

Ministério da Educação

Universidade Federal dos Vales do Jequitinhonha e Mucuri Faculdade de Ciências Sociais, Aplicadas e Exatas - FACSAE

Disciplina: Cálculo Numérico Prof.: Luiz C. M. de Aquino

Lista de Exercícios X

1. Considere uma função f da qual são conhecidos os seguintes pontos:

x_i	2,0	2,375	2,75	3,125	3,5	3,875	4,25	4,625	5
$f(x_i)$	0,4134	0,2026	0,053	0,0001	0,0352	0,1156	0,1885	0,2146	0,1839

Calcule o valor aproximado de $\int_2^5 f(x) dx$ usando:

- (a) a Regra do Trapézio;
- (b) a Regra 1/3 de Simpson.
- 2. Considere a elipse $\frac{x^2}{4} + \frac{y^2}{9} = 1$. Proponha uma maneira de utilizar a Regra 1/3 de Simpson para calcular o valor aproximado de sua área. Em seguida, compare esta aproximação com o valor exato de sua área.
- 3. Aplique a Regra do Trapézio para aproximar $\int_0^2 1 + \sin 4\pi x \, dx$ considerando que o intervalo [0,2] seja divido em 8 partes iguais. Discuta o resultado obtido comparando com o valor exato da integral.
- 4. Considere que o intervalo [a, b] foi dividido em n partes iguais, obtendo-se os valores $x_i = a + hi$, com $h = \frac{b-a}{n}$ e i = 0, 1, 2, ..., n. Suponha que uma função f (contínua em [a, b]) foi aproximada em cada subintervalo $[x_i, x_{i+1}]$ pela função constante $c_i(x) = f(x_i)$. Nestas condições, obtenha a expressão para a aproximação de $\int_a^b f(x) \, dx$. Interprete geometricamente esta aproximação.

Gabarito

[1] (a) 0,41559375. (b) 0,4102875. [2] Sugestão: note que a área desta elipse pode ser obtida por $4\int_0^2 \sqrt{9\left(1-\frac{x^2}{4}\right)}\,dx$, que é igual a 6π . [3] Aplicando a Regra do Trapézio, obtemos 2. Esta aproximação na verdade coincide com o valor exato da integral! Note que $\int_{\frac{k}{2}}^{\frac{k+1}{2}} 1 + \sin 4\pi x \, dx$ (com k=0, 1, 2, 3) coincide com a área de um retângulo de base 0, 5 e altura 1. Por outro lado, aplicando a Regra do Trapézio no intervalo $\left[\frac{k}{2}, \frac{k+1}{2}\right]$, obtemos exatamente um retângulo de base 0, 5 e altura 1. [4] Teremos $\int_a^b f(x) \, dx \approx h \sum_{i=0}^{n-1} f(x_i)$. Geometricamente, esta aproximação representa a soma das áreas dos retângulos de base $[x_i, x_{i+1}]$ e altura $f(x_i)$.