IN THE CLAIMS

1. (Original): A compound of the formula

$$\begin{array}{c|c} R_3 & R_2 & H_2 \\ \hline R_4 & P_1 & P_2 \\ \hline R_5 & P_1 & P_2 \\ \hline R_5 & P_2 & P_2 \\ \hline R_7 & P_2 & P_2 \\$$

wherein the bond of atoms C22 and C23 is a single or double bond;

- m is 0 or 1:
- n is 0, 1 or 2:
- p is 0 or 1:
- R_1 is C_1 - C_{12} -alkyl, C_3 - C_8 -cycloalkyl or C_2 - C_{12} -alkenyl;

$$\begin{split} R_2 & \text{ is H, C}_1\text{-}C_{12}\text{-}alkyl, C}_1\text{-}C_{12}\text{-}haloalkyl, C}_1\text{-}C_{12}\text{-}hydroxyalkyl, OH, halogen, -}N_3, SCN, NO}_2, CN, C_3\text{-}C_3\text{cycloalkyl} unsubstituted or substituted by from one to three methyl groups, <math>C_3\text{-}C_3\text{-}haloacycloalkyl, C}_1\text{-}C_3\text{-}alkoxy, C}_1\text{-}C_3\text{-}alkoxy, C}_1\text{-}C_3\text{-}alkoxy, C}_1\text{-}C_3\text{-}alkoxy, C}_1\text{-}C_3\text{-}alkoxy, C}_1\text{-}C_3\text{-}alkoxy, C}_1\text{-}C_3\text{-}alkoxy, C}_1\text{-}C_3\text{-}alkoxy, C}_1\text{-}C_3\text{-}alkoxy, C}_2\text{-}C_1\text{-}alkoxy, C}_2\text{-}C_1\text{-}alkoxy, C}_2\text{-}C_1\text{-}alkoxy, C}_2\text{-}C_1\text{-}alkoxy, C}_2\text{-}C_1\text{-}alkoxy, C}_2\text{-}C_1\text{-}alkyny, C}_2\text{-}C_1\text{$$

other, $-C(=X)-R_7$, $-(CH_2)-C(=X)-R_7$, $-O-C(=X)-R_7$, $-(CH_2)-O-C(=X)-R_7$, $-S-C(=X)-R_7$, $-(CH_2)-NR_9C(=X)-R_7$, $-NR_9C(=X)-R_7$, $-NR_9C(=X)-R_9C(=X)-R_7$, $-NR_9C(=X)-R_9C(=X)-R_9$, $-NR_9C(=X)-R_9C(=X)-R_9C(=X)-R_9C(=X)-R_9C(=X)$, $-NR_9C(=X)-R_9C(=X$

 C_2 - C_{12} haloalkenyl, C_2 - C_{12} haloalkenyloxy, C_2 - C_{12} haloalkynyl, C_3 - C_{12} alkynyloxy, C_3 - C_{12} haloalkynyloxy and phenoxy;

or, when p is 1, R2 together with R3 is a bond;

or Ro together with Ra is =0 or =S:

or R_2 together with R_4 form with the carbon to which they are bound a three- to seven-membered ring, which may be monocyclic or bicyclic, and may be saturated or unsaturated, and that may contain one or two hetero atoms selected from the group consisting of N, O and S, and which is either unsubstituted or independently of one another mono- to pentasubstituted with substituents selected from OH, =0, SH, =S, halogen, CN, -N3, SCN, NO2, aryl, C_1 - C_1

 R_2 together with R_4 is =NN(R_{12})₂, wherein the two substituents R_2 are independent of each other:

or, when p is 0, R_2 together with R_4 and R_6 is $\equiv N$;

or when p is 0, R_2 together with R_6 is =NOR₁₂ or =NN(R₁₂)₂, wherein the two substituents R_9 are independent of each other;

