Zmienne losowe i ich rozkłady

Niech Ω będzie przestrzenią zdarzeń elementarnych. Dowolną funkcję

$$X: \Omega \rightarrow \mathbb{R}$$

gdzie R - zbiorem liczb rzeczywistych, nazywamy zmienną losową.

Cd Przykład 1 (Wykładu 2).

$$X(e_i) = i$$
, $i=1,2,...,6$, zmienna losowa +

Przykład 4

Ω - zbiór mieszkańców Wrocławia.

X:
$$\Omega \alpha R$$
, $\forall e \in \Omega, X(e) = \text{wzrost człowieka.} +$

Przykład 5.

Badamy liczbę usterek w 20 wyprodukowanych samochodach. Sprawdzanych jest 15 mechanizmów.

$$\Omega = \{e_1, e_2, e_3, \dots, e_{20}\}$$

 $X(e_i)$ oznacza, że w *i*-ty samochód ma e_i usterek. Zmienna losowa X przyjmuje więc wartości od 0 do 15. +

Jeżeli zbiór wartości zmiennej losowej jest skończony (przeliczalny) to mówimy, że zmienna jest dyskretna lub skokowa.

Niech
$$\Omega = \{e_1, e_2, e_3, ..., e_n\},\$$

$$P(X{=}x){=}p_i$$

Rozkład prawdopodobieństwa zmiennej losowej.

P - prawdopodobieństwo określone na Ω ,

 $X: \Omega \rightarrow \mathbb{R}$ - zmienna losowa.

Oznaczmy przez:

 $X(e_i) = x_i$ wartości zmiennej losowej, $P(e_i) = p_i$ prawdopodobieństwo zdarzenia e_i . Jeżeli wartościom x_i przyporządkujemy prawdopodobieństwo zajścia zdarzenia elementarnego e_i , to otrzymamy rozkład prawdopodobieństwa zmiennej losowej.

Rozkład prawdopodobieństwa przedstawia się w postaci tabeli lub wykresu

Tabela rozkładu prawdopodobieństwa zmiennej losowej.

Wartości z.l.	x_1	x_2	• • • • • • • • • •	x_n
Prawdopodo- bieństwo	p 1	p_2	• • • • • • • •	p_n

Wykres rozkładu prawdopodobieństwa zmiennej losowej.

Dystrybuanta zmiennej losowej X, to funkcja

$$F(x) = P(X < x) = P(-\infty < X < x)$$

Własności:

1. $F: \mathbb{R} \to [0, 1],$

2.
$$F(x) = \sum_{x_i < x} p_i$$
, dla z.l. dyskretnej,

gdzie $X(e_i)=x_i, P(e_i)=p_i,$

3. Funkcja F jest niemalejąca,

4.
$$F(-\infty) = 0$$
, $F(+\infty) = 1$.

Dystrybuantę zmiennej losowej można przedstawić w postaci tabelki lub wykresu.

Dystrybuanta F(x) zmiennej losowej X.

Zmienne losowe mogą być charakteryzowane za pomocą pewnych parametrów:

1. Wartość oczekiwana (średnia)

$$E(X) = \sum_{i=1}^{n} x_i \cdot p_i, \quad (m, \mu),$$

- 2. Wariancja $D^2(X) = \sum_{i=1}^n (x_i E(X))^2 p_i$, (σ^2) .
- 3. Odchylenie standardowe D(X). (pierwiastek z wariancji)

Cd Przykład 1.

Rzucamy kostką.

$$\Omega = \{e_1, e_2, e_3, e_4, e_5, e_6\}, P(e_i) = 1/6, i=1,2,...,6.$$

Zmienna losowa $X(e_i) = i, i=1,2,...,6$.

Rozkład prawdopodobieństwa zmiennej losowej X.

