Differential Expression of $Phaeodactylum\ tricornutum\ Grown$ in Produced Water

By:
Claudia Vo
Codey Phoun
Sudhin Domala

For:
SJSU CS286 Project
Dr. Andreopoulos
Spring 2021

Introduction

Sample abbreviations

$$\begin{split} & \text{HQE} = \text{normal media exponential growth (control)} \\ & \text{HQ10E} = \text{normal media} + \text{added 10\% produced water (intermediate treatment)} \\ & \text{PWE} = 100\% \text{ produced water exponential (High treatment)} \\ & \text{HQ_ST} = \text{normal media stationary growth (control)} \\ & \text{PW_ST} = 100\% \text{ produced water stationary (treatment)} \end{split}$$

Setup

Import libraries

library(readr)
library(edgeR)

Loading required package: limma

library(limma)
library(pheatmap)

Gene count data was previously created with STAR

Read in the count data as a data frame

```
URL = "https://raw.githubusercontent.com/codey-phoun/pw_oilfield/main/STAR_results/STAR_counts.txt"
star_data = read_tsv(URL)

##
## -- Column specification ------
## cols(
## gene name = col_character().
```

gene_name = col_character(), ## HQ10E1 = col_double(), ## HQ10E2 = col_double(), ## HQE1 = col_double(), ## HQE2 = col_double(), HQ_ST1 = col_double(), ## HQ_ST2 = col_double(), ## PWE1 = col_double(), ## PWE2 = col_double(), ## PW_ST1 = col_double(), PW_ST2 = col_double()

Create count matrix

)

```
star_data = as.data.frame(star_data)
# Set row names to be the gene name and remove gene_name column
rownames(star_data) <- star_data$gene_name
star_data[1] <- NULL
head(star_data)</pre>
```

```
##
               HQ10E1 HQ10E2 HQE1 HQE2 HQ_ST1 HQ_ST2 PWE1 PWE2 PW_ST1 PW_ST2
## Phatr3_J31400
                   1
                           5
                               3
                                    7
                                           0
                                                 4
                                                      2
                                                           1
                                                                 10
                                                                       20
                                                                203
                                                                      253
## Phatr3_J42422
                  144
                         172 214 153
                                         402
                                                451 117 101
## Phatr3_J31402
                    0
                           0
                              0
                                  0
                                         0
                                                 0
                                                      0
                                                           0
                                                                0
                                                                        0
## Phatr3 J42423
                   27
                              77
                                  42
                                                                      304
                          44
                                         557
                                               508
                                                     46
                                                          39
                                                                110
## Phatr3_J42424 1819
                        2172 1876 1254
                                        1524
                                               1841 1518 1508
                                                               1035
                                                                     1562
                        510 620 443
                                        467 513 333 456
                                                                337
## Phatr3_J7430
                  455
                                                                      364
```

Create a DGE list object

```
## [1] 12392 10
```

```
full_dge <- dge #store original data just in case
```

Sample library sizes

```
apply(dge$counts, 2, sum) # sum across columns/samples for each gene
##
    HQ10E1
             HQ10E2
                       HQE1
                               HQE2
                                      HQ_ST1
                                              HQ_ST2
                                                         PWE1
                                                                 PWE2
## 19654912 22355112 22447786 16151357 15135335 18504345 18680923 18905705
             PW ST2
    PW ST1
## 17778297 21967279
Filtering & Normalizing data
Counts per million (cpm)
head(cpm(dge))
##
                    HQ10E1
                              HQ10E2
                                          HQE1
                                                     HQE2
                                                            HQ_ST1
                                                                       HQ_ST2
## Phatr3_J31400 0.05087787 0.2236625 0.1336435 0.4334001
                                                           0.00000 0.2161654
## Phatr3_J42422 7.32641286 7.6939896 9.5332341 9.4728883 26.56036 24.3726541
0.00000 0.0000000
## Phatr3_J42423 1.37370241 1.9682299 3.4301824 2.6004007 36.80130 27.4530117
## Phatr3 J42424 92.54684020 97.1589854 83.5717162 77.6405351 100.69153 99.4901468
## Phatr3_J7430 23.14942952 22.8135739 27.6196503 27.4280359 30.85495 27.7232185
##
                     PWE1
                                PWE2
                                         PW_ST1
                                                  PW_ST2
## Phatr3_J31400 0.1070611 0.05289409 0.5624836 0.910445
## Phatr3_J42422 6.2630738 5.34230276 11.4184165 11.517130
## Phatr3_J42423 2.4624051 2.06286938 6.1873193 13.838764
## Phatr3_J42424 81.2593682 79.76428279 58.2170497 71.105757
## Phatr3_J7430 17.8256717 24.11970355 18.9556964 16.570100
Keep only 100 counts per million in at least 2 samples
keep <- rowSums(cpm(dge)>100) >= 2
table(keep)
## keep
## FALSE TRUE
## 9141 3251
dge <- dge[keep,]</pre>
dim(dge) #check number of genes left after filtering
## [1] 3251
             10
12392 genes are filtered down to 3251 genes
Reset the library size
dge$samples$lib.size <- colSums(dge$counts)</pre>
dge$samples
```

```
group lib.size norm.factors
## HQ10E1 HQ10E 15289361
## HQ10E2 HQ10E 17319367
## HQE1
            HQE 17111487
                                     1
## HQE2
            HQE 12568283
                                     1
## HQ ST1 HQ ST 11248709
                                     1
## HQ ST2 HQ ST 13869364
                                     1
## PWE1
            PWE 14606604
                                     1
## PWE2
            PWE 14925823
                                     1
## PW_ST1 PW_ST 14619994
                                     1
## PW_ST2 PW_ST 17756624
                                     1
Library sizes before filtering:
apply(full_dge$counts, 2, sum)
              HQ10E2
                                   HQE2
##
     HQ10E1
                          HQE1
                                           HQ_ST1
                                                    HQ_ST2
                                                                PWE1
                                                                         PWE2
## 19654912 22355112 22447786 16151357 15135335 18504345 18680923 18905705
     PW_ST1
              PW_ST2
## 17778297 21967279
Library sizes after filtering:
apply(dge$counts, 2, sum)
     HQ10E1
              HQ10E2
                          HQE1
                                   HQE2
                                           HQ ST1
                                                    HQ ST2
                                                                PWE1
                                                                         PWE2
## 15289361 17319367 17111487 12568283 11248709 13869364 14606604 14925823
     PW_ST1
              PW_ST2
## 14619994 17756624
Normalize data by the trimmed mean of M-values (TMM) method proposed by Robinson and Oshlack (2010)
dge_norm=calcNormFactors(dge, method="TMM")
dge_norm
## An object of class "DGEList"
## $counts
##
                  HQ10E1 HQ10E2 HQE1 HQE2 HQ_ST1 HQ_ST2 PWE1 PWE2 PW_ST1 PW_ST2
## Phatr3_J42426
                    8520
                            9594 8689 7289
                                              5396
                                                     7052 6769 7244
                                                                       5813
                                                                              8494
## Phatr3_EG02408
                    3806
                            4483 3948 2637
                                               224
                                                      238 3580 3084
                                                                        216
                                                                               368
## Phatr3_J31409
                    6448
                            7590 9257 5980
                                              1008
                                                     1394 4863 4622
                                                                       1381
                                                                              1864
## Phatr3_J42429
                    1747
                            1981 2134 1377
                                              2150
                                                     2386 1650 1699
                                                                       1427
                                                                              1398
## Phatr3_J4937
                    6608
                            7884 7049 4583
                                              3737
                                                     5446 6837 6271
                                                                       2997
                                                                              3700
## 3246 more rows ...
##
## $samples
          group lib.size norm.factors
## HQ10E1 HQ10E 15289361
                             1.0347646
## HQ10E2 HQ10E 17319367
                             1.0442405
```