 $R_3 \quad \text{is H, C}_1\text{-}C}_{12}\text{-}\text{alkyl}, \text{ halogen, halo-}C}_1\text{-}C}_2\text{alkyl}, \text{ CN, -}N}_3, \text{ SCN, NO}_2, \text{ C}_3\text{-}C}_6\text{cycloalkyl unsubstituted or substituted by from one to three methyl groups, $C}_3\text{-}C}_6\text{halocycloalkyl, $C}_1\text{-}C}_{12}\text{alkoxy, $C}_1\text{-}C}_6\text{alkyl, $C}_1\text{-}C}_6\text{alkyl, $C}_1\text{-}C}_6\text{alkyl, $C}_1\text{-}C}_6\text{alkyl, $C}_1\text{-}C}_6\text{alkyl, $C}_1\text{-}C}_6\text{alkyl, $C}_1\text{-}C}_6\text{alkyl, $C}_1\text{-}C}_6\text{alkyl, $C}_1\text{-}C}_6\text{alkyl, $C}_1\text{-}C}_6\text{alkylsulfinyl, $C}_3\text{-}C}_6\text{cycloalkylsulfinyl, $C}_3\text{-}C}_6\text{cycloalkylsulfinyl, $C}_1\text{-}C}_1\text{-}\text{alakylsulfinyl, $C}_3\text{-}C}_6\text{cycloalkylsulfinyl, $C}_1\text{-}C}_1\text{-}\text{alakylsulfinyl, $C}_3\text{-}C}_6\text{cycloalkylsulfinyl, $C}_1\text{-}C}_1\text{-}\text{alakylsulfinyl, $C}_3\text{-}C}_6\text{alakylsulfinyl, $C}_3\text{-}C}_6\text{-}C}_6\text{alakylsulfinyl, $C}_3\text{-}C}_6\text{alakylsulfinyl, $C}_3\text{-}C}_6\text{alakylyl, $C}_3\text{-}C}_6\text{-}C}_6\text{alakylyl, $C}_3\text{-}C}_6\text{-}C}_6\text{alakylyl, $C}_3\text{-}C}_6\text{-}C}_6\text{alakylyl, $C}_3\text{-}C}_6\text{-}C}_6\text{alakylyl, $C}_3\text{-}C}_6\text{-}C}_6\text{alakylyl, $C}_3\text{-}C}_6\text{-}C}_6\text{alakylyl, $C}_3\text{-}C}_6\text{-}C}_6\text{-}C}_6\text{alakylyl, $C}_3\text{-}C}_6\text{-}$

 C_2 - C_6 alkenyl, C_2 - C_6 alkynyl, C_2 - C_{12} haloalkenyl, C_2 - C_{12} haloalkenyloxy, C_2 - C_{12} haloalkynyl and C_3 - C_{12} haloalkynyloxy;

or when p is 1, R₃ together with R₂ is a bond;

 $R_{4} \quad \text{is H, C}_{1}\text{-}C_{12}\text{-}alkyl, C_{1}\text{-}C_{12}\text{-}haloalkyl, C_{1}\text{-}C_{12}\text{-}hydroxyalkyl, OH, halogen, NO}_{2}, CN, \\ C_{3}\text{-}C_{6}\text{cycloalkyl unsubstituted or substituted by from one to three methyl groups, $C_{3}\text{-}C_{6}\text{halocycloalkyl, C}_{1}\text{-}C_{12}\text{alkoxy, C}_{1}\text{-}C_{6}\text{alkoxy-}C_{1}\text{-}C_{6}\text{alkoxy-}C_{1}\text{-}C_{6}\text{alkoxy-}C_{1}\text{-}C_{6}\text{alkoxy-}C_{1}\text{-}C_{6}\text{alkoxy-}C_{1}\text{-}C_{6}\text{alkoxy-}C_{1}\text{-}C_{6}\text{alkoxy-}C_{1}\text{-}C_{6}\text{alkoxy-}C_{1}\text{-}C_{6}\text{alkoxy-}C_{1}\text{-}C_{6}\text{alkyl, C}_{2}\text{-}C_{12}\text{haloalkenyl, C}_{2}\text{-}C_{12}\text{haloalkenyloxy, C}_{2}\text{-}C_{12}\text{alkoxyl, C}_{2}\text{-}C_{12}\text{-}kloxyl, C}_{2}\text{-}C_{12}\text{-}kloxyl), \\ C_{2}\text{-}C_{12}\text{-}haloalkynyl, C_{3}\text{-}C_{12}\text{-}haloalkynyloxy, -P(=0)(OC_{1}\text{-}C_{6}\text{alkyl})_{3}, -Si(C_{1}\text{-}C_{6}\text{alkyl})_{3}, -(CH_{2})\text{-}Si(C_{1}\text{-}C_{6}\text{-}kloxyl)_{3}, -Si(OC_{1}\text{-}C_{6}\text{-}kloxyl)_{3}, -N(R_{6})_{2}, -(CH_{2})\text{-}N(R_{6})_{2}, \text{ wherein the two substituents } R_{9} \text{ are independent of each} \\ \\$

