Chapter 2: Combinational Logic Circuits

Binary Logic

- Binary logic deals with binary variables, which take on two discrete values
- Associated with binary variables are three basic logical operations

Operation:

AND

OR

NOT

Expression:

xy or x.y

x + y

X

Truth table:

X	У	ху
0	0	0
0	1	0
1	0	0
1	1	1

X	У	х+у
0	0	0
0	1	1
1	0	1
1	1	1

Logic Gates

- Each of basic operations can be implemented in hardware using a logic gate
 - Symbols for each of the logic gates are shown below
 - These gates output the AND, OR, and NOT of their inputs

Operation:	AND	OR	NOT
Expression:	xy or x•y	x + y	×'
Logic gate:	x—————————————————————————————————————	x — x + y	x—————————————————————————————————————
	AND gate	OR gate	NOT gate (inverter)

Timing Diagram

Fig. 2-1 Digital Logic Gates

Gates More Than Two Inputs

Fig. 2-2 Gates with More than Two Inputs

Boolean Function

We can use basic operations to form complex Boolean functions, e.g.,

$$f(x,y,z) = (x + y')z + x'$$

- Some terminology and notation:
 - f is the name of the function
 - (x,y,z) are the input variables, each representing 1 or 0. Listing the inputs is optional, but sometimes helpful
 - A literal is any occurrence of an input variable or its complement. The function above has four literals: x, y', z, and x'
- Precedences are important, but not too difficult
 - NOT has the highest precedence, followed by AND, and then OR.
 - Fully parenthesized, the function above would be kind of messy:

$$f(x,y,z) = (((x + (y'))z) + x')$$

Truth Tables

- A truth table shows all possible inputs and outputs of a function
- Remember that each input variable represents either 1 or 0
 - Because there are only a finite number of values (1 and 0), truth tables themselves are finite
 - A function with n variables has 2ⁿ possible combinations of inputs.
- Inputs are listed in binary order—in this example, from 000 to 111.

Expressions and Circuits

- Any Boolean expression can be converted into a circuit by combining basic gates
- The diagram below shows the inputs and outputs of each gate
- The precedences are explicit in a circuit. Clearly, we have to make sure that the hardware does operations in the right order!

Boolean Algebra

- A Boolean algebra requires
 - A set of elements B, which needs at least two elements (0 and 1)
 - Two binary (two-argument) operations OR and AND
 - A unary (one-argument) operation NOT
 - The axioms below must always be true
 - The magenta axioms deal with the complement operation
 - Blue axioms (especially 15) are different from regular algebra

1.
$$x + 0 = x$$
 2. $x \cdot 1 = x$

 3. $x + 1 = 1$
 4. $x \cdot 0 = 0$

 5. $x + x = x$
 6. $x \cdot x = x$

 7. $x + x' = 1$
 8. $x \cdot x' = 0$

 9. $(x')' = x$
 11. $xy = yx$
 Commutative

 12. $x + (y + z) = (x + y) + z$
 13. $x(yz) = (xy)z$
 Associative

 14. $x(y + z) = xy + xz$
 15. $x + yz = (x + y)(x + z)$
 Distributive

 16. $(x + y)' = x'y'$
 17. $(xy)' = x' + y'$
 DeMorgan's

Comments on the Axioms

- The left and right columns of axioms are DUALs
 - exchange all ANDs with ORs, and Os with 1s
- The duality principle of Boolean algebra: A Boolean equation remains valid
 if we take the dual of the expression on both side of the equal signs

1. x + 0 = x	2. x • 1 = x	_
3. x + 1 = 1	4. $\times \bullet 0 = 0$	
5. x + x = x	6. x • x = x	
7. $x + x' = 1$	8. x • x' = 0	
9. (x')' = x		
10. x + y = y + x	11. xy = yx	Commutative
12. $x + (y + z) = (x + y) + z$	13. $x(yz) = (xy)z$	Associative
14. $x(y + z) = xy + xz$	15. $x + yz = (x + y)(x + z)$	Distributive
16. $(x + y)' = x'y'$	17. $(xy)' = x' + y'$	DeMorgan's

Are these axioms for real?

We can show that these axioms are true, given the definitions of AND,
 OR and NOT

X	у	ху
0	0	0
0	1	0
1	0	0
1	1	1

×	у	х+у
0	0	0
0	1	1
1	0	1
1	1	1

X	x'
0	1
1	0

• The first 11 axioms are easy to see from these truth tables alone. For example, x + x' = 1 because of the middle two lines below (where y = x')

×	у	х+у
0	0	0
0	1	1
1	0	1
1	1	1

Is X+YZ = (X+Y)(X+Z)?

