ntroduction

Data-driven simulation

Data-driven linear quadratic tracking

Simulation example

Introduction

Data-driven simulation

Data-driven linear quadratic tracking

Simulation example

On the linear quadratic data-driven control

Ivan Markovsky

University of Southampton

Joint work with Paolo Rapisarda

Introduction

Data-driven simulation

Data-driven linear quadratic tracking

Simulation example

Notation

w — # of external variables, m — # of inputs, p — # of outputs

 $\mathbb{N} := \{1, 2, \dots\}$ — time axis

 $\mathcal{B}(A, B, C, D)$ — the system defined by $\begin{aligned} \sigma x &= Ax + Bu \\ y &= Cx + Du \end{aligned}$

Restriction of the system behavior \mathcal{B} to the interval 1, 2, ..., t

$$\mathscr{B}_t := \{ w_p \in (\mathbb{R}^w)^t \mid \text{there is } w_f \text{ such that } (w_p, w_f) \in \mathscr{B} \}$$

 $\begin{array}{lll} \log(\mathscr{B}) & - & \log \text{ of } \mathscr{B} & \text{(observability index of I/S/O repr.)} \\ \text{order}(\mathscr{B}) & - & \text{order of } \mathscr{B} \end{array}$

We assume that an input/output partition of the variables is given.

"Data-driven" control methods

 $data-driven = model-free = model-less = \cdots$

1995	Skelton, Furuta	LQG design using Markov par.
1996	Hjalmarsson, Gevers	iterative feedback tuning
1997	Safonov	unfalsified control
1999	Favoreel, De Moor	subspace based LQG control
2001	Woodley	subspace based $\mathscr{H}_{\scriptscriptstyle{\infty}}$ control
2002	Campi, Lecchini	virtual reference feedback tuning
2004	Ikeda, Fujisaki	subspace based LQ tracking

Our work is in the spirit of the "subspace based" methods.

Introduction

Data-driven simulation

Data-driven linear quadratic tracking

Simulation example

The simulation problem

Classical simulation problem: Given

- system $\mathscr{B} := \mathscr{B}(A, B, C, D)$,
- input $u \in (\mathbb{R}^m)^t$, and
- initial conditions $x_{\text{ini}} \in \mathbb{R}^n$,

find the response y of \mathcal{B} to u and ini. cond. x_{ini} .

Data-driven simulation problem: Given

- trajectory $w_d = (u_d, y_d) \in (\mathbb{R}^w)^T$ of \mathscr{B} ,
- input $u \in (\mathbb{R}^m)^t$, and
- initial trajectory $w_{\text{ini}} \in (\mathbb{R}^{\text{w}})^{T_{\text{ini}}}$, $w_{\text{ini}} \in \mathscr{B}_{T_{\text{ini}}}$,

find the response y of \mathscr{B} to u, such that $(w_{\text{ini}}, (u, y)) \in \mathscr{B}_{T_{\text{ini}}+t}$.

ntroduction

Data-driven simulation

Data-driven linear quadratic tracking

Simulation example

Notes:

- \mathscr{B} is specified implicitly by w_d ,
- the initial condition x_{ini} is specified implicitly by w_{ini} .

Algorithm 1: data-driven simulation, using I/S/O repr.

- 1. identification $w_d \mapsto (A, B, C, D)$
- 2. observer $(w_{ini}, (A, B, C, D)) \mapsto x_{ini}$
- 3. classical simulation $(u, x_{ini}, (A, B, C, D)) \mapsto y$

Can we find y without deriving an explicit representation of \mathcal{B} ?

Introduction

Data-driven simulation

Data-driven linear quadratic tracking

Simulation examp

Basic idea

Assuming that w_d is a trajectory of \mathcal{B} (exact data),

lin. comb. of the columns of $\mathcal{H}_t(w_d)$ are trajectories of \mathcal{B} , *i.e.*,

for all g, $\mathscr{H}_t(w_d)g \in \mathscr{B}_t$

Under additional conditions—persistency of excitation of u_d and controllability of \mathscr{B} —every trajectory can be generated that way.

