Introduction to Machine Learning and Data Mining Lecture-10: Support Vector Machine and Kernel Methods

Prof. Eugene Chang

Today

- Support Vector Machines
 - Soft margin
 - Kernels method
- Slides based on materials from Prof. Kristen Grauman, University of Texas at Austin, and Prof Jiawei Han, University of Illinois at Urbana-Champaign

Linear Classifiers

Lines in R²

Let
$$\mathbf{w} = \begin{bmatrix} a \\ c \end{bmatrix} \quad \mathbf{x} = \begin{bmatrix} x \\ y \end{bmatrix}$$

$$ax + cy + b = 0$$

Lines in R²

Let
$$\mathbf{w} = \begin{bmatrix} a \\ c \end{bmatrix} \quad \mathbf{x} = \begin{bmatrix} x \\ y \end{bmatrix}$$

$$ax + cy + b = 0$$

$$\mathbf{w} \cdot \mathbf{x} + b = 0$$

Linear Classifiers

• Find linear function to separate positive and negative examples

Support Vector Machines (SVMs)

 Discriminative classifier based on optimal separating line (for 2d case)

Maximize the margin
 between the positive and
 negative training examples

7/17/2015 SVU CS596 7

Support Vector Machines

Want line that maximizes the margin.

$$\mathbf{x}_i$$
 positive $(y_i = 1)$: $\mathbf{x}_i \cdot \mathbf{w} + b \ge 1$

$$\mathbf{x}_i \text{ negative}(y_i = -1): \quad \mathbf{x}_i \cdot \mathbf{w} + b \le -1$$

For support, vectors,
$$\mathbf{x}_i \cdot \mathbf{w} + b = \pm 1$$

C. Burges, <u>A Tutorial on Support Vector Machines for Pattern Recognition</u>, Data Mining and Knowledge Discovery, 1998

Lines in R²

Let
$$\mathbf{w} = \begin{bmatrix} a \\ c \end{bmatrix} \quad \mathbf{x} = \begin{bmatrix} x \\ y \end{bmatrix}$$

$$ax + cy + b = 0$$

$$\mathbf{w} \cdot \mathbf{x} + b = 0$$

Lines in R²

Let
$$\mathbf{w} = \begin{bmatrix} a \\ c \end{bmatrix} \quad \mathbf{x} = \begin{bmatrix} x \\ y \end{bmatrix}$$

$$ax + cy + b = 0$$

$$\mathbf{w} \cdot \mathbf{x} + b = 0$$

distance from point to line

Support Vector Machines

• Want line that maximizes the margin.

$$\mathbf{x}_i$$
 positive $(y_i = 1)$: $\mathbf{x}_i \cdot \mathbf{w} + b \ge 1$

$$\mathbf{x}_i \text{ negative}(y_i = -1): \quad \mathbf{x}_i \cdot \mathbf{w} + b \le -1$$

For support, vectors,
$$\mathbf{x}_i \cdot \mathbf{w} + b = \pm 1$$

Distance between point $|\mathbf{x}_i \cdot \mathbf{w} + b|$ and line: $||\mathbf{w}||$

For support vectors:

$$\frac{\mathbf{w}^T \mathbf{x} + b}{\|\mathbf{w}\|} = \frac{\pm 1}{\|\mathbf{w}\|} \qquad M = \left| \frac{1}{\|\mathbf{w}\|} - \frac{-1}{\|\mathbf{w}\|} \right| = \frac{2}{\|\mathbf{w}\|}$$

Support Vector Machines

$$\mathbf{x}_i$$
 positive $(y_i = 1)$: $\mathbf{x}_i \cdot \mathbf{w} + b \ge 1$

$$\mathbf{x}_i \text{ negative}(y_i = -1): \quad \mathbf{x}_i \cdot \mathbf{w} + b \le -1$$

For support, vectors,
$$\mathbf{x}_i \cdot \mathbf{w} + b = \pm 1$$

Distance between point
$$|\mathbf{x}_i \cdot \mathbf{w} + b|$$
 and line: $||\mathbf{w}||$

