Parishram (2025)

Physical Chemistry

Chemical Kinetics

DPP: 4

Q1 The data for the reaction: $A+B \rightarrow C$ is

Exp.	$[A]_0$	$[B]_0$	Initial rate
1	0.012	0.035	0.10
2	0.024	0.070	0.80
3	0.024	0.035	0.10
4	0.012	0.070	0.80

The rate law corresponds to the above data is

- (A) Rate = $k[A][B]^3$
- (B) Rate $= k[A]^2[B]^2$
- (C) Rate $= k[B]^3$
- (D) Rate $= k[B]^4$

Q2 Consider the data below for a reaction $A \rightarrow B$

Time (Sec)	0	10	20	30
Rate	1.60×10 ⁻²	1.60×10 ⁻²	1.60×10 ⁻²	1.60×10 ⁻²

From the above data the order of reaction is

- (A) Zero
- (B)1
- (C) 2

- (D) 3
- Q3 During the kinetic study of the reaction, $2A+B
 ightarrow \ C+D$, following results were obtained

Rum	$[A]/molL^{-1}$	$[B]/molL^{-1}$	Initial rate of formation of $D/mol\ L^{-1}\ min^{-1}$
I.	0.1	0.1	$6.0 imes10^{-3}$
II.	0.3	0.2	$7.2 imes10^{-2}$
III.	0.3	0.4	$2.88 imes10^{-1}$
IV.	0.4	0.1	$2.40 imes10^{-2}$

Based on the above data which one of the following is correct?

- (A) Rate $=K[A]^2[B]$
- (B) Rate = K[A][B]
- (C) Rate $=K[A]^2[B]^2$
- (D) Rate $= K \lceil A \rceil \lceil B \rceil^2$
- Q4 Consider the following in respect of zero order reaction.
 - I. $t_{1/2}$ is directly proportional to the initial concentration.
 - II. Time taken for the completion of the reaction is twice its $\mathbf{t}_{1/2}$
 - III. Concentration of the reactant decreases linearly with time

Which of the statements given above are correct?

- (A) I & II only
- (B) I & III only
- (C) II & III only
- (D) I, II & III
- **Q5** If initial concentration is reduced to $1/4^{
 m th}$ in a zero order reaction, the time taken for half the reaction to complete
 - (A) Remains same
 - (B) Becomes 4 times
 - (C) Becomes one-fourth
 - (D) Doubles
- Q6 If initial concentration of the reactants is doubled, the time for half reaction is also doubled, the order of the reaction is
 - (A) Zero
- (B) One
- (C) Two
- (D) Three

Answer Key

(C) Q1 (D) Q4

(A) Q2 (C) Q5

Q6 (A) (D) Q3

Hints & Solutions

Note: scan the QR code to watch video solution

Q1 Video Solution:

Q2 Video Solution:

Q3 Video Solution:

Q4 Video Solution:

Q5 Video Solution:

Q6 Video Solution:

