

Παζλ τετραγωνικού πλέγματος

Σε αυτό το παζλ, σας δίνεται ένα τετραγωνικό πλέγμα $N\times N$, το οποίο αποτελείται από διαφορετικούς ακέραιους αριθμούς, από 0 έως και $N\times N-1$, συμπεριλαμβανομένων. Ο στόχος σας είναι να φτάσετε στην κατάσταση όπου ο αριθμός στο σημείο τομής της i-οστής γραμμής και της j-οστής στήλης είναι ίσος με $i\times N+j$ για κάθε $0\times i,j< N$. Μπορείτε να επιτύχετε αυτόν τον στόχο χρησιμοποιώντας δύο τύπους κινήσεων:

- Down move: "D a[0] a[1] ... a[N-1]", όπου a[0], a[1], ... a[N-1] αποτελεί αναδιάταξη των αριθμών από την επάνω γραμμή του πλέγματος. Με αυτή την κίνηση, η πιο πάνω γραμμή αφαιρείται και δημιουργείται η νέα γραμμή με τους αριθμούς a[0], a[1], ... a[N-1] από αριστερά προς τα δεξιά προστίθεται στο κάτω μέρος του πλέγματος.
- Right move: "R b[0] b[1] ... b[N-1]", όπου b[0], b[1], ... ,b[N-1] αποτελεί αναδιάταξη των αριθμών από την πιο αριστερή στήλη του πλέγματος. Με την κίνηση αυτή, η πιο αριστερή στήλη αφαιρείται και δημιουργείται η νέα στήλη με τους αριθμούς b[0], b[1], ... ,b[N-1] από πάνω προς τα κάτω προστίθεται στα δεξιά του πλέγματος.

Η αναδιάταξη αναφέρεται στην αλλαγή της σειράς των αριθμών χωρίς να προστεθεί ή να αφαιρεθεί κάποιος από αυτούς και μπορεί να διατηρήσει την αρχική σειρά.

Για παράδειγμα, αν το τρέχον πλέγμα είναι:

Γραμμή/Στήλη	0	1	2
0	2	4	6
1	8	1	5
2	7	3	0

Εκτελώντας την κίνηση "**D** 6 2 4", θα λάβουμε το ακόλουθο πλέγμα:

Γραμμή/Στήλη	0	1	2
0	8	1	5
1	7	3	0
2	6	2	4

Ωστόσο, αν αντ' αυτού εκτελέσουμε την κίνηση "**R** 2 8 7", θα λάβουμε:

Γραμμή/Στήλη	0	1	2
0	4	6	2
1	1	5	8
2	3	0	7

Για N=3, το πλέγμα θα έμοιαζε ως εξής:

Γραμμή/Στήλη	0	1	2
0	0	1	2
1	3	4	5
2	6	7	8

Στόχος σας είναι να λύσετε το παζλ με λιγότερες από 3 \times N\$ κινήσεις. Ωστόσο, μπορεί να σας δοθούν μερικοί πόντοι σε περίπτωση που χρησιμοποιήσετε περισσότερες κινήσεις ή δεν λύσετε το παζλ. Ανατρέξτε στην ενότητα βαθμολόγησης για λεπτομέρειες.

Μορφή εισόδου

Η πρώτη γραμμή περιέχει έναν ακέραιο αριθμό: N.

Οι επόμενες N γραμμές περιγράφουν το αρχικό πλέγμα, με N αριθμούς σε κάθε γραμμή.

Μορφή εξόδου

Η πρώτη γραμμή πρέπει να περιέχει έναν απλό ακέραιο αριθμό, M, τον αριθμό των κινήσεων. Κάθε μία από τις επόμενες γραμμές M θα πρέπει να περιέχει μία μόνο κίνηση.

Βαθμολόγηση

Ας συμβολίσουμε M ως το πλήθος των κινήσεων στη λύση σας. Επιπλέον, ορίστε $A=3\times N$ και $B=2\times N^2.$

Αν η έξοδός σας είναι άκυρη ή αν M>B, λαμβάνετε 0 πόντους. Διαφορετικά, η βαθμολογία σας εξαρτάται από το πλήθος των αριθμών στις σωστές θέσεις-στόχους (συμβολίζεται ως C).

Αν $C < N \times N$ το παζλ δεν λύνεται και θα λάβετε μόνο $(50 \times \frac{C}{N \times N})$ % των πόντων για μια δοκιμή. Διαφορετικά:

- ullet Εάν M < A, θα λάβετε 100% των πόντων για μια δοκιμή.
- ullet Αν $A \leq M \leq B$, θα λάβετε $(40 imes \left(rac{B-M}{B-A}
 ight)^2 + 50)$ % των πόντων για ένα τεστ.

Κάθε μεμονωμένη δοκιμή αξίζει τον ίδιο αριθμό πόντων. Η βαθμολογία σας είναι το άθροισμα των βαθμολογιών των επιμέρους δοκιμών και η τελική σας βαθμολογία θα είναι η καλύτερη βαθμολογία μεταξύ όλων των υποβολών.

Παράδειγμα 1

Τυπική είσοδος	Τυπική έξοδος
3	4
1 4 2	R 3 6 1
375	D 2 3 4
680	D 5 6 7
	R 2 5 8

Αυτή η λύση επιτυγχάνει το επιθυμητό αποτέλεσμα σε λιγότερες από 9 κινήσεις, κερδίζοντας τους πλήρεις πόντους.

Παράδειγμα 2

Τυπική είσοδος	Τυπική έξοδος
2	0
2 1	
0 3	

Ο γρίφος δεν λύνεται αφού μόνο δύο αριθμοί (1 και 3) από τους 4 βρίσκονται στη σωστή θέση. Αυτό το αποτέλεσμα θα έπαιρνε $50 imes \frac{2}{4} = 25\%$ των πόντων για μια δοκιμή.

Περιορισμοί

• $2 \le N \le 9$

Υποεργασίες

- Δεν υπάρχουν υποεργασίες.
- Υπάρχει ίσος αριθμός περιπτώσεων για κάθε N από 2 έως 9.