

Elastic Scale for Azure SQL Databases

Andreas Neuhauser KPMG Advisory GmbH

25.04.2015

Profile

Andreas Neuhauser

Solution Architect KPMG Advisory GmbH

Certified Scrum Product Owner Certified Scrum Master Certified Professional for Requirements Engineering

aneuhauser@kpmg.at

http://www.kpmg.systems

@andreasneuhauser

Agenda

Introduction

Microsoft Azure SQL Database

Sharding

Basics Why? Tenancy Models

Elastic Scale

Demos

Microsoft Azure

Fortune 500 using Azure

300k

Active websites

More than 1,000,000

SQL Databases in Azure

TRILLION storage objects > 300 MILLION AAD users

MILLION requests/sec

>13 BILLION authentication/wk

1.65 **MILLION** Developers registered

with Visual Studio Online

Get started

Visit azure.microsoft.com

SQL Database

Database-as-a-Service

Azure SQL Database

SQL Server database technology as a service Fully Managed

Designed to scale out elastically with demand

Ideal for simple and complex applications

Full support for TDS and ODBC

Familiar language and framework support

Cross Datacenter failover and backups to support disaster recovery scenarios

Demo

Service Tiers
Scale Up

Sharding

Pattern for the Cloud

Sharding

"Sharding is a horizontal scaling strategy in which resources from each <u>shard</u> (or node) contribute to the overall capacity of the sharded database."

(Source: Wilder B., Cloud Architecture Patterns)

→ "Shared nothing" Architecture

Shard Key

Determines which shard node stores database row

Original database = Collection of all shards

Every shard has the same schema

Before

CustomerId	Name	Account	Amount
1	Andreas	VIF	200.36
2	Stefan	Q0T	101.25
3	Michael	TIF03	543.23
100	Maria	WAX9	6789.10
160	Susanne	EG08	3561.10

After

Why Sharding?

 $Source: \underline{http://azure.microsoft.com/en-us/documentation/articles/sql-database-elastic-scale-introduction/articles/sql-database-elast$

When do sharding?

Amount of data

The total amount of data is too large to fit within the constraints of a single database

Throughput

The transaction throughput of the overall workload exceeds the capabilities of a single database

Isolation

Tenants may require physical isolation from each other, so separate databases are needed for each tenant

Geography

Different sections of a database may need to reside in different geographies for compliance, performance or geopolitical reasons

Not All Tables are Sharded

Sharded Tables

Any given row is stored on exactly one shard node Responsible for the bulk of the data size and database traffic

Reference Tables

Replicated into each shard to maintain autonomy
Typically read-mostly and much smaller than business data

→ All of the data needed for queries must be in the shard!

Elastic Scale Client Library

Demo

ShardMapManager (SMM)
Shards
Mappings

Tenants Regions <<PK>> -Tenantld <<PK>> -RegionId -Name -Name -RegionId Sharding Key Reference Table **Things** <<PK>> -Tenantld <<PK>> -Thingld -Name -Description Sharded Table

Sharded Table

Sharding enables Tenancy Models (1/2)

Single Tenancy - Single tenant per database

Each tenant's data is stored in a different database Better isolation of tenants as compared to multi-tenant model

Source: flickr.com

Multi Tenancy - Multiple tenants per database

Multiple tenants share the same database Less isolation of tenants as compared to single tenant model Typically more cost-effective than the single tenant model

Source: flickr.com

Sharding enables Tenancy Models (2/2)

Hybrid model

Some tenants share databases, others get their own database E.g., premium or paying customers get their own databases, while free tier customers share databases

Temporal model

Sharding based on date/time Most recent shard is constantly loaded with newly arriving data New shards added when current most recent shard nears capacity

Single vs. Multi Tenant Sharding

Source: http://azure.microsoft.com/en-us/documentation/articles/sql-database-elastic-scale-introduction/

Elastic Scale

Sharding Out-of-the-Box

Elastic Scale

Integrated Sharding support in Azure SQL Database

Provides client libraries and service offerings for sharding Pushes complexity down the stack towards database

Makes scaling the data tier as easy as the frontend

Appears as a single database to the application → One ConnectionString

Public Preview

Latest version on NuGet: 0.8.0 (March 2015)

