Space-Efficient Data Structures

Francisco Claude Gonzalo Navarro

Outline

- Motivation
- Basics
- Bitmaps
- Sequences
- Applications

Outline

Motivation

- Basics
- Bitmaps
- Sequences
- Applications

• Processor speed increasing

• Processor speed increasing

• Disks have not evolved at the same pace

Computer Memory Hierarchy

source: Wikipedia

Computer Memory Hierarchy

source: Wikipedia

Web Graph uk-union-2006-06-2007-05

Nodes: 133, 633, 040

Edges: 5,507,679,822

Web Graph uk-union-2006-06-2007-05

Nodes: 133, 633, 040

Edges: 5,507,679,822

A plain representation requires 22GB!

Web Graph uk-union-2006-06-2007-05

Nodes: 133, 633, 040

Edges: 5, 507, 679, 822

A plain representation requires 22GB!

If we use a space-efficient representation: < 2GB

memory (logscale)

memory (logscale)

Outline

- Motivation
- Basics
- Bitmaps
- Sequences
- Applications

Outline

- Motivation
- Basics
- Bitmaps
- Sequences
- Applications

Basics

- Plain representation of data
- Zero-order compression
- High-order compression

Plain Representation of Data

Array:

- ullet length n
- ullet maximum value m

$$n \lceil \log_2(m+1) \rceil$$
 bits

Plain Representation of Data

Array:

- length n
- \bullet maximum value m

$$n \lceil \log_2(m+1) \rceil$$
 bits

5	3	4	1	0	4	2	4	1	0
101	011	100	001	000	100	010	100	001	000

On a 32-bits machine this requires 1 word

Arrays in LIBCDS

```
size_t N;
cout << "Enter array length: ";</pre>
cin >> N;
uint * A = new uint[N];
for(size_t i=0;i<N;i++) {
  cout << "Enter element at position " << i << ": ";</pre>
 cin >> A[i];
Array * a = new Array(A,N);
delete [] A;
cout << "Size: " << a->getSize() << " bytes" << endl;</pre>
for(uint i=0;i<N;i++)</pre>
  cout << "A[" << i << "]=" << a->getField(i) << endl;
delete a;
```

Arrays in LIBCDS

```
size_t N;
uint M;
cout << "Enter array length: ";</pre>
cin >> N;
cout << "Enter the maximum value to be stored: ";
cin >> M;
Array *a = new Array(N,M);
for(size_t i=0;i<N;i++) {</pre>
  uint tmp;
  cout << "Enter element at position " << i << ": ";</pre>
 cin >> tmp;
  a->setField(i,tmp);
cout << "Size: " << a->getSize() << " bytes" << endl;</pre>
```

```
for(uint i=0;i<N;i++)
  cout << "A[" << i << "]=" << a->getSize() << bytes << end;

for(uint i=0;i<N;i++)
  cout << "A[" << i << "]=" << a->getField(i) << end];

delete a;</pre>
```

Zero-order Compression

Can we do better? It depends

S = aaabbcaaabbcaaad

$$H_0(S) = \sum_{c \in \Sigma} \frac{n_c}{n} \log_2 \frac{n}{n_c}$$

$$H_0(S) = 1.5919$$

symbol	n_{symbol}
а	9
b	4
С	2
d	1

Zero-order Compression

Can we do better? It depends

S = aaabbcaaabbcaaad

$$H_0(S) = \sum_{c \in \Sigma} \frac{n_c}{n} \log_2 \frac{n}{n_c}$$

$$H_0(S) = 1.5919$$

symbol	n_{symbol}
а	9
b	4
С	2
d	1

Huffman

High-order Compression

Can we exploit other things?

S = aaabbcaaabbcaaad

High-order Compression

Can we exploit other things?

$$S = aaabbcaaabbcaaad$$

Yes, for example P(a|b) = 0

$$H_k(S) = \frac{1}{n} \sum_{T \in \Sigma^k} |T| H_0(T)$$

$$H_k(S) = 0.9387$$

Things to Remember

- $\lceil \log_2(m+1) \rceil$ bits to represent a number $\leq m$
- ullet Compression: H_0 and H_k

$$H_k \le H_0 \le \log_2 m$$

Things to Remember

- $\lceil \log_2(m+1) \rceil$ bits to represent a number $\leq m$
- ullet Compression: H_0 and H_k

$$H_k \le H_0 \le \log_2 m$$

One step forward: ordinal trees

$$C_n = \frac{1}{n+1} \binom{2n}{n} \approx \frac{4^n}{n^{3/2} \sqrt{\pi}}$$

$$\Rightarrow 2n + o(n)$$
 bits

Outline

- Motivation
- Basics
- Bitmaps
- Sequences
- Applications

Outline

- Motivation
- Basics
- Bitmaps
- Sequences
- Applications

$$B = 1001110000111100000$$

$$B = 1001110000111100000$$
 $rank(13) = 7$
 $access(19) = 0$
 $select(8) = 14$

Is this useful?

Hashing Example

- ullet Static hashtable with n elements implemented with linear probing
- Expected successful seach cost = 3 ($\alpha = 0.8$)
- Each key requires k bits

Standard solution requires $k\frac{n}{\alpha}$ bits

Requires $\frac{n}{\alpha} + nk$ bits

Hashing Example

Bitmaps: Example Applications

- Linear-probing hashing
- Perfect hashing
- Bitmaps are basic building blocks
- Partial Sums

- Plain [Jacobson, Clark and Munro]
- Compressed [Raman et al.]
- Very Sparse [Okanohara and Sadakane]

Rank

B = 10010101011110101011...

1 1 1 2 2 3 3 4 4 5 6 7 7 ...

O(1) rank $n \lg n$ bits of space

Rank

If we sample every s bits, we require $\frac{n \lg n}{s}$ bits. Rank takes O(s) time.

If we sample every s bits, we require $\frac{n \lg n}{s}$ bits. Rank takes O(s) time.

If we sample every s bits, we require $\frac{n \lg n}{s}$ bits. Rank takes O(s) time.

1001	1001
------	------

Recurse inside blocks sampling every b. This requires $\frac{n \lg s}{b}$ bits and now we can answer in O(b) time.

overall space: $n + n/\log n + n\log\log n/\log n$ bits

So far we have n+o(n) bits and we can answer in $O(\log(n))$ time. The nice thing is that we can handle blocks of size $\log(n)/2$ in constant time.

Idea:

List all blocks of size $\log(n)/2$ and store the rank up to any position in a table for lookup.

So far we have n+o(n) bits and we can answer in $O(\log(n))$ time. The nice thing is that we can handle blocks of size $\log(n)/2$ in constant time.

Idea:

List all blocks of size $\log(n)/2$ and store the rank up to any position in a table for lookup.

Space required:

 $2^{\log(n)/2}\log(n)\log\log(n)/2 \approx \sqrt{n}\log(n)\log\log(n)$ bits. This is o(n) bits.

Universal Tables

Example with size 8.

0000000	0	0	0	0	0	0	0	0
0000001	0	0	0	0	0	0	0	1
0000010	0	0	0	0	0	0	1	1
01100101	0	1	2	2	2	3	3	4
 11111111	1	2	3	4	5	6	7	8

Size in practice:

$\log(n)/2$	size
8	2KB
16	1MB

Universal Tables

Example with size 8.

