Министерство науки и высшего образования российской федерации

Федеральное государственное автономное образовательное учреждение высшего образования

«НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Инженерная школа природных ресурсов 18.03.01 «Химическая технология» Отделение химической инженерии (ОХИ)

770			
ROII	СНИТЕЛЬНАЯ		
	к курсовому пр	роекту	
по дисциплине			
«Системный ана	ализ процессов х	имической техн	нологии»
Тема:			
Расчет календарного	планирования ві	ыпуска бензинс	в различных марок
<u> </u>	2Д8Б Номер группы)	(Подпись)	Лукьянов Д.М. (ФИО)
		Дата сдачи	13.04.2022
Руководитель: до	оцент ОХИ ИШГ	IP	
	степень, учебное звание, д	олжность)	
		Чузлов І	B.A.
(Подпі	ись)	(ФИО)	<u> </u>
		13 апрел	ия 2022 г.
		(Дата проверн	ки)
Курсовой проект студент	Лукьянов Д.М	<u>1.</u> выполни	ил и защитил с

	(ФИО)
оценкой	
ии:	

Члены комиссии:

Министерство науки и высшего образования российской федерации Федеральное государственное автономное образовательное учреждение

высшего образования

«НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

	Отделение химической инженерии ИШПР
	УТВЕРЖДАЮ
	Руководитель ООПО.Е. Мойзес «»2022г.
ЗАДАНИЕ	
на курсовое проектирование по дисциплине студенту группы 2Д8Б <u>Лукьянову Даниилу Максим</u>	_
1. Тема проекта. Расчет календарного планиро различных марок.	вания выпуска бензинов
2. Исходные данные к проекту	
3. Состав сырья, качественные характеристики сыр	рья и продуктов
4. Срок сдачи проекта 15.04.2022 г.	v
5. Содержание пояснительной записки: Задани Введение. Актуальность процесса. Теоретич Технология процесса. Расчет оптимальных направляемых на смешение товарных бензинов календарного планирования производства тов экономической эффективности внедрения бензи	пеские основы процесса соотношений потоков различных марок. Расчет варных бензинов. Оценка
Руководитель,	
к.т.н., доц. ОХИ ИШПР	В.А. Чузлов
Задание принял к исполнению	Д.М. Лукьянов

«10» марта 2022 г.

ИСХОДНЫЕ ДАННЫЕ

- 1. Углеводородные составы потоков, направляемых на смешение.
- 2. Суточная выработка компонентов (в тоннах), направляемых на смешение:

Поток	Выработка, т/сут
Риформат Л-35-11/600	1066
Риформат Л-35-11/1000	2453
Алкилбензин	1130
Изомеризат Изомалк-2	1980
Изопентан	1320
ГО БКК	4150
Крекинг КТ-1	2237
n-butane	220
Толуол концентрат	231
МТБЭ	165
АВТ-10 фр. Нк-62	122

3. План производства товарных бензинов на 4 дня (в тоннах):

Марка	План производства, т
АИ-92-К5	26670
АИ-95-К5	5000
АИ-98-К5	660

СОДЕРЖАНИЕ

ВВЕДЕНИЕ5
1 АКТУАЛЬНОСТЬ ПРОЦЕССА РИФОРМИНГА
2 ТЕОРЕТИЧЕСКИЕ ОСНОВЫ ПРОЦЕССА РИФОРМИНГА 8
3 ТЕХНОЛОГИЯ ПРОЦЕССА РИФОРМИНГА11
4 РАСЧЕТНАЯ ЧАСТЬ
4.1 Свойства индивидуальных потоков и их анализ
4.2 Расчет оптимальных соотношений потоков, направляемых на
смешение товарных бензинов различных марок
4.3 Расчет календарного планирования производства товарных бензинов
4.4 Оценка экономической эффективности внедрения бензина марки
АИ-100-К-5
ЗАКЛЮЧЕНИЕ
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ 33

ВВЕДЕНИЕ

Риформинг – способ переработки нефтепродуктов, основном лигроиновых прямогонных бензиновых И фракций нефти, который используется для получения высокооктанового автомобильного бензина, В ароматических углеводородов, технического углерода. процессе каталитического риформинга происходит повышение содержания аренов в результате дегидрирования углеводородов (преимущественно нафтенов) [1].

Бензиновые фракции большинства нефтей содержат 60-70 % 10 % ароматических и 20-30 % пятипарафиновых, шестичленных нафтеновых углеводородов [2]. Среди парафиновых преобладают углеводороды нормального строения и монометилзамещенные их изомеры. Нафтены представлены преимущественно алкилгомологами циклогексана и a ароматические – алкилбензолами. Такой циклопентана, состав обуславливает низкое октановое число прямогонного бензина, обычно не превышающего 50 пунктов (по ММ). Помимо прямогонных бензинов, как каталитического риформинга используют бензины сырье вторичных процессов – коксования и термического крекинга после их глубокого гидрооблагораживания, а также гидрокрекинга.

Основными целями каталитического риформинга являются [3]:

- 1. повышение октанового числа бензинов с целью получения неэтилированного высокооктанового бензина;
- 2. получение ароматических углеводородов (аренов);
- 3. получение водородсодержащего газа для гидрогенизационных процессов.

Значение процессов каталитического риформинга в нефтепереработке существенно возросло в 90-е гг. в связи с необходимостью производства неэтилированного высокооктанового автобензина. В настоящее время рост мощностей установок каталитического риформинга ограничивается экологическими требованиями. [4]

1 АКТУАЛЬНОСТЬ ПРОЦЕССА РИФОРМИНГА

Каталитический риформинг занимает ведущую роль в производстве высокооктановых бензиновых, в особенности, в Российской Федерации, где доля риформата – продукта процесса риформинга составляет около 44 % от общего количества бензиновых компонентов, используемых в процессе компаундирования.

