Zagadnienia

- Fazy projektowania bazy danych
- Model związków encji (Entity Relationship ER)
- Rozszerzony model związków (Enhanced Entity Relationship - EER)
- UML

Fazy projektowania bazy danych

Model związków encji (Entity Relationship - ER)

- Typy encji
- Typy atrybutów
- Typy związków
- Słabe encje
- Związki ternarne (trójskładnikowe)
- Przykłady modelu ER
- Ograniczenia modelu ER

Peter Chen "The Entity–Relationship Model: Toward A Unified View of Data", 1975, ACM Transactions on Database Systems.

uważany za jeden z najbardziej wpływowych artykułów dziedzinie oprogramowania komputerowego

Typy encji

- Typ encji reprezentuje pojęcie biznesowe o jednoznacznym znaczeniu dla określonej grupy użytkowników
 - np. dostawca, student, produkt, pracownik...
- Encja to jedno określone wystąpienie lub instancja typu encji
 - np. Deliwines, Best Wines i Ad Fundum to encje typu encji dostawca

SUPPLIER

Typy atrybutów

- Typ atrybutu reprezentuje właściwość typu encji
 - np. nazwa i adres są typami atrybutu typu encji dostawca
- Atrybut to instancja typu atrybutu

Typy atrybutów

Typy atrybutów

- Dziedziny
- Atrybuty klucza
- Proste a złożone atrybuty
- Jednowartościowe a wielowartościowe atrybuty
- Atrybuty pochodne

Dziedziny

- Dziedzina określa zbiór wartości, które mogą być przypisane do atrybutu każdej pojedynczej encji
 - np. płeć: kobieta i mężczyzna
- Dziedzina może również zawierać wartości null
 - null: 1)wartość nieznana 2) wartość istnieje, ale nie jest dostępna 3) atrybut nie dotyczy tej krotki
- Dziedziny nie są przestawiane w modelu ER

Atrybut klucza

- Atrybut, którego wartości są różne dla każdej pojedynczej encji
 - np.: identyfikator dostawcy, numer produktu, numer ubezpieczenia
- Atrybut klucza może być kombinacją atrybutów
 - np.: kombinacja numeru lotu i daty wylotu

Proste a złożone atrybuty

- Proste (atomowe) atrybuty nie mogą być dalej dzielone na części
 - np. numer dostawcy, status dostawcy
- Złożone atrybuty można rozłożyć na inne znaczące atrybuty
 - np. adres, nazwa

Jednowartościowe a wielowartościowe atrybuty

- Jednowartościowy atrybut ma tylko jedną wartość dla określonej encji
 - np. numer produktu, nazwa produktu
- Wielowartościowy atrybut może mieć wiele wartości
 - np. adresy e-mailowe

Pochodny atrybut

- Można wyprowadzić z innego typu atrybutu
 - np. wiek

Typy związków

- Definicja
- Stopień i role
- Ograniczenia typu związku
- Atrybuty związków

Definicja

- Związek reprezentuje zależność między dwiema lub większą liczbą encji
- Typ związku definiuje zbiór związków między instancjami jednej, dwóch lub większej liczby typów encji

Stopień i role

- Stopień typu związków odpowiada liczbie typów encji uczestniczących w typie związków
 - Unarny: stopień 1, binarny: stopień 2, ternarny: stopień 3
- Role typu związku wskazują różne kierunki, które można wykorzystać do jego interpretacji

Stopień i role

Współczynnik liczności (cardinality)

- Każdy typ związku można scharakteryzować pod względem współczynnika liczności, który określa minimalną lub maksymalną liczbę wystąpień związku, w których może uczestniczyć pojedyncza encja
- Minimalny współczynnik liczności może być 0 lub 1
 - jeżeli 0: częściowy udział
 - jeżeli 1: całkowity udział lub zależność istnienia
- Maksymalny współczynnik liczności: 1 lub N
- Typy związków zazwyczaj charakteryzuje się maksymalnym współczynnikiem liczności
 - 4 opcje dla binarnych typów związków: 1:1, 1:N, N:1 i M:N.

Współczynnik liczności

Atrybuty typów związków

- Typy związków mogą również mieć atrybuty
- Te atrybuty można przypisać do jednego z uczestniczących typów encji w przypadku typu relacji 1:1 lub 1:N

Słabe typy encji

- Silny typ encji posiada atrybut klucza
- Słaby typ encji nie ma własnego atrybuta klucza
 - powiązane z typem encji właściciela, od którego pożycza atrybut, aby utworzyć atrybutu klucza

Słaby typy encji

 Słaby typ encji jest zawsze zależny od typu encji właściciela (nie odwrotnie)

Trójskładnikowe (ternarne) typy związków

 Załóżmy, że mamy sytuację, w której dostawcy mogą dostarczać produkty do projektów. Dostawca może dostarczyć konkretny produkt do wielu projektów.
 Produkt do konkretnego projektu może być dostarczany przez wielu dostawców. W ramach projektu określony dostawca może dostarczać wiele produktów. Model musi również zawierać ilość i termin dostarczenia określonego produktu do konkretnego projektu przez konkretnego dostawcę.

