

Track-based Alignment in CSA08 and CRUZET

Jim Pivarski

Alexei Safonov

Texas A&M University

Károly Banicz

US-CMS

25 July, 2008

- ▶ Monte Carlo studies of long-term procedure: CSA08
- (9 min)

- answered "last" basic questions about how the procedure will perform with collisions data
- Alignment of stations in CRUZET

(12 min)

- based on the long-term procedure
- real data! production-quality results!
- aligned constants make sense, agree with external measurements
- Chamber alignment with overlaps

(9 min)

- developing procedure for beam-halo sample
- testing and debugging with CRUZET cosmic rays

CSA08 Monte Carlo Studies

Goals for CSA08 exercise

Jim Pivarski

- ▶ To demonstrate that
 - our long-term procedure works in a realistic simulation
 - we can coordinate with other alignment/calibration groups in a timed test (1 week from "data" to constants)
- ▶ To study effects that require huge MC samples in a recent release

Parameters of the study

- ► Long-term procedure: fit tracks to tracker as a reference, minimize residuals in muon chambers
- Align individual chambers in barrel and endcap
- ▶ 10 pb $^{-1}$ of inclusive muons, but no cosmic rays/beam-halo

10 pb^{-1} results at a glance Jim Pivarski 5/28

Histograms of aligned positions minus true positions in $r\phi$ MB1: 680 microns ME1/1: 520 microns ME1/2: 840 microns

Previous studies used randomlygenerated tracker misalignment scenarios models internal misalignment correlations expected from assembly only

6/28

New study uses output of tracker alignment algorithm as input to muon alignment includes correlations generated by tracker alignment attempt: we see more dependence

Analysis of tracker dependence Jim Pivarski 7/28

- Alignment performed using tracks from the interaction point
- Tracks that reach a given chamber all pass through the same narrow region of the tracker
- ► Tracker misalignments are $\mathcal{O}(10 \ \mu\text{m})$, effect is 680 μm

Mismeasured
$$\phi$$
 or η : 10 μ m $\left(\frac{\text{4-6 m inner muon station}}{\text{1-2 m tracker radius/half-length}}\right) = 60 ~\mu$ m

Mismeasured curvature: $10 \ \mu m \left(\frac{4 \ m \ inner \ muon \ station}{0.5 \ m \ tracker \ half-radius}\right)^2 = 640 \ \mu m$

Why curvature error is quadratic in lever arm:

We need to "average over" the tracker more, so that a muon chamber isn't always seeing tracks mismeasured in the same narrow region

- ► Easiest and possibly best: align with cosmic rays
- ▶ With 100 pb⁻¹ or more: constrain $Z \rightarrow \mu\mu$ to mix momentum measurements from different regions
- Discussed possibility of using lever arm from muon system to improve tracker alignment

Long-standing question: is it better...

- ▶ to select high-momentum tracks and reduce multiple scattering (minimize standard deviation of residuals)
- or open the floodgates and let in all muons (maximize \sqrt{N})?

Alignment correction is (roughly) mean of residual distribution,

$$\text{uncertainty} = \frac{\text{standard deviation}}{\sqrt{\textit{N}}}$$

Answer: open the floodgates (minimum p_T of 10 GeV)

stdev/sqrt(N): each histogram entry is a chamber (mm)

- ▶ Long-term alignment procedure is ready for data
- ▶ 10 pb $^{-1}$ \approx all of 2008
- Cosmic rays can improve upon this result
- ▶ Makes an impact in benchmark $Z' \rightarrow \mu\mu$ analysis:

Real Alignment of Stations

Largest and most important part of alignment: find out where the stations are relative to the rest of CMS

improves track residuals by many centimeters

Similar to the long-term procedure, except that the muon barrel is the reference, rather than the tracker

Aligning with HIP derivatives

Jim Pivarski 13/28

Histogram of z correction from every hit

- ▶ Without a magnetic field, can't cut on p_T
- ▶ Bad tracks/hits form a broad distribution
- Good tracks/hits agree on a z position
- ► Tape-measure agrees, too: 370 cm

Where were our stations?

