Quantum SWITCH for Communication Enhancement

Siqi Yao

SCHOOL OF DATA SCIENCE

August 5, 2025

Table of Contents

- Quantum SWITCH
 - Brief Introduction
- Quantum SWITCH for Capacity Enhancement of Specific Channels
 - Quantum Information Theory Preliminaries
 - Completely Depolarizing Channels-Classical Information
 - Completely Depolarizing Channels-Quantum Information
- 3 Quantum SWITCH for Capacity Enhancement of Generic Channels
 - Key Quantity and Properties
 - Conjecture on Conditions of Communication Enhancement
 - Verification of Conjecture on Pauli Channels
- 4 References

Table of Contents

- Quantum SWITCH
 - Brief Introduction
- 2 Quantum SWITCH for Capacity Enhancement of Specific Channels
 - Quantum Information Theory Preliminaries
 - Completely Depolarizing Channels-Classical Information
 - Completely Depolarizing Channels-Quantum Information
- 3 Quantum SWITCH for Capacity Enhancement of Generic Channels
 - Key Quantity and Properties
 - Conjecture on Conditions of Communication Enhancement
 - Verification of Conjecture on Pauli Channels
- 4 References

Intuition

- The quantum SWITCH is an operation that allows multiple quantum channels to act in a superposition of different orders, under the control of a **control qubit/order qubit**.
- Classical order (fixed order): Order of two channels \mathcal{A} and \mathcal{B} is fixed by $\mathcal{A} \circ \mathcal{B}(\rho)$ or $\mathcal{B} \circ \mathcal{A}(\rho)$.
- Quantum SWITCH (indefinite order): Let control qubit $|0\rangle$ controls $\mathcal{A} \circ \mathcal{B}$ and $|1\rangle$ controls $\mathcal{B} \circ \mathcal{A}$. If the control qubit is prepared as $\frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$, then the entire process becomes a superposition of quantum channels, a.k.a Indefinite Causal Order.

Figure Illustration

Figure 1: Superposition of Orders. Source: [Ebler et al., 2018]

Fixed Order Channels

• Suppose we have two quantum channels (CPTP maps) \mathcal{E} and \mathcal{F} , whose action on quantum sate ρ can be expressed using the Kraus representation as:

$$\mathcal{E}(\rho) = \sum_{i} E_{i} \rho E_{i}^{\dagger}, \quad \mathcal{F}(\rho) = \sum_{j} F_{j} \rho F_{j}^{\dagger}$$
 (1)

where $\{E_i\}$ and $\{F_j\}$ are the Kraus operators satisfying $\sum_i E_i^{\dagger} E_i = \sum_j F_j^{\dagger} F_j = I$.

 Assume the channels are applied sequentially, giving rise to two possible orders:

$$\mathcal{F} \circ \mathcal{E}(\rho) = \sum_{j,i} F_j E_i \rho E_i^{\dagger} F_j^{\dagger}, \quad \mathcal{E} \circ \mathcal{F}(\rho) = \sum_{i,j} E_i F_j \rho F_j^{\dagger} E_i^{\dagger}. \tag{2}$$

• The order in which the channels are applied are fixed. In $\mathcal{F} \circ \mathcal{E}(\rho)$, \mathcal{E} is applied first, while in $\mathcal{E} \circ \mathcal{F}(\rho)$ the opposite.

Indefinite Order Channels

• The quantum SWITCH is a higher-order quantum channel constructed from \mathcal{E}, \mathcal{F} and an ancilla control qubit $|\omega\rangle$, defined as:

$$S(\mathcal{E}, \mathcal{F}, |\omega\rangle)(\rho) = \sum_{i,j} K_{ij}(\rho \otimes \omega) K_{ij}^{\dagger}$$
(3)

where $\omega = |\omega\rangle\langle\omega|$ and $\{K_{ij}\}$ are the Kraus operators:

$$K_{ij} = E_i F_j \otimes |0\rangle\langle 0| + F_j E_i \otimes |1\rangle\langle 1| \tag{4}$$

- The order in which the channels \mathcal{E} and \mathcal{F} act is determined by the state of the control qubit. If $|\omega\rangle = |0\rangle$, \mathcal{F} is applied first, while if $|\omega\rangle = |1\rangle$ the opposite.
- If the control qubit is initially in a superposition state $\frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$, then the quantum SWITCH creates a superposition of orders.
- The **Sender encodes** information into ρ and transmits it. The **Receiver** determines how to **decode** by the state of the control qubit. The control qubit is accessible only to the receiver.

Table of Contents

- Quantum SWITCH
 - Brief Introduction
- Quantum SWITCH for Capacity Enhancement of Specific Channels
 - Quantum Information Theory Preliminaries
 - Completely Depolarizing Channels-Classical Information
 - Completely Depolarizing Channels-Quantum Information
- 3 Quantum SWITCH for Capacity Enhancement of Generic Channels
 - Key Quantity and Properties
 - Conjecture on Conditions of Communication Enhancement
 - Verification of Conjecture on Pauli Channels
- 4 References

Holevo's Theorem: Setting

Suppose Alice transmits messages, in the form of density matrices, to Bob through the following procedure:

- Alice samples $X \in \Sigma \subseteq \{0,1\}^n$, where X = x with probability p(x).
- Alice sends $\sigma_X \in \mathbb{C}^{d \times d}$.
- Bob picks POVM's $\{E_y\}_{y\in\Gamma}$, where $\Gamma\subseteq\{0,1\}^n$.
- Bob measures σ_X , and receives output " $Y \in \Gamma$ ", where Y = y given X = x with probability $\text{Tr}(E_y \sigma_x)$.
- Bob tries to infer X from Y. Note: X, Y are two **classical** probability distributions.

Figure 2: Communication Scheme. Source: [O'Donnell and Wright, 2015]

Analysis

• Bob sees the mixed state:

$$\begin{cases}
\sigma_{x_1} \text{ with prob. } p(x_1), \\
\sigma_{x_2} \text{ with prob. } p(x_2), \\
\vdots
\end{cases} \equiv \sum_{x \in \Sigma} p(x)\sigma_x =: \rho_B. \tag{5}$$

• Alice sees:

$$\begin{cases} |x_1\rangle \text{ with prob. } p(x_1), \\ |x_2\rangle \text{ with prob. } p(x_2), \\ \vdots \end{cases} \equiv \sum_{x \in \Sigma} p(x)|x\rangle\langle x| =: \rho_A.$$
 (6)

• State of the joint mixed system is:

$$\rho := \sum_{x \in \Sigma} p(x)|x\rangle\langle x| \otimes \sigma_x. \tag{7}$$

Classical Information Theory

- We wish to answer the question "how much does seeing one random variable tell me about the other". Solution is given by the mutual information.
- The classical mutual information I(X;Y) between two random variables X and Y is

$$I(X;Y) = H(X) + H(Y) - H(X,Y),$$
(8)

where $H(\cdot)$ is the Shannon entropy. Mutual information represents the amount of information one learn about X from knowing Y, and vice-versa since it is symmetric in X and Y.

Quantum Information Theory

• The accessible information is defined as:

$$I_{\text{acc}}(\sigma, p) = \max_{\substack{\text{over all} \\ \text{POVMs} \\ \{E_u\}_{u \in \Gamma}}} I(X; Y). \tag{9}$$

This represents the best Bob can do given Alice's choice of the σ_x 's and the distribution p.

• If ρ is the joint state of two quantum systems A and B, then the quantum mutual information is:

$$I(\rho_A; \rho_B) = H(\rho_A) + H(\rho_B) - H(\rho). \tag{10}$$

where $H(\cdot)$ is the von Neumann entropy. Note: If $\rho = \rho_A \otimes \rho_B$, then $I(\rho_A; \rho_B) = 0$ since $H(\rho_A \otimes \rho_B) = H(\rho_A) + H(\rho_B)$.

• The **Holevo information** is defined as:

$$\chi(\sigma, p) := I(\rho_A; \rho_B). \tag{11}$$

Statement

Theorem 1 (Holevo's Theorem/Holevo's Bound)

The accessible information is upper-bounded by the Holevo information:

$$I_{\rm acc}(\sigma, p) \le \chi(\sigma, p).$$
 (12)

Equivalent form of $\chi(\sigma, p)$:

$$\chi(\sigma, p) = \chi(\eta) := S\left(\sum_{i} p_{i} \rho_{i}\right) - \sum_{i} p_{i} S(\rho_{i})$$
 (13)

where $p_i = p(x_i), \rho_i = \sigma_{x_i}, \eta = \{(p_i, \rho_i)\}$ and $S(\cdot)$ denotes the von Neumann entropy. $\chi(\eta)$ is called the **Holevo information** or **Holevo** χ **quantity**.

