

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ _	Информатика и системы управления
КАФЕДРА	Системы обработки информации и управления

РАСЧЕТНО-ПОЯСНИТЕЛЬНАЯ ЗАПИСКА К КУРСОВОЙ РАБОТЕ

	НА ТЕМУ: Анализ и оптимизация автоматизированных си- стем обработки информации и управления										
Cinesia (ориоотки и 	інформиции и упр	<i></i>								
Студент ИУ5-33		(Подпись, дата)	С.К. Лебедева (И.О.Фамилия)								
Руководитель курсово	й работы	(Подпись, дата)	Г.И. Афанасьев (И.О.Фамилия)								
Консультант		(Подпись, дата)	(И.О.Фамилия)								

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)»

(МГТУ им. Н.Э. Баумана)

	УТВЕРЭ Заведующий н	кафедройИУ5
		(Индекс) В.И. Терехов (И.О.Фамилия) 2022 г.
ЗАДА	нив	
на выполнение і	курсовой работы	
по дисциплине Архитектура автоматизированных о	систем обработки информаци	и и управления
Студент группыИУ5-33Б		
Лебедева София К (Фамилия, и	Сонстантиновна мя, отчество)	
Tема курсовой работы Анализ и оптимизация ACC)ИУ	
		
Направленность КР (учебная, исследовательская, г учебная		7 · 1 /
учебная Источник тематики (кафедра, предприятие, НИР) _	Кафедра ИУ5	
График выполнения работы: 25% к 3 нед., 50% к 9	нед., 75% к 12 нед., 100% к 1	5 нед.
Задание Определить структурные характеристики информационно-логический граф системы. Провессистемы. Провести анализ информационного графатопологические характеристики системы.	ти декомпозицию топологиче а системы. Определить структ	еской структуры гурно-
Оформление курсовой работы:		
Расчетно-пояснительная записка на30 листах	формата А4.	
Дата выдачи задания «2» сентября 2022 г.		
Руководитель курсовой работы	02.09.2022 (Подпись, дата)	Г.И. Афанасьев (И.О.Фамилия)
Студент	02.09.2022 (Подпись, дата)	С.К. Лебедева (И.О.Фамилия)

Примечание: Задание оформляется в двух экземплярах: один выдается студенту, второй хранится на

кафедре.

Содержание

1. <u>Задача №1</u>	4
1.1 Представление системы с помощью матрицы смежности	5
1.2 Представление системы с помощью матрицы инциденций	6
1.3 Множественное представление системы.	7
1.4 Определение цепи, пути, цикла и контура в заданной системе	8
1.5 Степень вершин и полустепени исхода и захода	9
2. <u>Задача №2</u>	9
2.1 Решение с помощью алгоритма упорядочивания	10
2.2 Решение с помощью матрицы инциденций	15
3. <u>Задача №3</u>	16
4. <u>Задача №4</u>	20
4.1 <u>Матрица смежности А</u>	21
4.2 Исследование информационного графа	23
4.3 <u>Общий вывод</u>	26
5. <u>Задача №5</u>	26
5.1 Условие связанности всех элементов в структуре	28
5.2 Структурная избыточность R	28
5.3 <u>Среднеквадратичное отклонение ε²</u>	28
5.4 Структурная компактность	
5.5 Степень централизации в структуре ү	29
5.6 Вывол	29

Задача №1

Формулировка задачи:

Разработать формализованное представление системы. Формализованное представление включает в себя: представление системы с помощью графа, матрицы смежности, матрицы инциденций, множественное представление. Выделить цепи, пути, циклы, контура; вычислить степени вершин, полустепени исходов и заходов. Если какие-то элементы отсутствуют, то написать, что их нет.

Решение задачи:

Представление системы с помощью графа.

