Speed dates with optimization problems 10 problems in 10 minutes

tommyod @ GitHub

February 15, 2019

Introduction

Understand ↔ **Search** ↔ Solve

- Efficient algorithms exist for many problems.
- Implementations of these algorithms are also available.
- The remaining difficulty is often having enough prior knowledge to recognize a problem.

Figure: Johann Bernoulli, circa 1740

(1) The paper box problem

Introduction

Given a square piece of paper, cut the paper at a location x to maximize the volume of the resulting box.

This problem can be formulated as

minimize
$$V(x,s) = s^2x$$

subject to $2x + s = L$
 $s,x \ge 0$.

(1) The paper box problem

Problem instance

minimize
$$V(x) = (L-2x)^2x$$

subject to $x \ge 0$
 $x \le L/2$

Problem generalization

Given a smooth function $f: \mathbb{R} \to \mathbb{R}$.

minimize
$$f(x)$$

subject to $x \ge a$
 $x \le b$

Solved using differentiation.

(2) The industrial box problem

Introduction

Given a square meter price for the material of a box with no lid, construct the cheapest box having unit volume.

This problem may be formulated as

minimize
$$P(x,y,x) = xy + 2yz + 2xz$$

subject to $V(x,y,z) = xyz = 1$
 $x,y,z \ge 0$.

(2) The industrial box problem

Problem instance

Construct a *Lagrange function* $L(x,y,z,\lambda)$, solve the equations

$$L_x = y + 2z + \lambda yz = 0$$

$$L_y = x + 2z + \lambda xz = 0$$

$$L_z = 2(x+y) + \lambda xy = 0$$

$$L_\lambda = xyz - 1 = 0$$

Problem generalization

Given a smooth function $f: \mathbb{R}^n \to \mathbb{R}$.

minimize
$$f(\mathbf{x})$$

subject to $g_i(\mathbf{x}) = 0$
 $i = 1, 2, ...$

(3) The advertisement problem

Introduction

We want equal exposure to 4 segments. Given 2 advertisement channels and their associated reach in units of views/dollar, allocate the money.

$$\begin{pmatrix} 5 \\ 4 \\ 6 \\ 3 \end{pmatrix} x_1 + \begin{pmatrix} 2 \\ 3 \\ 7 \\ 7 \end{pmatrix} x_2 = \begin{pmatrix} 9 \\ 9 \\ 9 \\ 9 \end{pmatrix} + \begin{pmatrix} e_1 \\ e_2 \\ e_3 \\ e_4 \end{pmatrix}$$

This problem can be formulated as

minimize
$$\sum_{i=1}^4 e_i^2 = \mathbf{e}^T \mathbf{e} = \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2.$$

Views per unit of money

$$A = \begin{array}{c} \text{tv} & \text{paper} \\ \text{y } \circlearrowleft & \begin{pmatrix} 5 & 2 \\ 4 & 3 \\ 6 & 7 \\ 0 \circlearrowleft & 3 \end{pmatrix}$$

(3) The advertisement problem

Problem instance

minimize
$$\mathbf{e}^T \mathbf{e} = \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2$$

Problem generalization

Minimizing $\|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2$ is a *least* squares problem, solved analytically by the equation

$$\mathbf{A}^T \mathbf{A} \mathbf{x} = \mathbf{A}^T \mathbf{b}.$$

Solution

$$\begin{pmatrix} 5 \\ 4 \\ 6 \\ 3 \end{pmatrix} \mathbf{1.5} + \begin{pmatrix} 2 \\ 3 \\ 7 \\ 7 \end{pmatrix} \mathbf{0.4} = \begin{pmatrix} 9 \\ 9 \\ 9 \\ 9 \end{pmatrix} + \begin{pmatrix} -0.7 \\ -1.8 \\ 2.8 \\ -1.7 \end{pmatrix}$$

(4) The constrained advertisement problem

Introduction

Same as before, but constrained by a budget of 1 unit of money.

$$\begin{pmatrix} 5 \\ 4 \\ 6 \\ 3 \end{pmatrix} x_1 + \begin{pmatrix} 2 \\ 3 \\ 7 \\ 7 \end{pmatrix} x_2 = \begin{pmatrix} 9 \\ 9 \\ 9 \\ 9 \end{pmatrix} + \begin{pmatrix} e_1 \\ e_2 \\ e_3 \\ e_4 \end{pmatrix}$$

