The Uniqueness Theorem of Measure Expansion from (X, \mathbf{A}) to $(X, \sigma(\mathbf{A} \cap \{C\}))$

Mar. 08, 2020

Labels In the following proof, we suppose

$$\mu^*(C) = \inf\{\mu(A) : C \subset A, \mathbf{A}\}\$$
(outer measure)
 $\mu_*(C) = \sup\{\mu(A) : C \supset A, \mathbf{A}\}\$ (inner measure)

Theorem Suppose μ is a sigma-finite measure on (X, \mathbf{A}) , $C \subset X$. If μ_1 and μ_2 are two expanding measure of μ from (X, \mathbf{A}) to $(X, \sigma(\mathbf{A} \cap \{C\}))$, which also satisfing

$$\mu_i(C) = \mu^*(C) < +\infty, i = 1, 2$$

Then $\mu_1 = \mu_2$ on $\sigma(\mathbf{A} \cap \{C\})$

Proof If v is any expanding measure of μ from (X, \mathbf{A}) to $(X, \sigma(\mathbf{A} \cap \{C\}))$, and $v(C) = \mu^*(C) < +\infty$, there will be a $C_1 \in \mathbf{A}$, with both $C \subset C_1$, and

$$\forall A \in \mathbf{A}, v(A \cap C) = v(A \cap C_1) \tag{1}$$

Due to μ is finite on \mathbf{A} , there exists a measurable cover of C. Now we select any one of them, take it as C_1 . In this way, $C \subset C_1, C_1 \in \mathbf{A}$, and also $(C_1 \setminus C) = 0$. At the same time, referring to v is an expanding measure of μ , $v = \mu$ on \mathbf{A} . Then we get to know

$$v(C_1) = \mu(C_1) = \mu_*(C \cup (C_1 \setminus C))$$

$$\leq \mu^*(C) + \mu_*(C_1 \setminus C) = \mu^*(C)$$

$$\leq \mu(C_1) = v(C_1)$$

So we've got $\mu^*(C) = v(C_1)$ and so that $v(C) = v(C_1)$

Considering $v(C) = \mu^*(C) < +\infty$, we now know that

$$v(A \cap C) \le v(A \cap C_1) = v(A \cap C) + v(A \cap (C_1 \subset C))$$

$$\le v(A \cap C) + v(C_1 \subset C) = v(A \cap C)$$

So formula (1) is correct.

Due to μ_1 and μ_2 are two expanding measure of μ from (X, \mathbf{A}) to $(X, \sigma(\mathbf{A} \cap \{C\}))$ which satisfying $\mu_i(C) = \mu^*(C) < +\infty, i = 1, 2$, we can get the following formula:

$$\forall A \in \mathbf{A}, \mu_1(A \cap C) = \mu_1(A \cap C_1) \tag{2}$$

$$\forall A \in \mathbf{A}, \mu_2(A \cap C) = \mu_2(A \cap C_1) \tag{3}$$

Because of $\mu_1 = \mu_2 = \mu$ on \mathbf{A} , $A \cap C_1 \in \mathbf{A}$

$$\mu_1(A \cap C_1) = \mu_2(A \cap C_1) \tag{4}$$

According formula (2),(3) and (4), we've got

$$\mu_1(A \cap C) = \mu_2(A \cap C) \tag{5}$$

Besides that, we also know

$$\mu_1(A \cap C) < \mu_1(C) = \mu^*(C) < +\infty, i = 1, 2$$

So that,

$$\mu_1(A \cap C^c) = \mu_2(A \cap C^c) \tag{6}$$

So there exists $A_1, A_2 \in \mathbf{A}$, such that

$$A = (A_1 \cap C) \cup (A_2 \cap C^c)$$

By considering formula (5) and (6), we know that

$$\mu_1(A) = \mu_1[(A_1 \cap C) \cup (A_2 \cap C^c)]$$

$$= \mu_1(A_1 \cap C) + \mu_2(A_2 \cap C^c)$$

$$= \mu_2(A_1 \cap C) + \mu_2(A_2 \cap C^c)$$

$$= \mu_2[(A_1 \cap C) \cup (A_2 \cap C^c)]$$

$$= \mu_2(A)$$

Which means now we have proved that $\mu_1 = \mu_2$ on $\sigma(\mathbf{A} \cap \{C\})$