

Instituto Superior Técnico 2023/2024

Ensaios em Voo

Trabalho experimental envolvendo processamento e análise de dados

Grupo 2:

Leonor Alves - 102845 Paulo Campos - 103042 Lourenço Gouveia Faria - 103354

Professor Agostinho Rui Alves da Fonseca

junho de 2024

Conteúdo

Co	onteudo	1
1	Introdução	1
2	EV_2024.02A: Perguntas 1 - 4 2.1 Análise temporal das grandezas medidas	
3	EV_2024.02B: Perguntas 5 - 11 3.1 Análise temporal dos dados de voo	6
4	4.3.2Integridade	12 12 13
5	Conclusão	16
Re	eferências	17
A	Anexos - Código A.1 EV_2024.02A	

1 Introdução

No âmbito da unidade curricular de Ensaios em Voo desenvolveu-se um trabalho experimental envolvendo o processamento e análise de dados obtidos durante a realização de ensaios em voo. Estes dados são recolhidos com recurso a diferentes equipamentos durante os ensaios de várias aeronaves.

Ao longo deste trabalho vão ser analisados 3 ficheiros de dados com recurso ao *MATLAB*. O ficheiro EV_2024.02A contem dados obtidos em laboratório com recurso a um sistema de instrumentação PCM de Classe I, de acordo com o estipulado no Capítulo 4 das normas RCC IRIG 106-23. O ficheiro EV_2024.02B apresenta dados obtidos em voo numa aeronave DORNIER-DASSAULT ALPHA-JET e o ficheiro EV_2024.02C contém dados recolhidos num voo de calibração de um sistema convencional de navegação.

De realçar, que de modo a analisar os ficheiros no MATLAB, estes foram convertidos em txt:

- "EV_2024.02A"→ "EV_2024_A.txt";
- "EV_2024.02B"→ "EV_2024_B.txt";
- "EV_2024.02C"→ "EV_2024_C.txt".

2 EV_2024.02A: Perguntas 1 - 4

Como referido anteriormente, o ficheiro EV_2024.02A contem dados obtidos em laboratório e utilizando um sistema de instrumentação PCM de Classe I, de acordo com o estipulado no Capítulo 4 das normas RCC IRIG 106-23 [1]. Desta forma, ao longo desta secção iremos fazer o tratamento das grandezas de tempo (t) e de aceleração (a_1, a_2, a_3, a_4) .

2.1 Análise temporal das grandezas medidas

De forma a analisar a evolução temporal das acelerações, desenvolveram-se os gráficos de cada grandeza em função do tempo que se encontram representados em seguida.

Figura 1: Evolução temporal das acelerações medidas

Através da observação dos gráfico sé possível constatar que as acelerações são oscilatórias amortecidas, tendendo para zero as 3 primeiras.

2.2 Espetro unilateral de amplitude

Na figura 2 encontram-se representados os espetros unilaterais de amplitude [2] de cada um dos 4 sinais, nos quais a frequência se encontra em $\rm Hz$.

Figura 2: Espetro unilateral de amplitude

2.3 Sinais e frequências com picos significativos de amplitude

Para cada sinal, a_1, a_2, a_3 e a_4 , existem certas frequências às quais correspondem picos de amplitude. Estes valores serão apresentados de acordo com o sinal ao longo das tabelas seguintes.

Sinal	a	1
Frequência (Hz)	2.994	4.990
Amplitude (m/s ²)	6.047	3.679

Tabela 1: Frequência e amplitude dos picos de amplitude do sinal a_1

Sinal	а	2
Frequência (Hz)	0	4.990
Amplitude (m/s ²)	9.807	3.669

Tabela 2: Frequência e amplitude dos picos de amplitude do sinal a_2

Sinal	а	3
Frequência (Hz)	0	2.994
Amplitude (m/s ²)	9.807	6.040

Tabela 3: Frequência e amplitude dos picos de amplitude do sinal a_3

Sinal	a_4			
Frequência (Hz)	0.9981	2.994	10.021	20.002
Amplitude (m/s^2)	5.584	3.088	2.472	0.9715

Tabela 4: Frequência e amplitude dos picos de amplitude do sinal a_4

A partir da análise dos gráficos presentes na figura 2, foi possível retirar os valores de frequências e amplitude nos quais se registam picos de amplitude. Estes picos demonstram que o sinal de cada aceleração foi recebido pelo sistema de instrumentação.

No caso da aceleração 1, o sinal foi recebido 2 vezes, às frequências de $2.994 \rm Hz$ e de $4.990 \rm HZ$, tendo a primeira uma amplitude superior de $6.047 m/s^2$. A aceleração 2 também foi detetada 2 vezes, a $0 \rm Hz$, com a amplitude mais alta de $9.807 \rm m/s^2$, e a $4.990 \rm Hz$. Em relação à aceleração 3, o sinal foi recebido às frequências de $0 \rm Hz$ e $2.994 \rm Hz$, tendo a primeira frequência uma amplitude de $9.807 \rm m/s^2$. Por fim, o sinal da a aceleração 4 foi detetado 4 vezes para as frequências $0.998 \rm Hz$, $2.994 \rm Hz$, $10.021 \rm Hz$ e $20.002 \rm Hz$. Para a frequência mais baixa foi recebido o maior pico de amplitude de $5.584 \rm m/s^2$.

Analisando os resultados obtidos, é possível concluir que o maior pico de magnitude se dá a menores frequências, diminuindo à medida que a frequência aumenta. Em relação às restantes frequências não mencionadas, é considerado que a amplitude do sinal é aproximadamente zero, o que significa que não há ruído na transmissão.