Therefore, the margin is $2/||\mathbf{w}||$

Finding the Maximum Margin Line

- 1. Maximize margin $2/||\mathbf{w}||$
- 2. Correctly classify all training data points:

$$\mathbf{x}_i$$
 positive $(y_i = 1)$: $\mathbf{x}_i \cdot \mathbf{w} + b \ge 1$
 \mathbf{x}_i negative $(y_i = -1)$: $\mathbf{x}_i \cdot \mathbf{w} + b \le -1$

- Quadratic optimization problem:
- Minimize $\frac{1}{2}\mathbf{w}^T\mathbf{w}$ Subject to $y_i(\mathbf{w}\cdot\mathbf{x}_i+b) \ge 1$

One constraint for each training point.

13

Note sign trick.

C. Burges, <u>A Tutorial on Support Vector Machines for Pattern Recognition</u>, Data Mining and Knowledge Discovery, 1998

7/17/2015

SVU CS596

Finding the maximum margin line

• Solution:

Finding the maximum margin line

• Solution: $\mathbf{w} = \sum_{i} \alpha_{i} y_{i} \mathbf{x}_{i}$ $b = y_{i} - \mathbf{w} \cdot \mathbf{x}_{i} \text{ (for any support vector)}$

$$\mathbf{w} \cdot \mathbf{x} + b = \sum_{i} \alpha_{i} y_{i} \mathbf{x}_{i} \cdot \mathbf{x} + b$$

• Classification function:

$$f(x) = \text{sign}(\mathbf{w} \cdot \mathbf{x} + \mathbf{b})$$

$$= \text{sign}(\sum_{i} \alpha_{i} \mathbf{x}_{i} \cdot \mathbf{x} + b)$$

$$= \text{sign}(\sum_{i} \alpha_{i} \mathbf{x}_{i} \cdot \mathbf{x} + b)$$
If $f(x) < 0$, classify as negative, if $f(x) > 0$, classify as positive

- Notice that it relies on an *inner product* between the test point x and the support vectors x_i
- (Solving the optimization problem also involves computing the inner products $\mathbf{x}_i \cdot \mathbf{x}_i$ between all pairs of training points)

C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition, Data Mining and Knowledge Discovery, 1998

Why is SVM Popular

- They work
 - Good generalization
- Easily interpreted.
 - Decision boundary is based on the data in the form of the support vectors.
- Principled bounds on testing error from Learning Theory (VC dimension)

Questions

- What if the training data is noisy?
- What if the features are not 2d?
- What if the data is not linearly separable?
- What if we have more than just two categories?

Relax the Constraints

- There can be outliers on the other side of the decision boundary, or leading to a small margin.
- To allow errors in data, we relax the margin constraints by introducing **slack** variables, ξ_i (\geq 0) as follows:

$$\langle \mathbf{w} \cdot \mathbf{x}_i \rangle + b \ge 1 - \xi_i$$
 for $y_i = 1$
 $\langle \mathbf{w} \cdot \mathbf{x}_i \rangle + b \le -1 + \xi_i$ for $y_i = -1$

• The new constraints:

Subject to: $y_i(\langle \mathbf{w} \cdot \mathbf{x}_i \rangle + b) \ge 1 - \xi_i$, i = 1, ..., r, $\xi_i \ge 0$, i = 1, 2, ..., r.

Soft Margin Example

• Points are allowed within the margin, but cost is introduced.

