FIZIKA

EMELT SZINTŰ ÍRÁSBELI VIZSGA

minden vizsgázó számára

2023. október 27. 14:00

Időtartam: 240 perc

Pótlapok száma							
Tisztázati							
Piszkozati							

OKTATÁSI HIVATAL

Fizika	Azonosító								
emelt szint	jel:								

Fontos tudnivalók

Olvassa el figyelmesen a feladatok előtti utasításokat, és gondosan ossza be idejét!

A feladatokat tetszőleges sorrendben oldhatja meg.

Használható segédeszközök: zsebszámológép, függvénytáblázatok.

Ha valamelyik feladat megoldásához nem elég a rendelkezésre álló hely, a megoldást a feladatlap üres oldalain, illetve pótlapokon folytathatja a feladat számának feltüntetésével.

A feladatlapban nem jelölt források a javítási-értékelési útmutatóban szerepelnek.

2311 írásbeli vizsga 2 / 20 2023. október 27.

Fizika	ı
emelt	szint

Azonosító								
jel:								

ELSŐ RÉSZ

1.	keske merő párh	Tolyó sodrása 0,5 m/s ott, ahol a folyó 100 méter széles, és 1 m/s enyebb, 50 méter széles. Át szeretnénk jutni a folyó túlpartjára ú legesen evezünk 0,5 m/s sebességgel, miközben a folyó a cse uzamosan sodorja lefelé. Melyik esetben sodródunk lejjebb? Ha ha keskenyebb?	gy, hogy ónakot a	a partra parttal
	A) B) C) D)	Ott, ahol a folyó szélesebb. Ott, ahol a folyó keskenyebb. Egyforma mértékben sodródunk lejjebb a két helyen. Nem jutunk át a túlpartra, mert evezési sebességünk nem nagyobl sebességénél.	b a folyó	
			2 pont	
2.	abszo	fénysugár n = 1,5 abszolút törésmutatójú közeg felől haladva olút törésmutatójú közeg határát. Felléphet-e teljes rfelületen?	-	
2.	abszo	olút törésmutatójú közeg határát. Felléphet-e teljes vifelületen? Igen, ha a beesési szög megfelelően nagy, teljes egészében vissza	eléri egy visszaver	ődés a
2.	abszo határ	olút törésmutatójú közeg határát. Felléphet-e teljes vifelületen? Igen, ha a beesési szög megfelelően nagy, teljes egészében vissza fénysugár. Nem, mert a második közeg abszolút törésmutatója ehhez túl nag Igen, ebben az esetben a beesés szögétől függetlenül visszav	eléri egy visszaver verődik a y.	ődés a
2.	abszo határ A) B)	olút törésmutatójú közeg határát. Felléphet-e teljes vefelületen? Igen, ha a beesési szög megfelelően nagy, teljes egészében visszar fénysugár. Nem, mert a második közeg abszolút törésmutatója ehhez túl nag	eléri egy visszaver verődik a y. verődik a	ődés a

A) Holdfogyatkozás alatt, mert az telihold idején van.

Napfogyatkozás alatt, mert a Nap megvilágítja a Hold felszínének felét, csak nem látjuk a megvilágított oldalt a Földről.

A megvilágítottság a fenti két esetben azonos. **C**)

- 4. Egy kicsi, 5 N súlyú testet egy kötél segítségével függőleges síkban forgatunk. Mit állíthatunk a fellépő kötélerőről a pálya tetőpontján?
 - A) A kötélerő biztosan kisebb, mint 5 N.
 - **B)** A kötélerő biztosan nagyobb, mint 5 N.
 - C) A kötélerő lehet kisebb is, nagyobb is, mint 5 N.

2 pont

5. Állandó feszültségre kapcsolt síkkondenzátor függőleges fegyverzetei közé egy kis, szigetelőfonálra függesztett fémgömböt lógatunk. Ez a jól ismert elektromos harangjáték kísérlet egy változata. A kis gömb ideoda pattog a fegyverzetek között, és a fegyverzetekhez érve a fegyverzet polaritásával megegyező előjelű, 10-7 C nagyságú töltésre tesz szert. A kis gömb másodpercenként négyszer csapódik a negatív töltésű fegyverzetnek. Mekkora átlagos áramerősséget jelent a kis gömb által szállított töltés?

