S^1 的 $C^{(\infty)}$ 类结构同构的一个证明

苏桃*

致谢: 特别衷心感谢杨鑫、杜升华两位学长对本稿的修改、帮助. 他们对本文进行了仔细认真地审阅, 并提出了很多宝贵的修改意见, 使本文较初稿有较大改观, 其中不少错误、不妥善之处均由他们提出并改进.

1 问题

文[1]中的一道习题引发了笔者的一些思考,发现这与我以前想过的一个问题非常有联系.以下是得到的相关内容:

命题1. 圆周 S^1 (一维球面)上, 任意两个 $C^{(\infty)}$ -结构同构.

这是[1] 文中的一道习题 (Page 295, 3), 本文将对此进行证明.

大致思路: 从 \mathbb{R} 的情形获得启发: \mathbb{R} 的两个 $C^{(\infty)}$ —结构图册 (等价图册的并) A_R , B_R , 若有简单图 $\varphi \in A_R$, $\psi \in B_R$, 则直接取同构映射 $f: \mathbb{R}^1_A \to \mathbb{R}^1_B$, $f=\psi \circ \varphi^{-1}$ 即可. 所以大体思路是将两个局部图拼成一个图, 对 \mathbb{R} 的情形这样做就已经可以了. 对 S^1 的情形, 这样还不够, 问题在于一张图不可能盖住 S^1 , 想法是用两张图来覆盖, 且它们在两部分边界均光滑衔接, 所以证明的关键是如何处理使最后找到的两张图的边界光滑衔接, 这就是下面将要证明的引理 (2).

2 引理

为证命题, 我们先做一些准备:

引理1. 任给两个实数列 $\{a_n\}_{(n\geq 0)}$, $\{b_n\}_{(n\geq 0)}$ 及闭区间 [a,b](a< b), 存在函数 $f\in C^{(\infty)}[a,b]$, 使得 $f^{(n)}(a)=a_n$, $f^{(n)}(b)=b_n$ ($\forall n\geq 0$).

证明. 证明见文 [2] Page 44.

^{*}基科81

引理2. 任给两个实数列 $\{a_n\}_{n\geq 0}$, $\{b_n\}_{n\geq 0}$, $a_0 < b_0$, $a_1 > 0$, $b_1 > 0$, 及 $[a,b] \subset \mathbb{R}(a < b_0)$ b), 存在函数 $f: \mathbb{R} \to \mathbb{R}$ 为 $C^{(\infty)}$ 类微分同胚, 使 $f^{(i)}(a) = a_i, f^{(i)}(b) = b_i (i \geq 0)$.

只需证: 存在 \tilde{f} (以后仍记为f): $[0,1] \rightarrow [0,1] 为 <math>C^{(\infty)}$ 类微分同胚, 满足引 理2中相应条件. (*)

因为可分别构造 $f_n: [n, n+1] \to [n, n+1]$ 为 $C^{(\infty)}$ 类微分同胚, 使相邻两个函数在 共同端点处取相同的各阶导数值,将这些函数首尾衔接即可.

若 f 存在, 取 g = f', 有

 $g^{(i)}(0) = a_{i+1}, \ g^{(i)}(1) = b_{i+1} \ (i \ge 0), \ \coprod \int_0^1 g(t)dt = 1, \ g(t) \ge 0 \ (\forall t \in [0,1]).$ 反过来, 若存在 g > 0 满足上述条件, 则取 $f(x) = \int_0^x g(t)dt \ (x \in [0,1])$ 满足 (*) 条 件.

下面只需构造符合条件的 g(g > 0): (**) 由引理 1 可取 $g_0 \in C^{(\infty)}(([0,1]),\mathbb{R})$, 使

$$g_0^{(i)}(0) = a_{i+1}, \ g_0^{(i)}(1) = b_{i+1} (i \ge 0).$$

注意到若 $\varphi \in C^{(\infty)}(\mathbb{R}, \mathbb{R})$ 满足:

$$(\varphi^{(i)}(a_1)) = (a_1, 1, 0, \ldots), \ (\varphi^{(i)}(b_1)) = (b_1, 1, 0, \ldots).$$

(以后记 $(h^{(i)}(x))$ 为 h 在 x 处的各阶 (含 0 阶) 导数值序列). 则验证知:

$$(\varphi \circ g_0)^{(i)}(0) = \varphi'(a_1) \cdot g_0^{(i)}(0) = a_{i+1}(i \ge 1), \ \varphi \circ g_0(0) = a_1;$$
$$(\varphi \circ g_0)^{(i)}(1) = g_0^{(i)}(1) = b_{i+1}(i \ge 0).$$

即 $\varphi \circ g_0$ 保持 g_0 的性质.

同理可证对 $\psi \in C^{(\infty)}([0,1],[0,1])$, 若

$$(\psi^{(i)}(0)) = (0, 1, 0, \ldots), \ (\psi^{(i)}(1)) = (1, 1, 0, \ldots).$$

则 $g_0 \circ \psi$ 仍保持 g_0 的性质.

