

1. (CURRENTLY AMENDED) A compound of Formula (I)

5 or a stereoisomer or a pharmaceutically acceptable salt thereof, wherein:

Z is selected from a bond, -C(O)-, -C(O)NH-, -C(S)NH-, -SO₂-, and -SO₂NH-;

10

X is selected from -NR¹⁷-, -O-, and -CHR¹⁶NR¹⁷-;

R¹ is selected from a C₆-10 aryl group substituted with 0-5 R⁴;

15

R² is selected from a C₆-10 aryl group substituted with 0-5 R⁵;

R³ is selected from H, (CRR)_qOH, (CRR)_qSH, (CRR)_qOR^{3d},

20 (CRR)_qS(O)_pR^{3d}, (CRR)_rC(O)R^{3b}, (CRR)_qNR^{3a}R^{3a},

(CRR)_rC(O)NR^{3a}R^{3a}, (CRR)_rC(O)NR^{3a}OR^{3d},

(CRR)_qSO₂NR^{3a}R^{3a}, (CRR)_rC(O)OR^{3d}, a (CRR)_r-C₃₋₁₀

carbocyclic residue substituted with 0-5 R^{3e}, and a (CRR)_r-5-10 membered heterocyclic system

25

containing 1-4 heteroatoms selected from N, O, and S, substituted with 0-3 R^{3e};

with the proviso that R³ is not H if R⁶ is H;

30 R^{3a}, at each occurrence, is independently selected from H, methyl substituted with 0-1 R^{3c}, C₂₋₆ alkyl

substituted with 0-3 R^{3e}, C₃₋₈ alkenyl substituted
with 0-3 R^{3e}, C₃₋₈ alkynyl substituted with 0-3
R^{3e}, (CH₂)_rC₃₋₆ cycloalkyl, a (CH₂)_r-C₃₋₁₀
5 carbocyclic residue substituted with 0-5 R^{3e}, and
a (CH₂)_r-5-10 membered heterocyclic system
containing 1-4 heteroatoms selected from N, O, and
S, substituted with 0-3 R^{3e};

R^{3b}, at each occurrence, is independently selected from
10 C₁₋₆ alkyl substituted with 0-3 R^{3e}, C₂₋₈ alkenyl
substituted with 0-3 R^{3e}, C₂₋₈ alkynyl substituted
with 0-3 R^{3e}, a (CH₂)_r-C₃₋₆ carbocyclic residue
substituted with 0-2 R^{3e}, and a (CH₂)_r-5-6
15 membered heterocyclic system containing 1-4
heteroatoms selected from N, O, and S, substituted
with 0-3 R^{3e};

R^{3c} is independently selected from -C(O)R^{3b}, -C(O)OR^{3d},
-C(O)NR^{3f}R^{3f}, and (CH₂)_rphenyl;

20 R^{3d}, at each occurrence, is independently selected from
H, methyl, -CF₃, C₂₋₆ alkyl substituted with 0-3
R^{3e}, C₃₋₆ alkenyl substituted with 0-3 R^{3e}, C₃₋₆
alkynyl substituted with 0-3 R^{3e}, a C₃₋₁₀
25 carbocyclic residue substituted with 0-3 R^{3e}, and
a (CH₂)_r-5-6 membered heterocyclic system
containing 1-4 heteroatoms selected from N, O, and
S, substituted with 0-3 R^{3e};

R^{3e}, at each occurrence, is selected from C₁₋₆ alkyl, C₂₋₈ alkenyl, C₂₋₈ alkynyl, C₃₋₆ cycloalkyl, Cl, F, Br, I, CN, NO₂, (CF₂)_rCF₃, (CH₂)_rOC₁₋₅ alkyl, OH, SH, (CH₂)_rSC₁₋₅ alkyl, (CH₂)_rNR^{3f}R^{3f}, and (CH₂)_rphenyl;

R^{3f}, at each occurrence, is selected from H, C₁₋₆ alkyl, and C₃₋₆ cycloalkyl;

10 R, at each occurrence, is independently selected from H, C₁₋₆ alkyl, C₂₋₈ alkenyl, C₂₋₈ alkynyl, (CH₂)_rC₃₋₆ cycloalkyl, (CHR)_rC(O)NR^{3a}R^{3a}, and (CHR)_rC(O)OR^{3d}, and (CH₂)_rphenyl substituted with R^{3e};

15 R⁴, at each occurrence, is selected from C₁₋₈ alkyl, C₂₋₈ alkenyl, C₂₋₈ alkynyl, (CH₂)_rC₃₋₆ cycloalkyl, Cl, Br, I, F, NO₂, CN, (CR'R')_rNR^{4a}R^{4a}, (CR'R')_rOH, (CR'R')_rO(CR'R')_rR^{4d}, (CR'R')_rSH, (CR'R')_rC(O)H, (CR'R')_rS(CR'R')_rR^{4d}, (CR'R')_rC(O)OH, (CR'R')_rC(O)(CR'R')_rR^{4b}, (CR'R')_rC(O)NR^{4a}R^{4a}, (CR'R')_rNR^{4f}C(O)(CR'R')_rR^{4b}, (CR'R')_rC(O)O(CR'R')_rR^{4d}, (CR'R')_rOC(O)(CR'R')_rR^{4b}, (CR'R')_rNR^{4f}C(O)O(CR'R')_rR^{4d}, (CR'R')_rOC(O)NR^{4a}R^{4a}, (CR'R')_rNR^{6a}C(S)NR^{6a}(CR'R')_rR^{6d}, (CR'R')_rNR^{4a}C(O)NR^{4a}R^{4a}, (CR'R')_rC(=NR^{4f})NR^{4a}R^{4a}, (CR'R')_rNHC(=NR^{4f})NR^{4f}R^{4f}, (CR'R')_rS(O)_p(CR'R')_rR^{4b}, (CR'R')_rS(O)₂NR^{4a}R^{4a}, (CR'R')_rNR^{6f}S(O)₂NR^{6a}R^{6a}, (CR'R')_rNR^{4f}S(O)₂(CR'R')_rR^{4b}, C₁₋₆ haloalkyl, C₂₋₈ alkenyl substituted with 0-3 R', C₂₋₈ alkynyl

substituted with 0-3 R', and (CR'R')_rphenyl
substituted with 0-3 R^{4e};

alternatively, two R⁴ on adjacent atoms on R¹ may join
5 to form a cyclic acetal;

R^{4a}, at each occurrence, is independently selected from
H, methyl substituted with 0-1R^{4g}, C₂₋₆ alkyl
substituted with 0-2 R^{5e}, C₃₋₈ alkenyl substituted
10 with 0-2 R^{5e}, C₃₋₈ alkynyl substituted with 0-2
R^{5e}, a (CH₂)_r-C₃₋₁₀ carbocyclic residue substituted
with 0-5 R^{4e}, and a (CH₂)_r-5-10 membered
heterocyclic system containing 1-4 heteroatoms
selected from N, O, and S, substituted with 0-2
15 R^{4e};

R^{4b}, at each occurrence, is selected from C₁₋₆ alkyl
substituted with 0-2 R^{5e}, C₃₋₈ alkenyl substituted
with 0-2 R^{5e}, C₃₋₈ alkynyl substituted with 0-2
20 R^{5e}, a (CH₂)_rC₃₋₆ carbocyclic residue substituted
with 0-3 R^{4e}, and a (CH₂)_r-5-6 membered
heterocyclic system containing 1-4 heteroatoms
selected from N, O, and S, substituted with 0-2
R^{4e};

25 R^{4d}, at each occurrence, is selected from C₃₋₈ alkenyl
substituted with 0-2 R^{5e}, C₃₋₈ alkynyl substituted
with 0-2 R^{5e}, methyl, CF₃, C₂₋₆ alkyl substituted
with 0-3 R^{4e}, a (CH₂)_r-C₃₋₁₀ carbocyclic residue
30 substituted with 0-3 R^{4e}, and a (CH₂)_r-5-6
membered heterocyclic system containing 1-4

heteroatoms selected from N, O, and S, substituted with 0-3 R^{4e};

5 R^{4e}, at each occurrence, is selected from C₁₋₆ alkyl, C₂₋₈ alkenyl, C₂₋₈ alkynyl, (CH₂)_rC₃₋₆ cycloalkyl, Cl, F, Br, I, CN, NO₂, (CF₂)_rCF₃, (CH₂)_rOC₁₋₅ alkyl, OH, SH, (CH₂)_rSC₁₋₅ alkyl, (CH₂)_rNR^{4f}R^{4f}, and (CH₂)_rphenyl;

10 R^{4f}, at each occurrence, is selected from H, C₁₋₅ alkyl, and C₃₋₆ cycloalkyl, and phenyl;

R^{4g} is independently selected from -C(O)R^{4b}, -C(O)OR^{4d}, -C(O)NR^{4f}R^{4f}, and (CH₂)_rphenyl;

15 R⁵, at each occurrence, is selected from C₁₋₈ alkyl, C₂₋₈ alkenyl, C₂₋₈ alkynyl, (CH₂)_rC₃₋₆ cycloalkyl, Cl, Br, I, F, NO₂, CN, (CR'R')_rNR^{5a}R^{5a}, (CR'R')_rOH, (CR'R')_rO(CR'R')_rR^{5d}, (CR'R')_rSH, (CR'R')_rC(O)H, (CR'R')_rS(CR'R')_rR^{5d}, (CR'R')_rC(O)OH, (CR'R')_rC(O)(CR'R')_rR^{5b}, (CR'R')_rC(O)NR^{5a}R^{5a}, (CR'R')_rNR^{5f}C(O)(CR'R')_rR^{5b}, (CR'R')_rC(O)O(CR'R')_rR^{5d}, (CR'R')_rOC(O)(CR'R')_rR^{5b}, CR'R')_rNR^{5f}C(O)O(CR'R')_rR^{5d}, (CR'R')_rOC(O)NR^{5a}R^{5a}, 20 (CR'R')_rNR^{5a}C(O)NR^{5a}R^{5a}, (CR'R')_rC(=NR^{5f})NR^{5a}R^{5a}, (CR'R')_rNHC(=NR^{5f})NR^{5f}R^{5f}, (CR'R')_rS(O)_p(CR'R')_rR^{5b}, (CR'R')_rS(O)₂NR^{5a}R^{5a}, (CR'R')_rNR^{5a}S(O)₂NR^{5a}R^{5a}, (CR'R')_rNR^{5f}S(O)₂(CR'R')_rR^{5b}, C₁₋₆ haloalkyl, C₂₋₈ alkenyl substituted with 0-3 R', C₂₋₈ alkynyl substituted with 0-3 R', and (CR'R')_rphenyl substituted with 0-3 R^{5e};

alternatively, two R⁵ on adjacent atoms on R² may join to form a cyclic acetal;

5 R^{5a}, at each occurrence, is independently selected from H, methyl substituted with 0-1 R^{5g}, C₂₋₆ alkyl substituted with 0-2 R^{5e}, C₃₋₈ alkenyl substituted with 0-2 R^{5e}, C₃₋₈ alkynyl substituted with 0-2 R^{5e}, a (CH₂)_{r-C₃₋₁₀} carbocyclic residue substituted with 0-5 R^{5e}, and a (CH₂)_{r-5-10} membered heterocyclic system containing 1-4 heteroatoms selected from N, O, and S, substituted with 0-2 R^{5e};

15 R^{5b}, at each occurrence, is independently selected from C₁₋₆ alkyl substituted with 0-2 R^{5e}, C₃₋₈ alkenyl substituted with 0-2 R^{5e}, C₃₋₈ alkynyl substituted with 0-2 R^{5e}, a (CH₂)_{r-C₃₋₆} carbocyclic residue substituted with 0-3 R^{5e}, and a (CH₂)_{r-5-6} membered heterocyclic system containing 1-4 heteroatoms selected from N, O, and S, substituted with 0-2 R^{5e};

25 R^{5d}, at each occurrence, is independently selected from C₃₋₈ alkenyl substituted with 0-2 R^{5e}, C₃₋₈ alkynyl substituted with 0-2 R^{5e}, methyl, CF₃, C₂₋₆ alkyl substituted with 0-3 R^{5e}, a (CH₂)_{r-C₃₋₁₀} carbocyclic residue substituted with 0-3 R^{5e}, and a (CH₂)_{r-5-6} membered heterocyclic system containing 1-4 heteroatoms selected from N, O, and S, substituted with 0-3 R^{5e};

R^{5e}, at each occurrence, is selected from C₁₋₆ alkyl, C₂₋₈ alkenyl, C₂₋₈ alkynyl, (CH₂)_rC₃₋₆ cycloalkyl, Cl, F, Br, I, CN, NO₂, (CF₂)_rCF₃, (CH₂)_rOC₁₋₅ alkyl, OH, SH, (CH₂)_rSC₁₋₅ alkyl, (CH₂)_rNR^{5f}R^{5f}, and (CH₂)_rphenyl;

R^{5f}, at each occurrence, is selected from H, C₁₋₅ alkyl, and C₃₋₆ cycloalkyl, and phenyl;

10 R^{5g} is independently selected from -C(O)R^{5b}, -C(O)OR^{5d}, -C(O)NR^{5f}R^{5f}, and (CH₂)_rphenyl;

R', at each occurrence, is selected from H, C₁₋₆ alkyl, C₂₋₈ alkenyl, C₂₋₈ alkynyl, (CH₂)_rC₃₋₆ cycloalkyl, and (CH₂)_rphenyl substituted with R^{5e};

R⁶, is selected from H, C₁₋₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, (CRR)_qOH, (CRR)_qSH, (CRR)_qOR^{6d}, (CRR)_qS(O)_pR^{6d}, (CRR)_rC(O)R^{6b}, (CRR)_rNR^{6a}R^{6a}, (CRR)_rC(O)NR^{6a}R^{6a}, (CRR)_rC(O)NR^{6a}OR^{6d}, (CRR)SO₂NR^{6a}R^{6a}, (CRR)_rC(O)OR^{6d}, a (CRR)_r-C₃₋₁₀ carbocyclic residue substituted with 0-5 R^{6e}, and a (CRR)_r-5-10 membered heterocyclic system containing 1-4 heteroatoms selected from N, O, and S, substituted with 0-3 R^{6e};

alternatively, R⁶ and R⁷ join to form a C₃₋₆-cycloalkyl substituted with 0-2 R^{6g}, a 5-6 membered ring lactam substituted with 0-2 R^{6g}, or a 5-6 membered ring lactone substituted with 0-2 R^{6g},

R^{6a}, at each occurrence, is independently selected from H, methyl, C₂₋₆ alkyl substituted with 0-3 R^{6e}, C₃₋₈ alkenyl substituted with 0-3 R^{6e}, C₃₋₈ alkynyl substituted with 0-3 R^{6e}, (CH₂)_rC₃₋₆ cycloalkyl, a 5 (CH₂)_r-C₃₋₁₀ carbocyclic residue substituted with 0-5 R^{6e}, and a (CH₂)_r-5-10 membered heterocyclic system containing 1-4 heteroatoms selected from N, O, and S, substituted with 0-3 R^{6e};

10 R^{6b}, at each occurrence, is independently selected from C₁₋₆ alkyl substituted with 0-3 R^{6e}, C₂₋₈ alkenyl substituted with 0-3 R^{6e}, C₂₋₈ alkynyl substituted with 0-3 R^{6e}, a (CH₂)_r-C₃₋₆ carbocyclic residue substituted with 0-2 R^{6e}, and a (CH₂)_r-5-6 15 membered heterocyclic system containing 1-4 heteroatoms selected from N, O, and S, substituted with 0-3 R^{6e};

20 R^{6d}, at each occurrence, is independently selected from H, methyl, -CF₃, C₂₋₆ alkyl substituted with 0-3 R^{6e}, C₃₋₆ alkenyl substituted with 0-3 R^{6e}, C₃₋₆ alkynyl substituted with 0-3 R^{6e}, a C₃₋₁₀ carbocyclic residue substituted with 0-3 R^{6e}, and a (CH₂)_r-5-6 membered heterocyclic system 25 containing 1-4 heteroatoms selected from N, O, and S, substituted with 0-3 R^{6e};

30 R^{6e}, at each occurrence, is independently selected from C₁₋₆ alkyl, C₂₋₈ alkenyl, C₂₋₈ alkynyl, C₃₋₆ cycloalkyl, Cl, F, Br, I, CN, NO₂, (CF₂)_rCF₃,

(CH₂)_rOC₁₋₅ alkyl, OH, -O-C₁₋₆ alkyl, SH,
(CH₂)_rSC₁₋₅ alkyl, (CH₂)_rNR^{6f}R^{6f}, and (CH₂)_rphenyl;

R^{6f}, at each occurrence, is independently selected from
5 H, C₁₋₆ alkyl, and C₃₋₆ cycloalkyl;

R^{6g} is selected from (CHR)_qOH, (CHR)_qSH, (CHR)_qOR^{6d},
(CHR)_qS(O)_pR^{6d}, (CHR)_rC(O)R^{6b}, (CHR)_qNR^{6a}R^{6a},
(CHR)_rC(O)NR^{6a}R^{6a}, (CHR)_rC(O)NR^{6a}OR^{6d},
10 (CHR)_qSO₂NR^{6a}R^{6a}, (CHR)_rC(O)OR^{6d}, and a (CHR)_r-C₃₋₁₀ carbocyclic residue substituted with 0-5 R^{6e};

R⁷, is selected from H, C₁₋₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, (CRR)_qOH, (CRR)_qSH, (CRR)_qOR^{7d},
15 (CRR)_qS(O)_pR^{7d}, (CRR)_rC(O)R^{7b}, (CRR)_rNR^{7a}R^{7a},
(CRR)_rC(O)NR^{7a}R^{7a}, (CRR)_rC(O)NR^{7a}OR^{7d},
(CRR)_qSO₂NR^{7a}R^{7a}, (CRR)_rC(O)OR^{7d}, a (CRR)_r-C₃₋₁₀ carbocyclic residue substituted with 0-5 R^{7e}, and
20 a (CRR)_r-5-10 membered heterocyclic system containing 1-4 heteroatoms selected from N, O, and S, substituted with 0-3 R^{7e};

R^{7a}, at each occurrence, is independently selected from H, methyl, C₂₋₆ alkyl substituted with 0-3 R^{7e},
25 C₃₋₈ alkenyl substituted with 0-3 R^{7e}, C₃₋₈ alkynyl substituted with 0-3 R^{7e}, (CH₂)_rC₃₋₆ cycloalkyl, a (CH₂)_r-C₃₋₁₀ carbocyclic residue substituted with 0-5 R^{7e}, and a (CH₂)_r-5-10 membered heterocyclic

system containing 1-4 heteroatoms selected from N, O, and S, substituted with 0-3 R^{7e};

