Student: Arfaz Hossain Instructor: Muhammad Awais Assignment: Practice Questions for Date: 04/20/22 Course: Math 101 A04 Spring 2022 Sections 11.4 & 11.5 [Not f

Find the length of the cardioid $r = 1 - \cos \theta$.

If $r = f(\theta)$ has a continuous first derivative for $\alpha \le \theta \le \beta$ and if the point $P(r,\theta)$ traces the curve $r = f(\theta)$ exactly once as θ runs

from α to β , then the length of the curve is L = $\int_{\alpha}^{\beta} \sqrt{r^2 + \left(\frac{dr}{d\theta}\right)^2} d\theta.$

Sketch the loop to determine the limits of integration. The point P(r, θ) traces the curve once, counterclockwise as θ runs from α to β . Note that the derivative is not continuous at the origin. Therefore, the range for θ must start and end at the values for the origin.

Along the positive x-axis, $\theta = 0$. Then, $\alpha = 0$.

Along the positive x-axis, $\theta = 0$ and 2π . In one rotation, θ increases from 0 to 2π . Then, $\beta = 2\pi$.

In the general case, $\frac{d}{d\theta}(\cos n\theta) = -n \sin n\theta$. So, if $r = 1 - \cos \theta$, then, $\frac{dr}{d\theta} = \sin \theta$.

Substituting for α and β , the length, L, of the cardioid is given by the following.

$$L = \int_{0}^{2\pi} \sqrt{r^2 + \left(\frac{dr}{d\theta}\right)^2} d\theta$$

$$= \int_{0}^{2\pi} \sqrt{(1 - \cos \theta)^2 + (\sin \theta)^2} d\theta$$

$$= \int_{0}^{2\pi} \sqrt{1 - 2\cos \theta + \cos^2 \theta + \sin^2 \theta} d\theta$$

Simplify using $\sin^2 \theta + \cos^2 \theta = 1$.

$$L = \int_{0}^{2\pi} \sqrt{1 - 2\cos\theta + \cos^{2}\theta + \sin^{2}\theta} d\theta$$
$$= \int_{0}^{2\pi} \sqrt{2 - 2\cos\theta} d\theta$$

Simplify using $1 - \cos \theta = 2 \sin^2 \frac{\theta}{2}$. Notice that for all values of θ on the interval $[0,2\pi]$, $\sin \frac{\theta}{2} \ge 0$.

$$L = \int_{0}^{2\pi} \sqrt{2 - 2\cos\theta} d\theta$$

$$= \int_{0}^{2\pi} \sqrt{4\sin^{2}\frac{\theta}{2}} d\theta$$

$$= \int_{0}^{2\pi} 2\sin\frac{\theta}{2} d\theta$$

Integrate using $\frac{d}{d\theta} \left(\cos \frac{\theta}{2} \right) = -\frac{1}{2} \sin \frac{\theta}{2}$.

$$L = \int_{0}^{2\pi} 2 \sin \frac{\theta}{2} d\theta$$
$$= \left[-4 \cos \frac{\theta}{2} \right]_{0}^{2\pi}$$
$$= (-4 \cos (\pi) + 4 \cos (0))$$

Simplify, using $\cos(\pi) = -1$ and $\cos(0) = 1$, to find the length of the cardioid.

$$L = (-4\cos(\pi) + 4\cos(0))$$

= (4 + 4)
= 8