目标找合适的 φ , ψ 使 $g = \varphi \circ g_0 \circ \psi$ 满足条件.

引理3. 对任意 a>0, 存在 $f\in C^{(\infty)}([0,1],[0,a])$ 为单调函数, 且 $(f^{(i)}(0))=$ $(0,\ldots), (f^{(i)}(1)) = (a,1,0,\ldots).$

证明. 由引理 1 可构造 $f_1 \in C^{(\infty)}(\mathbb{R}, \mathbb{R})$, $supp f_1 \subset [0, 1]$, $f_1 > 0$ 而不恒为 0. (先构造 $h \in C^{(\infty)}(\mathbb{R}, \mathbb{R})$, $supp h \subset [0, 1]$, 且不恒为 0. 再取 $f_1 = h^2$).

$$\diamondsuit$$
 $f_2(x) = \int_{-\infty}^x f_1(t)dt \ (\forall x \in \mathbb{R}),$ 知

$$f_2 \in C^{(\infty)}(\mathbb{R}, \mathbb{R}), \ f_2(x) = 0 \ (\forall x \le 0), \ f_2(1) = \int_0^1 f_1(t)dt > 0.$$

完全可取 f_1 使 $f_2(1) = 1$ (用 Af_1 (适当的 A > 0) 代替 f_1 即可).

令
$$F_1(x) = \int_{-\infty}^x (f_2(t) + \lambda f_1(t)) dt \ (\lambda \ge 0$$
 待定), 有

$$F_1 \in C^{(\infty)}(\mathbb{R}, \mathbb{R}), \ F_1^{(i)}(0) = f_2^{(i-1)}(0) + \lambda f_1^{(i-1)}(0) = 0 \ (i \ge 1),$$

而

$$F_1(1) = \int_0^1 (f_2(t) + \lambda f_1(t))dt = \int_0^1 f_2(t)dt + \lambda, \ F_1'(1) = 1,$$

$$F_1^{(i)}(1) = f_2^{(i-1)}(1) + \lambda f_1^{(i-1)}(1) = 0 (i \ge 2).$$

可取 $\lambda > 0$ 足够大, 使 $F_1(1) > a$.

令
$$F(x) = \int_{-\infty}^{x} f_2(t) dt$$
, 同样

$$F^{(i)}(0) = 0 \ (i \ge 0), \ F(1) = \int_0^1 f_2(t)dt > 0, \ F'(1) = 1, \ F^{(i)}(1) = 0 \ (i \ge 2).$$

取
$$F_2(x) = b \cdot F(1 + \frac{x-1}{b}), \ 0 < b < 1,$$
 有

取
$$F_2(x) = b \cdot F(1 + \frac{x-1}{b}), \ 0 < b < 1, 有$$

$$F_2(0) = b \cdot F(1 - \frac{1}{b}) = 0, \ F_2^{(i)}(0) = b \cdot (\frac{1}{b})^i \cdot F^{(i)}(1 - \frac{1}{b}) = 0 \ (i \ge 1),$$

而

$$F_2(1) = b \cdot F(1), \ F_2'(1) = F'(1) = 1, \ F_2^{(i)}(1) = b \cdot (\frac{1}{b})^i \cdot F^{(i)}(1) = 0 \ (i \ge 2).$$

取 0 < b < 1 足够小, 使 $0 < F_2(1) < a$.

这样得到了两个函数 F_1 , F_2 单调增, $F_1(1) = a_1 > a$, $F_2(1) = a_2 < a$. 令

$$f(x) = \frac{a - a_2}{a_1 - a_2} F_1(x) + \frac{a_1 - a}{a_1 - a_2} F_2(x).$$

验证知 f 满足引理 3 的条件, 引理 3 得证.

注: 通过平移、对称、伸缩等操作引理 3 对以下情形亦成立:

- a) 对 0, 1 处的导数值要求互换 (作图可以非常直观).

b) 闭区间 [0,1], [0,a] 换成任何闭区间. 可设 $h:[0,1]\to [0,\frac{d-c}{b-a}]$, 满足引理 3 条件, 则取 $f:[a,b]\to [c,d]$ 为

$$f(x) = c + (b - a) \cdot h(\frac{x - a}{b - a}).$$

知: $(f^{(i)}(a)) = (c, 0, ...), (f^{(i)}(b)) = (d, 1, 0, ...).$

c) 改成相应的单调减情况.

回到引理2:

先设 $a_1 \neq b_1$, 可不妨设 $a_1 < b_1$. 由 g_0 的连续性, 存在 $t_0 \in [0,1]$ 使 $g_0(t_0) = \frac{a_1 + b_1}{2}$.

