-73-777 C./

THE JOHNS HOPKINS UNIVERSITY

DEPARTMENT

OF

PHYSICS

TECHNICAL LIBRARY BUILDING 45 SPECIAL REPORT
NASA/MSC Contract NAS-9-11528

Task I. Principal Investigator Services

(NASA-CR-128834) ULTRAVIOLET BRIGHTNESS OF CELESTIAL TARGETS FOR APOLLO 17

N**73-1**9866

(Johns Hopkins Univ.) 70 p HC \$5.50 CSCL 03A

Unclas

G3/30 65606

Submitted by

Wm. G. Fastie Principal Investigator

December 1972

Baltimore, Maryland 21218

THE JOHNS HOPKINS UNIVERSITY

DEPARTMENT OF PHYSICS

HOMEWOOD CAMPUS

BALTIMORE, MARYLAND 21218 November 27, 1972

To:

Distribution

From:

Wm. G. Fastie, Principal Investigator

Subject:

Special Report on the Ultraviolet Brightness of Celestial Targets for Apollo 17. NASA/MSC

Contract NAS 9-11528, Task I - Principal Investi-

gators Services.

We submit herewith a special Principal Investigator! s report, prepared by Richard C. Henry (co-investigator), giving an evaluation of the ultraviolet flux from the stars that we expect to measure in the various inertial hold positions and PTC scans in lunar orbit and on trans-earth coast during the Apollo 17 mission.

Wm. G. Fastie

WGF/eb

Distribution:

10	Copies	NASA/	MSC	L.	McFadin	
1	Copy	11	11	D.	D. Clayton	
. 1	Copy	11	11		Jones	
1	Copy	11	11	N.	Hardee	
1	Сору	11	11	E.	Smith	
1	Сору	0	n	T.	C. Cone	
1	Copy	11	11	H.	Harvey	
1	Copy (ONRRR/	JHU	w.	B. Girkin	
1	Copy A	\PL		T.	Wyatt	
1	Copy J	THU		A.	P. Ashton	
1	Copy N	ASA		G.	F. Esenwein, Jr	٠.
1	Copy 1	NASARR	/API	LD.	. Beeman	
1	Copy 1	VASA/G	SFC	J.	Diggin s	
12	Copies	3		Int	ternal Distribution	n
1	Copy			Fi	le	

ULTRAVIOLET BRIGHTNESS OF CELESTIAL TARGETS FOR APOLLO 17

Submitted by

Wm. G. Fastie Principal Investigator

Department of Physics The Johns Hopkins University Baltimore, Maryland 21218

NASA/MSC Contract NAS 9-11528 Task I. Principal Investigator Services

TABLE OF CONTENTS

		Page
ı.	Introduction	1
II.	Methodology	4
III.	The Targets and Scans	7
IV.	Conclusions	9
	List of Figures	10
	List of Tables	12
	Key to the Star-List Tables	13
	Appendix A: The Ultraviolet Brightness of the Brightest Stars.	58

I. INTRODUCTION

The technical Supporting Studies Plan DRD No. MA-091T under NASA/MSC Contract NAS 9-11528, "Task I. Principal Investigator Services", calls for studies to give maximum scientific support to the flight of Apollo 17 and to the analysis of the data received. In pursuit of this goal, we have made an evaluation of the ultraviolet flux from the stars expected in the various inertial-hold pointing directions and PTC scans during the Apollo 17 mission. These directions and PTC scan poles for the nominal mission are listed in Table I. In subsequent sections we discuss the methodology used in evaluating the flux, and the individual targets themselves. An overview of the targets and scans may be obtained by referring to Figure 1. In that figure, the sky is represented in celestial coordinates (Right Ascension and Declination), with North (the North Celestial Pole) at the top. The left and right edges of the map are at 18^h of Right Ascension. which is near the sun (circle at lower left). The position of the Earth in the sky (viewed from the moon) for December 12 through 18, is indicated, and also the position of the Moon (as viewed from the Earth) for December 17, 18, and 19. The field-of-view of the Apollo UVS is indicated for each of the inertial hold targets. A thirty-degree avoidance circle has been drawn around the sun.

TABLE I
INERTIAL HOLD AND PTC TARGETS

Target		UVS	Line	of Si	ght			+,)	X axis	dire	ctio	,
Lyman Alpha Minimum	04 ^h	35 ^r	n 00 ^s	+30	00'	00"	09 ^h	48 ^m	20 ⁸	+28 ^C	51'	51"
Earth	14	10	33	-18	15	39	09	31	00	-14	00	00
Moon	06	58	00	+22	00	00	11	20	00	+04	00	00
First Sleep PTC		-	 				10	00	00	+07	00	00
Coma Cluster	12	58	00	+26	00	00	16	36	51	-12	25	21
Mode III 60 x 14	06	27	35	-73	36	31	15	21	52	-35	14	34
Mode III 60 x 60	04	31	58	-71	51	27	15	26	30	-40	47	53
a Eri	01	38	33	-58	10	28	19	00	00	-33	01	59
α Eri, α Gru PTC							00	55	00	+08	00	00-
Second Sleep PTC							20	20	00	+88	00	00
Dark North	14	00	00	+22	00	00	17	40	00	-17	31	14
North Ecliptic Pole	19	00	00	+78	00	00	17	55	01	+11	01	56
Mode IV			· 	· ·			21	12	14	+60	3 2	23
Virgo Cluster	12	30	00	+12	00	00	07	51	08	+39	05	31
Dark South	01	05	00	-10	00	00	20	30	00	-25	00	0Ó
NEP, YPeg PTC				.			04	55	00	+46	00	00
Spica	13	24	00	-11	00	00	18	02	00	-30	00	00
Spica, ητ Ma							17	40	00	+0 5	00	00
Third Sleep			<u>.</u>	_			05	45	00	-47	00	00
					_		<u> </u>					

The solid lines in the figure represent the various PTC scans. The background shading represents the accumulated expected ultraviolet flux over five-by-five degree blocks. Data are taken from the Smithsonian Astrophysical Observatory Catalog, with no allowance for interstellar reddening. This may be compared with Figure 2, which shows the same data taken from the Bright Star Catalog, with allowance for interstellar reddening (except for a small portion of the stars). In Figure 2, the Right Ascension of the edge of the plot is zero hours. A grid of galactic coordinates has been imposed on the figure. The absolute intensity scale is not the same as in Figure 1.

II. METHODOLOGY

The far ultraviolet spectrometer (UVS) has a field-ofview about 12° by 18°. When it is pointed, for example, above the horizon of the moon it receives radiation from the lunar atmosphere and also from the distant sky. The ultraviolet flux from the sky we assume to be entirely due to direct radiation from stars in the field of view. For targets containing large numbers of stars, such as Lyman Alpha Minimum, this is a fair assumption. For targets in dark regions of the sky, however, additional sources of radiation, such as starlight scattered from interstellar dust, might be important, so the flux values we report here must be regarded as lower limits. The flux was determined in two ways, and is listed in Table II. In the first column of Table II is the flux obtained by adding up the expected flux from stars listed in the "SAO" Star Catalog, with no allowance for interstellar absorption. (The stars involved are illustrated in the figures for the various targets, where the number plotted is the visual magnitude of the star. The size of the plotted number depends, rather weakly, on the ultraviolet flux from the star.) In the second column is the flux obtained by adding the expected flux from stars in the Bright Star Catalog, taking account of interstellar absorption and reducing the flux

TABLE II

EXPECTED FLUX FROM INERTIAL HOLD TARGETS

Target	Flux, in Photo	ons (cm ² sec A) ⁻¹
	Bright Star Catalog	Smithsonian Star Catalog
Lyman Alpha Minimum	166	1109
Earth	30	66
Moon	234	357
Coma Cluster	19	28
Mode III 60 x 14	83	171
Mode III 60 x 60	43	103
α Eridani	2728	2272 (85 [*])
Dark North	8.3	20
North Ecliptic Pole	42	115
Virgo Cluster	24	44
Dark South	4.4	17
Spica	7805 (1 ^m 2 B2 star)	3631 (22 [*]) (0. 96 B1 star)

^{*}deleting the one bright star.

of supergiants by one magnitude. The calibration in each case was kindly provided by C. F. Lillie from OAO data. The orientation of the field-of-view was chosen for most of the targets so that the instrument would be shaded from the sun during the observation.

For the PTC scans, and the Mode IV Zodiacal Light
Scan, figures are provided giving the brightness expected as
a function of position along the path of the PTC scan. Sections
ten degrees long are taken. The width of the band is taken as
12°. The celestial and galactic positions for each bin are indicated. If, in Table I, the +X axis position has a south declination, the scan is made from top to bottom in the figure. If the
+X axis points north, the scan is made from bottom to top in
the figure.

A list of all stars that are brighter than 50 photons $(cm^2 sec A)^{-1}$ is given as Appendix A.

III. THE TARGETS AND SCANS

In this section, we briefly comment on each of the targets and the various PTC scan paths. Detailed information on each target and each PTC scan is provided in the Tables and Figures.

- 1. Lyman Alpha Minimum. This is a region that
 Gary Thomas has found to emit the least Lyman Alpha radiation
 of any part of the sky. It is rather close to the galactic plane,
 and is near the bright Pleiades star cluster.
- 2. Earth. The earth is also observed during the first sleep PTC on TEC.
 - 3. The Moon.
- 4. <u>Coma Cluster</u>. The position of the cluster of galaxies is indicated by the circle in the figure. We hope to set a limit on redshifted Lyman Alpha radiation from the cluster.
- 5. Mode III 60 x 14. This target is observed during the moments when it is just above the lunar horizon, in 60 x 14 nautical mile lunar orbit, and also, as a calibration, for a period on trans-earth coast. The mode provides a good means for observing Xenon in the lunar atmosphere.
- 6. Mode III 60 x 60. As in 5 above, but 60 x 60 nautical miles lunar orbit.

- 7. Alpha Eridani. This very bright star will be measured as a cross-calibration between Apollo 17 and other UV experiments that have flown. It totally dominates the sum of all other stars in the field of view (see Table II).
- 8. <u>Dark North</u>. As shown in Table II, this is expected to be one of the darkest regions of the sky observed. It is hoped to set limits on extragalactic radiation entering our galaxy. This target is near the North Galactic Pole.
- 9. North Ecliptic Pole. The UVS is pointed directly up out of the plane of the solar system. This target is primarily for the purpose of determining the Lyman Alpha intensity in this direction.
- 10. <u>Virgo Cluster</u>. This is another cluster of galaxies, several degrees in extent. The UVS is in sunlight during the measurement, for unavoidable thermal reasons.
- 11. <u>Dark South</u>. The remarks under "Dark North" apply here also, except it is the South Galactic Pole region that is observed.
 - 12. Spica. Another very bright star, similar to α Eridani.
- 13. First Sleep PTC. This scan path has been chosen to pass through the earth as viewed from the spacecraft. Time variations in the UV brightness of the earth may be observed. The extremely bright constellation Orion is also scanned.

- 14. Second Sleep PTC. This PTC scan path passes through North Ecliptic Pole, Dark North, and Coma Cluster. It is a scan from galactic pole to galactic pole.
- 15. Third Sleep PTC. This scan passes through Dark South, and also through the bright stars α Grus and α Pavo.
- 16. α Eri, α Gru. This scan passes through the bright stars α Eridani and α Grus, and also the Orion region.
- 17. NEP, λ Peg. This scan passes through the north ecliptic pole, and also through the bright star γ Peg.
- 18. Spica, ηU Ma. This scan passes through the two bright stars Spica (α Virginis) and η Ursae Majoris. The latter star has been previously observed by JHU experimenters from an Aerobee rocket.

IV. CONCLUSION

Data have been presented bearing on the UV brightnesses to be expected during the PTC scans and while pointed at fixed targets during the Apollo 17 mission. These data will aid in real-time decision-making, and in the subsequent analysis of the data.

LIST OF FIGURES

	•	Page
Figure 1.	Map of the sky, showing PTC scans and In- ertial Hold targets	1
Figure 2.	Map of the sky, showing the radiation expected from the stars in the Bright Star Catalog.	2
Figure 3.	Lyman Alpha Minimum	17
Figure 4.	Earth	19
Figure 5.	Moon	21
Figure 6.	First Sleep PTC	25
Figure 7.	Coma Cluster of Galaxies	27
Figure 8.	Mode III in 60 x 14 Nautical Mile Orbit	29
Figure 9.	Mode III in 60 x 60 Nautical Mile Orbit	31
Figure 10.	Alpha Eridani	33
Figure 11.	Alpha Eri; Alpha Gru PTC	36
Figure 12.	Second Sleep PTC	38
Figure 13.	Dark North	40
Figure 14.	Key Chart to Table	41
Figure 15.	North Ecliptic Pole	42
Figure 16.	Mode IV Scan	44
Figure 17.	First Part of Mode IV Scan - Zodiacal Light	45
Figure 18.	Virgo Cluster of Galaxies	47

List of Figures - Cont'd.

	•	Page
Figure 19.	Dark South	49
Figure 20.	NEP, Gamma Peg PTC	51
Figure 21.	Spica	53
Figure 22.	Spica, Eta Ursa Majoris PTC	\$5
Figure 23.	Third Sleep PTC	57

LIST OF TABLES

			Page
Table	I	Inertial Hold and PTC Targets	2
Table	II	Expected Flux from Inertial Hold Targets	5
Table	Ш	Lyman Alpha Minimum Target	16
Table	IV	Earth Target	18
Table	v	Moon Target	20
Table	VI	First Sleep PTC Scan-Brightest Stars	22
Table	vII	Coma Cluster Target	26
Tab le	VIII	Mode III 60 x 14 Target	28
Table	IX	Mode III 60 x 60 Target	30
Table	X	Alpha Eridani Target	32
Table	XI	Alpha Eri, Alpha Gru - Brightest Stars	34
Table	XII	Second Sleep PTC Scan - Brightest Stars	37
Table	IIIX	Dark North Target	39
Table	XIV	North Ecliptic Pole Target	41
Table	xv	Mode IV Scan - Zodiacal Light - Brightest Stars	43
Table	xvi	Virgo Cluster Target	46
Table	xvii	Dark South Target	48
Table	x v III	INEP, Gamma Peg - Brightest Stars	50
Table	XIX	Spica Target	52
Table	XX	Spica, Eta Ursae Majoris - Brightest Stars	54
Table	XXI	Third Sleep PTC Scan - Brightest Stars	56

KEY TO THE STAR-LIST TABLES

HR

Bright Star Catalog number.

NAME

Star Name.

RA (1973) DEC

Celestial Coordinates, precessed to 1973.

B-V

The B-V color of the star.

SP

Spectral type.

LUM

Luminosity Class

DMAG

If the star is double, the difference in magnitude

between the two components.

SEP

If the star is double, the separation of the two

components in seconds of arc.

V

The V magnitude of the star.

VU

The 1500 A magnitude of the star (Vega is zero.)

FLUX

The 1500 A flux in photons (cm² sec A)⁻¹. An asterisk indicates that the flux has been reduced because the star falls near the end of

the target (see Figure 14).

LONG

The galactic longitude of the star.

LAT

The galactic latitude of the star.

E(B-V)

The color excess.

The final unlabelled column gives, for inertial targets, the distance in degrees for nearby stars (for the sharp edge of the field of view) and the distance from the point where the full stellar flux would be seen by the instrument, for stars on the graduated edge of the field of view. Distances are truncated.

Figure 2

YMAN ALPHA	* C.	INTHUM	R GE	:		,			,					ı				
7. A.H.	w W	œ	A{ 1973	3 1 DEC	9-6	S.		L O		DMAG	SEP	>	>	FLUX	LONG	LAT	E(8-v)	
42	PER PER	****	0 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	33 32 33 31 34 16 31 5	0.00	82. 82. 84. 84. 84. 84. 84.		>>>		7 2.5	20.2 3.5 15.1	6.90 6.50 5.00 5.70 6.20	4.65 6.68 5.40 7.43	70.2 6.8 2.9 31.0	158 55 160 42 160 14 162 26	-16 43 -16 15 -16 26 -15 9	0.30 1 0.30 1 0.28 0 0.13 2	
⋖	ያ ም ዴሞ ሜ		46660	3 4 4 4 8 8 8 4 4 4 4 4 4 4 4 4 4 4 4 4	0.12	81 82 85 07	တ ရ. မေ	· >		9 9	12.9 5 23.3	2.80 6.00 5.40 6.30	3.70 5.13 7.44 7.24	152.8 119.4 10.5* 0.1*	162 17 163 \$ 160 28 160 53	-16 42 -117 9 -113 59 -113 58	0.31 1. 0.21 1 0.41 20	
41 66A 51 53	TAU TAU	44444	41297	27 31 22 19 20 30 21 30 21 4	0.13	48448 8 80	2 × °	11 · V	11			5.10 6.10 6.90 5.60	5.75 6.82 5.55 7.61	90 P P P P P P P P P P P P P P P P P P P	167 25 172 25 174 36 173 59 174 31	-17 58 -20 34 -21 2 -20 11	0.25 1 0.03 0	
55 55 62	TAU TAU PER TAU	44444	00000	23 25 34 2 2 4 2 3 4 4 4 5 5 5 5 5 4 4 4 5 5 5 5 5 5 5 5	-0.13 -0.04 -0.03 -0.06	89. 87. 83.	IS	>>>>	•	2.1	19.9 29.1 3	5.30 5.30 6.30	5.95 5.11 5.12 7.22	13.6 13.6 2.5	174 2 171 30 175 19 165 23 172 46	-19 50 -16 45 -19 40 -10 40	0.06 1	
PPA 67 72	TAU	4444	₩₩₩��� ₩₩₩₩₩	22 14 22 8 22 56 21 33 32 23	0.14	A 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	æ	,>>> >				4.20 4.70 5.30 5.70 6.10	5.83 6.33 6.35 6.35	23.5	174 33 174 39 174 19 175 31 167 31	-18 33 -18 33 -17 42 -19 28 -10 52	00 M	
γ	TAU	44444	0.1.00	28 54 20 37 25 10 28 33 22 54	0.05	9 7 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	4	> > >		4 % 6 %	26.0 3	5.70 5.70 5.20 6.20	6.35 5.22 6.85 6.06 3.62	0.8 0.1 0.5 1.6 50.0	170 46 177 53 174 24 172 1	-12 32 -17 14 -14 9 -11 39	0.01 2	
8	TAU	44444	44666	32 49 23 35 32 35 36 8 25 0	0.00	88 88 88 88 88 88 88 88 88 88 88 88 88	Æœ	II . >	œ		94.6 3	6.40 6.10 6.10 6.00 7.50	7.05 6.33 6.45 8.55 5.32	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	169 3 176 36 170 1 168 8 177 14	. 8 30 -14 2 - 7 47 - 4 24 -10 56	0.21 0 0.58 0 0.03 0	
4	AUA	4 2 2 2 4 4 1 2 2 4	44000	37 50 41 24 32 16 27 38 35 53	0.03	A A A B B B B B B B B B B B B B B B B B	x) 111 >		3.0	6.53	6.10 6.40 6.40 6.30	5.05 7.10 8.17 6.95	4.0000	167 9 164 49 172 14 175 59 169 31	11111 8800 8400 8400 8400 8400 8400 8400	0.03 1 0.03 2 0.03 2	
103	TAU	5 5 19	w.m.	24 13 27 55	0.06	88 88 9		>>		3.0	35.4 3	5.50	5.68	6.8.	179 15 177 53	1 9 34	0.30 1	

able m

165.9

TARGET

E(8-V)	- ~	0.07	0	0.05	\$		0.11 2						0.02 0	
LAT	+48 19						+49 15		+39 32	+44 15				
LONG	318 51 315 23					327 28	332 7	329 26				333 22		333 20 a
FLUX	2.0	1.2	.2.2	1.8	16.5*	0.8	0.0	5.3	0.8	2.5	3.2	1.8	6.2	6.0
λf	5.37	59.9	2.61	6+35	4.56	6.76	7.91	5.23	6+45	5.15	7.79	6+43	2 + 4 7	62.9
>	5.90	5+50	5.83	6.10	6.10	5.40	5.40	5.23	5.83	4.30	6.93	5.43	5.70	5.63
SEP	0.5 3	31.1 3									35.7 3			
DMAG	0.5	3.3									0.0			
						•								
FUM	t t		>											
LUM	P 111		> ~	z					·		· >			SI
SP LUM			z		ВВ	42	48	40			. > +4	40	99	
B-V SP LUM	a .	A0	Z Z	Ą						<				∢
8~V SP	41 47	18 0.07 AD	58 0.02 41 N	37 0.05 AU	50 -0-10	12	11 0.35	4 -0.03	€	0.13 A	50 0.12	18	52 -0.01	30 A
d\$	33.2 -13 4 0.02 A1 P	40.0 -23 18 0.07 AO	44.1 -25 58 0.02 41 N	44.1 -15 37 0.05 AU	57.0 -24 50 -0.10	3.8 -16 12	5.3 -9 11 0.35	13.9 -18 4 -0.03	17.1 -18 35 0.01 A	17.7 -13 15 0.13 A	24.0 -19 50 0.12	33.3 -20.18	41.7 -24 52 -0.01	45.8 -25 30 A
RA(1973)UEC 8-V SP	-13 4 0.02 Al P	40.0 -23 18 0.07 AO	13 44.1 -25 58 0.02 41 N	44.1 -15 37 0.05 AU	57.0 -24 50 -0.10	14 3.8 -16 12	14 5.3 -9 11 0.35	14 13.9 -18 4 -0.03	-18 35 0.01 A	17.7 -13 15 0.13 A	14 24.0 -19 50 0.12	14 33.3 -20 18	41.7 -24 52 -0.01	14 45.8 -25 30 A
8~V SP	33.2 -13 4 0.02 A1 P	40.0 -23 18 0.07 AO	13 44.1 -25 58 0.02 41 N	13 44.1 -15 37 0.05 AU	13 57.0 -24 50 -0.10	14 3.8 -16 12	14 5.3 -9 11 0.35	14 13.9 -18 4 -0.03	17.1 -18 35 0.01 A	14 17.7 -13 15 0.13 A	14 24.0 -19 50 0.12	14 33.3 -20 18	LIB 14 41.7 -24 52 -0.01	14 45.8 -25 30 A

TARGET

EARTH

29.680

TARGET

Table IV

	•						
£(8-4)	0.07 2° 2° 0.59 2 2	0.0 4 4 4 0 .	0	c +0•0	٥	900	0.08 1
LAT	1 + 1 1	4 + + + + + + + + + + + + + + + + + + +	++++ + + + + + + + 5 2 2 2 4 7 2 8 7 7 2 8 7 7 7 8 9 7 7 7 8 9 7 7 7 8 9 7 7 8 9 7 7 8 9 8 9	+10 10 +10 5 + 5 14 + 6 1		+ 113 13 14 14 14 14 14 14 14 14 14 14 14 14 14	+14 11 +16 39 +20 7 +14 58
9507	196 29 194 31 188 0 196 35	193 53 183 17 183 29 189 16	192 25 196 33 186 2 189 23 196 46	185 28 186 14 197 10 196 9	89999	190 31 192 50 200 55 202 25 195 23	202 31 198 18 190 50 203 21
FLUX	67-8 19-0 0-5 19-1	9 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	57.3 0.14 11.8	12.2 2.3 2.3 2.1		N D & M C	12.0 0.2 0.4 4.4
4	4.58 4.06 4.13 6.11	6.15 6.52 6.03 6.36	3.46 7.44 7.00 1.90	6.12 6.12 6.50 6.50	40.440	6.27 6.27 6.76 6.07	5.67 7.18 6.38 5.77
>	6 6 5 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	4444 4444 4444 4444 4444 4444 4444 4444 4444	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	8 8 8 4 9 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	F-4464	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8
SEP	21.4	٠.	112.7 7	6 6	13.8	10.0	
DMAG	φ • • •			1.8	∞ ⇔	7-1	
LUM	>>+>>	> >>	> > 2	H H>>>		> >>>	11 , ,
	48	•	w	•			w 2
S P	81 87 83 89.5 A2	4 4 8 8 4 4 6 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	84 89 89 80 80	4 8 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	8 4 8 8 8 8 8 8 8 8 9 9 9 9 9 9 9 9 9 9	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	8 4 4 8 6 4 6 6 7 6 6 6
B-V	-0.21 -0.15 -0.03 0.05	0.00 0.00 0.00 0.00 0.00	-0.12 -0.03 0.10 -0.00	0.00	40430	0.03	-0.13 -0.11 -0.04
3) DEC	13 51 16 8 23 44 14 4	17 19 29 32 29 43 23 20 20 30	20 14 15 55 28 2 24:36 16 25	29 0 28 17 16 25 17 40 18 12	4157B ·	26 53 16 34 15 11 22 59	15 34 20 18 28 10 15 10
RA(1973)DEC	100 mm	14.5 23.2 23.9 26.3	27.4 33.1 35.8 36.2	36.7	440 000000	12.8	22.9
	ORI 66	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	GEM 6 GEM 6 AUR 6 GEM 6	AUR 6 AUR 6 GEM 6	****	GEN 7	GEM 7
NAME	72 6	16 0	NU 19 6 49 4	28 54 7	W 40 0 4	47 C	. 16
Ħ Œ	2223	22.72 22.72 33.04.23	343 N 371 395 2417 2421 C	4554 4554 466 466 466 466	55000	27722 2722 2763 2810	851 851 853 853

