CDO User Guide

Climate Data Operators Version 1.9.5 August 2018

Uwe Schulzweida – MPI for Meteorology

1.	Intro	oduction	n (f
	1.1.	Buildir	ng from sources
			Compilation
		1.1.2.	Installation
	1.2.	Usage	
		1.2.1.	Options
			Environment variables
			Operators
			Operator chaining
			Parallelized operators
			Operator parameter
	1.3.		ntal grids
			Grid area weights
			Grid description
	1.4.		description
			xis
			Absolute time
			Relative time
			Conversion of the time
	1.6.		eter table
			g values
	1		Mean and average
	1.8		tile
	1.0.		Percentile over timesteps
		1.0.1.	1 discharge over simostops
2.		erence n	
	2.1.	Inform	ation
			INFO - Information and simple statistics
		2.1.2.	SINFO - Short information
		2.1.3.	DIFF - Compare two datasets field by field
		2.1.4.	NINFO - Print the number of parameters, levels or times
		2.1.5.	SHOWINFO - Show variables, levels or times
		2.1.6.	SHOWATTRIBUTE - Show a global attribute, a variable attribute or all attributes
			of one variable
			FILEDES - Dataset description
	2.2.	File op	perations
		2.2.1.	COPY - Copy datasets
		2.2.2.	TEE - Duplicate a data stream
		2.2.3.	REPLACE - Replace variables
		2.2.4.	DUPLICATE - Duplicates a dataset
		2.2.5.	MERGEGRID - Merge grid
		2.2.6.	MERGE - Merge datasets
		2.2.7.	SPLIT - Split a dataset
		2.2.8.	SPLITTIME - Split timesteps of a dataset
		2.2.9.	SPLITSEL - Split selected timesteps
		2.2.10.	DISTGRID - Distribute horizontal grid
			COLLGRID - Collect horizontal grid
	2.3.		on
			SELECT - Select fields
			SELMULTI - Select multiple fields via GRIB1 parameters

	2.3.3.	SELVAR - Select fields
	2.3.4.	SELTIME - Select timesteps
	2.3.5.	SELBOX - Select a box of a field
	2.3.6.	SELGRIDCELL - Select grid cells
		SAMPLEGRID - Resample grid
2.4.		tional selection
		COND - Conditional select one field
		COND2 - Conditional select two fields
		CONDC - Conditional select a constant
		MAPREDUCE - Reduce fields to user-defined mask
2.5.		arison
		COMP - Comparison of two fields
		COMPC - Comparison of a field with a constant
2.6		cation
2.0.		SETATTRIBUTE - Set attributes
		SETPARTAB - Set parameter table
		SET - Set field info
		SETTIME - Set time
		CHANGE - Change field header
		$oldsymbol{arphi}$
		SETZAXIS - Set z-axis information
		INVERT - Invert latitudes
		INVERTLEV - Invert levels
		SHIFTXY - Shift field
		MASKREGION - Mask regions
		MASKBOX - Mask a box
		SETBOX - Set a box to constant
		ENLARGE - Enlarge fields
		SETMISS - Set missing value
2.7.		netic
		EXPR - Evaluate expressions
		MATH - Mathematical functions
		ARITHC - Arithmetic with a constant
		ARITH - Arithmetic on two datasets
		MONARITH - Monthly arithmetic
	2.7.6.	YHOURARITH - Multi-year hourly arithmetic
	2.7.7.	
	2.7.8.	YMONARITH - Multi-year monthly arithmetic
	2.7.9.	YSEASARITH - Multi-year seasonal arithmetic
	2.7.10	ARITHDAYS - Arithmetic with days
2.8.	Statist	ical values
	2.8.1.	
	4.0.1.	TIMCUMSUM - Cumulative sum over all timesteps
	2.8.2.	•
		CONSECSTAT - Consecute timestep periods
	2.8.2. 2.8.3.	CONSECSTAT - Consecute timestep periods
	2.8.2. 2.8.3. 2.8.4.	CONSECSTAT - Consecute timestep periods
	2.8.2. 2.8.3. 2.8.4. 2.8.5.	CONSECSTAT - Consecute timestep periods97ENSSTAT - Statistical values over an ensemble98ENSSTAT2 - Statistical values over an ensemble100ENSVAL - Ensemble validation tools101
	2.8.2. 2.8.3. 2.8.4. 2.8.5. 2.8.6.	CONSECSTAT - Consecute timestep periods97ENSSTAT - Statistical values over an ensemble98ENSSTAT2 - Statistical values over an ensemble100ENSVAL - Ensemble validation tools101FLDSTAT - Statistical values over a field103
	2.8.2. 2.8.3. 2.8.4. 2.8.5. 2.8.6. 2.8.7.	CONSECSTAT - Consecute timestep periods97ENSSTAT - Statistical values over an ensemble98ENSSTAT2 - Statistical values over an ensemble100ENSVAL - Ensemble validation tools101FLDSTAT - Statistical values over a field103ZONSTAT - Zonal statistical values105
	2.8.2. 2.8.3. 2.8.4. 2.8.5. 2.8.6. 2.8.7. 2.8.8.	CONSECSTAT - Consecute timestep periods97ENSSTAT - Statistical values over an ensemble98ENSSTAT2 - Statistical values over an ensemble100ENSVAL - Ensemble validation tools101FLDSTAT - Statistical values over a field103ZONSTAT - Zonal statistical values105MERSTAT - Meridional statistical values106
	2.8.2. 2.8.3. 2.8.4. 2.8.5. 2.8.6. 2.8.7. 2.8.8. 2.8.9.	CONSECSTAT - Consecute timestep periods97ENSSTAT - Statistical values over an ensemble98ENSSTAT2 - Statistical values over an ensemble100ENSVAL - Ensemble validation tools101FLDSTAT - Statistical values over a field103ZONSTAT - Zonal statistical values105MERSTAT - Meridional statistical values106GRIDBOXSTAT - Statistical values over grid boxes108
	2.8.2. 2.8.3. 2.8.4. 2.8.5. 2.8.6. 2.8.7. 2.8.8. 2.8.9. 2.8.10	CONSECSTAT - Consecute timestep periods97ENSSTAT - Statistical values over an ensemble98ENSSTAT2 - Statistical values over an ensemble100ENSVAL - Ensemble validation tools101FLDSTAT - Statistical values over a field103ZONSTAT - Zonal statistical values105MERSTAT - Meridional statistical values106GRIDBOXSTAT - Statistical values over grid boxes108VERTSTAT - Vertical statistical values109
	2.8.2. 2.8.3. 2.8.4. 2.8.5. 2.8.6. 2.8.7. 2.8.8. 2.8.9. 2.8.10. 2.8.11.	CONSECSTAT - Consecute timestep periods97ENSSTAT - Statistical values over an ensemble98ENSSTAT2 - Statistical values over an ensemble100ENSVAL - Ensemble validation tools101FLDSTAT - Statistical values over a field103ZONSTAT - Zonal statistical values105MERSTAT - Meridional statistical values106GRIDBOXSTAT - Statistical values over grid boxes108VERTSTAT - Vertical statistical values109TIMSELSTAT - Time range statistical values110
	2.8.2. 2.8.3. 2.8.4. 2.8.5. 2.8.6. 2.8.7. 2.8.8. 2.8.9. 2.8.10. 2.8.11. 2.8.12.	CONSECSTAT - Consecute timestep periods97ENSSTAT - Statistical values over an ensemble98ENSSTAT2 - Statistical values over an ensemble100ENSVAL - Ensemble validation tools101FLDSTAT - Statistical values over a field103ZONSTAT - Zonal statistical values105MERSTAT - Meridional statistical values106GRIDBOXSTAT - Statistical values over grid boxes108VERTSTAT - Vertical statistical values109TIMSELSTAT - Time range statistical values110TIMSELPCTL - Time range percentile values111
	2.8.2. 2.8.3. 2.8.4. 2.8.5. 2.8.6. 2.8.7. 2.8.8. 2.8.9. 2.8.10. 2.8.11. 2.8.12.	CONSECSTAT - Consecute timestep periods97ENSSTAT - Statistical values over an ensemble98ENSSTAT2 - Statistical values over an ensemble100ENSVAL - Ensemble validation tools101FLDSTAT - Statistical values over a field103ZONSTAT - Zonal statistical values105MERSTAT - Meridional statistical values106GRIDBOXSTAT - Statistical values over grid boxes108VERTSTAT - Vertical statistical values109TIMSELSTAT - Time range statistical values110TIMSELPCTL - Time range percentile values111RUNSTAT - Running statistical values112
	2.8.2. 2.8.3. 2.8.4. 2.8.5. 2.8.6. 2.8.7. 2.8.8. 2.8.9. 2.8.11 2.8.12 2.8.13 2.8.14	CONSECSTAT - Consecute timestep periods97ENSSTAT - Statistical values over an ensemble98ENSSTAT2 - Statistical values over an ensemble100ENSVAL - Ensemble validation tools101FLDSTAT - Statistical values over a field103ZONSTAT - Zonal statistical values105MERSTAT - Meridional statistical values106GRIDBOXSTAT - Statistical values over grid boxes108VERTSTAT - Vertical statistical values109TIMSELSTAT - Time range statistical values110TIMSELPCTL - Time range percentile values111RUNSTAT - Running statistical values112RUNPCTL - Running percentile values113
	2.8.2. 2.8.3. 2.8.4. 2.8.5. 2.8.6. 2.8.7. 2.8.8. 2.8.9. 2.8.11 2.8.12 2.8.13 2.8.14 2.8.15	CONSECSTAT - Consecute timestep periods97ENSSTAT - Statistical values over an ensemble98ENSSTAT2 - Statistical values over an ensemble100ENSVAL - Ensemble validation tools101FLDSTAT - Statistical values over a field103ZONSTAT - Zonal statistical values105MERSTAT - Meridional statistical values106GRIDBOXSTAT - Statistical values over grid boxes108VERTSTAT - Vertical statistical values109TIMSELSTAT - Time range statistical values110TIMSELPCTL - Time range percentile values111RUNSTAT - Running statistical values112RUNPCTL - Running percentile values113TIMSTAT - Statistical values over all timesteps114
	2.8.2. 2.8.3. 2.8.4. 2.8.5. 2.8.6. 2.8.7. 2.8.8. 2.8.9. 2.8.10. 2.8.11 2.8.12 2.8.13. 2.8.14 2.8.15. 2.8.16.	CONSECSTAT - Consecute timestep periods97ENSSTAT - Statistical values over an ensemble98ENSSTAT2 - Statistical values over an ensemble100ENSVAL - Ensemble validation tools101FLDSTAT - Statistical values over a field103ZONSTAT - Zonal statistical values105MERSTAT - Meridional statistical values106GRIDBOXSTAT - Statistical values over grid boxes108VERTSTAT - Vertical statistical values109TIMSELSTAT - Time range statistical values110TIMSELPCTL - Time range percentile values111RUNSTAT - Running statistical values112RUNPCTL - Running percentile values113

	2.8.18. HOURPCTL - Hourly percentile values	
	2.8.19. DAYSTAT - Daily statistical values	
	2.8.20. DAYPCTL - Daily percentile values	. 119
	2.8.21. MONSTAT - Monthly statistical values	. 120
	2.8.22. MONPCTL - Monthly percentile values	
	2.8.23. YEARMONSTAT - Yearly mean from monthly data	
	2.8.24. YEARSTAT - Yearly statistical values	. 123
	2.8.25. YEARPCTL - Yearly percentile values	
	2.8.26. SEASSTAT - Seasonal statistical values	
	2.8.27. SEASPCTL - Seasonal percentile values	
	2.8.28. YHOURSTAT - Multi-year hourly statistical values	
	2.8.29. YDAYSTAT - Multi-year daily statistical values	
	2.8.30. YDAYPCTL - Multi-year daily percentile values	
	2.8.31. YMONSTAT - Multi-year monthly statistical values	
	2.8.32. YMONPCTL - Multi-year monthly percentile values	
	2.8.33. YSEASSTAT - Multi-year seasonal statistical values	
	2.8.34. YSEASPCTL - Multi-year seasonal percentile values	
	2.8.35. YDRUNSTAT - Multi-year daily running statistical values	
	2.8.36. YDRUNPCTL - Multi-year daily running percentile values	
2.9.	Correlation and co	. 141
	2.9.1. FLDCOR - Correlation in grid space	. 142
	2.9.2. TIMCOR - Correlation over time	. 142
	2.9.3. FLDCOVAR - Covariance in grid space	. 143
	2.9.4. TIMCOVAR - Covariance over time	. 143
2.10.	Regression	
	2.10.1. REGRES - Regression	
	2.10.2. DETREND - Detrend time series	
	2.10.3. TREND - Trend of time series	
	2.10.4. SUBTREND - Subtract a trend	
9 11	EOFs	
2.11.	2.11.1. EOFS - Empirical Orthogonal Functions	
	2.11.2. EOFCOEFF - Principal coefficients of EOFs	
9 19	Interpolation	
2.12.	2.12.1. REMAPBIL - Bilinear interpolation	
	2.12.2. REMAPBIC - Bicubic interpolation	
	2.12.3. REMAPNN - Nearest neighbor remapping	
	2.12.3. REMAP NN - Nearest neighbor remapping	
	2.12.5. REMAPYCON - First order conservative remapping	
	2.12.6. REMAPCON - First order conservative remapping	
	2.12.7. REMAPCON2 - Second order conservative remapping	
	2.12.8. REMAPLAF - Largest area fraction remapping	
	2.12.9. REMAP - Grid remapping	
	2.12.10REMAPETA - Remap vertical hybrid level	
	2.12.11.VERTINTML - Vertical interpolation	
	2.12.12.VERTINTAP - Vertical interpolation	
	2.12.13INTLEVEL - Linear level interpolation	
	2.12.14INTLEVEL3D - Linear level interpolation from/to 3d vertical coordinates	
	2.12.15 INTTIME - Time interpolation	
	$2.12.16 INTYEAR - Year \ interpolation \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	
2.13.	Transformation	
	2.13.1. SPECTRAL - Spectral transformation	. 173
	2.13.2. WIND - Wind transformation	. 174
2.14.	Import/Export	
	2.14.1. IMPORTBINARY - Import binary data sets	. 176
	2.14.2. IMPORTCMSAF - Import CM-SAF HDF5 files	. 177
	2.14.3. IMPORTAMSR - Import AMSR binary files	. 178
	2.14.4. INPUT - Formatted input	. 179
	2.14.5. OUTPUT - Formatted output	

	2.14.6. OUTPUTTAB - Table output	
	2.14.7. OUTPUTGMT - GMT output	 182
	$2.15.\ Miscellaneous \ \ldots \ $	
	2.15.1. GRADSDES - GrADS data descriptor file	
	2.15.2. AFTERBURNER - ECHAM standard post processor	
	2.15.3. FILTER - Time series filtering	
	2.15.4. GRIDCELL - Grid cell quantities	
	2.15.5. SMOOTH - Smooth grid points	
	2.15.6. REPLACEVALUES - Replace variable values	
	2.15.7. TIMSORT - Timsort	
	2.15.8. VARGEN - Generate a field	
	2.15.9. WINDTRANS - Wind Transformation	
	2.15.10.ROTUVB - Rotation	
	$2.15.11 \mathrm{MASTRFU}$ - Mass stream function	
	2.15.12.DERIVEPAR - Sea level pressure	
	2.15.13.ADISIT - Potential temperature to in-situ temperature and vice versa	
	2.15.14.RHOPOT - Calculates potential density	
	2.15.15.HISTOGRAM - Histogram	
	$2.15.16.\mathrm{SETHALO}$ - Set the left and right bounds of a field $\ldots\ldots\ldots\ldots$	
	2.15.17.WCT - Windchill temperature	
	2.15.18 FDNS - Frost days where no snow index per time period	
	2.15.19 STRWIN - Strong wind days index per time period	
	$2.15.20 \mathrm{STRBRE}$ - Strong breeze days index per time period	
	2.15.21STRGAL - Strong gale days index per time period	
	2.15.22.HURR - Hurricane days index per time period	
	2.15.23.CMORLITE - CMOR lite	 201
3.	Contributors	203
	3.1. History	
	3.2. External sources	
	3.3. Contributors	
Α.	Environment Variables	207
В.	Parallelized operators	208
C.	Standard name table	209
_	Cité description accounts	210
υ.	Grid description examples	210
	D.1. Example of a curvilinear grid description	
	D.2. Example description for an unstructured grid	 211
Or	erator index	212

1. Introduction

The Climate Data Operators (**CDO**) software is a collection of many operators for standard processing of climate and forecast model data. The operators include simple statistical and arithmetic functions, data selection and subsampling tools, and spatial interpolation. **CDO** was developed to have the same set of processing functions for GRIB [GRIB] and NetCDF [NetCDF] datasets in one package.

The Climate Data Interface [CDI] is used for the fast and file format independent access to GRIB and NetCDF datasets. The local MPI-MET data formats SERVICE, EXTRA and IEG are also supported.

There are some limitations for GRIB and NetCDF datasets. A GRIB dataset has to be consistent, similar to NetCDF. That means all time steps need to have the same variables, and within a time step each variable may occur only once. NetCDF datasets are only supported for the classic data model and arrays up to 4 dimensions. These dimensions should only be used by the horizontal and vertical grid and the time. The NetCDF attributes should follow the GDT, COARDS or CF Conventions.

The user interface and some operators are similar to the PINGO [PINGO] package.

The main **CDO** features are:

- More than 700 operators available
- Modular design and easily extendable with new operators
- Very simple UNIX command line interface
- A dataset can be processed by several operators, without storing the interim results in files
- Most operators handle datasets with missing values
- Fast processing of large datasets
- Support of many different grid types
- Tested on many UNIX/Linux systems, Cygwin, and MacOS-X

1.1. Building from sources

This section describes how to build **CDO** from the sources on a UNIX system. **CDO** uses the GNU configure and build system for compilation. The only requirement is a working ISO C++11 and ANSI C99 compiler.

First go to the download page (https://code.mpimet.mpg.de/projects/cdo) to get the latest distribution, if you do not have it yet.

To take full advantage of CDO features the following additional libraries should be installed:

- Unidata NetCDF library (https://www.unidata.ucar.edu/software/netcdf) version 3 or higher. This library is needed to process NetCDF [NetCDF] files with CDO.
- ECMWF ecCodes library (https://software.ecmwf.int/wiki/display/ECC/ecCodes+Home) version 2.3.0 or higher. This library is needed to process GRIB2 files with **CDO**.
- HDF5 szip library (http://www.hdfgroup.org/doc_resource/SZIP) version 2.1 or higher. This library is needed to process szip compressed GRIB [GRIB] files with **CDO**.
- HDF5 library (http://www.hdfgroup.org/HDF5) version 1.6 or higher.
 This library is needed to import CM-SAF [CM-SAF] HDF5 files with the CDO operator import_cmsaf.

Introduction Usage

• PROJ.4 library (http://trac.osgeo.org/proj) version 4.6 or higher.

This library is needed to convert Sinusoidal and Lambert Azimuthal Equal Area coordinates to geographic coordinates, for e.g. remapping.

Magics library (https://software.ecmwf.int/wiki/display/MAGP/Magics) version 2.18 or higher.
 This library is needed to create contour, vector and graph plots with CDO.

CDO is a multi-threaded application. Therefor all the above libraries should be compiled thread safe. Using non-threadsafe libraries could cause unexpected errors!

1.1.1. Compilation

Compilation is done by performing the following steps:

1. Unpack the archive, if you haven't done that yet:

```
gunzip cdo-$VERSION.tar.gz  # uncompress the archive
tar xf cdo-$VERSION.tar  # unpack it
cd cdo-$VERSION
```

2. Run the configure script:

```
./configure
```

• Optionaly with NetCDF [NetCDF] support:

```
./configure --with-netcdf=<NetCDF root directory>
```

• and with ecCodes:

```
./configure --with-eccodes=<ecCodes root directory>
```

For an overview of other configuration options use

```
./configure --help
```

3. Compile the program by running make:

```
make
```

The program should compile without problems and the binary (cdo) should be available in the src directory of the distribution.

1.1.2. Installation

After the compilation of the source code do a make install, possibly as root if the destination permissions require that.

```
make install
```

The binary is installed into the directory <prefix>/bin. <prefix> defaults to /usr/local but can be changed with the -prefix option of the configure script.

Alternatively, you can also copy the binary from the src directory manually to some bin directory in your search path.

1.2. Usage

This section descibes how to use **CDO**. The syntax is:

```
cdo [ Options ] Operator1 [ -Operator2 [ -OperatorN ] ]
```

Usage Introduction

1.2.1. Options

All options have to be placed before the first operator. The following options are available for all operators:

-a Generate an absolute time axis.

-b <nbits> Set the number of bits for the output precision. The valid precisions depend on the file format:

<format></format>	<nbits></nbits>
0 , 0	P1 - P24
nc1, nc2, nc4, nc4c	I8/I16/I32/F32/F64
grb2, srv, ext, ieg	F32/F64

For srv, ext and ieg format the letter L or B can be added to set the byteorder to Little or Big endian.

--cmor CMOR conform NetCDF output.

-C, --color Colorized output messages.

-f < format> Set the output file format. The valid file formats are:

File format	<format></format>
GRIB version 1	grb1/grb
GRIB version 2	grb2
NetCDF	nc1
NetCDF version 2 (64-bit offset)	nc2/nc
NetCDF-4 (HDF5)	nc4
NetCDF-4 classic	nc4c
NetCDF version 5 (64-bit data)	nc5
SERVICE	srv
EXTRA	ext
IEG	ieg

GRIB2 is only available if **CDO** was compiled with GRIB_API support and all NetCDF file types are only available if **CDO** was compiled with NetCDF support!

-g < grid > Define the default grid description by name or from file (see chapter 1.3 on page 11).

Available grid names are: r<NX>x<NY>, lon=<LON>/lat=<LAT>, n<N>, gme<NI>

-h, --help Help information for the operators.

--no history Do not append to NetCDF history global attribute.

--netcdf_hdr_pad, --hdr_pad, --header_pad <nbr>

Pad NetCDF output header with nbr bytes.

-k < chunktype> NetCDF4 chunk type: auto, grid or lines.

-L Lock I/O (sequential access).

-M Switch to indicate that the I/O streams have missing values.
-m < missval> Set the missing value of non NetCDF files (default: -9e+33).

-O Overwrite existing output file, if checked.

Existing output file is checked only for: ens<STAT>, merge, mergetime

--operators List of all operators.

-P < nthreads > Set number of OpenMP threads (Only available if OpenMP support was compiled in).

--percentile < method>

Percentile method: nrank nist numpy numpy_lower numpy_higher numpy_nearest

--reduce_dim Reduce NetCDF dimensions.

-R, --regular Convert GRIB1 data from reduced to regular grid (only with cgribex lib).

-r Generate a relative time axis.

-S Create an extra output stream for the module TIMSTAT. This stream contains

the number of non missing values for each output period.

-s, --silent Silent mode.

--sortname Alphanumeric sorting of NetCDF parameter names.

-t < partab> Set the GRIB1 (cgribex) default parameter table name or file (see chapter 1.6 on page 16).

Predefined tables are: echam4 echam5 echam6 mpiom1 ecmwf remo

--timestat date <srcdate>

Introduction Usage

1.2.2. Environment variables

There are some environment variables which influence the behavior of **CDO**. An incomplete list can be found in Appendix A.

Here is an example to set the environment variable CDO_RESET_HISTORY for different shells:

```
Bourne shell (sh): CDO_RESET_HISTORY=1 ; export CDO_RESET_HISTORY
Korn shell (ksh): export CDO_RESET_HISTORY=1
C shell (csh): setenv CDO_RESET_HISTORY 1
```

1.2.3. Operators

There are more than 700 operators available. A detailed description of all operators can be found in the **Reference Manual** section.

1.2.4. Operator chaining

All operators with a fixed number of input streams and one output stream can pipe the result directly to an other operator. The operator must begin with "-", in order to combine it with others. This can improve the performance by:

- reducing unnecessary disk I/O
- parallel processing

Use

```
cdo sub -dayavg infile2 -timavg infile1 outfile
```

instead of

```
cdo timavg infile1 tmp1
cdo dayavg infile2 tmp2
cdo sub tmp2 tmp1 outfile
rm tmp1 tmp2
```

Note: Operator chaining is implemented over POSIX Threads (pthreads). Therefore this **CDO** feature is not available on operating systems without POSIX Threads support!

All operators with an arbitrary number of input streams (infiles) can't be combined with other operators if these operators are used with more than one input stream. Here is an incomplete list of these operators: copy, cat, merge, mergetime, select, ens < STAT >

Use single quotes if the input stream names are generated with wildcards. In this case CDO will do the pattern matching and the output can be combined with other operators. Here is an example for this feature:

```
cdo timavg -select,name=temperature 'infile?' outfile
```

Usage Introduction

The CDO internal wildcard expansion is using the glob() function. Therefore internal wildcard expansion is not available on operating systems without the glob() function!

All operators with one input stream will process only one input stream! You need to take care when mixing those operators with operator with an arbitrary number of input streams. The following examples illustrate this problem.

- 1. cdo info -timavg infile?
- 2. cdo info -timavg infile1 infile2
- 3. cdo timavg infile1 tmpfile cdo info tmpfile infile2

All three examples produce identical results. The time average will be computed only on the first input file.

1.2.5. Parallelized operators

Some of the **CDO** operators are shared memory parallelized with OpenMP. An OpenMP-enabled C compiler is needed to use this feature. Users may request a specific number of OpenMP threads nthreads with the '-P' switch.

Here is an example to distribute the bilinear interpolation on 8 OpenMP threads:

```
cdo -P 8 remapbil, targetgrid infile outfile
```

Many **CDO** operators are I/O-bound. This means most of the time is spend in reading and writing the data. Only compute intensive **CDO** operators are parallelized. An incomplete list of OpenMP parallelized operators can be found in Appendix B.

1.2.6. Operator parameter

Some operators need one or more parameter. A list of parameter is indicated by the seperator ','.

• STRING

Unquoted characters without blanks and tabs. The following command select variables with the name pressure and tsurf:

```
cdo selvar, pressure, tsurf infile outfile
```

• FLOAT

Floating point number in any representation. The following command sets the range between 0 and 273.15 of all fields to missing value:

```
cdo setrtomiss,0,273.15 infile outfile
```

• BOOL

Boolean parameter in the following representation TRUE/FALSE, T/F or 0/1. To disable the weighting by grid cell area in the calculation of a field mean, use:

```
cdo fldmean, weights=FALSE infile outfile
```

• INTEGER

A range of integer parameter can be specified by first/last[/inc]. To select the days 5, 6, 7, 8 and 9 use:

```
cdo selday,5/9 infile outfile
```

The result is the same as:

```
cdo selday, 5, 6, 7, 8, 9 infile outfile
```

Introduction Horizontal grids

1.3. Horizontal grids

Physical quantities of climate models are typically stored on a horizonal grid. The maximum number of supported grid cells is 2147483647 (INT_MAX). This corresponds to a global regular lon/lat grid with 65455x32727 grid cells and a global resolution of 0.0055 degree.

1.3.1. Grid area weights

One single point of a horizontal grid represents the mean of a grid cell. These grid cells are typically of different sizes, because the grid points are of varying distance.

Area weights are individual weights for each grid cell. They are needed to compute the area weighted mean or variance of a set of grid cells (e.g. fldmean - the mean value of all grid cells). In **CDO** the area weights are derived from the grid cell area. If the cell area is not available then it will be computed from the geographical coordinates via spherical triangles. This is only possible if the geographical coordinates of the grid cell corners are available or derivable. Otherwise **CDO** gives a warning message and uses constant area weights for all grid cells.

The cell area is read automatically from a NetCDF input file if a variable has the corresponding "cell_measures" attribute, e.g.:

```
var:cell_measures = "area: cell_area" ;
```

If the computed cell area is not desired then the **CDO** operator setgridarea can be used to set or overwrite the grid cell area.

1.3.2. Grid description

In the following situations it is necessary to give a description of a horizontal grid:

- Changing the grid description (operator: setgrid)
- Horizontal interpolation (all remapping operators)
- Generating of variables (operator: const, random)

As now described, there are several possibilities to define a horizontal grid.

1.3.2.1. Predefined grids

Predefined grids are available for global regular, gaussian or icosahedral-hexagonal GME grids.

Global regular grid: global_<DXY>

global_<DXY> defines a global regular lon/lat grid. The grid increment <DXY> can be selected at will. The longitudes start at <DXY>/2 - 180° and the latitudes start at <DXY>/2 - 90° .

Global regular grid: r<NX>x<NY>

r<NX>x<NY> defines a global regular lon/lat grid. The number of the longitudes <NX> and the latitudes <NY> can be selected at will. The longitudes start at 0° with an increment of $(360/\langle NX\rangle)^{\circ}$. The latitudes go from south to north with an increment of $(180/\langle NY\rangle)^{\circ}$.

Horizontal grids Introduction

One grid point: lon=<LON>/lat=<LAT>

lon=<LON>/lat=<LAT> defines a lon/lat grid with only one grid point.

Global Gaussian grid: n<N>

n<N> defines a global Gaussian grid. N specifies the number of latitudes lines between the Pole and the Equator. The longitudes start at 0° with an increment of $(360/\text{nlon})^{\circ}$. The gaussian latitudes go from north to south.

Global icosahedral-hexagonal GME grid: gme<NI>

gme<NI> defines a global icosahedral-hexagonal GME grid. NI specifies the number of intervals on a main triangle side.

1.3.2.2. Grids from data files

You can use the grid description from an other datafile. The format of the datafile and the grid of the data field must be supported by CDO. Use the operator 'sinfo' to get short informations about your variables and the grids. If there are more then one grid in the datafile the grid description of the first variable will be used. Add the extension :N to the name of the datafile to select grid number N.

1.3.2.3. SCRIP grids

SCRIP (Spherical Coordinate Remapping and Interpolation Package) uses a common grid description for curvilinear and unstructured grids. For more information about the convention see [SCRIP]. This grid description is stored in NetCDF. Therefor it is only available if **CDO** was compiled with NetCDF support!

SCRIP grid description example of a curvilinear MPIOM [MPIOM] GROB3 grid (only the NetCDF header):

```
netcdf grob3s {
dimensions:
          grid\_size = 12120;
          grid_xsize = 120;
          grid\_ysize = 101;
          grid\_corners = 4
          grid\_rank = 2;
variables:
          int grid_dims(grid_rank);
          float grid_center_lat(grid_ysize, grid_xsize) ;
                     grid_center_lat:units = "degrees";
          grid_center_lat:bounds = "grid_corner_lat"
float grid_center_lon(grid_ysize, grid_xsize);
    grid_center_lon:units = "degrees";
                     grid_center_lon:bounds = "grid_corner_lon" ;
          int grid_imask(grid_ysize, grid_xsize)
    grid_imask:units = "unitless"
                     grid\_imask:coordinates = "grid\_center\_lon \ grid\_center\_lat" \ ;
          float grid_corner_lat(grid_ysize, grid_xs
grid_corner_lat:units = "degrees"
                                                       grid_xsize, grid_corners);
          float grid_corner_lon(grid_ysize, grid_xsize, grid_corners);
     grid_corner_lon:units = "degrees";
  global attributes:
                     : title = "grob3s";
```

Introduction Horizontal grids

1.3.2.4. CDO grids

All supported grids can also be described with the **CDO** grid description. The following keywords can be used to describe a grid:

Keyword	Datatype	Description
gridtype	STRING	Type of the grid (gaussian, lonlat, curvilinear, unstructured).
${f gridsize}$	INTEGER	Size of the grid.
xsize	INTEGER	Size in x direction (number of longitudes).
ysize	INTEGER	Size in y direction (number of latitudes).
xvals	FLOAT ARRAY	X values of the grid cell center.
$\mathbf{y}\mathbf{v}\mathbf{a}\mathbf{l}\mathbf{s}$	FLOAT ARRAY	Y values of the grid cell center.
$\mathbf{nvertex}$	INTEGER	Number of the vertices for all grid cells.
${f xbounds}$	FLOAT ARRAY	X bounds of each gridbox.
${f y}{f bounds}$	FLOAT ARRAY	Y bounds of each gridbox.
xfirst, xinc	FLOAT, FLOAT	Macros to define xvals with a constant increment,
		xfirst is the x value of the first grid cell center.
yfirst, yinc	FLOAT, FLOAT	Macros to define yvals with a constant increment,
		yfirst is the y value of the first grid cell center.
\mathbf{xunits}	STRING	units of the x axis
\mathbf{yunits}	STRING	units of the y axis

Which keywords are necessary depends on the gridtype. The following table gives an overview of the default values or the size with respect to the different grid types.

gridtype	lonlat	gaussian	projection	curvilinear	unstructured
gridsize	xsize*ysize	xsize*ysize	xsize*ysize	xsize*ysize	ncell
xsize	nlon	nlon	nx	nlon	gridsize
ysize	nlat	nlat	ny	nlat	gridsize
xvals	xsize	xsize	xsize	gridsize	gridsize
yvals	ysize	ysize	ysize	gridsize	gridsize
nvertex	2	2	2	4	nv
xbounds	2*xsize	2*xsize	2*xsize	4*gridsize	nv*gridsize
ybounds	2*ysize	2*ysize	2*xsize	4*gridsize	nv*gridsize
xunits	degrees	degrees	m	degrees	degrees
yunits	degrees	degrees	m	degrees	degrees

The keywords nvertex, xbounds and ybounds are optional if area weights are not needed. The grid cell corners xbounds and ybounds have to rotate counterclockwise.

CDO grid description example of a T21 gaussian grid:

```
gridtype = gaussian
xsize
         = 64
         = 32
y\,s\,i\,z\,e
xfirst
         = 0
         = 5.625
xinc
yvals
         = 85.76
                    80.27
                           74.75
                                   69.21
                                           63.68
                                                   58.14
                                                           52.61
                                                                  47.07
                   36.00
                           30.46
                                   24.92
            41.53
                                          19.38
                                                  13.84
                                                           8.31
                                                                   2.77
            -2.77
                   -8.31 -13.84 -19.38 -24.92 -30.46
                                                         -36.00 -41.53
           -47.07
                  -52.61
                          -58.14 -63.68
                                          -69.21
                                                  -74.75
                                                          -80.27
```

CDO grid description example of a global regular grid with 60x30 points:

```
gridtype = lonlat
xsize = 60
ysize = 30
```

Z-axis description Introduction

```
\begin{array}{rcl}
x & \text{first} & = -177 \\
x & \text{inc} & = 6 \\
y & \text{first} & = -87 \\
y & \text{inc} & = 6
\end{array}
```

The description for a projection is somewhat more complicated. Use the first section to describe the coordinates of the projection with the above keywords. Add the keyword **grid_mapping_name** to descibe the mapping between the given coordinates and the true latitude and longitude coordinates. **grid_mapping_name** takes a string value that contains the name of the projection. A list of attributes can be added to define the mapping. The name of the attributes depend on the projection. The valid names of the projection and there attributes follow the NetCDF CF-Convention.

CDO supports the special grid mapping attribute **proj4_params**. These parameter will be passed directly to the proj4 library to generate the geographic coordinates if needed.

The geographic coordinates of the following projections can be generated without the attribute **proj4_params**, if all other attributes are available:

- $\bullet \ \ rotated_latitude_longitude$
- lambert conformal conic
- lambert_azimuthal_equal_area
- sinusoidal

CDO grid description example of a regional rotated lon/lat grid:

```
gridtype = projection
xsize
          = 81
ysize
          = 91
          = "degrees"
xunits
yunits
          = "degrees"
xfirst
xinc
                0.5
yfirst
              -25.0
                0.5
vinc
{\tt grid\_mapping\_name} = {\tt rotated\_latitude\_longitude}
grid\_north\_pole\_longitude = -170
grid_north_pole_latitude = 32.5
```

Example **CDO** descriptions of a curvilinear and an unstructured grid can be found in Appendix D.

1.4. Z-axis description

Sometimes it is necessary to change the description of a z-axis. This can be done with the operator setzaxis. This operator needs an ASCII formatted file with the description of the z-axis. The following keywords can be used to describe a z-axis:

Keyword	Datatype	Description
zaxistype	STRING	type of the z-axis
\mathbf{size}	INTEGER	number of levels
levels	FLOAT ARRAY	values of the levels
lbounds	FLOAT ARRAY	lower level bounds
${f ubounds}$	FLOAT ARRAY	upper level bounds
$\mathbf{vctsize}$	INTEGER	number of vertical coordinate parameters
\mathbf{vct}	FLOAT ARRAY	vertical coordinate table

The keywords **lbounds** and **ubounds** are optional. **vctsize** and **vct** are only necessary to define hybrid model levels.

Introduction Time axis

Available z-axis types:

Z-axis type	Description	Units
surface	Surface	
pressure	Pressure level	pascal
hybrid	Hybrid model level	
height	Height above ground	meter
$depth_below_sea$	Depth below sea level	meter
$depth_below_land$	Depth below land surface	centimeter
isentropic	Isentropic (theta) level	kelvin

Z-axis description example for pressure levels 100, 200, 500, 850 and 1000 hPa:

```
zaxistype = pressure
size = 5
levels = 10000 20000 50000 85000 100000
```

Z-axis description example for ECHAM5 L19 hybrid model levels:

Note that the vctsize is twice the number of levels plus two and the vertical coordinate table must be specified for the level interfaces.

1.5. Time axis

A time axis describes the time for every timestep. Two time axis types are available: absolute time and relative time axis. **CDO** tries to maintain the actual type of the time axis for all operators.

1.5.1. Absolute time

An absolute time axis has the current time to each time step. It can be used without knowledge of the calendar. This is preferably used by climate models. In NetCDF files the absolute time axis is represented by the unit of the time: "day as %Y%m%d.%f".

1.5.2. Relative time

A relative time is the time relative to a fixed reference time. The current time results from the reference time and the elapsed interval. The result depends on the calendar used. **CDO** supports the standard Gregorian, proleptic Gregorian, 360 days, 365 days and 366 days calendars. The relative time axis is preferably used by numerical weather prediction models. In NetCDF files the relative time axis is represented by the unit of the time: "time-units since reference-time", e.g "days since 1989-6-15 12:00".

Parameter table Introduction

1.5.3. Conversion of the time

Some programs which work with NetCDF data can only process relative time axes. Therefore it may be necessary to convert from an absolute into a relative time axis. This conversion can be done for each operator with the **CDO** option '-r'. To convert a relative into an absolute time axis use the **CDO** option '-a'.

1.6. Parameter table

A parameter table is an ASCII formated file to convert code numbers to variable names. Each variable has one line with its code number, name and a description with optional units in a blank separated list. It can only be used for GRIB, SERVICE, EXTRA and IEG formated files. The **CDO** option '-t <partab>' sets the default parameter table for all input files. Use the operator 'setpartab' to set the parameter table for a specific file.

Example of a **CDO** parameter table:

```
134
                 surface pressure [Pa]
                 snow depth [m]
141
      sn
147
      ahfl
                 latent heat flux [W/m**2]
      _{\mathrm{slm}}
172
                 land sea mask
175
                 surface albedo
      albedo
211
      siced
                 ice depth [m]
```

1.7. Missing values

Most operators can handle missing values. The default missing value for GRIB, SERVICE, EXTRA and IEG files is $-9.e^{33}$. The **CDO** option '-m <missval>' overwrites the default missing value. In NetCDF files the variable attribute '_FillValue' is used as a missing value. The operator 'setmissval' can be used to set a new missing value.

The **CDO** use of the missing value is shown in the following tables, where one table is printed for each operation. The operations are applied to arbitrary numbers a, b, the special case 0, and the missing value miss. For example the table named "addition" shows that the sum of an arbitrary number a and the missing value is the missing value, and the table named "multiplication" shows that 0 multiplied by missing value results in 0.

Introduction Percentile

addition	b		miss
a	a+b		miss
miss	miss		miss
subtraction	b		miss
a	a-b		miss
miss	miss		miss
multiplication	b	0	miss
a	a*b	0	miss
0	0	0	0
miss	miss	0	miss
division	b	0	miss
a	a/b	miss	miss
0	0	miss	miss
miss	miss	miss	miss
maximum	b		miss
a	max(a, b)		a
miss	b		miss
minimum	b		miss
a	min(a,b)		a
miss	b		miss
sum	b		miss
a	a + b		a
miss	b		miss

The handling of missing values by the operations "minimum" and "maximum" may be surprising, but the definition given here is more consistent with that expected in practice. Mathematical functions (e.g. log, sqrt, etc.) return the missing value if an argument is the missing value or an argument is out of range.

All statistical functions ignore missing values, treading them as not belonging to the sample, with the side-effect of a reduced sample size.

1.7.1. Mean and average

An artificial distinction is made between the notions mean and average. The mean is regarded as a statistical function, whereas the average is found simply by adding the sample members and dividing the result by the sample size. For example, the mean of 1, 2, miss and 3 is (1+2+3)/3=2, whereas the average is (1+2+miss+3)/4=miss/4=miss. If there are no missing values in the sample, the average and mean are identical.

1.8. Percentile

There is no standard definition of percentile. All definitions yield to similar results when the number of values is very large. The following percentile methods are available in **CDO**:

Percentile Introduction

Percentile method	Description
nrank	Nearest Rank method, the default method used in CDO
nist	The primary method recommended by NIST
numpy	numpy.percentile with the option interpolation set to 'linear'
numpy_lower	numpy.percentile with the option interpolation set to 'lower'
numpy_higher	numpy.percentile with the option interpolation set to 'higher'
numpy_nearest	numpy.percentile with the option interpolation set to 'nearest'

The percentile method can be selected with the **CDO** option --percentile. The Nearest Rank method is the default percentile method in **CDO**.

The different percentile methods can lead to different results, especially for small number of data values. Consider the ordered list {15, 20, 35, 40, 50, 55}, which contains six data values. Here is the result for the 30th, 40th, 50th, 75th and 100th percentiles of this list using the different percentile methods:

Percentile P	nrank	nist	numpy	numpy lower	numpy higher	numpy nearest
30th	20	21.5	27.5	20	35	35
40th	35	32	35	35	35	35
50th	35	37.5	37.5	35	40	40
75th	50	51.25	47.5	40	50	50
100th	55	55	55	55	55	55

1.8.1. Percentile over timesteps

The amount of data for time series can be very large. All data values need to held in memory to calculate the percentile. The percentile over timesteps uses a histogram algorithm, to limit the amount of required memory. The default number of histogram bins is 101. That means the histogram algorithm is used, when the dataset has more than 101 time steps. The default can be overridden by setting the environment variable CDO_PCTL_NBINS to a different value. The histogram algorithm is implemented only for the Nearest Rank method.

2. Reference manual

This section gives a description of all operators. Related operators are grouped to modules. For easier description all single input files are named infile or infile1, infile2, etc., and an arbitrary number of input files are named infiles. All output files are named outfile or outfile1, outfile2, etc. Further the following notion is introduced:

- i(t) Timestep t of infile
- i(t,x) Element number x of the field at timestep t of infile
- o(t) Timestep t of outfile
- o(t,x) Element number x of the field at timestep t of outfile

Information Reference manual

2.1. Information

This section contains modules to print information about datasets. All operators print there results to standard output.

Here is a short overview of all operators in this section:

info Dataset information listed by parameter identifier infon Dataset information listed by parameter name

map Dataset information and simple map

sinfo Short information listed by parameter identifier sinfon Short information listed by parameter name

diff Compare two datasets listed by parameter id
diffn Compare two datasets listed by parameter name

Number of parameters npar nlevel Number of levels Number of years nyear nmon Number of months ndate Number of dates Number of timesteps ntime ngridpoints Number of gridpoints ngrids Number of horizontal grids

showformatShow file formatshowcodeShow code numbersshownameShow variable namesshowstdnameShow standard namesshowattsShow all attributes

showattsglob Show all global attributes

showlevel Show levels

showltype Show GRIB level types

showyearshow monthsShow months

showdateShow date informationshowtimeShow time informationshowtimestampShow timestamp

showattribute Show a global attribute or a variable attribute

showattsvar Show all variable attributes.

partabParameter tablecodetabParameter code tablegriddesGrid descriptionzaxisdesZ-axis description

vct Vertical coordinate table

Reference manual Information

2.1.1. INFO - Information and simple statistics

Synopsis

< operator > infiles

Description

This module writes information about the structure and contents of all input files to standard output. All input files need to have the same structure with the same variables on different timesteps. The information displayed depends on the chosen operator.

Operators

info Dataset information listed by parameter identifier

Prints information and simple statistics for each field of all input datasets. For each field the operator prints one line with the following elements:

- Date and Time
- Level, Gridsize and number of Missing values
- Minimum, Mean and Maximum

 The mean value is computed without the use of area weights!
- Parameter identifier

infon Dataset information listed by parameter name

The same as operator info but using the name instead of the identifier to label the parameter.

map Dataset information and simple map

Prints information, simple statistics and a map for each field of all input datasets. The map will be printed only for fields on a regular lon/lat grid.

