Exercise #4

A. The Input parameters

1. \hat{D} is a matrix to be computed (with the dimensions $m \times n$)

$$\hat{D} = \alpha * op(\hat{A}) * op(\hat{B}) + \beta * \hat{C}. \tag{1}$$

2. The input parameters in rhs of Eq.(1) are the matrixes $op(\hat{A})$ (the dimension $m \times k$), $op(\hat{A})$ ($k \times n$) and \hat{C} ($m \times n$) and the constants α and β . The additional input parameters, the constants transa and transb are the transposition flags for matrixes \hat{A} and \hat{B} , correspondingly, i.e.

$$op(\hat{X}) = \begin{cases} \hat{X} & \text{transa=1} \\ \hat{X}^T & \text{transa=0} \end{cases}$$

- 3. The integers m, k, n, transa, transb are the input parameters, which are provided by the user, whereas the components of matrixes \hat{A} , \hat{B} , \hat{C} and constants α and β are generated by the random numbers generator. The computation of \hat{A} , \hat{B} , \hat{C} , α and β can be performed in one of three programming codes
 - Practice04-Input.cs
 - Practice04-Input.java
 - Practice04-Input.py

These codes have a similar resulting data, which are stored in the file

• Input.txt

although each of them are coded in different languages, correspondingly in C#, Java and Python. Specifically, in this work the input parameters were calculated with use of 'Input.py' code, i.e. in Python language.

B. The computation time

- 1. We calculated the matrix \hat{D} from Eq.(1) with use of three programming codes
- Practice04-Dgemm.cs
- Practice04-Dgemm.java
- Practice04-Dgemm.py

We performed the computation of matrix \hat{D} using each of these programming codes l_m times, calculating the time t of each computation round. As a result each programming code calculated the array of times

$$\{t_k\}_{k=0}^{k=l_m-1}. (2)$$

We stored this array of times in Eq.(2) in the following file

• time.txt.

C. The statistics

In separate program code

• Practice04-Statistics.py

we have calculated the statistics associated with the array in Eq.(2). To this end we sorted this array, found the minimum t_{min} and maximum t_{max} values in the sorted array as

$$t_{min} = t_0, (3)$$

$$t_{max} = t_{l-1}. (4)$$

We also calculated average value of time

$$t_{av} = \frac{1}{l_m} \sum_{i=0}^{l_m - 1} t_i, \tag{5}$$

mean dispersion

$$\sigma = \sqrt{\frac{1}{l_m} \sum_{i=0}^{l_m - 1} (t_{av} - t_i)^2},\tag{6}$$

and median value of time

$$t_{med} = \begin{cases} t_k, & \text{where} \quad k = \frac{l_m}{2}, \quad l_m \text{ is an even number,} \\ \\ \frac{(t_k + t_{k+1})}{2}, & \text{where} \quad k = \frac{(l_m - 1)}{2}, \quad l_m \text{ is an odd number.} \end{cases}$$

D. The results

We have calculated the results for two sets of input parameters. The first of them was

• Set 1: m = 100, k = 80, n = 60, trans = 1, transb = 1, $l_m = 50$.

We provided the results for the Set 1 of input parameters in Table I. The second set was

• Set 2: m = 120, k = 100, n = 80, trans = 1, transb = 1, $l_m = 50$.

The results for the Set 2 are in Table II.

E. The conclusions

It is seen that for one given set of parameters the C#-code provides with the fastest calculations, Python-code with slowest calculations. Since the rank of matrix in Set 2 is higher than the one in Set 1, the calculation with Set 2 parameters is slower as compared to the one with Set 1. The calculation with Java-code provides with the largest spreading between t_{min} and t_{max} in terms of $(t_{max} - t_{min})/t_{av}$.

TABLE I: The input parameters from Set 1

	t_{min} (sec)	t_{max} (sec)	t_{av} (sec)	t_{med} (sec)	σ (sec)	$(t_{max} - t_{min})/t_{av}$
Python	0.561	0.772	0.619	0.600	0.058	0.341
Java	0.006	0.133	0.022	0.012	0.028	5.773
C#	0.005	0.010	0.007	0.007	0.001	0.714

TABLE II: The input parameters from Set 2

	t_{min}	t_{max}	t_{av}	t_{med}	σ	$(t_{max} - t_{min})/t_{av}$
	(sec)	(sec)	(sec)	(sec)	(sec)	
Python	1.259	1.993	1.572	1.553	0.169	0.467
Java	0.015	0.195	0.034	0.024	0.029	5.294
C#	0.012	0.037	0.018	0.016	0.006	1.389