

Electronic Voting Using Lattice-Based Commitments and Verifiable Encryption

Norsk Kryptoseminar 2020, Kjeller

Carsten Baum, Kristian Gjøsteen, Tjerand Silde and Thor Tunge Department of Mathematical Sciences, NTNU Trondheim

Security Definitions I

If a voting system gives the correct answer, relative to some ideally determined collection of ballots and some counting function, we have *integrity*.

If it is hard to determine what ballot a given voter cast, up to what can be deduced from the election outcome, we have *privacy*.

Security Definitions II

If voters can ensure that the ballot of their choice is counted, even when an adversary can control the voter during ballot casting, we have *coercion resistance*.

If the ballot casting and the tally phase produce transcripts that allow voters to verify that the count included their ballots, we have *verifiability*.

The Protocol Architecture

The Shuffle Protocol I

- 1. The prover \mathcal{P} and verifier \mathcal{V} receives a set of commitments $\{c_i\}_{i=1}^{\tau}$,
- 2. \mathcal{P} also receives the set of openings $\{m_i\}_{i=1}^{\tau}$ of the commitments,
- 3. V picks a random element ρ and sends ρ to P,
- 4. \mathcal{P} and \mathcal{V} shifts the commitments to get $M_i = m_i \rho$,

The Shuffle Protocol II

- 5. \mathcal{P} picks a random permutation π of τ elements,
- 6. \mathcal{P} shuffles the messages by defining $\hat{M}_i := M_{\pi^{-1}(i)}$,
- 7. \mathcal{P} sends the set of shuffled messages $\{\hat{M}_i\}_{i=1}^{\tau}$ to the verifier \mathcal{V} ,
- 8. \mathcal{P} proves to \mathcal{V} that $\{\hat{M}_i\}_{i=1}^{\tau}$ is the openings of $\{c_i \rho\}_{i=1}^{\tau}$.

The Shuffle Protocol III

The shuffle can be represented as a matrix-equation, where θ_i is committed randomness, β is the challenge and s_i is the response to the challenge:

$$\begin{bmatrix} \hat{M}_1 & 0 & \dots & 0 & 0 \\ M_2 & \hat{M}_2 & \dots & 0 & 0 \\ 0 & M_3 & \dots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & M_{\tau-1} & \hat{M}_{\tau-1} \\ 0 & 0 & \dots & 0 & M_{\tau} \end{bmatrix} \begin{bmatrix} s_1 - \theta_1 \\ s_2 - \theta_2 \\ s_3 - \theta_3 \\ \vdots \\ s_{\tau-2} - \theta_{\tau-2} \\ s_{\tau-1} - \theta_{\tau-1} \end{bmatrix} = \begin{bmatrix} -\beta M_1 \\ 0 \\ 0 \\ \vdots \\ 0 \\ (-1)^{\tau-1}\beta \hat{M}_{\tau} \end{bmatrix}.$$

$$\mathbf{M}$$

$$\mathbf{S}$$

$$\mathbf{b}$$

ł

The Shuffle Protocol IV

Theorem

The shuffle protocol is complete.

Theorem

The shuffle protocol in is sound for any prover \mathcal{P}^* that wins with probability $> \frac{\tau^{\delta}}{p^N}$.

Theorem

The shuffle protocol honest-verifier zero-knowledge.

Proof of Encrypted Opening

To make sure that the vote correct and well-formed, we encrypt the opening of the commitment and prove that:

- 1. we know underlying the plaintext,
- 2. the plaintext is the opening of the commitment,
- 3. the opening is short, and hence, well-formed.

Return Codes I

Assume that the voters have ω different options in the election. Further, let

- $v_1, v_2, \ldots, v_{\omega}$ be possible ballots,
- a be a blinding-key for a voter V,
- PRF_k be a pseudo-random function with key k,

Return Codes II

The *pre-code* \hat{r}_j corresponding to the ballot v_j is $\hat{r}_j = v_j + a$.

The *return code* r_j corresponding to the ballot v_j is $r_j = PRF_k(\hat{r}_j)$.

Let c_a , c_{v_i} and $c_{\hat{r}}$ be commitments to the blinding key, the ballot and the pre-code.

We can prove in zero-knowledge that $\hat{r}_j = v_j + a$ is correct.

Parameters and Efficiency

A vote $(c_i, e_i, c_{\hat{r}}, e_{\hat{r}}, \Pi_{\hat{r}})$ is of total size ≈ 400 KB.

For τ voters, the ballot box \mathcal{B} receives \approx 400 τ KB of data.

The shuffle proof is of total size \approx 21 τ KB.

Commitments	Encryption	Verification	Shuffle Proof
0.12ms	60ms	4ms	12 $ au$ ms

Improvements and Future Work

Can we...

- extend the shuffle to handle arbitrary ring elements?
- extend this into a mix-net with more than one shuffle-server?
- extend the return-code mechanism to handle re-voting?
- aggregate zero-knowledge proofs for all equations in the shuffle?

Thank You! Questions?

Email: tjerand.silde@ntnu.no Slides: www.tjerandsilde.no/talks