BC556 THRU BC559

Small Signal Transistors (PNP)

Dimensions in inches and (millimeters)

FEATURES

- PNP Silicon Epitaxial Planar Transistors for switching and AF amplifier applications.
- These transistors are subdivided into three groups A, B and C according to their current gain. The type BC556 is available in groups A and B, however, the types BC557 and BC558 can be supplied in all three groups. The BC559 is a low-noise type available in all three groups. As complementary types, the NPN transistors BC546 ... BC549 are recommended.
- On special request, these transistors are also manufactured in the pin configuration TO-18.

MECHANICAL DATA

Case: TO-92 Plastic Package Weight: approx. 0.18 g

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25 °C ambient temperature unless otherwise specified

	Symbol	Value	Unit
Collector-Base Voltage BC: BC: BC558, BC:	557 –V _{CBO}	80 50 30	V V V
Collector-Emitter Voltage BC: BC: BC558, BC:	557 –V _{CES}	80 50 30	V V V
Collector-Emitter Voltage BC:	557 –V _{CEO}	65 45 30	V V V
Emitter-Base Voltage	-V _{EBO}	5	V
Collector Current	-I _C	100	mA
Peak Collector Current	-I _{CM}	200	mA
Peak Base Current	-I _{BM}	200	mA
Peak Emitter Current	I _{EM}	200	mA
Power Dissipation at T _{amb} = 25 °C	P _{tot}	500 ¹⁾	mW
Junction Temperature	Tj	150	°C
Storage Temperature Range	T _S	-65 to +150	°C

¹⁾ Valid provided that leads are kept at ambient temperature at a distance of 2 mm from case.

BC556 THRU BC559

ELECTRICAL CHARACTERISTICS

Ratings at 25 °C ambient temperature unless otherwise specified

	Symbol	Min.	Тур.	Max.	Unit	
h-Parameters at $-V_{CE} = 5 \text{ V}$, $-I_{C} = 2 \text{ mA}$, $f = 1 \text{ kHz}$ Current Gain Current Gain Group A B	h _{fe}		220 330			
Input Impedance Current Gain Group A B C	h _{fe} h _{ie} h _{ie} h _{ie}	1.6 3.2 6	600 2.7 4.5 8.7	- 4.5 8.5 15	- kΩ kΩ kΩ	
Output Admittance Current Gain Group A B C	h _{oe} h _{oe} h _{oe}	_ _ _	18 30 60	30 60 110	μS μS μS	
Reverse Voltage Transfer Ratio Current Gain Group A B C	h _{re} h _{re} h _{re}	- - -	1.5 · 10 ⁻⁴ 2 · 10 ⁻⁴ 3 · 10 ⁻⁴	_ _ _	_ _ _	
DC Current Gain at –V _{CE} = 5 V, –I _C = 10 μA						
Current Gain Group A B C	h _{FE} h _{FE} h _{FE}	_ _ _	90 150 270	_ _ _	_ _ _	
at $-V_{CE} = 5 \text{ V}$, $-I_{C} = 2 \text{ mA}$ Current Gain Group A B C	h _{FE} h _{FE} h _{FE}	110 200 420	180 290 500	220 450 800	_ _ _	
at $-V_{CE} = 5 \text{ V}$, $-I_{C} = 100 \text{ mA}$ Current Gain Group A B C	h _{FE} h _{FE}	- - -	120 200 400	_ _ _	_ _ _	
Thermal Resistance Junction to Ambient Air	R _{thJA}	_	_	250 ¹⁾	K/W	
Collector Saturation Voltage at $-I_C = 10$ mA, $-I_B = 0.5$ mA at $-I_C = 100$ mA, $-I_B = 5$ mA	-V _{CEsat} -V _{CEsat}	_ _	80 250	300 650	mV mV	
Base Saturation Voltage at $-I_C = 10$ mA, $-I_B = 0.5$ mA at $-I_C = 100$ mA, $-I_B = 5$ mA	−V _{BEsat} −V _{BEsat}	_ _	700 900	_ _	mV mV	
Base-Emitter Voltage at $-V_{CE} = 5 \text{ V}$, $-I_{C} = 2 \text{ mA}$ at $-V_{CE} = 5 \text{ V}$, $-I_{C} = 10 \text{ mA}$	−V _{BE} −V _{BE}	600 -	660 -	750 800	mV mV	
	-ICES -ICES -ICES -ICES -ICES -ICES -ICES	- - - - -	0.2 0.2 0.2 - -	15 15 15 4 4 4	nA nA nA μA μA	
1) Valid provided that leads are kept at ambient temperature at a distance of 2 mm from case.						

BC556 THRU BC559

ELECTRICAL CHARACTERISTICS

Ratings at 25 °C ambient temperature unless otherwise specified

	Symbol	Min.	Тур.	Max.	Unit
Gain-Bandwidth Product at –V _{CE} = 5 V, –I _C = 10 mA, f = 100 MHz	f _T	_	150	_	MHz
Collector-Base Capacitance at –V _{CB} = 10V, f = 1 MHz	C _{CBO}	_	_	6	pF
Noise Figure at $-V_{CE}$ = 5 V, $-I_{C}$ = 200 μ A, R_{G} = 2 $k\Omega$, f = 1 kHz, Δ f = 200 Hz BC556, BC557, BC558 BC559	F F		2	10 4	dB dB
Noise Figure at $-V_{CE}$ = 5 V, $-I_{C}$ = 200 μ A, R_{G} = 2 $k\Omega$, f = 3015000 Hz	F	_	1.2	4	dB

RATINGS AND CHARACTERISTIC CURVES BC556 THRU BC559

Admissible power dissipation versus temperature

Valid provided that leads are kept at ambient temperature at a distance of 2 mm from case

RATINGS AND CHARACTERISTIC CURVES BC556 THRU BC559

DC current gain versus collector current

Collector current versus base-emitter voltage

Collector-base cutoff current versus junction temperature

Collector saturation voltage versus collector current

RATINGS AND CHARACTERISTIC CURVES BC556 THRU BC559

Collector-base capacitance, Emitter-base capacitance versus reverse bias voltage

Gain-bandwidth product versus collector current

Relative h-parameters versus collector current

Noise figure versus collector current

RATINGS AND CHARACTERISTIC CURVES BC556 THRU BC559

Noise figure versus collector current

Noise figure versus collector-emitter voltage

