Grundbegriffe der Informatik Tutorium 36

Termin 4 | 18.11.2016 Thassilo Helmold

Inhalt

Formale Sprachen

Von der Darstellung zur Zahl

Von der Zahl zur Darstellung

Übungsblätter

Durchschnitt: 11,4 / 19 Punkten

- Bitte erwartet keine volle Punktzahl. Übungsblätter sind dazu da, Fehler zu machen und daraus zu lernen.
- Versucht möglichst alle Aufgaben zu bearbeiten.
- Wenn keine Begründung/Beweis gefordert ist, müsst ihr keinen angeben.
- Nicht mehrere Alternativen angeben, unter denen ich mir die richtige heraussuchen soll.

Übungsblätter: Häufige Fehler

- Beweise fängt man mit der Behauptung an
- Wenn wir A schreiben, ist das immer eine Menge
 Das muss man explizit angeben
- Ein Beispiel ersetzt einen Beweis.
 Mit einem Beispiel kann man eine Behauptung widerlegen, es zeigt aber nicht die Allgemeingültigkeit
- $|M| = M \qquad F |M| \text{ ist die } \mathbf{Anzahl} \text{ der Elemente in } M$

Wenn ihr eine Formel aufstellt, dann **prüft das Ergebnis für kleine Werte**. 90% der falschen Antworten in 1.6.c) haben schon für $n \in \{0, 1\}$ nicht gestimmt.

Passt auf, was eure Variablen sind und welche Operationen ihr darauf anwenden könnt. Mengen kann man nicht mit \land , \lor verknüpfen

18 11 2016

In the previous episode of GBI...

Rückblick

- Alphabet Σ mit Zeichen, aus denen wir Wörter zusammensetzen
- Wir können nicht immer allen Wörtern einen Sinn zuordnen
- Wir definieren selbst, welche Wörter wir als korrekt ansehen und akzeptieren wollen.
- Das ist eine formale Sprache: Eine Teilmenge aller möglichen Wörter

Rückblick

Auf formale Sprachen können wir **ähnliche** Operationen anwenden wie auf Wörter:

- $L_1 \cdot L_2 = \{w_1 w_2 \mid w_1 \in L_1 \text{ und } w_2 \in L_2\}$ Ein Wort aus L1 konkateniert mit einem Wort aus L2.
- $L^0 = \{\varepsilon\}$ $L^{i+1} = L^i \cdot L$ Alle Wörter die aus i Wörtern der Sprache zusammengesetzt wurden
- $L^+ = \bigcup_{i=1}^{\infty} L^i$ $L^* = L^+ \cup L^0$

Alle Wörter, die sich aus den Wörtern der Sprache bilden lassen Ein Alphabet kann man auch als formale Sprache mit Wörtern der Länge 1 auffassen.

18 11 2016

- Jede Sprache enthält Wörter
 F Ø ist auch eine gültige Sprache
- $01^* = \{\epsilon, 01, 0101, ...\}$ F 01^* gibt es nicht, denn $01 \neq \{01\}$
- Es gibt Sprachen L, für die gilt $\varepsilon \in L^+$ W $L = \{\varepsilon\}$
- $L^+ = L^* \setminus L^0$ F Das gilt nicht, wenn $\varepsilon \in L$
- $\{\}^* \neq \{\}$ W $\{\}^* = \{\epsilon\}$

$$\Sigma = \{\triangle, \square, \circ\}.$$

Die Sprache der Wörter, die mit einem Kreis beginnen und danach keinen Kreis mehr enthalten.

$$\{\circ\}\cdot\{\triangle,\square\}^*$$

$$\{w \in \Sigma^* \mid w = \circ \cdot v, v \in \{\triangle, \square\}^*\}$$

Die Sprache der Wörter, deren vorletztes Zeichen ein Dreieck ist.

$$\{\triangle, \square, \circ\}^* \cdot \triangle \cdot \{\triangle, \square, \circ\}$$

$$\{w \in \Sigma^* \mid w = v \cdot \triangle \cdot \mu, v \in \Sigma^*, \mu \in \Sigma\}$$

$$(\{\Box, \circ\}^* \cdot \{\triangle\triangle\}^*)^*$$

Die Sprache der Wörter, in denen nirgends eine ungerade Anzahl an Dreiecken nebeneinander steht.

