Math 107 Lecture 20

Eigenvalues and Eigenvectors

by Dr. Kurianski on November 13, 2024

» Announcements

Announcements

- * Skill Check 6 is next Wed (11/20, 110 mins)
- Solutions to Homeworks 1-10 available in Canvas Modules
- Skill Check 1-5 solution videos available
- Pre-Notes due before start of next lecture
- Assignments Due Friday (11/15):
 - * HW11 Handwritten Questions
 - * HW11 Coding Problems
 - * HW11 MATLAB File Upload
- * SOQs

» Student Opinion Questionnaires

What are SOQs?

- Anonymous surveys that are used by the department and university to evaluate instructor performance.
- Share your experience in this course with the department and university.
- Access SOQs in your CSUF Student Portal (https://my.fullerton.edu/).
- * Available from Nov. 9 until Friday, Nov. 29, 2024.
- * More info on Canvas

» Objectives

Objectives

- Find the eigenvalue and eigenvector pairs of a given matrix
- st Interpret eigenvectors and eigenvalues geometrically
- * Explore properties of eigenvalues and eigenvectors

» Question

Question: What must be true about $\det(A)$ for $A\vec{x} = \vec{0}$ to have infinitely many solutions?

» Warm-up

Let

$$\mathbf{A} = \begin{bmatrix} 1 & 0 & 2 \\ 0 & -1 & 2 \\ 2 & 2 & 0 \end{bmatrix}.$$

Find all the values of the scalar λ for which the matrix B defined by $B = A - \lambda I_3$ is not invertible.

» Shortcut for 3×3 matrices

(Reference: Pgs 259-261 of Main Textbook)

Example: Find the determinant of
$$A = \begin{bmatrix} 1 & 2 & 3 \\ -2 & -1 & -3 \\ 0 & 4 & -4 \end{bmatrix}$$

Example: Find the determinant of
$$\mathbf{B} = \begin{bmatrix} 3 & -1 & 1 \\ -3 & 0 & -4 \\ 0 & -1 & -4 \end{bmatrix}$$

Question: (True or False?) The matrix *B* above is invertible.

» Question

Question: Let
$$A = \begin{bmatrix} 1 & 4 \\ 2 & 3 \end{bmatrix}$$
, $\mathbf{w} = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$, and $\vec{v} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$.

Compute Aw and $A\vec{v}$. Sketch the vectors w, \vec{v} , Aw, and $A\vec{v}$.

Definitions of Eigenvalues and Eigenvectors

» Eigenvalues and Eigenvectors

Definition

Definition: Let A be an $n \times n$ matrix, let \vec{v} be a <u>nonzero</u> $n \times 1$ column vector, and let λ be a scalar. If

$$A\vec{\nu} = \lambda\vec{\nu}$$

then \vec{v} is an eigenvector of A and λ is an eigenvalue of A.

Remark: There are two important points here:

- 1. $\vec{\mathbf{v}} \neq \vec{0}$
- 2. \vec{v} and λ are linked to each other

Finding Eigenvalues

Procedure

Procedure: Let A be an $n \times n$ matrix. To find the eigenvalues of A, we need to find all values of λ such that

$$\det(\mathbf{A} - \lambda \mathbf{I}) = 0.$$

Example

Example: Find the eigenvalues of $A = \begin{bmatrix} 1 & 4 \\ 2 & 3 \end{bmatrix}$.

Characteristic Polynomial

Definition: Let A be an $n \times n$ matrix. The **characteristic polynomial** of A is the nth degree polynomial

$$p(\lambda) = \det(A - \lambda I).$$

Remark: To find the eigenvalues of A, solve $p(\lambda) = 0$ for λ .

Question: Chat Blast

Question: Find the eigenvalues of

$$\mathbf{A} = \begin{bmatrix} -6 & 3\\ 4 & 5 \end{bmatrix}$$

Finding Eigenvectors

» Finding eigenvectors

Example

Finding Eigenvectors

Example: Recall that one eigenvalue of $A = \begin{bmatrix} 1 & 4 \\ 2 & 3 \end{bmatrix}$ is $\lambda = 5$.

We know that $A\vec{v} = \lambda \vec{v}$ or in other words

$$(\mathbf{A} - \lambda \mathbf{I})\vec{\mathbf{v}} = \vec{0}.$$

We need to solve the above equation for \vec{v} .

» Finding eigenvectors

Exercise

Question: Given
$$A = \begin{bmatrix} -6 & 3 \\ 4 & 5 \end{bmatrix}$$
, find one eigenvector for each eigenvalue ($\lambda = 6, -7$).

Example

» Finding eignevalues and eigenvectors

Example: Find the eigenvalues of *A* and, for each eigenvalue, give one eigenvector.

$$\mathbf{A} = \begin{bmatrix} 2 & -1 & 1 \\ 0 & 1 & 6 \\ 0 & 3 & 4 \end{bmatrix}$$

» Geometry of eigenvalues/eigenvectors

Question: Poll

Question: Let A be a 2×2 matrix. Suppose that A has an eigenvalue of $\lambda = -3$ with corresponding eigenvector

$$ec{
u} = egin{bmatrix} 1 \\ -1 \end{bmatrix}$$
 . Which of the following represents $A ec{
u}$?

» Properties of Eigenvalues and Eigenvectors

Let *A* be an $n \times n$ invertible matrix. The following are true:

- 1. If *A* is triangular, then the diagonal elements of *A* are the eigenvalues of *A*.
- 2. If λ is an eigenvalue of A with eigenvector \vec{v} then $\frac{1}{\lambda}$ is an eigenvalue of A^{-1} with eigenvector \vec{v} .
- 3. If λ is an eigenvalue of A then λ is an eigenvalue of A^T .
- 4. The sum of the eigenvalues of A is equal to the trace of A (sum of the diagonal elements)
- 5. The product of the eigenvalues of A is equal to det(A)

» Invertible Matrix Theorem

Let *A* be an $n \times n$ matrix. The following are equivalent.

- 1. A is invertible
- 2. $det(A) \neq 0$
- 3. A does not have an eigenvalue of 0