

Doc. Number .
☐ Tentative Specification
 ☐ Preliminary Specification
Approval Specification

MODEL NO.: G104AGE SUFFIX: L02

Customer:	
APPROVED BY	SIGNATURE
Name / Title Note Product Version : C2	
Please return 1 copy for signature and comments.	your confirmation with your

Approved By	Checked By	Prepared By

CONTENTS

1. GENERAL DESCRIPTION	5
1.1 OVERVIEW	5
1.2 FEATURES	5
1.3 APPLICATION	5
1.4 GENERAL SPECIFICATIONS	5
1.5 MECHANICAL SPECIFICATIONS	6
2. ABSOLUTE MAXIMUM RATINGS	7
2.1 ABSOLUTE RATINGS OF ENVIRONMENT	7
2.2 ELECTRICAL ABSOLUTE RATINGS	8
2.2.1 TFT LCD MODULE	8
2.2.2 BACKLIGHT UNIT	8
3. ELECTRICAL CHARACTERISTICS	9
3.1 TFT LCD MODULE	9
3.2 BACKLIGHT UNIT	11
4. BLOCK DIAGRAM	12
4.1 TFT LCD MODULE	12
5. INPUT TERMINAL PIN ASSIGNMENT	
5.1 TFT LCD MODULE	
5.2 BACKLIGHT UNIT(Converter connector pin)	
5.3 COLOR DATA INPUT ASSIGNMENT	
6. INTERFACE TIMING	
6.1 INPUT SIGNAL TIMING SPECIFICATIONS	
6.2 POWER ON/OFF SEQUENCE	
6.3 The Input Data Format	
6.4 Scanning Direction	
7. OPTICAL CHARACTERISTICS	
7.1 TEST CONDITIONS	
7.2 OPTICAL SPECIFICATIONS	
8. RELIABILITY TEST CRITERIA	
9. PACKAGING	
9.1 PACKING SPECIFICATIONS	
9.2 PACKING METHOD	
9.3 UNPACKING METHOD	
10. DEFINITION OF LABELS	
10.1 InnoLux MODULE LABEL	28

11. PRECAUTIONS	29
11.1 ASSEMBLY AND HANDLING PRECAUTIONS	
11.2 SAFETY PRECAUTIONS	29
12. MECHANICAL CHARACTERISTICS	30

REVISION HISTORY

Version	Date	Page	Description
2.0	Jul,03,2013	All	G104AGE-L02 Approval Spec. was first issued
2.1	Nov,03,2016	9	3.2 Change PWM Control Frequency Min. from 190Hz to 200Hz
		14	6.1 Add Note(3) The Tv(Tvd+Tvb) must be integer, otherwise, this module would operate abnormally.
		18	7.1 Input Signal & Converter Voltage & Converter Duty add "According to typical value in "3. ELECTRICAL CHARACTERISTICS"
		18	7.2 Add "and all items are measured at the center point of screen except white variation"
		22	8 Delete Note(2):Temperature of panel display surface area should be 85 °C Max
3.0	Jul,08,2019	8	2.2 Change Power Supply Voltage Max. from 7 to 6
		All	Change Revision from C1 to C2
3.1	Jul,21,2021	12	4 Input Connector Part change
		13	5.1 Note (1) Connector Part change
3.2	Jan,06,2022	14	5.2 BACKLIGHT UNIT (CONVERTER CONNECTOR PIN) Note(1) add Connector Part No 2nd source

1. GENERAL DESCRIPTION

1.1 OVERVIEW

The G104AGE-L02 model is a 10.4" TFT-LCD IAV module with a white LED Backlight Unit and a 20-pin 1ch-LVDS interface. This module supports 800×600 SVGA mode and displays 262k/16.2M colors. The converter for the Backlight Unit is built in.

