Lecture 5

Softmax classification: Multinominal (Multi-class) classification

Dong Kook Kim

Logistic regression: Review

Binary classification

Logistic regression: Review

Multi-class classification

target

• Target: I,2K (integer), K-class

input,

x1 (hours)	x2 (attendance)	y (grade)	
10	5	Α	
9	5	Α	
3	2	В	
2	4	В	
11	1	С	

Integer Target: one-hot encoding

one-hot or I-of-K encoding:

For multi-class problems (with K classes), instead of using t = k (target has label k) we often use a 1-of-K encoding, i.e., a vector of K target values containing a single I for the correct class and zeros elsewhere

Example: For a 4-class problem, we would write a target with class label 1,2,3,4 as:

$$t = [1, 0, 0, 0]^{T}$$

$$t = [0, 1, 0, 0]^{T}$$

$$t = [0, 0, 1, 0]^{T}$$

$$t = [0, 0, 0, 1]^{T}$$

$$4$$

Using 3 Binary classifier

combing 3 binary classifier

$$z_1 = W_1 x + b_1$$
 $z_2 = W_2 x + b_2$
 $z_3 = W_3 x + b_3$
 $z_3 = W_3 x + b_3$

K linear regression

Multi-variable linear regression

$$W = \begin{bmatrix} w_{11} & \dots & w_{1n} \\ \dots & \ddots & \dots \\ w_{k1} & \dots & w_{kn} \end{bmatrix} \qquad b = \begin{bmatrix} b_1 \\ \vdots \\ b_k \end{bmatrix}$$

$$z = Wx + b$$

$$\begin{bmatrix} z_1 \\ \vdots \\ z_k \end{bmatrix} = \begin{bmatrix} w_{11} & \dots & w_{1n} \\ \dots & \ddots & \dots \\ w_{k1} & \dots & w_{kn} \end{bmatrix} \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} + \begin{bmatrix} b_1 \\ \vdots \\ b_k \end{bmatrix}$$

K linear regression: $z_k = W_k x + b_k$ Classify x to class $y = argmax_i S_i(z)$

Softmax Classification

• New approach : K linear regression + softmax function

Softmax

• Softmax Function : convert scores to probabilities

$$z_k = \mathbf{w}_k^T \mathbf{x}$$
 $y_k(\mathbf{x}) = \frac{\exp(z_k)}{\sum_j \exp(z_j)}$: softmax function

scores probabilities

Softmax Classification: Example

$$\begin{bmatrix} W_{A1} & W_{A2} & W_{A3} \\ W_{B1} & W_{B2} & W_{B3} \\ W_{C1} & W_{C2} & W_{C3} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} W_{A1}x_1 + W_{A2}x_2 + W_{A3}x_3 \\ W_{B1}x_1 + W_{B2}x_2 + W_{B3}x_3 \\ W_{C1}x_1 + W_{C2}x_2 + W_{C3}x_3 \end{bmatrix} = \begin{bmatrix} z_A \\ z_B \\ z_C \end{bmatrix} \begin{bmatrix} z_A \\ z_B \end{bmatrix} \begin{bmatrix} z_A \\ z_B \end{bmatrix} \begin{bmatrix} z_A \\ z_C \end{bmatrix} \begin{bmatrix}$$

Softmax Function

 $Scores(logit) \rightarrow Probabilities$

Softmax Function

'One-Hot' Encoding Target

Loss Function: Softmax Classification

Cross-Entropy

Output (0~I)

'One-Hot' Encoding Target

$$\begin{bmatrix} 0.7 \\ 0.2 \\ 0.1 \end{bmatrix} \quad D(S, L) = -\sum_{i} L_{i} \log(S_{i}) \qquad \begin{bmatrix} 1.0 \\ 0.0 \\ 0.0 \end{bmatrix}$$

$$L = Y$$

- Keras : categorical_crossentropy
- model.compile(loss='categorical_crossentropy',optimizer='adam', metrics=['accuracy'])

Cross-Entropy Loss Fucntion

• 3-class

$$D(S,L) = -\sum_{i} L_{i} \log(S_{i})$$

$$L = \begin{bmatrix} 1.0 \\ 0.0 \\ 0.0 \end{bmatrix}$$

$$L = \begin{bmatrix} 1.0 \\ 0.0 \\ 0.0 \end{bmatrix} \qquad S = \begin{bmatrix} 0.0 \\ 1.0 \\ 0.0 \end{bmatrix} \qquad D(S, L) = \begin{bmatrix} 1.0 \\ 0.0 \\ 0.0 \end{bmatrix} \circ log \begin{bmatrix} 0.0 \\ 1.0 \\ 0.0 \end{bmatrix} = \infty$$

$$S = \begin{bmatrix} 0.0 \\ 0.0 \\ 1.0 \end{bmatrix} \qquad D(S, L) = \begin{bmatrix} 1.0 \\ 0.0 \\ 0.0 \end{bmatrix} \circ log \begin{bmatrix} 0.0 \\ 0.0 \\ 1.0 \end{bmatrix} = \infty$$

$$S = \begin{bmatrix} 1.0 \\ 0.0 \\ 0.0 \end{bmatrix} \qquad D(S, L) = \begin{bmatrix} 1.0 \\ 0.0 \\ 0.0 \end{bmatrix} \circ log \begin{bmatrix} 1.0 \\ 0.0 \\ 0.0 \end{bmatrix} = 0$$

Softmax Classification: Decision

Decision Rule for multi-class classification

Decide jth class, $j = argmax_k S_k(x)$

Graph for Softmax Classification

Keras : Dense(k, input_dim=n, activation='softmax')

Softmax Classification: Summary

Data Set :	$x^{(i)}, y^{(i)}, i = 1,, m$	Input vector, $y^{(i)}$: one-hot encoding vector	
Model:	$z_k = W_k x + b_k,$ $S_k(x) = \frac{\exp(z_k)}{\sum_j \exp(z_j)}$	Softmax function W : weight matrix b : bias vector	
Cost Function	$cost(W,b) = -\frac{1}{m} \sum_{i,k} y_k^{(i)} \log(S_k(x^{(i)}))$	CE	
Optimization	$W \coloneqq W - \alpha \frac{\partial cost(W, b)}{\partial W}$	D	
Testing	Given $x \& w_k, b_k, decide jth class, j$ = $argmax_k S_k(x)$	Metric : Accuracy(%)	

Exercise 04-1.

tf2-04-1-softmax.py

Exercise 04-1.

- Training loss

- Training accuracy

Exercise 04-2.

tf2-04-2-softmax_3classes.py

Exercise 04-2.

- Input and target

- Classification results

Exercise 04-3.

tf2-04-3-softmax_mnist.py

Exercise 04-3.

- Training and validation loss

Training acc

17.5

Validation acc

20.0

- Test accuracy: 0.9268

Linear Models: Summary

Supervised Learning	Input x	Target y	Distribution for Target	Classifier p(y x)	Linear models	Loss function
Regression	vector binary integer real	real	Gaussian	Gaussian	Linear regression	MSE
Binary Classification		binary	Bernoulli	sigmoid	Logistic classification	Binary Cross-entropy
Multi-class Classification		integer	multinoulli	softmax	Softmax classification	Multi-class Cross-entropy