2^{DA} Tarea Algebra 3

Ejercicio 1

Sea VV un espacio con producto interno y sean A, B subconjuntos no vacios de V. Demuestre que:

A. $A^{\perp} = \operatorname{gen}(A)^{\perp}$.

B. $(A + B)^{\perp} = A^{\perp} \cap B^{\perp}$.

C. $A \subseteq B \implies B^{\perp} \subseteq A^{\perp}$.

D. $(A \cup B)^{\perp} = (gen(A) + gen(B))^{\perp}$.

Solución. Veamos cada parte:

A. Veamos la doble contención. Sea $v \in A^{\perp}$ y $w = (\lambda_1 w_1 + \cdots + \lambda_m w_m) \in \text{gen}(A)$ (con $\lambda \in F$), entonces

$$\langle \mathbf{v}, \mathbf{w} \rangle = \langle \mathbf{v}, \lambda \mathbf{w}_1 + \dots + \lambda \mathbf{w}_m \rangle$$

= $\lambda_1 \langle \mathbf{v}, \mathbf{w}_1 \rangle + \dots + \lambda_m \langle \mathbf{v}, \mathbf{w}_m \rangle$
= $\lambda_1 0 + \dots + \lambda_m 0$,

y se sigue que $\nu \in \operatorname{gen}(A)^{\perp}$ y $A^{\perp} \subseteq \operatorname{gen}(A)^{\perp}$.

Tomemos ahora $u \in \text{gen}(A)^{\perp}$, esto es, $\langle u, v \rangle = 0$ para todo $v \in \text{gen}(A)$. Entonces la inclusión $A \subseteq \text{gen}(A)$ implica que $\langle u, w \rangle = 0$ para todo $w \in A$ pues $w \in \text{gen}(A)$. Por lo tanto $w \in A^{\perp}$ y $\text{gen}(A)^{\perp} \subseteq A^{\perp}$.

Las dos inclusiones implican que $A^{\perp} = \text{gen}(A)^{\perp}$.

B. Sea $v \in (A + B)^{\perp}$, entonces para todo $w = (w_1 + w_2) \in A + B$ se tiene

$$\langle \mathbf{v}, \mathbf{w} \rangle = \langle \mathbf{v}, \mathbf{w}_1 + \mathbf{w}_2 \rangle$$

= $\langle \mathbf{v}, \mathbf{w}_1 \rangle + \langle \mathbf{v}, \mathbf{w}_2 \rangle$
= 0

pero como los productos internos son estrictamente positivos la igualdad anterior implica que $\langle v, w_1 \rangle = 0$ y $\langle v, w_2 \rangle = 0$ para todo $w_1 \in A$ y $w_2 \in B$, por lo que $v \in A^{\perp}$ y $v \in B^{\perp}$, es decir, $v \in A^{\perp} \cap B^{\perp}$ y $(A + B)^{\perp} \subseteq A^{\perp} \cap B^{\perp}$.

Veamos ahora la otra inclusión. Sea $v \in A^{\perp} \cap B^{\perp}$ y $w = (w_1 + w_2) \in A + B$ entonces

$$\langle \mathbf{v}, \mathbf{w} \rangle = \langle \mathbf{v}, \mathbf{w}_1 + \mathbf{w}_2 \rangle$$

= $\langle \mathbf{v}, \mathbf{w}_1 \rangle + \langle \mathbf{v}, \mathbf{w}_2 \rangle$

y $\langle v, w_1 \rangle = 0$ puesto que $w_1 \in A$, de igual forma $\langle v, w_2 \rangle = 0$ pues $w_2 \in B$. De la discusión anterior se tiene que $v \in (A + B)^{\perp}$ y $A^{\perp} \cap B^{\perp} \subseteq (A + B)^{\perp}$.

- C. Sea $v \in B^{\perp}$, es decir, $\langle v, w \rangle = 0$ para todo $w \in B$. Como $A \subseteq B$ se tiene que $\langle v, a \rangle = 0$ para todo $a \in A$ puesto que la inclusión implica que $a \in B$. Tenemos entonces que $v \in A^{\perp} y B^{\perp} \subseteq A^{\perp}$.
- D. Tomemos un $v \in (A \cup B)^{\perp}$ y sea $w = (w_1 + w_2) \in$ gen(A) + gen(B). Como $A \cup B$ contiene a A se sigue que $A^{\perp} \subseteq (A \cup B)^{\perp}$

Ejercicio 2[1]

El ejercicio consta de tres partes.

