# 21CSS201T (COA) Mini Project: Light Sensitive Lamp

Ashwin Abhilash (RA2311003010020)

Akshat Gupta (RA2311003010021)

Varsha Jitesh (RA231103010034)



# **Objective**

**Design** 

Develop a circuit diagram incorporating a photoresistor, microcontroller, and LED.

Build and test a fur

Build and test a functional prototype.

**Implementation** 

**3** Calibration

Calibrate the circuit to adjust brightness based on light levels.

4 Documentation

Present a comprehensive report covering the design, implementation, and results.



# **Hardware and Software Components**

# **Photoresistor**

A light-sensitive resistor that changes its resistance based on the amount of light it receives.

# **Arduino Uno Microcontroller**

A microcontroller that reads the photoresistor's output and controls the LED's brightness.

# **LED**

A light-emitting diode that changes brightness based on the microcontroller's output.

# **Resistors and Wires**

Components used to control the current flowing through the circuit and connect the components.

# **Breadboard**

A prototyping tool used to connect the circuit components easily.

### **Arduino IDE**

Software used to write and upload code to the Arduino microcontroller.

# Comparing the existing model with our model

| Features          | Existing Model                | Our Model                               |
|-------------------|-------------------------------|-----------------------------------------|
| Light Sensitivity | Simple on/off, not adjustable | Continuously adjustable brightness      |
| Power Consumption | High, always on               | Energy-efficient, adjusts based on need |
| Control Mechanism | Limited, manual switch        | Advanced, automatic light sensing       |

# START IS AMBIENT LIGHT BELOW -AMBIENT LIGHT LEVEL NO Check ambient light CHECK LIGHT TUTO LIMP LIGHT below THERSOL? Thersholu? thersholl? TUFN LAMP TUTH LAMP Below Themol/? LUMP ON? NO YES Lamp On? WAIT AND REPEAT

# Flow Chart

Step 1

Measure the light level with the photoresistor.

Step 2

2

3

4

Convert the analog photoresistor reading to a digital value.

Step 3

Map the digital value to a range of LED brightness values.

Step 4

Set the LED brightness based on the mapped value.

# **Circuit Diagram**



### **Photoresistor**

The photoresistor senses the ambient light level.



# **LED**

The LED emits light, controlled by the Arduino.



### **Arduino Uno**

The microcontroller reads the photoresistor's output and controls the LED's brightness.



### **Resistors**

Resistors limit current flow to protect components.

