Polynomial Methods in Combinatorics

Conrad Crowley

Supervisor: Marco Vitturi

March 2022

What are Polynomial Methods?

A collection of techniques in Combinatorics which use polynomial interpolation and rigidity properties of polynomials to control the size of collections of objects with a certain structure.

|What are Polynomial Methods?

A collection of techniques in Combinatorics which use polynomial interpolation and rigidity properties of polynomials to control the size of collections of objects with a certain structure.

Example (Rigidity and Interpolation)

• **Rigidity**: If $P \in \mathbb{R}[X_1, \dots, X_n]$ has degree D and a line ℓ intersects Z(P) in more than D points then $\ell \subset Z(P)$.

What are Polynomial Methods?

A collection of techniques in Combinatorics which use polynomial interpolation and rigidity properties of polynomials to control the size of collections of objects with a certain structure.

Example (Rigidity and Interpolation)

- **Rigidity**: If $P \in \mathbb{R}[X_1, \dots, X_n]$ has degree D and a line ℓ intersects Z(P) in more than D points then $\ell \subset Z(P)$.
- **Interpolation**: We can do parameter-counting arguments using the fact that dim $\mathbb{R}_{\deg < D}[X_1, \dots, X_n] \sim D^n$.

Below lists results that can be proved using the polynomial method:

• Kakeya Conjecture in Finite Fields: If $A \subset \mathbb{F}^n$ contains a line in every direction then $|A| \gtrsim |\mathbb{F}|^n$.

- Kakeya Conjecture in Finite Fields: If $A \subset \mathbb{F}^n$ contains a line in every direction then $|A| \geq |\mathbb{F}|^n$.
- Cauchy-Davenport Theorem: $|A + B| \ge \min\{p, |A| + |B| 1\}$ where $A, B \subset \mathbb{Z}_p$ and $A + B := \{a + b \mid a \in A, b \in B\}$.

- Kakeya Conjecture in Finite Fields: If $A \subset \mathbb{F}^n$ contains a line in every direction then $|A| \gtrsim |\mathbb{F}|^n$.
- Cauchy-Davenport Theorem: $|A + B| \ge \min\{p, |A| + |B| 1\}$ where $A, B \subset \mathbb{Z}_p$ and $A + B := \{a + b \mid a \in A, b \in B\}$.
- **Joints Problem**: A collection of N lines in \mathbb{R}^3 can form at most $N^{3/2}$ joints. A joint is a point which lies in three non-coplanar lines.

- Kakeya Conjecture in Finite Fields: If $A \subset \mathbb{F}^n$ contains a line in every direction then $|A| \gtrsim |\mathbb{F}|^n$.
- Cauchy-Davenport Theorem: $|A + B| \ge \min\{p, |A| + |B| 1\}$ where $A, B \subset \mathbb{Z}_p$ and $A + B := \{a + b \mid a \in A, b \in B\}$.
- **Joints Problem**: A collection of N lines in \mathbb{R}^3 can form at most $N^{3/2}$ joints. A joint is a point which lies in three non-coplanar lines.
- Szemerédi-Trotter Theorem: Given S points and L lines, there are $\lesssim (SL)^{2/3} + S + L$ point-line incidences. (i.e. (p, ℓ) s.t. $p \in \ell$)

- Kakeya Conjecture in Finite Fields: If $A \subset \mathbb{F}^n$ contains a line in every direction then $|A| \gtrsim |\mathbb{F}|^n$.
- Cauchy-Davenport Theorem: $|A + B| \ge \min\{p, |A| + |B| 1\}$ where $A, B \subset \mathbb{Z}_p$ and $A + B := \{a + b \mid a \in A, b \in B\}$.
- **Joints Problem**: A collection of N lines in \mathbb{R}^3 can form at most $N^{3/2}$ joints. A joint is a point which lies in three non-coplanar lines.
- Szemerédi-Trotter Theorem: Given S points and L lines, there are $\lesssim (SL)^{2/3} + S + L$ point-line incidences. (i.e. (p, ℓ) s.t. $p \in \ell$)
- Circle Tangencies: Given a (suitably non-degenerate) collection of N circles in \mathbb{R}^2 , they determine $\lesssim N^{3/2}$ tangencies.

Circle Tangencies

Theorem

Given a (suitably non-degenerate) collection of N circles in \mathbb{R}^2 , they determine $\lesssim N^{3/2}$ tangencies^a.

 $^{\text{a}}\text{A}$ tangency is a pair of circles (γ,γ') that are tangent.

Circle Tangencies: What's degenerate?

Collection of N circles with $\sim N^2$ tangencies:

Theorem

Given a (suitably non-degenerate) collection of N circles in \mathbb{R}^2 , they determine $\lesssim N^{3/2}$ tangencies.

We now present a sketch of a recent proof due to Ellenberg, Solymosi, and Zahl. [1]

Theorem

Given a (suitably non-degenerate) collection of N circles in \mathbb{R}^2 , they determine $\lesssim N^{3/2}$ tangencies.

We now present a sketch of a recent proof due to Ellenberg, Solymosi, and Zahl. [1]

Sketch Proof: Assume:

- There are $\gtrsim N^{3/2}$ tangencies.
- ullet Collection is uniform: each circle tangent to $\gtrsim N^{1/2}$ other circles.

For each circle γ in our collection, we define the curve $\beta(\gamma) \subset \mathbb{R}^3$ as:

$$\beta(\gamma) := \left\{ (x,y,z) \mid (x,y) \in \gamma, \ z = \frac{1}{\mathsf{Slope of tangent at}} \left(x,y \right) \right\}$$

Circle Tangencies: Tangencies to Incidences

Circle Tangencies: Tangencies to Incidences

Intersection \implies z co-ords equal \implies circles are tangent.

