Thoughtworks

Promise based assertion framework

王博

Conception

Promise

Promise : two basic type

promise: exist collision

promise: not exist collision

Basic Promise : state

Promise: relationship

- 1. vehicle 0 is stop
- 2. distance of vehicle 0 and vehicle 1 is between 5m and 15m

Promise : relationship

- 1. vehicle 0 is not collision
- 2. vehicle 0 is not stop

Promise : composite

- 1. vehicle 0 is not collision
- 2. vehicle 0 is stop
- 3. distance of vehicle 0 and vehicle 1 ...

Promise : all

Promise : result

Fact

Closure Fact

Fact without predicate

They simply present a state.

Fact with predicate

They often obtain value from event and environment. After compose a predicate, then makes a fact.

Fact with predicate

Predicate

BOOL PRED(CONST T& VALUE);

Predicate: conjunct

Predicate: compose with algorithm

Algorithm

Execute a special calculation, could be composed and reused.

How to describe? DSL

Inner DSL: C++

Outer DSL