Michel Alexis (Bonn)

Joint work with Lin (Berkeley), Gevorg Mnatsakanyan (Bonn), Christoph Thiele (Bonn), and Jiasu Wang (Berkeley)

OTA 2024

July 9

More precisely:

More precisely: the Quantum signal processing algorithm (QSP) takes a sequence of *phase factors* $\Psi = \{\psi_k\}_{k=0}^{\infty}$ in $(-\frac{\pi}{2}, \frac{\pi}{2})$ and an input variable $x \in [0,1]$ and acts on a qubit (i.e., a unit vector in \mathbb{C}^2) by the infinite 2×2 matrix product $U_{\infty}(x, \Psi) :=$

More precisely: the Quantum signal processing algorithm (QSP) takes a sequence of *phase factors* $\Psi = \{\psi_k\}_{k=0}^\infty$ in $(-\frac{\pi}{2}, \frac{\pi}{2})$ and an input variable $x \in [0,1]$ and acts on a qubit (i.e., a unit vector in \mathbb{C}^2) by the infinite 2×2 matrix product $U_\infty(x,\Psi) :=$

 $\dots e^{i\psi_d Z} e^{i\theta X} \dots e^{i\theta X} e^{i\psi_1 Z} e^{i\theta X} e^{i\psi_0 Z} e^{i\theta X} e^{i\psi_1 Z} e^{i\theta X} \dots e^{i\theta X} e^{i\psi_d Z} \dots,$

More precisely: the Quantum signal processing algorithm (QSP) takes a sequence of *phase factors* $\Psi = \{\psi_k\}_{k=0}^\infty$ in $(-\frac{\pi}{2}, \frac{\pi}{2})$ and an input variable $x \in [0,1]$ and acts on a qubit (i.e., a unit vector in \mathbb{C}^2) by the infinite 2×2 matrix product $U_\infty(x,\Psi) :=$

$$\dots e^{i\psi_d Z} e^{i\theta X} \dots e^{i\theta X} e^{i\psi_1 Z} e^{i\theta X} e^{i\psi_0 Z} e^{i\theta X} e^{i\psi_1 Z} e^{i\theta X} \dots e^{i\theta X} e^{i\psi_d Z} \dots,$$

where $\theta = \arccos(x)$,

More precisely: the Quantum signal processing algorithm (QSP) takes a sequence of *phase factors* $\Psi = \{\psi_k\}_{k=0}^\infty$ in $(-\frac{\pi}{2}, \frac{\pi}{2})$ and an input variable $x \in [0,1]$ and acts on a qubit (i.e., a unit vector in \mathbb{C}^2) by the infinite 2×2 matrix product $U_\infty(x,\Psi) :=$

$$\dots e^{i\psi_d Z} e^{i\theta X} \dots e^{i\theta X} e^{i\psi_1 Z} e^{i\theta X} e^{i\psi_0 Z} e^{i\theta X} e^{i\psi_1 Z} e^{i\theta X} \dots e^{i\theta X} e^{i\psi_d Z} \dots,$$

where $\theta = \arccos(x)$,

and
$$X:=\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
 and $Z:=\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ are the Pauli matrices.

More precisely: the Quantum signal processing algorithm (QSP) takes a sequence of *phase factors* $\Psi = \{\psi_k\}_{k=0}^\infty$ in $(-\frac{\pi}{2}, \frac{\pi}{2})$ and an input variable $x \in [0,1]$ and acts on a qubit (i.e., a unit vector in \mathbb{C}^2) by the infinite 2×2 matrix product $U_\infty(x,\Psi) :=$

$$\dots e^{i\psi_d Z} e^{i\theta X} \dots e^{i\theta X} e^{i\psi_1 Z} e^{i\theta X} e^{i\psi_0 Z} e^{i\theta X} e^{i\psi_1 Z} e^{i\theta X} \dots e^{i\theta X} e^{i\psi_d Z} \dots,$$

where $\theta = \arccos(x)$,

and
$$X:=\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
 and $Z:=\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ are the Pauli matrices.

Question: Given a function $f:[0,1] \to [-1,1]$, does there exist an infinite phase factor sequence $\Psi = \{\psi_k\}_{k=0}^{\infty}$ for which f(x) is the imaginary part of the upper left entry of $U_{\infty}(x,\Psi)$?

More precisely: the Quantum signal processing algorithm (QSP) takes a sequence of *phase factors* $\Psi = \{\psi_k\}_{k=0}^{\infty}$ in $(-\frac{\pi}{2}, \frac{\pi}{2})$ and an input variable $x \in [0,1]$ and acts on a qubit (i.e., a unit vector in \mathbb{C}^2) by the infinite 2×2 matrix product $U_{\infty}(x,\Psi) :=$

$$\dots e^{i\psi_d Z} e^{i\theta X} \dots e^{i\theta X} e^{i\psi_1 Z} e^{i\theta X} e^{i\psi_0 Z} e^{i\theta X} e^{i\psi_1 Z} e^{i\theta X} \dots e^{i\theta X} e^{i\psi_d Z} \dots,$$

where $\theta = \arccos(x)$,

and
$$X:=\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
 and $Z:=\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ are the Pauli matrices.

Question: Given a function $f:[0,1] \to [-1,1]$, does there exist an infinite phase factor sequence $\Psi = \{\psi_k\}_{k=0}^{\infty}$ for which f(x) is the imaginary part of the upper left entry of $U_{\infty}(x,\Psi)$?

Why should we care? QSP is apparently a very simple and physically intuitive quantum algorithm.

$$\begin{split} U_d(x,\Psi) &:= e^{i\psi_d Z} e^{i\theta X} e^{i\psi_{d-1} Z} e^{i\theta X} \dots e^{i\psi_0 Z} \dots e^{i\theta X} e^{i\psi_{d-1} Z} e^{i\theta X} e^{i\psi_d Z} \,, \\ \text{where } \theta &= \operatorname{arccos}(x), \ X := \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \text{ and } Z := \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}. \end{split}$$

$$\begin{split} &U_d(x,\Psi):=e^{i\psi_d Z}e^{i\theta X}e^{i\psi_{d-1}Z}e^{i\theta X}\dots e^{i\psi_0 Z}\dots e^{i\theta X}e^{i\psi_{d-1}Z}e^{i\theta X}e^{i\psi_d Z}\,,\\ \text{where } \theta=\arccos(x),\ X:=\begin{pmatrix}0&1\\1&0\end{pmatrix}\ \text{and }\ Z:=\begin{pmatrix}1&0\\0&-1\end{pmatrix}. \end{split}$$
 Note $e^{i\theta X}=\begin{pmatrix}\cos\theta&i\sin\theta\\i\sin\theta&\cos\theta\end{pmatrix}$

$$\begin{split} &U_d(x,\Psi) := e^{i\psi_d Z} e^{i\theta X} e^{i\psi_{d-1} Z} e^{i\theta X} \dots e^{i\psi_0 Z} \dots e^{i\theta X} e^{i\psi_{d-1} Z} e^{i\theta X} e^{i\psi_d Z}\,,\\ \text{where } \theta = \arccos(x), \ X := \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \text{ and } Z := \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.\\ \text{Note } e^{i\theta X} = \begin{pmatrix} \cos\theta & i\sin\theta \\ i\sin\theta & \cos\theta \end{pmatrix} = \begin{pmatrix} x & i\sqrt{1-x^2} \\ i\sqrt{1-x^2} & x \end{pmatrix} \end{split}$$

$$\begin{split} &U_d(x,\Psi) := e^{i\psi_d Z} e^{i\theta X} e^{i\psi_{d-1} Z} e^{i\theta X} \dots e^{i\psi_0 Z} \dots e^{i\theta X} e^{i\psi_{d-1} Z} e^{i\theta X} e^{i\psi_d Z} \,, \\ &\text{where } \theta = \arccos(x), \ X := \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \text{ and } Z := \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}. \\ &\text{Note } e^{i\theta X} = \begin{pmatrix} \cos\theta & i\sin\theta \\ i\sin\theta & \cos\theta \end{pmatrix} = \begin{pmatrix} x & i\sqrt{1-x^2} \\ i\sqrt{1-x^2} & x \end{pmatrix} \text{ and } \\ &e^{i\psi_j Z} = \begin{pmatrix} e^{i\psi_j} & 0 \\ 0 & e^{-i\psi_j} \end{pmatrix}. \end{split}$$

$$\begin{split} &U_d(x,\Psi):=e^{i\psi_d Z}e^{i\theta X}e^{i\psi_{d-1}Z}e^{i\theta X}\dots e^{i\psi_0 Z}\dots e^{i\theta X}e^{i\psi_{d-1}Z}e^{i\theta X}e^{i\psi_d Z}\,,\\ &\text{where }\theta=\arccos(x),\ X:=\begin{pmatrix}0&1\\1&0\end{pmatrix}\ \text{and }\ Z:=\begin{pmatrix}1&0\\0&-1\end{pmatrix}.\\ &\text{Note }e^{i\theta X}=\begin{pmatrix}\cos\theta&i\sin\theta\\i\sin\theta&\cos\theta\end{pmatrix}=\begin{pmatrix}x&i\sqrt{1-x^2}\\i\sqrt{1-x^2}&x\end{pmatrix}\ \text{and}\\ &e^{i\psi_j Z}=\begin{pmatrix}e^{i\psi_j}&0\\0&e^{-i\psi_j}\end{pmatrix}.\ \text{Then}\\ &e^{i\theta X}e^{i\psi_j Z}=\begin{pmatrix}poly(x)&poly(x)\sqrt{1-x^2}\\poly(x)\sqrt{1-x^2}&poly(x)\end{pmatrix}\begin{pmatrix}e^{i\psi_j}&0\\0&e^{-i\psi_j}\end{pmatrix}\end{split}$$

$$U_d(x,\Psi) := e^{i\psi_d Z} e^{i\theta X} e^{i\psi_{d-1} Z} e^{i\theta X} \dots e^{i\psi_0 Z} \dots e^{i\theta X} e^{i\psi_{d-1} Z} e^{i\theta X} e^{i\psi_d Z},$$
 where $\theta = \arccos(x)$, $X := \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ and $Z := \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$. Note $e^{i\theta X} = \begin{pmatrix} \cos\theta & i\sin\theta \\ i\sin\theta & \cos\theta \end{pmatrix} = \begin{pmatrix} x & i\sqrt{1-x^2} \\ i\sqrt{1-x^2} & x \end{pmatrix}$ and $e^{i\psi_j Z} = \begin{pmatrix} e^{i\psi_j} & 0 \\ 0 & e^{-i\psi_j} \end{pmatrix}$. Then
$$e^{i\theta X} e^{i\psi_j Z} = \begin{pmatrix} poly(x) & poly(x)\sqrt{1-x^2} \\ poly(x)\sqrt{1-x^2} & poly(x) \end{pmatrix}$$

