Selected Solutions to Underwood Dudley's Elementary Number Theory Second Edition

Greg Kikola

July 15, 2019

Contents

1	Inte	Integers]								
	1.1	Exercises																							1
	1.2	Problems																							4
2	Uni	Unique Factorization															7								
	2.1	Exercises																							,
	2.2	Problems																							8

iv CONTENTS

Chapter 1

Integers

1.1 Exercises

1.1.1 Exercise 1

Which integers divide zero?

Solution. Every integer divides 0. For, if k is any integer, then 0k=0 so that $k\mid 0$.

1.1.2 Exercise 2

Show that if $a \mid b$ and $b \mid c$ then, $a \mid c$.

Proof. Let $a \mid b$ and $b \mid c$. Then there are integers m and n such that am = b and bn = c. But then a(mn) = (am)n = bn = c. Since mn is an integer, we have $a \mid c$.

1.1.3 Exercise 3

Prove that if $d \mid a$ then $d \mid ca$ for any integer c.

Proof. Again, by definition we can find an integer n such that dn = a. But then cdn = ca. Since cn is an integer, it follows that $d \mid ca$.

1.1.4 Exercise 4

What are (4, 14), (5, 15), and (6, 16)?

Solution. By inspection, (4, 14) = 2, (5, 15) = 5, and (6, 16) = 2.

1.1.5 Exercise 5

What is (n, 1), where n is any positive integer? What is (n, 0)?

Solution. We have (n,1)=1 since there is no integer greater than 1 which divides 1. We also have (n,0)=n since no integer larger than n can divide n, and n certainly divides itself and 0.

1.1.6 Exercise 6

If d is a positive integer, what is (d, nd)?

Solution. (d, nd) = d since d is a common divisor $(d \mid nd)$ by Lemma 2) and there can be no greater divisor of d.

1.1.7 Exercise 7

What are q and r if a = 75 and b = 24? If a = 75 and b = 25?

Solution. We have

$$75 = 3(24) + 3$$
 and $75 = 3(25) + 0$.

So q=3 and r=3 in the first case, and q=3 and r=0 in the second.

1.1.8 Exercise 8

Verify that Lemma 3 is true when a = 16, b = 6, and q = 2.

Solution. Since $16 = 6 \cdot 2 + 4$, we have r = 4. And since (16, 6) = 2 = (6, 4), the lemma is true for this case.

1.1.9 Exercise 9

Calculate (343, 280) and (578, 442).

Solution. Following the Euclidean Algorithm, we have

$$343 = 280 \cdot 1 + 63$$
$$280 = 63 \cdot 4 + 28$$
$$63 = 28 \cdot 2 + 7$$
$$28 = 7 \cdot 4.$$

Therefore (343, 280) = 7.

For the second pair,

$$578 = 442 \cdot 1 + 136$$

 $442 = 136 \cdot 3 + 34$
 $136 = 34 \cdot 4$,

so
$$(578, 442) = 34$$
.

1.2 Problems

1.2.1 Problem 1

Calculate (314, 159) and (4144, 7696).

Solution. For the first pair, we have

$$314 = 159 \cdot 1 + 155$$

$$159 = 155 \cdot 1 + 4$$

$$155 = 4 \cdot 38 + 3$$

$$4 = 3 \cdot 1 + 1$$

$$3 = 1 \cdot 3$$

so (314, 159) = 1 and the two numbers are relatively prime.

For the second pair, we have

$$4144 = 7696 \cdot 0 + 4144$$

$$7696 = 4144 \cdot 1 + 3552$$

$$4144 = 3552 \cdot 1 + 592$$

$$3552 = 592 \cdot 6$$

so (4144, 7696) = 592.

1.2.2 Problem 2

Calculate (3141, 1592) and (10001, 100083).

Solution. The procedure is the same as before, so we omit the details. We have (3141, 1592) = 1 and (10001, 100083) = 73.

1.2.3 Problem 3

Find x and y such that 314x + 159y = 1.

Solution. We applied the Euclidean algorithm to 314 and 159 in the first problem. Working through those equations in reverse order, we find

$$1 = 4 - 3 = 4 - (155 - 4 \cdot 38)$$

$$= -1 \cdot 155 + 39 \cdot 4 = -1 \cdot 155 + 39(159 - 155)$$

$$= -40 \cdot 155 + 39 \cdot 159 = -40(314 - 159) + 39 \cdot 159$$

$$= -40 \cdot 314 + 79 \cdot 159.$$

So x = -40 and y = 79 is one solution.