首先来构造 $\varphi_1, \ \psi_1$ 使 $g_1 = \varphi_1 \circ g_0 \circ \psi_1$ 满足: $\int_0^1 g_1(t)dt > 1, \ g_1 > 0$:

 $\forall \epsilon > 0$, 取 M > 0 使 $g_0 < M$. 由引理 3:

可取 $\varphi_{11} \in C^{(\infty)}([0, a_1], [\epsilon, a_1])$ 单调增, 且

$$(\varphi_{11}^{(i)}(0)) = (\epsilon, 0, \ldots), \ (\varphi_{11}^{(i)}(a_1)) = (a_1, 1, 0, \ldots);$$

取 $\varphi_{12} \in C^{(\infty)}([a_1, \frac{a_1 + b_1}{2}], [a_1, M])$ 单调增, 且

$$(\varphi_{12}^{(i)}(a_1)) = (a_1, 1, 0, \ldots), \ (\varphi_{12}^{(i)}(\frac{a_1 + b_1}{2})) = (M, 0, \ldots);$$

取 $\varphi_{13} \in C^{(\infty)}([\frac{a_1+b_1}{2}, \frac{a_1}{4} + \frac{3b_1}{4}], [\epsilon, M])$ 单调减, 且

$$(\varphi_{13}^{(i)}(\frac{a_1+b_1}{2}))=(M,0,\ldots),\ (\varphi_{13}^{(i)}(\frac{3b_1}{4}))=(\epsilon,0,\ldots);$$

取 $\varphi_{14} \in C^{(\infty)}([\frac{3b_1}{4}, b_1], [\epsilon, b_1])$ 单调增, 且

$$(\varphi_{14}^{(i)}(\frac{3b_1}{4})) = (\epsilon, 0, \ldots), \ (\varphi_{14}^{(i)}(b_1)) = (b_1, 1, 0, \ldots);$$

取 $\varphi_{15} \in C^{(\infty)}([b_1, b_1 + \epsilon], [b_1, b_1 + \epsilon])$ 单调增,且

$$(\varphi_{15}^{(i)}(b_1)) = (b_1, 1, \ldots), \ (\varphi_{15}^{(i)}(b_1 + \epsilon)) = (b_1 + \epsilon, 0, \ldots);$$

最后取 φ_1 :

$$\varphi_{1}(x) = \begin{cases} \epsilon & x \in]-\infty, 0] \\ \varphi_{11} & x \in [0, a_{1}] \\ \varphi_{12} & x \in [a_{1}, \frac{a_{1}+b_{1}}{2}] \\ \varphi_{13} & x \in [\frac{a_{1}+b_{1}}{2}, \frac{a_{1}}{4} + \frac{3b_{1}}{4}] \\ \varphi_{14} & x \in [\frac{3b_{1}}{4}, b_{1}] \\ \varphi_{15} & x \in [b_{1}, b_{1} + \epsilon] \\ b_{1} + \epsilon & x \in [b_{1} + \epsilon, +\infty[$$

有 $\varphi_1 \in C^{(\infty)}(\mathbb{R}, \mathbb{R}), \ \varphi_1 > 0, \ ((\varphi_1^{(i)})(a_1)) = (a_1, 1, 0, \ldots), \ (\varphi_1^{(i)}(b_1)) = (b_1, 1, 0, \ldots).$ 再取 $0 < \delta < \frac{1}{2}$. 类似存在 $\psi_1 \in C^{(\infty)}([0, 1], [0, 1])$ 单调非减 $(\psi_1^{(i)}(0)) = (0, 1, 0, \ldots); \ (\psi_1^{(i)}(1)) = (1, 1, 0, \ldots); \ (\psi_1^{(i)}(\delta)) = (t_0, 0, \ldots);$ $(\psi_1^{(i)}(1 - \delta)) = (t_0, 0, \ldots), \ \exists \ \psi_1|_{[\delta, 1 - \delta]} = t_0.$

考虑
$$g_1 = \varphi_1 \circ g_0 \circ \psi_1 \in C^{(\infty)}([0,1],\mathbb{R}), \text{ f } g_1 > 0, 且$$

$$\int_0^1 g_1(t)dt = \int_0^1 \varphi_1 \circ g_0 \circ \psi_1(t)dt \ge \int_\delta^{1-\delta} \varphi_1 \circ g_0 \circ \psi_1(t)dt$$
$$= \int_\delta^{1-\delta} \varphi_1 \circ g_0(t_0)dt = \int_\delta^{1-\delta} \varphi_1(\frac{a_1 + b_1}{2})dt = M(1 - 2\delta).$$

取 M > 0 足够大而 $\delta > 0$ 足够小, 使 $\int_0^1 g_1(t)dt > 1$.

再来构造 φ_2 , ψ_2 , 使 $g_2 = \varphi_2 \circ g_0 \circ \psi_2 \in C^{(\infty)}([0,1],\mathbb{R})$, $g_2 > 0$, 0,1 处导数值同 g_1 , 且 $0 < \int_0^1 g_2(t)dt < 1$:

可取 $\epsilon > 0$ 使 $\epsilon < a_1 < b_1$, 类似 φ_1 的构造可取 $\varphi_2 \in C^{(\infty)}(\mathbb{R}, \mathbb{R})$, 使

$$0 < \varphi_2 \le 2M, \ (\varphi_2^{(i)}(a_1)) = (a_1, 1, 0, \dots),$$
$$(\varphi_2^{(i)}(b_1)) = (b_1, 1, 0, \dots), \ (\varphi_2^{(i)}(\frac{a_1 + b_1}{2})) = (\epsilon, 0, \dots).$$

而取 $\psi_2 = \psi_1$.

