Class 7

Shikhar Saxena

February 9, 2023

Contents

Comparison of ML and MAP	. 1
Generative modelling	. 1
Estimate distribution by Counting	
Continuous modeling	. 2

Comparison of ML and MAP

- \circ ML Estimate: max $f_{Y|X}(y|x)$
- \circ MAP Estimate: $\max f_{Y|X}(y|x)f_X(x)$

Generative modelling

Given obervations $x_1, x_2, \dots, x_n \sim p$. We want to sample from the unknown distribution p.

One possibility is ML Estimate (fitting a template distribution over the given data as best as it can). Once we have \hat{p} we can sample from that.

Definition 1 (Generative Modeling). A procedure that produces \hat{p} to approximate p that produces samples $\hat{x} \sim \hat{p}$.

General Defintion:

Construct a function generator $g:Z\to X$ that maps source of simple randomness $Z\sim q$ to output $\hat x=g(z)\sim \hat p$ such that $\hat p\simeq p$.

Generative modeling is a *statistical problem* (because based on data).

Example 1. Sample from Gaussian $p(x) = N(x; \mu, \sigma^2)$ given access to sample from g(z) = N(z; 0, 1).

$$N(\mu, \sigma^2) \sim \sigma z + \mu \implies z \rightarrow \sigma z + \mu$$

These kind of mappings are called pushforward distribution.

We want to sample from an easy distribution (primitive distribution) then there's a map that generates the cat image (or whatever distribution we want to generate).

Definition 2 (Pushforward Distribution). Given probability space (Z,q) a function $g:Z\to X$ induces a pushforward distribution on X defined for any set $A\subset X$ by

$$P(A) = \int_{q^{-1}(A)} q(z)dz$$

Estimate distribution by Counting

Goal: Estimate p from samples $x^1, x^2, \dots x^n \sim q$. Asume samples takes on values in a finite set $\{1, \dots k\}$.

Define $p_i = P(i \text{ appears in the dataset})$.

Example 2. Roll die. Here k = 6.

Let our samples be $\{1, 6, 2, 1, 5, 6, 3\}$.

So
$$p_1 = 2/7$$
, $p_2 = 1/7$, $p_3 = 1/7$, $p_4 = 0$, $p_5 = 1/7$, $p_6 = 2/7$.

This doesn't give us anything so far. We don't know how to generate anything right now. We want to go from $Z \to p$. We already have p. Now we need a distribution Z and the function generator. So we can take U(0,1) or N(0,1).

Use inverser transform $F^{-1}(U)$. This will be our pushforward distribution to sample from p.

Definition 3 (Inverse of CDF).

$$g(z) = \inf\{x : F(x) \ge z\}$$

Given $Z \sim U(0,1)$, it follows that $g(z) \sim p$.

Continuous modeling

 \hat{p} is defined as a pushforward of a density q by generator $g:Z\to X$

$$P(A) = P(g^{-1}(A)) = \int_{g^{-1}(A)} g(z) dz = \int_A q(g^{-1}(x)) \left| \nabla_x g^{-1}(x) \right| dx$$

This is difficult to compute. For simple generators g when the inverse and Jacobians are easy to compute, then $\hat{p}(x)=q(g^{-1}(x))|\nabla_x g^{-1}(x)|$ can be used to convert a generator to density estimator.

When the data is complicated then g will also mostly be complicated, so it will be difficult to use this approach.