

Comparação

de dois

grupos

(qualitativo)

Felipe

Figueiredo

Comparação de dois grupos (qualitativo) Testes para proporções

Felipe Figueiredo

Instituto Nacional de Traumatologia e Ortopedia

Sumário

- Discussão da aula passada
 - Discussão da aula passada
- Observação x expectativa (1 amostra)
 - Objetivo da aula
 - Analisando dados de contagens
- Testes para 2 amostras
 - Tabelas 2x2
 - Tabelas maiores
 - Na prática
 - Resumo
- Aprofundamento
 - Aprofundamento

Dados categóricos

- Vamos analisar contagens de dados categóricos (ou nominais)
- Para estas variáveis qualitativas não existe ordenação interente
- Observamos apenas as contagens e frequências destes dados em uma amostra.

Exemplo

doente/sadio, fumante/não fumante, masculino/feminino, olhos castanhos/olhos azuis/olhos verdes, etc.

Comparação de dois grupos (qualitativo)

> Felipe Figueiredo

Discussão da aula passada

Discussão da aula

Comparação

de dois grupos (qualitativo) Felipe

Figueiredo

Obietivo da aula

Comparação Felipe Figueiredo Discussão da leitura obrigatória da aula passada

Objetivo

Considere a seguinte tabela:

Exemplo

	Lesão	Não tem lesão
Alongou-se	18	22
Não se alongou	211	189

(Fonte: Larson & Farber 2013)

Pergunta

Como determinar se existe alguma relação entre as variáveis?

Mas antes vamos ver o caso de uma única variável.

Isto é: o desfecho é independente da exposição?

Comparação de dois grupos (qualitativo)

Felipe Figueiredo

Discussão da

1 amostra Objetivo da aula

2 amoetrae

Aprofundamento

Comparação de dois grupos (qualitativo)

Felipe Figueiredo

Discussão da aula passada

amostra

Objetivo da aula Analisando dados de contagens

amostras

Aprofundamen

Quais são as variáveis?

• Dependente: desfecho (categórica)

Independente: exposição (categórica)

Esta relação pode ser expressa como

desfecho \sim exposição

INTO

Comparação de dois grupos (qualitativo)

Felipe Figueiredo

Discussão da

1 amostra

Objetivo da aula Analisando dados de contagens

2 amostras

Aprofundament

Exemplo

Exemplo

Considere que 10% dos pacientes morrem após uma operação arriscada. Em uma amostra de 75 pacientes, observou-se que 16 pacientes morreram após a operação. Como comparar o número de óbitos osbervado e o número esperado?

Fonte: Motulsky, 1995

- O número observado de óbitos em 75 pacientes foi 16.
- O número esperado seria $75 \times 10\% = 7.5$
- A discrepância nos óbitos foi 16 7.5 = 8.5

Comparação de dois grupos (qualitativo)

Felipe Figueiredo

Discussão da

aula passada 1 amostra

Objetivo da aula Analisando dados de contagens

2 amostras

Quais são as variáveis?

Comparação de dois grupos (qualitativo)

> Felipe Figueiredo

Obietivo da aula Analisando dados de

contagens

- Dependente: mortalidade (categórica)
- Independente: parâmetro fixo

Esta relação pode ser expressa como

mortalidade $\sim 10\%$

Roteiro

- Podemos representar as contagens observadas e esperadas em uma tabela
- H₀: observamos uma amostra de uma população com 10% de mortalidade.
- As diferenças entre os dados observados e os esperados tem distribuição aproximadamente χ^2 (qui-quadrado)

Estatística de teste

$$\chi^2 = \frac{\sum (\text{observado} - \text{esperado})^2}{\text{esperado}}$$

Comparação de dois grupos (qualitativo)

Felipe Figueiredo

Obietivo da aula Analisando dados de contagens

Questões

- Esse aumento reflete uma mudança real na mortalidade?
- Em uma amostra qualquer com 75 pacientes esperaríamos observar 7.5 óbitos
- Em uma amostra específica poderíamos observar mais ou menos que isso
- Provavelmente algo próximo de 7.5

Pergunta

Se a mortalidade for 10%, qual é a probabilidade de se observar 16 ou mais óbitos em uma amostra de 75 pacientes?

