Problem A Kids in a Grid

Input: standard input **Output:** standard output

Two kids are walking in a **H** x **W** grid. Each square in the grid contains a character (whose **ASCII** code lies between 33 and 127). Both kids can move north, east, west and south each step. The first kid walked **N** steps, the second kid walked **M** steps. $(0 \le N \le M \le 20000)$.

If we write down all the characters each kid walks on, we get two strings S_A and S_B . your task is to delete as few characters as possible, so that the two new strings are the same.

Input

the first line contains a single integer $t(1 \le t \le 15)$, the number of test cases. Each test case contains several lines. The first line contains two integers H and W ($1 \le H$, $W \le 20$), the next H lines contains the grid. Next line contains three integers N, N_0 and N_0 ($1 \le N_0 \le H$, $1 \le N_0 \le H$, 1

You may assume the walk sequence is correct: they will never go outside the grid.

Output

For each case, print the case number and two integers X_A and X_B , indicating the number of characters deleted from S_A and S_B , respectively.

Sample Input

Output for Sample Input

2	Case 1: 3 2
3 4	Case 2: 3 2
ABCD	
DEFG	
ABCD	
4 1 1	
EEES	
3 3 1	
NES	
3 4	
ABCD	
DEFG	
ABCD	
4 1 1	
EEES	
3 3 1	
NES	

Problem setter: Rujia Liu, EPS

[note]

in the first sample, $S_A = ABCDG$, $S_B = ADEB$, we must delete 3 characters from S_A and 2 from S_B , so that they are the same (both A_B or A_D)