Contents

1	Elliptic curves		
	1.1	Reduction of Weierstrass equations	2
2	Algebraic integer		
	2.1	Quadratic integer	4
	2.2	Integral basis	4
	2.3	Fractional ideals	4
	2.4	Frobenius element	
	2.5	Quadratic Dirichlet character	5
3	Diophantine equations		
	3.1	Quadratic equation on a plane	7
		The Mordell equations	8
4	The local-global principle		9
	4.1	The local fields	9
	4.2	Hensel's lemma	10
	4.3		10
5	Dec	lekind domain	11

1 Elliptic curves

1.1 Reduction of Weierstrass equations

In this subsection, we want to investigate the important constants of elliptic curves such as c_4 , c_6 , Δ , j by calculating equations with hands.

Step 1. The Riemann-Roch theorem proves that every curve of genus 1 with a specified base point can be described by the first kind of Weierstrass equation. Explicitly, the first form of Weierstrass equation is

$$y^2 + a_1 xy + a_3 y = x^3 + a_2 x^2 + a_4 x + a_6. (1)$$

Step 2. Elimination of xy and y. Factorize the left hand side

$$y(y + a_1x + a_3) = x^3 + a_2x^2 + a_4x + a_6.$$

By translation

$$x \mapsto x, \qquad y \mapsto y - \frac{1}{2}(a_1x + a_3)$$

we have

$$y^{2} - (\frac{1}{2}(a_{1}x + a_{3}))^{2} = x^{3} + a_{2}x^{2} + a_{4}x + a_{6},$$

$$y^{2} = x^{3} + (\frac{1}{4}a_{1}^{2} + a_{2})x^{2} + (\frac{1}{2}a_{1}a_{3} + a_{4})x + (\frac{1}{4}a_{3}^{2} + a_{6}),$$

$$y^{2} = x^{3} + \frac{1}{4}(a_{1}^{2} + 4a_{2})x^{2} + \frac{1}{2}(a_{1}a_{2} + 2a_{4})x + \frac{1}{4}(a_{3}^{2} + 4a_{6}).$$

Introduce new coefficients b to write it as

$$y^2 = x^3 + \frac{1}{4}b_2x^2 + \frac{1}{2}b_4x + \frac{1}{4}b_6.$$

By scaling

$$x \mapsto x, \qquad y \mapsto \frac{1}{2}y$$

we get

$$y^2 = 4x^3 + b_2x^2 + 2b_4x + b_6. (2)$$

Step 3. Elimination of x^2 . By translation

$$x \mapsto x - \frac{1}{12}b_2$$

we have

$$y^{2} = 4\left(x^{3} - 3 \cdot \frac{1}{12}b_{2}x^{2} + 3 \cdot \frac{1}{12^{2}}b_{2}^{2}x - \frac{1}{12^{3}}b_{2}^{3}\right)$$
$$+b_{2}\left(x^{2} - 2 \cdot \frac{1}{12}b_{2}x + \frac{1}{12^{2}}b_{2}^{2}\right)$$
$$+2b_{4}\left(x - \frac{1}{12}b_{2}\right)$$
$$+b_{6},$$

SO

$$y^{2} = 4x^{3} + \left(4 \cdot 3 \cdot \frac{1}{12^{2}}b_{2}^{2} - 2 \cdot \frac{1}{12}b_{2}^{2} + 2b_{4}\right)x + \left(-4 \cdot \frac{1}{12^{3}}b_{2}^{3} + \frac{1}{12^{2}}b_{2}^{3} - 2 \cdot \frac{1}{12}b_{2}b_{4} + b_{6}\right)$$

$$= 4x^{3} + \frac{1}{12}\left(-b_{2}^{2} + 24b_{4}\right)x + \frac{1}{216}\left(b_{2}^{3} - 36b_{2}b_{4} + 216b_{6}\right).$$

Write it as

$$y^2 = 4x^3 - \frac{1}{12}c_4x - \frac{1}{216}c_6.$$

We want to match the coefficients of y^2 and x^3 but also want the coefficients of c_4x and c_6 to be integers. Iterative scaling implies

$$x \mapsto \frac{1}{6}x: \qquad 216y^2 = 4x^3 - 3c_4x - c_6$$

$$y \mapsto \frac{1}{36}y: \qquad y^2 = 24x^3 - 18c_4x - 6c_6$$

$$x \mapsto \frac{1}{6}x: \qquad 9y^2 = x^3 - 27c_4x - 54c_6$$

$$y \mapsto \frac{1}{3}y: \qquad y^2 = x^3 - 27c_4x - 54c_6.$$

Thus, we get the famous third form of Weierstrass equation:

$$y^2 = x^3 - 27c_4x - 54c_6. (3)$$

Theorem 1.1. Let

$$E: y^2 = x^3 - Ax - B.$$

TFAE:

- (1) A point (x, y) is a singular point of E.
- (2) y = 0 and x is a double root of $x^3 Ax B$.
- (3) $\Delta = 0$.

