Intégration L3 Actuariat Chapitre II: Tribu et mesure

Pierre-Olivier Goffard

Université de Lyon 1 ISFA pierre-olivier.goffard@univ-lyon1.fr

> ISFA September 26, 2018

I. Les tribus

1. Tribu sur un espace quelconque Soit Ω un ensemble.

Exemple 1

- **1** Ω peut-être \mathbb{R} , \mathbb{R}^d , ou tout autre espace métrique.
- 2 Si une expérience consiste à lancer deux dés alors

$$\Omega = \{1,2,3,4,5,6\} \times \{1,2,3,4,5,6\}$$

On note $\mathscr{P}(\Omega)$ l'ensemble des parties de Ω

Definition 1 (Algèbre de Boole)

Un sous-ensemble \mathscr{C} de $\mathscr{P}(\Omega)$ est une algèbre (de Boole) sur Ω si

- $\Omega \in \mathscr{C}$
- 4 est stable par passage au complémentaire,

$$A \in \mathcal{C} \Rightarrow A^c = \Omega/A \in \mathcal{A}$$
.

\[
\mathscr{G}\] est stable par réunion finie,

$$A_1,...,A_k \in \mathscr{C} \Rightarrow \bigcup_{i=1}^k A_i \in \mathscr{C}.$$

Definition 2 (Tribu, espace mesurable)

Un sous-ensemble $\mathscr A$ de $\mathscr P(\Omega)$ est une tribu sur Ω si

- $0 \Omega \in \mathcal{A}$
- 2 A est stable par passage au complémentaire,

$$A \in \mathcal{A} \Rightarrow A^c = \Omega/A \in \mathcal{A}.$$

Ø est stable par réunion dénombrable,

$$A_i \in \mathcal{A}$$
, pour $i \in \mathbb{N} \Rightarrow \bigcup_{i \in \mathbb{N}} A_i \in \mathcal{A}$.

Le couple (Ω, \mathcal{A}) espace mesurable.

 ${\mathscr A}$ est parfois appelée σ -algèbre.

Exemple 2 (Exemples de tribu)

- $\{\Omega, \emptyset\}$ est la tribu triviale
- $\mathcal{P}(\Omega)$ est une tribu
- Soit $\Omega = \{a, b, c, d\}$ alors $\{\Omega, \emptyset, a, \{b, c, d\}\}$ est la plus petite tribu contenant a.

Probleme 1

Montrer qu'une tribu est stable par intersection finie, c'est à dire

$$A_1,A_2\in\mathcal{A}\Rightarrow A_1\cap A_2\in\mathcal{A}$$

Definition 3 (Tribu engendrée)

La tribu engendrée par $\mathscr{E} \subset \mathscr{P}(\Omega)$, notée $\sigma(\mathscr{E})$ est l'intersection de toute les tribus contenant \mathscr{E} .

Exemple 3

- **1** Soit $A \in \Omega$ alors $\sigma(A) = \{A, A^c, \emptyset, \Omega\}$
- ② Soit $\mathcal{S} = \{S_1, ..., S_n\}$ une partition de Ω , c'est à dire que

$$\bigcup_{k=1}^{n} S_{k} = \Omega, \text{ et } S_{i} \cap S_{j} = \emptyset \text{ pour } i \neq j$$

Alors
$$\sigma(\mathcal{S}) = \{ \bigcup_{k \in T} S_k ; T \subset \{1, 2, ..., n \} \}$$

Probleme 2 (Intersection de tribu et tribu trace)

Soit Ω un ensemble.

- **1** Montrer que l'intersection quelconque de tribu de Ω est une tribu d' Ω .
- ② Soit $\mathscr A$ une tribu sur Ω et $F \in \Omega$. Montrer que $\mathscr A_F = \{A \cap F \ , \ A \in \mathscr A\}$ est une tribu sur F.
- 2. Tribu borélienne (sur un espace topologique)

Definition 4 (Espace topologique)

Soit E un ensemble. Soit $\mathscr O$ une famille de parties de E, appelée ouverts de E, vérifiant

- \emptyset , $E \in \mathcal{O}$,
- Stable par réunion quelconque,
- Stable par intersection finie.