- **A)** $4 \cdot 10^{-7}$ A nagyságú áramot.
- **B)** $8 \cdot 10^{-7}$ A nagyságú áramot.
- C) A kis gömb pattogása nem eredményez áramot.
- **D)** A megadott adatokkal a kérdésre nem lehet válaszolni.

2 pont

- 6. Miért van kitéve nagyobb mértékben a világűrből érkező háttérsugárzásnak egy repülőgép utasa, mint egy tengeri hajó utasa?
 - **A)** Azért, mert a légkörön gyengítetlenül áthaladó kozmikus sugárzást a tenger vize elnyeli, majd visszasugározza más frekvencián, amit a felszín közeli légrétegek elnyelnek.
 - **B)** Azért, mert a légkör elnyeli a kozmikus háttérsugárzás egy részét, az nem jut le a földfelszínre.
 - C) Azért, mert a repülőgép anyaga nem lehet sugárzást elnyelő ólomból, mert akkor nagyon nehéz lenne a repülő, míg a hajók anyagába ólmot kevernek.

2 pont

2311 írásbeli vizsga 4 / 20 2023. október 27.

7. Az ábra egy vasúti felsővezeték feszítőrendszerét mutatja. A jobb oldalon függőlegesen lefelé futó acélsodronyra betontömbök vannak akasztva, melyek összes súlya G. Mekkora F erő feszíti a felsővezetéket, mely a bal oldali vízszintes drót folytatása?

- **A)** $F = 3 \cdot G$
- **B)** $F = 5 \cdot G$
- $\vec{\mathbf{C}}$) $F = 6 \cdot G$
- **D)** $F = 9 \cdot G$

2 pont

- 8. Egy dugattyús tartályban gáz van. Ennek hőmérsékletét állandó értéken tartjuk, miközben összenyomjuk. Hogyan változik meg a tartályban a molekulák átlagos sebességének nagysága?
 - A) A molekulák átlagos sebessége megnő.
 - B) A molekulák átlagos sebessége lecsökken.
 - C) A molekulák átlagos sebessége állandó marad.

9. Az ábra szerinti elrendezésben egy radioaktív β sugárforrást tartalmazó ólomedényt a papír síkjára merőleges, lefelé mutató elektromos mező elé helyezünk. Hova helyezzük a β-részecskék észlelésére alkalmas detektort annak érdekében, hogy a részecskék a mezőn való áthaladás után elérhessék?

2 pont

- A) A papír síkja fölé.
- B) A papír síkjába.
- C) A papír síkja alá.

10. Egy 2 J mozgási energiával rendelkező kiskocsi (1.) tökéletesen rugalmatlanul ütközik egy másik, álló kiskocsival (2.). A két kocsi ezután egy rugós ütközőnek gurul. Mekkora lesz az ütköző rugójában tárolt energia abban a pillanatban, amikor a kocsik sebessége nullára csökken?

- A) Több, mint 2 J.
- **B)** Pontosan 2 J.
- C) Kevesebb, mint 2 J.
- **D)** A megadott adatok alapján nem lehet eldönteni.

2 pont

- 11. Ha vízben a mélységből fölfelé haladunk, a mélység csökkenésével egyenletesen csökken a nyomás. Levegőben fölfele haladva viszont nem egyenletesen csökken a légnyomás. Miért?
 - A) Mert a levegő összenyomható.
 - **B)** Mert a levegő sokkal ritkább (a sűrűsége kisebb).
 - C) Mert a gravitáció érdemben nem változik a légkörben felfelé haladva, így a légnyomás állandó.
 - **D)** Mert a magas légköri szelek miatt a légnyomás mindenütt kiegyenlítődik.

2 pont

12. Mi történik a mellékelt ábrán látható áramkörben a lámpával, miután zárjuk a kapcsolót?

- A) A lámpa rövid ideig világít, aztán elalszik
- B) A lámpa folyamatosan világít a kapcsoló zárásától kezdve.
- C) A lámpa kis késéssel kezd el világítani.

