

Descrição geral do sistema

Desenvolver um sistema embarcado para realizar o controle de uma máquina de Café para uso em ambientes comerciais/empresariais. A Figura 1 ilustra um desenho básico desta máquina.

A máquina oferece três tipos de café (café puro, com leite e Mochaccino) em dois tamanhos de copos (pequeno e grande). Além disso, o usuário pode optar por colocar automaticamente açúcar no preparo da bebida.

A escolha do tipo de café é feita pressionando um chave específica no painel frontal do equipamento (retângulos em cor cinza no desenho da Figura 1). Uma vez escolhido o tipo de café e o respectivo tamanho de copo, uma luz verde deverá ser acesa para indicar visualmente a escolha (LEDs – círculos de cor verde na Figura 1). Uma outra chave específica para colocação de açúcar pode ser acionada (=1), de acordo com a vontade do usuário, e o seu LED específico também deverá ser aceso. De forma similar, outra chave pode ser acionada para definir o tamanho do copo (0 = pequeno; 1 = grande). Para iniciar o preparo da bebida, um **botão** (círculo cinza na Figura 1) chamado de PREPARAR deve ser pressionado (há três botões disponíveis no kit DE0).

Após finalizada a escolha do usuário e iniciado o preparo da bebida, 04 displays de 7 segmentos deverão apresentar a palavra "WAIT" enquanto a máquina estiver preparando o café escolhido. Ao finalizar o preparo, os 04 displays mostraram a palavra "DONE" e os LEDs relativos a escolha feita pelo usuário deverão ser apagados, indicando que o usuário pode retirar o copo da máquina. Este aviso de DONE deverá ficar ativo por 5 segundos.

Ilustração 1: Figura 1 - painel frontal da máquina de café.

Figura 2: Kit de desenvolvimento DE0 usado no desenvolvimento da máquina de café.

Estrutura interna da Máquina

O controle da Máquina de Café é feito através do monitoramento de sensores e botões, conforme mostra a Figura 2. Os sensores de nível são representados naquela Figura por círculos na cor cinza e com a letra N em seu interior. Eles "medem" a quantidade de pó em cada reservatório (café, leite e chocolate). Cada reservatório pode armazenar pó suficiente para 10 porções. Se faltar pó em algum dos reservatórios, o LED chamado de REPOSIÇÃO deve ser aceso e não liberar a máquina para preparar nenhum bebida enquanto não for feita a reposição do pó em falta no respectivo reservatório da máquina.

Um sensor de temperatura é colocado dentro do reservatório de água. O controlador deverá manter a temperatura da água daquele reservatório em 90 °C, acionando uma resistência de aquecimento quando a temperatura cair deste valor.

Das 06 válvulas mostradas na Figura 2, apenas 05 são controladas pelo sistema embarcado: são as

quatro válvulas que liberam os pós de café, leite, chocolate e açúcar, além da válvula que libera água quente para o preparo da bebida selecionada. As quatro primeiras válvulas deverão liberar os produtos durante um segundo (pó de café, leite, etc). A válvula de água quente deve liberar a água em dois padrões: 5 segundos de liberação de água para bebidas em copos pequenos e 10 segundos de liberação de água para bebidas em copos grandes.

Ilustração 3: Figura 2 - Controle interno da máquina de café.

Duas chaves e dois LEDs deverão ser utilizados para indicar o estado do reservatório de água e sua temperatura:

- LED1 para água: apagado → nível normal; aceso → nível baixo (liberar válvula de água);
- LED2 para temperatura: apagado → temperatura em 90 °C; aceso → temperatura baixa (ligar aquecedor);
- CHAVE1 sensor para água: $0 \rightarrow$ nível normal; $1 \rightarrow$ nível baixo;
- CHAVE2 sensor para temperatura: $0 \rightarrow$ temperatura OK (90 °C); $1 \rightarrow$ temperatura baixa.

Premissas do Projeto: Implementar o projeto da máuina de café utilizando o processador didático μPD. AS chaves, botões, LED e display devem ser conectados nos pionos de I/O do processador. Além disso, um timer externo também deverá ser conectado nos pinos de I/O do processador. Ele será utilizado para temporizar o controle do preparo das bebidas.

Figura 4: Processador didático μPD a ser utilizado no trabalho.

A Tabela 1 apresenta as instruções assembly do processador didático.

Tabela 1: Instruções Assembly do processador μPD.

Instrução	Opcode	Função
NOP	0000	Não faz nada. Processador fica parado nesta instrução.
LDI	0001	Carrega um valor (imediato) em um registrador definido pelo programador.
ADD	0010	Soma os valores contido em dois registradores e armazena o resultado em um terceiro registrador.
SUB	0011	Subtrai os valores contido em dois registradores e armazena o resultado em um terceiro registrador.
OUT	0100	Coloca o valor contido em um registrador nos pinos de I/O do processador. Dado em RS1 e endereço em RS2.
IN	0101	Lê valor contido nos pinos de I/O do processador e carrega em um registrado. Dado em RS1 e endereço em RS2.
JI	0110	Salto incondicional para um endereço na memória de programa (ROM).
LD	0111	Carrega valor contido na memória RAM para um registrador definido elo programador
STO	1000	Armazena valor contido em um registrador em uma determinada posição de memória ram.
JZ	1001	Salta para endereço especificado na instrução se o valor de um registrador for zero.
JE	1010	Salta para endereço especificado na instrução se os valores de dois registradores forem iguais.
AND	1011	Realiza operação E lógico entre dois registradores.
OR	1100	Realiza operação OU lógico entre dois registradores.
XOR	1101	Realiza operação OU EXCLUSIVO lógico em um registrador. Dado em RS1
NOT	1110	Realiza operação NOT (INVERSÂO) lógico em um registrador. Dado em RS1.