Please check the examination details below before entering your candidate information			
Candidate surname		Other names	
Centre Number Candidate N	umber		
Pearson Edexcel Inter	nation	al GCSE	
Time 2 hours	Paper reference	4PM1/02	
Further Pure Mat	hema	ntics	
Calculators may be used.		Total Marks	

Instructions

- Use black ink or ball-point pen.
- Fill in the boxes at the top of this page with your name, centre number and candidate number.
- Answer all questions.
- Without sufficient working, correct answers may be awarded no marks.
- Answer the questions in the spaces provided
 - there may be more space than you need.
- You must **NOT** write anything on the formulae page. Anything you write on the formulae page will gain NO credit.

Information

- The total mark for this paper is 100.
- The marks for **each** question are shown in brackets
 - use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.

Turn over ▶

P71819A ©2023 Pearson Education Ltd.

International GCSE in Further Pure Mathematics Formulae sheet

Mensuration

Surface area of sphere = $4\pi r^2$

Curved surface area of cone = $\pi r \times \text{slant height}$

Volume of sphere =
$$\frac{4}{3}\pi r^3$$

Series

Arithmetic series

Sum to *n* terms,
$$S_n = \frac{n}{2} [2a + (n-1)d]$$

Geometric series

Sum to *n* terms,
$$S_n = \frac{a(1-r^n)}{(1-r)}$$

Sum to infinity,
$$S_{\infty} = \frac{a}{1-r} |r| < 1$$

Binomial series

$$(1+x)^n = 1 + nx + \frac{n(n-1)}{2!}x^2 + \dots + \frac{n(n-1)\dots(n-r+1)}{r!}x^r + \dots$$
 for $|x| < 1, n \in \mathbb{Q}$

Calculus

Quotient rule (differentiation)

$$\frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{\mathrm{f}(x)}{\mathrm{g}(x)} \right) = \frac{\mathrm{f}'(x)\mathrm{g}(x) - \mathrm{f}(x)\mathrm{g}'(x)}{\left[\mathrm{g}(x)\right]^2}$$

Trigonometry

Cosine rule

In triangle *ABC*: $a^2 = b^2 + c^2 - 2bc \cos A$

$$\tan\theta = \frac{\sin\theta}{\cos\theta}$$

$$\sin(A+B) = \sin A \cos B + \cos A \sin B$$

$$\sin(A - B) = \sin A \cos B - \cos A \sin B$$

$$\cos(A + B) = \cos A \cos B - \sin A \sin B$$

$$\cos(A - B) = \cos A \cos B + \sin A \sin B$$

$$\tan(A+B) = \frac{\tan A + \tan B}{1 - \tan A \tan B}$$

$$\tan(A - B) = \frac{\tan A - \tan B}{1 + \tan A \tan B}$$

Logarithms

$$\log_a x = \frac{\log_b x}{\log_b a}$$

Answer all ELEVEN questions.

Write your answers in the spaces provided.

You must write down all the stages in your working.

1 Find the set of values of x for which

(a)
$$2(3x-1) < 4-3x$$

(2)

(b)
$$3x^2 - 8x - 3 < 0$$

(4)

(c) **both**
$$2(3x-1) < 4-3x$$
 and $3x^2-8x-3 < 0$

(1)

(Total for Question 1 is 7 marks)

Diagram **NOT** accurately drawn

Figure 1

Figure 1 shows triangle XYZ in which

$$XY = (x + 2) \text{ cm}$$
 $XZ = (2x + 4) \text{ cm}$ $YZ = (2x - 1) \text{ cm}$ and $\angle YXZ = 60^{\circ}$

Find the value of x

Give your answer in the form $p + q\sqrt{3}$ where p and q are integers to be found.

(4)

	Question 2 continued
S AREA	
EINTHE	
NOT WRITE IN	
DON	
AREA	
THIS	
WRITEIN	
DO NOT	
SAREA	
E IN THIS	
DO NOT WRITE IN THIS AREA	
N OQ	
	(Total for Question 2 is 4 marks)

$$f(x) = 8x^2 + 10x - 3$$

Given that f(x) can be written in the form $A(x + B)^2 + C$ where A, B and C are constants,

(a) find the value of A, the value of B and the value of C.

(3)

- (b) Hence, or otherwise, find,
 - (i) the value of x for which f(x) has a minimum,
 - (ii) the minimum value of f(x).

(2)

The curve *C* has equation y = f(x).

(c) Find the x coordinate of each of the points where C crosses the x-axis.

(2)

The straight line *l* has equation y = 2x + 13

(d) Use algebra to find the coordinates of the two points of intersection of C and l.

(4)

Using the same axes and the results of parts (b), (c) and (d),

(e) sketch the curve C and the straight line l.

(2)

Question 3 continued			

Question 3 continued	

4	The equation of a curve is $y = x^3 \sin x$			
Find an equation of the tangent to the curve at the point on the curve where $x = \frac{1}{2}$				
	Give your answer in the form $y = mx + c$			
		(7)		

Question 4 continued
(Total for Question 4 is 7 marks)

Diagram **NOT** accurately drawn

Figure 2

Figure 2 shows a right pyramid with a square base ABCD and vertex E.

The base of the pyramid is horizontal with AB = BC = 12 cm.

The diagonals of the base intersect at the point O.

The vertex E of the pyramid is vertically above O and the angle between EA and the plane ABCD is 30°

The height of the pyramid is h cm.

(a) Find the exact value of h

(3)

The point F lies on AD such that AF:FD = 1:4

(b) Calculate, to the nearest degree, the size of the angle *EFO*.

