Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет ИТМО»

Лабораторная работа 2

по дисциплине «Тестирование программного обеспечения» Вариант 99999

> Выполнил: Бобряков Кирилл, гр. № Р33122 Проверила: Харитонова Анастасия Евгеньевна

Задание:

Провести интеграционное тестирование программы, осуществляющей вычисление системы функций (в соответствии с вариантом)

Вариант — 99999

```
x \le 0 : (((((((((sec(x) / sin(x)) * csc(x)) ^ 3) - (sec(x) + (cot(x) + (cos(x) + cos(x))))) * (((cot(x) - cos(x)) + cot(x)) ^ 3)) ^ 2) + cot(x)) * (cos(x) / (tan(x) + ((sin(x) / (cot(x) + cot(x))))))
```

$$x > 0$$
 : (((((log_3(x) / log_5(x)) ^ 3) / ((log_3(x) * ln(x)) * log_5(x))) / log_10(x)) + log_3(x))

Ссылка на репозиторий:

https://github.com/kirill-bobr/tpo_lab2

Ход выполнения работы:

Сначала были реализованы классы для вычисления системы функций:

- Базовые sin(x) и ln(x)
- Классы cos(x), csc(x), sec(x), ctg(x), tg(x), log10(x), log3(x), log5(x)
- Классы LogarithmicFunction и TrigonometricFunction

Затем была создана UML-диаграмма классов

UML-диаграмма классов

Тестовое покрытие системы функций

Для начала необходимо протестировать базовые функции $\underline{sin(x)}$

Будем рассматривать на отрезке от $[-2\pi;\ 0]$. Важно проверить граничные точки и точки, в которых функция меняет знак

-2π	-π	0	-π/2	-3π/2	-π/4
0	0	0	-1	1	-0.707

ln(x)

Будем рассматривать на отрезке [0; +Infinity]. Важно рассмотреть одну из точек 3, 5, 10, т. к. они используются при вычислении других логарифмов

0	1	10	0.5	< 0
-Infinity	0	2.3025	-0.693147	IllegalArgumentException

cos(x)

Также необходимо проверить косинус, т. к. для его вычисления используется основное тригонометрическое тождество, при котором не учитывается знак в результате.

0	- π	-2 π	-π/4
1	-1	1	0.7071

Тригонометрическая функция

```
x \le 0 : ((((((((sec(x) / sin(x)) * csc(x)) ^ 3) - (sec(x) + (cot(x) + (cos(x) + cos(x))))) * (((cot(x) - cos(x)) + cot(x)) ^ 3)) ^ 2) + cot(x)) * (cos(x) / (tan(x) + ((sin(x) / (cot(x) + cot(x))))))
```


Для вычисления данной функции выбран отрезок [-1.57; -1.2], т. к. вне его функция не сходится. Нужно проверить граничную точку [-1.57]

-1.57	-1.4	-1.5
0	13.464	0.622848

Логарифмическая функция

В данном случае функция вблизи единицы не сходится поэтому надо рассмотреть значения вблизи нуля и после ~ 3

10	0.6	0.4	< 0
2.5512	187.5238	17.3249	IllegalArgumentException

<u>Графики по сѕу-выгрузкам</u>

Вывод: в ходе выполнения данной лабораторной работы я закрепил навыки написания Unit-тестов для отдельных модулей, а также познакомился с интеграционным тестированием и Mockito, упрощающим написание заглушек - .