16 décembre 2022 MP2I

Devoir Surveillé 4, corrigé

Exercice 1.

1) On a $e^{i\alpha\pi} = \cos(\alpha\pi) + i\sin(\alpha\pi)$ et $\alpha\pi = \arccos\left(\frac{1}{3}\right)$. Puisque pour $x \in [0,1]$, $\cos(\arccos(x)) = x$ et $\sin(\arccos(x)) = \sqrt{1-x^2}$ (puisque $\sin^2(\theta) = 1 - \cos^2(\theta)$, $\sin(\arccos(x)) = \pm \sqrt{1-x^2}$ et que $\arccos(x) \in [0,\pi]$, le sinus est positif). On a donc :

$$\cos(\alpha \pi) = \frac{1}{3} \text{ et } \sin(\alpha \pi) = \sqrt{1 - \frac{1}{9}} = \frac{2\sqrt{2}}{3}.$$

2) Supposons $\alpha \in \mathbb{Q}$. Alors il existe $k \in \mathbb{Z}$ et $m \in \mathbb{N}^*$ tels que $\alpha = \frac{k}{m}$. On a alors $\left(e^{i\alpha\pi}\right)^{2m} = e^{2ik\pi} = 1$. En prenant n = 2m, on a donc le résultat voulu.

Réciproquement, si il existe $n \in \mathbb{N}^*$ tel que $(1+2i\sqrt{2})^n = 3^n$, alors on a $e^{in\alpha\pi} = 1$, soit $n\alpha\pi \equiv 0$ [2π]. On en déduit qu'il existe $k \in \mathbb{Z}$ tel que $n\alpha\pi = 2k\pi$, ce qui revient à $\alpha = \frac{2k}{n} \in \mathbb{Q}$.

3) Pour $a,b\in\mathbb{C}$ et $n\in\mathbb{N},$ $(a+b)^n=\sum_{k=0}^n\binom{n}{k}a^kb^{n-k}$. En $a=2i\sqrt{2}$ et b=1, on en déduit que pour $n\in\mathbb{N}^*$:

$$(1+2i\sqrt{2})^n = \sum_{k=0}^n \binom{n}{k} (2i\sqrt{2})^k.$$

On sépare alors cette somme en $S_1 + S_2$ où on ne place dans S_1 que les termes k d'indices pairs et S_2 ceux d'indices impairs. Pour k = 2p, on a $(2i\sqrt{2})^k = (-8)^p \in \mathbb{Z}$ et puisque le coefficient binomial est entier, on ne somme que des entiers donc $S_1 \in \mathbb{Z}$ et on peut poser $a_n = S_1$. Pour k = 2p + 1, on a :

$$(2i\sqrt{2})^k = (2i\sqrt{2})^{2p} \times (2i\sqrt{2}) = 2(-8)^p \times i\sqrt{2}.$$

On en déduit que S_2 est de la forme $i\sqrt{2}$ multiplié par une somme d'entiers, d'où l'existence de b_n .

4) D'après l'indication de l'énoncé, on a pour $n \in \mathbb{N}^*$:

$$a_{n+1} + ib_{n+1}\sqrt{2} = (1 + 2i\sqrt{2})(a_n + ib_n\sqrt{2})$$

= $a_n + ib_n\sqrt{2} + 2i\sqrt{2}a_n - 4b_n$
= $(a_n - 4b_n) + i\sqrt{2}(b_n + 2a_n)$.

En identifiant partie réelle et imaginaire, on a la relation voulue.

5) Pour n=1, on a $a_1=1$ et $b_1=2$ donc $a_1-b_1=-1+0$ et le résultat est vrai. Soit $n\in\mathbb{N}^*$. Supposons la propriété vraie au rang n. On a alors :

$$a_{n+1} - b_{n+1} = -a_n - 5b_n = -a_n + b_n - 6b_n.$$

Par hypothèse de récurrence, il existe $c_n \in \mathbb{Z}$ tel que $a_n - b_n = (-1)^n + 3c_n$. On a donc :

$$a_{n+1} - b_{n+1} = (-1)^{n+1} - 6b_n - 3c_n.$$

On pose alors $c_{n+1} = -2b_n - c_n \in \mathbb{Z}$ car $b_n, c_n \in \mathbb{Z}$ et on a la propriété voulue au rang n+1. Par récurrence, la propriété est donc vraie à tout rang.

