ریاضی عمومی ۲

ارائه دهنده: دکتر داریوش کیانی

دانشکدهٔ ریاضی و علوم کامپیوتر دانشگاه صنعتی امیرکبیر

اطرح درس

- \mathbb{R}^3 یادآوری هندسه تحلیلی در \mathbb{R}^2 و \mathbb{R}^3
 - ۲ توابع برداری و خمها (منحنیها)
 - 🛛 معرفی توابع چندمتغیره
 - - - 🖊 توابع ضمني

- مات جزئی مشتق پذیری کی مشتق جهتاله ا

- ۹ کاربردهای مشتقات جزئی
 - ۱۰ انتگرال دوگانه
 - 🚺 انتگرال سهگانه
- 🚻 انتگرال روی خم (یا انتگرال خط)
 - ۱۳ انتگرال روی سطح
 - ۱۲ قضایای دیورژانس و استوکس
 - ۱۵ مقدمهای بر جبرخطی

 \mathbb{R}^3 یادآوری هندسه تحلیلی در فضای دوبعدی \mathbb{R}^2 و سهبعدی

A بردار با نقطهٔ ابتدایی P و نقطهٔ انتهایی

جمع برداري:

$$\vec{u} = \overrightarrow{(x_1, y_1)}$$

$$\vec{v} = \overrightarrow{(x_2, y_2)}$$

$$\vec{u} + \vec{v} = \overrightarrow{(x_1 + x_2, y_1 + y_2)}$$

ضرب اسكالر:

$$t \in \mathbb{R}, \quad \overrightarrow{v} = \overrightarrow{(x_1, y_1)}$$

$$t\overrightarrow{v} = \overrightarrow{(tx_1, ty_1)}$$

تفاضل بردارها:

$$\vec{u} - \vec{v} = \vec{u} + (-\vec{v})$$

$$:P_1=(x_1,y_1)$$
 فاصلهٔ دو نقطه $P_0=(x_0,y_0)$ و

$$|P_0P_1| = \sqrt{(x_1 - x_0)^2 + (y_1 - y_0)^2}$$

 $|tu| = |t||u|$

$$\cdot\left(rac{-\sqrt{2}}{2},rac{\sqrt{2}}{2}
ight)$$
 و $-j$ ، i است. مثل i است. مثل آنگاه $\hat{v}=rac{1}{|\vec{v}|}\vec{v}$ برداری یکه است. $\vec{v}=(\overrightarrow{x},\overrightarrow{y})=x\underbrace{(\overrightarrow{1,0})}_i+y\underbrace{(\overrightarrow{0,1})}_j$

یک نقطه مانند P با سه مؤلفه، در \mathbb{R}^3 و بردار مکان آن، یعنی r مطابق شکل است.

جمع برداری و ضرب اسکالر در \mathbb{R}^3 بهصورت زیر است:

$$(x_1, y_1, z_1) + (x_2, y_2, z_2) = (x_1 + x_2, y_1 + y_2, z_1 + z_2).$$

 $t(x, y, z) = (tx, ty, tz); t \in \mathbb{R}$

۹/V Kiani-Saeedi Madani-Saki

فاصلهٔ دو نقطهٔ P_1 و P_2 (مانند شکل) در \mathbb{R}^3 عبارتست از:

$$|\overrightarrow{P_1P_2}| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$$

در \mathbb{R}^3 ، مطابق شکل، بردارهای یکهٔ $ec{i}$ و $ec{i}$ را داریم:

$$\vec{i} = (1, 0, 0)$$
 $\vec{j} = (0, 1, 0)$
 $\vec{k} = (0, 0, 1)$
 $P = xi + yj + zk$

مثال:

$$\begin{cases} \vec{u} = i - j + 2k \\ \vec{v} = j - k \end{cases}$$

$$\vec{u} + \vec{v} = i + k$$
$$-2\vec{v} = -2j + 2k$$
$$|\vec{u}| = \sqrt{6}$$
$$\hat{v} = \frac{1}{\sqrt{2}}(j - k)$$

ضرب داخلی (یا درونی یا نقطهای):

$$\vec{u} = (x_1, y_1, z_1)$$

 $\vec{v} = (x_2, y_2, z_2)$

$$\vec{u}.\vec{v} = x_1x_2 + y_1y_2 + z_1z_2$$

- 1. u.v = v.u
- 2. u.(v+w) = u.v + u.w
- 3. $(t \in \mathbb{R})$ (tu).v = t(u.v) = u.(tv)
- 4. $u.u = |u|^2$

گزاره

فرض کنید u و v دو بردار در \mathbb{R}^2 (یا \mathbb{R}^3) باشند و فرض کنید u زاویهٔ بین آنها باشد $(0 < \theta < \pi)$. آنگاه:

 $u.v = |u||v|\cos\theta$

Kiani-Saeedi Madani-Saki

$u.v=0 \Leftrightarrow u.v=0$ بردارهای u و u بر

تصوير بردار:

تصویر بردار $ec{u}$ بر بردار $ec{v}$ که آن را با $ec{u}_v$ نمایش میدهیم، با توجه به شکل، بهصورت زیر است:

$$\vec{u}_v = (|u|\cos\theta)\frac{\vec{v}}{|v|}$$
$$= (|v||u|\cos\theta)\frac{\vec{v}}{|v|^2}$$
$$= \left(\frac{u.v}{|v|^2}\right)\vec{v}$$

بنابراين، داريم:

$$\vec{u}_v = \left(\frac{u.v}{|v|^2}\right)\vec{v}$$

$$\mathbb{R}^n=\{(x_1,x_2,\ldots,x_n):\ x_i\in\mathbb{R}\}$$
فرض کنید $X=(x_1,\ldots,x_n)$ و $Y=(y_1,\ldots,y_n)\in\mathbb{R}^n$ و فرض کنید

$$X + Y = (x_1 + y_1, \dots, x_n + y_n)$$
 $tX = (tx_1, \dots, tx_n)$
 $|Y - X| = \sqrt{(y_1 - x_1)^2 + \dots + (y_n - x_n)^2}$

$$X.Y = x_1y_1 + x_2y_2 + \dots + x_ny_n$$

 \mathbb{R}^n بردارهای یکه در

$$e_1 = (1, 0, \dots, 0)$$

$$e_2 = (0, 1, \dots, 0)$$

 $(\mathbb{R}^n$ پایه استاندارد)

:

$$e_n = (0, 0, \dots, 1)$$

ضرب خارجي:

$$u = u_1 i + u_2 j + u_3 k$$

$$v = v_1 i + v_2 j + v_3 k$$

$$u \times v = \det \begin{pmatrix} i & j & k \\ u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{pmatrix}$$

$$= (u_2v_3 - u_3v_2)i + (u_3v_1 - u_1v_3)j + (u_1v_2 - u_2v_1)k$$

خواص:

$$) u.(u \times v) = v.(u \times v) = 0$$

(مساحت متوازی الاضلاع تولید شده توسط
$$u$$
 و u v و مساحت متوازی الاضلاع تولید شده توسط u

 $u \times v = 0 \Leftrightarrow u$ بهویژه توجه کنید که u و v موازی هستند

بردارهای $u \times v$ ،v ،v بک سه وجهی راست دست تشکیل می دهند.

$$\forall i \times i = j \times j = k \times k = 0$$

- (Δ) $i \times j = k$ $j \times k = i$ $k \times i = j$
- 9) $u \times v = -v \times u$

يادجابەجاىي

Y)
$$u \times (v + w) = u \times v + u \times w$$

 $(v + w) \times u = v \times u + w \times u$

$$\mathsf{A)} \ (tu) \times v = u \times (tv) = t(u \times v)$$

خط و صفحه در \mathbb{R}^2 و \mathbb{R}^3 :

$$L = \{(x, y) \in \mathbb{R}^2 : y = ax + b\}$$

$$= \{(x, ax + b) : x \in \mathbb{R}\}$$

$$= \{\underbrace{(x, ax)}_{x(1,a)} + (0, b) : x \in \mathbb{R}\}$$

$$= (0, b) + \underbrace{\{x(1, a) : x \in \mathbb{R}\}}_{<(1,a)>}$$

$:\mathbb{R}^3$ صفحه در

$$P_0 = (x_0, y_0, z_0)$$
$$\vec{n} = Ai + Bj + Ck$$

صفحهٔ گذرنده از P=(x,y,z) و عمود بر $ec{n}$ مجموعهٔ نقاطی مانند

$$(\overrightarrow{P-P_0}).\overrightarrow{n}=0$$

بردار n را بردار <mark>نرمال</mark> صفحه گوییم.

$$A(x - x_0) + B(y - y_0) + C(z - z_0) = 0$$
$$Ax + By + Cz = D$$

$$.D = Ax_0 + By_0 + Cz_0$$
 که

اگر T و R و Q سه نقطه در صفحهای باشند که روی یک خط راست نیستند، آنگاه داریم:

$$u = Q - T$$

$$v = R - T$$

$$\vec{n} = u \times v$$

و صفحهٔ گذرنده از سه نقطهٔ T و R و Q عبارت است از مجموعهٔ نقاطی مانند P بهطوریکه:

$$\vec{n}.(P-Q) = 0$$

(9 / 19 Kiani-Saeedi Madani-Saki

مثال

$$\vec{n}=(1,-2,-1)$$
 الف) معادلهٔ صفحهٔ گذرنده از نقطهٔ $P_0=(1,0,1)$ با بردار نرمال $1(x-1)+(-2)(y-0)+(-1)(z-1)=0 \implies x-2y-z=0$ $T=(0,1,1)$ و $T=(0,1,1)$ $T=(0,1,1)$

-(x-1)-(y-1)-(z-0)=0 یعنی $\vec{n}.((x,y,z)-Q)=0$ بنابراین، معادلهٔ صفحهٔ مور د نظر است.