Hinge Loss

Soft Margin Classification

Solution: Introduce a penalty term to the constraint function

$$\min \|\vec{w}\| + C \sum_{i=0}^{N-1} \xi_i$$
where $t_i(\vec{w}^T x_i + b) \ge 1 - \xi_i$ and $\xi_i \ge 0$

$$L(\vec{w}, b) = \frac{1}{2} \vec{w} \cdot \vec{w} + C \sum_{i=0}^{N-1} \xi_i - \sum_{i=0}^{N-1} \alpha_i [t_i((\vec{w} \cdot \vec{x_i}) + b) + \xi_i - 1]$$

- C is a regularization parameter:
 - small C allows constraints to be easily ignored → large margin
 - large C makes constraints hard to ignore → narrow margin
 - C = ∞ enforces all constraints: hard margin

Questions

- What if the features are not 2d?
 - Generalizes to d-dimensions replace line with "hyperplane"
- What if the data is not linearly separable?
- What if we have more than just two categories?

Planes in R³

$$(x_0, y_0, z_0)$$
 Let $\mathbf{w} = \begin{bmatrix} a \\ b \\ c \end{bmatrix} \mathbf{x} = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$

$$ax + by + cz + d = 0$$

$$\mathbf{w} \cdot \mathbf{x} + d = 0$$

$$D = \frac{\left|ax_0 + by_0 + cz_0 + d\right|}{\sqrt{a^2 + b^2 + c^2}} = \frac{\mathbf{w}^{\mathrm{T}}\mathbf{x} + d}{\left\|\mathbf{w}\right\|} \quad \text{distance from point to plane}$$

Hyperplanes in Rⁿ

Hyperplane H is set of all vectors $\mathbf{x} \in \mathbb{R}^n$ which satisfy:

$$w_1 x_1 + w_2 x_2 + \ldots + w_n x_n + b = 0$$

$$\mathbf{w}^{\mathsf{T}} \mathbf{x} + b = 0$$

$$D(H, \mathbf{x}) = \frac{\mathbf{w}^{\mathrm{T}} \mathbf{x} + b}{\|\mathbf{w}\|} \quad \begin{array}{l} \text{distance from} \\ \text{point to} \\ \text{hyperplane} \end{array}$$

Questions

- What if the training data is noisy?
- What if the features are not 2d?
- What if the data is not linearly separable?
- What if we have more than just two categories?

Non-linear SVMs

Datasets that are linearly separable with some noise work out great:

How about... mapping data to a higher-dimensional space:

Non-separable by a hyperplane in 2-d

Separable by a hyperplane in 3-d

7/17/2015 Source: Bill Freeman 27

Non-linear SVMs: Feature Spaces

General idea: the original input space can be mapped to some higher-dimensional feature space where the training set is separable:

Slide from Andrew Moore's tutorial: http://www.autonlab.org/tutorials/svm.html

Nonlinear SVMs

• The kernel trick: instead of explicitly computing the lifting transformation $\varphi(x)$, define a kernel function K such that

$$K(\mathbf{x}_i, \mathbf{x}_j) = \boldsymbol{\varphi}(\mathbf{x}_i) \cdot \boldsymbol{\varphi}(\mathbf{x}_j)$$

 This gives a nonlinear decision boundary in the original feature space:

$$\sum_{i} \alpha_{i} y_{i} K(\mathbf{x}_{i}, \mathbf{x}) + b$$

C. Burges, <u>A Tutorial on Support Vector Machines for Pattern Recognition</u>, Data Mining and Knowledge Discovery, 1998

Examples of General Purpose Kernel Functions

- Linear: $K(\mathbf{x}_i, \mathbf{x}_j) = \mathbf{x}_i^T \mathbf{x}_j$
- Polynomial of power $p: K(\mathbf{x_i}, \mathbf{x_j}) = (1 + \mathbf{x_i}^T \mathbf{x_j})^p$
- Gaussian (radial-basis function network):

$$K(\mathbf{x_i}, \mathbf{x_j}) = \exp(-\frac{\|\mathbf{x_i} - \mathbf{x_j}\|^2}{2\sigma^2})$$

Slide from Andrew Moore's tutorial: http://www.autonlab.org/tutorials/svm.html

Questions

- What if the training data is noisy?
- What if the features are not 2d?
- What if the data is not linearly separable?
- What if we have more than just two categories?

