MATH 4500 - Homework 5

Daniel Alonso Vicuna

March 8, 2019

Definition 1. Suppose V is a finite dimensional vector space over \mathbb{R} (or \mathbb{C}), and suppose B is a function $V \times V \mathbb{R}$ (or $V \times V \to \mathbb{C}$). We say B is a bilinear form if for any $u, v, w \in V$ and $a \in \mathbb{R}$ (or \mathbb{C})

$$B(u+v,w) = B(u,w) + B(v,w) \tag{1}$$

$$B(u, v + w) = B(u, v) + B(u, w)$$

$$(2)$$

$$B(au, v) = aB(u, v) \tag{3}$$

$$B(u, av) = \overline{a}B(u, v) \tag{4}$$

Exercise 1. Show that $B: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$, defined as $B(u,v) = u \cdot v = uv^T$ is a symmetric bilinear form over \mathbb{R}^n .

Answer: We first show that it is a bilinear form by direct computation:

1.
$$B(u+v,w) = (u+v)w^T = uw^T + vw^T = B(u,w) + B(v,w)$$

2.
$$B(u, v + w) = u(v + w)^T = u(v^T + w^T) = uv^T + uw^T = B(u, w) + B(u, w)$$

3.
$$B(au, v) = (au)v^T = auv^T = a(uv^T) = aB(u, v)$$

4.
$$B(u, av) = u(av)^T = u(av^T) = auv^T = aB(u, v)$$

Note that $a \in \mathbb{R}$ so the fourth condition is satisfied. B is clearly also symmetric:

$$B(v, u) = vu^T = (vu^T)^T = uv^T = B(u, v)$$
 since $vu^T \in \mathbb{R}$

Exercise 2. Show that $H: \mathbb{C}^n \times \mathbb{C}^n \to \mathbb{C}$, defined as $H(u,v) = uv^{\dagger}$ is a bilinear form over \mathbb{C}^n but it is not symmetric. Here, \dagger means conjugate transpose.

Answer: We also show this by direct computation:

1.
$$B(u+v,w) = (u+v)w^{\dagger} = uw^{\dagger} + vw^{\dagger} = B(u,w) + B(v,w)$$

2.
$$B(u, v + w) = u(v + w)^{\dagger} = u(v^{\dagger} + w^{\dagger}) = uv^{\dagger} + uw^{\dagger} = B(u, w) + B(u, w)$$

3.
$$B(au, v) = (au)v^{\dagger} = auv^{\dagger} = a(uv^{\dagger}) = aB(u, v)$$

4.
$$B(u, av) = u(av)^{\dagger} = u(\overline{a}v^{\dagger}) = \overline{a}uv^{\dagger} = \overline{a}B(u, v)$$

However, this form is not symmetric

$$B(v,u)^{\dagger} = (vu^{\dagger})^{\dagger} = uv^{\dagger} = B(u,v)$$

as $B(v,u)^{\dagger} \neq B(v,u)$ since it might be the case that $B(v,u) \neq \overline{B(v,u)}$

Exercise 3. Suppose $\omega: \mathbb{R}^4 \times \mathbb{R}^4$ is a bilinear form. On a basis e_1, e_2, e_3, e_4 we have

$$\omega(e_1,e_4)=\omega(e_2,e_3)=-\omega(e_4,e_1)=-\omega(e_3,e_2)$$
 $\omega(e_i,e_i)=0$ on all other basis vectors

Show that this bilinear form ω is antisymmetric. We define

$$G := \{ A \in GL_4(\mathbb{R}) \mid \omega(Ax, Ay) = \omega(x, y) \text{ for all } x, y \in \mathbb{R}^4 \}$$

Prove that G is a group. This group is denoted by $Sp(2,\mathbb{R})$ and called the symplectic group.

Answer: To make computations easier, I will denote $\omega(e_i, e_j) = w_{ij}$ in this problem. First note that we can write any vector x as $x = \sum_{i=1}^4 a_i e_i$ since $\{e_1, e_2, e_3, e_4\}$ are a basis for \mathbb{R}^4 . Then, we can check that this form is antisymmetric by direct computation - letting $u = \sum_{i=1}^4 u_i e_i$ and $v = \sum_{i=1}^4 v_i e_i$. Then:

$$\omega(u, v) = \omega(\sum_{i} u_{i}e_{i}, \sum_{j} v_{j}e_{j})$$

$$= \sum_{i} \omega(u_{i}e_{i}, \sum_{j} v_{j}e_{j}) \quad \text{by (1)}$$

$$= \sum_{i} u_{i}\omega(e_{i}, \sum_{j} v_{j}e_{j}) \quad \text{by (3)}$$

$$= \sum_{i} u_{i} \sum_{j} v_{j}\omega(e_{i}, e_{j}) \quad \text{by (2) then (4)}$$

$$= u_{1}v_{4}w_{14} + u_{2}v_{3}w_{23} + u_{3}v_{2}w_{32} + u_{4}v_{1}w_{41}$$

$$= -u_{1}v_{4}w_{41} - u_{2}v_{3}w_{32} - u_{3}v_{2}w_{23} - u_{4}v_{1}w_{14}$$

But following the exact same process until the penultimate step, (or by replacing any $u_i \leftrightarrow v_i$), clearly

$$\omega(v, u) = v_1 u_4 w_{14} + v_3 u_2 w_{23} + v_3 u_2 w_{23} + v_4 u_1 w_{14}$$