Example

To print information and simple statistics for each field of a dataset use:

```
cdo infon infile
```

This is an example result of a dataset with one 2D parameter over 12 timesteps:

-1 : D	ate Time Le	evel Si	ize Miss	:	Minimum	Mean	Maximum	:	Name
1 : 1987-01-	-31 12:00:00	0 20	1361	:	232.77	266.65	305.31	:	SST
2 : 1987-02-	-28 12:00:00	0 20	1361	:	233.64	267.11	307.15	:	SST
3 : 1987-03-	-31 12:00:00	0 20	1361	:	225.31	267.52	307.67	:	SST
4 : 1987-04-	-30 12:00:00	0 20	1361	:	215.68	268.65	310.47	:	SST
5 : 1987-05-	-31 12:00:00	0 20	1361	:	215.78	271.53	312.49	:	SST
6 : 1987-06-	$-30 \ 12:00:00$	0 20	1361	:	212.89	272.80	314.18	:	SST
7 : 1987-07-	-31 12:00:00	0 20	1361	:	209.52	274.29	316.34	:	SST
8 : 1987-08-	-31 12:00:00	0 20	1361	:	210.48	274.41	315.83	:	SST
9 : 1987-09-	-30 12:00:00	0 20	1361	:	210.48	272.37	312.86	:	SST
10 : 1987-10-	-31 12:00:00	0 20	1361	:	219.46	270.53	309.51	:	SST
11 : 1987-11-	$-30 \ 12:00:00$	0 20	1361	:	230.98	269.85	308.61	:	SST
12 : 1987-12-	-31 12:00:00	0 20	048 1361	:	241.25	269.94	309.27	:	SST

Information Reference manual

2.1.2. SINFO - Short information

Synopsis

```
<operator> infiles
```

Description

This module writes information about the structure of infiles to standard output. infiles is an arbitrary number of input files. All input files need to have the same structure with the same variables on different timesteps. The information displayed depends on the chosen operator.

Operators

sinfo

Short information listed by parameter identifier

Prints short information of a dataset. The information is divided into 4 sections. Section 1 prints one line per parameter with the following information:

- institute and source
- time c=constant v=varying
- type of statistical processing
- number of levels and z-axis number
- horizontal grid size and number
- data type
- parameter identifier

Section 2 and 3 gives a short overview of all grid and vertical coordinates. And the last section contains short information of the time coordinate.

sinfon

Short information listed by parameter name

The same as operator sinfo but using the name instead of the identifier to label the parameter.

Example

To print short information of a dataset use:

```
cdo sinfon infile
```

This is the result of an ECHAM5 dataset with 3 parameter over 12 timesteps:

```
-1: Institut Source
                                                                                                                                                                                                                                                                  T Steptype Levels Num
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     Points Num Dtype : Name
                                                  1 : MPIMET
                                                                                                                                                                                 ECHAM5
                                                                                                                                                                                                                                                                   c instant
                                                                                                                                                                                                                                                                                                                                                                                                                                  1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                         1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       2048
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        F32
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            : GEOSP
                                                                                                                                                                                                                                                                                                                                                                                                                                                                          2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             : T
                                                  2 : MPIMET
                                                                                                                                                                                 ECHAM5
                                                                                                                                                                                                                                                                 v instant
                                                                                                                                                                                                                                                                                                                                                                                                                                   4
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       2048
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          F32
                                                                                                                                                                                                                                                                                                                                                                                                                                   1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                          1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       2048
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        F32
                                                  3 : MPIMET
                                                                                                                                                                                 ECHAM5 v instant
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             : TSURF
                                Grid coordinates:
                                                                                                                                                                                                                                                                                                                       : points = 2048 (64x32) np=16
                                                  1 : gaussian
                                                                                                                                                                                                                   longitude: 0 to 354.375 by 5.625 degrees_east
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 circular
                                                                                                                                                                                                                             latitude : 85.7606 to -85.7606 degrees_north
                                 Vertical coordinates :
                                                  1 : surface
                                                                                                                                                                                                                                                                                                                                       levels=1
                                                  2 : pressure
                                                                                                                                                                                                                                                                                                                                       levels=4
                                                                                                                                                                                                                                                                                                                     : 92500 to 20000 Pa
                                                                                                                                                                                                                                                           level
                             Time coordinate: 12 steps
YYYY-MM-DD hh:mm:ss YYYY-MM-DD hh:mm:ss YYYY-MM-DD hh:mm:ss YYYY-MM-DD hh:mm:ss
1987 - 01 - 31 \quad 12:00:00 \quad 1987 - 02 - 28 \quad 12:00:00 \quad 1987 - 03 - 31 \quad 12:00:00 \quad 1987 - 04 - 30 \quad 12:00:00 \quad 1987 - 100:00 \quad 1987 - 100:0
1987 - 05 - 31 \quad 12:00:00 \quad 1987 - 06 - 30 \quad 12:00:00 \quad 1987 - 07 - 31 \quad 12:00:00 \quad 1987 - 08 - 31 \quad 12:00:00 \quad 1987 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 - 108 -
 1987 - 09 - 30 \quad 12:00:00 \quad 1987 - 10 - 31 \quad 12:00:00 \quad 1987 - 11 - 30 \quad 12:00:00 \quad 1987 - 12 - 31 \quad 12:00:00 \quad
```

Reference manual Information

2.1.3. DIFF - Compare two datasets field by field

Synopsis

```
<operator> infile1 infile2
```

Description

Compares the contents of two datasets field by field. The input datasets need to have the same structure and its fields need to have the same header information and dimensions.

Operators

diff Compare two datasets listed by parameter id

Provides statistics on differences between two datasets. For each pair of fields the operator prints one line with the following information:

- Date and Time
- Level, Gridsize and number of Missing values
- Number of different values
- Occurrence of coefficient pairs with different signs (S)
- Occurrence of zero values (Z)
- Maxima of absolute difference of coefficient pairs
- Maxima of relative difference of non-zero coefficient pairs with equal signs
- Parameter identifier

$$Absdiff(t,x) = |i_1(t,x) - i_2(t,x)|$$

$$Reldiff(t,x) = \frac{|i_1(t,x) - i_2(t,x)|}{\max(|i_1(t,x)|, |i_2(t,x)|)}$$

diffn

Compare two datasets listed by parameter name

The same as operator diff. Using the name instead of the identifier to label the parameter.

Example

To print the difference for each field of two datasets use:

```
cdo diffn infile1 infile2
```

This is an example result of two datasets with one 2D parameter over 12 timesteps:

```
Diff:
                                                      S Z Max Absdiff Max Reldiff:
             Date
                     Time Level Size
                                       Miss
                                                                                         Name
     1987-01-31 12:00:00
                                               273
                                                      \mathbf{F}
                                                        F
                                                            0.00010681
                                                                          4.1660e-07
                               0
                                 2048
                                        1361
                                                                                         SST
     1987 - 02 - 28
                  12:00:00
                                 2048
                                               309
                                                      \mathbf{F}
                                                        F
                                                                          2.3742\,\mathrm{e}\!-\!07
                                                                                         SST
                                        1361
                                                            6.1035e-05
3 : 1987 - 03 - 31
                  12:00:00
                               0
                                 2048
                                       1361
                                               292
                                                   : F
                                                            7.6294e-05
                                                                          3.3784e - 07
                                                                                         SST
     1987-04-30 12:00:00
                               0
                                 2048
                                       1361
                                               183
                                                   : F F
                                                            7.6294e-05
                                                                          3.5117e - 07
                                                                                         SST
                                                   : F F
                                                                          4.0307\,\mathrm{e}\,{-}07
                                                                                         SST
     1987-05-31 12:00:00
                               0
                                 2048 1361
                                               207
                                                            0.00010681
     1987-07-31 12:00:00
                                 2048 1361
                                               317
                                                   : F F
                                                            9.1553e-05
                                                                          3.5634e-07
                                                                                         SST
                                                   : F F
  : 1987-08-31 12:00:00
                                 2048 1361
                                               219
                                                            7.6294\,\mathrm{e}\!-\!05
                                                                          2.8849e - 07
                                                                                         SST
9 : 1987 - 09 - 30 \ 12:00:00
                                                   : F F
                               0 2048 1361
                                               188
                                                            7.6294e-05
                                                                          3.6168e - 07
                                                                                         SST
10 : 1987-10-31 12:00:00
                               0 2048 1361
                                               297
                                                   : F F
                                                            9.1553e - 05
                                                                          3.5001e-07
                                                                                         SST
                                               234 : F F
11 : 1987 - 11 - 30 \ 12:00:00
                               0 2048 1361
                                                            6.1035e-05
                                                                          2.3839e-07:
                                                                                         SST
12 : 1987-12-31 12:00:00
                               0 2048 1361
                                               267 : F F
                                                            9.3553e-05
                                                                          3.7624e-07:
                                                                                         SST
11 of 12 records differ
```

Information Reference manual

2.1.4. NINFO - Print the number of parameters, levels or times

Synopsis

< operator > infile

Description

This module prints the number of variables, levels or times of the input dataset.

Operators

npar Number of parameters

Prints the number of parameters (variables).

nlevel Number of levels

Prints the number of levels for each variable.

nyear Number of years

Prints the number of different years.

nmon Number of months

Prints the number of different combinations of years and months.

ndate Number of dates

Prints the number of different dates.

ntime Number of timesteps

Prints the number of timesteps.

ngridpoints Number of gridpoints

Prints the number of gridpoints for each variable.

ngrids Number of horizontal grids

Prints the number of horizontal grids.

Example

To print the number of parameters (variables) in a dataset use:

cdo npar infile

To print the number of months in a dataset use:

cdo nmon infile

Reference manual Information

2.1.5. SHOWINFO - Show variables, levels or times

Synopsis

< operator > infile

Description

This module prints the format, variables, levels or times of the input dataset.

Operators

showformat Show file format

Prints the file format of the input dataset.

showcode Show code numbers

Prints the code number of all variables.

showname Show variable names

Prints the name of all variables.

showstdname Show standard names

Prints the standard name of all variables.

showatts Show all attributes

Prints all variable and global attributes.

showattsglob Show all global attributes

Prints all global attributes.

showlevel Show levels

Prints all levels for each variable.

showltype Show GRIB level types

Prints the GRIB level type for all z-axes.

showyear Show years

Prints all years.

showmon Show months

Prints all months.

showdate Show date information

Prints date information of all timesteps (format YYYY-MM-DD).

showtime Show time information

Prints time information of all timesteps (format hh:mm:ss).

showtimestamp Show timestamp

Prints timestamp of all timesteps (format YYYY-MM-DDThh:mm:ss).

Example

To print the code number of all variables in a dataset use:

cdo showcode infile

This is an example result of a dataset with three variables:

129 130 139

To print all months in a dataset use:

Information Reference manual

cdo showmon infile

This is an examples result of a dataset with an annual cycle:

 $1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \ 9 \ 10 \ 11 \ 12$

Reference manual Information

2.1.6. SHOWATTRIBUTE - Show a global attribute, a variable attribute or all attributes of one variable

Synopsis

```
showattribute,attribute infile
showattsvar[,var_nm] infile
```

Description

This operator prints attributes of a dataset. If a global attribute should be printed, the attribute name can be specified as a parameter directly. If a variable attribute should be printed, the following format is requested:

```
var_nm@att_nm
var_nm Variable name. Example: pressure
att_nm Attribute name. Example: units
```

Operators

showattribute Show a global attribute or a variable attribute

showattsvar Show all variable attributes.

If var_nm is specified, only for a subset of variables.

Parameter

attribute STRING Attribute in the format [var_nm@]att_nm

var_nm STRING Variable name

Information Reference manual

2.1.7. FILEDES - Dataset description

Synopsis

< operator > infile

Description

This module provides operators to print meta information about a dataset. The printed meta-data depends on the chosen operator.

Operators

partab Parameter table

Prints all available meta information of the variables.

codetab Parameter code table

Prints a code table with a description of all variables. For each variable the operator

prints one line listing the code, name, description and units.

griddes Grid description

Prints the description of all grids.

zaxisdes Z-axis description

Prints the description of all z-axes.

vct Vertical coordinate table

Prints the vertical coordinate table.

Example

Assume all variables of the dataset are on a Gaussian N16 grid. To print the grid description of this dataset use:

```
cdo griddes infile
```

Result:

```
gridtype
           : gaussian
           : 2048
gridsize
xname
            : lon
xlongname : longitude
xunits
            : degrees_east
yname
            : lat
ylongname : latitude
           : degrees_north
yunits
xsize
            : 64
ysize
            : 32
xfirst
            : 0
            : 5.625
xinc
            : \ 85.76058 \ \ 80.26877 \ \ 74.74454 \ \ 69.21297 \ \ \ 63.67863 \ \ 58.1429 \ \ 52.6065
yvals
              47.06964 \ \ 41.53246 \ \ 35.99507 \ \ 30.4575 \ \ 24.91992 \ \ 19.38223 \ \ 13.84448
              8.306702 \ \ 2.768903 \ \ -2.768903 \ \ -8.306702 \ \ -13.84448 \ \ -19.38223
               -24.91992 \ \ -30.4575 \ \ -35.99507 \ \ -41.53246 \ \ -47.06964 \ \ -52.6065
               -58.1429 -63.67863 -69.21297 -74.74454 -80.26877 -85.76058
```

Reference manual File operations

2.2. File operations

This section contains modules to perform operations on files.

Here is a short overview of all operators in this section:

copy Copy datasets

cat Concatenate datasets

tee Duplicate a data stream

replace Replace variables

duplicate Duplicates a dataset

mergegrid Merge grid

merge Merge datasets with different fieldsmergetime Merge datasets sorted by date and time

splitcode Split code numbers

splitparam Split parameter identifiers splitname Split variable names

splitlevelSplit levelssplitgridSplit gridssplitzaxisSplit z-axes

splittabnum Split parameter table numbers

splithourSplit hourssplitdaySplit dayssplitseasSplit seasonssplityearSplit years

splityearmon Split in years and months

splitmon Split months

splitsel Split time selection

distgrid Distribute horizontal grid

collgrid Collect horizontal grid

File operations Reference manual

2.2.1. COPY - Copy datasets

Synopsis

< operator > infiles outfile

Description

This module contains operators to copy or concatenate datasets. infiles is an arbitrary number of input files. All input files need to have the same structure with the same variables on different timesteps.

Operators

copy Copy datasets

Copies all input datasets to outfile.

cat Concatenate datasets

Concatenates all input datasets and appends the result to the end of outfile. If outfile does not exist it will be created.

Example

To change the format of a dataset to NetCDF use:

```
cdo -f nc copy infile outfile.nc
```

Add the option '-r' to create a relative time axis, as is required for proper recognition by GrADS or Ferret:

```
cdo -r -f nc copy infile outfile.nc
```

To concatenate 3 datasets with different timesteps of the same variables use:

```
cdo copy infile1 infile2 infile3 outfile
```

If the output dataset already exists and you wish to extend it with more timesteps use:

```
cdo cat infile1 infile2 infile3 outfile
```

Reference manual File operations

2.2.2. TEE - Duplicate a data stream

Synopsis

tee infile outfile1 outfile2

Description

This operator copies the input datasets to outfile1 and outfile2. It can be used to store intermediate results to a file.

Example

To compute the daily and monthy average of a dataset use:

cdo monavg -tee dayavg infile outfile_dayavg outfile_monavg

File operations Reference manual

2.2.3. REPLACE - Replace variables

Synopsis

replace infile1 infile2 outfile

Description

The replace operator replaces variables in infile1 by variables from infile2 and write the result to outfile. Both input datasets need to have the same number of timesteps.

Example

Assume the first input dataset infile1 has three variables with the names geosp, t and tslm1 and the second input dataset infile2 has only the variable tslm1. To replace the variable tslm1 in infile1 by tslm1 from infile2 use:

cdo replace infile1 infile2 outfile

2.2.4. DUPLICATE - Duplicates a dataset

Synopsis

duplicate/,ndup/ infile outfile

Description

This operator duplicates the contents of infile and writes the result to outfile. The optional parameter sets the number of duplicates, the default is 2.

Parameter

ndup INTEGER Number of duplicates, default is 2.

2.2.5. MERGEGRID - Merge grid

Synopsis

mergegrid infile1 infile2 outfile

Description

Merges grid points of all variables from infile2 to infile1 and write the result to outfile. Only the non missing values of infile2 will be used. The horizontal grid of infile2 should be smaller or equal to the grid of infile1 and the resolution must be the same. Only rectilinear grids are supported. Both input files need to have the same variables and the same number of timesteps.

Reference manual File operations

2.2.6. MERGE - Merge datasets

Synopsis

<operator> infiles outfile

Description

This module reads datasets from several input files, merges them and writes the resulting dataset to outfile.

Operators

merge Merge datasets with different fields

Merges time series of different fields from several input datasets. The number of fields per timestep written to outfile is the sum of the field numbers per timestep in all input datasets. The time series on all input datasets are required to have different fields and the same number of timesteps. The fields in each different input file either have to be different variables or different levels of the same variable. A mixture of different variables on different levels in different input files is not allowed.

mergetime Merge datasets sorted by date and time

Merges all timesteps of all input files sorted by date and time. All input files need to have the same structure with the same variables on different timesteps. After this operation every input timestep is in outfile and all timesteps are sorted by date and time.

Environment

SKIP_SAME_TIME If set to 1, skips all consecutive timesteps with a double entry of the same timestamp.

Note

The operators in this module need to open all input files simultaneously. The maximum number of open files depends on the operating system!

Example

Assume three datasets with the same number of timesteps and different variables in each dataset. To merge these datasets to a new dataset use:

cdo merge infile1 infile2 infile3 outfile

Assume you split a 6 hourly dataset with splithour. This produces four datasets, one for each hour. The following command merges them together:

cdo mergetime infile1 infile2 infile3 infile4 outfile

File operations Reference manual

2.2.7. SPLIT - Split a dataset

Synopsis

<operator>[,params] infile obase

Description

This module splits infile into pieces. The output files will be named <obase><xxx><suffix> where suffix is the filename extension derived from the file format. xxx and the contents of the output files depends on the chosen operator. params is a comma separated list of processing parameters.

Operators

splitcode Split code numbers

Splits a dataset into pieces, one for each different code number. xxx will have three

digits with the code number.

splitparam Split parameter identifiers

Splits a dataset into pieces, one for each different parameter identifier. xxx will be

a string with the parameter identifier.

splitname Split variable names

Splits a dataset into pieces, one for each variable name. xxx will be a string with

the variable name.

splitlevel Split levels

Splits a dataset into pieces, one for each different level. xxx will have six digits

with the level.

splitgrid Split grids

Splits a dataset into pieces, one for each different grid. xxx will have two digits

with the grid number.

splitzaxis Split z-axes

Splits a dataset into pieces, one for each different z-axis. xxx will have two digits

with the z-axis number.

splittabnum Split parameter table numbers

Splits a dataset into pieces, one for each GRIB1 parameter table number. xxx will

have three digits with the GRIB1 parameter table number.

Parameter

swap STRING Swap the position of obase and xxx in the output filename

uuid=<attname> STRING Add a UUID as global attribute <attname> to each output file

Environment

CDO_FILE_SUFFIX Set the default file suffix. This suffix will be added to the output file names

instead of the filename extension derived from the file format. Set this variable

to NULL to disable the adding of a file suffix.

Note

The operators in this module need to open all output files simultaneously. The maximum number of open files depends on the operating system!

Reference manual File operations

Example

Assume an input GRIB1 dataset with three variables, e.g. code number 129, 130 and 139. To split this dataset into three pieces, one for each code number use:

cdo splitcode infile code

Result of 'dir code*':

 $\verb|code| 129.grb| \verb|code| 130.grb| \verb|code| 139.grb|$

File operations Reference manual

2.2.8. SPLITTIME - Split timesteps of a dataset

Synopsis

```
<operator> infile obase
splitmon[,format] infile obase
```

Description

This module splits infile into timesteps pieces. The output files will be named <obase><xxx><suffix>
where suffix is the filename extension derived from the file format. xxx and the contents of the output files depends on the chosen operator.

Operators

splithour Split hours

Splits a file into pieces, one for each different hour. xxx will have two digits with

the hour.

splitday Split days

Splits a file into pieces, one for each different day. xxx will have two digits with

the day.

splitseas Split seasons

Splits a file into pieces, one for each different season. xxx will have three characters

with the season.

splityear Split years

Splits a file into pieces, one for each different year. xxx will have four digits with

the year (YYYY).

splityearmon Split in years and months

Splits a file into pieces, one for each different year and month. xxx will have six

digits with the year and month (YYYYMM).

splitmon Split months

Splits a file into pieces, one for each different month. xxx will have two digits with

the month.

Parameter

format STRING C-style format for strftime() (e.g. %B for the full month name)

Environment

CDO_FILE_SUFFIX Set the default file suffix. This suffix will be added to the output file names

instead of the filename extension derived from the file format. Set this variable

to NULL to disable the adding of a file suffix.

Note

The operators in this module need to open all output files simultaneously. The maximum number of open files depends on the operating system!

Reference manual File operations

Example

Assume the input GRIB1 dataset has timesteps from January to December. To split each month with all variables into one separate file use:

```
cdo splitmon infile mon
```

Result of 'dir mon*':

```
mon01.grb mon02.grb mon03.grb mon04.grb mon05.grb mon06.grb mon07.grb mon08.grb mon09.grb mon10.grb mon11.grb mon12.grb
```

2.2.9. SPLITSEL - Split selected timesteps

Synopsis

```
splitsel,nsets[,noffset[,nskip]] infile obase
```

Description

This operator splits infile into pieces, one for each adjacent sequence $t_1, ..., t_n$ of timesteps of the same selected time range. The output files will be named <obase><nnnnnn><suffix> where nnnnnn is the sequence number and suffix is the filename extension derived from the file format.

Parameter

nsets	INTEGER	Number of input timesteps for each output file
noffset	INTEGER	Number of input timesteps skipped before the first timestep range (optional) $$
nskip	INTEGER	Number of input timesteps skipped between timestep ranges (optional)

Environment

CDO_FILE_SUFFIX Set the default file suffix. This suffix will be added to the output file names instead of the filename extension derived from the file format. Set this variable

File operations Reference manual

2.2.10. DISTGRID - Distribute horizontal grid

Synopsis

 $\mathbf{distgrid}, nx[,ny]$ infile obase

Description

This operator distributes a dataset into smaller pieces. Each output file contains a different region of the horizontal source grid. A target grid region contains a structured longitude/latitude box of the source grid. Only rectilinear and curvilinear source grids are supported by this operator. The number of different regions can be specified with the parameter nx and ny. The output files will be named <obase><xxx><suffix> where suffix is the filename extension derived from the file format. xxx will have five digits with the number of the target region.

Parameter

nx INTEGER Number of regions in x direction

ny INTEGER Number of regions in y direction [default: 1]

Note

This operator needs to open all output files simultaneously. The maximum number of open files depends on the operating system!

Example

Distribute a file into 6 smaller files, each output file receives one half of x and a third of y of the source grid:

cdo distgrid,2,3 infile.nc obase

Below is a schematic illustration of this example:

On the left side is the data of the input file and on the right side is the data of the six output files.

Reference manual File operations

2.2.11. COLLGRID - Collect horizontal grid

Synopsis

collgrid[,nx[,names]] infiles outfile

Description

This operator collects the data of the input files to one output file. All input files need to have the same variables and the same number of timesteps on a different horizonal grid region. A source region must be a structured longitude/latitude grid box. The parameter nx needs to be specified only for non regular lon/lat grids.

Parameter

nx INTEGER Number of regions in x direction [default: number of input files]names STRING Comma separated list of variable names [default: all variables]

Note

This operator needs to open all input files simultaneously. The maximum number of open files depends on the operating system!

Example

Collect the horizonal grid of 6 input files. Each input file contains a lon/lat region of the target grid:

cdo collgrid infile[1-6] outfile

Below is a schematic illustration of this example:

On the left side is the data of the six input files and on the right side is the collected data of the output file.

Selection Reference manual

2.3. Selection

This section contains modules to select time steps, fields or a part of a field from a dataset.

Here is a short overview of all operators in this section:

selectSelect fieldsdeleteDelete fields

selmulti Select multiple fields delmulti Delete multiple fields

changemulti Change identication of multiple fields

selparamSelect parameters by identifierdelparamDelete parameters by identifierselcodeSelect parameters by code numberdelcodeDelete parameters by code number

selnameSelect parameters by namedelnameDelete parameters by name

selstdname Select parameters by standard name

sellevel Select levels

sellevidx Select levels by index

selgridSelect gridsselzaxisSelect z-axes

selzaxisname Select z-axes by name selltype Select GRIB level types

seltabnum Select parameter table numbers

seltimestep Select timesteps seltime Select times Select hours selhour selday Select days selmonth Select months selyear Select years Select seasons selseason seldate Select dates

selsmon Select single month

sellonlatbox Select a longitude/latitude box

selindexbox Select an index box

selgridcellSelect grid cellsdelgridcellDelete grid cells

samplegrid Resample grid

Reference manual Selection

2.3.1. SELECT - Select fields

Synopsis

<operator>,params infiles outfile

Description

This module selects some fields from infiles and writes them to outfile. infiles is an arbitrary number of input files. All input files need to have the same structure with the same variables on different timesteps. The fields selected depends on the chosen parameters. Parameter is a comma separated list of "key=value" pairs. Wildcards can be used for string parameter.

Operators

select Select fields

Selects all fields with parameters in a user given list.

delete Delete fields

Deletes all fields with parameters in a user given list.

Parameter

name	STRING	Comma separated list of variable names.
param	STRING	Comma separated list of parameter identifiers.
code	INTEGER	Comma separated list of code numbers.
level	FLOAT	Comma separated list of vertical levels.
levidx	INTEGER	Comma separated list of index of levels.
zaxisname	STRING	Comma separated list of zaxis names.
zaxisnum	INTEGER	Comma separated list of zaxis numbers.
ltype	INTEGER	Comma separated list of GRIB level types.
gridname	STRING	Comma separated list of grid names.
gridnum	INTEGER	Comma separated list of grid numbers.
steptype	STRING	Comma separated list of timestep types.
date	STRING	$\label{thm:comma} \mbox{Comma separated list of dates (format YYYY-MM-DDThh:mm:ss)}.$
startdate	STRING	Start date (format YYYY-MM-DDThh:mm:ss).
enddate	STRING	End date (format YYYY-MM-DDThh:mm:ss).
minute	INTEGER	Comma separated list of minutes.
hour	INTEGER	Comma separated list of hours.
day	INTEGER	Comma separated list of days.
month	INTEGER	Comma separated list of months.
season	STRING SOND or AN	Comma separated list of seasons (substring of DJFMAMJJA-NN).
year	INTEGER	Comma separated list of years.
timestep	INTEGER from the end	Comma separated list of timesteps. Negative values selects timesteps (NetCDF only).
$timestep_of_year$	INTEGER	Comma separated list of timesteps of year.
timestepmask	STRING	Read timesteps from a mask file.

Selection Reference manual

Example

Assume you have 3 inputfiles. Each inputfile contains the same variables for a different time period. To select the variable T,U and V on the levels 200, 500 and 850 from all 3 input files, use:

cdo select,name=T,U,V,level=200,500,850 infile1 infile2 infile3 outfile

Reference manual Selection

2.3.2. SELMULTI - Select multiple fields via GRIB1 parameters

Synopsis

<operator>,selection-specification infile outfile

Description

This module selects multiple fields from infile and writes them to outfile. selection-specification is a filename or in-place string with the selection specification. Each selection-specification has the following compact notation format:

```
<type>(parameters; leveltype(s); levels)
```

type sel for select or del for delete (optional)

parameters GRIB1 parameter code number

leveltype GRIB1 level type levels value of each level

Examples:

```
\begin{array}{c} (1;\ 103;\ 0) \\ (33,34;\ 105;\ 10) \\ (11,17;\ 105;\ 2) \\ (71,73,74,75,61,62,65,117,67,122,121,11,131,66,84,111,112;\ 105;\ 0) \end{array}
```

The following descriptive notation can also be used for selection specification from a file:

```
SELECT/DELETE, PARAMETER=parameters, LEVTYPE=leveltye(s), LEVEL=levels
```

Examples:

```
SELECT, PARAMETER=1, LEVTYPE=103, LEVEL=0
SELECT, PARAMETER=33/34, LEVTYPE=105, LEVEL=10
SELECT, PARAMETER=11/17, LEVTYPE=105, LEVEL=2
SELECT, PARAMETER=71/73/74/75/61/62/65/117/67/122, LEVTYPE=105, LEVEL=0
DELETE, PARAMETER=128, LEVTYPE=109, LEVEL=*
```

The following will convert Pressure from Pa into hPa; Temp from Kelvin to Celsius:

```
SELECT, PARAMETER=1, LEVTYPE= 103, LEVEL=0, SCALE=0.01
SELECT, PARAMETER=11, LEVTYPE=105, LEVEL=2, OFFSET=273.15
```

If SCALE and/or OFFSET are defined, then the data values are scaled as SCALE*(VALUE-OFFSET).

Operators

selmulti Select multiple fields

delmulti Delete multiple fields

changemulti Change identication of multiple fields

Selection Reference manual

Example

Change ECMWF GRIB code of surface pressure to Hirlam notation:

cdo changemulti, ${(134;1;*|1;105;*)}$ infile outfile

Reference manual Selection

2.3.3. SELVAR - Select fields

Synopsis

```
<operator>,params infile outfile
selcode,codes infile outfile
delcode,codes infile outfile
selname,names infile outfile
delname,names infile outfile
selstdname,stdnames infile outfile
sellevel,levels infile outfile
sellevidx,levidx infile outfile
selgrid,grids infile outfile
selzaxis,zaxes infile outfile
selzaxisname,zaxisnames infile outfile
seltype,ltypes infile outfile
seltabnum,tabnums infile outfile
```

Description

This module selects some fields from infile and writes them to outfile. The fields selected depends on the chosen operator and the parameters.

Operators

selparam Select parameters by identifier

Selects all fields with parameter identifiers in a user given list.

delparam Delete parameters by identifier

Deletes all fields with parameter identifiers in a user given list.

selcode Select parameters by code number

Selects all fields with code numbers in a user given list.

delcode Delete parameters by code number

Deletes all fields with code numbers in a user given list.

selname Select parameters by name

Selects all fields with parameter names in a user given list.

delname Delete parameters by name

Deletes all fields with parameter names in a user given list.

selstdname Select parameters by standard name

Selects all fields with standard names in a user given list.

sellevel Select levels

Selects all fields with levels in a user given list.

sellevidx Select levels by index

Selects all fields with index of levels in a user given list.

selgrid Select grids

Selects all fields with grids in a user given list.

Selection Reference manual

selzaxis Select z-axes

Selects all fields with z-axes in a user given list.

selzaxisname Select z-axes by name

Selects all fields with z-axis names in a user given list.

selltype Select GRIB level types

Selects all fields with GRIB level type in a user given list.

seltabnum Select parameter table numbers

Selects all fields with parameter table numbers in a user given list.

Parameter

params	INTEGER	Comma separated list of parameter identifiers
codes	INTEGER	Comma separated list of code numbers
names	STRING	Comma separated list of variable names
stdnames	STRING	Comma separated list of standard names
levels	FLOAT	Comma separated list of vertical levels
levidx	INTEGER	Comma separated list of index of levels
ltypes	INTEGER	Comma separated list of GRIB level types
grids	STRING	Comma separated list of grid names or numbers
zaxes	STRING	Comma separated list of z-axis types or numbers
zaxisnames	STRING	Comma separated list of z-axis names
tabnums	INTEGER	Comma separated list of parameter table numbers

Example

Assume an input dataset has three variables with the code numbers 129, 130 and 139. To select the variables with the code number 129 and 139 use:

```
cdo selcode, 129, 139 infile outfile
```

You can also select the code number 129 and 139 by deleting the code number 130 with:

cdo delcode,130 infile outfile

Reference manual Selection

2.3.4. SELTIME - Select timesteps

Synopsis

```
seltimestep,timesteps infile outfile
seltime,times infile outfile
selhour,hours infile outfile
selday,days infile outfile
selmonth,months infile outfile
selyear,years infile outfile
selseason,seasons infile outfile
seldate,startdate[,enddate] infile outfile
selsmon,month[,nts1[,nts2]] infile outfile
```

Description

This module selects user specified timesteps from infile and writes them to outfile. The timesteps selected depends on the chosen operator and the parameters.

Operators

seltimestep Select timesteps

Selects all timesteps with a timestep in a user given list.

seltime Select times

Selects all timesteps with a time in a user given list.

selhour Select hours

Selects all timesteps with a hour in a user given list.

selday Select days

Selects all timesteps with a day in a user given list.

selmonth Select months

Selects all timesteps with a month in a user given list.

selyear Select years

Selects all timesteps with a year in a user given list.

selseason Select seasons

Selects all timesteps with a month of a season in a user given list.

seldate Select dates

Selects all timesteps with a date in a user given range.

selsmon Select single month

Selects a month and optional an arbitrary number of timesteps before and after this

month.

Parameter

timesteps INTEGER Comma separated list of timesteps. Negative values selects timesteps from

the end (NetCDF only).

times STRING Comma separated list of times (format hh:mm:ss).

hours INTEGER Comma separated list of hours.

Selection Reference manual

days	INTEGER	Comma separated list of days.
months	INTEGER	Comma separated list of months.
years	INTEGER	Comma separated list of years.
seasons	STRING ANN).	Comma separated list of seasons (substring of DJFMAMJJASOND or
startdate	STRING	Start date (format YYYY-MM-DDThh:mm:ss).
end date	STRING	$\label{lem:end_date} End\ date\ (format\ YYYY-MM-DDThh:mm:ss)\ [default:\ startdate].$
nts1	INTEGER	Number of timesteps before the selected month [default: 0].
nts2	INTEGER	Number of timesteps after the selected month [default: nts1].

Reference manual Selection

2.3.5. SELBOX - Select a box of a field

Synopsis

```
sellonlatbox,lon1,lon2,lat1,lat2 infile outfile
selindexbox,idx1,idx2,idy1,idy2 infile outfile
```

Description

Selects a box of the rectangularly understood field.

Operators

sellonlatbox Select a longitude/latitude box

Selects a regular longitude/latitude box. The user has to give the longitudes and latitudes of the edges of the box. Considered are only those grid cells with the grid center inside the lon/lat box. For rotated lon/lat grids the parameter needs to be

rotated coordinates.

selindexbox Select an index box

Selects an index box. The user has to give the indexes of the edges of the box. The

index of the left edge may be greater then that of the right edge.

Parameter

lon1	FLOAT	Western longitude
lon2	FLOAT	Eastern longitude
lat1	FLOAT	Southern or northern latitude
lat2	FLOAT	Northern or southern latitude
idx1	INTEGER	Index of first longitude (1 - nlon)
idx2	INTEGER	Index of last longitude (1 - nlon)
idy1	INTEGER	Index of first latitude (1 - nlat)
idy2	INTEGER	Index of last latitude (1 - nlat)

Example

To select the region with the longitudes from $30\mathrm{W}$ to $60\mathrm{E}$ and latitudes from $30\mathrm{N}$ to $80\mathrm{N}$ from all input fields use:

```
cdo sellonlatbox,-30,60,30,80 infile outfile
```

If the input dataset has fields on a Gaussian N16 grid, the same box can be selected with selindexbox by:

```
cdo selindexbox,60,11,3,11 infile outfile
```

Selection Reference manual

2.3.6. SELGRIDCELL - Select grid cells

Synopsis

<operator>,indexes infile outfile

Description

Selects grid cells of all fields from infile. The user has to give the indexes of each grid cell. The resulting grid in outfile is unstructured.

Operators

selgridcell Select grid cells

delgridcell Delete grid cells

Parameter

indexes INTEGER Comma separated list of indexes

2.3.7. SAMPLEGRID - Resample grid

Synopsis

samplegrid, factor infile outfile

Description

This is a special operator for resampling the horizontal grid. No interpolation takes place. Resample factor=2 means every second grid point is removed. Only rectilinear and curvilinear source grids are supported by this operator.

Parameter

factor INTEGER Resample factor, typically 2, which will half the resolution

Reference manual Conditional selection

2.4. Conditional selection

This section contains modules to conditional select field elements. The fields in the first input file are handled as a mask. A value not equal to zero is treated as "true", zero is treated as "false".

Here is a short overview of all operators in this section:

ifthen If then ifnotthen If not then

ifthenelse If then else

ifthenc If then constant ifnotthenc If not then constant

reducegrid Reduce input file variables to locations, where mask is non-zero.

Conditional selection Reference manual

2.4.1. COND - Conditional select one field

Synopsis

<operator> infile1 infile2 outfile

Description

This module selects field elements from infile2 with respect to infile1 and writes them to outfile. The fields in infile1 are handled as a mask. A value not equal to zero is treated as "true", zero is treated as "false". The number of fields in infile1 has either to be the same as in infile2 or the same as in one timestep of infile2 or only one. The fields in outfile inherit the meta data from infile2.

Operators

$$\begin{aligned} & \text{if then} & & \text{If then} \\ & & o(t,x) = \left\{ \begin{array}{ll} i_2(t,x) & \text{if } i_1([t,]x) \neq 0 & \wedge \ i_1([t,]x) \neq \text{miss} \\ & \text{miss} & \text{if } i_1([t,]x) = 0 & \vee \ i_1([t,]x) = \text{miss} \end{array} \right. \\ & \text{ifnot then} & & & \\ & o(t,x) = \left\{ \begin{array}{ll} i_2(t,x) & \text{if } i_1([t,]x) = 0 & \wedge \ i_1([t,]x) \neq \text{miss} \\ & \text{miss} & \text{if } i_1([t,]x) \neq 0 & \vee \ i_1([t,]x) = \text{miss} \end{array} \right. \\ \end{aligned}$$

Example

To select all field elements of infile2 if the corresponding field element of infile1 is greater than 0 use:

cdo ifthen infile1 infile2 outfile

2.4.2. COND2 - Conditional select two fields

Synopsis

ifthenelse infile1 infile2 infile3 outfile

Description

This operator selects field elements from infile2 or infile3 with respect to infile1 and writes them to outfile. The fields in infile1 are handled as a mask. A value not equal to zero is treated as "true", zero is treated as "false". The number of fields in infile1 has either to be the same as in infile2 or the same as in one timestep of infile2 or only one. infile2 and infile3 need to have the same number of fields. The fields in outfile inherit the meta data from infile2.

$$o(t,x) = \begin{cases} i_2(t,x) & \text{if } i_1([t,]x) \neq 0 \\ i_3(t,x) & \text{if } i_1([t,]x) = 0 \\ \text{miss} & \text{if } i_1([t,]x) = \text{miss} \end{cases} \land i_1([t,]x) \neq \text{miss}$$

Example

To select all field elements of infile2 if the corresponding field element of infile1 is greater than 0 and from infile3 otherwise use:

cdo ifthenelse infile1 infile2 infile3 outfile

Reference manual Conditional selection

2.4.3. CONDC - Conditional select a constant

Synopsis

< operator >, c infile outfile

Description

This module creates fields with a constant value or missing value. The fields in infile are handled as a mask. A value not equal to zero is treated as "true", zero is treated as "false".

Operators

ifthenc If then constant

$$o(t,x) = \begin{cases} c & \text{if } i(t,x) \neq 0 & \land i(t,x) \neq \text{miss} \\ \text{miss} & \text{if } i(t,x) = 0 & \lor i(t,x) = \text{miss} \end{cases}$$

ifnotthenc If not then constant

$$o(t,x) = \begin{cases} c & \text{if } i(t,x) = 0 \land i(t,x) \neq \text{miss} \\ \text{miss } & \text{if } i(t,x) \neq 0 \lor i(t,x) = \text{miss} \end{cases}$$

Parameter

c FLOAT Constant

Example

To create fields with the constant value 7 if the corresponding field element of infile is greater than 0 use:

cdo ifthenc,7 infile outfile

Conditional selection Reference manual

2.4.4. MAPREDUCE - Reduce fields to user-defined mask

Synopsis

reducegrid,mask[,limitCoordsOutput] infile outfile

Description

This module holds an operator for data reduction based on a user defined mask. The output grid is unstructured and includes coordinate bounds. Bounds can be avoided by using the additional 'nobounds' keyword. With 'nocoords' given, coordinates a completely suppressed.

Parameter

mask STRING file which holds the mask field

limitCoordsOutput STRING optional parameter to limit coordinates output: 'nobounds' dis-

ables coordinate bounds, 'nocoords' avoids all coordinate information

Example

To limit data fields to land values, a mask has to be created first with

```
cdo -gtc,0 -topo,ni96 lsm_gme96.grb
```

Here a GME grid is used. Say temp_gme96.grb contains a global temperture field. The following command limits the global grid to landpoints.

```
cdo -f nc reduce, lsm_gme96.grb temp_gme96.grb tempOnLand_gme96.nc
```

Note that output file type is NetCDF, because unstructured grids cannot be stored in GRIB format.

Reference manual Comparison

2.5. Comparison

This section contains modules to compare datasets. The resulting field is a mask containing 1 if the comparison is true and 0 if not.

Here is a short overview of all operators in this section:

eq	Equal
ne	Not equal
le	Less equal
lt	Less than
ge	Greater equal
\mathbf{gt}	Greater than
eqc	Equal constant
eqc nec	Equal constant Not equal constant
•	
nec	Not equal constant
nec lec	Not equal constant Less equal constant

Comparison Reference manual

2.5.1. COMP - Comparison of two fields

Synopsis

<operator> infile1 infile2 outfile

Description

This module compares two datasets field by field. The resulting field is a mask containing 1 if the comparison is true and 0 if not. The number of fields in infile1 should be the same as in infile2. One of the input files can contain only one timestep or one field. The fields in outfile inherit the meta data from infile1 or infile2. The type of comparison depends on the chosen operator.

Operators

$$\begin{aligned} \mathbf{eq} & \quad \text{Equal} \\ o(t,x) &= \left\{ \begin{array}{ll} 1 & \text{if } i_1(t,x) = i_2(t,x) & \wedge \ i_1(t,x), i_2(t,x) \neq \text{miss} \\ 0 & \text{if } i_1(t,x) \neq i_2(t,x) & \wedge \ i_1(t,x), i_2(t,x) \neq \text{miss} \\ \text{miss} & \text{if } i_1(t,x) = \text{miss} & \vee \ i_2(t,x) = \text{miss} \end{array} \right. \end{aligned}$$

$$o(t,x) = \begin{cases} 1 & \text{if } i_1(t,x) \neq i_2(t,x) & \wedge \ i_1(t,x), i_2(t,x) \neq \text{miss} \\ 0 & \text{if } i_1(t,x) = i_2(t,x) & \wedge \ i_1(t,x), i_2(t,x) \neq \text{miss} \\ \text{miss} & \text{if } i_1(t,x) = \text{miss} & \vee \ i_2(t,x) = \text{miss} \end{cases}$$

$$o(t,x) = \begin{cases} 1 & \text{if } i_1(t,x) \leq i_2(t,x) & \wedge \ i_1(t,x), i_2(t,x) \neq \text{miss} \\ 0 & \text{if } i_1(t,x) > i_2(t,x) & \wedge \ i_1(t,x), i_2(t,x) \neq \text{miss} \\ \text{miss} & \text{if } i_1(t,x) = \text{miss} & \vee \ i_2(t,x) = \text{miss} \end{cases}$$

$$o(t,x) = \left\{ \begin{array}{ll} 1 & \text{if } i_1(t,x) < i_2(t,x) & \wedge \ i_1(t,x), i_2(t,x) \neq \text{miss} \\ 0 & \text{if } i_1(t,x) \geq i_2(t,x) & \wedge \ i_1(t,x), i_2(t,x) \neq \text{miss} \\ \text{miss } & \text{if } i_1(t,x) = \text{miss} & \vee \ i_2(t,x) = \text{miss} \end{array} \right.$$

$$\mathbf{ge} \qquad \text{Greater equal} \\ o(t,x) = \left\{ \begin{array}{ll} 1 & \text{if } i_1(t,x) \geq i_2(t,x) & \wedge \ i_1(t,x), i_2(t,x) \neq \text{miss} \\ 0 & \text{if } i_1(t,x) < i_2(t,x) & \wedge \ i_1(t,x), i_2(t,x) \neq \text{miss} \\ \text{miss } & \text{if } i_1(t,x) = \text{miss} & \vee \ i_2(t,x) = \text{miss} \end{array} \right.$$

$$\mathbf{gt} \qquad \text{Greater than} \\ o(t,x) = \left\{ \begin{array}{ll} 1 & \text{if } i_1(t,x) > i_2(t,x) & \wedge \ i_1(t,x), i_2(t,x) \neq \text{miss} \\ 0 & \text{if } i_1(t,x) \leq i_2(t,x) & \wedge \ i_1(t,x), i_2(t,x) \neq \text{miss} \\ \text{miss} & \text{if } i_1(t,x) = \text{miss} & \vee \ i_2(t,x) = \text{miss} \end{array} \right.$$

Example

To create a mask containing 1 if the elements of two fields are the same and 0 if the elements are different use:

cdo eq infile1 infile2 outfile

Reference manual Comparison

2.5.2. COMPC - Comparison of a field with a constant

Synopsis

< operator >, c infile outfile

Description

This module compares all fields of a dataset with a constant. The resulting field is a mask containing 1 if the comparison is true and 0 if not. The type of comparison depends on the chosen operator.

