December 29 2016 Instructor: Mark P.-H. Lin TAs: Guan-Hong Liou & Yan-Yu Su & Shuo-Hui Wang

Quiz #4

1. Using a decoder and a NOR gate, design the combinational circuit defined by the following Boolean function: (20 points)

$$F = (y+z)(x'+z)$$

Solution:

$$F(x, y, z) = \prod (0, 4, 6)$$

$$\{x'y'z' + xy'z' + xyz'\}' = (x+y+z)(x'+y+z)(x'+y'+z)$$

2. Implement a full adder with two 4×1 multiplexers. (20 points) Solution:

X	\mathbf{y}	Z	S	C
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

S	I_0	I_1	I_2	I_3
x'	0	1	1	0
x	1	0	0	1
	x	x'	x'	x

C	I_0	I_1	I_2	I_3
x'	0	0	0	1
x	0	1	1	1
	0	\overline{x}	x	1

3. A sequential circuit with two D Flip-Flops A and B, two inputs, x and y; and one output z is specified by the following next-state a nd output equations:

$$A(t+1) = xy'+xB'$$

$$B(t+1) = y \oplus B$$

$$z = B$$

(a) Draw the logic diagram of the circuit. (15 points)

(b) List the state table for the sequential circuit. (15 points)

A(t)	B(t)	X	y	A(t+1)	B(t+1)	z
0	0	0	0	0	0	0
0	0	0	1	0	1	0
0	0	1	0	1	0	0
0	0	1	1	1	1	0
0	1	0	0	0	1	1
0	1	0	1	0	0	1
0	1	1	0	1	1	1
0	1	1	1	0	0	1
1	0	0	0	0	0	0
1	0	0	1	0	1	0
1	0	1	0	1	0	0
1	0	1	1	1	1	0
1	1	0	0	0	1	1
1	1	0	1	0	0	1
1	1	1	0	1	1	1
1	1	1	1	0	0	1

(c) Draw the corresponding state diagram. (15 points)

4. For the following state table:

	Next state		Out	put
Present State	x = 0	x = 1	$\mathbf{x} = 0$	x = 1
a	a	b	0	0
b	c	d	0	0
c	a	d	0	0
d	g	a	1	0
e	a	f	0	1
f	g	f	0	1
g	a	f	0	1
h	g	a	1	0

(a) Draw the corresponding state diagram. (5 points)

(b) Tabulate the reduced state table. (5 points)

	Next state		Out	put
Present State	x = 0	x = 1	$\mathbf{x} = 0$	x = 1
a	a	b	0	0
b	c	d	0	0
С	a	d	0	0
d	g	a	1	0
e	a	f	0	1
f	g	f	0	1
g	a	f	0	1
h	g	a	1	0

	Next state		Output	
Present State	x = 0	x = 1	$\mathbf{x} = 0$	x = 1
a	a	b	0	0
b	c	d	0	0
c	a	d	0	0
d	e	a	1	0
e	a	f	0	1
f	e	f	0	1

(c) Draw the state diagram corresponding to the reduced state table. (5 points)

