Лабораторная работа № 1

РЕШЕНИЕ НАЧАЛЬНЫХ И КРАЕВЫХ ЗАДАЧ ДЛЯ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ

Цель работы: получить навык численного решения задач для обыкновенных дифференциальных уравнений с использованием различных методов на примере задачи Коши для системы обыкновенных дифференциальных уравнений первого порядка и начально-краевой задачи для обыкновенного дифференциального уравнения второго порядка.

Задания на лабораторную работу

І. Задача Коши для системы уравнений движения

Рассматривается задача Коши для системы уравнений движения материальной точки в потенциальном поле U(x):

$$\frac{dx(t)}{dt} = v, x(0) = x_0;$$

$$\frac{dv(t)}{dt} = -\frac{1}{m}\frac{dU}{dx}, v(0) = v_0.$$
(1)

Параметры задачи выбираются в соответствии с индивидуальным заданием (Таблица 1). Перед началом решения задачи необходимо привести ее к безразмерному виду, выбрав подходящие масштабы для всех величин.

Задача 1 (2 балла).

- 1) Написать вычислительную программу на языке программирования С++ решения задачи (1) методом Эйлера с постоянным шагом.
- 2) Исследовать зависимость решения при больших временах от величины шага временной сетки. Построить графики решений для различных значений шага.
- 3) Выполнить сравнение полученных решений с численным решением в каком-либо математическом пакете, полученным с помощью метода высокого порядка точности (например, Рунге-Кутта 4–5). Построить графики разности решений.
- 4) Проверить применимость правила Рунге и с его помощью повысить точность решения.

Задача 2 (2 балла).

1) Написать вычислительную программу на языке программирования С++ решения задачи (1) по явной двухшаговой схеме Адамса с постоянным шагом.

- 2) Исследовать зависимость решения при больших временах от величины шага временной сетки. Построить графики решений для различных значений шага.
- 3) Выполнить сравнение полученных решений с решением по методу Эйлера (задача 1) и численным решением в каком-либо математическом пакете, полученным с помощью метода высокого порядка точности (например, Рунге-Кутта 4–5). Построить графики разности решений.

Задача 3 (2 балла).

- 1) Написать вычислительную программу на языке программирования С++ решения задачи (1) методом Рунге-Кутта 4-го порядка.
- 2) Исследовать зависимость решения при больших временах от величины шага временной сетки. Построить графики решений для различных значений шага.
- 3) Выполнить сравнение полученных решений с численным решением в каком-либо математическом пакете, полученным с помощью метода высокого порядка точности (например, Рунге-Кутта 4–5). Построить графики разности решений.

Индивидуальные задания к задаче (1)

Таблица 1

				1 0001111200 1
$\mathcal{N}_{\underline{0}}$	m	x_0	v_0	U(x)
варианта				
1	$9.1 \ 10^{-31}$	0	$2 \ 10^5$	$10^{-17} x^2 (1+x)$
2	$1.67 \ 10^{-27}$	0	$7 \ 10^5$	$2 \cdot 10^{-17} \text{sh}(x^2)$
3	$6.65 \ 10^{-27}$	0	$3 \ 10^5$	$5 10^{-17} \operatorname{arctg}(x^3)$
4	$9.1 \ 10^{-31}$	0	$5 10^5$	$10^{-18}\cos(x^2)$
5	$1.67 \ 10^{-27}$	0	610^5	$3 \cdot 10^{-17} \sin^2(x^3)$
6	$6.65 \ 10^{-27}$	0	$4 \ 10^5$	$10^{-17}(1-2x^2+3x^3)$
7	$9.1 \ 10^{-31}$	0	9 10 ⁵	$4 \ 10^{-17} e^{x^2}$
8	$1.67 \ 10^{-27}$	0	10 ⁵	$2 \ 10^{-18} \ \text{tg}(x^2)$
9	$6.65 \ 10^{-27}$	0	10^{6}	$6 \ 10^{-17} x^2 \sinh(x)$
10	1.9 10 ²⁷	7.8 10 ¹¹	0	$10^{47} \left(\frac{1}{x} + \frac{2 \ 10^{21}}{x^3} \right)$
11	8.7 10 ²⁵	2.87 10 ¹²	0	$10^{45} \left(\frac{1}{x} + \sin(10^{-10}x) \right)$
12	6.4 10 ²³	2.08 10 ¹¹	0	$10^{43} \left(\frac{1}{x} + \frac{3 \ 10^{10}}{x^2} \right)$

