

# Dynamics of Motor Cortex: Intrinsic or Extrinsic?

### Okapia Johnstoni

Jennifer Jensen, Shruti Marathe, Jiaxin Cindy Tu, Chris Versteeg



### What are "Neural Dynamics"





Monkey J, array



### Questions

To what extent are dynamics recorded in motor cortex shared dynamics across the brain?



### Hypothesis



At rest, neural activity of all brain regions will share few features. During movement, regions anatomically connected to motor cortex will interact more.



### Steinmetz Dataset





Session 31

| <u>Brain</u>  |
|---------------|
| <b>Region</b> |
|               |
| <u># of</u>   |

| Brain<br>Region | Secondary<br>Motor<br>Cortex | Thalamus | Orbital<br>Frontal<br>Cortex | Olfactory<br>Bulb | Hippocamp<br>us: CA3 | Postsubicu<br>lum | Superior<br>Colliculus | Substantia<br>Nigra |
|-----------------|------------------------------|----------|------------------------------|-------------------|----------------------|-------------------|------------------------|---------------------|
| # of<br>neurons | 281                          | 78       | 291                          | 109               | 43                   | 17                | 41                     | 117                 |



## Modeling shared latent dynamics between Motor Cortex and other brain regions





## Modeling shared latent dynamics between Motor Cortex and other brain regions





### Alignment of latent spaces during movement is stronger than the noise control and varies across regions







### Alignment of latent spaces is stronger during movement compared to at rest







### Limitations and future directions

- The number of neurons in each region is not the same -> varies by a lot
  - Can systematically explore the effect of number of neurons in the "shared latents"
- Only one session from one mice
  - Extend to other sessions/more mice
- Examine different tasks/behavior states of the animal



#### Conclusion

- We used dynamic systems to estimate the correlations between brain regions across behavioral states.
- We found that during movement, motor cortex shares more common dynamics with other brain regions.



### Thanks!

- TA:
  - Naga Karthik
- Advisor:
  - Aakash Agrawal
- Data Source
  - Nicolas Steinmetz
- Neuromatch Community!