3 EV_2024.02B: Perguntas 5 - 11

No segundo ficheiro de dados deste projeto encontram-se dados referentes à aeronave *Dornier-Dassault Alpha-Jet* ao longo de um voo. Dos diversos dados recolhidos, listam-se alguns:

- t tempo expresso em segundos (s)
- EAS velocidade ar equivalente (Equivalent Airspeed EAS) expressa em knots (kn)
- QNE altitude barométrica QNE expressa em feet (ft)
- a_z aceleração vertical expressa em metros por segundo ao quadrado (m/s^2)
- $N2_{rh}$ velocidade de rotação N2 do motor direito, expressa em percentagem do regime de funcionamento nominal
- EGT_{rh} temperatura dos gases de escape (Exhaust Gas Temperature EGT) do motor direito, expressa em kelvin (K)
- FF_{rh} consumo de combustível (Fuel Flow FF) do motor direito, expresso em quilogramas por hora (kg/h)
- $N2_{lt}$ velocidade de rotação N2 do motor esquerdo, expressa em percentagem do regime de funcionamento nominal
- EGT_{lt} temperatura dos gases de escape (Exhaust Gas Temperature EGT) do motor esquerdo, expressa em kelvin (K)
- FF_{lt} consumo de combustível (Fuel Flow FF) do motor esquerdo, expresso em quilogramas por hora (kg/h)

3.1 Análise temporal dos dados de voo

Para possibilitar uma análise da sua variação temporal, construíram-se os 9 gráficos seguintes em função do tempo:

Figura 3: Variação temporal dos dados de voo recolhidos

A coluna da esquerda da figura 4 corresponde a dados do motor esquerdo da aeronave, a coluna do meio a dados de voo genéricos da aeronave e a coluna da direita a dados do motor direito da aeronave.

3.2 Análise temporal da aceleração vertical

O gráfico central inferior corresponde às acelerações verticais a que a aeronave esteve sujeita durante o voo e encontram-se expressas em m/s^2 . De modo a adimensionalizar este valores, considerouse a aceleração gravítica como valor de referência $1G=9.80665\,m/s^2$, aceleração da gravidade ao nível médio das águas do mar numa atmosfera padrão ICAO.

Figura 4: Variação temporal da aceleração vertical em G's

A linha horizontal representada a tracejado representa o valor de referência para 1G e os pontos a laranja as leituras de aceleração efetuadas em cada momento do voo.

3.3 Extremos relativos das acelerações verticais

Seguidamente procedeu-se ao armazenamento dos dados de aceleração vertical que correspondem aos extremos relativos, isto é, picos e vales dos valores observados na secção anterior. No total, registam-se 1274 extremos relativos, sendo que uma metade corresponde a 637 picos e a outra a 637 vales.

Abaixo encontra-se uma tabela que serve como excerto dos dados de um ficheiro com estes exremos a ser entregue em conjunto com este relatório:

- 1 1- 1			8.004				
Aceleração vertical [G's]	0.937	0.932	0.9417	0.936	0.941	0.934	

Tabela 5: Excerto de dados dos extremos relativos da aceleração vertical em G's

Como pode ser visto, os valores referentes às acelerações intercalam entre subida e descida até ao fim. Realizou-se também uma representação deste dados:

Figura 5: Representação gráfica dos extremos relativos máximos e mínimos da aceleração vertical

Como detalhe curioso, é possível observar que ligando todos os extremos relativos máximos e os extremos relativos mínimos entre si, em nenhuma situação haverá cruzamento das linhas que interligam estes pontos:

Figura 6: Representação gráfica ampliada dos extremos relativos máximos e mínimos da aceleração vertical

3.4 Algoritmo para deteção de ciclos de aceleração vertical

O objetivo desta secção é desenvolver um algoritmo que permita a contagem de ocorrência de ciclos de aceleração vertical. O processo de contagem de uma ocorrência de um ciclo de valor N_1 é iniciado quando a aceleração vertical ultrapassa o valor N_1 ($a_z>N_1$ se $N_1>1G$ ou $a_z< N_1$ se $N_1<1G$) e é concluído quando o valor da aceleração vertical ultrapasse o valor N_2 ($a_z< N_2$ se $N_1>1G$ ou $a_z>N_2$ se $N_1<1G$).

O design do algoritmo foi feito através de um sistema de condições que verificam se o valor da aceleração está de acordo com as *flags* mencionadas no parágrafo anterior. Em caso afirmativo, é acionada uma variável booleana para 1 e que só transita para 0 quando a segunda condição for respeitada. Deste modo, evita-se a perda de informação referente ao início da contagem ciclos que começaram antes de um anterior ter acabado.

```
function flag_status = acc_cicle(N_1, N_2, acc, time)
    flag = false;
    count = 0;
    for iter=1:size(acc,1)
        if (((acc(iter)>N_1) && (N_1>1)) || ((acc(iter)<N_1) && (N_1<1))) && (flag == false)
            count = count + 1;
            flag_status(count, :) = [0, 0, 0, 0];
            flag = true;
            flag_status(count, 1) = time(iter);
            flag_status(count, 2) = acc(iter);
        if (((acc(iter)<N_2) && (N_1>1)) || ((acc(iter)>N_2) && (N_1<1))) && (flag == true)
            flag = false;
            flag_status(count, 3) = time(iter);
            flag_status(count, 4) = acc(iter);
    end
    if count == 0
        flag_status = [];
    elseif flag_status(count,3) == 0
       flag_status(count,:) = [];
    end
end
```

Pretende-se aplicar este algoritmo com as flags N_1 e N_2 apresentadas na tabela 6:

Flag								
N_1	2.5	4.0	5.0	6.0	7.0	0.0	-1.5	-2,5
N_2	2.2	3.7	4.7	5.7	6.7	0.3	-1.2	-2.2

Tabela 6: $flags N_1$ e N_2 para início e fim de contagem de ciclos de aceleração vertical

Aplicando o algoritmo para os diversos valores, obtiveram-se os resultados apresentados na tabela abaixo:

Tabela 7: Números de ciclos para cada flag

De forma a ilustrar o comportamento da deteção em alguns dos dados, contruiu-se o gáfico seguinte. Nesta porção dos dados, é notório que as duas primeiras *flags* detetam os ciclos da forma que é esperada:

Figura 7: Representação gráfica da aplicação do algorimto para as *flags* da tabela 6 numa porção dos dados

A vermelho encontra-se representado o início da contagem de cada ciclo correspondente aos valores N_1 e a azul o fim do ciclo correspondente aos valores N_2 .

