

National University of Computer & Emerging Sciences, Karachi Spring-2022 CS-Department

Mid-I Retake Exam 28th of March 2022, 10:00 am – 11:00 am

Course Code: CS3005	Course Name: Theory of Automata
Instructor Name: Mr. Musawar Ali, Ms. Bakhtawar Abbasi	
Student Roll No:	

Instructions:

- Return the question paper.
- Attempting of the question in the given order is highly encouraged.
- Read each question completely before answering it. There are 4 questions on 2 pages.
- In case of any ambiguity, you may make assumption. But your assumption should not contradict any statement in the question paper.

Time: 60 minutes. Max Marks: 40 points

Question 1: Deterministic Finite Automata

(4+4) Points

- a. Design the DFA for Regular Expression $(\lambda + b)(ab)^*(\lambda + a)$. Defined over alphabet $\Sigma = \{a,b\}$, also define language.
- **b.** Design the DFA for Regular Expression $ab(ab)^*$ $ba(ba)^*$ or $ba(ba)^*$ $ab(ab)^*$. Defined over alphabet $\Sigma = \{a, b\}$, also define language.

Question 2: Regular Expressions

(3+3+5) **Points**

- a. The set of all string over $\Sigma = \{0, 1\}$, having at most one pair of 0's or at most one pair of 1's. Some of the strings in the given language are: $\{00, 11, 00111, 00011, 0011, \dots\}$
- **b.** Find a regular expression for the language $L=\{w|\ w\in\{0,1\}^*\}$: w has no pair of consecutive one's. Defined over alphabet $\Sigma=\{0,1\}$
- **c.** Find a regular expression for the given DFAs.

DFA1 DFA2

Question 3: Non- Deterministic Finite Automata

(3+3) Points

- **a.** Design the NFA for all the strings with even number of 0'S followed by an odd number of 1's. Defined over alphabet $\Sigma = \{0,1\}$.
- **b.** Design the NFA for the set of all strings in which both the number of a's and the number of b's are even. Defined over alphabet $\Sigma = \{0,1\}$.

(10+5) **Points**

<u>Question 4:</u> Generalized Transition Graph and NFA to DFA.

a. Find the regular expression of given GTG using state elimination method.

b.Convert the followinf $\epsilon-NFA$ to DFA.

Best of Luck