Współrzędne biegunowe, walcowe i sferyczne. Krzywe stożkowe. Powierzchnie drugiego stopnia.

1. Naszkicować krzywą

(a)
$$\rho = 2$$
, gdzie $\varphi \in [0, \pi]$

(b)
$$\varphi = \frac{\pi}{3}$$
, gdzie $\rho > 0$,

(c)
$$\rho = 2\cos\varphi$$
, gdzie $\varphi \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$.

Napisać równanie krzywej we współrzędnych kartezjańskich.

2. Obszary przedstawione na rysunkach zapisać we współrzędnych kartezjańskich i biegunowych.

3. Zapisać krzywa

$$(x^2 + y^2)^2 = 4(x^2 - y^2)$$

we współrzędnych biegunowych i naszkicować ją.

4. Naszkicować obszary i zapisać we współrzędnych biegunowych

(a)
$$1 \le x^2 + y^2 \le 2$$
 i $x \ge 0$ (b) $x^2 + y^2 \le 2x$,

(b)
$$x^2 + y^2 \le 2x$$

(c)
$$y \ge |x|$$
 i $x^2 + y^2 \le 1$.

5. Jaką krzywą stożkową przedstawia poniższe równanie?

(a)
$$x^2 + y^2 - 4x + 6y = 12$$
,

(c)
$$3x^2 - 2y^2 - 6x + 8y = 11$$
,

(b)
$$x^2 + y^2 - 4y = 0$$
,

(d)
$$y^2 - x + 6y + 10 = 0$$
.

Naszkicować tę krzywą w układzie współrzędnych.

- 6. Naszkicować obszar
 - (a) $1 \le x^2 + y^2 + z^2 \le 2$ i $x \ge 0$, zapisać go we współ
rzędnych sferycznych,
 - (b) $x^2+y^2 \leq 2x\,$ i $\, -1 \leq z \leq 1,$ zapisać go we współrzędnych walcowych,
 - (c) $-1 \leq z \leq -x^2 y^2$, zapisać go we współrzędnych walcowych.