- A. Sea $\mathcal V$ un espacio vectorial y $S\subset \mathcal V$. Demuestre que S^\perp es un subespacio de $\mathcal V$.
- B. Ecuentre $S^{\perp} \subseteq \mathbb{R}^3$ si $S = \{(1, 1, 1), (2, 1, 0)\}$ (producto punto).
- C. Lo mismo si $S = \{(1,1,1), (2,1,0), (1,0,-1)\}$ (producto punto).

Solución. Veamos cada parte.

A. Sean w_1, w_2 vectores de $S^{\perp}, v \in S$ y λ un escalar. Entonces

$$\langle \mathbf{v}, \mathbf{w}_1 - \lambda \mathbf{w}_2 \rangle = \langle \mathbf{v}, \mathbf{w}_1 \rangle - \lambda \langle \mathbf{v}, \mathbf{w}_2 \rangle$$

= $0 + \lambda 0 = 0$

y $w_1 - \lambda w_2 \in S^{\perp}$ por lo que S^{\perp} es un subespacio de \mathcal{V} .

[1] En el Jacob, 4.1.2.

Noviembre, 2019

B. El complemento ortogonal de S son todos los vectores $(x, y, z) \in \mathbb{R}^3$ tales que

$$(x, y, z) \cdot (1, 1, 1) = 0$$
 y
 $(x, y, z) \cdot (2, 1, 0) = 0.$

Lo anterior se reduce al siguiente sistema de ecuaciones

$$\begin{cases} x + y + z = 0 \\ 2x + y = 0, \end{cases}$$

cuyas soluciones son los vectores de \mathbb{R}^3 de la forma (t, -2t, t) con $t \in \mathbb{R}$.

C. Por un argumento idéntico a la parte anterior, consideramos el sistema de ecuaciones

$$\begin{cases} x + y + z = 0 \\ 2x + y = 0 \\ x - z = 0, \end{cases}$$

cuyas soluciones son los vectores de \mathbb{R}^3 de la forma (t, -2t, t) con $t \in \mathbb{R}$.

Ejercicio 3[2]

Sea $\langle \ , \ \rangle$ un producto interno sobre \mathbb{R}^n . Demuestre que el producto interno $\langle \ , \ \rangle'$ definido, para cualquier matríz A invertible $n \times n$, por

$$\langle v, w \rangle' = \langle Av, Aw \rangle$$

para todo $v, w \in \mathbb{R}^n$.

Solución. Veamos que se cumplen las cuatro propiedades de los productos internos:

A.
$$\langle v, w \rangle' = \langle Av, Aw \rangle = \langle Aw, Av \rangle = \langle w, v \rangle'$$
.

B.
$$\langle kv, w \rangle' = \langle Akv, Aw \rangle = \langle kAv, Aw \rangle = k \langle Av, Aw \rangle = k \langle Av, Aw \rangle'$$
.

C.
$$\langle v_1 + v_2, u \rangle' = \langle Av_1 + Av_2, Au \rangle = \langle Av_1, Au \rangle + \langle Av_2, Au \rangle = \langle v_1, u \rangle' + \langle v_2, u \rangle'.$$

D. $\langle v, v \rangle' = \langle Av, Av \rangle \ge 0$. Y si $\langle v, v \rangle' = 0$ entonces Av = 0 y como A es invertible v = 0.

Ejercicio 4[3]

Supongamos que $\{v_1, \ldots, v_n\}$ es una base para el espacio vectorial \mathcal{V} . Demuestre que para cualquier sucesión de números reales r_1, \ldots, r_n existe un $w \in \mathcal{V}$ tal que $\langle v_i, w \rangle = r_i$.

