

$\begin{array}{c} \textbf{Type 977 fitting for heat pump} \\ \textbf{SINK-8TES} \end{array}$

Parametric Heat Pump calculation

Dani Carbonell

dani.carbonell@spf.ch

2019/03/12 at: 16:05:14 h

Table 1: Fitted coefficients for the heat pump.

Coefficient	Description	
	1	[kW]
$\overline{P_{Q_1}}$	1 st condenser polynomial coefficient	-7.2355e+01
P_{Q_2}	2^{st} condenser polynomial coefficient	1.9817e + 02
P_{Q_3}	3^{st} condenser polynomial coefficient	1.1390e + 03
P_{Q_4}	4^{st} condenser polynomial coefficient	-8.8478e + 02
P_{Q_5}	5^{st} condenser polynomial coefficient	4.4131e+01
P_{Q_6}	6^{st} condenser polynomial coefficient	-3.7861e + 03
P_{COP_1}	1 st COP polynomial coefficient	1.2951e+02
P_{COP_2}	2^{st} COP polynomial coefficient	-9.2195e+01
P_{COP_3}	3^{st} COP polynomial coefficient	-1.7201e+03
P_{COP_4}	4^{st} COP polynomial coefficient	7.9259e + 02
P_{COP_5}	5^{st} COP polynomial coefficient	2.0555e + 02
P_{COP_6}	6 st COP polynomial coefficient	5.5566e + 03
\dot{m}_{cond}	$1000.00 \ [kg/h]$	
\dot{m}_{evap}	$1000.00 \ [kg/h]$	
COP_{nom} (A0W35)	3.51	
$Q_{cond,nom}$ (A0W35)	8.73 [kW]	
$Q_{evap,nom}$ (A0W35)	6.24 [kW]	
$W_{comp,nom}$ (A0W35)	$2.49 \ [kW]$	
RMS_{COP}	2.55e - 02	
$RMS_{Q_{cond}}$	2.66e - 02	
$RMS_{W_{comp}}$	9.87e - 03	
Fit model	Average Temperature	

Table 2: Differences between experiments and fitted data for the heat pump. $error = 100 \cdot |\frac{Q_{exp} - Q_{num}}{Q_{exp}}|$ and $RMS = \sqrt{\sum \frac{(Q_{exp} - Q_{num})^2}{n_p}}$ where n_p is the number of data points.

$T_{cond,out}$	$T_{evap,in}$	COP	COP_{exp}	error	Q_{cond}	$Q_{cond,exp}$	error	W_{comp}	$W_{comp,exp}$	error
^{o}C	°Ĉ	[-]	[-]	[%]	[kW]	[kW]	[%]	[kW]	[kW]	[%]
35.00	-5.00	4.18	4.19	0.2	6.72	6.70	0.3	1.61	1.60	0.55
35.00	0.00	4.85	4.81	0.8	7.77	7.80	0.4	1.60	1.62	1.24
35.00	5.00	5.58	5.63	0.9	8.88	8.90	0.3	1.59	1.58	0.70
55.00	0.00	2.90	2.91	0.5	7.09	7.10	0.1	2.45	2.44	0.38
55.00	5.00	3.33	3.31	0.7	8.01	8.00	0.2	2.41	2.42	0.53
35.00	10.00	6.36	6.33	0.4	10.06	10.00	0.6	1.58	1.58	0.16
35.00	15.00	7.41	7.42	0.0	11.18	11.20	0.2	1.51	1.51	0.17
55.00	10.00	3.71	3.71	0.2	9.09	9.10	0.1	2.45	2.45	0.08
55.00	15.00	4.19	4.20	0.1	10.20	10.20	0.0	2.43	2.43	0.10
Sum				3.8			2.2			3.91
RMS_{COP}	2.55e - 02									
$RMS_{O_{cond}}$	2.66e - 02									
$RMS_{W_{comp}}$	9.87e - 03									

${\it Meier/SINK-8TES/SINK-8TES-Qcond.pdf}$

Figure 1: Q_{cond} differences between experiments and fitted data

${\it Meier/SINK-8TES/SINK-8TES-Qcomp.pdf}$

Figure 2: W_{comp} differences between experiments and fitted data

${\it Meier/SINK-8TES/SINK-8TES-COP.pdf}$

Figure 3: COP differences between experiments and fitted data