Algebra

N. Perrin

Düsseldorf Sommersemester 2014

Inhaltsverzeichnis

1	Gru	ppen	4
	1.1	Wiederholung	4
		1.1.1 Gruppen, Untergruppen	4
		1.1.2 Gruppenhomomorphismen	5
		1.1.3 Recht und Links Klassen	6
	1.2	Normalteiler	8
	1.3	Zentrum	12
	1.4	Erzeuger und Zyklische Gruppe	13
	1.5	Ordung eines Elements	15
	1.6		16
	1.7	Semidirekte Produkte	17
1.8	1.8	Operation einer Gruppe auf einer Menge	19
	1.9		24
	1.10	Sylow Sätze	27
	1.11	Auflösbare Gruppen	32
2	Ring	ge 3	5
	2.1		35
			35
			37
			38
			39
			1 0
			4.
			12
			14
	2.2		17

1 Gruppen

1.1 Wiederholung

1.1.1 Gruppen, Untergruppen

Definition 1.1.1 Eine **Gruppe** ist eine Menge G mit einer Verknüpfung $G \times G \to G$, $(x,y) \mapsto x \cdot y$ so, dass

- 1. Es existiert ein **neutrales Element** e in G mit $e \cdot x = x \cdot e = x$ für alle $x \in G$.
- 2. Die Verknüpfung ist **assoziativ** i.e. $x \cdot (y \cdot z) = (x \cdot y) \cdot z$ für alle $x, y, z \in G$.
- 3. jedes $x \in G$ hat ein **inverses Element** $y \in G$ mit $x \cdot y = y \cdot x = e$.

Definition 1.1.2 Eine Gruppe G heißt **kommutativ** oder **abelsch** falls $x \cdot y = y \cdot x$ gilt für alle $x, y \in G$.

Beispiel 1.1.3 1. \mathbb{Z} mit + ist eine Gruppe.

- 2. Sei $n \in \mathbb{Z}$ und $\mathbb{Z}/n\mathbb{Z} = \{\text{Restklassen modulo } n\}$. Dann ist $\mathbb{Z}/n\mathbb{Z}$ mit + eine Gruppe.
- 3. Sei K ein Körper. Dann ist $\mathrm{GL}_n(K)$ mit Matrixmultiplikation eine Gruppe.
- 4. S_n die Permutationsgruppe mit \circ der Komposition von Abbildungen als Verknüpfung ist eine Gruppe.

Lemma 1.1.4 Sei G eine Gruppe und seien x, y, z Elemente in G.

- 1. Das neutrale Element e_G ist eindeutig bestimmt.
- 2. Das inverse Element x^{-1} von x ist eindeutig bestimmt.
- 3. $xy = xz \Rightarrow y = z$ und $yx = zx \Rightarrow y = z$,
- 4. $(x^{-1})^{-1} = x$.

5.
$$(xy)^{-1} = y^{-1}x^{-1}$$
.

Beweis. Siehe LAI.

Bemerkung 1.1.5 Sei $n \geq 0$ eine ganze Zahl. Aus 5. folgt per Induktion, dass $(x^n)^{-1} = (x^{-1})^n$. Wir schreiben x^{-n} für $(x^n)^{-1} = (x^{-1})^n$ also ist x^n für alle $n \in \mathbb{Z}$ definiert und es gilt $x^n x^m = x^{n+m}$ für alle $n, m \in \mathbb{Z}$.

Lemma 1.1.6 Seien G und G' zwei Gruppen und sei $(a,b) \cdot (a',b') = (aa',bb')$. Dann ist $G \times G'$ mit diesem Produkt eine Gruppe.

Beweis. Übung. ■

Definition 1.1.7 Seien G und G' zwei Gruppen. Das Produkt $G \times G'$ mit Verknüpfung $(a,b) \cdot (a',b') = (aa',bb')$ heißt **Produkt-Gruppe** von G und G'.

Definition 1.1.8 Sei G eine Gruppe. Eine Teilmenge $H \subset G$ heißt **Untergruppe** von G falls gilt:

- 1. $1 \in H$
- $2. \ x,y \in H \Rightarrow x \cdot y^{-1} \in H.$

Lemma 1.1.9 Eine Untergruppe ist eine Gruppe.

Beweis. Siehe LAI.

Beispiel 1.1.10 1. Sei G eine Gruppe. Dann ist $H = \{e_G\}$ die Trivialuntergruppe eine Untergruppe von G.

- 2. Sei $n \in \mathbb{Z}$. Dann ist $n\mathbb{Z} = \{m \in \mathbb{Z} \mid n \text{ teilt } m\}$ eine Untergruppe von $(\mathbb{Z}, +)$.
- 3. Sei K ein Körper. Dann ist $SL_n(K)$ eine Untergruppe von $GL_n(K)$.

1.1.2 Gruppenhomomorphismen

Definition 1.1.11 Seien G und G' zwei Gruppen. Eine Abbildung $f: G \to G'$ heißt **Gruppenhomomorphismus** falls für alle $x, y \in G$ gilt f(xy) = f(x)f(y).

Beispiel 1.1.12 1. die Abbildung exp : $(\mathbb{R},+) \to (\mathbb{R}_{>0},\times)$ ist ein Gruppenhomomorphismus.

2. Sei K ein Körper. Dann ist det : $\mathrm{GL}_n(K) \to (K^{\times}, \times) = (K \setminus \{0\}, \times)$ ein Gruppenhomomorphismus.

Lemma 1.1.13 Sei $f:G\to G'$ ein Gruppenhomomorphismus dann gilt für alle $x\in G$

$$f(e_G) = e_{G'}$$
 und $f(x^{-1}) = f(x)^{-1}$.

Beweis. Siehe LAI.

Definition 1.1.14 Sei $f: G \to G'$ ein Gruppenhomomorphismus, dann heißt die Teilmenge $\text{Ker}(f) = \{x \in G \mid f(x) = e_{G'}\}$ von G der **Kern** von f.

Lemma 1.1.15 Sei $f: G \to G'$ ein Gruppenhomomorphismus. Sei H eine Untergruppe von G und H' eine Untergruppe von G'.

- 1. Dann sind f(H) und $f^{-1}(H')$ Untergruppen von G' und G.
- 2. Für $H' = \{e_{G'}\}$ ist $Ker(f) = f^{-1}(H')$ eine Untergruppe von G.
- 3. Für H = G ist das Bild f(G) von f eine Untergruppe von G'

Beweis. Siehe Übungsblatt 0.

Beispiel 1.1.16 Die Signatur $\varepsilon: S_n \to \{\pm 1\}$ ist ein Gruppenhomomorphismus. Wir Schreiben $A_n = \text{Ker}\varepsilon$ für die **Alternierende Gruppe**. Die Gruppe A_n ist eine Untergruppe von S_n .

Lemma 1.1.17 Sei $f: G \to G'$ ein Gruppenhomomorphismus. Die Abbildung f ist genau dann injektiv, wenn $Ker(f) = \{e_G\}$.

Beweis. Siehe LAI.

Definition 1.1.18 Ein bijektiver Gruppenhomomorphismus $f: G \to G'$ heißt **Isomorphismus** oder **Gruppenisomorphismus**. Wenn G' = G heißt ein Gruppenisomorphismus **Gruppenautomorphismus** oder **Automorphismus**.

Lemma 1.1.19 Sei G eine Gruppe und $g \in G$. Dann ist $\operatorname{Int}_g : G \to G$ definiert durch $\operatorname{Int}_g(h) = ghg^{-1}$ ein Gruppenautomorphismus.

Beweis. Siehe Übungsblatt 0.

Definition 1.1.20 Sei G eine Gruppe und $g \in G$. Dann heißt Int_g innerer Gruppenhomomorphismus oder Konjugation mit g. Gruppenautomorphismen, die nicht dieser From sind heißen äußere Automorphismen.

1.1.3 Recht und Links Klassen

Definition 1.1.21 Sei G eine Gruppe und H eine Untergruppe. Man definiert die Relation \sim durch

$$g' \sim g \Leftrightarrow \exists h \in H \text{ mit } g' = gh.$$

Lemma 1.1.22 Die Relation \sim ist eine Äquivalenzrelation und die Klasse eines Element $g \in G$ ist die Teilmenge $\bar{g} = [g] = gH = \{gh \in G \mid h \in H\}$. Die Äquivalenzklassen heißen **Linksklassen**.

Beweis. Siehe Übungsblatt 0.

Definition 1.1.23 Sei G eine Gruppe und H eine Untergruppe.

- 1. Die Menge aller Äquivalenzklassen heißt **Quotient von** G **nach** H und ist G/H bezeichnet.
- 2. Die **kanonische Projektion** ist die Abbildung $G \to G/H$ definiert durch $g \mapsto \bar{g} = [g] = gH$.

Bemerkung 1.1.24 Analog kann man die Äquivalenzrelation $g' \sim_R g \Leftrightarrow \exists h \in H \text{ mit } g' = hg$ definieren. Die Äquivalenzklassen heißen **Rechtsklassen** $Hg = \{hg \in G \mid h \in H\}$ und die Menge aller Rechtsklassen ist $H \setminus G$. Man kann auch die kanonische Projektion $G \to H \setminus G$ durch $g \mapsto Hg$ definieren.

