PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2002-295526

(43) Date of publication of application: 09.10.2002

(51)Int.CI.

F16D 48/02

(21)Application number: 2001-100445

(71)Applicant: KOMATSU LTD

(22)Date of filing: 30.03.2001

(72)Inventor: ONOKI HIROAKI

HISAMURA TOMOYASU

(54) CONTROL DEVICE OF HYDRAULIC CLUTCH FOR INCHING

(57)Abstract:

PROBLEM TO BE SOLVED: To enhance working efficiency enabling vehicle velocity to become zero and not to be suddenly increased by delaying response of the vehicle velocity against operation when an operational means of a pedal or the like is operated in a zone of normal operational velocity in case of performing inching operation with a working vehicle of a construction machine or the like and simultaneously to secure safety by enhancing the response of the vehicle velocity against the operation when the pedal or the like are clearly suddenly operated in order to avoid danger and so on and furthermore to facilitate operation of the pedal with on requiring skill of the operation.

SOLUTION: When the operational velocity V of the operational means 20 is operated with velocity V1 of a threshold value Vth two or less, pressure changed ratio of pressurized oil A supplied to a hydraulic clutch 12 is corrected so that it becomes a smaller value A2 than normal pressure changed ratio of the pressured oil A1 and response of the vehicle velocity S is delayed to the operation of the operational means 20.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2002-295526 (P2002-295526A)

(43)公開日 平成14年10月9日(2002.10.9)

(51) Int.Cl.7

識別記号

FΙ

テーマコード(参考)

F 1 6 D 48/02

F16D 25/14

680

3 J O 5 7

審査請求 未請求 請求項の数3 〇L (全 8 頁)

(21)出願番号	特願2001-100445(P2001-100445)	(71)出願人 000001236
		株式会社小松製作所
(22)出願日	平成13年3月30日(2001.3.30)	東京都港区赤坂二丁目3番6号
		(72)発明者 大野木 博章
		東京都港区赤坂二丁目3番6号 (72)発明者 大野木 博章 石川県小松市符津町ツ23 株式会社小村 作所栗津工場内 (72)発明者 久村 知靖 石川県小松市符津町ツ23 株式会社小村 作所栗津工場内
		(72)発明者 久村 知靖
		石川県小松市符津町ツ23 株式会社小松製
		東京都港区赤坂二丁目3番6号 (72)発明者 大野木 博章 石川県小松市符津町ツ23 株式会社小作所栗津工場内 (72)発明者 久村 知靖 石川県小松市符津町ツ23 株式会社小
		(74)代理人 100071054
	İ	弁理士 木村 高久 (外1名)

最終頁に続く

(54) 【発明の名称】 インチング用油圧クラッチの制御装置

(57)【要約】

【課題】建設機械等の作業車両でインチング操作を行う場合に、ペダル等の操作手段が通常の操作速度範囲内で操作されている場合には操作に対して車速の応答性を遅らせることによって、車速が0になったり車速が急激に増加することのないようにして、作業効率を向上させるともに、危険回避等するためにペダル等が明確に急操作されている場合には操作に対して車速の応答性を高めて安全性を確保するようにし、さらに、操作に熟練を要せずにペダル操作を容易に行えるようにする。

【解決手段】操作手段20の操作速度Vがしきい値Vth 2以下の速度V1で操作された場合に、油圧クラッチ12に供給される圧油の圧力変化率Aが通常の圧力変化率A1よりも小さくなる値A2となるように圧油の圧力変化率Aが補正され、操作手段20の操作に対する車速Sの応答性が遅らされる。

【特許請求の範囲】

【請求項1】 エンジンと駆動輪との間に介在さ れ、両回転板が係合することにより前記エンジンの駆動 力を前記駆動輪に伝達するインチング用油圧クラッチ と、前記インチング用油圧クラッチに、操作速度に応じ た通常の圧力変化率で圧力が変化するように圧油を供給 することにより、前記インチング用油圧クラッチを係合 または解放させる操作手段とを備えたインチング用油圧 クラッチの制御装置において、

