# Individual Tree Mortality Equations Incorporating CSI

# Greg Johnson Greg Johnson Biometrics LLC

2024-06-20

#### **Equation Fitting**

We fit a survival equation (probability of survival) of a Gompit form to observations for each species with  $\geq 3000$  observations and remeasurement intervals between 5 and 10 years found in the tree.csv data set provided by John Kershaw.

$$p_{live} = 1 - e^{-e^{-\beta_1 + \beta_2} \frac{dbh^{\beta_3}}{(bal+1)}}$$

where: dbh = diameter at breast height (cm), and  $bal = \text{basal area per hectare in larger trees } (m^2/ha)$ .

The equation was fit using an integrated fitting algorithm over each year of the remeasurement interval. The error minimized was the trees per hectare (tph) prediction error at the end of the remeasurement interval.

### **Species**

The species in Table 1 had enough ( $\geq 3000$ ) observations to fit the survival equation:

Table 1: Species Available for Survival Equation

| Species Code        | FIA Code | N      | Common Name        |
|---------------------|----------|--------|--------------------|
| BF                  | 12       | 191518 | balsam fir         |
| RM                  | 316      | 80697  | red maple          |
| RS                  | 97       | 77212  | red spruce         |
| BS                  | 95       | 53381  | black spruce       |
| PB                  | 375      | 41088  | paper birch        |
| WS                  | 94       | 25245  | white spruce       |
| SM                  | 318      | 24257  | sugar maple        |
| YB                  | 371      | 19371  | yellow birch       |
| WC                  | 241      | 18029  | arborvitae         |
| QA                  | 746      | 17922  | quaking aspen      |
| WP                  | 129      | 14044  | eastern white pine |
| AB                  | 531      | 13663  | American beech     |
| EH                  | 261      | 12501  | eastern hemlock    |
| TA                  | 71       | 6449   | tamarack           |
| GB                  | 379      | 5105   | gray birch         |
| RO                  | 833      | 5103   | northern red oak   |
| $\operatorname{BT}$ | 743      | 3657   | bigtooth aspen     |
| WA                  | 541      | 3506   | white ash          |
|                     |          |        |                    |

| ST | 315 | 3289 | striped maple |
|----|-----|------|---------------|
| JP | 105 | 3184 | jack pine     |

#### Parameter Estimates

The fit statistics and parameter estimates for the species in Table 1 are in Table 2. All but one species (American Beech) yielded biologically reasonable parameter estimates (AB's  $\beta_2$  estimate was negative).

Table 2: Survival Equation Parameter Estimates

| Species             | n      | MSE      | b1         | b2         | b3        |
|---------------------|--------|----------|------------|------------|-----------|
| BF                  | 191518 | 4903.20  | -0.9626182 | 3.7609865  | 0.7414765 |
| RM                  | 80697  | 3719.03  | -1.1016601 | 0.0937570  | 2.4588578 |
| RS                  | 77212  | 1850.86  | -1.0231953 | 6.9566316  | 0.2992580 |
| BS                  | 53381  | 896.90   | -1.2832272 | 0.6224753  | 0.5341737 |
| PB                  | 41088  | 5017.29  | -1.1304255 | 0.1575705  | 1.5784746 |
| WS                  | 25245  | 721.77   | -0.9464213 | 5.1528610  | 0.3683826 |
| SM                  | 24257  | 2084.84  | -1.3216928 | 0.0840536  | 1.7517667 |
| YB                  | 19371  | 4704.05  | -1.2861758 | 0.0058181  | 3.2588545 |
| WC                  | 18029  | 2295.61  | -1.0866627 | 4.6970194  | 0.6290715 |
| QA                  | 17922  | 7118.33  | -0.6872042 | 0.0325129  | 3.1171555 |
| WP                  | 14044  | 4036.20  | -1.1779610 | 0.0464297  | 1.6359074 |
| EH                  | 12501  | 1520.25  | -0.7602993 | 12.1300823 | 0.7284034 |
| TA                  | 6449   | 1079.84  | -1.0643472 | 0.0484539  | 2.4323037 |
| GB                  | 5105   | 13004.57 | -1.0214240 | 0.2789377  | 1.2891585 |
| RO                  | 5103   | 3356.45  | -1.0787602 | 0.1858255  | 1.6327093 |
| $\operatorname{BT}$ | 3657   | 9697.71  | -0.4545934 | 0.4455582  | 2.2074701 |
| WA                  | 3506   | 6945.16  | -1.2675468 | 0.0021850  | 3.1604358 |
| JP                  | 3184   | 55.12    | -0.5875586 | 0.7320308  | 1.2282033 |

## Residual Analysis







BAL (m<sup>2</sup>/ha) Class







## **Equation Peformance**

The following graph shows survival probability predictions for Balsam Fir to demonstrate the effect of dbh and bal. The effect of larger trees on survival decreases as trees get larger; a small tree (say 5 cm) with 50  $m^2/ha$  bal has a greater chance of dying than a large tree (say 15 cm).

# Balsam Fir paneled by Basal Area



# Balsam Fir paneled by Basal Area

