Pontifícia Universidade Católica de Minas Gerais Instituto de Ciências Exatas e Informática – ICEI Arquitetura de Computadores I

ARQ1 _ Guia_17

Tema: Projeto de circuitos sequenciais

Orientação geral:

Atividades previstas como parte da avaliação

Apresentar todas as soluções em apenas um arquivo com formato texto (.txt). Sugere-se usar como nome Guia_xx.txt, onde xx indicará o guia, exemplo Guia_01.txt.

Todos os arquivos deverão conter identificações iniciais com o nome e matrícula, no caso de programas, usar comentários.

As implementações e testes dos exemplos serão fornecidos como pontos de partida, também fazem parte da atividade e deverão ter os códigos fontes entregues **separadamente**, a fim de que possam ser compilados e testados.

Sugere-se usar como nomes Guia_01yy.txt, onde yy indicará a questão, exemplo Guia_0101.txt

As saídas de resultados, opcionalmente, poderão ser copiadas ao final do código, em comentários.

Quaisquer outras anotações, observações ou comentários poderão ser colocadas em arquivo texto (README.txt) acompanhando a entrega.

Atividades extras e opcionais

Outras formas de solução serão **opcionais**; não servirão para substituir as atividades a serem avaliadas. Caso entregues, poderão contar apenas como atividades extras.

Arquivos em formato (.pdf), fotos, cópias de tela ou soluções manuscritas também serão aceitos como recursos suplementares para visualização, e **não** terão validade para fins de avaliação.

Atividade: Arquitetura de Computador – Projeto de Máquina de Estados Finitos

Implementar a máquina descrita pela tabela abaixo, após completar com as transições em falta: Todos os modelos deverão ser testados em simulador (Logisim).

	t	t	t	t+1	t+1	FF	FF	FF	FF	FF	FF	FF	FF
m	а	b	С	а	b	Da	Db	SaRa	SbRb	JaKa	JbKb	Ta	Tb
0	0	0	0	0	0								
1	0	0	1	0	1								
2	0	1	0	0	1								
3	0	1	1	1	1								
4	1	0	0	1	0								
5	1	0	1	0	0								
6	1	1	0	1	1			_					
7	1	1	1	1	0								

- 01.) com flip-flops D
- 02.) com flip-flops JK em modo SR
- 03.) com flip-flops JK em modo toggle
- 04.) Montar um contador assíncrono com 5 flip-flops T em série, com T1=T2=T3=1, T1_clk=clk T2_clk=Q1 T3_clk=Q2 e as saídas na ordem {Q3,Q2,Q1}.
- 05.) Montar um contador assíncrono com 5 flip-flops T em série, com T1=T2=T3=1, T1_clk=clk T2_clk=Q1not T3_clk=Q2not e as saídas na ordem {Q3,Q2,Q1}.

Extras

- 06.) Montar no JFLAP uma máquina de Turing para reconhecer a sequência 010, com interseção.
- 07.) Montar no JFLAP uma máquina de Turing para reconhecer a sequência 010, sem interseção.