Consider the truncated product

$$\begin{split} &U_d(x,\Psi):=e^{i\psi_d Z}e^{i\theta X}e^{i\psi_{d-1}Z}e^{i\theta X}\dots e^{i\psi_0 Z}\dots e^{i\theta X}e^{i\psi_{d-1}Z}e^{i\theta X}e^{i\psi_d Z}\,,\\ &\text{where }\theta=\arccos(x),\ X:=\begin{pmatrix}0&1\\1&0\end{pmatrix}\ \text{and }\ Z:=\begin{pmatrix}1&0\\0&-1\end{pmatrix}.\\ &\text{Note }e^{i\theta X}=\begin{pmatrix}\cos\theta&i\sin\theta\\i\sin\theta&\cos\theta\end{pmatrix}=\begin{pmatrix}x&i\sqrt{1-x^2}\\i\sqrt{1-x^2}&x\end{pmatrix}\ \text{and}\\ &e^{i\psi_j Z}=\begin{pmatrix}e^{i\psi_j}&0\\0&e^{-i\psi_j}\end{pmatrix}.\ \text{Then}\\ &e^{i\theta X}e^{i\psi_j Z}=\begin{pmatrix}poly(x)&poly(x)\sqrt{1-x^2}\\poly(x)\sqrt{1-x^2}&poly(x)\end{pmatrix}\end{split}$$

Mutliplying two such matrices together yields another such matrix. Indeed

$$\begin{pmatrix} \operatorname{poly}(x) & \operatorname{poly}(x)\sqrt{1-x^2} \\ \operatorname{poly}(x)\sqrt{1-x^2} & \operatorname{poly}(x) \end{pmatrix} \begin{pmatrix} \operatorname{poly}(x) & \operatorname{poly}(x)\sqrt{1-x^2} \\ \operatorname{poly}(x)\sqrt{1-x^2} & \operatorname{poly}(x) \end{pmatrix}$$

Consider the truncated product

$$\begin{split} &U_d(x,\Psi):=e^{i\psi_dZ}e^{i\theta X}e^{i\psi_{d-1}Z}e^{i\theta X}\dots e^{i\psi_0Z}\dots e^{i\theta X}e^{i\psi_{d-1}Z}e^{i\theta X}e^{i\psi_dZ}\,,\\ &\text{where }\theta=\arccos(x),\,X:=\begin{pmatrix}0&1\\1&0\end{pmatrix}\text{ and }Z:=\begin{pmatrix}1&0\\0&-1\end{pmatrix}.\\ &\text{Note }e^{i\theta X}=\begin{pmatrix}\cos\theta&i\sin\theta\\i\sin\theta&\cos\theta\end{pmatrix}=\begin{pmatrix}x&i\sqrt{1-x^2}\\i\sqrt{1-x^2}&x\end{pmatrix}\text{ and }\\ &e^{i\psi_jZ}=\begin{pmatrix}e^{i\psi_j}&0\\0&e^{-i\psi_j}\end{pmatrix}.\text{ Then }\\ &e^{i\theta X}e^{i\psi_jZ}=\begin{pmatrix}poly(x)&poly(x)\sqrt{1-x^2}\\poly(x)\sqrt{1-x^2}&poly(x)\end{pmatrix}\end{split}$$

Mutliplying two such matrices together yields another such matrix. Indeed

$$\begin{pmatrix} \operatorname{poly}(x) & \operatorname{poly}(x)\sqrt{1-x^2} \\ \operatorname{poly}(x)\sqrt{1-x^2} & \operatorname{poly}(x) \end{pmatrix} \begin{pmatrix} \operatorname{poly}(x) & \operatorname{poly}(x)\sqrt{1-x^2} \\ \operatorname{poly}(x)\sqrt{1-x^2} & \operatorname{poly}(x) \end{pmatrix} \\ = \begin{pmatrix} \operatorname{poly}(x) & \operatorname{poly}(x)\sqrt{1-x^2} \\ \operatorname{poly}(x)\sqrt{1-x^2} & \operatorname{poly}(x) \end{pmatrix} \,.$$

Consider the truncated product

$$U_d(x,\Psi) := e^{i\psi_d Z} e^{i\theta X} e^{i\psi_{d-1} Z} e^{i\theta X} \dots e^{i\psi_0 Z} \dots e^{i\theta X} e^{i\psi_{d-1} Z} e^{i\theta X} e^{i\psi_d Z} \,,$$
 where $\theta = \arccos(x)$, $X := \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ and $Z := \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$. Note $e^{i\theta X} = \begin{pmatrix} \cos \theta & i \sin \theta \\ i \sin \theta & \cos \theta \end{pmatrix} = \begin{pmatrix} x & i\sqrt{1-x^2} \\ i\sqrt{1-x^2} & x \end{pmatrix}$ and $e^{i\psi_j Z} = \begin{pmatrix} e^{i\psi_j} & 0 \\ 0 & e^{-i\psi_j} \end{pmatrix}$. Then
$$e^{i\theta X} e^{i\psi_j Z} = \begin{pmatrix} poly(x) & poly(x)\sqrt{1-x^2} \\ poly(x)\sqrt{1-x^2} & poly(x) \end{pmatrix}$$

Mutliplying two such matrices together yields another such matrix.

Consider the truncated product

$$U_d(x,\Psi) := e^{i\psi_d Z} e^{i\theta X} e^{i\psi_{d-1} Z} e^{i\theta X} \dots e^{i\psi_0 Z} \dots e^{i\theta X} e^{i\psi_{d-1} Z} e^{i\theta X} e^{i\psi_d Z},$$

where
$$\theta = \arccos(x)$$
, $X := \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ and $Z := \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$. Note $e^{i\theta X} = \begin{pmatrix} \cos\theta & i\sin\theta \\ i\sin\theta & \cos\theta \end{pmatrix} = \begin{pmatrix} x & i\sqrt{1-x^2} \\ i\sqrt{1-x^2} & x \end{pmatrix}$ and $e^{i\psi_j Z} = \begin{pmatrix} e^{i\psi_j} & 0 \\ 0 & e^{-i\psi_j} \end{pmatrix}$. Then
$$e^{i\theta X} e^{i\psi_j Z} = \begin{pmatrix} poly(x) & poly(x)\sqrt{1-x^2} \\ poly(x)\sqrt{1-x^2} & poly(x) \end{pmatrix}$$

Mutliplying two such matrices together yields another such matrix.

So
$$U_d(x, \Psi) = \begin{pmatrix} poly(x) & poly(x)\sqrt{1-x^2} \\ poly(x)\sqrt{1-x^2} & poly(x) \end{pmatrix}$$
.

Because the truncated matrices $U_d(x,\Psi)$ have upper left entries which are poly(x), the QSP problem is actually about approximating $f:[0,1]\to[-1,1]$ by polynomials generated in this fashion.

Because the truncated matrices $U_d(x,\Psi)$ have upper left entries which are poly(x), the QSP problem is actually about approximating $f:[0,1]\to[-1,1]$ by polynomials generated in this fashion.

Theorem (A.-Lin-Mnatsakanyan-Thiele-Wang, 2024)

For each $f:[0,1] \to [-1,1]$ with $\int\limits_0^1 \log(1-f(x)^2) \frac{dx}{\sqrt{1-x^2}} > -\infty$, there exists a unique phase factor sequence Ψ such that the imaginary parts of the upper left entries of $U_d(x,\Psi)$ converge to f in $L^2\left(\frac{dx}{\sqrt{1-x^2}}\right)$, and we have the nonlinear Plancherel identity

$$\sum_{k} \log(1 + \tan^2 \psi_{|k|}) = -\frac{2}{\pi} \int_{0}^{1} \log(1 - f(x)^2) \frac{dx}{\sqrt{1 - x^2}}.$$

Because the truncated matrices $U_d(x,\Psi)$ have upper left entries which are poly(x), the QSP problem is actually about approximating $f:[0,1]\to[-1,1]$ by polynomials generated in this fashion.

Theorem (A.-Lin-Mnatsakanyan-Thiele-Wang, 2024)

For each $f:[0,1] \to [-1,1]$ with $\int\limits_0^1 \log(1-f(x)^2) \frac{dx}{\sqrt{1-x^2}} > -\infty$, there exists a unique phase factor sequence Ψ such that the imaginary parts of the upper left entries of $U_d(x,\Psi)$ converge to f in $L^2\left(\frac{dx}{\sqrt{1-x^2}}\right)$, and we have the nonlinear Plancherel identity

$$\sum_{k} \log(1 + \tan^2 \psi_{|k|}) = -\frac{2}{\pi} \int_{0}^{1} \log(1 - f(x)^2) \frac{dx}{\sqrt{1 - x^2}}.$$

The key idea here is to use nonlinear Fourier analysis!