Rozkład liczby wyrzuconych oczek

Wartość zmiennej x _i	1	2	3	4	5	6
Prawdopodobieństwo p _i	1/6	1/6	1/6	1/6	1/6	1/6

Rozkład zmiennej skokowej X

Dystrybuanta zmiennej losowej X: X=i z pr. 1/6 F(x)=P(X < x)

P(X < x) dla x w przedziale (1,2] jest równe 1/6 bo P(X=1) P(X < x) dla x w przedziale (2,3] jest równe 1/6+1/6 bo P(X=1)+P(X=2) P(X < 2.5)=P(X=1)+P(X=2)

$$F(x) = \begin{cases} 0 & dla \ x \le 1 \\ 1/6 & dla \ 1 < x \le 2 \\ 2/6 & dla \ 2 < x \le 3 \\ 3/6 & dla \ 3 < x \le 4 \\ 4/6 & dla \ 4 < x \le 5 \\ 5/6 & dla \ 5 < x \le 6 \\ 1 & dla \ x > 6 \end{cases}$$

Dystrybuanta może być także przedstawiona w postaci tabeli:

Dystrybuanta zmiennej losowej X

x	1	2	3	4	5	<i>x</i> >6
F(x)	1/6	2/6	3/6	4/6	5/6	1

(Wykres dystrybuanty jest na poprzedniej stronie)

Wartość oczekiwana

$$E(X) = \sum_{i=1}^{n} x_i p_i = 1\frac{1}{6} + 2\frac{1}{6} + 3\frac{1}{6} + 4\frac{1}{6} + 5\frac{1}{6} + 6\frac{1}{6} = 3.5,$$

Wariancja

$$D^{2}(X) = \sum_{i=1}^{n} (x_{i} - E(X))^{2} p_{i} =$$

$$(1 - 3.5)^{2} \frac{1}{6} + (2 - 3.5)^{2} \frac{1}{6} + (3 - 3.5)^{2} \frac{1}{6} + (4 - 3.5)^{2} \frac{1}{6} + (5 - 3.5)^{2} \frac{1}{6} + (6 - 3.5)^{2} \frac{1}{6} = 2,92.$$

Odchylenie standardowe D(X)=1.71. (pierwiastek z wariancji)

Przykład 6.

Statystyki policyjne odnotowały w ciągu 300 dni następujące dane dotyczące wypadków.

Liczba wypadków drogowych	Liczba dni		
0	45		
1	75		
2	120		
3	45		
4	15		

- a) Zmienną losową jest liczba dni z ustaloną liczbą wypadków. Przyjmuje ona wartości: 0,1,2,3,4.
- b) Przedstawić rozkład prawdopodobieństwa oraz dystrybuantę zmiennej losowej.

*e*₀− zdarzenie elementarne polegające na tym, że w danym dniu nie był wypadku.

Podobnie określamy zdarzenia: e1, e2, e3, e4.

$$P(e_0) = \frac{45}{300} = 0.15, \ P(e_1) = \frac{75}{300} = 0.25, \ P(e_2) = \frac{120}{300} = 0.40,$$

$$P(e_3) = \frac{45}{300} = 0.15, \ P(e_4) = \frac{15}{300} = 0.05$$

Rozkład prawdopodobieństwa wypadków drogowych

Trozzina pravidopodobienseva vypadnov drogovych				
x_i	$P(x_i)=p_i$	$F(x_i)$		
0	0,15	0		
1	0,25	0,15		
2	0,40	0,40=0,15+0,25		
3	0,15	0,80=0,4+0,4		
4	0,05	0,95=0.8+0,15		

Rozkład prawdopodobieństwa wypadków Dystrybuanta wypadków

c) Jakie jest prawdopodobieństwo, że w wybranym dniu zdarzą się mniej niż 3 wypadki?

$$P(X < 3) = P(X \le 2) = F(3) = 0.8$$

d) Jakie jest prawdopodobieństwo, że w wybranym dniu zdarzy się co mniej 1 wypadek?

$$P(X \ge 1) = 1 - P(X < 1) = 1 - 0.15 = 0.85$$

e) Wartość oczekiwana zmiennej losowej

$$E(X) = \sum_{i=0}^{4} x_i p_i = 1.70.$$
= **0**. **15** * **0** + **0**. **25** * **1** +**0**.**4*****2**+**0**.**15*****3**+**0**.**05*****4**

f) Wariancja

$$D^{2}(X) = \sum_{i=0}^{4} (x_{i} - E(X))^{2} p_{i} = 1.11.$$

$$= 0.15 * (0 - 1.7)^{2} + 0.25 * (1 - 1.7)^{2} + 0.4*(2 - 1.7)^{2} + 0.15*(3 - 1.7)^{2} + 0.05*(4 - 1.7)^{2}$$