

文档类别

杭州海康威视数字技术股份有限公司

文档编号

一种基于朴素贝叶斯的交通轨迹 预测方案

编	制	辛杰
审	批	

密级级别: [内部公开] 生效时间: 2019年2月28日 保密期:无

杭州海康威视数字技术股份有限公司 版权所有

景目

1.	简介		3
1.1	编写目	的	3
1.2	背景		3
1.3	工作说	伯明	3
2.	方案设	ኒ ት	3
2.1	方案总	4体说明	3
2.2	数据清	}洗与预处理	4
	2.2.1	车牌清洗	4
	2.2.2	轨迹拉通	
	2.2.3	重复记录清洗	4
2.3	轨迹分	↑割	4
2.4	算法方	ī案	5
	2.4.1	算法原理	5
	2.4.2	算法应用	5
	2.4.3	算法实现	6
2.5	算法评	² 估	13
3.	总结		14
4.	修订记		14
附件			15
LI1	• • • • • • • • • • • • • • • • • • • •		

1. 简介

1.1 编写目的

本文依据车辆目前前进轨迹,对其在未来一段时间(一小时)之内最有可能经过的三个卡口进行预测,主要采用贝叶斯算法、以及改进的轻量级贝叶斯算法对问题进行算法实现与模型求解。本文主要提供轨迹预处理、前置轨迹截取长度、测试集的构造、候选集的选择以及时间特征的应用等几个方面的流程与经验,供相关工作参考。

1.2 背景

目前,车辆数量呈指数形式激增,对车辆行驶行为及其行驶偏好进行研究,不管是对于车流的控制还是非法车辆的追踪,都具有重要意义。针对这一问题卡口信息是不可或缺的因素,而这恰恰是我们的优势,基于卡口信息,可以恰当地描述车辆的前进轨迹,配合常规的路径数据挖掘算法,根据车辆前段时间行进轨迹预测其前方将要经过卡口,进一步挖掘出该车辆的行驶习惯,在此基础上实现其他应用。

1.3工作说明

基于已有的车辆行驶轨迹记录,提取经过卡口的 id 与时间,分别采用贝叶斯算法、轻量级贝叶斯算法对车辆某一时刻的运行轨迹进行预测,获得其接下来一小时内到达概率最大的三个卡口 top3,然后比对其未来一小时实际经过卡口,测试预测算法的精确度。

测试时,基于当前卡口判断车辆的未来三个卡口,如果跟 top3 有交集,即视为预测准确,否则不准确。判断整个模型的预测准确性表示为:

precision =
$$\frac{n}{N} * 100\%$$

这里,N表示整个测试集的轨迹数,n表示真实值在预测的top3中的轨迹数。

2. 方案设计

2.1 方案总体说明

该方案包括前期对数据的处理, 贝叶斯模型的实现, 后期对贝叶斯模型的优化改进,

以及对模型预测结果的评估。

2.2 数据清洗与预处理

这里,我们主要做包括不正确车牌、重复记录等的进行清洗以及预处理。

2.2.1 车牌清洗

车牌清洗,主要包括去除车牌识别不正确的车牌,如过滤掉默认"车牌"等的记录, 具体规则细节详见附件 1。

2.2.2 轨迹拉通

进行聚合轨迹,这里主要指按车牌+车牌颜色,进行 groupby,并按过车时间进行升序排列。

2.2.3 重复记录清洗

记录去重,这里主要指对同一车牌在同一段时间范围内经过同一个卡口(这里同一段时间范围暂定5分钟)进行去重。

2.3 轨迹分割

目前我们拥有的数据是一段时间内汽车所有经过卡口记录按照车牌、以时间顺序排列的数据。而一天甚至数月之间,汽车并不是只进行一次出行,多次出行可能会被连接在一起。所以我们需要对记录进行拆分,获得独立的路径数据。

一条路径应当有起点、有终点。起点与终点之间的记录,应当是为了靠近终点而出现的经过卡口行为。这样的路径才可以说前后具有关联性,便于计算。如下图所示:

图 1 轨迹示意图

对一条卡口经过序列,若两次经过卡口的时间间隔大于一定阈值(经过探索数据初步

暂定为 2 小时),可以视为两次经过卡口之间路径有了中断,将该序列切割为两条序列,如下所示:

$$car: (8:00am, A), (9:00am, B), (13:00pm, C), (14:00pm, D)$$

$$\rightarrow \begin{cases} car: (8:00am, A), (9:00am, B) \\ car: (13:00pm, C), (14:00pm, D) \end{cases}$$