Le couple (E, \mathcal{O}) est un espace topologique

Exemple 4 (Ouvert dans un espace métrique)

Si E est un espace métrique alors on peut définir une distance entre $x \in E$ et $y \in E$ par d(x,y). Un ouvert O est une partie de E dont la frontière est vide, ou dont tout les point apartiennent à l'intérieur de O. Concrètement,

$$\forall x \in 0, \exists r > 0 \text{ tel que } B(x,y) = \{y \in E ; d(x,y) < r\} \subset O$$

On appelle droite achevée de \mathbb{R} , $\overline{\mathbb{R}} = \mathbb{R} \cup \{+\infty, -\infty\}$. Pour $E = \overline{\mathbb{R}}$, les ouverts sont les parties qui pour chaque point x contiennent un intervalle du type $]x - \varepsilon, x + \varepsilon[$. On note

$$\mathscr{I}_{\mathbb{R}} = \left\{ \left[a, b \right], -\infty < a \le b < +\infty \right\},\,$$

l'ensemble des intervalles ouverts bornées. Il contient \emptyset (cas a=b).

Definition 5 (Tribu borélienne, borélien)

La tribu borélienne est la tribu $\mathcal{B}(E)$ engendré par les ouverts de E. On appelle borélien un ensemble appartenant à cette tribu.

La tribu borélienne $\mathscr{B}(E)$ contient tout les ouverts de E, ainsi que tout les fermés (par passage au complémentaire), les intersections et réunions de suites d'ouverts et de fermés. La tribu borélienne $\mathscr{B}(\mathbb{R})$ est engendrée par intervalles ouverts de \mathbb{R} , c'est la conséquence du lemme suivant.

Lemme 1

Tout ouvert de ℝ est la réunion d'une suite d'intervalles ouverts

preuve:

Remarquons que l'ensemble

$$\mathscr{I}^* = \left\{ \left| r - \frac{1}{n}, r + \frac{1}{n} \right| ; r \in \mathbb{Q}, n \in \mathbb{N}^* \right\}$$

est dénombrable puisqu'il existe une sujection de $\mathbb{Q} \times \mathbb{N}^*$ sur \mathscr{I}^* . Soit U un ouvert de \mathbb{R} , supposé non vide, et soit $x \in U$. Il existe un $\varepsilon > 0$ tel que $]x - \varepsilon, x + \varepsilon[\subset U]$, puis $\exists n \ge 0$ tel que $\frac{1}{n} \le \frac{\varepsilon}{2}$ et enfin un

$$r \in \mathbb{Q} \cap \left[x - \frac{1}{n}, x + \frac{1}{n} \right].$$

On voit alors que

$$x \in \left[r - \frac{1}{n}, r + \frac{1}{n} \right].$$

A chaque $x \in U$ est associé un intervalle $I_X \in \mathscr{I}^*$ tel que $x \in \mathscr{I}_X \subset U$ si bien que $U = \bigcup_{X \in U} \{x\} \subset \bigcup_{X \in U} I_X \subset U$ et , par suite $\bigcup_{X \in U} I_X = U$. On écrit donc U comme la réunion d'une suite $(I_n) \in \mathscr{I}^*$ qui est aussi une suite de $\mathscr{I}_\mathbb{R}$ puisque $\mathscr{I}^* \subset \mathscr{I}_\mathbb{R}$.

La tribu borélienne $\mathscr{B}(\mathbb{R})$ peut donc être généré par différents type d'intervalles dont

II. Mesures

Soit (Ω, \mathcal{A}) un espace mesurable.

