Binary probit regression with I-priors

Haziq Jamil

Supervisors: Dr. Wicher Bergsma & Prof. Irini Moustaki

Social Statistics (Year 3) London School of Economics and Political Science

8 May 2017

PhD Presentation Event

http://phd3.haziqj.ml

Outline

• Implementation

R/iprobit Examples

Fisher's Iris data set

Cardiac arrhythmia data set

Meta-analysis of smoking cessation

Summary

- Implementation
- Summary

$$p(\mathbf{y}, \mathbf{y}^*, \mathbf{w}, \alpha, \lambda)$$

$$= p(\mathbf{y}|\mathbf{y}^*)p(\mathbf{y}^*|\mathbf{f})p(\mathbf{w})p(\lambda)p(\alpha)$$

= $\prod_{i=1}^{n} \mathbb{1}[y_i^* \ge 0]^{y_i} \mathbb{1}[y_i^* < 0]^{1-y_i}$

$$\cdot \prod_{i=1}^n \{\mathsf{N}(f_i,1)\} \cdot [\mathsf{N}(0,1)]^n$$

$$\cdot \mathsf{N}(\lambda_0, \kappa_0^{-1}) \cdot \mathsf{N}(\alpha_0, \nu_0^{-1})$$

Posterior distribution

• Approximate the posterior by a mean-field variational density

$$p(\mathbf{y}^*, \mathbf{w}, \alpha, \lambda | \mathbf{y}) \approx \prod_{i=1}^n q(y_i^*) q(\mathbf{w}) q(\alpha) q(\lambda)$$

Posterior distribution

Approximate the posterior by a mean-field variational density

$$p(\mathbf{y}^*, \mathbf{w}, \alpha, \lambda | \mathbf{y}) \approx \prod_{i=1}^n q(y_i^*) q(\mathbf{w}) q(\alpha) q(\lambda)$$

where

$$q(y_i^*) \equiv egin{cases} \mathbb{1}[y_i^* \geq 0] \, \mathsf{N}(ilde{f}_i, 1) & \text{if } y_i = 1 \ \mathbb{1}[y_i^* < 0] \, \mathsf{N}(ilde{f}_i, 1) & \text{if } y_i = 0 \end{cases} \qquad q(\mathbf{w}) \equiv \mathsf{N}(ilde{\mathbf{w}}, ilde{\mathbf{V}}_w) \ q(\lambda) \equiv \mathsf{N}(ilde{\lambda}, ilde{v}_w) \qquad q(\alpha) \equiv \mathsf{N}(ilde{lpha}, 1/n) \end{cases}$$

Posterior distribution

Approximate the posterior by a mean-field variational density

$$p(\mathbf{y}^*, \mathbf{w}, \alpha, \lambda | \mathbf{y}) \approx \prod_{i=1}^n q(y_i^*) q(\mathbf{w}) q(\alpha) q(\lambda)$$

where

$$q(y_i^*) \equiv \begin{cases} \mathbb{1}[y_i^* \geq 0] \, \mathsf{N}(\tilde{f}_i, 1) & \text{if } y_i = 1 \\ \mathbb{1}[y_i^* < 0] \, \mathsf{N}(\tilde{f}_i, 1) & \text{if } y_i = 0 \end{cases} \qquad q(\mathbf{w}) \equiv \mathsf{N}(\tilde{\mathbf{w}}, \tilde{\mathbf{V}}_w)$$

$$q(\lambda) \equiv \mathsf{N}(\tilde{\lambda}, \tilde{v}_w) \qquad q(\alpha) \equiv \mathsf{N}(\tilde{\alpha}, 1/n)$$

$$\tilde{f}_i = \tilde{\alpha} + \sum_{k=1}^n h_{\tilde{\lambda}}(x_i, x_k) \tilde{w}_k \qquad \tilde{\alpha} = \frac{1}{n} \sum_{k=1}^n \left(\mathsf{E}[y_i^*] - h_{\tilde{\lambda}}(x_i, x_k) \tilde{w}_k \right)$$