Solución. Veremos que existe una biyección específica entre la base de \mathcal{V} y los r_1, \ldots, r_n . Consideremos la función $\phi: \mathcal{V} \to \mathcal{R}^n$ dada por

$$\phi(w) = \begin{pmatrix} \langle v_1, w \rangle \\ \langle v_2, w \rangle \\ \vdots \\ \langle v_n, w \rangle \end{pmatrix}.$$

Esta función es lineal puesto que \langle , \rangle es lineal. Más aún, si T(w) = 0 y $w = \lambda_1 v_1, \ldots, \lambda_n v_n$ (con $\lambda_1, \ldots, \lambda_n$ escalares) entonces

$$\langle w, w \rangle = \sum_{k=1}^{n} a_k \langle v_k, w \rangle = 0.$$

Y tenemos que el ker(T) = 0 y esto implica que T es inyectiva.

Como \mathcal{V} y \mathcal{R}^n tienen la misma dimesión, se tiene que T es sobreyectiva. Entonces T es un isomorfismo de \mathcal{V} en \mathcal{R}^n .

Por todo la anterior se tiene que existe $w \in \mathcal{V}$ con la propiedad buscada.

Ejercicio 5[4]

Esta ejercicio consta de dos partes:

A. Si V es un espacio real con producto interno, demuestre la *identidad polar*:

$$\langle u, v \rangle = \frac{1}{4} \|u + v\|^2 - \frac{1}{4} \|u - v\|^2.$$

B. Si V es un espacio complejo con producto interno, demuestre demuestre la *identidad polar*:

$$\langle u, v \rangle = \frac{1}{4} (\|u + v\|^2 + i \|u + iv\| - \|u - v\|^2 - i \|u - iv\|)$$

^[2] En el Jacob, 4.1.5.

^[3] En el Jacob, 4.1.7.

^[4] En el jacob, 4.1.11

Solución. Veamos cada parte.

A. Solo hace falta desarrollar recordando que como $\langle \ , \ \rangle$ es un producto interno real se cumple $\langle u, v \rangle = \langle v, u \rangle$ para todo $u, v \in \mathcal{V}$.

$$||u + v||^{2} - ||u - v||^{2} = \langle u + v, u + v \rangle$$

$$- \langle u - v, u - v \rangle$$

$$= \langle u, u + v \rangle + \langle v, u + v \rangle$$

$$- \langle u, u - v \rangle + \langle v, u - v \rangle$$

$$= \langle u, u \rangle + \langle u, v \rangle$$

$$+ \langle v, u \rangle + \langle v, v \rangle - \langle u, u \rangle$$

$$+ \langle u, v \rangle + \langle v, u \rangle - \langle v, v \rangle$$

$$= 4 \langle u, v \rangle.$$

Y al dividir ambos lador por 4 se obtiene el resultado deseado.

B. Por un lado se tiene que

$$||u + v||^{2} = \langle u + v, u + v \rangle$$

$$= \langle u + v, u \rangle + \langle u + v, v \rangle$$

$$= \langle u, u \rangle + \langle v, u \rangle + \langle u, v \rangle + \langle v, v \rangle$$

$$= \langle u, u \rangle + \langle v, v \rangle + \langle u, v \rangle + \langle v, u \rangle$$

$$= \langle u, u \rangle + \langle v, v \rangle + \langle u, v \rangle + \overline{\langle u, v \rangle}$$

$$= \langle u, u \rangle + \langle v, v \rangle + 2 \operatorname{Re} \langle u, v \rangle$$

y

$$||u - v||^{2} = \langle u - v, u - v \rangle$$

$$= \langle u - v, u \rangle - \langle u - v, v \rangle$$

$$= \langle u, u \rangle - \langle v, u \rangle - \langle u, v \rangle + \langle v, v \rangle$$

$$= \langle u, u \rangle + \langle v, v \rangle - \langle u, v \rangle - \langle v, u \rangle$$

$$= \langle u, u \rangle + \langle v, v \rangle - \langle u, v \rangle - \overline{\langle u, v \rangle}$$

$$= \langle u, u \rangle + \langle v, v \rangle - 2 \operatorname{Re} \langle u, v \rangle$$