Definition 6 (Mesure (positive))

On appelle mesure (positive) une application $\mu: \mathscr{A} \mapsto \overline{R}_+$ telle que:

- (i) $\mu(\emptyset) = 0$,
- (ii) pour toute suite $(A_n)_{n\in\mathbb{N}}$ de parties disjointes de \mathscr{A} , on a

$$\mu(\bigcup_{n\in\mathbb{N}}A_n)=\sum_{n\in\mathbb{N}}A_n.\ (\ \sigma\text{-additivit\'e})$$

Definition 7 (Terminologie)

- Si $\mu(\Omega) < +\infty$ alors μ est une mesure finie
- ② Si $\mu(\Omega) = 1$ alors μ est une mesure de probabilité
- \bullet Le triplet $(\Omega, \mathscr{A}, \mu)$ est appelé espace mesuré
- Une mesure signée est une mesure définie comme la différence de deux mesures positives.

Soit $(\Omega, \mathcal{A}, \mu)$ un espace mesuré.

Exemple 5 (Cardinal et masse de Dirac)

- Soit $\Omega = \{1, 2, 3, 4, 5, 6\}$, la mesure $\mu(A) = \text{Card}(A)/6$ est une mesure de probabilité.
- **2** Soit $\omega \in \Omega$. L'application

$$\delta_{\omega}: A \in \mathscr{A} \mapsto \delta_{\omega}(A) = \begin{cases} 1, & \text{si } \omega \in A \\ 0, & \text{sinon.} \end{cases}$$

est une mesure de probabilité, appelée mesure de Dirac.

$$\sum_{\omega \in \Omega} \delta_{\omega}(A) = \operatorname{Card}(A) \text{ pour tout } A \in \mathcal{A}.$$

est appelée mesure de comptage.

Remarque 1 (Choix d'une mesure de probabilité)

Il est possible de définir beaucoup de probabilité sur un espace (Ω,\mathscr{A}) . Le choix d'une probabilité revient à choisir un modèle permettant d'appréhender le phénomène étudié. Il découle souvent d'observations et de retour d'expérience. On répète N fois la même expérience et on constate que l'évènement $A \in \mathscr{A}$ se réalise N_A fois. On calibre alors la mesure de probabilité $\mathbb P$ telle que

$$\mathbb{P}(A)\approx \frac{N_A}{N}.$$

On entrevoit ici le lien entre probabilité et statistique. Une probabilité est estimée par une proportion.

Definition 8 (Partie négligeable)

 $A \in \mathcal{A}$ est négligeable s'il existe $B \in \mathcal{A}$ tel que $A \subset B$ et $\mu(B) = 0$.

Definition 9 (mesure atomique, mesure diffuse)

- **1** Soit $A \in \mathcal{A}$, on dit que μ est portée par A si $\mu(A^c) = 0$.
- 2 μ est une mesure atomique si elle est portée par les atomes $\{w \in \Omega\}$
- \bullet μ est une mesure diffuse si $\mu(\{w\}) = 0$ (les atomes $\{w\}$ sont des parties négligeables)

Soit $(\Omega, \mathcal{A}, \mu)$ un espace mesuré.

Proposition 1 (Propriété d'un mesure)

Soit $(A_n)_{n\in\mathbb{N}}$ une suite d'évènements de \mathscr{A} . On a

• Si $A_1 \subset A_2$ alors $\mu(A_1) \leq \mu(A_2)$ (monotonie de μ), de plus on a

$$\mu(A_2/A_1) = \mu(A_2) - \mu(A_1)$$

$$\mu(A_1 \cup A_2) = \mu(A_1) + \mu(A_2) - \mu(A_1 \cap A_2)$$
 (formule inclusion-exclusion)

 $\mu\left(\bigcup_{k=0}^{n} A_{k}\right) \leq \sum_{k=1}^{n} \mu(A_{k}) \text{ sous } \sigma\text{-additivit\'e})$

