PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2000-019330

(43)Date of publication of application: 21.01.2000

(51)Int.CI.

6/00 GO2B 8/00 F21V 1/1335 G02F G09F 9/00

(21)Application number : 10-184005

(71)Applicant : FUJITSU KASEI KK

(22)Date of filing:

30.06.1998

(72)Inventor: TANAKA AKIRA

TEZUKA SADAO

SHIOZAWA ISAO HIRANO MASAYA **FURUKAWA SHINGO**

(54) FRONT LIGHT UNIT AND LIQUID CRYSTAL DISPLAY DEVICE

(57)Abstract:

PROBLEM TO BE SOLVED: To provide a lightweight and compact front light unit which annihilates and eliminates the moire fringes having a possibility of being generated by the interaction of a prism array on the front surface of a light transmission plate and liquid crystal electrodes by the rugged parts formed on the rear surface of the light transmission plate and may be thereby exceedingly improved in brightness, ease of viewing, etc., and a liquid crystal display device.

SOLUTION: The light transmission plate 9 includes the rear surface 9B of the light transmission plate facing a liquid crystal display section 5 and the front surface 9A of the light transmission plate on an opposite side. The prism array of respective ridge lines parallel with each other is formed on the front surface of the light transmission plate and the rugged parts which consist of plural projecting parts 19 parallel with each other isolated apart prescribed intervals and have the cross-sections exhibiting a rectangular wave shape are formed on the rear surface of the light transmission plate. The ridgelines of the prism array and the ridgelines of the rugged parts have torsional positional relations and the angle è formed by the same is about 22.5°.

LEGAL STATUS

[Date of request for examination]

19.04.2000

[Date of sending the examiner's decision of rejection

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

3222106

[Date of registration]

17.08.2001

[Number of appeal against examiner's decision of

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2000-19330 (P2000-19330A)

(43)公開日 平成12年1月21日(2000.1.21)

(51) Int.Cl.7		識別記号	FΙ			テーマコート*(参考
G 0 2 B	6/00	3 3 1	G 0 2 B	6/00	331	2H038
F 2 1 V	8/00	601	F 2 1 V	8/00	601A	2H091 5G435
G02F	1/1335	5 3 0	G02F	1/1335		96439
G09F	9/00	3 3 6		9/00 未請求	336B 請求項の数3 (DL (全 5 頁
(21)出願番号	•	特顧平10-184005	(71)出顧人		885 化成株式会社	
(22)出顧日		平成10年6月30日(1998.6.30)		神奈川県	具横浜市都筑区川和	可町654番地
			(72)発明者	神奈川県	章 県横浜市都筑区川和 成株式会社内	如町654番地 富
			(72)発明者	神奈川県	貞雄 県横浜市都筑区川和 成株式会社内	可町654番地 富
			(74)代理人		517 石田 敬 (外·	4名)
						最終頁に続

(54) 【発明の名称】 フロントライトユニット及び液晶ディスプレイ装置

(57)【要約】

【課題】 導光板表面のプリズムアレイと液晶電極との相互作用によって生じる虞れのあるモアレ縞を導光板裏面に形成する凹凸部で消失・解消させ、輝度や見易さ等が飛躍的に改善し得た軽量コンパクトなフロントライトユニット及び液晶ディスプレイ装置を提供する。

【解決手段】 導光板は、液晶表示部5 に対面する導光板裏面と、それとは反対側の導光板表面、とを含み、導光板表面には、各稜線が相互に平行であるプリズムアレイが形成され、導光板裏面には、所定間隔で離隔された相互平行な複数の突起部から成り、横断面が矩形波状を呈する凹凸部が形成され、プリズムアレイの稜線と凹凸部の稜線とは、ねじれの位置関係を有し、そのなす角のが略22.5°である。

【特許請求の範囲】

【請求項1】 液晶表示部の表示側に配置され得る導光 板を含むフロントライトユニットにおいて、

導光板は、液晶表示部に対面する導光板裏面と、それと は反対側の導光板表面、とを含み、

導光板表面には、各稜線が相互に平行であるプリズムア レイが形成され、

導光板裏面には、所定間隔で離隔された相互平行な複数 の突起部から成り、横断面が矩形波状を呈する凹凸部が 形成され、

プリズムアレイの稜線と凹凸部の稜線とは、ねじれの位 置関係を有し、そのなす角(θ)が鋭角であることを特 徴とするフロントライトユニット。

【請求項2】 前記なす角(θ)は、略22.5°であ ることを特徴とする請求項1記載のフロントライトユニ

【請求項3】 液晶表示部と、請求項1記載のフロント ライトユニット、とを含むことを特徴とする液晶ディス プレイ装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、フロントライトユ ニット並びにこれを組み込む液晶ディスプレイ装置に関 する。

[0002]

