

Sistemas Operacionais

Memória virtual e paginação

Memória

Gerenciamento de memória:

Figura 3.6 (a) Parte da memória com cinco processos e três segmentos de memória. As marcas mostram as unidades de alocação de memória. As regiões sombreadas (0 no mapa de bits) estão livres. (b) O mapa de bits correspondente. (c) A mesma informação como lista.

Memória

Memória Virtual

Figura 3.8 A posição e a função da MMU. Aqui a MMU é mostrada como parte do chip da CPU (processador) porque isso é comum atualmente. Contudo, em termos lógicos, poderia ser um chip separado, como ocorria no passado.

Figura 3.9 A relação entre endereços virtuais e endereços de memória física é dada pela tabela de páginas. Cada página começa com um múltiplo de 4096 e termina 4095 endereços acima; assim, 4K–8K na verdade significa 4096–8191 e 8K–12K significa 8192–12287.

- Acelerando a paginação:
- Problemas na implementação da paginação:
 - O mapeamento do endereço virtual para o físico deve ser rápido;
 - Se o espaço virtual for grande, a tabela de páginas será grande;

Memória

Tabelas de páginas (multinível)

Memória

Estrutura de uma entrada de uma tabela de páginas;

Figura 3.11 Entrada típica de uma tabela de páginas.

Memória

Buffers para tradução de endereço:

Válida	Página virtual	Modificada	Proteção	Moldura da página
1	140	1	RW	31
1	20	0	RX	38
1	130	1	RW	29
1	129	1	RW	62
1	19	0	RX	50
1	21	0	RX	45
1	860	1	RW	14
1	861	1	RW	75

Tabela 3.1 Uma TLB para acelerar a paginação.

- Falta de páginas:
 - Qual página deve ser removida?
 - A página modificada deve ser salva, se não tiver sido modificada será apenas sobreposta;
 - Melhor escolher uma página que não está sendo muito utilizada;

- Algoritmos de substituição de páginas:
- Algoritmo ótimo de substituição de página.
- Algoritmo de substituição de página não usado recentemente.
- Algoritmo de substituição de página primeiro a entrar, primeiro a sair.
- Algoritmo de substituição de página segunda chance.
- Algoritmo de substituição de página de relógio.
- Algoritmo de substituição de página usado menos recentemente.
- Algoritmo de substituição de página de conjunto de trabalho.
- Algoritmo de substituição de página WSClock.