00000000	0	0	0	0	0	0	0	0
0000001	0	0	0	0	0	0	0	1
0000010	0	0	0	0	0	0	1	1
 01100101	0	1	2	2	2	3	3	4
 11111111	1	2	3	4	5	6	7	8

Size in practice:

$\log(n)/2$	size
8	2KB
16	1MB

In practice we use popcnt

Partition according to the number of 1s

$$\mathsf{B} = \underbrace{1010010100100110011001001}_{\log^2 n \ 1\mathsf{s}}$$

Partition according to the number of 1s

$$\mathsf{B} = \underbrace{1010010100100110011001001001}_{\log^2 n \text{ 1s}}$$

Sparse superblock: length $\geq \log^3 n \cdot \log \log n$

We store the answer for all sparse superblocks in plain form

Space required: $O(n/\log\log n) + n/\log^2 n + o(n)$ bits

Partition according to the number of 1s

$$\mathsf{B} = \underbrace{1010010100100110011001001001}_{\log^2 n \ 1\mathsf{s}}$$

Store the positions where each dense block begins

Divide every superblock into blocks of $(\log \log n)^2 1s$

We consider a block sparse if the size is $\geq 4(\log \log n)^4$ $\Rightarrow O(n/\log n)$ bits for storing the answers

We recurse again! The next level is small enough.

The solution is quite complicated and does not work well in practice

The solution is quite complicated and does not work well in practice

Practical solution: binary search using rank

Implementation in LIBCDS

k popcounts for rank

select requires a binary search over the superblocks + sequential search

Usage in LIBCDS

```
size_t N;
cout << "Length of the bitmap: ";</pre>
cin >> N;
uint * bs = new uint[uint_len(N,1)];
for(uint i=0;i<N;i++) {
  uint b;
  cout << "bit at position " << i << ": ";</pre>
  cin >> b;
  if(b==0) bitclean(bs,i);
  else bitset(bs,i);
BitSequenceRG * bsrg = new BitSequenceRG(bs,N,20);
cout << "rank(" << N/2 << ")=" << bsrg->rank1(N/2) << endl;</pre>
cout << "select(1) = " << bsrg->select1(1) << endl;</pre>
cout << "size = " << bsrg->getSize() << endl;</pre>
delete bsrg;
```

$$\mathsf{B} = 101001010010010110010101000$$

Class	Bitmap	Offset		
0	000	0		
1	001	0		
	010	1		
	100	2		
2	011	0		
	101	1		
	110	2		
3	111	0		

$$\mathsf{B} = \boxed{101001010010010110010101000}$$

Class	Bitmap	Offset										
0	000	0	•									
1	001	0										
	010	1										
	100	2										
2	011	0			l _a							
	101	1		2	1	1	1	1	2	1	2	0
	110	2	0	1	0	1	1	1	2	1	1	0
3	111	0										

Blocks of size $b = \log(n)/2$

C requires $2n \log \log n / \log n = o(n)$ bits

0?

Blocks of size $b = \log(n)/2$

C requires $2n \log \log n / \log n = o(n)$ bits

0?

We can represent an element of class c_i with $\lceil \log {b \choose c_i} \rceil$ bits

Total space: $\sum_{i=0}^{n/b} \lceil \log {b \choose c_i} \rceil \le nH_0(B) + O(n/\log n)$ bits

$$\sum_{i=1}^{n/b} \left\lceil \log \binom{b}{c_i} \right\rceil \leq \sum_{i=1}^{n/b} \log \binom{b}{c_i} + n/b$$

$$= \log \prod_{i=1}^{n/b} \binom{b}{c_i} + O(n/\log n)$$

$$\leq \log \binom{(n/b)b}{\sum_{i=1}^{n/b} c_i} + O(n/\log n)$$

$$= \log \binom{n}{m} + O(n/\log n)$$

$$\leq nH_0(B) + O(n/\log n)$$

How can we support constant time access?

How can we support constant time access?

Store a pointer to O every $\log^2(n)/2$ blocks

 $O(n/\log n)$ extra bits

Store offset for each element

One element is at most $O(\log \log n)$ bits

Sum offsets: $O(n \log \log n / \log n)$ bits

Store offset for each element

One element is at most $O(\log \log n)$ bits

Sum offsets: $O(n \log \log n / \log n)$ bits

Same idea behind rank

	Class	Bitmap	Offset	
_	0	000	0	
	1	001	0	
		010	1	Space required for this table?
		100	2	•
	2	011	0	
		101	1	
		110	2	
	3	111	0	

Class	Bitmap	Offset	
0	000	0	
1	001	0	
	010	1	Space required for this table?
	100	2	•
2	011	0	
	101	1	
	110	2	
3	111	0	

$$b2^b + b^2 = O(\sqrt{n}\log n)$$
 bits

We can access the bitmap in constant time

What about rank and select?

We can access the bitmap in constant time

What about rank and select?

We can access $b = \log(n)/2$ bits at the time

This replaces the plain representation for the solutions already shown

Constant time rank, select and access within $nH_0(B) + o(n)$ bits

Practical Implementation

The table and C are easy

O and its sampling?

Practical Implementation

The table and C are easy

O and its sampling?

We only keep superblocks (parameter)

Superblocks are traversed linearly


```
size_t N;
cout << "Length of the bitmap: ";</pre>
cin >> N;
uint * bs = new uint[uint_len(N,1)];
for(uint i=0;i<N;i++) {
  uint b;
  cout << "bit at position " << i << ": ";</pre>
  cin >> b;
  if(b==0) bitclean(bs,i);
  else bitset(bs,i);
BitSequenceRRR * bsrrr = new BitSequenceRRR(bs,N,16);
cout << "rank(" << N/2 << ")=" << bsrrr->rank1(N/2) << endl;
cout << "select(1) = " << bsrrr->select1(1) << endl;</pre>
cout << "size = " << bsrrr->getSize() << endl;</pre>
delete bsrrr;
```

The previous solution does not work well for very sparse bitmaps

store S[i] = select(B, i) and solve rank with binary search

The previous solution does not work well for very sparse bitmaps

store S[i] = select(B, i) and solve rank with binary search

$$S[i]$$

$$h_i \qquad l_i$$

$$t \text{ bits}$$

$$t = \lceil \log n/m \rceil$$

Two arrays: H and L

H is stored in a bitmap of length 2m L is stored in $m \log n/m + O(m)$ bits

Two arrays: H and L

h_1	h_2		h_m
-------	-------	--	-------

Positions $h_i + i$ are ones

Two arrays: H and L

Positions $h_i + i$ are ones

$$h_i = select(H, i) - i$$

$$h_m + m \le n/2^t + m \le 2m$$

Two arrays: H and L

Two arrays: H and L

$$select(B, i) = (select(H, i) - i) \cdot 2^t + L[i]$$

Two arrays: H and L

$$select(B, i) = (select(H, i) - i) \cdot 2^t + L[i]$$

rank:

$$\begin{split} i &= h \cdot 2^t + l \\ x &= 1 + rank(H, select_0(H, h)) \\ y &= rank(H, select_0(H, h+1)) \\ \text{binary search } L[x, y] \end{split}$$

Two arrays: H and L

Space: O(m) for H and $m \log n/m$ for L

select: O(1)

rank: $O(\log n/m)$

access: $O(\log n/m)$

```
size_t N;
cout << "Length of the bitmap: ";</pre>
cin >> N;
uint * bs = new uint[uint_len(N,1)];
for(uint i=0;i<N;i++) {
  uint b;
  cout << "bit at position " << i << ": ";</pre>
  cin >> b;
  if(b==0) bitclean(bs,i);
  else bitset(bs,i);
BitSequenceSDArray * bss = new BitSequenceSDArray(bs,N);
cout << "rank(" << N/2 << ")=" << bss->rank1(N/2) << endl;
cout << "select(1) = " << bss->select1(1) << endl;</pre>
cout << "size = " << bss->getSize() << endl;</pre>
delete bss:
```

