12	Febbraio	2018 -	Analisi	Esplorativa
----	----------	--------	---------	--------------------

Cognome:			
Nome:			
Matricola:			
Tinologia d'esame	□ 12 CFU	□ 15 CFU	

Prova scritta

Si svolgano gli esercizi riportando il risultato dove indicato. Durata: 60 minuti

Esercizio 1 (5 punti)

Sapendo che

- la prima riga di $X_{n\times 3}$ è pari a $x_1'=(9,\ 12,\ 22)$ e il baricentro è pari a $\bar{x}_1'=(8.05,\ 4.1,\ 13.74)$ la seconda colonna di $X_{3\times 3}$ è $x_2'=(0.74,-0.67,-0.08)'$, dove $X_{3\times 3}$ è la matrice degli autovettori di $X_{3\times 3}$
- $s_{11}=89.9$ e il secondo autovalore di $\underset{3\times 3}{S}$ è $\lambda_2=1$

si risponda alle seguenti domande:

a. Riportare il valore del primo elemento di $y_2 = \tilde{X}v_2$, arrotondando al **secondo decimale** : dove \tilde{X} è la matrice dei dati centrati

b. Si calcoli il coefficiente di correlazione tra la prima colonna \tilde{x}_1 di $\tilde{X}_{n\times 1}$ e i punteggi y_2 della seconda componente principale, arrotondando il calcolo al secondo decimale:

$$Corr(\tilde{x}_1, y_2) = \dots$$

c. Si calcoli
$$d_{\infty}(x_1, \bar{x}) = \dots$$

[1] 0.08

[1] 8.26

Esercizio 2 (9 punti)

Si consideri la seguente matrice di correlazione $R_{3\times3} = \begin{bmatrix} 1 & 0.83 & 0.78 \\ & 1 & 0.67 \\ & & 1 \end{bmatrix}$.

a. Sulla base di R, si consideri il modello fattoriale ad un fattore $\underset{p \times 1}{x} = \underset{p \times 1}{\Lambda} \underset{1 \times 1}{f} + \underset{p \times 1}{u}$ dove $\Lambda' = (\lambda_1, \lambda_2, \lambda_3)$ Nel metodo di stima naive, partendo da $R = \Lambda \Lambda' + \Psi$, si ottiene il seguente sistema di equazioni $\hat{\lambda}_1 \hat{\lambda}_2 = 0.83, \hat{\lambda}_3 \hat{\lambda}_2 = 0.67, \hat{\lambda}_1 \hat{\lambda}_3 = 0.78, \hat{\psi}_i = 1 - \hat{\lambda}_i^2, i = 1, 2, 3$. Risolvendo il sistema di equazioni, si ottiene $\hat{\lambda}_1^2 = r_{12}r_{13}/r_{23}$, dove r_{ij} è l'elemento di R in posizione (i,j). Si riportino, arrotondando al secondo decimale:

$$\hat{\lambda}_1 = \dots, \hat{\lambda}_2 = \dots, \hat{\lambda}_3 = \dots, \hat{\psi}_1 = \dots, \hat{\psi}_2 = \dots, \hat{\psi}_3 = \dots$$

b. Il numero di parametri corrispondenti al modello fattoriale ad un fattore (senza vincoli) è pari a

c. Sia $z_1' = (1, 2, 3)$ la prima riga della matrice dei dati standardizzati $Z_{n \times p}$. Riportare, arrotondando al **secondo decimale**, la stima del punteggio fattoriale con il *metodo di Bartlett*

$$\hat{f}_1 = (\hat{\Lambda}'\hat{\Psi}^{-1}\hat{\Lambda})^{-1}\hat{\Lambda}'\hat{\Psi}^{-1}z_1 = \dots$$

d. Si spieghi cos'è un caso di Heywood.

Esercizio 3 (8 punti)

Un gruppo di n = 112 individui si è sottoposto a p = 6 prove di abilità e intelligenza. Caricare la matrice di $varianze/covarianze\ S$ ability.cov presente nella libreria datasets e si risponda alle seguenti domande:

a. Sulla base dalla matrice di correlazione R, si stimi il modello fattoriale con k=2 fattori utilizzando il metodo della massima verosimiglianza senza effettuare **nessuna rotazione**. Riportare, arrotondando al **terzo decimale** il valore delle statistiche test

$$T = n \log \left(\frac{\det(\hat{\Lambda}\hat{\Lambda}' + \hat{\Psi})}{\det(R)} \right) = \dots \qquad T_{Bartlett} = [(n-1) - (2p+4k+5)/6] \log \left(\frac{\det(\hat{\Lambda}\hat{\Lambda}' + \hat{\Psi})}{\det(R)} \right) = \dots$$

[1] 6.399

b. Si riportino, arrotondando al **primo decimale**, i seguenti valori

dove $\hat{\Lambda}_{p \times k}$ è la stima dei pesi fattoriali del modello descritto al punto a. e $A_{2 \times 2} = \begin{bmatrix} \cos \phi & \sin \phi \\ -\sin \phi & \cos \phi \end{bmatrix}$ con $\phi = 0$ è una matrice ortogonale che produce una rotazione oraria dei pesi fattoriali $\hat{\Lambda}$.

##		Factor1	Factor2
##	[1,]	0.6	0.4
##	[2,]	0.3	0.5
##	[3,]	0.5	0.7
##	[4,]	0.3	0.4
##	[5,]	1.0	-0.1
##	[6,]	0.8	0.0

c. Riportare, arrotondando al \mathbf{terzo} decimale, il p-value

$$\Pr(\chi^2_{\frac{1}{2}[(p-k)^2-p-k]} > t) = \dots$$

dove t è il valore osservato della statistica test $T_{Bartlett}$ calcolata al punto a.

d. Definire l'ipotesi nulla H_0 e ipotesi alternativa H_1 del test considerato al punto a.

$$H_0$$
:

[1] 0.192

Esercizio 4 (4 punti)

Dimostrare, esplicitando tutti i passaggi e le quantità coinvolte, che

a. se esiste un
$$c \neq 0$$
 tale che $\tilde{X} c = 0 \atop n \times pp \times 1$, allora $\det(S) = 0$ dove $S = \frac{1}{n} \tilde{X}' \tilde{X}$.

b. nel modello fattoriale a
$$k$$
 fattori, $\mathbb{E}(\underset{p\times 1}{x}f')=\underset{p\times k}{\Lambda}$