1.2.3 Определение моментов инерции твердых тел с помощью трифилярного подвеса

Анна Назарчук Б02-109

1 Теоретические сведения

Момент инерции твердого тела рассчитывается по формуле:

$$I = \int r^2 dm \tag{1}$$

Далеко не всегда удается вычислить момент инерции тела аналитически ввиду неоднородности или сложной формы, в таких случаях удобно сделать это экспериментально, например, с помощью трифилярного подвеса. Устройство состоит из неподвижной платформы, вращающейся платформы, подвешенной на трех симметричных нитях. Если пренебречь потерями энергии, то уравнение сохранения энергии при колебания:

$$\frac{I\dot{\varphi}^2}{2} + mg(z_0 - z) = E,\tag{2}$$

где I - момент инерции платформы и тела, z_0 - координата по вертикали центра нижней платформы при равновесии, z - координата аналогичной точки при повороте на угол ϕ . Из уравнения $\frac{2}{2}$ видно, что колебательное движение системы происходит благодаря силе тяжести.

Рассмторим точку С на верхней платформе с координатами (r,0,0) и точку C''', противоположную С при повороте на ϕ , с координатами $(R\cos(\varphi), R\sin(\varphi)), z)$ Расстояние между нимим равно длине нити:

$$(R\cos(\phi) - r)^2 + R^2\sin^2\phi + z^2 = L^2 \tag{3}$$

Для малых углов:

$$z^{2} = L^{2} - R^{2} - r^{2} + 2Rr\cos\varphi = z_{0}^{2} - 2Rr(1 - \cos\varphi) \approx z_{0}^{2} - Rr\varphi^{2}$$
 (4)

Рис. 1: Трифилярный подвес

$$z \approx \sqrt{z_0^2 - Rr\varphi^2} \approx z_0 \sqrt{1 - \frac{Rr\varphi^2}{z_0^2}} \approx z_0 - \frac{Rr\varphi^2}{2z_0}$$
 (5)

Подставив это в уравнение 2:

$$\frac{1}{2}I\dot{\varphi} + mg\frac{Rr}{2z_0}\varphi^2 = E \tag{6}$$

Откуда:

$$\varphi = \varphi_0 \sin(\sqrt{\frac{mgRr}{Iz_0}}t + \Theta) \tag{7}$$

Константны определяются начальными условиями, а период колебаний системы:

$$T = 2\pi \sqrt{\frac{Iz_0}{mgRr}} \tag{8}$$

Откуда не трудно определить выражние для момента инерции:

$$I = \frac{mgRrT^2}{2\pi^2 z_0} \tag{9}$$

Таблица 1: Геометрические параметры установки

z_0 , MM	R, mm	г, мм	$k, M^2/c^2$	σ_k , $\mathrm{m}^2/\mathrm{c}^2$
2166.93 ± 0.018	115.4 ± 0.5	30.5 ± 0.3	$0.40 \cdot 10^{-3}$	$0.02 \cdot 10^{-3}$

Таблица 2: Измерения момента инерции пустой платформы

						1 1
N	$m_{\rm груза}/{\rm c}^2$, г	t, c	Т, с	$k, \cdot 10^{-3} M^2/c^2$	$m_{\text{плат}},$	$I_{ ext{тела}}, \Gamma \cdot ext{m}^2$
10	0	44	4.425	0.404	993	7.852
10	0	44	4.422	0.404	993	7.841
10	0	44	4.417	0.404	993	7.822
11	0	48	4.423	0.404	993	7.846
10	0	44	4.415	0.404	993	7.815
10	0	44	4.411	0.404	993	7.801
10	0	44	4.406	0.404	993	7.785
10	0	44	4.402	0.404	993	7.772

Для краткости:

$$I = kmT^2 \tag{10}$$

Для постоянной k для данной установки:

$$k = I = \frac{gRr}{2\pi^2 z_0} \tag{11}$$

2 Измерения и обработка данных

2.1 Измерения параметров установки

Геометрические параметры установки представлены в таблице 2.1, момент инерции пустой платформы (согласно таблице 2.1) равен:

$$I_{\text{платформы}} = 7.85 \pm 0.17 \cdot \text{M}^2$$
 (12)

2.2 Измерения моментов инерции разных тел

Измерения момента инерции диска представлены в таблице 2.2, согласно теоретическому расчету из геометрических размеров диска: $I_{\rm диск}=2.11$ г· м². Из полученных данных: $I_{\rm дисk}=2.17\pm0.07$ г· м². Это подтверждает правильность метода измерения.