1.2.4 Problem 4

Find x and y such that 4144x + 7696y = 592.

Solution. We proceed as in the previous problem.

$$592 = 4144 - 3552 = 4144 - (7696 - 4144)$$
$$= 2 \cdot 4144 - 7696,$$

so x = 2 and y = -1 is one possibility.

1.2.5 Problem 5

If N = abc + 1, prove that (N, a) = (N, b) = (N, c) = 1.

Proof. Let d=(N,a). Since 1=N-abc, it follows that $d\mid 1$, and therefore d=1. Using the same reasoning for b and c, we see that (N,a)=(N,b)=(N,c)=1.

1.2.6 Problem 6

Find two different solutions of 299x + 247y = 13.

Solution. The Euclidean Algorithm produces

$$299 = 247 \cdot 1 + 52$$
$$247 = 52 \cdot 4 + 39$$
$$52 = 39 \cdot 1 + 13$$
$$39 = 13 \cdot 3.$$

Now, working backwards using substitution gives

$$13 = 52 - 39 = 52 - (247 - 4 \cdot 52)$$

= $5 \cdot 52 - 247 = 5(299 - 247) - 247$
= $5 \cdot 299 - 6 \cdot 247$.

This gives one solution.

Since $299 = 23 \cdot 13$ and $247 = 19 \cdot 13$, subtracting 19 from x and adding 23 to y will keep the equation balanced. The reason this works is because

$$\begin{aligned} 299(x-19) + 247(y+23) &= 299x + 247y - 19 \cdot 299 + 23 \cdot 247 \\ &= 299x + 247y - 19 \cdot 23 \cdot 13 + 23 \cdot 19 \cdot 13 \\ &= 299x + 247y = 13. \end{aligned}$$

Therefore a second solution is given by x = -14 and y = 17.

Note that we can continue this indefinitely (in both directions) to find infinitely many solutions. For example, x=-33 and y=40 is a third solution.

1.2.7 Problem 7

Prove that if $a \mid b$ and $b \mid a$, then a = b or a = -b.

Proof. There are integers x and y such that ax = b and by = a. Substituting ax for b in the second equation gives axy = a or xy = 1. But the only integers having a multiplicative inverse are 1 and -1. So either x = y = 1 in which case a = b, or else x = y = -1 in which case a = -b.

1.2.8 Problem 8

Prove that if $a \mid b$ and a > 0, then (a, b) = a.

Proof. Since a divides itself and b, we must have $a \mid (a,b)$ by Corollary 2. But we also know that $(a,b) \mid a$ by definition. By the previous problem, it follows that either (a,b) = a or (a,b) = -a. But a > 0, so we must have (a,b) = a. \square

_	~	_	D 11	_
1	2	g	Problem	y

Prove that ((a, b), b) = (a, b).

Proof. Let d = (a, b). Then $d \mid b$ by definition, and d > 0. So we may apply the previous problem to establish that (d, b) = d.

1.2.10 Problem 10

(a) Prove that (n, n + 1) = 1 for all n > 0.

Proof. Fix an n > 0 and put d = (n, n + 1). Then d divides both n + 1 and n, so by Lemma 2, d also divides their difference (n + 1) - n = 1. Since $d \mid 1$ and d > 0, we must have d = 1.

(b) If n > 0, what can (n, n + 2) be?

Solution. Again, if d = (n, n + 2), then d must divide (n + 2) - n = 2. Thus d must be either 1 or 2. For example, (3, 5) = 1 and (4, 6) = 2. \square

1.2.11 Problem 11

(a) Prove that (k, n + k) = 1 if and only if (k, n) = 1.

Proof. Suppose (k, n + k) = 1 and set d = (k, n). Since d divides k and n, d also divides their sum n + k. Hence d is a common divisor of k and n + k, so d = 1.

Conversely, suppose (k, n) = 1 and put d = (k, n + k). Again, $d \mid k$ and $d \mid n + k$, so d divides their difference n. Therefore d is a common divisor of k and n, so d = 1.

(b) Is it true that (k, n + k) = d if and only if (k, n) = d?