R^{7b}, at each occurrence, is independently selected from
5 C₁₋₆ alkyl substituted with 0-3 R^{7e}, C₂₋₈ alkenyl substituted with 0-3 R^{7e}, C₂₋₈ alkynyl substituted with 0-3 R^{7e}, a (CH₂)_r-C₃₋₆ carbocyclic residue substituted with 0-2 R^{7e}, and a (CH₂)_r-5-6 membered heterocyclic system containing 1-4 heteroatoms selected from N, O, and S, substituted with 0-3 R^{7e};

R^{7d}, at each occurrence, is independently selected from H, methyl, -CF₃, C₂₋₆ alkyl substituted with 0-3 R^{7e}, C₃₋₆ alkenyl substituted with 0-3 R^{7e}, C₃₋₆ alkynyl substituted with 0-3 R^{7e}, a C₃₋₁₀ carbocyclic residue substituted with 0-3 R^{7e}, and a (CH₂)_r-5-6 membered heterocyclic system containing 1-4 heteroatoms selected from N, O, and S, substituted with 0-3 R^{7e};

R^{7e}, at each occurrence, is independently selected from C₁₋₆ alkyl, C₂₋₈ alkenyl, C₂₋₈ alkynyl, C₃₋₆ cycloalkyl, Cl, F, Br, I, CN, NO₂, (CF₂)_rCF₃,
25 (CH₂)_rOC₁₋₅ alkyl, OH, -O-C₁₋₆ alkyl, SH, (CH₂)_rSC₁₋₅ alkyl, (CH₂)_rNR^{7f}R^{7f}, and (CH₂)_rphenyl;

R^{7f}, at each occurrence, is independently selected from H, C₁₋₆ alkyl, and C₃₋₆ cycloalkyl;

R⁸ is selected from H, C₁₋₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, (CRR)_rOH, (CRR)_rSH, (CRR)_rOR^{8d}, (CRR)_rS(O)_pR^{8d}, (CRR)_rC(O)R^{8b}, (CRR)_rNR^{8a}R^{8a}, (CRR)_rC(O)NR^{8a}R^{8a}, (CRR)_rC(O)NR^{8a}OR^{8d}, (CRR)_rSO₂NR^{8a}R^{8a}, (CRR)_rC(O)OR^{8d}, a (CRR)_r-C₃₋₁₀ carbocyclic residue substituted with 0-5 R^{8e}, and a (CRR)_r-5-10 membered heterocyclic system containing 1-4 heteroatoms selected from N, O, and S, substituted with 0-3 R^{8e};

10

alternatively, R⁸ and R⁹ join to form a C₃₋₆ cycloalkyl substituted with 0-2 R^{8g}, a 5-6 membered ring lactam substituted with 0-2 R^{8g}, or a 5-6 membered ring lactone substituted with 0-2 R^{8g},

15

R^{8a}, at each occurrence, is independently selected from H, methyl, C₂₋₆ alkyl substituted with 0-3 R^{8e}, C₃₋₈ alkenyl substituted with 0-3 R^{8e}, C₃₋₈ alkynyl substituted with 0-3 R^{8e}, (CH₂)_rC₃₋₆ cycloalkyl, a (CH₂)_r-C₃₋₁₀ carbocyclic residue substituted with 0-5 R^{8e}, and a (CH₂)_r-5-10 membered heterocyclic system containing 1-4 heteroatoms selected from N, O, and S, substituted with 0-3 R^{8e};

20

R^{8b}, at each occurrence, is independently selected from C₁₋₆ alkyl substituted with 0-3 R^{8e}, C₂₋₈ alkenyl substituted with 0-3 R^{8e}, C₂₋₈ alkynyl substituted with 0-3 R^{8e}, a (CH₂)_r-C₃₋₆ carbocyclic residue substituted with 0-2 R^{8e}, and a (CH₂)_r-5-6

membered heterocyclic system containing 1-4 heteroatoms selected from N, O, and S, substituted with 0-3 R^{8e};

5 R^{8d}, at each occurrence, is independently selected from H, methyl, -CF₃, C₂₋₆ alkyl substituted with 0-3 R^{8e}, C₃₋₆ alkenyl substituted with 0-3 R^{8e}, C₃₋₆ alkynyl substituted with 0-3 R^{8e}, a C₃₋₁₀ carbocyclic residue substituted with 0-3 R^{8e}, and
10 a (CH₂)_r-5-6 membered heterocyclic system containing 1-4 heteroatoms selected from N, O, and S, substituted with 0-3 R^{8e};

15 R^{8e}, at each occurrence, is independently selected from C₁₋₆ alkyl, C₂₋₈ alkenyl, C₂₋₈ alkynyl, C₃₋₆ cycloalkyl, Cl, F, Br, I, CN, NO₂, (CF₂)_rCF₃, (CH₂)_rOC₁₋₅ alkyl, OH, -O-C₁₋₆ alkyl, SH, (CH₂)_rSC₁₋₅ alkyl, (CH₂)_rNR^{8f}R^{8f}, and (CH₂)_rphenyl;

20 R^{8f}, at each occurrence, is independently selected from H, C₁₋₆ alkyl, and C₃₋₆ cycloalkyl;

25 R^{8g} is selected from (CHR)_qOH, (CHR)_qSH, (CHR)_qOR^{8d}, (CHR)_qS(O)_pR^{8d}, (CHR)_rC(O)R^{8b}, (CHR)_qNR^{8a}R^{8a}, (CHR)_rC(O)NR^{8a}R^{8a}, (CHR)_rC(O)NR^{8a}OR^{8d}, (CHR)_qSO₂NR^{8a}R^{8a}, (CHR)_rC(O)OR^{8d}, and a (CH₂)_r-C₃₋₁₀ carbocyclic residue substituted with 0-5 R^{8e};

30 R⁹ is selected from H, C₁₋₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, (CRR)_rOH, (CRR)_rSH, (CRR)_rOR^{9d},

(CRR)_rS(O)_pR^{9d}, (CRR)_rC(O)R^{9b}, (CRR)_rNR^{9a}R^{9a},
(CRR)_rC(O)NR^{9a}R^{9a}, (CRR)_rC(O)NR^{9a}OR^{9d},
(CRR)_rSO₂NR^{9a}R^{9a}, (CRR)_rC(O)OR^{9d}, a (CRR)_r-C₃₋₁₀
carbocyclic residue substituted with 0-5 R^{9e}, and
5 a (CRR)_r-5-10 membered heterocyclic system
containing 1-4 heteroatoms selected from N, O, and
S, substituted with 0-3 R^{9e};

R^{9a}, at each occurrence, is independently selected from
10 H, methyl, C₂₋₆ alkyl substituted with 0-3 R^{9e},
C₃₋₈ alkenyl substituted with 0-3 R^{9e}, C₃₋₈ alkynyl
substituted with 0-3 R^{9e}, (CH₂)_rC₃₋₆ cycloalkyl, a
(CH₂)_r-C₃₋₁₀ carbocyclic residue substituted with
15 0-5 R^{9e}, and a (CH₂)_r-5-10 membered heterocyclic
system containing 1-4 heteroatoms selected from N,
O, and S, substituted with 0-3 R^{9e};

R^{9b}, at each occurrence, is independently selected from
20 C₁₋₆ alkyl substituted with 0-3 R^{9e}, C₂₋₈ alkenyl
substituted with 0-3 R^{9e}, C₂₋₈ alkynyl substituted
with 0-3 R^{9e}, a (CH₂)_r-C₃₋₆ carbocyclic residue
substituted with 0-2 R^{9e}, and a (CH₂)_r-5-6
25 membered heterocyclic system containing 1-4
heteroatoms selected from N, O, and S, substituted
with 0-3 R^{9e};

R^{9d}, at each occurrence, is independently selected from
H, methyl, -CF₃, C₂₋₆ alkyl substituted with 0-3
R^{9e}, C₃₋₆ alkenyl substituted with 0-3 R^{9e}, C₃₋₆
30 alkynyl substituted with 0-3 R^{9e}, a C₃₋₁₀

carbocyclic residue substituted with 0-3 R^{9e}, and
a (CH₂)_r-5-6 membered heterocyclic system
containing 1-4 heteroatoms selected from N, O, and
S, substituted with 0-3 R^{9e};

5

R^{9e}, at each occurrence, is independently selected from
C₁₋₆ alkyl, C₂₋₈ alkenyl, C₂₋₈ alkynyl, C₃₋₆
cycloalkyl, Cl, F, Br, I, CN, NO₂, (CF₂)_rCF₃,
(CH₂)_rOC₁₋₅ alkyl, OH, -O-C₁₋₆ alkyl, SH,
(CH₂)_rSC₁₋₅ alkyl, (CH₂)_rNR^{9f}R^{9f}, and (CH₂)_rphenyl;

10

R^{9f}, at each occurrence, is independently selected from
H, C₁₋₆ alkyl, and C₃₋₆ cycloalkyl;

15

R¹⁰ is selected from H, C₁₋₆ alkyl, C₂₋₆ alkenyl, C₂₋₆
alkynyl, (CRR)_rOH, (CRR)_rSH, (CRR)_rOR^{10d},
(CRR)_rS(O)_pR^{10d}, (CRR)_rC(O)R^{10b}, (CRR)_rNR^{10a}R^{10a},
(CRR)_rC(O)NR^{10a}R^{10a}, (CRR)_rC(O)NR^{10a}OR^{10d},
(CRR)_rSO₂NR^{10a}R^{10a}, (CRR)_rC(O)OR^{10d}, a (CRR)_r-C₃₋₁₀

20

carbocyclic residue substituted with 0-5 R^{10e}, and
a (CRR)_r-5-10 membered heterocyclic system
containing 1-4 heteroatoms selected from N, O, and
S, substituted with 0-3 R^{10e};

25

alternatively, R¹⁰ and R¹¹ join to form a C₃₋₆
~~cyclealkyl substituted with 0-2 R^{10g}, a 5-6~~
~~membered ring lactam substituted with 0-2 R^{10g}, or~~
~~a 5-6 membered ring lactone substituted with 0-2~~
~~R^{10g}.~~

30

R^{10a}, at each occurrence, is independently selected from H, methyl, C₂₋₆ alkyl substituted with 0-3 R^{10e}, C₃₋₈ alkenyl substituted with 0-3 R^{10e}, C₃₋₈ alkynyl substituted with 0-3 R^{10e}, (CH₂)_rC₃₋₆ cycloalkyl, a (CH₂)_r-C₃₋₁₀ carbocyclic residue substituted with 0-5 R^{10e}, and a (CH₂)_r-5-10 membered heterocyclic system containing 1-4 heteroatoms selected from N, O, and S, substituted with 0-3 R^{10e};

10

R^{10b}, at each occurrence, is independently selected from C₁₋₆ alkyl substituted with 0-3 R^{10e}, C₂₋₈ alkenyl substituted with 0-3 R^{10e}, C₂₋₈ alkynyl substituted with 0-3 R^{10e}, a (CH₂)_r-C₃₋₆ carbocyclic residue substituted with 0-2 R^{10e}, and a (CH₂)_r-5-6 membered heterocyclic system containing 1-4 heteroatoms selected from N, O, and S, substituted with 0-3 R^{10e};

20

R^{10d}, at each occurrence, is independently selected from H, methyl, -CF₃, C₂₋₆ alkyl substituted with 0-3 R^{10e}, C₃₋₆ alkenyl substituted with 0-3 R^{10e}, C₃₋₆ alkynyl substituted with 0-3 R^{10e}, a C₃₋₁₀ carbocyclic residue substituted with 0-3 R^{10e}, and a (CH₂)_r-5-6 membered heterocyclic system containing 1-4 heteroatoms selected from N, O, and S, substituted with 0-3 R^{10e};

25

R^{10e}, at each occurrence, is independently selected from C₁₋₆ alkyl, C₂₋₈ alkenyl, C₂₋₈ alkynyl, C₃₋₆

30

cycloalkyl, Cl, F, Br, I, CN, NO₂, (CF₂)_rCF₃,
(CH₂)_rOC₁₋₅ alkyl, OH, -O-C₁₋₆ alkyl, SH,
(CH₂)_rSC₁₋₅ alkyl, (CH₂)_rNR^{10f}R^{10f}, and
(CH₂)_rphenyl;

5

R^{10f}, at each occurrence, is independently selected from H, C₁₋₆ alkyl, and C₃₋₆ cycloalkyl;

10 R^{10g} is selected from (CHR)_qOH, (CHR)_qSH, (CHR)_qOR^{10d},
(CHR)_qS(O)_pR^{10d}, (CHR)_rC(O)R^{10b}, (CHR)_qNR^{10a}R^{10a},
(CHR)_rC(O)NR^{10a}R^{10a}, (CHR)_rC(O)NR^{10a}OR^{10d},
(CHR)_qSO₂NR^{10a}R^{10a}, (CHR)_rC(O)OR^{10d}, and a (CHR)_r-C₃₋₁₀ carbocyclic residue substituted with 0-5 R^{10e};

15

R¹¹, is selected from H, C₁₋₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, (CRR)_rOH, (CRR)_rSH, (CRR)_rOR^{11d},
(CRR)_rS(O)_pR^{11d}, (CRR)_rC(O)R^{11b}, (CRR)_rNR^{11a}R^{11a},
(CRR)_rC(O)NR^{11a}R^{11a}, (CRR)_rC(O)NR^{11a}OR^{11d},
20 (CRR)_rSO₂NR^{11a}R^{11a}, (CRR)_rC(O)OR^{11d}, a (CRR)_r-C₃₋₁₀ carbocyclic residue substituted with 0-5 R^{11e}, and a (CRR)_r-5-10 membered heterocyclic system containing 1-4 heteroatoms selected from N, O, and S, substituted with 0-3 R^{11e};

25

R^{11a}, at each occurrence, is independently selected from H, methyl, C₂₋₆ alkyl substituted with 0-3 R^{11e}, C₃₋₈ alkenyl substituted with 0-3 R^{11e}, C₃₋₈ alkynyl substituted with 0-3 R^{11e}, (CH₂)_rC₃₋₆

cycloalkyl, a $(\text{CH}_2)_r\text{-C}_{3-10}$ carbocyclic residue substituted with 0-5 R^{11e} , and a $(\text{CH}_2)_r\text{-5-10}$ membered heterocyclic system containing 1-4 heteroatoms selected from N, O, and S, substituted with 0-3 R^{11e} ;

10 R^{11b} , at each occurrence, is independently selected from C_{1-6} alkyl substituted with 0-3 R^{11e} , C_{2-8} alkenyl substituted with 0-3 R^{11e} , C_{2-8} alkynyl substituted with 0-3 R^{11e} , a $(\text{CH}_2)_r\text{-C}_{3-6}$ carbocyclic residue substituted with 0-2 R^{11e} , and a $(\text{CH}_2)_r\text{-5-6}$ membered heterocyclic system containing 1-4 heteroatoms selected from N, O, and S, substituted with 0-3 R^{11e} ;

15 R^{11d} , at each occurrence, is independently selected from H, methyl, $-\text{CF}_3$, C_{2-6} alkyl substituted with 0-3 R^{11e} , C_{3-6} alkenyl substituted with 0-3 R^{11e} , C_{3-6} alkynyl substituted with 0-3 R^{11e} , a C_{3-10} carbocyclic residue substituted with 0-3 R^{11e} , and a $(\text{CH}_2)_r\text{-5-6}$ membered heterocyclic system containing 1-4 heteroatoms selected from N, O, and S, substituted with 0-3 R^{11e} ;

25 R^{11e} , at each occurrence, is independently selected from C_{1-6} alkyl, C_{2-8} alkenyl, C_{2-8} alkynyl, C_{3-6} cycloalkyl, Cl, F, Br, I, CN, NO_2 , $(\text{CF}_2)_r\text{CF}_3$, $(\text{CH}_2)_r\text{OC}_{1-5}$ alkyl, OH, $-\text{O-C}_{1-6}$ alkyl, SH, $(\text{CH}_2)_r\text{SC}_{1-5}$ alkyl, $(\text{CH}_2)_r\text{NR}^{11f}\text{R}^{11f}$, and $(\text{CH}_2)_r\text{phenyl}$;

30

R^{11f}, at each occurrence, is independently selected from H, C₁₋₆ alkyl, and C₃₋₆ cycloalkyl;

R¹² is selected from H, C₁₋₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, (CRR)_qOH, (CRR)_qSH, (CRR)_qOR^{12d}, (CRR)_qS(O)_pR^{12d}, (CRR)_rC(O)R^{12b}, (CRR)_rNR^{12a}R^{12a}, (CRR)_rC(O)NR^{12a}R^{12a}, (CRR)_rC(O)NR^{12a}OR^{12d}, (CRR)_qSO₂NR^{12a}R^{12a}, (CRR)_rC(O)OR^{12d}, a (CRR)_r-C₃₋₁₀ carbocyclic residue substituted with 0-5 R^{12e}, and a (CRR)_r-5-10 membered heterocyclic system containing 1-4 heteroatoms selected from N, O, and S, substituted with 0-3 R^{12e};

R^{12a}, at each occurrence, is independently selected from H, methyl, C₂₋₆ alkyl substituted with 0-3 R^{12e}, C₃₋₈ alkenyl substituted with 0-3 R^{12e}, C₃₋₈ alkynyl substituted with 0-3 R^{12e}, (CH₂)_rC₃₋₆ cycloalkyl, a (CH₂)_r-C₃₋₁₀ carbocyclic residue substituted with 0-5 R^{12e}, and a (CH₂)_r-5-10 membered heterocyclic system containing 1-4 heteroatoms selected from N, O, and S, substituted with 0-3 R^{12e};

R^{12b}, at each occurrence, is independently selected from C₁₋₆ alkyl substituted with 0-3 R^{12e}, C₂₋₈ alkenyl substituted with 0-3 R^{12e}, C₂₋₈ alkynyl substituted with 0-3 R^{12e}, a (CH₂)_r-C₃₋₆ carbocyclic residue substituted with 0-2 R^{12e}, and a (CH₂)_r-5-6 membered heterocyclic system

containing 1-4 heteroatoms selected from N, O, and S, substituted with 0-3 R^{12e};

R^{12d}, at each occurrence, is independently selected
5 from H, methyl, -CF₃, C₂₋₆ alkyl substituted with 0-3 R^{12e}, C₃₋₆ alkenyl substituted with 0-3 R^{12e}, C₃₋₆ alkynyl substituted with 0-3 R^{12e}, a C₃₋₁₀ carbocyclic residue substituted with 0-3 R^{12e}, and a (CH₂)_r-5-6 membered heterocyclic system
10 containing 1-4 heteroatoms selected from N, O, and S, substituted with 0-3 R^{12e};

R^{12e}, at each occurrence, is independently selected from C₁₋₆ alkyl, C₂₋₈ alkenyl, C₂₋₈ alkynyl, C₃₋₆ cycloalkyl, Cl, F, Br, I, CN, NO₂, (CF₂)_rCF₃, (CH₂)_rOC₁₋₅ alkyl, OH, -O-C₁₋₆ alkyl, SH, (CH₂)_rSC₁₋₅ alkyl, (CH₂)_rNR^{12f}R^{12f}, and (CH₂)_rphenyl;

20 R^{12f}, at each occurrence, is selected from H, C₁₋₆ alkyl, and C₃₋₆ cycloalkyl;

R¹⁴ and R^{14a} are H,

25 R¹⁵ is H;

R¹⁶ is selected from H, C₁₋₄ alkyl substituted with 0-3 R^{16a}, and C₃₋₆ cycloalkyl substituted with 0-3 R^{16a};

R^{16a} is selected from C₁₋₄ alkyl, -OH, -SH, -NR^{16c}R^{16c},
-C(O)NR^{16c}R^{16c}, and -NHC(O)R^{16c};

R^{16c} is selected from H, C₁₋₄ alkyl and C₃₋₆ cycloalkyl;

5

R¹⁷ is selected from H, C₁₋₄ alkyl, and C₃₋₄ cycloalkyl;

n is 1;

10 l is selected from 0 and 1;

m is selected from 0 and 1;

p, at each occurrence, is selected from 0, 1, or 2;

15

q, at each occurrence, is selected from 1, 2, 3, or 4;
and

r, at each occurrence, is selected from 0, 1, 2, 3, or

20 4.

