Mathematical background

Christos Dimitrakakis

February 17, 2023

Outline

Probability background

Probability facts
Random variables and expectation
Conditional probability and inference

Linear algebra

Vectors
Linear operators and matrices

Calculus

Univariate caclulus

Probability background

Probability facts
Random variables and expectation
Conditional probability and inference

Linear algebra

Vectors
Linear operators and matrices

Calculus

Univariate caclulus

Axioms of probability

- $ightharpoonup P(\Omega) = 1$
- ▶ If $A \cap B = \emptyset$ then $P(A \cup B) = P(A) + P(B)$.
- $ightharpoonup P(\emptyset) = 0.$

Marginalisation

If A_1, \ldots, A_n are a partition of Ω

$$P(B) = \sum_{i=1}^{n} P(B \cap A_i).$$

Random variables

A random variable $f:\Omega\to\mathbb{R}$ is a real-value function measurable with respect to the underlying probability measure P

The distribution of f

The probability that f lies in some subset $A\subset\mathbb{R}$ is

$$P_f(A) \triangleq P(\{\omega \in \Omega : f(\omega) \in A\}).$$

Expectation

For any random variable $f: \Omega \to \mathbb{R}$, the expectation with respect to a probability measure P is

$$\mathbb{E}_{P}(f) = \sum_{\omega \in \Omega} f(\omega) P(\omega).$$

Conditional probability

The conditional probability of an event A given an event B is defined as

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

Conditional expectation

The conditional expectation of a random variable $f:\Omega\to\mathbb{R}$, with respect to a probability measure P conditioned on some event B is simply

$$\mathbb{E}_P(f|B) = \sum_{\omega \in \Omega} f(\omega) P(\omega|B).$$

The theorem of Bayes

Theorem (Bayes's theorem)

$$P(A|B) = \frac{P(B|A)}{P(B)}$$

The theorem of Bayes

Theorem (Bayes's theorem)

$$P(A|B) = \frac{P(B|A)}{P(B)}$$

The general case

If A_1,\ldots,A_n are a partition of Ω , meaning that they are mutually exclusive events (i.e. $A_i\cap A_j=\emptyset$ for $i\neq j$) such that one of them must be true (i.e. $\bigcup_{i=1}^n A_i=\Omega$), then

$$P(B) = \sum_{i=1}^{n} P(B|A_i)P(A_i)$$

and

$$P(A_j|B) = \frac{P(B|A_j)}{\sum_{i=1}^n P(B|A_i)P(A_i)}$$

Independence

Independence

A, B are independent iff $P(A \cap B) = P(A)P(B)$.

Conditional independence

A, B are conditionally independent given C iff $P(A \cap B|C) = P(A|C)P(B|C)$.

Uncorrelated random variables

If $x, y : \Omega \to \mathbb{R}$ are two random variables, they are uncorrelated under P iff $\mathbb{E}_P[xy] = \mathbb{E}_P[x] \mathbb{E}_P[y]$.

Vector space F axioms

- $(x+y)+z=x+(y+z), \text{ for all } x,y,z\in F.$
- \triangleright x + y = y + x, for all $x, y \in F$.
- There is a zero element $0 \in F$ such that x + 0 = 0 for all $x \in F$.
- For all $x \in F$, there is an element $-x \in F$ so that x + (-x) = 0.
- ightharpoonup a(x+y)=ax+ay, For any $a\in\mathbb{R}$, $x,y\in F$.
- (a+b)x = ax + bx, For any $a,b \in \mathbb{R}$, $x \in F$.

The real vector space $F = \mathbb{R}^d$

For $a \in \mathbb{R}$ and $x, y \in F$,

$$x = (x_1, \ldots, x_d), y = (y_1, \ldots, y_d)$$

$$x + y = (x_1 + y_1, \dots, x_d + y_d).$$

$$ightharpoonup$$
 $ax = (ax_1, \dots, ax_d).$

$$-x = (-1)x$$
.

$$ightharpoonup 0 = (0, ..., 0)$$

Linear operators

Linear operator $A: F \rightarrow G$

- A(x+y) = Ax + Ay
- A(ax) = a(Ax).

Matrices in $\mathbb{R}^{n \times m}$.

A matrix
$$A \in \mathbb{R}^{n \times m}$$
 is a tabular array $A = \begin{bmatrix} A_{1,1} & \cdots & A_{1,m} \\ \vdots & \ddots & \vdots \\ A_{n,1} & \cdots & A_{n,m} \end{bmatrix}$

Matrices can be seen as linear operators when used to multiply vectors.