这一分割得到的数据适用于后续的算法方案。

2.4 算法方案

2.4.1 算法原理

朴素贝叶斯模型是基于贝叶斯原理的算法。贝叶斯原理中,假设是各项条件互相之间 无关联,数学公式可以表示为: $p(c|x,y) = \frac{p(x,y|c) \times p(c)}{p(x,y)}$ 。

这里的 *c* 表示类别,输入待判断数据,式子给出要求解的某一类的概率。我们的最终目的是比较各类别的概率值大小,而上面式子的分母是不变的,因此只要计算分子即可。

2.4.2 算法应用

输入:车辆 id, (卡口 id, 经过时间)序列,如(1):

$$car_{1} \quad (id,t) \quad \cdots \quad (id,t)$$

$$car_{2} \quad (id,t) \quad \cdots \quad (id,t)$$

$$\vdots \quad \vdots \quad \ddots \quad \vdots$$

$$car_{n} \quad (id,t) \quad \cdots \quad (id,t)$$

$$(1)$$

预测: $car_{i}\underbrace{(id_{first},t_{first}) \rightarrow (id,t) \rightarrow \cdots \rightarrow (id_{last},t_{last})}_{Track}$ 在未来一段时间(如 1 小时)内可能

出现在哪些卡口。

方案: 贝叶斯公式(省略分母) $P(id_i|T) = P(id_i)P(T|id_i)$

$$P(id_i) = \frac{Frequency(id_i)}{Len}$$

$$P(T \middle| id_{i}) \triangleq P(\tilde{T} \middle| id_{i}) = \frac{Frequency(\tilde{T} \middle| id_{i})}{count_{id_{i}}}$$

 $Frequency(id_i): id_i$ 在历史轨迹中出现的次数;

Len: 历史轨迹长度;

 $Frequency(\tilde{T}|id_i)$: 经过卡口 id_i 的与轨迹 Track 相似的轨迹 \tilde{T} 出现的次数;

相似度定义为:
$$sim = \frac{len[T \cap \tilde{T}]}{len[T]}$$
 。

 $count_{id_i}$: 经过卡口 id_i 的次数。

2.4.3 算法实现

A. 贝叶斯算法

图 2 方案 A 模型框架

阶段一: 构造训练集与测试集

Step1: 取前六个月的轨迹作为训练集 data_train,后一个月的轨迹作为测试集 data_test,训练集与测试集的比例为 9:1。

(1) 考虑到车辆在经过某个卡口之后,两个小时之内不会再被拍到的情况,对 data_train做如下处理:轨迹末位补 0,作为不会再被拍到的情况,即

(车辆 id,车牌颜色): (卡口 id,经过时间);; (0,经过时间(任意))

(2) 无论车辆处于轨迹中的哪个卡口, 其接下来的轨迹都是可以被预测的, 因此, 对

data_test 做如下处理: 对经过 5 个 (例) 卡口的轨迹,进行切分 (为了方便后续操作,统一轨迹长度为 6)

$$A \to B \to C \to D \to E \Rightarrow \begin{cases} 0 \to 0 \to 0 \to 0 \to A \to (B, C, D) \\ 0 \to 0 \to 0 \to 0 \to A \to B \to (C, D, E) \\ 0 \to 0 \to 0 \to A \to B \to C \to (D, E, 0) \\ 0 \to 0 \to A \to B \to C \to D \to (E, 0) \\ 0 \to A \to B \to C \to D \to E \to (0) \end{cases}$$

阶段二:模型训练

Step2: 根据 data_train 数据集中,车辆的个体历史轨迹建立模型,在车辆历史轨迹中按照"时间&卡口"进行聚类。

对于时间,可从时间戳中提取二维时间信息:

- (1) 是否工作日 (week), 是取 0, 否取 1;
- (2) 将一天分为 6 个时间段,即 0-4 点、4-8 点, ······, 20-24 点,时间处于哪个时间段 (time),取值为 0、1、2、3、4、5。