Рассматриваемая система в виде графа:

Puc.1

1.1 Представление системы с помощью матрицы смежности

Для ориентированного графа, представленного на рис.1 составим матрицу смежности $\|a_{ij}\|$, $i,j=\overline{1,\,n}$, где n- число вершин графа:

Таблица 1.

i j	1	2	3	4	5	6	7	8	9	10
1		1	1							
2								1		
3				1						
4					1					
5						1				1
6							1			
7	1	1		1				1		
8						1			1	
9		1								
10						1				

Puc.1.1

1.2 Представление системы с помощью матрицы инциденций

Для графа, представленного на рис.1.1 матрица инциденций $\|b_{ij}\|$, $i=\overline{1,n}$, $j=\overline{1,m}$, где n- число вершин, m- число рёбер, выглядит следующим образом:

i j	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
1			1		1	-1										
2	-1		-1	1			-1									
3					-1					1						
4										-1	-1				1	
5													1		-1	1
6									-1			1	-1	-1		

7				1	1	1		1	-1		
8		1	-1			-1	1				
9	1	-1									
10										1	-1

1.3 Множественное представление системы

Множество правых инциденций для рассматриваемой структу-

ры:

$$G(1) = (2, 3)$$

$$G(2) = (8)$$

$$G(3) = (4)$$

$$G(4) = (5)$$

$$G(5) = (6, 10)$$

$$G(6) = (7)$$

$$G(7) = (1, 2, 4, 8)$$

$$G(8) = (6, 9)$$

$$G(9) = (2)$$

$$G(10) = (6)$$

Множество левых инциденций для рассматриваемой структу-

ры:

$$G(1)^{-1} = (7)$$

$$G(2)^{-1} = (1, 7, 9)$$

$$G(3)^{-1} = (1)$$

$$G(4)^{-1} = (3, 7)$$

$$G(5)^{-1} = (4)$$

$$G(6)^{-1} = (5, 8, 10)$$

$$G(7)^{-1} = (6)$$

$$G(8)^{-1} = (2, 7)$$

$$G(9)^{-1} = (8)$$

$$G(10)^{-1} = (5)$$

1.4 Определение цепи, пути, цикла и контура в заданной системе

Понятия *цепь* и *цикл* обычно используются для описания неориентированных графов, а мы имеем ориентированный граф, поэтому представим, что граф на рис.1.1 является неориентированным.

№ вершины	Цепь	Цикл
1	(1, 2, 7)	(1, 3, 4, 7, 1)
2	(2, 8, 6, 10)	(2, 7, 1, 2)
3	(3, 4, 7)	(3, 4, 7, 1, 3)
4	(4, 7, 2, 9)	(4, 5, 6, 7, 4)
5	(5, 4, 7, 2, 1)	(5, 6, 7, 4, 5)
6	(6, 5, 4, 3)	(6, 7, 8, 6)
7	(7, 1, 2, 9, 8)	(7, 8, 2, 7)
8	(8, 7, 4, 5, 6)	(8, 9, 2, 7, 8)
9	(9, 2, 7, 6)	(9, 2, 8, 9)
10	(10, 6, 8, 2, 1)	(10, 6, 5, 10)

Рассмотрим пути и контура графа на рис. 1.1, считая граф ориентированным.

№ вершины	Путь	Контур
1	(1, 3, 4, 5)	(1, 2, 8, 6, 7, 1)
2	(2, 8, 6, 7, 1)	(2, 8, 6, 7, 2)
3	(3, 4, 5)	(3, 4, 5, 6, 7, 1, 3)
4	(4, 5, 10, 6)	(4, 5, 6, 7, 4)
5	(5, 6, 7, 1, 2)	(5, 6, 7, 4, 5)
6	(6, 7, 1, 2)	(6, 7, 8, 6)
7	(7, 1, 3, 4, 5)	(7, 8, 6, 7)
8	(8, 6, 7, 4)	(8, 9, 2, 8)
9	(9, 2, 8, 6)	(9, 2, 8, 9)
10	(10, 6, 7, 4)	(10, 6, 7, 4, 5, 10)

1.5 Степень вершин и полустепени исхода и захода

Т.к. понятие степень вершин применяется только для неориентированного графа, то будем считать наш граф таковым.

$$\rho(1) = 3$$
; $\rho(2) = 4$; $\rho(3) = 2$; $\rho(4) = 3$; $\rho(5) = 3$;

$$\rho(6) = 4$$
; $\rho(7) = 5$; $\rho(8) = 4$; $\rho(9) = 2$; $\rho(10) = 2$.

Вычислим полустепени исхода и захода для графа на рис.1.1:

$$\rho^+(1) = 2$$
; $\rho^+(2) = 1$; $\rho^+(3) = 1$; $\rho^+(4) = 1$; $\rho^+(5) = 2$;

$$\rho^+(6) = 1$$
; $\rho^+(7) = 4$; $\rho^+(8) = 2$; $\rho^+(9) = 1$; $\rho^+(10) = 1$.

$$\rho^{-}(1) = 1$$
; $\rho^{-}(2) = 3$; $\rho^{-}(3) = 1$; $\rho^{-}(4) = 2$; $\rho^{-}(5) = 1$;

$$\rho^{-}(6) = 3$$
; $\rho^{-}(7) = 1$; $\rho^{-}(8) = 2$; $\rho^{-}(9) = 1$; $\rho^{-}(10) = 1$.

