Codility_

CodeCheck Report: trainingQJU9JT-H8Z

Test Name:

Check out Codility training tasks

100%

Summary Timeline 🛕 Al Assistant Transcript

Tasks Details

1. FrogJmp
Count minimal number of Task Score Correctness Performance
jumps from position X to 100% 100%

Solution

Task description

A small frog wants to get to the other side of the road. The frog is currently located at position X and wants to get to a position greater than or equal to Y. The small frog always jumps a fixed distance, D.

Count the minimal number of jumps that the small frog must perform to reach its target.

Write a function:

int solution(int X, int Y, int D);

that, given three integers X, Y and D, returns the minimal number of jumps from position X to a position equal to or greater than Y.

For example, given:

X = 10

Y = 85

D = 30

the function should return 3, because the frog will be positioned as follows:

- after the first jump, at position 10 + 30 = 40
- after the second jump, at position 10 + 30 + 30 = 70

Programming language used:	C++	
Total time used:	5 minutes	?
Effective time used:	5 minutes	?
Notes:	not defined yet	
Task timeline		•

• after the third jump, at position 10 + 30 + 30 + 30= 100

Write an efficient algorithm for the following assumptions:

- X, Y and D are integers within the range [1..1,000,000,000];
- X ≤ Y.

Copyright 2009–2024 by Codility Limited. All Rights Reserved. Unauthorized copying, publication or disclosure prohibited.

Test results - Codility

```
// you can write to stdout for debugging purposes,
// cout << "this is a debug message" << endl;

int solution(int X, int Y, int D) {
    // Implement your solution here
    int diff= Y-X ;// calculate the gab they need
    if(diff%D==0)
    return diff/D; // if the gap is exactly divi
    return diff/D+1 ; // if not then one extra ste
}</pre>
```

Analysis summary

The solution obtained perfect score.

Analysis

Detected time complexity: O(1)

expand all	Examp	le tests	
example		✓ OK	
example test	i .		
expand all	Correctn	ess tests	
▶ simple1		✓ OK	
simple test			
▶ simple2		√ OK	
▶ extreme_p	osition	✓ OK	
no jump nee	ded		
► small_extr	eme_jump	✓ OK	
one big jump)		
expand all	Performa	nce tests	
► many_jum	p1	✓ OK	
many jumps,	D = 2		
► many_jum	p2	✓ OK	
many jumps,	D = 99		
▶ many_jum	p3	✓ OK	
many jumps,	D = 1283		
▶ big_extren	ne_jump	✓ OK	
maximal nur	nber of jumps		
▶ small_jum	ps	✓ OK	