Таблица 3: Измерение момента инерции диска

N	$m_{ m rpy 3a},$ г	t, c	T, c	$k, \cdot 10^{-3} M^2/c^2$	$m_{\text{плат}},$	$I_{\text{системы}}, \Gamma \cdot \text{M}^2$	$I_{\text{платформы}}, \Gamma \cdot \text{м}^2$	$I_{ m Tena}$, г
10	590	39	3.958	0.404	993	10.013	7.817	2.197
11	590	43	3.957	0.404	993	10.011	7.817	2.194
10	590	39	3.953	0.404	993	9.988	7.817	2.17
10	590	39	3.949	0.404	993	9.971	7.817	2.154
10	590	39	3.953	0.404	993	9.99	7.817	2.173
10	590	39	3.952	0.404	993	9.985	7.817	2.168
10	590	39	3.95	0.404	993	9.975	7.817	2.159
10	590	39	3.949	0.404	993	9.97	7.817	2.153
10	590	39	3.948	0.404	993	9.963	7.817	2.146
10	590	39	3.947	0.404	993	9.96	7.817	2.143

Таблица 4: Измерение момента инерции цилиндра

	тасында т. тізмеренне момента інтердіні діянидра									
N	$m_{ m rpy3a},$ г	t, c	Т, с	$k, \cdot 10^{-3} M^2/c^2$	$m_{\text{плат}},$	$I_{\text{системы}}, \Gamma \cdot \text{м}^2$	$I_{\text{платформы}}, \Gamma \cdot \text{M}^2$	$I_{ m Tena}$, г		
13	772	54	4.226	0.404	993	12.728	7.817	4.911		
10	772	42	4.219	0.404	993	12.687	7.817	4.87		
10	772	42	4.217	0.404	993	12.67	7.817	4.854		
10	772	42	4.211	0.404	993	12.634	7.817	4.817		
10	772	42	4.208	0.404	993	12.622	7.817	4.805		
11	772	46	4.205	0.404	993	12.6	7.817	4.783		
11	772	46	4.202	0.404	993	12.584	7.817	4.767		
10	772	41	4.2	0.404	993	12.568	7.817	4.752		
10	772	41	4.2	0.404	993	12.57	7.817	4.753		
10	772	41	4.195	0.404	993	12.542	7.817	4.725		

Таблица 5: Измерение момента инерции параллелепипеда

N	$m_{ m rpy3a}, \Gamma$	t, c	Т, с	$k, \cdot 10^{-3} M^2/c^2$	$m_{\text{плат}}$,	$I_{ ext{cuctemb}}, \Gamma \cdot ext{m}^2$	$I_{\text{платформы}}, \Gamma \cdot \text{M}^2$	$I_{ m rena}, \Gamma$ ·
12	1077	45	3.789	0.404	993	12.003	7.817	4.186
22	1077	83	3.786	0.404	993	11.979	7.817	4.162
10	1077	37	3.783	0.404	993	11.961	7.817	4.145
13	1077	49	3.782	0.404	993	11.957	7.817	4.14
13	1077	49	3.776	0.404	993	11.92	7.817	4.103
10	1077	37	3.78	0.404	993	11.945	7.817	4.128
10	1077	37	3.777	0.404	993	11.925	7.817	4.108
11	1077	41	3.778	0.404	993	11.928	7.817	4.111
19	1077	72	3.794	0.404	993	12.031	7.817	4.214
10	1077	37	3.791	0.404	993	12.012	7.817	4.195