Given f(z) on $\mathbb C$ define its reflection

$$f^*(z) := \overline{f\left(\frac{1}{\overline{z}}\right)}$$
.

Given f(z) on \mathbb{C} define its reflection

$$f^*(z) := \overline{f\left(\frac{1}{\overline{z}}\right)}$$
.

f is holomorphic on $\mathbb D$ iff f^* holomorphic on the reflected disk $\mathbb D^*$ at ∞ .

Given f(z) on \mathbb{C} define its reflection

$$f^*(z) := f\left(\frac{1}{\overline{z}}\right).$$

f is holomorphic on $\mathbb D$ iff f^* holomorphic on the reflected disk $\mathbb D^*$ at ∞ . If $f(z) = \sum\limits_{k \in \mathbb Z} c_k z^k$, then $f^*(z) = \sum\limits_k \overline{c_{-k}} z^k$, i.e., the * operation reflects Fourier support.

Given f(z) on \mathbb{C} define its reflection

$$f^*(z) := \overline{f\left(\frac{1}{\overline{z}}\right)}$$
.

f is holomorphic on $\mathbb D$ iff f^* holomorphic on the reflected disk $\mathbb D^*$ at ∞ . If $f(z) = \sum\limits_{k \in \mathbb Z} c_k z^k$, then $f^*(z) = \sum\limits_k \overline{c_{-k}} z^k$, i.e., the * operation reflects Fourier support.

Recall
$$H^2(\mathbb{D}) := \left\{ \sum_{k \ge 0} c_k z^k \in L^2(\mathbb{T}) \right\}$$
, and $H^2(\mathbb{D}^*) := \left\{ \sum_{k \le 0} c_k z^k \in L^2(\mathbb{T}) \right\}$.

Given f(z) on \mathbb{C} define its reflection

$$f^*(z) := \overline{f\left(\frac{1}{\overline{z}}\right)}$$
.

f is holomorphic on $\mathbb D$ iff f^* holomorphic on the reflected disk $\mathbb D^*$ at ∞ . If $f(z) = \sum\limits_{k \in \mathbb Z} c_k z^k$, then $f^*(z) = \sum\limits_k \overline{c_{-k}} z^k$, i.e., the * operation reflects Fourier support.

Recall
$$H^2(\mathbb{D}) := \left\{ \sum_{k \geqslant 0} c_k z^k \in L^2(\mathbb{T}) \right\}$$
, and $H^2(\mathbb{D}^*) := \left\{ \sum_{k \le 0} c_k z^k \in L^2(\mathbb{T}) \right\}$.

Recall the special unitary group SU(2) consists of matrices $\begin{pmatrix} \alpha & \beta \\ -\overline{\beta} & \overline{\alpha} \end{pmatrix}$ satisfying the determinant condition $|\alpha|^2 + |\beta|^2 = 1$.

linear Fourier transform

linear Fourier transform : $(F_k)_k \mapsto \text{Laurent series } \sum_k F_k z^k$ nonlinear Fourier transform :

Michel Alexis (OTA 2024)

linear Fourier transform : $(F_k)_k \mapsto \text{Laurent series } \sum_k F_k z^k$ nonlinear Fourier transform : $(F_k)_k \mapsto$

linear Fourier transform : $(F_k)_k \mapsto \text{Laurent series } \sum_k F_k z^k$ nonlinear Fourier transform : $(F_k)_k \mapsto \text{a matrix of Laurent series}$.

linear Fourier transform : $(F_k)_k \mapsto \text{Laurent series } \sum_k F_k z^k$ nonlinear Fourier transform : $(F_k)_k \mapsto \text{a matrix of Laurent series}$.

The nonlinear Fourier transform of a sequence $(F_k)_k$ is the SU(2)-valued function

$$\begin{pmatrix} a(z) & b(z) \\ -b^*(z) & a^*(z) \end{pmatrix} = \prod_{j=-\infty}^{\infty} \frac{1}{\sqrt{1+|F_j|^2}} \begin{pmatrix} \frac{1}{-F_j}z^j & f_j z^j \\ -\overline{F_j}z^{-j} & 1 \end{pmatrix}$$

where the matrix product should be read left to right as *i* increases.

linear Fourier transform : $(F_k)_k \mapsto \text{Laurent series } \sum_k F_k z^k$ nonlinear Fourier transform : $(F_k)_k \mapsto \text{a matrix of Laurent series}$.

The nonlinear Fourier transform of a sequence $(F_k)_k$ is the SU(2)-valued function

$$\begin{pmatrix} a(z) & b(z) \\ -b^*(z) & a^*(z) \end{pmatrix} = \prod_{j=-\infty}^{\infty} \frac{1}{\sqrt{1+|F_j|^2}} \begin{pmatrix} \frac{1}{-F_j} z^{-j} & 1 \end{pmatrix}$$

where the matrix product should be read left to right as *i* increases. Note this is well-defined for compactly supported $\{F_k\}$, since only finitely many matrices above are not the identity.

linear Fourier transform : $(F_k)_k \mapsto \text{Laurent series } \sum_k F_k z^k$ nonlinear Fourier transform : $(F_k)_k \mapsto \text{a matrix of Laurent series}$.

The nonlinear Fourier transform of a sequence $(F_k)_k$ is the SU(2)-valued function

$$\begin{pmatrix} a(z) & b(z) \\ -b^*(z) & a^*(z) \end{pmatrix} = \prod_{j=-\infty}^{\infty} \frac{1}{\sqrt{1+|F_j|^2}} \begin{pmatrix} \frac{1}{-F_j}z^{-j} & 1 \end{pmatrix}$$

where the matrix product should be read left to right as *i* increases.

Note this is well-defined for compactly supported $\{F_k\}$, since only finitely many matrices above are not the identity.

We abbreviate this SU(2) matrix as the pair (a, b).

linear Fourier transform : $(F_k)_k \mapsto \text{Laurent series } \sum_k F_k z^k$ nonlinear Fourier transform : $(F_k)_k \mapsto \text{a matrix of Laurent series}$.

The nonlinear Fourier transform of a sequence $(F_k)_k$ is the SU(2)-valued function

$$\begin{pmatrix} a(z) & b(z) \\ -b^*(z) & a^*(z) \end{pmatrix} = \prod_{j=-\infty}^{\infty} \frac{1}{\sqrt{1+|F_j|^2}} \begin{pmatrix} \frac{1}{-F_j}z^{-j} & 1 \end{pmatrix}$$

where the matrix product should be read left to right as *i* increases.

Note this is well-defined for compactly supported $\{F_k\}$, since only finitely many matrices above are not the identity.

We abbreviate this SU(2) matrix as the pair (a, b).

Note the determinant condition $|a|^2 + |b|^2 = 1$ then holds for $z \in \mathbb{T}$.

linear Fourier transform : $(F_k)_k \mapsto \text{Laurent series } \sum_k F_k z^k$ nonlinear Fourier transform : $(F_k)_k \mapsto \text{a matrix of Laurent series}$.

The nonlinear Fourier transform of a sequence $(F_k)_k$ is the SU(2)-valued function

$$\begin{pmatrix} a(z) & b(z) \\ -b^*(z) & a^*(z) \end{pmatrix} = \prod_{j=-\infty}^{\infty} \frac{1}{\sqrt{1+|F_j|^2}} \begin{pmatrix} \frac{1}{-F_j}z^{-j} & 1 \end{pmatrix}$$

where the matrix product should be read left to right as *i* increases.

Note this is well-defined for compactly supported $\{F_k\}$, since only finitely many matrices above are not the identity.

We abbreviate this SU(2) matrix as the pair (a, b).

Note the determinant condition $|a|^2 + |b|^2 = 1$ then holds for $z \in \mathbb{T}$.

One can also show that the support of F dictates the Fourier supports of the Laurent polynomials a, b.

$$\begin{pmatrix} a & b \\ -b^* & a^* \end{pmatrix} = \left(\prod_j (1 + |F_j|^2)^{-\frac{1}{2}} \right) \prod_j \begin{pmatrix} \frac{1}{-\overline{F_j}} z^{-j} & 1 \end{pmatrix}$$

$$\begin{pmatrix} a & b \\ -b^* & a^* \end{pmatrix} \approx \prod_{j} \begin{pmatrix} \frac{1}{-\overline{F_{j}}}z^{-j} & 1 \end{pmatrix}$$

$$\begin{pmatrix} a & b \\ -b^* & a^* \end{pmatrix} \approx \prod_{j} \left(\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + \begin{pmatrix} 0 & F_j z^j \\ -\overline{F_j} z^{-j} & 0 \end{pmatrix} \right)$$

$$\begin{pmatrix} a & b \\ -b^* & a^* \end{pmatrix} \approx \prod_{j} \left(\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + \begin{pmatrix} 0 & F_j z^j \\ -\overline{F_j} z^{-j} & 0 \end{pmatrix} \right)$$
$$= \sum_{n \geq 0} \sum_{j_1 \leq \dots \leq j_n} \left(\frac{0}{-\overline{F_{j_1}}} z^{-j_1} & 0 \right) \dots \left(\frac{0}{-\overline{F_{j_n}}} z^{-j_n} & 0 \right).$$

