Assignment_05

Zhang Huakang | D-B92760-6

6.

10.

$$R = \{(a,b), a > b\}$$

$$R_r = \{(a,b), a=b\}$$

$$R_s = \{(a,b), a < b\}$$

$$R' = R \cup R_r \cup R_s = \{(a,b), (a>b) \lor (a=b) \lor (a< b)\} = \{(a,b), a,b \in \mathbb{R}\}$$

14.

Proof:

Let S is the closure of R.

By the definition, we can know that

For any set T, if T has property P, and $R\subset T$,then $S\subset T$ i.e.

$$\forall T_i(T_i \ has \ P \ property), S \subset T_i$$

We can know:

$$S\subset (\cup_{i=1}^n T_i)$$

16.

a),c) and e) are paths.

26.

a).

	а	b	С	d	е
а	1	0	1	0	0
b	0	1	0	1	0
С	1	0	1	0	0
d	0	1	0	1	0
е	0	1	0	1	0

b).

	а	b	С	d	е
а	0	0	0	0	0
b	0	1	1	0	1
С	0	1	1	0	1
d	1	0	0	0	0
е	0	1	1	0	1