Automaten und Formale Sprachen Tutorium

Überblick Komplexitätstheorie

Christopher Blöcker (inf8871)

FH Wedel, SS 2010

Vereinbarung

Sei Π ein Entscheidungsproblem, I ein Beispiel von Π und \mathcal{A} ein Algorithmus zum Lösen von Π .

 $t_{\mathcal{A}}$ sei die Anzahl der Rechenschritte, die \mathcal{A} für das Lösen von I benötigt.

Definition

Die Funktion $T_A: \mathbb{N} \to \mathbb{N}$ mit

$$T_{\mathcal{A}}(n) = \max\{t_{\mathcal{A}}(I) \mid I \in \mathfrak{B}(\Pi) \wedge L(I) = n\}$$

heißt Zeitkomplexitätsfunktion für den Algorithmus \mathcal{A} .

Definition

Sei \mathcal{M} eine **DTM**, die Funktion $T_{\mathcal{M}}: \mathbb{N} \to \mathbb{N}$ mit

$$T_{\mathcal{M}}(n) = \max\{k \in \mathbb{N} \mid \bigvee_{x \in \Sigma^*, |x| = n} \mathcal{M} \text{ stoppt nach k Schritten}\}$$

heißt Zeitkomplexitätsfunktion für die $TM \mathcal{M}$.

Definition

Eine **DTM** heißt Polynomialzeit-**DTM** (kurz **PZDTM**), wenn es ein Polynom p gibt mit

$$\bigwedge_{n\in\mathbb{N}}T_{\mathcal{M}}(n)\leq p(n).$$

\mathcal{O} -Notation

Es ist im allgemeinen sehr schwierig, eine konkrete Schranke für einen Algorithmus anzugeben, daher begnügt man sich mit ungefähren oberen Schranken.

Notation	Bedeutung
$\mathcal{O}(1)$	konstante Laufzeit
$\mathcal{O}(n)$	lineare Laufzeit
$\mathcal{O}(n^k)$	polynomiale Laufzeit
$\mathcal{O}(2^n)$	exponentielle Laufzeit

Definition

Die Klasse \mathcal{P} wird definiert als

$$\mathcal{P} = \{L \mid L \subseteq \Sigma^* \land \text{ es gibt eine } \mathbf{PZDTM} \ \mathcal{M} \text{ mit } L = L_{\mathcal{M}}\}.$$

 ${\mathcal P}$: Deterministisch in Polynomialzeit lösbar.

Beispiele für Probleme aus ${\mathcal P}$

- Sortieren
- Suchen
- Kürzestes Wege-Problem (Dijkstra)
- STCON
- PRIMES
-

Definition

Die Klasse \mathcal{NP} wird definiert als

$$\mathcal{NP} = \{L \mid L \subseteq \Sigma^* \land \text{ es gibt eine } \mathbf{PZNDTM} \ \mathcal{M} \text{ mit } L = L_{\mathcal{M}}\}.$$

 \mathcal{NP} : Nichtdeterministisch in Polynomialzeit lösbar. \mathcal{NPV} bildet dabei die Klasse der schwersten Probleme aus \mathcal{NP} .

Beispiele für Probleme aus \mathcal{NPV}

- Намратн
- Traveling Salesman
- Vertex Cover
- Knapsack
- · · ·

${\mathcal P}$ und ${\mathcal N}{\mathcal P}$

Die Probleme aus \mathcal{P} werden als in der Praxis effizient lösbar betrachtet, die aus \mathcal{NP} als nur näherungsweise gut lösbar.

Eine mittlerweile weitgehend anerkannte Definition für \mathcal{NP} lautet:

 \mathcal{NP} enthält die Probleme, für die eine Lösung in polynomialer Zeit verifiziert werden kann.

Das $\mathcal{P} - \mathcal{NP}$ -Problem

Es gilt

$$\mathcal{P} \subseteq \mathcal{NP}$$
.

Lange Zeit konnte man nicht sagen, ob

$$\mathcal{P} = \mathcal{N}\mathcal{P}$$

oder

$$\mathcal{P} \neq \mathcal{N}\mathcal{P}$$

gilt.

VINAY DEOLALIKAR hat am 06. August 2010 einen Beweis vorgelegt, demzufolge

$$\mathcal{P} \neq \mathcal{NP}$$

gelten soll.