other, $-C(=X)-R_7$, $-(CH_2)-C(=X)-R_7$, $-O-C(=X)-R_7$, $-(CH_2)-O-C(=X)-R_7$, $-S-C(=X)-R_7$, $-(CH_2)-S-C(=X)-R_7$, $-(CH_2)-NR_0-C(=X)-R_7$, $-NR_0-C(=X)-R_7$, and heterocyclyloxy radicals are unsubstituted or, depending upon the possibilities of substitution at the ring, mono- to penta-substituted by substituents selected from the group consisting of OH, halogen, CN, NO_2 , C_1-C_{12} alkyl, C_3-C_{02} cycloalkyl, C_1-C_{12} haloalkyl, C_1-C_{12} alkoxy, C_1-C_{12} haloalkoxy, C_1-C_{12} alkylthio, C_1-C_{12} haloalkylthio, C_1-C_{12} haloalkylthio, C_1-C_{12} haloalkenyloxy, C_2-C_{12} haloalkynyloxy and phenoxy;

or R4 together with R2 forms =O or =S;

or when p is 1, R4 together with R5 is a bond;

or, when p is 0, together with R_2 and R_6 is $\equiv N$;

 $R_{\text{5}} \text{ and } R_{\text{6}} \text{ independently of each other are H, } C_1 - C_{12} \text{-alkyl, } - N_{\text{3}}, \text{ CN, } NO_{\text{2}}, \text{ OH, } \text{SH, halogen, } \\ \text{halo-}C_1 - C_{\text{2}} \text{alkyl, hydroxy-}C_1 - C_{\text{2}} \text{alkyl, } C_3 - C_{\text{6}} \text{cycloalkyl that is unsubstituted or substituted by from one to two methyl groups, } C_3 - C_{\text{6}} \text{halocycloalkyl, } C_1 - C_{\text{1}} \text{2} \text{alkoxy, } C_1 - C_{\text{6}} \text{alkoxy-}C_1 - C_{\text{6}} \text{alkoxy-}C_1 - C_{\text{6}} \text{alkoxy-}C_1 - C_{\text{6}} \text{alkoxy-}C_1 - C_{\text{6}} \text{alkoxy, } C_1 - C_{\text{1}} \text{2} \text{haloalkoxy, } \\ C_1 - C_{\text{1}} \text{2} \text{haloalkythio, } C_2 - C_{\text{6}} \text{alkenyl, } C_2 - C_{\text{6}} \text{alkenyl, } C_2 - C_{\text{6}} \text{2} \text{alkonyl, } \\ C_1 - C_{\text{1}} \text{2} \text{haloalkythio, } C_2 - C_{\text{6}} \text{alkenyl, } C_2 - C_{\text{6}} \text{2} \text{4} \text{kenyl, } C_2 - C_{\text{6}} \text{2} \text{4} \text{kenyl, } \\ C_2 - C_{\text{1}} \text{2} \text{haloalkynyl, } C_3 - C_{\text{1}} \text{2} \text{haloalkynyloxy, } - P(=O)(CC_1 - C_{\text{6}} \text{alkyl)_2, } - CH_2 - P(=O)(CC_1 - C_{\text{6}} \text{alkyl}_2, - CH_2 - P(=O)(CC_1 - C_{\text{6}} \text{alkyl}_2, - CH_2 - P(=O)(CC_1 - C_{\text{6}} \text{alkyl}_2, - CH_2 - CH_2$