MOON TARGET

able V

233.842

JARGET=

					•				
E(8-V)	0.02 0.04 0.03	0.03	0.07	000000	0.09	0.00	0.02	00.00	0.00
LAT	- 2 16 -25 15 -23 58 -26 15 -15 37	-20 2 -17 52 -19 30 -25 40	-18 18 -15 58 - 3 45 - 7.11 -17 13	-14 57 -16 10 -17 45 -17 45	- 7 51 -18 13 -17 50 -12 18 -12 0	112 119 44 119 43 119 23	-119 36 -17 15 -19 24 -19 9	-12 43 -17 20 -19 11 -16 36	-16 36 -17 2 -16 12 - 7 26 -27 7
LUNG	172 5 209 14 208 16 214 50 194 37	202 38 199 9 202 40 216 1 204 52	200 58 196 55 178 0 183 45 200 5	201 40 196 2 200 28 203 51 210 27	167 23 205 8 204 51 195 24 195 3	195 3 209 34 209 34 208 30 209 3	209 32 205 13 185 41 209 49	181 54 206 49 210 32 200 44 206 27	206 27 207 15 205 43 193 10 237 18
FLUX	212.4 656.2 124.0 463.7 56.4	102.7 129.3 53.9 81.6	2247.7 572.7 51.2 155.5	77.9 74.7 98.1 2062.3 292.6	69.4 107.5 98.1 243.3 1052.9	157.7 93.7 243.3 135.4	1426.8 2079.4 539.2 89.4 67.8	594.8 74.4 53.6 1766.7	125.4 53.9 65.8 61.9
λ	3.52 3.67 2.88 2.60 4.78	3.73 4.68 3.98 2.15	3.58 0.38 0.96 4.12	44	4.16 4.08 4.18 3.30	3.33 3.43 4.43	1.93 1.93 4.28 4.58	4.23 2.40 4.48 4.07	3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00
>.	0.10 0.10 0.10 0.20 0.20	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	4.40 1.60 4.80 5.80	5.40 2.40 4.60	000040 000000	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	2.70 1.60 2.90 5.70 6.00	8.40 8.40 8.00 8.00	4.20 6.20 8.20 5.20
SEP	8.4 9.9 4 36.2 4	32.2	59.8 3.0 3	1.0 2.1 3 53.0 3	2.3	3.4.4 37.5 37.5 1.1	11.8 3 5.3	3.3 3	3+3 3
DMAG	3.3	2.0	5.6 5.6	44 60 60 60 60 60	2.0	00000	4.1	3.7	3.7
			ø						
		• •							
LUM	> 1 II > >	2>>2>) 	>1 > II >	2>2	> > 11 >	= > >	>>>11-	> II > >
FUN	A V V V V V V V V V V V V V V V V V V V	} >> } >	PE V 1111 V 1	>2>5>	2>>=	> > A d	4 4 1 1 2 > >	>>> II +	» II » »
SP LUM	03.5 V 88 A I 86.5 III	82 82 82 82 82 82 82	6 V 1111 V V 111	81.5 V 85 IV 81.5 V 09.5 II		>>>+>	09 A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		83 82 82 09,5
	0.00 0.00 0.00 0.00 0.00	885 65 82 82 82 82	1 PE V III III III III V V III I I V V III I V V III I V V III I V V III I V	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	8 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	600am	881 881 53 53 83 83 84 84	സ്പത്രത്
Bluec K-V SP	0-02 88 0-11 88 0-12 86 0-13 01	C.17 82 C.15 81 C.21 62 C.22 82 C.19 8C.5	8 -C.21 B1 PE V 9 -C.22 B2 III 4 -C.13 B7 III 4 -C.22 B2 IV	6.20 B1.5 6.14 85 3.19 B1.5 6.21 09.5	-C-19 81 -C-17 81 -C-18 b3	2 -C.22 81 V 1 -:.24 85 P V 1 -C.19 62 I	0.23 09 0.17 80 0.17 82 0.23 81	6.15 N2 6.24 U9.5 6.23 B1 5.09 B3 E	83 0.22 83 0.22 83 0.27 09
	14.5 34 17 13.2 -8 13 -0.02 88 16.3 -6.52 -0.11 85 18.5 18.3 -13.12 -0.28 80.5 20.3 8 24 -0.13 01	23.4 -0 24 -C.17 82 21.4 3 31 -C.15 81 22.3 -3 10 -3.21 62 22.3 +13 56 -5.22 82 23.1 -2 24 -C.19 8C.5	23.3 1 48 -c.21 81 PE V 23.7 6 19 -c.22 62 III 24.6 28 34 -c.13 87 III 26.3 21 54 -c.14 83 V 25.4 3 4 -c.22 82 IV	29.3 5 55 -C.14 05 29.8 3 16 -0.21 05 30.6 -0 19 -0.21 09.5 3.6 -7 20 -6.26 80	31.9 18 36 31.3 +1 37 -6.19 81 32.2 -1 11 -6.17 81 33.6 9 54 -0.18 b0	33.6 9 54 R0 R0 W 33.7 -6 2 -6.22 B1 W 24.1 -4 51 -6.19 B2 F W 34.1 -5 26 -0.69 U3.5 P W	34.1 -5 56 -5.23 09 34.8 -1 13 -6.19 H0 36.3 21 7 -6.17 02 35.3 -6 5 -6.23 01 35.1 -5 57 -6.23 81	34-1 25 52 -C-15 82 37-4 -2 36 -C-24 U9-5 37-3 -6 35 -C-23 81 37-4 4 6 -C-09 83 E 39-4 -1 57 U9-5 8	39.4 -1.57 -5.22 Ul 39.5 -1. 8 -0.22 Ul 46.2 13.53 -0.16 82 45.1 -32.19 -0.27 U9.
RA(1973)DéC '8-V SP	4.5 34 17 03.5 6.3 -8 13 -0.02 88 6.3 -6 52 +0.11 85 8.3 -13 12 -0.28 80.5 8.3 8 24 -0.13 01	5 20.4 -0 24 -0.17 82 5 21.4 3 31 -0.15 81 5 22.3 -0.10 -0.21 62 5 22.3 -13 56 -0.22 82 5 23.1 -2 24 -0.19 80.5	3.3 1 48 -C.21 81 PE V 3.7 6 19 -C.22 62 III 4.6 28 34 -C.13 87 III 6.3 21 54 -C.14 83 V 5.4 3 4 -C.22 82 IV	9.3 5 55 -0.14 85 9.8 3 16 -0.19 81.5 6.6 -0 19 -0.21 09.5 7.6 -7 20 -6.26 80	1.9 18 36 16.19 81 2.2 -1 11 -6.17 81 3.3 9 27 -6.18 b0 3.6 9 54 0.8	3.6 9 54 R0 R0 V 3.7 6 2 -C.22 B1 V 3.7 6 1 -1.24 R0 P V 4.1 -4 51 -C.19 B2 I 4.1 -5 26 -0.09 U3.5 P V	4.1 -5 56 -0.23 09 6.3 21 7 -0.19 10 5.3 -6 5 -0.23 01 6.1 -5 57 -0.23 81	34.1 25.52 -0.15 M2 37.4 -2.36 -0.24 U9.5 37.3 -6.35 -0.23 B1 37.4 4 6 -0.09 B3 E 39.4 -1.57 U9.5 B	9.4 -1.57 83 9.5 -2.50 -0.22 81 9.5 -1. 8 -0.22 83 6.2 13.53 -0.16 82 5.1 -32.19 -0.27 09
A11973)Dec 'N-V SP	8.5 14.5 34.17 19.5 1 5 13.2 -8 13 -0.02 88 1 5 16.3 -6 52 -0.11 85 5 18.3 -13 12 -0.28 80.5 5 20.3 8 24 -0.13 01	RI 5 20.4 -0 24 -C.17 82 RI 5 21.4 3 31 -C.15 81 5 22.3 -0 1021 62 EP 5 22.3 +13 56 -C.22 82 RI 5 23.1 -2 24 -C.19 8C.5	A1 5 23.3 1 48 -C.21 B1 PE V A1 5 23.7 6 19 -C.22 B2 III AU 5 24.6 28 34 -C.13 B7 III AU 5 26.3 21 54 -U.14 B3 V RI 5 25.4 3 4 -C.22 B2 IV	5 28.5 1 46 -C.20 B1.5 41 5 29.3 5 55 -C.14 85 41 5 29.8 3 16 -C.19 B1.5 81 5 30.6 -0 19 -C.21 09.5 81 5 36 -7 20 -G.26 80	5 31.9 18 36 82 P 5 31.3 +1-37 -6.19 81 5 32.2 -1 11 -6.17 81 1 5 33.6 9 54 -0.18 b0	A ORI 5 33.6 .9 54 R0 R0 V 5 33.7 -6 2 -6.22 B1 V 5 33.7 -6 1 -1.24 R0 P V 2 URI 5 24.1 -4 51 -6.19 B2 I URI 5 34.1 -5 26 -0.69 U9.5 P V	5 34.1 -5 56 +0.23 09 5 34.8 -1 13 +0.19 H9 5 36.3 21 7 +0.17 02 5 35.3 -6 5 -0.23 01 5 36.1 -5 57 -0.23 01	U 5 36.1 25 52 -C.15 82 1 5 37.4 -2 36 -C.24 U9.5 5 37.3 -6 35 -C.23 81 1 5 37.4 4 6 -C.09 83 E	RI 5 39.4 -1 57 83 5 39.3 -2 50 -0.22 81 5 39.5 -1 8 -0.22 83 80 5 46.2 13 53 -0.16 82 00 5 45.0 -32 19 -0.27 09.

BRIGHTEST STARS

FIRST SLEEP PTC SCAR

	_						•			
	E (8-V)	0.03 40.00 80.03	0.08	0.02 0.14 0.04 0.05	0.03	00 00 40 40 40	000000	0.01	0.13	0000
	ΑŢ	0 4 4 4 6 0	4 8 4 4 8 4 8 4 8 4 8 4 8 4 8 8 8 8 8 8	350 124 126 136	4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	22 22 22 22 22 23 24 25 25 25 25 25 25 25 25 25 25 25 25 25	9 % 9 % 9 9 % 9 % 9	2 7 7 0 5 7 7 0 7 7 0	3.8 2.4 2.8 2.8 3.8	4 6 6 6 6 4 4 4 4 4
	د.	1 + + 1	-16 -19 -20 -20	113	11000		11++1	111+1	1114	+ + + + + + + + + + + + + + + + + + +
	1,006	28 20 20 14	50 mm	232 233 44 44	3 4 1 2 2 3 3 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	2 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	13 22 13 11	34 34 54 54 54	0041 0044 0449	13 14 23 23 23
	10	214 212 167 174 241	227 237 241 243 251	250 260 263 262 262	263 272 275 275 275	272 273 271 276 276	283 275 279 282 282	289 289 289 289 289	295 295 296 298 298	321 321 302 302 305
	×	2.1 2.1 7.6	86898 50424	4 6 8 9 6 8 9 9 9 9	0000m	2000 2000 2000 2000 2000 2000 2000 200	24.04.6	1.0 4.4 8.6 8.6 8.6 8.6	6.12	80708
	FLUX	137	53	9 41 44 37	18 19 19 19	14 14 6 5 39	11 11 14 14	142 152 111	59 10 10 24	7.67 B 4
	3	75 75 75 75 75 75	26 23	92934	94749	10 20 20 20 20 20 20 20 20 20 20 20 20 20	76 86 13 13	115 45 907 17	66 83 15 78	01 10 13 13
	-	44004	W-1 4 W V	w 4 w w v		~ ~ ~ ~ ~ ~ ~ .	21262	41470	m = m = 0	# N # # N
	>	22.50 2.30 2.40 2.40 2.40 3.40 3.40 3.40 3.40 3.40 3.40 3.40 3	00.00 00.00 00.00 00.00 00.00	5 7 8 8 9 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	4 4 60 00 4 4 60 00 4 4 60 00 4 60 00 4 60 00 00 00 00 00 00 00 00 00 00 00 00	44 64 60 0 4 4 6 4 60 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	84.84 9.40 9.40 9.40 9.40 9.40 9.40	4.80 2.70 4.80 3.80	2.50 2.50 2.90 2.90 3.90	3.80 2.10 4.60 3.40
		4			m je	m		•	m	
	SEP	84.8 2.8 33.9			7.0 16.9	3.5	37.2	0.0	68.0	1.8 52.6 26.0
	DMAG	N N 4	·	-	w +••	6 W.F.	æ 4	w.r-	 .⊙	444
	õ		•		w &0	4 60 ⊶1	r- m	0.00	0 7	000
						•				
				•						
	F CM	->>>	>>> II	>> 11	>==>	>>====	22=2>	· >> ² > ²	11 > 2 > 3 >	!!^^
•	WA T	4 ¢	>>> 11	> 11	> = = = = = = = = = = = = = = = = = = =	N		>>1>1	111 QPE V V 1V	12>2
	•	ห ห	8 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	21.2 B 11.2 L 12.3	X X X X X X X X X X X X X X X X X X X	>>		ທ ຫວັກເລວ	6 - QPE V V V V V V V V V V V V V V V V V V V	>-
		8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	w.w. → >>> 14	21.2 B 11.2 L 12.3	7 82 N 01 V 8 63 H 2 81 I	N N N N N N N N N N N N N N N N N N N	9 83 83 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	i,		٠ .
ARS	•	0-13 80 5 0-03 42 0-03 89-5 0-18 89-5	0.20 01.55 V 0.20 01.55 V 0.11 88 .5	C-19 83 V C-14 81 V C-23 82 1 C-15 81 8 I	0.17 82 N 0.18 03 F 0.12 81 I	C.C. AO C.18 G2 NE V C.10 B8 I C.17 63 I	1.19 83 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	C.14 09.5 C.15 83 C.15 83 C.05 89	9 74 7 70 9 74 72 70 9 75 75 75 75 75 75 75 75 75 75 75 75 75	C-13 87 P C-02 40 C-17 83 · I C-23 62 P
T STAR	S > -8	20 820 000 820 000 820 000 800 000 800	02.00 01.55 V V 12.00 01.55 V V 12.00 01.55 V V 12.00 01.55 V V V V V V V V V V V V V V V V V V	.19 83 X X 15 81 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-0-17 82 N 01 01 V -0-18 63 H -0-12 81 H	.04 AO NE V -18 82 NE V -10 88 I -17 63 I	19	.14 83 .23 09.5 .15 83 .16 65	00-110 00	-13 87 P -02 40 -17 83 · 1 -20 62 V
ST STAR	310£C 6-V SP	0 -0.18 80.5 6 0.03 A2 6 -0.09 89.5 7 -0.18 83	3 -C-19 02-55 V 8 -C-20 01-55 V 3 -C-18 85 -C-18 88	39 37 -C-19 83 V 49 32 -C-14 81 V 49 32 -C-23 62 1 48 2 -C-15 81 B I 52 54 -O-19 82 I	57 52 017 82 N 57 52 01 01 52 59 -0.18 03 I 59 39 -0.12 81 I	54 37	62 12 -0.19 83 1 1 54 53 +0.23 02 02 1 5 55 53 -0.19 83 1 1 6 1 32 -0.10 05 E V	04 19 -C.14 83 04 14 -C.23 09.5 04 14 -C.15 83 54 21 -C.16 65 62 52 -C.05 89	50 30 -0.16 86. 50 34 -0.11 82 52 13 -0.15 84 58 36 -0.24 82 50 5 -0.26 62	69 55 -C-13 87 P 48 49 -C-02 40 1 56 20 -U-17 83 1 49 45 -C-20 82 V 41 32 -C-23 62 1
T STAR	197310£C 6-V \$P	.5 -9 40 -0.18 BC.5 .1 -7 31 -0.20 B2 .6 44 56 0.03 A2 .9 37 11 -0.08 B9.5 .6 -35 17 -0.18 B3	.1 -19 57 02.5 V .3 -30 3 -0.19 02.5 V .6 -34 8 -0.20 01.5 V .4 -32 33 -0.18 85 .9 -43 9 -0.11 88	9 37 ~C.19 83 V 6 32 ~C.14 81 V 9 32 ~C.23 82 I 8 2 ~C.15 81 B I 2 54 ~C.19 82 I	.5 -49 9 -0.17 82 N .6 -57 52 01 V .5 -52 49 -0.18 03 I .0 -59 39 -0.12 BI I	4 37 C.C4 AO NE V 6 40 -C.18 B2 NE V 3 2 -C.10 B8 I 9 7 -C.17 63 I 8 51 -C.20 B2 I	.7 -62 12 -0.19 83 .3 -54 53 -0.23 82 .9 -54 53 -0.39 85 .9 -55 53 -0.10 85 .1 -61 32 -0.10 85 E V	4 19 -C-14 03 4 14 -C-23 09.5 4 14 -C-15 83 4 21 -C-16 65 5 5 -C-05 89	.7 -50 30 -0.16 86. .0 -50 34 -0.11 82 .2 -52 13 -0.15 84 .7 -58 36 -0.24 82 .6 -50 5 -0.20 82	69 55 -C-13 87 P 6 -48 49 -C-02 40 1 83 . 1 8 -49 45 -C-20 82 . 1 83 . 1 8 41 32 -C-23 62 1 1
BRIGHTEST STAR	97310£C 8-V SP	46.5 -9 40 -0.18 BC.5 50.1 -7 31 -C.2C B2 57.6 44 56 0.03 A2 57.9 37 11 -C.08 B9.5 56.6 -35 17 -0.18 B3	17.1 -19.57 02.5 V 19.3 -30 3 -0.19 02.5 V 19.6 -34 8 -0.20 01.5 V 27.4 -32.33 -0.18 85 36.9 -43 9 -0.11 88	7.9 -39.37 -C.19 83 V 46.7 -46.32 -C.19 81 V 52.3 -49.32 -C.23 82 I 52.5 -48 2 -C.15 81 B I 56.1 -52.54 -0.19 82 I	57.5 -49 9 -0.17 82 N 20.6 -57 52 01 01 Y 39.5 -52 49 -0.18 63 I 40.0 -59 39 -0.12 81 I 41.6 -53 1 -0.18 84 I	44.0 -54.37 0.64 AO 40.4 -56.40 -6.18 B2 NE V 54.4 -60.32 -0.10 B8 I 56.3 -59 7 -0.17 B3 I 10.3 -58 51 -6.20 B2 I	10.7 -62 12 -0.19 '83 21.3 -54 53 -0.25 02 50.9 -54 27 -0.59 05 19.9 -55 53 -0.13 83 31.1 -61 32 -0.10 05 E V	41.3 -64 19 -C.14 83 42.0 -64 14 -C.23 09.5 45.9 -64 14 -C.15 83 19.8 -54 21 -C.16 65 34.5 -62 52 -C.05 89	6.7 -50 30 -0.16 867 7.0 -50 34 -0.11 82 10.2 -52 13 -0.15 84 13.7 -58 36 -0.24 82 26.6 -50 5 -0.20 62	32.3 69 55 -C.13 87 P 44.8 -48 49 -C.02 40 1 44.8 -56 20 -0.17 83 1 5.3 -49 45 -C.20 b2 V 47.9 -41 32 -C.23 62 1
CAN BRIGHTEST STAR	A(1973)DEC B-V SP	5 46.5 -9 40 -0.18 BC.5 5 50.1 -7 31 -0.20 B2 5 57.6 44 56 0.03 A2 5 57.9 37 11 -0.08 B9.5 5 56.6 -35 17 -0.18 B3	6 17.1 -19 57 02.5 V 6 19.3 -30 3 -0.19 02.5 V 6 19.6 -34 8 -0.20 01.5 V A 6 27.4 -32 33 -0.18 85 P 6 36.9 -43 9 -0.11 88 . I	7 7.9 -39 37 -C.19 83 V 7 46.7 -46 32 -0.14 81 V 7 52.3 -49 32 -0.23 82 I 7 52.5 -48 2 -0.15 81 B I 7 56.1 -52 54 -0.19 82 I	7 57.5 -49 9 -0.17 82 N 8 20.6 -57 52 01 9 39.5 -52 49 -0.18 03 1 8 40.0 -59 39 -0.12 81 1 8 41.6 -53 1 -0.18 84	L 8 44.0 -54 37 0.04 AO	9 15,7 -62 12 -0.19 183 1 1 1 9 21,3 -54 53 -0.25 82 1 1 1 9 55,9 -54 27 -0.39 85 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	10 41.3 -64 19 -0.14 83 10 42.0 -64 14 -0.23 09.5 10 45.9 -64 14 -0.15 83 N II 19.8 -54 21 -0.16 65 N II 34.5 -62 52 -0.05 89	12 6.7 -50 30 -0.16 86' 12 10.2 -50 34 -0.11 82 12 10.2 -52 13 -0.15 84 12 13.7 -58 36 -0.24 82 12 20.6 -50 5 -0.26 62	12 32.3 69 55 -C.13 87 P 12 4C.0 -48 49 -C.02 40 12 44.8 -56 2C -0.17 83 1 13 5.3 -49 45 -C.20 82 V 13 47.9 -41 32 -C.23 62
C SCAN HRIGHTEST STAR	E RA(1973)UŁC B-V SP	46.5 -9 40 -0.18 BC.5 50.1 -7 31 -C.2C B2 57.6 44 56 0.03 A2 57.9 37 11 -C.08 B9.5 56.6 -35 17 -0.18 B3	6 17.1 -19 57 6.19 82.5 V 6 19.6 -30 3 -6.19 82.5 V 6 27.4 -32 33 -6.18 85 6 36.9 -43 9 -6.11 88 . I	7.9 -39.37 -C.19 83 V 46.7 -46.32 -C.19 81 V 52.3 -49.32 -C.23 82 I 52.5 -48 2 -C.15 81 B I 56.1 -52.54 -0.19 82 I	PUP 7 57.5 -49 9 -0.17 82 N 8 20.6 -57 52 01 01 VEL 9 39.5 -52 49 -0.18 63 I 8 40.0 -59 39 -0.12 81 I	8 44.0 -54 37 0.04 A0 8 40.4 -56 40 -6.18 B2 NE V 8 54.4 -60 32 -0.10 B8 1 56.3 -59 7 -0.17 63 9 10.3 -58 51 -0.20 B2	9 15,7 -62 12 -6,19 183 9 21,3 -54 53 -6,23 182 15 19,9 -55 53 -6,19 15 15 31,1 -61 32 -6,10 15 E V	10 41.3 -64 19 -C.14 83 10 42.0 -64 14 -C.23 09.5 10 45.9 -64 14 -C.15 83 11 19.8 -54 21 -C.16 65 11 34.5 -62 52 -C.05 89	2 fo.7 -50 30 -0.16 86' 2 fo.2 -50 34 -0.11 82 2 fo.2 -52 fo.3 -0.15 84 2 fo.2 -50 fo.24 82 2 fo.6 -50 fo.26 82	2 4C.0 -48 49 -C.02 40 1 2 4C.6 -48 49 -C.02 40 1 2 44.8 -56 2C -U.17 83 1 3 5.3 -49 45 -C.20 82 V
EP PTC SCAN BRIGHTEST STAR	A(1973)DEC B-V SP	55 ORI 5 46.5 -9 40 -0.18 BC.5 1A AUR 5 57.6 44 56 0.03 A2 CTA AUR 5 57.9 37 II -C.08 B9.5 WMA CUL 5 56.6 -35 I7 -0.18 B3	FA CMA 6 19-3 -30 3 -0.19 62-5 V 6 19-6 -34 8 -0.20 01.5 V 40DA CMA 6 27-2 -32 33 -0.18 85 PUP 6 36-9 -43 9 -0.11 88 . I	7 7.9 -39 37 -C.19 83 V 7 46.7 -46 32 -0.14 81 V 7 52.3 -49 32 -0.23 82 I 7 52.5 -48 2 -0.15 81 B I CAK 7 56.1 -52 54 -0.19 82 I	PUP 7 57.5 -49 9 -0.17 82 N 8 20.6 -57 52 01 V 01	LTA VEL 8 44.0 -54.37 0.04 AO	FPA VEL 9 21.3 -54 53 -6.19 83 1 1 VEL 9 21.3 -54 53 -6.23 82 1 1 19.9 -54 53 -6.13 83 1 10 19.9 -55 53 -6.13 83 1	ETA CAR 10 41.3 -64 19 -C.14 83 12 45.0 -64 14 -C.23 09.5 12 45.9 -64 14 -C.15 83 CEN 11 19.8 -54 21 -C.16 65 PBDA CEN 11 34.5 -62 52 -C.05 89	12 6.7 -50 30 -0.16 86' Cet 12 10.0 -50 34 -0.11 82 Cet 12 10.2 -52 13 -0.15 04 TA CKU 12 13.7 -58 36 -0.24 82 M3 CEM 12 26.6 -50 5 -0.20 62	PA LKA 12 32.3 69 55 -C.13 87 P 12 4C.0 -48 49 -C.02 40 1 12 44.8 -56 2C -0.17 83 1 1 C.N 13 5.3 -49 45 -C.20 62 V CCN 13 47.9 -41 32 -C.23 62 1
C SCAN HRIGHTEST STAR	AME RAC19731DEC B-V SP	KAPPA URI 5 46.5 -9 40 -0.18 BC.5 BETA AUR 5 57.6 44 56 0.03 42 THETA AUR 5 57.9 37 IL -C.08 89.5 GLMPA CUL 5 56.6 -35 17 -0.18 83	6 17.1 -19 57 02 02 V 25TA CMA 6 19.3 -30 3 -0.19 02.5 V 6 19.6 -34 8 -0.20 01.5 V CAMBGA CMA 6 27.4 -32 33 -0.18 85 10 010 6 36.9 -43 9 -0.11 88 1	7 7.9 -39 37 -C.19 83 V 7 46.7 -46 32 -C.14 81 V 7 52.3 -49 32 -C.23 82 I 7 52.5 -48 2 -C.15 81 B I CHI CAK 7 56.1 -52 54 -C.19 82 I	V PUP 7 57.5 -49 9 -0.17 82 N 8 20.6 -57 52 01 V 01 CRCN VEL 8 39.5 -52 49 -0.18 63 1 8 40.0 -59 39 -0.12 81 1 8 41.6 -53 1 -0.18 84 1	02LTA VEL 8 44.0 -54 37 0.064 AO	KiPPA VEL 9 21.3 -54.53 -0.19 83 1 PM VEL 9 21.3 -54.27 -0.27 82 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	10 41.3	12 6.7 -50 30 -0.16 86 05tra CEN 12 7.0 -50 34 -0.11 82 8HC Cen 12 10.2 -52 13 -0.15 84 CELTA CKU 12 13.7 -58 36 -0.24 82 SIGMA CEN 12 20.6 -50 5 -0.26 82	SAMMA CEN 12 32.3 69 55 -C.13 87 P 5 3AMMA CEN 12 4C.5 -48 49 -C.52 40 1 1 2 44.8 -56 20 -0.17 83 1 1 X CUN 13 5.3 -49 45 -C.20 82 V UN CCN 13 47.9 -41 32 -C.23 62 1
LEP PTC SCAN BRIGHTEST STAR	AME RAC19731DEC B-V SP	55 ORI 5 46.5 -9 40 -0.18 BC.5 ETA AUR 5 57.6 44 56 0.03 42 HETA AUR 5 57.9 37 11 -C.08 89.5 LMPA CUL 5 56.6 -35 17 -0.18 83	FA CMA 6 19-3 -30 3 -0.19 62-5 V 6 19-6 -34 8 -0.20 01.5 V 40DA CMA 6 27-2 -32 33 -0.18 85 PUP 6 36-9 -43 9 -0.11 88 . I	7 7.9 -39.37 -C.19 83 V 7 46.7 -46.32 -C.19 81 V 7 52.3 -49.32 -C.23 82 I 7 52.5 -48 2 -C.15 81 B I HI CAK 7 56.1 -52.54 -O.19 82 I	PUP 7 57.5 -49 9 -0.17 82 N 8 20.6 -57 52 01 V 01	CLTA VEL 8 44.0 -54 37 0.64 AO	15PA VEL 9 21.3 -54 53 -0.19 183 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	10 41.3 -04 19 -0.14 83 19.5 11 65.0 -04 14 -0.23 19.5 11 45.9 -64 14 -0.25 83 19.5 11 65.9 -64 21 -0.16 65 14 65 13 4.5 -0.5 52 -0.05 89	12 6.7 -50 30 -0.16 86' 517. CEY 12 7.0 -50 34 -0.11 82 HC	FPA CEN 12 32.3 69 55 -C-13 87 P 12 4C.6 -48 49 -C.62 40 1 12 44.8 -56 2C -U.17 83 1 1 47.9 -41 32 -C.20 82 V

