A Book of Abstract Algebra (2nd Edition)

Chapter 16, Problem 3EG

Bookmark

Show all steps: ON

ON

Problem

If H is a subgroup of a group G, let X designate the set of all the left cosets of H in G. For each element $a \in G$, define p_a : $X \to X$ as follows:

$$p_a(xH) = (ax)H$$

Prove that the set $\{a \in H: xax^{-1} \in H \text{ for every } x \in G\}$, that is, the set of all the elements of H whose conjugates are all in H, is the kernel of h.

Step-by-step solution

Step 1 of 4

Assume that G be a group and H be its subgroup. Consider that X is the set of all the left cosets of H in G. Define a mapping, for some $a \in G$, $p_a : X \to X$ by

$$p_a(xH) = (ax)H$$

Consider the following homomorphism mapping

$$h: G \to S_X$$

defined by

$$h(a) = p_a$$

Objective is to prove that $\ker h = \{a \in H : xax^{-1} \in H \text{ for every } x \in G\}$. One can prove this result by containment property. That is, prove that $\ker h \subset H$ and $H \subset \ker h$.

Comment

Step 2 of 4

Let $x \in \ker h$. Then by the definition of kernel,

$$h(x) = p_e$$

By the mapping h, $h(x) = p_x$. So, $p_x = p_e$. Then, $p_x(yH) = p_e(yH)$ (xy)H = yH.Now by the coset property, if aH = bH then $b^{-1}a \in H$, it implies that $y^{-1}xy \in H$ Since y was arbitrary, therefore it implies an equivalent condition that all conjugates of $x \in \ker h$ must lie in H. Thus, $\ker h \subset H$. Comment **Step 3** of 4 Conversely, let $x \in H$. Then $p_x(yH) = (xy)H$ = xHyHSince $x \in H$, therefore by coset property xH = H. So, $p_{x}(yH) = HyH$ = yH.It implies that, $p_x = p_e$ and then $x \in \ker h$. That is, $H \subset \ker h$. And therefore, $\ker h = H$. Comment **Step 4** of 4 Hence, the kernel of homomorphism h will be the set of all elements of H whose conjugates are all in H. Comment