Лекция 8. Деревья. Теорема о равносильных определениях дерева. Корневые деревья. Упорядоченные корневые деревья. Оценка числа деревьев с q ребрами.

Лектор — Селезнева Светлана Николаевна selezn@cs.msu.ru

факультет ВМК МГУ имени М.В. Ломоносова

Лекции на сайте https://mk.cs.msu.ru

Дерево

Деревом называется связный граф без циклов.

Граф без циклов (без условия связности) называется лесом.

Отметим, что любая компонента связности леса является деревом.

Теорема 8.1 (о равносильных определениях дерева). Пусть G = (V, E) — граф с р вершинами и q ребрами. Тогда следующие утверждения равносильны:

- 1) G дерево, т.е. связный граф без циклов;
- 2) G- связный граф и q=p-1;
- 3) G rраф без циклов и q = p 1;
- 4) G граф без циклов, но при соединении любой пары несмежных вершин ребром появляется цикл;
- 5) G связный граф, но при удалении любого ребра остается несвязный граф.

Доказательство. $1 \Rightarrow 2$.

Дано: *G* — связный граф без циклов.

 \mathcal{L} оказать: G — связный граф и q=p-1.

Oбоснование. По условию G связный.

По условию G без циклов, поэтому по соотношению для G между числом вершин p, числом ребер q и числом компонент связности s=1 получаем: 1=s=p-q.

Значит, q = p - 1.

Доказательство. $2 \Rightarrow 3$.

 \mathcal{L} ано: G — связный граф и q=p-1.

 \mathcal{L} оказать: G — граф без циклов и q=p-1.

Обоснование. По условию q=p-1.

Если в связном графе G найдется цикл, то удалим из G некоторое ребро e из цикла. Останется связный граф G'. По соотношению для G' между числом вершин p, числом ребер q-1 и числом компонент связности s'=1 получаем: $s'\geqslant p-(q-1)=(p-q)+1=2$ — противоречие.

Значит, G без циклов.

Доказательство. $3 \Rightarrow 4$.

 \mathcal{L} ано: G — граф без циклов и q=p-1.

 \mathcal{L} оказать: G — граф без циклов, но при соединении любой пары несмежных вершин ребром появляется цикл.

Oбоснование. По условию G без циклов.

По соотношению для G между числом вершин p, числом ребер q и числом компонент связности s получаем: s=p-q=1, т. е. G связный.

Значит, при соединении в G любой пары несмежных вершин ребром появится цикл.

Доказательство. $4 \Rightarrow 5$.

 \mathcal{L} \mathcal{L}

Доказать: G — связный граф, но при удалении любого ребра остается несвязный граф.

Обоснование. Если G не связный, то при соединении двух вершин из разных компонент связности цикл не появится. Значит, G связный.

Пусть при удалении из G некоторого ребра e остался связный граф G'. Тогда G получается из связного графа G' добавлением нового ребра e. Поэтому в G найдется цикл — противоречие.

Значит, при удалении из G любого ребра останется несвязный граф.

Доказательство. $5 \Rightarrow 1$.

 \mathcal{L} \mathcal{L}

Доказать: *G* — связный граф без циклов.

Oбоснование. По условию G связный.

Если в G найдется цикл, то удалим из G любое ребро из цикла. Останется связный граф —противоречие.

Значит, G без циклов.

Свойства деревьев

Предложение 8.1.

- 1. В любом дереве любые две различные вершины соединены ровно одной простой цепью.
- 2. Если к дереву добавить ребро, соединяющее его несмежные вершины, то получится граф с одним простым циклом.
- 3. Если из дерева удалить любое ребро, то останется граф с двумя компонентами связности.

Доказательство проведите самостоятельно.

Предложение 8.2. В любом дереве хотя бы с двумя вершинами найдется не менее двух висячих вершин.

Доказательство. Пусть граф G = (V, E) — дерево, причем $|V| \geqslant 2$.

Доказательство. 1. Сначала обоснуем от обратного, что в G найдется хотя бы одна висячая вершина. Предположим, что для любой вершины $v \in V$ верно $d_G(v) \geqslant 2$, т. е. $\delta(G) \geqslant 2$.

Но тогда в G существует цикл длины, не менее $\delta(G)+1\geqslant 3$ — противоречие.

Значит, хотя бы одна висячая вершина $v_0 \in V$ в G найдется.

Доказательство. 2. Теперь обоснуем от обратного, что в G найдется не менее двух висячих вершин. Предположим, что для любой вершины $v \in V$, $v \neq v_0$, верно $d_G(v) \geqslant 2$.

Доказательство. Покажем, что в этом случае для любого i, $i \geqslant 1$, в G найдется простая цепь P_i длины i.