Proof. (1) \Rightarrow (2) $\partial_y f = 0$ implies y = 0. $f = \partial_x f = 0$ implies x is a double root of $x^3 - Ax - B$. A determines whether x is either cusp of node.

2 Algebraic integer

2.1 Quadratic integer

Theorem 2.1. Every quadratic field is of the form $\mathbb{Q}(\sqrt{d})$ for a square-free d.

Theorem 2.2. Let d be a square-free.

$$\mathcal{O}_{\mathbb{Q}(\sqrt{d})} = \begin{cases} \mathbb{Z}[\sqrt{d}] & , d \equiv 2,3 \pmod{4} \\ \mathbb{Z}[\frac{1+\sqrt{d}}{2}] & , d \equiv 1 \pmod{4} \end{cases}$$

$$\Delta_{\mathbb{Q}(\sqrt{d})} = \begin{cases} 4d & , d \equiv 2,3 \pmod{4} \\ d & , d \equiv 1 \pmod{4} \end{cases}$$

Example 2.1.

$$\Delta_{\mathbb{Q}(i)} = -4, \quad \Delta_{\mathbb{Q}(\sqrt{2})} = 8, \quad \Delta_{\mathbb{Q}(\gamma)} = 5, \quad \Delta_{\mathbb{Q}(\omega)} = -3$$

where $\gamma := \frac{1+\sqrt{5}}{2}$ and $\omega = \zeta_3$.

Theorem 2.3. Let $\theta^3 = hk^2$ for h, k square-free's.

$$\mathcal{O}_{\mathbb{Q}(\theta)} = \begin{cases} \mathbb{Z} + \theta \mathbb{Z} + \frac{\theta^2}{k} \mathbb{Z} &, m \not\equiv \pm 1 \pmod{9} \\ \mathbb{Z} + \theta \mathbb{Z} + \frac{\theta^2 \pm \theta k + k^2}{3k} \mathbb{Z} &, m \equiv \pm 1 \pmod{9} \end{cases}$$

Corollary 2.4. If θ^3 is a square free integer, then

$$\mathcal{O}_{\mathbb{Q}(\theta)} = \mathbb{Z}[\theta].$$

2.2 Integral basis

Theorem 2.5. Let $\alpha \in K$. $Tr_K(\alpha) \in \mathbb{Z}$ if $\alpha \in \mathcal{O}_K$. $N_K(\alpha) \in \mathbb{Z}$ if and only if $\alpha \in \mathcal{O}_K$.

Theorem 2.6. Let $\{\omega_1, \dots, \omega_n\}$ be a basis of K over \mathbb{Q} . If $\Delta(\omega_1, \dots, \omega_n)$ is square-free, then $\{\omega_1, \dots, \omega_n\}$ is an integral basis.

Theorem 2.7. Let $\{\omega_1, \dots, \omega_n\}$ be a basis of K over \mathbb{Q} consisting of algebraic integers. If $p^2 \mid \Delta$ and it is not an integral basis, then there is a nonzero algebraic integer of the form

$$\frac{1}{p} \sum_{i=1}^{n} \lambda_i \omega_i.$$

2.3 Fractional ideals

Theorem 2.8. Every fractional ideal of K is a free \mathbb{Z} -module with rank $[K : \mathbb{Q}]$. Proof. This theorem holds because K/\mathbb{Q} is separable and \mathbb{Z} is a PID.

2.4 Frobenius element

Definition 2.1. Let L/K be abelian. Let \mathfrak{p} be a prime in \mathcal{O}_K and \mathfrak{q} be a prime in \mathcal{O}_L over \mathfrak{p} . The decomposition group $D_{\mathfrak{q}|\mathfrak{p}}$ is a subgroup of $\operatorname{Gal}(L/K)$ whose element fixes the prime \mathfrak{q} . Since L/K is Galois, the followings do not depend on the choice of \mathfrak{q} over \mathfrak{p} .

