

Preprocessing and sklearn pipelines Lecture 5:

Firas Moosvi (Slides adapted from Varada Kolhatkar)

Announcements

UBC Computer Science

Recap

- Decision trees: Split data into subsets based on feature values to create decision rules
- ullet K-NNs: Classify based on the majority vote from k nearest neighbors
- SVM RBFs: Create a boundary using an RBF kernel to separate classes

existing Synthesizing knowledge

Recap

Support Vector Machines (SVM) with RBF Kernel	C (regularization), Gamma ;) (RBF kernel width)	
K-Nearest Neighbors (KNN)	Number of neighbors (k)	
Decision Trees	Max depth, min samples split	
Aspect	Main hyperparameters	Interpretability

Scalability

Handling of Non-

linearity

Recap

Support Vector	Machines (SVM) with	RBF Kernel	
K-Nearest Neighbors	(KNN)		
Decision Trees			
Aspect			

Sensitivity
to Outliers
Memory
Usage
Training
Time

Prediction Time

Multiclass support

(iClicker) Exercise 5.1

iClicker cloud join link: https://join.iclicker.com/YJHS

Take a guess: In your machine learning project, how much time will you typically spend on data preparation and transformation?

- a. ~80% of the project time
- b. ~20% of the project time
- c. ~50% of the project time
- d. None. Most of the time will be spent on model building

The question is adapted from here.

(iClicker) Exercise 5.2

iClicker cloud join link: https://join.iclicker.com/YJHS

Select all of the following statements which are TRUE.

- a. StandardScaler ensures a fixed range (i.e., minimum and maximum values) for the features.
- b. StandardScaler calculates mean and standard deviation for each feature separately.
- c. In general, it's a good idea to apply scaling on numeric features before training k-NN or SVM RBF models.
- d. The transformed feature values might be hard to interpret for humans.

After applying SimpleImputer The transformed data has a different shape than the original data.

(iClicker) Exercise 5.3

iClicker cloud join link: https://join.iclicker.com/YJHS

Select all of the following statements which are TRUE.

- a. You can have scaling of numeric features, one-hot encoding of categorical features, and scikit-learn estimator within a single pipeline.
- b. Once you have a scikit-learn pipeline object with an estimator as the last step, you can call fit, predict, and score on it.
- c. You can carry out data splitting within scikit-learn pipeline.
- d. We have to be careful of the order we put each transformation and model in a pipeline.

Break

Let's take a break!

Preprocessing motivation: example

You're trying to find a suitable date based on:

- Age (closer to yours is better).
- Number of Facebook Friends (closer to your social circle is ideal).

Preprocessing motivation: example

You are 30 years old and have 250 Facebook friends.

ce				
Distance	150.08	50.09	250.00	30.00
Euclidean Distance Calculation	$\sqrt{(5^2 + 150^2)}$	$\sqrt{(3^2 + 50^2)}$	$\sqrt{(0^2 + 250^2)}$	$\sqrt{(30^2+0^2)}$
#FB Friends	400	300	200	250
Age	25	27	30	09
Person	A	B	U	D

Based on the distances, the two nearest neighbors (2-NN) are:

- Person D (Distance: 30.00)
- Person B (Distance: 50.09)

What's the problem here?

transformations Common

Imputation: Fill the gaps! (

Fill in missing data using a chosen strategy:

- Mean: Replace missing values with the average of the available data.
- Median: Use the middle value.
- Most Frequent: Use the most common value (mode).
- KNN Imputation: Fill based on similar neighbors.

Example:

Fill in missing values like filling empty seats in a classroom with the average student.

```
1 from sklearn.impute import SimpleImputer
2 imputer = SimpleImputer(strategy='mean')
3 X_imputed = imputer.fit_transform(X)
```


Scaling: Everything to the same range! (\

Ensure all features have a comparable range.

- StandardScaler: Mean = 0, Standard Deviation = 1.
- MinMaxScaler: Scales features to a [0, 1] range.
- RobustScaler: Scales features using median and quantiles.

Example:

Rescaling everyone's height to make basketball players and gymnasts comparable.

```
1 from sklearn.preprocessing import StandardScaler
```


scaler = StandardScaler()

³ X_scaled = scaler.fit_transform(X)

- Creates new binary columns for each category.
- Useful for handling categorical data in machine learning models.

Example:

Turn "Apple, Banana, Orange" into binary columns:

Fruit		2		
Apple 🍏	Н	0	0	
Banana ಓ	0	Н	0	
Orange 🍊	0	0	-	

from sklearn.preprocessing import OneHotEncoder

encoder = OneHotEncoder()

X_encoded = encoder.fit_transform(X)

Ordinal encoding: Ranking matters

Convert categories into integer values that have a meaningful order.

- Assign integers based on order or rank.
- Useful when there is an inherent ranking in the data.

Example:

Turn "Poor, Average, Good" into 1, 2, 3:

Ordinal	1	2	3
Rating	Poor	Average	Good

1 from sklearn.preprocessing import OrdinalEncoder

encoder = OrdinalEncoder()

3 X_ordinal = encoder.fit_transform(X)

sklearn Transformers vs Estimators

Transformers

- Are used to transform or preprocess data.
- Implement the fit and transform methods.
- fit(X): Learns parameters from the data.
- transform(X): Applies the learned transformation to the data.
- Examples:
- Imputation (SimpleImputer): Fills missing values.
- Scaling (StandardScaler): Standardizes features.

Estimators

- Used to make predictions.
- Implement fit and predict methods.
- fit(X, y): Learns from labeled data.
- predict(X): Makes predictions on new data.
- Examples: DecisionTreeClassifier, SVC, KNeighborsClassifier

```
1 from sklearn.tree import DecisionTreeClassifier
2 tree_clf = DecisionTreeClassifier()
```


The golden rule in feature transformations

- Never transform the entire dataset at once!
- Why? It leads to data leakage using information from the test set in your training process, which can artificially inflate model performance.
- Fit transformers like scalers and imputers on the training set only.
- Apply the transformations to both the training and test sets separately.

Example:

```
from sklearn.preprocessing import StandardScaler
                                   2 scaler = StandardScaler()
3 X_train_scaled = scaler.fit_transform(X_train)
4 X test scaled = scaler.transform(X test)
                                                                                                                                    X_test_scaled = scaler.transform(X_test)
```


sklearn Pipelines

- Pipeline is a way to chain multiple steps (e.g., preprocessing + model fitting) into a single workflow.
- Simplify the code and improves readability.
- Reduce the risk of data leakage by ensuring proper transformation of the training and test sets.
- Automatically apply transformations in sequence.

Example:

Chaining a StandardScaler with a KNeighborsClassifier model.

```
pipeline = make_pipeline(StandardScaler(), KNeighborsClassifier())
                                                                                                   from sklearn.neighbors import KNeighborsClassifier
                                                   from sklearn.preprocessing import StandardScaler
from sklearn.pipeline import make_pipeline
                                                                                                                                                                                                                                                                                                                                                           y_pred = pipeline.predict(X_test)
                                                                                                                                                                                                                                                                                                        pipeline.fit(X_train, y_train)
```


See you next week!