In what follows, we assume that these conditions are satisfied.

 \implies computing the response of \mathscr{B} to given input and initial conditions from data w_d , requires choosing a suitable g

Notation for Hankel matrices

Given a signal w = (w(1), ..., w(T)) and $t \le T$, define

$$\mathcal{H}_{t}(w) := \begin{bmatrix} w(1) & w(2) & w(3) & \cdots & w(T-t+1) \\ w(2) & w(3) & w(4) & \cdots & w(T-t+2) \\ w(3) & w(4) & w(5) & \cdots & w(T-t+3) \\ \vdots & \vdots & \vdots & & \vdots \\ w(t) & w(t+1) & w(t+2) & \cdots & w(T) \end{bmatrix}$$

block-Hankel matrix with t block-rows, composed of w

Introduction

Data-driven simulation

Data-driven simulation

Data-driven linear quadratic tracking

Simulation example

Construction of responses from data

Problem: Find y, such that $(w_{\text{ini}}, (u, y)) \in \mathcal{B}$, where w_{ini}, u are given, and \mathcal{B} is implicitly defined by w_{d} .

There is g, such that

$$\mathscr{H}_{T_{\mathsf{ini}}+t}(w_{\mathsf{d}})g = (w_{\mathsf{ini}}, (u, y)).$$

The eqns with RHS y, define y, for given g. The others restrict g.

Generic data-driven simulation algorithm:

- 1. compute any solution g of the equations with RHS w_{ini} , u
- 2. substitute *g* in the equations for *y*

Define

$$U := \mathscr{H}_{T_{\text{ini}}+t}(u_{\text{d}}), \qquad \mathsf{Y} := \mathscr{H}_{T_{\text{ini}}+t}(\mathsf{y}_{\text{d}})$$

and the partitionings

$$U =: \begin{bmatrix} U_p \\ U_f \end{bmatrix}, \qquad Y =: \begin{bmatrix} Y_p \\ Y_f \end{bmatrix}.$$

Algorithm 2: data-driven simulation

1. compute the least norm solution of

$$egin{bmatrix} U_{
m p} \ Y_{
m p} \ U_{
m f} \end{bmatrix} g = egin{bmatrix} u_{
m ini} \ y_{
m ini} \ u \end{bmatrix}.$$

2. compute $y := Y_f g$.

Introduction

Data-driven simulation

Data-driven linear quadratic tracking

Simulation example

Special case $w_{\text{ini}} = 0$: zero initial cond. response

Let h be the impulse response of \mathcal{B} , and define

$$\mathcal{F}_{t}(h) := \begin{bmatrix} h(0) & & & & \\ h(1) & h(0) & & & \\ h(2) & h(1) & h(0) & & \\ \vdots & \ddots & \ddots & \ddots & \\ h(t-1) & \cdots & \cdots & h(1) & h(0) \end{bmatrix}$$

For any $w = \operatorname{col}(u, y) \in \mathscr{B}_t$,

$$y = \mathcal{O} x_{\text{ini}} + \mathcal{T}_t(h) u$$

We can compute a basis for $\mathcal{B}_{0,t} := \text{image}\left(\mathcal{T}_t(h)\right)$ from data, by finding t_m lin. indep. zero initial cond. responses.

uction Data-driven simulation Data-driven

Special case u = 0: free response

Allows to compute an observability matrix \mathscr{O} of \mathscr{B} from data, by finding $n \ge \operatorname{order}(\mathscr{B})$ linearly indep. free responses.

Let 1_{max} be an upper bound for the lag of \mathscr{B} and take $T_{\text{ini}} = 1_{\text{max}}$.