1

前記操作手段の操作速度が、前記しきい値以下の速度で 操作された場合に、前記インチング用油圧クラッチに供 給される圧油の圧力変化率が通常の圧力変化率よりも小 さくなるように圧油の圧力変化率を補正して、前記操作 手段の操作に対する車速の応答性を遅らせることを特徴 とするインチング用油圧クラッチの制御装置。

【請求項2】 エンジンと駆動輪との間に介在さ れ、両回転板が係合することにより前記エンジンの駆動 力を前記駆動輪に伝達するインチング用油圧クラッチ と、前記インチング用油圧クラッチに、操作速度に応じ た通常の圧力変化率で圧力が変化するように圧油を供給 20 することにより、前記インチング用油圧クラッチを係合 または解放させる操作手段とを備えたインチング用油圧 クラッチの制御装置において、

前記操作手段の操作速度が第1のしきい値以上でかつ前 記第1のしきい値よりも大きい第2のしきい値以下の速 度で操作された場合に、前記インチング用油圧クラッチ に供給される圧油の圧力変化率が通常の圧力変化率より も小さくなるように圧油の圧力変化率を補正して、前記 操作手段の操作に対する車速の応答性を遅らせることを 特徴とするインチング用油圧クラッチの制御装置。

【請求項3】 前記インチング用油圧クラッチに供 給される圧油の圧力変化率を、車両が停止しない程度に 補正することを特徴とする請求項1または請求項2記載 のインチング用油圧クラッチの制御装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明はインチング作業時に エンジンの駆動力を駆動輪に伝達するインチング用油圧 クラッチを制御するインチング用油圧クラッチの制御装 置に関するものであり、インチング用油圧クラッチの圧 40 力変化率を補正するものである。

[0002]

【従来の技術】建設機械ではインチングによって作業が 行われる。インチングとは、インチングクラッチと呼ば れる油圧クラッチを半クラッチ状態にしてエンジンから 駆動輪へ動力を伝達し、車両を微速走行させるという操 作方法である。

【0003】インチングクラッチは、ペダルの踏み込み 操作に応じて、インチングクラッチに作用する油圧が漸 減して係合状態から半クラッチ状態を経て解放状態とさ れ、ペダルの踏み戻し操作に応じて、インチングクラッ チに作用する油圧が漸増して解放状態から半クラッチ係 合を経て元の係合状態とされる。

【0004】具体的には、ペダルを踏み込んでペダル操 作量 θ を大きくするほど、インチングクラッチに与えら れる指令油圧Pが減少する。指令油圧Pが減少すると、 インチングクラッチのピストン作動圧油室内の実際の油 圧P、が減少し、クラッチ作動ピストンに作用する圧力 が減少し、クラッチ摩擦板に作用する圧力が減少する。 するとインチングクラッチの係合力が減少するため、半 クラッチ状態になる。とうして車両が微速走行する。ペ ダル操作量θをストロークエンドにすると、インチング クラッチのクラッチ摩擦板が解放される。

【0005】またペダルを戻してペダル操作量のを小さ くするほど、インチングクラッチに与えられる指令油圧 Pが増加する。指令油圧Pが増加するとインチングクラ ッチのピストン作動圧油室内の実際の油圧 P′が増加 し、クラッチ作動ピストンに作用する圧力が増加し、ク ラッチ摩擦板に作用する圧力が増加して、インチングク ラッチのクラッチ摩擦板が係合される。

【0006】本明細書では、インチングクラッチに与え られる指令油圧をPとし、インチングクラッチの圧油室 内の実際の油圧をP´であるとして説明する。

【0007】ここで従来のペダル操作に対する指令油圧 Pと車速Sとの変化について図2を用いて説明する。

【0008】図2(a)は時間tの経過に応じて変化す るペダル操作量 θ を示す図である。図2(b)は時間 t の経過に応じて変化する指令油圧Pを示す図である。図 2(c)は時間 t の経過に応じて変化する車速Sを示す 30 図である。図2(a)、(b)、(c)の横軸の時間 t はそれぞれ対応している。

