

Maria C. Torres

Ing. Electrónica (UNAL)

M.E. Ing. Eléctrica (UPRM)

Ph.D. Ciencias e Ingeniería de la Computación y la

Información (UPRM)

Profesora asociada

Dpto. Ciencias de la Computación y la Decisión

mctorresm@unal.edu.co

HORARIO DE ATENCIÓN: Martes 10:00 am a

12:00 m - Oficina 313 M8A

- ☐ Introducción: revisión fundamentos y POO
- Análisis de complejidad
- Arreglos
- ☐ Listas enlazadas
- ☐ Pilas y colas
- ☐ Heap
- Arboles binarios
- ☐ Tablas hash
- ☐ Grafos

Historia

Representaciones matemáticas introducidas por Euler en 1736 para representar vértices que pueden relacionarse libremente entre si mediante aristas.

Aplicaciones

- □La representación de una red de carreteras
- □Etapas de un proceso industrial
- Redes de telecomunicación

DEFINICIÓN

Un grafo G = (V, E) se define por:

- Un conjunto de *n* vértices *V*, a los cuales se hace referencia por sus índices
- Un conjunto de m aristas E, que conectan vértices entre sí.
- Una arista es un par de vértices, indicados de la forma < i, j >, que indica que el vértice i está conectado al vértice j.

Dependiendo de si el orden de los vértices en las aristas importa o no tenemos dos clases de grafos:

- Grafo dirigido: El orden importa, es decir < i, j >≠< j, i >. Si el vértice i está conectado al vértice j, no implica que el vértice j está conectado al vértice i.
- Grafo no dirigido: El orden no importa, < i, j > = < j, i >.

PageRank: algoritmo usado por Google en su buscador.

Tendencia de publicaciones

Camino más corto

Trafico aéreo

Representación - Listas de adyacencia:

- proporciona un camino compacto para representar grafos esparcidos, es decir grafos con pocas aristas.
- □Esta representación consiste en un arreglo *Adj* con |*V*| listas, una para cada vértice.
- Para cada $u \in V$, la lista de adyacencia Adj[u] contiene todos los vértices v tal que exista la arista < u, v >.
- \square Si G es un **grafo dirigido**, la suma de las longitudes de todas las listas de adyacencia es |E|.
- \square Si G es un **grafo no dirigido**, la suma de las longitudes de todas las listas de adyacencia es 2|E|.

Representación - Matriz de adyacencia:

- □Cuando el grafo es denso, es decir tiene muchas aristas, o deseamos saber rápidamente si dos nodos están conectados, la representación más apropiada es la **matriz de** adyacencia.
- □ Para esta representación de un grafo G=(V,E) asumimos que los vértices están enumerados de 1...|V|
- La matriz de adyacencia es una matriz |V|*|V| tal que: $a_{ij} = \begin{cases} 1 & si < i, j > \in E \\ 0 & en otro caso \end{cases}$

$$a_{ij} = \begin{cases} 1 & si < i, j > \in E \\ 0 & en otro \ caso \end{cases}$$

	1	2	3	4	5
1	0	1	0	0	1
2	1	0	1	1	1
3	0	1 0 1	0	1	0
2 3 4	0 1 0 0	1	1	0	1
5	1	1	0	1	0

Representación - Grafos dirigidos

	1	2	3	4	5	6
1	0	1	0	1	0	0
2	0	0	0	0	1	0
3	0	0	0	0	1	1
4	0	1	0	0	0	0
5	0	0	0	1	0	0
6	0	0	0	1 0 0 0 1	0	1

Conceptos básicos

Grafos ponderados:

La arista tiene asociada un valor numérico relacionado con un costo. Este costo se almacena también en la lista o matriz de adyacencia.

Vértices adyacentes:

Dos vértices u y v son adyacentes si existe una arista que los conecte, es decir, $< u, v > \in E$

Camino:

Entre dos vertices u y v, un camino es una secuencia de vértices tal que cada par de vértices contiguos forman una arista

Estructura de Datos

Conceptos básicos

Camino simple:

Camino donde no hay vértices repetidos

Grado de un vértice:

En un grafo no dirigido es igual al número de vértices adyacentes al vértice.

Grado de un vertice:

En un grafo dirigido se distingue entre el grado interior de un vértice (número de aristas que llegan a él) y grado exterior (número de aristas que salen de él).

Conceptos básicos

Ciclo:

Un camino simple donde el vértice inicial y el final son el mismo.