$$\begin{pmatrix} a & b \\ -b^* & a^* \end{pmatrix} \approx \prod_j \left(\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + \begin{pmatrix} 0 & F_j z^j \\ -\overline{F_j} z^{-j} & 0 \end{pmatrix} \right)$$

$$= \sum_{n \geqslant 0} \sum_{j_1 < \dots < j_n} \left(-\frac{0}{F_{j_1}} z^{-j_1} & F_{j_1} z^{j_1} \\ -\overline{F_{j_1}} z^{-j_1} & 0 \end{pmatrix} \dots \begin{pmatrix} 0 & F_{j_n} z^{j_n} \\ -\overline{F_{j_n}} z^{-j_n} & 0 \end{pmatrix} .$$

$$n = 0: \qquad \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \qquad \qquad n = 1:$$

$$n = 2:$$

$$n \text{ even}:$$

$$a = \qquad \qquad n \text{ odd}:$$

$$b = \qquad n \text{ odd}:$$

$$\begin{pmatrix} a & b \\ -b^* & a^* \end{pmatrix} \approx \prod_j \left(\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + \begin{pmatrix} 0 & F_j z^j \\ -\overline{F_j} z^{-j} & 0 \end{pmatrix} \right)$$

$$= \sum_{n \geqslant 0} \sum_{j_1 < \dots < j_n} \left(-\frac{0}{F_{j_1}} z^{-j_1} & F_{j_1} z^{j_1} \\ -\overline{F_{j_1}} z^{-j_1} & 0 \end{pmatrix} \dots \begin{pmatrix} 0 & F_{j_n} z^{j_n} \\ -\overline{F_{j_n}} z^{-j_n} & 0 \end{pmatrix} \dots \begin{pmatrix} 0 & F_{j_n} z^{j_n} \\ -\overline{F_{j_n}} z^{-j_n} & 0 \end{pmatrix}$$

$$n = 0: \qquad \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \qquad \qquad \begin{pmatrix} n = 1: & \sum_j \begin{pmatrix} 0 & F_j z^j \\ -\overline{F_{j_2}} z^{-j} & 0 \end{pmatrix} \\ n = 3: \qquad \qquad \qquad n \text{ odd } : \\ n \text{ odd } : \\ b = \end{pmatrix}$$

$$n = 0: \qquad \qquad n \text{ odd } :$$

$$\begin{pmatrix} a & b \\ -b^* & a^* \end{pmatrix} \approx \prod_{j} \left(\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + \begin{pmatrix} 0 & F_{j}z^{j} \\ -\overline{F_{j}}z^{-j} & 0 \end{pmatrix} \right)$$

$$= \sum_{n \geqslant 0} \sum_{j_{1} < \ldots < j_{n}} \left(-\frac{0}{F_{j_{1}}}z^{-j_{1}} & 0 \right) \cdots \left(-\frac{0}{F_{j_{n}}}z^{-j_{n}} & 0 \right) \cdots \left(-\frac{0}{F_{j_{n}}}z^{-j_{n}} & 0 \right) .$$

$$n = 0: \qquad \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} & n = 1: \qquad \begin{pmatrix} 0 & \sum_{j} F_{j}z^{j} \\ -\sum_{j} \overline{F_{j}}z^{-j} & 0 \end{pmatrix}$$

$$n = 2: \qquad \sum_{j_{1} < j_{2}} \begin{pmatrix} -F_{j_{1}}\overline{F_{j_{2}}}z^{j_{1}-j_{2}} & 0 \\ 0 & -\overline{F_{j_{1}}}F_{j_{2}}z^{j_{2}-j_{1}} \end{pmatrix} \qquad n = 3:$$

$$n \text{ even :}$$

$$a = 0$$

$$n = 0 : \qquad n \text{ odd :}$$

$$n = 0 : \qquad n \text{ odd :}$$

$$n = 0 : \qquad n \text{ odd :}$$

$$\begin{pmatrix} a & b \\ -b^* & a^* \end{pmatrix} \approx \prod_j \left(\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + \begin{pmatrix} 0 & F_j z^j \\ -\overline{F_j} z^{-j} & 0 \end{pmatrix} \right)$$

$$= \sum_{n \geqslant 0} \sum_{j_1 < \ldots < j_n} \left(-\frac{0}{F_{j_1}} z^{-j_1} & F_{j_1} z^{j_1} \\ -\overline{F_{j_1}} z^{-j_1} & 0 \end{pmatrix} \cdot \ldots \left(-\frac{0}{F_{j_n}} z^{-j_n} & 0 \end{pmatrix} \cdot \ldots \right)$$

$$n = 0: \qquad \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \qquad \qquad n = 1: \qquad \begin{pmatrix} 0 & \sum_j F_j z^j \\ -\sum_j \overline{F_j} z^{-j} & 0 \end{pmatrix}$$

$$n = 2: \qquad \sum_{j_1 < j_2} \begin{pmatrix} O(F)^2 & 0 \\ 0 & O(F)^2 \end{pmatrix} \qquad \qquad n = 3:$$

$$n \text{ even :}$$

$$a = \qquad \qquad n \text{ odd :}$$

$$b = \qquad \qquad n \text{ odd :}$$

$$\begin{pmatrix} a & b \\ -b^* & a^* \end{pmatrix} \approx \prod_{j} \left(\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + \begin{pmatrix} 0 & F_{j}z^{j} \\ -\overline{F_{j}}z^{-j} & 0 \end{pmatrix} \right)$$

$$= \sum_{n \geqslant 0} \sum_{j_{1} < \dots < j_{n}} \left(-\frac{0}{F_{j_{1}}}z^{-j_{1}} & 0 \right) \dots \left(-\frac{0}{F_{j_{n}}}z^{-j_{n}} & 0 \right) \dots$$

$$= 0: \qquad \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \qquad \qquad n = 1: \qquad \begin{pmatrix} 0 & \sum_{j} F_{j}z^{j} \\ -\sum_{j} \overline{F_{j}}z^{-j} & 0 \end{pmatrix}$$

$$n = 2: \qquad \sum_{j_{1} < j_{2}} \binom{O(F)^{2}}{0} \qquad O(F)^{2} \end{pmatrix} \qquad n = 3: \qquad \sum_{j_{1} < j_{2} < j_{3}} \binom{O(F)^{2}}{0} \qquad O(F)^{2} \end{pmatrix} \begin{pmatrix} 0 & F_{j_{3}}z^{j_{3}} \\ -\overline{F_{j_{3}}}z^{-j_{3}} & 0 \end{pmatrix}$$

$$n \text{ even :} \qquad n \text{ odd :} \qquad n \text{ odd$$

$$\begin{pmatrix} a & b \\ -b^* & a^* \end{pmatrix} \approx \prod_j \left(\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + \begin{pmatrix} 0 & F_j z^j \\ -\overline{F_j} z^{-j} & 0 \end{pmatrix} \right)$$

$$= \sum_{n \geqslant 0} \sum_{j_1 < \ldots < j_n} \left(-\frac{0}{-\overline{F_{j_1}}} z^{-j_1} & 0 \right) \ldots \left(-\frac{0}{-\overline{F_{j_n}}} z^{-j_n} & 0 \right) \ldots \left(-\frac{0}{-\overline{F_{j_n}}} z^{-j_n} & 0 \right) .$$

$$n = 0: \qquad \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \qquad \qquad n = 1: \qquad \begin{pmatrix} 0 & \sum\limits_{j \in J_j} F_j z^j \\ -\sum\limits_{j \in J_j} \overline{F_j} z^{-j} & 0 \end{pmatrix}$$

$$n = 2: \qquad \sum\limits_{j_1 < j_2} \binom{O(F)^2}{0} \qquad O(F)^2$$

$$n = 3: \qquad \sum\limits_{j_1 < j_2 < j_3} \binom{0}{O(F)^3} \qquad O(F)^3$$

$$n \text{ odd } :$$

$$\begin{pmatrix} a & b \\ -b^* & a^* \end{pmatrix} \approx \prod_{j} \begin{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + \begin{pmatrix} 0 & F_{j}z^{j} \\ -\overline{F_{j}}z^{-j} & 0 \end{pmatrix} \end{pmatrix}$$

$$= \sum_{n \geqslant 0} \sum_{j_1 < \ldots < j_n} \begin{pmatrix} 0 & F_{j_1}z^{j_1} \\ -\overline{F_{j_1}}z^{-j_1} & 0 \end{pmatrix} \ldots \begin{pmatrix} 0 & F_{j_n}z^{j_n} \\ -\overline{F_{j_n}}z^{-j_n} & 0 \end{pmatrix} \ldots \begin{pmatrix} 0 & F_{j_n}z^{j_n} \\ -\overline{F_{j_n}}z^{-j_n} & 0 \end{pmatrix} .$$

$$n = 0: \qquad \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \qquad \qquad n = 1: \qquad \begin{pmatrix} 0 & \sum_{j} F_{j}z^{j} \\ -\sum_{j} \overline{F_{j}}z^{-j} & 0 \end{pmatrix}$$

$$n = 2: \qquad \sum_{\substack{j_1 < \ldots < j_n \\ j_1 < \ldots < j_n}} \begin{pmatrix} O(F)^2 & 0 \\ 0 & O(F)^2 \end{pmatrix} \qquad n = 3: \qquad \sum_{\substack{j_1 < j_2 < j_3 \\ 0 < F}} \begin{pmatrix} 0 & O(F)^3 \\ O(F)^3 & 0 \end{pmatrix}$$

$$n = 3: \qquad \sum_{\substack{j_1 < \ldots < j_n \\ j_1 < \ldots < j_n}} \begin{pmatrix} O(F)^3 & O(F)^3 \\ 0 & O(F)^3 \end{pmatrix}$$

