

Buffered H-Bridge

FEATURES

- 1.0-A H-Bridge
- · 200-kHz Switching Rate
- · Shoot-Through Limited
- TTL Compatible Inputs
- 3.8- to 13.2-V Operating Range
- · Surface Mount Packaging

APPLICATIONS

- VCM Driver
- · Brushed Motor Driver
- Stepper Motor Driver
- Power Converter
- · Optical Disk Drives
- Power Supplies
- High Performance Servo

DESCRIPTION

The Si9986 is an integrated, buffered H-bridge with TTL compatible inputs and the capability of delivering a continuous 1.0 A @ V_{DD} = 12 V (room temperature) at switching rates up to 200 kHz. Internal logic prevents the upper and lower outputs of either half-bridge from being turned on

simultaneously. Unique input codes allow both outputs to be forced low (for braking) or forced to a high impedance level.

The Si9986 is available in an 8-Pin SOIC package, specified to operate over a voltage range of 3.8 V to 13.2 V and a the commercial temperature range of 0 to 70°C (C suffix) and the industrial temperature range of -40 to 85°C (D suffix).

FUNCTIONAL BLOCK DIAGRAM, PIN CONFIGURATION AND TRUTH TABLE

TRUTH TABLE										
INA	IN _B	OUTA	OUTB							
1	0	1	0							
0	1	0	1							
0	0	0	0							
1	1	HiZ	HiZ							

ORDERING INFORMATION									
Part Number	Temperature Range	Package							
Si9986CY-T1	0 to 70°C	Tape and Reel							
Si9986DY-T1	-40 to 85°C	Tape and Neel							
Si9986CY	0 to 70°C	Pulk (tuboo)							
SI9986DY	-40 to 85°C	Bulk (tubes)							

Vishay Siliconix

ABSOLUTE MAXIMUM RATINGS^a

Voltage on any pin with respect to ground -0.3 V to V_{DD} + 0.3 V
Voltage on pins 5, 8 with respect to GND $\dots -1$ V to V_{DD} + 1 V
Voltage on pins 1, 40.3 V to GND + 1 V
Peak Output Current1.5 A
Storage Temperature
Maximum Junction Temperature (T_J) 150°C
Maximum V _{DD}

Power Dissipation ^b	Ν
Θ_{JA}	Ν
Operating Temperature Range Si9986CY0 to 70°	
Si9986DY40 to 85°	С
Notes	

- a. Device mounted with all leads soldered or welded to PC board.
- b. Derate 10 mW/°C above 25°C.

RECOMMENDED OPERATING RANGE

V_{DD}				٠.								 	 	٠.	٠.	. 3	8.	V to	13.2	V
Maxi	mum	Jui	ncti	on	Tei	npe	era	tur	e (T_{J}).	 	 						125°	С

			Unless Specified	C					
Parameter	Symbol	V _{DD} = 3. S _A @ GND	8 to 13.2 V), S _B @ GND	Min ^a	Max ^a	Unit			
Input					•				
Input Voltage High	V_{INH}			2			V		
Input Voltage Low	V_{INL}					1	V		
Input Current with Input Voltage High	I _{INH}	V _{IN}	= 2 V			1			
Input Current with Input Voltage Low	I _{INL}	V _{IN}	= 0 V	-1			μA		
Output	•				•				
		I – 500 m A	V _{DD} = 10.8 V	10.5	10.7				
Output Voltage High	V _{OUTH}	$I_{OUT} = -500 \text{ mA}$	V _{DD} = 4.5 V	4.1	4.3				
		I _{OUT} = -300 m	nA, V _{DD} = 3.8 V	3.4	3.7		V		
		I _{OUT} = 500 mA	V _{DD} = 10.8 V		0.2	0.3]		
Output Voltage Low	V_{OUTL}	1001 = 200 HIY	V _{DD} = 4.5 V		0.2	0.4			
		I _{OUT} = 300 m	$A, V_{DD} = 3.8 V$		0.1	0.4			
Output Leakage Current Low	I _{OLL}	$V_{OUT} = 0, V$	V _{DD} = 13.2 V	-10	0		μA		
Output Leakage Current High	I _{OLH}	$IN_A = IN_B \ge 2 \text{ V, V}$	$OUT = V_{DD} = 13.2 \text{ V}$		0	10	μΛ		
Output V Clamp High	V _{CLH}	$IN_A = IN_B \ge 2 \text{ V}$	I _{OUT} = 100 mA		V _{DD} + 0.7		V		
Output V Clamp Low	V _{CLL}	IIVA = IIVB ≥ 2 V	I _{OUT} = -100 mA		-0.7		V		
Supply									
V _{DD} Supply Current		IN = 100 kH	z, V _{DD} = 5.5 V		2		mA		
V _{DD} Supply Current I _{DD}		$IN_A = IN_B = 4.$	5 V, V _{DD} = 5.5 V			300	μA		
Dynamic									
Propogation Delay Time	T _{PHH}	V _{DD} :		300		nS			
1 Topogation Dolay Time	T _{PHL}	V DD ·	- 0.0 v		100				

- a. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this data sheet.
- b. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing.

TYPICAL CHARACTERISTICS (25°C UNLESS OTHERWISE NOTED)

I DD (mA)

Vishay Siliconix

TYPICAL CHARACTERISTICS (25°C UNLESS OTHERWISE NOTED)