1.0884649

1.0460172

HQE1

HQE2

HQE 17111487

HQE 12568283

Multidimensional scaling plot to look at the inter-sample relationship by biological coefficient of variation (BCV) distance

```
colors_mds <- c("red", "palevioletred4", "darkorange", "blue", "deepskyblue4")
plotMDS(dge_norm, method="bcv", col=rep(colors_mds,each=2), pch = rep(c(0,7,1,15,19),each=2), cex = 1.7
legend("bottomleft",as.character(unique(dge_norm$samples$group)),col=colors_mds,pch=c(0,7,1,15,19), nco</pre>
```


Exponential growth samples cluster together stronger than stationary growth Samples do not tend to cluster based on growth medium

Create the design matrix

```
design.mat <- model.matrix(~ 0 + dge_norm$samples$group)
colnames(design.mat) <- levels(dge_norm$samples$group)</pre>
```

Estimate the dispersion with Cox-Reid profile-adjusted likelihood (CR) method in estimating dispersions with Generalized linear models (GLMs)

```
d2 <- estimateGLMCommonDisp(dge_norm,design.mat)
d2 <- estimateGLMTrendedDisp(d2,design.mat, method="auto")
# You can change method to "auto", "bin.spline", "power", "spline", "bin.loess".
# The default is "auto" which chooses "bin.spline" when > 200 tags and "power" otherwise.
d2 <- estimateGLMTagwiseDisp(d2,design.mat)
plotBCV(d2)</pre>
```


Calculate log2 CPM values

```
logcpm <- cpm(d2, log = TRUE)</pre>
```

Create a matrix of contrasts for anova-like testing (since data has different conditions that we want to compare)

ANOVA tests for DEGs between any set of groups with the null hypothesis that the mean gene expression is equal across all groups.

```
my_contrasts<-makeContrasts(
   HQst_vs_PWst = HQ_ST-PW_ST, #PW vs normal stationary growth samples

HQE_vs_PWE = HQE-PWE, # PW vs normal exponential growth samples,

HQST_vs_HQE = HQ_ST-HQE, #normal exponential vs normal stationary

PWE_vs_PWST = PWE-PW_ST, #100% exponential vs 100% stationary PW samples</pre>
```

```
levels= design.mat
)
my_contrasts
```

```
Contrasts
##
## Levels HQst_vs_PWst HQE_vs_PWE HQST_vs_HQE PWE_vs_PWST
##
     HQ ST
                       1
                                  0
##
     HQ10E
                       0
                                  0
                                               0
                                                            0
                       0
                                                            0
##
     HQE
                                  1
                                              -1
##
     PW_ST
                      -1
                                  0
                                               0
                                                           -1
##
     PWE
                       0
                                  -1
                                               0
                                                            1
```

Fit a quasi-likelihood negative binomial generalized log-linear model to count data

```
fit <- glmQLFit(d2, design.mat)</pre>
```

Normal Medium vs 100% Produced Water in Stationary Growth Samples

```
HQst_vs_PWst <- glmQLFTest(fit, contrast = my_contrasts[,"HQst_vs_PWst"])
# top 50 DEGs by lowest adjusted p-values
HQst_vs_PWst_top50 <- topTags(HQst_vs_PWst,adjust.method = "BH", p.value = 0.05, n = 50)
HQst_vs_PWst_all <- topTags(HQst_vs_PWst,adjust.method = "BH", p.value = 0.05, n = nrow(HQst_vs_PWst_start)
HQst_vs_PWst_DEG <- HQst_vs_PWst_all[abs(HQst_vs_PWst_all$table$logFC) > 1, ]
HQst_vs_PWst_up <- HQst_vs_PWst_all[HQst_vs_PWst_all$table$logFC > 1, ]
HQst_vs_PWst_down <- HQst_vs_PWst_all[HQst_vs_PWst_all$table$logFC < -1, ]
head(HQst_vs_PWst_top50, n=10)</pre>
```

```
## Coefficient: 1*HQ_ST -1*PW_ST
##
                      logFC
                               logCPM
                                             F
                                                    PValue
                                                                    FDR.
## Phatr3_J47572 6.861896 10.355303 830.2771 7.879261e-10 1.438429e-06
## Phatr3_J50055 -4.296119 6.983754 711.6102 1.515469e-09 1.438429e-06
## Phatr3 J55010 5.536678 9.496214 633.6890 2.476507e-09 1.438429e-06
## Phatr3 J45193
                  -3.819702 9.779135 619.5537 2.724555e-09 1.438429e-06
## Phatr3_EG00333 5.960957 8.190521 614.3864 2.822823e-09 1.438429e-06
## Phatr3_J49202
                  -6.373400 12.846728 609.1734 2.926430e-09 1.438429e-06
## Phatr3_J10640 -10.070021 8.076858 601.0593 3.097202e-09 1.438429e-06
## Phatr3_J32747
                   4.480649 8.734087 537.9812 4.948332e-09 1.826148e-06
## Phatr3_J48882 -10.564538 13.377617 533.0443 5.144764e-09 1.826148e-06
## Phatr3_EG00065 -4.133901 9.136149 522.0666 5.617190e-09 1.826148e-06
```

Determine how many genes are up and down regulated for each pairwise comparison

For differentially expressed genes set logFC and pvalue threshold to 0.05 and 1

lfc=1 sets a 2-fold change minimum

```
is.de <- decideTestsDGE(HQst_vs_PWst,adjust.method="BH",p.value=0.05,lfc=1)
summary(is.de)</pre>
```

