МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ федеральное государственное автономное образовательное учреждение высшего образования «САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ АЭРОКОСМИЧЕСКОГО ПРИБОРОСТРОЕНИЯ»

ИНСТИТУТ НЕПРЕРЫВНОГО И ДИСТАНЦИОННОГО ОБРАЗОВАНИЯ

КАФЕДРА КОМПЬЮТЕРНЫХ ТЕХНОЛОГИЙ И ПРОГРАММНОЙ ИНЖЕНЕРИИ

ОЦЕНКА				
ПРЕПОДАВАТЕЛЬ				
д-р техн. наук, прос должность, уч. степень	beccop	полинет пата	С.И. Колесникова инициалы, фамилия	
должность, уч. степень	, званис	подпись, дата	инициалы, фамилия	
	ОТЧЕТ О ЛАБ	ОРАТОРНОЙ РАБОТЕ	E № 1	
Моделирование принятия решения в многокритериальной задаче выбора				
по дисциплине: Компьютерное моделирование				
РАБОТУ ВЫПОЛНИЛ				
СТУДЕНТ гр. №	Z1431 номер группы	подпись, дата	М.Д. Быстров инициалы, фамилия	
Студенческий билет №	2021/3572	—	инициалы, фамилия	

ЦЕЛЬ РАБОТЫ

Цель настоящей работы — знакомство с математическим аппаратом СППР для моделирования слабоструктурированных задач.

ХОД РАБОТЫ

Нужно произвести выбор секретаря референта из подавших резюме. Отбор претендентов происходит по трем критериям:

- С1. Филологическое образование и знание предметной области.
- С2. Знание английского языка.
- С3. Знание компьютера.

Собеседование прошли три претендента: П1, П2, П3.

После собеседования получились следующие описания претендентов.

П1: отличное знание английского языка; нет навыков работы на компьютере, посредственное знание предметной области.

П2: незнание английского языка, нет навыков работы на компьютере, предметную область знает посредственно.

П3: очень хорошее знание предметной области и филологическое образование, хорошие навыки работы на компьютере, посредственное знание английского языка.

- 1) На основе метода АНР выбрать претендента, в зависимости от разных наборов «весов» критериев:
 - a) C1=0,4; C2=0,2; C3=0,3
 - б) C1=0,3; C2=0,3; C3=0,4
 - в) C1=0,2; C2=0,5; C3=0,3
- 2) На основе метода АНР+ выбрать претендента, в зависимости от разных наборов «весов» критериев, в зависимости от нового добавленного в группу претендента П4={знает делопроизводство, навыки работы на компьютере, слабое знание английского языка}.

Разработать программу, моделирующую принятие решение о выборе претендента в зависимости от «стоимости» критериев по двум методам.

- 1. На первом этапе реализованы алгоритмы МАИ и ММАИ в программной среде Matlab. Исходные коды реализаций представлены в Приложении 1.
- 2. На втором этапе проведено оценивание всех альтернатив (претендентов) для каждого критерия по шкале от 1 то 9 (Таблица 1). Во время выполнения программы расчета МПС (матрицы парных сравнений) составляются на основе выставленных оценок.

Таблица 1 Оценки альтернатив

	Критерий 1	Критерий 2	Критерий 3
Претендент 1	3	9	1
Претендент 2	3	1	1
Претендент 3	9	5	7
Претендент 4	5	3	7

3. Полученные значения использованы для задания входных данных алгоритмам МАИ и ММАИ. В результате комбинирования различных вариантов «весов» и расширения перечня альтернатив количество вариантов входных данных составило 9: 3 - для выбора претендента алгоритмом МАИ, 6 – для выбора алгоритмом ММАИ.

Для любой МПС весовой коэффициент рассчитывается следующим образом:

Находится сумма элементов каждого столбца.

$$S_j = a_{1j} + a_{2j} + \dots + a_{nj}$$

Все элементы матрицы делятся на сумму элементов соответствующего столбца:

$$A_{ij} = \frac{a_{ij}}{S_j}$$

Находим среднее значение для каждой строки, получившиеся значения образуют итоговый вектор коэффициентов:

A_{ij}	цена	размер	комнаты	близость	категория	СРЗНАЧ
цена	0,221	0,197	0,293	0,181	0,227	0,224
размер	0,073	0,066	0,073	0,052	0,091	0,071
комнаты	0,221	0,263	0,293	0,361	0,273	0,282
близость	0,441	0,461	0,293	0,361	0,364	0,384
категория	0,044	0,013	0,049	0,045	0,045	0,039

Найденный вектор коэффициентов может быть использован для проверки МПС на согласованность по формуле:

$$A \cdot W = n \cdot W$$

где $A-M\Pi C$, W- вектор коэффициентов, n- собственное число матрицы.

Для алгоритма МАИ расчет итогового вектора ВКА происходит по следующему алгоритму:

1. Каждый из элементов ВКА по критерию умножается на весовой коэффициент соответствующего критерия:

$$w'_{Aj}^{ci} = w_{Aj}^{ci} * w_{ci}, i = 1, n; j = 1, k$$

где n – кол-во критериев, k – кол-во альтернатив

2. Из получившихся векторов формируется итоговый ненормализованный вектор:

$$w^j = \sum_{i=1}^n w'^{ci}_{Aj}$$

3. Получившийся вектор w подвергается нормировке (каждый элемент делится на сумму всех элементов).

Для алгоритма ММАИ элемент итоговой МПС W рассчитывается по формуле:

$$w_{Ajk} = \sum_{i=1}^{n} b_{Aj}^{ci} * w'_{ci}^{\text{Kрит}}$$

 Γ де i – номер критерия, j – номер альтернативы, k – номер элемента в векторе (1,2), w – вектор коэффициентов критериев, w – итоговая МПС W.

Для алгоритма ММАИ расчет итогового вектора ВКА происходит по

 $V_i^{(1)} = \sum\limits_{j=1}^g w_{ij}$ формуле $V_i^{(1)} = \sum\limits_{j=1}^g w_{ij}$, где w(i,j) — элементы итоговой матрицы парных сравнений W.

