Imię i nazwisko:	
Logika dla informatyków Egzamin poprawkowy (część licencjacka)	
15 lutego 2011 Zadanie 1 (1 punkt). W prostokąt poniżej wpisz formułę w dysjunkcyjnej postaci normal nej i równoważną formule	-
$\neg \Big(((p \lor q) \Rightarrow r) \land p \land \neg q \Big).$	
Zadanie 2 (1 punkt). Jeśli istnieje formuła zbudowana ze zmiennych zdaniowych, spójni ków \Rightarrow i \neg oraz nawiasów równoważna formule $p \land q$ to w prostokąt poniżej wpisz dowolna taką formułę. W przeciwnym przypadku wpisz słowo "NIE".	
Zadanie 3 (1 punkt). Jeśli istnieje formuła zbudowana ze zmiennych zdaniowych, spójni ków \Rightarrow i \vee oraz nawiasów równoważna formule $p \wedge \neg q$ to w prostokąt poniżej wpisz dowolna taką formułę. W przeciwnym przypadku wpisz słowo "NIE".	
Zadanie 4 (1 punkt). Jeśli istnieje formuła logiki I rzędu, która interpretowana w zbiorz uporządkowanym $\langle A, \leq \rangle$ mówi, że a jest kresem górnym zbioru X , to w prostokąt poniże wpisz dowolną taką formułę. W przeciwnym przypadku wpisz słowo "NIE".	

zbiorów A, B	1 punkt). Jeśli inkluzja $A \cap (B \cup C) \subseteq B \cap (A \cup C)$ zachodzi dla wszystkich i C , to w prostokąt poniżej wpisz słowo "TAK". W przeciwnym przypadku edni kontrprzykład.
Zadanie 6 (1	I punkt). Jeśli inkluzja $\bigcup_{t \in T} A_t \cap \bigcup_{t \in T} B_t \subseteq \bigcup_{t \in T} (A_t \cap B_t)$ zachodzi dla wszystkich h rodzin zbiorów $\{A_t\}_{t \in T}$ i $\{B_t\}_{t \in T}$, to w prostokąt poniżej wpisz słowo "TAK".
	h rodzin zbiorów $\{A_t\}_{t\in T}$ i $\{B_t\}_{t\in T}$, to w prostokąt poniżej wpisz słowo "TAK". m przypadku wpisz odpowiedni kontrprzykład.
	1 punkt). Dla $m, n \in \mathbb{N}$ niech $A_{m,n} = \{i \in \mathbb{N} \mid m \leq i \land i \leq n\}$. W prostokąt wyliczoną wartość zbioru $\bigcap_{n=2011}^{\infty} \bigcup_{m=15}^{\infty} A_{m,n}$, tzn. wpisz wyrażenie oznaczające i nie zawierające symboli $\cap, \cup, \exists, \forall$.
Zadanie 8 (1 punkt). Rozważmy funkcję $f: \mathbb{N} \to \mathbb{Z}$ zdefiniowaną wzorem
	$f(n) = \begin{cases} n/2, & \text{jeśli } n \text{ jest parzyste,} \\ -(n+1)/2, & \text{w przeciwnym przypadku.} \end{cases}$
	funkcja odwrotna do f to w prostokąt poniżej wpisz wyrażenie definiujące tę zeciwnym przypadku wpisz słowo "NIE".
$\{\langle m,n\rangle\in\mathbb{N}$	1 punkt). Rozważmy relację równoważności na zbiorze liczb naturalnych $R = \times \mathbb{N} \mid \lfloor m/3 \rfloor = \lfloor n/3 \rfloor $ }. Jeśli klasa abstrakcji $[5]_R$ jest zbiorem skończonym, to poniżej wpisz wszystkie elementy tego zbioru. W przeciwnym przypadku wpisz

Zadanie 10 (1 punkt). Jeśli istnieje taki zbiór $X \neq \mathbb{Q}$, że $\mathbb{Q} \subseteq X$ oraz $ X \leq \mathbb{N} $ to w prostokąt poniżej wpisz dowolny taki zbiór. W przeciwnym przypadku wpisz słowo "NIE".					

Zadanie 11 (1 punkt). Wpisz słowo "TAK" w te kratki poniższej tabelki, które odpowiadają parom zbiorów równolicznych. Wpisz "NIE" w kratki odpowiadające parom zbiorów nierównolicznych.