MD Plot: HQ ST vs PW ST

Volcano Plot

```
volcanoData <- cbind(HQst_vs_PWst_all$table$logFC, -log10(HQst_vs_PWst_all$table$FDR))
colnames(volcanoData) <- c("logFC", "negLogPval")
DEGs <- HQst_vs_PWst_all$table$FDR < 0.05 & abs(HQst_vs_PWst_all$table$logFC) > 1
point.col <- ifelse(DEGs, "red", "black")
plot(volcanoData, pch=19, cex = .5, col = point.col, main = "Volcano Plot : HQ ST vs PW ST")</pre>
```

Volcano Plot: HQ ST vs PW ST

Normal Medium vs 100% Produced Water in Exponential Growth Samples

```
HQE_vs_PWE <- glmQLFTest(fit, contrast = my_contrasts[,"HQE_vs_PWE"])</pre>
HQE_vs_PWE_top50 = topTags(HQE_vs_PWE,adjust.method = "BH", p.value = 0.05, n = 50)
HQE_vs_PWE_all = topTags(HQE_vs_PWE,adjust.method = "BH", p.value = 0.05, n = nrow(HQE_vs_PWE$table))
HQE_vs_PWE_DEG <- HQE_vs_PWE_all[abs(HQE_vs_PWE_all$table$logFC) > 1, ]
HQE_vs_PWE_up <- HQE_vs_PWE_all[HQE_vs_PWE_all$table$logFC > 1, ]
HQE_vs_PWE_down <- HQE_vs_PWE_all[HQE_vs_PWE_all$table$logFC < -1, ]</pre>
head(HQE_vs_PWE_top50, n=10)
## Coefficient: 1*HQE -1*PWE
##
                      logFC
                               logCPM
                                                     PValue
                                                                      FDR
## Phatr3_J34132 -8.609962 8.008770 727.2847 1.381801e-09 4.492234e-06
                  -5.111485 9.496214 561.2096 4.139153e-09 6.323839e-06
## Phatr3 J55010
## Phatr3_J49151
                   3.607201 10.200579 498.9501 6.800095e-09 6.323839e-06
## Phatr3_EG00333 -5.001485 8.190521 483.2628 7.780792e-09 6.323839e-06
## Phatr3_J15393
                 -5.145494
                             7.119785 417.1914 1.445075e-08 9.395875e-06
## Phatr3_J31433 -3.291023 10.002898 296.6263 6.035273e-08 3.270112e-05
## Phatr3_EG02360 6.246511 9.360258 268.4197 9.154341e-08 4.251538e-05
```

9.723243 241.8646 1.411624e-07 5.619997e-05

7.877635 236.2610 1.555828e-07 5.619997e-05

Determine how many genes are up and down regulated for each pairwise comparison

Phatr3_J31619 -1.785251 7.409644 217.5707 2.188898e-07 7.116106e-05

Phatr3_J50500 -2.371713

-3.844156

Phatr3_J51092

For differentially expressed genes set logFC and pvalue threshold to 0.05 and 1 lfc=1 sets a 2-fold change minimum

```
is.de <- decideTestsDGE(HQE_vs_PWE,adjust.method="BH",p.value=0.05,lfc=1)
summary(is.de)</pre>
```

```
## Down 223
## NotSig 2926
## Up 102
```

MD Plot: HQ E vs PW E

Volcano Plot

```
volcanoData <- cbind(HQE_vs_PWE_all$table$logFC, -log10(HQE_vs_PWE_all$table$FDR))
colnames(volcanoData) <- c("logFC", "negLogPval")

DEGs <- HQE_vs_PWE_all$table$FDR < 0.05 & abs(HQE_vs_PWE_all$table$logFC) > 1
point.col <- ifelse(DEGs, "red", "black")
plot(volcanoData, pch=19, cex = .5, col = point.col, main = "Volcano Plot : HQ E vs PW E")</pre>
```

Volcano Plot: HQ E vs PW E

Normal Medium Exponential Growth vs Normal Medium in Stationary Growth

```
HQST_vs_HQE <- glmQLFTest(fit, contrast = my_contrasts[,"HQST_vs_HQE"])
HQST_vs_HQE_top50 = topTags(HQST_vs_HQE,adjust.method = "BH", p.value = 0.05, n = 50)
HQST_vs_HQE_all = topTags(HQST_vs_HQE,adjust.method = "BH", p.value = 0.05, n = nrow(HQST_vs_HQE$table)
HQST_vs_HQE_DEG <- HQST_vs_HQE_all[abs(HQST_vs_HQE_all$table$logFC) > 1, ]
HQST_vs_HQE_up <- HQST_vs_HQE_all[HQST_vs_HQE_all$table$logFC > 1, ]
HQST_vs_HQE_down <- HQST_vs_HQE_all[HQST_vs_HQE_all$table$logFC < -1, ]
head(HQST_vs_HQE_top50, n=10)</pre>
## Coefficient: 1*HQ_ST -1*HQE
```

```
##
                      logFC
                               logCPM
                                              F
                                                      PValue
                                                                      FDR
## Phatr3_J23830
                   6.286260 8.103721 1546.1159 5.594732e-11 1.818847e-07
                 11.239932 13.420073 1249.2782 1.387318e-10 2.014103e-07
## Phatr3 J47667
## Phatr3_J40433
                  7.752019 14.655511 1162.2726 1.886329e-10 2.014103e-07
## Phatr3_J15126 -11.632476 6.667419
                                      971.6138 4.041445e-10 2.014103e-07
## Phatr3_J40467
                 -5.679432
                            7.803590
                                       965.0569 4.159431e-10 2.014103e-07
## Phatr3_J48511
                  4.590450
                            9.653790
                                       930.4874 4.856776e-10 2.014103e-07
## Phatr3_J46796
                                       924.0527 5.002087e-10 2.014103e-07
                  9.157803
                            9.775273
## Phatr3_J46395
                 -6.934256
                             8.292089
                                       885.7125 5.988517e-10 2.014103e-07
## Phatr3_J10068
                  -6.734953
                             6.486422
                                       878.3977 6.203162e-10 2.014103e-07
## Phatr3_J48834
                   4.924547
                             6.469906
                                      861.1280 6.748816e-10 2.014103e-07
```

