DIALOG(R)File 345:Inpadoc/Fam.& Legal Stat

(c) 2003 EPO. All rts. reserv.

16327696

Basic Patent (No, Kind, Date): WO 200060906 A1 20001012 < No. of Patents: 004>

ORGANIC EL DEVICE (English)
Patent Assignee: TDK CORP (JP)

Author (Inventor): ARAI MICHIO; MITSUHASHI ETSUO; KOBORI ISAMU (Regional)

AT; BE; CH; CY; DE; DK; ES; FI; FR; GB; GR; IE; IT; LU; MC; NL; PT; SE

Filing Details: WO 100000 With international search report

IPC: *H05B-033/22; H05B-033/14

CA Abstract No: *133(20)288616R; 133(20)288616R Derwent WPI Acc No: *C 00-638524; C 00-638524

Language of Document: Japanese

Patent Family:

Patent No Kind Date Applic No Kind Date

EP 1093323 A1 20010418 EP 99926813 A 19990625 JP 2000294375 A2 20001020 JP 9997842 A 19990405 US 6252246 BA 20010626 US 339804 A 19990625

WO 200060906 A1 20001012 WO 99JP3395 A 19990625 (BASIC)

Priority Data (No,Kind,Date):

WO 99JP3395 W 19990625

JP 9997842 A 19990405

DIALOG(R)File 347:JAPIO

(c) 2003 JPO & JAPIO. All rts. reserv.

06708543 **Image available**

ORGANIC EL ELEMENT

PUB. NO.:

2000-294375 [JP 2000294375 A]

PUBLISHED:

October 20, 2000 (20001020)

DIVENTOD(a).

INVENTOR(s): ARAI MICHIO

MIHASHI ETSUO

KOBORI ISAMU

APPLICANT(s): TDK CORP

APPL. NO.:

11-097842 [JP 9997842]

FILED:

April 05, 1999 (19990405)

INTL CLASS:

H05B-033/22; H05B-033/14

ABSTRACT

PROBLEM TO BE SOLVED: To provide an electronic element of high efficiency and long life by comprising an organic layer having a luminescent layer between a hole injection electrode and an electron injection electrode, an inorganic insulating electron transporting layer between the luminescent layer and the electron injection electrode, a hole injection transporting layer between the luminescent layer and the hole injection electrode, and an organic electron injection layer between an inorganic insulating electron transporting layer and the electron injection electrode.

SOLUTION: An organic EL element is formed by successively laminating a substrate 1, a hole injection electrode 2, a hole injection transporting layer 3, a luminescent layer 4, an inorganic electron transporting layer of high resistance 5, an electron injection layer 6, and an electron injection electrode 7, and connecting a driving power source E between the hole injection electrode 2 and the electron injection electrode 7 for adjustment of color tone of the luminescent color, and multicolorization. By mounting the inorganic hole injection transporting layer, the heat resistance and the weather resistance can be improved, and the life of the element can be elongated. By using the inexpensive and easily available inorganci material, the EL element can be easily manufactured with the low cost. The connetability with an electrode can be also improved, and the generation of leaked current and dark spot can be prevented.

(19)日本国特許庁 (JP)

(12)公開特許公報 (A)

(11)特許出願公開番号 特開2000-294375

最終頁に続く

(P2000-294375A) (43)公開日 平成12年10月20日(2000.10.20)

(51) Int. Cl. 7	. 識別記号	FI	テーマコード (参考)
H05B 33/22		H05B 33/22	A 3K007
			С
33/14		33/14	A

	審査請求 未請求 請求項の数13 〇L (全13頁
特願平11-97842	(71)出願人 000003067 ティーディーケイ株式会社
平成11年4月5日(1999.4.5)	東京都中央区日本橋1丁目13番1号 (72)発明者 荒井 三千男 東京都中央区日本橋一丁目13番1号 ティ ーディーケイ株式会社内
	(72)発明者 三橋 悦央 東京都中央区日本橋一丁目13番1号 ティ ーディーケイ株式会社内
	(74).代理人 100082865 弁理士 石井 陽一

(54) 【発明の名称】有機EL素子

(57)【要約】

【課題】有機材料と無機材料の有するメリットを併せ持ち、高効率、長寿命で低コストな有機EL素子を提供する。

【解決手段】 ホール注入電極と電子注入電極と、これらの電極間に少なくとも発光層を有する有機層とを有し、前記発光層と電子注入電極との間には無機絶縁性電子輸送層を有し、前記発光層とホール注入電極との間にはホール注入輸送層を有し、この無機絶縁性電子輸送層と電子注入電極との間には有機の電子注入層を有する有機EL素子とした。

【特許請求の範囲】

【請求項1】 ホール注入電極と電子注入電極と、これらの電極間に少なくとも発光層を有する有機層とを有し、

1

前記発光層と電子注入電極との間には無機絶縁性電子輸 送層を有し、

前記発光層とホール注入電極との間にはホール注入輸送 層を有し、

この無機絶縁性電子輸送層と電子注入電極との間には有機の電子注入層を有する有機EL素子。

【請求項2】 前記無機絶縁性電子輸送層は、主成分として酸化ストロンチウム、酸化マグネシウム、酸化カルシウム、酸化リチウム、酸化ルビジウム、酸化カリウム、酸化ナトリウム、および酸化セシウムから選択される1種または2種以上の酸化物を含有する請求項1~7のいずれかの有機EL素子。

【請求項3】 前記無機絶縁性電子輸送層は、各構成成分が全成分に対して、

主成分:80~99 mol%、

安定剤: 1~20 mol%

含有する請求項1または2の有機EL素子。

【請求項4】 前記無機絶縁性電子輸送層の膜厚は、 $0.1\sim2\,\mathrm{nm}$ である請求項 $1\sim3\,\mathrm{on}$ がれかの有機EL素子。

【請求項5】 前記ホール注入輸送層は、電子をブロックするとともにホールを搬送するための導通パスを有する高抵抗の無機ホール注入輸送層である請求項1~4のいずれかの有機EL素子。

【請求項6】 前記高抵抗の無機ホール注入輸送層は、ホール輸送層、電子導電性を示しかつ強い発光を示す抵抗率が $1\sim1\times10^{11}$ Ω ・cmである請求項5 の有機E 30 とえばA 1 Q 3 材からなる有機発光層を積層し、さらし、素子。

【請求項7】 前記高抵抗の無機ホール注入輸送層は、 金属および/または金属の酸化物、炭化物、窒化物、ケ イ化物および硼化物のいずれか1種以上を含有する請求 項5または6の有機EL素子。

【請求項8】 前記高抵抗の無機ホール注入輸送層は、シリコンおよび/またはゲルマニウムの酸化物を主成分とし、この主成分を(Si,,,Ge,)O,と表したとき $0 \le x \le 1$ 、

 $1. 7 \le y \le 2. 2$

であり、

さらに、仕事関数 4. 5eV以上の金属および/または金属の酸化物、炭化物、窒化物、ケイ化物および硼化物のいずれか 1 種以上を含有する請求項 5~7 のいずれかの有機 E L 素子。

【請求項9】 前記金属は、Au, Cu、Fe、Ni、Ru、Sn, Cr, Ir, Nb, Pt, W, Mo, Ta, PdおよびCoのいずれか1種以上である請求項8の有機EL素子。

【請求項10】 前記金属および/または金属の酸化

物、炭化物、窒化物、ケイ化物および硼化物の含有量は、0.2~40 mol%である請求項8または9の有機EL素子。

【請求項11】 前記高抵抗の無機ホール注入輸送層の 膜厚は、 $0.2\sim100$ nmである請求項 $5\sim100$ いずれかの有機EL素子。

【請求項12】 前記ホール注入輸送層は無機絶縁性ホール注入輸送層であって、この無機絶縁性ホール注入輸送層は、シリコンおよび/またはゲルマニウムの酸化物10 を主成分とし、

主成分の平均組成を、

(Si,.,Ge,) O,と表したとき

 $0 \le x \le 1$

1. $7 \le y \le 1$. 9 9

である請求項1~4のいずれかの有機EL素子。

【請求項13】 前記無機絶縁性ホール注入輸送層の膜厚は、0.1~3nmである請求項12の有機EL素子。 【発明の詳細な説明】

[0001]

① 【発明の属する技術分野】本発明は、有機EL(エレクトロルミネッセンス)素子に関し、詳しくは、有機化合物の薄膜に電界を印加して光を放出する素子に用いられる無機/有機接合構造に関する。

[0002]