We will prove (13).

Proof of (13)

Write out all the states:

$$\rho_A = \sum_i p_i |i\rangle\langle i|, \quad \rho_B = \sum_i p_i \rho_i, \quad \rho_{AB} = \sum_i p_i |i\rangle\langle i| \otimes \rho_i$$
 (14)

Compute von Neumann entropy:

$$H(\rho_A) = H(\lbrace p_i \rbrace), \quad H(\rho_B) = S\left(\sum_i p_i \rho_i\right)$$
 (15)

where $H(\{p_i\})$ is the Shannon entropy of $\{p_i\}$. Moreover we have:

$$H(\rho_{AB}) = H(\lbrace p_i \rbrace) + \sum_{i} p_i S(\rho_i)$$
(16)

Plug $H(\rho_A)$, $H(\rho_B)$ and $H(\rho_{AB})$ into the definition of $I(\rho_A; \rho_B)$ will get the result.

Proof of (13) (cont'd)

Finally we will show that (16) holds. ρ_{AB} can be written as a block diagonal matrix:

$$\rho_{AB} = \begin{pmatrix}
p_1 \rho_1 & 0 & 0 & \cdots \\
0 & p_2 \rho_2 & 0 & \cdots \\
0 & 0 & p_3 \rho_3 & \cdots \\
\vdots & \vdots & \vdots & \ddots
\end{pmatrix}$$
(17)

Each ρ_i has its own eigenvalue r_{ik} (where k is the index of the eigenstate of ρ_i). The eigenvalues of ρ_{AB} are all $p_i r_{ik}$. So we have:

$$H(\rho_{AB}) = -\sum_{i,k} p_i r_{ik} \log(p_i r_{ik}) \tag{18}$$

$$= -\sum_{i,k} p_i r_{ik} (\log p_i + \log r_{ik}) \tag{19}$$

$$= -\sum_{i} p_i \log p_i \left(\sum_{k} r_{ik}\right) - \sum_{i} p_i \sum_{k} r_{ik} \log r_{ik}$$
 (20)

$$= -\sum_{i} p_i \log p_i + \sum_{i} p_i S(\rho_i) \tag{21}$$

$$= H(\lbrace p_i \rbrace) + \sum_{i} p_i S(\rho_i) \tag{22}$$

where $\sum_{k} r_{ik} = 1$ (each density matrix's trace is 1) and $-\sum_{k} r_{ik} \log r_{ik} = S(\rho_i)$.

HSW Theorem

In classical information theory, the **channel capacity** C is defined as:

$$C = \max_{p(x)} I(X;Y) \tag{23}$$

where p(x) is the probability distribution of the input X. Combining Holevo's theorem, we have the following result:

Theorem 2 (Holevo-Schumacher-Westmoreland Theorem)

Suppose quantum channel \mathcal{E} has the Kraus representation $\mathcal{E}(\sigma) = \sum_j E_j \sigma E_j^{\dagger}$. $\rho := \sum_i p_i \rho_i$. Then the classical channel capacity of \mathcal{E} is given by:

$$\chi(\mathcal{E}) = \max_{\{p_i, \rho_i\}} \left[S\left(\mathcal{E}(\rho)\right) - \sum_i p_i S(\mathcal{E}(\rho_i)) \right]$$
(24)

$$= \max_{\{p_i, \rho_i\}} \left[S\left(\sum_i p_i \sum_j E_j \rho_i E_j^{\dagger}\right) - \sum_i p_i S\left(\sum_j E_j \rho_i E_j^{\dagger}\right) \right]$$
 (25)

where ρ_i is the input quantum state, p_i is the probability distribution of the quantum state and $S(\cdot)$ is the von Neumann entropy. $\chi(\mathcal{E})$ is called the **Holevo information**.

Table of Contents

- Quantum SWITCH
 - Brief Introduction
- Quantum SWITCH for Capacity Enhancement of Specific Channels
 - Quantum Information Theory Preliminaries
 - Completely Depolarizing Channels-Classical Information
 - Completely Depolarizing Channels-Quantum Information
- 3 Quantum SWITCH for Capacity Enhancement of Generic Channels
 - Key Quantity and Properties
 - Conjecture on Conditions of Communication Enhancement
 - Verification of Conjecture on Pauli Channels
- 4 References

Motivation for Quantum SWITCH

- In this section, we will focus on the communication of classical information.
- Any non-constant quantum channel $\mathcal N$ has positive Holevo information:
 - There exist at least two pure states $|\phi\rangle$ and $|\psi\rangle$, such that $\mathcal{N}(|\phi\rangle\langle\phi|) \neq \mathcal{N}(|\psi\rangle\langle\psi|)$.
 - Set $p(\phi) = p(\psi) = \frac{1}{2}$, then the joint state becomes

$$\sigma = \frac{1}{2} \mathcal{N}(|\phi\rangle\langle\phi|) + \frac{1}{2} \mathcal{N}(|\psi\rangle\langle\psi|)$$
 (26)

• So the Holevo information is

$$\chi(\mathcal{N}) = S(\sigma) - \left(\frac{1}{2}S(\mathcal{N}(|\phi\rangle\langle\phi|)) + \frac{1}{2}S(\mathcal{N}(|\psi\rangle\langle\psi|))\right) > 0$$
 (27)

due to the concavity of $S(\cdot)$.

• The Holevo information of a constant channel, e.g. **completely depolarizing channel**, is zero, which makes it impossible to perform classical communication. However, this can be achieved with quantum SWITCH.

Kraus Operator for Depolarizing Channel

• A completely depolarizing channel \mathcal{N}^D on a d-dimensional quantum system can be represented by d^2 orthogonal $(\operatorname{Tr}[U_i^{\dagger}U_j] = d \cdot \delta_{ij}])$ unitary operators U_i , such that its action on a state ρ is

$$\mathcal{N}^{D}(\rho) = \frac{1}{d^2} \sum_{i=1}^{d^2} U_i \rho U_i^{\dagger} = \text{Tr}[\rho] \frac{I}{d}.$$
 (28)

Example for d = 2:

$$U_1 = \sqrt{2}|0\rangle\langle 0|, U_2 = \sqrt{2}|0\rangle\langle 1|, U_3 = \sqrt{2}|1\rangle\langle 0|, U_4 = \sqrt{2}|1\rangle\langle 1|.$$

• Thus, according to (4), the overall quantum channel resulting from the quantum SWITCH of **two completely depolarizing channels** has the Kraus operator:

$$W_{ij} = \frac{1}{d^2} \left(U_i U_j \otimes |0\rangle \langle 0|_c + U_j U_i \otimes |1\rangle \langle 1|_c \right) \tag{29}$$

