Contexto y Motivación
Descripción del Proble Mar
Estado del Arte
Integración Semántica de una Memoria Corporativa
Prototipo (Aplicación)
Evaluación de Jena y el modelo
Conclusiones
Referencias

Integración semántica de los recursos de información en una memoria corporativa

Erik Alarcón Zamora

Enero 2014. México, D.F.

Asesores:

Dra. Reyna Carolina Medina Ramírez
Dr. Héctor Pérez Urbina

Contenido I

- Contexto y Motivación
 - Memoria Corporativa
 - Tecnologías Semánticas
- Integración Semántica
- Descripción del Problema
 - Pregunta InvestigaciónObjetivos
 - Metodología
 - Wietodolog
 - Hipótesis
 - Aportaciones
- Estado del Arte
 - Integración Semántica de Recursos de Información
 - Herramientas para la Integración Semántica de Recursos de Información
- 4 Integración Semántica de una Memoria Corporativa
 - Representación el Conocimiento
 - Enriquecer el conocimiento en el modelo semántico
 - Buscar y recuperar la información en el modelo semántico
 - Prototipo (Aplicación)
- 6 Evaluación de Jena y el modelo
- Conclusiones
 - Referencias

Memoria Corporativa I

Definición

La representación explícita, tácita, consistente y persistente del conocimiento de una organización. [Gandon, 2002]

Conclusiones Referencias

(a) Conocimiento

(b) Memoria Corporativa

Memoria Corporativa Tecnologías Semánticas Integración Semántica

herramienta = aparato = instrumento = mecanismo = artilugio

Memoria Corporativa II

Sinonimia

Conclusiones

Tecnologías Semánticas

Definición

Un conjunto de metodologías, lenguajes, aplicaciones, herramientas y estándares para suministrar u obtener el significado de las palabras, información y las relaciones entre éstos. [Alfred et al., 2010]

Memoria Corporativa Tecnologías Semánticas Integración Semántica

Resource Description Framework (RDF) I

Definición

Marco genérico para describir el conocimiento e información explícita de los recursos mediante sus características y relaciones. [Bouzid et al., 2012]

@prefix exp: http://www.mi-eiemplo.com/>

"Juan Lopez Martinez"

Resource Description Framework (RDF) II

@prefix rdf: http://www.w3.org/1999/02/22-rdf-syntax-ns# exp:Profesor exp:Estudiante rdf:type rdf:type exp:es-alumno rdf:tvpe rdf:tvpe exp:es-alumno exp:Juan Lopez exp:Karla Guzman exp:Jorge Martinez exp:Carlos Urbina exp:tiene-nombre exp:estudia-en exp:estudia-en exp:trabaja-en exp:trabaja-en exp:es-colega

exp:UAM

exp:Salvador Sosa

exp:trabaja-en

rdf:type

Existen distintas sintaxis de serialización: N3, turtle, RDF/XML, N-triples.

exp:Jose Zambrano

exp:Investigador

rdf:type

SPARQL I

Definición

Lenguaje de consulta y protocolo de acceso a RDF, para la búsqueda y recuperación de la información en un grafo RDF.

```
###Lista de prefijos
PREFIX exp: <a href="http://www.mi-ejemplo.com/">http://www.mi-ejemplo.com/</a>
PREFIX rdf: <a href="http://www.w3.org/1999/02/22-rdf-syntax-ns#">http://www.w3.org/1999/02/22-rdf-syntax-ns#</a>
### Variables a recuperar
SELECT ?x
WHERE {
    ### Patrones tripletas
    ?x exp:estudia-en exp:UAM.
    ?x rdf:type exp:Estudiante. }
```

Ontología I

Definición

Una definición formal, explícita y compartida de los conceptos, así como las relaciones de un determinado dominio. [Gruber, 1993]

Componentes

- Componente Asertivo (ABox) está constituido por descripciones que afirman que los individuos son instancias de una clase o propiedad.
- Componente Terminológico (TBox) describe las clases y propiedades relevantes, así como las reglas de inferencia que permiten aprovechar la manera en que las instancias se relacionan entre sí.

Ontología II

Reglas de inferencia o Axiomas

Expresiones para enriquecer un grafo RDF con conocimiento implícito.

-Algo que es evidente para una persona, no lo es para una maquina-.

