Байесовское мультимоделирование: оптимизация гиперпараметров

Московский Физико-Технический Институт

2021

Выбор модели: связанный байесовский вывод

Первый уровень: выбираем оптимальные параметры:

$$\mathbf{w} = \arg \max \frac{p(\mathfrak{D}|\mathbf{w})p(\mathbf{w}|\mathbf{h})}{p(\mathfrak{D}|\mathbf{h})},$$

Второй уровень: выбираем модель, доставляющую максимум обоснованности модели. Обоснованность модели ("Evidence"):

$$p(\mathfrak{D}|\boldsymbol{h}) = \int_{\boldsymbol{w}} p(\mathfrak{D}|\boldsymbol{w}) p(\boldsymbol{w}|\boldsymbol{h}) d\boldsymbol{w}.$$

Схема выбора модели

Пример: полиномы

Что такое гиперпараметры

Определение

Априорным распределением $p(\boldsymbol{w}|\boldsymbol{h})$ параметров модели назовем вероятностное распределение, соответствующее предположениям о распределении параметров модели.

Определение

Гиперпараметрами $\pmb{h} \in \mathbb{H}$ модели назовем параметры априорного распределения (параметры распределения параметров модели).

Дискретные распределения: релаксация

$$\bar{\alpha} = [1, 1, 1], t = 0.9$$

 $\bar{\alpha} = [0.5, 0.25, 0.25], t = 30.0 \quad [0.75, 0.125, 0.125] \quad [0.9, 0.05, 0.05]$

t = 1.0

t = 10.0

Аппроксимация Лапласа

Нелинейный случай с m объектами и n признаками: $\mathbf{y} \sim \mathcal{N}(\mathbf{f}(\mathbf{X}, \mathbf{w}), \beta^{-1}), \mathbf{w} \sim \mathcal{N}(0, \mathbf{A}^{-1}).$ Запишем интеграл:

$$p(\mathfrak{D}|\boldsymbol{h}) = p(\boldsymbol{y}|\boldsymbol{X}, \boldsymbol{A}, \beta) = \frac{\sqrt{\beta \cdot |\boldsymbol{A}|}}{\sqrt{(2\pi)^{m+n}}} \int_{\boldsymbol{w}} \exp(-S(\boldsymbol{w})) d\boldsymbol{w}.$$

Разложим S в ряд Тейлора:

$$S(\mathbf{w}) \approx S(\hat{\mathbf{w}}) + \frac{1}{2} \Delta \mathbf{w}^{\mathsf{T}} \mathbf{H} \Delta \mathbf{w}$$

Интеграл приводится к виду:

$$\frac{\sqrt{\beta \cdot |\mathbf{A}|}}{\sqrt{(2\pi)^{m+n}}} S(\hat{\mathbf{w}}) \int_{\mathbf{w}} \exp(-\frac{1}{2} \Delta \mathbf{w}^{\mathsf{T}} \mathbf{H} \Delta \mathbf{w}) d\mathbf{w}$$

Выражение под интегралом соответствует плотности ненормированного нормального распределения.

Graves, 2011

Априорное распределение: $p(\mathbf{w}|\sigma) \sim \mathcal{N}(\boldsymbol{\mu}, \sigma \mathbf{I})$.

Вариационное распределение: $q(\mathbf{w}) \sim \mathcal{N}(\boldsymbol{\mu_q}, \sigma_q \mathbf{I})$.

Жадная оптимизация гиперпараметров:

$$\mu = \hat{E} w, \quad \sigma = \hat{D} w.$$

Прунинг параметра w_i определяется относительной плотностью:

$$\lambda = rac{q(0)}{q(oldsymbol{\mu}_{i,q})} = \exp(-rac{\mu_i^2}{2\sigma_i^2}).$$

Постановка задачи

Пусть $heta \in \mathbb{R}^s$ — множество всех оптимизируемых параметров.

- $L(heta, extbf{ extit{h}})$ дифференцируемая функция потерь по которой производится оптимизация функции $extbf{ extit{f}}$.
- $Q(\theta, \textbf{\textit{h}})$ дифференцируемая функция определяющая итоговое качество модели $\textbf{\textit{f}}$ и приближающая интеграл.

