Libsmoldyn User's Manual for Smoldyn version 2.62

Steve Andrews

©June, 2020

Contents

1	About Libsmoldyn	5
2	Linking with C/C++ 2.1 Compiling	7 7 7 8
3	Use with Python 3.1 Files	11 11
4	Error trapping 4.1 Error checking system internal to libsmoldyn.c	13 13
5	Libsmoldyn quick function guide	15
6	Data structures and declarations6.1 Enumerations	19 19 20
7	Libsmoldyn functions 7.1 General comments 7.2 Miscellaneous 7.3 Errors 7.4 Sim structure 7.5 Read configuration file 7.6 Simulation settings 7.7 Graphics 7.8 Runtime commands 7.9 Molecules 7.10 Surfaces 7.11 Compartments 7.12 Reactions	21 21 21 22 23 23 24 25 26 28 31 32
	7.12 Reactions	

4 CONTENTS

About Libsmoldyn

Libsmoldyn is a C, C++, and Python interface to the Smoldyn simulator. Libsmoldyn is complementary to the stand-alone Smoldyn program in that it is a little more difficult to use, but it provides much more flexibility. In addition, Libsmoldyn provides: (i) an application programming interface (API) that will be relatively stable, even as Smoldyn is updated and improved, (ii) function names that are relatively sensible and that shouldn't collide with other function names in other software, and (iii) reasonably thorough error checking in every function which helps ensure that the user is using the function in a sensible way and in a way that won't crash Smoldyn.

Libsmoldyn was originally written as a C API, but one that should work with C++ as well. Then, in 2019 and 2020, Dilawar Singh added Python bindings to it, which are still quite new but generally work well.

Libsmoldyn only barely supports graphics at present due to constraints imposed by the glut code library. This will be improved in a future version (by changing to the freeglut library, which doesn't insist on controlling the main event loop, as the glut library does).

Linking with C/C++

2.1 Compiling

Header files

To enable a C or C++ program to call Libsmoldyn, it has to include the Libsmoldyn header file. Libsmoldyn comes with one header file, libsmoldyn.h, which has function declarations for all of the Libsmoldyn functions. For most Libsmoldyn applications, this is the only header file that you will need to include. For Mac and Linux, it is typically installed to /usr/local/include. This is one of the standard system paths, so include it with

```
#include <libsmoldyn.h>
```

If the libsmoldyn.h header file is in some other directory or if your system isn't seeing its path as a system path, then include the file using double quotes rather than angle brackets and/or include more information about the path. For example, #include "/user/local/include/libsmoldyn.h".

Libsmoldyn.h calls a second header file, smoldyn.h, which is also typically installed to /usr/local/include/. If you plan to access the Smoldyn data structure directly, then you will also need to include it with #include <smoldyn.h>. In general, it is safe to read from this data structure but it can be dangerous to write to it unless you really know what you are doing. Also, working with this data structure directly bypasses one of the benefits of using Libsmoldyn, which is that the interface should be relatively immune to future Smoldyn developments, because different aspects of the internal data structure get changed once in a while.

The smoldyn.h header calls yet another header file, smoldynconfigure.h, which is also installed by default in /usr/local/include/. That file is automatically generated by the build system. It describes what Smoldyn components are included in the build, what system the build was compiled for, etc. This might be helpful to include for some applications.

Compiling example

In the examples/S97_libsmoldyn/testcode/ directory, you'll find the testcode.c program. To compile this source code to object code, enter:

```
gcc -Wall -OO -g -c testcode.c
```

The compile flags -00 -g aren't necessary but can be useful for debugging purposes. If compiling doesn't work at this stage, it's probably because you're missing the header files. Make sure that you have libsmoldyn.h, smoldyn.h, and smoldyn.config.h in the /usr/local/include directory.

2.2 Linking

Linking the different object files together to create an executable that actually runs is often one of the greatest frustrations of using software libraries. It should be easy but usually isn't.

The Libsmoldyn library can be linked statically, meaning that the Libsmoldyn code will be copied into the final result, or it can be linked dynamically, so that the final result will simply reference the Libsmoldyn code that is stored separately. Dynamic linking is somewhat more elegant in that it doesn't create unnecessary copies of the compiled code. It can also be easier. On the other hand, it's less convenient if you plan to distribute your software, because then you need to make sure that you distribute the Libsmoldyn header file and library code along with your own software. Also, I can only get the gdb debugger to help find errors within Libsmoldyn if the library is statically linked.

The Libsmoldyn static library is called libsmoldyn_static.a and the Libsmoldyn dynamic library is called libsmoldyn_shared.so (on Linux; the .so suffix is replaced by .dylib on a Mac and by .dll on Windows). By default, these libraries are installed to /usr/local/lib/.

Linking examples

Following are several example for static and dynamic linking. They are shown for C; if you use C++, then link with g++ instead of gcc. The linking options for Smoldyn compiled with OpenGL are shown for Macintosh; these lines are simpler for other systems.

I have had a hard time getting static linking working on a Mac, although apparently it works fine on Ubuntu. The problem is that it doesn't find the standard C++ library. The solution is to build the Smoldyn library without NSV, so that the standard C++ library isn't needed. I also commented out a few "throw" statements from smolsim.c and libsmoldyn.c for this purpose.

Static link, no OpenGL:

```
gcc testcode.o /usr/local/lib/libsmoldyn_static.a -o testcode

Static link, with OpenGL:

gcc testcode.o /usr/local/lib/libsmoldyn_static.a -I/System/Library/Frameworks/OpenGL.

framework/Headers -I/System/Library/Frameworks/GLUT.framework/Headers -framework GLUT -

framework OpenGL -framework Cocoa -L/System/Library/Frameworks/OpenGL.framework/

Libraries -o testcode -ltiff

Dynamic link, no OpenGL:

gcc testcode.o -o testcode -lsmoldyn_shared

Dynamic link, with OpenGL:

gcc test1.o -L/usr/local/lib -I/System/Library/Frameworks/OpenGL.framework/Headers -I/

System/Library/Frameworks/GLUT.framework/Headers -framework GLUT -framework OpenGL -

framework Cocoa -L/System/Library/Frameworks/OpenGL.framework/Libraries -o test1 -

lsmoldyn_shared -ltiff
```

2.3 Using smaller versions of Libsmoldyn

As a default, Smoldyn and Libsmoldyn are compiled with all of their components. However, they can also be compiled without OpenGL, without hybrid simulation (NSV) support, without LibTiff support, etc. Removing these components removes some aspects of the functionality, obviously, but can also simplify linking.

Following is a simple diagram for Smoldyn's code dependencies. Each file depends on the files that are indented below it.

```
Smoldyn
OpenGL
libTiff
zlib
libicony
```

for example: /usr/bin/g++

 $\begin{array}{c} {\rm NSV} \\ {\rm boost} \\ {\rm VTK} \end{array}$

To build with fewer components, you will need to run CMake to compile Smoldyn. This is described in more detail in the Smoldyn Code Documentation, but summarized here for convenience.

I prefer to run CMake from a command line interface. At a command line interface, change directories to build. Every time you change CMake settings, you'll probably want to do a clean build. To do so, enter "rm -r *", while in the build directory (verify that you're in this directory!), to remove any prior build results. If you're asked about whether manifest.txt should be removed, say yes; this file shows the directories where Smoldyn was installed previously, thus providing information for you to remove it. For a default build, enter "cmake ..". A few test results will be printed out, and then configuring will be complete. When CMake is done, it will have written a lot of stuff to the cmake directory. Important files are "Makefile", which is the standard Makefile for the code and also smoldynconfigure.h, which is a C header file that the Smoldyn code uses for knowing what some important build parameters are.