Operators

eqc Equal constant

$$o(t,x) = \begin{cases} 1 & \text{if } i(t,x) = c & \wedge i(t,x), c \neq \text{miss} \\ 0 & \text{if } i(t,x) \neq c & \wedge i(t,x), c \neq \text{miss} \\ \text{miss } \text{if } i(t,x) = \text{miss} & \vee c = \text{miss} \end{cases}$$

nec Not equal constant

$$o(t,x) = \begin{cases} 1 & \text{if } i(t,x) \neq c & \wedge i(t,x), c \neq \text{miss} \\ 0 & \text{if } i(t,x) = c & \wedge i(t,x), c \neq \text{miss} \\ \text{miss } & \text{if } i(t,x) = \text{miss} & \vee c = \text{miss} \end{cases}$$

lec Less equal constant

$$o(t,x) = \begin{cases} 1 & \text{if } i(t,x) \le c & \wedge i(t,x), c \ne \text{miss} \\ 0 & \text{if } i(t,x) > c & \wedge i(t,x), c \ne \text{miss} \\ \text{miss } & \text{if } i(t,x) = \text{miss} & \vee c = \text{miss} \end{cases}$$

ltc Less than constant

$$o(t,x) = \begin{cases} 1 & \text{if } i(t,x) < c & \wedge i(t,x), c \neq \text{miss} \\ 0 & \text{if } i(t,x) \geq c & \wedge i(t,x), c \neq \text{miss} \\ \text{miss } & \text{if } i(t,x) = \text{miss} & \vee c = \text{miss} \end{cases}$$

gec Greater equal constant

$$o(t,x) = \begin{cases} 1 & \text{if } i(t,x) \ge c & \wedge i(t,x), c \ne \text{miss} \\ 0 & \text{if } i(t,x) < c & \wedge i(t,x), c \ne \text{miss} \\ \text{miss } & \text{if } i(t,x) = \text{miss} & \vee c = \text{miss} \end{cases}$$

gtc Greater than constant

$$o(t,x) = \left\{ \begin{array}{lll} 1 & \text{if} \ i(t,x) > c & \wedge \ i(t,x), c \neq \text{miss} \\ 0 & \text{if} \ i(t,x) \leq c & \wedge \ i(t,x), c \neq \text{miss} \\ \text{miss} & \text{if} \ i(t,x) = \text{miss} & \vee \ c = \text{miss} \end{array} \right.$$

Parameter

c FLOAT Constant

Example

To create a mask containing 1 if the field element is greater than 273.15 and 0 if not use:

cdo gtc,273.15 infile outfile

2.6. Modification

This section contains modules to modify the metadata, fields or part of a field in a dataset.

Here is a short overview of all operators in this section:

setattribute Set attributes

setpartabpSet parameter tablesetpartabnSet parameter table

setcodetab Set parameter code table

setcodeSet code numbersetparamSet parameter identifiersetnameSet variable namesetunitSet variable unit

setlevel Set level

setltype Set GRIB level type

setdate Set date

settime Set time of the day

setday Set day Set month setmon setyear Set year settunits Set time units Set time axis settaxis settbounds Set time bounds Set reference time setreftime setcalendar Set calendar shifttime Shift timesteps

chcodeChange code numberchparamChange parameter identifierchnameChange variable namechunitChange variable unitchlevelChange level

chlevelc Change level of one code

chlevelv Change level of one variable

setgridSet gridsetgridtypeSet grid typesetgridareaSet grid cell area

setzaxis Set z-axis

genlevelbounds Generate level bounds

invertlat Invert latitudes

invertlev Invert levels

 $\begin{array}{ll} \textbf{shift} \textbf{x} & \text{Shift} \textbf{x} \\ \textbf{shift} \textbf{y} & \text{Shift} \textbf{y} \end{array}$

maskregion Mask regions

masklonlatbox Mask a longitude/latitude box

maskindexbox Mask an index box

Reference manual Modification

setclonlatbox Set a longitude/latitude box to constant

setcindexbox Set an index box to constant

enlarge Enlarge fields

setmissvalSet a new missing valuesetctomissSet constant to missing valuesetmisstocSet missing value to constantsetrtomissSet range to missing value

setvrange Set valid range

setmisstonn Set missing value to nearest neighbor

setmisstodis Set missing value to distance-weighted average

2.6.1. SETATTRIBUTE - Set attributes

Synopsis

setattribute, attributes infile outfile

Description

This operator sets attributes of a dataset. Each attribute has the following structure:

```
[var_nm@]att_nm=att_val
var_nm    Variable name (optional). Example: pressure
att_nm    Attribute name. Example: units
att_val    Comma separated list of attribute values. Example: pascal
```

The value of **var_nm** is the name of the variable containing the attribute (named **att_nm**) that you want to set. Use wildcards to set the attribute **att_nm** to more than one variable. A value of **var_nm** of '*' will set the attribute **att_nm** to all data variables. If **var_nm** is missing then **att_nm** refers to a global attribute.

The value of att_nm is the name of the attribute you want to set.

The value of **att_val** is the contents of the attribute **att_nm**. **att_val** may be a single value or one-dimensional array of elements. The type of the attribute value will be detected automaticly from the contents of the value.

A special meaning has the attribute name **FILE**. If this is the 1st attribute then all attributes are read from a file specified in the value of **att_val**.

Parameter

attributes STRING Comma separated list of attributes.

Example

To set the units of the variable pressure to pascal use:

```
cdo setattribute,pressure@units=pascal infile outfile
```

To set the global text attribute "my_att" to "my contents", use:

```
cdo setattribute,my_att="my contents" infile outfile
```

Result of 'ncdump -h outfile':

Reference manual Modification

2.6.2. SETPARTAB - Set parameter table

Synopsis

< operator >, table[, convert] infile outfile

Description

This module transforms data and metadata of infile via a parameter table and writes the result to outfile. A parameter table is an ASCII formatted file with a set of parameter entries for each variable. Each new set have to start with "¶meter" and to end with "/".

The following parameter table entries are supported:

Entry	Type	Description
name	WORD	Name of the variable
out_name	WORD	New name of the variable
param	WORD	Parameter identifier (GRIB1: code[.tabnum]; GRIB2: num[.cat[.dis]])
out_param	WORD	New parameter identifier
type	WORD	Data type (real or double)
standard_name	WORD	As defined in the CF standard name table
long_name	STRING	Describing the variable
units	STRING	Specifying the units for the variable
comment	STRING	Information concerning the variable
cell_methods	STRING	Information concerning calculation of means or climatologies
cell_measures	STRING	Indicates the names of the variables containing cell areas and volumes
missing_value	FLOAT	Specifying how missing data will be identified
valid_min	FLOAT	Minimum valid value
valid_max	FLOAT	Maximum valid value
ok_min_mean_abs	FLOAT	Minimum absolute mean
ok_max_mean_abs	FLOAT	Maximum absolute mean
factor	FLOAT	Scale factor
delete	INTEGER	Set to 1 to delete variable
convert	INTEGER	Set to 1 to convert the unit if necessary

Unsupported parameter table entries are stored as variable attributes. The search key for the variable depends on the operator. Use setpartabn to search variables by the name. This is typically used for NetCDF datasets. The operator setpartabp searches variables by the parameter ID.

Operators

setpartabp Set parameter table

Search variables by the parameter identifier.

setpartabn Set parameter table

Search variables by name.

Parameter

table STRING Parameter table file or nameconvert STRING Converts the units if necessary

Example

Here is an example of a parameter table for one variable:

To apply this parameter table to a dataset use:

```
cdo setpartabn,mypartab,convert infile outfile
```

This command renames the variable **t** to **ta**. The standard name of this variable is set to **air_temperature** and the unit is set to **[K]** (converts the unit if necessary). The missing value will be set to **1e+20**. In addition it will be checked whether the values of the variable are in the range of **157.1** to **336.3**.

Reference manual Modification

2.6.3. SET - Set field info

Synopsis

```
setcodetab,table infile outfile
setcode,code infile outfile
setparam,param infile outfile
setname,name infile outfile
setunit,unit infile outfile
setlevel,level infile outfile
setltype,ltype infile outfile
```

Description

This module sets some field information. Depending on the chosen operator the parameter table, code number, parameter identifier, variable name or level is set.

Operators

setcodetab Set parameter code table

Sets the parameter code table for all variables.

setcode Set code number

Sets the code number for all variables to the same given value.

setparam Set parameter identifier

Sets the parameter identifier of the first variable.

setname Set variable name

Sets the name of the first variable.

setunit Set variable unit

Sets the unit of the first variable.

setlevel Set level

Sets the first level of all variables.

setltype Set GRIB level type

Sets the GRIB level type of all variables.

Parameter

table	STRING	Parameter table file or name
code	INTEGER	Code number
param	STRING	$Parameter\ identifier\ (GRIB1:\ code[.tabnum];\ GRIB2:\ num[.cat[.dis]])$
name	STRING	Variable name
level	FLOAT	New level
ltype	INTEGER	GRIB level type

2.6.4. SETTIME - Set time

Synopsis

```
setdate,date infile outfile
settime,time infile outfile
setday,day infile outfile
setmon,month infile outfile
setyear,year infile outfile
settunits,units infile outfile
settaxis,date,time[,inc] infile outfile
settbounds,frequency infile outfile
setreftime,date,time[,units] infile outfile
setcalendar,calendar infile outfile
shifttime,sval infile outfile
```

Description

This module sets the time axis or part of the time axis. Which part of the time axis is overwritten/created depends on the chosen operator.

Operators

setdate Set date

Sets the date in every timestep to the same given value.

settime Set time of the day

Sets the time in every timestep to the same given value.

setday Set day

Sets the day in every timestep to the same given value.

setmon Set month

Sets the month in every timestep to the same given value.

setyear Set year

Sets the year in every timestep to the same given value.

settunits Set time units

Sets the base units of a relative time axis.

settaxis Set time axis

Sets the time axis.

settbounds Set time bounds

Sets the time bounds.

setreftime Set reference time

Sets the reference time of a relative time axis.

setcalendar Set calendar

Sets the calendar of a relative time axis.

shifttime Shift timesteps

Shifts all timesteps by the parameter sval.

Reference manual Modification

Parameter

day	INTEGER	Value of the new day
month	INTEGER	Value of the new month
year	INTEGER	Value of the new year
units	STRING	Base units of the time axis (seconds, minutes, hours, days, months, years) $$
date	STRING	Date (format: YYYY-MM-DD)
time	STRING	Time (format: hh:mm:ss)
inc	STRING fault: 1hour]	Optional increment (seconds, minutes, hours, days, months, years) [de-
frequency	STRING	Frequency of the time series (hour, day, month, year)
calendar	STRING	Calendar (standard, proleptic_gregorian, 360_day, 365_day, 366_day)
sval	STRING	Shift value (e.g3hour)

Example

To set the time axis to 1987-01-16 12:00:00 with an increment of one month for each timestep use:

```
cdo settaxis,1987-01-16,12:00:00,1mon infile outfile
```

Result of 'cdo showdate outfile' for a dataset with 12 timesteps:

To shift this time axis by -15 days use:

```
cdo shifttime,-15days infile outfile
```

Result of 'cdo showdate outfile':

2.6.5. CHANGE - Change field header

Synopsis

chcode,oldcode,newcode[,...] infile outfile
chparam,oldparam,newparam,... infile outfile
chname,oldname,newname,... infile outfile
chunit,oldunit,newunit,... infile outfile
chlevel,oldlev,newlev,... infile outfile
chlevelc,code,oldlev,newlev infile outfile
chlevelv,name,oldlev,newlev infile outfile

Description

This module reads fields from infile, changes some header values and writes the results to outfile. The kind of changes depends on the chosen operator.

Operators

chcode Change code number

Changes some user given code numbers to new user given values.

chparam Change parameter identifier

Changes some user given parameter identifiers to new user given values.

chname Change variable name

Changes some user given variable names to new user given names.

chunit Change variable unit

Changes some user given variable units to new user given units.

chlevel Change level

Changes some user given levels to new user given values.

chlevelc Change level of one code

Changes one level of a user given code number.

chlevelv Change level of one variable

Changes one level of a user given variable name.

Parameter

code	INTEGER	Code number
$old code, new code, \dots$	INTEGER	Pairs of old and new code numbers
$oldparam, newparam, \dots$	STRING	Pairs of old and new parameter identifiers
name	STRING	Variable name
$oldname, newname, \dots$	STRING	Pairs of old and new variable names
oldlev	FLOAT	Old level
newlev	FLOAT	New level
$old lev, new lev, \dots$	FLOAT	Pairs of old and new levels

Example

To change the code number 98 to 179 and 99 to 211 use:

cdo chcode, 98, 179, 99, 211 infile outfile

Reference manual Modification

2.6.6. SETGRID - Set grid information

Synopsis

```
setgrid,grid infile outfile
setgridtype,gridtype infile outfile
setgridarea,gridarea infile outfile
```

Description

This module modifies the metadata of the horizontal grid. Depending on the chosen operator a new grid description is set, the coordinates are converted or the grid cell area is added.

Operators

setgrid Set grid

Sets a new grid description. The input fields need to have the same grid size as the

size of the target grid description.

setgridtype Set grid type

Sets the grid type of all input fields. The following grid types are available:

curvilinear Converts a regular grid to a curvilinear grid

unstructured Converts a regular or curvilinear grid to an unstructured grid

dereference Dereference a reference to a grid

regular Linear interpolation of a reduced Gaussian grid to a regular Gaus-

sian grid

regularnn Nearest neighbor interpolation of a reduced Gaussian grid to a

regular Gaussian grid

lonlat Converts a regular lonlat grid stored as a curvilinear grid back to

a lonlat grid

setgridarea Set grid cell area

Sets the grid cell area. The parameter *gridarea* is the path to a data file, the first field is used as grid cell area. The input fields need to have the same grid size as the grid cell area. The grid cell area is used to compute the weights of each grid cell if

needed by an operator, e.g. for fldmean.

Parameter

grid STRING Grid description file or name

 ${\it gridtype} \qquad {\sf STRING} \qquad \qquad {\sf Grid\ type\ (curvilinear,\ unstructured,\ regular,\ lonlat\ or\ dereference)}$

gridarea STRING Data file, the first field is used as grid cell area

Example

Assuming a dataset has fields on a grid with 2048 elements without or with wrong grid description. To set the grid description of all input fields to a Gaussian N32 grid (8192 gridpoints) use:

cdo setgrid, n32 infile outfile

2.6.7. SETZAXIS - Set z-axis information

Synopsis

```
setzaxis,zaxis infile outfile
genlevelbounds[,zbot[,ztop]] infile outfile
```

Description

This module modifies the metadata of the vertical grid.

Operators

setzaxis Set z-axis

This operator sets the z-axis description of all variables with the same number

of level as the new z-axis.

genlevelbounds Generate level bounds

Generates the layer bounds of the z-axis.

Parameter

zaxis	STRING	Z-axis description file or name of the target z-axis
zbot	FLOAT z-axis.	Specifying the bottom of the vertical column. Must have the same units as
ztop	FLOAT	Specifying the top of the vertical column. Must have the same units as z-axis.

Reference manual Modification

2.6.8. INVERT - Invert latitudes

Synopsis

invertlat infile outfile

Description

This operator inverts the latitudes of all fields on a rectilinear grid.

Example

To invert the latitudes of a 2D field from N->S to S->N use:

cdo invertlat infile outfile

2.6.9. INVERTLEV - Invert levels

Synopsis

invertlev infile outfile

Description

This operator inverts the levels of all 3D variables.

2.6.10. SHIFTXY - Shift field

Synopsis

```
< operator >, < nshift >, < cyclic >, < coord > infile outfile
```

Description

This module contains operators to shift all fields in x or y direction. All fields need to have the same horizontal rectilinear or curvilinear grid.

Operators

shiftx Shift x

Shifts all fields in x direction.

shifty Shift y

Shifts all fields in y direction.

Parameter

nshift INTEGER Number of grid cells to shift (default: 1)

cyclic STRING If set, cells are filled up cyclic (default: missing value)

coord STRING If set, coordinates are also shifted

Example

To shift all input fields in the x direction by +1 cells and fill the new cells with missing value, use:

```
cdo shiftx infile outfile
```

To shift all input fields in the x direction by +1 cells and fill the new cells cyclic, use:

cdo shiftx,1,cyclic infile outfile

Reference manual Modification

2.6.11. MASKREGION - Mask regions

Synopsis

maskregion, regions infile outfile

Description

Masks different regions of fields with a regular lon/lat grid. The elements inside a region are untouched, the elements outside are set to missing value. Considered are only those grid cells with the grid center inside the regions. All input fields must have the same horizontal grid. The user has to give ASCII formatted files with different regions. A region is defined by a polygon. Each line of a polygon description file contains the longitude and latitude of one point. Each polygon description file can contain one or more polygons separated by a line with the character &.

Parameter

regions STRING Comma separated list of ASCII formatted files with different regions

Example

To mask the region with the longitudes from $120\mathrm{E}$ to $90\mathrm{W}$ and latitudes from $20\mathrm{N}$ to $20\mathrm{S}$ on all input fields use:

```
cdo maskregion, myregion infile outfile
```

For this example the polygon description file myregion should contain the following four coordinates:

```
\begin{array}{rrr}
120 & 20 \\
120 & -20 \\
270 & -20 \\
270 & 20
\end{array}
```

2.6.12. MASKBOX - Mask a box

Synopsis

```
masklonlatbox,lon1,lon2,lat1,lat2 infile outfile maskindexbox,idx1,idx2,idy1,idy2 infile outfile
```

Description

Masked a box of the rectangularly understood field. The elements inside the box are untouched, the elements outside are set to missing value. All input fields need to have the same horizontal grid. Use sellonlatbox or selindexbox if only the data inside the box are needed.

Operators

masklonlatbox Mask a longitude/latitude box

Masked a regular longitude/latitude box. The user has to give the longitudes and latitudes of the edges of the box. Considered are only those grid cells with

the grid center inside the lon/lat box.

maskindexbox Mask an index box

Masked an index box. The user has to give the indexes of the edges of the box. The index of the left edge can be greater then the one of the right edge.

Parameter

lon1	FLOAT	Western longitude
lon2	FLOAT	Eastern longitude
lat1	FLOAT	Southern or northern latitude
lat2	FLOAT	Northern or southern latitude
idx1	INTEGER	Index of first longitude
idx2	INTEGER	Index of last longitude
idy1	INTEGER	Index of first latitude
idy2	INTEGER	Index of last latitude

Example

To mask the region with the longitudes from 120E to 90W and latitudes from 20N to 20S on all input fields use:

```
cdo masklonlatbox, 120, -90, 20, -20 infile outfile
```

If the input dataset has fields on a Gaussian N16 grid, the same box can be masked with maskindexbox by:

```
cdo maskindexbox, 23, 48, 13, 20 infile outfile
```

Reference manual Modification

2.6.13. SETBOX - Set a box to constant

Synopsis

```
setclonlatbox,c,lon1,lon2,lat1,lat2 infile outfile setcindexbox,c,idx1,idx2,idy1,idy2 infile outfile
```

Description

Sets a box of the rectangularly understood field to a constant value. The elements outside the box are untouched, the elements inside are set to the given constant. All input fields need to have the same horizontal grid.

Operators

setclonlatbox Set a longitude/latitude box to constant

Sets the values of a longitude/latitude box to a constant value. The user has to

give the longitudes and latitudes of the edges of the box.

setcindexbox Set an index box to constant

Sets the values of an index box to a constant value. The user has to give the

indexes of the edges of the box. The index of the left edge can be greater than

the one of the right edge.

Parameter

c	FLOAT	Constant
lon1	FLOAT	Western longitude
lon2	FLOAT	Eastern longitude
lat1	FLOAT	Southern or northern latitude
lat2	FLOAT	Northern or southern latitude
idx1	INTEGER	Index of first longitude
idx2	INTEGER	Index of last longitude
idy1	INTEGER	Index of first latitude
idy2	INTEGER	Index of last latitude

Example

To set all values in the region with the longitudes from 120E to 90W and latitudes from 20N to 20S to the constant value -1.23 use:

```
cdo setclonlatbox,-1.23,120,-90,20,-20 infile outfile
```

If the input dataset has fields on a Gaussian N16 grid, the same box can be set with setcindexbox by:

```
cdo setcindexbox, -1.23,23,48,13,20 infile outfile
```

Modification Reference manual

2.6.14. ENLARGE - Enlarge fields

Synopsis

enlarge, grid infile outfile

Description

Enlarge all fields of infile to a user given horizontal grid. Normally only the last field element is used for the enlargement. If however the input and output grid are regular lon/lat grids, a zonal or meridional enlargement is possible. Zonal enlargement takes place, if the xsize of the input field is 1 and the ysize of both grids are the same. For meridional enlargement the ysize have to be 1 and the xsize of both grids should have the same size.

Parameter

grid STRING Target grid description file or name

Example

Assumed you want to add two datasets. The first dataset is a field on a global grid (n field elements) and the second dataset is a global mean (1 field element). Before you can add these two datasets the second dataset have to be enlarged to the grid size of the first dataset:

```
cdo enlarge,infile1 infile2 tmpfile
cdo add infile1 tmpfile outfile
```

Or shorter using operator piping:

```
cdo add infile1 -enlarge, infile1 infile2 outfile
```

Reference manual Modification

2.6.15. SETMISS - Set missing value

Synopsis

setmissval, newmiss infile outfile setctomiss, c infile outfile setmisstoc,c infile outfile setrtomiss, rmin, rmax infile outfile setvrange, rmin, rmax infile outfile setmisstonn infile outfile setmisstodis[,neighbors] infile outfile

Description

This module sets part of a field to missing value or missing values to a constant value. Which part of the field is set depends on the chosen operator.

Operators

setmissval

Set a new missing value $o(t,x) = \left\{ \begin{array}{ll} \text{newmiss} & \text{if} \ i(t,x) = miss \\ i(t,x) & \text{if} \ i(t,x) \neq miss \end{array} \right.$

setctomiss Set constant to missing value

 $o(t,x) = \begin{cases} \text{miss} & \text{if } i(t,x) = c \\ i(t,x) & \text{if } i(t,x) \neq c \end{cases}$

setmisstoc Set missing value to constant

 $o(t,x) = \begin{cases} c & \text{if } i(t,x) = \text{miss} \\ i(t,x) & \text{if } i(t,x) \neq \text{miss} \end{cases}$

Set range to missing value setrtomiss

 $o(t,x) = \left\{ \begin{array}{ll} \text{miss} & \text{if} \ i(t,x) \geq r\min \land i(t,x) \leq r\max \\ i(t,x) & \text{if} \ i(t,x) < r\min \lor i(t,x) > r\max \\ \end{array} \right.$

Set valid range setvrange

 $o(t,x) = \left\{ \begin{array}{ll} \text{miss} & \text{if} \ i(t,x) < \min \lor i(t,x) > \max \\ i(t,x) & \text{if} \ i(t,x) \geq \min \land i(t,x) \leq \max \end{array} \right.$

Set missing value to nearest neighbor setmisstonn

Set all missing values to the nearest non missing value.

 $o(t,x) = \left\{ \begin{array}{ll} i(t,y) & \text{if } i(t,x) = \text{miss} \wedge i(t,y) \neq \text{miss} \\ i(t,x) & \text{if } i(t,x) \neq \text{miss} \end{array} \right.$

Set missing value to distance-weighted average setmisstodis

> Set all missing values to the distance-weighted average of the nearest non missing values. The default number of nearest neighbors is 4.

Parameter

neighbors **INTEGER** Number of nearest neighbors New missing value newmiss **FLOAT FLOAT** Constant cLower bound **FLOAT** rmin Upper bound **FLOAT** rmax

Modification Reference manual

Example

setrtomiss

Assume an input dataset has one field with temperatures in the range from 246 to 304 Kelvin. To set all values below 273.15 Kelvin to missing value use:

```
cdo setrtomiss,0,273.15 infile outfile
```

Result of 'cdo info infile':

-1	:	Date	Time	Code	Level	Size	Miss	:	Minimum	Mean	Maximum
1	:	1987 - 12 - 31	12:00:00	139	0	2048	0	:	246.27	276.75	303.71

Result of 'cdo info outfile':

	-1	:	Date	Time	Code	Level	Size	Miss	:	Minimum	Mean	Maximum
İ	1	:	$1987\!-\!12\!-\!31$	12:00:00	139	0	2048	871	:	273.16	287.08	303.71

setmisstonn

Set all missing values to the nearest non missing value:

```
cdo setmisstonn infile outfile
```

Below is a schematic illustration of this example:

On the left side is input data with missing values in grey and on the right side the result with the filled missing values.

Reference manual Arithmetic

2.7. Arithmetic

This section contains modules to arithmetically process datasets.

Here is a short overview of all operators in this section:

expr Evaluate expressions

exprf Evaluate expressions script

aexprEvaluate expressions and append resultsaexprfEvaluate expression script and append results

absAbsolute valueintInteger value

nint Nearest integer value

powPowersqrSquaresqrtSquare rootexpExponentiallnNatural logarithmlog10Base 10 logarithm

Sine \sin cos Cosine Tangent tan asin Arc sine Arc cosine acos Arc tangent atan reci Reciprocal value \mathbf{not} Logical NOT

addc
subc
Subtract a constant
mulc
Multiply with a constant
divc
Divide by a constant

add
sub
Subtract two fields
mul
Multiply two fields
div
Divide two fields
min
Minimum of two fields
max
Maximum of two fields
atan2
Arc tangent of two fields

monaddAdd monthly time seriesmonsubSubtract monthly time seriesmonmulMultiply monthly time seriesmondivDivide monthly time series

yhouradd
 yhoursub
 yhourmul
 yhourmul
 yhourdiv
 Add multi-year hourly time series
 Subtract multi-year hourly time series
 yhourdiv
 Divide multi-year hourly time series

ydayadd Add multi-year daily time series
ydaysub Subtract multi-year daily time series
ydaymul Multiply multi-year daily time series
ydaydiv Divide multi-year daily time series

Arithmetic Reference manual

ymonadd Add multi-year monthly time series ymonsub Subtract multi-year monthly time series ymonmul Multiply multi-year monthly time series ymondiv Divide multi-year monthly time series yseasadd Add multi-year seasonal time series Subtract multi-year seasonal time series yseassub yseasmul ${\bf Multiply\ multi-year\ seasonal\ time\ series}$ Divide multi-year seasonal time series yseasdiv \mathbf{muldpm} Multiply with days per month divdpm Divide by days per month muldpy Multiply with days per year \mathbf{divdpy} Divide by days per year

Reference manual Arithmetic

2.7.1. EXPR - Evaluate expressions

Synopsis

```
expr,instr infile outfile
exprf,filename infile outfile
aexpr,instr infile outfile
aexprf,filename infile outfile
```

Description

This module arithmetically processes every timestep of the input dataset. Each individual assignment statement have to end with a semi-colon. Unlike regular variables, temporary variables are never written to the output stream. To define a temporary variable simply prefix the variable name with an underscore (e.g. _varname) when the variable is declared.

The following operators are supported:

Operator	Meaning	Example	Result
=	assignment	x = y	Assigns y to x
+	addition	x + y	Sum of x and y
-	subtraction	x - y	Difference of x and y
*	multiplication	x * y	Product of x and y
/	division	x / y	Quotient of x and y
^	exponentiation	x ^ y	Exponentiates x with y
==	equal to	x == y	1, if x equal to y; else 0
!=	not equal to	x != y	1, if x not equal to y; else 0
>	greater than	x > y	1, if x greater than y; else 0
<	less than	x < y	1, if x less than y; else 0
>=	greater equal	x >= y	1, if x greater equal y; else 0
<=	less equal	x <= y	1, if x less equal y; else 0
<=>	less equal greater	x <=> y	-1, if x less y; 1, if x greater y; else 0
&&	logical AND	х && у	1, if x and y not equal 0; else 0
	logical OR	x y	1, if x or y not equal 0; else 0
!	logical NOT	!x	1, if x equal 0; else 0
?:	ternary conditional	x ? y : z	y, if x not equal 0, else z

The following functions are supported:

Math intrinsics:

abs(x)	Absolute value of x
floor(x)	Round to largest integral value not greater than $\mathbf x$
ceil(x)	Round to smallest integral value not less than x
float(x)	32-bit float value of x
int(x)	Integer value of x
nint(x)	Nearest integer value of x
sqr(x)	Square of x
sqrt(x)	Square Root of x
$\exp(x)$	Exponential of x

Arithmetic Reference manual

ln(x)	Natural logarithm of x				
$\log 10(x)$	Base 10 logarithm of x				
$\sin(x)$	Sine of x, where x is specified in radians				
$\cos(x)$	Cosine of x, where x is specified in radians				
tan(x)	Tangent of x, where x is specified in radians				
asin(x)	Arc-sine of x, where x is specified in radians				
acos(x)	Arc-cosine of x, where x is specified in radians				
atan(x)	Arc-tangent of x, where x is specified in radians				
rad(x)	Convert x from degrees to radians				
deg(x)	Convert x from radians to degrees				
Coordinates	:				
clon(x)	Longitude coordinate of $\mathbf x$ (available only if $\mathbf x$ has geographical coordinates)				
clat(x)	Latitude coordinate of $\mathbf x$ (available only if $\mathbf x$ has geographical coordinates)				
gridarea(x)	Grid cell area of $\mathbf x$ (available only if $\mathbf x$ has geographical coordinates)				
clev(x)	Level coordinate of x (0, if x is a 2D surface variable)				
ctimestep()	Timestep number (1 to N)				
cdate()	Verification date as YYYYMMDD				
ctime()	Verification time as HHMMSS.millisecond				
cdeltat()	Difference between current and last timestep in seconds				
cday()	Day as DD				
cmonth()	Month as MM				
cyear()	Year as YYYY				
$\operatorname{csecond}()$	Second as SS.millisecond				
$\operatorname{cminute}()$	Minute as MM				
chour()	Hour as HH				
Constants:					
ngp(x)	Number of horizontal grid points				
nlev(x)	Number of vertical levels				
size(x)	Total number of elements $(ngp(x)*nlev(x))$				
missval(x)	Returns the missing value of variable x				
Statistical v	alues over a field:				
fldmin(x), fl	dmax(x), $fldsum(x)$, $fldwan(x)$, $fldwan(x)$, $fldwan(x)$, $fldstd1(x)$, $fldwan(x)$, $fldwan(x)$				
Zonal statis	tical values for regular 2D grids:				
$ \frac{\text{zonmin}(x)}{\text{var1}(x)} $	zonmax(x), $zonsum(x)$, $zonmean(x)$, $zonavg(x)$, $zonstd(x)$, $zonstd1(x)$, $zonvar(x)$, $zonavg(x)$				
Vertical statistical values:					
$ \begin{array}{llllllllllllllllllllllllllllllllllll$					
Miscellaneou	us:				

Reference manual Arithmetic

sellevel(x,k)	Select level k of variable x
seneven x.k)	Select level k of variable x

sellevidx(x,k) Select level index k of variable x

sellevelrange(x,k1,k2) Select all levels of variable x in the range k1 to k2

sellevidxrange(x,k1,k2) Select all level indices of variable x in the range k1 to k2

remove(x) Remove variable x from output stream

Operators

expr Evaluate expressions

The processing instructions are read from the parameter.

exprf Evaluate expressions script

Contrary to expr the processing instructions are read from a file.

aexpr Evaluate expressions and append results

Same as expr, but keep input variables and append results

aexprf Evaluate expression script and append results

Same as exprf, but keep input variables and append results

Parameter

instr STRING Processing instructions (need to be 'quoted' in most cases)

filename STRING File with processing instructions

Note

The expr commands sellevel (x,k) and sellevid x(x,k) are only available with exprf/aexprf. If the input stream contains duplicate entries of the same variable name then the last one is used.

Example

Assume an input dataset contains at least the variables 'aprl', 'aprc' and 'ts'. To create a new variable 'var1' with the sum of 'aprl' and 'aprc' and a variable 'var2' which convert the temperature 'ts' from Kelvin to Celsius use:

```
cdo expr,'var1=aprl+aprc;var2=ts-273.15;' infile outfile
```

The same example, but the instructions are read from a file:

```
cdo exprf,myexpr infile outfile
```

The file myexpr contains:

```
var1 = aprl + aprc;
var2 = ts - 273.15;
```

Arithmetic Reference manual

2.7.2. MATH - Mathematical functions

Synopsis

```
<operator> infile outfile
```

Description

This module contains some standard mathematical functions. All trigonometric functions calculate with radians.

Operators

Reference manual Arithmetic

Example

To calculate the square root for all field elements use:

cdo sqrt infile outfile

Arithmetic Reference manual

2.7.3. ARITHC - Arithmetic with a constant

Synopsis

< operator >, c infile outfile

Description

This module performs simple arithmetic with all field elements of a dataset and a constant. The fields in outfile inherit the meta data from infile.

Operators

 $\mathbf{addc} \qquad \mathrm{Add\ a\ constant}$

o(t,x) = i(t,x) + c

 ${\bf subc} \qquad {\bf Subtract\ a\ constant}$

o(t,x) = i(t,x) - c

mulc Multiply with a constant

o(t, x) = i(t, x) * c

divc Divide by a constant

o(t,x) = i(t,x)/c

Parameter

c FLOAT Constant

Example

To sum all input fields with the constant -273.15 use:

cdo addc,-273.15 infile outfile

Reference manual Arithmetic

2.7.4. ARITH - Arithmetic on two datasets

Synopsis

```
< operator > infile1 infile2 outfile
```

Description

This module performs simple arithmetic of two datasets. The number of fields in infile1 should be the same as in infile2. The fields in outfile inherit the meta data from infile1. One of the input files can contain only one timestep or one variable.

Operators

```
add
            Add two fields
            o(t,x) = i_1(t,x) + i_2(t,x)
\mathbf{sub}
            Subtract two fields
            o(t,x) = i_1(t,x) - i_2(t,x)
            Multiply two fields
mul
            o(t,x) = i_1(t,x) * i_2(t,x)
\operatorname{div}
            Divide two fields
            o(t,x) = i_1(t,x)/i_2(t,x)
min
            Minimum of two fields
            o(t, x) = \min(i_1(t, x), i_2(t, x))
            Maximum of two fields
max
            o(t, x) = \max(i_1(t, x), i_2(t, x))
            Arc tangent of two fields
atan2
            The atan2 operator calculates the arc tangent of two fields. The result is in radians, which
            is between -PI and PI (inclusive).
            o(t, x) = \operatorname{atan2}(i_1(t, x), i_2(t, x))
```

Example

To sum all fields of the first input file with the corresponding fields of the second input file use:

cdo add infile1 infile2 outfile

Arithmetic Reference manual

2.7.5. MONARITH - Monthly arithmetic

Synopsis

<operator> infile1 infile2 outfile

Description

This module performs simple arithmetic of a time series and one timestep with the same month and year. For each field in infile1 the corresponding field of the timestep in infile2 with the same month and year is used. The header information in infile1 have to be the same as in infile2. Usually infile2 is generated by an operator of the module MONSTAT.

Operators

monadd Add monthly time series

Adds a time series and a monthly time series.

monsub Subtract monthly time series

Subtracts a time series and a monthly time series.

monmul Multiply monthly time series

Multiplies a time series and a monthly time series.

mondiv Divide monthly time series

Divides a time series and a monthly time series.

Example

To subtract a monthly time average from a time series use:

cdo monsub infile -monavg infile outfile

Reference manual Arithmetic

2.7.6. YHOURARITH - Multi-year hourly arithmetic

Synopsis

< operator > infile1 infile2 outfile

Description

This module performs simple arithmetic of a time series and one timestep with the same hour and day of year. For each field in infile1 the corresponding field of the timestep in infile2 with the same hour and day of year is used. The header information in infile1 have to be the same as in infile2. Usually infile2 is generated by an operator of the module YHOURSTAT.

Operators

yhouradd Add multi-year hourly time series

Adds a time series and a multi-year hourly time series.

yhoursub Subtract multi-year hourly time series

Subtracts a time series and a multi-year hourly time series.

yhourmul Multiply multi-year hourly time series

Multiplies a time series and a multi-year hourly time series.

yhourdiv Divide multi-year hourly time series

Divides a time series and a multi-year hourly time series.

Example

To subtract a multi-year hourly time average from a time series use:

cdo yhoursub infile -yhouravg infile outfile

Arithmetic Reference manual

2.7.7. YDAYARITH - Multi-year daily arithmetic

Synopsis

<operator> infile1 infile2 outfile

Description

This module performs simple arithmetic of a time series and one timestep with the same day of year. For each field in infile1 the corresponding field of the timestep in infile2 with the same day of year is used. The header information in infile1 have to be the same as in infile2. Usually infile2 is generated by an operator of the module YDAYSTAT.

Operators

ydayadd Add multi-year daily time series

Adds a time series and a multi-year daily time series.

ydaysub Subtract multi-year daily time series

Subtracts a time series and a multi-year daily time series.

ydaymul Multiply multi-year daily time series

Multiplies a time series and a multi-year daily time series.

ydaydiv Divide multi-year daily time series

Divides a time series and a multi-year daily time series.

Example

To subtract a multi-year daily time average from a time series use:

cdo ydaysub infile -ydayavg infile outfile

Reference manual Arithmetic

2.7.8. YMONARITH - Multi-year monthly arithmetic

Synopsis

< operator > infile1 infile2 outfile

Description

This module performs simple arithmetic of a time series and one timestep with the same month of year. For each field in infile1 the corresponding field of the timestep in infile2 with the same month of year is used. The header information in infile1 have to be the same as in infile2. Usually infile2 is generated by an operator of the module YMONSTAT.

Operators

ymonadd Add multi-year monthly time series

Adds a time series and a multi-year monthly time series.

ymonsub Subtract multi-year monthly time series

Subtracts a time series and a multi-year monthly time series.

ymonmul Multiply multi-year monthly time series

Multiplies a time series and a multi-year monthly time series.

ymondiv Divide multi-year monthly time series

Divides a time series and a multi-year monthly time series.

Example

To subtract a multi-year monthly time average from a time series use:

cdo ymonsub infile -ymonavg infile outfile

Arithmetic Reference manual

2.7.9. YSEASARITH - Multi-year seasonal arithmetic

Synopsis

<operator> infile1 infile2 outfile

Description

This module performs simple arithmetic of a time series and one timestep with the same season. For each field in infile1 the corresponding field of the timestep in infile2 with the same season is used. The header information in infile1 have to be the same as in infile2. Usually infile2 is generated by an operator of the module YSEASSTAT.

Operators

yseasadd Add multi-year seasonal time series

Adds a time series and a multi-year seasonal time series.

yseassub Subtract multi-year seasonal time series

Subtracts a time series and a multi-year seasonal time series.

yseasmul Multiply multi-year seasonal time series

Multiplies a time series and a multi-year seasonal time series.

yseasdiv Divide multi-year seasonal time series

Divides a time series and a multi-year seasonal time series.

Example

To subtract a multi-year seasonal time average from a time series use:

cdo yseassub infile -yseasavg infile outfile

2.7.10. ARITHDAYS - Arithmetic with days

Synopsis

<operator> infile outfile

Description

This module multiplies or divides each timestep of a dataset with the corresponding days per month or days per year. The result of these functions depends on the used calendar of the input data.

Operators

muldpm Multiply with days per month

 $o(t,x) = i(t,x) * days_per_month$

divdpm Divide by days per month

 $o(t,x) = i(t,x)/days_per_month$

muldpy Multiply with days per year

 $o(t,x) = i(t,x) * days_per_year$

divdpy Divide by days per year

 $o(t,x) = i(t,x)/days_per_year$

2.8. Statistical values

This section contains modules to compute statistical values of datasets. In this program there is the different notion of "mean" and "average" to distinguish two different kinds of treatment of missing values. While computing the mean, only the not missing values are considered to belong to the sample with the side effect of a probably reduced sample size. Computing the average is just adding the sample members and divide the result by the sample size. For example, the mean of 1, 2, miss and 3 is (1+2+3)/3 = 2, whereas the average is (1+2+miss+3)/4 = miss/4 = miss. If there are no missing values in the sample, the average and the mean are identical.

CDO is using the verification time to identify the time range for temporal statistics. The time bounds are never used!

In this section the abbreviations as in the following table are used:

Here is a short overview of all operators in this section:

timcumsum Cumulative sum over all timesteps

consecsumconsectsConsecutive SumConsecutive Timesteps

ensminEnsemble minimumensmaxEnsemble maximumensrangeEnsemble rangeenssumEnsemble sumensmeanEnsemble meanensavgEnsemble average

ensstd Ensemble standard deviation ensstd1 Ensemble standard deviation (n-1)

ensvarEnsemble varianceensvar1Ensemble variance (n-1)enspctlEnsemble percentiles

ensrkhistspaceRanked Histogram averaged over timeensrkhisttimeRanked Histogram averaged over spaceensrocEnsemble Receiver Operating characteristics

enscrps Ensemble CRPS and decomposition

ensbrs Ensemble Brier score

fldminField minimumfldmaxField maximumfldrangeField rangefldsumField sumfldmeanField meanfldavgField average

fldstd Field standard deviation fldstd1 Field standard deviation (n-1)

fldvarField variancefldvar1Field variance (n-1)fldpctlField percentiles

zonminZonal minimumzonmaxZonal maximumzonrangeZonal rangezonsumZonal sumzonmeanZonal meanzonavgZonal average

zonstd Zonal standard deviation zonstd1 Zonal standard deviation (n-1)

zonvarZonal variancezonvar1Zonal variance (n-1)zonpctlZonal percentiles

merminMeridional minimummermaxMeridional maximummerrangeMeridional rangemersumMeridional summermeanMeridional meanmeravgMeridional average

merstd Meridional standard deviation merstd1 Meridional standard deviation (n-1)

mervarMeridional variancemervar1Meridional variance (n-1)merpctlMeridional percentiles

gridboxminGridbox minimumgridboxmaxGridbox maximumgridboxrangeGridbox rangegridboxsumGridbox sumgridboxmeanGridbox meangridboxavgGridbox average

gridboxstd Gridbox standard deviationgridboxstd1 Gridbox standard deviation (n-1)

gridboxvar Gridbox variance Gridbox variance (n-1)

vertminVertical minimumvertmaxVertical maximumvertrangeVertical rangevertsumVertical sumvertmeanVertical meanvertavgVertical average

vertstdVertical standard deviationvertstd1Vertical standard deviation (n-1)

vertvar Vertical variance vertvar1 Vertical variance (n-1)

timselminTime selection minimumtimselmaxTime selection maximumtimselrangeTime selection rangetimselsumTime selection sumtimselmeanTime selection meantimselavgTime selection average

timselstd Time selection standard deviation timselstd1 Time selection standard deviation (n-1)

timselvar Time selection variance timselvar1 Time selection variance (n-1)

timselpctl Time range percentiles

runminRunning minimumrunmaxRunning maximumrunrangeRunning rangerunsumRunning sumrunmeanRunning meanrunavgRunning average

runstdrunstd1Running standard deviation (n-1)

runvar Running variance runvar1 Running variance (n-1)

runpctl Running percentiles

timminTime minimumtimmaxTime maximumtimrangeTime rangetimsumTime sumtimmeanTime meantimavgTime average

timstd Time standard deviation timstd1 Time standard deviation (n-1)

timvar Time variance timvar1 Time variance (n-1)

timpctl Time percentiles

hourminHourly minimumhourmaxHourly maximumhourrangeHourly rangehoursumHourly sumhourmeanHourly meanhouravgHourly average

hourstd Hourly standard deviation hourstd1 Hourly standard deviation (n-1)

hourvarhourly varianceHourly variance (n-1)

hourpctl Hourly percentiles

dayminDaily minimumdaymaxDaily maximumdayrangeDaily rangedaysumDaily sumdaymeanDaily meandayavgDaily average

daystdDaily standard deviationdaystd1Daily standard deviation (n-1)

dayvarDaily variancedayvar1Daily variance (n-1)

daypctl Daily percentiles

monminMonthly minimummonmaxMonthly maximummonrangeMonthly rangemonsumMonthly summonmeanMonthly meanmonavgMonthly average

monstd Monthly standard deviation monstd1 Monthly standard deviation (n-1)

monvarMonthly variancemonvar1Monthly variance (n-1)

monpctl Monthly percentiles

yearmonmean Yearly mean from monthly data

yearminYearly minimumyearmaxYearly maximumyearrangeYearly rangeyearsumYearly sumyearmeanYearly meanyearavgYearly average

yearstd Yearly standard deviation yearstd1 Yearly standard deviation (n-1)

yearvar Yearly variance yearvar1 Yearly variance (n-1)

yearpctl Yearly percentiles

seasminSeasonal minimumseasmaxSeasonal maximumseasrangeSeasonal rangeseassumSeasonal sumseasmeanSeasonal meanseasavgSeasonal average

seasstdSeasonal standard deviationseasstd1Seasonal standard deviation (n-1)

seasvar Seasonal variance seasvar1 Seasonal variance (n-1)

seaspctl Seasonal percentiles

yhourmin Multi-year hourly minimum
yhourmax Multi-year hourly maximum
yhourrange Multi-year hourly range
yhoursum Multi-year hourly sum
yhourmean Multi-year hourly mean
yhouravg Multi-year hourly average

yhourstd Multi-year hourly standard deviation yhourstd1 Multi-year hourly standard deviation (n-1)

yhourvar Multi-year hourly variance yhourvar1 Multi-year hourly variance (n-1)

ydaymin Multi-year daily minimum
ydaymax Multi-year daily maximum
ydayrange Multi-year daily range
ydaysum Multi-year daily sum
ydaymean Multi-year daily mean
ydayavg Multi-year daily average

ydaystd Multi-year daily standard deviation ydaystd1 Multi-year daily standard deviation (n-1)

ydayvar Multi-year daily variance ydayvar1 Multi-year daily variance (n-1)

ydaypctl Multi-year daily percentiles

ymonminMulti-year monthly minimumymonmaxMulti-year monthly maximumymonrangeMulti-year monthly rangeymonsumMulti-year monthly sumymonmeanMulti-year monthly meanymonavgMulti-year monthly average

ymonstd Multi-year monthly standard deviation ymonstd1 Multi-year monthly standard deviation (n-1)

ymonvar Multi-year monthly variance ymonvar1 Multi-year monthly variance (n-1)

ymonpctl Multi-year monthly percentiles

yseasmin
yseasmax
Multi-year seasonal minimum
yseasrange
Multi-year seasonal range
yseassum
yseasmean
yseasavg
Multi-year seasonal sum
Multi-year seasonal mean
yseasavg
Multi-year seasonal average

yseasstd Multi-year seasonal standard deviation yseasstd1 Multi-year seasonal standard deviation (n-1)

yseasvar Multi-year seasonal variance yseasvar1 Multi-year seasonal variance (n-1)

yseaspctl Multi-year seasonal percentiles

ydrunminMulti-year daily running minimumydrunmaxMulti-year daily running maximumydrunsumMulti-year daily running sumydrunmeanMulti-year daily running meanydrunavgMulti-year daily running average

ydrunstd Multi-year daily running standard deviation ydrunstd1 Multi-year daily running standard deviation (n-1)

ydrunvar Multi-year daily running variance ydrunvar1 Multi-year daily running variance (n-1)

ydrunpctl Multi-year daily running percentiles

2.8.1. TIMCUMSUM - Cumulative sum over all timesteps

Synopsis

timcumsum infile outfile

Description

The timcumsum operator calculates the cumulative sum over all timesteps. Missing values are treated as numeric zero when summing.

```
o(t, x) = \mathbf{sum}\{i(t', x), 0 < t' \le t\}
```

2.8.2. CONSECSTAT - Consecute timestep periods

Synopsis

<operator> infile outfile

Description

This module computes periods over all timesteps in infile where a certain property is valid. The property can be chosen by creating a mask from the original data, which is the expected input format for operators of this module. Depending on the operator full information about each period or just its length and ending date are computed.