Требуется найти параметры $\boldsymbol{\theta}^*$ и гиперпараметры \boldsymbol{h}^* модели, доставляющие минимум следующему функционалу:

$$egin{aligned} oldsymbol{h}^* &= rg \max_{oldsymbol{h} \in \mathbb{H}} Q(oldsymbol{ heta}^*(oldsymbol{h}), oldsymbol{h}), \ oldsymbol{ heta} (oldsymbol{h})^* &= rg \min_{oldsymbol{ heta} \in \mathbb{R}^s} L(oldsymbol{ heta}, oldsymbol{h}). \end{aligned}$$

Байесовский вывод

Пусть $\boldsymbol{\theta} = [\boldsymbol{w}]^\mathsf{T}$. Первый уровень:

$$oldsymbol{ heta}^* = rg \maxig(-L(oldsymbol{ heta}, oldsymbol{h})ig) = p(oldsymbol{w}|oldsymbol{X}, oldsymbol{y}, oldsymbol{h}) = rac{p(oldsymbol{y}|oldsymbol{X}, oldsymbol{w})p(oldsymbol{w}|oldsymbol{h})}{p(oldsymbol{y}|oldsymbol{X}, oldsymbol{h})}.$$

Второй уровень:

$$p(\boldsymbol{h}|\boldsymbol{X},\boldsymbol{y}) \propto p(\boldsymbol{y}|\boldsymbol{X},\boldsymbol{h})p(\boldsymbol{h}),$$

Полагая распределение параметров $p(\boldsymbol{h})$ равномерным на некоторой большой окрестности, получим задачу оптимизации гиперпараметров:

$$Q(oldsymbol{ heta},oldsymbol{h})=p(oldsymbol{y}|oldsymbol{X},oldsymbol{h})=\int_{oldsymbol{w}\in\mathbb{R}^u}p(oldsymbol{y}|oldsymbol{X},oldsymbol{w})p(oldsymbol{w}|oldsymbol{h})
ightarrow\max_{oldsymbol{h}\in\mathbb{H}}.$$

Кросс-валидация

Разобьем выборку $\mathfrak D$ на k равных частей:

$$\mathfrak{D}=\mathfrak{D}_1\sqcup\cdots\sqcup\mathfrak{D}_k.$$

Запустим k оптимизаций модели, каждую на своей части выборки. Положим $\boldsymbol{\theta} = [\boldsymbol{w}_1, \dots, \boldsymbol{w}_k]$, где $\boldsymbol{w}_1, \dots, \boldsymbol{w}_k$ — параметры модели при оптимизации k. Пусть L — функция потерь:

$$L(\boldsymbol{\theta}, \boldsymbol{h}) = -\frac{1}{k} \sum_{q=1}^{k} \left(\frac{k}{k-1} \log p(\boldsymbol{y} \setminus \boldsymbol{y}_q | \boldsymbol{X} \setminus \boldsymbol{X}_q, \boldsymbol{w}_q) + \log p(\boldsymbol{w}_q | \boldsymbol{h}) \right). \tag{1}$$

Пусть Q — функция качества модели:

$$Q(\boldsymbol{\theta}, \boldsymbol{h}) = \frac{1}{k} \sum_{q=1}^{k} k \log p(\boldsymbol{y}_q | \boldsymbol{X}_q, \boldsymbol{w}_q).$$

Вариационная нижняя оценка

Пусть L = -Q:

$$\log p(\boldsymbol{y}|\boldsymbol{X},\boldsymbol{A}) \geq \sum_{\boldsymbol{x},y} \log p(y|\boldsymbol{x},\hat{\boldsymbol{w}}) - D_{\mathsf{KL}}(q(\boldsymbol{w})||p(\boldsymbol{w}|\boldsymbol{A})) = -L(\boldsymbol{\theta},\boldsymbol{A}^{-1}) = Q(\boldsymbol{\theta},\boldsymbol{A}^{-1}),$$

