Naive Bayes

5. Dezember 2014

Inhaltsverzeichnis

- Thomas Bayes
- Anwendungsgebiete
- Oer Satz von Bayes
- Ausführliche Form
- Beispiel
- Maive Bayes Einführung
- Naive Bayes Klassifikator
- Naive Bayes Formel
- Beispiel zum Naive Bayes Classifier
- Maive Bayes Spam Filter
- Naive Bayes Spam Filter
- Naive Bayes Spam Filter

Zu Thomas Bayes

- Thomas Bayes wurde 1701 in London geboren und starb 7.4.1761 in Tunbridge
- Bayes war Pfarrer und Mathematiker
- Verfasste den heute als Satz von Bayes bekannten Satz in 'An essay towards solving a problem in the doctrines of chances'
- Ausserdem werden Bayes noch zwei weitere Werke zugeschrieben:
- Divine Benevolence & An Introduction to the Doctrine of Fluxions

Anwendungsgebiete

Laut Wikipedia

- In der Statstik
- Data-Mining
- Spamfilter
- KI
- Qualitätsmanagement
- Entscheidungstheorie
- uvm.

Der Satz von Bayes

Satz

Der Satz von Bayes ist ein Satz der Wahrscheinlichkeitstheorie, er beschreibt die Berechnung bedinger Wahrscheinlichkeiten. Man bezeichnet ihn auch als Formel von Bayes, Bayes Theorem oder Rückwärtsinduktion. Er stellt ausserdem die Grundlage für den Naive Bayes Klassifikator dar.

Sinn

Wie kann man von P(B|A) auf P(A|B) schließen?

Der Satz von Bayes

Abstrakt

$$\frac{\mathsf{Prior} = (\mathit{Outcome} | \mathit{Evidence}) =}{\mathsf{Prior} \; \mathsf{probability} \; \mathsf{of} \; \mathsf{outcome} \; * \; \mathsf{Likelihood} \; \mathsf{of} \; \mathsf{evidence}}{P(\mathit{Evidence})}$$

Formel

$$P(A|B) = \frac{P(A) * P(B|A)}{P(B)}$$

Formulierung

Allgemeine Formulierung für Partitionen A_i über den Ereignisraum

$$P(A_i|B) = \frac{P(A_i) * P(B|A_i)}{\sum_{j=1}^{n} P(B|A_j) * P(A_j)}$$

Für binäre A gilt:

$$P(A|B) = \frac{P(A) * P(B|A)}{P(B|A) * P(A) + P(B|\neg A) * P(\neg A)}$$

Naive Bayes

Beispiel

Rahmenbedingungen

Medizinischer Test auf eine Krankheit:

P(Positiv|Krank) = 0.997(Sensitivität)

P(Negativ|Gesund) = 0.985(Spezifität)

 $P(\mathit{Krank}) = 0.001(\mathit{Pr\"{a}valenz}) \rightarrow P(\mathit{Gesund}) = 0.999$

Gesucht: P(Krank|Positiv)

Zeit online: blog.zeit.de/mathe/allgemein/weltaidstag-aids-hiv-mathematik

Kurze Einführung Naive Bayes

- Naive Bayes Klassifikator nimmt an, dass die einzelnen Features im Hinblick auf die Klassenvariable voneinander unabhängig sind.
- ullet Bei Textverarbeitung 'Bag of Words' Darstellung. o Keine Reihenfolge o.ä. sondern Frequenz
- Wird teilweise wegen der Annahme von Unabhängigkeit auch 'Idiot Bayes' genannt.
- Trotz der stark vereinfachten Annahme sehr effizient & schnell
- Benötigt keine großen Trainingssets.
- (Relativ) einfach zu implementieren.
- Wenn Unabhängigkeit korrekt wäre auch Genauigkeit perfekt

Naive Bayes Klassifikator

Abstrakt

$$\mathsf{Posterior} = \frac{\mathsf{Prior} \ \mathsf{probability} \ \mathsf{of} \ \mathsf{outcome} \ * \ \mathsf{Likelihood} \ \mathsf{of} \ \mathsf{evidence}}{P(\mathit{Evidence})}$$

In der Praxis

Besteht meist nur Interesse am Nenner der Gleichung, da der Teiler von der Klasse unabhängig ist und man immer durch den gleichen Wert teilt

Naive Bayes Formel

Man betrachtet also:

$$\propto p(C) \prod_{i=1}^{n} p(F_i|C)$$
.