Satz 1.1.25 Sei G eine Gruppe und H eine Untergruppe von G.

1. Es gilt $gH \cap gH' \neq \emptyset \Rightarrow gH = g'H \text{ (m.a.W. } gH \neq g'H \Rightarrow gH \cap gH' = \emptyset).$

2. Es gilt
$$G = \bigcup_{gH \in G/H} gH$$
.

Beweis. Siehe LAI. Wir geben trozdem einen Beweis.

- 1. Sei $gh \in gH \cap g'H$. Dann gibt es $h' \in H'$ mit gh = g'h'. Sei $gh'' \in gH$. Dann gilt $gh'' = ghh^{-1}h'' = g'h'h^{-1}h'' \in g'H$ also $gH \subset g'H$. Analog gilt $g'H \subset gH$.
- 2. Sei $g \in G$. Dann gilt $g \in gH$. Umgekehrt gilt $gH \subset G$.

Korollar 1.1.26 (Satz von Lagrange) Es gilt |G| = |G/H||H|.

Beweis. Die Gruppe G ist die disjunkte Vereinnigung aller gH für $gH=\bar{g}\in G/H$ also gilt

$$|G| = \sum_{\bar{g} \in G/H} |gH|.$$

Aber die Abbildungen $gH \to g'H$ und $g'H \to gH$ definiert durch $a \mapsto g'g^{-1}a$ und $a \mapsto gg'^{-1}a$ sind inverse von einander. Es gilt also |gH| = |g'H| für alle $g, g' \in G$ und insbesondere für $g' = e_G$ gilt |gH| = |H|. Daraus folgt $|G| = \sum_{\bar{g} \in G/H} |gH| = \sum_{\bar{g} \in G/H} |H| = |G/H||H|$.

Definition 1.1.27 Sei G eine Gruppe und H eine Untergruppe von G.

- 1. Die **Ordnung** von G ist |G| die Anzahl aller Elementen in G (die **Mächtigkeit** von G).
- 2. Der **Index** von H in G ist [G:H] = |G/H|.

Korollar 1.1.28 Sie G eine endliche Gruppe und H eine Untergruppe. Dann sind die Ordnung |H| und der Index [G:H] von H Teiler der Ordnung |G| von G.

1.2 Normalteiler

Definition 1.2.1 Sei G eine Gruppe. Eine Untergruppe H von G heißt **Normaltei-**ler falls für alle $g \in G$ gilt $gHg^{-1} \subset H$. Man schreibt $H \triangleleft G$.

Bemerkung 1.2.2 Eine Untergruppe H ist genau dann ein Normalteiler wenn gilt $ghg^{-1} \in H$ für alle $g \in G$ und alle $h \in H$.

Lemma 1.2.3 Jede Untergruppe einer abelschen Gruppe G ist normal.

Beweis. Klar.

Lemma 1.2.4 Eine Untergruppe H ist genau dann Normalteiler, wenn gH = Hg für alle $g \in G$.

Beweis. Siehe Übungsblatt 0.

Beispiel 1.2.5 1. Die triviale Untergruppe $\{e_G\}$ und die Gruppe G sind Normalteiler von G: $\{e_G\} \triangleleft G$ und $G \triangleleft G$.

- $2. n\mathbb{Z} \triangleleft \mathbb{Z}.$
- 3. $\operatorname{SL}_n(K) \triangleleft \operatorname{GL}_n(K)$ aber $\operatorname{SO}_n(K) \not\triangleleft \operatorname{GL}_n(K)$.

Lemma 1.2.6 Sei $f: G \to G'$ ein Gruppenhomomorphismus und seien $H \triangleleft G$ und $H' \triangleleft G'$.

- 1. Dann ist $f^{-1}(H') \triangleleft G$. Insbesondere gilt Ker $f \triangleleft G$.
- 2. Falls f sujektiv ist, gilt $f(H) \triangleleft G'$.

Beweis. 1. Sei $g \in G$ und $h \in f^{-1}(H')$. Dann gilt $f(ghg^{-1}) = f(g)f(h)f(g)^{-1} \in H'$ also $ghg^{-1} \in f^{-1}(H')$.

- 2. Sei $g' \in G'$ und $h' \in f(H)$. Dann gibt es ein $h \in H$ mit h' = f(h). Da f surjektiv ist gibt es ein $g \in G$ mit f(g) = g'. Dann gilt $g'h'g'^{-1} = f(g)f(h)f(g^{-1}) = f(ghg^{-1}) \in f(H)$.
- Satz 1.2.7 Sei $H \triangleleft G$. Dann ist die Verknüpfung $G/H \times G/H \to G/H$, $(\bar{g}, \bar{g}') \mapsto \overline{gg'}$ wohl definiert und G/H ist mit dieser Verknüpfung einer Gruppe. Außerdem ist die kanonische Projektion $G \to G/H$ ein Gruppenhomomorphismus.

Beweis. Seien $a, b \in G$ mit $\bar{a} = \bar{g}$ und $\bar{b} = \bar{g}'$. Wir zeigen, dass $\overline{ab} = \overline{gg'}$. Sei $h \in H$ mit a = gh und $h' \in H$ mit b = g'h'. Da g'H = Hg' gibt es $h'' \in H$ mit hg' = gh''. Es gilt

$$\overline{ab} = abH = ghg'h'H = gg'h''h'H = gg'H = \overline{gg'}.$$

Die Verknüpfung ist also wohl definiert.

Es gilt $\bar{g}\bar{e}_G = \bar{g}e_{\bar{G}} = \bar{g}$ und analog gilt $\bar{e}_G\bar{g} = \bar{g}$ also gilt $\bar{e}_G = e_{G/H}$. Es gilt $\bar{g}(\bar{g}'\bar{g}'') = \bar{g}g'\bar{b}'' = \bar{g}(g'g'') = (\bar{g}g')g'' = (\bar{g}\bar{g}')\bar{g}''$. Es gilt $\bar{g}g^{-1} = \bar{e}_G$ und analog $\bar{g}^{-1}\bar{g} = \bar{e}_G$. Daraus folgt auch, dass die kanonische Projektion ein Guppenhomomorphismus ist.

Definition 1.2.8 Sei H ein Normalteiler von G. Die Gruppe G/N heißt **Quotient-gruppe** von G nach H.

Beispiel 1.2.9 Die Gruppe $\mathbb{Z}/n\mathbb{Z}$ ist die Quotientgruppe von \mathbb{Z} nach $n\mathbb{Z}$.

Satz 1.2.10 Sei $f: G \to G'$ ein Gruppenhomomorphismus, sei H ein Normalteiler von G und sei $p: G \to G/H$ die kanonische Projektion.

1. Es gibt ein eindeutig bestimmter Gruppenhomomorphismus $\bar{f}:G/H\to G'$ so, dass das Diagram

kommutiert, genau dann wenn $H \subset \operatorname{Ker} f$.

Angenommen $H \subset \operatorname{Ker} f$ und sei \bar{f} wie in 1.

- 2. Die Abbildung \bar{f} ist genau dann injektiv, wenn H = Ker f.
- 3. Die Abbildung \bar{f} ist genau dann surjektiv, wenn f surjektiv ist.

Beweis. 1. Sei \bar{f} wie oben und sei $h \in H$. Dann gilt $f(h) = \bar{f} \circ p(h)$. Aber $p(h) = [h] = hH = H = [e_G] = e_{G/H}$. Daraus folgt $f(h) = \bar{f}(e_{G/H}) = e_{G'}$ da \bar{f} ein Gruppenhomomorphismus ist. Es folgt $H \subset \operatorname{Ker} f$.

Umgekehrt sei $H \subset \operatorname{Ker} f$. Sei $g \in G$, wir setzen $\bar{f}([g]) = f(g)$ (die ist die einzige Mögligkeit so, dass das Diagram kommutiert, dies zeigt, dass \bar{f} eindeutig bestimt ist). Sei g' mit [g'] = [g]. Es gibt $h \in H$ mit g' = gh und es gilt $f(g') = f(gh) = f(g)f(h) = f(g)e_{G'} = f(g)$. Also ist die Abbildung \bar{f} wohl definiert. Außerdem gilt $\bar{f}([g][g']) = \bar{f}([gg']) = f(gg') = f(g)f(g') = \bar{f}([g])\bar{f}([g'])$ und \bar{f} ist ein Gruppenhomomorphismus. Darüber hinaus gilt $\bar{f} \circ p(g) = \bar{f}([g]) = f(g)$ und das Diagram ist kommutativ.

2. Sei \bar{f} injektiv. Dann gilt $\operatorname{Ker} \bar{f} = \{e_{G/H}\}$. Sei $g \in \operatorname{Ker} f$. Es gilt $\bar{f}([g]) = e_{G'}$ also $[g] \in \operatorname{Ker} \bar{f}$ und da \bar{f} injetiv ist, gilt $[g] = e_{G/H}$. Es folgt $gH = [g] = e_{G/H} = H$ und $g \in H$. Also $\operatorname{Ker} f \subset H$ und da $H \subset \operatorname{Ker} f$ folgt $H = \operatorname{Ker} f$.

Umgekehrt sei H = Ker f und sei $[g] \in \text{Ker} \bar{f}$. Es gilt $f(g) = \bar{f}([g]) = e_{G'}$ also $g \in \text{Ker} f = H$. Es folgt $[g] = H = e_{G/H}$ und \bar{f} ist injektiv.