$$n = 3: \qquad n = 3:$$

$$\begin{pmatrix} a & b \\ -b^* & a^* \end{pmatrix} \approx \prod_{j} \left(\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + \begin{pmatrix} 0 & F_{j}z^{j} \\ -\overline{F_{j}}z^{-j} & 0 \end{pmatrix} \right)$$

$$= \sum_{n \geqslant 0} \sum_{j_{1} < \dots < j_{n}} \left(-\frac{0}{F_{j_{1}}}z^{-j_{1}} & 0 \right) \dots \left(-\frac{0}{F_{j_{n}}}z^{-j_{n}} & 0 \right) \dots \left(-\frac{0}{F_{j_{n}}}z^{-j_{n}} & 0 \right) .$$

$$n = 0: \qquad \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \qquad \qquad n = 1: \qquad \begin{pmatrix} 0 & \sum_{j} F_{j}z^{j} \\ -\sum_{j} \overline{F_{j}}z^{-j} & 0 \end{pmatrix}$$

$$n = 2: \qquad \sum_{j_{1} < j_{2}} \begin{pmatrix} O(F)^{2} & 0 \\ 0 & O(F)^{2} \end{pmatrix} \qquad n = 3: \qquad \sum_{j_{1} < j_{2} < j_{3}} \begin{pmatrix} 0 & O(F)^{3} & 0 \\ O(F)^{n} & 0 \end{pmatrix}$$

$$n = 3: \qquad \sum_{j_{1} < j_{2} < j_{3}} \begin{pmatrix} O(F)^{3} & O(F)^{3} & 0 \\ O(F)^{n} & 0 \end{pmatrix}$$

$$n = 3: \qquad \sum_{j_{1} < \dots < j_{n}} \begin{pmatrix} O(F)^{n} & 0 \\ O(F)^{n} & 0 \end{pmatrix}$$

$$n = 3: \qquad \sum_{j_{1} < \dots < j_{n}} \begin{pmatrix} O(F)^{n} & O(F)^{n} \\ O(F)^{n} & 0 \end{pmatrix}$$

$$n = 3: \qquad \sum_{j_{1} < \dots < j_{n}} \begin{pmatrix} O(F)^{n} & O(F)^{n} \\ O(F)^{n} & 0 \end{pmatrix}$$

$$n = 3: \qquad \sum_{j_{1} < \dots < j_{n}} \begin{pmatrix} O(F)^{n} & O(F)^{n} \\ O(F)^{n} & 0 \end{pmatrix}$$

$$n = 3: \qquad \sum_{j_{1} < \dots < j_{n}} \begin{pmatrix} O(F)^{n} & O(F)^{n} \\ O(F)^{n} & 0 \end{pmatrix}$$

$$\begin{pmatrix} a & b \\ -b^* & a^* \end{pmatrix} \approx \prod_{j} \left(\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + \begin{pmatrix} 0 & F_{j}z^{j} \\ -\overline{F_{j}}z^{-j} & 0 \end{pmatrix} \right)$$

$$= \sum_{n \geqslant 0} \sum_{j_{1} < \ldots < j_{n}} \left(-\frac{0}{F_{j_{1}}}z^{-j_{1}} & 0 \right) \ldots \left(-\frac{0}{F_{j_{n}}}z^{-j_{n}} & 0 \right) \ldots \left(-\frac{0}{F_{j_{n}}}z^{-j_{n}} & 0 \right) .$$

$$n = 0: \qquad \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \qquad \qquad n = 1: \qquad \begin{pmatrix} 0 & \sum_{j} F_{j}z^{j} \\ -\sum_{j} \overline{F_{j}}z^{-j} & 0 \end{pmatrix}$$

$$n = 2: \qquad \sum_{\substack{j_{1} < j_{2} \\ j_{1} < \ldots < j_{n}}} \begin{pmatrix} O(F)^{2} & 0 \\ 0 & O(F)^{2} \end{pmatrix} \qquad n = 3: \qquad \sum_{\substack{j_{1} < j_{2} < j_{3} \\ j_{1} < \ldots < j_{n}}} \begin{pmatrix} O(F)^{3} & O(F)^{3} \\ O(F)^{n} & 0 \end{pmatrix}$$

$$n = 3: \qquad \sum_{\substack{j_{1} < \ldots < j_{n} \\ O(F)^{n}}} \begin{pmatrix} O(F)^{3} & O(F)^{n} \\ O(F)^{n} & 0 \end{pmatrix}$$

$$n = 3: \qquad \sum_{\substack{j_{1} < \ldots < j_{n} \\ O(F)^{n}}} \begin{pmatrix} O(F)^{3} & O(F)^{n} \\ O(F)^{n} & 0 \end{pmatrix}$$

$$n = 3: \qquad \sum_{\substack{j_{1} < \ldots < j_{n} \\ O(F)^{n}}} \begin{pmatrix} O(F)^{n} & O(F)^{n} \\ O(F)^{n} & 0 \end{pmatrix}$$

$$n = 3: \qquad \sum_{\substack{j_{1} < \ldots < j_{n} \\ O(F)^{n}}} \begin{pmatrix} O(F)^{n} & O(F)^{n} \\ O(F)^{n} & 0 \end{pmatrix}$$

$$n = 3: \qquad \sum_{\substack{j_{1} < \ldots < j_{n} \\ O(F)^{n}}} \begin{pmatrix} O(F)^{n} & O(F)^{n} \\ O(F)^{n} & 0 \end{pmatrix}$$

$$n = 3: \qquad \sum_{\substack{j_{1} < \ldots < j_{n} \\ O(F)^{n}}} \begin{pmatrix} O(F)^{n} & O(F)^{n} \\ O(F)^{n} & 0 \end{pmatrix}$$

$$n = 3: \qquad \sum_{\substack{j_{1} < \ldots < j_{n} \\ O(F)^{n}}} \begin{pmatrix} O(F)^{n} & O(F)^{n} \\ O(F)^{n} & O(F)^{n} \end{pmatrix}$$

$$\begin{pmatrix} a & b \\ -b^* & a^* \end{pmatrix} \approx \prod_j \left(\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + \begin{pmatrix} 0 & F_j z^j \\ -\overline{F_j} z^{-j} & 0 \end{pmatrix} \right)$$

$$= \sum_{n \geqslant 0} \sum_{j_1 < \ldots < j_n} \left(-\frac{0}{\overline{F_{j_1}}} z^{-j_1} & 0 \right) \ldots \left(-\frac{0}{\overline{F_{j_n}}} z^{-j_n} & 0 \right) \ldots \left(-\frac{0}{\overline{F_{j_n}}} z^{-j_n} & 0 \right) .$$

$$n = 0: \qquad \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} & n = 1: \qquad \begin{pmatrix} 0 & \sum_j F_j z^j \\ -\sum_j \overline{F_j} z^{-j} & 0 \end{pmatrix}$$

$$n = 2: \qquad \sum_{j_1 < j_2} \begin{pmatrix} O(F)^2 & 0 \\ 0 & O(F)^2 \end{pmatrix} & n = 3: \qquad \sum_{j_1 < j_2 < j_3} \begin{pmatrix} 0 & O(F)^3 \\ O(F)^3 & 0 \end{pmatrix}$$

$$n = 3: \qquad \sum_{j_1 < \ldots < j_n} \begin{pmatrix} 0 & O(F)^3 \\ O(F)^n & 0 \end{pmatrix}$$

$$n = 3: \qquad \sum_{j_1 < \ldots < j_n} \begin{pmatrix} 0 & O(F)^3 \\ O(F)^n & 0 \end{pmatrix}$$

$$n = 3: \qquad \sum_{j_1 < \ldots < j_n} \begin{pmatrix} 0 & O(F)^3 \\ O(F)^n & 0 \end{pmatrix}$$

$$n = 3: \qquad \sum_{j_1 < \ldots < j_n} \begin{pmatrix} 0 & O(F)^3 \\ O(F)^n & 0 \end{pmatrix}$$

$$n = 3: \qquad \sum_{j_1 < \ldots < j_n} \begin{pmatrix} 0 & O(F)^3 \\ O(F)^n & 0 \end{pmatrix}$$

$$n = 3: \qquad \sum_{j_1 < \ldots < j_n} \begin{pmatrix} 0 & O(F)^n \\ O(F)^n & 0 \end{pmatrix}$$

$$n = 3: \qquad \sum_{j_1 < \ldots < j_n} \begin{pmatrix} 0 & O(F)^n \\ O(F)^n & 0 \end{pmatrix}$$

$$n = 3: \qquad \sum_{j_1 < \ldots < j_n} \begin{pmatrix} 0 & O(F)^n \\ O(F)^n & 0 \end{pmatrix}$$

$$n = 3: \qquad \sum_{j_1 < \ldots < j_n} \begin{pmatrix} 0 & O(F)^n \\ O(F)^n & 0 \end{pmatrix}$$

$$n = 3: \qquad \sum_{j_1 < \ldots < j_n} \begin{pmatrix} 0 & O(F)^n \\ O(F)^n & 0 \end{pmatrix}$$

$$n = 3: \qquad \sum_{j_1 < \ldots < j_n} \begin{pmatrix} 0 & O(F)^n \\ O(F)^n & 0 \end{pmatrix}$$

$$n = 3: \qquad \sum_{j_1 < \ldots < j_n} \begin{pmatrix} 0 & O(F)^n \\ O(F)^n & 0 \end{pmatrix}$$

$$n = 3: \qquad \sum_{j_1 < \ldots < j_n} \begin{pmatrix} 0 & O(F)^n \\ O(F)^n & 0 \end{pmatrix}$$

