Le langage algébrique

HLIN511

Pascal Poncelet Pascal.Poncelet@umontpellier.fr http://www.lirmm.fr/~poncelet

W

Introduction

- Introduit par CODD en 1970
- Traitement de requêtes de lecture et écriture
- Deux types d'opérateurs
 - Opérateurs ensemblistes : UNION, INTERSECTION, DIFFERENCE, PRODUIT CARTESIEN
 - Opérateurs relationnels : SELECTION, PROJECTION, JOINTURE et DIVISION
- Notation : t un tuple d'une relation et t(A) dans R, le sous tuple de R relatif à A

2

Opérateurs ensemblistes

- Pour l'union, l'intersection, la différence les relations doivent être unicompatibles :
 - les relations doivent avoir même degré
 - les attributs associés deux à deux doivent être du même type syntaxique

UNION

• UNION

R $\,\cup\,$ S : ensemble des tuples qui appartiennent soit à R, soit à S, soit à R et $\,$ S :

 $R \, \cup \, S \, \text{=} \, \{t/t \, \in R \, \text{OU} \, t \, \in S\}$

• Opérateur commutatif (R \cup S = S \cup R)

M

Exemple

Pilote1 : ensemble des pilotes habitant PARIS

PILOTE1	PLNUM	ADR
	100	PARIS
	101	PARIS
	120	PARIS
	110	PARIS

Pilote2 : ensemble des pilotes assurant un vol au départ de PARIS de TOULOUSE

PILOTE2

PLNUM	VD.
130	TOUL
140	TOUL
150	TOUL
100	TOUL
120	TOUL
130	PARIS
101	PARIS
140	PARIS
110	PARIS

Pilote1 UNION pilote 2

PILOTE1 UNION PILOTE2	PLNUM	VILLE	1
	100	PARIS	☐ Pilote1
	101	PARIS	□ }
Ensemble des pilotes	120	PARIS	
•	110	PARIS	,
habitant PARIS ou	130	TOUL	\Box
	140	TOUL	
assurant	150	TOUL	
un vol au départ de	100	TOUL	☐ [Bileten
	120	TOUL	Pilote2
PARIS ou TOULOUSE	130	TOUL	
	130	PARIS	
	140	PARIS	コノ

Les duplicats sont éliminés L'Union permet de faire de l'ajout de tuples

INTERSECTION

- * R \cap S : ensemble des tuples qui appartiennent à R et à S : $R \cap S = \{t / t \subseteq R \text{ et } t \subseteq S\}$
- Opérateur commutatif : $R \cap S = S \cap R$

Avec Pilote1 INTERSECTION Pilote2

PLNUM	VILLE
101	PARIS
110	PARIS

L'intersection permet de traduire le ET logique

DIFFERENCE

• R - S : ensemble des tuples qui appartiennent à R sans appartenir à S. Complémentaire de

l'intersection :

 $R - S = \{t / t \in R ET t \notin S\}$

• Opérateur non commutatif : R - S ≠ S - K

PILOTE1 - PILOTE2	PLNUM	ADR
	100	PARIS
	120	PARIS

PILOTE 1 – PILOTE 2 : ensemble des pilotes habitant PARIS et n 'assurant pas de vol au départ de PARIS ou TOULOUSE

PRODUIT CARTESIEN

• $R \otimes S$: ensemble de tous les tuples obtenus par concaténation des tuples de R et de S. Ensemble de paires ordonnées :

 $R \otimes S = \{(t (r), t(s)) \text{ avec } t(r) \subseteq R \text{ et } t(s) \subseteq S\}$

• Opérateur commutatif : R ⊗ S = S ⊗ R

PILOTE3	PLNU 103 106	}	N	ADR IICE IICE	AVION	All	RBUS ARAV	350 250
	Produit Cartésien	103 103 106 106	М	NICE NICE NICE NICE	AVNO AIRBI CARA AIRBI CARA	JS V JS	350 250 350 250 250	9

Opérateurs relationnels

- Deux catégories
 - unaires de restriction
 - binaires d'extension
- Les opérateurs de restrictions permettent :
 - soit un découpage horizontal d'une relation (SELECTION)
 - soit un découpage vertical d'une relation (PROJECTION)

Z٨

10

SELECTION

- Soit θ un comparateur binaire θ ={<, <=,>, >=, <>}
 applicable à l'attribut (ou à l'ensemble d'attributs)
 A et au tuple c (de la relation R)
- La sélection R(A θ c) est l'ensemble des tuples de R pour lesquels θ est vérifié entre la (les) composante(s) A et le tuple c :