【0009】とれら図2に示すように、ペダル操作量 θ が最小値θ1のときに、指令油圧Pは最大値P1となる。 またペダル操作量 θ が最大値 θ 2のときに、指令油圧Pは最小値P2となる。またベダル操作量 θ が最小値 $\theta1$ の ときに、車速Sは最大値S1となる。図2(a)に示す 一点鎖線32は、通常作業時にペダルを急操作させた場 合のペダル操作量 θ の変化を示している。図2(b)に 示す一点鎖線34は、通常作業時にペダルを急操作させ た場合の指令油圧Pの変化を示している。図2(c)に 示す一点鎖線37は、通常作業時にペダルを急操作させ た場合の車速Sの変化を示している。

【0010】インチングクラッチを解放する場合の動作 について以下説明する図2(a)の一点鎖線32で示す ように、作業者が時刻 t 1でペダルを踏み込むと、ペダ ル操作量θが最小値θ1から増加し始め、時刻t3で最大 値θ2に達する。

【0011】 これに対応して図2(b)の一点鎖線34 で示すように、指令油圧Pは時刻 t 1の最大値P1から減 少し始め、時刻t3で最小値P2に達する。指令油圧Pの

10

減少に応じてインチングクラッチの油圧係合力が減少し クラッチが滑り、エンジンから駆動輪へ伝達される動力 が減少する。

【0012】このため図2(c)の一点鎖線37で示す ように、車速Sは、時刻 t 1における最大値S1から減少 し始め、時刻t3"(>時刻t3)で車速0に達する。車 速Sが、指令油圧Pが最小値P2に達する時刻t3でOに ならないのは、慣性のためである。時刻 t 3"と時刻 t 3 の差は微小である。

について以下説明する図2(a)の一点鎖線32で示す ように、作業者が時刻 t 4でペダルを戻すと、ペダル操 作量 θ は最大値 θ 2から減少し始め、時刻t6で最小値 θ 1に達する。

【0014】これに対応して図2(b)の一点鎖線34 で示すように、指令油圧Pは時刻 t 4の最小値P2から増 加し始め、時刻 t 6で最大値P1に達する。指令油圧Pの 増加に応じてインチングクラッチの油圧係合力が増加 し、エンジンから駆動輪へ伝達される動力が増加する。 【0015】とのため図2(c)の一点鎖線37で示す ように、車速Sは時刻 t 4の車速 0 から増加し始め、時 刻 t 6で最大値S1に達する。

【0016】図2(a)の一点鎖線32の傾きは、ベダ ルの操作速度V (= $d\theta/dt$) を表しており、その大 きさをV1とする。図2(b)の一点鎖線34の傾き は、圧力変化率A(=dP/dt)を表しており、その 大きさをA1とする。

【0017】図5は操作速度Vと圧力変化率Aとの関係 を示している。

【0018】同図5の実線51で示すように、操作速度 30 Vと圧力変化率Aとは比例関係にある。操作速度Vが大 きくなるほど圧力変化率Aは大きくなる。

【0019】実線51の傾きdA/dVは、ペダル操作 に対する指令油圧の応答性つまりペダル操作に対する車 速の応答性を示している。

【0020】従来は実線51の傾きdA/dVは一定で あり、ペダル操作に対する指令油圧の応答性つまりペダ ル操作に対する車速の応答性は一義的に設定されてい た。

[0021]

【発明が解決しようとする課題】しかしながらペダル操 作に対して車速の応答性が一義的に設定されているとす ると、以下のような問題が生じる。

【0022】すなわちインチングによる作業時には、作 業者としては、インチングペダルを操作することによっ て車速Sを調整する。この場合車速Sが車速Oにならな ようにインチングペダルを滑らかに操作することが作業 者に求められる。

【0023】しかしながらインチングペダルの操作力が 軽く、急操作が可能なものが建設機械に装着されている ことが多い。このようにインチングペダルの操作力が軽 く、急操作が可能であるとすると、作業者の意思に反し て、たとえば不用意なペダルのふらつきにも敏感に反応 するため、図5に示すように操作速度 V は V 1に達し

