Please amend the above-identified patent application, without prejudice, as follows:

IN THE CLAIMS:

Cancel claims 1, 5, 6 and 7.

Amend claims 2, 3, 4 and 8-11 by replacement as follows:

2. (amended) A process according to claim 8 wherein the metallocenyl-phthalocyanine compound is represented by formula I

wherein

M₁ is a divalent metal, an oxometal group, halogenometal group or hydroxymetal group, or two hydrogen atoms,

X is halogen

 Y_1 is $-OR_1$, $-OOC-R_2$, $-NHR_1$, $-N(R_1)R_2$,

 Y_2 is $-SR_1$,

R₃ is

 R_6 and R_7 are each independently of the other hydrogen, halogen, C_1 - C_4 alkyl, C_1 - C_4 alkyl, diarylphosphine, or phosphorus-containing C_1 - C_4 alkyl,

x may be a rational number from 0 to 8

 y_1 and y_2 may be each independently of the other a rational number from 0 to 6

z may be a number from 1 to 4, wherein $(x + y_1 + y_2 + z)$ is ≤ 16 ,

and wherein R, and R, may be each independently of the other

 C_1 - C_{20} alkyl which is unsubstituted or substituted by halogen, hydroxy, C_1 - C_{20} alkoxy, C_1 - C_{20} alkylamino or C_2 - C_{20} dialkylamino and which may be interrupted by $-O_-$, $-S_-$, $-NH_-$ or $-NR_{10}$ -, wherein R_{10} may be C_1 - C_6 alkyl,

 C_5 - C_{20} cycloalkyl, C_2 - C_{20} alkenyl, C_5 - C_{12} cycloalkenyl, C_2 - C_{20} alkynyl, C_6 - C_{18} aryl or C_7 - C_{18} aralkyl, and wherein one or two ligands may optionally be bound to the divalent metal atom, the oxometal group, halogenometal group or hydroxymetal group, and E being composed of a chain of at least two members selected from the group consisting of CH_2 -, -C(=O)-, $-CH(C_1$ - C_4 alkyl)-, $-C(C_1$ - C_4 alkyl)₂-, -C(=O)-, $-CH(C_1$ - C_4 alkyl)-, $-C(C_1$ - C_4 alkyl)₂-, -C(=O)-, $-CH(C_1$ - C_4 alkyl)-, $-C(C_1$ - C_4 -alkyl)-, $-C(C_1$ - C_4 - $-C_4$ - $-C_$

Cont

3. (amended) A A process according to claim 8 wherein the metallocenyl-phthalocyanine compound is represented by formula

$$(Me_{2}CH)_{2}C(H)O$$

$$N$$

$$N$$

$$N$$

$$OCH(CHMe_{2})_{2}$$

$$OCH(CHMe_{2})_{2}$$

$$OCH(CHMe_{2})_{2}$$

$$OCH(CHMe_{2})_{2}$$

where x = 2.6 to 3.0, preferably 2.7 to 2.9, more preferably 2.8

4. (amended) A A process according to claim 8 wherein the metallocenyl-phthalocyanine compound is represented by formula

$$(Me_{2}CH)_{2}C(H)O \qquad N \qquad CH_{2}OC(=O)$$

$$N \qquad Cu - N \qquad OCH(CHMe_{2})_{2}$$

$$(Me_{2}CH)_{2}C(H)O \qquad OCH(CHMe_{2})_{2}$$

AI CONT

where x = 0 to 0.5

8. (amended) A process for the manufacture of optical recording medium having at least one recording layer comprising the steps of

a) incorporating a metallocenyl-phthalocyanine or its metal complex of a divalent metal, oxometal, halogenometal or hydroxymetal, in which at least one of the four phenyl rings of the phthalocyanines contains, bound via a bridge unit E, at least one metallocene radical as substituent, E being composed of a chain of at least two members selected from the group consisting of -CH₂-, -C(=O)-, -CH(C₁-C₄alkyl)-, -C(C₁-C₄alkyl)₂-, -NH-, -S-, -O- and -CH=CH- into said recording layer.