Aplicaram-se as mesmas *flags* para os dados referentes à subsecção 3.3 e os resultados foram iguais no que toca à quantização de ciclos:

Tabela 8: Números de ciclos para cada flag aplicado aos extremos relativos

Olhando para uma representação gráfica, é de notar que agora há mais ciclos a terminar no mesmo instante e o início e fim de cada ciclo naturalemente ocorre mais tardiamente ou no mesmo instante que nos dados de aceleração usuais:

Figura 8: Representação gráfica da aplicação do algorimto para as *flags* da tabela 6 numa porção dos dados dos extremos relativos

4 EV_2024.02C: Perguntas 12 - 16

O ficheiro EV_2024.02C contem os dados recolhidos durante um voo de calibração de um sistema convencional de navegação, com o objetivo de avaliar o desempenho do sistema de navegação *Euro-pean Geostationary Navigation Overlay Service* (EGNOS). O ficheiro inclui dados de tempo (RX_TOM e RX_WEEK), número de satélites (NSV_LOCK e NSV_USED), níveis de proteção (NS_HPL e NS_VPL), latitude (NS_LAT e REF_LAT), longitude (NS_LON e REF_LON) e altitude (NS_ALT e REF_ALT), tanto para a solução de navegação EGNOS como para a posição de referência ("verdadeira") da aeronave.

A avaliação do EGNOS será realizada de acordo com os requisitos do *International Civil Aviation Organization* (ICAO), especificados no documento *Standards and Recommended Practices* (SARPs), para três modos de operação: CAT-I¹, APV-II² e APV-I³, para um sistema *Satellite Based Augmentation System* (SBAS):. Deste modos, os parâmetros de desempenho a serem avaliados são:

- Exatidão: Erros de posição horizontal (HPE) e vertical (VPE);
- Integridade: Níveis de proteção horizontal (HPL) e vertical (VPL), e sua relação com os erros de navegação;
- Disponibilidade: Percentagem de tempo em que o sistema permite um determinado modo de operação;
- Continuidade: Contagem de períodos ininterruptos de disponibilidade do sistema.

A análise destes dados visa determinar os erros do sistema EGNOS; representar graficamente os erros, os limites de proteção e o número de satélites utilizados; calcular os parâmetros de desempenho; identificar eventos de integridade; e, finalmente, comentar os resultados obtidos. Esta avaliação, contribuí para uma compreensão abrangente do desempenho do EGNOS em cenários reais e a conformidade com os requisitos do ICAO.

4.1 Erros do sistema de navegação (HPE e VPE)

O objetivo desta secção é calcular os erros do sistema de navegação EGNOS quer para as posições horizontais - *Horinzontal Position Error* (HPE) - quer para as verticais - *Vertical Position Error* (VPE) - para posterior análise e comparação com outras grandezas, de modo a retirar conclusões sobre o sistema de navegação.

O erros de posição são definidos como as distâncias absolutas (em metros) entre a posição de referência ("verdadeira") - obtidos pelo programa *TOTAL TRIMBLE CONTROL* - e a posição medida pelo sistema EGNOS, no plano horizontal e vertical, HPE e VPE, respetivamente. A posição geográfica é medida no sistema padrão de coordenadas WGS84, que considera a Terra como um elipsoide com componentes de latitude, longitude e altitude.

De modo a obter o HPE, em metros, foram utilizadas duas abordagens:

• Função Haversine: Esta abordagem consiste na implementação da fórmula de Haversine, utilizada para calcular a distância entre dois pontos numa esfera, dadas as suas latitudes e longitudes. É relativamente simples de implementar e computacionalmente eficiente. No entanto, assume que a Terra é uma esfera perfeita, o que não é totalmente preciso. Isto pode levar a pequenas imprecisões no cálculo da distância. [3]

Uso da função Haversine:

```
distance_m = haversine(lat, lon, lat_ref, lon_ref) ;
```

Função geodetic2enu: Outra abordagem envolve a conversão das coordenadas WGS84 (latitude, longitude, altitude) em coordenadas locais East-North-Up (ENU). Usando a função geodetic2enu do MATLAB, que utiliza o elipsoide WGS84 para realizar essa conversão, podemos

¹CAT-I: precision approach CATegory I

²**APV-II:** Approach Procedure with Vertical guidance II

³APV-I: Approach Procedure with Vertical guidance I

determinar as componentes: Este (x_East), Norte (y_North) e Cima (z_Up). O HNE é então calculado como a raiz quadrada da soma dos quadrados das componentes x_East e y_North. Essa abordagem permite uma consideração mais precisa do erro horizontal. [4]

Uso da função geodetic2en:

```
[x_East,y_North,zUp] = geodetic2enu(lat, lon, ...
    alt, lat_ref, lon_ref, alt_ref, ...
    wgs84Ellipsoid);
HPE = sqrt(x_East.^2+y_North.^2);
distance_m = haversine(lat, lon, lat_ref, lon_ref);
```

Comparando as diferenças das abordagens obtidas, através do vetor *dif_h* do código no anexo A.3, apesar das diferenças pouco significativas (ordem dos mm), optou-se por utilizar a abordagem da função *geodetic2enu*, garantindo maior rigor, uma vez que eficiência computacional não é prioritária.

De modo a obter o VPE, em metros, a abordagem é mais direta. Na realidade, uma vez obtido o valor para a *zUp* apartir da função *geodetic2enu*, basta fazer o módulo do mesmo para obter a diferença entre a altitude de referência e a altitude medida pelo EGNOS.

4.2 Análise temporal dos erros dos sistema, dos limites de proteção e do número de satélites do sistema de navegação

Uma vez obtidos os valores HPE e VPE é possível, representar graficamente os erros e os limites de proteção horizontais (fig. 9) e verticais (fig. 10) em função do tempo (RX_TOM).

Figura 9: HPE e HPL em função do tempo

Figura 10: VPE e VPL em função do tempo

Através da observação do gráfico HPE/HPL em função do tempo é facilmente identificável um ponto que se destaca dos outros, por volta do instante $t\approx 2.927\times 10^5$ s, este será analisado na secção Eventos de Integridade e Conclusões.

Além disso, também foi representado o número de satélites utilizados (NSV_USED) em função do tempo:

Figura 11: Número de satélites utilizados em função do tempo

A partir dos gráficos apresentados é ainda que possível concluir que: não houve uma grande flutuação do satélites utilizados; e também não se verificou uma acentuada relação entre o número de satélites usados e os erros de posição.

Os gráficos apresentados foram obtidos a partir do código MATLAB do anexo A.3.

4.3 Parâmetros de Desempenho

Os parâmetros de desempenho do sistema de navegação EGNOS são avaliados com base nos critérios estabelecidos pela ICAO. Estes parâmetros incluem exatidão, integridade, disponibilidade e continuidade.

