Aula 3

Semabio 2024

Carolina Musso IB/UnB

• Estrutura:

- Aula 1: Instalação e Intro Rmarkdown
- Aula 2 (hoje): Rmarkdown, pacote dplyr
- Aula 3: Gráficos ggplot, Tabelas resumo e testes estatísticos

Quiz

Revisando ...

O Rmarkdown tem 3 partes

Cabeçalho: YAML

Texto:Markdown

 Código: chunk e inline

```
4 date: "`r format(Sys.Date(),'%d/%m/%Y')`"
 5 output:
      word_document: default
      html_document: default
10 → ```{r sets, echo=F, message=F, warning=F}
11 - # COMENTÁRIOS INICIAIS ----
13 # tá vendo que eu estou escrevendo em uma parte que tem um fundo cinza? Isso é chamado de "chunk" que
    significa pedaco em inglês. Um "chunk" é onde a gente vai escrever os códigos de R mesmo. Depois vamos
    voltar a esses assuntos com mais detalhes!
15 - # PRE-SETS ----
16 rm(list=ls()) # limpa o ambiente
17
    pasta=paste0("Saidas-Exercicios-", Sys.Date()) #cria uma pasta para as saídas do dia
   if(!dir.exists(pasta)) dir.create(pasta) #cria uma pasta para as saídas do dia
20 - ```
22 * ```{r pacotes, echo=F, message=F, warning=F}
31 ► ```{r bancos, echo=F, message=F, warning=F } (□)```
37 ▼ ## Aqui é o subtítulo que você quiser
39 Daí, agui você escreve o que você achar interessante sobre os dados. Pode interpretar, enfim...
```

Termos

- Funções
- Pacotes
- Objetos
- Variáveis

Gráficos

Leitura para aprofundamento

- EpiHandbook, Cap.30
- Curso-R, Livro, cap. 13.8; Curso Visualização
- DataCamp, Introdução a visualização com ggplot
- R4DS O livro começa com gráficos!
- GGPLOT

O poder da visualização

- DataViz, para os íntimos
- Muito importante já na parte de exploração dos dados
 - Ajudam ao cérebro a dar sentido em todas aquelas informações
 - Ajuda a levantar hipóteses
- Importante na apresentação final dos resultados

ggplot2

Mas onde está o carregamento desse pacote no nosso software?

O que vamos (começar) aprender hoje

- Uma forma mais rápida de visualizar (poucas linhas de código)
 - Sem (muitas) firulas visuais
- Não vamos focar, no momento, em deixar os gráficos pefeitos.
- Adivinhem: o ggplot faz as duas coisas!
 - Data-to-Viz
 - R Gallery
 - Bruno Mioto

A lógica do ggplot2

- Utiliza a Gramática dos gráficos (daí o gg de ggplot): você precisa de atributos estéticos (cor, tamanho...) e atributos geométricos (pontos, linhas, colunas...).
- São utilizadas camadas: Sobreposição de elementos visuais.

A lógica do ggplot

Primeira camada

Segunda camada Terceira camada

Firulas

O "canvas" vazio

```
1 iris media area %>%
    ggplot()
```

Lógica do ggplot

As camadas são adicionadas com um "+"

- Diferença + para %>%
- Há as partes estáticas e partes que dinâmicas (que respondem aos dados)
 - estão dentro do aes().
- Cuidado com as aspas (principalmente nas opções de parâmetros)!
- Conheça as variáveis (numéricas ou categóricas)
- É preciso ter no mínimo a função ggplot() e uma função de geometria geom_?()
- Há várias formas de escrever a mesma coisa!

Várias formas de escrever a mesma coisa

Opção 1

Opção 2 Opção 3 Opção 4

```
1 ggplot(data = iris) +
    geom point(mapping = aes(x = Petal.Length, y = Petal.Width))
```


Customizações

```
1 ggplot(iris) +
2 aes(x = Petal.Length, y = Petal.Width,
3 shape=Species, color=Species) +
4 geom_point()+
5 scale_color_manual(values=c("aquamarine",
6 "deeppink1",
7 "#684dcf"))+
8 theme_classic()
```

Desafio (#Forms)

- O que acontece se o color estiver fora do aes()?
- Em um gráfico de colunas ou boxplot
 - Diferença do fill= dentro ou fora do aes() ?

```
1 graf <- ggplot(iris) +
2 aes(x = Species, y = Petal.Width, fill=Species) +
3 geom_boxplot()
1 graf</pre>
```


PRÁTICA

pacote ggstatsplot

Documentação

```
1 ggbetweenstats(
2  data = iris,
3  x = Species,
4  y = Petal.Length,
5  p.adjust.method = "bonferroni",
6  title = "Comprimento das Pétalas entre Espécies",
7  type = "parametric",

8  
9  bf.message = TRUE
10 )
```

Comprimento das Pétalas entre Espécies

 $F_{\text{Welch}}(2, 78.07) = 1828.09, p = 2.69e-66, \widehat{\omega_{\text{p}}^2} = 0.98, \text{Cl}_{95\%} [0.97, 1.00], n_{\text{obs}} = 150$

Pacotes para tabelas

- DT (iterativos em html)
- kable, kableExtra (mais "LateX friendly")
- formattable, gt, stargazer...
- gtsummary

flextable

• Ótimo para gerar os arquivos em word!

```
1 tab1 <- iris_media_area %>%
2 flextable()
```

Lógica...

