TEST PRZYKŁADOWY

Imię i nazwisko:

Numer indeksu:

Numer grupy:

Test jest testem wielokrotnego wyboru (tzn. wszystkie kombinacje odpowiedzi są możliwe). Pytanie jest uznane za poprawnie rozwiązane wttw, gdy wszystkie podpunkty w pytaniu mają zaznaczone właściwe odpowiedzi. Odpowiedzi "+" oraz "-" proszę zaznaczać przy każdym podpunkcie pytania w stosownym miejscu - wewnątrz nawiasu kwadratowego poprzedzającego treść []. Życzę powodzenia.

- 1. Które z poniższych zdań jest prawdziwe:
 - (a) $[2,3] \cup \mathbb{N} = \mathbb{N}$
 - (b) $[(2,3) \oplus \mathbb{N} = \mathbb{N} \setminus \{2,3\}]$
 - (c) $[(2,3) \setminus \mathbb{N} = (2,3)]$
- 2. Niech $\Sigma = \{a\}$ oraz $X = \{w \in \Sigma^* : |w| \leq 3\}$, wtedy:
 - (a) $P(X) = \{a, aa, aaa\}$
 - (b) |P(X)| = 16
 - (c) $\Sigma \in P(X)$
- 3. Niech $A_i = \{-i, i\}, B_i = [-i, i], \text{ wtedy:}$

(a)
$$\left[\bigcap_{i\in\mathbb{N}}A_i\right]\cap\left(\bigcap_{i\in\mathbb{N}}B_i\right)=\emptyset$$

(b)
$$\left[\bigcup_{i \in \mathbb{N}} A_i \right] \setminus \left(\bigcap_{i \in \mathbb{N}} B_i \right) = \mathbb{Z} \setminus \{0\}$$

(c)
$$\left[\bigcup_{i \in \mathbb{N}} A_i \right] \oplus \left(\bigcup_{i \in \mathbb{N}} B_i \right) = \mathbb{R} \setminus \mathbb{Z}$$

- 4. Niech $A = \{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}\}\}$, wtedy:
 - (a) [$P(A) = \{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}, \{\emptyset, \{\emptyset\}\}, \{\emptyset, \{\emptyset\}\}\}\}\}$
 - (b) |P(A)| = 4
 - (c) |P(A)| = 8
- 5. Niech $P(X_n)$ oznacza zbiór potęgowy n-elementowego zbioru X_n , wtedy:
 - (a) [] jeżeli $A_3 \subset B_4$, to $P(A_3) \subset P(B_4)$
 - (b) [jeżeli $A_3 \subset B_4$, to $P(P(A_3)) \supset P(B_4)$
 - (c) $\left[\sum_{i=0}^{n} |P(X_i)| = 2^{n+1} \right]$
- 6. Niech $A = \{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}\}\}, B = \{1, 2, 3, \dots, 10\}, \text{ wtedy:}$
 - (a) $|A \times B| = |B \times A|$
 - (b) $|A \times B| = 40$
 - (c) $|P(A)| \cdot |P(B)| = |P(A \cup B)|$

- 7. Czy istnieją zbiory A, B oraz C takie, że $A \cap B \neq \emptyset$, $A \cap C = \emptyset$ i $(A \cap B) \setminus C = \emptyset$
 - (a) [Tak, dla dowolnych zbiorów A, B i C
 - (b) [Tak, dla pewnych zbiorów A, B i C
 - (c) [] Nie
- 8. Niech A, B oraz C będą dowolnymi zbiorami. Które z poniższych zdań jest prawdziwe:
 - (a) $[(A \setminus B) \cup B = A]$
 - (b) $[(A \oplus B = A \oplus C) \rightarrow (B = C)$
 - (c) $A \cap (B \oplus C) = (A \cap B) \oplus (A \cap C)$
- 9. Jeżeli macierz binarna M reprezentuje relację r w zbiorze n-elementowym, to:
 - (a) [] macierz M jest macierzą kwadratową rzędu n^2
 - (b) [] macierzMjest symetryczna względem diagonalnej gdy relacja rjest symetryczna i spójna
- 10. Niech $U = \{0, 1, 2\}$, wtedy:
 - (a) $r = \{(i, j) \in U^2 : i = j\} = \{(0, 0), (0, 1), (0, 2), (1, 1)\}$
 - (b) $[] r = \{(i,j) \in U^2 : i^2 + j^2 = 2\} = \{(1,1)\}$
 - (c) $[\quad] r = \{(i,j) \in U^2 : i = \max(\{1,j\})\} = \{(1,0), (1,1), (2,2)\}$
- 11. Niech uniwersum relacji r będzie zbiór wszystkich słów nad alfabetem $\sum = \{0, 1\}$, wtedy:

 - (b) [] jeżeli relacja r jest symetryczna i przeciwsymetryczna, to r jest zbiorem skończonym
 - (c) [jeżeli relacja r nie jest spójna, to r jest zbiorem skończonym
- 12. Relacja $r = \{(i, j) \in \mathbb{N} \times \mathbb{N} : (i \cdot j) \mod 3 = 1\}$ jest:
 - (a) [przeciwzwrotna
 - (b) [] symetryczna
 - (c) [antysymetryczna
- 13. Niech $U = \mathbb{N} \times \mathbb{N}$ będzie uniwersum relacji r, wtedy:
 - (a) [] jeżeli $r = \emptyset$, to r jest relacją antysymetryczną, przechodnia
 - (b) [jeżeli $r = \{(a, b) \in U : (a + b) \mod 2 = 1\}$, to r jest relacją zwrotną lub symetryczną
 - (c) [jeżeli $r = \{(a,b) \in U : a = 1 \land b > a\}$, to r jest relacją przeciwzwrotną lub spójną
- 14. Niech r_1 będzie relacją zwrotną i symetryczną oraz r_2 będzie relacją symetryczną i przechodnią, wtedy:
 - (a) $[r_1 \cap r_2]$ jest relacją zwrotną, symetryczną i przechodnią
 - (b) [] $r_1 \cup r_2$ jest relacją zwrotną, symetryczną i przechodnią
 - (c) $r_1 \oplus r_2$ jest relacją zwrotną, symetryczną i przechodnia
- 15. Dla dowolnej relacji r zdefiniowanej nad niepustym uniwersum prawda jest, że jeżeli relacja r jest:
 - (a) [antysymetryczna, to nie jest symetryczna
 - (b) przeciwzwrotna, to nie jest przechodnia
 - (c) spójna, to jest przechodnia i antysymetryczna

- 16. Które z poniższych zdań jest tautologią rachunku zdań:
 - (a) $[(p \lor (q \lor r)) \leftrightarrow ((p \lor q) \lor r)$
 - (b) $[(p \rightarrow q) \leftrightarrow (\neg q \rightarrow \neg p)]$
 - (c) $[(p \land q) \leftrightarrow \neg (p \rightarrow \neg q)]$
- 17. Niech p, q, r będą zmiennymi zdaniowymi, wtedy:
 - (a) [jeżeli p = q i q = r, to $p \rightarrow q$ i $q \rightarrow r$
 - (b) [jeżeli $p \rightarrow q$ i $q \rightarrow r$, to zdanie $p \leftarrow r$ jest zawsze prawdziwe
 - (c) [] jeżeli $p \to q$ i $p \to r$, to zdanie $q \leftrightarrow r$ jest zawsze prawdziwe
- 18. Niech $p \leftrightarrow q$ oraz $q \rightarrow r$ i r będą zbiorem przesłanek, wtedy:
 - (a) | zbiór ten jest niesprzeczny
 - (b) [| wnioskiem ze zbioru przesłanek jest stwierdzenie $p \wedge q$
 - (c) [] wnioskiem ze zbioru przesłanek jest stwierdzenie $r \to p$
- 19. Rozumowanie "Jeśli dana wejściowa programu P spełnia warunek Q, to spełnia też warunek R. Zatem, jeżeli dana wejściowa programu P nie spełnia warunku Q, to nie spełnia też warunku R", jest:
 - (a) [] poprawne
 - (b) [] niepoprawne
 - (c) [| bez sensu
- 20. Dla którego z poniższych stwierdzeń istnieje kontrprzykład:
 - (a) [jeżeli $a \in \mathbb{N}$ i $b \in \mathbb{Z}$, to $a \cdot |b| < c$, gdzie c dowolną liczbą naturalną
 - (b) [] jeżeli $a\in\mathbb{N}$ i $b\in\mathbb{Z}$, to $a\cdot|b|\geq c$, gdzie c dowolną liczbą całkowitą ujemną
 - (c) $\int \sqrt{x} = z$ wtedy i tylko wtedy, gdy $z \ge 0$, gdzie $x, z \in \mathbb{R}$