Inferencia

Razonador

Un programa que deduce declaraciones a partir de los axiomas y declaraciones explícitas en la ontología.

Referencias

Memoria Corporativa Tecnologías Semánticas Integración Semántica

Integración Semántica

Definición

La búsqueda y recuperación significativa de información existente en los recursos de información para responder una consulta dada por un usuario.

Etapas

Representar el conocimiento de los recursos de información en un modelo semántico.

Buscar y recuperar información existente en la memoria corporativa mediante la interrogación del modelo semántico.

Pregunta Investigación Objetivos Metodología Hipótesis Aportaciones

Pregunta Investigación

¿Las **tecnologías semánticas** son viables para solucionar la **integración semántica** de los **recursos de información** de una **memoria corporativa**?

Pregunta Investigación Objetivos Metodología Hipótesis Aportaciones

Objetivos

Objetivo Principal

Contribuir a la integración semántica de los recursos de información en una memoria corporativa, mediante el uso de las tecnologías semánticas.

Objetivos Particulares

- Desarrollar una *marco de referencia* para la *integración semántica* de los *recursos de información* existentes en una *memoria corporativa*.
- 2 Implementar un **modelo semántico** que representa el conocimiento explícito e implícito de los recursos de información.
- Implementar un prototipo de interfaz gráfica de usuario que permita a los usuarios una interacción amigable para la integración semántica de los recursos de información.
- Evaluar los resultados devueltos y tiempos de procesamiento en la integración semántica para el dominio de redes y telecomunicaciones.

Pregunta Investigació Objetivos Metodología Hipótesis Aportaciones

Metodología

Marco de Referencia

- Identificar los casos de uso para encontrar los principales recursos de información existentes en la memoria, así como los criterios de búsqueda asociados a éstos.
- 2 Evaluar las herramientas semánticas para la edición de descripciones semánticas, edición de reglas de inferencia, gestión de modelos semánticos.
- 3 Recopilar los recursos de información de acuerdo a los casos de uso.

Modelo Semántico

- Describir el conocimiento explícito de los *recursos de información* recopilados en un modelo semántico (ontología).
- Identificar y construir las reglas de inferencia, con base en el diagrama de clases.

Pregunta Investigació Objetivos Metodología Hipótesis Aportaciones

Metodología II

Marco de Referencia

- Identificar las preguntas en lenguaje natural y transformarlas a *consultas SPARQL*.
- Emplear un razonador para hacer explícito el conocimiento implícito.
- Buscar y recuperar información en la memoria corporativa, interrogando el modelo semántico (ontología).

Prototipo de interfaz gráfica de usuario

- Diseñar un prototipo para interacción (búsqueda y navegación) amigable y trasparente de los usuarios de la memoria con la ontología.
- Implementar el prototipo y realizar pruebas del mismo.

Pregunta Investigación Objetivos Metodología Hipótesis Aportaciones

Metodología III

Evaluación

- Evaluar la calidad de los resultados con y sin inferencia, comparando los recursos relevantes recuperados para una pregunta con los recursos que realmente responden la pregunta.
- Evaluar los tiempos promedios que toma la herramienta electa de gestión de los modelos semánticos, para consultar los modelos con/sin inferencia.

Pregunta Investigació Objetivos Metodología **Hipótesis** Aportaciones

Hipótesis

El uso de las tecnologías semánticas es adecuado para lograr la integración semántica de recursos de información en una memoria corporativa.

Pregunta Investigació Objetivos Metodología Hipótesis Aportaciones

Aportaciones

- Un marco de referencia para lograr la integración semántica de recursos de información.
- Un modelo semántico que representa el conocimiento de una memoria corporativa, el cual tiene tres ramas principales (Personas, Recursos Digitales y Conceptos del Redes y Telecomunicaciones).
- Un prototipo (interfaz gráfica de usuario) para la interacción amigable (búsqueda y consulta de información) de los usuarios al modelo semántico.
- 4 Los resultados de nuestra evaluación experimental.
- Un par de scripts para la generación automática y controlada de descripciones (conocimiento explícito) de los recursos de información, con el fin de poblar la base de conocimiento.

Estado del Arte

Ejes claves

 Integración de la información a partir del uso de tecnologías semánticas.

Conclusiones Referencias

- ② Búsqueda, recuperación y publicación de la información desde una ontología.
- Gestión de una memoria corporativa.