By definition, $D_{\mathfrak{q}|\mathfrak{p}}$ acts on the set $\mathcal{O}_L/\mathfrak{q}$ and fixes \mathcal{O}_K .

Lemma 2.9. The following sequence of abelian groups is exact:

$$0 \longrightarrow I_{\mathfrak{q}|\mathfrak{p}} \longrightarrow D_{\mathfrak{q}|\mathfrak{p}} \longrightarrow \operatorname{Gal}(k(\mathfrak{q})/k(\mathfrak{p})) \longrightarrow 0,$$

where $k(\mathfrak{q}) := \mathcal{O}_L/\mathfrak{q}$ and $k(\mathfrak{p}) := \mathcal{O}_K/\mathfrak{p}$ are residue fields.

Proof. We first show
$$\Box$$

The Frobenius element is defined as an element of $D_{\mathfrak{q}|\mathfrak{p}}/I_{\mathfrak{q}|\mathfrak{p}} \cong \operatorname{Gal}(k(\mathfrak{q})/k(\mathfrak{p}))$, which is a cyclic group.

Definition 2.2. The Frobenius element is defined by $\phi_{\mathfrak{q}|\mathfrak{p}} \in \operatorname{Gal}(L/K)$ such that $\phi_{\mathfrak{q}|\mathfrak{p}}(\mathfrak{q}) = \mathfrak{q}$ and

$$\phi_{\mathfrak{q}|\mathfrak{p}}(x) \equiv x^{|\mathcal{O}_K/\mathfrak{p}|} \pmod{\mathfrak{q}} \quad \text{for } x \in \mathcal{O}_L.$$

It gives a generator of the cyclic group $D_{\mathfrak{q}|\mathfrak{p}}/I_{\mathfrak{q}|\mathfrak{p}}$.

Remark. Fermat's little theorem states $\phi_{\mathfrak{q}|\mathfrak{p}} = \mathrm{id}_{\mathcal{O}_K/\mathfrak{p}}$, i.e.

$$\phi_{\mathfrak{P}|\mathfrak{p}}(x) \equiv x \pmod{\mathfrak{p}} \quad \text{for } x \in \mathcal{O}_K,$$

which means $\phi_{\mathfrak{P}|\mathfrak{p}}$ fixes the field $\mathcal{O}_K/\mathfrak{p}$ so that $\phi_{\mathfrak{P}|\mathfrak{p}} \in \operatorname{Gal}(k(\mathfrak{P})/k(\mathfrak{p}))$.

2.5 Quadratic Dirichlet character

Let D be a quadratic discriminant. For $\zeta_D = e^{\frac{2\pi i}{D}}$, it is known that the cyclotomic field $\mathbb{Q}(\zeta_D)$ is the smallest cyclotomic extension of the quadratic field $\mathbb{Q}(\sqrt{D})$. Let $K = \mathbb{Q}(\sqrt{D})$ and $L = \mathbb{Q}(\zeta_D)$.

For $p \nmid D$ so that p is unramified, let $\sigma_p := (\zeta_D \mapsto \zeta_D^p) \in \operatorname{Gal}(L/\mathbb{Q})$. Then, what is $\sigma_p|_K$ in $\operatorname{Gal}(K/\mathbb{Q})$? In other words, which is true: $\sigma_p(\sqrt{D}) = \pm \sqrt{D}$?

Notice that σ satisfies the condition to be the Frobenius element: $\sigma_p I_{\mathfrak{q}|p} = \phi_{\mathfrak{q}|p}$. Therefore, $\phi_{\mathfrak{p}|p} = \sigma_p|_K$ is also a Frobenius element. There are only two cases:

- (1) If $f = |D(\mathfrak{p}/p)| = 1$, then $\sigma_p|_K$ is the identity, so $\chi_K(p) = 1$
- (2) If $f = |D(\mathfrak{p}/p)| = 2$, then $\sigma_p|_K$ is not trivial, so $\chi_K(p) = -1$ Artin reciprocity: $(\mathbb{Z}/D\mathbb{Z})^{\times}$ is extended to I_K^S .

3 Diophantine equations

3.1 Quadratic equation on a plane

Ellipse is reduced by finitely many computations.

Especially for hyperbola, here is a strategy to use infinite descent.

- (1) Let midpoint to be origin.
- (2) Find the subgroup of $SL_2(\mathbb{Z})$ preserving the image of hyperbola(which would be isomorphic to \mathbb{Z}).
- (3) Find an impossible region.
- (4) Assume a solution and reduce it to the either impossible region or the ground solution.

