Obsah

Introduction	1.1
Výroková logika	1.2
Symboly a operace	1.2.1
Pravdivostní tabulka	1.2.2
Slovník	1.2.3
Pravidla a zákony	1.2.4
Věty	1.2.5
Konverze	1.2.6
Predikátová logika	1.3
Hilbertův axiomatický systém	1.3.1

BI-MLO Quick Reference

Tyto materiály slouží studentům předmětu BI-MLO na FITu a podávají velmi stručný přehled vzorců, postupů a terminologie.

Renderovaná podoba je hostovaná na GitBook, zdrojáky jsou na GitHub.

V případě, že naleznete chybu nebo budete chtít něco přidat, vytvořte issue nebo rovnou pošlete pull request.

Výroková logika

Název	Symbol	Definice	
NOT	7	$\neg A$ je true , pokud A je false .	
AND	^	$A \wedge B$ je true pouze pokud jsou oba výroky true .	
OR	V	$A \lor B$ je true pokud je alespoň jeden z výroků true	
NAND	↑ 1	$A \uparrow B$ je true , pokud je alespoň jeden z výroků false .	
NOR	↓ ²	$A\downarrow B$ je true , pokud jsou oba výroky false	
implikace	\Rightarrow	$A\Rightarrow B$ je false pouze tehdy, pokud A je true a B je false .	
ekvivalence	\Leftrightarrow	$A \Leftrightarrow B$ je true , pokud jsou oba výroky false , nebo jsou oba výroky true .	
tautologie	Т	Formule, která je vždy true	
kontradikce	Т	Formule, která je vždy false	
logický důsledek	þ	Formule B je logickým důsledkem formule A , právě když pro každé ohodnocení v , pro které $v(A)=1$, je i $v(B)=1$. Píšeme $A \models B$. Říkáme též B vyplývá z A .; Nebo jinak: $A \models B$, právě když uKNT/uDNT A a B obsahují stejné klausule/mintermy	
logická ekvivalence	≡, =	Formule A a B jsou logicky ekvivalentní právě tehdy, když pro každé ohodnocení v je $v(A)=v(B)$. Píšeme $A\equiv B$.; Nebo jinak: $A\equiv B$, právě když všechny klausule/mintermy v uKNT/uDNT A jsou obsaženy i v uKNT/uDNT B	

¹. Shefferův symbol ↔

². Piercova šipka ↔

Pravdivostní tabulka

NOT

A	В	$\neg A$	$\neg B$
1	1	0	0
1	0	0	1
0	1	1	0
0	0	1	1

AND, NAND, OR, NOR

A	В	$A \wedge B$	$A \uparrow B$	$A \lor B$	$A\downarrow B$
1	1	1	0	1	0
1	0	0	1	1	0
0	1	0	1	1	0
0	0	0	1	0	1

Implikace, ekvivalence

A	В	$A\Rightarrow B$	$A \Leftrightarrow B$
1	1	1	1
1	0	0	0
0	1	1	0
0	0	1	1

Slovník

Výraz	Význam	Příklad
Výrok	Výrokem je každá oznamovací věta, u které se lze ptát, zda je či není pravdivá.	"Číslo 2 je sudé a zároveň je liché."
Prvotní výrok (atomický)	Dále nedělitelný výrok. Jedná se v jistém smyslu o to nejjednodušší "Je rok 2014.", "2 + 2 = s konstatování.	
Prvotní formule	Prvotní výroky označené velkými tiskacími písmeny.	A,B,C
Formule	Prvotní formule a formule poskládáné pomocí logických spojek a závorek.	$A,B,A\wedge B, eg A\Rightarrow B,\ (A\Rightarrow B)ee eg ((A\wedge B)ee B)$
Podformule	Každá část formule, která je sama formulí.	Formule: $\neg(A \land B) \Leftrightarrow (C \Rightarrow A)$, podformule: $A, B, C, A \land B$, $\neg(A \land B), C \Rightarrow A$
Splnitelná formule	Formule, která je pravda alespoň pro jedno ohodnocení, tedy všechny formule kromě kontradikcí.	$A,A\wedge B$ a nesplnitelné $A\wedge eg A$
Instance formule	Formule, která vznikne nahrazením prvotních formulí jinými formulemi a to tak, že všechny výskyty jedné prvotní formule jsou nahrazeny jinou, jednou a tou samou formulí.	Instance $\neg A \lor (B \Rightarrow A)$: $\neg C \lor (D \Rightarrow C)$ nebo $\neg (A \land B) \lor (C \Rightarrow (A \land B))$
Pravdivostní ohodnocení	Funkce v z množiny prvotních formulí do množiny $\{0,1\}$.	Pokud pro formuli A platí $v(A)=1$, řekneme, že A je pravdivá při ohodnocení v . Pokud platí $v(A)=0$, řekneme, že A je nepravdivá při ohodnocení v .
Teorie	Množina formulí	$T = \{A, B, \neg A \vee \neg B\}$
Axiom	Formule obsažená v teorii	
Splnitelná teorie	Teorie T je splnitelná, právě když existuje ohodnocení v prvotních formulí, pro které jsou všechny formule teorie pravdivé . Řekneme, že v splňuje T .	$T = \{A, B, A \wedge B, C ee B\}$ splnitelná pro $(1,1,1), (1,1,0)$

