《微积分A1》第一讲

教师 杨利军

清华大学数学科学系

2020年09月16日

联系方式

<u>办公室</u>:理科楼 A323

<u>电话</u>: 62796895(O), 13521891215(M)

微信群名: 20秋微A1乙YLJ

email: lyang@tsinghua.edu.cn

教材

<u>教材</u>:《高等微积分教程》(上),章纪民,闫浩,刘智新编著,清华大学出版社,2014 (价32元,教材中心有售)

参考书一

一. James Stewart, Calculus, 7th edition, 2012 年, pp. 1381. 英文电子版已上载于网络学堂. 这本教材, 图文并茂, 通俗易懂, 说理透彻, 强烈推荐!

参考书二

二. 《数学分析教程》上下两册, 第三版, 常庚哲史济怀编著. 上册第二版的电子版已上载到网络学堂.

参考书三

三. 《数学分析习题课讲义》第二版,上下两册,谢惠民等编著,高等教育出版社,分别于2018年和2019年出版

参考书四

四.《数学分析》第一,二卷,第7版,卓里奇著,李植译,2019. (数学系学生教材)

参考书五

五. Peter Lax and Maria Terrell, 《微积分及其应用》, 2018 《多元微积分及其应用》, 2020, 现代数学译丛, 科学出版社

作业事宜

- 请用数学作业纸做作业, 并且手写作业
- 抄题, 解答时要写"解" 或"证明"
- 两道题之间要空行
- 从第二周起,每周三上课前提交上一周所布置的两次作业, 下周周三取回已批改好的作业
- 助教每周三课前或课后带来批改好的作业,并取走新交的 作业

答疑,助教,习题课,考试及成绩事宜

<u>答疑</u>: 周一,二,四,五下午3:00-6:00, 在办公室(理科楼A323)

助教: ???(博士生) ???@???

<u>习题课</u>: 习题课从第四周开始, 每周一次, 至第十六周, 具体安排待通知.

期中考试: 闭卷, 时间11月14日(周六)晚19:20-21:20

成绩评定: 20% 作业成绩 + 30% 期中成绩 + 50% 期末成绩

实数定义(以下关于实数的内容可不必深究,只需作一般性了解)

Definition

定义(参见卓里奇数学分析,第七版,卷一,第28-53页): 如果一个非空集合 IR 满足四组公理(即条件):

- (i) 加法公理,
- (ii) 乘法公理,
- (iii) 序公理,
- (iv) 连续性(完备性)公理,

则称集合 IR 构成一个实数模型(或系统), 也称作实数域.

加法公理

设 \mathbb{R} 是一个集合. 定义乘积集合 \mathbb{R} \times \mathbb{R} $\stackrel{\triangle}{=}$ $\{(a,b),a,b\in\mathbb{R}\}$. 任何一个映射 $\phi:\mathbb{R}$ \times \mathbb{R} \to \mathbb{R} 均称作集合 \mathbb{R} 上的一个二元运算,简称运算. 如果一个运算 ϕ 满足以下四个条件(加法公理),则称运算 ϕ 为 \mathbb{R} 上的加法.

- (i) (存在零元素) 存在一个元素, 记作 $0 \in \mathbb{R}$, 称作零元素, 使得对 $\forall x \in \mathbb{R}$, $\phi(x,0) = \phi(0,x) = x$; (稍后将证明零元素唯一).
- (ii) (存在负元素) 对于任意 $x \in IR$, 存在 $y \in IR$, 使得 $\phi(x,y) = \phi(y,x) = 0$. 元素 x 的负元素记作 -x. (稍后将证明负元素唯一).
- (iii) (交换律) 对任意 $x,y \in \mathbb{R}$, $\phi(x,y) = \phi(y,x)$;
- (iv) (结合律) 对任意 $x,y,z \in \mathbb{R}$, $\phi(x,\phi(y,z)) = \phi(\phi(x,y),z)$.

用符号 + 表示加法运算

通常用符号 + 表示集合 IR 上的加法运算 ϕ . 即将 $\phi(x,y)$ 写作 $\phi(x,y)=x+y$. 于是加法运算 + 所满足的四个条件(加法公理) 可比较简单地表示如下:

- (i) (存在零元素) 存在一个元素, 记作 $0 \in \mathbb{R}$, 称作零元素, 使得对 $\forall x \in \mathbb{R}$, x + 0 = 0 + x = x;
- (ii) (存在负元素) 对于任意 $x \in \mathbb{R}$, 存在 $y \in \mathbb{R}$, 使得x + y = y + x = 0. 元素x 的负元素记作-x.
- (iii) (交换律) 对任意x,y∈ IR, x+y=y+x;
- (iv) (结合律) 对任意 $x, y, z \in \mathbb{R}$, x + (y + z) = (x + y) + z.