Outline

- Motivation
- Basics
- Bitmaps
- Sequences
- Applications

Outline

- Motivation
- Basics
- Bitmaps
- Sequences -
- Applications

Sequences

S = EHDHACEEGBCBGCF

Sequences

$$n = |S|$$

$$\sigma = |\Sigma|$$

Space: $n\lceil \log \sigma \rceil$ bits

Sequences

- Wavelet Trees [Grossi et al.]
- GMR [Golynski et al.]
- Alphabet Partitioning [Barbay et al.]

$$n\lceil\log\sigma\rceil(1+o(1))$$

$$n\lceil\log\sigma\rceil(1+o(1))$$

$$n\lceil \log \sigma \rceil (1 + o(1))$$

$$n\lceil \log \sigma \rceil (1 + o(1))$$

$$n\lceil \log \sigma \rceil (1 + o(1))$$

access takes $O(\log \sigma)$ time

rank also takes $O(\log \sigma)$ time

select takes $O(\log \sigma)$ time

We can save pointers

Other codifications work too

Huffman Shape

Space: $nH_0(S) + o(n \log \sigma)$ bits

Query time: $O(H_0(S))$ expected

We can save pointers

Other codifications work too

Huffman Shape

Space: $nH_0(S) + o(n \log \sigma)$ bits

Query time: $O(H_0(S))$ expected

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
\overline{E}	H	\overline{D}	\overline{H}	\overline{A}	C	\overline{E}	\overline{E}	\overline{G}	B	C	B	\overline{G}	C	\overline{F}
1	1	0	1	0	0	1	1	1	0	0	0	1	0	1
1	0	1	0	1	0	1	0	1	1	0	0	1	1	0
0	1	1	1	0	0	0	0	0	0	1	1	1	0	0

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
\overline{E}	\overline{H}	\overline{D}	\overline{H}	\overline{A}	\overline{C}	\overline{E}	\overline{E}	\overline{G}	B	C	B	\overline{G}	\overline{C}	\overline{F}
1	1	0	1	0	0	1	1	1	0	0	0	1	0	1
1	0	1	0	1	0	1	0	1	1	0	0	1	1	0
0	1	1	1	0	0	0	0	0	0	1	1	1	0	0

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
\overline{E}	H	\overline{D}	H	\overline{A}	\overline{C}	\overline{E}	\overline{E}	\overline{G}	B	C	B	\overline{G}	C	\overline{F}
	1	0	1	0	0	1	1	1	0	0	0	1	0	1
1	0	1	0	1	0	1	0	1	1	0	0	1	1	0
0	1	1	1	0	0	0	0	0	0	1	1	1	0	0

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
\overline{E}	H	\overline{D}	\overline{H}	\overline{A}	\overline{C}	\overline{E}	\overline{E}	\overline{G}	B	\overline{C}	B	\overline{G}	\overline{C}	\overline{F}
1	1	0	1	0	0	1	1	1	0	0	0	1	0	1
1	0	1	0	1	0	1	0	1	1	0	0	1	1	0
0	1	1	1	0	0	0	0	0	0	1	1	1	0	0

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
\overline{E}	\overline{H}	\overline{D}	\overline{H}	\overline{A}	\overline{C}	\overline{E}	\overline{E}	\overline{G}	B	\overline{C}	B	\overline{G}	\overline{C}	\overline{F}
1	1	0	1	0	0	1	1	1	0	0	0	1	0	1
1	0	1	0	1	0	1	0	1	1	0	0	1	1	0
0	1	1	1	0	0	0	0	0	0	1	1	1	0	0

Saving pointers is useful for large alphabets: $O(\sigma \log n)$ bits

We showed a solution with $O(\log \sigma)$ pointers

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
\overline{E}	H	\overline{D}	H	\overline{A}	C	\overline{E}	\overline{E}	\overline{G}	B	C	B	\overline{G}	C	\overline{F}
1	1	0	1	0	0	1	1	1	0	0	0	1	0	1
1	0	1	0	1	0	1	0	1	1	0	0	1	1	0
0	1	1	1	0	0	0	0	0	0	1	1	1	0	0

We can reduce it further to 1 pointer

Classes Implemented

WaveletTree

WaveletTreeNoptrs

WaveletTree

Sequence

Length

Coder

Bitmap Builder

Mapper

WaveletTreeNoptrs

Sequence

Length

Bitmap Builder

Mapper

Classes Implemented

WaveletTree

WaveletTreeNoptrs

WaveletTree

Sequence

Length

→ Coder

Bitmap Builder

Mapper

WaveletTreeNoptrs

Sequence

Length

Bitmap Builder

Mapper

Classes Implemented

WaveletTree

WaveletTreeNoptrs

WaveletTree

Sequence

Length

→ Coder

Bitmap Builder Mapper

WaveletTreeNoptrs

Sequence

Length

→ Bitmap Builder

Mapper

Wavelet Trees

Classes Implemented

WaveletTree

WaveletTreeNoptrs

WaveletTree

Sequence

Length

→ Coder

→ Bitmap Builder

→ Mapper

WaveletTreeNoptrs

Sequence

Length

→ Bitmap Builder

→ Mapper

Wavelet Trees

```
size_t N;
uint s;
cout << "Length: ";</pre>
cin >> N;
uint * seq = new uint[N];
for(size_t i=0;i<N;i++) {
  uint v;
  cout << "Element at position " << i << ": ";</pre>
  cin >> seq[i];
WaveletTree * wt1 = new WaveletTree(seq, N,
    new wt_coder_huff(seq, N,
                       new MapperNone()),
    new BitSequenceBuilderRG(20),
    new MapperNone());
cout << "size = " << wt1->getSize() << " bytes" << endl;
```

S = abracadabraa

 $B = 10001000 \ 1010 \ 101 \ 110 \ 1010$

S = abracadabraa

 $B = 10001000 \ 1010 \ 101 \ 110 \ 1010$

Space: $n\sigma/b + n$ bits

We can solve rank and select for multiples of σ

We can solve rank and select for multiples of σ

We can solve rank and select for multiples of σ

We need to solve rank, select and access for sequences of length σ These are called *chunks*

```
X = 100000100010000
\pi = [1, 4, 5, 11, 12, 2, 8, 9, 3, 6, 7, 10]
```

S=abcaaccbbcaa

access(3)

X = 100000100010000

 $\pi = [1, 4, 5, 11, 12, 2, 8, 9, 3, 6, 7, 10]$

$$X = 100000100010000$$

$$\pi = [1, 4, 5, 11, 12, 2, 8, 9, 3, 6, 7, 10]$$

$$\pi^{-1}(3) = 9$$

$$X = 100000100010000$$

$$\pi = [1, 4, 5, 11, 12, 2, 8, 9, 3, 6, 7, 10]$$

$$\pi^{-1}(3) = 9$$

S=abcaaccbbcaa

X = 100000100010000 $\pi = [1, 4, 5, 11, 12, 2, 8, 9, 3, 6, 7, 10]$ $\pi^{-1}(3) = 9$

```
select(b, 2)
```

$$X = 100000100010000$$

$$\pi = [1, 4, 5, 11, 12, 2, 8, 9, 3, 6, 7, 10]$$

```
select(b,2)
```

$$X = 100000100010000$$

$$\pi = [1, 4, 5, 11, 12, 2, 8, 9, 3, 6, 7, 10]$$

```
select(b,2)
```

$$X = 100000100010000$$

$$\pi = [1, 4, 5, 11, 12, 2, 8, 9, 3, 6, 7, 10]$$

S=abcaaccbbcaa

X = 100000100010000

```
rank(c, 8)
```

$$\pi = [1, 4, 5, 11, 12, 2, 8, 9, 3, 6, 7, 10]$$

S=abcaaccbbcaa

```
rank(c, 8)
```

X = 100000100010000

$$\pi = [1, 4, 5, 11, 12, 2, 8, 9, 3, 6, 7, 10]$$

```
X = 100000100010000
\pi = [1, 4, 5, 11, 12, 2, 8, 9, 3, 6, 7, 10]
```