Grafo acíclico:

Todos sus posibles caminos son simples, no existen ciclos.

Un árbol es un grafo no dirigido y acíclico

Grado conectado:

Existe como mínimo un camino entre cualquier par de vértices distintos

Conceptos básicos

Grafo completamente conectado:

Para cada vértice existe aristas que lo conecten con los n-1 vértices restantes.

Costo de un camino:

Suma de los costos o pesos de las aristas que recorre el camino, si el grafo no es ponderado cada arista tiene un peso igual a 1.

Ruta optima:

Camino de costo mínimo.

Costo computacional:

Operación	Matriz de adyacencia	Lista de adyacencia
Uso de memoria	$\theta(n^2)$	$\theta(n+m)$
Existencia de arista	0(1)	O(grado(i))
Recorrido vértices adyacentes	$\theta(n)$	$\theta(grado(i))$
Recorrido de todas las aristas	$\theta(n^2)$	$\theta(m)$
Insertar/eliminar arista	0(1)	O(grado(i))
Insertar/eliminar vértice	$O(n^2)$	O(n)

Ejemplo:

Vamos a construir la representación para cada uno de estos grafos.

Ejemplo:

Vamos a construir la representación para cada uno de estos grafos.

Ejemplo:

Vamos a construir la representación para cada uno de estos grafos.

	A	В	С	D	E	F	G	Н
A	0	1	0	0	0	1	0	0
В	0	0	1	0	1	0	0	0
С	0	0	0	1	0	0	0	0
D	0	1	0	0	0	0	0	1
Ε	0	0	0	1	0	0	1	0
F	0	0	0	0	1	0	1	0
G	0	0	0	0	0	1	0	0
Н	0	0	0	0	0	0	1	0

Recorrido

☐Se emplean cuando se requiere recorrer (visitar) de forma sistemática todos los vértices del grafo

□Dos casos:

- ■No importa el orden de visita
- □El orden de visita depende de las aristas existentes
 - ☐ Recorrido en profundidad
 - ☐ Recorrido en anchura
 - ☐ Recorrido por orden topológico
- □Estas estrategias utilizan otras estructuras de datos (e.g. colas) para almacenar los vértices visitados

- □Se emplea en grafos dirigidos, para grafos no dirigidos se considera cada arista como un par de aristas dirigidas.
 - ■Se empieza visitando un nodo seleccionado de forma aleatoria.
 - □Se recorre en profundidad los componentes conexos, es decir, se examina los caminos hasta que se llega a nodos ya visitados o sin sucesores.
 - □Si después de visitar todos los sucesores del primer nodo todavía quedan nodos por visitar, se repite el proceso a partir de cualquiera de los nodos no visitados.
- ■No hay un único recorrido en profundidad, sino un conjunto de ellos.
- □El recorrido depende del vértice inicial y del orden de visita.
- □El orden de visita puede interpretarse como un árbol: árbol de expansión en profundidad asociada al grafo

Pila
$$S = \{ s \}$$

$$Pila S = \{ r, s \}$$

$$Pila S = \{ v, r, s \}$$

Pila
$$S = \{ w, v, r, s \}$$

Recorrido en profundidad

Pila $S = \{ x, w, v, r, s \}$

Pila
$$S = \{ y, x, w, v, r, s \}$$

Recorrido en profundidad

Pila $S = \{ u, y, x, w, v, r, s \}$

Recorrido en profundidad

Pila $S = \{ t, u, y, x, w, v, r, s \}$


```
DFS(G)
1. FOR i= 0 TO i<V.length
Visitado[i] = false
3. FOR i= 0 TO i<V.length
4. IF (!Visitado[i])
         DFS-VISIT(G,i)
DFS-VISIT(G,i)
1. Visitado[i] = true
2. FOR each node j adjacent to i
3. ___IF (!Visitado[j])
         DFS-VISIT(G, j)
```

```
DFS(G)
1. FOR i= 0 TO i<V.length
      Visitado[i] = false
3. FOR i= 0 TO i<V.length</pre>
4. IF (!Visitado[i])
          DFS-VISIT(G,i)
DFS-VISIT(G,i)
1. Visitado[i] = true
2. FOR each node j adjacent to i
3. ___IF (!Visitado[j])
          DFS-VISIT(G, j)
```


