(2) TWO – Introduction to R			
R code	Description	Example	
c()	Used to concatecodnate numbers	x <- c(1, 3, 2, 5)	
		> X	
		> 1 3 2 5	
seq()	Creates a sequence of numbers	seg(a, b)	
	- Useful for defining grid values to	makes a vectors of integers (starts with a	
	plot with	and increments by I till b)	
		seq(0, 1, length = 10)	
		makes a seq of 10 numbers that are equally spaced between 0 and 1	
		1:10 and seq(1, 10) are equivalent	
		seq(-pi, pi, length = 50)	
		creates something useful for a trigo plot	
ls()	Shows a list of all the objects saved	rm(list = ls())	
	in the workspace	is useful in removing all objects from the	
rm()	Used to delete objects from the workspace	workspace	
matrix()	Creates a matrix of numbers	x <- matrix(data = c(1, 2, 3, 4),	
macin()	(fills in columns first, by default)	nrow = 2,	
		ncol = 2)	
		,	
		> X	
		> 1 3	
		2 4	
		x <- matrix(,, byrow = T)	
rnorm()	Generates normal random variables - get pseudorandom numbers that	x <- rnorm(50)	
	we can treat as random	generates 50 random x-s	
	- almost sure to get a different	x < - rnorm(50, mean = 50, sd = 0.1)	
	number each time it's called - by default, ~N(0,1)		
cor()	Compute sample correlation	Creating 2 correlated sets of numbers,	
		x <- rnorm(50)	
		y <- x + rnorm(50, 50, 0.1)	
		cor(x, y)	
mean()	Compute the mean and sample	The following are equivalent:	
var()	variance of a vector of numbers	sd(y) and sqrt(var(y)	
sd()	To reproduce same results 'resets' ra	ndomness to a reproducible state	
set.seed()	To reproduce same results, 'resets' randomness to a reproducible state - useful in simulation studies		
plot(x, y)	Produces a scatterplot of y against x	plot(x, y,	
		xlab = "", ylab = "",	
		main = "")	
pdf()	Saves the output	pdf("filename.pdf") or jpeg("name.jpeg")	
jpeg()	(alternative to using 'Export' function	plot(x, y,)	
JPC9()	under "Plots" in RStudio)		
		dev.off()	

contour()	Produces a contour plot like a	y <- x
	topographical map	f <- outer(x, y,
	- needs x, y grid coordinates and a matrix z for the height values	function(x, y) $\cos(y)/(1-x^2)$)
	That is 2 for the neight values	
		contour(x, y, f)
		contour(x, y, f, nlevels = 45 , add = T)
image()	Similar to contour() but gives a	fa <- (f-t(f))/2
	heatmap instead of contour lines - lighter colours correspond to	image(x, y, fa)
	higher values	
persp()	Generates 3D plots	persp(x, y, fa, thets = 30, phi = 40)
	- thets: horizontal rotation	
	- phi: vertical rotation	
hist()	Plots a histogram	hist(mpg)
		hist(mpg, col = 2, breaks = 15)
pairs()	Plots a scatterplot matrix for the	pair(Auto)
	entire data set	pairs(~ mpg + displacement, Auto)
	- can also specify just a subset of variables	
	(useful many variables)	
identify()	** Label points on plot	plot(horsepower, mpg)
, , ,	- returns the row number of points	identify(horsepower, mpg, name)
	identified	then I. click on interested points
		2. click 'finish'
[]	Indexes data	> A
	- Not specifiying row_idx: all columns	> 1 5 9 13
	Not specifying col_idx: all rowsNegative indexing to omit/remove	2 6 10 14
	elements	
		3 7 11 15
		4 8 12 16
		A[c(1, 3), c(2, 4)]
		where [row_idx, col_idx]
		> 5 13
		7 15
dim()	Gives the number of rows and column	s of a matrix
setwd()	Sets working directory	
read.table()	Reads in a text file and stores it as a	auto <- read.table("Auto.data".
()	dataframe	·
	- if it is text data, can use external	header = T, na.strings = "?")
	text editor to peek at data to get things right the first time, i.e. input	
	extra arguments (recommended)	
fix()	Launches a spreadsheet-like window	
····()	to view data	
	- not recommended	
no oneit/)	- use View() instead Removes rows containing missing	auta (pa apait(A:.t-)
na.omit()	data (NA)	auto <- na.omit(Auto)
names()	Displays all the variable names in the	names(Auto)
	data frame	

	M.L. I.I. I. C.	
attach()	Makes variables in a data frame	attach(Auto)
detach()	available by name	plot(cylinders, mpg)
()	- good to detach after you are done	
	- no need to use \$ to refer to a	detach(Auto)
	variable within a data frame	
as.factor()	** Converts quantitative	cylinders <- as.factor(cylinders)
	variables into qualitative	plot(cylinders, mpg, varwidth = T)
	variables	' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '
	- using <i>plot()</i> will generate a boxplot	where $varwidth = T$ tell the number of points
	instead now	in a bar by its width/"fatness"
	(where half of the points are in the	
	box)	
summary()	Provides a numerical summary of each variable in the data frame	
	- can also use on a single variable	
q()	To quit R	save.image()
	- Recommended to save into a	3 "
	workspace to be loaded instead of	load()
	default workspace that gets quto-	
	loaded	