- 1.МАИ С1=0,4; С2=0,2; С3=0,3 П1, П2, П3
- 2. МАИ C1=0,3; C2=0,3; C3=0,4 Π 1, Π 2, Π 3
- 3. МАИ С1=0,2; С2=0,5; С3=0,3 П1, П2, П3
- 4. ММАИ C1=0,4; C2=0,2; C3=0,3 Π 1, Π 2, Π 3
- 5. ММАИ C1=0,3; C2=0,3; C3=0,4 Π 1, Π 2, Π 3
- 6. ММАИ С1=0,2; С2=0,5; С3=0,3 П1, П2, П3

- 7. ММАИ С1=0,4; С2=0,2; С3=0,3 П1, П2, П3, П4
- 8. ММАИ С1=0,3; С2=0,3; С3=0,4 П1, П2, П3, П4
- 9. ММАИ С1=0,2; С2=0,5; С3=0,3 П1, П2, П3, П4

Решение 1.

```
алгоритм {'МАИ'}

веса критериев 0.4000 0.2000 0.3000

МПС критериев: 1.0000 2.0000 1.3333 0.5000 1.0000 0.6667 0.7500 1.5000 1.0000
```

Весовой коэффициент критериев:

0.4444 0.2222 0.3333

Проверка МПС критериев на согласованность

МПС:

 1.0000
 2.0000
 1.3333

 0.5000
 1.0000
 0.6667

 0.7500
 1.5000
 1.0000

ВК:

0.4444

0.2222

0.3333

Максимальное собственное значение (n):

3.0000

A * W =

1.3333

0.6667

1.0000

n * W =

1.3333

0.6667

1.0000

МПС согласована

Проверка МПС критерия 1 на согласованность:

МПС:

1.0000 1.0000 0.3333 1.0000 1.0000 0.3333 3.0000 3.0000 1.0000

ВК:

```
0.2000
  0.6000
Максимальное собственное значение (n):
  3.0000
A * W =
  0.6000
  0.6000
  1.8000
n * W =
  0.6000
  0.6000
  1.8000
МПС согласована
Проверка МПС критерия 2 на согласованность:
МПС:
  1.0000 9.0000 1.8000
  0.1111 \quad 1.0000 \quad 0.2000
  0.5556 \quad 5.0000 \quad 1.0000
ВК:
  0.6000
 0.0667
  0.3333
Максимальное собственное значение (n):
  3.0000
A * W =
  1.8000
  0.2000
  1.0000
n * W =
  1.8000
  0.2000
  1.0000
МПС согласована
Проверка МПС критерия 3 на согласованность:
МПС:
  1.0000 1.0000 0.1429
  1.0000 1.0000 0.1429
  7.0000 7.0000 1.0000
ВК:
  0.1111
  0.1111
  0.7778
Максимальное собственное значение (n):
  3
A * W =
```

0.2000

0.3333 0.3333

```
2.3333
n * W =
  0.3333
  0.3333
  2.3333
МПС согласована
наилучшая альтернатива:
  3
результат:
  0.6000
оценки всех альтернатив:
  0.2593 0.1407 0.6000
                                     Решение 2.
алгоритм
  {'МАИ'}
веса критериев
  0.3000 0.3000 0.4000
МПС критериев:
  1.0000 1.0000 0.7500
  1.0000 1.0000 0.7500
  1.3333 1.3333 1.0000
Весовой коэффициент критериев:
  0.3000 0.3000 0.4000
Проверка МПС критериев на согласованность
МПС:
  1.0000 1.0000 0.7500
  1.0000 1.0000 0.7500
  1.3333 1.3333 1.0000
ВК:
  0.3000
  0.3000
  0.4000
Максимальное собственное значение (n):
  3
A * W =
  0.9000
  0.9000
  1.2000
n * W =
  0.9000
  0.9000
  1.2000
МПС согласована
Проверка МПС критерия 1 на согласованность:
МПС:
  1.0000 1.0000 0.3333
  1.0000 1.0000 0.3333
```

```
3.0000 3.0000 1.0000
ВК:
  0.2000
 0.2000
  0.6000
Максимальное собственное значение (n):
  3.0000
A * W =
  0.6000
  0.6000
  1.8000
n * W =
  0.6000
  0.6000
  1.8000
МПС согласована
Проверка МПС критерия 2 на согласованность:
МПС:
  1.0000 9.0000 1.8000
  0.1111 \quad 1.0000 \quad 0.2000
  0.5556 5.0000 1.0000
ВК:
  0.6000
  0.0667
  0.3333
Максимальное собственное значение (n):
  3.0000
A * W =
  1.8000
  0.2000
  1.0000
n * W =
  1.8000
  0.2000
  1.0000
МПС согласована
Проверка МПС критерия 3 на согласованность:
МПС:
  1.0000 1.0000 0.1429
  1.0000 1.0000 0.1429
  7.0000 7.0000 1.0000
ВК:
  0.1111
```

Максимальное собственное значение (n):

3

 $0.1111 \\ 0.7778$

```
A * W =
  0.3333
  0.3333
  2.3333
n * W =
  0.3333
  0.3333
  2.3333
МПС согласована
наилучшая альтернатива:
  3
результат:
  0.5911
оценки всех альтернатив:
  0.2844 0.1244 0.5911
                                      Решение 3.
алгоритм
  {'МАИ'}
веса критериев
  0.2000 0.5000 0.3000
МПС критериев:
  1.0000 0.4000 0.6667
  2.5000 1.0000 1.6667
  1.5000 0.6000 1.0000
Весовой коэффициент критериев:
  0.2000 0.5000 0.3000
Проверка МПС критериев на согласованность
МПС:
  1.0000 0.4000 0.6667
  2.5000 1.0000 1.6667
  1.5000 0.6000 1.0000
ВК:
  0.2000
  0.5000
  0.3000
Максимальное собственное значение (n):
  3.0000
A * W =
  0.6000
  1.5000
  0.9000
n * W =
  0.6000
  1.5000
  0.9000
МПС согласована
```

Проверка МПС критерия 1 на согласованность:

```
МПС:
  1.0000 1.0000 0.3333
  1.0000 1.0000 0.3333
  3.0000 3.0000 1.0000
ВК:
  0.2000
  0.2000
  0.6000
Максимальное собственное значение (n):
  3.0000
A * W =
  0.6000
  0.6000
  1.8000
n * W =
  0.6000
  0.6000
  1.8000
МПС согласована
Проверка МПС критерия 2 на согласованность:
МПС:
  1.0000 9.0000 1.8000
  0.1111 \quad 1.0000 \quad 0.2000
  0.5556 \quad 5.0000 \quad 1.0000
ВК:
  0.6000
  0.0667
 0.3333
Максимальное собственное значение (n):
  3.0000
A * W =
  1.8000
  0.2000
  1.0000
n * W =
  1.8000
  0.2000
  1.0000
МПС согласована
Проверка МПС критерия 3 на согласованность:
МПС:
  1.0000 1.0000 0.1429
```

1.0000 1.0000 0.1429 7.0000 7.0000 1.0000

ВК:

0.1111 0.1111

```
Максимальное собственное значение (n):
  3
A * W =
  0.3333
  0.3333
  2.3333
n * W =
  0.3333
  0.3333
  2.3333
МПС согласована
наилучшая альтернатива:
  3
результат:
  0.5200
оценки всех альтернатив:
  0.3733 0.1067 0.5200
                                        Решение 4.
алгоритм
  {'ММАИ'}
веса критериев
  0.4000 0.2000 0.3000
МПС критериев:
  1.0000 2.0000 1.3333
  0.5000 \quad 1.0000 \quad 0.6667
  0.7500 \quad 1.5000 \quad 1.0000
Весовой коэффициент критериев:
  0.4444 0.2222 0.3333
Проверка МПС критериев на согласованность
МПС:
  1.0000 2.0000 1.3333
  0.5000 1.0000 0.6667
  0.7500 \quad 1.5000 \quad 1.0000
ВК:
  0.4444
  0.2222
  0.3333
Максимальное собственное значение (n):
  3.0000
A * W =
  1.3333
  0.6667
  1.0000
n * W =
  1.3333
  0.6667
  1.0000
```

```
МПС согласована
```

Проверка МПС критерия 1 на согласованность:

МПС:

1.0000 1.0000 0.3333 1.0000 1.0000 0.3333 3.0000 3.0000 1.0000

ВК:

0.2000 0.2000 0.6000

Максимальное собственное значение (n):

3.0000

A * W =

0.6000

0.6000

1.8000

n * W =

0.6000

0.6000

1.8000

МПС согласована

Проверка МПС критерия 2 на согласованность:

МПС:

 1.0000
 9.0000
 1.8000

 0.1111
 1.0000
 0.2000

 0.5556
 5.0000
 1.0000

ВК:

0.6000 0.0667 0.3333

Максимальное собственное значение (n):

3.0000

A * W =

1.8000

0.2000

1.0000

n * W =

1.8000

0.2000

1.0000

МПС согласована

Проверка МПС критерия 3 на согласованность:

МПС:

1.0000 1.0000 0.1429 1.0000 1.0000 0.1429 7.0000 7.0000 1.0000

ВК:

0.1111

0.1111 0.7778

```
Максимальное собственное значение (n):
A * W =
  0.3333
  0.3333
  2.3333
n * W =
  0.3333
  0.3333
  2.3333
МПС согласована
АНР+: b-матрица для критерия 1:
{0.500,0.500}
                  {0.500,0.500}
                                   {0.250,0.750}
{0.500,0.500}
                  {0.500,0.500}
                                   {0.250,0.750}
{0.750,0.250}
                  {0.750,0.250}
                                   \{0.500, 0.500\}
АНР+: b-матрица для критерия 2:
                  \{0.900, 0.100\}
{0.500,0.500}
                                   {0.643,0.357}
{0.100,0.900}
                  {0.500,0.500}
                                   {0.167,0.833}
                  {0.833,0.167}
{0.357,0.643}
                                   {0.500,0.500}
АНР+: b-матрица для критерия 3:
\{0.500, 0.500\}
                  \{0.500, 0.500\}
                                   \{0.125, 0.875\}
{0.500,0.500}
                  {0.500,0.500}
                                   {0.125,0.875}
{0.875,0.125}
                  {0.875,0.125}
                                   {0.500,0.500}
АНР+: итоговая W-матрица:
                  {0.589,0.411}
                                   {0.296,0.704}
\{0.500, 0.500\}
                  \{0.500, 0.500\}
{0.411,0.589}
                                   {0.190,0.810}
{0.704,0.296}
                  {0.810,0.190}
                                   {0.500,0.500}
наилучшая альтернатива:
   3
результат:
  0.4477
оценки всех альтернатив:
  0.3077 0.2447 0.4477
                                           Решение 5.
алгоритм
  {'ММАИ'}
веса критериев
  0.3000 \quad 0.3000 \quad 0.4000
МПС критериев:
  1.0000 1.0000
                   0.7500
  1.0000
           1.0000
                   0.7500
  1.3333 1.3333
                   1.0000
```

Проверка МПС критериев на согласованность

Весовой коэффициент критериев: 0.3000 0.3000 0.4000

```
МПС:
  1.0000 1.0000 0.7500
  1.0000 1.0000 0.7500
  1.3333 1.3333 1.0000
ВК:
  0.3000
  0.3000
  0.4000
Максимальное собственное значение (n):
A * W =
  0.9000
  0.9000
  1.2000
n * W =
  0.9000
  0.9000
  1.2000
МПС согласована
Проверка МПС критерия 1 на согласованность:
МПС:
  1.0000 1.0000 0.3333
  1.0000 1.0000 0.3333
  3.0000 3.0000 1.0000
ВК:
  0.2000
  0.2000
 0.6000
Максимальное собственное значение (n):
  3.0000
A * W =
  0.6000
  0.6000
  1.8000
n * W =
  0.6000
  0.6000
  1.8000
МПС согласована
Проверка МПС критерия 2 на согласованность:
МПС:
  1.0000 9.0000 1.8000
  0.1111 \quad 1.0000 \quad 0.2000
  0.5556 5.0000 1.0000
ВК:
 0.6000
```

0.0667 0.3333

```
Максимальное собственное значение (n):
  3.0000
A * W =
  1.8000
  0.2000
  1.0000
n * W =
  1.8000
  0.2000
  1.0000
МПС согласована
Проверка МПС критерия 3 на согласованность:
МПС:
  1.0000
          1.0000 0.1429
  1.0000
          1.0000 0.1429
  7.0000 7.0000 1.0000
ВК:
  0.1111
  0.1111
  0.7778
Максимальное собственное значение (n):
A * W =
  0.3333
  0.3333
  2.3333
n * W =
  0.3333
  0.3333
  2.3333
МПС согласована
АНР+: b-матрица для критерия 1:
{0.500,0.500}
                  \{0.500, 0.500\}
                                   {0.250,0.750}
{0.500,0.500}
                  {0.500,0.500}
                                   {0.250,0.750}
{0.750,0.250}
                  {0.750,0.250}
                                   \{0.500, 0.500\}
АНР+: b-матрица для критерия 2:
{0.500,0.500}
                  {0.900,0.100}
                                   {0.643,0.357}
{0.100,0.900}
                  {0.500,0.500}
                                   {0.167,0.833}
{0.357,0.643}
                  {0.833,0.167}
                                   \{0.500, 0.500\}
АНР+: b-матрица для критерия 3:
\{0.500, 0.500\}
                  \{0.500, 0.500\}
                                   {0.125,0.875}
{0.500,0.500}
                  {0.500,0.500}
                                   {0.125,0.875}
\{0.875, 0.125\}
                  \{0.875, 0.125\}
                                   \{0.500, 0.500\}
АНР+: итоговая W-матрица:
{0.500,0.500}
                  {0.620,0.380}
                                   {0.318,0.682}
{0.380,0.620}
                  {0.500,0.500}
                                   {0.175,0.825}
{0.682,0.318}
                  {0.825,0.175}
                                   \{0.500, 0.500\}
```

