DEEP LEARNING APPROACH FOR SEISMIC RISK ASSESSMENT IN CHILE

Francisco Plaza^{1,2}, Joaquín Cavieres², Rodrigo Salas², Orietta Nicolis^{2,3}

¹Instituto de Fomento Pesquero, ²Universidad de Valparaíso, ³Universidad Andrés Bello

francisco.plaza.vega@ifop.cl

1. EARTHQUAKE PREDICTION?

- Chile is one of the most seismic countries in the world.
- Complexity associed with, chaotic, non-linear nature, and unidentified variables (Reyes et al, 2013).

From 2000-2017, **157 earthquakes** >6 Richter scale

occurred in Chile!

- Statistical Models: Epidemic-Type Aftershock Sequence, or ETAS (Ogata, 1988), use the expected number of events in a given region, conditional to the past events or conditional **ground intensity function (GIF)**, widely used in earthquake forecast approaches (Nicolis *et al*, 2015; Nicolis *et al*, 2017).
- Joffe et al (2018), states that contemporary techniques are insufficently sensitive for allowing precise earthquake modelling and prediction.
- Need for **new approaches** that consider broader and bigger sources on information, hence **Deep Learning models** are considered.

OBJECTIVE

This paper, presents a temporal Deep Learning approach for ground intensity function estimation in Chile, using historical seismological events information from catalogues.

2. OUR APPROACH

- The proposed approach consists of two modules: Data Preprocessing, and Estimation modules.
- In the **Data Preprocessing** module all the data will be analyzed and prepared as inputs for the following modules, this considers **estimating the daily ground intensity function (GIF)**.
- The Estimation module will receive inputs from the previous model and use DFANN and RNN-LSTM Deep Learning (DL) time series approaches to estimate the GIF.

2.1. DATA

86,000 records, from the National Seismological Center (NSI, www.sismologia.cl), time location (Year, Month, Day, Hour, Minute, Second), spatial location (Latitude, Longitude), depth, and magnitude.

2.2. PREPROCESSING

The **conditional intensity function**, represents a way of specifying how the present seismic events depend on the past events in an evolutionary point process. Consider the conditional density f_g and its cumulative distribution function F_g . Then, the conditional ground intensity function or **ground intensity function** (GIF) (also named hazard function) is defined by $\lambda_g(t) = f_g(t)/(1-Fg(t))$ (Ogata, 1999; Rasmussen, 2011).

2.3. ESTIMATION

- Deep Feedforward Neural Networks (DFANN), and Recurrent Neural Networks with Long Short Term Memory (RNN-LSTM), are neural network structures suited for working with time series data (Schmidhuber, 2014; Goodfellow et al, 2016).
- GIF databases (for >3, >4, >5 and >6 magnitudes), are structured for estimation with the DL models. Training and Test (67% and 33% of the data).
- Autoregressive model (t-1, t-2, t-3).
- Both models trained with 100 epochs.

3. RESULTS

3.1 PREPROCESSING

Implemented using the *PtProcess* library available in *R*.

- GIF estimation for the data preprocessing module, estimated for magnitudes >3, >4,
 >5 and >6.
- With higher magnitudes, the GIF timeseries become thinner, due to the decrease of seismic events that fit in the category.

3.2. ESTIMATION

The DL models were implemented using *Keras*, with *Tensorflow* as back end, in *Python*.

Root mean square error (RMSE) of the training and test groups for each Deep Feedforward Artificial Neural Network (DFANN) and Recurren Neural Network with Long Short Term Memory (RNN-LSTM) Deep learining models.

• In bold the best model.

Training and test for the best model (DFANN) GIF estimation with magnitudes > 3.

4. CONCLUSIONS

This paper deals with time series estimation of seismic risk GIF, to achieve that goal, two deep learning models were implemented: a deep feedforward artificial neural network and a recurrent long short term memory network. The results show a good estimation, in particular with the DFANN model.

Improvements to the approach (work in progress):

- Both implemented models could be improved by adding more hidden layers or to stack more LSTM layers in the DFANN and RNN-LSTM models, respectively.
- The use of exogenous variables (or covariables).
- Incorporating the spatio-temporal dimensión, using Convolutional Neural Networks (CNNs) or Generative Networks (GANs).

Finally, this Deep Learning proposal could be useful as inputs for earthquake prediction approaches.

5. REFERENCES

- . I. Goodfellow, Y. Bengio and A. Courville, "Deep Learning", MIT Press, pp. 775, 2016.
- H. Joffe, T. Rossetto, C. Bradley and C. OConnor, "Stigma in science: the case of earthquake prediction," Disasters, vol. 42, pp. 81–100, 2018.
- O. Nicolis, M. Chiodi and G. Adelfio, "Space-Time Forecasting of Seismic Events in Chile", in Earthquakes, Taher Zouaghi, IntechOpen,
- pp. 169–184, 2017.
 O. Nicolis, M. Chiodi and G. Adelfio, "Windowed ETAS models with application to the Chilean seismic catalogs", Spatial Statistics, vol. 14, pp. 161–165, 2015.
- Y. Ogata, "Statistical models for earthquake occurrences and residual analysis for point processes", Journal of the American Statistical Association, vol. 83, pp. 9–27, 1988.
- Y. Ogata, "Seismicity analysis through point-process modeling: A review." in Seismicity patterns, their statistical significance and physical meaning, pp. 471–507. Birkhuser, Basel, 1999.
- JG. Rasmussen, "Temporal point processes: the conditional intensity function." Lecture Notes, 2011.
 J. Reyes, A. Morales-Esteban and F. Martínez-Álvarez, "Neural networks to predict earth
 - quakes in Chile", Applied Soft Computing, vol.
- 13, pp. 1314–1328, 2013.
 J. Schmidhuber, "Deep learning in neural networks: An overview", CoRR abs/1404.7828, 2014.