53. Kansainväliset matematiikkaolympialaiset

Mar del Plata, Argentiina, 10.-11. heinäkuuta 2012

1. Kolmion ABC kärkeä A vastassa olevan sivuympyrän keskipiste on J. Sivuympyrän ja sivun BC sivuamispiste on M. Ympyrä sivuaa suoraa AB pisteessä K ja suoraa AC pisteessä L. Suorien LM ja BJ leikkauspiste on F ja suorien KM ja CJ leikkauspiste on G. Olkoon vielä S suorien AF ja BC ja T suorien AG ja BC leikkauspiste. Todista, että M on janan ST keskipiste.

(Kolmion ABC kärkeä A vastassa oleva sivuympyrä on ympyrä, joka sivuaa janaa BC, puolisuoraa AB janan AB jatkeella ja puolisuoraa AC janan AC jatkeella.)

2. Olkoon $n \geq 3$ ja olkoot a_2, a_3, \ldots, a_n positiivisia reaalilukuja, joille pätee $a_2 a_3 \cdots a_n = 1$. Todista, että

$$(1+a_2)^2(1+a_3)^3\cdots(1+a_n)^n > n^n$$
.

3. Valehteluleikki on peli, jossa on kaksi pelaajaa A ja B. Pelin säännöt perustuvat positiivisiin kokonaislukuihin k ja n, jotka ovat molempien pelaajien tiedossa.

Pelin alussa A valitsee kokonaisluvut x ja N, $1 \le x \le N$. A pitää luvun x salassa, mutta ilmoittaa B:lle rehellisesti luvun N. B pyrkii saamaan tietoa luvusta x tekemällä A:lle kysymyksiä. Jokaisessa kysymyksessä hän esittää jonkin positiivisten kokonaislukujen joukon S (samaa joukkoa on voitu käyttää jo aikaisemmassa kysymyksessä) ja kysyy A:lta, kuuluuko x joukkoon S. B voi tehdä niin monta kysymystä kuin haluaa. A:n on heti vastattava jokaiseen B:n kysymykseen joko kyllä tai ei, mutta hän voi valehdella niin usein kuin haluaa. Ainoa rajoitus on, että jokaisen k+1:n peräkkäisen vastauksen joukossa on oltava ainakin yksi rehellinen. Kysyttyään niin monta kysymystä kuin on halunnut, B ilmoittaa positiivisten kokonaislukujen joukon X, jossa on enintään n alkiota. Jos x kuuluu joukkoon X, B voittaa. Muussa tapauksessa hän häviää. Todista, että

- 1. jos $n \geq 2^k$, niin B:llä on voittostrategia;
- 2. jokaista tarpeeksi suurta k:ta kohden on olemassa sellainen $n \geq 1,99^k$, että B:llä ei ole voittostrategiaa.
- **4.** Määritä kaikki ne funktiot $f: \mathbb{Z} \to \mathbb{Z}$, joille pätee

$$f(a)^2 + f(b)^2 + f(c)^2 = 2f(a)f(b) + 2f(b)f(c) + 2f(c)f(a)$$

kaikille sellaisille kokonaisluvuille a, b, c, joilla a+b+c=0. (Tässä $\mathbb Z$ tarkoittaa kokonaislukujen joukkoa.)

- 5. Kolmiossa ABC on $\angle BCA = 90^\circ$ ja D on C:stä piirretyn korkeusjanan kantapiste. Olkoon X janan CD sisäpiste. Olkoon K se janan AX piste, jolle BK = BC ja L se janan BX piste, jolle AL = AC. Olkoon M AL:n ja BK:n leikkauspiste. Osoita, että MK = ML.
- **6.** Määritä kaikki positiiviset kokonaisluvut n, joille on olemassa sellaiset ei-negatiiviset kokonaisluvut a_1, a_2, \ldots, a_n , että

$$\frac{1}{2^{a_1}} + \frac{1}{2^{a_2}} + \dots + \frac{1}{2^{a_n}} = \frac{1}{3^{a_1}} + \frac{2}{3^{a_2}} + \dots + \frac{n}{3^{a_n}} = 1.$$