	0	1	2	3	4	5	6	7
0	0	1	0	1	0	0	0	0
1	1	0	1	0	0	0	0	0
2	0	1	0	0	0	0	0	0
3	1	0	0	0	1	0	0	1
4	0	0	0	1	0	1	1	1
5	0	0	0	0	1	0	1	0
6	0	0	0	0	1	1	0	1
7	0	0	0	1	1	0	1	0

Recorrido en profundidad

```
DFS(G)
   1. FOR i= 0 TO i<V.length
         Visitado[i] = false
⇒ 3. FOR i= 0 TO i<V.length
   4. IF (!Visitado[i])
             DFS-VISIT(G,i)
   DFS-VISIT(G,i)
   1. Visitado[i] = true
   2. FOR each node j adjacent to i
      IF (!Visitado[j])
             DFS-VISIT(G, j)
```


DFS-VISIT(G,0)

	0	1	2	3	4	5	6	7
0	0	1	0	1	0	0	0	0
1	1	0	1	0	0	0	0	0
2	0	1	0	0	0	0	0	0
3	1	0	0	0	1	0	0	1
4	0	0	0	1	0	1	1	1
5	0	0	0	0	1	0	1	0
6	0	0	0	0	1	1	0	1
7	0	0	0	1	1	0	1	0

Recorrido en profundidad

```
DFS(G)
   1. FOR i= 0 TO i<V.length
         Visitado[i] = false
⇒ 3. FOR i= 0 TO i<V.length
   4. IF (!Visitado[i])
             DFS-VISIT(G,i)
   DFS-VISIT(G,i)
   1. Visitado[i] = true
   2. FOR each node j adjacent to i
      IF (!Visitado[j])
             DFS-VISIT(G, j)
```


DFS-VISIT(G,0)

	0	1	2	3	4	5	6	7	
0	0	1	0	1	0	0	0	0	
1	1	0	1	0	0	0	0	0	
2	0	1	0	0	0	0	0	0	
3	1	0	0	0	1	0	0	1	
4	0	0	0	1	0	1	1	1	
5	0	0	0	0	1	0	1	0	
6	0	0	0	0	1	1	0	1	
7	0	0	0	1	1	0	1	0	

Recorrido en profundidad

```
DFS(G)
   1. FOR i= 0 TO i<V.length
         Visitado[i] = false
⇒ 3. FOR i= 0 TO i<V.length
   4. IF (!Visitado[i])
             DFS-VISIT(G,i)
   DFS-VISIT(G,i)
   1. Visitado[i] = true
   2. FOR each node j adjacent to i
       IF (!Visitado[j])
             DFS-VISIT(G, j)
```


DFS-VISIT(G,1)

	0	1	2	3	4	5	6	7	
0	0	1	0	1	0	0	0	0	
1	1	0	1	0	0	0	0	0	
2	0	1	0	0	0	0	0	0	
3	1	0	0	0	1	0	0	1	
4	0	0	0	1	0	1	1	1	
5	0	0	0	0	1	0	1	0	
6	0	0	0	0	1	1	0	1	
7	0	0	0	1	1	0	1	0	

Recorrido en profundidad

```
DFS(G)
   1. FOR i= 0 TO i<V.length
          Visitado[i] = false
⇒ 3. FOR i= 0 TO i<V.length
   4. IF (!Visitado[i])
             DFS-VISIT(G,i)
   DFS-VISIT(G,i)
   1. Visitado[i] = true
\implies 2. FOR each node j adjacent to i
   3. ___IF (!Visitado[j])
             DFS-VISIT(G, j)
```


DFS-VISIT(G,1)

	0	1	2	3	4	5	6	7
0	0	1	0	1	0	0	0	0
1	1	0	1	0	0	0	0	0
2	0	1	0	0	0	0	0	0
3	1	0	0	0	1	0	0	1
4	0	0	0	1	0	1	1	1
5	0	0	0	0	1	0	1	0
6	0	0	0	0	1	1	0	1
7	0	0	0	1	1	0	1	0

Recorrido en profundidad

```
DFS(G)
   1. FOR i= 0 TO i<V.length
          Visitado[i] = false
⇒ 3. FOR i= 0 TO i<V.length
   4. IF (!Visitado[i])
             DFS-VISIT(G,i)
   DFS-VISIT(G,i)
   1. Visitado[i] = true
   2. FOR each node j adjacent to i
   3. ___IF (!Visitado[j])
             DFS-VISIT(G,j)
```


DFS-VISIT(G,2)