S=abcaaccbbcaa

rank(c, 8)

X = 100000100010000

$$\pi = [1, 4, 5, 11, 12, 2, 8, 9, 3, 6, 7, 10]$$

With a Y-Fast trie, the search takes $O(\log \log \sigma)$

S=abcaaccbbcaa

rank(c, 8)

X = 100000100010000

 $\pi = [1, 4, 5, 11, 12, 2, 8, 9, 3, 6, 7, 10]$

With a Y-Fast trie, the search takes $O(\log \log \sigma)$

In practice we use binary search

We can represent a permutation over σ values in $\sigma \log \sigma (1+o(1))$ bits

 $\pi(i)$ takes O(1) time and $\pi^{-1}(i)$ takes $O(\log \log \sigma)$ [Munro et al.]

GMR supports rank and access in $O(\log\log\sigma)$ time and select in constant time, within space $n\log\sigma + n\cdot o(\log\sigma)$ bits of space.

In LIBCDS

SequenceGMR

chunk_length

PermutationBuilderMRRR

Sequence Builder GMR Chunk

```
size_t N;
uint s;
cout << "Length: ";</pre>
cin >> N;
uint * seq = new uint[N];
for(size_t i=0;i<N;i++) {</pre>
  uint v;
  cout << "Element at position " << i << ": ";</pre>
  cin >> seq[i];
SequenceGMR * gmr = new SequenceGMR(seq, N, 5u,
  new BitSequenceBuilderRG(20),
  new SequenceBuilderGMRChunk(
     new BitSequenceBuilderRG(20),
     new PermutationBuilderMRRR(
                  20,
                  new BitSequenceBuilderRG(20)));
cout << "size = " << gmr->getSize() << " bytes" << endl;</pre>
```

Symbol	Fred
Α	1
В	2
C	3
D	1
Е	3
F	1
G	2
Н	2

Symbol	Freq	Symbol	Freq
Α	1	C	3
В	2	E	3
C	3	В	2
D	1	G	2
Ε	3	Н	2
F	1	A	1
G	2	D	1
Н	2	F	1
	I		

Symbol	Freq		Symbol	Freq	
Α	1		C	3	Class 1
В	2		Е	3	
C	3		B	2	Class 2
D	1		G	2	
Е	3		Н	2	Class 3
F	1		Α	1	0.000
G	2		D	1	
Н	2		F	1	Class 4

Symbol	Freq		
C	3	Class 1	
E	3		C:
B	2	Class 2	
G	2		O:
Н	2	Class 3	
Α	1		
D	1		
F	1	Class 4	

Symbol	Freq		
C	3	Class 1	
E	3		C:
B	2	Class 2	
G	2		O:
Н	2	Class 3	
Α	1		
D	1		
F	1	Class 4	

Symbol	Freq			
C	3	Class 1		
E	3	CI O	C:	2
B	2	Class 2		
G	2		O:	0
Н	2	Class 3		
Α	1			
D	1			
F	1	— Class 4		

Symbol	Freq		
C	3	Class 1	
Е	3		C: 2
B	2	Class 2	
G	2		O: 0
Н	2	Class 3	
A	1		
D	1		
F	1	Class 4	

Symbol	Freq				
C	3	Class 1			
Е	3		C:	2	3
B	2	Class 2 —			
G	2		O:	0	1
Н	2	Class 3			
А	1				
D	1				
F	1	— Class 4			

$$S = EHDDHACEEGBCBGCF$$

Symbol	Freq			
C	3	Class 1		
Е	3		C: 2 3	
B	2	Class 2		
G	2		O: 0 1	• • •
Н	2	Class 3		
Α	1			
D	1			
F	1	Class 4		

$$S = EHDHACEEGBCBGCF$$

C: 2 3 ...

O: 0 1 ...

Represent C using a Wavelet Tree

$$S = EHDHACEEGBCBGCF$$

C: 2 3 ...

O: 0 1 ...

Represent C using a Wavelet Tree

How many classes do we have?

$$S = EHDHACEEGBCBGCF$$

C: 2 3 ...

O: 0 1 ...

Represent C using a Wavelet Tree

How many classes do we have?

Space for C is $O(n \log \log \sigma)$, queries take constant time.

S = EHDHACEEGBCBGCF

C: 2, 3, 3, 3, 3, 1, 2, 2, 3, 2, 1, 2, 3, 1, 4

Symbol	Freq	
C	3	
E	3	
В	2	
G	2	
Н	2	
Α	1	
D	1	
F	1	

S = EHDHACEEGBCBGCF

C: 2, 3, 3, 3, 3, 1, 2, 2, 3, 2, 1, 2, 3, 1, 4

 O_1

 O_2 : 0, 0, 0, 1, 1

 O_3 : 1, 3, 1, 2, 0, 0

 O_4 : 0

Symbol	Freq	
C	3	
E	3	
В	2	
G	2	
Н	2	
Α	1	
D	1	
F	1	

S = EHDHACEEGBCBGCF

C: 2, 3, 3, 3, 3, 1, 2, 2, 3, 2, 1, 2, 3, 1, 4

O_1	
O_2 : 0, 0, 0, 1, 1	
O ₃ : 1, 3, 1, 2, 0, 0	$\rangle \approx nH_0(B)$
O_4 : 0	

Symbol	Freq	
C	3	
E	3	
В	2	
G	2	
Н	2	
Α	1	
D	1	
F	1	

S =	EHDHACEEGBCBGCF	7
<u> </u>		

C: 2, 3, 3, 3, 3, 1, 2, 2, 3, 2, 1, 2, 3, 1, 4

O	1

 O_2 : 0, 0, 0, 1, 1

 O_3 : 1, 3, 1, 2, 0, 0

 O_4 : 0

access(7)

Symbol	Freq	
C	3	
E	3	_
В	2	
G	2	
Н	2	
А	1	
D	1	
F	1	

S =	EHDHACEEGBCBGCF
<u> </u>	

C: 2, 3, 3, 3, 3, 1, 2, 2, 3, 2, 1, 2, 3, 1, 4

O_1

 O_2 : 0, 0, 0, 1, 1

 O_3 : 1, 3, 1, 2, 0, 0

 O_4 : 0

access(7)

Symbol	Freq	
C	3	
E	3	
В	2	
G	2	
Н	2	
А	1	
D	1	
F	1	

S = EHDHACEEGBCBGCF

C: 2, 3, 3, 3, 3, 1, 2, 2, 3, 2, 1, 2, 3, 1, 4

 O_1

 O_2 : 0,0 0, 1, 1

 O_3 : 1, 3, 1, 2, 0, 0

 O_4 : 0

access(7)