$$n = 3: \qquad \sum_{j_1 < \ldots < j_n} \begin{pmatrix} 0 & O(F)^n \\ O(F)^n & 0 \end{pmatrix}$$

$$n = 3: \qquad \sum_{j_1 < \ldots < j_n} \begin{pmatrix} 0 & O(F)^n \\ O(F)^n & 0 \end{pmatrix}$$

$$n = 3: \qquad \sum_{j_1 < \ldots < j_n} \begin{pmatrix} 0 & O(F)^n \\ O(F)^n & 0 \end{pmatrix}$$

$$n = 3: \qquad \sum_{j_1 < \ldots < j_n} \begin{pmatrix} 0 & O(F)^n \\ O(F)^n & 0 \end{pmatrix}$$

$$n = 3: \qquad \sum_{j_1 < \ldots < j_n} \begin{pmatrix} 0 & O(F)^n \\ O(F)^n & 0 \end{pmatrix}$$

$$n = 3: \qquad \sum_{j_1 < \ldots < j_n} \begin{pmatrix} 0 & O(F)^n \\ O(F)^n & 0 \end{pmatrix}$$

$$n = 3: \qquad \sum_{j_1 < \ldots < j_n} \begin{pmatrix} 0 & O(F)^n \\ O(F)^n & 0 \end{pmatrix}$$

$$n = 3: \qquad \sum_{j_1 < \ldots < j_n} \begin{pmatrix} 0 & O(F)^n \\ O(F)^n & 0 \end{pmatrix}$$

$$n = 3: \qquad \sum_{j_1 < \ldots < j_n} \begin{pmatrix} 0 & O(F)^n \\ O(F)^n & 0 \end{pmatrix}$$

$$n = 3: \qquad \sum_{j_1 < \ldots < j_n} \begin{pmatrix} 0 & O(F)^n \\ O(F)^n & 0 \end{pmatrix}$$

$$n = 3: \qquad \sum_{j_1 < \ldots < j_n} \begin{pmatrix} 0 & O(F)^n \\ O(F)^n & 0 \end{pmatrix}$$

$$n = 3: \qquad \sum_{j_1 < \ldots < j_n} \begin{pmatrix} 0 & O(F)^n \\ O(F)^n & 0 \end{pmatrix}$$

$$n = 3: \qquad \sum_{j_1 < \ldots < j_n} \begin{pmatrix} 0 & O(F)^n \\ O(F)^n & 0 \end{pmatrix}$$

$$n = 3: \qquad \sum_{j_1 < \ldots < j_n} \begin{pmatrix} 0 & O(F)^n \\ O(F)^n & 0 \end{pmatrix}$$

$$n$$

A contour integral yields

$$-\sum_{n\in\mathbb{Z}}\log(1+|F_n|^2) = \int_{\mathbb{T}}\log(1-|b|^2) + 2\sum_{k}\log|z_k|.$$

where $\{z_k\}$ are the zeros of a^* in \mathbb{D} .

A contour integral yields

$$-\sum_{n\in\mathbb{Z}}\log(1+|F_n|^2) = \int_{\mathbb{T}}\log(1-|b|^2) + 2\sum_k\log|z_k|.$$

where $\{z_k\}$ are the zeros of a^* in \mathbb{D} . This is known as nonlinear Plancherel.

A contour integral yields

$$-\sum_{n\in\mathbb{Z}}\log(1+|F_n|^2) = \int_{\mathbb{T}}\log(1-|b|^2) + 2\sum_{k}\log|z_k|.$$

where $\{z_k\}$ are the zeros of a^* in $\mathbb D$. This is known as nonlinear Plancherel. Using nonlinear Plancherel, one can show the NLFT extends to a bijection from $\ell^2([0,\infty))$ onto the set $\mathbf H$

A contour integral yields

$$-\sum_{n\in\mathbb{Z}}\log(1+|F_n|^2) = \int_{\mathbb{T}}\log(1-|b|^2) + 2\sum_{k}\log|z_k|.$$

where $\{z_k\}$ are the zeros of a^* in $\mathbb D$. This is known as nonlinear Plancherel. Using nonlinear Plancherel, one can show the NLFT extends to a bijection from $\ell^2([0,\infty))$ onto the set $\mathbf H$ of pairs $(a,b)\in H^2(\mathbb D^*)\times H^2(\mathbb D)$ for which

A contour integral yields

$$-\sum_{n\in\mathbb{Z}}\log(1+|F_n|^2) = \int_{\mathbb{T}}\log(1-|b|^2) + 2\sum_{k}\log|z_k|.$$

where $\{z_k\}$ are the zeros of a^* in $\mathbb D$. This is known as nonlinear Plancherel. Using nonlinear Plancherel, one can show the NLFT extends to a bijection from $\ell^2([0,\infty))$ onto the set $\mathbf H$ of pairs $(a,b)\in H^2(\mathbb D^*)\times H^2(\mathbb D)$ for which $a^*(0)>0$.

A contour integral yields

$$-\sum_{n\in\mathbb{Z}}\log(1+|F_n|^2) = \int_{\mathbb{T}}\log(1-|b|^2) + 2\sum_{k}\log|z_k|.$$

where $\{z_k\}$ are the zeros of a^* in $\mathbb D$. This is known as nonlinear Plancherel. Using nonlinear Plancherel, one can show the NLFT extends to a bijection from $\ell^2([0,\infty))$ onto the set $\mathbf H$ of pairs $(a,b)\in H^2(\mathbb D^*)\times H^2(\mathbb D)$ for which

- $a^*(0) > 0$.
- $aa^* + bb^* = 1$ a.e. on \mathbb{T} .

A contour integral yields

$$-\sum_{n\in\mathbb{Z}}\log(1+|F_n|^2) = \int_{\mathbb{T}}\log(1-|b|^2) + 2\sum_k\log|z_k|.$$

where $\{z_k\}$ are the zeros of a^* in $\mathbb D$. This is known as nonlinear Plancherel. Using nonlinear Plancherel, one can show the NLFT extends to a bijection from $\ell^2([0,\infty))$ onto the set $\mathbf H$ of pairs $(a,b)\in H^2(\mathbb D^*)\times H^2(\mathbb D)$ for which

- $a^*(0) > 0$.
- $aa^* + bb^* = 1$ a.e. on \mathbb{T} .
- a* and b share no common inner factor.

A contour integral yields

$$-\sum_{n\in\mathbb{Z}}\log(1+|F_n|^2) = \int_{\mathbb{T}}\log(1-|b|^2) + 2\sum_k\log|z_k|.$$

where $\{z_k\}$ are the zeros of a^* in $\mathbb D$. This is known as nonlinear Plancherel. Using nonlinear Plancherel, one can show the NLFT extends to a bijection from $\ell^2([0,\infty))$ onto the set $\mathbf H$ of pairs $(a,b)\in H^2(\mathbb D^*)\times H^2(\mathbb D)$ for which

- $a^*(0) > 0$.
- $aa^* + bb^* = 1$ a.e. on \mathbb{T} .
- a* and b share no common inner factor.

Similarly, NLFT extends to a bijection from $\ell^2((-\infty, -1])$ to pairs (a, b) similar to above.

A contour integral yields

$$-\sum_{n\in\mathbb{Z}}\log(1+|F_n|^2) = \int_{\mathbb{T}}\log(1-|b|^2) + 2\sum_k\log|z_k|.$$

where $\{z_k\}$ are the zeros of a^* in $\mathbb D$. This is known as nonlinear Plancherel. Using nonlinear Plancherel, one can show the NLFT extends to a bijection from $\ell^2([0,\infty))$ onto the set $\mathbf H$ of pairs $(a,b)\in H^2(\mathbb D^*)\times H^2(\mathbb D)$ for which

- $a^*(0) > 0$.
- $aa^* + bb^* = 1$ a.e. on \mathbb{T} .
- a* and b share no common inner factor.

Similarly, NLFT extends to a bijection from $\ell^2((-\infty, -1])$ to pairs (a, b) similar to above.

Given a sequence $F \in \ell^2(\mathbb{Z})$, define its NLFT by

$$(a,b) := (a_-,b_-)(a_+,b_+)$$

where (a_-, b_-) is the NLFT of $(F_k \mathbf{1}_{k<0})_{k\in\mathbb{Z}}$, and (a_+, b_+) is the NLFT of $(F_k \mathbf{1}_{k\geq 0})_{k\in\mathbb{Z}}$.

A contour integral yields

$$-\sum_{n\in\mathbb{Z}}\log(1+|F_n|^2) = \int_{\mathbb{T}}\log(1-|b|^2) + 2\sum_{k}\log|z_k|.$$

where $\{z_k\}$ are the zeros of a^* in $\mathbb D$. This is known as nonlinear Plancherel. Using nonlinear Plancherel, one can show the NLFT extends to a bijection from $\ell^2([0,\infty))$ onto the set $\mathbf H$ of pairs $(a,b)\in H^2(\mathbb D^*)\times H^2(\mathbb D)$ for which

- $a^*(0) > 0$.
- $aa^* + bb^* = 1$ a.e. on \mathbb{T} .
- a* and b share no common inner factor.

Similarly, NLFT extends to a bijection from $\ell^2((-\infty, -1])$ to pairs (a, b) similar to above.

Given a sequence $F \in \ell^2(\mathbb{Z})$, define its NLFT by

$$(a,b) := (a_-,b_-)(a_+,b_+)$$

where (a_-, b_-) is the NLFT of $(F_k \mathbf{1}_{k<0})_{k\in\mathbb{Z}}$, and (a_+, b_+) is the NLFT of $(F_k \mathbf{1}_{k\geqslant 0})_{k\in\mathbb{Z}}$. However the NLFT is not injective on $\ell^2(\mathbb{Z})$.