Constants are ready; will upload to database very soon

Procedure details

Jim Pivarski 15/28

Best resolution in outer stations from leap-frog approach "MB \rightarrow 2 \rightarrow 3" means measure corrections between MB and ME2 and between ME2 and ME3, then add them

ME1	ME2	ME3	ME4		
MB → 1	MB → 2	$MB \rightarrow 2 \rightarrow 3$	$MB \rightarrow 2 \rightarrow 3 \rightarrow 4$		
direct measurements		take advantage of small lever arms and high statistics			

		Iteration number							
		1	2	3	4	5	6	7	8
Parameter	Х								
	У								
	Z			incl	ude	d in	fit		
	φz								

- lacktriangledown ϕ_{x} and ϕ_{y} are not additive, but also consistent with zero
- lackbox ϕ_z becomes non-additive after applying x and y corrections

Naïve uncertainty estimate: Gaussian width/ \sqrt{N}

- \triangleright x, y: 0.2–0.9 mm, but 0.03 mm in ME2 \rightarrow 3 (high stats)
- \triangleright z: 0.3–1.6 mm, but 0.07 mm in ME2 \rightarrow 3
- ϕ_{τ} : 0.07–0.3 mrad, but 0.01 mrad in ME2 \rightarrow 3

Consistency checks

Comparison	x (mm)	y (mm)	z (mm)	ϕ_z (mrad)
$(MB\rightarrow 2) - (MB\rightarrow 1\rightarrow 2)$	-12.8 ± 0.3	6.4 ± 0.4	39.9 ± 0.8	-4.75 ± 0.12
$(MB{\rightarrow}3)-(MB{\rightarrow}2{\rightarrow}3)$	-3.4 ± 0.4	$\text{-8.7}\pm0.5$	-15.3 \pm 1.0	-1.06 ± 0.14
$(MB{\rightarrow}4)-(MB{\rightarrow}3{\rightarrow}4)$	0.4 ± 0.8	6.0 ± 0.9	10.3 ± 2.4	2.8 ± 0.3

Statistics-only underestimates the error

$$\sqrt{\frac{1}{N-1}\sum (x_i - \bar{x})^2} = \begin{cases} 7.8 \text{ mm for } x \text{ and } y \\ 28 \text{ mm for } z \\ 3.8 \text{ mrad for } \phi_z \end{cases}$$

But (MB \rightarrow 2) and (MB \rightarrow 3) are double-counted, so this is an overestimate (and dominated by the worst stations)

- ▶ Taking conservative $\sigma_{x,y} \lesssim 7.8$ mm, -30 mm shift in ME1 xis significant
- \blacktriangleright ME2 and ME3 are only 2.3 and 2.0 σ underground
- Experimentally "discovered" that ME2 and ME3 are mounted on the same voke

$$\begin{array}{lll} \Delta x & = & 1.3 \text{ mm} \\ \Delta y & = & 2.5 \text{ mm} \\ \Delta z & = & 0.1 \text{ mm} \\ \Delta \phi_z & = & 0.42 \text{ mrad} \end{array} \right\} \text{ very small or consistent with zero}$$

Unusually small Δz , only possible if their alignments are linked

Blind analysis: I didn't know (we don't model this relationship in MC)

Ultimately, we will want to align individual chambers with a method like this

Can we test that now? Unfortunately, no (few millimeters resolution in CRUZET-2)

Determine collective radial position or $\phi_{\rm x}$?

- Compute chamber-level corrections and merge histograms per station
- ▶ Useful for following gross motion of station under \vec{B}

CRUZET-3 has ${\sim}5$ times the statistics and tracker may provide better-quality tracks

- Alignment converges and makes sense
- Survives internal consistency checks at the level of 7.8 mm (x-y), 28 mm (z), and 3.4 mrad (ϕ_z)
- ▶ Non-Gaussian components in residuals identified as irreducible low-momentum tracks: right now, fitting is necessary
- Worth noting: chamber-by-chamber histograms are more nearly Gaussian

Alignment with Overlapping CSCs

CSC-Overlaps alignment

Jim Pivarski

Determine relative alignment of pairs of chambers using tracks that pass through both

- Very little multiple scattering; simple linear fit
- Align CSC rings internally
- Beam-halo events are ideal, cosmics will work
- Compliments alignment of whole rings/disks from an external reference

chambers are displaced

Details of the method

- Get unbiased residuals by fitting to one chamber as a reference, aligning the other
- Measurement propagates around the ring (in this case, to the right)

