Lecture-17 Main Points

- Many Valued Logics
 - $-(\mathcal{V}, f_{c_1}, \ldots, f_{c_n}, \mathcal{D})$
 - * \mathcal{V} : Set of values
 - * $f_{c_i}: \mathcal{V}^k \to \mathcal{V}$: if c_i is a k-ary connective.
 - * $\mathcal{D} \subseteq \mathcal{V}$: set of designated values.
 - Generalizes classical logic (BA $\mathbf{2})$

$$(\{0,1\}, f_{\land}, f_{\lor}, f_{\neg}, \{1\})$$

- Consequence relation: \models
 - * Binary relation. Notation $\Sigma \models A$, where Σ is a set of propositions and A is a proposition.
 - * $\Sigma \models A$ holds iff for every valuation v, [(for every $B \in \Sigma$, $v(B) \in \mathcal{D}$) $\Rightarrow v(A) \in \mathcal{D}$]
- Kleene's three valued logic K_3

$$- (\{0, i, 1\}, f_{\wedge}, f_{\vee}, f_{\neg}f_{\rightarrow}, \{1\})$$

	\land	0	i	1
_	0	0	0	0
	i	0	i	i
	1	0	i	1

V	0	i	1
0	0	i	1
i	i	i	1
1	1	1	1

x	$\neg x$
0	1
i	i
1	0

- Implication (\rightarrow) is defined as per material definition $a \rightarrow b = \neg a \vee b$
- Truth value i is thought of as undecided/indeterminate (It could be 0 or 1, we do not know which)

- No tautologies. (consider v(A) = i, for every atomic A)
- Some examples of consequence relation

$$*A, \neg A \models B$$

$$*A, A \rightarrow B \models B$$

$$*A \rightarrow B \models \neg B \rightarrow \neg A$$

$$* A \not\models B \lor \neg B$$

Consider valuation v, v(A) = 1 and v(B) = i

- LK_3 (Logic of paradoxes)
 - Same as Kleene except that $\mathcal{D} = \{i, 1\}.$
 - Truth value i is now thought of as both true and false.
 - Connective definitions of K_3 are consistent with this reading of i also.
 - Truth value i can be assigned to paradoxical sentences.
 - Tautologies examples:

$$A \to A$$
, $(A \to B) \to \neg B \to \neg A$ etc.

- Some examples of consequence relation

$$* \ A, \neg A \not\models B$$

consider valuation v, v(A) = i and v(B) = 0

$$*A, A \rightarrow B \not\models B$$

consider valuation v, v(A) = i and v(B) = 0

$$*A \rightarrow B \models \neg B \rightarrow \neg A$$

$$*A \models B \lor \neg B$$

- Belnap's four valued para-consistent logic
 - $-(\{0,b,n,1\},f_{\wedge},f_{\vee},f_{\neg}f_{\rightarrow},\{b.1\})$
 - The values are to be thought of as information about truth of a proposition p.
 - * 0 [only information is that p is false.]
 - * 1 [only information is that p is true.]
 - \ast b [Contradictory information. p is true according to some sources and false according to some other sources.]
 - * n [No information available about p.]

- Meaning of connectives \land , \lor are given by considering a lattice structure on values in which 0, 1 are the smallest and the largest elements repectively of the lattice and elements b, n are incomparable.
- $-\neg b = b$ and $\neg n = n$.
- $-\rightarrow$ is defined as a material implication.
- Exercise:

Give some examples of tautologies and consequence relation in this logic.

- Fuzzy logics
 - Sorties paradox

Problem of qualitative/vague predicates (examples: small, tall, young etc.)

- Resolution

Continuous truth values.

- Logic F_{ϵ}

$$([0,1], f_{\wedge}, f_{\vee}, f_{\neg}f_{\rightarrow}, \mathcal{D}_{\epsilon} = \{x \in [0,1] | x \ge \epsilon\})$$

 $-a \wedge b = min(a, b), a \vee b = max(a, b), \neg a = 1 - a.$

$$-a \to b = \begin{cases} 1 & \text{if } a \le b \\ 1 - (a - b) & \text{if } a > b \end{cases}$$

- Associated consequence relation: \models_{ϵ}
- Consequence relation: $\Sigma \models A$

 $\Sigma \models A \text{ holds iff for every } \epsilon \in [0,1], \ \Sigma \models_{\epsilon} A.$

- Exercises:
 - 1. Show that if $\Sigma = \{A_1, \dots, A_m\}$ then $\Sigma \models A$ iff $\models_1 A_1 \wedge \dots \wedge A_m \to A$
 - 2. Let A,B be atomic propositions. Give a valuation v and an ϵ s.t. $A,A\to B\not\models_{\epsilon} B.$
 - 3. Use Exercise-2 above to show that $\Sigma \models_1 A \not\Rightarrow \Sigma \models A$.

References

[1] G. Priest, An Introduction to Non-Classical Logic [parts of chapters 7,8 and 11].