Помимо производства больших количеств высокооктановых компонентов бензина, каталитический риформинг более чем на половину удовлетворяет потребность нефтепереработки в водороде для гидрогенизационных процессов [5]. Получаемый в процессе риформинга водородсодержащий газ (ВСГ) используется на НПЗ в таких процессах как гидроочистка и гидрокрекинг.

Кроме топливного варианта процесс каталитического риформинга имеет нефтехимическую конфигурацию, продуктом которой является высокоароматизированная фракция, из которой выделяют индивидуальные ароматические углеводороды (бензол, толуол, ксилолы) [6].

В настоящее время достаточно остро стоит задача получения максимальной прибыли от реализации качественного высокооктанового компонента бензинов отечественно производителя, в соответствии с технологическим регламентом и требованиями экологической безопасности. Таким образом, анализ существующей технологии каталитического риформинга и поиск новых путей оптимизации, весьма актуальны.

Необходимо искать пути повышения эффективности работы установок каталитического риформинга, предполагающие снижение себестоимости получаемой продукции, увеличение целевой продукции, сокращение энергозатрат на производство и простоев установки, повышения производительности.

Достижение данных целей возможно благодаря применению более эффективных катализаторов, снижению давления процесса до минимально

возможного, использованию технологии риформинга с непрерывной регенерацией катализатора за счет замены или реконструкции имеющихся установок с неподвижным слоем катализатора.

Энергозатраты можно уменьшить, сокращая расход топлива, а именно, коэффициент действия печей повышая полезного на установке эффективность работы теплообменников. Для повышения эффективности теплообменников И расхода топлива, применять пластинчатые теплообменники.

Повышение стабильности и продолжительности работы катализаторов позволит сократить простои оборудования.

Не менее важным является экологический аспект. На всех этапах переработки нефти происходит загрязнение атмосферного воздуха углеводородами, оксидами серы, азота, углерода и 3,4-бенз(а)пиреном.

В современной нефтеперерабатывающей отрасли существует несколько стратегий увеличения мощностей установки каталитического риформинга. Во-первых, это разработка совершенно новых катализаторов, которые оказывают существенное влияние на ход реакции на качество выпускаемой продукции. Во-вторых, это модернизация традиционных установок с применением системы реактор-регенератор после действующей полурегенеративной секции. В-третьих, полная замена реакционной секции с применением технологии непрерывной регенерации катализатора на всём участке цикла риформинга [7].

2 ТЕОРЕТИЧЕСКИЕ ОСНОВЫ ПРОЦЕССА РИФОРМИНГА

Сырьем процесса каталитического риформинга является прямогонная нафта (фракция с температурой кипения 80-180 °C, а также дистилляты вторичного происхождения (бензины термического крекинга, коксования и гидрокрекинга). Фракционный состав сырья выбирается в зависимости от целевого назначения процесса (Таблица 1).

Таблица 1 — Назначение различных прямогонных фракций как сырья процесса риформинг [8]

Назначение	Температура кипения сырья, °С	Углеводороды, преобладающие в сырье
Получение бензола	62-85	C_6
Получение толуола	85-105	C_7
Получение ксилолов	105-140	C_8
Получение		
высокооктанового	85-180	C_{7} - C_{10}
бензина		

Химические превращения углеводородов в ходе каталитического риформинга включают следующие реакции [9]:

1. Дегидрирование шестичленных нафтенов (Рисунок 1);

Рисунок 1 – Примеры реакций дегидрирования шестичленных нафтенов

2. Дегидроциклизация парафиновых углеводородов (Рисунок 2);

Рисунок 2 – Пример реакций дегидроциклизации парафиновых углеводородов

3. Изомеризация нафтенов (Рисунок 3);

Рисунок 3 – Примеры реакций изомеризации нафтенов

4. Изомеризация н-алканов в изоалканы (Рисунок 4);

Рисунок 4 – Реакция изомеризации н-пентана в и-пентан

5. Реакции гидрокрекинга алканов (Рисунок 5);

Рисунок 5 – Реакция гидрокрекинга нонана

Кроме представленных видов реакций в процессе риформинга протекают также побочные реакции, приводящие к отложению кокса – высокомолекулярных полициклических ароматический соединений.

Реакции дегидрирования, преобладающие в процессе риформинга являются эндотермическими, соответственно, повышение температуры увеличивает как скорости химических реакций, так и глубину протекающих реакций. Выбор рабочей температуры процесса ограничен реакциями коксообразования, так как их скорости также возрастают при увеличении температуры.

В процессе риформинга происходит увеличение объема реакционной смеси, соответственно, понижение давления способствует увеличению термодинамической глубины ароматизации сырья. Понижение давления также увеличивает селективность реакций деароматизации и тормозит реакции гидрокрекинга [11].

На протяжении процесса риформинга водород, образовавшийся в реакциях дегидрирования контактирует с углеводородным сырьем. Его концентрация также влияет на протекающие реакции и их скорости. Мольное отношение H₂/сырье в процессе риформинга поддерживают равным (5-9)/1, что обеспечивается кратностью его рециркуляции. Повышение данного мольного отношения снижает скорость реакций образования кокса, реакций ароматизации и повышает скорость реакций гидрокрекинга и эксплуатационные затраты на работу насосно-компрессорного оборудования.

3 ТЕХНОЛОГИЯ ПРОЦЕССА РИФОРМИНГА

Технология процесса риформинга классифицируется по способу организации процесса на:

- 1. Установки со стационарным слоем катализатора;
 - 1.1. С периодической регенерацией, которая осуществляется в реакторах в периоды остановки процесса;
 - 1.2. С коротким межрегенерационным циклом, который осуществляется в одном из реакторов, взамен которого подключается дополнительный реактор;
- 2. С непрерывной регенерацией катализатора.

