Corrigé 2011 got M

I. L'odeur de l'argent

a. $C_1 - C_3 : sp^2$ $C_4 - C_8 : sp^3$

Non, car

C.

d.

e.

a.

pas d'isomérie Z/E possible car le C n°1 porte 2 atomes identiques

pas d'isomérie CIS/TRANS possible car pas de cycle

pas de chiralité car pas de C asymétrique

Oxydation: C_2H_3 -CHOH- C_5H_{11} = C_2H_3 -CO- $C_5H_{11} + 2e^- + 2H^+ | 3$

Réduction : $Cr_2O_7^{2-} + 6e^- + 14H^+ \Rightarrow 2Cr^{3+} + 7H_2O$

Eq. rédox : $3 C_2H_3$ -CHOH- C_5H_{11} + $Cr_2O_7^{2^*}$ + 8 H⁺ \rightarrow 3 C_2H_3 -CO- C_5H_{11} + 2 Cr^{3+} + 7 H_2O cétone **B**

Oui

 $C_{2}H_{3}$ $C_{2}H_{3}$ $C_{2}H_{3}$ $C_{2}H_{3}$ $C_{2}H_{3}$ $C_{2}H_{3}$ $C_{3}H_{11}$ $C_{5}H_{11}$ $C_{5}H_{11}$ $C_{5}H_{11}$ $C_{5}H_{11}$ $C_{5}H_{11}$ $C_{5}H_{11}$ $C_{5}H_{11}$

C: isomère de fonction de B car ...

f. D : isomère de chaîne de A car ...

E : isomère de position de B car ...

II. Etude de systèmes aromatiques - benzène et benzaldéhyde

C hybridés sp²

Structure hexagonale plane

Angles de 120°

Nuages p perpendiculaires au plan renfermant les liaisons σ

- Les 6 nuages atomiques p confluent en un seul nuage moléculaire renfermant les 6 e de valence.
- Nuage moléculaire constitué de 2 tores situés de part et d'autre du plan du cycle.

h Avantages :

- Egalité des longueurs de liaisons, entre celles d'une liaison simple ou double.
- Grande stabilité du noyau benzénique, la plus grande probabilité de délocalisation des e fait en sorte que le système π tend à se conserver.

Groupement aldéhyde : effet mésomère attracteur d'e (M-)

3-nitrobenzaldéhyde : produit majoritaire car groupement aldéhyde oriente un réactif électrophile en position « méta », les positions « ortho » et « para » portent une charge partielle positive et sont donc évitées par un réactif électrophile.

Formation du réactif électrophile :

d.

e.

Attaque électrophile par NO2* :

Départ électrofuge de H⁺:

$$H_{C}$$
 H_{C}
 H_{C

$$O = H$$
 $O = H$
 O

 $M = 106 \frac{9}{mol}$

$$n_{\text{bernaldéhyde}} = \frac{\rho \cdot V}{M} = \frac{1,046 \cdot 101,3}{106} = 1,00 \text{ mol}$$

$$n_{3-ntroberoak5ihyde} = \frac{m}{M} = \frac{90,6}{151} = 0,60 \text{ mol}$$

Rendement : r = 60,0 %

g.
$$M_{HNO_3} = 63 \frac{g}{mol}$$
 et $n_{HNO_3} = 1$ mol \Rightarrow $m_{HNO_3} = \frac{63 \cdot 100}{65} = 96,9$ g \Rightarrow $V_{HNO_3} = \frac{m}{\rho} = \frac{96,9}{1,40} = 69,2$ cm³

III. Les amines

- Dissociation basique CH₃NH₂(aq) > NH₃(aq) de même molarité.
- Force basique des amines III < à celle des amines II et I.

Explications

- Effet I+ du radical alkyle
 ⇒ densité électronique sur atome d'azote renforcée, doublet électronique plus disponible pour la capture d'un proton.
 - Amines I: bases plus fortes que NH₃.
 - Amines II : bases plus fortes que les amines I (effet I+ est encore plus prononcé)
 - Amines III : bases moins fortes que les amines II encombrement stérique réduit l'angle d'accès du donneur de proton au doublet libre de l'azote.

Aniline:

- possibilité de délocalisation du doublet libre de l'azote sur le cycle benzénique
- doublet électronique moins disponible pour la capture d'un proton
- Conséquence: base moins forte que la propylamine G et la disopropylamine H car pour ces bases une telle délocalisation n'est pas envisageable.

c.
$$R - C_{CI} + 2 H_2 N - C_{CI} + 2 H_2 N - C_{CI} + H_3 N - C_{CI} + C_$$

Amide: $M = 149 \frac{9}{mol}$

Groupement R: formule générale C_nH_{2n+1}

 $M' = 29 \frac{q}{mol}$

 \Rightarrow n = 2 et R = C₂H₅

Chlorure d'acyle :

d.

formule brute C3H5OCI

chlorure de propanoyle

IV. L'acide caprylique et la noix de coco

b.
$$M = 144 \frac{g}{mol}$$
 Formule brute $C_nH_{2n}O_2 \Rightarrow n = 8 \Rightarrow$ Acide caprylique $C_8H_{16}O_2$

d.
$$c_A = 4,10 \cdot 10^{-3} M$$

e. pH de la solution initiale : acide faible

$$x^{2} + 1,41 \cdot 10^{-5} x - 5,79 \cdot 10^{-8} = 0$$

 $\Rightarrow x_{1} = 2,34 \cdot 10^{-4} \frac{mol}{L} x_{2} < 0 \text{ à écarter}$
 $\Rightarrow pH = 3,63$

f. pH au point d'équivalence : anion octanoate C₇H₁₅COO, base faible, pK_a = 4,85

$$\rightarrow K_b = 7,08 \cdot 10^{-10} \text{ et c} = 2,25 \cdot 10^{-3} \frac{\text{mol}}{\text{L}}$$

$$x^2 + 7,08 \cdot 10^{-10} x - 1,59 \cdot 10^{-12} = 0$$

$$x_1 = 1,26 \cdot 10^{-6} \frac{\text{mol}}{L}$$
 $x_2 < 0$ à écarter

Donc
$$pOH = 5,90$$
 et $pH = 8,10$

g. Solution neutre : pH = 7 → solution tampon (avant le pt d'équivalence)

RCOOH + OH
$$^ \rightarrow$$
 RCOO $^-$ + H₂O

Fin:
$$8,2\cdot 10^{-4} - x$$
 / x [mol]

$$pH = pK_a + log \frac{n_{RCOO^+}}{n_{RCOOH}}$$

$$7 = 4,85 + \log \frac{x}{8,2 \cdot 10^{-4} - x}$$

$$\Rightarrow$$
 V = $\frac{8,14 \cdot 10^{-4}}{5,0 \cdot 10^{-3}} = 0,16285 L = 162,85 cm3$

h. Bleu de thymol car le pH au point d'équivalence se situe dans le domaine de virage de l'indicateur