Determine how many genes are up and down regulated for each pairwise comparison

For differentially expressed genes set logFC and pvalue threshold to 0.05 and 1 lfc=1 sets a 2-fold change minimum

```
is.de <- decideTestsDGE(HQST_vs_HQE,adjust.method="BH",p.value=0.05,lfc=1)
summary(is.de)

## 1*HQ_ST -1*HQE
## Down 765
## NotSig 1734
## Up 752

plotMD(HQST_vs_HQE, status=is.de, values=c(1,-1), col=c("maroon","cadetblue3"),</pre>
```

legend="topright", cex = .5, main = "MD Plot : HQ St vs HQ E")

MD Plot: HQ St vs HQ E

Volcano Plot

```
volcanoData <- cbind(HQST_vs_HQE_all$table$logFC, -log10(HQST_vs_HQE_all$table$FDR))
colnames(volcanoData) <- c("logFC", "negLogPval")

DEGs <- HQST_vs_HQE_all$table$FDR < 0.05 & abs(HQST_vs_HQE_all$table$logFC) > 1
point.col <- ifelse(DEGs, "red", "black")
plot(volcanoData, pch=19, cex = .5, col = point.col, main = "Volcano Plot : HQ St vs HQ E")</pre>
```

Volcano Plot: HQ St vs HQ E

100% Produced Water Exponential Growth vs 100% Produced Water in Stationary Growth

```
PWE_vs_PWST <- glmQLFTest(fit, contrast = my_contrasts[,"PWE_vs_PWST"])</pre>
PWE_vs_PWST_top50 = topTags(PWE_vs_PWST,adjust.method = "BH", p.value = 0.05, n = 50)
PWE_vs_PWST_all = topTags(PWE_vs_PWST,adjust.method = "BH", p.value = 0.05, n = nrow(PWE_vs_PWST$table)
PWE_vs_PWST_DEG <- PWE_vs_PWST_all[abs(PWE_vs_PWST_all$table$logFC) > 1, ]
PWE vs PWST up <- PWE vs PWST all[PWE vs PWST all$table$logFC > 1, ]
PWE_vs_PWST_down <- PWE_vs_PWST_all[PWE_vs_PWST_all$table$logFC < -1, ]</pre>
head(PWE_vs_PWST_top50, n=10)
## Coefficient: -1*PW_ST 1*PWE
##
                      logFC
                                                       PValue
                                                                       FDR
                               logCPM
                  -6.170073 8.103721 1468.9586 6.958730e-11 1.449607e-07
## Phatr3_J23830
## Phatr3_J46597
                  -7.421010
                             9.152332 1204.6116 1.619890e-10 1.449607e-07
## Phatr3_J10068
                   7.728042 6.486422 1155.1607 1.936245e-10 1.449607e-07
## Phatr3_J47104
                   6.502905
                             6.792173 1145.7683 2.004689e-10 1.449607e-07
```

8.734087 1110.3420 2.291282e-10 1.449607e-07

6.469906 1070.6144 2.675374e-10 1.449607e-07

977.0339 3.947017e-10 1.503106e-07 953.6820 4.374371e-10 1.503106e-07

-9.408787 13.420073 1016.6111 3.333997e-10 1.503106e-07

7.803495 9.255371 941.3297 4.623518e-10 1.503106e-07

Phatr3_J32747

Phatr3_J48834

Phatr3_J47667

Phatr3_J40433

Phatr3_J25308

7.098911

-5.807797

Phatr3_EG00065 -6.173506 9.136149

-6.822467 14.655511

Determine how many genes are up and down regulated for each pairwise comparison For differentially expressed genes set logFC and pvalue threshold to 0.05 and 1 lfc=1 sets a 2-fold change minimum

MD Plot: PW E vs PW St

Volcano Plot

```
volcanoData <- cbind(PWE_vs_PWST_all$table$logFC, -log10(PWE_vs_PWST_all$table$FDR))
colnames(volcanoData) <- c("logFC", "negLogPval")

DEGs <- PWE_vs_PWST_all$table$FDR < 0.05 & abs(PWE_vs_PWST_all$table$logFC) > 1
point.col <- ifelse(DEGs, "red", "black")
plot(volcanoData, pch=19, cex = .5, col = point.col, main = "Volcano Plot : PW E vs PW St")</pre>
```

Volcano Plot: PW E vs PW St

Exponential and Stationary Samples as the Only Contrasts

Groups the normal media and PW and contrasts samples by their growth stage only

```
group<-c("exp","exp","exp","exp","st","st","exp","exp","st","st")

dge2<-DGEList(counts=star_data,group=group) #creates a DGE list object
dim(dge2)</pre>
```