SLEEP PTC SCATI URIDATES I STARS NAME RALI97310EC 6-V SP LUM DMAG SEP V UV FLUX LONG LAT E(8-V) ETA UMA 13 46.5 49.27 -0.19 83 V 9.9 47.9 3.40 0.23 409.0 314 14 + 19 7 0.03 MU SCR 13 56.3 -32 51 -0.21 H5 PI III 1.6 9.4 4.70 3.86 50.1 317 17 +28 12 0.03				·
LAISHTEST STAKS RAKI197310CC 0-V SP LUM DMAG SEP V UV FLUX LONG LA 3 46.5 49 27 -0.19 83 V Q 9.9 47.9 3.40 2.23 409.0 314 14 +19 3 48.5 -42 29 -0.21 82 PNE V Q 9.9 47.9 3.40 2.23 409.0 317 17 +28 3 56.3 -32 51		E(8-V)	0.02	
LWISHTEST STARS RANI97310EC G-V SP LUM DWAG SEP V UV FLUX LON 3 46.5 49 27 -0.19 83 V Q 9.9 47.9 3.40 2.23 409.0 314 3 48.7 -42 29 -0.21 B2 PNE V Q 9.9 47.9 3.40 2.23 409.0 314 3 50.3 -32 51 -0.20 B5 P III 1.6 9.4 4.70 3.86 50.1 317		LAT		
LAISHTEST STARS RAA(1973)DCC 6-V SP LUM DWAG SEP V UV F 3 46.5 49 27 -0.19 83 V Q 9.9 47.9 3.40 2.23 3 48.0 -42 29 -0.21 82 PNE V Q 9.9 47.9 3.40 2.23 3 50.3 -32 51 PNE V Q 9.9 47.9 3.46 4.70 3.86		LONG		
LAIGHTEST STAKS RA(1973)DCC		FLUX	1022.2 409.0 50.1	
LAIGHTEST STAKS RA(1973)DCC		^	0.87 2.23 3.86	
EA19HTEST STARS RA(1973)DCC		>	1.80 3.40 4.70	
RALI97310CC 6-V SP LUM 3 46.5 49 27 -0.19 83 V 9 3 48.6 -42 29 -0.21 82 PNE V 9 3 50.3 -32 51 85 P INI		SEP	41.9	
EAISHTEST STARS RA(1973)DCC		DMAG		
ERIGHTEST STARS RA(1973)DEC		LUR	V PNE V P III	
LRIGHTEST ST RA(1973)DCC 3 46.5 49 27 3 48.6 -42 29 3 50.3 -32 51		SP	8 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	
# # # # # # # # # # # # # # # # # # #	IARS	0-v	-0.19	
# # # # # # # # # # # # # # # # # # #	SHTEST S'	731000		
20 4 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		RA(19	13 46.5 13 48.0 13 50.3	
	PTC SCA	984	A SUD SUD SUD SUD SUD SUD SUD SUD SUD SUD	
1887 563 H3 5193 40 5210 5210 5210	ST 5036P		191 5TA 193 MU 216	

ш

PTC SCAN FIRST SLEEP PERIOD

ONE PLCT STEP = 70.0 SATURATES AT 4970.0

		•				-	-							. 自由自由自由自由自由自由自由自由自由自由自由自由自由自由自由自由自由自由自由		***							8000000												
		S TATELON OF THE PARTY OF UMA		• •						*** 00		5 фенфиффер	***	*************	****************		* * •	3 000000000000000	* * ~1	444	4 **********		_ **********	******************				i a	8 4->EARTH	•	m	4		2	
FLUX	55	7 17 47 17 47 17 17 17 17 17 17 17 17 17 17 17 17 17			•		31 80.3	33 27.3	47 13.7	17 211.3		_	30 332.6	4	10 11505.4	44	8*061 55	-			47 1079.3	3.7 11.96.5	18	10 208013	17 1115.9	5 (20 VC		•	35 11.01	.		5 25.1	55 11.6	
2	7 67	¢ 4) ·n	1 47	4 .	33	6 26	8 19	77. 9	9 7	-;- -\$-	۲. ۱	6 -13	-1 4	0 - 18	5 -20	221	5 -21	1 -2.	8[- q	4.1		7 - 5	,	တ (()	77.	* *) en		5 47	3 54	ý Ŧ	65	67	
_	63.5	သ က လ င	115																										328 4				17 1		
RA (1973) DEC	5 14 24	14 10 10 10	5 13 75.3 62	5 12 25.4 64	5 13 33.6 73	5 8 33.2 72	5 7 5.5 67	6 6 14.9 59	5 5 54.5 57	05 5 47.4 42	15 5 22+7 33	25 5 2 3 2 3	35 5 24.9 14	45 5 31.0	55 5 35.7 -3	65 5 42.9 -12	75 5 53.3 -21	85 6 7.9 -30	95 6 28.3 -38	05 6 36+2 -45	15 7 35.8 -52	25 8 27.9 +57	35 9 17.3 -54	45 10 50.0 -59	55 11 22.2 +55	65 IZ 41+3 -49	75- 7:01 51 6)	95 13 58.4 +25	05 14 11.2 -18.	15 14 27.13 -9	25 14 26.5 -0	35 14 37.1 9	65 14 41.3 18	55, 14, 27.8 27	
										. 1	•		. 7	•	4		•	. •	. •	٠, ◄	,	. •	4	•	. •		•	• ' 1	, m	- 19	~1	.,,	"	1	

JCTAL FLUX # 33452.864 PHUTONS (CM2 SEC A)-1

E (8-V)	0.02 2 0.02 2 0.02 2 0 0 0 0 0 0 0 0 0 0			0.06 0	r.
LAT E	174 174 199 199	4 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	\$ 14 4 B.	48 21 33 41 41	4
_	+ + 82 + + 82 + + 82 + + 82 + + 82 + + 82 + 182 + 181	+ + + + +	+ + + + + 4	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	+83
DNGT	3 4 4 8 8 8 9 4 4 4 9 8 8 8 9 4 4 9 8 8 8 9 9 9 9	H 0 1 4 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	20128	2 1 4 1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	33
ï	209 197 187 219	223 221 221 225	225 263 240 247 262	138 171 0 117 64 342	7
FLUX	90999	24.00 6	40404	04000	9.0
<u>></u>	6.04 9.26 7.05 6.85	6.13 5.15 7.15 7.25	5.05 5.05 4.05 6.05	4.15 8.15 8.32 8.32	6.45
>	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	6.10 6.40 6.50	5.40 5.40 6.20 6.20	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	5.83
SEP	8 • 3	.2	, m	ရ အလု <i>ံ</i>	
	. 65	1.2 145.2	1.2 145.2	42. 204.	
DMAG	;	1.2	1.2	N N N N	
			•		
5	××====================================	>>>	> >≥	>>>>	>
	z z	T I		<u> </u>	
SP	P P P P P P P P P P P P P P P P P P P	0 M 4	04 A W	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	A 3
>					
-	A A N A A	000HN	25000	45466	50
B-V	0.115 0.15 0.29 0.18 0.17	-0.02 0.08 0.08 0.18	0.05	00000	0.05
	25 25 01	44824	474 4757 4757 4757 4757 4757 4757 4757	2 4 4 0 8 2 4 0 0 8	•
	nnvoo	•			•
	9-4 27 25 7-2 30 24 7-7 26 9	26 5 5 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	7.6 26 3 8.4 21 2 9.7 24 42 2.2 24 25 3.5 22 46	36 57 41 33 40 29 10 55	24 0 0
RA(1973)DEC B-1	9.4 27 25 16.1 29 5 17.2 36 24 17.7 26 9 18.0 23 10	23.0 24 54 -25.6 25.6 26 22 27.4 26 22 22 27.4 26 22	27.6 26 3 28.4 21 2 29.7 24 42 32.2 24 25 33.5 22 46	38.0 36 5 48.0 27 41 52.9 33 40 4.9 29 10 15.2 19 55	23.8 24 0 0
	12 9.4 27 25 12 16.1 29 5 12 17.2 36 24 12 47.7 26 9 12 18.0 23 10	12 23.8 24 54 -12 23.0 26 14 12 27.3 26 22 12 27.4 26 2	12 27.6 26 3 12 28.4 21 2 12 29.7 24 42 12 32.2 24 25 12 33.5 22 46	12 38.0 36 5 12 48.0 27 41 12 52.9 33 40 13 4.9 29 10 13 15.2 19 55	24 0 0
RA(1973)DEC	9.4 27 25 16.1 29 5 17.2 36 24 17.7 26 9 18.0 23 10	12 23.8 24 54 - COM 12 23.0 26 14 COM 12 25.6 26 58 12 27.3 26 22 12 27.4 26 2	7 COM 12 27.6 26 3 0 COM 12 28.4 21 2 1 COM 12 29.7 24 42 2 COM 12 32.2 24 25 3 COM 12 33.5 22 46	12 38.0 36 5 COM 12 48.0 27 41 12 52.9 33 40 13 4.9 29 10 13 15.2 19 55	23.8 24 0 0
	12 9.4 27 25 12 16.1 29 5 12 17.2 30 24 12 17.7 26 9 00M 12 18.0 23 10	12 23.8 24 54 -12 23.0 26 14 12 27.3 26 22 12 27.4 26 2	COM 12 27.6 26 3 COM 12 28.4 21 2 COM 12 29.7 24 42 COM 12 32.2 24 25 COM 12 33.5 22 46	12 38.0 36 5 12 48.0 27 41 12 52.9 33 40 13 4.9 29 10 13 15.2 19 55	23.8 24 0 0

TAKGET

COMA CLUSTER

	E(8-v)		0.01	-	• 7			۰,	0.05 20	Ģ	•	60.0				0	•	0	ဂ	٥	~	0.01	.15	0.08 2	
	LAT	-35 50 -33 27 -32 6	30 1	28 4	-33 48	29 1	27	2.7	56	27 1	-25 32	9	23	-23 8	20.5	21 1	18 3	•	1 61-	4	17 4	1.7	17 3	-15 25	
	DNOT	282 59 284 40 276 31	90 4 75 2	16	276 49	3.5	62	73 2	2 12	92	281 44	.	86	286 7	81	85	93	84.5	584 49	86 4	83 5	64 4	•	286 11	
	FLUX	8 . 2 2 • 1 1 • 9		•	34.1				Ļ.	ċ	23.2	٠		1.7	•	٠	٠		0.70	٠	٠	•		98.1	
	ž	5.17 6.23 6.30	٠. ه.		4.28	, "	*	4	ų.	•	4.57	٥	-	6.87	7	e,	÷	0	6.25	÷	5	∹	. 2	3.78	
	>	8.80 8.80 8.90	O.W.	~;	5.13	· ``		7	₹	0	5,33	.	4	7.20	∹	4	ψ.		5.60	4	٨,	7		4.70	
	SEP			•									2.1	2.1			5.7	5.0	38.3 3	:		21.5 3			
-	DMAG											٠.	0	0.1			3.5		2.8	۰		7.6			
	٥																								
	1.UM	1	>1	>	>		>		,	<u>></u>	١.			. •			111	٠.						>	
		89 IV A0 A0			85) i							68	a			AO		82 E V	
	FUN	1	ന⊲്	4		0	6	6	6)	4		ď		60	4	⋖		a	•	4	₫		₫	7	
	B-V SP LUM	58 -0.13 89 I 4 -0.01 A0 34 -0.67 A0	ന⊲്	470.02 4	ω σ	2 -0.03 8	49 -0.08 8	48 -0.14 8	50 -0.16 8	46 0.21 A	eo •	23 U.U5 A	13	13	-0.06 A	10 0.14 A	32 -0.12 85 1	25 -0.06 8	24 -0.10 A	18 0.01 4	0 -0.03 A	ব্য	27 0.21 4	82	
TARGET	SP LUM	3 -70 58 -0.13 89 I 7 -73 4 -0.01 A0 9 -66 34 -0.07 A0	37.2 -78 49 -0.02 B	35.3 -84 47 -0.02 A	55 -0.15 B	6.1 -66 2 -0.03 B	8.6 -68 49 -0.08 8	24.8 -63 48 -0.14 8	30.9 -61.50 -0.16 8	42.1 -80 46 0.21 A	55 -0.12 8	28.1 -19.23 U.US A	35.9 -74 13 8	13	44.1 -69 45 -0.06 A	59.5 -73 10 0.14 A	7.9 -68 32 -0.12 85 1	19.7 -71 25 -0.06 8	.9 -71 24 -0.16 A	21.8 -73 18 0.01 4	27.2 -70 0 -0.03 A	39.0 -70 17. 0.C1 A	49.8 -72.27 0.21 A	-4 -70 25 -0.16 BZ	
TARGET	RA(1973) DEC B-V SP LUM	4 43.3 -70 58 -0.13 89 I 5 6.7 -73 4 -0.01 A0 5 36.9 -66 34 -0.67 A0	37.2 -78 49 -0.02 B	5 3543 -84 47 0.02 4	000 5 49.9 -66.55 -0.15 B	00R 6 6.1 -66 2 -0.03 B	DUR 6 8.6 -68 49 -0.08 8	24.8 -63 48 -0.14 8	6 33.9 -61.50 -0.16 8	6 42.1 -80 46 0.21 A	51.7 -70.55 -0.12 8	0 28.1 -19.23 U.US A	35.9 -74 13 8	35.9 -74.13 B	44.1 -69 45 -0.06 A	59.5 -73 10 0.14 A	VOL 8 7.9 -68 32 -0.12 B5 1	8 19.7 -71 25 -0.06 8	19.9 -71 24 -0.16 A	8 21.8 -73 18 0.01 4	8 27.2 -70 0 -0.03 A	39.0 -70 17. 0.C1 A	49.8 -72.27 0.21 A	5-4 -73 25 -0-16 82	
	B-V SP LUM	MEN 4 43.3 -70 58 -0.13 89 I 5 6.7 -73 4 -0.01 A0 5 36.9 -66 34 -0.67 A0	10TA MEN 5 37.2 -78 49 -0.02 3 DELIA DOR 5 44.7 -65 44 0.22 A	5 3543 -84 47 0.02 4	5 49.9 -66.55 -0.15 B	00R 6 6.1 -66 2 -0.03 B	DUR 6 8.6 -68 49 -0.08 8	24.8 -63 48 -0.14 8	6 33.9 -61.50 -0.16 8	MEN 6 42.1 -80 46 0.21 A	VUL 6 51.7 -70 55 -0.12 8	A MEN 0 38.1 - (9 23 U.US A	35.9 -74 13 8	35.9 -74.13 B	44.1 -69 45 -0.06 A	59.5 -73 10 0.14 A	8 7.9 -68 32 -0.12 85 1	KAPPA VOL 8 19.7 -71 25 -0.06 8	KAPPA VOL 8 19.9 -71 24 -0.16 4	ETA VOL 8 21.8 -73 18 0.01 A	8 27.2 -70 0 -0.03 A	. 8 39.0 -70 17. 0.C1 A	49.8 -72.27 0.21 A	5-4 -73 25 -0-16 82	

I ARGET=

	E(8-V)		90.0	0.39	0.03	0.08					0.01	40.0			
	LA 7	-47 47				-43 50						31		-29 26	-27 0
	1 0NG	282 52 289 56								276 31					279 0
	FLUX	3.5	3.5	0.1	10.3	3.2	4.3	8.2	2.1	1.1.	6.4	9.1.	9.30	6.0	2.8
	ኝ	5.34	6.85	6.73	5.32	7.75	5.67	5.17	6.20	6+33	5.72	5.87	4.28	5.37	4.46
	>	6.93	6.33	6.13	5.80	5.73	6.20	5.50	5.25	5+33	5.00	4.33	2.10	5.40	5.33
	SEP	3.1	,				5.4								
	DMAG	0.0					1.8								
	LUX	>	>		>			۸:				_		>	>
						¥								ľ	
•	Š	4 10 10 80	A 3	A 3	8.7	A.3	89	63	0	A 0	89	4	3.5		න ස
	8 •√	0.13	6.13	9.48	-0.06	6.17		ပုံ		ဒု					-0.08
	DEC	-64 10 -72 1	0	6 43	6 35	15 51	3 13	S 58	3	-66 34	6 4 9	7 44 44	6 55	9 22	6 49
ET	RA(1973) DEC	91	9-	9-	9	9	9	-7	-	9					-68
TARGET	RA(1	2 58.3	17.7	23.9	30.6	34.1	17.4	43.3	6.7	36.9	37.2	44.7	6.65	51.7	8.0
				ጥ	æ	m	4			w			×		٠
. C9x99 111 300W	NAMÊ	HOR HY I						MEN							200
11 3	Tr.	939 BETA 939 THETA						₹		1950	IOTA	DELTA	EPS1LI	KAPPA	2221 NU

TARGET=

rable DX

2727.590

TARGET#

	_				O	٥					0	2*			0		~
	E(8-V)		0.08					0.02	0.05		0.04 0					0.10	
	LAT				34			42						45			4.7
	_	-54	-54	-53	-60	159	-56	-61	-50	- 58	-61	9	149	+50	64-	-49	-47
	LONG				0			5						64			52
	רם	306	306	306	308	305		262								282	282
	FLUX	37.8	8,9	2.7	7.0	12.2	0.5	4.91	1.7	2629.0	*6.4	79.6	3.9	4.1	2.8	3.3	0.4
	۲,	3.77	5.25	5.46	7.47	6.30	6.93	3.27	6.45	44.C-	5.20	2.96	5.97	6.17	6.17	5.73	÷C-9
	>	4.33	4.53	5.13	5.60	4.30	6.20	3.93	6.20	0.40	5.00	3.50	6.30	6-70	6.53	5.20	4.90
	SEP		9		÷	.		8	2.8			w,					•
	S	37.7	37	'n	13.	23.		Ö	Ň			85.3					
	DMAG	0.0	0.0	0.4	4.2	7.2		2.B	3.0			4.6					
	M		_	,	•	>				>		_					
	. HUI	>	>	,		١٨		>		^1		>					>
	LUN .	>	>	,		1 ^		>		>1		>					>
	SP LUN .	88	42 V	A2	48 P	40 IV	A 3	. > 98	40	95 IV	AO	88	89	88	68	ΑÚ	A5 V
		8	4	4	∢	-0.00 AO IV	⋖	æ	⋖	æ	0.04 AO					0.10 AU	0.13 A5 V
	B-V SP	8 -0.06 8	6 0.14 A	10 0.02 A	38 0.21 A	36 -0.00 A	50 0.10 A	23 -0.10 8	32 0.05 4	23 -0.17 8	39 0.04 A	38 -0.12	25 -0.04	43 -0.06	24 -0.09	54 0.10	0.13
	B-V SP	-0.06	6 0.14 A	10 0.02 A	38 0.21 A	36 -0.00 A	50 0.10 A	23 -0.10 8	32 0.05 4	23 -0.17 8	G.04 A	38 -0.12	25 -0.04	43 -0.06	24 -0.09	0.10	-
GET	B-V SP	-63 6 -0.06 8	-63 6 0.14 A	-63 10 0.02 A	-56 38 0.21 A	-57 36 -0.00 A	-60 50 0.10 A	-55 23 -0.10 B	-66 32 0.05 A	-57 23 -0.17 8	-53 39 0.04 A	-51 38 -0.12	-64 25 -0.04	-62 43 -0.06	-64 24 -0.09	-62 54 0.10	-64 10 0.13
TARGET	SP	30.3 -63 6 -0.06 8	30.3 -63 6 0.14 4	31.5 -63 10 0.02 A	-56 38 0.21 A	42.1 -57.36 -0.00 A	-60 50 0.10 A	7.2 -55 23 -0.10 8	16.1 -66 32 0.05 A	-57 23 -0.17 8	45.1 -53 39 0.04 A	15.5 -51 38 -0.12	27.4 -64 25 -0.04	-62 43 -0.06	39.0 -64 24 -0.09	48.4 -62 54 0.10	0.13
ANI TARGET	RA(1973)DEC B-V SP	30.3 -63 6 -0.06 8	C 30.3 -63 6 0.14 4	0 31.5 -63 10 0.02 A	43.5 -56 38 0.21 A	0 42.1 -57 36 -0.00 A	-60 50 0.10 A	7.2 -55 23 -0.10 8	1 16.1 -66 32 0.05 A	36.7 -57 23 -0.17 8	1 45.1 -53 39 G.04 A	15.5 -51 38 -0.12	2 27.4 -64 25 -0.04	32.9 -62 43 -0.06	39.0 -64 24 -0.09	48.4 -62 54 0.10	-64 10 0.13
	B-V SP	TUC 0 30.3 -63 6 -0.06 8	. TUC C 30.3 -63 6 0.14 4	0 31.5 -63 10 0.02 A	PHE 0.40.5 -56.38 0.21 A	PHE 0 42.1 -57 36 -0.00 A	-60 50 0.10 A	PHE 1 7.2 -55 23 -0.10 B	1 i6.1 -66 32 0.05 A	ERI 1 36.7 -57 23 -0.17 B	1 45.1 -53 39 0.04 A	ERI 2 15.5 -51 38 -0.12	2 27.4 -64 25 -0.04	32.9 -62 43 -0.06	39.0 -64 24 -0.09	HOR 2 48.4 -62 54 0.10	HUR 2 58.3 -64 10 0.13
ALPHA ERIDANI TARGET	RA(1973)DEC B-V SP	0 30.3 -63 6 -0.06 8	SETA . TUC C 30.3 -63 6 0.14 4	0 31.5 -63 10 0.02 A	X1 PHE 0.43.5 -56.38 0.21 A	ETA PHE 0 42.1 -57 36 -0.00 A	0 57.2 -60 50 0.10 A	LETA PHE 1 7.2 -55 23 -0.10 B	1 16.1 -66 32 0.05 A	ALPHA ERI 1 36.7 -57 23 -0.17 B	1 45.1 -53 39 0.04 A	2 15.5 -51 38 -0.12	2 27.4 -64 25 -0.04	2 32.9 -62 43 -0.06	2 39.0 -64 24 -0.09	NU HOR 2 48.4 -62 54 0.10	2 58.3 -64 10 0.13

