Cálculo 2 Lista 1 — Integrais

Prof. Adriano Barbosa

- 1. a. Estime a área sob o gráfico $f(x) = 1 + x^2$ de x = -1 até x = 2 usando três retângulos aproximantes e escolhendo os c_i como extremidades direitas. Então, aperfeiçoe sua estimativa utilizando seis retângulos aproximantes. Esboce a curva e os retângulos aproximantes.
 - b. Repita a parte a. usando extremidades esquerdas.
 - c. Repita a parte a. escolhendo os c_i como o ponto médio de cada subintervalo.
 - d. A partir de seus esboços das partes a., b., e c., qual parece ser a melhor estimativa?
- 2. a. Calcule a soma de Riemann para $f(x)=x^3-6x$ tomando como pontos amostrais as extremidades direitas e $a=0,\,b=3$ e n=6.
 - b. Calcule $\int_0^3 x^3 6x \ dx$ pela definição.
- 3. O gráfico de g consiste em duas retas e um semicírculo. Use-o para calcular cada integral $\,$

a.
$$\int_0^2 g(x)\ dx$$
b. $\int_2^6 g(x)\ dx$ c. $\int_0^6 g(x)\ dx$

4. Calcule as integrais interpretando-as em termos de áreas.

a.
$$\int_{-1}^{2} 1 - x \ dx$$
 b. $\int_{-1}^{2} |x| \ dx$

5. Apenas analisando o gráfico das funções, calcule as seguintes integrais

a.
$$\int_{-1}^1 x \ dx$$
 b. $\int_{-1}^1 |t| \ dt$ c. $\int_{-1}^1 y^2 \ dy$ d. $\int_{-\pi}^{\pi} \sin \theta \ d\theta$ e. $\int_{-\pi}^{\pi} \cos \phi \ d\phi$

Deixe os itens b. e c. em função de alguma área.

6. Use o Teorema Fundamental do Cálculo para encontrar a derivada das funções abaixo

a.
$$g(x) = \int_{1}^{x} \frac{1}{t^3 + 1} dt$$

b.
$$G(x) = \int_{x}^{1} \cos(\sqrt{t}) dt$$

- c. $h(x) = \int_{2x}^{3x} \frac{u^2 1}{u^2 + 1} \ du$ (dica: use as propriedades de integrais e a
- 7. Calcule as integrais

a.
$$\int_{1}^{2} \frac{3}{t^4} dt$$

b.
$$\int_0^{\pi/4} \sec \theta \, \lg \theta \, d\theta$$

c.
$$\int_{-1}^{1} e^{u+1} du$$

d.
$$\int_0^1 x^e + e^x \, dx$$

e.
$$\int_0^\pi f(x) \ dx, \text{ onde } f(x) = \begin{cases} \sin x, & \text{se } 0 \leqslant x < \frac{\pi}{2} \\ \cos x, & \text{se } \frac{\pi}{2} \leqslant x \leqslant \pi \end{cases}$$

Fórmulas úteis:
$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$$

$$\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$$

$$\sum_{i=1}^{n} i^3 = \left[\frac{n(n+1)}{2}\right]^2$$