PA1 Forward Kinematics Report

Peng Xu

Oct 3, 2017

Overview

Comparison between the Exponential Method and the D-H Method for Forward Kinematics computation.

The following files are included as two python programs and a pdf report.

- ./fk_exp.py
- ./fk_dh.py
- · ./report.pdf

Exponential Method

Parameter preparation

The coordinate frame choosen and acccording parameters are shown in Appendix Page 1 and 2.

Code

./fk_exp.py

```
math.cos(theta))
# compute transformation matrix
def compute exp epsilon(exp w, q):
    p = np.matmul(np.eye(3) - exp w, q)
    return np.vstack((np.hstack((exp_w, p)), np.array([0, 0, 0, 1])))
\# compute the final gst expression except for gst0
def compute gst by exp(w, q, theta):
    gst = np.eye(4)
    for i in range(len(w)):
        exp ep = compute exp w(w[i], theta[i])
       gst = np.matmul(gst, compute exp epsilon(exp ep, q[i]))
    return gst
    # geometric parameters
   10 = 13
   11 = 14.7
   12 = 12
   13 = 12
   14 = 9
   qst 0 = np.matrix([[1, 0, 0, 12+13+14],
                       [0, 0, 0, 1]])
   w0 = np.array([0, 0, 1]).reshape(3, 1)
   w1 = np.array([0, -1, 0]).reshape(3, 1)
   w2 = np.array([0, 0, -1]).reshape(3, 1)
    w3 = np.array([0, 0, -1]).reshape(3, 1)
   w4 = np.array([0, 0, -1]).reshape(3, 1)
   w5 = np.array([1, 0, 0]).reshape(3, 1)
   q0 = np.array([0, -10, 11]).reshape(3, 1)
   q1 = np.array([0, -10, 11]).reshape(3, 1)
   q2 = np.array([0, -10, 11]).reshape(3, 1)
   q3 = np.array([12, -10, 11]).reshape(3, 1)
   q4 = np.array([12+13, -10, 11]).reshape(3, 1)
   q5 = np.array([12+13+14, -10, 11]).reshape(3, 1)
   q_{list} = [q0, q1, q2, q3, q4, q5]
    start theta list = np.array([-0.003, -0.002, 0.000, 0.000, 0.000,
-1.571).reshape(-1, 1)
    end theta list = np.array([0.122, -0.230, 1.170, -0.023, 0.750,
3.120]).reshape(-1, 1)
    gst exp = compute gst by exp(w_list, q_list,
theta=end theta list-start theta list) * gst 0
    print("gst by exp = \n", gst exp)
```

D-H Method

Parameter preparation

The coordinate frame choosen and according parameters are shown in Appendix Page 3.

Code

```
#!/usr/bin/env python3
Created on Sun Oct 1 19:44:27 2017
@author: pengxu
import numpy as np
import math
# DH matrix of each coordinate
def compute DH matrix(d, theta, a, alpha):
    Rz theta = np.matrix([[math.cos(theta), -math.sin(theta), 0, 0],
                          [math.sin(theta), math.cos(theta), 0, 0],
                          [0, 0, 0, 1]])
    Tz d = np.matrix([[1, 0, 0, 0],
                      [0, 0, 0, 1]]
    Tx a = np.matrix([[1, 0, 0, a],
    Rx \ alpha = np.matrix([[1, 0, 0, 0],
                          [0, math.cos(alpha), -math.sin(alpha), 0],
                          [0, math.sin(alpha), math.cos(alpha), 0],
    return Rz theta * Tz d * Tx a * Rx alpha
# multiply all the DH matrice
def compute_gst_by_dh(d, theta, a, alpha):
   A = np.eye(4)
   for i in range(len(d)):
       A = A * compute DH matrix(d[i], theta[i], a[i], alpha[i])
   return A
    # geometric parameters
   11 = 14.7
   12 = 12
```

```
14 = 9
    # zero configuration
   start theta list = np.array([0, -0.003, -0.002, 0.000, 0.000, 0.000,
-1.571).reshape(-1, 1)
    # end configuration
    end theta list = np.array([0, 0.122, -0.230, 1.170, -0.023, 0.750,
3.120]).reshape(-1, 1)
    # D-H Parameters
   d = [11, 0, 0, 0, 0, 14]
    theta = np.array([-math.pi/2, math.pi/2, 0, 0, math.pi/2, 0]).reshape(-1, 1)
   alpha = [0, math.pi/2, math.pi/2, 0, 0, math.pi/2, math.pi/2]
    gst dh = compute gst by dh(d, theta+end theta list-start theta list, a, alpha)
    # turn pi/2 radius to be identical with the Tool Frame in the Exponential
method
    Rz halfpi = np.matrix([[math.cos(math.pi/2), -math.sin(math.pi/2), 0, 0],
                          [math.sin(math.pi/2), math.cos(math.pi/2), 0, 0],
                          [0, 0, 0, 1]])
   gst dh = gst dh*Rz halfpi
    print("gst by dh = \n", gst dh)
```

Verification

1. Equivalence

To prove the two methods above are quivalent, the results of the two programs should be the same.

Considering the zero configuration as below,

```
(-0.003, -0.002, 0.000, 0.000, 0.000, -1.571) radians
```

and the final joint angles as

```
(0.122 -0.230 1.170 -0.023 0.750 3.120) radians
```

we can get the results as following,

Since they are equal, the equivalence is proved.

1. Belonging to SE(3)

According to the definition, any rigid transformation in 3D can be described by means of a 4×4 matrix P with the following structure:

```
P = [ R p;
0 0 0 1]
```

where the 3 \times 3 orthogonal matrix R \square SO(3) is the rotation matrix 1 (the only part of P related to the 3D rotation) and the vector (x, y, z) represents the translational part of the 6D pose.

Obviously, here we only need to prove R'R = RR' = I and |R| = 1.

I used the following program to verify,

Thus, the result belongs to SE(3).

Appendix

$$\frac{g}{g_{50}(0)} = \begin{bmatrix}
1 & \frac{1}{2} + \frac{1}{4} \\
0 & 0 & 0
\end{bmatrix}$$

Thus,
$$\xi_i = \left[-\omega_i \times \xi_i \right], \quad i = 0, 1, \dots, 5$$

4) Lasely, we obtain
$$g_{5t(0)} = e^{\frac{2}{6}080}e^{\frac{2}{6}81}e^{\frac{2}{6}82}e^{\frac{2}{6}93}e^{\frac{2}{6}94}e^{\frac{2}{6}95}g_{5t(0)}$$

where,

$$e^{\sum_{i=1}^{n} \theta_{i}} = \begin{bmatrix} e^{\widehat{\omega}_{i}\theta_{i}} & (I - e^{\widehat{\omega}_{i}\theta_{i}}) \theta_{i} \\ 0 & 0 & 0 \end{bmatrix}$$

$$e^{\widehat{\omega}_i \theta_i} = I + \widehat{\omega}_i \sin \theta_i + \widehat{\omega}_i^2 (1 - \cos \theta_i)$$

$$i > 0, 1, \dots, 5$$

a d 1-2 T 五之 T