Bài tập về điều chế các dẫn xuất hiđrocacbon

A. Lý thuyết cần nắm vững

1. Điều chế ancol.

- Trong công nghiệp, người ta tổng hợp etanol từ etilen:

$$C_2H_4 + H_2O \xrightarrow{H_2SO_4,t^o} C_2H_5OH$$

- Ngoài ra có thể tổng hợp etanol bằng phương pháp lên men tinh bột, đường.

Tổng quát:
$$(C_6H_5OH)_n \xrightarrow{H_2O} C_6H_{12}O_6 \xrightarrow{enzim} C_2H_5OH$$

- Glixerol (C₃H₅(OH)₃) được tổng hợp từ propilen hoặc thủy phân chất béo.

2. Điều chế phenol.

- Cách 1: Oxi hóa cumen theo sơ đồ:

$$\xrightarrow{CH_2 = CH - CH_3} \xrightarrow{CH_1 \subset H_3 \setminus I} \xrightarrow{1)O_2} \xrightarrow{H^+} \xrightarrow{CH_2 = CH - CH_3} \xrightarrow{CH_3 - C - CH_3}$$

- Cách 2: Đi từ benzen theo sơ đồ:

$$\begin{array}{c}
& & \text{ONa} \\
& & \text{ONa} \\
& & \text{OH} \\
& & \text{OH$$

3. Điều chế anđehit.

- Từ ancol: oxi hoá ancol bậc I ightarrow anđehit

$$R - CH_2OH + CuO \xrightarrow{r^o} R - CHO + H_2O + Cu$$

- Từ hiđrocacbon:

+ Oxi hoá metan:
$$CH_4 + O_2 \xrightarrow{t^o,xt} HCHO + H_2O$$

+ Oxi hoá hoàn toàn etilen:
$$2CH_2 = CH_2 + O_2 \xrightarrow{t^o, xt} 2CH_3CHO$$

+ Từ
$$C_2H_2$$
: CH = CH + $H_2O \xrightarrow{H_gSO_4} CH_3CHO$

4. Điều chế xeton.

- Từ ancol: ancol bậc II $\xrightarrow{+CuO}$ Xeton

$$CH_3$$
- $CH(OH)$ - CH_3 + $CuO \xrightarrow{t^o} CH_3$ - CH - CH_3 + Cu + H_2O

TQ:
$$R - CH(OH) - R' + CuO \xrightarrow{t'} R - CO - R' + Cu + H_2O$$

- Từ hiđrocacbon:

5. Điều chế axit cacboxylic.

- Phương pháp lên men giấm: $C_2H_5OH + O_2 \xrightarrow{mengiam} CH_3COOH + H_2O$
- Oxi hoá anđehit axetic: $CH_3CHO + O_2 \xrightarrow{xt,t^o} 2CH_3COOH$
- Oxi hoá ankan butan:

$$2CH_3CH_2CH_3 + \frac{5}{2}O_2 \xrightarrow{xt} 4CH_3COOH + 2H_2O$$

- Từ metanol: $CH_3OH + CO \xrightarrow{xt,t^o} CH_3COOH$

6. Điều chế dẫn xuất halogen.

Khi thay thế nguyên tử hiđro của phân tử hiđrocacbon bằng nguyên tử halogen ta được dẫn xuất halogen của hiđrocacbon.

Ví dụ:
$$CH_4 + Cl_2 \xrightarrow{as} CH_3Cl + HCl$$
.
 $C_2H_5OH + HBr \rightarrow C_2H_5Br + H_2O$

7. Một số phương pháp giải bài toán điều chế:

Phối hợp triệt để các phương pháp:

- Định luật bảo toàn khối lượng.
- Phương pháp tăng giảm khối lượng.
- Phương pháp bảo toàn nguyên tố.

B. Ví dụ minh họa:

Ví dụ 1: Dãy gồm các chất đều điều chế trực tiếp (bằng một phản ứng) tạo ra anđehit axetic là

- A. CH₃COOH, C₂H₂, C₂H₄.
- B. C_2H_5OH , C_2H_4 , C_2H_2 .
- C. C_2H_5OH , C_2H_2 , $CH_3COOC_2H_5$.
- D. $HCOOC_2H_3$, C_2H_2 , CH_3COOH .

Hướng dẫn giải:

$$CH_3-CH_2OH + CuO \xrightarrow{t^o} CH_3 - CHO + H_2O + Cu$$

$$2CH_2 = CH_2 + O_2 \xrightarrow{t^o,xt} 2CH_3CHO$$

$$CH \equiv CH + H_2O \xrightarrow{BgSO_4 \atop 80^oC} CH_3CHO$$

Đáp án B

Ví dụ 2: Quá trình nào sau đây không tạo ra anđehit axetic?