【従来の技術】最近、より高性能且つ小型軽量な液晶デ ィスプレイ装置(LCD)を実現するため、消費電力の 低減と軽量化・薄型化のためにバックライトをなくし、 ライトを反射型にすること(フロントライト化)によっ て、これに対応しようとする動きがある。

【0003】斯かるフロントライトユニットは、光出射 面/表示面の輝度の均一化等のために、その主要部を構 成する矩形板状の導光板の水平な表面が梨地状の梨地面 にされる。

[0004]

【発明が解決しようとする課題】しかるに、導光板表面 における光の拡散・反射や輝度均一化のために梨地面は 効果的である反面、梨地面は光の散乱のために液晶表示 しようとする絵や文字をぼけさせたり、コンラスト低下 のときにそれが顕著である、という不都合がある。

【0005】そこで、本発明においては、梨地面を設け るという解決策ないし要件を捨象し、新たな観点から問 題の解決を図り、輝度や見やすさ等の面で、従来のもの と同等もしくはそれ以上の良好な、そして軽量コンパク トなフロントライトユニット並びにこれを組み込む、特 に反射型の液晶ディスプレイ装置を提供することをその 課題とする。

[0006]

に本発明は、液晶表示部の表示側に配置され得る導光板 を含むフロントライトユニットにおいて、導光板は、液 晶表示部に対面する導光板裏面と、それとは反対側の導 光板表面、とを含み、導光板表面には、各稜線が相互に 平行であるプリズムアレイが形成され、導光板裏面に は、所定間隔で離隔された相互平行な複数の突起部から 成り、横断面が矩形波状を呈する凹凸部が形成され、ブ リズムアレイの稜線と凹凸部の稜線とは、ねじれの位置 関係を有し、そのなす角(0)が鋭角であることを構成 10 上の特徴とする。好ましくは、前記なす角(θ)は、略 22.5° である。

【0007】本発明に係る液晶ディスプレイ装置は、液 晶表示部と、請求項1記載のフロントライトユニット、 とを含むことを構成上の特徴とする。

[0008]

【発明の実施の形態】以下、本発明の実施の形態を図面 を参照して説明する。図1は、本発明の第1実施態様の フロントライトユニットを組み込んだ反射型の液晶ディ スプレイ装置の概略構成を示す断面側面図であり、図2 20 は、図1の装置の上から見た平面図である。尚、両図 (並びに後述する他の図) にあっては、分かり易いよう に構成要素が適宜誇張して描いてある。

【0009】図示液晶ディスプレイ装置1は、基本的に 上側のフロントライトユニット3と、その下側の反射型 の液晶表示部5、とから構成される。液晶表示部5は、 白黒表示のものとカラー表示のものとによって構成が異 なるが、基本的には1以上の液晶層を上下の偏光シート でサンドイッチ状態にしたような構造から成り、下面に は反射板(図示せず)が設けられる。反射板としては、 30 輝度及びコントラストを改善するために、白色ホログラ ム反射フィルム (例えば、ポラロイド社の商品名『Holo Bright」(登録商標))を用いることができる。

【0010】図示フロントライトユニット3は、基本的 に導光板9とその一側面側(図1では左手側)の光源部 11、とから構成される。尚、言うまでもないが、複数 の導光板側面箇所にそれぞれ光源部を設けることができ る。光源部11は、例えば、1以上(図では1つ)の丸 棒状(図1紙面に垂直な方向に延びる)の冷陰極管や熱 陰極管などのランプ13と、ランプ13の背面側を覆い や輝度むらを起こさせて見にくくさせ、特にカラー表示 40 且つ内表面に反射ミラー(層)の形成された雨樋状のラ ンプホルダ15、とを含んで成る。

> 【0011】導光板9は、例えば、透明なアクリル樹脂 で形成されて成り、表示側(使用者側)に対面する導光 板表面9Aと、液晶表示部に対面する導光板裏面9B、 とを含む。導光板表面9Aには、プリズム加工が施され る、すなわち、傾斜角αの傾斜面部を複数個横に一列に 並べたような、更に具体的には、不等辺プリズムを等し いビッチでアレイ状に並べたような鋸歯状の傾斜面部 (プリズムアレイ)が形成される。プリズムアレイの相

【課題を解決するための手段】上記課題を解決するため 50 互平行な各稜線(或いは谷線)は、光源部11のランプ

13の長手軸線に平行に延びる。

【0012】導光板表面9Aのプリズムアレイの作用に より、全反射を基本にして高い指向性をもつように光制 御することができ、これにより、コンラスト良好な液晶 画面を構成できる。特に、プリズムを画成する2つの傾 斜面の中で、光源部 (ランプ) から遠ざかるにつれて低 くなる側の傾斜面部が作用的に重要であり、この傾斜面 部が導光板裏面に対して成す角度を傾斜角αと表した場 合に、この傾斜角αが好ましくは20°~45°の範囲 にあるとき、更に好ましくは43°であるときに、(a) 液晶表示部側(導光板裏面側)に光を大量に導光でき、 (b) 表示側への出射角度が垂直に近い光を大量に導光で き、(c) 傾斜面側の出射方向の光の内で、いわゆる表示 に寄与しない漏れ光の垂直成分を減少させることができ