Сумма полустепеней исхода для графа на рис. 1.1

$$\sum \rho^+(i) = 2 + 1 + 1 + 1 + 2 + 1 + 4 + 2 + 1 + 1 = 16$$

Сумма полустепеней захода для графа на рис. 1.1

$$\sum \rho^{-}(i) = 1 + 3 + 1 + 2 + 1 + 3 + 1 + 2 + 1 + 1 = 16$$

Вывод: число полустепеней исхода и захода равны и равны числу дуг в графе, считая граф ориентированным.

Полная степень вершин графа

$$m = 0.5 * \sum \rho(i) = 0.5 * (3 + 4 + 2 + 3 + 3 + 4 + 5 + 4 + 2 + 2) = 0.5 * 32 = 16$$

(верно и равно количеству ребер в графе, считая граф неориентированным)

Задача №2

Формулировка задачи:

В результате анализа некоторой организационной системы был получен неупорядоченный граф информационно-логической взаимосвязи между задачами, рассматриваемыми в этой системе (см. рис. 2). Необходимо определить, в какой последовательности следует решать указанные задачи, решение каких задач можно начинать одновременно, сколько тактов следует хранить в памяти системы результаты решения этих задач. Убедиться, что

матрица смежности упорядоченного графа оказалась треугольной. Анализ исходного графа провести:

- а) с помощью алгоритма упорядочивания.
- б) с помощью матрицы инциденций.

Puc.2

Решение задачи:

2.1 Решение с помощью алгоритма упорядочивания

Матрица смежности представлена в таблице 2.

Таблица 2.

i j	1	2	3	4	5	6	7	8	9	10
1			1							
2	1					1				1
3				1		1				
4					1		1			

5						1	
6		1		1			
7					1		
8						1	
9							
10				1	1	1	

Составим следующую таблицу и будем заполнять ее по мере исследования неупорядоченного графа с помощью алгоритма упорядочивания:

Подмножество	Условия	Включаемые	Новая
уровня	включения	вершины	нумерация
N_0	$G(i)^{-1} = \emptyset$	(2)	(1)
N_1	$G(i)^{-1} \in N_0$	(1, 10)	(2, 3)
N_2	$G(i)^{-1} \in (N_0 \cup N_1)$	(3)	(4)
N ₃	$G(i)^{-1} \in (N_0 U N_1 U N_2)$	(6)	(5)
N_4	$G(i)^{-1} \in (N_0 U N_1 U N_2 U N_3)$	(4)	(6)
N ₅	$G(i)^{-1} \in (N_0 U N_1 U N_2 U N_3 U N_4)$	(5, 7)	(7, 8)
N_6	$G(i)^{-1} \in (N_0 \cup N_1 \cup N_2 \cup N_3 \cup N_4 \cup N_4$	(8)	(9)
	U N ₅)		
N ₇	$G(i)^{-1} \in (N_0 \cup N_1 \cup N_2 \cup N_3 \cup N_4 \cup N_4$	(9)	(10)
	$U N_5 U N_6$)		

Множество левых инциденций:

$$G(1)^{-1} = (2)$$

$$G(2)^{-1} = \emptyset$$

$$G(3)^{-1} = (1)$$

$$G(4)^{-1} = (3, 6)$$

$$G(5)^{-1} = (4)$$

$$G(6)^{-1} = (2, 3)$$

$$G(7)^{-1} = (4, 6, 10)$$

$$G(8)^{-1} = (7, 10)$$

$$G(9)^{-1} = (5, 8, 10)$$

$$G(10)^{-1} = (2)$$

Находим вершину нулевого уровня N_0 : 2 и удаляем её. Получаем:

$$G(1)^{-1} = \emptyset$$

$$G(3)^{-1} = (1)$$

$$G(4)^{-1} = (3, 6)$$

$$G(5)^{-1} = (4)$$

$$G(6)^{-1} = (3)$$

$$G(7)^{-1} = (4, 6, 10)$$

$$G(8)^{-1} = (7, 10)$$

$$G(9)^{-1} = (5, 8, 10)$$

$$G(10)^{-1} = \emptyset$$

Вершины, для которой множество левых инциденций стало пустым: 1, 10. Они являются вершинами первого уровня N_1 . Продолжаем для второго уровня N_2 . Исключаем из оставшегося множества левых инциденций вершины 1, 10.

