

Topics

GANs continued

- ► Image to image translation
- Other GAN variants

Transformers

- Attention
- Vision transformers

Recall the following image restoration approach

- \blacktriangleright An encoder-decoder $\mathcal G$ for image restoration
- ightharpoonup A binary classiifer \mathcal{D} (critic) for identifying restored images

Image adapted from sigmoidal.ic

This is an example of image to image translation

- $ightharpoonup \mathcal{G}$ learns to map images from domain A to domain B
- ▶ In sense that \mathcal{D} cannot distinguish between B and $\mathcal{G}(A)$

lmage adapted from sigmoidal.ic

Details depend on particular task and dataset properties

▶ Most importantly, are there corresponding image pairs?

Discussed framework does not formally require image pairs

But in practice having no pairs leads to problems

 $ightharpoonup \mathcal{G}$ will have hard time fooling \mathcal{D}

Further advantages of having pairs

- ightharpoonup Can pre-train $\mathcal G$ to stabilize training
- ightharpoonup Can add per-pixel loss on output of $\mathcal G$ to improve results

Example

- ightharpoonup Domain A: images of maps
- ightharpoonup Domain B: images of areal photos

Image from [1]

Example

- ightharpoonup Domain A: outlines of handbags
- ▶ Domain B: images of handbags

Image from [1

Example

▶ Domain *A*: grayscale images

▶ Domain *B*: color images

Image from [1]

GANs Unpaired Image to Image Translation

What if image pairs are not available / possible?

▶ Photos to paintings, summer to winter etc.

A popular method that makes this work is CycleGAN [2]

▶ Two generators $\mathcal{G}: A \mapsto B$ and $\mathcal{F}: B \mapsto A$

Core idea is that we demand cycle consistency

- $ightharpoonup \mathcal{F}(\mathcal{G}(\mathbf{x})) pprox \mathbf{x} \text{ for } \mathbf{x} \in A$
- $\blacktriangleright \ \mathcal{G}(\mathcal{F}(\mathbf{y})) \approx \mathbf{y} \text{ for } \mathbf{y} \in B$

Generators should preserve images from target domains

- $ightharpoonup \mathcal{G}(\mathbf{y}) \approx \mathbf{y} \text{ for } \mathbf{y} \in B$
- $ightharpoonup \mathcal{F}(\mathbf{x}) \approx \mathbf{x} \text{ for } \mathbf{x} \in A$

Four corresponding per-pixel (L1) loss functions

- ► For cycle-consistency: $(\mathbf{x}, \mathcal{F}(\mathcal{G}(\mathbf{x})))$ and $(\mathbf{y}, \mathcal{G}(\mathcal{F}(\mathbf{y})))$
- ▶ For identity: (y, G(y)) and (x, F(x))

Plus two adversarial losses / discriminators \mathcal{D}_A and \mathcal{D}_B

- Purpose identical to other GANs
- lacktriangle Distinguish real and fake images in domains A and B

Total training loss is weighted sum of all losses

GANs Unpaired Image to Image Translation

Image from [2]

GANs Unpaired Image to Image Translation

Image from youtube

GANs are a general framework

- Generate samples indistinguishable from training data
- Many flavors exist

Original GAN problem formulation

- lacktriangleright Given samples ${f x}$ (training data) from some distribution $P({f x})$
- Learn to sample from this distribution
- \blacktriangleright In sense that ${\mathcal D}$ cannot tell the difference

Got to make GAN stochastic

- Add a source of randomness
- To enable new random generations

To do so we replace input images to ${\cal G}$ with ${\bf z}$

- Fixed-size random vector, e.g. $\mathbf{z} \sim [-1, 1]^{20}$
- Called latent vector

Changes to $\mathcal G$

- Remove the encoder
- Instead map z to suitable 3D tensor

```
def generator(nz):
    return nn.Sequential(
        nn.Linear(nz, 64 * 8 * 8),
        nn.ReLU(inplace=True),
        nn.Unflatten(1, (64, 8, 8)),
        ... # rest of generator
)
```

Resulting architecture

► Training works like before (image restoration)

Image from sigmoidal.ic

GANs Vanilla GANs

Training such GANs can be a pain (unable to pre-train)

► Can fail for many reasons

Two common issues

- \triangleright \mathcal{G} cannot fool \mathcal{D} (vanishing gradients)
- $ightharpoonup \mathcal{G}$ generates similar outputs regardless of \mathbf{z} (mode collapse)

Loss curves help identifying problems

- ightharpoonup Loss on $\mathcal D$ should never approach 0
- Oscillations are bad

GANs Vanilla GANs

Image from [3]

No intuitive way to control what ${\mathcal G}$ should generate

If we train on CIFAR-10 for example

- ► Generated images will be of 10 classes
- But we might want to e.g. generate only car images

Conditional GANs overcome this limitation

Accomplished by adding another input y to $\mathcal G$ and $\mathcal D$

- ▶ Where y is what we want to condition on (e.g. class label)
- ► Causing \mathcal{G} to learn to sample from $\Pr(\mathbf{x}|\mathbf{y})$

To generate random images of specific kind

- Choose y accordingly (e.g. desired class)
- Vary z to generate different samples

Image adapted from sigmoidal.id

Many ways to define and incorporate y

Standard method for integer labels is an embedding

- ▶ Learnable function $e: \{0, 1, ..., m-1\} \mapsto \mathbb{R}^n$
- Maps positive numbers to fixed-size vectors
- n is a hyperparameter

Embedding layers (e.g. torch.nn.Embedding)

- ▶ Have $m \times n$ parameters (initialized randomly)
- ightharpoonup One learned vector of size n per scalar input value (e.g. class)

