Евгений Борисов

### <u>общая схема применения методов ML</u>

определяем задачу в общем виде

изучаем предметную область

формализуем задачу

### общая схема применения методов ML

определяем задачу в общем виде

изучаем предметную область

формализуем задачу

извлекаем признаки из объекта

собираем и обрабатываем учебный набор

выбираем и обучаем модель

### общая схема применения методов ML

определяем задачу в общем виде

изучаем предметную область

формализуем задачу

извлекаем признаки из объекта

собираем и обрабатываем учебный набор

выбираем и обучаем модель

тестируем модель

запускаем модель в работу

### Основные типы задач ML

Классификация - разделение на части

Кластеризация - формирование групп

Регрессия - восстановление зависимости

## Методы решения задач машинного обучения

### способы организации данных

<u>"c учителем" (supervised)</u>

- размеченные данные

"без учителя" (unsupervised)

- не размеченные данные

"частичное обучение" semi-supervised

- частично размеченные данные

"с подкреплением" reinforcement

- датасет в явном виде отсутствует

## Методы решения задач машинного обучения

### способы организации данных

## "с учителем" (supervised)

- размеченные данные

### "без учителя" (unsupervised)

- не размеченные данные

### "частичное обучение" semi-supervised

- частично размеченные данные

### <u>"с подкреплением" reinforcement</u>

- датасет в явном виде отсутствует

### модели

Метрические: k-Neighbors

Статистические: Naive Bayes

Логические: Decision Tree

Линейные: SVM, MLP

Композиции: AdaBoost

### датасет - размеченная матрица признаков

$$\begin{bmatrix} x_{11} & x_{12} & \dots & x_{1n} & y_1 \\ x_{21} & x_{22} & \dots & x_{2n} & y_2 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ x_{m1} & x_{m2} & \dots & x_{mn} & y_m \end{bmatrix}$$

- х вектор-признак
- у метка класса
- n размер пространства признаков
- т количество примеров

## метрика - функция расстояния

$$\rho: X \times X \rightarrow [0, \infty)$$

аксиома тождества :  $\rho(x,y) = 0 \Leftrightarrow x = y$ 

симметрия:  $\rho(x,y) = \rho(y,x)$ 

неравенство треугольника:  $\rho(x,z) \leq \rho(x,y) + \rho(y,z)$ 

## метрика - функция расстояния

Евклидова метрика: 
$$\rho(x,y) = \sqrt{\sum_i (x_i - y_i)^2}$$

метрика Минковского: 
$$\rho(x,y) = \sqrt[n]{\sum_i w_i |x_i - y_i|^n}$$

метрика Чебышева: 
$$\rho(x,y) = \max_i |x_i - y_i|$$

косинусная метрика: 
$$\rho(x,y) = \frac{\sum\limits_{i} x_{i} y_{i}}{\sqrt{\sum\limits_{i} x_{i}^{2}} \cdot \sqrt{\sum\limits_{i} y_{i}^{2}}}$$

## метрический подход в методах ML

использование расстояний между объектами

## метрический подход в методах ML

использование расстояний между объектами

гипотеза компактности: близкие объекты лежат в одном классе



## о задаче классификации

разделение данных на части (классы)

Учебный набор: [ объект, ответ ]

Задача: классификатор

объект → вектор-признак → класс



### метрический классификатор

Х - пространство признаков размерности т

 $X_{\scriptscriptstyle I} \subset X - o$ бъекты учебной выборки

 $y_l$ – метки классов учебного набора  $X_l$ 

### метрический классификатор

Х - пространство признаков размерности т

 $X_l$  $\subset$  X-объекты учебной выборки  $y_l-$  метки классов учебного набора  $X_l$ 

 $u \in X$  – выберем объект

выстроим соседей из X, и объекта и по расстоянию (вариационный ряд)

$$\rho(u, x_u^1) \leq \rho(u, x_u^2) \leq \cdots \leq \rho(u, x_u^n)$$

### метрический классификатор

Х - пространство признаков размерности т

 $X_l$  $\subset X-$ объекты учебной выборки  $y_l-$ метки классов учебного набора  $X_l$ 

 $u \in X$  – выберем объект

выстроим соседей из X, и объекта и по расстоянию (вариационный ряд)

$$\rho(u, x_u^1) \leq \rho(u, x_u^2) \leq \cdots \leq \rho(u, x_u^n)$$

v(i,u) - ф-ция оценки важности і-того соседа объекта и, убывает по мере удаления от и

### метрический классификатор

Х - пространство признаков размерности т

 $X_l \subset X-$ объекты учебной выборки  $y_l-$  метки классов учебного набора  $X_l$ 

