Лабораторная работа №5

"Модель Лотки-Вольтерры"

Выполнил: Кармацкий Никита Сергеевич

НФИбд-01-21

Цель работы:

Изучить модель Лотки-Вольтерры тип "Хищник - Жертва". Применить ее на практике для решения задания лабораторной работы

Теоретическая справка:

• Модель Лотки—Вольтерры — модель взаимодействия двух видов типа «хищник — жертва», названная в честь её авторов, которые предложили модельные уравнения независимо друг от друга. Такие уравнения можно использовать для моделирования систем «хищник — жертва», «паразит — хозяин», конкуренции и других видов взаимодействия между двумя видами.

Данная двувидовая модель основывается на следующих предположениях:

- 1. Численность популяции жертв х и хищников у зависят только от времени (модель не учитывает пространственное распределение популяции на занимаемой территории)
- 2. В отсутствии взаимодействия численность видов изменяется по модели Мальтуса, при этом число жертв увеличивается, а число хищников падает
- 3. Естественная смертность жертвы и естественная рождаемость хищника считаются несущественными
- 4. Эффект насыщения численности обеих популяций не учитывается
- 5. Скорость роста численности жертв уменьшается пропорционально численности хищников

Математическая модель:

$$egin{cases} rac{dx}{dt} = (-ax(t) + by(t)x(t)) \ rac{dy}{dt} = (cy(t) - dy(t)x(t)) \end{cases}$$

В этой модели x – число жертв, y - число хищников.

Коэффициент a описывает скорость естественного прироста числа жертв в отсутствие хищников, c - естественное вымирание хищников, лишенных пищи в виде жертв.

Вероятность взаимодействия жертвы и хищника считается пропорциональной как количеству жертв, так и числу самих хищников (xy). Каждый акт взаимодействия уменьшает популяцию жертв, но способствует увеличению популяции хищников (члены -bxy и dxy в правой части уравнения).

Математический анализ этой (жёсткой) модели показывает, что имеется стационарное состояние, всякое же другое начальное состояние приводит к периодическому колебанию численности как жертв, так и хищников, так что по прошествии некоторого времени такая система вернётся в изначальное состояние.

Стационарное состояние системы (положение равновесия, не зависящее от времени решения) будет находиться

в точке $x_0=\frac{c}{d}, y_0=\frac{a}{b}$. Если начальные значения задать в стационарном состоянии $x(0)=x_0, y(0)=y_0$, то в любой момент времени численность популяций изменяться не будет. При малом отклонении от положения равновесия численности как хищника, так и жертвы с течением времени не

возвращаются к равновесным значениям, а совершают периодические колебания вокруг стационарной точки. Амплитуда колебаний и их период определяется

начальными значениями численностей x(0),y(0). Колебания совершаются в противофазе.

Задание лабораторной работы:

Вариант 32

Для модели «хищник-жертва»:

$$\begin{cases} rac{dx}{dt} = (-0.25x(t) + 0.025y(t)x(t)) \ rac{dy}{dt} = (0.45y(t) - 0.045y(t)x(t)) \end{cases}$$

Постройте график зависимости численности хищников от численности жертв,

а также графики изменения численности хищников и численности жертв при следующих начальных условиях: $x_0=8, y_0=11$. Найдите стационарное состояние системы.

Задачи:

- 1. Построить график зависимости численности хищников от численности жертв
- 2. Построить график зависимости численности хищников и численности жертв от времени
- 3. Найти стационарное состояние системы

Основные этапы выполнения работы

1. Результат выполнения кода на Julia. График зависимости численности хищников от численности жертв

Рис.1 График зависимости численности хищников от численности жертв на Julia

2. Результат выполнения кода на Julia. График зависимости численности хищников и численности жертв от времени

Рис.2 График зависимости численности хищников и численности жертв от времени на Julia

3. Результат выполнения кода на Julia. Стационарное состояние системы

Рис.3 Стационарное состояние системы на Julia

4. Результат выполнения кода на OpenModelica. График зависимости численности хищников от численности жертв

Рис.4 График зависимости численности хищников от численности жертв на OpenModelica

5. Результат выполнения кода на OpenModelica. График зависимости численности хищников и численности жертв от времени

Рис.5 График зависимости численности хищников и численности жертв от времени на OpenModelica

6. Результат выполнения кода на OpenModelica. Стационарное состояние системы

Рис.6 Стационарное состояние системы на OpenModelica

Анализ полученных результатов. Сравнение языков.

В итоге проделанной работы мы построили график зависимости численности хищников от численности жертв, а также графики изменения численности хищников и численности жертв на языках Julia и OpenModelica. Построение модели хищник-жертва на языке openModelica занимает меньше строк, чем аналогичное построение на Julia.

Вывод:

В ходе выполнения лабораторной работы была изучена модель хищникжертва и построена модель на языках Julia и Open Modelica.

Список литературы. Библиография

- Документация по Julia: https://docs.julialang.org/en/v1/
- Документация по OpenModelica: https://openmodelica.org/
- Решение дифференциальных уравнений: https://www.wolframalpha.com/
- Модель Лотки—Вольтерры: https://mathit.petrsu.ru/users/semenova/MathECO/Lections/Lotka_Volterra.pdf

Спасибо за внимание