X	У	Z	Х+У	X+Z	ΥZ	X+YZ	(X+Y)(X+Z)
0	0	0	0	0	0	0	0
0	0	1	0	1	0	0	0
0	1	0	1	0	0	0	0
0	1	1	1	1	1	1	1
1	0	0	1	1	0	1	1
1	0	1	1	1	0	1	1
1	1	0	1	1	0	1	1
1	1	1	1	1	1	1	1

DeMorgan's Theorem

- We can make up truth tables to prove (both parts of) DeMorgan's law
- For (x + y)' = x'y', we can make truth tables for (x + y)' and for x'y'

X	У	x + y	(x + y)'
0	0	0	1
0	1	1	0
1	0	1	0
1	1	1	0

X	У	x'	у'	x'y'
0	0	1	1	1
0	1	1	0	0
1	0	0	1	0
1	1	0	0	0

• Since both of the columns in blue are the same, this shows that (x + y)' and x'y' are equivalent

$$\overline{X_1 + X_2 + \dots + X_n} = \overline{X}_1 \overline{X}_2 \dots \overline{X}_n$$

$$\overline{X_1.X_2...X_n} = \overline{X}_1 + \overline{X}_2 + ... + \overline{X}_n$$

Simplification with Axioms

We can now start doing some simplifications

$$x'y' + xyz + x'y$$

 $= x'(y' + y) + xyz$ [Distributive; $x'y' + x'y = x'(y' + y)$]
 $= x' \cdot 1 + xyz$ [Axiom 7; $y' + y = 1$]
 $= x' + xyz$ [Axiom 2; $x' \cdot 1 = x'$]
 $= (x' + x)(x' + yz)$ [Distributive]
 $= 1 \cdot (x' + yz)$ [Axiom 7; $x' + x = 1$]
 $= x' + yz$ [Axiom 2]

- 1 x + 0 = x
- 3 x + 1 = 1
- 5. x + x = x
- 7. x + x' = 1
- 9. (x')' = x
- 10. x + y = y + x
- 12. x + (y + z) = (x + y) + z 13. x(yz) = (xy)z
- 14. x(y + z) = xy + xz
- 16. (x + y)' = x'y'

- 2. $x \cdot 1 = x$
- 4. $x \cdot 0 = 0$
- $6. \times \bullet \times = \times$
 - 8. $x \cdot x' = 0$
- 11. xy = yx
- 15. x + yz = (x + y)(x + z)
 - 17. (xy)' = x' + y'

- Commutative
- Associative
 - Distributive
 - DeMorgan's

Let's compare the resulting circuits

- Here are two different but equivalent circuits
- In general the one with fewer gates is "better":
 - It costs less to build
 - It requires less power
 - But we had to do some work to find the second form

Another Example

Fig. 2-4 Implementation of Boolean Function with Gates

Some More Laws

Here are some more useful laws. Notice the duals again

1				_	
1.	X	+	XY	=	X

4.
$$x(x + y) = x$$

2.
$$xy + xy' = x$$

5.
$$(x + y)(x + y') = x$$

3.
$$x + x'y = x + y$$

6.
$$x(x' + y) = xy$$

Consensus Theorem

•
$$XY + X'Z + YZ = XY + X'Z$$
 or its dual $(X+Y)(X'+Z)(Y+Z) = (X+Y)(X'+Z)$

The proof of the theorem:

$$XY + X'Z + YZ = XY + X'Z + YZ(X + X')$$

$$= XY + X'Z + XYZ + X'YZ$$

$$= XY + XYZ + X'Z + X'YZ$$

$$= XY(1 + Z) + X'Z(1 + Y)$$

$$= XY + X'Z$$

The Complement of a Function

- The complement of a function always outputs 0 where the original function output 1, and 1 where the original produced 0
- In a truth table, we can just exchange 0s and 1s in the output column(s)

$$f(x,y,z) = x' + xyz'$$

X	У	Z	f(x,y,z)	X	У	Z	f'(x,y,z)
0	0	0	1	0	0	0	0
0	0	1	1	0	0	1	0
0	1	0	1	0	1	0	0
0	1	1	1	0	1	1	0
1	0	0	0	1	0	0	1
1	0	1	0	1	0	1	1
1	1	0	1	1	1	0	0
1	1	1	0	1	1	1	1