【従来の技術】有機EL素子は、ガラス上に大面積で素子を形成できるため、ディスプレー用等に研究開発が進められている。一般に有機EL素子は、ガラス基板上にITO等の透明電極を形成し、その上に有機アミン系のホール輸送層、電子導電性を示しかつ強い発光を示すたとえばAlq3材からなる有機発光層を積層し、さらに、MgAgなどの仕事関数の小さい電極を形成し、基本素子としている。

【0003】これまでに報告されている素子構造としては、ホール注入電極及び電子注入電極の間に1層または複数層の有機化合物層が挟まれた構造となっており、有機化合物層としては、2層構造あるいは3層構造がある。

【0004】2層構造の例としては、ホール注入電極と電子注入電極の間にホール輸送層と発光層が形成された構造または、ホール注入電極と電子注入電極の間に発光層と電子輸送層が形成された構造がある。3層構造の例としては、ホール注入電極と電子注入電極の間にホール輸送層と発光層と電子輸送層とが形成された構造がある。また、単一層に全ての役割を持たせた単層構造も高分子や混合系で報告されている。

【0005】図2および図3に、有機EL素子の代表的な構造を示す。図2では基板11上に設けられたホール注入電極12と電子注入電極13の間に有機化合物であるホール輸送層14と発光層15が形成されている。この場合、発光層15は、電子輸送層の機能も果たしてい

る。

【0006】図3では、基板11上に設けられたホール 注入電極12と電子注入電極13の間に有機化合物であ るホール輸送層14と発光層15と電子輸送層16が形 成されている。

【0007】これら有機EL素子においては、共通し

て、信頼性が問題となっている。すなわち、有機EL素 子は、原理的にホール注入電極と、電子注入電極とを有 し、これら電極間から効率よくホール・電子を注入輸送 するための有機層を必要とする。しかしながら、これら 10 の材料は、製造時にダメージを受けやすく、電極との親 和性にも問題がある。また、有機薄膜の劣化もLED、 LDに較べると著しく大きいという問題を有している。 【0008】 電界発光 (EL) 素子は、電界の影響によ り発光する。このようなELを構成する半導体層での作 用は、一対の電極から半導体に注入される電子ーホール 対の放射結合を通して行われる。その一例としては、G a Pおよび同様なIII 族 - V族半導体を基礎とする発光 ダイオードがある。これらの素子は、効果的且つ広範囲 に利用されているものの、その大きさが非常に微小であ 20 るために大面積ディスプレイに使用するに際しては、困 難を伴うばかりか不経済でもある。大面積ディスプレイ への使用が可能な代替品の材料は幾種類か知られてい る。そして、このような無機半導体のなかでもZnSが 最も有用である。しかしながら、この系は無視できない 実用上の欠点、第1に信頼性が乏しいという問題があ る。ZnSに係るメカニズムの一例は、強電界下におい て、半導体を通って1種のキャリヤが加速されることに より、放射発光によって緩和する半導体の局部的励起が 生じることであると考えられる。

【0009】このような問題を解決するために、有機材料と無機半導体材料のそれぞれのメリットを利用する方法が考えられている。すなわち、有機ホール輸送層を無機p型半導体に置き換えた有機/無機半導体接合である。このような検討は、特許第2636341号、特開平2-139893号公報、特開平2-207488号公報、特開平6-119973号公報で検討されているが、発光特性や基本素子の信頼性で従来素子の有機ELを越える特性を得ることが極めて困難であった。

[0010]

【発明が解決しようとする課題】本発明の目的は、有機 材料と無機材料の有するメリットを併せ持ち、高効率、 長寿命で低コストな有機EL素子を提供することであ る。

[0011]

【課題を解決するための手段】すなわち、上記目的は、 以下の構成により達成される。

(1) ホール注入電極と電子注入電極と、これらの電 (11) 前記高抵抗の極間に少なくとも発光層を有する有機層とを有し、前記 は、0.2~100mmで発光層と電子注入電極との間には無機絶縁性電子輸送層 50 ずれかの有機EL素子。

を有し、前記発光層とホール注入電極との間にはホール 注入輸送層を有し、この無機絶縁性電子輸送層と電子注 入電極との間には有機の電子注入層を有する有機EL素 子。

- (2) 前記無機絶縁性電子輸送層は、主成分として酸化ストロンチウム、酸化マグネシウム、酸化カルシウム、酸化リチウム、酸化ルビジウム、酸化カリウム、酸化ナトリウム、および酸化セシウムから選択される1種または2種以上の酸化物を含有する上記(1)~(7)のいずれかの有機EL素子。
- (3) 前記無機絶縁性電子輸送層は、各構成成分が全成分に対して、

主成分:80~99 mol%、

安定剤: 1~20 mol%

含有する上記(1)または(2)の有機EL素子。

- (4) 前記無機絶縁性電子輸送層の膜厚は、0.1~2nmである上記(1)~(3)のいずれかの有機EL素子。
- (5) 前記ホール注入輸送層は、電子をブロックする とともにホールを搬送するための導通パスを有する高抵 抗の無機ホール注入輸送層である上記(1)~(4)の いずれかの有機EL素子。
 - (6) 前記高抵抗の無機ホール注入輸送層は、抵抗率 $1 \sim 1 \times 10^{11} \Omega \cdot cm$ である上記 (5) の有機 E L 素 子。
 - (7) 前記高抵抗の無機ホール注入輸送層は、金属および/または金属の酸化物、炭化物、窒化物、ケイ化物および硼化物のいずれか1種以上を含有する上記(5)または(6)の有機EL素子。
- 30 【0012】(8) 前記高抵抗の無機ホール注入輸送 層は、シリコンおよび/またはゲルマニウムの酸化物を 主成分とし、この主成分を(Si,,Ge,)O,と表し たとき

 $0 \le x \le 1$

1. $7 \le y \le 2$. 2

であり、さらに、仕事関数4.5eV以上の金属および/ または金属の酸化物、炭化物、窒化物、ケイ化物および 硼化物のいずれか1種以上を含有する上記(5)~

- (7) のいずれかの有機EL素子。
- (9) 前記金属は、Au, Cu、Fe、Ni、Ru、Sn, Cr, Ir, Nb, Pt, W, Mo, Ta, Pd およびCoのいずれか1種以上である上記(8)の有機EL素子。
 - (10) 前記金属および/または金属の酸化物、炭化物、窒化物、ケイ化物および硼化物の含有量は、0.2 ~40 mol%である上記(8)または(9)の有機EL 素子。
 - (11) 前記高抵抗の無機ホール注入輸送層の腹厚は、0.2~100mである上記(5)~(10)のいずわかの有機FI妻子。

(12) 前記ホール注入輸送層は無機絶縁性ホール注 入輸送層であって、この無機絶縁性ホール注入輸送層 は、シリコンおよび/またはゲルマニウムの酸化物を主 成分とし、主成分の平均組成を、(SingGe,)O. と表したとき

$0 \le x \le 1$

1. $7 \le y \le 1$. 9 9

である上記(1)~(4)のいずれかの有機EL素子。 (13) 前記無機絶縁性ホール注入輸送層の膜厚は、 0. 1~3nmである上記(12)の有機EL素子。

【発明の実施の形態】本発明の有機EL素子は、ホール 注入電極と電子注入電極と、これらの電極間に少なくと も発光層を有する有機層とを有し、前記発光層と電子注 入電極との間には無機絶縁性電子注入輸送層を有し、こ の無機絶縁性電子輸送層と電子注入電極との間には有機 の電子注入層を有する。

【0014】電子注入電極材料は、低仕事関数の物質が 好ましく、例えば、K、Li、Na、Mg、La、C e, Ca, Sr, Ba, Al, Ag, In, Sn, Z n、Zr等の金属元素単体、または安定性を向上させる ためにそれらを含む2成分、3成分の合金系、あるいは これらの酸化物等を用いることが好ましい。また、し i、Na、K、Rb、Csなどのアルカリ金属の酸化 物、フッ化物でもよい。合金系としては、例えばAg・ Mg (Ag: 0. 1~50at%), Al·Li (Li: 0. $0.1 \sim 1.2$ at%) \ In \ Mg (Mg: $5.0 \sim 8.0$ at%)、Al·Ca (Ca: 0. 01~20at%) 等が 挙げられる。電子注入電極層にはこれらの材料からなる 薄膜、それらの2種類以上の多層薄膜が用いられる。

【0015】電子注入電極薄膜の厚さは、電子注入を十 分行える一定以上の厚さとすれば良く、0.1nm以上、 好ましくはO. 5mm以上、特に1mm以上とすればよい。 また、その上限値には特に制限はないが、通常膜厚は1 ~500m程度とすればよい。電子注入電極の上には、 さらに補助電極(保護電極)を設けてもよい。