наилучшая альтернатива:

3

```
0.4460
оценки всех альтернатив:
  0.3195 0.2344 0.4460
                                     Решение 6.
алгоритм
  {'ММАИ'}
веса критериев
  0.2000 0.5000 0.3000
МПС критериев:
  1.0000 0.4000 0.6667
  2.5000 1.0000 1.6667
  1.5000 0.6000 1.0000
Весовой коэффициент критериев:
  0.2000 0.5000 0.3000
Проверка МПС критериев на согласованность
МПС:
  1.0000 0.4000 0.6667
  2.5000 1.0000 1.6667
  1.5000 0.6000 1.0000
ВК:
  0.2000
  0.5000
  0.3000
Максимальное собственное значение (n):
  3.0000
A * W =
  0.6000
  1.5000
  0.9000
n * W =
  0.6000
  1.5000
  0.9000
МПС согласована
Проверка МПС критерия 1 на согласованность:
МПС:
  1.0000 1.0000 0.3333
  1.0000 1.0000 0.3333
  3.0000 3.0000 1.0000
ВК:
  0.2000
  0.2000
  0.6000
Максимальное собственное значение (n):
```

результат:

3.0000

```
A * W =
  0.6000
  0.6000
  1.8000
n * W =
  0.6000
  0.6000
  1.8000
МПС согласована
Проверка МПС критерия 2 на согласованность:
МПС:
  1.0000 9.0000 1.8000
  0.1111 \quad 1.0000 \quad 0.2000
  0.5556 5.0000 1.0000
ВК:
  0.6000
  0.0667
  0.3333
Максимальное собственное значение (n):
  3.0000
A * W =
  1.8000
  0.2000
  1.0000
n * W =
  1.8000
  0.2000
  1.0000
МПС согласована
Проверка МПС критерия 3 на согласованность:
МПС:
  1.0000 1.0000 0.1429
  1.0000 1.0000 0.1429
  7.0000 7.0000 1.0000
ВК:
  0.1111
  0.1111
  0.7778
Максимальное собственное значение (n):
A * W =
  0.3333
  0.3333
  2.3333
n * W =
  0.3333
  0.3333
  2.3333
```

```
МПС согласована
АНР+: b-матрица для критерия 1:
{0.500,0.500}
                  {0.500,0.500}
                                  {0.250,0.750}
{0.500,0.500}
                  {0.500,0.500}
                                  {0.250,0.750}
{0.750,0.250}
                  {0.750,0.250}
                                  {0.500,0.500}
АНР+: b-матрица для критерия 2:
{0.500,0.500}
                  {0.900,0.100}
                                  {0.643,0.357}
{0.100,0.900}
                  {0.500,0.500}
                                  {0.167,0.833}
{0.357,0.643}
                                  {0.500,0.500}
                  {0.833,0.167}
АНР+: b-матрица для критерия 3:
{0.500,0.500}
                  {0.500,0.500}
                                  {0.125,0.875}
\{0.500, 0.500\}
                  \{0.500, 0.500\}
                                  {0.125,0.875}
                  {0.875,0.125}
{0.875,0.125}
                                  {0.500,0.500}
АНР+: итоговая W-матрица:
{0.500,0.500}
                  \{0.700, 0.300\}
                                  {0.409,0.591}
{0.300,0.700}
                  {0.500,0.500}
                                  {0.171,0.829}
{0.591,0.409}
                  {0.829,0.171}
                                  {0.500,0.500}
наилучшая альтернатива:
  3
результат:
  0.4267
оценки всех альтернатив:
  0.3575 0.2157 0.4267
                                         Решение 7.
алгоритм
  \{'ММАИ'\}
веса критериев
  0.4000 \quad 0.2000 \quad 0.3000
МПС критериев:
  1.0000 2.0000 1.3333
  0.5000 1.0000 0.6667
  0.7500 1.5000 1.0000
Весовой коэффициент критериев:
  0.4444 0.2222 0.3333
Проверка МПС критериев на согласованность
МПС:
  1.0000
         2.0000 1.3333
  0.5000
         1.0000
                   0.6667
  0.7500 1.5000
                  1.0000
ВК:
  0.4444
  0.2222
  0.3333
Максимальное собственное значение (n):
  3.0000
A * W =
  1.3333
```

0.6667

```
1.0000
n * W =
  1.3333
  0.6667
  1.0000
МПС согласована
Проверка МПС критерия 1 на согласованность:
МПС:
  1.0000 1.0000 0.3333
                          0.6000
  1.0000 1.0000 0.3333
                          0.6000
  3.0000 3.0000 1.0000 1.8000
  1.6667 1.6667 0.5556 1.0000
ВК:
  0.1500
  0.1500
  0.4500
  0.2500
Максимальное собственное значение (n):
  4.0000
A * W =
  0.6000
  0.6000
  1.8000
  1.0000
n * W =
  0.6000
  0.6000
  1.8000
  1.0000
МПС согласована
Проверка МПС критерия 2 на согласованность:
МПС:
  1.0000 9.0000 1.8000 3.0000
  0.1111 \quad 1.0000 \quad 0.2000 \quad 0.3333
  0.5556 5.0000 1.0000 1.6667
  0.3333 \quad 3.0000 \quad 0.6000 \quad 1.0000
ВК:
  0.5000
  0.0556
  0.2778
  0.1667
Максимальное собственное значение (n):
  4
A * W =
  2.0000
  0.2222
  1.1111
  0.6667
n * W =
```

```
2.0000
0.2222
1.1111
0.6667
```

МПС согласована

Проверка МПС критерия 3 на согласованность:

МПС:

 1.0000
 1.0000
 0.1429
 0.1429

 1.0000
 1.0000
 0.1429
 0.1429

 7.0000
 7.0000
 1.0000
 1.0000

 7.0000
 7.0000
 1.0000
 1.0000

ВК:

0.0625 0.0625 0.4375 0.4375

Максимальное собственное значение (n):

4.0000

A * W =

 $0.2500 \\ 0.2500$

1.7500

1.7500

n * W =

0.2500

0.2500

1.7500

1.7500

МПС согласована

АНР+: b-матриц	ца для критерия I:		
$\{0.500, 0.500\}$	{0.500,0.500}	$\{0.250, 0.750\}$	{0.375,0.625}
$\{0.500, 0.500\}$	$\{0.500, 0.500\}$	$\{0.250, 0.750\}$	{0.375,0.625}
$\{0.750, 0.250\}$	$\{0.750, 0.250\}$	$\{0.500, 0.500\}$	{0.643,0.357}
{0.625,0.375}	{0.625,0.375}	{0.357,0.643}	{0.500,0.500}

