Chapter 4 Integrals

4.2 The Definite Integral

1) Equidistributed numbers

2) Sample points within $[x_{i-1}, x_i]$.

Area using a random point in $[x_{i-1}, x_i]$.

$$A =$$

2 Definition of a Definite Integral If f is a function defined for $a \le x \le b$, we divide the interval [a, b] into n subintervals of equal width $\Delta x = (b - a)/n$. We let $x_0 (= a), x_1, x_2, \ldots, x_n (= b)$ be the endpoints of these subintervals and we let $x_1^*, x_2^*, \ldots, x_n^*$ be any **sample points** in these subintervals, so x_i^* lies in the ith subinterval $[x_{i-1}, x_i]$. Then the **definite integral of** f **from** a **to** b is

$$\int_{a}^{b} f(x) dx = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_{i}^{*}) \Delta x$$

provided that this limit exists and gives the same value for all possible choices of sample points. If it does exist, we say that f is **integrable** on [a, b].

Remarks:

1) Terminology.

2) Integral is a number!

3) Riemann Sums.

4) Net Area.

FIGURE 4

 $\int_{a}^{b} f(x) dx$ is the net area.

5) Integrable functions.

Theorem If f is continuous on [a, b], or if f has only a finite number of jump discontinuities, then f is integrable on [a, b]; that is, the definite integral $\int_a^b f(x) dx$ exists.

Right endpoints formula.

4 Theorem If f is integrable on [a, b], then

$$\int_{a}^{b} f(x) dx = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_{i}) \Delta x$$

where

$$\Delta x = \frac{b-a}{n}$$
 and $x_i = a + i \, \Delta x$

EXAMPLE 1 Express

$$\lim_{n\to\infty}\sum_{i=1}^n\left(x_i^3+x_i\sin x_i\right)\Delta x$$

as an integral on the interval $[0, \pi]$.

EXAMPLE 2

- (a) Evaluate the Riemann sum for $f(x) = x^3 6x$, taking the sample points to be right endpoints and a = 0, b = 3, and n = 6.
- (b) Evaluate $\int_{0}^{3} (x^{3} 6x) dx$.

EXAMPLE 4 Evaluate the following integrals by interpreting each in terms of areas.

(a)
$$\int_0^1 \sqrt{1-x^2} \, dx$$

(b)
$$\int_0^3 (x-1) dx$$

Midpoint Rule

$$\int_a^b f(x) dx \approx \sum_{i=1}^n f(\overline{x}_i) \Delta x = \Delta x \left[f(\overline{x}_1) + \cdots + f(\overline{x}_n) \right]$$

where

$$\Delta x = \frac{b - a}{n}$$

and

$$\overline{x}_i = \frac{1}{2}(x_{i-1} + x_i) = \text{midpoint of } [x_{i-1}, x_i]$$

EXAMPLE 5 Use the Midpoint Rule with n = 5 to approximate $\int_{1}^{2} \frac{1}{x} dx$.

$$\int_{b}^{a} f(x) dx = -\int_{a}^{b} f(x) dx$$

$$\int_{a}^{a} f(x) \, dx = 0$$

Properties of the Integral

- 1. $\int_a^b c \, dx = c(b-a)$, where c is any constant
- **2.** $\int_a^b [f(x) + g(x)] dx = \int_a^b f(x) dx + \int_a^b g(x) dx$
- 3. $\int_a^b cf(x) dx = c \int_a^b f(x) dx$, where c is any constant
- **4.** $\int_a^b [f(x) g(x)] dx = \int_a^b f(x) dx \int_a^b g(x) dx$

EXAMPLE 6 Use the properties of integrals to evaluate $\int_0^1 (4 + 3x^2) dx$.

EXAMPLE 7 If it is known that $\int_0^{10} f(x) dx = 17$ and $\int_0^8 f(x) dx = 12$, find $\int_8^{10} f(x) dx$.

Comparison Properties of the Integral

- **6.** If $f(x) \ge 0$ for $a \le x \le b$, then $\int_a^b f(x) dx \ge 0$.
- 7. If $f(x) \ge g(x)$ for $a \le x \le b$, then $\int_a^b f(x) dx \ge \int_a^b g(x) dx$.
- **8.** If $m \le f(x) \le M$ for $a \le x \le b$, then

$$m(b-a) \le \int_a^b f(x) dx \le M(b-a)$$

EXAMPLE 8 Use Property 8 to estimate $\int_{1}^{4} \sqrt{x} \ dx$.