Jim Pivarski 22/28

measure residuals here

fit track to this side

15

17

measure residuals here

fit track to this side

Ring alignment (iteration 1)

Jim Pivarski

- propagation is causal (takes exactly 35 iterations)
- ring overcloses by 4 cm due to 1.2 mm systematic error

Ring alignment (iteration 2)

Jim Pivarski

- propagation is causal (takes exactly 35 iterations)
- ring overcloses by 4 cm due to 1.2 mm systematic error

- propagation is causal (takes exactly 35 iterations)
- ▶ ring overcloses by 4 cm due to 1.2 mm systematic error

- propagation is causal (takes exactly 35 iterations)
- ▶ ring overcloses by 4 cm due to 1.2 mm systematic error

Ring alignment (iteration 5)

Jim Pivarski

- propagation is causal (takes exactly 35 iterations)
- ring overcloses by 4 cm due to 1.2 mm systematic error

Ring alignment (iteration 6)

Jim Pivarski

- propagation is causal (takes exactly 35 iterations)
- ring overcloses by 4 cm due to 1.2 mm systematic error

Ring alignment (iteration 7)

Jim Pivarski

- propagation is causal (takes exactly 35 iterations)
- ring overcloses by 4 cm due to 1.2 mm systematic error

Ring alignment (iteration 8)

Jim Pivarski

- propagation is causal (takes exactly 35 iterations)
- ring overcloses by 4 cm due to 1.2 mm systematic error

Ring alignment (iteration 9)

Jim Pivarski

- propagation is causal (takes exactly 35 iterations)
- ring overcloses by 4 cm due to 1.2 mm systematic error

Ring alignment (iteration 10)

Jim Pivarski

- propagation is causal (takes exactly 35 iterations)
- ring overcloses by 4 cm due to 1.2 mm systematic error

Ring alignment (iteration 11)

Jim Pivarski

- propagation is causal (takes exactly 35 iterations)
- ring overcloses by 4 cm due to 1.2 mm systematic error

Ring alignment (iteration 12)

Jim Pivarski

- propagation is causal (takes exactly 35 iterations)
- ring overcloses by 4 cm due to 1.2 mm systematic error

Ring alignment (iteration 13)

Jim Pivarski

35/28

- propagation is causal (takes exactly 35 iterations)
- ring overcloses by 4 cm due to 1.2 mm systematic error

Ring alignment (iteration 14)

Jim Pivarski

- propagation is causal (takes exactly 35 iterations)
- ring overcloses by 4 cm due to 1.2 mm systematic error

Ring alignment (iteration 15)

Jim Pivarski

- propagation is causal (takes exactly 35 iterations)
- ring overcloses by 4 cm due to 1.2 mm systematic error

Ring alignment (iteration 16)

Jim Pivarski

- propagation is causal (takes exactly 35 iterations)
- ring overcloses by 4 cm due to 1.2 mm systematic error

Ring alignment (iteration 17)

Jim Pivarski

- propagation is causal (takes exactly 35 iterations)
- ring overcloses by 4 cm due to 1.2 mm systematic error

Ring alignment (iteration 18)

Jim Pivarski

- propagation is causal (takes exactly 35 iterations)
- ring overcloses by 4 cm due to 1.2 mm systematic error

Ring alignment (iteration 19)

Jim Pivarski

- propagation is causal (takes exactly 35 iterations)
- ring overcloses by 4 cm due to 1.2 mm systematic error

Ring alignment (iteration 20)

Jim Pivarski

- propagation is causal (takes exactly 35 iterations)
- ring overcloses by 4 cm due to 1.2 mm systematic error

Ring alignment (iteration 21)

Jim Pivarski

- propagation is causal (takes exactly 35 iterations)
- ring overcloses by 4 cm due to 1.2 mm systematic error

Ring alignment (iteration 22)

Jim Pivarski

- propagation is causal (takes exactly 35 iterations)
- ring overcloses by 4 cm due to 1.2 mm systematic error

Ring alignment (iteration 23)

Jim Pivarski

- propagation is causal (takes exactly 35 iterations)
- ring overcloses by 4 cm due to 1.2 mm systematic error

Ring alignment (iteration 24)

Jim Pivarski

- propagation is causal (takes exactly 35 iterations)
- ring overcloses by 4 cm due to 1.2 mm systematic error

Ring alignment (iteration 25)