1.2 FEATURES

- Wide viewing angle
- High contrast ratio
- Fast response time
- SVGA (800 x 600 pixels) resolution
- Wide operating temperature
- DE (Data Enable) mode
- LVDS (Low Voltage Differential Signaling) interface
- Reversible scan direction
- RoHS Compliance

1.3 APPLICATION

- TFT LCD Monitor
- Industrial Application
- Amusement

1.4 GENERAL SPECIFICATIONS

Item	Specification	Unit	Note
Diagonal Size	10.4	inch	
Active Area	211.2(H) x 158.4(V)	mm	(1)
Bezel Opening Area	214.8 x 162.7	mm	
Driver Element	a-si TFT active matrix	-	-
Pixel Number	800 x R.G.B. x 600	pixel	-
Pixel Pitch	0.264(H) x 0.264(V)	mm	-
Pixel Arrangement	RGB vertical stripe	-	-
Display Colors	262k/16.2M	color	-
Transmissive Mode	Normally white	-	-
Surface Treatment	Hard coating (3H), AG	-	-
Module Power Consumption	4.1	W	Тур.

1.5 MECHANICAL SPECIFICATIONS

Item		Min.	Тур.	Max.	Unit	Note
	Horizontal (H)	242.5	243	243.5	mm	
Module Size	Vertical (V)	183.5	184	184.5	mm	(1)
	Depth (D)	-	8.0	8.5	mm	
Weight		-	505	540	g	-
I/F connector m	ounting position	The mounting inclination of the connector makes the screen center within ±0.5mm as the horizontal.			-	(2)

Note (1) Please refer to the attached drawings for more information of front and back outline dimensions.

(2) Connector mounting position

2. ABSOLUTE MAXIMUM RATINGS

2.1 ABSOLUTE RATINGS OF ENVIRONMENT

Itom	Item Symbol		lue	Unit	Note
iteiii	Syllibol	Min.	Max.	Offic	Note
Operating Ambient Temperature	T _{OP}	-30	+85	°C	(1)(2)(3)(4)
Storage Temperature	T _{ST}	-30	+85	°C	(1)(2)(3)(4)

Note (1) Temperature and relative humidity range is shown in the figure below.

- (2) 90 %RH Max. (Ta \leq 40 °C).
- (3) Wet-bulb temperature should be 39 °C Max. (Ta > 40 °C).
- (4) No condensation.

Relative Humidity (%RH)

2.2 ELECTRICAL ABSOLUTE RATINGS

2.2.1 TFT LCD MODULE

Itom	Item Symbol		ue	Unit	Note	
itein	Syllibol	Min.	Max.	Offic	Note	
Power Supply Voltage	VCC	-0.3	6	V	(1)	

2.2.2 BACKLIGHT UNIT

Item	Symbol	Va	lue	Unit	Note	
item	Symbol	Min.	Max.	O I II	Note	
Converter Voltage	Vi	-0.3	18	V	(1), (2)	
Enable Voltage	EN		5.5	V		
Backlight Adjust	ADJ		5.5	V		

Note (1)Permanent damage to the device may occur if maximum values are exceeded. Function operation should be restricted to the conditions described under Normal Operating Conditions.

Note (2) Specified values are for lamp (Refer to 3.2 for further information).

3. ELECTRICAL CHARACTERISTICS

3.1 TFT LCD MODULE

Ta = 25 ± 2 °C

Parameter		Symbol	Value			Unit	Note
Farameter	Parameter		Min.	Тур.	Max.	Oill	Note
Power Supply Voltage		V _{CC}	3.0	3.3	3.6	>	(1) at Vcc=3.3V
Rush Current		I _{RUSH}	-	-	1.5	Α	(2)
Dower Supply Current	White			310	375	mA	(3)a, at Vcc=3.3V
Power Supply Current	Black	-	-	410	495	mA	(3)b, at Vcc=3.3V
Power Consumption		P _L	-	1.35	1.63	W	
LVDS differential input voltage		VID	100	-	600	mV	-
LVDS common input	oltage/	VICM	0.7	-	1.6	V	-

Note (1)The assembly should be always operated within above ranges.