て、圧力変化率AはA1に達する。このため図2(a) に一点鎖線32で示す操作速度V1で、ペダルが急操作 され、図2(b)に一点鎖線34で示す圧力変化率A1 で、指令油圧Pが急激に変化し、図2(c)に一点鎖線 37で示す車速変化率で、車速 S が急激に変化し、車速 【0013】インチングクラッチを係合する場合の動作(10)が0になってしまうことがある。つまり作業者が車両を 停止させたくないにもかかわらず、車両が停止すること がある。

> 【0024】たとえばグレーダによって道路を精密整地 作業している途中で、このように不用意なペダルの急操 作によって車両を停止させてしまうと、初めから作業を やり直さなければならなくなる。これは作業効率の低下 を招く。

【0025】同様にペダルを戻して車速Sを増加させる 場合に、ペダルを不用意に急操作してしまうと、作業者 20 の意思に反して車速Sが急激に増加し、やはり同様に作 業効率の低下を招く。

【0026】またペダルを不用意に急操作しないように するには、作業者に相当の熟練を要求することになり、 また実際上そのようにペダルを操作することは熟練者と いえども容易ではない。

【0027】とのようにペダル操作に対して車速の応答 性が一義的に設定され、急激なペダル操作に対して車速 が急激に変化すると、車速が0になったり車速が急激に 増加して作業効率を招くとともに、ペダル操作に熟練を 課すことになっていた。

【0028】一方で危険を回避するときなど、作業者の 急操作の意思が明確であるときには、ペダル操作に応じ て応答性よく車速を増減させてやり、作業者の意思とお りの急な動きをさせることが、安全性の確保等の上で必 要である。

【0029】本発明はこうした実状に鑑みてなされたも のであり、建設機械等の作業車両でインチング操作を行 う場合に、ペダル等の操作手段が通常の操作速度範囲内 で操作されている場合には操作に対して車速の応答性を 40 遅らせることによって、車速が0になったり車速が急激 に増加することのないようにして、作業効率を向上させ るとともに、危険回避等するためにベダル等が明確に急 操作されている場合には操作に対して車速の応答性を高 めて安全性を確保するようにし、さらに、操作に熟練を 要せずにペダル操作を容易に行えるようにすることを解 決課題とするものである。

[0030]

【課題を解決するための手段および作用、効果】そこで 本発明の第1発明は、エンジンと駆動輪との間に介在さ 50 れ、両回転板が係合するととにより前記エンジンの駆動

力を前記駆動輪に伝達するインチング用油圧クラッチと、前記インチング用油圧クラッチに、操作速度に応じた通常の圧力変化率で圧力が変化するように圧油を供給することにより、前記インチング用油圧クラッチを係合または解放させる操作手段とを備えたインチング用油圧クラッチの制御装置において、前記操作手段の操作速度が、前記しきい値以下の速度で操作された場合に、前記インチング用油圧クラッチに供給される圧油の圧力変化率が通常の圧力変化率よりも小さくなるように圧油の圧力変化率を補正して、前記操作手段の操作に対する車速 10の応答性を遅らせることを特徴とする。

【0031】第1発明を図2(a)、(b)、(c)を 用いて説明する。

【0032】第1発明によれば、操作手段20の操作速度Vがしきい値Vth2以下の速度V1で操作された場合に、インチング用の油圧クラッチ12に供給される圧油の圧力変化率Aが通常の圧力変化率A1よりも小さくなる値A2となるように圧油の圧力変化率Aが補正され、操作手段20の操作に対する車速Sの応答性が遅らされる。