【0016】補助電極の厚さは、電子注入効率を確保 し、水分や酸素あるいは有機溶媒の進入を防止するた め、一定以上の厚さとすればよく、好ましくは50nm以 上、さらには100mm以上、特に100~500nmの範 40 囲が好ましい。補助電極層が薄すぎると、その効果が得 られず、また、補助電極層の段差被覆性が低くなってし まい、端子電極との接続が十分ではなくなる。一方、補 助電極層が厚すぎると、補助電極層の応力が大きくなる ため、ダークスポットの成長速度が速くなってしまう等 といった弊害が生じてくる。

【0017】補助電極は、組み合わせる電子注入電極の 材質により最適な材質を選択して用いればよい。例え ば、電子注入効率を確保することを重視するのであれば A 1 等の低抵抗の金属を用いればよく、封止性を重視す 50 子の注入を容易にする機能、電子を安定に輸送する機能

る場合には、TiN等の金属化合物を用いてもよい。 【0018】電子注入電極と補助電極とを併せた全体の 厚さとしては、特に制限はないが、通常50~500nm 程度とすればよい。

【0019】ホール注入電極材料は、ホール注入層等へ ホールを効率よく注入することのできるものが好まし く、仕事関数 4. 5 eV~ 5. 5 eVの物質が好ましい。具 体的には、錫ドープ酸化インジウム(ITO)、亜鉛ド ープ酸化インジウム(IZO)、酸化インジウム(In 10 , O,)、酸化スズ (SnO,) および酸化亜鉛 (Zn O) のいずれかを主組成としたものが好ましい。これら の酸化物はその化学量論組成から多少偏倚していてもよ い。 In, O, に対するSnO, の混合比は、1~20 wt%、さらには5~12wt%が好ましい。また、IZO での In, O, に対する Zn Oの混合比は、通常、12 ~32 wt %程度である。

【0020】ホール注入電極は、仕事関数を調整するた め、酸化シリコン(SiO,)を含有していてもよい。 酸化シリコン(SiO,)の含有量は、ITOに対する SiO, の mol比で0. 5~10%程度が好ましい。S iO,を含有することにより、ITOの仕事関数が増大

【0021】光を取り出す側の電極は、発光波長帯域、 通常400~700nm、特に各発光光に対する光透過率 が50%以上、さらには80%以上、特に90%以上で あることが好ましい。透過率が低くなりすぎると、発光 層からの発光自体が減衰され、発光素子として必要な輝 度を得難くなってくる。

【0022】電極の厚さは、50~500nm、特に50 30 ~300mの範囲が好ましい。また、その上限は特に制 限はないが、あまり厚いと透過率の低下や剥離などの心 配が生じる。厚さが薄すぎると、十分な効果が得られ ず、製造時の膜強度等の点でも問題がある。

【0023】本発明の有機EL素子は、上記発光層と、 電子注入電極(陰電極)との間に、有機層を介して無機 絶縁性電子輸送層を有する。

【0024】このように、無機材料からなる無機絶縁性 電子輸送層を設けることで、無機材料の有するメリット と、有機材料の有するメリットとを併せもった有機EL 素子とすることができる。すなわち、電極や発光層と、 電子注入輸送層との界面での物性が安定し、製造が容易 になる。また、従来の有機電子注入層を有する素子と同 等かそれ以上の輝度が得られ、しかも、耐熱性、耐候性 が高いので従来のものよりも寿命が長く、リークやダー クスポットの発生も少ない。また、比較的高価な有機物 質ではなく、安価で入手しやすい無機材料を用いている ので、製造が容易となり、製造コストを低減することが

【0025】無機絶縁性電子輸送層は、陰電極からつ電

およびホールを妨げる機能を有するものである。この層 は、発光層に注入されるホールや電子を増大・閉じこめ させ、再結合領域を最適化させ、発光効率を改善する。

【0026】すなわち、無機絶縁性電子輸送層を、上記 主成分等により構成することにより、特別に電子注入機 能を有する電極を形成する必要がなく、比較的安定性が 高く、導電率の良好な金属電極を用いることができる。 そして、無機絶縁性電子注入輸送層の電子注入輸送効率 が向上すると共に、素子の寿命が延びることになる。

【0027】無機絶縁性電子輸送層は、主成分として酸 10 化リチウム(Li,O)、酸化ルビジウム(Rb,O)、 酸化カリウム(K,O)、酸化ナトリウム(Na,O)、 酸化セシウム(Cs,O)、酸化ストロンチウム(Sr O)、酸化マグネシウム (MgO)、および酸化カルシ ウム (CaO) の1種または2種以上を含有する。これ らは単独で用いてもよいし、2種以上を混合して用いて もよく、2種以上を用いる場合の混合比は任意である。 また、これらのなかでは酸化ストロンチウムが最も好ま しく、次いで酸化マグネシウム、酸化カルシウム、さら に酸化リチウム (Li,O) の順で好ましく、次いで酸 20 化ルビジウム(Rb,O)、次いで酸化カリウム(K ,O)、および酸化ナトリウム(Na,O)が好ましい。 これらを混合して用いる場合には、これらのなかで酸化 ストロンチウムが40 mol%以上、または酸化リチウム と酸化ルビジウムの総計が40 mol%以上、特に50 m ol%以上含有されていることが好ましい。

【0028】無機絶縁性電子輸送層は、好ましくは安定 剤として酸化シリコン(SiO₁)、および/または酸 化ゲルマニウム(GeOz)を含有する。これらはいず れか一方を用いてもよいし、両者を混合して用いてもよ 30 ましい。 く、その際の混合比は任意である。

【0029】上記の各酸化物は、通常、化学量論的組成 (stoichiometric composition) となっているが、これ から多少偏倚し、非化学量論的組成 (non-stoichiometr y) となっていてもよい。

【0030】また、本発明の無機絶緑性電子輸送層は、 好ましくは上記各構成成分が全成分に対して、SrO、 MgO, CaO, Li,O, Rb,O, K,O, Na,O, Cs,O、SiO,、GeO,に換算して、

mol%.

安定剤: 1~20 mol%、より好ましくは 5~10 mol%. 含有する。

【0031】無機絶縁性電子輸送層の膜厚としては、好 ましくは0. 1~2nm、より好ましくは0. 3~0. 8 nmである。電子注入層がこれより薄くても厚くても、電 子注入層としての機能を十分に発揮できなくなくなって くる。

として、Hやスパッタガスに用いるNe、Ar、Kr、 Xe等を合計5at%以下含有していてもよい。

【0033】なお、無機絶縁性電子輸送層全体の平均値 としてこのような組成であれば、均一でなくてもよく、 膜厚方向に濃度勾配を有する構造としてもよい。

【0034】無機絶縁性電子輸送層は、通常、非晶質状 態である。

【0035】上記の無機絶縁性電子輸送層の製造方法と しては、スパッタ法、蒸着法などの各種の物理的または 化学的な薄膜形成方法などが考えられるが、スパッタ法 が好ましい。なかでも、上記第1成分と第2成分のター ゲットを別個にスパッタする多元スパッタが好ましい。 多元スパッタにすることで、それぞれのターゲットに好 適なスパッタ法を用いることができる。また、1元スパ ッタとする場合には、第1成分と第2成分の混合ターゲ ットを用いてもよい。

【0036】無機絶緑性電子輸送層をスパッタ法で形成 する場合、スパッタ時のスパッタガスの圧力は、0.1 ~1Paの範囲が好ましい。スパッタガスは、通常のスパ ッタ装置に使用される不活性ガス、例えばAr, Ne, Xe, Kr等が使用できる。また、必要によりN, を用 いてもよい。スパッタ時の雰囲気としては、上記スパッ タガスに加えO。を1~99%程度混合して反応性スパ ッタを行ってもよい。

【0037】スパッタ法としてはRF電源を用いた髙周 波スパッタ法や、DCスパッタ法等が使用できる。スパ ッタ装置の電力としては、好ましくはRFスパッタで 0. 1~10W/cm² の範囲が好ましく、成膜レートは 0. 5~10nm/min 、特に1~5nm/min の範囲が好

【0038】成膜時の基板温度としては、室温(25 ℃)~150℃程度である。

[0039] また、本発明の有機EL素子は、有機層と して上記発光層以外に無機の電子輸送層に加え有機の電 子注入層を有する。

【0040】有機材料からなる電子注入層には、電子注 入輸送性材料を用いることが好ましい。

【0041】具体的には電子注入層は、トリス(8-キ ノリノラト)アルミニウム(Alq3)等の8-キノリ 主成分: $80 \sim 99 \text{ mol}$ %、より好ましくは $90 \sim 95 \text{ 40}$ ノールまたはその誘導体を配位子とする有機金属錯体な どのキノリン誘導体、オキサジアゾール誘導体、ベリレ ン誘導体、ピリジン誘導体、ピリミジン誘導体、キノキ サリン誘導体、ジフェニルキノン誘導体、ニトロ脳検ブ ルオレン誘導体等を用いることができる。