令 $g_2 = \varphi_2 \circ g_0 \circ \psi_2 \in C^{(\infty)}([0,1],\mathbb{R})$, 有 $g_2 > 0$, 0,1 处导数值同 g_1 . 而

$$\begin{split} \int_0^1 g_2(t)dt &= \int_0^1 \varphi_2 \circ g_0 \circ \psi_2(t)dt \\ &= \int_0^\delta \varphi_2 \circ g_0 \circ \psi_2(t)dt + \int_{1-\delta}^1 \varphi_2 \circ g_0 \circ \psi_2(t)dt \\ &+ \int_\delta^{1-\delta} \varphi_2 \circ g_0 \circ \psi_2(t)dt \\ &\leq 2M \cdot 2\delta + \int_\delta^{1-\delta} \varphi_2 \circ g_0 \circ \psi_2(t)dt \\ &= 4M\delta + \int_\delta^{1-\delta} \varphi_2(\frac{a_0 + b_0}{2})dt \\ &= 4M\delta + \epsilon(1 - 2\delta). \end{split}$$

可取 $\delta > 0$, $\epsilon > 0$ 足够小, 使 $0 < \int_0^1 g_2(t)dt < 1$.

最后, 设 $\int_0^1 g_1(t)dt = A_1$, $\int_0^1 g_2(t)dt = A_2$, $0 < A_2 < 1 < A_1$. 令

$$g = \frac{1 - A_2}{A_1 - A_2} g_1 + \frac{A_1 - 1}{A_1 - A_2} g_2.$$

验证知: g 满足 (**) 的所有条件, 从而 (**) 对 $a_1 \neq b_1$ 成立.

对 $a_1 = b_1$,可取 $\frac{1}{2}$ 及 c > 0, $c \neq a_1$. 由己证的结论可构造 $\widetilde{g_1} \in C^{(\infty)}([0, \frac{1}{2}], \mathbb{R}), \ \widetilde{g_1} > 0$,且

$$(\widetilde{g_1}^{(i)}(0)) = (a_{i+1})_{(i \ge 0)}, \ (\widetilde{g_1}^{(i)}(\frac{1}{2})) = (c, 0, \ldots), \ \int_0^{\frac{1}{2}} \widetilde{g_1}(t)dt = \frac{1}{2}.$$

 $\widetilde{g}_2 \in C^{(\infty)}([\frac{1}{2}, 1], \mathbb{R}), \ \widetilde{g}_2 > 0, \ \mathbb{H}.$

$$(\widetilde{g_2}^{(i)}(\frac{1}{2})) = (c, 0, \ldots), \ (\widetilde{g_2}^{(i)}(1)) = (b_{i+1}), \ \int_{\frac{1}{2}}^1 \widetilde{g_2}(t)dt = \frac{1}{2}.$$

取 $g \in C^{(\infty)}([0,1],\mathbb{R})$, $g|_{[0,\frac{1}{2}]} = \widetilde{g_1}$, $g|_{[\frac{1}{2},1]} = \widetilde{g_2}$. 则 g 满足 (**) 条件. 综上, 引理 2 证毕.

3 命题的证明

断言 (1): 对 S^1 的任一个 $C^{(\infty)}$ —结构 M (等价图册类), 设其结构图册为 A_M , 即

$$A_M = \bigcup_{B \in M} B$$

则存在 $\varphi: \mathbb{R} \to S^1$ 为局部同胚, $\varphi(\mathbb{R}) \supset S^1$ 为包含 S^1 的一条弧线 (有重叠部分), 设为 \widehat{ad} , 随自变量的增大而在 S^1 上沿逆时钟方向运动 (以后称为递增的). 而设 $\widehat{aa'}$, $\widehat{d'd}$ 为 \widehat{ad} 上的重合部分不自交, 即 $\widehat{aa'} = \widehat{d'd} \subset S^1$ (以后形如 \widehat{AB} 的弧均表示沿逆时钟方向: $A \to B$) (见图1). 有如下特征:

(a):任一点 $x\in \widehat{aa'}, \widehat{xx}=S^1\setminus\{x\},$ 存在 $]a,b[\subset\mathbb{R}, \varphi:]a,b[\to S^1\setminus\{x\}]$ 为拓扑同胚. 记 $\overline{\varphi}=\varphi|_{]a,b[},$ 则对任意 $(\widetilde{U},\widetilde{\varphi})\in A_M, \overline{\varphi}^{-1}\circ\widetilde{\varphi}, \widetilde{\varphi}^{-1}\circ\overline{\varphi}$ 在相应定义域上为 $C^{(\infty)}$ 类函数, 即 $\overline{\varphi}$ 与 $\widetilde{\varphi}$ 等价.