【0033】第2発明は、エンジンと駆動輪との間に介在され、両回転板が係合することにより前記エンジンの駆動力を前記駆動輪に伝達するインチング用油圧クラッチと、前記インチング用油圧クラッチに、操作速度に応じた通常の圧力変化率で圧力が変化するように圧油を供給することにより、前記インチング用油圧クラッチを係合または解放させる操作手段とを備えたインチング用油圧クラッチの制御装置において、前記操作手段の操作速度が第1のしきい値以上でかつ前記第1のしきい値よりも大きい第2のしきい値以下の速度で操作された場合に、前記インチング用油圧クラッチに供給される圧油の圧力変化率が通常の圧力変化率よりも小さくなるように圧油の圧力変化率を補正して、前記操作手段の操作に対する車速の応答性を遅らせることを特徴とする。

【0034】第2発明を図2(a)、(b)、(c)を 用いて説明する。

【0035】第2発明によれば、操作手段20の操作速度Vが第1のしきい値Vth1以上でかつ第1のしきい値Vth1以上でかつ第1のしきい値Vth1よりも大きい第2のしきい値Vth2以下の速度V1で操作された場合に、インチング用の油圧クラッチ12に供給される圧油の圧力変化率Aが通常の圧力変化率Aが補正され、操作手段20の操作に対する車速Sの応答性が遅らされる。このため図2(a)に一点鎖線32で示すように、しきい値Vth2以下の操作速度V1で、操作手段20が操作された場合には、図2(b)に破線35で示すように、通常の圧力変化率A1よりも小さな圧力変化率A2で、指令油圧Pが緩やかに減少し、図2(c)に破線38で示す緩やかな車速変化率で、車速Sが緩やかに減少し、車速が0になることはなくなる。

【0036】同様に操作手段20を戻したときも車速Sが緩やかに増加し車速が急上昇することがなくなる。 【0037】一方で危険回避等するために、図2(a)に実線31で示すように、しきい値Vth2よりも大きい操作速度V3で、操作手段20が操作された場合には、図2(b)に実線33で示す通常の圧力変化率A3で、指令油圧Pが急激に減少し、図2(c)に実線36で示

す急激な車速変化率で、車速Sが急激に減少し、車速が

10 【0038】同様に危険回避時に操作手段20を急激に 戻したときも車速Sが急激に増加し車速は急上昇する。 【0039】本発明によれば、建設機械でインチング操 作を行う場合に、ペダル等の操作手段が通常の操作速度 範囲内で操作されている場合には操作に対して車速の応 答性を遅らすようにしたので、車速が0になったり車速 が急上昇することがなくなる。このため作業効率が向上 し、操作に熟練を要せずにペダル操作を容易に行えるよ うになる。一方で、危険回避等するためにペダル等が明 確に急操作されている場合には操作に対して車速の応答 20 性を高めるようにしたので、安全性が確保される。

【0040】第3発明は、第1発明または第2発明において、前記インチング用油圧クラッチに供給される圧油の圧力変化率を、車両が停止しない程度に補正することを特徴とする。

【0041】第3発明によれば、図2(c)に破線38で示す緩やかな車速変化率で、車速Sが緩やかに減少するが、車速Sが0になることはない。

[0042]

0に達する。

【発明の実施の形態】以下本発明に係る油圧クラッチの 30 制御装置の実施の形態について図面を参照して説明す る。

【0043】図1はインチングを行う作業車両に搭載された動力伝達装置を示す図である。

【0044】同図1に示すようにエンジン11と駆動輪 15との間には、回転クラッチであるインチングクラッチ12、ギヤトレイン13、ディファレンシャル14が 順に設けられている。なおエンジン11とインチングクラッチ12との間にトルクコンバータを設けるととも に、エンジン11の出力軸とインチングクラッチ12の 入力軸とを直結にするロックアップクラッチを設けるようにしてもよい。インチングクラッチ12は、クラッチ 摩擦板としてのクラッチディスク12aとクラッチプレート12bとからなる。

【0045】ギヤトレイン13内には複数の変速クラッチが設けられている。

【0046】クラッチディスク12aとクラッチプレート12bとの係合操作および解放(係合解除)操作はインチングペダル20によって行われる。インチングペダル20の基準位置からの操作量のは、ボテンショメータ5021で検出され検出信号がコントローラ19に入力され

