$12n_{0075} (K12n_{0075})$

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle -4.17318 \times 10^{15} u^{51} + 1.53597 \times 10^{16} u^{50} + \dots + 1.39326 \times 10^{15} b + 3.61251 \times 10^{15}, \\ &3.45613 \times 10^{16} u^{51} - 1.28036 \times 10^{17} u^{50} + \dots + 2.78652 \times 10^{15} a + 6.93027 \times 10^{15}, \ u^{52} - 5 u^{51} + \dots + 14 u + 12^u \\ I_2^u &= \langle b, \ u^7 - 2 u^6 - 2 u^5 + 4 u^4 + 2 u^3 - u^2 + a - u - 3, \ u^8 - u^7 - 3 u^6 + 2 u^5 + 3 u^4 - 2 u - 1 \rangle \\ I_3^u &= \langle a^2 + 5 b + 3 a + 5, \ a^3 + a^2 + 4 a + 5, \ u + 1 \rangle \end{split}$$

* 3 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 63 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

 $^{^2}$ All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle -4.17 \times 10^{15} u^{51} + 1.54 \times 10^{16} u^{50} + \dots + 1.39 \times 10^{15} b + 3.61 \times 10^{15}, \ 3.46 \times 10^{16} u^{51} - 1.28 \times 10^{17} u^{50} + \dots + 2.79 \times 10^{15} a + 6.93 \times 10^{15}, \ u^{52} - 5 u^{51} + \dots + 14 u + 1 \rangle$$

