MSE 222 DYNAMICS Final Exam

SIMON FRASER UNIVERSITY MECHATRONIC SYSTEMS ENGINEERING

Final Examination - April 17, 2016

Instructor: Kambiz Hajikolaei Time: 150 minutes

Non-programmable calculators may be used No smartphones or other electronic devices may be used Answer all the questions in the booklet (not the question sheet)

Section I: short answer questions (10 marks)

Q1. Determine the number of degrees of freedom in the following dynamic systems:

- **Q2.** Define the following terms in a single-degree-of-freedom vibrational system:
 - a) Period of oscillation
 - b) Amplitude
 - c) Phase angle
 - d) Critically damped motion

Q3. True-False questions:

- a) Free vibration takes place at the system's natural frequency, irrespective of the initial conditions.
- b) Natural frequencies depend only on the stiffness properties of the system.
- c) Natural frequency decreases with an increase in the stiffness or a decrease in the mass.
- d) When an underdamped system is disturbed from rest, the motion is non-periodic.

Section II: Problems

Problem1: The spring-mounted collar oscillates on the shaft according to $x = 0.04 \sin(\pi t)$, where x is in meters and t is in seconds. Simultaneously the frame rotates about the bearing at O with an angular velocity $\omega = 2 \sin(\frac{\pi t}{2})$ rad/s. Determine the acceleration of the center C of the collar (a) when t=3s and (b)when t=0.5s. (25 marks)

Problem2: The circular disk of 200-mm radius has a mass of 25 kg with centroidal radius of gyration k=175 mm and has a concentric circular groove of 75 mm radius cut into it. A steady force T is applied at an angle θ to a cord wrapped around the groove as shown. If T=30 N, $\theta=0$, $\mu_s=0.1$ and $\mu_k=0.08$, determine the angular acceleration α of the disk, the acceleration α of its mass center G, and the friction force F which the surface exerts on the disk. (20 marks)

Problem3: The linkage consists of two 6-kg rods AB and CD and a 20-kg bar BD. When $\theta = 0^{\circ}$, rod AB is rotating with an angular velocity $\omega = 2 \, rad/s$. If rod CD is subjected to a couple moment of M = 30 N-m, determine ω_{AB} at the instant $\theta = 90^{\circ}$. (20 marks)

Problem4: The 10-kg wheel shown in the figure has a moment of inertia $I_G = 0.156 \, kg \, m^2$. Assuming that the wheel does not slip or rebound, determine the minimum velocity v_G it must have to just roll over the obstruction at A. (25 marks)

Kinematics Formulas:

Rigid-body analysis:

$$\mathbf{v}_B = \mathbf{v}_A + \boldsymbol{\omega} \times \mathbf{r}_{B/A}$$
 $\mathbf{a}_B = \mathbf{a}_A + \boldsymbol{\alpha} \times \mathbf{r}_{B/A} - \boldsymbol{\omega}^2 \mathbf{r}_{B/A}$

Relative motion:

$$\mathbf{v}_B = \mathbf{v}_A + \mathbf{\Omega} \times \mathbf{r}_{B/A} + (\mathbf{v}_{B/A})_{xyz}$$

$$\mathbf{a}_{B} = \mathbf{a}_{A} + \dot{\mathbf{\Omega}} \times \mathbf{r}_{B/A} + \mathbf{\Omega} \times (\mathbf{\Omega} \times \mathbf{r}_{B/A}) + 2\mathbf{\Omega} \times (\mathbf{v}_{B/A})_{xyz} + (\mathbf{a}_{B/A})_{xyz}$$

Moment of Inertia Formulas:	
General Formula	Parallel-axis theorem
$I = \int_{m} r^2 dm$	$I = I_G + md^2$

Kinetics Formulas:				
$\Sigma F_x = m(a_G)_x$ $\Sigma F_y = m(a_G)_y$ $\Sigma M_G = 0$ Rectilinear translation	$\Sigma F_n = m(a_G)_n \ \Sigma F_t = m(a_G)_t \ \Sigma M_G = 0$ Curvilinear translation			
$\Sigma F_n = m(a_G)_n = m\omega^2 r_G$ $\Sigma F_t = m(a_G)_t = m\alpha r_G$ $\Sigma M_G = I_G \alpha \text{ or } \Sigma M_O = I_O \alpha$ Rotation about a fixed axis	$\Sigma F_x = m(a_G)_x$ $\Sigma F_y = m(a_G)_y$ $\Sigma M_G = I_G \alpha \text{ or } \Sigma M_P = \Sigma (\mathcal{M}_k)_P$ General plane motion			

Work and Energy Formulas:	
Kinetic Energy (Translation): $T = \frac{1}{2} m v_G^2$	
Kinetic Energy(General Plane Motion):	Kinetic Energy (Rotation about a fixed axis):
$T = \frac{1}{2}mv_G^2 + \frac{1}{2}I_G\omega^2 \text{ or } \frac{1}{2}I_{IC}\omega^2$	$T = \frac{1}{2}mv_G^2 + \frac{1}{2}I_G\omega^2 \ or \ \frac{1}{2}I_O\omega^2$
Principle of work and energy:	Conservation of energy:
$T_1 + \Sigma U_{1-2} = T_2$	$T_1 + V_1 = T_2 + V_2$
	where $V = V_g + V_e$

Impulse and Momentum Formulas:						
Linear and Angular Momentum:						
Translation	Rotation about a fixed axis		General plane motion			
$L = mv_G$	$L = mv_G$		$L = mv_G$			
$H_G = 0$	$H_G = I_G \omega$		$H_G = I_G \omega$			
$H_A = (mv_G)d$	$H_O = I_O \omega$		$H_A = I_G \omega + (m v_G) d$			
Principle of Impulse and Momentum		Conservation of Momentum				
$m(v_{Gx})_1 + \sum_{t_1}^{t_2} F_x dt = m(v_{Gx})_2$		$\left(\sum_{\text{momentum}}^{\text{syst. linear}}\right)_1 = \left(\sum_{\text{momentum}}^{\text{syst. linear}}\right)_2$				

$$m(v_{Gx})_{1} + \sum \int_{t_{1}} F_{x} dt = m(v_{Gx})_{2}$$

$$\sum_{momentum} F_{x} dt = m(v_{Gx})_{2}$$

$$\sum_{momentum} F_{y} dt = m(v_{Gy})_{2}$$

$$I_G \omega_1 + \sum_{t_1}^{t_2} M_G dt = I_G \omega_2$$

Coefficient of Restitution:

$$e = \frac{(v_B)_2 - (v_A)_2}{(v_A)_1 - (v_B)_1}$$

Center of gravity and mass moment of inertia of homogeneous solids

Work of a Force and a Couple Moment

A force does work when it undergoes a displacement ds in the direction of the force. In particular, the frictional and normal forces that act on a cylinder or any circular body that rolls without slipping will do no work, since the normal force does not undergo a displacement and the frictional force acts on successive points on the surface of the body.

$$U_F = \int F \cos \theta \, ds$$

$$U_{Fc} = (F_c \cos \theta)s$$

Constant Force

$$U_W = -W\Delta y$$

Weight

$$U = -\frac{1}{2}k s^2$$

Spring

$$U_M = \int_{\theta_1}^{\theta_2} M \, d\theta$$

$$U_M = M(\theta_2 - \theta_1)$$

Constant Magnitude

Gravitational potential energy

Elastic potential energy