$$G(3)^{-1} = \emptyset$$

$$G(4)^{-1} = (3, 6)$$

$$G(5)^{-1} = (4)$$

$$G(6)^{-1} = (3)$$

$$G(7)^{-1} = (4, 6)$$

$$G(8)^{-1} = (7)$$

$$G(9)^{-1} = (5, 8)$$

Теперь множество левых инциденций стало пустым для вершины 3. Она является вершиной второго уровня N_2 . Продолжаем для уровня N_3 . Исключаем вершину 3.

$$G(4)^{-1} = (6)$$

$$G(5)^{-1} = (4)$$

$$G(6)^{-1} = \emptyset$$

$$G(7)^{-1} = (4, 6)$$

$$G(8)^{-1} = (7)$$

$$G(9)^{-1} = (5, 8)$$

Теперь множество левых инциденций стало пустым для вершины 6. Она является вершиной третьего уровня N_3 . Продолжаем для уровня N_4 . Исключаем вершину 6.

$$G(4)^{-1} = \emptyset$$

$$G(5)^{-1} = (4)$$

$$G(7)^{-1} = (4)$$

$$G(8)^{-1} = (7)$$

$$G(9)^{-1} = (5, 8)$$

Вершина, для которой множество левых инциденций стало пустым: 4. Она является вершинами четвёртого уровня N_4 . Продолжаем для пятого уровня N_5 . Исключаем из оставшегося множества левых инциденций вершину 4.

$$G(5)^{-1} = \emptyset$$

$$G(7)^{-1} = \emptyset$$

$$G(8)^{-1} = (7)$$

$$G(9)^{-1} = (5, 8)$$

Теперь множество левых инциденций стало пустым для вершин 5, 7. Они являются вершинами пятого уровня N_5 . Продолжаем для уровня N_6 . Исключаем вершины 5, 7.

$$G(8)^{-1} = \emptyset$$

$$G(9)^{-1} = (8)$$

Вершина, для которой множество левых инциденций стало пустым: 8. Она является вершинамишестого уровня N_6 . Продолжаем для седьмого уровня N_7 . Исключаем из оставшегося множества левых инциденций вершину 8.

$$G(9)^{-1} = \emptyset$$

Следовательно, вершина 9 –вершина пятого уровня N₇.

Размешаем перенумерованные вершины по уровням:

Puc.2.1

Таблица смежности для полученного упорядоченного графа:

i j	1	2	3	4	5	6	7	8	9	10
1	•	1	1		1					
2		•		1						
3			•					1	1	1
4				•	1	1				
5					•	1		1		
6						•		1		
7							•			1
8								•	1	
9									•	1
10										•

Данная матрица является треугольной, что и требовалось получить.

2.2 Решение с помощью матрицы инциденций:

Заполним следующую таблицу на основе матрицы инциденций:

Janoni	ним следук	М	1403	пицу	liu v	JC11	ОВС	IVIG	TPR	щы	111	1142174	СПЦИ	III.	1	I		
Уро- вень	Порядок вычёр- кивания	i\j	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
1	2	1	1	-1														
0	1	2		1	1	1												
2	3	3	-1				1	1										
4	5	4					- 1		- 1		1							1
5	6	5														1		-1
3	4	6				- 1		- 1	1	1								
5	6	7								1	1	-1			1			
6	7	8											-1		-1		1	
7	8	9												-1		-1	-1	
1	2	10			1							1	1	1				

Из матрицы инциденций вычеркиваем строки, состоящие из 0 и (+)1 и столбцы c (+)1 в вычеркнутых строках.

Порядок вычеркивания: 1 2 3 4 5 6 7 8 $\,$

Соответствующие уровни: 0 1 2 3 4 5 6 7

Получившийся упорядоченный граф соответствует графу, изображенному на рисунке 2.1, а его матрица смежности, соответственно, тоже является треугольной.

Вывод: в начале 1-ого такта работы система должна решать задачу 2. Результат решения надо хранить в памяти системы 3 такта. В начале 2-ого такта должны быть решены 1 и 10 задачи. Результаты их решения должны храниться в памяти 4 такта. На 3-ем такте работы система должна решать задачу 3. Результаты её решения должны хранится 2 такта. На 4-ом такте работы система должна решать задачу 6. Её решение следует хранить 2 такта. На 5-ом такте работы система должна решать задачу 4. Её решение следует хранить 1 такт. В ходе 6-ого такта работы система должна решать задачи 5 и 7. Результаты их решения должны храниться в памяти 2 такта. В ходе 7 такта система должна решать задачу 8. Её решения хранятся 1 такт. Последней решается задача 9.

Задача №3

Формулировка задачи:

Пусть пункты обработки информации в распределённой автоматизированной системе обмениваются данными в соответствии с графом, представленным на рисунке 3. Возникла необходимость в сокращении числа этих пунктов

Рис.3

Решение задачи:

При решении данной задачи не будет учитываться функциональная сторона анализа (т.е. производительность, надежность т.п.), будут учитываться только структурные свойства схемы.

3.1 Определение сильносвязанных графов

Полагая, что i = 1, определяем R(i) (достижимое множество) и Q(i) (контрдостижимое множество). Получаем (рис.3.1):

$$R(1) = (1, 2, 3, 4, 5, 6, 7)$$

$$Q(1) = (1, 2, 3, 5, 8)$$

Тогда получаем, что множество вершин пространства, содержащего вершину 1:

$$V_1 = R(1) \cap Q(1) = (1, 2, 3, 5)$$

Puc. 3.1

Для i = 4 (рис. 3.2):

$$R(4) = (4, 6, 7)$$

$$Q(4) = (4, 6, 7, 8, 9, 10)$$

$$V_2 = R(4) \cap Q(4) = (4, 6, 7)$$

Puc. 3.2

Для i = 8 (рис. 3.3):

$$R(8) = (8, 9, 10)$$

$$Q(8) = (8, 9, 10)$$

$$V_3 = R(8) \cap Q(8) = (8, 9, 10)$$

Puc. 3.3

Определяем входные и выходные связи. Поставим структурное обозначение:

Puc. 3.4

Теперь получаем сильно связанные области V1, V2, V3:

Puc. 3.5

Задача №4

Формулировка задачи:

Пусть схеме движения оперативной отчетности в подсистеме оперативного управления соответствует информационный граф, представленный на рисунке 4. Необходимо формально выявить все свойства данного информационного графа.

Puc. 4

4.1 Матрица смежности А:

i j	1	2	3	4	5	6	7	8	9	10	σ_{i}
1				1	1						2
2				1			1				2
3					1	1	1				3
4							1	1			2
5						1		1	1	1	4
6											0
7								1	1		2
8											0
9						1				1	2
10											0
$\sigma_{\rm j}$	0	0	0	2	2	3	3	3	2	2	

Возведем матрицу смежности A в степень $\lambda = 2$, т.е. определим A^2 .

i j	1	2	3	4	5	6	7	8	9	10	σ_{i}
1						1	1	2	1	1	6
2							1	2	1		4
3						1		2	2	1	6
4								1	1		2
5						1				1	4
6											0
7						1				1	2
8											0
9											0
10											0
$\sigma_{\rm j}$	0	0	0	0	0	4	2	7	5	4	

Возведем матрицу смежности A в степень $\lambda = 3$, т.е. определим A^3 .

	70	<u>-ry</u>					, 1. c . oi	-F			
i j	1	2	3	4	5	6	7	8	9	10	$\sigma_{\rm i}$
1						1				1	2
2						1				1	2
3											0
4											0
5											0
6											0
7											0
8											0
9											0
10											0
$\sigma_{\rm j}$	0	0	0	0	0	2	0	0	0	2	

Возведем матрицу смежности A в степень $\lambda = 4$, т.е. определим A^4 .

1 2 3 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 10 0												
2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 10 0	i j	1	2	3	4	5	6	7	8	9	10	$\sigma_{\rm i}$
3 0 4 0 5 0 6 0 7 0 8 0 9 0 10 0	1											0
4 0 5 0 6 0 7 0 8 0 9 0 10 0	2											0
5 0 6 0 7 0 8 0 9 0 10 0	3											0
6 0 7 0 8 0 9 0 10 0	4											0
7 0 8 0 9 0 10 0	5											0
8 0 9 0 10 0	6											0
9 0 0	7											0
10 0	8											0
	9											0
$\sigma_{\rm i}$ 0 0 0 0 0 0 0 0 0	10											0
	$\sigma_{\rm j}$	0	0	0	0	0	0	0	0	0	0	

Матрица A^4 является нулевой.