Note (2)Measurement Conditions:

Vcc rising time is 470μs

Note (3)The specified power supply current is under the conditions at Vcc = 3.3V, Ta = 25 ± 2 °C, f_v = 60 Hz, whereas a power dissipation check pattern below is displayed.

b. Black Pattern

Active Area

3.2 BACKLIGHT UNIT

 $Ta = 25 \pm 2 \, ^{\circ}C$

Paramete	or.	Symbol		Value		Unit	Note
Paramete	Symbol	Min.	Тур.	Max.	5	Note	
Converter Power Su	pply Voltage	V_{i}	7	12.0	17	V	
Converter Power Su	pply Current	l _i	-	0.25	0.3	Α	@ Vi = 12V (Duty 100%)
LED Power Con	P _{LED}	-	3.0	3.6	W	@ Vi = 12V (Duty 100%)	
EN Control Level	Backlight on		2.0	3.3	5.0	V	
EN Control Level	Backlight off	_	0		0.8	٧	
PWM Control Level	PWM High Level		2.0	3.3	5.0	٧	
1 WW Control Level	PWM Low Level	_	0	-	0.15	V	
PWM Control D	-	2	ı	100	%	Note(3)	
PWM Control Fr	f_{PWM}	200	200	20,000	Hz	Note(3)	
LED Life Ti	me	L _L	50,000	-	-	Hrs	(2)

Note (1)LED current is measured by utilizing a high frequency current meter as shown below:

Note (2) The lifetime of LED is defined as the time when it continues to operate under the conditions at Ta = 25 ± 2 °C and Duty 100% until the brightness becomes \leq 50% of its original value. Operating LED under high temperature environment will reduce life time and lead to color shift.

Note (3) At 200 ~1KHz PWM control frequency, duty ratio range is restricted from 2% to 100%. $1K \sim 20KHz$ PWM control frequency, minimum duty on-time ≥ 20 us

4. BLOCK DIAGRAM

4.1 TFT LCD MODULE

5. INPUT TERMINAL PIN ASSIGNMENT

5.1 TFT LCD MODULE

Pin	Name	Description	Remark
1	VCC	Power supply	
2	VCC	Power supply	
3	GND	Ground	
4	DPS	Reverse Scan Function [High: Enable, Low: Disable]	Note (3)
5	RX0-	Differential Data Input, CH0 (Negative)	
6	RX0+	Differential Data Input, CH0 (Positive)	
7	GND	Ground	
8	RX1-	Differential Data Input, CH1 (Negative)	
9	RX1+	Differential Data Input , CH1 (Positive)	
10	GND	Ground	
11	RX2-	Differential Data Input , CH2 (Negative)	
12	RX2+	Differential Data Input , CH2 (Positive)	
13	GND	Ground	
14	RXC-	Differential Clock Input (Negative)	
15	RXC+	Differential Clock Input (Positive)	
16	GND	Ground	
17	RX3-	Differential Data Input, CH3 (Negative)	
18	RX3+	Differential Data Input, CH3 (Positive)	
19	RSV	Reserved for internal test. Please treat it as NC.	
20	SEL68	LVDS 6/8 bit select function control, Low or NC → 6 bit Input Mode High → 8bit Input Mode	Note (3)

Note (1) Connector Part No.: Sin Sheng MSB24013P20_HA or equivalent.

Note (2)User's connector Part No.: STARCONN 093A20-010010-T4, HRS DF19G-20S-1C(05), STM P24013P20 or equivalent.

Note (3) "Low" stands for 0V. "High" stands for 3.3V. "NC" stands for "No Connected".

5.2 BACKLIGHT UNIT(Converter connector pin)

Pin	Symbol	Description	Remark
1	V_{i}	Converter input voltage	12V
2	V_{GND}	Converter ground	Ground
3	EN	Enable pin	3.3V
4	ADJ	Backlight Adjust	PWM Dimming (Hi: 3.3V _{DC} , Lo: 0V _{DC})
5	NC	Not Connect	Ground

Note (1)Connector Part No.: 3823K-F05N-00L (Entery) or 50277-00501-001 (ACES) or CI4205M2HRD-NH1 (CviLux) or equivalent.

Note (2)User's connector Part No.: H208K-P05N-02B (Entery) or equivalent.

5.3 COLOR DATA INPUT ASSIGNMENT

The brightness of each primary color (red, green and blue) is based on the 6-bit gray scale data input for the color. The higher the binary input, the brighter the color. The table below provides the assignment of color versus data input.