- (b): 存在 $[t_1, t_2]$ $(t_1 < t_2) \subset \mathbb{R}$, 使得 $\varphi(t_1) = \varphi(t_2) = x_0 \in \widehat{aa'}$. 且: $\varphi:]t_1, t_2[\mapsto S^1 \setminus \{x_0\} \text{ 为拓扑同胚, 而存在 } t_1, t_2 \text{ 的邻域 } O(t_1), O(t_2) \subset \mathbb{R}, \text{ 使 } \varphi_1 = \varphi|_{O(t_1)}, \varphi_2 = \varphi|_{O(t_2)}$ 满足: $\varphi_2^{-1} \circ \varphi_1: O(t_1) \to O(t_2) \text{ 为 } C^{(\infty)}$ 类微分同胚.
 - (c):在(b)中, φ 还满足:

$$((\varphi_2^{-1} \circ \varphi_1)^{(i)}(t_1)) = (t_2, 1, 0, \ldots), ((\varphi_1^{-1} \circ \varphi_2)^{(i)}(t_2)) = (t_1, 1, 0, \ldots).$$

注: 以后若有 φ 满足除 (b), (c) 外断言 (1) 中的其余条件, 则称 φ 与 A_M 中元素 等价. (重要!)

若断言 (1) 成立, 则对 S^1 的任两个 $C^{(\infty)}$ —结构 M_1 , M_2 , 流形分别记为 S^1_A , S^1_B , 设对应结构图册为 A_M , B_M .

可取 φ 对应于 A_M , ψ 对应于 B_M . φ , ψ 分别满足断言 (1) 中条件, 且对应断言中开区间 $]t_1,t_2[$, $]t_1',t_2'[$.

设
$$\varphi(]t_1,t_2[) = S \setminus \{x_1\}, \ \psi(]t_1',t_2'[) = S \setminus \{x_2\}.$$
 令

$$T(t) = \frac{t_{2}^{'} - t_{1}^{'}}{t_{2} - t_{1}}(t - t_{1}) + t_{1}^{'} \ (t \in \mathbb{R})$$

知 $T: \mathbb{R} \to \mathbb{R}$ 为 $C^{(\infty)}$ 类微分同胚, 且 $T(t_1) = t_1'$, $T(t_2) = t_2'$.

在这样的条件下, 构造映射: $f: S^1_A \to S^1_B$.

$$f(x) = \begin{cases} \overline{\psi} \circ T \circ \overline{\varphi}^{-1}(x) & x \neq x_1 \\ x_2 & x = x_1 \end{cases}$$

(其中 $\overline{\varphi} = \varphi|_{]t_1,t_2[}$, $\overline{\psi} = \psi|_{]t_1',t_2'[}$).

下面证明: 这样得到的 $f: S_A^1 \to S_B^1$ 是 $C^{(\infty)}$ 类微分同胚, 从而 M_1, M_2 同构.

证明. 事实上, $\forall (\widetilde{U}, \widetilde{\varphi}) \in A_M, (\widetilde{V}, \widetilde{\psi}) \in B_M, \ \widetilde{\psi}^{-1} \circ f \circ \widetilde{\varphi}$ 的定义域设为 $W = \widetilde{\varphi}^{-1}(f^{-1}(\widetilde{V}) \cap \widetilde{U})$ (开集). 任取 $s_1 \in W$.

(i). 若 $\widetilde{\varphi}(s_1) \neq x_1$, 则存在邻域 $O(s_1) \subset W$, 使 $x_1 \notin \widetilde{\varphi}(O(s_1))$. 此时在 $O(s_1)$ 上:

$$\widetilde{\psi}^{-1}\circ f\circ \widetilde{\varphi}(s)=\widetilde{\psi}^{-1}\circ \overline{\psi}\circ T\circ \overline{\varphi}\circ \widetilde{\varphi}(s)=(\widetilde{\psi}^{-1}\circ \overline{\psi})\circ T\circ (\overline{\varphi}\circ \widetilde{\varphi})(s).$$

由 ψ , φ 的性质即知, $\widetilde{\psi}^{-1} \circ f \circ \widetilde{\varphi}$ 在 $O(s_1)$ 上为 $C^{(\infty)}$ 类函数;

(ii). 若 $\widetilde{\varphi}(s_1) = x_1$, 则 $\exists \delta > 0$ 使 $]s_1 - \delta, s_1 + \delta[\subset W, 且满足:$ $\overline{\varphi}^{-1} \circ \widetilde{\varphi}|_{]s_1 - \delta, s_1]} = \varphi_1^{-1} \circ \widetilde{\varphi}|_{]s_1 - \delta, s_1]}$ 或 $\overline{\varphi}^{-1} \circ \widetilde{\varphi}|_{]s_1 - \delta, s_1]} = \varphi_2^{-1} \circ \widetilde{\varphi}|_{]s_1 - \delta, s_1]}$. 而限制在 $[s_1, s_1 + \delta[$ 上则相反. (其中 φ_1, φ_2 为断言 (1) 中对应 φ 的两个局部映射, ψ_1, ψ_2 对应 ψ). 可不妨设

