Analyse - TD4

Lucie Le Briquer

19 octobre 2017

Exercice 1 - Espaces de Baire

- 1. E espace de Baire. Soit $O \subset E$ ouvert de E. Soit $(U_n)_{n \in \mathbb{N}}$ ouverts denses dans O. Définissons $V_n = O_n \cup (\overline{O})^C$ ouvert de E. $O \cap (\overline{O})^C$ car O ouvert. V_n denses dans E donc comme E de Baire $\bigcap_{n \in \mathbb{N}} V_n$ dense dans E i.e. $\bigcap_{n \in \mathbb{N}} (O_n \cup (\overline{O})^n) = (\bigcap_{n \in \mathbb{N}} (O_n) \cup (\overline{O})^n)$ dense dans E. Donc $O \cap [(\bigcap_{n \in \mathbb{N}} (O_n) \cup (\overline{O})^n] = \bigcap_{n \in \mathbb{N}} (O_n)$ dense dans O.
- 2. Pour $x \in E$, on note $(V_i(x))_{i \in I_x}$ un système fondamental de voisinages compacts. Soit $(O_n)_{n \in \mathbb{N}}$ une suite d'ouverts denses et V un ouvert de E. Montrons que $V \cap \bigcap_{n \in \mathbb{N}} O_n$ non vide.
 - $V \cap O_1$ non-vide par densité, $\exists x_1 \in V \cap O_1$. $V \cap O_1$ est un voisinage de x_1 . Donc $\exists K_1 \subset V \cap O_1$ voisinage compact de x_1 qui contient un ouvert V_1 contenant x_1 .
 - $V_1 \cap O_2$ non-vide par densité, $\exists x_2 \in V_1 \cap O_2$. $V_1 \cap O_2$ est un voisinage de x_2 . Donc $\exists K_2 \subset V_1 \cap O_2$ voisinage compact de x_2 qui contient un ouvert V_2 contenant x_2 .

On construit ainsi $(K_n)_{n\in\mathbb{N}}$ une suite de compacts, et $(x_n)_{n\in\mathbb{N}}$ une suite d'éléments de E et $(V_n)_{n\in\mathbb{N}}$ une suite d'ouverts qui vérifient :

$$x_n \in V_n \subset K_n \subset V_{n-1}$$
 $K_{n+1} \subset K_n$ $V_{n+1} \subset V_n$

 $(x_n)_{n\in\mathbb{N}}\in K_1^{\mathbb{N}}$, donc admet une sous-suite convergente (*) $x_{\varphi(n)}\xrightarrow[n\to+\infty]{}x$. Donc $x\in V$.

Pour $N \in \mathbb{N}$ fixé, pour $n \geq N$, $x_n \in K_n \subset O_n$. Donc comme K_N fermé, $x \in K_N$ i.e. $x \in O_N$. Donc $x \in \bigcap_{n \in \mathbb{N}} O_n$

Plus simplement, on aurait pu dire que (K_n) est une suite décroissante de compacts non vides dans K_1 compact, donc $\bigcap_{n\in\mathbb{N}} K_n \neq \emptyset$.

Remarque. (*) On est pas dans un espace métrique mais la compacité \Rightarrow recouvrement \Rightarrow sous-suite convergente. Mais en revanche on a pas la caractérisation de la compacité par cette propriété.

Exercice 4 - Normes équivalentes

1. \Rightarrow : Supposons que $\exists k, K$ tels que $k\|.\|_1 \leq \|.\|_2 \leq K\|.\|_1$

$$\left\{\begin{array}{ccc} (E,\|.\|_1) & \longrightarrow & (E,\|.\|_2) \\ x & \longmapsto & x \end{array}\right. \ \text{hom\'eomorphisme de E dans E}$$

 \Leftarrow : Supposons $\mathcal{T}_1 = \mathcal{T}_2$. Il existe r > 0 tel que $\overline{\mathcal{B}_{\|.\|_2}(0,r)} \subseteq \overline{\mathcal{B}_{\|.\|_1}(0,1)}$. Donc $\|x\|_2 \le r \Rightarrow \|x\|_1 \le 1$.