关于加法公理注记

 \underline{i} 一: 零元素唯一. 因为若还存在另一个零元素 $\bar{0} \in \mathbb{R}$, 则 $\bar{0} = \bar{0} + 0 = 0$.

<u>注二</u>: 负元素唯一. 假设对于元素 $x \in \mathbb{R}$, 存在两个负元素 $y,z \in \mathbb{R}$, 即x+y=y+x=0, x+z=z+x=0, 则z=

z + 0 = z + (x + y) = (z + x) + y = 0 + y = y.

注三: 用抽象代数的语言, 满足上述四条加法公理的集合 IR 构成一个群(group), 常称为加法群.

乘法公理

假设在集合 IR 上除了加法运算 + 外, 还定义了另一个运算, 即存在另一个映射 $\psi:$ IR \times IR \to IR, 满足以下五个条件(乘法公理), 则称运算 ψ 为乘法. 通常记 $\psi(a,b)=a\cdot b$, 或直接写作 $\psi(a,b)=ab$.

- (i) (存在单位元) 存在一个非零元素, 记作 $1 \in \mathbb{R} \setminus \{0\}$, 称作单位元, 使得对 $\forall x \in \mathbb{R}$, x1 = 1x = x; (显然单位元唯一)
- (ii) (存在逆元素) 对于每个非零元素 $x \in \mathbb{R} \setminus \{0\}$, 存在 $y \in \mathbb{R}$, 使得 xy = yx = 1. 元素 x 的逆元素常记作 x^{-1} (稍后将证明每个非零元的逆元素唯一).

乘法公理续

- (iii) (结合律) 对任意 $x,y,z \in IR$, x(yz) = (xy)z;
- (iv) (交换律) 对任意 $x, y \in \mathbb{R}$, xy = yx.
- (v) (分配律) 对于任意 $x, y, z \in \mathbb{R}$, (x + y)z = xz + yz.

关于乘法公理注记

 $\underline{i-}$: 单位元唯一. 因为若还存在另一个单位元 $ar{1}\in IR$, 则 $ar{1}=ar{1}\cdot 1=1$.

注二: 每个非零元素的逆元素唯一. 若对非零元素 $x \in \mathbb{R}$, 存在两个逆元素 $y,z \in \mathbb{R}$, 即 xy = yx = 1, xz = zx = 1, 则 z = z1 = z(xy) = (zx)y = 1y = y.

注三: 用抽象代数的语言,集合 IR\{0} 关于乘法满足上述四条公理的集合 IR\{0} 构成一个群(group),常称为乘群. 我们称同时满足加法公理和乘法公理的集合 IR 构成一个域(field). 加法公理与乘法公理一起构成域公理.

序公理

乘积集合 $\mathbb{R} \times \mathbb{R}$ 任意一个子集合 $\mathbb{S} \subset \mathbb{R} \times \mathbb{R}$ 均称为 \mathbb{R} 的一个关系. 如果 $(x,y) \in S$, 则称元素 x 与元素 y 有关系 S, 记作 xSy. 设集合 \mathbb{R} 上定义了加法和乘法. 假设在其上还存在一个关系 S, 满足如下六个条件(序公理), 则称关系 S 为集合 \mathbb{R} 上的一个序.

- (i) 对任意 x ∈ IR, xSx; (自反性)
- (ii) 若xSy 且ySx, 则x = y;
- (iii) 若xSy 且ySz, 则xSz; (传递性)
- (iv) 对任意 x, y ∈ IR, 则或 xSy 或 ySx; (全序性)
- (v) 若xSy, 则 (x+z)S(y+z), $\forall z \in IR$;
- (vi) 若 OSx 且 OSy, 则 OS(xy).

用符号 < 代替序关系符号 S

若用符号 < 来代替序关系符号 S, 则六个序公理可表示如下:

- (i) 对任意 $x \in \mathbb{R}$, $x \le x$; (自反性)
- (ii) 若 x \le y 且 y \le x, 则 x = y;
- (iii) 若 $x \le y$ 且 $y \le z$, 则 $x \le z$; (传递性)
- (iv) 对任意 $x,y \in \mathbb{R}$, 则或 $x \le y$ 或 $y \le x$; (全序性)
- (v) 若 x \leq y, 则 x + z \leq y + z, \forall z \in IR;

关于序关系的注记

 $<u>注</u>一: 关系 x <math>\leq$ y 称为 x 小于等于 y.

 $<u>注二</u>: 关系 <math>x \le y$ 可等价地写作 $y \ge x$, 并称为 y 大于等于 x.

