

Dependency of Transient Current Behavior on Oxide Thickness in Trench Structure MIS TDs

Jian-Yu Lin^{1*}, Jenn-Gwo Hwu^{1, 2}

- 1. Graduate Institute of Electronics Engineering,
- 2. Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan

Presenter: Jian-Yu Lin

Outline

- Introduction
 - ➤ Metal-Insulator-Semiconductor Tunnel Diode (MIS TD)
 - >Transient Current in MIS TDs
- Results and Discussion
 - **Experiments**
 - >TCAD Simulation
- Conclusion

Outline

- Introduction
 - **➤ Metal-Insulator-Semiconductor Tunnel Diode (MIS TD)**
 - >Transient Current in MIS TDs
- Results and Discussion
 - **Experiments**
 - >TCAD Simulation
- Conclusion

What is MIS TD?

*Metal-insulator-semiconductor tunnel diode (MIS TD)

What is MIS TD?

*Metal-insulator-semiconductor tunnel diode (MIS TD)

- Diode-like I–V curve.
- V_G < 0: forward bias region.
- V_G > 0: reverse bias region.

Transient Current in MIS TDs

- Trench MIS TDs
- > I-V more obvious hysteresis.
- Stronger transient current.

Transient Current in MIS TDs (cont.)

Endurance Property

- Transient current behavior
 - ➤ Store two memory states.
- Trench MIS TDs:
 - potential for memory devices.

In This Work...

Trench structure MIS (Trench MIS)

Investigate the dependency of

- * transient current.

Outline

- Introduction
 - **→ Metal-Insulator-Semiconductor Tunnel Diode (MIS TD)**
 - >Transient Current in MIS TDs
- Results and Discussion
 - **Experiments**
 - >TCAD Simulation
- Conclusion

Device Structure

^{*}Detailed fabrication process can be found in IEEE Transactions on Electron Devices 68, 4189-4194 (2021)

I-V Curves with Different dox

• stronger transient current.

Memory Retention Measurement

- Solid: read "-1".
- For Trench MIS, when d_{ox} ↑
 - Stronger transient current (i.e. |read "-1" current | 个).

Where does "transient current" come from?

The Origin of Read "-1" Transient Current

*solid arrows: current flow

*n_{inv}: inversion carriers

*n_{excess}: excess electrons

*
$$n_{\text{excess}} \approx n_{\text{inv}} (@V_{\text{G}} = +2V) - n_{\text{inv}} (@V_{\text{G}} = 0V)$$

$$I_{\text{read "-1"}} = (|I_{e(T)}| + |I_{h(T)}|) - (|I_{e(D)}| + |I_{h(D)}|)$$

| read "-1" current | $\propto n_{excess} \propto n_{inv}$ (@V_G=2V)

dox and Transient Current

| read "-1" current | $\propto n_{excess} \propto n_{inv}$ (@V_G=2V)

Outline

- Introduction
 - **→ Metal-Insulator-Semiconductor Tunnel Diode (MIS TD)**
 - >Transient Current in MIS TDs
- Results and Discussion
 - **Experiments**
 - >TCAD Simulation
- Conclusion

Silvaco TCAD Simulation Setting

Simulated Retention: Part 1

1) $d_{ox} = 2.5 \sim 3 \text{ nm}$ $\rightarrow d_{ox} \uparrow$, |read "-1" current| \uparrow .

Simulated Retention: Part 1

Simulated Retention: Part 2

- 1) $d_{ox} = 2.5 \sim 3 \text{ nm}$ $\rightarrow d_{ox} \uparrow$, |read "-1" current| \uparrow .
- 2) d_{ox} > 3 nm (simulation)
 > d_{ox} ↑, |read "-1" current| ↓.

| read "-1" current | ∝ n_{excess}

Outline

- Introduction
 - **→ Metal-Insulator-Semiconductor Tunnel Diode (MIS TD)**
 - >Transient Current in MIS TDs
- Results and Discussion
 - **Experiments**
 - >TCAD Simulation
- Conclusion

Conclusion

Investigated "transient current – dox" relation of Trench MIS TDs by (1) experiments and (2) TCAD simulation.