T E(8-V)	42 0.02 47 49 0.09 29	57 133 2000 42 0.04 16 0.03 42 0.04 55 0.06 16 0.02	37 0.13 2 0.15 52 0.13 36 0.03 40 0.02 24 0.12 18 0.07 58 0.02		45 0.13 0.05 113 0.09 0.11 0.09 0.11
4	1 + 1 60 1 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	4 m m m m m m m m m m m m m m m m m m m	1 1 2 5 6 7 1 1 2 6 7 1 1		1117 3319 3319 1117 1112 3412
LONG	297 5 290 5 275 2 137 2	250 25 250 25 250 25 250 25 250 25 25 25 25 25 25 25 25 25 25 25 25 25	214 3 202 3 1992 3 202 4 202 4 204 5 204 5 204 5 196 5 5 196 5 5 196 5 5 196 5 5 196 5 5 196 5 5 196 5 5 196 5 5 196 5 5 196 5 196 5 196 5 196 5 196 5 196 5 196 5 196 5 196 5 196 5 196 5 196 5 196 196 196 196 196 196 196 196 196 196	~ ∞00000	2003 2003 2003 2003 2003 2003 2003 2003
FLUX	76.9 2629.0 79.6 85.5	173.0 59.1 107.6 294.8 187.0 62.2 212.4 126.2	463.7 56.44 102.3 129.3 53.9 81.6 701.7 2247.7	551.	2062.3 292.6 69.4 107.5 1052.9
À	6.54 4.94 6.94 6.94 6.94	2014 8 20 20 20 20 20 20 20 20 20 20 20 20 20	0.50 A B B B B B B B B B B B B B B B B B B	4 444	11.05 3.10 4.16 4.08 4.18 1.30 1.80
>	40 4 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	######################################	क्षेत्रक्षे एवक्न	ó & v. v. v. 4	24 & & 4 iv & 5 iv & 6
SEP	0.8 3 86.3 0.6	10.6 6 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	32.2	59.8 4 3.0 3 1.0 3 2.1 3	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
DMAG	2.8	. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	2.0	8 0 M M M M M M M M M M M M M M M M M M	4 4 WWO 8 W DO
LUM			:		
I	>=>>>	1, , , , 11, 11	2,2,, 2,, 1	E >2>2>	
5	> ² > > >	9 A A 111	> >> > > = = = = = = = = = = = = = = =	E >2>2>	I>>>>
SP	\$65 \$25 \$30 \$30 \$30 \$30 \$30 \$30 \$30 \$30 \$30 \$30	->>>>-		€ 1.0 ± 2.0€ 1.0 ± 2.0<	80.09.5 II V V V B C C C C C C C C C C C C C C C C
3.	ទេឃ២៤២ ស	0 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6		0.13 87 0.22 82 0.22 82 0.13 81.5 0.14 85 0.19 81.5	м • • • • • • • • • • • • • • • • • • •
C U-V SP	C.117 85 C.127 88 C.128 88 C.128 88	51	0.28 80.55 F. C.13 81 C.28 82 C.21 82 C.22 82 C.22 82 C.22 82 C.22 82 C.22 81 PE V	34 -5.13 87 8 54 -6.14 83 4 4 -6.22 82 6 46 -6.20 81.5 V 55 -6.14 85 V 16 -6.19 81.5 V	19 -0.21 09.5 20 -0.26 80 37 -0.19 81 11 -0.17 81 24 -0.22 81 2 -0.22 81
7310LC 0-V SP	23 -0.15 06 24 -0.17 05 38 -0.12 88 33 -0.15 82 52 -0.12 88.5	1	3 12 -0.28 80.5 3 24 -0.13 81 82 8 3 31 -0.15 81 V 0 10 -0.21 81 V 3 56 -0.22 82 V 1 48 -0.21 81 PE V 6 19 -0.22 82	34 -5.13 87 8 54 -6.14 83 4 4 -6.22 82 6 46 -6.20 81.5 V 55 -6.14 85 V 16 -6.19 81.5 V	9 -0.21 09.5 0 -0.26 80 1 -0.19 81 1 -0.17 81 4 -0.18 80 2 -0.22 81
7310LC 0-V SP	7.2 -55 23 -0.15 %6 36.7 -51 24 -0.15 %6 15.5 +51 38 -0.12 #8 17.6 65 33 -0.15 #8 16.9 +33 52 -0.12 #8.5	29.9 53 51 80 80 85 85 85.5 -14 17 -0.22 81 85 85 85 85.5 -14 17 -0.22 81 82 85 85 85 85 85 85 85 85 85 85 85 85 85	18.3 -13.12 -0.28 80.5 20.4 -0.24 -0.13.81 21.4 3.31 -0.15.81 22.3 -0.10 -0.21.82 22.3 -13.56 -0.22.82 23.1 -2.24 -0.19.5 92 23.3 1.48 -0.21.81 PE V 23.7 6.19 -0.22.82	24.6 28 34 -5.13 N7 1 25.0 21 54 -6.14 H3 V 25.4 3 4 -6.22 H2 I 26.5 1 46 -6.20 01.5 V 29.3 5 55 -6.19 H3.5 V 29.8 3 16 -6.19 H3.5 V	36 -0 19 -0.21 09.5 31.9 18 50 -0.26 80 31.9 18 50 -0.26 80 32.2 -1 11 -0.17 81 33.3 9 27 -0.18 80 33.6 9 54 80 33.7 -6 2 -0.22 81
A(19/3/DEC 0-V SP	1 7.2 -55 23 -0.15 86 1 30.7 -57 23 -0.17 85 2 15.5 +51 38 -0.12 88 3 17.6 65 33 -0.15 82 4 10.9 +33 52 -0.12 88.5	4 20.9 53 51	5 18.3 -13 12 -0.28 80.5 5 20.3 8 24 -0.13 81 W 5 20.4 -0 24 -0.13 81 W 5 21.4 -0 10 -0.21 82 W 5 22.3 -13 56 -0.22 82 5 23.1 -2 24 -0.19 60.5 5 23.3 1 48 -0.21 81 PE W 5 23.3 6 19 -0.22 82	5 24.6 28 34 -5.13 M7 I I S 26.0 21 54 -6.14 M3 V S 25.4 3 4 -6.22 M2 II S 25.5 1 4 -6.22 M2 II S 25.3 5 55 -6.14 M5 II S 29.3 5 55 -6.14 M5 V S 29.3 5 16 -6.19 M1.5 V	5 30.6 -0 19 -0.21 09.5 3 31.9 18 30 -0.26 80 62 82.5 -1 21 -0.17 81 85 83.3 9 27 -0.18 80 85 33.6 9 54 80 85 83.7 -6.2 85 80 85 83.7 -6.2 85 80 80 85 83.7 -6.2 85 80 80 85 83.7 -6.2 85 80 80 80 80 80 80 80 80 80 80 80 80 80
RA(1973)DEC U-V SP	7.2 -55 23 -0.15 %6 36.7 -51 24 -0.15 %6 15.5 +51 38 -0.12 #8 17.6 65 33 -0.15 #8 16.9 +33 52 -0.12 #8.5	29.9 53 51 80 80 85 85 85.5 -14 17 -0.22 81 85 85 85 85.5 -14 17 -0.22 81 82 85 85 85 85 85 85 85 85 85 85 85 85 85	18.3 -13.12 -0.28 80.5 20.4 -0.24 -0.13.81 21.4 3.31 -0.15.81 22.3 -0.10 -0.21.82 22.3 -13.56 -0.22.82 23.1 -2.24 -0.19.5 92 23.3 1.48 -0.21.81 PE V 23.7 6.19 -0.22.82	AU 5 24.6 28 34 -5.13 M7 I AU 5 25.4 2 4 -6.22 M2 I KI 5 25.4 3 4 -6.22 M2 I 5 26.5 1 46 -6.20 M1.5 V RI 5 29.3 5 55 -6.14 M5 I RI 5 29.8 3 16 -6.19 M1.5 V	041 5 35.6 -0 19 -0.21 09.5 04.1 5 35.6 -7 20 -0.26 80 62 14.0 5 31.9 18 39 -0.26 80 62 62 631.9 137 -0.19 81 62 631.9 5 32.2 -1 11 -0.17 81 63 63 631 5 33.6 9 54 60.8 80 631 5 33.6 9 54 80 80 631 5 33.7 -6 2 -0.22 81
RAL19731DLC U-V SP	HI 1 30-7 -55 23 -0.15 86 KI 1 30-7 -57 24 -0.17 85 KI 2 15-5 +51 38 -0.12 88 3 17-6 65 33 -0.15 82 KI 4 10-9 +33 52 -0.12 88.5	R 4 29.9 53 51 6 4 31.1 -45 0 -0.20 83 V 4 56.5 -14 17 -0.22 81 V 8 5 6.6 41 11 -0.18 83 V 8 5 6.6 41 11 -0.18 83 V 1 5 7.9 -8 47 -6.20 82 V 9 5 11.7 -16 13 -0.11 89 P I 8 5 14.5 34 17 -0.02 68 A I 1 5 13.2 -6 13 -0.02 68 A I 1 5 10.3 -6 52 -0.11 85 I	EP 5 18.3 -13 12 -0.28 80.5 KI 5 20.4 -0.28 81 W 82 KI 5 20.4 -0.24 -0.13 81 KI 5 20.4 -0.24 -0.21 82 KI 5 22.3 -13 56 -0.22 82 KI 5 23.3 -13 56 -0.22 82 KI 5 23.3 -148 -0.21 81 PE W 81 5 23.3 -148 -0.21 81 PE W 81 5 23.3 -148 -0.22 82	114 TAU 5 24.6 28 34 -5.13 H7 I 114 TAU 5 25.4 3 4 -6.22 H2 I 51 ORI 5 25.4 3 4 -6.22 H2 I 32 ORI 5 29.3 5 55 -6.14 H5 I 33 URI 5 29.8 3 16 -6.19 H1.5 V	(1 5 30.6 -0 19 -0.21 09.5 (1 5 30.6 -7 20 -0.26 80 10 5 31.9 18 30 -0.26 80 (1 5 32.2 -1 11 -0.17 81 (1 5 33.3 9 27 -0.18 80 (1 5 33.6 9 54 80 (1 5 33.7 -6 2 -0.22 81

HAIGHTEST STARS

Calputate start from

							٠																		
	E(8-V)	0.05	0.09	0.10	0.05	0.12			90.0		90.0	0.03		0.03		0.22	0.16			0.03	0.24	0.05			0.01
	LAT	-19 24	N			4	16	97	-17 2	16	02 1 -	m	-18 5	,	4 I 19		4	•	0 5 +	N	40		+14 1	7	~
	LONG	209 49		49	32	4	~	~	207 15	205 43	3 1	2	3	<u>ب.</u>			٠	3	88 22	60	N 20	6 2	32	9	350 0
	FLUX	89.4			•	٠	66.7	125.4	53.9		÷	:	60		72.1	m	÷	,	83.4	51.7	112.6	129.3	633.0	126.2	746.9
	3	4.28	•		•	0	42	7	4.83	8	Ň	4	٠	80	3.74	4.83	4	7	3.96	â	္	30	1.76	*	6
	>	5.73	•	•		4.50	2.00	4.20	6.20	06**		•	3.20			5.40	06.4	60.4	5+30	4.50	4.50	5.30	3.10	3.03	1.70
	SEP	5.3		0.3 5			÷	3.3 3	•		25.0 3			1.2			56.5 3.		~	1.0 3	20.3 4	3.1	13.9		28+8
	DMAG	3.2		7.0				3+7			6.3			4.1		.:	4.5		•	1.3	4.3		4.7	ı	9.8
	HOL	· > >	>	>	>	111			>.	111	>	>		>		^1	>	111	>	>	^1		111	111	>
				• 5		Ψ.	٠,					•	٠,		•	ய்						w			
	S	3 6				æ	60	33	: T	*	ವ	¥		≏	±	æ	Ð	Ð	B.2	3	30	a	23	1 2	×
STARS	y €	-0.23	-2.15	-1.24	-0.23	60.3-			-0.22	-6.22	-2.16	B4.0-	90.0-	-0.18	2+45	40.00	#O O I	-0.13		-0.12	40.04	-0.23	-5.25	-5.12	-0.14
BRIGHTEST STARS	13)0EC	16 5-						-4	-2 50						37 56					36 23	47 24		70 25		
UK I	RAL 197310EC	5 35.3				5 37+8			5 39.3		5 40.2				16.8					49.4	58.9	C	13.8	52.3	6.5
HA GRU	ea.			081		ORI	_		•				25 194		CYG 21		Ç	C.C.	ر د	CX 9.X3			CEP 21		
ALPHA ERI, ALPHA GRU	E W V N		1.25	SIGMA		CMEGA	Z UT 3	2 ET A			133	2.7	THETA	٠	a .	25	LINESA	EPSILCN	51	LAMREA	59	60	3513	5.3884	ALPHA
ALPHA E	ë.	1911	1923	1331	1933	1734			1950	2867	1993	7093			7763	7769	7844	7852	7923	7963	8047	8053	8238		

346.73 *** FLUX 325 323 296 279 245 597 152 183 165 24.) 205 RA (1973) CEC 235 285

4970.0

SATURATES AT

75.0

ONE PLCT STEP .

ALPHA ERI, ALPHA GRU

PTC SCAN

TOTAL FLUX . 26945.334 PHUTU'IS (CM2 SEC A)-1

E(8-V)	90.0	10.0	0.02	0.06			0.09		0.07	10.0	0.09	0.12			0.0		90.0	0.03	0.03	0.22	0.03
LAT	-28 56 -28 37	2.5	23	4	-23 28	-1 M	L	4			7			453		+ 4 52				5 ~ -	
LONG	151 17 152 56				166 40								192 25			56 22				65 5	
FLUX	58.8 72.6	55.4	68.2	53.2	187.7	72.6	81.2	572.7	51.2	5,96.5	64.8	58.1	57.3	84.4	135.4	189.6	51.2	51.2	67.5	53.9	51.2
3	60°6	3.62	3.27	3.67	2.17	3.06	3.62	96*0	4.12	1.93	4.23	4.75	3.46	2.20	3.43	3.57	4.12	4.12	3.82	4.83	4.12
>	3.60 0.60 0.60	4 400	3.80	4.10	2+80	3.60	4.20	1.60	4.80	2.90	5.10	4.83	4.10	2.23	4.30	5+30	4.93	5.00	92.4	5.40	2.00
SEP	5.4 127.6 4				117.0	9.0			59.8 4				112.7 7		23.4	2.1			1.2		
DMAG	4.6				6.6				5.6				4.5		7.0	3.8			4.1		-
E O	>>-		111		-	Ξ	>	111	>	1,	>	_	^I	>	>	^	>	>	>	۸.	
LUM	>>-	7 >	111	NN IV		111	>	111	>	P IV	>		E IV	>	>	>	ъ ~	>	>		w
SP	68 83 83	3.0 40 40	20	ž	87				83	₽5 P	42	81	87 E	CA	5.2	BC.5	3	٠	. A £8	61 E IV	m
		3.0 40 40	20	NN 98 90		08 88	.i2 tt3	i3 67	83	₽5 P	42	81	7 E	CA	~	BC.5	•16 B3 E	ю.	.18 B	7	•19 B3
dS V−6	68 83 83	22 -C.11 86	16 -5.57 87	51 -C+06 H6 NN	1 -0.09 87	58 -C.O8 88	54 -0.12 B3	34 -C.i3 67	54 -0-14 83	7 -2.17 B2 P	52 -C.15 #2	56 -0.07 B1 B	87 E	48 ±C+C2 A3	48 -0.15 62	5.9 80.5	31 -C.16 83 E	.18 83	3:) -C.18 B	.06 81	5 47 -0.18 B3
as v-	95 - 0-113 63 9 - 0-11 68	43.5 24 1 TC.11 BB	44.2 24 16 -5.07 87	44.7 23 51 -C.06 H6 NN	45.9 24 1 -0.09 87	47.6 23 58 -2.08 88	40.0 22 54 -0.12 H3	24.6 28 34 -0.13 87	26.0 21 54 -0.14 83	36.0 21 7 -2.17 82 P	38.1 25 52 -0.15 62	56.3 25 56 -0.07 B1 B	27.4 , 23 14 -0.12 87 E	33.5 26 48 ±C.C2 A)	7.6 20 48 -0.15 52	16.6 22.59 BC.5	49.9 .22 31 -C.16 . 83 E	5.7 23 32 -6.18 83	14.1 25 30 -C.18 B	20.9 24 21 -0.06 81	51.8 25 47 -0.18 B3
RA(1973)DeC u-V SP	2 41.9 27 35 -0.13 83 2 44.4 27 9 -0.11 68	3 43.5 24 1 TC.11 BD	3 44.2 24 16 -5.07 87	3 44.7 23 51 -C.06 H6 NN	3 45.9 24 1 -0.09 87	3, 47.6 23 58 -0.08 88	4 40.0 22 54 -0.12 H3	5 24.6 28 34 -C.13 87	5 26.0 21 54 -0.14 83	5 36.0 21 7 -2.17 82 P	5 38.1 25 52 -C.15 82	5 56.3 25 56 -0.07 B1 B	6 27.4 , 23 14 +5.12 87 E	H 15 33.5 26 48 +0.02 A)	K 18 7.6 20 48 -0.15 52	L 19 16.6 22 59 BC.5	L 19 49.9 -22 31 -C.16 H3 E	L 20 5.7 23 32 -6.18 83	14.1 25 30 -C.18 B	20 20.9 24 21 -0.06 81	51.8 25 47 -0.18 B3
dS V−6	41.9 27 35 -0.13 83 48.4 27 9 -0.11 08	TAN 3 43.5 24 1 TOLL BO TAN 3 43.6 24 22 TO.11 86	TAU 3 44.2 24 16 -5.57 87	3 44.7 23 51 -C.06 H6 NN	3 TAU 3 45.9 24 1 -0.09 87	27 TAU 3, 47.6 23 58 -0.08 88	TAU 4 40.0 22 54 -0.12 83	TAU 5 24.6 28 34 -C.13 BT	TAU : 5 26.0 21 54 -0.14 83	4 TAU 5 36-0 -21 7 -2-17 82 P	125 TAU 5 38.1 25 52 -C.15 62	TAU 5 56.3 25 56 -0.07 81 B	GEN 6 27.4 23 14 -5.12 87 E	H 15 33.5 26 48 +0.02 A)	K 18 7.6 20 48 -0.15 52	L 19 16.6 22 59 BC.5	L 19 49.9 -22 31 -C.16 H3 E	L 20 5.7 23 32 -6.18 83	14.1 25 30 -C.18 B	VUL 20 20.9 24 21 -0.06 81	21 51.8 25 47 -0.18 B3
RA(1973)DeC u-V SP	AKI 2 41.9 27 35 -0.13 83	10 TAU 3 43.5 24 1 TC:11 80	25 TAU 3 44.2 24 16 -5.07 87	TAU 3 44.7 23 51 -0.06 B6 NN	ETA TAU 3 45.9 24 1 -0.09 87	27 140 3, 47.6 23 58 -0.08 88	TAU TAU 4 40.0 22 54 -0.12 83	BET1 TAU 5 24.6 28 34 -0.13 B7	114 TAU 5 26.0 21 54 -0.14 83	2674 TAU 5 36.0 21 7 -2.17 82 P	125 TAU 5 38.1 25 52 -C.15 62	139 TAU 5 56.3 25 56 -0.07 B1 B	GEM 6 27.4 23 14 +0.12 87 E	ALPHA CRH 15 33.5 26 48 -C.62 A)	152 HCR 18 7.6 20 48 -0.15 52	2 VUL 19 16.6 22 59 BC.5	12 'WUL 19 49.9 22 31 -C.16 83 E	L 20 5.7 23 32 -6.18 83	20 14.1 25 30 -0.18 B	25 VUL 20 20.9 24 21 -0.06 81	PHG 21 51.8 25 47 -0.18 B3

SECOND SLEEP PIC SCAN BAIGHTEST STARS

P ខែឧ វិមារ	
SLEEP	
SECONO	
SCAR	
91C	

UNE PLCT STEP #

SATURATES AT 4975.0

													٠.										0.00.			****							-			
					•				*	***	*	* 0 * 0										•	***	ė:		* * * *	•									
FLUX	•	æ	÷	۰	٥.		3.1	53.1	91.0	46.3	7.5	57.7	e.	82.78	4.3	5.7	7.3	6.5	ŝ	1.7	20.8	56.5	42.1	٠,	49.5	3.2	63+2	7.6	9.5	5.1	4.4	5.3	ç	7.0	4	4
_	23		~											21														٤.						•	2	23
ø.								5.2					~	-23	~	S)	\sim	4	4	c	~	4		-				14								
								25						34																			S			
		Ň												15			475		Š	r n	4	5	•		►	20	œ	Φ	Φ	¢	17	45	- 3	~	\sim	-3
رر	64				23									53																11		~		41		
š														7																						
7		Ġ.		÷	٠	•	*	,	•	Ļ	ò	•	Š	45.5	÷	•	4	ň	*	ě	m	'n	*		<u>~</u>	4.	, ,	\$	'n	3	-	Ļ	•		5	1
_														5:					. 4		17	٣	~	4	'n	M	\$	-	-	ø	σ	か		급		
											c	~	N	135	4	S	4	۴-	8	Φ	0	-	N	1	4	S	Ó	~ ~	8	σ	5	-	α	'n	4	v

101AL FLUX = 4371.112 PHUTONS (CM2 SEC A1-1

				-							
£(8-V)	0.06 1	- €	20.0				C	7	7	~	•
LAT		+16 39						+68 32	+68 31	467 33	
LONG		11 10 10 10 10 10 10 10 10 10 10 10 10 1						41 42	41 42		
FLUX	0.0	2.00	4 4	9.0	C•0	9.0	1.3	*C*0	0.10	0 0	•
ř	8.32		5.43	6.75	8.17	6.65	5.85	7.40	6.90	7.53	
>	6.45	5.43	5.43	6.10	5.30	6.33	5.20	7.43	6.93	5.90	
SEP	204.0	5.3						26.1	26.1	3.2	
DMAG		5.9						9•0	0.6	0.5	
FUM.		>>>	> >		>	¥	E			>.	
d S	A 7	7 4 4	. Q	43	9 Y	⋖	⋖	A0	A 0	A 7	
8-4	0.27	00.0	-0.04	•	0.17	0.26				0.21	٠
RA(1973)DEC		20 6							28 24		-
197	N a	40	•	6.6	3.6	8.4	25.2	27.3	27.4	31.2	8.289
	13 15	300 13 39.4	13	13	7 57	7	14	5	14	41	8.2
NAME RAE	13 15	1 800 13 39	13	13	7 7	14	22 800 14	4	71	4.1	8.2

TARGET

DARK NORTH

6173			RA (1 5	RA(1973)UEC	9-v	SP		r C	DMAG	SEP	>	≥	FLUX	LONG	LAT	E(8-V)
6333 6789 DELTA 6920 PHI 7025		UMI 110 DRA 16	6 26.9 6 56.3 7 40.7 8 20.9 8 27.6	79 1 73 10 86 35 71 19 83 8	0.02	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	ıs	>	. H	7 0 .7	8 4 4 6 0 0 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0	6.05 7.24 4.47 6.46	00.00 00	112 19 105 3 119 17 101 53	+33 16 +34 6 +28 14 +28 2 +28 2 +27 44	HH NO
7124 7160 7199 7224 7423	20	DRA DE 16	8 47.1 8 54.3 8 54.3 9 23.3	75 24 79 55 75 44 69 28 79 32	0.05	A A A A A A A A A A A A A A A A A A A		, '	. 8	6.1	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	5.57 7.34 6.60 5.97 6.26	# # # # # # # # # # # # # # # # # # #	106 37 111 39 107 4 100 19	+26 30 +26 56 +26 56 +24 39 +25 18	0.02
7425 7545 7750 KAPPA 7879 7930	~	19 19 CEP 20 DRA 20	9 18.2 9 44.3 0 9.6 0 31.7	83 24 69 16 77 38 74 52 83 32	0.04	A A A A A A A A A A A A A A A A A A A	G Z	111	0 .	4.6	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6.66 8.90 8.91 8.75	2 7 7 0 1	115 41 101 23 110 23 110 24	+26 16 +20 47 +22 30 +20 2 +20 2 +24 21	00 OH
8002 8112 8174 8525 8550	92	DRA 20 21 21 22 22	2 18.0 2 23.5	82 26 78 0 81 7 76 20 78 6	-0.05	8 A A B B B B B B B B B B B B B B B B B					~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	5.54		115 44 112 24 115 15 114 16	4 +23 28 4 +20 11 5 +21 50 6 +16 16 9 +17 32	
8578 8591 RHO	28	CEP '22	2 26.5 2 29.6	78 39 78 41		A2 A2					2. v	0 6.06 0 5.86	1.9	116 0 116 10	+17 55	""
I ARGET#		¥,	2.3	. ·				\	h/z						. \	<u> </u>
·								\	6 FG 6					.\		
•				**. * .		Jet .	t's		EDUCED	, ED						
Table XIV	•			\ <u></u>				10	·	FLUT.	, *	,	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	•		,
			•	<i>y</i>	REPACE		*	5 L		وأ		Jest 15th				
					3	FLUY		.\		Sit.				•		
							. / ^ \ *		To de la	;	;			•		

E(8-Y)	03	•	5	10.	80	27	!	36			0.03	
E	ó.	0 0	Š	Ó	•	Ö	•	ŏ			o	
LAT	-52 13	-26 52	1 7 6 1	5 39	- 7 20	4 0	+ 4 20	+23 36	- 0 -		-12 25	
LONG	170 45			185 41			192 25				9 33	
FLUX	235.4	38.6	7.16	539.2	0,14	58.1	57.3	542.3	52.2	115.1	1485.0	58.1
. 25	2.83		71.4	1.93	4.28	4.75	3.46	2.50	4.97	2.56	0.83	1.75
>	00.4	0.0	•	2.6				2.50	5.70	3.10	2.00	1.10
SEP		0	* 0 * 6		25.0 3	>	112.7 7		8.2 3			
DMAG		v	0		4.3	•	4.5]		6.5			
E G	٠ ٢	> >		>	>		· ^ 1	>	***	**	>	>
LUM	۸;	> >	 a	>	>			>-	8	5-4 5-4	>	>
SP LUM	82	n c	60	82 P		81 8	B7 E	29.5	60	88	B.2	43
		n c	60	۰.		81 8	ш	29.5	60	-0.10 88	-0.21 B2	0.09 A3
8-V SP	-0.21 82	-0.05 83	60 +1.0	-0.17 B2 P	53 -0-16 B2	56 -0.07 81 8	14 -0-12 B7 E	30 0.02 09.5	46 80 B	-0.10 88	-0.21 B2	0.09 A3
8-V SP	82	-0.05 83	60 +1.0	-0.17 B2 P	53 -0-16 B2	56 -0.07 81 8	14 -0-12 B7 E	30 0.02 09.5	80 8	1 -0.10 88	-0.21 B2	0.09 A3
SP	0 12 -0.21 82	31 54 10 14 03	14 20 +0.14 03 0	21 7 -0.17 82 P	13 63 =0.16 R2	25 56 -0.07 81 8	25 14 -0.12 B7 E	-10 30 0.02 39.5	-22 46 80 B	-27 1 -0.10 88	-26 19 -0.21 B2	-29 45 0.09 A3
8-V SP	2 38.1 0 12 -0.21 82	4 14.1 8 49 =0.05 83 6 34 0 31 64 =0.14 63	5 20 41 74 +0+14 63 6 6 7 74 74 63 63 64 64 64 64 64 64 64 64 64 64 64 64 64	5 36.0, 21 7 -0.17 82 P	13 63 =0.16 R2	25 56 -0.07 81 8	25 14 -0.12 B7 E	-10 30 0.02 39.5	-22 46 80 B	18 44.0 -27 1 -0.10 88	18 53.6 -26 19 -0.21 B2	22 56.2 -29 45 0.09 A3
RA(1973)0EC 8-V SP	0 12 -0.21 82	1AU 4 14.1 8 49 -0.05 83	TAN 5 25 0 41 74 TO 14 B5	TAU 5 36.0 21 7 -0.17 82 P	TA! 5 46.7 13 53 -0.16 82	25 56 -0.07 81 8	14 -0-12 B7 E	-10 30 0.02 39.5	-22 46 80 B	-27 1 -0.10 88	18 53.6 -26 19 -0.21 B2	22 56.2 -29 45 0.09 A3
8-V SP	2 38.1 0 12 -0.21 82	40 140 4 14°1 8 49 =0*05 83	120 TAN 5 20 0 21 74 TO-14 65	LETA TAU 5 36.0 21 7 -0.17 82 P	133 TAU 5 46.2 13 53 -0.16 82	139 TAU 5 56.3 25 56 -0.07 81 8	NU GEM 6 27.4 25 14 -0.12 B7 E	ZETA OPH 16 35.7 -10 30 0.02 39.5	18 0.3 -22 46 80 B	PHI SGR 18 44.0 -27 1 -0.10 88	SIGMA SGR 18 53.6 -26 19 -0.21 B2	22 56.2 -29 45 0.09 A3