 $\underline{i=}$: 若 x \leq y 且 x \neq y, 则记作 x < y 或 y > x, 并称之为 x 小于 y, 或 y 大于 x.

注四:如下三分律经常用到(见下面性质六),即对 $\forall x,y \in \mathbb{R}$,则或x < y或x = y或x > y.

连续性公理

设 \mathbb{R} 为一个集合, 其上定义了加法 + 和乘法 \cdot , 并且定义了一个序关系 \leq . 称 \mathbb{R} 还满足连续性(完备性)公理, 如果下述条件成立:

假设任意两个集合 $U,V\subset IR$ 满足 $u\leq v, \forall u\in U, \forall v\in V, 则$ 存在 $c\in IR$,使得 $u\leq c\leq v, \forall u\in U, \forall v\in V.$

如何构造实数模型

- 自然数(定义,加法,乘法,序关系)
- → 整数(继承自然数的加法, 乘法和序关系)
- → 有理数(继承整数的加法, 乘法和序关系)
- → 实数(继承有理数的加法, 乘法和序关系)

由有理数构造实数的两种方法

由有理数集合 Q 构造实数系统 IR 主要有两种方法:

- (i) Cantor 构造: 定义每个有理数基本列 (Cauchy 列) 的等价 类为一个实数.
- (ii) Dedekind 构造(分割): 若将有理数集分解成两个集合的并 $Q = A \cup B$, 其中 $A \cap B$ 均非空, $A \cap B$ 均非空, $A \cap B$ 均 $A \cap B$ 均 $A \cap B$ 均 $A \cap B$ 均 $A \cap B$ 的 Dedekind 分割. 定义每个 有理数的 Dedekind 分割为一个实数.

可以证明, 无论是 Cantor 构造的集合, 还是 Dedekind 分割所构成一个集合,均满足实数系统的四组公理条件. 但证明过程复杂且漫长.

上帝创造了自然数

德国数学家 Leopold Kronecker (1823-1891) 语录:

上帝创造了自然数, 其余都是人工作品.

英译: God created the integers, all else is the work of man.

原始德文: Die [positiven] ganzen Zahlen hat der liebe Gott gemacht, alles andere ist Menschenwerk.

关于实数理论的参考书

Landau 在他的著作中为学生所作的前言里写到, Please forget everything you have learned in school, for you haven't learnt it.

关于实数理论的参考书, 续

《陶哲轩实分析》一书前100多页专门用于讨论实数的定义及其性质。

实数的几何表示, 数轴

实数常常表示为一条直线上的点. 这条直线称为实轴或数轴. 先选一个点代表数 0, 再在点 0 的右边选一个点代表数 1. 这样的选择确定了数轴的尺度. 这样实数与数轴上的点就一一对应起来了.

The number line

上界, 下界与有界

- 定义: (i) 一个数集 $S \subset IR$ 称为有上界的(bounded above), 如果存在一个数 $u \in IR$, 使得 $x \le u$, $\forall x \in S$. 此时 u 称为集合 S 的一个上界(an upper bound).
- (ii) 一个数集 $S \subset IR$ 称为有下界的(bounded below), 如果存在一个数 $b \in IR$, 使得 $x \ge b$, $\forall x \in S$. 此时 b 称为集合 S 的一个下界(a lower bound).
- (iii) 一个数集 $S \subset IR$ 称为有界的(bounded), 如果它既有上界也有下界, 即存在 $u,b \in IR$, 使得 $b \le x \le u$, $\forall x \in S$.
- 例: 考虑数集 S = [0,1). 显然集合 S 是有界集. 因为它有上界 S 1, 且有下界 S 0.

数集的最大点和最小点

定义: (i) 设 S ⊂ IR 为数集. 如果存在点 M ∈ S, 使得 x < M, $\forall x \in S$, 则称集合 S 存在最大点, 且 M 是 S 的最大点. 此时记 $M = \max S$. 显然若数集存在最大点,则它有上界且最大点是 一个上界. 例如数集 $(-\infty,1]$ 有最大点且 $\max(-\infty,1]=1$. (ii) 设S⊂IR 为数集. 如果存在m∈S, 使得x>m, ∀x∈S, 则称集合 S 存在最小点, 且m 是集合 S 的最小点, 此时记m = min S. 显然若数集存在最小点,则它有下界且最小点就是一个 下界. 例如数集 $[-1,+\infty)$ 有最小点且 $\min[-1,+\infty)=-1$.

更多例子

Example

例: 有界闭区间 $[0,1] \stackrel{\triangle}{=} \{x,0 \le x \le 1\}$ 既有最大点, 也有最小点, 且 $\max[0,1] = 1$, $\min[0,1] = 0$. 而有界开区间 $(0,1) \stackrel{\triangle}{=} \{x,0 < x < 1\}$ 既不存在最大点, 也不存在最小点. 故有上(下)界的实数集不一定存在最大(小)点. 虽然开区间 (0,1) 有界.