Таблица 6: Измерение момента инерции диска и цилиндра

N	$m_{ m rpy 3a},$ г	t, c	T, c	$k, \cdot 10^{-3} M^2/c^2$	$m_{\text{плат}},$	$I_{ ext{cucтemb}}, \Gamma \cdot ext{m}^2$	$I_{\text{платформы}}, \Gamma \cdot \text{M}^2$	$I_{ ext{тела}}, \Gamma$ ·
21	1362	83	3.953	0.404	993	14.86	7.817	7.043
11	1362	43	3.91	0.404	993	14.813	7.817	6.996
11	1362	43	3.943	0.404	993	14.786	7.817	6.969
11	1362	43	3.91	0.404	993	14.76	7.817	6.944
16	1362	62	3.936	0.404	993	14.734	7.817	6.917
11	1362	43	3.934	0.404	993	14.712	7.817	6.895
12	1362	47	3.932	0.404	993	14.7	7.817	6.883
10	1362	39	3.929	0.404	993	14.677	7.817	6.861
12	1362	47	3.91	0.404	993	14.678	7.817	6.861
10	1362	39	3.928	0.404	993	14.672	7.817	6.855

Измерения момента инерции цилиндра представлены в таблице 2.2, согласно теоретическому расчету из геометрических размеров цилиндра: $I_{\text{цилиндр}} = 4.64 \text{г} \cdot \text{м}^2$. Из полученных данных: $I_{\text{цилиндр}} = 4.79 \pm 0.09 \text{г} \cdot \text{м}^2$. Это подтверждает правильность метода измерения.

Измерения момента инерции параллелепипеда представлены в таблице 2.2, согласно теоретическому расчету из геометрических размеров параллелепипеда: $I_{\rm кубоид}=4.02$ г · м². Из полученных данных: $I_{\rm кубоид}=4.14\pm0.04$ г · м². Это подтверждает правильность метода измерения.

2.3 Проверка закона аддитивности момента инерции

Согласно таблице 2.3: $I_{\rm дисk+цилиндр}=6.92\pm0.03$ г·м². Согласно измереням моментов инерции тел по отдельности: $I_{\rm дисk+цилиндр}=6.97\pm0.11$ г·м². Из чего следует справедливость закона аддитивности момента инерции.

2.4 Измерение зависомости момента инерции диска от раздвижения его половинок

По данным из таблицы 2.4 построим график зависимости момента инерции диска от расстояния от каждой из половинок до центра платформы. График на рисунке 2

По наклону графика можно определить массу диска (в соотвествии в теоремой Гюйгенса-Штейнера): $m=1.52\pm0.02$ кг, по отклонению найти момент инерции диска: $I=1.69\pm0.02$ г·м². Что согласуется с измеренной массой ($m=1.53\pm0.02$ кг), теоретическим рассчетом момента инерции: $I=1.53\pm0.02$ г·м²

Таблица 7: Измерение момента инерции диска при движении половинок

	1			9 0			Δ	
N	$m_{ m rpy 3a}, \Gamma$	t, c	Т, с	$k, \cdot 10^{-3} M^2$	$m_{\text{плат}},$	$I_{\text{системы}}, \Gamma \cdot M^2$	$I_{\text{платформы}}, \Gamma \cdot \text{M}^2$	$I_{ m rena}$, г \cdot м 2
30	1528	91	3.061	0.404	993	9.536	7.817	1.72
32	1528	98	3.067	0.404	993	9.575	7.817	1.758
31	1528	95	3.074	0.404	993	9.616	7.817	1.8
30	1528	93	3.12	0.404	993	9.907	7.817	2.09
30	1528	94	3.157	0.404	993	10.147	7.817	2.33
34	1528	109	3.21	0.404	993	10.486	7.817	2.669
35	1528	114	3.275	0.404	993	10.916	7.817	3.099
30	1528	100	3.338	0.404	993	11.338	7.817	3.521
31	1528	106	3.429	0.404	993	11.97	7.817	4.154

Рис. 2: График зависимости момента инерции диска от квадрата расстояния от каждой из половинок до центра платформы

3 Вывод

Измерены моменты инерции тел, результаты сравнены с теоретическими рассчетами, проверена справедливость аддидивности моента инерции и теорема Гюйгенса-Штейнера.