Algorithm Design and Analysis Assignment 6

Wu Jiabao, 523030910241

3. Given a dominating set problem instance $(G = (V, E), D \subset V)$, we iterate each vertex in V to check whether it is incident with a vertex in D. It takes O(|V|(|V| + |E|)) time, so the dominating set problem is in NP.

Considering a VertexCover instance (G = (V, E), k). For each edge e = (u, v) in V, we construct a vertex x_e and link it to u and v, resulting a new graph G' = (V', E'). Let k = k and (G' = (V', E'), k) is a dominating set problem instance.

If VertexCover has a yes instance, for each edge $e \in E$, it has at least one endpoint in the cover set C. Thus for the corresponding $u, v, x_e \in V'$, we have $u \in C \lor v \in C$. Thus u, v, x_e must be dominated. Therefore, the dominating set problem has a yes instance.

If the dominating set problem has a yes instance, for any vertex x in the dominating set D, if $x \notin V$, remove x and add its adjacent vertex into D. Since x is only incident to its endpoints in G in this case, the operation before will keep D still a dominating set. After the operation D only contains vertices in V. Since D is dominating set and all vertices in $V \setminus D$ are dominated, we have all edges are covered. Thus the VertexCover problem is a yes instance.

Therefore, we have VertexCover \leq_k dominating set problem, dominating set problem is NP-complete.

4. Firstly we prove the set cover problem is NP-hard. Consider a VertexCover instance (G = (V, E), k). We will construct a SetCover instance (U, \mathcal{T}, k) . Label the edges in E with $1, 2, \ldots, |E|$ in arbitrary order. Construct a ground set U = E. For each $v_i \in V$, construct a subset $S_i = \{e \in E \mid v_i \text{ is an endpoint of } e\}$. Let k = k.

Thus we get a VertexCover instance (U, \mathcal{T}, k) . Obviously the conversion is under polynomial time. Denote the set of chosen subsets as A.

Picking $S_i \in A$ represents picking v_i in the vertex cover.

If the VertexCover has a yes instance, for any edge e in E, it has at least one endpoint chosen. Thus $e \in \bigcup_{i=1}^k A_i$ for all $e \in E$, which gives the set cover problem a yes instance. If the set cover problem has a yes instance, we can select k subsets from \mathcal{T} to cover E. Thus we can pick k vertices to make all the edges have at least one endpoint selected. Thus we have VertexCover \leq_k SetCover, set cover problem is NP-hard.

Then we prove the *max-k-coverage problem* is also NP-hard. The construction is the same as above.

If the VertexCover has a yes instance, we can select k subsets to make $\bigcup_{i=1}^k A_i = E$. Since |E| is the maximum size of coverage, the *max-k-coverage problem* also gives a yes instance.

If the max-k-coverage problem has a yes instance, we can find k vertices to cover the maximum amount of edges, which is |E|. Thus the VertexCover has a yes instance.

Thus we have VertexCover $\leq_k max\text{-}k\text{-}coverage problem}$, $max\text{-}k\text{-}coverage problem}$ is NP-hard.

5. The homework takes me 3 hours. Collaborators: Wang Kun, Li Haochen.