

Rec Laplace transform revie Exercis

Modelling dynamic systems

Michela Mulas

Recap
Laplace transform review
Exercises

Common Laplace transforms Laplace transform properties Solving differential equations

Partial fraction expansion

Case 1. Roots of the denominator of F(s) are real and distinct

Exercise L2E3: Using the Laplace transform, solve the following differential equation

- \triangleright y(t) if all initial conditions are zero
- $\triangleright u(t)$ is a step function

$$\frac{d^2y(t)}{dt^2} + 12\frac{dy(t)}{dt} + 32y(t) = 32u(t)$$

$$5^{2}/(s) + 12s/(s) + 32/(s) = 32$$
 Unit step
 $3^{2}/(s) + 12s/(s) + 32/(s) = 32$ Unit step
 $3^{2}/(s) = 32$ Conditions

$$Y(s) = \frac{32}{5(s^2 + 12s + 32)} = \frac{32}{5(s + 4)(s + 8)} = \frac{A}{5} + \frac{B}{5 + 4} = \frac{C}{5 + 4}$$

Recap Laplace transform review Exercises

Laplace transform Exercises

Exercise L2E4: Find the Laplace transform of $f(t) = te^{-5t}$.

Exercise L2E5: Find the inverse Laplace transform of

$$F(s) = \frac{10}{s(s+2)(s+3)^2}$$

$$F(s) = \frac{s-10}{(s+2)(s+5)}$$

$$F(s) = \frac{100}{(s+1)(s^2+4s+13)}$$

$$F(s) = \frac{s+18}{s(s+2)^2}$$

$$F(s) = \frac{1}{(s+s)^2}$$

Laplace transform Exercises

Exercise L2E4: Find the Laplace transform of $f(t) = te^{-5t}$.

Exercise L2E5: Find the inverse Laplace transform of

$$F(s) = \frac{10}{s(s+2)(s+3)^2}$$

$$F(s) = \frac{s-10}{(s+2)(s+5)}$$

$$F(s) = \frac{100}{(s+1)(s^2+4s+13)}$$

$$F(s)$$
, $\frac{Lo}{S(s+2)(s+3)^2} = \frac{A}{s} + \frac{B}{s+2} + \frac{C}{s+3} + \frac{D}{(s+3)^2}$

$$A = \frac{10}{(S+2)(S+3)^2} \Big|_{S\to 0} = \frac{5}{9} \quad B = \frac{10}{S(S+3)^2} \Big|_{S\to -2} = -5$$

$$f(t) = \frac{5}{9} - 5e^{-2t} + \frac{10}{3}te^{-3t} - \frac{40}{9}e^{-3t}$$

Laplace transform Exercises

Exercise L2E4: Find the Laplace transform of $f(t) = te^{-5t}$.

Exercise L2E5: Find the inverse Laplace transform of

$$F(s) = \frac{10}{s(s+2)(s+3)^2}$$

$$F(s) = \frac{s-10}{(s+2)(s+5)}$$

$$F(s) = \frac{100}{(s+1)(s^2+4s+13)}$$

$$F(s) = \frac{s+18}{s(s+3)^2}$$

• $f(s) = \frac{s-10}{(s+2)(s+5)} = \frac{A}{s+1} + \frac{B}{s+5} = -\frac{A}{s+2} + \frac{5}{s+5}$ $f(t) = -4e^{-2t} + 5e^{-5t}$

$$\frac{1}{(t)} = -4e^{-2t} + 5e^{-5t}$$

$$\frac{1}{(s)} = \frac{100}{(s+1)(s^2 + 4s + 13)}$$

$$\frac{1}{(t)} = 10e^{-t} - \frac{10}{3}\sqrt{10}e^{-2t}\cos(3t + 2.81)$$
or
$$\frac{1}{(t)} = 10e^{-t} - 10e^{-2t}\cos(3t + \frac{1}{3}\sin 3t)$$

Laplace transform Exercises

Exercise L2E4: Find the Laplace transform of $f(t) = te^{-5t}$.

Exercise L2E5: Find the inverse Laplace transform of

$$F(s) = \frac{10}{s(s+2)(s+3)^2}$$

$$F(s) = \frac{s-10}{(s+2)(s+5)}$$

$$F(s) = \frac{100}{(s+1)(s^2+4s+13)}$$

$$F(s) = \frac{s+18}{s(s+3)^2}$$

• $f(s) = \frac{8+18}{5(s+3)^2}$ $f(t) = 2 - 2e^{-3t} - 5te^{-3t}$ $A = S. \mp (3)$ $S \to 0$ $= \frac{S + 16}{(S + 3)^2} \Big|_{S \to \infty} = 2$ $B = \frac{d}{ds} \left[(S+3)^2 \cdot \overline{+}(s) \right]_{S \rightarrow -3} = \frac{d}{o(s)} \left[\frac{S+18}{s} \right]_{S \rightarrow -3} = \frac{18}{s} = -2$ C= (S+3)2. F(1) | = S+B