De notar, que todos os dados apresentados foram obtidos do código MATLAB no anexo A.3.

4.3.1 Exatidão

A exatidão é quantificada pelo HPE e pelo VPE. Na verdade, o percentil 95 destes erros é comparado com os limites superiores definidos para diferentes modos de operação (ver tabela 9).

Modo de Operação	HPE (95%)	VPE (95%)
APV-I	16 m	20 m
APV-II	16 m	8 m
CAT-I	16 m	5 m

Tabela 9: Limites a ser verificados por cada modo de operação para o parâmetro exatidão

Assim, para os dados estudados foram obtidos os seguintes valores:

- HPE (95%) = 1.6292 m;
- VPE (95%) = 1.2606 m;

Uma vez que os valores obtidos (HPE (95%)) e VPE(95%)) são inferiores aos limites apresentados, é possível então concluir que, pelo parâmetro exatidão, o sistema pode operar em qualquer modo de operação.

4.3.2 Integridade

A integridade é medida através do Nível de Proteção Horizontal (HPL) e Nível de Proteção Vertical (VPL), comparados com o Nível de Alerta Horizontal (HAL) e Nível de Alerta Vertical (VAL). Assim,

os Percentis 99 dos níveis de proteção das amostras obtidas devem verificar os limites superiores da tabela 10.

De realçar, que existe a possibilidade de ocorrência de eventos de integridade, melhor explicitados na secção Eventos de Integridade e Conclusões.

Modo de Operação	HAL	VAL
APV-I	40 m	50 m
APV-II	40 m	20 m
CAT-I	40 m	12 m

Tabela 10: Limites a ser verificados para cada modo de operação para o parâmetro integridade

Deste modo, para os Percentis 99, os seguintes valores foram obtidos:

- HPL (99%) = 16.920 m;
- VPL (99%) = 11.701 m;

Sendo os valores dos Percentis 99 dos níveis de proteção (HPL (99%)) e VPL(99%)) inferiores aos níveis de alerta apresentados na tabela, é possível afirmar que, pelo parâmetro integridade, o sistema pode operar em qualquer modo de operação.

4.3.3 Disponibilidade

A disponibilidade corresponde à percentagem de tempo durante o período de análise em que o sistema de navegação suporta um modo específico de operação, baseado nos níveis de proteção estarem dentro dos limites de alerta. De acordo com o ICAO, o sistema deve manter mais de 99% de disponibilidade para que um modo seja considerado operacional.

Assim, através do código no anexo A.3 foram obtidos os seguintes valores para a disponibilidade de cada modo:

- APV-I: 100%;
- APV-II: 100%;
- CAT-I: 99.7104%;

Assim, uma vez que a disponibilidade foi superior a 99% para todos os modos, é possível afirmar que todos modos poderão vir a ser adotados como modo de operação do sistema de navegação em satélite EGNOS em questão, pelo parâmetro disponibilidade.

No gráfico 12, é possível visualizar a permissividade de cada modo(os níveis de proteção estarem dentro dos limites de alerta) ao longo do tempo, de modo a ter uma representação visual da disponibilidade.

4.3.4 Continuidade

A continuidade avalia o desempenho ininterrupto do sistema, contabilizando os intervalos de manutenção da disponibilidade para cada um dos modo. O número de eventos de continuidade é contabilizado para garantir uma operação consistente do sistema. 4

⁴De notar, que no gráfico 12, *Availability* é usado como sinónimo de permissividade de cada modo (em cada instante), e não, como sinónimo de disponibilidade

Figura 12: Visualização da Disponibilidade e da Continuidade

O gráfico acima apresenta uma representação visual dos resultados obtidos relativos à continuidade, de seguida apresentados.

No código MATLAB, os eventos/intervalos de continuidade foram detetados e contabilizados pelas das transições [modo indisponível] \rightarrow [modo disponível] (ou seja $0 \rightarrow 1$), através da seguinte linha de código:

```
continuity_CAT_I = sum(diff([0; aux_CAT_I ; 0]) == 1);
```

Os resultados obtidos foram:

- APV-I: 1 evento de continuidade;
- · APV-II: 1 evento de continuidade;
- · CAT-1: 2 eventos de continuidade;

Estes resultados são, portanto, coerentes com os obtidos para a disponibilidade, uma vez que, por exemplo, para uma disponibilidade 100% será de esperar apenas um evento de continuidade, enquanto que para uma disponibilidade <100%, será de esperar no mínimo 2 (exceto se a "falha"na disponibilidade ocorrer nos extremos).

4.4 Eventos de Integridade e Conclusões

A identificação de eventos de integridade é uma etapa crítica na avaliação do desempenho do sistema de navegação, como o EGNOS. Eventos de integridade ocorrem se, em algum momento, o nível de proteção for inferior ao erro correspondente, requerendo a identificação e análise destes eventos.

Analisando os dados fornecidos, com o código presente no anexo A.3, foi possível detetar os seguintes eventos de integridade (e as suas características relevantes):

Índice	Tempo (s)	HPE (m)	HPL (m)
1095	292728	58.144	9.594

Tabela 11: Eventos de Integridade Horizontal

No período analisado, não foram encontrados eventos de integridade vertical.

O evento de integridade detetado é, também, facilmente identificável através do gráfico 9, correspondendo este ao único ponto que verifica HPE > HPL. Este resultado sugere que, apesar de um incidente isolado, o sistema manteve a integridade horizontal e vertical dentro dos limites aceitáveis durante a maioria ou todo o tempo de operação.

Em suma, as medições dos erros horizontais e verticais, em conjunto com a verificação dos níveis de proteção, permitiram mostrar que o sistema cumpre os requisitos estabelecidos pela ICAO para os modos de operação APV-I, APV-II e CAT-I. Além disso, os eventos de integridade identificados foram mínimos, tendo, o sistema demonstrado alta disponibilidade e números de eventos de continuidade próximos do 1 e diferentes de 0. Estes resultados confirmam que o sistema é confiável, garantindo a segurança e precisão necessárias.

5 Conclusão

A familiarização com o processamento e análise de dados, gerados por sistemas de instrumentação utilizados em ensaios em voo é fundamental para que a interpretação dos resultados seja feita corretamente. A realização deste trabalho experimental permitiu, assim, compreender não só a sua importância, mas também perceber como são feitos.