Soit $x \in E$, $x \neq 0$, on a:

$$\frac{rx}{\|x\|_2} \in \overline{\mathcal{B}_{\|\cdot\|_2}(0,r)} \quad \text{donc} \quad \left\| \frac{rx}{\|x\|_2} \right\|_1 \le 1$$

Donc $||x||_1 \le \frac{||x||_2}{r}$ et par symétrie on obtient l'autre domination. Donc $||.||_1$ et $||.||_2$ sont équivalentes.

- 2. On cherche $(E, \|.\|_1)$ et $(E, \|.\|_2)$ tel que $\|.\|_1 \le \|.\|_2$ mais non équivalentes. Prenons $E = \mathcal{C}([0,1]), \|f\|_1 = \int_0^1 |f|$ et $\|f\|_2 = \|f\|_{\infty} = \sup_{x \in [0,1]} |f(x)|$. On a bien $\|f\|_1 \le \|f\|_{\infty}$. Prenons $f_n \colon x \mapsto x^n$, on a $\|f_n\|_1 = \frac{1}{n+1} \xrightarrow[n \to +\infty]{} 0$ et $\|f_n\|_2 = 1$, donc les normes ne sont pas équivalentes.
- 3. Corollaire du théorème de Baire vu en cours.

Exercice 6 - Densité des fonctions continues nulle part dérivables $(\mathcal{C}([0,1]), \|.\|_{\infty})$

1. Ouvert. Montrons que le complémentaire de $U_{\varepsilon,n}^C$ est fermé.

$$U_{\varepsilon,n}^C = \left\{ f \in E \mid \exists x \in [0,1], \forall y \in [0,1], 0 < |y-x| < \varepsilon \Rightarrow \left| \frac{f(x) - f(y)}{x - y} \right| \le n \right\}$$

Soit $(f_p)_{p\in\mathbb{N}}$, $f_p \xrightarrow[n\to+\infty]{\text{CVU}} f \in E$.

$$\forall p \in \mathbb{N}, \ \exists x_p \in [0,1], \ \forall y \in [0,1], \ 0 < |y-x| < \varepsilon \Rightarrow \left| \frac{f_p(y) - f_p(x_p)}{y - x_p} \right| \le n$$

Quitte à extraire on peut supposer que $x_p \xrightarrow[n \to +\infty]{} x \in [0,1]$. Soit $y \in [0,1]$ tel que $|y-x| < \varepsilon$. Par convergence, $\exists P \in \mathbb{N}$ tel que $\forall p \geq P$ donc $||x_p - x|| \leq \frac{\varepsilon}{2} \leq \varepsilon$, donc :

$$\forall p \ge P \quad \left| \frac{f_p(x_p) - f_p(y)}{x_p - y} \right| \le n$$

Donc par passage à la limite, comme $x_p \xrightarrow[n \to +\infty]{} x$, $f_p(y) \xrightarrow[n \to +\infty]{} y$ et $f_p(x_p) \xrightarrow[n \to +\infty]{} f(x)$, on obtient:

$$\left| \frac{f(x) - f(y)}{x - y} \right| \le n$$

Densité. Montrons que $U_{\varepsilon,n}$ est dense. Soit $f \in \mathcal{C}([0,1])$ et $\delta > 0$ $||f - g||_{\infty} \leq \delta$. [0,1] est compact donc f est uniformément continue sur [0,1].

$$\exists \alpha \in]0, \varepsilon[, \ \forall (x,y) \in [0,1]^2, \ |x-y| < \alpha \Rightarrow |f(x) - f(y)| < \frac{\delta}{4}$$

Soit $N \in \mathbb{N}^*$ tel que $N > 2\pi$, $\frac{4\pi}{N} < \alpha$ et $\frac{\delta N}{8\pi} > n$. Pososn $g(x) = f(x) + \delta \sin(Nx)$.

Soit $x \in [0, 1]$.

$$\exists y \in [0,1], \ 2\pi \leq |Nx-Ny| \leq 4\pi \qquad \frac{2\pi}{N} \leq |x-y| \leq \frac{4\pi}{N}, \quad |\sin Nx - \sin Ny| \geq 1$$

Donc si $|x - y| < \alpha$:

$$\left| \frac{f(x) - f(y)}{x - y} \right| < \frac{\delta}{4} \frac{N}{2\pi} = \frac{\delta N}{8\pi}$$

De plus,

$$\left|\frac{\delta \sin Ny - \delta \sin Nx}{y - x}\right| \geq \frac{\delta}{|y - x|} \geq \frac{\delta N}{4\pi}$$

Donc:

$$\left| \frac{g(y) - g(x)}{y - x} \right| = \frac{\delta N}{8\pi} > n$$

Donc $g \in U_{\varepsilon,n}$ et $||f - g||_{\infty} < \alpha$.