Jim Pivarski

- propagation is causal (takes exactly 35 iterations)
- ring overcloses by 4 cm due to 1.2 mm systematic error

Ring alignment (iteration 26)

Jim Pivarski

- propagation is causal (takes exactly 35 iterations)
- ring overcloses by 4 cm due to 1.2 mm systematic error

Ring alignment (iteration 27)

Jim Pivarski

- propagation is causal (takes exactly 35 iterations)
- ring overcloses by 4 cm due to 1.2 mm systematic error

Ring alignment (iteration 28)

Jim Pivarski

- propagation is causal (takes exactly 35 iterations)
- ring overcloses by 4 cm due to 1.2 mm systematic error

Ring alignment (iteration 29)

Jim Pivarski

- propagation is causal (takes exactly 35 iterations)
- ring overcloses by 4 cm due to 1.2 mm systematic error

Ring alignment (iteration 30)

Jim Pivarski

- propagation is causal (takes exactly 35 iterations)
- ring overcloses by 4 cm due to 1.2 mm systematic error

Ring alignment (iteration 31)

Jim Pivarski

- propagation is causal (takes exactly 35 iterations)
- ring overcloses by 4 cm due to 1.2 mm systematic error

Ring alignment (iteration 32)

Jim Pivarski

- propagation is causal (takes exactly 35 iterations)
- ring overcloses by 4 cm due to 1.2 mm systematic error

Ring alignment (iteration 33)

Jim Pivarski

- propagation is causal (takes exactly 35 iterations)
- ring overcloses by 4 cm due to 1.2 mm systematic error

- propagation is causal (takes exactly 35 iterations)
- ring overcloses by 4 cm due to 1.2 mm systematic error

Ring alignment (iteration 35)

Jim Pivarski

- propagation is causal (takes exactly 35 iterations)
- ring overcloses by 4 cm due to 1.2 mm systematic error

Ring alignment (iteration 36)

Jim Pivarski

58/28

- propagation is causal (takes exactly 35 iterations)
- ring overcloses by 4 cm due to 1.2 mm systematic error

What's wrong?

Jim Pivarski

24/28

- ► Same conclusion from CRUZET-2, including more alignment parameters, different rings (though the size of error is different)
- lacktriangle Likely problem is use of x residual, rather than strip ϕ

- ► In our regions, *x* has a significant component from wire measurement
- ▶ Wire measurement is discrete due to ganging: about 3.5 cm to 5.5 cm
- ▶ $(s, w) \rightarrow (x, y)$ transformation is an irreversible projection
- ▶ Aligning with $s = \phi$ would require deep changes to alignment framework: we're starting with a stand-alone implementation to demonstrate the need
- Must modify track-fits as well (also restricted to the edges)

How does this effect work?

Jim Pivarski 25/28

- ► Asymetric coverage can introduce fake "misalignments" on the order of several millimeters
- ► Effect would be the same in every chamber of a given ring, leading to exactly the lack of closure we saw

Debugging geometry

Jim Pivarski 26/28

While trying to resolve the overclosure problem, we found two errors in the software description of the detector, relative to integration drawings. Thanks to Tim, Oleg, and Richard!

Revised strategies

- ightharpoonup strip $ightharpoonup \phi$ is simplest
- ► 1-D alignments can only use hits on one side (convergence)
- can get 2-D from strips alone

oth sides: two linearly-independent degrees of freedom

- Surprisingly, this the most challenging alignment procedure (including some reasons not described here)
- ▶ When the chambers are so close, they "see" the fine-grain details of their neighbors, some of which can cause biases
- We're modifying the procedure to access the strip data directly for both the track-fits and the hit residuals

- ▶ Long-term procedure is well-established: it will provide an alignment of a half-millimeter or better when it's first needed for physics studies: $\sim 10 \text{ pb}^{-1}$
- Our tools are flexible enough to develop a station-finding algorithm in a matter of days, allows us to think on our feet and respond to what the data tell us
- Station alignment satisfies internal consistency checks, makes sense, agrees with external information where available:
 I submit that it is correct (can anyone prove me wrong?)
- CSC-Overlaps procedure is subtle because it looks at hits under a microscope. Once we solve the edge-effect type problems, it will be a precise technique.

Hopefully, we'll have lots of beam-halo! (That we can use!)