GeoMAN: <u>Multi-level Attention Networks for</u> <u>Geo</u>-sensory Time Series Prediction

Yuxuan Liang, Songyu Ke, Junbo Zhang, Xiuwen Yi, Yu Zheng

yuxliang@outlook.com

Geo-sensory Time Series

RC: 0.84

pH: 7.1

Turbidity: 0.54

Sensors

Pipelines

Massive sensors deployed in physical world

Properties

- Each sensor has a unique geospatial location
- Constantly reporting time series readings
- With geospatial correlation between readings

Prediction on geo-sensory time series

- Motivation: traffic control, air quality forecast...
- Goal: predict target series at a sensor

Challenges

- Affected by many factors
 - Readings of previous time interval
 - Readings of other sensors in nearby regions
 - External factors: weather, time and land use
- Dynamic Inter-sensor correlations
- Dynamic temporal correlation

Global spatial attention

Local spatial attention

External factors fusion

Spatial Attention

- Local spatial attention
 - Local features ⇔ target series
- $\widetilde{\boldsymbol{x}}_{t}^{local}$ New local features at t concat Local features at time *t* Importance of each local feature at t softmax tanh tanh h_{t-1} .- \mathbf{r}^{i,N_l} Local features of a given sensor

- Global spatial attention
 - Select relevant sensors

Historical readings of each sensor

Temporal Attention

- Sequence-to-sequence architecture
- Select relevant previous time slots to make predictions

Evaluation

- Task 1 water quality prediction
 - Water quality data
 - Residual chlorine
 - 10 kinds of time series
 - From 14 sensors in Shenzhen
 - Update each 5 minutes
 - Meteorology data
 - POIs data

- Task 2 air quality prediction
 - Air quality data
 - PM2.5
 - 19 kinds of time series
 - From 35 sensors in Beijing
 - Hourly updates
 - Meteorology data
 - POIs data

Results

Method	Water Quality		Air Quality	
	RMSE	MAE	RMSE	MAE
ARIMA	8.61E-02	7.97E-02	31.07	20.58
VAR	5.02E-02	4.42E-02	24.60	16.17
GBRT	5.17E-02	3.30E-02	24.00	15.03
FFA	6.04E-02	4.10E-02	23.83	15.75
stMTMVL	6.07E-02	4.16E-02	29.72	19.26
stDNN	5.77E-02	3.99E-02	25.64	16.49
LSTM	6.89E-02	5.04E-02	24.62	16.70
Seq2seq	5.80E-02	4.03E-02	24.55	15.09
DA-RNN	5.02E-02	3.52E-02	24.25	15.17
GeoMAN	4.34E-02	3.02E-02	22.86	14.08

Results

(a) Evaluation on spatial attention (b) Future time step vs. RMSE Figure 3: Performance comparison among different vairants.

Visualization: Dynamic Correlation

0 -

3 -

6 -

9 -

3 –

 S_1

Encoder

Air pollutants

NO2

- Case study over air quality dataset
 - Discuss on sensor S_0
 - 4:00 to 16:00 on Feb. 28, 2017

 $S_{11} S_{13} S_{16}$

Humidity

(b) Plot of local spatial attention weights

Wind speed towards different directions

Southeast

wind

Remote sensors

0.065

0.060

0.055

0.050

0.045

0.05

Conclusion

- A very fundamental but challenging task
 - Dynamic inter-sensor correlation
 - Dynamic temporal correlation
 - External factors
- Our method
 - Multi-level attention network
 - Spatial attention: captures the dynamic inter-sensor correlation
 - Temporal attention: captures the dynamic temporal correlation
 - External factor fusion
- Results
 - More accurate
 - Easily interpreted

Thanks!

We are Hiring!

Data & Code

Mail to: icity@jd.com