Physics 460—Practice S-7 (Due May 21, 1 pm) Name:

S–7: I can make predictions about systems described by entangled states and explain the EPR paradox and Bell's theorem.

Unsatisfactory Progressing Acceptable Polished

(1) A colleague claims that they have found an entangled state for a two-particle spin-1/2 system with the following property: they can find a measurement direction $\hat{\mathbf{n}}$ along which the uncertainty in the measurement of the spin of one of the particles is zero: $\Delta S_{\hat{\mathbf{n}}} = 0$.

Do you believe them? If so, provide an entangled state that has this property. If not, why not?

(2) Consider a hidden variable λ that has the range $-\pi \le \lambda \le \pi$, and let the measurement function $f(\hat{\mathbf{n}}, \lambda)$ be

$$f(\hat{\mathbf{n}}, \lambda) = \begin{cases} +1, & \lambda \ge \theta, \\ -1, & \lambda < \theta, \end{cases}$$

where θ is the angle between $\hat{\mathbf{n}}$ and the z axis (so $0 \le \theta \le \pi$). This says that the result of the measurement depends on a comparison of the value of λ to the orientation of the measurement axis. We will apply Bell's result, so the measurement functions for the two particles obey the property $f_1(\hat{\mathbf{n}}, \lambda) = -f_2(\hat{\mathbf{n}}, \lambda)$.

- (a) Let the probability density be $\rho(\lambda) = A\lambda^2$, where *A* is a constant. Find *A*.
- (b) Using the three angles from Figure 4.2 of the course notes, with $\hat{\mathbf{n}}_1$ along the z axis, $\hat{\mathbf{n}}_2$ along the x axis, and $\hat{\mathbf{n}}_3$ at a 45° angle in the x–z plane, calculate $\epsilon(\hat{\mathbf{n}}_1,\hat{\mathbf{n}}_2)$, $\epsilon(\hat{\mathbf{n}}_1,\hat{\mathbf{n}}_3)$, and $\epsilon(\hat{\mathbf{n}}_2,\hat{\mathbf{n}}_3)$ for this hidden variable theory.
- (c) Show that (for these three angles at least) this hidden variable theory obeys Bell's inequality,

$$|\epsilon(\hat{\mathbf{n}}_1, \hat{\mathbf{n}}_2) - \epsilon(\hat{\mathbf{n}}_1, \hat{\mathbf{n}}_3)| \leq 1 + \epsilon(\hat{\mathbf{n}}_2, \hat{\mathbf{n}}_3).$$