M2177.0043 Introduction to Deep Learning Lecture 4: Optimization¹

Hyun Oh Song¹

¹Dept. of Computer Science and Engineering, Seoul National University

March 26, 2020

¹ Many slides and figures adapted from Stephen Boyd

Last time

- ► Mathematical optimization
- ► Unconstrained optimization
- ► Gradient descent
- ► Newton method

Outline

Constrained minimization problems

Online method

Preliminary: Why do descent methods work?

$$x^{(k+1)} = x^{(k)} + t^{(k)} \Delta x^{(k)} \quad \text{with } f(x^{(k+1)}) < f(x^{(k)})$$

- $ightharpoonup \Delta x$ is the *step*, or *search direction*
- ▶ *t* is the *step size*, or *step length*

General descent method.

given a starting point $x \in \text{dom} f$.

repeat

- 1. Determine a descent direction Δx
- 2. Line search. Choose a step size t > 0.
- 3. Update. $x := x + t\Delta x$.

until stopping criterion is satisfied.

Descent direction

Definition 1 (Descent direction)

Let $f:\mathbb{R}^n \to \mathbb{R}$ be a continuously differentiable function over \mathbb{R}^n . A vector $0 \neq d \in \mathbb{R}^n$ is called a **descent direction** of f at x if the directional derivative $\nabla f(x)^{\mathsf{T}}d$ is negative, meaning that

$$\nabla f(x)^{\mathsf{T}}d < 0$$

The most important property of descent direction is that taking small enough steps along these directions lead to a decrease of the objective function.

Descent property of descent directions

Lemma 2 (Descent property of descent directions)

Let f be a continuously differentiable function over \mathbb{R}^n , and let $x \in \mathbb{R}^n$. Suppose that d is a descent direction of f at x. Then there exists $\epsilon > 0$ such that

$$f(x + td) < f(x)$$

for any $t \in (0, \epsilon]$.

Descent property of descent directions

Proof

Since $\nabla f(x)^{\intercal}d < 0$, it follows from the definition of the directional derivative that

$$\lim_{t \to 0^+} \frac{f(x+td) - f(x)}{t} < 0$$

. Therefore, there exists an $\epsilon > 0$ such that

$$\frac{f(x+td) - f(x)}{t} < 0$$

for any $t \in (0, \epsilon]$, which implies the desired result.

What about constraints?

$$\begin{array}{ll}
\text{minimize} & f(x) \\
\text{subject to} & x \in \mathcal{C}
\end{array}$$

- ▶ Need to find the minimizer in the constraint set $x \in C$
- Projected gradient descent (covered today), Frank-Wolfe (conditional gradient) algorithm, etc.

Figure: from R. Tibshirani 10-725

Optimality condition

Theorem 3 (Optimality Condition)

Let f be a continuously differentiable function over a closed convex set $\mathcal C$ and let x^* be a local minimum of f. Then, $\nabla f(x^*)^\intercal(x-x^*)\geqslant 0$ for any $x\in\mathcal C$.

- Note, the theorem does not assume convexity of f
- lacktriangle We assume convexity of the constrain set ${\cal C}$ instead

Proof of the optimality condition theorem

Proof.

Proof by contradiction. Assume in contradiction that x^* is a local minimum and there exists $x \in \mathcal{C}$ such that $\nabla f(x^*)^\intercal(x-x^*) < 0$. Let $d=x-x^*$, then we see that d is a descent direction. By "Descent property of descent direction Lemma", it follows that there exists $\epsilon \in (0,1)$ such that $f(x^*+td) < f(x^*)$ for all $t \in (0,\epsilon]$.

It remains to show that we are still in the set $\mathcal C$ after this descent step. Since $\mathcal C$ is convex we have that $x^*+td=(1-t)x^*+tx\in\mathcal C$, leading to conclusion that x^* is *not* a local optimum point, in contradiction to the assumption that x^* is a local minimum point.

Example $\mathcal{C} = \mathbb{R}^n$

▶ If $\mathcal{C} = \mathbb{R}^n$, then a local minimum x^* satisfies $\nabla f(x^*)^\intercal(x-x^*) \geqslant 0$ for all $x \in \mathbb{R}^n$. Plugging in $x = x^* - \nabla f(x^*)$ into the inequality, we get $-\|\nabla f(x^*)\|^2 \geqslant 0$, implying that

$$\nabla f(x^*) = 0$$

► Therefore, it follows that the notion of a stationary point of a function and a local minimum of a minimization problem coincide when the problem is unconstrained.

Example
$$\mathcal{C} = \mathbb{R}^n_+$$

Left as an exercise.

Intermezzo

- We have looked at the characterization of optimal points with the constraints
- ▶ This can serve as the stopping criteria in the optimization algorithm
- ► So what is the algorithm for finding the local optimal points under constraints?

Projected gradient descent

Enforce that the points are feasible by projecting onto ${\mathcal C}$

Projected gradient descent

given a starting point $x \in \text{dom} f$.

repeat

- 1. Compute a descent direction Δx
- 2. Line search. Choose a step size t > 0.
- 3. Update. $x := x + t\Delta x$.
- 4. Projection onto C. $x := \Pi_{\mathcal{C}}(x)$

until stopping criterion is satisfied.