【0042】電子注入輸送層は発光層を兼ねたものであ ってもよく、このような場合はトリス (8-キノリノナ ト)アルミニウム等を使用することが好ましい。 魔子は 入層の形成は、発光層と同様に、蒸着等によればよい。 【0043】有機の電子注入層の厚さは、特に初収され 【0032】無機絶縁性電子輸送層には、他に、不純物 50 るものではなく、形成方法によっても異なるが、過ぎる

~500m程度、特に10~300mとすることが好ま

【0044】発光層は、少なくとも発光機能に関与する 1種類、または2種類以上の有機化合物薄膜、またはそ の積層膜からなる。

【0045】発光層は、ホール(正孔)および電子の注 入機能、それらの輸送機能、ホールと電子の再結合によ り励起子を生成させる機能を有する。発光層には、比較 的電子的にニュートラルな化合物を用いることで、電子 とホールを容易かつパランスよく注入・輸送することが 10 できる。

【0046】発光層の厚さは、特に制限されるものでは なく、形成方法によっても異なるが、通常5~500mm 程度、特に10~300mとすることが好ましい。

【0047】有機EL素子の発光層には、発光機能を有 する化合物である蛍光性物質を含有させる。このような 蛍光性物質としては、例えば、特開昭63-26469 2号公報に開示されているような化合物、例えばキナク リドン、ルプレン、スチリル系色素等の化合物から選択 ーキノリノラト)アルミニウム等の8-キノリノールま たはその誘導体を配位子とする金属錯体色素などのキノ リン誘導体、テトラフェニルプタジエン、アントラセ ン、ペリレン、コロネン、12-フタロペリノン誘導体 等が挙げられる。さらには、特開平8-12600号公 報(特願平6-110569号) に記載のフェニルアン トラセン誘導体、特開平8-12969号公報(特願平 6-114456号) に記載のテトラアリールエテン誘 導体等を用いることができる。

と組み合わせて使用することが好ましく、ドーパントと しての使用が好ましい。このような場合の発光層におけ る化合物の含有量は0.01~10体積%、さらには 0.1~5体積%であることが好ましい。また、ルプレ ン系では0.01~20体積%程度が好ましい。ホスト 物質と組み合わせて使用することによって、ホスト物質 の発光波長特性を変化させることができ、長波長に移行 した発光が可能になるとともに、素子の発光効率や安定 性が向上する。

好ましく、さらには8-キノリノールまたはその誘導体 を配位子とするアルミニウム錯体が好ましい。このよう なアルミニウム錯体としては、特開昭63-26469 2号、特開平3-255190号、特開平5-7073 3号、特開平5-258859号、特開平6-2158 7.4号等に開示されているものを挙げることができる。 【0050】具体的には、まず、トリス(8-キノリノ ラト) アルミニウム、ピス(8-キノリノラト) マグネ シウム、ビス (ベンゾ (f) -8-キノリノラト) 亜 鉛、ピス(2-メチル-8-キノリノラト)アルミニウ 50 ト)アルミニウム(III)、ピス(2,4-ジメチル-8

ムオキシド、トリス(8-キノリノラト)インジウム、 トリス (5-メチル-8-キノリノラト) アルミニウ ム、8-キノリノラトリチウム、トリス(5-クロロー 8-キノリノラト) ガリウム、ビス (5-クロロ-8-キノリノラト)カルシウム、5、7-ジクロル-8-キ ノリノラトアルミニウム、トリス(5, 7-ジプロモー 8-ヒドロキシキノリノラト) アルミニウム、ポリ [亜 鉛(II) -ピス(8-ヒドロキシ-5-キノリニル)メ タン] 等がある。

【0051】また、8-キノリノールまたはその誘導体 のほかに他の配位子を有するアルミニウム錯体であって もよく、このようなものとしては、ピス(2-メチルー 8-キノリノラト) (フェノラト) アルミニウム(III) 、ビス(2-メチル-8-キノリノラト)(オルトー クレゾラト) アルミニウム(III) 、ピス(2 – メチルー 8-キノリノラト) (メタークレゾラト) アルミニウム (III)、ピス(2-メチル-8-キノリノラト) (パラ -クレゾラト)アルミニウム(III)、ピス(2-メチル -8-キノリノラト) (オルトーフェニルフェノラト) される少なくとも1種が挙げられる。また、トリス(8 20 アルミニウム(III)、ピス(2-メチル-8-キノリノ ラト) (メターフェニルフェノラト) アルミニウム(II I)、ピス(2-メチル-8-キノリノラト)(パラー フェニルフェノラト) アルミニウム(III) 、ピス(2-メチルー8-キノリノラト)(2,3-ジメチルフェノ ラト) アルミニウム(III) 、ピス (2-メチル-8-キ ノリノラト) (2,6-ジメチルフェノラト) アルミニ ウム(III) 、ピス(2-メチル-8-キノリノラト) (3,4-ジメチルフェノラト)アルミニウム(III)、 ピス(2-メチル-8-キノリノラト)(3,5-ジメ 【0048】また、それ自体で発光が可能なホスト物質 30 チルフェノラト)アルミニウム(III)、ビス (2-メチ ルー8ーキノリノラト) (3,5ージーtertープチルフ ェノラト)アルミニウム(III)、ビス(2-メチル-8 ーキノリノラト) (2,6-ジフェニルフェノラト)ア ルミニウム(III)、ピス(2-メチル-8-キノリノラ ト) (2, 4, 6-トリフェニルフェノラト) アルミニ ウム(III) 、ピス(2-メチル-8-キノリノラト) (2, 3, 6-トリメチルフェノラト) アルミニウム(I 3, 5, 6-テトラメチルフェノラト) アルミニウム(1 【0049】ホスト物質としては、キノリノラト錯体が 40 II)、ビス(2-メチル-8-キノリノラト)(1-ナ フトラト) アルミニウム(III) 、ピス(2-メチル-8 ーキノリノラト) (2-ナフトラト) アルミニウム(II じ、ビス(2、4ージメチルー8ーキノリノラト) (オルトーフェニルフェノラト)アルミニウム(!!!)、 ピス(2,4-ジメチル-8-キノリノラト)(パラー フェニルフェノラト) アルミニウム(III) 、ピス(2, 4-ジメチル-8-キノリノラト) (メターフェニルフ ェノラト) アルミニウム(III) 、ビス(2, 4-ジメチ ルー8ーキノリノラト) (3,5ージメチルフェノラ

ーキノリノラト)(3, $5- \dot{y}$ ーtertーブチルフェノラト)アルミニウム(\overline{II})、 \dot{y} ($2- \dot{y}$ チルー $4- \dot{y}$ ルー $8- \dot{y}$ ーノリノラト)(パラークレゾラト)アルミニウム(\overline{III})、 \dot{y} にな、($2- \dot{y}$ チルー $4- \dot{y}$ トキシー $8- \dot{y}$ ーリノラト)(パラーフェニルフェノラト)アルミニウム(\overline{III})、 \dot{y} にな、($2- \dot{y}$ チルー $5- \dot{y}$ アルミニウム(\overline{III})、 \dot{y} にな、($2- \dot{y}$ チルー $5- \dot{y}$ アルミニウム(\overline{III})、 \dot{y} にな、($2- \dot{y}$ チルー $6- \dot{y}$ トリフルオロメチルー $8- \dot{y}$ リノラト)($2- \dot{y}$ アルミニウム(\overline{III}) 等がある。

【0052】このほか、ピス(2-メチル-8-キノリ ノラト) アルミニウム(III) - μ-オキソーピス (2-メチルー8-キノリノラト)アルミニウム(III)、ピス (2, 4-ジメチル-8-キノリノラト) アルミニウム (III) - μ - オキソービス (2, 4 - ジメチル - 8 - キ ノリノラト) アルミニウム(III) 、ピス (4-エチルー 2-メチル-8-キノリノラト) アルミニウム(III) - μ - オキソーピス(4 - エチルー 2 - メチルー 8 - キノ リノラト) アルミニウム(III) 、ピス (2-メチル-4 -メトキシキノリノラト) アルミニウム(III) $-\mu$ -オ 20 キソーピス (2-メチルー4-メトキシキノリノラト) アルミニウム(III) 、ピス(5-シアノ-2-メチルー 8 -キノリノラト) アルミニウム(III) $-\mu$ -オキソー ピス(5-シアノ-2-メチル-8-キノリノラト)ア ルミニウム(III)、ビス(2-メチル-5-トリフルオ ロメチルー8ーキノリノラト) アルミニウム(III) $-\mu$ ーオキソーピス (2-メチルー5-トリフルオロメチル -8-キノリノラト) アルミニウム(III) 等であっても よい。