6) D'après la question 2, il $\alpha \in \mathbb{Q}$, alors il existe $n \in \mathbb{N}^*$ tel que $(1 + 2i\sqrt{2})^n = 3^n$, autrement dit, il existe $n \in \mathbb{N}^*$ tel que $a_n = 3^n$ et $b_n = 0$ (en identifiant les parties réelles et imaginaires). On aurait alors en reprenant les notations de la question précédente que $3^n = (-1)^n + 3c_n$, soit $(-1)^n = 3(3^{n-1} - c_n)$ ce qui est absurde car $(-1)^n$ n'est pas divisible par 3. On a donc $\alpha \notin \mathbb{Q}$.

Exercice 2.

- 1) Les conditions $A \cup B = E$ et $A \cap B = \emptyset$ nous assurent que la fonction h est bien définie. En effet, on peut bien calculer h(x) pour toutes les valeurs de $x \in E$ car $E = A \cup B$ et il n'y a pas de « conflit » entre f et g car $A \cap B = \emptyset$ (donc h(x) ne prend qu'une seule valeur). Enfin, f et g sont à valeurs dans F donc pour $x \in E$, on a bien $h(x) \in F$.
- 2) On va procéder par double implication pour montrer que h est injective si et seulement si $f(A) \cap g(B) = \emptyset$.
 - (\Rightarrow) Supposons h injective. Supposons par l'absurde qu'il existe $y \in f(A) \cap g(B)$. Il existe alors $a \in A$ tel que f(a) = y et il existe $b \in B$ tel que g(b) = y. On a alors h(a) = h(b) avec $a \neq b$ car $A \cap B = \emptyset$. La fonction h n'est alors pas injective : absurde!
 - (\Leftarrow) Réciproquement, supposons que $f(A) \cap g(B) = \emptyset$. Soient $x_1, x_2 \in E$ tels que $h(x_1) = h(x_2)$. On a alors :

Si $x_1, x_2 \in A$, alors on a $f(x_1) = f(x_2)$ et puisque f est injective, alors $x_1 = x_2$.

De la même manière, si $x_1, x_2 \in B$, alors on a $g(x_1) = g(x_2)$, ce qui entraine $x_1 = x_2$ par injectivité de g. Pour conclure, il reste à traiter le cas $x_1 \in A$ et $x_2 \in B$ (le cas $x_1 \in B$ et $x_2 \in A$ étant similaire). On a alors $f(x_1) = g(x_2)$, ce qui donne un élément dans $f(A) \cap g(B)$: absurde!

Dans tous les cas possibles, on a $x_1 = x_2$ ce qui prouve que h est injective.

- 3) On va procéder par double implication pour montrer que h est surjective si et seulement si $f(A) \cup g(B) = F$.
 - (\Rightarrow) Supposons h surjective. Montrons par double inclusion que $f(A) \cup g(B) = F$. L'inclusion $f(A) \cup g(B) \subset F$ est directe car f(A) et g(B) sont des sous ensembles de F. Pour la réciproque, fixons $y \in F$. Puisque g est surjective, il existe $x \in E$ tel que h(x) = E. Puisque $E = A \cup B$, on a donc deux cas possibles:
 - si $x \in A$, alors h(x) = f(x), ce qui entraine que $y = f(x) \in f(A)$. — si $x \in B$, alors h(x) = g(x), ce qui entraine que $y = g(x) \in g(B)$. Dans tous les cas, on a bien $y \in f(A) \cup g(B)$.

ce qui entraine que h est surjective.

• (\Leftarrow) Réciproquement, supposons que $F = f(A) \cup g(B)$. Fixons $y \in F$. Alors, si $y \in f(A)$, il existe $x \in A$ tel que f(x) = y et puisque $x \in A$, on a f(x) = h(x), ce qui entraine bien que y = h(x). L'autre cas possible est que $y \in g(B)$ et il existe alors $x \in B$ tel que g(x) = y, ce qui entraine là aussi que h(x) = y. On a donc construit un antécédent à y par h dans tous les cas,

On peut aussi aller plus vite en remarquant que $h(E) = h(A \cup B) = h(A) \cup h(B) = f(A) \cup g(B)$. On a alors h surjective si et seulement si h(E) = F et donc si et seulement si $f(A) \cup g(B) = F$.