- $d_{ox} = 2.5 \sim 3 \text{ nm}$: $d_{ox} \uparrow, P_t \downarrow, n_{excess} \uparrow, |Transient current| \uparrow$. $d_{ox} = 3 \sim 5 \text{ nm}$: $d_{ox} \uparrow, C_{ox} \downarrow, n_{excess} \downarrow, |Transient current| \downarrow$.

|Transient current| \propto excess electrons (n_{excess}).

Thank you for listening!

Presenter: Jian-Yu Lin

Acknowledgement

• This work was supported by the Ministry of Science and Technology of Taiwan under Contracts MOST 110-2221-E-002-140 and 110-2622-8-002-014.

Q&A

Memory Retention

Turn Around in Experiment

- Y-axis: Current Window ≈ |read "-1" current |.
- **X-axis:** d_{ox} from 3.25 ~ 2.45 nm.

Transient TCAD with Different EOTs

x (μm)

Electron concentration under linear scale (different d_{ox})

x (μm)

TCAD Simulation: Models

Physical Models

- 1. Concentration-dependent mobility (conmob)
- 2. SRH (srh)
- 3. Auger (auger)
- 4. Band gap narrowing (bgn)
- 5. Field-dependent mobility (fldmob)
- 6. Quantum/direct tunneling (qtunnsc)
- 7. Bohm quantum potential (bqp) models

consider distribution of electrons in the inversion layer (quantum confinement)

Trench Structure

Device Structure

Radio Corporation of America (RCA) clean

Ultra-thin oxide grown by anodic oxidation

Rapid thermal annealing (RTA) in N_2 at 950 °C for 15 s

Thermal evaporate 250nm Al as top electrode

Photolithography

Al wet etching

ℜ Si substrate etching by RIE

Radio Corporation of America (RCA) clean

Ultra-thin oxide grown by anodic oxidation

RTA in N₂ at 950 °C for 15 s

Thermal evaporate 250nm Al as top electrode

Photolithography

Al wet etching

ℜ Si substrate etching by RIE

Radio Corporation of America (RCA) clean

Ultra-thin oxide grown by anodic oxidation

RTA in N₂ at 950 °C for 15 s

Thermal evaporate 250nm Al as top electrode

Photolithography

Al wet etching

ℜ Si substrate etching by RIE

★ Trench MIS only process

Radio Corporation of America (RCA) clean

Ultra-thin oxide grown by anodic oxidation

RTA in N₂ at 950 °C for 15 s

Thermal evaporate 250nm Al as top electrode

Photolithography

Al wet etching

Al₂O₃ layer (passivation layer):

protect Si substrate from being exposed to air.

- ℜ Remove native oxide by BOE
- ★ Deposit Al₂O₃ by in-situ oxidation of dc sputtering Al target in Ar/O₂ ambient

Lift-off photoresist (PR)

★ Furnace annealing in N₂ at 200 °C for 10 minutes

Backside native oxide removal

200 nm Al back electrode deposition

- ℜ Remove native oxide by BOE
- ☼ Deposit Al₂O₃ by in-situ oxidation of dc sputtering Al target in Ar/O₂ ambient

Lift-off photoresist (PR)

★ Furnace annealing in N₂ at 200 °C for 10 minutes

Backside native oxide removal

200 nm Al back electrode deposition

- ℜ Remove native oxide by BOE
- Deposit Al₂O₃ by in-situ oxidation of dc sputtering Al target in Ar/O₂ ambient

Lift-off photoresist (PR)

★ Furnace annealing in N₂ at 200 °C for 10 minutes

Backside native oxide removal

200 nm Al back electrode deposition