13. Milyen eszközzel lehet egy levegőben terjedő hanghullámot polarizálni?

- **A)** Egy párhuzamos, hosszú, keskeny résekből álló, úgynevezett akusztikai ráccsal.
- **B)** Egy hosszú csővel, melynek hossza pontosan a hanghullám félhullámhosszának egész számú többszöröse.
- C) Sehogy, a hanghullámok nem polarizálhatóak.
- **D)** Nincs szükség eszközre, a hanghullámok eleve polarizált hullámok.

2 pont

- 14. ²¹⁰Pb izotóp radioaktív bomlások sorozatával ²⁰⁶Pb izotóppá alakult. Milyen bomlások történtek az átalakulás közben?
 - A) Csak α bomlás történt.
 - **B)** Csak β bomlás történt.
 - C) Csak γ bomlás történt.
 - **D)** α és β bomlás is történt.

2 pont

15. Egy függőleges helyzetű rugóra felakasztott súlyos test harmonikus rezgőmozgást végez. A test felső helyzetében a rugó nyújtatlan, ezért alul a megnyúlása a rezgés amplitúdójának kétszerese. Az alsó vagy a felső helyzetben lesz a test gyorsulásának abszolút értéke nagyobb?

- A) Alul, mert a rugó nyújtott.
- B) Felül, mert a gyorsulást a gravitáció okozza, aminek hatását a rugóerő csökkenti.
- C) Ugyanakkora alul és felül, hiszen nem mozog a test, tehát a gyorsulása nulla.
- **D)** Ugyanakkora és nem nulla, mert a rezgés harmonikus.

MÁSODIK RÉSZ

Az alábbi három téma közül válasszon ki egyet, és fejtse ki másfél-két oldal terjedelemben, összefüggő ismertetés formájában! Ügyeljen a szabatos, világos fogalmazásra, a logikus gondolatmenetre, a helyesírásra, mivel az értékelésbe ez is beleszámít! Mondanivalóját nem kell feltétlenül a megadott szempontok sorrendjében kifejtenie. A megoldást a következő oldalakra írhatja.

1. A mechanikus sebességmérő

Ma már a járművek zömében elektronikus sebességmérőt találunk. Ám régebben, a miniszámítógépek megjelenése előtt is alaptartozékuk volt a sebességmérő. A jármű tengelye nemcsak a kerekeket forgatja, hanem egy áttéten keresztül egy hajlékony fémszálat, úgynevezett bovdent is, ami hossztengelye körül forog annál gyorsabban, minél gyorsabban pörög a jármű kereke. A bovden végén egy kis mágnes van, amit a bovden forgat. A mágnes egy nem ferromágneses fémkehely (pl. alumínium) belsejében van, amihez nem ér hozzá. A kehelyhez egy mutató csatlakozik, és egy hajszálrugó akadályozza a szabad forgásban. Amikor a mágnes forogni kezd, a kehelyben örvényáramok keletkeznek, amik miatt a kehely a mágnessel együtt igyekszik forogni. Ám a hajszálrugó ebben akadályozza. Viszont minél gyorsabban forog a mágnes, annál nagyobb forgatónyomatékot fejt ki a kehelyre a mágnes forgása. A kehely a sebesség növekedésével egyre jobban igyekszik elfordulni, ezzel egyre jobban feszíti a rugót. Ezért a kehely és a mutató annál nagyobb elfordulás esetén veszi fel az egyensúlyi helyzetét, minél gyorsabb a jármű. A számlapot a sebességmérő kalibrálása után alakítják ki.

- a) Ismertesse az elektromágneses indukciót leíró Faraday-törvényt a benne szereplő mennyiségekkel!
- b) Mit nevezünk örvényáramnak, hogyan jön létre?
- c) Ismertesse Lenz törvényét!
- d) Mutassa be, hogy miért alakulnak ki örvényáramok az alumíniumkehelyben! Magyarázza el, hogy miért tér ki jobban a mutató, ha a jármű sebessége nagyobb?
- e) Miért fordul el az alumíniumkehely a mágnes forgásának hatására? Térjen ki az örvényáramok és a Lenz-törvény szerepére a jelenség értelmezésénél!
- f) Miért fordul el jobban a mutató a jármű nagyobb sebessége esetén?

2311 írásbeli vizsga 8 / 20 2023. október 27.