[1] 12392 10

```
full_dge<-dge2 #store original data just in case

# filtering & normalizing data
#keep only 100 counts per mil in at least 2 samples
head(cpm(dge2))</pre>
```

```
##
                  HQ10E1
                                       HQE1
                            HQ10E2
                                                HQE2
                                                       HQ_ST1
                                                                 HQ_ST2
## Phatr3_J31400 0.05087787 0.2236625 0.1336435
                                            0.4334001
                                                      0.00000 0.2161654
## Phatr3_J42422 7.32641286 7.6939896 9.5332341
                                            9.4728883 26.56036 24.3726541
0.00000 0.0000000
## Phatr3_J42423 1.37370241 1.9682299 3.4301824 2.6004007 36.80130 27.4530117
## Phatr3_J42424 92.54684020 97.1589854 83.5717162 77.6405351 100.69153 99.4901468
## Phatr3 J7430 23.14942952 22.8135739 27.6196503 27.4280359 30.85495 27.7232185
```

```
##
                     PWE1
                                 PWE2
                                         PW ST1
                                                   PW ST2
## Phatr3_J31400 0.1070611 0.05289409 0.5624836 0.910445
## Phatr3 J42422 6.2630738 5.34230276 11.4184165 11.517130
## Phatr3 J42423 2.4624051 2.06286938 6.1873193 13.838764
## Phatr3 J42424 81.2593682 79.76428279 58.2170497 71.105757
## Phatr3 J7430 17.8256717 24.11970355 18.9556964 16.570100
apply(dge2$counts, 2, sum)
    HQ10E1
                                HQE2
                                      HQ_ST1
                                               HQ_ST2
                                                          PWE1
             HQ10E2
                       HQE1
## 19654912 22355112 22447786 16151357 15135335 18504345 18680923 18905705
   PW ST1
             PW ST2
## 17778297 21967279
keep2 \leftarrow rowSums(cpm(dge2)>100) >=2
dge2 <- dge2[keep2,]</pre>
dim(dge2) #check number of genes left after filtering
## [1] 3251
             10
#resetting the library size
dge2$samples$lib.size <- colSums(dge2$counts)</pre>
dge2$samples
         group lib.size norm.factors
##
## HQ10E1 exp 15289361
                                  1
## HQ10E2
           exp 17319367
                                  1
## HQE1
           exp 17111487
                                  1
## HQE2
         exp 12568283
## HQ_ST1 st 11248709
                                  1
## HQ ST2
          st 13869364
                                  1
## PWE1
         exp 14606604
                                  1
## PWE2
          exp 14925823
## PW_ST1
           st 14619994
                                  1
## PW_ST2
            st 17756624
#now we can normalize the data
dge_norm2=calcNormFactors(dge2, method="TMM")
dge_norm2
## An object of class "DGEList"
## $counts
                 HQ10E1 HQ10E2 HQE1 HQE2 HQ_ST1 HQ_ST2 PWE1 PWE2 PW_ST1 PW_ST2
##
                         9594 8689 7289 5396 7052 6769 7244
## Phatr3_J42426
                  8520
                                                                5813 8494
                                         224
## Phatr3 EG02408
                  3806
                         4483 3948 2637
                                                 238 3580 3084
                                                                216
                                                                      368
                         7590 9257 5980
## Phatr3_J31409
                  6448
                                         1008
                                                                1381
                                                1394 4863 4622
                                                                       1864
                                         2150
## Phatr3_J42429
                  1747
                         1981 2134 1377
                                                2386 1650 1699
                                                                1427
                                                                       1398
                  6608
                         7884 7049 4583
                                         3737 5446 6837 6271
## Phatr3_J4937
                                                                2997
                                                                       3700
## 3246 more rows ...
##
```

```
## $samples
##
          group lib.size norm.factors
            exp 15289361
## HQ10E1
                             1.0347646
## HQ10E2
            exp 17319367
                             1.0442405
## HQE1
            exp 17111487
                             1.0884649
## HQE2
            exp 12568283
                             1.0460172
## HQ ST1
             st 11248709
                             1.0977999
## HQ_ST2
             st 13869364
                             1.0696829
## PWE1
            exp 14606604
                             1.0251548
## PWE2
            exp 14925823
                             1.0196206
## PW_ST1
             st 14619994
                             0.8029116
## PW_ST2
             st 17756624
                             0.8247657
# create design matrix
design.mat2 <- model.matrix(~ 0 + dge_norm2$samples$group)</pre>
colnames(design.mat2) <- levels(dge_norm2$samples$group)</pre>
#estimate the dispersion
d3 <- estimateGLMCommonDisp(dge_norm2,design.mat2)</pre>
d3 <- estimateGLMTrendedDisp(d3,design.mat2, method="auto")</pre>
# You can change method to "auto", "bin.spline", "power", "spline", "bin.loess".
# The default is "auto" which chooses "bin.spline" when > 200 tags and "power" otherwise.
d3 <- estimateGLMTagwiseDisp(d3,design.mat2)</pre>
plotBCV(d3)
```



```
#create a matrix of contrasts for anova-like testing
my_contrasts2<-makeContrasts(
 #exponential vs stationary
 exp_vs_st = exp-st,
 levels= design.mat2
my_contrasts2
##
         Contrasts
## Levels exp_vs_st
##
                  1
      exp
##
      st
                 -1
fit2 <- glmQLFit(d3, design.mat2)</pre>
E vs ST <- glmQLFTest(fit2, contrast = my contrasts2)</pre>
E_vs_ST_top100 = topTags(E_vs_ST,adjust.method = "BH", p.value = 0.05, n = 100)
E_vs_ST_all = topTags(E_vs_ST,adjust.method = "BH", p.value = 0.05, n = nrow(E_vs_ST$table))
E_vs_ST_DEG <- E_vs_ST_all[abs(E_vs_ST_all$table$logFC) > 1, ]
E_vs_ST_up <- E_vs_ST_all[E_vs_ST_all$table$logFC > 1, ]
E_vs_ST_down <- E_vs_ST_all[E_vs_ST_all$table$logFC < -1, ]</pre>
head(E_vs_ST_top100, n=10)
## Coefficient: 1*exp -1*st
##
                               logCPM
                                                      PValue
                      logFC
                                              F
## Phatr3_J45757 -9.563363 10.000099 1354.2665 1.684748e-12 5.477116e-09
## Phatr3_J23717
                 5.472037 9.748688 885.9707 1.554619e-11 2.527033e-08
## Phatr3_J47612 -6.769131 10.785967 716.4619 4.710233e-11 3.908231e-08
## Phatr3_J36381 -5.753589 6.668757 713.6253 4.808651e-11 3.908231e-08
## Phatr3_J47006
                  4.918942 8.298303 673.7905 6.486447e-11 4.217488e-08
## Phatr3_J48511 -4.332105 9.654110 560.0490 1.696963e-10 9.194711e-08
## Phatr3_J12411
                 3.673927 6.993582 536.4989 2.120974e-10 9.850411e-08
## Phatr3_J44651
                                       520.8250 2.473700e-10 1.005250e-07
                   3.881203 7.976553
## Phatr3 J49907 -3.531604 7.214636
                                       484.8683 3.584177e-10 1.179003e-07
## Phatr3 EG02408 3.525080 7.151882 480.6009 3.752105e-10 1.179003e-07
Determine how many genes are up and down regulated for each pairwise comparison
For differentially expressed genes set logFC and pvalue threshold to 0.05 and 1
lfc=1 sets a 2-fold change minimum
is.de <- decideTestsDGE(E vs ST,adjust.method="BH",p.value=0.05,lfc=1)
summary(is.de)
##
          1*exp -1*st
## Down
                  771
## NotSig
                 1792
```

Up

688

MD Plot: Exponential vs Stationary Growth

Volcano Plot

```
volcanoData <- cbind(E_vs_ST_all$table$logFC, -log10(E_vs_ST_all$table$FDR))
colnames(volcanoData) <- c("logFC", "negLogPval")

DEGs <- E_vs_ST_all$table$FDR < 0.05 & abs(E_vs_ST_all$table$logFC) > 1

point.col <- ifelse(DEGs, "red", "black")

plot(volcanoData, pch=19, cex = .5, col = point.col, main = "Volcano Plot : Exponential vs Stationary G</pre>
```

Volcano Plot : Exponential vs Stationary Growth

E_vs_ST_top100_log2_cpm <- logcpm[rownames(E_vs_ST_top100\$table),]
pheatmap(E_vs_ST_top100_log2_cpm,color=colorRampPalette(c("navy", "lavender", "maroon"))(15),fontsize_r</pre>

Find intersect of DEGs found between HQst_vs_PWst and HQE_vs_PWE

```
common_HQ_vs_PW_DEGs <- intersect(row.names(HQst_vs_PWst_DEG$table), row.names(HQE_vs_PWE_DEG$table))
common_HQ_vs_PW_DEGs <- data.frame(common_HQ_vs_PW_DEGs)</pre>
```