提取完时间信息,将该辆车在某一时刻(week,time)经过某一卡口(A)的所有历史轨迹聚在一起,得到该辆车在((week,time),A)之后可能去的所有卡口,以及去这些卡口的次数,并对这些卡口按照次数排序。保存结果 neighbor_time,提供轨迹预测的候选集 1, neighbor time 形式如下:

car: { ((week, time), A): {A1: count, A2: count,}, ((week, time), B): {B1:
count, B2: count,}

Step3: 类似 Step2, 考虑车辆小部分违背时间规律的轨迹, 舍弃时间信息, 将车辆按照"卡口"聚类, 得到 neighbor_no_time, 提供轨迹预测的候选集 2, neighbor_no_time 形式如下:

car: {A: {A1: count, A2: count,}, B: {B1: count, B2: count,},}

阶段三:模型预测

Step4: 新建数据集 1,针对 data_test 中的预测轨迹,判断车辆 id 在 data_train 中是否出现过,若没有出现过,则将此类轨迹归入数据集 1;若出现过,继续下面的步骤。

Step5: 针对 Step5 筛选的可预测集,根据预测轨迹的车辆 id 在 data_train 中筛选出同一辆车的历史轨迹,提取车辆最后经过的卡口及时间((week, time), A), 判断该辆车的历史轨迹中是否出现过((week, time), A), 若出现过,进入 Step6; 若没有出现过,进入 Step8。

Step6:应用 KNN 算法,在历史轨迹中寻找出与预测轨迹相似度大的轨迹,轨迹相似度定义如下:

Similarity = length (历史轨迹∩预测轨迹) /length (预测轨迹)

设置相似度阈值 T,统计经过候选集 1 中的卡口且 Similarity >= T 的历史轨迹条数 count sim tra并保存;

将候选集 1 中的每个卡口按照 count_sim_tra 排序,输出 count_sim_tra 最大的前三卡口 (若候选集 1 不足三个,则全部输出),得到预测结果集 result。

下面举例说明:

对于预测轨迹 — (车辆 id, 车牌颜色): (卡口 A, t1); (卡口 B, t2); ……; (卡口 C, t3)

需获得以下信息:车辆 id、车牌颜色、最后经过卡口信息((week, time), C)、轨迹卡口信息(A,B,……,C)。

- (1) 根据车辆 (车辆 id,车牌颜色) 获取车辆历史轨迹,结合 ((week, time), C),根据 Step2 得到的 neighbor time,获得候选集 1;
- (2) 对于候选集 1 中所有卡口,分别统计经过这些卡口且与(A,B,·····,C)的轨迹相似度 Similarity >= T的历史轨迹条数 count_sim_tra;
- (3) 对候选集 1 中所有卡口按 count sim tra 排序输出。

Step7: 若 result 的卡口数量不足 3,则用轨迹预测候选集 2 补全;否则,用轨迹预测候选集 2 中次数最多的卡口替换掉 result 中概率最小的卡口(三个卡口不重复)。输出最终

预测结果 Result。

Step8: 该步骤用到 neighbor_no_time,对于待预测轨迹,只提取其最后经过的卡口信息 A,判断该辆车的历史轨迹中是否出现过 A,若出现过,进入 Step9;若没有出现过,则将此类轨迹归入数据集 1,进入 Step10。

Step9: 同Step6。

Step10: 对数据集 1, 需根据群体轨迹构造新的候选集 3, 即根据前 6 个月的车辆轨迹信息,统计车辆经过每个卡口后可能到达的所有卡口以及到达次数,得到 neighbor_all,取到达次数最多的前 10 个卡口,构成候选集 3。

Step11: 若 C 在群体轨迹中出现过,则同 Step6 可推出三个预测卡口; 否则, 该轨迹不可预测。

最后输出的结果形式为:

(车辆 id,车牌颜色): [(预测卡口 1,相对概率),(预测卡口 2,相对概率),(预测卡口 3,相对概率)]

B. 轻量级贝叶斯算法

在方案 A 中,需要将训练集轨迹进行切割以及末位补 0 的操作,以体现车辆经过某一卡口后,超过两小时未出现,然而在轨迹预测这一场景中,对轨迹进行切割的操作并不是必须的,若将车辆消失超过两小时看作车辆去了一个虚拟卡口 0,则可以通过插入虚拟卡口达到轨迹切割同样的效果。

在该方案中,数据预处理方法改变如下:

若连续经过的两个卡口的时间间隔大于 2h,则两个卡口之间插入虚拟卡口 0,如

car: (8:00am, A), (9:00am, B), (13:00pm, C), (14:00pm, D) $\rightarrow car: (8:00am, A), (9:00am, B), (9:00am, 0), (13:00pm, C), (14:00pm, D)$

阶段一: 构造训练集与测试集

Stepl:取前六个月的轨迹作为训练集 data_train,后一个月的轨迹作为测试集 data_test,

训练集与测试集的比例为9:1。

(1) 构造训练集:

将车辆前六个月的轨迹拉成一条,根据时间间隔插入虚拟卡口,按照"车牌号+车牌颜色" 建立索引,生成数据集如下,

(车辆 id, 车牌颜色): (卡口 id, 经过时间): (0, 经过时间): (卡口 id, 经过时间):

(2) 构造测试集:

根据方案 A 的经验,取轨迹长度为 3 时,可达到算法精度与效率的最高,即

$$A \to B \to C \to D \to E \Rightarrow \begin{cases} 0 \to 0 \to A \to (B, C, D) \\ 0 \to A \to B \to (C, D, E) \\ A \to B \to C \to (D, E, 0) \\ B \to C \to D \to (E, 0) \\ C \to D \to E \to (0) \end{cases}$$

阶段二:模型训练

在初始版本中,分开计算 $P(id_i)$ 与 $P(T|id_i)$,因此需要首先构造候选集,根据候选集计算 $P(id_i|T)$,对概率进行排序输出 topN。然而,在轨迹预测中,我们可以发现

$$\begin{split} P(id_{i} \middle| T) &= P(id_{i})P(T \middle| id_{i}) \\ &= \frac{Frequency(id_{i})}{Len} \cdot \frac{Frequency(\tilde{T} \middle| id_{i})}{count_{id_{i}}} \\ &= \frac{Frequency(\tilde{T} \middle| id_{i})}{Len} \end{split}$$

对于给定车辆查找到的历史记录, Len 是固定的,因此只需确定 $\mathit{Frequency}(\tilde{T}|\mathit{id}_i)$ 。

Step2: 对于 data_test 数据集中每一条待预测轨迹(长度为 3):

(车辆 id, 车牌颜色): (卡口 id_1, 经过时间); (卡口 id_2, 经过时间); (卡口 id_3, 经过时间)

提取如下三个特征:

- 1、(车辆 id, 车牌颜色);
- 2、待预测轨迹 T:[卡口 id 1, 卡口 id 2, 卡口 id 3];
- 3、经过的最后一个卡口及其经过时间:(last_id, t).

对于时间,可从时间戳中提取二维时间信息:

- (1) 是否工作日 (week), 是取 0, 否取 1;
- (2) 处于一天中的哪一个小时。

Step3: 根据 data_test 第一个特征 (车辆 id, 车牌颜色), 从 data_train 中筛选其历史轨迹, 如

(车辆 id, 车牌颜色): (A, 经过时间 t1); (0, 经过时间 t2); (B, 经过时间 t3); (C, 经过时间 t4); (D, 经过时间 t5); (E, 经过时间 t6); (F, 经过时间 t7)

进行特征分离:

- 1, [A, 0, B, C, D, E, F];
- 2, [t1, t2, t3, t4, t5, t6, t7].

Step4: 筛选出历史轨迹之后,利用待预测轨迹在历史轨迹上作滑窗遍历,示意图如下:

图 3 方案 B 模型预测过程

遍历直到待预测轨迹最后一个卡口 last_id 等于历史轨迹中的某一个卡口,以上图为例,若 id_3 = D,则取出 D 的下一个卡口 E 作为候选集之一 id_i ,取 D 之前三个卡口连同 D 组

成相似轨迹 \tilde{T} ,同时计算该位置这一候选集的后验概率 $P(id_i|T)$,即计算 $Frequency(\tilde{T}|id_i)$ 。

对于遍历过程中遇到的所有 id_i ,根据轨迹相似度,为区分不同相似程度的轨迹对候选集的贡献,给出如下定义:

$$Frequency(\tilde{T} | id_i) = \sum_{j=1}^{Frequency(id_i)} f(\tilde{T} | id_{ij})$$

$$f(\tilde{T} \middle| id_{ij}) = \begin{cases} \alpha_1 \cdot \beta, & \textit{iflen}[T \cap \tilde{T}] = 1 \\ \alpha_2 \cdot \beta, & \textit{iflen}[T \cap \tilde{T}] = 2 \\ \alpha_3 \cdot \beta, & \textit{iflen}[T \cap \tilde{T}] = 3 \end{cases}$$