В России бо́льшая часть установок риформинга эксплуатируется по технологии с неподвижным слоем катализатора, часть установок имеют подвижный слой катализатора. Рассмотрим схему установки с неподвижным слоем катализатора (Рисунок 1).

Рисунок 6 – Технологическая схема каталитического риформинга с неподвижным слоем катализатора

 Π_{1-2} – печь; P_{1-3} – реакторы риформинга; P_4 – адсорбер; C_1 – сепаратор высокого давления; C_2 – сепаратор низкого давления; K_1 – фракционирующий абсорбер; K_2 – колонна стабилизации; C_3 – приемник.

I – гидроочищенное сырье; II – $BC\Gamma$; III – стабильный катализат; IV – сухой газ; V – головная фракция.

Гидроочищенное и осушенное сырье I смешивается с циркулирующим ВСГ, подогревается в теплообменнике и в первой секции трубчатой печи до 470-490 °С и направляется в первый реактор Р-1. Реакционная смесь последовательно проходит второй и третий реактор. Между реакторами смесь догревается в трубчатой печи для компенсации эндотермического эффекта. Объемы реакторов увеличиваются от первого до последнего с целью обеспечения постоянства давления (2-4 МПа) в условиях увеличения объема реакционной смеси.

На выходе из последнего реактора смесь охлаждается в теплообменнике, затем в холодильнике до 20-30 °С и направляется в сепаратор высокого давления, где отделяется ВСГ. Удаленный ВСГ очищается и частично направляется на смешение с сырьем, частично отводится для использования в гидрогенизационных процессах на НПЗ.

Нестабильный продукт (жидкая фаза от С-1) направляется в сепаратор низкого давления для отделения УВ-газов от жидких продуктов. Жидкая фаза от сепаратора подается в верхнюю часть фракционирующего абсорбера (колонна с ребойлером), УВ-газы подаются в среднюю часть абсорбера. Абсорбентом в колонне служит стабильный бензин, который подается выше жидкой фазы от С-2. Выходными потоками из фракционирующего абсорбера отводят сухой газ и насыщенную жирными газами бензиновую фракцию, которую подают в колонну стабилизации К-2. Головная фракция колонны стабилизации после охлаждения и конденсации, через приемник частично возвращается в колону стабилизации (орошение), а балансовое количество направляется в цех компаундирования товарных бензинов. Кубовый продукт колонны стабилизации нагревается в печи и частично возвращается в колонну стабилизации с целью обеспечения теплового баланса и восходящего потока паров. Балансовая часть кубового продукта отводится в цех.

Рассмотрим технологическую схему риформинга с непрерывным слоем катализатора (Рисунок 7).

Рисунок 7 — Технологическая схема установки каталитического риформинга с непрерывной регенерацией катализатора

- 1-бункер закоксованного катализатора; 2-бункер регенеративного катализатора;
- 3 шлюз; 4 дозатор; 5 разгрузочное устройство;
- I гидроочищенное сырье; II ВСГ; III риформат на стабилизацию.

Четыре реактора риформинга располагаются друг над другом и связываются между собой системами переточных труб малого диаметра. Шариковый катализатор ($d=1,6\,\mathrm{mm}$) перетекает от реактора к реактору (сверху вниз под действием силы тяжести).

Из реактора четвертой ступени (последовательно) через систему затворов катализатор поступает в питатель-дозатор, откуда его азотом подают в бункер закоксованного катализатора.

Регенератор представляет собой аппарат с радиальным потоком реакционных газов (воздух, УВ-газы). Регенератор разделен на три технологических зоны. В верхней зоне при пониженном (в целях избежания перегрева) мольном содержании кислорода происходит выжег кокса. В средней зоне при мольном содержании кислорода 10-20 % и обязательной

подаче хлорорганического соединения проводится окислительное хлорирование катализатора. В нижней зоне прокаливают катализатор в токе сухого воздуха. Разделение данных трех зон обеспечивается гидродинамически.

Из регенератора катализатор поступает через затвор в дозатор откуда возвращается в реактор.

Непрерывная регенерация катализатора обеспечивает более эффективный выжег кокса, что позволяет снизить давление до 0,4-0,9 МПа и повысить глубину целевых реакций дегидрирования. Продукт установки риформинга с непрерывной регенерацией имеет значительно более высокое октановое число.

Поддержание каталитической активности обеспечивается непрерывны отводом части отработанного катализатора из циркулирующей массы и подводом свежего катализатора.

4 РАСЧЕТНАЯ ЧАСТЬ

4.1 Свойства индивидуальных потоков и их анализ

С использованием программного обеспечения «Compaunding» выведем в программу Excel свойства индивидуальных потоков, которые в дальнейшем будут являться компонентами компаундированного бензина. Для этого в окне «Смешение» в поле «Соотношение потоков, %» для первого потока (МТБЭ) укажем любое значение, оставив доли прочих потоков равными нулю. Выполним расчет свойств получаемой смеси, состоящей из одного компонента, и сохраним их в файле Excel. Повторим расчет для остальных потоков.

Согласно заданию и требованиям ГОСТ 32513-2013, бензины АИ-92, АИ-95, АИ-98 экологического класса К-5 должны удовлетворять следующим требованиям (Таблица 2)

Таблица 2 – Требования ГОСТ 32513-2013 к маркам бензина класса К-5

Марка бензина Параметр	АИ-92-К5	АИ-95-К5	АИ-98-К5
ОЧИ, не менее	92	95	98
Ароматика, % об, не более		35	
Бензол, % об, не более	1		
Олефины, % об, не более	18		
Сера, % мас, не более	0,001		
Оксигенаты (МТБЭ), % мас	15		
ДНП потока макс, кПа	100		
ДНП потока мин, кПа	35		
Плотность макс, кг/м3	780		
Плотность мин, кг/м3		725	

Свойства индивидуальных потоков, которые указаны в таблице 2 представлены на рисунках 8-14.