2. (CURRENTLY AMENDED) A compound of claim 1,
wherein

25 Z is selected from a bond, -C(O)-, -C(O)NH-, -C(S)NH-,
-SO₂-, and -SO₂NH-;

X is selected from -NR¹⁷-, -O-, and -CHR¹⁶NR¹⁷-;

30 R¹ is selected from a C₆₋₁₀ aryl group substituted with
0-5 R⁴;

R² is selected from a C₆₋₁₀ aryl group substituted with 0-5 R⁵;

5 R³ is selected from (CRR)_qOH, (CRR)_qSH, (CRR)_qOR^{3d}, (CRR)_qS(O)_pR^{3d}, (CRR)_rC(O)R^{3b}, (CRR)_qNR^{3a}R^{3a}, (CRR)_rC(O)NR^{3a}R^{3a}, (CRR)_rC(O)NR^{3a}OR^{3d}, (CRR)_qSO₂NR^{3a}R^{3a}, (CRR)_rC(O)OR^{3d}, a (CRR)_r-C₃₋₁₀ carbocyclic residue substituted with 0-5 R^{3e}, and 10 a (CRR)_r-5-10 membered heterocyclic system containing 1-4 heteroatoms selected from N, O, and S, substituted with 0-3 R^{3e};

15 R^{3a}, at each occurrence, is independently selected from H, methyl substituted with 0-1 R^{3c}, C₂₋₆ alkyl substituted with 0-3 R^{3e}, C₃₋₈ alkenyl substituted with 0-3 R^{3e}, C₃₋₈ alkynyl substituted with 0-3 R^{3e}, (CH₂)_rC₃₋₆ cycloalkyl, a (CH₂)_r-C₃₋₁₀ 20 carbocyclic residue substituted with 0-5 R^{3e}, and a (CH₂)_r-5-10 membered heterocyclic system containing 1-4 heteroatoms selected from N, O, and S, substituted with 0-3 R^{3e};

25 R^{3b}, at each occurrence, is independently selected from C₁₋₆ alkyl substituted with 0-3 R^{3e}, C₂₋₈ alkenyl substituted with 0-3 R^{3e}, C₂₋₈ alkynyl substituted with 0-3 R^{3e}, a (CH₂)_r-C₃₋₆ carbocyclic residue substituted with 0-2 R^{3e}, and a (CH₂)_r-5-6 membered heterocyclic system containing 1-4

heteroatoms selected from N, O, and S, substituted with 0-3 R^{3e};

R^{3c} is independently selected from -C(O)R^{3b}, -C(O)OR^{3d},
5 -C(O)NR^{3f}R^{3f}, and (CH₂)_rphenyl;

R^{3d}, at each occurrence, is independently selected from H, methyl, -CF₃, C₂₋₆ alkyl substituted with 0-3
10 R^{3e}, C₃₋₆ alkenyl substituted with 0-3 R^{3e}, C₃₋₆ alkynyl substituted with 0-3 R^{3e}, a C₃₋₁₀ carbocyclic residue substituted with 0-3 R^{3e}, and a (CH₂)_r-5-6 membered heterocyclic system containing 1-4 heteroatoms selected from N, O, and S, substituted with 0-3 R^{3e};

15 R^{3e}, at each occurrence, is selected from C₁₋₆ alkyl, C₂₋₈ alkenyl, C₂₋₈ alkynyl, C₃₋₆ cycloalkyl, Cl, F, Br, I, CN, NO₂, (CF₂)_rCF₃, (CH₂)_rOC₁₋₅ alkyl, OH, SH, (CH₂)_rSC₁₋₅ alkyl, (CH₂)_rNR^{3f}R^{3f}, and (CH₂)_rphenyl;

20 R^{3f}, at each occurrence, is selected from H, C₁₋₆ alkyl, and C₃₋₆ cycloalkyl;

25 R, at each occurrence, is independently selected from H, C₁₋₆ alkyl, C₂₋₈ alkenyl, C₂₋₈ alkynyl, (CH₂)_rC₃₋₆ cycloalkyl, (CHR)_rC(O)NR^{3a}R^{3a}, and (CHR)_rC(O)OR^{3d}, and (CH₂)_rphenyl substituted with R^{3e};

30

R⁴, at each occurrence, is selected from C₁₋₈ alkyl, C₂₋₈ alkenyl, C₂₋₈ alkynyl, (CH₂)_rC₃₋₆ cycloalkyl, Cl, Br, I, F, NO₂, CN, (CR'R')_rNR^{4a}R^{4a}, (CR'R')_rOH, (CR'R')_rO(CR'R')_rR^{4d}, (CR'R')_rSH, (CR'R')_rC(O)H, (CR'R')_rS(CR'R')_rR^{4d}, (CR'R')_rC(O)OH, (CR'R')_rC(O)(CR'R')_rR^{4b}, (CR'R')_rC(O)NR^{4a}R^{4a}, (CR'R')_rNR^{4f}C(O)(CR'R')_rR^{4b}, (CR'R')_rC(O)O(CR'R')_rR^{4d}, (CR'R')_rOC(O)(CR'R')_rR^{4b}, (CR'R')_rNR^{4f}C(O)O(CR'R')_rR^{4d}, (CR'R')_rOC(O)NR^{4a}R^{4a}, (CR'R')_rNR^{6a}C(S)NR^{6a}(CR'R')_rR^{6d}, (CR'R')_rNR^{4a}C(O)NR^{4a}R^{4a}, (CR'R')_rC(=NR^{4f})NR^{4a}R^{4a}, (CR'R')_rNHC(=NR^{4f})NR^{4f}R^{4f}, (CR'R')_rS(O)_p(CR'R')_rR^{4b}, (CR'R')_rS(O)₂NR^{4a}R^{4a}, (CR'R')_rNR^{6f}S(O)₂NR^{6a}R^{6a}, (CR'R')_rNR^{4f}S(O)₂(CR'R')_rR^{4b}, C₁₋₆ haloalkyl, C₂₋₈ 15 alkenyl substituted with 0-3 R', C₂₋₈ alkynyl substituted with 0-3 R', and (CR'R')_rphenyl substituted with 0-3 R^{4e};

alternatively, two R⁴ on adjacent atoms on R¹ may join 20 to form a cyclic acetal;

R^{4a}, at each occurrence, is independently selected from H, methyl substituted with 0-1R^{4g}, C₂₋₆ alkyl substituted with 0-2 R^{5e}, C₃₋₈ alkenyl substituted with 0-2 25 R^{5e}, C₃₋₈ alkynyl substituted with 0-2 R^{5e}, a (CH₂)_r-C₃₋₁₀ carbocyclic residue substituted with 0-5 R^{4e}, and a (CH₂)_r-5-10 membered heterocyclic system containing 1-4 heteroatoms

selected from N, O, and S, substituted with 0-2 R^{4e};

R^{4b}, at each occurrence, is selected from C₁₋₆ alkyl substituted with 0-2 R^{5e}, C₃₋₈ alkenyl substituted with 0-2 R^{5e}, C₃₋₈ alkynyl substituted with 0-2 R^{5e}, a (CH₂)_rC₃₋₆ carbocyclic residue substituted with 0-3 R^{4e}, and a (CH₂)_r-5-6 membered heterocyclic system containing 1-4 heteroatoms selected from N, O, and S, substituted with 0-2 R^{4e};

R^{4d}, at each occurrence, is selected from C₃₋₈ alkenyl substituted with 0-2 R^{5e}, C₃₋₈ alkynyl substituted with 0-2 R^{5e}, methyl, CF₃, C₂₋₆ alkyl substituted with 0-3 R^{4e}, a (CH₂)_r-C₃₋₁₀ carbocyclic residue substituted with 0-3 R^{4e}, and a (CH₂)_r-5-6 membered heterocyclic system containing 1-4 heteroatoms selected from N, O, and S, substituted with 0-3 R^{4e};

R^{4e}, at each occurrence, is selected from C₁₋₆ alkyl, C₂₋₈ alkenyl, C₂₋₈ alkynyl, (CH₂)_rC₃₋₆ cycloalkyl, Cl, F, Br, I, CN, NO₂, (CF₂)_rCF₃, (CH₂)_rOC₁₋₅ alkyl, OH, SH, (CH₂)_rSC₁₋₅ alkyl, (CH₂)_rNR^{4f}R^{4f}, and (CH₂)_rphenyl;

R^{4f}, at each occurrence, is selected from H, C₁₋₅ alkyl, and C₃₋₆ cycloalkyl, and phenyl;

R^{4g} is independently selected from -C(O)R^{4b}, -C(O)OR^{4d}, -C(O)NR^{4f}R^{4f}, and (CH₂)_rphenyl;

R⁵, at each occurrence, is selected from C₁₋₈ alkyl,
5 C₂₋₈ alkenyl, C₂₋₈ alkynyl, (CH₂)_rC₃₋₆ cycloalkyl, Cl, Br, I, F, NO₂, CN, (CR'R')_rNR^{5a}R^{5a}, (CR'R')_rOH, (CR'R')_rO(CR'R')_rR^{5d}, (CR'R')_rSH, (CR'R')_rC(O)H, (CR'R')_rS(CR'R')_rR^{5d}, (CR'R')_rC(O)OH, (CR'R')_rC(O)(CR'R')_rR^{5b}, (CR'R')_rC(O)NR^{5a}R^{5a},
10 (CR'R')_rNR^{5f}C(O)(CR'R')_rR^{5b}, (CR'R')_rC(O)O(CR'R')_rR^{5d}, (CR'R')_rOC(O)(CR'R')_rR^{5b}, CR'R')_rNR^{5f}C(O)O(CR'R')_rR^{5d}, (CR'R')_rOC(O)NR^{5a}R^{5a}, (CR'R')_rNR^{5a}C(O)NR^{5a}R^{5a}, (CR'R')_rC(=NR^{5f})NR^{5a}R^{5a}, (CR'R')_rNHC(=NR^{5f})NR^{5f}R^{5f}, (CR'R')_rS(O)_p(CR'R')_rR^{5b},
15 (CR'R')_rS(O)₂NR^{5a}R^{5a}, (CR'R')_rNR^{5a}S(O)₂NR^{5a}R^{5a}, (CR'R')_rNR^{5f}S(O)₂(CR'R')_rR^{5b}, C₁₋₆ haloalkyl, C₂₋₈ alkenyl substituted with 0-3 R', C₂₋₈ alkynyl substituted with 0-3 R', and (CR'R')_rphenyl substituted with 0-3 R^{5e};

20

alternatively, two R⁵ on adjacent atoms on R² may join to form a cyclic acetal;

25

R^{5a}, at each occurrence, is independently selected from H, methyl substituted with 0-1 R^{5g}, C₂₋₆ alkyl substituted with 0-2 R^{5e}, C₃₋₈ alkenyl substituted with 0-2 R^{5e}, C₃₋₈ alkynyl substituted with 0-2 R^{5e}, a (CH₂)_r-C₃₋₁₀ carbocyclic residue substituted with 0-5 R^{5e}, and a (CH₂)_r-5-10 membered

heterocyclic system containing 1-4 heteroatoms selected from N, O, and S, substituted with 0-2 R^{5e};

5 R^{5b}, at each occurrence, is independently selected from C₁₋₆ alkyl substituted with 0-2 R^{5e}, C₃₋₈ alkenyl substituted with 0-2 R^{5e}, C₃₋₈ alkynyl substituted with 0-2 R^{5e}, a (CH₂)_rC₃₋₆ carbocyclic residue substituted with 0-3 R^{5e}, and a (CH₂)_r-5-6
10 membered heterocyclic system containing 1-4 heteroatoms selected from N, O, and S, substituted with 0-2 R^{5e};

R^{5d}, at each occurrence, is independently selected from C₃₋₈ alkenyl substituted with 0-2 R^{5e}, C₃₋₈ alkynyl substituted with 0-2 R^{5e}, methyl, CF₃, C₂₋₆ alkyl substituted with 0-3 R^{5e}, a (CH₂)_r-C₃₋₁₀ carbocyclic residue substituted with 0-3 R^{5e}, and a (CH₂)_r-5-6 membered heterocyclic system
20 containing 1-4 heteroatoms selected from N, O, and S, substituted with 0-3 R^{5e};

R^{5e}, at each occurrence, is selected from C₁₋₆ alkyl, C₂₋₈ alkenyl, C₂₋₈ alkynyl, (CH₂)_rC₃₋₆ cycloalkyl,
25 Cl, F, Br, I, CN, NO₂, (CF₂)_rCF₃, (CH₂)_rOC₁₋₅ alkyl, OH, SH, (CH₂)_rSC₁₋₅ alkyl, (CH₂)_rNR^{5f}R^{5f}, and (CH₂)_rphenyl;

R^{5f}, at each occurrence, is selected from H, C₁₋₅
30 alkyl, and C₃₋₆ cycloalkyl, and phenyl;

R^{5g} is independently selected from $-C(O)R^{5b}$, $-C(O)OR^{5d}$,
 $-C(O)NR^{5f}R^{5f}$, and $(CH_2)_r$ phenyl;

5 R' , at each occurrence, is selected from H, C_{1-6} alkyl,
 C_{2-8} alkenyl, C_{2-8} alkynyl, $(CH_2)_rC_{3-6}$ cycloalkyl,
and $(CH_2)_r$ phenyl substituted with R^{5e} ;

10 R^6 , is selected from H, C_{1-6} alkyl, C_{2-6} alkenyl, C_{2-6}
alkynyl, $(CRR)_qOH$, $(CRR)_qSH$, $(CRR)_qOR^{6d}$,
 $(CRR)_qS(O)_pR^{6d}$, $(CRR)_rC(O)R^{6b}$, $(CRR)_rNR^{6a}R^{6a}$,
 $(CRR)_rC(O)NR^{6a}R^{6a}$, $(CRR)_rC(O)NR^{6a}OR^{6d}$,
 $(CRR)SO_2NR^{6a}R^{6a}$, $(CRR)_rC(O)OR^{6d}$, a $(CRR)_r-C_{3-10}$
carbocyclic residue substituted with 0-5 R^{6e} , and
15 a $(CRR)_r$ -5-10 membered heterocyclic system
containing 1-4 heteroatoms selected from N, O, and
S, substituted with 0-3 R^{6e} ;

20 alternatively, R^6 and R^7 join to form a C_{3-6} cycloalkyl
substituted with 0-2 R^{6g} , a 5-6 membered ring
lactam substituted with 0-2 R^{6g} , or a 5-6 membered
ring lactone substituted with 0-2 R^{6g} ,

25 R^{6a} , at each occurrence, is independently selected from
H, methyl, C_{2-6} alkyl substituted with 0-3 R^{6e} ,
 C_{3-8} alkenyl substituted with 0-3 R^{6e} , C_{3-8} alkynyl
substituted with 0-3 R^{6e} , $(CH_2)_rC_{3-6}$ cycloalkyl, a
 $(CH_2)_r-C_{3-10}$ carbocyclic residue substituted with
0-5 R^{6e} , and a $(CH_2)_r$ -5-10 membered heterocyclic

system containing 1-4 heteroatoms selected from N, O, and S, substituted with 0-3 R^{6e};

5 R^{6b}, at each occurrence, is independently selected from C₁₋₆ alkyl substituted with 0-3 R^{6e}, C₂₋₈ alkenyl substituted with 0-3 R^{6e}, C₂₋₈ alkynyl substituted with 0-3 R^{6e}, a (CH₂)_r-C₃₋₆ carbocyclic residue substituted with 0-2 R^{6e}, and a (CH₂)_r-5-6 membered heterocyclic system containing 1-4 heteroatoms selected from N, O, and S, substituted with 0-3 R^{6e};

10 R^{6d}, at each occurrence, is independently selected from H, methyl, -CF₃, C₂₋₆ alkyl substituted with 0-3 R^{6e}, C₃₋₆ alkenyl substituted with 0-3 R^{6e}, C₃₋₆ alkynyl substituted with 0-3 R^{6e}, a C₃₋₁₀ carbocyclic residue substituted with 0-3 R^{6e}, and a (CH₂)_r-5-6 membered heterocyclic system containing 1-4 heteroatoms selected from N, O, and S, substituted with 0-3 R^{6e};

15 R^{6e}, at each occurrence, is independently selected from C₁₋₆ alkyl, C₂₋₈ alkenyl, C₂₋₈ alkynyl, C₃₋₆ cycloalkyl, Cl, F, Br, I, CN, NO₂, (CF₂)_rCF₃, (CH₂)_rOC₁₋₅ alkyl, OH, -O-C₁₋₆ alkyl, SH, (CH₂)_rSC₁₋₅ alkyl, (CH₂)_rNR^{6f}R^{6f}, and (CH₂)_rphenyl;

20 R^{6f}, at each occurrence, is independently selected from H, C₁₋₆ alkyl, and C₃₋₆ cycloalkyl;

30

R^{6g} is selected from (CHR)_qOH, (CHR)_qSH, (CHR)_qOR^{6d},
(CHR)_qS(O)_pR^{6d}, (CHR)_rC(O)R^{6b}, (CHR)_qNR^{6a}R^{6a},
(CHR)_rC(O)NR^{6a}R^{6a}, (CHR)_rC(O)NR^{6a}OR^{6d},
(CHR)_qSO₂NR^{6a}R^{6a}, (CHR)_rC(O)OR^{6d}, and a (CHR)_r-C₃₋₁₀
5 carbocyclic residue substituted with 0-5 R^{6e};