A. CH₂=CH₂ + H₂O (t°, xúc tác HgSO₄)

B. $CH_2=CH_2+O_2$ (t^o , xúc tác)

C. CH₃-CH₂OH +CuO (t°).

D. CH₃-COOCH=CH₂ + dung dịch NaOH (t°).

Hướng dẫn giải:

$$2CH_2 = CH_2 + O_2 \xrightarrow{t^o, xt} 2CH_3CHO$$

$$CH_3-CH_2OH+CuO \xrightarrow{t^o} CH_3-CHO+H_2O+Cu$$

 CH_3 -COOCH= CH_2 + NaOH $\xrightarrow{t^o}$ CH_3 COONa + CH_3 CHO.

Đáp án A

Ví dụ 3: Trong công nghiệp, axeton được điều chế từ

A. xiclopropan.

B. propan -1 – ol.

C. propan -2 – ol.

D. cumen

Hướng dẫn giải:

Trong công nghiệp, axeton được điều chế bằng cách oxi hóa không hoàn toàn cumen.

Đáp án D

C. Luyện tập

Câu 1: Khối lượng axit axetic thu được khi lên men 1 lít ancol etylic 8° là bao nhiều? Biết d = 0,8 g/ml và hiệu suất phản ứng đạt 92%.

A. 58,88 gam.

B. 73,6 gam.

C. 76,8 gam.

D. 90,8 gam.

Hướng dẫn giải:

$$m_{C_2H_5OH} = 1000.\frac{8}{100}.0, 8 = 64g$$

$$C_2H_5OH + O_2 \rightarrow CH_3COOH + H_2O$$
46g
60g
64g
 $x g$

$$\Rightarrow m_{CH_3COOH} = \frac{64.60}{46} \cdot \frac{92}{100} = 76.8g$$

Đáp án C

Câu 2: Khi oxi hóa hoàn toàn 2,2 gam một anđehit đơn chức thu được 3 gam axit tương ứng. Công thức của anđehit là

A. HCHO.

B. CH₃CHO.

C. C_2H_3CHO .

D. C₂H₅CHO.

Hướng dẫn giải:

Phương trình phản ứng:

$$RCHO + O_2 \xrightarrow{f^o} RCOOH$$

$$\frac{2,2}{R+29} \qquad \frac{3}{R+45}$$

Theo phương trình hóa học ta có:

 $n_{\text{RCHO}} = n_{\text{RCOOH}}$

Suy ra:
$$\frac{2,2}{R+29} = \frac{3}{R+45} \implies R = 15(CH_3)$$

Anđehit là CH₃CHO.

Đáp án B

Câu 3: Axeton được điều chế bằng cách oxi hóa cumen nhờ oxi, sau đó thủy phân trong dung dịch H₂SO₄ loãng. Để thu được 145 gam axeton thì lượng cumen cần dùng là bao nhiêu? Biết hiệu suất của phản ứng là 75%.

A. 300 gam.

B. 400 gam.

C. 500 gam.

D. 600 gam.

Hướng dẫn giải:

 $n_{axeton} = 145 : 58 = 2,5 \text{ mol}$

Suy ra khối lượng của cumen là 2,5. 120 = 300 g

Do hiệu suất của phản ứng là 75% nên khối lượng của cumen cần dùng là:

300:0,75=400 g

Đáp án B

Câu 4: Lên men 1 lít ancol etylic 46° thu được giấm ăn. Biết hiệu suất của phản ứng lên men là 100% và khối lượng riêng của ancol etylic là 0,8 g/ml. Khối lượng axit axetic trong giấm là bao nhiêu?

A. 240 g.

B. 280g.

C. 400g.

D. 480g.

Hướng dẫn giải:

 $V_{ancol nguyên chất} = 1000.0,46 = 460 \text{ ml}$

$$\Rightarrow$$
 m_{ancol} = 460.0,8 = 368g

$$C_2H_5OH + O_2 \rightarrow CH_3COOH + H_2O$$

$$\begin{array}{ccc} 46g & \longrightarrow & 60g \\ 368g & & m=? \end{array}$$

$$\Rightarrow m_{\text{CH}_3\text{COOH}} = \frac{368.60}{46} = 480g$$

Đáp án D

Câu 5: Cho 360 gam glucozơ lên men thành rượu etylic. Cho tất cả khí CO₂ sinh ra hấp thụ hoàn toàn vào 2 lít dung dịch NaOH 1M thì thu được 137 gam muối. Hiệu suất của phản ứng lên men rượu là