	$\boxed{[0,1)\times\mathbb{R}}$	$\mathcal{P}(\mathbb{N}\times\{0,1\})$	$\{0,1,2\}^{\mathbb{N}}$	$\mathbb{Q} \cup \{\pi, \sqrt{2}\}$	$\mathbb{R}^{\mathbb{R}}$	$\{0,1\}^{\{2,3,4\}}$	$\mathbb{N}^{\{0,1,2\}}$
N							
\mathbb{R}							

Imię i nazwisko:					
Zadanie 12 (1 punkt). W prostok na zbiorze $\{1, 2, 3, 4\}$.	cąt poniżej wpisz liczbę różn	nych relacji liniowego porządku			
Zadanie 13 (1 punkt). Jeśli istni naturalnych \mathbb{N} , że $\langle \mathbb{N}, R^{-1} \rangle$ jest reladowolną taką relację. W przeciwnym	acją porządku częściowego,	, to w prostokąt poniżej wpisz			
Zadanie 14 (1 punkt). Jeśli porządki $\langle \mathbb{R}, \leq \rangle$ i $\langle \mathbb{Z} \times \mathbb{Q}, \leq_{lex} \rangle$ są izomorficzne, to w prostokąt poniżej wpisz dowolny izomorfizm tych porządków. W przeciwnym przypadku wpisz uzasadnienie, dlaczego taki izomorfizm nie istnieje.					
Zadanie 15 (1 punkt). Rozważmy zbiór liczb naturalnych uporządkowany relacją podzielności $\langle \mathbb{N}, \rangle$. Niech $S = \{6, 8, 10\}$. Jeśli zbiór S ma w $\langle \mathbb{N}, \rangle$ kres górny, to w prostokąt oznaczony sup S poniżej wpisz wyliczoną wartość tego kresu; w przeciwnym przypadku wpisz słowo "NIE". Jeśli S ma kres dolny, to w prostokąt oznaczony inf S poniżej wpisz wyliczoną wartość tego kresu; w przeciwnym przypadku wpisz słowo "NIE".					
$\sup S$	$\inf S$				
Zadanie 16 (1 punkt). Jeśli ist $\langle \mathbb{N} \times \mathcal{P}(\mathbb{N}), R \rangle$ jest zbiorem częścio wolną taką relację. W przeciwnym p	owo uporządkowanym, to v	w prostokąt poniżej wpisz do-			

Zadanie 17 (1 punkt). Rozważmy funkcję $f: \mathcal{P}(\mathbb{N}) \to \mathcal{P}(\mathbb{N})$ zdefiniowaną wzorem $f(X) = \{10\} \cup \{\lfloor n/2 \rfloor \mid n \in X\}$. Jeśli funkcja f ma w zbiorze częściowo uporządkowanym $\langle \mathcal{P}(\mathbb{N}), \subseteq \rangle$ najmniejszy punkt stały, to w prostokąt poniżej wpisz wyliczoną wartość tego punktu stałego. W przeciwnym przypadku wpisz słowo "NIE".				
adanie 18 (1 punkt). W tym zadaniu f i g są symbolami funkcyjnymi, a jest symblem stałej, natomiast x, y i z są zmiennymi. Jeśli istnieje unifikator termów $f(y, g(y), z)$ $f(g(z), x, a)$, to w prostokąt poniżej wpisz dowolny taki unifikator. W przeciwnym przydku wpisz słowo "NIE".				
adanie 19 (1 punkt). Jeśli zbiór klauzul $\{s \lor r, \neg q \lor s, p \lor q, \neg r \lor \neg s, \neg p \lor q\}$ jest sprzeczny, w prostokąt poniżej wpisz rezolucyjny dowód sprzeczności tego zbioru. W przeciwnym zypadku wpisz wartościowanie spełniające ten zbiór.				

Zadanie 20 (1 punkt). Powiemy, że formuła φ logiki I rzędu jest w preneksowej postaci normalnej, jeśli jest postaci $\mathcal{Q}_1x_1\ldots\mathcal{Q}_nx_n\psi$, gdzie x_i są pewnymi zmiennymi, \mathcal{Q}_i są kwantyfikatorami (czyli $\mathcal{Q}_i\in\{\forall,\exists\}$ dla $i=1,\ldots,n$), a formuła ψ nie zawiera kwantyfikatorów. Jeśli istnieje formuła w preneksowej postaci normalnej równoważna formule $\forall n\Big((\forall (k< n) \mid k\in X)\Rightarrow n\in X\Big)$ to w prostokąt poniżej wpisz dowolną taką formułę. W przeciwnym przypadku wpisz słowo "NIE".