3. Sei f surjektiv und sei $g' \in G'$. Dann gibt es $g \in G$ mit f(g) = g'. Es gilt $\bar{f}([g]) = f(g) = g'$ also ist \bar{f} auch surjektiv.

Umgelehrt, sei \bar{f} surjektiv und sei $g' \in G'$. Es gibt $[g] \in G/H$ mit $\bar{f}([g]) = g'$. Daraus folgt $f(g) = \bar{f}([g]) = g'$ und f ist surjektiv.

1 Gruppen

Korollar 1.2.11 Sei $f: G \to G'$ ein surjektiver Gruppenhomomorphismus. Dann gilt $G/\mathrm{Ker} f \simeq G'$.

Beispiel 1.2.12 1. Es gilt $\operatorname{GL}_n(k)/\operatorname{SL}_n(K) \simeq k^{\times}$ (der Kernel des surjektiven Gruppenhomomorphismus det : $\operatorname{GL}_n(k) \to k^{\times}$ ist $\operatorname{SL}_n(k)$).

- 2. Es gilt $\mathbb{C}^{\times}/S^1 \simeq \mathbb{R}_{>0}$ (der Kernel des surjektiven Gruppenhomomorphismus $|\cdot|$: $\mathbb{C}^{\times} \to \mathbb{R}_{>0}$ ist S^1).
- 3. Es gilt $\mathbb{R}/\mathbb{Z} \simeq S^1$ (der Kernel des surjektiven Gruppenhomomorphismus $r \mapsto e^{2i\pi r}$ ist \mathbb{Z}).
- 4. Es gilt $S_n/A_n \simeq \{\pm 1\}$ (der Kernel des surjektiven Gruppenhomomorphismus $\varepsilon: S_n \to \{\pm 1\}$ ist A_n).

Definition 1.2.13 Ein Diagram $1 \longrightarrow H \xrightarrow{i} G \xrightarrow{f} G' \longrightarrow 1$ heißt **exakte Sequenz**,

- wenn alle Abbildungen Gruppenhomomorphismen sind,
- wenn *i* injektiv ist,
- \bullet wenn f surjektiv ist und
- wenn i(H) = Ker f.

Bemerkung 1.2.14 Falls $1 \longrightarrow H \xrightarrow{i} G \xrightarrow{f} G' \longrightarrow 1$ eine exakte Sequenz ist, gilt $G' \simeq G/H$.

Beispiel 1.2.15 Es gibt (Siehe Übungsblatt 1) eine exakte Sequenz

$$1 \to A_3 \simeq \mathbb{Z}/3\mathbb{Z} \to S_3 \to \{\pm 1\} \simeq \mathbb{Z}/2\mathbb{Z} \to 1.$$

Definition 1.2.16 Eine Gruppe G heißt **einfach** falls G und $\{e_G\}$ die einzige Normalteiler von G sind.

Beispiel 1.2.17 1. Die Gruppe $\mathbb{Z}/n\mathbb{Z}$ ist genau dann einfach, wenn p eine Primzahl ist (Siehe Übungsblatt 1).

2. Später zeigen wir, dass die Gruppe $A_n=\mathrm{Ker}(\varepsilon:S_n\to\{\pm 1\})$ einfach für $n\geq 5$ ist.

Definition 1.2.18 Sei G eine Gruppe und H eine Untergruppe. Der **Normalisator** $N_G(H)$ von H in G ist

$$N_G(H) = \{ g \in G \mid gHg^{-1} = H \}.$$

Lemma 1.2.19 Sei G eine Gruppe und H eine Untergruppe.

- 1. Der Normalisator $N_G(H)$ ist eine Untergruppe von G.
- 2. Es gilt $H \triangleleft N_G(H)$ (also H ist Normalteiler in $N_G(H)$).
- 3. Sei K eine Untergruppe von G mit $H \triangleleft K$. Dann gilt $K \subset N_G(H)$ (i.e. $N_G(H)$ ist die größte Untergruppe von G mit $H \triangleleft N_G(H)$).

Beweis. 1. Es gilt $e_G H e_G^{-1} = e_G H e_G = H$ also $e_G \in N_G(H)$. Seien $a, b \in N_G(H)$. Dann gilt $aHa^{-1} = H$ und $bHb^{-1} = H$ also $b^{-1}Hb = H$. Daraus folgt

$$(ab^{-1})H(ab^{-1})^{-1} = ab^{-1}Hba^{-1} = aHa^{-1} = H$$

und $ab^{-1} \in N_G(H)$ und $N_G(H)$ ist eine Untergruppe von G.

- 2. Klar.
- 3. Sei K eine Untergruppe mit $H \triangleleft K$. Sei $k \in K$. Dann gilt $kH^{-1} \subset K$. Da K eine Gruppe ist gilt auch $k^{-1} \in K$ also $k^{-1}Hk \subset H$ und mit Linksmultiplikation mit k und Rechtsmultiplikation mit k^{-1} folgt $H \subset kHk^{-1}$. Daraus folgt $kHk^{-1} = H$ und $k \in N_G(H)$.

Beispiel 1.2.20 Sei $G = S_3$ und sei $H = \{(123) = \text{Id}, (213)\}$ und $A_3 = \{(123) = \text{Id}, (231), (312)\}$. Dann sind H und A_3 Untergruppe von G und es gilt (siehe Übungsblatt 1)

$$N_G(H) = H \text{ und } N_G(A_3) = S_3.$$

Satz 1.2.21 (Erster Isomorphiesatz) Sei G eine Gruppe, $H \triangleleft G$ ein Normalteiler von G und $K \subseteq G$ eine Untergruppe von G.

- 1. Dann gilt HK = KH, $KH \subset G$ ist eine Untergruppe, $H \triangleleft KH$ und $K \cap H \triangleleft K$.
- 2. Die Abbildung $f: K/(K\cap H) \to KH/H$ definiert durch $k(K\cap H) \mapsto kH$ ist ein Isomorphismus also

$$K/(K \cap H) \simeq KH/H$$
.

Beweis. 1. Sei $h \in H$ und $k \in K$. Da H ein Normalteiler ist, gilt $khk^{-1} \in H$ und es folgt $kh \in Hk \subset HK$. Daraus folgt $KH \subset HK$. Analog gilt $k^{-1}hk \in H$ und $hk \in kH \subset KH$. Daraus folgt $HK \subset KH$ und KH = HK.

Da $e_G \in H$ und $e_G \in K$ gilt $e_G \in KH$. Seien $k, k' \in K$ und $h, h' \in H$ so, dass $kh, k'h' \in KH$. Es gilt $kh(k'h')^{-1} = khh'^{-1}k'^{-1} \in KHK = KKH = KH$. Daraus folgt, dass KH eine Untergruppe ist.

Da H ein Normalteiler ist, gilt $gHg^{-1} \subset H$ für alle $g \in G$. Insbesondere für alle $g \in KH$ und es folgt $H \triangleleft KH$.

1 Gruppen

Sei $g \in H \cap K$ und $k \in K$. Es gilt $kgk^{-1} \in K$ und da H ein Normalteiler ist, gilt auch $kgk^{-1} \in H$. Also $kgk^{-1} \in H \cap K$ und $H \cap K \triangleleft K$.

2. Sei $f: K \to KH/H$ die Abbildung definiert durch f(k) = kH. Seien $k, k' \in K$. Es gilt $f(kk') = kH \cdot k'H = kk'H = f(kk')$ also ist f ein Gruppenhomomorphismus. Seien $k \in K$ und $h \in H$. Dann gilt f(k) = kH = khH und f ist surjektiv. Sei $k \in K \cap H$. Dann gilt $f(k) = kH = H = e_{KH/H}$ also $H \cap K \subset \operatorname{Ker} f$. Sei $k \in K \operatorname{Ker} f$. Dann gilt kH = f(k) = H und $k \in H$ also $k \in K \cap H$. Es folgt $H \cap K = \operatorname{Ker} f$. Nach Korollar 1.2.11 folgt, dass $K/(H \cap K) \simeq KH/H$.

Satz 1.2.22 (Zweiter Isomorphiesatz) Sei G eine Gruppe und seien $H \triangleleft G$ und $K \triangleleft G$ mit $K \subset H$.

- 1. Dann gilt $K \triangleleft H$ und $H/K \triangleleft G/K$.
- 2. Die Abbildung $f: (G/K)/(H/K) \to G/H$ definiert durch $gK \cdot H/K \mapsto gH$ ist ein Isomorphismus also

$$(G/K)/(H/K) \simeq G/H$$
.

Beweis. 1. Sei $h \in H \subset G$. Da $K \triangleleft G$ gilt $hKh^{-1} = K$ und $K \triangleleft H$.

Die Teilmenge $H/K \subset G/K$ ist $\pi_K(H)$, wobei $\pi: G \to G/K$ die kanonische Projektion ist. Da $H \triangleleft G$ und π surjektiv folgt, dass $H/K \triangleleft G/K$.

2. Die kanonische Projektion $\pi_H: G \to G/H$ ist ein surjektiver Gruppenhomomorphismus und es gilt $K \subset H = \operatorname{Ker} \pi_H$. Daraus folgt, dass es ein surjektiver Gruppenhomomorphismus $F = \bar{\pi}_H: G/K \to G/H$ gibt mit $\pi_H = \pi_K \circ F$ also $F([g]_K) = [g]_H$.