Integración de la Información

[Moner et al., 2006]

Una arquitectura dual que representa la información clínica de cualquier persona, para que los profesionales de la salud accedan al historial clínico de las mismas.

[Zhai et al., 2008]

Una arquitectura basada en ontologías y el lenguaje de marcado extensible, para la integración semántica en sistemas de información de energía eléctrica (sistemas heterogéneos).

[Yang and Steele, 2011]

Un *marco de integración semántica* para la integración de la información en el dominio del alojamiento en-línea (información en constante cambio), con el fin de reunir y compartir esta información.

Búsqueda y Recuperación de la Información

[Cao et al., 2011]

Un sistema para la recomendación y el acceso a la información turística en una ontología que define conceptos y propiedades del dominio del turismo.

[Ha et al., 2011]

Una propuesta para representar y recuperar información en una ontología sobre el contenido de los *manuales de mantenimiento electrónicos*, así como un sistema para visualizar la información en una ontología.

[Suganyakala and Rajalaxmi, 2013]

Un *marco de trabajo* para recuperar información en una ontología (Película) y una *interfaz de consulta* para escribir consultas en lenguaje natural.

[Salam, 2013]

Un método basado en ontologías para recuperar la *información contenida en un documento* mediante el uso de conceptos de una ontología.

Gestión de una Memoria Corporativa

[Xin and Guangleng, 2001]

Un enfoque basado en las **ontologías**, para describir los *objetos de justificación del diseño*, así como acceder de manera uniforme a los *recursos de información*.

Referencias

[Chakhmoune et al., 2011]

Un entorno de colaboración para la gestión de memorias corporativas, cuya función es construir una *memoria corporativa* a partir de *lluvia de ideas* y un *mecanismo de toma de decisiones consensuadas*.

Integración Semántica de Recursos de Información Herramientas para la Integración Semántica de Recursos de Información

Comparat<u>iva</u>

Autor	Dominio	Modelo	Tecnologías Semánticas	Integración de la Información	Búsqueda y Recuperación de la Información	Motor de Búsqueda e Inferencia
Moner et al.	Salud	Orientado a objetos y Arquetipos	No	Sí	No	No
K. Yang y R. Steele	Alojamiento en-línea	Ontología	Sí	Sí	No	No
Jun Zhai et al.	Electricidad	Ontología	Sí	Sí	No	No
Tuan-Dung et al.	Turismo	Ontología	Sí	No	Sí	No
Ha Inay et al.	Mantenimiento de aeronaves	Ontología	Sí	No	Sí	No
Suganyakala y Rajalaxmi	Películas	Ontología	Sí	No	Sí	No
Salam	Urología	Ontología	Sí	No	Sí	No
Xin y Guangleng	Justificación del diseño	Ontología	Sí	Sí	Sí	No
Chakhmoune et al.	Memoria Documental	Ontología	Sí	Sí	No	No

Referencias

Herramientas para la Integración Semántica de Recursos de Información

Descriptor Semántico de Recursos

Herramienta para crear y almacenar tripletas RDF, en varias sintaxis de serialización, a partir de la información explícita de los recursos de información. *OntoMat Annotizer*, *MnM*, *GATE* y *Aktive Media*.

Editor de Ontologías

Herramienta que proporciona una serie de interfaces amigables para la construcción y mantenimiento de ontologías. *Protégé*, *pOWL*, *TopBraid Composer* y *SWOOP*.

Triplestore

Programa para el almacenamiento e indexación de tripletas RDF, con el fin de permitir la consulta eficiente de información sobre estas tripletas. *Apache Jena*, *Stardog*, *4store* y *Sesame*.

Marco de Referencia

Etapas

- Representación del conocimiento explicito de los recursos consiste en recuperar los recursos de información de la memoria corporativa y representar las características y/o relaciones de los mismos con el estándar RDF.
- ② Enriquecimiento del conocimiento en el modelo consiste en introducir axiomas, para enriquecer el modelo semántico con conocimiento implícito del dominio.
- Búsqueda y recuperación de la información en el modelo consisten en identificar las principales consultas de los usuarios e interrogar la ontología para responder estas consultas.