MODE IV SCAN ZODIACAL LIGHT

		(9 Sqr	•							٠.																									
			******															1	s tau					٠											•	
-			******						-										*****															(S S	•
	:	*	*****					•						•••	•	000	•	000	*****	•															*****	•
FLUX	191.29	167.5	75.3	8,5	4.0	5.6	4.7	5.2	7.6	8.4	æ	4	0.0	5,3	3,5	3.2	2.7	4.5	83.7	9.3	6.3	٠. س	٠.	¢.	۲	°	~	9	4.	፣	0.0	1.3	7.4	9.8	552.28	1.9
m	2 31	7	17.1	23	36 5	46 4	6	99	4	81 1	S	73.4	7	51 4	42	7 7	2.1	2 2	-2 31	7 2	~	_	s S	4	ሌ ሤ	ø	4	7	eo v	4	7	4	~	7 7	-	2 2
	9 44	~ o	4	3	5 2	3 0	~	9 2	2	2	41	64 2	73.3	78 2	81 3	83 4	85 4	87 1	4	90,	916	93 2	95.2	98	01 5	09 2	22 1	6.1.5	21	44 2	53 3	58 2		4	4	
3) DEC	-20 8	53	56	28	53	53	28	26	23	ی	ø	N						9		m	•	80	σ	o:	8	ø	co.	0	φ	~				~		•
RA (1973)	17 54.2	8 34.	9 17.		0 46.	1 32.	2 18.	3 2.	3 45.	25.	*	41.	17.	52.	27.	2.	38.	15.	54.	34.	17.	-	46.	32.	0 13.	1, 2.	1 45.	2 25.	3 4.	3 41.	4 17.	4 52.	5 27.	6 2.	38.	7 15.
	S	į,	Ś	'n	'n	Ś	'n	'n	เก		0	~	N	3	4	S.	ø	~	185	o.	0	-4	N	6	5	Š	65	75	35	95	0	15	25	35	45	55

PHOTONS (CM2 SEC A)-1

TOTAL FLUX = . 5093.7

TARGET#

×
٥
Ę

E(8-v)	0.08 2	.19	0.02 2	~	-	0.02				1	0.03 0		0.08	40.0		٥		10.0		0.02 0		
-	53	£ (2)	4;	13	31	٥	34	15	39	~	25	ဆ	53	33	30	89	8,	52	65	0	11	
LAT	+65	+69	+72	404	+66	+76	02+	+75	+ 8 1	+82	+65	+73	~	69+	0.4±	# 6 H	+74	+76	+16	+79	475	
5807	9				-	~		o	m	~	4	31	IV.					35		11	15	
L3	260	256	251	270	Γ-	S	~	267	4	263	568	294	594	296	298	299	298	599	300	304	305	
FLUX	W 4		٠	٠	•	•	•	3+0	•	0.3*	•	0.2	•			٠	٠	1.5	•		0.5	
λĊ	5.85	. 0	2.	*	,	۲.	÷	5.36	6	Α,	4.	7.44	~	•	₩.	¢.	•	6.55	Ç	.5	6.85	
>	4.80	٠.	•		~	÷	~	5.00	~	~	7	5.30	₩,	Ŷ		•	•	6.50	٠	ψ,	6.20	
SEP		15.0		•										1.4			,					
DMAG		4.8												5.8								
						-								Ψ.								
														Ψ,								
LUM			>	>		>		· >		>								>	>	· >		
	z	•	>	>	£	>	¥	>	T	>			. >	z	×	٠ ۵		>	>	>	Ŧ	
	A 3 N		A3 V	۵4 ۷		A2 V		42 V			40	45	۸۰ ۸	Z	_		43	۷0 ×	42 V	45 V	T.	
LUM		. 4			⋖		4	7	∢	Α3	0.03 40			Z	_	⋖	43	0.01 AO V	∢	4		
B-V SP LUM	A 4	U-28 43	0.11	0.12	0.36 A	80.0	0.27 A	0.06 42	∢	0.06 A3	0.03		0.08	0.01 B9 N	0.33 A	-0.05 A	ਹ	∢	0.01 A	5 0.17 A	₹ 0	
B-V SP LUM	0.17 A3	2 25 0.28 43	47 0.11	45 0.12	57 0.36 A	57 0.08	24 0.27 A	2 0.06 42	U.17 A	2 G.06 A3	25 0.03		22 0.08	56 0.01 89 N	48 0.33 A	5 -0.05 A	.5.	A 10.0	15 0.01 A	15 0.17 A	3 0.30 A	
SP LUM	24 6-17 A3 23 0-02 A1	5 12 25 U-28 43	.3 15 47 0.11	.5 6 45 0.12	.7 5 57 0.36 A	.2 16 57 0.08	.0 15 24 0.27 A	6 15 2 0.06 A2	.0 23 10 U.17 A	.4 21 2 0.06 A3	.7 3 25 0.03	33	.5 10 22 0.08	.6 6 56 0.01 B9 N	7 48 0.33 A	6 5 -0.05 A	14.55 A	4 10.0 14	14 15 0.01 4	.1 16 15 0.17 A	33 0.30 A	
B-V SP LUM	11 43.9 8 24 6.17 43	11 49.5 12 25 0.28 43	11 54:3 15 47 0:11	11 59.5 6 45 0.12	8.7 5 57 0.36 A	9.2 16 57 0.08	12.0 15.24 0.27 A	.6 15 2 0.06 42	18.0 23.10 U.17 A	28.4 21 2 G.06 A3	36.7 3 25 0.03	43.2 10.33	43.5 16.22 0.08	.6 6 56 0.01 B9 N	12 44.3 7 48 0.33 A	12 45.7 6 5 -0.05 A	45.9 12.5 A	13 41 . 0.01 4	47.6 14 15 0.01 A	51.1 16 15 0.17 A	12 52.5 12 33 0.30 A	
RA(1973)DEC B-V SP LUM	43.9 8 24 6.17 A3	11 49.5 12 25 0.28 43	54:3 15 47 0.11	11 59.5 6 45 0.12	12 8.7 5 57 0.36 A	12 9.2 16 57 0.08	12 12.0 15 24 0.27 A	12 14.6 15 2 0.06 42	18.0 23.10 U.17 A	28.4 21 2 G.06 A3	12 36.7 3 25 0.03	43.2 10.33	12 43.5 10 22 0.08	12 43.6 6 56 0.01 89 N	44.3 7 48 0.33 A	12 45.7 6 5 -0.05 A	12 45.9 12 5 A	46.9 13.41 0.01 A	12 47.6 14 15 0.01 A	51.1 16 15 0.17 A	52.5 12 33 0.30 A	
B-V SP LUM	11 43.9 8 24 6.17 43	11 49.5 12 25 0.28 43	11 54:3 15 47 0:11	11 59.5 6 45 0.12	VIR 12 8.7 5 57 0.36 A	COM 12 9.2 16 57 0.08	VIR 12 12.0 15 24 0.27 A	12 14.6 15 2 0.06 42	COM 12 18.0 23 10 U.17 A	12 28.4 21 2 0.06 A3	12 36.7 3 25 0.03	27 VIR 12 43.2 10 33	12 43.5 10 22 0.08	12 43.6 6 56 0.01 89 N	12 44.3 7 48 0.33 A	12 45.7 6 5 -0.05 A	VIR 12 45.9 12 .5 A	12 46.9 13 41 0.01 4	COM 12 47.6 14 15 0.01 A	51.1 16 15 0.17 A	12 52.5 12 33 0.30 A	

VIRSO CLUSTER TARGET

	-
J.	
	5

E(s-v)	0.04 0.59 0.03 2	
LAT	-72 23 -69 24 -69 23 -74 47	
טאניו	134 54 146 24 153 20 166 18	
FLUX	W 0 1 0	
ř	5.55 7.73 6.50 6.10	
>	5.53 5.23 6.93 5.63	
SEP		
UMAG	_	
רמא	<u> </u>	
ğ	4 4 4 4 0 0 0 0 0	
) - O	0.01	
KA(1973)DEC	1 22.7 -9 59 1 22.7 -8 9 1 31.7 -9 8 1 33.3 -15 48	
HA(19	1 4.7 1 22.7 1 31.7 1 33.3	
	CET CET	
BMAL	28 44 6	
HH THE	314 44 44 44 44 44 44 44 44 44 44 44 44 4	

I ARGET=

0.09

0.06

LUNG

SEP

UMAG

KA(1973)DEC

25.5 25.1 1.5 1.5 1.5 1.5

39 GAPMA 914 Pf 1213 TAU 1752 MU 2266 22.25 24.05 24.05 24.05

HETA ALPHA

2234 2491 2571

2595 10TA 2739 HY 4 UY 4 UX 4 UX 4 CY 6

EPSIECN ZETA

3454 4554 4955 6396 7329

CTA .

8573

8041 8301 8335 ιğ

BRIGHTEST STARS

NEP. GRASS PEG

0.01

	TA SETABILITY
GAMMA PEG	0.04
ACP,	41.00 m
TC SCBN	OLTA TITE ON
) I C	ų.

															6"	•		٠.								***										
													•	7	1000000 V Ve			-									001						,	•		
		* * 4				*			***	0 0	***	•			***							*		•	٠			*		•	¢					
	5	3.8	61.9	6.5	5.7	6.	2.B	.,	68.2	7.6	45.	8.4	8	ò	÷	٠.	~	۲.	4	ů	۲.	:	۰	٠. ت	<u>ጉ</u>	97.4	9.6	13.2	6.6	7.4	5.7	• •	4.3	ď	٠. د	4
<u>.</u>	•	٥	42	55	9₹	33	38	35	13	3:	٠,	m	26	33	43	4	ں	59	62	Ü	4	43	33	26	m	^	21	61	30	33	66	en Fu	55	42	Ċ	4
,	.	44	5.7	49	4,1	32	23	7.4	'n	-	-13	-22	~``	m	4	i G	•	÷	4	Ð	٠.	-47	~	J.	-22	-4	'n	æ	. i	S	35	4,7	49	57	49	4
	ø	ia ia	7	Ę	ខ្	v	'n	Ç,	34	54	64	e M	•	41	5,4	46	ø	42	~	53	-	Ś	57	33	C:	. ;	'n	25	Çi	2,5	25	3 9	28	Þ	35	ý
	-7	~	113	4.0	C.	24	95	76	93	ት ት	76	96	66	100	0	-4	m,	4	~	X	203	,-A	~	~	"	** 1	~	~₁	2	4	Α	N	~	6.6	0	٠
	62	5	53	24	č	Ų.	36	្ន	62	٦,	8	25	53	37	24	7,7	T)	٥	~	24	4.0	 	34	42	40	30	T	13	25	4	~	22	O		45	
	40	2,	'n.	3	\$	66	4	¥	54	∞ •	. 4	4.	. 4	es es	13	~		4-	Ç.	-13	-10	~	-20	ιĵ	-4	-4	-	_	î	O	3	7.1	<u>^</u>	53	32	0.0
			•	ď	ċ	Ġ	÷	•	٠	,		è.	ņ	;		÷	٠	٠	ċ	÷	•	4	٠,	÷	•	•	~	•	Ľ	٠	•	ij	÷	•	÷	-
	1	12	Ë	*	ű	7.	16	Ž.	77	21	25	73	23	53	c	Çi	 4	-4	~	€-₹	ć	m	4	'n	8			~	æ	œ	Ç	ċ	o		-4	
	'n	15	25	35	₹ 3.	55	65	75	85	9.5	503	115	~	S.	4	ťΛ	Φ	\sim	ĝ	6	Э		2	•	4	S	•	!	10	Φ	O	~	~	M)	4	ŧ

TOTAL FLUX = 9.83.677 PHOTONS (CM2' SEC A)-1

£(8-V)	0.05 0 1 0.12 2 0.09 1	0.07 1 0.04 0.10 2 0.18	0.05 1 0.05 0
LAT	+51 14 +47 32 +59 0 +59 4 +57 2	+43 44 +42 49 +50 52 +60 29 +55 2	+43 6 +48 19 +55 0 +45 9 +49 15
	6000 6000 6000 6000 6000 6000 6000 600	8 6 9 5 4	33 - + + + + + + + + + + + + + + + + + +
LONG	304 304 306 308 311	310 312 320 320	316 326 321 321 322
FLUX	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	7789.8 0.03 0.03	400MQ
7	6.32 6.10 6.65 6.65	6.20 6.25 7.05 8.03	6.19 6.15 7.35 7.85
>	5.90 6.10 6.50 4.30	5.90 5.90 5.90 5.90	6.50 6.50 6.50 6.50 6.50 6.50
SEP	21.3 7.57 7.53	30.1	0.1
DMAG	20°0 20°0	, 0 , 5 , 6 , 5 , 5	
FOM	>	>	T
a.	A1 A2 A1 A1	A A B A A A A A A A A A A A A A A A A A	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
B-V	0.08 0.18 0.30	6.07 -0.24 0.19	0.02
RA(1973)UEC	-11 30 -15 11 -3 39 -5 23	-18 41 -19 20 -11 0 -1 2 -6 19	-18 35 -13 4 -5 21 -15 37
RA119	52.5 54.5 22.5 8.5 6.5	12.0 20.0 23.8 24.8 29.0	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
	122112		50000
ra,	× 1 × × 1 × × 1 × × 1 × × 1 × × 1 × × 1 ×	V I N V I N N I N	× × × × × × × × × × × × × × × × × × ×
KAME	44 48 THETA	54 ALPHA 72	73 95 95
Œ	63222	0 4 6 6 8	4 9 6 0 0

TARGET

TARGET

SPICA

Reproduced from best available copy.

E(8-V)	0.04 0.01 0.02 0.03	0.02	00.02	0.03	0.15	00000	0.03 0.08 0.24
LAT	+78 46 +50 52 +19 54 +65 19	+28 12 +14 12 +19 5 +16 27 +19 33	+14 9 +20 2 +14 31 + 9 15	+ 11 26 + 12 7 + 14 7 + 19 56 + 9 56 + 55	+35 2 -14 45 -11 28 -14 21 -23 52	- 25 - 45 - 45 - 118 - 118	-51 28 -21 45 -36 26 -44 44
LONG	316 6 316 6 314 25 103 43 314 14	317 17 314 4 315 58 315 17 317 43	318 28 321 34 319 55. 318 56	320 8 321 36 324 54 325 19 319 41	96 0 328 53 334 39 331 16	340 55 87 36 31 56 95 29 94 50	6 6 75 15 65 59
FLUX	98.6 7789.8 448.5 1022.2 409.0	50.1 1027.4 296.3 283.0 107.0	213.6 93.2 74.1 148.5 1868.6	94.0 1126.5 59.1 50.1 78.4	178.4 52.6 514.6 79.6 246.3	976.2 53.4 74.1 56.2 85.0	126.2 51.2 74.4 102.7
Ž	2.47 2.13 2.13 2.23	3.86 2.53 2.58 3.93	2 2 5 5 7 5 5 7 5 5 7 5 5 5 5 5 5 5 5 5	3.18 3.56 3.86 4.60	2.36 2.38 2.96 3.18	3 2 3 2 3 2 4 5 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	2.46 4.12 4.08 4.13
>	2.80 3.95 3.45 3.45	4.2 6.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	64444 60000	4244 W		1.90 4.90 4.60 4.60 2.60	W W W 4
SEP	19.9	6	\$	27.6 0.1 1.6 50.0	17.9 47.4 63.1	68.7	
DMAG	2 6	1.6	10.9	0.0 0.0 1.0 1.0	4.5	3.7	
•	. O r		σ	` o		œ	
•	. a	·		` o		ø	
KUJ	>~>>	===>> =>>	> " > " > >	>===>> ====>	111 V V V	> > 111	II >>
LUM	PV V V V PNE V Q	1 > > > > > > > > > > >	NE V NE V	•	111 V V E V	-	8 5 5 d
SP LUM	>~>>	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	> 1 > > >	•	86 1111 1111 1111 1111 1111 1111 1111 1	2>>2	
Δ.	4.5 PV 4 2 1 1 4 3 PNE V	wwww	× × × × × × × × × × × × × × × × × × ×	2	417 = 8 = 1	> > 12 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	33 E
€C 0-V SP	C-11 99.5 PV C-24 31 V C-19 B3 V C-21 B2 PNE V	85 0-23 85 0-21 62 0-20 82	19 83 IV.	0.15 %5 . V 0.21 82 . II 0.16 86 . III · Q 0.06 09 V	0.13 86 0.13 81 0.10 88 0.15 31	.20 83 IV .18 83 P V .15 83 IV .13 83 III	0.112 98 0.118 93 0.16 92 6 0.04 91 PE
G-V SP	2 54.8 38 27 +2.11 99.5 PV 3 23.8 -11 0 -0.24 31 V 3 47.9 -41 32 -0.23 02 IV 3 46.5 49 27 -0.19 83 V 3 48.0 -42 20 -0.21 82 PNE V	3 53.3 -32 51 85 3 53.9 -47 9 -0.23 H2 3 56.6 -41 58 -0.22 82 3 57.0 -44 40 -0.21 62 4 4.4 -41 3 -0.20 03	4 27.7 -45 56 -0.19 83 IV. 4 21.4 -39 22 -0.19 83 V 4 24.4 -45 5 -0.15 83 III 4 30.8 -50.20 -0.19 82 V 4 33.8 -42 1 -0.21 81.5 NE V	4 36-1 -49 17 -0.15 85 . V 4 47.1 -47 16 -0.21 82 II 4 49.9 -43 28 ~u.i6 86 III . Q 5 3.3 -46 56 85 IV 5 14.8 -60 51 -0.06 09 V	7 8.7 65 44 -0.13 86 7 21.5 -62 50 82 7 23.1 -56 21 -0.13 81 7 23.7 -66 39 -0.10 88 5 49.7 -62 12 -0.15 31	1 17.4 43 49 -0.20 B3 IV 1 17.4 43 49 -0.61 U7 V 1 15.5 -19 35 -0.18 B3 P V I 41.1 51 3 -0.18 B3 IV 1 45.8 49 11 -0.13 B3 IN	1 52.3 -37 29 -0.12 88 1 51.8 25 470.18 83 E 2 20.2 12 3 -0.16 82 E 2 23.9 1 13 -0.04 81 PE
411973)DEC 0-V SP	13 23.8 -11 0 -0.24 31 V 13 23.8 -11 0 -0.24 31 V 13 47.9 -41 32 -0.23 02 IV 13 46.5 49 27 -0.19 83 V 13 48.0 -42 20 -0.21 82 PNE V	EN 13 50.3 -32 51 85 EN 13 53.9 -47 9 -0.23 H2 EN 13 56.6 -41 58 -0.22 82 EN 13 57.0 -44 40 -0.21 62 EN 14 4.4 -41 3 -0.20 03	14 17.7 -45 56 -0.19 83 IV. 14 21.4 -39 22 -0.19 83 V 14 24.4 -45 5 -0.15 83 III 14 30.8 -50 20 -0.19 82 V 4 33.8 -42 1 -0.21 81.5 NE V	14 36-1 -49 17 -0.15 85 . V 14 47-1 -47 16 -0.21 82	17 8.7 65 44 -0.13 86 17 21.5 -62 50 82 17 23.1 -56 21 -0.13 81 17 23.7 -66 39 -0.10 88 15 49.7 -62 12 -0.15 31	20 13.5 -56 49 ~0.20 B3 IV 21 17.4 43 49 ~0.61 B7 V 21 35.5 -19 35 ~0.41 B3 V 21 41.1 51 3 ~0.12 B3 IV 21 45.8 69 11 ~0.13 B3	21 52.3 -37 29 -0.12 88 21 51.8 25 470.18 83 E 22 20.2 12 3 -0.16 82 E 22 23.9 1 13 -0.04 81 PE
411973)DEC 0-V SP	2 54.8 38 27 +2.11 99.5 PV 3 23.8 -11 0 -0.24 31 V 3 47.9 -41 32 -0.23 02 IV 3 46.5 49 27 -0.19 83 V 3 48.0 -42 20 -0.21 82 PNE V	3 53.3 -32 51 85 3 53.9 -47 9 -0.23 H2 3 56.6 -41 58 -0.22 82 3 57.0 -44 40 -0.21 62 4 4.4 -41 3 -0.20 03	14 17.7 -45 56 -0.19 83 IV. 14 21.4 -39 22 -0.19 83 V 14 24.4 -45 5 -0.15 83 III 14 30.8 -50 20 -0.19 02 V 4 33.8 -42 1 -0.21 81.5 NE V	4 36-1 -49 17 -0.15 85 . V 4 47.1 -47 16 -0.21 82 II 4 49.9 -43 28 ~u.i6 86 III . Q 5 3.3 -46 56 85 IV 5 14.8 -60 51 -0.06 09 V	17 8.7 65 44 -0.13 86 17 21.5 -62 50 62 17 23.1 -56 21 -0.13 81 17 23.7 -60 39 -0.10 88 16 49.7 -62 12 -0.15 31	1 17.4 43 49 -0.20 B3 IV 1 17.4 43 49 -0.61 U7 V 1 15.5 -19 35 -0.18 B3 P V I 41.1 51 3 -0.18 B3 IV 1 45.8 49 11 -0.13 B3 IN	1 52.3 -37 29 -0.12 88 1 51.8 25 470.18 83 E 2 20.2 12 3 -0.16 82 E 2 23.9 1 13 -0.04 81 PE

SPICA, ETA UNA BRIGHTEST STARS

Spica					J. H. Ma.
		2 **** *** *** *** *** *** *** *	* + # * * * * * * * * * * * * * * * * *	0 + + + + + + + + + + + + + + + + + + +	5 *** 8 * * * * * * * * * * * * * * * * *
FLUX 0.81 7.554 17.644		286.62 134.77 703.39 299.10 1002.97	125.23 125.23 125.23 125.23 125.23 125.23 125.23		71.65 18.43 22.12 22.12 21.49 10.83 10.8.38 10.8.38
8 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	20 30 30 11 22 22 22 22 22 22 22 22 22 22 22 22	12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4.444444444444444444444444444444444444	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	225 225 226 246 246 257 257 257 257 257 257 257 257 257 257
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1050c	(M	0440000 0440000	romana on a or Tomana on a or	10000000000000000000000000000000000000
12 2 mm 5 m		30400	00000000 000000		64 54 54 54 54 54 54 54 54 54 54 54 54 54
	1221 1221 1224 1234 1344 1344	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	50 50 50 50 50 50 50 50 50 50 50 50 50 5	20000000000000000000000000000000000000	5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

101AL FLUX # 19952-495 PHUTONS (CM2 SEC A)-1

RATIO7310EC 8-V SP LUM UMAG SEP V UV FLUX 235.7 9.38 - 2.521 R2 1V																											
Color Colo	£13-v)	60.03	0.09	60.0	20.0		•	•		•	٥.			0.01		40.0		0.0		40.0	ب	7			0.13	0.01	10.0
Color	LAT	52 3	2 6 7	. 51	7 1	~	in	~	N	~		4	4	92	4 2	12	6.4	12	0	æ	, m	7	14 4	14.2	23 5	35.1	52 2
Chief	CONG	4 (1	78 2	26.3	83.4	2	82	93	56	45	~	7	4	-	S	66	7 5	05 2	4 10	101	11	19	8.2	31	33	40.5	53
Carrollo Ceft 2 38-1 Carrollo Ceft 2 38-2 Carrollo Ceft 2 2 2 4 Carrollo Ceft 3 2 4 Carrollo Ceft 3 2 4 Carrollo Ceft 3 2 2 4 Carrollo Ceft 3	FLUX	10.7			-	•	39	61		0	-	-	2	17	7.	46.	4	87.	76.	145.		~	^.		. ^		
### PARTING CET 2 36.1	^^	∞ -	ω,	•	7	, .	3	ď	ş	Į,	ţ	4	ç	4	ψ,	-	,-4	ô	4.	Φ.	Φ,	9	*	٠	∹	6	¢.
Care Care Ratio73)DEC Sav Sp LUM LUM LUM Care Sep LUM Care Savi Care C	>	0.	•	~	Φ.	ı.	٠.	7	4	1	3,	7	ç	4	÷2	•	ᅻ	• 2	~	Ġ	•	•	•	•	•	1.90	1.70
1,5 M	. S.							5.0		-	4	12.7					1.8	26.0		37.6	1.4	50.0		4.1.4	63.1		28.8
1,486	UMAG				5.6			6.3									.0.1	5.1		. 10.9	8.1	8,3		7.1	0.6		9°9
1,486	.•			-																							
### RATIO73)DEC 8-V SP DELTA CET 2 38-1 C 12 -0-21 R2 LAPOJA TAU 3 59-2 12 24 -0-12 R3 LAPOJA TAU 4 40-6 22 54 -0-12 R3 LAPOJA TAU 5 26-5 21 54 -0-12 R3 LAPOJA TAU 5 26-5 21 54 -0-12 R3 LAPOJA TAU 5 26-5 L4 40 L4 10 R3 L4 10 L	LUM	^	>	>	>	^=	<u>></u>	>	÷	>	>	2	^ !	>	>	>	=	>		>	11	>	>	>	>	7	>
Lake		۵	•			a	Δ,					w													u		
### RAT197310EC B ###################################	às										ę;	0.7	٥¥	e N													
LAMÉ RATI973)DE LAMBOA CET 2 38.1 LAMBOA TAU 3 25.7 LAMBOA TAU 4 40.6 LAU TAU 5 26.5 LAU TAU 5 31.9 LETA TAU 5 30.0 LAMBOA TAU 5 31.9 LAMBOA GEM 6 27.4 LAMBOA GEM 6 27.4 LAMBOA GEM 12 26.6 LAMBOA DAV 50 23.5 LAMBOA DAV 50 23.5 LAMBOA DAV 50 23.5 LAMBOA DAV 10 20 23.5 LAMBOA DAV 10 23.5 LAMBOA DAV 10 20 23.5 LAMBOA DAV 10 20 23.5 LAMBOA DAV 10 20		0.5	, -				:	70	7:5	***		•	•	\circ		-3.20	:)	"		2.5	(.)	:)		0	6	5.5	7
120 TAU 3 LAPOUA TAU 3 LAPOUA TAU 4 LAPOUA TAU 5 LAPOUA TAU 5 LAPOUA TAU 5 LAPOUA TAU 6 LAPOUA CEN 12 CON 12	بي	12 38	4	4	54	9	~	ίΩ (Δ)	4	13	51	7	Ω.	8 2	Š	Ś	40	4	(4	6	7.4	in M	Ņ,	33	12	4	5
120 TAU 3 LAPOUA TAU 3 LAPOUA TAU 4 LAPOUA TAU 5 LAPOUA TAU 5 LAPOUA TAU 5 LAPOUA TAU 6 LAPOUA CEN 12 CON 12	973)0	တ္ ကာ	12	22	77						.3	23	9.7	~;		'n	1	1	î	£.	00.	160	-62	9	-62	ŧ۸.	-47
126 TAU 127 TAU 128 TAU 129 TAU 2 ETA 130 TAU 2 ETA 130 TAU 2 ETA 130 TAU 2 ETA 131 TAU 2 ETA 140 GEH 3 GEH 4 AA 5 GEL 5 GEL 5 GEL 5 GEL 6 GEN 6 GEN 7 GEN	RALL	ω. φ. σ.	30		56.	e.	m	4		7	13.	27.	36.	41.	59.						ri	14.	21.	28.	64	23.	Ġ
1.28 1.20 1.40											•0				7.7	4	- +	~	£,		- +	-4	,			(4	. 7
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	·u	CET	1.60	בר ה	1 v.U	1.50	TAU	TAU	23.	140		GER	5	Ϋ́H		CF2	ر ن	<u></u>			ш	_		₫	- -		GKU
\$20 \$000\$4 \$000\$60 \$200\$1 \$200\$4 \$200\$60\$60 \$200\$60 \$200\$60 \$200\$60 \$200\$60 \$200\$60 \$200\$60 \$200\$60 \$2	# F	5	LAPOUS	1.30	114	120	Ë	-	Ŧ.	I ×		9	>	₹1 5		SIGNA	SAMMA	x1		EPS ILUN	0.2TA	DELTA		05114	LAMBOA	AL PHA	31.9H3
					-	·t	o	~	ō,	œ.	1.3	~	- 4	4	45	(*)	₹	N	·o	~	~	4	.,	Ö	4	0	Ġ,

BIGLIGHTEST STARS

THIS STIEP PTC SCAN

Speneseeppeepeese

SATURATES AT 4970.0

75.0

ONE PLCT STEP *

PTC SCAN THIND SLEEP PERIOD

																	•												****	***						
									٠				-					,				•								*****		•				
			•				*	****			-		***				• •		•		-	******		***********			* *	6 * *	***********	医多种甲状腺素 医多种性多种性多种性	***				•	
FLUX	50.26	2.96	160.59	45.18	22.91	46.10	3	ò	951.94	5	57.79	3	235.44	9	8.05	1.73	3 • 84	S	46.81	• ->	æ	7ci.45	•	÷	43.	585.99 F	*	ž,	9936.89	366.	Š	27.	61.33	13.50	183.28	•
£			-4	4	~	4	4	N	ζ,	~	-23 51	-	v	N		•	ഗ	m	~	a)	~		~	,	_	ď	~	\sim 1	44	~	4 5	 	2	31.19	4	4
ب	47	30	25	_	Ç	25	96	7,	85		177 23	7	Ş	54	53	í,	39	000	40	m.	ın	œ.	۸.	œ	м,	~			۸.	Ś	*	5	~	282 41	~	-4
3) 060		٠,			۲.,	n	τ	٠	•	r	10 37	41																						-27 39		
RA (1973)										4 5:.9	4.41. 4	3 58.6	er e	2 33.0	2 3.1	1 34.7	1. 7.3	0 40.3	0 13.0	23 44.1	23 1443	4.61 55	21 58.5	2.1 .2	23 2.4	18 41.7	17 51.7	15 47.1	14 3/.3	13.43.8	13 0.7	12 44.7	11 53.2	11 24.3	15 86.9	6*67 01
	ŧ۸	25	25	35	45	55	65	2.	85	95	105	115	10	٠.		٠.																				