Wir zeigen, dass $\operatorname{Ker} F = H/K$. Daraus folt, dass es ein Gruppenisomorphismus $\overline{F}: (G/K)/(H/K) \to G/H$ gibt mit $\overline{F}([[g]_K]_{H/K}) = [g]_H$. Sei $[g]_K \in \operatorname{Ker} F$. Dann gilt $[e_G]_H = F([g]_K) = [g]_H$ also $g \in H$ und $[g]_K \in H/K$. Umgekehrt, sei $[g]_K \in H/K$ also $[g]_K = [h]_K$ für ein $h \in H$ i.e. es gibt ein $k \in K$ mit g = hk. Da $K \subset H$ gilt $g \in H$. Daraus folgt $[g]_H = [e_G]_H$ und $F([g]_K) = [g]_H = [e_G]_H$ also $[g]_K \in \operatorname{Ker} F$. Umgekehrt, sei $[g]_K \in \operatorname{Ker} F$. Es gilt $[g]_H = F([g]_K) = [e_G]_H$ also $g \in H$. Daraus folgt $[g]_K \in H/K$.

1.3 Zentrum

Definition 1.3.1 Sei G eine Gruppe.

1. Das Zentrum einer Gruppe G ist die Menge

$$Z(G) = \{ g \in G \mid gh = hg \text{ für alle } h \in G \}.$$

2. Sei $X \subset G$ eine Teilmenge. Der **Zentralisator** von G ist die Teilmenge

$$Z_G(X) = \{ g \in G \mid gx = xg \text{ für alle } x \in X \}.$$

Bemerkung 1.3.2 Es gilt $Z(G) = Z_G(G)$.

Beispiel 1.3.3 1. Sei G eine kommutative Gruppe. Dann gilt Z(G) = G.

2. Sei $G = S_n$. Dann gilt $Z(S_n) = \{ \text{Id} \}$ (Siehe Übungsblatt 2) für $n \geq 3$.

Lemma 1.3.4 Sei G eine Gruppe und $X \subset G$ eine Teilmenge.

- 1. Der Zentralisator $Z_G(X)$ ist eine Untergruppe.
- 2. Das Zentrum Z(G) ist ein Normalteiler von G und $Z_G(X)$ und ist abelsch.
- 3. Es gilt $G/Z(G) \simeq \{\text{innere Automorphismen}\}.$
- 4. Falls G/Z(G) zyklisch ist (siehe Definition 1.4.2 unten), gilt G=Z(G) also G ist abelsch.
- Beweis. 1. Es gilt $e_G x = x e_G$ für alle $x \in G$ also ist $e_G \in Z_G(X)$. Seien $g, h \in Z_G(X)$. Es gilt gx0xg und hx = xh für alle $x \in X$. Daraus folgt $xh^{-1} = h^{-1}x$ für alle $x \in X$ und $xgh^{-1} = gxh^{-1} = gh^{-1}x$ i.e. $gh^{-1} \in Z_G(X)$.
- 2. Nach der Definition gilt $Z(G) \subset Z_G(X)$. Sei $z \in Z(G)$ und $g \in G$. Es gilt $gzg^{-1} = gg^{-1}z = z$ also $gzg^{-1} \in Z(G)$. Daraus folgt, dass Z(G) ein Normalteiler in G und $Z_G(X)$ ist. Seien $z, z' \in Z(G)$. Es gilt zz' = z'z also Z(G) ist abelsch.
- 3. Sei $f: G \to \{\text{innere Automorphismen}\}\$ definiert durch $f(g) = \text{Int}_g$. Diese Abbildung ist surjectiv und es gilt $f(gh) = \text{Int}_{gh} = \text{Int}_{gh} \circ \text{Int}_{h}$ (es gilt $\text{Int}_{gh} \circ \text{Int}_{h}(g') = \text{Int}_{g}(hg'h^{-1} = ghg'h^{-1}g^{-1} = (gh)g'(gh)^{-1} = \text{Int}_{gh}(g')$). Die Abbildung ist also ein surjektiver Gruppenhomomorphismus. Sei $g \in \text{Ker}(f)$. Es gilt $\text{Int}_{g} = \text{Id}$ also $\text{Int}_{g}(h) = h$ für alle $h \in G$. Dies ist äquivalent zu $ghg^{-1} = h$ für alle $h \in H$ und auch zu gh = hg für alle $h \in G$. Also Ker(f) = Z(G).
- 4. Seien $g, h \in G$ und sei $\pi : G \to G/Z(G)$ die kanonische projektion. Da G/Z(G) zyklisch ist gibt es ein $a \in G$ mit $G/Z(G) = \langle [a] \rangle$. Insbesondere gibt es $n, m \in \mathbb{Z}$ mit $[g] = [a]^n$ und $[h] = [a^m]$. Es gibt also $z, z' \in Z(G)$ mit $g = a^n z$ und $h = a^m z'$. Daraus folgt $gh = a^n z a^m z' = a^m z' a^n z = hg$ und G ist kommutativ.

1.4 Erzeuger und Zyklische Gruppe

Lemma 1.4.1 Sei *G* eine Gruppe.

- 1. Sei $(H_i)_{i\in I}$ eine Familie von Untergruppen von G. Dann ist $\bigcap_{i\in I} H_i$ eine Untergruppe von G.
- 2. Sei A eine Teilmenge von G. Dann gibt es eine kleinste Untergruppe H mit $A \subset H_{-\square}$

Beweis. 1. Siehe Übungsblatt 1.

2. Sei $(H_i)_i$ die Familie aller Untergruppen von G die A enthalten (diese Familie ist nicht leer da G eine solche Gruppe ist). Dann ist $H = \bigcap_{i \in I} H_i$ die minimale Untergruppe die A enthält

Definition 1.4.2 1. Sei G eine Gruppe und A eine Teilmenge von G. Die kleinste Untergruppe die A enthält heißt **die von** A **erzeugte Untergruppe** und ist $\langle A \rangle$ geschrieben. Falls A nur einelementig ist: $A = \{g\}$ schreibt man $\langle A \rangle = \langle g \rangle$.

- 2. Eine Teilmenge A einer Gruppe G heißt **erzeugend** (man sagt auch A **erzeugt** G) falls $G = \langle A \rangle$.
- 3. Eine Gruppe G heißt **zyklisch** falls es ein Element $g \in G$ gibt mit $G = \langle g \rangle$.

Beispiel 1.4.3 1. Die Gruppe $(\mathbb{Z}, +)$ ist zyklisch und 1 erzeugt \mathbb{Z} .

- 2. Sei $n \in \mathbb{Z}$. Die Gruppe $(\mathbb{Z}/n, +)$ ist zyklisch und $\bar{1}$ erzeugt $\mathbb{Z}/n\mathbb{Z}$.
- 3. Die einfache Transpositionen $(s_i)_{i \in [1,n-1]}$ definiert durch

$$s_i(k) = \begin{cases} k & \text{für } k \notin \{i, i+1\} \\ i+1 & \text{für } k = i \\ i & \text{für } k = i+1 \end{cases}$$

erzeugen S_n i.e. $S_n = \langle s_i \mid i \in [1, n-1] \rangle$ (Siehe LAII).

Lemma 1.4.4 Sei G eine Gruppe und $g \in G$. Es gilt $\langle g \rangle = \{g^n \mid n \in \mathbb{Z}\}.$

Beweis. Sei $n \in \mathbb{Z}$. Da $\langle g \rangle$ eine Gruppe ist und enthält g, gilt $g^{-1} \in \langle g \rangle$ und $g^n \in \langle g \rangle$ also $\{g^n \mid n \in \mathbb{Z}\} \subset \langle g \rangle$.

Umgekehrt, seien $n, m \in \mathbb{Z}$. Dann ist $(g^n)(g^m)^{-1} = g^{n-m} \in \{g^n \mid n \in \mathbb{Z}\}$ und $e_G = g^0 \in \{g^n \mid n \in \mathbb{Z}\}$. Daraus folt, dass $\{g^n \mid n \in \mathbb{Z}\}$ eine Untergruppe von G ist und enthält g. Also $\langle g \rangle \subset \{g^n \mid n \in \mathbb{Z}\}$.

Satz 1.4.5 Sei G eine zyklische Gruppe. Dann ist G isomorph zu \mathbb{Z} oder $\mathbb{Z}/n\mathbb{Z}$.

Beweis. Sei $g \in G$ so, dass $G = \langle g \rangle$. Sei $f : \mathbb{Z} \to G$ definiert durch $f(n) = g^n$. Dies ist ein Gruppenhomomorphismus und nach dem obigen Lemma folgt $f(\mathbb{Z}) = G$. Falls f injektiv ist, ist f ein Isomorphismus und $G \simeq \mathbb{Z}$. Sonst sei $N = \operatorname{Ker} f$. Dann ist N eine Untergruppe von \mathbb{Z} und es folgt $N = n\mathbb{Z}$ für eine $n \in \mathbb{Z}$ (Siehe Übunsblatt 0 oder im Beweis von Korollar 1.4.7). Es folgt (nach Korollar 1.2.11) $G = \mathbb{Z}/N = \mathbb{Z}/n\mathbb{Z}$.