Symbol	Freq	
C	3	
E	3	
В	2	
G	2	
Н	2	
Α	1	
D	1	
F	1	

C: 2, 3, 3, 3, 3, 1, 2, 2, 3, 2, 1, 2, 3, 1, 4

O	1

 O_2 : 0, 0, 0, 1, 1

 O_3 : 1, 3, 1, 2, 0, 0

 O_4 : 0

Symbol	Freq	
C	3	
E	3	
В	2	
G	2	
Н	2	
Α	1	
D	1	
F	1	

S =	EHDHACE	EGBCBGCF

C: 2, 3, 3, 3, 3, 1, 2, 2, 3, 2, 1, 2, 3, 1, 4

\smile 1

 O_2 : 0, 0, 0, 1, 1

 O_3 : 1, 3, 1, 2, 0, 0

 O_4 : 0

Symbol	Freq	
C	3	
E	3	
В	2	
G	2	
Н	2	
Α	1	
D	1	
F	1	

ς _	EHDHACE	EGBCBGCF
5 —	DHDHAOD	EGDCDGCF

C: 2, 3, 3, 3, 3, 1, 2, 2, 3, 2, 1, 2, 3, 1, 4

Symbol	Freq	
C	3	
Е	3	
В	2	
G	2	
Н	2	
Α	1	
D	1	
F	1	

 O_1

 O_2 : 0, 0, 0, 1, 1

 O_3 : 1, 3, 1, 2, 0, 0

 O_4 : 0

$$S = EHDHACEEGBCBGCF$$

C: 2, 3, 3, 3, 3, 1, 2, 2, 3, 2, 1, 2, 3, 1, 4

Symbol	Freq	
C	3	
E	3	
В	2	
G	2	
Н	2	
Α	1	
D	1	
F	1	

 O_1

 O_2 : 0, 0, 0, 1, 1

 O_3 : 1, 3, 1, 2, 0, 0

 O_4 : 0

$$S = EHDHACEEGBCBGCF$$

C: 2, 3, 3, 3, 3, 1, 2, 2, 3, 2, 1, 2, 3, 1, 4

 O_1

 O_2 : 0, 0, 0, 1, 1

 O_3 : 1, 3, 1, 2, 0, 0

 O_4 : 0

Symbol	Freq	
C	3	
Е	3	
В	2	
G	2	
Н	2	
Α	1	
D	1	
F	1	

5	_	EHDHA	CEECE	RCRCCF
		DHDHA	ODDOL	ODGOI

C: 2, 3, 3, 3, 3, 1, 2, 2, 3, 2, 1, 2, 3, 1, 4

 O_1

 O_2 : 0, 0, 0, 1, 1

 O_3 : 1, 3, 1, 2, 0, 0

 O_4 : 0

Symbol	Freq	
C	3	
E	3	
В	2	
G	2	
Н	2	
Α	1	
D	1	
F	1	

S = EHDHACEEGBCBGCF

C: 2, 3, 3, 3, 3, 1, 2, 2, 3, 2, 1, 2, 3, 1, 4

Symbol	Freq
C	3
E	3
В	2
G	2
Н	2
А	1
D	1
F	1

 O_1

 O_2 : 0, 0, 0, 1, 1

 O_3 : 1, 3, 1, 2, 0, 0

 O_4 : 0

S =	EHDHACEEGBCBGCF
<u> </u>	

C: 2, 3, 3, 3, 3, 1, 2, 2, 3, 2, 1, 2, 3, 1, 4

Symbol	Freq
C	3
E	3
В	2
G	2
Н	2
А	1
D	1
F	1

 O_1

 O_2 : 0, 0, 0, 1) 1

 O_3 : 1, 3, 1, 2, 0, 0

 O_4 : 0

S =	EHDHACEEGBCBGCF
<u> </u>	

C: 2, 3, 3, 3, 3, 1, 2, 2, 3, 2 1, 2, 3, 1, 4

\smile \Box

 O_2 : 0, 0, 0, 1) 1

 O_3 : 1, 3, 1, 2, 0, 0

 O_4 : 0

Symbol	Freq	
C	3	
E	3	
В	2	
G	2	
Н	2	
А	1	
D	1	
F	1	

soon...

Summary

BitSequence:

- BitSequenceRG
- BitSequenceRRR
- BitSequenceSDArray

Sequence:

- WaveletTree
- WaveletTreeNoptrs
- SequenceGMR
- SequenceGMRChunk
- AlphPart

Outline

- Motivation
- Basics
- Bitmaps
- Sequences
- Applications

Outline

- Motivation
- Basics
- Bitmaps
- Sequences
- Applications

Applications

- Permutation
- Graph
- Binary Relation
- Text FM-index [Ferragina and Manzini]

$$\pi = [1, 3, 7, 4, 2, 5, 6]$$

$$\pi = [1, 3, 7, 4, 2, 5, 6]$$

$$\pi(i) = access(i)$$

$$\pi = [1, 3, 7, 4, 2, 5, 6]$$

$$\pi(i) = access(i)$$

$$\pi^{-1}(i) = select(i)$$

$$\pi = [1, 3, 7, 4, 2, 5, 6]$$

$$\pi(i) = access(i)$$

$$\pi^{-1}(i) = select(i)$$

MRRR achieves $(1, \log \log n)$ Wavelet Trees achieve $(\log n, \log n)$ GMR achieves $(\log \log n, 1)$


```
1
                                                   1
              1
                                  1
B
S
         0
            0
                 0
                    0
                       0
                             0
                               0
                                      0 1
                                           0 0
                                                 0
                                                       1
                                                          0 1
                                                 h
         d
                  a
                                           d
                       е
                                g
                                      С
                    С
                             a
```



```
1
                                                      1
B
S
                               0
                                 0
                                     1
                                                    0
h
                                                          1
                                                             0 1
            0
                   0
                        0
                                        0
                                          1
                                              0 0
         0
                     0
                                              d
                                  g
                                        С
                         e
                      С
                               a
```


- Space: $m \log n(1 + o(1))$
- Retrieve Neighbors: $O(\log \log n)$
- Retrieve Reverse Neighbors: O(1)
- Check Connection: $O(\log \log n)$

- Space: $m \log n(1 + o(1))$
- Retrieve Neighbors: $O(\log \log n)$
- Retrieve Reverse Neighbors: O(1)
- Check Connection: $O(\log \log n)$

Adjacency list requires $n \log m + m \log n$

- Neighbors O(1)
- Reverse Neighbors?
- Check Connection?

- Space: $m \log n(1 + o(1))$
- Retrieve Neighbors: $O(\log \log n)$
- Retrieve Reverse Neighbors: O(1)
- Check Connection: $O(\log \log n)$

Adjacency list requires $n \log m + m \log n$

- Neighbors O(1)
- Reverse Neighbors?
- Check Connection?