	0	1	2	3	4	5	6	7
0	0	1	0	1	0	0	0	0
1	1	0	1	0	0	0	0	0
2	0	1	0	0	0	0	0	0
3	1	0	0	0	1	0	0	1
4	0	0	0	1	0	1	1	1
5	0	0	0	0	1	0	1	0
6	0	0	0	0	1	1	0	1
7	0	0	0	1	1	0	1	0

Recorrido en profundidad

```
DFS(G)
   1. FOR i= 0 TO i<V.length
         Visitado[i] = false
⇒ 3. FOR i= 0 TO i<V.length
   4. IF (!Visitado[i])
             DFS-VISIT(G,i)
   DFS-VISIT(G,i)
   1. Visitado[i] = true
   2. FOR each node j adjacent to i
      IF (!Visitado[j])
             DFS-VISIT(G, j)
```


DFS-VISIT(G,2)

	0	1	2	3	4	5	6	7
O	0	1	0	1	0	0	0	0
1	1	0	1	0	0	0	0	0
2	0	1	0	0	0	0	0	0
3	1	0	0	U	1	0	0	1
4	0	0	0	1	0	1	1	1
5	0	0	0	0	1	0	1	0
6	0	0	0	0	1	1	0	1
7	0	0	0	1	1	0	1	0

Recorrido en profundidad

```
DFS(G)
   1. FOR i= 0 TO i<V.length
          Visitado[i] = false
⇒ 3. FOR i= 0 TO i<V.length
   4. IF (!Visitado[i])
             DFS-VISIT(G,i)
   DFS-VISIT(G,i)
   1. Visitado[i] = true
→ 2. FOR each node j adjacent to i
   3. ___IF (!Visitado[j])
             DFS-VISIT(G, j)
```


DFS-VISIT(G,2)

	0	1	2	3	4	5	6	7
0	0	1	0	1	0	0	0	0
1	1	0	1	0	0	0	0	0
2	0	1	0	0	0	0	0	0
3	1	0	0	U	1	0	0	1
4	0	0	0	1	0	1	1	1
5	0	0	0	0	1	0	1	0
6	0	0	0	0	1	1	0	1
7	0	0	0	1	1	0	1	0

Recorrido en profundidad

```
DFS(G)
   1. FOR i= 0 TO i<V.length
          Visitado[i] = false
⇒ 3. FOR i= 0 TO i<V.length
   4. IF (!Visitado[i])
             DFS-VISIT(G,i)
   DFS-VISIT(G,i)
   1. Visitado[i] = true
→ 2. FOR each node j adjacent to i
   3. ___IF (!Visitado[j])
             DFS-VISIT(G, j)
```


DFS-VISIT(G,0)

	0	1	2	3	4	5	6	7
0	0	1	0	1	0	0	0	0
1	1	0	1	0	0	0	0	0
2	0	1	0	0	0	0	0	0
3	1	0	0	0	1	0	0	1
4	0	0	0	1	0	1	1	1
5	0	0	0	0	1	0	1	0
6	0	0	0	0	1	1	0	1
7	0	0	0	1	1	0	1	0

Recorrido en profundidad

```
DFS(G)
   1. FOR i= 0 TO i<V.length
          Visitado[i] = false
⇒ 3. FOR i= 0 TO i<V.length
   4. IF (!Visitado[i])
             DFS-VISIT(G,i)
   DFS-VISIT(G,i)
   1. Visitado[i] = true
→ 2. FOR each node j adjacent to i
   3. ___IF (!Visitado[j])
             DFS-VISIT(G, j)
```


DFS-VISIT(G,3)

	0	1	2	3	4	5	6	7
0	0	1	0	1	0	0	0	0
1	1	0	1	0	0	0	0	0
2	0	1	0	0	0	0	0	0
3	1	0	0	0	1	0	0	1
4	0	0	0	1	0	1	1	1
5	0	0	0	0	1	0	1	0
6	0	0	0	0	1	1	0	1
7	0	0	0	1	1	0	1	0

Recorrido en profundidad

```
DFS(G)
   1. FOR i= 0 TO i<V.length
          Visitado[i] = false
⇒ 3. FOR i= 0 TO i<V.length
   4. IF (!Visitado[i])
             DFS-VISIT(G,i)
   DFS-VISIT(G,i)
   1. Visitado[i] = true
→ 2. FOR each node j adjacent to i
   3. ___IF (!Visitado[j])
             DFS-VISIT(G, j)
```


DFS-VISIT(G,3)