Algorithm 3: compute an observability matrix @

1. compute the least norm solution of

$$egin{bmatrix} egin{pmatrix} m{U}_{
m p} \ m{Y}_{
m p} \ m{U}_{
m f} \end{bmatrix} m{G} = egin{bmatrix} m{U}_{
m p} \ m{Y}_{
m p} \ m{0} \end{bmatrix}$$

- 2. compute $Y := Y_f G$
- 3. compute a rank revealing factorization $Y = \mathcal{O}X_{ini}$

Introduction

Data-driven simulation

Data-driven linear quadratic tracking

Simulation example

Algorithm 4: compute a basis of $\mathcal{B}_{0,t}$

1. compute the least norm solution of

$$egin{bmatrix} egin{pmatrix} m{U_{\mathrm{p}}} \ m{Y_{\mathrm{p}}} \ m{U_{\mathrm{f}}} \end{bmatrix} m{G} = egin{bmatrix} m{0} \ m{0} \ m{\mathscr{H}_{t,tm}}(m{u_{\mathrm{d}}}) \end{bmatrix}$$

2. compute $Y_0 := Y_fG$

Then image(Y_0) = image($\mathscr{T}_t(h)$) = $\mathscr{B}_{0,t}$.

Special case $w_{\text{ini}} = 0$, $u = l\delta$: impulse response

With the same construction we can find the first t Markov parameters of \mathcal{B} , which is a system identification method.

Algorithm 5: compute the impulse response

1. compute the least norm solution of

$$\begin{bmatrix} \textit{U}_p \\ \textit{Y}_p \\ \textit{U}_f \end{bmatrix} \textit{G} = \begin{bmatrix} 0 \\ 0 \\ \text{col}(\textit{I}_m, 0) \end{bmatrix}$$

2. compute $h := Y_f G$

Introduction

Data-driven simulation

Data-driven linear quadratic tracking

Simulation examp

Solution using an I/S/O representation

The classical but indirect solution is:

Algorithm 7: data-driven LQ tracking, using I/S/O repr.

- 1. $W_d \xrightarrow{\text{Identification}} (A, B, C, D)$
- 2. $(W_{\text{ini}}, (A, B, C, D)) \xrightarrow{\text{Observer (1,2)}} X_{\text{ini}}$
- 3. $(\Phi, \textit{W}_r, \textit{x}_{ini}, (\textit{A}, \textit{B}, \textit{C}, \textit{D})) \xrightarrow{\text{Synthesis (3,4,5)}} \textit{W}_f^*$

We aim to find algorithms that do not derive a repr. of \mathcal{B} .

Linear quadratic tracking problem

Given

- trajectory $w_d = (u_d, y_d) \in (\mathbb{R}^w)^T$ of \mathscr{B} ,
- initial trajectory $w_{\text{ini}} \in (\mathbb{R}^{\text{w}})^{T_{\text{ini}}}$, $w_{\text{ini}} \in \mathscr{B}_{T_{\text{ini}}}$,
- reference trajectory $w_r \in (\mathbb{R}^w)^{T_r}$, and
- positive definite matrix $\Phi \in \mathbb{R}^{w \times w}$,

find a trajectory of $\ensuremath{\mathcal{B}}$ that is optimal with respect to the criterion

$$\boldsymbol{J}(\boldsymbol{\mathit{W}}_{\!\!r},\boldsymbol{\mathit{W}}) := (\boldsymbol{\mathit{W}}_{\!\!r} - \boldsymbol{\mathit{W}})^\top \boldsymbol{\Phi}(\boldsymbol{\mathit{W}}_{\!\!r} - \boldsymbol{\mathit{W}})$$

and has as a prefix the initial trajectory w_{ini} , i.e., find

$$\textit{w}_f^* := \arg\min_{\textit{W}_f} \textit{J}(\textit{w}_r, \textit{w}_f) \quad \text{subject to} \quad (\textit{w}_{\text{ini}}, \textit{w}_f) \in \mathscr{B}_{\textit{T}_{\text{ini}} + \textit{T}_f}.$$

