Donald Trump Speeches Sentiment Analysis- Rohan Chouthai

Code ▼

How exactly did Donald Trump surprise the world and became the President of US? Let us take a look at what is it that he said to the people of US that appealed the most to them.

I will perform a sentiment analysis of all the 56 speeches Trump gave across US en route to the Oval office.

Let us load the libraries we are going to use.

suppressWarnings(library(readr))
suppressWarnings(library(tidyverse))
suppressWarnings(library(stringr))
suppressWarnings(library(tidytext))
suppressWarnings(library(tm))

Now, let us start by loading the text file of Trump's speeches.

Hide

Trump_speeches<-read_lines("C:/Users/rohan/Desktop/DMP/Assignment 3/full_speech.txt")</pre>

Create a corpus of all the speeches in the text file

Hide

Trump_corpus<-VCorpus(VectorSource(Trump_speeches))
print(Trump_corpus)</pre>

```
<<VCorpus>>
```

Metadata: corpus specific: 0, document level (indexed): 0

Content: documents: 74

We need to first clean the speeches of the common stop words, white spaces and punctuation marks.

Let us start of by converting all the upper case letters to lower case letters.

Hide

Trump corpus clean<-tm map(Trump corpus,content transformer(tolower))</pre>

Let us now continue to remove all the numbers.

Hide

Trump_corpus_clean<-tm_map(Trump_corpus_clean,removeNumbers)</pre>

Next, we will remove all the stop words.

```
Trump_corpus_clean<-tm_map(Trump_corpus_clean,removeWords,stopwords())
```

We also want to remove the word "Applause". Let us do that now.

```
Hide
```

```
Trump_corpus_clean<-tm_map(Trump_corpus_clean,removeWords,"applause")
```

Let us now move forward and remove the punctuation marks.

Hide

```
Trump_corpus_clean<-tm_map(Trump_corpus_clean,removePunctuation)</pre>
```

Let us now standardize the text by stemming.

Hide

```
library(SnowballC)
#Trump_corpus_clean<-tm_map(Trump_corpus_clean, stemDocument)</pre>
```

Finally, let us remove the white spaces in our corpus.

Hide

```
Trump_corpus_clean<-tm_map(Trump_corpus_clean,stripWhitespace)</pre>
```

Let us now make a Document Term Matrix of our corpus.

Hide

```
Trump_dcm<-DocumentTermMatrix(Trump_corpus_clean)
Trump_dcm</pre>
```

```
<<DocumentTermMatrix (documents: 74, terms: 8193)>>
```

Non-/sparse entries: 53339/552943

Sparsity : 91% Maximal term length: 22

Weighting : term frequency (tf)

Now, let us remove the sparce terms from our DCM.

Hide

```
Trump_dcm_sparce<-removeSparseTerms(Trump_dcm,.5)
Trump_final<-as.data.frame(as.matrix(Trump_dcm_sparce))
dim(Trump_final)</pre>
```

```
[1] 74 300
```

Trump_final[,1:10]

	accomplish <dbl></dbl>	acro <dbl></dbl>	administration <dbl></dbl>	africanamerican <dbl></dbl>			alw <dbl></dbl>	amazi <dbl></dbl>	amend <dbl></dbl>
1	0	2	2	0	4	1	4	1	2
2	0	0	1	0	0	2	0	0	0
3	0	0	6	0	1	11	4	0	0
4	0	1	2	0	1	7	0	0	1
5	0	5	1	2	1	8	1	2	0
6	0	5	3	0	0	7	1	0	0
7	0	0	3	0	1	5	1	5	4
8	1	3	3	2	3	8	2	3	2
9	0	0	0	0	13	6	2	1	1
10	1	2	0	0	9	5	4	0	3
1-1	0 of 74 rows	1-10 of 1	0 columns	Previous	s 1	1 2	3 4	5 6	8 Next

Now let us plot the 15 most common words that featured in Trump's speeches.

Hide

```
Most_common<-colSums(Trump_final)
sort(Most_common,decreasing = TRUE)[1:15]</pre>
```

```
will
            going
                     people country hillary
                                               clinton
                                                            jobs american
                                                                                one
                                                                                        know
                                                                                                gre
at america
                 new
    2522
             1985
                      1421
                                1154
                                          999
                                                    899
                                                             805
                                                                      796
                                                                                770
                                                                                         688
                                                                                                   6
        632
66
                 583
             just
    said
     579
              574
```

We will make a wordcloud of these words now.