где q — нормальное распределение с диагональной матрицей ковариаций:

$$q \sim \mathcal{N}(oldsymbol{\mu}_q, oldsymbol{A}_q^{-1}),$$

$$D_{\mathsf{KL}}\big(q(\boldsymbol{w})||p(\boldsymbol{w}|\boldsymbol{f})\big) = \frac{1}{2}\big(\mathsf{Tr}[\boldsymbol{A}\boldsymbol{A}_q^{-1}] + (\boldsymbol{\mu} - \boldsymbol{\mu}_q)^\mathsf{T}\boldsymbol{A}(\boldsymbol{\mu} - \boldsymbol{\mu}_q) - u + \mathsf{ln} \ |\boldsymbol{A}^{-1}| - \mathsf{ln} \ |\boldsymbol{A}_q^{-1}|\big).$$

В качестве оптимизируемых параметров heta выступают параметры распределения q:

$$\boldsymbol{\theta} = [\alpha_1, \dots, \alpha_u, \mu_1, \dots, \mu_u].$$

Evidence vs Кросс-валидация

Оценка Evidece:

$$\log p(\mathfrak{D}|\boldsymbol{f}) = \log p(\mathfrak{D}_1|\boldsymbol{f}) + \log p(\mathfrak{D}_2|\mathfrak{D}_1,\boldsymbol{f}) + \cdots + \log p(\mathfrak{D}_n|\mathfrak{D}_1,\ldots,\mathfrak{D}_{n-1},\boldsymbol{f}).$$

Оценка leave-one-out:

$$\mathsf{LOU} = \mathsf{Elog}\; p(\mathfrak{D}_n | \mathfrak{D}_1, \dots, \mathfrak{D}_{n-1}, \boldsymbol{f}).$$

Кросс-валидация использует среднее значение последнего члена $p(\mathfrak{D}_n|\mathfrak{D}_1,\ldots,\mathfrak{D}_{n-1},\boldsymbol{f})$ для оценки сложности.

Evidence учитывает **полную** сложность описания заданной выборки, определяющую предсказательную способность модели с самого начала.

Базовые методы оптимизации гиперпараметров

Варианты:

- Поиск по решетке;
- Случайный поиск.

Оба метода страдают от проклятия размерности.

Случайный поиск может быть более эффективным, если пространство гиперпараметров вырождено.

Bergstra et al., 2012

Гауссовый процесс

Идея:

Будем моделировать $Q(\theta(\mathbf{h})^*, \mathbf{h})$ гауссовым процессом, зависящим от \mathbf{h} .

Плюсы:

- Гибкость модели.
- Дешевле, чем обучения модели.

Минусы: кубическая сложность по количеству гиперпараметров.

Shahriari et. al, 2016. Пример работы гауссового процесса.

Градиентные методы

Идея: Будем производить оптимизацию вдоль всей траектории оптимизации параметров.

Плюсы:

- Оптимизация гиперпараметров будет учитывать оптимизацию параметров.
- Сложность меняется незначительно от количества гиперпараметров.

Минусы: вычилсительно дорого.

Maclaurin et. al, 2015. Пример работы.

Формальная постановка задачи: градиентная оптимизация

Определение

Оператором T назовем оператор стохастического градиентного спуска, производящий η шагов оптимизации:

$$\hat{\boldsymbol{\theta}} = T \circ T \circ \cdots \circ T(\boldsymbol{\theta}_0, \boldsymbol{h}) = T^{\eta}(\boldsymbol{\theta}_0, \boldsymbol{h}),$$
 (2)

где

$$T(\boldsymbol{\theta}, \boldsymbol{h}) = \boldsymbol{\theta} - \beta \nabla L(\boldsymbol{\theta}, \boldsymbol{h})|_{\widehat{\mathfrak{D}}},$$

 γ — длина шага градиентного спуска, θ_0 — начальное значение параметров θ , $\hat{\mathfrak{D}}$ — случайная подвыборка исходной выборки \mathfrak{D} .

Перепишем итоговую задачу оптимизации:

$$extbf{ extit{h}}^* = rg \max_{ extbf{ extit{h}} \in \mathbb{H}} Q(T^{\eta}(heta_0, extbf{ extit{h}})),$$

где $heta_0$ — начальное значение параметров $heta_0$.

