Device Details

Use these parameters unless stated otherwise.

- nMOS $V_{T,n} = +1 \text{ V}, k'_n = 10 \text{ mA/V}^2, \lambda = 0.1 \text{ V}^{-1}.$
- pMOS $V_{T,p} = -1 \text{ V}, k_p' = 10 \text{ mA/V}^2, \lambda = 0.1 \text{ V}^{-1}.$
- $V_{DD} = +15 \text{ V}, V_{SS} = -15 \text{ V}$
- All the transistors are operating in the saturation region during small signal operation if the biasing condition is not implicitly/explicitly mentioned.

Answer all the questions. Total Marks = 20.

Figure 1: Figures for questions 1-5.

- 1. Consider the amplifier shown in Fig. 1a assuming $\lambda = 0$:
 - (a) Which terminal is common to both input and output under small signal operation? (1/2)
 - (b) Find out v_0 for a small signal input, $v_i = 10^{-3} \angle \pi/3$. (3)
 - (c) Find out the output impedance including the effect of R_D . (1/2)
- 2. Consider the circuit shown in Fig. 1b. Assume, $C_{GS}=C_{GD}=0,\ \lambda=0,\ R_D=125\ \Omega,\ R=1\ \mathrm{M}\Omega$ and $C=1\ \mathrm{nF}.$
 - (a) Find out the frequency at which gain falls by 3 dB in comparison to that at low frequency.
 (3)
 - (b) Find out the frequency at which gain decreases by 28 dB. (1)

You can use Miller's theorem.

- 3. Consider the circuit shown in Fig. 1c. Assume the transistors are biased with a current of, $|I_{DS}|$ = 5 mA. Find out the small signal gain $(v_{O1} v_{O2})/v_i$. (4)
- 4. Consider the circuit shown in Fig. 1d. The small signal ac input is a current i connected in parallel with R_S . The output is taken from the drain of nMOS. Assume, $R_S = 1k\Omega$ and bias current of 5 mA.
 - (a) Find out the minimum value for V_{DD} so that both the transistors are in saturation. Find out corresponding V_{GG1} and V_{GG2} . (1+1)
 - (b) Considering the circuit as a trans-impedance amplifier, find out the gain with proper unit.
 (2)
- 5. Due to a manufacturing defect, a large parasitic resistance R_P has appeared between the drain and source terminals of M1 in Fig. 1e. Assuming $\lambda = 0$, calculate the small-signal gain, common-mode gain, and CMRR. $(1\frac{1}{2}+1\frac{1}{2}+1)$