PROPOSAL

Jesse Wood, Bing-Xue, Mengjie Zhang, Bach Hoai Nguyen, Daniel Killeen

Victoria University Engineering and Computer Science Kelburn, Wellington, New Zealand

ABSTRACT

Submitted in partial fulfilment of the PhD in Artificial Intelligence.

Index Terms— AI applications, Classification, Feature Selection, High-dimensional data, Multidisciplinary Mass Spectrometry, Fatty Acid

1. INTRODUCTION

- Scope place the problem in the world.
- Specifics to New Zealand, sustainability.
- Fish processing automation, quality control, containination.
- Current state-of-the-art
 - GC-MS, manual, time consuming, expensive, destructive, instrumental drift.

2. LITERATURE

- Mass spectrometry [1]
- REIMS
- Classification
- Feature Selection
- Interpretable ML
- Genetic Programming
- · Transfer Learning

3. PRELIMINARY WORK

- Automated Fish Classification on GC-MS data.
- Genetic Programming (GP) for GC-MS data
 - Single-Tree GP
 - Multi-tree GP
- REIMS exploratory data analysis

4. CONTRIBUTIONS

- Each research question applies to the Hoki and Jack Mackeral datasets.
- For each dataset, hoki and mackeral.

These are the research questions from Plant and Food Research.

- Can REIMS data be used to classify different species tissues? What variables are responsible?
 - Classification
 - Feature Importance Interpretable
- Can REIMS data detect mixed-species contaminiation in fish tissues? At what concentration? What varaibles are responsible?
 - Classification
 - Regression
 - Feature importance Interpretable
- Can REIMS data detect mineral oil contamination in fish? At what concentration? What variables are responsible?
 - Classification
 - Regression
 - Feature importance Interpretable

Thanks to New Zealand Plant & Food Research for datasets, funding and expertise.

- Can REIMS data be used to distinguish between different fish individuals? What variables are responsible?
 - Identification
 - Feature imporance Interpretable

5. MILESTONES

- Literature Review
- EDA
- Preprocessing
- Classification
- Cross-species Contaminiation
- Mineral-oil Contaminiation
- Individual Identification
- Auto ML
- · Thesis

6. THESIS OUTLINE

- 1. Introduction
- 2. Background
 - Mass Spectrometry
 - REIMS
 - Classification / Regression
 - Interpretable ML
- 3. Preparations
 - Exploratory Data Analysis
 - Preprocessing
- 4. Applications
 - Classification
 - Contaminiation Detection
 - Individual Identification
 - Auto ML
- 5. Discussion
- 6. Conclusion

7. RESOURCES

- Hardware
 - ECS Grid Compute
 - Rapoi
 - Niwa HPC via Auckland University
- Software
 - Repository Github
 - Project Management Github Projects
 - Programming language Python
 - Documentation Read the Docs
- Experience
 - Field-trip to Callaghan Innovation to see REIMS
 - Field-trip to NZ Plant and Food Research (if necessary for future datasets).

8. APPENDIX

9. REFERENCES

[1] K Eder, "Gas chromatographic analysis of fatty acid methyl esters," *Journal of Chromatography B: Biomedical Sciences and Applications*, vol. 671, no. 1-2, pp. 113–131, 1995.