$$\{\triangle, \circ\}^* \cdot (\{\Box\} \cdot \{\triangle, \circ\}^* \cdot \{\Box\} \cdot \{\triangle, \circ\}^*)^*$$

Die Sprache der Wörter, in denen eine gerade Anzahl an Vierecken vorkommt.

$$\{\Box, \triangle\}^* \cdot (\{\circ\} \cdot \{\Box, \triangle\}^+)^* \cdot \{\circ, \epsilon\}$$

Die Sprache der Wörter, in denen nirgends zwei Kreise aufeinander folgen.

Formale Sprachen

Beispiel

Sei $A = \{a, b\}$ ein Alphabet. Mit L wollen wir alle Wörter beschreiben, die genau ein b enthalten.

$$L = \{w_1bw_2 \mid w_1, w_2 \in \{a\}^*\}$$
 $L = \{a\}^* \cdot \{b\} \cdot \{a\}^*$

Was ist L^3 ? Was enthält L^i ? Zum Beispiel ist

 $aaababaaaabaa = aaaba \ baa \ aabaa \in L_3$

 L^i enthält alle Wörter, die genau i-mal ein b enthalten!

Was enthält

$$L^i\setminus\{b\}^*$$

Alle Wörter, die aus i b's bestehen, aber auch noch mindestens ein a enthalten.

Aufgabe

Welche Eigenschaft muss eine formale Sprache *L* über einem Alphabet *A* erfüllen, damit gilt:

$$\textit{L}^{0} \subseteq \textit{L}^{1} \subseteq \textit{L}^{2} \subseteq \textit{L}^{3} \subseteq ...$$

Lösung

Das gilt, wenn

$$\epsilon \in \mathit{L}$$

Aufgabe (Klausur)

• Wiederlegen Sie: Für alle formalen Sprachen L_1 , L_2 gilt:

$$L_1^* \cup L_2^* = (L_1 \cup L_2)^*$$

■ Zeigen Sie: Für alle formalen Sprachen *L* gilt:

$$L^* \cdot L = L^+$$

Tipp zu 2) (nicht in der Klausur gegeben): Hier handelt es sich um eine Mengengleichheit, also argumentieren wir mit " \subseteq " und " \supseteq "

Für alle formalen Sprachen L_1 , L_2 gilt:

$$L_1^* \cup L_2^* = (L_1 \cup L_2)^*$$

Diese Aussage ist falsch: Sei $L_1 = \{a\}$ und $L_2 = \{b\}$. Dann liegt **ab** in $(L_1 \cup L_2)^* = \{a, b\}^*$ aber nicht in $L_1^* \cup L_2^* = \{a\}^* \cup \{b\}^*$.

Für alle formalen Sprachen L gilt:

$$L^* \cdot L = L^+$$

Diese Aussage ist wahr!

1. Schritt:
$$L^* \cdot L \subseteq L^+$$
:

Wenn $w \in L^* \cdot L$ liegt, dann lässt es sich in Teilwörter auftrennen

$$w = w_1 \cdot w_2$$

mit $w_1 \in L^*$ und $w_2 \in L$. Für w_1 existiert ein $i \in \mathbb{N}_0$ mit $w_1 \in L^i$. Also

$$w = w_1 w_2 \in L^i \cdot L = L^{i+1} \subset L^+$$

Für alle formalen Sprachen L gilt:

$$L^* \cdot L = L^+$$

Diese Aussage ist wahr!

2. Schritt: $L^* \cdot L \supseteq L^+$:

Wähle nun $w \in L^+$. Dann existiert ein $i \in \mathbb{N}_+$ mit $w \in L^i$. Da i > 0 lässt es sich schreiben als i = j + 1 für ein $j \in \mathbb{N}_0$. Also ist

$$w \in L^{j+1} = L^j \cdot L \subset L^* \cdot L$$

Aufgabe (WS 2008)

Es sei $A = \{a, b\}$. Die Sprache $L \subset A^*$ sei definiert durch

$$L = (\{a\}^* \cdot \{b\} \cdot \{a\}^*)^*$$

Zeigen Sie, dass jedes Wort w aus $\{a, b\}^*$, das mindestens einmal das Zeichen b enthält, in L liegt. (Hinweis: Führen Sie eine Induktion über die Anzahl der Vorkommen des Zeichens b in w durch.)

$$L = (\{a\}^* \cdot \{b\} \cdot \{a\}^*)^*$$

Sei k die Anzahl der Vorkommen von b in einem Wort $w \in \{a, b\}^*$.

