

Computer Security

# **Symmetric Encryption**

If you reveal your secrets to the wind, you should not blame the wind for revealing them to the trees.

— Kahlil Gibran

Tamer ABUHMED

Department of Computer Science & Engineering

Sungkyunkwan University





#### **Modes of Operations**

- block ciphers encrypt fixed size blocks
  - DES and 3DES encrypt 64-bit blocks
  - AES uses 128-bit blocks
- in practise, we have arbitrary amount of information to encrypt
  - we use DES, 3DES, AES and other symmetric ciphers in different modes in order to apply to several data blocks
- NIST SP 800-38A defines 5 modes
  - can be used with any block cipher



# Electronic Codebook (ECB) Mode

- each block is encrypted independent of the other blocks
  - using the same key
- not so secure for long messages due to repetitions in code







#### **ECB Mode**

- Notation: C = E(P,K)
- Given plaintext  $P_0, P_1, \dots, P_m, \dots$
- Most obvious way to use a block cipher:

# Encrypt $C_0 = E(P_0, K)$ $P_0 = D(C_0, K)$ $C_1 = E(P_1, K)$ $P_1 = D(C_1, K)$ $C_2 = E(P_2, K)$ ... $P_2 = D(C_2, K)$ ...

- For fixed key K, this is "electronic" version of a codebook cipher (without additive)
  - With a different codebook for each key



#### **ECB Cut and Paste**

Suppose plaintext is

Alice digs Bob. Trudy digs Tom.

Assuming 64-bit blocks and 8-bit ASCII:

$$P_0=$$
 "Alice di",  $P_1=$  "gs Bob. ",  $P_2=$  "Trudy di",  $P_3=$  "gs Tom. "

- Ciphertext:  $C_0, C_1, C_2, C_3$
- Trudy cuts and pastes:  $C_0, C_3, C_2, C_1$
- Decrypts as

Alice digs Tom. Trudy digs Bob.



#### **ECB Weakness**

- Suppose  $P_i = P_j$
- Then  $C_i = C_j$  and Trudy knows  $P_i = P_j$
- This gives Trudy some information, even if she does not know P<sub>i</sub> or P<sub>j</sub>
- Trudy might know P<sub>i</sub>
- Is this a serious issue?



#### **Alice Hates ECB Mode**

• Alice's uncompressed image, and ECB encrypted









- □ Why does this happen?
- Same plaintext yields same ciphertext!



#### **Cipher Block Chaining (CBC)**

- each previous cipher blocks is XORed with current plaintext
- each ciphertext
   block depends on
   all previous
   blocks
- need
   Initialization
   Vector (IV)
   known to sender
   & receiver







#### **Cipher Block Chaining (CBC)**

- Initialization Vector (IV)
  - both parties should agree on an IV
  - for maximum security, IV should be protected for unauthorized changes
  - Otherwise, attacker's change in IV also changes the decrypted plaintext
    - let's see this on board



#### Alice Likes CBC Mode

• Alice's uncompressed image, Alice CBC encrypted









- Why does this happen?
- Same plaintext yields different ciphertext!



#### **Cipher FeedBack (CFB)**

- Message is treated as a stream of bits
  - DES, AES (or any other block cipher) is used as a stream cipher
- standard allows any number of bit, s, (1,8 or more until the block size) as the unit of encryption/decryption
  - But common value for s is 8.
  - Plaintext is divided into block of s bits.
- uses IV
  - as all other stream ciphers
- Result of encryption is fed back to the next stage
- transmission errors propagate



## Cipher FeedBack (CFB) Mode









#### **Output FeedBack (OFB)**

- another stream mode
  - but, s-bit version does not exist anymore
    - Full block is used in the encyption and decryption
- output of cipher is
  - XORed with the message
  - it is also the feedback
- feedback is independent of transmission, so transmission errors do not propagate
- same IV should not be used twice for the same key (general problem of using IV)
  - otherwise, when two ciphertext blocks are XORed the random sequence is cancelled and the attacker obtains XOR of two plaintexts
  - That is why IV is sometimes called as nonce (means "used only once")



### Output FeedBack (OFB)









#### **Counter (CTR)**

- similar to OFB but encrypts counter value rather than any feedback value
- For the same key, the counter value should not repeat
  - same problem as in OFB
- efficient
  - can do parallel encryptions
  - Cryptographic part of the process (encryption blocks) is performed in advance of need
  - good for bursty high speed links



# Counter (CTR)