(3A) Three A - L	inear Regression (simple, mu	ıltiple)	
library(MASS)	- Mass contains a large collection of data sets and functions (in base R)		
library(ISLR)	- ISLR includes data sets from the textbook		
	Simple Linear Regres	ssion	
lm(y ~ x)	Runs a simple linear regression	model <- lm(data = Boston,	
		medv ~ lstat)	
model	Gives the basic coefficient estimates	> model	
	- Just calling the regression model	> Call:	
	- "Model" here is just the name of the variable where output of Im() is	lm(formula = medv ~ lstat)	
	stored		
		Coefficients:	
		(Intercept) Istat	
		34.55 -0.95	
**summary(model)	Gives more details	summary(model)	
Sarrinary (medel)	- Summary of residuals	Sammary (medely	
	- Standard errors, t-values, p-values		
	of coefficients		
	- Residual standard error, degree of freedom		
	- Multiple R-squared, adjusted R-		
	squared		
	- F-statistic, p-value		
	- ** In SLR, p-value of		
	coefficient (beta1) should be the same as F-statistic		
names(model)	Get names of all variables in the list	> names(model)	
,	where output of Im() is a list	> "coefficients" "residuals" "effects"	
	- Can use \$ to extract out the values	"rank" "fitted.values" "assign"	
	of these variables	"qr" "df.residual" "xlevels" "call"	
		"terms" "model"	
no a dalit a a afficienta	Returns coefficient estimates	terris model	
model\$coefficients	- Can use shortcut and type till		
model\$coef	variable name is unique		
coef(model)	Cusates confidence interrule for	C 1/ 1 B	
**confint(model)	Creates confidence intervals for coefficients	> confint(model)	
		> 2.5 % 97.5%	
		(Intercept) 33.448457 35.6592247	
		lstat -1.026148 -0.8739505	
**predict()	Get confidence intervals for	> predict(model,	
	specified values of <i>x</i> or get prediction intervals for specified values of <i>x</i> or	data.frame(lstat = $c(5, 10, 15)$),	
	for training set	interval = "confidence")	
	- Make sure that data frame for	> fit lwr upr	
	specified values of x have the same	1	
	column name as in the model		

	- These values have to be in a data frame because predict() is a general function that works for MLR as well (i.e. more variables)	2 3 shows the confidence interval for the respective specified x values > predict(model, data.frame(), interval = "prediction") > predict(model)
abline(model)	Adds a line to an existing plot - Useful for adding the least-squares regression line to a scatterplot of the training points	plot(lstat, medv) abline(model, lwd = 3, col = "red")
plot(1:20, 1:20, pch = 1:20)	Shows the different symbols available to plot	
plot(model)	Generates multiple plots that can be toggled through 1. Residuals against fitted values 2. QQ plot 3. Scale-location 4. Residuals against leverage	par(mfrow = c(2, 2)) where default is par(mfrow = c(1, 1)) plot(model) dev.off() closes the plotting device/resets it
residuals(model) rstudent()	Get residuals plot directly (i.e. residuals against fitted values)	>plot(predict(model),
hatvalues(model)	Computes leverage statistics - Works for multiple linear regression objects as well	 > plot(hatvalues(model)) > which.max(hatvalues(model)) to return the index of the largest element (i.e. the largest leverage point)
	Multiple Linear Regres	ssion
Im(y ~ x1 + x2 + x3 +)	Fits a multiple linear regression model	
lm(y ~ . , data =)	Regress on all variables	
summary(model)\$	Access individual components of summary()	 names(summary(model)) "call" "terms" "residuals" "coefficients" "aliased" "sigma" "df" "r.squared" "adj.r.squared" "fstatistic" "cov.unscaled" summary(model)\$r.squared summary(model)\$sigma

(3B) Three B - O	ther considerations in linear	regression
vif(model)	Computes variance inflation factors	
vii(iiiodei)	- Measures collinearity	
	- Overly high VIF values (>10)	
var1:var2	Interaction terms	model <- lm(data = Boston,
var1*var2	- Includes the interaction of var1 and	medv ~ Istat*age)
vaii vaiz	var2	
	- Usually var1*var2 is used because	includes the main effects Istat and ageterms
	of hierarchical principle	
lm(y ~var1)	Modelling using all variables except	
	one	
update(model, ~	Update a model that is already fitted	
var1)	- Either adding or removing a	
variy	variable	
lm(data =,	Non-linear transformation of	model2 <- lm(medv ~ lstat + I(lstat^2))
y ~ f(var1))	predictors	model3 <- lm(medv ~ log(rm))
y i(vairiy)	- Need I() as a wrapper when using	Theads a milited to legiting,
	^, which has a different meaning in	
	lm()	
	(i.e. order of interaction effect)	
anova (model 1,	Compare 2 models	
model2)	- Null hypothesis:	
·	2 models fit the data equally well	
	- Alternative hypothesis:	
	full model fits better	
	- Can be used to compare nested	
	model when adding multiple predictors	
poly(yor order)	Used for higher order polynomial	model[(lm/mody nely/lstat [))
poly(var, order)	regression	model5 <- lm(medv ~ poly(lstat, 5))
	- Creates an orthogonal basis	creates a 5 th order polynomial fit
	- Each poly(var, order)x have slightly	> summary(model5)
	different coefficients and also	> Call:
	different t-statistic values	lm(formula = medv ~ poly(lstat, 5))
	- Generally, high degree polynomials	
	are a bad thing (they have a high	Residuals:
	increase at the end)	Min 1Q Median 3Q Max
		IVIII IQ IVICAIAII 3Q IVIAX
		Coefficients:
		Estimate Std.Error t value Pr(> t)
		(Intercept)
		poly(lstat, 5)1
		poly(lstat, 5)2
		poly(lstat, 5)3
		poly(lstat, 5)4
		poly(lstat, 5)5
		l

Qualitative Predictors

- Im() will code qualitative predictors automatically

Example:

- For Carseats data, we model response Sales with a number of predictors
- One of them is the shelving location, ShelveLoc, is a qualitative predictor with 3 levels Good, Medium, Bad

model <- Im(data = Carseats,

Sales ~ . + Income:Advertising + Price:Age) # everything and includes interaction terms

- In summary(model), ShelveLoc appears as 2 dummy variables ShelveLocGood and ShelveLocMedium
- There is no need for ShelveLocBad since it can be determined from the 2 dummy variables

contrasts(var)	Shows the current set of contrasts	contrasts > contrasts(ShelveLoc)		
	being used	>	Good	Medium
	- This coding can be changed according to preference (check	Bad	0	0
	?contrasts)	Good	1	0
		Medium	0	1
		where Medium	can be chang	ged to (0, 0) to
		set it as the be	nchmark	