= $-\omega(u, v)$ by computation above

Now we show that G is a group, by first noting that we can compute $\omega(u,v)$ by

$$\omega(u,v) = egin{pmatrix} u_1 & u_2 & u_3 & u_4 \end{pmatrix} egin{pmatrix} 0 & 0 & 0 & w & 0 \ 0 & 0 & w & 0 \ 0 & -w & 0 & 0 \ -w & 0 & 0 & 0 \end{pmatrix} egin{pmatrix} v_1 \ v_2 \ v_3 \ v_4 \end{pmatrix},$$

where $\omega(e_1, e_4) = w$. Hence, for any $A \in G$, if we denote the matrix in the equation above as W we must have:

$$\omega(u, v) = \omega(Au, Av) \quad \forall u, v \in \mathbb{R}^4$$

$$\Leftrightarrow u^T W v = (Au)^T W (Av) = u^T A^T W Av \quad \forall u, v \in \mathbb{R}^4$$

$$\Leftrightarrow A^T W A = W$$

We can use this to show that G is a group.

- 1. Clearly, $\mathbf{1} \in G$, since $\mathbf{1}^T W \mathbf{1} = W$.
- 2. Take any $A \in G$, and note that $0 \neq w^4 = det(W) = det(W)det(A^TWA) = det(A)^2det(W)$, hence $det(A) \neq 0$ and A is invertible. Furthermore,

$$A^{T}WA = W$$

$$\Rightarrow A^{-1}^{T}A^{T}WAA^{-1} = A^{-1}^{T}WA^{-1}$$

$$W = A^{-1}^{T}WA^{-1},$$

and clearly $A^{-1} \in G$.

3. Take $A_1, A_2 \in G$, then

$$(A_1 A_2)^T W A_1 A_2 = A_2^T A_1^T W A_1 A_2 = A_2^T W A_2 = W.$$

Hence, $A_1A_2 \in G$

4. Matrix multiplication is associative.

Exercise 4. Show that for $u, v \in \mathbb{R}^4$

$$B_{3,1}(u,v) = u_1v_1 + u_2v_2 + u_3v_3 - u_4v_4$$

is a symmetric bilinear form. Is $B_{3,1}(u,u)$ an inner product? We define

$$G := \{ A \in GL_4(\mathbb{R}) \mid B_{3,1}(Ax, Ay) = B_{3,1}(x, y) \text{ for all } x, y \in \mathbb{R}^4 \}$$

Prove that G is a group. It is denoted by SO(3,1) and is called the Lorentz group and it plays an important role in physics.

Answer: We first show that $B_{3,1}$ is a bilinear from:

1.

$$B_{3,1}(u+v,w) = \sum_{i=1}^{3} (u+v)_i w_i - (u+v)_4 w_4 = \sum_{i=1}^{3} (u_i+v_i) w_i - (u_4+v_4) w_4$$
$$= \sum_{i=1}^{3} u_i w_i - u_4 w_4 + \sum_{i=1}^{3} v_i w_i - v_4 w_4 = B_{3,1}(u,w) + B_{3,1}(v,w)$$

2.

$$B_{3,1}(u,v+w) = \sum_{i=1}^{3} u_i(v+w)_i - u_4(v+w)_4 = \sum_{i=1}^{3} u_i v_i - u_4 v_4 + \sum_{i=1}^{3} u_i w_i - u_4 w_4$$

3. $= B_{3,1}(u, v + w)$ same properties as above used

$$B_{3,1}(au,v) = \sum_{i=1}^{3} (au)_i v_i - au_4 v_4 = a \sum_{i=1}^{3} u_i v_i - au_4 v_4 = a (\sum_{i=1}^{3} u_i v_i - u_4 v_4) = aB_{3,1}(u,v)$$

4. The following hold, additionally, because we are in \mathbb{R}^4 :

$$B_{3,1}(u,av) = \sum_{i=1}^{3} u_i(av)_i - au_4v_4 = a\sum_{i=1}^{3} u_iv_i - au_4v_4 = a(\sum_{i=1}^{3} u_iv_i - u_4v_4) = aB_{3,1}(u,v)$$

Similarly, the form is obviously symmetric under the exchange of $u \leftrightarrow v$ since multiplication is commutative, so the form is actually symmetric under the exchange of $u_i \leftrightarrow v_i$ for any i.

 $B_{3,1}$ is not an inner product, nonetheless, since an inner product $\langle \cdot \rangle$ must satisfy for any $v \in \mathbb{R}^n$, $\langle v, v \rangle = 0 \Leftrightarrow v = 0$, and we can pick $0 \neq v = (1, 0, 0, 1) \in \mathbb{R}^4$, for which $B_{3,1}(v, v) = 1 \cdot 1 + 0 \cdot 0 + 0 \cdot 0 - 1 \cdot 1 = 0$.