ОЧИ

Рисунок 8 – Октановое число потоков по исследовательскому методу

Содержание, %мас

Рисунок 9 — Содержание ароматических углеводородов в индивидуальных потоках

Рисунок 10 – Содержание бензола в индивидуальных потоках

Рисунок 11 — Содержание олефинов в индивидуальных потоках * Отсутствующие на рисунке потоки не содержат олефинов

Содержание, %мас

Рисунок 12 – Содержание серы в индивидуальных потоках

* Отсутствующие на рисунке потоке не содержат серы

Давление, кПа

Рисунок 13 – Давление насыщенных паров индивидуальных компонентов

Рисунок 14 – Плотность потоков индивидуальных компонентов

Представленные на рисунках 8-14 свойства индивидуальных потоков позволяют осознанно выбирать соотношение между расходами потоков для получения товарных марок бензинов.

Перед подбором композиций определим приоритет потоков для расходования в процессе компаундирования в соответствии с их ценностью как компонентов. В первую очередь на компаундирование будут направлены потоки, обладающие хорошими эксплуатационными свойствами, большими объемами производства, невысокой себестоимостью производства.

- 1. Риформат Л-35-11/600, Риформат Л-35-11/1000, Крекинг КТ-1;
- 2. ГО БКК;
- 3. Изомеризат Изомалк-2;
- 4. Алкилбензин;
- 5. Изопентан, н-бутан (регуляторы ДНП);
- 6. Толуол концентрат;
- 7. МТБЭ

Заметим, что суммарная выработка всех потоков в соответствии с заданием составляет 15 074 т/сут, при этом план производства на четыре дня составляет 32 330 т, т.е. имеется значительный избыток в выработке относительно плана производства товарных бензинов.

4.2 Расчет оптимальных соотношений потоков, направляемых на смешение товарных бензинов различных марок

В программе «Compaunding» с учетом представленного в прошлом разделе приоритета подберем 3 варианта рецептуры бензинов марок АИ-92, АИ-95, АИ-98 удовлетворяющие требованиям ГОСТ 32513-2013. При подборе также будем рассчитывать остаток исходных фракций с целью проверки их достаточности для конкретного варианта рецептуры. В таблице 3 представлен первый вариант рецептуры для производства необходимых марок бензина.

Таблица 3 – Первый вариант рецептуры для марок АИ-92, АИ-95, АИ-98

Поток	Мас. доля в АИ-92, %	Мас. доля в АИ-95, %	Мас. доля в АИ-98, %
н-бутан	1,264	2,428	2,240
АВТ-10 фр. Нк-62	0,126	0,121	0,003
Алкилбензин	4,988	13,219	8,837
ГО БКК	50,714	17,261	22,647
Изомеризат Изомалк-2	6,341	12,175	11,234
Изопентан	5,810	7,514	10,293
Крекинг КТ-1	8,414	16,157	3,707
МТБЭ	0,000	0,000	6,720
Риформат Л-35-11/1000	16,949	9,480	17,708
Риформат Л-35-11/600	4,672	13,826	7,157
Толуол концентрат	0,721	7,817	9,453

Можно видеть, что содержание потока ГО БКК в АИ-92 превышает 50 %, так как данный поток имеет невысокое октановое число (89,19), позволяющее в смеси с риформатом получить необходимое ИОЧ для марки АИ-92 с необходимым запасом, а также повысить содержание олефинов в

бензине, удовлетворив при этом требование стандарта. Дальнейшее увеличение доли ГО БКК ограничено нижним пределом по ИОЧ. поиск более оптимального состава марки АИ-92, предположительно, может быть обеспечен вовлечением риформата Л-35-11/600 и уменьшением доли риформата Л-35-11/600 и концентрата толуола.

Содержание легких компонентов (н-бутан, алкилбензин, изомеризат Изомалк-2, изопентан) в марке АИ-95 обусловлено целью достижения ДНП смеси значения 65 кПа. Содержание фракции Крекинга КТ-1 ограничено верхним пределом по содержанию серы. Вовлечение большего количества риформата Л-35-11/600 ограничено содержанием ароматических соединений.

В марке АИ-98 распределение ароматических компонентов также обусловлено верхним пределом стандарта и нижним пределом октанового числа.

При смешении, по возможности, сохранялась фракция МТБЭ и концентрата толуола, так данные компоненты относительно дороги в производстве. Сохранение данных компонентов также обеспечит возможность производства большего количества бензина марки АИ-100.

В таблице 4 представлены свойства бензинов, соответствующих первому варианту рецептуры смешения. При этом принимается допущении о равенстве массовых долей ароматических соединений, рассчитанных в программе объемным долям, указанным в стандарте. Массовая доля бензола пересчитана в объемную по формуле:

$$v_{\text{бензол}} = \frac{\omega_{\text{бензол}} \cdot \rho_{\text{см}}}{\rho_{\text{бензол}}} \tag{1}$$

где $v_{\text{бензол}}$ — объемная доля бензола; $\omega_{\text{бензол}}$ — массовая доля бензола;

 $ho_{\scriptscriptstyle{\mathrm{CM}}}$ – плотность смеси;

 $ho_{\rm бензол} = 876 {\kappa \Gamma \over {
m M}^3} -$ плотность бензола.

Таблица 4 — Товарные свойства марок бензинов, полученных в соответствии с первым вариантом рецептуры

Свойство	$\psi_{i, ext{pac-y}}$ для марки	$\psi_{i,pac_{q}}$ для марки	$\psi_{i,pac_{Y}}$ для марки	$\psi_{i,{ t Tpef}}$
	АИ-92	АИ-95	АИ-98	
ОЧИ	92,20	95,16	98,16	92/95/98
Аромат. соед., % об.	32,17	33,63	34,74	35
Бензол, % об	0,83	0,91	0,75	1,0
Олефины, % об.	15,29	7,83	6,82	18,0
Сера, % мас.	0,0009	0,0010	0,0004	0,001
Оксигенаты (МТБЭ), % мас.	0,00	0,00	6,72	15,0
ДНП потока, кПа	61,17	67,19	63,95	67,5

Для каждой марки рассчитаем общий критерий оптимальности, характеризующий степень отклонения полученных свойств от требуемых:

$$\Psi_i = \sum_{j=1}^n \left(1 - \frac{\Psi_{i,j,\text{pacq}}}{\Psi_{i,j,\text{Tpe6}}} \right)^2 \tag{2}$$

где i – номер марки бензина: 1 – АИ-92, 2 – АИ-95, 3 – АИ-98; j – номер свойства.

Получим:

$$\psi_{\text{AM-92}} = 1,0784 \quad \psi_{\text{AM-95}} = 1,3293 \quad \psi_{\text{AM-98}} = 1,1226$$
 (3)

Среднее значение критерия оптимальности для первого варианта рецептуры составит

$$\psi_{1 \text{ рецепт}} = \frac{1,0784 + 1,3293 + 1,1226}{3} = 1,1768 \tag{4}$$

Достижение более низкого значения критерия оптимальности может достигнуто более за счет точного подбора компонентов, ДНП (н-бутан, обеспечивающих необходимое изопентан, изомеризат Изомалк-2, алкилбензин), счет большего за вовлечения риформата Π -35-11/600 и экономии риформата Π -35-11/1000 и толуола, чтобы приблизиться к требованию по содержанию бензола и ароматических соединений.

Второй вариант рецептуры представлен в таблице 5.

Таблица 5 – Второй вариант рецептуры для марок АИ-92, АИ-95, АИ-98

Поток	Мас. доля в	Мас. доля в	Мас. доля в
11010K	АИ-92, %	АИ-95, %	АИ-98, %
н-бутан	1,170	0,000	0,000
АВТ-10 фр. Нк-62	0,299	0,031	0,000
Алкилбензин	4,615	10,217	8,861
ГО БКК	51,603	21,087	22,709
Изомеризат Изомалк-2	5,866	14,874	11,264
Изопентан	5,376	7,697	12,567
Крекинг КТ-1	10,125	16,772	3,717
МТБЭ	0,000	0,000	6,514
Риформат Л-35-11/1000	20,946	16,973	19,666
Риформат Л-35-11/600	0,000	5,149	5,750
Толуол концентрат	0,000	7,201	8,951

Товарные свойства смесей, полученных в соответствии со вторым вариантом рецептуры представлены в таблице 6.

Таблица 6 – Товарные свойства марок бензинов, полученных в соответствии со вторым вариантом рецептуры

	$\psi_{i,pac_{Y}}$ для	$\psi_{i,pac_{Y}}$ для	$\psi_{i,pac ext{ up}}$ для	_
Свойство	марки	марки	марки	$\psi_{i, exttt{треб}}$
	АИ-92	АИ-95	АИ-98	
ОЧИ	92,15	95,21	98,16	92/95/98
Аромат. соед., % об.	32,59	34,80	34,74	35
Бензол, % об	0,83	0,75	0,75	1,0
Олефины, % об.	15,87	8,98	6,82	18,0
Сера, % мас.	0,0010	0,0010	0,0004	0,001
Оксигенаты (МТБЭ), % мас.	0,00	0,00	6,51	15,0
ДНП потока, кПа	60,11	57,09	63,95	67,5

Вычислим критерии оптимальности:

$$\psi_{\text{AM-92}} = 1,0591 \quad \psi_{\text{AM-95}} = 1,3388 \quad \psi_{\text{AM-98}} = 1,1339$$
 (5)

Среднее значение критерия оптимальности для второго варианта рецептуры составит

$$\psi_{1 \text{ рецепт}} = \frac{1,0591 + 1,3388 + 1,1339}{3} = 1,1762 \tag{6}$$

Третий вариант рецептуры для производства марок АИ-92, АИ-95, АИ-98 представлен в таблице 7.

Таблица 7 – Третий вариант рецептуры для марок АИ-92, АИ-95, АИ-98

Поток	Мас. доля в АИ-92, %	Мас. доля в АИ-95, %	Мас. доля в АИ-98, %
н-бутан	2,515	0,218	2,942
АВТ-10 фр. Нк-62	0,000	0,000	0,000
Алкилбензин	3,112	10,051	8,759
ГО БКК	46,613	20,744	23,557
Изомеризат Изомалк-2	5,300	14,632	11,135
Изопентан	4,856	7,571	9,092
Крекинг КТ-1	10,203	16,499	3,675
МТБЭ	0,000	0,000	6,661
Риформат Л-35-11/1000	18,076	9,184	19,960
Риформат Л-35-11/600	9,326	11,704	5,573
Толуол концентрат	0,000	9,397	8,648

Свойства бензинов, полученных в соответствии с третьим вариантом рецептуры представлены в таблице 8.