Quantum SWITCH for Depolarizing Channel

- Set control state to $\rho_c := |\psi_c\rangle \langle \psi_c|$, where $|\psi_c\rangle := \sqrt{p}|0\rangle + \sqrt{1-p}|1\rangle$.
- Set the input state to ρ , then the receiver will get the output state

$$S(\mathcal{N}^{D}, \mathcal{N}^{D}, \rho_{c})(\rho) = \frac{1}{d^{4}} \sum_{i,j} \left(p|0\rangle\langle 0|_{c} \otimes U_{i}U_{j}\rho U_{j}^{\dagger}U_{i}^{\dagger} + (1-p)|1\rangle\langle 1|_{c} \otimes U_{j}U_{i}\rho U_{i}^{\dagger}U_{j}^{\dagger} \right)$$

$$(30)$$

$$+ \sqrt{p(1-p)}|0\rangle\langle 1|_{c} \otimes U_{i}U_{j}\rho U_{i}^{\dagger}U_{j}^{\dagger} + \sqrt{p(1-p)}|1\rangle\langle 0|_{c} \otimes U_{j}U_{i}\rho U_{j}^{\dagger}U_{i}^{\dagger} \right)$$

$$= p|0\rangle\langle 0|_{c} \otimes \frac{I}{d} + (1-p)|1\rangle\langle 1|_{c} \otimes \frac{I}{d}$$

$$+ \sqrt{p(1-p)} \frac{|0\rangle\langle 1|_{c}}{d^{2}} \otimes \sum_{j} \text{Tr}[U_{j}\rho] \frac{U_{j}^{\dagger}}{d}$$

$$+ \sqrt{p(1-p)} \frac{|1\rangle\langle 0|_{c}}{d^{2}} \otimes \sum_{j} \text{Tr}[\rho U_{j}^{\dagger}] \frac{U_{j}}{d} .$$

$$= (p|0\rangle\langle 0|_{c} + (1-p)|1\rangle\langle 1|_{c}) \otimes \frac{I}{d} + \sqrt{p(1-p)}(|0\rangle\langle 1|_{c} + |1\rangle\langle 0|_{c}) \otimes \frac{\rho}{d^{2}} .$$

$$(32)$$

Brief Explanation

- (30) results from (3).
- $\sum_{j} \text{Tr}[U_{j}\rho] \frac{U_{j}^{\dagger}}{d}$ results from viewing $U_{j}\rho$ as a single state and applying (28).
- (32) follows from the fact that $\{U_j\}$ forms an orthonormal basis for the set of $d \times d$ matrices, i.e., $\rho = \sum_{j=1}^{d^2} \text{Tr}[U_j \rho] \frac{U_j^{\dagger}}{d}$. This is related to the **Hilbert-Schmidt** operator and **Hilbert-Schmidt** space.
- The quantum SWITCH of two depolarizing channels depends on state ρ . Thus, we can communicate classical information at a nonzero rate.

Table of Contents

- Quantum SWITCH
 - Brief Introduction
- Quantum SWITCH for Capacity Enhancement of Specific Channels
 - Quantum Information Theory Preliminaries
 - Completely Depolarizing Channels-Classical Information
 - Completely Depolarizing Channels-Quantum Information
- Quantum SWITCH for Capacity Enhancement of Generic Channels
 - Key Quantity and Properties
 - Conjecture on Conditions of Communication Enhancement
 - Verification of Conjecture on Pauli Channels
- 4 References

Extending to > 2 Channels

- When N=2, completely depolarizing channels are unable to transmit quantum data, even when applying quantum SWITCH.
- We consider $N(\geq 3)$ completely depolarizing channels combined in a superposition of N causal orders related to each other by **cyclic permutations**.
- The intermediate nodes in Figure 3 (purple) are identity operations

Figure 3: Cyclic Permutations. Source: [Chiribella et al., 2021a]

Settings

- Take N=3 for simplicity, construct the quantum SWITCH $\mathcal{S}(\mathcal{E}, \mathcal{F}, \mathcal{G}, |\omega\rangle)(\rho)$ where:
 - $\mathcal{E}, \mathcal{F}, \mathcal{G}$ are three completely depolarizing channels.
 - $|\omega\rangle$ is the control **qutrit**.
- Set:
 - $\mathcal{E}(\rho) = \sum_{i} E_{i} \rho E_{i}^{\dagger}$
 - $\mathcal{F}(\rho) = \sum_{j} F_{j} \rho F_{j}^{\dagger}$
 - $\mathcal{G}(\rho) = \sum_{k} G_{k} \rho G_{k}^{\dagger}$
- Let the **orthonormal** basis of the control space be:
 - $|\pi_0\rangle$ denotes the order $\mathcal{E} \to \mathcal{F} \to \mathcal{G}$
 - $|\pi_1\rangle$ denotes the order $\mathcal{F} \to \mathcal{G} \to \mathcal{E}$
 - $|\pi_2\rangle$ denotes the order $\mathcal{G} \to \mathcal{E} \to \mathcal{F}$
- Let the control state be the equal superposition $|\omega\rangle = \frac{1}{\sqrt{3}} (|\pi_0\rangle + |\pi_1\rangle + |\pi_2\rangle)$ and let **S** denote the set of permutations. The density matrix becomes:

$$\omega = |\omega\rangle\langle\omega| = \frac{1}{3} \sum_{\pi, \pi' \in \mathbf{S}} |\pi\rangle\langle\pi'| \tag{33}$$

Kraus Operators

• $G_k F_j E_i := K_{ijk}^{(\pi_0)}, E_i G_k F_j := K_{ijk}^{(\pi_1)}, F_j E_i G_k := K_{ijk}^{(\pi_2)}$. Extending from (4) we have:

$$K_{ijk} = K_{ijk}^{(\pi_0)} \otimes |\pi_0\rangle\langle\pi_0| + K_{ijk}^{(\pi_1)} \otimes |\pi_1\rangle\langle\pi_1| + K_{ijk}^{(\pi_2)} \otimes |\pi_2\rangle\langle\pi_2|$$

$$(34)$$

$$= \sum_{\tau} K_{ijk}^{(\tau)} \otimes |\pi\rangle\langle\pi| \tag{35}$$

Quantum SWITCH

• So the channel becomes:

$$S = \sum_{i,j,k} K_{ijk} (\rho \otimes \frac{1}{3} \sum_{\pi,\pi'} |\pi\rangle \langle \pi'|) K_{ijk}^{\dagger}$$
(36)

$$= \sum_{i,j,k} \sum_{\pi} K_{ijk}^{(\pi)} \otimes |\pi\rangle \langle \pi| (\rho \otimes \frac{1}{3} \sum_{\pi,\pi'} |\pi\rangle \langle \pi'|) \sum_{\pi'} K_{ijk}^{(\pi')\dagger} \otimes |\pi'\rangle \langle \pi'|$$
(37)

$$= \sum_{i,j,k} \sum_{\pi,\pi'} K_{ijk}^{(\pi)} \rho K_{ijk}^{(\pi')\dagger} \otimes \frac{1}{3} |\pi\rangle\langle\pi'|$$
 (38)

$$= \sum_{\pi,\pi'} \mathcal{C}_{\pi\pi'}(\rho) \otimes \omega_{\pi,\pi'} |\pi\rangle \langle \pi'| := \mathcal{C}_{\text{eff}}(\rho)$$
(39)

where
$$C_{\pi\pi'}(\rho) := \sum_{i,j,k} K_{ijk}^{(\pi)} \rho K_{ijk}^{(\pi')\dagger}, \omega_{\pi,\pi'} = \frac{1}{3}$$
.

• Notation for general N channel setting:

 $C_{\pi\pi'}(\rho) = \sum_{s_1,\dots,s_N} K_{(s_1,\dots,s_N)}^{(\pi)} \rho K_{(s_1,\dots,s_N)}^{(\pi')\dagger}$, where s_i 's are indexes of Kraus operators corresponding to each channel.

Channel Construction

- Recall: $\omega = |\omega\rangle\langle\omega|$ where $|\omega\rangle = \frac{1}{\sqrt{N}} \sum_{\pi} |\pi\rangle$.
- [Chiribella et al., 2021b] showed that:

$$C_{\pi\pi}(\rho) = \frac{I}{d}$$
 and $C_{\pi\pi'}(\rho) = \frac{\rho}{d^2} \quad \forall \pi \neq \pi'$ (40)

• Plug into (39) yields:

$$C_{\text{eff}}(\rho) = \sum_{\pi} \frac{I}{d} \otimes \frac{1}{N} |\pi\rangle\langle\pi| + \sum_{\pi \neq \pi'} \frac{\rho}{d^2} \otimes \frac{1}{N} |\pi\rangle\langle\pi'|$$
 (41)

$$= \frac{I}{d} \otimes \frac{I}{N} + \frac{\rho}{Nd^2} \otimes \sum_{\pi \neq \pi'} |\pi\rangle\langle\pi'| \tag{42}$$

$$= \frac{I}{d} \otimes \frac{I}{N} + \frac{\rho}{Nd^2} \otimes (N|\omega\rangle\langle\omega| - I), \qquad (43)$$

where (43) comes from the relations $N|\omega\rangle\langle\omega| = \sum_{\pi,\pi'} |\pi\rangle\langle\pi'|$ and $I = \sum_{\pi} |\pi\rangle\langle\pi|$.

