المادة: رياضيات – لغة فرنسية الشهادة: الثانوية العامة الفرع: الآداب والانسانيات نموذج رقم: 1/ 2019 المدة: ساعة و احدة

لهيئة الأكاديمية المشتركة قسم: الرياضيات

ملاحظة: يُسمح باستعمال آلة حاسبة غير قابلة للبرمجة أو اختزان المعلومات أو رسم البيانات. يستطيع المرشح الإجابة بالترتيب الذي يناسبه (دون الالتزام بترتيب المسائل الواردة في المسابقة).

I- (10 points)

Soit f la fonction définie sur \mathbb{R} par $f(x) = \frac{4}{x^2 + 2x + 2}$.

On désigne par (C) sa courbe représentative dans un repère orthonormé $(O; \vec{i}, \vec{j})$.

1- a) Déterminer $\lim_{x\to +\infty} f(x)$ et $\lim_{x\to -\infty} f(x)$.

Déduire que (C) admet une asymptote.

- b) Pour tout x dans \mathbb{R} , prouver que (C) est au-dessus de l'asymptote.
- c) Déterminer les coordonnées de A et B, les points d'intersection de (C) et la droite d'équation y = 2; $(x_A < 0)$
- 2- a) Montrer que $f'(x) = \frac{-8(x+1)}{(x^2+2x+2)^2}$, puis dresser le tableau de variations de f.
 - b) Calculer f(-3) et f(1), puis tracer (C).
- 3- S est le sommet de (C).
 - a) Prouver que (SA) est tangent à (C) en A.
 - b) Résoudre l'inéquation f(x) < 2.
 - c) Ecrire l'équation de (*T*), la tangente en *B* à (*C*). Vérifier que (*T*) passe par *S*.
- 4- Soit g la fonction définie par $g(x) = ax + \frac{b}{x-1}$
 - (C') est la courbe représentative de g dans $(O; \vec{i}, \vec{j})$.

Calculer a et b pour que (C') soit tangent en B à (C').

- 5- Dans ce qui suit, on prend a = -4 et b = -2.
 - a) Déterminer le domaine de définition de g.
 - b) Déterminer les asymptotes à (C').

II- (5 points)

- 1- Résoudre le système suivant $\begin{cases} x y = 4 \\ 2x 3y = 0 \end{cases}$
- 2- Un sac contient des crayons rouges et bleus.

Les crayons bleus dépassent les crayons rouges par 4, et les crayons rouges représentent

- $\frac{2}{5}$ du total des crayons.
- a) Montrer que ce texte est représenté par le système donné dans la partie 1.
- b) Déterminer le nombre de crayons bleus et celui des crayons rouges.
- 3- Le prix d'un crayon rouge est le double de celui d'un crayon bleu et ces deux crayons coûtent ensemble 5250 LL.

Déterminer le prix de chaque crayon.

III- (5 points)

Le tableau suivant représente la distribution des élèves de la classe de seconde dans trois sections.

	Section A	Section C	Section D	Total
Garçons	15		12	
Filles		17		
Total	25	30		80

- 1- Compléter le tableau ci-dessus.
- 2- Un élève est choisi au hasard des trois sections.

On considère les évènements suivants :

- A: L'élève choisi est de la section A.
- C: L'élève choisi est de la section C.
- D: L'élève choisi est de la section D.
- B: L'élève choisi est un garçon.
- G: L'élève choisi est une fille.
- a) Montrer que $P(D) = \frac{5}{16}$.
- b) Calculer les probabilités suivantes

$$P(D \cap G), P(D \cup G), P({}^{C}/_{B}), P({}^{G}/_{A}).$$

c) Sachant que l'élève choisi est de la section A ou D.

Calculer la probabilité qu'il soit un garçon.

2- Deux élèves sont choisis au hasard l'un après l'autre pour rencontrer le directeur de telle façon que le premier élève ne retourne plus à sa classe.

Calculer la probabilité que l'un des élèves soit de la section A et que le second soit un garçon hors de la section A.

