COMP2012 Discrete Mathematics Notes - Logic and Proof

Wang Ruijie

October 31, 2023

1 Logical Calculation

- 1. Negation ¬
- 2. Conjunction \wedge
- 3. Disjunction \vee

Their connections to Boolean algebra is that:

$$\neg p \equiv \bar{p}, \ p \land q \equiv p \cdot q, \ p \lor q \equiv p + q$$

2 Propositions

Given two propositions, p and q, we say that $p \leftrightarrow q$ is a biconditional statement. $p \leftrightarrow q \equiv (p \to q) \land (q \to q)$. $\neg q \to \neg p$ is called the contrapositive of $p \to q$ which has the same truth value as $p \to q$ in all cases. $\neg p \to \neg q$ is called the inversion of $p \to q$, and $\neg (p \to q)$ is the negation of $p \to q$. The latter two's truth values have no relationship with $p \to q$, and they are contrapositive for one another.

3 De Morgan's Law

For two propositions, p and q, we have:

$$\neg (p \land q) \equiv \neg p \lor \neg q, \ \neg (p \lor q) \equiv \neg p \land \neg q$$

4 Quantifier

- 1. Universal quantifier \forall
- 2. Existential quantifier \exists

$$\forall x \in D, \ P(x) \equiv x_1 \cup x_2 \cup \cdots \cup x_n = x, \ P(x_1) \wedge P(x_2) \wedge \cdots \wedge P(x_n)$$

$$\exists x \in D, \ P(x) \equiv x_1 \cup x_2 \cup \cdots \cup x_n = x, \ P(x_1) \vee P(x_2) \vee \cdots \vee P(x_n)$$