	0	1	2	3	4	5	6	7
0	0	1	0	1	0	0	0	0
1	1	0	1	0	0	0	0	0
2	0	1	0	0	0	0	0	0
3	1	0	0	0	1	0	0	1
4	0	0	0	1	0	1	1	1
5	0	0	0	0	1	0	1	0
6	0	0	0	0	1	1	0	1

Recorrido en profundidad

```
DFS(G)
   1. FOR i= 0 TO i<V.length
          Visitado[i] = false
⇒ 3. FOR i= 0 TO i<V.length
   4. IF (!Visitado[i])
             DFS-VISIT(G,i)
   DFS-VISIT(G,i)
   1. Visitado[i] = true
→ 2. FOR each node j adjacent to i
   3. ___IF (!Visitado[j])
             DFS-VISIT(G, j)
```


DFS-VISIT(G,4)

	0	1	2	3	4	5	6	7
0	0	1	0	1	0	0	0	0
1	1	0	1	0	0	0	0	0
2	0	1	0	0	0	0	0	0
3	1	0	0	0	1	0	0	1
4	0	0	0	1	0	1	1	1
5	0	U	U	U	T	0	1	0
6	0	0	0	0	1	1	0	1
7	0	0	0	1	1	0	1	0

Recorrido en profundidad

```
DFS(G)
   1. FOR i= 0 TO i<V.length
          Visitado[i] = false
⇒ 3. FOR i= 0 TO i<V.length
   4. IF (!Visitado[i])
             DFS-VISIT(G,i)
   DFS-VISIT(G,i)
   1. Visitado[i] = true
→ 2. FOR each node j adjacent to i
   3. ___IF (!Visitado[j])
             DFS-VISIT(G, j)
```


DFS-VISIT(G,5)

	0	1	2	3	4	5	6	7
0	0	1	0	1	0	0	0	0
1	1	0	1	0	0	0	0	0
2	0	1	0	0	0	0	0	0
3	1	0	0	0	1	0	0	1
4	0	0	0	1	0	1	1	1
5	0	0	0	0	1	0	1	0
6	0	0	0	0	1	1	0	1
7	0	0	0	1	1	0	1	0

DFS(G)

Recorrido en profundidad

```
1. FOR i= 0 TO i<V.length
         Visitado[i] = false
⇒ 3. FOR i= 0 TO i<V.length
   4. IF (!Visitado[i])
             DFS-VISIT(G,i)
   DFS-VISIT(G,i)
   1. Visitado[i] = true
→ 2. FOR each node j adjacent to i
   3. ___IF (!Visitado[j])
             DFS-VISIT(G, j)
```


DFS-VISIT(G,6)

		0	1	2	3	4	5	6	7
	0	0	1	0	1	0	0	0	0
	1	1	0	1	0	0	0	0	0
	2	0	1	0	0	0	0	0	0
	3	1	0	0	0	1	0	0	1
	4	0	0	0	1	0	1	1	1
	5	0	0	0	0	1	0	1	0
1	6	0	0	0	0	1	1	0	1
	7	0	0	0	1	1	0	1	0

Recorrido en profundidad

```
DFS(G)
   1. FOR i= 0 TO i<V.length</pre>
          Visitado[i] = false
⇒ 3. FOR i= 0 TO i<V.length
   4. IF (!Visitado[i])
             DFS-VISIT(G,i)
   DFS-VISIT(G,i)
   1. Visitado[i] = true
→ 2. FOR each node j adjacent to i
   3. ___IF (!Visitado[j])
             DFS-VISIT(G, j)
```


DFS-VISIT(G,7)

	0	1	2	3	4	5	6	7
0	0	1	0	1	0	0	0	0
1	1	0	1	0	0	0	0	0
2	0	1	0	0	0	0	0	0
3	1	0	0	0	1	0	0	1
4	0	0	0	1	0	1	1	1
5	0	0	0	0	1	0	1	0
6	0	0	0	0	1	1	0	1
7	0	0	0	1	1	0	1	0

Recorrido en anchura

- ■Se empieza visitando un nodo seleccionado de forma aleatoria.
- □Luego se visitan todos sus vértices adyacentes
- A continuación, los adyacentes a estos y así sucesivamente
- □El algoritmo utiliza una cola para almacenar los vértices