This problem can be formulated as

minimize
$$\sum_{i=1}^{4} e_i^2 = \mathbf{e}^T \mathbf{e} = \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2$$
subject to
$$x_1 + x_2 = 1$$

Views per unit of money

$$A = \begin{array}{c} \text{tv} & \text{paper} \\ \text{y } \circlearrowleft & \begin{pmatrix} 5 & 2 \\ 4 & 3 \\ 6 & 7 \\ 0 \circlearrowleft & 3 \end{pmatrix}$$

(4) The constrained advertisement problem

Problem instance

minimize
$$\mathbf{e}^T \mathbf{e} = \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2$$

subject to $\mathbf{x}^T \mathbf{1} = 1$

Problem generalization

Constrained least squares problem, solved by Lagrange multipliers and linear algebra.

$$\begin{pmatrix} 2\mathbf{A}^T\mathbf{A} & \mathbf{1} \\ \mathbf{1} & 0 \end{pmatrix} \begin{pmatrix} \hat{\mathbf{x}} \\ \hat{\mathbf{z}} \end{pmatrix} = \begin{pmatrix} 2\mathbf{A}^T\mathbf{b} \\ \mathbf{d} \end{pmatrix}$$

Solution

$$\begin{pmatrix} 5 \\ 4 \\ 6 \\ 3 \end{pmatrix} \mathbf{0.6} + \begin{pmatrix} 2 \\ 3 \\ 7 \\ 7 \end{pmatrix} \mathbf{0.4} = \begin{pmatrix} 9 \\ 9 \\ 9 \\ 9 \end{pmatrix} + \begin{pmatrix} -5.1 \\ -5.4 \\ -2.6 \\ -4.5 \end{pmatrix}$$

(5) The worker-assignment problem

Introduction

Assign 4 workers to 4 tasks, given a matrix *C* specifying to which degree workers enjoy each task.

This amounts to specifying X with entries in $X_{ij} \in \{0,1\}$, i.e.

$$X = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix},$$

The above yields a satisfaction of

$$6+4+8+1=19$$
.

Problem data

$$C = \begin{array}{c} \text{ole} & A & B & C & D \\ \text{ole} & 5 & 6 & 1 & 6 \\ \text{dag} & 4 & 5 & 0 & 1 \\ \text{lise} & 7 & 2 & 1 & 1 \end{array}$$

Solution space growth

n	digits in $n!$
1	1
10	7
25	26
50	65

(5) The worker-assignment problem

Problem instance

minimize
$$-\sum_{i}\sum_{j}C_{ij}X_{ij}$$
 subject to $\sum_{i}X_{ij}=1$ for every j $\sum_{i}X_{ij}=1$ for every i

Problem generalization

This is the assignment problem, solved in $\mathcal{O}(n^3)$ time, not $\mathcal{O}(n!)$.

Solution

$$C_{ij}\widehat{X}_{ij} = egin{array}{cccc} A & B & C & D \\ \text{ole} & 5 & 6 & 1 & 6 \\ \text{dag} & 4 & 5 & 0 & 1 \\ 1 & 2 & 6 & 8 \\ 1 & 2 & 1 & 1 \\ \end{array}$$

$$-\sum_{i}\sum_{j}C_{ij}\widehat{X}_{ij} = 6 + 4 + 6 + 7 = 23$$

(6) The diet problem

Introduction

Minimize the total cost of the diet, subject to the dietary constraints.

minimize
$$p_1x_1 + p_2x_2 + p_3x_3$$

subject to $16x_1 + 5x_2 + 12x_3 \ge 100$
 $150x_1 + 100x_2 + 40x_3 \ge 2000$
 $150x_1 + 100x_2 + 40x_3 \le 2500$

"Minimize cost, but get 100 grams of protein, and between 2000 and 2500 calories."

Problem data

Food	Price	Protein	Calories
x_1 eggs x_2 bread x_3 milk	p ₁ p ₂ p ₃	16 5 12	150 100 40

The numbers above are fictitious.

(6) The diet problem

Problem instance

minimize
$$(p_1 \quad p_2 \quad p_3) (x_1 \quad x_2 \quad x_3)^T$$

subject to $\begin{pmatrix} 16 & 5 & 12 \\ 150 & 100 & 40 \\ -150 & -100 & -40 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \ge \begin{pmatrix} 100 \\ 2000 \\ -2500 \end{pmatrix}$
 $x_1, x_2, x_3 \ge 0$

Problem generalization

This is a *linear program*. Efficient algorithms exist.

(7) The hotel problem

Introduction

We wish to travel 100 units of distance. There are many hotels along the way. Pick hotels to travel ~10 units per day.