The projection operator $\Pi_{\mathcal{C}}$ onto \mathcal{C}

$$\Pi_{\mathcal{C}}(x) = \min_{z \in \mathcal{C}} \|x - z\|_2$$

Projection onto C, $\Pi_{C}(x) = \min_{z \in C} ||x - z||_{2}$

 $ightharpoonup C=\{x\in\mathbb{R}^n\mid \|x\|_2\leqslant 1\}$, closed form

$$z^* = \frac{x}{\max\{1, ||x||\}}$$

[Proof] https://math.stackexchange.com/questions/627034/orthogonal-projection-onto-the-l-2-unit-ball

 $ightharpoonup C = \{x \in \mathbb{R}^n \mid ||x||_{\infty} \leqslant 1\}, \text{ closed form}$

$$z_i^* = \begin{cases} -1 & x_i < -1 \\ x_i & -1 \le x_i \le 1 \\ 1 & x_i > 1 \end{cases}$$

 $[Proof]\ https://math.stackexchange.com/questions/1825747/orthogonal-projection-onto-the-l-infty-unit-ball$

- ▶ $C = \{x \in \mathbb{R}^n \mid \|x\|_1 \leqslant 1\}, \ O(n \log n) \ \text{algorithm}$ [Proof] https://math.stackexchange.com/questions/2327504/orthogonal-projection-onto-the-l-1-unit-ball
- ▶ $C = \{x \in \mathbb{R}^n \mid \sum_i x_i = 1, x_i \geqslant 0 \ \forall i \in [n]\}, \ O(n \log n) \ \text{algorithm}$ [Proof] https://math.stackexchange.com/questions/2402504/orthogonal-projection-onto-the-unit-simplex

Convergence properties

- What can we say about the convergence properties of the (projected) gradient methods?
- In general, this is very difficult unless we know somethings about the function
- ▶ We get stronger convergence bounds as we know more about the function. *i.e.* Convexity, L-Liptshitz, α -strong convexity, β -smoothness, etc.
- ► Take my graduate machine learning class for formal proofs
- ► For this class, we will not assume anything about the function for generality and applicability to deep learning

Convergence property of convex f

Theorem 4

Assume that function f is convex, differentiable, and L-Lipschitz over the convex domain Ω . Let R be the upper bound on the distance $\|x_1-x^*\|_2$ from the initial point x_1 to an optimal point $x^*\in\arg\min_{x\in\Omega}f(x)$. Let x_1,\ldots,x_t be the sequence of iterates computed by t steps of projected gradient descent with constant step size $\eta=\frac{R}{L\sqrt{t}}$. Then,

$$f\left(\frac{1}{t}\sum_{s=1}^{t}x_{s}\right)-f\left(x^{*}\right)\leqslant\frac{RL}{\sqrt{t}}$$
.

▶ This means that the difference between the functional value of the average point during the optimization process from the optimal value is bounded above by a constant proportional to $\frac{1}{\sqrt{t}}$.

Outline

Constrained minimization problems

Online method

Online method

Stochastic gradient descent

Consider minimizing an objective function that has the form of a sum of functions:

$$f(x) = \frac{1}{n} \sum_{i=1}^{n} f_i(x)$$

▶ Each summand function $f_i(x)$ is typically associated with the i-th observation in a dataset. The standard (or "batch") gradient descent method would perform the following iterations:

$$x := x - \eta \nabla f(x) = x - \eta \sum_{i=1}^{n} \frac{1}{n} \nabla f_i(x)$$

► Computing the gradient can be very expensive if *n* is large. Stochastic gradient descent method *samples* the summand functions at every step for scalability.

$$x := x - \eta \nabla f_i(x)$$

Minibatch SGD

- ► A compromise between computing the true gradient and the stochastic gradient of a single example
- ▶ Reduces the variance of the gradient estimate
- ▶ In practice, vector-process the gradient computation so the minibatch size fits in the memory

Online method 21

Minibatch SGD

Minibatch stochastic gradient descent

given a starting point $x \in \text{dom } f$.

repeat

- 1. Shuffle the data
- 2. For every m sequence of data $i=1,\ldots,\lceil n/m\rceil$ a. Compute the minibatch gradient. $\Delta x=\frac{1}{m}\sum_{i=1}^{m}\nabla f_{i}(x)$
 - b. Update the stepsize. t := Update(t).
 - c. Update. $x := x + t\Delta x$.
- 3. Decay the stepsize

until stopping criterion is satisfied.

Distributed gradient descent for full batch gradient descent

▶ Map: compute gradient on subblock and emit **Reduce:** aggregate parts of the gradients

given a starting point $x \in \text{dom } f$.

repeat

- 1. Compute the full gradient $\Delta x_{\mathsf{ds}} := \sum_{i=1}^{n} \frac{1}{n} \nabla f_i(x)$. 2. Line search. Choose a step size t > 0.
- 3. Update. $x := x + t\Delta x_{ds}$.

until stopping criterion is satisfied.