Intégrales à paramètre

Feuille d'exercices #13

Exercice 1 — Intégrale de Gauss

Pour $x \in \mathbb{R}$, on pose :

$$f(x) = \int_0^1 \frac{e^{-x^2(1+t^2)}}{1+t^2} dt \quad \text{et} \quad g(x) = \int_0^x e^{-t^2} dt$$

- 1. Montrer que f et g sont de classe \mathscr{C}^1 sur \mathbb{R}_+ et calculer leurs dérivées.
- 2. Vérifier que $f+g^2$ est une fonction constante (à déterminer) sur \mathbb{R}_+ .
- 3. Vérifier que pour tout x de \mathbb{R}_+ , $0 \le f(x) \le e^{-x^2}$.
- 4. En déduire la convergence et la valeur de l'intégrale $\int_0^{+\infty} e^{-t^2} dt$.

Exercice 2 — Pour $x \in \mathbb{R}$, on pose :

$$f(x) = \int_0^{+\infty} e^{-t^2} \cos(xt) dt$$

- 1. Montrer que f est définie sur $\mathbb R$ et qu'elle est paire.
- 2. Montrer que f est de classe \mathscr{C}^1 et exprimer f'(x) sous forme intégrale.
- 3. Montrer que f est solution de l'équation différentielle $y' + \frac{x}{2}y = 0$.
- 4. En déduire une expression de f à l'aide de l'exercice précédent.

Exercice 3 — Transformée de Fourier

Soient $f: \mathbb{R} \to \mathbb{C}$ continue et intégrable sur \mathbb{R} et sa transformée de Fourier :

$$\hat{f}(x) = \int_{-\infty}^{+\infty} f(t) e^{-ixt} dt$$

- 1. Démontrer que \hat{f} est définie, continue et bornée sur \mathbb{R} .
- 2. Soit désormais la fonction $f: t \mapsto e^{-\frac{t^2}{2}}$.
 - a) Montrer que \hat{f} est de classe \mathscr{C}^{∞} sur \mathbb{R} .
 - b) Calculer \hat{f}' puis en déduire \hat{f} en admettant que $\int_0^{+\infty} e^{-t^2} dt = \frac{\sqrt{\pi}}{2}$.

Exercice 4 — Pour x > -1, on pose $f(x) = \int_0^{\pi/2} \ln(1 + x \sin^2 t) dt$.

- 1. Montrer que f est continue sur $I =]-1, +\infty[$.
- 2. Montrer que f est de classe \mathscr{C}^1 sur I et exprimer f'(x) sous forme intégrale.
- 3. Calculer explicitement f'(x) à l'aide du changement de variable $u = \tan t$. On distinguera les cas x = 0 et $x \neq 0$.
- 4. En déduire une expression explicite de f(x) pour x > -1.

Exercice 5 — Intégrale de Dirichlet

On pose, pour tout $x \ge 0$,

$$\varphi(x) = \int_0^{+\infty} \frac{e^{-xt}}{1+t^2} dt \quad \text{et} \quad \psi(x) = \int_0^{+\infty} \frac{\sin(t)}{x+t} dt$$

- 1. Montrer que ces deux fonctions sont bien définies sur \mathbb{R}_+ .
- 2. Exprimer $\psi(x)$ sous la forme $a(x)\cos(x) + b(x)\sin(x)$ avec a(x) et b(x) définies par des intégrales sur l'intervalle $[x, +\infty[$.
- 3. Étudier la continuité de φ et ψ .
- 4. Démontrer que φ et ψ sont de classe \mathscr{C}^2 sur \mathbb{R}_+^* et solutions de l'équation différentielle $y''+y=\frac{1}{x}$.
- 5. En déduire la valeur de $\int_0^{+\infty} \frac{\sin(t)}{t} dt$.

Exercice 6 — Transformée de Laplace

Soit f une fonction continue et intégrable sur \mathbb{R}^+ .

On pose, pour tout $p \ge 0$, $L_f(p) = \int_0^{+\infty} e^{-pt} f(t) dt$.

- 1. Montrer que L_f est continue et bornée sur \mathbb{R}^+ .
- 2. Déterminer sa limite en $+\infty$.
- 3. Montrer que L_f est de classe \mathscr{C}^{∞} sur \mathbb{R}^{+*} .
- 4. On suppose dorénavant f bornée sur \mathbb{R}^+ et $f(0) \neq 0$.
 - a) Justifier que $\int_0^{+\infty} p e^{-pt} [f(t) f(0)] dt \xrightarrow[p \to +\infty]{} 0.$
 - b) En déduire le *théorème de la valeur initiale* : $L_f(p) \underset{p \to +\infty}{\sim} \frac{f(0)}{p}$.