Таблица 8 — Товарные свойства марок бензинов, полученных в соответствии с третьим вариантом рецептуры

Свойство	$\psi_{i, { m pac}^{_{ m T}}}$ для марки АИ-92	$\psi_{i, { m pac}^{_{ m T}}}$ для марки АИ-95	$\psi_{i, { m pac}^{_{ m T}}}$ для марки АИ-98	$\psi_{i,{ t rpe6}}$
ОЧИ	92,16	95,26	98,07	92/95/98
Аромат. соед., % об.	34,77	34,60	34,97	35
Бензол, % об	1,00	0,83	0,75	1,0

	$\psi_{i,pac_{Y}}$ для	$\psi_{i,pac_{Y}}$ для	$\psi_{i,pac_{Y}}$ для	,
Свойство	марки	марки	марки	$\psi_{i, exttt{треб}}$
	АИ-92	АИ-95	АИ-98	
Олефины, % об.	14,50	8,84	7,06	18,0
Сера, % мас.	0,0010	0,0010	0,0004	0,001
Оксигенаты				15.0
(МТБЭ), % мас.	0,00	0,00	6,66	15,0
ДНП потока, кПа	65,01	58,71	65,35	67,5

Вычислим критерии оптимальности:

$$\psi_{\text{AM-92}} = 1,0392 \quad \psi_{\text{AM-95}} = 1,3058 \quad \psi_{\text{AM-98}} = 1,1042$$
 (7)

Среднее значение критерия оптимальности для второго варианта рецептуры составит

$$\psi_{1 \text{ рецепт}} = \frac{1,0392 + 1,3058 + 1,1042}{3} = 1,1497 \tag{8}$$

Среднее значение критерия оптимальности для третьего варианта смешения бензинов имеет минимальное значение, т.е. данная рецептура позволяет обеспечить высокую точность соответствия товарных свойств требованиям ГОСТ 32513-2013. Более низкое значение критерия оптимальности было достигнуто за счет выбора соотношения ароматических компонентов: риформата Π -35-11/600, риформата Π -35-11/1000, концентрата толуола и доли легких компонентов. При этом значительный вклад в критерий оптимальности вносит отклонение по содержанию оксигенатов, что связано с его экономией целью обеспечить возможность производства высокооктановых бензинов из оставшейся фракций.

4.3 Расчет календарного планирования производства товарных бензинов

План производства бензинов марок АИ-92, АИ-95, АИ-98 на четыре для, заданный в задании составляет:

1. АИ-92-К5 26 670 т;

2. АИ-95-К5 5000 т;

3. АИ-95-К5 660 т.

Так как выработка фракций является равномерной – каждый день производится определенное постоянное значение смесевых компонентов, то наиболее оптимальным является равномерный выпуск товарных продуктов. Равномерный выпуск позволит не накапливать компоненты и распределить производимые фракции на смешение в соответствующие бензины.

Календарный план, характеризующий потребности в компонентах в каждый из четырех дней для третьего варианта рецептуры представлен в таблице 9.

Таблица 9 – Календарный план производства бензинов на каждый день в соответствии третьей рецептурой

Поток	Выработка, т/сут	Расход на АИ-92, т/сут	Расход на АИ-95, т/сут	Расход на АИ-98, т/сут	Остаток, т/сут
н-бутан	220	167,18	2,73	4,85	45,23
АВТ-10 фр. Нк-62	122	19,94	0,00	0,00	102,06
Алкилбензин	1130	206,87	125,64	14,45	783,04
ГО БКК	4150	3 098,60	259,30	38,87	753,24
Изомеризат Изомалк-2	1980	352,32	182,90	18,37	1 426,42
Изопентан	1320	322,80	94,64	15,00	887,55
Крекинг КТ-1	2237	678,24	206,24	6,06	1 346,46
МТБЭ	165	0,00	0,00	10,99	154,01
Риформат Л-35-11/1000	2453	1 201,60	114,80	32,93	1 103,67
Риформат Л-35-11/600	1066	619,95	146,30	9,20	290,56
Толуол концентрат	231	0,00	117,46	14,27	99,27
Сумма	15074	6667,5	1 250,00	165,00	6 991,50

Из таблицы 9 можно видеть, что имеется значительное количество остатка, причем в процессе приготовления необходимого количества марок

АИ-92, АИ-95, АИ-98 сохранена большая часть МТБЭ, значительная доля толуола концентрата. Также в остатке имеется достаточно риформатов, изомеризата и других компонентов. Оценим количество бензина марки АИ-100, которое можно получить из остатка фракций.

Разработанный состав бензина марки АИ-100 для производства максимального его количества из оставшихся компонентов представлен в таблице 10.

Таблица 10 – Состав бензина марки АИ-100

Поток	Мас. доля в АИ-100, %
н-бутан	1,64
АВТ-10 фр. Нк-62	0,00
Алкилбензин	34,12
ГО БКК	8,68
Изомеризат Изомалк-2	6,74
Изопентан	2,16
Крекинг КТ-1	0,00
МТБЭ	6,72
Риформат Л-35-11/1000	35,61
Риформат Л-35-11/600	0,00
Толуол концентрат	4,34

Предполагается, что выпуск данного бензина также равномерен в течение четырех дней. Ежедневный расход остатка на производство бензина АИ-100 представлен в таблице 11.

Таблица 11 – Ежедневный план на производство бензина АИ-100

Поток	Остаток после пр-ва плана, т/сут	Расход на АИ-100	Остаток
н-бутан	45,23	37,49	7,74
АВТ-10 фр. Нк-62	102,06	0,00	102,06
Алкилбензин	783,04	780,81	2,23
ГО БКК	753,24	198,69	554,55
Изомеризат Изомалк-2	1 426,42	154,30	1 272,11
Изопентан	887,55	49,48	838,07
Крекинг КТ-1	1 346,46	0,00	1 346,46
МТБЭ	154,01	153,70	0,31
Риформат Л-35-11/1000	1 103,67	815,00	288,67
Риформат Л-35-11/600	290,56	0,00	290,56

Поток	Остаток после пр-ва плана, т/сут	Расход на АИ-100	Остаток
Толуол концентрат	99,27	99,27	0,00
Сумма	6 991,50	2288,74	4 702,76

Из таблицы 11 видим, что ценные высокооктановые компоненты, такие как МТБЭ и концентрат толуола полностью использованы в процессе смешения. Алкилбензин также практически полностью использован при компаундировании. Свойства полученного бензина марки АИ-100 представлены в таблице 12.