- **3** Si A_i ⊂ A_{i+1} pour tout $i \in \mathbb{N}$, alors $\mu(\bigcup_{i \in \mathbb{N}} A_i) = \lim_{i \to +\infty} \mu(A_i)$
- **②** Si A_{i+1} ⊂ A_i pour tout $i ∈ \mathbb{N}$, avec $\mu(A_{n_0}) < \infty$ pour un certain n_0 , alors $\mu(\bigcap_{i ∈ \mathbb{N}} A_i) = \lim_{i \to +\infty} \mu(A_i)$.

preuve:

1 Soit $A_1 \subset A_2 \subset \mathcal{A}$, on a

$$\mu(A_2) = \mu(\{A_2/A_1\} \cup A_1) = \mu(A_2/A_1) + \mu(A_1) \geq \mu(A_1) \text{ (car μ est une mesure positive)}$$

On déduit immédiatement de ce qui précède que $\mu(\{A_2/A_1\}) = \mu(A_2) - \mu(A_1)$

② Soit $A_1, B_2 \in \mathcal{A}$, on a

$$\begin{array}{lcl} \mu(A_1 \cup A_2) & = & \mu\{A_1 \cup [A_2/(A_1 \cap A_2)]\} \\ & = & \mu(A_1) + \mu[A_2/(A_1 \cap A_2)] \\ & = & \mu(A_1) + \mu(A_2) - \mu(A_1 \cap A_2) \end{array}$$

On a

$$\begin{split} \mu\bigg(\bigcup_{n\in\mathbb{N}}A_n\bigg) &= \mu\bigg(A_0\cup\bigcup_{n\geq 1}A_n\bigg) \\ &= \mu(A_0)+\mu\bigg(\bigcup_{n\geq 1}A_n\bigg)-\mu\bigg(A_0\cap\bigcup_{n\geq 1}A_n\bigg) \\ &\leq \mu(A_0)+\mu\bigg(\bigcup_{n\geq 1}A_n\bigg) \\ &\leq \mu(A_0)+\mu(A_1)+\mu\bigg(\bigcup_{n\geq 2}A_n\bigg) \\ &\cdots \\ &\leq \sum_{n\in\mathbb{N}}\mu(A_n) \end{split}$$

$$\mu\left(\bigcup_{k=0}^{+\infty} A_k\right) = \mu\left(A_0 \cup \bigcup_{k=0}^{+\infty} B_k\right) = \mu(A_0) + \sum_{k=0}^{+\infty} \mu(B_k) = \mu(A_0) + \lim_{n \to \infty} \sum_{k=0}^{n-1} \mu(B_k)$$

$$= \lim_{n \to \infty} \left[\mu(A_0) + \sum_{k=0}^{n-1} \mu(B_k)\right] = \lim_{n \to \infty} \mu(A_n)$$

5 Soit $B_n = A_{n_0}/A_{n+nn_0}$, pour $n \ge 0$ alors on a

$$\lim_{n\to\infty}\mu(B_n)=\mu\left(\bigcup_{n\in\mathbb{N}}B_n\right)=\mu\left(\bigcup_{n\in\mathbb{N}}A_{n_0}/A_{n+n_0}\right)=\mu\left(A_{n_0}/\bigcap_{n\geq0}A_{n+n_0}\right)=\mu(A_{n_0})-\mu\left(\bigcap_{n\geq0}A_{n+n_0}\right)$$

Donc

$$\mu\left(\bigcap_{n\geq n_0}A_n\right)=\mu(A_{n_0})-\lim_{n\to\infty}\mu(B_n)=\lim_{n\to\infty}\left[\mu(A_{n_0})-\mu(B_n)\right]=\lim_{n\to\infty}\mu(A_{n+n_0}).$$

Exemple 6 (Mesure de probabilité conditionelle)

1 Soit $A \in \mathcal{A}$. L'application

$$\mu_A(B) = \mu(A \cap B)$$
, pour $B \in \mathcal{A}$

est une mesure sur (Ω, \mathscr{A})

l'application

$$\frac{\mu_A(B)}{\mu(A)} = \frac{\mu(A \cap B)}{\mu(A)}, \text{ pour } A, B \in \mathcal{A}$$

est une mesure de probabilité.

