O1 Count pairs "ag". Given a character array, calculate the no of pairs i,j such that. icj le s[i] = 'a' le s[j] = 'g'. All characters are lower case. $\frac{\sum x1}{2}$: ass [] = D a a g d c a g Pairs: [<1,37, <2,37, <1,77, <2,77, <6,77] ars = 5 Brok Porce int c = 0; (or (int i = 0; i < n; i++) }

detuan c:

Ext: arr [] = b a a g d c a g

Prefix Sun

Array for: 01222233

no af ais

encountered till

ith index

Sc: O(n)

D'iginal assay cannot be modified to store prefix sum as it is a chas assay.

J

int ars \$0, int cnt_a \$0

0 1 2 3 4 5 6 7 Baagdcag

index	S[i]	
0	Ь	ans = 0 $cnt - a = 0$
1	a	$ars = 0$ $cnt_a = 1$
2	a	ars = 0 $cnt - a = 2$
3	g	ars + = cnt - a ars = 2 $cnt - a = 2$
H	d	
5	C	
6	a	ans = 2 $cn1-a = 3$
7	9	ars = 5 $cnt - a - 3$

Daaa gd cag

Ount all occurrences of
$$g$$

$$Cnt-g=2$$

$$Cnf-g=2$$

Psudo Code

inf ars = 0
inf cnf-a = 0
for (inf i=0; i2n; i+f)
$$f$$

if (SCi] = = (a')
cnf-a+f;
else if (SCi] = = (6')
ars = ans + cnf-a

(: O(n)

Sc: O(1)

3

return are:

ind are = 0

ind list
$$\angle ind$$
 \Rightarrow index- a ;

Por $(ind) = 0$; $i \ge n$; $i + d$ \Rightarrow

if $(s \subseteq i) = = (a')$

index- a . add (i) ;

else if $(s \subseteq i) = = (6')$

Print-paix $(index-a, i)$

return ans:

Oz Leaders in a Array

Count of

Count of

Count of

Ind all leaders

in array.

All element is a leader, if it is strictly greater than all elements on its right side.

Note: arr[n-1] is always considered as Leader.

 \sum_{x_1} : a_{xx_1} : a_{xx

ans = 5

index	arr [:]	
6	2	Cur-max=3 $ars=1$
5	H	$Cuss_max = 4$ $ars = 2$
4	15)	Cur-max = 5 ars = 3
3	2	Curr-max = 5 ans = 3
2	7	CU70-max=7 ars=4.
1	_ ((U88-Max=7 ars=4.
	15	(U78-max=15 978=5

Pseudo Code

$$\int o \delta \left(\inf i = n-2 ; i \ge 0 ; i-- \right) \mathcal{L}$$

$$i \int \left(a s \delta \left(i \right) > C o \delta \delta - m a s \right) \mathcal{L}$$

$$a r s + t;$$

$$C v \delta \delta - m a s = a s \delta Li J$$

redran ans:

 $T_{\mathcal{L}}: O(n)$

Sc:0(1)

2 4 4 7 7 6 6 ars = 1max = 6

max = 7

Subassay Basics

Length of a subarray
$$(i,j) = (j-i+1)$$

No of Subarrays in a array of length n.

Total Subassays = n (n+1)

O3 Closest Min Max

Given an array find the length of smallest Subarray which contains both Min & Max of array.

Exi assi]: 1 2 3 1 3 4 6 4 6

Totential

Subassays: 1) [3,7] 4) [3,8] Potential

min = 1

mqx = 6

2) [0,6] 5) [3,6]

3) [0,8]

ans = 4

Exz abol] = 8 8 8

ars = 1

Observations

1) Min & Max should be at ends of subassay.

2) $M_{fn} = M_{Gx}$ $\alpha_{x} = 1$

3) There would be only I min & 1 max.

max --- min -- max

Subarray = [min, max]
[max, min]

Approach 1

DFind min I max in 1 loop.

2) Loop again & store indices of min f

indices_min = [indics_mer = [

min max

0 1 2 3 4 5 6 7 8 9 1 2 3 1 3 4 6 4 6 3

			min - index
index	ass[i]		max_index =
9	3		max = 2
8	6	max_index = 8 min_index = -1	Min <u>-1</u>
7	4		
6	6	max -index = 6 min - index = -1	
5	4		
4	3		
3	1	max-index = 6 min-index = 3	- are 7 4
2	3		
	2		
	1	mar_index=6 min_index=0	

$$T_{C}: O(n)$$

Sc: 0(1)

M= ni-xm mi-in = 5

1)00/2/2

Doubl session shalf.

2) Pseudo Code

if (abli) = = min ll max-ind! = -1Non-in = i: len = max-ind - i + 1Clastif (abli) = = max ll min-ind! = -1 max-in = i; len = min-ind - i + 1

0 1 2 3 4 5 6 7 8 9 1 2 3 1 3 4 6 4 6 3