Arquitectura de la Integración Semántica

Casos de Uso

- Cartografía de Competencias consiste en la búsqueda y recuperación de información significativa de las personas a partir de las características personales y profesionales de las mismas.
- Búsqueda de Recursos Digitales consiste en la búsqueda y recuperación de información significativa de los documentos y archivos multimedia a partir del contenido de los mismos.

Enriquecer el conocimiento en el modelo semántico Buscar y recuperar la información en el modelo semántico

Identificar los principales recursos de información

Adquirir y expresar el conocimiento de los recursos de información

Enriquecer el conocimiento en el modelo semántico Buscar y recuperar la información en el modelo semántico

Representar el conocimiento e información mediante el estándar RDF I

Actividades en la representación del conocimiento

- Asignar un identificador único de recursos para cada recurso de información en la memoria corporativa.
- ② Asignar los identificadores únicos de recursos a las propiedades.
- Reconocer los valores de las propiedades: otro recurso o literal.
- Generar las tripletas RDF asociadas a las descripciones de los recursos de información.
 - @prefix sirp: http://arte.izt.uam.mx/ontologies/personRyT.owl

Representar el conocimiento e información mediante el estándar RDF II

@prefix sirp: <http://arte.izt.uam.mx/ontologies/personRvT.owl#> . @prefix xsd: http://www.w3.org/2001/XMLSchema#>.

@prefix redes: http://mcyti.izt.uam.mx/arios/odaryt.owl#>.

sirp:RicardoMarcelin.limenez

sirp:Teacher: sirp:has-name "Ricardo Marcelin Jiménez"^^xsd:string:

sirp:has-email "calu@xanum.uam.mx"^^xsd:anvURI:

sirp:has-webSite "http://cbi.izt.uam.mx/electrica/profs/ricardo marcelin.html"^^xsd:anyURI; sirp:has-gender sirp:Male:

sirp:worksIn sirp:UAM:

sirp:researchesOn "El almacenamiento distribuido, las redes inalámbricas de sensores y la simulación de eventos discretos."^^xsd:string;

sirp:expertisein redes;Distributed Systems, redes;Distributed Storage, redes;MDS Codes,

redes:Performance evaluation, redes:Semantic Annotations, redes:Image compression, redes:Routing Protocols, redes:Distributed Algorithms, redes:Wireless Sensor Networks, redes:N and ST:

sirp:competentln sirp:Article Reviewing Skills, sirp:Thesis Supervision Skills,

sirp:Oral And Written Communication Skills, sirp:Area Expert, sirp:Analysis Skills,

sirp:Decision Making Skills, sirp:Research Skills, sirp:Problem Solving Skills, sirp:Synthesis Skills, sirp:Abstraction Skills, sirp:Counseling Skills for Social Service.

sirp:IT And Communication Skills;

sirp:has-colleague sirp:MiguelLopez, sirp:CarolinaMedinaRamirez

sirp:reads sirp:Spanish, sirp:English;

sirp:writes sirp:Spanish, sirp:English;

sirp:speaks sirp:Spanish, sirp:English.

Enriquecer el conocimiento en el modelo semántico

<u>Axiomatización</u>

Para cada *caso de uso* debe encontrarse el respectivo conjunto de axiomas (TBox).

Lenguajes

Especificaciones para describir clases, propiedades e individuos.

- RDF Schema RDF(S)
- Web Ontology Language OWL

@prefix rdfs: http://www.w3.org/2000/01/rdf-schema#>

@prefix owl: <http://www.w3.org/2002/07/owl#>

Herencia de Clases I

Subclase (rdfs:subClassOf)

Afirma que una *clase A* se subsume por una *clase B*, es decir, la clase A es un caso particular de la *clase B*. En este caso, las instancias de la clase A son instancias de la clase B.

Herencia de Clases II

Herencia de Clases III

Herencia de Propiedades I

Subpropiedad (rdfs:subPropertyOf)

Afirma que todos los recursos que se relacionan por la *propiedad X*, también se relacionan por la *propiedad Y*.

Herencia de Propiedades II

Dominio y Rango en las Propiedades I

Dominio (rdfs:domain)

Especifica qué clase se aplica a una propiedad.

Rango (rdfs:range)

Especifica los valores (clase o tipo de literal) que puede asumir una propiedad.