Channel as a Mixture of Channels

• Rearranging (43) we have:

$$C_{\text{eff}}(\rho) = \mathcal{E}_0(\rho) \otimes (1 - p)\rho_0 + \mathcal{E}_1(\rho) \otimes p\rho_1, \tag{44}$$

where $\rho_0 := |\omega\rangle\langle\omega|$ and $\rho_1 := \frac{I - |\omega\rangle\langle\omega|}{N-1}$, $p := \frac{(N-1)(d^2-1)}{Nd^2}$. \mathcal{E}_0 , \mathcal{E}_0 are quantum channels defined by

$$\mathcal{E}_0(\rho) := \frac{N-1}{N-1+d^2}\rho + \frac{d^2}{N-1+d^2}\frac{I}{d}$$
 (45)

and

$$\mathcal{E}_1(\rho) := \frac{d^2}{d^2 - 1} \frac{I}{d} - \frac{1}{d^2 - 1} \rho \tag{46}$$

• C_{eff} is a mixture of two channels \mathcal{E}_0 and \mathcal{E}_1 . By measuring ρ_0 and ρ_1 , it is possible to determine the occurrence of the channels \mathcal{E}_0 and \mathcal{E}_1 .

Transmitting Quantum Data

- \mathcal{E}_1 is unable to transmit quantum data, see [Chiribella et al., 2021a].
- \mathcal{E}_0 is a depolarizing channel, with probability of depolarization equal to $\frac{d^2}{N+d^2-1}$.
- $\lim_{N\to\infty} \frac{d^2}{N+d^2-1} = 0 \Rightarrow \lim_{N\to\infty} \mathcal{E}_0(\rho) = \rho$. Therefore, as long as we wait until the control system is measured to be ρ_0 , we achieve **nearly** perfect quantum information transmission.

Table of Contents

- Quantum SWITCH
 - Brief Introduction
- Quantum SWITCH for Capacity Enhancement of Specific Channels
 - Quantum Information Theory Preliminaries
 - Completely Depolarizing Channels-Classical Information
 - Completely Depolarizing Channels-Quantum Information
- 3 Quantum SWITCH for Capacity Enhancement of Generic Channels
 - Key Quantity and Properties
 - Conjecture on Conditions of Communication Enhancement
 - Verification of Conjecture on Pauli Channels
- 4 References

Key Quantity

- Next, we discuss quantum SWITCH constructed by **general** channels and **permutations**. Let n denote the total number of channels, $m := |\mathbf{S}|$ denote the number of permutations in \mathbf{S} . n may not equal m.
- [Wu et al., 2025a] introduced the key quantity

$$\mathcal{P}_n = 1 - \frac{1}{m^2} \min_{\rho} \sum_{\pi, \pi' \in \mathbf{S}} \operatorname{Tr}(C_{\pi\pi'}(\rho))$$
 (47)

• \mathcal{P}_n can be viewed as the maximum probability (as ρ varies over all input states) of obtaining the measurement outcome F_2 associated with the POVM $\{F_1 = |\omega\rangle\langle\omega| = \frac{1}{m}\sum_{i,j\in\mathbf{S}}|i\rangle\langle j|, \ F_2 = I - |\omega\rangle\langle\omega|\}$. Proof in next page.

Proof

Probability of obtaining outcome F_1 can be computed as:

$$\Pr[F_1] = \operatorname{Tr}\left[(I \otimes F_1) \, \mathcal{C}_{\text{eff}}(\rho) \right]. \tag{48}$$

$$= \operatorname{Tr} \left[(I \otimes F_1) \sum_{\pi, \pi'} C_{\pi \pi'}(\rho) \otimes \frac{1}{m} |\pi\rangle \langle \pi'| \right]$$
(49)

$$= \frac{1}{m} \sum_{\pi,\pi'} \operatorname{Tr} \left[\mathcal{C}_{\pi\pi'}(\rho) \otimes (F_1|\pi\rangle\langle\pi'|) \right]$$
 (50)

$$= \frac{1}{m} \sum_{\pi,\pi'} \operatorname{Tr}(\mathcal{C}_{\pi\pi'}(\rho)) \cdot \operatorname{Tr}(F_1|\pi\rangle\langle\pi'|)$$
 (51)

$$= \frac{1}{m^2} \sum_{\pi,\pi'} \text{Tr}(\mathcal{C}_{\pi\pi'}(\rho)) \tag{52}$$

So probability of obtaining outcome F_2 is:

$$\Pr[F_2] = 1 - \Pr[F_1] = 1 - \frac{1}{m^2} \sum_{\pi, \pi'} \operatorname{Tr}(\mathcal{C}_{\pi\pi'}(\rho))$$
 (53)

So we have:

$$\mathcal{P}_n = \max_{\rho} \Pr[F_2] = 1 - \min_{\rho} \frac{1}{m^2} \sum_{\pi, \pi'} \operatorname{Tr}(\mathcal{C}_{\pi \pi'}(\rho))$$
 (54)

Proposition on S-invariance and Commutativity

Proposition 1

The quantity $\mathcal{P}_n = 0$ if and only if the Kraus operators $\{C_i\}$ are S-invariant, i.e.,

$$K_{(s_1,\dots,s_n)}^{(\pi)} = K_{(s_1,\dots,s_n)}^{(\pi')} \tag{55}$$

for all indices s_1, \ldots, s_n and for all $\pi, \pi' \in \mathbf{S}$. That is, the Kraus operators are **independent of the causal order**. In particular, for n = m = 2, **S**-invariance is equivalent to commutativity: $E_i F_j = F_j E_i \quad \forall i, j \text{ for two sets of Kraus operators } \{E_i\}, \{F_j\}.$

Proof of Proposition 1

First we will show a simple fact that $Tr(C_{\pi\pi}(\rho)) = 1 \quad \forall \pi \in \mathbf{S}$. Recall:

$$C_{\pi\pi}(\rho) = \sum_{s_1, \dots, s_n} K_{(s_1, \dots, s_n)}^{(\pi)} \rho K_{(s_1, \dots, s_n)}^{(\pi)\dagger}$$
 (56)

Here, $K_{(s_1,...,s_n)}^{(\pi)}$ is the composite Kraus operator under the permutation π :

$$K_{(s_1,\ldots,s_n)}^{(\pi)} := A_{s_1,\ldots,s_n}^{(\pi)} = A_{\pi(1),s_1} A_{\pi(2),s_2} \cdots A_{\pi(n),s_n}, \tag{57}$$

$$K_{(s_1,\dots,s_n)}^{(\pi)\dagger} := A_{s_1,\dots,s_n}^{(\pi)\dagger} = A_{\pi(n),s_n}^{\dagger} A_{\pi(n-1),s_{n-1}}^{\dagger} \cdots A_{\pi(1),s_1}^{\dagger}$$
 (58)

where each A_{i,s_i} is the s_i -th Kraus operator of the i-th quantum channel. Since each channel is a valid CPTP map, the composite channel must also be a CPTP map. So we have:

$$\operatorname{Tr}(C_{\pi\pi}(\rho)) = 1 \quad \forall \pi \in \mathbf{S}$$
 (59)

Proof of Proposition 1 (cont'd)

Let ρ be an arbitrary input state, and let $\pi, \pi' \in \mathbf{S}$ be arbitrary permutations in \mathbf{S} . We then have

$$\operatorname{Tr}(C_{\pi\pi'}(\rho)) = \sum_{s_1,\dots,s_n} \operatorname{Tr}\left(K_{(s_1,\dots,s_n)}^{(\pi)} \rho K_{(s_1,\dots,s_n)}^{(\pi')\dagger}\right)$$
(60)

$$= \sum_{s_1,\dots,s_n} \operatorname{Tr}\left(K_{(s_1,\dots,s_n)}^{(\pi)} \sqrt{\rho} \left(K_{(s_1,\dots,s_n)}^{(\pi')} \sqrt{\rho}\right)^{\dagger}\right) \tag{61}$$

$$\leq \frac{1}{2} \left[\text{Tr}(C_{\pi\pi}(\rho)) + \text{Tr}(C_{\pi'\pi'}(\rho)) \right] = 1$$
 (62)

where the final equality follows from (59), and the first inequality follows from combining the Cauchy-Schwarz and AM-GM inequalities, which for arbitrary operators A and B yields

$$\operatorname{Tr}(AB^{\dagger}) \le \sqrt{\operatorname{Tr}(AA^{\dagger})\operatorname{Tr}(BB^{\dagger})}$$
 (63)

$$\leq \frac{1}{2} \left(\text{Tr}(AA^{\dagger}) + \text{Tr}(BB^{\dagger}) \right). \tag{64}$$

