Problem 6.

$$\bigcap_{n=1}^{\infty} (0, 1/n) = \emptyset.$$

Proof. Let $S = \bigcap_{i=1}^{\infty} (0, 1/n) = \emptyset$. Let $x \in \mathbb{R}$. Consider the following 3 cases.

Case 1: Suppose $x \le 0$, then $x \notin S$ as $x \notin (0,1)$.

Case 2: Suppose $x \ge 0$, then $x \notin S$ as $x \notin (0,1)$.

Case 3: Suppose 0 < x < 1, Choose $n \in \mathbb{N}$ so that $n > \frac{1}{x}$. Then $x > \frac{1}{n}$ so $x \in (0, \frac{1}{n})$, thus $x \notin S$

These cases show that an arbitrary $x \in R$ is not in S.

Problem 7. Given a function f and a subset A of its domain, consider the image $f(A) = \{f(x) : x \in A\}$.

(a) An example of a function f, and two subsets A, B of the domain of f, for which $f(A \cap B) \neq f(A) \cap f(B)$ is

$$f(x) = |x|$$

where set A is a subset of the domain defined by $A = \{x \in \mathbb{R} \mid 0 < x\}$ and where set B is a subset of the domain defined by $B = \{x \in \mathbb{R} \mid x \geq 0\}$.

(b) If A, B are subsets of the domain of f then $f(A \cup B)$ IS RELATED IN SOME WAY $TO f(A) \cup f(B)$.

Proof.

Problem 8. If $a \in \mathbb{R}$ is an upper bound for $A \subset \mathbb{R}$, and if a is also an element of A, then $a = \sup A$.

Proof. \Box

Problem 9. (a) Let $A = \{m/n : m, n \in \mathbb{N} \text{ with } m < n\}$. Then $\inf A = \text{and } \sup A = .$

- (b) Let $B = \{(-1)^m/n : n, m \in \mathbb{N}\}$. Then $\inf B = \text{and } \sup B = .$
- (c) Let $C = \{n/(3n+1) : n \in \mathbb{N}\}$. Then $\inf C = \text{and } \sup C =$.
- (d) Let $D = \{m/(m+n) : m, n \in \mathbb{N}\}$. Then $\inf D = \text{and } \sup D = .$

Problem 10. (a) If A and B are nonempty, bounded, and satisfy $A \subseteq B$ then $\sup A \le \sup B$.

(b) If $\sup A < \inf B$ for nonempty sets A and B, then there exists $c \in \mathbb{R}$ such that a < c < b for all $a \in A$ and $b \in B$.

(c)	<i>If there exists</i> $c \in \mathbb{R}$ <i>satisfying</i> $a < c < b$ <i>for all</i> $a \in A$ <i>and</i> $b \in B$ <i>then</i> $\sup A < \inf B$.
Problem 11. Denote the irrational numbers by $\mathbb{I} = \mathbb{R} \setminus \mathbb{Q}$.	
(a)	If $a, b \in \mathbb{Q}$ then $ab \in \mathbb{Q}$ and $a + b \in \mathbb{Q}$.
	Proof.
(b)	If $a \in \mathbb{Q}$ and $t \in \mathbb{I}$ then $a + t \in \mathbb{I}$. If also $a \neq 0$ then $at \in \mathbb{I}$.
	Proof.
(c)	Suppose $s,t\in\mathbb{I}$. Then PROPOSITION ABOUT WHETHER st AND $s+t$ ARE EITHER RATIONAL OR IRRATIONAL IN GENERAL.
Problem 12. For all $n \in \mathbb{N}$, $2^n \ge n$.	
Pro	of. \Box
Problem 13. <i>Let</i> $y_1 = 6$ <i>and, for each</i> $n \in \mathbb{N}$ <i>, let</i> $y_{n+1} = (2y_n - 6)/3$.	
(a)	For all $n \in \mathbb{N}$, $y_n \ge -6$.
	Proof.
(b)	The sequence $(y_1, y_2, y_3,)$ is decreasing.
	Proof.