Box Breaker Game Project

EE319H Introduction to Embedded System Honors

By Daniel Yang

Executive Summary

 The game Box Breaker is played on a TI microcontroller interfaced with input and output hardware

 The software implementation is done on Keil 5 IDE that includes sprite design, level design, and main file programming

The game is the final project of Introduction to Embedded System Honors (EE319H) that must fulfill the minimum requirements

Hardware Requirements	Two buttons
	Slide potentiometer with ADC
	Speaker with DAC
	Liquid crystal display (LCD)
Software Requirements	Two interrupt service routines (ISR)
	Three sprites
	Score display
	Two languages

Box Breaker is like Brick Breaker, but instead of the ball hitting the brick, the cookie is hitting the box

- English or Spanish
- 3 levels
- 4 lives
- Each box can take 4 hit
- Pink Box contains a powerup

TM4C123GXL Microcontroller is the brain of hardware design

- All Hardware components are connected to the board
- The board receives the data from input hardware
- The software then process that data

Finally, the data is sent to the output hardware

Two built-in buttons are used to change language and use power-up

PORT F4

 Edge-triggered on the falling edge

The slide potentiometer is an adjustable $10k\Omega$ resistor that controls the paddle position

Two output devices are interfaced with the microcontroller, an LCD and a speaker

The 128x160 ST7745 LCD is used to display the game

```
// pin 10 Backlight +3.3 V
// pin 9 MISO unconnected
// pin 8 SCK PA2 (SSIOCIK)
// pin 7 MOSI PA5 (SSIOTX)
// pin 6 TFT_CS PA3 (SSIOFSS)
// pin 5 CARD_CS unconnected
// pin 4 D/C PA6 (GPIO)
// pin 3 RESET PA7 (GPIO)
// pin 2 VCC +3.3 V
// pin 1 Gnd ground
Program 7.1. Interface connections for the Sitronix ST7735.
```

The 4-bit binary-weighted DAC converts PB0-3 value to current for the speaker to play sound

C++ Classes are written to code each sprite

One function is written for each level to initialize a unique layout of boxes

- Each Level can have a maximum of 5 rows and 9 columns of boxes
- Box[5][9] 2D array is declared to represent each box sprite
- The if statement check is used to initialize certain Box Objects
- Uninitialized Box Objects will not become sprites

```
for (every row)
  for (every col)
    if (...)
    initialize Box[row][col]
```


The design of each level

The game begins by prompting user to select a language

None pressed

English is selected

Spanish is selected

Game Engine updates each sprite's movement, collision, and display every cycle

Conclusion

 I briefly explained the hardware interface with the microcontroller and software design

More levels and power-ups could be designed to make the game more interesting

A difficulty system could also be implemented