 $R(A \theta c)=\{t/t \in R ET tA \theta c\}$

t/\

11

SELECTION

PILOTE4

PLNUM	PLNOM	ADR
100	JEAN	PARIS
101	PIERRE	PARIS
120	PAUL	PARIS
130	SERGE	TOUL
140	MICHEL	TOUL

R

PLNUM	PLNOM	ADR
130	SERGE	TOUL
140	MICHEL	TOUL

R = PILOTE4 (ADR = « TOUL »)

ľ٨

SELECTION - Notations

R = PILOTE4 (ADR = « TOUL »)
R = SELECTION(PILOTE4/ADR = « TOUL »)

Notation sigma : $\sigma_{\text{Q}}(\text{R})$ où Q est le critère de la forme : Ai θ Valeur

 $R = \sigma_{ADR=«TOUL} (PILOTE4)$

• Toutes les notations sont équivalentes mais il ne faut pas les mélanger

13

SELECTION - remarques

• Il est possible d'utiliser des opérateurs logiques : ET, OU, NON

$$\label{eq:rate} \begin{split} & \text{R = PILOTE4(ADR=« TOUL » ET NOM=« MICHEL »)} \\ & \text{R = } \sigma_{\text{(ADR=« TOUL » ET NOM=« MICHEL)}} \text{(PILOTE4)} \end{split}$$

• Pas indispensable pour le moment

14

PROJECTION

- Soit R(A) une relation et un ensemble d'attributs $A_1,...A_n$ de R tels que $(A_1,A_2,...,A_n) \subseteq A$
- La projection R' (A₁, A₂, ..., A_n) est la relation obtenue à partir de R (A) en éliminant de R(A) les attributs autres que ceux spécifiés par A₁, A₂, ... A_n

$$R(A_1, ..., A_n) = \{t(a_1, ..., a_n)\}$$

• Suppression des tuples dupliqués

| Avion1 | AVNUM | AVNOM | CAP | LOC | 100 | AIRBUS | 350 | TOUL | 101 | AIRBUS | 350 | TOUL | 104 | AIRBUS | 150 | PARIS | 105 | CARAV | 250 | PARIS | 250 | AIRBUS | 350 | CARAV | 250 | R = AVION1 (AVNOM, CAP)

PROJECTION - Notations

R = AVION1 (AVNOM, CAP)
R = PROJECTION(AVION1/AVNOM, CAP)

Notation sigma : $\pi_{A1,A2,...Ap}(R)$

 $R = : \pi_{AVNOM,CAP}(AVION1)$

 Toutes les notations sont équivalentes mais il ne faut pas les mélanger

Opérateurs binaires d'extension

- L'opérateur JOIN et DIVISION
- JOIN : permettre de pouvoir relier des relations entre elles Attention à la sémantique des requêtes
- DIVISION : Opérateur qui permet de sélectionner les tuples d'une relation (dividende) qui satisfont un critère de couverture énoncé via le contenu d'une autre relation (diviseur). Le résultat est une troisième relation, appelée le quotient. Exprime le « tous les »

JOIN

- Soient les relations R(A, B₁) et S(B₂, C) avec B₁ et B₂ attributs définis sur le même domaine, soit θ ={=, >, >=, <, <=, <>} applicables aux valeurs des attributs B₁ et B₂
- Le JOIN de R sur B₁ avec S sur B₂est la relation dont les tuples sont ceux obtenus par concaténation des tuples de R avec ceux de S pour lesquels la relation θ entre les composantes B₁ et B₂ est vérifiée :

 $R (B_1 \boldsymbol{\theta} B_2) S = \{t/t \subseteq R \otimes S ET t(B_1) \boldsymbol{\theta}(B_2)\}$

 L'opérateur JOIN est équivalent à un produit cartésien suivi d'une sélection

19

JOIN - Vocabulaire

 $R (B_1 \boldsymbol{\theta} B_2) S = \{t/t \subseteq R \otimes S ET t(B_1) \boldsymbol{\theta}(B_2)\}$

• Lorsque $\pmb{\theta}$ = {=} on parle d'équijointure autrement de thétajointure

$$R (B_1 = B_2) S = \{t/t \subseteq R \otimes S ET t(B_1) \theta(B_2)\}$$

• Il est possible d'avoir des autojointures

 $R (B_1 \boldsymbol{\theta} B_2) R = \{t/t \subseteq R \otimes R ET t(B_1) \boldsymbol{\theta}(B_2)\}$