Dominio y Rango en las Propiedades II

Características en las propiedades

Propiedad simétrica (owl:SymmetricProperty)

Afirma que la propiedad X es su propia propiedad inversa, es decir, si la propiedad X relaciona al individuo A con el individuo B, entonces, esta propiedad debe relacionar al individuo B con el individuo A.

Buscar y recuperar la información en el modelo semántico

Objetivo

La búsqueda y recuperación de la información para responder las preguntas o necesidades informativas de los usuarios del área de Redes y Telecomunicaciones (RyT).

Actividades

- Identificar las preguntas en lenguaje natural.
- Transformar las preguntas a una consultas SPARQL.
- 3 Ejecutar las consultas mediante un motor de búsqueda SPARQL.

Transformar las preguntas a una consultas SPARQL I

¿Cuáles son los nombres y sitios Web de las personas que conocen a Carolina Medina

Ramírez?

Uso de inferencia I

Figura: Grafo RDF sin inferencia

Uso de inferencia II

```
?x
sird:tesis01-pdf
sird:tesis04-pdf
sird:book02-doc
sird:book04-docx
sird:paper01-pdf
sird:paper02-odp
```

(a) Consulta sin inferencia

(b) Resultados de la consulta

Uso de inferencia III

Figura : Grafo RDF con inferencia

Uso de inferencia IV

PREFIX sird: PREFIX rdf: http://www.w3.org/1999/02/22-rdf-syntax-ns#

SELECT ?x

WHERE

{ ?x rdf:type sird:Document.}

(a) Consulta con inferencia

?x
sird:tesis01-pdf
sird:tesis02-doc
sird:tesis03-odp
sird:tesis05-pdf
sird:tesis05-pdf
sird:book01-pdf
sird:book02-doc
sird:book03-odp
sird:book05-pdf
sird:paper01-pdf
sird:paper01-pdf
sird:paper03-doc
sird:paper04-docx

(b) Resultados de la consulta

Prototipo (Aplicación)

Dificultad

La búsqueda y recuperación en un modelo semántico no son actividades sencillas, porque se requiere que un usuario tenga conocimientos en el uso de las tecnologías semánticas y los vocabularios en las ontologías.

Prototipo

Una aplicación Web para que los usuarios puedan consultar y visualizar la información de los *recursos de información*, mediante una ontología (Redes y Telecomunicaciones).

Prototipo

- Navegación entre información de los recursos de información.
- Búsqueda Avanzada de los recursos de información.
- Detalles de un recurso de información.

Navegación entre información de los recursos de información

Búsqueda Avanzada de los recursos de información

Detalles de un recurso de información

Evaluación de Jena y el modelo

Evaluar la calidad de los resultados

Esta evaluación consiste en comparar los *recursos relevantes recuperados* por Jena (con/sin inferencia) para una consulta dada, con los resultados que de antemano se sabe responden a esta consulta (total de recursos relevantes).

Medir los tiempos promedio de procesamiento de Jena

Esta evaluación consiste en comparar los tiempos de consulta para un modelo con inferencia y otro que no emplea ésta; estos tiempos se toman desde la ejecución de la consulta hasta la presentación de los resultados.

Preguntas

Id. Consulta	Pregunta	No. de Recursos
Q1	¿Cuáles son los títulos, rutas, extensión, idioma de todos los recursos digitales de RyT?	1330
Q2	¿Cuáles libros tratan sobre algunos temas de Sistemas Distribuidos?	103
Q3	¿Qué recursos fueron publicados por la UAM?	18
Q4	$\ccup\ensuremath{\mathbb{C}}$ Qué documentos son para dar un curso de Sistemas P2P?	31
Q5	$\cc\climits Qu\'e$ recursos multimedia son mayores al año 2009?	119
Q6	¿Cuáles documentos tratan sobre Ontologías?	30
Q7	¿Qué recursos fueron publicados en una Revista científica?	156
Q8	$\ensuremath{\dot{\iota}}$ Qué recursos tienen en su contenido las palabras "linked data $\ensuremath{\dot{\iota}}$	159
Q9	¿Cuáles documentos en inglés y mayores al año 2000 son de autoría de Erik Alarcón Zamora?	2
Q10	¿Cuáles la tesis de Samuel Hernández Maza?	4