Once configuring is complete, enter "make". Hopefully, Smoldyn will build, again with build files being put into the build directory. Finally, enter "sudo make install" and enter your password, to install Smoldyn to the usual place (/usr/local/bin on Linux and Mac systems).

For custom builds, you need to set various options to non-default settings. With a command line interface, list each non-default option on the command line after the "cmake .." start. Following are some helpful build options:

Smoldyn option	default	effect when ON
-DOPTION_VCELL	OFF	Build for inclusion within VCell
-DOPTION_NSV	ON	Build with Next Subvolume support
-DOPTION_PDE	OFF	Build with support for PDE simulation
-DOPTION_VTK	OFF	Build sith support for VTK visualization
-DOPTION_STATIC	OFF	Build using static libraries
-DOPTION_USE_OPENGL	ON	Build with graphics support
-DOPTION_USE_LIBTIFF	ON	Build with LibTiff support
-DOPTION_TARGET_SMOLDYN	ON	Build stand-alone Smoldyn program
-DOPTION_TARGET_LIBSMOLDYN	OFF	Build LibSmoldyn library
CMake option	default	function
-DCMAKE_BUILD_TYPE	Release	Choose CMake build type
options are: None, Debug, Rele	ease, RelWi	ithDebInfo, and MinSizeRel
-DCMAKE_CXX_COMPILER:FILEPATH	clang	Compile with specific compiler

For example, the following line builds Smoldyn and Libsmoldyn for debugging and without the hybrid simulation support:

cmake .. -DCMAKE_BUILD_TYPE=Debug -DOPTION_TARGET_LIBSMOLDYN=ON -DOPTION_NSV=OFF

Use with Python

3.1 Files

After building Smoldyn, there are two Python modules, both of which end up in the source/python/smoldyn directory. One place where I can reliably access these files is by navigating to Smoldyn-official/source/python. From there, I can start Python and import smoldyn.

Note that it's possible to see where the library is imported from by entering "smoldyn._file_".

Error trapping

Every function in Libsmoldyn checks that its input values are acceptable and also that no errors arise in the function execution. These errors are returned to the host library in a number of ways. Most Libsmoldyn functions (e.g. smolRunSim) return any error codes directly, which makes it easy to see if an error arose. However, a few functions (e.g. smolNewSim) return other types of values and so return some other indication of success or failure (e.g. NULL). In addition, some functions can raise warnings, which indicate that behavior is unusual but not incorrect.

For all of these errors and warnings, get the details of the problem using the function smolGetError, which will return the error code, the name of the function where the error arose, and a descriptive error string. This will also clear the error, if desired. If errors are not cleared, they are left until they are overwritten by subsequent errors. Warnings are also left until they are cleared or overwritten.

When writing code, it can be helpful to put Libsmoldyn into its debugging mode using the smolSetDebugMode function. Doing this causes any errors that arise to be displayed to stderr.

The possible error codes are declared in libsmoldyn.h with:

Their interpretations are:

value	code	interpretation
0	ECok	no error
-1	ECnotify	message about correct behavior
-2	ECwarning	unusual but not incorrect behavior
-3	ECnonexist	a function input specifies an item that doesn't exist
-4	ECsame	error code should be unchanged from a prior code
-5	ECall	an argument of "all" was found and may not be permitted
-6	ECmissing	a necessary function input parameter is missing
-7	ECbounds	a function input parameter is out of bounds
-8	ECsyntax	function inputs don't make syntactical sense
-9	ECerror	unspecified error condition
-10	ECmemory	Smoldyn was unable to allocate the necessary memory
-11	ECbug	error arose which should not have been possible

4.1 Error checking system internal to libsmoldyn.c

This section describes how to write Libsmoldyn functions using error checking. While it is an essential part of all Libsmoldyn functions, these details are not important for most Libsmoldyn users.

1. The first line of every Libsmoldyn function should be const char *funcname="function_name";. This

name will be returned with any error message to tell the user where the error arose.

- 2. Within the function, check for warnings or errors with the LCHECK macro. The macro format is LCHECK(condition, function, error_code, "message");. This checks that the test condition is true, and issues a notification, warning, or error when this is not the case. The message should be a descriptive message that is under 256 characters in length.
- 3. Most functions return an "enum ErrorCode". If this is the case for your function, and your function might return a notification and/or a warning, then end the main body of the function with return libwarncode;. If it cannot return a notification or a warning, then end it with return ECok;. Finally, if it does not return an "enum ErrorCode", then it needs to return some other error condition that will tell the user to check for errors using smolGetError.
- 4. After the main body of the function, add a goto target called failure:.
- 5. Assuming the function returns an "enum ErrorCode", end the function with return liberrorcode;.

The smolSetTimeStep function provides an excellent and simple example of how Libsmoldyn functions typically address errors. It is:

```
enum ErrorCode smolSetTimeStep(simptr sim, double timestep) {
  const char *funcname="smolSetTimeStep";

  LCHECK(sim, funcname, ECmissing, "missing_sim");
  LCHECK(timestep>0, funcname, ECbounds, "timestep_is_not_>_0");
  simsettime(sim, timestep, 3);
  return ECok;
  failure:
  return liberrorcode; }
```

The smolGet...Index functions are worth a comment. Each of these functions returns the index of an item, such as a species or a surface, based on the name of the item. If the name is not found or other errors arise, then these functions return the error code, cast as an integer. Also, if the name is "all", then these functions return the error code ECall and set the error string "species cannot be 'all", or equivalent. A typical use of these functions is seen in smolSetSpeciesMobility, which includes the following code:

```
i=smolGetSpeciesIndex(sim, species);
if(i==(int)ECall) smolClearError();
else LCHECK(i>0, funcname, ECsame, NULL);
```

In this particular case, this function permits an input of "all", so it clears errors that arise from this return value, and leaves i as a negative value for later use.

Statement

Libsmoldyn quick function guide

Libsmoldyn function

The Libsmoldyn functions correspond relatively closely to the Smoldyn language statements, although not perfectly. However, all functionality should be available using either method. The following table lists the correspondences. Statements preceded by asterisks need to be either entered in statement blocks or preceded by the statement's context (e.g. with surface name). Where correspondence does not apply, the table lists "N/A".

