Birthdays and picture cards

Vikram Bharadwaj Ramesh

Problem Statement:

Verify the *Birthday Problem* and the *Coupon Collector's* Problem. So, you will need to run experiments to validate the following two expressions:

$$C_1(m) \sim \sqrt{\pi m / 2}$$

$$B_0(m) \sim m \ln m$$

Hash Function:

A Hash function is implemented by calculating a modulo of random value with the number of bins or slots i.e. Index number where the value needs to be stored = random Integer value % bin/slot value.

Analysis:

Coupon Collector:

According to the theorem, the expected number of coupons needed to complete a collection of size M is ~M In M. So here we are supposed to calculate the hashes/throws before the first collision in encountered. To calculate this, I am using the "initializeArray1" method. In this method, count is incremented until the first collision is occurred. When the first collision occurs, the loop is stopped, and the value of count is stored.

Observation:

Number of Runs	Bins/Slots	Experimental Value	Theoretical Value
50	50	9.42	8.86226925
	100	10.28	12.5331414
	150	16.18	15.3499006
	200	16.84	17.7245385
	250	18.64	19.8166365
	300	19.7	21.7080376

From the above analysis, we can see that the experimental value is almost equal to $\sqrt{(\pi * M/2)}$

Birthday Problem:

In the Birthday Problem, we need to calculate the number of hashes prior to the values being filled in the array. To calculate this, I am using the "InitializeArray2" method. This method will be called until all the values are filled in the array. For each iteration, all the elements of the array are checked.

Observation:

Number of Runs	Bins/Slots	Experimental Value	Theoretical Value
50	50	256.42	195.6011503
	100	586.28	460.5170186
	150	901.18	751.5952941
	200	1312.84	1059.663473
	250	1603.64	1380.365229
	300	2113.7	1711.134742

From the above analysis, we can verify that that the Experimental value is almost equal to: no. of bins*In (no of bins) i.e **M** * In **M**

Conclusion:

From the above experiment, we can conclude that Hashing function is used to solve and calculate the Birthday and Coupon Collector problems. The experimental value and theoretical value is nearly same and therefore the two expressions which are given can be verified.