

Data Science

Skillkoder is an Al-driven skilling platform designed to make high-quality learning affordable and accessible to everyone, everywhere.

Data Science Course

Fundamentals of AI

Module 1: Understanding AI

- Introduction to Artificial Intelligence and its importance in data science.
- Key concepts of AI and its relationship with Machine Learning.
- Understanding AI goals, logic, and intelligent behavior.
- Real-world examples and Al-driven innovations.

Module 2: Application Life Cycle

- Overview of the AI and data science project lifecycle.
- Data collection, cleaning, and preparation stages.
- · Model building, validation, and deployment.
- Continuous monitoring and model updates.

Module 3: Data Fundamentals

- Understanding structured and unstructured data.
- Types of data: numerical, categorical, and textual.
- Importance of data integrity and accuracy.
- Data storage formats and sources for data science.

Module 4: Computing for AI

- Introduction to computing environments for AI.
- Hardware and software used in data-driven projects.
- Understanding GPUs, TPUs, and cloud computing.
- Tools and platforms for scalable AI computations.

Module 5: Al Applications

- Al use cases across various industries.
- Predictive analytics and automation.
- Al in business intelligence and decision-making.
- · Case studies on impactful Al applications.

Python for AI

Module 1: Introduction to Python

- Importance of Python in AI and data science.
- Installing Python and setting up Jupyter/VS Code.
- Writing and executing Python scripts.
- Understanding variables, syntax, and data types.

Module 2: Core Python Concepts

- Lists, tuples, sets, and dictionaries.
- Conditional statements and looping structures.
- Functions and modular programming.
- File handling and exception management.

Module 3: Object-Oriented Programming (OOP) in Python

- · Understanding classes and objects.
- Encapsulation, inheritance, and polymorphism.
- Practical examples of OOP in Al projects.
- Reusability and modular design principles.

Module 4: Essential Libraries for AI & Data Science

- Introduction to NumPy, Pandas, and Matplotlib.
- Understanding arrays and dataframes.
- Data visualization using Seaborn.
- Using Scikit-learn for machine learning tasks.

Module 5: Data Handling & Preprocessing

- Cleaning and formatting raw datasets.
- Handling missing values and duplicates.
- · Data normalization and encoding.
- Preparing data for modeling and analysis.

Module 6: Project

- End-to-end Python project on data preparation and visualization.
- Combining libraries for complete analysis.
- Implementing automation in data workflows.
- Presentation of project findings.

Statistics for Al

Module 1: Introduction to Statistics for AI & Data Science

- Importance of statistics in data-driven Al.
- Understanding populations, samples, and data distributions.
- Central tendency and variability measures.
- Statistical visualization techniques.

Module 2: Descriptive Statistics

- Measures of mean, median, and mode.
- Standard deviation and variance.
- Outlier detection and summary statistics.
- Visualizing descriptive insights using Python.

Module 3: Probability Basics

- Understanding probability theory and random variables.
- Probability distributions and their types.
- Conditional probability and Bayes theorem.
- Real-world probability applications in Al.

Module 4: Inferential Statistics

- Sampling and hypothesis testing.
- Confidence intervals and p-values.

- t-tests, chi-square, and ANOVA applications.
- Making statistical conclusions with data.

Module 5: Exploratory Data Analysis (EDA)

- Visualizing data patterns and relationships.
- Correlation analysis and feature insights.
- Identifying missing values and anomalies.
- Hands-on EDA using Pandas and Seaborn.

Module 6: Statistical Foundations for Machine Learning & Project

- Regression and correlation analysis.
- Feature selection using statistical principles.
- · Statistical validation in ML workflows.
- Capstone project integrating all statistical methods.

Machine Learning

Module 1: Introduction to Machine Learning

- Understanding the ML ecosystem.
- Types of ML: supervised, unsupervised, and reinforcement.
- Data preparation and model lifecycle.
- ML in data science applications.

Module 2: Supervised Learning

- Regression and classification models.
- Algorithms: Linear Regression, Decision Trees, and SVM.
- Model evaluation metrics and performance.
- Case study: predictive analytics project.

Module 3: Unsupervised Learning

- Clustering and dimensionality reduction.
- K-Means, Hierarchical Clustering, and PCA.
- Association rules and anomaly detection.
- Practical examples for pattern discovery.

Module 4: Model Evaluation & Optimization

- Overfitting, underfitting, and bias-variance trade-off.
- Hyperparameter tuning and cross-validation.
- Regularization techniques for better models.
- Evaluating performance using metrics.

Module 5: Feature Engineering & Project

- Feature extraction, selection, and scaling.
- · Encoding categorical variables.
- Building optimized datasets for ML models.
- End-to-end ML project implementation.

Deep Learning

Module 1: Neural Networks Basics

- Introduction to neurons and perceptrons.
- Activation functions and loss functions.
- Gradient descent and backpropagation.
- Introduction to TensorFlow and Keras.

Module 2: Artificial Neural Networks (ANNs)

- Building ANN architectures.
- Training and tuning ANN models.
- Handling overfitting using dropout.
- Real-world predictive ANN project.

Module 3: Convolutional Neural Networks (CNNs)

- CNN architecture and components.
- Feature extraction from images.
- Image classification and object detection.
- Practical CNN-based case study.

Module 4: Natural Language Processing (NLP)

- Understanding text data and tokenization.
- Text cleaning, stemming, and lemmatization.
- Sentiment analysis and text classification.
- Applications of NLP in chatbots and automation.

Module 5: Recurrent Neural Networks (RNNs)

- Sequence modeling and time-series analysis.
- RNN, LSTM, and GRU architectures.
- Text and sequence generation using RNNs.
- Case study: time-series forecasting.

Tools & Platforms

An interactive coding environment for writing, testing, and visualizing Python code, commonly used for data analysis.

A professional-grade Python IDE with robust debugging, testing, and package management features for data analytics projects.

A lightweight, extensible code editor with Python and FastAPI support.

A cloud-based Jupyter Notebook for Python with free GPU/TPU support for ML projects.

A fundamental Python library for numerical computations, supporting large arrays, matrices, and mathematical functions.

A data manipulation and analysis library for working with structured data, including DataFrames and Series.

A Python framework for building interactive webbased dashboards with live data visualizations.

An Al-enhanced code editor built on VS Code, offering smart completions and debugging

Al-powered tools and APIs for coding, automation, and natural language processing.

Google's Al model for assisting in code generation, debugging, and research.

Get Skilled to Reach Your Goal

Skillkoder is an Al-driven skilling platform designed to make high-quality learning affordable and accessible to everyone, everywhere.