PROBLÈME

ÉTUDE D'UNE SUITE RÉCURRENTE PERTURBÉE

Partie I. Étude de f_n et lien avec u_n

1) Pour $x \in \mathbb{R}_+$, $f_2(x) = x(x+1) = x^2 + x$ et:

$$f_3(x) = f_2(x) \times \left(f_2(x) + \frac{1}{2} \right)$$

$$= (x^2 + x) \left(x^2 + x + \frac{1}{2} \right)$$

$$= x^4 + x^3 + \frac{x^2}{2} + x^3 + x^2 + \frac{x}{2}$$

$$= x^4 + 2x^3 + \frac{3}{2}x^2 + \frac{1}{2}x.$$

- 2) Pour $n \in \mathbb{N}^*$, on pose $\mathcal{P}(n)$: « f_n est dérivable sur \mathbb{R}_+ , $\forall x \in \mathbb{R}_+$, $f'_n(x) > 0$, $f_n(0) = 0$ et $\lim_{n \to +\infty} f_n(x) = +\infty$ ».
 - Pour n = 1, on a $\forall x \in \mathbb{R}_+$, $f_1(x) = x$ qui est dérivable et de dérivée égale à 1 donc strictement positive. On a également $f_1(0) = 0$ et $\lim_{x \to +\infty} f_1(x) = +\infty$.
 - Soit $n \in \mathbb{N}^*$. Supposons $\mathcal{P}(n)$. On a alors pour tout $x \in \mathbb{R}_+$, $f_{n+1}(x) = f_n(x) \left(f_n(x) + \frac{1}{n} \right)$. f_{n+1} est donc dérivable sur \mathbb{R}_+ comme produit de fonctions dérivables et on a :

$$\forall x \in \mathbb{R}_+, \ f'_{n+1}(x) = 2f'_n(x)f_n(x) + \frac{f'_n(x)}{n}.$$

Or, cette expression est bien strictement positive puisque $f_n(x) \ge 0$ (car $f_n(0) = 0$ et f_n est croissante donc $f_n(x) \ge 0$ pour $x \in \mathbb{R}_+$) et $f'_n(x) > 0$ (par hypothèse de récurrence).

De plus, on a $f_{n+1}(0) = f_n(0) \times \left(f_n(0) + \frac{1}{n}\right) = 0$ par hypothèse de récurrence. Enfin, par produit de limites et puisque $\lim_{n \to +\infty} f_n(x) = +\infty$, $\lim_{n \to +\infty} f_{n+1}(x) = +\infty$.

On en déduit que $\mathcal{P}(n+1)$ est vraie.

- On en déduit que par récurrence, pour tout $n \in \mathbb{N}^*$, f_n est dérivable et strictement croissante sur \mathbb{R}_+ .
- 3) Soit $n \in \mathbb{N}^*$. La fonction f_n est continue sur \mathbb{R}_+ (car dérivable), strictement croissante et $f_n(0) = 0$ et $\lim_{x \to +\infty} f_n(x) = +\infty$. D'après le théorème de la bijection continue, on en déduit que f_n sont bijectives de \mathbb{R}_+ dans \mathbb{R}_+ .
- 4) On procède par récurrence. La propriété est directe au rang 1 puisque $f_1(u_1) = u_1$. Soit $n \in \mathbb{N}^*$ et supposons la propriété vraie au rang n. On a alors :

$$u_{n+1} = u_n \left(u_n + \frac{1}{n} \right)$$
$$= f_n(u_1) \left(f_n(u_1) + \frac{1}{n} \right)$$
$$= f_{n+1}(u_1).$$

La propriété est donc vraie au rang n+1. La propriété étant initialisée et héréditaire, elle est vraie à tout rang.

