USACO2002-2008 月赛解题报告

USACO 2002 February		
题目名称	题目描述	算法
Fiber	N 个人围成一个环, 有 M 对	枚举断开的地方,然后类似染色
Communications	人想要联系,但每次只能连接相	一样。用并查集。
	邻两个人。问要满足这 M 对关系	
	最少要连接几条边。	
Power Hungry	初始时只有 X 和 1, 每次你	相当于指数通过加减得到P。BFS
Cows	能从现有的两个数中选两个(可以	时如果大的那个数不超过 50000, 而
	重复),通过乘或者除替换掉其中	且小的那个数不超过 100 就进行扩
	某个数。问最少要操作几次能得	展,否则不扩展。证明我不会
	到 X^P。	或者也可以 IDA*。
Cow Cycling	有 N 头奶牛,他们需要跑 D	F[i][j][k]表示前 i-1 头奶牛领跑完
	圈,刚开始每头奶牛的体力值都	了,现在是第i头奶牛领跑,已经跑
	为 E。如果跑 X 圈,那么领跑的	了 j 圈且奶牛 i 已经消耗了 k 的体力
	奶牛每分钟消耗的体力为 X*X,	需要的最少时间。
	后面的奶牛每分钟消耗的体力是	F[i][j+x][k+x*x]=min(F[i][j][k]+1)
	X。求跑完这 D 圈最少需要的时	F[i+1][j][j]=min(F[i][j][k])
	间。	
Rebuilding Roads	有一棵树,你需要砍掉一些	F[I][]表示以 i 为根的树,得到了
	边得到一棵节点个数为P的子树。	一棵节点个数为j的子树需要砍掉的
	问最少需要砍掉几条边。	最少的边数。
Triangular	有 N 条长度为 Li 的线段, 你	F[][]表示其中一条边长为 i, 另
Pastures	要用这些线段拼出一个三角形,	一条边长为j是否可以达到,第三条
	使得这个三角形面积最大。求最	边的长度就是总和减去(i+j)。
	大面积。	
Chores	有 N 个任务,除了任务 1 以	F[]表示能完成任务 i 的最早时
	外的其他任务都有一些任务需要	间。F[i]=max(F[j])+t[i],任务 j 需要在
	在这个任务之前完成。求完成所	任务i之前完成。
	有任务至少需要多少时间。	L/ W
Dessert	你要在数字 1N 之间插	枚举。
	入'+','-'或者'.',使得最	
D . 12 1	后的结果为 0。	4-tt: 4+M
Extra Krunch	给一句话,要求你把这句话	模拟。
	福減,使得不出现元音字母,而	
	且每个字母如果不是第一次出现	
DIVIOWDIN	就删掉。	加田之益山珂フ日本担目的佐
BUY LOW,BUY	求不同的最长上升子序列的	如果之前出现了几个相同的值,
LOWER	个数。	那么只从最后出现的那个转移过来。

USACO 2003 Fall		1
题目名称	题目描述	算法
Cow Exhibition	有 N 对数字(Ai,Bi), 你要选出	F[i]表示 TS 值为 i 的情况下 TF
	几对数字,设 TS=sigma(Aj),	的最大值为多少。
	TF=sigma(Bj), 求 TS,TF>=0 的情	
	况下 TS+TF 的最大值。	
Milking Grid	给出一个字母矩阵,要求找	用 KMP 求出每行的最小重复字
	出最小的子矩阵, 使得这个子矩	串长度,这些长度的最小公倍数就是
	阵经过无限复制扩张之后包含原	最小重复子矩阵的长。同理可以求出
	来的矩阵。	这个最小重复子矩阵的宽。
Popular Cows	N 个点的有向图,找出所有	将边反向,然后强连通缩点。缩
	能被其他点都能到达的点。	点以后如果只有一个没有入度的点,
		那么这个点就是。如果有两个及以上
		的点没有入度,那么就不存在这样的
		点。
Beauty Contest	求最远点对。	凸包。
Cow Laundry	第1行的A[i]连接到了第2行	逆序对。
	的 B[i]。每次只能交换相邻的两	
	个。求最少要交换几次才能使	
	A[i]=B[i]。	
Romeo Meets	有 N 头奶牛在吃草,有 P 块	直接扫一遍。
Juliet	草坪。你要找到最长的连续草坪,	
	这草坪内奶牛的数目不超过 C。	
	(同一块草坪内可能有多个奶牛)	
ISBN	一个长度为10的数字串,每	枚举。注意最后一位可以是 10。
	一位的数字都是 0~9,最后一位可	
	以是 0~10。如果 sigma(i*num[i])	
	能被 11 整除,那么它就是 ISBN。	
	现在去掉了其中的某一位,求出 这一位,使得它成为 ISBN。	

	USACO 2003 February		
题目名称	题目描述	算法	
Cow Math	求出所有从 1 到 2 的路径的	搜索。如果当前的最大公约数已	
	长度的最大公约数的最小公倍	经是当前最小公倍数的约数, 那么就	
	数。	不再搜下去了。	
Cow Imposters	有一个目标串和几个现有的	广搜。	
	串。你要找出你现有的串通过		
	XOR 运算能够得到的最接近目标		
	串的串。		
Traffic Lights	在一条直道上,有些位置上	F[i][j][k]表示时刻为 i,在位置 j,	
	有红绿灯。如果你遇到了红灯那	速度为 k 这个状态能否到达。F[i][j][k]	
	么你就要停下来直到绿灯。你可	能转移到: (如果可行)	

	·	<u> </u>
	以在第整数秒时刻改变速度,而	F[i+1][j+k-1][k-1]
	且速度改变量都是1。如果遇到红	F[i+1][j+k][k]
	灯了,你的速度一定要变为0。求	F[i+1][j+k+1][k+1]
	到达终点时速度为0的最少时间。	
Farm Tour	找一条最短的从 1 到 N 再从	费用流。流两次就可以了。
	N 到 1 的路,路不能重复走。	
Vertical	统计每个字母出现的次数。	模拟。
Histogram		
Cowties	有 N 头奶牛,现在要把它们	枚举第一头奶牛的位置, 然后每
	连成一个环,1-2-3-···-N-1。每头	次做一次 DP。
	奶牛都要在自己喜欢的位置上。	
	求把它们连成环的最小长度。	
Travel Games	给你一个串和一个单词表。	将单词表按长度排序, 然后 DP。
	每次你能在串中任何位置插入一	
	个字符,使得这个串在单词表中	
	是存在的。求能变成的最长的串。	