【0053】このほかのホスト物質としては、特開平8 30 が好ましい。 -12600号公報(特願平6-110569号)に記 【0062】 載のフェニルアントラセン誘導体や特開平8-1296 蒸着源より煮 9号公報(特願平6-114456号)に記載のテトラ 発温度)が同 アリールエテン誘導体なども好ましい。 じ蒸着ポード

【0054】発光層は電子注入輸送層を兼ねたものであってもよく、このような場合はトリス(8-キノリノラト)アルミニウム等を使用することが好ましい。これらの蛍光性物質を蒸着すればよい。

【0055】また、発光層は、必要に応じて、少なくとも1種のホール注入輸送性化合物と少なくとも1種の電 40子注入輸送性化合物との混合層とすることも好ましく、さらにはこの混合層中にドーパントを含有させることが好ましい。このような混合層における化合物の含有量は、0.01~20体積%、さらには0.1~15体積%とすることが好ましい。

【0056】混合層では、キャリアのホッピング伝導パスができるため、各キャリアは極性的に有利な物質中を移動し、逆の極性のキャリア注入は起こりにくくなるため、有機化合物がダメージを受けにくくなり、素子寿命がのびるという利点がある。また、前述のドーパントを

このような混合層に含有させることにより、混合層自体 のもつ発光波長特性を変化させることができ、発光波長 を長波長に移行させることができるとともに、発光強度 を高め、素子の安定性を向上させることもできる。

【0057】混合層に用いられるホール注入輸送性化合物および電子注入輸送性化合物は、各々、後述のホール注入輸送性の化合物および電子注入輸送性の化合物の中から選択すればよい。

【0058】電子注入輸送性の化合物としては、キノリン誘導体、さらには8-キノリノールないしその誘導体を配位子とする金属錯体、特にトリス(8-キノリノラト)アルミニウム(Alq3)を用いることが好ましい。また、上記のフェニルアントラセン誘導体、テトラアリールエテン誘導体を用いるのも好ましい。

【0059】ホール注入輸送性の化合物としては、強い 蛍光を持ったアミン誘導体、例えば上記のホール輸送材 料であるトリフェニルジアミン誘導体、さらにはスチリ ルアミン誘導体、芳香族縮合環を持つアミン誘導体を用 いるのが好ましい。

【0060】この場合の混合比は、それぞれのキャリア移動度とキャリア濃度によるが、一般的には、ホール注入輸送性化合物の化合物/電子注入輸送機能を有する化合物の重量比が、 $1/99\sim99/1$ 、さらに好ましくは $10/90\sim90/10$ 、特に好ましくは $20/80\sim80/20$ 程度となるようにすることが好ましい。

【0061】また、混合層の厚さは、分子層一層に相当する厚み以上で、有機化合物層の膜厚未満とすることが好ましい。具体的には $1\sim85\,\mathrm{nm}$ とすることが好ましく、さらには $5\sim60\,\mathrm{nm}$ 、特には $5\sim50\,\mathrm{nm}$ とすることが好ましい。

【0062】また、混合層の形成方法としては、異なる蒸着源より蒸発させる共蒸着が好ましいが、蒸気圧(蒸発温度)が同程度あるいは非常に近い場合には、予め同じ蒸着ボード内で混合させておき、蒸着することもできる。混合層は化合物同士が均一に混合している方が好ましいが、場合によっては、化合物が島状に存在するものであってもよい。発光層は、一般的には、有機蛍光物質を蒸着するか、あるいは、樹脂バインダー中に分散させてコーティングすることにより、発光層を所定の厚さに形成する。

【0.063】真空蒸着の条件は特に限定されないが、 1.0^{-4} Pa以下の真空度とし、蒸着速度は $0.01\sim1$ nm/sec 程度とすることが好ましい。また、真空中で連続して各層を形成することが好ましい。真空中で連続して形成すれば、各層の界面に不純物が吸着することを防げるため、高特性が得られる。また、素子の駆動電圧を低くしたり、ダークスポットの発生・成長を抑制したりすることができる。

め、有機化合物がダメージを受けにくくなり、素子寿命 【0064】これら各層の形成に真空蒸着法を用いる場がのびるという利点がある。また、前述のドーパントを 50 合において、1層に複数の化合物を含有させる場合、化

合物を入れた各ポートを個別に温度制御して共蒸着する ことが好ましい。

【0065】本発明の有機EL素子は、発光層とホール 注入電極との間にホール注入輸送層として、有機のホー ル注入輸送層を油していてもよい。

【0066】有機のホール注入輸送層には、例えば、特 開昭63-295695号公報、特開平2-19169 4号公報、特開平3-792号公報、特開平5-234 681号公報、特開平5-239455号公報、特開平 5-299174号公報、特開平7-126225号公 10 報、特開平7-126226号公報、特開平8-100 172号公報、EP0650955A1等に記載されて いる各種有機化合物を用いることができる。例えば、テ トラアリールベンジシン化合物(トリアリールジアミン ないしトリフェニルジアミン:TPD)、芳香族三級ア ミン、ヒドラゾン誘導体、カルバゾール誘導体、トリア ゾール誘導体、イミダゾール誘導体、アミノ基を有する オキサジアゾール誘導体、ポリチオフェン等である。こ れらの化合物は、1種のみを用いても、2種以上を併用 してもよい。2種以上を併用するときは、別層にして積 20 抗率が好ましくは $1\sim1\times10^{"}$ $\Omega\cdot cm$ 、特に 1×10 層したり、混合したりすればよい。

【0067】発光層、有機のホール注入輸送層、電子注 入層の形成には、均質な薄膜が形成できることから、真 空蒸着法を用いることが好ましい。真空蒸着法を用いた 場合、アモルファス状態または結晶粒径が 0. 2 μm 以 下の均質な薄膜が得られる。結晶粒径が 0.2 μm を超 えていると、不均一な発光となり、素子の駆動電圧を高 くしなければならなくなり、電子、ホールの注入効率も 著しく低下する。

【0068】真空蒸着の条件は特に限定されないが、1 30 いて 0-1Pa以下の真空度とし、蒸着速度は0.01~1nm/ sec 程度とすることが好ましい。また、真空中で連続し て各層を形成することが好ましい。真空中で連続して形 成すれば、各層の界面に不純物が吸着することを防げる ため、高特性が得られる。また、素子の駆動電圧を低く したり、ダークスポットの発生・成長を抑制したりする ことができる。

【0069】これら各層の形成に真空蒸着法を用いる場 合において、1層に複数の化合物を含有させる場合、化 ことが好ましい。

【0070】本発明の有機EL素子は、上記発光層と、 ホール注入電極との間に、ホール注入輸送層として高抵 抗の無機ホール注入輸送層を有してもよい。

【0071】このように、ホールの導通パスを有し、電 子をプロックできる髙抵抗の無機ホール注入輸送層を発 光層とホール注入電極との間に配置することで、発光層 ヘホールを効率よく注入することができ、発光効率が向 上するとともに駆動電圧が低下する。

【0072】また、好ましくは高抵抗の無機ホール注入 50 0 mol%である。含有量がこれより少ないとホール注入

輸送層の主成分としてシリコンや、ゲルマニウム等の金 属または半金属の酸化物を用い、これに仕事関数4.5 eV以上、好ましくは4.5~6eVの金属や、半金属およ び/またはこれらの酸化物、炭化物、窒化物、ケイ化 物、硼化物のいずれか1種以上を含有させて導電パスを 形成することにより、ホール注入層から発光層側の有機 層へ効率よくホールを注入することができる。しかも、 発光層からホール注入電極側への電子の移動を抑制する ことができ、発光層でのホールと電子との再結合を効率 よく行わせることができる。また、無機材料の有するメ リットと、有機材料の有するメリットとを併せもった有 機EL素子とすることができる。本発明の有機EL素子 は、従来の有機ホール輸送層を有する素子と同等かそれ 以上の輝度が得られ、しかも、耐熱性、耐候性が高いの で従来のものよりも寿命が長く、リークやダークスポッ トの発生も少ない。また、比較的高価な有機物質ばかり ではなく、安価で入手しやすく製造が容易な無機材料も 用いることで、製造コストを低減することもできる。