Operators

consecsum Consecutive Sum

This operator computes periods of consecutive timesteps similar to a runsum, but periods are finished, when the mask value is 0. That way multiple periods can be found. Timesteps from the input are preserved. Missing values are handled like 0, i.e. finish periods of consecutive timesteps.

consects Consecutive Timesteps

In contrast to the operator above consects only computes the length of each period together with its last timestep. To be able to perform statistical analysis like min, max or mean, everything else is set to missing value.

Example

For a given time series of daily temperatures, the periods of summer days can be calculated with inplace maskting the input field:

cdo consects -gtc,20.0 infile1 outfile

2.8.3. ENSSTAT - Statistical values over an ensemble

Synopsis

```
<operator> infiles outfile
enspctl,p infiles outfile
```

Description

This module computes statistical values over an ensemble of input files. Depending on the chosen operator the minimum, maximum, range, sum, average, variance, standard deviation or a certain percentile over all input files is written to outfile. All input files need to have the same structure with the same variables. The date information of a timestep in outfile is the date of the first input file.

Operators

ensmin	Ensemble minimum $o(t,x) = \min\{i_1(t,x), i_2(t,x), \dots, i_n(t,x)\}$
ensmax	Ensemble maximum $o(t,x) = \max\{i_1(t,x), i_2(t,x), \dots, i_n(t,x)\}$
ensrange	Ensemble range $o(t,x) = \mathbf{range}\{i_1(t,x), i_2(t,x), \cdots, i_n(t,x)\}$
enssum	Ensemble sum $o(t,x) = \mathbf{sum}\{i_1(t,x), i_2(t,x), \dots, i_n(t,x)\}$
ensmean	Ensemble mean $o(t,x) = \mathbf{mean}\{i_1(t,x), i_2(t,x), \dots, i_n(t,x)\}$
ensavg	Ensemble average $o(t,x) = \mathbf{avg}\{i_1(t,x), i_2(t,x), \cdots, i_n(t,x)\}$
ensstd	Ensemble standard deviation Normalize by n.
	$o(t,x) = \mathbf{std}\{i_1(t,x), i_2(t,x), \cdots, i_n(t,x)\}$
ensstd1	Ensemble standard deviation (n-1) Normalize by (n-1).
	$o(t,x) = \mathbf{std1}\{i_1(t,x), i_2(t,x), \dots, i_n(t,x)\}$
ensvar	Ensemble variance Normalize by n.
	$o(t,x) = \mathbf{var}\{i_1(t,x), i_2(t,x), \dots, i_n(t,x)\}$
ensvar1	Ensemble variance (n-1) Normalize by (n-1).
	$o(t,x) = \mathbf{var1}\{i_1(t,x), i_2(t,x), \cdots, i_n(t,x)\}$
enspctl	Ensemble percentiles $o(t,x) = \mathbf{pth} \ \mathbf{percentile}\{i_1(t,x), i_2(t,x), \cdots, i_n(t,x)\}$

Parameter

p FLOAT Percentile number in 0, ..., 100

Note

This operator needs to open all input files simultaneously. The maximum number of open files depends on the operating system!

Example

To compute the ensemble mean over 6 input files use:

```
cdo ensmean infile1 infile2 infile3 infile4 infile5 infile6 outfile
```

Or shorter with filename substitution:

```
cdo ensmean infile[1-6] outfile
```

To compute the 50th percentile (median) over 6 input files use:

cdo enspctl,50 infile1 infile2 infile3 infile4 infile5 infile6 outfile

2.8.4. ENSSTAT2 - Statistical values over an ensemble

Synopsis

<operator> obsfile ensfiles outfile

Description

This module computes statistical values over the ensemble of ensfiles using obsfile as a reference. Depending on the operator a ranked Histogram or a roc-curve over all Ensembles ensfiles with reference to obsfile is written to outfile. The date and grid information of a timestep in outfile is the date of the first input file. Thus all input files are required to have the same structure in terms of the gridsize, variable definitions and number of timesteps.

All Operators in this module use obsfile as the reference (for instance an observation) whereas ensfiles are understood as an ensemble consisting of n (where n is the number of ensfiles) members.

The operators ensightstspace and ensightstime compute Ranked Histograms. Therefor the vertical axis is utilized as the Histogram axis, which prohibits the use of files containing more than one level. The histogram axis has nensfiles+1 bins with level 0 containing for each grid point the number of observations being smaller as all ensembles and level nensfiles+1 indicating the number of observations being larger than all ensembles.

ensrkhistspace computes a ranked histogram at each timestep reducing each horizontal grid to a 1x1 grid and keeping the time axis as in obsfile. Contrary ensrkhistspace computes a histogram at each grid point keeping the horizontal grid for each variable and reducing the time-axis. The time information is that from the last timestep in obsfile.

Operators

ensrkhistspace Ranked Histogram averaged over time

ensrkhisttime Ranked Histogram averaged over space

ensroc Ensemble Receiver Operating characteristics

Example

To compute a rank histogram over 5 input files ensfile1-ensfile5 given an observation in obsfile

cdo ensrkhisttime obsfile ensfile1 ensfile2 ensfile3 ensfile4 ensfile5 outfile

Or shorter with filename substitution:

cdo ensrkhisttime obsfile ensfile[1-5] outfile

2.8.5. ENSVAL - Ensemble validation tools

Synopsis

```
enscrps rfile infiles outfilebase
ensbrs,x rfile infiles outfilebase
```

Description

This module computes ensemble validation scores and their decomposition such as the Brier and cumulative ranked probability score (CRPS). The first file is used as a reference it can be a climatology, observation or reanalysis against which the skill of the ensembles given in infiles is measured. Depending on the operator a number of output files is generated each containing the skill score and its decomposition corresponding to the operator. The output is averaged over horizontal fields using appropriate weights for each level and timestep in rfile.

All input files need to have the same structure with the same variables. The date information of a timestep in outfile is the date of the first input file. The output files are named as <outfilebase>.<type>.<filest where <type> depends on the operator and <filesuffix> is determined from the output file type. There are three output files for operator enscrps and four output files for operator ensbrs.

The CRPS and its decomposition into Reliability and the potential CRPS are calculated by an appropriate averaging over the field members (note, that the CRPS does *not* average linearly). In the three output files $\langle \text{type} \rangle$ has the following meaning: crps for the CRPS, reli for the reliability and crpspot for the potential crps. The relation $CRPS = CRPS_{pot} + RELI$

holds

The Brier score of the Ensemble given by infiles with respect to the reference given in rfile and the threshold x is calculated. In the four output files $\langle \text{type} \rangle$ has the following meaning: brs for the Brier score wrt threshold x; brsreli for the Brier score reliability wrt threshold x; brsreso for the Brier score resolution wrt threshold x; brsunct for the Brier score uncertainty wrt threshold x. In analogy to the CRPS the following relation holds: BRS(x) = RELI(x) - RESO(x) + UNCT(x).

The implementation of the decomposition of the CRPS and Brier Score follows Hans Hersbach (2000): Decomposition of the Continuous Ranked Probability Score for Ensemble Prediction Systems, in: Weather and Forecasting (15) pp. 559-570.

The CRPS code decomposition has been verified against the CRAN - ensemble validation package from R. Differences occur when grid-cell area is not uniform as the implementation in R does not account for that.

Operators

enscrps Ensemble CRPS and decomposition

ensbrs Ensemble Brier score

Ensemble Brier Score and Decomposition

Example

To compute the field averaged Brier score at x=5 over an ensemble with 5 members ensfile1-5 w.r.t. the reference rfile and write the results to files obase.brs.<suff>, obase.brsreli<suff>, obase.brsreso<suff>, obase.brsunct<suff> where <suff> is determined from the output file type, use

cdo ensbrs,5 rfile ensfile1 ensfile2 ensfile3 ensfile4 ensfile5 obase

or shorter using file name substitution:

cdo ensbrs,5 rfile ensfile[1-5] obase

2.8.6. FLDSTAT - Statistical values over a field

Synopsis

<operator>, weights infile outfile

fldpctl, p infile outfile

Description

This module computes statistical values of the input fields. According to the chosen operator the field minimum, maximum, range, sum, average, variance, standard deviation or a certain percentile is written to outfile.

Operators

fldmin Field minimum

For every gridpoint $x_1, ..., x_n$ of the same field it is:

 $o(t,1) = \min\{i(t,x'), x_1 < x' \le x_n\}$

fldmax Field maximum

For every gridpoint $x_1, ..., x_n$ of the same field it is:

 $o(t,1) = \max\{i(t,x'), x_1 < x' \le x_n\}$

fldrange Field range

For every gridpoint $x_1, ..., x_n$ of the same field it is:

 $o(t, 1) = \mathbf{range}\{i(t, x'), x_1 < x' \le x_n\}$

fldsum Field sum

For every gridpoint $x_1, ..., x_n$ of the same field it is:

 $o(t,1) = \mathbf{sum}\{i(t,x'), x_1 < x' \le x_n\}$

fldmean Field mean

For every gridpoint $x_1, ..., x_n$ of the same field it is:

 $o(t,1) = \mathbf{mean}\{i(t,x'), x_1 < x' \le x_n\}$

weighted by area weights obtained by the input field.

fldavg Field average

For every gridpoint $x_1, ..., x_n$ of the same field it is:

 $o(t,1) = \mathbf{avg}\{i(t,x'), x_1 < x' \le x_n\}$

weighted by area weights obtained by the input field.

fldstd Field standard deviation

Normalize by n. For every gridpoint $x_1, ..., x_n$ of the same field it is:

 $o(t,1) = \mathbf{std}\{i(t,x'), x_1 < x' \le x_n\}$

weighted by area weights obtained by the input field.

fldstd1 Field standard deviation (n-1)

Normalize by (n-1). For every gridpoint $x_1, ..., x_n$ of the same field it is:

 $o(t,1) = \mathbf{std1}\{i(t,x'), x_1 < x' \le x_n\}$

weighted by area weights obtained by the input field.

fldvar Field variance

Normalize by n. For every gridpoint $x_1, ..., x_n$ of the same field it is:

 $o(t,1) = \mathbf{var}\{i(t,x'), x_1 < x' \le x_n\}$

weighted by area weights obtained by the input field.

fldvar1 Field variance (n-1)

Normalize by (n-1). For every gridpoint $x_1, ..., x_n$ of the same field it is:

 $o(t,1) = \mathbf{var1}\{i(t,x'), x_1 < x' \le x_n\}$

weighted by area weights obtained by the input field.

fldpctl Field percentiles

For every gridpoint $x_1, ..., x_n$ of the same field it is:

 $o(t,1) = \mathbf{pth} \ \mathbf{percentile}\{i(t,x'), x_1 < x' \le x_n\}$

Parameter

weights BOOL weights=FALSE disables weighting by grid cell area [default: weights=TRUE]

p FLOAT Percentile number in 0, ..., 100

Example

To compute the field mean of all input fields use:

cdo fldmean infile outfile

To compute the 90th percentile of all input fields use:

cdo fldpctl,90 infile outfile

2.8.7. ZONSTAT - Zonal statistical values

Synopsis

```
<operator> infile outfile
zonpctl,p infile outfile
```

Description

This module computes zonal statistical values of the input fields. According to the chosen operator the zonal minimum, maximum, range, sum, average, variance, standard deviation or a certain percentile is written to outfile. This operator requires all variables on the same regular lon/lat grid.

Operators

zonmin Zonal minimum

For every latitude the minimum over all longitudes is computed.

zonmax Zonal maximum

For every latitude the maximum over all longitudes is computed.

zonrange Zonal range

For every latitude the range over all longitudes is computed.

zonsum Zonal sum

For every latitude the sum over all longitudes is computed.

zonmean Zonal mean

For every latitude the mean over all longitudes is computed.

zonavg Zonal average

For every latitude the average over all longitudes is computed.

zonstd Zonal standard deviation

For every latitude the standard deviation over all longitudes is computed. Normalize

by n.

zonstd1 Zonal standard deviation (n-1)

For every latitude the standard deviation over all longitudes is computed. Normalize

by (n-1).

zonvar Zonal variance

For every latitude the variance over all longitudes is computed. Normalize by n.

zonvar1 Zonal variance (n-1)

For every latitude the variance over all longitudes is computed. Normalize by (n-1).

zonpctl Zonal percentiles

For every latitude the pth percentile over all longitudes is computed.

Parameter

p FLOAT Percentile number in 0, ..., 100

Example

To compute the zonal mean of all input fields use:

```
cdo zonmean infile outfile
```

To compute the 50th meridional percentile (median) of all input fields use:

```
cdo zonpctl,50 infile outfile
```

2.8.8. MERSTAT - Meridional statistical values

Synopsis

```
<operator> infile outfile
merpctl,p infile outfile
```

Description

This module computes meridional statistical values of the input fields. According to the chosen operator the meridional minimum, maximum, range, sum, average, variance, standard deviation or a certain percentile is written to outfile. This operator requires all variables on the same regular lon/lat grid.

Operators

mermin Meridional minimum

For every longitude the minimum over all latitudes is computed.

mermax Meridional maximum

For every longitude the maximum over all latitudes is computed.

merrange Meridional range

For every longitude the range over all latitudes is computed.

mersum Meridional sum

For every longitude the sum over all latitudes is computed.

mermean Meridional mean

For every longitude the area weighted mean over all latitudes is computed.

meravg Meridional average

For every longitude the area weighted average over all latitudes is computed.

merstd Meridional standard deviation

For every longitude the standard deviation over all latitudes is computed. Normalize

by n.

merstd1 Meridional standard deviation (n-1)

For every longitude the standard deviation over all latitudes is computed. Normalize

by (n-1).

mervar Meridional variance

For every longitude the variance over all latitudes is computed. Normalize by n.

mervar1 Meridional variance (n-1)

For every longitude the variance over all latitudes is computed. Normalize by (n-1).

merpctl Meridional percentiles

For every longitude the pth percentile over all latitudes is computed.

Parameter

p FLOAT Percentile number in 0, ..., 100

Example

To compute the meridional mean of all input fields use:

cdo mermean infile outfile

To compute the 50th meridional percentile (median) of all input fields use:

cdo merpctl,50 infile outfile

2.8.9. GRIDBOXSTAT - Statistical values over grid boxes

Synopsis

< operator >, nx, ny infile outfile

Description

This module computes statistical values over surrounding grid boxes. According to the chosen operator the minimum, maximum, range, sum, average, variance, or standard deviation of the neighboring grid boxes is written to outfile. All gridbox operators only works on quadrilateral curvilinear grids.

Operators

gridboxmin Gridbox minimum

Minimum value of the selected grid boxes.

gridboxmax Gridbox maximum

Maximum value of the selected grid boxes.

gridboxrange Gridbox range

Range (max-min value) of the selected grid boxes.

gridboxsum Gridbox sum

Sum of the selected grid boxes.

gridboxmean Gridbox mean

Mean of the selected grid boxes.

gridboxavg Gridbox average

Average of the selected grid boxes.

gridboxstd Gridbox standard deviation

Standard deviation of the selected grid boxes. Normalize by n.

gridboxstd1 Gridbox standard deviation (n-1)

Standard deviation of the selected grid boxes. Normalize by (n-1).

gridboxvar Gridbox variance

Variance of the selected grid boxes. Normalize by n.

gridboxvar1 Gridbox variance (n-1)

Variance of the selected grid boxes. Normalize by (n-1).

Parameter

nx INTEGER Number of grid boxes in x directionny INTEGER Number of grid boxes in y direction

Example

To compute the mean over 10x10 grid boxes of the input field use:

cdo gridboxmean, 10, 10 infile outfile

2.8.10. VERTSTAT - Vertical statistical values

Synopsis

<operator>, weights infile outfile

Description

This module computes statistical values over all levels of the input variables. According to chosen operator the vertical minimum, maximum, range, sum, average, variance or standard deviation is written to outfile.

Operators

vertmin Vertical minimum

For every gridpoint the minimum over all levels is computed.

vertmax Vertical maximum

For every gridpoint the maximum over all levels is computed.

vertrange Vertical range

For every gridpoint the range over all levels is computed.

vertsum Vertical sum

For every gridpoint the sum over all levels is computed.

vertmean Vertical mean

For every gridpoint the layer weighted mean over all levels is computed.

vertavg Vertical average

For every gridpoint the layer weighted average over all levels is computed.

vertstd Vertical standard deviation

For every gridpoint the standard deviation over all levels is computed. Normalize by

n.

vertstd1 Vertical standard deviation (n-1)

For every gridpoint the standard deviation over all levels is computed. Normalize by

(n-1).

vertvar Vertical variance

For every gridpoint the variance over all levels is computed. Normalize by n.

vertvar1 Vertical variance (n-1)

For every gridpoint the variance over all levels is computed. Normalize by (n-1).

Parameter

weights BOOL weights=FALSE disables weighting by layer thickness [default: weights=TRUE]

Example

To compute the vertical sum of all input variables use:

cdo vertsum infile outfile

2.8.11. TIMSELSTAT - Time range statistical values

Synopsis

<operator>,nsets[,noffset[,nskip]] infile outfile

Description

This module computes statistical values for a selected number of timesteps. According to the chosen operator the minimum, maximum, range, sum, average, variance or standard deviation of the selected timesteps is written to outfile. The time of outfile is determined by the time in the middle of all contributing timesteps of infile.

Operators

timselmin Time selection minimum

For every adjacent sequence $t_1,...,t_n$ of time steps of the same selected time

range it is:

 $o(t, x) = \min\{i(t', x), t_1 < t' \le t_n\}$

timselmax Time selection maximum

For every adjacent sequence $t_1, ..., t_n$ of timesteps of the same selected time

range it is:

 $o(t, x) = \max\{i(t', x), t_1 < t' \le t_n\}$

timselrange Time selection range

For every adjacent sequence $t_1, ..., t_n$ of timesteps of the same selected time

range it is:

 $o(t, x) = \mathbf{range}\{i(t', x), t_1 < t' \le t_n\}$

timselsum Time selection sum

For every adjacent sequence $t_1, ..., t_n$ of timesteps of the same selected time

range it is:

 $o(t, x) = \mathbf{sum}\{i(t', x), t_1 < t' \le t_n\}$

timselmean Time selection mean

For every adjacent sequence $t_1,...,t_n$ of timesteps of the same selected time

range it is:

 $o(t, x) = \mathbf{mean}\{i(t', x), t_1 < t' \le t_n\}$

timselavg Time selection average

For every adjacent sequence $t_1, ..., t_n$ of timesteps of the same selected time

range it is:

 $o(t, x) = \mathbf{avg}\{i(t', x), t_1 < t' \le t_n\}$

timselstd Time selection standard deviation

Normalize by n. For every adjacent sequence $t_1,...,t_n$ of timesteps of the same

selected time range it is:

 $o(t, x) = \mathbf{std}\{i(t', x), t_1 < t' \le t_n\}$

timselstd1 Time selection standard deviation (n-1)

Normalize by (n-1). For every adjacent sequence t=1,...,t=n of timesteps of the

same selected time range it is:

 $o(t, x) = \mathbf{std1}\{i(t', x), t_1 < t' \le t_n\}$

timselvar Time selection variance

Normalize by n. For every adjacent sequence t=1,...,t=n of timesteps of the same

selected time range it is:

 $o(t, x) = \mathbf{var}\{i(t', x), t_1 < t' \le t_n\}$

timselvar1	Time selection	variance	(n-1)	
------------	----------------	----------	-------	--

Normalize by (n-1). For every adjacent sequence $t_1,...,t_n$ of timesteps of the same selected time range it is: $o(t,x) = \mathbf{var1}\{i(t',x),t_1 < t' \leq t_n\}$

Parameter

nsets	INTEGER	Number of input timesteps for each output timestep
noffset	INTEGER	Number of input timesteps skipped before the first timestep range (optional)
nskip	INTEGER	Number of input timesteps skipped between timestep ranges (optional)

Example

Assume an input dataset has monthly means over several years. To compute seasonal means from monthly means the first two month have to be skipped:

```
cdo timselmean, 3, 2 infile outfile
```

2.8.12. TIMSELPCTL - Time range percentile values

Synopsis

timselpctl,p,nsets[,noffset[,nskip]] infile1 infile2 infile3 outfile

Description

This operator computes percentile values over a selected number of timesteps in infile1. The algorithm uses histograms with minimum and maximum bounds given in infile2 and infile3, respectively. The default number of histogram bins is 101. The default can be overridden by setting the environment variable CDO_PCTL_NBINS to a different value. The files infile2 and infile3 should be the result of corresponding timeselmin and timeselmax operations, respectively. The time of outfile is determined by the time in the middle of all contributing timesteps of infile1.

For every adjacent sequence t = 1, ..., t = n of timesteps of the same selected time range it is:

```
o(t,x) = \mathbf{pth} \ \mathbf{percentile}\{i(t',x), t_1 < t' \le t_n\}
```

Parameter

p	FLOAT	Percentile number in 0,, 100
nsets	INTEGER	Number of input timesteps for each output timestep
noffset	INTEGER	Number of input timesteps skipped before the first timestep range (optional)
nskip	INTEGER	Number of input timesteps skipped between timestep ranges (optional)

Environment

CDO PCTL NBINS Sets the number of histogram bins. The default number is 101.

2.8.13. RUNSTAT - Running statistical values

Synopsis

<operator>,nts infile outfile

Description

This module computes running statistical values over a selected number of timesteps. Depending on the chosen operator the minimum, maximum, range, sum, average, variance or standard deviation of a selected number of consecutive timesteps read from infile is written to outfile. The time of outfile is determined by the time in the middle of all contributing timesteps of infile.

Operators

runmin	Running minimum $o(t+(nts-1)/2,x)=\min\{i(t,x),i(t+1,x),,i(t+nts-1,x)\}$
runmax	Running maximum $o(t + (nts - 1)/2, x) = \max\{i(t, x), i(t + 1, x),, i(t + nts - 1, x)\}$
runrange	Running range $o(t + (nts - 1)/2, x) = \text{range}\{i(t, x), i(t + 1, x),, i(t + nts - 1, x)\}$
runsum	Running sum $o(t + (nts - 1)/2, x) = \mathbf{sum}\{i(t, x), i(t + 1, x),, i(t + nts - 1, x)\}$
runmean	Running mean $o(t + (nts - 1)/2, x) = \text{mean}\{i(t, x), i(t + 1, x),, i(t + nts - 1, x)\}$
runavg	Running average $o(t + (nts - 1)/2, x) = \mathbf{avg}\{i(t, x), i(t + 1, x),, i(t + nts - 1, x)\}$
runstd	Running standard deviation Normalize by n.
	$o(t + (nts - 1)/2, x) = \mathbf{std}\{i(t, x), i(t + 1, x),, i(t + nts - 1, x)\}$
runstd1	Running standard deviation (n-1) Normalize by (n-1).
	$o(t + (nts - 1)/2, x) = \mathbf{std1}\{i(t, x), i(t + 1, x),, i(t + nts - 1, x)\}$
runvar	Running variance Normalize by n.
	$o(t+(nts-1)/2,x) = \mathbf{var}\{i(t,x), i(t+1,x),, i(t+nts-1,x)\}$
runvar1	Running variance (n-1) Normalize by (n-1).
	$o(t + (nts - 1)/2, x) = \mathbf{var1}\{i(t, x), i(t + 1, x),, i(t + nts - 1, x)\}$

Parameter

nts INTEGER Number of timesteps

Environment

CDO_TIMESTAT_DATE Sets the time stamp in outfile to the "first", "middle" or "last" contributing timestep of infile.

Example

To compute the running mean over 9 timesteps use:

cdo runmean,9 infile outfile

2.8.14. RUNPCTL - Running percentile values

Synopsis

runpctl,p,nts infile outfile

Description

This module computes running percentiles over a selected number of timesteps in infile. The time of outfile is determined by the time in the middle of all contributing timesteps of infile.

```
o(t + (nts - 1)/2, x) = pth percentile\{i(t, x), i(t + 1, x), ..., i(t + nts - 1, x)\}
```

Parameter

p FLOAT Percentile number in 0, ..., 100

nts INTEGER Number of timesteps

Example

To compute the running 50th percentile (median) over 9 timesteps use:

cdo runpctl,50,9 infile outfile

2.8.15. TIMSTAT - Statistical values over all timesteps

Synopsis

<operator> infile outfile

Description

This module computes statistical values over all timesteps in infile. Depending on the chosen operator the minimum, maximum, range, sum, average, variance or standard deviation of all timesteps read from infile is written to outfile. The time of outfile is determined by the time in the middle of all contributing timesteps of infile.

Operators

timmin Time minimum

 $o(1,x) = \min\{i(t',x), t_1 < t' \le t_n\}$

timmax Time maximum

 $o(1,x) = \max\{i(t',x), t_1 < t' \le t_n\}$

timrange Time range

 $o(1, x) = \mathbf{range}\{i(t', x), t_1 < t' \le t_n\}$

timsum Time sum

 $o(1,x) = \mathbf{sum}\{i(t',x), t_1 < t' \le t_n\}$

timmean Time mean

 $o(1, x) = \mathbf{mean}\{i(t', x), t_1 < t' \le t_n\}$

timavg Time average

 $o(1,x) = \mathbf{avg}\{i(t',x), t_1 < t' \le t_n\}$

timstd Time standard deviation

Normalize by n.

 $o(1,x) = \mathbf{std}\{i(t',x), t_1 < t' \le t_n\}$

timstd1 Time standard deviation (n-1)

Normalize by (n-1).

 $o(1, x) = \mathbf{std1}\{i(t', x), t_1 < t' \le t_n\}$

timvar Time variance

Normalize by n.

 $o(1, x) = \mathbf{var}\{i(t', x), t_1 < t' \le t_n\}$

timvar1 Time variance (n-1)

Normalize by (n-1).

 $o(1,x) = \mathbf{var1}\{i(t',x), t_1 < t' \le t_n\}$

Example

To compute the mean over all input timesteps use:

cdo timmean infile outfile

2.8.16. TIMPCTL - Percentile values over all timesteps

Synopsis

timpctl,p infile1 infile2 infile3 outfile

Description

This operator computes percentiles over all timesteps in infile1. The algorithm uses histograms with minimum and maximum bounds given in infile2 and infile3, respectively. The default number of histogram bins is 101. The default can be overridden by defining the environment variable CDO_PCTL_NBINS. The files infile2 and infile3 should be the result of corresponding timmin and timmax operations, respectively. The time of outfile is determined by the time in the middle of all contributing timesteps of infile1.

```
o(1,x) = \mathbf{pth} \ \mathbf{percentile}\{i(t',x), t_1 < t' \le t_n\}
```

Parameter

p FLOAT Percentile number in 0, ..., 100

Environment

CDO_PCTL_NBINS Sets the number of histogram bins. The default number is 101.

Example

To compute the 90th percentile over all input timesteps use:

```
cdo timmin infile minfile
cdo timmax infile maxfile
cdo timpctl,90 infile minfile maxfile outfile
```

```
cdo timpctl,90 infile -timmin infile -timmax infile outfile
```

2.8.17. HOURSTAT - Hourly statistical values

Synopsis

<operator> infile outfile

Description

This module computes statistical values over timesteps of the same hour. Depending on the chosen operator the minimum, maximum, range, sum, average, variance or standard deviation of timesteps of the same hour is written to outfile. The time of outfile is determined by the time in the middle of all contributing timesteps of infile.

Operators

hourmin Hourly minimum

For every adjacent sequence $t_1,...,t_n$ of timesteps of the same hour it is:

 $o(t, x) = \min\{i(t', x), t_1 < t' \le t_n\}$

hourmax Hourly maximum

For every adjacent sequence $t_1,...,t_n$ of time steps of the same hour it is:

 $o(t, x) = \max\{i(t', x), t_1 < t' \le t_n\}$

hourrange Hourly range

For every adjacent sequence $t_1,...,t_n$ of timesteps of the same hour it is:

 $o(t, x) = \mathbf{range}\{i(t', x), t_1 < t' \le t_n\}$

hoursum Hourly sum

For every adjacent sequence $t_1, ..., t_n$ of timesteps of the same hour it is:

 $o(t, x) = \mathbf{sum}\{i(t', x), t_1 < t' \le t_n\}$

hourmean Hourly mean

For every adjacent sequence $t_1, ..., t_n$ of timesteps of the same hour it is:

 $o(t, x) = \mathbf{mean}\{i(t', x), t_1 < t' \le t_n\}$

houravg Hourly average

For every adjacent sequence $t_1, ..., t_n$ of timesteps of the same hour it is:

 $o(t, x) = \mathbf{avg}\{i(t', x), t_1 < t' \le t_n\}$

hourstd Hourly standard deviation

Normalize by n. For every adjacent sequence $t_1, ..., t_n$ of timesteps of the same

hour it is:

 $o(t,x) = \mathbf{std}\{i(t',x), t_1 < t' \le t_n\}$

hourstd1 Hourly standard deviation (n-1)

Normalize by (n-1). For every adjacent sequence $t_1, ..., t_n$ of timesteps of the same

hour it is:

 $o(t, x) = \mathbf{std1}\{i(t', x), t_1 < t' \le t_n\}$

hourvar Hourly variance

Normalize by n. For every adjacent sequence $t_1, ..., t_n$ of timesteps of the same

hour it is:

 $o(t, x) = \mathbf{var}\{i(t', x), t_1 < t' \le t_n\}$

hourvar1 Hourly variance (n-1)

Normalize by (n-1). For every adjacent sequence t=1,...,t=n of timesteps of the same

hour it is:

 $o(t, x) = \mathbf{var1}\{i(t', x), t_1 < t' \le t_n\}$

Example

To compute the hourly mean of a time series use:

```
cdo hourmean infile outfile
```

2.8.18. HOURPCTL - Hourly percentile values

Synopsis

 $\mathbf{hourpctl}, p$ infile1 infile2 infile3 outfile

Description

This operator computes percentiles over all timesteps of the same hour in infile1. The algorithm uses histograms with minimum and maximum bounds given in infile2 and infile3, respectively. The default number of histogram bins is 101. The default can be overridden by defining the environment variable CDO_PCTL_NBINS. The files infile2 and infile3 should be the result of corresponding hourmin and hourmax operations, respectively. The time of outfile is determined by the time in the middle of all contributing timesteps of infile1.

For every adjacent sequence $t_1, ..., t_n$ of timesteps of the same hour it is:

```
o(t, x) = \mathbf{pth} \ \mathbf{percentile}\{i(t', x), t_1 < t' \le t_n\}
```

Parameter

p FLOAT Percentile number in 0, ..., 100

Environment

CDO_PCTL_NBINS Sets the number of histogram bins. The default number is 101.

Example

To compute the hourly 90th percentile of a time series use:

```
cdo hourmin infile minfile
cdo hourmax infile maxfile
cdo hourpctl,90 infile minfile maxfile outfile
```

```
cdo hourpctl,90 infile -hourmin infile -hourmax infile outfile
```

2.8.19. DAYSTAT - Daily statistical values

Synopsis

<operator> infile outfile

Description

This module computes statistical values over timesteps of the same day. Depending on the chosen operator the minimum, maximum, range, sum, average, variance or standard deviation of timesteps of the same day is written to outfile. The time of outfile is determined by the time in the middle of all contributing timesteps of infile.

Operators

daymin Daily minimum

For every adjacent sequence $t_1,...,t_n$ of timesteps of the same day it is:

 $o(t, x) = \min\{i(t', x), t_1 < t' \le t_n\}$

daymax Daily maximum

For every adjacent sequence $t_1,...,t_n$ of timesteps of the same day it is:

 $o(t, x) = \max\{i(t', x), t_1 < t' \le t_n\}$

dayrange Daily range

For every adjacent sequence $t_1, ..., t_n$ of timesteps of the same day it is:

 $o(t, x) = \mathbf{range}\{i(t', x), t_1 < t' \le t_n\}$

daysum Daily sum

For every adjacent sequence $t_1, ..., t_n$ of timesteps of the same day it is:

 $o(t, x) = \mathbf{sum}\{i(t', x), t_1 < t' \le t_n\}$

daymean Daily mean

For every adjacent sequence $t_1, ..., t_n$ of timesteps of the same day it is:

 $o(t, x) = \mathbf{mean}\{i(t', x), t_1 < t' \le t_n\}$

dayavg Daily average

For every adjacent sequence $t_1, ..., t_n$ of timesteps of the same day it is:

 $o(t, x) = \mathbf{avg}\{i(t', x), t_1 < t' \le t_n\}$

daystd Daily standard deviation

Normalize by n. For every adjacent sequence $t_1,...,t_n$ of timesteps of the same day

it is:

 $o(t,x) = \mathbf{std}\{i(t',x), t_1 < t' \le t_n\}$

daystd1 Daily standard deviation (n-1)

Normalize by (n-1). For every adjacent sequence $t_1, ..., t_n$ of timesteps of the same

day it is:

 $o(t, x) = \mathbf{std1}\{i(t', x), t_1 < t' \le t_n\}$

dayvar Daily variance

Normalize by n. For every adjacent sequence $t_1, ..., t_n$ of timesteps of the same day

it is:

 $o(t, x) = \mathbf{var}\{i(t', x), t_1 < t' \le t_n\}$

dayvar1 Daily variance (n-1)

Normalize by (n-1). For every adjacent sequence t=1,...,t=n of timesteps of the same

day it is:

 $o(t, x) = \mathbf{var1}\{i(t', x), t_1 < t' \le t_n\}$

Example

To compute the daily mean of a time series use:

```
cdo daymean infile outfile
```

2.8.20. DAYPCTL - Daily percentile values

Synopsis

```
\mathbf{daypctl}, p infile1 infile2 infile3 outfile
```

Description

This operator computes percentiles over all timesteps of the same day in infile1. The algorithm uses histograms with minimum and maximum bounds given in infile2 and infile3, respectively. The default number of histogram bins is 101. The default can be overridden by defining the environment variable CDO_PCTL_NBINS. The files infile2 and infile3 should be the result of corresponding daymin and daymax operations, respectively. The time of outfile is determined by the time in the middle of all contributing timesteps of infile1.

For every adjacent sequence $t_1, ..., t_n$ of timesteps of the same day it is:

```
o(t, x) = \mathbf{pth} \ \mathbf{percentile}\{i(t', x), t_1 < t' \le t_n\}
```

Parameter

```
p FLOAT Percentile number in 0, ..., 100
```

Environment

CDO_PCTL_NBINS Sets the number of histogram bins. The default number is 101.

Example

To compute the daily 90th percentile of a time series use:

```
cdo daymin infile minfile
cdo daymax infile maxfile
cdo daypctl,90 infile minfile maxfile outfile
```

```
cdo daypctl,90 infile -daymin infile -daymax infile outfile
```

2.8.21. MONSTAT - Monthly statistical values

Synopsis

<operator> infile outfile

Description

This module computes statistical values over timesteps of the same month. Depending on the chosen operator the minimum, maximum, range, sum, average, variance or standard deviation of timesteps of the same month is written to outfile. The time of outfile is determined by the time in the middle of all contributing timesteps of infile.

Operators

monmin Monthly minimum

For every adjacent sequence $t_1, ..., t_n$ of timesteps of the same month it is:

 $o(t, x) = \min\{i(t', x), t_1 < t' \le t_n\}$

monmax Monthly maximum

For every adjacent sequence $t_1, ..., t_n$ of timesteps of the same month it is:

 $o(t, x) = \max\{i(t', x), t_1 < t' \le t_n\}$

monrange Monthly range

For every adjacent sequence $t_1, ..., t_n$ of timesteps of the same month it is: $o(t, x) = \mathbf{range}\{i(t', x), t_1 < t' \le t_n\}$

monsum Monthly sum

For every adjacent sequence $t_1, ..., t_n$ of timesteps of the same month it is: $o(t, x) = \mathbf{sum}\{i(t', x), t_1 < t' \le t_n\}$

monmean Monthly mean

For every adjacent sequence $t_1, ..., t_n$ of timesteps of the same month it is: $o(t, x) = \mathbf{mean}\{i(t', x), t_1 < t' \le t_n\}$

monavg Monthly average

For every adjacent sequence $t_1, ..., t_n$ of timesteps of the same month it is: $o(t, x) = \mathbf{avg}\{i(t', x), t_1 < t' \le t_n\}$

monstd Monthly standard deviation

Normalize by n. For every adjacent sequence $t_1, ..., t_n$ of timesteps of the same month it is:

 $o(t, x) = \mathbf{std}\{i(t', x), t_1 < t' \le t_n\}$

monstd1 Monthly standard deviation (n-1)

Normalize by (n-1). For every adjacent sequence $t_1, ..., t_n$ of timesteps of the same month it is:

 $o(t, x) = \mathbf{std1}\{i(t', x), t_1 < t' \le t_n\}$

monvar Monthly variance

Normalize by n. For every adjacent sequence $t_1, ..., t_n$ of timesteps of the same

month it is:

 $o(t, x) = \mathbf{var}\{i(t', x), t_1 < t' \le t_n\}$

monvar1 Monthly variance (n-1)

Normalize by (n-1). For every adjacent sequence $t_1, ..., t_n$ of timesteps of the same

month it is:

 $o(t,x) = \mathbf{var1}\{i(t',x), t_1 < t' \le t_n\}$

Example

To compute the monthly mean of a time series use:

```
cdo monmean infile outfile
```

2.8.22. MONPCTL - Monthly percentile values

Synopsis

```
monpctl,p infile1 infile2 infile3 outfile
```

Description

This operator computes percentiles over all timesteps of the same month in infile1. The algorithm uses histograms with minimum and maximum bounds given in infile2 and infile3, respectively. The default number of histogram bins is 101. The default can be overridden by defining the environment variable CDO_PCTL_NBINS. The files infile2 and infile3 should be the result of corresponding monmin and monmax operations, respectively. The time of outfile is determined by the time in the middle of all contributing timesteps of infile1.

For every adjacent sequence $t_1, ..., t_n$ of timesteps of the same month it is:

```
o(t, x) = \mathbf{pth} \ \mathbf{percentile}\{i(t', x), t_1 < t' \le t_n\}
```

Parameter

p FLOAT Percentile number in 0, ..., 100

Environment

CDO_PCTL_NBINS Sets the number of histogram bins. The default number is 101.

Example

To compute the monthly 90th percentile of a time series use:

```
cdo monmin infile minfile
cdo monmax infile maxfile
cdo monpctl,90 infile minfile maxfile outfile
```

```
cdo monpctl,90 infile -monmin infile -monmax infile outfile
```

2.8.23. YEARMONSTAT - Yearly mean from monthly data

Synopsis

yearmonmean infile outfile

Description

This operator computes the yearly mean of a monthly time series. Each month is weighted with the number of days per month. The time of outfile is determined by the time in the middle of all contributing timesteps of infile.

For every adjacent sequence $t_1,...,t_n$ of timesteps of the same year it is: $o(t,x) = \mathbf{mean}\{i(t',x),t_1 < t' \le t_n\}$

Environment

CDO_TIMESTAT_DATE

Sets the date information in outfile to the "first", "middle" or "last" contributing timestep of infile.

Example

To compute the yearly mean of a monthly time series use:

cdo yearmonmean infile outfile

2.8.24. YEARSTAT - Yearly statistical values

Synopsis

< operator > infile outfile

Description

This module computes statistical values over timesteps of the same year. Depending on the chosen operator the minimum, maximum, range, sum, average, variance or standard deviation of timesteps of the same year is written to outfile. The time of outfile is determined by the time in the middle of all contributing timesteps of infile.

Operators

yearmin Yearly minimum

For every adjacent sequence $t_1, ..., t_n$ of timesteps of the same year it is: $o(t, x) = \min\{i(t', x), t_1 < t' \le t_n\}$

yearmax Yearly maximum

For every adjacent sequence $t_1, ..., t_n$ of timesteps of the same year it is: $o(t,x) = \max\{i(t',x), t_1 < t' \le t_n\}$

yearrange Yearly range

For every adjacent sequence $t_1,...,t_n$ of timesteps of the same year it is: $o(t,x) = \mathbf{range}\{i(t',x),t_1 < t' \le t_n\}$

yearsum Yearly sum

For every adjacent sequence $t_1,...,t_n$ of timesteps of the same year it is: $o(t,x) = \mathbf{sum}\{i(t',x),t_1 < t' \leq t_n\}$

yearmean Yearly mean

For every adjacent sequence $t_1, ..., t_n$ of timesteps of the same year it is: $o(t, x) = \mathbf{mean}\{i(t', x), t_1 < t' \le t_n\}$

yearavg Yearly average

For every adjacent sequence $t_1, ..., t_n$ of timesteps of the same year it is: $o(t, x) = \mathbf{avg}\{i(t', x), t_1 < t' \le t_n\}$

yearstd Yearly standard deviation

Normalize by n. For every adjacent sequence $t_1, ..., t_n$ of timesteps of the same year it is:

 $o(t,x) = \mathbf{std}\{i(t',x), t_1 < t' \le t_n\}$

yearstd1 Yearly standard deviation (n-1)

Normalize by (n-1). For every adjacent sequence $t_1, ..., t_n$ of timesteps of the same year it is:

 $o(t, x) = \mathbf{std1}\{i(t', x), t_1 < t' \le t_n\}$

yearvar Yearly variance

Normalize by n. For every adjacent sequence $t_1, ..., t_n$ of timesteps of the same year it is:

 $o(t, x) = \mathbf{var}\{i(t', x), t_1 < t' \le t_n\}$

yearvar1 Yearly variance (n-1)

Normalize by (n-1). For every adjacent sequence $t_1, ..., t_n$ of timesteps of the same year it is:

 $o(t, x) = \mathbf{var1}\{i(t', x), t_1 < t' \le t_n\}$

Note

The operators yearmean and yearavg compute only arithmetical means!

Example

To compute the yearly mean of a time series use:

```
cdo yearmean infile outfile
```

To compute the yearly mean from the correct weighted monthly mean use:

```
cdo yearmonmean infile outfile
```

2.8.25. YEARPCTL - Yearly percentile values

Synopsis

```
\mathbf{yearpctl}, p infile1 infile2 infile3 outfile
```

Description

This operator computes percentiles over all timesteps of the same year in infile1. The algorithm uses histograms with minimum and maximum bounds given in infile2 and infile3, respectively. The default number of histogram bins is 101. The default can be overridden by defining the environment variable CDO_PCTL_NBINS. The files infile2 and infile3 should be the result of corresponding yearmin and yearmax operations, respectively. The time of outfile is determined by the time in the middle of all contributing timesteps of infile1.

For every adjacent sequence $t_1, ..., t_n$ of timesteps of the same year it is:

```
o(t, x) = \mathbf{pth} \ \mathbf{percentile}\{i(t', x), t_1 < t' \le t_n\}
```

Parameter

```
p FLOAT Percentile number in 0, ..., 100
```

Environment

CDO PCTL NBINS Sets the number of histogram bins. The default number is 101.

Example

To compute the yearly 90th percentile of a time series use:

```
cdo yearmin infile minfile
cdo yearmax infile maxfile
cdo yearpctl,90 infile minfile maxfile outfile
```

```
cdo yearpctl,90 infile -yearmin infile -yearmax infile outfile
```

2.8.26. SEASSTAT - Seasonal statistical values

Synopsis

< operator > infile outfile

Description

This module computes statistical values over timesteps of the same season. Depending on the chosen operator the minimum, maximum, range, sum, average, variance or standard deviation of timesteps of the same season is written to outfile. The time of outfile is determined by the time in the middle of all contributing timesteps of infile. Be careful about the first and the last output timestep, they may be incorrect values if the seasons have incomplete timesteps.