确界存在定理

Theorem

定理: 在实数系统 IR 中, (i) 每个有上界的数集 S \subset IR 必存在最小上界 M, 即 M 是 S 的上界, 且对 S 的任意一个上界 M', 必有 M \leq M'; (ii) 每个有下界的数集 T \subset IR 必存在最大下界 m, 即 m 是 T 的下界, 且对 T 的任意一个下界 m', 必有 m > m'.

Definition

定义: (i) 有上界数集 S 的最小上界称为 S 的上确界,记作 sup S; (sup=supremum) (ii) 有下界数集 T 的最大下界称为 T 的下确界,记作 inf T. (inf=infimum) (iii) 约定当数集 S 无上界时,记 sup $S=+\infty$; 当数集 T 无下界时,记 inf $T=-\infty$.

确界的例子

Example

例: (i) $\sup[0,1]=1$, $\inf[0,1]=0$.

(ii) $\sup(0,1) = 1$, $\inf(0,1) = 0$.

(iii) 记 $\mathbb{N}=\{1,2,3,\cdots\}$,则 $\sup\mathbb{N}=+\infty$,inf $\mathbb{N}=1$.

定理证明

Proof.

确界存在公理等价于连续性公理

Theorem

定理: 假设集合 IR 定义了加法和乘法,以及一个序关系. 如果 IR 还满足如下确界存在公理: IR 的每个有上界的子集均存在上确界(即最小上界),则 IR 满足连续性公理.

Proof.

证明: 留作习题.

确界的充分必要条件

Theorem

定理: (1) 假设 $S \subset IR$ 为一个有上界的子集,则 $M = \sup S$

 \iff (i) M 是 S 的一个上界; (ii) 对 $\forall \varepsilon > 0$, 存在 $s_{\varepsilon} \in S$, 使得 $s_{\varepsilon} > M - \varepsilon$:

(2) 假设 $T \subset \mathbb{R}$ 为一个有下界的子集,则 $m = \inf T \iff$ (i) m 是 T 的一个下界; (ii) 对 $\forall \varepsilon > 0$,存在 $t_{\varepsilon} \in S$,使得 $t_{\varepsilon} < m + \varepsilon$.

注:上述定理的结论可看作是上下确界的可操作性的定义.

定理证明

证明: 结论(1)和(2)的证明类似. 故以下只证明(1). \Rightarrow : 设 $M = \sup S$, 即 M 是实数集 S 的上确界(最小上界). 依定义知 M 是 S 的上界, 故(i)成立. 对 $\forall \varepsilon > 0$, 由于 M $- \varepsilon <$ M, 故 $M - \varepsilon$ 不是 S 的上界. 因此存在 $S_{\varepsilon} \in S$, 使得 $S_{\varepsilon} > M - \varepsilon$, 即(ii)成立. ←: 假设(i)和(ii)均成立. 要证 M = sup S, 即要证 $M \in S$ 的上确界. 由(i)知 $M \in S$ 的上界. 若 M 不是 S 的最小 上界, 则存在S 一个较小的上界 $M_n < M$. 取 $\varepsilon \stackrel{\triangle}{=} M - M_n > 0$. 由(ii)知存在一点 $s_{\varepsilon} \in S$, 使得 $s_{\varepsilon} > M - \varepsilon = M - (M - M_0)$ $= M_0$. 此与 M_0 是 S 的上界的假设相矛盾. 故 $M = \sup S$.

确界存在性的意义

确界存在性的意义在于,它保证了在实数域上许多极限的存在性.由于整个微积分就是极限理论,例如连续,导数和积分等基本概念都是某种极限,故实数的确界存在性是整个微积分的基石.往下均假设 IR 为一个实数域(系统).

实数若干性质,性质一

性质一: 对 $\forall a, b \in \mathbb{R}$, 方程a + x = b 有唯一解x = b - a.

证: (i)
$$x = b - a$$
 是解. 因为 $a + (b - a) = (a - a) + b$ $= 0 + b = b$.

(ii) 唯一性. 设
$$x' \in \mathbb{R}$$
 也是解, 即 $a + x' = b$, 则 $a + x' - a = b - a$. 于是 $a - a + x' = b - a$. 此即 $x' = b - a$. 证毕.

性质二, 性质三

性质二: 设 $a \in \mathbb{R} \setminus \{0\}$, 方程 ax = b 有唯一解 $x = a^{-1}b$.

证: (i) $x = a^{-1}b$ 是解. 因为 $a(a^{-1}b) = (aa^{-1})b = 1b = b$.