Finally, it is easy to see that we can compute $B_{3,1}(u,v)$ for any $u,v\in\mathbb{R}^4$ using the matrix η below:

$$B_{3,1}(u,v) = u^T egin{pmatrix} \mathbf{1} & 0 \ 0 & -1 \end{pmatrix} = u^T \eta v \quad \mathbf{1} \in GL(3,\mathbb{R}).$$

Hence, any $A \in G$ must by definition satisfy:

$$B_{3,1}(u,v) = B_{3,1}(Au, Av) \quad \forall u, v \in \mathbb{R}^4$$

$$\Leftrightarrow u^T \eta v = (Au)^T \eta(Av) = u^T A^T \eta Av \quad \forall u, v \in \mathbb{R}^4$$

$$\Leftrightarrow \eta = A^T \eta A$$

Notice that $det(\eta) = -1 \neq 0$ and hence, all the arguments from Exercise 3 hold, which shows that G is indeed a group as well.

- 1. Clearly, $\mathbf{1} \in G$ since $\mathbf{1}^T \eta \mathbf{1} = \eta$.
- 2. $\mathbf{1}^T \eta \mathbf{1} = \eta$ implies $det(A)^2 det(\eta) = \det(\eta) \mathbf{1} \neq 0$ so A is invertible. Furthermore,

$$A^T \eta A = \eta \Rightarrow A^{-1} \eta A^{-1} = \eta \Rightarrow A^{-1} \in G.$$

3. For any $A_1, A_2 \in G$, we have

$$(A_1A_2)^T\eta A_1A_2 = A_2^T(A_1^T\eta A_1)A_2 = A_2^T\eta A_2 = \eta \Rightarrow A_1A_2 \in G.$$

4. Matrix multiplication is associative.

Exercise 5. Show, directly from the definition of matrix exponentiation, that

$$A = \begin{pmatrix} 0 & -\theta \\ \theta & 0 \end{pmatrix} \implies e^A = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}.$$

Answer: First note that

$$J^2 = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}^2 = -\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = -\mathbf{1}$$
 where $J \equiv \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$

So clearly, the sequence $J, J^2, J^3, J^4, J^5, \dots$ evaluates to $J, -1, -J, 1, J, -1, -J, 1, \dots$ and

$$\theta^n J^n = \begin{pmatrix} 0 & -\theta \\ \theta & 0 \end{pmatrix}^n = \begin{cases} (-1)^k \theta^{2k} \mathbf{1}, n = 2k \text{ for some } k \in \mathbb{N} \\ (-1)^k \theta^{2k} K, n = 2k + 1 \text{ for some } k \in \mathbb{N} \end{cases}$$

By the definition of the exponential of a matrix, we have

$$\begin{split} e^A &= \mathbf{1} + \frac{A}{1!} + \frac{A^2}{2!} + \frac{A^3}{3!} + \frac{A^4}{4!} + \dots \\ &= \mathbf{1} + \frac{\theta}{1!} J - \frac{\theta^2}{2!} \mathbf{1} - \frac{\theta^3}{3!} J + \frac{\theta^4}{4!} \mathbf{1} + \dots \\ &= (1 - \frac{\theta^2}{2!} + \frac{\theta^4}{4!} - \dots) \mathbf{1} + (\frac{\theta}{1!} - \frac{\theta^3}{3!} + \dots) J \\ &= \cos \theta \mathbf{1} + \sin \theta J \\ &= \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \end{split}$$

Exercise 6. Suppose that D is a diagonal matrix with diagonal entries $\lambda_1, \lambda_2, ..., \lambda_k$. By computing the powers D^n show that e^D is a diagonal matrix with diagonal entries $e^{\lambda_1}, e^{\lambda_2}, ..., e^{\lambda_k}$.

Answer: Since a diagonal matrix is a block matrix, we know that the entries of D^n are $\lambda_1^n, \lambda_2^n, ..., \lambda_k^n$. Hence, the entries of the matrix $\frac{1}{n!}D^n$ are just the diagonal entries $\frac{1}{n!}\lambda_1^n, \frac{1}{n!}\lambda_2^n, ..., \frac{1}{n!}\lambda_k^n$. Using the definition of matrix exponentials, we have

$$\begin{split} e^D &= \mathbf{1} + \sum_{i=1}^{\infty} \frac{1}{i!} D^i \\ &= \mathbf{1} + \sum_{i=1}^{n} diag(\frac{1}{i!} \lambda_1^i, \frac{1}{i!} \lambda_2^i, ..., \frac{1}{i!} \lambda_k^i) \\ &= \sum_{i=0}^{\infty} diag(\frac{1}{i!} \lambda_1^i, \frac{1}{i!} \lambda_2^i, ..., \frac{1}{i!} \lambda_k^i) \\ &= diag(\sum_{i=0}^{\infty} \frac{1}{i!} \lambda_1^i, \sum_{i=0}^{\infty} \frac{1}{i!} \lambda_2^i, ..., \sum_{i=0}^{\infty} \frac{1}{i!} \lambda_k^i) \\ &= diag(e^{\lambda_1}, e^{\lambda_2}, ..., e^{\lambda_k}) \end{split}$$