

ENVIRONMENTAL RESTORATION OF THE LOWER EBRO RIVER AND ITS DELTA (CATALONIA, SPAIN)

Nuno Caiola and Carles Ibáñez IRTA Aquatic Ecosystems

nuno.caiola@irta.cat

Summary

- 1. Recent changes in the ecological processes of the lower Ebro River (*A novel ecosystem*)
- 2. Effects on the biological communities
- 3. Possible management solutions, but...
- 4. Flix toxic wastes
- 5. Restoration actions and Environmental Indicators network

Ebro basin

Lower Ebro aquatic systems

- The Ebro is the largest river in Spain (85.000 km² of watershed).
- Large reservoirs (Mequinensa and Ribaroja) built in the 60's (up to 200 in the Ebro basin).
- Decreasing river flow due to intensive water uses (irrigation), from 600 m³/s to 300 m³/s.
- Flood plain occupation due to agriculture and margin erosion due to sediment deficit.
- High biodiversity (fish, invertebrates) endangered by invasive species.
- The Ebro delta is the second most important wetland in Spain, with 10.000 Ha of protected habitats and 20.000 Ha of rice fields.
- The last part of the river is a salt wedge estuary (tidal range of 20 cm).

Natural River Humanized River Altered regime **Deficient water** Altered regime **Improved water** treatment treatment **Natural regime** Regulation 1 Regulation 11 River flow 1 Flow \ Flow **Eutrophication** 1 **Eutrophication** \downarrow Sediments 1 Sediments ↓ **Sediments** \downarrow Phytoplankton 1 **Phytoplankton** \downarrow Phytoplankton \downarrow Macrophytes ↑↑ **Macrophytes** \downarrow Macrophytes \ Rip. Veg. 1 Rip. Veg \downarrow Rip. Veg 👃

Early 20th Century

1960s

Mid 1990s

A NOVEL ECOSYSTEM?

New conditions: low P, low discharge, low sediment concentration and alien species

Potamogeton pectinatus

Simulium erytrhocephalum

Dreissena polymorpha

Silurus glanis

Hypothesis

Dissolved P And N

Chlorophyll trends

Chlorophyll versus Phosphorus

Relationship between chlorophyl and environmental descritors

Model parameter	Annual n N = 25	Annual model N = 25		
	β	SP	Bias	
Intercept	- 3.777		2.472	
Period	-0.108	0.037	- 0.656	
Mean flow (m ³ s ⁻¹)	-0.215	0.008	-2.395	
SRP ($\mu g \Gamma^1$)	0.961	0.989	0.252	
$N - NO^{2} (\mu g l^{-1})$	1.629	0.485	0.019	
$N-NO^{3} (\mu g l^{-1})$	0.796	0.023	0.666	
$N-NH^4$ (µg Γ^1)	-0.401	0.373	0.549	
TOC ($\mu g l^{-1}$)	1.067	0.301	2.136	
Silicate (µg l ⁻¹)	-0.505	0.145	0.036	
TSS (mg l ⁻¹)	0.529	0.787	- 0.326	
Water Ta (°C)	1.655	0.047	1.609	
Cond. (µScm ⁻¹ 20°C)	- 1.147	0.289	- 0.672	
Zebra mussel(ind m ⁻²)	- 0.073	0.071	0.498	

Science of the Total Environment 416 (2012) 314–322

Contents lists available at SciVerse ScienceDirect

Science of the Total Environment

journal homepage: www.elsevier.com/locate/scitotenv

Regime shift from phytoplankton to macrophyte dominance in a large river: Top-down versus bottom-up effects

Carles Ibáñez ^{a,*}, Carles Alcaraz ^a, Nuno Caiola ^a, Albert Rovira ^a, Rosa Trobajo ^a, Miguel Alonso ^b, Concha Duran ^c, Pere J. Jiménez ^d, Antoni Munné ^e, Narcís Prat ^f

River discharge and sediment load changes

DECADA 1950

DECADA 1980

Year	Impoundment capac <mark>ů</mark> y (Km³)	Sediment yield (milions t/a)	Data source
1877	0	30	Gorría (1877)
1964	3,45	8,7	Varela et al. (1986)
1976-1982	6.24	0,32	Varela et al. (1986)
1976-1990	6.24	0,26	Sanz et al.(1999)
1983-1986	6.28	0,15	Palanques (1987)
1986-1987	6.28	0,13	Muñoz (1990)
1988-1990	6.28	0,12	Guillén & Palanque(1992)
1998-1999	6.28	0,30	Roura (2004)
2002-2003	6.50	0,26	Vericat& Batalla(2006)
2003-2004	7.64	0,29	Vericat & Batalla (2006)

Macrophyte coverage

Science of the Total Environment 440 (2012) 132-139

Contents lists available at SciVerse ScienceDirect

Science of the Total Environment

Monitoring the effects of floods on submerged macrophytes in a large river Carles Ibáñez a,*, Nuno Caiola a, Albert Rovira a, Montserrat Real b

The Spanish and Catalan administrations know that the Ebro River flows is a key issue

Proposal code	Data source	Time series	Hydrological year type	Hydrological method	Mean annual flow (m³/s)
1	River flow in Tortosa	1953-1964	All	QBM	89
2	River flow in Tortosa	No information	All	No information	100
3	Sacramento	1986-1998	All	QBM	122
4Dry	SIMPA1	1985-2006	Dry	RVA _{NGPRP}	131
4Med	SIMPA1	1985-2006	Medium	RVA _{NGPRP}	187
4Wet	SIMPA1	1985-2006	Wet	RVA _{NGPRP}	266
5Dry	SIMPA2	1985-2006	Dry	RVA _{NGPRP}	188
5Med	SIMPA2	1985-2006	Medium	RVA _{NGPRP}	248
5Wet	SIMPA2	1985-2006	Wet	RVA _{NGPRP}	336
6Dry	Sacramento	1940-1985	Dry	RVA _{NGPRP}	227
6Med	Sacramento	1940-1985	Medium	RVA _{NGPRP}	302
6Wet	Sacramento	1940-1985	Wet	RVA _{NGPRP}	398

Biological validation of "environmental" flows

ELSEVIED

Contents lists available at ScienceDirect

Ecological Indicators

journal homepage: www.elsevier.com/locate/ecolind

Effects of flow regulation on the establishment of alien fish species: A community structure approach to biological validation of environmental flows

Conclusions and Management Options

- 1. Maintain the management criteria regarding nutrient load.
- 2. Establish an environmental flows regime in order to recover the good ecological status in the lower Ebro River
- 3. Mobilize the trapped sediments in the dams to restore the sediment load

Environmental flows proposal

Flushing general proceedings:

From: Morris & Fan (1998)

Flushing Procedures in the lower Ebro river

Flix Dam

- 1. Approximately 3 × 10⁵ tons of contaminated sediments
- 2. Sediments are mobilized with flows above 400 m³/s
- 3. Moreover,
 contaminants such as
 heavy metals are
 probably in the trophic
 network, downriver
 the chlor-alkali plant

How to solve the problem

- 1. Accept and face it
- 2. Political will
- 3. Budget

- 1. Spanish government paid for studies
- 2. Restoration actions 200 M EUR (260 M USD)
- 3. Environmental Monitoring Network

Monitoring network

- 161 automatic stations to measure :
 Water quality
 Flow regime
 Sediment transportation
 Subsidence
- 57 manual stations: WFD biological indicators Bioaccumulation Etc...