Probleme 3

Soit $(\Omega, \mathcal{A}, \mu)$ un espace mesuré et deux suite $(A_n)_{n \in \mathbb{N}}$, $(B_n)_{n \in \mathbb{N}} \subset \mathcal{A}$ telles que $B_n \subset A_n$.

Montrer que

$$\bigcup_{n\in\mathbb{N}}A_n/\bigcup_{n\in\mathbb{N}}B_n\subset\bigcup_{n\in\mathbb{N}}(A_n/B_n).$$

Montrer que

$$\mu\left(\bigcup_{n\in\mathbb{N}}A_n\right)-\mu\left(\bigcup_{n\in\mathbb{N}}B_n\right)\leq \sum_{n\in\mathbb{N}}\left[\mu(A_n)-\mu(B_n)\right].$$

III. La mesure de Lebesgue

Il est naturel de mesurer un intervalle de $\mathbb R$ par sa longueur ou une union d'intervalles disjoints par la somme de leur longueur respective.

Definition 10 ($\mathscr{I}_{\mathbb{R}}$, application longueur)

L'application longueur $I: \mathscr{I}_{\mathbb{R}} \mapsto \mathbb{R}_+$ définie par

$$I(]a,b[) = b-a$$
, et $I(\emptyset) = 0$.

L'objectif est de définir une application permettant de mesurer une partie quelconque de $\mathbb R$ ou pour être précis les ouverts de $\mathbb R$. Comme $\mathbb R=\bigcup_{k=1}^{+\infty}]-k,k[$ alors toute partie de $\mathbb R$ peut être recouverte. Cette application sera une mesure sur $\mathscr B(\mathbb R)$ coincidant avec l'application longueur sur les intervalles ouverts.

Theoreme 1 (Caratheodory)

Il existe une et une seule mesure sur $\mathscr{B}(\mathbb{R})$, notée λ , appelée mesure de Lebesgue, telle que

$$\lambda(]a,b[)=b-a$$
, pour tout $-\infty < a < b < +\infty$.

preuve (synthétique):

Existence:

Pour une partie $A \subset \mathcal{P}(\mathbb{R})$ on introduit l'instrument de mesure suivant.

Definition 11 (Mesure extérieure de Lebesgue)

On appelle mesure extérieure de Lebesgue dans $\mathbb R$ l'application $\lambda^*:\mathbb R\mapsto\overline{\mathbb R}^+$ définie, pour tout $A\in\mathscr P(\mathbb R)$, par

$$\lambda^* = \inf \left\{ \sum_{n=0}^{+\infty} I(I_n) ; (I_n)_{n \in \mathbb{N}} \in \mathscr{I}_{\mathbb{R}} \text{ et } A \subset \bigcup_{n=1}^{\infty} I_n \right\}$$

Proposition 2 (Propriétés de λ^*)

L'application λ^* vérifie les propriétés suivantes

- $\lambda^*(A) \le \lambda^*(B)$ pour $A, B \subset \mathbb{R}$ telles que $A \subset B$ (λ^* est monotone).
- **3** Soit $(A_n)_{n\in\mathbb{N}}\in\mathbb{P}(\mathbb{R})$ et $A=\bigcup_{n\in\mathbb{N}}A_n$ alors

$$\lambda^*(A) \leq \sum_{n \in \mathbb{N}} \lambda^*(A_n).$$

 $(\lambda^* \text{ est sous } \sigma\text{-additive})$

 λ^* n'est pas σ -additive et n'est donc pas une mesure sur $\mathscr{P}(\mathbb{R})$ On va montrer que λ^* est une mesure si on restreint l'application à $\mathscr{B}(\mathbb{R})$. Concrètement , on montre que λ^* est une mesure sur une tribu \mathscr{L} qui englobe $\mathscr{B}(\mathbb{R})$