R⁷, is selected from H, C₁₋₆ alkyl, C₂₋₆ alkenyl, C₂₋₆
alkynyl, (CRR)_qOH, (CRR)_qSH, (CRR)_qOR^{7d},
(CRR)_qS(O)_pR^{7d}, (CRR)_rC(O)R^{7b}, (CRR)_rNR^{7a}R^{7a},
10 (CRR)_rC(O)NR^{7a}R^{7a}, (CRR)_rC(O)NR^{7a}OR^{7d},
(CRR)_qSO₂NR^{7a}R^{7a}, (CRR)_rC(O)OR^{7d}, a (CRR)_r-C₃₋₁₀
carbocyclic residue substituted with 0-5 R^{7e}, and
a (CRR)_r-5-10 membered heterocyclic system
containing 1-4 heteroatoms selected from N, O, and
15 S, substituted with 0-3 R^{7e};

R^{7a}, at each occurrence, is independently selected from
H, methyl, C₂₋₆ alkyl substituted with 0-3 R^{7e},
C₃₋₈ alkenyl substituted with 0-3 R^{7e}, C₃₋₈ alkynyl
20 substituted with 0-3 R^{7e}, (CH₂)_rC₃₋₆ cycloalkyl, a
(CH₂)_r-C₃₋₁₀ carbocyclic residue substituted with
0-5 R^{7e}, and a (CH₂)_r-5-10 membered heterocyclic
system containing 1-4 heteroatoms selected from N,
O, and S, substituted with 0-3 R^{7e};

25 R^{7b}, at each occurrence, is independently selected from
C₁₋₆ alkyl substituted with 0-3 R^{7e}, C₂₋₈ alkenyl
substituted with 0-3 R^{7e}, C₂₋₈ alkynyl substituted
with 0-3 R^{7e}, a (CH₂)_r-C₃₋₆ carbocyclic residue

substituted with 0-2 R^{7e}, and a (CH₂)_r-5-6 membered heterocyclic system containing 1-4 heteroatoms selected from N, O, and S, substituted with 0-3 R^{7e};

5

R^{7d}, at each occurrence, is independently selected from H, methyl, -CF₃, C₂₋₆ alkyl substituted with 0-3 R^{7e}, C₃₋₆ alkenyl substituted with 0-3 R^{7e}, C₃₋₆ alkynyl substituted with 0-3 R^{7e}, a C₃₋₁₀ carbocyclic residue substituted with 0-3 R^{7e}, and a (CH₂)_r-5-6 membered heterocyclic system containing 1-4 heteroatoms selected from N, O, and S, substituted with 0-3 R^{7e};

10

R^{7e}, at each occurrence, is independently selected from C₁₋₆ alkyl, C₂₋₈ alkenyl, C₂₋₈ alkynyl, C₃₋₆ cycloalkyl, Cl, F, Br, I, CN, NO₂, (CF₂)_rCF₃, (CH₂)_rOC₁₋₅ alkyl, OH, -O-C₁₋₆ alkyl, SH, (CH₂)_rSC₁₋₅ alkyl, (CH₂)_rNR^{7f}R^{7f}, and (CH₂)_rphenyl;

20

R^{7f}, at each occurrence, is independently selected from H, C₁₋₆ alkyl, and C₃₋₆ cycloalkyl;

25

R⁸ is selected from H, C₁₋₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, (CRR)_rOH, (CRR)_rSH, (CRR)_rOR^{8d}, (CRR)_rS(O)_pR^{8d}, (CRR)_rC(O)R^{8b}, (CRR)_rNR^{8a}R^{8a}, (CRR)_rC(O)NR^{8a}R^{8a}, (CRR)_rC(O)NR^{8a}OR^{8d}, (CRR)_rSO₂NR^{8a}R^{8a}, (CRR)_rC(O)OR^{8d}, a (CRR)_r-C₃₋₁₀ carbocyclic residue substituted with 0-5 R^{8e}, and a (CRR)_r-5-10 membered heterocyclic system

containing 1-4 heteroatoms selected from N, O, and S, substituted with 0-3 R^{8e};

5 ~~alternatively, R⁸ and R⁹ join to form a C₃₋₆-cycloalkyl substituted with 0-2 R^{8g}, a 5-6 membered ring lactam substituted with 0-2 R^{8g}, or a 5-6 membered ring lactone substituted with 0-2 R^{8g},~~

10 R^{8a}, at each occurrence, is independently selected from H, methyl, C₂₋₆ alkyl substituted with 0-3 R^{8e}, C₃₋₈ alkenyl substituted with 0-3 R^{8e}, C₃₋₈ alkynyl substituted with 0-3 R^{8e}, (CH₂)_rC₃₋₆ cycloalkyl, a (CH₂)_r-C₃₋₁₀ carbocyclic residue substituted with 0-5 R^{8e}, and a (CH₂)_r-5-10 membered heterocyclic system containing 1-4 heteroatoms selected from N, O, and S, substituted with 0-3 R^{8e};

15 R^{8b}, at each occurrence, is independently selected from C₁₋₆ alkyl substituted with 0-3 R^{8e}, C₂₋₈ alkenyl substituted with 0-3 R^{8e}, C₂₋₈ alkynyl substituted with 0-3 R^{8e}, a (CH₂)_r-C₃₋₆ carbocyclic residue substituted with 0-2 R^{8e}, and a (CH₂)_r-5-6 membered heterocyclic system containing 1-4 heteroatoms selected from N, O, and S, substituted with 0-3 R^{8e};

20 R^{8d}, at each occurrence, is independently selected from H, methyl, -CF₃, C₂₋₆ alkyl substituted with 0-3 R^{8e}, C₃₋₆ alkenyl substituted with 0-3 R^{8e}, C₃₋₆ alkynyl substituted with 0-3 R^{8e}, a C₃₋₁₀

carbocyclic residue substituted with 0-3 R^{8e}, and
a (CH₂)_r-5-6 membered heterocyclic system
containing 1-4 heteroatoms selected from N, O, and
S, substituted with 0-3 R^{8e};

5

R^{8e}, at each occurrence, is independently selected from
C₁₋₆ alkyl, C₂₋₈ alkenyl, C₂₋₈ alkynyl, C₃₋₆
cycloalkyl, Cl, F, Br, I, CN, NO₂, (CF₂)_rCF₃,
(CH₂)_rOC₁₋₅ alkyl, OH, -O-C₁₋₆ alkyl, SH, (CH₂)_rSC₁₋
5 alkyl, (CH₂)_rNR^{8f}R^{8f}, and (CH₂)_rphenyl;

10

R^{8f}, at each occurrence, is independently selected from
H, C₁₋₆ alkyl, and C₃₋₆ cycloalkyl;

15

R^{8g} is selected from (CHR)_qOH, (CHR)_qSH, (CHR)_qOR^{8d},
(CHR)_qS(O)_pR^{8d}, (CHR)_rC(O)R^{8b}, (CHR)_qNR^{8a}R^{8a},
(CHR)_rC(O)NR^{8a}R^{8a}, (CHR)_rC(O)NR^{8a}OR^{8d},
(CHR)_qSO₂NR^{8a}R^{8a}, (CHR)_rC(O)OR^{8d}, and a (CHR)_r-C₃₋₁₀
carbocyclic residue substituted with 0-5 R^{8e};

20

R⁹ is selected from H, C₁₋₆ alkyl, C₂₋₆ alkenyl, C₂₋₆
alkynyl, (CRR)_rOH, (CRR)_rSH, (CRR)_rOR^{9d},
(CRR)_rS(O)_pR^{9d}, (CRR)_rC(O)R^{9b}, (CRR)_rNR^{9a}R^{9a},
(CRR)_rC(O)NR^{9a}R^{9a}, (CRR)_rC(O)NR^{9a}OR^{9d},
(CRR)_rSO₂NR^{9a}R^{9a}, (CRR)_rC(O)OR^{9d}, a (CRR)_r-C₃₋₁₀
carbocyclic residue substituted with 0-5 R^{9e}, and
a (CRR)_r-5-10 membered heterocyclic system
containing 1-4 heteroatoms selected from N, O, and
S, substituted with 0-3 R^{9e};

25

R^{9a}, at each occurrence, is independently selected from H, methyl, C₂₋₆ alkyl substituted with 0-3 R^{9e}, C₃₋₈ alkenyl substituted with 0-3 R^{9e}, C₃₋₈ alkynyl substituted with 0-3 R^{9e}, (CH₂)_rC₃₋₆ cycloalkyl, a 5 (CH₂)_r-C₃₋₁₀ carbocyclic residue substituted with 0-5 R^{9e}, and a (CH₂)_r-5-10 membered heterocyclic system containing 1-4 heteroatoms selected from N, O, and S, substituted with 0-3 R^{9e};

10 R^{9b}, at each occurrence, is independently selected from C₁₋₆ alkyl substituted with 0-3 R^{9e}, C₂₋₈ alkenyl substituted with 0-3 R^{9e}, C₂₋₈ alkynyl substituted with 0-3 R^{9e}, a (CH₂)_r-C₃₋₆ carbocyclic residue substituted with 0-2 R^{9e}, and a (CH₂)_r-5-6 15 membered heterocyclic system containing 1-4 heteroatoms selected from N, O, and S, substituted with 0-3 R^{9e};

20 R^{9d}, at each occurrence, is independently selected from H, methyl, -CF₃, C₂₋₆ alkyl substituted with 0-3 R^{9e}, C₃₋₆ alkenyl substituted with 0-3 R^{9e}, C₃₋₆ alkynyl substituted with 0-3 R^{9e}, a C₃₋₁₀ 25 carbocyclic residue substituted with 0-3 R^{9e}, and a (CH₂)_r-5-6 membered heterocyclic system containing 1-4 heteroatoms selected from N, O, and S, substituted with 0-3 R^{9e};

30 R^{9e}, at each occurrence, is independently selected from C₁₋₆ alkyl, C₂₋₈ alkenyl, C₂₋₈ alkynyl, C₃₋₆ cycloalkyl, Cl, F, Br, I, CN, NO₂, (CF₂)_rCF₃,

(CH₂)_rOC₁₋₅ alkyl, OH, -O-C₁₋₆ alkyl, SH,
(CH₂)_rSC₁₋₅ alkyl, (CH₂)_rNR^{9f}R^{9f}, and (CH₂)_rphenyl;

R^{9f}, at each occurrence, is independently selected from
5 H, C₁₋₆ alkyl, and C₃₋₆ cycloalkyl;

R¹⁰ is selected from H, C₁₋₆ alkyl, C₂₋₆ alkenyl, C₂₋₆
alkynyl, (CRR)_rOH, (CRR)_rSH, (CRR)_rOR^{10d},
(CRR)_rS(O)_pR^{10d}, (CRR)_rC(O)R^{10b}, (CRR)_rNR^{10a}R^{10a},
10 (CRR)_rC(O)NR^{10a}R^{10a}, (CRR)_rC(O)NR^{10a}OR^{10d},
(CRR)_rSO₂NR^{10a}R^{10a}, (CRR)_rC(O)OR^{10d}, a (CRR)_r-C₃₋₁₀
carbocyclic residue substituted with 0-5 R^{10e}, and
a (CRR)_r-5-10 membered heterocyclic system
containing 1-4 heteroatoms selected from N, O, and
15 S, substituted with 0-3 R^{10e};

alternatively, R¹⁰ and R¹¹ join to form a C₃₋₆
cycloalkyl substituted with 0-2 R^{10g}, a 5-6
membered ring lactam substituted with 0-2 R^{10g}, or
20 a 5-6 membered ring lactone substituted with 0-2
R^{10g},

R^{10a}, at each occurrence, is independently selected
from H, methyl, C₂₋₆ alkyl substituted with 0-3
25 R^{10e}, C₃₋₈ alkenyl substituted with 0-3 R^{10e}, C₃₋₈
alkynyl substituted with 0-3 R^{10e}, (CH₂)_rC₃₋₆
cycloalkyl, a (CH₂)_r-C₃₋₁₀ carbocyclic residue
substituted with 0-5 R^{10e}, and a (CH₂)_r-5-10
membered heterocyclic system containing 1-4

heteroatoms selected from N, O, and S, substituted with 0-3 R^{10e};

R^{10b}, at each occurrence, is independently selected
5 from C₁₋₆ alkyl substituted with 0-3 R^{10e}, C₂₋₈ alkenyl substituted with 0-3 R^{10e}, C₂₋₈ alkynyl substituted with 0-3 R^{10e}, a (CH₂)_r-C₃₋₆ carbocyclic residue substituted with 0-2 R^{10e}, and a (CH₂)_r-5-6 membered heterocyclic system
10 containing 1-4 heteroatoms selected from N, O, and S, substituted with 0-3 R^{10e};

R^{10d}, at each occurrence, is independently selected
from H, methyl, -CF₃, C₂₋₆ alkyl substituted with
15 0-3 R^{10e}, C₃₋₆ alkenyl substituted with 0-3 R^{10e}, C₃₋₆ alkynyl substituted with 0-3 R^{10e}, a C₃₋₁₀ carbocyclic residue substituted with 0-3 R^{10e}, and a (CH₂)_r-5-6 membered heterocyclic system
containing 1-4 heteroatoms selected from N, O, and
20 S, substituted with 0-3 R^{10e};

R^{10e}, at each occurrence, is independently selected
from C₁₋₆ alkyl, C₂₋₈ alkenyl, C₂₋₈ alkynyl, C₃₋₆ cycloalkyl, Cl, F, Br, I, CN, NO₂, (CF₂)_rCF₃,
25 (CH₂)_rOC₁₋₅ alkyl, OH, -O-C₁₋₆ alkyl, SH,
(CH₂)_rSC₁₋₅ alkyl, (CH₂)_rNR^{10f}R^{10f}, and
(CH₂)_rphenyl;

R^{10f}, at each occurrence, is independently selected
30 from H, C₁₋₆ alkyl, and C₃₋₆ cycloalkyl;

R^{10g} is selected from (CHR)_qOH, (CHR)_qSH, (CHR)_qOR^{10d},
(CHR)_qS(O)_pR^{10d}, (CHR)_rC(O)R^{10b}, (CHR)_qNR^{10a}R^{10a},
(CHR)_rC(O)NR^{10a}R^{10a}, (CHR)_rC(O)NR^{10a}OR^{10d},
5 (CHR)_qSO₂NR^{10a}R^{10a}, (CHR)_rC(O)OR^{10d}, and a (CHR)_r-C₃₋₁₀ carbocyclic residue substituted with 0-5 R^{10e};

10 R¹¹, is selected from H, C₁₋₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, (CRR)_rOH, (CRR)_rSH, (CRR)_rOR^{11d},
(CRR)_rS(O)_pR^{11d}, (CRR)_rC(O)R^{11b}, (CRR)_rNR^{11a}R^{11a},
(CRR)_rC(O)NR^{11a}R^{11a}, (CRR)_rC(O)NR^{11a}OR^{11d},
(CRR)_rSO₂NR^{11a}R^{11a}, (CRR)_rC(O)OR^{11d}, a (CRR)_r-C₃₋₁₀ carbocyclic residue substituted with 0-5 R^{11e}, and
15 a (CRR)_r-5-10 membered heterocyclic system containing 1-4 heteroatoms selected from N, O, and S, substituted with 0-3 R^{11e};

20 R^{11a}, at each occurrence, is independently selected from H, methyl; C₂₋₆ alkyl substituted with 0-3 R^{11e}, C₃₋₈ alkenyl substituted with 0-3 R^{11e}, C₃₋₈ alkynyl substituted with 0-3 R^{11e}, (CH₂)_rC₃₋₆ cycloalkyl, a (CH₂)_r-C₃₋₁₀ carbocyclic residue substituted with 0-5 R^{11e}, and a (CH₂)_r-5-10
25 membered heterocyclic system containing 1-4 heteroatoms selected from N, O, and S, substituted with 0-3 R^{11e};

R^{11b}, at each occurrence, is independently selected from C₁₋₆ alkyl substituted with 0-3 R^{11e}, C₂₋₈ alkenyl substituted with 0-3 R^{11e}, C₂₋₈ alkynyl substituted with 0-3 R^{11e}, a (CH₂)_r-C₃₋₆ carbocyclic residue substituted with 0-2 R^{11e}, and a (CH₂)_r-5-6 membered heterocyclic system containing 1-4 heteroatoms selected from N, O, and S, substituted with 0-3 R^{11e};

10 R^{11d}, at each occurrence, is independently selected from H, methyl, -CF₃, C₂₋₆ alkyl substituted with 0-3 R^{11e}, C₃₋₆ alkenyl substituted with 0-3 R^{11e}, C₃₋₆ alkynyl substituted with 0-3 R^{11e}, a C₃₋₁₀ carbocyclic residue substituted with 0-3 R^{11e}, and 15 a (CH₂)_r-5-6 membered heterocyclic system containing 1-4 heteroatoms selected from N, O, and S, substituted with 0-3 R^{11e};

20 R^{11e}, at each occurrence, is independently selected from C₁₋₆ alkyl, C₂₋₈ alkenyl, C₂₋₈ alkynyl, C₃₋₆ cycloalkyl, Cl, F, Br, I, CN, NO₂, (CF₂)_rCF₃, (CH₂)_rOC₁₋₅ alkyl, OH, -O-C₁₋₆ alkyl, SH, (CH₂)_rSC₁₋₅ alkyl, (CH₂)_rNR^{11f}R^{11f}, and (CH₂)_rphenyl;

25 R^{11f}, at each occurrence, is independently selected from H, C₁₋₆ alkyl, and C₃₋₆ cycloalkyl;

30 R¹² is selected from H, C₁₋₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, (CRR)_qOH, (CRR)_qSH, (CRR)_qOR^{12d},

(CRR)_qS(O)_pR^{12d}, (CRR)_rC(O)R^{12b}, (CRR)_rNR^{12a}R^{12a},
(CRR)_rC(O)NR^{12a}R^{12a}, (CRR)_rC(O)NR^{12a}OR^{12d},
(CRR)_qSO₂NR^{12a}R^{12a}, (CRR)_rC(O)OR^{12d}, a (CRR)_r-C₃₋₁₀
carbocyclic residue substituted with 0-5 R^{12e}, and
5 a (CRR)_r-5-10 membered heterocyclic system
containing 1-4 heteroatoms selected from N, O, and
S, substituted with 0-3 R^{12e};