Can set n freely

In our context we set $n = H_0 \cdot W_0$

- ▶ $H_0 \times W_0$ is initial tensor height/width in \mathcal{G}/\mathcal{D}
- ▶ Allows us to then reshape to $1 \times H_0 \times W_0$
- Can then concatenate information as new channel
- To combine image and e.g. class information in single tensor

Class-conditional images generated by [4]

Image from [4]

Transformers

We have focused on convolutional neural networks

▶ Dominating deep learning architecture for vision

Transformers are a new, strong competitor

- Originally proposed for natural language processing (NLP) [5]
- ► Recently adapted for vision (vision transformers) (ViT) [6]

Transformers Motivation

Recall inductive biases we derived for convnets

- Local connectivity
- Parameter sharing within feature maps

These are solid inductive biases

- Sensible given how images are formed
- ▶ Significant reduction in parameters, computations over MLPs
- Enabling robust training of deep neural networks

Transformers Motivation

The are still biases though

- ► Likely not (always) optimal
- Particularly with respect to slowly increasing receptive field

Transformers are more general

- ► Weaker task-specific inductive biases
- ► General architecture with exceptional performance

Transformers operate on sets of vectors $\{\mathbf{t}_1,\ldots,\mathbf{t}_S\}$

- lackbox Each vector $\mathbf{t}_s \in \mathbb{R}^T$ is called a token
- lacktriangle Token ordering must be encoded in \mathbf{t}_s (if relevant)

The operation that characterizes transformers is attention

- Compare all tokens to each other (details later)
- ▶ Time and memory complexity is $\approx \mathcal{O}(S^2)$
- lacktriangle Can become a limiting factor quickly as S increases

Got to convert input images accordingly

 \triangleright Cannot just represent pixels as tokens (S too big)

ViTs split images into S fixed-size patches (e.g. 16×16)

lacktriangle Can be implemented using a conv layer with stride k

Patches are then flattened to vectors \mathbf{v}_s (size e.g. $16 \cdot 16 \cdot 3$)

- ightharpoonup Original ViT [3] maps these to tokens via $\mathbf{t}_s = \mathbf{v}_s \mathbf{W}$
- lackbox Learned weight matrix $\mathbf{W} \in \mathbb{R}^{\dim(\mathbf{t}_s) imes T}$ (linear layer)

Patch location is certainly important (spatial information)

- ightharpoonup Recall that we must encode this in \mathbf{t}_s
- ▶ ViT [6] uses an embedding layer

Transformers For Image Classification

Transformers map input tokens to output tokens

- ► Add a dummy token (class embedding)
- Corresponding output token is input to classifier

Transformers For Image Classification

Transformer Encoder

Transformer encoder consists of L sub-networks

Each network has identical architecture

- ▶ Input: $S \times T$ matrix of input tokens
- ▶ Output: $S \times T$ matrix of output tokens
- Skip-connections like ResNet

Transformer Encoder - Normalization

Normalization layers (yellow)

- Normalize individual rows ($\mu = 0, \sigma = 1$)
- Using Layer normalization
- ► To keep signals well-behaved as usual

Image from [6]

Transformer Encoder - MLP

Gaussian Error Linear Unit (GELU) activation

- Similar to ReLU
- Non-zero gradient for negative inputs

```
nn.Sequential(
    nn.Linear(dim, hidden_dim),
    nn.GELU(),
    nn.Dropout(dropout),
    nn.Linear(hidden_dim, dim),
    nn.Dropout(dropout)
```


Transformer Encoder – Multi-Head Attention

Consists of h independent attention layers

Image from [5]

Image from [6]

Transformer Encoder – Attention

Q, K, V are $S \times H$ matrices

- ▶ Different learned linear projections of input
- ► *H* is a hyperparameter

Attention is defined as

$$\mathsf{Attention}(Q,K,V) = \mathsf{softmax}\left(\frac{Q\,K^T}{\sqrt{H}}\right)V$$

Transformer Encoder – Attention

QK^T is equal to dot products

- ightharpoonup Between S vectors in Q and S vectors in K
- ightharpoonup Output has size $S \times S$

Dot product encodes similarity between vectors

Operation above computes similarity scores

Softmax normalizes these scores to $\left[0,1\right]$

Transformer Encoder – Attention

Dot product softmax (\cdot) V

- ightharpoonup Causes vectors of V to be suppressed
- $\blacktriangleright \ \ \text{If similarity score between } Q \ \text{and} \ K \ \text{was small}$

Encodes which vectors rest should focus on

► Vectors correspond to tokens / patches

Transformers Training

Training is done as usual

- ▶ Backpropagation to compute $\nabla L(\theta)$
- ► Iterative optimization (Adam is popular)

Transformers Versus Conv Nets

Transformers have a global receptive field

Every layer sees everything (in contrast to conv nets)

Transformers Versus Conv Nets

Transformers might scale better to huge datasets

► Many millions of images

Transformers currently top many vision task leaderboards

- Advantage over modern conv nets is usually small though
- Not necessarily because of inherently better architecture

No clear winner in terms of training and inference times

Varies a lot depending on particular architectures

Transformers Remarks

Transformers are all the rage right now

► Fast progress

Transformers are the foundation of large language models (LLMs)

Such as GPT-4 (ChatGPT), PaLM (Bard)

Bibliography

- [1] Isola et al. Pix2Pix. 2016
- [2] Zhu et al. CycleGAN. 2017
- [3] Karras et al. StyleGAN. 2018
- [4] Brock et al. Large-Scale GAN. 2019
- [5] Vaswani et al. Transformers. 2017
- [6] Dosovitskiy at al. Vision Transformers. 2020