Inferential Analysis on Tooth Growth

Jiachang (Ernest) Xu 6/12/2017

Overview

This project is a breif graphical and numerical exploration of the dataset, by performing the techniques of confidence interval and hypothesis testing.

Summray of the Data

```
library(datasets)
require(ggplot2)
## Loading required package: ggplot2
require(RColorBrewer)
## Loading required package: RColorBrewer
require(grDevices)
data(ToothGrowth)
attach(ToothGrowth)
# first look: 3 variables and 60 observations
str(ToothGrowth)
## 'data.frame':
                   60 obs. of 3 variables:
## $ len : num 4.2 11.5 7.3 5.8 6.4 10 11.2 11.2 5.2 7 ...
## $ supp: Factor w/ 2 levels "OJ", "VC": 2 2 2 2 2 2 2 2 2 2 ...
## $ dose: num 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 ...
summary(ToothGrowth)
##
         len
                   supp
                                dose
         : 4.20
                   OJ:30
                           Min.
                                  :0.500
## Min.
## 1st Qu.:13.07 VC:30
                           1st Qu.:0.500
## Median :19.25
                           Median :1.000
## Mean
         :18.81
                           Mean :1.167
   3rd Qu.:25.27
                           3rd Qu.:2.000
## Max.
          :33.90
                                  :2.000
                           Max.
# convert $dose to factors
unique(ToothGrowth$dose)
## [1] 0.5 1.0 2.0
ToothGrowth$dose<-as.factor(ToothGrowth$dose)</pre>
```

Graphical Analysis

This section examines the relationship between dose size, dose type, and tooth length

Loading required package: gridExtra

Figure 1 shows that tooth length increases as the doseage increases.

Figure 2 shows that Orange Juice is more effective than Vitamin C, including all doseage levels.

Figure 3 shows that Orange Juice is more effective than Vitamin C only in the first two doseage, but they are equally effective in the third doseage.

Numerical Analysis

First, we need to reformat the data by using the split() function. Therefore, we can do hypothesis testing more conviently from the reformatted dataset.

```
# split the data frame by dose and supplement type
split_tooth <- split(ToothGrowth, f = list(ToothGrowth$dose, ToothGrowth$supp))</pre>
Second, aggregations show the sample mean and standard deviation.
aggregate(len, list(supp, dose), mean)
##
     Group.1 Group.2
## 1
          OJ
                 0.5 13.23
## 2
          VC
                 0.5 7.98
## 3
          OJ
                 1.0 22.70
## 4
          VC
                 1.0 16.77
## 5
                 2.0 26.06
          OJ
## 6
          VC
                 2.0 26.14
aggregate(len, list(supp, dose), sd)
     Group.1 Group.2
## 1
          OJ
                 0.5 4.459709
## 2
          VC
                 0.5 2.746634
          OJ
## 3
                 1.0 3.910953
## 4
          VC
                 1.0 2.515309
          OJ
                 2.0 2.655058
## 5
## 6
          VC
                 2.0 4.797731
Third, we perform hypothesis testing at the 5% significance level. Each p-value correponds to the question
immediately above it
Test 1: Is Orange Juice more effective than vitamin C across doses? YES
## [1] 0.03031725
Test 2: Is Orange Juice more effective than Vitamin C for a .5 dose? YES
## [1] 0.003179303
Test 3: Is Orange Juice more effective than Vitamin C for a 1 dose? YES
## [1] 0.0005191879
Test 4: Is Orange Juice more effective than Vitamin C for a 2 dose? INCONCLUSIVE
## [1] 0.5180742
Test 5: Is a 2 dose (any supplement type) more effective than a .5 dose? YES
## [1] 6.341504e-08
Test 6: Is a 2 dose (any supplement type) more effective than a .5 dose? YES
## [1] 2.198762e-14
Test 7: Is a 2 dose (any supplement type) more effective than a .5 dose? YES
## [1] 9.532148e-06
```

Appendix I: Hypothesis Testing Code

```
#Test 1: Is Orange Juice more effective than vitamin C across doses? <span style="color:green">YES</spat.test(c(split_tooth[[1]]$len, split_tooth[[2]]$len, split_tooth[[3]]$len), c(split_tooth[[4]]$len, spl
#Test 2: Is Orange Juice more effective than Vitamin C for a .5 dose? <span style="color:green">YES</spat.test(split_tooth[[1]]$len, split_tooth[[4]]$len, alternative = "greater")$p.value

#Test 3: Is Orange Juice more effective than Vitamin C for a 1 dose? <span style="color:green">YES</spat.test(split_tooth[[2]]$len, split_tooth[[5]]$len, alternative = "greater")$p.value

#Test 4: Is Orange Juice more effective than Vitamin C for a 2 dose? <span style="color:red">INCONCLUSI
t.test(split_tooth[[3]]$len, split_tooth[[6]]$len, alternative = "greater")$p.value

#Test 5: Is a 2 dose (any supplement type) more effective than a .5 dose? <span style="color:green">YES
t.test(c(split_tooth[[1]]$len, split_tooth[[4]]$len), c(split_tooth[[2]]$len, split_tooth[[5]]$len), al:

#Test 6: Is a 2 dose (any supplement type) more effective than a .5 dose? <span style="color:green">YES
t.test(c(split_tooth[[1]]$len, split_tooth[[4]]$len), c(split_tooth[[3]]$len, split_tooth[[6]]$len), al:

#Test 7: Is a 2 dose (any supplement type) more effective than a .5 dose? <span style="color:green">YES
t.test(c(split_tooth[[2]]$len, split_tooth[[5]]$len), c(split_tooth[[3]]$len, split_tooth[[6]]$len), al:
```