Write all DEGs results to a Excel file

Gene Ontology

Perform gene ontology of the common DEGs between HQst_vs_PWst and HQE_vs_PWE with gprofiler2

```
library(gprofiler2)
HQst_vs_PWst_over_rep <- gost(query = list("HQst vs PWst" = row.names(HQst_vs_PWst_DEG$table)),</pre>
                           organism = "ptricornutum",
                           ordered_query = TRUE,
                           measure_underrepresentation = FALSE,
                           evcodes = TRUE)
HQE_vs_PWE_over_rep <- gost(query = list("HQE vs PWE" = row.names(HQE_vs_PWE_DEG$table)),
                           organism = "ptricornutum",
                           ordered_query = TRUE,
                           measure_underrepresentation = FALSE,
                           evcodes = TRUE)
HQst_vs_PWst_under_rep <- gost(query = list("HQst vs PWst" = row.names(HQst_vs_PWst_DEG$table)),</pre>
                           organism = "ptricornutum",
                           ordered_query = TRUE,
                           measure_underrepresentation = TRUE,
                           evcodes = TRUE)
HQE_vs_PWE_under_rep <- gost(query = list("HQE vs PWE" = row.names(HQE_vs_PWE_DEG$table)),</pre>
                           organism = "ptricornutum",
                           ordered_query = TRUE,
                           measure_underrepresentation = TRUE,
                           evcodes = TRUE)
```

HQst vs **PWst**

Visualize the over-represented GO terms of HQst vs PWst

```
gostplot(HQst_vs_PWst_over_rep, capped = TRUE, interactive = TRUE)
```

Top 20 GO terms of over-represented DEGs in HQst vs PWst by lowest p-values

id	source	term_id	term_name	term_size	intersection_size	p_value
1	GO:BP	GO:0019684	photosynthesis, light reaction	51	32	9.0e-13
2	GO:MF	GO:0016168	chlorophyll binding	41	25	1.9e-12
3	GO:BP	GO:0015979	photosynthesis	65	36	6.0e-12
4	GO:MF	GO:0046906	tetrapyrrole binding	100	43	7.0e-12
5	GO:BP	GO:0009765	photosynthesis, light harvesting	42	21	2.2e-10
6	GO:BP	GO:0006091	generation of precursor metabolites and energy	175	47	1.7e-09
7	GO:BP	GO:0018298	protein-chromophore linkage	46	21	2.1e-09
8	GO:CC	GO:0030076	light-harvesting complex	41	21	6.7e-09
9	GO:CC	GO:0009579	thylakoid	54	30	2.6e-07
10	GO:CC	GO:0034357	photosynthetic membrane	50	28	7.1e-07
11	GO:CC	GO:0009521	photosystem	46	26	1.9e-06
12	GO:CC	GO:0009523	photosystem II	46	26	1.9e-06
13	GO:BP	GO:0006096	glycolytic process	45	11	1.2e-04
14	GO:BP	GO:0006757	ATP generation from ADP	45	11	1.2e-04
15	GO:BP	GO:0046031	ADP metabolic process	46	11	1.6e-04
16	GO:BP	GO:0009185	ribonucleoside diphosphate metabolic process	48	11	2.5e-04
17	GO:BP	GO:0006165	nucleoside diphosphate phosphorylation	48	11	2.5e-04
18	GO:BP	GO:0009135	purine nucleoside diphosphate metabolic process	48	11	2.5e-04
19	GO:BP	GO:0009179	purine ribonucleoside diphosphate metabolic process	48	11	2.5e-04
20	GO:BP	GO:0016052	carbohydrate catabolic process	51	11	4.8e-04

Visualize the under-represented GO terms of HQst vs PWst

```
gostplot(HQst_vs_PWst_under_rep, capped = TRUE, interactive = TRUE)
```

Top 20 GO terms of under-represented DEGs in HQst vs PWst by lowest p-values

id	source	term id	term_name	term size	intersection size	p value
	GO:BP	GO:0008150	biological_process	4450	277	4.9e-324
_	GO:CC	GO:0005575	cellular_component	3635	1	4.9e-324
	GO:CC	GO:0110165	cellular anatomical entity	3570	36	4.9e-324
_	GO:MF	GO:0003674	molecular function	5580	20	4.9e-324
	KEGG	KEGG:01100	Metabolic pathways	413	41	4.9e-324
6	KEGG	KEGG:00000	KEGG root term	984	1	4.9e-324
7	GO:BP	GO:0009987	cellular process	3397	248	1.7e-115
8	GO:BP	GO:0008152	metabolic process	3488	261	1.4e-114
9	GO:CC	GO:0016020	membrane	2315	212	9.2e-102
10	GO:CC	GO:0005622	intracellular anatomical structure	1551	88	1.2e-86
11	GO:CC	GO:0031224	intrinsic component of membrane	2094	191	2.4e-82
12	GO:CC	GO:0016021	integral component of membrane	2094	191	2.4e-82
13	GO:BP	GO:0043170	macromolecule metabolic process	1930	82	2.1e-75
14	KEGG	KEGG:01110	Biosynthesis of secondary metabolites	174	23	4.8e-74
15	GO:BP	GO:0071704	organic substance metabolic process	2717	187	1.7e-73
16	GO:BP	GO:0044238	primary metabolic process	2535	162	6.6e-73
17	GO:BP	GO:0006807	nitrogen compound metabolic process	2348	147	2.3e-65
18	GO:BP	GO:0044237	cellular metabolic process	2506	177	2.3e-62
19	GO:CC	GO:0043226	organelle	1198	65	4.2e-62
20	GO:CC	GO:0043229	intracellular organelle	1179	64	9.6e-61

$HQE \ vs \ PWE$

Visualize the over-represented GO terms of HQE vs ${\rm PWE}$

```
gostplot(HQE_vs_PWE_over_rep, capped = TRUE, interactive = TRUE)
```

