Set-A

AHSANULLAH UNIVERSITY OF SCIENCE AND TECHNOLOGY

Department: Arts and Sciences

Program: B. Sc in Computer Science and Engineering

Exam Name: Quiz#3 (Section C) Semester: Fall, 21

Year: 2nd Semester: 2nd

Course Number: Math 2203 Course Name: Mathematics IV Total Marks: 20 Time: 25 Minutes

Answer all the following questions:		Marks
1.	Apply Divergence theorem to evaluate $\iint_S \vec{A} \cdot \vec{ds}$, where $\vec{A} = 4x \hat{\imath} - 2y^2 \hat{\jmath} + z^2 \hat{k}$ and S is the surface bounding the region $x^2 + y^2 = 25$, $z = 0$ and $z = 6$.	10
2.	State the Stoke's theorem. Apply Stoke's theorem to evaluate $\int_{c} \vec{F} \cdot d\vec{r}$, where $\vec{F} = (2x - y)\hat{i} - yz^{2}\hat{j} - y^{2}z\hat{k}$ and C is the circle $x^{2} + y^{2} = 16$ corresponding to the surface of sphere.	10

Set-B

AHSANULLAH UNIVERSITY OF SCIENCE AND TECHNOLOGY

Department: Arts and Sciences

Program: B. Sc in Computer Science and Engineering

Exam Name: Quiz#3 (Section C)

Semester: Fall, 21

Year: 2nd Semester: 2nd

Course Number: Math 2203 Course Name: Mathematics IV Total Marks: 20 Time: 25 Minutes

Answer all the following questions:		Marks
1	Apply Divergence theorem to evaluate $\iint_S \vec{A} \cdot \vec{ds}$, where $\vec{A} = x^3 \hat{\imath} + y^3 \hat{\jmath} + z^3 \hat{k}$ and S is the surface of the sphere $x^2 + y^2 + z^2 = 16$.	10
2	State the Green's theorem. Apply Green's theorem to evaluate $\int_{c} \vec{F} \cdot d\vec{r}$ in the plane where $\vec{F} = (xy + y^{2})\hat{\imath} + x^{2}\hat{\jmath}$ and C is the closed curve of the region bounded by $y = 2x$ and $y = 2x^{2}$.	10