Algebra II (ISIM), kol. 3, 27.01.2021.

Na tym kolokwium o wszystkich pierścieniach zakładamy, że są przemienne z $1 \neq 0$. Wszystkie odpowiedzi należy uzasadnić. Wolno korzystać ze wszystkich faktów z wykładu i list zadań.

- 1 (a) (4pkt) W pierścieniu $R = \mathbb{Z}[\frac{1}{2}] = \{\frac{m}{2^n} : m \in \mathbb{Z}, n \in \mathbb{N}\}$ (ze zwykłymi działaniami dodawania i mnożenia) wyznaczyć R^* (grupę elementów odwracalnych). Czy jest ona produktem nietrywialnych grup cyklicznych?
- (b) (3pkt) Załóżmy, że R jest pierścieniem skończonym, w którym grupa (R,+) jest cykliczna. Udowodnić, że 1 jest jej generatorem.
- 2. (a) (3pkt) Załóżmy, że R_1 i R_2 to pierścienie oraz $I \triangleleft R_1 \times R_2$. Udowodnić, że $I = I_1 \times I_2$ dla pewnych $I_1 \triangleleft R_1$ i $I_2 \triangleleft R_2$.
- (b)(3pkt) Ile jest ideałów w pierścieniu ($\mathbb{Z}_{210}, +_{210}, \cdot_{210}$)?
- 3. (7pkt) Dla których parametrów $a, b \in \mathbb{Z}_7$ wielomian $W(X) = X^{2021} + aX^{2020} + b$ jest podzielny w pierścieniu $\mathbb{Z}_7[X]$ przez wielomian $V(X) = X^2 + X + 1$?