(ii) 唯一性. 设 $x' \in \mathbb{R}$ 也是解, 即 ax' = b, 则 $a^{-1}ax' = a^{-1}b$. 于是 $x' = a^{-1}b$. 证毕.

性质三: 对任意 $x \in \mathbb{R}$, 0x = x0 = 0.

<u>证</u>: 由于x0 = x(0+0) = x0 + x0, 故x0 - x0 = x0 + x0 - x0, 即0 = x0. 证毕.

性质四,性质五

性质四: 若 xy = 0, 则或 x = 0 或 y = 0.

证: 设 y \neq 0, 则于等式 xy = 0 两边同乘 y⁻¹ 得 xyy⁻¹ = 0y⁻¹. 此即 x = 0. 证毕.

性质五: 对任意 $x \in \mathbb{R}$, -x = (-1)x.

证: 由于x+(-1)x=[1+(-1)]x=0x=0, 故 -x=(-1)x. 证毕.

性质六

性质六: 对任意 $x,y \in \mathbb{R}$,则下述三分律成立,即以下三种情形必出现且只出现之一

$$\mathbf{x} < \mathbf{y}, \quad \mathbf{x} = \mathbf{y}, \quad \mathbf{x} > \mathbf{y}.$$

证: 根据序公理(iii) 可知对任意 $x,y \in IR$, $x \le y$ 或 $y \le x$. 若这两者同时成立,则由序公理(ii) (若 $x \le y$ 且 $y \le x$,则x = y),知 x = y. 设 $x \ne y$,则当 $x \le y$ 时, x < y; 当 $y \le x$ 时, y < x. 证 毕.

实数的 Archimedes 性质

Theorem

定理: 设 $x,y \in \mathbb{R}$ 且x > 0, 则存在正整数 $n \in \mathbb{N}$, 使得 nx > y.

Proof.

证明: 反证. 假设命题不成立, 即 $nx \le y$, $\forall n \in IN$, 即 y 是集合 $A \stackrel{\triangle}{=} \{nx, n \in IN\}$ 的一个上界. 记 $a \stackrel{\triangle}{=} \sup A$. 由于 x > 0, 故 a - x < a, 即 a - x 不是 A 的上界. 因此存在正整数 m, 使得 a - x < mx, 即 $a < (m + 1)x \in A$. 此与 a 是集合 A 的上确界 相矛盾. 命题得证.

推论

Corollary

推论一: 自然数集 \mathbb{N} 无上界. 即对任意 $y \in \mathbb{R}$, 存在 $n \in \mathbb{N}$, 使 得n>y.

Corollary

推论二: (i) 如果 $a \in \mathbb{R}$ 满足 $0 \le a < \frac{1}{n}$, $\forall n \in \mathbb{N}$, 那么 a = 0.

(ii) 如果 a > 0, 则存在 $n \in \mathbb{N}$, 使得 $\frac{1}{n} < a$.

证明: (i) 假设 $0 < a \le \frac{1}{n}$, $\forall n \in \mathbb{N}$, 则 $n \le \frac{1}{n}$, $\forall n \in \mathbb{N}$ 这表明 自然数集 IN 有上界. 矛盾. 故 a=0.

证(ii). 反证. 假设结论不成立, 则对 $\forall n \in \mathbb{N}, \frac{1}{n} \geq a > 0$. 根据 结论(i)知 a = 0. 矛盾. 故结论(ii)成立.证毕.

有理数的稠密性

<u>命题</u>: 对 $\forall a,b \in \mathbb{IR}$, a < b, 存在有理数 $r \in \mathbb{Q}$, 使得 a < r < b. 注: 一个子集 $S \subset \mathbb{IR}$ 称为在实数域 \mathbb{IR} 上稠密, 如果任意开区间 (a,b) 包含 S 中的元素. 故上述命题是说, 有理数集在实数域中稠密.

证明:由假设 a < b 可知 b - a > 0. 再根据上述推论知存在正整数 n,使得 $a < \frac{m}{n} < b$.如图所示,命题得证.

无理数的稠密性

命題: 対 $\forall a,b \in IR$, a < b, 存在无理数 ξ , 使得 $a < \xi < b$. 证明: 由假设 a < b 可知 $\sqrt{2}a < \sqrt{2}b$. (稍后定义 $\sqrt{2}$, 并证明 $\sqrt{2}$ 是无理数.) 由有理数的稠密性知, 存在有理数 $r \in (\sqrt{2}a,\sqrt{2}b)$. 若 $r \neq 0$, 则无理数 $\frac{r}{\sqrt{2}} \in (a,b)$. 若 r = 0, 则 $\sqrt{2}a < 0 < \sqrt{2}b$. 再次由有理数的稠密性知存在有理数 $s \in (0,\sqrt{2}b)$. 由此可知 无理数 $\frac{s}{\sqrt{2}} \in (0,b) \subset (a,b)$. 命题得证.

