

CS 201 Data Structure II (L2 / L5)

Hash Tables

Muhammad Qasim Pasta

qasim.pasta@sse.habib.edu.pk

Map ADT (Abstract Data Type)

- A Map stores "key" "value" pairs (k,v) called entries
- Each key should be unique
- There is a mapping from k to v
- k can be a primitive data type or an object
- It can be same as a part of the value
- E.g. phone book, yellow pages, dictionary

Example Hash function

- f(s) = char at f[0] % SIZE
- What would hash function return when size is 7
 - a =
 - asap =
 - bros =
 - pehlwan =
 - due =
 - logic =

Collision

- When two keys are mapped to the same position.
- Very likely.
- Can be resolved by:
 - Linear Probing
 - Chaining

Linear Probing

• Linear search in the array from the position where collision occurred.

Used	Used	Empty	Empty	Empty	Empty	Empty	Used	Used	Deleted
k4	k5						k2	k1	

Chaining

• Us §5.1

Hash Tables

Figure 5.1: An example of a ChainedHashTable with n = 14 and length(t) = 16. In this example hash(x) = 6

Image: Open Data Structures

• Let's have a hash-function f(x) such that:

f(x) = number of characters in x

- -Insert the following keys in a chained-hash table of size 10.
 - table, chair, flower, cat, try, kite

0	1	2	3	4	5	6	7	8	9

Image: Data Structures and Algorithms

Linear Probing

• Let's have a hash-function f(x) such that:

f(x) = number of characters in x

- —Insert the following keys in a hash table of size 10 using linear probing:
 - table, chair, flower, cat, try, kite

0	1	2	3	4	5	6	7	8	9

Resources

- Section 5.1 and 5.2 of the textbook Open Data Structures
- Visualization:

https://www.cs.usfca.edu/~galles/visualization/OpenHash.html