AMENDMENTS TO THE CLAIMS:

This listing of claims will replace all prior versions, and listings, of claims in the application:

LISTING OF CLAIMS:

1. (Currently Amended): A composition comprising (a) a thio(meth)acrylate compound represented by the general formula (1) and (b) ultrafine inorganic particles:

wherein a linking (or connecting) group R represents an aliphatic residue, an aromatic residue, an alicyclic residue or a heterocyclic residue or an aliphatic residue having an oxygen atom, a sulfur atom, an aromatic ring, an aliphatic ring, or a heterocycle in the chain; represents one of the formulae (2), (3), (5) and (6):

$$----CH - CH_2 - \frac{1}{i}$$
 (2)

$$R_{2} \xrightarrow{\text{CH}_{2}\text{CH}_{2}\text{CH}_{2}} \xrightarrow{\text{Y}} (5)$$

$$CH_{2} \xrightarrow{\text{CH}_{2}\text{CH}_{2}} \xrightarrow{\text{Y}} (5)$$

 R_m represents each independently a hydrogen atom or a methyl group; and n is an integer of $\frac{1}{2}$ to 4; R_1 is a hydrogen atom or a methyl group; R_2 represents a hydrogen atom, a methyl group or an ethyl group; X_1 and X_2 represent oxygen atoms or sulfur atoms; i is an integer of 1 to 5; j is an integer of 0 to 2; and k, x, y and z are each independently 0 or 1.

- 2. (Canceled).
- 3. (Currently Amended): The composition according to claim-2 1, further comprising
 (c) a (meth)acrylate compound having a (thio)urethane bond.
- 4. (Currently Amended): The composition according to claim 3, further comprising (d) one or more hydroxyl group-containing (meth)acrylate compounds represented by the general formulae (7) to (10) and (e) a β-diketone compound represented by the general formula (11):

$$H_{2}C = C - C - C - CH_{2} - CH_{2} - CH_{3} - CH_{3}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \qquad \downarrow \qquad \qquad$$

$$HO \longrightarrow HC \longrightarrow \left(-CH_2 - \frac{1}{u}O - \frac{C}{U} - \frac{C}{U} - \frac{C}{U}\right)$$

$$O = Rm$$

$$O$$

$$HO = \left\{ \left(CH_2 \right) + \left(OCH_2CH_2 \right)_W O - C - C - C - CH_2 \right\}_3$$

$$(1.0)$$

wherein R_m represents a hydrogen atom or a methyl group; r and t are each an integer of 1 to 4; u is each independently an integer of 1 to 4; v is each independently an integer of 1 to 4; w is each independently an integer of 0 to 4:

$$\begin{array}{c|c} R_{4} & C & R_{5} \\ \hline \\ C & C & R_{6} \\ \hline \\ C & C & R_{6} \end{array}$$

wherein R_4 and R_5 represent hydrogen atoms or such ones that one is a hydrogen atom and another is a straight chain or branched C_1 to C_4 alkyl group; R_3 and R_6 represent hydrogen atoms or each independently a hydrogen atom, a C_1 to C_4 alkyl group, a hydroxyl group, an aliphatic residue, an aromatic residue, an alicyclic residue, a heterocyclic residue, or C_1 to C_6 alkyl group containing one or more ether groups, ester groups, thioester groups or ketone groups in the chain structure; or R_3 and R_5 may be combined together to form C_5 to C_{10} rings which may be substituted with one or more C_2 to C_4 alkylene groups.

Attorney's Docket No. 1034232-000066 Application No. 10/522,034

Page 5

- 5. (Currently Amended): The composition according to claim 4, wherein a euring layer of the composition having a thickness of 2 µm thickness that the composition is coated on the surface of a resin plate having a thiourethane bond or an epithiosulfide bond and then cured with ultraviolet rays has (1) an evaluation score of a cross-hatch, tape-peeling test (JIS-K5400) of 6 or more; and (2) a pencil scratch test value (JIS-K5400) of 3H or more.
- 6. (Previously Presented): A coating composition comprising the composition as described in claim 5.
- 7. (Previously Presented): An optical material comprising the composition as described in claim 5.
- 8. (Previously Presented) The composition according to claim 1, further comprising (c) a (meth)acrylate compound having a (thio)urethane bond.
- 9. (Currently Amended): The composition according to claim 1, further comprising (d) one or more hydroxyl group-containing (meth)acrylate compounds represented by the general formulae (7) to (10) and (e) a β -diketone compound represented by the general formula (11):

$$H_2C = C - C - CH_2 + OH$$

$$(7)$$

$$H_2C = C - C - CH_2 - CH - (CH_2 - CH_3)$$

$$Rm = C - CH_2 - CH_3 - CH_3$$

$$Rm = C - CH_3$$

$$Rm = CH$$

$$HO = \left(CH_2\right)_V \left(OCH_2CH_2\right)_W O = C = CH_2$$

$$ORM = GH_2$$

wherein R_m represents a hydrogen atom or a methyl group; r and t are each an integer of 1 to 4; u is each independently an integer of 1 to 4; v is each independently an integer of 1 to 4; w is each independently an integer of 0 to 4:

$$\begin{array}{c|c} R_4 & C & R_5 \\ \hline C & C & R_6 \\ \hline 0 & 0 & C \end{array}$$

wherein R_4 and R_5 represent hydrogen atoms or such ones that one is a hydrogen atom and another is a straight chain or branched C_1 to C_4 alkyl group; R_3 and R_6 represent hydrogen atoms or each independently a hydrogen atom, a C_1 to C_4 alkyl group, a hydroxyl group, an aliphatic residue, an aromatic residue, an alicyclic residue, a heterocyclic residue, or C_1 to C_6 alkyl group containing one or more ether groups, ester groups, thioester groups or ketone groups in the chain structure; or R_3 and R_5 may be combined together to form C_5 to C_{10} rings which may be substituted with one or more C_2 to C_4 alkylene groups.

Attorney's Docket No. 1034232-000066 Application No. 10/522,034

Page 7

10. (Currently Amended): The composition according to claim 1, wherein a euring

layer of the composition having a thickness of 2 µm thickness that the composition is coated

on the surface of a resin plate having a thiourethane bond or an epithiosulfide bond and then

cured with ultraviolet rays has (1) an evaluation score of a cross-hatch, tape-peeling test (JIS-

K5400) of 6 or more; and (2) a pencil scratch test value (JIS-K5400) of 3H or more.

11. (Previously Presented): A coating composition comprising the composition as

described in claim 1.

12. (Previously Presented): An optical material comprising the composition as

described in claim 1.