Example 3.1 (Pell's equation). Consider

$$x^2 - 2y^2 = 1.$$

A generator of hyperbola generating group is $g = \begin{pmatrix} 3 & 4 \\ 2 & 3 \end{pmatrix}$. It has a ground solution (1,0) and impossible region 1 < x < 3. If (a,b) is a solution with a > 0, then we can find n such that $g^n(a,b)$ is in the region [1,3). The possible case is $g^n(a,b) = (1,0)$.

Example 3.2 (IMO 1988, the last problem). Consider a family of equations

$$x^2 + y^2 - kxy - k = 0.$$

By the vieta jumping, a generator is $g:(a,b)\mapsto (b,kb-a)$. It has an impossible region $xy<0: x^2+y^2-kxy-k\geq x^2+y^2>0$. If (a,b) is a solution with a>b, then we can find n such that $g^n(a,b)$ is in the region $xy\leq 0$. Only possible case is $g^n(a,b)=(\sqrt{k},0)$ or $g^n(a,b)=(0,-\sqrt{k})$. In ohter words, the equation has a solution iff k is a perfect square.

3.2 The Mordell equations

(The reciprocity laws let us learn not only which prime splits, but also which prime factors a given polynomial has.)

$$y^2 = x^3 + k$$

There are two strategies for the Mordell equations:

- $x^2 2x + 4$ has a prime factor of the form 4k + 3
- $x^3 = N(y a)$ for some a.

First case: k = 7, -5, -6, 45, 6, 46, -24, -3, -9, -12.

Example 3.3. Solve $y^2 = x^3 + 7$.

Proof. Taking mod 8, x is odd and y is even. Consider

$$y^2 + 1 = (x+2)(x^2 - 2x + 4).$$

Since

$$x^2 - 2x + 4 = (x - 1)^2 + 3$$
,

there is a prime $p \equiv 3 \pmod 4$ that divides the right hand side. Taking mod p, we have

$$y^2 \equiv -1 \pmod{p},$$

which is impossible. Therefore, the equation has no solutions.

Example 3.4. Solve $y^2 = x^3 - 2$.

Proof. Taking mod 8, x and y are odd. Consider a ring of algebraic integers $\mathbb{Z}[\sqrt{-2}]$. We have

$$N(y - \sqrt{-2}) = (y - \sqrt{-2})(y + \sqrt{-2}) = x^3.$$

For a common divisor δ of $y \pm \sqrt{-2}$, we have

$$N(\delta) \mid N((y - \sqrt{-2}) - (y + \sqrt{-2})) = N(2\sqrt{-2}) = |(2\sqrt{-2})(-2\sqrt{-2})| = 8.$$

On the other hand,

$$N(\delta) \mid x^3 \equiv 1 \pmod{2},$$

so $N(\delta) = 1$ and δ is a unit. Thus, $y \pm \sqrt{-2}$ are relatively prime. Since the units in $\mathbb{Z}[\sqrt{-2}]$ are ± 1 , which are cubes, $y \pm \sqrt{-2}$ are cubics in $\mathbb{Z}[\sqrt{-2}]$.

$$y + \sqrt{-2} = (a + b\sqrt{-2})^3 = a(a^2 - 6b^2) + b(3a^2 - 2b^2)\sqrt{-2},$$

so that $1 = b(3a^2 - 2b^2)$. We can conclude $b = \pm 1$. The possible solutions are $(x, y) = (3, \pm 5)$, which are in fact solutions.

4 The local-global principle

4.1 The local fields

Let $f \in \mathbb{Z}[x]$.

Does
$$f = 0$$
 have a solution in \mathbb{Z} ?

Does $f = 0$ have a solution in $\mathbb{Z}/(p^n)$ for all n ?

Does $f = 0$ have a solution in \mathbb{Z}_p ?

In the first place, here is the algebraic definition.

Definition 4.1. Let $p \in \mathbb{Z}$ be a prime. The ring of the p-adic integers \mathbb{Z}_p is defined by the inverse limit:

$$\mathbb{Z}_p := \lim_{\substack{n \in \mathbb{N}}} \mathbb{F}_{p^n} \longrightarrow \cdots \longrightarrow \mathbb{Z}/(p^3) \longrightarrow \mathbb{Z}/(p^2) \longrightarrow \mathbb{F}_p.$$

Definition 4.2. $\mathbb{Q}_p = \operatorname{Frac} \mathbb{Z}_p$.