Initial pb: given $f:[0,1] \to [-1,1]$ with $\int\limits_0^1 \log(1-f(x)^2) \frac{dx}{\sqrt{1-x^2}} > -\infty$, find a phase factor sequence Ψ such that the imaginary parts of the upper left entries of $U_d(x,\Psi)$ converge to f in $L^2\left(\frac{dx}{\sqrt{1-x^2}}\right)$.

Initial pb: given $f:[0,1] \to [-1,1]$ with $\int\limits_0^1 \log(1-f(x)^2) \frac{dx}{\sqrt{1-x^2}} > -\infty$, find a phase factor sequence Ψ such that the imaginary parts of the upper left entries of $U_d(x,\Psi)$ converge to f in $L^2\left(\frac{dx}{\sqrt{1-x^2}}\right)$.

Do a change of variable:

Initial pb: given $f:[0,1] \to [-1,1]$ with $\int_{0}^{1} \log(1-f(x)^2) \frac{dx}{\sqrt{1-x^2}} > -\infty$,

find a phase factor sequence Ψ such that the imaginary parts of the upper left entries of $U_d(x,\Psi)$ converge to f in $L^2\left(\frac{dx}{\sqrt{1-x^2}}\right)$.

Do a change of variable: set $z = e^{2i\theta}$ where $\theta = \arccos(x)$, and define an even sequence F by $F_k := i \tan \psi_{|k|}$.

Initial pb: given $f:[0,1] \to [-1,1]$ with $\int_{0}^{1} \log(1-f(x)^2) \frac{dx}{\sqrt{1-x^2}} > -\infty$,

find a phase factor sequence Ψ such that the imaginary parts of the upper left entries of $U_d(x,\Psi)$ converge to f in $L^2\left(\frac{dx}{\sqrt{1-x^2}}\right)$.

Do a change of variable: set $z = e^{2i\theta}$ where $\theta = \arccos(x)$, and define an even sequence F by $F_k := i \tan \psi_{|k|}$. Then for the matrix

$$M=rac{1}{\sqrt{2}}egin{pmatrix}1&1\1&-1\end{pmatrix}$$
 we have

$$MU_d(x, \Psi)M^{-1} := \begin{pmatrix} z^{d/2} & 0 \\ 0 & z^{-d/2} \end{pmatrix} \begin{pmatrix} a_d & b_d \\ -b_d^* & a_d^* \end{pmatrix} \begin{pmatrix} z^{d/2} & 0 \\ 0 & z^{-d/2} \end{pmatrix}$$

From QSP to the NLFT

Initial pb: given $f:[0,1] \to [-1,1]$ with $\int_{0}^{1} \log(1-f(x)^2) \frac{dx}{\sqrt{1-x^2}} > -\infty$,

find a phase factor sequence Ψ such that the imaginary parts of the upper left entries of $U_d(x,\Psi)$ converge to f in $L^2\left(\frac{dx}{\sqrt{1-x^2}}\right)$.

Do a change of variable: set $z = e^{2i\theta}$ where $\theta = \arccos(x)$, and define an even sequence F by $F_k := i \tan \psi_{|k|}$. Then for the matrix

$$M=rac{1}{\sqrt{2}}egin{pmatrix}1&1\1&-1\end{pmatrix}$$
 we have

$$MU_d(x, \Psi)M^{-1} := \begin{pmatrix} z^{d/2} & 0 \\ 0 & z^{-d/2} \end{pmatrix} \begin{pmatrix} a_d & b_d \\ -b_d^* & a_d^* \end{pmatrix} \begin{pmatrix} z^{d/2} & 0 \\ 0 & z^{-d/2} \end{pmatrix}$$

where (a_d, b_d) is the NLFT of the truncated sequence $(F_k \mathbf{1}_{-d \leqslant k \leqslant d})_k$.

From QSP to the NLFT

Initial pb: given $f:[0,1] \to [-1,1]$ with $\int_{0}^{1} \log(1-f(x)^2) \frac{dx}{\sqrt{1-x^2}} > -\infty$,

find a phase factor sequence Ψ such that the imaginary parts of the upper left entries of $U_d(x,\Psi)$ converge to f in $L^2\left(\frac{dx}{\sqrt{1-x^2}}\right)$.

Do a change of variable: set $z = e^{2i\theta}$ where $\theta = \arccos(x)$, and define an even sequence F by $F_k := i \tan \psi_{|k|}$. Then for the matrix

$$M=rac{1}{\sqrt{2}}egin{pmatrix}1&1\1&-1\end{pmatrix}$$
 we have

$$MU_d(x, \Psi)M^{-1} := \begin{pmatrix} z^{d/2} & 0 \\ 0 & z^{-d/2} \end{pmatrix} \begin{pmatrix} a_d & b_d \\ -b_d^* & a_d^* \end{pmatrix} \begin{pmatrix} z^{d/2} & 0 \\ 0 & z^{-d/2} \end{pmatrix}$$

where (a_d, b_d) is the NLFT of the truncated sequence $(F_k \mathbf{1}_{-d \leqslant k \leqslant d})_k$. In particular, $b_d(z) = i \operatorname{Im} (\text{upper left entry of } U_d(x, \Psi))$.

From QSP to the NLFT

Initial pb: given $f:[0,1] \to [-1,1]$ with $\int_{0}^{1} \log(1-f(x)^2) \frac{dx}{\sqrt{1-x^2}} > -\infty$,

find a phase factor sequence Ψ such that the imaginary parts of the upper left entries of $U_d(x,\Psi)$ converge to f in $L^2\left(\frac{dx}{\sqrt{1-x^2}}\right)$.

Do a change of variable: set $z = e^{2i\theta}$ where $\theta = \arccos(x)$, and define an even sequence F by $F_k := i \tan \psi_{|k|}$. Then for the matrix

$$M = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$$
 we have

$$MU_d(x, \Psi)M^{-1} := \begin{pmatrix} z^{d/2} & 0 \\ 0 & z^{-d/2} \end{pmatrix} \begin{pmatrix} a_d & b_d \\ -b_d^* & a_d^* \end{pmatrix} \begin{pmatrix} z^{d/2} & 0 \\ 0 & z^{-d/2} \end{pmatrix}$$

where (a_d,b_d) is the NLFT of the truncated sequence $(F_k\mathbf{1}_{-d\leqslant k\leqslant d})_k$. In particular, $b_d(z)=i\operatorname{Im}$ (upper left entry of $U_d(x,\Psi)$).

New pb: given b "with symmetry" on \mathbb{T} with $\|b\|_{\infty} \leq 1$ and $\int_{\mathbb{T}} \log(1-|b|^2) > -\infty$, find "nice" nonlinear Fourier coefficients F whose truncated NLFTs (a_d,b_d) satisfy $b_d \to b$.

New problem: given b "with symmetry" on \mathbb{T} with $\|b\|_{\infty} \leq 1$ and $\int\limits_{\mathbb{T}} \log(1-|b|^2) > -\infty$, find "nice" nonlinear Fourier coefficients F whose truncated NLFTs (a_d,b_d) satisfy $b_d \to b$.

New problem: given b "with symmetry" on \mathbb{T} with $\|b\|_{\infty} \leq 1$ and $\int\limits_{\mathbb{T}} \log(1-|b|^2) > -\infty$, find "nice" nonlinear Fourier coefficients F whose truncated NLFTs (a_d,b_d) satisfy $b_d \to b$.

Key idea: we're only given b, meaning we can choose any a we want.

New problem: given b "with symmetry" on \mathbb{T} with $\|b\|_{\infty} \leq 1$ and $\int\limits_{\mathbb{T}} \log(1-|b|^2) > -\infty$, find "nice" nonlinear Fourier coefficients F whose truncated NLFTs (a_d,b_d) satisfy $b_d \to b$.

Key idea: we're only given b, meaning we can choose any a we want. Let's choose a^* outer on $\mathbb D$ so that $|a|^2 + |b|^2 = 1$.

New problem: given b "with symmetry" on \mathbb{T} with $\|b\|_{\infty} \leq 1$ and $\int_{\mathbb{T}} \log(1-|b|^2) > -\infty$, find "nice" nonlinear Fourier coefficients F whose truncated NLFTs (a_d,b_d) satisfy $b_d \to b$.

Key idea: we're only given b, meaning we can choose any a we want.

Let's choose a^* outer on $\mathbb D$ so that $|a|^2 + |b|^2 = 1$.

Reduced problem: Given $(a,b) \in H^2(\mathbb{D}^*) \times L^\infty(\mathbb{T})$ such that $aa^* + bb^* = 1$, a^* outer, $\int\limits_{\mathbb{T}} \log(1-|b|^2) > -\infty$, and b "has symmetry",

find "nice" nonlinear Fourier coefficients F whose truncated NLFTs (a_d, b_d) converge to (a, b).

New problem: given b "with symmetry" on $\mathbb T$ with $\|b\|_\infty \leqslant 1$ and $\int\limits_{\mathbb T} \log(1-|b|^2) > -\infty$, find "nice" nonlinear Fourier coefficients F whose

truncated NLFTs (a_d, b_d) satisfy $b_d \rightarrow b$. **Key idea:** we're only given b, meaning we can choose any a we want.

Let's choose a^* outer on $\mathbb D$ so that $|a|^2 + |b|^2 = 1$.

