SF3580

Anna Broms & Fredrik Fruklund

2018/11/11

1 Task 2

1.1 (a)

Insert figure

1.2 (b)

Insert figure

1.3 (c)

Insert figure

The Rayleigh quotient only uses the symmetric part of A in

$$r(\mathbf{x}) = \mathbf{x}^H A \mathbf{x}$$

assuming **x** is normalized. The matrix A is no longer symmetric, i.e. $A \neq A^H$, but any square matrix can be decomposed into a symmetric part A_s and a nonsymmetric part A_{ns} by

$$A = \underbrace{\frac{1}{2} \left(A + A^H \right)}_{=A_s} + \underbrace{\frac{1}{2} \left(A - A^H \right)}_{=A_{ns}}.$$

Thus

$$r(\mathbf{x}) = \mathbf{x}^H A_s \mathbf{x} + \mathbf{x}^H A_{ns} \mathbf{x} = \mathbf{x}^H A_s \mathbf{x}$$

since

$$\mathbf{x}^H A_{ns} \mathbf{x} = \mathbf{x}^H A \mathbf{x} - \mathbf{x}^H A^H \mathbf{x} = 0.$$

For a nonsymmetric matrix all avaliable information is not used.

2 Task 3

The performance of different versions of Gram-Schmidt orthogonalizations is investigated when combined with the Arnoldi method. We consider the matrix A constructed by

where we choose nn = 500 and use m number of iterations in the Arnoldi method.

Results for CPU time and orthogonality of the basis in Q is given in Table 1.

Table 1: Comparison for different types of Gram-Schmidt (GS) orthogonalisation in the Arnoldi method: SGS (single GS), MDS (modified GS), DGS (double GS), TGS (triple GS), where *time* is the measured CPU time and *orth* is the orthogonality of the basis in terms of $||Q_m^T Q_m - I||$.

m	SGS time	SGS orth	MGS time	MGS orth	DGS time	DGS orth	TGS time	TGS orth
5	188 ms	$4.82 \cdot 10^{-13}$	241 ms	$3.28 \cdot 10^{-15}$	$246 \mathrm{\ ms}$	$3.81 \cdot 10^{-15}$	$298 \mathrm{\ ms}$	$3.84 \cdot 10^{-15}$
10	496 ms	$2.15 \cdot 10^{-12}$	705 ms	$1.32 \cdot 10^{-14}$	665 ms	$4.19 \cdot 10^{-15}$	820 ms	$4.23 \cdot 10^{-15}$
20	1.10 s	$1.04 \cdot 10^{-11}$	$2.03 \; s$	$6.41 \cdot 10^{-14}$	$1.682 \ s$	$5.66 \cdot 10^{-15}$	2.16 s	$5.72 \cdot 10^{-15}$
50	$4.05 { m s}$	$1.06 \cdot 10^{-10}$	$9.95 \mathrm{\ s}$	$6.04 \cdot 10^{-13}$	$6.69 \mathrm{\ s}$	$6.18 \cdot 10^{-15}$	$9.49 \; {\rm s}$	$6.38 \cdot 10^{-15}$
100	12.0 s	$ 4.77 \cdot 10^{-10} $	37.8 s	$3.29 \cdot 10^{-12}$	21.7 s	$7.82 \cdot 10^{-15}$	31.2 s	$7.87 \cdot 10^{-15}$

It can be concluded that double Gram-Schmidt performs the best in terms of orthogonalization error, while single Gram-Schmidt is the fastest among the algorithms. Triple Gram-Schmidt performs almost exactly as well as double Gram-Schmidth in terms of error, which is not surprising. It was stated during the lecture that the best result possible to achieve using multiple Gram-Schmidt is indeed obtained for double Gram-Schmidt. Note however that the CPU time required for triple Gram-Schmidt of course is considerably larger than for double Gram-Schmidt. The orthogonalization errors for the modified Gram-Schmidt is smaller than for single Gram-Schmidt but the algorithm is in this example seen to be worse than double Gram-Schmidt both in terms of CPU time and orthogonalization error.

3 Task 4

We investigate a primitive version of the Arnoldi method. Let K_m be a matrix representing the Krylov subspace:

$$K_m = [b, Ab/||Ab||, \dots, A^{m-1}b||A^{m-1}b||] \in \mathbb{R}^{n \times m}.$$
 (2)

3.1 (a)

The equation

$$\mu K_m^T K_m w = K_m^T A K_m w \tag{3}$$

is stemming from the Galerking method applied to the bilinear form associated with the eigenvalue problem $a(u,v) = u^T A v - \mu u^T v$, with f(v) = 0. Prov that (3) is identical to the approximation generated by Arnoldi's method for eigenvalue problems.

The Arnoldi method computes an orthogonal basis of K_m such that after m iterations

$$AQ_m = Q_{m+1}H_{\underline{m}},\tag{4}$$

where Q_m is an orthogonal matrix of size m and $H_{\underline{m}}$ is the corresponding Hessenberg matrix. The eigenvalues of A can then be approximated by the eigenvalues of

$$Q_m^T A Q_m. (5)$$

We use the QR-factorisation of the matrix K_m , such that $K_m = Q_m R$. We first show that $R^T R = K_m^T K_m$. Using orthogonality, we have

$$I = Q_m^T Q_m. (6)$$

Multiplying both sides of (6) with R^T and R respectively yields

$$R^{T} = R^{T} Q^{T} Q_{m} = K_{m}^{T} Q_{m} \Leftrightarrow$$

$$R^{T} R = K_{m}^{T} Q_{m} R = K_{m}^{T} K_{m}.$$

$$(7)$$

Now, considering (3), we have

$$\mu K_m^T K_m w = K_m^T A K_m w \Leftrightarrow$$

$$\mu R^T R w = K_m^T A K_m w.$$
(8)

Replacing K_m and K_m^T with the QR-factorisation of K_m yields

$$\mu R^T R w = R^T Q_m^T A Q_m R w. (9)$$

Using that R is non-singular, we obtain

$$\mu w = Q_m^T A Q_m w. (10)$$

Thus, the approximation computed from (3) is identical to the eigenvalue approximation obtained from (5).

4 Task 6

test

5 Task 8

 test