Introduction

Data-driven simula

Data-driven linear quadratic tracking

Simulation example

Observer

Let h be the impulse response of \mathcal{B} . We have,

$$y_{\text{ini}} = \mathcal{O}(A, C) \frac{\mathbf{x}(1)}{\mathbf{x}(1)} + \mathcal{T}_{T_{\text{ini}}}(h) u_{\text{ini}},$$
 (1)

where

$$\mathscr{O}(A,C) := \operatorname{col}(C,CA,\ldots,CA^{T_{\operatorname{ini}}-1})$$

defines a system of equations for the initial state x(1).

 $w_{\mathsf{ini}} \in \mathscr{B}_{\mathcal{T}_{\mathsf{ini}}} \implies \mathsf{existence} \; \mathsf{of} \; \mathsf{solution} \ (A,B,C,D) \; \mathsf{minimal} \; \implies \; \mathsf{uniqueness}$

$$x_{\text{ini}} := x(T_{\text{ini}} + 1) = A^{T_{\text{ini}}} x(1) + [A^{T_{\text{ini}} - 1} B \quad A^{T_{\text{ini}} - 2} B \quad \cdots \quad B] u_{\text{ini}}.$$
 (2)

LQ Regulator

LQ tracking problem:

$$\begin{split} & \min_{x,u,y} \ (w_{\mathrm{r}} - \mathrm{col}(u,y))^{\top} \Phi(w_{\mathrm{r}} - \mathrm{col}(u,y)) \\ & \text{subject to} \quad \begin{array}{l} x(t+1) = Ax(t) + Bu(t), \quad x(1) = x_{\mathrm{ini}} \\ y(t) = Cx(t) + Du(t), \quad \text{for } t = 1, \dots, T_{\mathrm{r}}. \end{array} \end{split}$$

The solution for the $w_r = 0$ case (regulation problem) is

$$x^{*}(t+1) = (A - BL_{t})x^{*}(t), \quad x(1) = x_{ini}$$

$$w_{f}^{*}(t) = \begin{bmatrix} -L_{t} \\ C - DL_{t} \end{bmatrix} x^{*}(t)$$
(3)

a state feedback.

Introduction

Data-driven simulation

Data-driven linear quadratic tracking

Simulation example

Solution using the impulse response representation

LQ tracking problem:

$$\min_{W_f} (w_r - w_f)^{ op} \Phi(w_r - w_f)$$
 subject to $(w_{\mathsf{ini}}, w_f) \in \mathscr{B}_{\mathcal{T}_{\mathsf{ini}} + \mathcal{T}_f}$

Let $y_{f,0}$ be the free response of \mathcal{B} initiated by w_{ini} .

$$y_f = y_{f,0} + \mathcal{T}_r(h)u_f$$

so that the tracking problem becomes

$$\min_{u_{\mathrm{f}}} (w_{\mathrm{r}} - w_{\mathrm{f}})^{\top} \Phi(w_{\mathrm{r}} - w_{\mathrm{f}})$$
 subject to $y_{\mathrm{f}} = \mathscr{T}_{T_{\mathrm{r}}}(h) u_{\mathrm{f}} + y_{\mathrm{f},0}$

a weighted least squares problem.

Define

$$\Phi =: \begin{bmatrix} \Phi_u & \Phi_{uy} \\ \Phi_{yu} & \Phi_y \end{bmatrix}.$$