Der Klassifikator für diese Formel:

classify
$$(f_1, \ldots, f_n) = \underset{c}{\operatorname{argmax}} p(C = c) \prod_{i=1}^{n} p(F_i = f_i | C = c).$$

Quelle:http://en.wikipedia.org/wiki/Naive_Bayes_classifier

Naive Bayes

Ein Beispiel zum Naive Bayes Classifier

Туре		Long	1	Not Long	11	Sweet	1	Not Sweet	11	Yellow	1	Not Yel	low	Total
Banana	1	400	1	100	11	350	1	150	11	450	ī	50	1	500
Orange	Ĺ	0	Ì	300	П	150	Ì	150	П	300	Ì	0	Ì	300
Other Fruit	Ì	100	Ì	100	H	150	Ì	50	Ħ	50	Ì	150	Ì	200
Total	ī	500	1	500	11	650	1	350	11	800	1	200		1000

Aufgabe

Wir sollen eine Frucht mit den Attributen 'Long, Yellow, Sweet' kategorisieren z.B. $\rightarrow P(Banana) * P(Long|Banana) * P(Sweet|banana) * P(Yellow|Banana)$

Quelle:

http://stack overflow.com/questions/10059594/a-simple-explanation-of-naive-bayes-classification and the state of the sta

Naive Bayes 5. Dezember 2014 12 / 18

Naive Bayes Spam Filter

Spam Filter:

- Priori: Wahrscheinlichkeiten der Klassen, z.B. P(spam) & P(ham)
- Likelihood: P(Wort|Klasse) z.B. 'Viagra' kommt in 100 vorhandenen Spam Mails 30 mal vor $\rightarrow P(Viagra|Spam)$ 0,3 Aber: Produkt aller Vorhandenen Worte für eine Mail
- Evidence: Die Wahrscheinlichkeit für Das Auftreten von Wort allgemein.
- Normalerweise mit 'Add One Smoothing'
- Ist Multinominal Filter
- Bei binären Attributen z.B. Auftreten von Worten kann man auch Bernoulli Naive Bayes verwenden
- Für P(Mail|Klasse) muss die Wahrscheinlichkeit der jeweilig enthaltenen Wörter aufmultipliziert werden. In der Praxis verwendet man den Logarithmus um Underflow zu vermeiden.

13 / 18

Naive Bayes Spam Filter

Formel

$$P(S|W) = \frac{P(W|S)*P(S)}{P(W|S)*P(S)+P(W|H)*P(H)}$$

 $P(S|W) \rightarrow$ Wahrscheinlichkeit, dass Die Mail Spam ist wenn Wort W in ihr vorkommt.

P(W|S) o Wahrscheinlichkeit, dass Wort W in einer Spam Nachricht vorkommt

 $P(W|H) \rightarrow W$ ahrscheinlichkeit, dass Wort W in einer Ham Nachricht vorkommt

 $P(S) \rightarrow Wahrscheinlichkeit, dass Nachricht Spam ist$

 $P(H) \rightarrow Wahrscheinlichkeit, dass Nachricht Spam ist$

Naive Bayes

Naive Bayes Spam Filter Praxis

Trainingsset

509 Spam Mails 372 Ham Mails

Nach Tokenisierung 149131 Wörter in Spam Mails 107104 Wörter in Ham Mails

Testset

93 Ham Mails

82 Spam Mails

Erkennungsrate Ham: 100%

Erkennungsrate Spam: 91%

Gibt es noch Fragen?

Quellen

blog.zeit.de/mathe/allgemein/weltaidstag-aids-hiv-mathematik

http://de.wikipedia.org/wiki/Thomas_Bayes

 $http://en.wikipedia.org/wiki/Bayes\%27_theorem\#Extended_form$

http://de.wikipedia.org/wiki/Satz_von_Bayes http://en.wikipedia.org/wiki/Naive_Bayes_spam_filtering

http://en.wikipedia.org/wiki/Law_of_total_probability

http://en.wikipedia.org/wiki/Naive_Bayes_classifier

http://stackoverflow.com/questions/10059594/a-simple-explanation-of-naive-bayes-classification http://stackoverflow.com/questions/2828113/naive-bayesian-classification-spam-filtering-which-calculation-is-right

http://stackoverflow.com/questions/2990597/calculating-spam-probability

http://www.statistik.lmu.de/institut/ag/agmg/lehre/2013_SoSe/Stat2Soz_13/vorlesung/3_Stat2So

17 / 18

Naive Bayes 5. Dezember 2014

Die wichtigsten Quellen

http://spamassassin.apache.org/publiccorpus/