CMPS 2433 Discrete Structures and Analysis Program 1 Fall 2022

Two Part Problem:

A. Write a function *createBitwiseTable* (*bitTable1*) to compute & return the resulting values of the following bitwise operations. If the operation is a binary operation, use the first column X for the first operand and the second column Y for the second operand. If it is a unary operation, then perform the operation on the first column X. The bitwise operations to compute are &, |, ^, ~. *Basically create a truth table and then add rows for more bitwise ops on larger numbers.*

Write a second function to populate table 1's first and second columns with values – hard core the basic true table and then input N values from the file.

Write a third function to print the resulting table 1.

B. Write a function *moreBitwiseOps* (*bitTable2*) to compute & return the resulting values of the following bitwise operations. Again use the first column X for the first operand and the second column Y for the second operand. If it is a unary operation, then perform the operation on the first column X. The operations to compute are setbit(i), getbit(i) shift left, shift right, isEven, countOnes and isPower2.

Write a second function to initialize table 2 to -1s.

Write a third function to print the resulting table 2.

Hint for isPower2 O(1) algorithm:

Consider a number x that we need to check for being a power for 2. Now think about the binary representation of (x-1). (x-1) will have all the bits same as x, except for the rightmost 1 in x and all the bits to the right of the rightmost 1.

```
Le, x = 4 = (100)_2, then x - 1 = 3 = (011)_2
Le, x = 6 = (110)_2, then x - 1 = 5 = (101)_2
```

It might not seem obvious with these examples, but the binary representation of (x-1) can be obtained by simply flipping all the bits to the right of rightmost 1 in x and also including the rightmost 1.

Now think about x & (x-1). x & (x-1) will have all the bits equal to the x except for the rightmost 1 in x.

```
Let, x = 4 = (100)_2, then x - 1 = 3 = (011)_2 and x & (x-1) = 4 & 3 = (100)_2 & (011)_2 = (000)_2
Let, x = 6 = (110)_2, then x - 1 = 5 = (101)_2 and x & (x-1) = 6 & 5 = (110)_2 & (101)_2 = (100)_2
```

Properties for numbers that are powers of 2, is that they have one and only one bit set in their binary representation. If the number is neither zero nor a power of two, it will have 1 in more than one place. So if x is a power of 2 then x & (x-1) will be 0.

Input:

Input will be from the file named "program1.dat". The first line of input gives the number of rows of data, *N* (at most 25) for problem A beyond the basic truth table. These N lines either 2 operands. Then the next line with have the number of rows of data, *M* (at most 25) for problem B. The next M lines will have the operator (a char) and either 1 or 2 or 3 operands.

The char operator *should* be self-explanatory for the op that needs to be performed – use a switch statement inside a for loop.

Create another input file program1B.data and put different data in it to run the program 2nd time.

Output:

Two output files. Each output file has your name, program name, and two tables with all the input in columns X and/or Y (or P and B) and the operations across the columns. If a column is empty, print a blank instead.

Turn in:

- Printout of Source code file (.cpp)
- Both input files
- Both output files
- Upload .cpp file to D2L

Sample input:

- 3
- 2 0
- 0 2 35 7
- 9
- > 35
- < 35
- S 35 3 1
- E 34
- G 35 3
- 2 0
- C 35
- 2 2
- 2 48

Corresponding Output

Nora Jones Program 1: Bitwise Operations									
X 0 0 1 1 2 0 35	Y 0 1 0 1 0 2 7	& 0 0 0 1 0 0 3	I 0 1 1 1 2 2 39	^ 0 1 1 0 2 2 2 3 6	~ 1 1 0 0 65533 65535	5			
X 35	P	V	>> 17	<<	S	G	E	С	2
35	0	4		70	4.0				
35 34	3	1			43		1		
35	3					0	_		
0								2	0
35 2								3	1
48									0