Korollar 1.4.6 Sei p eine Primzahl und G eine Gruppe mit |G| = p.

- 1. Sei $g \in G$ mit $g \neq e_G$. Dann gilt $G \simeq \langle g \rangle$.
- 2. Es gilt $G \simeq \mathbb{Z}/p\mathbb{Z}$.

Beweis. 1. Sei $H = \langle g \rangle$. Dann gilt $e_G, g \in H$ also $|H| \geq 2$. Nach dem Satz von Lagrange gilt |H| teilt p also |H| = p = |G| und H = G.

2. Folgt vom obigen Satz.

Korollar 1.4.7 Jede Untergruppe einer zyklischen Gruppe ist zyklisch.

Beweis. Die Gruppe G ist isomorph zu \mathbb{Z} oder $\mathbb{Z}/n\mathbb{Z}$. Es wurde im Übungsblatt 0 gezeigt, dass die Untergruppen zyklisch sind. Wir geben dennoch einen Beweis.

Angenommen $G = \mathbb{Z}$. Sei H eine Untergruppe von \mathbb{Z} . Falls $H = \{0\}$ sind wir fertig. Sonst ist $H \cap \mathbb{Z}_{>0} \neq \emptyset$. Sei $m = \min\{r \in H \mid r > 0\}$. Sei $n \in H$. Dann gibt es $k \in \mathbb{Z}$ und $r \in [0, m-1]$ mit n = km + r. Da H eine Gruppe ist gilt $r = n - km \in H$ und da m minimal war, gilt r = 0. Daraus folgt $H = m\mathbb{Z}$.

Sei $G = \mathbb{Z}/n\mathbb{Z}$ und sei H eine Untergruppe von G. Sei $\pi : \mathbb{Z} \to \mathbb{Z}/n\mathbb{Z} = G$ die kanonische Projektion. Dann ist $\pi^{-1}(H)$ eine Untergruppe von \mathbb{Z} also gibt es ein $m \in \mathbb{Z}$ mit $\pi^{-1}(H) = m\mathbb{Z}$. Da die kanonische Projektion surjektiv ist, folgt $H = \pi(\pi^{-1}(H)) = \pi(m\mathbb{Z}) = \{k[m] = [mk] \in \mathbb{Z}/n\mathbb{Z}\}.$

1.5 Ordung eines Elements

Definition 1.5.1 Sei G eine Gruppe und $g \in G$. Die **Ordnung** ord(g) von g ist die Ordung der Gruppe $\langle g \rangle$.

Lemma 1.5.2 Es gilt $\{k \in \mathbb{Z}_{\geq 0} \mid g^k = e_G\} = \operatorname{ord}(g)\mathbb{Z} \text{ (wir setzen } \infty\mathbb{Z} = \{0\}\text{).}$

Beweis. Nach Satz 1.4.5 ist die Gruppe $\langle g \rangle$ isomorph zu \mathbb{Z} oder $\mathbb{Z}/n\mathbb{Z}$.

Im ersten Fall gilt $\operatorname{ord}(g) = \infty$ und im zweiten Fall gilt $\operatorname{ord}(g) = n$. Außerdem ist die Abbildung $\mathbb{Z} \to \langle g \rangle$ bzw. $\mathbb{Z}/n\mathbb{Z} \to \langle g \rangle$ definiert durch $k \mapsto g^k$ bzw. $[k] \mapsto g^k$ ein Isomorphismus.

Im ersten Fall gilt $\{k \in \mathbb{Z}_{\geq 0} \mid g^k = e_G\} = \{0\}$. Im zweiten Fall gilt $\{k \in \mathbb{Z} \mid g^k = e_G\} = \{k \in \mathbb{Z} \mid [k] = 0 \in \mathbb{Z}/n\mathbb{Z}\} = n\mathbb{Z}$.

Lemma 1.5.3 Sei G eine Gruppe und $g \in G$ mit $\operatorname{ord}(g) = n < \infty$. Dann gilt

$$\operatorname{ord}(g^m) = \frac{n}{\operatorname{ggT}(m, n)}$$

für alle $m \in \mathbb{Z}$.

Beweis. Seien $d = \operatorname{ggT}(m, n)$, $m' = \frac{m}{d} \in \mathbb{Z}$ und $n' = \frac{n}{d} \in \mathbb{Z}$. Sei $s = \operatorname{ord}(g^m)$. Es gilt $g^{ms} = (g^m)^s = e_G$. Also gibt es $k \in \mathbb{Z}$ mit ms = kn. Es folgt m's = n'k. Da $\operatorname{ggT}(m', n') = 1$ folgt n'|s.

Es gilt $(g^m)^{n'} = g^{mn'} = g^{m'dn'} = g^{m'n} = (g^n)^{m'} = e_G$. Daraus folgt s|n'. Insgesamt folgt s=n'.

1 Gruppen

Korollar 1.5.4 Die erzeugende Elemente von $\mathbb{Z}/n\mathbb{Z}$ sind die Klassen $[m] \in \mathbb{Z}/n\mathbb{Z}$ mit ggT(m,n)=1.

Beweis. Sei $[m] \in \mathbb{Z}/n\mathbb{Z}$ mit $\mathbb{Z}/n\mathbb{Z} = \langle [m] \rangle$. Dann gilt [m] = m[1] und $\operatorname{ord}([1]) = n$. Daraus folgt $\operatorname{ord}(m) = n/\operatorname{ggT}(m, n)$.

Die Klasse [m] ist aber genau dann erzeugend, wenn $\operatorname{ord}([m]) = n$ also $n/\operatorname{ggT}(m,n) = n$ i.e. $\operatorname{ggT}(m,n) = 1$.

Beispiel 1.5.5 Die erzeugende Klassen in $\mathbb{Z}/4\mathbb{Z}$ sind [1] und [3].

Korollar 1.5.6 Sei $n \in \mathbb{Z}$. Die Gruppe $\mathbb{Z}/n\mathbb{Z}$ hat für jedes m|n genau eine Untergruppe der Ordnung m: die Gruppe

$$m\mathbb{Z}/n\mathbb{Z} = \{ [km] \in \mathbb{Z} \mid k \in \mathbb{Z} \}.$$

Beweis. Dies wurde im Übungsblatt 0 bewiesen. Wir geben dennoch einen Beweis. Sei H eine Untergruppe von $\mathbb{Z}/n\mathbb{Z}$ und sei $d=\min\{k\in\mathbb{Z}_{>0}\mid [k]\in H\}$. Da $[0]=[n]\in H$ gilt $0< d\leq n$. Sei $[k]\in H$. Wir schreiben k=da+b mit $a,b\in\mathbb{Z}$ und $b\in[0,d-1]$. Es gilt $[k],[d]\in H$ also $[b]=[k]-a[d]\in H$. Da d minimal ist, folgt b=0 und $k\in d\mathbb{Z}$. Es folgt $H=d\mathbb{Z}/n\mathbb{Z}=\{[kd]\in\mathbb{Z}/n\mathbb{Z}\mid k\in\mathbb{Z}\}=\langle [d]\rangle$. Außerdem gilt $\operatorname{ord}([d])=\frac{n}{\operatorname{ggT}(n,d)}=\frac{n}{d}:=m$.

1.6 Derivierte Untergruppe

Definition 1.6.1 Sei G eine Gruppe, seien $g, h \in G$ und seien $H, K \subset G$ Untergruppen.

- 1. Der **Kommutator** von g und h ist $[g, h] = ghg^{-1}h^{-1}$.
- 2. **Der Kommutator** [H, K] von H und K ist die Gruppe $[H, K] = \langle [h, k] \mid h \in H$ und $k \in K \rangle$.
- 3. **Die derivierte Gruppe** D(G) von G ist die Gruppe D(G) = [G, G] (manchmal wird D(G) auch (G, G) bezeichnet).

Lemma 1.6.2 Sei G eine Gruppe.

- 1. $D(G) = \{ [g_1, h_1] \cdots [g_n, h_n] \mid n \in \mathbb{Z}_{\geq 0} \text{ und } g_i, h_i \in G \}.$
- 2. D(G) ist eine Normalteiler in G.
- 3. G/D(G) ist abelsch.
- 4. Sei $N \triangleleft G$ mit G/N abelsch. Dann gilt $D(G) \subset N$. Also ist D(G) die kleinste Untergruppe so, dass G/D(G) abelsch ist.

Beweis. 1. Sei $H = \{[g_1, h_1] \cdots [g_n, h_n] \mid n \in \mathbb{Z}_{\geq 0} \text{ und } g_i, h_i \in G\}$. Es gilt $H \subset D(G)$. Wir zeigen, dass H eine Untergruppe ist. Alle Produkte von Elementen aus H sind noch in H. Es gilt $[g, h]^{-1} = [h, g]$ also ist das Inverses jedes Element aus H noch in H und H ist eine Untergruppe. Daraus folgt $D(G) \subset H$ da D(G) die kleinste Untergruppe die alle Kommutatoren enthält ist.

