Multiple Linear Regression

```
In [1]: import numpy as np
   import pandas as pd
   import matplotlib.pyplot as plt
   from sklearn.model_selection import train_test_split
   from sklearn.linear_model import LinearRegression
   from sklearn.metrics import mean_squared_error, r2_score,accuracy_score
```

Boston House Price Dataset

```
In [2]: df = pd.read_csv("E:\MCA\sem_3\ML_Lab\programs\week4\\boston_house_prices.csv")
df.head()
```

Out[2]:

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	В	LSTAT	MEDV
0	0.00632	18.0	2.31	0	0.538	6.575	65.2	4.0900	1	296	15.3	396.90	4.98	24.0
1	0.02731	0.0	7.07	0	0.469	6.421	78.9	4.9671	2	242	17.8	396.90	9.14	21.6
2	0.02729	0.0	7.07	0	0.469	7.185	61.1	4.9671	2	242	17.8	392.83	4.03	34.7
3	0.03237	0.0	2.18	0	0.458	6.998	45.8	6.0622	3	222	18.7	394.63	2.94	33.4
4	0.06905	0.0	2.18	0	0.458	7.147	54.2	6.0622	3	222	18.7	396.90	5.33	36.2

```
In [3]: df.isnull().sum()
```

```
Out[3]: CRIM
                     0
         ΖN
                     0
         INDUS
                     0
         CHAS
                     0
         NOX
         RM
                     0
         AGE
         DIS
                     0
         RAD
         TAX
                     0
         PTRATIO
                     0
                     0
         LSTAT
                     0
         MEDV
```