る。インチングペダル20が戻されており(基準位置にあり)操作量 θ が最小値 θ 1のときには、インチングクラッチ12は係合している。インチングペダル20が踏み込まれており操作量 θ が最大値 θ 2のときには、インチングクラッチ12は解放している。

【0047】コントローラ19は、ボテンショメータ21で検出された操作量のに基づいて、圧力制御弁22に対して指令信号を出力する。圧力制御弁22は入力された指令信号に応じた指令油圧Pを生成し、インチングクラッチ12に出力する。

【0048】コントローラ19ではポテンショメータ21から入力されるペダル操作量 θ を1階微分し操作速度 V(= $d\theta$ /dt)を演算する処理が実行される。コントローラ19には操作速度Vの2つのしきい値V th1、V th2(V th1<V th2)が設定されている。ここで、しきい値V th1~V th2の範囲は、インチング操作時に通常想定される操作速度の範囲に設定されている。しきい値V th2より大きい範囲は、インチング操作時に危険回避するときの操作速度の範囲に設定されている。

【0049】コントローラ19には、操作速度Vと圧力 20変化率Aとの関係が、図4に示すように、危険回避時の応答特性51と、通常時の応答特性52として設定されている。危険回避時の応答特性51の傾きは、通常時の応答特性52の傾きよりも大きく設定されている。危険回避時の応答特性51は、図5で説明した従来の通常時の応答特性51に相当する。

【0050】コントローラ19では、演算された操作速度Vがしきい値Vth1以上であってしきい値Vth2以下である場合に、図4の通常時の応答特性52を選択し、演算された操作速度V1に対応する圧力変化率A2を、この通常時の応答特性52にしたがって求める。また演算された操作速度Vがしきい値Vth1よりも小さいか、しきい値Vth2よりも大きい場合に、図4の危険回避時の応答特性51を選択し、演算された操作速度V3に対応する圧力変化率A3を、この危険回避時の応答特性51にしたがって求める。

【0051】図4に示すように同じ操作速度V1(しきい値Vth2以下)でインチングペダル20が操作されたとしても、通常時の応答特性52のときには圧力変化率がA2と小さく、危険回避時の応答特性51のときには圧力変化率がA1と大きくなる。同様に、同じ操作速度V3(しきい値Vth2より大)でインチングペダル20が操作されたとしても、通常時の応答特性52のときには圧力変化率がA4と小さく、危険回避時の応答特性51のときには圧力変化率がA3と大きくなる。

【0052】図3はコントローラ19で実行される処理の手順をフローチャートで示している。

【0053】すなわちコントローラ19では、ポテンショメータ21から入力されるペダル操作量 θ を1階微分しインチングペダル20の操作速度V(=d θ /dt)

8

が演算される(ステップ301)。つぎに演算された操 作速度VがVth1≦V≦Vth2の範囲内にあるか否かが判 断される(ステップ302)。との結果操作速度VがV th1≦ V ≦ V th2の範囲にある場合、つまりインチングペ ダル20が通常想定される範囲内の操作速度で操作され ている場合には(ステップ302の判断YES)、図4 の通常時の応答特性52が選択され、演算された操作速 度V1に対応する圧力変化率A2が、この通常時の応答特 性52にしたがって求められる(ステップ303)。と 10 れに対して操作速度VがV<Vth1の場合あるいはV> V th2の場合、つまりインチングペダル20がきわめて 緩やかに操作されているか、危険回避するときの操作速 度で操作されている場合には(ステップ302の判断N 〇)、図4の危険回避時の応答特性51が選択され、演 算された操作速度 V 3 に対応する圧力変化率 A 3が、この 危険回避時の応答特性51にしたがって求められる(ス テップ304)。

【0054】つぎに図3の処理内容を、図2(a)、

(b)、(c)を併せ参照して説明する。

【0055】インチングクラッチ12を解放する場合の 動作について以下説明する。

【0056】図2(a)の一点鎖線32で示すように、作業者が時刻t1でインチングペダル20を踏み込むと、ペダル操作量 θ は最小値 θ 1から増加し始める。操作速度V1でペダル操作量 θ が増加する。そしてペダル操作量 θ は時刻t3で最大値 θ 2に達する。

