ASSIGNMENT 6: KERNELS

Institute for Machine Learning

Contact

Heads: Johannes Kofler, Markus Holzleitner

Institute for Machine Learning Johannes Kepler University Altenberger Str. 69 A-4040 Linz

E-Mail: theoretical@ml.jku.at

Only mails to this list are answered!

Institute Homepage

Copyright statement:

This material, no matter whether in printed or electronic form, may be used for personal and non-commercial educational use only. Any reproduction of this material, no matter whether as a whole or in parts, no matter whether in printed or in electronic form, requires explicit prior acceptance of the authors.

Agenda:

- Kernels: Intuition+main idea
- Kernels: Mathematical formalism
- Examples

Kernel trick: Intuition

Kernels: Basic idea (1)

- Basic idea: transform data into a higher-dimensional space such that problem hopefully becomes linearly separable there.
- More formal: choose a Hilbert space \mathcal{H} and a (nonlinear) mapping $\Phi: X \to \mathcal{H}$.
- Then try to apply linear method presented previously in the space \mathcal{H} .
- Problem: how to specify \mathcal{H} and Φ ?

Kernels: Basic idea (2)

- In many machine learning tasks: only scalar products of pairs of samples matter. Therefore: not necessary to explicitly know H and Φ.
- Only need $\Phi(\mathbf{x}^i) \cdot \Phi(\mathbf{x}^j)$ for all $\mathbf{x}^i, \mathbf{x}^j$ (i, j = 1, ..., l).
- Required for computing the classification of a new sample \mathbf{x} : $\Phi(\mathbf{x}) \cdot \Phi(\mathbf{x}^i)$ for all $i = 1, \dots, l$.

Kernels: more formal

- Suppose we are given a mapping $k: X \times X \to \mathbb{R}$ (the kernel) for which we know that there exists Hilbert space \mathcal{H} and mapping $\Phi: X \to \mathcal{H}$ with $k(\mathbf{x}^i, \mathbf{x}^j) = \Phi(\mathbf{x}^i) \cdot \Phi(\mathbf{x}^j)$ for all $\mathbf{x}^i \in X$, i = 1, ..., l
- This is the case ⇔ k is positive semi-definite and symmetric, i.e.
 - 1. $\sum_{i,j} c_i k(\mathbf{x}^i, \mathbf{x}^j) c_j \ge 0$
 - $2. k(\mathbf{x}^{i}, \mathbf{x}^{j}) = k(\mathbf{x}^{j}, \mathbf{x}^{i})$

for $i = 1, ..., l, c_i \in \mathbb{R}, \mathbf{x}^i \in X$.

- Equivalent formulation: Gram matrix $\mathbf{K} = (k_{ij})_{i=1,\dots,l}^{j=1\dots,l} = (k(\mathbf{x}^i,\mathbf{x}^j))_{i=1,\dots,l}^{j=1\dots,l}$ is positive semi-definite and symmetric.
- In practice: make an a priori choice of k using common sense and, if available, prior knowledge about problem: \rightarrow "kernel trick".

How to obtain large class of kernels

- Which kernels? → Mercer's theorem: The following statements are equivalent:
 - $\square \ k: X^2 \to \mathbb{R}$ can be written as $k(\mathbf{x}, \mathbf{y}) = \Phi(\mathbf{x}) \cdot \Phi(\mathbf{y})$ for some Hilbert space \mathcal{H} and $\Phi: X \to \mathcal{H}$.
 - ☐ The inequality

$$\int_{X^2} k(\mathbf{x}, \mathbf{y}) f(\mathbf{x}) f(\mathbf{y}) d\mathbf{x} d\mathbf{y} \ge 0$$
 holds for all square-integrable functions $f \in L^2(X)$.

- More details with proofs: e.g. these notes, chapter 10.5.
- Standard kernels:
 - 1. Linear: $k(\mathbf{x}, \mathbf{y}) = \mathbf{x} \cdot \mathbf{y}$
 - 2. Polynomial: $k(\mathbf{x}, \mathbf{y}) = (\mathbf{x} \cdot \mathbf{y} + \sigma^2)^d$
 - 3. Gaussian/RBF: $k(\mathbf{x}, \mathbf{y}) = \exp\left(-\frac{1}{2\sigma^2} ||\mathbf{x} \mathbf{y}||^2\right)$
 - 4. Sigmoid: $k(\mathbf{x}, \mathbf{y}) = \tanh(\alpha \mathbf{x} \cdot \mathbf{y} + \beta)$

Further information

- The sigmoid kernel is not a very popular choice; moreover, it is not positive semi-definite for all choices of α and β .
- RBF-kernel:
 - Most popular choice
 - 2. Maps into a hyper-sphere of radius 1.
 - Hilbert space corresponding to RBF kernel is infinitely dimensional.
- How to construct kernels in real-world applications?
 - 1. If we can define \mathcal{H} (most often \mathbb{R}^k) and Φ explicitly \to done!
 - Products, weighted sums,... applied to positive semi-definite kernels give semi-definite kernels.
 - 3. Suppose that we have a mapping $\Psi: X \to Y$, where Y is some feature space, and a semi-definite kernel $k: Y^2 \to \mathbb{R}$. Then $k': X^2 \to \mathbb{R}$, defined as $k'(\mathbf{x}, \mathbf{y}) = k(\Psi(\mathbf{x}), \Psi(\mathbf{y}))$ is also a positive semi-definite kernel.