Team Info (only fill out for the sheet to be turned in)

Team Name:

Group members (up to four): 1.

3. 4.

2.

Instructions

<u>Only one sheet per team will be turned in.</u> Each team member can work on their own sheet for practice, but then the group as a whole should discuss the answers and collaborate on the turn-in sheet. Everyone can take home their own sheets.

Goals

- 1. Be able to prove that the sequences generated from a given recursive formula and and a given closed formula are equal.
- 2. Be able to prove that the result of a summation is equivalent to a given formula for each index given.

1. Introductory Practice

Practice 1. If P(n) is " n^2+1 is prime", write P(1), P(2), P(12), and P(m-1)

$$P(1) = P(2) = P(12) = P(m-1) =$$

Which of these are true, if any?

Practice 2. For the sequence defined by recursive formula $a_k = a_{(k-1)} + 4$; $a_1 = 1$, write out the values for each value of k:

$$P(1) = P(2) = P(3) = P(4) =$$

Practice 3. For the sequence defined by closed formula $a_n = 4n - 3$, write out the values for each value of n:

$$P(1) = P(2) = P(3) = P(4) =$$

2. Recursive Closed formula equivalence

Question 3a from the textbook

Show that the sequence defined by $a_k = a_{(k-1)} + 4$; $a_1 = 1$ for $k \ge 2$ is equivalently described by the closed formula $a_n = 4n - 3$.

Step 1: Check values results of both formulas for a_1 :

Recursive: $a_1 = 1$ (provided)

Closed: $a_1 = 4(1) - 3 = 1$

/

Step 2: Rewrite the recursive formula in terms of *m*:

 $a_m = a_{(m-1)} + 4$

Step 3: Find the equation for $a_{(m-1)}$ through the closed formula:

 $a_n = 4n-3 \rightarrow a_{(m-1)} = 4(m-1)-3 \rightarrow a_{(m-1)} = 4m-7$

Step 4: Plug $a_{(m-1)}$ into the recursive formula from step 2 and simplify.

 $a_m = a_{(m-1)} + 4 \rightarrow a_m = (4m-7) + 4 \rightarrow a_m = 4m-3$

PROOF: $a_m = 4 m - 3$ and the closed formula $a_n = 4 n - 3$ match so the closed formula and recursive formula are equivalent.

Practice 4

Show that the sequence defined by $b_k=4b_{(k-1)}+3$ for $k\geq 2$, where $b_1=3$, is equivalently described by the closed formula $b_n=2^{(2n)}-1$.

Step 1: Check values results of both formulas for b_1 :

Recursive:

Closed:

Step 2: Rewrite the recursive formula in terms of *m*:

Step 3: Find the equation for $b_{(m-1)}$ through the recursive formula:

Step 4: Plug $b_{(m-1)}$ into the recursive formula from step 2 and simplify.

Result:

Practice 5

Show that the sequence defined by $a_n=a_{(n-1)}+2$ for $k\geq 2$, where $a_1=5$, is equivalently described by the closed formula $a_n=2n+3$.

Practice 6

Show that the sequence defined by $a_k=2\,a_{(k-1)}+1$ for $k\geq 2$, where $a_1=1$, is equivalently described by the closed formula $a_n=2^n-1$.

3. Summation ↔ formula equivalence

Question 8a from the textbook

Use induction to prove each of the following. As part of your proof, write and verify each statement for at least n = 1, n = 2, n = 3, and n = 4.

Proposition:
$$\sum_{i=1}^{n} (2i-1) = n^2$$
 for each $n \ge 1$

Step 1: "Trace" the proof for a few initial values...

√ i=1	$\sum_{i=1}^{1} (2i-1) = (2\cdot 1 - 1) = 1$	12=1
√ i=2	$\sum_{i=1}^{2} (2i-1) = (2\cdot 1-1) + (2\cdot 2-1) = 1+3=4$	$2^2 = 4$
✓ i=2	$\sum_{i=1}^{3} (2i-1) = (2\cdot1-1)+(2\cdot2-1)+(2\cdot3-1)$ =1+3+5=9	3 ² =9
	_1:3:3=3	

Step 2: Redefine the proposition in terms of *m-1*

$$\sum_{i=1}^{m-1} (2i-1) = (m-1)^2$$

Step 3: Given the value of the summation from i=1 to m-1, write the proposition in terms of the summation from i=1 to m-1 plus the result of $(2\,i-1)$ for the last run of the summation, at i=m.

$$\sum_{i=1}^{n} (2i-1) = [(m-1)^{2}] + (2m-1)$$

Step 4: Work out and simplify.

$$[(m-1)^{2}]+(2m-1)$$

$$=(m-1)(m-1)+(2m-1)$$

$$=m^{2}-2m+1+2m-1$$

$$=m^{2}$$

Proof: The result for $\sum_{i=1}^{n} (2i-1)$ results in n^2 .

Practice 7

Use induction to prove $\sum_{i=1}^{n} (2i+4) = n^2 + 5n$ for each $n \ge 1$. Make sure to also build the table for n = 1, n = 2, and n = 3.

Step 1: "Trace" the proof for n = 1, n = 2, and n = 3

Step 2: Redefine the proposition in terms of *m-1*

Step 3: Given the value of the summation from i=1 to m-1, write the proposition in terms of the summation from i=1 to m-1 plus the result of (2m+4) for the last run of the summation, at i=m.

Step 4: Work out and simplify.

Result:

Practice 8

Use induction to prove
$$\sum_{i=1}^{n} (2^i - 1) = 2^{(n+1)} - n - 2$$
 for each $n \ge 1$. Make sure to also build the table for $n = 1, n = 2, and n = 3$.