Hide

wordcloud::wordcloud(names(Most_common),Most_common,random.order = FALSE,max.words = 15,colors =
blues9)

head(Word_freq)

Now, let us get the word frequencies in a dataframe so that we can plot them.

Word_freq<-as.data.frame(Most_common)

	Most_common <dbl></dbl>
accomplish	51
across	102
administration	191
africanamerican	148
ago	120
also	435
6 rows	

```
Word_freq$Word<-rownames(Word_freq)
rownames(Word_freq)<-c()
Word_freq<-Word_freq[c(2,1)]
colnames(Word_freq)<-c("Word","Frequency")
head(Word_freq)</pre>
```

	Word <chr></chr>	Frequency <dbl></dbl>
1	accomplish	51
2	across	102
3	administration	191
4	africanamerican	148
5	ago	120
6	also	435
6 ro	ows	

```
Word_freq$Word<-as.factor(Word_freq$Word)</pre>
```

Let us now create a bar plot of the top 15 most commonly used words by Trump.

Hide

```
str(Word_freq)
```

```
'data.frame': 300 obs. of 2 variables:
$ Word : Factor w/ 300 levels "accomplish","across",..: 1 2 3 4 5 6 7 8 9 10 ...
$ Frequency: num 51 102 191 148 120 435 72 91 89 632 ...
```

Hide

```
Top_15<-Word_freq[1:15,]
dim(Top_15)
```

```
[1] 15 2
```

```
ggplot(Top_15)+geom_bar(mapping = aes(reorder(Word,Frequency),Frequency,fill=Frequency),stat =
"identity")+coord_flip()
```


PART B

In this part, I will: Re-tokenize the text of all 56 Donald Trump Speeches into a new tidy text data frame, using bigrams as tokens. Remove each bigram where either word is a stop word or the word "applause". Then plot the top 15 most common bigrams in Trump's speeches.

For the part A, I have used the corpus format. Now, I will use the tidytext format.

Trump_s<-tibble(line=1:length(Trump_speeches),text=Trump_speeches)
Trump_s


```
<int>
                                                                                                    9
                                                                                                   10
 1-10 of 74 rows | 1-1 of 2 columns
                                                        Previous 1
                                                                            3
                                                                                     5
                                                                                         6 ...
                                                                                               8
                                                                                                   Next
                                                                                                     Hide
 dim(Trump_s)
 [1] 74 2
Now, let us tidy the data.
                                                                                                     Hide
 tidy_speeches<-Trump_s%>% unnest_tokens(word,text)
 tidy_speeches
                      line word
                     <int> <chr>
                         1 trump
                         1 wow
                         1 whoa
                         1 that
                         1 is
                         1 some
                         1 group
```

Now, let us first see the most common words. This is essentially an easier way to solve the problem 6.

Previous

1

2

Before we proceed, let us first remove the common stop words.

1 of

1-10 of 235,237 rows

1 people

1 thousands

Hide

6 ... 100 Next

4

5

3

```
new_list<-c("Applause")
new_list<-as.data.frame(new_list)
new_list$lexicon<-c("SMART")
colnames(new_list)<-c("word","lexicon")
new_list$word<-as.character(new_list$word)
stop_words<-rbind(stop_words,new_list)
tidy_speeches_imp<-tidy_speeches%>% anti_join(stop_words,by="word")%>% count(word,sort = TRUE)
```

```
package <U+393C><U+3E31>bindrcpp<U+393C><U+3E32> was built under R version 3.4.3
```

```
tidy_speeches_final<-tidy_speeches_imp[-3,] #removing the word applause
colnames(tidy_speeches_final)<-c("Word_used","n")</pre>
```

Now, let us plot the top 15 most used words.