/	413	
(/	4	
6	•	

_	
Que	estion 5 continued

Question 5 continued	

6 The *n*th term of a geometric series G is U_n

The first three terms of G are given by

$$U_1 = q(4p + 1)$$
 $U_2 = q(2p + 3)$ $U_3 = q(2p - 3)$

(a) Find the possible values of p

(5)

Given that G is convergent with sum to infinity 250

(b) find the value of q

(3)

>>> 	
	Question 6 continued
A.	
<u> </u>	
<u>\$</u>	
DO NOT WRITE IN THIS AREA	
9	
ō.	
₹	
WRITE IN THIS AREA	
(OT)	
۵	
4	
<u>oc</u>	
<u>S</u>	
Z	
DO NOT WRITE IN THIS AREA	
Z	
	(Total for Question 6 is 8 marks)

 $y = e^{2x} \cos 2x$

(a) Show that

$$\frac{\mathrm{d}y}{\mathrm{d}x} = 2y - 2\mathrm{e}^{2x}\sin 2x$$

(4)

(b) Hence show that

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = 4\frac{\mathrm{d}y}{\mathrm{d}x} - 8y$$

1	
10	

Question 7 continued

Question 7 continued	

(11)

8 The quadratic equatio

$$x^2 - 4k\sqrt{2}x + 2k^4 - 1 = 0$$

where k is a positive constant, has roots α and β

Given that $\alpha^2 + \beta^2 = 66$ and that $\alpha^3 + \beta^3 = p\sqrt{2}$ where p is an integer,

find the value of p

 	 • • • • • •	 																

	Question 8 continued
HIS AREA	
NOT WRITE IN T	
DO NOT	
EA	
NTHIS AREA	
M WRITE IN	
DO NC	
AREA	
O NOT WRITE IN THIS AREA	
NOT WRIT	
DO	

Question 8 continued	

$\stackrel{\circ}{\mathbb{R}}$	
$\stackrel{\otimes}{\mathbb{R}}$	Question 8 continued
$\stackrel{\circ}{\mathbb{R}}$	
$\stackrel{\times}{\stackrel{\wedge}{\stackrel{\wedge}{\stackrel{\wedge}{\stackrel{\wedge}{\stackrel{\wedge}{\stackrel{\wedge}{\stackrel{\wedge}{$	
$\stackrel{>}{\sim}$	
$\stackrel{\otimes}{\mathbb{R}}$	
$\stackrel{>}{\sim}$	
$\stackrel{\circ}{\mathbb{R}}$	
$\stackrel{\otimes}{\mathbb{R}}$	
$\stackrel{>}{\sim}$	
$\stackrel{\circ}{\stackrel{\circ}{\stackrel{\circ}{\stackrel{\circ}{\stackrel{\circ}{\stackrel{\circ}{\stackrel{\circ}{\stackrel{\circ}$	
$\stackrel{\otimes}{\mathbb{R}}$	
$\stackrel{\circ}{\mathbb{R}}$	
$\stackrel{>}{\sim}$	
$\frac{3}{2}$	
$\stackrel{\otimes}{\mathbb{R}}$	
	(Total for Question 8 is 11 marks)
	(10mi ioi Question o is 11 marks)

9	A cube has edges of length x cm.	
	The total surface area, $A \text{cm}^2$, of the cube is increasing at a constant rate of $0.45 \text{cm}^2/\text{s}$	
	Find the rate of increase, in cm ³ /s, of the volume of the cube at the instant when the total surface area of the cube is 384 cm ²	
	total surface area of the case is 50 tem	(7)

Question 9 continued	
	(Total for Question 9 is 7 marks)

- 10 Using formulae given on page 2
 - (a) show that
 - (i) $\sin 2\theta = 2\sin \theta \cos \theta$
 - (ii) $\cos 2\theta = 2\cos^2 \theta 1$

(5)

Given that $\theta \neq (90^{\circ} + 180^{\circ} n)$ where $n \in \mathbb{Z}$

(b) use the results from part (a) to show that $\sin 2\theta - \tan \theta$ can be written as $\tan \theta \cos 2\theta$

(4)

(c) Solve for 0 < x < 360

$$\sin 2x^{\circ} - \tan x^{\circ} = 0$$

(4)

 	 	 	 	 	 •••••	
 	 •••••	 	 	 	 	
 	 •••••	 	 	 	 	
 	 	 	 	 	 •	
 	 	 	 	 	 ••••	
 	 	 	 	 	 •	

Questio	on 10 continued	

Question 10 continued	

Diagram **NOT** accurately drawn

Figure 3

Figure 3 shows part of the curve C with equation $y = 4 - e^{2x}$ The curve C crosses the y-axis at the point A and the x-axis at the point B.

- (a) (i) Write down the y coordinate of point A.
 - (ii) Show that the x coordinate of B is $x = \ln 2$

(3)

The line l is the normal to C at the point B.

(b) Find an equation for l, giving your answer in the form y = mx + c

(4)

The finite region R is bounded by C, l and the y-axis.

(c) Using calculus, find the area of *R*. Give your answer to one decimal place.

(7)

|
 |
|------|------|------|------|------|------|------|------|------|------|------|
| | | | | | | | | | | |

	Question 11 continued
4	
AREA	
Z VA	
重	
NOT WRITE IN THIS.	
<u> </u>	
S S	
ā	
4	
<u>T</u>	
WRITE IN THIS AREA	
\$	
Š	
Z	
ă	
á	
DO NOT WRITE IN THIS AREA	
<u> </u>	
2	
2	
Ž	
9	

Question 11 continued	

Question 11 contin	lucu		

uestion 11 continued	
	(Total for Question 11 is 14 marks)
	TOTAL FOR PAPER IS 100 MARKS