USACO 2003 March		
题目名称	题目描述	算法
Best Cow Fences	有一个长度为 N 的序列,你	二分这个平均值, 然后每个数都
	要找出一个连续子序列,使得这	减去这个平均值,判断这个新序列是
	个子序列的平均值最大,而且这	否有长度大于等于F的子序列的和大
	个子序列的长度要大于等于 F。	于 0。
Cornfields	一个 N*N 的网格,每个格子	预处理出每个边长为B的正方形
	都有一个海拔高度。有 K 个询问,	中最高海拔高度和最低海拔高度。(可
	询问以(x,y)为坐上角,以B为边长	以暴力,也可以用单调队列)
	的正方形中最高海拔高度与最低	
	海拔高度的差是多少。B是一个固	
	定的数。	
Six Degrees of	有 N 头奶牛和 M 场电影。如	先 Floyd 求出任意两点的最短
Cowvin Bacon	果两头奶牛看过同一场电影,那	路,然后枚举。
	么它们之间的距离就是1。否则就	
	是它们之间的最短距离。删去一	
	个点的代价是它与其他所有点的	
	总距离和。求最小的代价。	
Herd Sums	求存在多少种几个连续正整	设有 k 个连续正整数, a 为第一
	数的和为n。	个正整数。那么(a+a+k-1)/2*k=n。
		可以得到 2*a=2*n/k-k+1。
		那么 k 是 2*n 的约数, 且
		2*n/k-k+1 是偶数。只要枚举 k 即可。
Message	给出一种字母的变换方式,	模拟。
Decowding	将一句话转换一下。	

题目名称	题目描述	算法
Mountain	N*N 的网格,每个格子有一	枚举最低的高度,二分最高的高
Walking	个高度。你要从(1,1)走到(N,N),	度。
	求最小的高度差。高度差是指这	
	条路径中最高的与最低的差。	
Millenium	N*N 的格子,每个格子都有	按格子数值从大到小的顺序
Leapcow	一个数值。现在有一个骑士,每	DP。
	次只能跳到比现在所在格子数值	
	大的格子,求最长的路径。如果	
	有多组解,输出字典序最小的。	
Optimal Milking	有 K 个机器和 C 头奶牛,每	二分答案,然后用匹配验证。
	个机器都可以"加工"M 头奶	
	牛。奶牛要被加工就要从走到那	
	个机器里。求走得最远的奶牛的	
	最小距离。	
Bale Figures	给你一个正方体的放法,求	模拟。
	出暴露在外面的面积。	
Jumping Cows	有 N 个数字, 你要按顺序取。	F[i][0]和 F[i][1]表示前 i 个已经取
	使得第奇数个取的数字和减去第	了偶数和奇数个的最大值。
	偶数个取的数字和的差最大。	
Lost Cows	有一个序列 1N, 你知道每	从后往前做,相当于取第 K 小的
	一位之前有几个数字比它小,还	元素。
	原这个序列。	
Bovine Math	一次操作是将一个六位数取	F[i]表示得到数字 i 的操作次数,
Geniuses	中间四位, 然后平方, 在取后六	知道再次得到了数字 i 就出现了循
	位,直到出现循环了。求出开始	环。
	循环的这个数,循环长度与操作	
	几次后开始循环的。	

	USACO 2004 December		
题目名称	题目描述	算法	
Dividing the Path	在一个长为 L 的线段上要装 洒水机,洒水机的射程是[A,B]。 还有 N 个区间,这些区间都必须 被同一个洒水机覆盖。求最少要 装几个洒水机,这些洒水机覆盖 整个线段,且任意两个洒水机的 不重叠。	F[i]表示 i 以及 i 之前的线段都已 将覆盖了需要的最少洒水机的个数, 那 么 F[i]=min(F[k])(k-i 为 偶 数 且 2*a<=k-i<=2*b。用一个单调队列维护 就可以了。	
Fence Obstacle Course	有 N 个栅栏, 你要从 S 点走到点(0,0)。每次只能沿着栅栏走, 走到尽头后一直往下走, 直到碰到栅栏, 然后再走到栅栏的尽头求走到点(0,0)横方向至少要走几步。	对于每个栅栏,用线段树求出走到它的尽头后往下走是到哪个栅栏上。然后就是一个简单的 DP 了。	

Cow Ski Area	奶牛要滑雪,只能从高的地	先缩点,缩完点后如果只有一个
	方滑到低的地方(高度相同也可	点了,那么 ans=0,否则 ans=max(入
	以)。现在你要装滑雪电梯,滑雪	度为0的点数,出度为0的点数)。
	电梯可以连接任意两个点。求最	
	少要装几个才能使得任意两点之	
	间都能互相到达。	
Cleaning Shifts	有 N 个区间,求至少要几个	按左端点排序。每次取能取的右
	区间才能覆盖[1,T]。	端点最远的区间。
Bad Cowtractors	最大生成树。	Prim 或 Kruskal。
Tree Cutting	求在一棵树上有哪些节点删	S[i]表示以i为根的子树的节点个
	掉后,剩下的那些部分的结点个	数,F[i]表示把 i 去掉后剩下部分中节
	数都不超过总结点的一半。	点个数的最大值。那么
		F[i]=max(S[son[i]],N-S[i])

USACO 2004 February		
题目名称	题目描述	算法
Navigation	平面上有一棵树。有 K 个询	先建树,将这些询问的答案都计
Nightmare	问, F1,F2,I, 表示仅连接前 I 条边	算出来。然后再判断一下仅用前 I 条
	的时候 F1 和 F2 的曼哈顿距离是	边的时候这两个点是否连通。
	多少,如果此时这两个点还未连	
	接,那么输出-1。	
Cow Marathon	求树的最长路。	两次 BFS。
Distance Queries	求树上两点间的距离。	D[i]表示点 i 到根节点的距离。设
		k为i和j的最近公共祖先,那么
		$Dist[i][j] = D[i] + D[j] - 2*D[k] \circ$
Distance Statistics	求树上距离小于 M 的点对数	用平衡树做。
	量。	设 d[i]为点 i 到根节点的距离。平
		衡树中以 d[i]为关键字。当前做到节
		点 u,那么从点 u 的儿子中找一个节
		点个数最多的,为点 v。然后询问点
		v的平衡树中键值<=d[u]+M的个数,
		然后插入点v的平衡树中。对于其它
		儿子w, 先将w的平衡树拆掉, 然后
		将这些节点的询问的询问完后再将
		这些节点都插入点v的平衡树中。

USACO 2004 March		
题目名称	题目描述	算法
Moo University	有 N 个数对(Hi,Wi),求最多	不 等 式 可 以 变 成
- Team Tryouts	可以取出几对数,使得取出来的	A*Hi+B*Wi-C<=A*h+B*w。以这个为
	数满足 A*(Hi-h)+B*(Wi-w)<=C。h	关键字排序。然后枚举 h 和 w,再用
	和w是取出来的数中的 Hi 和 Wi	一个堆来维护和统计。
	的最小值。	
Moo University -	有 C 个人, T 种物品, 每人	匹配。

Emergency Pizza	都有自己喜爱的物品。你要给这	
Order	些人每人 K 种他们喜爱的物品,	
	且任意两个人的物品不全相同。	
	求最多可以满足多少人。	
Moo University -	有 C 个数对(Ai,Bi), 你要选出	枚举中位数,从 Ai 值小于它的
Financial Aid	N(N 为奇数)个数,使得这 N 个数	当中取出前 N/2 个 Bi 值最小的,从
	的中位数最大且 sigma(Bj)值不超	Ai 值大于它的当中也取出前 N/2 个
	过F。	Bi 值最小的。可以用堆来维护。

