CNT-Interconnect Verilog-A Model User Guide

This model is developed and tested using the Cadence Spectre environment [1].

Please refer to the Verilog-A user guide for further guidance on Verilog-A simulations [2].

Circuit Diagram (for a couple of CNT-wires)

Table 1: Verilog-A parameters for interconnect model

Parameter	Description	Default Parameters
Instance Parameters		
d	Diameter	1nm
np	Number of CNT's in parallel	1
S	Spacing between CNT's	10nm
eins	Dielectric constant of insulator	25
Cc	Coupling capacitance	0
h	Substrate insulator thickness	100nm
L	wire length	100nm
Model Parameters		
phisb	Schottky barrier height	0eV
Vcrit*	Energy for optical-phonon scattering parameter	0.16eV
Rp/Rn	Parasitic access resistance	0 ohm
lacc*	Mfp for acoustic phonon scattering	1.0um
lzb*	Mfp for zone boundry phonon scattering	20nm

^{*}These are the fitting parameters.

Parameter Tuning Procedure

Step 0: Define instance parameters. (Note: The model calculates a simple coupling capacitance based on geometry. If the user wishes to use 2D or 3D solvers like Raphael to calculate C_c the calculated value can be overrided using the parameter Cc and setting Cflag to 1. Otherwise set Cflag to 0.

Step 1: If 'L' ranges between 10nm and 1um, tune Vcrit in the range of 0.08 to 0.16 to decrease the resistance. If L> 1um, acoustic phonon scattering dominates and therefore lacc will change the slope of the curve.

Step 2: If the contacts are short and ohmic then Rs and Rd can be ignored. At high current values the phisb value can be extracted.

Instructions to Setup the Model in Spectre

- 1. Create any two-terminal symbol in Cadence with pins p,n.
- Create a Verilog A cellview. (Design > Create Cellview > from Cellview > Tool/Datatype = Verilog-A Editor.
- 3. Copy the Verilog-A file into the directory created by step 2. Overwrite the existing file. The name of the file should be verilog.va.
- 4. Setup the device parameters and fitting parameters as mentioned in the Readme file and you are ready to run standard simulations in Spectre.

References

- [1] Virtuoso® Spectre® circuit simulator user guide, Version 5.1.41, August 2004.
- [2] Cadence® Verilog® -A Language Reference Manual, Version 5.0, July 2002.