22

Ternarne typy związków

Utrata semantyki

Ternarne typy związków

Załóżmy, że mamy dwa projekty: projekt 1 używa ołówka i pióra, a projekt 2 używa pióra. Dostawca Peters dostarcza ołówek do projektu 1 i pióro do projektu 2, podczas gdy dostawca Johnson dostarcza pióro do projektu 1.

SUPPLY

Supplier	Product	Project
Peters	Pencil	Project 1
Peters	Pen	Project 2
Johnson	Pen	Project 1

SUPPLIES

Supplier	Project
Peters	Project 1
Peters	Project 2
Johnson	Project 1

USES

Product	Project
Pencil	Project 1
Pen	Project 1
Pen	Project 2

CAN SUPPLY

Supplier	Product
Peters	Pencil
Peters	Pen
Johnson	Pen

• Z binarnych typów związków nie jest jasne, kto dostarcza pióro do projektu 1

Trójskładnikowe typy związków

Trójskładnikowe typy związków

Model ER - przykład

Model ER - przykład

Ograniczenia modelu ER

- Model ER przedstawia tymczasową migawkę i nie jest w stanie modelować ograniczeń czasowych
 - np.: projekt musi być przypisany do działu po miesiącu, pracownik nie może wrócić do działu, którego wcześniej był kierownikiem, po dwóch tygodniach musi zostać przydzielone zamówienie do dostawcy itp.
- Model ER nie może zagwarantować spójności w wielu typach związków
 - np.: pracownik powinien pracować w dziale, którym zarządza, pracownicy powinni pracować nad projektami przypisanymi do działów, do których należą, dostawcy mogą być przydzielani tylko do zamówień zakupu produktów, które mogą dostarczyć

Ograniczenia modelu ER

- Dziedziny nie są uwzględnione w modelu ER
 - np.: godziny powinny być dodatnie; prodtype musi być czerwony, biały lub niebieski, supstatus jest liczbą całkowitą od 0 do 100
- Funkcje nie są uwzględnione w modelu ER
 - np.: obliczyć średnią liczbę projektów, nad którymi pracuje pracownik; określić, który dostawca pobiera maksymalną cenę za produkt

Rozszerzony model EER (Enhanced Entity Relationship)

- Specjalizacja/Generalizacja
- Kategoryzacja
- Agregacja
- Przykłady modelu EER
- Projektowanie modelu EER

- Specjalizacja odnosi się do procesu definiowania zbioru podklas typu encji
 - Przykład: superklasa ARTIST z podklasami SINGER i ACTOR
- Proces specjalizacji definiuje relację "IS A"
- Specjalizacja może następnie ustalić dodatkowe specyficzne typy atrybutów dla każdej podklasy
 - Przykład: piosenkarz może mieć typ atrybutu stylu muzycznego
- Specjalizacja może również ustanowić dodatkowe specyficzne typy relacji dla każdej podklasy
 - Przykłady: aktor może występować w filmach, piosenkarz może być częścią zespołu
- Podklasa dziedziczy wszystkie typy atrybutów i typy relacji ze swojej nadklasy

32

- Generalizacja, zwana również abstrakcją, to odwrotny proces specjalizacji
 - Specjalizacja odpowiada procesowi top-down udoskonalania koncepcji (conceptual refinment)
 - Generalizacja odpowiada procesowi bottom-up syntezy pojęciowej (conceptual synthesis)

- Ograniczenie rozłączności (disjointness constraint) określa, do jakich podklas może należeć encja nadklasy
 - Specjalizacja rozłączna to specjalizacja, w której jednostka może być członkiem co najwyżej jednej z podklas
 - Specjalizacja nakładająca się to specjalizacja, w której ta sama jednostka może należeć do więcej niż jednej podklasy
- Ograniczenie kompletności (completeness constraint)
 wskazuje, czy wszystkie encje nadklasy powinny należeć do
 jednej z podklas, czy nie
 - Całkowita specjalizacja to specjalizacja, w której każda encja w superklasie musi być członkiem jakiejś podklasy
 - Częściowa specjalizacja pozwala encji należeć tylko do nadklasy i do żadnej z podklas

