操作系统A

Principles of Operating System

北京大学计算机科学技术系 陈向群

Department of computer science and Technology, Peking University 2020 Autumn

萨章要求学程的概念

操作系统定义

并发性

共享性

虚拟性

随机性

SPOOLing

多道程序设计

05/360

MULTICS

操作系统结构

.....

大纲

- ▶ 典型的操作系统架构
- ▶ 操作系统是什么?
 - ▶ 定义 (描述)、解读操作系统定义
- ▶ 各种角度认知操作系统
- ▶ 操作系统的特征
- ▶ 操作系统的发展历程及启示
- ▶ 操作系统的分类
- ▶ 操作系统结构

Windows, Linux, Android,

典型的操作系统

Windows 架构

Windows操作系统的体系结构

Hardware interfaces

(Buses, I/O devices, interrupts, interval timers, DMA, memory cache control, and so on)

Windows操作系统的体系结构

系统进程

服务进程

用户进程

环境子系统

动态链接库(DLL)

用户态

核心态

系统服务分发器 内核态可调用接口

执行体

内核

设备驱动程序

图形窗口

硬件抽象层(HAL)

硬件

物理硬件

Windows操作系统的体系结构

UNIX架构

2000次操作系统

层次结构

内核结构

LINUX架构

Linux的核组件

Linux操作系统向核

		应用程序	
		命令行程序 编译器 解释器 系统库	
		系统调用接口	
	信号	文件管理系统	CPU 调度
内」	字符设备I/O	块设备I/O	虚拟内存管理
	串口驱动	磁盘驱动	物理内存管理
		硬件抽象层	
	串口控制器	块设备控制器	存储控制器
	终端设备	磁盘和磁带	物理内存

Android 架构

Android操作系统的整体架构

Android应用程序

Email客户端,SMS短消息程序,日 历,地图,浏览器,联系人管理等

应用程序框架

开发者可以完全使用核心应用程序所使用的框架APIs 视图、内容提供者、资源管理器等

库

Android包含一个C/C++库的集合, 供Android系统的各个组件使用。 如:系统C库、3D库、SQLite、媒体 库等

Linux内核

提供核心系统服务,例如:安全、内存管理、进程管理、网络堆栈、驱动模型

思考一下

从WINDOWS、UNIX和LINUX的系统结构图中得出什么结论?

从ANDROID架构图中得出什么结论?

操作系统是什么?怎样理解? 特征.....

操作系统的定义

一、操作系统是什么?

操作系统是计算机系统中的一个系统软件,是一些程序模块的集合——

- ▶ 它们能以尽量有效、合理的方式组织和管理计算机的 软硬件资源
- 合理地组织计算机的工作流程,控制程序的执行并向用户提供各种服务功能
- ▶ 使得用户能够灵活、方便的使用计算机,使整个计算机系统能高效地运行

关键词解读

明确了三个目标

- ▶ 资源的管理者 → 有效
- ▶ 向用户提供各种服务 → 方便使用
- ▶ 机器的扩展 → 扩展能力

理解操作系统的作用

- 操作系统将一个物理资源(如处理器、内存或磁盘),转换成一个更通用、更强大、更易用的虚拟形式,将操作系统称为虚拟机
- ▶ 为了让用户告诉操作系统该做什么以及利用虚拟机的特性(比如运行程序、分配内存或访问文件),操作系统还提供了一些可供用户调用的接口(APIs),操作系统提供了应用程序的标准库
- ▶ 因为虚拟化允许多程序运行(如共享CPU),允许多程序并发地访问自己的指令和数据(如共享内存),允许多程序访问设备(如共享磁盘等等),因此操作系统有时被称为资源管理器

设计与实规目标

- ▶ 抽象
 - ▶ 模块化
 - ▶ 使用高级语言 (C) 而非汇编
- ▶ 性能 (最小化开销)
 - ▶ 最小化额外的时间(指令)
 - ▶ 最小化额外的空间 (内存/磁盘)
- ▶ 应用之间、操作系统与应用之间的保护
 - ▶ 隔离进程
- ▶ 可靠性
- ▶ 节能
- ▶ 安全性 (保护的扩展)
 - ▶ 防止恶意应用的入侵,尤其是在高度网络化的时代
- ▶ 移动性
 - ▶ 使操作系统能够运行在越来越小的设备上

二、从不同角度认知操作系统

- ▶ 作为软件来看的观点
- ▶ 资源管理的观点
- ▶ 进程的观点
- ▶ 虚机器观点
- ▶ ……其他各种观点
 - ▶ 服务提供者、魔幻制造者、历史教员、家长、政府、仲裁者

1.作为软件来看的观点

软件即是服务

界面/接口: 使用方式

如:命令、系统调用等

软件的结构

- ✓ 由哪几个部分组成?
- ✓ 各部分之间的关系?