(4) Four B - Classification

- Train set:
 - Used to train model
 - Size of set depends on number of testing that will be done
- Validation set:
 - Used to tune parameters (e.g. K) or select features (e.g. how many variables)
 - Size of set depends on method
- Test set:
 - Used to make sure the results so far are valid
- Other tips:
 - If working on a time series, might not want to randomise because can give glimpse of future
 (fix first part as train and second part as test (train data comes before test), how large each part is can be chosen)

		
cor()	Gives correlation matrix	
()	- for quantitative predictors	

Logistic Regression

- Tip: consider fitting smaller models by just including predictors that have the smallest p-values in the full model

Note of caution:

- Use test set sparingly
- Repeatedly using unseen test set to evaluate error may result in overfitting
- Similar to making use of test set as training set to select best classifier
- If keep testing many different classifiers, bound to have one where results are "good" by chance
- One way to validate results is to use yet another untouched test set

-1(Fits generalised linear models	
$glm(y \sim x1 + x2 + x3 +,$		
data = df,	- class of models including	
family = binomial)	logistic regression	
summary(model)	Provides the usual estimated coefficients, standard errors, p-values etc.	 Also gives "Number of Fisher Scoring Iterations" This is how much more times the processing took compared to LS (logistic regression uses iterated related LS to get solutions)
coef(model)	Extracts coefficients	
preds <-	Get fitted probabilities for the	- If type = "response" is not specified, the
predict(model,	training set or predicted	default for logistic regression would be to
type = "response")	probabilities for new test data	output the logit
type – response)		- Note that if you get fitted probabilities,
		later on this will be used in the calculation of
predict(model, newdata		the training error rate
=,		
type = "response")		
contrasts(y)	To find out what the	> contrasts(Response)
	probabilities are predicting	> Up
		Down 0
		Up 1

ifelse(probs > threshold, 1, 0)	To get predicted class labels by setting a rule	- The second method updates the labels for those whose predicted value is of class '1'
preds <- rep(0, nrow(df)) preds[probs > threshold] <- 1		
con_mat <- table(preds,	Creates confusion matrix	> table(pred, Direction)
y)		> Direction
		glm.pred Down Up
		Down 145 141
		Up 457 507
mean(preds == y)	Gets accuracy rate	
aura (dia a (aa a maat)) /		
sum(diag(con_mat))/		
sum(con_mat) df[!train,]	Subsetting out the test set	> train <- Year < 2005
ar[.train, j	- This can be done with a vector	> Smarket.2005 <- Smarket[!train,]
	of indexes, or a logical vector	> Direction.2005 <- Direction[!train,]
$glm(y \sim x1 + x2 + x3 +,$	Using logistic regression on a	
data = df, family =	dataframe, separating into train	
binomial,	and test sets - Make use of the argument	
subset = train)	subset to specify rows you want	
	for training	
	Linear Discriminant An	•
library(MASS)	Ida() function is part of the MASS library	
lda_model <-	Fit an LDA model	
$\frac{1}{1}$ Ida(y ~ x1 +, data = df,		
subset = train)		
lda_model	Call the model directly to view	> lda_model
	details about model - Unlike logistic regression,	Call:
	there are no more coefficients	lda(Direction ~ Lag1 + Lag2, data =
	- Estimated prior probabilities	Smarket, subset = train)
	and means of each class is given directly in output	Prior probabilities of groups:
	- In practice, for computational	Down Up
	efficiency, equivalent form of	0.491984 0.508016
	LDA decision rule is computed	
	- For binary case, this is a single vector of coefficients to be	Group means:
	multiplied by predictors	Lag1 Lag2
		Down 0.04279022 0.03389409

		(for done that are Done 2)
	- Large values of these linear combination corresponds to a	(for days that are 'Down') Up -0.03954635 -0.03132544
	higher posterior for the class	(for days that are 'Up')
	coded as '1' in contrasts()	
	- Lower values correspond to	Coefficients of linear discriminants:
	class '0'	LD1
		Lag1 -0.6420190
		Lag2 -0.05135293
preds <-	Gives predicted class and also	
predict(lda model,	posterior probabilities	
df test)	- Can use other thresholds	
names(preds)	There are 3 attributes to the	> names(lda.pred)
116.11100 (β.106.0)	predicted output:	[1] "class" "posterior" "x"
	1) class***	[1] class posterior x
	2) posterior	
	x (which is used to compute (2))	
preds\$posterior	Gives posterior probabilities of	For a 50% threshold, find the number of
β. σαισφροστοιτοι	each class	observations predicted as 'Down' (col 1)
	 Use colnames(preds\$posterior) 	> sum(lda.pred\$posterior[, 1] >= 0.5)
	to determine what each column	[1] 70
	is predicting for - Different thresholds can be	> sum(lda.pred\$posterior[, 1] < 0.5)
	used to recreate the predicted	[1] 182
	class labels	
	- Note: Sometimes the	Be wary of setting the threshold too high,
	thresholds should be changed in	> sum(lda.pred\$posterior[, 1] > 0.9)
	small increments, especially if the greatest posterior	[1] 0
	probability is not so big	> max(lda.pred\$posterior[, 1])
	, ,	[1] 0.520235
	Quadratic Discriminant A	
library(MASS)	qda() is also part of the MASS	
	library	
qda_model <-	Fit a QDA model	
qda(y ~ x1 + x2 +,		
data = df, subset = train)		
qda model	Output is similar to Ida() but	
' <u>-</u>	missing QDA computation	
	terms (coefficient of	
ada prod class	discriminants)	
qda_pred_class <-		
predict(qda_model,		
df_test)\$class	Cuastas confincian matrix	
table(qda_pred_class)	Creates confusion matrix (similar to above examples)	
	K-Nearest Neighbo	lirs