Adjacency matrix requires n^2

- Neighbors: O(n)
- Reverse Neighbors: O(n)
- Check Connection: O(1)

1, 3

1, 3

2, 4

B 1 0 0 1 0 0 1 0 0 1 0 0 1 0 T 1 3 2 4 2 5 1 2 4

Text

FM-Index

compressed

Text

FM-Index

self-index { locate count extract

compressed

Burrows-Wheeler Transform

Text

lacksquare																L
\$	a		a	b	a	r	а		a		a	b	a	r	d	a
a	\$	a		а	b	a	r	a		a		a	b	a	r	d
a	b	a	r	а		a		a	b	a	r	d	а	\$	a	ı
a	b	a	r	d	а	\$	а		a	b	a	r	а		a	ı
a		a	b	а	r	а		a		а	b	a	r	d	а	\$
a		a	b	а	r	d	а	\$	а		a	b	a	r	а	ı
a		a		а	b	а	r	d	а	\$	a		a	b	а	r
a	r	a		а		а	b	a	r	d	a	\$	a		а	b
a	r	d	а	\$	а		а	b	а	r	a		a		а	b
b	а	r	а		а		а	b	а	r	d	a	\$	a		a
b	а	r	d	а	\$	а		a	b	а	r	a		a		a
d	а	\$	а		а	b	а	r	а		a		a	b	а	r
	а	b	а	r	а		а		а	b	a	r	d	a	\$	a
	a	b	а	r	d	а	\$	а		а	b	a	r	а		a
	a		а	b	a	r	d	а	\$	а		а	b	а	r	a
r	a		а		а	b	а	r	d	а	\$	a		a	b	a
r	d	a	\$	a		a	b	а	r	а		a		a	b	a

Text

lacksquare																L
\$	a		a	b	a	r	а		a		a	b	a	r	d	(a)
a	\$	a		a	b	a	r	a		a		a	b	a	r	d
a	b	a	r	a		a		a	b	a	r	d	а	\$	a	ı
a	b	a	r	d	а	\$	а		a	b	a	r	а		a	ı
a		a	b	a	r	а		a		а	b	a	r	d	а	\$
a		a	b	a	r	d	а	\$	а		a	b	a	r	a	ı
a	1	a		а	b	а	r	d	а	\$	a		a	b	а	r
a	r	а		а		a	b	а	r	d	а	\$	а		а	b
a	r	d	а	\$	а		а	b	а	r	a		a		а	b
b	а	r	а		а		а	b	а	r	d	a	\$	a		a
b	а	r	d	a	\$	а		a	b	а	r	a		a		a
d	а	\$	а		а	b	а	r	а		а		a	b	а	r
	а	b	а	r	а		а		а	b	а	r	d	a	\$	a
	а	b	а	r	d	a	\$	a		a	b	a	r	a		a
	a		а	b	a	r	d	а	\$	а		а	b	а	r	a
r	a		а		а	b	а	r	d	а	\$	a		a	b	a
r	d	a	\$	а		a	b	a	r	a	1	a		a	b	a

Text

lacksquare																L
\$	a		а	b	a	r	a		а		a	b	a	r	d	(a)
(a)	\$	a	I	a	b	a	r	a		a	I	a	b	a	r	d
a	b	a	r	a		a		a	b	a	r	d	а	\$	a	ı
a	b	a	r	d	a	\$	a		a	b	a	r	a		a	ı
a		a	b	a	r	a		а		a	b	а	r	d	а	\$
a		a	b	a	r	d	a	\$	a		a	b	a	r	a	ı
a		a		a	b	a	r	d	а	\$	а		а	b	а	r
a	r	a	ı	a	I	a	b	a	r	d	a	\$	a		а	b
a	r	d	a	\$	a		a	b	a	r	a		a		а	b
b	a	r	a		a		a	b	а	r	d	a	\$	a		a
b	a	r	d	a	\$	a		а	b	a	r	а		а		a
d	a	\$	a		a	b	a	r	a		a		a	b	а	r
1	a	b	a	r	a		a		a	b	a	r	d	a	\$	a
1	a	b	a	r	d	a	\$	a		а	b	a	r	a		a
	а		а	b	a	r	d	а	\$	a		а	b	а	r	a
r	a		a		a	b	a	r	d	a	\$	a		a	b	a
r	d	a	\$	a	1	a	b	а	r	a	1	а		a	b	a

Text

$oxed{F}$																
\$	a		a	b	a	r	a	Ī	a		а	b	a	r	d	(a)
(a)	\$	a		a	b	a	r	a		a		a	b	a	r	$ \mathbf{d} $
a	b	a	r	a		a		a	b	a	r	d	a	\$	a	
a	b	a	r	d	a	\$	a		a	b	а	r	a		a	1
a		a	b	a	r	a		a		a	b	а	r	d	а	\$
a		a	b	a	r	d	a	\$	a		а	b	a	r	а	
a		a		a	b	a	r	d	a	\$	а		а	b	а	r
a	r	a		a		a	b	a	r	d	а	\$	a		а	b
a	r	d	a	\$	a		a	b	a	r	а		a		а	b
b	a	r	a		a		a	b	a	r	d	а	\$	a		a
b	a	r	d	a	\$	a		a	b	a	r	а		a		a
d	а	\$	а	I	а	b	а	r	a		а		а	b	а	r
	a	b	a	r	a		a		a	b	а	r	d	a	\$	a
	a	b	a	r	d	a	\$	a		a	b	а	r	a		a
	a		a	b	a	r	d	а	\$	a		а	b	а	r	a
r	a		a	1	a	b	a	r	d	a	\$	а		a	b	a
r	d	a	\$	a		a	b	a	r	a		а		a	b	a

Text

lacksquare																L
\$	a		a	b	a	r	a		а		a	b	a	r	d	(a)
(a)	\$	a		a	b	a	r	a		a		a	b	a	r	(d)
a	b	а	r	a		a		a	b	a	r	d	а	\$	a	I
a	b	a	r	d	a	\$	a		a	b	a	r	a		a	ı
a		а	b	a	r	a		а		a	b	a	r	d	а	\$
a		а	b	a	r	d	a	\$	a		a	b	a	r	a	I
a		а		a	b	a	r	d	а	\$	а		а	b	а	r
a	r	а		a	ı	а	b	a	r	d	a	\$	a		а	b
a	r	d	а	\$	a		a	b	a	r	a		a		а	b
b	a	r	a		a		a	b	а	r	d	a	\$	a		a
b	a	r	d	a	\$	a		а	b	a	r	a		а		a
d	a	\$	а		a	b	a	r	a		a		a	b	а	r
	a	b	а	r	a		a		a	b	a	r	d	a	\$	a
	a	b	a	r	d	a	\$	a		a	b	a	r	a		a
	а		a	b	a	r	d	а	\$	a		a	b	а	r	a
r	a		a		a	b	a	r	d	a	\$	a		a	b	a
r	d	a	\$	a	1	a	b	а	r	a	1	a		а	b	a

Text

lacksquare																$oxed{L}$
\$	a		a	b	а	r	а		а		a	b	a	r	d	(a)
(a)	\$	a		a	b	a	r	a		a		а	b	a	r	$ \mathbf{d} $
a	b	a	r	a		а		a	b	а	r	d	a	\$	a	
a	b	a	r	d	a	\$	a		a	b	a	r	a		a	
a		a	b	a	r	a		a		а	b	а	r	d	а	\$
a		a	b	a	r	d	a	\$	а		a	b	а	r	а	
a		a		a	b	a	r	d	а	\$	а		a	b	а	r
a	r	a		a		a	b	a	r	d	a	\$	a		a	b
a	r	d	a	\$	a		a	b	а	r	а		а		а	b
b	a	r	a		a		a	b	а	r	d	а	\$	a		a
b	a	r	d	a	\$	a		a	b	а	r	а		a		a
d	a	\$	a		a	b	a	r	а		а		a	b	а	
I	a	b	а	r	a		a		а	b	а	r	d	a	\$	a
	а	b	а	r	d	a	\$	a		а	b	а	r	а		a
	а		a	b	a	r	d	а	\$	а		а	b	a	r	a
r	a		a	1	a	b	a	r	d	а	\$	а		a	b	a
r	d	a	\$	a		a	b	a	r	а		а		a	b	a