【0013】すなわち、この大きさの傾斜角を有したブ リズムアレイが導光板表面に形成されている構成の場 合、液晶画面の見やすさが飛躍的に改善でき、より明る く輝度均一なコンラストの非常に良好な液晶画面を得る ことか可能になる。しかも、導光板表面に微小なプリズ ムをアレイ状に形成するような構造上、導光板肉厚方向 の寸法を増大させずに済む、換言すると、有効表示面積 の確保のために導光板の肉厚増加を招かない。従って、 液晶ディスプレイ装置全体の軽量薄型化・小型化が実現 可能である。

【0014】ところで、この導光板表面9Aのプリズム アレイ構造と液晶表示部(電極)5との相関的な作用に より、好ましくないモアレ縞(縞状の斑紋)が発生する ことが認められるので、これを効果的且つ経済的に解決 ・解消するべく、次のような工夫(特徴)が施されてい 30 れた利点を享有でき、非常に合理的・実用的である。 る。すなわち、導光板裏面9Bには、図1紙面を貫く方 向に延びる横断面矩形状の突起部(凹凸状部分)19が 相互平行に多数形成される。尚、作用的な面から考える と、突起部というよりも、突起部と突起部の間に存在す る凹所が重要な意味をもつ。

【0015】この導光板裏面側の突起部19の長手稜線 と、導光板表面側のアレイ稜線とは、所謂ねじれの位置 関係にあり、その成す角度 θ (図2)は、 $10\sim30^{\circ}$ に設定され、好ましくは、22.5°に設定される。と の数値は、実験結果を示す図3から理解されるように、 モアレ縞のピッチが最も小さくなる場合の角度 (θ) 値 である。尚、該ピッチが2mm程度(以下)である場合 にモアレ縞が見えにくくなる (すなわち、不都合がなく なる) ことが経験的にわかっている。

【0016】導光板裏面側の突起部19の大きさに関し て、好ましくは、上記矩形断面寸法(深さ×幅)が、例 えば10μm×25μm程度である。また、導光板表面 側のプリズムアレイのプリズム間ピッチをPa、導光板裏 面側の突起部間ピッチをPbと表したときに、好ましく は、Pa=0.2 ~0.4(mm) 、Pb=0.2 ~0.4(mm) であっ

て、Pa≦Pb≦1.5Pa 或いは Pb ≦Pa≦1.5Pb という関係 式の採用が望ましい。

【0017】以上のように、上記第1実施態様にあって は、導光板9の上下両面に非常に特徴的な工夫を施した ので、明るくコントラスト最良な非常に見易い液晶画面 を得ることができ、モアレ縞発生という不都合も生じな い。また、モアレ縞の解消・解決手段が、導光板自体を 利用した(すなわち、導光板裏面自体を加工して設け た) 簡単構造から成る合理的・経済的なものであって、 10 特別な高価な光学要素や光学部品を別途用意し、それら を後から追加的に重ねて配置するような構成ではない。 従って、重量増加、装置寸法の拡大、製造コスト上昇等 といった不都合を伴うことがない。

【0018】最後に、図4~6を参照して本発明の幾つ かの変更態様につき説明するが、上記第1実施態様装置 1と共通する(共通し得る)部分ないし部品について は、同一の参照番号を付し、重複する説明を省略し、上 記第1実施態様と異なる点を中心にして簡潔に説明す る。図4に示す第2実施態様の液晶ディスプレイ装置4 1は、上記第1実施態様の構成に似ているが、上記第1 実施態様の導光板のように導光板自体に凹凸(突起部) を刻設形成ないし一体モールド成形する構成(図1)に 代えて、平坦な導光板裏面に、例えば、シルク印刷で凹 凸面形状が形成されるように構成される。すなわち、第 2実施態様の導光板49の裏面には、シルク印刷部分5 0と非印刷部分とが規則正しく形成され、これにより、 上記第1実施態様における突起部ないしその間の凹所と 同じような作用効果が得られることになる。また、シル ク印刷の場合、簡単に溝バターンを変更できるという優

【0019】図5に示す第3実施態様の液晶ディスプレ イ装置51は、上記第1実施態様の導光板のように(ア レイ) プリズムが同じ高さレベルにある構成(図1)に 代えて、光源部 (ランプ) から遠ざかるにつれてプリズ ムの高さレベルが順次低くなっていくように構成され る。この第3実施態様の導光板59の個々のプリズムに おいて、光源部11から遠ざかるにつれて導光板肉厚が 減少するような構成のため、液晶表示に関する輝度むら をより改善できることが認められる。