13	5.7 10 ²⁶	1.43 10 ¹²	0	$10^{46} \left(\frac{1}{x} + \frac{2 \ 10^{15}}{\frac{3}{x^2}} \right)$
14	4.7 10 ²⁴	1.1 10 ¹¹	0	$10^{24} \left(\frac{1}{x} - \frac{7 \cdot 10^{25}}{x^{5/2}} \right)$
15	$1.1 \ 10^{26}$	4.5 10 ¹²	0	$10^{26} \left(\frac{1}{x} + \frac{3 \ 10^{12}}{x^{1.2}} \right)$

II. Краевая задача для обыкновенного дифференциального уравнения второго прядка

Решается следующая краевая задача для неоднородного ОДУ второго порядка:

$$u'' + p(x)u' + q(x)u = f(x), u = u(x), x \in (a, b);$$

 $\alpha_0 u(a) + \alpha_1 u'(a) = A, \beta_0 u(b) + \beta_1 u'(b) = B.$ (2)

Параметры задачи выбираются в соответствии с индивидуальным заданием (Таблицы 2 и 3).

Задача 4 (2 балла).

- 1) Написать вычислительную программу на языке программирования C++ решения задачи (2) конечно-разностным методом с решением получающейся СЛАУ методом прогонки.
- 2) Исследовать зависимость решения от величины шага сетки. Построить графики решений для различных значений шага.
- 3) Выполнить сравнение полученных решений с численным решением в каком-либо математическом пакете. Построить графики разности решений.

Задача 5 (2 балла).

- 4) Написать вычислительную программу на языке программирования C++ решения задачи (2) методом стрельбы (пристрелки). Решение соответствующей задачи Коши выполнить методом Рунге-Кутта 4-го порядка (использовать результаты задачи 3).
- 5) Выполнить сравнение полученного решения с решением, полученным в задаче 4.

Индивидуальные задания к задаче (2)

Таблица 2

№ варианта	α_0	α_1	eta_0	eta_1
1	1	0	1	0
2	0	1	1	0
3	1	0	0	1
4	0	1	0	1
5	1	1	1	0
6	1	1	0	1
7	1	1	1	1
8	1	0	1	1
9	0	1	1	1
10	1	-1	1	0
11	1	-1	0	1
12	1	-1	1	1
13	1	0	-1	-1
14	0	1	-1	-1
15	1	-1	1	-1

Таблица 3

N^{a}	Функции			Нач. услови:	
вар.	p(x)	q(x)	f(x)	A	В
1	2	3	4	5	6
1	-2	2	$e^x \cdot \sin x$	2	3/2
2	-7	12	5	1	2
3	2	2	x · e -x	0	0
4	-2	2	x^2	0.5	0
5	-8	16	e ^{4r}	0	1
6	0	-1	$2e^{x}-x^{2}$	2	1
7	0	4	8	3	4
8	-1	0	ch(2x)	0	0
9	-2	0	$e^x(x^2+x-3)$	2	2
10	.0	1	$4e^x$	4	-3
11	0	-1	$2 - x^{2}$	1	1
12	.0	4	e^{-2x}	0	0
13	-4	0	$6x^2 + 1$	0	3.5625
14	0	-4	$16x \cdot e^{2x}$	0	3
15	1	-2	-2x + 1	1	-1

Теоретическая часть

Номер задачи	Литература
1	[1] (Глава V, §1, пп. 1-3),
	[3] (Глава 8, §2)
2	[1] (Глава V, §2),
	[2] (Глава VIII, §1, п. 7),
	[3] (Глава 8, §5)
3	[1] (Глава V, §1, п.4),
	[2] (Глава VIII, §1, п. 6),
	[3] (Глава 8, §2)
4	[1] (Глава V, §2, п.1),
	[2] (Глава VIII, §2, п. 4),
	[3] (Глава 9, §1,3,4)
5	[2] (Глава VIII, §2, п. 2),
	[3] (Глава 9, §6)

- 1. Самарский А.А. Введение в численные методы.
- 2. Калиткин Н.Н. Численные методы.
- 3. Бахвалов Н.С., Жидков Н.П., Кобельков Г.М. Численные методы.

По каждой решенной задаче в обязательном порядке оформляется отчет. Лабораторная работа считается выполненной, если набрано 6 и более баллов.