Solution. Yes. Using the same reasoning as above, we can see that c is a common divisor of k and n + k if and only if it is a common divisor of k and n. It follows that (k, n + k) = (k, n).

1.2.12 Problem 12

Prove: If $a \mid b$ and $c \mid d$, then $ac \mid bd$.

Proof. There are integers m and n such that am = b and cn = d. Therefore bd = (am)(cn) = mn(ac), so $ac \mid bd$.

1.2.13 Problem 13

Prove: If $d \mid a$ and $d \mid b$, then $d^2 \mid ab$.

Proof. This is a special case of the previous problem.

1.2.14 Problem 14

6

Prove: If $c \mid ab$ and (c, a) = d, then $c \mid db$.

Proof. Find integers x and y with cx + ay = d. Multiplying by b then gives

$$cxb + ayb = db$$
.

Since c divides the left-hand side, it must divide the right-hand side. Therefore $c\mid db$.

1.2.15 Problem 15

(a) If $x^2 + ax + b = 0$ has an integer root, show that it divides b.

Proof. We are assuming that a and b are integers. Let the polynomial have the integer root c. Then

$$b = -c^2 - ac = c(-c - a),$$

and we see that $c \mid b$ since -c - a is an integer.

(b) If $x^2 + ax + b = 0$ has a rational root, show that it is in fact an integer.

Proof. Let the root be c/d where c and d are relatively prime integers with d nonzero. Then

$$\frac{c^2}{d^2} + \frac{ac}{d} + b = 0.$$

Multiplying through by d^2 then gives

$$c^2 + acd + bd^2 = 0$$

or $c^2 = -d(ac + bd)$. We see that $d \mid c^2$. Since (c, d) = 1, we have by Corollary 1 that $d \mid c$ as well. But then (c, d) = d, so we must have d = 1. Therefore the rational number c/d is actually just the integer c.

Chapter 2

Unique Factorization

2.1 Exercises

2.1.1 Exercise 1

How many even primes are there? How many whose last digit is 5?

Solution. If a prime p is even then by definition $2 \mid p$. Therefore the only prime that is even is 2 itself. Similarly, any positive integer that ends in a 5 (written in base 10) must be divisible by 5 (this is due to the fact that our base, 10, is itself divisible by 5). And the only prime divisible by 5 is 5 itself.

2.1.2 Exercise 2

Construct a proof of Lemma 2 using induction.

Solution. Lemma 2 says that every positive integer greater than 1 can be written as a product of primes. 2 is a prime and is a product of itself, so the base case is satisfied. Now suppose there is an integer n>1 such that every integer k with $1< k \le n$ can be written as a product of primes. We must show that n+1 can be written as such a product.

If n+1 is prime, then we are done, it is already a product of primes. If not, then n+1 is composite, and we may write n+1=st where s and t are each integers with 1 < s, t < n+1. By the inductive hypothesis, s and t can each be written as a product of primes,

$$s = p_1 p_2 \cdots p_i$$
, and $t = q_1 q_2 \cdots q_j$,

where each p_k and q_k are prime (not necessarily distinct). Then

$$n+1 = st = p_1 p_2 \cdots p_i q_1 q_2 \cdots q_i,$$

and we have written n+1 as a product of primes, completing the inductive step. It follows by induction that all integers n>1 can be written as a product of primes.

2.1.3 Exercise 3

Write prime decompositions for 72 and 480.

Solution.
$$72 = 8 \cdot 9 = 2^3 \cdot 3^2$$
 and $480 = 48 \cdot 10 = 16 \cdot 3 \cdot 10 = 2^5 \cdot 3 \cdot 5$.

2.1.4 Exercise 4

Which members of the set less than 100 are not prome?

Solution. The set being referenced in the question is the set

$$A = \{4n + 1 \mid n = 0, 1, 2, \dots\},\$$

where $k \in A$ is considered "prome" if it has no divisors in A other than 1 and itself.

Since $100^{1/2} = 10$, we only need to look for divisors less than or equal to 10. The only such members of A are 1, 5, and 9. So any nonprome member of A less than 100 must be a multiple of 5 or 9. These numbers are

2.1.5 Exercise 5

What is the prime-power decomposition of 7950?

Solution. 7950 is divisible by $50 = 2 \cdot 5^2$, so dividing by 50 gives 159. 159 is divisible by 3, so divide by 3 to get 53. Since 53 is prime we are done. Therefore

$$7950 = 2 \cdot 3 \cdot 5^2 \cdot 53.$$

2.2 Problems

2.2.1 Problem 1

Find the prime-power decompositions of 1234, 34560, and 111111.