【0020】図6に示す第4実施態様の液晶ディスプレ イ装置61は、上記第3実施態様の導光板のように導光 板自体に凹凸(突起部)を刻設形成ないし一体モールド 成形する構成(図5)に代えて、平坦な導光板裏面に、 例えば、シルク印刷で凹凸面形状が形成されるように構 成される。換言すると、第4実施態様の導光板69の裏 面は、上記第2実施態様の導光板裏面(図4)と同様で ある。従って、同じようにシルク印刷の利点を享有でき

【0021】尚、上記第1~4実施態様や(記載のない 50 可能な)変更態様に共通して言えることであるが、導光

板表面の(アレイ)プリズムを「等しくないピッチ」で 並べたような鋸歯状の表面(図示せず)とすることがで き、例えば、光源部(ランプ)から遠ざかるにつれてビ ッチが狭くなるように、すなわち、密になるように構成 することができる。

[0022]

【発明の効果】以上説明したように本発明によれば、従 来の不都合を解決ないし解消でき、輝度や見やすさ等が 飛躍的に改善し得た軽量コンパクトなフロントライトユ ニット並びにこれを組み込む、特に反射型の液晶ディス 10 3…フロントライトユニット プレイ装置を実現できる。

【図面の簡単な説明】

【図1】本発明の第1実施態様のフロントライトユニッ トを組み込んだ反射型の液晶ディスプレイ装置の概略構 成を示す横断面図である。

【図2】第1実施態様装置を上から見た平面図である。

【図3】モアレ縞と相対角度 & との相互関係を示す線図 である。

【図4】本発明の第2実施態様のフロントライトユニッ トを組み込んだ反射型の液晶ディスプレイ装置の概略構 * 20

* 成を示す横断面図である。

【図5】本発明の第3実施態様のフロントライトユニッ トを組み込んだ反射型の液晶ディスプレイ装置の概略構 成を示す横断面図である。

【図6】本発明の第4実施態様のフロントライトユニッ トを組み込んだ反射型の液晶ディスプレイ装置の概略構 成を示す横断面図である。

【符号の説明】

- 1、41、51、61…液晶ディスプレイ装置
- 5…液晶表示部
- 9、49、59、69…導光板
- 9 A …導光板表面
- 9 B…導光板裏面
- 11…光源部
- 13…ランプ
- 15…ランプホルダ
- 19…突起部
- 50…シルク印刷部分

【図1】

【図3】

【図2】

図 3

【図4】

【図5】

【図6】

フロントページの続き

(72)発明者 塩澤 勇雄

神奈川県横浜市都筑区川和町654番地 富士通化成株式会社内

(72)発明者 平野 雅也

神奈川県横浜市都筑区川和町654番地 富士通化成株式会社内

(72)発明者 古川 真悟

神奈川県横浜市都筑区川和町654番地 富 士通化成株式会社内

Fターム(参考) 2H038 AA41 AA55

2H091 FA23Z FA31Z FB02 FC17 FD06 LA11 LA18

5G435 AA01 AA03 BB12 BB16 DD13 EE23 FF08 GG03 GG24 【公報種別】特許法第17条の2の規定による補正の掲載

【部門区分】第6部門第2区分

【発行日】平成13年2月9日(2001.2.9)

【公開番号】特開2000-19330 (P2000-19330A)

【公開日】平成12年1月21日(2000.1.21)

【年通号数】公開特許公報12-194

[出願番号] 特願平10-184005

331

【国際特許分類第7版】

G02B 6/00

F21V 8/00 601

G02F 1/1335 530
G09F 9/00 336

[FI]

G02B 6/00 331
F21V 8/00 601 A
601 C
G02F 1/1335 530
G09F 9/00 336 B

【手続補正書】

【提出日】平成12年4月19日(2000.4.19)

【手続補正1】

【補正対象書類名】明細書

【補正対象項目名】0015

【補正方法】変更

【補正内容】

【0015】との導光板裏面側の突起部19の長手稜線と、導光板表面側のアレイ稜線とは、所謂ねじれの位置関係にあり、その成す角度 θ (図2)は、 $10\sim30$ °

に設定され、好ましくは、22.5°に設定される。との数値は、実験結果を示す図3から理解されるように、モアレ縞のピッチが最も小さくなる場合の角度(θ)値である。尚、該ピッチが2mm程度(以下)である場合にモアレ縞が見えにくくなる(すなわち、不都合がなくなる)ことが経験的にわかっている。図3におけるaは、導光板表面側のプリズムアレイのプリズム間ピッチをPa、導光板裏面側の突起部間ピッチをPbと表したときに、a=(Pb/Pa)-1で示される値であり、縦軸のはは上記のPaに等しい。