Q1. Demonstrate how the perception model can be used to represent the AND functions blow a pair of Boolean variables. => Truth table for AND for pair of boolean variable x1 x2 .t (1) 10 - (0) 10 13 (17 (W) = 7 + (1) (5) (1) (W) the taken has consus 1 7 - GOLDBICK JAMES SIN perception network: 0:11010101010 or (mp) /1 yin>0 W_1 $y = f(yin) = \int_0^\infty yin = 0$ ista febros L-1 yinco let initial weights and constant b=0 1.e W1=W2=0=0 1) x1) (x2 t second input -> [i -1 -1] → yin= 1 +(1)(1)+(1)(-1)=1 4=f(4;n)=1 : Again weight change is required : WI (NEW) = 1 + (D (-1)(1) W2 (new) = 1+(1)[-1][-1]=2

b(new) = 1+(1)(-1)=0

```
: New weights => wi=b=0; wi=2
          Third input \rightarrow -1 1 -1
          \Rightarrow yin =0+(0)(-1)+2(1)=2
                                                                   WALL TO LOOK OF WALLS TO WALL TO WALL TO WALL THE PARTY OF THE PARTY O
shower y=f(yin)=1 +t
         · · w, (n(w) = 0 + (1)(-1)(-1)=+1
                     w2 (new) = 2 + (1) (-1) (1) = 1
                           b(new) =0+(1)(-1)=-1
      first input perception -> [ " " " 1,7
                      : . Yin = b + W/X/+ W2X2
                                      = 0 + 0(1)+0(1)=0
                   okiny = f(Yin)=0
          since y+t (MIV) Top & OR IN (A)
                    :. We need update weights
             wilnew) = willold) + x tx;
             where & is learning rate & here
                                : wi(ncw) = 0 + (1) (1) (1)
                                                ET HILL SUPER DOORS
                      W2 ( NEW) = 0+ (1)(1)(1)
                            blnews = bloid) + xt
                                                     =0+(1)(1)
                                                         HILL TO THE PORT OF THE
                · New weights >
                                                w_1 = w_2 = b = 1
```

forth input
$$\Rightarrow$$
 [-1 +1 +1]

 \Rightarrow yin = (-1) + 1 (-1) + 1 (-1)

= -3

 \therefore y = f (yin) = -1 = t

 \Rightarrow therefore final weights \Rightarrow (after first epoch)

 \Rightarrow in the process \Rightarrow in the process \Rightarrow in the given instance, there are four continuous values

 \Rightarrow the spool in the given instance, there are four

X1 X2 > X3 X4

1.0

ALSO

$$f(x) = w_1 \phi_1 + w_2 \phi_2$$

 $\therefore w_1 = 1 \otimes w_2 = -1$
 $\phi_1 = \chi_1 \chi_2 \otimes \phi_2 = \chi_3 \chi_4$

for this, we have x1 & x2 as variables & according to the table

$$y = \begin{cases} 1 & \text{if } f(x) \Rightarrow -x_1 x_2 > 0. \\ -1 & \text{otherwise} \end{cases}$$

Os: (100) 400 statistical statistic on the control of the control

P(y=+/c1)										
P (4=+/(2)	0.33	0.22	0.1	0.41	0.68	0.59	0.72	0.75	0.64	095
4	- 13	130	+ 0	-203	to	-	-	+	+	+

STATE OF HEX WHEX THE XING WILL

FOR 2 POP COZED

= 0.08+0.12 +0.020+0.48

=0.7

classifier 1 has bigger area under the curve

@ classifier 1 will be preferred over

classifier 2 as area under curve (AUC)

of classifier 2 is greater than classifier2