Induktionsanfang

Für k = 1: In diesem Fall lässt sich das Wort w aufteilen in

$$w = w_1 \cdot b \cdot w_2$$

wobei w_1 und w_2 keine b enthalten und somit in $\{a\}^*$ liegen. Damit gilt $w \in \{a\}^* \cdot \{b\} \cdot \{a\}^*$ und somit auch

$$w \in (\{a\}^* \cdot \{b\} \cdot \{a\}^*)^* = L$$

Induktionsannahme

Für ein festes $k \in \mathbb{N}$ gilt, dass alle Wörter über $\{a, b\}^*$, die genau k-mal das Zeichen b enthalten, in L liegen.

Induktionsschritt

Wir betrachten ein Wort w, das genau k+1 mal das Zeichen b enthält. Dann kann man w zerlegen in $w=w_1\cdot w_2$, wobei w_1 genau einmal das Zeichen b enthält und w_2 genau k-mal das Zeichen b. Nach Induktionsanfang liegt w_1 in $\{a\}^*\{b\}\{a\}^*$. Nach Induktionsvoraussetzung liegt w_2 in $(\{a\}^*\{b\}\{a\}^*)^*$, was bedeutet, dass $w=w_1\cdot w_2$ in

$$(\{a\}^*\{b\}\{a\}^*)(\{a\}^*\{b\}\{a\}^*)^* \subseteq (\{a\}^*\{b\}\{a\}^*)^* = L$$

liegt und die Behauptung ist gezeigt.

Ausblick: Klammerausdrücke

Was ist mit der Sprache aller gültigen Klammerausdrücke? Können wir diese auch mit Mengen, Konkatenation und Kleenschem Abschluss angeben? Spoiler: Nein, das geht nicht!

SOON

(AN UNMATCHED LEFT PARENTHESIS CREATES AN UNRESOLVED TENSION THAT WILL STAY WITH YOU ALL DAY.

Abbildung: https://xkcd.com/859/

Formale Sprachen

Von der Darstellung zur Zahl

Von der Zahl zur Darstellung

24

Numerischer Wert

Definition

Zu einer Zahlenbasis b definiere

$$\operatorname{Num}_b(\varepsilon) = 0$$

$$\operatorname{Num}_b(wx) = b \cdot \operatorname{Num}_b(w) + \operatorname{num}_b(x)$$
 für alle $w \in Z_b^*$, $x \in Z_b$

Beachte: $Num_b: Z_b^* \to \mathbb{Z}$ ist Abbildung, die einem Wort (Zahlendarstellung) eine Zahl (Wert) zuordnet. Wir müssen diesen Wert aber natürlich wieder in eine Darstellung umwandeln, um ihn aufschreiben zu können.

Aufgabe

Berechnet die Zahlenwerte von 112, 3214, B216.

$$\begin{aligned} \mathsf{Num}_2(11) &= 2 \cdot \mathsf{Num}_2(1) + \mathsf{num}_2(1) \\ &= 2 \cdot 1 + 1 \\ &= 3 \\ \mathsf{Num}_4(321) &= 4 \cdot \mathsf{Num}_4(32) + \mathsf{num}_4(1) \\ &= 4 \cdot (4 \cdot \mathsf{Num}_4(3) + \mathsf{num}_4(2)) + \mathsf{num}_4(1) \\ &= 4^2 \cdot \mathsf{num}_4(3) + 4 \cdot \mathsf{num}_4(2) + \mathsf{num}_4(1) \\ &= 57 \\ \mathsf{Num}_{16}(B2) &= 16 \cdot \mathsf{Num}_{16}(B) + \mathsf{num}_{16}(2) \\ &= 16 \cdot 11 + 2 \\ &= 178 \end{aligned}$$

Wohldefiniertheit

Behauptung: Die Definition

$$\operatorname{Num}_b(\varepsilon) = 0$$

$$\operatorname{Num}_b(wx) = b \cdot \operatorname{Num}_b(w) + \operatorname{num}_b(x)$$
 für alle $w \in Z_b^*$, $x \in Z_b$

ist wohldefiniert und weist jedem Wort eine eindeutige Bedeutung zu, die dem Zahlenwert entspricht.