Remarque. Plus simplement on aurait pu prendre des fonctions affines par morceaux. Par exemple la fonction g telle que g(x)=1 si $x=\frac{k}{2p}$ avec k pair et g(x)=0 si $x=\frac{k}{2p}$ avec k impair. $[0,1]=\cup_{k=0}^{2p-1}\left[\frac{k}{2p},\frac{k+1}{2p}\right]$. Le taux d'accroissement est donc plus simple.

2. Posons $O = \bigcap_{n \in \mathbb{N}^*} U_{\frac{1}{n},n}$, O est dense par le théorème de Baire.

Soit $f \in O$, $\forall n \in \mathbb{N}^*$, $f \in U_{\frac{1}{n},n}$ donc :

 $\forall x \in [0,1], \ \forall n \in \mathbb{N}^*, \ \exists x_n \in [0,1] \quad 0 < |x-x_n| < \frac{1}{n} \text{ et } f \text{ est nulle part dérivable}$

Exercice 5 - Un espace métrique non complet qui n'est pas de Baire

 $E = \mathcal{C}([0,1])$ muni de $\|.\|_1$. $\mathcal{B} = \{ f \in E \mid \|f\|_{\infty} \le 1 \}$.

1. Montrons que \mathcal{B}^C est couvert. Soit $f \in \mathcal{B}$. $\exists x_0 \in [0,1]$ tel que $|f(x_0)| > 1$. On peut supposer que $x_0 \notin \{0,1\}$. Alors $\exists \alpha > 0$ tel que :

$$\forall x \in I_{\alpha} = [x_0 - \alpha, x_0 + \alpha], \quad |f(x)| > \frac{1 + |f(x_0)|}{2}$$

Soit $g \in \mathcal{B}$,

$$\int_{0}^{1} |g(x) - f(x)| dx \ge \int_{x_{0} - \alpha}^{x_{0} + \alpha} |g(x) - f(x)| dx \ge \int_{x_{0} - \alpha}^{x_{0} + \alpha} |f(x)| - |g(x)| dx$$

$$\ge 2\alpha \frac{|f(x_{0})| - 1}{2} = \alpha (|f(x_{0})| - 1)$$

Ainsi si $||g - f||_1 < \alpha(|f(x_0| - 1), y \in \mathcal{B}^C)$. Donc \mathcal{B}^C est ouvert.

Remarque. On pouvait aussi montrer directement \mathcal{B} fermé, preuve similaire. Soit $f_n \in \mathcal{B}$ tel que $f_n \xrightarrow[n \to +\infty]{} f$ pour $\|.\|_1$ $f \in E$. Montrons que $f \in \mathcal{B}$. Par l'absurde, si $f \in \mathcal{B}^C$, $\exists x_0 \in [0,1], f(x_0) > 1$. Donc par continuité $\forall x \in I_\alpha |f(x)| > 1 + \eta$.

$$\int_{0}^{1} |f_{n} - f| \ge \int_{x_{0} - \alpha}^{x_{0} + \alpha} |f_{n} - f| \ge \int_{x_{0} - \alpha}^{x_{0} + \alpha} |f| - |f_{n}| \ge 2\eta\alpha$$

2. Pour $n \in \mathbb{N}^*$, $\mathcal{B}_{\infty}(0,n) = n\mathcal{B}$ est fermé. On a $\bigcup_{n \in \mathbb{N}^*} n\mathcal{B} = E$. E est supposé de Baire, alors, $\exists n \in \mathbb{N}^*$, $\widehat{n\mathcal{B}} \neq \emptyset$.

$$\exists n \in \mathbb{N}^*, \ \exists f \in E, \ \exists \alpha > 0, \ \mathcal{B}_1(f, \alpha) \subseteq \mathcal{B}(0, n)$$