Составим систему достижимости A_{Σ} .

i j	1	2	3	4	5	6	7	8	9	10
1				1	1	2	1	2	1	2
2				1		1	2	2	1	1
3					1	2	1	2	2	1
4							1	2	1	
5						2		1	1	2
6										
7						1		1	1	1
8										
9						1				1
10										
$\sigma_{\rm j}$	0	0	0	2	2	9	5	10	7	8

4.2 Исследование информационного графа

1. Определение порядка элементов:

Определим элементы нулевого порядка. Для этого полагаем, что $\pi_j = 0$ и записываем соотношения, которым должны удовлетворять элементы нулевого уровня:

$$\begin{cases} \sigma_{\rm j} \ (\lambda=0) > 0 \\ \\ \sigma_{\rm j} \ (\lambda=1) = 0 \end{cases}$$
 Для ${\rm A}^0$: $j=1,\,2,\,3,\,4,\,5,\,6,\,7,\,8,\,9,\,10$

Для
$$A^1$$
: $j = 1, 2, 3$

Получаем, что элементы 1, 2, 3 – нулевого уровня. Это соответствует упорядоченной матрице.

Определим элементы первого порядка. Для этого полагаем, что $\pi_j = 1$ и записываем соотношения, которым должны удовлетворять элементы первого уровня:

$$\begin{cases} \sigma_j \ (\lambda = 1) > 0 \\ \sigma_j \ (\lambda = 2) = 0 \end{cases}$$

Для
$$A^1$$
: $j = 4, 5, 6, 7, 8, 9, 10$

Для
$$A^2$$
: $j = 1, 2, 3, 4, 5, 7, 8, 9$

Получаем, что элементы 4, 5 – первого уровня. Это соответствует упорядоченной матрице.

Определим элементы второго порядка. Для этого полагаем, что $\pi_j = 2$ и записываем соотношения, которым должны удовлетворять элементы второго уровня:

$$\begin{cases} \sigma_{j} \ (\lambda=2) > 0 \\ \\ \sigma_{j} \ (\lambda=3) = 0 \end{cases}$$
 Для A^{2} : $j=6,7,8,9,10$
 Для A^{3} : $j=1,2,3,4,5,7,8,9$

Получаем, что элементы 7, 8, 9 – второго уровня. Это соответствует упорядоченной матрице.

Определим элементы третьего порядка. Для этого полагаем, что $\pi_j = 3$ и записываем соотношения, которым должны удовлетворять элементы третьего уровня:

$$\begin{cases} \sigma_{j} \ (\lambda = 3) > 0 \\ \sigma_{j} \ (\lambda = 4) = 0 \end{cases}$$
 Для A^{3} : $j = 6, 10$
 Для A^{4} : $j = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10$

Получаем, что элементы 6, 10 – третьего уровня. Это соответствует нашей упорядоченной матрице.

2. Определение "тактности" информационного графа: Для определения "тактности" воспользуемся соотношением $N = \max(\pi_i)$.

$$N = 3$$

Данная схема является трёхтактной.

3. Определение контуров в анализируемом графе:

Поскольку на главных диагоналях ни одной из матриц ненулевые элементы отсутствуют, контуров в анализируемом графе нет.

4. Определение входных элементов потока:

Для этого обращаемся к матрице смежности A и выписываем из неё элементы, для которых $\sigma_i(\lambda=1)=0$.

Отсюда следует, что: j=1,2,3. Таким образом, элементы X_1, X_2, X_3 — **входные элементы**. Обратимся, например, к восьмому элементу матрицы смежности X_8 . Для этого элемента имеем: $\sigma_7(\lambda=1)=3$. Это означает, что для формирования элемента X_7 используется три других элемента.

5. Определение выходных элементов потока:

Обращаемся к матрице смежности A и находим строки, где $\sigma_i(\lambda = 1) = 0$. Получаем, что X_6 , X_8 , X_{10} – **выходные элементы**. Рассмотрим, к примеру, элемент X_5 . Для этого элемента имеем: $\sigma_4(\lambda = 1) = 4$. Значит, элемент X_5 используется для формирования четырёх других элементов.