Text

lacksquare																$\mid L \mid$
\$	a		a	b	a	r	a		a		a	b	а	r	d	(a)
(a)	\$	a		a	b	a	r	a		a		a	b	a	r	(d)
a	b	а	r	а		a		a	b	a	r	d	а	\$	a	
a	b	a	r	d	а	\$	a		а	b	a	r	а		a	
a		а	b	a	r	a		a		a	b	a	r	d	a	\$
a		а	b	а	r	d	a	\$	a		a	b	а	r	a	1
a		а		a	b	a	r	d	a	\$	a		a	b	a	r
a	r	а		а		a	b	a	r	d	a	\$	а		a	b
a	r	d	а	\$	a		a	b	a	r	a		а		a	b
b	a	r	a		a		a	b	a	r	d	a	\$	a		a
b	a	r	d	a	\$	a		a	b	a	r	a		a		a
d	a	\$	а		a	b	a	r	a		a		а	b	a	r
I	a	b	a	r	a		a		a	b	a	r	d	a	\$	a
I	a	b	a	r	d	a	\$	a		a	b	a	r	a		a
	а		a	b	a	r	d	a	\$	a		а	b	а	r	a
r	a		a		a	b	a	r	d	a	\$	a		a	b	а
r	d	a	\$	a		a	b	a	r	a		a		a	b	a

Text

$oxed{F}$																$oxed{L}$
\$	а		а	b	а	r	а		а		a	b	а	r	d	(a)
(a)	\$	a		a	b	a	r	a		a		a	b	a	r	(d)
a	b	a	r	a		a		a	b	a	r	d	a	\$	a	
a	b	a	r	d	a	\$	a		a	b	a	r	a		a	
a		а	b	а	r	a		a		a	b	a	r	d	a	\$
a		а	b	а	r	d	a	\$	a		a	b	a	r	a	
a		а		a	b	a	r	d	a	\$	a		a	b	а	r
a	r	а		а		a	b	a	r	d	a	\$	a		a	b
a	r	d	a	\$	a		a	b	a	r	a		a		а	b
b	а	r	a		a		a	b	a	r	d	a	\$	a		a
b	а	r	d	а	\$	a		a	b	a	r	a		a		a
	а	\$	a		a	b	a	r	a		a		a	b	a	r
	а	b	а	r	a	ı	a		a	b	a	r	d	а	\$	a
	a	b	a	r	d	a	\$	a		a	b	a	r	а		a
	a		a	b	a	r	d	а	\$	a		а	b	а	r	a
r	а		a		a	b	a	r	d	a	\$	a		a	b	a
r	d	a	\$	a		a	b	a	r	a		a		a	b	(a)

Text

$oxed{F}$																$\mid L \mid$
\$	a		a	b	a	r	a		a		a	b	a	r	d	(a)
(a)	\$	a		a	b	a	r	a		a		a	b	a	r	(d)
a	b	а	r	а		a		a	b	a	r	d	а	\$	a	
a	b	a	r	d	a	\$	a		a	b	a	r	а		a	
a		а	b	a	r	a		a		a	b	a	r	d	а	\$
a		а	b	а	r	d	a	\$	a		a	b	а	r	a	
a		а		a	b	a	r	d	a	\$	a		a	b	а	r
a	r	а		а		а	b	a	r	d	a	\$	а		a	b
(a)	r	d	a	\$	a		a	b	a	r	a		а		а	b
b	a	r	a		a		a	b	a	r	d	a	\$	a		a
b	a	r	d	a	\$	a		a	b	a	r	a		a		a
d	a	\$	a		a	b	a	r	a		a		а	b	а	r
I	a	b	a	r	a		a		a	b	a	r	d	a	\$	a
	a	b	a	r	d	a	\$	a		а	b	a	r	a		a
	а		a	b	a	r	d	a	\$	а		а	b	а	r	a
r	a		a		a	b	a	r	d	а	\$	а		a	b	а
r	d	a	\$	a		a	b	a	r	а		а		а	b	(a)

Text

$oxed{F}$																$\mid L \mid$
\$	a		a	b	a	r	a		a		a	b	a	r	d	(a)
(a)	\$	a		a	b	a	r	a		a		a	b	a	r	(d)
a	b	а	r	а		a		a	b	a	r	d	a	\$	a	
a	b	a	r	d	a	\$	a		a	b	a	r	a	I	a	
a		а	b	a	r	a		a		a	b	a	r	d	а	\$
a		а	b	а	r	d	a	\$	a		a	b	a	r	a	
a		а		a	b	a	r	d	a	\$	а		a	b	а	r
a	r	а		а		a	b	a	r	d	a	\$	a	ı	a	b
(a)	r	d	а	\$	a		a	b	a	r	a		a		а	(b)
b	a	r	a		a		a	b	a	r	d	a	\$	a		a
b	a	r	d	a	\$	a		a	b	a	r	a		a		a
d	a	\$	а		a	b	a	r	a		a		a	b	а	r
I	a	b	a	r	a		a		a	b	a	r	d	a	\$	a
	a	b	a	r	d	a	\$	a		a	b	a	r	a		a
	a		a	b	а	r	d	a	\$	а		a	b	a	r	a
r	a		a		a	b	a	r	d	a	\$	a		a	b	а
r	d	a	\$	a		a	b	a	r	a	1	a		a	b	(a)

F\$ aaaaaabbd III ri Lad II\$ Irbbaaraaaa

Talabaralalabarda \$

F\$ aaaaaabbd III rr Lad II\$ Irbba(a) raaaa

Talabaralal(a) barda \$

F\$ aaaaaabbd III rr Lad I () \$ Irbba(a) raaaa

Talabarala(ja) barda \$

F \$ a a a a a a a b b d l l r r L a d l l \$ l r b b a a r a a a a

$$LF(i) = rank(T^{BWT}[i], i) + occ[T^{BWT}[i]]$$

Talabarala<mark>la</mark>barda\$

$$LF(i) = rank(T^{BWT}[i], i) + occ[T^{BWT}[i]]$$

lacksquare																$oxed{L}$
\$	а		a	b	а	r	a		а		a	b	а	r	d	а
a	\$	а	I	а	b	а	r	а	I	a	I	a	b	a	r	d
a	b	а	r	а	I	а	I	а	b	a	r	d	а	\$	а	ı
a	b	a	r	d	а	\$	а	I	а	b	a	r	а		а	1
a	ı	а	b	а	r	а	I	а	I	а	b	а	r	d	а	\$
a	ı	а	b	а	r	d	а	\$	а	I	a	b	а	r	а	1
a	I	а	I	a	b	а	r	d	а	\$	a		а	b	a	r
a	r	а	I	а	I	а	b	а	r	d	a	\$	а		а	b
a	r	d	a	\$	а	I	a	b	а	r	a		а		а	b
b	а	r	a	ı	a	1	a	b	a	r	d	a	\$	a	ı	a
b	a	r	d	a	\$	а	I	a	b	a	r	a	I	a	I	a
d	a	\$	a	ı	a	b	a	r	a	ı	a		a	b	a	r
	a	b	a	r	а	1	а	1	а	b	a	r	d	а	\$	a
	а	b	a	r	d	а	\$	а	I	а	b	а	r	а		a
	a	I	а	b	а	r	d	а	\$	а		а	b	а	r	a
r	а	I	a		а	b	а	r	d	а	\$	а		а	b	a
r	d	а	\$	a		a	b	a	r	a		a		a	b	a