10 R^{12a}, at each occurrence, is independently selected
from H, methyl, C₂₋₆ alkyl substituted with 0-3
R^{12e}, C₃₋₈ alkenyl substituted with 0-3 R^{12e}, C₃₋₈
alkynyl substituted with 0-3 R^{12e}, (CH₂)_rC₃₋₆
cycloalkyl, a (CH₂)_r-C₃₋₁₀ carbocyclic residue
substituted with 0-5 R^{12e}, and a (CH₂)_r-5-10
15 membered heterocyclic system containing 1-4
heteroatoms selected from N, O, and S, substituted
with 0-3 R^{12e};

20 R^{12b}, at each occurrence, is independently selected
from C₁₋₆ alkyl substituted with 0-3 R^{12e}, C₂₋₈
alkenyl substituted with 0-3 R^{12e}, C₂₋₈ alkynyl
substituted with 0-3 R^{12e}, a (CH₂)_r-C₃₋₆
carbocyclic residue substituted with 0-2 R^{12e}, and
a (CH₂)_r-5-6 membered heterocyclic system
25 containing 1-4 heteroatoms selected from N, O, and
S, substituted with 0-3 R^{12e};

30 R^{12d}, at each occurrence, is independently selected
from H, methyl, -CF₃, C₂₋₆ alkyl substituted with
0-3 R^{12e}, C₃₋₆ alkenyl substituted with 0-3 R^{12e},

C₃-6 alkynyl substituted with 0-3 R^{12e}, a C₃-10 carbocyclic residue substituted with 0-3 R^{12e}, and a (CH₂)_r-5-6 membered heterocyclic system containing 1-4 heteroatoms selected from N, O, and S, substituted with 0-3 R^{12e};

R^{12e}, at each occurrence, is independently selected from C₁-6 alkyl, C₂-8 alkenyl, C₂-8 alkynyl, C₃-6 cycloalkyl, Cl, F, Br, I, CN, NO₂, (CF₂)_rCF₃, (CH₂)_rOC₁-5 alkyl, OH, -O-C₁-6 alkyl, SH, (CH₂)_rSC₁-5 alkyl, (CH₂)_rNR^{12f}R^{12f}, and (CH₂)_rphenyl;

R^{12f}, at each occurrence, is selected from H, C₁-6 alkyl, and C₃-6 cycloalkyl;

R¹⁴ and R^{14a} are H,

~~alternatively, R¹⁴ and R^{14a} can join to form a C₃-6 cycloalkyl;~~

R¹⁵ is H;

R¹⁶ is selected from H, C₁-4 alkyl substituted with 0-3 R^{16a}, and C₃-6 cycloalkyl substituted with 0-3 R^{16a};

R^{16a} is selected from C₁-4 alkyl, -OH, -SH, -NR^{16c}R^{16c}, -C(O)NR^{16c}R^{16c}, and -NHC(O)R^{16c};

R^{16c} is selected from H, C₁-4 alkyl and C₃-6 cycloalkyl;

R¹⁷ is selected from H, C₁₋₄ alkyl, and C₃₋₄ cycloalkyl;

n is 1;

5

l is selected from 0 and 1;

m is selected from 0 and 1;

10 p, at each occurrence, is selected from 0, 1, or 2;

q, at each occurrence, is selected from 1, 2, 3, or 4;
and

15 r, at each occurrence, is selected from 0, 1, 2, 3, or
4.

3. (CANCELLED)

20 4. (CURRENTLY AMENDED) The compound of claim 2 3,
wherein:

R¹⁶ is selected from H, C₁₋₄ alkyl substituted with 0-1

25 R^{16a}, wherein the alkyl is selected from methyl,
ethyl, propyl, i-propyl, butyl, i-butyl, and
s-butyl, and C₃₋₄ cycloalkyl substituted with 0-3
R^{16a} wherein the cycloalkyl is selected from
cyclopropyl and cyclobutyl;

R^{16a} is selected from methyl, ethyl, propyl, i-propyl,
-OH, -SH, -NR^{16c}R^{16c}, -C(O)NR^{16c}R^{16c}, and
-NHC(O)R^{16c}; and

5 R¹⁷ is selected from H, methyl, ethyl, propyl, and
i-propyl.

5. (ORIGINAL) The compound of claim 4, wherein:

10 R⁹ and R¹¹ are H; and

R⁸ and R¹⁰ are independently selected from H, C₁₋₆
alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, a (CH₂)_r-C₃₋₁₀
carbocyclic residue wherein the carbocyclic
15 residue is selected from cyclopropyl, cyclobutyl,
cyclopentyl, cyclohexyl, phenyl and naphthyl.

6. (PREVIOUSLY AMENDED) The compound of claim 5,
wherein:

20

R³ is selected from (CRR)_qOH, (CRR)_qSH, (CRR)_qOR^{3d},
(CRR)_qS(O)_pR^{3d}, (CRR)_rC(O)R^{3b}, (CRR)_qNR^{3a}R^{3a},
(CRR)_rC(O)NR^{3a}R^{3a}, (CRR)_rC(O)NR^{3a}OR^{3d},
(CRR)_qSO₂NR^{3a}R^{3a}, (CRR)_rC(O)OR^{3d}, a (CRR)_r-C₃₋₁₀
25 carbocyclic residue substituted with 0-5 R^{3e}, and
a (CRR)_r-5-10 membered heterocyclic system
containing 1-4 heteroatoms selected from N, O, and
S, substituted with 0-3 R^{3e} wherein the
heterocyclic system is selected from pyridinyl,
30 thiophenyl, furanyl, indazolyl, benzothiazolyl,
benzimidazolyl, benzothiophenyl, benzofuranyl,

benzoxazolyl, benzisoxazolyl, quinolinyl,
isoquinolinyl, imidazolyl, indolyl, indolinyl,
isoindolyl, isothiadiazolyl, isoxazolyl,
piperidinyl, pyrazolyl, pyrrolidinyl,
5 tetrahydrofuranyl, tetrahydrothiophenyl, 1,2,4-
triazolyl, 1,2,3-triazolyl, tetrazolyl,
thiadiazolyl, thiazolyl, oxazolyl, pyrazinyl, and
pyrimidinyl;

10 R⁶ is selected from H, (CRR)_qOH, (CRR)_qSH, (CRR)_qOR^{6d},
(CRR)_qS(O)_pR^{6d}, (CRR)_rC(O)R^{6b}, (CRR)_qNR^{6a}R^{6a},
(CRR)_rC(O)NR^{6a}R^{6a}, (CRR)_rC(O)NR^{6a}OR^{6d},
(CRR)_qSO₂NR^{6a}R^{6a}, (CRR)_rC(O)OR^{6d}, a (CRR)_r-C₆₋₁₀
carbocyclic residue substituted with 0-5 R^{6e}, and
15 a (CRR)_r-5-10 membered heterocyclic system
containing 1-4 heteroatoms selected from N, O, and
S, substituted with 0-6 R^{6e} wherein the
heterocyclic system is selected from pyridinyl,
thiophenyl, furanyl, indazolyl, benzothiazolyl,
20 benzimidazolyl, benzothiophenyl, benzofuranyl,
benzoxazolyl, benzisoxazolyl, quinolinyl,
isoquinolinyl, imidazolyl, indolyl, indolinyl,
isoindolyl, isothiadiazolyl, isoxazolyl,
piperidinyl, pyrazolyl, pyrrolidinyl,
25 tetrahydrofuranyl, tetrahydrothiophenyl, 1,2,4-
triazolyl, 1,2,6-triazolyl, tetrazolyl,
thiadiazolyl, thiazolyl, oxazolyl, pyrazinyl, and
pyrimidinyl;

30 R⁷ is H;

R¹² is selected from H, methyl, ethyl, and propyl;

7. (PREVIOUSLY AMENDED) The compound of claim 6,
wherein:

5

R¹ is selected from phenyl substituted with 0-3 R⁴;

R² is selected from phenyl substituted with 0-3 R⁵.

10 8. (CURRENTLY AMENDED) The compound of claim 7,
wherein:

X is -CHR¹⁶NR¹⁷- CHR¹⁶R¹⁷;

15 R⁴, at each occurrence, is selected from C₁₋₈ alkyl,
C₂₋₈ alkenyl, C₂₋₈ alkynyl, (CR'R')_rC₃₋₆
cycloalkyl, Cl, Br, I, F, NO₂, CN, (CR'R')_rNR^{4a}R^{4a},
(CR'R')_rOH, (CR'R')_rOR^{4d}, (CR'R')_rSH, (CR'R')_rSR^{4d},
(CR'R')_rC(O)OH, (CR'R')_rC(O)R^{4b},
20 (CR'R')_rC(O)NR^{4a}R^{4a}, (CR'R')_rNR^{4f}C(O)R^{4b},
(CR'R')_rC(O)OR^{4d}, (CR'R')_rOC(O)R^{4b},
(CR'R')_rNR^{4f}C(O)OR^{4d}, (CR'R')_rOC(O)NR^{4a}R^{4a},
(CR'R')_rNR^{4a}C(O)NR^{4a}R^{4a}, (CR'R')_rS(O)_pR^{4b},
(CR'R')_rS(O)₂NR^{4a}R^{4a}, (CR'R')_rNR^{4f}S(O)₂R^{4b},
25 (CR'R')_rNR^{4f}S(O)₂NR^{4a}R^{4a}, C₁₋₆ haloalkyl, and
(CR'R')_rphenyl substituted with 0-3 R^{4e};

alternatively, two R⁴ on adjacent atoms join to form
-O-(CH₂)-O-;

30

R^{4a}, at each occurrence, is independently selected from H, methyl, ethyl, propyl, i-propyl, butyl, s-butyl, i-butyl, t-butyl, pentyl, hexyl, allyl, propargyl, and a (CH₂)_{r-C₃₋₆} carbocyclic residue selected from cyclopropyl, cyclobutyl, cyclopentyl and cyclohexyl;

R^{4b}, at each occurrence, is selected from methyl, ethyl, propyl, i-propyl, butyl, s-butyl, i-butyl, t-butyl, pentyl, hexyl, allyl, propargyl, a (CH₂)_{r-C₃₋₆} carbocyclic residue substituted with 0-3 R^{4e}, wherein the carbocyclic residue is selected from cyclopropyl, cyclobutyl, cyclopentyl and cyclohexyl, and a (CH₂)_{r-5-6} membered heterocyclic system containing 1-4 heteroatoms selected from N, O, and S, substituted with 0-2 R^{4e}, wherein the heterocyclic system is selected from pyridinyl, thiophenyl, furanyl, indazolyl, benzothiazolyl, benzimidazolyl, benzothiophenyl, benzofuranyl, benzoxazolyl, benzisoxazolyl, quinolinyl, isoquinolinyl, imidazolyl, indolyl, indolinyl, isoindolyl, isothiadiazolyl, isoxazolyl, piperidinyl, pyrazolyl, 1,2,4-triazolyl, 1,2,3-triazolyl, tetrazolyl, thiadiazolyl, thiazolyl, oxazolyl, pyrazinyl, and pyrimidinyl;

R^{4d}, at each occurrence, is selected from H, methyl, CF₃, ethyl, propyl, i-propyl, butyl, s-butyl, i-butyl, t-butyl, pentyl, hexyl, allyl, propargyl, and a (CH₂)_{r-C₃₋₆} carbocyclic residue selected

from cyclopropyl, cyclobutyl, cyclopentyl and cyclohexyl;

5 R^{4e}, at each occurrence, is selected from C₁₋₆ alkyl, C₂₋₈ alkenyl, C₂₋₈ alkynyl, (CH₂)_rC₃₋₆ cycloalkyl, Cl, F, Br, I, CN, NO₂, (CF₂)_rCF₃, (CH₂)_rOC₁₋₅ alkyl, OH, SH, (CH₂)_rSC₁₋₅ alkyl, (CH₂)_rNR^{4f}R^{4f}, and (CH₂)_rphenyl;

10 R^{4f}, at each occurrence, is selected from H, methyl, ethyl, propyl, i-propyl, butyl, and cyclopropyl, cyclobutyl, and phenyl;

15 R⁵, at each occurrence, is selected from methyl, ethyl, propyl, i-propyl, butyl, i-butyl, s-butyl, t-butyl, pentyl, hexyl, (CR'R')_rC₃₋₆ cycloalkyl, Cl, Br, I, F, NO₂, CN, (CR'R')_rNR^{5a}R^{5a}, (CR'R')_rOH, (CR'R')_rOR^{5d}, (CR'R')_rSH, (CR'R')_rC(O)H, (CR'R')_rSR^{5d}, (CR'R')_rC(O)OH, (CR'R')_rC(O)R^{5b},
20 (CR'R')_rC(O)NR^{5a}R^{5a}, (CR'R')_rNR^{5f}C(O)R^{5b}, (CR'R')_rC(O)OR^{5d}, (CR'R')_rOC(O)R^{5b}, (CR'R')_rNR^{5f}C(O)OR^{5d}, (CR'R')_rOC(O)NR^{5a}R^{5a}, (CR'R')_rNR^{5a}C(O)NR^{5a}R^{5a}, (CR'R')_rNR^{5a}C(O)O(CR'R')_rR^{5d}, (CR'R')_rS(O)_pR^{5b},
25 (CR'R')_rS(O)₂NR^{5a}R^{5a}, (CR'R')_rNR^{5f}S(O)₂R^{5b}, C₁₋₆ haloalkyl, and (CHR')_rphenyl substituted with 0-3 R^{5e};

30 alternatively, two R⁵ on adjacent atoms join to form -O-(CH₂)-O-;

R^{5a}, at each occurrence, is independently selected from H, methyl, ethyl, propyl, i-propyl, butyl, s-butyl, i-butyl, t-butyl, pentyl, hexyl, allyl, propargyl, and a (CH₂)_{r-C₃₋₁₀} carbocyclic residue substituted with 0-1 R^{5e}, wherein the carbocyclic residue is selected from cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, phenyl and naphthyl;

R^{5b}, at each occurrence, is selected from methyl, ethyl, propyl, i-propyl, butyl, s-butyl, i-butyl, t-butyl, pentyl, hexyl, allyl, propargyl, a (CH₂)_{r-C₃₋₆} carbocyclic residue selected from cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, and phenyl; and a (CH₂)_{r-5-6} membered heterocyclic system containing 1-4 heteroatoms selected from N, O, and S, wherein the heterocyclic system is selected from pyridinyl, thiophenyl, furanyl, indazolyl, azetidinyl, benzothiazolyl, benzimidazolyl, benzothiophenyl, benzofuranyl, benzoxazolyl, benzisoxazolyl, quinolinyl, isoquinolinyl, imidazolyl, indolyl, indolinyl, isoindolyl, isothiadiazolyl, isoxazolyl, morphlinyl, piperidinyl, pyrrolyl, 2,5-dihydropyrrolyl, pyrazolyl, 1,2,4-triazolyl, 1,2,3-triazolyl, tetrazolyl, thiadiazolyl, thiazolyl, oxazolyl, pyrazinyl, and pyrimidinyl;

R^{5d}, at each occurrence, is selected from H, methyl, CF₃, ethyl, propyl, i-propyl, butyl, s-butyl, i-butyl, t-butyl, pentyl, hexyl, allyl, propargyl, and a (CH₂)_{r-C₃₋₆} carbocyclic residue selected

from cyclopropyl, cyclobutyl, cyclopentyl and cyclohexyl;

5 R^{5e}, at each occurrence, is selected from C₁₋₆ alkyl, C₂₋₈ alkenyl, C₂₋₈ alkynyl, (CH₂)_rC₃₋₆ cycloalkyl, Cl, F, Br, I, CN, NO₂, (CF₂)_rCF₃, (CH₂)_rOC₁₋₅ alkyl, OH, SH, (CH₂)_rSC₁₋₅ alkyl, (CH₂)_rNR^{5f}R^{5f}, and (CH₂)_rphenyl; and

10 R^{5f}, at each occurrence, is selected from H, methyl, ethyl, propyl, i-propyl, butyl, and cyclopropyl, cyclobutyl, and phenyl.

9. (ORIGINAL) The compound of claim 8, wherein:

15 R⁵ is selected from methyl, ethyl, propyl, i-propyl, butyl, i-butyl, s-butyl, pentyl, hexyl, CF₃, CF₂CF₃, CF₂H, OCF₃, Cl, Br, I, F, SCF₃, NR^{5a}R^{5a}, NHC(O)OR^{5a}, NHC(O)R^{5b}, and NHC(O)NHR^{5a}; and

20 R¹² is selected from H and methyl.

10. (PREVIOUSLY AMENDED) A compound of claim 9, wherein:

25 Z is -C(O)-;

X is -CHR¹⁶NR¹⁷-;

30 R¹ is selected from phenyl substituted with 0-3 R⁴;

R² is phenyl substituted with 0-2 R⁵;

R³ is selected from (CRR)_qOH, (CRR)_qOR^{3d}, (CH₂)_rC(O)OH,
(CH₂)_rC(O)NR^{3a}R^{3a}, (CHR)_rC(O)NR^{3a}OR^{3d}, (CH₂)C(O)R^{3b},
5 (CH₂)_rC(O)OR^{3d}, and (CH₂)-phenyl;

R^{3a} is selected from H, methyl, ethyl, propyl,
i-propyl, butyl, i-butyl, s-butyl, t-butyl, allyl,
CH₂CF₃, C(CH₃)CH₂CH₂OH, cyclopropyl, 1-
10 methylcyclopropyl, cyclobutyl, cyclopentyl,
cyclohexyl, phenyl, and benzyl;

R^{3b} is selected from pyrrolidinyl, pyrrolid-3-enyl, and
morpholinyl;

15 R^{3d} is selected from methyl, ethyl, propyl, i-propyl,
butyl, i-butyl, t-butyl and benzyl;

20 R is selected from H, methyl, ethyl, propyl, i-propyl,
butyl, i-butyl, s-butyl, pentyl, neopentyl, phenyl
and benzyl;

25 R⁴ is selected from methyl, ethyl, propyl, i-propyl,
butyl, ethylene, OCH₃, OCF₃, SCH₃, SO₂CH₃, Cl, F,
Br, CN;

alternatively, two R⁴ join to form -O-(CH₂)-O-;

30 R⁶ is selected from H, methyl, ethyl, propyl, i-propyl,
butyl, C(O)OCH₃, C(O)NHCH₂CH₃;

R⁷, R⁹, and R¹¹ are H;

R⁸ is H;

5 R¹⁰ is selected from H and methyl;

R¹⁶ is selected from H and methyl;

R¹⁷ is selected from H and methyl;

10

m is 0 or 1;

l is 0 or 1

15 r is 0 or 1; and

q is 1.