其中, $\alpha_1 < \alpha_2 < \alpha_3$, β 的取值取决于待预测轨迹最后一个卡口的时间(week + hour),与历史轨迹重合卡口时间(week + hour)的关系。

阶段三:模型预测

Step5:根据 $Frequency(\tilde{T}|id_i)$ 进行排序,选取 top3 作为预测结果。

Step6: 生成候补候选集: 遍历所有训练集(即过去六个月所有车辆的过车轨迹), 找出每个卡口之后最可能出现的三个卡口。改候选集主要用于应对以下几种情况:

- 1、待预测车辆在过去六个月从未出现过;
- 2、待预测轨迹最后一个卡口,在该车辆的历史轨迹中从未出现过;
- 3、根据 $Frequency(\tilde{T}|id_i)$ 选出的候选集不足 3 个。

最后输出的结果形式为:

(车辆 id, 车牌颜色): [(预测卡口 1, 相对概率), (预测卡口 2, 相对概率), (预测卡口 3, 相对概率)]

2.5 算法评估

评估指标一,将虚拟卡口0看做正常卡口,最终预测结果给出的三个卡口,与预测车辆后

来实际去过的三个卡口,有一个重合,即认为预测正确;

如:对于预测轨迹 — 车辆 id: (卡口 A, t1); (卡口 B, t2); ······; (卡口 C, t3)

在(卡口C, t3)之后,预测卡口序列 1 = [C1, C2, C3],实际卡口序列 L = [C4, C5, C6]。

若 1ength $(1 \cap L) = 0$,则预测错误;否则预测正确。

评估指标二,将虚拟卡口 0,即接下来 2h 车辆消失,看做一种特殊情形,同样有 1 与 L,分为以下几种情况:

- 1、预测为消失,实际真的消失,预测正确: C1 = C4 = 0;
- 2、预测为消失,实际往后开了一个卡口或更多,预测错误: C1 = 0 != C4;
- 3、预测为继续前行,给出三个预测卡口,实际往后开,且给出的卡口预测正确,预测正确: C1 != 0 != C4 且 length $(1 \cap L)$!= 0;
- 4、预测为继续前行,实际消失,预测错误: C1 != 0 = C4;
- 5、预测为继续前行,给出三个预测卡口,实际确实往后开,但给出的卡口预测错误, 预测错误: C1 != 0 != C4 且 length $(1 \cap L) = 0$ 。

3. 总结

对于交通轨迹预测这种实时性的业务需求,我们在关注算法精确度的同时,更应该关注算法的复杂度,因此特征的选择及应用,数据的处理,算法的训练预测过程,都应该做到简介有效。同样是基于朴素贝叶斯的算法方案,方案 B 在方案 A 的基础上,大大提高了算法效率,同时保证了算法的精度。

4. 修订记录

序号	变更时间	版本	变更人	审批人	变更说明
1	2019-2-28	V 0.1.0	辛杰		新建

附件

附件 1. 车牌号码相关规则

规则	备注		
长度必须为7或者8(下述规则都是针对	车牌号码为7个或8个字符(新能源车等)。		
7个字符的			
第一个必须是汉字,且必须是"备注"中	京、鄂、津、湘、冀、粤、晋、桂、蒙、琼、辽、渝、吉、川、		
31 个汉字中的某一个	黑、贵、沪、云、苏、藏、浙、陕、皖、甘、闽、青、赣、宁、		
	鲁、新、豫		
结尾如果不是字母或者数字,必须是"备	领、使、警、学、挂、港、澳、试、超		
注"中9 个汉字的某一个			
不能含有字母"I"和"O"	车牌号码不含有这两个字母		
字母和数值的组合只能是"备注"中的3种	全部为数字		
组合	只有1个字母,其余为数字		
	如果有两个字母,字母只能出现在如下两个位置上(3、4),		
	(3, 5), (3, 7), (4, 5), (6, 7)		
号牌中不能含有除了规定字符以外的其	规定字符包括上述备注中允许的40 个汉字,0-9 共计10 个数字,		
他字符	以及A-Z 累计24 个字母(I 和O 除外)		