dtype: int64

```
In [4]: df.shape
```

Out[4]: (506, 14)

```
y = df['MEDV'].values
In [6]:
Out[6]: array([24. , 21.6, 34.7, 33.4, 36.2, 28.7, 22.9, 27.1, 16.5, 18.9, 15. ,
               18.9, 21.7, 20.4, 18.2, 19.9, 23.1, 17.5, 20.2, 18.2, 13.6, 19.6,
               15.2, 14.5, 15.6, 13.9, 16.6, 14.8, 18.4, 21. , 12.7, 14.5, 13.2,
               13.1, 13.5, 18.9, 20., 21., 24.7, 30.8, 34.9, 26.6, 25.3, 24.7,
               21.2, 19.3, 20. , 16.6, 14.4, 19.4, 19.7, 20.5, 25. , 23.4, 18.9,
               35.4, 24.7, 31.6, 23.3, 19.6, 18.7, 16., 22.2, 25., 33., 23.5,
               19.4, 22. , 17.4, 20.9, 24.2, 21.7, 22.8, 23.4, 24.1, 21.4, 20. ,
               20.8, 21.2, 20.3, 28., 23.9, 24.8, 22.9, 23.9, 26.6, 22.5, 22.2,
               23.6, 28.7, 22.6, 22. , 22.9, 25. , 20.6, 28.4, 21.4, 38.7, 43.8,
               33.2, 27.5, 26.5, 18.6, 19.3, 20.1, 19.5, 19.5, 20.4, 19.8, 19.4,
               21.7, 22.8, 18.8, 18.7, 18.5, 18.3, 21.2, 19.2, 20.4, 19.3, 22. ,
               20.3, 20.5, 17.3, 18.8, 21.4, 15.7, 16.2, 18., 14.3, 19.2, 19.6,
               23. , 18.4, 15.6, 18.1, 17.4, 17.1, 13.3, 17.8, 14. , 14.4, 13.4,
               15.6, 11.8, 13.8, 15.6, 14.6, 17.8, 15.4, 21.5, 19.6, 15.3, 19.4,
               17. , 15.6, 13.1, 41.3, 24.3, 23.3, 27. , 50. , 50. , 50. , 22.7,
               25., 50., 23.8, 23.8, 22.3, 17.4, 19.1, 23.1, 23.6, 22.6, 29.4,
               23.2, 24.6, 29.9, 37.2, 39.8, 36.2, 37.9, 32.5, 26.4, 29.6, 50.
               32., 29.8, 34.9, 37., 30.5, 36.4, 31.1, 29.1, 50., 33.3, 30.3,
               34.6, 34.9, 32.9, 24.1, 42.3, 48.5, 50., 22.6, 24.4, 22.5, 24.4,
               20., 21.7, 19.3, 22.4, 28.1, 23.7, 25., 23.3, 28.7, 21.5, 23.,
               26.7, 21.7, 27.5, 30.1, 44.8, 50. , 37.6, 31.6, 46.7, 31.5, 24.3,
               31.7, 41.7, 48.3, 29., 24., 25.1, 31.5, 23.7, 23.3, 22., 20.1,
               22.2, 23.7, 17.6, 18.5, 24.3, 20.5, 24.5, 26.2, 24.4, 24.8, 29.6,
               42.8, 21.9, 20.9, 44., 50., 36., 30.1, 33.8, 43.1, 48.8, 31.,
               36.5, 22.8, 30.7, 50., 43.5, 20.7, 21.1, 25.2, 24.4, 35.2, 32.4,
               32. , 33.2, 33.1, 29.1, 35.1, 45.4, 35.4, 46. , 50. , 32.2, 22. ,
               20.1, 23.2, 22.3, 24.8, 28.5, 37.3, 27.9, 23.9, 21.7, 28.6, 27.1,
               20.3, 22.5, 29., 24.8, 22., 26.4, 33.1, 36.1, 28.4, 33.4, 28.2,
               22.8, 20.3, 16.1, 22.1, 19.4, 21.6, 23.8, 16.2, 17.8, 19.8, 23.1,
               21., 23.8, 23.1, 20.4, 18.5, 25., 24.6, 23., 22.2, 19.3, 22.6,
               19.8, 17.1, 19.4, 22.2, 20.7, 21.1, 19.5, 18.5, 20.6, 19. , 18.7,
               32.7, 16.5, 23.9, 31.2, 17.5, 17.2, 23.1, 24.5, 26.6, 22.9, 24.1,
               18.6, 30.1, 18.2, 20.6, 17.8, 21.7, 22.7, 22.6, 25., 19.9, 20.8,
               16.8, 21.9, 27.5, 21.9, 23.1, 50., 50., 50., 50., 50., 13.8,
               13.8, 15. , 13.9, 13.3, 13.1, 10.2, 10.4, 10.9, 11.3, 12.3, 8.8,
                7.2, 10.5, 7.4, 10.2, 11.5, 15.1, 23.2, 9.7, 13.8, 12.7, 13.1,
               12.5, 8.5, 5., 6.3, 5.6, 7.2, 12.1,
                                                          8.3, 8.5,
               27.9, 17.2, 27.5, 15., 17.2, 17.9, 16.3,
                                                          7., 7.2,
                                                                     7.5, 10.4,
                8.8, 8.4, 16.7, 14.2, 20.8, 13.4, 11.7,
                                                         8.3, 10.2, 10.9, 11. ,
                9.5, 14.5, 14.1, 16.1, 14.3, 11.7, 13.4, 9.6, 8.7, 8.4, 12.8,
               10.5, 17.1, 18.4, 15.4, 10.8, 11.8, 14.9, 12.6, 14.1, 13., 13.4,
               15.2, 16.1, 17.8, 14.9, 14.1, 12.7, 13.5, 14.9, 20., 16.4, 17.7,
               19.5, 20.2, 21.4, 19.9, 19. , 19.1, 19.1, 20.1, 19.9, 19.6, 23.2,
               29.8, 13.8, 13.3, 16.7, 12. , 14.6, 21.4, 23. , 23.7, 25. , 21.8,
               20.6, 21.2, 19.1, 20.6, 15.2, 7., 8.1, 13.6, 20.1, 21.8, 24.5,
               23.1, 19.7, 18.3, 21.2, 17.5, 16.8, 22.4, 20.6, 23.9, 22. , 11.9])
```