11. (REINSTATED) The compound of claim 1, wherein

20

R³ is H; and

R⁶, is selected from C₁₋₆ alkyl, C₂₋₆ alkenyl, C₂₋₆

alkynyl, (CRR)_qOH, (CRR)_qSH, (CRR)_qOR^{6d},

25

(CRR)_qS(O)_pR^{6d}, (CRR)_rC(O)R^{6b}, (CRR)_rNR^{6a}R^{6a},

(CRR)_rC(O)NR^{6a}R^{6a}, (CRR)_rC(O)NR^{6a}OR^{6d},

(CRR)SO₂NR^{6a}R^{6a}, (CRR)_rC(O)OR^{6d}, a (CRR)_r-C₃₋₁₀

carbocyclic residue substituted with 0-5 R^{6e}, and

a (CRR)_r-5-10 membered heterocyclic system

30

containing 1-4 heteroatoms selected from N, O, and S, substituted with 0-3 R^{6e}.

12. (REINSTATED, CURRENTLY AMENDED) The compound of
claim 11, wherein

5 ~~R¹⁴ and R^{14a} are H;~~

~~R¹⁵ is H;~~

~~n is 1;~~

10

R¹⁶ is selected from H, C₁₋₄ alkyl substituted with 0-1
R^{16a}, wherein the alkyl is selected from methyl,
ethyl, propyl, i-propyl, butyl, i-butyl, and s-
butyl, and C₃₋₄ cycloalkyl substituted with 0-3

15 R^{16a} wherein the cycloalkyl is selected from
cyclopropyl and cyclobutyl;

R^{16a} is selected from methyl, ethyl, propyl, i-propyl,
-OH, -SH, -NR^{16c}R^{16c}, -C(O)NR^{16c}R^{16c}, and
20 -NHC(O)R^{16c};

R¹⁷ is selected from H, methyl, ethyl, propyl, and
i-propyl;

25 R⁹ and R¹¹ are H; and

R⁸ and R¹⁰ are independently selected from H, C₁₋₆
alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, a (CH₂)_r-C₃₋₁₀
carbocyclic residue wherein the carbocyclic
30 residue is selected from cyclopropyl, cyclobutyl,
cyclopentyl, cyclohexyl, phenyl and naphthyl.

13. (REINSTATED, CURRENTLY AMENDED) The compound of claim 12, wherein

5 X is CHR¹⁶NR¹⁷ CHR¹⁶R¹⁷;

R⁵ is selected from methyl, ethyl, propyl, i-propyl, butyl, i-butyl, s-butyl, pentyl, hexyl, CF₃, CF₂CF₃, CF₂H, OCF₃, Cl, Br, I, F, SCF₃, NR^{5a}R^{5a},

10 NHC(O)OR^{5a}, NHC(O)R^{5b}, and NHC(O)NHR^{5a}; and

R¹² is selected from H and methyl;

Z is -C(O)-;

15

R¹ is selected from phenyl substituted with 0-3 R⁴, and a 5-10 membered heteroaryl system substituted with 0-2 R⁴, wherein the heteroaryl is selected from indolyl, and pyridyl;

20

R² is phenyl substituted with 0-2 R⁵;

R³ is selected from (CRR)_qOH, (CRR)_qOR^{3d}, (CH₂)_rC(O)OH, (CH₂)_rC(O)NR^{3a}R^{3a}, (CHR)_rC(O)NR^{3a}OR^{3d}, (CH₂)C(O)R^{3b}, 25 (CH₂)_rC(O)OR^{3d}, and (CH₂)-phenyl;

alternatively, R³ and R¹² join to form cyclopropyl, cyclopentyl or cyclohexyl;

30 R^{3a} is selected from H, methyl, ethyl, propyl, i-propyl, butyl, i-butyl, s-butyl, t-butyl, allyl,

CH_2CF_3 , $\text{C}(\text{CH}_3)\text{CH}_2\text{CH}_2\text{OH}$, cyclopropyl, 1-methylcyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, phenyl, and benzyl;

5 R^{3b} is selected from pyrrolidinyl, pyrrolid-3-enyl, and morpholinyl;

R^{3d} is selected from methyl, ethyl, propyl, i-propyl, butyl, i-butyl, t-butyl and benzyl;

10

R is selected from H, methyl, ethyl, propyl, i-propyl, butyl, i-butyl, s-butyl, pentyl, neopentyl, phenyl and benzyl;

15

R^4 is selected from methyl, ethyl, propyl, i-propyl, butyl, ethylene, OCH_3 , OCF_3 , SCH_3 , SO_2CH_3 , Cl, F, Br, CN;

alternatively, two R^4 join to form $-\text{O}-(\text{CH}_2)-\text{O}-$;

20

R^6 is selected from H, methyl, ethyl, propyl, i-propyl, butyl, $\text{C}(\text{O})\text{OCH}_3$, $\text{C}(\text{O})\text{NHCH}_2\text{CH}_3$;

R^7 , R^9 , and R^{11} are H;

25

R^8 is H;

R^{10} is selected from H and methyl;

30

R^{16} is selected from H and methyl;

R¹⁷ is selected from H and methyl;

m is 0 or 1;

5 l is 0 or 1

r is 0 or 1; and

q is 1.

10

14. (CURRENTLY AMENDED) The compound of claim 1,
wherein the compound is selected from:

Methyl (2S)-3-[(2,4-dimethylphenyl)methyl]amino]-2-

15

[[[[3-
(trifluoromethyl)benzoyl]amino]acetyl]amino]-
propanoate;

Methyl (2R)-3-[(2,4-dimethylphenyl)methyl]amino]-2-

20

[[[[3-
(trifluoromethyl)benzoyl]amino]acetyl]amino]-
propanoate;

(2S)-3-[(2,4-dimethylphenyl)methyl]amino]-2-[[[[3-

25

(trifluoromethyl)benzoyl]amino]acetyl]amino]-
propanoic acid;

(2S)-N-Methyl-3-[(2,4-dimethylphenyl)methyl]amino]-2-

30

[[[[3-
(trifluoromethyl)benzoyl]amino]acetyl]amino]-
propanamide;

AMENDMENTS TO THE CLAIMS

(2*S*) -3-[[[(2,4-dimethylphenyl)methyl]amino]-2-[[[[3-
(trifluoromethyl)benzoyl]amino]acetyl]amino]-
propanamide;

5 (2*R*) -3-[[[(2,4-dimethylphenyl)methyl]amino]-2-[[[[3-
(trifluoromethyl)benzoyl]amino]acetyl]amino]-
propanamide;

10 (2*S*) -*N*-Ethyl-3-[[[(2,4-dimethylphenyl)methyl]amino]-2-
[[[[3-
(trifluoromethyl)benzoyl]amino]acetyl]amino]-
propanamide;

15 (2*S*) -*N*-Benzyl-3-[[[(2,4-dimethylphenyl)methyl]amino]-2-
[[[[3-
(trifluoromethyl)benzoyl]amino]acetyl]amino]-
propanamide;

20 (2*S*) -*N*-Isopropyl-3-[[[(2,4-dimethylphenyl)methyl]amino]-
2-[[[[3-
(trifluoromethyl)benzoyl]amino]acetyl]amino]-
propanamide;

25 (2*S*) -*N*-tert-Butyl-3-[[[(2,4-
dimethylphenyl)methyl]amino]-2-[[[[3-
(trifluoromethyl)benzoyl]amino]acetyl]amino]-
propanamide;

30 (2*S*) -*N*-Cyclopropyl-3-[[[(2,4-
dimethylphenyl)methyl]amino]-2-[[[[3-
(trifluoromethyl)benzoyl]amino]acetyl]amino]-
propanamide;

(2*S*) -*N*-Cyclobutyl-3-[(2,4-
dimethylphenyl)methyl]amino]-2-[[[[3-
(trifluoromethyl)benzoyl]amino]acetyl]amino]-
5 propanamide;

(2*S*) -*N*-Phenyl-3-[(2,4-dimethylphenyl)methyl]amino]-2-
[[[[3-
(trifluoromethyl)benzoyl]amino]acetyl]amino]-
10 propanamide;

(2*S*) -*N,N*-Dimethyl-3-[(2,4-
dimethylphenyl)methyl]amino]-2-[[[[3-
(trifluoromethyl)benzoyl]amino]acetyl]amino]-
15 propanamide;

(2*S*) -*N*-Methyl, *N*-methoxy-3-[(2,4-
dimethylphenyl)methyl]amino]-2-[[[[3-
(trifluoromethyl)benzoyl]amino]acetyl]amino]-
20 propanamide;

Methyl (2*S*) -3-[(4-chlorophenyl)methyl]amino]-2-[[[[3-
(trifluoromethyl)benzoyl]amino]acetyl]amino]-
propanoate;

25 (2*S*) -3-[(4-chlorophenyl)methyl]amino]-2-[[[[3-
(trifluoromethyl)benzoyl]amino]acetyl]amino]-
propanamide;

30 (2*S*) -*N*-Ethyl-3-[(4-chlorophenyl)methyl]amino]-2-[[[[3-
(trifluoromethyl)benzoyl]amino]acetyl]amino]-
propanamide;

Methyl (2*S*) -3- [[(1*S/R*) -1- (4-chlorophenyl) ethyl] amino] -
2- [[[3-
(trifluoromethyl) benzoyl] amino] acetyl] amino] -
5 propanoate;

Methyl (2*S*) -3- [[(1*S/R*) -1- (2,4-
dimethylphenyl) ethyl] amino] -2- [[[3-
(trifluoromethyl) benzoyl] amino] acetyl] amino] -
10 propanoate;

Methyl (2*S*) -3- [(1,3-benzodioxol-5-ylmethyl) amino] -2-
[[[3-
(trifluoromethyl) benzoyl] amino] acetyl] amino] -
15 propanoate;

Methyl (2*S*) -3- [(4-bromophenyl)methyl] amino] -2- [[[3-
(trifluoromethyl) benzoyl] amino] acetyl] amino] -
propanoate;

20 Methyl (2*S*) -2- [[[2- [(1,1-
dimethylethoxy) carbonyl] amino] -5-
(trifluoromethyl) benzoyl] amino] acetyl] amino] -3-
[(2,4-dimethylphenyl)methyl] amino] -propanoate;

25 Methyl (2*S*) -2- [[[2-amino-5-
(trifluoromethyl) benzoyl] amino] acetyl] amino] -3-
[(2,4-dimethylphenyl)methyl] amino] -propanoate;

30 (2*S*) -2- [[[2-amino-5-
(trifluoromethyl) benzoyl] amino] acetyl] amino] -3-
[(2,4-dimethylphenyl)methyl] amino] -propanamide;

N-[2-[[[(1*S*)-2-[(2,4-dimethylphenyl)methyl]amino]-1-(hydroxymethyl)ethyl]amino]-2-oxoethyl]-3-(trifluoromethyl)benzamide;

5

N-[2-[[[(1*R*)-2-[(2,4-dimethylphenyl)methyl]amino]-1-(hydroxymethyl)ethyl]amino]-2-oxoethyl]-3-(trifluoromethyl)benzamide;

10 N-[2-[[[(1*S*, 2*S/R*)-1-[[[(2,4-dimethylphenyl)methyl]amino]methyl]-2-hydroxypropyl]amino]-2-oxoethyl]-3-(trifluoromethyl)benzamide;

15 *tert*-Butyl (3*R*)-4-[(2,4-dimethylphenyl)methyl]amino]-3-[[[3-(trifluoromethyl)benzoyl]amino]acetyl]amino]-butanoate;

20 N-[2-[[[(1*R*)-2-[(2,4-dimethylphenyl)methyl]amino]-1-(phenylmethyl)ethyl]amino]-2-oxoethyl]-3-(trifluoromethyl)benzamide;

(2*S*)-N-*tert*-Butyl-2-[[[[2-[(1,1-dimethylethoxy)carbonyl]amino]-5-(trifluoromethyl)benzoyl]amino]acetyl]amino]-3-[(2,4-dimethylphenyl)methyl]amino]-propanamide;

(2*S*)-N-*tert*-Butyl-2-[[[[2-amino-5-(trifluoromethyl)benzoyl]amino]acetyl]amino]-3-[(2,4-dimethylphenyl)methyl]amino]-propanamide;

(2*S*) -*N*-*tert*-Butyl-3-[(4-bromo, 2-methylphenyl)methyl]amino]-2-[[[[2-[(1,1-dimethylethoxy)carbonyl]amino]-5-(trifluoromethyl)benzoyl]amino]acetyl]amino]-propanamide;

5

(2*S*) -*N*-*tert*-Butyl-2-[[[2-amino-5-(trifluoromethyl)benzoyl]amino]acetyl]amino]-3-[(4-bromo, 2-methylphenyl)methyl]amino]-propanamide;

10

N-[2-[[*(1S, 2S)*]-1-[[[(2,4-dimethylphenyl)methyl]amino]methyl]-2-hydroxy-3-(methylbutyl)amino]-2-oxoethyl]-3-(trifluoromethyl)benzamide;

15

N-[2-[[*(1S, 2R)*]-1-[[[(2,4-dimethylphenyl)methyl]amino]methyl]-2-hydroxy-3-(methylbutyl)amino]-2-oxoethyl]-3-(trifluoromethyl)benzamide;

20

N-[2-[[*(1S, 2S)*]-1-[[[(2,4-dimethylphenyl)methyl]amino]methyl]-2-hydroxy-2-(phenylethyl)amino]-2-oxoethyl]-3-(trifluoromethyl)benzamide;

25

N-[2-[[*(1S, 2R)*]-1-[[[(2,4-dimethylphenyl)methyl]amino]methyl]-2-hydroxy-2-(phenylethyl)amino]-2-oxoethyl]-3-(trifluoromethyl)benzamide;

30

5
N-[2-[[[(1*S*, 2*S*)-1-[[[(2,4-
dimethylphenyl)methyl]amino]methyl]-2-hydroxy-3-
(phenyl)propyl]amino]-2-oxoethyl]-3-
(trifluoromethyl)benzamide;

10
N-[2-[[[(1*S*, 2*R*)-1-[[[(2,4-
dimethylphenyl)methyl]amino]methyl]-2-hydroxy-3-
(phenyl)propyl]amino]-2-oxoethyl]-3-
(trifluoromethyl)benzamide;

15
N-[2-[[[(1*S*, 2*S*)-1-[[[(2,4-
dimethylphenyl)methyl]amino]methyl]-2-hydroxy-4-
(methyl)pentyl]amino]-2-oxoethyl]-3-
(trifluoromethyl)benzamide;

20
N-[2-[[[(1*S*, 2*R*)-1-[[[(2,4-
dimethylphenyl)methyl]amino]methyl]-2-hydroxy-4-
(methyl)pentyl]amino]-2-oxoethyl]-3-
(trifluoromethyl)benzamide;

25
N-[2-[[[(1*S*, 2*S*)-1-[[[(2,4-
dimethylphenyl)methyl]amino]methyl]-2-
(hydroxy)butyl]amino]-2-oxoethyl]-3-
(trifluoromethyl)benzamide;

30
N-[2-[[[(1*S*, 2*R*)-1-[[[(2,4-
dimethylphenyl)methyl]amino]methyl]-2-
(hydroxy)butyl]amino]-2-oxoethyl]-3-
(trifluoromethyl)benzamide;

(hydroxy)butyl]amino]-2-oxoethyl]-2-[[(1,1-dimethylethoxy)carbonyl]amino]-5-(trifluoromethyl)benzamide;

5 *N*-[2-[[[(1*S*, 2*S*)-1-[[[(2,4-dimethylphenyl)methyl]amino]methyl]-2-(hydroxy)butyl]amino]-2-oxoethyl]-2-amino-5-(trifluoromethyl)benzamide;

10 *N*-[2-[[[(1*S*, 2*S*)-1-[[[(2,4-dimethylphenyl)methyl]amino]methyl]-2-hydroxy-4-(methylpentyl]amino]-2-oxoethyl]-2-[[(1,1-dimethylethoxy)carbonyl]amino]-5-(trifluoromethyl)benzamide;

15 *N*-[2-[[[(1*S*, 2*R*)-1-[[[(2,4-dimethylphenyl)methyl]amino]methyl]-2-hydroxy-4-(methylpentyl]amino]-2-oxoethyl]-2-[[(1,1-dimethylethoxy)carbonyl]amino]-5-(trifluoromethyl)benzamide;

20 *N*-[2-[[[(1*S*, 2*S*)-1-[[[(2,4-dimethylphenyl)methyl]amino]methyl]-2-hydroxy-4-(methylpentyl]amino]-2-oxoethyl]-2-amino-5-(trifluoromethyl)benzamide;

25 *N*-[2-[[[(1*S*, 2*R*)-1-[[[(2,4-dimethylphenyl)methyl]amino]methyl]-2-hydroxy-4-(methylpentyl]amino]-2-oxoethyl]-2-amino-5-(trifluoromethyl)benzamide;

5
N-[2-[[[(1*S*, 2*S*)-1-[[[(2,4-dimethylphenyl)methyl]amino]methyl]-4,4-dimethyl-2-(hydroxy)pentyl]amino]-2-oxoethyl]-3-(trifluoromethyl)benzamide;

10
N-[2-[[[(1*S*, 2*R*)-1-[[[(2,4-dimethylphenyl)methyl]amino]methyl]-4,4-dimethyl-2-(hydroxy)pentyl]amino]-2-oxoethyl]-3-(trifluoromethyl)benzamide;

15
N-[2-[[[(1*S*, 2*S*)-1-[[[(2,4-dimethylphenyl)methyl]amino]methyl]-2-(hydroxy)pentyl]amino]-2-oxoethyl]-3-(trifluoromethyl)benzamide;

20
N-[2-[[[(1*S*, 2*R*)-1-[[[(2,4-dimethylphenyl)methyl]amino]methyl]-2-(hydroxy)pentyl]amino]-2-oxoethyl]-3-(trifluoromethyl)benzamide;

25
N-[2-[[[(1*S*, 2*S*)-1-[[[(2,4-dimethylphenyl)methyl]amino]methyl]-2-(hydroxy)pentyl]amino]-2-oxoethyl]-2-[(1,1-dimethylethoxy)carbonyl]amino]-5-(trifluoromethyl)benzamide;

30
N-[2-[[[(1*S*, 2*R*)-1-[[[(2,4-dimethylphenyl)methyl]amino]methyl]-2-(hydroxy)pentyl]amino]-2-oxoethyl]-2-[(1,1-dimethylethoxy)carbonyl]amino]-5-(trifluoromethyl)benzamide;

5
N-[2-[[[(1*S*, 2*S*)-1-[[[(2,4-
dimethylphenyl)methyl]amino]methyl]-2-
(hydroxy)pentyl]amino]-2-oxoethyl]-2-amino-5-
(trifluoromethyl)benzamide;