	-		Data Signal																
	Color			Re				Green				Blue							
		R5	R4	R3	R2	R1	R0	G5	G4	G3	G2	G1	G	B5	B4	B3	B2	B1	B0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
	Green	0	0	0	0	0	0	1	1	1	1	1	1	0	0	0	0	0	0
Basic	Blue	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1
Colors	Cyan	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1
	Magenta	1	1	1	1	1	1	0	0	0	0	0	0	1	1	1	1	1	1
	Yellow	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Red(0)/Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(1)	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
Gray	Red(2)	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
Scale	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Red	Red(61)	1	1	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0
	Red(62)	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(63)	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
	Green(0)/Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green(1)	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
Gray	Green(2)	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
Scale	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Green	Green(61)	0	0	0	0	0	0	1	1	1	1	0	1	0	0	0	0	0	0
	Green(62)	0	0	0	0	0	0	1	1	1	1	1	0	0	0	0	0	0	0
	Green(63)	0	0	0	0	0	0	1	1	1	1	1	1	0	0	0	0	0	0
	Blue(0)/Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Blue(1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Gray	Blue(2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
Scale	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Blue	Blue(61)	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	0	1
	Blue(62)	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	0
	Blue(63)	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1

Note (1)0: Low Level Voltage, 1: High Level Voltage

The brightness of each primary color (red, green and blue) is based on the 8-bit gray scale data input for the color. The higher the binary input, the brighter the color. The table below provides the assignment of color versus data input.

													Data	Siç	gnal										
	Color		ı		R	ed							Gı	reen			ı				BI	ue			
		R7	R6	R5	R4	R3	R2	R1	R0	G7	G6	G5	G4	G3	G2	G1	G0	В7	B6	B5	B4	ВЗ	B2	В1	ВО
Basic Colors	Black Red Green Blue Cyan Magenta Yellow White	0 1 0 0 1 1 1	0 1 0 0 0 1 1	0 1 0 0 0 1 1 1	01000111	01000111	0 1 0 0 0 1 1 1	0 1 0 0 0 1 1 1	0 1 0 0 0 1 1	00101011	0010101	0 0 1 0 1 0 1 1	0 0 1 0 1 0 1 1	0 0 1 0 1 0 1	0010101	0 0 1 0 1 0 1	0 0 1 0 1 0 1	0 0 0 1 1 1 0 1	0 0 0 1 1 1 0 1	0 0 0 1 1 1 0 1	0 0 0 1 1 1 0 1	0 0 1 1 1 0 1	0 0 0 1 1 1 0 1	0 0 0 1 1 1 0 1	0 0 1 1 1 0
Gray Scale Of Red	Red(0) / Dark Red(1) Red(2) : : Red(253) Red(254) Red(255)	0 0 0 : : 1 1	0 0 0 : : 1 1	0 0 0 : 1 1 1	0 0 0 : : 1 1 1	0 0 0 : : 1 1 1	0 0 0 : : 1 1 1	0 0 1 ::0 1 1	0 1 0 : : 1 0 1	000000	000:::000	000000	0 0 0 : 0 0 0	0 0 0 0 0	000000	0 0 0 : 0 0 0	0 0 0 : : 0 0 0	0 0 0 0 0 0	0 0 0 : 0 0 0	0 0 0 0 0 0	0 0 0 : 0 0 0	0 0 0 0 0	0 0 0 : : 0 0 0	0 0 0 0 0 0	0 0 00 0 0
Gray Scale Of Green	Green(0)/ Dark Green(1) Green(2) : : Green(253) Green(254) Green(255)	0 0 0 : : 0 0 0	0 0 0 : : 0 0	0 0 0 0 0 0	000000	0 0 0 : : : 0 0 0	0 0 0 : : 0 0 0	0 0 0 : : 0 0 0	0 0 0 : : 0 0	0 0 0 : : 1 1 1	0 0 0 : : 1 1 1	0 0 0 : : 1 1	0 0 0 : : 1 1	0 0 0 : : 1 1	0 0 0 : : 1 1 1	0 0 1 : 0 1	0 1 0 : : 1 0 1	0 0 0 : : : 0 0 0	0 0 0 : : : 0 0 0	0 0 0 : : : 0 0 0	0 0 0 : : : 0 0 0	0 0 0 : : 0 0	0 0 0 : : 0 0	0 0 0 0 0 0	0 0 0 : : 0 0
Gray Scale Of Blue	Blue(0) / Dark Blue(1) Blue(2) : : Blue(253) Blue(254) Blue(255)	0 0 0 : : 0 0 0	0 0 0 : : 0 0	0 0 0 : 0 0 0	0 0 0 0 0 0	0 0 0 : : 0 0 0	0 0 0 : 0 0 0	0 0 0 : : 0 0 0	0 0 0 : : 0 0	0 0 0 0 0 0	0 0 0 : : 0 0 0	0 0 0 : 0 0 0	0 0 0 : 0 0 0	0 0 0 : : 0 0	0 0 0 0 0 0	0 0 0 : 0 0 0	0 0 0 : : 0 0	0 0 0 : : 1 1	0 0 0 : : 1 1	0 0 0 : : 1 1	0 0 0 : : 1 1	0 0 0 : : 1 1	0 0 0 : : 1 1	0 0 1 : : 0 1 1	0 1 0 : : 1 0 1