	LICACO 2004 N		
	USACO 2004 November		
题目名称	题目描述	算法	
Apple Catching	有两个格子,在时间 1-T 秒内	F[][]表示时刻 i,已经移动了 j	
	每一秒都有一个苹果会落到其中	次能拿到的最多苹果树,因为只有两	
	的某个格子中。你现在要去接这	个格子,所以你所在的格子就是(j+1)	
	些苹果,但你最多只能移动 W 次。	mod 2°	
	求最多能拿到多少苹果。		
Lake Counting	有一张 N*M 的图, 找出有几	BFS 或并查集。	
	个连通块。		
Til the Cows	求1到N的最短路。	Dijkstra 或 SPFA。	
Come Home			
Who's in the	求中位数。	排序, 然后输出中间那个数。	
Middle			
Bull Math	两个数相乘。	高精度乘法。	
Bank Interest	现在你有 M 元钱,每年你都	模拟。	
	可以得到 R%的利润,问 Y 年后你		
	有多少钱。		

USACO 2004 U S Open		
题目名称	题目描述	算法
Cube Stacking	以开始有 N 个立方体。现在	并查集模拟。
	有两种操作,一种是将 X 所在的	
	那堆叠放到 Y 所在那堆上面,第	
	二种是询问 X 下面有几个立方	
	体。	
The Cow Lineup	有一个序列, 你要找出一个	从头开始扫,直到出现了1K的
	长度最短的序列,使得这个序列	所有数字, 然后从这里断开, 接着
	不是原序列的子序列。求这个长	扫这样如果执行了 M 次,那么答
	度。	案就是 M+1。
MooFest	有 N 头奶牛,奶牛在位置 Xi,	按 Vi 值排序,然后用线段树。
	且它的发声响度是 Vi。奶牛 i 和奶	
	牛 j 交流需要的能量是它们之间	
	的距离*max(Vi,Vj)。求它们两两之	
	间都要交流所需要的总能量。	
Turning in	一个教师要去教室收作业,	先按照 Pi 排序。F[i][j][01]表示第

Homework	教室的位置是 Pi, 每个教室的作	i个教室与第j个教室之间的作业还没
	业都要在 Ti 以后才能收。教师的	收过,0表示在教室i,1表示在教室
	速度是每单位时间走单位长度。	j的最小时间。
	求至少要多少时间才能收完所有	
	作业,而且走到位置 B。	

	USACO 2005 Decem	nber
题目名称	题目描述	算法
Alignment of the	平面上 N 个点, 求三点共线	枚举。
Planets	的点有几组。	
Finding Boving	求最小的数,这个数开根号	枚举整数位是什么, 然后平方以
Roots	以后小数点后L位与给的数相同。	后四舍五入得到一个整数,再验证这
		个整数是否符合。
Cow Bowling	找一条从上到下的路,使得	经典 DP 题。
	路径上的总和最大。	
Cow Patterns	两个序列相同的定义:长度	KMP。两个数字相同的定义是:
	相同,任意两位数字的关系一样。	比这个数字小的,与这个数字相等
	关系是指'<','=','>'。求一个序列有	的,比这个数字大的个数都相同。
	多少个子串是与另一个序列相同	
	的。	
Barn Expansion	平面上有 N 个不相交的矩	因为没有相交的, 所以我们可以
	形,但能相碰。求有多少个矩形	先按 x 排序,然后在同一条直线上求
	能向外扩张(四条边能同时向外移	线段是否可以扩张。然后再按y排序
	一段距离)。	再做一次。
Layout	直线上有 N 个点,有 ML 个	差分约束。
	关系 A B D,表示 A 和 B 之间的	不过我的做法是:
	距离不能超过 D,有 MD 个关系	设 lin和 rin是 i 这个点的可行区
	ABD,表示A和B之间的距离不	间。对于第一种关系,用 l[B]-D 去更
	能小于 D。点 i 不能在点 i+1 的右	新 l[A],用 r[A]+D 去更新 r[B]。对于
	边。求1和N可能的最大距离。	第二种关系,用 r[B]-D 去更新 r[A],
		用 I[A]+D 去更新 I[B]。
Kinghts of Ni	有一张 N*M 的地图, 2 是你	用0和1表示这个到达这个格子
	的出发点,3是你的终点。你要从	的时候是否已经到达过 4 了。然后
	出发点到达某个 4, 然后再到达终	BFS 一次即可。
	点。求最少需要的步数。	
Cleaning Shifts	有 N 头奶牛,如果你雇佣这	F[]表示到i时刻为止,时刻M到
	头奶牛,那么它会在时刻 T1 到	时刻 i 都至少有一头奶牛工作的最少
	T2 之间工作,费用为 S。求在 M	费用。
	到 E 之间每个时刻都至少有一头	F[i]=min(F[T1[j]T2[j]-1] +S
	奶牛工作的最小费用。	(T2[j]==i))。
C 1	+ 147477 - 1277 - 1277	用线段树优化。
Scales	有一些砝码,求用这些砝码	搜索。
	能得到的最大的不超过 C 的重量	设M表示已经得到的重量。
	是多少? W[i]+W[i+1]<=W[i+2]	1.M+W[k]+W[k-1]<=C, 那么 k

	这个砝码必取。
	$2.M+W[k] \le C \le M+W[k]+W[k-1]$
	,那么 k 与 k-1 中只能取一个。

USACO 2005 February		
题目名称	题目描述	算法
Jersey Politics	有 3*K 座城市, 你要把这些	把前 2*K 大的城市取出来, 随便
	城市分成3组,每组K座城市,	分成两组,然后随机调整。
	使得其中有 2 组的数量大于	
	500*K。	
Secret Milking	N 个城市, M 条边, 你要找 T	二分最大边的长度, 然后用网络
Machine	条从城市 1 到城市 N 的路, 使得	流。朴素网络流要 TLE。
	最长的边的长度最小,边不能重	
	复用。	
Aggressive cows	X 轴上有 N 个点, 你要选出	二分最远距离, 然后尽量放到远
	C 个点来,使得它们之间最近的距	的地方。
	离最远。	
Part Acquisition	K 个节点, N 条有向边, 求	BFS.
	点1到点K的最短路。	
Rigging the	在一张 5*5 的格子中选出 7	搜索。搜每个格子是否选,最后
Bovine Election	个连通的格子,且这7个格子中J	判断一下连通性。
	的数目比 H 的数目多。求有几种	
	方案。	

USACO 2005 January		
题目名称	题目描述	算法
Muddy Fields	R*C 的矩阵里,有些格子有	横方向上标号,纵方向上标号,
	'*',你要用最少的木板,将这	然后二分图匹配。
	些'*'都覆盖,且不能覆盖'.'。	
The Wedding	在 N*M 的格子上, 每个格子	先将边框上的格子都加入堆中,
Juicer	都有一个高度。求一场大雨后这	每次拿出最小的格子,如果它四周有
	个矩阵中有多少积水。	比它低的且没有访问过的格子,那么
		这个格子就有积水,积水就是高度
		差,然后把这个格子放入堆中。
Naptime	有 N 个数字,它们是环状的。	动态规划。F[i][j][01]表示前 i 个
	你要取 B 个数字。每一段你取的	数字已经取了j个数字,且数字i的
	第一个数字的得分是不计入的。	状态(不取与取)。那么就有:
	求最多的得分。	F[i][j][0]=max(F[i-1][j][0],F[i-1][j][1]
)
		F[i][j][1]=max(F[i-1][j-1][0],F[i-1][j-
		1][1]+a[i])。
		初始值要分两种。
		如果第一个数字不计入得分的,
		那么 F[1][0][0]=F[1][1][1]=0。