$$\begin{split} &C_{e}alkyl, -O-C(=X)-R_7, -S-C(=X)-R_7, -NR_{\theta}C(=X)R_7, -NR_{\theta}NHC(=X)-R_7, -NR_{\theta}-OR_{10}, -SR_{\theta}, -S(=O)R_{11}, -S(=O)_{z}R_{11}, -CH_{z}-S(=O)_{z}R_{11}, aryl, aryloxy, benzyloxy, -NR_{\theta}-aryl, heterocyclyl, heterocyclyloxy, -NR_{\theta}-heterocyclyloxy, -NR_{\theta}-he$$

cyclyl, -CH2-aryl, -CH2-O-aryl, -CH2-NR9-aryl, -CH2-NR9-C1-C2alkyl, -CH2-heterocyclyl, -CH2-O-heter

ocyclyl and ${^\circ}\text{CH}_2\text{-NR}_0\text{-heterocyclyl}$; wherein the aryl, aryloxy, benzyloxy, ${^\circ}\text{NR}_0\text{-aryl}$, heterocyclyl, heterocyclyloxy and ${^\circ}\text{NR}_0\text{-heterocyclyl}$ radicals are unsubstituted or, depending upon the possibilities of substitution at the ring, mono- to penta-substituted by substituents selected from the group consisting of OH, =0, SH, =S, halogen, CN, NO₂, C₁-C₁₂alkyl, C₂-C₆cycloalkyl, C₁-C₁₂haloalkyl, C₁-C₁₂haloalkoxy, C₁-C₁₂haloalkoxy, C₁-C₁₂haloalkoxy, C₁-C₁₂haloalkoxy, C₂-C₆alkoxy, C₂-C₆alkyll, C₂-C₆alkoxyll, C₂-C₁₂haloalkenyl, C₂-C₁₂haloalkynyl, C₂-C₁₂haloalkynyl, C₂-C₁₂haloalkynyloxy, phenoxy, methylenedioxy, NH₂, NH(C₁-C₁₂alkyl), N(C₁-C₁₂alkyl)₂ and C₁-C₆alkyluffinyl; or

 R_5 and R_6 are, together with the carbon atom to which they are bound, a five- to seven-membered ring, which may be saturated or unsaturated, and which may contain one or two members selected from the group consisting of O, NR $_8$ and S; and which is optionally substituted with one to three substituents selected from C_1 - C_{12} -alkyl, CN, NO $_2$, OH, halogen, halo- C_1 - C_2 alkyl, C_3 - C_8 cycloalkyl C_3 - C_8 cycloalkyl, C_1 - C_1 2alkoxy, C_1 - C_8 alkoxy- C_1 - C_1 -C

or when p is 1, R₅ together with R₄ is a bond;

or, when p is 0, R_6 together with R_2 and R_4 is $\equiv N$;