Comparação de dois grupos (qualitativo)

Felipe Figueiredo

Obietivo da aula Analisando dados de contagens

Tabela de frequências

Exemplo

	Observado	Esperado
Óbito	16	7.5
Vivo	59	67.5
Total	75	75

Estatística de teste:

$$\chi^2 = \frac{(16 - 7.5)^2}{7.5} + \frac{(59 - 67.5)^2}{67.5} =$$
$$= \frac{(8.5)^2}{7.5} + \frac{(-8.5)^2}{67.5} \approx 10.70$$

Comparação de dois grupos (qualitativo)

Felipe Figueiredo

Obietivo da aula

contagens

Comparando as frequências

INTO

Comparação de dois grupos (qualitativo)

Felipe Figueiredo

Obietivo da aula

contagens

Uma tabela de contingência mostra as frequências observadas para duas variáveis categóricas.

- Podemos calcular as frequências esperadas, baseado no tamanho das amostras
- Comparamos assim a frequência observada com a frequência esperada
- Obs: a tabela do exemplo anterior (óbitos) não é uma tabela de contingência! (Por que?)

H₀: não houve alteração da mortalidade do procedimento.

- Estatística de teste para a amostra: $\chi^2 = 10.7$.
- O teste χ^2 retorna p = 0.0011.

Resultado

(...) a mortalidade observada foi diferente de 10% (p = 0.0011).

Tabelas de Contingência 2x2

Exemplo

Frequências observadas:

·	doença progrediu	doença não progrediu
AZT	76	399
Placebo	129	332

- Existe relação entre o uso do AZT e a progressão da doença?
- Ou: nessa amostra o AZT foi mais eficiente que o placebo (rejeitar H₀)?

Comparação de dois grupos (qualitativo)

Felipe Figueiredo

aula passa

amostra

Tabelas 2x2 Tabelas maiores Na prática

Aprofundamento

Quais são as variáveis?

Tabelas de Contingência

Definição

Dependente: desfecho (categórica)

Independente: tratamento (categórica)

Esta relação pode ser expressa como

progressão ∼ grupo

Comparação de dois grupos (qualitativo)

Felipe Figueiredo

Discussão da

1 amostra

2 amostras Tabelas 2x2

Tabelas maiores Na prática

Aprofundamento

Comparação de dois grupos (qualitativo)

Felipe Figueiredo

Discussão da

1 amostra

2 amostras Tabelas 2x2

Na prática Resumo

Tabelas de contingência 2x2

• H₀: o AZT não é mais eficaz que o placebo

esperada para a progressão da doença?

• Em outras palavras: quantos pacientes tiveram

progressão na doença, em relação ao total?

• Pergunta: assumindo a H₀, qual seria a frequência

INTO

Comparação de dois grupos (qualitativo)

> Felipe Figueiredo

Discussão da

1 amostra

2 amostras Tabelas 2x2

Tabelas maiores Na prática

Aprofundamento

Vamos começar pela primeira célula da tabela

Comparação de dois grupos (qualitativo)

Felipe Figueiredo

Discussão da

1 amostra

2 amostras

Tabelas 2x2
Tabelas maiores
Na prática

Aprofundament

Tabelas de contingência 2x2

Frequências observadas:

	progrediu	não progrediu	total
AZT	76	399	475
Placebo	129	332	461
total	205	731	936

- Proporção esperada $E = \frac{205}{936} \approx 0.2190 = 21.90\%$
- Frequência esperada (número): $475 \times 0.2190 = 104.025 \approx 104.0$

Comparação de dois grupos (qualitativo)