Multi-class SVMs

 Achieve multi-class classifier by combining a number of binary classifiers

- Training: learn an SVM for each class vs. the rest
- Testing: apply each SVM to test example and assign to it the class of the SVM that returns the highest decision value
- One vs. one Shorter time > more classifier.
 - Training: learn an SVM for each pair of classes
 - Testing: each learned SVM "votes" for a class to assign to the test example

SVM Examples

- Consider building an SVM for the following two-class training data:
 - Positive class : [-1, 3], [0, 2], [0, 1], [0, 0]
 - Negative class : [1, 5], [1, 6], [3, 3]
- Plot the training points and, by inspection, draw a linear classifier that separates the data with maximum margin.
- SVM is parameterized by $h(x) = w^t x + b$. What are w and b?
- What are the support vectors?

Sk-learn SVM Examples

- svm_demo.py
 - Demonstrate concepts
 - Create toy world svm classifier
- svm_demo2.py
 - Digit recognition
 - Iris data classification
- svm_gui.py
 - Interactive tool to create samples and adjust SVM parameters
 - Linear, RBF, and polynomial
- svm-kernels.pdf
 - Explains in details the effects of various sklearn svm parameters and kernels

SVMs for Recognition

- 1. Define your representation for each example.
- 2. Select a kernel function.
- 3. Compute pairwise kernel values between labeled examples
- 4. Given this "kernel matrix" to SVM optimization software to identify support vectors & weights.
- 5. To classify a new example: compute kernel values between new input and support vectors, apply weights, check sign of output.

HOG + SVM for Zebra Detection in Photos

- Training sets
 - Positive samples
 - Negative samples

- SVM training
- Zebra detection using SVM classification

Pedestrian Detection

• Detecting upright, walking humans also possible using sliding window's appearance/texture; e.g.,

SVM with Haar wavelets
[Papageorgiou & Poggio, IJCV
2000]

Space-time rectangle features [Viola, Jones & Snow, ICCV 2003]

SVM with HoGs [Dalal & Triggs, CVPR 2005]

K. Grauman, B. Leibe

Example: pedestrian detection with HoG's and SVM's

Dalal & Triggs, CVPR 2005

- Map each grid cell in the input window to a histogram counting the gradients per orientation.
- Train a linear SVM using training set of pedestrian vs. non-pedestrian windows.

Code available: http://pascal.inrialpes.fr/soft/olt/

Pedestrian Detection with HoG's & SVM's

- Histograms of Oriented Gradients for Human Detection, Navneet Dalal, Bill Triggs, International Conference on Computer Vision & Pattern Recognition - June 2005
- http://lear.inrialpes.fr/pubs/2005/DT05/ SVU CS596

Example: learning gender with SVMs

Moghaddam and Yang, Learning Gender with Support Faces, TPAMI 2002.

Moghaddam and Yang, Face & Gesture 2000.

Moghaddam and Yang, Learning Gender with Support Faces, TPAMI 2002.

Learning gender with SVMs

- Training examples:
 - 1044 males
 - 713 females
- Experiment with various kernels, select Gaussian RBF

$$K(\mathbf{x_i}, \mathbf{x_j}) = \exp(-\frac{\|\mathbf{x_i} - \mathbf{x_j}\|^2}{2\sigma^2})$$

Support Faces

Classifier Performance

Classifier	Error Rate		
	Overall	Male	Female
SVM with RBF kernel	3.38%	2.05%	4.79%
SVM with cubic polynomial kernel	4.88%	4.21%	5.59%
Large Ensemble of RBF	5.54%	4.59%	6.55%
Classical RBF	7.79%	6.89%	8.75%
Quadratic classifier	10.63%	9.44%	11.88%
Fisher linear discriminant	13.03%	12.31%	13.78%
Nearest neighbor	27.16%	26.53%	28.04%
Linear classifier	58.95%	58.47%	59.45%

Moghaddam and Yang, Learning Gender with Support Faces, TPAMT 2002.

