

机

台大电机系 叶丙成

微博: weibo.com/yehbo 脸书: facebook.com/prof.yeh

部落格: pcyeh.blog.ntu.edu.tw

丙绅机率第五周 人们再度想起了 被微积分支配的恐惧

与积分鬼打墙 积不出来时 的无比屈辱~~~

本周主题概述

- 6-1: 连续机率分布 II
- 6-2: 期望值 I

6-1: 连续机率分布 II (CONTINUOUS PROBABILITY DISTRIBUTIONS)

第六周

Normal 机率分布(常态分布)

- 常态分布在自然界很常出现
 - Ex: 人口身高分布、体重分布
- 亦常被用作「很多随机量的总合」的机率模型
 - Ex: 100 人吃饭时间的总合
 - -原因:来自最后会讲到的「中央极限定理」

Normal 机率分布(常态分布)

- 常态分布,亦常被称作 Gaussian (高斯) 机率分布 (瞧那高斯的威能啊!!)
- $X \sim Gaussian(\mu, \sigma)$,

$$f_X(x) = \frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

也常有人用 $X\sim N(\mu,\sigma^2)$ 来表示

Normal 机率分布(常态分布)

- CDF 是多少?
 - 很难算,积分根本算不出来!
 - 用数值积分法去建表?很难啊,因为不同的 μ,σ 就会造就 出不同的 常态分布 PDF,每个都要建一个表会要命啊!
- 怎么办?
 - 有没有办法找到一组特别 μ,σ,先针对这组的 CDF 建表,然后想办法把别的常态分布的 CDF 跟这组 CDF 牵上关系?
 - 若能牵扯上,再利用这表去算出别的常态分布的 CDF 值?

Standard Normal Distribution

标准常态分布

• $Z \sim N(0, 1)$,

$$f_Z(z) = \frac{1}{\sqrt{2\pi}}e^{-\frac{z^2}{2}}$$

Standard Normal Distribution 标准常态分布

• $Z \sim N(0,1)$,

$$f_Z(z) = \frac{1}{\sqrt{2\pi}}e^{-\frac{z^2}{2}}$$

- CDF 表示为 $\Phi(z) = \int_{-\infty}^{z} \frac{1}{\sqrt{2\pi}} e^{-\frac{u^2}{2}} du$
 - 积不出来,只能以数值方法近似出来后建表 给人家查
 - 网络上或是工程计算器上常能找到

Standard Normal Distribution

标准常态分布

• 例:*F_Z*(1.325) =?

	- ', ', -				J,	,			_	
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
3.0	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990

1.325

$$F_Z(1.325) = \frac{0.9066 + 0.9082}{2} = 0.9074$$

Standard Normal Distribution

标准常态分布

•
$$\Phi(z)$$
 的性质: $\Phi(-z) = 1 - \Phi(z)$

$$\Phi(-z) + \Phi(z) = 1$$
blue red

任意 μ , σ 下的 CDF?

- 任意 μ , σ 下的CDF,我们要把它跟N(0,1)牵上关系
- 「关系!」:对任何 $X \sim N(\mu, \sigma^2)$ 而言, $\frac{X-\mu}{\sigma} \sim N(0, 1)$

证明:

$$f_X(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

$$\frac{\sqrt{2\pi\sigma}}{P\left(\frac{X-\mu}{\sigma}\leq z\right)} = P(X\leq \mu+\sigma z) = \begin{vmatrix} \frac{\mu+\sigma z}{\sqrt{2\pi\sigma}} & \frac{1}{\sqrt{2\pi\sigma}}e^{-\frac{(x-\mu)^2}{2\sigma^2}} dx \end{vmatrix}$$

$$\Rightarrow \omega = \frac{x-\mu}{\sigma} \Rightarrow P\left(\frac{X-\mu}{\sigma}\leq z\right) = \int_{-\infty}^{z} \frac{1}{\sqrt{2\pi}}e^{-\frac{(\omega^2)^2}{2\sigma^2}} d\omega = \Phi(z) \begin{vmatrix} \frac{x-\mu}{\sigma} & \frac{x-\mu}{\sigma} \\ \frac{y-\mu}{\sigma} & \frac{y-\mu}{\sigma} \end{vmatrix}$$

任意 μ , σ 下的 CDF?

• 对任何 $X \sim N(\mu, \sigma^2)$ 而言, $F_X(x) = \Phi\left(\frac{x-\mu}{\sigma}\right)$

证明:

$$\underbrace{F_X(x)}_{} = \underbrace{P(X \le x)}_{} \\
= \underbrace{P(X - \mu \le x - \mu)}_{} \\
= \underbrace{P\left(\underbrace{X - \mu}_{\sigma} \le \underbrace{x - \mu}_{\sigma}\right)}_{} \\
= \Phi\left(\underbrace{\frac{x - \mu}{\sigma}}_{\sigma}\right)^{}$$

T70

任意 μ , σ 下的 CDF?