Explanations on the Cauchy-Schwarz Inequality

To apply Cauchy-Schwarz inequality, we define the **Hilbert-Schmidt inner product** as follows (this is also related to the Hilbert-Schmidt space):

$$\langle A, B \rangle := \text{Tr}(AB^{\dagger})$$
 (65)

The norm induced by this inner product is:

$$||A||_{\mathrm{HS}} := \sqrt{\mathrm{Tr}(AA^{\dagger})} \tag{66}$$

Applying the Cauchy-Schwarz inequality, we obtain:

$$|\text{Tr}(AB^{\dagger})| \le \sqrt{\text{Tr}(AA^{\dagger})} \cdot \sqrt{\text{Tr}(BB^{\dagger})}$$
 (67)

By setting $A_{(s_1,\ldots,s_n)}=K_{(s_1,\ldots,s_n)}^{(\pi)}\sqrt{\rho}, B_{(s_1,\ldots,s_n)}=K_{(s_1,\ldots,s_n)}^{(\pi')}\sqrt{\rho}$, and using Cauchy-Schwarz inequality for each pair of $A_{(s_1,\ldots,s_n)}, B_{(s_1,\ldots,s_n)}$, we get the inequality last page.

Conclusion and Remarks

Since the equality holds if and only if $A_{(s_1,\ldots,s_n)}=B_{(s_1,\ldots,s_n)} \quad \forall s_1,\ldots,s_n,$ it follows that

$$Tr(C_{\pi\pi'}(\rho)) = 1, \tag{68}$$

if and only if

$$K_{(s_1,\ldots,s_n)}^{(\pi)} \sqrt{\rho} = K_{(s_1,\ldots,s_n)}^{(\pi')} \sqrt{\rho} \quad \forall s_1,\ldots,s_n.$$
 (69)

From the definition of \mathcal{P}_n , it follows that $\mathcal{P}_n = 0$ if and only if (69) holds for all states ρ , for all permutations $\pi, \pi' \in \mathbf{S}$, and for all indices s_1, \ldots, s_n . By considering pure states, we see that $\mathcal{P}_n = 0$ if and only if

$$K_{(s_1,\dots,s_n)}^{(\pi)} = K_{(s_1,\dots,s_n)}^{(\pi')} \tag{70}$$

for all s_1, \ldots, s_n , as desired. In particular, when n = m = 2, the permutation set **S** only contains two permutations (1,2) and (2,1), thus S-invariance implies

$$C_{s_1}^1 C_{s_2}^2 = C_{s_2}^2 C_{s_1}^1 \quad \text{for all } s_1, s_2, \tag{71}$$

i.e., the Kraus operators of the channels \mathcal{C}^1 and \mathcal{C}^2 pairwise commute.

Table of Contents

- Quantum SWITCH
 - Brief Introduction
- Quantum SWITCH for Capacity Enhancement of Specific Channels
 - Quantum Information Theory Preliminaries
 - Completely Depolarizing Channels-Classical Information
 - Completely Depolarizing Channels-Quantum Information
- 3 Quantum SWITCH for Capacity Enhancement of Generic Channels
 - Key Quantity and Properties
 - Conjecture on Conditions of Communication Enhancement
 - Verification of Conjecture on Pauli Channels
- 4 References

Notations

- Denote the quantum SWITCH channel $C_{\text{eff}}(\rho)$ as $S^n(\rho)$, where n is the number of channels.
- In the following, we will consider the case $C^i = \mathcal{N}$ for i = 1, ..., n, where \mathcal{N} is a fixed quantum channel, and let \mathcal{N}^n denote the n-fold composition $\mathcal{N} \circ \cdots \circ \mathcal{N}$.

Tracing Out Control Recovers \mathcal{N}^n

• \mathcal{N}^n can be obtained from \mathcal{S}^n by tracing out the control system:

$$\mathcal{N}^{n}(\rho) = \mathcal{N} \circ \cdots \circ \mathcal{N}(\rho) = \sum_{s_{1}, \dots, s_{n}} C_{s_{n}} \cdots C_{s_{1}} \rho C_{s_{1}}^{\dagger} \cdots C_{s_{n}}^{\dagger}$$
 (72)

Take partial trace:

$$\operatorname{Tr}_{C}\left[\mathcal{S}^{n}(\rho)\right] = \sum_{\pi, \pi' \in \mathbf{S}} C_{\pi\pi'}(\rho) \cdot \operatorname{Tr}\left(\omega_{\pi, \pi'} | \pi \rangle \langle \pi' |\right) \tag{73}$$

$$= \sum_{\pi, \pi' \in \mathbf{S}} C_{\pi\pi'}(\rho) \cdot \frac{1}{m} \delta_{\pi\pi'} \tag{74}$$

$$= \frac{1}{m} \sum_{\pi \in \mathbf{S}} C_{\pi\pi}(\rho) \tag{75}$$

Clearly $C_{\pi\pi}(\rho) = \mathcal{N}^n(\rho)$ (since $C^i = \mathcal{N} \quad \forall i$), thus:

$$\operatorname{Tr}_{C}\left[\mathcal{S}^{n}(\rho)\right] = \mathcal{N}^{n}(\rho).$$
 (76)

Quantifying Communication Enhancement

• For all capacity measure f satisfying the data-processing inequality $f(A \circ B) \leq f(B)$, for arbitrary quantum channels A, B, we obtain the **bottleneck inequality**:

$$f(\mathcal{N}^n) \le f(\mathcal{S}^n). \tag{77}$$

since taking partial trace is also a CPTP map.

• Capacity measures such as classical capacity, quantum capacity, Holevo information and coherent information all satisfy (77). Thus, we define the associated **causal gain** by

$$\delta_f = f(\mathcal{S}^n) - f(\mathcal{N}^n). \tag{78}$$

 δ_f is a direct measure of the communication enhancement of the channel $\mathcal N$ which is achieved by inputting n-copies of the channel into the quantum SWITCH.

Condition for $\delta_f = 0$

- $\mathcal{P}_n = 0$ if and only if $K_{(s_1,\ldots,s_n)}^{(\pi)} = K_{(s_1,\ldots,s_n)}^{(\pi')}$ for all s_1,\ldots,s_n . Hence, for a given subset of permutations \mathbf{S} , $\mathcal{P}_n = 0$ implies that $C_{\pi\pi'}(\rho) = C_{\pi\pi}(\rho) = C_{\pi'\pi'}(\rho) = C(\rho)$ for arbitrary permutations $\pi, \pi' \in \mathbf{S}$.
- Therefore $S^n(\rho) = \mathcal{N}^n(\rho) \otimes \omega$, where ω is the control state and is independent of the input state ρ . Proof:

$$S^{n}(\rho) = \sum_{\pi, \pi' \in \mathbf{S}} C_{\pi\pi'}(\rho) \otimes \omega_{\pi, \pi'} |\pi\rangle \langle \pi'|$$
 (79)

$$= \sum_{\pi, \pi' \in \mathbf{S}} \mathcal{N}^n(\rho) \otimes \omega_{\pi, \pi'} |\pi\rangle \langle \pi'|$$
 (80)

$$= \mathcal{N}^{n}(\rho) \otimes \left(\sum_{\pi, \pi' \in \mathbf{S}} \omega_{\pi, \pi'} |\pi\rangle \langle \pi'| \right)$$
 (81)

$$= \mathcal{N}^n(\rho) \otimes \omega \tag{82}$$

• Since ω is a constant, we have $f(S^n) = f(\mathcal{N}^n)$, so that $\delta_f = 0$.

Main Conjecture

We have shown that $\mathcal{P}_n > 0$ is a necessary condition for positive causal gain, so it is natural to propose the following conjecture:

Conjecture

For all channels outside **a set of measure-zero**, the condition $\mathcal{P}_n > 0$ is necessary and sufficient for $\delta_f > 0$.