3

- 5) Limites possibles pour u_n .
 - a) Supposons que $\lim_{n\to +\infty}u_n=l$ avec $l\in\mathbb{R}$. On a alors également $\lim_{n\to +\infty}u_{n+1}=l$. On peut alors passer à la limite dans l'égalité $u_{n+1}=u_n^2+\frac{u_n}{n}$, en remarquant que $\lim_{n\to +\infty}\frac{u_n}{n}=0$ (puisque $(u_n)_{n\in\mathbb{N}^*}$ tend vers une limite finie). On en déduit que $l=l^2$.
 - b) Si la suite $(u_n)_{n\in\mathbb{N}^*}$ tend vers une limite finie, cette dernière vérifie $l^2=l$, ce qui entraine l=0 ou l=1. Pour les limites infinies, remarquons que $(u_n)_{n\in\mathbb{N}^*}$ est positive (puisque pour $n\in\mathbb{N}^*$, $u_n=f_n(u_1)\geq 0$) et ne peut donc pas tendre vers $-\infty$. Elle peut par contre tendre vers $+\infty$.

Partie II. Trois suites spéciales

- 6) Soit $n \in \mathbb{N}^*$. La fonction f_n est bijective de \mathbb{R}_+ dans \mathbb{R}_+ d'après la question I.2 Puisque $1 \frac{1}{n} \in \mathbb{R}_+$, et $1 \in \mathbb{R}_+$, on en déduit qu'il existe des uniques $\alpha_n, \beta_n \in \mathbb{R}_+$ tels que $f_n(\alpha_n) = 1 \frac{1}{n}$ et $f_n(\beta_n) = 1$.
- 7) Convergence des suites $(\alpha_n)_{n\in\mathbb{N}^*}$ et $(\beta_n)_{n\in\mathbb{N}^*}$.
 - a) On a $f_2(1) = 1 \times 2 = 2 > 1$. Soit $n \ge 2$. Supposons $f_n(1) > 1$. Alors, on a :

$$f_{n+1}(1) = f_n(1)\left(f_n(1) + \frac{1}{n}\right) > 1 + \frac{1}{n} > 1.$$

La propriété est donc vraie au rang n+1. Etant initialisée, elle est donc vraie pour tout n plus grand que 2.

b) Soit $n \geq 2$. On a $f_n(0) = 0$ (d'après la question I.2, $f_n(\alpha_n) = 1 - \frac{1}{n} > 0$ (car $n \geq 2$), $f_n(\beta_n) = 1$ et $1 < f_n(1)$ (d'après la question précédente). On a donc :

$$f_n(0) < f_n(\alpha_n) < f_n(\beta_n) < f_n(1).$$

Puisque f_n est strictement croissante, ceci entraine que $0 < \alpha_n < \beta_n < 1$.

c) Soit $n \in \mathbb{N}^*$. On a alors:

$$f_{n+1}(\alpha_n) = f_n(\alpha_n) \left(f_n(\alpha_n) + \frac{1}{n} \right) = 1 - \frac{1}{n}.$$

Puisque $\frac{1}{n} > \frac{1}{n+1}$, on en déduit que $f_{n+1}(\alpha_n) < 1 - \frac{1}{n+1}$.

d) Puisque $f_{n+1}(\alpha_{n+1}) = 1 - \frac{1}{n+1}$, la question précédente implique que pour tout $n \in \mathbb{N}^*$:

$$f_{n+1}(\alpha_n) < f_{n+1}(\alpha_{n+1}).$$

Puisque f_{n+1} est strictement croissante, on en déduit que $\alpha_n < \alpha_{n+1}$. La suite $(\alpha_n)_{n \in \mathbb{N}^*}$ est donc strictement croissante.

e) De la même manière, on a :

$$f_{n+1}(\beta_n) = f_n(\beta_n) \left(f_n(\beta_n) + \frac{1}{n} \right) = 1 + \frac{1}{n} > 1.$$

On a alors pour $n \in \mathbb{N}^*$, $f_{n+1}(\beta_n) > f_{n+1}(\beta_{n+1})$ et donc $\beta_n > \beta_{n+1}$. La suite $(\beta_n)_{n \in \mathbb{N}^*}$ est bien strictement décroissante.

f) La suite $(\alpha_n)_{n\in\mathbb{N}^*}$ est croissante et majorée par 1 donc elle converge vers $L\in\mathbb{R}$. La suite $(\beta_n)_{n\in\mathbb{N}^*}$ est décroissante minorée par 0 donc elle converge vers $L'\in\mathbb{R}$. Puisque la suite $(\alpha_n)_{n\in\mathbb{N}^*}$ est croissante et qu'elle est strictement positive à partir du rang 2, on a 0< L. Puisque la suite $(\beta_n)_{n\in\mathbb{N}^*}$ est strictement décroissante et strictement inférieure à 1 à partir du rang 2, on a

L' < 1. Enfin, par passage à la limite dans l'inégalité $\alpha_n < \beta_n$ (valable à partir du rang 2), on en déduit que $L \le L'$.