library(class)	knn() is part of the class library			
train_X <- cbind(x1,	There is no need to train in knn(), which predicts in a single command that			
x2)[train,]	requires:			
test X <- cbind(x1,	 Matrix/dataframe containing variables from train set Matrix/dataframe containing variables from test set (observations to 			
x2)[!train,]	 Matrix/dataframe containi predict) 	ing variables from test set (observations to		
train y <- y[train,]	3. Vector containing class I	abels for train set		
train_y \ y[train,]	4. K , number of nearest neighbours to look at			
set.seed(1)	Set a seed for reproducibility A tie happens when			
	since knn() breaks ties	- 2 neighbours are equally far apart		
	randomly	or		
		- K is an even number and there are equal number of votes		
knn pred <-		number of votes		
<u>-</u> '				
knn(train_X,				
test_X,				
train_y,				
k =)				
mean(test_y != knn_pred)	Gives the error rate (because	# Comparison to a <i>trivial classifier</i>		
	classifier, either prediction	# ('No' all the time)		
	correct or wrong)	> mean(test_y != 'No')		
*** stdised x <- scale(df)	*** When predictors are	# Example 1		
_	not all on the same scale	# Difference of \$1000 in <i>salary</i> is		
	- Standardise data such that all variables have mean = 0 and sd =	enormous compared to difference of 50		
	1	years in <i>age</i> (but common sense says		
		otherwise)		
	- Important since KNN uses	Street Wise)		
	Euclidean distance which does	# Evample 2		
	take into account the scale	# Example 2		
	- Variables on a large scale will have a larger effect on the	# Variable in column 1 is gonna		
	distance between observations	dominate by 1000		
		> var(Caravan[, 1])		
		[1] 165.0378		
		> var(Caravan[, 2])		
		[1] 0.1647078		
Application: Caravan Insurance Data				

(5) FIVE - Resam	pling Method	ls	
•			different methods and performance metrics
			e useful (using sample(), for())
R code	Description		Example
set.seed()		a's random number	set.seed(1)
	generator		
	- Use when performing analysis that contains element of randomness for		
	reproducible wo		
library(boot)	Library needed to		
		alidation Set Appro	ach
sample()	Generate randon	n subset	train <- sample(n, n/2)
, ,	- simple random	sample	takes half of indices as training obs
lm.fit <- lm(y ~ x,	Fit model only or	n training set using	
data = df,	subset() option		
•			
subset = train)			
mean(Calculate test MSE	random (if no mun complex share)
(test_y - predict(model,	df) <mark>[-train]</mark>)**2		random (if re-run, samples change) Il responses but only take errors
)		corresponding to va	•
fit()	For train set	1 0	
predict()	For validation set	 :	
lm.fit2 <-	_	er polynomial	y ~ var1 (linear)
lm(y ~ poly(x, poly nun	regression		y ~ poly(var1, 2) (quadratic)
data = df, subset = trai			y ~ poly(var1, 3) (cubic)
adta any subset tran	,	e-Out Cross-Validat	
glm(y~ x, data = df)		"binomial", glm() is	
girity x, data – di)		ear regression and	
	not logistic regre		
	- Use <i>glm()</i> for lir do CV	near regression to	
library(boot)	Library for cross-	-validation	
cv.error <-	Do LOOCV usin		glm.fit <- glm(mpg ~ horsepower, data
cv.glm(df, model)	- cv.glm() does no	t take advantage of	= Auto)
ev.gim(ai, modei)	shortcut for least	squares	,
			cv.glm <- cv.glm(Auto, glm.fit)
			cv.err\$delta
cv.error\$delta			[1] <mark>24.23151</mark> 24.23114
			these are the cross-validation results:
			1. CV estimate of MSE
			2. bias-corrected version
			(only possible if form of bias is
			known, not possible to correct for
			bias analytically for different learning methods and error metrics)
	k_Fold	Cross Validation (1	
	K-FOIQ	Cross-Validation (k	Floid CV)

$\frac{\text{cv.glm}}{\text{cv.glm}}$ (y~x, data = df,	Does k-fold cross-validation				
	- common choice for $k = 10$ or 5				
K = num_folds)	- much faster than LOOCV				
	- each model is only fitted k times				
	Coding k-Fold CV you	urself			
sample(n) Samples n times from I to n without					
Sample(H)	replacement				
	- A useful method when coding out				
	k-fold CV by yourself				
	- Used to randomise indexes of				
	dataframe in the beginning				
	- Don't modify dataframe				
	- Use indexes to extract out				
	relevant rows				
index = sample(n)	Getting indexes of observations of				
, , , ,	each fold				
foldbreaks = c(0,	- Rearrange the index (not the data)				
floor(n/k*1:k))	Treat rainge and mask (more and auta)				
<mark>or</mark>					
folds <-					
sample(rep(1:k,					
length.out = n), n)					
	Bootstrap				
- Estimates the accuracy of	of a statistic of interest				
library(boot)					
fn <- function(df,	To estimate accuracy of a statistic of	mean.fn <- function(data, index) {			
` '	interest, write a function that				
index) { }	computes statistic given data and	X = data\$X[index]			
	relevant row indexes	Y = data\$Y[index]			
	- E.g. mean, median etc	-			
		return(mean(X))			
		}			
fn(df,	To get bootstrap estimate of				
•	statistic, generate a bootstrap				
sample(n, n, replace	sample index by sampling with				
= T)) ***	replacement				
	- If run this many times using a loop,				
	can store all the bootstrap estimates				
	- With estimates can look at				
	distributions of estimates or do				
		1			
	further analysis				
boot(df, fn, R = num)	further analysis Automates the above procedure	> boot(Portfolio, alpha.fn, R = 1000)			
boot(df, fn, R = num)	,	> boot(Portfolio, alpha.fn, R = 1000)			
boot(df, fn, R = num) ***	Automates the above procedure	where R is the number of bootstrap			
	Automates the above procedure - Gets all bootstrap estimates for	where R is the number of bootstrap replicates			
	Automates the above procedure - Gets all bootstrap estimates for different bootstrap samples	where R is the number of bootstrap			
	Automates the above procedure - Gets all bootstrap estimates for different bootstrap samples - Computes common bias and	where R is the number of bootstrap replicates			
	Automates the above procedure - Gets all bootstrap estimates for different bootstrap samples - Computes common bias and	where R is the number of bootstrap replicates			
	Automates the above procedure - Gets all bootstrap estimates for different bootstrap samples - Computes common bias and	where R is the number of bootstrap replicates ORDINARY NONPARAMETRIC BOOTSTRAP Call:			
	Automates the above procedure - Gets all bootstrap estimates for different bootstrap samples - Computes common bias and	where R is the number of bootstrap replicates ORDINARY NONPARAMETRIC BOOTSTRAP Call: boot(data = Portfolio, statistic = alpha.fn, R			
	Automates the above procedure - Gets all bootstrap estimates for different bootstrap samples - Computes common bias and	where R is the number of bootstrap replicates ORDINARY NONPARAMETRIC BOOTSTRAP Call:			
	Automates the above procedure - Gets all bootstrap estimates for different bootstrap samples - Computes common bias and	where R is the number of bootstrap replicates ORDINARY NONPARAMETRIC BOOTSTRAP Call: boot(data = Portfolio, statistic = alpha.fn, R			
	Automates the above procedure - Gets all bootstrap estimates for different bootstrap samples - Computes common bias and	where R is the number of bootstrap replicates ORDINARY NONPARAMETRIC BOOTSTRAP Call: boot(data = Portfolio, statistic = alpha.fn, R			