Literál	Prvotní formule nebo její negace.	$A, B, \neg C$
Minterm	Literál nebo konjunkce několika literálů	$A \wedge B, B \wedge \neg C$
Klausule	Literál nebo disjunkce několika literálů	$A \lor B, B \lor \neg C$
KNT (Konjunktivní normální tvar)	Formule je v <i>KNT</i> , jestliže je klausulí nebo konjunkcí několika klausulí.	$(A \lor \lnot B) \land C, A \land \lnot B, A \lor B$
uKNT (Úplný konjunktivní normální tvar)	Formule je v <i>uKNT</i> , jestliže je v <i>KNT</i> a ve všech klausulích se vyskytují stejné prvotní formule.	$(A \vee \neg B \vee C) \wedge (\neg A \vee \neg B \vee C)$
DNT (Disjunktivní normální tvar)	Formule je v <i>DNT</i> , jestliže je mintermem nebo disjunkcí několika mintermů.	$(A \wedge \neg B) \lor C, A \wedge \neg B, A \lor B$
uDNT (Úplný disjunktivní normální tvar)	Formule je v <i>uDNT</i> , jestliže je v <i>DNT</i> a ve všech mintermech se vyskytují stejné prvotní formule.	$(A \wedge eg B \wedge C) \vee (eg A \wedge eg B \wedge C)$

Pravidla a zákony

Identita (eliminace)

- $A \wedge \top \equiv A$
- $A \wedge \bot \equiv \bot$
- $\bullet \quad A \vee \top \equiv \top$
- $A \lor \bot \equiv A$

Zákon vyloučeného třetího (vyloučení sporu)

• $A \lor \neg A \equiv \top$ - vždy je něco z leva nebo z prava **true**

Zákon dvojí negace

• $A \equiv \neg(\neg A)$

Asociativní zákony (závorky)

- $A \wedge (B \wedge C) \equiv (A \wedge B) \wedge C$
- $A \lor (B \lor C) \equiv (A \lor B) \lor C$
- $A \Leftrightarrow (B \Leftrightarrow C) \equiv (A \Leftrightarrow B) \Leftrightarrow C$

Komutativní zákony (změna stran)

- $A \wedge B \equiv B \wedge A$
- $A \lor B \equiv B \lor A$
- $A \Leftrightarrow B \equiv B \Leftrightarrow A$

Distributivní zákony

- $A \lor (B \land C) \equiv (A \lor B) \land (A \lor C)$
- $A \wedge (B \vee C) \equiv (A \wedge B) \vee (A \wedge C)$
- používají se hlavně při hledání DNT/KNT, pokud formule není celá znegovaná

Zákony absorpce

- $A \wedge (A \vee B) \equiv A$
- $A \lor (A \land B) \equiv A$

De Morganovy zákony

- $\neg (A \lor B) \equiv \neg A \land \neg B$
- $\neg(A \land B) \equiv \neg A \lor \neg B$
- používají se hlavně při hledání DNT/KNT, pokud je celá formule znegovaná

Modus ponens

- $(A \Rightarrow B) \land A \models B$
- $((A \Rightarrow B) \land A) \Rightarrow B$
- opakem je Modus tollens

Kontrapozice

- invert and flip
- $A \Rightarrow B \equiv \neg B \Rightarrow \neg A$

Věty

- Ke každé formuli existuje logicky ekvivalentní formule, která je v DNT/KNT/uDNT/uKNT.
- ullet Otázka splnitelnosti teorie $T=\{A_1,A_2,...,A_n\}$ je ekvivalentní s otázkou splnitelnosti formule $A_1\wedge A_2\wedge...\wedge A_n$
- Negace klausulí **uKNT** nám ukazuje řádky pravdivostní tabulky, ve kterých má celá formule hodnotu *false*, tzn. vyjde-li nám uKNT $A \wedge \neg B \wedge C$, pak původní formule má hodnotu *false*, pouze při $\neg A \vee B \vee \neg C$, tedy při ohodnocení $v = \{0, 1, 0\}$
- uDNT nám ukazuje řádky pravdivostní tabulky, ve kterých má celá formule hodnotu true

Konverze

Do universálního systému spojek $\{\neg,\wedge,\vee\}$

Původní výraz	Jak?	Výsledek
$A \wedge B; \ A ee B$	Přidáním double negatives a aplikací prvního z nich na závorku	$\neg(\neg A \lor \neg B); \neg(\neg A \land \neg B)$
$A\Rightarrow B$		$ eg A \lor B$
$A \Leftrightarrow B$		$(A \wedge B) \vee (\neg A \wedge \neg B); \ (\neg A \vee B) \wedge (A \vee \neg B)$
$\neg(A \Leftrightarrow B)$	Aplikací negativu na závorku a eliminací	$(A \wedge \neg B) \vee (\neg A \wedge B)$

Do universálního systému spojek $\{\neg,\Rightarrow\}$

Původní výraz	Výsledek
$A \wedge B$	$\lnot (A \Rightarrow \lnot B)$
$A \lor B$	$ eg A \Rightarrow B$
$A \Leftrightarrow B$	$(A\Rightarrow B)\wedge (B\Rightarrow A)$

Predikátová logika

Hilbertův axiomatický systém

$$\begin{aligned} & (CA1) \vdash A \rightarrow (B \rightarrow A) \ (CA2) \vdash (A \rightarrow (B \rightarrow C)) \rightarrow ((A \rightarrow B) \rightarrow (A \rightarrow C)) \ (CA3) \vdash (\neg A \rightarrow \neg B) \\ & \rightarrow (B \rightarrow A) \ (MP) \ A, \ A \rightarrow B \vdash B \end{aligned}$$