## Aula 2 - Excitação Harmônica, Ressonância e Amortecimento

1. Força Dinâmica Harmônica: conceito e equação de movimento Ouando uma estrutura sofre a ação de uma força que varia no tempo de forma periódica, dizemos que está sob excitação harmônica. Para um sistema de 1 GDL, a equação diferencial é:

$$M \ddot{u}(t) + c \dot{u}(t) + k u(t) = p_0 \sin(\omega t)$$

onde M é a massa equivalente, c o amortecimento viscoso, k a rigidez,  $p_0$  a amplitude da força e  $\omega$  a frequência de excitação.

Definimos ainda: - Frequência natural:  $\omega_n=\sqrt{\frac{k}{M}}$  e  $f_n=\frac{\omega_n}{2\pi}$  - Razão de amortecimento:  $\zeta=\frac{c}{2\sqrt{kM}}$  - Razão de frequência:  $r=\frac{\omega}{\omega_n}$ 

2. Resposta em regime permanente e fator de amplificação A resposta após o transitório é harmônica com a mesma frequência da excitação, mas com amplitude e fase diferentes. A amplitude U do deslocamento em regime permanente é:

$$U = \frac{p_0/k}{\sqrt{\left(1-r^2\right)^2+\left(2\zeta r\right)^2}} \quad \Rightarrow \quad \mathrm{FA} = \frac{U}{p_0/k}$$

O ângulo de fase  $\varphi$  entre a força e o deslocamento é:

$$\tan\varphi = \frac{2\zeta r}{1-r^2}$$

Observações práticas em estruturas de concreto: - Para  $r \ll 1$ , o comportamento é quase estático (FA  $\approx 1$ ). - Perto de r=1 (ressonância), o amortecimento controla a amplitude. Em concreto armado,  $\zeta$ típico está entre 2% e 5%. - Para  $r\gg 1$ , o deslocamento decai, mas a resposta de aceleração pode crescer.

- 3. Exemplo numérico aplicado Considere um pórtico representado por  $M=10\,000$  kg,  $k=2{ imes}10^7$  N/m e  $\zeta=5\%$ . Uma força dinâmica  $p_0=10\,000~\mathrm{N}$  atua com  $\omega=\omega_n.$ 
  - +  $\omega_n=\sqrt{k/M}=\sqrt{2\times 10^7/10^4}=\sqrt{2000}\approx 44{,}72$  rad/s,  $f_n\approx 7{,}12$  Hz
  - Em ressonância (r=1), FA  $=\frac{1}{2\zeta}=\frac{1}{0.10}=10$
  - Deslocamento estático =  $p_0/k=10,000/2\times10^7=5\times10^{-4}$  m Deslocamento dinâmico  $U=10\times5\times10^{-4}=5\times10^{-3}$  m = 5 mm

1



Figure 1: Oscilador harmônico sob força senoidal  $\overset{\circ}{2}$ 

Conclusão: um leve amortecimento limita a amplitude, mas perto da ressonância ainda ocorrem deslocamentos significativamente maiores que os estáticos.

**4. Excitação por base (sismos e máquinas)** Quando a base se move, como em um sismo, a entrada é um deslocamento de base y(t) e a variável de interesse é o deslocamento relativo  $u_r(t)$  da massa em relação à base.

$$M\,\ddot{u}_r + c\,\dot{u}_r + k\,u_r = -M\,\ddot{y}(t)$$

Ideias-chave: - Em análise sísmica, trabalhamos com espectros de resposta (deslocamento, velocidade, pseudo-aceleração). O pico de pseudo-aceleração  $S_a$  aproxima a força inercial máxima  $F_{-} \mathrm{in} \approx M \, S_a.$  - Para máquinas, isoladores (molas e amortecedores) são projetados para operar com  $r > \sqrt{2}$  visando reduzir transmissibilidade de forças ao apoio.



Figure 2: Esquema de isolação/base excitada

5. Vento, desprendimento de vórtices e pilares esbeltos  $\,$  Além de rajadas aleatórias, o vento pode induzir vibrações por desprendimento periódico de vórtices. A frequência de shedding  $f\_s$  é estimada por  $f\_s=\operatorname{St} \frac{U}{D}$ , com  $\operatorname{St}\approx 0.2$  para seções circulares, U a velocidade do vento e D a dimensão característica. Evite  $f\_s\approx f_n$  para não excitar ressonância transversal em pilares e mastros.

Medidas de projeto: - Ajustar rigidez e massa para deslocar  $f_n$ . - Aumentar amortecimento com dispositivos ou detalhes construtivos. - Usar chanfros, aletas ou rugosidade para alterar o escoamento e reduzir  $\operatorname{St}$  efetivo.

## 6. Boas práticas e checklist de projeto

- Identificar  $\omega_n$ ,  $\zeta$  e principais fontes de excitação (sismo, vento, máquinas, tráfego).
- Verificar razão r para cenários críticos; se  $r \approx 1$ , avaliar FA e respostas de deslocamento/aceleração.
- Para equipamentos sensíveis, checar transmissibilidade e adotar isolação quando necessário.
- Considerar limites de conforto ao invés de apenas resistência (vibração de pisos, passarelas, escritórios).
- 7. Atividade prática sugerida Observe uma estrutura de concreto do seu cotidiano (prédio, ponte, passarela, laje, etc.) e procure identificar situações em que vibrações podem ser percebidas (ex: pessoas pulando em lajes, veículos passando em pontes, máquinas funcionando próximas a estruturas). Anote: O tipo de estrutura e o local observado. O que pode causar vibração naquele elemento (tráfego, vento, máquinas, etc.). Se é possível perceber vibrações (pelo tato, objetos tremendo, ruídos, etc.). Relacione, com base no conteúdo da aula, como fatores como frequência natural, ressonância e amortecimento podem influenciar a vibração percebida. Se possível, tire uma foto (opcional) e anexe ao seu relatório.

## 8. Pontos-chave

- A ressonância ocorre quando  $\omega \approx \omega_n$  e o amortecimento controla a amplitude máxima.
- Excitação por base (sísmica) acopla a resposta à aceleração do terreno; o uso de espectros facilita o dimensionamento.
- Em pilares esbeltos, verificar efeitos de vento e shedding para evitar vibrações excessivas e fadiga.