【0073】高抵抗の無機ホール注入輸送層は、その抵 3~1×10°Ω・cmである。高抵抗の無機ホール注入輸 送層の抵抗率を上記範囲とすることにより、高い電子ブ ロック性を維持したままホール注入効率を飛躍的に向上 させることができる。高抵抗の無機ホール注入輸送層の 抵抗率は、シート抵抗と膜厚からも求めることができ る。この場合、シート抵抗は4端子法等により測定する ことができる。

【0074】主成分の材料は、シリコン、ゲルマニウム の酸化物であり、好ましくは(Si, , Ge,)O,にお

 $0 \le x \le 1$

1. $7 \le y \le 2$. 2、好ましくは1. $7 \le y \le 1$. 99 である。高抵抗の無機ホール注入輸送層の主成分は、酸 化ケイ素でも酸化ゲルマニウムでもよく、それらの混合 薄膜でもよい。yがこれより大きくても小さくてもホー ル注入機能は低下してくる傾向がある。組成は、例えば ラザフォード後方散乱、化学分析等で調べればよい。

【0075】高抵抗の無機ホール注入輸送層は、さらに 主成分に加え、仕事関数4.5eV以上の金属(半金属を 合物を入れた各ポートを個別に温度制御して共蒸着する 40 含む)の酸化物、炭化物、窒化物、ケイ化物および硼化 物を含有することが好ましい。仕事関数 4. 5eV以上、 好ましくは4.5~6eVの金属は、好ましくはAu、C u. Fe. Ni. Ru. Sn, Cr, Ir, Nb, P t, W, Mo, Ta, PdおよびCoのいずれか1種ま た2種以上である。これらは一般に金属としてあるいは 酸化物の形で存在する。また、これらの炭化物、窒化 物、ケイ化物、硼化物であってもよい。これらを混合し て用いる場合の混合比は任意である。これらの含有量は 好ましくは 0. 2~40 mol%、より好ましくは 1~2

16

機能が低下し、含有量がこれを超えると電子ブロック機 能が低下してくる。2種以上を併用する場合、合計の含 有量は上記の範囲にすることが好ましい。

【0076】上記金属または金属(半金属を含む)の酸 化物、炭化物、窒化物、ケイ化物および硼化物は、通 常、高抵抗の無機ホール注入輸送層中に分散している。 分散粒子の粒径としては、通常、1~5nm程度である。 この導体である分散粒子同士との間で高抵抗の主成分を 介してホールを搬送するためのホッピングパスが形成さ れるものと考えられる。

【0077】高抵抗の無機ホール注入輸送層には、他 に、不純物として、Hやスパッタガスに用いるNe、A r、Kr、Xe等を合計5at%以下含有していてもよ W.

【0078】なお、高抵抗の無機ホール注入輸送層全体 の平均値としてこのような組成であれば、均一でなくて もよく、膜厚方向に濃度勾配を有する構造としてもよ 61

【0079】高抵抗の無機ホール注入輸送層は、通常、 非晶質状態である。

【0080】高抵抗の無機ホール注入輸送層の膜厚とし ては、好ましくは 0. 2~100mm、より好ましくは 0. 2~30nm、特に0. 2~10nm程度が好ましい。 髙抵抗の無機ホール注入輸送層がこれより薄くても厚く ても、ホール輸送層としての機能を十分に発揮できなく なくなってくる。

【0081】上記の高抵抗の無機ホール注入輸送層の製 造方法としては、スパッタ法、蒸着法などの各種の物理 的または化学的な薄膜形成方法などが考えられるが、ス は金属酸化物等のターゲットを別個にスパッタする多元 スパッタが好ましい。多元スパッタにすることで、それ ぞれのターゲットに好適なスパッタ法を用いることがで きる。また、1元スパッタとする場合には、主成分のタ ーゲット上に上記金属または金属酸化物等の小片を配置 し、両者の面積比を適当に調整することにより、組成を 調整してもよい。

【0082】高抵抗の無機ホール注入輸送層をスパッタ 法で形成する場合、成膜条件等は上記無機絶縁性電子注 入輸送層の場合と同様である。

【0083】本発明の有機EL素子は、高抵抗の無機ホ ール注入輸送層を有することにより、耐熱性、耐候性が 向上し、素子の長寿命化を図れる。また、比較的高価な 有機物質ではなく、安価で入手しやすい無機材料を用い ているので、製造が容易となり、製造コストを低減する ことができる。さらには、従来問題のあった無機材料で ある電極との接続性も良好になる。このため、リーク電 流の発生やダークスポットの発生を抑えることができ る。

【0084】本発明の有機EL素子は、上記発光層とホ 50 くは0.01~2wt%、特に0.05~1.5witha程度

ール注入電極との間に、ホール注入輸送層として無機絶 縁性ホール注入輸送層を有してもよい。この無機絶縁性 ホール注入輸送層は、シリコンおよび/またはゲルマニ ウムの酸化物を主成分とする。

【0085】また、好ましくは、主成分の平均組成、よ り好ましくはラザフォード後方散乱により得られる主成 . 分の平均組成を、(Si₁₋₁Ge₁)O₁と表したとき $0 \le x \le 1$

1. $7 \le y \le 1$. 99

10 である。

【0086】このように、無機絶縁性ホール注入輸送層 の主成分である酸化物を上記組成範囲とすることによ り、ホール注入電極から発光層側の有機層へ効率よくホ ールを注入することができる。しかも、有機層からホー ル注入電極への電子の移動を抑制することができ、発光 層でのホールと電子との再結合を効率よく行わせること ができる。また、ホール注入輸送を目的としているた め、逆バイアスをかけると発光しない。特に、時分割駆 動方式など、高い発光輝度が要求されるディスプレイに 20 効果的に応用でき、無機材料の有するメリットと、有機 材料の有するメリットとを併せもった有機EL素子とす ることができる。本発明の有機EL素子は、従来の有機 ホール注入輸送層を有する素子と同等の輝度が得られ、 しかも、耐熱性、耐候性が高いので従来のものよりも寿 命が長く、リークやダークスポットの発生も少ない。ま た、比較的高価な有機物質ではなく、安価で入手しやす い無機材料を用いているので、製造が容易となり、製造 コストを低減することができる。

【0087】酸素の含有量を表すyは、上記組成範囲と パッタ法が好ましい。なかでも、上記主成分と金属また 30 なっていればよく、1.7以上であって1.99以下で ある。yがこれより大きくても、yがこれより小さくて もホール注入能が低下し、輝度が低下してくる。また、 好ましくは、好ましくは1.85以上であって1.98 以下である。

> 【0088】無機絶縁性ホール注入輸送層は、酸化ケイ 素でも酸化ゲルマニウムでもよく、それらの混合薄膜で もよい。これらの組成比を表すxは、 $0 \le x \le 1$ であ る。また、好ましくはxは0.4以下、より好ましくは 0. 3以下、特に0. 2以下であることが好ましい。

【0089】あるいは、xは好ましくは0.6以上、よ 40 り好ましくは0.7以上、特に0.8以上であってもよ

【0090】上記酸素の含有量は、ラザフォード後方散 乱により得られた膜中の平均組成であるが、これに限定 されるものではなく、これと同等な精度が得られる分析 方法であればいずれの手法を用いてもよい。

【0091】無機絶縁性ホール注入輸送層には、他に、 不純物として、スパッタガスに用いるNe、Ar. K r、Xe等を好ましくは合計10at%以下、より好まし 含有していてもよい。これらの元素は1種でも2種以上 を含有していてもよく、これらを2種以上用いる場合の 混合比は任意である。

【0092】これらの元素はスパッタガスとして使用さ れ、無機絶縁性ホール注入輸送層成膜時に混入する。こ れらの元素の含有量が多くなるとトラップ効果が極端に 低下し、所望の性能が得られない。

【0093】スパッタガスの含有量は、成膜時の圧力 と、スパッタガスと酸素の流量比、成膜レート等によ 有量を上記範囲とするためには、高真空側で成膜した方 が好ましく、具体的には、1Pa以下、特に0.1~1Pa の範囲が好ましい。

【0094】なお、無機絶緑性ホール注入輸送層全体の 平均値としてこのような組成であれば、均一でなくても よく、膜厚方向に濃度勾配を有する構造としてもよい。 この場合は、有機層(発光層)界面側が酸素プアである ことが好ましい。