$$\tilde{\mathbf{w}} = \tilde{\mathbf{V}}_w \mathbf{H}_{\tilde{\lambda}}(\mathsf{E}[\mathbf{y}^*] - \tilde{\alpha} \mathbf{1}_n) \qquad \tilde{\mathbf{V}}_w^{-1} = \mathbf{H}_{\tilde{\lambda}}^2 + \mathbf{I}_n$$

$$\tilde{\lambda} = (\mathsf{E}[\mathbf{y}^*] - \tilde{\alpha} \mathbf{1}_n) \mathbf{H} \tilde{\mathbf{w}} / \tilde{v}_{\lambda} \qquad \tilde{v}_{\lambda} = \mathsf{tr}(\mathbf{H}^2(\tilde{\mathbf{V}}_w + \tilde{\mathbf{w}} \tilde{\mathbf{w}}^\top))$$

Posterior predictive distribution

• Given new data points x_{new} , interested in

$$\begin{split} p(y_{\mathsf{new}}|\mathbf{y}) &= \int p(y_{\mathsf{new}}|y_{\mathsf{new}}^*, \mathbf{y}) p(y_{\mathsf{new}}^*|\mathbf{y}) \, \mathrm{d}y_{\mathsf{new}}^* \\ &\approx \int p(y_{\mathsf{new}}|y_{\mathsf{new}}^*) q(y_{\mathsf{new}}^*) \, \mathrm{d}y_{\mathsf{new}}^* \\ &= \begin{cases} \Phi(\tilde{f}_{\mathsf{new}}) & \text{if } y_{\mathsf{new}} = 1 \\ 1 - \Phi(\tilde{f}_{\mathsf{new}}) & \text{if } y_{\mathsf{new}} = 0 \end{cases} \end{split}$$

where
$$\tilde{f}_{\text{new}} = \tilde{\alpha} + \sum_{k=1}^{n} h_{\tilde{\lambda}}(x_{\text{new}}, x_k) \tilde{w}_k$$
.

• f_{new} represents the estimate of the latent propensity for y_{new} , and its uncertainty is described by $q(y_{\text{new}}^*)$.

Variational lower bound

- Since the solutions are coupled, we implement an iterative scheme (as per Algorithm ??)
- Assess convergence by monitoring the lower bound

$$\begin{split} \mathcal{L} &= \mathsf{E}_q[\log p(\mathbf{y}, \mathbf{y}^*, \mathbf{w}, \alpha, \lambda)] - \mathsf{E}_q[\log q(\mathbf{y}^*, \mathbf{w}, \alpha, \lambda)] \\ &= \mathsf{const.} + \sum_{i=1}^n \left(y_i \log \Phi(\tilde{f_i}) + (1 - y_i) \log \left(1 - \Phi(\tilde{f_i}) \right) \right) \\ &- \frac{1}{2} \left(\mathsf{tr} \, \tilde{\mathbf{V}}_w + \mathsf{tr}(\tilde{\mathbf{w}} \tilde{\mathbf{w}}^\top) - \log |\tilde{\mathbf{V}}_w| + \log \tilde{v}_\lambda \right) \end{split}$$

Fisher's Iris data set

Fisher's Iris data set - Model fitting

 Varitional inference for I-prior probit models implemented in R package iprobit (still lots of work to do!).

HJ (2017). iprobit: Binary Probit Regression with I-priors. R Package version 0.1.0: GitHub

Fisher's Iris data set - Model summary

```
R> summary(mod)
##
## Call:
## iprobit(y = y, X, maxit = 10000)
##
## RKHS used: Canonical
##
##
            Mean S.E. 2.5% 97.5%
## alpha -4.1730 0.0816 -4.3330 -4.0129
## lambda 1.2896 0.0142 1.2618 1.3175
##
## Converged to within 1e-05 tolerance. No. of iterations: 6141
## Model classification error rate (%): 0
## Variational lower bound: -12.93486
```

Fisher's Iris data set - Lower bound

R> iplot_lb(mod, niter.plot = 10)

Fisher's Iris data set - Decision boundary

R> iplot_decbound(mod)

Cardiac arrhythmia data set

• Detect the presence of cardiac arrhythmia based on various ECG data and other attributes such as age and weight (n = 451, p = 194).

