6/23/22, 12:59 PM 04-otherplots

line plot with multifacets

```
import seaborn as sns
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
nuqta = sns.load_dataset("dots")
nuqta.head()
```

```
Out[1]:
            align choice time coherence firing rate
                            -80
                                            33.189967
            dots
                      T1
                                       0.0
             dots
                      T1
                           -80
                                       3.2 31.691726
            dots
                           -80
                                       6.4 34.279840
         2
                      T1
         3
             dots
                      T1
                           -80
                                      12.8 32.631874
                                      25.6 35.060487
             dots
                      T1
                           -80
```

Out[2]. <seaborn.axisgrid.FacetGrid at 0x1e77cc911c0>

6/23/22, 12:59 PM 04-otherplots

```
palette={"Yes":"b","No": ".85"})
sns.despine(left=True)
```



```
In [11]:
          import seaborn as sns
          import matplotlib.pyplot as plt
          sns.set_theme(style="whitegrid")
          #load the example tips dataset
          diamonds = sns.load_dataset("diamonds")
          #draw a scatter plot white assigning point color and sizes to different
          # variable in the dataset
          f,ax=plt.subplots(figsize=(6.5, 6.5))
          sns.despine(f,left=True, bottom=True)
          clarity_ranking = ["I1","SI2","SI1","VS2","VS1","VVS2","VVS1","IF"]
          sns.scatterplot(x="carat", y="price",
                          hue="clarity", size="depth",
                          palette="ch:r=-.2,d=.3_r",
                          hue_order=clarity_ranking,
                          sizes=(1, 8),linewidth=0,
                          data=diamonds, ax=ax)
```

Out[11]: <AxesSubplot:xlabel='carat', ylabel='price'>


```
In [14]:
          import seaborn as sns
          import matplotlib.pyplot as plt
          sns.set_theme(style="ticks")
          # initialize the figure with a logarithumic x axis
          f, ax = plt.subplots(figsize=(7,6))
          ax.set_xscale("log")
          #load the example tips dataset
          planets = sns.load_dataset("planets")
          #plot the orbital period with horizantal boxes
          sns.boxplot(x="distance",y="method", data=planets,
                      whis=[0,100],width=.6, palette="vlag")
          # Add in point to show each observation
          sns.stripplot(x="distance",y="method",data=planets,
                         size=4, color=".3",linewidth=0)
          # tweak the visual presentation
          ax.xaxis.grid(True)
          ax.set(ylabel="")
          sns.despine(trim=True, left=True)
```



```
import seaborn as sns
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
nuqta = sns.load_dataset("dots")
nuqta.head()
```

Out[16]:		align	choice	time	coherence	firing_rate
	0	dots	T1	-80	0.0	33.189967
	1	dots	T1	-80	3.2	31.691726
	2	dots	T1	-80	6.4	34.279840
	3	dots	T1	-80	12.8	32.631874
	4	dots	T1	-80	25.6	35.060487

Out[19]:		carat	cut	color	clarity	depth	table	price	x	У	z
	0	0.23	Ideal	Е	SI2	61.5	55.0	326	3.95	3.98	2.43
	1	0.21	Premium	Е	SI1	59.8	61.0	326	3.89	3.84	2.31
	2	0.23	Good	Е	VS1	56.9	65.0	327	4.05	4.07	2.31
	3	0.29	Premium	1	VS2	62.4	58.0	334	4.20	4.23	2.63
	4	0.31	Good	J	SI2	63.3	58.0	335	4.34	4.35	2.75

```
import seaborn as sns
sns.set_theme(style="whitegrid")
```

Out[21]: <AxesSubplot:xlabel='choice', ylabel='coherence'>


```
In [4]:
```

ModuleNotFoundError: No module named 'plotly'

In []: