

Kelompok 2 Sains Data

Anggota Kelompok:

-	Haifa Marwa Saniyyah	[2206048783]
-	Halimah As-Sajidah	[2206048820]
-	Hanny Awlia	[2206048751]
-	Rahma Chuzaima	[2206048732]
_	Reizka Fathia	[2206052755]

Daftar Isi

01

Pendahuluan

Latar belakang, tujuan

02

Dataset dan EDA

Import dataset, distribusi fitur numerik, distribusi fitur kategorik, *heatmap* 03

Preprocessing Data

Imputasi data, menangani outliers, encoding data kategorik

04

Modelling

Train-test split, seleksi model, hyperparameter tuning

05

Evaluasi

Confusion Matrix, Classification Report, Kesimpulan

Latar Belakang

Analisis kredit adalah hal yang penting untuk dilakukan sebelum penyetujuan pengajuan kredit debitur, karena sifat dari kredit yang mempunyai risiko, dimana risiko tersebut dipengaruhi oleh latar belakang debitur. Maka, sistem credit scoring sangat diperlukan dalam memutuskan pemberian kredit untuk menghindari kredit macet yang dapat menyebabkan kerugian bagi pihak kreditur.

Tujuan

Penelitian ini bertujuan untuk meningkatkan akurasi metode klasifikasi dengan tingkat akurasi yang paling tinggi dan memberikan rekomendasi kepada pihak kreditur. Sehingga, pihak kreditur dapat menganalisis kredit sebelum memutuskan penyetujuan kredit.

Tentang Dataset

Sumber

Diambil dari kaggle: https://www.kaggle.com/datasets/laotse/cred it-risk-dataset

Jumlah data

Data terdiri dari 32581 sampel dengan 12 fitur

Informasi pada data

Dataset berisi beberapa informasi penting serta karakteristik pemohon kredit seperti usia, pendapatan, status kepemilikan rumah, jumlah pinjaman, suku bunga pinjaman, dan lain-lain.

	person_age	person_income	person_home_ownership	person_emp_length	loan_intent	loan_grade	loan_amnt	loan_int_rate	loan_status	<pre>loan_percent_income</pre>	cb_person_default_on_file	cb_person_cred_hist_length
0	22	59000	RENT	123.0	PERSONAL	D	35000	16.02	1	0.59	Υ	3
1	21	9600	OWN	5.0	EDUCATION	В	1000	11.14	0	0.10	N	2
2	25	9600	MORTGAGE	1.0	MEDICAL	С	5500	12.87	1	0.57	N	3
3	23	65500	RENT	4.0	MEDICAL	С	35000	15.23	1	0.53	N	2
4	24	54400	RENT	8.0	MEDICAL	С	35000	14.27	1	0.55	Y	4

Penjelasan Fitur

person_age

Usia individu yang mengajukan kredit.

person_income

Penghasilan tahunan individu.

person_home_ownership

Jenis kepemilikan rumah individu (rent, mortgage, own, other).

person_emp_length

Masa kerja individu dalam tahun.

loan_intent

Maksud di balik pengajuan kredit.

loan_grade

Nilai yang diberikan kepada pinjaman berdasarkan kelayakan kredit peminjam (Grade A-G).

Penjelasan Fitur

loan_amnt

Jumlah kredit/pinjaman yang diminta oleh individu.

loan_int_rate

Suku bunga yang terkait dengan kredit.

loan_status

Status kredit, dimana 0 menandakan tidak gagal bayar dan 1 menandakan gagal bayar.

loan_percent_income

Persentase pendapatan yang diwakili oleh jumlah pinjaman.

cb_person_default_on_file

Riwayat gagal bayar individu sesuai catatan biro kredit (Y/N)

cb_person_cred_hist_length

Panjang riwayat kredit untuk individu tersebut.

EDA: Distribusi Fitur Numerik

EDA: Distribusi Fitur Kategorik

EDA: Heatmap

Berdasarkan heatmap, dapat dilihat bahwa nilai korelasi paling tinggi dihasilkan oleh hubungan antara fitur person_age dan cb_person_cred_hist_length dengan nilai 0.86

Pemeriksaan Missing Values

person age	0
person income	0
person home ownership	0
person_emp_length	895
loan_intent	0
loan_grade	0
loan_amnt	0
loan_int_rate	3116
loan_status	0
loan_percent_income	0
cb_person_default_on_file	0
cb_person_cred_hist_length	0

Dilakukan pemeriksaan jumlah missing values yang terdapat pada tiap-tiap fitur.

Menangani missing values dengan strategi mean

person_age	-
person_income	-
person_home_ownership	-
person_emp_length	4
loan_intent	-
loan_grade	- 3
loan_amnt	- 3
loan_int_rate	
loan_status	-
loan_percent_income	
cb person default on file	-
cb person cred hist length	4

Missing values diisi dengan menggunakan strategi mean kemudian dicek kembali.

Menangani Outliers

Pemeriksaan Outliers

Dilakukan pemeriksaan outliers yang terdapat pada fitur-fitur dengan tipe data 'float64' dengan visualisasi boxplot.

Observasi Outliers

Observasi:

- * person_age: Sebagian besar individu berusia 20 hingga 60 tahun. Sehingga, agar lebih umum, individu dengan usia > 80 tahun akan dihapus.
- * person_emp_length: Sebagian besar individu memiliki pengalaman kerja kurang dari 40 tahun. Sehingga, individu dengan pengalaman kerja > 60 tahun akan dihapus.

Menangani Outliers

Menangani outliers dengan metode Inter Quartile Range (IQR)

Setelah dilakukan metode IQR dan penghapusan sampel berdasarkan observasi, keberadaan outliers diperiksa kembali menggunakan boxplot.

Encoding Fitur Kategorik

<<class 'pandas.core.frame.DataFrame'>
RangeIndex: 32572 entries, 0 to 32571
Data columns (total 27 columns):

memory usage: 6.7 MB

Data	COTUMNS (LOCAL 2/ COTUMNS):		
#	Column	Non-Null Count	Dtype
0	person_age	32572 non-null	int64
1	person_income	32572 non-null	int64
2	person_emp_length	32572 non-null	float64
3	loan_amnt	32572 non-null	int64
4	loan_int_rate	32572 non-null	float64
5	loan_status	32572 non-null	int64
6	loan_percent_income	32572 non-null	float64
7	cb_person_cred_hist_length	32572 non-null	int64
8	person_home_ownership_MORTGAGE	32572 non-null	float64
9	person_home_ownership_OTHER	32572 non-null	float64
10	person_home_ownership_OWN	32572 non-null	float64
11	person_home_ownership_RENT	32572 non-null	float64
12	loan_intent_DEBTCONSOLIDATION	32572 non-null	float64
13	loan_intent_EDUCATION	32572 non-null	float64
14	loan_intent_HOMEIMPROVEMENT	32572 non-null	float64
15	loan_intent_MEDICAL	32572 non-null	float64
16	loan_intent_PERSONAL	32572 non-null	float64
17	loan_intent_VENTURE	32572 non-null	float64
18	loan_grade_A	32572 non-null	float64
19	loan_grade_B	32572 non-null	float64
20	loan_grade_C	32572 non-null	float64
21	loan_grade_D	32572 non-null	float64
22	loan_grade_E	32572 non-null	float64
23	loan_grade_F	32572 non-null	float64
24	loan_grade_G	32572 non-null	float64
25	cb_person_default_on_file_N	32572 non-null	float64
26	cb_person_default_on_file_Y	32572 non-null	float64
ucyp	es: float64(22), int64(5)		

Fitur-fitur kategorik yang terdapat di dalam dataset adalah person_home_ownership, loan_intent, loan_grade, dan cb_person_default_on_file. Dengan metode one-hot encoding, fitur-fitur tersebut berhasil di-encoding, menambahkan jumlah fitur sehingga berjumlah 27 fitur. Setelah itu, dipastikan semua data sudah bersifat numerik dan tidak terdapat missing values.

Train-Test-Split

```
[23] # menghapus kolom loan_status dan menyimpan data dalam X
    X = df_preprocessed.drop(['loan_status'], axis=1)

    # memilih kolom loan_status dan menyimpannya dalam Y
    y = df_preprocessed['loan_status']

[24] # membagi data menjadi dua bagian, yaitu 80% data training dan 20% data testing
    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

[64] print(X_train.shape, X_test.shape, y_train.shape, y_test.shape)

[29314, 26) (3258, 26) (29314,) (3258,)
```

Untuk dataset ini, fitur target utama yang ingin diprediksi adalah 'loan status'. Fitur target tersebut dapat dipisahkan dari fitur fitur lainnya, misal variabel y untuk fitur target dan variabel X untuk fitur-fitur lainnya. Sebelum membentuk model, diperlukan data training dan data testing. Oleh karena itu, perlu dilakukan splitting dataset, yaitu memecah dataset menjadi data training dan data testing. Pada proses ini, data dipecah menjadi dua bagian, yaitu data training sebanyak 80% dan data testing sebanyak 20%.

Model Selection dan Hyperparameter Tuning

Sebelum memutuskan untuk menggunakan metode Random Forest, kami melakukan Model Selection untuk melihat metode mana yang memiliki best_score tertinggi dari beberapa metode, yaitu SVM, Decision Tree, dan Random Forest.

	model	best_score
0	random_forest	0.931841
1	svm	0.376582
2	decision_tree	0.901992

Terlihat bahwa metode Random Forest adalah model terbaik dengan best score tertinggi, yaitu 93,18%. Ini menunjukkan bahwa model tersebut memiliki performa terbaik pada data training dan validasi selama cross validation.

Perbandingan Rasio

Selanjutnya, dilakukan kembali splitting data setelah menemukan metode yang paling efektif. Rasio ditentukan berdasarkan nilai akurasi yang dihasilkan. Masing-masing nilai akurasi hasil uji tiap rasio dataset termuat pada tabel berikut.

Rasio Data Testing	Rasio Data Training	Nilai Akurasi
70%	30%	93,04%
75%	25%	93,09%
80%	20%	93,18%
85%	15%	93,25%
90%	10%	93,33%

Didapatkan rasio terbaik adalah 90:10. Lalu, diidentifikasikan parameter terbaik dari rasio tersebut.

Hyperparameter	Nilai
n_estimators	100
max_depth	None
min_samples_split	2
min_samples_leaf	1

Feature Importance

Untuk meningkatkan performa model dilakukan pengecekan kepentingan fitur (Feature Importance). Dengan menggunakan feature_importance_ yang ada pada python, diperoleh urutan fitur dari fitur dengan kepentingan tertinggi sampai terendah. Kemudian, dibuat threshold sebesar 0.01, di mana fitur yang tingkat kepentingannya lebih tinggi dari threshold akan dipilih dalam training selanjutnya. Data train dan test kemudian akan diperbarui dengan hanya mencakup fitur-fitur yang terpilih. Urutan kepentingan fitur yang diperoleh dilampirkan pada gambar diatas.