Table of Contents

- Quantum SWITCH
 - Brief Introduction
- Quantum SWITCH for Capacity Enhancement of Specific Channels
 - Quantum Information Theory Preliminaries
 - Completely Depolarizing Channels-Classical Information
 - Completely Depolarizing Channels-Quantum Information
- 3 Quantum SWITCH for Capacity Enhancement of Generic Channels
 - Key Quantity and Properties
 - Conjecture on Conditions of Communication Enhancement
 - Verification of Conjecture on Pauli Channels
- 4 References

Pauli Channel

The **Pauli channel** is a prototypical noise channel acting on a single qubit. It describes a probabilistic mixture of Pauli operations applied to the qubit:

$$\mathcal{E}(\rho) = \sum_{i=0}^{3} p_i \sigma_i \rho \sigma_i^{\dagger}, \quad \text{with } \sum_i p_i = 1$$
 (83)

where:

- ρ is the input quantum state (a density matrix),
- $\sigma_0 = I$, $\sigma_1 = X$, $\sigma_2 = Y$, $\sigma_3 = Z$ are the four Pauli operators,
- $p_i \ge 0$ is the probability of applying operation σ_i .

$$\sigma_0 = I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad \sigma_1 = X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix},$$
$$\sigma_2 = Y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad \sigma_3 = Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$

Setting

- In this section, we verify the conjecture in the space of all Pauli channels $\mathcal{N}(\rho) = \sum_{i=0}^{3} p_i \sigma_i \rho \sigma_i^{\dagger}$, and the permutation set **S** contains the identity permutation $(1, \ldots, n)$ and its reversal $(n, \ldots, 1)$.
- In such case, the quantum SWITCH places n copies of a Pauli channel \mathcal{N} in a superposition of the forward and backward orders $\mathcal{N}_n \circ \cdots \circ \mathcal{N}_1$ and $\mathcal{N}_1 \circ \cdots \circ \mathcal{N}_n$ (where $\mathcal{N}_i = \mathcal{N}$ for all i).
- The forward and backward orders are indistinguishable when used individually. We show that when such orders are placed in a superposition via quantum SWITCH, an enhancement of classical capacity and coherent information occurs almost surely

Operational Meaning of \mathcal{P}_n

- Fix the control state to be $\omega = |+\rangle \langle +|$ with $|+\rangle = (|0\rangle + |1\rangle)/\sqrt{2}$, then apply the projective measurement $\{F_1 = |\omega\rangle \langle \omega|, F_2 = I |\omega\rangle \langle \omega|\}$.
- The probability of obtaining F_2 is independent of the initial state ρ (proof on next few pages), i.e., for all states ρ ,

$$\operatorname{Tr}((I \otimes F_2)\mathcal{S}^n(\rho)) = \mathcal{P}_n.$$
 (84)

Proof

Recall, probability of obtaining outcome F_2 is:

$$\Pr[F_2] = 1 - \frac{1}{m^2} \sum_{\pi, \pi'} \text{Tr}(\mathcal{C}_{\pi\pi'}(\rho))$$
 (85)

For Pauli channel $\mathcal{N}(\rho) = \sum_{i=0}^{3} p_i \sigma_i \rho \sigma_i^{\dagger}$, its Kraus representation is:

$$\mathcal{N}(\rho) = \sum_{i} E_{i} \rho E_{i}^{\dagger}, \quad E_{i} = \sqrt{p_{i}} \sigma_{i}$$
(86)

For a quantum SWITCH of n channels, the composite Kraus operator is given by:

$$K_{(s_1,\dots,s_n)}^{(\pi)} = \sqrt{p_{s_1}\cdots p_{s_n}} \cdot \sigma_{s_{\pi(1)}} \cdots \sigma_{s_{\pi(n)}}, \tag{87}$$

where π is the permutation (either forward or reverse). Take trace:

$$\operatorname{Tr}(C_{\pi\pi'}(\rho)) = \sum_{s_1, \dots, s_n} \operatorname{Tr}\left(\sigma_{s_{\pi(1)}} \cdots \sigma_{s_{\pi(n)}} \rho \sigma_{s_{\pi'(n)}}^{\dagger} \cdots \sigma_{s_{\pi'(1)}}^{\dagger}\right) \cdot p_{s_1} \cdots p_{s_n}$$
(88)

(89)

Proof (cont'd)

If $\pi = \pi'$:

$$\operatorname{Tr}(C_{\pi\pi}(\rho)) = \sum_{s_1,\dots,s_n} \operatorname{Tr}\left(\sigma_{s_{\pi(1)}} \cdots \sigma_{s_{\pi(n)}} \rho \sigma_{s_{\pi(n)}}^{\dagger} \cdots \sigma_{s_{\pi(1)}}^{\dagger}\right) \cdot p_{s_1} \cdots p_{s_n}$$
(90)

$$= \sum_{s_1, \dots, s_n} \operatorname{Tr} \left(\rho \sigma_{s_{\pi(n)}}^{\dagger} \cdots \sigma_{s_{\pi(1)}}^{\dagger} \sigma_{s_{\pi(1)}} \cdots \sigma_{s_{\pi(n)}} \right) \cdot p_{s_1} \cdots p_{s_n}$$
(91)

$$= \sum_{s_1, \dots, s_n} \operatorname{Tr} \left(\rho \right) \cdot p_{s_1} \cdots p_{s_n} \tag{92}$$

$$=\sum_{s_1,\ldots,s_n} p_{s_1}\cdots p_{s_n} \tag{93}$$

$$= \left(\sum_{s_1} p_{s_1}\right) \cdots \left(\sum_{s_n} p_{s_n}\right) = 1 \cdots 1 = 1.$$

$$(94)$$

Proof (cont'd)

If $\pi \neq \pi'$, take n = 2 as example, $\pi = (1, 2), \pi' = (2, 1)$:

$$\operatorname{Tr}(C_{\pi\pi'}(\rho)) = \sum_{s_1, s_2} \operatorname{Tr}(\sigma_{s_1} \sigma_{s_2} \rho \sigma_{s_1}^{\dagger} \sigma_{s_2}^{\dagger}) \cdot p_{s_1} p_{s_2}$$

$$\tag{95}$$

$$= \sum_{s_1, s_2} \operatorname{Tr}(\sigma_{s_1} \sigma_{s_2} \rho \sigma_{s_1} \sigma_{s_2}) \cdot p_{s_1} p_{s_2}$$

$$\tag{96}$$

$$= \sum_{s_1, s_2} \text{Tr}(\rho \sigma_{s_1} \sigma_{s_2} \sigma_{s_1} \sigma_{s_2}) \cdot p_{s_1} p_{s_2}$$
 (97)

Case 1, $s_1 = s_2$:

$$\sigma_{s_1}\sigma_{s_1}\sigma_{s_1}\sigma_{s_1} = I \tag{98}$$

Case 2, $s_1 \neq s_2$:

• If $i \neq j$ and $i, j \neq 0$, use the relationship $\sigma_i \sigma_j = -\sigma_j \sigma_i$:

$$\sigma_{s_1}\sigma_{s_2}\sigma_{s_1}\sigma_{s_2} = -\sigma_{s_1}^2\sigma_{s_2}^2 = -I \tag{99}$$

• If $s_1 = 0$ or $s_2 = 0$ (i.e., $\sigma_0 = I$), the product is I.

In all cases, the outcome is independent of ρ .

Structural Characterization of $\mathcal{P}_n = 0$

[Wu et al., 2025b] proved the following proposition that characterizes the condition for $\mathcal{P}_n = 0$:

Proposition 2

The quantity \mathcal{P}_n is zero if and only if:

- **1** n is even and the Kraus operators of \mathcal{N} are commutative.
- ② n is odd and the number of Kraus operators of $\mathcal N$ is not more than 2.

Degradable Channels

- For general n, $\mathcal{P}_n = 0$ only if the **Choi rank** of $\mathcal{N} \leq 2$, and such Pauli channels are shown to be either **degradable or** antidegradable.
- A quantum channel has a Stinespring representation:

$$\mathcal{N}(\rho) = \text{Tr}_E \ U_{\mathcal{N}}(\rho) \tag{100}$$

where E is the environment, $\mathcal{N}: \mathcal{H}_A \to \mathcal{H}_B, U_{\mathcal{N}}: \mathcal{H}_A \to \mathcal{H}_B \otimes \mathcal{H}_E$.