Ex: 已知 10 名水源阿伯每日拖车总重量总和

 $X \sim N(500(100^2))$ (公斤),问本日总重量少于700

$$F_X(700) = P(X \le 700)$$

$$= P\left(\frac{X - \mu}{\sigma} \le \frac{700 - \mu}{\sigma}\right)$$

$$= P\left(\frac{X - \mu}{\sigma} \le \frac{700 - 500}{100} = \frac{200}{100} = 2\right)$$

$$= \Phi(2) = 0.977$$

本节回顾

- 常态分布为何重要?
- · 常态分布的 CDF 有精确的函数形式吗?
- · 每个不同的常态分布都有不同的 CDF 怎么办?
- 为什么要特别提标准常态分布?
- 任何常态分布的随机变量都可以跟标准常态分布牵上关系?这样有什么意义?

6-2: 期望值 I (EXPECTATION)

第六周

先说一下大数法则

- 丢一个铜板得正面机率是多少?
- 丢 3 次,记录实验中得正面的次数比例为 2/3
- 丢 10 次,得正面的次数比例为 6/10
- 丢 100 次,得正面的次数比例为 53/100
- 丢 10000 次,得正面的次数比例为 5012/10000
- 大数法则:想知道某事件发生的机率?
 作很多次实验,记录实验中出现那个事件多少次。当实验次数接近无穷多次时,这个比例就会越来越接近实际的机率!

期望值 (Expectation)

- 做随机实验时,我们很希望能有某种估算
- 平均值是我们平常最常普遍的估算值
- 作两次实验的平均值是? $\frac{X_1+X_2}{2}$ =?
- 作十次实验的平均值是? $\frac{X_1+X_2+\cdots+X_{10}}{10}$ =?
- 不管我们做多少次实验,平均值都是一个随机变数,那不就 不能拿来估算?
- 所幸!当做的实验次数趋近于无穷多时,这么多次的实验的平均值会收敛到一个常数!我们就用它来当作这机率分布的估算值吧!

期望值 (Expectation)

• 若考虑某机率分布,作实验很多次若随机实验之样本空间为 $\{1,2,...,n\}$ 。作实验N次,记录各结果出现次数,分别为 $N_1,N_2,...,N_n$

• 平均值 (Mean):

- Ex: 3, 7, 3, 5, ...,
$$6 \Rightarrow mean = \underbrace{\frac{3+7+3+5+\cdots+6}{N}}_{N} = \sum_{x=1}^{n} \underbrace{\frac{x \cdot N_{x}}{N}}_{N}$$

• 根据大数法则:

$$-\underbrace{\lim_{N\to\infty}\frac{N_x}{N}}_{N} = \underbrace{P_X(x)}_{N\to\infty} \Rightarrow \underbrace{\lim_{N\to\infty}mean}_{N\to\infty} = \underbrace{\lim_{N\to\infty}\sum_{x=1}^{n}x}_{N} \underbrace{N}_{N} = \underbrace{\sum_{x=1}^{n}x\cdot P_X(x)}_{N}$$

期望值 (Expectation)

- · Mean 值又称作期望值 MY=E[7]
- 对离散随机变数 X 而言,我们定义其期望值

期望值虽是很常用来估算随机变数的常数值,但小心不要被误导。期望值不等于随机会发生的值

随机变量的函数之期望值

- 对于任一离散随机变量X而言,其任意函数g(X)亦是一随机变量,亦有期望值
- g(X) 期望值定义为

$$E[g(X)] = \sum_{x=-\infty} g(x) \cdot P_X(x)$$

 ∞

期望值运算的性质

• Ex:
$$E[3|X^2] = \sum_{x=-\infty}^{\infty} 3x^2 \cdot P_X(x)$$

$$=3\cdot\sum_{x=-\infty}^{\infty}x^2\cdot P_X(x)=3\cdot E[X^2]$$

•
$$E[\alpha g(X)] = \sum_{x=-\infty}^{\infty} \alpha g(x) \cdot P_X(x)$$

期望值运算的性质

•
$$E[\alpha g(X) + \beta h(X)]$$

$$=\sum_{x=-\infty}^{\infty} \left[\alpha g(x) + \beta h(x)\right] \cdot P_X(x)$$

$$=\alpha \cdot \sum_{x=-\infty}^{\infty} g(x) \cdot P_X(x) + \beta \cdot \sum_{x=-\infty}^{\infty} h(x) \cdot P_X(x)$$

$$= \alpha \cdot E[g(X)] + \beta \cdot E[h(X)]$$

Ex:
$$E[6(X) + 8(X^2)] = 6 E[X] + 8 E[X^2]$$

期望值运算的性质

- **E**[α]

$$= \sum_{x=-\infty}^{\infty} \alpha \cdot \underline{P_X(x)} = \alpha \cdot \underline{\sum_{x=-\infty}^{\infty} P_X(x)} = \alpha$$

