MMVAE:

A Multi-modal Multi-task VAE on Misogynous Meme Detection

Yimeng Gu, Ignacio Castro, Gareth Tyson

Outline of this talk

- Hateful meme detection and challenges
- Background
 - Pre-trained model
 - Multi-modal learning
 - Variational AutoEncoder (VAE)
 - Multi-task learning
- Our approach
- Evaluation

A world with memes!

Replying to @GossiTheDog

Full black mirror today.

9:17 PM · Dec 10, 2021 · Twitter for iPhone

And hateful memes...

Misogynous Meme Detection

- Misogyny prediction
- Shaming, stereotype, objectification and violence prediction

Misogynous

Stereotype

Non-misogynous

Misogynous

Shaming, Stereotype, Objectification

Challenge #1

With image and text

+ = Multimodal!

Challenge #2

Same image, different texts

Challenge #3

Granular labels on hateful message

Previous solutions

Velioglu et al., 2020

Zia et al., 2021

How to encode text and image?

Literature class teacher turned out to be a blatant misogynist, girls agreed with him.

Language pretrained model

Sentence embedding

Sentence embedding

1

BERT Devlin et al., 2019

LASER Artetxe et al., 2019

LaBSE Feng et al., 2020

CLIP Radford et al., 2021

Literature class teacher turned out to be a blatant misogynist, girls agreed with him.

How to represent multimodal data?

Multimodal learning

Fusion mechanism

- Early at feature level: concatenation, cross-modal attention, outer product...
- Late at decision level: voting

Variational AutoEncoder (VAE)

Aim:

Finding latent variable z that captures meaningful *factors* of variation in the data

How to benefit from the learning of the other task?

Multitask learning

Benefit:

Knowledge transfer

Multitask learning

Our approach

$$\mathcal{L}_{total} = \lambda_{img} \mathcal{L}_{img} + \lambda_{txt} \mathcal{L}_{txt} + \lambda_{kl} KLD + \sum_{t} \lambda_{t} \mathcal{L}_{t}$$

Evaluation

Model	Misogyny prediction			Subcategories prediction		
	Precision	Recall	F1	Precision	Recall	F1
BERT	0.608	0.632	0.589	-	-	-
ResNet-50	0.635	0.656	0.622	-	-	-
CNN-VAE	0.526	0.550	0.462	0.514	0.545	0.469
MMVAEBERT+ResNet	0.640	0.653	0.632	0.543	0.590	0.532
MMVAEBERT+CLIP	0.707	0.752	0.693	0.586	0.633	0.589
MMVAELASER+CLIP ★	0.721	0.756	0.711	0.594	0.648	0.600
MMVAE _{LaBSE+CLIP}	0.707	0.751	0.694	0.578	0.658	0.592
MMVAECLIP+CLIP	0.712	0.760	0.698	0.587	0.658	0.592
MMVAE+dropout=0.5	0.724	0.759	0.714	0.606	0.656	0.616
MMVAE+dropout=0.2 ★★	0.730	0.756	0.723	0.613	0.647	0.622
MMVAE+concat	0.721	0.751	0.712	0.602	0.657	0.609
MMVAE+more layers ★★	0.710	0.750	0.698	0.631	0.649	0.634
MMVAE+img transform	0.710	0.756	0.696	0.605	0.651	0.615

Performance analysis

Correctly classifies 88.8% of misogynous memes yet only 57.2% of non-misogynous memes

Hate score (Pérez et al., 2021)

- Non-misogynous -> lower hate score
- Hate score has some correlation with prediction but not the only factor

Pink: non-misogynous

Misclassification examples

Model prediction: Misogynous

Ground truth: Non-misogynous

Model prediction: Non-misogynous

Ground truth: Misogynous

Summary

o Goal

 Build a multimodal hateful meme detection model that gives accurate predictions on granular hateful labels

Our approach

- Propose a novel model leveraging multimodal and multitask learning
- Learn an effective multimodal representation using Variational AutoEncoder
- MMVAE at SemEval-2022 Task 5: A Multi-modal Multi-task VAE on Misogynous Meme Detection
 - Ranked 16/67 in SemEval 2022 task 5

https://github.com/MMVAE-project/MMVAE

Yimeng Gu yimeng.gu@qmul.ac.uk