Multimodal Representation Learning for Healthcare integrating Imaging and Genomic data

Ekin Beyazit and Koushik Howlader

Goal

We tried to advance the existing methods in multimodal brain tumor survival prediction.

 We did this by using cross attention while aggregating patch features, doing a weighted average (whereas the paper is only averaging predictions, or features depending on the fusion type).

Approach

 We tackled the joint fusion method proposed in the paper "Multimodal data fusion of adult and pediatric brain tumors with deep learning".

Approach

Approach

- We use the feature vectors as key and value vectors, while using the RNA sequence as a query vector.
- These operations essentially apply weights to the feature vectors, that are then averaged.
- We do not interfere with the rest of the architecture.

```
class TanhCrossAttention(nn.Module):
    def __init__(self, dim=2048):
        super(TanhCrossAttention, self).__init__()
        self.dim = dim
        self.gene_linear = nn.Linear(11047, dim, bias=False) # query vector coming from RNA sequence
        self.linear = nn.Linear(dim, dim, bias=False)

def forward(self, x, gene_expression):
        gene_projection = self.gene_linear(gene_expression)
        logits = torch.tanh(self.linear(x)).matmul(gene_projection.unsqueeze(-1))
        attention_weights = torch.nn.functional.softmax(logits, dim=1)
        out = x * attention_weights * x.shape[1]
        return out,attention_weights
```

Challenges

- Doing multiple forward passes per sample seems to be messing with the loss, causing very different loss values based on bag_size.
- The baseline model proposed in the paper has very high dropout rates, which prevent our model from learning.
- The models take very long to train, and are very resource heavy in general, which makes it harder to do parameter tuning.
- Our approach may be more in line with early fusion rather than joint fusion.

A. EARLY FUSION

Dataset

Adult glioma cohort - (Brain Cancer Cell) - TCGA

Data Type:

- WSI (Whole Slide Image) 844
- Gene Expression Data 507

One patient can have multiple WSI

Results: by WSI and Case ID (Patient)

Due to resource constraints we consider 250 WSI (randomly).

For each WSI, prepared 2000 patches.

Data Split:

- Train 70%
- Test: 20 %
- Validation: 10%

Evaluation Metric

CI (Concordance Index)

How well the predicted risk scores align with the actual survival outcomes.

- CI = 1.0 → perfect prediction
- CI > 0.5 → Better prediction
- CI < 0.5 → worse than random

Harrell Jr FE, Califf RM, Pryor DB, Lee KL, Rosati RA. Evaluating the yield of medical tests. Journal of the American Medical Association 1982; 247(18):2543--2546.

Preliminary Results

Batch size	Epochs	Bag size	Dropout	Learning rate	CI
128	19,18,8,5,16	32	0	0.001, 0.001	WSI: 0.62 Case:0.5806
128	20,20,13,20,7	32	0	0.01, 0.001	WSI:0.55 Case:0.51
256	20,6,19,2,16	16	0	0.001, 0.001	WSI:0.61 Case:0.56

Baseline

Batch size	Epochs	Bag size	Dropout	CI
256	17,20,18,17,15	1	0.8	WSI: 0.656 Case: 0.610
128	20,18,18,16,9	1	0.8	WSI: 0.659 Case: 0.621
128	17,5,8,11,12	1	0.5	WSI: 0.659 Case: 0.620

Comparison

	WSI		Case	
Batch Size	MBS	Ours	MBS	Ours
128	0.659	0.62	0.621	0.5806

Challenges

- Resources
- We didn't perform with higher BagSize

Future Work

- Working with early fusion rather than joint fusion, as that is more aligned with our current approach.
- Trying to normalize the loss values such that they are comparable between different experiments.
- Doing proper grid-search to find the best parameters for both models.
- Displaying attention values for clarity.
- Using other kind of aggregation methods after weighting (such as pooling).

References

Steyaert, S., Qiu, Y.L., Zheng, Y. et al. Multimodal deep learning to predict prognosis in adult and pediatric brain tumors. *Commun Med* 3, 44 (2023).

Harrell Jr FE, Califf RM, Pryor DB, Lee KL, Rosati RA. Evaluating the yield of medical tests. Journal of the American Medical Association 1982; 247(18):2543--2546.

THANK YOU