A2

9. (amended) An optical recording medium, which comprises a metallocenyl-phthalocyanine or its metal complex of a divalent metal, oxometal, halogenometal or hydroxymetal, in which at least one of the four phenyl rings of the phthalocyanines contains, bound via a bridge unit E, at least one metallocene radical as substituent, E being composed of a chain of at least two members selected from the group consisting of -CH₂-, -C(=O)-, -CH(C₁-C₄alkyl)-, -C(C₁-C₄alkyl)₂-, -NH-, -S-, -O- and -CH=CH-.

10. (amended) An optical recording medium, which consists essentially of a transparent substrate, a recording layer on that substrate, a reflection layer on the recording layer and, if desired, a final protective layer, the recording layer comprising a metallocenyl-phthalocyanine or its metal complex of a divalent metal, oxometal, halogenometal or hydroxymetal, in which at least one of the four phenyl rings of the phthalocyanines contains, bound via a bridge unit E, at least one metallocene radical as substituent, E being composed of a chain of at least two members selected from the group consisting of $-CH_2-$, -C(=O)-, $-CH(C_1-C_4alkyl)-$, $-C(C_1-C_4alkyl)-$, -NH-, -S-, -O- and -CH=CH-.

A2 cont

11. (amended) A process according to claim 8 wherein the optical recording medium is a DVD, a diffractive-optical element or medium for recording a hologram.

Insert new claims 12-23 as follows:

12. (new) A process for the manufacture of optical recording medium having at least one recording layer comprising the steps of

a) incorporating mixture, which comprises

(a) 60 to 95 mol % of a compound II

containing one radical R_3 (z = 1),

(b) 5/to 20 mol % of a compound II containing two radicals R_3 (z = 2),

and

c) /0 to 25 mol % of a compound IV

A3

wherein $-OR_{11}$, $R_3 = R_{14}$, X and M_3 each have the same meaning in formulae II and IV and are as defined in claim 2, the mol-% amounts making up 100% into said recording layer.

- 13. (new) A process according to claim 2 wherein the optical recording medium is a DVD, a diffractive-optical element or medium for recording a hologram.
- 14. (new) A process for the manufacture of optical recording medium having at least one recording layer comprising the steps of
 - a) incorporating a mixture, which comprises
- (a) 60 to 95 mol % of a compound II

containing one radical R_3 (z = 1),

wherein R_{11} is C_1-C_{12} alkyl and M_3 is palladium or copper, and z is 1,

(b) 5 to 20 mol % of a compound II containing two R_3 (z = 2), and

(c) 0 to 25 mol % of a compound IV

wherein R_{14} may be -CHO, -CH₂OH, -COOH, -CH₂OC(O)-C₁-C₄alkyl or an acetal, and z may be 1 or 2,

wherein $-OR_{11}$, $R_3 = R_{14}$, X and M_3 each have the same meanings in formulae II and IV and are as defined for claim 2, the mol-% amounts making up 100% into said recording layer.

15. (new) A process according to claim 14 wherein the optical recording medium is a DVD, a diffractive-optical element or medium for recording a hologram.

16. (new) An optical recording medium according to claim 9 wherein the metallocenyl-phthalocyanine compound is represented by formula I

is a divalent metal, an oxometal group, halogenometal group or hydroxymetal group, or two Μ, hydrogen atoms,

- Χ is halogen
- is $-OR_1$, $-OOC-R_2$, $-NHR_1$, $-N(R_1)R_2$, Υ,
- is -SR,, Υ,
- R, is

R_a and R₇ are each independently of the other hydrogen, halogen, C₁-C₄alkyl, C₁-C₄alkoxy, amino-C₁-C₄alkyl, diarylphosphine, or phosphorus-containing C₁-C₄alkyl,

may be a rational number from 0 to/8 X y_1 and y_2 may be each independently of the other a rational number from 0 to 6

may be a number from 1 to 4,

wherein $(x + y_1 + y_2 + z)/is \le 16$,

and wherein R_1 and R_2 may be each independently of the other

C₁-C₂₀alkyl whigh is unsubstituted or substituted by halogen, hydroxy, C₁-C₂₀alkoxy, C₁-C₂₀alkylamino or C_2 - C_{20} dialky lamino and which may be interrupted by -O-, -S-, -NH- or $-NR_{10}-$, wherein R_{10} may be C,-C,alkyl,

 C_s - C_{20} cycloalkyl, C_z - C_{20} alkenyl, C_s - C_{12} cycloalkenyl, C_z - C_{20} alkynyl, C_s - C_{18} aryl or C_r - C_{18} aralkyl, and wherein one or two ligands may optionally be bound to the divalent metal atom, the oxometal group, halogenometal group or hydroxymetal group, and E being composed of a chain of at least two/members selected from the group consisting of -CH₂-, -C(=O)-, -CH(C₁-C₄alkyl)-, -C(C₁-C₄alkyl)₂-, -NH-, -S-, -O- and -CH=CH-.