Solution. First, 1234 is divisible by 2, so we write $1234 = 2 \cdot 617$. Now 617 is not divisible by 2 or 5. Using the table in Appendix C, we see that 617 is prime. Therefore $1234 = 2 \cdot 617$ is the prime factorization.

For 34560, first we divide by all factors of 2 and 5 to get $34560 = 2^8 \cdot 5 \cdot 27$. Now 27 factors as 3^3 so this gives

$$34560 = 2^8 \cdot 3^3 \cdot 5.$$

Finally, 111111 is too big for the table, but by trying small possible divisors we can see that it is divisible by 3, with 111111 = 3.37037. And 37037 is divisible by 7: 37037 = 7.5291. Now we may make use of the table to determine that 5291 is divisible by 11. 5291/11 = 481, which is divisible by 13. 481/13 = 37, and 37 is prime. So

$$1111111 = 3 \cdot 7 \cdot 11 \cdot 13 \cdot 37.$$

2.2.2 Problem 2

Solution. Proceeding in the same manner as in the previous problem, we find

$$2345 = 5 \cdot 7 \cdot 67,$$

 $45670 = 2 \cdot 5 \cdot 4567.$

and

2.2.3 Problem 3

Tartaglia (1556) claimed that the sums

$$1+2+4$$
, $1+2+4+8$, $1+2+4+8+16$, ...

are alternately prime and composite. Show that he was wrong.

Proof. Looking at the partial sums having an odd number of terms, we find

$$1+2+4=7$$

$$1+2+4+8+16=31$$

$$1+2+4+8+16+32+64=127$$

$$1+2+4+8+16+32+64+128+256=511=7\cdot73.$$

Since 511 is not prime, we see that Tartaglia's conjecture was not correct. \Box

2.2.4 Problem 4

(a) DeBouvelles (1509) claimed that one or both of 6n + 1 and 6n - 1 are primes for all $n \ge 1$. Show that he was wrong.

Proof. For n=20, we have $6n+1=121=11^2$ and $6n-1=119=7\cdot 17$. Therefore DeBouvelles's claim is not correct.

(b) Show that there are infinitely many n such that both 6n-1 and 6n+1 are composite.

Proof. Suppose there are finitely many n with both 6n-1 and 6n+1 composite. Let them be n_1, n_2, \ldots, n_k .

Now let $n=(6n_k+9)!$, where ! denotes the factorial function (i.e., $n!=1\cdot 2\cdot 3\cdots (n-1)\cdot n$). Now the integers $n+2,n+3,\ldots,n+9$ are all composite, since for any m with $2\leq m\leq 9$, we clearly have $m\mid n+m$. So we have found a sequence of 8 consecutive composite numbers. Now these numbers must include a pair of the form 6t-1 and 6t+1. But both of these are composite, and $t>n_k$. This is a contradiction, since n_k was supposed to be the largest such value. Therefore there are infinitely many n with both 6n-1 and 6n+1 composite.

2.2.5 Problem 5

Prove that if n is a square, then each exponent in its prime-power decomposition is even.

Proof. Let n > 1 be a square and write $n = k^2$ for some integer k > 1. Let the prime-power decomposition of k be

$$k = p_1^{e_1} p_2^{e_2} \cdots p_r^{e_r}$$
.

Then

$$\begin{split} n &= (p_1^{e_1} p_2^{e_2} \cdots p_r^{e_r})^2 \\ &= (p_1^{e_1})^2 (p_2^{e_2})^2 \cdots (p_r^{e_r})^2 \\ &= p_1^{2e_1} p_2^{2e_2} \cdots p_r^{2e_r}. \end{split}$$

Since this prime-power decomposition must be unique (up to reordering), we see that every exponent in the prime-power decomposition of n is even. \Box

2.2.6 Problem 6

Prove that if each exponent in the prime-power decomposition of n is even, then n is a square.

