BitTorrent

Swarms, Rarest-First and Tit-for-Tat

BitTorrent

CS144, Stanford University

Torrent File

- Torrent file (.torrent) describes file to download
 - ► Names tracker, server tracking who is participating
 - ► File length, piece length, SHA1 hashes of pieces
 - ► Additional metadata (who created torrent, etc.)
 - Also specifies tracker
- Client contacts tracker, starts communicating with peers
- "Trackerless" torrents use something called a DHT (distributed hash table)
 - ► Information on swarm stored across many nodes
 - ► A distributed coordination mechanism

Torrent Files

- BitTorrent breaks a file up into N pieces
 - ► For throughput, pieces are large: 256kB-IMB
 - ► For latency, broken into subpieces
- Hashes of pieces in torrent provide end-to-end integrity
 - ► Hash computes a short summary of a piece
 - Cryptographically strong hashes: hard to create a piece of data that has a particular hash (more in security lectures
 - ► HBO's Rome series: blacklisting peers

What to Say?

- Peers exchange metadata on what pieces they have
- Download rarest pieces: rarest first policy
- When down to the last few pieces, ask for them from multiple peers

Whom To Talk To?

- Use Tit-for-Tat (TFT) policy: upload data to peers that give you did
- Most peers are "choked" and get no data
- Order unchoked peers by download rate, choke all but P best (e.g., 4, \sqrt{C})
- Occassionally unchoke a random peer (might find way into P best)

BitTyrant

http://www.usenix.org/events/nsdi07/tech/piatek/piatek_html/bittyrant.html

- Can you game the BitTorrent Tit-for-Tat system?
- Many peers give more than they take
 - ► Give a peer just enough that it unchokes you
 - ► Convince as many peers as possible to unchoke you
 - ▶ Share capacity across more peers rather than give each peer more
- Leads to a 70% median performance gain!

BitTorrent Summary

- Torrent file (.torrent) describes file to download
- File broken into pieces, each with a SHA1 hash
- Client finds peers through a tracker or DHT
- Clients connect over TCP/IP
- Clients exchange metadata on what pieces they have
- Clients try to download rarest-piece-first
- Clients "choke" most peers, send data to P best peers: tit-for-tat