Hide

```
Top15_words<-tidy_speeches_final[1:15,]
ggplot(Top15_words)+geom_bar(mapping = aes(reorder(Word_used,n),n,fill=n),stat = "identity")+coord_flip()</pre>
```


Now, let us create a bigram of the Trump speeches. We will do so to get a deeper context in which the words were actually used.

```
Trump_bigrams<-Trump_s%>% unnest_tokens(bigram,text,token = "ngrams",n=2)
Trump_bigrams
```

```
line bigram
          <int> <chr>
             1 trump wow
             1 wow whoa
             1 whoa that
             1 that is
             1 is some
             1 some group
             1 group of
             1 of people
             1 people thousands
             1 thousands so
1-10 of 235,163 rows
                                                      Previous 1
                                                                    2
                                                                         3
                                                                                      6 ... 100 Next
```

```
tidy_speeches_big<-tidy_speeches%>% anti_join(stop_words,by="word")
str(tidy_speeches_big)
```

```
Classes \[ \text{tbl_df_, \[ \text{ltl} \] and 'data.frame': 85814 obs. of 2 variables: $\\ \text{line: int } 1 1 1 1 1 1 1 1 1 \\ \text{...} \]
$\\ \text{word: chr "trump" "wow" "whoa" "people" \\ \text{...} \end{align*}
```

Hide

```
str(Trump_s)
```

```
Classes \[ \text{tbl_df_, \[ \text{text: chr "Trump: Wow. Whoa. That is some group of people. Thousands. So nice, thank you very much. That's really nice. Th" \[ \text{truncated_ " Good evening. Thank you very much. I speak to y ou today as a lifelong supporter and true friend of Israel. I'm" \[ \text{truncated_ "Thank you for t he opportunity to speak to you, and thank you to the Center for the National Interest for honor i" \[ \text{truncated_ "Thank you for joining me today. This was going to be a speech on Hillary Clin ton and how bad a President, espec" \[ \text{truncated_ :...} \]
```

Now let us check the most common bigrams.

```
Trump_bigrams<-Trump_bigrams%>%count(bigram,sort = TRUE)
Trump_bigrams
```

bigram <chr></chr>	n <int></int>
going to	1821
of the	987
we will	819
we are	710
in the	669
hillary clinton	663
our country	575
are going	558
to be	538
we have	473
1-10 of 76,867 rows	Previous 1 2 3 4 5 6 100 Next

We can see that there are still stop words in the bigrams which we should eliminate.

For that, we will first split the bigrams into two words, eliminate the stop words and then reunite the words to form a bigram again.

```
library(tidyr)
Trump_bigrams_sep<-Trump_bigrams%>%separate(bigram,c("word1","word2"),sep = " ")
Trump_bigrams_sep
```

	word1 <chr></chr>	word2 <chr></chr>	n <int></int>
1	going	to	1821
2	of	the	987
3	we	will	819
4	we	are	710
5	in	the	669
6	hillary	clinton	663
7	our	country	575
8	are	going	558

			n
	<chr></chr>	<chr></chr>	int>
9	to	be	538
10	we	have	473
1-10 of 7	76,867 rows	Previous 1 2 3 4 5 6 100 N	Next

Trump_bigrams_sep<-Trump_bigrams_sep%>% filter(!word1 %in% stop_words\$word)%>%filter(!word2 %in% stop_words\$word)

Trump_bigrams_sep

word1 <chr></chr>	word2 <chr></chr>	n <int></int>
hillary	clinton	663
donald	trump	172
african	american	164
american	people	119
trump	administration	112
hillary	clinton's	104
trade	deals	102
november	8th	91
middle	east	88
president	obama	87
1-10 of 14,257 rows	Previous 1 2 3 4	5 6 100 Next

Now let us unite these bigrams again so that we can plot it.

Hide

Trump_bigrams_final<-Trump_bigrams_sep%>% unite(bigram,word1,word2,sep = " ")
Trump_bigrams_final

	bigram <chr></chr>	n <int></int>
1	hillary clinton	663
2	donald trump	172
3	african american	164
4	american people	119

	bigram <chr></chr>	n <int></int>
5	trump administration	112
6	hillary clinton's	104
7	trade deals	102
8	november 8th	91
9	middle east	88
10	president obama	87
1-10 of	14,257 rows	Previous 1 2 3 4 5 6 100 Next

Now, let us plot the top 15 most commonly used bigrams in Trump's speeches.