Proof. Suppose every exponent in the prime-power decomposition of n is even. Then each exponent e_i in the decomposition has the form $e_i = 2f_i$ for some integer f_i . Then n can be written

$$n = p_1^{2f_1} p_2^{2f_2} \cdots p_r^{2f_r}$$

$$= (p_1^{f_1})^2 (p_2^{f_2})^2 \cdots (p_r^{f_r})^2$$

$$= (p_1^{f_1} p_2^{f_2} \cdots p_r^{f_r})^2$$

$$= k^2,$$

where $k = p_1^{f_1} \cdots p_r^{f_r}$, and we see that n is a square.

2.2.7 Problem 7

Find the smallest integer divisible by 2 and 3 which is simultaneously a square and a fifth power.

Solution. Let the smallest such number be n. The least common multiple of 2 and 3 is 6, so $6 \mid n$. n is a square and a fifth power, so n must actually be a tenth power, since 10 is the least common multiple of 2 and 5. The smallest tenth power divisible by 6 is 6^{10} , so we have

$$n = 6^{10} = 60466176.$$

2.2.8 Problem 8

If $d \mid ab$, does it follow that $d \mid a$ or $d \mid b$?

Solution. No. For example, $6 \mid 4 \cdot 9$ but $6 \nmid 4$ and $6 \nmid 9$. If, however, we know that d is prime, then the conclusion does hold, as proved in Lemma 5.

2.2.9 Problem 9

Is it possible for a prime p to divide both n and n+1 $(n \ge 1)$?

Solution. No. For, if it is possible, suppose the prime p divides both n and n+1. Then p also divides their difference, (n+1)-n=1. So we would have $p \mid 1$, which is clearly absurd.

2.2.10 Problem 10

Prove that n(n+1) is never a square for n > 0.

Proof. Suppose $n(n+1) = k^2$ for some integer k > 0. Then $n^2 + n = k^2$ which gives $k^2 - n^2 = n$. Factoring the left-hand side then gives

$$(k+n)(k-n) = n.$$

So in particular, $k + n \mid n$. But this is impossible, since k + n > n > 0. This contradiction shows that n(n + 1) is not a square.

2.2.11 Problem 11

(a) Verify that $2^5 \cdot 9^2 = 2592$.

Solution. Direct computation gives $2^5 \cdot 9^2 = 32 \cdot 81 = 2592$.

(b) Is $2^5 \cdot a^b = 25ab$ possible for other a, b? (Here 25ab denotes the digits of $2^5 \cdot a^b$ and not a product.)

Solution. Suppose it is possible, and let a and b be single-digit integers, $0 \le a, b \le 9$, so that

$$2^5 \cdot a^b = 2500 + 10a + b.$$

Note that

$$78 < a^b = \frac{2500 + 10a + b}{32} < 82.$$

So the only possibilities for a^b are 79, 80, and 81. But 79 is prime, and $80 = 2^4 \cdot 5$, so neither of these are perfect powers. Therefore $a^b = 81$ and we see that either a = 3, b = 4 or a = 9, b = 2. Since $32 \cdot 81 = 2592$, only the second combination works.

2.2.12 Problem 12

Let p be the least prime factor of n, where n is composite. Prove that if $p > n^{1/3}$, then n/p is prime.

Proof. Let p and n be as stated, and suppose n/p is composite, so that n/p = ab, where a, b > 1. Then n = abp. And since $p > n^{1/3}$, we have

$$n = abp < p^3$$
, which implies $ab < p^2$.

It follows that one of a,b must be less than p. Since a,b>1 we see that one of a or b must contain a prime factor q smaller than p. But then $q\mid n$, which contradicts the fact that p is the smallest prime divisor. Therefore n/p is prime.

2.2.13 Problem 13

True or false? If p and q divide n, and each is greater than $n^{1/4}$, then n/pq is prime.

Solution. False. As a counterexample, take $n=60=2^2\cdot 3\cdot 5$. Now, we have $60^{1/4}<81^{1/4}=3$. So p=3 and q=5 are both greater than $n^{1/4}$, each divide n, but n/pq=4 is not prime.

2.2.14 Problem 14

Prove that if n is composite, then 2^{n-1} is composite.

Proof. Let n be composite. 2^{n-1} is composite as long as n > 2. But the smallest composite number is 4, so we certainly have n > 2. Therefore 2^{n-1} is composite for any composite number n.

2.2.15 Problem 15

Is it true that if $2^n - 1$ is composite, then n is composite?

Solution. No. For example, $2047 = 2^{11} - 1$ is composite since $2047 = 23 \cdot 89$, but 11 is not composite.