МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ КИЇВСЬКИЙ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ імені ТАРАСА ШЕВЧЕНКА ФІЗИЧНИИЙ ФАКУЛЬТЕТ

Ракома О. Д.

3BIT

Операційні підсилювачі зі зворотним негативним зв'язком

Київ. КНУ ім. Т. Шевченка, 2021

УДК 53.08 (004.021)

ББК 73Ц

Укладачі: О. Д. Ракома

І-72 Звіт. Операційні підсилювачі./ укл. О. Д. Ракома. — К. : КНУ ім. Т. Шевченка, 2021. — 11с. (Укр. мов.)

Наведено загальний звіт виконання роботи з моделювання електронних схем у програмі NI Multisim 14.0^{TM} .

УДК 53.08 (004.021) ББК 73Ц

© Київський Національний Університет імені Тараса Шевченка 2021

РЕФЕРАТ

Звіт до ЛР №6: 10 с., 6 рис., 2 джерела.

ОПЕРАЦІЙНИЙ ПІДСИЛЮВАЧ, ОП, ІНТЕГРАЛЬНІ МІКРОСХЕМИ, ЕЛЕКТРОННИЙ СИГНАЛ, НЕГАТИВНИЙ ЗВОРОТНИЙ ЗВ'ЯЗОК, МОДЕЛЮВАННЯ, NI Multisim 14.0, НЕЛІНІЙНИЙ ЕЛЕМЕНТ

Об'єкт дослідження: операційні підсилювачі

Предмет дослідження: Принцип роботи операційних підсилювачів.

Мета роботи: ознайомитися з властивостями операційних підсилювачів, опанувати способи підсилення електричних сигналів схемами з ОП, охопленим негативним зворотним зв'язком та способи виконання математичних операцій за допомогою схем з ОП.

Метод дослідження: це метод співставлення: одночасне спостереження вхідного та вихідного сигналів на екрані двоканального осцилографа із наступним вимірюванням і порівнянням їх параметрів.

3MICT

ТЕОРЕТИЧНІ ВІДОМОСТІ	. 5
ПРАКТИЧНА ЧАСТИНА	. 5
ІНВЕРТУВАЛЬНИЙ ПІДСИЛЮВАЧ	. 6
НЕІНВЕРТУВАЛЬНИЙ ПІДСИЛЮВАЧ	. 7
ІНТЕГРАТОР	. 8
ВИСНОВКИ	. 9
ВИКОРИСТАНІ ДЖЕРЕЛА:	10

ТЕОРЕТИЧНІ ВІДОМОСТІ

Операційний підсилювач (англ. operational amplifier) — це диференціальний підсилювач постійного струму, який в ідеалі має нескінченний коефіцієнт підсилення за напругою і нульову вихідну напругу за відсутності сигналу на вході, великий вхідний опір і малий вихідний, а також необмежену смугу частот підсилюваних сигналів. Раніше такі високоякісні підсилювачі використовувалися виключно в аналогових обчислювальних пристроях для виконання математичних операцій, наприклад, складання та інтегрування. Звідси і походить їх назва — операційні підсилювачі (ОП).

Створення зворотного зв'язку полягає в тому, що частина вихідного сигналу підсилювача повертається через ланку зворотного зв'язку (33) на його вхід. Якщо сигнал зворотного зв'язку подається на вхід у протифазі до вхідного сигналу (різниця фаз $\Phi = \pi$), то зворотний зв'язок називають негативним (Н33). Якщо ж він подається на вхід у фазі до вхідного сигналу ($\Phi = 0$), то такий зворотний зв'язок називають позитивним (П33).

ПРАКТИЧНА ЧАСТИНА

Амплітуда становить 100 мВ, частота 1 Гц (в усіх дослідах, крім інтегратора).

ІНВЕРТУВАЛЬНИЙ ПІДСИЛЮВАЧ

Рис. 1. Схема для вимірювання сигналу на виході інвертувального підсилювача і порівняння цього сигнала із вхідним

Рис. 2. Вхідний та вихідний сигнал на інвертувальному підсилювачі

НЕІНВЕРТУВАЛЬНИЙ ПІДСИЛЮВАЧ

Рис. 3. Схема для вимірювання сигналу на виході неінвертувального підсилювача і порівняння цього сигналу із вхідним

Рис. 4. Вхідний та вихідний сигнал на неінвертувальному підсилювачі

ΙΗΤΕΓΡΑΤΟΡ

Рис. 5. Схема для вимірювання сигналу на виході інтегратора і порівняння цього сигнала із вхідним

Рис. 6. Вхідний та вихідний сигнал на інтеграторі

ВИСНОВКИ

Була проведена лабораторна робота, у ході якої було досліджено, як операційні підсилювачі впливають на поданий на них сигнал. Інвертувальний підсилювач збільшує амплітуду у 10 разів і створює зсув фази на половину. Неінвертувальний підсилювач не створює зсув на половину фази, та збільшує амплітуду приблизно у 10 разів. Зазначені збільшення амплітуди для обох підсилювачів досягаються при використанні резисторів 10 і 100 кОм, точніше при використанні резисторів із відношенням опорів у 10 разів. При іншому співвідношенні відповідне збільшення опорів отримаємо амплітуди. високій частоті (порівняно <u>i</u>3 попередніми Інтегратор при доволі підсилювачами із поданою на них частотою 1 Гц, на інтегратор подавалася частота 1 кГц) перетворює прямокутний сигнал у пилкоподібний (При чому довжина хвилі збільшилася у 2 рази). При малій частоті пилкоподібний сигнал вироджується у прямокутний, із відставанням у півфази.

ВИКОРИСТАНІ ДЖЕРЕЛА:

- 1) Методичні вказівки до практикуму «Основи радіоелектроніки» для студентів фізичного факультету / Упоряд. О.В.Слободянюк, Ю.О.Мягченко, В.М.Кравченко.- К.: Поліграфічний центр «Принт лайн», 2007.- 120 с.
- 2) Ю.О. Мягченко, Ю.М. Дулич, А.В.Хачатрян ВИВЧЕННЯ РАДІОЕЛЕКТРОННИХ СХЕМ МЕТОДОМ КОМП'ЮТЕРНОГО МОДЕЛЮВАНН