8) Une troisième suite.

a) Puisque la suite $(\alpha_n)_{n\in\mathbb{N}^*}$ est strictement croissante, elle est strictement inférieure à sa limite. Pour la même raison, la suite $(\beta_n)_{n\in\mathbb{N}^*}$ est toujours strictement plus grande que sa limite. On a donc bien pour tout $n\in\mathbb{N}^*$, $\alpha_n < L \le L' < \beta_n$.

Par stricte croissante de la fonction f_n , on a donc $f_n(\alpha_n) < f_n(L) \le f_n(L') < f_n(\beta_n)$, soit $1 - \frac{1}{n} < f_n(L) \le f_n(L') < 1$.

b) On a d'après la question précédente pour tout $n \in \mathbb{N}^*$, $1 - \frac{1}{n} < L_n < 1$. Par théorème des gendarmes, on en déduit que la suite $(L_n)_{n \in \mathbb{N}^*}$ converge vers 1.

Partie III. Limite en fonction de u_1

9) Soit $x \in \mathbb{R}_+$ avec $x \neq L$.

a) Soit $n \in \mathbb{N}^*$. Puisque f_n est strictement croissante, elle est injective et puisque $x \neq L$, on a donc $f_n(x) \neq f_n(L)$. On a alors :

$$f_{n+1}(x) - f_{n+1}(L) = f_n(x) \left(f_n(x) + \frac{1}{n} \right) - f_n(L) \left(f_n(L) + \frac{1}{n} \right)$$
$$= (f_n(x) - f_n(L))(f_n(x) + f_n(L)) + \frac{1}{n}(f_n(x) - f_n(L)).$$

On en déduit que :

$$\frac{f_{n+1}(x) - f_{n+1}(L)}{f_n(x) - f_n(L)} = f_n(x) + f_n(L) + \frac{1}{n}.$$

b) Fixons $n \in \mathbb{N}^*$. En évaluant l'expression précédente en valeur absolue et en multipliant par le dénominateur, on obtient :

$$|f_{n+1}(x) - f_{n+1}(L)| = |f_n(x) - f_n(L)| \times \left| f_n(x) + f_n(L) + \frac{1}{n} \right|.$$

Puisque f_n est à valeurs dans \mathbb{R}_+ , on a $\left|f_n(x)+f_n(L)+\frac{1}{n}\right|=f_n(x)+f_n(L)+\frac{1}{n}$. Enfin, d'après la question II.8.a, on a $f_n(L)=L_n>1-\frac{1}{n}$ et $f_n(x)\geq 0$. Ceci entraine que $f_n(x)+f_n(L)+\frac{1}{n}>1$ et par produit (puisque $|f_n(x)-f_n(L)|>0$ car $x\neq L$), on a donc :

$$|f_{n+1}(x) - f_{n+1}(L)| > |f_n(x) - f_n(L)|.$$

10) On a montré à la question précédente que si $x \neq L$ la suite $(|f_n(x) - f_n(L)|)_{n \in \mathbb{N}^*}$ est strictement croissante. Puisque pour tout $y \in \mathbb{R}_+$, $f_1(y) = y$, le premier terme de cette suite est égal à |x - L|. Par croissance, on en déduit que $\forall n \in \mathbb{N}^*$, $|f_n(x) - f_n(L)| \geq |x - L|$.

De plus, si x = L, on a $f_n(x) - f_n(L) = 0$ et x - L = 0 donc l'inégalité demandée est bien vraie.

11) En utilisant la question précédente en x=L', on a $|f_n(L')-f_n(L)|\geq |L'-L|$. D'après le II.8.a, on a |L'-L|=L'-L. Toujours d'après la question II.8.a, on a $f_n(L')-f_n(L)\geq 0$ donc $f_n(L')-f_n(L)\geq L'-L$ et de plus :

$$f_n(L') - f_n(L) \le 1 - \left(1 - \frac{1}{n}\right),$$

ce qui entraine $f_n(L') - f_n(L) \leq \frac{1}{n}$. On a donc bien l'encadrement voulu pour tout $n \in \mathbb{N}^*$.