10
N-[2-[[[(1*S*, 2*R*)-1-[[[(2,4-
dimethylphenyl)methyl]amino]methyl]-2-
(hydroxy)pentyl]amino]-2-oxoethyl]-2-amino-5-
(trifluoromethyl)benzamide;

15
N-[2-[[[(1*S*, 2*S*)-1-[[[(2,4-
dimethylphenyl)methyl]amino]methyl]-2-
(hydroxy)pentyl]amino]-2-oxoethyl]-3-amino-5-
(trifluoromethyl)benzamide;

20
N-[2-[[[(1*S*, 2*R*)-1-[[[(2,4-
dimethylphenyl)methyl]amino]methyl]-2-
(hydroxy)pentyl]amino]-2-oxoethyl]-3-amino-5-
(trifluoromethyl)benzamide;

25
N-[2-[[[(1*S*, 2*S*)-1-[[[(2,4-
dimethylphenyl)methyl]amino]methyl]-2-
(hydroxy)pentyl]amino]-2-oxoethyl]-2-
[[(ethylamino)carbonyl]amino]-5-
(trifluoromethyl)benzamide;

30
N-[2-[[[(1*S*, 2*R*)-1-[[[(2,4-
dimethylphenyl)methyl]amino]methyl]-2-
(hydroxy)pentyl]amino]-2-oxoethyl]-2-
[[(ethylamino) carbonyl]amino]-5-
(trifluoromethyl)benzamide;

N-[2-[[[(1*S*, 2*S*)-1-[[[(2,4-dimethylphenyl)methyl]amino]methyl]-2-(hydroxy)pentyl]amino]-2-oxoethyl]-2-[[[(isopropylamino) carbonyl]amino]-5-(trifluoromethyl)benzamide;

N-[2-[[[(1*S*, 2*R*)-1-[[[(2,4-
dimethylphenyl)methyl]amino]methyl]-2-
(hydroxy)pentyl]amino]-2-oxoethyl]-2-
[[[(isopropylamino) carbonyl]amino]-5-
(trifluoromethyl)benzamide;

N-[2-[[[(1*S*, 2*S*)-1-[[[(2,4-dimethylphenyl)methyl]amino]methyl]-2-(hydroxy)pentyl]amino]-2-oxoethyl]-2-[(1-pyrrolidinylcarbonyl)amino]-5-(trifluoromethyl)benzamide;

N-[2-[[[(1*S*, 2*S*)-1-[[[(2,4-dimethylphenyl)methyl]amino]methyl]-2-(hydroxy)pentyl]amino]-2-oxoethyl]-2-[(1-azetidinylcarbonyl)amino]-5-(trifluoromethyl)benzamide;

25 *N*-[2-[[[(1*S*, 2*S*)-1-[[[(2,4-
dimethylphenyl)methyl]amino]methyl]-2-
(hydroxy)pentyl]amino]-2-oxoethyl]-2-
[[(methylamino)carbonyl]amino]-5-
(trifluoromethyl)benzamide;

$$N-[2-[(1S, 2R)-1-[(2,4-\text{dimethylphenyl)methyl]amino]methyl]-2-$$

(hydroxy)pentyl]amino]-2-oxoethyl]-2-[[(4-morpholinylcarbonyl)]amino]-5-(trifluoromethyl)benzamide;

5 *N*-[2-[[[(1*S*, 2*R*)-1-[[[(2,4-dimethylphenyl)methyl]amino]methyl]-2-(hydroxy)pentyl]amino]-2-oxoethyl]-2-[[(1-piperazinylcarbonyl)]amino]-5-(trifluoromethyl)benzamide;

10 *N*-[2-[[[(1*S*, 2*S*)-1-[[[(4-ethylphenyl)methyl]amino]methyl]-2-(hydroxy)pentyl]amino]-2-oxoethyl]-2-[[(1,1-dimethylethoxy)carbonyl]amino]-5-(trifluoromethyl)benzamide;

15 *N*-[2-[[[(1*S*, 2*S*)-1-[[[(4-ethylphenyl)methyl]amino]methyl]-2-(hydroxy)pentyl]amino]-2-oxoethyl]-2-amino-5-(trifluoromethyl)benzamide;

20 *N*-[2-[[[(1*S*, 2*S*)-1-[[[(4-ethylphenyl)methyl]amino]methyl]-2-(hydroxy)pentyl]amino]-2-oxoethyl]-2-[[[(isopropylamino) carbonyl]amino]-5-(trifluoromethyl)benzamide;

25 *N*-[2-[[[(1*S*, 2*S*)-1-[[[(4-ethylphenyl)methyl]amino]methyl]-2-(hydroxy)pentyl]amino]-2-oxoethyl]-2-[(4-morpholinylcarbonyl)amino]-5-(trifluoromethyl)benzamide;

N-[2-[[[(1*S*, 2*S*)-1-[[[(4-dimethylamino-2-methylphenyl)methyl]amino]methyl]-2-(hydroxy)pentyl]amino]-2-oxoethyl]-2-[(1,1-dimethylethoxy)carbonyl]amino]-5-(trifluoromethyl)benzamide;

5
N-[2-[[[(1*S*, 2*S*)-1-[[[(4-dimethylamino-2-methylphenyl)methyl]amino]methyl]-2-(hydroxy)pentyl]amino]-2-oxoethyl]-2-amino-5-(trifluoromethyl)benzamide;

10
N-[2-[[[(1*S*, 2*S*)-1-[[[(2,4-dimethylphenyl)methyl]amino]methyl]-2-(hydroxy)pentyl]amino]-2-oxoethyl]-2-(*tert*-butyl)amino-5-(trifluoromethyl)benzamide;

15
N-[2-[[[(1*S*, 2*S*)-1-[[[(2,4-dimethylphenyl)methyl]amino]methyl]-2-(hydroxy)pentyl]amino]-2-oxoethyl]-2-isopropylamino-5-(trifluoromethyl)benzamide;

20
N-[2-[[[(1*S*, 2*S*)-1-[[[(2,4-dimethylphenyl)methyl]amino]methyl]-2-(hydroxy)pentyl]amino]-2-oxoethyl]-2-benzylamino-5-(trifluoromethyl)benzamide;

25
N-[2-[[[(1*S*, 2*S*)-1-[[[(2,4-dimethylphenyl)methyl]amino]methyl]-2-(methoxy)pentyl]amino]-2-oxoethyl]-2-[(1,1-dimethylethoxy)carbonyl]amino]-5-(trifluoromethyl)benzamide;

5 *N*-[2-[[[(1*S*, 2*S*)-1-[[[(2,4-
 dimethylphenyl)methyl]amino]methyl]-2-
 (methoxy)pentyl]amino]-2-oxoethyl]-2-amino-5-
 (trifluoromethyl)benzamide;

10 *N*-[2-[[[(*S*)-1-[[[(2,4-
 dimethylphenyl)methyl]amino]methyl]-2-hydroxy-2-
 (methyl)propyl]amino]-2-oxoethyl]-2-[(1,1-
 dimethylethoxy)carbonyl]amino]-5-
 (trifluoromethyl)benzamide;

15 *N*-[2-[[[(*S*)-1-[[[(2,4-
 dimethylphenyl)methyl]amino]methyl]-2-hydroxy-2-
 (methyl)propyl]amino]-2-oxoethyl]-2-amino-5-
 (trifluoromethyl)benzamide;

20 *N*-[2-[[[(*S*)-1-[[[(2,4-
 dimethylphenyl)methyl]amino]methyl]-2-hydroxy-2-
 (ethyl)butyl]amino]-2-oxoethyl]-2-[(1,1-
 dimethylethoxy)carbonyl]amino]-5-
 (trifluoromethyl)benzamide;

25 *N*-[2-[[[(*S*)-1-[[[(2,4-
 dimethylphenyl)methyl]amino]methyl]-2-hydroxy-2-
 (ethyl)butyl]amino]-2-oxoethyl]-2-amino-5-
 (trifluoromethyl)benzamide;

30 *N*-[2-[[[(*S*)-1-[[[(2,4-
 dimethylphenyl)methyl]amino]methyl]-2-hydroxy-2-
 (propyl)pentyl]amino]-2-oxoethyl]-2-[(1,1-

dimethylethoxy)carbonyl]amino]-5-
(trifluoromethyl)benzamide;

5 *N*-[2-[[[(*S*)-1-[[[(2,4-
dimethylphenyl)methyl]amino]methyl]-2-hydroxy-2-
(propyl)pentyl]amino]-2-oxoethyl]-2-amino-5-
(trifluoromethyl)benzamide;

10 *N*-[2-[[(*S*)-2-[[[(2,4-dimethylphenyl)methyl]amino]-1-
(hydroxycyclopentyl)ethyl]amino]-2-oxoethyl]-2-
[[[(1,1-dimethylethoxy)carbonyl]amino]-5-
(trifluoromethyl)benzamide;

15 *N*-[2-[[(*S*)-1-[[[(*S*)-2-[[[(2,4-
dimethylphenyl)methyl]amino]-1-
(hydroxycyclopentyl)ethyl]amino]-2-oxoethyl]-2-
amino-5-(trifluoromethyl)benzamide;

20 (*2S*) -*N*-tert-Butyl-3-[[[(2,4-
dimethylphenyl)methyl]amino]-2-[[[[3-
(trifluoromethoxy)benzoyl]amino]acetyl]amino]-
propanamide;

25 (*2S*) -*N*-tert-Butyl-3-[[[(2,4-
dimethylphenyl)methyl]amino]-2-[[[[3-
(difluoromethyl)benzoyl]amino]acetyl]amino]-
propanamide;

30 (*2S*) -*N*-tert-Butyl-3-[[[(2,4-
dimethylphenyl)methyl]amino]-2-[[[[3-
(trifluoromethylthio)benzoyl]amino]acetyl]amino]-
propanamide;

(2*S*) -*N*-*tert*-Butyl-3-[[(2,4-
dimethylphenyl)methyl]amino]-2-[[[[3-
(pentafluoroethyl)benzoyl]amino]acetyl]amino]-
5 propanamide;

(2*S*) -*N*-*tert*-Butyl-2-[[[2-amino-5-
(trifluoromethoxy)benzoyl]amino]acetyl]amino]-3-
[[[(2,4-dimethylphenyl)methyl]amino]-propanamide;

10 (2*S*) -*N*-*tert*-Butyl-2-[[[2-amino-5-
(methyl)benzoyl]amino]acetyl]amino]-3-[(2,4-
dimethylphenyl)methyl]amino]-propanamide;

15 (2*S*) -*N*-*tert*-Butyl-3-[[(2,4-
dimethylphenyl)methyl]amino]- 2-[[[[2-ethylamino-
5-(trifluoromethyl)benzoyl]amino]acetyl]amino]-
propanamide;

20 (2*S*) -*N*-*tert*-Butyl-3-[[(2,4-
dimethylphenyl)methyl]amino]- 2-[[[[2-propylamino-
5-(trifluoromethyl)benzoyl]amino]acetyl]amino]-
propanamide;

25 (2*S*) -*N*-*tert*-Butyl-3-[[(2,4-
dimethylphenyl)methyl]amino]- 2-[[[[2-
isobutylamino-5-
(trifluoromethyl)benzoyl]amino]acetyl]amino]-
propanamide;

30

(2*S*) -*N*-*tert*-Butyl-2-[[[[2-butylamino-5-(trifluoromethyl)benzoyl]amino]acetyl]amino]-3-[(2,4-dimethylphenyl)methyl]amino]-propanamide;

5 (2*S*) -*N*-*tert*-Butyl-2-[[[[2-cyclohexylamino-5-(trifluoromethyl)benzoyl]amino]acetyl]amino]-3-[(2,4-dimethylphenyl)methyl]amino]-propanamide;

10 (2*S*) -*N*-*tert*-Butyl-3-[(2,4-dimethylphenyl)methyl]amino]-2-[[[[2-isopropylamino-5-(trifluoromethyl)benzoyl]amino]acetyl]amino]-propanamide;

15 (2*S*) -*N*-*tert*-Butyl-3-[(2,4-dimethylphenyl)methyl]amino]-2-[[[[2-(*tert*-butyl)amino-5-(trifluoromethyl)benzoyl]amino]acetyl]amino]-propanamide;

20 (2*S*) -*N*-*tert*-Butyl-3-[(2,4-dimethylphenyl)methyl]amino]-2-[[[[2-(methylaminocarbonyl)amino-5-(trifluoromethyl)benzoyl]amino]acetyl]amino]-propanamide;

25 (2*S*) -*N*-*tert*-Butyl-3-[(2,4-dimethylphenyl)methyl]amino]-2-[[[[2-(isopropoxycarbonyl)amino-5-(trifluoromethyl)benzoyl]amino]acetyl]amino]-propanamide;

(2*S*) -*N*-*tert*-Butyl-3-[(2,4-
dimethylphenyl)methyl]amino]-2-[[[2-
(isopropylaminocarbonyl)amino-5-
(trifluoromethyl)benzoyl]amino]acetyl]amino]-
5 propanamide;

(2*S*) -*N*-*tert*-Butyl-2-[[[2-(cyclohexylcarbonyl)amino-5-
(trifluoromethyl)benzoyl]amino]acetyl]amino]-3-
[[2,4-dimethylphenyl)methyl]amino]-propanamide;

10 (2*S*) -*N*-*tert*-Butyl-2-[[[2-benzylamino-5-
(trifluoromethyl)benzoyl]amino]acetyl]amino]-3-
[[2,4-dimethylphenyl)methyl]amino]-propanamide;

15 (2*S*) -*N*-*tert*-Butyl-2-[[[2-(para-chloro)benzylamino-5-
(trifluoromethyl)benzoyl]amino]acetyl]amino]-3-
[[2,4-dimethylphenyl)methyl]amino]-propanamide;

20 (2*S*) -*N*-*tert*-Butyl-2-[[[2-[(beta-naphthyl)methyl]amino-
5-(trifluoromethyl)benzoyl]amino]acetyl]amino]-3-
[[2,4-dimethylphenyl)methyl]amino]-propanamide;

25 (2*S*) -*N*-*tert*-Butyl-2-[[[2-(meta-methyl)benzylamino-5-
(trifluoromethyl)benzoyl]amino]acetyl]amino]-3-
[[2,4-dimethylphenyl)methyl]amino]-propanamide;

(2*S*) -*N*-*tert*-Butyl-2-[[[2-(para-methyl)benzylamino-5-
(trifluoromethyl)benzoyl]amino]acetyl]amino]-3-
[[2,4-dimethylphenyl)methyl]amino]-propanamide;

30

(2*S*) -*N*-*tert*-Butyl-2-[[[[2-(*ortho*-methyl)benzylamino-5-(trifluoromethyl)benzoyl]amino]acetyl]amino]-3-[(2,4-dimethylphenyl)methyl]amino]-propanamide;

5 (2*S*) -*N*-*tert*-Butyl-3-[(2,4-dimethylphenyl)methyl]amino]-2-[[[[2-(*para*-trifluoromethyl)benzylamino-5-(trifluoromethyl)benzoyl]amino]acetyl]amino]-propanamide;

10

(2*S*) -*N*-*tert*-Butyl-2-[[[3-amino-5-(trifluoromethyl)benzoyl]amino]acetyl]amino]-3-[(2,4-dimethylphenyl)methyl]amino]-propanamide;

15 (2*S*) -*N*-*tert*-Butyl-2-[[[3-benzylamino-5-(trifluoromethyl)benzoyl]amino]acetyl]amino]-3-[(2,4-dimethylphenyl)methyl]amino]-propanamide;

20 (2*S*) -*N*-*tert*-Butyl-2-[[[3-methylamino-5-(trifluoromethyl)benzoyl]amino]acetyl]amino]-3-[(2,4-dimethylphenyl)methyl]amino]-propanamide;

25 (2*S*) -*N*-*tert*-Butyl-2-[[[3-ethylamino-5-(trifluoromethyl)benzoyl]amino]acetyl]amino]-3-[(2,4-dimethylphenyl)methyl]amino]-propanamide;

(2*S*) -*N*-*tert*-Butyl-2-[[[3-isobutylamino-5-(trifluoromethyl)benzoyl]amino]acetyl]amino]-3-[(2,4-dimethylphenyl)methyl]amino]-propanamide;

30

(2*S*) -*N*-*tert*-Butyl-2-[[[[3-propylamino-5-(trifluoromethyl)benzoyl]amino]acetyl]amino]-3-[(2,4-dimethylphenyl)methyl]amino]-propanamide;

5 (2*S*) -*N*-*tert*-Butyl-2-[[[[3-butylamino-5-(trifluoromethyl)benzoyl]amino]acetyl]amino]-3-[(2,4-dimethylphenyl)methyl]amino]-propanamide;

10 (2*S*) -*N*-*tert*-Butyl-2-[[[[3-(trifluoromethylcarbonyl)amino-5-(trifluoromethyl)benzoyl]amino]acetyl]amino]-3-[(2,4-dimethylphenyl)methyl]amino]-propanamide;

15 (2*S*) -*N*-*tert*-Butyl-2-[[[[3-(ethoxycarbonyl)amino-5-(trifluoromethyl)benzoyl]amino]acetyl]amino]-3-[(2,4-dimethylphenyl)methyl]amino]-propanamide;

20 (2*S*) -2-[[[[2-amino-5-(trifluoromethyl)benzoyl]amino]acetyl]amino]-3-[(2-methyl-4-bromophenyl)methyl]amino]-propanamide;

25 (2*S*) -2-[[[[2-amino-5-(trifluoromethyl)benzoyl]amino]acetyl]amino]-3-[(4-bromophenyl)methyl]amino]-propanamide;

30 (2*S*) -*N*-*tert*-Butyl-3-[(4-methylphenyl)methyl]amino]-2-[[[[3-(trifluoromethyl)benzoyl]amino]acetyl]amino]-propanamide;

(2*S*) -*N*-*tert*-Butyl-3-[(*4*-bromophenyl)methyl]amino]-2-[
[[[3-
(trifluoromethyl)benzoyl]amino]acetyl]amino]-
propanamide;

5

(2*S*) -*N*-*tert*-Butyl-3-[(*4*-bromo-2-
methylphenyl)methyl]amino]-2-[
[[[3-
(trifluoromethyl)benzoyl]amino]acetyl]amino]-
propanamide;

10

(2*S*) -*N*-*tert*-Butyl-3-[(*4*-methoxyphenyl)methyl]amino]-2-[
[[[3-
(trifluoromethyl)benzoyl]amino]acetyl]amino]-
propanamide;

15

(2*S*) -*N*-*tert*-Butyl-3-[(*4*-methoxy-2-
methylphenyl)methyl]amino]-2-[
[[[3-
(trifluoromethyl)benzoyl]amino]acetyl]amino]-
propanamide;