• The complementary channel $\mathcal{N}^c: \mathcal{H}_A \to \mathcal{H}_E$ is defined by

$$\mathcal{N}^c(\rho) = \operatorname{Tr}_B U_{\mathcal{N}}(\rho). \tag{101}$$

• A channel \mathcal{N} is degradable when there exists a CPTP map $\mathcal{T}: \mathcal{H}_B \to \mathcal{H}_E$ such that:

$$\mathcal{N}^c = \mathcal{T} \circ \mathcal{N}. \tag{102}$$

• Anti-degradable channel: a channel whose complement is degradable, i.e. there exists a CPTP map $\mathcal{S}: \mathcal{H}_E \to \mathcal{H}_B$ such that $\mathcal{N} = \mathcal{S} \circ \mathcal{N}^c$.

$\mathcal{P}_n = 0$ Lies on a Measure-Zero Set

- The set of Pauli channels is parametrized by the three-dimensional simplex of probability vectors in \mathbb{R}^4 , as shown in Figure 4
- [Wu et al., 2025b] also showed that the subset satisfying $\mathcal{P}_n = 0$ lies in the edges of this simplex, which is a **measure-zero set**.
- Thus, $\mathcal{P}_n > 0$ almost surely.

Figure 4: Simplex Representing Pauli Channels. Source: [Wu et al., 2025a]

Explicit Decomposition of S^n via P_n

- Now, we establish the connection between \mathcal{P}_n and δ_f when f is either the classical capacity C or the coherent information I_c
- [Wu et al., 2025b] proved the following expression for S^n :

$$S^{n}(\rho) = (1 - \mathcal{P}_{n})\Phi_{+}(\rho) \otimes \omega + \mathcal{P}_{n}\Phi_{-}(\rho) \otimes (I - \omega), \tag{103}$$

where $\omega = |+\rangle\langle+|$ and Φ_{\pm} are two Pauli channels.

• Take partial trace we have:

$$\operatorname{Tr}_{C}[\mathcal{S}^{n}(\rho)] = (1 - \mathcal{P}_{n})\Phi_{+}(\rho) \cdot \operatorname{Tr}(\omega) + \mathcal{P}_{n}\Phi_{-}(\rho) \cdot \operatorname{Tr}(1 - \omega) \quad (104)$$
$$= (1 - \mathcal{P}_{n})\Phi_{+}(\rho) + \mathcal{P}_{n}\Phi_{-}(\rho) = \mathcal{N}^{n}(\rho) \quad (105)$$

where we used the fact that $Tr(\omega) = Tr(1 - \omega) = 1$. Thus,

$$\mathcal{N}^n = (1 - \mathcal{P}_n)\Phi_+ + \mathcal{P}_n\Phi_- \tag{106}$$

Classical Capacity of S^n

[Wu et al., 2025b] proved that the classical capacity C of S^n takes a similar form:

Theorem 3

Let Φ_{\pm} be as in (103). Then

$$C(\mathcal{S}^n) = (1 - \mathcal{P}_n)C(\Phi_+) + \mathcal{P}_n C(\Phi_-). \tag{107}$$

Deriving Classical Causal Gain for Qubit Unital Channels

- We now use Theorem 3 to derive an explicit expression for the classical causal gain δ_C .
- Qubit unital channel are channels that satisfy the following conditions:
 - Action on Qubit: The input and output quantum states are density matrices in a two-dimensional Hilbert space (i.e., 2×2 matrices).
 - Unital Property: The channel maps the identity matrix *I* to itself, i.e.,

$$\mathcal{M}(I) = I.$$

For a single qubit, I is the 2×2 identity matrix.

Classical Capacity of Qubit Unital Channels

• Classical capacity of qubit unital Channels can be computed via the formula

$$C(\mathcal{M}) = \chi(\mathcal{M}) = 1 - H^{\min}(\mathcal{M}) \tag{108}$$

where $\chi(\mathcal{M})$ is the Holevo information, $H^{\min}(M) = \min_{\rho} H(\mathcal{M}(\rho))$ is the minimum output von Neumann entropy of the channel. More general result can be found in [Müller-Hermes, 2021].

• For qubit unital Channels, \mathcal{M} 's eigenvalues α_i (satisfying $\mathcal{M}(A) = \alpha_i A$) determine the minimum output entropy:

$$H^{\min}(\mathcal{M}) = h(\alpha), \quad \alpha = \max_{i} |\alpha_{i}|,$$
 (109)

where h(x) is the binary entropy function $H_b\left(\frac{1+x}{2}\right) = -\frac{1+x}{2}\log\frac{1+x}{2} - \frac{1-x}{2}\log\frac{1-x}{2}$, with domain [-1,1].

Range of Eigenvalues of Pauli Channels

• Pauli channel $\mathcal{N}(\rho) = \sum_{i=0}^{3} p_i \sigma_i \rho \sigma_i^{\dagger}$ is Pauli diagonal:

$$\mathcal{N}(\sigma_j) = \sum_{i=0}^{3} p_i \sigma_i \sigma_j \sigma_i = \lambda_j \sigma_j, \quad \text{for } j = 0, 1, 2, 3$$
 (110)

where λ_j is the jth eigenvalue.

• Apply the following relationship:

$$\sigma_i \sigma_j \sigma_i = \begin{cases} \sigma_j, & \text{if } \sigma_i \text{ commutes with } \sigma_j, \\ -\sigma_j, & \text{if } \sigma_i \text{ anti-commutes with } \sigma_j. \end{cases}$$
 (111)

• Define $\chi_{ij} = \pm 1$ to represent $\sigma_i \sigma_j \sigma_i = \chi_{ij} \sigma_j$, we have:

$$\mathcal{N}(\sigma_j) = \left(\sum_{i=0}^3 p_i \chi_{ij}\right) \sigma_j \tag{112}$$

Range of Eigenvalues of Pauli Channels (cont'd)

• Finally we have the eigenvalues:

$$\lambda_j = \sum_{i=0}^{3} p_i \cdot \chi_{ij}, \quad \text{where } \chi_{ij} = \begin{cases} 1 & \text{if } [\sigma_i, \sigma_j] = 0 \\ -1 & \text{if } \{\sigma_i, \sigma_j\} = 0 \end{cases}$$
 (113)

- For $\sigma_0 = I : \mathcal{N}(I) = I \Rightarrow \lambda_0 = 1$.
- For $\sigma_1 = X$:

$$\sigma_i X \sigma_i = \begin{cases} X & i = 0, 1 \\ -X & i = 2, 3 \end{cases} \Rightarrow \lambda_1 = p_0 + p_1 - p_2 - p_3$$
 (114)

• For $\sigma_2 = Y$:

$$\sigma_i Y \sigma_i = \begin{cases} Y & i = 0, 2 \\ -Y & i = 1, 3 \end{cases} \Rightarrow \lambda_2 = p_0 + p_2 - p_1 - p_3$$
 (115)

• For $\sigma_3 = Z$:

$$\sigma_i Z \sigma_i = \begin{cases} Z & i = 0, 3 \\ -Z & i = 1, 2 \end{cases} \Rightarrow \lambda_3 = p_0 + p_3 - p_1 - p_2$$
 (116)

Range of Eigenvalues of Pauli Channels (cont'd)

• Take λ_1 for example. Since $\sum_{i=0}^{3} p_i = 1$, we have $\lambda_1 = 2(p_0 + p_1) - 1$. Thus:

$$-1 \le \lambda_1 \le 1 \tag{117}$$

where $\lambda_1 = 1$ iff $p_0 + p_1 = 1$, $\lambda_1 = -1$ iff $p_2 + p_3 = 1$.