Top15_bigram<-Trump_bigrams_final[1:15,]
ggplot(Top15_bigram)+geom_bar(mapping = aes(reorder(bigram,n),n,fill=n),stat = "identity")+coord
_flip()</pre>

PART C
For the part C, I will do the following:

A sentiment analysis of Donald Trump's speeches. In order to make sure sentiments are assigned to appropriate contexts, first tokenize the speeches into bigrams, and then filter out all bigrams where the first word is any of "not", "no", or "never".

Now, we have to remove the bigrams where the first words are "no", "not", "never".

For that, let us use the separated bigrams from the previous question.

```
Negative<-c("no","not","never")
Tr<-c("trump","applause")
Trump_bigram_senti<-Trump_bigrams_sep%>% filter(!word1 %in% Negative)%>% filter(!word2%in% Tr)
Trump_bigram_senti%>% filter(word2=="trump")# checking if the word elimination worked.
```

0 rows

Hide

Hide

```
Trump_bigram_senti%>% filter(word1=="no")
```

0 rows

Now let us get each of the 10 sentiments in the nrc into 10 separate dataframes.

We will need these to do the further analysis.

```
nrc<-get_sentiments("nrc")
unique(nrc$sentiment)</pre>
```

```
[1] "trust" "fear" "negative" "sadness" "anger" "surprise"
"positive" "disgust"
[9] "joy" "anticipation"
```

Hide

```
nrc_trust<-nrc%>%filter(sentiment=="trust")
nrc_fear<-nrc%>%filter(sentiment=="fear")
nrc_negative<-nrc%>%filter(sentiment=="negative")
nrc_sadness<-nrc%>%filter(sentiment=="sadness")
nrc_anger<-nrc%>%filter(sentiment=="anger")
nrc_surprise<-nrc%>%filter(sentiment=="suprise")
nrc_positive<-nrc%>%filter(sentiment=="positive")
nrc_disgust<-nrc%>%filter(sentiment=="disgust")
nrc_joy<-nrc%>%filter(sentiment=="disgust")
nrc_joy<-nrc%>%filter(sentiment=="anticipation")
```

Let us first create a new column in our dataframe so that we can later join the sentiment dataframes.

```
Trump_bigram_senti$word<-Trump_bigram_senti$word2
Trump_sentiment<-Trump_bigram_senti[,4]
class(Trump_sentiment)</pre>
```

```
[1] "tbl_df" "tbl" "data.frame"
```

Now, let us see the top 10 words in Trump's speeches associated with trust.

Hide

Trust_trump<-Trump_sentiment%>% inner_join(nrc_trust,by="word")%>% count(word)%>%top_n(10)

Selecting by n

Hide

ggplot(Trust_trump)+geom_bar(mapping = aes(reorder(word,n),n,fill=n),stat = "identity")+coord_fl
ip()+labs(x="Trust_words",y="Number")

Now, let us see the top 10 words in Trump's speeches associated with Fear.

Hide

Fear_trump<-Trump_sentiment%>% inner_join(nrc_fear,by="word")%>% count(word)%>%top_n(10)

Selecting by n

ggplot(Fear_trump)+geom_bar(mapping = aes(reorder(word,n),n,fill=n),stat = "identity")+coord_fli
p()+labs(x="Fear_words",y="Number")

Now, let us see the top 10 words in Trump's speeches associated with negative.

Hide

Negative_trump<-Trump_sentiment%>% inner_join(nrc_negative,by="word")%>% count(word)%>%top_n(10)

Selecting by n

Hide

ggplot(Negative_trump)+geom_bar(mapping = aes(reorder(word,n),n,fill=n),stat = "identity")+coord
_flip()+labs(x="Negative_words",y="Number")

Now, let us see the top 10 words in Trump's speeches associated with sadness.

```
Hide

Sad_trump<-Trump_sentiment%>% inner_join(nrc_sadness,by="word")%>% count(word)%>%top_n(10)

Selecting by n

Hide

ggplot(Sad_trump)+geom_bar(mapping = aes(reorder(word,n),n,fill=n),stat = "identity")+coord_flip ()+labs(x="Sad_words",y="Number")
```