		original bias std. error t1* 0.5758321 -7.315422e-05 0.08861826
fn <- function(df, index) {}	To estimate accuracy of a linear regression model, write a function that computes the coefficient estimates - Compare bootstrap estimates with those derived from theory (using summary(model)\$coef) - Can compute standard error estimates analytically because coefficient estimates are unbiased - Note that the estimates from theory and bootstrap may differ because standard error formulas reply on certain theoretical assumptions (e.g. estimate of variance relies on linear model being correct, but true relationship between X and Y may be non-linear) - If true relationship is non-linear then the coefficient estimates should be compared to a different model (e.g. $lm(y\sim x^{**2})$ in both the bootstrap function and model for full dataset)	t1* 0.5758321 -7.315422e-05 0.08861826 boot.fn <- function(data, index) {
boot()	Similar to runing function through a loop with bootstrap samples and recording down bootstrap estimates (in a matrix with a column for each coefficient estimate/beta)	> boot(Portfolio, boot.fn, R = 1000) ORDINARY NONPARAMETRIC BOOTSTRAP Call: boot(data = Portfolio, statistic = boot.fn, R = 1000) Bootstrap Statistics original bias std. error t1* 39.9358610 0.02972191 0.860007896 t2* -0.1578447 -0.00030823 0.007404467
	Others - Estimates of st	
mean(X)	Estimate of population mean/sample mean (mule_hat)	
sqrt(var(X)/n) sd(X)/sqrt(n)	Estimate of standard error of mule_hat	
median(X)	Estimate of population median value	
quantile(X, 0.1)	Estimate of tenth percentile of X in population	

(6A) SIX A – Subset Selection Methods R code Description Example

- Note that subset of variables chosen by Best Subset Selection, Forward and Backward Stepwise Selection can be different with different models

be different with different models				
	Best Subset Select	ion		
library(leaps)				
regsubsets(y ~ x, data = df)	Identifies best model for a given number of predictors, quantified by SS _{Res} - Similar syntax to <i>lm()</i> - * indicates that the variable is included in the corresponding model	<pre>> regfit_full <- regsubsets(Salary ~ .,</pre>		
names(reg.summary)	Summary of best subset model also returns other measures of performance	> names(reg.summary) [1] "which" "rsq" "rss" "adjr2" "cp" [6] "bic" "outmat" "obj"		
reg.summary\$rsq	Returns R ² - Naturally increases as number of predictors increase, due to greater flexibility			
	Plot various measure for all models at once - Visualises results Additional: - Argument type = "f" connected plotted points with lines - points() adds points on a plot already created	> par(mfrow = c(2, 2)) 1) To plot SSRes: > plot(reg.summary\$rss, type = "l") 2) To plot adjusted R2: > plot(reg.summary\$adjr2, type = "l") To find and label the maximum point: > which.max(reg.summary\$adjr2) [1] 11 > points(11, reg.summary\$adjr2[11], cex = 2, pch = 20) 3) To plot Mallows' Cp: > plot(reg.summary\$cp, type = "l") > which.min(reg.summary\$cp) [1] 10 > points(10, reg.summary\$cp, cex = 2, pch = 20) 4) To plot BIC: > plot(reg.summary\$bic, type = "l") > which.min(reg.summary\$bic, type = "l") > which.min(reg.summary\$bic) [1] 6 >		

