Fundamentos en Estadística

V. Trujillo

GRC-MERVEX (CO de Vigo. IEO)

Marzo 2021

7.- Probabilidades

 $\ensuremath{ \mathcal{L}}$ Qué es la probabilidad? 1

Üna frecuencia a priori; y la frecuencia, como una probabilidad a posteriori"³

La función de probabilidad(P), no es más que la probabilidad de que una variable aleatoria(X) tome un determinado valor: $P(x_i) = p_i$.

Con fines didácticos, nos fijaremos simplemente en el caso de variables aleatorias continuas.

Función de distribución de probabilidad F(x)

La función de distribución nos da la probabilidad de que la variable tome valores iguales o menores que un valor dado de la variable. Que no es más que el resultado de acumular sus probabilidades⁴:

La función de distribución de probabilidad siempre está entre 0 y 1.

Si conozco la función de probabilidad puedo conocer cualquier valor de la variable o sus intervalos (a, b):

$$P(a \le X \le b) = F(b) - F(a)^5$$
 (2)

Función de densidad de probabilidad (pdf) f(x)

La función de densidad de probabilidad (pdf) permite obtener áreas de probabilidad. La probabilidad de $X \leq x$ se representa como el área que hay entre el origen y x.

Para el caso de una variable aleatoria continua X, y si existe una función de distribución F(X), existe a su vez una función de probabilidad f(x) cuya relación será:

$$F(b) - F(a) = P(a \le X \le b) = \int_a^b f(x)dx \tag{3}$$

En general:

$$F(x) = \int_{-\infty}^{x} f(u)du$$

Es decir que la función de densidad de la probabilidad f(x), no es más que la derivada, cuando sea derivable, de la función de distribución acumulada $F(x) \Longrightarrow f(x) = \frac{d}{dx} F(x)$ o dicho de otro modo, la función de distribución no es más que la integral de la función de densidad. 6

8.- Funciones de distribución

Distribución normal

La función de densidad de probabilidad de la distribución normal f(x) se define por dos parámetros, la media (μ) y la varianza (σ^2) .

$$X \cap N(\mu, \sigma^2)$$

Su función de densidad es:

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$
 (4)

• Normalización de variables:

Existen tantas distribuciones normales como medias y varianzas haya. Para calcular probabilidades, y evitar el problema anteriormente citado, se recurre a una distribución especial que se denomina **unitaria**, reducida o **tipificada**, donde la media es cero y la varianza o desviación típica es uno. A esta función se le llama f(z).

Todas las distribuciones normales se pueden reducir a esta unitaria, y para ello se convierte x a z mediante el proceso denominado tipificación:

$$z = \frac{x - \mu}{\sigma}$$

De esta forma $Z \cap N(0,1)$ sólo hace falta tener <u>una</u> tabla de asignación para el cálculo de probabilidades de todas las posibles distribuciones normales.

• Propiedades y características:

• Es simétrica respecto a la media:

$$\Rightarrow$$
 la media = la mediana = la moda = μ .

• La distribución normal tiene una propiedad muy importante:

$$x_i \cap N(\mu_i, \sigma_i^2) \Rightarrow \sum x_i \cap N(\sum \mu_i, \sum \sigma_i^2); i = 1, \dots, k \text{ independientes}$$

Si unas determinadas variables x_i se distribuyen normalmente, la suma de esas variables se distribuirá como una normal de media, la suma de las medias y de varianza, la suma de las varianzas.

Distribución t de Student

Las desviaciones de las medias muestrales respecto a la media paramétrica se distribuyen como una normal, si dividimos estas desviaciones por la desviación típica paramétrica se distribuirán como una normal de media 0 y desviación típica 1 (tipificación).

$$\bar{X} = \frac{(X_1 + \ldots + X_n)}{n}$$
 ; X_1, \ldots, X_n variables aleatorias independientes

$$Z = \frac{\bar{X}_n - \mu}{\sigma/\sqrt{(n)}} \qquad Z \cap N(0, 1)$$

Pero como σ suele ser desconocida y utilizamos como estimador de la desviación típica paramétrica (σ) la desviación típica muestral 7 (S_n) , resulta que este cociente ya **no** se distribuye normalmente, sino que toma un forma más aplanada y abierta, ya que la varianza paramétrica "fluctúa' 'más. Esta es precisamente la denominada distribución t de Student (seudónimo de W.S. Gossett).

$$T = \frac{\bar{X}_n - \mu}{S_n / \sqrt{(n)}}$$

Su función de densidad es:

$$f(t) = \frac{\Gamma((\nu+1)/2)}{\sqrt{\nu\pi}\Gamma(\nu/2)} (1+t^2/\nu)^{-(\nu+1)/2}$$
; Γ es la función gamma

Propiedades y características:

Es simétrica alrededor de cero y toma valores desde $(-\infty, +\infty)$ y su forma depende de los grados de libertad ν .

Al igual que ocurría con la normal, existen muchas distribuciones t, pero en este caso **no** se pueden reducir a una unitaria. Así que existen tablas de la función de distribución de la probabilidad para diferentes grados de libertad, aproximándose a una normal de media 0 y desviación típica 1 cuando los grados de libertad son muy altos (n > 30).

Distribución χ^2

Es una distribución de densidad debida a K. Pearson cuyos valores van de 0 a $+\infty$. La distribución es asimétrica y se aproxima asintóticamente al eje horizontal en la cola de la derecha.

No existe una sola distribución χ^2 sino que hay una para cada número de grados de libertad (ν) . Así que, χ^2 es función de los grados de libertad ν . La curva empieza siendo en forma de $\{\{L\}\}$ para $\nu=1$ pero a medida que los grados de libertad aumentan, se va haciendo más simétrica aproximándose a una distribución normal.

Se define como:

Sea
$$X = Z_1^2 + ... + Z_{\nu}^2$$
; Z_i variables aleatorias independientes tipificadas $\Rightarrow Z \cap N(0,1) \Rightarrow entonces \underline{X \cap \chi_{\nu}^2}$

Su función de densidad es:

$$f(x;\nu) = \begin{cases} \frac{1}{2^{\nu/2}\Gamma(\nu/2)} x^{(\nu/2)-1} e^{-x/2} & x > 0\\ 0 & x \le 0 \end{cases}$$
 (5)

Propiedades y características:

- La distribución χ^2 no se puede reducir a una unitaria.
- El valor esperado de esta distribución (la media en el muestreo) es los grados de libertad.

$$E[\chi_{\nu}^2] = \nu \tag{6}$$

• Si $z \cap N(0,1) \Rightarrow z^2 \cap \chi^2_{(1)}$

$$\begin{cases}
Si \ x & \cap \ \chi^{2}_{(\nu_{1})} \\
Si \ y & \cap \ \chi^{2}_{(\nu_{2})}
\end{cases}$$

$$x, y \ independientes \Rightarrow (x+y) \cap \chi^{2}_{(\nu_{1}+\nu_{2})}$$

Si tengo muchas variables que se distribuyen como una χ^2 , la suma de estas variables se distribuye como un χ^2 con la suma de los grados de libertad.

Si
$$x_i \cap \chi^2_{(\nu_i)} \Rightarrow \sum x_i \cap \chi^2_{(\sum \nu_i)}$$

Esta última propiedad permite, entre otros tratamientos, realizar el análisis de varianza.

