УРОКИ ПО SPIKE PRIME

By the Makers of EV3Lessons

ПОВОРОТЫ С ГИРОСКОПОМ

BY ARVIND SESHAN

ЦЕЛЬ УРОКА

- Узнаем, как поворачивать с помощью встроенного гироскопа.
- Узнаем, как датчикам использовать функцию wait_until().

КАКИЕ ФУНКЦИИ НЕОБХОДИМЫ НА ЭТОМ УРОКЕ

 Функции Датчика движения – используем, чтобы считать и сбросить значения датчика гироскопа.

```
get_yaw_angle()
reset_yaw_angle()
```

Функции Операторов – результаты принимают значения «истина» или «ложь».

```
greater_than_or_equal_to(a, b)
```

 Функции Ожидания – делают паузу при выполнение программы на указанное значение в секундах.

```
wait_until(get_value_function, operator_function=<function equal_to>, target_value=True)
```

ОРИЕНТАЦИЯ РОБОТА: ТАНГАЖ, КРЕН И РЫСКАНИЕ

Рыскание это отклонение Хаба вправо или влево Тангаж это отклонения Хаба вверх или вниз

Точно так же, как используются х, у и z координаты, чтобы описать положение робота, отклонение от курса, продольный и поперечный крен - термины, использованные, чтобы описать ориентацию робота.
Рыскание - вращение вокруг оси Х. Крен - вращение вокруг оси Х. Встроенный Гироскоп может определить ориентацию робота.

Крен это отклонения Хаба из одной стороны в другую

ИСПОЛЬЗОВАНИЕ ГИРОСКОПА ДЛЯ ПОВОРОТОВ

- Датчик гироскопа может быть запрограммирован, чтобы измерить отклонение от курса, продольный и поперечный крен.
- Эти значения могут определить повороты робот вокруг осей x, y, или z.
- На этом уроке мы изучим отклонения от курса, которое может использоваться, чтобы определить повороты робота влево или вправо.
- Для продольного и поперечного крена робот использует силу тяжести, чтобы определить нулевое значение. Поверхность на земле - тангаж о и крен о.
- Для отклонения от курса у робота нет компаса для определения, что является севером или югом. Поэтому Вы должны определить роботу, что является нолем.
 Это делается с помощью функции reset_yaw_angle().
 - Обратите внимание, что движение по часовой стрелке положительное при измерении рыскания.

hub.motion_sensor.get_yaw_angle()

hub.motion_sensor.reset_yaw_angle()

ЗАДАЧА 1

- Напишем программу, которая поворачивает направо на 90 градусов.
- Основные шаги:
 - Заставим Нашего робота медленно поворачивать направо, просто включив мотор левого колеса.

```
motor_pair = MotorPair('A', 'E')
motor_pair.set_stop_action('brake')
motor_pair.start_tank(20, 0)
```

- Используем небольшие значения скорости, чтобы повороты были более точными.
 - hub.motion_sensor.reset_yaw_angle()

- Сбросим угол рыскания Хаба на о.
- Ждем, пока угол рыскания гироскопа не достигнет необходимого значения.
- Остановим движение

wait_until(hub.motion_sensor.get_yaw_angle, greater_than_or_equal_to, 90)

ЗАДАЧА 1: РЕШЕНИЕ

```
motor_pair = MotorPair('A', 'E')
motor_pair.set_stop_action('brake')
motor_pair.start_tank(20, 0)
hub.motion_sensor.reset_yaw_angle()
wait_until(hub.motion_sensor.get_yaw_angle, greater_than_or_equal_to, 90)
motor_pair.stop()
```

ПОВОРОТЫ НАПРАВО И НАЛЕВО

- Чтобы изменить направление поворота:
 - 1. Изменить скорость поворачиваемого колеса.
 - 2. Угол должен быть -90 градусов вместо 90 градусов.
 - 3. Сравнение должно быть "less_than_or_equal_to" вместо "greater_than_or_equal_to" так как угол уменьшается, а не увеличивается.

Вправо

```
motor_pair = MotorPair('A', 'E')
motor_pair.set_stop_action('brake')
motor_pair.start_tank(20, 0)
hub.motion_sensor.reset_yaw_angle()
wait_until(hub.motion_sensor.get_yaw_angle, greater_than_or_equal_to, 90)
motor_pair.stop()
```

Влево

```
motor_pair = MotorPair('A', 'E')
motor_pair.set_stop_action('brake')
motor_pair.start_tank(0, 20)
hub.motion_sensor.reset_yaw_angle()
wait_until(hub.motion_sensor.get_yaw_angle, less_than_or_equal_to, -90)
motor_pair.stop()
```

ДВА ТИПА ПОВОРОТОВ

Движение

моторов А и Е

Обратите внимание, где робот заканчивает движение после поворотов на 180 градусов.

При поворотах на месте робот перемещается меньше, и это больше подходит для трудных ситуация. Повороты на месте быстрее, но менее точные.

Вы сами выбираете тип поворота в зависимости от ситуации.

КАК СДЕЛАТЬ ПРОСТОЙ ПОВОРОТ И ПОВОРОТ НА МЕСТЕ

Изменение скорости

ЗАДАЧА: ПОВОРОТЫ

Задача І

- Ваш робот должен объехать коробку и вернуться на начальную точку.
- Действительно ли Мы можем запрограммировать робота, чтобы он двигался и затем повернул налево?
- Используем квадратную коробку.

Задача 2

- Ваш робот должен доехать до второй базы, повернуться кругом и вернуться на первую базу.
- Двигайтесь прямо. Повернитесь на 180 градусов и вернитесь обратно.

ЗАДАЧА: РЕШЕНИЕ

Задача I

Используйте комбинацию движения прямо и обычных поворотов чтобы объехать коробку.

Задача 2

Используйте комбинацию движения прямо и поворотов на месте чтобы вернуться обратно.

CREDITS

- This lesson was created by Arvind Seshan for SPIKE Prime Lessons
- More lessons are available at www.primelessons.org

This work is licensed under a <u>Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International</u> License.