注:课后一位同学(很遗憾我忘了问他的名字)给出了一个更简单的证明:由有理数的稠密性知存在有理数 $r\in(a+\sqrt{2},b+\sqrt{2})$.故 $r-\sqrt{2}\in(a,b)$. 显然 $r-\sqrt{2}$ 是一个无理数.证毕.

$\sqrt{2}$ 的存在性

Theorem

<u>定理</u>: 存在唯一正实数 b > 0, 使得 $b^2 = 2$. (这个数 b 通常称作正数 2 的平方根, 记作 $\sqrt{2}$ 或 $2^{\frac{1}{2}}$.)

证明: 唯一性显然成立. 因为如果还存在 a>0, 使得 $a^2=2$, 则 $0=a^2-b^2=(a+b)(a-b)$. 由于 a+b>0, 故 a-b=0, 即 a=b. (回忆实数性质四: 若 xy=0, 则或 x=0 或 y=0.) 以下证存在性. 记 $S=\{x\in IR, x>0, x^2<2\}$. 断言 (i) S 非空. 因为 $1^2=1<2$, 故 $1\in S$. 断言 (ii) S 上有界. 因为对任意 $x\in S$, $x^2<2<4=2^2$, 故 x<2. 这表明 2 就是 S 的一个上界.

证明续一

由确界存在定理知 S 存在上确界. 记 $b = \sup S$. 由序公理的三分律知, 或 $b^2 < 2$ 或 $b^2 > 2$ 或 $b^2 = 2$. 往下将证明前两个情形不可能发生. 因此必有 $b^2 = 2$.

(1) 假设 $b^2 < 2$. 对于 $\forall \varepsilon \in (0,1)$, $(b+\varepsilon)^2 = b^2 + 2b\varepsilon + \varepsilon^2$ $< b^2 + 4\varepsilon + \varepsilon = b^2 + 5\varepsilon$. 令 $b^2 + 5\varepsilon < 2$, 即 $\varepsilon \in (0,\frac{2-b^2}{5})$. 对 这样的 ε , $(b+\varepsilon)^2 < 2$. 故 $b+\varepsilon \in S$. 此与 b 是 S 的上确界矛盾. 因此情形 $b^2 < c$ 不可能出现.

证明续二

(2) 假设 $b^2 > 2$. 对 $\forall \varepsilon \in (0,1)$, $(b-\varepsilon)^2 = b^2 - 2b\varepsilon + \varepsilon^2$ $> b^2 - 2b\varepsilon \ge b^2 - 4\varepsilon$. (因为0 < b < 2). 令 $b^2 - 4\varepsilon > 2$, 即 $\varepsilon \in (0, \frac{b^2 - 2}{4})$. 对于这样的 ε , $(b-\varepsilon)^2 > 2$. 于是对于 $\forall x \in S$, $x^2 < 2 < (b-\varepsilon)^2$. 故 $x < b-\varepsilon$. 这表明 $b-\varepsilon$ 是 S 的一个上界. 此与 b 是 S 的上确界相矛盾. 这说明 $b^2 > 2$ 不可能发生. 这就证明了 $b^2 = 2$. 证毕.

 \underline{i} : 类似可证, 对任意正整数 n, 以及任意正数 c, 存在唯一正数 b > 0, 使得 $b^n=c$. 这个数 b 称作正数 c 的 n 次方根, 记作 $\sqrt[n]{c}$, 或 $c^{\frac{1}{n}}$.

$\sqrt{2}$ 是无理数

Theorem

定理[Pythagoras School, 约公元前 500 年]: $\sqrt{2}$ 是无理数.

Proof.

证明: 假设 $\sqrt{2}$ 是有理数, 即它可表示为 $\sqrt{2} = \frac{p}{q}$, 其中 p, q 均为正整数, 且 p 和 q 无公因子,则 $(\frac{p}{q})^2 = 2$, 即 $p^2 = 2q^2$. 由此可见 p 是偶数, 即 p = 2k, 其中 k 也是正整数. 于是 $4k^2 = 2q^2$, 即 $2k^2 = q^2$. 由此可知 q 也为偶数. 矛盾. 证毕.

注: 可以证明, 若 n 不是完全平方数, 即 n \neq 1, 4, 9, · · · ,则 \sqrt{n} 是无理数. 参见常庚哲史济怀《数学分析教程》(上), 第3页.

