Trabalho nº5- Grupo 04 2DH

Procedimento I:

Temperature 7ºC											
		ΔxInternal	ΔxMiddle	ΔxExterna	I						
		0,02	9,95	0,03	Rtotal						
Kinternal Cortiça	0,055	0,363636			0,363636						
Kmiddle Lã de vidro	0,045		221,1111		221,1111	R = Rinternal + Rmiddle + Rexternal		nal	R =	221,4749	
Kexternal Alumínio	237			0,000127	0,000127						
Temperature -5ºC											
		∆xInternal	ΔxMiddle	ΔxExternal							
		0,02	9,95	0,03	Rtotal						
Kinternal Poliestireno	0,033	0,606061			0,606061						
Kmiddle Esponja de poliuretano	0,03		331,6667		331,6667	R = Rinternal + Rmiddle + Rexternal		nal	R =	332,2747	
Kexternal Aço Inox	15			0,002	0,002						

Imagem 1: Cálculo da resistividade térmica dos materiais escolhidos

Introdução teórica:

Para o contentor ser bem isolado, de modo a termos que fornecer menos energia para manter a temperatura no sistema, devemos escolher materiais que confiram grande resistividade térmica. Para isso acontecer, devemos priorizar uma maior espessura aos materiais com menor condutividade térmica. Isto deve-se ao facto de com a expressão $R = \Delta x/(k^*A)$, em que a resistividade térmica é maior quanto maior for a espessura ou quanto menor for a área ou/e a condutividade térmica.

TEMPERATURA 7ºC

Material Interno	Cortiça	K = 0,55 W/mK		
Material Intermédio	Lã de vidro	K = 0,45 W/mK		
Material Externo	Alumínio	K = 237 W/mK		

Foi escolhido o alumínio como material externo, uma vez que a estrutura do contentor necessita de ser rígida. O Alumínio é um material que confere uma condutividade térmica considerável, porém foi escolhido por ser um material acessível em termos de custo e disponibilidade.

Como material intermédio, a lã de vidro é uma alternativa barata que verifica uma pequena condutividade térmica, ideal para isolar o nosso contentor.

Por fim, iremos utilizar uma camada fina de cortiça para proteger a lã de vidro. Escolhemos este material, devido à sua baixa condutividade térmica, que apesar de apenas usarmos uma pequena camada, esta irá ajudar na isolação do contentor

TEMPERATURA -5°C

Material Interno	Poliestireno	K = 0,033 W/mK		
Material Intermédio	Esponja de poliuretano	K = 0,03 W/mK		
Material Externo	Aço Inox	K = 15 W/mK		

Escolhemos o aço inox para a camada externa. O aço inox é um material inoxidável, ou seja, não é corroído, tendo sido este um dos principais motivos pela escolha. Além disso é um metal rígido que irá proteger a nossa carga e além disso é um metal com pouca condutividade térmica, em que apesar de a sua espessura ser praticamente desprezível, a resistividade térmica conferida por este material irá ajudar na isolação do sistema.

Como material intermédio, a esponja de poliuretano é um material com condutividade baixa, o que irá proporcionar uma resistividade térmica grande para o isolamento do nosso contentor.

Por último, iremos utilizar uma camada fina de Poliestireno para proteger a esponja de poliuretano. Escolhemos este material, já que é um material barato em comparação com a cortiça. Além disso tem uma condutividade térmica menor que a da cortiça.

Os dois contentores comparados

Para o contentor com a temperatura de 7ºC, utilizamos uma construção que tem uma resistividade menor em relação ao contentor de -5ºC. Isto deve-se ao facto de o intervalo de temperaturas entre o meio ambiente e a temperatura no interior do contentor ser relativamente baixa.

Jorge Ferreira nº1201564

Rafael Leite nº1201566

Rui Pina nº1201568