Por lo tanto

$$(1.1) ||u + v||^2 - ||u - v||^2 = 4 \operatorname{Re} \langle u, v \rangle.$$

Por otro lado

$$i \| \mathbf{u} + i\mathbf{v} \|^{2} = i(\langle \mathbf{u} + i\mathbf{v}, \mathbf{u} + i\mathbf{v} \rangle)$$

$$= i(\langle \mathbf{u} + i\mathbf{v}, \mathbf{u} \rangle + \langle \mathbf{u} + i\mathbf{v}, i\mathbf{v} \rangle)$$

$$= i(\langle \mathbf{u}, \mathbf{u} \rangle - \langle i\mathbf{v}, \mathbf{u} \rangle)$$

$$- \langle \mathbf{u}, i\mathbf{v} \rangle + \langle i\mathbf{v}, i\mathbf{v} \rangle)$$

$$= i(\langle \mathbf{u}, \mathbf{u} \rangle + (-i^{2}) \langle \mathbf{v}, \mathbf{v} \rangle)$$

$$- i \langle \mathbf{u}, \mathbf{v} \rangle + i \overline{\langle \mathbf{u}, \mathbf{v} \rangle})$$

$$= i(\langle \mathbf{u}, \mathbf{u} \rangle + \langle \mathbf{v}, \mathbf{v} \rangle)$$

$$- i(\langle \mathbf{u}, \mathbf{v} \rangle - \overline{\langle \mathbf{u}, \mathbf{v} \rangle}))$$

$$= i(\langle \mathbf{u}, \mathbf{u} \rangle + \langle \mathbf{v}, \mathbf{v} \rangle - i2 \operatorname{Im} \langle \mathbf{u}, \mathbf{v} \rangle)$$

$$= i \langle \mathbf{u}, \mathbf{u} \rangle + i \langle \mathbf{v}, \mathbf{v} \rangle + 2 \operatorname{Im} \langle \mathbf{u}, \mathbf{v} \rangle.$$

y

$$i \| \mathbf{u} - i\mathbf{v} \|^{2} = i(\langle \mathbf{u} - i\mathbf{v}, \mathbf{u} - i\mathbf{v} \rangle)$$

$$= i(\langle \mathbf{u} - i\mathbf{v}, \mathbf{u} \rangle - \langle \mathbf{u} - i\mathbf{v}, i\mathbf{v} \rangle)$$

$$= i(\langle \mathbf{u}, \mathbf{u} \rangle - \langle i\mathbf{v}, \mathbf{u} \rangle)$$

$$- \langle \mathbf{u}, i\mathbf{v} \rangle + \langle i\mathbf{v}, i\mathbf{v} \rangle)$$

$$= i(\langle \mathbf{u}, \mathbf{u} \rangle - (-i^{2}) \langle \mathbf{v}, \mathbf{v} \rangle)$$

$$+ i \langle \mathbf{u}, \mathbf{v} \rangle - i \overline{\langle \mathbf{u}, \mathbf{v} \rangle})$$

$$= i(\langle \mathbf{u}, \mathbf{u} \rangle + \langle \mathbf{v}, \mathbf{v} \rangle)$$

$$+ i(\langle \mathbf{u}, \mathbf{v} \rangle - \overline{\langle \mathbf{u}, \mathbf{v} \rangle}))$$

$$= i(\langle \mathbf{u}, \mathbf{u} \rangle + \langle \mathbf{v}, \mathbf{v} \rangle + i2 \operatorname{Im} \langle \mathbf{u}, \mathbf{v} \rangle)$$

$$= i \langle \mathbf{u}, \mathbf{u} \rangle + i \langle \mathbf{v}, \mathbf{v} \rangle - 2 \operatorname{Im} \langle \mathbf{u}, \mathbf{v} \rangle.$$

Por lo tanto

$$(1.2) i ||u + iv||^2 - i ||u - iv||^2 = 4 \operatorname{Im} \langle u, v \rangle.$$

Finalmente, usando (1) y (2), se tiene

$$||u + v||^{2} + i ||u + iv||^{2} - ||u - v||^{2} - i ||u - iv||^{2}$$
$$= 4(\text{Re } \langle u, v \rangle + \text{Im } \langle u, v \rangle) = 4 \langle u, v \rangle$$

y el resultado deseado se obtiene al dividir ambos lados por 4.