The optimal input is a state feedback with time-varying gain

$$L_t := \left(B^{\top} S_{t+1} B + \Phi_u + \Phi_{uy} D + D^{\top} \Phi_{uy}^{\top} + D^{\top} \Phi_y D\right)^{-1} \times \left(B^{\top} S_{t+1} A + \Phi_{uy} C + D^{\top} \Phi_y C\right) \quad (4)$$

where S is given by the Riccati difference equation

$$S_{t} = A^{\top} S_{t+1} A + C^{\top} \Phi_{y} C - \left(B^{\top} S_{t+1} A + \Phi_{uy} C + D^{\top} \Phi_{y} C \right)^{\top}$$

$$\times \left(B^{\top} S_{t+1} B + \Phi_{u} + \Phi_{uy} D + D^{\top} \Phi_{uy}^{\top} + D^{\top} \Phi_{y} D \right)^{-1}$$

$$\times \left(B^{\top} S_{t+1} A + \Phi_{uy} C + D^{\top} \Phi_{y} C \right), \qquad S_{T_{r}} = 0. \quad (5)$$

Introduction

Data-driven simulati

Data-driven simulation

Data-driven linear quadratic tracking

0: 17:

With $\widetilde{h} := \operatorname{col}(I\delta, h)$,

$$\textit{w}_{f} := \Big(\text{col} \big(\textit{u}_{f}(1), \textit{y}_{f}(1) \big), \ldots, \text{col} \big(\textit{u}_{f}(\textit{T}_{r}), \textit{y}_{f}(\textit{T}_{r}) \big) \Big) = \mathscr{T}_{T_{r}}(\widetilde{\textit{h}}) \textit{u}_{f}$$

Then

$$w_{\mathrm{f}} = \mathscr{T}_{\mathsf{T_r}}(\widetilde{h})u_{\mathrm{f}} + w_{\mathrm{f},0}, \quad \text{where} \quad w_{\mathrm{f},0} := \mathsf{col}(0,y_{\mathrm{f},0})$$

The tracking problem becomes

$$\min_{\mathbf{W}_{r}} \left(w_{r} - w_{f,0} - \mathscr{T}_{T_{r}}(\widetilde{h}) \mathbf{u}_{f} \right)^{\top} \Phi \left(w_{r} - w_{f,0} - \mathscr{T}_{T_{r}}(\widetilde{h}) \mathbf{u}_{f} \right)$$

and the solution is

$$u_{\mathbf{f}}^* = \left(\mathscr{T}_{T_{\mathbf{r}}}^{\top}(\widetilde{h})\Phi\mathscr{T}_{T_{\mathbf{r}}}(\widetilde{h})\right)^{-1}\mathscr{T}_{T_{\mathbf{r}}}^{\top}(\widetilde{h})\Phi(w_{\mathbf{r}} - w_{\mathbf{f},0})$$

$$y_{\mathbf{f}}^* = \mathscr{T}_{T_{\mathbf{r}}}(h)u_{\mathbf{f}}^* + y_{\mathbf{f},0}$$
(6)

ntroduction

Data-driven simulation

Data-driven linear quadratic tracking

Simulation exam

nulation example

Ingredients of the solution:

- the free response $y_{f,0}$ and
- the impulse response *h*.

We can compute them directly from w_d .

Algorithm 8: data-driven LQ tracking, using impulse resp. repr.

- 1. $(w_{\text{ini}}, w_{\text{d}}, T_{\text{r}}) \xrightarrow{\text{Algorithm 2}} y_{\text{f},0}$
- 2. $(w_d, T_r) \xrightarrow{\text{Algorithm 6}} h$
- 3. $(\Phi, W_r, W_{f,0}, h) \xrightarrow{(6)} W_f^*$

Introduction

Data-driven simulation

Data-driven linear quadratic tracking

Simulation examp

Proof

Any zero initial conditions trajectory $w = \operatorname{col}(u, y) \in (\mathbb{R}^w)^{T_r}$ is of the form $w = \mathscr{T}_{T_r}(\widetilde{h})u$. Therefore,

$$\mathscr{B}_{0,T_r} = \operatorname{image}\left(\mathscr{T}_{T_r}(\widetilde{h})\right) = \operatorname{image}\left(W_0\right)$$