有理数域不满足确界存在性条件

不难验证, 有理数集 Q 按通常的加法满足加法公理, 乘法满足乘法公理, 以及通常的大小关系满足序公理. 因此 Q 构成一个数域, 称作有理数域.

命题: 有理数域 Q 不满足确界存在性条件.

证明: 只要证 Q 的某个非空上有界集不存在上确界即可, 定义 $S = \{r \in \mathbb{Q}, r > 0, r^2 < 2\}$. 假设S 有上确界 $b \stackrel{\triangle}{=} \sup S$. 且 b是有理数,不难证明在有理数域内同样成立三分律,即 $b^2 < 2$ 或 $h^2 > 2$ 或 $h^2 = 2$. 用前述方法可证, 在有理数域 Q 内, 前两 个情况同样不可能发生。(唯一不同的地方是这里需取 ϵ 为适当小的正 有理数.) 故 $b^2 = 2$, 即 $b = \sqrt{2}$ 是无理数. 矛盾. 故 S 没有上确 界. 从而有理数域不满足确界存在性条件. 证毕.

不等式的五个基本结论

根据实数的序公理, 不难得到如下关于不等式的五个基本结论

- (i) 三分律: 对于 $\forall a, b \in \mathbb{R}$, 或 a < b, 或 a = b, 或 a > b.
- (ii) 传递律: 若a < b 且b < c, 则a < c.
- (iii) 加法律: 若a < b 且 c < d, 则 a + c < b + d.
- (iv) 乘法律: 设 a < b. 若 p > 0, 则 ap < bp; 若 p < 0, 则 ap > bp.
- (v) 倒数律: 若0 < a < b, 则 $\frac{1}{a} > \frac{1}{b}$.

注意除了三分律之外, 在其它所有地方的严格不等号 < (或 >), 均可由相应的非严格不等号 < (或 >) 替换, 结论亦然成立。

三角不等式与逆三角不等式

Theorem

定理: 对于 $\forall a, b \in \mathbb{R}$, $|a| - |b| \le |a + b| \le |a| + |b|$.

注: 第二个不等式称作三角不等式, 第一个不等式称作逆三角不等式.

Proof.

<u>证明</u>: 由于 $\pm a \le |a|$, $\pm b \le |b|$, 故 $\pm (a+b) \le |a| + |b|$. 因此

$$|\mathbf{a} + \mathbf{b}| = \pm (\mathbf{a} + \mathbf{b}) \le |\mathbf{a}| + |\mathbf{b}|.$$

故三角不等式得证. 再根据三角不等式得 |a|=|a+b-b|

$$\leq |a+b|+|b|$$
. 由此即得逆三角不等式. 证毕.

例子

Example

例: 利用 $|\pi - 3.141| < 10^{-3}$, $|\sqrt{2} - 1.414| < 10^{-3}$, 我们可以得到关于数 $\pi + \sqrt{2}$ 的估计:

$$\left|\pi + \sqrt{2} - 4.555\right| = \left|(\pi - 3.141) + (\sqrt{2} - 1.414)\right|$$

$$\leq \left|\pi - 3.141\right| + \left|\sqrt{2} - 1.414\right| \leq 10^{-3} + 10^{-3} = 2 \times 10^{-3}.$$

算术几何平均不等式

Theorem

<u>定理</u> (The arithmetic-geometric mean inequality): 对任意两个正数 a, b > 0, 成立 $\sqrt{ab} < \frac{a+b}{2}$, 且等号成立当且仅当 a = b.

注:记 $G(a,b) = \sqrt{ab}$, $A(a,b) = \frac{a+b}{2}$, 分别称 G(a,b) 和A(a,b) 为正数 a,b 的几何平均和算术平均.因此定理可简言之为,几何平均小于等于算术平均.

Proof.

八数证明: 由于 $0 \le (a - b)^2 = a^2 - 2ab + b^2$, 故 4ab $\le a^2 + 2ab + b^2 = (a + b)^2$. 于是 $\sqrt{ab} \le \frac{a+b}{2}$. 显然等号成立,

当且仅当a=b. 命题得证.

图形证明

Fig. 1.9 A visual proof that $4ab \le (a+b)^2$, by comparing areas

例子

例:证明在给定周长的矩形中,正方形的面积最大.如图所示.

证明

Proof.

证明: 设矩形的长和宽分别为 L 和 W, 则其面积为 LW. 根据算术几何平均不等式可知 $\sqrt{LW} \leq \frac{L+W}{2}$, 或等价地

$$LW \le \left(\frac{L+W}{2}\right)^2.$$

注意上式右边是具有相同周长的正方形之面积. 命题得证.