Primeiramente, foram analisados dados obtidos em laboratório e utilizando um sistema de instrumentação PCM de Classe I, que permitiu não só visualizar a variação temporal das acelerações medidas como também determinar os seus espetros unilaterais de amplitude. Foram, ainda, analisados os seus picos de amplitude.

Em seguida, foi analisada a variação temporal das grandezas obtidas em voo numa aeronave DORNIER-DASSAULT ALPHA-JET, tendo também sido obtido os extremos relativos das acelerações verticais. Por fim, desenvolveu-se um algoritmo capaz de contar a ocorrência de ciclos de aceleração vertical.

Na última parte do trabalho, foram analisados os dados recolhidos num voo de calibração de um sistema convencional de navegação. Foi possível confirmar o bom desempenho do sistema de navegação EGNOS, que cumpriu os requisitos da ICAO, para os 3 modos de operação.

Desta forma, é possível concluir que os resultados obtidos ao longo de todo o trabalho foram ao encontro do que era previsto, permitindo-nos cumprir o objetivo de nos familiarizarmos com o processamento e análise de dados, gerados por sistemas de instrumentação utilizados em ensaios em voo. Ao mesmo tempo, que nos permitiu desenvolver *soft-skills*, como a cooperação e o trabalho de equipa.

Referências

- [1] Telemety Group. (2023). *IRIG Standard 106-23: Telemetry Standards*. Secretariat Range Commanders Council. Retrieved from https://www.irig106.org/docs/106-23/106-23_Cover_TOC_Changes_Preface.pdf.
- [2] MathWorks. (n.d.). FFT. MATLAB & Simulink. Retrieved June 11, 2024, from https://www.mathworks.com/help/matlab/ref/fft.html.
- [3] Gade, Kenneth (2010). *A Non-singular Horizontal Position Representation*. Journal of Navigation. 63 (3): 395–417. Bibcode:2010JNav...63..395G. doi:10.1017/S0373463309990415. ISSN 0373-4633.
- [4] MathWorks. (n.d.). wgs84Ellipsoid. MATLAB & Simulink. Retrieved June 9, 2024, from https://www.mathworks.com/help/map/ref/wgs84ellipsoid.html.

A Anexos - Código

A.1 EV_2024.02A

Análise temporal das grandezas medidas

```
clear; close all; clc;
% Read data
data_1 = readtable("EV_2024_A.txt");
mean_a1 = mean(data_1.a1);
mean_a2 = mean(data_1.a2);
mean_a3 = mean(data_1.a3);
mean_a4 = mean(data_1.a4);
% Signal parameters
delta_time = zeros(length(data_1.t)- 1, 1);
for step=1:length(data_1.t)-1
    delta_time(step) = data_1.t(step+1) - data_1.t(step);
frequency = 1./delta_time;
frequency = [frequency; frequency(1)];
Fs = frequency(1);  % Sampling frequency
T = 1/Fs;
                     % Sampling period
L = length(data_1.t); % Length of signal
t = (0:L-1)*T;
                      % Time vector
frequencies = Fs/L*(0:L-1);
f = Fs/L*(0:(L/2));
% Plot data
figure;
subplot(2,2,1);
plot(data_1.t, data_1.a1);
grid minor;
title('Acceleration a_1 as a function of time');
xlabel('Time [s]');
ylabel('a_1 [m s^{-2}]')
box on;
subplot(2,2,2);
plot(data_1.t, data_1.a2);
grid minor;
title('Acceleration a_2 as a function of time');
xlabel('Time [s]');
ylabel('a_2 [m s^{-2}]')
box on;
subplot(2,2,3);
plot(data_1.t, data_1.a3);
grid minor;
title('Acceleration a_3 as a function of time');
xlabel('Time [s]');
ylabel('a_3 [m s^{-2}]')
box on;
subplot(2,2,4);
plot(data_1.t, data_1.a4);
grid minor;
title('Acceleration a_4 as a function of time');
xlabel('Time [s]');
ylabel('a_4 [m s^{-2}]');
box on;
```

Espetro unilateral de amplitude

```
% Single-sided magnitude spectrum
Y_1 = fft(data_1.a1);
Y_2 = fft(data_1.a2);
Y_3 = fft(data_1.a3);
Y_4 = fft(data_1.a4);
P2_1 = abs(Y_1/L);
P1_1 = P2_1(1:L/2+1);
P1_1(2:end-1) = 2*P1_1(2:end-1);
P2_2 = abs(Y_2/L);
P1_2 = P2_2(1:L/2+1);
P1_2(2:end-1) = 2*P1_2(2:end-1);
P2_3 = abs(Y_3/L);
P1_3 = P2_3(1:L/2+1);
P1_3(2:end-1) = 2*P1_3(2:end-1);
P2_4 = abs(Y_4/L);
P1_4 = P2_4(1:L/2+1);
P1_4(2:end-1) = 2*P1_4(2:end-1);
figure;
subplot(2,2,1);
plot(f, P1_1);
grid minor;
title('Single-sided magnitude spectrum of a_1');
xlabel('Frequency [s^{-1}]');
ylabel('|Y_1|')
box on;
subplot(2,2,2);
plot(f, P1_2);
grid minor;
title('Single-sided magnitude spectrum of a_2');
xlabel('Frequency [s^{-1}]');
ylabel('|Y_2|')
box on;
subplot(2,2,3);
plot(f, P1_3);
title('Single-sided magnitude spectrum of a_3');
xlabel('Frequency [s^{-1}]');
ylabel('|Y_3|')
box on;
subplot(2,2,4);
plot(f, P1_4);
grid minor;
title('Single-sided magnitude spectrum of a_4');
xlabel('Frequency [s^{-1}]');
ylabel('|Y_4|')
box on;
```

