数学分析习题: 第 1 周

梅加强

http://math.nju.edu.cn/~meijq

2007.2

说明: 只有习题是必须写在作业本上上交的, 思考题做好后可以交给我, 但必须是严格独立完成的.

习题:

1. 设函数 f 在区间 [a,b] 上可导, 且存在 M > 0, 使得

$$|f'(x)| \leq M, \quad \forall \ x \in [a, b].$$

证明

$$\left|f(x) - \frac{f(a) + f(b)}{2}\right| \leqslant \frac{1}{2}M(b - a), \quad \forall \ x \in [a, b].$$

2. 设函数 f 在区间 [a,b] 上连续, 在 (a,b) 上可导, 且 f(a) = f(b) = 0. 证 明, 存在 $\xi \in (a,b)$, 使得

 $f(\xi) + f'(\xi) = 0$. (提示: 对某个辅助函数 g(x)f(x) 用微分中值定理.)

- 3. 设 $a_1 \in (0, \pi)$, $a_{n+1} = \sin a_n$, $n = 1, 2, \cdots$. 求极限 $\lim_{n \to \infty} \sqrt{n} a_n$. (提示: 对 na_n^2 想办法用 L'Hospital 法则.)
- 4. 设函数 f 在点 x_0 处 2 阶可导, 证明

$$\lim_{h \to 0} \frac{f(x_0 + h) + f(x_0 - h) - 2f(x_0)}{h^2} = f''(x_0).$$

5. 设函数 f 在点 x_0 处 2 阶可导, 且 $f''(x_0) \neq 0$. 由微分中值定理, 当 h 充分小时, 存在 $\theta = \theta(h), 0 < \theta < 1$, 使得

$$f(x_0 + h) - f(x_0) = f'(x_0 + \theta h) \cdot h.$$

证明 $\lim_{h\to 0} \theta = \frac{1}{2}$.

思考题:

1. 设函数 f 在点 x_0 处可导, $x_n < x_0 < y_n$, 且 $x_n \to x_0, y_n \to x_0$, 证明

$$\lim_{n \to \infty} \frac{f(x_n) - f(y_n)}{x_n - y_n} = f'(x_0).$$

2. 设函数 f 在 (a,b) 上可微, 且 $a < x_i \le y_i < b, i = 1,2,\cdots,n$. 证明, 存在 $\xi \in (a,b)$, 使得

$$\sum_{i=1}^{n} [f(y_i) - f(x_i)] = f'(\xi) \sum_{i=1}^{n} (y_i - x_i).$$