plot(regfit.full,	Show models		> scale	e = "bic"
scale = "")		measure using		e = "cp"
Scale =)	regsubsets()'s built-in plot() function		> SCale	e = cp
	- black boxes in the top row show			
	variables in the optimal model			
	according to the statistic Extract coefficients for each			
coeff(regfit.full, n)	predictor size			
	•	is the number of		
	coefficients to			
	- Gives coeffic	cient estimates for		
		each of the selected		
	variables in su			
		rd and Backward Step		lion
- Use same function regsul			ea	
regsubsets(y ~ x, data	= df, Forwa	rd stepwise		
nvmax = n,				
method = "forward")				
regsubsets(y ~ x, data	= df, Backw	ard stepwise		
nvmax = n,				
method = "backward")				
Choosing models				
- Important to use ONLY TRAINING OBSERVATIONS for model fitting and variable selection				
		Validation Set Appr	oach	
set.seed(1)		Split observations into	training	
train = $sample(c(T, F),$		and test set		
'	Τ\			
	, rep = T)			
test = !train				
regsubsets(y ~ x, data =	= df[train,],	Run regsubsets() on tra	_	
nvmax = n		- Best subsets for train only	ing data	
	,		o predict()	
test.mat =		i i u u sumuumme siimidi t	~ DICUICUI	
		which is not available	- F ·······	
rest.mat = model.matrix(y	~ .,			
		which is not available I. Create a test " matrix	X"	
<mark>model.matrix</mark> (y		which is not available I. Create a test " matrix - model.matrix()	X" adds a	
<mark>model.matrix</mark> (y		which is not available 1. Create a test " matrix - model.matrix() colum of "1"s f	X" adds a for	
<mark>model.matrix</mark> (y		which is not available 1. Create a test " matrix - model.matrix() colum of "1"s f	X" adds a for , beta_0	
<mark>model.matrix</mark> (y		which is not available I. Create a test " matrix - model.matrix() colum of "I"s f intercept term - Creates dumi	X" adds a for , beta_0 my	
<mark>model.matrix</mark> (y		which is not available 1. Create a test " matrix - model.matrix() colum of "1"s f	X" adds a for , beta_0 my	

```
2. Compute validation
                                                                            Own predict function that returns
val.errors = rep(NA, n)
                                                 error for each of the n
                                                                            predicted values for specifief
for (i in 1:n) {
                                                 subset models (specified
                                                                            number of variables in model, id:
     coefi = coef(regfit.best, id = i)
                                                 by nymax argument)
                                                                            > function(object, newdata, id, ...) {
                                                 - Validation error is MSE
     pred =
                                                                                # object is a regsubsets() model
                                                 of all observations in
        test.mat[, names(coefi)]
                                                 test set
                                                                                form =
                                                 - Choose number of
        %*% coefi
                                                                                as.formula(object$call[[2]])
                                                 variables with minimum
     val.errors[i] =
                                                                                mat = model.matrix(form,
                                                 validation error
                                                                                newdata)
        mean(df$y[test] - pred)**2)
                                                                                # id is number of variables
                                                                                coefi = coef(object, id = id)
which.min(val.errors)
                                                                                xvars = names(coefi)
                                                                                return(mat[, xvars] %*% coefi)
                                                 Refit with full data
regsubsets(y ~ ., data = df, nvmax
                                                 set
= n
                                         Cross-validation Approach
- Each fold: 1) fit
           2) variable selection
- DO NOT do variable selection before k-fold CV ***
                          Do k-fold cross validation:
                                                                  > fold_index <- sample(rep(1:k, nrow(df),
                               I. Assign data to different folds
                                                                 nrow(df))
                              2. Set up matrix to store CV
                                                                 # Each fold has n errors for different
                                  error estimates
                                                                 number of variables
                                                                  > cv.errors <- matrix(NA, k, n)
                              3. Put Validation Set Approach
                                                                  > for (i in 1:k) {
                                  code through a loop across
                                                                     best.fit = regsubsets(Salary ~ .,
                                  the k folds
                                                                                    data = Hitters[folds != j,]
                                                                                    nvmax = 19)
                                                                     for (i in 1:19) {
                                                                         pred = predict(best.fit,
                                                                                    Hitters[folds == j,], id = 1)
                                                                         cv.errors[j, i] =
                                                                         mean((Hitters \$Salary[folds == j,] -
                                                                                pred)**2)
                                                                     }
```

4.	Aggregate across all folds to see mean CV errors for models of different number of variables	<pre># Apply by column > mean.cv.errors = apply(cv.erros, 2, mean) > which.min(mean.cv.errors) [1] 11</pre>
5.	Refit model with full data set and get coefficients for number of variables determined in Step 4.	<pre>> regsubsets(Salary ~ ., data = Hitters,</pre>

(6B) SIX B - Shrin	kage Methods	
R code	Description	Example
library(glmnet)	 Package written to perform elastic net on generalised linear models where elastic net is a hybrid version of ridge regression and lasso Takes in quantitative response y and quantitative predictor matrix x 	
x = model.matrix($y \sim ., df)[, -1]$ y = df\$y	Prepare data for glmnet() function as a matrix	
	Ridge Regressior	
grid = 10^seq(10, -2, length = 100)	Vector of lambda values used to fit the model - Argument for lambda in glmnet() - If argument left empty, glmnet() will automatically select a range	
	- Example: range of lambda values from 10 ¹⁰ to 10 ⁻² - To cover full range of scenarios for data	
glmnet(x, y, alpha = 0, lambda = grid)	Fit a ridge regression model - By default, variables are standardised before fitting and returns coefficients in the original scale	
	 Turn off by setting argument standardize = F Especially when variables are already in same units 	
ridge.mod\$lambda [index]	Returns vector of RR coefficient estimates for each value of lambda - First, find lambda at specified index - Next, find coefficients for this value	In this example, there are 100 lambda values and each value has 20 coefficient estimates for each predictor + intercept: > dim(coef(ridge.mod))
coef(ridge.mod)[, index]	- Larger values of lambda, have	[1] 20 100 > ridge.mod\$lambda[50]
	smaller coefficients, in terms of <i>l</i> 2 norm	[1] 11497.57 > coef(ridge.mod)[, 50]
		(Intercept) AtBat 407.356050200 0.036957182
<pre>predict(ridge.mod, s = new_lambda_value, type = "coefficients")</pre>	Predict coefficients for a new value of lambda	
ridge.pred =	Returns predictions for a new data	
predict(ridge.mod, s = <i>lambda,</i> newx = <i>test_set</i>)	 set Usually for test data For lambda values (s) that were not specified during fitting of the model, predict() interpolates/extrapolates 	