TOTAL FLUX = 18804.333 PHUTONS (CMZ SEC A)-1

APPENDIX A

THE ULTRAVIOLET FLUX
OF THE BRIGHTEST STARS

ULTRAVIOLET FLUX OF THE BRIGHTEST STARS

~									_
E(B-V)	0.02 0.04 0.01	0.18	0.05	0.03	0.09	6000 40000	0.31	0.13 0.41 0.09 0.18	0.08
ΑŢ	51 41 55 20	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	20 20 20 20 20 20 20 20 20 20 20 20 20 2	50 4 50 E	64 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	44 33 46 46	45 45 45 45 45	24 23 33	223 233 243
بد	-32 -46 - 8 -29 -12	-14 -21 -61 -58	1 + 1 + 1 + 6 + 6 + 6 + 6 + 6 + 6 + 6 +	1.52 1.53 1.50 1.28 1.4	+ 1 3 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1	1233	-23 -23 -16 -17	111111111111111111111111111111111111111	1 + 1 1 4
980	4 2 4 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	321 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	~ 40° 2 0 40° 8	21 20 20 20 20 20 20 20 20 20 20 20 20 20	27 10 17 17 55	22 10 10 34 44	50 50 50 50 50 50 50 50 50 50 50 50 50 5	21 22 22 39 12	44 44 13 13 14 18
2	111 109 120 119 119	121 122 123 123 297 290	131 131 129 275 267	170 151 191 152 148	137 174 149 150 158	160 165 165 166	166 167 162 163 219	157 160 178 153	234 151 208 250 199
FLUX	317.0 744.3 324.9 68.1	74.4 59.3 1466.1 76.9 2629.0	178.4 51.5 223.6 79.6	235.4 58.8 52.2 72.6 286.8	85.5 66.2 51.7 215.4	135.3 96.8 55.7 58.2 53.2	187.7 72.6 152.8 119.4	1062.1 111.5 169.6 64.5 58.8	79.6 173.0 85.4 56.2 258.1
5	1.58 2.46 3.53 4.03	4 4 4 6 8 8 8 4 4 4 4 4 4 4 4 4 4 4 4 4	64664 64664 88748	2.83 3.94 3.06 1.54	######################################	8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	2.17 3.06 3.70 4.19	1.70 4.24 2.82 3.87	2.96 4.03 2.73
>	2.60 2.80 3.60 4.30	44760	4 8 8 8 4 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9	44.00 4.460 2.600 2.100	4.80 4.20 4.00 4.90	3.80 4.30 4.30 4.10	2.60 3.60 2.60 4.60	2.80 3.40 4.00 4.20 4.20	8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
	~	m m		40			10	m	m
SEP	36.1	33.1 2.2 3.8	86.3	127.6 82.2	20•2	1.0	117.0 0.6 12.9 23.3	6.0	10.6
DMAG	9.2	6.5	• •		4. 5	¥.	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	5.2	1.1
6		o	~ ~			• •			
		•	• •						
LUM	11777	>>2>2	, , , , , , , , , , , , , , , , , , ,	>>>>	, , , , , , , , , , , , , , , , , , ,	1111 1111 1111 1111	1111 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	> >>>	111 22
רמא	→ >	> >	> 1	2>>>		>		> >>>	**** ****
SP LUM	→ >	>>=>=	E !!!!,V ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '	82 83 87 88 88 88	> =>		1 1 1 . >	80.5 07 83 83 PE V 83	>=>>=
•	.10 88 11 .22 82 1V .20 82 V .14 85 V	.06 82 V .15 85 V .19 80 E IV .10 86 V .17 85 IV	.04 Bl PE III.V .18 B2 V .16 B3 P IV .12 B8 V .14 B5 III	21 113 114 B 111 B	.15 82 E V .06 85 E F II 80.5 V	.06 81 11 .11 86 V .07 87 11	.09 87 11 .08 88 11 .12 81 8 1 .31 0 PE V	.18 80.5 .01 07 .03 83	.12 88.5 V .22 91 NE V .20 83 V
ds >-	-0.10 88 11 -0.22 82 1V -0.20 82 V -0.14 85 V	-0.06 82 V -0.15 85 V -0.19 80 E IV -0.10 86 V	-0.04 B1 PE III.V -0.18 B2 V -0.16 B3 P IV -0.12 B8 V	-0.13 -0.13 -0.14 -0.17 -0.11	-0.15 82 E V -0.08 88 P -0.06 85 E -0.13 85 II	0.06 81 III	-0.09 87 -0.08 88 11 0.12 81 8 1 0.31 0 PE V	-0.18 80.5 -0.12 83 -0.03 83	-0.12 88.5 V -0.22 B1 NE V -0.20 83 V -0.21 82 II
EC 8-V SP	8 56 -0.10 88 11 5 2 -0.22 82 1V 3 45 -0.20 82 V 3 34 -0.14 85 V 0 22 -0.11 82 V	8 8 -0.06 82 V 0 56 -0.15 85 V 0 34 -0.19 80 E IV 5 23 -0.10 86 V 7 23 -0.17 85 IV	0 32 -0.04 B1 PE III.V 5 0 -0.18 B2 V 3 32 -0.16 B3 P IV 1 38 -0.12 B8 V 7 49 -0.14 B5 III	0 12 -0.21 8 7 35 -0.13 8 3 58 -0.14 8 7 9 -0.11 8 0 50 -0.06 8	5 33 -0.15 B2 E V 9 38 -0.08 B8 P 7 41 -0.13 B5 E II 3 52 -0.01 B0.5 V	2 11 0.06 81 11 4 1 -0.11 86 11 4 22 -0.11 86 V 4 16 -0.07 87 11 3 51 -0.06 86 NN IV	4 1 -0.09 87 III 3 58 -0.08 88 II 1 48 0.12 81 B I 0 58 0.31 D PE V 4 40 -0.14 85 V	5 42 0.18 80.5 2 24 0.01 07 7 38 0.03 83 8 49 0.05 83	3 52 -0.12 88.5 V 3 51 B0 II 3 6 -0.22 B1 NE V 5 0 -0.20 B3 V 3 24 -0.21 B2 II
EC 8-V SP	56 -0.10 88 11 2 -0.22 82 1V 45 -0.20 82 V 34 -0.14 85 V 22 -0.11 82 V	8 -0.06 82 V 56 -0.15 85 V 34 -0.19 80 E IV 23 -0.10 86 V 23 -0.17 85 IV	32 -0.04 B1 PE III.V 0 -0.18 B2 V 32 -0.16 B3 P IV 38 -0.12 B8 V 49 -0.14 B5 III	12 -0.21 8 35 -0.13 8 58 -0.14 8 9 -0.11 8 50 -0.06 8	33 -0.15 B2 E V 38 -0.08 B8 P 6 -0.06 B5 E 41 -0.13 B5 II 52 -0.01 B0.5 V	11 0.06 81 11 1 -0.11 86 11 12 -0.01 86 V 16 -0.07 87 11 51 -0.06 86 NN IV	1 -0.09 87 11 58 -0.08 88 11 48 0.12 81 8 1 58 0.31 0 PE V	55 -0.18 80.5 42 0.01 07 24 -0.12 83 38 -0.03 83 49 -0.05 83	52 -0.12 88.5 V 51 B0 II 6 -0.22 B1 NE V 0 -0.20 83 V 24 -0.21 82 II
A(1973)DEC 8-V SP	7.0 28 56 -0.10 88 11 5.5 53 45 -0.22 82 1V 5.4 33 34 -0.14 85 V 0.6 50 22 -0.11 82 V	3.2 48 8 -0.06 82 V 8.3 40 56 -0.15 85 V 5.1 60 34 -0.19 80 E IV 7.2 -55 23 -0.10 86 V 6.7 -57 23 -0.17 85 IV	2.0 50 32 -0.04 B1 PE III.V 0.2 55 0 -0.18 B2 V 2.5 63 32 -0.16 B3 P IV 5.5 -51 38 -0.12 B8 V 6.0 -47 49 -0.14 B5 III	8.1 0 12 -0.21 B 2.8 -13 58 -0.14 B 8.4 27 9 -0.11 B 6.4 40 50 -0.06 B	7.6 65 33 -0.15 B2 E V 5.7 9 38 -0.08 B8 P 4.6 48 6 -0.06 B5 E 1.0 47 41 -0.13 B5 II 0.7 33 52 -0.01 B0.5 V	2.6 32 11 0.06 81 III 3.3 24 1 -0.11 86 III 4.2 24 16 -0.07 87 III 4.7 23 51 -0.06 86 NN IV	5.9 24 1 -0.09 87 II 7.6 23 58 -0.08 88 II 2.4 31 48 0.12 81 B I 3.7 30 58 0.31 0 PE V 2.6 -24 40 -0.14 85 V	6.0 39 55 -0.18 80.5 7.2 35 42 0.01 07 9.2 12 24 -0.12 83 6.7 47 38 -0.03 83 4.1 8 49 -0.05 83	6.9 -33 52 -0.12 88.5 V 7.9 -13 6 -0.22 81 NE V 0.0 -45 0 -0.20 83 V 5.0 -3 24 -0.21 82 II
EC 8-V SP	.0 28 56 -0.10 88 11 .8 15 2 -0.22 82 1V .5 53 45 -0.20 82 V .4 33 34 -0.14 85 V .6 50 22 -0.11 82 V	.2 48 8 -0.06 82 V .3 40 56 -0.15 85 V .1 60 34 -0.19 80 E IV .2 -55 23 -0.10 86 V .7 -57 23 -0.17 85 IV	.0 50 32 -0.04 B1 PE III.V .2 55 0 -0.18 B2 V .5 63 32 -0.16 B3 P IV .5 -51 38 -0.12 B8 V .0 -47 49 -0.14 B5 III	.1 0 12 -0.21 B .9 27 35 -0.13 B .4 27 9 -0.11 B .4 40 50 -0.06 B	.6 65 33 -0.15 B2 E V .7 9 38 -0.08 B8 P .6 48 6 -0.06 B5 E .0 47 41 -0.13 B5 II .7 33 52 -0.01 B0.5 V	.6 32 11 0.06 81 11 .3 24 1 -0.11 86 11 .6 24 22 -0.11 86 V .2 24 16 -0.07 87 11 .7 23 51 -0.06 86 NN IV	.9 24 1 -0.09 87 II .6 23 58 -0.08 88 II .4 31 48 0.12 81 B I .7 30 58 0.31 D PE V	.0 39 55 -0.18 80.5 .2 35 42 0.01 07 .2 12 24 -0.12 83 .7 47 38 -0.03 83 .1 8 49 -0.05 83	.9 -33 52 -0.12 88.5 V .9 53 51 60 -0.22 81 NE V .0 -45 0 -0.21 82 V .0 -3 24 -0.21 82 II
RA(1973)DEC 8-V SP	7.0 28 56 -0.10 88 11 11.8 15 2 -0.22 82 1V 35.5 53 45 -0.20 82 V 35.4 33 34 -0.14 85 V 40.6 50 22 -0.11 82 V	CAS 0 43.2 48 8 -0.06 82 V AND 0 48.3 40 56 -0.15 85 V CAS 0 55.1 60 34 -0.19 80 E IV PHE 1 7.2 -55 23 -0.10 86 V ERI 1 36.7 -57 23 -0.17 85 IV	PER 1 42.0 50 32 -0.04 B1 PE III.V PER 1 50.2 55 0 -0.18 B2 V CAS 1 52.5 63 32 -0.16 B3 P IV ERI 2 15.5 -51 38 -0.12 B8 V ERI 2 26.0 -47 49 -0.14 B5 III	38.1 0 12 -0.21 B 41.9 27 35 -0.13 B 42.8 -13 58 -0.14 B 48.4 27 9 -0.11 B 6.4 40 50 -0.06 B	17.6 65 33 -0.15 B2 E V 25.7 9 38 -0.08 B8 P 9 34.6 48 6 -0.06 B5 E 41.0 47 41 -0.13 B5 II 40.7 33 52 -0.01 B0.5 V	42.6 32 11 0.06 81 II 43.3 24 1 -0.11 86 II 43.6 24 22 -0.11 86 V 44.2 24 16 -0.07 87 II 44.7 23 51 -0.06 86 NN IV	45.9 24 1 -0.09 87 II 47.6 23 58 -0.08 88 II 52.4 31 48 0.12 81 8 I 53.7 30 58 0.31 0 PE V 52.6 -24 40 -0.14 85 V	PER 3 56.0 39 55 -0.18 80.5 PER 3 57.2 35 42 0.01 07 TAU 3 59.2 12 24 -0.12 83 PER 4 6.7 47 38 -0.03 83 TAU 4 14.1 8 49 -0.05 83	16-9 -33 52 -0-12 88-5 V 29-9 53 51 B0 II 27-9 -13 6 -0-22 B1 NE V 30-0 -45 0 -0-20 83 V 35-0 -3 24 -0-21 82 II
A(1973)DEC 8-V SP	0 0 7.0 28 56 -0.10 88 11 0 0 11.8 15 2 -0.22 82 1V 5 0 35.5 53 45 -0.20 82 V 0 0 35.4 33 34 -0.14 85 V 5 0 40.6 50 22 -0.11 82 V	IRON CAS 0 43.2 48 8 -0.06 82 V AND 0 48.3 40 56 -0.15 85 V AA CAS 0 55.1 60 34 -0.19 80 E IV A PHE 1 7.2 -55 23 -0.10 86 V A ERI 1 36.7 -57 23 -0.17 85 IV	ER 1 42.0 50 32 -0.04 B1 PE III.V ER 1 50.2 55 0 -0.18 B2 V AS 1 52.5 63 32 -0.16 B3 P IV RI 2 15.5 -51 38 -0.12 B8 V RI 2 26.0 -47 49 -0.14 B5 III	ET 2 38.1 0 12 -0.21 B RI 2 41.9 27 35 -0.13 B ET 2 42.8 -13 58 -0.14 B RI 2 48.4 27 9 -0.11 B ER 3 6.4 40 50 -0.06 B	3 17.6 65 33 -0.15 B2 E V ER 3 34.6 48 6 -0.06 B5 E ER 3 41.0 47 41 -0.13 B5 II ER 3 40.7 33 52 -0.01 B0.5 V	AU 3 43.6 32 11 0.06 81 II AU 3 43.3 24 1 -0.11 86 II AU 3 43.6 24 22 -0.11 86 V AU 3 44.2 24 16 -0.07 87 II AU 3 44.7 23 51 -0.06 86 NN IV	AU 3 45.9 24 1 -0.09 87 II AU 3 47.6 23 58 -0.08 B8 II ER 3 52.4 31 48 0.12 B1 B I ER 3 53.7 30 58 0.31 D PE RI 3 52.6 -24 40 -0.14 B5 V	ER 3 56.0 39 55 -0.18 80.5 AU 3 59.2 12 24 -0.12 83 ER 4 6.7 47 38 -0.03 83 AU 4 14.1 8 49 -0.05 83	41 ERI 4 16-9 -33 52 -0-12 88-5 V 1 CAH 4 29-9 53 51 B0 II 4 27-9 -13 6 -0-22 B1 NE V A CAE 4 30-0 -45 0 -0-20 B3 V ERI 4 35-0 -3 24 -0-21 B2 II
RA(1973)DEC 8-V SP	LPHA AND D 7.0 28 56 -0.10 88 II AMMA PEG 0 11.8 15 2 -0.22 82 IV ETA CAS 0 35.5 53 45 -0.20 82 V I AND 0 35.4 33 34 -0.14 85 V I CAS 0 40.6 50 22 -0.11 82 V	RON CAS 0 43.2 48 8 -0.06 82 V AND 0 48.3 40 56 -0.15 85 V A CAS 0 55.1 60 34 -0.19 80 E IV PHE 1 7.2 -55 23 -0.10 86 V A ERI 1 36.7 -57 23 -0.17 85 IV	HE PER 1 42.0 50 32 -0.04 B1 PE III.V 1 PER 1 50.2 55 0 -0.18 B2 V PSILON CAS 1 52.5 63 32 -0.16 B3 P IV HI ERI 2 15.5 -51 38 -0.12 B8 V APPA ERI 2 26.0 -47 49 -0.14 B5 III	ELTA CET 2 38.1 0 12 -0.21 B 35 ARI 2 41.9 27 35 -0.13 B 1 CET 2 42.8 -13 58 -0.14 B 41 ARI 2 48.4 27 9 -0.11 B ETA PER 3 6.4 40 50 -0.06 B	3 17.6 65 33 -0.15 B2 E V SI PER 3 34.6 48 6 -0.06 B5 E ELTA PER 3 41.0 47 41 -0.13 B5 II 40 PER 3 40.7 33 52 -0.01 B0.5 V	HICRON PER 3 42.6 32 11 0.06 81 III 17 TAU 3 43.3 24 1 -0.11 86 III 19 TAU 3 43.6 24 22 -0.11 86 V CO TAU 3 44.2 24 16 -0.07 87 III 23 TAU 3 44.7 23 51 -0.06 86 NN IV	TA TAU 3 45.9 24 1 -0.09 87 II 27 TAU 3 47.6 23 58 -0.08 B8 II ETA PER 3 52.4 31 48 0.12 B1 B I X PER 3 53.7 30 58 0.31 0 PE AU ERI 3 52.6 -24 40 -0.14 05 V	PSILON PER 3 56.0 39 55 -0.18 80.5 I PER 3 57.2 35 42 0.01 07 AMBDA TAU 3 59.2 12 24 -0.12 83 48 PER 4 6.7 47 38 -0.03 83 U TAU 4 14.1 8 49 -0.05 83	41 ERI 4 16.9 -33 52 -0.12 88.5 V 1 CAH 4 29.9 53 51 B0 II 4 27.9 -13 6 -0.22 B1 NE V A CAE 4 30.0 -45 0 -0.20 B3 V ERI 4 35.0 -3 24 -0.21 B2 II

60.0 0.07 000 0.00 0.13 0.03 0.12 0.12 0.00 0.03 0.07 0.01 0.09 45 16 42 55 16 20402 20000 -19 -15 -23 -24 -31 127 126 126 128 -23 -23 -23 -25 -17 -25 -20 -18 41111 92232 22023 93.00 2277 50500 27.58 440000 244 LONG 176 200 192 195 213 198 200 203 210 210 209 209 209 209 205 209 209 209 181 206 165 209 217 172 209 208 214 194 202 202 204 204 204 204 196 178 183 200 201 205 204 195 195 195 539.2 89.4 67.8 129.3 53.9 81.6 701.7 107.5 98.1 243.3 1052.9 243.3 135.4 90.0 107.6 294.8 187.0 62.2 212.4 5247.7 572.7 51.2 155.5 74.7 98.1 2062.3 292.6 69.4 81.2 94.0 283.0 59.0 656.2 124.0 463.7 56.4 102.7 4.08 2.63 2.63 4.63 4.63 7.93 22.08 23.08 23.08 23.08 23.08 23.08 0.67 2.88 2.60 4.78 3.73 34.88 34.98 35.198 55.58 0.38 0.96 4.12 4.43 4.19 1.05 4.10 4.10 0.97 1.93 4.28 4.58 8 8 4 8 8 6 6 6 8 8 5.63 4.70 5.03 7.00 7.00 3.60 0.10 9.50 5.70 7.70 1.60 1.60 4.80 5.70 1.65 2.90 5.70 5.10 5.10 4 10 **6** 6 . m 9.9 59•8 3•0 1.0 2.1 53.0 5.3 1:1 4.4 37.5 37.5 11.7 52.8 SEP 5.0 1:0 9.0 000000 5 뿝 ۵ ۵ ⋖ ۵ 09.5 888 85 80.5 82.4 81 82 82 80.5 85 81.5 09.5 80 929 80 87 87 87 87 -0.14 -0.19 -0.21 -0.26 -0.19 -0.17 -0.18 -0.12 -0.15 -0.17 -0.19 -0.20 -0.18 -0.20 -0.02 -0.11 -0.28 -0.13 -0.15 -0.21 -0.22 -0.19 -0.22 -0.24 -0.19 -0.09 -0.14 -0.17 -0.23 -0.23 -0.15 -0.22 **にこいがみ** 26 52 2 5 RA(1973)DEC 14 41 34 34 94549 2777 29.3 29.8 30.6 31.9 33.2 21.4 22.3 22.3 23.1 13.2 16.3 18.3 20.3 23.7 24.6 26.0 25.4 28.5 34.8 35.3 35.3 34.1 34.1 34.1 ERI AUR ERI LEP AUR 8888 6888 TAU ERI GRI GRI ORI ORI LEP LEP ORI TAU TAU GRI 081 081 081 28.28 OR I ORE OR I T AU 32 33 DELTA UPSILON 120 EPSILON Zeta 6AMA BETA 114 PS1 PS1 ETA LAMBDA MU AE BETA TAU LAMBDA VV PHI LAMBDA LAMBDA 42 THETA IOTA 125 ET A 1713 1735 1756 1763 1520 1520 1552 1557 1595 1617 1641 1679 1702 1790 1791 1810 1811 868 868 876 879 880 1770 1781 1783 1789 1839 1842 1852 1855 886 897 897 899 1903 1910 1914 1918