		如果第一个数是计入的,那么
		F[1][1][1]=a[1]。
Sumsets	求将 N 分成几个 2 的整数幂	F[i]表示 i 的分法总数。
	的和的总数。	F[i]=F[i-1] i 为奇数
		F[i]=F[i-1]+F[i/2] i 为偶数
Watchcow	一张无向图,每条边可以被	深搜一遍就可以了。
	走两次(正反各一次)。求一条欧拉	
	路。	
Moo Volume	数轴上有 N 个点,求任意两	将这 N 个点排序, 那么对于点 i,
	点的距离总和。	它与之前所有点的距离和就是
		(i-1)*d[i]-sigma(d[j])。最后将统计出来
		的距离和*2即可。

USACO 2005 March		
题目名称	题目描述	算法
Ombrophobic	有 F 个牛棚,每个牛棚里刚	首先二分答案,然后网络流。
Bovines	开始有 Ai 头牛, 但只能容纳 Bi	将点 i 拆成两个点,源点向点 i
	头牛, 所以有些牛要到别的牛棚	连一条容量为 Ai 的边,点 i'向汇点连
	里去。求牛要走的最大距离的最	一条容量为 Bi 的边,如果点 i 到点 j
	小值。	的最短路小于等于答案,那么点i到
		点 j'连一条容量为无穷大的边。
Space Elevator	你有 K 种砖块, 每种砖块高	按 Ai 排序后,Can[i][j]表示用前 i
	度为 Hi,有 Ci 个,且最大高度不	个砖块能否得到 j 的高度。然后枚举
	超过 Ai。求能达到的最大高度。	下一种砖块用几个进行转移。
Yogurt factory	有 N 天,每天制造牛奶的费	贪心。对于第 i 天, 在前 i 天中
	用是 Ci,需要的牛奶是 Yi。如果	找到某天的生产牛奶费用+保存费用
	这天制造的牛奶多下来了,就可	最少的,这天的牛奶都由那天生产。
	以存在仓库里,但每天每单位存	如果第 i 天是有第 j 天生产的, 那么
	牛奶的费用 S。求满足这 N 天需	第 i+1 天就是在第 j 天或第 i+1 天中
	要的牛奶的最小费用。	取个费用更少的。
Checking an Alibi	有 F 个牛棚, P 条边。有 C	以1为起点做一次最短路。然后
	头牛在不同的牛棚里。找出所有	进行判断。
	的能在时间 M 内到达牛棚 1 的牛。	
Out of hay	有 N 个节点, M 条边。你要	二分答案, 然后 BFS 判断一下图
	保留一些边,使得这个图连通且	是否连通。
	最大的边最小。	

USACO 2005 November		
题目名称	题目描述	算法
Securing the Barn	有 N 个字母,你要选出其中 M 个字母,将它们升序排列组成 一个字符串,且它们之中至少有 一个为元音字母。	暴力。
Hopscotch	一个 5*5 的矩阵,可以从任意	枚举从哪个格子出发,然后走一

	一个格子出发,每次能走到相邻	遍。用 Hash 记录一下。
	的格子,走5补,得到一个6位	
	数(格子可以重复走)。求不同的 6	
	位数有几个。	
Satellite	一张 N*M 的图,找一个'*'最	BFS 一遍。
Photographs	多的连通块。	
Asteroids	有一个 N*N 的网格,有些格	二分图最大匹配。
	子上有东东。每次能将某一行或	
	某一列上的所有东东都 A 掉。A	
	完所有东东最少需要几次。	
Grazing on the	数轴上有 N 个点, 出发点在	F[i][j][01]表示第 i 个点与第 j 个
Run	L,速度是1。设在时间 Ti 走到点	点之间的点已经走过了,且当前在点
	i。求 sigma(Ti)的最小值。	i或点j的最小值。
Walk the Talk	有一个 N*M 的字符矩阵,还	每个单词单独做。
	有一些单词表。可以从任意位置	F[][i][j]表示已经跳了 1 步了,现
	出发,每次只能往右上方跳。求	在在(i,j)这个格子中的总数。那么可以
	能得到多少个在单词表中出现过	转移到 F[l+1][x][y], (x,y)在(i,j)的右上
	的字符串。	方。
City Skyline	长为 W, 有 N 中不同的高度。	l[i]和 r[i]表示以 h[i]为最低的高度
	从 Wi 开始高度为 Hi。求有多少个	向左和向右能扩张到的最远的地方。
	不能再扩大了的矩阵。	最后将 lij和 r[i]排序,去掉重复的。
Cow Acrobats	有 N 头奶牛,每头奶牛都有	贪心。按 Wi+Si 排序,然后得到
	一个重量 Wi 和承受力 Si。一头奶	的就是最优的。
	牛站在一头奶牛上面,那么每头	
	奶牛就有一个风险值就是在它上	
	面的奶牛的总重量减去它的承受	
	力。求一种方案,使得最大的风	
	险值最小。	
Ant Counting	有 N 个数字, 数字都是 1T。	F[j[j]表示用了数字 1i,得到的
	求大小在A到B之间的集合有几	集合大小为 j 的方案总数。那么
	个。	F[i][j]=sigma(F[i-1][j-k]) k 小于等于数
		字i的个数。
<u> </u>		

USACO 2005 October		
题目名称	题目描述	算法
Bovine Birthday	已知 1990 年 1 月 1 日是星期	模拟。
	一,求这天是星期几。	
Max Factor	求含有最大质因数的那个	暴力分解质因数。
	数。	
Skiing	N*M 的网格,每个格子有个	因为从点(1,1)到达每个格子以后
	高度。你要从(1,1)走到(N,M),从	的速度是确定了的,所以用 SPFA 做
	一个格子走到另一个格子以后,	最短路就可以了。
	速度就会变成 v*2^(h1-h2)。求最	
	短时间。	

Flying Right	直线上有 N 个农场,有 K 群	从1到N和从N到1同样的做。
	奶牛要从某个农场去另一个农	按右端点排序, 然后贪心的取, 能取
	场。有一架飞机,只能容纳 C 头	则取。用线段树来模拟。
	牛。飞机从1飞到N,再从N飞	
	到 1。求最多能让多少奶牛去旅	
	游。	
Close Encounter	给一个分数,求与这个分数	枚举分母,然后算出最接近的两
	不同的最接近这个分数的最简分	个分子。
	数,分子分母<32768。	
Allowance	有 N 种面额的货币,每种面	贪心。从大到小用不超过 C 的最
	额是 Vi,有 Bi 张。将 Vi 排序后,	大的。最后的空位用超过 C 最小的去
	Vi+1是 Vi 的倍数。求最多能支付	补上。
	几次,每次支付的面额都>=C。	