$:\mathbb{R}^3$ خط در

میخواهیم معادلهٔ خط ℓ ، گذرنده از نقطهٔ $(x_0,y_0,z_0)=P_0=P_0=P_0$ و موازی بردار ناصفر $ec{v}=ai+bj+ck$

$$P - P_0 = tv$$

 $P = P_0 + tv$
 $\ell = \{P : P = P_0 + tv; t \in \mathbb{R}\} = P_0 + < v > 0$

بردار v را بردار هادی خط گوییم.

معادلهٔ پارامتری خط:

$$\begin{cases} x = x_0 + at \\ y = y_0 + bt \\ z = z_0 + ct \end{cases} (-\infty < t < \infty)$$

اگر $a,b,c \neq 0$ آنگاه:

$$\frac{x - x_0}{a} = \frac{y - y_0}{b} = \frac{z - z_0}{c}$$

:اگر $a,b \neq 0$ ،c=0 داریم

$$\frac{x-x_0}{a} = \frac{y-y_0}{b}, \quad z = z_0$$

مثال

$$u = (0, 1, -1)$$
 با بردار هادی $P_0 = (1, 0, -1)$ با بردار هادی الف) معادلهٔ خط گذرنده از

$$\begin{cases} x = 1 \\ y = t \\ z = -1 - t \end{cases} \quad x = 1, \frac{y - 0}{1} = \frac{z + 1}{-1} \quad y = (1, 0, -1) + t(0, 1, -1)$$

$$:P_1=(1,0,1)$$
 و $P_0=(1,0,-1)$ و $P_0=(1,0,-1)$

$$u = P_1 - P_0 = (0, 0, 2) \implies$$

$$\begin{cases} x = 1 \\ y = 0 \\ z = -1 + 2t \end{cases} \qquad P = (1, 0, -1) + t(0, 0, 2)$$

79/77

\mathbb{R}^2 مفهوم پایه در

بردارهایی ناصفر که همراستا نیستند در \mathbb{R}^2 را مستقل خطی گوییم. lacksquare

نمادگذاری:

$$\langle A,B \rangle = \{tA + sB : t,s \in \mathbb{R}\}\$$

■ اگر A,B دو بردار مستقل خطی باشند، آنگاه:

$$\langle A, B \rangle = \mathbb{R}^2$$

- به هر دو بردار مستقل خطی در \mathbb{R}^2 یک پایه گفته میشود.
 - است. \mathbb{R}^2 است. است. است.

مفهوم پآیه در \mathbb{R}^2 :

- میتوان دید که گزارههای زیر معادلند: A و B دو بردار مستقل خط A اگر A B اگر A Bx=y=0 اگر xA+yB=0، که x و y اعدادی حقیقی هستند، آنگاه x

29/40 Kiani-Saeedi Madani-Saki

\mathbb{R}^3 مفهوم پایه در

سه بردار ناصفر $w = (w_1, w_2, w_3)$ ، $v = (v_1, v_2, v_3)$ ، $u = (u_1, u_2, u_3)$ و $w = (u_1, u_2, u_3)$ مستقل خطی گوییم، هرگاه حجم متوازی السطوح تولید شده توسط این سه بردار ناصفر باشد یا معادلاً دترمینان ماتریس زیر ناصفر باشد:

$$\begin{bmatrix} u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \\ w_1 & w_2 & w_3 \end{bmatrix}$$

Y9 / Y9

مفهوم پآیه در \mathbb{R}^3 :

■ مطابق شکل، دترمینان ماتریس مذکور، برابر است با:

حجم متوازیالسطوح
$$|u.(v \times w)|$$

• سه بردار ناصفر مستقل خطی در \mathbb{R}^3 را یک پایه برای \mathbb{R}^3 نیز مینامیم.

\mathbb{R}^3 مفهوم پایه در

نمادگذاری:

$$\langle A,B,C\rangle = \{tA+sB+rC:t,s,r\in\mathbb{R}\}$$

انگاه: \mathbb{R}^3 باشند، آنگاه: A,B,C شابت میشود که اگر

$$\langle A, B, C \rangle = \mathbb{R}^3$$

- میتوان دید که گزارههای زیر معادلند:
- سه بردار مستقل خطی در \mathbb{R}^3 هستند. A,B,C
- اگر C=0 اعدادی حقیقی هستند، آنگاه x,y,z اعدادی حقیقی هستند، آنگاه

$$x = y = z = 0.$$

مثال

نشان میدهیم که بردارهای C=(0,1,1) و B=(1,0,1) ، A=(1,1,0) مستقل خطی (و بنابراین پایهای برای \mathbb{R}^3) هستند.

روش اول: كافي است نشان دهيم كه دترمينان ماتريس زير ناصفر است:

$$\det \begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix} = \det \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix} - \det \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} = -2$$

روش دوم: فرض کنید $x,y,z\in\mathbb{R}$ طوری هستند که xA+yB+zC=0 باید نشان دهیم که x = y = z = 0 داریم:

$$xA+yB+zC=x(1,1,0)+y(1,0,1)+z(0,1,1)=(x+y,x+z,y+z)$$
 $x=y=z=0$ پس باید $x+y=x+z=y+z=0$ که نتیجه می دهد

79/79