Operators

seasmin Seasonal minimum

For every adjacent sequence $t_1, ..., t_n$ of timesteps of the same season it is: $o(t, x) = \min\{i(t', x), t_1 < t' \le t_n\}$

seasmax Seasonal maximum

For every adjacent sequence $t_1, ..., t_n$ of timesteps of the same season it is: $o(t, x) = \max\{i(t', x), t_1 < t' \le t_n\}$

seasrange Seasonal range

For every adjacent sequence $t_1, ..., t_n$ of timesteps of the same season it is: $o(t, x) = \mathbf{range}\{i(t', x), t_1 < t' \le t_n\}$

seassum Seasonal sum

For every adjacent sequence $t_1, ..., t_n$ of timesteps of the same season it is: $o(t,x) = \mathbf{sum}\{i(t',x), t_1 < t' \le t_n\}$

seasmean Seasonal mean

For every adjacent sequence $t_1, ..., t_n$ of timesteps of the same season it is: $o(t,x) = \mathbf{mean}\{i(t',x), t_1 < t' \le t_n\}$

seasavg Seasonal average

For every adjacent sequence $t_1,...,t_n$ of timesteps of the same season it is: $o(t,x) = \mathbf{avg}\{i(t',x),t_1 < t' \le t_n\}$

seasstd Seasonal standard deviation

Normalize by n. For every adjacent sequence $t_1,...,t_n$ of timesteps of the same season it is:

 $o(t, x) = \mathbf{std}\{i(t', x), t_1 < t' \le t_n\}$

seasstd1 Seasonal standard deviation (n-1)

Normalize by (n-1). For every adjacent sequence $t_1, ..., t_n$ of timesteps of the same season it is:

 $o(t, x) = \mathbf{std1}\{i(t', x), t_1 < t' \le t_n\}$

seasvar Seasonal variance

Normalize by n. For every adjacent sequence $t_1,...,t_n$ of timesteps of the same season it is:

 $o(t, x) = \mathbf{var}\{i(t', x), t_1 < t' \le t_n\}$

seasvar1 Seasonal variance (n-1)

Normalize by (n-1). For every adjacent sequence $t_1, ..., t_n$ of timesteps of the same season it is:

season it is:

 $o(t,x) = \mathbf{var1}\{i(t',x), t_1 < t' \le t_n\}$

Example

To compute the seasonal mean of a time series use:

```
cdo seasmean infile outfile
```

2.8.27. SEASPCTL - Seasonal percentile values

Synopsis

```
\mathbf{seaspctl}, p infile1 infile2 infile3 outfile
```

Description

This operator computes percentiles over all timesteps in infile1 of the same season. The algorithm uses histograms with minimum and maximum bounds given in infile2 and infile3, respectively. The default number of histogram bins is 101. The default can be overridden by defining the environment variable CDO_PCTL_NBINS. The files infile2 and infile3 should be the result of corresponding seasmin and seasmax operations, respectively. The time of outfile is determined by the time in the middle of all contributing timesteps of infile1. Be careful about the first and the last output timestep, they may be incorrect values if the seasons have incomplete timesteps.

For every adjacent sequence $t_1, ..., t_n$ of timesteps of the same season it is:

```
o(t, x) = \mathbf{pth} \ \mathbf{percentile}\{i(t', x), t_1 < t' \le t_n\}
```

Parameter

```
p FLOAT Percentile number in 0, ..., 100
```

Environment

CDO_PCTL_NBINS Sets the number of histogram bins. The default number is 101.

Example

To compute the seasonal 90th percentile of a time series use:

```
cdo seasmin infile minfile
cdo seasmax infile maxfile
cdo seaspctl,90 infile minfile maxfile outfile
```

```
cdo seaspctl,90 infile -seasmin infile -seasmax infile outfile
```

2.8.28. YHOURSTAT - Multi-year hourly statistical values

Synopsis

```
<\!operator\!> infile outfile
```

Description

This module computes statistical values of each hour and day of year. Depending on the chosen operator the minimum, maximum, range, sum, average, variance or standard deviation of each hour and day of year in infile is written to outfile. The date information in an output field is the date of the last contributing input field.

Operators

yhourmin	Multi-year hourly minimum $o(0001,x) = \min\{i(t,x), \operatorname{day}(i(t)) = 0001\}$
	: $o(8784, x) = \min\{i(t, x), \text{day}(i(t)) = 8784\}$
yhourmax	Multi-year hourly maximum $o(0001,x) = \max\{i(t,x), \operatorname{day}(i(t)) = 0001\}$
	$\vdots \\ o(8784, x) = \max\{i(t, x), \operatorname{day}(i(t)) = 8784\}$
yhourrange	Multi-year hourly range $o(0001, x) = \text{range}\{i(t, x), \text{day}(i(t)) = 0001\}$
	:
	$o(8784, x) = \mathbf{range}\{i(t, x), \mathrm{day}(i(t)) = 8784\}$
yhoursum	Multi-year hourly sum $o(0001, x) = \mathbf{sum}\{i(t, x), \operatorname{day}(i(t)) = 0001\}$
	$\vdots \\ o(8784, x) = \mathbf{sum}\{i(t, x), \operatorname{day}(i(t)) = 8784\}$
yhourmean	Multi-year hourly mean $o(0001, x) = \mathbf{mean}\{i(t, x), \operatorname{day}(i(t)) = 0001\}$
	:
	$o(8784,x) = \mathbf{mean}\{i(t,x), \mathrm{day}(i(t)) = 8784\}$
yhouravg	Multi-year hourly average $o(0001,x) = \mathbf{avg}\{i(t,x), \mathrm{day}(i(t)) = 0001\}$
	$o(8784, x) = \mathbf{avg}\{i(t, x), day(i(t)) = 8784\}$
yhourstd	Multi-year hourly standard deviation Normalize by n.
	$o(0001, x) = \mathbf{std}\{i(t, x), day(i(t)) = 0001\}$
	: $o(8784, x) = \text{std}\{i(t, x), \text{day}(i(t)) = 8784\}$
yhourstd1	Multi-year hourly standard deviation (n-1) Normalize by (n-1).

$$o(0001,x) = \mathbf{std1}\{i(t,x), \mathrm{day}(i(t)) = 0001\}$$

$$\vdots$$

$$o(8784,x) = \mathbf{std1}\{i(t,x), \mathrm{day}(i(t)) = 8784\}$$

$$\mathbf{yhourvar}$$
Multi-year hourly variance
Normalize by n.
$$o(0001,x) = \mathbf{var}\{i(t,x), \mathrm{day}(i(t)) = 0001\}$$

$$\vdots$$

$$o(8784,x) = \mathbf{var}\{i(t,x), \mathrm{day}(i(t)) = 8784\}$$

$$\mathbf{yhourvar1}$$
Multi-year hourly variance (n-1)
Normalize by (n-1).
$$o(0001,x) = \mathbf{var1}\{i(t,x), \mathrm{day}(i(t)) = 0001\}$$

$$\vdots$$

$$o(8784,x) = \mathbf{var1}\{i(t,x), \mathrm{day}(i(t)) = 8784\}$$

2.8.29. YDAYSTAT - Multi-year daily statistical values

Synopsis

```
< operator > infile outfile
```

Description

This module computes statistical values of each day of year. Depending on the chosen operator the minimum, maximum, range, sum, average, variance or standard deviation of each day of year in infile is written to outfile. The date information in an output field is the date of the last contributing input field.

Operators

```
ydaymin
                   Multi-year daily minimum
                     o(001, x) = \min\{i(t, x), \operatorname{day}(i(t)) = 001\}
                     o(366, x) = \min\{i(t, x), \operatorname{day}(i(t)) = 366\}
ydaymax
                   Multi-year daily maximum
                     o(001, x) = \max\{i(t, x), \operatorname{day}(i(t)) = 001\}
                     o(366, x) = \max\{i(t, x), \operatorname{day}(i(t)) = 366\}
ydayrange
                   Multi-year daily range
                     o(001, x) = \mathbf{range}\{i(t, x), day(i(t)) = 001\}
                     o(366, x) = \mathbf{range}\{i(t, x), day(i(t)) = 366\}
ydaysum
                   Multi-year daily sum
                     o(001, x) = \mathbf{sum}\{i(t, x), day(i(t)) = 001\}
                     o(366, x) = \mathbf{sum}\{i(t, x), day(i(t)) = 366\}
ydaymean
                   Multi-year daily mean
                     o(001, x) = \mathbf{mean}\{i(t, x), day(i(t)) = 001\}
                     o(366, x) = \mathbf{mean}\{i(t, x), day(i(t)) = 366\}
ydayavg
                   Multi-year daily average
                     o(001,x) = \mathbf{avg}\{i(t,x), \mathrm{day}(i(t)) = 001\}
                     o(366, x) = \mathbf{avg}\{i(t, x), day(i(t)) = 366\}
ydaystd
                   Multi-year daily standard deviation
                   Normalize by n.
                    o(001, x) = \mathbf{std}\{i(t, x), day(i(t)) = 001\}
                     o(366, x) = \mathbf{std}\{i(t, x), day(i(t)) = 366\}
                   Multi-year daily standard deviation (n-1)
ydaystd1
                   Normalize by (n-1).
```

$$o(001,x) = \mathbf{std1}\{i(t,x), \operatorname{day}(i(t)) = 001\}$$

$$\vdots$$

$$o(366,x) = \mathbf{std1}\{i(t,x), \operatorname{day}(i(t)) = 366\}$$

$$\mathbf{ydayvar}$$
Multi-year daily variance
Normalize by n.
$$o(001,x) = \mathbf{var}\{i(t,x), \operatorname{day}(i(t)) = 001\}$$

$$\vdots$$

$$o(366,x) = \mathbf{var}\{i(t,x), \operatorname{day}(i(t)) = 366\}$$

$$\mathbf{ydayvar1}$$
Multi-year daily variance (n-1)
Normalize by (n-1).
$$o(001,x) = \mathbf{var1}\{i(t,x), \operatorname{day}(i(t)) = 001\}$$

$$\vdots$$

$$o(366,x) = \mathbf{var1}\{i(t,x), \operatorname{day}(i(t)) = 366\}$$

Example

To compute the daily mean over all input years use:

cdo ydaymean infile outfile

2.8.30. YDAYPCTL - Multi-year daily percentile values

Synopsis

```
ydaypctl,p infile1 infile2 infile3 outfile
```

Description

This operator writes a certain percentile of each day of year in infile1 to outfile. The algorithm uses histograms with minimum and maximum bounds given in infile2 and infile3, respectively. The default number of histogram bins is 101. The default can be overridden by setting the environment variable CDO_PCTL_NBINS to a different value. The files infile2 and infile3 should be the result of corresponding ydaymin and ydaymax operations, respectively. The date information in an output field is the date of the last contributing input field.

```
o(001, x) = \mathbf{pth} \ \mathbf{percentile}\{i(t, x), \operatorname{day}(i(t)) = 001\}

\vdots

o(366, x) = \mathbf{pth} \ \mathbf{percentile}\{i(t, x), \operatorname{day}(i(t)) = 366\}
```

Parameter

p FLOAT Percentile number in 0, ..., 100

Environment

CDO_PCTL_NBINS Sets the number of histogram bins. The default number is 101.

Example

To compute the daily 90th percentile over all input years use:

```
cdo ydaymin infile minfile
cdo ydaymax infile maxfile
cdo ydaypctl,90 infile minfile maxfile outfile
```

```
cdo ydaypctl,90 infile -ydaymin infile -ydaymax infile outfile
```

2.8.31. YMONSTAT - Multi-year monthly statistical values

Synopsis

```
< operator > infile outfile
```

Description

This module computes statistical values of each month of year. Depending on the chosen operator the minimum, maximum, range, sum, average, variance or standard deviation of each month of year in infile is written to outfile. The date information in an output field is the date of the last contributing input field.

Operators

```
ymonmin
                     Multi-year monthly minimum
                      o(01, x) = \min\{i(t, x), \text{month}(i(t)) = 01\}
                      o(12, x) = \min\{i(t, x), \text{month}(i(t)) = 12\}
                     Multi-year monthly maximum
ymonmax
                      o(01, x) = \max\{i(t, x), \text{month}(i(t)) = 01\}
                      o(12,x) = \max\{i(t,x), \operatorname{month}(i(t)) = 12\}
ymonrange
                     Multi-year monthly range
                      o(01,x) = \mathbf{range}\{i(t,x), \mathrm{month}(i(t)) = 01\}
                      o(12, x) = \mathbf{range}\{i(t, x), \mathbf{month}(i(t)) = 12\}
ymonsum
                     Multi-year monthly sum
                      o(01, x) = \mathbf{sum}\{i(t, x), \text{month}(i(t)) = 01\}
                      o(12, x) = \mathbf{sum}\{i(t, x), \text{month}(i(t)) = 12\}
                     Multi-year monthly mean
ymonmean
                      o(01, x) = \mathbf{mean}\{i(t, x), \mathbf{month}(i(t)) = 01\}
                      o(12, x) = \mathbf{mean}\{i(t, x), \mathbf{month}(i(t)) = 12\}
ymonavg
                     Multi-year monthly average
                      o(01, x) = \mathbf{avg}\{i(t, x), \text{month}(i(t)) = 01\}
                      o(12, x) = \mathbf{avg}\{i(t, x), \text{month}(i(t)) = 12\}
                     Multi-year monthly standard deviation
ymonstd
                     Normalize by n.
                      o(01, x) = \mathbf{std}\{i(t, x), \mathbf{month}(i(t)) = 01\}
                      o(12, x) = \mathbf{std}\{i(t, x), \mathbf{month}(i(t)) = 12\}
                     Multi-year monthly standard deviation (n-1)
ymonstd1
                     Normalize by (n-1).
```

$$o(01,x) = \mathbf{std1}\{i(t,x), \mathsf{month}(i(t)) = 01\}$$

$$\vdots$$

$$o(12,x) = \mathbf{std1}\{i(t,x), \mathsf{month}(i(t)) = 12\}$$

$$\mathbf{ymonvar}$$
Multi-year monthly variance
$$\mathsf{Normalize \ by \ n.}$$

$$o(01,x) = \mathbf{var}\{i(t,x), \mathsf{month}(i(t)) = 01\}$$

$$\vdots$$

$$o(12,x) = \mathbf{var}\{i(t,x), \mathsf{month}(i(t)) = 12\}$$

$$\mathbf{ymonvar1}$$
Multi-year monthly variance (n-1)
$$\mathsf{Normalize \ by \ (n-1).}$$

$$o(01,x) = \mathbf{var1}\{i(t,x), \mathsf{month}(i(t)) = 01\}$$

$$\vdots$$

$$o(12,x) = \mathbf{var1}\{i(t,x), \mathsf{month}(i(t)) = 12\}$$

Example

To compute the monthly mean over all input years use:

cdo ymonmean infile outfile

2.8.32. YMONPCTL - Multi-year monthly percentile values

Synopsis

```
ymonpctl,p infile1 infile2 infile3 outfile
```

Description

This operator writes a certain percentile of each month of year in infile1 to outfile. The algorithm uses histograms with minimum and maximum bounds given in infile2 and infile3, respectively. The default number of histogram bins is 101. The default can be overridden by setting the environment variable CDO_PCTL_NBINS to a different value. The files infile2 and infile3 should be the result of corresponding ymonmin and ymonmax operations, respectively. The date information in an output field is the date of the last contributing input field.

```
o(01, x) = \mathbf{pth} \ \mathbf{percentile}\{i(t, x), \mathrm{month}(i(t)) = 01\}
\vdots
o(12, x) = \mathbf{pth} \ \mathbf{percentile}\{i(t, x), \mathrm{month}(i(t)) = 12\}
```

Parameter

```
p FLOAT Percentile number in 0, ..., 100
```

Environment

CDO_PCTL_NBINS Sets the number of histogram bins. The default number is 101.

Example

To compute the monthly 90th percentile over all input years use:

```
cdo ymonmin infile minfile
cdo ymonmax infile maxfile
cdo ymonpctl,90 infile minfile maxfile outfile
```

```
cdo ymonpctl,90 infile -ymonmin infile -ymonmax infile outfile
```

2.8.33. YSEASSTAT - Multi-year seasonal statistical values

Synopsis

```
<operator> infile outfile
```

Description

This module computes statistical values of each season. Depending on the chosen operator the minimum, maximum, range, sum, average, variance or standard deviation of each season in infile is written to outfile. The date information in an output field is the date of the last contributing input field.

Operators

```
yseasmin
                     Multi-year seasonal minimum
                       o(1,x) = \min\{i(t,x), \text{month}(i(t)) = 12, 01, 02\}
                       o(2, x) = \min\{i(t, x), \text{month}(i(t)) = 03, 04, 05\}
                       o(3,x) = \min\{i(t,x), \text{month}(i(t)) = 06, 07, 08\}
                       o(4, x) = \min\{i(t, x), \text{month}(i(t)) = 09, 10, 11\}
                     Multi-year seasonal maximum
yseasmax
                       o(1,x) = \max\{i(t,x), \text{month}(i(t)) = 12, 01, 02\}
                       o(2, x) = \max\{i(t, x), \text{month}(i(t)) = 03, 04, 05\}
                       o(3, x) = \max\{i(t, x), \text{month}(i(t)) = 06, 07, 08\}
                       o(4,x) = \max\{i(t,x), \text{month}(i(t)) = 09, 10, 11\}
                     Multi-year seasonal range
yseasrange
                       o(1,x) = \mathbf{range}\{i(t,x), \mathbf{month}(i(t)) = 12, 01, 02\}
                       o(2, x) = \mathbf{range}\{i(t, x), \mathbf{month}(i(t)) = 03, 04, 05\}
                       o(3, x) = \mathbf{range}\{i(t, x), \mathbf{month}(i(t)) = 06, 07, 08\}
                       o(4, x) = \mathbf{range}\{i(t, x), \mathbf{month}(i(t)) = 09, 10, 11\}
                     Multi-year seasonal sum
yseassum
                       o(1,x) = \mathbf{sum}\{i(t,x), \mathbf{month}(i(t)) = 12, 01, 02\}
                       o(2, x) = \mathbf{sum}\{i(t, x), \text{month}(i(t)) = 03, 04, 05\}
                       o(3, x) = \mathbf{sum}\{i(t, x), \text{month}(i(t)) = 06, 07, 08\}
                       o(4,x) = \mathbf{sum}\{i(t,x), \text{month}(i(t)) = 09, 10, 11\}
                     Multi-year seasonal mean
yseasmean
                       o(1, x) = \mathbf{mean}\{i(t, x), \mathbf{month}(i(t)) = 12, 01, 02\}
                       o(2, x) = \mathbf{mean}\{i(t, x), \mathbf{month}(i(t)) = 03, 04, 05\}
                       o(3, x) = \mathbf{mean}\{i(t, x), \mathbf{month}(i(t)) = 06, 07, 08\}
                       o(4, x) = \mathbf{mean}\{i(t, x), \mathbf{month}(i(t)) = 09, 10, 11\}
yseasavg
                     Multi-year seasonal average
                       o(1,x) = \mathbf{avg}\{i(t,x), \text{month}(i(t)) = 12, 01, 02\}
                       o(2, x) = \mathbf{avg}\{i(t, x), \text{month}(i(t)) = 03, 04, 05\}
                       o(3,x) = \mathbf{avg}\{i(t,x), \text{month}(i(t)) = 06, 07, 08\}
                       o(4, x) = \mathbf{avg}\{i(t, x), \text{month}(i(t)) = 09, 10, 11\}
                     Multi-year seasonal standard deviation
yseasstd
                       o(1,x) = \mathbf{std}\{i(t,x), \mathbf{month}(i(t)) = 12, 01, 02\}
                       o(2, x) = \mathbf{std}\{i(t, x), \text{month}(i(t)) = 03, 04, 05\}
                       o(3,x) = \mathbf{std}\{i(t,x), month(i(t)) = 06, 07, 08\}
                       o(4,x) = \mathbf{std}\{i(t,x), \mathbf{month}(i(t)) = 09, 10, 11\}
```

```
Multi-year seasonal standard deviation (n-1)
yseasstd1
                        o(1,x) = \mathbf{std1}\{i(t,x), \mathbf{month}(i(t)) = 12, 01, 02\}
                       o(2, x) = \mathbf{std1}\{i(t, x), \mathbf{month}(i(t)) = 03, 04, 05\}
                       o(3,x) = \mathbf{std1}\{i(t,x), \mathbf{month}(i(t)) = 06, 07, 08\}
                        o(4, x) = \mathbf{std1}\{i(t, x), \mathbf{month}(i(t)) = 09, 10, 11\}
yseasvar
                      Multi-year seasonal variance
                        o(1, x) = \mathbf{var}\{i(t, x), \mathbf{month}(i(t)) = 12, 01, 02\}
                        o(2, x) = \mathbf{var}\{i(t, x), \mathbf{month}(i(t)) = 03, 04, 05\}
                       o(3,x) = \mathbf{var}\{i(t,x), \text{month}(i(t)) = 06, 07, 08\}
                        o(4,x) = \mathbf{var}\{i(t,x), \text{month}(i(t)) = 09, 10, 11\}
                      Multi-year seasonal variance (n-1)
yseasvar1
                        o(1, x) = \mathbf{var1}\{i(t, x), \mathbf{month}(i(t)) = 12, 01, 02\}
                       o(2, x) = \mathbf{var1}\{i(t, x), \mathbf{month}(i(t)) = 03, 04, 05\}
                       o(3, x) = \mathbf{var1}\{i(t, x), \mathbf{month}(i(t)) = 06, 07, 08\}
                        o(4, x) = \mathbf{var1}\{i(t, x), \mathbf{month}(i(t)) = 09, 10, 11\}
```

Example

To compute the seasonal mean over all input years use:

cdo yseasmean infile outfile

2.8.34. YSEASPCTL - Multi-year seasonal percentile values

Synopsis

```
yseaspctl,p infile1 infile2 infile3 outfile
```

Description

This operator writes a certain percentile of each season in infile1 to outfile. The algorithm uses histograms with minimum and maximum bounds given in infile2 and infile3, respectively. The default number of histogram bins is 101. The default can be overridden by setting the environment variable CDO_PCTL_NBINS to a different value. The files infile2 and infile3 should be the result of corresponding yseasmin and yseasmax operations, respectively. The date information in an output field is the date of the last contributing input field.

```
o(1,x) = pth percentile\{i(t,x), month(i(t)) = 12, 01, 02\}

o(2,x) = pth percentile\{i(t,x), month(i(t)) = 03, 04, 05\}

o(3,x) = pth percentile\{i(t,x), month(i(t)) = 06, 07, 08\}

o(4,x) = pth percentile\{i(t,x), month(i(t)) = 09, 10, 11\}
```

Parameter

```
p FLOAT Percentile number in 0, ..., 100
```

Environment

```
CDO_PCTL_NBINS Sets the number of histogram bins. The default number is 101.
```

Example

To compute the seasonal 90th percentile over all input years use:

```
cdo yseasmin infile minfile
cdo yseasmax infile maxfile
cdo yseaspctl,90 infile minfile maxfile outfile
```

```
cdo yseaspctl,90 infile -yseasmin infile -yseasmax infile outfile
```

2.8.35. YDRUNSTAT - Multi-year daily running statistical values

Synopsis

<operator>,nts infile outfile

Description

This module writes running statistical values for each day of year in infile to outfile. Depending on the chosen operator, the minimum, maximum, sum, average, variance or standard deviation of all timesteps in running windows of which the medium timestep corresponds to a certain day of year is computed. The date information in an output field is the date of the timestep in the middle of the last contributing running window. Note that the operator have to be applied to a continuous time series of daily measurements in order to yield physically meaningful results. Also note that the output time series begins (nts-1)/2 timesteps after the first timestep of the input time series and ends (nts-1)/2 timesteps before the last one. For input data which are complete but not continuous, such as time series of daily measurements for the same month or season within different years, the operator yields physically meaningful results only if the input time series does include the (nts-1)/2 days before and after each period of interest.

Operators

```
ydrunmin
                    Multi-year daily running minimum
                     o(001,x) = \min\{i(t,x), i(t+1,x), ..., i(t+nts-1,x); \operatorname{day}[(i(t+(nts-1)/2)] = 001\} :
                     o(366, x) = \min\{i(t, x), i(t + 1, x), ..., i(t + nts - 1, x); day[(i(t + (nts - 1)/2))] = 366\}
ydrunmax
                    Multi-year daily running maximum
                     o(001, x) = \max\{i(t, x), i(t+1, x), ..., i(t+nts-1, x); \operatorname{day}[(i(t+(nts-1)/2)] = 001\}
                     o(366, x) = \max\{i(t, x), i(t + 1, x), ..., i(t + nts - 1, x); day[(i(t + (nts - 1)/2))] = 366\}
vdrunsum
                    Multi-year daily running sum
                     o(001, x) = \mathbf{sum}\{i(t, x), i(t+1, x), ..., i(t+nts-1, x); \text{day}[(i(t+(nts-1)/2)] = 001\}
                     o(366, x) = \mathbf{sum}\{i(t, x), i(t+1, x), ..., i(t+nts-1, x); day[(i(t+(nts-1)/2))] = 366\}
ydrunmean
                    Multi-year daily running mean
                     o(001, x) = \mathbf{mean}\{i(t, x), i(t+1, x), ..., i(t+nts-1, x); \operatorname{day}[(i(t+(nts-1)/2)] = 001\}
                     o(366,x) = \mathbf{mean}\{i(t,x), i(t+1,x), ..., i(t+nts-1,x); \operatorname{day}[(i(t+(nts-1)/2)] = 366\}
ydrunavg
                    Multi-year daily running average
                     o(001,x) = \mathbf{avg}\{i(t,x), i(t+1,x), ..., i(t+nts-1,x); \mathrm{day}[(i(t+(nts-1)/2)] = 001\}
                     o(366, x) = \mathbf{avg}\{i(t, x), i(t+1, x), ..., i(t+nts-1, x); \operatorname{day}[(i(t+(nts-1)/2))] = 366\}
ydrunstd
                    Multi-year daily running standard deviation
                    Normalize by n.
                     o(001,x) = \mathbf{std}\{i(t,x), i(t+1,x), ..., i(t+nts-1,x); \operatorname{day}[(i(t+(nts-1)/2)] = 001\} :
                     o(366, x) = \mathbf{std}\{i(t, x), i(t + 1, x), \dots, i(t + nts - 1, x); \operatorname{day}[(i(t + (nts - 1)/2))] = 366\}
```

 $o(366,x) = \mathbf{var1}\{i(t,x), i(t+1,x), ..., i(t+nts-1,x); \operatorname{day}[(i(t+(nts-1)/2)] = 366\}$

Parameter

nts INTEGER Number of timesteps

Example

Assume the input data provide a continuous time series of daily measurements. To compute the running multi-year daily mean over all input timesteps for a running window of five days use:

```
cdo ydrunmean,5 infile outfile
```

Note that except for the standard deviation the results of the operators in this module are equivalent to a composition of corresponding operators from the YDAYSTAT and RUNSTAT modules. For instance, the above command yields the same result as:

cdo ydaymean -runmean,5 infile outfile

2.8.36. YDRUNPCTL - Multi-year daily running percentile values

Synopsis

```
ydrunpctl,p,nts infile1 infile2 infile3 outfile
```

Description

This operator writes running percentile values for each day of year in infile1 to outfile. A certain percentile is computed for all timesteps in running windows of which the medium timestep corresponds to a certain day of year. The algorithm uses histograms with minimum and maximum bounds given in infile2 and infile3, respectively. The default number of histogram bins is 101. The default can be overridden by setting the environment variable CDO_PCTL_NBINS to a different value. The files infile2 and infile3 should be the result of corresponding ydrunmin and ydrunmax operations, respectively. The date information in an output field is the date of the timestep in the middle of the last contributing running window. Note that the operator have to be applied to a continuous time series of daily measurements in order to yield physically meaningful results. Also note that the output time series begins (nts-1)/2 timesteps after the first timestep of the input time series and ends (nts-1)/2 timesteps before the last. For input data which are complete but not continuous, such as time series of daily measurements for the same month or season within different years, the operator only yields physically meaningful results if the input time series does include the (nts-1)/2 days before and after each period of interest.

```
\begin{split} o(001,x) &= \mathbf{pth} \ \mathbf{percentile}\{i(t,x), i(t+1,x), ..., i(t+nts-1,x); \mathrm{day}[(i(t+(nts-1)/2)] = 001\} \\ & \vdots \\ o(366,x) &= \mathbf{pth} \ \mathbf{percentile}\{i(t,x), i(t+1,x), ..., i(t+nts-1,x); \mathrm{day}[(i(t+(nts-1)/2)] = 366\} \end{split}
```

Parameter

```
p FLOAT Percentile number in 0, ..., 100nts INTEGER Number of timesteps
```

Environment

CDO PCTL NBINS Sets the number of histogram bins. The default number is 101.

Example

Assume the input data provide a continuous time series of daily measurements. To compute the running multi-year daily 90th percentile over all input timesteps for a running window of five days

```
cdo ydrunmin,5 infile minfile
cdo ydrunmax,5 infile maxfile
cdo ydrunpct1,90,5 infile minfile maxfile outfile
```

```
cdo ydrunpctl,90,5 infile -ydrunmin infile -ydrunmax infile outfile
```

Reference manual Correlation and co.

2.9. Correlation and co.

This sections contains modules for correlation and co. in grid space and over time. In this section the abbreviations as in the following table are used:

Covariance
$$n^{-1} \sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})$$

$$\text{covar weighted by } \left\{ w_i, i = 1, ..., n \right\} \qquad \left(\sum_{j=1}^{n} w_j \right)^{-1} \sum_{i=1}^{n} w_i \left(x_i - \left(\sum_{j=1}^{n} w_j \right)^{-1} \sum_{j=1}^{n} w_j x_j \right) \left(y_i - \left(\sum_{j=1}^{n} w_j \right)^{-1} \sum_{j=1}^{n} w_j y_j \right)$$

Here is a short overview of all operators in this section:

fldcor Correlation in grid space

timcor Correlation over time

fldcovar Covariance in grid space

timcovar Covariance over time

Correlation and co. Reference manual

2.9.1. FLDCOR - Correlation in grid space

Synopsis

fldcor infile1 infile2 outfile

Description

The correlation coefficient is a quantity that gives the quality of a least squares fitting to the original data. This operator correlates all gridpoints of two fields for each timestep. With

$$S(t) = \{x, i_1(t, x) \neq missval \land i_2(t, x) \neq missval\}$$

it is

$$o(t,1) = \frac{\sum\limits_{x \in S(t)} i_1(t,x) i_2(t,x) w(x) - \overline{i_1(t,x)} \ \overline{i_2(t,x)} \sum\limits_{x \in S(t)} w(x)}{\sqrt{\left(\sum\limits_{x \in S(t)} i_1(t,x)^2 w(x) - \overline{i_1(t,x)}^2 \sum\limits_{x \in S(t)} w(x)\right) \left(\sum\limits_{x \in S(t)} i_2(t,x)^2 w(x) - \overline{i_2(t,x)}^2 \sum\limits_{x \in S(t)} w(x)\right)}}$$

where w(x) are the area weights obtained by the input streams. For every timestep t only those field elements x belong to the sample, which have $i_1(t,x) \neq missval$ and $i_2(t,x) \neq missval$.

2.9.2. TIMCOR - Correlation over time

Synopsis

timcor infile1 infile2 outfile

Description

The correlation coefficient is a quantity that gives the quality of a least squares fitting to the original data. This operator correlates each gridpoint of two fields over all timesteps. With

$$S(x) = \{t, i_1(t, x) \neq missval \land i_2(t, x) \neq missval\}$$

it is

$$o(1,x) = \frac{\sum_{t \in S(x)} i_1(t,x)i_2(t,x) - n \ \overline{i_1(t,x)} \ \overline{i_2(t,x)}}{\sqrt{\left(\sum_{t \in S(x)} i_1(t,x)^2 - n \ \overline{i_1(t,x)}^2\right) \left(\sum_{t \in S(x)} i_2(t,x)^2 - n \ \overline{i_2(t,x)}^2\right)}}$$

For every gridpoint x only those timesteps t belong to the sample, which have $i_1(t, x) \neq missval$ and $i_2(t, x) \neq missval$.

Reference manual Correlation and co.

2.9.3. FLDCOVAR - Covariance in grid space

Synopsis

fldcovar infile1 infile2 outfile

Description

This operator calculates the covariance of two fields over all gridpoints for each timestep. With

$$S(t) = \{x, i_1(t, x) \neq missval \land i_2(t, x) \neq missval\}$$

it is

$$o(t,1) = \left(\sum_{x \in S(t)} w(x)\right)^{-1} \sum_{x \in S(t)} w(x) \left(i_1(t,x) - \frac{\sum_{x \in S(t)} w(x) i_1(t,x)}{\sum_{x \in S(t)} w(x)}\right) \left(i_2(t,x) - \frac{\sum_{x \in S(t)} w(x) i_2(t,x)}{\sum_{x \in S(t)} w(x)}\right)$$

where w(x) are the area weights obtained by the input streams. For every timestep t only those field elements x belong to the sample, which have $i_1(t,x) \neq missval$ and $i_2(t,x) \neq missval$.

2.9.4. TIMCOVAR - Covariance over time

Synopsis

timcovar infile1 infile2 outfile

Description

This operator calculates the covariance of two fields at each gridpoint over all timesteps. With

$$S(x) = \{t, i_1(t, x) \neq missval \land i_2(t, x) \neq missval\}$$

it is

$$o(1,x) = n^{-1} \sum_{t \in S(x)} \left(i_1(t,x) - \overline{i_1(t,x)} \right) \left(i_2(t,x) - \overline{i_2(t,x)} \right)$$

For every gridpoint x only those timesteps t belong to the sample, which have $i_1(t, x) \neq missval$ and $i_2(t, x) \neq missval$.

Regression Reference manual

2.10. Regression

This sections contains modules for linear regression of time series. $\,$

Here is a short overview of all operators in this section:

regression Regression

detrend Detrend

trend Trend

subtrend Subtract trend

Reference manual Regression

2.10.1. REGRES - Regression

Synopsis

regres infile outfile

Description

The values of the input file infile are assumed to be distributed as $N(a+bt,\sigma^2)$ with unknown a, b and σ^2 . This operator estimates the parameter b. For every field element x only those timesteps t belong to the sample S(x), which have $i(t,x) \neq \text{miss}$. It is

$$o(1,x) = \frac{\sum_{t \in S(x)} \left(i(t,x) - \frac{1}{\#S(x)} \sum_{t' \in S(x)} i(t',x) \right) \left(t - \frac{1}{\#S(x)} \sum_{t' \in S(x)} t' \right)}{\sum_{t \in S(x)} \left(t - \frac{1}{\#S(x)} \sum_{t' \in S(x)} t' \right)^2}$$

2.10.2. DETREND - Detrend time series

Synopsis

detrend infile outfile

Description

Every time series in infile is linearly detrended. For every field element x only those timesteps t belong to the sample S(x), which have $i(t,x) \neq \text{miss}$. With

$$a(x) = \frac{1}{\#S(x)} \sum_{t \in S(x)} i(t, x) - b(x) \left(\frac{1}{\#S(x)} \sum_{t \in S(x)} t \right)$$

and

$$b(x) = \frac{\sum_{t \in S(x)} \left(i(t, x) - \frac{1}{\#S(x)} \sum_{t' \in S(x)} i(t', x) \right) \left(t - \frac{1}{\#S(x)} \sum_{t' \in S(x)} t' \right)}{\sum_{t \in S(x)} \left(t - \frac{1}{\#S(x)} \sum_{t' \in S(x)} t' \right)^2}$$

it is

$$o(t,x) = i(t,x) - (a(x) + b(x)t)$$

Note

This operator has to keep the fields of all timesteps concurrently in the memory. If not enough memory is available use the operators trend and subtrend.

Example

To detrend the data in infile and to store the detrended data in outfile use:

cdo detrend infile outfile

Regression Reference manual

2.10.3. TREND - Trend of time series

Synopsis

trend infile outfile1 outfile2

Description

The values of the input file infile are assumed to be distributed as $N(a+bt,\sigma^2)$ with unknown a, b and σ^2 . This operator estimates the parameter a and b. For every field element x only those timesteps t belong to the sample S(x), which have $i(t,x) \neq \text{miss}$. It is

$$o_1(1,x) = \frac{1}{\#S(x)} \sum_{t \in S(x)} i(t,x) - b(x) \left(\frac{1}{\#S(x)} \sum_{t \in S(x)} t \right)$$

and

$$o_2(1,x) = \frac{\sum_{t \in S(x)} \left(i(t,x) - \frac{1}{\#S(x)} \sum_{t' \in S(x)} i(t',x) \right) \left(t - \frac{1}{\#S(x)} \sum_{t' \in S(x)} t' \right)}{\sum_{t \in S(x)} \left(t - \frac{1}{\#S(x)} \sum_{t' \in S(x)} t' \right)^2}$$

Thus the estimation for a is stored in outfile1 and that for b is stored in outfile2. To subtract the trend from the data see operator subtrend.

2.10.4. SUBTREND - Subtract a trend

Synopsis

subtrend infile1 infile2 infile3 outfile

Description

This operator is for subtracting a trend computed by the operator trend. It is

$$o(t,x) = i_1(t,x) - (i_2(1,x) + i_3(1,x) \cdot t)$$

where t is the timesteps.

Example

The typical call for detrending the data in infile and storing the detrended data in outfile is:

```
cdo trend infile afile bfile
cdo subtrend infile afile bfile outfile
```

The result is identical to a call of the operator detrend:

```
cdo detrend infile outfile
```

Reference manual EOFs

2.11. EOFs

This section contains modules to compute Empirical Orthogonal Functions and - once they are computed - their principal coefficients.

An introduction to the theory of principal component analysis as applied here can be found in:

Principal Component Analysis [Peisendorfer]

Details about calculation in the time- and spatial spaces are found in:

Statistical Analysis in Climate Research [vonStorch]

EOFs are defined as the eigen values of the scatter matrix (covariance matrix) of the data. For the sake of simplicity, samples are regarded as **time series of anomalies**

$$(z(t)), t \in \{1, \dots, n\}$$

of (column-) vectors z(t) with p entries (where p is the gridsize). Thus, using the fact, that $z_j(t)$ are anomalies, i.e.

$$\langle z_j \rangle = n^{-1} \sum_{i=1}^n z_j(i) = 0 \ \forall \ 1 \le j \le p$$

the scatter matrix S can be written as

$$\mathbf{S} = \sum_{t=1}^{n} \left[\sqrt{\mathbf{W}} z(t) \right] \left[\sqrt{\mathbf{W}} z(t) \right]^{T}$$

where **W** is the diagonal matrix containing the area weight of cell p_0 in z at $\mathbf{W}(x,x)$.

The matrix **S** has a set of orthonormal eigenvectors $e_j, j = 1, ...p$, which are called *empirical orthogonal* functions (EOFs) of the sample z. (Please note, that e_j is the eigenvector of **S** and not the weighted eigen-vector which would be $\mathbf{W}e_j$.) Let the corresponding eigenvalues be denoted λ_j . The vectors e_j are spatial patterns which explain a certain amount of variance of the time series z(t) that is related linearly to λ_j . Thus, the spatial pattern defined by the first eigenvector (the one with the largest eigenvalue) is the pattern which explains a maximum possible amount of variance of the sample z(t). The orthonormality of eigenvectors reads as

$$\sum_{x=1}^{p} \left[\sqrt{\mathbf{W}(x,x)} e_j(x) \right] \left[\sqrt{\mathbf{W}(x,x)} e_k(x) \right] = \sum_{x=1}^{p} \mathbf{W}(x,x) e_j(x) e_k(x) = \begin{cases} 0 & \text{if } j \neq k \\ 1 & \text{if } j = k \end{cases}$$

If all EOFs e_j with $\lambda_j \neq 0$ are calculated, the data can be reconstructed from

$$z(t,x) = \sum_{j=1}^{p} \mathbf{W}(x,x)a_{j}(t)e_{j}(x)$$

where a_j are called the *principal components* or *principal coefficients* or *EOF coefficients* of z. These coefficients - as readily seen from above - are calculated as the projection of an EOF e_j onto a time step of the data sample $z(t_0)$ as

$$a_j(t_0) = \sum_{x=1}^p \left[\sqrt{\mathbf{W}(x,x)} e_j(x) \right] \left[\sqrt{\mathbf{W}(x,x)} z(t_0,x) \right] = \left[\sqrt{\mathbf{W}} z(t_0) \right]^T \left[\sqrt{\mathbf{W}} e_j \right].$$

Here is a short overview of all operators in this section:

eof Calculate EOFs in spatial or time space

eoftime Calculate EOFs in time space eofspatial Calculate EOFs in spatial space

eof3d Calculate 3-Dimensional EOFs in time space

eofcoeff Calculate principal coefficients of EOFs

EOFs Reference manual

2.11.1. EOFS - Empirical Orthogonal Functions

Synopsis

<operator>,neof infile outfile1 outfile2

Description

This module calculates empirical orthogonal functions of the data in infile as the eigen values of the scatter matrix (covariance matrix) S of the data sample z(t). A more detailed description can be found above.

Please note, that the input data are assumed to be anomalies.

If operator eof is chosen, the EOFs are computed in either time or spatial space, whichever is the fastest. If the user already knows, which computation is faster, the module can be forced to perform a computation in time- or gridspace by using the operators eoftime or eofspatial, respectively. This can enhance performance, especially for very long time series, where the number of timesteps is larger than the number of grid-points. Data in infile are assumed to be anomalies. If they are not, the behavior of this module is **not well defined**. After execution outfile1 will contain all eigen-values and outfile2 the eigenvectors e_j . All EOFs and eigen-values are computed. However, only the first neof EOFs are written to outfile2. Nonetheless, outfile1 contains all eigen-values.

Missing values are not fully supported. Support is only checked for non-changing masks of missing values in time. Although there still will be results, they are not trustworthy, and a warning will occur. In the latter case we suggest to replace missing values by 0 in infile.

Operators

eof Calculate EOFs in spatial or time space

eoftime Calculate EOFs in time space

eofspatial Calculate EOFs in spatial space

eof3d Calculate 3-Dimensional EOFs in time space

Parameter

neof INTEGER Number of eigen functions

Environment

CDO_SVD_MODE Is used to choose the algorithm for eigenvalue calculation. Options are 'jacobi'

for a one-sided parallel jacobi-algorithm (only executed in parallel if -P flag is set) and 'danielson_lanczos' for a non-parallel d/l algorithm. The default

setting is 'jacobi'.

CDO_WEIGHT_MODE It is used to set the weight mode. The default is 'off'. Set it to 'on' for a

weighted version.

MAX_JACOBI_ITER Is the maximum integer number of annihilation sweeps that is executed if the

jacobi-algorithm is used to compute the eigen values. The default value is 12.

FNORM_PRECISION Is the Frobenius norm of the matrix consisting of an annihilation pair of eigen-

vectors that is used to determine if the eigenvectors have reached a sufficient level of convergence. If all annihilation-pairs of vectors have a norm below this value, the computation is considered to have converged properly. Otherwise, a

warning will occur. The default value 1e-12.

Reference manual EOFs

Example

To calculate the first 40 EOFs of a data-set containing anomalies use:

```
cdo eof,40 infile outfile1 outfile2
```

If the dataset does not containt anomalies, process them first, and use:

```
cdo sub infile1 -timmean infile1 anom_file
cdo eof,40 anom_file outfile1 outfile2
```

EOFs Reference manual

2.11.2. EOFCOEFF - Principal coefficients of EOFs

Synopsis

eofcoeff infile1 infile2 obase

Description

This module calculates the time series of the principal coefficients for given EOF (empirical orthogonal functions) and data. Time steps in infile1 are assumed to be the EOFs, time steps in infile2 are assumed to be the time series. Note, that this operator calculates a non weighted dot product of the fields in infile1 and infile2. For consistency set the environment variable CDO_WEIGHT_MODE=off when using eof or eof3d. Given a set of EOFs e_j and a time series of data z(t) with p entries for each timestep from which e_j have been calculated, this operator calculates the time series of the projections of data onto each EOF

$$o_j(t) = \sum_{x=1}^p z(t, x)e_j(x)$$

There will be a seperate file o_j for the principal coefficients of each EOF.

As the EOFs e_{j} are uncorrelated, so are their principal coefficients, i.e.

$$\sum_{t=1}^{n} o_{j}(t)o_{k}(t) = \begin{cases} 0 \text{ if } j \neq k \\ \lambda_{j} \text{ if } j = k \end{cases} \text{ with } \sum_{t=1}^{n} o_{j}(t) = 0 \forall j \in \{1, \dots, p\}.$$

There will be a separate file containing a time series of principal coefficients with time information from infile2 for each EOF in infile1. Output files will be numbered as <obase><neof><suffix> where neof+1 is the number of the EOF (timestep) in infile1 and suffix is the filename extension derived from the file format.

Environment

CDO FILE SUFFIX

Set the default file suffix. This suffix will be added to the output file names instead of the filename extension derived from the file format. Set this variable to NULL to disable the adding of a file suffix.

Example

To calculate principal coefficients of the first 40 EOFs of anom_file, and write them to files beginning with obase, use:

```
export CDO_WEIGHT_MODE=off
cdo eof,40 anom_file eval_file eof_file
cdo eofcoeff eof_file anom_file obase
```

The principal coefficients of the first EOF will be in the file obase000000.nc (and so forth for higher EOFs, nth EOF will be in obase<n-1>).

If the dataset infile does not containt anomalies, process them first, and use:

```
export CDO_WEIGHT_MODE=off
cdo sub infile -timmean infile anom_file
cdo eof,40 anom_file eval_file eof_file
cdo eofcoeff eof_file anom_file obase
```

2.12. Interpolation

This section contains modules to interpolate datasets. There are several operators to interpolate horizontal fields to a new grid. Some of those operators can handle only 2D fields on a regular rectangular grid. Vertical interpolation of 3D variables is possible from hybrid model levels to height or pressure levels. Interpolation in time is possible between time steps and years.