Iteration 1

i. test size=0.3 random state=0

```
In [7]: x_train, x_test, y_train, y_test = train_test_split(x,y,test_size = 0.3,random_state = 0)
```

```
In [8]: | model= LinearRegression()
 In [9]: |model.fit(x_train,y_train)
Out[9]:
           ▼ LinearRegression
          LinearRegression()
In [10]: y predict = model.predict(x test)
In [11]: | mse = mean_squared_error(y_test, y_predict)
          r2 = r2_score(y_test, y_predict)
          print(f"Mean Squared Error: {mse:.2f}")
          print(f"R-squared: {r2:.2f}")
          Mean Squared Error: 27.20
          R-squared: 0.67
In [12]: model.score(x,y)
Out[12]: 0.7378284679886178
In [13]: | y test = np.array(y test).flatten()
         y_predict = np.array(y_predict).flatten()
          pred y df = pd.DataFrame({"Actual Values":y test, "predicted values": y predict, "Difference"
         pred_y_df
Out[13]:
               Actual Values predicted values Difference
            0
                       22.6
                                 24.935708
                                           -2.335708
                       50.0
            1
                                 23.751632 26.248368
            2
                       23.0
                                 29.326383
                                           -6.326383
            3
                        8.3
                                 11.975346 -3.675346
                       21.2
                                 21.372725
                                           -0.172725
            4
                         ...
                                        ...
                                                  ...
           147
                       36.2
                                 27.811077
                                            8.388923
           148
                       11.0
                                 14.506816
                                           -3.506816
                       7.2
           149
                                  7.573699
                                           -0.373699
           150
                       22.8
                                 28.334807
                                          -5.534807
           151
                       28.7
                                 25.043412
                                            3.656588
          152 rows × 3 columns
In [14]: model.coef
Out[14]: array([-1.21310401e-01, 4.44664254e-02, 1.13416945e-02, 2.51124642e+00,
                 -1.62312529e+01, 3.85906801e+00, -9.98516565e-03, -1.50026956e+00,
                  2.42143466e-01, -1.10716124e-02, -1.01775264e+00, 6.81446545e-03,
                 -4.86738066e-01])
```

```
In [15]: model.intercept_
Out[15]: 37.93710774183272

In [16]: plt.scatter(y_test, y_predict)
    plt.xlabel('Actual Values')
    plt.ylabel('Predicted Values')
    plt.title('Actual vs. Predicted Values')
    plt.show()
```



```
In [17]: plt.scatter(y_test, y_predict)
    plt.plot([min(y_test), max(y_test)], [min(y_predict), max(y_predict)], color='red', linew:
    plt.xlabel('Actual Values')
    plt.ylabel('Predicted Values')
    plt.title('Actual vs. Predicted Values')
    plt.show()
```


ii. test_size=0.3 random_state=42

```
In [24]: y_test = np.array(y_test).flatten()
    y_predict = np.array(y_predict).flatten()
    pred_y_df = pd.DataFrame({"Actual Values":y_test, "predicted values": y_predict, "Differed pred_y_df
```

Out[24]:

	Actual Values	predicted values	Difference
0	23.6	28.648960	-5.048960
1	32.4	36.495014	-4.095014
2	13.6	15.411193	-1.811193
3	22.8	25.403213	- 2.603213
4	16.1	18.855280	- 2.755280
147	17.1	17.403672	-0.303672
148	14.5	13.385941	1.114059
149	50.0	39.983425	10.016575
150	14.3	16.682863	-2.382863
151	12.6	18.285618	- 5.685618

152 rows × 3 columns

```
In [25]: model.coef_
Out[25]: array([-1.33470103e-01, 3.58089136e-02, 4.95226452e-02, 3.11983512e+00,
```

```
Out[25]: array([-1.334/0103e-01, 3.58089136e-02, 4.95226452e-02, 3.11983512e+00, -1.54170609e+01, 4.05719923e+00, -1.08208352e-02, -1.38599824e+00, 2.42727340e-01, -8.70223437e-03, -9.10685208e-01, 1.17941159e-02, -5.47113313e-01])
```

```
In [26]: model.intercept_
```

Out[26]: 31.63108403569373

```
In [27]: plt.scatter(y_test, y_predict)
    plt.xlabel('Actual Values')
    plt.ylabel('Predicted Values')
    plt.title('Actual vs. Predicted Values')
    plt.show()
```



```
In [28]: plt.scatter(y_test, y_predict)
    plt.plot([min(y_test), max(y_test)], [min(y_predict), max(y_predict)], color='red', linew:
    plt.xlabel('Actual Values')
    plt.ylabel('Predicted Values')
    plt.title('Actual vs. Predicted Values')
    plt.show()
```