Gosto de pensar que também funciona como "camadas".

- alinhamento
- fonte
- largura
- cores...

width: Largura

```
      flextable( iris_media_area) %>%

      2
      width(width=3)

      Species
      area_media
      area_dp

      setosa
      0.182800
      0.09057729

      versicolor
      2.860200
      0.68420143

      virginica
      4.963387
      0.66677756
```

```
1 flextable(iris_media_area) %>%
2 width(width=1) %>%
3 width (j=1, width=2)
```

Species	area_media	area_dp
setosa	0.182800	0.09057729
versicolor	2.860200	0.68420143
virginica	4.963387	0.66677756

bold: Negrito

- podemos usar a mesma lógica para as colunas
- Mas com o negrito, e outras formatações internas podemos também trabalhar nas linhas.
- j eram as colunas ...
- i são as linhas

```
1 flextable(iris_media_area) %>%
2 width(width=1) %>%
3 width(j=1, width=3) %>%
4 bold(i=1)
```

Species	area_media	area_dp
setosa	0.182800	0.09057729
versicolor	2.860200	0.68420143
virginica	4.963387	0.66677756

```
1 flextable(iris_media_area) %>%
```

```
width(width=1) %>%
width(j=1, width=3) %>%
bold(part= "header")
```

Species	area_media	area_dp
setosa	0.182800	0.09057729
versicolor	2.860200	0.68420143
virginica	4.963387	0.66677756

alinhamento

```
1 flextable(iris_media_area) %>%
2  width(width=1) %>%
3  width (j=1, width=2) %>%
4  bold (part = "header") %>%
5  align(align="center", part="all") %>%
6  align(align="left", j=1, part="all")
```

Species	area_media	area_dp
setosa	0.182800	0.09057729
versicolor	2.860200	0.68420143
virginica	4.963387	0.66677756

Mais firulas

```
1 flextable(iris media area) %>%
   width(width=1) %>%
   width (j=1, width=0.5) %>%
   bold (part = "header") %>%
    align(align="center", part="all") %>%
    align(align="left", j=1, part="all") %>%
    vline(j=1, border=fp border(color = "purple",
8
                                style = "dotted",
9
                                width = 1) %>%
10
    set header labels(
     Species="Espécie") %>%
11
12
    compose(
13
    i = 1, j = c(2,3), part = "header",
    value = c(as paragraph(
14
15
    "Área Média / cm",
   as sup("2")),
16
17 as paragraph(
    "Desvio Padrão / cm",
18
       as sup("2"))
```

Espécie	Área Média / cm²	Desvio Padrão / cm²
setosa	0,18	0,09
versicolor	2,86	0,68

gtsummary

- Relatorios Clínicos com gtsummary
- Documentação . . .

gtsummary

```
1 iris_filt <- iris %>%
2  mutate(Species=as.character(Species)) %>%
3  filter(Species!="setosa")
4
5  iris_filt %>%
6  select(-Species) %>%
7  tbl_summary()
```

Characteristic	$N = 100^{7}$
Sepal.Length	6.30 (5.80, 6.70)
Sepal.Width	2.90 (2.70, 3.03)
Petal.Length	4.90 (4.38, 5.53)
Petal.Width	1.60 (1.30, 2.00)
¹ Median (IQR)	

```
1 iris_filt %>%
2 tbl_summary(by= Species)
```

Characteristic	versicolor , $N = 50^{1}$	virginica, N = 50 ¹
Sepal.Length	5.90 (5.60, 6.30)	6.50 (6.23, 6.90)
Sepal.Width	2.80 (2.53, 3.00)	3.00 (2.80, 3.18)
Petal.Length	4.35 (4.00, 4.60)	5.55 (5.10, 5.88)

Petal.Width 1.30 (1.20, 1.50) 2.00 (1.80, 2.30)

¹ Median (IQR)

gtsummary

```
1 iris_filt %>%
2 tbl_summary(by= Species,
3 statistic = list(all_continuous() ~ "{mean} ({sd})")
```

Characteristic	versicolor , $N = 50^{1}$	virginica, N = 50 ¹
Sepal.Length	5.94 (0.52)	6.59 (0.64)
Sepal.Width	2.77 (0.31)	2.97 (0.32)
Petal.Length	4.26 (0.47)	5.55 (0.55)
Petal.Width	1.33 (0.20)	2.03 (0.27)
¹ Mean (SD)		

Characteristic	versicolor , $N = 50^{1}$	virginica , $N = 50^{1}$	p-value ²
Sepal.Length	5.94 (0.52)	6.59 (0.64)	<0.001

Sepal.Width	2.77 (0.31)	2.97 (0.32)	0.005
Petal.Length	4.26 (0.47)	5.55 (0.55)	<0.001
Petal.Width	1.33 (0.20)	2.03 (0.27)	<0.001

¹ Mean (SD)

Characteristic	versicolor , $N = 50^{1}$	virginica, $N = 50^{1}$	p-value ²
Sepal.Length	5.94 (0.52)	6.59 (0.64)	<0.001
Sepal.Width	2.77 (0.31)	2.97 (0.32)	0.002
Petal.Length	4.26 (0.47)	5.55 (0.55)	<0.001
Petal.Width	1.33 (0.20)	2.03 (0.27)	<0.001

¹ Mean (SD)

² Wilcoxon rank sum test

² Welch Two Sample t-test

Prática Tabelas

Obrigada!