ULIRAVIOLET FLUX OF THE BRIGHTEST STARS

E(8-V) 0.00 0.000 0.15 0.06 0.08 0.08 0.03 0.07 40.0 0.05 0.06 0.03 40222 2440 20 11 13 36 36 25222 25.800 7 4 P W 5276 LAT 9 3 0 9 1 + + + -10 -19 -20 *125 - 2 - 2 - 111 - 27 -28 22887 33 33 33 33 26 th -1 * 0 13 m 332233 LONG 207 205 238 238 237 214 212 183 167 174 241 194 195 214 263 226 192 214 216 216 206 200 200 206 206 206 196 227 227 237 241 242 242 231 231 239 232 196 251 202 227 97.6 81.2 89.0 93.7 67.8 83.4 187.0 539.2 368.3 110.9 115.1 212.6 1726.7 1373.8 67.9 58.1 52.1 118.6 2961.6 57.3 81.6 51.2 66.0 54.7 296.3 195.7 58.8 2353.6 53.9 65.8 182.4 61.9 188.1 162.7 115.9 63.4 110.2 64.5 594.8 74.4 53.6 1766.7 125.4 2.56 2.56 1.25 1.29 00.446 04.46 01.10 4.83 2.06 4.28 3.65 1.42 4.18 4.75 2.26 2.27 3.52 4.58 3.96 1.93 4.23 3.63 4.65 3.65 3.65 3.65 3.65 2.40 4.48 4.07 1.22 3.14 4.600 4.600 4.6000 3.10 6.20 5.20 5.20 5.20 5.20 2.05 5.35 2.60 2.60 2.60 4446 5.10 4.80 4.30 1.50 4.400 6.300 8.400 8.400 w m **6** 6 m m 4 m 184.8 12.6 4.5 112.7 3.0 21.4 SEP 5.4 0.5 OMAG 3.7 6.4 6.5 2.8 Z Z >=>>> w a 88 88 992 • 5 81 A2 89.5 800.00 88 07 14 -0.20 -0.24 -0.22 -0.13 -0.16 -0.18 -0.16 -0.21 -0.23 -0.12 -0.16 -0.10 -0-18 -0.20 -0.07 0.03 -0.25 -0.11 -0.20 -0.24 -0.22 -0.07 -0.21 8-4 37 938 2000 51 24 64 22 0 29 201222 5374 30 44 08 RAI 1973 10EC -23 16 -43 -13 -34 -34 -35 -26 -27 -17 1224 37. 2007. 4007. 4004. 39.00 46.00 46.00 46.5 50.1 56.3 57.6 56.6 6.0 10.4 10.6 13.6 17.1 18.4 19.3 21.5 27.4 26.6 27.5 30.7 36.2 39.5 44.0 43.4 48.8 52.4 54.9 40.00 Z Y S ORI ORI TAU AUR AUR P.1C CAA GEN HON CAA CAA CAA CAA 7 AC COL 202 03.1 03.1 CHA 02.1 02.1 03.1 19 Omicron 10TA EPSILGN ALPHA 133 139 BETA THETA 15 ALPHA 10 Kappa 15 2 LAPBDA GAMMA NU X I KAPPA X 1 CAMMA DMEGA 2eta 2eta DELTA SIGMA BETA NU BETA ZETA 2106 2159 2199 2205 2212 2294 2343 2344 2356 2361 2387 2421 2451 2456 2491 25492 2538 2531 2596 2618 1931 1933 1934 1948 1949 1950 1952 1956 1993 2004 2031 2031 2084 2088 2222 2226 2226 2233 2282 2288 2648 2653 2688 2690 2702 9661

ULTRAVIOLET FLUX OF THE BRIGHTEST STARS

									•
£(8-V)	0.13 0.09 0.04 0.06	0.00 0.00 0.04	000	0.26 0.14 0.12 0.01	00000 40000 40000	0.03	0.01	0.01	0.00
LAT	+ 0 21 - 7 5 - 7 10 -11 7		+ + + + + + + + + + + + + + + + + + + +	- 0 13 -10 34 -10 11 - 5 56 -11 12	-10 26 -7 50 -12 19 -10 17 -16 55	- 4 42 - 7 24 - 7 42 - 18 33 - 0 51	+ 0 8 -11 55 - 6 30 - 5 17 - 6 48	+26 19 -10 51 - 6 40 - 4 30	1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
- PNO	224 43 238 58 239 24 248 31 237 50	30468 30468 30468	241 57 241 57 252 8 240 45 239 11	242 14 260 15 260 10 253 54 263 23	262 4 258 54 266 41 263 28 276 32	255 58 239 2 262 48 281 37 253 35	254 57 272 52 264 58 265 9 270 15	223 15 275 49 270 36 255 0	272 5 273 54 266 15 277 39 276 42
FLUX	55.7 67.5 128.7 81.6	- m - m - m - m	4884.9	133.7 93.6 335.9 97.6 148.5	146.0 51.2 373.0 148.5 61.6	1738.3 66.0 125.4 62.1 51.2	51.2 83.6 148.4 51.5 186.0	117.4 195.6 53.2 310.3	92.2 141.8 160.8 60.4 58.8
'n	3.90 3.182 3.98 4.98	401-40	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	84588 84594 84598 84598	9999	3.56	44.12	82 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	2.10 3.38 3.75 3.26 3.97
>	64.00.4 00.00.00.00.00	44000	. 4 4 W W	4.00 0.00 0.00 0.00 0.00 0.00	4 8 4 4 4 6 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	2.20 4.40 4.20 4.30	24.80 00.40 00.40 00.40 00.40	4.40 4.30 5.10	11.40 7.40 8.00 8.00 8.00
SEP	0.1	84.45	10.0 3	27.7	9.8 3	42.5	7.3 0.8 4.4 3	16.9	3.5 3 29.0 40.6
DMAG	0.0	3.7	0.0	8 %	7.5 5.3	9.2 9.5 5.5	7.8	8.1 0.6	4.00
Δ		Œ		•					
רחש			. >1	, , , , , , , , , , , , , , , , , , ,	. 2 2	, 111	× × × × × × × × × × × × × × × × × × ×	, iii	>
		₩ .	z z		n 2 2	, N N N II I		V 111 V V V I I I I I I I I I I I I I I	NE V 1111 1 1 1 1 V
	w>	25.00 co	-	>		> 		>+++>	>>
E CUM	00007 M m	25 A F I I I I I I I I I I I I I I I I I I	Z Z	0 PE V 1 V 0.5 III 2 V	2	r z z z	87 H 28	N	2 NE NE S
B-V SP LUM	0.18 80 0.12 83 PE 1 0.14 83 E 1 0.18 82 V	24 54 -0.15 09 III 36 41 -0.13 83 E V 29 14 -0.07 85 A I 8 20 -0.10 87 V 23 1 B0 PE IV	0.20 B3 N 0.20 B3 N 0.20 B1	0.05 80 PE V 0.14 81 V 0.19 80.5 III 0.20 83 V 0.23 82 III	0.15 81 8 1 0.18 83 0.19 82 1 0.17 82 N	0.28 05 F V 0.16 85 N V 0.23 83 N I 0.12 85 N I 0.12 83 N F	0.20 83 V 81 V 0.16 81 V 0.14 82 I	0.20 83 V 0.12 81 I 0.18 64 I 0.19 82 I	0.04 A0 V 0.18 B2 NE V 0.21 B0 I 0.10 BB I
MÛJ dS V-	13.2 -10 15 -0.18 80 13.2 -26 19 -0.12 83 PE 1 13.7 -26 49 -0.14 B3 E 1 15.9 -36 33 -0.18 B2 V 17.6 -24 31 -0.15 07 F	17.6 -24 54 -0.15 09 III 17.3 -36 41 -0.13 83 E V 23.0 -29 14 -0.07 85 A I 25.7 8 20 -0.10 87 V 25.8 -23 1 80 PE IV	37.7 -19.56 B5 N 37.7 -26.44 B5 N 38.5 -38.15 -0.20 B3 N 43.4 -24.36 -0.20 B1 46.1 -22.26 -0.20 B1	47.0 -25 51 -0.05 80 PE V 46.7 -46 32 -0.14 81 V 48.4 -46 17 -0.19 80.5 IIII 51.7 -38 47 -0.20 83 V 52.3 -49 32 -0.23 82 IIII	52.5 -48 2 -0.15 81 8 1 56.4 -44 1 -0.18 83 56.1 -52 54 -0.19 82 57.5 -49 9 -0.17 82 N 60.0 -63 29 -0.18 83	2.6 -39 55 -0.28 05 F 7.8 -19 10 -0.16 85 V 8.7 -47 16 -0.23 83 N 7.9 -68 32 -0.12 85 I 12.5 -35 49 -0.12 83 NE	20.3 -36 23 -0.20 83 20.6 -57 52 81 V 21.7 -48 23 -0.16 81 V 28.2 -47 50 -0.14 82 1 39.5 -52 49 -0.18 83 I	41.8 3 28 -0.20 B3 V 40.0 -59 39 -0.12 B1 I 41.6 -53 1 -0.18 B4 I 42.5 -33 6 -0.19 B2 I 42.8 -49 44 -0.21 B0 N V	44.0 -54.37 0.04 A0 46.0 -56.40 -0.18 B2 NE V 49.6 -46.25 -0.21 B0 54.4 -60.32 -0.10 BB 56.3 -59 7 -0.17 B3
RAI19731DEC B-V SP LUM	7 13.2 -10 15 -0.18 80 17 13.2 -26 18 -0.12 83 PE 1 7 13.7 -26 43 -0.14 B3 E 1 7 15.9 -36 33 -0.18 B2 V 7 17.6 -24 31 -0.15 07 F	A 7 17.6 -24 54 -0.15 09 III A 7 23.0 -29 14 -0.07 85 A I I 7 25.7 8 20 -0.10 87 V 7 25.8 -23 I 80 PE IV	7.7 -26 44 B5 N 8.5 -38 15 -0.20 B3 N 3.4 -24 36 -0.20 B1 6.1 -22 26 -0.20 B1	7.0 -25 51 -0.05 80 PE V 6.7 -46 32 -0.14 81 V 8.4 -46 17 -0.19 80.5 IIII 1.7 -38 47 -0.20 83 V 2.3 -49 32 -0.23 82 IIII	7 52.5 -48 2 -0.15 61 8 1 7 56.4 -44 1 -0.18 83 7 56.1 -52 54 -0.19 82 7 57.5 -49 9 -0.17 82 N 7 60.0 -63 29 -0.18 83	8 2.6 -39 55 -0.28 05 F 8 7.8 -19 10 -0.16 85 V 8 8.7 -47 16 -0.23 83 N 8 7.9 -68 32 -0.12 85 I 8 12.5 -35 49 -0.12 83 NE	8 20.3 -36 23 -0.20 83 8 20.6 -57 52 81 V 8 21.7 -48 23 -0.16 81 V 8 28.2 -47 50 -0.14 82 I EL 8 39.5 -52 49 -0.18 83 I	8 41.8 3 28 -0.20 83 V 8 40.0 -59 39 -0.12 81 I 8 41.6 -53 1 -0.18 64 I 8 42.5 -33 6 -0.19 82 I 8 42.8 -49 44 -0.21 80 N V	EL 8 44.0 -54 37 0.04 A0
A119731DEC 8-V SP LUM	7 13.2 -10 15 -0.18 80 I 7 13.2 -26 18 -0.12 83 PE I 7 13.7 -26 43 -0.14 B3 E I 7 15.9 -36 33 -0.18 B2 V 7 17.6 -24 31 -0.15 07 F	7 17.6 -24 54 -0.15 09 III 7 17.3 -36 41 -0.13 83 E V 7 23.0 -29 14 -0.07 85 A I 7 25.7 8 20 -0.10 87 V 7 25.8 -23 1 80 PE IV	37.7 -19.56 B5 N 37.7 -26.44 B5 N 38.5 -38.15 -0.20 B3 N 43.4 -24.36 -0.20 B1 46.1 -22.26 -0.20 B1	47.0 -25 51 -0.05 80 PE V 46.7 -46 32 -0.14 81 V 48.4 -46 17 -0.19 80.5 IIII 51.7 -38 47 -0.20 83 V 52.3 -49 32 -0.23 82 IIII	52.5 -48 2 -0.15 81 8 1 56.4 -44 1 -0.18 83 56.1 -52 54 -0.19 82 57.5 -49 9 -0.17 82 N 60.0 -63 29 -0.18 83	2.6 -39 55 -0.28 05 F 7.8 -19 10 -0.16 85 V 8.7 -47 16 -0.23 83 N 7.9 -68 32 -0.12 85 I 12.5 -35 49 -0.12 83 NE	8 20.3 -36 23 -0.20 83 8 20.6 -57 52 81 V 8 21.7 -48 23 -0.16 81 V 8 28.2 -47 50 -0.14 82 I 8 39.5 -52 49 -0.18 83 I	8 41.8 3 28 -0.20 83 V 8 40.0 -59 39 -0.12 81 I 8 41.6 -53 1 -0.18 64 I 8 42.5 -33 6 -0.19 82 I 8 42.8 -49 44 -0.21 80 N V	8 44.0 -54 37 0.04 A0

ULTRAVIOLET FLUX OF THE BRIGHTEST STARS

E (8-V) 0.13 0.06 0.08 0.00 0.00 0000 90.0 0.03 40.0 20.0 0.12 24400 22228 LAI 100+ 112 1 + + + + 4 + + + 70+ +54 + 6 +61 14+ 20 13 8 8 28 28 13 39 16428 53 20 20 20 20 20 2000 58 4 T F 5442 2256 LONG 286 268 277 285 285 275 274 279 226 279 290 282 234 287 289 286 294 296 140 286 295 295 296 296 296 305 302 303 303 303 289 289 297 149 289 300 300 300 299 295 301 301 301 1426.8 53.6 97.6 54.1 114.8 64.8 128.7 5275.0 950.9 246.5 514.9 70.7 6112.1 54.9 134.8 98.1 51.5 390.6 147.8 981.1 56.2 113.0 755.0 192.4 142.3 51.2 53.9 591.2 106.1 816.1 114.8 75.5 489.3 92.5 53.2 74.8 70.0 74.7 3.46 3.12 0.94 2.78 1.28 4.02 2.98 6.66 4.03 2.72 3.87 2.45 4.13 3.42 2.40 2.40 3.57 3.55 3.55 3.66 1.83 3.15 1.48 2.57 2.96 3.16 1.67 2.10 3.77 3.78 4.48 2.28 2.97 1.17 1.45 5.70 3.40 1.60 2.40 3.50 6.40 8.40 8.40 6.10 2.10 2.40 5.40 4 2 6 8 5 6 8 8 8 8 2.93 3.83 2.70 2.10 3.00 4.60 4.60 4.60 60 60 60 37.2 33.8 SEP 0.6 16.6 368.0 29.7 1.6 0.00 7.8 6.5 000 8•₹ 00 σ ø 5 2: OPE 뿡 കല z 80 89 83 81.5 62.5 83.5 80.5 83.5 10.22 -0.08 -0.13 -0.13 -0.23 -0.15 -0.20 -0.01 -0.19 -0.16 -0.11 -0.24 -0.24 -0.13 -0.24 -0.20 -0.20 -0.09 -0.11 -0.20 -0.04 -0.13 -0.18 25 28 28 29 36 2025 42224 90823 28339 23442 80200 RA(1973)DEC 146 146 162 163 163 448 169 159 169 169 150 150 170 17 -63 -62 -62 -62 -16 -71 -69 -68 -48 -54 -51 -51 -51 -51 547 162 193 193 193 1.55 1.55 1.55 1.55 1.55 5.4 10.6 10.3 12.9 21.3 33.2 45.9 7.9 13.1 45.0 45.9 45.5 19.2 6.7 10.2 13.7 16.7 17.0 25.1 25.1 44. 44. 53.0 53.0 53.0 •••• 66622 === 22222 22222 22222 22222 CHA CEN UMA S C C C S CAR CAR VEL CAR £ 60 CRV DRA MUS CEN 255 3 NAME BETA LAMBDA MU LAMBDA THETA DELTA BETA Pi OELTA RHO DELTA GAMMA PHI ALPHA SETA ZETA ALPHA ALPHA SIGMA UELTA GAMMA KAPPA ALPHA GAMMA CAMMA DMEGA BETA RETA SH. 3663 1819 3982 4133 4234 4295 4390 4467 4537 4554 4590 4638 4638 4656 4656 4674 4679 4730 4731 4743 3940 3642 3658 3659 4757 4798 4844 4853 4787

ULTRAVIOLET FLUX OF THE BRIGHTEST STARS

£(8-V)	0.04	0.04	0.01 0.02 0.03 0.05	0.02	0.03	00 00 00 00 00 00 00 00 00 00 00 00 00	0.28	0.03	0.19 0.16 0.04 0.09
LAT	+61 10 +78 46 +12 54 + 1 40 +10 24	+50 52 + 8 44 +19 54 +65 19 +19 7	+28 12 +14 12 +19 5 +16 27 + 1 16	+19 33 +14 9 +20 2 +14 31 + 9 15	+16 41 + 9 52 +11 26 +20 6 +14 7	+13 55 +14 46 + 9 56 +11 8	+39 15 +13 50 +10 20 +16 45	+11 54 +54 43 + 8 46 +53 47 +20 27	+21 43 +21 37 +18 17 +28 39 +20.14
LONG	122 12 118 19 305 29 306 42 307 43	316 6 310 11 314 25 100 43 314 14	317 17 314 4 315 58 315 17	317 43 318 28 321 34 319 55	322 46 320 8 321 36 325 54 324 54	326 15 326 52 325 19 326 48	319 41 352 1 331 19 329 13	333 11 49 42 331 1 41 53	346 62 346 52 344 38 356 23 347 12
FLUX	133.7 98.6 187.0 56.7 76.2	7789.8 2145.5 448.5 1022.2 409.0	50.1 1027.4 296.3 283.0 9806.7	107.0 213.6 93.2 74.1 148.5	1868.6 94.0 1126.5 122.9 59.1	894.8 564.6 50.1 128.7 58.8	78.4 182.4 514.9 234.2	779.4 57.3 60.2 84.4 283.0	64.8 74.4 270.2 72.1 980.6
ş	1.70 2.47 3.08 4.73	0.00 0.03 20.03 20.03 20.03	22.23 22.53 22.53 22.53 22.53	8.00 8.00 8.00 8.00 8.00	94448 64448	11.03 10.03	4.60 2.06 1.98 2.47 3.68	1.53 3.66 2.20 2.20	4.23 4.08 2.68 3.74
>	2.40 4.20 4.50 6.10	0.90 2.30 3.40 3.40	4.2.60	4 W 4 4 4 W W 4 W 4 O O O O U	24.24.4 00.44.00 00.00.00	2.63 3.13 4.70 4.03	8 .00 2 .60 3 .20 4 .30	2.44 2.50 3.50 60	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
SEP	19.9 26.0 60.5	37.6	9.4.	,	5.6 27.6 0.1	646 848	50.0	3.1	2.9 38.4 51.2
DMAG	5.1	6.6	1.6		10.6	444	6 -	2.1	000
۵		70			0 10		8 4	0 %	10
רחא ס	>>	>>=>>	# > > # # > > #	> 11 >),),),),),),),),),),),),),)	>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	2 0 2 A A	* 10° × × ×
	>> 2 2		Pref	> 1 1 ×	σ σ =	V V V V V V V V V V V V V V V V V V V	>>==>	>	٦
		>>=>>	# > > n	83 83 83 83 83 83	> 1 2 1	82 IV 88 83 V 00 883 V 111	09 88 88 89 89 89 89 89 89 89 89	> =>>	>>>, >
P LUM	25.50 P V V	1 V 1 1 2 2 1 V 3 4 V 2 4 V 4 V 4 V 4 V 4 V 4 V 4 V 4 V 4	2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1.5 NE V Q 2 2 1 1 1 1 0 0	7	>> >> >> >> >> >> >> >> >> >> >> >> >>	2 NN V 5 NN V 0 V V	2.5 N K Z 2.5 N V X X X X X X X X X X X X X X X X X X
73)DEC 8-V SP LUM	0.03 AO PV 0.11 89.5 PV 0.20 82 0.14 85	0.24 81 V 1 0.23 82 IV V 1 0.19 83 V 0	0.23 82 III 0.22 82 IV 0.22 82 IV 0.23 81 II	0.20 0.19 0.19 0.19 0.19	0.21 81.5 NE V Q 0.15 85 V 0.21 82 II 0.17 83 V	0.22 82 IV 0.22 82 V 0.18 83 V 0.17 83 III	0.06 09 V 0.11 B8 V 0.22 B2 IV 0.17 B3 IV	0.21 82 N V 0.13 87 NN 0.18 85 IV 0.02 A0 V 0.17 82.5 V	0.05 82.5 N V 0.08 82.5 N V 0.20 82 V 1 0.09 8 P V
8-V SP LUM	52.8 56 5 -0.03 AO PV 54.8 38 27 -0.11 89.5 PV 5.3 -49 45 -0.20 82 20.9 -60 50 -0.14 85 20.6 -52 2 81	23.8 -11 0 -0.24 81 V 38.2 -53 19 -0.24 81 V 47.9 -41 32 -0.23 82 IV 46.5 49 27 -0.19 83 V 48.0 -42 20 -0.21 82 PNE V	50.3 -32 51 05 P III 53.9 -47 9 -0.23 82 IV 56.6 -41 58 -0.22 82 IV 57.0 -44 40 -0.21 82 V 1.9 -60 14 -0.23 81 II	4.4 -41 3 -0.20 8 17.7 -45 56 -0.19 8 21.4 -39 22 -0.19 8 24.4 -45 5 -0.16 8 30.8 -50 20 -0.19 8	33.8 -42 1 -0.21 81.5 NE V Q 36.1 -49 17 -0.15 85 V 40.1 -47 16 -0.21 82 II 40.3 -37 40 -0.17 83 V 49.9 -43 28 -0.16 86 III Q	56.8 -43 1 -0.22 82 IV 57.4 -41 59 -0.22 82 V 3.3 -46 56 85 IV 7.0 -45 10 -0.18 83 V 11.0 -44 23 -0.17 83 III	14.8 -60 51 -0.06 09 V 15.5 -9 17 -0.11 88 V 19.6 -40 33 -0.22 82 IV 20.8 -44 36 -0.17 83 IV 21.4 -36 46 -0.15 85 V	33.3 -41 4 -0.21 82 N V 31.8 31 27 -0.13 87 NN 34.0 -44 51 -0.18 85 IV 33.5 26 48 -0.02 A0 V 37.0 -29 41 -0.17 82.5 V	49.4 -25 40 -0.05 82.5 N V 52.0 -25 15 -0.08 82.5 N V 55.2 -29 8 -0.20 82 V 1 56.7 -14 11 -0.09 81 P V 57.2 -26 2 -0.19 81 V
A(1973)DEC 8-V SP LUM	12 52.8 56 5 -0.03 AO PV 12 54.8 38 27 -0.11 89.5 PV 13 5.3 -49 45 -0.20 82 13 20.9 -60 50 -0.14 85 13 20.6 -52 2 81	13 23.8 -11 0 -0.24 81 V 13 38.2 -53 19 -0.24 81 V 13 47.9 -41 32 -0.23 82 IV 13 46.5 49 27 -0.19 83 V 13 48.0 -42 20 -0.21 82 PNE V	13 50.3 -32 51 05 P III 13 53.9 -47 9 -0.23 82 IV 13 56.6 -41 58 -0.22 82 IV 13 57.0 -44 40 -0.21 82 V 14 1.9 -60 14 -0.23 81 II	14 4.4 -41 3 -0.20 B 14 17.7 -45 56 -0.19 B 14 21.4 -39 22 -0.19 B 14 24.4 -45 5 -0.16 B 14 30.8 -50 20 -0.19 B	14 33.8 -42 1 -0.21 81.5 NE V Q 14 36.1 -49 17 -0.15 85 V V V V V V V V V V V V V V V V V V	14 56.8 -43 1 -0.22 82 IV 14 57.4 -41 59 -0.22 82 V 15 3.3 -46 56 85 IV 15 7.0 -45 10 -0.18 83 V 15 11.0 -44 23 -0.17 83 III	15 14.8 -60 51 -0.06 09 V 15 15.5 -9 17 -0.11 B8 V 15 19.6 -40 33 -0.22 B2 IV 15 20.8 -44 36 -0.17 B3 IV 15 21.4 -36 46 -0.15 B5 V	15 33.3 -41 4 -0.21 82 N V 15 31.8 31 27 -0.13 87 NN 15 34.0 -44 51 -0.18 85 IV 15 33.5 26 48 -0.02 A0 V 15 37.0 -29 41 -0.17 82.5 V	15 49.4 -25 40 -0.05 82.5 N V 15 52.0 -25 15 -0.08 82.5 N V 15 55.2 -29 8 -0.20 82 V 15 56.7 -14 11 -0.09 8 P 15 57.2 -26 2 -0.19 81 V
A(1973)DEC 8-V SP LUM	UMA 12 52.8 56 5 -0.03 AO PV CVN 12 54.8 38 27 -0.11 89.5 PV CEN 13 5.3 -49 45 -0.20 82 13 20.9 -60 50 -0.14 85 13 20.6 -52 2 81	LON CEN 13 38.2 -53 19 -0.24 81 V I CEN 13 38.2 -53 19 -0.24 81 V I UMA 13 47.9 -41 32 -0.23 82 IV UMA 13 46.5 49 27 -0.19 83 V CEN 13 48.0 -42 20 -0.21 82 PNE V Q	3 CEN 13 50.3 -32 51 05 P III CEN 13 53.9 -47 9 -0.23 82 IV CEN 13 56.6 -41 58 -0.22 82 IV LON CEN 13 57.0 -44 40 -0.21 82 V CEN 14 1.9 -60 14 -0.23 81 II	CEN 14 4.4 -41 3 -0.20 B LUP 14 17.7 -45 56 -0.19 B 14 21.4 -39 22 -0.19 B LUP 14 24.4 -45 5 -0.16 B A LUP 14 30.8 -50 20 -0.19 B	CEN 14 33.8 -42 1 -0.21 81.5 NE V Q LUP 14 36.1 -49 17 -0.15 85 V V V LUP 14 40.1 -47 16 -0.21 82 II ON LUP 14 49.9 -43 28 -0.16 86 III Q	LUP 14 56.8 -43 1 -0.22 82 IV CEN 14 57.4 -41 59 -0.22 82 V LUP 15 3.3 -46 56 B5 IV A LUP 15 7.0 -45 10 -0.18 B3 V 15 11.0 -44 23 -0.17 B3 III	A CIR 15 14.8 -60 51 -0.06 09 V LIB 15 15.5 -9 17 -0.11 B8 V LUP 15 19.6 -40 33 -0.22 B2 IV CN LUP 15 20.8 -44 36 -0.17 B3 IV LUP 15 21.4 -36 46 -0.15 B5 V	1 CRB 15 33.3 -41 4 -0.21 82 N V CRB 15 31.8 31 27 -0.13 87 NN 15 34.0 -44 51 -0.18 85 IV CRB 15 33.5 26 48 -0.02 A0 V LIB 15 37.0 -29 41 -0.17 82.5 V	5 49.4 -25 40 -0.05 B2.5 N V 5 52.0 -25 15 -0.08 B2.5 N V 5 55.2 -29 8 -0.20 B2 V 1 5 56.7 -14 11 -0.09 8 P V
RA(1973)DEC B-V SP LUM	12 52.8 56 5 -0.03 AO PV 12 54.8 38 27 -0.11 89.5 PV 13 5.3 -49 45 -0.20 82 13 20.9 -60 50 -0.14 85 13 20.6 -52 2 81	ON CEN 13 38.2 -53 19 -0.24 81 V 1 CEN 13 38.2 -53 19 -0.24 81 V 1 CEN 13 47.9 -41 32 -0.23 82 IV UMA 13 46.5 49 27 -0.19 83 V CEN 13 48.0 -42 20 -0.21 82 PNE V Q	3 CEN 13 50.3 -32 51 05 P III CEN 13 53.9 -47 9 -0.23 B2 IV CEN 13 55.6 -41 58 -0.22 B2 IV ON CEN 13 57.0 -44 40 -0.21 B2 V CEN 14 1.9 -60 14 -0.23 B1 II	CEN 14 4.4 -41 3 -0.20 B LUP 14 17.7 -45 56 -0.19 B 14 21.4 -39 22 -0.19 B LUP 14 24.4 -45 5 -0.16 B LUP 14 30.8 -50 20 -0.19 B	CEN 14 33.8 -42 1 -0.21 81.5 NE V Q LUP 14 36.1 -49 17 -0.15 85 V V V LUP 14 40.1 -47 16 -0.21 82 II ON LUP 14 49.9 -43 28 -0.16 86 III Q	LUP 14 56.8 -43 1 -0.22 82 IV CEN 14 57.4 -41 59 -0.22 82 V LUP 15 3.3 -46 56 B5 IV A LUP 15 7.0 -45 10 -0.18 B3 V 15 11.0 -44 23 -0.17 B3 III	CIR 15 14.8 -60 51 -0.06 09 V LIB 15 15.5 -9 17 -0.11 B8 V LUP 15 19.6 -40 33 -0.22 B2 IV LUP 15 20.8 -44 36 -0.17 B3 IV LUP 15 21.4 -36 46 -0.15 B5 V	CRB 15 33.3 -41 4 -0.21 82 N V CRB 15 31.8 31 27 -0.13 87 NN 15 34.0 -44 51 -0.18 85 IV CRB 15 33.5 26 48 -0.02 A0 V LIB 15 37.0 -29 41 -0.17 82.5 V	1 SCO 15 49.4 -25 40 -0.05 B2.5 N V SCO 15 52.0 -25 15 -0.08 B2.5 N V SCO 15 55.2 -29 B -0.20 B2 V 1 SCO 15 56.7 -14 11 -0.09 B P SCO 15 57.2 -26 2 -0.19 B1 V