6. Определение висящих вершин

Из анализа матрицы смежности следует, что ситуация, когда $[\sigma_i(\lambda=1)=\sigma_j(\lambda=1)=0\;;\;i=j]$ отсутствует, следовательно, висящих вершин в нашем графе нет.

7. Определение путей длиной λ :

Пусть, например, нас интересует путь длиной 2. Тогда полагаем $\lambda = 2$ и, следовательно, обращаемся к матрице A^{λ} . Рассмотрим элемент $A_{38}(\lambda = 2) = 2$. Это означает, что между элементами X_3 и X_8 существует два пути длиной 2.

8. Определение всевозможной длины между двумя элементами:

Обратимся к матрице достижимости A_{Σ} и рассмотрим, например, элемент этой матрицы $A_{56}(\Sigma)=2$. Это означает, что между элементами X_5 и X_6 всего существует два пути различной длины. Таким образом, элемент матрицы A^{λ} указывает число путей длиной λ , а элемент матрицы A_{Σ} указывает все пути, не различая их по длине.

9. Определение номера такта, после которого в памяти системы может быть "погашен" данный элемент:

Обратимся к матрице смежности и рассмотрим, например, строчку, связанную с элементом X_2 . Она участвует в формировании элементов X_4 , X_7 . Из этой же матрицы следует, что $\pi_4 = 1$, $\pi_7 = 2$, значит $\tau_2 = 2$.

10. Определение числа тактов хранения анализируемого элемента: Найдем число тактов хранения для 2-ого элемента. Для этого используем соотношение: $t_2 = \tau_2 - \pi_2$. Получаем $t_2 = 2 - 0 = 2$, т.е. элемент необходимо хранить 2 такта.

4.3 Общий вывод:

Рассмотрим столбцы матрицы достижимости A_{Σ} . Обратим внимание на столбцы, соответствующие выходным элементам. Одним из наиболее "загруженных" цифрами является элемент X_8 . Из этого столбца следует, что в формировании этого элемента участвуют элементы X_1 , X_2 , X_3 , X_4 , X_5 , X_7 , причем элементы X_1 и X_2 , X_3 и X_4 дважды. Наличие в столбце соответствующего элементу X_8 матрицы A_{Σ} большого числа элементов указывает на сложность формирования элемента X_8 , что в свою очередь указывает на необходимость содержательного экономического анализа с целью попытки упрощения данного фрагмента этого графа.

Задача №5

Формулировка задачи:

Для анализа системы, представленной в виде графа на рис. 5 необходимо оценить количественно качество структуры системы и ее элементов с позиций общесистемного подхода.

Для данной структуры составим матрицу смежности А.

i j	1	2	3	4	5	6	7	8	9	10
1		1		1						
2	1		1							
3		1		1						
4	1		1		1					
5				1		1				
6					1		1	1		1
7						1		1		
8						1	1		1	
9								1		
10						1				

5.1 Условие связанности всех элементов в структуре

Для неориентированных графов связность всех элементов в структуре соответствует выполнению следующего условия:

$$0.5 \Sigma \Sigma a_{ij} \ge n-1$$

 Γ де a_{ij} – элемент матрицы смежности, а n – число вершин в ней. В нашем случае имеем:

$$0.5 \cdot 22 > 9$$

Следовательно, данный граф – связный.

5.2 Структурная избыточность R

Где m – число ребер, n – число вершин. В данной структуре n=10, m=10.

$$R = (0.5 \Sigma \Sigma a_{ij}) \cdot 1/(n-1) - 1 = m/(n-1) - 1$$

В данной структуре n = 10, m = 11.

$$R = 11/9 - 1 = 2/9 > 0$$

Поскольку R > 0, то в данной системе *присутствует структурная избыточность*.