Note (1) 0: Low Level Voltage, 1: High Level Voltage

6. INTERFACE TIMING

6.1 INPUT SIGNAL TIMING SPECIFICATIONS

The input signal timing specifications are shown as the following table and timing diagram.

Signal	Item	Symbol	Min.	Тур.	Max.	Unit	Note
DCLK	Frequency	Fc	30	40	50	MHz	
	Total	Tv	608	628	1024	Th	Tv=Tvd+Tvb
Vertical Active Display Term	Display	Tvd	-	600	-	Th	-
	Blank	Tvb	8	28	424	Th	-
	Total	Th	960	1056	1060	Tc	Th=Thd+Thb
Horizontal Active Display Term	Display	Thd	-	800	-	Tc	-
	Blank	Thb	160	256	260	Tc	-

Note (1) Since this assembly is operated in DE only mode, Hsync and Vsync input signals should be set to low logic level. Otherwise, this assembly would operate abnormally.

- (2) Frame rate is 60Hz
- (3) The Tv(Tvd+Tvb) must be integer, otherwise, this module would operate abnormally.

INPUT SIGNAL TIMING DIAGRAM

6.2 POWER ON/OFF SEQUENCE

To prevent a latch-up or DC operation of LCD assembly, the power on/off sequence should be as the diagram below.

Power ON/OFF sequence

Note (1)Please avoid floating state of interface signal at invalid period.

Note (2)When the interface signal is invalid, be sure to pull down the power supply of LCD VCC to 0 V.

Note (3)The Backlight converter power must be turned on after the power supply for the logic and the interface signal is valid. The Backlight converter power must be turned off before the power supply for the logic and the interface signal is invalid.

Devemeter		Lloito		
Parameter	Min	Тур	Max	Units
T1	0.5	-	10	ms
T2	0	-	50	ms
Т3	0	-	50	ms
T4	500	-	-	ms
T5	200	-	-	ms
T6	200	-	-	ms
T7	5	-	300	ms
Т8	10	-	-	ms
T9	10	-	-	ms

6.3 The Input Data Format

Note (1) R/G/B data 7: MSB, R/G/B data 0: LSB

Note (2) Please follow PSWG

Signal Name	Description	Remark
R7	Red Data 7 (MSB)	Red-pixel Data
R6	Red Data 6	Each red pixel's brightness data consists of these
R5	Red Data 5	8 bits pixel data.
R4	Red Data 4	
R3	Red Data 3	
R2	Red Data 2	
R1	Red Data 1	
R0	Red Data 0 (LSB)	
G7	Green Data 7 (MSB)	Green-pixel Data
G6	GreenData 6	Each green pixel's brightness data consists of these
G5	GreenData 5	8 bits pixel data.
G4	GreenData 4	
G3	GreenData 3	
G2	GreenData 2	
G1	GreenData 1	
G0	GreenData 0 (LSB)	
B7	Blue Data 7 (MSB)	Blue-pixel Data
B6	Blue Data 6	Each blue pixel's brightness data consists of these
B5	Blue Data 5	8 bits pixel data.
B4	Blue Data 4	
B3	Blue Data 3	
B2	Blue Data 2	
B1	Blue Data 1	
B0	Blue Data 0 (LSB)	
RXCLKIN+	LVDS Clock Input	
RXCLKIN-		
DE	Display Enable	
VS	Vertical Sync	
HS	Horizontal Sync	

