ELEC2400

ELECTRONIC CIRCUITS

FALL 2021-22

HOMEWORK 2

Issued on Oct. 5, 2021 (Tuesday) Due on Oct. 19, 2021 (Tuesday, 11:59pm)

Submit your homework online https://canvas.ust.hk Do not do your work on the question papers. Use separate blank papers

Q1. Compute and write the answers in polar form, i.e., $r \angle \theta^{\circ}$.

a.
$$\frac{2j}{10 \angle 30^{\circ}}$$
 b. $\frac{15e^{j\frac{\pi}{2}}}{-3}$ c. $\frac{5 \angle 60^{\circ}}{j+2}$ d. j^{j}

b.
$$\frac{15e^{j\frac{\pi}{2}}}{-3}$$

c.
$$\frac{5\angle 60^{\circ}}{i+2}$$

Q2. Find the impedance Z_{AB} and write the answer in rectangular form.

Q3. Consider the following circuit.

- (a) Draw all the impedances $(Z_R, Z_L \text{ and } Z_C)$ in one impedance diagram.
- (b) Draw all the phasor voltages (V_S, V_R, V_L and V_C) in one phasor diagram.
- (c) Evaluate $v_S(t)$, $v_R(t)$, $v_L(t)$ and $v_C(t)$ at t = 1 ms.

Q4. Find I_1 , V_1 and V_2 , and write the answers in polar form.

Q5. Find V_1 and write the answer in polar form.

Q6. Find and draw the Thevenin's equivalent circuit with respect to the terminals a and b, and write the answers in polar form.

Q7. Use Norton's theorem to find $v_1(t)$ in the network.

Q8. Use source transformation(s) to find $i_1(t)$ and $v_1(t)$ in the network.

Q9. Find $i_1(t)$ and $v_1(t)$.

Q10. Consider the following circuit.

- (a) Compute the average AC power for each circuit element.
- (b) Specify whether each circuit element is supplying AC power, absorbing AC power (dissipating power), or neither.
- (c) Verify that the AC power balance is satisfied.