

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ
КАФЕДРА

Информатика и системы управления

Программное обеспечение ЭВМ и информационные технологии

КУРСОВАЯ РАБОТА

HA TEMY:

Визуализация ландшафтной сцены с облаками				
Студент	ИУ7-54Б		Т. А. Асадуллин	
•	(группа)	(подпись, дата)	(И.О. Фамилия)	
Руководитель курсового				
проекта			К. А. Кивва	
		(подпись, дата)	(И.О. Фамилия)	

СОДЕРЖАНИЕ

Bl	ЗЕД	ЕНИЕ	2			
1	Аналитическая часть					
	1.1		ализация задачи и объектов			
	1.2		ритмы генерации облаков			
		1.2.1	Жидкостная симуляция			
		1.2.2	Воксельная генерация			
		1.2.3	Генерация на основе обратной трассировки лучей 7			
	1.3	Модел	и освещения			
		1.3.1	Закон Бугера — Ламберта — Бера			
		1.3.2	Фазовая функция Хеньи — Гринстейна			
2	Конструкторская часть					
3	3 Технологическая часть					
4	4 Исследовательская часть					
За	клю	чение				
Cl	ПИС	ок и	СПОЛЬЗОВАННЫХ ИСТОЧНИКОВ			

ВВЕДЕНИЕ

Компьютерная графика – совокупность методов и средств преобразования в графическую форму и из графической формы с помощью ЭВМ [1]. Конечным продуктом компьютерной графики является изображение [2]. Ключевые моменты, которые компьютерная графика рассматривает – как [2]

- изображения представляются в компьютерной графике;
- изображения готовятся для визуализации;
- предварительно подготовленные изображения рисуются;
- осуществляется взаимодействие с изображением.

Цель работы – разработка программного обеспечения для визуалации динамической ландшафтной сцены с облаками.

для достижения поставленной цели требуется решить следующие задачи:

- изучить предметную область;
- спроектировать программное обеспечение;
- выбрать средства реализации программного обеспечения и создать его:
- провести исследование разработанного программного обеспечения.

1 Аналитическая часть

В аналитической части будут формализованы задачи и объекты сцены, определены геометрические и оптические характеристики объектов сцены. Также будут проанализированы и описаны алгоритмы, используемые для визуализации ландшафтной сцены с облаками. Будут установлены допустимые диапазоны и ограничения, накладываемые на входные данные.

1.1 Формализация задачи и объектов

Объектами сцены являются:

1) Облака (облачный пейзаж)

- Высота, на которой находятся облака;
- Скорость движения облаков по горизонту;
- Кучность: степень сжатия и плотности облаков, что влияет на их внешний вид и отбрасываемую тень.
- Плотность: определяет, сколько солнечного света облака могут заблокировать, что влияет на освещение ландшафта.

2) Ландшафт (ландшафтный пейзаж) –

- Рельеф: плоский равнинный.
- Материалы и текстуры: характеристики поверхности, такие как цвет и отражательная способность.
- Освещение от солнца и теней: ландшафт получает освещение, которое зависит от плотности облаков и положения солнца, а также отбрасываемых теней.

3) Бесконечно удаленный источник света (солнце) –

- Расположение: определяется положением на небесной сфере. Положение солнца влияет на длину и направление теней.
- Интенсивность: определяет, насколько ярко освещен ландшафт, также зависит от плотности облаков.

4) Наблюдатель (камера) –

- Расположение: координаты и угол обзора камеры, позволяющие наблюдать сцену с разных ракурсов.
- Поле зрения: угол обзора, влияющий на широту сцены.

Определение диапазонов и ограничений:

- **Положение солнца:** угол наклона от 0° до 90° над горизонтом и азимутальный угол от 0° до 180° .
- **Пространственное перемещение:** только для таких объектов, как камера и солнце.

1.2 Алгоритмы генерации облаков

Существует несколько подходов к реализации облаков [3–5]:

- **Геометрический:** облака представляют собой, например, набор треугольников, сфер или прямоугольников. Геометрический подход к созданию облаков имеет смысл в определенной стилистике изображения [3].
- **Двумерная текстура:** простой и малозатратный подход, но такая статичная картинка имеет смысл только как дальнеплановые статичные изображения, через которые, например, нельзя пролететь сквозь. К тому же такие облака не могут производить тени [3].
- **Объемные** (volumetric): динамические облака, с которыми можно взаимодействовать и которые способны производить тени [4,6]. Именно поэтому такие облака будут реализованы в данной работе.

Исходя из требований к алгоритму, выдвигаемых в современной игровой индустрии [3–5], условия, которые будут использованы в данной работе:

- Облака должны быть объемные:
- Облака должны генерироваться процедурно;
- Должен быть быстродействующим.

1.2.1 Жидкостная симуляция

Использование жидкостной симуляции для создания объемных облаков: создать простые объекты (сферы, шары), вокселизировать их и рассматривать их как жидкость, получая похожие на объемные облака фигуру [4]. Современные физические модели облаков, основаны на решении уравнений Навъе-Стокса [5], что влечет за самой следующие недостатки [5]:

— Алгоритм медленный;

- Сложность контроля генерации;
- Сложность реализации.
- Не используется на практике [3]

1.2.2 Воксельная генерация

Алгоритм заключается в генерации ограничивающего параллелепипеда (bounding box), состоящего из вокселей, хранящих информацию о цвете [4]. Преимущества:

- Хорошо сочетается с алгоритмом построением теней Недостатки:
 - Высокие затраты памяти;
 - Сложность обработки большого количества вокселей в реальном времени;
 - Необходимость оптимизаций для обработки больших объемов.
 - Не используется на практике [4]

1.2.3 Генерация на основе обратной трассировки лучей

Из точки наблюдателя для каждого пикселя грани высчитывается его итоговый цвет [5,7]. Алгоритм также опирается на ограничивающий параллеленипед, но вместо этого визуализируются лишь видимые грани параллеленипеда. Вместо вычисления каждого вокселя, алгоритм ориентируется на пиксели, видимые пользователю, и рассчитывает итоговые цвета только для них.