20

JOIN - Exemple

PILOTE1

	PLNUM	PLNOM	ADR
	100	JEAN	PARIS
ĺ	101	PIERRE	PARIS
ſ	120	DALII	DADIS

VOL1

VOLNUM	AVNUM	PLNUM
IT500	110	100
IT501	130	100
IT503	110	100
IT504	110	120
IT506	120	120
IT507	130	110

JOIN	
PILOTE1 (PLNUM=PLNUM) VOL1	
• Ensemble des pilotes habitant PARIS en service avec les numéros des vols et des avions correspondants	
PLNUM PLNOM ADR VOLNUM AVNUM PLNUM 100 JEAN PARIS IT500 110 100 100 100 JEAN PARIS IT501 130 100 100 JEAN PARIS IT503 110 100	
100 JEAN PARIS IT503 110 100 120 PAUL PARIS IT504 110 120 120 PAUL PARIS IT506 120 120	
]
	_
JOIN	
PILOTE1 (PLNUM>PLNUM) VOL1	
Quels sont les pilotes les pilotes dont le numéro	
est supérieur à au moins un numéro de pilote dans vol (qui effectue un vol)	
PLNUM PLNOM ADR VOLNUM AVNUM PLNUM 101 PIERRE PARIS IT500 110 100 101>100	
101 PIERRE PARIS IT501 130 100 101 PIERRE PARIS IT503 110 100 120 PAUL PARIS IT503 110 100	
120 PAUL PARIS IT500 110 100 120 PAUL PARIS IT501 130 100 120 PAUL PARIS IT507 130 110	
23	

JOIN - Notations

RES = PILOTE1 (PLNUM=PLNUM) VOL1
RES = JOINTURE (PILOTE1, VOL1 / PLNUM = PLNUM)

Notation sigma : RES = R \bowtie S

 $\mathsf{RES} = \mathsf{PILOTE1} \underset{\mathsf{PLNUM}}{\bigvee} \mathsf{VOL1}$

JOINTURE LEFT - RIGHT

- Cette partie sera vue lors du cours sur SQL
- Ce qu'il faut retenir surtout c'est que la jointure est l'un des opérateurs les plus important
- Il faut bien comprendre ce qu'est la jointure

DIVISION

- Utiliser souvent pour exprimer le « tous les »
- Division d'une relation binaire par une relation unaire

 $R(A_1 \div A_2) \: S = \{t/t \subseteq R[B] \: ET \: (\{t\} \otimes S) \subseteq R\}$ avec $R(B,A_1)$ et $S(A_2)$

• La division de R par S est le sous-ensemble des éléments de R(B) dont le produit cartésien avec S est inclus dans R

DIVISION • Avions conduits par tous les pilotes : VOL1 (PLNUM ÷PLNUM) PIL?

VOL1	AVNUM	Р	LNUM		
	30	100			
Dividende	30		101		
	30		102		
	30		103		
	31		100		
	31		102		
	32		102		
	32		103		
	33		102		
Diviseur PIL1	PLNUM		AVNUM	Quotient	
	100	→	30		
_			31		
Diviseur PIL2	PLNUM				
	102		AVNUM		
/A	103	-	30	 Quotient	
			32		

	11 /	C	0	N
ועו	ıvı		I ()	I١

 Chaque fois que l'on aura « pour tous les x », il suffira de mettre l'attribut x dans le diviseur. Le dividende binaire doit contenir alors le même attribut (sur lequel porte la division) et l'attribut du résultat recherché

28

DIVISION

 Quels sont les noms des pilotes qui conduisent tous les avions de la compagnie ?

VOL1 = VOL (AVNUM, PLNUM)
projection>
AV1 = AVION (AVNUM)
projection>

PILOTE1 = PILOTE (PLNUM, PLNOM)

PILOTE2 = VOL1 (AVNUM ÷ AVNUM) AV1 < division pour avoir les numéros des pilotes qui conduisent tous les avions>

PILOTE3 = PILOTE1 (PLNUM=PLNUM)PILOTE2 < join pour avoir les noms>

RES = PILOTE3(PLNOM)

29

CE QU'IL FAUT RETENIR

- L'ALGEBRE RELATIONNELLE EST COMPLETE
 - Les cinq (sept) opérations de base permettent de formaliser sous forme d'expressions toutes les questions que l'on peut poser avec la logique du premier ordre (sans fonction)
 - Le résultat de l'application d'un opérateur donne une relation
 - Possibilité d'impliquer les opérateurs directement
- NOM ET PRENOM DES BUVEURS DE VOLNAY 1988

PROJECTION (NOM, PRENOM, SELECTION (CRU="VOLNAY" ET MILL =1988, JOIN (VINS, ABUS, BUVEURS)))

ARBRE DE REQUETES	
Pour chaque requête un arbre de requête est créé. Il permet notamment de faire de	
l'optimisation de requêtes Liste des noms des pilotes Parisiens : π Pinom(σ (Ville=« PARIS »)(Pilote))	
π Plnom Arbre de requête	
correspondant $\sigma_{ m Ville}(ext{ ext{ ext{ ext{ ext{ ext{ ext{ ext{$	
PILOTE 31	
ARBRE DE REQUETES	
Intuitivement une requête est coûteuse : remonter les opérations de sélection et de sélection	
Une jointure est un produit cartésien suivi d'une sélection!	
32	
	1

• Des questions ?