A.2 EV 2024.02B

Ler tabela de valores

```
% Read data
data_2 = readtable("EV_2024_B.txt");
```

Análise temporal dos dados de voo

```
figure;
subplot(3,3,3);
plot(data_2.t, data_2.N2_rh, 'LineWidth', 1.5);
grid minor;
title('N2_{rh} as a function of time');
xlabel('Time [s]');
ylabel('N2_{rh} [%]')
box on:
axis auto;
subplot(3,3,6);
plot(data_2.t, data_2.EGT_rh, 'LineWidth', 1.5);
grid minor;
title('EGT_{rh} as a function of time');
xlabel('Time [s]');
ylabel('EGT_{rh} [K]')
box on:
axis auto;
subplot(3,3,9);
plot(data_2.t, data_2.FF_rh, 'LineWidth', 1.5);
grid minor;
title('FF_{rh} as a function of time');
xlabel('Time [s]');
ylabel('FF_{rh} [kg h^{-1}]')
box on;
axis auto;
subplot(3,3,2);
plot(data_2.t, data_2.EAS, 'LineWidth', 1.5);
grid minor;
title('EAS as a function of time');
xlabel('Time [s]');
ylabel('EAS [kn]')
box on:
axis auto;
subplot(3,3,5);
plot(data_2.t, data_2.QNE, 'LineWidth', 1.5);
grid minor;
title('QNE as a function of time');
xlabel('Time [s]');
ylabel('QNE [ft]')
box on:
axis auto;
subplot(3,3,8);
plot(data_2.t, data_2.a_z, 'LineWidth', 1.5);
grid minor;
title('a_{z} as a function of time');
xlabel('Time [s]');
ylabel("a_{z} [m s^{-2}]")
box on:
axis auto;
subplot(3,3,1);
plot(data_2.t, data_2.N2_lt, 'LineWidth', 1.5);
grid minor;
title('N2_{lt} as a function of time');
xlabel('Time [s]');
ylabel('N2_{1t} [%]')
box on;
axis auto;
subplot(3,3,4);
plot(data_2.t, data_2.EGT_lt, 'LineWidth', 1.5);
grid minor;
```

```
title('EGT_{lt} as a function of time');
xlabel('Time [s]');
ylabel('EGT_{lt} [K]')
box on;
axis auto;
subplot(3,3,7);
plot(data_2.t, data_2.FF_lt, 'LineWidth', 1.5);
grid minor;
title('FF_{lt} as a function of time');
xlabel('Time [s]');
ylabel('FF_{lt} [kg h^{-1}]')
box on;
axis auto;
```

Análise temporal da aceleração vertical

Extremos relativos das acelerações verticais

```
[acc_max_peaks, acc_max_locs] = findpeaks(acc);
[acc_min_peaks, acc_min_locs] = findpeaks(-acc);
acc_min_peaks = -acc_min_peaks;
acc_max_locs = data_2.t(acc_max_locs);
acc_min_locs = data_2.t(acc_min_locs);
figure; hold on;
plot(acc_max_locs, acc_max_peaks, "--o", 'LineWidth', 1.5, 'MarkerSize', 1.8, 'MarkerEdgeColor', [1 0 0],

    'MarkerFaceColor', [0 0 0]);
plot(acc_min_locs, acc_min_peaks, "--o", 'LineWidth', 1.5, 'MarkerSize', 1.8, 'MarkerEdgeColor', [0 0 1],

    'MarkerFaceColor', [0 0 0]);
xlabel('Time [s]');
ylabel("Acceleration [G's]");
legend('Relative maximums', 'Relative minimums', 'Location', 'southeast');
grid minor;
box on:
max = cat(2, acc_max_locs, acc_max_peaks);
min = cat(2, acc_min_locs, acc_min_peaks);
%extremes = table('VariableNames', {'Time [s]', 'Aceleration [m/s^2]'});
extremes = sortrows(cat(1, max, min));
save("relative_extremes", "extremes");
writematrix(extremes, 'relative_extremes.csv');
```