【0057】 これに対応して図2(b)の破線35で示すように、指令油圧Pは時刻t1の最大値P1から減少し始める。圧力変化率A2で指令油圧Pが減少する。そし30 て指令油圧Pは時刻t3(>時刻t3)で最小値P2に達する。指令油圧Pの減少に応じてインチングクラッチの油圧係合力が減少しクラッチが滑り、エンジン11から駆動輪15へ伝達される動力が減少する。このように従来と同じ操作速度V1でインチングペダル20を踏み込んだとしても、従来の一点鎖線34で示される圧力変化率A1と比較して緩やかな圧力変化率A2で指令油圧Pが減少する。

【0058】これに対応して図2(c)の破線38で示すように、車速Sは時刻t1における最大値S1から減少し始める。従来と同じ操作速度V1でインチングペダル20が踏み込まれているが、従来の一点鎖線37で示される車速変化率と比較して緩やかな車速変化率で車速が減少する。このため車速は0には到達しない。

【0059】インチングクラッチ12を係合する場合の 動作について以下説明する。

【0060】図2(a)の一点鎖線32で示すように、作業者が時刻 t4でインチングペダル20を戻すと、ペダル操作量 θ は最大値 $\theta2$ から減少し始める。操作速度 V1でペダル操作量 θ が減少する。そしてペダル操作量 θ は時刻 t6で最小値 $\theta1$ に達する。

【0061】 これに対応して図2(b)の破線35で示 すように、指令油圧Pは時刻 t 4の最小値P2から増加し 始める。圧力変化率A2で指令油圧Pが増加する。そし て指令油圧Pは時刻 t 6' (>時刻 t 6) で最大値P1に 達する。指令油圧Pの増加に応じてエンジンから駆動輪 へ伝達される動力が増加する。このように従来と同じ操 作速度V1でインチングペダル20を戻したとしても、 従来の一点鎖線34で示される圧力変化率A1と比較し て緩やかな圧力変化率A2で指令油圧Pが増加する。

【0062】 これに対応して図2(c)の破線38で示 10 すように、車速Sは時刻 t 4の最小速度から増加し始 め、時刻 t 6″(>時刻 t 6、 t 6′)で最大値S1に達す る。つまり従来と同じ操作速度V1でインチングペダル 20を戻したとしても、従来の一点鎖線37で示される 車速変化率と比較して緩やかな車速変化率で車速が増加 する。

【0063】つぎに危険回避するためにインチングペダ ル20が通常想定される操作速度よりも大きな速度で操 作された場合について説明する。たとえばインチング操 作を行っているときに車両の前方に障害物を発見した場 20 1よりも小さい操作速度Vで操作されている場合にも、 合には、インチングペダル20を急激に踏み込みインチ ングクラッチ12を即座に解放し車両を緊急停止させる 必要がある。このような場合インチングペダル20の操 作速度Vは、しきい値Vth2よりも大きくなる。

【0064】すなわち図2(a)の実線31で示すよう に、作業者が時刻 t 1でインチングペダル20を踏み込 むと、ペダル操作量 θ は最小値 θ 1から増加し始める。 操作速度 V 3は通常時の操作速度 V1よりも大きく。しき い値Vth2よりも大きな速度である。そしてペダル操作 量 θ は時刻 t 2 (< 時刻 t 3) で最大値 θ 2に達する。

【0065】 これに対応して図2(b)の実線33で示 すように、指令油圧Pは時刻 t 1における最大値P1から 減少し始める。圧力変化率A3で指令油圧Pが減少す る。そして指令油圧Pは時刻 t 2 (<時刻 t 3) で最小値 P2に達する。指令油圧Pの減少に応じてエンジン11 から駆動輪15へ伝達される動力が減少する。このよう に、しきい値Vth2を越えた大きな操作速度V3でインチ ングペダル20を踏み込んだとすると、従来と同様に通 常時の応答特性51(図4)に応じた圧力変化率A3で 指令油圧Pが減少する。