Felipe Figueiredo

Discussão da aula passada

1 amostra

2 amostras Tabelas 2x2

Tabelas maiore Na prática Resumo

Aprofundamento

Tabelas de contingência 2x2

- Se a H₀ fosse verdadeira, esperaríamos que 104.0 pacientes tivessem a progressão da doença, usando o AZT.
- Mas observamos 76.
- Discrepância |104.0 76| = 28 pacientes
- Faltam os 3 outros valores esperados e discrepâncias
- Para simplificar, podemos usar a seguinte fórmula:

$$E = \frac{\text{total por linha} \times \text{total por coluna}}{\text{total da tabela}}$$

Comparação de dois grupos (qualitativo)

Felipe Figueiredo

Discussão da

1 amostra

2 amostras Tabelas 2x2

Na prática Resumo

Tabelas de contingência 2x2

Comparação

de dois

grupos

(qualitativo)

Felipe

Figueiredo

Taholas 2v2

Exemplo

Frequências observadas:

	progrediu	não progrediu	total
AZT	76	399	475
Placebo	129	332	461
total	205	731	936

• AZT + Progressão =
$$\frac{205 \times 475}{936} = 104.0$$

• AZT + Não progressão =
$$\frac{731 \times 475}{936} = 371.0$$

• Placebo + Não progressão =
$$\frac{731 \times 461}{936} = 360.0$$

Tabelas de contingência 2x2

Comparação de dois grupos (qualitativo)

> Felipe Figueiredo

Discussão da

1 omostro

2 amostras

Tabelas 2x2 Tabelas maiores Na prática

Aprofundament

Colocando os valores em uma tabela semelhante:

Exemplo

Frequências esperadas:

	progrediu	não progrediu	total
AZT	104.0	371.0	475.0
Placebo	101.0	360.0	461.0
total	205.0	731.0	936.0

Observe que os totais esperados devem ser iguais aos observados!

Teste de Hipótese

- ou: não há relação entre o uso do AZT e a progressão da doença.
- Somamos as diferenças quadráticas entre o valor observado e o esperado

$$\chi^2 = \frac{\sum (\text{observado} - \text{esperado})^2}{\text{esperado}}$$

- Quanto maior o valor de de χ^2 , maior a discrepância
- Fazemos o teste χ^2 e julgamos o p-valor

Comparação de dois grupos (qualitativo)

Felipe Figueiredo

Discussão da Jula passada

amostra

2 amostras

Tabelas maiores Na prática

Aprofundamento

Teste de Hipótese

Exemplo

• AZT + NP =
$$\frac{(399 - 371.0)^2}{371.0} = \frac{28^2}{371.0} \approx 2.11$$

Placebo + P =
$$\frac{(129 - 101.0)^2}{101.0} = \frac{28^2}{101.0} \approx 7.76$$

Placebo + NP =
$$\frac{(332 - 360.0)^2}{360.0} = \frac{28^2}{360.0} \approx 2.18$$

$$\chi^2 = 7.54 + 2.11 + 7.76 + 2.18 = 19.59$$

Comparação de dois grupos (qualitativo)

Felipe Figueiredo

Discussão da

1 amostra

2 amostras Tabelas 2x2

Tabelas mai Na prática Resumo

O teste Qui-Quadrado

INTO

Comparação de dois grupos (qualitativo)

> Felipe Figueiredo

Discussão da

amostra

Z amostras Tabelas 2x2

Na prática Resumo

profundamento

- Quanto maior for o valor da estatística de teste, menor será o p-valor.
- Calculamos a estatística de teste para a amostra e encontramos $\chi^2=$ 19.59
- O resultado deste teste é *p* < 0.0001.

O teste Qui-Quadrado

- O teste χ^2 é apenas uma aproximação da distribuição dos dados, que pode ser usado para amostras grandes.
- Vantagem: simples
- Desvantagem: a aproximação é ruim para amostras pequenas
- Nunca usar se alguma célula da tabela tiver valor < 5

O teste indicado para este cenário é o teste exato de Fisher

- Se a H₀ for verdadeira, temos uma chance menor que 0.01% de observar ao acaso uma discrepância tão grande entre os valores observados e os esperados.
- Resultado: devemos rejeitar a H₀

O teste Qui-Quadrado

Interpretação

Rejeitamos a hipótese de que o AZT não é mais eficiente que o placebo.