 $u \in X$  – выберем объект

выстроим соседей из X, и объекта и по расстоянию (вариационный ряд)

$$\rho(u, x_u^1) \leq \rho(u, x_u^2) \leq \cdots \leq \rho(u, x_u^n)$$

 $v(i\,,u)$  - ф-ция оценки важности і-того соседа объекта u, убывает по мере удаления от u

$$\Gamma_y(u) = \sum_i \left[ y = y_i \right] v(i,u)$$
 - оценка близости **u** к классу **y**

### метрический классификатор

Х - пространство признаков размерности т

 $X_l \subset X$ —объекты учебной выборки  $y_l$ —метки классов учебного набора  $X_l$ 

 $u \in X$  – выберем объект

выстроим соседей из X, и объекта и по расстоянию (вариационный ряд)

$$\rho(u, x_u^1) \leq \rho(u, x_u^2) \leq \cdots \leq \rho(u, x_u^n)$$

v(i,u) - ф-ция оценки важности і-того соседа объекта и, убывает по мере удаления от и

$$\Gamma_{y}(u) = \sum_{i} \left[ y = y_{i} \right] v(i,u)$$
 - оценка близости  $\mathbf{u}$  к классу  $\mathbf{y}$ 

$$a(u, X_l) = \underset{y \in y_l}{argmax} \Gamma_y(u)$$

### метод ближайшего соседа (1NN)

$$v(i,u) = [i=1]$$

## метод ближайшего соседа (1NN)

$$v(i,u) = [i=1]$$

#### достоинства:

- простота
- интерпретируемость

### метод ближайшего соседа (1NN)

$$v(i,u) = [i=1]$$

#### достоинства:

- простота
- интерпретируемость

#### недостатки:

- неустойчив к шуму
- нет параметров
- недостаточная точность
- выборка хранится целиком

### метод ближайшего соседа (1NN)

метод k-соседей (kNN)

$$v(i,u) = [i=1]$$

$$v(i,u) = [i < k]$$

#### достоинства:

- простота
- интерпретируемость

#### недостатки:

- неустойчив к шуму
- нет параметров
- недостаточная точность
- выборка хранится целиком

### метод ближайшего соседа (1NN)

$$v(i,u) = [i=1]$$

#### достоинства:

- простота
- интерпретируемость

#### недостатки:

- неустойчив к шуму
- нет параметров
- недостаточная точность
- выборка хранится целиком

### метод k-соседей (kNN)

$$v(i,u) = [i < k]$$

#### достоинства:

- более устойчив к шуму чем 1NN
- есть параметр количество соседей к

#### недостатки:

• возможны неоднозначности

### метод ближайшего соседа (1NN)

v(i,u) = [i=1]

#### достоинства:

- простота
- интерпретируемость

#### недостатки:

- неустойчив к шуму
- нет параметров
- недостаточная точность
- выборка хранится целиком

### метод k-соседей (kNN)

v(i,u) = [i < k]

#### достоинства:

- более устойчив к шуму чем 1NN
- есть параметр количество соседей к

#### недостатки:

• возможны неоднозначности

### метод взвешеных к-соседей

$$v(i,u) = [i < k]w_i$$

w<sub>i</sub> - вес соседа

### метод взвешеных к-соседей

$$v(i,u) = [i < k]w_i$$
  $w_i$  - вес соседа

как выбирать вес w<sub>i</sub>?

### метод взвешеных к-соседей

$$v(i,u) = [i < k]w_i$$
  $w_i$  - вес соседа

как выбирать вес w;?

$$v(i,u) = K\left(\frac{\rho(u,x_u^i)}{h}\right)$$

 $v(i,u) = K \left( \frac{\rho(u,x_u^i)}{h} \right)$  выбираем степень важности і-того соседа на основании расстояния до него



### метод взвешеных k-соседей - парзеновское окно

выбираем степень важности і-того соседа на основании расстояния

$$a(u, X_l) = \underset{y \in y_l}{argmax} \sum_{i} [y(i) = y] K \left( \frac{\rho(u, x_u^i)}{h} \right)$$



профиль компактности - метод оценки данных и метрик на них

доля объектов, у которых m-тый сосед из другого класса

профиль компактности - метод оценки данных и метрик на них

доля объектов, у которых т-тый сосед из другого класса

профиль компактности - метод оценки данных и метрик на них

доля объектов, у которых т-тый сосед из другого класса



# метрические методы: литература

git clone <a href="https://github.com/mechanoid5/ml\_lectorium.git">https://github.com/mechanoid5/ml\_lectorium.git</a>

К.В. Воронцов Метрические методы классификации. - курс "Машинное обучение" ШАД Яндекс 2014

К.В. Воронцов Методы восстановления регрессии - курс "Машинное обучение" ШАД Яндекс 2014



Вопросы?

# метрические методы: практика



### источники данных для экспериментов



sklearn.datasets UCI Repository kaggle

### реализовать

1NN kNN