A. 37,5%.

B. 50%.

C. 75%.

D. 80%

Hướng dẫn giải:

 $n_{glucoz\sigma} = 360:180=2 \text{ mol}; n_{NaOH} = 2 \text{ mol}$

$$C_6H_{12}O_6 \rightarrow 2C_2H_5OH + 2CO_2$$

2 4 mol

CO₂ tác dụng với dung dịch kiềm tạo 2 muối là NaHCO₃ a (mol) và Na₂CO₃ b (mol)

Ta có hệ phương trình:

$$\begin{cases} a+2b=2 \\ 84a+106b=137 \end{cases} \Rightarrow \begin{cases} a=1 \\ b=0,5 \end{cases}$$

Bảo toàn nguyên tố C ta có:

$$n_{CO_2} = a + b = 1,5 \text{mol}$$

Hiệu suất phản ứng là:

$$H = \frac{1.5}{4}.100\% = 37.5\%$$

Đáp án A

Câu 6: Khi lên men 180 gam glucozơ với hiệu suất 100%. Khối lượng ancol etylic thu được là

A. 92 g.

B. 123 g.

C. 145 g.

D. 110 g.

Hướng dẫn giải:

Ta có:
$$n_{C_6H_{12}O_6} = \frac{180}{180} = 1$$
mol

Phương trình phản ứng:

$$C_6H_{12}O_6 \rightarrow 2C_2H_5OH + 2CO_2$$

1 2 mol
 $\Rightarrow m_{C_2H_5OH} = 2.46 = 92g$

Đáp án A

Câu 7: Cho m gam một ancol (rượu) no, đơn chức, mạch hở X qua bình đựng CuO (dư), nung nóng. Sau khi phản ứng hoàn toàn, khối lượng chất rắn trong bình giảm 0,32 gam. Hỗn hợp hơi thu được có tỉ khối với hiđro là 15,5. Giá trị của m là A. 0,32.

B. 0,46.

C. 0,64.

D. 0,92.

Hướng dẫn giải:

Phản ứng của X với CuO:

$$C_nH_{2n+1}OH + CuO \rightarrow C_nH_{2n}O + Cu + H_2O$$

Sau phản ứng với CuO, chất rắn ban đầu là CuO chuyển thành Cu nên lượng chất rắn giảm là lượng oxi có trong CuO: $m_{giảm} = m_{oxi} = 0.32$ gam.

Từ phương trình phản ứng:

 $n_{ancol} = n_{CnH2nO} = n_{nu\acute{o}c} = n_{CuO} = n_O = 0.32 : 16 = 0.02 \text{ mol}$

Hỗn hợp hơi sau phản ứng gồm H_2O , $C_nH_{2n}O$

 $n_{hh} = n_{nu\acute{o}c} + n_{CnH2nO} = 0,02 + 0,02 = 0,04 \ mol$

Vì hỗn hợp có tỉ khối hơi so với H_2 là 15,5 nên $M_{hh} = 15,5$. 2 = 31

Suy ra $m_{hh} = 31$. 0.04 = 1.24 gam

Áp dụng ĐLBTKL:

 $m_{ancol} + m_{CuO} = m_{hh} + m_{Cu}$

Suy ra $m_{ancol} = m_{hh}$ - $m_{giåm} = 1,24 - 0,32 = 0,92$ gam

Đáp án D

Câu 8: Cho m gam hỗn hợp X gồm hai rượu (ancol) no, đơn chức, kế tiếp nhau trong dãy đồng đẳng tác dụng với CuO (dư) nung nóng, thu được một hỗn hợp rắn Z và một hỗn hợp hơi Y (có tỉ khối hơi so với H₂ là 13,75). Cho toàn bộ Y phản ứng với một lượng dư Ag₂O (hoặc AgNO₃) trong dung dịch NH₃ đun nóng, sinh ra 64,8 gam Ag. Giá trị của m là

A. 7,4.

B. 7,8.

C. 8,8.

D. 9,2.

Hướng dẫn giải:

 $n_{Ag} = 64.8 : 108 = 0.6 \text{ mol}$

 $RCH_2OH + CuO \rightarrow RCHO + Cu + H_2O$

 \mathbf{x} \mathbf{x} \mathbf{x} \mathbf{mol}

Ta thấy: $n_{RCHO} = n_{H,O}$

$$\Rightarrow \overline{M}_{Y} = \frac{M_{\text{RCHO}} + M_{\text{H}_{2}\text{O}}}{2} = 13,75.2 = 27,5$$

$$\Leftrightarrow$$
 R = 27,5.2 - 18 - 29 = 8

$$R_1 < R < R_2$$
 nên $R_1 = 1$ và $R_2 = 15$

2 anđehit là HCHO và CH₃CHO và 2 ancol là CH₃OH và C₂H₅OH.