USACO 2005 U S C		pen
题目名称	题目描述	算法
Lazy Cows	在 2*B 的矩形里,有 N 个格	状态压缩 DP。
	子里有 Cow,你要用 K 个矩形去覆	F[i][j][03]表示前 i 头牛,已经用
	盖它们。求最小的矩形面积和。	了 j 个矩形了的最小面积和。0 表示
		第一行,1 表示第二行,2 表示两行
		是一起的,3表示两行是分开的。
Expedition	直线上有 N 个加油站,每个	贪心。如果当前无法到达下一个
	加油站离城市 Di,有油 Ei。你现	加油站了,那么从之前的加油站中找
	在距离城市 L, 有油 P。求最少要	一个油最多的加了。
	在几个加油站加油才能到达城	
	市。	
Around the world	一个圆周上有 N 个点,有 M	F[][j]表示现在在点 i,已经顺时
	条边,如果两个点之间有边相连,	针绕了 j 圈了最少要经过几条边(j 为
	那么它们之间的边就是小于 180	负数表示逆时针绕的圈数)。BFS的时
	度的那段。求最少要经过几条边	候判断一个是否顺时针越过了点1或
	使得从点1开始一圈回到自己。	者逆时针越过点 1。
Landscaping	有一座山,你要砍掉最少的	贪心。每次砍掉需要砍掉石头最
	石头,使得这座山的山峰个数不	少的山峰。
	多于 K 个。	
Waves	在某些时刻在水的某些位置	模拟。
	中扔了石头, 求在 R 时刻水波的	
	样子。	
Navigating the	一张(2*N-1)*(2*M-1)的图,你	简单的 BFS。
City	要从 S 点走到 E 点。只能走到	
	'+'的地方,并且要有'-'或	
	者' '相连。输出最短的路径。	
Disease	有 D 种疾病, 你要选出尽量	枚举所带的疾病。
Management	多的牛, 使得这些牛所带的疾病	
	种类总数不超过 K 个。	

Muddy roads	有 N 个区间, 你要用长度为	将区间按左端点排序,然后贪心
	L的木条去将这些区间全部覆盖。	地放。
	求最少要几条木条。	

	USACO 2006 Decem	nber
题目名称	题目描述	算法
Parkside's	数字从 S 开始, 一列一列地	模拟。
Triangle	填。	
Wormholes	农场里有 N 个田地, 田地之	SPFA 或 BELLMAN。
	间有 M 条路径相连,这些路径是	
	正的。还有 W 条路径相连,这些	
	路径是负的。求是否存在负权环。	
The Fewest Coins	有N种钱,价值为Vi,有Ci	用 DP 求出付出 i 的最小张数和
	张。要买价值为 T 的东东, 付出	老板找回j的最小张数。最后枚举取
	的钱的张数+找回的钱的张数总	最小值。
	和最少是多少。	
Milk Patterns	一个长度为 N 的序列,求重	二分答案,然后 Hash 验证。
	复次数>=K的最长的子串。(重复	
	可以有重叠)	
Cow Picnic	有 N 个农场, M 条有向边。	从每头奶牛所在的点为起点作
	有 K 头奶牛在某些农场里。求有	一次广搜。
	多少个农场是这 K 头奶牛都能到	
	达的。	
Cow Roller	有 N 个区间[Xi,Xi+Wi), 代价	简单的 DP。G[i][i]表示区间[0,i)
Coaster	是 Ci, 可供娱乐程度为 Fi。现在	已经被覆盖,且使用的费用为j的最
	要用这些区间完全覆盖[0,L),区间	大可供娱乐程度。
	之间不能有重叠,并且区间代价	G[i][j]=max(G[X[k]][j-C[k]]+F[k])(
	和不超过 B。求最大的可供娱乐程	X[k]+W[k]==j)
	度。	
River Hopscotch	离出发点 L 的地方是目标位	二分答案。
	置,中间 N 个石头,这些石头都	
	是需要经过的,并且不能往回跳。	
	求拿掉 M 个石头后,路径中的最	
	短距离最大是多少。	

USACO 2006 February		
题目名称	题目描述	算法
The Moronic	将一个数字转化成(-2)进制	与转成2进制类似。
Cowmpouter	数。	如果当前的数字是奇数,那么这
		位上就是1。然后将数字除以(-2)。
DNA Assembly	有 N 个串, 你要找一个长度	枚举这些串接上去的顺序,最后
	最小的串,使得这 N 个串是这个	取个最小值。
	串的子串。	
Cow Phrasebook	有 M 个串, 求接下来的 N 个	先将前 M 个串构造一个字母树,

	串中有多少个串是前面 M 个串中	然后接下来 N 个串,每个串都在字母
	某个串的前缀。	树上从走一遍。
Cellphones	有 B 个按钮和 L 个字母(大写	搜索。搜每一个按钮上的字母是
	字母的前 L 个)。还有 D 个单词。	哪些。
	如果按钮上的字母确定了,那么	
	对于每个单词就有唯一的按钮顺	
	序。但是可能会有很多单词的按	
	钮顺序相同。求一种方案,使得	
	单词按钮顺序相同的最多。	
Steady Cow	有 N 头牛和 B 个牛棚,每个	枚举排名的上下界,每次作一次
Assignment	牛棚都有一个容量。每头牛对这	二分匹配。
	些牛棚都有一些排名。现在要将	
	这些牛都安排到某个牛棚里,求	
	最小的排名差。	
Treats for the	是给定一个数字序列,每个	DP。F[i][j]表示左边已经取了 i
Cows	数字有个权值。每次只能从序列	个,右边已经取了j个数了的最大权
	的头或尾取出一个数。总权值就	值。
	是第 i 个取的数的权值乘以 i。求	
	最大的总权值。	
Backward Digit	求一个 1N 的排列,使得最	搜索。
Sums	后的和为S。输出字典序最小的。	
Stall Reservations	有N条线段,求最少要将这	按左端点排序, 然后每次挑之前
	些线段分成几组,使得每组中的	分的组中右端点最左的那组,如果有
	线段都没有重叠。	重叠,就新开一组。

	USACO 2006 January		
题目名称	题目描述	算法	
Stump Removal	有 N 个树桩, 高为 Hi。FJ 要	从左往右扫,如果当前位置右边	
	用炸药去炸掉这些树桩。如果某	的比它低了或相等,那么就把这个位	
	个树桩被炸了,那么两边高度比	置引炸,然后把能炸都炸掉。	
	它矮的也会被炸。求最少要引炸		
	几个树桩,输出这些树桩的编号。		
Finicky Grazers	有N头奶牛,分布在线段[0,L]	可以求出 D=N/(L-1)。O(n*L)的	
	上。现在 FJ 要移动这些奶牛,使	DP 是很简单的。注意第 i+1 头奶牛	
	得相邻两头奶牛的距离为 D 或者	的位置就只能在 i*D 与 i*(D+1)之间	
	D+1。求最少的移动总距离。	了,所以只需要这 n^2 个状态了。	
The Water Bowls	有二十个碗,0表示朝上,1	BFS。每个状态用一个二进制串	
	表示朝下。每次操作能将相邻三	表示。	
	个碗改变状态。求最少要几次操		
	作能变成全0。		
Redundant Paths	求至少要增加多少条边, 使	先将没有割边的子图缩成一个	
	得任意两点都存在两条不同的路	块, 然后就是一棵树了。答案就是(叶	
	径。	子节点个数+1)/2。	
Roping the Field	平面上有N个点和G个半径	F[j[j]表示从第 i 个点到第 j 个点	