Definition 12 (La tribu de Lebesgue \mathcal{L})

Soit

$$\mathcal{L} = \{ E \in \mathcal{P}(\mathbb{R}) ; \lambda^*(A) = \lambda^*(A \cap E) + \lambda^*(A \cap E^c) \}, \text{pour tout } A \subset \mathcal{P}(\mathbb{R}),$$

un sous-ensemble de $\mathscr{P}(\mathbb{R})$, appelé tribu de Lebesgue.

Proposition 3 (Propriétés de \mathscr{L})

- \bullet \mathscr{L} est une tribu sur \mathbb{R} ,
- $\lambda_{|\mathscr{L}}^*:\mathscr{L}\mapsto\overline{\mathbb{R}}_+$ est une mesure.

Les membres de la tribu ${\mathscr L}$ réalisent un bon partage des parties de ${\mathbb R}.$ preuve:

 $\overline{\mathbb{I}}$ est immédiat que $\mathbb{R} \in \mathcal{L}$ et que \mathcal{L} est stable par passage au complémentaire. De même, on remarque que $\lambda^*(\emptyset) = 0$.

Etape 1. On va montrer que \mathscr{L} est stable par réunion finie et que λ^* vérifie, pour $(E_i)_{i=1,\ldots,n}$ telles que $E_i \cap E_j = \emptyset$ pour $i \neq j$,

$$\lambda^* \left(A \cap \bigcup_{i=1}^n E_i \right) = \sum_{i=1}^n \lambda^* (A \cap E_i).$$

Soit $E_1, E_2 \subset \mathcal{L}$ et $E = E_1 \cup E_2$. On rappelle que $E \subset \mathcal{L}$ si

$$\lambda^*(A) = \lambda^*(A \cap E) + \lambda^*(A \cap E^c)$$

Nous savons que $\lambda^*(A) \leq \lambda^*(A \cap E) + \lambda^*(A \cap E^c)$ du fait de la σ sous-additivé de λ^* . Notons aue

$$\lambda^{*}(A \cap E) = \lambda^{*}[A \cap (E_{1} \cup E_{2})]$$

$$= \lambda^{*}[(A \cap E_{1}) \cup (A \cap E_{2})]$$

$$= \lambda^{*}[(A \cap E_{1}) \cup (A \cap E_{2} \cap E_{1}^{c})]$$

$$\leq \lambda^{*}(A \cap E_{1}) + \lambda^{*}(A \cap E_{2} \cap E_{1}^{c}). \tag{1}$$

Comme $E_2 \subset \mathcal{L}$ et $A \cap E_1^c \in \mathcal{P}(\mathbb{R})$ alors

$$\lambda^*(A \cap E_1^c) = \lambda^*(A \cap E_1^c \cap E_2) + \lambda^*(A \cap E_1^c \cap E_2^c) = \lambda^*(A \cap E_1^c \cap E_2) + \lambda^*(A \cap E^c). \tag{2}$$

On a également

$$\lambda^*(A) = \lambda^*(A \cap E_1) + \lambda^*(A \cap E_1^c). \tag{3}$$

puisque $E_1 \subset \mathcal{L}$. En ré-injectant (2) et (3) dans l'inégalité (1), on obtient

$$\lambda^*(A) \ge \lambda^*(A \cap E) + \lambda^*(A \cap E^c).$$

Supposons que $E_1 \cap E_2 = \emptyset$ alors

$$\lambda^{*}(A \cap E) = \lambda^{*}[A \cap (E_{1} \cup E_{2})]$$

$$= \lambda^{*}[(A \cap E_{1}) \cup (A \cap E_{2})]$$

$$= \lambda^{*}\{[(A \cap E_{1}) \cup (A \cap E_{2})] \cap E_{1}\} + \lambda^{*}\{[(A \cap E_{1}) \cup (A \cap E_{2})] \cap E_{1}^{c}\}$$

$$= \lambda^{*}(A \cap E_{1}) + \lambda^{*}(A \cap E_{2})$$

Les deux propriétés se généralisent pour une suite $(E_n)_{n=1,\dots,n}$ par récurrence.