Now, let us see the top 10 words in Trump's speeches associated with anger.

```
Hide

Anger_trump<-Trump_sentiment%>% inner_join(nrc_anger,by="word")%>% count(word)%>%top_n(10)

Selecting by n

Hide

ggplot(Anger_trump)+geom_bar(mapping = aes(reorder(word,n),n,fill=n),stat = "identity")+coord_fl
ip()+labs(x="Anger_words",y="Number")
```


Now, let us see the top 10 words in Trump's speeches associated with surprise.

```
Hide

Surprise_trump<-Trump_sentiment%>% inner_join(nrc_surprise,by="word")%>% count(word)%>%top_n(10)

Selecting by n

Hide

ggplot(Surprise_trump)+geom_bar(mapping = aes(reorder(word,n),n,fill=n),stat = "identity")+coord_flip()+labs(x="Trust_words",y="Number")
```

Trust_words

Number

There are no surprise words in trump's speeches.

Now, let us see the top 10 words in Trump's speeches associated with positive.

Hide

Positive_trump<-Trump_sentiment%>% inner_join(nrc_positive,by="word")%>% count(word)%>%top_n(10)

Selecting by n

Hide

ggplot(Positive_trump)+geom_bar(mapping = aes(reorder(word,n),n,fill=n),stat = "identity")+coord
_flip()+labs(x="Positive_words",y="Number")

Now, let us see the top 10 words in Trump's speeches associated with disgust.

```
Hide

disgust_trump<-Trump_sentiment%>% inner_join(nrc_disgust,by="word")%>% count(word)%>%top_n(10)

Selecting by n

Hide
```

ggplot(disgust_trump)+geom_bar(mapping = aes(reorder(word,n),n,fill=n),stat = "identity")+coord_ flip()+labs(x="Disgust_words",y="Number")

Now, let us see the top 10 words in Trump's speeches associated with joy.

```
Hide

joy_trump<-Trump_sentiment%>% inner_join(nrc_joy,by="word")%>% count(word)%>%top_n(10)

Selecting by n

Hide

ggplot(joy_trump)+geom_bar(mapping = aes(reorder(word,n),n,fill=n),stat = "identity")+coord_flip ()+labs(x="Joy_words",y="Number")
```


Now, let us see the top 10 words in Trump's speeches associated with anticipation.

Hide

anticipation_trump<-Trump_sentiment%>% inner_join(nrc_anticipation,by="word")%>% count(word)%>%t
op_n(10)

Selecting by n

Hide

ggplot(anticipation_trump)+geom_bar(mapping = aes(reorder(word,n),n,fill=n),stat = "identity")+c
oord_flip()+labs(x="anticipation_words",y="Number")

PART D

In this part, I will write a function to tokenize an input corpus and spit out the most frequent words. The idea is to automate the process of data cleansing and get a glimpse into the data at the first go.

```
Hide
Text_analysis_corpus<-function(mysrc_clean,nwords){</pre>
  mysrc clean<-tm map(mysrc clean,removeNumbers)</pre>
  mysrc_clean<-tm_map(mysrc_clean,removeWords,stopwords())</pre>
  mysrc_clean<-tm_map(mysrc_clean,removePunctuation)</pre>
  library(SnowballC)
  mysrc_clean<-tm_map(mysrc_clean,stripWhitespace)</pre>
 mysrc dcm<-DocumentTermMatrix(mysrc clean)</pre>
 mysrc_sparce<-removeSparseTerms(mysrc_dcm,.5)</pre>
mysrc_final<-as.data.frame(as.matrix(mysrc_sparce))</pre>
Most common<-colSums(Trump final)</pre>
Top_words<-sort(Most_common,decreasing = TRUE)[1:nwords]</pre>
Word freq<-as.data.frame(Top words)
Word freq$Word<-rownames(Word freq)
rownames(Word_freq)<-c()</pre>
Word freq<-Word freq[c(2,1)]
colnames(Word_freq)<-c("Word","Frequency")</pre>
Word_freq$Word<-as.factor(Word_freq$Word)</pre>
ggplot(Word_freq)+geom_bar(mapping = aes(reorder(Word,Frequency),Frequency,fill=Frequency),stat
 = "identity")+coord_flip()
 }
```

Let us test if the method works.

We will use the corpus from the question 6.

500

0

1000

1500

Frequency

2000

2500