2.资源管理的观点

自底向上 → 操作系统 是 瓷源的管理管

硬件资源:

CPU,内存,设备(I/O设备、磁盘、时钟、网络接口等)

软件资源:

磁盘上的文件、信息

资源管理的目的: 实现资源共享、提高资源利用率

两种方式实现复用(共享): 时间及空间

怎样管理资源?。

公平竞争使用 防止非法使用

- ▶ 跟踪记录资源使用状况
 - 如:哪些资源空闲,好坏与否,被谁使用,使用多长时间等
- 分配和回收资源(资源分配策略与算法)
 - 静态分配策略
 - 动态分配策略 √
- ▶ 提高资源利用率
- ₩ 保护
- ▶ 协调多个进程对资源请求的冲突

从资源管理的角度——五大基本功

- ▶ 进程和线程管理(CPU管理、调度) 进程控制、同步互斥、通信、调度
- ▶ 存储管理 分配/回收、地址映射、存储保护、内存扩充
- 文件管理文件目录、磁盘空间、文件系统布局、文件操作、存取控制
- ▶ 设备管理 设备驱动、分配回收、缓冲技术
- 用户接口 系统命令、编程接口

3. 进程的观点

从操作系统运行的角度动态的观察操作系统

按照这一观点:

▶ 操作系统 是 由一些可同时、独立运行的进程 和 一个对这些进程进行协调的核心组成

进程:完成某一特定功能的程序 是程序的一次执行过程 动态的、有生命的,存在/消亡

4.虚机器观点

从操作系统内部结构来看:

- ✓ 把操作系统分成若干层
- ✓ 每一层完成其特定功从而构成一个虚机器,并对上 一层提供支持
- ✓ 通过逐层功能扩充,最终完成整个操作系统虚机器
- ✓ 而操作系统虚机器向用户提供各种功能,完成用户请求

分层结构

并发、共享、虚拟、随机.....

操作系统的特征

操作系统的特征(1/4)

并发(concurrency):

处理多个同时性活动的能力

由并发引起的问题:活动切换、保护、相互依赖的活动间的同步

在计算机系统中同时存在多个程序

宏观上: 这些程序是同时在执行的

微观上:任何时刻只有一个程序在执行(单CPU),

即微观上这些程序在CPU上轮流执行

并行(parallel):与并发相似,但多指有硬件支持

操作系统特征(2/4)

共享(sharing):

操作系统与多个用户程序共同使用计算机系统中的资源

- > 共享有限的系统资源
- > 操作系统要对系统资源进行合理分配和使用
- > 资源在一个时间段内交替被多个进程所用
- ▶ 互斥共享 (如打印机)
- ▶ 同时访问(如可重入代码,磁盘文件) 引出问题:资源分配难以达到最优化,保护

操作系统特征(3/4)

虚拟(Virtual):

- 一个物理实体映射为若干个对应的逻辑实体──分时或分空间
- → 虚拟技术是操作系统管理系统资源的重要手段, 可提高资源利用率

- ◆ CPU--每个用户(进程)的"虚处理机"
- ◆存储器——每个进程都占有的地址空间(代码+数据+堆栈)
- ◆显示设备——多窗口或虚拟终端

mm (虚拟机管理器)

无虚拟机:单操作系统拥有所有硬件资源

有虚拟机:多操作系统共享硬件资源

操作系统特征(4)4)

随机性:

操作系统必须随时对以不可预测的次序发生的事件进行响应

- ◆ 进程的运行速度不可预知:多个进程并发执行, "走走停停",无法预知每个进程的运行推进快慢
- ◆ 难以重现系统在某个时刻的状态(包括重现运行中的错误)

划分为几个阶段

操作系统发展历史

为什么?启示/概念的重用、回归

技术变化 导致某些思想过时并迅速消失 但 技术的另一种变化还可能使它们复活

操作系统中的例子

- ✓ 磁盘上文件分配—连续文件 (CD-ROM文件系统)
- ✓ 硬件保护
- ✓ 动态链接 (MULTICS首先提出)
- ✓ 计算服务 (MULTICS, 以大量的、附有相对简单用户机器的、集中式Internet服务器形式回归) → 云计算

