Assignment 4

Timothy Yong, Eric Bronner, Aedan Dispenza, Jason Davis10/6/14

PROBLEM 1

- a) Algorithm: Run the Dueling Algorithm for constructing a cartesian tree, but if a node is about to be inserted under a node of the same value, do not insert it.
- b) Counter Example: $\exists u, v$, both of which are subtrees of T, s.t. h(u) < h(v). Given that u is visited first by the Eulerian Tour, and a Cartesian Tree is thus constructed from this Eulerian Tour, after doing the Cartesian Update from v, \exists at least one edge which exists in the Cartesian Tree, but not in T.

PROBLEM 2

Given that k is the amount of bits in the representation of a number, and logn is the amount of bits that can be evaluated in constant time, then this algorithm is O(1) if $k \leq logn$, or $O(\frac{k}{logn})$ if k > logn.

This algorithm runs in $\frac{logb}{logn} = log_nb$ time. Given that b < n, this algorithm is O(1).

PROBLEM 3

Algorithm $LCA_T(V')$:

- 1 Do a preorder traversal on T(v) to get one of the outermost leaves p.
- 2 Do a postorder traversal on T(v) to get one of the outermost leaves q.
- 3 Run LCA(p,q).

Algorithm M:

- 1 Get S(v) by running a DFS on the tree rooted at v.
- $2 LCA_T(S(v))$

PROBLEM 4

If we do the set cover of all edges in graph G, in Polynomial time, then we have determined that for the input graph G, $\exists V' \leq K$, s.t. V''s edges comprise all of the edges inside of graph G, therefore solving Vertex Cover.