Etape 2.

Considérons $(E_n)_{n\in\mathbb{N}}\subset\mathcal{L}$ et $E=\cup_{n\in\mathbb{N}}E_n$. Soit

$$F_0 = E_0$$
 et $F_n = E_n | (E_n \cap \bigcup_{p=0}^{n-1} F_p)$

de sorte que F_0, F_1, \ldots appartienent à \mathcal{L} , soient disjoints, et vérifient $E = \bigcup_{n \in \mathbb{N}} F_n$. On a

$$\lambda^{*}(A) = \lambda^{*}(A \cap \bigcup_{p=0}^{n} F_{p}) + \lambda^{*} \left[A \cap \left(\bigcup_{p=0}^{n} F_{p} \right)^{c} \right]$$

$$\geq \lambda^{*}(A \cap \bigcup_{p=0}^{n} F_{p}) + \lambda^{*} \left[A \cap E \right]$$

$$\geq \sum_{p=0}^{n} \lambda^{*}(A \cap F_{p}) + \lambda^{*} \left[A \cap E \right]$$

En passant à la limite lorsque $n \to +\infty$, on obtient

$$\lambda^*(A) \geq \sum_{p=0}^{+\infty} \lambda^*(A \cap F_p) + \lambda(A \cap E^c)$$

$$\geq \lambda^*(A \cap E) + \lambda(A \cap E^c) \text{ sous } \sigma\text{-additivit\'e}.$$

ce qui prouve que $E \subset \mathcal{L}$.

On montre maintenant que λ^* est bien une mesure sur \mathscr{L} . Soit $(E_n)_{n\in\mathbb{N}}$ telle que $E_n\cap E_m=\emptyset$ si $n\neq m$. Comme $\bigcup_{p=0}^n E_p\subset E$ alors

$$\lambda^*(A \cap E) \geq \lambda \left(\bigcup_{p=0}^n A \cap E_p \right)$$
$$= \sum_{p=0}^n \lambda (A \cap E_p).$$

On obtient $\lambda^*(E) \geq \sum_{p=0}^{+\infty} \lambda^*(E_p)$ en choisissant A = E puis en passant à la limite lorsque $n \to +\infty$. De plus $\lambda^*(E) \leq \sum_{p=0}^{\infty} \lambda^*(E_p)$ en vertu de la sous σ -additivité. On a donc

$$\lambda^*(E)\sum_{p=0}^{+\infty}\lambda^*(E_p).$$

Pour montrer l'existence du théorème (1), il suffit de montrer que $]a,+\infty[\subset \mathcal{L}$ pour tout $a\in\mathbb{R}$ car dans ce cas $\mathscr{B}(\mathbb{R})\subset \mathcal{L}$ puisque $]a,+\infty[$ engendre $\mathscr{B}(\mathbb{R})$. Soit $E=]a,+\infty[$, pour $a\in\mathbb{R}$ et $A\in\mathbb{P}(\mathbb{R})$, on veut montrer que

$$\lambda^*(A) = \lambda^*(A \cap E) + \lambda^*(A \cap E^c). \tag{4}$$

D'après la définition de λ^* , il existe $(I_n)_{n\in\mathbb{N}}\in\mathscr{I}_{\mathbb{R}}$, telle que $A\subset\bigcup_{n\in\mathbb{N}}I_n$ et $\lambda^*(A)=\sum_{n\in\mathbb{N}}I(I_n)-\epsilon$. Comme

$$\begin{cases} A \cap E \subset \bigcup_{n \in \mathbb{N}} I_n \cap E, \\ A \cap E^c \subset \bigcup_{n \in \mathbb{N}} I_n \cap E^c, \end{cases}$$

alors la σ sous-additivité implique que

$$\begin{cases} \lambda^*(A \cap E) \leq & \sum_{n \in \mathbb{N}} \lambda^*(I_n \cap E), \\ \lambda^*(A \cap E^c) \leq & \sum_{n \in \mathbb{N}} \lambda^*(I_n \cap E^c). \end{cases}$$