Here is a short overview of all operators in this section:

remapbil Bilinear interpolation

genbil Generate bilinear interpolation weights

remapbic Bicubic interpolation

genbic Generate bicubic interpolation weights

remapnn Nearest neighbor remapping

gennn Generate nearest neighbor remap weights

remapdis Distance-weighted average remapping

gendis Generate distance-weighted average remap weights

remapycon First order conservative remapping

genycon Generate 1st order conservative remap weights

remapcon First order conservative remapping

gencon Generate 1st order conservative remap weights

remapcon2 Second order conservative remapping

gencon2 Generate 2nd order conservative remap weights

remaplaf Largest area fraction remapping

genlaf Generate largest area fraction remap weights

remap Grid remapping

remapeta Remap vertical hybrid level

ml2pl Model to pressure level interpolation ml2hl Model to height level interpolation

ap2pl Air pressure to pressure level interpolationap2hl Air pressure to height level interpolation

intlevel Linear level interpolation

intlevel3d Linear level interpolation onto a 3d vertical coordinate

intlevelx3d like intlevel3d but with extrapolation

inttime Interpolation between timesteps intntime Interpolation between timesteps

intyear Interpolation between two years

2.12.1. REMAPBIL - Bilinear interpolation

Synopsis

<operator>,grid infile outfile

Description

This module contains operators for a bilinear remapping of fields between grids in spherical coordinates. The interpolation is based on an adapted SCRIP library version. For a detailed description of the interpolation method see [SCRIP]. This interpolation method only works on quadrilateral curvilinear source grids. Below is a schematic illustration of the bilinear remapping:

The figure on the left side shows the input data on a regular lon/lat source grid and on the right side the remapped result on an unstructured triangular target grid. The figure in the middle shows the input data with the target grid. Grid cells with missing value are grey colored.

Operators

remapbil Bilinear interpolation

Performs a bilinear interpolation on all input fields.

genbil Generate bilinear interpolation weights

Generates bilinear interpolation weights for the first input field and writes the result to a file. The format of this file is NetCDF following the SCRIP convention. Use the operator remap to apply this remapping weights to a data file with the same source

grid.

Parameter

grid STRING Target grid description file or name

Environment

REMAP_EXTRAPOLATE This variable is used to switch the extrapolation feature 'on' or 'off'. By

default the extrapolation is enabled for circular grids.

Example

Say infile contains fields on a quadrilateral curvilinear grid. To remap all fields bilinear to a Gaussian N32 grid, type:

cdo remapbil, n32 infile outfile

2.12.2. REMAPBIC - Bicubic interpolation

Synopsis

< operator >, grid infile outfile

Description

This module contains operators for a bicubic remapping of fields between grids in spherical coordinates. The interpolation is based on an adapted SCRIP library version. For a detailed description of the interpolation method see [SCRIP]. This interpolation method only works on quadrilateral curvilinear source grids. Below is a schematic illustration of the bicubic remapping:

The figure on the left side shows the input data on a regular lon/lat source grid and on the right side the remapped result on an unstructured triangular target grid. The figure in the middle shows the input data with the target grid. Grid cells with missing value are grey colored.

Operators

remapbic Bicubic interpolation

Performs a bicubic interpolation on all input fields.

genbic Generate bicubic interpolation weights

Generates bicubic interpolation weights for the first input field and writes the result to a file. The format of this file is NetCDF following the SCRIP convention. Use the operator remap to apply this remapping weights to a data file with the same source grid.

Parameter

grid STRING Target grid description file or name

Environment

REMAP_EXTRAPOLATE This variable is used to switch the extrapolation feature 'on' or 'off'. By default the extrapolation is enabled for circular grids.

Example

Say infile contains fields on a quadrilateral curvilinear grid. To remap all fields bicubic to a Gaussian N32 grid, type:

cdo remapbic, n32 infile outfile

2.12.3. REMAPNN - Nearest neighbor remapping

Synopsis

<operator>,grid infile outfile

Description

This module contains operators for a nearest neighbor remapping of fields between grids in spherical coordinates. Below is a schematic illustration of the nearest neighbor remapping:

The figure on the left side shows the input data on a regular lon/lat source grid and on the right side the remapped result on an unstructured triangular target grid. The figure in the middle shows the input data with the target grid. Grid cells with missing value are grey colored.

Operators

remapnn Nearest neighbor remapping

Performs a nearest neighbor remapping on all input fields.

gennn Generate nearest neighbor remap weights

Generates nearest neighbor remapping weights for the first input field and writes the result to a file. The format of this file is NetCDF following the SCRIP convention. Use the operator remap to apply this remapping weights to a data file with the same

source grid.

Parameter

grid STRING Target grid description file or name

Environment

REMAP EXTRAPOLATE This variable is used to switch the extrapolation feature 'on' or 'off'. By

default the extrapolation is enabled for this remapping method.

CDO_GRIDSEARCH_RADIUS Grid search radius in degree, default 180 degree.

2.12.4. REMAPDIS - Distance-weighted average remapping

Synopsis

remapdis,grid[,neighbors] infile outfile
gendis,grid infile outfile

Description

This module contains operators for a distance-weighted average remapping of the four nearest neighbor values of fields between grids in spherical coordinates. The interpolation is based on an adapted SCRIP library version. For a detailed description of the interpolation method see [SCRIP]. Below is a schematic illustration of the distance-weighted average remapping:

The figure on the left side shows the input data on a regular lon/lat source grid and on the right side the remapped result on an unstructured triangular target grid. The figure in the middle shows the input data with the target grid. Grid cells with missing value are grey colored.

Operators

remapdis Distance-weighted average remapping

Performs a distance-weighted average remapping of the nearest neighbors value on all

input fields. The default number of nearest neighbors is 4.

gendis Generate distance-weighted average remap weights

Generates distance-weighted average remapping weights of the four nearest neighbor values for the first input field and writes the result to a file. The format of this file is NetCDF following the SCRIP convention. Use the operator remap to apply this

remapping weights to a data file with the same source grid.

Parameter

grid STRING Target grid description file or name

neighbors INTEGER Number of nearest neighbors

Environment

REMAP_EXTRAPOLATE This variable is used to switch the extrapolation feature 'on' or 'off'. By

default the extrapolation is enabled for this remapping method.

CDO GRIDSEARCH RADIUS Grid search radius in degree, default 180 degree.

2.12.5. REMAPYCON - First order conservative remapping

Synopsis

< operator >, grid infile outfile

Description

This module contains operators for a first order conservative remapping of fields between grids in spherical coordinates. The operators in this module uses code from the YAC software package to compute the conservative remapping weights. For a detailed description of the interpolation method see [YAC]. The interpolation method is completely general and can be used for any grid on a sphere. The search algorithm for the conservative remapping requires that no grid cell occurs more than once. Below is a schematic illustration of the 1st order conservative remapping:

The figure on the left side shows the input data on a regular lon/lat source grid and on the right side the remapped result on an unstructured triangular target grid. The figure in the middle shows the input data with the target grid. Grid cells with missing value are grey colored.

Operators

remapycon First order conservative remapping

Performs a first order conservative remapping on all input fields.

genycon Generate 1st order conservative remap weights

Generates first order conservative remapping weights for the first input field and writes the result to a file. The format of this file is NetCDF following the SCRIP convention. Use the operator remap to apply this remapping weights to a data file with the same source grid.

Parameter

grid STRING Target grid description file or name

Environment

CDO_REMAP_NORM

This variable is used to choose the normalization of the conservative interpolation. By default CDO_REMAP_NORM is set to 'fracarea'. 'fracarea' uses the sum of the non-masked source cell intersected areas to normalize each target cell field value. This results in a reasonable flux value but the flux is not locally conserved. The option 'destarea' uses the total target cell area to normalize each target cell field value. Local flux conservation is ensured, but unreasonable flux values may result.

REMAP_AREA_MIN This variable is used to set the minimum destination area fraction. The default of this variable is 0.0.

Example

Say infile contains fields on a quadrilateral curvilinear grid. To remap all fields conservative to a Gaussian N32 grid, type:

cdo remapycon,n32 infile outfile

2.12.6. REMAPCON - First order conservative remapping

Synopsis

<operator>,grid infile outfile

Description

This module contains operators for a first order conservative remapping of fields between grids in spherical coordinates. The interpolation is based on an adapted SCRIP library version. For a detailed description of the interpolation method see [SCRIP]. The interpolation method is completely general and can be used for any grid on a sphere. The search algorithm for the conservative remapping requires that no grid cell occurs more than once. Below is a schematic illustration of the 1st order conservative remapping:

The figure on the left side shows the input data on a regular lon/lat source grid and on the right side the remapped result on an unstructured triangular target grid. The figure in the middle shows the input data with the target grid. Grid cells with missing value are grey colored.

Operators

remapcon First order conservative remapping

Performs a first order conservative remapping on all input fields.

gencon Generate 1st order conservative remap weights

Generates first order conservative remapping weights for the first input field and writes the result to a file. The format of this file is NetCDF following the SCRIP convention. Use the operator remap to apply this remapping weights to a data file with the same

source grid.

Parameter

grid STRING Target grid description file or name

Environment

CDO_REMAP_NORM

This variable is used to choose the normalization of the conservative interpolation. By default CDO_REMAP_NORM is set to 'fracarea'. 'fracarea' uses the sum of the non-masked source cell intersected areas to normalize each target cell field value. This results in a reasonable flux value but the flux is not locally conserved. The option 'destarea' uses the total target cell area to normalize each target cell field value. Local flux conservation is ensured, but unreasonable flux values may result.

REMAP_AREA_MIN This variable is used to set the minimum destination area fraction. The default of this variable is 0.0.

Note

The SCRIP conservative remapping method doesn't work correctly for some grid combinations. Please use remapycon or genycon in case of problems.

Example

Say infile contains fields on a quadrilateral curvilinear grid. To remap all fields conservative to a Gaussian N32 grid, type:

cdo remapcon, n32 infile outfile

2.12.7. REMAPCON2 - Second order conservative remapping

Synopsis

< operator >, grid infile outfile

Description

This module contains operators for a second order conservative remapping of fields between grids in spherical coordinates. The interpolation is based on an adapted SCRIP library version. For a detailed description of the interpolation method see [SCRIP]. The interpolation method is completely general and can be used for any grid on a sphere. The search algorithm for the conservative remapping requires that no grid cell occurs more than once. Below is a schematic illustration of the 2nd order conservative remapping:

The figure on the left side shows the input data on a regular lon/lat source grid and on the right side the remapped result on an unstructured triangular target grid. The figure in the middle shows the input data with the target grid. Grid cells with missing value are grey colored.

Operators

remapcon2 Second order conservative remapping

Performs a second order conservative remapping on all input fields.

gencon2 Generate 2nd order conservative remap weights

Generates second order conservative remapping weights for the first input field and writes the result to a file. The format of this file is NetCDF following the SCRIP convention. Use the operator remap to apply this remapping weights to a data file with the same source grid.

Parameter

grid STRING Target grid description file or name

Environment

CDO_REMAP_NORM

This variable is used to choose the normalization of the conservative interpolation. By default CDO_REMAP_NORM is set to 'fracarea'. 'fracarea' uses the sum of the non-masked source cell intersected areas to normalize each target cell field value. This results in a reasonable flux value but the flux is not locally conserved. The option 'destarea' uses the total target cell area to normalize each target cell field value. Local flux conservation is ensured, but unreasonable flux values may result.

REMAP_AREA_MIN This variable is used to set the minimum destination area fraction. The default of this variable is 0.0.

Note

The SCRIP conservative remapping method doesn't work correctly for some grid combinations.

Example

Say infile contains fields on a quadrilateral curvilinear grid. To remap all fields conservative (2nd order) to a Gaussian N32 grid, type:

cdo remapcon2,n32 infile outfile

2.12.8. REMAPLAF - Largest area fraction remapping

Synopsis

<operator>,grid infile outfile

Description

This module contains operators for a largest area fraction remapping of fields between grids in spherical coordinates. The operators in this module uses code from the YAC software package to compute the largest area fraction. For a detailed description of the interpolation method see [YAC]. The interpolation method is completely general and can be used for any grid on a sphere. The search algorithm for this remapping method requires that no grid cell occurs more than once. Below is a schematic illustration of the largest area fraction conservative remapping:

The figure on the left side shows the input data on a regular lon/lat source grid and on the right side the remapped result on an unstructured triangular target grid. The figure in the middle shows the input data with the target grid. Grid cells with missing value are grey colored.

Operators

remaplaf Largest area fraction remapping

Performs a largest area fraction remapping on all input fields.

genlaf Generate largest area fraction remap weights

> Generates largest area fraction remapping weights for the first input field and writes the result to a file. The format of this file is NetCDF following the SCRIP convention. Use the operator remap to apply this remapping weights to a data file with the same

source grid.

Parameter

grid **STRING** Target grid description file or name

Environment

This variable is used to set the minimum destination area fraction. The default REMAP AREA MIN

of this variable is 0.0.

2.12.9. REMAP - Grid remapping

Synopsis

remap, grid, weights infile outfile

Description

Interpolation between different horizontal grids can be a very time-consuming process. Especially if the data are on an unstructured and/or a large grid. In this case the interpolation process can be split into two parts. Firstly the generation of the interpolation weights, which is the most time-consuming part. These interpolation weights can be reused for every remapping process with the operator remap. This operator remaps all input fields to a new horizontal grid. The remap type and the interpolation weights of one input grid are read from a NetCDF file. More weights are computed if the input fields are on different grids. The NetCDF file with the weights should follow the [SCRIP] convention. Normally these weights come from a previous call to one of the genXXX operators (e.g. genbil) or were created by the original SCRIP package.

Parameter

grid STRING Target grid description file or name

weights STRING Interpolation weights (SCRIP NetCDF file)

Environment

CDO_REMAP_NORM	This variable is used to choose the normalization of the conservative interpolation. By default CDO_REMAP_NORM is set to 'fracarea'. 'fracarea' uses the sum of the non-masked source cell intersected areas to normalize each target cell field value. This results in a reasonable flux value but the flux is not locally conserved. The option 'destarea' uses the total target cell area to normalize each target cell field value. Local flux conservation is ensured, but unreasonable flux values may result.
REMAP_EXTRAPOLATE	This variable is used to switch the extrapolation feature 'on' or 'off'. By default the extrapolation is enabled for remapdis, remapnn and for circular grids.
REMAP_AREA_MIN	This variable is used to set the minimum destination area fraction. The default of this variable is 0.0.

Example

Say infile contains fields on a quadrilateral curvilinear grid. To remap all fields bilinear to a Gaussian N32 grid use:

Grid search radius in degree, default 180 degree.

```
cdo genbil,n32 infile remapweights.nc cdo remap,n32,remapweights.nc infile outfile
```

The result will be the same as:

CDO_GRIDSEARCH_RADIUS

```
cdo remapbil,n32 infile outfile
```

2.12.10. REMAPETA - Remap vertical hybrid level

Synopsis

remapeta, vct[,oro] infile outfile

Description

This operator interpolates between different vertical hybrid levels. This include the preparation of consistent data for the free atmosphere. The procedure for the vertical interpolation is based on the HIRLAM scheme and was adapted from [INTERA]. The vertical interpolation is based on the vertical integration of the hydrostatic equation with few adjustments. The basic tasks are the following one:

- at first integration of hydrostatic equation
- extrapolation of surface pressure
- Planetary Boundary-Layer (PBL) proutfile interpolation
- interpolation in free atmosphere
- merging of both proutfiles
- final surface pressure correction

The vertical interpolation corrects the surface pressure. This is simply a cut-off or an addition of air mass. This mass correction should not influence the geostrophic velocity field in the middle troposhere. Therefore the total mass above a given reference level is conserved. As reference level the geopotential height of the 400 hPa level is used. Near the surface the correction can affect the vertical structure of the PBL. Therefore the interpolation is done using the potential temperature. But in the free atmosphere above a certain n (n=0.8 defining the top of the PBL) the interpolation is done linearly. After the interpolation both proutfiles are merged. With the resulting temperature/pressure correction the hydrostatic equation is integrated again and adjusted to the reference level finding the final surface pressure correction. A more detailed description of the interpolation can be found in [INTERA]. This operator requires all variables on the same horizontal grid.

Parameter

vct	STRING	File name of an ASCII dataset with the vertical coordinate table
oro	STRING	File name with the orography (surf. geopotential) of the target dataset (optional)

Environment

REMAPETA_PTOP Sets the minimum pressure level for condensation. Above this level the humidity is set to the constant 1.E-6. The default value is 0 Pa.

Note

The code numbers or the variable names of the required parameter have to follow the [ECHAM] convention. Presently, the vertical coordinate definition of a NetCDF file has also to follow the ECHAM convention. This means:

- the dimension of the full level coordinate and the corresponding variable is called mlev,
- the dimension of the half level coordinate and the corresponding variable is called ilev (ilev must have one element more than mlev)
- the hybrid vertical coefficient a is given in units of Pa and called hyai (hyam for level midpoints)
- the hybrid vertical coefficient b is given in units of 1 and called hybi (hybm for level midpoints)

• the mlev variable has a borders attribute containing the character string 'ilev'

Use the sinfo command to test if your vertical coordinate system is recognized as hybrid system.

In case remapeta complains about not finding any data on hybrid model levels you may wish to use the setzaxis command to generate a zaxis description which conforms to the ECHAM convention. See section "1.4 Z-axis description" for an example how to define a hybrid Z-axis.

Example

To remap between different hybrid model level data use:

```
cdo remapeta, vct infile outfile
```

Here is an example vct file with 19 hybrid model level:

```
0.000000000000000000
                                      0.000000000000000000
      2000.0000000000000000000
                                      0.000000000000000000
 1
 2
      4000.000000000000000000
                                      0.000000000000000000
                                      0.00033899326808751
      6046.109375000000000000
 3
      8267.929687500000000000
                                      0.00335718691349030
 4
 5
     10609.51171875000000000
                                      0.01307003945112228
 6
     12851.101562500000000000
                                      0.03407714888453484
     14698.500000000000000000
                                      0.07064980268478394
     15861.128906250000000000\\
                                      0.12591671943664551
     16116.238281250000000000\\
                                      0.20119541883468628
10
     15356.9218750000000000000\\
                                      0.29551959037780762
11
     13621.460937500000000000
                                      0.40540921688079834
12
     11101.558593750000000000
                                      0.52493220567703247
13
      8127.144531250000000000
                                      0.64610791206359863
      5125.140625000000000000
                                      0.75969839096069336
14
15
      2549.96899414062500000
                                      0.85643762350082397
16
       783.19506835937500000
                                      0.92874687910079956
17
         0.00000000000000000
                                      0.97298520803451538
         0.000000000000000000
                                      0.99228149652481079
18
19
         0.000000000000000000
                                      1.0000000000000000000
```

2.12.11. VERTINTML - Vertical interpolation

Synopsis

```
ml2pl,plevels infile outfile
ml2hl,hlevels infile outfile
```

Description

Interpolate 3D variables on hybrid sigma pressure level to pressure or height levels. The input file should contain the log. surface pressure or the surface pressure. To extrapolate the temperature, the surface geopotential is also needed. The pressure, temperature, and surface geopotential are identified by their GRIB1 code number or NetCDF CF standard name. Supported parameter tables are: WMO standard table number 2 and ECMWF local table number 128. Use the alias ml2plx/ml2hlx or the environment variable EXTRAPOLATE to extrapolate missing values. This operator requires all variables on the same horizontal grid.

Operators

ml2pl Model to pressure level interpolation

Interpolates 3D variables on hybrid sigma pressure level to pressure level.

ml2hl Model to height level interpolation

Interpolates 3D variables on hybrid sigma pressure level to height level. The procedure is the same as for the operator ml2pl except for the pressure levels being calculated from the heights by: plevel = 101325 * exp(hlevel/ - 7000)

Parameter

plevels FLOAT Pressure levels in pascal

hlevels FLOAT Height levels in meter (max level: 65535 m)

Environment

EXTRAPOLATE If set to 1 extrapolate missing values.

Example

To interpolate hybrid model level data to pressure levels of 925, 850, 500 and 200 hPa use:

cdo ml2p1,92500,85000,50000,20000 infile outfile

2.12.12. VERTINTAP - Vertical interpolation

Synopsis

```
ap2pl,plevels infile outfile
ap2hl,hlevels infile outfile
```

Description

Interpolate 3D variables on hybrid sigma height coordinates to pressure or height levels. The input file must contain the 3D air pressure. The air pressure is identified by the NetCDF CF standard name air_pressure. Use the alias ap2plx/ap2hlx or the environment variable EXTRAPOLATE to extrapolate missing values. This operator requires all variables on the same horizontal grid.

Operators

ap2pl Air pressure to pressure level interpolation

Interpolates 3D variables on hybrid sigma height coordinates to pressure level.

ap2hl Air pressure to height level interpolation

Interpolates 3D variables on hybrid sigma height coordinates to height level. The procedure is the same as for the operator ap2pl except for the pressure levels being calculated from the heights by: plevel = 101325 * exp(hlevel/-7000)

Parameter

plevels FLOAT Pressure levels in pascal

hlevels FLOAT Height levels in meter (max level: 65535 m)

Environment

EXTRAPOLATE If set to 1 extrapolate missing values.

Note

This is a specific implementation for NetCDF files from the ICON model, it may not work with data from other sources.

Example

To interpolate 3D variables on hybrid sigma height level to pressure levels of 925, 850, 500 and 200 hPa use:

cdo ap2p1,92500,85000,50000,20000 infile outfile

2.12.13. INTLEVEL - Linear level interpolation

Synopsis

intlevel,levels infile outfile

Description

This operator performs a linear vertical interpolation of non hybrid 3D variables.

Parameter

levels FLOAT Target levels

Example

To interpolate 3D variables on height levels to a new set of height levels use:

cdo intlevel,10,50,100,500,1000 infile outfile

2.12.14. INTLEVEL3D - Linear level interpolation from/to 3d vertical coordinates

Synopsis

<operator>,icoordinate infile1 infile2 outfile

Description

This operator performs a linear vertical interpolation of 3D variables fields with given 3D vertical coordinates.

Operators

intlevel3d Linear level interpolation onto a 3d vertical coordinate

intlevelx3d like intlevel3d but with extrapolation

Parameter

icoordinate STRING filename for vertical source coordinates variable infile2 STRING target vertical coordinate field (intlevel3d only)

Example

To interpolate 3D variables from one set of 3d height levels into another one where

- icoordinate contains a single 3d variable, which represents the input 3d vertical coordinate
- infile1 contains the source data, which the vertical coordinate from icoordinate belongs to
- infile2 only contains the target 3d height levels

cdo intlevel3d,icoordinate infile1 infile2 outfile

2.12.15. INTTIME - Time interpolation

Synopsis

```
inttime,date,time[,inc] infile outfile
intntime,n infile outfile
```

Description

This module performs linear interpolation between timesteps.

Operators

inttime Interpolation between timesteps

This operator creates a new dataset by linear interpolation between timesteps. The

user has to define the start date/time with an optional increment.

intntime Interpolation between timesteps

This operator performs linear interpolation between timesteps. The user has to define

the number of timesteps from one timestep to the next.

Parameter

date	STRING	Start date (format YYYY-MM-DD)
time	STRING	Start time (format hh:mm:ss)
inc	STRING 0hour]	Optional increment (seconds, minutes, hours, days, months, years) [default:
n	INTEGER	Number of timesteps from one timestep to the next

Example

Assumed a 6 hourly dataset starts at 1987-01-01 12:00:00. To interpolate this time series to a one hourly dataset use:

 $\verb|cdo| inttime, 1987-01-01, 12:00:00, 1 | hour infile outfile| \\$

2.12.16. INTYEAR - Year interpolation

Synopsis

intyear,years infile1 infile2 obase

Description

This operator performs linear interpolation between two years, timestep by timestep. The input files need to have the same structure with the same variables. The output files will be named <obsep><yyyy><suffix> where yyyy will be the year and suffix is the filename extension derived from the file format.

Parameter

years INTEGER Comma separated list of years

Environment

CDO_FILE_SUFFIX Set the default file suffix. This suffix will be added to the output file names

instead of the filename extension derived from the file format. Set this variable

to NULL to disable the adding of a file suffix.

Note

This operator needs to open all output files simultaneously. The maximum number of open files depends on the operating system!

Example

Assume there are two monthly mean datasets over a year. The first dataset has 12 timesteps for the year 1985 and the second one for the year 1990. To interpolate the years between 1985 and 1990 month by month use:

```
cdo intyear, 1986, 1987, 1988, 1989 infile1 infile2 year
```

Example result of 'dir year*' for NetCDF datasets:

year1986.nc year1987.nc year1988.nc year1989.nc

Transformation Reference manual

2.13. Transformation

This section contains modules to perform spectral transformations. $\,$

Here is a short overview of all operators in this section:

$\mathbf{sp2gp}$	Spectral to gridpoint
$\mathbf{sp2gpl}$	Spectral to gridpoint (linear)
$\mathbf{gp2sp}$	Gridpoint to spectral
$\mathbf{gp2spl}$	Gridpoint to spectral (linear)
sp2sp	Spectral to spectral
dv2uv	Divergence and vorticity to U and V wind
dv2uv dv2uvl	Divergence and vorticity to U and V wind Divergence and vorticity to U and V wind (linear)
	•
dv2uvl	Divergence and vorticity to U and V wind (linear)
dv2uvl uv2dv	Divergence and vorticity to U and V wind (linear) U and V wind to divergence and vorticity

Reference manual Transformation

2.13.1. SPECTRAL - Spectral transformation

Synopsis

```
<operator> infile outfile
sp2sp,trunc infile outfile
```

Description

This module transforms fields on a global regular Gaussian grids to spectral coefficients and vice versa. Missing values are not supported.

Operators

sp2gp Spectral to gridpoint

Convert all fields with spectral coefficients to a global regular Gaussian grid. The number of latitudes of the resulting Gaussian grid is calculated from the triangular truncation by: nlat = NINT((trunc * 3 + 1.)/2.)

sp2gpl Spectral to gridpoint (linear)

Convert all fields with spectral coefficients to a global regular Gaussian grid. The number of latitudes of the resulting Gaussian grid is calculated from the triangular truncation by: nlat = NINT((trunc * 2 + 1.)/2.)

Use this operator to convert ERA40 data e.g. from TL159 to N80.

gp2sp Gridpoint to spectral

Convert all Gaussian gridpoint fields to spectral coefficients. The triangular truncation of the resulting spherical harmonics is calculated from the number of latitudes by: $trunc = (nlat * 2 - 1)/\sqrt{3}$

gp2spl Gridpoint to spectral (linear)

Convert all Gaussian gridpoint fields to spectral coefficients. The triangular truncation of the resulting spherical harmonics is calculated from the number of latitudes by: $\text{trunc} = (\text{nlat}*2-1)/\boxed{2}$

Use this operator to convert ERA40 data e.g. from N80 to TL159 instead of T106.

sp2sp Spectral to spectral

Change the triangular truncation of all spectral fields. The operator performs downward conversion by cutting the resolution. Upward conversions are achieved by filling in zeros.

Parameter

trunc INTEGER New spectral resolution

Example

To transform spectral coefficients from T106 to N80 Gaussian grid use:

```
cdo sp2gp infile outfile
```

To transform spectral coefficients from TL159 to N80 Gaussian grid use:

```
cdo sp2gpl infile outfile
```

Transformation Reference manual

2.13.2. WIND - Wind transformation

Synopsis

<operator> infile outfile

Description

This module converts relative divergence and vorticity to U and V wind and vice versa. Divergence and vorticity are spherical harmonic coefficients in spectral space and U and V are on a global regular Gaussian grid. The Gaussian latitudes need to be ordered from north to south. Missing values are not supported.

Operators

dv2uv Divergence and vorticity to U and V wind

Calculate U and V wind on a Gaussian grid from spherical harmonic coefficients of relative divergence and vorticity. The divergence and vorticity need to have the names sd and svo or code numbers 155 and 138. The number of latitudes of the resulting Gaussian grid is calculated from the triangular truncation by:

nlat = NINT((trunc * 3 + 1.)/2.)

dv2uvl Divergence and vorticity to U and V wind (linear)

Calculate U and V wind on a Gaussian grid from spherical harmonic coefficients of relative divergence and vorticity. The divergence and vorticity need to have the names sd and svo or code numbers 155 and 138. The number of latitudes of the resulting Gaussian grid is calculated from the triangular truncation by:

nlat = NINT((trunc * 2 + 1.)/2.)

uv2dv U and V wind to divergence and vorticity

Calculate spherical harmonic coefficients of relative divergence and vorticity from U and V wind. The U and V wind need to be on a Gaussian grid and need to have the names u and v or the code numbers 131 and 132. The triangular truncation of the resulting spherical harmonics is calculated from the number of latitudes by:

trunc = (nlat * 2 - 1)/|3|

uv2dvl U and V wind to divergence and vorticity (linear)

Calculate spherical harmonic coefficients of relative divergence and vorticity from U and V wind. The U and V wind need to be on a Gaussian grid and need to have the names u and v or the code numbers 131 and 132. The triangular truncation of the resulting spherical harmonics is calculated from the number of latitudes by:

trunc = (nlat * 2 - 1)/[2]

dv2ps D and V to velocity potential and stream function

Calculate spherical harmonic coefficients of velocity potential and stream function from spherical harmonic coefficients of relative divergence and vorticity. The divergence and vorticity need to have the names sd and svo or code numbers 155 and 138.

Example

Assume a dataset has at least spherical harmonic coefficients of divergence and vorticity. To transform the spectral divergence and vorticity to U and V wind on a Gaussian grid use:

cdo dv2uv infile outfile

Reference manual Import/Export

2.14. Import/Export

This section contains modules to import and export data files which can not read or write directly with CDO.

Here is a short overview of all operators in this section:

import_cmsaf Import CM-SAF HDF5 files

import_amsr Import AMSR binary files

input ASCII input

inputsrv SERVICE ASCII input inputext EXTRA ASCII input

outputASCII outputoutputfFormatted outputoutputintInteger output

outputsrvSERVICE ASCII outputoutputextEXTRA ASCII output

outputtab Table output

gmtxyz GMT xyz format

gmtcells GMT multiple segment format

Import/Export Reference manual

2.14.1. IMPORTBINARY - Import binary data sets

Synopsis

import_binary infile outfile

Description

This operator imports gridded binary data sets via a GrADS data descriptor file. The GrADS data descriptor file contains a complete description of the binary data as well as instructions on where to find the data and how to read it. The descriptor file is an ASCII file that can be created easily with a text editor. The general contents of a gridded data descriptor file are as follows:

- Filename for the binary data
- Missing or undefined data value
- Mapping between grid coordinates and world coordinates
- Description of variables in the binary data set

A detailed description of the components of a GrADS data descriptor file can be found in [GrADS]. Here is a list of the supported components: BYTESWAPPED, CHSUB, DSET, ENDVARS, FILE-HEADER, HEADERBYTES, OPTIONS, TDEF, TITLE, TRAILERBYTES, UNDEF, VARS, XDEF, XYHEADER, YDEF, ZDEF

Note

Only 32-bit IEEE floats are supported for standard binary files!

Example

To convert a binary data file to NetCDF use:

```
cdo -f nc import_binary infile.ctl outfile.nc
```

Here is an example of a GrADS data descriptor file:

```
DSET ^infile.bin
OPTIONS sequential
UNDEF -9e+33
XDEF 360 LINEAR -179.5 1
YDEF 180 LINEAR -89.5 1
ZDEF 1 LINEAR 1 1
TDEF 1 LINEAR 00:00 Z15jun1989 12hr
VARS 1
param 1 99 description of the variable
ENDVARS
```

The binary data file infile.bin contains one parameter on a global 1 degree lon/lat grid written with FORTRAN record length headers (sequential).

Reference manual Import/Export

2.14.2. IMPORTCMSAF - Import CM-SAF HDF5 files

Synopsis

import_cmsaf infile outfile

Description

This operator imports gridded CM-SAF (Satellite Application Facility on Climate Monitoring) HDF5 files. CM-SAF exploits data from polar-orbiting and geostationary satellites in order to provide climate monitoring products of the following parameters:

Cloud parameters: cloud fraction (CFC), cloud type (CTY), cloud phase (CPH), cloud top height, pressure and temperature (CTH,CTP,CTT), cloud optical thickness (COT), cloud water path (CWP).

Surface radiation components: Surface albedo (SAL); surface incoming (SIS) and net (SNS) shortwave radiation; surface downward (SDL) and outgoing (SOL) longwave radiation, surface net longwave radiation (SNL) and surface radiation budget (SRB).

Top-of-atmosphere radiation components: Incoming (TIS) and reflected (TRS) solar radiative flux at top-of-atmosphere. Emitted thermal radiative flux at top-of-atmosphere (TET).

Water vapour: Vertically integrated water vapour (HTW), layered vertically integrated water vapour and layer mean temperature and relative humidity for 5 layers (HLW), temperature and mixing ratio at 6 pressure levels.

Daily and monthly mean products can be ordered via the CM-SAF web page (www.cmsaf.eu). Products with higher spatial and temporal resolution, i.e. instantaneous swath-based products, are available on request (contact.cmsaf@dwd.de). All products are distributed free-of-charge. More information on the data is available on the CM-SAF homepage (www.cmsaf.eu).

Daily and monthly mean products are provided in equal-area projections. **CDO** reads the projection parameters from the metadata in the HDF5-headers in order to allow spatial operations like remapping. For spatial operations with instantaneous products on original satellite projection, additional files with arrays of latitudes and longitudes are needed. These can be obtained from CM-SAF together with the data.

Note

To use this operator, it is necessary to build **CDO** with HDF5 support (version 1.6 or higher). The PROJ.4 library (version 4.6 or higher) is needed for full support of the remapping functionality.

Example

A typical sequence of commands with this operator could look like this:

```
cdo -f nc remapbil,r360x180 -import_cmsaf cmsaf_product.hdf output.nc
```

(bilinear remapping to a predefined global grid with 1 deg resolution and conversion to NetCDF).

If you work with CM-SAF data on original satellite project, an additional file with information on geolocation is required, to perform such spatial operations:

```
cdo -f nc remapbil,r720x360 -setgrid,cmsaf_latlon.h5 -import_cmsaf cmsaf.hdf out.nc
```

Some CM-SAF data are stored as scaled integer values. For some operations, it could be desirable (or necessary) to increase the accuracy of the converted products:

Import/Export Reference manual

2.14.3. IMPORTAMSR - Import AMSR binary files

Synopsis

import_amsr infile outfile

Description

This operator imports gridded binary AMSR (Advanced Microwave Scanning Radiometer) data. The binary data files are available from the AMSR ftp site (ftp://ftp.ssmi.com/amsre). Each file consists of twelve (daily) or five (averaged) 0.25 x 0.25 degree grid (1440,720) byte maps. For daily files, six daytime maps in the following order, Time (UTC), Sea Surface Temperature (SST), 10 meter Surface Wind Speed (WSPD), Atmospheric Water Vapor (VAPOR), Cloud Liquid Water (CLOUD), and Rain Rate (RAIN), are followed by six nighttime maps in the same order. Time-Averaged files contain just the geophysical layers in the same order [SST, WSPD, VAPOR, CLOUD, RAIN]. More information to the data is available on the AMSR homepage http://www.remss.com/amsr.

Example

To convert monthly binary AMSR files to NetCDF use:

cdo -f nc amsre_yyyymmv5 amsre_yyyymmv5.nc

Reference manual Import/Export

2.14.4. INPUT - Formatted input

Synopsis

input,grid[,zaxis] outfile

inputsrv outfile
inputext outfile

Description

This module reads time series of one 2D variable from standard input. All input fields need to have the same horizontal grid. The format of the input depends on the chosen operator.

Operators

input ASCII input

Reads fields with ASCII numbers from standard input and stores them in outfile. The numbers read are exactly that ones which are written out by the output operator.

inputsrv SERVICE ASCII input

Reads fields with ASCII numbers from standard input and stores them in outfile. Each field should have a header of 8 integers (SERVICE likely). The numbers that are read are exactly that ones which are written out by the outputsrv operator.

inputext EXTRA ASCII input

Read fields with ASCII numbers from standard input and stores them in outfile. Each field should have header of 4 integers (EXTRA likely). The numbers read are exactly that ones which are written out by the outputext operator.

Parameter

grid STRING Grid description file or name

zaxis STRING Z-axis description file

Example

Assume an ASCII dataset contains a field on a global regular grid with 32 longitudes and 16 latitudes (512 elements). To create a GRIB1 dataset from the ASCII dataset use:

cdo -f grb input,r32x16 outfile.grb < my_ascii_data</pre>

Import/Export Reference manual

2.14.5. OUTPUT - Formatted output

Synopsis

output infiles

outputf,format[,nelem] infiles

outputint infiles
outputsrv infiles
outputext infiles

Description

This module prints all values of all input datasets to standard output. All input fields need to have the same horizontal grid. All input files need to have the same structure with the same variables. The format of the output depends on the chosen operator.

Operators

output ASCII output

Prints all values to standard output. Each row has 6 elements with the C-style format

"%13.6g".

outputf Formatted output

Prints all values to standard output. The format and number of elements for each row

have to be specified by the parameters format and nelem. The default for nelem is 1.

outputint Integer output

Prints all values rounded to the nearest integer to standard output.

outputsrv SERVICE ASCII output

Prints all values to standard output. Each field with a header of 8 integers (SERVICE

likely).

outputext EXTRA ASCII output

Prints all values to standard output. Each field with a header of 4 integers (EXTRA

likely).

Parameter

format STRING C-style format for one element (e.g. %13.6g)

nelem INTEGER Number of elements for each row (default: nelem = 1)

Example

To print all field elements of a dataset formatted with "%8.4g" and 8 values per line use:

cdo outputf,%8.4g,8 infile

Example result of a dataset with one field on 64 grid points:

	261.7	262	257.8	252.5	248.8	247.7	246.3	246.1	
	250.6	252.6	253.9	254.8	252	246.6	249.7	257.9	
	273.4	266.2	259.8	261.6	257.2	253.4	251	263.7	
	267.5	267.4	272.2	266.7	259.6	255.2	272.9	277.1	
İ	275.3	275.5	276.4	278.4	282	269.6	278.7	279.5	
ĺ	282.3	284.5	280.3	280.3	280	281.5	284.7	283.6	
ı	292.9	290.5	293.9	292.6	292.7	292.8	294.1	293.6	
ĺ	293.8	292.6	291.2	292.6	293.2	292.8	291	291.2	
i									

Reference manual Import/Export

2.14.6. OUTPUTTAB - Table output

Synopsis

outputtab, params infiles outfile

Description

This operator prints a table of all input datasets to standard output. infiles is an arbitrary number of input files. All input files need to have the same structure with the same variables on different timesteps. All input fields need to have the same horizontal grid.

The contents of the table depends on the chosen paramters. The format of each table parameter is keyname[:len]. len is the optional length of a table entry. Here is a list of all valid keynames:

Keyname	Type	Description
value	FLOAT	Value of the variable [len:8]
name	STRING	Name of the variable [len:8]
param	STRING	Parameter ID (GRIB1: code[.tabnum]; GRIB2: num[.cat[.dis]]) [len:11]
code	INTEGER	Code number [len:4]
lon	FLOAT	Longitude coordinate [len:6]
lat	FLOAT	Latitude coordinate [len:6]
lev	FLOAT	Vertical level [len:6]
xind	INTEGER	Grid x index [len:4]
yind	INTEGER	Grid y index [len:4]
timestep	INTEGER	Timestep number [len:6]
date	STRING	Date (format YYYY-MM-DD) [len:10]
time	STRING	Time (format hh:mm:ss) [len:8]
year	INTEGER	Year [len:5]
month	INTEGER	Month [len:2]
day	INTEGER	Day [len:2]
nohead	INTEGER	Disable output of header line

Parameter

params STRING Comma separated list of keynames, one for each column of the table

Example

To print a table with name, date, lon, lat and value information use:

```
cdo outputtab, name, date, lon, lat, value infile
```

Here is an example output of a time series with the yearly mean temperatur at lon=10/lat=53.5:

#	name	date	lon	lat	value
	t s u r f	$1991\!-\!12\!-\!31$	10	53.5	8.83903
	tsurf	$1992\!-\!12\!-\!31$	10	53.5	8.17439
	tsurf	$1993\!-\!12\!-\!31$	10	53.5	7.90489
	t s u r f	1994 - 12 - 31	10	53.5	10.0216
	tsurf	$1995\!-\!12\!-\!31$	10	53.5	9.07798

Import/Export Reference manual

2.14.7. OUTPUTGMT - GMT output

Synopsis

< operator > infile

Description

This module prints the first field of the input dataset to standard output. The output can be used to generate 2D Lon/Lat plots with [GMT]. The format of the output depends on the chosen operator.

Operators

gmtxyz GMT xyz format

The operator exports the first field to the GMT xyz ASCII format. The output can be used to create contour plots with the GMT module pscontour.

gmtcells GMT multiple segment format

The operator exports the first field to the GMT multiple segment ASCII format. The output can be used to create shaded gridfill plots with the GMT module psxy.

Example

1) GMT shaded contour plot of a global temperature field with a resolution of 4 degree. The contour interval is 3 with a rainbow color table.

```
cdo gmtxyz temp > data.gmt
makecpt -T213/318/3 -Crainbow > gmt.cpt
pscontour -K -JQ0/10i -Rd -I -Cgmt.cpt data.gmt > gmtplot.ps
pscoast -O -J -R -Dc -W -B40g20 >> gmtplot.ps
```


2) GMT shaded gridfill plot of a global temperature field with a resolution of 4 degree. The contour interval is 3 with a rainbow color table.

Reference manual Import/Export

```
cdo gmtcells temp > data.gmt
makecpt -T213/318/3 -Crainbow > gmt.cpt
psxy -K -JQ0/10i -Rd -L -Cgmt.cpt -m data.gmt > gmtplot.ps
pscoast -O -J -R -Dc -W -B40g20 >> gmtplot.ps
```


2.15. Miscellaneous

This section contains miscellaneous modules which do not fit to the other sections before.

Here is a short overview of all operators in this section:

gradsdes GrADS data descriptor file

after ECHAM standard post processor

bandpassBandpass filteringlowpassLowpass filteringhighpassHighpass filtering

gridarea Grid cell area gridweights Grid cell weights

smoothsmooth grid pointssmooth99 point smoothing

setvals Set list of old values to new values

setrtoc Set range to constant

setrtoc2 Set range to constant others to constant2

timsort Sort over the time

const Create a constant field

random Create a field with random numbers topo Create a field with topography

for Create a time series

stdatm Create values for pressure and temperature for hydrostatic atmosphere

uvDestag Destaggering of u/v wind components

rotuvNorth Rotate u/v wind to North pole.
projuvLatLon Cylindrical Equidistant projection

rotuvb Backward rotation

mastrfu Mass stream function

sealevelpressure Sea level pressure

adisit Potential temperature to in-situ temperatureadipot In-situ temperature to potential temperature

rhopot Calculates potential density

histcountHistogram counthistsumHistogram sumhistmeanHistogram meanhistfreqHistogram frequency

sethalo Set the left and right bounds of a field

wct Windchill temperature

fdns Frost days where no snow index per time period

strwin Strong wind days index per time period

strbre Strong breeze days index per time period

strgal Strong gale days index per time period

hurr Hurricane days index per time period

cmorlite CMOR lite

2.15.1. GRADSDES - GrADS data descriptor file

Synopsis

gradsdes[,mapversion] infile

Description

Creates a [GrADS] data descriptor file. Supported file formats are GRIB1, NetCDF, SERVICE, EXTRA and IEG. For GRIB1 files the GrADS map file is also generated. For SERVICE and EXTRA files the grid have to be specified with the **CDO** option '-g <grid>'. This module takes infile in order to create filenames for the descriptor (infile.ctl) and the map (infile.gmp) file.

Parameter

mapversion

INTEGER Format version of the GrADS map file for GRIB1 datasets. Use 1 for a machine specific version 1 GrADS map file, 2 for a machine independent version 2 GrADS map file and 4 to support GRIB files >2GB. A version 2 map file can be used only with GrADS version 1.8 or newer. A version 4 map file can be used only with GrADS version 2.0 or newer. The default is 4 for files >2GB, otherwise 2.

Example

To create a GrADS data descriptor file from a GRIB1 dataset use:

```
cdo gradsdes infile.grb
```

This will create a descriptor file with the name infile.ctl and the map file infile.gmp.

Assumed the input GRIB1 dataset has 3 variables over 12 timesteps on a Gaussian N16 grid. The contents of the resulting GrADS data description file is approximately:

```
^infile.grb
DSET
DTYPE GRIB
       infile.gmp
INDEX
XDEF 64 LINEAR 0.000000 5.625000
YDEF 32 LEVELS -85.761 -80.269 -74.745 -69.213 -63.679 -58.143
               -52.607 -47.070 -41.532 -35.995 -30.458 -24.920
               -19.382 -13.844
                                 -8.307
                                         -2.769
                                                  2.769
                                                          8.307
                        19.382
                13.844
                                24.920
                                         30.458
                                                 35.995
                                                         41.532
                47.070
                        52.607
                                58.143
                                         63.679
                                                 69.213
                80.269
                        85.761
ZDEF 4 LEVELS 925 850 500 200
TDEF 12 LINEAR 12:00 Z1jan1987 1mo
TITLE infile.grb T21 grid
OPTIONS yrev
UNDEF -9e+33
VARS 3
            129,1,0 surface geopotential (orography)
geosp
                                                        [m^2/s^2]
            130,99,0 temperature [K]
t
tslm1
           139,1,0 surface temperature of land
ENDVARS
```

2.15.2. AFTERBURNER - ECHAM standard post processor

Synopsis

```
after[,vct] infiles outfile
```

Description

The "afterburner" is the standard post processor for [ECHAM] data which provides the following operations:

- Extract specified variables and levels
- Compute derived variables
- Transform spectral data to Gaussian grid representation
- Vertical interpolation to pressure levels
- Compute temporal means

This operator reads selection parameters as namelist from stdin. Use the UNIX redirection "<namelistfile" to read the namelist from file.

