

	Exp	Salaxx
Touln	2	2015
Train	3	30 K
Tert	2	28K
τ	_	-
T	/ -	
Tert) —	_
τ		. — "
T	\ -\\) —
T	4-]	

80: 20

70:30

	(Millon)	<i>)</i>
TV	SM	saled -
10,000	3	
1 4	21	\
100,000	, (/

Min - max scall:

$$\frac{x_i - min}{max - min}$$

$$\frac{min - min}{max - min} = 0$$

$$\frac{max - min}{max - min} = 1$$

$$\frac{max - min}{max - min} = 1$$

Age		
20	0	<u></u>
25	0 · 33	$(20 \Leftrightarrow 35)$
30	0.67	
20	0.6	35-20
3 \$	ŀ	35 = 20

Age	o xiyin
20	America
25	Lladig
26	11 210
20	Auf frallia

Age	America	india	Aus
20		O	0
28	0	1	8
26	σ	1	0
20	0	0	

$$y = f(x)$$

$$x_2 = w_1 x_3 + w_2 x_4$$

$$VIF \quad (variance Inflation factor)$$

$$x_1, x_2, x_3, x_4$$

$$x_1, x_2, x_3, x_4$$

$$x_1, x_2, x_3, x_4$$

$$x_1, x_2, x_3, x_4$$

$$x_1 = w_1 x_2 + w_2 x_3$$

$$x_2 = w_1 x_2 + w_2 x_4$$

$$x_1, x_2, x_4$$

$$x_1, x_2, x_4$$

$$x_1 = x_1 + x_2 + x_3$$

$$x_2 = x_1 + x_2 + x_3$$

$$x_1 = x_2 + x_3$$

$$x_2 = x_1 + x_2 + x_3$$

$$x_1 = x_2 + x_3$$

$$x_2 = x_1 + x_2 + x_3$$

$$x_1 = x_2 + x_3$$

$$x_2 = x_1 + x_2 + x_3$$

$$x_1 = x_2 + x_3$$

$$x_2 = x_1 + x_2 + x_3$$

$$x_1 = x_2 + x_3$$

$$x_2 = x_1 + x_2 + x_3$$

$$x_1 = x_2 + x_3$$

$$x_2 = x_1 + x_2 + x_3$$

$$x_1 = x_2 + x_3$$

$$x_2 = x_1 + x_2 + x_3$$

$$x_1 = x_2 + x_3$$

$$x_2 = x_1 + x_2 + x_3$$

$$x_1 = x_2 + x_3$$

$$x_2 = x_1 + x_2 + x_3$$

$$x_3 = x_2 + x_3$$

$$x_4 = x_1 + x_2 + x_3$$

$$x_1 = x_2 + x_3$$

$$x_2 = x_1 + x_2 + x_3$$

$$x_1 = x_2 + x_3$$

$$x_2 = x_1 + x_2 + x_3$$

$$x_1 = x_2 + x_3$$

$$x_2 = x_1 + x_2 + x_3$$

$$x_1 = x_2 + x_3$$

$$x_2 = x_1 + x_2 + x_3$$

$$x_1 = x_2 + x_3$$

$$x_2 = x_1 + x_2 + x_3$$

$$x_1 = x_2 + x_3$$

$$x_2 = x_1 + x_2 + x_3$$

$$x_1 = x_2 + x_3$$

$$x_2 = x_1 + x_2 + x_3$$

$$x_3 = x_2 + x_3$$

$$x_1 = x_1 + x_2 + x_3$$

$$x_2 = x_1 + x_2 + x_3$$

$$x_3 = x_1 + x_2 + x_3$$

$$x_4 = x_1 + x_2 + x_3$$

$$x_1 = x_2 + x_3 + x_4$$

$$x_2 = x_3 + x_4$$

$$x_3 = x_4 + x_4$$

$$x_1 = x_1 + x_2 + x_3$$

$$x_2 = x_1 + x_2 + x_3$$

$$x_3 = x_1 + x_2 + x_3$$

$$x_4 = x_1 + x_2 + x_3$$

$$x_1 = x_1 + x_2 + x_3$$

$$x_2 = x_1 + x_2 + x_3$$

$$x_3 = x_1 + x_2 + x_3$$

$$x_4 = x_1 + x_2 + x_3$$

$$x_1 = x_1 + x_2 + x_3$$

$$x_2 = x_1 + x_2 + x_3$$

$$x_3 = x_1 + x_2 + x_3$$

$$x_4 = x_1 + x_2 + x_3$$

$$x_1 = x_2 + x_3$$

$$x_2 = x_3 + x_4$$

$$x_3 = x_4 + x_4$$

$$x_1 = x_1 + x_2 + x_3$$

$$x_2 = x_3 + x_4$$

$$x_3 = x_4 + x_4$$

$$x_4 = x_4 + x_4$$

$$x_1 = x_4 + x_4$$

$$x_1 = x_4 + x_4$$

$$x_2 = x_4 + x_4$$

$$x_3 = x_4 + x_4$$

$$x_4 = x_4 + x_4$$

$$x_1 = x_4 + x_4$$

$$x_2 = x_4 + x_4$$

$$x_3 = x_4 + x_4$$

$$x_4 = x_4 + x_4$$

> variance_ inflation - factor (x)

3 Errors are normaly distribitute

ej

(9) Error terms must be independent

Humorce desiteity: Exxx terms have constant variance

A construction of the cons

OLS models