Iteration 2

i. test_size=0.4 random_state=0

```
In [33]: mse = mean_squared_error(y_test, y_predict)
          r2 = r2_score(y_test, y_predict)
          print(f"Mean Squared Error: {mse:.2f}")
          print(f"R-squared: {r2:.2f}")
          Mean Squared Error: 25.79
          R-squared: 0.69
In [34]: model.score(x,y)
Out[34]: 0.7361196190442469
In [35]: y_test = np.array(y_test).flatten()
          y predict = np.array(y predict).flatten()
          pred_y_df = pd.DataFrame({"Actual Values":y_test, "predicted values": y_predict, "Different

          pred_y_df
Out[35]:
               Actual Values predicted values Difference
             0
                       22.6
                                 24.581552
                                           -1.981552
                       50.0
                                 24.516293 25.483707
             1
             2
                       23.0
                                 29.713799
                                           -6.713799
             3
                        8.3
                                 12.511327
                                           -4.211327
             4
                       21.2
                                 21.349654
                                           -0.149654
                         ...
            •••
                                        ...
                                 27.219549
           198
                       22.1
                                            -5.119549
                                 40.065076
           199
                       46.0
                                            5.934924
           200
                       22.9
                                 29.489264
                                            -6.589264
           201
                       20.2
                                 16.588711
                                            3.611289
           202
                       43.1
                                 37.210154
                                            5.889846
          203 rows × 3 columns
In [36]: model.coef_
Out[36]: array([-1.03747356e-01, 5.58589924e-02, 5.88240770e-02, 2.50523544e+00,
                  -1.90284888e+01, 3.25353601e+00, -3.22150522e-03, -1.57603462e+00,
                  2.58716068e-01, -1.14681299e-02, -1.10777478e+00, 5.50051783e-03,
                 -5.59569992e-01])
In [37]: model.intercept_
```

Out[37]: 45.481419593251005

```
In [38]: plt.scatter(y_test, y_predict)
    plt.xlabel('Actual Values')
    plt.ylabel('Predicted Values')
    plt.title('Actual vs. Predicted Values')
    plt.show()
```



```
In [39]: plt.scatter(y_test, y_predict)
    plt.plot([min(y_test), max(y_test)], [min(y_predict), max(y_predict)], color='red', linew:
    plt.xlabel('Actual Values')
    plt.ylabel('Predicted Values')
    plt.title('Actual vs. Predicted Values')
    plt.show()
```


ii.test_size=0.4 random_state=42

R-squared: 0.71

```
In [45]: model.score(x,y)
Out[45]: 0.7362442925015322
```

```
In [46]: y_test = np.array(y_test).flatten()
y_predict = np.array(y_predict).flatten()
pred_y_df = pd.DataFrame({"Actual Values":y_test, "predicted values": y_predict, "Different pred_y_df")
```

Out[46]:

	Actual Values	predicted values	Difference
0	23.6	28.700257	-5.100257
1	32.4	37.275424	-4.875424
2	13.6	14.450663	-0.850663
3	22.8	25.734356	- 2.934356
4	16.1	18.497639	- 2.397639
198	16.7	19.366259	- 2.666259
199	13.8	11.536608	2.263392
200	22.9	28.982763	-6.082763
201	15.3	21.744787	-6.444787
202	27.5	32.575230	-5.075230

203 rows × 3 columns

-1.44513558e+01, 3.80534175e+00, -1.79553906e-02, -1.48968845e+00, 2.53016064e-01, -1.00262729e-02, -8.86408743e-01, 1.08462004e-02, -5.75917903e-01])

```
In [48]: model.intercept_
```

Out[48]: 34.33026076546706

```
In [49]: plt.scatter(y_test, y_predict)
    plt.xlabel('Actual Values')
    plt.ylabel('Predicted Values')
    plt.title('Actual vs. Predicted Values')
    plt.show()
```



```
In [50]: plt.scatter(y_test, y_predict)
    plt.plot([min(y_test), max(y_test)], [min(y_predict), max(y_predict)], color='red', linew:
    plt.xlabel('Actual Values')
    plt.ylabel('Predicted Values')
    plt.title('Actual vs. Predicted Values')
    plt.show()
```