	T	
	为 R 的圆, 且这 N 个点构成一个	之间最多能取多少条线段。
	凸多边形。求最多能取多少条线	F[i][j]=max(F[i][k]+F[k][j])(i< k< j)+
	段,使得这些线段与这 G 个圆都	V[i][j]。
	相离且与线段之间也不相交。(线	如果点i与点j的线段是可行的
	段的端点是这 N 个点里选两个且	那么 V[j[j]=1,否则 V[j[j]=0。
	这两个点不能是相邻的)	
Corral the Cows	平面上有 N 个点,求最小的	最优情况下肯定有两个点在两
	正方形,这个正方形内包含至少 C	边上。枚举两个点,以这两个点所在
	个点。	的直线为正方形的边,求包含至少 C
		个点的最小边长。
The Cow Prom	略。	强连通缩点。缩完后统计点数大
		于1的强连通子图个数。
Dollar Dayz	将N写成不超过K的正整数	简单的递推。
	的和,求有几种不同的方案。	F[i][j]=F[i][j-1]+F[i-j][j]
The Grove	从'*'出发,绕一圈后回到	以最上,最左的'X'为终点,
	'*' 且将'X'都包住。求最少	第一次只能从起点往右边走到终点,
	的步数。	第二次只能从终点往左边走到起点。

USACO 2006 Novem		nber
题目名称	题目描述	算法
Fence Repair	有 N 条木棍,长度为 Li,你	反过来做,就是每次合并两根木
	要用长度为 sigma(Li)的木条截出	棍,代价为两根木棍的长度和。
	这些木棍,每次截的代价就是你	然后贪心。每次取长度最小的两
	截的木棍的长度。求最小代价和。	根木棍合并。
Corn Fields	一个 N*M 的田地, 1 表示可	状态压缩 DP。F[[[[]表示到了第
	以选择种植。选择种植了的田地	i 行,第 i 行的状态为 j 的方案总数。
	不能有相邻的。求有几种选择方	
	式。	
Roadblocks	求1到N的次短路。	先求出最短路, 然后枚举去掉最
		短路上的某条边,再做一次最短路。
		然后取个最优值。
Bad Hair Day	有 N 头奶牛, 奶牛 i 高为 Hi,	相当于求每头奶牛右边第一个
	它们站成一排。如果 i <j hi="" 且="">Hj</j>	比它高的奶牛在哪,用线段树就可以
	且不存在 Hk(i <k<j),那么奶牛 i="" td="" 就<=""><td>了。</td></k<j),那么奶牛>	了。
	能看到奶j,设Ci为奶牛i能看到	
	的奶牛总数。求 sigma(Ci)。	
Big Square	一个 N*N 的田地,有些位置	枚举正方形某条对角线的两个
	上有'J',有些位置上有'B'。	定点,然后判断是否可行。
	现在能再放上去一个'J'。求最	
	大的正方形,正方形的四个定点	
	都是'J'。正方形的边不一定要	
	与X轴或Y轴平行。	
Round Numbers	求 A 到 B 之间 Round	相当于 1B 中 Round Number 的
	Numbers 有几个。Round Numbers	数量减去 1A-1 中 Round Number 的

就是写成二进制后 0 的个数不少 于 1 的个数。

数量。求 1..N 中 Round Number 的数量用一个简单的 DP 就可以了。

	USACO 2007 Decem	nber
题目名称	题目描述	算法
Bookshelf	有 N 头奶牛,奶牛高 Hi。求	贪心。按高度排序, 然后从高往
	最少要几头奶牛,它们的高度和	低取。
	不小于 B。	
Bookshelf2	有 N 头奶牛,奶牛高 Hi。求	搜索。
	高度和超过 B 的最小高度。	
Card Stacking	有N头牛和K张卡片。其中	模拟。
	有 M=K/N 张卡片是好的, K-M	
	张是坏的。这 N 头牛围成一个环。	
	求要将这些好牌放在哪些位置,	
	使得这些好牌都发给了发牌人。	
Sightseeing Cows	有 L 个点和 P 条有向边,每	二分这个最大值, 然后每条边的
	个点有权值 Fi, 每条边代价为 Ti。	边权都设为 Ti*这个值-Fi, 判断是否
	求从任意点出发回到这个点的最	存在负权环。
	大的 sigma(Fi)/sigma(Ti)值。	
Gourmet Grazers	有 N 头奶牛,第 i 头奶牛要	贪心。将食物按 Ci 排序从小到大
	求食物的价钱不低于 Ai, 鲜嫩程	排序,然后将这份食物给能满足的鲜
	度不低于 Bi。有 M 份食物,第 i	嫩程度最大的奶牛。
	份食物价钱为 Ci,鲜嫩程度为 Di。	
	求满足所有奶牛最少的需要多少	
	钱。	
Best Cow	一个长度为 N 的字符串,每	贪心,如果头和尾不一样,那么
Line,Gold	次只能从这个串的头或尾去掉一	哪个小取哪个,否则就各自往中间再
	个字符。求字典序最小的删除字	进行比较。要用后缀数组预处理出这
	符串的方案。	些字符串的大小。
Charm Bracelet	有 N 块宝石,每块宝石重	背包。
	Wi,能增加魅力值 Di。求重量和	
	<=M 时的最大魅力值。	
Building Roads	有 N 个农场, 其中有 M 对已	已经有边的边权设为 0。然后做
	经有边相连。求最少还要连边的	一次最小生成树。
	总长度, 使得任意两个农场之间	
	都能到达。	
Mud Puddles	要从(0,0)走到'B'所在位	BFS.
	置,其中有 N 个格子是不能走的。	

USACO 2007 February		
题目名称	题目描述	算法
Building A New	有 N 个牛棚,现在要多增加	牛棚的位置就是X的中位数和Y
Barn	一个牛棚,使得这个牛棚和其他	的中位数。如果 N 是偶数, 那么就是
	所有牛棚的 manhattan 距离和最	一个矩形区域。

	小,且这个牛棚不能和其他牛棚	
	重叠。输出这个最小值和方案数。	
Cow Sorting	有一个序列,要将其变成一	每次找个环,将这个环交换成升
	个升序序列。每次可以交换任意	序序列的代价有两种,一种是这个环
	两个数字,代价为这两个数字的	中的最小值与这些数字进行操作,另
	和。求最小的总代价。	一种是引入整个序列中的最小值,然
		后用这个最小值去进行操作。
Lilypad Pond	M*N 的池塘,1是石头,2是	将3和4都看成0,然后如果从
	荷叶,3是起点,4是终点。只能	某个0出发经过一些1然后能跳到别
	跳马步的,并且只能跳到有荷叶	的 0, 那么这两个之间连边。然后就
	第地方。求最少要加几个荷叶,	直接做一次最短路,统计路径个数就
	才能从终点跳到起点,并输出方	可以了。
	案总数。	
The Cow Lexicon	有一个长度为 L 的字符串和	F[i]表示到第i个字符为止最少要
	N 个单词。求最少要去掉几个字	去掉几个字符才能使字符串前 i 位能
	符,才能使这个字符串分解成单	分解成单词。
	词。	G[i][j]表示字符串的第 i 个到第 j
		个最少要去掉几个字符才能是某个
		单词。
		F[i]=min(F[j],G[j+1][i]).
Silver Cow Party	有 N 个农场,每个农场里都	从点 P 出发做两次 Dijkstra。一
	有一头奶牛,有 M 条有向边。每	次是原图,另一次将所有边反向。
	个奶牛都要从自己的农场出发,	
	到达农场 P, 然后回到自己的农	
	场。求用时最多的奶牛至少要用	
	时多少。	