【0066】 これに対応して図2(c)の実線36で示 すように、車速Sは時刻 t 1における最大値S1から減少 し始める。車速Sは圧力変化率A3に応じた大きな車速 変化率で減少する。車速Sは時刻 t 2′(>時刻 t 2)で 0に到達する。

【0067】危険回避時にインチングクラッチ12を係 合する場合も同様である。

【0068】すなわち図2(a)の実線31で示すよう に、作業者が時刻 t 4でインチングペダル20を戻す と、ペダル操作量hetaは最大値heta2から減少し始める。操

作速度V3でペダル操作量 θ が減少する。そしてペダル 操作量θは時刻 t 5 (< 時刻 t 6) で最小値θ 1に達す

【0069】 これに対応して図2(b)の実線33で示 すように、指令油圧Pは時刻 t 4における最小値P2から 増加し始める。圧力変化率A3で指令油圧Pが増加す る。そして指令油圧Pは時刻t5(<時刻t6)で最大値 P1に達する。指令油圧Pの増加に応じてエンジンから 駆動輪へ伝達される動力が増加する。とのように、しき い値Vth2を越えた大きな操作速度V3でインチングペダ ル20を戻したとすると、従来と同様に通常時の応答特 性51(図4)に応じた圧力変化率A3で指令油圧Pが 増加する。

【0070】 これに対応して図2(c)の実線36で示 すように、車速Sは時刻 t 4における最小速度から増加 し始める。車速Sは圧力変化率A3に応じた大きな車速 変化率で増加する。車速Sは時刻 t 5で最大値S1に達す る。

【0071】なおインチングペダル20がしきい値Vth 上述した危険回避時の動作と同様に、図4の通常時の応 答特性51(図4)に応じた圧力変化率で指令油圧Pが 変化することとなり、作業者の意思通りに敏感に車両が 動作する。

【0072】以上説明したように本実施形態によれば、 作業車両でインチング操作を行う場合に、インチングペ ダル20が通常の操作速度範囲内(Vth1~Vth2)で操 作されている場合には操作に対して車速の応答性を遅ら すようにしたので、車速が0になったり車速が急激に増 30 加することがなくなる。このため作業効率が向上し、操 作に熟練を要せずにペダル操作を容易に行えるようにな る。一方で、危険回避等するためにペダル20が明確に 急操作されている場合には操作に対して車速の応答性を 高めるようにしたので、安全性が確保される。

【0073】なお本実施形態では、操作速度Vに2つの しきい値Vth1、Vth2を設定して、操作速度Vが、しき い値Vth1以上でかつしきい値Vth2以下の範囲内である か否かに応じて、操作に対する車速 (指令油圧)の応答 性を異ならせる補正をしている。

40 【0074】しかし、操作速度Vに1つのしきい値Vth 2のみを設定して、操作速度Vが、しきい値Vth2以下で あるか否かに応じて、操作に対する車速(指令油圧)の 応答性を異ならせる補正をしてもよい。

【図面の簡単な説明】

【図1】図1は建設機械の動力伝達装置を示す図であ

【図2】図2 (a) は時間の経過に応じて変化するペダ ル操作量を示す図であり、図2 (b) は時間の経過に応 じて変化する指令油圧を示す図であり、図2(c)は時 50 間の経過に応じて変化する車速を示す図である。

*

12

【図3】図3は本実施形態の処理の手順を示すフローチャートである。

【図4】図4は本実施形態による操作速度と圧力変化率 との関係を示す図である。

【図5】図5は操作速度と圧力変化率との関係を示す図である。

【符号の説明】

* 1 1 エンジン

12 インチングクラッチ

15 駆動輪

19 コントローラ

20 インチングペダル

21 ポテンショメータ

22 圧力制御弁

(図i)

【図3】

フロントページの続き

Fターム(参考) 3J057 AA06 BB03 GA32 GB04 HH04 JJ01