Algoritmo para deteção de ciclos de aceleração vertical

```
N_1 = [2.5 4.0 5.0 6.0 7.0 0.0 -1.5 -2,5];
N_2 = [2.2 3.7 4.7 5.7 6.7 0.3 -1.2 -2.2];
```

```
flag_status_1 = acc_cicle(N_1(1), N_2(1), acc, data_2.t);
flag_status_2 = acc_cicle(N_1(2), N_2(2), acc, data_2.t);
flag_status_3 = acc_cicle(N_1(3), N_2(3), acc, data_2.t);
flag_status_4 = acc_cicle(N_1(4), N_2(4), acc, data_2.t);
flag_status_5 = acc_cicle(N_1(5), N_2(5), acc, data_2.t);
flag_status_6 = acc_cicle(N_1(6), N_2(6), acc, data_2.t);
flag_status_7 = acc_cicle(N_1(7), N_2(7), acc, data_2.t);
flag_status_8 = acc_cicle(N_1(8), N_2(8), acc, data_2.t);
%drawArrow = @(x,y) \ quiver(x(1),y(1),x(2)-x(1),y(2)-y(1),0);
figure; hold on;
plot(data_2.t, acc, "--o", 'LineWidth', 1.5, 'MarkerSize', 5, 'MarkerEdgeColor', [1 1 1],

    'MarkerFaceColor', [0 0 0]);

for flag=1:length(N_1)
   for iter=1:size(flag_status_1,1)
       plot([flag_status_1(iter, 1) flag_status_1(iter, 3)],[flag_status_1(iter, 2) flag_status_1(iter,
       \rightarrow 4)], 'LineWidth', 2, 'Color', [0 0 0]);
       text((flag_status_1(iter, 1)+flag_status_1(iter, 3))/2,(flag_status_1(iter,
       end
end
for flag=1:length(N_1)
   for iter=1:size(flag_status_2,1)
       text((flag_status_2(iter, 1)+flag_status_2(iter, 3))/2,(flag_status_2(iter,
       end
end
for flag=1:length(N_1)
   for iter=1:size(flag_status_3,1)
       plot([flag_status_3(iter, 1) flag_status_3(iter, 3)],[flag_status_3(iter, 2) flag_status_3(iter,
       \hookrightarrow 4)], 'LineWidth', 2, 'Color', [0 0 0]);
       text((flag_status_3(iter, 1)+flag_status_3(iter, 3))/2,(flag_status_3(iter,
       end
end
for flag=1:length(N_1)
   for iter=1:size(flag_status_6,1)
       text((flag_status_6(iter, 1)+flag_status_6(iter, 3))/2,(flag_status_6(iter,
       end
end
grid minor;
for i=1:length(N_1)
   yline(N_1(i), 'red');
end
for i=1:length(N_2)
   yline(N_2(i), 'blue');
end
box on:
title('a_{z} as a function of time');
xlabel('Time [s]');
ylabel("Acceleration G's");
\label{eq:lag_status_1_ext} flag\_status\_1\_ext = acc\_cicle(N\_1(1), N\_2(1), extremes(:,2), extremes(:,1));
\label{eq:local_local_local_local_local} flag\_status\_2\_ext = acc\_cicle(N\_1(2), N\_2(2), extremes(:,2), extremes(:,1));
flag_status_3_ext = acc_cicle(N_1(3), N_2(3), extremes(:,2), extremes(:,1));
flag_status_4_ext = acc_cicle(N_1(4), N_2(4), extremes(:,2), extremes(:,1));
flag_status_5_ext = acc_cicle(N_1(5), N_2(5), extremes(:,2), extremes(:,1));
flag_status_6_ext = acc_cicle(N_1(6), N_2(6), extremes(:,2), extremes(:,1));
\label{eq:local_local_local_local_local} flag\_status\_7\_ext = acc\_cicle(N\_1(7), N\_2(7), extremes(:,2), extremes(:,1));
flag_status_8_ext = acc_cicle(N_1(8), N_2(8), extremes(:,2), extremes(:,1));
figure; hold on;
plot(extremes(:,1), extremes(:,2), "--o", 'LineWidth', 1.5, 'MarkerSize', 5, 'MarkerEdgeColor', [1 1 1],
for flag=1:length(N_1)
   for iter=1:size(flag_status_1_ext,1)
```

```
plot([flag_status_1_ext(iter, 1) flag_status_1_ext(iter, 3)],[flag_status_1_ext(iter, 2)

    flag_status_1_ext(iter, 4)], 'LineWidth', 2, 'Color', [0 0 0]);

       text((flag_status_1_ext(iter, 1)+flag_status_1_ext(iter, 3))/2,(flag_status_1_ext(iter,
       end
end
for flag=1:length(N_1)
   for iter=1:size(flag_status_2_ext,1)
       plot([flag_status_2_ext(iter, 1) flag_status_2_ext(iter, 3)],[flag_status_2_ext(iter, 2)

→ flag_status_2_ext(iter, 4)], 'LineWidth', 2, 'Color', [0 0 0]);

       text((flag_status_2_ext(iter, 1)+flag_status_2_ext(iter, 3))/2,(flag_status_2_ext(iter,
       end
end
for flag=1:length(N_1)
   for iter=1:size(flag_status_3_ext,1)
       plot([flag_status_3_ext(iter, 1) flag_status_3_ext(iter, 3)],[flag_status_3_ext(iter, 2)
       flag_status_3_ext(iter, 4)], 'LineWidth', 2, 'Color', [0 0 0]);
text((flag_status_3_ext(iter, 1)+flag_status_3_ext(iter, 3))/2,(flag_status_3_ext(iter,
       end
end
for flag=1:length(N_1)
   for iter=1:size(flag_status_6_ext,1)
       plot([flag_status_6_ext(iter, 1) flag_status_6_ext(iter, 3)],[flag_status_6_ext(iter, 2)

    flag_status_6_ext(iter, 4)], 'LineWidth', 2, 'Color', [0 0 0]);

       text((flag_status_6_ext(iter, 1)+flag_status_6_ext(iter, 3))/2,(flag_status_6_ext(iter,
       end
end
grid minor;
for i=1:length(N_1)
   yline(N_1(i), 'red');
end
for i=1:length(N_2)
  yline(N_2(i), 'blue');
end
box on;
title('a_{z} as a function of time');
xlabel('Time [s]');
ylabel("G's");
```

A.3 EV_2024.02C

Ler dados e Erros do sistema de navegação (HPE e VPE)

```
clear; close all; clc;
% Read data
    data_3 = readtable("EV_2024_C.txt");
\ensuremath{\textit{\%}} Harversine function - Distance between two coordinates in the system WGS84
% distance -> m, coordinates -> degrees
    function distance = haversine(lat1, lon1, lat2, lon2)
        R = 6371000;
        lat1 = deg2rad(lat1);
        lon1 = deg2rad(lon1);
        lat2 = deg2rad(lat2);
        lon2 = deg2rad(lon2);
        distance = 2 * R .* asin(sqrt((1-cos(lat2-lat1)+ ...
            cos(lat1).*cos(lat2).*(1-cos(lon2-lon1)))/2));
    end
%12.
% Calculate HPE
    HPE_haversine = haversine(data_3.NS_LAT, data_3.NS_LON, ...
        data_3.REF_LAT, data_3.REF_LON);
    [x\_East,y\_North,zUp] = geodetic2enu(data\_3.NS\_LAT, data\_3.NS\_LON, \dots
       data_3.NS_ALT, data_3.REF_LAT, data_3.REF_LON,data_3.REF_ALT, ...
        wgs84Ellipsoid);
    HPE = sqrt(x_East.^2+y_North.^2);
    dif_h = HPE_haversine-HPE; %compare the diference between the two methods
% Calculate VPE
    VPE = abs(zUp);
```

Análise temporal dos erros dos sistema, dos limites de proteção e do número de satélites do sistema de navegação

```
%13.
% Variables for the plots
    time = data_3.RX_TOM;
    HPL = data_3.NS_HPL;
    VPL = data_3.NS_VPL;
    Sat_USED = data_3.NSV_USED;
% Plot of HPE & HPL over time
    figure;
    hold on;
    plot(time, HPE, 'b');
    plot(time, HPL, 'r');
    title('HPE and HPL over time');
    xlabel('Time [s]');
    ylabel('Error/Protection Level [m]');
    legend('HPE', 'HPL');
    grid minor;
    box on;
    hold off;
% Plot of VPE & VPL over time
    figure;
    hold on;
    plot(time, VPE, 'b');
    plot(time, VPL, 'r');
    title('VPE and VPL over time');
    xlabel('Time [s]');
    ylabel('Error/Protection Level [m]');
    legend('VPE', 'VPL');
```

```
grid minor;
box on;
hold off;

% Plot of No. satellites used over time
figure;
plot(time, Sat_USED, 'gx');
title('No. Satellites Used over time');
xlabel('Time [s]');
ylabel('Number of Satellites used');
grid on;
```