【0095】無機絶録性ホール注入輸送層は、通常、非 晶質状態である。

【0096】無機絶縁性ホール注入輸送層の膜厚として は、特に制限はないが、好ましくは O. 05~10nm、 より好ましくは0.1~5nm、特に1~5nm、あるいは 0. 5~3m程度である。ホール注入層がこれより薄く ても厚くても、ホール注入を十分には行えなくなってく る。

【0097】上記の無機絶縁性ホール注入輸送層の製造 方法としては、スパッタ法、EB蒸着法などの各種の物 理的または化学的な薄膜形成方法などが可能であるが、 スパッタ法が好ましい。

【0098】本発明の有機EL素子は、無機のホール注 入輸送層を設けることにより、耐熱性、耐候性が向上 し、素子の長寿命化を図れる。また、比較的高価な有機 物質ではなく、安価で入手しやすい無機材料を用いてい るので、製造が容易となり、製造コストを低減すること ができる。さらには、従来問題のあった無機材料である 電極との接続性も良好になる。このため、リーク電流の 発生やダークスポットの発生を抑えることができる。

【0099】さらに、素子の有機層や電極の劣化を防ぐ ために、素子上を封止板等により封止することが好まし 40 い。封止板は、湿気の浸入を防ぐために、接着性樹脂層 を用いて、封止板を接着し密封する。封止ガスは、A r、He、N₁ 等の不活性ガス等が好ましい。また、こ の封止ガスの水分含有量は、100ppm 以下、より好ま しくは10ppm以下、特には1ppm以下であることが好 ましい。この水分含有量に下限値は特にないが、通常 0. 1ppm 程度である。

【0100】封止板の材料としては、好ましくは平板状 であって、ガラスや石英、樹脂等の透明ないし半透明材

ガラス材として、コストの面からアルカリガラスが好ま しいが、この他、ソーダ石灰ガラス、鉛アルカリガラ ス、ホウケイ酸ガラス、アルミノケイ酸ガラス、シリカ ガラス等のガラス組成のものも好ましい。特に、ソーダ ガラスで、表面処理の無いガラス材が安価に使用でき、 好ましい。封止板としては、ガラス板以外にも、金属 板、プラスチック板等を用いることもできる。

【0101】封止板は、スペーサーを用いて高さを調整 し、所望の髙さに保持してもよい。スペーサーの材料と り、特に成膜時の圧力で決められる。スパッタガスの含 10 しては、樹脂ピーズ、シリカピーズ、ガラスピーズ、ガ ラスファイバー等が挙げられ、特にガラスビーズ等が好 ましい。スペーサーは、通常、粒径の揃った粒状物であ るが、その形状は特に限定されるものではなく、スペー サーとしての機能に支障のないものであれば種々の形状 であってもよい。その大きさとしては、円換算の直径が 1~20μm、より好ましくは1~10μm、特に2~ 8 μ m が好ましい。このような直径のものは、粒長10 0 μm 以下程度であることが好ましく、その下限は特に 規制されるものではないが、通常直径と同程度以上であ 20 る。

> 【0102】なお、封止板に凹部を形成した場合には、 スペーサーは使用しても、使用しなくてもよい。使用す る場合の好ましい大きさとしては、前記範囲でよいが、 特に2~8μmの範囲が好ましい。

> 【0103】スペーサーは、予め封止用接着剤中に混入 されていても、接着時に混入してもよい。封止用接着剤 中におけるスペーサーの含有量は、好ましくは0.01 ~30wt%、より好ましくは0.1~5wt%である。

【0104】接着剤としては、安定した接着強度が保 30 て、気密性が良好なものであれば特に限定されるもので はないが、カチオン硬化タイプの紫外線硬化型エポキシ 樹脂接着剤を用いることが好ましい。

【0105】本発明において、有機EL構造体を形成す る基板としては、非晶質基板たとえばガラス、石英な・ ど、結晶基板たとえば、Si、GaAs、ZnSe、Z nS、GaP、InPなどがあげられ、またこれらの結 晶基板に結晶質、非晶質あるいは金属のパッファ層を形 成した基板も用いることができる。また金属基板として は、Mo、Al、Pt、Ir、Au、Pdなどを用いる ことができ、好ましくはガラス基板が用いられる。基板 は、光取り出し側となる場合、上記電極と同様な光透過 性を有することが好ましい。

【0106】さらに、本発明素子を、平面上に多数並べ てもよい。平面上に並べられたそれぞれの素子の年を色 を変えて、カラーのディスプレーにすることができる。 【0107】基板に色フィルター膜や蛍光性物質をきた 色変換膜、あるいは誘電体反射膜を用いて発光色をコン トロールしてもよい。

【0108】色フィルター膜には、液晶ディスプレイ等 料が挙げられるが、特にガラスが好ましい。このような 50 で用いられているカラーフィルターを用いれば良いが、

有機EL素子の発光する光に合わせてカラーフィルター の特性を調整し、取り出し効率・色純度を最適化すれば よい。

【0109】また、EL素子材料や蛍光変換層が光吸収 するような短波長の外光をカットできるカラーフィルタ ーを用いれば、素子の耐光性・表示のコントラストも向 上する。

【0110】また、誘電体多層膜のような光学薄膜を用 いてカラーフィルターの代わりにしても良い。

【0111】 蛍光変換フィルター膜は、EL発光の光を 10 吸収し、蛍光変換膜中の蛍光体から光を放出させること で、発光色の色変換を行うものであるが、組成として は、パインダー、蛍光材料、光吸収材料の三つから形成 される。

【0112】蛍光材料は、基本的には蛍光量子収率が高 いものを用いれば良く、EL発光波長域に吸収が強いこ とが望ましい。実際には、レーザー色素などが適してお り、ローダミン系化合物・ペリレン系化合物・シアニン 系化合物・フタロシアニン系化合物(サプフタロシアニ ン等も含む) ナフタロイミド系化合物・縮合環炭化水素 20 系化合物・縮合複素環系化合物・スチリル系化合物・ク マリン系化合物等を用いればよい。

【0113】パインダーは、基本的に蛍光を消光しない ような材料を選べば良く、フォトリソグラフィー・印刷 等で微細なパターニングが出来るようなものが好まし い。また、基板上にホール注入電極と接する状態で形成 される場合、ホール注入電極(ITO、IZO)の成膜 時にダメージを受けないような材料が好ましい。

【0114】光吸収材料は、蛍光材料の光吸収が足りな い場合に用いるが、必要のない場合は用いなくても良 い。また、光吸収材料は、蛍光性材料の蛍光を消光しな いような材料を選べば良い。

【0115】本発明の有機EL素子は、通常、直流駆動 型、パルス駆動型のEL素子として用いられるが、交流 駆動とすることもできる。印加電圧は、通常、2~30 V 程度とされる。

【0116】本発明の有機EL素子は、例えば図1に示 すように、基板1/ホール注入電極2/ホール注入輸送 層3/発光層4/無機絶縁性電子輸送層5/有機の電子 注入層 6 / 電子注入電極 7 とが順次積層された構成とし 40 として 1 0 0 SCCM供給しながら無機電子注入輸送層を てもよい。また、上記の積層順を逆にした、いわゆる逆 積層構成としてもよい。これらは、たとえば、ディスプ レーの仕様や作製プロセス等により、適宜選択し使用さ れる。図1において、ホール注入電極2と電子注入電極 7の間には、駆動電源Eが接続されている。

【0117】また、上記発明の素子は、膜厚方向に多段 に重ねてもよい。このような素子構造により、発光色の 色調調整や多色化を行うこともできる。

【0118】本発明の有機EL素子は、ディスプレイと しての応用の他、例えばメモり読み出し/書き込み等に 50 利用される光ピックアップ、光通信の伝送路中における 中継装置、フォトカプラ等、種々の光応用デバイスに用 いることができる。

[0119]

【実施例】 〈実施例 1 〉 ガラス基板としてコーニング社 製商品名7059基板を中性洗剤を用いてスクラブ洗浄

【0120】この基板上にITO酸化物ターゲットを用 いRFマグネトロンスパッタリング法により、基板温度 250℃で、膜厚200mmのITOホール注入電極層を 形成した。

【0121】IT〇電極層等が形成された基板の表面を UV/O、洗浄した後、蒸着装置の基板ホルダーに固定 して、帽内を1×10⁻¹Pa以下まで減圧した。

【0122】次いで、蒸着法により、MTDATAを蒸 着速度 0. 1 nm/secで 1 0 nmの厚さに蒸着してホール 注入層を形成し、TPDを蒸着速度0. 1nm/secで2 0 mmの厚さに蒸着してホール輸送層を形成した。