Iteration 3

test_size=0.5 random_state=0

```
In [55]: mse = mean_squared_error(y_test, y_predict)
          r2 = r2_score(y_test, y_predict)
          print(f"Mean Squared Error: {mse:.2f}")
          print(f"R-squared: {r2:.2f}")
          Mean Squared Error: 25.30
          R-squared: 0.67
In [56]: model.score(x,y)
Out[56]: 0.733888612575677
In [57]: y_test = np.array(y_test).flatten()
          y predict = np.array(y predict).flatten()
          pred_y_df = pd.DataFrame({"Actual Values":y_test, "predicted values": y_predict, "Different

          pred_y_df
Out[57]:
               Actual Values predicted values Difference
             0
                       22.6
                                 24.709603
                                           -2.109603
                       50.0
                                 25.126314 24.873686
             1
             2
                       23.0
                                 30.765033
                                           -7.765033
             3
                        8.3
                                 12.414055
                                           -4.114055
             4
                       21.2
                                 21,295995
                                           -0.095995
                         ...
            •••
                                        ...
                       32.2
                                 32.604891
                                           -0.404891
           248
                                 12.787651
                                            0.712349
           249
                       13.5
           250
                       17.9
                                  1.206608
                                           16.693392
           251
                       13.3
                                 19.442771
                                           -6.142771
           252
                       11.7
                                 15.319865 -3.619865
          253 rows × 3 columns
In [58]: model.coef_
Out[58]: array([-1.22697052e-01, 5.76835439e-02, 7.42047961e-02, 3.38949970e+00,
                  -1.65391519e+01, 3.57730248e+00, -2.98033902e-03, -1.55759520e+00,
                  2.50098217e-01, -9.73850155e-03, -1.12527834e+00, 6.85073312e-03,
                 -5.92410460e-01])
In [59]: model.intercept_
```

Out[59]: 41.58607683099513

```
In [60]: plt.scatter(y_test, y_predict)
    plt.xlabel('Actual Values')
    plt.ylabel('Predicted Values')
    plt.title('Actual vs. Predicted Values')
    plt.show()
```



```
In [61]: plt.scatter(y_test, y_predict)
    plt.plot([min(y_test), max(y_test)], [min(y_predict), max(y_predict)], color='red', linew:
    plt.xlabel('Actual Values')
    plt.ylabel('Predicted Values')
    plt.title('Actual vs. Predicted Values')
    plt.show()
```


ii.test_size=0.5 random_state=42

R-squared: 0.69

```
In [67]: model.score(x,y)
```

Out[67]: 0.7325693559556025

```
In [68]: y_test = np.array(y_test).flatten()
y_predict = np.array(y_predict).flatten()
pred_y_df = pd.DataFrame({"Actual Values":y_test, "predicted values": y_predict, "Different pred_y_df
```

Out[68]:

	Actual Values	predicted values	Difference
0	23.6	28.280203	-4.680203
1	32.4	37.739436	-5.339436
2	13.6	15.407600	- 1.807600
3	22.8	25.441452	- 2.641452
4	16.1	18.605815	- 2.505815
248	19.3	20.360373	-1.060373
249	23.9	26.435753	- 2.535753
250	24.7	23.326693	1.373307
251	19.8	18.110622	1.689378
252	23.8	22.463210	1.336790

253 rows × 3 columns

```
In [69]: model.coef_
```

```
Out[69]: array([-1.17646736e-01, 3.32466019e-02, 3.05213436e-02, 4.40864134e+00, -1.34354334e+01, 4.54696921e+00, -2.19317442e-02, -1.44431337e+00, 1.98900056e-01, -8.07440421e-03, -8.09040596e-01, 1.11002543e-02, -5.15546338e-01])
```

```
In [70]: model.intercept_
```

Out[70]: 26.60863720541145

```
In [71]: plt.scatter(y_test, y_predict)
    plt.xlabel('Actual Values')
    plt.ylabel('Predicted Values')
    plt.title('Actual vs. Predicted Values')
    plt.show()
```