Top 20 GO terms of over-represented DEGs in HQE vs PWE by lowest p-values

id	source	term_id	term_name	term_size	intersection_size	p_va	ılue
1	GO:CC	GO:0005852	eukaryotic translation initiation factor 3 complex	13	9	4.9e-0	07
2	GO:MF	GO:0008135	translation factor activity, RNA binding	55	13	3.3e-	05
3	GO:MF	GO:0045182	translation regulator activity	55	13	3.3e-	05
4	GO:MF	GO:0090079	translation regulator activity, nucleic acid binding	55	13	3.3e-	05
5	GO:MF	GO:0003743	translation initiation factor activity	35	10	1.3e-	04
6	GO:CC	GO:0033290	eukaryotic 48S preinitiation complex	4	4	7.1e-	04
7	GO:CC	GO:0016282	eukaryotic 43S preinitiation complex	4	4	7.1e-	04
8	GO:CC	GO:0070993	translation preinitiation complex	4	4	7.1e-	04
9	GO:BP	GO:0043436	oxoacid metabolic process	327	44	1.1e-	03
10	GO:BP	GO:0001732	formation of cytoplasmic translation initiation complex	4	4	1.1e-	03
11	GO:BP	GO:0019752	carboxylic acid metabolic process	324	43	1.3e-	03
12	GO:MF	GO:0031369	translation initiation factor binding	3	3	1.4e-	03
13	GO:BP	GO:0006413	translational initiation	34	8	2.4e-	03
14	GO:BP	GO:0006082	organic acid metabolic process	337	44	2.4e-(03
15	GO:BP	GO:0001731	formation of translation preinitiation complex	5	4	5.5e-(03
16	GO:BP	GO:0002183	cytoplasmic translational initiation	5	4	5.5e-(03
17	GO:BP	GO:0006446	regulation of translational initiation	5	4	5.5e-(03
18	GO:BP	GO:0006090	pyruvate metabolic process	53	10	2.2e-	02
19	GO:MF	GO:0005452	inorganic anion exchanger activity	8	4	3.4e-0	02

Visualize the under-represented GO terms of HQE vs ${\rm PWE}$

```
gostplot(HQE_vs_PWE_under_rep, capped = TRUE, interactive = TRUE)
```

Top 20 GO terms of under-represented DEGs in HQE vs PWE by lowest p-values

id	source	term_id	term_name	term_size	intersection_size	p_value
1	GO:CC	GO:0110165	cellular anatomical entity	3570	41	4.9e-324
2	GO:CC	GO:0005575	cellular_component	3635	1	4.9e-324
3	GO:MF	GO:0003674	molecular_function	5580	33	4.9e-324
4	KEGG	KEGG:00000	KEGG root term	984	1	4.9e-324
5	GO:BP	GO:0008150	biological_process	4450	181	4.6e-88
6	GO:CC	GO:0016020	membrane	2315	58	4.8e-65
7	GO:CC	GO:0016021	integral component of membrane	2094	53	6.8e-53
8	GO:CC	GO:0031224	intrinsic component of membrane	2094	53	6.8e-53
9	KEGG	KEGG:01100	Metabolic pathways	413	35	1.4e-47
10	GO:BP	GO:0009987	cellular process	3397	133	7.9e-29
11	GO:BP	GO:0008152	metabolic process	3488	146	1.7e-24
12	GO:BP	GO:0043170	macromolecule metabolic process	1930	46	1.2e-20
13	GO:CC	GO:0043226	organelle	1198	28	1.0e-19
14	GO:CC	GO:0043229	intracellular organelle	1179	27	1.4e-17
15	GO:CC	GO:0005622	intracellular anatomical structure	1551	55	7.2e-17
16	GO:BP	GO:0071704	organic substance metabolic process	2717	108	1.7e-15
17	GO:BP	GO:0044260	cellular macromolecule metabolic process	1452	34	6.1e-14
18	GO:MF	GO:0005488	binding	3541	136	8.4e-14
19	GO:CC	GO:0043227	membrane-bounded organelle	1028	27	1.5e-12
20	GO:BP	GO:0006807	nitrogen compound metabolic process	2348	91	1.6e-12

Common DEGs between HQst vs PWst and HQE and PWE

	id	source	term_id	term_name	term_size	intersection_size	p_value
1		KEGG	KEGG:00910	Nitrogen metabolism	11	7	4.9e-03
2		GO:BP	GO:0009084	glutamine family amino acid biosynthetic process	18	5	1.7e-02

g:Profiler (biit.cs.ut.ee/gprofiler)

id	source	term_id	term_name	term_size	intersection_size	p_value
1	GO:CC	GO:0110165	cellular anatomical entity	3570	38	4.9e-324
2	GO:CC	GO:0005575	cellular_component	3635	1	4.9e-324
3	GO:MF	GO:0003674	molecular_function	5580	25	4.9e-324
4	KEGG	KEGG:00000	KEGG root term	984	1	4.9e-324
5	GO:BP	GO:0008150	biological_process	4450	63	5.6e-56
6	GO:BP	GO:0009987	cellular process	3397	40	8.9e-25
7	GO:BP	GO:0008152	metabolic process	3488	43	2.4e-22
8	KEGG	KEGG:01100	Metabolic pathways	413	13	2.7e-19
9	GO:CC	GO:0005622	intracellular anatomical structure	1551	11	4.4e-18
10	GO:CC	GO:0016020	membrane	2315	36	1.0e-17
11	GO:BP	GO:0043170	macromolecule metabolic process	1930	10	3.0e-17
12	GO:CC	GO:0043226	organelle	1198	4	4.2e-17
13	GO:CC	GO:0043229	intracellular organelle	1179	4	1.2e-16
14	GO:BP	GO:0071704	organic substance metabolic process	2717	30	6.5e-16
15	GO:MF	GO:0005488	binding	3541	40	7.4e-15
16	GO:BP	GO:0044237	cellular metabolic process	2506	27	4.1e-14
17	GO:BP	GO:0044238	primary metabolic process	2535	28	6.0e-14
18	GO:CC	GO:0016021	integral component of membrane	2094	34	9.8e-14
19	GO:CC	GO:0031224	intrinsic component of membrane	2094	34	9.8e-14
20	GO:CC	GO:0043227	membrane-bounded organelle	1028	4	2.3e-13

g:Profiler (biit.cs.ut.ee/gprofiler)

