

Tartalomjegyzék

1.	Bevezetés	2
2.	Zebra rejtvények	3
	2.1. Történet és szerkezet	3
	2.2. Megoldhatóság, egyértelműség	3
	2.3. Megoldó módszerek	3
3.	Evolúciós algoritmusok	4
4.	Evolúciós algoritmus Zebra rejtvények megfejtésére	5
	4.1. Kódszerkezet	5
	4.2. Egyedreprezentáció és segédfüggvények	6
	4.3. Evolúciós mechanizmusok	6
	4.3.1. Random új egyed generálás	6
	4.3.2. Mutálás	7
	4.3.3. Keresztezés	7
	4.3.4. Megold függvény	8
	4.4. Egyedek kiértékelése	8
5.	Tesztek	9
6.	Kód automatikus generálása	10
7.	Összefoglalás	11
Hi	ivatkozások	12
Α.	. Mintafejezet	13
	A.1. Kep betoltese	13
	A.2. Tablazatok	
	A 3 Forraskodok beemelese	14

Bevezetés

TODO: Absztrakt bovebben, szoveges tartalomjegyzek

Zebra rejtvények

TODO: Egy bevezeto mondat, + hogy melyik alfejezetben mi lesz

2.1. Történet és szerkezet

TODO: Miert zebra, mikbol all a rejtveny, Einstein peldajabol reszlet akar

2.2. Megoldhatóság, egyértelműség

TODO: Pici peldakon bemutatni, hogy ha rosszak a szabalyok, akkor lehet nincs megoldas, vagy ha keves a szabaly, akkor lehet tobb megoldas is van. Egy nagyon apro (3 szek, 2 tulajdonsag mondjuk) pelda kitalalasa es megoldasa par lepesben.

2.3. Megoldó módszerek

TODO: Irodalomban talalhato modszerek, 2 mondat roluk, hivatkozasok

Evolúciós algoritmusok

TODO: Tortenetuk, hivatkozasok TODO: Altalanos felepitesuk TODO: Akar par szo arrol, mi mindenre alkalmaztak oket, hivatkozasok

Evolúciós algoritmus Zebra rejtvények megfejtésére

TODO: Par mondat az alapveto elgondolasrol, hogy melyik fejezetben mirol lesz szo

4.1. Kódszerkezet

A kód alapvetően 2 logikai egységre szedhető szét. Van egy egységes, genetikus kód rész és egy az adott feladatra vonatkozó specifikációkat tartalmazó rész. Ez a genetikus algoritmusban három különböző részre jól elkülönítve látszik. A genetikus rész 2 .c fájlban található egy main és egy a genetikus függvényeket tartalmazó állományban. Így egy újabb példára való futtatás alkalmával elég csak a teszteket tartalmazó részt átírni.

A genetikus rész legfontosabb függvényeiről a későbbiekben még lesz szó, ezek a mutálás, random kezdőegyedek beállítása, valamint a keresztezés. Azonban emellett más függvények is fontos szerepet játszanak az algoritmus lefutásában. A 4.1 ábrán látható megjelenítésért az egyedKiir függvény a felelős, amely az aktuálisan létrehozott populáció legjobb egyedét hivatott bemutatni a programot futtató felhasználó számára. Majd végül kiírja a jó megoldást is. A kódba bele van építve egy joMegoldasTeszt nevű függvény, ami nincs használatban és a main függvényben is ki van kommentezve. Ez arra szolgál, hogy amikor újabb feladatot akarunk megoldani a programmal és ismerjük a megoldását, akkor esetleges futási hiba esetén ezzel le tudjuk ellenőrizni, hogy a tesztekkel van-e a gond és ha igen akkor melyikkel.

4.1. ábra. A program lefutása

A main függvényben joMegoldasTeszt függvény mellett jelen van a Megold függvény is. Ez a függvény felelős a feladatok megoldásáért. A tesztek alapján beállítottunk egy fitnesz függvényt, mi esetünkben ezt hanyatSertnek nevezzük. A program célja az, hogy a fitnesz értéke 0 legyen, ami akkor valósül meg, ha

minden teszt feltételének eleget tesz a program. Ez a program leállási feltétele. A Megold függvény szerkezete igen egyszerű. A POPMERET makróval a program elején beállíthatjuk mennyi egyedet szeretnénk létrehozni az alap populációba és a MEGTART makróval pedig beállíthatjuk mennyi legyen az elit egyedek száma, azaz mennyit tartsunk meg a legjobbak közül. A ciklusba belépés előtt egy kezdeti populációt kell beállítani a programnak. Ezt biztosítja nekünk a kezdetiRandom nevű függvény. Majd ezután léphetünk be a ciklusba, ami a jó megoldásig ismétlődik. A ciklus lényege, hogy feltöltsünk egy temp elnevezésű tömböt, ami minden egyes műveletet POPMERET darabszor hajt végre, majd ebből a már POPMERET*4 elemszámú tömbből egy sorba rendezést követően kiválasztunk MEGTART darab elit egyedet a rendezett tömb elejéről. Ezt követően a továbbiakat úgy választjuk ki, hogy nagy eséllyel a jókat válasszuk, de adott legyen az esély a rosszabb egyedek beválogatására is, hiszen az evolúció során is mindig maradnak fent rosszabb egyedek is. Így áll végül össze a populáció elnevezésű tömb ami ezt a POPMERET darab egyedet tartalmazza, amit később visszatöltünk a ciklusba. A 4.2 ábra is ezt a folyamatot hivatott egyszerűen szemléltetni. Jól látszik az ábrán a 4 művelet amiből a ciklus áll. Fontos azonban megjegyezni, hogy a populáció tömböt az első lefutásnál még a kezdetiRandomból vesszük át teljes egészében és csak a ciklus későbbi lefutásánál töltjük fel a kiválasztott egyedekkel.

4.2. ábra. A megoldás lefutásának szemléltetése.

A feladatspecifikus részek jól elkülöníthetők a programban. Itt generálható a feladatban szereplő adatokból a neki megfelelő makrók, hogy későbbiekben egyszerűen egy számként hivatkozhassunk az egyes egyedekre. A programban létrehozott egyedek kritériumoknak való megfelelését a fitnesz függvény értékeli ki. A mi esetünkben ez a hanyatSert elnevezést kapta. Minden Zebra típusú feladvány tartalmaz kritériumokat, amik egy egységes szabályrendszer segítségével leírhatók így akár egy Excel tábla segítségével is könnyen teszt generálható belőlük. Ezeket a teszteket (kritériumokat) fűzi össze a hanyatSert függvény és értékeli ki az egyedek rátermettségét.

4.2. Egyedreprezentáció és segédfüggvények

TODO: Hogy reprezentaljuk az egyedet TODO: egyedkiir, sorbarendez, ...

4.3. Evolúciós mechanizmusok

TODO: esetleg par felvezeto szo, a kapcsolodo makrok megemlitese (popmeret, megtart)

4.3.1. Random új egyed generálás

Az elso változat még csak feltöltötte az egyedet 0-3-ig a székeket minden tulajdonság estén.

4.3. ábra. Random egyed generálási módszerek.

4.3.2. Mutálás

TODO: Ugyanez. Milyen valtozatok voltak, vannak, részletesen bemutatva

4.3.3. Keresztezés

Keresztezésből alapvetően két fajtát különböztetünk meg. Az egypontos és a kétpontos keresztezést. Az egypontos keresztezés esetében a kromoszómákat véletlenszerűen választott helyen kettévágjuk, majd a felcserélt fél-kromoszómákból újakat hozunk létre. A kétpontos keresztezés hasonlóan működik, csak ebben az esetben 2 ponton vágjuk el az allélt és a keletkezett 3 darabot fűzzük össze tetszőleges sorrendben.

A mi esetünkben az egyedek allélja egy 2 dimenziós tömb, amelyen egypontos keresztezés került alkalmazásra. Itt 2 fajta választási lehetőség fordul elő. Vagy soronként vágunk vagy a tömb sorait vágjuk ketté. Ebben az esetben az utóbbi eljárás került megírásra. A programok mindegyike egypontos keresztezést használ, ami a sorokat cseréli meg egy bizonyos ponton elvágva a tömböt. A 4.4 ábra szemlélteti a függvény működésének a lényegét. A program során 2 fajta keresztezés került kidolgozásra. Az első verzió egy fix ponton vágta el a tömböt és a 2 felét cserélte meg. A fix pont a számtani közepe a tulajdonságok számainak. Ezzel a módszerrel az a probléma, hogy a folytonos közepén való vágás nem illeszkedik bele a genetikus algoritmus randomitásába. Későbbiekben ez a módszer egy változó segítségével javítva lett azt biztosítva, hogy minden egyedpár különböző helyen legyen elválasztva.