АНР+: b-матрица для критерия 2:

{0.500,0.500}	{0.900,0.100}	{0.643,0.357}	{0.750,0.250}
{0.100,0.900}	$\{0.500, 0.500\}$	{0.167,0.833}	{0.250,0.750}
{0.357,0.643}	{0.833,0.167}	$\{0.500, 0.500\}$	{0.625,0.375}
{0.250,0.750}	{0.750,0.250}	{0.375,0.625}	{0.500,0.500}

АНР+: b-матрица для критерия 3:

$\{0.500, 0.500\}$	$\{0.500, 0.500\}$	{0.125,0.875}	{0.125,0.875}
{0.500,0.500}	$\{0.500, 0.500\}$	{0.125,0.875}	{0.125,0.875}
{0.875,0.125}	{0.875,0.125}	{0.500,0.500}	{0.500,0.500}
{0.875,0.125}	{0.875,0.125}	$\{0.500, 0.500\}$	{0.500,0.500}

АНР+: итоговая W-матрица:

	1 '		
$\{0.500, 0.500\}$	{0.589,0.411}	{0.296,0.704}	{0.375,0.625}
{0.411,0.589}	$\{0.500, 0.500\}$	{0.190,0.810}	{0.264,0.736}
{0.704,0.296}	{0.810,0.190}	{0.500,0.500}	{0.591,0.409}
{0.625,0.375}	{0.736,0.264}	{0.409,0.591}	{0.500,0.500}

наилучшая альтернатива:

3

```
0.3257
оценки всех альтернатив:
  0.2199 0.1706 0.3257 0.2837
                                      Решение 8.
алгоритм
  {'ММАИ'}
веса критериев
  0.3000 \quad 0.3000 \quad 0.4000
МПС критериев:
  1.0000 1.0000 0.7500
  1.0000 1.0000 0.7500
  1.3333 1.3333 1.0000
Весовой коэффициент критериев:
  0.3000 0.3000 0.4000
Проверка МПС критериев на согласованность
МПС:
  1.0000 1.0000 0.7500
  1.0000 1.0000 0.7500
  1.3333 1.3333 1.0000
ВК:
  0.3000
  0.3000
  0.4000
Максимальное собственное значение (n):
  3
A * W =
  0.9000
  0.9000
  1.2000
n * W =
  0.9000
  0.9000
  1.2000
МПС согласована
Проверка МПС критерия 1 на согласованность:
МПС:
  1.0000 1.0000 0.3333
                         0.6000
  1.0000 1.0000 0.3333
                         0.6000
  3.0000 3.0000 1.0000 1.8000
  1.6667 1.6667 0.5556 1.0000
ВК:
  0.1500
  0.1500
  0.4500
  0.2500
```

результат:

Максимальное собственное значение (n):

```
4.0000
A * W =
  0.6000
  0.6000
  1.8000
  1.0000
n * W =
  0.6000
  0.6000
  1.8000
  1.0000
МПС согласована
Проверка МПС критерия 2 на согласованность:
МПС:
  1.0000 9.0000 1.8000 3.0000
  0.1111 1.0000 0.2000 0.3333
  0.5556 5.0000 1.0000 1.6667
  0.3333 3.0000 0.6000 1.0000
ВК:
  0.5000
  0.0556
  0.2778
Максимальное собственное значение (n):
A * W =
  2.0000
  0.2222
  1.1111
  0.6667
n * W =
  2.0000
  0.2222
  1.1111
  0.6667
МПС согласована
Проверка МПС критерия 3 на согласованность:
МПС:
  1.0000
         1.0000 0.1429 0.1429
  1.0000
         1.0000 0.1429 0.1429
  7.0000 7.0000 1.0000 1.0000
  7.0000 \quad 7.0000 \quad 1.0000 \quad 1.0000
BK:
  0.0625
  0.0625
```

Максимальное собственное значение (n): 4.0000

0.43750.4375

```
A * W =
  0.2500
  0.2500
  1.7500
  1.7500
n * W =
  0.2500
  0.2500
  1.7500
  1.7500
МПС согласована
АНР+: b-матрица для критерия 1:
{0.500,0.500}
                   {0.500,0.500}
                                   {0.250,0.750}
                                                    {0.375,0.625}
{0.500,0.500}
                   {0.500,0.500}
                                    {0.250,0.750}
                                                    {0.375,0.625}
{0.750,0.250}
                   {0.750,0.250}
                                    {0.500,0.500}
                                                    {0.643,0.357}
{0.625,0.375}
                   {0.625,0.375}
                                    {0.357,0.643}
                                                    {0.500,0.500}
АНР+: b-матрица для критерия 2:
                   {0.900,0.100}
                                   {0.643,0.357}
                                                    {0.750,0.250}
{0.500,0.500}
{0.100,0.900}
                   {0.500,0.500}
                                   {0.167,0.833}
                                                    {0.250,0.750}
{0.357,0.643}
                   {0.833,0.167}
                                    {0.500,0.500}
                                                    {0.625,0.375}
{0.250,0.750}
                   {0.750,0.250}
                                                    {0.500,0.500}
                                   {0.375,0.625}
АНР+: b-матрица для критерия 3:
{0.500,0.500}
                   {0.500,0.500}
                                   {0.125,0.875}
                                                    {0.125,0.875}
{0.500,0.500}
                   {0.500,0.500}
                                   {0.125,0.875}
                                                    {0.125,0.875}
                   {0.875,0.125}
                                                    \{0.500, 0.500\}
{0.875,0.125}
                                   {0.500,0.500}
{0.875,0.125}
                  {0.875,0.125}
                                   \{0.500, 0.500\}
                                                    {0.500,0.500}
АНР+: итоговая W-матрица:
{0.500,0.500}
                   {0.620,0.380}
                                   {0.318,0.682}
                                                    {0.388,0.613}
                   \{0.500, 0.500\}
{0.380,0.620}
                                   {0.175,0.825}
                                                    {0.237,0.762}
{0.682,0.318}
                   {0.825,0.175}
                                   \{0.500, 0.500\}
                                                    {0.580,0.420}
{0.613,0.388}
                   {0.762,0.237}
                                   {0.420,0.580}
                                                    {0.500,0.500}
наилучшая альтернатива:
   3
результат:
  0.3234
оценки всех альтернатив:
  0.2282 0.1616 0.3234 0.2868
                                           Решение 9.
алгоритм
  {'ММАИ'}
веса критериев
  0.2000 \quad 0.5000 \quad 0.3000
МПС критериев:
  1.0000 0.4000
                    0.6667
  2.5000
           1.0000
                    1.6667
  1.5000
          0.6000
                    1.0000
```