5.3 Среднеквадратичное отклонение ϵ^2

Так как в системе присутствует структурная избыточность, необходимо учесть неравномерность распределения связей ϵ^2 . Введем обозначение: ρ_i —степень вершины — число ребер, инцидентных вершине і. Справедливо следующее соотношение:

$$m=0{,}5~\Sigma(\rho_i)$$

При равномерном распределении связей все: ρ_i будут одинаковы,

т.е.:
$$\Sigma(\rho_i)=n\overline{\rho},$$
 отсюда: $\overline{\rho}=2m/n.$

Отклонение равно разности ($\rho_i - \overline{\rho}$).

$$\epsilon^2 = \Sigma (\rho_i - \overline{\rho})^2$$

Или, учитывая предыдущие соотношения:

$$\epsilon^2 = \Sigma (\rho_i)^2 - 4m^2/n$$

Для данной системы:

$$\varepsilon^2 = 2^2 + 2^2 + 2^2 + 3^2 + 2^2 + 4^2 + 2^2 + 3^2 + 1^2 + 1^2 - 4 \cdot 11^2 / 10 = 56 - 48, 4 = 7,6$$

5.4 Структурная компактность

Пусть d_{ij} – минимальная длина пути из і-ой вершины в ј-ую.

Структурная компактность:

$$Q = \sum \sum d_{ij} (i \neq j)$$

Сумма всех минимальных цепей.

$$\sum d_{1j} = 1 + 2 + 1 + 2 + 3 + 4 + 4 + 5 + 4 \ (j \neq 1) = 26$$

$$\sum d_{2j} = 1 + 1 + 2 + 3 + 4 + 5 + 5 + 6 + 5 \ (j \neq 2) = 32$$

$$\sum d_{3j} = 2+1+1+2+3+4+4+5+4 \ (j \neq 3) = 26$$

$$\sum d_{4j} = 1 + 2 + 1 + 1 + 2 + 3 + 3 + 4 + 3 \ (j \neq 4) = 20$$

$$\sum d_{5i} = 2 + 3 + 2 + 1 + 1 + 2 + 2 + 3 + 2 \ (i \neq 5) = 18$$

$$\sum d_{6i} = 3 + 4 + 3 + 2 + 1 + 1 + 1 + 2 + 1 \ (i \neq 6) = 18$$

$$\sum d_{7i} = 4 + 5 + 4 + 3 + 2 + 1 + 1 + 2 + 2 \ (i \neq 7) = 24$$

$$\sum d_{8j} = 4 + 5 + 4 + 3 + 2 + 1 + 1 + 1 + 2 \ (j \neq 8) = 23$$

$$\sum d_{9j} = 5 + 6 + 5 + 4 + 3 + 2 + 2 + 1 + 3 \ (j \neq 9) = 31$$

$$\sum d_{10i} = 4 + 5 + 4 + 3 + 2 + 1 + 2 + 2 + 3 \ (i \neq 10) = 26$$

$$Q = 244$$

$$Q_{\text{oth}} = Q/Q_{\text{oth}} - 1$$

$$\Gamma$$
де $Q_{\text{отн}} = n(n-1) \; (Q-$ для полного графа)

$$Q_{\text{OTH}} = 244/(10 \cdot 9) - 1 = 77/45 = 1,7(1)$$

5.5 Степень централизации в структуре ү

$$\gamma = (n-1) \; (2z_{max} - n)/((\; n-2) \; z_{max})$$

$$\Gamma$$
де $z_{max} = Q/(2 \Sigma d_{ij})_{min}$

Подставляя числовые значения, получаем:

$$z_{\text{max}} = 244/(2 \cdot 18) = 61/9 = 6,(7)$$

$$\gamma = (9 \cdot (2 \cdot 6,(7)) - 10))/(8 \cdot 6,(7)) = 36/61 \approx 0,5902$$

5.6 Вывод

Таким образом, мы провели рассмотрение заданной структуры и вычислили ее основные структурно-топологическое характеристики. Эти характеристики имеют следующие числовые значения: • Структурная избыточность R = 2/9

Так как этот параметр отражает превышение общего числа связей над общим необходимым числом связей, то чем ближе он к 0, тем лучше. Следовательно, найденное значение показывает, что потенциально рассмотренная система не обладает высокой надежностью из-за относительно небольшого значения параметра R.

• Среднеквадратичное отклонение $\varepsilon^2 = 7.6$

Так как этот параметр характеризует недоиспользованные возможности заданной структуры, то чем он меньше, тем лучше. Следовательно, <u>связи</u> распределены неравномерно.

• Структурная компактность Q=244; Q_{отн.} =1,7(1)

Следовательно, система не обладает высокой надежностью из-за высокого значения относительного показателя структурной компактности.

- диаметр структуры d = 6
- Степень централизации в структуре $\gamma = 0.5902$

Индекс центральности γ больше только относительно кольцевой структуры, что показывает, что связи и элементы распределены со средней равномерностью.