2. Consider the transitional system.

1 picture

Which of the states are to be marked as starting state and fi nal state, respectively, so as to turn the above system into a DFA that accepts all strings having odd number of zeros and even number of 1's?

 $(a)q_0,q_2$ $(b)q_0,q_1$ $(c)q_1,q_2$ d) None of these

3. Consider the following DFA in which S_0 is the start state and S_1 and S_3 are the fi nal states. Which one is true?

2 picture

- a) All strings of x and y.
- b) All strings of x and y which have either an even number of x and even number of y or an odd number of x and odd number of y.
- c) All strings of x and y which have an equal number of x and y.
- d) All strings of x and y which have either an even number of x and odd number

of y or an odd number of x and even number of y.

- 4. Let N be an NFA with n states and let M be the minimized DFA with m states recognizing the same language. Which of the following is NECESSARILY true?
 - $a)m \le 2^n$ $b)n \le m$ c) M has one accept state $d)m = 2^n$
- 5. If the final state and non-final states in the following DFA are interchanged, then which of the following languages over the alphabet (a, b) will be accepted by the new DFA?

$122 \mid$ Introduction to Automata Theory, Formal Languages and Computation

- a) Set of all strings that do not end with ab
- b) Set of all strings that begin with either an a or a b.
- c) Set of all strings that do not contain the substring ab.
- d) The set described by the regular expression $b^*aa^*(ba)^*b^*$
- 6. A finite state machine with the following state table has a single input ${\bf x}$ and a single output ${\bf z}$.

	Next State,z	
Present State	X=0	X=1
A	D, 0	B, 0
В	B, 1	C, 1
$^{\mathrm{C}}$	B, 0	D, 1
D	B, 1	C, 0

If the initial state is unknown, then the shortest input sequence to reach the final state C is:

- a)01 b)10 c) 101 d)110
- 7. Which of the following sets can be recognized by a deterministic finite state automaton?
 - a) The numbers $1, 2, 4, 8, ...2^n$ written in binary.
- b) The numbers $1, 2, 4, ... 2^n$ written in unary.
- c) The set of binary string in which the number of zeros is the same as the number of ones.
- d) The set $\{1, 101, 11011, 1110111, ...\}$
- 8. Consider the regular expression (0+1)(0+1)....N times. The minimum state FA that recognizes the language represented by this regular expression contains
- a) n states b)(n+1)states c) (n+2)states d) None of the above

- 9. What can be said about a regular language L over $\{a\}$ whose minimal finite state automation has two states?
- a) L must be $\{an|nisodd\}$ b) L must be $\{an|niseven\}$ c) L must be $\{an|n \geq 0\}$ d) Either L must be $\{an|nisodd\}$ or L must be $\{an|niseven\}$
- 10. The smallest FA which accepts the language $\{x|lengthofxisdivisibleby3\}$ has
 - a) 2 states
- b) 3 states
- c) 4 states
- d) 5 states
- 11. Consider the following deterministic fi nite state automaton M.

picture

Let S denote the set of seven-bit binary strings in which the first, fourth, and last bits are 1. The number of strings in S that are accepted by M is

- a) 1 b) 5
- c) 7
- d) 8

12. The following finite state machine accepts all those binary strings in which the number of 1's and 0's are, respectively,

5 picture

- a) divisible by 3 and 2 $\,$ b) odd and even c) even and odd $\,$ d) divisible by 2 and 3 $\,$
 - 13. Consider the machine M.

6 picture

The language recognized by M is:

- a) $\{w\varepsilon\{a,b\}^*|everyainwisfollowed by exactly two b's\}$
- b) $\{w\varepsilon\{a,b\}^*|everyainwisfollowed by at least two b's\}$
- c) $\{w\varepsilon\{a,b\}^*|wcontains the substring'abb'\}$
- d) $\{w\varepsilon\{a,b\}^*|wdoesnotcontain`aa'asasubstring\}$

14. A minimum state deterministic FA accepting the language $L=\{w|w\varepsilon\{0,1\}^*\}$ where number of 0's and 1's in w are divisible by 3 and 5, respectively, has

a) 15 states

b) 11 states

c) 10 states

d) 9 states

Y:

	a	b
$\rightarrow 1$	1	2
2(F)	2	1

Z:

	a	b
$\rightarrow 1$	2	2
2(F)	1	1

Which of the following represents the product automaton $Z \times Y$?

 $124 \mid$ Introduction to Automata Theory, Formal Languages and Computation

a)

	a	b
\rightarrow P	S	R
Q	R	S
R(F)	Q	Р
S	Q	Р

b)

	a	b
\rightarrow P	S	Q
Z	R	S
R(F)	Q	Р
S	Р	Q

 $^{\mathrm{c}})$

	a	b
\rightarrow P	Q	S
Q	R	S
R(F)	Q	Р
S	Q	Р

d

	a	b
\rightarrow P	S	Q
Q	S	R
R(F)	Q	Р
S	Q	Р

16.

7 picture

The given DFA accepts the set of all strings over $\{0,1\}$ that

- a) begin either with 0 or 1.
- b) end with 0

- c) end with 00.
- d) contain the substring 00.

17. Let w be any string of length n in $\{0,1\}^*$. Let L be the set of all substrings of w. What is the minimum number of states in a non-deterministic FA that accepts L?

$$a)n-1$$
 $b)n$ $c)n+1$ $d)2^{n-1}$

18. Definition of a language L with alphabet $\{a\}$ is given as following $\{a^{nk}|k>0 \text{ and n is a positive integer constant}\}$

What is the minimum number of states needed in a DFA to recognize L?

$$a)k+1$$
 $b)n+1$ $c)2^{n+1}$ $d)2^{k+1}$

19. A deterministic finite automation (DFA) D with alphabet $\Sigma = \{a,b\}$ is given as follows:

8 picture

Which of the following fi nite state machines is a valid minimal DFA which accepts the same language as D?

9 picture