Namelist

Namelist parameter and there defaults:

```
\label{eq:type_0} \text{TYPE=0}, \ \text{CODE=-1}, \ \text{LEVEL=-1}, \ \text{INTERVAL=0}, \ \text{MEAN=0}, \ \text{EXTRAPOLATE=0}
```

TYPE controls the transformation and vertical interpolation. Transforming spectral data to Gaussian grid representation and vertical interpolation to pressure levels are performed in a chain of steps. The TYPE parameter may be used to stop the chain at a certain step. Valid values are:

```
TYPE
     = 0 : Hybrid
                      level spectral coefficients
      = 10 : Hybrid
TYPE
                       level fourier
                                      coefficients
TYPE
      = 11 : Hybrid
                       level zonal mean sections
TYPE
      = 20 : Hybrid
                       level
                            gauss grids
TYPE
      = 30
             Pressure level
                            gauss grids
TYPE
             Pressure level fourier
                                     coefficients
TYPE
      = 41
             Pressure level zonal mean sections
      = 50
             Pressure level
                             spectral coefficients
                            fourier
TYPE
      = 60
             Pressure
                      level
                                      coefficients
TYPE
      = 61
             Pressure level
                            zonal mean sections
TYPE
      = 70
          : Pressure level gauss grids
```

Vorticity, divergence, streamfunction and velocity potential need special treatment in the vertical transformation. They are not available as types 30, 40 and 41. If you select one of these combinations, type is automatically switched to the equivalent types 70, 60 and 61. The type of all other variables will be switched too, because the type is a global parameter.

CODE selects the variables by the ECHAM GRIB1 code number (1-255). The default value **-1** processes all detected codes. Derived variables computed by the afterburner:

Code	Name	Longname	Units	Level	Needed Codes
34	low_cld	low cloud		single	223 on modellevel
35	mid_cld	mid cloud		single	223 on modellevel
36	hih_cld	high cloud		single	223 on modellevel
131	u	u-velocity	m/s	atm (ml+pl)	138, 155
132	v	v-velocity	m/s	atm (ml+pl)	138, 155
135	omega	vertical velocity	Pa/s	atm (ml+pl)	138, 152, 155
148	stream	streamfunction	m^ 2/s	atm (ml+pl)	131, 132
149	velopot	velocity potential	m^ 2/s	atm (ml+pl)	131, 132
151	slp	mean sea level pressure	Pa	surface	129, 130, 152
156	geopoth	geopotential height	m	atm (ml+pl)	129, 130, 133, 152
157	rhumidity	relative humidity		atm (ml+pl)	130, 133, 152
189	sclfs	surface solar cloud forcing		surface	176-185
190	tclfs	surface thermal cloud forcing		surface	177-186
191	sclf0	top solar cloud forcing		surface	178-187
192	tclf0	top thermal cloud forcing		surface	179-188
259	windspeed	windspeed	m/s	atm (ml+pl)	$\operatorname{sqrt}(u^*u+v^*v)$
260	precip	total precipitation		surface	142+143

LEVEL selects the hybrid or pressure levels. The allowed values depends on the parameter **TYPE**. The default value **-1** processes all detected levels.

INTERVAL selects the processing interval. The default value 0 process data on monthly intervals. INTERVAL=1 sets the interval to daily.

MEAN=1 compute and write monthly or daily mean fields. The default value 0 writes out all timesteps.

EXTRAPOLATE=0 switch of the extrapolation of missing values during the interpolation from model to pressure level (only available with MEAN=0 and TYPE=30). The default value 1 extrapolate missing values.

Possible combinations of TYPE, CODE and MEAN:

TYPE	CODE	MEAN
0/10/11	130 temperature	0
0/10/11	131 u-velocity	0
0/10/11	132 v-velocity	0
0/10/11	133 specific humidity	0
0/10/11	138 vorticity	0
0/10/11	148 streamfunction	0
0/10/11	149 velocity potential	0
0/10/11	152 LnPs	0
0/10/11	155 divergence	0
>11	all codes	0/1

Parameter

vct STRING File with VCT in ASCII format

Example

To interpolate ECHAM hybrid model level data to pressure levels of 925, 850, 500 and 200 hPa, use:

```
cdo after infile outfile << EON
   TYPE=30 LEVEL=92500,85000,50000,20000
EON</pre>
```

2.15.3. FILTER - Time series filtering

Synopsis

bandpass,fmin,fmax infile outfile
lowpass,fmax infile outfile
highpass,fmin infile outfile

Description

This module takes the time series for each gridpoint in infile and (fast fourier) transforms it into the frequency domain. According to the particular operator and its parameters certain frequencies are filtered (set to zero) in the frequency domain and the spectrum is (inverse fast fourier) transformed back into the time domain. To determine the frequency the time-axis of infile is used. (Data should have a constant time increment since this assumption applies for transformation. However, the time increment has to be different from zero.) All frequencies given as parameter are interpreted per year. This is done by the assumption of a 365-day calendar. Consequently if you want to perform multiyear-filtering accurately you have to delete the 29th of February. If your infile has a 360 year calendar the frequency parameters fmin respectively fmax should be multiplied with a factor of 360/365 in order to obtain accurate results. For the set up of a frequency filter the frequency parameters have to be adjusted to a frequency in the data. Here fmin is rounded down and fmax is always rounded up. Consequently it is possible to use bandpass with fmin=fmax without getting a zero-field for outfile. Hints for efficient usage:

- to get reliable results the time-series has to be detrended (cdo detrend)
- the lowest frequency greater zero that can be contained in infile is 1/(N*dT),
- the greatest frequency is 1/(2dT) (Nyquist frequency),

with N the number of timesteps and dT the time increment of infile in years.

Operators

bandpass Bandpass filtering

Bandpass filtering (pass for frequencies between fmin and fmax). Suppresses all vari-

ability outside the frequency range specified by [fmin,fmax].

lowpass Lowpass filtering

Lowpass filtering (pass for frequencies lower than fmax). Suppresses all variability

with frequencies greater than fmax.

highpass Highpass filtering

Highpass filtering (pass for frequencies greater than fmin). Suppresses all variabilty

with frequencies lower than *fmin*.

Parameter

fmin FLOAT Minimum frequency per year that passes the filter.

fmax FLOAT Maximum frequency per year that passes the filter.

Note

For better performace of these operators use the **CDO** configure option –with-fftw3.

Example

Now assume your data are still hourly for a time period of 5 years but with a 365/366-day- calendar and you want to suppress the variability on timescales greater or equal to one year (we suggest here to use a number x bigger than one (e.g. x=1.5) since there will be dominant frequencies around the peak (if there is one) as well due to the issue that the time series is not of infinite length). Therefor you can use the following:

```
cdo highpass,x -del29feb infile outfile
```

Accordingly you might use the following to suppress variability on timescales shorter than one year:

```
cdo lowpass, 1 -del29feb infile outfile
```

Finally you might be interested in 2-year variability. If you want to suppress the seasonal cycle as well as say the longer cycles in climate system you might use

```
cdo bandpass,x,y -del29feb infile outfile
```

with x <= 0.5 and y >= 0.5.

2.15.4. GRIDCELL - Grid cell quantities

Synopsis

```
<operator> infile outfile
```

Description

This module reads the grid cell area of the first grid from the input stream. If the grid cell area is missing it will be computed from the grid description. Depending on the chosen operator the grid cell area or weights are written to the output stream.

Operators

gridarea Grid cell area

Writes the grid cell area to the output stream. If the grid cell area have to be

computed it is scaled with the earth radius to square meters.

gridweights Grid cell weights

Writes the grid cell area weights to the output stream.

Environment

PLANET_RADIUS This variable is used to scale the computed grid cell areas to square meters. By

default PLANET_RADIUS is set to an earth radius of 6371000 meter.

2.15.5. SMOOTH - Smooth grid points

Synopsis

```
smooth[,options] infile outfile
smooth9 infile outfile
```

Description

Smooth all grid points of a horizontal grid. Options is a comma separated list of "key=value" pairs with optional parameters.

Operators

smooth Smooth grid points

Performs a N point smoothing on all input fields. The number of points used depend on the search radius (radius) and the maximum number of points (maxpoints). Per default all points within the search radius of 1degree are used. The weights for the points depend on the form of the curve and the distance. The implemented form of the curve is linear with constant default weights of 0.25 at distance 0 (weight0) and at the search radius (weightR).

smooth9 9 point smoothing

Performs a 9 point smoothing on all fields with a quadrilateral curvilinear grid. The result at each grid point is a weighted average of the grid point plus the 8 surrounding points. The center point receives a weight of 1.0, the points at each side and above and below receive a weight of 0.5, and corner points receive a weight of 0.3. All 9 points are multiplied by their weights and summed, then divided by the total weight to obtain the smoothed value. Any missing data points are not included in the sum; points beyond the grid boundary are considered to be missing. Thus the final result may be the result of an averaging with less than 9 points.

Parameter

nsmooth	INTEGER	Number of times to smooth, default $nsmooth=1$
radius	STRING	Search radius, default radius=1deg (units: deg, rad, km, m)
maxpoints	INTEGER	Maximum number of points, default maxpoints= <gridsize></gridsize>
form	STRING	Form of the curve, default form=linear
weight0	FLOAT	Weight at distance 0, default weight 0=0.25 $$
weightR	FLOAT	Weight at the search radius, default weight R=0.25 $$

2.15.6. REPLACEVALUES - Replace variable values

Synopsis

```
setvals, oldval, newval[,...] infile outfile
setrtoc, rmin, rmax, c infile outfile
setrtoc2, rmin, rmax, c, c2 infile outfile
```

Description

This module replaces old variable values with new values, depending on the operator.

Operators

setvals Set list of old values to new values

Supply a list of n pairs of old and new values.

Set range to constant setrtoc

 $o(t,x) = \left\{ \begin{array}{ll} \mathbf{c} & \text{if } i(t,x) \geq r\min \wedge i(t,x) \leq r\max \\ i(t,x) & \text{if } i(t,x) < r\min \vee i(t,x) > r\max \end{array} \right.$

setrtoc2

Set range to constant others to constant $o(t,x) = \left\{ \begin{array}{ll} \mathbf{c} & \text{if } i(t,x) \geq r\min \wedge i(t,x) \leq r\max \\ \mathbf{c2} & \text{if } i(t,x) < r\min \vee i(t,x) > r\max \end{array} \right.$

Parameter

$oldval, newval, \dots$	FLOAT	Pairs of old and new values
rmin	FLOAT	Lower bound
rmax	FLOAT	Upper bound
c	FLOAT	New value - inside range
c2	FLOAT	New value - outside range

2.15.7. TIMSORT - Timsort

Synopsis

timsort infile outfile

Description

Sorts the elements in ascending order over all timesteps for every field position. After sorting it is:

$$o(t_1, x) \le o(t_2, x) \qquad \forall (t_1 < t_2), x$$

Example

To sort all field elements of a dataset over all timesteps use:

cdo timsort infile outfile

2.15.8. VARGEN - Generate a field

Synopsis

const,const,grid outfile
random,grid[,seed] outfile
topo[,grid] outfile
for,start,end[,inc] outfile
stdatm,levels outfile

Description

Generates a dataset with one or more fields

Operators

const Create a constant field

Creates a constant field. All field elements of the grid have the same value.

random Create a field with random numbers

Creates a field with rectangularly distrubuted random numbers in the interval [0,1].

topo Create a field with topography

Creates a field with topography data, per default on a global half degree grid.

for Create a time series

Creates a time series with field size 1 and field elements beginning with a start value in time step 1 which is increased from one time step to the next.

stdatm Create values for pressure and temperature for hydrostatic atmosphere

Creates pressure and temperature values for the given list of vertical levels. The formu-

lars are:

$$P(z) = P_0 \exp\left(-\frac{g}{R} \frac{H}{T_0} \log\left(\frac{\exp\left(\frac{z}{H}\right)T_0 + \Delta T}{T_0 + \Delta T}\right)\right)$$

$$T(z) = T_0 + \Delta T \exp\left(-\frac{z}{H}\right)$$

with the following constants

 $T_0 = 213$ K : offset to get a surface temperature of 288K

 $\Delta T = 75 \mathrm{K}$: Temperature lapse rate for 10 Km

 $P_0 = 1013.25 \text{hPa}$: surface pressure H = 10000.0 m : scale height $g = 9.80665 \frac{\text{m}}{\text{s}^2}$: earth gravity

 $R = 287.05 \frac{\text{J}}{\text{kgK}}$: gas constant for air

This is the solution for the hydrostatic equations and is only valid for the troposphere (constant positive lapse rate). The temperature increase in the stratosphere and other effects of the upper atmosphere are not taken into account.

Parameter

const	FLOAT	Constant
seed	INTEGER	The seed for a new sequence of pseudo-random numbers [default: 1]
grid	STRING	Target grid description file or name
start	FLOAT	Start value of the loop
end	FLOAT	End value of the loop
inc	FLOAT	Increment of the loop [default: 1]
levels	FLOAT	Target levels in metre above surface

Example

To create a standard atmosphere dataset on a given horizontal grid:

cdo enlarge, gridfile -stdatm, 10000, 8000, 5000, 3000, 2000, 1000, 500, 200, 0 outfile

2.15.9. WINDTRANS - Wind Transformation

Synopsis

```
uvDestag,u,v[,-/+0.5[,-/+0.5]] infile outfile
rotuvNorth,u,v infile outfile
projuvLatLon,u,v infile outfile
```

Description

This module contains special operators for datsets with wind components on a rotated lon/lat grid, e.g. data from the regional model HIRLAM or REMO.

Operators

uvDestag Destaggering of u/v wind components

This is a special operator for destaggering of wind components. If the file contains a grid with temperature (name='t' or code=11) then grid_temp will be used for

destaggered wind.

rotuvNorth Rotate u/v wind to North pole.

This is an operator for transformation of wind-vectors from grid-relative to north-pole relative for the whole file. (FAST implementation with JACOBIANS)

Thus is an operator for transformation of wind-vectors from the globe-spherical coordinate system into a flat Cylindrical Equidistant (lat-lon) projection. (FAST

JACOBIAN implementation)

Parameter

u,v	STRING	Pair of u,v wind components (use variable names or code numbers)
-/+0.5,-/+0.5	STRING	Destaggered grid offsets are optional (default -0.5,-0.5)

Example

Typical operator sequence on HIRLAM NWP model output (LAMH_D11 files):

```
cdo uvDestag,33,34 inputfile inputfile_destag
cdo rotuvNorth,33,34 inputfile_destag inputfile_rotuvN
```

2.15.10. ROTUVB - Rotation

Synopsis

```
rotuvb, u, v, ... infile outfile
```

Description

This is a special operator for datsets with wind components on a rotated grid, e.g. data from the regional model REMO. It performs a backward transformation of velocity components U and V from a rotated spherical system to a geographical system.

Parameter

u,v,... STRING Pairs of zonal and meridional velocity components (use variable names or code numbers)

Example

To transform the u and v velocity of a dataset from a rotated spherical system to a geographical system use:

cdo rotuvb, u, v infile outfile

2.15.11. MASTRFU - Mass stream function

Synopsis

mastrfu infile outfile

Description

This is a special operator for the post processing of the atmospheric general circulation model [ECHAM]. It computes the mass stream function (code=272). The input dataset have to be a zonal mean of v-velocity [m/s] (code=132) on pressure levels.

Example

To compute the mass stream function from a zonal mean v-velocity dataset use:

cdo mastrfu infile outfile

2.15.12. DERIVEPAR - Sea level pressure

Synopsis

sealevelpressure infile outfile

Description

This operator computes the sea level pressure (air_pressure_at_sea_level). Required input fields are surface_air_pressure, surface_geopotential and air_temperature on hybrid sigma pressure levels.

2.15.13. ADISIT - Potential temperature to in-situ temperature and vice versa

Synopsis

```
adisit[,pressure] infile outfile
adipot infile outfile
```

Description

Operators

adisit

Potential temperature to in-situ temperature

This is a special operator for the post processing of the ocean and sea ice model output. It converts potential temperature adiabatically to in-situ temperature to(t, s, p). Required input fields are sea water potential temperature (name=tho; code=2) and sea water salinity (name=sao; code=5). Pressure is calculated from the level information or can be specified by the optional parameter. Output fields are sea water temperature (name=to; code=20) and sea water salinity (name=s; code=5).

adipot

In-situ temperature to potential temperature

This is a special operator for the post processing of the ocean and sea ice model outpu. It converts in-situ temperature to potential temperature tho(to, s, p). Required input fields are sea water in-situ temperature (name=t; code=2) and sea water salinity (name=sao,s; code=5). Pressure is calculated from the level information or can be specified by the optional parameter. Output fields are sea water temperature (name=tho; code=2) and sea water salinity (name=s; code=5).

Parameter

pressure FLOAT

Pressure in bar (constant value assigned to all levels)

2.15.14. RHOPOT - Calculates potential density

Synopsis

```
rhopot/,pressure/ infile outfile
```

Description

This is a special operator for the post processing of the ocean and sea ice model [MPIOM]. It calculates the sea water potential density (name=rhopoto; code=18). Required input fields are sea water in-situ temperature (name=to; code=20) and sea water salinity (name=sao; code=5). Pressure is calculated from the level information or can be specified by the optional parameter.

Parameter

pressure FLOAT

Pressure in bar (constant value assigned to all levels)

Example

To compute the sea water potential density from the potential temperature use this operator in combination with adisit:

```
cdo rhopot -adisit infile outfile
```

2.15.15. HISTOGRAM - Histogram

Synopsis

<operator>,bounds infile outfile

Description

This module creates bins for a histogram of the input data. The bins have to be adjacent and have non-overlapping intervals. The user has to define the bounds of the bins. The first value is the lower bound and the second value the upper bound of the first bin. The bounds of the second bin are defined by the second and third value, aso. Only 2-dimensional input fields are allowed. The output file contains one vertical level for each of the bins requested.

Operators

histcount Histogram count

Number of elements in the bin range.

histsum Histogram sum

Sum of elements in the bin range.

histmean Histogram mean

Mean of elements in the bin range.

histfreq Histogram frequency

Relative frequency of elements in the bin range.

Parameter

bounds FLOAT Comma separated list of the bin bounds (-inf and inf valid)

2.15.16. SETHALO - Set the left and right bounds of a field

Synopsis

sethalo, lhalo, rhalo infile outfile

Description

This operator sets the left and right bounds of the rectangularly understood fields. Positive numbers of the parameter lhalo enlarges the left bound by the given number of columns from the right bound. The parameter rhalo does the similar for the right bound. Negative numbers of the parameter lhalo/rhalo can be used to remove the given number of columns of the left and right bounds.

Parameter

lhalo INTEGER Left halorhalo INTEGER Right halo

2.15.17. WCT - Windchill temperature

Synopsis

wct infile1 infile2 outfile

Description

Let infile1 and infile2 be time series of temperature and wind speed records, then a corresponding time series of resulting windchill temperatures is written to outfile. The wind chill temperature calculation is only valid for a temperature of $T \le 33$ °C and a wind speed of $v \ge 1.39$ m/s. Whenever these conditions are not satisfied, a missing value is written to outfile. Note that temperature and wind speed records have to be given in units of °C and m/s, respectively.

2.15.18. FDNS - Frost days where no snow index per time period

Synopsis

fdns infile1 infile2 outfile

Description

Let infile1 be a time series of the daily minimum temperature TN and infile2 be a corresponding series of daily surface snow amounts. Then the number of days where TN < 0 °C and the surface snow amount is less than 1 cm is counted. The temperature TN have to be given in units of Kelvin. The date information of a timestep in outfile is the date of the last contributing timestep in infile.

2.15.19. STRWIN - Strong wind days index per time period

Synopsis

 \mathbf{strwin}/v infile outfile

Description

Let infile be a time series of the daily maximum horizontal wind speed VX, then the number of days where VX > v is counted. The horizontal wind speed v is an optional parameter with default v = 10.5 m/s. A further output variable is the maximum number of consecutive days with maximum wind speed greater than or equal to v. Note that both VX and v have to be given in units of m/s. Also note that the horizontal wind speed is defined as the square root of the sum of squares of the zonal and meridional wind speeds. The date information of a timestep in outfile is the date of the last contributing timestep in infile.

Parameter

v FLOAT Horizontal wind speed threshold (m/s, default v = 10.5 m/s)

2.15.20. STRBRE - Strong breeze days index per time period

Synopsis

strbre infile outfile

Description

Let infile be a time series of the daily maximum horizontal wind speed VX, then the number of days where VX is greater than or equal to 10.5 m/s is counted. A further output variable is the maximum number of consecutive days with maximum wind speed greater than or equal to 10.5 m/s. Note that VX is defined as the square root of the sum of squares of the zonal and meridional wind speeds and have to be given in units of m/s. The date information of a timestep in outfile is the date of the last contributing timestep in infile.

2.15.21. STRGAL - Strong gale days index per time period

Synopsis

strgal infile outfile

Description

Let infile be a time series of the daily maximum horizontal wind speed VX, then the number of days where VX is greater than or equal to 20.5 m/s is counted. A further output variable is the maximum number of consecutive days with maximum wind speed greater than or equal to 20.5 m/s. Note that VX is defined as the square root of the sum of square of the zonal and meridional wind speeds and have to be given in units of m/s. The date information of a timestep in outfile is the date of the last contributing timestep in infile.

2.15.22. HURR - Hurricane days index per time period

Synopsis

hurr infile outfile

Description

Let infile be a time series of the daily maximum horizontal wind speed VX, then the number of days where VX is greater than or equal to 32.5 m/s is counted. A further output variable is the maximum number of consecutive days with maximum wind speed greater than or equal to 32.5 m/s. Note that VX is defined as the square root of the sum of squares of the zonal and meridional wind speeds and have to be given in units of m/s. The date information of a timestep in outfile is the date of the last contributing timestep in infile.

2.15.23. CMORLITE - CMOR lite

Synopsis

cmorlite,table[,convert] infile outfile

Description

The [CMOR] (Climate Model Output Rewriter) library comprises a set of functions, that can be used to produce CF-compliant NetCDF files that fulfill the requirements of many of the climate community's standard model experiments. These experiments are collectively referred to as MIP's. Much of the metadata written to the output files is defined in MIP-specific tables, typically made available from each MIP's web site.

The **CDO** operator cmorlite process the header and variable section of such MIP tables and writes the result with the internal IO library [CDI]. In addition to the CMOR 2 and 3 table format, the **CDO** parameter table format is also supported. The following parameter table entries are available:

Entry	Type	Description	
name	WORD	Name of the variable	
out_name	WORD	New name of the variable	
type	WORD	Data type (real or double)	
standard_name	WORD	As defined in the CF standard name table	
long_name	STRING	Describing the variable	
units	STRING	Specifying the units for the variable	
comment	STRING	Information concerning the variable	
cell_methods	STRING	Information concerning calculation of means or climatologies	
cell_measures	STRING	Indicates the names of the variables containing cell areas and volumes	
missing_value	FLOAT	Specifying how missing data will be identified	
valid_min	FLOAT	Minimum valid value	
valid_max	FLOAT	Maximum valid value	
ok_min_mean_abs	FLOAT	Minimum absolute mean	
ok_max_mean_abs	FLOAT	Maximum absolute mean	
factor	FLOAT	Scale factor	
delete	INTEGER	Set to 1 to delete variable	
convert	INTEGER	Set to 1 to convert the unit if necessary	

Most of the above entries are stored as variables attributes, some of them are handled differently. The variable name is used as a search key for the parameter table. valid_min, valid_max, ok_min_mean_abs and ok_max_mean_abs are used to check the range of the data.

Parameter

table STRING Name of the CMOR table as specified from PCMDI

convert STRING Converts the units if necessary

Example

Here is an example of a parameter table for one variable:

```
prompt> cat mypartab
&parameter
  name = t
```

```
out_name = ta
standard_name = air_temperature
units = "K"
missing_value = 1e+20
valid_min = 157.1
valid_max = 336.3
/
```

To apply this parameter table to a dataset use:

```
cdo -f nc cmorlite,mypartab,convert infile outfile
```

This command renames the variable t to ta. The standard name of this variable is set to air_temperature and the unit is set to [K] (converts the unit if necessary). The missing value will be set to 1e+20. In addition it will be checked whether the values of the variable are in the range of 157.1 to 336.3. The result will be stored in NetCDF.

3. Contributors

3.1. History

CDO was originally developed by Uwe Schulzweida at the Max Planck Institute for Meteorology (MPI-M). The MPI-M, together with the DKRZ, has a long history in the development of tools for processing climate data. **CDO** was inspired by some of these tools, such as the PINGO package and the GRIB-Modules.

PINGO¹ was developed by Jürgen Waszkewitz, Peter Lenzen, and Nathan Gillet in 1995 at the DKRZ, Hamburg (Germany). **CDO** has a similar user interface and uses some of the PINGO routines.

The GRIB-Modules was developed by Heiko Borgert and Wolfgang Welke in 1991 at the MPI-M. **CDO** is using a similar module structure and also some of the routines.

3.2. External sources

CDO has incorporated code from several sources:

afterburner is a postprocessing program for ECHAM data and ECMWF analysis data, originally developed by Edilbert Kirk, Michael Ponater and Arno Hellbach. The afterburner code was modified for the **CDO** opertors after, sp2gp, gp2sp.

SCRIP is a software package used to generate interpolation weights for remapping fields from one grid to another in spherical geometry [SCRIP]. It was developed at the Los Alamos National Laboratory by Philip W. Jones. The SCRIP library was converted from Fortran to ANSI C and is used as the base for the remapping operators in **CDO**.

YAC (Yet Another Coupler) was jointly developed by DKRZ and MPI-M by Moritz Hanke and Rene Redler [YAC]. **CDO** is using the clipping routines for the conservative remapping with remapycon.

libkdtree a C99 implementation of the kd-tree algorithm developed by Jörg Dietrich.

CDO uses tools from the GNU project, including automake, and libtool.

3.3. Contributors

The primary contributors to the **CDO** development have been:

Uwe Schulweida: Concept, design and implementation of **CDO**, project coordination, and releases.

Luis Kornblueh: He supports **CDO** from the beginning. His main contributions are GRIB performance and compression, GME and unstructured grid support. Luis also helps with design and planning.

Ralf Müller: He is working on CDO since 2009. His main contributions are the implementation of the User Portal, the ruby and python interface for all CDO operators, the building process and the Windows support. The CDO User Portal was funded by the European Commission infracstructure project IS-ENES. Ralf also helps a lot with the user support. Implemented operators: showunit, stdatm, intlevel3d, consecsum, consects, ngrids, ngridpoints, reducegrid

Cedrick Ansorge: He worked on the **CDO** software package as a student assistant at MPI-M from 2007-2011. Implemented operators: eof, eof3d, enscrps, ensbrs, maskregion, bandpass, lowpass, highpass, smooth9

¹Procedural INterface for GRIB formatted Objects

Contributors Contributors

Oliver Heidmann: He worked on the ${\bf CDO}$ software package as a student assistant at MPI-M from 2015-2018.

Karin Meier-Fleischer: She is working in the **CDO** user support since 2017.

Fabian Wachsmann: He is working on **CDO** for the CMIP6 project and is responsible for the operator cmor.

Ralf Quast: He worked on CDO on behalf of the Service Gruppe Anpassung (SGA), DKRZ in 2006. Implemented all ECA Indices of Daily Temperature and Precipitation Extremes, all percentile operators, module YDRUNSTAT and wct.

Kameswarrao Modali: Implemented operators: contour, shaded, grfill, vector, graph.

Michal Koutek : Implemented operators: selmulti delmulti, changemulti, samplegrid, uvDestag, rotuvNorth, projuvLatLon.

Etienne Tourigny: Implemented operators: setclonlatbox, setcindexbox, setvals, splitsel, histfreq, setrtoc, setrtoc?

Karl-Hermann Wieners: Implemented operators: aexpr, aexprf, selzaxisname.

Many users have contributed to **CDO** by sending bug reports, patches and suggestions over time. Very helpful is also the active participation in the user forum of some users. Here is an incomplete list:

Jaison-Thomas Ambadan, Harald Anlauf, Andy Aschwanden, Stefan Bauer, Simon Blessing, Renate Brokopf, Michael Boettinger, Tim Brücher, Reinhard Budich, Martin Claus, Traute Crüger, Irene Fischer-Bruns, Chris Fletscher, Helmut Frank, Kristina Fröhlich, Oliver Fuhrer, Monika Esch, Pier Giuseppe Fogli, Beate Gayer, Veronika Gayler, Marco Giorgetta, David Gobbett, Holger Goettel, Helmut Haak, Stefan Hagemann, Angelika Heil, Barbara Hennemuth, Daniel Hernandez, Nathanael Huebbe, Thomas Jahns, Frank Kaspar, Daniel Klocke, Edi Kirk, Yvonne Küstermann, Stefanie Legutke, Leonidas Linardakis, Stephan Lorenz, Frank Lunkeit, Uwe Mikolajewicz, Laura Niederdrenk, Dirk Notz, Hans-Jürgen Panitz, Ronny Petrik, Swantje Preuschmann, Florian Prill, Asela Rajapakse, Daniel Reinert, Hannes Reuter, Mathis Rosenhauer, Reiner Schnur, Martin Schultz, Dennis Shea, Kevin Sieck, Martin Stendel, Bjorn Stevens, Martina Stockhaus, Claas Teichmann, Jörg Trentmann, Álvaro M. Valdebenito, Geert Jan van Oldenborgh, Jin-Song von Storch, David Wang, Joerg Wegner, Heiner Widmann, Claudia Wunram, Klaus Wyser

Please let me know if your name was omitted!

Bibliography

[CDI]

[CM-SAF] Satellite Application Facility on Climate Monitoring, from the German Weather Service (Deutscher Wetterdienst, DWD) [CMOR] Climate Model Output Rewriter, from the Program For Climate Model Diagnosis and Intercomparison (PCMDI) [ecCodes] API for GRIB decoding/encoding, from the European Centre for Medium-Range Weather Forecasts (ECMWF) [ECHAM] The atmospheric general circulation model ECHAM5, from the Max Planck Institute for Meteorologie The Generic Mapping Tool, from the School of Ocean and Earth Science and Technology (SOEST) Grid Analysis and Display System, from the Center for Ocean-Land-Atmosphere Studies (COLA) GRIB version 1, from the World Meteorological Organisation (WMO) HDF version 5, from the HDF Group INTERA Software Package, from the Max Planck Institute for Meteorologie Magics Software Package, from the European Centre for Medium-Range Weather Forecasts (ECMWF) Ocean and sea ice model, from the Max Planck Institute for Meteorologie [NetCDF] NetCDF Software Package, from the UNIDATA Program Center of the University Corporation for Atmospheric Research [PINGO] The PINGO package, from the Model & Data group at the Max Planck Institute for Meteorologie [REMO] Regional Model, from the Max Planck Institute for Meteorologie Rudolph W. Peisendorfer: Principal Component Analysis, Elsevier (1988) [PROJ.4] Cartographic Projections Library, originally written by Gerald Evenden then of the USGS. SCRIP Software Package, from the Los Alamos National Laboratory

Climate Data Interface, from the Max Planck Institute for Meteorologie

Bibliography

[szip]

Szip compression software, developed at University of New Mexico.

[vonStorch]

Hans von Storch, Walter Zwiers: Statistical Analysis in Climate Research, Cambridge University Press (1999)

[YAC]

YAC - Yet Another Coupler Software Package, from DKRZ and MPI for Meteorologie

A. Environment Variables

The following table describes the environment variables that affect ${\sf CDO}$.

Variable name	Default	Description
CDO_FILE_SUFFIX	None	Default file suffix. This suffix will be added to the output file
		name instead of the filename extension derived from the file
		format. NULL will disable the adding of a file suffix.
CDO_HISTORY_INFO	1	Append NetCDF global attribute histroy
CDO_PCTL_NBINS	101	Number of histogram bins.
CDO_RESET_HISTORY	0	Set to 1 to reset the NetCDF history global attribute.
CDO_REMAP_NORM	fracarea	Choose the normalization for the conservative interpolation
CDO_GRIDSEARCH_RADIUS	180	Grid search radius in degree. Used by the operators
		setmisstonn, remapdis and remapnn.
CDO_TIMESTAT_DATE	None	Set target timestamp of a temporal statistic operator to the "first",
		"middle", "midhigh" or "last" contributing source timestep.
CDO_USE_FFTW	1	Set to 0 to switch off usage of FFTW. Used in the Filter module.
CDO_VERSION_INFO	1	Set to 0 to disable NetCDF global attribute CDO

B. Parallelized operators

Some of the **CDO** operators are parallelized with OpenMP. To use **CDO** with multiple OpenMP threads, you have to set the number of threads with the option '-P'. Here is an example to distribute the bilinear interpolation on 8 OpenMP threads:

cdo -P 8 remapbil, targetgrid infile outfile

The following **CDO** operators are parallelized with OpenMP:

Module	Operator	Description	
Detrend	detrend	Detrend	
Ensstat	ensmin	Ensemble minimum	
Ensstat	ensmax	Ensemble maximum	
Ensstat	enssum	Ensemble sum	
Ensstat	ensmean	Ensemble mean	
Ensstat	ensavg	Ensemble average	
Ensstat	ensvar	Ensemble variance	
Ensstat	ensstd	Ensemble standard deviation	
Ensstat	enspctl	Ensemble percentiles	
Filter	bandpass	Bandpass filtering	
Filter	lowpass	Lowpass filtering	
Filter	highpass	Highpass filtering	
Fourier	fourier	Fourier transformation	
Genweights	genbil	Generate bilinear interpolation weights	
Genweights	genbic	Generate bicubic interpolation weights	
Genweights	gendis	Generate distance-weighted average remap weights	
Genweights	gennn	Generate nearest neighbor remap weights	
Genweights	gencon	Generate 1st order conservative remap weights	
Genweights	gencon2	Generate 2nd order conservative remap weights	
Genweights	genlaf	Generate largest area fraction remap weights	
Gridboxstat	gridboxmin	Gridbox minimum	
Gridboxstat	gridboxmax	Gridbox maximum	
Gridboxstat	gridboxsum	Gridbox sum	
Gridboxstat	gridboxmean	Gridbox mean	
Gridboxstat	gridboxavg	Gridbox average	
Gridboxstat	gridboxvar	Gridbox variance	
Gridboxstat	gridboxstd	Gridbox standard deviation	
Remapeta	remapeta	Remap vertical hybrid level	
Remap	remapbil	Bilinear interpolation	
Remap	remapbic	Bicubic interpolation	
Remap	remapdis	Distance-weighted average remapping	
Remap	remapnn	Nearest neighbor remapping	
Remap	remapcon	First order conservative remapping	
Remap	remapcon2	Second order conservative remapping	
Remap	remaplaf	Largest area fraction remapping	

C. Standard name table

The following CF standard names are supported by $\boldsymbol{\mathsf{CDO}}.$

CF standard name	Units	GRIB 1 code	variable name
surface_geopotential	m2 s-2	129	geosp
air_temperature	K	130	ta
specific_humidity	1	133	hus
surface_air_pressure	Pa	134	aps
air_pressure_at_sea_level	Pa	151	psl
geopotential_height	m	156	zg

D. Grid description examples

D.1. Example of a curvilinear grid description

Here is an example for the **CDO** description of a curvilinear grid. xvals/yvals describe the positions of the 6x5 quadrilateral grid cells. The first 4 values of xbounds/ybounds are the corners of the first grid cell.

```
= curvilinear
gridsize
            = 30
            = 6
xsize
ysize
            = 5
                                0
                                     11
                                            21
                                                  30
                                                       -25
                                                              -13
                                                                       0
                                                                            13
                 -21
                       -11
xvals
                  ^{25}
                        36
                             -31
                                    -16
                                             0
                                                  16
                                                         31
                                                               43
                                                                     -38
                                                                           -21
                        21
                                     52
                                                 -30
                                                               30
                                                                     51
                              38
                                           -51
xbounds
                       -14
                              -17
                                    -28
                                                 -14
                                                         -5
                                                               -6
                                                                     -17
                                                                                   -5
                                                                                          5
                                                                                                 6
                                                                                                      -6
                   5
                        14
                              17
                                      6
                                                  14
                                                         23
                                                               28
                                                                      17
                                                                                   23
                                                                                         32
                                                                                                38
                                                                                                      28
                 -28
                       -17
                              -21
                                    -34
                                                  -17
                                                         -6
                                                                     -21
                                                                                   -6
                                                                                          6
                                                                                                 7
                                                         28
                                                               34
                                                                                                      34
                   6
                               21
                                      7
                                                                     21
                                                                                   28
                                                                                         38
                        17
                                                  17
                                                                                                44
                 -34
                       -21
                              -27
                                    -41
                                                 -21
                                                               -9
                                                                     -27
                                                                                                      -9
                        21
                               27
                                                  21
                                                         34
                                                               41
                                                                     27
                                                                                   34
                                                                                                52
                                                                                                      41
                                      9
                 -41
                       -27
                              -35
                                    -51
                                                 -27
                                                         -9
                                                              -13
                                                                     -35
                                                                                   -9
                                                                                          9
                                                                                                13
                                                                                                     -13
                        27
                               35
                                     13
                                                  27
                                                         41
                                                               51
                                                                      35
                                                                                   41
                                                                                         52
                                                                                                63
                                                                                                      51
                 -51
                       -35
                              -51
                                    -67
                                                 -35
                                                        -13
                                                              -21
                                                                                  -13
                                                                                         13
                                                                                                21
                                                                                                     -21
                                                                     -51
                  13
                        35
                               51
                                     21
                                                  35
                                                         51
                                                               67
                                                                      51
                                                                                   51
                                                                                                      67
yvals
                  29
                        32
                               32
                                     32
                                            29
                                                  26
                                                         39
                                                               42
                                                                      42
                                                                            42
                  39
                                            52
                        35
                               48
                                     51
                                                  51
                                                         48
                                                               43
                                                                      57
                                                                            61
                  62
                        61
                               57
                                     51
                                                  70
                                                         72
                                                               70
                                                                      65
                  23
                               36
                                     32
                                                  26
                                                         27
                                                               37
                                                                      36
                                                                                   27
                                                                                         27
                                                                                                37
                                                                                                      37
ybounds
                        26
                  27
                        26
                               36
                                     37
                                                  26
                                                         23
                                                                                   23
                                                               32
                                                                      36
                                                                                         19
                                                                                                ^{28}
                                                                                                      32
                                                         37
                                                               47
                                                                                   37
                                                                                                47
                                                                                                      47
                  37
                        36
                                                  36
                                                         32
                                                                                   32
                               45
                                     47
                                                               41
                                                                      45
                                                                                         28
                                                                                                36
                                                                                                      41
                  41
                        45
                               55
                                     50
                                                  45
                                                         47
                                                               57
                                                                      55
                                                                                   47
                                                                                         47
                                                                                                57
                                                                                                      57
                  47
                        45
                               55
                                     57
                                                  45
                                                         41
                                                               50
                                                                      55
                                                                                   41
                                                                                         36
                                                                                                44
                                                                                                      50
                  50
                        55
                               64
                                     58
                                                  55
                                                         57
                                                               67
                                                                      64
                                                                                   57
                                                                                         57
                                                                                                67
                                                                                                      67
                  57
                        55
                               64
                                     67
                                                  55
                                                         50
                                                               58
                                                                      64
                                                                                   50
                                                                                         44
                                                                                                51
                                                                                                      58
                  58
                        64
                               72
                                                  64
                                                         67
                                                               77
                                                                      72
                                                                                   67
                                                                                         67
                                                                                                77
                                                                                                      77
                                     64
                               72
                  67
                                     77
                                                  64
                                                               64
                                                                      72
                                                                                   58
                                                                                                56
                                                                                                      64
```


Figure D.1.: Orthographic and Robinson projection of the curvilinear grid, the first grid cell is colored red

D.2. Example description for an unstructured grid

Here is an example of the **CDO** description for an unstructured grid. xvals/yvals describe the positions of 30 independent hexagonal grid cells. The first 6 values of xbounds/ybounds are the corners of the first grid cell. The grid cell corners have to rotate counterclockwise. The first grid cell is colored red.