4.4. ábra. A keresztezés mechanizmusa

A program írása során két fajta keresztezés került kipróbálásra. A crossover 1.0 is úgy lett kitalálva, hogy minden egyeden végezzen keresztezést, viszont az a hibája, hogy mindig 2 egymás mellett lévőn végzi

el. Ez viszont nem bizonyult előnyösnek, mivel a populáció tömb rendezve volt így a legjobb egyedek egymás között keresztezve igen nagy eséllyel rosszabb egyedet adtak eredményképpen. Ezt igen egyszerűen ki lehetett javítani azzal, hogy a populáció tömbből véletlenszerűen választunk ki 2 egyedet és azokon végez a program keresztezést. Ez a módszer lehetővé teszi a programnak azt is, hogy 2 egyforma egyedet válasszon ki, ezzel fenntartva a lehetőséget, hogy egy-egy egyed keresztezés nélkül kerüljön be a temp tömbbe. Az 1.0-ás változathoz képest jelentős eltérés, hogy ez a módszer nagy eséllyel hagy olyan egyedeket amiken nem végez keresztezést, mivel nem kerül kiválasztásra. Azonban ez a genetikus algoritmus jegyeit jobban mutatja, mivel 2 véletlenszerűen kiválasztott egyeden végez keresztezést egy véletlenszerűen választott pontban.

```
temp[k]=Keresztez(populacio[POPMERET-1], populacio[0]);
k++;
for (j=0;j<POPMERET-1;j++){
        temp[k]=Keresztez(populacio[j], populacio[j+1]);
        k++;
}
// Crossover 2.0
for (j=0;j<POPMERET;j++){
    int x=rand()%POPMERET;
    int y=rand()%POPMERET;
    temp[k]=Keresztez(populacio[x], populacio[y]);
    k++;
}</pre>
```

A keresztezés POPMÉRET db alkalommal fut le, azonban a többi evolúciós algoritmushoz hasonlóan innen sem maradt ki a keresztezés a mutált egyedeken , ami szintén POPMÉRET db-szor fut le. Mivel a temp tömb 4*POPMÉRET méretű így a keresztezett egyedek pont a temp felét teszik ki végül, így ebben az algoritmusban is a keresztezés dominál.

4.3.4. Megold függvény

TODO: Ugyanez. Milyen valtozatok voltak, vannak, részletesen bemutatva

4.4. Egyedek kiértékelése

TODO: Itt is szepen be lehet mutatni, hogy hogyan fejlodott, meg meg lehet mutatni mind az ot-hat tipusra egy peldat

Tesztek

TODO: Futtatasi eredmenyek, megoldasok megmutatasa, stb.

Kód automatikus generálása

TODO: Miert akarjuk TODO: Hogy csinaltuk TODO: pelda

Összefoglalás

TODO: Mit csinaltunk roviden

Hivatkozások

A. függelék

Mintafejezet

A.1. Kep betoltese

Kep betoltese a Abra makroval az alabbiak szerint. Az elso parameter a fajl neve, ebbol lesz egy fig_fajlnev cimke, amit ref-ekhez lehet hasznalni. MAsodik parameter a kepalairas, a harmadik a meret.

```
\Aref{fig_zebra} abran bla bla.
\Abra{zebra}{Talalo kepalairas}{width=6cm}
```

Az A.1 abran bla bla.

A.1. ábra. Talalo kepalairas

A.2. Tablazatok

Tablazatot a Tablazat makroval lehet csinalni az alabbiak szerint. Az elso parameter a cimke, ebbol lesz egy tab_cimke cimke, amit ref-ekhez lehet hasznalni. MAsodik parameter a tablazat cime, a harmadik az oszlopok szerkezete (lasd tabular tutorial), az utolso maga a tablazat tartalma.

```
Ahogy az \aref{tab_cimke} tablazatban lathato, bla bla bla.
\Tablazat{cimke}{Tablazat cime}{r||cc|l}
{
    Elso sor elso cella jobra igazitva & kozepre & kozepre & balra \\
```

```
\hline
Masodik sor & & yay & much wow\\
ize & bize & mize & meh... \\
}
```

Ahogy az az A.1 tablazatban lathato, bla bla bla.

Elso sor elso cella jobra igazitva	kozepre	kozepre	balra
Masodik sor		yay	much wow
ize	bize	mize	meh

A.1. táblázat. Tablazat cime

A.3. Forraskodok beemelese

Forraskodot vagy a Forraskod makroval lehet betolteni a fajlbol, ahol az elso parameter a fajl neve, a masodik tovabbi opciok, pl hogy melyik sortol melyik sorig, stb. A masik lehetoseg, hogy a kodba keruljon be az alabbiak szerint:

\Forraskod{ize.c}{frame=single,lastline=4}

```
int fuggvenynev(int tralala){
   int a;
   int b=3; // egy nagyon hasznos komment
   return a+3*b-masikfuggveny(tralala);
```

```
\begin{lstlisting}[frame=single, language=C]
    printf("Hello world\n");
    if(whatever){
        return 1;
    } else do {
        tanuljmegindentalni();
    } while (i<5);
\end{lstlisting}</pre>
```

```
printf("Hello world\n");
if(whatever){
    return 1;
} else do {
    tanuljmegindentalni();
} while (i < 5);</pre>
```