Forward-mode differentiation

Идея дифференцирования: применение формулы:

$$\frac{\partial y}{\partial x} = \frac{\partial y}{\partial w_{n-1}} \frac{\partial w_{n-1}}{\partial x} = \frac{\partial y}{\partial w_{n-1}} \left(\frac{\partial w_{n-1}}{\partial w_{n-2}} \frac{\partial w_{n-2}}{x} \partial x \right) = \dots$$

Пример (wiki):

$$x_1x_2+\sin(x_1)$$

Reverse-mode differentiation

Идея дифференцирования: применение формулы:

$$\frac{\partial y}{\partial x} = \frac{\partial y}{\partial w_1} \frac{\partial w_1}{\partial x} = \left(\frac{\partial y}{\partial w_2} \frac{\partial w_2}{\partial w_1}\right) \frac{\partial w_1}{\partial x} = \dots$$

RMAD, Maclaurin et. al, 2015

- **①** Провести η шагов оптимизации с моментом γ : $\theta = T(\theta_0, h)$.
- ② Положим $\hat{
 abla} oldsymbol{h} =
 abla_{oldsymbol{h}} Q(oldsymbol{ heta}, oldsymbol{h}).$
- **③** Положим $d\mathbf{v} = 0$.
- \P Для $au = \eta \dots 1$ повторить:
- \blacksquare Вычислить $\boldsymbol{\theta}^{\tau-1}$.
- footnotemark Вычислить градиент на шаге au-1, используя RMD.

Алгоритм RMAD основывается на Reverse-mode differentiation.

DrMAD

Алгоритм DrMad — упрощенный RMAD. Вводится предположение о линейности траектории обновления параметров θ .

- **①** Провести η шагов оптимизации с моментом γ : $\theta = T(\theta_0, h)$.
- ② Положим $\hat{\nabla} \boldsymbol{h} = \nabla_{\boldsymbol{h}} Q(\boldsymbol{\theta}, \boldsymbol{h}).$
- **3** Положим d**v**= 0.
- \P Для $au = \eta \dots 1$ повторить:
- \bullet Вычислить $\theta^{\tau-1}$.
- f Bычислить градиент на шаге au-1, используя RMD.

- ① Провести η шагов оптимизации с моментом γ : $\theta = T(\theta_0, \mathbf{h})$.
- ② Положим $\hat{\nabla} \boldsymbol{h} = \nabla_{\boldsymbol{h}} Q(\boldsymbol{\theta}, \boldsymbol{h}).$
- **③** Положим $d\mathbf{v} = 0$.
- $oldsymbol{4}$ Для $au=\eta\dots 1$ повторить:
- $\bullet^{\tau-1} = \theta_0 + \frac{\tau-1}{\eta} \theta^{\eta}.$
- f Bычислить градиент на шаге au-1, используя RMD.

Аналитическая формула оптимизации параметров

Утверждение (Pedregosa, 2016)

Пусть L — дифференцируемая функция, такая что все стационарные точки L являются глобальными минимумами. Пусть также гессиан ${\it \textbf{H}}^{-1}$ функции потерь L является обратимым в каждой стационарной точке.

Тогда

$$\nabla_{\boldsymbol{h}} Q(T(\boldsymbol{\theta}_0, \boldsymbol{h}), \boldsymbol{h}) = \nabla_{\boldsymbol{h}} Q(\boldsymbol{\theta}^{\eta}, \boldsymbol{h}) - \nabla_{\boldsymbol{h}} \nabla_{\boldsymbol{\theta}} L(\boldsymbol{\theta}^{\eta}, \boldsymbol{h})^{\mathsf{T}} \boldsymbol{H}^{-1} \nabla_{\boldsymbol{\theta}} Q(\boldsymbol{\theta}^{\eta}, \boldsymbol{h}).$$

Жадная оптимизация гиперпараметров

На каждом шаге оптимизации параметров heta:

$$\mathbf{h}' = \mathbf{h} - \beta_{\mathbf{h}} \nabla_{\mathbf{h}} Q(T(\mathbf{\theta}, \mathbf{h}), \mathbf{h}) = \mathbf{h} - \beta_{\mathbf{h}} \nabla_{\mathbf{h}} Q(\mathbf{\theta} - \beta \nabla L(\mathbf{\theta}, \mathbf{h}), \mathbf{h})),$$

где $eta_{m{h}}$ — длина шага оптимизации гиперпараметров.