Note (3) Output signals from any system shall be low or Hi-Z state when VCC is off.

6.4 Scanning Direction

The following figures show the image see from the front view. The arrow indicates the direction of scan.

Fig.1 Normal Scan

Fig.2 Reverse Scan

- Fig. 1 Normal scan (pin 4, DPS = Low or NC)
- Fig. 2 Reverse scan (pin 4, DPS = High)

7. OPTICAL CHARACTERISTICS

7.1 TEST CONDITIONS

Item	Symbol	Value	Unit
Ambient Temperature	Ta	25±2	°C
Ambient Humidity	На	50±10	%RH
Supply Voltage	V _{cc}	3.3	V
Input Signal			
Converter Voltage	According to typical v	alue in "3. ELECTRICAL	CHARACTERISTICS"
Converter Duty			

7.2 OPTICAL SPECIFICATIONS

The relative measurement methods of optical characteristics are shown in 7.2. and all items are measured at the center point of screen except white variation. The following items should be measured under the test conditions described in 7.1 and stable environment shown in Note (5).

Iten	า	Symbol	Condition	Min.	Тур.	Max.	Unit	Note
	Red	Rx			0.609		-	
	Reu	Ry			0.339		-	
	Green	Gx			0.333		-	
Color	Green	Gy		Тур -	0.590	Typ +	-	(1) (5)
Chromaticity	Blue	Bx	$\theta_x=0^\circ, \ \theta_Y=0^\circ$	0.05	0.154	0.05	-	(1), (5)
	blue	Ву	CS-1000		0.146		-	
	White	Wx			0.303		-	
	vvriite	Wy			0.344		-	
Center Lumina	nce of White	Lc		300	400	-	-	(4), (5)
Contrast	Ratio	CR		500	700	-	-	(2), (5)
Response	a Timo	T _R	$\theta_x=0^\circ, \ \theta_Y=0^\circ$	-	5	10	ms	(3)
Response	e mine	T _F	$\theta_X = 0^{\circ}, \ \theta_Y = 0^{\circ}$	-	11	16	ms	(3)
White Va	riation	δW	θ_x =0°, θ_Y =0°	-	1.25	1.4	-	(5), (6)
	Horizontal	θ_x +		70	80	-		
Viouing Angle	HOHZOHIAI	θ_{x} -	OD: 40	70	80	-	Dog	(1) (5)
Viewing Angle	Vertical	θ _Y +	CR≥10	60	70	-	Deg.	(1), (5)
	vertical	θ _Y -		60	70	-		

Note (1)Definition of Viewing Angle (θx , θy):

Note (2)Definition of Contrast Ratio (CR):

The contrast ratio can be calculated by the following expression.

Contrast Ratio (CR) = L63 / L0

L63: Luminance of gray level 63

L 0: Luminance of gray level 0

CR = CR(5)

CR (X) is corresponding to the Contrast Ratio of the point X at Figure in Note (6).

Note (3)Definition of Response Time (T_R, T_F) and measurement method:

Note (4)Definition of Luminance of White (L_C):

Measure the luminance of gray level 63 at center point

$$L_{C} = L (5)$$

L (x) is corresponding to the luminance of the point X at Figure in Note (6).

Note (5)Measurement Setup:

The LCD module should be stabilized at given temperature for 20 minutes to avoid abrupt temperature change during measuring. In order to stabilize the luminance, the measurement should be executed after lighting Backlight for 20 minutes in a windless room.

