CLAIMS:

30

- 1. An inkjet recording element comprising, above a support, the following layers in order:
- 5 (a) a transparent, non-porous layer comprising a water-soluble polymer, which layer is swellable by water in an amount less than 0.67 of its original weight; and
 - (b) a fusible, porous image-receiving layer.
- 2. The element of claim 1 wherein the transparent, non-porous layer comprises at least 15 weight percent of the water-soluble polymer and the transparent, non-porous layer is swellable by water in an amount at least 0.3 of its original weight.
- 3. The element of claim 1 wherein the transparent, non-porous layer comprises at least 20 weight percent of the water-soluble polymer and the transparent, non-porous layer is swellable by water in an amount at least 0.35 of its original weight.
- 4. The element of claim 1 wherein the fusible, porous imagereceiving layer comprises at least two types of hydrophobic polymer particles having different glass transition temperatures, a first type of hydrophobic polymer particles having a Tg higher than about 60° C that is substantially monodisperse and a second type of hydrophobic polymer particles having a Tg lower than about 25° C.
 - 5. The element of claim 4 wherein the first type of hydrophobic polymer particles which is substantially monodisperse has an average particle size of from about 0.2 μ m to about 2 μ m, and has a particle size distribution such that the ratio of the particle size at the 90th percentile of the particle size distribution

curve to the particle size at the 10th percentile of the particle size distribution curve is less than about 2.

- 6. The element of claim 4 wherein the first type of hydrophobic
 polymer particles which is substantially monodisperse has a Tg of from about 60°
 C to about 140°C.
 - 7. The element of claim 4 wherein the second type of hydrophobic polymer particles has a Tg of from about -60° C to about 25°C.
 - 8. The element of claim 4 wherein the weight ratio of the first type of hydrophobic polymer particles to the second type of hydrophobic polymer particles is from about 10:1 to about 2.5:1.
- 9. The element of claim 1 wherein the fusible, porous imagereceiving layer is coated in an amount of from about 10 g/m² to about 60 g/m².
 - 10. The element of claim 1 wherein the transparent, non-porous layer comprises a water-soluble polymer selected from the group consisting of gelatin, poly(vinyl alcohol), and derivatives thereof.
 - 11. The element of claim 1 wherein the transparent, non-porous layer further comprises water-dispersible polymer.
- 25 12. The element of claim 1 wherein the transparent, non-porous layer comprises a crosslinking agent for the water-soluble polymer.
 - 13. The element of claim 1 wherein the transparent, non-porous layer is from 2 μm to 20 μm thick.

30

20

10

- 14. The element of claim 1 wherein the water-soluble polymer is gelatin.
- 15. The element of claim 11 wherein the water-dispersible polymer based a Tg lower than 25°C.
 - 16. The element of claim 11 wherein the water-dispersible polymer has an average particle size of less than $1 \mu m$.
- 17. The element of claim 11 wherein the water-dispersible polymer is polyurethane.
 - 18. The element of claim 1 wherein the support is resin-coated paper or a transparent polymer film.
 - 19. The element of claim 1 wherein the fusible, porous image-receiving layer is crosslinked.
- 20. The element of claim 1 wherein the fusible, porous imagereceiving layer contains an ultraviolet absorbing agent.

15

- 21. The element of claim 1 wherein pore volume of the fusible, porous image-receiving layer is from about 5 to about 50 ml/m².
- 22. An inkjet recording element comprising, above a support, the following layers in order:
 - (a) a transparent, non-porous layer that is swellable by water in an amount less than 0.67 of its original weight and which comprises both a water-soluble polymer and a water-dispersible polymer; and
- 30 (b) a fusible, porous image-receiving layer wherein the fusible, porous image-receiving layer comprises at least two types of hydrophobic polymer

particles having different glass transition temperatures, a first type of hydrophobic polymer particles having a Tg higher than about 60° C and a second type of hydrophobic polymer particles having a Tg lower than about 25° C.

- 5 23. The element of claim 22 wherein the transparent, non-porous layer further comprises a crosslinking agent for the water-soluble polymer.
 - 24. The element of claim 22 wherein the transparent, non-porous layer further comprises a dye fixing agent.
 - 25. The element of claim 22 wherein the transparent, non-porous layer is from 2 μm to 20 μm thick.
 - 26. An inkjet printing method, comprising the steps of:
- A) providing an inkjet printer that is responsive to digital data signals;

10

1;

- B) loading the printer with the inkjet recording element of Claim
 - C) loading the printer with inkjet inks;
- D) printing on the inkjet recording element using the inkjet inks in response to the digital data signals; and
 - E) fusing the fusible, porous image-receiving layer.
- 27. The method of claim 26 wherein the inkjet inks comprisepigmented inks that are substantially retained in the fusible, porous image-receiving layer.