Deep Learning for Computer Vision

Lecture 1 - Overview

Dr. José Ramón Iglesias

DSP-ASIC BUILDER GROUP
Director Semillero TRIAC
Ingenieria Electronica
Universidad Popular del Cesar

Today's agenda

- A brief history of computer vision
- In overview

Today's agenda

- A brief history of computer vision
- In overview

In overview

- Deep Learning Basics
- Perceiving and Understanding the Visual World
- Generative and Interactive Visual Intelligence
- Human-Centered Applications and Implications

CS231n overview

- Deep Learning Basics
- Perceiving and Understanding the Visual World
- Generative and Interactive Visual Intelligence
- Human-Centered Applications and Implications

In overview

- Deep Learning Basics
- Perceiving and Understanding the Visual World
- Generative and Interactive Visual Intelligence
- Human-Centered Applications and Implications

Perceiving and Understanding the Visual World

Tasks Beyond Image Classification

Classification

CAT

No spatial extent

Semantic Segmentation

TREE, SKY

Object Detection

DOG, DOG, CAT

Instance Segmentation

DOG, DOG, CAT

Multiple Object

Introducción

Lecture 1 - 12 Universidad Popular del Cesar

Tasks Beyond Image Classification

Video Classification

Running? Jumping?

Multimodal Video Understanding

The Color of the C

Visualization & Understanding

Lecture 1 - 13

Models Beyond Multi-Layer Perceptron

Convolutional neural network

Models Beyond Multi-Layer Perceptron

Attention mechanism / Transformers
Introducción
Lecture 1 - 15

Attention mechanism / Transformers
Universidad
Popular del Cesa

In overview

- Deep Learning Basics
- Perceiving and Understanding the Visual World
- Generative and Interactive Visual Intelligence
- Human-Centered Applications and Implications

In overview

- Deep Learning Basics
- Perceiving and Understanding the Visual World
- Generative and Interactive Visual Intelligence
- Human-Centered Applications and Implications

Beyond 2D Recognition

Beyond 2D Recognition: Self-supervised Learning

Beyond 2D Recognition: Generative Modeling

"Teddy bears working on new Al research underwater with 1990s technology"

DALL-E 2

Beyond 2D Recognition: Generative Modeling

Style Transfer

Beyond 2D Recognition: 3D Vision

Choy et al., 3D-R2N2: Recurrent Reconstruction Neural Network (2016)

Zhou et al., 3D Shape Generation and Completion through Point-Voxel Diffusion (2021)

Introducción

Universidad Popular del Cesar

Lecture 1 - 22

Beyond 2D Recognition: Embodied Intelligence

Li et al., BEHAVIOR-1K: A Benchmark for Embodied AI with 1,000 Everyday Activities and Realistic Simulation (2022)

Mandlekar and Xu et al., Learning to Generalize Across Long-Horizon Tasks from Human Demonstrations (2020)

In overview

- Deep Learning Basics
- Perceiving and Understanding the Visual World
- Generative and Interactive Visual Intelligence
- Human-Centered Applications and Implications

In overview

- Deep Learning Basics
- Perceiving and Understanding the Visual World
- Generative and Interactive Visual Intelligence
- Human-Centered Applications and Implications

2018 Turing Award for deep learning

most prestigious technical award, is given for major contributions of lasting importance to computing.

This image_ CC0 public domain

This image. CCO publication of the CCO public

This image. CC0 public domain

Universidad Popular del Cesar

Lecture 1 - 26

IEEE PAMI Longuet-Higgins Prize

Award recognizes ONE Computer Vision paper from **ten years ago** with **significant impact on computer vision** research.

At CVPR 2019, it was awarded to the 2009 original ImageNet paper

CVPR Attendance Trend

>9k submissions, 2,360 accepted papers

Optional textbook resources

- <u>Deep Learning</u>
 - by Goodfellow, Bengio, and Courville
 - Here is a free version
- Mathematics of deep learning
 - Chapters 5, 6 7 are useful to understand vector calculus and continuous optimization
 - Free online version
- Dive into deep learning
 - An interactive deep learning book with code, math, and discussions, based on the NumPy interface.
 - Free online version

Learning objectives

Formalize computer vision applications into tasks

- Formalize inputs and outputs for vision-related problems
- Understand what data and computational requirements you need to train a model

Develop and train vision models

- Learn to code, debug, and train convolutional neural networks.
- Learn how to use software frameworks like PyTorch and TensorFlow

Gain an understanding of where the field is and where it is headed

- What new research has come out in the last 0-5 years?
- What are open research challenges?
- What ethical and societal considerations should we consider before deployment?

Why should you take this class?

Become a vision researcher (an incomplete list of conferences)

- Get involved with <u>vision research at Stanford</u>: apply <u>using this form</u>.
- CVPR 2022 conference
- ICCV 2021 conference

Become a vision engineer in industry (an incomplete list of industry teams)

- Perception team at Google AI, Vision at Google Cloud
- Vision at Meta Al
- Vision at Amazon AWS
- <u>Nvidia, Tesla, Apple, Salesforce,</u>

General interest

Deep Learning for Computer Vision

- Deep Learning Basics (Lecture 2 − 4)
- Perceiving and Understanding the Visual World (Lecture 5 12)
- Reconstructing and Interacting with the Visual World (Lecture 13 16)
- Human-Centered Artificial Intelligence (Lecture 17 18)

Syllabus

Deep Learning Basics	Convolutional Neural Networks	Computer Vision Applications
Data-driven learning Linear classification & kNN Loss functions Optimization Backpropagation Multi-layer perceptrons Neural Networks	Convolutions PyTorch / TensorFlow Activation functions Batch normalization Transfer learning Data augmentation Momentum / RMSProp / Adam Architecture design	RNNs / Attention / Transformers Image captioning Object detection and segmentation Style transfer Video understanding Generative models Self-supervised learning 3D vision Robot learning Human-centered Al Fairness & ethics

Next time: Image classification with Linear Classifiers

k- nearest neighbor

Linear classification