Ex: E[6] = 6

常见的随机变量函数期望值

• X的 n^{th} moment: $E(\Upsilon)$

$$E[X^n] = \sum_{x=-\infty}^{\infty} x^n \cdot P_X(x)$$

- Ex: $E[X^2]$ 是 X 的 2^{nd} moment
- Ex: $E[X^5]$ 是 X 的 5^{th} moment
- X的变异数 (variance):

$$E[(X - \mu_X)^2] = \sum_{x = -\infty}^{\infty} (x - \mu_X)^2 \cdot P_X(x)$$

变异数 (Variance) f C r

• 变异数隐含关于随机变数 X 多「乱」的信息

• 变异数的开根号便是标准差 (standard deviation): σχ $\sqrt{Variance}$

Variance 便利算法

•
$$\sigma_X^2 = E[(X - \mu_X)^2] = \frac{E}{X^2 - 2\mu_X \cdot X} \times \frac{E[X^2 - 2\mu_X \cdot X + \mu_X^2]}{X^2 + E[-2\mu_X X] + E[\mu_X^2]}$$

= $E[X^2] - 2\mu_X \cdot E[X] + \mu_X^2 = E[X^2] - \mu_X^2$

常见离散分布之期望值/变异数

• $X \sim Bernouli(p)$:

$$\begin{array}{l}
 \mu_X = 1 \cdot p + 0 \cdot (1 - p) = \underline{p} \\
 > \sigma_X^2 = E[X^2] - \mu_X^2 = \sum_{x=0}^1 x^2 \cdot p_X(x) - \mu_X^2 \\
 = 1^2 \cdot p + 0^2 \cdot (1 - p) - p^2 = p(1 - p)
\end{array}$$

• $X \sim BIN(n, p)$:

$$>\mu_X=\underline{np}$$

$$> \sigma_X^2 = np(1-p)$$

Ex: $X \sim BIN(5, 0.2)$

$$\Rightarrow \mu_X = 5 \cdot 0.2 \stackrel{?}{=} 1$$

$$\sigma_X^2 = 5 \cdot 0.2 (1 - 0.2) = 0.8$$

常见离散分布之期望值/变异数

$$\triangleright \mu_X = \sum_{x=0}^{\infty} x \cdot p_X(x) = \underbrace{\sum_{x=0}^{\infty} x \cdot (1-p)^{x-1} \cdot p}_{=} = \underbrace{\sum_{x=0}^{\infty} x \cdot (1-p)^{x-1} \cdot p}_{=} = \underbrace{\sum_{x=0}^{\infty} x \cdot p_X(x)}_{=} = \underbrace{\sum_{x=0}$$

$$> \sigma_X^2 = E[X^2] - \mu_X^2 = \frac{1-p}{p^2}$$

• $X \sim PASKAL(k, p)$:

$$> \mu_X = \frac{k}{p}$$

常见离散分布之期望值/变异数

• $X \sim POI(\alpha)$:

$$>\mu_X=\alpha$$

$$\succ \sigma_X^2 = \alpha$$

• $X \sim UNIF(a, b)$:

$$>\mu_X=\frac{a+b}{2}$$

$$> \sigma_X^2 = \frac{1}{12}(b-a)(b-a+2)$$

机率推导的奥义:「凑」字诀

•
$$P_X(x) = \frac{\alpha^x}{x!} e^{-\alpha}, x = 0, 1, 2, \dots, \Sigma$$

$$E[X] = \sum_{x=0}^{\infty} \underbrace{x \cdot \frac{\alpha^x}{x!}} e^{-\alpha} = \sum_{x=1}^{\infty} \underbrace{\frac{\alpha^x}{(x-1)!}} e^{-\alpha} = \underline{\alpha} \cdot \sum_{x=1}^{\infty} \underbrace{\frac{\alpha^{x-1}}{(x-1)!}} e^{-\alpha}$$

$$\frac{x' = x - 1}{= \alpha \cdot \sum_{\underline{x'} = x - 1 = 1 - 1}^{\infty - 1} \underbrace{\frac{\alpha^{x'}}{\underline{x'}!}} e^{-\alpha} = \underbrace{\alpha \cdot \sum_{\underline{x'} = 0}^{\infty} \underbrace{\frac{\alpha^{x'}}{\underline{x'}!}} e^{-\alpha}}_{\mathbf{x'}!} e^{-\alpha} = \underline{\alpha \cdot 1} = \underline{\alpha}$$

本节回顾

- 为何想知道期望值?
- 根据大数法则,期望值等于?
- 随机变量的函数期望值该怎么求?
- · 变异数 (Variance) 的意义是?
- 机率(数学)证明的一大要诀?