- 2. Seien $g,h,k\in G$. Es gilt $k[g,h]k^{-1}=[kgk^{-1},khk^{-1}]$. Daraus folgt $k[g,h]k^{-1}\in D(G)$ und nach 1. $kD(G)k^{-1}\subset D(G)$.
- 3. Seien $g, h \in G$. Dann gilt $[ghg^{-1}h^{-1}] = e$ in G/D(G) also [g][h] = [h][g] und G/D(G) ist abelsch.
- 4. Seien $g, h \in G$. Es gilt $[ghg^{-1}h^{-1}]_N = [g]_N[h]_N[g]_N^{-1}[h]_N^{-1} = [e_G]_N$ da G/N abelsch ist. Daraus folgt $ghg^{-1}h^{-1} \in N$ und $D(G) \subset N$.

1.7 Semidirekte Produkte

Lemma 1.7.1 Seien N und H zwei Gruppen und sei $\Phi: H \to \operatorname{Aut}(N), h \mapsto \Phi_h$ ein Gruppen homomorphismus (wobei $\operatorname{Aut}(N)$ die Gruppe aller Automorphismen von N ist).

Sei $N \times H := N \times_{\Phi} H := (N \times H, \star)$ mit

$$(n,h) \star (n',h') = (n\Phi_h(n'),hh').$$

Dann ist $N \rtimes H$ eine Gruppe mit neutralem Element (e_N, e_H) und Inverse $(n, h)^{-1} = (\Phi_{h^{-1}}(n^{-1}), h^{-1}).$

Beweis. Es gilt $(e_N, e_H) \star (n, h) = (e_N \Phi_{e_H}(n), e_H h) = (\text{Id}_N(n), h) = (n, h) \text{ und } (n, h) \star (e_N, e_H) = (n\Phi_h(e_N), he_H) = (n, h).$

Es gilt $(n,h) \star (\Phi_{h^{-1}}(n^{-1}),h^{-1}) = (n\Phi_h(\Phi_{h^{-1}}(n^{-1})),hh^{-1}) = (n\Phi_{hh^{-1}}(n^{-1}),e_H) = (n\operatorname{Id}_N(n^{-1}),e_H) = (nn^{-1},e_H) = (e_N,e_H)$. Es gilt auch $(\Phi_{h^{-1}}(n^{-1}),h^{-1}) \star (n,h) = (\Phi_{h^{-1}}(n^{-1})\Phi_{h^{-1}}(n),h^{-1}h) = (\Phi_{h^{-1}}(n^{-1}n),e_H) = (\Phi_{h^{-1}}(e_G),e_H) = (e_N,e_H)$.

Es gilt

$$\begin{array}{ll} (n,h)\star ((n',h')\star (n'',h'')) &= (n,h)\star (n'\Phi_{h'}(n''),h'h'') \\ &= (n\Phi_{h}(n'\Phi_{h'}(n'')),hh'h'') \\ &= (n\Phi_{h}(n')\Phi_{hh'}(n''),hh'h'') \\ &= (n\Phi_{h}(n'),hh')\star (n'',h'') \\ &= ((n,h)\star (n',h'))\star (n'',h'') \end{array}$$

Daraus folgt, dass $N \rtimes H$ eine Gruppe ist.

Definition 1.7.2 Seien N und H zwei Gruppen und sei $\Phi: H \to \operatorname{Aut}(N), h \mapsto \Phi_h$ ein Gruppen homomorphismus. Das heißt die Gruppe $N \rtimes H := N \rtimes_{\Phi} H := (N \rtimes H, \star)$ mit Produkt $(n, h) \star (n', h') = (n\Phi_h(n'), hh')$ semidirektes Produkt von N und H bzg. Φ .

1 Gruppen

Beispiel 1.7.3 Sei $\Phi: H \to \operatorname{Aut}(N)$ definiert durch $\Phi_h = \operatorname{Id}_N$ für alle $h \in H$. Dann gilt

$$(n,h) \star (n',h') = (n\Phi_h(n'),hh') = (n\mathrm{Id}_N(n'),hh') = (nn',hh')$$

und das semidirekte Produkt ist die Produktgruppe.

Lemma 1.7.4 Sei $G = N \times H$ und seien $N' = \{(n, e_H) \mid n \in N\}$ und $H' = \{(e_N, h) \mid h \in H\}$.

- 1. Dann ist H' eine Untergruppe von G und $N' \triangleleft G$.
- 2. Es gibt isomorphismen $N \simeq N'$ und $H \simeq H'$ definiert durch $n \mapsto (n, e_H)$ und $h \mapsto (e_N, h)$.

3. Es gilt
$$N' \cap H' = \{e_G\}$$
 und $G = N'H'$.

Beweis. 1. Die Abbildung $\pi: G \to H$ definiert durch $\pi(h)$ ist ein Gruppenhomomorphismus und Ker $\pi = N'$ also $N' \triangleleft G$. Es gilt $e_G \in H'$ und $(e_N, h) \star (e_N, h') = (e_N, hh')$ also H' ist eine Untergruppe von G.

- 2. Man überprüft leicht, dass diese Abbildungen injektive Gruppenhomomorphismen sind. Per Defnition sind diese Abbildungen surjektiv.
- 3. Es gilt $N' \cap H' = \{(e_n, e_H)\} = \{e_G\}$ und $(n, h) = (n, e_H) \star (e_N, h)$ also G = N'H'.

Satz 1.7.5 Sei G eine Gruppe, H eine Untergruppe und $N \triangleleft G$.

1. Falls gilt $N \cap H = \{e_G\}$ und G = NH. Dann ist für $\Phi : H \to \operatorname{Aut}(N)$ definiert durch $\Phi_h(n) = hnh^{-1}$ die Abbildung

$$f: N \times_{\Phi} H \to G, (n,h) \mapsto nh$$

ein Isomorphismus.

2. Falls zusätzlich gilt $H \triangleleft G$, so wird der Isomorphismus zu $f: N \times H \rightarrow G$.

Beweis. 1. Es gilt

$$f((n,h) \star (n',h')) = f(n\Phi_h(n'),hh') = nhn'h^{-1}hh' = nhn'h' = f(n,h)f(n',h').$$

Daraus folgt, dass f ein Gruppenhomomorphismus ist. Da G = N ist diese Abbildung surjektiv. Sei $(n, h) \in \text{Ker } f$. Es gilt $nh = e_G$ also $n = h^{-1}$ und $n \in N \cap H$ also $n = e_G$. Daraus folgt $h = e_G$ und f ist injektiv also ein Isomorphismus.

2. Seien $h \in H$ und $n \in N$. Es gilt $N \ni n^{-1}(hnh^{-1}) = (n^{-1}hn)h^{-1} \in H$ also $n^{-1}hnh^{-1} = e_G$. Es folgt hn = nh und $\Phi_h(n) = n$ und $N \rtimes H = N \times H$.

Beispiel 1.7.6 1. Sei c=(231), sei s=(213) und seien $N=A_3=\{\mathrm{Id},c,c^2\}$ und $H=\{\mathrm{Id},s\}$. Da A_3 ein Normalteiler ist, sind $\mathrm{Int}_s:A_3\to A_3$ und $\mathrm{Int}_{\mathrm{Id}}:A_3\to A_3$ Gruppenautomorphismen und die Abbildung $\Phi:H\to\mathrm{Aut}(A_3)$, $\Phi_h=\mathrm{Int}_h$ ist ein Gruppenhomomorphismus.

Dank dem obigen Satz zeigt man, dass die Abbildung

$$A_3 \rtimes H \to S_3, (n,h) \mapsto nh$$

ein Gruppenisomorphismus ist.

- 2. Algemeiner gilt $S_n \simeq A_n \rtimes \{\pm 1\}$.
- 2. Diedergruppe. Sei R_n ein regelmäßiges Polygon. Zum Beispiel $R_n = \{e^{\frac{2ik\pi}{n}} \mid k \in [0, n-1]\}.$

Sei D_{2n} die Gruppe aller Isometrie die R_n erhalten. Man zeigt, dass D_{2n} genau 2n elemente hat. Sei O das Zentrum von R_n und seien D_1, \dots, D_n die Geraden die durch O und eine Ecke laufen oder die durch O und die Mitte einer Kante laufen. Sei R die Drehung um O von $\frac{2\pi}{n}$ und seien S_1, \dots, S_n die Spiegelungen an den Geraden D_1, \dots, D_n . Dann gilt

$$D_{2n} = \{ \mathrm{Id}, R, \cdots, R^n, S_1, \cdots, S_n \}.$$

Die Gruppe D_{2n} enthält $N = \{ \mathrm{Id}, R, \dots, R^n \}$ und man überprüft leicht, dass $N \triangleleft D_{2n}$. Sei $H = \{ \mathrm{Id}, S_1 \}$. Dann ist H eine Untergruppe von G. Dank dem obigen Satz zeigt man, dass die Abbildung

$$N \rtimes H \to G$$
, $(n,h) \mapsto nh$

ein Gruppenisomorphismus ist.

1.8 Operation einer Gruppe auf einer Menge

Definition 1.8.1 Sei G eine Gruppe und X eine Menge. Eine **Operation von** G auf X ist eine Abbildung $G \times X \to X$, $(g, x) \mapsto g \cdot x$ mit den Eigenschaften:

- 1. Für alle $x \in X$ gilt $e_G \cdot x = x$.
- 2. Für alle $g, h \in G$ und alle $x \in X$ gilt $(gh) \cdot x = g \cdot (h \cdot x)$.