17. (new) An optical recording medium according to claim 9 wherein the metallocenyl-phthalocyanine compound is represented by formula

$$(Me_2CH)_2C(H)O \qquad N \qquad N \qquad CH_2OC(=O) \qquad Br_x \qquad (Me_2CH)_2C(H)O \qquad (M$$

where x = 2.6/to 3.0, preferably 2.7 to 2.9, more preferably 2.8

18. (new) An optical recording medium according to claim 17 wherein the optical recording medium is a DVD, a diffractive-optical element or medium for recording a hologram.

A3 cont.

19. (new) An optical recording medium according to claim 9 wherein the metallocenylphthalocyanine compound is represented by formula

$$(Me_{2}CH)_{2}C(H)O \qquad N \qquad N \qquad CH_{2}OC(=O)$$

$$(Me_{2}CH)_{2}C(H)O \qquad OCH(CHMe_{2})_{2}$$

$$(Me_{2}CH)_{2}C(H)O \qquad Where x = 0 to 0.5$$

20. (new) An optical recording medium according to claim 10 wherein the metallocenyl-phthalocyanine compound is represented by formula I

wherein

M₁ is a divalent metal, an oxometal group, halogenometal group or hydroxymetal group, or two hydrogen atoms,

X is halogen

$$Y_1$$
 is $-OR_1$, $-OOC-R_2$, $-NHR_1$, $-N(R_1)R_2$

$$Y_2$$
 is $-SR_1$,

$$E \longrightarrow R_0$$
 $M_2 \longrightarrow R_7$

 R_{4} and R_{7} are each independently of the other hydrogen, halogen, C_{1} - C_{4} alkyl, C_{1} - C_{4} alkoxy, amino- C_{1} - C_{4} alkyl, diarylphosphine, or phosphorus-containing C_{1} - C_{4} alkyl,

x may be a rational number from 0 to 8

 y_1 and y_2 may be each independently of the other a rational number from 0 to 6

z may be a number from 1 to 4,

wherein
$$(x + y_1 + y_2 + z)$$
 is ≤ 16 ,

and wherein R, and R2 may be each independently of the other

 C_1 - C_{20} alkyl which is unsubstituted or substituted by halogen, hydroxy, C_1 - C_{20} alkoxy, C_1 - C_{20} alkylamino or C_2 - C_{20} dialkylamino and which may be interrupted by -O-, -S-, -NH- or $-NR_{10}$ -, wherein R_{10} may be C_1 - C_6 alkyl,

 C_s - C_{20} cycloalkyl, C_2 - C_{20} alkenyl, C_s - C_{12} cycloalkenyl, C_2 - C_{20} alkynyl, C_6 - C_{18} aryl or C_7 - C_{18} aralkyl, and wherein one or two ligands may optionally be bound to the divalent metal atom, the oxometal group, halogenometal group or hydroxymetal group, and E being composed of a chain of at least two members selected from the group consisting of -CH₂-, -C(=O)-, -CH(C_1 - C_4 alkyl)-, -C(C_1 - C_4 alkyl)₂-, -NH-, -S-, -O- and -CH=CH-.

21. (new) An optical recording medium according to claim 10 wherein the metallocenylphthalocyanine compound is represented by formula

$$(Me_{2}CH)_{2}C(H)O \qquad N \qquad N \qquad CH_{2}OC(=O)$$

$$(Me_{2}CH)_{2}C(H)O \qquad OCH(CHMe_{2})_{2}$$

$$(Me_{2}CH)_{2}C(H)O \qquad OCH(CHMe_{2})_{2}$$

where x = 2.6 to 3.0, preferably 2.7 to 2.9, more preferably 2.8

22. (new) An optical recording medium according to claim 10 wherein the metallocenylphthalocyanine compound is represented by formula

A3 cont

23. (new) An optical recording medium according to claim 22 wherein the optical recording medium is a DVD, a diffractive-optical element or medium for recording a hologram.