Санкт-Петербургский национальный исследовательский университет информационных технологий, механикии оптики

Группа Р3207	_ К работе допущен
Студент Тахватулин М. В.	Работа выполнен <u>а</u>
Преподаватель Хвастунов Н Н	Отчет принят

Рабочий протокол и отчет по лабораторной работе

Nº1.01

Исследование распределения случайной

величины

- 1. Цель работы.
- 1. Провести многократные измерения определенного интервала времени.
- 2. Построить гистограмму распределения результатов измерения.
- 3. Вычислить среднее значение и дисперсию полученной выборки.
- 4. Сравнить гистограмму с графиком функции Гаусса с такими же как и у экспериментального распределения средним значением и дисперсией.
- 2. Задачи, решаемые при выполнении работы.

Исследование закона распределения случайной величины.

3. Объект исследования.

Распределение случайной величины – времени, которое кот может не моргать.

4. Метод экспериментального исследования.

Замер времени при помощи электронного и стрелочного секундомеров.

5. Рабочие формулы и исходные данные.

$$\left\langle t\right\rangle _{N}=\frac{1}{N}\left(t_{1}+t_{2}+\ldots+t_{N}\right)=\frac{1}{N}\sum_{i=1}^{N}t_{i}\qquad \sigma_{N}=\sqrt{\frac{1}{N-1}\sum_{i=1}^{N}\left(t_{i}-\left\langle t\right\rangle _{N}\right)^{2}}$$

$$\begin{split} \rho_{\max} &= \frac{1}{\sigma\sqrt{2\pi}} \qquad \qquad \rho\left(t\right) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{\left(t - \left\langle t \right\rangle\right)^2}{2\sigma^2}\right) \\ \sigma_{\left\langle t \right\rangle} &= \sqrt{\frac{1}{N\left(N-1\right)} \sum_{i=1}^{N} \left(t_i - \left\langle t \right\rangle_N\right)^2} \\ \Delta t &= t_{\alpha,N} \cdot \sigma_{\left\langle t \right\rangle} \end{split}$$

6. Измерительные приборы.

N º ⊓/⊓	Наименование	Тип прибора	Погрешность прибора
1.	Стрелочный секундомер	Механический	0,1 c
2.	Цифровой секундомер	Цифровой	0,05 c

7. Результаты прямых измерений

$N_{\underline{0}}$	ti, с (округлено до	$t_i - \langle t \rangle_N$, c	$(t_i - \langle t \rangle_N)^2$, c ²
	целых чисел)		(**************************************
1	3	-4,28	18,32
2	1	-6,28	39,44
3	11	3,72	13,84
4	5	-2,28	5,2
5	10	2,72	7,4
6	4	-3,28	10,76
7	12	4,72	22,28
8	5	-2,28	5,2
9	4	-3,28	10,76
10	7	-0,28	0,08
11	12	4,72	22,28
12	9	1,72	2,96
13	12	4,72	22,28
14	3	-4,28	18,32
15	8	0,72	0,52
16	11	3,72	13,84
17	10	2,72	7,4
18	6	-1,28	1,64
19	11	3,72	13,84
20	1	-6,28	39,44
21	11	3,72	13,84
22	2	-5,28	27,88
23	10	2,72	7,4
24	6	-1,28	1,64
25	2	-5,28	27,88
26	13	5,72	32,72

27	7	-0,28	0,08
28	11	3,72	13,84
29	7	-0,28	0,08
30	6	-1,28	1,64
31	12	4,72	22,28
32	7	-0,28	0,08
33	4	-3,28	10,76
34	5	-2,28	5,2
35	2	-5,28	27,88
36	12	4,72	22,28
37	7	-0,28	0,08
38	9	1,72	2,96
39	4	-3,28	10,76
40	7	-0,28	0,08
41	4	-3,28	10,76
42	5	-2,28	5,2
43	8	0,72	0,52
44	12	4,72	22,28
45	11	3,72	13,84
46	3	-4,28	18,32
47	7	-0,28	0,08
48	9	1,72	2,96
49	12	4,72	22,28
50	4	-3,28	10,76
	$\langle t \rangle_N = 7,28 \text{ c}$	$\sum_{i=1}^{N} (t_i - \langle t \rangle_N)^2 =$	$\sigma_N = 3{,}53 \text{ c}$
		2780,42 c	
			$ \rho_{max} = 0.11 \text{ c}^{-1} $