Проверка МПС критериев на согласованность

Весовой коэффициент критериев: 0.2000 0.5000 0.3000

```
МПС:
  1.0000 0.4000 0.6667
  2.5000 1.0000 1.6667
  1.5000 0.6000 1.0000
ВК:
  0.2000
  0.5000
  0.3000
Максимальное собственное значение (n):
  3.0000
A * W =
  0.6000
  1.5000
  0.9000
n * W =
  0.6000
  1.5000
  0.9000
МПС согласована
Проверка МПС критерия 1 на согласованность:
МПС:
  1.0000 1.0000 0.3333 0.6000
  1.0000 1.0000 0.3333
                         0.6000
  3.0000 3.0000 1.0000
                         1.8000
  1.6667 1.6667 0.5556 1.0000
ВК:
  0.1500
  0.1500
  0.4500
 0.2500
Максимальное собственное значение (n):
  4.0000
A * W =
  0.6000
  0.6000
  1.8000
  1.0000
n * W =
  0.6000
  0.6000
  1.8000
  1.0000
МПС согласована
Проверка МПС критерия 2 на согласованность:
МПС:
  1.0000 9.0000 1.8000 3.0000
  0.1111
         1.0000 0.2000
                         0.3333
```

0.5556 5.0000 1.0000

 $0.3333 \quad 3.0000 \quad 0.6000 \quad 1.0000$

1.6667

```
ВК:
  0.5000
  0.0556
  0.2778
  0.1667
Максимальное собственное значение (n):
A * W =
  2.0000
  0.2222
  1.1111
  0.6667
n * W =
  2.0000
  0.2222
  1.1111
  0.6667
МПС согласована
Проверка МПС критерия 3 на согласованность:
МПС:
  1.0000
         1.0000 0.1429 0.1429
  1.0000
         1.0000 0.1429 0.1429
  7.0000 7.0000 1.0000 1.0000
  7.0000 7.0000 1.0000 1.0000
ВК:
  0.0625
  0.0625
  0.437
  0.4375
Максимальное собственное значение (n):
  4.0000
A * W =
  0.2500
  0.2500
  1.7500
  1.7500
n * W =
  0.2500
  0.2500
  1.7500
  1.7500
МПС согласована
АНР+: b-матрица для критерия 1:
\{0.500, 0.500\}
                  \{0.500, 0.500\}
                                  \{0.250, 0.750\}
                                                  \{0.375, 0.625\}
{0.500,0.500}
                  {0.500,0.500}
                                  {0.250,0.750}
                                                  {0.375,0.625}
{0.750,0.250}
                  {0.750,0.250}
                                  {0.500,0.500}
                                                  {0.643,0.357}
{0.625,0.375}
                  {0.625,0.375}
                                  {0.357,0.643}
                                                  {0.500,0.500}
АНР+: b-матрица для критерия 2:
{0.500,0.500}
                 {0.900,0.100}
                                  {0.643,0.357}
                                                  {0.750,0.250}
```

{0.500,0.500}

{0.833,0.167}

{0.100,0.900}

{0.357,0.643}

{0.250,0.750}

{0.625,0.375}

{0.167,0.833}

{0.500,0.500}

```
{0.250,0.750}
                    {0.750,0.250}
                                      {0.375,0.625}
                                                        {0.500,0.500}
АНР+: b-матрица для критерия 3:
\{0.500, 0.500\}
                    \{0.500, 0.500\}
                                      {0.125,0.875}
                                                        {0.125,0.875}
{0.500,0.500}
                    {0.500,0.500}
                                      {0.125,0.875}
                                                        {0.125,0.875}
{0.875,0.125}
                    {0.875,0.125}
                                      {0.500,0.500}
                                                        {0.500,0.500}
\{0.875, 0.125\}
                    {0.875,0.125}
                                      {0.500,0.500}
                                                        {0.500,0.500}
АНР+: итоговая W-матрица:
\{0.500, 0.500\}
                    \{0.700, 0.300\}
                                      \{0.409, 0.591\}
                                                        \{0.487, 0.512\}
\{0.300, 0.700\}
                    \{0.500, 0.500\}
                                      \{0.171, 0.829\}
                                                        \{0.237, 0.762\}
\{0.591, 0.409\}
                    \{0.829, 0.171\}
                                      \{0.500, 0.500\}
                                                        \{0.591, 0.409\}
\{0.512, 0.487\}
                    \{0.762, 0.237\}
                                      \{0.409, 0.591\}
                                                        \{0.500, 0.500\}
наилучшая альтернатива:
   3
результат:
  0.3139
оценки всех альтернатив:
```

>>

0.2621 0.1510 0.3139 0.2730

выводы

В ходе выполнения первой лабораторной работы №1 была написана программа, позволяющая решать слабоструктурированные задачи выбора с помощью метода анализа иерархий (МАИ), а также с помощью его модифицированной версии (ММАИ). Программа написана в среде МАТLAB (R2023b).

