

Sound3DVDet: 3D Sound Source Detection using Multiview Microphone Array and RGB Images

Yuhang He¹, Sangyun Shin¹, Anoop Cherian², Niki Trigoni¹, Andrew Markham¹ ¹Department of Computer Science, University of Oxford, UK ²Mitsubishi Electric Research Laboratories (MERL), Cambridge, MA, US

Problem Definition

Given a set of 3D sound sources, we aim to

- localize their spatial [x, y, z] coordinates.
- classify their semantic label. where sound sources,
- arbitrarily lie on the physical surface of objects
- 2. visually non-observable (too small/no vis-entity). from multiview Mic-Array and RGB images.

Acoustic-Camera Rig

Co-planar Rig, where

- pinhole RGB camera in the center.
- four Mics distribute at four corners. Use the rig to record the sound sources from closeby multiviews with known camera poses.

On-the-Surface Constraint

On-the-surface sound sources, Their projections onto different RGB images are matching points. Otherwise (either below or above), they are less likely to be matching

On-the-Surface Cues from RGBs

FI AND PROPERTY OF THE PROPERT

B. Matching Points found by LoFTR

We adopt LoFTR[1] to pre-extract RGB feature. The advantage is that it is capable of generating matching points on texture homogeneous area.

Jiamin Sun et al., LoFTR: Detector-Free Local Feature Matching with Transformers. CVPR 2021.

5. Sound3DVDet Idea Sketch

- Treat it as a *Set Prediction* problem.
- Mic-Array signal gives initial sound sources.
- Initial sound sources are iteratively optimized by aggregating multiview RGBs informed feature.
- Optimized sound sources are matched with ground truth with Hungarian Algorithm.

Sound3DVDet Pipeline

modules: Backbone; Generator; Query Detection Head; Visual Feature Aggregation;

Experiment Result

- Simulate with Sound-Spaces 2.0 simulator.
- 6 objects: wall, chair, table, door, ceiling and cabinet.
- 5 sources: telephone-ring, siren, alarm, fireplace, etc.
- On both texture discriminative and homogeneous area.

Methods	mAP (†)	mAR (†)	mALE (↓)
SELDNet [1]	0.101 ± 0.003	0.531 ± 0.000	0.912 ± 0.001
EIN-v2 [8]	0.111 ± 0.003	0.612 ± 0.001	0.877 ± 0.001
SoundDoA [27]	0.123 ± 0.001	0.701 ± 0.001	0.820 ± 0.003
Sound3DVDet	0.308 ± 0.011	0.998 ± 0.000	0.588 ± 0.001

Conclusion:

- Novel audio visual research direction.
- New baseline and evaluation metrics.
- Hope to motivate more research.