$$\% n_{\text{HCHO}} = \frac{15 - 8}{15 - 1} = 50\% \rightarrow n_{\text{HCHO}} = n_{\text{CH}_3\text{CHO}} = a \text{(mol)}$$

$$\rightarrow n_{\text{Ag}} = 4a + 2a = 6a = 0, 6 \Rightarrow a = 0, 1 \text{mol}$$

$$\rightarrow n_{\text{CH}_3\text{OH}} = n_{\text{C}_2\text{H}_5\text{OH}} = 0, 1 \text{mol}$$

$$\rightarrow m = 0, 1.32 + 0, 1.46 = 7, 8g$$

Đáp án B

Câu 9: Oxi hóa 0,08 mol một ancol đơn chức, thu được hỗn hợp X gồm một axit cacboxylic, một anđehit, ancol dư và nước. Ngưng tụ toàn bộ X rồi chia thành hai phần bằng nhau. Phần một cho tác dụng hết với Na dư, thu được 0,504 lít khí H₂ (đktc). Phần hai cho phản ứng tráng bạc hoàn toàn thu được 9,72 gam Ag. Phần trăm khối lượng ancol bị oxi hóa là

A. 31,25%.

B. 40%.

C. 50%.

D. 62,5%.

Hướng dẫn giải:

$$n_{_{H_2}} = \frac{0,504}{22,4} = 0,0225 \text{mol}; n_{_{Ag}} = 0,09 \text{mol}$$

Gọi công thức tổng quát của ancol là RCH₂OH

- TH₁: R=H

Ta có:

$$CH_3OH \xrightarrow{[O]} HCHO(xmol) \rightarrow 4Ag;$$

 $HCOOH(ymol) \rightarrow 2Ag;$

CH₃OH_{du} (zmol)

$$CH_3OH + Na \rightarrow CH_3ONa + \frac{1}{2}H_2$$

z 0,5z mol

$$H_2O + Na \rightarrow NaOH + \frac{1}{2}H_2$$

 $x+y$ $0,5(x+y)$ mol
 $HCOOH + Na \rightarrow HCOONa + \frac{1}{2}H_2$
 y $0,5y$ mol

Ta có hệ phương trình:

$$\begin{cases} x + y + z = 0.04 \\ x + 2y + z = 0.045 \Rightarrow x = 0.02; z = 0.015; y = 0.005 \\ 4x + 2y = 0.09 \end{cases}$$

$$\rightarrow \%H = \frac{0.04 - 0.015}{0.04}.100\% = 62.5\%$$

 $TH_2: R#H$

 $RCH_2OH \xrightarrow{[0]} RCHO(xmol) \rightarrow 2Ag;$

 $RCOOH(ymol); CH_3OH_{du}(zmol)$

Ta có hệ phương trình:

$$\begin{cases} x + y + z = 0.04 \\ x + 2y + z = 0.045 \Rightarrow x = 0.045; z = -0.01; y = 0.005 \\ 2x = 0.09 \end{cases}$$
 loai

Đáp án D

Câu 10: Lên men m gam glucozơ với hiệu suất 72%. Lượng CO₂ sinh ra được hấp thu hoàn toàn vào 500 ml hỗn hợp gồm NaOH 0,1 M và Ba(OH)₂ 0,2 M, sinh ra 9,85 gam kết tủa. Giá trị của m là

A. 25 g.

B. 15 g.

C. 12,96 g.

D. 13 g.

Hướng dẫn giải:

 $n_{OH} = 0.25 \text{ mol}; n_{Ba}^{2+} = 0.1 \text{ mol}; n_{k\acute{e}t t \acute{u}a} = 0.05 \text{ mol}$

Gọi số mol glucozơ là x mol

Phương trình phản ứng:

$$C_6H_{12}O_6 \rightarrow 2C_2H_5OH + 2CO_2$$

$$\mathbf{X}$$

2x.0,72 mol

 $+ TH_1: OH^- du$

 $Ta \ c\acute{o}: \ n_{CO_2} = n_{BaCO_3} = 0,05mol$

 \Rightarrow n = 0,0347mol \Rightarrow m = 6,25g

+ TH_2 : Kết tủa tan 1 phần

 \Rightarrow $n_{BaCO_3} = n_{OH^-} - n_{CO_2} \Rightarrow n_{CO_2} = 0,2mol$

 \Rightarrow n = 0,1389 \Rightarrow m = 25g

Đáp án A