Beweis

Beweis durch vollständige Induktion über n = |w|

- $|A| n = 0 = |w| \implies w = \varepsilon.$ Für $w = \varepsilon$ ist Num_b wohldefiniert und sinnvoll (nämlich $Num_b(\varepsilon) = 0$).
- IV Für ein beliebig aber festes $n \in \mathbb{N}_0$ sei $Num_b(w)$ frallewmit |w| = nwohlde finiertundentsprechedem Zahlenwert.
- IS Wähle w' mit |w'| = n + 1, dann gibt es ein $w \in Z_b^n$, $x \in Z_b$, so dass w' = wxMit der Definition gilt nun

$$\operatorname{Num}_b(w') = b \cdot \underbrace{\operatorname{Num}_b(w)}_{IV} + \operatorname{num}_b(x)$$

Die Summe ist laut *IV* wohldefiniert. Auch ist laut *IV* Num_b(w) der Zahlenwert von w und damit auch Num_b(w').

Formale Sprachen

Von der Darstellung zur Zahl

Von der Zahl zur Darstellung

28

Division und Modulo

Definition

x **div** *y* ist die ganzzahlige Division von x durch y.

x mod y liefert den Rest dieser Division

Beobachtung

$$x \operatorname{div} y \in \mathbb{N}_0$$
 $x \operatorname{mod} y \in \{0, \dots, y-1\}$

Lemma

$$x = y \cdot (x \mathbf{div} y) + (x \mathbf{mod} y)$$

Beispiel

	x aiv y	x moa y
x = 2, y = 3	0	2
x = 5, y = 2	2	1
x = 8, y = 2	4	0

Beispiel

X												
x div 4	0	0	0	0	1	1	1	1	2	2	2	2
x div 4 4 (x div 4)	0	0	0	0	4	4	4	4	8	8	8	8
$x \mod 4$	0	1	2	3	0	1	2	3	0	1	2	3

Repräsentation

Definition

 $Repr_k(n)$ ist das kürzeste Wort $w \in Z_k^*$ mit $Num_k(w) = n$, also

$$Num_k(Repr_k(n)) = n$$

Anmerkung: Im Allgemeinen

$$Repr_k(Num_k(w)) \neq w$$

da überflüssige Nullen wegfallen.

Repräsentation

Wir definieren

$$Repr_k : \mathbb{N}_0 \to Z_k$$

$$n \mapsto \begin{cases} repr_k(n) & n < k \\ Repr_k(n \operatorname{\mathbf{div}} k) \cdot repr_k(n \operatorname{\mathbf{mod}} k) & n \geqslant k \end{cases}$$

Aufgabe

Berechne folgende Darstellungen:

$$Repr_2(42) = 101010$$

$$Repr_4(42) = 222$$

$$Repr_8(42) = 52$$

$$Repr_{16}(42) = 2A$$

18.11.2016

Beispiel: Lösung

$$Repr_8(42) = Repr_8(42 \text{ div } 8) \cdot repr_8(42 \text{ mod } 8)$$

= $Repr_8(5) \cdot repr_8(2)$
= $repr_8(5) \cdot 2$
= $5 \cdot 2$
= 52_8

Was ihr nun wissen solltet

- Wie man formale Sprachen angibt
- Wie man Beweise mit formalen Sprachen führt
- Wie man von Zahlendarstellungen zu Zahlen kommt...
- ... und wieder zurück

Was nächstes Mal kommt

- Nicht immer so positiv: Negative Zahlen
- Komprimierung: Huffmann-Codierungen

Abbildung: https://xkcd.com/953/

Danksagung

Dieser Foliensatz basiert in Teilen auf Folien von:

Philipp Basler Nils Braun Dominik Doerner Ou Yue