Положим $P_1 = v_0, v_1$, где $(v_0, v_1) \in E$.

Пусть простая цепь $P_i = v_0, v_1, \dots, v_i$ длины i в G уже построена, $i \geqslant 1$.

Но $d_G(v_i)\geqslant 2$, поэтому найдется такая вершина $v_{i+1}\in V$, $v_{i+1}\neq v_{i-1}$, что $(v_i,v_{i+1})\in E$.

Если v_{i+1} совпадает с какой-то из вершин v_1, \ldots, v_{i-2} , то получаем цикл — противоречие.

Поэтому v_{i+1} обязана быть новой вершиной. Далее положим $P_{i+1} = v_0, v_1, \dots, v_i, v_{i+1}$ — простая цепь длины i+1 в G.

Доказательство. Но в G только конечное число вершин. Поэтому G не может содержать бесконечную простую цепь — противоречие.

Значит, в G найдется не менее двух висячих вершин.

Корневое дерево

Корневым деревом называется пара $(D; v_0)$, где D = (V, E) — дерево, $v_0 \in V$ — выделенная вершина, называемая корнем.

При изоморфизме корневых деревьев корень обязан переходить в корень.

Висячая вершина корневого дерева, не являющаяся корнем, называется **листом**.

Корневые деревья

Поддеревья в корневом дереве

Пусть $(D; v_0)$ — корневое дерево, и $(v_0, v_1), \dots, (v_0, v_m)$ — все ребра, исходящие из вершины v_0 в дереве D.

Тогда каждая компонента связности графа $G-v_0$ является деревом, и пусть D_1,\ldots,D_m — все эти деревья.

Каждое из корневых деревьев $(D_i; v_i)$ называется **поддеревом** корневого дерева D, i = 1, ..., m.

Обход в глубину в корневом дереве

Пусть $(D; v_0)$ — корневое дерево. Обходом в глубину из вершины v_0 назовем следующий обход дерева D:

- 1) перейти в непройденное поддерево D_i , обойти его в глубину из вершины v_i и вернуться в вершину v_0 ;
- 2) если пройдены все поддеревья, то закончить обход.

Упорядоченные корневые деревья

Пусть $(D; v_0)$ — корневое дерево и D_1, \dots, D_m — все его поддеревья.

Корневое дерево D называется **упорядоченным**, если задан порядок его поддеревьев, а каждое его поддерево D_i , $i=1,\ldots,m$, также является упорядоченным корневым деревом.

При изоморфизме упорядоченных корневых деревьев корень обязан переходить в корень, и порядок поддеревьев обязан сохраняться.

Число упорядоченных корневых деревьев

Теорема 8.2. Для числа $\delta''(q)$ неизоморфных упорядоченных корневых деревьев с q ребрами справедлива оценка:

$$\delta''(q) \leqslant 4^q$$
.

Доказательство. Пусть $(D; v_0)$ — упорядоченное корневое дерево с q ребрами. Обойдем дерево D в глубину из вершины $v_0 \in V$ по порядку его поддеревьев. При таком обходе по каждому ребру пройдем два раза: первый раз при переходе в соответствующее поддерево, второй раз при возвращении из него.

Число упорядоченных корневых деревьев

Доказательство. По этому обходу построим код дерева D — набор k(D) из нулей и единиц длины 2q. Сначала этот код не заполнен. При проходе по очередному ребру заполняем в коде k(D) первый незаполненный разряд по следующим правилам:

- 1) если по ребру переходим в поддерево, то в код k(D) пишем ноль;
- 2) если по ребру возвращаемся из поддерева, то в код k(D) пишем единицу.

Тогда различным упорядоченным корневым деревьям соответствуют разные коды.

Поэтому $\delta''(q)$ не превосходит числа наборов из нулей и единиц длины 2q, т. е.

$$\delta''(q) \leqslant 2^{2q} = 4^q.$$

Оценка числа деревьев

Следствие 8.2.1. Для числа $\delta'(q)$ неизоморфных корневых деревьев с q ребрами справедлива оценка:

$$\delta'(q) \leqslant 4^q$$
.

Следствие 8.2.2. Для числа $\delta(q)$ неизоморфных деревьев с q ребрами справедлива оценка:

$$\delta(q) \leqslant 4^q$$
.

Код корневого дерева

Код корневого дерева

$$k(D) = (0,0,0,0,1,0,1,1,1,0,0,1,0,1,1,1).$$

Задачи для самостоятельного решения

- 1. Докажите предложение 8.1.
- 2. Найдите верхние оценки числа неизоморфных псевдографов и числа неизоморфных простых графов (без изолированных вершин) с q ребрами.

Литература к лекции

1. Алексеев В. Б. Лекции по дискретной математике. М.: Инфра М, 2012.