 $\overline{\varphi}^{-1} \circ \widetilde{\varphi}|_{]s_1-\delta,s_1]} = \varphi_1^{-1} \circ \widetilde{\varphi}|_{]s_1-\delta,s_1]}, \ \overline{\varphi}^{-1} \circ \widetilde{\varphi}|_{[s_1,s_1+\delta]} = \varphi_2^{-1} \circ \widetilde{\varphi}|_{[s_1,s_1+\delta]}.$ 相应的有:

$$\widetilde{\psi}^{-1} \circ f \circ \widetilde{\varphi}|_{]s_1 - \delta, s_1]} = \widetilde{\psi}^{-1} \circ \psi_1 \circ T \circ \varphi_1^{-1} \circ \widetilde{\varphi}|_{]s_1 - \delta, s_1]}$$
$$\widetilde{\psi}^{-1} \circ f \circ \widetilde{\varphi}|_{[s_1, s_1 + \delta[} = \widetilde{\psi}^{-1} \circ \psi_2 \circ T \circ \varphi_2^{-1} \circ \widetilde{\varphi}|_{[s_1, s_1 + \delta[}.$$

现在我们只需证明:

$$(\varphi_1^{-1} \circ \widetilde{\varphi})^{(i)}(s_1) = (\varphi_2^{-1} \circ \widetilde{\varphi})^{(i)}(s_1); \ (\widetilde{\psi}^{-1} \circ \psi_1)^{(i)}(t_1') = (\widetilde{\psi}^{-1} \circ \psi_2)^{(i)}(t_2')(i \ge 0)$$

则由复合函数求导及归纳证明可知 $(\widetilde{\psi}^{-1}\circ f\circ\widetilde{\varphi})^{(i)}(s_1)$ ($\forall i\geq 0$) 存在. 从而 $\widetilde{\psi}^{-1}\circ f\circ\widetilde{\varphi}$ 在定义域中为 $C^{(\infty)}$ 类函数.

而 $\varphi_2^{-1} \circ \widetilde{\varphi} = (\varphi_2^{-1} \circ \varphi_1) \circ (\varphi_1^{-1} \circ \widetilde{\varphi})$,由断言 (1) 中性质 (b) 及复合求导可得:

$$(\varphi_2^{-1} \circ \varphi_1) \circ (\varphi_1^{-1} \circ \widetilde{\varphi})^{(i)}(s_1) = (\varphi_2^{-1} \circ \varphi_1)'(t_1) \cdot (\varphi_1^{-1} \circ \widetilde{\varphi})^{(i)}(s_1)$$

= $(\varphi_1^{-1} \circ \widetilde{\varphi})^{(i)}(s_1)$ $(i \ge 0)$.

同样可得: $(\widetilde{\psi}^{-1} \circ \psi_1)^{(i)}(t_1') = (\widetilde{\psi}^{-1} \circ \psi_2)^{(i)}(t_2')(i \geq 0)$. 于是上述需证结论成立. 同理可证 $\widetilde{\varphi}^{-1} \circ f \circ \widetilde{\psi}$ 在定义域中亦为 $C^{(\infty)}$ 类函数.

这样,
$$f: S_A^1 \to S_B^1$$
 为 $C^{(\infty)}$ 类同构映射.

下面只需证明断言(1)成立:

断言 (1) 的证明. $\forall (U_1, \varphi_1), (U_2, \varphi_2) \in A_M, \boxtimes (U, \varphi) \in A_M \Rightarrow (U, \varphi_-) \in A_M(\varphi_-(t) = \varphi(-t)).$ 可取 φ_1, φ_2 均递增.¹ 若 U_1, U_2 互不包含,且 $U_1 \cap U_2 \neq \emptyset$,设 $x_0 \in U_1 \cap U_2, U_1 = \hat{ab}, U_2 = \hat{cd}$,据条件可设 $\hat{cb} \subset \hat{ab}, \hat{cd}, \boxtimes x_0 \in \hat{cb}$. (见图2). 可设 $\varphi_1^{-1}(\widehat{ax_0}) =]-\infty, t_1], \varphi_2^{-1}(\widehat{x_0d}) = [t_2, +\infty[$.

(见图2). 可及 φ_1 $(ax_0) =]-\infty, t_1], \varphi_2$ $(x_0a) = [t_2, +\infty[$.

断言 (2): 存在 φ : $\mathbb{R} \to \widehat{ad}$ 与 A_M 中元素等价 2 (若 \widehat{ad} 不自交则是通常意义下的等价).

断言 (2) 的证明. 取 $\varphi: \mathbb{R} \to \widehat{ad}$:

$$\varphi(t) = \begin{cases} \varphi_1(t) & t \in]-\infty, t_1] \\ \varphi_2 \circ \chi(t) & t \in [t_1, +\infty[$$

其中 $\chi: [t_1, +\infty[\to [t_2, +\infty[为 C^{(\infty)}]$ 类微分同胚, 满足

$$\chi^{(i)}(t_1) = (\varphi_2^{-1} \circ \varphi_1)^{(i)}(t_1)(i \ge 0).$$

¹ 见断言 (1) 的陈述.

²见断言 (1) 后的注.