	USACO 2007 January		
题目名称	题目描述	算法	
Problem Solving	有 P 个问题要解决,解决某	F[i][j]表示前 i 个问题已解决,下	
	个问题需要预先支付 Ai, 解决以	个月还要支付 j 的最少月数。	
	后需要再支付 Bi。每个月会有 M		
	元,这些问题需要按顺序被解决。		
	求最少需要几个月。		
Cow School	有 N 场考试, 第 i 场考试总		
	分为 Pi,得分为 Ti。对于一个 D,		
	去掉 Ti/Pi 最小的 D 个,然后求		
	sigma(Ti)/sigma(Pi)。 对于每个		
	0<=D<=N, 求是否存在另一种方		
	案比这个更优,输出所有的 D。		
Protecting the	有 N 头牛,将第 i 头牛每单	贪心。按 Ti/Di 排序。	
Flowers	位时间的破坏力是 Di, 送回牛棚		
	需要 Ti 的时间, 然后再用 Ti 的时		
	间返回。求最少的破坏总和。		

Tallest Cow	有 N 头牛, 最高的是第 I 头,	初始时 S[i]=0,最后第 i 头牛的高
	高度为 H。有 R 条信息,第 A 头	度就是S的前缀和加上H。对于一条
	牛能看到第 B 头牛,也就是 A 与	信息,那么 S[A+1]减去 1, S[B]加上 1。
	B 之间的牛都比第 A 头牛矮,且	S[A+1]表示 A 以后的牛都至少比 A
	第B头牛的高度不小于第A头牛。	矮 1, S[B]++表示 B 以后的牛可以无
	求每头牛的最大可能高度。	视这条信息了。
Balanced Lineup	有 N 头牛, 第 i 头牛高度为	RMQ_{\circ}
	Hi。有Q个询问,第A头牛到第	
	B 头牛之间最大高度与最小高度	
	的差。	

	USACO 2007 Marc	ch
题目名称	题目描述	算法
Gold Balanced	有 N 个奶牛, K 种特征, 每	S[i][i]表示前 i 头奶牛中,拥有第
Lineup	个奶牛用一个数字来表示它所拥	j 种特征的个数, 那么判断一个子串
	有的特征。如果一个子串是平衡	AB 是否是平衡的就只要判断对于每
	的,那么这段奶牛中每个特征出	个 j,S[B][j]-S[A-1][j]是否都相同。
	现的次数都是相同的。求最长的	判断 S[B][j]-S[A-1][j]是否都相同
	平衡子串。	可 以 判 断 S[B][j+1]-S[B][j] 与
		S[A-1][j+1]-S[A-1][j]是否都相同,设
		T[i][j]=S[i][j+1]-S[i][j], 也就相当与判断
		T[A-1]与 T[B]是否相同。对于一个 B,
		只要找到出现最早的一个 A-1 即可。
		可以先将 T 排序, 然后相同的只保留
		一个最前面的。
Ranking the Cows	有 N 个数字,已经知道了 M	用 BFS 求出任意两对之间的关
	对大小关系,问至少还要再比较	系。如果没有任何关系,就 Ans++。
	多少对数才能把 N 个数字有序排	
	列起来。	
Face The Right	有 N 头奶牛,初始状态为 F	枚举 K,然后作一次操作。
Way	或 B。每次能改变连续 K 个奶牛	因为奶牛1只能靠操作1K来完
	的状态。求用最少的操作次数,	成,所以1K是否操作就确定了。奶
	使得所有的奶牛都为 F,并确定最	牛2能靠操作1K或2(K+1)来完成,
	小的 K。	而1K是否操作已确定,所以2(K+1)
		也确定了因此操作几次也是确
		定了的。
Cow Traffic	有 N 个点和 M 条有向边,边	F[[表示从任意一个起点到达点 i
	都是从 i->j(i <j)的。可以从任意一< th=""><th>的方案总数,G[[表示从点i出发到达</th></j)的。可以从任意一<>	的方案总数,G[[表示从点i出发到达
	个无入度的点出发,到达 N。求	终点的方案总数。那么对于边 i->j,
	经过次数最多的边。	经过的次数就是 F[i]*G[j]。
Monthly Expense	有 N 个数字,要将它们分成	二分最大的和。如果能分在前一
	M 组,每组都是连续的几个数字。	组中就分进去,否则就另开一组。如
	要使数字和最大的组最小。	果组数<=M,那么就是可行的。

USACO 2007 November		
题目名称	题目描述	算法
Exploration	有 N 个位置,有 T 分钟的时间。从 0 位置开始,每次走到与 0 位置最进的没有被走到过的地方。求能走过多少个地方。	按位置的绝对值排序,然后一个一个地走。
Speed Reading	书有 N 页,奶牛有 K 头。每 头奶牛的读书速度是 Si 页/分,一 次能连续读 Ti 分钟,之后需要休 息 Ri 分钟。求每头牛读完这本书 的时间。	模拟。
Avoid The Lakes	N*M 的矩形中,有 K 个格子 里有水。求最大的由水组成的连 通块的大小。	BFS 或 DFS 都可以
Telephone Wire	有 N 个数字,总代价为所有两个数字差的绝对值*C。可以增大某些数字,如果这个数字被增大了 X,那么代价就是 X^2。求最小的代价和。	DP。F[][]表示第 i 个数字为 j 时的最小代价总和。分成 j>=h[]和 j <h[]两种情况进行讨论,可以优化到o(n*h)。< td=""></h[]两种情况进行讨论,可以优化到o(n*h)。<>
Cow Relays	有 T 条边的无向图, 求经过 N 条边的从 S 到 E 的最短路。	F[len][v]经过了 len 条边到达点 v 的最短路。接下来用矩阵优化。
Sunscreen	有 C 头奶牛,第 i 头奶牛适合的范围在 minSPFi 与 maxSPFi 之间。有 L 瓶防晒霜,值为 SPFi,能供 coveri 头奶牛使用。求最多能满足的奶牛数量。	贪心。将防晒霜按 SPF 值从小到 大排序,对于每瓶防晒霜,给能够用 它的 maxSPFi 最小的那些奶牛。
Cow Hurdles	有 N 个点, M 条有向边, 有 T 个询问, 询问从 Ai 到 Bi 的路径上边权最大的最小值。	类似 Floyd 求出任意两点间路径 最大的最小值。 F[i][j]=min(F[i][j],max(F[i][k],F[k][j]))
Milking Time	有 N 个小时,有 M 个挤奶时间段,从 Ai 开始到 Bi 结束,能得到 Ci 的奶。每次挤奶后要休息 R 小时。求最多可以挤多少奶。	将挤奶时间按照 Ai 排序。 F[i]表示到第 i 个时间段为止最多的挤奶量。 F[i]=max(F[j])+c[i] (b[j]+r<=a[i])
Best Cow Line	一个长度为 N 的字符串,每次只能从这个串的头或尾去掉一个字符。求字典序最小的删除字符串的方案。	贪心,如果头和尾不一样,那么哪个小取哪个,否则就各自往中间再进行比较。