About the input					
#	N/A				
/* */	N/A				
read_file	smolLoadSimFromFile, smolReadConfigString				
end_file	N/A				
define	N/A				
$define_global$	N/A				
undefine	N/A				
ifdefine	N/A				
ifundefine	N/A				
else	N/A				
endif	N/A				
$display_define$	N/A				
N/A	smolSetError				
N/A	smolGetError				
N/A	smolClearError				
N/A	${\tt smolSetDebugMode}$				
N/A	smolErrorCodeToString				
Space and time	9				
\dim	smolNewSim				
boundaries	${\tt smolNewSim}, {\tt smolSetBoundaryType}$				
low_wall	${\tt smolNewSim}, {\tt smolSetBoundaryType}$				
$high_wall$	${\tt smolNewSim}, {\tt smolSetBoundaryType}$				
$time_start$	${\tt smolSetSimTimes}, {\tt smolSetTimeStart}$				
$time_stop$	${\tt smolSetSimTimes}, {\tt smolSetTimeStop}$				
$time_step$	${\tt smolSetSimTimes}, {\tt smolSetTimeStep}$				
time_now	smolSetTimeNow				
Molecules					
species	smolAddSpecies				
N/A	${\tt smolGetSpeciesIndex}$				
N/A	${\tt smolGetSpeciesName}$				
difc	${\tt smolSetSpeciesMobility}$				

difm smolSetSpeciesMobility
drift smolSetSpeciesMobility
mol smolAddSolutionMolecules
surface_mol smolAddSurfaceMolecules
compartment_mol smolAddCompartmentMolecules

molecule_lists smolAddMolList

mol_list smolAddSpecies, smolSetMolList

 $\begin{array}{lll} N/A & {\tt smolGetMolListIndex} \\ N/A & {\tt smolGetMolListName} \\ {\tt max_mol} & {\tt smolSetMaxMolecules} \\ N/A & {\tt smolGetMoleculeCount} \end{array}$

Graphics

graphics

graphic_iter smolSetGraphicsParams graphic_delay smolSetGraphicsParams frame_thickness smolSetFrameStyle frame_color smolSetFrameStyle grid_thickness smolSetGridStyle grid_color smolSetGridStyle background_color smolSetBackgroundStyle display_size smolSetMoleculeStyle color smolSetMoleculeStyle tiff_iter smolSetTiffParams tiff_name smolSetTiffParams $tiff_min$ smolSetTiffParams $tiff_{max}$ smolSetTiffParams light smolSetLightParams text_color smolSetTextStyle

 ${\tt smolSetGraphicsParams}$

Run-time commands

output_rootsmolSetOutputPathoutput_filessmolAddOutputFileappend_filessmolAddOutputFileoutput_file_numbersmolAddOutputFile

cmd smolAddCommand, smolAddCommandFromString

smolAddTextDisplay

Surfaces

text_display

start_surface smolAddSurface new_surface smolAddSurface * name smolAddSurface N/AsmolGetSurfaceIndex N/AsmolGetSurfaceName * action smolSetSurfaceAction * rate smolSetSurfaceRate * rate_internal smolSetSurfaceRate

* color smolSetSurfaceFaceStyle, smolSetSurfaceEdgeStyle

* thickness smolSetSurfaceEdgeStyle
* stipple smolSetSurfaceEdgeStyle
* polygon smolSetSurfaceFaceStyle
* shininess smolSetSurfaceFaceStyle

* panel smolAddPanel
N/A smolGetPanelIndex
N/A smolGetPanelName
* jump smolSetPanelJump
* neighbors smolAddPanelNeighbor

* unbounded_emitter smolAddSurfaceUnboundedEmitter* end_surface N/Aepsilon smolSetSurfaceSimParams margin smolSetSurfaceSimParams neighbor_dist smolSetSurfaceSimParams Compartments start_compartment smolAddCompartment smolAddCompartment new_compartment * name smolAddCompartment N/AsmolGetCompartmentIndex N/AsmolGetCompartmentName * surface smolAddCompartmentSurface * point smolAddCompartmentPoint * compartment smolAddCompartmentLogic * end_compartment N/AReactions smolAddReaction reaction N/AsmolGetReactionIndex N/AsmolGetReactionName reaction_cmpt smolSetReactionRegion reaction_surface smolSetReactionRegion smolAddReaction, smolSetReactionRate reaction_rate confspread_radius smolSetReactionRate binding_radius smolSetReactionRate reaction_probability smolSetReactionRate reaction_production smolSetReactionRate reaction_permit not supported reaction_forbid not supported product_placement smolSetReactionProductsPorts start_port smolAddPort new_port smolAddPort * name smolAddPort N/AsmolGetPortIndex N/AsmolGetPortName * surface smolAddPort * face smolAddPort * end_port N/AN/AsmolAddPortMolecules N/AsmolGetPortMolecules Simulation settings rand_seed smolSetRandomSeed accuracy not supported molperbox smolSetPartitions boxsize smolSetPartitions gauss_table_size not supported smolSetSurfaceSimParams epsilon margin smolSetSurfaceSimParams neighbor_dist smolSetSurfaceSimParams pthreads not supported Libsmoldyn actions N/A smolUpdateSim

smolRunTimeStep

smolRunSim

N/A

N/A

N/A	${\tt smolRunSimUntil}$
N/A	smolFreeSim
N/A	${\tt smolDisplaySim}$

N/A smolPrepareSimFromFile

Data structures and declarations

6.1 Enumerations

In C, enumerations are already defined, so they can be used as is. Here is an example of using an enumerated error code as an argument,

```
smolErrorCodeToString(ECwarning, mystring)
```

In Python, enumerations are most easily dealt with by defining a variable for the enumerated list and then choosing from it. Here is an example,

```
import smoldyn._smoldyn as S
EC=S.ErrorCode
S.errorCodeToString(EC.warning, mystring)
```

Surface actions (SrfAction)

Libsmoldyn	Python	Notes
SAreflect	reflect	
SAtrans	trans	
SAabsorb	absorb	
SAjump	jump	
SAport	port	
SAmult	mult	multiple actions
SAno	no	static surface-bound molecules
SAnone	none	none of the other options
SAadsorb	adsorb	internal use only
SArevdes	revdes	internal use only
SAirrevdes	irrevdes	internal use only
SAflip	flip	internal use only
	SAreflect SAtrans SAabsorb SAjump SAport SAmult SAno SAnone SAadsorb SArevdes SAirrevdes	SAreflect reflect SAtrans trans SAabsorb absorb SAjump jump SAport port SAmult mult SAno no SAnone none SAadsorb adsorb SArevdes revdes SAirrevdes irrevdes

Molecule state (MolecState)

Statement	Libsmoldyn	Python	Notes
soln	MSsoln	soln	
front	MSfront	front	
back	MSback	back	
up	MSup	up	
down	MSdown	down	
bsoln	MSbsoln	bsoln	pseudo-state for surface interactions
all	MSall	all	for model creation by user
N/A	MSnone	none	internal use only

Panel face (PanelFace)

Statement	Libsmoldyn	Python	Notes
front	PFfront	front	
back	PFback	back	
N/A	PFnone	none	internal use only
both	PFboth	both	for model creation by user

Panel shape (PanelShape)

Statement	Libsmoldyn	Python	Notes
rect	PSrect	rect	rectangle
tri	PStri	tri	triangle
sph	PSsph	sph	sphere
cyl	PScyl	cyl	cylinder
hemi	PShemi	hemi	hemisphere
disk	PSdisk	disk	disk
all	PSall	all	for model creation by user
N/A	PSnone	none	internal use only

Libsmoldyn error code (ErrorCode)

Statement	Libsmoldyn	Python	Notes
N/A	ECok	ok	value 0
N/A	ECnotify	notify	value -1
N/A	ECwarning	warning	value -2
N/A	ECnonexist	nonexist	value -3
N/A	ECall	all	value -4
N/A	ECmissing	missing	value -5
N/A	ECbounds	bounds	value -6
N/A	ECsyntax	syntax	value -7
N/A	ECerror	error	value -8
N/A	ECmemory	memory	value -9
N/A	ECbug	bug	value -10
N/A	ECsame	same	value -11
N/A	ECwildcard	wildcard	value -12

6.2 Libsmoldyn header file

The Libsmoldyn header file is libsmoldyn.h. It lists all of the function declarations. This file references smoldyn.h, which lists all of the data structure declarations and enumerated type definitions.

If you compiled and installed Smoldyn using the default configuration, both files should be in your /usr/local/include/smoldyn directory. Also in this directory is the smoldyn_config.h file. This file was used for compiling Smoldyn and Libsmoldyn but is not needed afterwards. Nevertheless, it's copied to the /usr/local/include/smoldyn directory so that programs that call Libsmoldyn can know what options Libsmoldyn was built with.

Libsmoldyn functions

7.1 General comments

None of the functions allocate memory, except within the simulation data structure. This means, for example, that all functions that return strings do not allocate these strings themselves, but instead write the string text to memory that the library user allocated and gave to the function. All strings are fixed at STRCHAR characters, where this constant is defined in string2.h to 256 characters.

7.2 Miscellaneous

GetVersion

 $C: {\tt double \ smolGetVersion(void);}$

Python: float getVersion()

Returns the Smoldyn version number.

7.3 Errors

SetError

C: void smolSetError(const char *errorfunction, enum ErrorCode errorcode, const char *errorstring);

Python: N/A

This function is probably not useful for most users. Sets the Libsmoldyn error code to errorcode, error function to errorfunction, and error string to errorstring. The sole exception is if errorcode is ECsame then this does nothing and simply returns. Back to it's normal operation, this also either sets or clears the Libsmoldyn warning code, as appropriate. If errorstring is entered as NULL, this clears the current error string, and similarly for errorfunction.

$\mathbf{GetError}$

C: enum ErrorCode smolGetError(char *errorfunction, char *errorstring, int

clearerror); Python: N/A

Returns the current LibSmoldyn error code directly, returns the function where the error occurred in error function if it is not NULL, and returns the error string in errorstring if it is not NULL. Set clearerror to 1 to clear the error and 0 to leave any error condition unchanged.

ClearError

C: void smolClearError(void);

Python: N/A

Clears any error condition.

$\mathbf{SetDebugMode}$

C: void smolSetDebugMode(int debugmode);

Python: setDebugMode(int debugmode)

Enter debugmode as 1 to enable debugging and 0 to disable debugging. When debug mode is turned on, all errors are displayed to stderr, as are all cleared errors. By turning on debug mode, you can often avoid checking for errors with additional code and you also typically don't need to call smolGetError.

ErrorCodeToString

C: char* smolErrorCodeToString(enum ErrorCode erc, char *string);

Python: str errorCodeToString(enum ErrorCode erc, str string)

Returns a string both directly and in string that corresponds to the error code in erc. For example, if erc is ECmemory, this returns the string "memory". To do: The string is not needed or used in the Python version.

7.4 Sim structure

NewSim

C: simptr smolNewSim(int dim, double *lowbounds, double *highbounds);

Python: simptr newSim(int dim, List[float] lowbounds, List[float] highbounds)

Creates and returns a new sim structure. The structure is initialized for a dim dimensional system that has boundaries defined by the points lowbounds and highbounds. Boundaries are transmitting (modify them with smolSetBoundaryType). Returns NULL upon failure.

Python to do: there's no need for the dim parameter because it's redundant with vector lengths.

UpdateSim

C: enum ErrorCode smolUpdateSim(simptr sim);

Python: ErrorCode updateSim()

Updates the simulation structure. This calculates all simulation parameters from physical parameters, sorts lists, and generally does everything required to make a simulation ready to run. It may be called multiple times.

Python to do: doesn't work. Python wants no argument, but Libsmoldyn then complains about no argument.

RunTimeStep

C: enum ErrorCode smolRunTimeStep(simptr sim);

Python: ErrorCode runTimeStep()

Runs one time step of the simulation. Returns an error if the simulation terminates unexpectedly during this time step or a warning if it terminates normally.

Python to do: doesn't work. Python wants no argument, but Libsmoldyn then complains about no argument.

RunSim

 $C{:}\ \mathtt{enum}\ \mathtt{ErrorCode}\ \mathtt{smolRunSim}(\mathtt{simptr}\ \mathtt{sim})\,;$

Python: ErrorCode runSim()

Runs the simulation until it terminates. Returns an error if the simulation terminates unexpectedly during this time step or a warning if it terminates normally.

Python to do: doesn't work. Python wants no argument, but Libsmoldyn then complains about no argument.

RunSimUntil

C: enum ErrorCode smolRunSimUntil(simptr sim, double breaktime);

Python: ErrorCode runSimUntil(float breaktime)

Runs the simulation either until it terminates or until the simulation time equals or exceeds breaktime.

Python to do: doesn't work. Python wants no argument, but Libsmoldyn then complains about no argument.

FreeSim

```
{\bf C}: {\tt enum \ ErrorCode \ smolFreeSim(simptr \ sim)};
```

Python: ErrorCode freeSim()
Frees the simulation data structure.

DisplaySim

```
C: enum ErrorCode smolDisplaySim(simptr sim);
```

Python: ErrorCode displaySim()

Displays all relevant information about the simulation system to stdout.

7.5 Read configuration file

PrepareSimFromFile

```
C: simptr smolPrepareSimFromFile(char *filepath, char *filename, char *flags);
```

Python: simptr prepareSimFromFile(str filename, str flags)

Reads the Smoldyn configuration file that is at filepath and has file name filename, sets it up, and outputs simulation diagnostics to stdout. Returns the sim structure, or NULL if an error occurred. flags are the command line flags that are entered for normal Smoldyn use. Either or both of filepath and flags can be sent in as NULL if there is nothing to report. After this function runs successfully, it should be possible to call smolRunSim or smolRunTimeStep.

LoadSimFromFile

```
C: enum ErrorCode smolLoadSimFromFile(char *filepath, char *filename, simptr
*simpointer, char *flags);
```

Python: ErrorCode loadSimFromFile(str filename, str flags)

Loads part or all of a sim structure from the file that is at filepath and has file name filename. Send in simpointer as a pointer to sim, where sim may be an existing simulation structure that this function will append or NULL if it is to be created by this function. flags are the command line flags that are entered for normal Smoldyn use. Either or both of filepath and flags can be sent in as NULL if there is nothing to report. After this function runs successfully, call smolUpdateSim to calculate simulation parameters.

ReadConfigString

C: enum ErrorCode smolReadConfigString(simptr sim, char *statement, char *parameters);

Python: ErrorCode readConfigString(str statement, str parameters)

Reads and processes what would normally be a single line of a configuration file. The first word of the line is the statement name, entered here as statement, while the rest of the line is entered as parameters. Separate different parameters with spaces. The same parser is used as for normal Smoldyn configuration files. This function does not make use of block style input formatting, such as for surface definitions. This means that a new surface needs to declared with "new_surface name" and all subsequent surface definitions need to start with "surface name". Analogous rules apply to compartments and port.

7.6 Simulation settings

SetSimTimes

C: enum ErrorCode smolSetSimTimes(simptr sim, double timestart, double timestop, double timestep);

Python: ErrorCode setSimTimes(float timestart, float timestop, float timestep)

Sets all of the simulation time parameters to the values entered here. In addition the simulation "time now" is set to timestart.

SetTimeStart

C: enum ErrorCode smolSetTimeStart(simptr sim, double timestart);

Python: ErrorCode setTimeStart(float timestart) Sets the simulation starting time.

SetTimeStop

C: enum ErrorCode smolSetTimeStop(simptr sim, double timestop); Python: ErrorCode setTimeStop(float timestop)

Sets the simulation stopping time.

SetTimeNow

 ${\rm C:\ enum\ ErrorCode\ smolSetTimeNow(simptr\ sim,\ double\ timenow);}$

Python: ErrorCode setTimeNow(float timenow)

Sets the simulation current time.

SetTimeStep

C: enum ErrorCode smolSetTimeStep(simptr sim, double timestep);

Python: ErrorCode setTimeStep(float timestep)

Sets the simulation time step, which must be greater than 0.

SetRandomSeed

C: enum ErrorCode smolSetRandomSeed(simptr sim, double seed);

Python: ErrorCode setRandomSeed(int seed)

Sets the random number generator seed to seed if seed is at least 0, and sets it to the current time value if seed is less than 0.

SetPartitions

C: enum ErrorCode smolSetPartitions(simptr sim, char *method, double value);

Python: ErrorCode setPartitions(str method, float value)

Sets the virtual partitions in the simulation volume. Enter method as "molperbox" and then enter value with the requested number of molecules per partition volume; the default, which is used if this function is not called at all, is a target of 4 molecules per box. Or, enter method as "boxsize" and enter value with the requested partition spacing. In this latter case, the actual partition spacing may be larger or smaller than the requested value in order to fit an integer number of partitions into each coordinate of the simulation volume.

7.7 Graphics

SetGraphicsParams

C: enum ErrorCode smolSetGraphicsParams(simptr sim, char *method, int timesteps, double delay):

Python: ErrorCode setGraphicsParams(str method, int timesteps, int delay)

Sets basic simulation graphics parameters. Enter method as "none" for no graphics (the default), "opengl" for fast but minimal OpenGL graphics, "opengl_good" for improved OpenGL graphics, "opengl_better" for fairly good OpenGL graphics, or as NULL to not set this parameter currently. Enter timesteps with a positive integer to set the number of simulation time steps between graphics renderings (1 is the default) or with a negative number to not set this parameter currently. Enter delay as a non-negative number to set the minimum number of milliseconds that must elapse between subsequent graphics renderings in order to improve visualization (0 is the default) or as a negative number to not set this parameter currently.

SetTiffParams

C: enum ErrorCode smolSetTiffParams(simptr sim, int timesteps, char *tiffname, int lowcount, int highcount);

Python: ErrorCode setTiffParams(int timesteps, str tiffname, int lowcount, int highcount)

Sets parameters for the automatic collection of TIFF format snapshots of the graphics window. timesteps is the number of simulation timesteps that should elapse between subsequent snapshots,

tiffname is the root filename of the output TIFF files, lowcount is a number that is appended to the filename of the first snapshot and which is then incremented for subsequent snapshots, and highcount is the last numbered file that will be collected. Enter negative numbers for timesteps, lowcount, and/or highcount to not set these parameters, and enter NULL for tiffname to not set the file name.

SetLightParams

C: enum ErrorCode smolSetLightParams(simptr sim, int lightindex, double *ambient, double *diffuse, double *specular, double *position);

Python: ErrorCode smolSetLightParams(int lightindex, List[float] ambient, List[float] diffuse, List[float] specular, List[float] position)

Sets the lighting parameters that are used for the rendering method "opengl_better". Enter lightindex as -1 for the global ambient light (in which case diffuse, specular, and position should all be NULL) or as 0 to 8 for one of the 8 light sources. For each light source, you can specify the 4-value color vector for the light's ambient, diffuse, and specular properties (all values should be between 0 and 1). You can also specify the 3-dimensional position for the light. To not set a property, just enter the respective vector as NULL.

SetBackgroundStyle

C: enum ErrorCode smolSetBackgroundStyle(simptr sim, double *color);

Python: ErrorCode setBackgroundStyle(string color)

Sets the color of the graphics display background. color is a 4-value vector with red, green, blue, and alpha values.

SetFrameStyle

C: enum ErrorCode smolSetFrameStyle(simptr sim, double thickness, double *color);

Python: ErrorCode setFrameStyle(float thickness, string color)

Sets the thickness and the color of the wire frame that outlines the simulation system in the graphics window. Enter thickness as 0 for no frame, as a positive number for the number of points in thickness, or as a negative number to not set this parameter. Enter color as a 4-value vector with the frame color, or as NULL to not set it.

SetGridStyle

C: enum ErrorCode smolSetGridStyle(simptr sim, double thickness, double *color);

Python: ErrorCode setGridStyle(float thickness, string color);

Sets the thickness and the color of a grid that shows where the partitions are that separate Smoldyn's virtual boxes. Enter thickness as 0 for no grid, as a positive number for the number of points in thickness, or as a negative number to not set this parameter. Enter color as a 4-value vector with the grid color, or as NULL to not set it.

SetTextStyle

C: enum ErrorCode smolSetTextStyle(simptr sim, double *color);

Python: ErrorCode setTextStyle(string color)

Sets the color of any text that is displayed to the graphics window. color is a 4-value vector with red, green, blue, and alpha values.

AddTextDisplay

C: enum ErrorCode smolAddTextDisplay(simptr sim, char *item);

Python: ErrorCode addTextDisplay(string item)

Adds item to the list of things that Smoldyn should display as text to the graphics window. Currently supported options are "time" and the names of species and, optionally, their states. For species and states, the graphics window shows the number of molecules.

7.8 Runtime commands

SetOutputPath

C: enum ErrorCode smolSetOutputPath(simptr sim, char *path);

Python: ErrorCode setOutputPath(string path) Sets the file path for text output files to path.

AddOutputFile

C: enum ErrorCode smolAddOutputFile(simptr sim, char *filename, int suffix, int append);

Python: ErrorCode addOutputFile(string filename, int suffix, int append)

Declares the file called filename as a file for output by one or more runtime commands. Note that spaces are not permitted in the file name. If suffix is non-negative, then the file name is suffixed by this integer, which can be helpful for creating output file stacks. Enter append as 1 if any current file should simply be appended, or to 0 if any current file should be overwritten.

AddCommand

C: enum ErrorCode smolAddCommand(simptr sim, char type, double on, double off, double step, double multiplier, char *commandstring);

Python: ErrorCode addCommand(string type, float on, float off, float step, float multiplier, string commandstring)

Adds a run-time command to the simulation, including its timing instructions. This function should generally be called after smolSetSimTimes to make sure that command times get set correctly. The following table lists the command type options along with the other parameters that are used for each type. Parameters that are not required are simply ignored. The commandstring is the command name followed by any command parameters.

type	meaning	on	off	step	multiplier
Cor	ntinuous time queue				
b	before simulation	-	-	-	-
a	after simulation	-	-	-	-
@	at fixed time	time	-	-	-
i	fixed intervals	time on	time off	time step	-
x	exponential intervals	time on	time off	min. time step	$\operatorname{multiplier}$
Integer time queue					
В	before simulation	-	-	-	-
Α	after simulation	-	-	-	-
&	at fixed iteration	iteration	-	-	-
I	fixed iteration intervals	iter. on	iter. off	iter. step	-
E	every time step	-	-	-	-
N	every n'th time step	_	-	iter. step	-

AddCommandFromString

C: enum ErrorCode smolAddCommandFromString(simptr sim, char *string);

Python: ErrorCode addCommandFromString(str string)

Defines a runtime command, including its execution timing parameters, from the string string. This string should be identical to ones used in configuration files, except that they do not include the "cmd" statement.

7.9 Molecules

AddSpecies

C: enum ErrorCode smolAddSpecies(simptr sim, char *species, char *mollist);

Python: ErrorCode addSpecies(str species, str mollist)

Adds a molecular species named species to the system. If you have already created species lists and want all states of this species to live in a specific list, then enter it in mollist; otherwise, enter mollist as NULL or an empty string to request default behavior.

7.9. MOLECULES 27

GetSpeciesIndex

C: int smolGetSpeciesIndex(simptr sim, char *species);

Python: int getSpeciesIndex(str species)

Returns the species index that corresponds to the species named species. Upon failure, this function returns an error code cast as an integer.

GetSpeciesName

C: char* smolGetSpeciesName(simptr sim, int speciesindex, char *species);

Python: str getSpeciesName(int speciesindex, str species)

Returns the species name that corresponds to the species index in species. The name is returned both in species and directly, where the latter simplifies function use. Upon failure, this function returns NULL.

SetSpeciesMobility

C: enum ErrorCode smolSetSpeciesMobility(simptr sim, char *species, enum MolecState state, double difc, double *drift, double *difmatrix);

Python: ErrorCode setSpeciesMobility(str species, MolecState state, float difc, List[float] drift, List[float] difmatrix)

Sets any or all of the mobility coefficients for species species (which may be "all") and state state (which may be MSall). difc is the isotropic diffusion coefficient, drift is the drift vector, and difmatrix is the square of the anisotropic diffusion matrix (see the User's manual). To not set coefficients, enter a negative number in difc and/or enter a NULL pointer in the other inputs, respectively.

AddMolList

C: int smolAddMolList(simptr sim, char *mollist);

Python: int addMolList(str mollist)

Adds a new molecule list, named mollist, to the system.

GetMolListIndex

C: int smolGetMolListIndex(simptr sim, char *mollist);

Python: int getMolListIndex(str mollist)

Returns the list index that corresponds to the list named mollist.

GetMolListName

C: char* smolGetMolListName(simptr sim, int mollistindex, char *mollist);

Python: str getMolListName(int mollistindex, str mollist)

Returns the molecule list name that corresponds to the molecule list with index mollistindex. The name is returned both in mollist and directly. On error, this function NULL.

SetMolList

C: enum ErrorCode smolSetMolList(simptr sim, char *species, enum MolecState state, char *mollist);

Python: ErrorCode setMolList(str species, MolecState state, str mollist)

Sets the molecule list for species species (which may be "all") and state state (which may be MSall) to molecule list mollist.

SetMaxMolecules

C: smolSetMaxMolecules(simptr sim, int maxmolecules);

Python: setMaxMolecules(int maxmolecules);

Sets the maximum number of molecules that can simultaneously exist in a system to maxmolecules. At present, this function needs to be called for a simulation to run, although it will become optional once dynamic molecule memory allocation has been written.

AddSolutionMolecules

C: enum ErrorCode smolAddSolutionMolecules(simptr sim, char *species, int number, double *lowposition, double *highposition);

Python: ErrorCode addSolutionMolecules(str species, int number, List[float] lowposition, List[float] highposition)

Adds number solution state molecules of species species to the system. They are randomly distributed within the box that has its opposite corners defined by lowposition and highposition. Any or all of these coordinates can equal each other to place the molecules along a plane or at a point. Enter lowposition and/or highposition as NULL to indicate that the respective corner is equal to that corner of the entire system volume.

AddCompartmentMolecules

C: enum ErrorCode smolAddCompartmentMolecules(simptr sim, char *species, int number, char *compartment);

Python: ErrorCode addCompartmentMolecules(str species, int number, str compartment) Adds number solution state molecules of species species to the compartment compartment. Molecules are randomly distributed within the compartment.

AddSurfaceMolecules

C: enum ErrorCode smolAddSurfaceMolecules(simptr sim, int speciesindex, enum MolecState state, int number, int surface, enum PanelShape panelshape, int panel, double *position);

Python: ErrorCode addSurfaceMolecules(int speciesindex, MolecState state, int number, int surface, PanelShape panelshape, int panel, List[float] position)

Adds number molecules of species species and state state to surface(s) in the system. It is permissible for surface to be "all", panelshape to be PSall, and/or panel to be "all". If you want molecules at a specific position, then you need to enter a specific surface, panel shape, and panel, and then enter the position in position.

${\bf GetMoleculeCount}$

C: int smolGetMoleculeCount(simptr sim, char *species, enum MolecState state);

Python: int getMoleculeCount(str species, MolecState state)

Returns the total number of molecules in the system that have species species ("all" is permitted) and state state (MSall is permitted). Any error is returned as the error code cast as an integer.

SetMoleculeStyle

C: enum ErrorCode smolSetMoleculeStyle(simptr sim, const char *species, enum MolecState state, double size, double *color);

Python: ErrorCode setMoleculeStyle(str species, MolecState state, float size, List[float] color)

Sets the graphical display parameters for molecules of species species ("all" is permitted) and state state (MSall is permitted). Enter size with the drawing size (in pixels if graphics method is "opengl" and in simulation system length units for better drawing methods) or with a negative number to not set the size. Enter color with the 3-value color vector or with NULL to not set the color.

7.10 Surfaces

${\bf Set Boundary Type}$

C: enum ErrorCode smolSetBoundaryType(simptr sim, int dimension, int highside, char type);

 $Python: {\tt ErrorCode\ setBoundaryType(int\ dimension,\ int\ highside,\ str\ type)}$

Sets the molecule interaction properties for a system boundary that bounds the dimension axis. Enter dimension as -1 to indicate all dimensions. Set highside to 0 for the lower boundary, to 1 for the upper boundary, and to -1 for both boundaries. The boundary type is entered in type as 'r' for reflecting, 'p' for periodic, 'a' for absorbing, or 't' for transmitting. Note that Smoldyn only observes these properties if no surfaces are declared; otherwise all boundaries are transmitting regardless of what's entered here.

AddSurface

C: int smolAddSurface(simptr sim, char *surface);

7.10. SURFACES 29

Python: int addSurface(str surface) Adds a surface called surface to the system.

GetSurfaceIndex

C: int smolGetSurfaceIndex(simptr sim, char *surface);

Python: int getSurfaceIndex(str surface)

Returns the surface index that corresponds to the surface named surface. The index is non-negative. On failure, this returns an error code cast as an integer.

GetSurfaceName

C: char* smolGetSurfaceName(simptr sim, int surfaceindex, char *surface);

Python: str getSurfaceName(int surfaceindex, str surface)

Returns the surface name for surface number surfaceindex both directly and in the surface string. On failure, this returns NULL.

SetSurfaceAction

C: enum ErrorCode smolSetSurfaceAction(simptr sim, char *surface, enum PanelFace face, char *species, enum MolecState state, enum SrfAction action);

Python: ErrorCode setSurfaceAction(str surface, PanelFace face, str species, MolecState state, SrfAction action)

Sets the action that should happen when a molecule of species species (may be "all") and state state (may be MSall) diffuses into face face (may be PFboth) of surface surface. The action is set to action.

SetSurfaceRate

C: enum ErrorCode smolSetSurfaceRate(simptr sim, char *surface, char *species, enum MolecState state, enum MolecState state1, enum MolecState state2, double rate, char *newspecies, int isinternal);

Python: ErrorCode setSurfaceRate(str surface, str species, MolecState state, MolecState state1, MolecState state2, float rate, str newspecies, int isinternal)

Sets the surface interaction rate(s) for surface surface (may be "all") and species species (may be "all") and state state. The transition being considered is from state1 to state2 (this function uses the tri-state format for describing surface interactions, shown below). The interaction rate is set to rate, which is interpreted as a probability value for internal use if isinternal is 1 and as a physical interaction coefficient if isinternal is 0. If the molecule ends up interacting with the surface, it changes to new species newspecies. Enter newspecies as either NULL or an empty string to indicate that molecules should not change species upon interactions. The molecule states are most easily understood with the following table. If the action listed in the table is in italics, then the corresponding combination of states is not a permitted input.

interaction class	tristate format			action
	state	state1	state2	
	soln	soln	soln	reflect
	"	"	bsoln	transmit
collision from	"	"	bound	adsorb
solution state	"	bsoln	soln	transmit
	"	"	bsoln	reflect
	"	"	bound	adsorb
	"	bound	soln	desorb
action from	"	"	bsoln	desorb
bound state	"	"	bound	no change
	"	"	bound'	flip
	bound	soln	soln	reflect
	"	"	bsoln	transmit
	"	"	bound	hop
collision from	"	"	bound'	hop

bound state	"	bsoln	soln	transmit
	"	"	bsoln	reflect
	"	"	bound	hop
	"	"	bound'	hop
	"	bound	soln	desorb
action from	"	"	bsol n	desorb
bound state	"	"	bound	$no\ change$
	"	"	bound'	flip
impossible	"	bound'	any	nonsense

AddPanel

C: int smolAddPanel(simptr sim, char *surface, enum PanelShape panelshape, char *panel, char *axisstring, double *params);

Python: int addPanel(str surface, PanelShape panelshape, str panel, str axisstring, List[float] params)

Adds or modifies a panel of shape panelshape of surface surface. axisstring lists any text parameters for the panel, which in practice is only a single word that gives the orientation of a rectangle panel (e.g. "+0" or "-y"). params lists the numerical parameters for the panel location, size, and drawing characteristics. These are exactly the same parameters that are listed for the "panel" statement in Smoldyn configuration files, with the sole exception that the first rectangle "parameter" is actually a string that is entered in axisstring. panelname is an optional parameter for naming the panel; if it is included and is not an empty string, the panel is named panelname. If this panel name was already used by a panel of the same shape, then this function overwrites that panel's data with the new data. If the name was already used by a panel with a different shape, then this creates an error, and if the name was not used before, then a new panel is created. To use default panel naming, send in panelname as either NULL or as an empty string. In the latter case, panelname is returned with the newly assigned default name.

GetPanelIndex

C: int smolGetPanelIndex(simptr sim, char *surface, enum PanelShape *panelshapeptr, char *panel):

Python: int getPanelIndex(str surface, PanelShape *panelshapeptr, str panel)

Returns the panel index for the panel called panel on surface surface. If panelshapeptr is not NULL, this also returns the panel shape in panelshapeptr. On failure, this returns the error code cast as an integer.

GetPanelName

C: char* smolGetPanelName(simptr sim, char *surface, enum PanelShape panelshape, int panelindex, char *panel);

Python: str getPanelName(str surface, PanelShape panelshape, int panelindex, str panel)

Returns the name of the panel that is in surface surface, has shape panelshape, and has index panelindex, both directly and in the string panel. On failure, this returns NULL.

SetPanelJump

C: enum ErrorCode smolSetPanelJump(simptr sim, const char *surface, const char *panel1, enum PanelFace face1, const char *panel2, enum PanelFace face2, int isbidirectional);

Python: ErrorCode setPanelJump(str surface, str panel1, PanelFace face1, str panel2, PanelFace face2, int isbidirectional)

Sets a jumping link between face face1 of panel panel1 and face face2 of panel panel2 of surface surface. The link goes from panel1 to panel2 if bidirectional is entered as 0 and goes in both directions if bidirectional is entered as 1. None of the surface, panel, or face entries is allowed to be "all". This does not set the actions of any species to "jump", which has to be done using the smolSetSurfaceAction function.

7.10. SURFACES 31

AddSurfaceUnboundedEmitter

C: enum ErrorCode smolAddSurfaceUnboundedEmitter(simptr sim, const char *surface, enum PanelFace face, const char *species, double emitamount, double *emitposition);

Python: ErrorCode addSurfaceUnboundedEmitter(str surface, PanelFace face, str species, float emitamount, List[float] emitposition)

Adds information about a point molecular source so that face face of surface surface can have its absorption properties calculated so that the molecular concentrations will become the same as they would be if the surface weren't there at all. The point molecular source emits molecules of species species, with a rate of emitamount and is at location emitposition. The emission rate does not need to be in absolute units, but only has to be correct relative to other unbounded emitters. None of the inputs to this function are allowed to be "all".

SetSurfaceSimParams

C: enum ErrorCode smolSetSurfaceSimParams(simptr sim, const char *parameter, double value);

Python: ErrorCode setSurfaceSimParams(str parameter, float value)

Sets the surface simulation parameter named with parameter to value value. The possible parameters are "epsilon", "margin", and "neighbordist". In all cases, the defaults are nearly always good, although this function allows them to be modified if desired. Epsilon is the maximum distance away from a surface that Smoldyn is allowed to place a surface-bound molecule. Margin is the distance inside from the edge of a surface panel that Smoldyn will place surface-bound molecules that hop onto this panel. Neighbor distance is the maximum distance over which surface-bound molecules are allowed to hop to transition from one panel to a neighboring panel.

AddPanelNeighbor

C: enum ErrorCode smolAddPanelNeighbor(simptr sim, const char *surface1, const char *panel1, const char *surface2, const char *panel2, int reciprocal);

Python: ErrorCode addPanelNeighbor(str surface1, str panel1, str surface2, str panel2, int reciprocal)

Adds panel panel2 of surface surface2 as a neighbor of panel panel1 or surface surface1, meaning that surface-bound molecules will be allowed to diffuse from panel1 to panel2. These are not allowed to be the same panel. Also, "all" values are not permitted. Otherwise, essentially any possible entries are legitimate. If surface-bound molecules should also be allowed to diffuse from panel2 to panel1, enter reciprocal as 1; if not, enter reciprocal as 0.

SetSurfaceStyle

C: enum ErrorCode smolSetSurfaceStyle(simptr sim, const char *surface, enum PanelFace face, enum DrawMode mode, double thickness, double *color, int stipplefactor, int stipplepattern, double shininess);

Python: ErrorCode setSurfaceStyle(str surface, PanelFace face, DrawMode mode, float thickness, List[float] color, int stipplefactor, int stipplepattern, float shininess)

Sets the graphics output style for face face of surface surface. mode is the drawing mode; enter it as DMnone to not set this parameter and otherwise enter it as DMno to not draw the surface, DMvert for vertices, DMedge for edges, or DMface for faces. The thickness parameter gives the point size or line width for drawing vertices or edges, or can be entered as a negative number to not set this parameter. color is the 4-value color vector for the surface, or can be entered as NULL to not set this parameter. stipplefactor is the repeat distance for the entire edge stippling pattern, or can be entered as a negative number to not set it. stipplepattern is the edge stippling pattern, which needs to be between 0 and 0xFFFF, or can be entered as -1 to not set this parameter. And shininess is the surface shininess, for use with lighting in the "opengl_better" graphics display option, or can be entered as -1 to not set this parameter. The parameters thickness, stipplefactor, and stipplepattern only apply to edge style drawing modes and ignore any input in the face entry. The shininess parameter only applies to the face style drawing modes.

7.11 Compartments

AddCompartment

C: int smolAddCompartment(simptr sim, char *compartment);

Python: int addCompartment(str compartment)

Adds a compartment called compartment to the system.

${\bf GetCompartmentIndex}$

C: int smolGetCompartmentIndex(simptr sim, char *compartment);

Python: int getCompartmentIndex(str compartment)

Returns the index of the compartment named compartment. On failure, this returns an error code cast as an integer.

GetCompartmentName

C: char* smolGetCompartmentName(simptr sim, int compartmentindex, char *compartment);

Python: str getCompartmentName(int compartmentindex, str compartment)

Returns the name of the compartment that has index compartmentindex both directly and in the string compartment. Returns NULL if an error arises.

${\bf Add Compart ment Surface}$

C: enum ErrorCode smolAddCompartmentSurface(simptr sim, char *compartment, char *surface);

Python: ErrorCode addCompartmentSurface(str compartment, str surface)

Adds surface surface as one of the bounding surfaces of compartment compartment.

AddCompartmentPoint

C: enum ErrorCode smolAddCompartmentPoint(simptr sim, char *compartment, double *point);

Python: ErrorCode addCompartmentPoint(str compartment, List[float] point)

Adds point as one of the interior-defining points of compartment compartment.

AddCompartmentLogic

C: enum ErrorCode smolAddCompartmentLogic(simptr sim, char *compartment, enum CmptLogic logic, char *compartment2);

Python: ErrorCode addCompartmentLogic(str compartment, CmptLogic logic, str compartment2)

Modifies the current definition of compartment compartment using a logical rule specified in logic and the definition of compartment2.

7.12 Reactions

AddReaction

C: enum ErrorCode smolAddReaction(simptr sim, const char *reaction, const char *reactant1, enum MolecState rstate1, const char *reactant2, enum MolecState rstate2, int nproduct, const char **productspecies, enum MolecState *productstates, double rate);

Python: ErrorCode addReaction(str reaction, str reactant1, MolecState rstate1, str reactant2, MolecState rstate2, int nproduct, List[str] productspecies,

List[MolecState] productstates, float rate)

Adds reaction named reaction to the system. This reaction can have up to two reactants, whose species are listed in reactant1 and reactant2 and whose states are listed in rstate1 and rstate2. If the reaction has fewer than two reactants, set either or both of reactant1 and reactant2 to either NULL or an empty string. State the number of reaction products in nproduct, list their species in productspecies, and list their states in productstates. To set the reaction rate, enter it in rate; otherwise, enter rate as a negative number.

7.12. REACTIONS 33

GetReactionIndex C: int smolGetReactionIndex(simptr sim, int *orderptr, char *reaction);

Python: int getReactionIndex(List[int] orderptr, str reaction)

Returns the index and order for the reaction that is named reaction. If the order is known, send in orderptr pointing to this value. If it is not known, send in orderptr equal to either NULL or pointing to a negative number; in this case, it will be returned pointing to the reaction order, if the reaction was found. On failure, this returns the error code, cast as an integer.

GetReactionName

C: char* smolGetReactionName(simptr sim, int order, int reactionindex, char
*reaction);

Python: str getReactionName(int order, int reactionindex, str reaction)

Returns the name of the reaction that has reaction order order and index reactionindex in the string reaction. Also returns the result directly. Returns NULL if an error arises.

SetReactionRate

C: enum ErrorCode smolSetReactionRate(simptr sim, int order, char *reaction, double rate, int isinternal);

Python: ErrorCode setReactionRate(int order, str reaction, float rate, int isinternal)

Set the reaction rate to rate. If this value is to be interpreted as an internal reaction rate parameter, meaning the production rate for zeroth order reactions, the reaction probability for first order reactions, or the binding radius for second order reactions, then set isinternal to 1. Rather than calling this function at all, it's usually easier to use the rate parameter of the smolAddReaction function, although that doesn't cope with internal rate values.

SetReactionRegion

C: enum ErrorCode smolSetReactionRegion(simptr sim, const char *reaction, const char *compartment, const char *surface);

Python: ErrorCode setReactionRegion(str reaction, str compartment, str surface)

Limits the spatial region where a reaction can take place to the compartment compartment and/or the surface surface. To not set one of these limits, enter compartment and/or surface as NULL. To remove a previously set limit, enter compartment and/or surface as the empty string, "".

SetReactionProducts

C: enum ErrorCode smolSetReactionProducts(simptr sim, const char *reaction, enum RevParam method, double parameter, const char *product, double *position);

Python: ErrorCode setReactionProducts(str reaction, RevParam method, float parameter, str product, List[float] position)

Sets the reaction product parameters for reaction reaction. At a minimum, the method reversible parameter is required. Most of these methods require a single parameter, entered in parameter. A few methods also require a product, in product and the relative position of this product in position.

method	parameter	product	position
RPnone	-	=	-
RPirrev	-	=	-
RPconfspread	-	=	-
RPbounce	σ_u	=	-
RPpgem	ϕ	=	-
RPpgemmax	ϕ_{max}	=	-
RPpgemmaxw	ϕ_{max}	-	-
RPratio	σ_u/σ_b	-	-
RPunbindrad	σ_u	-	-
RPpgem2	ϕ	-	-
RPpgemmax2	ϕ_{max}	=	-
RPratio2	σ_u/σ_b	=	-
RPoffset	-	product number	relative position

RPfixed - product number relative position

If method is RPbounce, then a negative number for the parameter indicates default bounce behavior, which is that molecules are separated by an amount that is equal to their previous overlap.

7.13 Ports

AddPort

C: enum ErrorCode smolAddPort(simptr sim, const char *port, const char *surface, enum
PanelFace face);

Python: ErrorCode addPort(str port, str surface, PanelFace face)

Adds a port to the simulation. The port will be named port and will port at the face face of surface surface.

GetPortIndex

C: int smolGetPortIndex(simptr sim, const char *port);

Python: int getPortIndex(str port)

Returns the index of the port named port.

GetPortName

C: char* smolGetPortName(simptr sim, int portindex, char *port);

Python: str getPortName(int portindex, str port)

Returns the name of the port with index portindex, both directly and in port.

AddPortMolecules

C: enum ErrorCode smolAddPortMolecules(simptr sim, const char *port, int nmolec, const char *species, double **positions);

Python: ErrorCode addPortMolecules(str port, int nmolec, str species, List[float] positions)

Adds nmolec molecules to Smoldyn's import buffer of port port. These molecules will all have species species and state MSsoln. Enter positions as NULL to have the molecules positioned randomly over the porting surface and as an nmolec length list of position vectors to have them located at those specific initial positions. These initial positions should be close to the porting surface, and on the Smoldyn system side of it.

GetPortMolecules

C: int smolGetPortMolecules(simptr sim, const char *port, const char *species, enum MolecState state, int remove);

Python: int getPortMolecules(str port, str species, MolecState state, int remove)

Returns the number of molecules that are in Smoldyn's export buffer of port port. Enter species with the species of the molecules that should be retrieved, or "all" for all species. Enter state with the states of the molecules that should be retrieved, or MSall for all states. Enter remove with 1 to remove molecules from the export buffer after they are retrieved or with 0 to leave them in the buffer. If an error arises, this returns the error code cast as an integer.