Feature Interaction

Setelah itu, kami juga menghitung interaksi fitur. Hal ini bertujuan untuk mengeksplorasi potensi tambahan dalam meningkatkan performa model. Dalam hal ini, interaksi fitur dilakukan dengan mengalikan dua fitur dengan tingkat kepentingan tertinggi, yaitu 'loan_percent_income' dan 'person_income' dan dibentuk fitur baru yang disebut 'interaction_loan_income'. Fitur ini dimasukkan ke dalam dataset yang telah dipilih untuk melatih kembali model Random Forest. Setelah pelatihan ulang, model tersebut digunakan untuk melakukan prediksi terhadap data testing.

```
# interaksi fitur
X_train_selected['interaction_loan_income'] = X_train_selected['loan_percent_income'] * X_train_selected['person_income']
X_test_selected['interaction_loan_income'] = X_test_selected['loan_percent_income'] * X_test_selected['person_income']

# pelatihan ulang model
    rf_selected = RandomForestClassifier(n_estimators=100, random_state=42)
    rf_selected.fit(X_train_selected, y_train)

/ RandomForestClassifier
RandomForestClassifier(random_state=42)

# melakukan prediksi menggunakan model yang telah diperbarui
    y_pred_selected = rf_selected.predict(X_test_selected)
```


Confusion Matrix

Dari Confusion Matrix, diperoleh hasil sebagai berikut:

- True Positive (TP): Sebanyak 2518 kasus berhasil diprediksi sebagai "Kredit Lancar".
- False Positive (FP): Terdapat 23 kasus yang salah diprediksi sebagai "Kredit Lancar".
- False Negative (FN): Terdapat 186 kasus yang salah diprediksi sebagai "Kredit Macet".
- True Negative (TN): Sebanyak 531 kasus berhasil diprediksi sebagai "Kredit Macet".

Classification Report

Berdasarkan Classification Report di atas, model ini sangat efektif dalam mengklasifikasikan "kredit lancar" dengan precision dan recall yang sangat tinggi. Namun, untuk "kredit macet", meskipun precision cukup tinggi, recall-nya lebih rendah, menunjukkan bahwa model ini cenderung melewatkan beberapa kasus "kredit macet". Tetapi secara keseluruhan, kinerja model ini sangat baik dengan akurasi 94%.

precision recall f1-score support 0 0.93 0.99 0.96 2541 1 0.96 0.74 0.84 717 accuracy 0.94 3258 macro avg 0.94 0.87 0.90 3258 weighted avg 0.94 0.94 0.93 3258					
1 0.96 0.74 0.84 717 accuracy 0.94 3258 macro avg 0.94 0.87 0.90 3258	support	f1-score	recall	precision	
accuracy 0.94 3258 macro avg 0.94 0.87 0.90 3258	2541	0.96	0.99	0.93	0
macro avg 0.94 0.87 0.90 3258	717	0.84	0.74	0.96	1
	3258	0.94			accuracy
weighted avg 0.94 0.94 0.93 3258	3258	0.90	0.87	0.94	macro avg
	3258	0.93	0.94	0.94	weighted avg

Kesimpulan

Penelitian ini bertujuan untuk memprediksi kelancaran kredit debitur menggunakan metode klasifikasi yang paling akurat, serta memberikan rekomendasi kepada pihak kreditur untuk menganalisis kredit sebelum memutuskan penyetujuan kredit. Dalam penelitian ini, tiga metode klasifikasi dibandingkan: Decision Tree, Support Vector Machine (SVM), dan Random Forest. Hasil menunjukkan bahwa Random Forest memiliki tingkat akurasi tertinggi, yaitu 93,33%, dengan rasio data training dan testing 90:10. Evaluasi model dilakukan dengan Confusion Matrix dan Classification Report. Hasilnya menunjukkan bahwa model Random Forest yang dikembangkan sangat efektif dalam mengklasifikasikan peminjam ke dalam kategori "kredit lancar" dan "kredit macet". Dengan demikian, metode Random Forest terbukti sebagai metode terbaik untuk memprediksi kelancaran kredit debitur dalam penelitian ini. Model yang dikembangkan dapat membantu pihak kreditur dalam mengurangi risiko kredit macet dan membuat keputusan pemberian kredit yang lebih tepat, sehingga mengurangi potensi kerugian finansial.