On fait alors tendre n vers l'infini, ce qui entraine par passage à la limite dans les inégalités que $0 \le L' - L \le 0$, soit L = L'.

- 12) On suppose dans cette question que $u_1 > L$.
 - a) Soit $n \geq 1$. Puique f_n est strictement croissante et que $u_1 > L$, on a $f_n(u_1) > f_n(L)$, d'où $u_n > L_n$. De plus, puisque $L_n > 1 \frac{1}{n}$, on a donc :

$$u_n + L_n + \frac{1}{n} \ge 2L_n + \frac{1}{n} \ge 2 - \frac{1}{n}.$$

b) D'après la question III.9.a appliquée en $x = u_1$, on obtient donc que pour tout $n \in \mathbb{N}^*$:

$$u_{n+1} - L_{n+1} = (u_n - L_n) \left(u_n + L_n + \frac{1}{n} \right).$$

Puisque pour tout $n \in \mathbb{N}^*$, $u_n - L_n \ge 0$ et que pour $n \ge 2$, $u_n + L_n + \frac{1}{n} \ge 2 - \frac{1}{n} \ge \frac{3}{2}$, on en déduit que pour tout $n \ge 2$, $u_{n+1} - L_{n+1} \ge \frac{3}{2}(u_n - L_n)$.

- c) Par récurrence, montrons que $\forall n \geq 2, u_n L_n \geq \left(\frac{3}{2}\right)^{n-2} (u_2 L_2).$
- La propriété est directe au rang 2 (on a égalité des deux côtés de l'inégalité).
- Fixons $n \ge 2$ et supposons la propriété au rang n. On a alors d'après la question précédente et l'hypothèse de récurrence :

$$u_{n+1} - L_{n+1} \ge \frac{3}{2}(u_n - L_n)$$

 $\ge \left(\frac{3}{2}\right)^{n-1}(u_2 - L_2).$

On a donc bien la propriété au rang n+1, ce qui prouve l'hérédité.

- La propriété étant initialisée et héréditaire, elle est vraie à tout rang supérieur ou égal à 2.
 - d) On a $u_2 L_2 > 0$ (d'après la question III.1.c appliquée en n = 2 et $x = u_1$, en utilisant le fait que $u_1 > L$. Puisque $\frac{3}{2} > 1$, on a $\lim_{n \to +\infty} \left(\frac{3}{2}\right)^n = +\infty$, ce qui entraine par théorème de comparaison que $\lim_{n \to +\infty} u_n$.
- 13) On suppose dans cette question que $u_1 < L$.
 - a) On a $\lim_{p\to +\infty} \alpha_p = L$ donc en utilisant la définition de la limite en $\varepsilon = L u_1 > 0$, il existe $p \in \mathbb{N}^*$ tel que $u_1 < \alpha_p < L$ (on a bien $\alpha_p < L$ car la suite $(\alpha_n)_{n \in \mathbb{N}^*}$ est strictement croissante de limite L.
 - b) Puisque la suite $(\alpha_n)_{n\in\mathbb{N}^*}$ est croissante, on a pour tout $n\geq p, \ \alpha_p\leq \alpha_n$. Ceci entraine par croissante de f_n et que $u_1<\alpha_p$ que $f_n(u_1)\leq f_n(\alpha_n)$, et donc que $u_n<1-\frac{1}{n}$.
 - c) Pour $n \in \mathbb{N}^*$, on a $u_{n+1} = u_n \left(u_n + \frac{1}{n} \right)$. On a donc pour $n \geq p$ que $u_{n+1} \leq u_n$ d'après la question précédente. La suite $(u_n)_{n \in \mathbb{N}^*}$ est donc décroissante à partir du rang p.
 - d) La suite $(u_n)_{n\in\mathbb{N}^*}$ est donc décroissante et minorée par 0 donc elle converge. Elle converge soit vers 0, soit vers 1 d'après la partie I. Or, la suite étant décroissante et puisque $u_p < 1 \frac{1}{p} < 1$, la suite $(u_n)_{n\in\mathbb{N}^*}$ ne peut converger vers 1. Elle converge donc vers 0.