2024 Estructura de Datos 49

Cola
$$Q = \{ s \}$$

Cola Q =
$$\{ r, w \}$$

Cola Q =
$$\{ w, v \}$$

Cola Q =
$$\{v, s, t, x\}$$

Cola Q =
$$\{s, t, x\}$$

Cola Q =
$$\{t, x\}$$

Cola Q =
$$\{x, w, x, u\}$$

Cola Q =
$$\{ w, x, u, w, t, u, y \}$$

Recorrido en anchura

Cola $Q = \{x, u, w, t, u, y\}$

Cola Q = $\{ u, w, t, u, y \}$

Cola Q =
$$\{w, t, u, y\}$$

Cola Q =
$$\{ w, t, u, y, t, x, y \}$$

Cola Q =
$$\{t, u, y, t, x, y\}$$

Cola Q =
$$\{ u, y, t, x, y \}$$

Cola Q =
$$\{y, t, x, y\}$$

Cola Q =
$$\{ t, x, y, u, x \}$$

Cola Q =
$$\{t, x, y, u, x\}$$

Cola
$$Q = \{ \}$$

```
BFS(G)
1. FOR i= 0 TO i<V.length
2.     Visitado[i] = false
3. FOR i= 0 TO i<V.length
4.     IF (!Visitado[i])
5.     BFS-VISIT(G,i)</pre>
```

```
BFS-VISIT(G,i)
1. Queue Q = new Queue()
2. Visitado[i] = true
3. Q.enqueue(vi)
4. WHILE (!Q.isEmpty())
5. X = Q.dequeue();
6. FOR each node j adjacent to X
        IF (!Visitado[j])
7.
            Visitado[j] = true
8.
            Q.enqueue(vj)
9.
```

Tiempos de ejecución

Usando la representación por listas de adyacencia

Recorrido en profundidad (DFS)	O(V + E)
Recorrido en anchura (BFS)	O(V + E)

Nota

- □El DFS permite encontrar los nodos conectados al grafo, resolver rompecabezas, encontrar nodos fuertemente conectados
- □El BFS permite encontrar el camino más corto entre 2 nodos medido por el número de aristas, probar si un grafo es bipartito, en sistemas de navegación GPS permite encontrar localizaciones vecinas

Ejemplo

□Vamos a realizar los recorridos DFS y BFS para los siguientes grafos

Árbol de expansión mínima - Minimum Spanning Tree:

☐ Ejemplo de aplicación: Enviar un mensaje a todos los nodos de una red. Los nodos corresponden a los routers de la red y las aristas corresponde a los enlaces físicos entre ellos.

Árbol de expansión mínima - Minimum Spanning Tree:

☐ Ejemplo de aplicación: Entrega de correspondencia exprés. Los nodos corresponden a los puntos de entrega.

Árbol de expansión mínima - Minimum Spanning Tree:

Dado un grafo pesado G=(V,E) sin dirección y sin componentes desconectados:

Generic_MST(G,w)

- 1. A = null
- 2. WHILE A no sea un arbol de expansión
- 3. Encuentre una artista (u,v) segura para
- 4. $A=A\cup(u,v)$
- 5. return A

- □Varios algoritmos implementan esta idea genérica:
 - Kruskal
 - Prim
- □Difieren en la forma en que seleccionan la arista segura

- ☐Se marca la arista con menor peso. Si hay más de una, se elige cualquiera de ellas.
- De las aristas restantes, se marca la que tenga menor valor, si hay más de una, se elige cualquiera de ellas.
- Repetir el paso 2 siempre que la arista elegida no forme un ciclo con las ya seleccionadas.
- □El proceso termina cuando todos los nodos están en alguna de las aristas seleccionadas.

Minimum Spanning Tree - Kruskal

```
MST-KRUSKAL (G, w)

1 A = \emptyset

2 for each vertex v \in G.V

3 MAKE-SET (v)

4 sort the edges of G.E into nondecreasing order by weight w

5 for each edge (u, v) \in G.E, taken in nondecreasing order by weight if FIND-SET (u) \neq FIND-SET (v)

7 A = A \cup \{(u, v)\}

UNION (u, v)

9 return A
```

2024

- □Incrementa continuamente el tamaño de un árbol, comenzando con un vértice inicia al que se le agregan sucesivamente vértices cuya distancia a los anteriores es mínima.
- ☐ En cada paso, las aristas a considerar son aquellas que inciden en vértices que ya pertenecen al árbol.
- □Algoritmos de Prim
- \square Se elige un vértice u de G y se considera el árbol S = {u}
- ☐Se considera la arista e de mínimo peso que une un vértice en S y un vértice que no pertenece a S
- □Si el número de aristas de T es n-1 el algoritmo termina, sino repite el paso 2.

