PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE FACULTAD DE MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICA

Primer Semestre 2015

MAT1203 - Álgebra Lineal Examen - jueves 25 de junio - solución

a) Sea $T: P_2(\mathbb{R}) \to \mathbb{R}^2$ transformación lineal tal que

$$T(1) = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$
, $T(1+t) = \begin{bmatrix} 2 \\ 4 \end{bmatrix}$, $T(1+t^2) = \begin{bmatrix} 2 \\ 4 \end{bmatrix}$.

Determine una base y la dimensión para el Ker(T) y para la Im(T).

Solución:

Del enunciado se tiene:

Por lo tanto la matriz respecto a las bases canónicas es $\begin{bmatrix} 1 & 1 & 1 \\ 2 & 2 & 2 \end{bmatrix}$.

Escalonando $\sim \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix}$.

Luego el $\operatorname{Ker}(T) = \operatorname{Gen}\{t-1, t^2-1\}$ y la $\operatorname{Im}(T) = \operatorname{Gen}\left\{\left[\begin{array}{c} 1\\2 \end{array}\right]\right\}$.

También pueden toma matriz 4ra base 11,1+t,1+tel 2 camónico [12,2] ~ [122]

$$\begin{bmatrix} 1 & 2 & 2 \\ 2 & 9 & 9 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & 2 \\ 0 & 0 & 0 \end{bmatrix}$$

b) Si Aes una matriz de 5 × 4, demuestre que

$$\operatorname{Dim}(\operatorname{Ker}(A^t)) = 1 + \operatorname{Dim}(\operatorname{Ker}(A)).$$

Solución:

Por teorema de las dimensiones 4 = Dim Ker(A) + Dim Im(A).

Por teorema de las dimensiones $5 = \text{Dim Ker}(A^t) + \text{Dim Im}(A^t)$.

Pero $\operatorname{Dim} \operatorname{Im}(A) = \operatorname{Dim} \operatorname{Im}(A^t)$.

 $Restando\ y\ reemplazando:$

 $\operatorname{Dim}(\operatorname{Ker}(A^t)) = 1 + \operatorname{Dim}(\operatorname{Ker}(A)).$

2. a) Diagonalice
$$M = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 2 & 1 \end{bmatrix}$$
, y encuentre N tal que $N^3 = M$.

Solución:

Los valores propios son 1 y 2.
$$E_1 = \operatorname{Gen} \left\{ \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \right\} \text{ y } E_2 = \operatorname{Gen} \left\{ \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix} \right\}.$$

$$\begin{cases} \text{Para la matriz } N \text{ basta tomar } N = PD_3P^{-1} \text{ con } D_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & \sqrt[3]{2} \end{bmatrix}. \\ \text{Asif } N^3 = (PD_3P^{-1})^3 = PD_3^3P^{-1} = PDP^{-1} = M. \end{cases}$$

b) Sea A una matriz de $n \times n$ no nula tal que A^2 es la matriz nula. Demuestre que si λ es valor propio de A, entonces $\lambda = 0$.

Solución:

3. a) Calcule la proyección de
$$v = \begin{bmatrix} 1 \\ 0 \\ 1 \\ 2 \end{bmatrix}$$
 sobre $U = \operatorname{Gen} \left\{ \begin{bmatrix} 1 \\ -1 \\ 2 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 1 \\ 1 \end{bmatrix} \right\}$.

Solución:

Se pide
$$u = Ax \operatorname{con} A = \begin{bmatrix} 1 & 0 \\ -1 & 1 \\ 2 & 1 \\ 0 & 1 \end{bmatrix}$$
.

Para encontrar x se resuelve $A^tAx = A^tv$, es decir $\begin{bmatrix} 6 & 1 \\ 1 & 3 \end{bmatrix}x = \begin{bmatrix} 3 \\ 3 \end{bmatrix}$.

Resolviendo queda $x = (1/17)\begin{bmatrix} 3 & -1 \\ -1 & 6 \end{bmatrix}\begin{bmatrix} 3 \\ 3 \end{bmatrix} = \begin{bmatrix} 6/17 \\ 15/17 \end{bmatrix}$.

Luego $u = \begin{bmatrix} 6/17 \\ 9/17 \\ 27/17 \\ 15/17 \end{bmatrix}$.

b) Diagonalice ortogonalmente la matriz $L = \begin{bmatrix} 2 & -1 & -2 \\ -1 & 2 & -2 \\ -2 & -2 & -1 \end{bmatrix}$.

Solución:

Los valores propios son 3 y -3.
$$E_3 = \operatorname{Gen}\left\{ \begin{bmatrix} 1\\-1\\0 \end{bmatrix}, \begin{bmatrix} 0\\2\\-1 \end{bmatrix} \right\} \text{ y } E_{-3} = \operatorname{Gen}\left\{ \begin{bmatrix} 1\\1\\2 \end{bmatrix} \right\}.$$

$$\begin{cases} \text{Ortogonalizando queda:} \\ E_3 = \operatorname{Gen} \left\{ \begin{bmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{bmatrix}, \begin{bmatrix} 1/\sqrt{3} \\ 1/\sqrt{3} \\ -1/\sqrt{3} \end{bmatrix} \right\} \text{ y } E_{-3} = \operatorname{Gen} \left\{ \begin{bmatrix} 1/\sqrt{6} \\ 1/\sqrt{6} \\ 2/\sqrt{6} \end{bmatrix} \right\}. \end{cases}$$

4. Decida justificadamente si las siguientes afirmaciones son verdaderas o falsas:

a) Si A es una matriz de 3×3 diagonalizable, entonces A tiene 3 valores propios distintos.

Solución:

Falso.

Basta tomar po ejemplo la matriz identidad que es diagonal y tiene 3 valores propios iguales.

b) Si P y Q son matrices ortogonales de $n \times n$, entonces PQ es una matriz ortogonal.

Solución:

Verdadero.

Se sabe que $P^t = P^{-1}$ y $Q^t = Q^{-1}$.

Entonces $(PQ)^t = Q^t P^t = Q^{-1} P^{-1} = (PQ)^{-1}$.

c) De todas las funciones de la forma $f(x) = a\cos(x) + b\sin(x)$ la que pasa más cerca (usando mínimos cuadrados) de los puntos (0,1), $(\pi/2,1/2)$ y $(\pi,3/2)$ es la función

$$F(x) = (-1/4)\cos(x) + (1/2)\sin(x).$$

Solución:

Verdadero.

Se busca una función tal que $a=1,\,b=1/2$ y -a=3/2.

Como el sistema no tiene solución se busca minimizar la norma de

$$\left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \\ -1 & 0 \end{array}\right] \left[\begin{array}{c} a \\ b \end{array}\right] - \left[\begin{array}{c} 1 \\ 1/2 \\ 3/2 \end{array}\right].$$

Resolviendo $\begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} -1/2 \\ 1/2 \end{bmatrix}$, queda a = -1/4 y b = 1/2.

- d) Sea A una matriz de 5×3 . A es inyectiva si y sólo si $A^t A$ es invertible.

Solución:

Verdadero.

Suponiendo A inyectiva, si $A^tAu = \vec{0}$ multiplicando por u^t queda $(Au)^t(Au) = 0$. Luego $Au = \vec{0}$. Pero A es inyectiva (Ker trivial) entonces $u = \vec{0}$.

