

Broyeur à cône

Les broyeurs à cône utilisent un cône en rotation qui tourne dans le bol dans un mouvement excentrique pour écraser la roche entre la surface du cône, appelée manteau, et la doublure du bol du broyeur. À mesure que l'écart entre le revêtement du bol et le manteau se rétrécit, la roche est écrasée entre le manteau par le cône giratoire solidaire de l'axe en rotation

Données du problème

Les longueurs sont données d'une manière générale en millimètres. Les liaisons seront supposées parfaites. Entraînement :

- Vitesse de rotation du moteur : Nm = 1450 tr/min.
- Puissance du moteur : Pm = 400 kW.
- Poulie motrice de diamètre primitif dm = 420 mm.
- Utilisation de 6 courroies trapézoïdales SPC.
- Poulie réceptrice (44) de diamètre primitif : Dm = 1600 mm et largeur 600 mm, masse 715 kg
- Entraxe des poulies : e = 1,5 m.
- Roue dentée 48 : Z_{48} = 28 dents ; δ_1 = 28°
- Roue dentée 16 : Z_{16} = 56 dents ; δ_2 = 62°

Durée de fonctionnement entre deux opérations de

maintenance : 1000 heures

$$\overrightarrow{PE} = a . \overrightarrow{x_0} + b . \overrightarrow{y_0}$$
 avec a = 890 mm et b = 445 mm

$$\overrightarrow{PC} = b \cdot \overrightarrow{y_0}$$

$$\overrightarrow{BC} = c.\overrightarrow{x_2} - e.\overrightarrow{y_0}$$
 avec $c = 90$ mm et $e = 900$ mm

$$\overrightarrow{BI} = g \cdot \overrightarrow{y_2}$$
 avec $g = 900 \text{ mm}$

$$\overrightarrow{IA} = -\overrightarrow{IK'} = -R \cdot \overrightarrow{x_2}$$
 avec R = 1325 mm

$$\overrightarrow{IO} = h \cdot \overrightarrow{y_2}$$
 avec $h = 1250 \text{ mm}$

Diamètre moyen du pignon (48) d_{m1} = 890 mm ; Diamètre moyen du pignon (16) d_{m2} = 1580 mm Rapport de réduction : $r_1 = \frac{Z_1}{Z_1}$

1 - Etude de la modélisation des liaisons

Deux schématisations partielles sont proposées

1) On demande d'indiquer les numéros des pièces qui composent les différentes classes d'équivalence

$$C_0 = \{ 1; 2; 7; 8; 9; 10 ... \}$$

 $C_1 = \{ 11;48 ... \}$

$$C_2 = \{3; 13; 16; 17; 18\}$$

 $C_3 = \{ 50; ... \}$

- 2) Modéliser les liaisons réalisées par les roulements (41) et (42). En déduire la liaison équivalente réalisée entre l'arbre (11) et la partie fixe. Le détail des calculs est demandé.
- 3) Réaliser le graphe des liaisons en indiquant le centre et l'axe principal des liaisons

On fera l'hypothèse qu'il existe un roulement sans glissement au point A entre de C_3 et C_0

On considère que le contact engrenage est modélisé par une liaison linéaire rectiligne en E.

- 4) Indiquer en le justifiant, pourquoi le schéma de droite n'est pas correct et compléter le schéma de gauche
- 5) Déterminer le degré d'hyperstatisme . Le mécanisme est-il isostatique ?

2 - Dimensionnement de la chaine d'énergie

On donne le schéma-bloc de la transmission de puissance :

- 6) Calculer le couple moteur maximal C_{mot} que peut fournir le moteur électrique à Nm = 1450 tr/min.
- 7) A l'aide des données géométriques, déterminer k_{pc} et k_r
- 8) Calculer le couple en sortie de réducteur poulie-courroie C_{pc}
- 9) Calculer le couple en sortie de réducteur C_{red}

On donne page suivante le schéma pour le calcul des efforts transmis pas les engrenages coniques On pose :