Consider the space $\mathscr{W} = (\mathbb{R}^{\mathsf{w}})^{T_{\mathsf{r}}}$ with inner product defined by $\langle w_1, w_2 \rangle = w_1^\top \Phi w_2$. The projector on $\mathscr{B}_{0,T_{\mathsf{r}}}$ in \mathscr{W} is

$$\mathscr{T}_{T_{r}}(\widetilde{h})\big(\mathscr{T}_{T_{r}}^{\top}(\widetilde{h})\Phi\mathscr{T}_{T_{r}}(\widetilde{h})\big)^{-1}\mathscr{T}_{T_{r}}^{\top}(\widetilde{h})\Phi = W_{0}\big(W_{0}^{\top}\Phi W_{0}\big)^{+}W_{0}^{\top}\Phi$$

Then the data-driven solution (7) follows from the solution (6), using the impulse response representation.

Introduction

Data-driven simulation

Data-driven linear quadratic tracking

Simulation example

Data-driven solution

Define the zero initial conditions subbehavior of ${\mathscr{B}}$

$$\mathscr{B}_{\mathbf{0},\mathbf{7}_{\mathrm{r}}} := \left\{ w \in (\mathbb{R}^{\mathrm{w}})^{\mathsf{T}_{\mathrm{r}}} \mid (\underbrace{\mathbf{0},\ldots,\mathbf{0}}_{\mathsf{lag}(\mathscr{B})},w) \in \mathscr{B}_{\mathsf{lag}(\mathscr{B})+\mathsf{T}_{\mathrm{r}}} \right\}$$

Theorem: Let $W_0 \in \mathbb{R}^{T_r w \times \bullet}$ be a matrix, such that

image
$$(W_0) = \mathscr{B}_{0,T_r}$$

Then the LQ optimal trajectory is

$$W_{\rm f}^* = W_0 (W_0^\top \Phi W_0)^+ W_0^\top \Phi (W_{\rm r} - W_{\rm f,0}) + W_{\rm f,0}$$
 (7)

where $w_{f,0}$ is the free response of \mathcal{B} , caused by w_{ini} .

Introduction

Data-driven simulation

Data-driven linear quadratic tracking

Simulation example

Algorithm for data-driven LQ tracking

Algorithm 9: data-driven LQ tracking

1.
$$(W_{\text{ini}}, W_{\text{d}}, T_{\text{r}}) \xrightarrow{\text{Algorithm 2}} y_{\text{f},0}$$

2.
$$(w_d, T_r) \xrightarrow{\text{Algorithm 4}} W_0$$

3.
$$(\Phi, W_r, Y_{f,0}, W_0) \xrightarrow{(7)} W_f^*$$

Simulation showing the equivalence of the three methods

 \mathscr{B} — 2nd order, m = 1 input, p = 1 output

 $w_{\rm d}$ — random trajectory of \mathscr{B} with T = 200 samples

Φ — identity (assign equal weights to the variables)

step tracking: $u_r = 0$, $y_r = \text{step}$, $w_{ini} = (1,1)$

Simulation example

Simulation example

 w_f^* — solid line, $J(w_r, w_f^*) = 2.1034$ $w_{\rm r}$ — dotted line,

Simulation example

Data-driven linear quadratic tracking

- · Compared with previous work on subspace control, we
 - give conditions under which the problem is solvable,
 - relate the problem to data-driven simulation, and
 - · derive new computational algorithms.

Thank you

Data-driven linear quadratic tracking Data-driven simulation Simulation example

Conclusions

- Given $w_d \in \mathcal{B}_T$, we can compute feedforward LQ tracking control without deriving a repr. of \mathcal{B} . (data-driven control)
- For doing this we need
 - \$\mathscr{B}\$ to be controllable,
 - *u*_d to be persistently exciting of sufficient order.
- The construction of the optimal control is based on
 - free response $y_{f,0}$ of \mathcal{B} under w_{ini} , and
 - zero ini. cond. trajectories W_0 (a basis for \mathcal{B}_{0,T_t}).