المادة: رياضيات – لغة فرنسية الشهادة: الثانوية العامة الفرع: الآداب والانسانيات نموذج رقم: 1 / 2019 المدّة: ساعة واحدة

الهيئة الأكاديمية المشتركة قسم: الرياضيات

أسس التصحيح

QI	<u>Réponses</u>				
1-a)	$\lim_{x \to +\infty} f(x) = \lim_{x \to -\infty} f(x) = 0 \text{ alors } (x'x) \text{ est une asymptote à } (C).$				
b)	f(x) > 0, donc (C) est au-dessus de $(x'x)$.				
c)	$f(x) = 2$, donc $x^2 + 2x = 0$ alors $x = 0$ ou $x = -2$.				
2-a)	Donc $A(-2, 2)$ et $B(0, 2)$. $f'(x) = \frac{-8(x+1)}{(x^2+2x+2)^2}.$ $x -\infty -1 +\infty$ $f'(x) + 0 -$ $f(x) 0$	1.5			
b)	$f(-3) = \frac{4}{5} = f(1).$ $A = \frac{4}{5}$ $A $	1.5			
3-a)	Pente (SA) = 2 et $f'(-2) = 2$.				
b)	Donc (SA) est tangente à (C) en A. f(x) < 2, On considère le partie de (C) au-dessous de (AB). alors $x < -2$ ou $x > 0$.				
c)	f'(0) = -2; $(T) : y = -2x + 2$ et S vérifie l'équation de (T) .				
4-	$g(x) = ax + \frac{b}{x-1} \qquad B(0,2) \text{ est sur } (C') \text{ alors } b = -2.$ $g'(x) = a - \frac{b}{(x-1)^2} \text{ donc } g'(0) = a + 2 = -2 \text{ alors } a = -4.$				
5-a)	$D_g =]-\infty, 1[\cup]1, +\infty[$				
b)	Les équations des asymptotes à (C') sont $x = 1$ car $\lim_{x \to 1} g(x) = \pm \infty$ et $y = -4x$ car $\lim_{x \to \pm \infty} (g(x) + 4x) = \lim_{x \to \pm \infty} \frac{-2}{x - 1} = 0$.				

QII		<u>pts</u>
1-	$\begin{cases} x - y = 4 \\ 2x - 3y = 0 \end{cases}$, alors $x = 12$ et $y = 8$.	1
2-a)	x = nombre de crayons bleus y = nombre de crayons rouges donc $x = y + 4$ ce qui donne $x - y = 4$ et $5y = 2x + 2y$ ce qui donne $2x - 3y = 0$	1
b)	Le nombre de crayons bleus = 12 Le nombre de crayons rouges = 8	1
3-	a = Le prix d'un crayon bleu, donc 2a = le prix d'un crayon rouge. a + 2a = 5250 alors 3a = 5250 alors a = 1750 LL et b = 3500 LL	2

QIII						<u>pts</u>
1-	Garçons Filles Total	A 15 10 25	C 13 17 30	D 12 13 25	total 40 40 80	1
a)	$P(D) = \frac{25}{80} = \frac{5}{16}$					
b)	$P(D) = \frac{25}{80} = \frac{5}{16}$ $P(D \cap G) = \frac{13}{80}$ $P(D \cup G) = P(D) + P(G) - P(D \cap G) = \frac{25}{80} + \frac{40}{80} - \frac{13}{80} = \frac{13}{20}$ $P(C/B) = \frac{\text{nombre de garcons dans C}}{\text{nombre total des garcons}} = \frac{13}{40}$ $P(G/A) = \frac{\text{nombre des filles dans A}}{\text{Nombre total des élèves dans A}} = \frac{2}{5}$ $P(B/A \cup D) = \frac{\text{nombre des garcons dans A ou D}}{\text{nombre des élèves dans A ou D}} = \frac{27}{50}$					
3-	$P(\text{\'el\`eve de A et garcon de }\bar{A}) = P(A, \text{garcon }\bar{A}) + P(\text{garcon }\bar{A}, A) = \frac{25}{80} \times \frac{25}{79} + \frac{25}{80} \times \frac{25}{79} = \frac{125}{632}$					