Parâmetros de Desempenho

```
%14.
% Performance limits for accuracy and integrity [HPE(95%), VPE(95%), HAL, VAL]
    limits_APV_I = [16, 20, 40, 50];
    limits_APV_II = [16, 8, 40, 20];
limits_CAT_I = [16, 5, 40, 12];
% Compute Performance Parameters
    % Accuracy
        HPE_95 = prctile(HPE, 95);
        VPE_95 = prctile(VPE, 95);
        accuracy_APV_I = [HPE_95 <= limits_APV_I(1), VPE_95 <= limits_APV_I(2)];</pre>
        accuracy_APV_II = [HPE_95 <= limits_APV_II(1), VPE_95 <= limits_APV_II(2)];</pre>
        accuracy_CAT_I = [HPE_95 <= limits_CAT_I(1), VPE_95 <= limits_CAT_I(2)];</pre>
        accuracy = [accuracy_APV_I, accuracy_APV_II, accuracy_CAT_I];
    % Integrity
        HPL_99 = prctile(HPL, 99);
VPL_99 = prctile(VPL, 99);
        integrity_APV_I = [HPL_99 <= limits_APV_I(3), VPL_99 <= limits_APV_I(4)];</pre>
        integrity_APV_II = [HPL_99 <= limits_APV_II(3), VPL_99 <= limits_APV_II(4)];</pre>
        integrity_CAT_I = [HPL_99 <= limits_CAT_I(3), VPL_99 <= limits_CAT_I(4)];</pre>
        integrity = [integrity_APV_I, integrity_APV_II, integrity_CAT_I];
    % Aux variable for availability and continuity - verify if the operation mode is
    % allowed
    aux_APV_I = (HPL <= limits_APV_I(3)) & (VPL <= limits_APV_I(4));</pre>
    aux_APV_II = (HPL <= limits_APV_II(3)) & (VPL <= limits_APV_II(4));</pre>
    aux_CAT_I = (HPL <= limits_CAT_I(3)) & (VPL <= limits_CAT_I(4));</pre>
    % Availability
        availability_APV_I = sum(aux_APV_I) / numel(time) * 100;
        availability_APV_II = sum(aux_APV_II) / numel(time) * 100;
        availability_CAT_I = sum(aux_CAT_I) / numel(time) * 100;
        availability = [availability_APV_I, availability_APV_II, availability_CAT_I];
    % Continuity
        continuity_APV_I = sum(diff([0; aux_APV_I ; 0]) == 1); %-> counts the transitions
        continuity_APV_II = sum(diff([0; aux_APV_II ; 0]) == 1);
        continuity_CAT_I = sum(diff([0; aux_CAT_I ; 0]) == 1);
        continuity = [continuity_APV_I, continuity_APV_II, continuity_CAT_I];
%Continuity Intervals Visualization
   % APV_I
    figure;
    subplot(3, 1, 1);
    plot(time, aux_APV_I, 'g');
    title('Availability of APV-I over time');
    xlabel('Time [s]');
    ylabel('Availabity');
    grid on;
    box on;
    % APV TT
    subplot(3, 1, 2);
```

```
plot(time, aux_APV_II, 'b');
   title('Availability of APV-II over time');
   xlabel('Time [s]');
   ylabel('Availabity');
   grid on;
   box on;
   % CAT_I
   subplot(3, 1, 3);
   plot(time, aux_CAT_I, 'r');
   title('Availability of CAT-I over time');
   xlabel('Time [s]');
   ylabel('Availabity');
   grid on;
   box on;
% Results
   disp('(1-True; 0-False)')
    %Accuracy
        fprintf('\n\nHPE_95 = \%f m\n', HPE_95)
        fprintf('VPE_95 = %f m\n', VPE_95)
        disp('Accuracy (APV-I (H & V), APV-II (H & V), CAT-I (H & V)):');
        disp(accuracy);
    %Integrity
        fprintf('\nHPL_99 = %f m\n', HPL_99)
        fprintf('VPL_99 = \%f m\n', VPL_99)
        disp('Integrity (APV-I (H & V), APV-II (H & V), CAT-I (H & V)):');
        disp(integrity);
    \mbox{\it \%Avaiability} and \mbox{\it Continuity}
        disp('Availability (APV-I, APV-II, CAT-I): (%)');
        disp(availability);
        disp('Continuity (APV-I, APV-II, CAT-I): ');
        disp(continuity);
```

OUTPUT:

```
(1-True; 0-False)

HPE_95 = 1.629153 m

VPE_95 = 1.260600 m

Accuracy (APV-I (H & V), APV-II (H & V), CAT-I (H & V)):

1 1 1 1 1 1

HPL_99 = 16.920000 m

VPL_99 = 11.700840 m

Integrity (APV-I (H & V), APV-II (H & V), CAT-I (H & V)):

1 1 1 1 1 1

Availability (APV-I, APV-II, CAT-I): (%)

100.0000 100.0000 99.7104

Continuity (APV-I, APV-II, CAT-I):

1 1 2
```

Eventos de Integridade

```
%15.
% Compute Integrity Events
```

```
iev_H = find(HPL < HPE);</pre>
    iev_V = find(VPL < VPE);</pre>
    integrity_events_H = [iev_H, time(iev_H), HPE(iev_H), HPL(iev_H)];
    integrity_events_V = [iev_V, time(iev_V), HPE(iev_V), HPL(iev_V)];
% Display Integrity Events
    disp('Integrity Events:');
    if ~isempty(iev_H)
        fprintf('\n%d horizontal events found. \n', numel(iev_H));
            for i = 1:length(iev_H)
                n = iev_H(i);
                fprintf('Index: %d; Time = %d s; HPE = %f m; HPL = %f m \n', n, time(n), HPE(n), HPL(n));
    else
        fprintf('No horinzontal integrity events found.\n');
    disp('');
    if ~isempty(iev_V)
        fprintf('\n %d vertical events found. \n', numel(iev_V));
            for i=1:length(iev_V)
                n = iev_V(i);
                fprintf('Index: %d; Time = %d s; HPE = %f m; HPL = %f m; \n', n, time(n), HPE(n),
                \hookrightarrow HPL(n));
            end
        fprintf('\nNo vertical integrity events found.\n');
    end
```

OUTPUT:

```
Integrity Events:
1 horizontal events found.
Index: 1095; Time = 292728 s; HPE = 58.143714 m; HPL = 9.594000 m
No vertical integrity events found.
```