Таблица 12 – Товарные свойства бензина АИ-100

Свойство	Значение
ОЧИ	100,11
Аромат. соед., % об.	34,99
Бензол, % об	0,76
Олефины, % об.	2,33
Сера, % мас.	0,0001
Оксигенаты (МТБЭ), % мас.	0,00
ДНП потока, кПа	47,56

Полученный бензин соответствует требованиям ГОСТ 32513-2013. Замена концентрата толуола на риформат Л-35-11/1000 ограничено нижним пределом необходимого октанового числа. Дополнительное вовлечение фракций (изомеризат Изомалк-2, Крекинг КТ-1, ГО БКК, н-бутан, изопентан) также ограничено нижним допустимым значением октанового числа.

4.4 Оценка экономической эффективности внедрения бензина марки AИ-100-K-5

Наиболее высокооктановым компонентом в приготовленном бензине марки АИ-92 являются риформат Л-35-11/1000. Вовлечение данного потока ограничено требованиями ГОСТ 32513-2013 на содержание ароматических соединений и бензола. Таким образом, данный риформат должен быть смешан с другими компонентами, не содержащими ароматических соединений.

Перечислим возможные неароматические компоненты, которые в смеси с риформатом Л-35-11/1000 потенциально могут обеспечить выпуск бензина АИ-100:

- 1. н-бутан;
- 2. алкилбензин;
- 3. изопентан
- 4. изомеризат Изомалк-2;
- 5. МТБЭ

Самым высоким октановым числом из данных компонентов обладает МТБЭ, однако он не используется при производстве АИ-92 и не может быть сэкономлен при сокращении выпуска бензина данной марки. Вторым компонентом из перечисленных по величине октанового числа является алкилбензин, который может быть сэкономлен при сокращении выпуска марки АИ-92. Заметим, что концентрат толуола также не может быть сэкономлен при сокращении выпуска марки АИ-92.

Составим композицию из риформата Л-35-11/1000 и алкилбензина с максимально возможным вовлечением ароматического компонента (таблица 13).

Таблица 13 – Пробная композиция для бензина марки АИ-100 из АИ-92

Поток	Содержание в пробной смеси, % мас.
н-бутан	0,00%
АВТ-10 фр. Нк-62	0,00%
Алкилбензин	56,37%
ГО БКК	0,00%
Изомеризат Изомалк-2	0,00%
Изопентан	0,00%
Крекинг КТ-1	0,00%
СӘТМ	0,00%
Риформат Л-35-11/1000	43,63%
Риформат Л-35-11/600	0,00%
Толуол концентрат	0,00%

Содержание ароматических соединений в данной смеси составляет 35,04 %мас., что превышает допускаемое значение на небольшую величину,

однако, ИОЧ полученного бензина составляет 98,92, т.е. недостаточно. Таким образом из наиболее высокооктановых компонентов, сэкономленных при сокращении выпуска бензина АИ-92, приготовить бензин марки АИ-100 невозможно. Проведем аналогичный анализ на экономическую целесообразность сокращения выпуска марки АИ-95 в пользу марки АИ-100.

Предположим, что объем выпуска марки АИ-95 сокращен до нуля, а освободившиеся компоненты направляются на получение бензина марки АИ-100. В таблице 14 представлен разработанный состав для бензина АИ-100, позволяющий получить наибольшее его количество из освободившихся фракций.

Таблица 14 — Состав марки АИ-100 для освободившихся потоков (ежедневный выпуск)

Поток	Сэкономлено на выпуске марки АИ-95, т/сут	Содержание в пробной смеси АИ-100, % мас.	Расход на АИ-100, т/сут	Остаток, т/сут
н-бутан	2,73	0,00	0,00	2,73
АВТ-10 фр. Нк-62	0,00	0,00	0,00	0,00
Алкилбензин	125,64	24,44	124,17	1,46
ГО БКК	259,30	7,93	40,27	219,03
Изомеризат Изомалк-2	182,90	31,70	161,09	21,81
Изопентан	94,64	0,00	0,00	94,64
Крекинг КТ-1	206,24	0,00	0,00	206,24
МТБЭ	0,00	0,00	0,00	0,00
Риформат Л- 35-11/1000	114,80	10,83	55,04	59,76
Риформат Л- 35-11/600	146,30	1,98	10,07	136,23
Толуол концентрат	117,46	23,12	117,46	0,00
Сумма	1250,00		508,11	741,89

Согласно таблице 14 освободившийся при сокращении выпуска АИ-95 концентрат толуола полностью использован. Практически полностью использован алкилбензин. Свойства полученного бензина представлены в таблице 15. Дальнейшая попытка повысить выработку бензина АИ-100

потребует вовлечения компонентов с более низким октановым числом, что приведет к снижению октанового числа смеси до недопустимого значения.

Таблица 15 – Свойства марки АИ-100, выпускаемого за счет АИ-95

Свойство	Значение
ОЧИ	100,11
Аромат. соед., % об.	34,99
Бензол, % об	0,76
Олефины, % об.	2,33
Сера, % мас.	0,0001
Оксигенаты (МТБЭ), % мас.	0,00
ДНП потока, кПа	47,56

Как можно видеть, достигнута максимальная концентрация ароматических соединений. При этом вовлечение оставшихся компонентов (изомеризат, Крекинг-КТ-1, риформаты) снижает октановое число смеси до значения ниже необходимого. Таким образом объем выпуска марки АИ-100 за счет освободившихся компонентов максимален и составляет 508,11 т/сут.