Azonosító								
jel:								

2. A Miyake-esemény

A radioizotópos kormeghatározás során a ¹⁴C izotóp koncentrációját használjuk az egykor élő, ma már azonban halott szövetek kormeghatározásához. A pontos meghatározáshoz azonban szükséges tudni a kezdeti ¹⁴C koncentráció értéket, és ez nem teljesen állandó a légkörben, évről évre változik kissé. A tudósok fák évgyűrűinek az elemzésével állítottak fel egy adatbázist a kezdeti koncentráció értékéről sok ezer évre visszamenően. Így fedezték fel azt az eseményt, melynek során 774-ben vagy 775-ben hirtelen nagyon megnőtt a légköri ¹⁴C koncentráció. Elsőként japán cédrusok évgyűrűiből (innen ered az elnevezés), később német tölgyek, illetve amerikai, finn és új-zélandi fák évgyűrűiből is azonosították a jelentős változást. Az esemény a sarkköri jégminták ¹⁰Be izotóp koncentrációjában is feltűnik, amely izotóp szintén a légkörben keletkezik kozmikus sugárzás hatására, akárcsak a ¹⁴C izotóp. Feltételezések szerint ezt egy különlegesen erős napkitörés okozhatta, amely a napkoronából hatalmas, nagy energiájú töltöttrészecske-záport zúdított a Földre. Az angolszász krónikákban erre az évre "éjszaka látható vörös keresztet" jegyeztek fel, amely talán egy különlegesen erős sarki fény lehetett, amely éjszaka Anglia-szerte látszott.

- a) Ismertesse a radioaktív sugárzás három legfontosabb típusát! Milyen részecskéket tartalmaznak az egyes sugárzástípusok?
- b) Ismertesse az izotóp és a felezési idő fogalmát!
- c) Milyen, mérhető adatokból gondoljuk úgy, hogy 774–775 körül a szokásosnál több részecske érte el a Föld légkörét? Mi a Miyake-esemény feltételezett oka?
- d) Ha nem tudnánk a Miyake-eseményről, a 775-ben elhullott egér csontvázának korát a tényleges koránál idősebbnek vagy fiatalabbnak gondolnánk az izotópos kormeghatározás alapján? Válaszát indokolja!
- e) Hogyan keletkezik a sarki fény, amelyre a krónikák is utalnak?
- f) Egy Egyiptomból származó fadarab anyagában a ¹⁴C izotóp aránya a ¹²C izotópéhoz 0,3 : 10¹², míg ugyanez az érték ma a légkörben körülbelül 1,2 : 10¹². Származhat-e a fadarab az ókori Egyiptom körülbelül 5000 évvel ezelőtti korai dinasztikus korából? (A ¹⁴C izotóp felezési ideje 5700 év.)

2311 írásbeli vizsga 9 / 20 2023. október 27.

3. Speciális relativitáselmélet

A fejlődéshez két dolog kell: fáradhatatlan kitartás és az a készség, hogy olyasmit is el tudjunk vetni, amibe pedig sok időt és munkát fektettünk be.

Albert Einstein

- a) A XIX. században a fény terjedésének tárgyalásakor felmerült az éter gondolata. Mit értettek éter alatt?
- b) Mit jelent az, hogy a fény sebessége határsebesség?

(A képen Albert Einstein Szilárd Leóval beszélget.)

- c) Miért válik tarthatatlanná a sebességek összeadására vonatkozó klasszikus képünk, ha – amint az a Maxwell-egyenletekből következik –, a vákuumbeli fénysebesség minden inerciarendszerben azonos? Mutassa be egy példán!
- d) Mit értünk két esemény egyidejűségének relativitásán?
- e) Mit jelent az idődilatáció kifejezés?
- f) Mutassa be egy példán egy időintervallum hosszának megfigyelőtől való függését!
- g) Mit jelent a távolságkontrakció kifejezés?
- h) Mutassa be a tömeg-energia egyenértékűségének elvét, a tömeg és energia együttes megmaradását egy példán!

2311 írásbeli vizsga 10 / 202023. október 27.