【0123】続けて、N, N, N', N'-テトラキス (m-ピフェニル) -1, 1'-ピフェニル-4, 4' ージアミン (TPD) と、トリス (8-キノリノラト) アルミニウム(Alq3)と、ルプレンとを、全体の蒸 着速度 0. 2 nm/secとして 4 0 nmの厚さに蒸着し、発光 層とした。TPD:Alq'=1:1 (重量比)、この 混合物に対してルブレンを5体積%ドープした。

【0124】さらに、滅圧を保ったまま、スパッタ装置 に移し、原料として酸化ストロンチウム(SrO)、酸 化リチウム(Li,O)、酸化シリコン(SiO,) を、全成分に対しそれぞれ、

30 SrO: 80 mol%

Li,O:10 mol%

SiO: :10 mol%

となるように混合したターゲットを用い、無機電子注入 輸送層を0.8nmの膜厚に成膜した。このときの成膜条 件として、基板温度25℃、スパッタガスAr、成膜レ ート1 nm/min 、動作圧力0. 5Pa、投入電力5W/cm ² とした。このとき、初めにスパッタガスをAr:10 0%として100SCCM供給しながら無機電子注入輸送層 を 0. 4 nmの 膜厚に 成膜 し、 続け TAr/O, :1/1 4 nmの膜厚に成膜した。

【0125】さらに、減圧を保ったまま、蒸着装置に移 し、トリス (8-キノリノラト) アルミニウム (Alg 3) を、全体の蒸着速度0. 2nm/secとして30nmの厚 さに蒸着し、電子注入層とした。

【0126】次いで、減圧を保ったまま、AlLi(L · i:7at%) を1nmの厚さに蒸着し、続けてA1を20 0 mmの厚さに蒸着し、電子注入電極および補助電極と し、最後にガラス封止して有機EL素子を得た。

【0127】得られた有機EL素子を空気中で、10mA

/cm² の定電流密度で駆動したところ、初期輝度は95 0 cd/m²、駆動電圧6. 9V であった。

【0128】〈実施例2〉実施例1において、無機絶縁 性電子輸送層の主成分、安定剤を、それぞれ、SrOか らMgO、CaO、またはこれらの混合酸化物に、Li 10h6K,O, Rb,O, K,O, Na,O, Cs,O, E たはこれらの混合酸化物に、SiOnからGeOn、ま たはSiO,とGeO,の混合酸化物に代えたところほ ぼ同様な結果が得られた。また、陰電極構成材料を、A lからAg, In, Ti, Cu, Au, Mo, W, P t, Pd, Ni、またはこれらの合金としても同様であ った。

【0129】<実施例3>実施例1において、ホール注 入輸送層を形成する際に、スパッタ装置にて、ターゲッ トにSiO₁と、この上に所定の大きさのAuのペレッ トを配置して用い、高抵抗の無機ホール注入輸送層を2 nmの膜厚に成膜した。このときのスパッタガスはAr: 3 0 sccm、O₁:5 sccmで、室温 (25℃) 下、成膜レ ート1nm/min 、動作圧力0. 2~2Pa、投入電力50 組成は、SiO,,にAuを4 mol%含有するものであ

【0130】その他は実施例1と同様にして有機EL素 子を得た。得られた有機EL素子を実施例1と同様にし て評価したところ、発光輝度が向上し、駆動電圧が低下 した他は実施例1とほぼ同様の結果が得られた。

【0131】〈実施例4〉実施例3において、高抵抗の 無機ホール注入輸送層を成膜する際、ターゲットにGe O, と、このターゲット上に所定の大きさのAuのペレ ットを配置し、高抵抗の無機ホール注入輸送層を20m 30 EL素子を作製し、評価した。 の膜厚に成膜した。このときのスパッタガスはAr:3 Osccm、O₂:5sccmで、室温 (25℃) 下、成膜レー ト 1 nm/min、動作圧力 0. 2~2 Pa、投入電力 5 0 0 Wとした。成膜した無機ホール注入輸送層の組成は、G eO₁にAuを2 mol%含有するものであった。

【0132】その他は実施例3と同様にして有機EL素 子を得た。得られた有機EL素子を実施例1と同様にし て評価したところ、実施例3とほぼ同様の結果が得られ

【0133】 <実施例5>実施例3、4において、髙抵 40 抗の無機ホール注入輸送層を成膜する際にスパッタガス のO₂流量、および膜組成によりターゲットを変えてそ の主成分の組成をSiOLI、SiOLIS、Ge O.,,、Si,,Ge,,O,,,とした他は実施例1と同 様にして有機EL素子を作製し、発光輝度を評価したと ころほぼ同等の結果が得られた。

【0134】<実施例6>実施例3~5において、高抵 抗の無機ホール注入輸送層の金属を、AuからCu、F e. Ni. Ru. Sn, Cr, Ir, Nb, Pt, W, Mo, Ta, PdおよびCoのいずれか1種以上、また 50

はこれらの酸化物、炭化物、窒化物、ケイ化物、硼化物 に代えても同等の結果が得られた。

【0135】〈実施例7〉実施例1において、ホール注 入輸送層を成膜する際にスパッタ装置にて、ターゲット にSiO, を用い、無機絶縁性ホール注入輸送層を2nm の膜厚に成膜した。このときのスパッタガスはArに対 しO, を5%混入して用いた、基板温度25℃、成膜レ ート1nm/min 、動作圧力0.5Pa、投入電力5W/cm ² とした。成膜したホール注入輸送層の組成は、SiO 10 1. であった。

【0136】その他は実施例1と同様にして有機EL素 子を得た。得られた有機EL素子を実施例1と同様にし て評価したところ、発光輝度が向上した他は実施例1と ほぼ同様の結果が得られた。

【0137】<実施例8>実施例7において、無機絶緑 性ホール注入輸送層を成膜する際に、ターゲットの組成 をSiO,とし、スパッタガスのO,流量を変えてAr に対する混合比を5%とし、その組成をSiOL,とし た他は実施例1と同様にして有機EL素子を作製し、タ 0Wとした。成膜した高抵抗の無機ホール注入輸送層の 20 ーゲットの組成をSiO, とし、スパッタガスのO, 流 量を変えてArに対する混合比を30%とし、その組成 をSiO.,。とした他は実施例1と同様にして有機EL 素子を作製し、ターゲットの組成をGeO, とし、スパ ッタガスのO,流量を変えてArに対する混合比を30 %とし、その組成をGeO...とした他は実施例1と同 様にして有機EL素子を作製し、ターゲットの組成をS io.sGeo.sO, とし、スパッタガスのO, 流量を変え TArに対する混合比を10%とし、その組成をSi 。.; Ge。.; O1.,,とした他は実施例1と同様にして有機

> 【0138】その結果、いずれの有機EL素子も実施例 7とほぼ同様の結果が得られることが確認できた。

【0139】<比較例>実施例1において、ITOホー ル注入電極を形成した後、蒸着法により、MTDATA を蒸着速度 0. 1nm/secで10nmの厚さに蒸着してホ ール注入層を形成し、TPDを蒸着速度0. 1nm/sec で20nmの厚さに蒸着してホール輸送層を形成した。ま た、発光層を形成した後、さらにトリス(8-キノリノ ラト)アルミニウム(Alq3)とを、蒸着速度 0.2 nm/secとして40nmの厚さに蒸着し、有機の電子注入輸 送層を形成した。その他は実施例1と同様にして有機E し素子を作製し、実施例1と同様にして評価したとこ ろ、10mA/cm²の定電流密度で駆動した初期輝度は7 5 0 cd/m' であった。

[0140]

【発明の効果】以上のように本発明によれば、有機材料 と無機材料の有するメリットを併せ持ち、高効率、長寿 命で低コストな有機EL案子を提供することができる。

【図面の簡単な説明】

【図1】本発明の有機EL素子の基本構成を示す概略断

24

面図である。

【図2】従来の有機EL素子の構成例を示した概略断面 図である。

【図3】従来の有機EL素子の他の構成例を示した概略 断面図である。

【符号の説明】

- 1 基板
- 2 ホール注入電極
- 3 ホール注入輸送層
- 4 発光層

5 高抵抗の無機電子輸送層

6 電子注入層

7 電子注入電極

11 基板

- 12 ホール注入電極
- 13 電子注入電極
- 14 ホール輸送層
- 15 発光層
- 16 電子輸送層

10

【図1】

[図2]

フロントページの続き

(72)発明者 小堀 勇

東京都中央区日本橋一丁目13番1号 ティーディーケイ株式会社内

Fターム(参考) 3K007 AB00 AB03 AB05 AB06 AB18

BB01 BB04 BB06 CA00 CA01

CA02 CA04 CB01 DA00 DB03

EB00 FA01 FA02