Assignment 18 (11/9)

Subhadip Chowdhury

- **Definition(Injective function):** (Definition 7.1.1) A function $f: A \to B$ is said to be injective if $f(a) = f(b) \implies a = b$ for all $a, b \in A$.
- **Definition(Surjective function):** A function $f: A \to B$ is called surjective if for every $b \in B$, there exists some $a \in A$ such that f(a) = b.

Problem 1

Find the largest subset of \mathbb{R} that can be the domain of the following functions. Then decide whether or not they are injective. Determine the range of each function as well.

- (a) $x + \frac{1}{x}$
- (b) $\frac{x}{|x|}$
- (c) $\frac{1}{(x+1)^{2/3}}$

Problem 2

Let $f: \mathbb{R} \to \mathbb{R}$ be defined by

$$f(x) = \frac{(1-x)(x-2)(x-6)}{x^2(x-5)}$$

Is f surjective onto \mathbb{R} ?

Problem 3

In each of the following case, give examples of a function f and two sets A, B, both subsets of \mathbb{R} ; such that $f:A\to B$ satisfies:

- (a) f'(x) > 0 for all $x \in A$ and f is surjective onto B, but f is not injective.
- (b) $f: A \to B$ is not injective but $f: A' \to B$ is injective for some subset $A' \subseteq A$.
- (c) $B = \mathbb{R}$, $f : A \to \mathbb{R}$ is bijective and f has infinitely many discontinuities.
- (d) f is not a constant function and f(A') = B for infinitely many subsets $A' \subseteq A$.

Problem 4

Prove that a continuous function f is injective if and only if it is strictly monotone (i.e. either strictly increasing or strictly decreasing).

Problem 5

- Prove that the function $f:[0,\infty)\to [0,\infty)$ defined as $f(x)=x^2$ is surjective.
- ullet Prove that the function $g:\mathbb{N}\to\mathbb{N}$ defined as $g(n)=n^2$ is NOT surjective.