Tangency problem in $\mathbb{R}^2 \iff$ Incidences problem in \mathbb{R}^3 .

Circle Tangencies: Tangencies to Incidences

Intersection \implies z co-ords equal \implies circles are tangent.

Tangency problem in $\mathbb{R}^2 \iff$ Incidences problem in \mathbb{R}^3 .

Let us examine the tangent vectors at a point of incidence between two curves:

At every point of intersection, the tangent vectors span a vertical plane.

At every point of intersection, the tangent vectors span a vertical plane.

Let P be a polynomial such that all $N^{3/2}$ incidences are contained in Z(P).

We can find a polynomial P such that all $N^{3/2}$ incidences are contained in Z(P).

Let P be a polynomial such that all $N^{3/2}$ incidences are contained in Z(P).

Let P be a polynomial such that all $N^{3/2}$ incidences are contained in Z(P).

• Recall that $\dim \mathbb{R}_{\deg \leq D}[X,Y,Z] \sim D^3$.

Let P be a polynomial such that all $N^{3/2}$ incidences are contained in Z(P).

- Recall that dim $\mathbb{R}_{\deg < D}[X, Y, Z] \sim D^3$.
- Each incidence point gives one linear equation for the coefficients.

Let P be a polynomial such that all $N^{3/2}$ incidences are contained in Z(P).

- Recall that dim $\mathbb{R}_{\text{deg} \leq D}[X, Y, Z] \sim D^3$.
- Each incidence point gives one linear equation for the coefficients.
- $D^3 \sim N^{3/2} \implies D \sim N^{1/2}$.

• Each curve $\beta(\gamma)$ intersects Z(P) at $\gtrsim N^{1/2}$ points.

- Each curve $\beta(\gamma)$ intersects Z(P) at $\gtrsim N^{1/2}$ points.
- But deg $\beta(\gamma) = O(1)$ and deg $P \sim N^{1/2}$

- Each curve $\beta(\gamma)$ intersects Z(P) at $\gtrsim N^{1/2}$ points.
- But deg $\beta(\gamma) = O(1)$ and deg $P \sim N^{1/2}$
- $\implies \beta(\gamma) \subset Z(P)$ by Bézout's Theorem! (rigidity)

- Each curve $\beta(\gamma)$ contains $\gtrsim N^{1/2}$ points of intersection with Z(P).
- deg $\beta(\gamma) = O(1)$ and deg $P \sim N^{1/2}$
- $\implies \beta(\gamma) \subset Z(P)$ by Bézout's Theorem.

Circle Tangencies: Tangent Vectors

Circle Tangencies: Tangent Vectors

• Before we showed tangent space at incidences is vertical, so $\partial_z P = 0$ on all incidences!

Circle Tangencies: Tangent Vectors

- Before we showed tangent space at incidences is vertical, so $\partial_z P = 0$ on all incidences!
- $\implies Z(\partial_z P)$ also contains all incidences.

Circle Tangencies: Tangent Vectors

- Before we showed tangent space at incidences is vertical, so $\partial_z P = 0$ on all incidences!
- $\implies Z(\partial_z P)$ also contains all incidences.
- If deg P minimal $\implies P(X, Y, Z) = Q(X, Y)$.

Circle Tangencies: Contradiction

Recall that deg $P = \deg Q \sim N^{1/2}$, but Z(Q) contains N circles. Contradiction!

Circle Tangencies: Recap of Argument

Theorem

Given a (suitably non-degenerate) collection of N circles in \mathbb{R}^2 , they determine $\lesssim N^{3/2}$ tangencies.

- **①** Assume there are $\gtrsim N^{3/2}$ tangencies.
- ② Lift curves into \mathbb{R}^3 and change into an incidence problem.
- Use a low degree polynomial P to interpolate these points. (parameter-counting)
- Argue that if Z(P) contains $\gtrsim N^{1/2}$ points of $\beta(\gamma)$ then $\beta(\gamma) \subset Z(P)$. (rigidity)
- **1** Use structure of the objects to argue P(X, Y, Z) = Q(X, Y).
- **o** Contradiction as degree of Q is $\sim N^{1/2}$ but contains N circles.

image to be drawn

image to be drawn

Polynomial Partitioning:

- We can find a polynomial P of degree D such that Z(P) partitions \mathbb{R}^3 into $\sim D^3$ cells. (parameter-counting + Borsuk-Ulam)
- Each cell is intersected by $\lesssim \frac{N}{D^2}$ curves $\beta(\gamma)$.
- # of incidences inside the cells $\lesssim D^3 \left(\frac{N}{D^2}\right)^2 = N^2 D^{-1}$

For the incidences between curves on Z(P) there two cases:

- incidence on Z(P) but $\beta(\gamma) \not\subset Z(P)$. $\Longrightarrow \lesssim D$ such incidences per curve. (Bézout)
- $\beta(\gamma) \subset Z(P)$. Treat in a similar way to the original proof to achieve $\lesssim D^2$

Adding these up we get the number of tangencies to be:

$$\lesssim N^2 D^{-1} + ND + D^2$$

We optimize D now by setting $N^2D^{-1} \sim ND \implies D \sim N^{1/2}$.

Adding these up we get the number of tangencies to be:

$$\lesssim N^2 D^{-1} + ND + D^2$$

We optimize D now by setting $N^2D^{-1} \sim ND \implies D \sim N^{1/2}$.

We achieve:

$$\lesssim N^{3/2}$$

Thank you for your attention.

Any questions?

Jordan S. Ellenberg, Jozsef Solymosi, and Joshua Zahl.

New bounds on curve tangencies and orthogonalities, 2016.