See Exercice 7 — Fonction Γ d'Euler

Soit la fonction $\Gamma: x \mapsto \int_0^{+\infty} e^{-t} t^{x-1} dt$.

- 1. Montrer que Γ est définie sur $]0, +\infty[$.
- 2. Montrer que pour x > 0, $\Gamma(x+1) = x\Gamma(x)$; en déduire $\Gamma(n)$ pour $n \in \mathbb{N}^*$.
- 3. Montrer que Γ est continue sur $]0, +\infty[$.
- 4. Montrer que Γ est de classe \mathscr{C}^{∞} sur $]0, +\infty[$ et calculer $\Gamma^{(n)}(x)$ pour $n \in \mathbb{N}$.
- 5. En déduire que la fonction Γ est convexe sur $]0, +\infty[$.
- 6. Démontrer que $\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$ puis tracer le graphe de Γ .
- 7. a) Justifier que pour tout x > 0, $\Gamma(x) = \lim_{n \to +\infty} \int_0^n \left(1 \frac{t}{n}\right)^n t^{x-1} dt$.
 - b) En déduire la formule de Gauss :

$$\forall x > 0, \quad \Gamma(x) = \lim_{n \to +\infty} \frac{n^x n!}{x(x+1)\cdots(x+n)}$$

Exercice 8 — Pour tout $x \in \mathbb{R}$, on pose sous réserve d'existence,

$$F(x) = \int_0^{+\infty} \frac{e^{-u}}{\sqrt{u}(u+x)} du \quad \text{et} \quad K = \int_0^{+\infty} \frac{e^{-u}}{\sqrt{u}} du$$

- 1. Démontrer que $\psi: u \mapsto \frac{e^{-u}}{\sqrt{u}}$ est intégrable sur $I =]0, +\infty[$.
- 2. Déterminer les valeurs de x pour lesquelles F(x) est définie.
- 3. Montrer que la fonction F est de classe \mathscr{C}^1 sur I et exprimer F'(x) sous forme intégrale.
- 4. En déduire que pour tout $x \in I$, $xF'(x) \left(x \frac{1}{2}\right)F(x) = -K$.
- 5. Pour tout $x \in I$, on pose $G(x) = \sqrt{x}e^{-x}F(x)$. Montrer qu'il existe une constante réelle C telle que pour tout $x \in I$,

$$G(x) = C - K \int_0^x \frac{e^{-t}}{\sqrt{t}} dt$$

6. Déterminer les limites de G en 0 et $+\infty$, et en déduire la valeur de K.

Exercice 9 — Soit
$$f: x \mapsto \int_0^{+\infty} \frac{\sin(tx)}{t} e^{-t} dt$$
.

- 1. Déterminer le domaine de définition de f.
- 2. Étudier la continuité puis la dérivabilité de f.
- 3. Déduire de f'(x) une expression simplifiée de f(x).

Exercice 10 — On note
$$f$$
 la fonction définie par $f(x) = \int_1^{+\infty} \frac{\mathrm{d}t}{t^x(1+t)}$.

- 1. Prouver que f est de classe \mathscr{C}^{∞} sur \mathbb{R}_{+}^{*} .
- 2. Montrer de deux manières différentes que f est convexe.
- 3. Déterminer les limites puis des équivalents de f en 0 et $+\infty$.

Exercice 11 — On note f la fonction définie par $f(x) = \int_0^{\pi/4} \tan^x(t) dt$.

- 1. Préciser le domaine de définition de f.
- 2. Établir la continuité puis la monotonie de f. Donner sa limite en $+\infty$.
- 3. Calculer f(x) + f(x+2) et en déduire un équivalent de f en $+\infty$.

Exercice 12 — *Indice d'un point par rapport à un lacet* Soit $\gamma \in \mathcal{C}^1([0,1])$ telle que $\gamma(0) = \gamma(1)$.

1. Montrer que pour tout $z_0 \in \mathbb{C} \setminus \gamma([0,1])$,

$$I(\gamma, z_0) = \frac{1}{2i\pi} \int_0^1 \frac{\gamma'(t)}{\gamma(t) - z_0} \, \mathrm{d}t \in \mathbb{Z}$$

2. Montrer que pour z_0 suffisamment grand en module, $I(\gamma, z_0) = 0$.