(i) Arc colorings

$$a_{8} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u \\ -u^{3} + u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -12.4030u^{51} + 45.9484u^{50} + \dots + 81.3098u - 2.48707 \\ 2.99526u^{51} - 11.0243u^{50} + \dots - 30.7361u - 2.59285 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u^{2} + 1 \\ u^{4} - 2u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -9.40778u^{51} + 34.9242u^{50} + \dots + 50.5737u - 5.07992 \\ 2.99526u^{51} - 11.0243u^{50} + \dots - 30.7361u - 2.59285 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 17.4460u^{51} - 64.6564u^{50} + \dots - 149.987u - 4.05564 \\ -3.75474u^{51} + 13.9757u^{50} + \dots + 42.5139u + 3.15715 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -9.55271u^{51} + 35.8772u^{50} + \dots + 88.4408u + 2.91964 \\ 8.60172u^{51} - 33.2652u^{50} + \dots - 104.422u - 7.28044 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -u^{5} + 2u^{3} - u \\ u^{7} - 3u^{5} + 2u^{3} + u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 8.36062u^{51} - 30.6096u^{50} + \dots - 105.182u - 10.2144 \\ 3.75474u^{51} - 13.9757u^{50} + \dots - 42.5139u - 3.15715 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 4.60588u^{51} - 16.6339u^{50} + \dots - 62.6681u - 7.05722 \\ 3.75474u^{51} - 13.9757u^{50} + \dots - 42.5139u - 3.15715 \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes
$$= -\frac{11065552867124641}{1393259322402082}u^{51} + \frac{42789532669637567}{1393259322402082}u^{50} + \dots + \frac{1199032770084567}{1393259322402082}u - \frac{7200606156302692}{696629661201041}u^{50} + \dots + \frac{1199032770084567}{1393259322402082}u - \frac{7200606156302692}{696629661201041}u^{50} + \dots + \frac{1199032770084567}{1393259322402082}u^{50} + \dots + \frac{1199032770084567}{139325932402082}u^{50} + \dots + \frac{1199032770084567}{139325932400082}u^{50} + \dots + \frac{1199032770084567}{139325932400082}u^{50} + \dots + \frac{1199032770084567}{139325932400082}u^{50} + \dots + \frac{1199032770084567}{139325932400082}u^{50} + \dots + \frac{1199032$$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$u^{52} + 14u^{51} + \dots + 43u + 1$
c_2, c_4	$u^{52} - 10u^{51} + \dots - u + 1$
c_3, c_7	$u^{52} - 2u^{51} + \dots + 384u - 256$
c_5	$u^{52} + 3u^{51} + \dots - u - 1$
c_6, c_{10}	$u^{52} + 2u^{51} + \dots - 28u - 8$
c_8, c_9, c_{12}	$u^{52} + 5u^{51} + \dots - 14u + 1$
c_{11}	$u^{52} - 24u^{51} + \dots - 1488u + 64$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1	$y^{52} + 58y^{51} + \dots - 447y + 1$
c_2, c_4	$y^{52} - 14y^{51} + \dots - 43y + 1$
c_3, c_7	$y^{52} + 54y^{51} + \dots + 606208y + 65536$
<i>C</i> ₅	$y^{52} - 61y^{51} + \dots - 19y + 1$
c_6, c_{10}	$y^{52} - 24y^{51} + \dots - 1488y + 64$
c_8, c_9, c_{12}	$y^{52} - 47y^{51} + \dots - 104y + 1$
c_{11}	$y^{52} + 4y^{51} + \dots - 498944y + 4096$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.864111 + 0.613274I		
a = 0.72971 - 2.28554I	7.67792 - 2.14785I	7.33727 + 2.34757I
b = 0.08277 + 1.65392I		
u = -0.864111 - 0.613274I		
a = 0.72971 + 2.28554I	7.67792 + 2.14785I	7.33727 - 2.34757I
b = 0.08277 - 1.65392I		
u = -0.278369 + 0.886469I		
a = 0.81489 - 1.68991I	5.03572 - 9.87508I	3.10372 + 7.08066I
b = 0.52357 + 1.58617I		
u = -0.278369 - 0.886469I		
a = 0.81489 + 1.68991I	5.03572 + 9.87508I	3.10372 - 7.08066I
b = 0.52357 - 1.58617I		
u = -0.344404 + 0.851796I		
a = -0.85095 + 1.66493I	6.09934 - 2.94801I	4.84338 + 2.76292I
b = -0.08288 - 1.66614I		
u = -0.344404 - 0.851796I		
a = -0.85095 - 1.66493I	6.09934 + 2.94801I	4.84338 - 2.76292I
b = -0.08288 + 1.66614I		
u = -0.959966 + 0.581836I		
a = -0.84889 + 2.03520I	7.11104 + 4.74276I	0
b = 0.40253 - 1.60177I		
u = -0.959966 - 0.581836I		
a = -0.84889 - 2.03520I	7.11104 - 4.74276I	0
b = 0.40253 + 1.60177I		
u = -1.149080 + 0.112159I		
a = -0.11168 + 3.35174I	0.064366 - 0.675431I	0
b = 0.257735 - 0.531872I		
u = -1.149080 - 0.112159I		
a = -0.11168 - 3.35174I	0.064366 + 0.675431I	0
b = 0.257735 + 0.531872I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.078334 + 0.779627I		
a = -0.0018202 - 0.0329755I	-2.90851 - 2.74298I	4.20673 + 3.96739I
b = -0.000332 - 0.629614I		
u = -0.078334 - 0.779627I		
a = -0.0018202 + 0.0329755I	-2.90851 + 2.74298I	4.20673 - 3.96739I
b = -0.000332 + 0.629614I		
u = 1.219950 + 0.081401I		
a = 0.28979 + 1.63338I	5.43256 - 2.37277I	0
b = -0.347717 - 1.160600I		
u = 1.219950 - 0.081401I		
a = 0.28979 - 1.63338I	5.43256 + 2.37277I	0
b = -0.347717 + 1.160600I		
u = -0.282889 + 0.711805I		
a = 0.178611 - 0.588706I	-0.42821 - 3.83727I	2.28173 + 6.95386I
b = 1.029030 + 0.101314I		
u = -0.282889 - 0.711805I		
a = 0.178611 + 0.588706I	-0.42821 + 3.83727I	2.28173 - 6.95386I
b = 1.029030 - 0.101314I		
u = -1.193430 + 0.324240I		
a = 0.669986 - 0.648263I	0.485168 - 1.259080I	0
b = -0.015350 + 0.613459I		
u = -1.193430 - 0.324240I		
a = 0.669986 + 0.648263I	0.485168 + 1.259080I	0
b = -0.015350 - 0.613459I		
u = -0.680369 + 0.289746I		
a = 0.012168 - 0.147432I	1.074090 + 0.016258I	8.77032 - 1.10969I
b = 0.638639 - 0.199115I		
u = -0.680369 - 0.289746I		
a = 0.012168 + 0.147432I	1.074090 - 0.016258I	8.77032 + 1.10969I
b = 0.638639 + 0.199115I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.280180 + 0.138912I		
a = 1.48485 + 1.45215I	2.21484 - 2.00952I	0
b = -0.906569 - 0.186892I		
u = -1.280180 - 0.138912I		
a = 1.48485 - 1.45215I	2.21484 + 2.00952I	0
b = -0.906569 + 0.186892I		
u = -0.710230		
a = 0.329379	1.01816	10.6560
b = 0.453636		
u = -0.202574 + 0.614660I		
a = -0.41637 - 1.80557I	-2.49821 - 1.98647I	1.56783 + 2.89756I
b = -0.212659 + 0.790964I		
u = -0.202574 - 0.614660I		
a = -0.41637 + 1.80557I	-2.49821 + 1.98647I	1.56783 - 2.89756I
b = -0.212659 - 0.790964I		
u = 1.316330 + 0.333742I		
a = -0.408950 - 0.703118I	1.46111 + 6.76040I	0
b = -0.036069 + 0.646778I		
u = 1.316330 - 0.333742I		
a = -0.408950 + 0.703118I	1.46111 - 6.76040I	0
b = -0.036069 - 0.646778I		
u = 0.240670 + 0.591040I		
a = -1.50879 - 1.89532I	2.88733 + 4.52304I	-0.03636 - 3.32255I
b = -0.38554 + 1.46577I		
u = 0.240670 - 0.591040I		
a = -1.50879 + 1.89532I	2.88733 - 4.52304I	-0.03636 + 3.32255I
b = -0.38554 - 1.46577I		
u = 1.371880 + 0.190150I		
a = 0.51449 - 1.70845I	3.35341 + 2.44910I	0
b = -0.965667 + 0.552199I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.371880 - 0.190150I		
a = 0.51449 + 1.70845I	3.35341 - 2.44910I	0
b = -0.965667 - 0.552199I		
u = 1.381790 + 0.242632I		
a = 0.70682 + 2.59552I	2.55895 + 5.12601I	0
b = -0.377861 - 1.015230I		
u = 1.381790 - 0.242632I		
a = 0.70682 - 2.59552I	2.55895 - 5.12601I	0
b = -0.377861 + 1.015230I		
u = -1.39431 + 0.23988I		
a = -0.79430 + 4.03936I	8.11020 - 7.60143I	0
b = -0.47035 - 1.61370I		
u = -1.39431 - 0.23988I		
a = -0.79430 - 4.03936I	8.11020 + 7.60143I	0
b = -0.47035 + 1.61370I		
u = -1.40452 + 0.18151I		
a = 1.20569 - 4.10928I	8.93491 - 0.61807I	0
b = 0.00116 + 1.68427I		
u = -1.40452 - 0.18151I		
a = 1.20569 + 4.10928I	8.93491 + 0.61807I	0
b = 0.00116 - 1.68427I		
u = 1.42142 + 0.111111I		
a = -1.39366 - 1.43200I	7.33747 + 1.34403I	0
b = 0.813091 + 0.784592I		
u = 1.42142 - 0.111111I		
a = -1.39366 + 1.43200I	7.33747 - 1.34403I	0
b = 0.813091 - 0.784592I		
u = 1.41493 + 0.27859I		
a = -1.41802 + 1.14138I	4.99311 + 7.43624I	0
b = 1.235590 - 0.150942I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.41493 - 0.27859I		
a = -1.41802 - 1.14138I	4.99311 - 7.43624I	0
b = 1.235590 + 0.150942I		
u = 0.314249 + 0.443599I		
a = 1.74200 + 2.01299I	3.45819 - 1.75596I	0.22172 + 1.56110I
b = -0.08624 - 1.45158I		
u = 0.314249 - 0.443599I		
a = 1.74200 - 2.01299I	3.45819 + 1.75596I	0.22172 - 1.56110I
b = -0.08624 + 1.45158I		
u = 1.43910 + 0.36041I		
a = 0.67098 + 3.42215I	10.5096 + 14.3678I	0
b = 0.61263 - 1.61586I		
u = 1.43910 - 0.36041I		
a = 0.67098 - 3.42215I	10.5096 - 14.3678I	0
b = 0.61263 + 1.61586I		
u = 1.46087 + 0.32708I		
a = -1.00755 - 3.48031I	11.89100 + 7.20080I	0
b = -0.19562 + 1.75720I		
u = 1.46087 - 0.32708I		
a = -1.00755 + 3.48031I	11.89100 - 7.20080I	0
b = -0.19562 - 1.75720I		
u = -0.111943 + 0.439985I		
a = -1.241660 - 0.569711I	-1.51612 - 0.05304I	-2.94270 + 1.44002I
b = -0.772681 - 0.211532I		
u = -0.111943 - 0.439985I		
a = -1.241660 + 0.569711I	-1.51612 + 0.05304I	-2.94270 - 1.44002I
b = -0.772681 + 0.211532I		
u = 1.54580 + 0.02807I		
a = -0.26431 + 4.14163I	16.1487 + 3.7905I	0
b = 0.27010 - 1.83700I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.54580 - 0.02807I		
a = -0.26431 - 4.14163I	16.1487 - 3.7905I	0
b = 0.27010 + 1.83700I		
u = -0.0947755		
a = -7.83548	-1.21791	-10.0970
b = -0.476249		

$$\text{II. } I_2^u = \\ \langle b, \ u^7 - 2u^6 - 2u^5 + 4u^4 + 2u^3 - u^2 + a - u - 3, \ u^8 - u^7 - 3u^6 + 2u^5 + 3u^4 - 2u - 1 \rangle$$

(i) Arc colorings

$$a_{8} = \begin{pmatrix} 1\\0 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 0\\u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 1\\-u^{2} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u\\-u^{3}+u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -u^{7}+2u^{6}+2u^{5}-4u^{4}-2u^{3}+u^{2}+u+3\\0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u^{2}+1\\u^{4}-2u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u^{7}+2u^{6}+2u^{5}-4u^{4}-2u^{3}+u^{2}+u+3\\0 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -u^{7}+2u^{6}+2u^{5}-4u^{4}-2u^{3}+u^{2}+2u+3\\-u^{3}+u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1\\0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -u^{5}+2u^{3}-u\\u^{7}-3u^{5}+2u^{3}+u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u^{3}-2u\\u^{3}-u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -u\\u^{3}-u \end{pmatrix}$$

- (ii) Obstruction class = 1

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_2	$(u-1)^8$
c_3, c_7	u^8
<i>C</i> ₄	$(u+1)^8$
<i>C</i> ₅	$u^8 + 3u^7 + 7u^6 + 10u^5 + 11u^4 + 10u^3 + 6u^2 + 4u + 1$
c_6	$u^8 + u^7 - u^6 - 2u^5 + u^4 + 2u^3 - 2u - 1$
c_8, c_9	$u^8 - u^7 - 3u^6 + 2u^5 + 3u^4 - 2u - 1$
c_{10}	$u^8 - u^7 - u^6 + 2u^5 + u^4 - 2u^3 + 2u - 1$
c_{11}	$u^8 - 3u^7 + 7u^6 - 10u^5 + 11u^4 - 10u^3 + 6u^2 - 4u + 1$
c_{12}	$u^8 + u^7 - 3u^6 - 2u^5 + 3u^4 + 2u - 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_4	$(y-1)^8$
c_3, c_7	y^8
c_5,c_{11}	$y^8 + 5y^7 + 11y^6 + 6y^5 - 17y^4 - 34y^3 - 22y^2 - 4y + 1$
c_{6}, c_{10}	$y^8 - 3y^7 + 7y^6 - 10y^5 + 11y^4 - 10y^3 + 6y^2 - 4y + 1$
c_8, c_9, c_{12}	$y^8 - 7y^7 + 19y^6 - 22y^5 + 3y^4 + 14y^3 - 6y^2 - 4y + 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.180120 + 0.268597I		
a = -0.281371 - 1.128550I	-0.604279 - 1.131230I	-2.43193 + 0.79885I
b = 0		
u = -1.180120 - 0.268597I		
a = -0.281371 + 1.128550I	-0.604279 + 1.131230I	-2.43193 - 0.79885I
b = 0		
u = -0.108090 + 0.747508I		
a = 0.208670 + 0.825203I	-3.80435 - 2.57849I	-5.57469 + 3.25625I
b = 0		
u = -0.108090 - 0.747508I		
a = 0.208670 - 0.825203I	-3.80435 + 2.57849I	-5.57469 - 3.25625I
b = 0		
u = 1.37100		
a = 0.829189	4.85780	8.00600
b = 0		
u = 1.334530 + 0.318930I		
a = 0.284386 - 0.605794I	0.73474 + 6.44354I	-0.28408 - 3.92092I
b = 0		
u = 1.334530 - 0.318930I		
a = 0.284386 + 0.605794I	0.73474 - 6.44354I	-0.28408 + 3.92092I
b = 0		
u = -0.463640		
a = 2.74744	-0.799899	11.5750
b = 0		

III.
$$I_3^u = \langle a^2 + 5b + 3a + 5, \ a^3 + a^2 + 4a + 5, \ u + 1 \rangle$$

(i) Arc colorings

$$a_{8} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -\frac{1}{5}a^{2} - \frac{3}{5}a - 1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -\frac{1}{5}a^{2} + \frac{2}{5}a - 1 \\ -\frac{1}{5}a^{2} - \frac{3}{5}a - 1 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -\frac{1}{5}a^{2} + \frac{2}{5}a - 1 \\ -\frac{1}{5}a^{2} - \frac{3}{5}a - 1 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -\frac{2}{5}a^{2} - \frac{1}{5}a \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 0 \\ -\frac{2}{5}a^{2} - \frac{1}{5}a \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 0 \\ -\frac{2}{5}a^{2} - \frac{1}{5}a \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} \frac{2}{5}a^{2} + \frac{1}{5}a \\ -\frac{2}{5}a^{2} - \frac{1}{5}a \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes $= -\frac{9}{5}a^2 + \frac{13}{5}a 5$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_3	$u^3 - u^2 + 2u - 1$
c_2	$u^3 + u^2 - 1$
C4	$u^3 - u^2 + 1$
<i>C</i> ₅	$u^3 + 3u^2 + 2u - 1$
c_6, c_{10}, c_{11}	u^3
C ₇	$u^3 + u^2 + 2u + 1$
c_{8}, c_{9}	$(u+1)^3$
c_{12}	$(u-1)^3$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_3, c_7	$y^3 + 3y^2 + 2y - 1$
c_2,c_4	$y^3 - y^2 + 2y - 1$
<i>C</i> ₅	$y^3 - 5y^2 + 10y - 1$
c_6, c_{10}, c_{11}	y^3
c_8, c_9, c_{12}	$(y-1)^3$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.00000		
a = -1.18504	0.531480	-10.6090
b = -0.569840		
u = -1.00000		
a = 0.09252 + 2.05200I	4.66906 - 2.82812I	2.80443 + 4.65175I
b = -0.215080 - 1.307140I		
u = -1.00000		
a = 0.09252 - 2.05200I	4.66906 + 2.82812I	2.80443 - 4.65175I
b = -0.215080 + 1.307140I		