操作系统的发展历程

操作系统发展是随着计算机硬件技术、应用需求的 发展、软件新技术的出现而发展的

目标: 充分利用硬件

提供更好的服务

大型机 \rightarrow PC机 \rightarrow 网络 \rightarrow 移动计算 \rightarrow 会计算 \rightarrow だ在计算 (物联网) \rightarrow 大数据 \rightarrow A

第1阶段 (1948-1970)

硬件昂贵,人工便宜 更有效地利用硬件资源 缺乏用户和计算机之间的交互

- ▶ 控制台:一次一个用户(独占资源)
- ▶ 批处理: 装入程序→运行→打印输出(保护:无)
- ▶ 操作系统必须管理所有程序的交接、运行→ 复杂
- ▶ 数据通道、中断: I/O和计算重叠
- ▶ 多道程序设计:多个程序同时运行,多个用户共享 系统(需要存储保护)
- ▶ SPOOLing技术

第2阶段 (1970-1985)

硬件便宜, 人工昂贵

- 交互、分时 利用便宜的终端 → 多个用户同时与系统交互 牺牲CPU时间 → 用户得到更好的响应时间
- ▶ 用户可以在线工作: 开发、调试、编辑等
- ▶ 引出的问题 增加用户时→系统性能降低 (响应时间、抖动)

第一个分时操作系统CTSS

- ▶ 分时系统的思想——1959年在MIT提出
- ✓ 每个用户有一个联机终端
- ✓ 调试程序的用户常常只发出简短的命令 很少有长的费时命令
- ✓ 计算机能够为许多用户提供交互式、快速服务 同时在CPU空闲时还能在后台运行大作业

第一个分时系统(CTSS)由 MIT的Fernando Corbato 等1961年在一改装的 IBM 7090/94机上开发成功(有32个交互式用户)

指标: 32K内存,系统用5K,用户用27K

用户存储映像在内存和一台磁鼓之间切换

1962年Manchester大学的Atlas计算机投入运行(运行速度200 kFLOPS)

第一个有虚拟存储器(virtual memory)和页面调度(paging)的机器

首次面对重大关败

- ▶ IBM 的 OS/360 发布时 带着已知的 1000 个错误
- ► Multics 于 1963 年开始 直至 1969 年才发布

(MULTiplexed Information and Computing Service)

SSA o Z SOF MAGIZEERIZ

人月神话

The Mythical Man-Month: Essays on Software Engineering, Anniversary Edition (2nd Edition)

(美) Frederick P. Brooks, Jr.

成功案例

- ▶ 一群计算机迷在贝尔实验室开发出UNIX
- ▶ 初衷:可以在一台无人使用的DEC PDP-7小型计算机上玩星际探险游戏

Ken Thompson, Dennis Ritchie 1983年图灵奖获得者 1999年4月美国国家技术金奖

第3阶段 (1981-)

硬件非常便宜,人工非常昂贵 面临挑战→如何利用计算机 充分发挥人的时间

个人计算时代

- ▶ 开始 PC硬件资源有限 一次运行一个程序 OS是 一个例程库 回归简单
- ▶ 逐渐 PC资源丰富 OS又成为一个庞然大物 (大型 OS): 存储保护、多道程序设计再次出现

第4阶段 (1981-)

分布式

- 网络:允许不同机器很容易地相互共享资源 (打印机、文件服务器、Web服务器)
- ▶ 解决问题: 共享, 安全

第5阶段 (1995-)

移动计算时代

- ▶ 各种移动终端的出现 (笔记本、平板、手机、机顶盒、可穿戴设备等)
- ▶ 特点:小型、移动、便宜 但 有限能力

第6阶段 (2006-)

云计算时代

- ▶ IT基础设施
- ▶ 提供可无限扩展的、可随时获取的、按需使用、按使用付费的资源网络
- ▶ 云计算操作系统──云计算后台数据中心的整体管理运营系统,是指构架于服务器、存储、网络等基础硬件资源和单机操作系统、中间件、数据库等基础软件管理的海量的基础硬件、软资源之上的云平台综合管理系统
- 云计算操作系统:大规模基础软硬件管理、虚拟计算管理、 分布式文件系统、业务/资源调度管理、安全管理控制等模块
- 云计算操作系统的作用:一是能管理和驱动海量服务器、存储等基础硬件,将一个数据中心的硬件资源逻辑上整合成一台服务器(治众如治寡);二是为云应用软件提供统一、标准的接口;三是管理海量的计算任务以及资源调配

第7阶段 (200? —)