Comparação de dois grupos (qualitativo)

Felipe Figueiredo

Discussão da

1 amostra

2 amostras Tabelas 2x2

Tabelas maiores Na prática

Aprofundamento

IN TO

Comparação de dois grupos (qualitativo)

> Felipe Figueiredo

Discussão da aula passada

1 amostra

2 amostras

Tabelas maiores Na prática

Anrofundamento

O teste exato de Fisher

- INTO
- Para as seguintes situações deve-se usar o teste exato de Fisher:
 - Quando se tem amostras pequenas
 - Quanto se tem amostras de tamanho moderado, e se tiver uma ferramenta computacional disponível
- Se sua amostra for enorme (milhares de dados), prefira o teste χ^2 , pois:
 - 1 o cálculo do teste exato de Fisher pode ser lento
 - a aproximação será boa

de dois grupos (qualitativo) Felipe

Comparação

Figueiredo

aula passada

1 amostra

2 amostras Tabelas 2x2

Na prática Resumo

Tabelas de Contingência maiores

- Comparação de dois grupos (qualitativo)
- Felipe Figueiredo

Tabelas 2x2 Tabelas maiores

- E quando temos mais do que duas categorias?
- Resposta: procedemos como no caso anterior, mas precisamos considerar os graus de liberdade do teste χ^2

$$gl = (l-1)(c-1) = (linhas - 1) \times (colunas - 1)$$

• Obs: no caso 2×2 temos $gl = (2-1) \times (2-1) = 1 \times 1 = 1$

Quais são as variáveis?

- Dependente: qualidade do preenchimento (categórica)
- Independente: hospital (categórica)

Esta relação pode ser expressa como

preenchimento \sim hospital

Comparação de dois grupos (qualitativo)

Felipe Figueiredo

Tabelas maiores

Na prática

Tabelas de Contingência maiores

Exemplo

Em dois hospitais, os resultados de 575 autópsias foram comparados com as causas de morte listadas nos atestados. Um dos hospitais que participou do estudo era comunitário (A); o outro era universitário (B).

Hospital	Precisão confir- mada	Falta de informações	Recodificação incorreta	Os
Α	157	18	54	US.
В	268	44	34	

resultados sugerem práticas diferentes no preenchimento de atestados de óbito nos dois hospitais?

Fonte: Aula Hacker & Simões (2008 - Fiocruz)

Tabelas de Contingência maiores

- proporções de atestados de óbitos no hospital A são idênticas ao hospital B.
- H₁: As proporções não são idênticas
- Graus de liberdade:

$$(I-1)\times(c-1)=(2-1)\times(3-1)=1\times2=2$$

Comparação de dois grupos (qualitativo)

Felipe Figueiredo

Tabelas 2x2

Tabelas maiores

Comparação de dois grupos (qualitativo)

Felipe Figueiredo

Tabelas 2x2 Tabelas maiores

Tabelas de contingência maiores

Comparação de dois grupos (qualitativo)

> Felipe Figueiredo

Discussão da

1 amostra

2 amostras Tabelas 2x2 Tabelas maiores

A revenue de manage

Preenchendo os totais por linha e coluna:

Exemplo

Hospital	Confirmada	Incompleta	Incorreta	total
A	157	18	54	229
В	268	44	34	346
total	425	62	88	575

Tabelas de contingência maiores

Confirmada

157 (169.3)

268 (255.7)

425

Exemplo

Hospital

Α

В

total

Incluindo os valores esperados em parênteses temos:

Incompleta

18 (24.7)

44 (37.3)

62

Incorreta

54 (35.0)

34 (53.0)

88

total

229

346

575

Comparação de dois grupos (qualitativo)

Felipe Figueiredo

Discussão da

2 amostras

Tabelas 2x2

Tabelas maiores

Na prática

Aprofundamento

Tabelas de Contingência maiores

Exemplo

Hospital	Confirmada	Incompleta	Incorreta	total
Α	157 (169.3)	18 (24.7)	54 (35.0)	229
В	268 (255.7)	44 (37.3)	34 (53.0)	346
total	425	62	88	575