• Similarly, we have $-1 \le \lambda_2 \le 1, -1 \le \lambda_3 \le 1$. As a result:

$$\lambda_j \in [-1, 1] \quad \forall j \tag{118}$$

- Set γ , μ and ν to be the maximum of absolute values of eigenvalues of \mathcal{N}^n , Φ_+ and Φ_- respectively.
- Assume the eigenvalues of Φ_+ are $\{\alpha_i\}$ and those of Φ_- are $\{\beta_i\}$. Then the eigenvalues of \mathcal{N}^n are given by:

$$\lambda_i = (1 - \mathcal{P}_n)\alpha_i + \mathcal{P}_n\beta_i. \tag{119}$$

• γ satisfies:

$$\gamma = \max_{i} |\lambda_i| \le (1 - \mathcal{P}_n) \max_{i} |\alpha_i| + \mathcal{P}_n \max_{i} |\beta_i| \le 1.$$
 (120)

Explicit Formula for Classical Causal Gain

• The classical capacity of the effective channel is

$$C(\mathcal{S}^n) = (1 - \mathcal{P}_n)C(\Phi_+) + \mathcal{P}_nC(\Phi_-)$$
(121)

$$= (1 - \mathcal{P}_n)(1 - h(\mu)) + \mathcal{P}_n(1 - h(\nu))) \tag{122}$$

$$= 1 - (1 - \mathcal{P}_n)h(\mu) - \mathcal{P}_n h(\nu) \tag{123}$$

• The classical causal gain is then

$$\delta_C = C(\mathcal{S}^n) - C(\mathcal{N}^n) \tag{124}$$

$$= C(\mathcal{S}^n) - (1 - h(\gamma))) \tag{125}$$

$$= h(\gamma) - (1 - \mathcal{P}_n)h(\mu) - \mathcal{P}_n h(\nu) \tag{126}$$

Sufficiency Proof of the Conjecture

- We will prove the sufficiency part of the conjecture $(\mathcal{P}_n > 0 \Rightarrow \delta_C > 0)$ holds for Pauli channels except the completely depolarizing channel with forward and backward orders.
- Combining (120), and the concavity and monotonicity of h(x), we have:

$$h(\gamma) \ge h\left((1 - \mathcal{P}_n)\mu + \mathcal{P}_n\nu\right) \ge (1 - \mathcal{P}_n)h(\mu) + \mathcal{P}_nh(\nu). \tag{127}$$

Therefore,

$$\delta_C = h(\gamma) - (1 - \mathcal{P}_n)h(\mu) - \mathcal{P}_n h(\nu) \ge 0. \tag{128}$$

The equality holds iff $\mu = \nu$.

Important Note

- When computing $\alpha = \max_i |\alpha_i|$ for Φ_+ and Φ_- , we have ruled out the trivial eigenvalue $\lambda_0 = 1$.
- I is an **indistinguishable** input state: the completely mixed state carries no information.
- The true contributors to information transmission are the non-trivial actions of operators like X, Y, Z.
- Therefore, the eigenvalues actually used for $\alpha = \max_i |\alpha_i|$ are those corresponding to $\sigma_1, \sigma_2, \sigma_3$.

Coherent Information

- Next, we will discuss the communication of coherent information.
- For a channel \mathcal{N} and an input state ρ , the coherent information is defined as:

$$I_c(\rho, \mathcal{N}) = S(\mathcal{N}(\rho)) - S(\mathcal{N}^c(\rho)), \tag{129}$$

where $S(\cdot)$ is the von Neumann entropy and \mathcal{N}^c is the complementary channel of \mathcal{N} .

- $S(\mathcal{N}(\rho))$: The entropy of the output state, quantifying the information obtained by the receiver.
- $S(\mathcal{N}^c(\rho))$: The entropy of the environment state, quantifying the amount of quantum information leaked to the environment.
- Quantum information transmission is enabled when $I_c > 0$.

Quantum Causal Gain in Coherent Information

• For a Pauli channel $\mathcal N$, the coherent information attains a maximum on the completely mixed state $\frac{I}{2}$, which is called the hashing bound:

$$I_c\left(\frac{I}{2},\mathcal{N}\right) = S\left(\mathcal{N}\left(\frac{I}{2}\right)\right) - S\left(\mathcal{N}^c\left(\frac{I}{2}\right)\right) = 1 - H(\vec{p})$$
 (130)

where $\vec{p} = (p_0, p_1, p_2, p_3)$ is the probability vector associated with the Pauli channel N.

• Since Φ_{\pm} are both Pauli channels, it follows from (103) that the coherent information of S^n also attains a maximum on $\frac{I}{2}$:

$$I_c(\mathcal{S}^n) = 1 - (1 - \mathcal{P}_n)H(\vec{s}) - \mathcal{P}_nH(\vec{t})$$
(131)

• So we have the causal gain:

$$\delta_I = H(\vec{q}) - (1 - \mathcal{P}_n)H(\vec{s}) - \mathcal{P}_nH(\vec{t})$$
(132)

• Similar to the case of δ_c , it is then straightforward to deduce that $\mathcal{P}_n > 0$ is a sufficient condition for $\delta_I > 0$

Necessary and Sufficient Condition for Causal Gain

Based on previous results, [Wu et al., 2025b] proved the following theorem:

Theorem 4

Let f be the classical capacity or coherent information, and let δ_f be the causal gain associated with forward and backward orders. Then for all Pauli channels (except the completely depolarizing channel when n is odd), the condition $\mathcal{P}_n > 0 \iff \delta_f > 0$ holds.

References I

- Chiribella, G., Wilson, M., and Chau, H. (2021a).

 Quantum and classical data transmission through completely depolarizing channels in a superposition of cyclic orders.

 Physical review letters, 127(19):190502.
- Chiribella, G., Wilson, M., and Chau, H. (2021b).

 Supplemental material for quantum and classical data transmission through completely depolarizing channels in a superposition of cyclic orders.
 - http://link.aps.org/supplemental/10.1103/PhysRevLett.127. 190502.
 - Cubitt, T. S., Ruskai, M. B., and Smith, G. (2008). The structure of degradable quantum channels. Journal of Mathematical Physics, 49(10).

References II

Das, D. and Bandyopadhyay, S. (2022).

Quantum communication using a quantum switch of quantum switches.

Proceedings of the Royal Society A, 478(2266):20220231.

Dong, Q., Quintino, M. T., Soeda, A., and Murao, M. (2023). The quantum switch is uniquely defined by its action on unitary operations.

Quantum, 7:1169.

Ebler, D., Salek, S., and Chiribella, G. (2018).

Enhanced communication with the assistance of indefinite causal order.

Physical review letters, 120(12):120502.

References III

Li, Y. (2010).

Degradable quantum channels.

https://quantum.phys.cmu.edu/QIP/DegChannels.pdf. Department of Physics, Carnegie-Mellon University, Pittsburgh, PA.

Mendl, C. (2007).

Unital quantum channels.

http:

//christian.mendl.net/science/talks/ringberg%202007.pdf. Presentation, 11 December 2007.

References IV

Müller-Hermes, A. (2021).

Lecture 13: Additivity problems.

https://www.uio.no/studier/emner/matnat/math/MAT4430/v22/lecture-notes/lecture13.pdf.

Lecture notes for the course Quantum Information Theory (MAT4430), University of Oslo, Spring 2021.

O'Donnell, R. and Wright, J. (2015).

Lecture 18: Quantum information theory and holevo's bound.

https://www.cs.cmu.edu/~odonnell/quantum15/.

Course 15-859BB: Quantum Computation and Information,

Carnegie Mellon University.

References V

Quantum Zeitgeist (2024).

Quantum switch characterized for first time, paving way for advanced quantum technology.

https://quantumzeitgeist.com/ quantum-switch-characterized-for-first-time-paving-way-for-

Rana, F. (2024).

Quantum information theory.

https:

//courses.cit.cornell.edu/ece531/Lectures/Lectures.htm. ECE 5310 Quantum Optics, Slides 16.

Wikipedia contributors (2025a).

Hilbert-Schmidt operator — Wikipedia, The Free Encyclopedia. https://en.wikipedia.org/wiki/HilbertâĂŞSchmidt_operator.

References VI

- Wikipedia contributors (2025b).

 Qutrit Wikipedia, The Free Encyclopedia.

 https://en.wikipedia.org/wiki/Qutrit.
 - Wolf, M. M. and Pérez-García, D. (2007). Quantum capacities of channels with small environment. Physical Review A—Atomic, Molecular, and Optical Physics, 75(1):012303.
- Wu, Z., Fullwood, J., Ma, Z., Zhou, S.-Q., Zhao, Q., and Chiribella, G. (2025a).

General communication enhancement via the quantum switch. Physical Review $A,\ 111(1):012605.$

References VII

Wu, Z., Fullwood, J., Ma, Z., Zhou, S.-Q., Zhao, Q., and Chiribella, G. (2025b).

Supplemental material for general communication enhancement via the quantum switch.

http:

//link.aps.org/supplemental/10.1103/PhysRevA.111.012605.

Thank you! Any questions?