注意到 $\varphi_2^{-1} \circ \varphi_1$ 是局部坐标的 $C^{(\infty)}$ 类微分同胚变换, 且单调增, 有 $(\varphi_2^{-1} \circ \varphi_1)'(t_1) > 0$, 故由引理 2 知这样的 χ 存在.

我们来验证这样得到的 φ 满足题意: 这时要证明 \forall $(\widetilde{U},\widetilde{\varphi}) \in A_M$ 与 (\widehat{ad},φ) 等价. 考虑到 φ 的构造, 我们实际上只需对 φ_1, φ_2 证明即可.

这是因为在局部上可以考虑 φ^{-1} , 有

$$\widetilde{\varphi}^{-1} \circ \varphi = (\widetilde{\varphi}^{-1} \circ \varphi_1) \circ (\varphi_1^{-1} \circ \varphi) \quad \text{if} \ (\widetilde{\varphi}^{-1} \circ \varphi_2) \circ (\varphi_2^{-1} \circ \varphi)$$

$$\varphi^{-1} \circ \widetilde{\varphi} = (\varphi^{-1} \circ \varphi_1) \circ (\varphi_1^{-1} \circ \widetilde{\varphi}) \quad \text{if} \ (\varphi^{-1} \circ \varphi_2) \circ (\varphi_2^{-1} \circ \widetilde{\varphi})$$

由 A_M 的定义, $\widetilde{\varphi}^{-1} \circ \varphi_1$, $\widetilde{\varphi}^{-1} \circ \varphi_2$ 均为 $C^{(\infty)}$ 类的.

若对 φ_1 , φ_2 成立, 即有 $\varphi_1^{-1} \circ \varphi$, $\varphi_2^{-1} \circ \varphi$ 为局部的 $C^{(\infty)}$ 类微分同胚, 则由复合求导 $\widetilde{\varphi}^{-1} \circ \varphi$ 亦然.

对 φ_1, φ_2 , 由 φ 的定义, 只需验证在 x_0 处的局部坐标变换为 $C^{(\infty)}$ 次的. 考虑 $\varphi^{-1}(U \cap U_1)$ (定义域) 中 t_1 附近, 有

$$\varphi_1^{-1} \circ \varphi(t) = \begin{cases} t = (\varphi_1^{-1} \circ \varphi_2) \circ (\varphi_2^{-1} \circ \varphi_1)(t) & t \in]-\infty, t_1] \\ \varphi_1^{-1} \circ \varphi_2 \circ \chi(t) & t \in [t_1, +\infty[$$

由 χ 的条件: $\chi^{(i)}(t_1) = (\varphi_2^{-1} \circ \varphi_1)^{(i)}(t_1)$, 复合求导知: $\varphi_1^{-1} \circ \varphi$ 在 t_1 处 $C^{(\infty)}$ 次可微. 反过来, 在 $\varphi_1^{-1}(U \cap U_1)$ 中 t_1 附近, 有:

$$\varphi^{-1} \circ \varphi_1(t) = \begin{cases} t = (\varphi_1^{-1} \circ \varphi_2) \circ (\varphi_2^{-1} \circ \varphi_1)(t) & t \in]-\infty, t_1] \\ \chi^{-1} \circ \varphi_2^{-1} \circ \varphi_1(t) & t \in [t_1, +\infty[$$

由局部上 $\chi \circ \chi^{-1}(t) = t$, $\psi \circ \psi^{-1}(t) = t$ ($\psi = \varphi_2^{-1} \circ \varphi_1$) 求导并归纳可得: $(\chi^{-1})^{(i)}(t_2) = (\psi^{-1})^{(i)}(t_2)$ ($i \geq 0$). 于是同前, 可证 $\varphi^{-1} \circ \varphi_1$ 在 t_1 处 $C^{(\infty)}$ 次可微. 对 φ_2 同理可证. 于是断言 (2) 成立.

回到断言(1):

由 S^1 的紧性可从 A_M 中取出有限子覆盖: $\{U_i\}_{(1 \leq i \leq m)} ((U_i, \varphi_i) \in A_M)$, 且 φ_i 均单调增. 可不妨设覆盖 $\{U_i\}$ $(1 \leq i \leq m)$ 不可再减少.

取 $(V_1, \psi_1) = (U_1, \varphi_1)$, 存在 U_{i_1} $(i_1 \neq 1)$, 设为 U_2 , 使 $U_1 \cap U_2 \neq \emptyset$, 且 U_2 含 U_1 的 右端点 (沿逆时钟方向的终点).

由断言 (2) 存在 ψ_2 : $\mathbb{R} \to V_2$ (对应断言 (2) 中的 \widehat{ad}), 与 A_M 中元素等价³, 且 $U_1, U_2 \subset V_2$.

若 V_2 不自交, 则 $(V_2, \psi_2) \in A_M^4$. 则同样存在 U_{i_2} , 设为 U_3 , 使 $U_3 \cap V_2 \neq \emptyset$, U_3 含 V_2 的右端点. 由断言 (2) 可取 $\psi_3 : \mathbb{R} \to V_3$, 与 A_M 中元素等价, 且 V_2 , $U_3 \subset V_3$.