Multiplication operators

Matrix multiplication

For $A \in \mathbb{R}^{n \times d}$, $B \in \mathbb{R}^{d \times m}$, the ij-th element of the result of the multiplication AB is

$$(AB)_{i,j} = \sum_{k=1}^{d} A_{i,k} B_{k,j}.$$

so that $AB \in \mathbb{R}^{n \times m}$.

Matrix-vector multiplication

A matrix $A \in \mathbb{R}^{n \times m}$ defines the following linear operator $A : \mathbb{R}^m \to \mathbb{R}^n$.

$$Ax = \left(\sum_{j=1}^{m} A_{i,j}x_j : i = 1, \dots, n\right)$$

All vectors $x \in \mathbb{R}^m$ are equivalent to matrices in $\mathbb{R}^{m \times 1}$.

Matrix inverses

The identity matrix $I \in \mathbb{R}^{n \times n}$

- For this matrix, $I_{i,j} = 1$ and $I_{i,j} = 0$ when $j \neq i$.
- \blacktriangleright Ix = x and IA = A.

The inverse of a matrix $A \in \mathbb{R}^{n \times n}$

 A^{-1} is called the inverse of A if

- $AA^{-1} = I$.
- ightharpoonup or equivalently $A^{-1}A = I$.

The pseudo-inverse of a matrix $A \in \mathbb{R}^{n \times m}$

- $ightharpoonup ilde{A}^{-1}$ is called the left pseudoinverse of A if $ilde{A}^{-1}A = I$.
- $ightharpoonup \tilde{A}^{-1}$ is called the right pseudoinverse of A if $A\tilde{A}^{-1}=I$.

Derivatives

Derivative

The derivative of a single-argument function is defined as:

$$\frac{d}{dx}f(x) = \lim_{\epsilon \to 0} \frac{f(x+\epsilon) - f(x)}{\epsilon}.$$

f must be absolutely continuous at x for the derivative to exist.

Directional derivative

Subdifferential

For non-differential functions, we can sometimes define the set of all subderivatives:

$$\partial f(x) = [\lim_{\epsilon \to 0} \frac{f(x) - f(x - \epsilon)}{\epsilon}, \lim_{\epsilon \to 0} \frac{f(x + \epsilon) - f(x)}{\epsilon}]$$

Integrals

Riemann integral

The Reimann integral is obtained by taking a horizontal discretisation of a function to the limit:

$$\int_a^b f(x)dx = \lim_{n \to \infty} \sum_{t=1}^n f(x_t) \frac{b-a}{n}, \qquad x_t = a + (t-1) \cdot \frac{b-a}{n}$$

Lebesgue integral

The Reimann integral is obtained by taking a vertical discretisation of a function to the limit. Let λ be the Lebesgue measure (i.e. area) of a set. Then:

$$\int_X f(x)d\lambda(x) = \lim_{n\to\infty} \sum_{t=1}^n y_t \lambda(S_t),$$

$$S_t = \{x: f(x) \in (y_{t-1}, y_t), y_0 = -\infty, y_n = \sup_{x \in \mathbb{R}^n} f(x).$$

Fundamental theorem of calculus

$$f(x) = \frac{d}{dx} \int_{a}^{x} f(t)dt$$

If $\frac{d}{dx}F = f$ then its integral from a to b is:

$$\int_a^b f(x)dx = F(b) - F(a),$$

Multivariate calculus

Multivariate functions $f: \mathbb{R}^n \to \mathbb{R}$.

- ▶ Any $x \in \mathbb{R}^n$ is $x = (x_1, ..., x_n)$, with $x_i \in \mathbb{R}$.
- ▶ We write f(x) instead of $f(x_1, ..., x_n)$.

Partial derivative

The partial derivative of f with respect to its i-th argument is:

$$\frac{\partial}{\partial x_i}f(x),$$

where we see all x_j with $j \neq i$ as fixed.

Gradient of f

This is the vector of all its partial derivatives:

$$\nabla_{x} f(x) = \left(\frac{\partial}{\partial x_{1}} f(x) \cdots \frac{\partial}{\partial x_{i}} f(x) \cdots \frac{\partial}{\partial x_{n}} f(x)\right)^{\top}$$