Note (6) Definition of White Variation (δW):

Measure the luminance of gray level 63 at 5 points

8. RELIABILITY TEST CRITERIA

Test Item	Test Condition	Note
High Temperature Storage Test	85°C, 240 hours	
Low Temperature Storage Test	-30°C, 240 hours	
Thermal Shock Storage Test	-30°C, 0.5hour←→85°C, 0.5hour; 1hour/cycle,100cycles	
High Temperature Operation Test	85°C, 240 hours	(1)
Low Temperature Operation Test	-30°C, 240 hours	
High Temperature & High Humidity Operation Test	60°C, 90%RH, 240hours	
Shock (Non-Operating)	50G, 11ms, half sine wave, 1 time for \pm X, \pm Y, \pm Z direction	(2)
Vibration (Non-Operating)	1.5G, 10 ~ 300 Hz, 10min/cycle, 3 cycles each X, Y, Z	(2)

Note (1) There should be no condensation on the surface of panel during test.

Note (2) At testing Vibration and Shock, the fixture in holding the module has to be hard and rigid enough so that the module would not be twisted or bent by the fixture.

9. PACKAGING

9.1 PACKING SPECIFICATIONS

(1) 16pcs LCD modules / 1 Box

(2) Box dimensions: 435 (L) X 350 (W) X 275 (H) mm

(3) Weight: approximately 15Kg (16 modules per box)

9.2 PACKING METHOD

(1) Carton Packing should have no failure in the following reliability test items.

Test Item	Test Conditions	Note
	ISTA STANDARD	
	Random, Frequency Range: 2 – 200 Hz	
Vibration	Top & Bottom: 30 minutes (+Z), 10 min (-Z),	Non Operation
	Right & Left: 10 minutes (X)	
	Back & Forth 10 minutes (Y)	
Dropping Test	1 Angle, 3 Edge, 6 Face, 61 cm	Non Operation

Figure. 9-1 Packing method

Figure. 9-2 Packing method

9.3 UNPACKING METHOD

Figure. 9-3 UNPacking method

10. DEFINITION OF LABELS

10.1 InnoLux MODULE LABEL

The barcode nameplate is pasted on each module as illustration, and its definitions are as following explanation.

(a) Model Name: G104AGE-L02

(b) Revision: Rev. XX, for example: A1, B1, C1, C2 ...etc.

Serial ID includes the information as below:

(a) Manufactured Date: Year: 1~9, for 2011~2019

Month: 1~9, A~C, for Jan. ~ Dec.

Day: 1~9, A~Y, for 1st to 31st, exclude I, O and U

(b) Revision Code: cover all the change

(c) Serial No.: Manufacturing sequence of product

11. PRECAUTIONS

11.1 ASSEMBLY AND HANDLING PRECAUTIONS

- (1)Do not apply rough force such as bending or twisting to the module during assembly.
- (2)To assemble or install module into user's system can be only in clean working areas. The dust and oil may cause electrical short or worsen the polarizer.
- (3)It's not permitted to have pressure or impulse on the module because the LCD panel and Backlight will be damaged.
- (4)Always follow the correct power sequence when LCD module is connecting and operating. This can prevent damage to the CMOS LSI chips during latch-up.
- (5)Do not pull the I/F connector in or out while the module is operating.
- (6)Do not disassemble the module.
- (7)Use a soft dry cloth without chemicals for cleaning, because the surface of polarizer is very soft and easily scratched
- (8)It is dangerous that moisture come into or contacted the LCD module, because moisture may damage LCD
 - module when it is operating.
- (9) High temperature or humidity may reduce the performance of module. Please store LCD module within the specified storage conditions.
- (10)When ambient temperature is lower than 10°C may reduce the display quality. For example, the response time will become slowly.
- (11)Do not keep same pattern in a long period of time. It may cause image sticking on LCD.

11.2 SAFETY PRECAUTIONS

- (1)Do not disassemble the module or insert anything into the Backlight unit.
- (2)If the liquid crystal material leaks from the panel, it should be kept away from the eyes or mouth. In case of contact with hands, skin or clothes, it has to be washed away thoroughly with soap.
- (3)After the module's end of life, it is not harmful in case of normal operation and storage.

12. MECHANICAL CHARACTERISTICS