<pre>predict(ridge.mod, s = lambda, newx = test_set, exact = T, x = train_set, y = train_set\$y, thresh = 1e-16)</pre>	 Set argument exact = T to recompute exact coefficients, original x and y need to be supplied as well Set lower threshold (algorithm runs longer) for closer approximation to coefficient estimates because glmnet() is a numerical fitting method 		
cv.out = cv.glmnet(x_train, y_train, alpha = 0, nfolds = k)	Choo: validat	se optimal lambda using cross- tion	
plot(cv.out)			
bestlam =			
log(cv.out\$lambda.min)			
		1.4550	
		- Fit model using train set	
glmnet(x[train,], y[train],		- Find best lambda using CV	> lasso.mod = glmnet(x[train,], y[train,],
		Tilld Desc larribda dsirig ev	
alpha = 1,		on train set	alpha = 1, lambda = grid)
alpna = 1, lambda = grid)		_	alpha = 1, lambda = grid) > plot(lasso.mod)
·		on train set - Predict test set	> plot(lasso.mod)
·		on train set - Predict test set	> plot(lasso.mod) > set.seed(1)
·		on train set - Predict test set	> plot(lasso.mod) > set.seed(1) > cv.out = cv.glmnet(x[train,], y[train],
·		on train set - Predict test set	> plot(lasso.mod) > set.seed(1)
·		on train set - Predict test set	> plot(lasso.mod) > set.seed(1) > cv.out = cv.glmnet(x[train,], y[train], alpha = 1)
·		on train set - Predict test set	<pre>> plot(lasso.mod) > set.seed(1) > cv.out = cv.glmnet(x[train,], y[train], alpha = 1) > plot(cv.out)</pre>
·		on train set - Predict test set	<pre>> plot(lasso.mod) > set.seed(1) > cv.out = cv.glmnet(x[train,], y[train], alpha = 1) > plot(cv.out) > bestlam = cv.out\$lambda.min > lasso.pred = predict(lasso.mod, s =</pre>
·		on train set - Predict test set	<pre>> plot(lasso.mod) > set.seed(1) > cv.out = cv.glmnet(x[train,], y[train], alpha = 1) > plot(cv.out) > bestlam = cv.out\$lambda.min > lasso.pred = predict(lasso.mod, s = bestlam, newx = x[test,])</pre>
lambda = grid)		on train set - Predict test set - Find test MSE	<pre>> plot(lasso.mod) > set.seed(1) > cv.out = cv.glmnet(x[train,], y[train], alpha = 1) > plot(cv.out) > bestlam = cv.out\$lambda.min > lasso.pred = predict(lasso.mod, s =</pre>
lambda = grid) out = glmnet(x, y,		on train set - Predict test set	<pre>> plot(lasso.mod) > set.seed(1) > cv.out = cv.glmnet(x[train,], y[train], alpha = 1) > plot(cv.out) > bestlam = cv.out\$lambda.min > lasso.pred = predict(lasso.mod, s = bestlam, newx = x[test,])</pre>
out = glmnet(x, y, alpha = 1,		on train set - Predict test set - Find test MSE	<pre>> plot(lasso.mod) > set.seed(1) > cv.out = cv.glmnet(x[train,], y[train], alpha = 1) > plot(cv.out) > bestlam = cv.out\$lambda.min > lasso.pred = predict(lasso.mod, s = bestlam, newx = x[test,])</pre>
out = glmnet(x, y, alpha = 1, lambda = g	grid)	on train set - Predict test set - Find test MSE Returns coefficient estimates - Note that some coefficients	<pre>> plot(lasso.mod) > set.seed(1) > cv.out = cv.glmnet(x[train,], y[train], alpha = 1) > plot(cv.out) > bestlam = cv.out\$lambda.min > lasso.pred = predict(lasso.mod, s = bestlam, newx = x[test,])</pre>
out = glmnet(x, y, alpha = 1, lambda = g		on train set - Predict test set - Find test MSE Returns coefficient estimates - Note that some coefficients	<pre>> plot(lasso.mod) > set.seed(1) > cv.out = cv.glmnet(x[train,], y[train], alpha = 1) > plot(cv.out) > bestlam = cv.out\$lambda.min > lasso.pred = predict(lasso.mod, s = bestlam, newx = x[test,])</pre>
out = glmnet(x, y, alpha = 1, lambda = g		on train set - Predict test set - Find test MSE Returns coefficient estimates - Note that some coefficients	<pre>> plot(lasso.mod) > set.seed(1) > cv.out = cv.glmnet(x[train,], y[train], alpha = 1) > plot(cv.out) > bestlam = cv.out\$lambda.min > lasso.pred = predict(lasso.mod, s = bestlam, newx = x[test,])</pre>

(6C) SIX C - Dime	ension Reduction Methods				
R code	Description	Example			
library(pls)					
Principal Components Regression					
- Attempts to maximise the	e amount of variance explained in predic	ctors			
set.seed(2) pcr(y ~ ., data = df, subset = train, scale = T, validation = "CV")	Fit a PCR on train set - PCR is closely related to Ridge Regression - scale = T to standardise each predictor - validation = "CV" to compute ten- fold CV error for each possible value of M				
summary(model)	View resulting fit of PCR model - CV score is sqrt(MSE) - So MSE = CV ² - Cumulative PVE in predictors and response also provided - Amount of information about the predictors or the response that is captured using M principal components - Using all M = p will increase cumulative PVE to 100%	> summary(pcr.fit) Data: X dimension: 263 19 Y dimension: 263 1 Fit method: svdpc Number of components considered: 12 VALIDATION: RMSEP Cross-validated using 10 random segments (Intercept) 1 comps 2 comps CV 452 348.9 adjCV 452 348.7 TRAINING: % variance explained 1 comps 2 comps 3 comps X 38.31 60.16 70.84 Salary 40.63 41.58 42.17			
validationplot(model, val.type = "MSEP")	Plot CV scores - MSEP against number of components - CV errors are more variable/higher variance because: I. train set choice has much higher variance across different CV-folds 2. smaller dataset to train				

predict(model,	Estimate test error using M that gave lowest CV error	
x[test,],	lowest CV error	
<mark>ncomp = M</mark>)		
full_model <- pcr(y ~	Fit PCR on full dataset to get final	
x, scale = T, ncomp =	PCR coefficient estimates	
M)		
summary(full_model)		
	Double Library Comme	

Partial Least Squares

- No guarantee that x, y will be optimal (especially when n is small)
- Uses correlation between x and y to find approximate direction
- Searches for directions that explain variance in both predictors and response
- Variance of y plays a huge part

$plsr(y \sim ., data = df,$	Fit on training set	
subset = train,		
scale = T)		
summary(model)	Find best number of components, M	
predict(model, test_set,	Find test MSE - Useful when comparing models	
ncomp = M)	(E.g. PCR model)	
plsr(y ~ ., data = df,	Fit on full data set for best M	
scale = T,	components found	
ncomp = 2)		