Решен вариант слабоструктурированной задачи с использованием разных методов, «весов» критериев, набора альтернатив. В итоговых оценках альтернатив видна разница при использовании одинаковых входных данных для разных вариантов алгоритмов. При выполнении работы оба варианта алгоритма всегда выбирали одну и ту же альтернативу, однако разница в оценивании видна при рассмотрении наборов итоговых оценок альтернатив.

```
1. ./ahp.m
% "веса" критериев
criteriasWeights = [
    0.4, 0.2, 0.3;
0.3, 0.3, 0.4;
0.2, 0.5, 0.3];
% оценки по 3-м критериям каждой альтернативы
alternativeCriteriaRates = [
    3,9,1;
    3,1,1;
9,5,7;
5,3,7];
% МПС альтернатив по критериям
criteriaMps = containers.Map('KeyType','int32','ValueType','any');
mpsMatrix = buildPairComparisonMatrix(alternativeCriteriaRates);
for criteria = 1:size(mpsMatrix, 1)
    criteriaMps(criteria) = permute(mpsMatrix(criteria, :, :),
[2,3,1]);
end
% расчет решений
disp('Решение 1.'); compare(1, criteriaMps, criteriasWeights(1, :),
3);
disp('Решение 2.'); compare(1, criteriaMps, criteriasWeights(2, :),
3);
disp('Решение 3.'); compare(1, criteriaMps, criteriasWeights(3, :),
3);
disp('Решение 4.'); compare(2, criteriaMps, criteriasWeights(1, :),
3);
disp('Решение 5.'); compare(2, criteriaMps, criteriasWeights(2, :),
3);
disp('Решение 6.'); compare(2, criteriaMps, criteriasWeights(3, :),
3);
disp('Решение 7.'); compare(2, criteriaMps, criteriasWeights(1, :),
4);
disp('Решение 8.'); compare(2, criteriaMps, criteriasWeights(2, :),
4);
disp('Решение 9.'); compare(2, criteriaMps, criteriasWeights(3, :),
4);
function [result] = compare(alg. criteriaAlternateMps, criteriaScores,
alternativeNum)
% выполнить поиск наилучшей альтернативы
\% alg - используемый алгоритм - 1 - МАИ, 2 - ММАИ
% criteriaMps - containers.Map (№ критерия -> МПС[№ альтернативы, №
альтернативы])
% criteriaWeights - веса критериев
% alternateNum - кол-во альтернатив
criteriaNum = size(criteriaScores, 2);
innerCriteriaMps =
buildPairComparisonMatrix(transpose(criteriaScores));
criteriaMps = zeros(criteriaNum, criteriaNum);
for i = 1:criteriaNum
```

```
for i = 1:criteriaNum
        criteriaMps(i, j) = innerCriteriaMps(1, i , j);
    end
end
criteriaWeights = zeros(1, criteriaNum);
bufCriteriaMps = criteriaMps;
for i = 1:criteriaNum
columnSum = sum(bufCriteriaMps(:, i));
    for j = 1:criteriaNum
        val = bufCriteriaMps(j, i);
        val = val / columnSum;
        criteriaweights(1, j) = criteriaweights(1, j) + val;
    end
end
criteriaWeights = criteriaWeights ./ criteriaNum;
pairComparisonMatrix = zeros(criteriaNum, alternativeNum,
alternativeNum);
% заполнение_трехмерной матрицы МПС [критерий - альтернатива -
альтернатива]
% -> оценка
for criteria = 1:criteriaNum
mps = criteriaAlternateMps(criteria);
    mps = mps(1:alternativeNum, 1:alternativeNum);
    pairComparisonMatrix(criteria, :, :) = mps;
end
algs = {'MAN', 'MMAN'};
% вывод результатов
disp('алгоритм');
disp(algs(alg));
disp('веса критериев');
disp(criteriaScores);
disp('МПС критериев:');
disp(criteriaMps);
disp('Весовой коэффициент критериев:');
disp(criteriaWeights);
disp('Проверка МПС критериев на согласованность');
printMpsConsistencyCheck(criteriaMps, criteriaWeights);
% for criteria = 1:criteriaNum
%
      disp(criteria);
%
      disp(permute(pairComparisonMatrix(criteria, :, :), [2,3,1]));
% end
% запуск работы алгоритма
switch (alg)
```

```
case 1
        [solution, score, scores] = ahp(criteriaWeights,
pairComparisonMatrix);
    case 2
        [solution, score, scores] = ahpPlus(criteriaWeights,
pairComparisonMatrix);
    otherwise
        error('wrong algorithm number');
end
disp('наилучшая альтернатива:');
disp(solution);
disp('результат:');
disp(score):
disp('оценки всех альтернатив:');
disp(scores);
result = solution;
end2. ./ahpPlus.m
function [solution, score, alternativeScores] =
ahpPlus(criteriaWeights, pairComparisonMatrix)
% analytic hierarchy process - modified
% criteriaWeights: array of the criterias' weights -> array[criteriaNum] =
% criteria weight
% pairComparisonMatrix: matrix[criteria, alternative, alternative] =
rate
% returns - number of selected alternative, score, result score vector
    % get numbers of criterias and alternatives
    criteriaNum = size(criteriaWeights, 2);
    alternativeNum = size(pairComparisonMatrix, 2);
    % array[criteria] = array[alternativeNum] = counted weight (rows -
w^i)
    criteriaAlternativeScoreMatrix = zeros(criteriaNum,
alternativeNum);
    % normalize weights vector
    criteriaweights = criteriaweights / sum(criteriaweights);
    bufPairComparisonMatrix = pairComparisonMatrix;
    % STAGE 1 - iterate on criterias and calculate alternative rates
    for criteria = 1:criteriaNum
        % matrix normalization
        for alternative = 1:alternativeNum
            s = sum(pairComparisonMatrix(criteria, 1:alternativeNum,
alternative));
            pairComparisonMatrix(criteria, 1:alternativeNum,
alternative) =
                pairComparisonMatrix(criteria, 1:alternativeNum,
alternative) / s;
        end
        %find score by criteria for alternatives
        for alternative = 1:alternativeNum
```

```
alternativeVector = pairComparisonMatrix(criteria,
alternative. :):
            score = mean(alternativeVector);
            criteriaAlternativeScoreMatrix(criteria, alternative) =
score:
        end
        mps = permute(bufPairComparisonMatrix(criteria, :, :), [2, 3,
1]);
        vka = criteriaAlternativeScoreMatrix(criteria,
1:alternativeNum);
        fprintf('Проверка МПС критерия %d на согласованность:\n\n'.
criteria):
       % check mps consistency
        printMpsConsistencyCheck(mps, vka);
    end
   % STAGE 2 - create b-matrixes for criterias
    criteriaBMatrixes =
containers.Map('KeyType','int32','ValueType','any');
    for criteria = 1:criteriaNum
        bMatrix = zeros(alternativeNum, alternativeNum, 2);
        for alternative1 = 1:alternativeNum
            for alternative2 = 1:alternativeNum
                score1 = criteriaAlternativeScoreMatrix(criteria.
alternative1):
                score2 = criteriaAlternativeScoreMatrix(criteria,
alternative2):
                s = score1 + score2;
                normScore1 = score1 / s;
                normScore2 = score2 / s;
                bMatrix(a]ternative1, a]ternative2, 1) = normScore1;
                bMatrix(alternative1, alternative2, 2) = normScore2;