20

(2*S*) -*N*-*tert*-Butyl-3-[(2,3-dimethyl-4-methoxy-
phenyl)methyl]amino]-2-[
[[[3-
(trifluoromethyl)benzoyl]amino]acetyl]amino]-
propanamide;

25

(2*S*) -*N*-*tert*-Butyl-3-[(*4*-cyano-2-
methylphenyl)methyl]amino]-2-[
[[[3-
(trifluoromethyl)benzoyl]amino]acetyl]amino]-
propanamide;

30

(2*S*) -*N*-*tert*-Butyl-3-[(*4*-ethylphenyl)methyl]amino]-2-[
[[[3-

(trifluoromethyl)benzoyl]amino]acetyl]amino]-
propanamide;

5 (2*S*) -*N*-*tert*-Butyl-3-[(2-methyl-4-
vinylphenyl)methyl]amino]-2-[[[[3-
(trifluoromethyl)benzoyl]amino]acetyl]amino]-
propanamide;

10 (2*S*) -*N*-*tert*-Butyl-3-[(4-ethyl-2-
methylphenyl)methyl]amino]-2-[[[[3-
(trifluoromethyl)benzoyl]amino]acetyl]amino]-
propanamide;

15 (2*S*) -*N*-*tert*-Butyl-3-[(4-isopropylphenyl)methyl]amino]-
2-[[[[3-
(trifluoromethyl)benzoyl]amino]acetyl]amino]-
propanamide;

20 (2*S*) -*N*-*tert*-Butyl-3-[(4-butylphenyl)methyl]amino]-2-
[[[[3-
(trifluoromethyl)benzoyl]amino]acetyl]amino]-
propanamide;

25 (2*S*) -*N*-*tert*-Butyl-3-[(4-
dimethylaminophenyl)methyl]amino]-2-[[[[3-
(trifluoromethyl)benzoyl]amino]acetyl]amino]-
propanamide;

30 (2*S*) -*N*-*tert*-Butyl-3-[(4-dimethylamino-2-
methylphenyl)methyl]amino]-2-[[[[3-
(trifluoromethyl)benzoyl]amino]acetyl]amino]-
propanamide;

AMENDMENTS TO THE CLAIMS

(2*S*) -*N*-*tert*-Butyl-3-[(4-methylthiophenyl)methyl]amino]-2-[[[[3-(trifluoromethyl)benzoyl]amino]acetyl]amino]-propanamide;

5

(2*S*) -*N*-*tert*-Butyl-3-[(4-methylsulfonylphenyl)methyl]amino]-2-[[[[3-(trifluoromethyl)benzoyl]amino]acetyl]amino]-propanamide;

10

(2*S*) -*N*-*tert*-Butyl-3-[(4-trifluoromethoxyphenyl)methyl]amino]-2-[[[[3-(trifluoromethyl)benzoyl]amino]acetyl]amino]-propanamide;

15

(2*S*) -*N*-*tert*-Butyl-3-[(3-amino-4-methylphenyl)methyl]amino]-2-[[[[3-(trifluoromethyl)benzoyl]amino]acetyl]amino]-propanamide;

20

(2*S*) -*N*-*tert*-Butyl-3-[(2-methylphenyl)methyl]amino]-2-[[[[3-(trifluoromethyl)benzoyl]amino]acetyl]amino]-propanamide;

25

(2*S*) -*N*-*tert*-Butyl-3-[(2-ethylphenyl)methyl]amino]-2-[[[[3-(trifluoromethyl)benzoyl]amino]acetyl]amino]-propanamide;

30

(2R)-N-Ethyl-3-[[(2,4-dimethylphenyl)methyl]amino]-2-
 [[[3-
 (trifluoromethyl)benzoyl]amino]acetyl]amino]-
 propanamide;

5

(2R)-N-tert-Butyl-3-[(2,4-dimethylphenyl)methyl]amino]-2-[[[[3-(trifluoromethyl)benzoyl]amino]acetyl]amino]-propanamide;

10

(2*R*)-*N*-[(2-methyl)hydroxyprop-2-yl]-3-[[[(2,4-dimethylphenyl)methyl]amino]-2-[[[3-(trifluoromethyl)benzoyl]amino]acetyl]amino]-propanamide;

15

(2S)-N-tert-Amyl-3-[(2,4-dimethylphenyl)methyl]amino]-2-[[[3-(trifluoromethyl)benzoyl]amino]acetyl]amino]propanamide;

20

(2S)-N-[(2-methyl)hydroxyprop-2-yl]-3-[[[(2,4-dimethylphenyl)methyl]amino]-2-[[[[3-(trifluoromethyl)benzoyl]amino]acetyl]amino]-propanamide;

25

(2S)-N-[(1-methyl)cycloprop-1-yl]-3-[[[(2,4-dimethylphenyl)methyl]amino]-2-[[[[3-(trifluoromethyl)benzoyl]amino]acetyl]amino]-propanamide;

30

(2S)-N-Cyclopentyl-3-[[(2,4-dimethylphenyl)methyl]amino]-2-[[[[3-

(trifluoromethyl)benzoyl]amino]acetyl]amino]-
propanamide;

5 (2*S*) -*N*-Cyclohexyl-3-[(2,4-
dimethylphenyl)methyl]amino]-2-[[[[3-
(trifluoromethyl)benzoyl]amino]acetyl]amino]-
propanamide;

10 (2*S*) -*N*- (β,β,β-Trifluoro)ethyl-3-[(2,4-
dimethylphenyl)methyl]amino]-2-[[[[3-
(trifluoromethyl)benzoyl]amino]acetyl]amino]-
propanamide;

15 (2*S*) -*N*-Allyl-3-[(2,4-dimethylphenyl)methyl]amino]-2-
[[[[3-
(trifluoromethyl)benzoyl]amino]acetyl]amino]-
propanamide;

20 (2*S*) -*N*-Cyclopropylmethyl-3-[(2,4-
dimethylphenyl)methyl]amino]-2-[[[[3-
(trifluoromethyl)benzoyl]amino]acetyl]amino]-
propanamide;

25 *N*-[2-[(2*S*) -3-[(2,4-dimethylphenyl)methyl]amino]-1-
(pyrrolid-3-enyl)-1-oxopropyl-2-amino]-2-
oxoethyl]-3-(trifluoromethyl)benzamide;

30 *N*-[2-[(2*S*) -3-[(2,4-dimethylphenyl)methyl]amino]-1-
(pyrrolidinyl)-1-oxopropyl-2-amino]-2-oxoethyl]-3-
(trifluoromethyl)benzamide;

N-[2-[[*(2S)*-3-[(*(2,4-dimethylphenyl)methyl*]amino]-1-(morpholinyl)-1-oxopropyl-2-amino]-2-oxoethyl]-3-(trifluoromethyl)benzamide;

5 *(2S)*-*N*-Isobutyl-3-[(*(2,4-dimethylphenyl)methyl*]amino]-2-[[[3-(trifluoromethyl)benzoyl]amino]acetyl]amino]-propanamide;

10 *(2S)*-*N*-sec-Butyl-3-[(*(2,4-dimethylphenyl)methyl*]amino]-2-[[[3-(trifluoromethyl)benzoyl]amino]acetyl]amino]-propanamide;

15 *(2S)*-*N*-tert-Butyl-4-[(*(2,4-dimethylphenyl)methyl*]amino]-3-[[[3-(trifluoromethyl)benzoyl]amino]acetyl]amino]-butanamide;

20 *(2S,3R)*-*N*-Ethyl-3-[(*(2,4-dimethylphenyl)methyl*]amino]-2-[[[3-(trifluoromethyl)benzoyl]amino]acetyl]amino]-butanamide;

25 *(2S,3R)*-*N*-Ethyl-3-[(*(4-bromophenyl)methyl*]amino]-2-[[[3-(trifluoromethyl)benzoyl]amino]acetyl]amino]-butanamide;

30 Methyl *(2R)*-2-[(*(2,4-dimethylphenyl)methyl*]amino]-3-[[[3-

(trifluoromethyl)benzoyl]amino]acetyl]amino]-
propanoate;

5 (2R)-N-Ethyl-2-[[[(2,4-dimethylphenyl)methyl]amino]-3-
[[[[3-
 (trifluoromethyl)benzoyl]amino]acetyl]amino]-
propanamide;

10 Methyl (2S)-4-[[[(2,4-dimethylphenyl)methyl]amino]-2-
[[[[3-
 (trifluoromethyl)benzoyl]amino]acetyl]amino]-
butanoate;

15 (2S)-4-[[[(2,4-dimethylphenyl)methyl]amino]-2-[[[[3-
 (trifluoromethyl)benzoyl]amino]acetyl]amino]-
butanamide;

20 (2S)-N-Ethyl-4-[[[(2,4-dimethylphenyl)methyl]amino]-2-
[[[[3-
 (trifluoromethyl)benzoyl]amino]acetyl]amino]-
butanamide;

25 (2S)-N-Ethyl-4-[[[(2,4-
 dimethylphenyl)methyl]methylamino]-2-[[[[3-
 (trifluoromethyl)benzoyl]amino]acetyl]amino]-
butanamide;

30 (2S)-N-tert-Butyl-2-[[[[2-[[[(1,1-
 dimethylethoxy)carbonyl]amino]-5-
 (trifluoromethyl)benzoyl]amino]acetyl]amino]-4-
[[[(2,4-dimethylphenyl)methyl]amino]-butanamide;

(2*S*) -*N*-*tert*-Butyl-2-[[[[2-[(1,1-
dimethylethoxy)carbonyl]amino]-5-
(trifluoromethyl)benzoyl]amino]acetyl]amino]-4-
[[[(2,4-dimethylphenyl)methyl]methylamino]-
butanamide;

5

(2*S*) -*N*-*tert*-Butyl-2-[[[2-amino-5-
(trifluoromethyl)benzoyl]amino]acetyl]amino]-4-
[[[(2,4-dimethylphenyl)methyl]amino]-butanamide;

10

(2*S*) -*N*-*tert*-Butyl-2-[[[2-amino-5-
(trifluoromethyl)benzoyl]amino]acetyl]amino]-4-
[[[(2,4-dimethylphenyl)methyl]methylamino]-
butanamide;

15

(2*S*) -*N*-*tert*-Butyl-2-[[[3-amino-5-
(trifluoromethyl)benzoyl]amino]acetyl]amino]-4-
[[[(2,4-dimethylphenyl)methyl]amino]-butanamide;

20

(2*S*) -*N*-*tert*-Butyl-2-[[[3-amino-5-
(trifluoromethyl)benzoyl]amino]acetyl]amino]-4-
[[[(4-ethylphenyl)methyl]amino]-butanamide;

25

(2*S*) -*N*-*tert*-Butyl-4-[(2,4-
dimethylphenyl)methyl]amino]-2-[[[3-
(trifluoromethyl)benzoyl]amino]acetyl]amino]-
butanamide;

30

(2*S*) -*N*-*tert*-Butyl-4-[(4-ethylphenyl)methyl]amino]-2-
[[[3-
(trifluoromethyl)benzoyl]amino]acetyl]amino]-
butanamide;

(2*S*) -*N*-Ethyl-5-[[[(2,4-dimethylphenyl)methyl]amino]-2-

[[[3-

(trifluoromethyl)benzoyl]amino]acetyl]amino]-

5 pentanamide;

N-[2-[[[(1*S*, 2*S/R*)-1-[[[(2,4-

dimethylphenyl)methyl]methylamino]methyl]-2-

hydroxy-3-(methylbutyl]amino]-2-oxoethyl]-3-

10 (trifluoromethyl)benzamide;

N-[2-[[[(1*S*, 2*S*)-1-[[[(2,4-

dimethylphenyl)methyl]methylamino]methyl]-2-

(hydroxy)pentyl]amino]-2-oxoethyl]-2-

15 [[(isopropylamino) carbonyl]amino]-5-

(trifluoromethyl)benzamide;

N-[2-[[[(1*S*, 2*S*)-1-[[[(2,4-

dimethylphenyl)methyl]isopropylamino]methyl]-2-

20 (hydroxy)pentyl]amino]-2-oxoethyl]-2-

[[(isopropylamino) carbonyl]amino]-5-

(trifluoromethyl)benzamide;

N-[2-[[[(1*S*, 2*S*)-1-[[[(4-

25 ethylphenyl)methyl]methylamino]methyl]-2-

(hydroxy)pentyl]amino]-2-oxoethyl]-2-

[[(isopropylamino) carbonyl]amino]-5-

(trifluoromethyl)benzamide;

30 *N*-[2-[[[(1*S*, 2*S*)-1-[[[(4-

ethylphenyl)methyl]isopropylamino]methyl]-2-

(hydroxy)pentyl]amino]-2-oxoethyl]-2-

[(isopropylamino) carbonyl]amino]-5-
(trifluoromethyl)benzamide;

(2S)-N-tert-Butyl-3-[(2,4-
5 dimethylphenyl)methyl]methylamino]-2-[[[3-
(trifluoromethyl)benzoyl]amino]acetyl]amino]-
propanamide;

N-[2-[[1-[[[2,4-
10 dimethylphenyl)methyl]amino]methyl]cyclohexyl]amino]-
-2-oxoethyl]-3-(trifluoromethyl)benzamide;

N-[2-[[1-[[[4-
chlorophenyl)methyl]amino]methyl]cyclohexyl]amino]-
15 -2-oxoethyl]-3-(trifluoromethyl)benzamide;

N-[2-[[1-[[[2,4-
dimethylphenyl)methyl]amino]methyl]cyclopentyl]amino]-
20 -2-oxoethyl]-3-(trifluoromethyl)benzamide;

N-[2-[[1-[[[2,4-
dimethylphenyl)methyl]amino]methyl]cyclopentyl]amino]-
-2-oxoethyl]-2-[(1,1-
dimethylethoxy)carbonyl]amino]-5-
25 (trifluoromethyl)benzamide;

N-[2-[[1-[[[2,4-
dimethylphenyl)methyl]amino]methyl]cyclopropyl]amino]-
30 -2-oxoethyl]-2-[(1,1-
dimethylethoxy)carbonyl]amino]-5-
(trifluoromethyl)benzamide;

~~N-[2-[[1-[[[2,4-~~

~~dimethylphenyl)methyl]amino]methyl]cyclopropyl]ami
no]-2-oxoethyl]-2-amino-5-
(trifluoromethyl)benzamide; and~~

5

(2S)-N-Ethyl-3-[(~~(2,4-dimethylphenyl)methyl]amino]-2-
[[[2-amino-5-
(trifluoromethyl)benzoyl]amino]acetyl] amino]-2-
methyl-propanamide.~~

10

15. (ORIGINAL) A pharmaceutical composition,
comprising a pharmaceutically acceptable carrier and a
therapeutically effective amount of a compound of claim
1.

15

16. (CANCELLED)

17. (CANCELLED)

20

18. (CURRENTLY AMENDED) A method for antagonizing
~~modulation of~~ MCP-1 activity comprising administering
to a patient in need thereof a therapeutically
effective amount of a compound of claim 1.

25

19. (PREVIOUSLY AMENDED) A method for treating
disorders, comprising administering to a patient in
need thereof a therapeutically effective amount of a
compound of claims 1, said disorders being selected
from osteoarthritis, aneurism, fever, cardiovascular
30 effects, Crohn's disease, congestive heart failure,
autoimmune diseases, HIV-infection, HIV-associated
dementia, psoriasis, idiopathic pulmonary fibrosis,

AMENDMENTS TO THE CLAIMS

transplant arteriosclerosis, physically- or chemically-induced brain trauma, inflammatory bowel disease, alveolitis, colitis, systemic lupus erythematosus, nephrotoxic serum nephritis, glomerularnephritis,
5 asthma, multiple sclerosis, artherosclerosis, and rheumatoid arthritis.

20. (PREVIOUSLY AMENDED) The method for treating disorders, of claim 19, wherein said disorders being selected from psoriasis, idiopathic pulmonary fibrosis, transplant arteriosclerosis, physically- or chemically-induced brain trauma, inflammatory bowel disease, alveolitis, colitis, systemic lupus erythematosus, nephrotoxic serum nephritis, glomerularnephritis,
15 asthma, multiple sclerosis, artherosclerosis, and rheumatoid arthritis.

21. (PREVIOUSLY AMENDED) The method for treating disorders, of claim 20, wherein said disorders being selected from alveolitis, colitis, systemic lupus erythematosus, nephrotoxic serum nephritis, glomerularnephritis, asthma, multiple sclerosis, artherosclerosis, and rheumatoid arthritis.

25 22. (PREVIOUSLY AMENDED) The method for treating disorders, of claim 21, wherein said disorders being selected from asthma, multiple sclerosis, artherosclerosis, and rheumatoid arthritis.

30 23. (PREVIOUSLY AMENDED) A method for treating rheumatoid arthritis, comprising administering to a

patient in need thereof a therapeutically effective amount of a compound of claim 1.

24. (PREVIOUSLY AMENDED) A method for treating
5 multiple sclerosis, comprising administering to a patient in need thereof a therapeutically effective amount of a compound of claim 1.

25. (PREVIOUSLY AMENDED) A method for treating
10 atherosclerosis, comprising administering to a patient in need thereof a therapeutically effective amount of a compound of claim 1.

26. (PREVIOUSLY AMENDED) A method for treating
15 asthma, comprising administering to a patient in need thereof a therapeutically effective amount of a compound of claim 1.

27. (CANCELLED)

20

28. (CURRENTLY AMENDED) A method for antagonizing modulation of CCR2 activity comprising administering to a patient in need thereof a therapeutically effective amount of a compound of claim 1.

25

29. (PREVIOUSLY PRESENTED) A method for treating disorders, comprising administering to a patient in need thereof a therapeutically effective amount of a compound of claims 10, said disorders being selected
30 from asthma, multiple sclerosis, arteriosclerosis, and rheumatoid arthritis.

30. (PREVIOUSLY PRESENTED) A method for treating rheumatoid arthritis, comprising administering to a patient in need thereof a therapeutically effective amount of a compound of claim 10.

5

31. (PREVIOUSLY PRESENTED) A method for treating multiple sclerosis, comprising administering to a patient in need thereof a therapeutically effective amount of a compound of claim 10.

10

32. (PREVIOUSLY PRESENTED) A method for treating atherosclerosis, comprising administering to a patient in need thereof a therapeutically effective amount of a compound of claim 10.

15

33. (PREVIOUSLY PRESENTED) A method for treating asthma, comprising administering to a patient in need thereof a therapeutically effective amount of a compound of claim 10.

20

34. (CANCELLED)

25 35. (CURRENTLY AMENDED) A method for antagonizing modulation of CCR2 activity comprising administering to a patient in need thereof a therapeutically effective amount of a compound of claim 10.