On a

$$\lambda^*(A \cap E) + \lambda^*(A \cap E^c) \leq \sum_{n \in \mathbb{N}} \lambda^*(I_n \cap E) + \lambda^*(I_n \cap E^c)$$
$$= \sum_{n \in \mathbb{N}} I(I_n),$$

puis $\lambda^*(A \cap E) + \lambda^*(A \cap E^c) \le \lambda^*(A) + \varepsilon$, où ε peut être choisi arbitrairement petit. Finalement, $\lambda^*(A) \le \lambda^*(A \cap E) + \lambda^*(A \cap E^c)$ est une conséquence de la σ sous-additivité, ce qui permet de conclure à l'égalité (4).

Pour l'unicité, on montre que s'il existe une autre mesure m sur $\mathscr{B}(\mathbb{R})$ telle que m(]a,b[)=b-a alors elle coincide avec λ^* . La proposition suivante est dès lors très utile.

Proposition 4 (Condition suffisante pour l'égalité de deux mesures)

Soit (Ω, \mathcal{A}) un espace mesurable et m, μ deux mesures sur \mathcal{A} . Supposons qu'il existe $\mathscr{C} \subset \mathcal{A}$ tel

- C engendre A
- 2 % est stable par intersection fini

On a alors $m = \mu$

La preuve se termine en appliquant la proposition (4), avec

$$\mathscr{C} = \{ [a, b] , -\infty < a < b < +\infty \}.$$
 On vérifie que

- $\sigma(\mathscr{C}) = \mathscr{B}(\mathbb{R})$
- ullet $\mathscr C$ est stable par intersection
- Considérons la suite

$$F_n = [n, n+1], n \in \mathbb{Z}$$

est dénombrable, disjointe et telle que $\bigcup_{n\in\mathbb{Z}} F_n = \mathbb{R}$

• On a par continuité décroissante

$$m(]a,b]) = \lim_{n \to +\infty} m(]a,b+\frac{1}{n})$$

$$= \lim_{n \to +\infty} b - a + \frac{1}{n}$$

$$= b - a$$

$$= \lambda^*(]a,b])$$

On définit alors $\lambda := \lambda_{|\mathbb{B}(\mathbb{R})}^*$ En résumé,

$$\begin{split} \lambda^* : \mathscr{P}(\mathbb{R}) &\mapsto \overline{\mathbb{R}}^+ & \Rightarrow \quad \lambda_{|\mathscr{L}}^* : \mathscr{L} \mapsto \overline{\mathbb{R}}_+ \text{ est une mesure} \\ &\Rightarrow \quad \lambda := \lambda_{\mathscr{B}(\mathbb{R})}^* : \mathscr{B}(\mathbb{R}) \mapsto \overline{\mathbb{R}}_+ \text{ est la seule mesure telle que } \lambda(]a, b[) = b - a \\ &\Rightarrow \quad \mathsf{La mesure de Lebesgue} \end{split}$$

Remarque 2

 λ est une mesure diffuse, par example

$$\lambda(\{x\}) = 0$$

•
$$\lambda(\mathbb{N}) = \lambda(\mathbb{Q}) = 0$$

Proposition 5 (Invariance par translation)

Soit $\alpha \in \mathbb{R}^*$, $\beta \in \mathbb{R}$ et $A \subset \mathcal{B}(\mathbb{R})$. On a

$$\lambda(\alpha A + \beta) = |\alpha|\lambda(A).$$