

Related Articles

Heart Disease Prediction using ANN

Difficulty Level : Medium • Last Updated : 11 May, 2020

Deep Learning is a technology of which mimics a human brain in the sense that it consists of multiple neurons with multiple layers like a human brain. The network so formed consists of an input layer, an output layer, and one or more hidden layers. The network tries to learn from the data that is fed into it and then performs predictions accordingly. The most basic type of neural network is the ANN (Artificial Neural Network). The ANN does not have any special structure, it just comprises of multiple neural layers to be used for prediction.

Let's build a model that predicts whether a person has heart disease or not by using ANN.

About the data:

In the dataset, we have 13 columns in which we are given different attributes such as sex, age, cholesterol level, etc. and we are given a target column which tells us whether that person has heart disease or not. We will keep all the columns as independent variables other than the target column because it will be our dependent variable. We will build an ANN which will predict whether a person has heart disease or not given other attributes of the person.

You can find the dataset here heart disease dataset

Code: Importing Libraries

```
import tensorflow as tf
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import keras
from keras.models import Sequential
from keras.layers import Dense
from sklearn.metrics import confusion_matrix
```

Code: Importing Dataset

data = pd.read_csv('heart.csv')
data.head()

	age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	ca	thal	target
0	63	1	3	145	233	1	0	150	0	2.3	0	0	1	1
1	37	1	2	130	250	0	1	187	0	3.5	0	0	2	1
2	41	0	1	130	204	0	0	172	0	1.4	2	0	2	1
3	56	1	1	120	236	0	1	178	0	0.8	2	0	2	1
4	57	0	0	120	354	0	1	163	1	0.6	2	0	2	1

Data Description:

data.describe()

	age	sex	ср	trestbps	chol	fbs	
ount	303.000000	303.000000	303.000000	303.000000	303.000000	303.000000	:
ean	54.366337	0.683168	0.966997	131.623762	246.264026	0.148515	
std	9.082101	0.466011	1.032052	17.538143	51.830751	0.356198	
min	29.000000	0.000000	0.000000	94.000000	126.000000	0.000000	
25%	47.500000	0.000000	0.000000	120.000000	211.000000	0.000000	
50%	55.000000	1.000000	1.000000	130.000000	240.000000	0.000000	
75%	61.000000	1.000000	2.000000	140.000000	274.500000	0.000000	
max	77.000000	1.000000	3.000000	200.000000	564.000000	1.000000	

Code: Check for null values

data.isnull().any()

age	False
sex	False
ср	False
trestbps	False
chol	False
fbs	False
restecg	False
thalach	False
exang	False
oldpeak	False
slope	False
ca	False
thal	False
target	False
dtype: boo	1

Assign Dependent and Independent variable

```
X = data.iloc[:,:13].values
y = data["target"].values
```

```
age
            sex
                       trestbps
                                   chol
                                           fbs
                                                 restecg
                                                           thalach exang
                                                                               oldpeak \
(
                   ср
                                                                                    2.3
0
        63
               1
                    3
                              145
                                     233
                                             1
                                                        0
                                                                 150
                                                                           0
        37
                    2
                                     250
                                                        1
                                                                 187
                                                                            0
                                                                                    3.5
               1
                             130
                                             0
1
2
        41
                    1
                                     204
                                             0
                                                        0
                                                                 172
                                                                           0
               0
                             130
                                                                                    1.4
3
               1
                    1
                                                        1
        56
                              120
                                     236
                                             0
                                                                 178
                                                                            0
                                                                                    0.8
4
        57
               0
                    0
                             120
                                     354
                                             0
                                                        1
                                                                 163
                                                                            1
                                                                                    0.6
                              . . .
       . . .
                   . .
                                     . . .
                                                      . . .
                                                                 . . .
                                                                         . . .
                                                                                    . . .
 . .
             . . .
                                           . . .
298
               0
                    0
                                     241
                                             0
                                                        1
                                                                 123
                                                                           1
                                                                                    0.2
        57
                             140
                    3
299
        45
               1
                             110
                                     264
                                             0
                                                        1
                                                                 132
                                                                           0
                                                                                    1.2
300
        68
               1
                    0
                              144
                                     193
                                             1
                                                        1
                                                                 141
                                                                           0
                                                                                    3.4
        57
                    0
                             130
                                                        1
                                                                 115
                                                                                    1.2
301
               1
                                     131
                                             0
                                                                           1
302
        57
                             130
                                     236
                                                        0
                                                                 174
                                                                            0
                                                                                    0.0
       slope
                    thal
               ca
0
           0
                0
                       1
1
           0
                0
                       2
2
           2
                0
                       2
3
           2
                0
                       2
           2
                       2
4
                0
               . .
                     . . .
 . .
         . . .
298
           1
                0
                       3
299
           1
                0
                       3
                       3
                2
           1
300
301
           1
                1
                       3
                1
                       2
302
           1
 [303 rows x 13 columns],
0
         1
1
         1
2
         1
3
         1
         1
        . .
298
         0
```

Code: Split data into Train and Test dataset

```
X_train,X_test,y_train, y_test = train_test_split(X,y,test_size = 0.3 , random_s
```