▶ 泛在计算/普适计算/物联网

许多联网设备为许多人提供个性化的服务

传统分类、Tenenbaum 分类

操作系统分类

操作系统的分类

- ▶ 批处理操作系统(多道批处理)
- > 分时系统
- > 实时操作系统
- ▶ 个人计算机操作系统
- ▶ 网络操作系统
- > 分布式操作系统
- ▶ 嵌入式操作系统

通用操作系统

1. 挑处理操作系统

▶ 工作方式

- 1. 用户将作业交给系统操作员
- 2. 系统操作员将许多用户的作业组成一批作业, 输入到计算机系统中, 在系统中形成一个自动转接的连续作业流
- 3. 启动操作系统
- 4. 系统自动、依次执行每个作业
- 5. 由操作员将作业结果交给用户

挑处理操作系统

- ▶ 批处理系统中的作业的组成:
 - ▶用户程序
 - > 数据
 - >作业说明书(作业控制语言)

▶ 批:

供一次加载的磁带或磁盘,通常由若干个作业组 装成,在处理中使用一组相同的系统软件(系统 带)

▶ 批作业处理:

对批作业中的每个作业进行相同的处理:从磁带 读入用户作业和编译链接程序,编译链接用户作业,生成可执行程序;启动执行;执行结果输出

典型的3MS908结构

挑处理操作系统

▶ 问题:

慢速的输入输出处理直接由主机来完成,输入输出时, CPU 处于等待状态

▶ 解决:

卫星机:完成面向用户的输入输出(纸带或卡片),中间结果暂存在磁带或磁盘上

- ✓ 单道批处理系统 (simple batch processing, uni-programming)
- ✓ 多道批处理系统 (multiprogramming system)

早期的批处理系统

例多

Program A	Run	Wait	Run		Wait		
	Time —	单道程序	设计				
Program A	Run	Wait		Run		Wai	t
Program B	Wait Run	Wait	i .		Run	1	Vait
Program C	Wait	Run	Wait			Run	Wait
Combined	Run Run A B	Rún Ç.	Vait	Run A	Run B	Run C	Walt
	Time	多道程人	 序设计	-		ms	

	JOB1	JOB2	JOB3
Type of job	Heavy compute	Heavy I/O	Heavy I/O
Duration	5 min.	15 min.	10 min.
Memory required	50K	100 K	80 K
Need disk?	No	No	Yes
Need terminal	No	Yes	No
Need printer?	No	No	Yes

	Uniprogramming	Multiprogramming
Processor use	22%	43%
Memory use	30%	67%
Disk use	33%	67%
Printer use	33%	67%
Elapsed time	30 min.	15 min.
Throughput rate	6 jobs/hr	12 jobs/hr
Mean response time	18 min.	10 min.

William Stallings

SPOOLing系统(技术)

- ▶ 1961年,英国曼彻斯特大学,Atalas机
- ► Simultaneous Peripheral Operation On-Line 同时的外围设备联机操作 -- 假脱机技术

▶ 思想:

利用磁盘作缓冲,将输入、计算、输出分别组织成独立的任务流,使I/O和计算真正并行

SPOOLing系统工作原理

- ▶ 作业进入到磁盘上的输入井
- ▶ 按某种调度策略选择几种搭配得当的作业,并调入内存
- ▶ 作业运行的结果输出到磁盘上的输出井
- ▶ 结果从磁盘上的输出井送到打印机

多道批处理操作系统

MSP00Ling方式使用外设

2. 分时操作系统 (time-sharing system

分时操作系统

- ▶ 时间片 (time slice)
 - 操作系统将CPU的时间划分成若干个片段,称为时间片
 - ✓ 操作系统以时间片为单位,轮流为每个终端用户服务
 - ◆ 每次服务一个时间片 (其特点是利用人的错觉,使人感觉不到)

追求目标:

及时响应(依据是响应时间)

响应时间:

从终端发出命令到系统给予回答所经历的时间

C755分时系统

通用操作系统

▶ 分时系统与批处理系统结合

▶ 原则:分时优先,批处理在后

"前台": 需频繁交互的作业

"后台": 时间性要求不强的作业

3. 实时操作系统

是指使计算机能及时响应外部事件的请求,在规定的严格时间内完成对该事件的处理,并控制所有实时设备和实时任务协调一致地工作的操作系统

分类:

- ▶ 第一类:实时过程控制 工业控制,军事控制,…
- ▶ 第二类:实时通信(信息)处理 电讯(自动交换),银行,飞机订票,股市行情

实时操作系统

追求目标:

- 对外部请求在严格时间范围内作出反应
- ▶ 高可靠性

特征:

关键参数 是 时间

例子: 工业过程控制系统——汽车装配线

- ◆ 硬实时系统(例子?) 某个动作绝对必须在规定的时刻或时间范围完成
- ◆ 软实时系统(例子?) 接受偶尔违反最终时限

4. 个人计算机操作系统

- ▶ 计算机在某一时间内为单用户服务
- ▶ 追求目标:

界面友好,使用方便 丰富的应用软件

5. 网络操作系统

基于计算机网络 在各种计算机操作系统上 按网络体系结构协议标准开发的软件

- ▶ 功能: 网络管理,通信,安全,资源共享和 各种网络应用
- ▶ 追求目标: 相互通信, 资源共享

6. 分布式操作系统

- > 分布式系统: 处理和控制的分散 (相对于集中式系统)
- 分布式系统是以计算机网络为基础的,它的基本特征 是处理的分布(功能和任务的分布)
- 分布式操作系统的所有系统任务可在系统中任何处理 机上运行,自动实现全系统范围内的任务分配并自动 调度各处理机的工作负载

分布式操作系统的特征

- 1. 是一个统一的操作系统 若干个计算机可相互协作共同完成一项任务
- 2. 资源进一步共享
- 3. 透明性 资源共享,分布对用户来讲是不知道的
- 4. 自治性 处于分布式系统的多个主机处于平等地位,无主从关系
- 5. 处理能力增强、速度更快、可靠性增强

7. 嵌入式操作系统

- ▶ 嵌入式系统
 - ▶ 在各种设备、装置或系统中,完成特定功能的软硬件系统
 - ► 它们是一个大设备、装置或系统中的一部分,这个大设备、装置或系统可以不是"计算机"
 - ▶ 通常工作在反应式或对处理时间有较严格要求环境中
- ▶ 嵌入式操作系统 (Embedded Operating System) 运行在嵌入式系统环境中,对整个嵌入式系统以及它所操作、控制的各种部件装置等等资源进行统一协调、调度、指挥和控制的系统软件

美国加州伯克利大学研制: 微型智能传感器,安装TinyOS

操作系统的另一种分类(Tanenbau

- 大型机操作系统
- ▶ 服务器操作系统
- ▶ 多处理机操作系统
- ▶ 个人计算机操作系统
- > 实时操作系统
- ▶ 嵌入式操作系统
- ▶ 智能卡操作系统

智能卡操作系统

智能卡:一种包含有一块CPU芯片的信用卡

- ▶ 特点 非常严格的运行能耗和存储空间的限制
 - 有些智能卡只有单项功能, 诸如电子支付
- ▶ 专用的操作系统

有些智能卡是面向Java的。其含义是在智能卡的ROM中有一个Java虚拟机解释器。Java 小程序被下载到卡中并由JVM解释器解释。有些卡可以同时处理多个Java 小程序,这就是多道程序,并且需要对它们进行调度。在两个或多个小程序同时运行时,资源管理和保护就成为突出的问题。这些问题必须由卡上的操作系统处理

智能卡操作系统

- ■在读写器与智能卡之间通过 "命令-响应对"方式进行通信 和控制
- 读写器发出操作命令,智能卡接收命令
- ■操作系统对命令加以解释,完成命令的解密与校验
- ■操作系统调用相应程序来进行 数据处理,产生应答信息,加 密后送给读写器

重点小结

- ▶ 操作系统的概念
 - ▶ 理解操作系统的不同角度
 - ▶ 操作系统的主要特征
- ▶ 典型的、历史/现实中有重要意义的操作系统
- ▶ 重要的操作系统技术及相关技术
 - ▶ 多道程序设计、中断、通道、SPOOLing技术
- ▶ 操作系统的分类
- ▶ 操作系统结构

SPOOLing技术 操作系统结构 多道程序设计 OS/360 MULTICS 并发 共享 虚拟 随机性

作业1

- 1、何谓"多道程序设计"?阅读"Three Easy Pieces"的 Introduction中"The Era of Multiprogramming",结合本讲义 57-59页内容,查找相关资料,总结你对多道程序设计技术 的理解。
- 2、阅读http://pages.cs.wisc.edu/~remzi/OSTEP/dialogue-threeeasy.pdf,简要回答为什么这本教材叫"Three Easy Pieces"。
- 3、简要总结http://pages.cs.wisc.edu/~remzi/OSTEP/intro.pd 的2.1和2.2。

提交时间: 2020年10月4日晚23:30

Thanks

The End