Entity Framework Support

Key Capabilities

Shard map management (SMM)

Define groups of shards for your application Manage mapping of routing keys to shards

Data dependent routing (DDR)

Route incoming requests to the correct shard Ensure correct routing as tenants move Cache routing information for efficiency

Multi-shard query (MSQ)

Interactive processing across several shards Same statement executed on all shards with UNION all semantics

Split/Merge (SM)

Grow or shrink capacity by adding or removing scale units Dynamically adjust scale factor of scale unit Trigger adjustment dynamically through policies

Shard Elasticity (SE)

Dynamically adjust scale factor of scale unit Trigger adjustment dynamically through policies

Why Elastic Scale?

Past

Not popular because sharding logic was custom-built in application code Increase in cost and complexity

Today: prevent self-sharding

A developer should focus on the business logic rather than building infrastructure for sharding

Focus on application not scalability!

Query one specific shard, Query multiple shards

Application Developer Capacity, Cos Management DB Maintenance, DDL

Admin/DevOps

Sharding with Elastic Scale

Source: http://azure.microsoft.com/en-us/documentation/articles/sql-database-elastic-scale-introduction/

Elastic Scale Client Library

Demo

Data-Dependent Routing


```
<connectionStrings>
  <add name="ConnectionString"connectionString=
    "Data Source= [server].database.windows.net;
    Integrated Security=False;
    Initial Catalog=ProductsDb;
    User Id=[login]@[server];
    Password=[password];
    Trusted_Connection=False;
    Encrypt=true;"
    providerName="System.Data.SqlClient"/>
    </connectionStrings>
```

Elastic Scale Client Library

Demo

Multi-Shard Querying (UNION)

Management Services

Demo

Splitting

Split-Merge Service

Customer-hosted Service

1 Worker and 1 Web Role

Security

SSL, Certificate-based client authentication, More

Batch

Shardlets are offline for data-dependent routing during movement

Note

Only needed when existing data needs to be moved!

Management Services

Demo

Merging

Management Services

Demo

Shardlets going "crazy"
→ Dedicated database

Limitations & Best Practices

Service

Shard must exist before Split-Merge operation

Host service in the region where databases reside

Delete Split-Merge service when not performing split/merge/move frequently

Don't use for production

Sharding Key

Leading column in PK ensuring best performance

More Performance during Split/Merge?

Choose more performant service tiers; Increase only for defined limited period of time

Wrap Up

Elastic Scale

is a Dev-Ops story enables secure Multi Tenancy and Flexible Data Management

No big changes but **BIG** implications

One Connection String as always 1 Global Application but Data stored nearby customer No additional costs

Tools

Currently Best option for Split-Merge: PowerShell approach
Shard Elasticity = SQL Database + Azure Automation Service

Links and Resources

Elastic Scale Presentation and Sample

https://speakerdeck.com/aneuhauser https://github.com/aneuhauser/Samples

Shard Elasticity with Elastic Scale

https://gallery.technet.microsoft.com/scriptcenter/Elastic-Scale-Shard-c9530cbe?clcid=0x409

Azure PowerShell

https://github.com/Azure/azure-powershell

Split/Merge Service Deployment

http://azure.microsoft.com/en-us/documentation/articles/sql-database-elastic-scale-configure-deploy-split-and-merge/

Entity Framework Integration

http://azure.microsoft.com/en-us/documentation/articles/sql-database-elastic-scale-use-entity-framework-applications-visual-studio/

Q&A

© 2015 KPMG Austria GmbH Wirtschaftsprüfungs- und Steuerberatungsgesellschaft, österreichisches Mitglied des KPMG-Netzwerks unabhängiger Mitgliedsfirmen, die KPMG International Cooperative ("KPMG International"), einer juristischen Person schweizerischen Rechts, angeschlossen sind.

Alle Rechte vorbehalten. Printed in Austria. KPMG und das KPMG-Logo sind eingetragene Markenzeichen von KPMG International.

Andreas Neuhauser KPMG Advisory GmbH

aneuhauser@kpmg.at

http://www.kpmg.systems

@andreasneuhauser