Tartalom	Kifejtés	Összesen
18 pont	5 pont	23 pont

HARMADIK RÉSZ

Oldja meg a következő feladatokat! Megállapításait – a feladattól függően – szövegesen, rajzzal vagy számítással indokolja is! Ügyeljen arra is, hogy a használt jelölések egyértelműek legyenek!

1. Hieron király egy aranytömböt adott az aranyművesnek, hogy készítsen belőle koronát. A korona elkészült, de a király attól tartott, hogy az aranyműves meglopta őt, és az arany egy részét kicserélte ezüstre. A korona tömege természetesen pontosan megegyezett a király által adott aranydarab tömegével. A király felkérte Arkhimédészt, hogy döntse el a kérdést, vajon tartalmaz-e ezüstöt is a korona. Arkhimédész fürdés közben rájött arra, hogy a korona térfogatát pontosan meg tudja mérni annak vízkiszorítása által, ha egy vízzel teli edénybe meríti a koronát. A korona térfogatát összehasonlítva a koronával megegyező aranydarab térfogatával, az arany és ezüst sűrűségének ismeretében nemcsak a hamisítás ténye, hanem annak mértéke is meghatározható.

A király 1,93 kg aranyból készíttetett koronát, annak térfogata 5 cm³-rel meghaladta az 1,93 kg tömegű aranytömb térfogatát. Hány gramm arany és hány gramm ezüst volt a hamisított korona anyagát alkotó arany-ezüst ötvözetben?

(Az arany sűrűsége 19,3 g/cm³, ezüst sűrűsége 10,5 g/cm³.)

2311 írásbeli vizsga 12 / 20 2023. október 27.

Fizika	Azonosító							
emelt szint	jel:							

Összesen

2. Egy függőleges rúdhoz az ábra szerint két egyforma, *l* hosszúságú, súlytalan fonállal egy *m* tömegű labdát rögzítünk. A rúdon a kötélvégek egymástól szintén *l* távolságra vannak rögzítve.

- a) Legalább mekkora fordulatszámmal kell forgatni a rudat és vele együtt a labdát, hogy mindkét fonál kiegyenesedjen?
- b) Legalább mennyivel nőtt meg a rendszer mechanikai energiája eközben?

$$l = 0.5 \text{ m}, m = 15 \text{ dkg}, g = 9.8 \text{ m/s}^2$$

a)	b)	Összesen
11 pont	3 pont	14 pont

Azonosító								
jel:								

3. Az alábbi kép egy villanybojler címkéjét mutatja.

Hány Celsius-fokosnak feltételezi a bejövő hideg vizet a címke?

(A bojler vizének hőveszteségeit a tartály és a környezete felé hanyagoljuk el! A víz fajhője $c = 4200 \text{ J/kg} \cdot ^{\circ}\text{C}$, sűrűsége $\rho = 1 \text{ kg/l}$).

2311 írásbeli vizsga 16 / 20 2023. október 27.

Fizika	Azonosító							
emelt szint	jel:							

Összesen

- 4. Egy radioaktív izotópot tartalmazó minta 1 pm hullámhosszúságú gamma-sugárzást bocsát ki. A minta aktivitása kezdetben 10⁵ Bq, az izotóp felezési ideje 1 hét.
 - a) Mekkora a minta által kibocsátott gamma fotonok energiája?
 - b) Mekkora teljesítménnyel fűti a környezetét a minta három hét eltelte után?

(a fény sebessége $c = 3 \cdot 10^8$ m/s, a Planck-állandó $h = 6.63 \cdot 10^{-34}$ Js.)

2311 írásbeli vizsga 18 / 20 2023. október 27.

a)	b)	Összesen
4 pont	6 pont	10 pont

Fizika	Azonosító								
emelt szint	jel:						i		l

	pontszám		
	maximális	elért	
I. Feleletválasztós kérdéssor	30		
II. Témakifejtés: tartalom	18		
II. Témakifejtés: kifejtés módja	5		
III. Összetett feladatok	47		
Az írásbeli vizsgarész pontszáma	100		

dátum	javító tanár

	pontszáma egész számra kerekítve		
	elért	programba beírt	
I. Feleletválasztós kérdéssor			
II. Témakifejtés: tartalom			
II. Témakifejtés: kifejtés módja			
III. Összetett feladatok			

dátum	dátum
javító tanár	jegyző