Lemma 1.9. Let B be an operator on C(K) (more generally, on a Banach lattice). If μ_1 , $\mu_2 \in \rho(B) \cap \mathbb{R}$ such that $0 \le R(\mu_1, B)$, $0 \le R(\mu_2, B)$ and $\mu_1 < \mu_2$, then $[\mu_1, \mu_2] \subset \rho(B)$ and

 $0 \leq R(\mu_2, B) \leq R(\mu, B) \leq R(\mu_1, B) \qquad \text{for all } \mu \in [\mu_1, \mu_2] \ .$

<u>Proof.</u> Let $M := \{ \mu \in \rho(B) \cap [\mu_1, \mu_2] : [\mu, \mu_2] \subset \rho(B) \text{ and } R(\lambda, B) \ge 0$ for all $\lambda \in [\mu, \mu_2] \}$.

- a) The set M is open. In fact, let $\mu\in M$. Then for small h>0 one has $R(\mu-h,B)=\sum_{n=0}^{\infty}\ h^nR(\mu,B)^{n+1}\geq 0$.
- b) M is closed. In fact, by the resolvent equation one has for $\mu\in M$, $R(\mu_1,B)-R(\mu,B)=(\mu-\mu_1)R(\mu_1,B)R(\mu,B)\geq 0$, hence $R(\mu,B)\leq R(\mu_1,B) \ .$ Consequently, $\mathrm{dist}(\mu,\sigma(B))\geq 1/\|R(\mu,B)\|\geq 1/\|R(\mu,B)\|\geq 1/\|R(\mu,B)\| \geq 1/\|R(\mu_1,B)\|$ for all $\mu\in M$. This implies that M is closed. The assertions a) and b) imply that $M=[\mu_1,\mu_2]$.

<u>Remark</u>. a) The lemma shows in particular that the resolvent of the generator A of a positive semigroup is decreasing on $(s(A), \infty)$. b) There exists a linear operator B on \mathbb{R}^n such that $R(\mu, B) \ge 0$ on some interval $[\mu_1, \mu_2] \subset \rho(B) \cap \mathbb{R}$ but $(e^{tB})_{t \ge 0}$ is not positive (see Greiner-Voigt-Wolff (1981)).

Remark. Theorem 1.8 does not hold in $C_O(X)$, in general. In fact, the operator A on $C_O(0,1]$ given by $Af(x) = f'(x) + \alpha/x \ f(x)$ $(x \in (0,1])$ with domain $D(A) = \{f \in C^1[0,1] : f'(0) = f(0) = 0\}$ where $\alpha \in (0,1)$ satisfies the following: $\rho(A) = \mathbb{C}$, $R(\lambda,A) \ge 0$ for all $\lambda \in \mathbb{R}$. But A is not the generator of a semigroup (even if more general classes than C_O -semigroups are admitted). See Arendt (1985b) for this example and a general theory of resolvent positive operators. Another example is given by Batty-Davies (1983).

Next we investigate consequences of the positive minimum principle for a densely defined operator which is not a priori assumed to be a generator. For that we will make use of the theory of half-norms developed in A-II, Sec. 2.

For $0 \ll u \in C(K)$ let

(1.4)
$$p_{u}(f) = \inf \{\lambda \in \mathbb{R}_{+} : f \leq \lambda u\} = \sup_{x \in K} f^{+}(x)/u(x)$$
.