IV. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$((u-1)^8)(u^3-u^2+2u-1)(u^{52}+14u^{51}+\cdots+43u+1)$
c_2	$((u-1)^8)(u^3+u^2-1)(u^{52}-10u^{51}+\cdots-u+1)$
c_3	$u^{8}(u^{3} - u^{2} + 2u - 1)(u^{52} - 2u^{51} + \dots + 384u - 256)$
c_4	$((u+1)^8)(u^3-u^2+1)(u^{52}-10u^{51}+\cdots-u+1)$
c_5	$(u^{3} + 3u^{2} + 2u - 1)(u^{8} + 3u^{7} + \dots + 4u + 1)$ $\cdot (u^{52} + 3u^{51} + \dots - u - 1)$
c_6	$u^{3}(u^{8} + u^{7} + \dots - 2u - 1)(u^{52} + 2u^{51} + \dots - 28u - 8)$
C ₇	$u^{8}(u^{3} + u^{2} + 2u + 1)(u^{52} - 2u^{51} + \dots + 384u - 256)$
c_{8}, c_{9}	$(u+1)^3(u^8 - u^7 - 3u^6 + 2u^5 + 3u^4 - 2u - 1)$ $\cdot (u^{52} + 5u^{51} + \dots - 14u + 1)$
c_{10}	$u^{3}(u^{8} - u^{7} + \dots + 2u - 1)(u^{52} + 2u^{51} + \dots - 28u - 8)$
c_{11}	$u^{3}(u^{8} - 3u^{7} + 7u^{6} - 10u^{5} + 11u^{4} - 10u^{3} + 6u^{2} - 4u + 1)$ $\cdot (u^{52} - 24u^{51} + \dots - 1488u + 64)$
c_{12}	$(u-1)^{3}(u^{8} + u^{7} - 3u^{6} - 2u^{5} + 3u^{4} + 2u - 1)$ $\cdot (u^{52} + 5u^{51} + \dots - 14u + 1)$

V. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1	$((y-1)^8)(y^3+3y^2+2y-1)(y^{52}+58y^{51}+\cdots-447y+1)$
c_2,c_4	$((y-1)^8)(y^3-y^2+2y-1)(y^{52}-14y^{51}+\cdots-43y+1)$
c_3, c_7	$y^{8}(y^{3} + 3y^{2} + 2y - 1)(y^{52} + 54y^{51} + \dots + 606208y + 65536)$
c_5	$(y^3 - 5y^2 + 10y - 1)$ $\cdot (y^8 + 5y^7 + 11y^6 + 6y^5 - 17y^4 - 34y^3 - 22y^2 - 4y + 1)$ $\cdot (y^{52} - 61y^{51} + \dots - 19y + 1)$
c_6,c_{10}	$y^{3}(y^{8} - 3y^{7} + 7y^{6} - 10y^{5} + 11y^{4} - 10y^{3} + 6y^{2} - 4y + 1)$ $\cdot (y^{52} - 24y^{51} + \dots - 1488y + 64)$
c_8, c_9, c_{12}	$(y-1)^{3}(y^{8}-7y^{7}+19y^{6}-22y^{5}+3y^{4}+14y^{3}-6y^{2}-4y+1)$ $\cdot (y^{52}-47y^{51}+\cdots-104y+1)$
c_{11}	$y^{3}(y^{8} + 5y^{7} + 11y^{6} + 6y^{5} - 17y^{4} - 34y^{3} - 22y^{2} - 4y + 1)$ $\cdot (y^{52} + 4y^{51} + \dots - 498944y + 4096)$