$$\langle t \rangle_{N} = \frac{1}{N} \sum_{i=1}^{N} t_{i} = 7,28$$

$$\sum_{i=1}^{N} (t_{i} - \langle t \rangle_{N})^{2} = 2780,42$$

$$\sigma_{N} = \sqrt{\frac{1}{N-1} \sum_{i=1}^{N} (t_{i} - \langle t \rangle_{N})^{2}} = 3,53$$

$$\rho_{max} = \frac{1}{\sigma\sqrt{2\pi}} = 0,05$$

$$t_{max} - t_{min} = 12$$

Разобьём $\mathbf{t}_{max} - \mathbf{t}_{min}$ на 7 равных промежутков с шагом $\Delta \mathbf{t} =$ 1,71 с

8. Расчет результатов косвенных измерений (*таблицы, примеры расчетов*).

Границы	ΔN	$\frac{\Delta N}{N\Delta t}$, c^{-1}	t, c	ρ, c^{-1}	
интервалов, с		NΔt		, .	
1		0.06	1 055	0.02	
2,71	5	0,06	1,855	0,03	
2,71	9	0,11	3,565	0,07	
4,42	9	0,11	3,303	0,07	
4,42	7	0,08	5,275	0,1	
6,13	,	0,00	5,215	0,1	
6,13	7	0,08	6,985	0,11	
7,84	/	0,00	0,765	0,11	
7,84	5	0,06	8,695	0,1	
9,55	3	0,00	0,093	0,1	
9,55	9	0,11	10,405	0,08	
11,26	9	0,11	10,403	0,08	
13	8	0,09	12,13	0,05	

Найдём значения функции ho(t) при различных значениях t при помощи функции Гаусса:

$$\rho(t) = \frac{1}{\sigma\sqrt{2pi}} \exp\left(-\frac{(t-\langle t\rangle)^2}{2\sigma^2}\right)$$

9. Расчет погрешностей косвенных измерений.

	Интервал, с		ΔΝ	ΔΝ	P
	OT	до		N	
$\langle t \rangle_N \pm \sigma_N$	3,75	10,81	28	0,56	0,56
$\langle t \rangle_N \pm 2\sigma_N$	0,22	14,34	50	1,00	1,00
$\langle t \rangle_N \pm 3\sigma_N$	-3,31	17,87	50	1,00	1,00

$$\sigma_{\langle t \rangle} = \sqrt{\frac{1}{N(N-1)} \sum_{i=1}^{N} (t_i - \langle t \rangle_N)^2} = 0.5$$

$$\Delta t = t_{\alpha, N} \sigma_{\langle t \rangle} = 1,75$$

10. Графики (перечень графиков, которые составляют Приложение 2).

11. Окончательные результаты.

- Среднеквадратичное отклонение среднего значения $\sigma_{(t)} = 0.5 \text{ c}$
- Табличное значение коэффициента Стьюдента $t_{\alpha,N}$ для доверительной вероятности α = 0,999: $t_{\alpha,N}$ = 3,50
- Доверительный интервал $\Delta t = 1,75$ с
- Среднее арифметическое всех результатов измерений $\langle t \rangle_N = 7,28$ с
- Выборочное среднеквадратичное отклонение: $\sigma_N = 3{,}53 \text{ c}$
- Максимальное значение плотности распределения $\rho_{max} = 0,11 \, \, \mathrm{c}^{-1}$

12. Выводы и анализ результатов работы.

Вывод: Таким образом, мы исследовали распределение случайной величины на примере многократных замеров временного отрезка. Результаты прямых измерений, данные для построения гистограммы, стандартные доверительные интервалы были занесены в соответствующие таблицы. После заполнения таблиц построили гистограмму и функцию Гаусса.