Specjalizacja/Generalizacja

Specjalizacja/Generalizacja

 W hierarchii specjalizacji każda podklasa może mieć tylko jedną nadklasę i dziedziczy typy atrybutów i typy relacji wszystkich poprzedzających ją nadklas aż do korzenia hierarchii

Specjalizacja/Generalizacja

 W sieci specjalizacji podklasa może mieć wiele nadklas (wielokrotne dziedziczenie)

Kategoryzacja

- Kategoria to podklasa, która ma kilka możliwych nadklas
- Każda superklasa reprezentuje inny typ encji
- Kategoria reprezentuje zbiór encji, który jest podzbiorem unii nadklas

Kategoryzacja

- Dziedziczenie w przypadku kategoryzacji odpowiada encji dziedziczącej tylko atrybuty i relacje tej nadklasy, której jest członkiem (dziedziczenie selektywne)
- Kategoryzacja może być całkowita lub częściowa
 - Całkowita: wszystkie encje nadklas należą do podklasy
 - Częściowa: nie wszystkie encje nadklas należą do podklasy

Uwaga: całkowita kategoryzacja może być również reprezentowana jako specjalizacja/generalizacja

Agregacja

- Typy encji, które są powiązane przez określony typ związku, można łączyć lub agregować w zagregowany typ encji wyższego poziomu
- Agregacja jest szczególnie przydatna, gdy typ zagregowanej encji ma swoje własne typy atrybutów i/lub typy związków

Przykład

Projektowanie modelu EER

- Zidentyfikuj typy encji
- 2. Zidentyfikuj typy związków i potwierdź ich stopień
- 3. Podaj współczynniki liczności i ograniczenia uczestnictwa (uczestnictwo całkowite lub częściowe)
- 4. Zidentyfikuj typy atrybutów i sprawdź, czy są one proste czy złożone, mają jedną lub wiele wartości, są pochodne czy nie
- 5. Połącz każdy typ atrybutu z typem encji lub typem związku
- 6. Wskaż typ(y) atrybutów klucza każdego typu encji
- 7. Zidentyfikuj słabe typy jednostek i ich klucze częściowe
- 8. Zastosuj abstrakcje, takie jak generalizacja/specjalizacja, kategoryzacja i agregacja
- 9. Określ cechy każdej abstrakcji, takie jak rozłączne lub nakładające się, całkowite lub częściowe

Narzędzia

- Oracle Data Modeler
- Visual Paradigm
- Vertabelo
- SSMS
- Draw.io
- ...

Geneza UML

- Unified Modeling Language (UML) to język modelowania, który pomaga w specyfikacji, wizualizacji, konstrukcji i dokumentacji artefaktów systemu oprogramowania
- UML został zaakceptowany jako standard przez Object Management Group (OMG) w 1997 roku i zatwierdzony jako standard ISO w 2005 roku
- Najnowsza wersja to UML 2.5, wprowadzona w 2015 roku
- UML oferuje różne diagramy, takie jak diagramy przypadków użycia, diagramy sekwencji, diagramy pakietów, diagramy wdrożeń itp.
- Z punktu widzenia modelowania baz danych najważniejszy jest diagram klas

Obiektowość

- Klasa jest definicją schematu dla zbioru obiektów
 - Podobne do typu encji w ER
- I odwrotnie, obiekt jest instancją klasy
 - Podobne do encji w ER
- Obiekt jest charakteryzowany zarówno poprzez zmienne, jak i metody
 - Zmienne odpowiadają typom atrybutów, a wartości zmiennych atrybutom w ER
 - Brak odpowiednika ER dla metod

Obiektowość

- Przykładowa klasa Student
 - Obiekt: Bart, Wilfried, Seppe
 - Przykładowe zmienne: imię i nazwisko ucznia, płeć i data urodzenia
 - Przykładowe metody: calcAge, isBirthday, hasPassed(courseID)
- Ukrywanie informacji (inaczej enkapsulacja) stwierdza, że do zmiennych obiektu można uzyskać dostęp tylko za pomocą metod pobierających (getter) lub ustawiających (seter)
 - metoda pobierająca służy do pobierania wartości zmiennej (getter)
 - metoda ustawiająca przypisuje mu wartość (setter)

Obiektowość

Dziedziczenie

 Nadklasa może mieć jedną lub więcej podklas, które dziedziczą zarówno zmienne, jak i metody z nadklasy

Przeciążanie metod

 Różne metody w tej samej klasie mogą mieć tę samą nazwę, ale różną liczbę lub typ argumentów wejściowych