Известно, что марка АИ-100 дороже марки АИ-95 на 6450 руб/т. Для оценки экономической целесообразности внедрения марки АИ-100 необходимо задаться значением стоимости тонны бензина марки АИ-95. Пусть стоимость марки АИ-95 составляет Х. Получим неравенство:

$$X \cdot F_{95} < (X + 6450) \cdot F_{100} \tag{9}$$

Решение:

$$X < 4417 \frac{\text{py6}}{\text{T}} \tag{10}$$

где
$$F_{95} = 1250 \frac{\mathrm{T}}{\mathrm{сут}}$$
, $F_{100} = 508 \frac{\mathrm{T}}{\mathrm{сут}}$ – выпуск марок АИ-95 и АИ-100.

Таким образом, производство марки АИ-100 за счет потоков, освободившихся при сокращении выпуска марки АИ-95 экономически целесообразно, если бензин АИ-95 имеет цену продажи ниже 4417 руб/т. При бо́льшей цене продажи марки АИ-95, чем 4417 руб/т выпуск бензина АИ-100 не является экономически оправданным.

ЗАКЛЮЧЕНИЕ

В работе рассмотрены теоретические основы и технологическая реализация процесса риформинга на НПЗ России. Данный процесс позволяет получить высокооктановые компоненты моторных топлив и является основным производящим бензиновые компоненты процессом. Однако дальнейший рост производственных мощностей данного процесса ограничен экологическими требованиями, предъявляемыми к моторным топливам и невысокими темпами роста на топливо в России. В этой связи приоритетным направлением по совершенствованию процесса риформинга в России является модернизации действующих установок и замена установок с непрерывным слоем на установки с непрерывной регенерацией.

При выполнении расчетной части проекта в программе «Compaunding» были разработаны три варианта рецептуры для производства товарных марок бензинов АИ-92, АИ-95, АИ-98, удовлетворяющих требованиям пятого экологического класса. Рецептуры учитывают исходные данные по выработке и позволяют удовлетворить план выпуска. Согласно рассчитанному среднему значению критерия оптимальности для каждого варианта была выбран третий вариант рецептуры и рассчитан календарный план выпуска бензинов.

При составлении рецептур для заданного необходимого выпуска использовано, по возможности, минимальное количество таких высокооктановых компонентов как МТБЭ и концентрат толуола. Данные компоненты позволили получить значительное количество бензина марки АИ-100 (2289 т/сут).

Показано, что сокращение выпуска бензина марки АИ-92 не позволит произвести бензин марки АИ-100, так как освобождаемые компоненты не могут быть смешаны в состав с достаточным октановым числом. Показана экономическая целесообразность производства бензина марки АИ-100 за счет сокращения выпуска марки АИ-95 при условии, что цена продажи последней меньше, чем 4417 руб/т.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1 Маслянский Г.Н. Каталитический риформинг бензиновых фракций на платиновом катализаторе / Г.Н. Маслянский, Н.Р. Бурсиан, Г.Д. Камушер и др. // Химия и химическая технология топлив и масел. 1960. № 9. С. 1.
- 2 Ахметов С.А. Физико-химическая технология глубокой переработки нефти и газа / С.А. Ахметов. Уфа: Изд. УГНТУ, 1996. Ч. 2. 276 с.
- 3 Смидович Е.В. Технология переработки нефти и газа. Крекинг нефтяного сырья и переработка углеводородных газов / Е.В. Смидович. М.: Альянс, 2011. –328 с.
- 4 Владимиров А.И. Установки каталитического риформинга: учебное пособие / А.И. Владимиров. М.: Нефть и газ, 1993. 60 с.
- 5 Белый А.С. Современное состояние, перспективы развития процесса и катализаторов риформинга бензиновых фракций нефти / А.С. Белый, Д.И. Кирьянов, М.Д. Смоликов и др. // Нефтегазопереработка. Нефтехимия. 2015. № 8. С. 36-39;
- Ишмурзин А.В. Риформинг бензинов на платиноэрионитном катализаторе / А.В. Ишмурзин, М.Ф. Минхайров, В.А. Першин и др. // Нефтепереработка и нефтехимия. 2012. № 12. С. 10-12.
- 7 Ахметов С.А. Технология и оборудование процессов переработки нефти и газа: Учебное пособие / С.А. Ахметов, Т.П. Сериков, И.Р Кузеев и др.; под ред. С.А. Ахметова. СПб.: Недра, 2006. 868 с.
- 8 Суханов В.П. Каталитические процессы в нефтепереработке / В.П. Суханов. М.: Химия, 1995. 448 с.
- 9 Брукс Б.Т. Химия углеводородов нефти / Б.Т. Брукс, С.Э. Бурд, С.С. Куртца и др. –Л.: Гостоптехиздат, 1958. Том 2. 391 с.
- 10 Колесников, С. И. Модифицирование катализаторов для процесса каталитического риформинга низкого давления / С. И. Колесников, М.

- Ю. Кильянов, Д. М. Икорников, П. А. Гышин, Е. В. Иванов // Нефть, Газ и Бизнес. 2013. \mathbb{N} 1. С. 66-67.
- 11 Кондрашев, Д. О. Повышение выхода и качества риформата за счет совместного применения ступенчатого риформинга и процесса гидроизомеризации / Д. О. Кондрашев // Катализ в промышленности. 2017. № 1. С. 31-36.