复旦直博试题

Problem 数学分析

- 1. 设 $f \in [0, +\infty)$ 上二次连续可微的有界下凸函数.
 - (1) 证明: 存在 $A \in \mathbb{R}$, 成立

$$\lim_{x \to +\infty} f(x) = A.$$

(2) 计算反常积分

$$\int_0^{+\infty} x f''(x) \mathrm{d}x$$

2. 设 f 是 [-1,1] 上一次连续可微的函数, 满足

$$f(x) > 0$$
, $f'(x) \neq 0$, $\left| x + \frac{f(x)}{f'(x)} \right| \ge 1$, $\forall x \in [-1, 1]$.

证明: 在任意开区间 $(a,b) \subset (-1,1)$ 上成立

$$f(x) < f(a) + f(b), \quad \forall x \in (a, b).$$

3. 设函数 f 在 x_0 可以展开为收敛的幂级数, 即

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n, \quad \forall x \in (x_0 - r_0, x_0 + r_0),$$

其中 $r_0 > 0$. 证明: 对任意 $x_1 \in (x_0 - r_0, x_0 + r_0)$, f 在 x_1 也可以展开为收敛的幂级数

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(x_1)}{n!} (x - x_1)^n, \quad \forall x \in (x_1 - r_1, x_1 + r_1),$$

其中

$$r_1 \ge \frac{1}{2} \left(r_0 - |x_1 - x_0| \right).$$

Problem 高等代数

- 1. 令 $A \in \mathbb{C}^{n \times n}$ 是 $n \times n$ 复方阵, 且 A 有 n 个不同的特征值. 设 V_A 是 $\mathbb{C}^{n \times n}$ 中所有形如 BA AB 的矩阵的全体构成的子空间. 求 V_A 作为复线性空间的维数.
- 2. 记 $\mathbb{C}^{n\times n}$ 是 $n\times n$ 复方阵全体构成的空间. 令 $A=(a_{ij}), B=(b_{ij})\in\mathbb{C}^{n\times n}$ 是 $n\times n$ 复方阵. 定义线性变换 $T:\mathbb{C}^{n\times n}\to\mathbb{C}^{n\times n}; M\mapsto AMB$.
 - (1) 求 T 的所有特征值 (计代数重数) 之和, 答案用 a_{ij}, b_{ij} 表示.
 - (2) 证明: T幂零当且仅当 A或 B至少有一个幂零.

- 3. 令 $A \in \mathbb{R}^{n \times n}$ 是可逆 $n \times n$ 实方阵.
 - (1) 证明: 存在唯一的实正交阵 $P \in \mathbb{R}^{n \times n}$ 和唯一的实对称正定阵 $H \in \mathbb{R}^{n \times n}$ 使得 A = PH.
 - (2) 证明: 在 (1) 中, PH = HP 当且仅当 $AA^T = A^TA$.