Problem instance

Set M = 10. Find a sequence h_1, h_2, \dots, h_n to

minimize
$$\sum_{j} (M - (h_j - h_{j-1}))^2.$$

Examples

Traveling from x = 0 to x = 6 incurs a penalty of $(10 - (6 - 0))^2 = 4^2$. Traveling from x = 0 to x = 11 incurs a penalty of $(10 - (11 - 0))^2 = 1^2$. There are 31 hotels above, and $2^{31} = 2147483648$ possibilities.

(7) The hotel problem

Problem

Let P(j) be the minimal penalty at stop j. Realize that

$$P(j) = \min_{0 \le i < j} (P(i) + (M - (h_j - h_i))^2).$$

Solved in $\mathcal{O}(n^2)$ time, not $\mathcal{O}(2^n)$.

Problem generalization

The solution technique is called dynamic programming (DP). To use DP, we must (1) identify a recursive relationship, (2) define initial conditions and (3) solve problems in correct order.

(8) The magnet problem

Introduction

We are given 6 magnets. Choose $x_i \in \{-1, 1\}$ to minimize the total energy

$$E(\mathbf{x}) = w_{12}x_1x_2 + w_{13}x_1x_3 + \dots + w_{56}x_5x_6.$$

The problem can be formulated as

minimize
$$E(\mathbf{x}) = \mathbf{x}^T \mathbf{W} \mathbf{x}$$

subject to $x_i \in \{-1, 1\}.$

There are 2^{6-1} states, and $E(\mathbf{x})$ is not differentiable. A difficult problem.

Problem

(8) The magnet problem

Problem instance

minimize $E(\mathbf{x}) = \mathbf{x}^T \mathbf{W} \mathbf{x}$ subject to $x_i \in \{-1, 1\}.$

Problem generalization

Simulated annealing balances exploitation and exploration. Widely applicable meta-heuristic.

(9) The egg boiling problem

Introduction

Let b be the boiling time of an egg, c be the cooling time, and s be the amount of salt used. Let $f(b,c,s): \mathbb{R}^3 \to \mathbb{R}$ be the quality of a boiled egg.

This problem can be formulated as

minimize
$$-f(b,c,s)$$

subject to $b,c,s > 0$

Evaluating f(b, c, s) is expensive.

(9) The egg boiling problem

Problem generalization

Given a smooth function $f: \mathbb{R}^n \to \mathbb{R}$ which is expensive to evaluate.

minimize
$$f(\mathbf{x})$$

subject to $\mathbf{a} \le \mathbf{x} \le \mathbf{b}$

Clever sampling via bayesian optimization, which builds a probability distribution over functions. Exploration vs. exploitation.

(10) The brachistochrone problem

Introduction

A *functional* is a function from a function to a real number.

functional : function \rightarrow real number

Problem

Find the path (i.e. function) minimizing the travel time of a bead.

(10) The brachistochrone problem

Problem generalization

The problem amounts to minimizing a functional. In the space of all functions, find a function minimizing a functional. This is the domain of *calculus of variations*.

Johann Bernoulli solved the problem in 1696. The solution is a cycloid.

References (1/2)

- Strang, Gilbert. *Introduction to Applied Mathematics*. Wellesley, Mass: Wellesley-Cambridge Press, 1986.
 - Chapter 3 "The brachistochrone problem"
 - Chapter 7 "The worker-assignement problem"
 - Chapter 8 "The diet problem"
- Boyd, Stephen, and Lieven Vandenberghe. Introduction to Applied Linear Algebra. Cambridge University Press, 2018.
 - Chapter 12 "The advertisement problem"
 - Chapter 16 "The constrained advertisement problem"
- Dasgupta, Sanjoy, Christos H. Papadimitriou, and Umesh Virkumar.
 Vazirani. Algorithms. Boston, Mass: McGraw Hill, 2008.
 - Chapter 6 "The hotel problem"

References (2/2)

- Duda, Richard O., Peter E. Hart, and David G. Stork. Pattern Classification. 2 edition. New York: Wiley-Interscience, 2000.
 - Chapter 7 "The magnet problem"
- Jasper Snoek, Hugo Larochelle, Ryan P. Adams. Practical Bayesian Optimization of Machine Learning Algorithms. arXiv.org, 2012.
 - "The egg boiling problem"

Thank you for your attention.

Slides, Latex source and Python code solving the problems and generating plots:

github.com/tommyod/10_optimization_problems