lacksquare																$oxed{L}$
\$	а	I	а	b	а	r	а	l	а		а	b	a	r	d	a
a	\$	a	I	a	b	a	r	a	ı	а		a	b	a	r	d
a	b	а	r	а	I	a		а	b	а	r	d	а	\$	а	ı
a	b	a	r	d	a	\$	а		а	b	a	r	а	I	a	ı
a		a	b	a	r	a		а	ı	а	b	a	r	d	a	\$
a		а	b	а	r	d	а	\$	а		а	b	а	r	а	ı
a		а	I	а	b	a	r	d	а	\$	а		а	b	а	r
a	r	а	I	а	I	a	b	а	r	d	а	\$	а	I	а	b
a	r	d	a	\$	a	I	a	b	а	r	a		а	I	а	b
b	a	r	a	ı	a	ı	а	b	a	r	d	a	\$	а	1	а
b	a	r	d	a	\$	a		а	b	а	r	a		а	I	a
d	a	\$	a	ı	a	b	a	r	a		a	I	а	b	a	r
	a	b	a	r	а	l	а		а	b	а	r	d	а	\$	a
	a	b	a	r	d	a	\$	а	I	а	b	а	r	а	I	a
	a	I	а	b	а	r	d	а	\$	а		а	b	а	r	a
r	a	I	a		а	b	а	r	d	а	\$	a		а	b	a
r	d	a	\$	a		a	b	a	r	a		a		a	b	a

lacksquare																$oxed{L}$
\$	а	I	а	b	а	r	a		а		a	b	a	r	d	а
a	\$	а	I	а	b	а	r	а		a	I	a	b	а	r	d
a	b	а	r	а	I	а		а	b	a	r	d	a	\$	а	ı
a	b	a	r	d	а	\$	а		a	b	а	r	а	I	а	ı
a	I	а	b	а	r	а		а		a	b	a	r	d	а	\$
a	I	а	b	а	r	d	а	\$	a		a	b	а	r	а	ı
a	ı	а	I	а	b	а	r	d	a	\$	a	I	а	b	а	r
a	r	а		а	I	а	b	а	r	d	а	\$	а	ı	а	b
a	r	d	а	\$	а	l	а	b	a	r	a	I	a	I	а	b
b	а	r	а	I	а	I	а	b	а	r	d	a	\$	а		a
b	а	r	d	а	\$	а		а	b	a	r	a		а	l	a
d	а	\$	а	I	а	b	а	r	а		a	I	a	b	а	r
	a	b	а	r	a	I	а		a	b	a	r	d	а	\$	a
1	а	b	а	r	d	а	\$	а		a	b	a	r	а	l	a
	а	I	а	b	а	r	d	а	\$	a	I	a	b	а	r	a
r	a	I	a		a	b	a	r	d	a	\$	а		a	b	a
r	d	а	\$	а		a	b	а	r	a		а		a	b	а

lacksquare																$oxed{L}$
\$	а	I	а	b	а	r	а		а		а	b	а	r	d	a
a	\$	a	I	a	b	a	r	a	I	a	I	a	b	a	r	d
a	b	а	r	а	I	a	1	а	b	a	r	d	а	\$	a	1
a	b	а	r	d	а	\$	a	I	a	b	а	r	а	I	а	ı
a		а	b	а	r	а	I	а	I	а	b	а	r	d	а	\$
a		а	b	а	r	d	а	\$	а	I	а	b	a	r	а	1
a		а	ı	a	b	a	r	d	a	\$	a	I	а	b	а	r
a	r	а		а	I	а	b	а	r	d	а	\$	а	ı	а	b
a	r	d	а	\$	а	I	a	b	а	r	а	I	а	I	а	b
b	a	r	а		a	I	а	b	а	r	d	а	\$	а	I	a
b	a	r	d	а	\$	а	I	а	b	а	r	а	I	а	I	a
d	a	\$	а		а	b	a	r	а	I	а	I	а	b	а	r
1	a	b	а	r	a	I	а	I	a	b	a	r	d	а	\$	a
1	a	b	а	r	d	а	\$	a	I	a	b	а	r	а	I	a
1	a		а	b	a	r	d	a	\$	а		а	b	а	r	a
r	a		а		а	b	a	r	d	a	\$	a		а	b	a
r	d	а	\$	а		a	b	a	r	а		а		a	b	a

lacksquare																$oxed{L}$
\$	а	ı	а	b	а	r	a		a		a	b	a	r	d	a
a	\$	a	ı	a	b	a	r	a	I	a	I	а	b	a	r	d
a	b	а	r	а	I	а		а	b	а	r	d	а	\$	a	ı
a	b	a	r	d	a	\$	а	1	a	b	a	r	а		a	ı
a		а	b	а	r	а		a	ı	a	b	а	r	d	a	\$
a		а	b	a	r	d	а	\$	a	ı	a	b	а	r	a	ı
a		a	ı	a	b	a	r	d	a	\$	a		a	b	a	r
a	r	а	ı	а	ı	а	b	a	r	d	a	\$	а		a	b
a	r	d	a	\$	a	1	а	b	a	r	a		a		a	b
b	а	r	а	I	а	I	а	b	а	r	d	а	\$	а	I	а
b	а	r	d	a	\$	а		a	b	a	r	а	I	а	I	a
d	а	\$	а	I	а	b	а	r	a	I	a		а	b	a	r
	а	b	a	r	а	I	а	I	а	b	a	r	d	а	\$	a
1	a	b	а	r	d	а	\$	a	I	a	b	а	r	a	I	a
	а		а	b	а	r	d	а	\$	а		а	b	а	r	a
r	a		а	l	a	b	а	r	d	a	\$	а		a	b	а
r	d	а	\$	а		a	b	а	r	a		a		a	b	a

lacksquare																$oxed{L}$
\$	а	ı	а	b	а	r	а		а		a	b	a	r	d	a
a	\$	a	I	a	b	a	r	a	I	a		a	b	a	r	d
a	b	а	r	а	I	a	ı	а	b	a	r	d	а	\$	a	1
a	b	a	r	d	a	\$	а	I	a	b	a	r	а		a	ı
a		a	b	a	r	a	1	a	1	a	b	a	r	d	a	\$
a		a	b	a	r	d	а	\$	a	I	а	b	a	r	a	1
a		a	I	a	b	a	r	d	a	\$	a		a	b	a	r
a	r	а		а	ı	a	b	а	r	d	а	\$	а		a	b
a	r	d	а	\$	a	ı	a	b	a	r	a		a		a	b
b	a	r	a	I	a	ı	a	b	a	r	d	a	\$	a	ı	a
b	a	r	d	a	\$	a	I	а	b	a	r	a	I	a	I	a
d	a	\$	а	I	a	b	a	r	a	ı	a		a	b	a	r
	a	b	a	r	a	ı	а	ı	a	b	а	r	d	a	\$	a
1	a	b	a	r	d	a	\$	a	I	a	b	a	r	a	I	a
	a		а	b	а	r	d	а	\$	а		а	b	а	r	a
r	а		а		a	b	а	r	d	а	\$	а	ı	а	b	а
r	d	a	\$	a		a	b	a	r	a		a		a	b	a

Search for *lala* 1 occ

Representing L with a wavelet tree

count: $O(m \log \sigma)$

extract: $O((s_t + \ell) \log \sigma))$

locate: $O\left((m + s_a occ) \log \sigma\right)$

Representing L with a wavelet tree

count: $O(m \log \sigma)$

extract: $O((s_t + \ell) \log \sigma))$

locate: $O\left((m + s_a occ) \log \sigma\right)$

space: $nH_k(T) + o(n\log\sigma)$

Improving what we already have

Improving what we already have

Construction of these structures

Improving what we already have

Construction of these structures

More technical problems

Improving what we already have

Construction of these structures

More technical problems

LIBCDS2!

Thanks for your attention

The End