- Хорошо сочетается с алгоритмом построением теней;
- Меньшие затраты памяти;
- Сниженные вычислительные затраты благодаря обработке только видимых пикселей.
- Рекомендованы к использованию на практике [4, 5, 8]

Генерация на основе обратной трассировки лучей показывает преимущество перед воксельной и жидкостной генерациях, так как обрабатывает только видимые пиксели, что снижает вычислительные затраты и экономит память, что необходимо при формировании динамического изображения.

1.3 Модели освещения

1.3.1 Закон Бугера — Ламберта — Бера

Для облаков некоторая часть света рассеивается от направления распространения, а еще большее количество поглощается каплями воды и молекулами озона, но остается часть, которая продолжает движение без изменений [4,5].

Закон Бугера—Ламберта—Бера определяет ослабление пучка света при поглощении средой.

$$I_l = I_o e^{-k_\lambda l},\tag{1.1}$$

где I_0 — интенсивность света на входе в вещество, k_λ — показатель поглощения.

1.3.2 Фазовая функция Хеньи — Гринстейна

Облака представляют собой анизотропную среду (среда, где физические свойства: показатели преломления, скорость распространения и пр. – различаются в различных направлениях внутри этой среды) из-за того, что облака представляют собой капли жидкой воды и кристаллов ледяного льда. Для описания этого используют фазовую функцию (индикатриса) Хеньи — Гринстейна [4,5]

 Φ азовая функция Xеньи — Γ ринстейна определяет угловое распределение интенсивности:

$$P(g,\theta) = \frac{1 - g^2}{(1 + g^2 - 2g\cos\theta)^{3/2}}$$
(1.2)

где θ — угол рассеяния, который определяется как угол между направлением распространения исходного и рассеянного света и g — параметр асимметрии, который описывает среднее значение косинуса угла рассеяния.

Вывод

В аналитической части формализованы задачи и объекты сцены, определены геометрические и оптические характеристики объектов сцены. Так-

же проанализированы и описаны алгоритмы, используемые для визуализации ландшафтной сцены с облаками. Установлены допустимые диапазоны и ограничения, накладываемые на входные данные. Был выбран алгоритм использующий обратную трассировку лучей для генерации объемных облаков.

2 Конструкторская часть

В конструкторской части будет спроектировано разрабатываемое программное обеспечение и формально описаны используемые алгоритмы.

Вывод

3 Технологическая часть

В технологической части будет выбраны и описаны средства реализации программного обеспечения и представлены детали его реализации.

Для реализации программного обеспечения был выбран язык программирования Rust [9], так как он позволяет реализовать все алгоритмы, выбранные в результате проектирования и поддерживает все требуемые структуры данных.

Был выбран фреймворк egui [10] для реализации интерфейса программного обеспечения, так как в нём присутствуют инструменты для работы с изображениями и разработки интерфейса.

Вывод

4 Исследовательская часть

В исследовательской части будет проведено исследование разработанного программного обеспечения.

Вывод

Заключение

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. А.В. Куров. Конспект лекций по дисциплине «Компьютерная графика». 2024 год.
- 2. Роджерс Д. Алгоритмические основы машинной графики. Москва: Мир, 1989.
- 3. UNIGINE. Волюметрические облака в UNIGINE2. 2022. Дата доступа: 2024-11-27. URL: https://doi.org/10.3390/sym10040125.
- 4. Guerrilla Games. The Real-Time Volumetric Cloudscapes Horizon Zero ofDawn. 2023. Дата доступа: 2024-10-07.URL: https://www.guerrilla-games.com/read/ the-real-time-volumetric-cloudscapes-of-horizon-zero-dawn.
- 5. Jiménez de Parga Carlos, Gómez Palomo Sebastián Rubén. Efficient Algorithms for Real-Time GPU Volumetric Cloud Rendering with Enhanced Geometry. 2022. Дата доступа: 2024-11-27. URL: https://doi.org/10.3390/sym10040125.
- 6. Efficient Cloud-Based Rendering of Real-Time Volumetric Clouds: Master's thesis. 2013.
- 7. Real-time Volumetric Rendering: Master's thesis. 2013. http://patapom.com/topics/Revision2013/Revision%202013%20-% 20Real-time%20Volumetric%20Rendering%20Course%20Notes.pdf.
- 8. Haggstrom Fredrik. Real-Time Volumetric Cloud Rendering: Master's thesis: Linköping University, Department of Science and Technology. 2018. Дата доступа: 2024-10-07. URL: https://www.divaportal.org/smash/get/diva2:1223894/FULLTEXT01.pdf.

- 9. The Rust Programming Language. 2024. Accessed: 2024-11-27. URL: https://doc.rust-lang.org/.
- 10. egui: A simple, fast, and portable GUI library for Rust. 2024. Accessed: 2024-11-27. URL: https://github.com/emilk/egui.