$$\label{eq:hamiltonian} \begin{split} &R_7 & \text{is H, OH, } C_1\text{-}C_{12}\text{alkyl, } C_1\text{-}C_{12}\text{haloalkyl, } C_2\text{-}C_{12}\text{alkenyl, } C_2\text{-}C_{12}\text{alkynyl, } C_2\text{-}C_{12}\text{haloalkynyloxy, } C_1\text{-}C_{12}\text{haloalkynyloxy, } C_1\text{-}C_{12}\text{haloalkynyloxy, } C_1\text{-}C_{12}\text{haloalkynyloxy, } C_1\text{-}C_{12}\text{haloalkynyloxy, } C_1\text{-}C_{12}\text{haloalkynyloxy, } C_2\text{-}C_3\text{-}alk\text{-}oxy\text{-}C_1\text{-}C_8\text{alkoxy}\text{-}C_1\text{-}C_8\text{alkoxy, } C_2\text{-}C_8\text{alkenyloxy, } C_3\text{-}C_8\text{-}alk\text{inyloxy, } \text{-}N(R_8)_2\text{ wherein the two } R_8\text{ are independent of each other, aryl, aryloxy, benzyloxy, heterocyclyl, heterocyclyloxy or heterocyclylmethoxy; and wherein the aryl, aryloxy, benzyloxy, heterocyclyl and heterocyclyloxy radicals are unsubstituted or, depending upon the possibilities of substitution at the ring, mono- to penta-substituted by substituents selected from the group consisting of halogen, CN, NO_2, C_1\text{-}C_12\text{alkyl, } C_3\text{-}C_8\text{cycloalkyl, } C_1\text{-}C_{12}\text{-}alloxy, C_1\text{-}C_12\text{-}alkoxy, } C_1\text{-}C_12\text{-}alkoxy, } C_1\text{-}C_12\text{-}alkylthio, } C_1\text{-}C_12\text{-}alkoxy, } C_1\text{-}C_12\text{-}alkoxy, } C_1\text{-}C_12\text{-}alkoxy, } C_2\text{-}C_12\text{-}alkylthio, } C_2\text{-}C_2\text{-}alkynyl, } C_2\text{-}C_2\text{-}alkyny$$

 R_8 is H, C_1 - C_6 alkyl that is optionally substituted with one to five substituents selected from the group consisting of halogen, C_1 - C_6 alkoxy, C_1 - C_6 alkoxy, C_2 - C_6 alkoxy, C_2 - C_1 -alakoxy, C_3 - C_1 -alakoxy, C_3 - C_1 -alakoxy, hydroxy and cyano, C_3 - C_6 -cycloalkyl, aryl, benzyl or heteroaryl; wherein the aryl, benzyl and heteroaryl radicals are unsubstituted or, depending on the possibilities of substitution on the ring, mono- to trisubstituted by substituents selected from the group consisting of OH, halogen, CN, NO_2 ,