Reduced problem: Given $(a,b) \in H^2(\mathbb{D}^*) \times L^\infty(\mathbb{T})$ such that $aa^* + bb^* = 1$, a^* outer, $\int\limits_{\mathbb{T}} \log(1-|b|^2) > -\infty$, and b "has symmetry",

find "nice" nonlinear Fourier coefficients F whose truncated NLFTs (a_d, b_d) converge to (a, b).

New problem: given b "with symmetry" on \mathbb{T} with $\|b\|_{\infty} \leq 1$ and $\int_{\mathbb{T}} \log(1-|b|^2) > -\infty$, find "nice" nonlinear Fourier coefficients F whose truncated NLFTs (a_d,b_d) satisfy $b_d \to b$.

Key idea: we're only given b, meaning we can choose any a we want.

Let's choose a^* outer on $\mathbb D$ so that $|a|^2+|b|^2=1$.

Reduced problem: Given $(a,b) \in H^2(\mathbb{D}^*) \times L^\infty(\mathbb{T})$ such that $aa^* + bb^* = 1$, a^* outer, $\int\limits_{\mathbb{T}} \log(1-|b|^2) > -\infty$, and b "has symmetry",

find "nice" nonlinear Fourier coefficients F whose truncated NLFTs (a_d, b_d) converge to (a, b).

(a,b) is a NLFT of $F \in \ell^2(\mathbb{Z})$ iff $(a,b)=(a_-,b_-)(a_+,b_+)$, where (a_-,b_-) is the NLFT of the left half of F, while (a_+,b_+) is the NLFT of the right half.

New problem: given b "with symmetry" on $\mathbb T$ with $\|b\|_\infty \leqslant 1$ and $\int\limits_{\mathbb T} \log(1-|b|^2) > -\infty$, find "nice" nonlinear Fourier coefficients F whose

Key idea: we're only given b, meaning we can choose any a we want.

Let's choose a^* outer on $\mathbb D$ so that $|a|^2 + |b|^2 = 1$.

truncated NLFTs (a_d, b_d) satisfy $b_d \rightarrow b$.

Reduced problem: Given $(a,b) \in H^2(\mathbb{D}^*) \times L^\infty(\mathbb{T})$ such that $aa^* + bb^* = 1$, a^* outer, $\int\limits_{\mathbb{T}} \log(1-|b|^2) > -\infty$, and b "has symmetry",

find "nice" nonlinear Fourier coefficients F whose truncated NLFTs (a_d, b_d) converge to (a, b).

(a,b) is a NLFT of $F \in \ell^2(\mathbb{Z})$ iff $(a,b)=(a_-,b_-)(a_+,b_+)$, where (a_-,b_-) is the NLFT of the left half of F, while (a_+,b_+) is the NLFT of the right half.

It suffices to solve for (a_+, b_+) .

New problem: given b "with symmetry" on \mathbb{T} with $\|b\|_{\infty} \leq 1$ and $\int\limits_{\mathbb{T}} \log(1-|b|^2) > -\infty$, find "nice" nonlinear Fourier coefficients F whose truncated NLFTs (a_d,b_d) satisfy $b_d \to b$.

Key idea: we're only given b, meaning we can choose any a we want.

Let's choose a^* outer on $\mathbb D$ so that $|a|^2+|b|^2=1$.

Reduced problem: Given $(a,b) \in H^2(\mathbb{D}^*) \times L^\infty(\mathbb{T})$ such that $aa^* + bb^* = 1$, a^* outer, $\int\limits_{\mathbb{T}} \log(1-|b|^2) > -\infty$, and b "has symmetry",

find "nice" nonlinear Fourier coefficients F whose truncated NLFTs (a_d,b_d) converge to (a,b).

(a,b) is a NLFT of $F \in \ell^2(\mathbb{Z})$ iff $(a,b)=(a_-,b_-)(a_+,b_+)$, where (a_-,b_-) is the NLFT of the left half of F, while (a_+,b_+) is the NLFT of the right half.

It suffices to solve for (a_+, b_+) . Indeed, once we have (a_+, b_+) , we compute $(a_-, b_-) = (a, b)(a_+, b_+)^{-1}$.

Reduced problem: Given $(a,b) \in H^2(\mathbb{D}^*) \times L^\infty(\mathbb{T})$ such that $aa^* + bb^* = 1$, a^* outer, $\int\limits_{\mathbb{T}} \log(1-|b|^2) > -\infty$, factor $(a,b) = (a_-,b_-)(a_+,b_+)$ where (a_-,b_-) is the NLFT of some sequence in $\ell^2(-\infty,-1)$ and (a_+,b_+) is the NLFT of some sequence in $\ell^2[0,\infty)$.

Reduced problem: Given $(a,b) \in H^2(\mathbb{D}^*) \times L^\infty(\mathbb{T})$ such that $aa^* + bb^* = 1$, a^* outer, $\int_{\mathbb{T}} \log(1-|b|^2) > -\infty$, factor $(a,b) = (a_-,b_-)(a_+,b_+)$ where (a_-,b_-) is the NLFT of some sequence in $\ell^2(-\infty,-1)$ and (a_+,b_+) is the NLFT of some sequence in $\ell^2[0,\infty)$. "Solution:"

Reduced problem: Given $(a, b) \in H^2(\mathbb{D}^*) \times L^{\infty}(\mathbb{T})$ such that $aa^*+bb^*=1$, a^* outer, $\int \log(1-|b|^2) > -\infty$, factor $(a,b)=(a_-,b_-)(a_+,b_+)$ where (a_-,b_-) is the NLFT of some sequence in $\ell^2(-\infty, -1)$ and (a_+, b_+) is the NLFT of some sequence in $\ell^2[0, \infty)$.

"Solution:"

 Using the fact that a* is outer, we can deduce that the vector $(A,B) := a_+^*(0)(a_+,b_+)$ necessarily satisfies

Reduced problem: Given $(a,b) \in H^2(\mathbb{D}^*) \times L^\infty(\mathbb{T})$ such that $aa^* + bb^* = 1$, a^* outer, $\int\limits_{\mathbb{T}} \log(1-|b|^2) > -\infty$, factor $(a,b) = (a_-,b_-)(a_+,b_+)$ where (a_-,b_-) is the NLFT of some sequence in $\ell^2(-\infty,-1)$ and (a_+,b_+) is the NLFT of some sequence in $\ell^2[0,\infty)$. "Solution:"

• Using the fact that a^* is outer, we can deduce that the vector $(A, B) := a_+^*(0)(a_+, b_+)$ necessarily satisfies

$$\begin{pmatrix} 1 & P_{\mathbb{D}^*} \frac{b^*}{a^*} \\ -P_{\mathbb{D}} \frac{b}{a} & 1 \end{pmatrix} \begin{pmatrix} A \\ B \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} .$$

Reduced problem: Given $(a,b) \in H^2(\mathbb{D}^*) \times L^\infty(\mathbb{T})$ such that $aa^* + bb^* = 1$, a^* outer, $\int_{\mathbb{T}} \log(1-|b|^2) > -\infty$, factor $(a,b) = (a_-,b_-)(a_+,b_+)$ where (a_-,b_-) is the NLFT of some sequence in $\ell^2(-\infty,-1)$ and (a_+,b_+) is the NLFT of some sequence in $\ell^2[0,\infty)$.

"Solution:"

• Using the fact that a^* is outer, we can deduce that the vector $(A, B) := a_+^*(0)(a_+, b_+)$ necessarily satisfies

$$\begin{pmatrix} 1 & P_{\mathbb{D}^*} \frac{b^*}{a^*} \\ -P_{\mathbb{D}} \frac{b}{a} & 1 \end{pmatrix} \begin{pmatrix} A \\ B \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} .$$

• But $\begin{pmatrix} 1 & P_{\mathbb{D}^*} \frac{b^*}{a^*} \\ -P_{\mathbb{D}} \frac{b}{a} & 1 \end{pmatrix} = I + \begin{pmatrix} 0 & P_{\mathbb{D}^*} \frac{b^*}{a^*} \\ -P_{\mathbb{D}} \frac{b}{a} & 0 \end{pmatrix} =: I + \text{antisymmetric as}$ an operator on $H^2(\mathbb{D}^*) \times H^2(\mathbb{D})$.

Reduced problem: Given $(a,b) \in H^2(\mathbb{D}^*) \times L^\infty(\mathbb{T})$ such that $aa^* + bb^* = 1$, a^* outer, $\int_{\mathbb{T}} \log(1-|b|^2) > -\infty$, factor $(a,b) = (a_-,b_-)(a_+,b_+)$ where (a_-,b_-) is the NLFT of some sequence in $\ell^2(-\infty,-1)$ and (a_+,b_+) is the NLFT of some sequence in $\ell^2[0,\infty)$.

"Solution:"

• Using the fact that a^* is outer, we can deduce that the vector $(A, B) := a_+^*(0)(a_+, b_+)$ necessarily satisfies

$$\begin{pmatrix} 1 & P_{\mathbb{D}^*} \frac{b^*}{a^*} \\ -P_{\mathbb{D}} \frac{b}{a} & 1 \end{pmatrix} \begin{pmatrix} A \\ B \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}.$$

- But $\begin{pmatrix} 1 & P_{\mathbb{D}^*} \frac{b^*}{a^*} \\ -P_{\mathbb{D}} \frac{b}{a} & 1 \end{pmatrix} = I + \begin{pmatrix} 0 & P_{\mathbb{D}^*} \frac{b^*}{a^*} \\ -P_{\mathbb{D}} \frac{b}{a} & 0 \end{pmatrix} =: I + \text{antisymmetric as}$ an operator on $H^2(\mathbb{D}^*) \times H^2(\mathbb{D})$.
- So (A, B) exists and is always unique! One can show then that (a_+, b_+) exists and is always unique too!

Thank you for Listening!