Calidad en los Resultados

Id. Consulta	Recursos relevantes recuperados sin inferencia	Recursos relevantes recuperados con inferencia	Total recursos relevantes
Q2.1	1330	1330	1330
Q2.2	0	103	103
Q2.3	18	18	18
Q2.4	15	31	31
Q2.5	66	119	119
Q2.6	15	30	30
Q2.7	156	156	156
Q2.8	159	159	159
Q2.9	0	2	2
Q2.10	3	4	4

Tiempos de Procesamiento

Id. Consulta	Tiempo promedio (milisegundos)		
id. Consulta	Modelo sin inferencia	Modelo con inferencia	
Q2.1	24	3520	
Q2.2	9	4016	
Q2.3	12	3520	
Q2.4	16	3472	
Q2.5	42	3451	
Q2.6	14	3392	
Q2.7	13	3431	
Q2.8	32	3312	
Q2.9	34	3570	
Q2.10	11	3398	

Conclusiones

Referencias I

- [Alfred et al., 2010] Alfred, S., Arpah, A., Lim, L. H. S., and Sarinder, K. K. S. (2010). Semantic technology: An efficient approach to monogenean information retrieval. In Computer and Network Technology (ICCNT), 2010 Second International Conference on, pages 591–594.
- [Bouzid et al., 2012] Bouzid, S., Cauvet, C., and Pinaton, J. (2012).
 A survey of semantic web standards to representing knowledge in problem solving situations.
 - In Information Retrieval Knowledge Management (CAMP), 2012 International Conference on, pages 121–125.
- [Cao et al., 2011] Cao, T.-D., Phan, T.-H., and Nguyen, A.-D. (2011).
 - An ontology based approach to data representation and information search in smart tourist guide system.
 - In Knowledge and Systems Engineering (KSE), 2011 Third International Conference on, pages 171–175.
- [Chakhmoune et al., 2011] Chakhmoune, R., Behja, H., and Marzak, A. (2011).

 Building corporate memories in collaborative way using ontologies: Case study of a ssii.

 In Next Generation Networks and Services (NGNS), 2011, 3rd International Conference of the Confer
 - In Next Generation Networks and Services (NGNS), 2011 3rd International Conference on, pages 23–28.

Referencias II

[Gandon, 2002] Gandon, Fabien, L. (2002).
Ontology Engineering: a Survey and a Return on Experience.

Technical Report RR-4396, INRIA.

[Gruber, 1993] Gruber, T. R. (1993).

A translation approach to portable ontology specifications.

Knowl. Acquis., 5(2):199-220.

[Ha et al., 2011] Ha, I., Oh, K.-J., and Jo, G.-S. (2011).

Ontology-driven visualization system for semantic search.

In Information Science and Applications (ICISA), 2011 International Conference on, pages 1–6.

[Moner et al., 2006] Moner, D., Maldonado, J., Bosca, D., Fernandez, J., Angulo, C., Crespo, P., Vivancos, P., and Robles, M. (2006).

Archetype-based semantic integration and standardization of clinical data.

In Engineering in Medicine and Biology Society, 2006. EMBS '06. 28th Annual International Conference of the IEEE, pages 5141–5144.

Referencias III

[Salam, 2013] Salam, F. (2013).

New semantic indexing and search system based on ontology.

In Emerging Intelligent Data and Web Technologies (EIDWT), 2013 Fourth International Conference on, pages 313–318.

[Suganyakala and Rajalaxmi, 2013] Suganyakala, R. and Rajalaxmi, R. (2013). Movie related information retrieval using ontology based semantic search.

In Information Communication and Embedded Systems (ICICES), 2013 International Conference on, pages 421–424.

[Xin and Guangleng, 2001] Xin, W. and Guangleng, X. (2001).

Design rationale as part of corporate technical memory.

In Systems, Man, and Cybernetics, 2001 IEEE International Conference on, volume 3, pages 1904–1908 vol.3.

[Yang and Steele, 2011] Yang, K. and Steele, R. (2011).

A semantic integration solution for online accommodation information integration. In *Industrial Electronics and Applications (ICIEA), 2011 6th IEEE Conference on*, pages 1105–1110.

Referencias IV

[Zhai et al., 2008] Zhai, J., Li, J., and Wang, Q. (2008).
Using ontology and xml for semantic integration of electricity information systems.
In Electric Utility Deregulation and Restructuring and Power Technologies, 2008. DRPT 2008. Third International Conference on, pages 2197–2201.