

Modélisation et résolutions numérique et symbolique de problèmes *via* les logiciels MAPLE et MATLAB Projet

Version du 16 octobre 2015

Le but du projet est d'implanter en \mathbb{C} un programme permettant de résoudre un système de deux équations à deux inconnues $P,Q\in\mathbb{Z}[x,y]$. Pour cela, une borne sur la taille des solutions cherchées sera donnée en entrée.

L'algorithme devra utiliser le théorème des restes chinois pour faire les calculs modulo un nombre p puis remonter les solutions dans \mathbb{Z} . La bibliothèque GMP sera utilisée pour l'arithmétique entière dépassant les capacités d'un mot-machine.

Exercice 1 - Résultant

Une fois modulo *p*, la méthode suivante sera utilisée :

- 1. Calculer le résultant R de P, Q en y.
- 2. Déterminer les racines de R modulo p. On pourra pour cela calculer le pgcd de R et $x^p x$ puis faire une recherche exhaustive.
- 3. En déduire les solutions du système modulo *p*.

Exercice 2 – Sous-résultants

Cette méthode suppose que pour x_0 fixé, si y_0 et y_1 sont tels que (x_0, y_0) et (x_0, y_1) sont solutions, alors $y_0 = y_1$.

- 1. Effectuer un changement de variables linéaires sur les polynômes pour qu'avec grande probabilité, le système soit dans l'hypothèse supposée.
- 2. Calculer la suite $(R_i)_{0 \le i \le m,n}$ des sous-résultants de P et Q. Notons m le degré de P en y et n celui de Q en y. La sous-matrice T_i de la matrice de Sylvester de P et Q est obtenue en retirant les i dernières lignes de 0 de la sous-matrice construite à l'aide des colonnes 1 à n-i et n+1 à m+n-i.
 - Enfin, considérons la matrice V_i de taille $(m+n-2i) \times (m+n-i)$. Le premier bloc de taille m+n-2i-1 est un bloc identité. Ensuite la dernière ligne est une ligne de m+n-2i-1 zéros (sous le bloc identité donc) suivis des coefficients $y^i, y^{i-1}, \ldots, 1$. Enfin, R_i est le déterminant de V_i T_i . Le 0-ième sous-résultant doit être le résultant et de manière générale, le i-ième sous-résultant est un polynôme en y de degré au plus i à coefficients des polynômes en x.
- 3. Résoudre en x le résultant $R = R_0$.
- 4. Pour i de 1 à min(m, n), si $R_i(x_0, y)$ est non nul pour x_0 solution de R, alors déterminer y et s'arrêter.
- 5. Accéler l'étape du calcul des solutions en y en utilisant le fait que $R_i(x_0)(y)$ n'a pas de solution si et seulement si x_0 est racine du pgcd de R_0 et du coefficient de tête de R_i .