarán las filas/columnas colocandolas continuas a ellas mismas hasta quedar con la proporción deseada.

Para reducir el tamaño de la imagen, implementamo un método para dividir el número de filas y columnas de la imagen original por el tamaño deseado.

Mientras más pequeña sea la matriz de LEDs, menos información deberemos exportar, será más eficiente y fácil, sin embargo, la imagen se volverá dificil de reconocer para el usuario.

1.2 Tareas a realizar

1.3 Algoritmo implementado

Diagrama de flujo del algoritmo que implemenatremos para la solución del problema (No código)

1.4 Consideraciones

Una de las consideraciones más importantes que encontramos fué una correcta identificación de cada columna y fila de píxeles RGB, y mirar el modo de separar cada una.

El método para generar el .txt final y enviarlo a tinkercad.

2 Clases implementadas

2.1 Imagen

2.2 RGB

Es la encargada de almacenar los pixeles de la imagen

3 Esquema de las clases

4 Código

5 Estructura del circuito montado

Nuestro primer diseño de la matriz de LEDs en Tinkerdad, el cual pensamos realizarla de 16×16

6 Problemas presentados