$ \begin{array}{llllllllllllllllllllllllllllllllllll$																
$ \begin{array}{c} \text{gridsize} \\ \text{evertex} \\ \text{c} \\ $	gridtype	= unst	ructur	ed												
$ \begin{array}{c} \text{nvertex} \\ \text{xvals} \\ = -36 \\ \text{36} \\ = -36 \\ \text{36} \\ = 0 \\ \text{c} - 162 \\ \text{c} - 126 \\ \text{c} - 72 \\ \text{c} - 90 \\ \text{c} - 54 \\ \text{d} \\ = 0 \\ \text{c} - 162 \\ \text{c} - 126 \\ \text{c} - 72 \\ \text{c} - 90 \\ \text{c} - 54 \\ \text{d} \\ = 0 \\ \text{c} - 102 \\ \text{c} - 72 \\ \text{c} - 90 \\ \text{c} - 54 \\ \text{d} \\ = 0 \\ \text{d} - 0 \\ \text{d}$		= 30														
$ \begin{array}{c} xvals & = -36 \\ -162 - 126 \\ -126 - 126 \\ -216 - 20 - 90 \\ -54 \\ -62 - 126 \\ -72 - 90 \\ -54 \\ -80 \\ $	0	= 6														
$ \begin{array}{c} -162 - 126 & -72 & -90 & -54 & 0 & 72 & 36 & 144 & 108 & -144 & 180 & -72 & -108 & -36 \\ \hline xbounds & = 339 & 0 & 0 & 288 & 288 & 309 & 21 & 51 & 72 & 72 & 0 & 0 \\ \hline 0 & 16 & 21 & 0 & 339 & 344 & 340 & 0 & -0 & 344 & 324 & 324 \\ \hline 20 & 36 & 36 & 16 & 0 & 0 & 93 & 123 & 144 & 144 & 72 & 72 \\ \hline 72 & 88 & 93 & 72 & 51 & 56 & 52 & 72 & 72 & 56 & 36 & 36 \\ \hline 92 & 108 & 108 & 88 & 72 & 72 & 165 & 195 & 216 & 216 & 144 & 144 \\ \hline 144 & 160 & 165 & 144 & 123 & 128 & 124 & 144 & 144 & 128 & 108 & 108 \\ \hline 164 & 180 & 180 & 160 & 144 & 144 & 237 & 267 & 288 & 288 & 216 & 216 \\ \hline 216 & 232 & 237 & 216 & 195 & 200 & 196 & 216 & 216 & 200 & 180 & 180 \\ \hline 236 & 252 & 252 & 232 & 216 & 216 & 288 & 304 & 309 & 288 & 267 & 272 \\ \hline 268 & 288 & 288 & 272 & 252 & 252 & 308 & 324 & 324 & 304 & 288 & 288 \\ \hline 345 & 324 & 324 & 36 & 36 & 15 & 36 & 36 & 108 & 108 & 87 & 57 \\ \hline 20 & 15 & 36 & 57 & 52 & 36 & 108 & 108 & 180 & 180 & 159 & 129 \\ \hline 92 & 87 & 108 & 129 & 124 & 108 & 180 & 180 & 180 & 159 & 129 \\ \hline 92 & 87 & 108 & 129 & 124 & 108 & 180 & 180 & 180 & 159 & 129 \\ \hline yvals & = 58 & 58 & 32 & 0 & 0 & 58 & 32 & 0 & 0 & 58 & 32 \\ \hline 0 & 0 & 32 & 0 & 0 & -58 & -58 & -32 & -58 & -32 & -58 & -32 & -32 \\ \hline ybounds & = 41 & 53 & 71 & 71 & 53 & 41 & 19 & -19 & -7 & 11 & 19 & 7 & -11 \\ \hline -19 & -11 & 7 & 19 & 11 & -7 & 41 & 41 & 53 & 71 & 71 & 53 \\ \hline 11 & 19 & 41 & 53 & 41 & 19 & -19 & -7 & 11 & 19 & 7 & -11 \\ \hline -19 & -11 & 7 & 19 & 11 & -7 & 41 & 41 & 53 & 71 & 71 & 53 \\ \hline 11 & 19 & 41 & 53 & 41 & 19 & -19 & -7 & 11 & 19 & 7 & -11 \\ \hline -19 & -11 & 7 & 19 & 11 & -7 & 41 & 41 & 53 & 71 & 71 & 53 \\ \hline 11 & 19 & 41 & 53 & 41 & 19 & -19 & -7 & 11 & 19 & 7 & -11 \\ \hline -19 & -11 & 7 & 19 & 11 & -7 & 41 & 41 & 53 & 71 & 71 & 53 \\ \hline 11 & 19 & 41 & 53 & 41 & 19 & -19 & -7 & 11 & 19 & 7 & -11 \\ \hline -19 & -11 & 7 & 19 & 11 & -7 & 41 & 41 & 53 & 71 & 71 & 53 \\ \hline 11 & 19 & 41 & 53 & 41 & 19 & -19 & -7 & 11 & 19 & 7 & -11 \\ \hline -19 & -11 & 7 & 19 & 11 & -7 & 41 & 41 & 53 & 71 & 71 & 53 \\ \hline -10 & -41 & -53 & -71 & -71 & -53 & -41 & -41 \\ \hline -19 & -41 & -53 & -$		= -36	36	0	-18	18	108	72	54	90	180	144	126	162	-108	-144
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$																
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	xbounds															
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			16						340			344	324			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		20														
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		72	88	93		51				72	72	56	36	36		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		92	108	108	88	72	72		165	195	216	216	144	144		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			160	165	144	123	128		124	144	144	128	108	108		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		164	180	180	160	144	144		237	267	288	288	216	216		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		216	232	237	216	195	200		196	216	216	200	180	180		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		236	252	252	232	216	216		288	304	309	288	267	272		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		268	288	288	272	252			308	324	324	304	288	288		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		345	324	324	36	36	15		36	36	108	108	87	57		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		20	15	36	57	52	36		108	108	180	180	159	129		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		92	87	108	129	124	108		180	180	252	252	231	201		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		164	159	180	201	196	180		252	252	324	324	303	273		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		236	231	252	273	268	252		308	303	324	345	340	324		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	yvals	= 58	58	32	0	0	58	32	0	0	58	32	0	0	58	32
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		0	0	32	0	0	-58	-58	-32	-58	-32	-58	-32	-58	-32	-32
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ybounds	= 41	53	71	71	53	41		41	41	53	71	71	53		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		11	19	41	53	41	19		-19	-7	11	19	7	-11		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						11			41		53	71		53		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$																
$\begin{array}{cccccccccccccccccccccccccccccccccccc$																
$\begin{array}{cccccccccccccccccccccccccccccccccccc$																
$\begin{array}{cccccccccccccccccccccccccccccccccccc$																
$\begin{array}{cccccccccccccccccccccccccccccccccccc$																
$\begin{array}{cccccccccccccccccccccccccccccccccccc$																
$\begin{array}{cccccccccccccccccccccccccccccccccccc$																
$\begin{array}{cccccccccccccccccccccccccccccccccccc$																
-19 -41 -53 -41 -19 -11 -53 -71 -71 -53 -41 -41																
-19 -41 -53 -41 -19 -11 -19 -41 -53 -41 -19 -11																
		-19	-41	-53	-41	-19	-11		-19	-41	-53	-41	-19	-11		

Figure D.2.: Orthographic and Robinson projection of the unstructured grid

Operator index

Λ.	11.1
A	delcode
abs	delete
acos	delgridcell
add 85	delmulti
addc 84	delname
adipot	delparam
adisit 197	detrend
aexpr 79	diff
aexprf 79	diffn
after 187	distgrid
ap2hl 166	div 85
ap2pl 166	divc 84
asin 82	divdpm 90
atan 82	divdpy 90
atan2 85	duplicate 32
D	dv2ps
В	dv2uv
bandpass	dv2uvl
\mathbf{C}	${f E}$
cat 30	
	enlarge
	ensavg
	ensbrs
chlevel	enscrps
chlevelc	ensmax
chlevelv	ensmean 98
chname	ensmin
chparam	enspctl 98
chunit	ensrange
cmorlite 201	ensrkhistspace 100
codetab	ensrkhisttime 100
collgrid 39	ensroc 100
consecsum 97	ensstd 98
consects 97	ensstd1 98
const 193	enssum 98
copy 30	ensvar 98
cos 82	ensvar1 98
D	eof 148
D and	eof3d 148
dayavg	eofcoeff
daymax	eofspatial 148
daymean 118	eoftime 148
daymin 118	eq 56
daypctl 119	eqc 57
dayrange 118	exp 82
daystd	expr 79
daystd1	exprf 79
daysum	
dayvar	${f F}$
dayvar1	fdns

fldavg	103	hourpctl 117
fldcor	142	hourrange 116
fldcovar	143	hourstd 116
fldmax	103	hourstd1
fldmean	103	hoursum
fldmin	103	hourvar
fldpctl	103	hourvar1
fldrange	103	hurr
fldstd	103	11011 200
fldstd1		I
	103	ifnotthen
fldsum	103	ifnotthenc 53
fldvar	103	
fldvar1	103	ifthen 52
for	193	ifthenc 53
		ifthenelse 52
\mathbf{G}		import_amsr
ge	56	import_binary 176
gec	57	import_cmsaf
genbic	153	info
genbil	152	infon
gencon	158	input 179
gencon2	160	inputext
gendis	155	inputsry
genlaf	162	int
genlevelbounds		intlevel
gennn	154	intlevel3d
genycon	156	intlevelx3d
	182	
gmtcells	_	intntime
gmtxyz	182	inttime
gp2sp	173	intyear 171
gp2spl	173	invertlat 69
ore dados		inverse there
gradsdes	186	invertlev 69
gridarea	190	
gridareagridboxavg		${f L}$
gridarea	190	
gridareagridboxavg	190 108	${f L}$
gridarea gridboxavg gridboxmax	190 108 108 108	L le 56
gridarea gridboxavg gridboxmax gridboxmean	190 108 108 108	L le
gridarea gridboxavg gridboxmax gridboxmean gridboxmin	190 108 108 108 108	$\begin{array}{c c} & & \mathbf{L} \\ \text{le} & & 56 \\ \text{lec} & & 57 \\ \text{ln} & & 82 \end{array}$
gridarea gridboxavg gridboxmax gridboxmean gridboxmin gridboxrange	190 108 108 108 108 108	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
gridarea gridboxavg gridboxmax gridboxmean gridboxmin gridboxrange gridboxstd gridboxstd1	190 108 108 108 108 108 108	L le 56 lec 57 ln 82 log10 82 lowpass 189
gridarea gridboxavg gridboxmax gridboxmean gridboxrange gridboxstd gridboxstd1 gridboxsum	190 108 108 108 108 108 108 108	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
gridarea gridboxavg gridboxmax gridboxmean gridboxrange gridboxstd gridboxstd1 gridboxsum gridboxvar	190 108 108 108 108 108 108 108 108	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
gridarea gridboxavg gridboxmax gridboxmean gridboxrange gridboxstd gridboxstd1 gridboxsum gridboxvar gridboxvar	190 108 108 108 108 108 108 108 108 108	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
gridarea gridboxavg gridboxmax gridboxmean gridboxrange gridboxstd gridboxstd1 gridboxsum gridboxvar gridboxvar gridboxvar gridboxvar1 griddes	190 108 108 108 108 108 108 108 108 108 10	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
gridarea gridboxavg gridboxmax gridboxmean gridboxrange gridboxstd gridboxstd1 gridboxsum gridboxvar gridboxvar gridboxvar gridboxvar gridboxvar gridboxvar1 griddes gridweights	190 108 108 108 108 108 108 108 108 108 10	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
gridarea gridboxavg gridboxmax gridboxmean gridboxrange gridboxstd gridboxstd1 gridboxsum gridboxvar gridboxvar gridboxvar gridboxvar gridboxvar gridboxvar gridboxvar gridboxvar gridboxvar gridboxvar gridboxvar gridboxvar	190 108 108 108 108 108 108 108 108 108 10	L le 56 lec 57 ln 82 log10 82 lowpass 189 lt 56 ltc 57 M M map 21 maskindexbox 72 masklonlatbox 72
gridarea gridboxavg gridboxmax gridboxmean gridboxrange gridboxstd gridboxstd1 gridboxsum gridboxvar gridboxvar gridboxvar gridboxvar gridboxvar1 griddes gridweights	190 108 108 108 108 108 108 108 108 108 10	L le 56 lec 57 ln 82 log10 82 lowpass 189 lt 56 ltc 57 M map 21 maskindexbox 72 masklonlatbox 72 maskregion 71
gridarea gridboxavg gridboxmax gridboxmean gridboxrange gridboxstd gridboxstd1 gridboxsum gridboxvar gridboxvar gridboxvar gridboxvar gridboxvar gridboxvar gridboxvar gridboxvar gridboxvar gridboxvar	190 108 108 108 108 108 108 108 108 108 10	L le 56 lec 57 ln 82 log10 82 lowpass 189 lt 56 ltc 57 M M map 21 maskindexbox 72 masklonlatbox 72 maskregion 71 mastrfu 196
gridarea gridboxavg gridboxmax gridboxmean gridboxrange gridboxstd gridboxstd1 gridboxsum gridboxvar gridboxvar gridboxvar gridboxvar gridboxvar1 griddes gridweights gt gt	190 108 108 108 108 108 108 108 108 108 10	L le 56 lec 57 ln 82 log10 82 lowpass 189 lt 56 ltc 57 M map 21 maskindexbox 72 masklonlatbox 72 maskregion 71 mastrfu 196 max 85
gridarea gridboxavg gridboxmax gridboxmean gridboxmin gridboxstd gridboxstd1 gridboxsum gridboxvar gridboxvar gridboxvar gridboxvar1 griddes gridweights gt gtc	190 108 108 108 108 108 108 108 108 108 10	L le 56 lec 57 ln 82 log10 82 lowpass 189 lt 56 ltc 57 M map 21 maskindexbox 72 masklonlatbox 72 maskregion 71 mastrfu 196 max 85 meravg 106
gridarea gridboxavg gridboxmax gridboxmean gridboxmin gridboxstd gridboxstd1 gridboxsum gridboxvar gridboxvar1 gridboxvar1 griddes gridweights gt gtc	190 108 108 108 108 108 108 108 108 108 10	L le 56 lec 57 ln 82 log10 82 lowpass 189 lt 56 ltc 57 M map 21 maskindexbox 72 masklonlatbox 72 mastrfu 196 max 85 meravg 106 merge 33
gridarea gridboxavg gridboxmax gridboxmean gridboxrange gridboxstd gridboxstd1 gridboxsum gridboxvar gridboxvar1 gridbox gridboxvar1 gridbox H highpass histcount histfreq	190 108 108 108 108 108 108 108 108 108 10	L le 56 lec 57 ln 82 log10 82 lowpass 189 lt 56 ltc 57 M map 21 maskindexbox 72 masklonlatbox 72 maskregion 71 mastrfu 196 max 85 meravg 106 merge 33 mergegrid 32
gridarea gridboxavg gridboxmax gridboxmean gridboxrange gridboxstd gridboxstd1 gridboxsum gridboxvar gridboxvar gridboxvar gridboxvar H highpass histcount histfreq histmean	190 108 108 108 108 108 108 108 10	L le 56 lec 57 ln 82 log10 82 lowpass 189 lt 56 ltc 57 M map 21 maskindexbox 72 masklonlatbox 72 maskregion 71 mastrfu 196 max 85 meravg 106 merge 33 mergegrid 32 mergetime 33
gridarea gridboxavg gridboxmax gridboxmean gridboxrange gridboxstd gridboxstd1 gridboxsum gridboxvar gridboxvar1 gridboxvar1 griddes gridweights gt gtc	190 108 108 108 108 108 108 108 10	L le 56 lec 57 ln 82 log10 82 lowpass 189 lt 56 ltc 57 M map 21 maskindexbox 72 masklonlatbox 72 maskregion 71 max 85 meravg 106 merge 33 mergegrid 32 mergetime 33 mermax 106
gridarea gridboxavg gridboxmax gridboxmean gridboxrange gridboxstd gridboxstd1 gridboxsum gridboxvar gridboxvar1 gridboxvar1 griddes gridweights gt gtc	190 108 108 108 108 108 108 108 10	L le 56 lec 57 ln 82 log10 82 lowpass 189 lt 56 ltc 57 M map 21 maskindexbox 72 masklonlatbox 72 maskregion 71 max 85 meravg 106 merge 33 mergegrid 32 mergetime 33 mermax 106 mermax 106 mermean 106
gridarea gridboxavg gridboxmax gridboxmean gridboxmin gridboxstd gridboxstd1 gridboxsum gridboxvar gridboxvar1 gridboxvar1 gridbes gridweights gt gtc	190 108 108 108 108 108 108 108 10	L le 56 lec 57 ln 82 log10 82 lowpass 189 lt 56 ltc 57 M map 21 maskindexbox 72 masklonlatbox 72 maskregion 71 max 85 meravg 106 merge 33 mergetime 33 mergetime 33 mermax 106 mermean 106 mermin 106
gridarea gridboxavg gridboxmax gridboxmean gridboxmin gridboxstd gridboxstd1 gridboxsum gridboxvar gridboxvar1 gridboxvar1 gridbox gridboxvar1 gridbox histount histfreq histmean histsum houravg hourmax hourmean	190 108 108 108 108 108 108 108 10	L le 56 lec 57 ln 82 log10 82 lowpass 189 lt 56 ltc 57 M map 21 maskindexbox 72 masklonlatbox 72 mastrfu 196 max 85 meravg 106 merge 33 mergegrid 32 mergetime 33 mermax 106 mermean 106 mermin 106 merpctl 106
gridarea gridboxavg gridboxmax gridboxmean gridboxmin gridboxstd gridboxstd1 gridboxsum gridboxvar gridboxvar1 gridboxvar1 gridbes gridweights gt gtc	190 108 108 108 108 108 108 108 10	L le 56 lec 57 ln 82 log10 82 lowpass 189 lt 56 ltc 57 M map 21 maskindexbox 72 masklonlatbox 72 maskregion 71 max 85 meravg 106 merge 33 mergetime 33 mergetime 33 mermax 106 mermean 106 mermin 106

merstd 106	reducegrid 54
merstd1 106	regres
mersum	remap 163
mervar 106	remapbic
mervar1 106	remapbil
min 85	remapcon 158
ml2hl 166	remapcon2 160
ml2pl 166	remapdis 155
monadd 86	remapeta 164
monavg	remaplaf 162
mondiv	remapnn
monmax	remapycon
monmean	replace
monmin	rhopot
monmul	rotuvb
monpctl	rotuvNorth
monrange	runavg
monstd	runmax
monstd1	runmean
monsub	runmin
monsum	runpctl
monvar	runrange
monvar1	runstd
mul	runstd1
	runsum
mulc	runvar
muldpm 90	runvar1
muldpy 90	Tunvari 112
N	${f S}$
± 1	
ndate 24	samplegrid 50
ndate	samplegrid
ne	sealevelpressure
ne	sealevelpressure
ne 56 nec 57 ngridpoints 24	sealevelpressure 196 seasavg 125
ne 56 nec 57 ngridpoints 24 ngrids 24	sealevelpressure 196 seasavg 125 seasmax 125
ne 56 nec 57 ngridpoints 24 ngrids 24 nint 82	sealevelpressure 196 seasavg 125 seasmax 125 seasmean 125 seasmin 125
ne 56 nec 57 ngridpoints 24 ngrids 24 nint 82 nlevel 24	sealevelpressure 196 seasavg 125 seasmax 125 seasmean 125 seasmin 125 seaspctl 126
ne 56 nec 57 ngridpoints 24 ngrids 24 nint 82 nlevel 24 nmon 24	sealevelpressure 196 seasavg 125 seasmax 125 seasmean 125 seasmin 125 seaspctl 126 seasrange 125
ne 56 nec 57 ngridpoints 24 ngrids 24 nint 82 nlevel 24 nmon 24 not 82	sealevelpressure 196 seasavg 125 seasmax 125 seasmean 125 seasmin 125 seaspctl 126 seasrange 125 seasstd 125
ne 56 nec 57 ngridpoints 24 ngrids 24 nint 82 nlevel 24 nmon 24 not 82 npar 24	sealevelpressure 196 seasavg 125 seasmax 125 seasmean 125 seasmin 125 seaspctl 126 seasrange 125 seasstd 125 seasstd1 125
ne 56 nec 57 ngridpoints 24 ngrids 24 nint 82 nlevel 24 nmon 24 not 82 npar 24 ntime 24	sealevelpressure 196 seasavg 125 seasmax 125 seasmean 125 seasmin 125 seaspctl 126 seasrange 125 seasstd 125 seasstd1 125
ne 56 nec 57 ngridpoints 24 ngrids 24 nint 82 nlevel 24 nmon 24 not 82 npar 24	sealevelpressure 196 seasavg 125 seasmax 125 seasmean 125 seasmin 125 seaspctl 126 seasrange 125 seasstd 125 seasstd1 125 seassum 125 seassum 125
ne 56 nec 57 ngridpoints 24 ngrids 24 nint 82 nlevel 24 nmon 24 not 82 npar 24 ntime 24	sealevelpressure 196 seasavg 125 seasmax 125 seasmean 125 seasmin 125 seaspctl 126 seasrange 125 seasstd 125 seasstd1 125 seassum 125 seasvar 125 seasvar1 125
ne 56 nec 57 ngridpoints 24 ngrids 24 nint 82 nlevel 24 nmon 24 not 82 npar 24 ntime 24 nyear 24	sealevelpressure 196 seasavg 125 seasmax 125 seasmean 125 seasmin 125 seaspctl 126 seasrange 125 seasstd 125 seasstd1 125 seassum 125 seasvar 125 seasvar1 125 selcode 45
ne 56 nec 57 ngridpoints 24 ngrids 24 nint 82 nlevel 24 nmon 24 not 82 npar 24 ntime 24 nyear 24 output 180	sealevelpressure 196 seasavg 125 seasmax 125 seasmean 125 seasmin 125 seaspctl 126 seasrange 125 seasstd 125 seasstdl 125 seasvar 125 seasvar1 125 selcode 45 seldate 47
ne 56 nec 57 ngridpoints 24 ngrids 24 nint 82 nlevel 24 nmon 24 not 82 npar 24 ntime 24 nyear 24 O 0 output 180 outputext 180	sealevelpressure 196 seasavg 125 seasmax 125 seasmean 125 seasmin 125 seaspctl 126 seasrange 125 seasstd 125 seasstd1 125 seasvar 125 seasvar1 125 selcode 45 seldate 47 selday 47
ne 56 nec 57 ngridpoints 24 ngrids 24 nint 82 nlevel 24 nmon 24 not 82 npar 24 ntime 24 nyear 24 O 0 output 180 outputf 180 outputf 180	sealevelpressure 196 seasavg 125 seasmax 125 seasmean 125 seasmin 125 seaspctl 126 seasrange 125 seasstd 125 seasstdl 125 seasvar 125 seasvar 125 seavar1 125 selcode 45 seldate 47 selday 47 select 41
ne 56 nec 57 ngridpoints 24 ngrids 24 nint 82 nlevel 24 nmon 24 not 82 npar 24 ntime 24 nyear 24 O 0 output 180 outputf 180 outputint 180	sealevelpressure 196 seasavg 125 seasmax 125 seasmean 125 seaspctl 126 seasrange 125 seasstd 125 seasstdl 125 seasvar 125 seasvar 125 seavar1 125 selcode 45 seldate 47 selday 47 select 41 selgrid 45
ne 56 nec 57 ngridpoints 24 ngrids 24 nint 82 nlevel 24 nmon 24 not 82 npar 24 ntime 24 nyear 24 output 180 outputext 180 outputint 180 outputsrv 180 outputsrv 180	sealevelpressure 196 seasavg 125 seasmax 125 seasmean 125 seasmin 125 seaspctl 126 seasrange 125 seasstd 125 seasstdl 125 seasvar 125 seasvar 125 seavar1 125 selcode 45 seldate 47 selday 47 select 41 selgrid 45 selgridcell 50
ne 56 nec 57 ngridpoints 24 ngrids 24 nint 82 nlevel 24 nmon 24 not 82 npar 24 ntime 24 nyear 24 O 0 output 180 outputf 180 outputint 180	sealevelpressure 196 seasavg 125 seasmax 125 seasmean 125 seasmin 125 seaspctl 126 seasrange 125 seasstd 125 seassum 125 seasvar 125 seasvar1 125 selcode 45 seldate 47 selday 47 select 41 selgrid 45 selgridcell 50 selhour 47
ne 56 nec 57 ngridpoints 24 ngrids 24 nint 82 nlevel 24 nmon 24 not 82 npar 24 ntime 24 nyear 24 O 0 output 180 outputf 180 outputint 180 outputsrv 180 outputtab 181	sealevelpressure 196 seasavg 125 seasmax 125 seasmean 125 seasmin 125 seaspctl 126 seasrange 125 seasstd 125 seasstdl 125 seasvar 125 seasvar1 125 selcode 45 seldate 47 selday 47 selgrid 45 selgridcell 50 selhour 47 selindexbox 49
ne 56 nec 57 ngridpoints 24 ngrids 24 nint 82 nlevel 24 nmon 24 not 82 npar 24 ntime 24 nyear 24 O O output 180 outputf 180 outputint 180 outputsrv 180 outputtab 181	sealevelpressure 196 seasavg 125 seasmax 125 seasmean 125 seasmin 125 seaspctl 126 seasrange 125 seasstd 125 seasstdl 125 seasvar 125 seasvar 125 seavarl 125 selode 45 seldate 47 selday 47 select 41 selgrid 45 selgridcell 50 selhour 47 selindexbox 49 sellevel 45
ne 56 nec 57 ngridpoints 24 ngrids 24 nint 82 nlevel 24 nmon 24 not 82 npar 24 ntime 24 nyear 24 O output 180 outputf 180 outputint 180 outputsrv 180 outputtab 181 P partab 28	sealevelpressure 196 seasavg 125 seasmax 125 seasmean 125 seasmin 125 seaspctl 126 seasrange 125 seasstd 125 seassum 125 seasvar 125 seasvar1 125 selcode 45 seldate 47 selday 47 select 41 selgrid 45 selpridcell 50 selhour 47 selindexbox 49 sellevel 45 sellevidx 45
ne 56 nec 57 ngridpoints 24 ngrids 24 nint 82 nlevel 24 nmon 24 not 82 npar 24 ntime 24 nyear 24 O output 180 outputf 180 outputint 180 outputsrv 180 outputtab 181 P partab 28 pow 82	sealevelpressure 196 seasavg 125 seasmax 125 seasmean 125 seasmin 125 seaspctl 126 seasrange 125 seasstd 125 seassum 125 seasvar 125 seavar1 125 selcode 45 seldate 47 selday 47 select 41 selgrid 45 selhour 47 selindexbox 49 sellevel 45 sellevidx 45 sellonlatbox 49
ne 56 nec 57 ngridpoints 24 ngrids 24 nint 82 nlevel 24 nmon 24 not 82 npar 24 ntime 24 nyear 24 O output 180 outputf 180 outputint 180 outputsrv 180 outputtab 181 P partab 28	sealevelpressure 196 seasavg 125 seasmax 125 seasmean 125 seasmin 125 seaspctl 126 seasrange 125 seasstd 125 seassum 125 seasvar 125 seavar1 125 selcode 45 seldate 47 selday 47 select 41 selgrid cell 50 selhour 47 selindexbox 49 sellevel 45 sellevidx 45 sellonlatbox 49 selltype 45
ne 56 nec 57 ngridpoints 24 ngrids 24 nint 82 nlevel 24 nmon 24 not 82 npar 24 ntime 24 nyear 24 O output 180 outputf 180 outputint 180 outputsrv 180 outputtab 181 P partab 28 pow 82 projuvLatLon 195	sealevelpressure 196 seasavg 125 seasmax 125 seasmean 125 seasmin 125 seaspctl 126 seasrange 125 seasstd 125 seassum 125 seasvar 125 seasvar1 125 selcode 45 seldate 47 selday 47 select 41 selgrid 45 sellorid 50 selhour 47 sellevel 45 sellevidx 49 sellevidx 45 sellonlatbox 49 selltype 45 selmonth 47
ne 56 nec 57 ngridpoints 24 ngrids 24 nint 82 nlevel 24 nmon 24 not 82 npar 24 ntime 24 nyear 24 output 180 outputext 180 outputf 180 outputsrv 180 outputtab 181 P P partab 28 pow 82 projuvLatLon 195	sealevelpressure 196 seasavg 125 seasmax 125 seasmean 125 seasmin 125 seaspctl 126 seasrange 125 seasstd 125 seassum 125 seasvar 125 seasvarl 125 selode 45 seldate 47 selday 47 select 41 selgrid 45 selgridcell 50 selhour 47 sellvel 45 sellevel 45 sellevidx 45 sellonlatbox 49 selltype 45 selmonth 47 selmulti 43
ne 56 nec 57 ngridpoints 24 ngrids 24 nint 82 nlevel 24 nmon 24 not 82 npar 24 ntime 24 nyear 24 output 180 outputext 180 outputf 180 outputsrv 180 outputtab 181 P P partab 28 pow 82 projuvLatLon 195	sealevelpressure 196 seasavg 125 seasmax 125 seasmean 125 seasmin 125 seaspctl 126 seasrange 125 seasstd 125 seassum 125 seasvar 125 seasvarl 125 selode 45 seldate 47 selday 47 select 41 selgrid 45 selgridcell 50 selhour 47 sellvel 45 sellevel 45 sellevidx 45 sellonlatbox 49 selltype 45 selmonth 47 selmulti 43

selseason	47	showmon	5
selsmon		showname	
selstdname		showstdname	
seltabnum	45	showtime	
seltime		showtimestamp 25	
seltimestep		showyear	
selyear	47	sin	
selzaxis	45	sinfo	
selzaxisname	45	sinfon	
setattribute	60	smooth	7
setcalendar	64	smooth smooth 191	
setcindexbox	73	sp2gp	
setclonlatbox	73	sp2gpl	_
setcode	63	sp2sp	_
setcodetab	63	splitcode	
setctomiss	75	splitday 36	
setdate	64	splitgrid	
setday	64	splithour 36	
setgrid	67	splitlevel	
setgridarea		splitmon	
setgridtype	67	splitname	
~ · · -	198	splitparam	
setlevel	63	splitseas	
setltype	63	splitsel	
setmisstoc	75	splittabnum	
setmisstodis		splityear 36	
setmisstonn	75 75	splityearmon	
setmissval		splitzaxis	
setmon	64	sqr	
setname	63	•	
setparam	63	sqrt 82 stdatm 193	_
setpartabn	61	strbre	
setpartabp		strgal	
setreftime		strwin	
setrtoc		sub	
_	192	subc	
setrtomiss			
BOUL COLLEGE			5
settaxis		subtrend	5
settaxissettbounds	64	T	6
settbounds	64 64		
settboundssettime	64 64 64	T tan 82	2
settboundssettimesettunits	64 64 64 64	$f{T}$ tan 82 tee 31	2
settboundssettimesettunitssetunit	64 64 64 64 63	T tan	2 1 4
settbounds settime settunits setunit setvals	64 64 64 64 63 192	$f{T}$ tan 82 tee 31	$egin{array}{c} 2 \ 1 \ 4 \ 2 \ \end{array}$
settbounds settime settunits setunit setvals setvrange	64 64 64 64 63 192 75	T tan 82 tee 31 timavg 114 timcor 145 timcovar 145	2 1 4 2 3
settbounds settime settunits setunit setvals setvrange setyear	64 64 64 64 63 192 75 64	T tan 85 tee 31 timavg 114 timcor 145 timcovar 145 timcumsum 97	2 1 4 2 3 7
settbounds settime settunits setunit setvals setvrange setyear setzaxis	64 64 64 63 192 75 64 68	T tan 82 tee 31 timavg 114 timcor 142 timcovar 143 timcumsum 97 timmax 114	2 1 4 2 3 7 4
settbounds settime settunits setunit setvals setvrange setyear setzaxis shifttime	64 64 64 63 192 75 64 68 64	T tan 82 tee 31 timavg 114 timcor 142 timcovar 143 timcumsum 97 timmax 114 timmean 114	2 1 4 2 3 7 4 4
settbounds settime settunits setunit setvals setvrange setyear setzaxis shifttime shiftx	64 64 64 63 192 75 64 68 64 70	T tan 82 tee 31 timavg 114 timcor 145 timcovar 145 timcumsum 97 timmax 114 timmean 114 timmin 114	2 1 4 2 3 7 4 4 4
settbounds settime settunits setunit setvals setvrange setyear setzaxis shifttime shiftx shifty	64 64 64 63 192 75 64 68 64 70	T tan 85 tee 31 timavg 114 timcor 145 timcovar 145 timcumsum 97 timmax 114 timmean 114 timmin 114 timpctl 115	2 1 4 2 3 7 4 4 4 4 5
settbounds settime settunits setunit setvals setvrange setyear setzaxis shifttime shiftx shifty showattribute	64 64 64 63 192 75 64 68 64 70 70 27	T tan 85 tee 31 timavg 114 timcor 145 timcovar 145 timcumsum 97 timmax 114 timmean 114 timmin 114 timpctl 115 timrange 114	2 1 4 2 3 7 4 4 4 5 4
settbounds settime settunits setunit setvals setvrange setyear setzaxis shifttime shiftx shifty showattribute showatts	64 64 64 63 192 75 64 68 64 70 70 27 25	T tan 85 tee 31 timavg 114 timcor 145 timcovar 145 timcumsum 95 timmax 114 timmean 114 timpctl 115 timrange 114 timselavg 116	2 1 4 2 3 7 4 4 4 5 4 0
settbounds settime settunits setunit setvals setvrange setyear setzaxis shifttime shiftx shifty showattribute showatts	64 64 64 63 192 75 64 68 64 70 70 27 25 25	T tan 82 tee 31 timavg 114 timcor 142 timcovar 144 timcumsum 97 timmax 114 timmean 114 timpctl 115 timrange 114 timselavg 116 timselmax 116	2 1 4 2 3 7 4 4 4 5 4 0 0
settbounds settime settunits setunit setvals setvrange setyear setzaxis shifttime shiftx shifty showattribute showatts showatts	64 64 64 63 192 75 64 68 64 70 70 27 25	T tan 82 tee 31 timavg 114 timcor 145 timcowar 145 timcumsum 97 timmax 114 timmean 114 timmin 115 timpctl 115 timrange 116 timselavg 116 timselmax 116 timselmean 116	2 1 4 2 3 7 4 4 4 4 5 4 0 0
settbounds settime settunits setunit setvals setvrange setyear setzaxis shifttime shiftx shifty showattribute showatts showatts showattsyar showcode	64 64 64 64 63 192 75 64 68 64 70 70 27 25 25 27 25	T tan 85 tee 31 timavg 114 timcor 145 timcowar 145 timcumsum 97 timmax 114 timmean 114 timmin 114 timpctl 115 timrange 116 timselavg 116 timselmax 116 timselmean 116 timselmin 116	2 1 4 2 3 7 4 4 4 5 4 0 0 0
settbounds settime settunits setunit setvals setvrange setyear setzaxis shifttime shiftx shifty showattribute showatts showatts showatts showattsvar showcode showdate	64 64 64 64 63 192 75 64 68 64 70 70 27 25 25 27 25	T tan 85 tee 31 timavg 114 timcor 145 timcowar 145 timcumsum 97 timmax 114 timmean 114 timpctl 115 timrange 116 timselavg 116 timselmax 116 timselmin 116 timselpctl 111	2 1 4 2 3 7 4 4 4 5 4 0 0 0 1
settbounds settime settunits setunit setvals setvrange setyear setzaxis shifttime shiftx shifty showattribute showatts showatts showatts showatts showatts showatts showattsvar showcode showdate showformat	64 64 64 63 192 75 64 68 64 70 70 27 25 25 27 25 25 25	T tan 85 tee 31 timavg 114 timcor 145 timcovar 145 timcumsum 97 timmax 114 timmean 114 timmin 114 timpctl 115 timrange 116 timselavg 110 timselmax 110 timselmin 110 timselpctl 111 timselrange 116 timselrange 116	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
settbounds settime settunits setunit setvals setvrange setyear setzaxis shifttime shiftx shifty showattribute showatts showatts showatts showattsvar showcode showdate showformat showlevel	64 64 64 64 63 192 75 64 68 64 70 70 27 25 25 27 25 25 25 25	T tan 85 tee 31 timavg 114 timcor 145 timcovar 145 timcumsum 97 timmax 114 timmean 114 timmpctl 115 timrange 116 timselavg 116 timselmax 116 timselmean 116 timselpctl 111 timselpctl 111 timselrange 116 timselstd 116	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
settbounds settime settunits setunit setvals setvrange setyear setzaxis shifttime shiftx shifty showattribute showatts showatts showatts showatts showatts showatts showattsvar showcode showdate showformat	64 64 64 63 192 75 64 68 64 70 70 27 25 25 27 25 25 25	T tan 85 tee 31 timavg 114 timcor 145 timcovar 145 timcumsum 97 timmax 114 timmean 114 timmin 114 timpctl 115 timrange 116 timselavg 110 timselmax 110 timselmin 110 timselpctl 111 timselrange 116 timselrange 116	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

timselsum	110	ydrunvar1	138
timselvar	110	yearavg	123
timselvar1	110	yearmax	123
timsort	193	yearmean	123
timstd	114	yearmin	123
timstd1	114		122
timsum	114	yearpctl	124
timvar	114	yearrange	123
timvar1	114	•	123
topo	193	yearstd1	123
trend	146		123
	110	yearvar	123
\mathbf{U}		v	123
uv2dv	174	y	
uv2dvl	174	yhouradd	
uvDestag	195	<i>y</i> - 1 - 1 - 1 - 1	127
av Desiag	100	yhourdiv	
${f V}$			127
vct	28	yhourmean	127
vertavg	109	y	127
vertmax	109	yhourmul	87
vertmean	109	yhourrange	127
vertmin	109	yhourstd	127
		yhourstd1	127
vertrange	109	yhoursub	87
vertstd	109	yhoursum	127
vertstd1	109	yhourvar	127
vertsum	109	yhourvar1	127
vertvar	109	ymonadd	89
vertvar1	109	ymonavg	132
1 1 1 1			
\mathbf{W}	100	ymondiv	89
\mathbf{W}	199	ymondiv	89 132
wct	199	ymondiv	89 132 132
\mathbf{Y}		ymondiv ymonmax ymonmean ymonmin	89 132 132 132
\mathbf{Y} ydayadd	88	ymondiv	89 132 132 132 89
wct	88 129	ymondiv ymonmax ymonmean ymonmin ymonmul ymonpctl	89 132 132 132 89 134
wct Y ydayadd	88 129 . 88	ymondiv ymonmax ymonmean ymonmin ymonmul ymonpctl ymonrange	89 132 132 132 89 134 132
wct Y ydayadd ydayavg ydaydiv ydaymax	88 129 . 88 129	ymondiv ymonmax ymonmean ymonmin ymonmul ymonpctl ymonrange ymonstd	89 132 132 132 89 134 132
wct Y ydayadd ydayavg ydaydiv ydaymax ydaymean	88 129 . 88 129 129	ymondiv ymonmax ymonmean ymonmul ymonpctl ymonrange ymonstd ymonstd1	89 132 132 132 89 134 132 132
wct Y ydayadd ydayavg ydaydiv ydaymax ydaymean ydaymin	88 129 . 88 129 129	ymondiv ymonmax ymonmean ymonmin ymonmul ymonpctl ymonrange ymonstd ymonstd1 ymonsub	89 132 132 132 89 134 132 132 89
wct Y ydayadd ydayavg ydaydiv ydaymax ydaymean ydaymin ydaymul	88 129 . 88 129 129 129 . 88	ymondiv ymonmax ymonmean ymonmin ymonpctl ymonrange ymonstd ymonstd1 ymonsub ymonsum	89 132 132 132 89 134 132 132 132 89 132
wct Y ydayadd ydayavg ydaydiv ydaymax ydaymean ydaymin ydaymul ydaypctl	88 129 88 129 129 129 88 131	ymondiv ymonmax ymonmean ymonmin ymonpctl ymonrange ymonstd ymonstd1 ymonsub ymonsum ymonsum	89 132 132 132 89 134 132 132 132 132 132
wct Y ydayadd ydayavg ydaydiv ydaymax ydaymean ydaymin ydaymul ydaypctl ydayrange	88 129 88 129 129 129 88 131	ymondiv ymonmax ymonmean ymonmin ymonmul ymonpctl ymonrange ymonstd ymonstd1 ymonsub ymonsum ymonvar ymonvar1	89 132 132 132 89 134 132 132 132 132 132 132 132
Y ydayadd ydayavg ydaydiv ydaymax ydaymean ydaymin ydaymul ydaypctl ydayrange ydaystd	88 129 . 88 129 129 129 . 88 131 129 129	ymondiv ymonmax ymonmean ymonmin ymonmul ymonpctl ymonrange ymonstd ymonstd1 ymonsub ymonsum ymonvar ymonvar1 yseasadd	89 132 132 132 89 134 132 132 132 132 90
Y ydayadd ydayavg ydaydiv ydaymax ydaymean ydaymin ydaymul ydaypctl ydayrange ydaystd ydaystd1	88 129 . 88 129 129 129 . 88 131 129 129	ymondiv ymonmax ymonmean ymonmul ymonpctl ymonrange ymonstd ymonstd1 ymonsub ymonsum ymonvar ymonvar ymonvar1 yseasadd yseasavg	89 132 132 132 89 134 132 132 132 132 132 132 132 133 135
Y ydayadd ydayavg ydaydiv ydaymax ydaymean ydaymin ydaymul ydaypctl ydayrange ydaystd	88 129 . 88 129 129 129 . 88 131 129 129	ymondiv ymonmax ymonmean ymonmul ymonpetl ymonstd ymonstd1 ymonsub ymonsum ymonvar ymonvar1 yseasadd yseasavg yseasdiv	89 132 132 132 89 134 132 132 132 132 132 132 90 135 90
Y ydayadd ydayavg ydaydiv ydaymax ydaymean ydaymin ydaymul ydaypctl ydayrange ydaystd ydaystd ydaystd ydaysub ydaysum	88 129 . 88 129 129 129 . 88 131 129 129 129	ymondiv ymonmax ymonmean ymonmin ymonmul ymonpctl ymonrange ymonstd ymonstd1 ymonsub ymonsum ymonvar ymonvar1 yseasadd yseasavg yseasdiv yseasmax	89 132 132 132 89 134 132 132 132 132 132 90 135 90
Y ydayadd ydayavg ydaydiv ydaymax ydaymean ydaymin ydaymul ydaypctl ydayrange ydaystd ydaystd1 ydaysub	88 129 . 88 129 129 129 . 88 131 129 129 129	ymondiv ymonmax ymonmean ymonmin ymonmul ymonpctl ymonrange ymonstd ymonstd1 ymonsub ymonsum ymonvar ymonvar1 yseasadd yseasavg yseasdiv yseasmax yseasmax	89 132 132 132 89 134 132 132 132 132 132 132 90 135 90 135
Y ydayadd ydayavg ydaydiv ydaymax ydaymean ydaymin ydaymul ydaypctl ydayrange ydaystd ydaystd ydaysub ydaysub ydaysum ydayvar ydayvar1	88 129 88 129 129 129 88 131 129 129 129 129 129 129 129	ymondiv ymonmax ymonmean ymonmin ymonmul ymonpctl ymonrange ymonstd ymonsud ymonsub ymonsum ymonvar ymonvar1 yseasadd yseasavg yseasdiv yseasmax yseasmax yseasmin	89 132 132 132 89 134 132 132 132 132 132 90 135 90 135 135
Y ydayadd ydayavg ydaydiv ydaymax ydaymean ydaymin ydaymul ydaypctl ydayrange ydaystd ydaystd ydaystd ydaysub ydaysub ydayvar ydayvar ydayvar ydayvar ydayvar	88 129 88 129 129 129 88 131 129 129 129 129 129 129 129 12	ymondiv ymonmax ymonmean ymonmin ymonmul ymonpctl ymonstd ymonstd ymonsub ymonsub ymonsum ymonvar ymonvar1 yseasadd yseasavg yseasdiv yseasmax yseasmax yseasmin yseasmul	89 132 132 132 89 134 132 132 132 132 132 132 90 135 90 135 135 90
Y ydayadd ydayavg ydaydiv ydaymax ydaymean ydaymin ydaymul ydaypctl ydayrange ydaystd ydaystd ydaysub ydaysub ydaysum ydayvar ydayvar1	88 129 . 88 129 129 129 . 88 131 129 129 129 129 129 129 129 138 138	ymondiv ymonmax ymonmean ymonmin ymonmul ymonpetl ymonstd ymonstd1 ymonsub ymonsum ymonvar ymonvar1 yseasadd yseasavg yseasdiv yseasmax yseasmax yseasmin yseasmul yseaspetl	89 132 132 132 89 134 132 132 132 132 132 132 135 90 135 135 135 135
Y ydayadd ydayavg ydaydiv ydaymax ydaymean ydaymin ydaymul ydaypctl ydayrange ydaystd ydaystd ydaystd ydaysub ydaysub ydayvar ydayvar ydayvar ydayvar ydayvar	88 129 88 129 129 129 88 131 129 129 129 129 129 129 129 12	ymondiv ymonmax ymonmean ymonmin ymonmul ymonpetl ymonstd ymonstd1 ymonsub ymonsum ymonvar ymonvar1 yseasadd yseasavg yseasdiv yseasmax yseasmax yseasman yseasmul yseaspetl yseasrange	89 132 132 132 89 134 132 132 132 132 132 132 90 135 90 135 135 90
Y ydayadd ydayavg ydaydiv ydaymax ydaymean ydaymin ydaymul ydaypctl ydayrange ydaystd ydaystd ydaystd ydaysub ydaysub ydayvar ydayvar ydayvar ydayvar ydayvar ydrunavg ydrunmax	88 129 . 88 129 129 129 . 88 131 129 129 129 129 129 129 129 138 138	ymondiv ymonmax ymonmean ymonmin ymonmul ymonpetl ymonstd ymonstd1 ymonsub ymonsum ymonvar ymonvar1 yseasadd yseasavg yseasdiv yseasmax yseasmax yseasman yseasmul yseaspetl yseasrange yseasstd	89 132 132 132 89 134 132 132 132 132 132 132 135 90 135 135 135 135
Y ydayadd ydayavg ydaydiv ydaymax ydaymean ydaymin ydaymul ydaypctl ydayrange ydaystd ydaystd ydaystd1 ydaysub ydaysum ydayvar ydayvar ydayvar ydayvar ydrunavg ydrunmax ydrunmean	88 129 . 88 129 129 129 . 88 131 129 129 129 129 129 129 138 138 138	ymondiv ymonmax ymonmean ymonmin ymonmul ymonpetl ymonstd ymonstd1 ymonsub ymonsum ymonvar ymonvar1 yseasadd yseasavg yseasdiv yseasmax yseasmax yseasman yseasmul yseaspetl yseasrange	89 132 132 132 89 134 132 132 132 132 132 90 135 135 135 135 90 137
Y ydayadd ydayavg ydaydiv ydaymax ydaymean ydaymin ydaymul ydaypctl ydayrange ydaystd ydaystd ydaystd ydaysub ydaysum ydayvar ydayvar ydayvar ydayvar ydrunavg ydrunmax ydrunmean ydrunmin	88 129 129 129 129 129 129 129 129 129 129	ymondiv ymonmax ymonmean ymonmin ymonmul ymonpetl ymonstd ymonstd1 ymonsub ymonsum ymonvar ymonvar1 yseasadd yseasavg yseasdiv yseasmax yseasmax yseasman yseasmul yseaspetl yseasrange yseasstd	89 132 132 132 89 134 132 132 132 132 132 132 135 135 135 135 135 135
Y ydayadd ydayavg ydaydiv ydaymax ydaymean ydaymin ydaymul ydaypctl ydayrange ydaystd ydaystd1 ydaysub ydaysub ydayvar ydayvar ydayvar ydayvar ydayvar ydayvar ydrunmax ydrunmean ydrunmin ydrunpctl	88 129 88 129 129 129 129 129 129 129 129 129 129	ymondiv ymonmax ymonman ymonmin ymonmul ymonpctl ymonsange ymonstd ymonsud ymonsub ymonsum ymonvar ymonvar1 yseasadd yseasavg yseasdiv yseasmax yseasman yseasmul yseaspctl yseasstd yseasstd	89 132 132 132 89 134 132 132 132 132 132 132 90 135 135 135 135 135 135
Y ydayadd ydayavg ydaydiv ydaymax ydaymean ydaymin ydaymul ydaypctl ydayrange ydaystd ydaystd ydaysub ydaysub ydaysur ydayvar ydayvar ydayvar ydayvar ydayvar ydrunmax ydrunmean ydrunmin ydrunpctl ydrunstd	88 129 88 129 129 129 129 88 131 129 129 129 129 129 138 138 138 138 138	ymondiv ymonmax ymonmean ymonmin ymonmul ymonpctl ymonstd ymonstd1 ymonsub ymonsum ymonvar ymonvar1 yseasadd yseasavg yseasdiv yseasmax yseasmax yseasmin yseasmul yseasrange yseasstd yseasstd1 yseassub yseassum	89 132 132 132 89 134 132 132 132 132 132 132 132 135 135 135 135 135 135 90
Y ydayadd ydayavg ydaydiv ydaymax ydaymean ydaymin ydaymul ydaypctl ydayrange ydaystd ydaystd ydaysub ydaysub ydaysum ydayvar ydayvar ydayvar ydayvar ydayvar ydayunmax ydrunmax ydrunmean ydrunpctl ydrunstd ydrunstd	88 129 129 129 129 129 88 131 129 129 129 129 129 129 138 138 138 138 138	ymondiv ymonmax ymonmean ymonmin ymonmul ymonpctl ymonstd ymonstd1 ymonsub ymonsum ymonvar ymonvar1 yseasadd yseasavg yseasdiv yseasmax yseasmax yseasman yseasmul yseaspctl yseasstd yseasstd yseassub yseassub yseassum yseassum	89 132 132 132 89 134 132 132 132 132 132 132 132 135 135 135 135 135 135 135 135 135

\mathbf{Z}

zaxisdes	28
zonavg	105
zonmax	105
zonmean	105
zonmin	105
zonpctl	105
zonrange	105
zonstd	105
zonstd1	105
zonsum	105
zonvar	105
zonvar1	105