- Можно рассматривать как упрощение алгоритма RMAD, использующее только один элемент истории обновления параметров.
- ullet Является приближением к решению аналитической формуле в случае $oldsymbol{H}^{-1} \sim oldsymbol{I}$.
- ullet Сложность: $O(|oldsymbol{ heta}|\cdot|oldsymbol{h}|)$
- Можно упростить, используя формулу конечных приращений, см. DARTS, $O(|m{ heta}| + |m{h}|)$

HOAG

Численное приближение аналитической формулы:

$$\nabla_{\boldsymbol{h}} Q(\boldsymbol{\theta}^{\eta}, \boldsymbol{h}) - \nabla_{\boldsymbol{h}} \nabla_{\boldsymbol{\theta}} L(\boldsymbol{\theta}^{\eta}, \boldsymbol{h})^{\mathsf{T}} \boldsymbol{H}^{-1} \nabla_{\boldsymbol{\theta}} Q(\boldsymbol{\theta}^{\eta}, \boldsymbol{h}).$$

- $oldsymbol{1}$ Провести η шагов оптимизации: $oldsymbol{ heta} = \mathcal{T}(oldsymbol{ heta}_0, oldsymbol{h}).$
- $m{@}$ Решить линейную систему для вектора $m{\lambda}$: $m{H}(m{ heta})m{\lambda}=
 abla_{m{ heta}}Q(m{ heta},m{h}).$
- ③ Приближенное значение градиентов гиперпараметра вычисляется как: $\hat{\nabla}_{m{h}}Q = \nabla_{m{h}}Q(m{ heta},m{h}) \nabla_{m{ heta},m{h}}L(m{ heta},m{h})^Tm{\lambda}.$

Итоговое правило обновления:

$$\mathbf{h}' = \mathbf{h} - \gamma_{\mathbf{h}} \hat{\nabla}_{\mathbf{h}} Q.$$

Сравнение алгоритмов

Алгоритм	+	-
Random	Легко реализовать	Проклятие размерности
search		
Жадная оп-	Оптимизация проводится внутри	Жадность, неоптимальность.
тимизация	цикла оптимизации параметров.	
	Легко реализовать	
HOAG	Быстрая сходимость.	Качество результатов зависит от
		решения линейного уравнения
		$oldsymbol{H}(oldsymbol{ heta})oldsymbol{\lambda} = abla_{oldsymbol{ heta}}Q(oldsymbol{ heta},oldsymbol{h}).$
DrMAD	Учитывает особенности оператора	Неустойчив при больших значениях
	оптимизации. Можно использовать	длины градиентного шага $\gamma_{\pmb{h}}$. Каче-
	для оптимизации мета-параметров.	ство оптимизации зависит от кри-
		визны траектории обновления па-
		раметров.

Эксперименты: полиномы

Эксперименты: MNIST

Эксперименты: MNIST

Добавление гауссового шума $\mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I})$:

Литература и прочие ресурсы

- Bishop C. M. Pattern recognition //Machine learning. 2006. T. 128. №. 9.
- Bakhteev O. Y., Strijov V. V. Comprehensive analysis of gradient-based hyperparameter optimization algorithms //Annals of Operations Research. 2020. T. 289. №. 1. C. 51-65.
- Graves A. Practical variational inference for neural networks //Advances in neural information processing systems. – 2011. – T. 24.
- Bergstra et al., Random Search for Hyper-Parameter Optimization, 2012
- Dougal Maclaurin et. al, Gradient-based Hyperparameter Optimization through Reversible Learning, 2015
- Jelena Luketina et. al, Scalable Gradient-Based Tuning of Continuous Regularization Hyperparameters, 2016
- Jie Fu et. al, DrMAD: Distilling Reverse-Mode Automatic Differentiation for Optimizing Hyperparameters of Deep Neural Networks, 2016
- Fabian Pedregosa, Hyperparameter optimization with approximate gradient, 2016
- Bobak Shahriari et. al, Taking the Human Out of the Loop: A Review of Bayesian Optimization, 2016
- Liu H., Simonyan K., Yang Y. Darts: Differentiable architecture search //arXiv preprint arXiv:1806.09055.
 2018.