Secondly, here is the analytic definition.

Definition 4.3. Let $p \in \mathbb{Z}$ be a prime. Define a absolute value $|\cdot|_p$ on \mathbb{Q} by $|p^m a|_p = \frac{1}{p^m}$. The local field \mathbb{Q}_p is defined by the completion of \mathbb{Q} with respect to $|\cdot|_p$.

Definition 4.4. $\mathbb{Z}_p := \{x \in \mathbb{Q}_p : |x|_p \leq 1\}.$

Example 4.1. Observe

$$3^{-1} \equiv 2_5 \pmod{5}$$

 $\equiv 32_5 \pmod{5^2}$
 $\equiv 132_5 \pmod{5^3}$
 $\equiv 1313132_5 \pmod{5}^7 \cdots$

Therefore, we can write

$$3^{-1} = \overline{13}2_5 = 2 + 3p + p^2 + 3p^3 + p^4 + \cdots$$

for p = 5. Since there is no negative power of 5, 3^{-1} is a p-adic integer for p = 5.

Example 4.2.

$$7 \equiv 1_3^2 \pmod{3}$$

 $\equiv 111_3^2 \pmod{3^3}$
 $\equiv 20111_3^2 \pmod{3^5}$
 $\equiv 120020111_3^2 \pmod{3^9} \cdots$

Therefore, we can write

$$\sqrt{7} = \cdots 120020111_3 = 1 + p + p^2 + 2p^4 + 2p^7 + p^8 + \cdots$$

for p=3. Since there is no negative power of 3, $\sqrt{7}$ is a p-adic integer for p=3.

There are some pathological and interesting phenomena in local fields. Actually note that the values of $|\cdot|_p$ are totally disconnected.

Theorem 4.1. The absolute value $|\cdot|_p$ is nonarchimedean: it satisfies $|x+y|_p \le \max\{|x|_p,|y|_p\}$.

Proof. Trivial.
$$\Box$$

Theorem 4.2. Every triangle in \mathbb{Q}_p is isosceles.

Theorem 4.3. \mathbb{Z}_p is a discrete valuation ring: it is local PID.

$$Proof.$$
 asdf

Theorem 4.4. \mathbb{Z}_p is open and compact. Hence \mathbb{Q}_p is locally compact Hausdorff.

Proof. \mathbb{Z}_p is open clearly. Let us show limit point compactness. Let $A \subset \mathbb{Z}_p$ be infinite. Since \mathbb{Z}_p is a finite union of cosets $p\mathbb{Z}_p$, there is α_0 such that $A \cap (\alpha_0 + p\mathbb{Z}_p)$ is infinite. Inductively, since

$$\alpha_n + p^{n+1} \mathbb{Z}_p = \bigcup_{1 \le x \le p} (\alpha_n + xp^{n+1} + p^{n+2} \mathbb{Z}_p),$$

we can choose α_{n+1} such that $\alpha_n \equiv \alpha_{n+1} \pmod{p^{n+1}}$ and $A \cap (\alpha_{n+1} + p^{n+2}\mathbb{Z}_p)$ is infinite. The sequence $\{\alpha_n\}$ is Cauchy, and the limit is clearly in \mathbb{Z}_p .

4.2 Hensel's lemma

Theorem 4.5 (Hensel's lemma). Let $f \in \mathbb{Z}_p[x]$. If f has a simple solution in \mathbb{F}_p , then f has a solution in \mathbb{Z}_p .

$$Proof.$$
 asdf

Remark. Hensel's lemma says: for X a scheme over \mathbb{Z}_p , X is smooth iff $X(\mathbb{Z}_p) \twoheadrightarrow X(\mathbb{F}_p)$...???

Example 4.3. $f(x) = x^p - x$ is factorized linearly in $\mathbb{Z}_p[x]$.

4.3 Sums of two squares

Theorem 4.6 (Euler). A positive integer m can be written as a sum of two squares if and only if $v_p(m)$ is even for all primes $p \equiv 3 \pmod{4}$.

Lemma 4.7. Let p be a prime with $p \equiv 1 \pmod{4}$. Every p-adic integer is a sum of two squares of p-adic integers.

5 Dedekind domain

Proposition 5.1. Let A be a Dedekind domain. Then, A is a PID if and only if Euclid's lemma holds.

If R satisfies the ascending chain condition for principal ideals, then R is a PID iff R is a Bézout domain, and R is a UFD iff Euclid's lemma holds in R.

Every valuation ring is a Bézout domain.