Soit $h \in E$, $||h|| \le 1$, soit $g = f + \alpha h$, $||g - f||_1 \le \alpha$ d'où $||g||_{\infty} \le n$.

$$h = \frac{g - f}{\alpha}$$
 $\|h\|_{\infty} \le \frac{1}{\alpha} (\|g\|_{\infty} + \|f\|_{\infty}) \le \frac{1}{\alpha} (n + \|f\|_{\infty})$

On a donc montrer que:

$$\mathcal{B}_1(0,1) \subseteq \mathcal{B}_{\infty}\left(0, \frac{n + \|f\|_{\infty}}{\alpha}\right)$$

Donc en posant $r = \frac{\alpha}{n + ||f||_{\infty}}$ on a le résultat $\mathcal{B}_1(0, r) \subseteq \mathcal{B}_{\infty}(0, 1)$.

3. Si $f\in E,\, f\neq 0$, on a $\frac{r}{2}\frac{f}{\|f\|_1}\in \mathcal{B}_1(0,r)\subset \mathcal{B}_\infty(0,1).$ Donc :

$$\left\| \frac{r}{2} \frac{f}{\|f\|_1} \right\|_{\infty} \le 1$$

Donc $||f||_{\infty} \leq \frac{2}{r}||f||_1$. Absurde en considérant $f_n \colon x \mapsto x^n$ sur [0,1] puisque $||f_n||_{\infty} = f_n(1) = 1$ et $||f_n||_1 = \frac{1}{n+1} \xrightarrow[n \to +\infty]{} 0$.

Exercice 5 - Un espace métrique non complet qui n'est pas de Baire $F \subset (\mathcal{C}([0,1], \|.\|_{\infty})$. On suppose F fermé pour $\|.\|_{\infty}$ et $F \subset \mathcal{C}^1([0,1])$.

1. Regardons:

$$T \colon \left\{ \begin{array}{ccc} F & \longrightarrow & E \\ f & \longmapsto & f' \end{array} \right.$$

F et E sont des Banach. Si T est continue, on obtient la majoration demandée. Montrons que T est continue par le théorème du graphe fermé.

$$G = \{(f, Tf), f \in F\}$$

Soit $(f_n, Tf_n)_{n \in \mathbb{N}} \in G^{\mathbb{N}}$ telle que $f_n \xrightarrow[n \to +\infty]{\|\cdot\|_{\infty}} f \in F$ et $f'_n = Tf_n \xrightarrow[n \to +\infty]{\|\cdot\|_{\infty}} g \in E$. On a donc:

$$||f - f_n||_{\infty} \xrightarrow[n \to +\infty]{} 0 \qquad ||g - f_n'||_{\infty} \xrightarrow[n \to +\infty]{} 0$$

Par convergence uniforme des dérivées et convergence ponctuelle des (f_n) on a bien g = f'. Donc g = Tf et G est fermé. Donc T est continue de F dans E, ainsi :

$$\exists C > 0, \ \forall f \in F, \quad \|f'\|_{\infty} \le C\|f\|_{\infty}$$

- 2. Montrons que $\mathcal{B}_F(0,1)$ est relativement compacte.
 - $\forall x \in [0,1], \ \forall f \in \mathcal{B}_F(0,1) = \mathcal{B}_{\infty}(0,1) \cap F, \ \|f\|_{\infty} \le 1 \ \text{donc} \ |f(x)| \le 1.$ Donc $\mathcal{B}_F(0,1)(x)$. Ainsi $\mathcal{B}_F(0,1)(x)$ est borné.
 - $\forall f \in \mathcal{B}_F(0,1), \, \forall x, y \in [0,1],$

$$|f(x) - f(y)| \stackrel{\text{TAF}}{\leq} ||f'||_{\infty} |x - y|$$

$$\leq C||f||_{\infty} |x - y|$$

$$\leq C|x - y|$$

C est bien indépendant de f.

Donc $\mathcal{B}_F(0,1)$ est uniformément équicontinue.

Donc par Ascoli, $\overline{\mathcal{B}_F(0,1)}$ est compacte.

3. On sait désormais que $(\overline{\mathcal{B}_F(0,1)},\|.\|_{\infty})$ est compacte. Donc par Riesz, F est de dimension finie.