Complementing a Function Algebraically

You can use DeMorgan's law to keep "pushing" the complements inwards

$$f(x,y,z) = x(y'z' + yz)$$

 $f'(x,y,z) = (x(y'z' + yz))'$ [complement both sides]
 $= x' + (y'z' + yz)'$ [because $(xy)' = x' + y'$]
 $= x' + (y'z')' (yz)'$ [because $(x + y)' = x' y'$]
 $= x' + (y + z)(y' + z')$ [because $(xy)' = x' + y'$, twice]

- You can also take the dual of the function, and then complement each literal
 - If f(x,y,z) = x(y'z' + yz)...
 - ...the dual of f is x + (y' + z')(y + z)...
 - ...then complementing each literal gives x' + (y + z)(y' + z')...
 - ...so f'(x,y,z) = x' + (y + z)(y' + z')

Standard Forms of Expression

- We can write expressions in many ways, but some ways are more useful than others
- A sum of products (SOP) expression contains:
 - Only OR (sum) operations at the "outermost" level
 - Each term that is summed must be a product of literals

$$f(x,y,z) = y' + x'yz' + xz$$

- The advantage is that any sum of products expression can be implemented using a two-level circuit
 - literals and their complements at the "Oth" level
 - AND gates at the first level
 - a single OR gate at the second level
- This diagram uses some shorthands...
 - NOT gates are implicit
 - literals are reused

Minterms

- A minterm is a special product of literals, in which each input variable appears exactly once
- A function with n variables has 2ⁿ minterms (since each variable can appear complemented or not)
- A three-variable function, such as f(x,y,z), has $2^3 = 8$ minterms:

Each minterm is true for exactly one combination of inputs:

$x'y'z'$ $x=0, y=0, z=0$ m_0 $x'y'z$ $x=0, y=0, z=1$ m_1 $x'yz'$ $x=0, y=1, z=0$ m_2 $x'yz$ $x=0, y=1, z=1$ m_3 $xy'z'$ $x=1, y=0, z=0$ m_4 $xy'z$ $x=1, y=0, z=1$ m_5 xyz' $x=1, y=1, z=0$ m_6 xyz $x=1, y=1, z=1$ m_7	Minterm	Is true when	Shorthand
$x'yz'$ $x=0, y=1, z=0$ m_2 $x'yz$ $x=0, y=1, z=1$ m_3 $xy'z'$ $x=1, y=0, z=0$ m_4 $xy'z$ $x=1, y=0, z=1$ m_5 xyz' $x=1, y=1, z=0$ m_6	x'y'z'	x=0, y=0, z=0	m_o
$x'yz$ $x=0$, $y=1$, $z=1$ m_3 $xy'z'$ $x=1$, $y=0$, $z=0$ m_4 $xy'z$ $x=1$, $y=0$, $z=1$ m_5 xyz' $x=1$, $y=1$, $z=0$ m_6	x'y'z	x=0, y=0, z=1	m_1
$xy'z'$ $x=1$, $y=0$, $z=0$ m_4 $xy'z$ $x=1$, $y=0$, $z=1$ m_5 xyz' $x=1$, $y=1$, $z=0$ m_6	x'yz'	x=0, y=1, z=0	m_2
$xy'z$ $x=1$, $y=0$, $z=1$ m_5 xyz' $x=1$, $y=1$, $z=0$ m_6	x'yz	x=0, y=1, z=1	m_3
xyz' $x=1$, $y=1$, $z=0$ m_6	xy'z'	x=1, y=0, z=0	m_4
,	xy'z	x=1, y=0, z=1	m_{5}
xyz $x=1$, $y=1$, $z=1$ m_7	xyz'	x=1, y=1, z=0	m_{6}
	xyz	x=1, y=1, z=1	m_7

Sum of Minterms Form

- Every function can be written as a sum of minterms, which is a special kind of sum of products form
- The sum of minterms form for any function is *unique*
- If you have a truth table for a function, you can write a sum of minterms expression just by picking out the rows of the table where the function output is 1.