En E torseur des efforts du pignon (49) sur la roue (16) vaut :

$$\left\{ \mathcal{T}_{(48 \to 16)} \right\} \; = \; \begin{cases} \vec{F}_{(48 \to 16)} \; = \; \; -F_R \, . \, \overrightarrow{x_0} + F_A \, . \, \overrightarrow{y_0} - F_T . \, \overrightarrow{z_0} \\ \qquad \qquad \qquad \vec{M}_{E(48 \to 16)} \; = \; \vec{0} \end{cases} \quad \text{avec } \alpha_{\text{n}} = 20^{\circ}$$

10) Calculer les composantes F_R, F_A, F_T de l'effort qui s'applique en E à partir de C_{red}

En B torseur des efforts du matériau sur la mâchoire mobile (43) vaut :

$$\left\{\mathcal{T}_{(mat\acute{e}riau\rightarrow 43)}\right\} = \begin{cases} \vec{F}_{(mat\acute{e}riau\rightarrow 43)} = F_{mx} \cdot \overrightarrow{x_2} + F_{mz} \cdot \overrightarrow{z_2} \\ \overrightarrow{M}_{A(mat\acute{e}riau\rightarrow 43)} = \overrightarrow{0} \end{cases}$$

avec $F_{mx} = F.sin\varphi.cos \Upsilon$; $F_{mz} = F.sin\Upsilon$ avec $\Upsilon = 30^{\circ}$ et $\varphi = 15^{\circ}$

Efforts transmis par des engrenages coniques à denture droite

C: couple sur la roue et $C = r_m \cdot F_T$

11) En isolant l'ensemble { C_2 } et étudiant son équilibre, démontrer que le théorème du moment résultant abouti à :

$$F_{mz} = \frac{F_{T}.a}{c.cos\theta}$$

Application numérique.

12) En déduire la valeur de F, l'effort de broyage maximal que peut générer le système Application numérique

13) Justifier
$$\overrightarrow{V_{B\,3/0}}=\overrightarrow{V_{B\,2/0}}$$

14) Ecrire l'expression du torseur cinématique de (2) par rapport à (0) en B Calculer $\overline{V_{B~2/0}}$ en fonction de $\overline{\Omega_{2/0}}$ En déduire la norme de $\overline{V_{B~2/0}}$

15) Ecrire la relation permettant de calculer la puissance développée par le torseur de broyage Application numérique

3 - Dimensionnement des roulements

Etude de liaison 11/8

L'ensemble est soumis aux efforts :

En E torseur des efforts du pignon (49) sur la roue (16) vaut :

$$\left\{ \mathcal{T}_{(16 \to 48)} \right\} \; = \; \begin{cases} \vec{F}_{(16 \to 48)} \; = \; \; F_R \, . \, \overrightarrow{x_0} - F_A \, . \, \overrightarrow{y_0} + \; F_T . \, \overrightarrow{z_0} \\ \qquad \qquad \overrightarrow{M}_{E(16 \to 48)} \; = \; \overrightarrow{0} \end{cases} \quad \text{avec } \alpha_\text{n} = 20^\circ$$

Avec : $F_R = 3685 \, N$; $F_A = 6931 \, N$; $F_T = 21 \, 570 \, N$

On a : $\overrightarrow{GE} = \frac{d_{48}}{2} \cdot \overrightarrow{y}$ avec d_{48} = 890 mm

En H, il s'applique un couple $\overrightarrow{C_H} = C_H \cdot \overrightarrow{x_0}$ avec $C_H = 9600 \text{ N.m}$;

Le poids de la poulie (44) (diamètre Dm = 2500 mm et largeur 750 mm) en acier (ρ = 7800 kg/m 3) n'est pas négligé et s'applique en H

$$\{\mathcal{T}_{(g\to 44)}\} = \begin{cases} \vec{F}_{(g\to 44)} = -M.g.\vec{z_0} \\ \vec{M}_{H(g\to 44)} = \vec{0} \end{cases}$$

16) La masse de la poulie (44) est 715 kg ,écrire le torseur $\{T_{(g o 44)}\}$

On propose deux schématisations des liaisons réalisées par les roulements (41) et (42)

Schématisation 1

Schématisation 2

- 17) Indiquer la schématisation qui est correcte
- 18) Ecrire les équations qui permettent de déterminer les actions de liaison en D_1 et D_2 (on demande de ne pas résoudre ces équations)

Après résolution on obtient :

(Valeurs en N et en N.m)