.

如此下去, 经有限步, 必能找到 $\psi: \mathbb{R} \to V$, (V, ψ) 与 A_M 中元素等价, 且 V 自交, 这 时自然 $S^1 \subset V$.

由 ψ 的构造 (A_M 中的两个局部图的衔接)知道:

存在 $t_1, t_2 \in \mathbb{R}$ $(t_1 < t_2)$, 使 $\psi(t_1) = \psi(t_2) = x_1 \in S^1$, 且

 $(S^1 \setminus \{x_1\}, \psi|_{]t_1,t_2[}) \in A_M$. 同时存在邻域 $O(t_1), O(t_2), 若记 \psi_1 = \psi|_{O(t_1)}, \psi_2 = \psi|_{O(t_2)}, 则 \psi_2^{-1} \circ \psi_1 : O(t_1) \to O(t_2)$ 为 $C^{(\infty)}$ 类微分同胚, $\psi_2^{-1} \circ \psi_1(t_1) = t_2$.

验证知 ψ 已满足断言 (1) 中除 (c) 外的所有条件. (见图3.)

取 $\chi: \mathbb{R} \to \mathbb{R}$ 为 $C^{(\infty)}$ 类微分同胚, 使 $\chi(t_1) = \chi(t_1), \ \chi(t_2) = t_2.$

易见 $\psi \circ \chi$ 将仍保持 ψ 的已有性质, 只需再找 χ 使 $\varphi = \psi \circ \chi$ 满足断言 (1) 的 (c). 同 ψ , 设 φ 对应 φ_1 , φ_2 , $\varphi_1 = \psi \circ \chi|_{\chi^{-1}(O(t_1))}$, $\varphi_2 = \psi \circ \chi|_{\chi^{-1}(O(t_2))}$. φ 只需满足:

$$((\varphi_2^{-1} \circ \varphi_1)^{(i)}(t_1)) = (t_2, 1, 0, \ldots).$$

³注意这里等价的更一般意义,以后同样如此.

 $^{^4}$ 注意 A_M 作为结构图册的性质.

则由 $\varphi_2^{-1} \circ \varphi_1, \, \varphi_1^{-1} \circ \varphi_2$ 局部上互为反函数, 复合求导可得:

$$((\varphi_1^{-1} \circ \varphi_2)^{(i)}(t_2)) = (t_1, 1, 0, \ldots).$$

而 $\varphi_2^{-1} \circ \varphi_1 = \chi^{-1} \circ \psi_2^{-1} \circ \psi_1 \circ \chi \Leftrightarrow \chi \circ \varphi_2^{-1} \circ \varphi_1 = \psi_2^{-1} \circ \psi_1 \circ \chi.$ (i) 简记 $\varphi_2^{-1} \circ \varphi_1 = h, \ \psi_2^{-1} \circ \psi_1 = k.$ (i) 左边的 χ 记为 χ_2 , 右边的 χ 记为 χ_1 . 则 (i) $\Leftrightarrow \chi_2 \circ h = k \circ \chi_1$ (ii) 而记

$$h^{(i)} = \frac{d^i h}{dt^i}|_{t=t_1}, \ k^{(i)} = \frac{d^i k}{dt^i}|_{t=t_1}, \ \chi_1^{(i)} = \frac{d^i \chi_1}{dt^i}|_{t=t_1}, \ \chi_2^{(i)} = \frac{d^i \chi_2}{dt^i}|_{t=t_2}.$$

若取 χ 使:

$$(\chi^{(i)}(t_1)) = (\chi_1^{(i)}) = (t_1, 1, 0, \ldots).$$

而 h 应满足: $(h^{(i)}) = (t_2, 1, 0, \ldots)$.

故由 (ii) 对 $t = t_1$ 求各阶导数, 归纳得到:

$$(\chi_2 \circ h)^{(i)}(t_1) = \chi_2^{(i)} \cdot (h')^i = \chi_2^{(i)}, \ (k \circ \chi_1)^{(i)}(t_1) = k^{(i)} \cdot (\chi_1')^i = k^{(i)}(i \ge 0)$$

$$\Rightarrow \chi_2^{(i)} = k^{(i)}.$$

即 χ 应满足:

$$(\chi^{(i)}(t_1)) = (t_1, 1, 0, \ldots), \ (\chi^{(i)}(t_2)) = (k^{(i)}).$$

注意到 $k=\psi_2^{-1}\circ\psi_1$, 有 $k(t_1)=t_2>t_1$, $k^{'}(t_1)>0$. 于是由引理 2 知这样的 χ 存在.

反过来, 若 χ 满足上述条件, 由 (ii) 求导归纳知道 $h = \varphi_2^{-1} \circ \varphi_1$ 满足断言 (1) 中的 (c), 从而 φ 满足断言 (1), 断言 (1) 成立.

综上, 所证命题成立.

参考文献

- [1] B.A.Zorich 著; 蒋铎等译, 数学分析, 第二卷 (第四版), 高等教育出版社, 北京, 2006.
- [2] 荷思, 2009.12, 第04期.