Informatique théorique

Lemme de l'étoile

Feuille de travaux dirigés nº6

9 - 13 mars 2009

On rappelle l'énoncé du lemme de l'étoile :

Lemme : Si L est un langage rationnel, alors il existe un entier n tel que, pour tout mot w de L tel que $|w| \ge n$, w peut être factorisé en w = xyz de telle sorte que

- 1. pour tout $i \geq 0$, $xy^iz \in L$
- 2. |y| > 0
- $3. |xy| \leq n$
- 1. En utilisant le lemme de l'étoile dire (et prouver ...) si les langages suivants sont rationnels :
- a) L_1 , l'ensemble des nombres premiers écrits en unaire.
- **b)** $L_2 = \{0^m 1^n 0^{m+n} : m \ge 1 \text{ et } n \ge 1\}.$
- c) $L_3 = \{a^i b^m c^m : i \ge 1, m \ge 1\}.$
- **2.** Soient $L_1 = \{a^{2i}b^jc^j : i \ge 1, j \ge 0\}$ et $L_2 = b^*c^*$ et soit $L = L_1 \cup L_2$.
- a) Montrer que L satisfait les conditions du lemme de l'étoile.
- **b)** Montrer que L n'est pas rationnel.
- c) Conclusion.
- **3.** Soient $L_1 = \{a^i : i \text{ est un carré}\}\$ et $L_2 = \{w \in (a+b+c)^* : |w|_a + |w|_b \text{ est un carré}\}.$
- a) Montrer en utilisant le lemme de pompage que L_1 n'est pas rationnel.
- b) Montrer en utilisant des propriétés de cloture que L_2 n'est pas rationnel.
- 4. Les conjugués

Soit Σ un alphabet fini. Deux mots $w,w'\in \Sigma^\star$ sont conjugués s'il existe deux mots $u,v\in \Sigma^\star$ tels que w=uv et w'=vu. Dans la suite, on note C(w) l'ensemble des conjugués du mot $w\in \Sigma^\star$. De même, pour un langage $L\subset \Sigma^\star$, on note $C(L)=\bigcup_{w\in L}C(w)$ l'ensemble des conjugués des mots de L.

- a) Donner C(aabaab).
- **b)** Donner $C(a^nb^n|n>0)$.
- c) Montrer que si L est un langage rationnel alors C(L) l'est aussi, en adaptant l'automate fini qui reconnaît L.
- **d**) Donner un exemple de votre construction.