Code: Scale the data.

```
from sklearn.preprocessing import StandardScaler
sc = StandardScaler()
X_train = sc.fit_transform(X_train)
X_test = sc.transform(X_test)
```

```
(array([[ 0.835114 , 0.73989544, 0.0315114 , ..., 0.955317 ,
        -0.69264875, -0.42921768],
       [ 1.61651954, 0.73989544, 1.94020175, ..., -0.67796691,
         0.29286491, -0.42921768],
       [ 0.72348464, 0.73989544, -0.92283378, ..., 0.955317 ,
         0.29286491, 1.13964695],
       0.16533783, 0.73989544, 1.94020175, ..., -0.67796691,
        -0.69264875, 1.13964695],
       [-0.83932643, 0.73989544, 0.98585657, ..., 0.955317 ,
        -0.69264875, -0.42921768],
       [ 0.38859655, 0.73989544, 0.0315114 , ..., -0.67796691,
        -0.69264875, -0.42921768]]),
array([[ 1.7281489 , 0.73989544, -0.92283378, ..., -2.31125082,
        -0.69264875, 1.13964695],
       [ 1.05837272, 0.73989544, 1.94020175, ..., -0.67796691,
        -0.69264875, 1.13964695],
       [ 0.50022591, 0.73989544, 1.94020175, ..., -0.67796691,
        -0.69264875, 1.13964695],
       [-0.39280898, 0.73989544, 0.98585657, ..., -0.67796691,
        -0.69264875, -0.42921768],
       [ 1.39326081, 0.73989544, -0.92283378, ..., -0.67796691,
        -0.69264875, -0.42921768],
       [ 2.50955443, 0.73989544, -0.92283378, ..., 0.955317 ,
         2.26389222, -0.42921768]]))
```

Code: Building the Model

Code: Fitting the Model

```
classifier.fit(X train , y train , batch size = 8 ,epochs = 100 )
```

```
Epoch 1/100
212/212 [===
                        ======] - 3s 13ms/step - loss: 0.6922 - accuracy: 0.6887
Epoch 2/100
212/212 [==============] - Os 538us/step - loss: 0.6855 - accuracy: 0.8255
Epoch 3/100
212/212 [====
                    ========] - 0s 538us/step - loss: 0.6638 - accuracy: 0.8491
Epoch 4/100
212/212 [===
                 ========] - 0s 533us/step - loss: 0.6189 - accuracy: 0.8585
Epoch 5/100
Epoch 6/100
212/212 [====
                  =========] - 0s 537us/step - loss: 0.5079 - accuracy: 0.8679
Epoch 7/100
212/212 [=========================] - 0s 594us/step - loss: 0.4703 - accuracy: 0.8632
Epoch 8/100
212/212 [============== ] - 0s 476us/step - loss: 0.4354 - accuracy: 0.8726
Epoch 9/100
212/212 [=====
                      =======] - 0s 491us/step - loss: 0.4075 - accuracy: 0.8679
Epoch 10/100
                                =1 - 05 16745/sten - loss 0 3819 - accuracy 0 8679
```

Code: Performing prediction and rescaling

```
y_pred = classifier.predict(X_test)
y_pred = (y_pred > 0.5)
```

Code: Confusion Matrix

```
cm = confusion_matrix(y_test,y_pred)
cm
```

Code: Accuracy

```
accuracy = (cm[0][0]+cm[1][1])/(cm[0][1] + cm[1][0] + cm[0][0] + cm[1][1])

print(accuracy*100)
```

84.61538461538461

We will get accuracy approximately around 85%.

Next >I

Page: 1 2 3

ML | Heart Disease Prediction Using Logistic Regression .

RECOMMENDED ARTICLES

ML | Heart Disease Prediction Prediction of Wine type using Using Logistic Regression. **Deep Learning** 23, Mar 20 09, Apr 19 **Draw Heart Using Turtle Graphics** Word Prediction using concepts of in Python N - grams and CDF 30, Jun 20 17, Jun 19 Python program to print the Link Prediction - Predict edges in Inverted heart pattern a network using Networkx 22, Sep 20 25, Apr 20 ML | Rainfall prediction using 08 **Scrapping Weather prediction** ()4Linear regression Data using Python and BS4

02, Jun 20

Article Contributed By:

12, Jun 19

Vote for difficulty

Current difficulty: Medium

Easy Normal Medium Hard Expert

Article Tags: Deep-Learning, Neural Network, Machine Learning, Python

Practice Tags: Machine Learning

Improve Article

Report Issue

Writing code in comment? Please use ide.geeksforgeeks.org, generate link and share the link here.

Load Comments

5th Floor, A-118, Sector-136, Noida, Uttar Pradesh - 201305

feedback@geeksforgeeks.org

Company	Learn
About Us	Algorithms
Careers	Data Structures
Privacy Policy	Languages
Contact Us	CS Subjects
Copyright Policy	Video Tutorials

Practice Contribute

Courses Write an Article

Company-wise Write Interview Experience

Topic-wise Internships

How to begin? Videos

@geeksforgeeks, Some rights reserved