Beispiel 1.8.2 1. **Die triviale Operation** $G \times X \to X$ definiert durch $g \cdot x = x$ für alle $g \in G$ und $x \in X$.

- 2. Die **Linkstranslation** $G \times G \to G$ definiert durch $g \cdot h = gh$ (hier ist X = G).
- 2. Die **Linkstranslation auf einem Quotient** $G \times G/H \to G/H$ definiert durch $g \cdot [g']_H = [gh]_H$ (hier ist X = G/H wobei H eine Untergruppe ist).
- 3. Die Konjugation $G \times G \to G$ definiert durch $g \cdot h = ghg^{-1}$ (hier ist X = G).
- 4. $S_n \times [1, n] \to [1, n]$ definiert durch $\sigma \cdot i = \sigma(i)$.
- 4. $GL_n(K) \times K^n \to K^n$ definiert durch $A \cdot v = Av$.

Lemma 1.8.3 Sei $G \times X \to X$, $(g, x) \mapsto g \cdot x$ eine Operation.

1. Dann ist die Abbildung $\Phi(g): X \to X$ definiert durch $\Phi(g)(x) = g \cdot x$ eine Bijektion von X und die Abbildung

$$\Phi: G \to \mathrm{Bij}(X)$$

definiert durch $g \mapsto \Phi(g)$ ein Gruppenhomomorphismus.

2. Umgekehrt, sei $\Phi: G \to \text{Bij}(X)$ ein Gruppenhomomorphismus. Dann ist $G \times X \to X$ definiert durch $(g, x) \mapsto g \cdot x = \Phi(g)(x)$ eine Operation.

Beweis. 1. Wir zeigen, dass $\Phi(qh) = \Phi(q) \circ \Phi(h)$. Es gilt

$$\Phi(qh)(x) = (qh) \cdot x = q \cdot (h \cdot x) = \Phi(q)(h \cdot x) = \Phi(q)\left(\Phi(h)(x)\right) = \left(\Phi(q) \circ \Phi(h)\right)(x).$$

Daraus folgt, dass $\Phi(g) \circ \Phi(g^{-1}) = \operatorname{Id}_X = \Phi(g^{-1}) \circ \Phi(g)$ also ist $\Phi(g)$ bijektiv mit $\Phi(g)^{-1} = \Phi(g^{-1})$ und Φ ist ein Gruppenhomomorphismus.

2. Es gilt $e_G \cdot x = \Phi(e_G)(x) = \operatorname{Id}_X(x) = x$ und $g \cdot (h \cdot x) = \Phi(g)(\Phi(h)(x)) = (\Phi(g) \circ \Phi(h))(x) = \Phi(gh)(x) = (gh) \cdot x$.

Definition 1.8.4 Sei $G \times X \to X$, $(q, x) \mapsto q \cdot x$ eine Operation von G auf X.

- 1. Die Operation heißt **transitiv**, falls es für alle $x, y \in X$ ein $g \in G$ gibt mit $g \cdot x = y$.
- 2. Eine Operation heißt **treu** falls $(g \cdot x = x \text{ für alle } x \in X) \Rightarrow (g = e_G)$.
- 3. Sei $x \in X$. Die Menge $G \cdot x = \{g \cdot x \in X \mid g \in G \text{ heißt } \mathbf{Orbit} \text{ oder } \mathbf{Bahn} \text{ von } x \in X.$

Man schreibt $X/G = \{G \cdot x | x \in X\}$ für die Menge aler Bahnen. Diese Menge heisst **Quotient von** X nach G.

- 4. Ein $x \in X$ heißt **Fixpunkt** falls $g \cdot x = x$ für alle $g \in G$. Die Menge aller Fixpunkte ist X^G geschrieben.
- 5. Für $x \in X$ heißt $G_x = \{g \in G \mid g \cdot x = x\}$ der **Stabilisator von** x.
- 6. Allgemeiner heißt für $Y \subset X$ eine Teilmenge $G_Y = \{g \in G \mid g \cdot Y = Y\}$ der Stabilisator von Y.

Bemerkung 1.8.5 Die Operation $G \times X \to X$ ist genau dann treu, wenn der Gruppenhomomorphismus $\Phi: G \to \mathrm{Bij}(X)$ (siehe Lemma 1.8.3) injektiv ist.

Beispiel 1.8.6 1. Sei $G \times G \to G$ die Linkstranslation. Dann ist die Operation transitiv und treu. Daraus folgt

Satz 1.8.7 (Satz von Cayley) Sei G eine Gruppe der Ordnung n. Dann ist G eine Untergruppe von S_n .

Beweis. Sei $L: G \to \text{Bij}(G) \simeq S_n$ definiert durch $g \mapsto (L_g: G \to G, h \mapsto gh)$. Wir zeigen, dass L injektiv ist also dass die Operation treu ist. Sei $g \in \text{Ker}L$. Es gilt $L_g = \text{Id}_G$ also $L_g(h) = h$ für alle $h \in G$. Daraus folgt gh = h und $g = e_G$.

- 2. Sei $G \times G/H \to G/H$ die Linkstranslation auf dem Quotient G/H. Dann ist die Operation transitiv und G_{e_G} der Stabilisator des neutrales Elements ist H.
- 3. Sei $G \times G \to G$ die Konjugation. Sei $h \subset G$. Dann ist der Stabilisator von h der Zentralisator von h:

$$G_h = \{g \in G \mid ghg^{-1} = h\} = \{g \in G \mid gh = hg\} = Z_G(h).$$

4. Sei $X = \{H \subset G \mid H \text{ ist eine Untergruppe}\}$. Dann ist $G \times X \to X$ definiert durch $g \cdot H = gHg^{-1}$ eine Operation. Es gilt

$$G_H = \{g \in G \mid g \cdot H = H\} = \{g \in G \mid gHg^{-1} = H\} = N_G(H).$$

Es gilt auch

$$X^G = \{ H \in X \mid gHg^{-1} = H \text{ für alle } g \in G \} = \{ H \in X \mid H \triangleleft G \}.$$

Definition 1.8.8 Sei $G \times X \to X$ eine Operation. Wir definieren auf X die Relation $x \sim y \Leftrightarrow y \in G \cdot x$.

Proposition 1.8.9 Sei $G \times X \to X$ eine Operation.

- 1. Die Relation $x \sim y$ ist eine Äquivalenzrelation.
- 2. Die Äquivalenzklassen sind die Bahnen.
- 3. Sei $x \in X$. Die Abbildung $G/G_x \to G \cdot x$ definiert durch $[g] \mapsto g \cdot x$ ist wohl definiert und bijektiv.

Beweis. 1. Es gilt $x = e_G \cdot x$ also $x \sim x$ und \sim ist reflexiv.

Seien $x, y \in X$ mit $x \sim y$. Dann gilt $y \in G \cdot x$ also gibt es ein $g \in G$ mit $y = g \cdot x$. Dann gilt $x = g^{-1} \cdot y$ und $x \in G \cdot y$ also $y \sim x$ und \sim ist symmetrisch.

Seien $x, y, z \in X$ mit $x \sim y$ und $y \sim z$. Dann gibt es $g, g' \in G$ mit $y = g \cdot x$ und $z = g' \cdot y$. Daraus folgt $z = g'g \cdot x$ und $x \sim z$ also \sim ist transitiv.

2. Sei $x \in X$. Die Äquivalenzklasse von x is $\{y \in X \mid x \sim y\} = \{y \in X \mid y \in G \cdot x\} = G \cdot x$.

3. Seien $g, g' \in G$ mit [g] = [g']. Dann gibt es ein $h \in G_x$ mit g' = gh. Daraus folgt $g' \cdot x = (gh) \cdot x = g \cdot (h \cdot x) = g \cdot x$ und die Abbildung ist wohl definiert. Per Definition einer Bahn ist diese Abbildung surjektiv. Seien $g, g' \in G$ mit $g \cdot x = g' \cdot x$. Dann gilt $x = (g^{-1}g') \cdot x$ und $g^{-1}g' = h \in G_x$. Daraus folgt g' = gh und [g] = [g']. Die Abbildung ist injektiv.

Korollar 1.8.10 (Bahnformel) Sei $G \times X \to X$ eine Operation mit G endlich. Es gilt

$$|G \cdot x| = [G : G_x] = \frac{|G|}{|G_x|}.$$

Beweis. Nach 3. im obigen Proposition gilt $|G/G_x| = |G \cdot x|$. Nach dem Satz von Lagrange gilt $|G/G_x| = |G \cdot G_x| = |G|/|G_x|$.

Satz 1.8.11 (Bahngleichung) Sei $G \times X \to X$ eine Operation mit X endlich. Dann gilt

$$|X| = \sum_{[x] \in X/G} |G \cdot x| = \sum_{[x] \in X/G} [G : G_x].$$

Beweis. Da die Bahnen die Äquivalenzklassen einer Äquivalenzrelation sind gilt

$$X = \coprod_{[x] \in X/G} G \cdot x.$$

Daraus folgt die Behauptung.