Write gene ontology results to an Excel file

Explore Gene Ontology of Up-regulated vs Down-regulated DEGs in HQst vs PWst

Over-represented GO terms of Up-regulated DEGs in HQst vs PWst

id	source	term_id	term_name	term_size	intersection_size	p_value
1	GO:BP	GO:0006757	ATP generation from ADP	45	5	2.8e-03
2	GO:BP	GO:0006096	glycolytic process	45	5	2.8e-03
3	GO:BP	GO:0046031	ADP metabolic process	46	5	3.1e-03
4	GO:BP	GO:0009185	ribonucleoside diphosphate metabolic process	48	5	3.9e-03
5	GO:BP	GO:0009179	purine ribonucleoside diphosphate metabolic process	48	5	3.9e-03
6	GO:BP	GO:0006165	nucleoside diphosphate phosphorylation	48	5	3.9e-03
7	GO:BP	GO:0009135	purine nucleoside diphosphate metabolic process	48	5	3.9e-03
8	GO:BP	GO:0016052	carbohydrate catabolic process	51	5	5.2e-03
9	GO:BP	GO:0006090	pyruvate metabolic process	53	5	6.3e-03
10	GO:BP	GO:0009132	nucleoside diphosphate metabolic process	54	5	6.9e-03
11	GO:BP	GO:0046939	nucleotide phosphorylation	56	5	8.3e-03
12	GO:BP	GO:0046034	ATP metabolic process	60	5	1.2e-02
13	GO:MF	GO:0016620	oxidoreductase activity, acting on the aldehyde or oxo group of donors, NAD or NADP as acceptor	21	2	1.8e-02
14	GO:BP	GO:0006006	glucose metabolic process	18	2	3.2e-02
15	GO:MF	GO:0015204	urea transmembrane transporter activity	3	2	4.3e-02
16	GO:MF	GO:0050661	NADP binding	33	2	4.6e-02
17	GO:MF	GO:0016903	oxidoreductase activity, acting on the aldehyde or oxo group of donors	34	2	4.9e-02

g:Profiler (biit.cs.ut.ee/gprofiler)

Over-represented GO terms of Down-regulated DEGs in HQst vs PWst

publish_gosttable(HQst_vs_PWst_down_reg_over_rep,

highlight_terms = HQst_vs_PWst_down_reg_over_rep\$result[order(HQst_vs_PWst_down_reg_over_rep\$result]

id	source	term_id	term_name	term_size	intersection_size	p_value
1	GO:BP	GO:0019684	photosynthesis, light reaction	51	27	2.5e-15
2	GO:BP	GO:0015979	photosynthesis	65	34	6.9e-15
3	GO:MF	GO:0016168	chlorophyll binding	41	22	8.3e-15
4	GO:MF	GO:0046906	tetrapyrrole binding	100	38	2.2e-13
5	GO:BP	GO:0009765	photosynthesis, light harvesting	42	22	8.3e-13
6	GO:BP	GO:0018298	protein-chromophore linkage	46	22	9.8e-12
7	GO:CC	GO:0030076	light-harvesting complex	41	22	2.9e-11
8	GO:CC	GO:0009579	thylakoid	54	28	1.5e-09
9	GO:BP	GO:0006091	generation of precursor metabolites and energy	175	40	3.2e-09
10	GO:CC	GO:0009521	photosystem	46	25	4.7e-09
11	GO:CC	GO:0009523	photosystem II	46	25	4.7e-09
12	GO:CC	GO:0034357	photosynthetic membrane	50	26	7.2e-09
13	GO:CC	GO:0009536	plastid	108	28	2.1e-05
14	GO:BP	GO:0006779	porphyrin–containing compound biosynthetic process	25	12	3.3e-04
15	GO:BP	GO:0033014	tetrapyrrole biosynthetic process	31	13	7.9e-04
16	GO:BP	GO:0006782	protoporphyrinogen IX biosynthetic process	12	8	8.4e-04
17	GO:BP	GO:0046501	protoporphyrinogen IX metabolic process	12	8	8.4e-04
18	GO:BP	GO:0046148	pigment biosynthetic process	32	13	1.2e-03
19	GO:BP	GO:0006783	heme biosynthetic process	17	6	1.6e-03
20	GO:CC	GO:0009507	chloroplast	100	23	2.2e-03

g:Profiler (biit.cs.ut.ee/gprofiler)

sessionInfo()

```
## R version 4.0.4 (2021-02-15)
## Platform: x86_64-w64-mingw32/x64 (64-bit)
## Running under: Windows 10 x64 (build 19042)
##
## Matrix products: default
##
## locale:
## [1] LC_COLLATE=English_United States.1252
## [2] LC_CTYPE=English_United States.1252
## [3] LC_MONETARY=English_United States.1252
## [4] LC_NUMERIC=C
## [5] LC_TIME=English_United States.1252
```

```
##
## attached base packages:
## [1] stats
                 graphics grDevices utils
                                               datasets methods
                                                                    base
##
## other attached packages:
## [1] gprofiler2_0.2.0 openxlsx_4.2.3
                                         pheatmap 1.0.12 edgeR 3.32.1
## [5] limma_3.46.0
                        readr 1.4.0
##
## loaded via a namespace (and not attached):
## [1] Rcpp_1.0.6
                                              lattice_0.20-41
                                                                  tidyr_1.1.3
                           locfit_1.5-9.4
## [5] assertthat_0.2.1
                           digest_0.6.27
                                              utf8_1.2.1
                                                                  mime_0.10
## [9] R6_2.5.0
                                              httr_1.4.2
                           evaluate_0.14
                                                                  ggplot2_3.3.3
                                                                  lazyeval_0.2.2
                           pillar_1.6.0
## [13] highr_0.9
                                              rlang_0.4.10
## [17] curl_4.3
                                                                  rmarkdown_2.8
                           rstudioapi_0.13
                                              data.table_1.14.0
## [21] splines_4.0.4
                           stringr_1.4.0
                                              htmlwidgets_1.5.3
                                                                  RCurl_1.98-1.3
## [25] munsell_0.5.0
                           shiny_1.6.0
                                              compiler_4.0.4
                                                                  httpuv_1.6.1
## [29] xfun_0.22
                                              htmltools_0.5.1.1
                                                                  tidyselect_1.1.1
                           pkgconfig_2.0.3
## [33] gridExtra 2.3
                           tibble 3.1.0
                                              fansi 0.4.2
                                                                  viridisLite 0.4.0
## [37] crayon_1.4.1
                           dplyr_1.0.5
                                              later_1.2.0
                                                                  bitops_1.0-7
## [41] grid 4.0.4
                           xtable_1.8-4
                                              jsonlite_1.7.2
                                                                  gtable_0.3.0
## [45] lifecycle_1.0.0
                           DBI_1.1.1
                                              magrittr_2.0.1
                                                                  scales_1.1.1
## [49] zip_2.1.1
                           cli_2.5.0
                                              stringi_1.5.3
                                                                  promises_1.2.0.1
## [53] ellipsis_0.3.1
                                              vctrs_0.3.7
                                                                  RColorBrewer_1.1-2
                           generics_0.1.0
## [57] tools 4.0.4
                           glue_1.4.2
                                              purrr_0.3.4
                                                                  hms 1.0.0
## [61] crosstalk_1.1.1
                                              yaml_2.2.1
                                                                  colorspace_2.0-0
                           fastmap_1.1.0
## [65] plotly_4.9.3
                           knitr_1.33
```