PROFUNCIAUSARBEITUNG

7 4. 1 ERITIN

2013-06-14

11) (0) Sei f: I→R cinc reelle Flet out whem Intervall.

SeI her shribes lokales Naximum [Pinimum], folls

F(>): +xelf(\$)nI: f(x)<f(\$) [f(x)>f(\$)].

Eine Flut 4: [0,6] -> IR heint Treppenfle, folls es Line endliche Zerlegey Z = {10, 10, --, 10} von [0,6] gibt [d.h. t; \in [0,6] sodors 0=10 < 10 < 10 < 10 = 6] Und Konstonten g. \in IR, 1 \in j \in h soolors 4(1;) = g. \in x \in (1; \in j) (1 \in j \in h)

Eine Fld f. I-) IR (I in Intervall) heill Ck- Funlikon, folls sie k-mol stehp diffbor ist [d.h. k-mol oliffbor & f(h) slehip].

(b) So: I=(0,b) in ofenes eventuell unbeschrönliches
Intervall (d.h. $0 \in \mathbb{R} \cup \{-\infty\}$, $b \in \mathbb{R} \cup \{\infty\}$)

und seien $f, p: I \rightarrow \mathbb{N}$ difftor $mi! p(x) \neq 0 \forall x \in I$ Folls(i) $\lim_{x \to 0} f(x) = 0 = \lim_{x \to 0} p(x)$ oder $f(x) = 0 = \lim_{x \to 0} p(x)$

Dompilt $\lim_{x \to 0} p(x) = t\infty$ $\lim_{x \to 0} \frac{f(x)}{p(x)} = \lim_{x \to 0} \frac{f'(x)}{p'(x)}$

folls du ? limes (evll. ouch ancipant.) existint. (Andog f. XAb)

11(c) (HSDI) Seifi I -> TR slehy, a beliebig im In bould I.

Ci) Die Fat Fexi= f(x)dt xeI ist sledy diffbor and en gild F = f. (ii) So: G (irgenellaire Stommfle von fund be I donn pill / flesat = a(b)-6101.

Berespong: (i) De Differndenpushient von Flora direkt berechnot veden; unte Verendung des MUS de Indichny espiblisich der Resultot. (ii) Mon verwendet doss jede Stommflit la sich ols Ftc schreiber lond, wober F dic Stomm-The ow Cirist. Donn e-gibt and anfoche Keching des bevirschte

Bever (i) f slehij => f R-indho- und Fish Sinvoll definitet. Wir berechner F. Doyu SC X & I $h \neq 0 \text{ so lela:, does } x + h \in \mathbb{Z}. \text{ Don-pill}$ $\overline{f(x+h)} - \overline{f(x)} = \int_{h}^{x+h} \int_{0}^{x+h} \int_{0}^{x+h}$ Tolls h > 2 -> 5 -> x und oloke weil feliching $\frac{\overline{f}(x+h) - \overline{f}(x)}{L} = \int_{C} (\xi) \rightarrow f(x) \quad (h \rightarrow 0)$

=> Fdiffhor mit F= f=> Fe & 18 Shorm /11.

M(c) Baras (ii): Fuicincia int Stormflown f. P30 Espile: Jede Storm fle Gron first von der Form G = F+c (cent) Dohn pill G(b)-6(o) = F(b)-F(o) = S(1)dl-0.
Die Skligheit und im Bares von (i) Zuemel
versendel (Siehe oben) in Tzil (ii) Insolven ob (i) versendel word.
(Z)(Q) orcsin(x) = Sin'(x) and dohe noch (Imkelsoti orcsin(x) = 1 = 1 Sin'(orcsin(x)) orcsin(x))
$Sin^{2}=(os)$ $Sin^$
(b) of: R-> R, fox = x hold shilles lok Minimum in 5=0 [x ≥ 0 Und x =0 => x=0]
obe flo) existint night [die linksseitige Ahl =-1 Shimmt night mit der rechtschija =+1 übulin.]

· Jede sletge Fld die nicht diffha ist ode jede Troppe-flt.

CER beliebij ?]

(4) (b) Soft von Rolle: Seif: [0,6] -> IR sluhij & olifthur Out (0,6) mil f(0)=f(b). Down pilot 750 [0,6] mil f(5)=0.

Eine onschouliche Erklörung ist, doss folls vir f ob die Höhenflut eine Bapvondung interpretie a und uit om Bapvin (t=0) und om Ende (t=b) out glache Höhe sind uit nicht imme nu bepauf ook bepol gepongen sein können. Angerommen uit sind zu Bepinn bepouf pepongen, donn mussen uit penon de 40 uit zum Bopolgehen povenhielt sind kurt eben pepongen sein - nömlich om Gipfel; dost pill f (5) = 0.

Eine ontre Veronschonlichung kom om Gropher von f diskuhöl verde. Es mis einen Plot poben on dem

H die Torgente / sur Schonke ist,

o bo vooprecht.

9 5

(c) Folpt direct our dem MVS: Seie xxy \in [2,6] f(y) - f(x) = f(y)(y-x) f(y) - f(x) = f(y)(y-x)f(y) - f(x) = f(y)(y-x)

(4) (d) Si f: (0,6) -> IR diffhor and 2-mol diff.	1600 1600
) in { & (0, b), donn pill	
1(5)=0, f(5)<0 => I hot in & cin Shikter loke Mox [Ti	in J
Boras. Wir behandeln nur den Foll des Mex [Nin on	[او کاه
Fire figure when pict $0 > f'(\xi) = \lim_{\xi \neq x \to \xi} \frac{f'(\xi) - f'(x)}{\xi - x}$ $= 0 \text{ of } \frac{f'(\xi)}{\xi - x}$. Varacus
$(\xi) = (x)$ $\xi + x \rightarrow \xi$ $\xi - x$	ما
= 3 = 3 = 3 = 3 = 3 = 3 = 3 = 3 = 3 = 3	(x) 5
=) $f x \in (\xi - \xi, \xi)$: $f(x) > 0 = f sh. mon wow f x \in (\xi, \xi + \xi): f'(x) < 0 = 0 — f = 0$	hienel
+xe(ξ, ξtε): f'(x1 < 0 =)	lend
IF (a) Tolk of	\overline{a}
(5) (4) Folsch, +13	
f(x)= x1 out R ist lipschitistely, denn	
$ f(x)-f(y) = x - y \leq x-y $	
Folgerung our de 1-Upl	
obe nicht diffher in x=0	
(b) RICHTIG, dens (F+c) = F'+0=f	