ULIRAVICLET FLUX OF THE BRIGHTEST STARS

ULTRAVIOLET FLUX OF THE BRIGHTEST STARS

E (B-V)	0.01 0.20 0.24 0.05	204 4	0.00	0.07	04 0 0	0.03	0.03	0.13 0.08 0.03
LAT	25 3 3 1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	4 m 10 4	, o w w w .	######################################	4H4H8 NO4	. — w	6 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	23 52 14 47 12 25 12 49 5 30
ONG	46 +1 6 +2 11 +2 50 +1 45 +2		356 + 32 + 13	24 + 3 53 - 1	44 44 44 64 64 64 64 64 64 64 64 64 64 6	PP I PP I	40 -1 3 -1 26 +1 59 -1	2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
נפ	5 338 5 340 5 340 6 353	መመመ መ m	7 8 8 7 8 8 7 8 8 8 8 8 8 8 8 8 8 8 8 8	44.6 44.6 44.6 44.6 44.6 44.6 44.6 44.6	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	, w w w w w w w w w w w w w w w w w w w	0 348 6 21 1 67 7 359	333 2 63 7 63 7 90
FLUX	448.1 1219.4 769.4 178.5	4 @ W W W	162.8 70.3 1466.2	894.4 3904.4 378.4 5.83.6 5.23.6	8560 8560 8560 8560 8560 8560 8560	2 6 2 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6	204-0 52-6 638-1 93-1	246. 74. 1485.0 68.4
3	2.13 2.05 3.13 4.13	0,4,4,6		1.78 2.28 2.36 4.07 4.67	2.03 2.94 2.96 2.96 3.90 3.90	00440	2.62 0.00 3.83 2.56	3.18 0.83 2.87 3.07
>	8 2 2 4 6 0 6 4 6 0 6 6 6 6 6 6 6 6 6 6 6 6 6	0,0000	4 W C C C C C C C C C C C C C C C C C C	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	2000 0000 0000 00000 00000 00000 00000 0000	. m o o	600.00 000.00 000.00	2000 2000 2000 2000 2000
SEP	15.5	1.1 4 20.7 6.7 23.9		346.0 346.0 4.7	17.9 47.4 55.6 6.1	8.2 3 23.4 32.5	12.4 57.1 5 9.6	63.1 46.6 6 13.8
DMAG	e 4	7.0 10.7 2.7		00 W	4 9 5	6.5 11.3	w w	9.0
LUM	>>>>	> II > >	-2->>	>1 111 111 >	>II >	>> ==> ==	11 2 2 1	>>>=
MOJ	•		2>		>II > 1 >	:>> 1	11 > > 11	ON 1111
SP		22.58 N V V V V V V V V V V V V V V V V V V	•		>-> > -	w .	83 1111 82 V A0 V 82 V 1111	81 E V 67 V 82 V 89 IIII
8-V SP LUM	2002 2003 8	0.04 82 IV 0.16 82.5 N V 0.14 81 II 0.15 85 IV 0.07 83 Q V	.17 82 .25 80 .02 09.	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0.21 82 1 0.13 81 1 0.10 88 V 0.22 83 8 I 0.18 82.5 E V 0.21 81 V	w .	8 2 0 2 B	
SC 8-V SP	0.23 62 V · O.11 80.5 V V · O.19 82 V V V V V V V V V V V V V V V V V V	19 23 0.04 82 IV 27 51 -0.16 82.5 N V 25 31 0.14 81 II 46 22 -0.15 85 IV 47 30 -0.07 83 Q V 25 3 -0.11 82 V	4 38 -0.17 82 4 47 -0.25 80 0 30 0.02 09.	0.21 81.5 V 0.22 62 II 0.13 86 II 0.15 83 II	0.21 82 1 0.13 81 1 0.10 88 V 0.22 83 8 I 0.18 82.5 E V 0.21 81 V	46 1 -0.18 B3 4 21 -0.04 B2 22 46 B0 50 5 -0.07 B0.5 42 18 B0 34 23 -0.02 B9	0.18 83 1 82 v 0.00 A0 v 0.17 82 v	0.15 81 0.01 07 0.21 82 0.04 89
RA(1973)DEC 8-V SP	38 19 -0.23 62 V 7 22 32 -0.11 60 V 19 43 -0.07 80.5 V 20 35 -0.04 81 V	0.4 -19 23 0.04 82 IV 9.6 -25 31 0.14 81 II 8.9 46 22 -0.15 85 IV 5.2 -47 30 -0.07 83 Q V 8.6 -25 3 -0.11 82 V	9.6 -34 38 -0.17 82 4.5 -42 47 09 4.2 -28 9 -0.25 80 5.7 -10 30 0.02 09.	38 0 -0.21 81.5 V 37 58 -0.22 62 I 65 44 -0.13 86 I 33 7 -0.15 83 I 62 50 82 V	24 58 -0.21 82 1 56 21 -0.13 81 1 60 39 -0.10 88 W 37 16 -0.22 83 8 I 49 51 -0.18 82.5 E V 37 4 -0.21 81 V 32 33 077 1	8.9 4 21 -0.16 B3 8.9 4 21 -0.04 B2 0.3 -22 46 B0 4.5 -50 5 -0.07 B0.5 7.6 20 48 -0.15 82 6.7 -42 18 B0	45 58 -0.18 83 1 10 49 82 V 38 45 -0.00 A0 V 35 39 -0.17 82 V 27 1 -0.10 88 1	62 12 -0.15 81 33 20 -0.01 07 26 19 -0.21 82 32 38 -0.04 89 -4 55 -0.10 89
A(1973)DEC 8-V SP	15 58.3 -38 19 -0.23 62 V 15 58.7 -22 32 -0.11 80 V 16 3.9 -19 43 -0.07 80.5 V 16 4.8 -36 43 -0.19 82 N V 16 5.2 -20 35 -0.04 81 V	16 10.4 -19 23 0.04 82 IV 16 10.7 -27 51 -0.16 82.5 N V 16 19.6 -25 31 0.14 81 II 16 18.9 46 22 -0.15 85 IV 16 25.2 -47 30 -0.07 83 Q V	16 29.6 -34 38 -0.17 82 16 34.5 -42 47 09 16 34.2 -28 9 -0.25 80 16 35.7 -10 30 0.02 09.	16 50.0 -38 0 -0.21 81.5 V 16 50.5 -37 58 -0.22 62 I 17 8.7 65 44 -0.13 86 I 17 16.3 33 7 -0.15 83 I 17 21.5 -62 50 82 V	17 20.3 -24 58 -0.21 B2 17 23.1 -56 21 -0.13 B1 17 28.7 -60 39 -0.10 B8 17 28.9 -37 16 -0.22 B3 B I 17 29.8 -49 51 -0.18 B2.5 E V 17 31.8 -37 4 -0.21 B1 V 17 32.9 -32 33 0.07 1	17 38.7 46 1 -0.18 B3 17 58.9 4 21 -0.04 B2 18 0.3 -22 46 B0.5 18 4.5 -50 5 -0.07 B0.5 18 16.7 -42 18 B0 18 22.4 -34 23 -0.02 B9	18 25.0 -45 58 -0.18 83 1 18 29.9 -10 49 82 V 18 36.0 38 45 -0.00 A0 V 18 42.5 -35 39 -0.17 82 V 16 44.0 -27 1 -0.10 88 I	18 49.7 -62 12 -0.15 81 18 49.1 33 20 -0.01 07 18 53.6 -26 19 -0.21 82 18 57.9 32 38 -0.04 89 19 4.8 -4 55 -0.10 69
RA(1973)DEC B-V SP	5 58.3 -38 19 -0.23 62 V 5 58.7 -22 32 -0.11 60 V 6 3.9 -19 43 -0.07 80.5 V 6 4.8 -36 43 -0.19 82 N V 6 5.2 -20 35 -0.04 81 V	SCO 16 10.4 -19 23 0.04 82 IV SCO 16 10.7 -27 51 -0.16 82.5 N V SCO 16 19.6 -25 31 0.14 81 II HER 16 18.9 46 22 -0.15 85 IV NOR 16 25.2 -47 30 -0.07 83 Q V	16 29.6 -34 38 -0.17 82 16 34.5 -42 47 09 00 16 34.2 -28 9 -0.25 80 PH 16 35.7 -10 30 0.02 09.	6 50.0 -38 0 -0.21 81.5 V 6 50.5 -37 58 -0.22 62 I 7 8.7 65 44 -0.13 86 I 7 16.3 33 7 -0.15 83 I 7 21.5 -62 50 82 V	OPH 17 20.3 -24 58 -0.21 82 1 1 ARA 17 23.1 -56 21 -0.13 81 1 1 ARA 17 28.7 -60 39 -0.10 88 V SCO 17 28.9 -37 16 -0.22 83 8 I ARA 17 29.8 -49 51 -0.18 82.5 E V SCO 17 31.8 -37 4 -0.21 81 V SCO 17 20.6 -39 3 -0.22 82	HER IT 38.7 46 I -0.18 B3 OPH IT 58.9 4 21 -0.04 B2 18 0.3 -22 46 B0 ARA 18 4.5 -50 5 -0.07 B0.5 HER 18 7.6 20 48 -0.15 82 SGR 18 22.4 -34 23 -0.02 B9	8 25.0 -45 58 -0.18 B3 I 8 29.9 -10 49 B2 V 8 36.0 38 45 -0.00 A0 V 8 42.5 -35 39 -0.17 B2 V 8 44.0 -27 I -0.10 B8 I	8 49.7 -62 12 -0.15 81 8 49.1 33 20 -0.01 07 8 53.6 -26 19 -0.21 82 8 57.9 32 38 -0.04 89 9 4.8 -4 55 -0.10 69
RA(1973)DEC 8-V SP	UP 15 58.3 -38 19 -0.23 B2 V CO 15 58.7 -22 32 -0.11 B0 V CO 16 3.9 -19 43 -0.07 B0.5 V V UP 16 4.8 -36 43 -0.19 B2 N V CO 16 5.2 -20 35 -0.04 B1 V	CO 16 10.4 -19 23 0.04 82 IV CO 16 10.7 -27 51 -0.16 82.5 N V CO 16 19.6 -25 31 0.14 81 II ER 16 18.9 46 22 -0.15 85 IV OR 16 25.2 -47 30 -0.07 83 Q V CO 16 28.6 -25 3 -0.11 82 V	16 29.6 -34 38 -0.17 82 16 34.5 -42 47 09 10 5CO 16 34.2 -28 9 -0.25 80 14 16 35.7 -10 30 0.02 09.	CO 16 50.0 -38 0 -0.21 81.5 V CO 16 50.5 -37 58 -0.22 62 I KA 17 8.7 65 44 -0.13 86 I ER 17 16.3 33 7 -0.15 83 I 17 21.5 -62 50 82 V	HETA DPH 17 20.3 -24 58 -0.21 B2 I APMA ARA 17 23.1 -56 21 -0.13 B1 I ELTA ARA 17 23.1 -56 21 -0.10 B8 V PSILON SCO 17 28.9 -37 16 -0.22 B3 B I LPHA ARA 17 29.8 -49 51 -0.18 B2.5 E V AMBDA SCO 17 31.8 -37 4 -0.21 B1 V APPA SCO 17 31.8 -37 4 -0.21 B1 V	HER IT 38.7 46 I -0.18 B3 6 OPH IT 58.9 4 21 -0.04 B2 18 0.3 -22 46 B0 7 ARA 18 4.5 -50 5 -0.07 B0.5 2 HER 18 7.6 20 48 -0.15 82 0N SGR 18 22.4 -34 23 -0.02 B9	Et 18 25.0 -45 58 -0.18 83 1 18 29.9 -10 49 82 V YR 18 36.0 38 45 -0.00 A0 V 18 42.5 -35 39 -0.17 82 V GR 16 44.0 -27 1 -0.10 88 1	AV 18 49.7 -62 12 -0.15 81 TR 18 49.1 33 20 -0.01 07 GR 18 53.6 -26 19 -0.21 82 YR 18 57.9 32 38 -0.04 89 OL 19 4.8 -4 55 -0.10 69

£(8-V)	0.09	0.05	0.03 0.03	0.01	0.24 0.05 0.12 0.39	0.03	0.03	0.14	0.03
LAT	+12 45 + 4 52 -23 55 + 7 26 -13 17	+10 15 - 2 4 + 7 8 +10 31 -28 28	- 1 4 38 - 1 8 5 - 1 1 1 0 - 1 1 1 0	-35 11 + 5 45 -16 35 + 5 0	+ 0 58 - 0 6 - 1 0 3 - 3 5 1	+14 1 -44 59 - 1 18 - 3 13	-21 45 -52 28 -36 26 -144 44	-47 36 -16 59 -40 39 -16 11	-16 -49 36 -40 23 - 0 47 -61 33
LONG	70 37 56 22 353 36 67 58 31 46	78 42 59 43 75 13 81 48 5 31	62 29 41 35 65 11 75 49 65 5	340 55 86 4 55 25 88 22 78 22	88 87 9 88 89 89 89 89 36	307 32 31 56 95 29 94 50 6 6	80 5 350 0 75 15 65 59 97 22	66 50 96 39 78 51 97 39 20 30	162 12 78 47 88 16 109 57 67 35
FLUX	135.4 189.6 50.2 53.6	98.1 51.2 120.8 63.3 85.0	51.2 68.2 67.5 72.1	976.2 56.5 77.9 83.4	112.6 129.3 63.4 107.6 53.4	633.0 74.1 56.2 85.0	51.2 746.9 74.4 102.7	50.2 179.6 95.7 53.9	96.8 51.7 130.0 80.6 54.1
À	3.04 4.04 4.04 6.04	24.0 24.0 24.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25	4.12 3.87 3.74 4.83	04 E E E	4 W 4 W W 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1-76 3-72 4-02 3-57 2-46	4.093 4.093 4.13	3.44 2.70 1.43 1.53	3.02 3.83 2.17 4.50 3.78
>	4.4.4 0.0.4 0.0.4 0.0.4	24.8.4 000.4.4 000.4.0	5.00 6.44 6.40 6.40 6.40 6.40	4.4.4.6 0.00.4.4 0.00.00.00.00.00.00.00.00.00.00.00.00.0	4 N 4 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6.44 0.44 0.60 0.60 0.60	5.00 5.00 5.00 5.00 5.00 5.00 5.00	4 + 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	W 4 84 84 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
SEP	28.3 2.1 29.1	£	1.2	56.5 3 26.2 4 1.0 3	20.3 6 3.1 22.2 15.2 3	13.9	28.8	64.3	
DMAG	2.9	4	4.1	6.0	4466	3.7	8 •	w &	
		o			ø	Œ			٠
KON	>> > > = = = = = = = = = = = = = = = =	0 × 111 × 11	, II, A	> H H > N	σ	, , , , , , , , , , , , , , , , , , ,	>>>	>>>==	
FON	>> > > = = = = = = = = = = = = = = = =		, II , , , , , , , , , , , , , , , , ,	> II > >		H . H H	е У У У 1 V V	>	96 1111 V
SP LUM	>	11 >11 > 11		63 62 85 86 111 85 V		, , , , , , , , , , , , , , , , , , ,	w	88 09 88 82 82 V	ш
ند	NO D WO O W W W W W W W W W W W W W W W W	9.5 E III 22 IIV 3 IV	a.w w	w 00 00 00	>>>> WW&W	2	2 2 2 3 B	32 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
B-V SP L	0.15 82 1 80.5 1 0.10 88 N V 0.13 83 1	0.03 89.5 III 0.16 83 E V 81 IV 0.15 83 IV	0.16 83 0.06 89.5 0.18 83 0.42 8 P	0.20 B3 0.08 B2 0.13 B6 0.12 B5	0.04 81 E IV . 0.23 81 E V 0.12 82 E V 0.01 07 V	0.25 82 III. 0.18 83 P V 0.12 83 IV 0.13 83 III.	0.18 83 E 0.14 65 0.16 82 E 0.04 81 PE 0.09 82	0.09 88 V 0.20 09 V 0.09 88 V 0.13 82 I	0.09 86 P 0.12 85 PE 0.04 89.5 0.02 80.5
-V SP L	22 59 5 -0.15 82 1 22 59 44 30 -0.10 88 N V 34 23 -0.13 83 1 -7 5 -0.01 80.5	45 3 -0.03 89.5 III 22 31 -0.16 83 E V 40 31 81 IV 47 50 82 III 35 21 -0.15 83 IV	3 32 -0.18 83 0 53 -0.06 89.5 5 30 -0.18 83 7 56 0.42 8 P	56 49 -0.20 83 48 51 -0.08 82 11 12 -0.13 86 50 15 36 23 -0.12 85	7 24 -0.04 81 E IV . 6 3 -0.23 81 E V 6 11 81 P V 4 47 -0.12 82 E V 3 49 -0.01 07 V	70 25 -0.25 82 III. 19 35 -0.18 83 P V 51 3 -0.12 83 IV 49 11 -0.13 83 III 37 29 -0.12 88 III	25 47 -0.18 83 E 47 5 -0.14 65 12 3 -0.16 82 E 1 13 -0.04 81 PE 42 59 -0.09 82	0 15 -0.09 88 V 8 54 -0.20 09 V 0 41 -0.09 88 V 0 4 -0.13 82 I 9 45 0.09 A3 V	2 10 -0.09 86 P 3 40 -0.12 85 PE 5 3 -0.04 89.5 9 16 -0.02 80.5 9 19 -0.11 85
A(1973)DEC B-V SP L	19 12.8 39 5 -0.15 82 1 19 16.6 22 59 80.5 1 19 20.7 -44 30 -0.10 88 N V 19 30.8 34 23 -0.13 83 1 19 35.4 -7 5 -0.01 80.5 1	19 44.1 45 3 -0.03 89.5 III 19 49.9 22 31 -0.16 83 E V 19 49.7 40 31 81 IV 19 51.3 47 50 82 III 19 58.0 -35 21 -0.15 83 IV	5.7 23 32 -0.18 83 9.9 -0 53 -0.06 89.5 4.1 25 30 -0.18 83 6.8 37 56 0.42 8 P.	20 23.5 -56 49 -0.20 83 20 29.2 48 51 -0.08 82 20 31.9 11 12 -0.13 86 20 41.4 50 15 82 20 46.4 36 23 -0.12 85	8.9 47 24 -0.04 81 E IV . 0.2 46 3 -0.23 81 E V 0.0 36 11 81 P V 6.8 34 47 -0.12 82 E V 7.4 43 49 -0.01 07 V	21 28.3 70 25 -0.25 82 III. 21 35.6 -19 35 -0.18 83 P V 21 41.1 51 3 -0.12 83 IV 21 45.8 49 11 -0.13 83 III 21 52.3 -37 29 -0.12 88 III	21 51.8 25 47 -0.18 83 E 22 6.5 -47 5 -0.14 65 22 20.2 12 3 -0.16 82 E 22 23.9 1 13 -0.04 81 PE 22 29.3 42 59 -0.09 82	4.0 -015 -0.09 88 V 8.0 38 54 -0.20 09 V 0.1 10 41 -0.09 88 V 0.3 40 4 -0.13 82 I 6.2 -29 45 0.09 A3 V	.7 42 10 -0.09 86 P .5 3 40 -0.12 85 PE .4 15 3 -0.04 89.5 .5 59 16 -0.02 80.5 .5 -9 19 -0.11 85
RA(1973)DEC 8-V SP L	9 12.8 39 5 -0.15 82 1 9 16.6 22 59 80.5 1 9 20.7 -44 30 -0.10 88 N V 9 30.8 34 23 -0.13 83 1 9 35.4 -7 5 -0.01 80.5 1	9 44.1 45 3 -0.03 89.5 III 9 49.9 22 31 -0.16 83 E V 9 49.7 40 31 81 IV 9 51.3 47 50 82 III 9 58.0 -35 21 -0.15 83 IV	5.7 23 32 -0.18 83 9.9 -0 53 -0.06 89.5 14.1 25 30 -0.18 83 16.8 37 56 0.42 8 P	23.5 -56 49 -0.20 83 29.2 48 51 -0.08 82 31.9 11.12 -0.13 86 41.4 50 15 82 46.4 36 23 -0.12 85	0.58.9 47.24 -0.04 81 E IV . 10.2 46 3 -0.23 81 E V 10.0 36 11 81 P V 116.8 34 47 -0.12 82 E V 117.4 43 49 -0.01 07 V	1 28.3 70 25 -0.25 82 III. 1 35.6 -19 35 -0.18 83 P V 1 41.1 51 3 -0.12 83 IV 1 45.8 49 11 -0.13 83 III 1 52.3 -37 29 -0.12 88 III	1 51.8 25 47 -0.18 83 E 2 5.5 -47 5 -0.14 05 2 20.2 12 3 -0.16 82 E 2 23.9 1 13 -0.04 81 PE 2 29.3 42 59 -0.09 82	2 34.0 -0 15 -0.09 88 V 2 36.0 38 54 -0.20 09 V 2 40.1 10 41 -0.09 88 V 2 40.3 40 4 -0.13 82 I 2 56.2 -29 45 0.09 A3 V	3 0.7 42 10 -0.09 86 P 3 2.5 3 40 -0.12 85 PE 3 3.4 15 3 -0.04 89.5 3 5.5 59 16 -0.02 80.5 3 16.5 -9 19 -0.11 85
A(1973)DEC B-V SP L	YR 19 12.8 39 5 -0.15 82 1 UL 19 16.6 22 59 80.5 1 GR 19 20.7 -44 30 -0.10 88 N V YC 19 30.8 34 23 -0.13 83 1 QL 19 35.4 -7 5 -0.01 80.5 1	19 44.1 45 3 -0.03 89.5 III 19 49.9 22 31 -0.16 83 E V 19 49.7 40 31 81 IV 19 51.3 47 50 82 III 19 58.0 -35 21 -0.15 83 IV	20 5.7 23 32 -0.18 83 20 9.9 -0 53 -0.06 89.5 20 14.1 25 30 -0.18 83 20 16.8 37 56 0.42 8 P. 20 20.9 24 21 -0.06 81 E	20 23.5 -56 49 -0.20 83 20 29.2 48 51 -0.08 82 20 31.9 11 12 -0.13 86 20 41.4 50 15 82 20 46.4 36 23 -0.12 85	6 20 58.9 47 24 -0.04 81 E IV . 6 21 0.2 46 3 -0.23 81 E V 21 10.0 36 11 81 P V 6 21 16.8 3447 -0.12 82 E V 6 21 17.4 43 49 -0.01 07 V	21 28.3 70 25 -0.25 82 III. 21 35.6 -19 35 -0.18 83 P V 21 41.1 51 3 -0.12 83 IV 21 45.8 49 11 -0.13 83 III 21 52.3 -37 29 -0.12 88 III	EG 21 51.8 25 47 -0.18 83 E RU 22 6.5 -47 5 -0.14 05 EG 22 20.2 12 3 -0.16 B2 E QR 22 23.9 1 13 -0.04 B1 PE AC 22 29.3 42 59 -0.09 B2	0R 22 34.0 -0 15 -0.09 88 V AC 22 38.0 38 54 -0.20 09 V EG 22 40.1 10 41 -0.09 88 V AC 22 40.3 40 4 -0.13 82 I SA 22 56.2 -29 45 0.09 A3 V	SC 23 2.5 3 40 -0.09 86 P SC 23 2.5 3 40 -0.12 85 PE EG 23 3.4 15 3 -0.04 89.5 AS 23 5.5 59 16 -0.02 80.5 QR 23 16.5 -9 19 -0.11 85

ULIRAVIULES FLUX OF THE BRIGHTEST STARS

E(8-V) 0.20 - 6 22 LAT 102.7 115 33 LONG FLUX 4.13 3 4.80 SEP 3.4 DMAG 2.1 Ē Ş 9071 SIGMA CAS 23 57.6 55 36 -0.08 BL 8-V ULTRAVIOLET FLUX OF THE BRIGHTEST STARS NAME RA(1973)DEC ¥