

Kontrollskrivning 3A till Diskret Matematik SF1610, för CINTE, vt2017

Inga hjälpmedel tillåtna.

Minst 8 poäng ger godkänt.

Godkänd KS nr n medför godkänd uppgift n vid tentor till (men inte med) nästa ordinarie tenta (högst ett år), $n = 1, \ldots, 5$.

13–15 poäng ger ett ytterligare bonuspoäng till tentamen.

Uppgifterna 3)-5) kräver väl motiverade lösningar för full poäng. Uppgifterna står inte säkert i svårighetsordning.

Spara alltid återlämnade skrivningar till slutet av kursen!

Skriv dina lösningar och svar på samma blad som uppgifterna; använd baksidan om det behövs.

1) (För varje delfråga ger rätt svar $\frac{1}{2}$ p, inget svar 0p, fel svar $-\frac{1}{2}$ p. Totalpoängen på uppgiften rundas av uppåt till närmaste icke-negativa heltal.)

Kryssa för om påståendena a)-f) är sanna eller falska (eller avstå)!

		\mathbf{sant}	falskt
a)	För alla grupper (G, \circ) gäller det att om $a \circ b = c \circ a$ för några element $a, b, c \in G$, då är $b = c$.		
b)	Permutationen $(1 \ 4 \ 3)(5 \ 6)$ är udda.		
c)	Varje grupp har en delgrupp av storlek 2.		
d)	Produkten av två jämna permutationer är alltid en jämn permutation.		
e)	Den symmetriska gruppen S_n är cyklisk om $n \geq 3$.		
f)	Om (G, \circ) är en ändlig grupp och $g \in G$, då finns det ett heltal $k \geq 1$ sådant att $g^k = g^{-1}$.		

poäng uppg.1

Namn	poäng uppg.2

2a) (1p) Skriv ned två icke-kommuterande element i den symmetriska gruppen S_4 , dvs element $\sigma, \tau \in S_4$ sådana att $\sigma \circ \tau \neq \tau \circ \sigma$. (Det räcker att ange rätt svar.)

b) (1p) Skriv ned alla generatorer för den cykliska gruppen $(\mathbb{Z}_8, +)$. (Det räcker att ange rätt svar.)

c) (1p) Fyll i följande tabell så att det blir grupptabellen för en grupp $G = \{e, a, b, c\}$ med identitetselement e.

(Det räcker att ange rätt svar.)

Namn	poäng uppg.3

3) (3p) Bestäm fyra olika delgrupper till gruppen (\mathbb{Z}_{15} , +). Finns det fem olika?

OBS. Fullständig motivering skall ges.

Namn	poäng uppg.4

4) (3p) Delmängden $G=\{1,2,4,5,7,8\}$ till \mathbb{Z}_9 utgör en grupp med operationen multiplikation modulo 9. Finn en delgrupp H till denna grupp som har storlek 3 och skriv ned alla (vänstra) sidoklasser till H med avseende på elementen i G.

OBS. Fullständig motivering skall ges.

Namn	poäng uppg.5

5) (3p) Låt H vara den minsta delgruppen till den symmetriska gruppen (S_5, \circ) som innehåller båda permutationerna

$$\sigma = (1 \ 3 \ 4) \text{ och } \pi = (2 \ 5).$$

Denna delgrupp är cyklisk. Finn en generator för denna delgrupp och bestäm storleken $\vert H\vert.$

(Kom ihåg att S_5 består av alla permutationer av elementen i mängden $\{1,2,3,4,5\}$.)

OBS. Fullständig motivering skall ges.