(10A) TEN A – PCA, K-means							
R code	Description	Example					
Principal Components Analysis							
prcomp(df, scale = T)	Perform PCA - By default, variables centered to have mean = 0 - scale = T for sd = I						
names(pca_output)	Attributes of the output of an procomp() object	> names(pr.out) [1] "sdev" "rotation" "center" "scale" "x					
Means pca_output\$center S.d. pca_output\$scale	Means and standard deviations of variables used for scaling prior to implementing PCA						
pca_output\$rotation	Gives rotation matrix of size p by M/corresponding principal component loading vectors - If multiplied with X of size n by p, returns principal component scores/coordinates in rotated coordinate system						
pca_output\$x	Returns principal component score vectors of size n by M - kth column is for kth PC						
pca_score <- pca_output\$x	Plot first few PC scores to visualise data	# To assign colours to corresponding points instead of words					
plot(Cols = function(vec) {					
pca_score[, c(PC_num1, PC_num2)],		<pre>cols = rainbow(length(unique(vec)) return(cols[as.numeric(as.factor(vec))])</pre>					
col = Cols(df\$y))		<pre># Plot PC2 against PC1 > plot(pca_output\$x[, 1:2]) # Plot PC3 against PC1 > plot(pca_output\$x[,c(1,3)])</pre>					
biplot(pca_output,	Plots first 2 principal components in a biplot - scale = 0 ensures that loadings are in the right scale - PCs unique up to a sign change - Can get flipped version by flipping signs in loadings and scores						
pca_output\$sdev	Returns standard deviation of each principal component - With respect to loadings						

pr_var = pca_output\$sdev**2	Compute PVE of each component - Squared of \$sdev divided by total variance						
<pre>pve = pr_var/sum(pr_var)</pre>							
plot(pve,	Plot PVE						
xlab = "PC",	- type = 'b' for points to be						
lab = "PVE",	represented as a circle and connected by lines						
ylim = $c(0, 1)$,	,						
type = 'b')							
plot(cumsum(pve),	Plot cumulative PVE						
)							
	K-Means						
- If data has more than 2 var	•						
1	2) Plot the first 2 PC score vector Perform K-means clustering	ors 					
kmeans(x, k,	- Argument <i>nstart</i> can be used to						
nstart = n)	specify how many initial cluster						
	assignments to run algorithm						
	through - Generally a good idea to run with a						
	large value of nstart (e.g. 20, 50) to						
	discard undesirable local optima						
	- Algorithm is very efficient						
km_out\$cluster	View cluster assignments for each	> km.out = kmeans(x, 2, nstart = 20)					
	observation by index	> km.out\$cluster					
		[1]2222222222222222222					
		222221111111111111111111					
plot(x,	Plot data, with each						
col= (km_out\$cluster	observation coloured						
pch = 20, cex = 2)	according to its cluster assignment						
km out\$tot.withinss	Returns local minimum						
km out	Returns kmeans() object	> km out					
		_					
		Available components:					
		Available components: [1] "cluster" "centers" "totss" [4] "withinss" "tot.withinss" "betweenss"					
		[7] "size" "iter" "ifault"					

(10B) TEN B – Hierarchical Clustering							
R code	Description		Example				
hclust(dist(x),	Hierarchical clustering						
	- EUCLIDEAN-I						
method = "")	DISTANCE - dist() outputs a distance						
	output/distance ma						
hclust(dist(<mark>scale(x)</mark>),)	- Can scale variables before performing clustering						
	meth	nod =					
		Complete linkage					
	"complete"	- Default					
	"average"	Average linkage					
		Single linkage					
	"single"	- Commonly					
		gives a trailing					
		cluster					
		phenomenon					
	" + i - i - i - i - i - i - i -	Centroid linkage					
	"centroid"						
dd <- <mark>as.dist(1-cor(t(x)))</mark>	Hierarchical cluste						
hclust(dd,)	- CORRELATIO	N-RYZED					
	DISTANCE						
	-	square symmetric					
	correlation matrix						
	hclust() can recognise as a distance						
	matrix	l/l-+:l					
	- Highly correlated/ correlation value close to 1, smaller distance						
	- Correlation value close to -1,						
	larger distance (to consider close to -1 as close, take $\frac{ cor(x) }{ cor(x) }$)						
	- 1 as close, take <mark>jo</mark>	or(x))					
	- Dissimilarity function here is (I-r) where r is sample correlation						
	- Other choices: I. sqrt(I-r)						
	2. l - r						
	3. sqrt(- r)						
plot(hclust(),	Plot dendrograme	directly from					
	hclust() output						
labels = df\$y,							
cex = 0.9)							
abline(Plot cut						
h = height_of_cut,							
col = "red")							
cutree(hclust(),	Cut tree for a spec	cified number of					
The second secon	clusters						
<mark>C</mark>)	- c is number of cli	usters					

hc_clusters <- cutree() table(hc_clusters, df\$y)	View how observations were clustered against their true labels - Something similar to a confusion matrix	hc_clusters 1 2 3 4 - BRE and Codifferent clu - LEU all clu	2 3 0 2 NS are sters	3 2 0 0 e very	4 0 0 5 spread	0 0 1 0	0 0 1 0	0 0 6 0
km_cluster <- km_out\$cluster hc_cluster <- cutree(, k) table(km_cluster, hc_cluster)	Compare hierarchical cluster assignments with k-means cluster assignments	km_cluster. 1 2 3 4 - Cluster 1 spread out a km_clusters - Cluster 3 cmethods	1 2 For hc	1 0 9 20 _cluste	2 0 0 0 7 r has c	isters	in	
	Perform clustering based on first few PC score vectors - Results can be different from using full dataset - Sometimes PCA yields better results if most of signals captured in first few components - Using PCA as a denoising preprocessing step (get a cleaner result) - Looking at scree-plot decides where to make the cut	<pre># Do for first 5 PCs > hc_out <- hclust(dist(pr_out\$x[1:5])) > plot(hc_out,</pre>						