算术平均与几何平均不等式之推广

Theorem

<u>定理</u>: 对任意 n 个正数 a₁, a₂, · · · , a_n,

$$\sqrt[n]{a_1a_2\cdots a_n} \leq \frac{1}{n}(a_1+a_2+\cdots+a_n),$$

且等号成立, 当且仅当这 n 个数相等, $pa_1 = a_2 = \cdots = a_n$.

注: 同两个数的情形, 记 $G(a_1,a_2,\cdots,a_n)=\sqrt[n]{a_1a_2\cdots a_n}$, $A(a_1,a_2,\cdots,a_n)=\frac{1}{n}(a_1+a_2+\cdots+a_n)$, 它们分别称为正数 a_1,a_2,\cdots,a_n 的几何平均和算术平均. 因此定理可简言之为, 任意 n 个正数的几何平均小于等于其算术平均.

证明

<u>证明大意</u>:已证结论对n=2成立.以下证明当n=4时结论 成立.设a₁,a₂,a₃,a₄为四个正数,记

$$A_1 = \frac{a_1 + a_2}{2}, \quad A_2 = \frac{a_3 + a_4}{2}.$$

多次应用n=2 时的结论得

$$\sqrt{a_1a_2} \leq \mathsf{A}_1, \quad \sqrt{a_3a_4} \leq \mathsf{A}_2, \quad \sqrt{\mathsf{A}_1\mathsf{A}_2} \leq \frac{\mathsf{A}_1+\mathsf{A}_2}{2}.$$

于是

证明续一

$$\begin{split} \sqrt[4]{a_1a_2a_3a_4} &= \sqrt{\sqrt{a_1a_2}\sqrt{a_3a_4}} \leq \sqrt{A_1A_2} \leq \frac{A_1+A_2}{2} \\ &= \frac{\frac{a_1+a_2}{2} + \frac{a_3+a_4}{2}}{2} = \frac{a_1+a_2+a_3+a_4}{4}. \end{split}$$

等号成立, 当且仅当 $A_1 = A_2$ 且 $a_1 = a_2$, $a_3 = a_4$. 这等价于 $a_1 = a_2 = a_3 = a_4$. 因此 n = 4 时结论成立. 以下再证明 n = 3 时的结论. 设 a_1, a_2, a_3 为三个正数. 记它们的算术平均值为

$$m = \frac{a_1 + a_2 + a_3}{3}.$$

证明续二

不难证明 m 也是四个数 a1, a2, a3, m 的算术平均值, 即

$$m=\frac{a_1+a_2+a_3+m}{4}.$$

现在对这四个数应用 n=4 时的结论得 $(a_1a_2a_3m)^{\frac{1}{4}} \le m$. 两边取四次方即得 $(a_1a_2a_3m) \le m^4$. 此即 $(a_1a_2a_3) \le m^3$. 亦即 $(a_1a_2a_3)^{\frac{1}{3}} \le m$. 这就证明了结论当 n=3 时成立. 其余情形的证明类似.

作业

课本习题1.1 (pp.3-4): 1(2)(3), 2(1)(3), 4, 6.

补充题一: 证明定理: 假设集合 IR 定义了加法和乘法, 以及一

个序关系. 如果 IR 还满足如下确界存在公理: IR 的每个有上界的子集均存在上确界(即最小上界),则 IR 满足连续性公理.

补充题二: 证明 $\sqrt{3}$ 是无理数.

补充题三: 利用算术几何平均不等式证明, 对于任意x>0,

- (i) $x^{\frac{1}{3}} \leq \frac{x+2}{3}$.
- (ii) 对于每个正整数 n, $x^{\frac{1}{n}} \leq \frac{x+n-1}{n}$.
- (iii) 对于每个正整数 n, $n^{\frac{1}{n}} \leq \frac{2n-1}{n}$.

作业续

<u>补充题四</u>: 设 a,b 为两个正数,证明 $\frac{2}{\frac{1}{a} + \frac{1}{b}} \le \sqrt{ab}$.

 \underline{i} : 表达式 $\frac{2}{\frac{1}{a+b}}$ 称为两个正数 a,b 的调和平均. 于是题目中的结论就是调和平均小干等于几何平均.

<u>补充题五</u>:证明对于任意正整数 n, $(n!)^{\frac{1}{n}} \leq \frac{n+1}{2}$.

补充题六:完成算术几何平均不等式一般情形的证明.

- (i) 证明 n = 8 时的结论: 应用两次对于四个正数时的结论.
- (ii) 证明 n=5 时的结论:设 a_1,a_2,a_3,a_4,a_5 为五个任意正数, m 是它们的算术平均值,则八个数 $a_1,a_2,a_3,a_4,a_5,m,m,m$ 算术平均值仍然为 m.由此证明 n=5 时的结论成立.