H. A. Guvenir et al. (1998). UCI Machine Learning Repository: Arrhythmia Data Set. URL: https://archive.ics.uci.edu/ml/datasets/Arrhythmia

Cardiac arrhythmia data set - Model fit

 Fit an I-prior probit model using Canonical and FBM kernel. The full data set takes about 35 seconds.

```
R> mod <- iprior(y, X, kernel = "FBM")
```

- Compare against popular classifiers: 1) k-nearest neighbours; 2) support vector machine; 3) Gaussian process classification; 4) random forests; 5) nearest shrunken centroids (Tibshirani et al. 2003); and 6) L-1 penalised logistic regression.
- Experiment set-up:
 - Form training set by sub-sampling $n_{\text{sub}} \in \{50, 100, 200\}$ data points.
 - Use remaining data as test set.
 - ► Fit model on training set and obtain test error rates.
 - Repeat 100 times.

T. I. Cannings and R. J. Samworth (2017). "Random-projection ensemble classification". J. R. Stat. Soc. Ser. B: Stat. Methodol (w. discussion), to appear

Cardiac arrhythmia data set - Results

Meta-analysis of smoking cessation

- Data from 27 separate smoking cessation studies, where participants subjected to nicotine gum treatment or placed in control group.
- Some summary statistics:

	Min.	Avg.	Max.	Prop. quit	Odds quit
Control	20	101	617	0.207	0.261
Treated	21	117	600	0.320	0.470

- Raw odds ratio: 1.801.
- Random-effects analysis using a multilevel logistic model estimates this odds ratio as 1.768.

A. Skrondal and S. Rabe-Hesketh (2004). Generalized Latent Variable Modeling: Multilevel, Longitudinal, and Structural Equation Models. Chapman & Hall/CRC, §9.5

Meta-analysis of smoking cessation - model

- Let $i=1,\ldots,n_j$ index the patients in study group $j\in 1,\ldots,27$.
- Denote y_{ij} as the binary response variable indicating Quit (1) or Remain (0), and x_{ij} as patient; s treatment group indicator.
- Model binary data using I-probit model

$$\Phi^{-1}(p_{ij}) = f(x_{ij}, j)$$

= $f_1(x_{ij}) + f_2(j) + f_{12}(x_{ij}, j)$

with $f_1, f_2 \in \text{Pearson RKHS}$, and $f_{12} \in \text{ANOVA RKHS}$.

	Model	Lower bound	Brier score	No. of RKHS
	iviodei	Lower bound		param.
1	f_1	-3210.79	0.0311	1
2	$f_1 + f_2$	-3097.24	0.0294	2
3	$f_1 + f_2 + f_{12}$	-3091.21	0.0294	2

Implementation

00000000000000000

- 1 Implementation
- Summary

Summary

- An extension of the I-prior methodology to binary responses.
- Variational inference used to approximate the intractable likelihood.
 - A deterministic approximation of the posterior density by a "close" (in the KL divergence sense), tractable density.
 - ▶ It's somewhere between Laplace's method and MCMC sampling.
- Several real-world examples demonstrated the use of I-probit models for classification and inference.
- Further work:
 - R package iprobit.
 - Extend to non-iid errors case.
 - Extend to multinomial probit models.
 - Other algorithms (e.g. expectation propagation).

Slides, source code and results are made available at: http://phd3.haziqj.ml

End

Thank you!

References I

- Cannings, T. I. and R. J. Samworth (2017). "Random-projection ensemble classification". *Journal of the Royal Statistical Society. Series B: Statistical Methodology (with discussion)*, to appear.
- Guvenir, H. A., M. Burak Acar, and H. Muderrisoglu (1998). UCI Machine Learning Repository: Arrhythmia Data Set. URL:
 - https://archive.ics.uci.edu/ml/datasets/Arrhythmia.
- Jamil, H. (2017). *iprobit: Binary Probit Regression with I-priors*. R Package version 0.1.0: GitHub.
- Skrondal, A. and S. Rabe-Hesketh (2004). Generalized Latent Variable Modeling: Multilevel, Longitudinal, and Structural Equation Models. Chapman & Hall/CRC.
- Tibshirani, R., T. Hastie, B. Narasimhan, and G. Chu (2003). "Class prediction by nearest shrunken centroids, with applications to DNA microarrays". *Statistical Science*, pp. 104–117.

3 Additional material