

MEDCOUPLING Projection methods

08-03-2024

Aymeric SONOLET, Guillaume BROOKING

Agenda

Interpolation, extrapolation or projection?

Spatial Discretization & Nature Of A Field

Agenda

Interpolation, extrapolation or projection?

Spatial discretization and nature of a field

What MEDCoupling can do for you

m MA

Agenda

Interpolation, extrapolation or projection?

Spatial Discretization & Nature Of A Field

Illustration

Figure 1: Interpolation

Introduction: A typical use case: code coupling

Different numerical codes might use

- Different numerical schemes
 - E.g. temperature on nodes in code A and on elements in code B
- Different spatial discretization
 - Meshed with hexahedrons in code A, and with tetrahedrons in code B
- Different dimensions
 - A heat flux on a 2D surface for code A and a 3D source term for code B

How do you "transfer" information from one to the other?

- I need to provide code B with the temperature computed by code A
- Solution A: ad-hoc solution. For each pair (code A, code B), write a mapper
- Solution B: use generic projection methods thanks to MEDCoupling

Projection, Interpolation?

Normally

- Interpolation: computing a function's value at a given point inside a domain where the function's values are known at discrete points
- Extrapolation: computing a function's value outside a domain, but in relationship with points where the function's values are known: hazardous!
- Projection: from linear algebra, expression of a function (a vector) into a new basis of a (another) vector space (often with a smaller dimension)

In MEDCoupling, we do not take sides

- Prepare the operation (given the two meshes)
- Transfer one or several fields

Notes

- Two meshes are overlapping if they cover the same spatial domain
- Temporal interpolation is not covered!

w M

Agenda

Interpolation, extrapolation or projection?

Spatial Discretization & Nature Of A Field

Spatial discretization of a Field

- A field can be supported by:
 - The nodes (or vertices) of the mesh: ON_NODES also called P1

■ The cells (or elements) of the mesh: ON_CELLS also called P0

- By more complex reference locations:
 - Gauss Points (ON_GAUSS_PT, ON_GAUSS_NE),
 - Kriging points (ON_NODES_KR)
- Obviously the projection methods will differ according to the localization
- Generally P0-P0 projection is the best supported option
- Not all combinations are possible

08-03-2024

Supported configurations

- Mesh combination (U: unstructured, C: cartesian, E: extruded)
 - U U
 - U-C
 - C-U
 - **■** C C
 - E-E
- Dimensions
 - 1D
 - 2D curve, full 2D
 - 3D surface, full 3D
- Spatial discretization
 - P0 P0
 - P1 P0
 - P0 P1
 - P1 P1
 - P1 P0Bary
 - PG PG

w KAK

Field Nature (1/2)

Physical quantities can be

- Extensive: mass, power ... quantity that scales with the volume of a cell
- Intensive: density, temperature ... quantity that do not scale with the volume

Two methods available

- Governing the behavior in case of non-overlapping meshes
- "Maximum" value preserved in the result
- "Integral" value preserved in the result

Summary

See detailed formula in the documentation.

/	Intensive	Extensive
Conservation Maximum	IntensiveConservation IntensiveMaximum	ExtensiveConservation ExtensiveMaximum

Field Nature (2/2)

Non-overlapping meshes

Figure 2: Blue mesh A and green mesh B

For a projection from B to A

- Should the full volume (here surface) of the cell from mesh A be taken into account?
- Or only the volume covering both mesh A and mesh B?
- Depends on the nature of the physical quantity you're handling

Agenda

Interpolation, extrapolation or projection?

Spatial Discretization & Nature Of A Field

Projection Methods (1/2)

To project one field onto a new target mesh

- 1 Prepare (required only once, the weight matrix is internally computed):
 - From the source mesh and the target mesh only
 - Ratios of the volumes between source cells and target cells
 - Wij: how much from source cell (i) will contribute to target cell (j)
 - API: prepare(source, target, method)
- The source field must have a valid nature set!
 - API: setNature() on the field
- 3 Transfer (can be done several times):
 - A field on the source mesh can be transferred to the target mesh
 - API: transfer(srcField, tgtField, defaultValue)
 - Default value covers non-overlapping cases

w M

A Trivial python example

Transfer a field on cells onto a new field on cells

```
import medcoupling as mc
remap = mc.MEDCouplingRemapper()
remap.setPrecision(1.e-12)
remap.prepare(srcMesh,trgMesh,"POPO") # cells to cells
srcField.setNature(mc.IntensiveConservation) # field nature
trgField = remap.transferField(srcField,1e+300)
```

- srcField is a MEDCouplingFieldDouble
- srcMesh and trgMesh are MEDCouplingMesh-S

w Kill