# OpenTSN3.0 交换机实现方案 (版本 1.1)

OpenTSN 开源项目组 2021 年 6 月

### 版本历史

| 版本  | 修订时间   | 修订内容              | 修订人      | 文件标识       |
|-----|--------|-------------------|----------|------------|
| 1.0 | 2021.6 | 初版编制              |          |            |
| 1.1 | 2021.6 | 1.添加 TSS 和 HCP 的功 |          |            |
|     |        | 能描述               |          |            |
|     |        | 2.添加读写命令格式        |          |            |
|     |        | 3.添加TSS模块详细设计     |          |            |
|     |        | 和 HCP 详细设计        |          |            |
|     |        |                   | <u> </u> |            |
|     |        |                   |          |            |
|     |        |                   |          |            |
|     |        |                   |          |            |
|     |        |                   |          |            |
|     |        |                   |          | OpenTSN3.0 |
|     |        |                   |          | 交换机        |
|     |        |                   |          |            |
|     |        |                   |          |            |
|     |        |                   |          |            |
|     |        |                   |          |            |
|     |        |                   |          |            |
|     |        |                   |          |            |
|     |        |                   |          |            |
|     |        |                   |          |            |
|     |        |                   |          |            |
|     |        |                   |          |            |
|     |        |                   |          |            |

## 目录

| 1、 | 概述                    | 4 |
|----|-----------------------|---|
| 2、 | 总体方案                  | 4 |
| 3、 | TSS 模块详细设计            | 6 |
| 4、 | HCP 模块详细设计            | 6 |
|    | 录 A command call 会会校子 |   |



#### 1、概述

OpenTSN2.0 开源硬件逻辑既可作为 TSN 网卡又可作为 TSN 交换机使用,为了简化其作为 TSN 交换机使用时的逻辑复杂度以及增强其作为 TSN 网卡使用时的功能可扩展性,并且考虑到逻辑模块的复用,现将 OpenTSN2.0 开源硬件逻辑拆分为 TSN 交换机和 TSN 网卡。本文详细介绍 TSN 交换机的总体设计。

#### 2、总体方案

TSN 交换机的总体实现架构框图如图 2-1。交换机是由时间敏感网络交换处理逻辑 TSS 以及时间敏感网络硬件控制逻辑 HCP 组成。



图 2-1 TSN 交换机总体架构框图

TSN 交换机的总体实现架构框图中的信号含义如下表 2-1。

| · · · · · · · · · · · · · · · · · · · |    |                  |
|---------------------------------------|----|------------------|
| 信号                                    | 位宽 | 含义               |
| i_clk                                 | 1  | 时钟信号,时钟频率为125MHz |
| i_rst_n                               | 1  | 复位信号, 低有效        |
| GMII_P0                               | -  | 交换机网络接口 P0       |

表 2-1 TSN 总体架构框图中信号含义

| 信号                               | 位宽  | 含义            |  |
|----------------------------------|-----|---------------|--|
|                                  | 卫工儿 |               |  |
| GMII_P1                          | -   | 交换机网络接口 P1    |  |
| GMII_P2                          | -   | 交换机网络接口 P2    |  |
| GMII_P3                          | -   | 交换机网络接口 P3    |  |
| wv_wr_command_hcp2tss[203:0]     | 204 | 写命令           |  |
| w_wr_command_wr_hcp2tss          | 1   | 写命令使能信号       |  |
| wv_rd_command_hcp2tss[203:0]     | 204 | 读命令           |  |
| w_rd_command_wr_hcp2tss          | 1   | 读命令使能信号       |  |
| wv_rd_command_ack_tss2hcp[203:0] | 204 | 读命令响应信号       |  |
| gmii_tx_clk_linkp4               | 1   | GMII 时钟信号     |  |
| gmii_tx_en_linkp4                | 1   | GMII 数据有效信号   |  |
| gmii_txd_linkp4[7:0]             | 8   | GMII 数据       |  |
| gmii_tx_er_linkp4                | 1   | GMII 数据错误信号   |  |
| gmii_rxd_linkp4[7:0]             | 8   | GMII 数据       |  |
| gmii_rx_dv_linkp4                | 1   | GMII 数据有效信号   |  |
| gmii_rx_er_linkp4                | 1   | GMII 数据错误信号   |  |
| wv_time_slot_tsc2tss             | 10  | 时间槽           |  |
| w_timer_rst_gts2others           | 1   | 19bit 时钟复位信号  |  |
| w_time_slot_switch_tsc2tss       | 1   | 时间槽切换信号输入     |  |
| o_s_pulse                        | 1   | 秒脉冲或毫秒脉冲(可配置) |  |

TSS(Timing Sensitive Switch,时间敏感交换)模块:主要功能是对报文进行交换转发,并基于 IEEE 802.1Qch/IEEE 802.1 Qbv 调度模型对流量进行整形,以及计算 PTP 报文在 TSS 中传输的时间,即透明时钟,并将透明时钟累加到 PTP 报文透明时钟域中。

HCP(Hardware Control Point,硬件控制点)模块:主要功能是对 PTP 报文/状态报文进行封装、对配置封装报文/PTP 封装报文进行解封装;对配置报文进行解析,并生成写命令,收集 TSN 交换机状态并周期性进行上报;以及在 PTP 报文中记录时间戳,计算 PTP 报文在 HCP 中传输的时间,即透明时钟,并将透明时钟累加到 PTP 报

文透明时钟域中。

#### 3、TSS 模块详细设计

TSS 模块详细设计见《时间敏感网络交换处理逻辑 TSS 设计文案》。

#### 4、HCP 模块详细设计

HCP 模块详细设计见《时间敏感网络硬件控制逻辑 HCP 设计方案》。

#### 附录 A: command/command\_ack 命令格式

| 表 A-1 d | command/command_ | ack | 命令格式 |
|---------|------------------|-----|------|
|---------|------------------|-----|------|

| 位置        | 位宽  | 名称             | 说明                                                                    |
|-----------|-----|----------------|-----------------------------------------------------------------------|
| [203:180] | 8   | node_id        | 该字段用来标识对哪个节点进行读写。每个 TSE 或 TSS 都有一个唯一的节点 ID。该字段在 TSN 网卡+TSN 交换机模式下使用到。 |
| [179:172] | 8   | dest_module_id | 该字段用来标识对一个节点内的哪个模块进行控制。TSE或TSS内部每个子模块都有一个唯一的模块ID                      |
| [171:168] | 4   | type           | 4'b0001:寄存器或表项的写命令;<br>4'b0010:寄存器或表项的读命令;<br>4'b0110:寄存器或表项的读响应。     |
| [167:152] | 16  | addr           | 寄存器或表项的读/写地址                                                          |
| [151:0]   | 152 | data           | 寄存器或表项的读/写数据;其中五元组映射表的表项位宽最大,为152bit                                  |