×	У	Z	f(x,y,z)	f'(x,y,z)
0	0	0	1	0
0	0	1	1	0
0	1	0	1	0
0	1	1	1	0
1	0	0	0	1
1	0	1	0	1
1	1	0	1	0
1	1	1	0	1

$$f = x'y'z' + x'y'z + x'yz' + x'yz + xyz'$$

$$= m_0 + m_1 + m_2 + m_3 + m_6$$

$$= \sum m(0,1,2,3,6)$$

$$f' = xy'z' + xy'z + xyz$$

$$= m_4 + m_5 + m_7$$

$$= \sum m(4,5,7)$$

$$f' \text{ contains all the minterms not in } f$$

The Dual Idea: Products of Sums

- A product of sums (POS) expression contains:
 - Only AND (product) operations at the "outermost" level
 - Each term must be a sum of literals

$$f(x,y,z) = y'(x' + y + z')(x + z)$$

- Product of sums expressions can be implemented with two-level circuits
 - literals and their complements at the "Oth" level
 - OR gates at the first level
 - a single AND gate at the second level
- Compare this with sums of products

Maxterms

- A maxterm is a sum of literals, in which each input variable appears exactly once
- A function with n variables has 2ⁿ maxterms
- The maxterms for a three-variable function f(x,y,z):

$$x' + y' + z'$$
 $x' + y' + z$ $x' + y + z'$ $x' + y + z$
 $x + y' + z'$ $x + y' + z$ $x + y + z'$ $x + y + z$

Each maxterm is false for exactly one combination of inputs:

Maxterm	Is <i>false</i> when	Shorthand
x + y + z	x=0, y=0, z=0	M_o
x + y + z'	x=0, y=0, z=1	M_1
x + y' + z	x=0, y=1, z=0	M_2
x + y' + z'	x=0, y=1, z=1	M_3
x' + y + z	x=1, y=0, z=0	M_4
x' + y + z'	x=1, y=0, z=1	M_{5}^{T}
x' + y' + z	x=1, y=1, z=0	M_6
x' + y' + z'	x=1, y=1, z=1	M_7

Product of Maxterms Form

- Every function can be written as a *unique* product of maxterms
- If you have a truth table for a function, you can write a product of maxterms expression by picking out the rows of the table where the function output is 0. (Be careful if you're writing the actual literals!)

X	У	Z	f(x,y,z)	f'(x,y,z)
0	0	0	1	0
0	0	1	1	0
0	1	0	1	0
0	1	1	1	0
1	0	0	0	1
1	0	1	0	1
1	1	0	1	0
1	1	1	0	1

$$f = (x' + y + z)(x' + y + z')(x' + y' + z')$$

$$= M_4 M_5 M_7$$

$$= \prod M(4,5,7)$$

$$f' = (x + y + z)(x + y + z')(x + y' + z)$$

$$(x + y' + z')(x' + y' + z)$$

$$= M_0 M_1 M_2 M_3 M_6$$

$$= \prod M(0,1,2,3,6)$$

$$f' contains all the maxterms not in the$$

f' contains all the maxterms not in f

Minterms and maxterms are related

Any minterm m_i is the complement of the corresponding maxterm M_i

Minterm	Shorthand	Maxterm	Shorthand
x'y'z'	m_o	x + y + z	M_O
x'y'z	m_1	x + y + z'	M_1
x'yz'	m_2	x + y' + z	M_2
x'yz	m_3	x + y' + z'	M_3
xy'z'	m_4	x' + y + z	M_{4}
xy'z	m_{5}	x' + y + z'	M_{5}
xyz'	m_{6}	x' + y' + z	M_6
xyz	m_7	x' + y' + z'	M_7

• For example, $m_4' = M_4$ because (xy'z')' = x' + y + z

Converting Between Standard Forms

We can convert a sum of minterms to a product of maxterms

```
From before f = \sum m(0,1,2,3,6)

and f' = \sum m(4,5,7)

= m_4 + m_5 + m_7

complementing (f')' = (m_4 + m_5 + m_7)'

so f = m_4' m_5' m_7' [ DeMorgan's law ]

= M_4 M_5 M_7 [ By the previous page ]

= \prod M(4,5,7)
```

 In general, just replace the minterms with maxterms, using maxterm numbers that don't appear in the sum of minterms:

$$f = \Sigma m(0,1,2,3,6)$$

= $\prod M(4,5,7)$

 The same thing works for converting from a product of maxterms to a sum of minterms

Summary

So far:

- A bunch of Boolean algebra trickery for simplifying expressions and circuits
- The algebra guarantees us that the simplified circuit is equivalent to the original one
- Introducing some standard forms and terminology

Next:

- An alternative simplification method
- We'll start using all this stuff to build and analyze bigger, more useful, circuits