USACO 2007 Open		
题目名称	题目描述	算法
Cheapest	通过插入或删除字母将一个	首先插入或删除同一个字母的
Palindrome	串变成回文串的最小代价。	效果是一样的。设 w[c]为插入或删除
		c 的最小代价。F[][]表示将第 i 个字
		母到第 j 个字母的这个字串变成回文
		串的最小代价。那么
		F[i][j]=min(F[i+1][j]+w[s[i]],F[i][j-1]+w[
		s[j]],F[i+1][j-1](s[i]==s[j]))
Dining	有 N 头奶牛, F 种食品和 D	增加一个源和汇,源向食品连
	种饮料。每头奶牛都有自己喜爱	边,饮料向汇连边。将每头奶牛 v 拆
	的食品和饮料。要满足一头奶牛	成 v1 和 v2, v1 向 v2 连边。如果奶牛
	需要给这头奶牛它喜爱的食品和	v 喜欢食品 u, 那么 u 向 v1 连边。如
	饮料各一种。而且每种食品和饮	果奶牛 v 喜欢饮料 w, 那么 v2 向 w
	料都只能给一头奶牛。问最多可	连边。(边的流量均为 1)
	以满足多少头奶牛。	
City Horizon	在 x 轴上有一些矩形,底边	将高度从高到低排序, 然后用并
	是从 A[i]到 B[i],高度为 H[i]。求	查集。
	这些矩形的面积并。	
Catch That Cow	对于数字 X, 你有三种操作	广搜。如果数字小于0或者数字
	方法。X-1, X+1和2*X。问最少	超过 2*K 就不要了。
	要操作几次能将N变成K。	
Fliptile	有一个 N*M 的 01 矩阵, 你	枚举第一行的格子是否操作,那
	要将它变成全 0 矩阵。如果对某	么下面几行是否操作也就确定了。最
	个格子操作,那么这个格子及它	后只要判断最后一行是否都为 0 即
	四周的四个格子都要改变。问最	可。
	少要操作几次,输出字典序最小	
	的。	

USACO 2008 February		
题目名称	题目描述	算法
Dining Cows	同 Eating Together, 数值只会	非常简单的 DP。
	是1或2,并且要使这个序列是非	
	降序列。	
Long Distance	每一段路都是上坡, 平地或	能跑则跑
Racing	下坡中的一种。上坡时间需要 U,	
	平地时间需要 F, 下坡时间需要	
	D。求在规定时间内最多能跑到多	
	远然后回到出发点。	
Cow	定义一个符号'*', A*B	没什么好说的了
Multiplication	等于一个取自 A、一个取自 B 的	
	所有数字对的乘积的和。计算	
	A*B°	
Making the Grade	一个数列 A1,A2AN。你需要	肯定存在一种最优解, B 序列中

	求一个数列 B, B 序列是个不上升	的元素都是 A 序列的元素。
	或不下降序列。求最小的	
	sigma Ai-Bi 。	
Hotel	你需要支持下列两种操作:	线段树模拟。
	询问第一次出现长度为 D 的	
	连续空房间的位置,并将这些房	
	间填满。	
	将从X开始的连续D个房间	
	清空。	
Game of Lines	平面上有 N 个点,连接任意	将斜率排序, 然后去重。
	两个点都可以得到一条直线。求	
	这些直线中不平行的有多少条。	
Meteor Shower	有 M 颗流星要落到农场上,	广搜。
	第 i 颗流星会在时刻 Ti 落在坐标	
	为(Xi,Yi)的格子里,从 Ti 时刻起,	
	这个格子以及相邻的四个格子都	
	无法行走了。求从点(0,0)出发至少	
	要经过多少时间才能到达一个安	
	全的格子。	
Eating Together	有 N 个数字,数值为 1 或 2	简单的 DP。
	或 3。求至少要改变多少个数字才	
	能使得这个序列变成非降或非升	
	序列。	

USACO 2008 January		
题目名称	题目描述	算法
Costume Party	有 N 头奶牛,每头奶牛长为	贪心。按 Li 值从小到大排序。每
	Li。如果两头奶牛的长度和不超过	次取一个最大的,如果跟最小的加起
	S, 那么她们就能穿下一套服装。	来不超过 S, 那么她们就合起来穿一
	求最少要几套服装。	套,否则这个最大的单独穿一套。
Election Time	有 N 头奶牛候选,她们在第	模拟。
	一轮中的期望得票数为 Ai, 在第	
	二轮中的期望得票数为 Bi。第一	
	轮的前 K 名进入第二轮, 在第二	
	轮中得票最多的奶牛获得最终胜	
	利。求那头胜利的奶牛的编号。	
iCow	有 N 首歌曲,每首歌曲有一	模拟。
	个 Ri 值。每一轮先选出 Ri 值最大	
	的那首(如果有相同,选编号小	
	的),然后将这个值平均分给其他	
	N-1 首歌曲, 它本身清零。如果无	
	法被平分,那么就给编号前面。	
Artificial Lake	有 N 个平台,每个平台有一	模拟。
	个高度和宽度。先选出一个高度	

	最低的,然后从这里开始滴水。	
	求出每个平台被淹没了 1m 的时	
	水山母 十口被绳衩	
II. 1.1.0	, ,	
Haybale Guessing	有N堆草,任意两堆草的数	二分答案,然后假设在这个答案
	量都不相同。现在有 M 个回答,	之前的所有回答都是正确的, 然后进
	每次回答[Ql,Qh]之间的最小值为	行验证。
	A。求这些回答是否自相矛盾。	
Cell Phone	要在一棵树中装尽量少的无	树形 DP。F[i][0]表示被儿子控制,
Network	线电通讯塔,使得任意一点离装	F[][1]表示被自己控制,F[][2]表示被
	通讯塔的最短距离不超过1。	父亲控制。
Cow Contest	有 N 头奶牛参加某个比赛,	Floyd 求出任意两个奶牛之间的
	它们的水平有明确的排名。现在	关系,然后统计一下。
	有 M 场比赛,表示 A 奶牛的水平	
	比B奶牛高。问可以确定多少奶	
	牛的排名。	
Running	要跑 N 分钟,每分钟能 Di	DP。F[j[j]表示第 i 分钟, 疲劳度
	的距离。每跑一分钟,疲劳度就	为j时最多能跑的距离。转移就是跑
	增加1。如果休息,就必须休息到	或者休息。
	疲劳度为 0 为止。在任意时刻疲	
	劳度都不能超过 M。在 N 分钟结	
	束时,疲劳度必须恢复到0。求最	
	多能跑多少米。	
Telephone Lines	有N个点和M条边。你可以	二分这个最大值,然后求出1到
2 diepitotte 12ites	将其中 K 条边的权值变成 0。你	N至少要经过几条大于这个值的边。
	要找一条 1 到 N 的路径,要使得	如果边数<=K,那么就是可行的。
		州木起致 >- 下,那么就走出打削。
	路径上的最大值最小。	