Action de liaison en D₁

$$\left\{ \mathcal{T}_{D_1} \right\} = \begin{cases} \vec{F}_{D_1} = X_{D_1} \cdot \overrightarrow{x_0} + Y_{D_1} \cdot \overrightarrow{y_0} + Z_{D_1} \cdot \overrightarrow{z_0} \\ \overrightarrow{M}_{D_1} = M_{D_1} \cdot \overrightarrow{y_0} + N_{D_1} \cdot \overrightarrow{z_0} \end{cases} = \begin{cases} \vec{F}_{D_1} = -3685 \cdot \overrightarrow{x_0} + 6931 \cdot \overrightarrow{y_0} - 17975 \cdot \overrightarrow{z_0} \\ \overrightarrow{M}_{D_1} = 18622 \cdot \overrightarrow{y_0} + 41155 \cdot \overrightarrow{z_0} \end{cases}$$

Action de liaison en D₂

$$\left\{\mathcal{T}_{D_{2}}\right\} = \int_{D_{2}} \vec{F}_{D_{2}} = Y_{D_{2}} \cdot \overrightarrow{y_{0}} + Z_{D_{2}} \cdot \overrightarrow{z_{0}} = \int_{D_{2}} \vec{F}_{D_{2}} = 7150 \cdot \overrightarrow{y_{0}} - 3595 \cdot \overrightarrow{z_{0}} \\ \overrightarrow{M}_{D_{2}} = \overrightarrow{0}$$

- 19) En déduire les efforts radiaux et axiaux au niveau des 2 roulements .
- 20) Calculer les charges équivalentes au centre des deux roulements.

On donne pour les roulements :

Roulement à rouleaux coniques (42) diamètre intérieur 320 : C = 248000 daN et $C_0 = 262000$ daN Roulement à deux ragées de billes à rotule (41) diamètre intérieur 320 : C = 112000 daN et $C_0 = 44000$ daN

Détermination de la charge équivalente P

Valeurs des coefficients X et Y											
Roulements à billes à contact radial											
$\operatorname{Si} \frac{F_A}{F_R} \le \operatorname{e alors} P = F_R$					$Si \frac{F_A}{F_R} \ge e \text{ alors P} = 0.56.F_R + Y.F_A$						
Les coefficients e et Y ci-dessus dépendent du rapport $rac{F_A}{C_0}$ (voir ci-dessous)											
$\frac{F_A}{C_0}$	0.014	0.028	0.056	0.084	0.11	0.170	0.280	0.420	0.560		
е	0.19	0.22	0.26	0.28	0.30	0.34	0.38	0.42	0.44		
Υ	2.30	1.99	1.71	1.55	1.45	1.31	1.15	1.04	1.00		

21) Quelle est alors la durée de vie des roulements ?

Nomenclature du broyeur à cone

26	12	Vis				
25	8	Vis	51	1	Support moteur	
24	8	Vis	50	2	Mâchoire mobile	
23	8	Ressort	49	1	Clavette	
22	1	Joint		1	Pignon moteur	
21	1	Couvercle		8	Rondelle	
20	1	Rondelle fixe		8	Ecrou	
19	1	Rondelle de frottement		8	Vis	
18	1	Support de douille intérieure		1	Poulie réceptrice	
17	1	Douille intérieure	43	1	Mâchoire mobile	
16	1	Pignon récepteur	42	1	Roulement à rouleaux coniques	
15	1	Coussinet sphérique	41	1	Roulement à deux rangées de billes	
14	1	Support sphérique	40	1	Ecrou	
13	1	Axe récepteur excentrique	39	1	Guide de couronne	
12	8	Goupille	38	1	Support de couronne	
11	1	Axe primaire	37	1	Moteur	
10	1	Cadre support supérieur	36	12	Ecrou	
09	1	Support de cuve	35	8	Rondelle frein	
80	1	Bati support	34	8	Rondelle frein	
07	1	Corps de cuve	33	8	Rondelle	
06	1	Revêtement de machoire mobile	32	8	Rondelle	
05	1	Trémie d'alimentation	31	12	Ecrou	
04	1	Distributeur	30	6	Ecrou	
03	1	Arbre récepteur principal		8	Ecrou	
02	1	Machoire fixe	28	8	Vis	
01	1	Bâti	27	8	Vis	
REP	NB	DESIGNATION	REP	NB	DESIGNATION	