•
$$\chi^2 = \frac{(157 - 169.3)^2}{169.3} + \frac{(18 - 24.7)^2}{24.7} + \dots$$

•
$$\chi^2 = 21.62, p < 0.001$$

Comparação de dois grupos (qualitativo)

Felipe Figueiredo

iscussão

1 amostra

2 amostras Tabelas 2x2

Tabelas maiores Na prática Resumo

Aprofundament

Tabelas de Contingência maiores

- Calculamos a estatística de teste $\chi^2 = 21.62$
- Encontramos um p-valor p < 0.001 (valor fora da tabela)
- Rejeitamos H_0 ao nível de significância de $\alpha = 0.05$.
- Conclusão: Há associação entre o hospital e o status do atestado.
- Parece que o hospital A tem maior proporção de atestados incorretos.

Comparação de dois grupos (qualitativo)

> Felipe Figueiredo

Discussão da

1 amostra

2 amostras Tabelas 2x2 Tabelas maiores

Na prática Resumo

Tabelas de Contingência 2x2

Comparação de dois grupos (qualitativo)

Felipe Figueiredo

Discussão da aula passada

amostra

Tabelas 2x2
Tabelas maiores
Na prática

Aprofundamento

Exemplo

Frequências observadas:

	doença progrediu	doença não progrediu
AZT	76	399
Placebo	129	332

- Existe relação entre o uso do AZT e a progressão da doença?
- Ou: nessa amostra o AZT foi mais eficiente que o placebo (rejeitar H₀)?

Saída típica de um programa

Pearson's Chi-squared test with Yates'

Teste Qui-quadrado

data: exemplo8.1

continuity correction

p-value = 1.346e-05

X-squared = 18.944, df = 1,

Comparação de dois grupos (qualitativo)

Felipe Figueiredo

Discussão da

1 amostra

2 amostras Tabelas 2x2 Tabelas maiores Na prática

Aprofundament

Saída típica de um programa

Comparação de dois grupos (qualitativo)

Felipe Figueiredo

Discussão da aula passada

1 amostra

2 amostras Tabelas 2x2 Tabelas maiores

Na prática Resumo

Aprofundamento

Teste exato de Fisher

Fisher's Exact Test for Count Data

data: exemplo8.1
p-value = 9.24e-06
alternative hypothesis: true odds ratio
is not equal to 1
95 percent confidence interval:
0.3512693 0.6818650
sample estimates:
odds ratio
0.4905877

Visualização - gráfico de barra

Comparação de dois grupos (qualitativo)

Felipe Figueiredo

Discussão da aula passada

1 amostra

2 amostras Tabelas 2x2

Na prática Resumo

Visualização - pizza

Atenção

NÃO use gráfico de pizza!

- É uma visualização ineficiente
- Nosso olho é "bom" para julgar distâncias/comprimentos
- Nosso olho é ruim para julgar áreas
- Indicado apenas quando as categorias são muito discrepantes

Cleveland (1985)

"Data that can be shown by pie charts always can be shown by a dot chart.

This means that judgements of position along a common scale can be made instead of the less accurate angle judgements."

Comparação

de dois grupos (qualitativo)

Felipe Figueiredo

Tabelas 2x2 Tabelas maiores

Na prática

Aprofundamento

Leitura obrigatória

- Capítulo 26.
- Capítulo 27, pular a seção: Calculando o poder

Exercícios selecionados

Capítulo 26, problema 1

Leitura recomendada

Capítulo 29: Outros testes de tabelas de contingência

Comparação de dois grupos (qualitativo)

Felipe Figueiredo

Aprofundamento

Resumo

entre os grupos

grande

• O teste exato de fisher é um teste de independência

• O teste Qui-quadrado é uma boa aproximação, para N

Comparação de dois grupos (qualitativo)

Felipe Figueiredo

Tabelas 2x2 Na prática Resumo