            end
        end
        criteriaBMatrixes(criteria) = bMatrix;
        fprintf('AHP+: b-матрица для критерия %d, измерение 1\n',
criteria);
        disp(bMatrix(:, :, 1));
        fprintf('AHP+: b-матрица для критерия %d, измерение 2\n',
criteria):
       disp(bMatrix(:, :, 2));
end
   % STAGE 3 - create common W-matrix
   wMatrix = zeros(alternativeNum, alternativeNum, 2);
    for alternative1 = 1:alternativeNum
        for alternative2 = 1:alternativeNum
```

```
sum1 = 0:
            sum2 = 0;
            for criteria = 1:criteriaNum
                 bMatrix = criteriaBMatrixes(criteria);
                 alternateScore1 = bMatrix(alternative1, alternative2,
1);
                 alternateScore2 = bMatrix(alternative1. alternative2.
2);
                 criteriaWeight = criteriaWeights(criteria);
                 sum1 = sum1 + criteriaWeight * alternateScore1;
                 sum2 = sum2 + criteriaWeight * alternateScore2;
            end
            wMatrix(alternative1, alternative2, 1) = sum1;
wMatrix(alternative1, alternative2, 2) = sum2;
        end
    end
    disp('AHP+: итоговая W-матрица (измерение 1)');
    disp(wMatrix(:, :, 1));
    disp('AHP+: итоговая W-матрица (измерение 2)');
    disp(wMatrix(:, :, 2));
    % STAGE 4 - count global alternative scores
    alternativeScores = zeros(1, alternativeNum);
    scoreSum = 0;
    for alternative1 = 1:alternativeNum
        s = 0:
        for alternative2 = 1:alternativeNum
            s = s + wMatrix(alternative1, alternative2, 1);
        end
        alternativeScores(alternative1) = s;
        scoreSum = scoreSum + s;
    end
    alternativeScores = alternativeScores / scoreSum;
    [score, solution] = max(alternativeScores);
end
4. ./buildPairComparisonMatrix.m
function [pairComparisonMatrix] =
buildPairComparisonMatrix(alternativeCriteriaRates)
%create pair-comparison matrix from alternative-criteria matrix rates
    criteriaNum = size(alternativeCriteriaRates, 2);
    alternativeNum = size(alternativeCriteriaRates, 1);
    pairComparisonMatrix = zeros(criteriaNum, alternativeNum,
alternativeNum):
```

```
% fill the pair comparison matrix
    for criteria = 1:criteriaNum
        for alternative1 = 1:alternativeNum
             for alternative2 = 1:alternativeNum
                 % get alternatives' rates on current criteria
                 rate1 = alternativeCriteriaRates(alternative1,
criteria):
                 rate2 = alternativeCriteriaRates(alternative2,
criteria):
                 rate = rate1 / rate2;
                 pairComparisonMatrix(criteria, alternative1,
alternative2) = rate:
            end
        end
    end
end
5. ./lab1.m
% "веса" критериев
criteriasWeights = [
    0.4, 0.2, 0.3;
0.3, 0.3, 0.4;
0.2, 0.5, 0.3];
% оценки по 3-м критериям каждой альтернативы
alternativeCriteriaRates = [
    3,9,1;
    3,1,1;
9,5,7;
5,3,7];
% МПС альтернатив по критериям
criteriaMps = containers.Map('KeyType','int32','ValueType','any');
mpsMatrix = buildPairComparisonMatrix(alternativeCriteriaRates);
for criteria = 1:size(mpsMatrix, 1)
    criteriaMps(criteria) = permute(mpsMatrix(criteria, :, :),
[2,3,1]);
end
% расчет решений
disp('Решение 1.'); compare(1, criteriaMps, criteriasWeights(1, :),
3);
disp('Решение 2.'); compare(1, criteriaMps, criteriasWeights(2, :),
3);
disp('Решение 3.'); compare(1, criteriaMps, criteriasWeights(3, :),
3);
disp('Решение 4.'); compare(2, criteriaMps, criteriasWeights(1, :),
3);
disp('Решение 5.'); compare(2, criteriaMps, criteriasWeights(2, :),
3);
disp('Решение 6.'); compare(2, criteriaMps, criteriasWeights(3, :),
3);
disp('Решение 7.'); compare(2, criteriaMps, criteriasWeights(1, :),
4);
disp('Решение 8.'); compare(2, criteriaMps, criteriasWeights(2, :),
4);
disp('Решение 9.'); compare(2, criteriaMps, criteriasWeights(3, :),
4);
```

```
function [result] = compare(alg, criteriaMps, criteriaWeights.
alternativeNum)
% выполнить поиск наилучшей альтернативы
% alg - используемый алгоритм - 1 - маи, 2 - ммаи
% criteriaMps - containers.Мар (№ критерия -> МПС[№ альтернативы, №
альтернативы])
% criteriaWeights - веса критериев
% alternateNum - кол-во альтернатив
criteriaNum = size(criteriaWeights, 2);
pairComparisonMatrix = zeros(criteriaNum, alternativeNum,
alternativeNum):
% заполнение трехмерной матрицы МПС [критерий - альтернатива -
альтернатива]
% -> оценка
for criteria = 1:criteriaNum
mps = criteriaMps(criteria);
    mps = mps(1:alternativeNum, 1:alternativeNum);
    pairComparisonMatrix(criteria, :, :) = mps;
end
algs = {'MAM', 'MMAM'};
% вывод результатов
disp('алгоритм');
disp(algs(alg));
disp('веса критериев');
disp(criteriaWeights);
disp('MПС критериев');
for criteria = 1:criteriaNum
    disp(criteria);
    disp(permute(pairComparisonMatrix(criteria, :, :), [2,3,1]));
end
% запуск работы алгоритма
switch (alg)
    case 1
        [solution, score, scores] = ahp(criteriaWeights.
pairComparisonMatrix);
    case 2
        [solution, score, scores] = ahpPlus(criteriaWeights.
pairComparisonMatrix);
    otherwise
        error('wrong algorithm number');
end
disp('наилучшая альтернатива:');
disp(solution);
disp('результат:');
disp(score);
disp('оценки всех альтернатив:');
disp(scores);
result = solution;
```

```
end
function [result] = printMpsConsistencyCheck(mps, w)
%Ensure that provided pair comparison matrix is valid and print result
% mps - matrix
./printMpsConsistencyCheck.m
% w - normalized
    rows = size(mps, 1);
    cols = size(mps, 2);
    if (rows ~= cols)
         error('mps size is not valid');
    % максимальное собственное значение матрицы
    eigenValue = max(eig(mps));
    % вектор-столбец ВКА
    w = transpose(w);
    disp('MΠC (A):');
    disp(mps);
    disp('BKA (W):');
    disp(w);
    disp('Максимальное собственное значение (n):');
    disp(eigenvalue);
    checkEigenVector1 = mps * w;
    checkEigenVector2 = w * eigenValue;
    % с точностью до 4х - знаков - против арифметики с плавающей
запятой
    checkEigenVector1 = round(checkEigenVector1, 4);
    checkEigenVector2 = round(checkEigenVector2, 4);
    disp('A * W = '):
    disp(checkEigenVector1);
    disp('n * W =');
    disp(checkEigenVector2);
    if (checkEigenVector1 == checkEigenVector2)
        disp('MПС согласована');
         result = 1;
    else
         error('МПС не согласована');
         result = 0;
    end
    end
```