- $C_{1}-C_{12}\text{alkyl},\ C_{1}-C_{12}\text{haloalkyl},\ C_{1}-C_{12}\text{alkoxy},\ C_{1}-C_{12}\text{haloalkoxy},\ C_{1}-C_{12}\text{alkynyl},\ C_{2}-C_{12}\text{haloalkynyl},\ C_{2}-C_{12}\text{haloalkynyl},\ C_{2}-C_{12}\text{haloalkynyl},\ C_{3}-C_{12}\text{haloalkynyloxy},\ C_{3}-$
- $$\begin{split} R_{\vartheta} &\quad \text{is H, C}_1\text{-}C_{\vartheta}\text{alkyl, C}_1\text{-}C_{\vartheta}\text{cycloalkyl, C}_1\text{-}C_{\vartheta}\text{alkoxy-}C_1\text{-}C_{\vartheta}\text{alkyl, C}_1\text{-}C_{\vartheta}\text{alkoxy-}C_1\text{-}C_{\vartheta}\text{alkoxy-}C_1\text{-}C_{\vartheta}\text{alkyl, C}_2\text{-}C_{12}\text{alkenyl, C}_2\text{-}C_{12}\text{alkynyl, benzyl, aryl or heteroaryl;} \end{split}$$
- $R_{10} H$, C_1 - C_6 alkyl that is optionally substituted with one to five substituents selected from the group consisting of halogen, C_1 - C_6 alkoxy, NO_2 , hydroxy and cyano, C_1 - C_1 -haloalkyl, C_2 - C_1 -galkenyl, C_2 - C_1 -galkynyl, C_3 - C_6 -cycloalkyl, anyl, benzyl or heteroaryl; wherein the aryl, benzyl and heteroaryl radicals are unsubstituted or, depending on the possibilities of substitution on the ring, mono- to trisubstituted by substituents selected from the group consisting of OH, halogen, CN, NO_2 , C_1 - C_1 -galkyl, C_1 - C_1 -galkoxyl, C_2 - C_1 -
- R_{11} is H, C_1 - C_6 alkyl that is optionally substituted with one to five substituents selected from the group consisting of halogen, C_1 - C_6 alkoxy, hydroxy and cyano, -N(R₉)₂ wherein the two substituents R₉ are independent of each other, C_2 - C_9 cycloalkyl, C_3 - C_1 -halocycloalkyl, C_2 - C_{12} -haloalkenyl, C_2 - C_{12} -haloalkenyl, C_3 - C_{12} -haloalkenyl, C_3 - C_{12} -haloalkenyl, C_3 - C_{12} -haloalkenyloxy, aryl, benzyl or heteroaryl; wherein the aryl, benzyl and heteroaryl radicals are unsubstituted or, depending on the possibilities of substitution on the ring, mono- to trisubstituted by substituents selected from the group consisting of OH, halogen, CN, NO₂, C_1 - C_{12} alkyl, C_1 - C_{12} -haloalkoxy, C_1 - C_{12} -haloalkoxy, C_1 - C_{12} -haloalkoxy, C_1 - C_{12} -haloalkoxyl, C_2 - C_{12} -haloalkenyl, C_2 - C_{12} -haloalkenyl, C_2 - C_{12} -haloalkenyl, C_2 - C_{12} -haloalkenyloxy, C_2 - C_{12} -haloalkynyl and C_3 - C_{12} -haloalkynyloxy;
- $R_{12} \quad \text{is H, C}_1\text{-}C_6\text{alkyl, C}_1\text{-}C_6\text{cycloalkyl, C}_1\text{-}C_6\text{alkoxy-}C_1\text{-}C_6\text{alkyl, C}_1\text{-}C_6\text{alkoxy-}C_1\text{-}C_6\text{alkyl, C}_2\text{-}C_1\text{-}2\text{alkenyl, C}_2\text{-}C_1\text{-}2\text{alkynyl, -}C(=0)C_1\text{-}C_6\text{alkyl, -}C(=0)OC_1\text{-}C_6\text{alkyl, -}SO_2C_1\text{-}C_6\text{alkyl, benzyl, aryl, heteroaryl;}$
 - X is O or S:
- or, if appropriate, an E/Z isomer, E/Z isomer mixture and/or tautomer thereof, in each case in free form or in salt form;
 - with the proviso, that the group R_0 -[C(R_3)(R_5)] $_0$ -C(R_2)(R_4)-[CH $_2$] $_0$ -, which is attached to the ϵ position of the compound of the formula (I), is not NC-CH $_2$ or HOOC-CH $_2$ when m is 1 and
 the bond between atoms 22 and 23 is a single bond.

- (Previously Presented): A pesticide composition which contains at least one compound of the formula (I) as described in claim 1 as active compound and at least one auxiliary.
- 3. (Previously Presented): A method for controlling pests comprising applying a composition as described in claim 2 to the pests or their habitat.
- (Previously Presented): A process for preparing a composition as described in claim 2 comprising intimately mixing and/or grinding the active compound with at least one auxiliary.
 - 5. (Cancelled).
 - 6. (Cancelled).
- 7. (Previously Presented): A method for protecting plant propagation material, wherein the propagation material or the location where the propagation material is planted is treated, comprising applying a composition as described in claim 2.
- 8. (Currently Amended): Plant propagation material treated in accordance with the method composition described in claim 7.2.