Korollar 1.8.12 Sei G eine endliche Gruppe und H eine Untergruppe. Der kleinste Primteiler von |H| sei großer gleich [G:H]. Dann ist $H \triangleleft G$

Beweis. Sei p der kleinste Primteiler von |H| und sei X=G/H. Sei $H\times X\to X$ die Linksoperation: $h\cdot gH=hgH$. Sei $x\in X$. Nach der Bahnformel ist $|H\cdot x|$ ein Teiler von |H| also $|H\cdot x|=1$ oder $|H\cdot x|\geq p$. Nach der Bahngleichung gilt

$$p \geq [G:H] = |X| = \sum_{[x] \in X/H} |G \cdot x|.$$

Sei $x = [e_G] \in X$. Dann ist x ein Fixpunkt $|H \cdot x| = |\{x\}| = 1$. Daraus folgt

$$p-1 \ge \sum_{[x] \in X/H, \ x \ne [e_G]} |G \cdot x|.$$

Da $|G \cdot x| = 1$ oder $|G \cdot x| \ge p$ muss $|G \cdot x| = 1$ für alle $x \in X$ gelten. Also für alle $[g] \in G/H$ gilt [hg] = [g] für alle $h \in G$ i.e. $g^{-1}hg \in H$ für alle $g \in G$ und $h \in H$ i.e. $H \triangleleft G$.

Beispiel 1.8.13 1. Wenn [G:H] der kleinste Primteiler von |G| ist, ist die Bedingung erfüllt.

2. Insbesondere wenn [G:H]=2 ist die Bedigung erfüllt und $H \triangleleft G$.

Definition 1.8.14 Sei p eine Primzahl. Eine endliche Gruppe G heißt p-Gruppe falls $|G| = p^k$ eine Potenz von p ist.

Korollar 1.8.15 Sei G eine p-Gruppe. Dann gilt |Z(G)| > 1.

Beweis. Sei $|G|=p^k$. Sei X=G und $G\times X\to X$ die Konjugation. Es gilt $X^G=Z(G)$: sei $z\in Z(G)$. Dann gilt $g\cdot z=gzg^{-1}=z$. Umgekehrt, sei $z\in X^G$. Dann gilt $g\cdot z=z$ für alle $g\in G$ also $gzg^{-1}=z$ für alle $g\in G$ i.e. gz=zg für alle $g\in G$. Insbesondere gilt

$$z \in Z(G) \Leftrightarrow |G \cdot x| = 1.$$

Nach der Bahnformel folgt

$$z \in Z(G) \Leftrightarrow p \mid |G \cdot x|.$$

Nach der Bahngleichung gilt

$$p^{k} = |X| = \sum_{[x] \in X/H} |G \cdot x| = \sum_{[x] \in X/G, \ x \in Z(G)} |G \cdot x| + \sum_{[x] \in X/G, \ x \notin Z(G)} |G \cdot x|$$

also $p^k = |Z(G)| + \sum_{[x] \in X/G, \ x \notin Z(G)} |G \cdot x|$. Alle Terme in der Zweite Summe sind durch p teilbar also muss |Z(G)| durch p teilbar sein. Daraus folgt |Z(G)| > 1.

Satz 1.8.16 Sei p eine Primzahl und sei G eine Gruppe der Ordnung p^2 . Dann gilt $G \simeq \mathbb{Z}/p^2\mathbb{Z}$ oder $G \simeq \mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}/p\mathbb{Z}$.

Beweis. Fall 1: Es gebe $g \in G$ mit $\operatorname{ord}(g) = p^2$. Dann gilt $\mathbb{Z}/p^2\mathbb{Z} \simeq \langle g \rangle = G$.

Fall 2: Für alle $g \in G$ mit $g \neq e_G$ gilt $\operatorname{ord}(g) = p$. Sei $g \in G \setminus \{e_G\}$. Dann gilt $|\langle g \rangle| = p$ also es gibt $h \in G \setminus \langle g \rangle$. Sei $N = \langle g \rangle$ und $H = \langle h \rangle$. Dann p = |N| = |H| der kleinste Primteiler von |N| und |H| ist und $p \geq p = [G:N] = [G:H]$ gilt nach Korollar 1.8.12: $N \triangleleft G$ und $H \triangleleft G$. Der Durchschnitt $H \cap N$ ist eine echte Untergruppe von H da $h \in H \setminus N$. Also gilt $|H \cap N||p$ und $|H \cap N| < p$. Daraus folgt $|N \cap H| = 1$ und $N \cap H = \{e_G\}$. Da N und H normal sind gilt $\langle N, H \rangle = NH = HN$. Dies ist eine Untergruppe von G die $N \cup \{h\}$ enthält also $|NH| \geq p + 1$ und |NH| teilt p^2 . Daraus folgt $|NH| = p^2$ und NH = G. Nach dem Satz 1.7.5 folgt $G \simeq N \times H$ also $G \simeq \mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}/p\mathbb{Z}$.

Bemerkung 1.8.17 Für Gruppen G der Ordnung $|G|=p^3$ ist die Klassifikation schwierieger: siehe Übungblatt 3 für den Fall $|G|=8=2^3$. Die Gruppen der Ordnung 8 sind isomorph zu

$$\mathbb{Z}/8\mathbb{Z}$$
, $\mathbb{Z}/4\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$, $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$, D_8 , \mathbb{H} .

1.9 Symmetrische Gruppe

Definition 1.9.1 1. Ein Element $\sigma \in S_n$ heißt r-**Zykel** falls es paarweise verschiedene Elemente $x_1, \dots, x_r \in [1, n]$ mit

$$\sigma(x_k) = x_{k+1}$$
 für alle $k \in [1, r-1]$,
 $\sigma(x_r) = x_1$ und
 $\sigma(x) = x$ für alle $x \in [1, n] \setminus \{x_1, \dots, x_r\}$.

- 2. Die Menge $\operatorname{Supp}(\sigma) = \{x_1, \dots, x_r\}$ heißt **Träger des Zykels**. Die Zahl r ist die **Länge des Zykels**. Wir schreiben $[x_1, \dots, x_r]$ für den Zykel der Länge r mit Träger $\{x_1, \dots, x_r\}$.
- 3. Zwei Zykel σ, σ' heißen **fremd** falls $\operatorname{Supp}(\sigma) \cap \operatorname{Supp}(\sigma') = \emptyset$.

Bemerkung 1.9.2 Eine Transposition ist ein 2-Zykel.

Satz 1.9.3 1. Fremde Zykeln kommutieren.

2. Jedes $\gamma \in S_n$ ist ein Produkt fremder Zykel. Diese sind eindeutig bis auf Reihenfolge.

Beweis. 1. Seien σ, σ' fremde Zykel und sei $x \in [1, n]$. Es gilt

$$\sigma(\sigma'(x)) = \left\{ \begin{array}{ll} x & \text{für } x \not\in \text{Supp}(\sigma) \cup \text{Supp}(\sigma') \\ \sigma(x) & \text{für } x \in \text{Supp}(\sigma) \setminus \text{Supp}(\sigma') \\ \sigma'(x) & \text{für } x \not\in \text{Supp}(\sigma') \setminus \text{Supp}(\sigma) \end{array} \right\} = \sigma'(\sigma(x)).$$

2. Sei $H = \langle \gamma \rangle$ die von γ erzeugte Untergruppe. Wir lassen H operieren auf [1, n] durch $\gamma^n \cdot x = \gamma^n(x)$. Seien B eine Bahn, sei r = |B| und sei $x_1 \in B$. Es gilt

$$B = \{x_1, x_2 = \gamma(x_1), \cdots, x_r = \gamma^{r-1}(x_1)\}.$$

Sei $\sigma_B = [x_1, \cdots, x_r]$. Es gilt

$$\gamma = \prod_{B \in [1,n]/H} \sigma_B.$$

Umgekehrt zerlegt jede Faktorisierung $\gamma = \prod_k \sigma_k$ die Menge X in Bahnen gegeben durch die Träger von σ_k . Diese Bahnen und also die Zerlegung ist bis auf Reihenfolge eindeutig bestimmt.

Beispiel 1.9.4 Sei $\gamma = (36451872) \in S_8$. Die Bahnen von γ sind $\{1, 2, 4, 5\}, \{2, 6, 8\}$ und $\{7\}$. Es gilt also

$$\gamma = [1345][268][7] = [1345][268].$$

Korollar 1.9.5 Sei $\gamma = \sigma_1 \cdots \sigma_k$ die Zerlegung von γ als Produkt fremder Zykel und sei $r_i = \operatorname{ord}(\sigma_i)$. Dann gilt $\operatorname{ord}(\gamma = \operatorname{kgV}(r_1, \cdots, r_k))$.

Beweis. Seo $d = \text{kgV}(r_1, \dots, r_k)$. Es gilt $\gamma^d = \sigma_1^d \dots \sigma_k^d = \text{Id also ord}(\gamma)|d$. Umgekehrt für a mit $\gamma^a = \text{Id gilt Id} = \gamma^a = \sigma_1^a \dots \sigma_k^a$ und da die Träger dijunkt sind gilt $\mathfrak{g}_i^a = \text{Id für alle } i \in [1, k]$ also $r_i|a$. Daraus folgt $\text{kgV}(r_1, \dots, r_k)|a$.

Lemma 1.9.6 (Konjugationsprinzip) Sei $\sigma = [x_1, \dots, x_r]$ ein r-Zykel und sei $\gamma \in S_n$. Dann gilt

$$\gamma\sigma\gamma^{-1} = [\gamma(x_1), \cdots, \gamma(x_r)].$$

Beweis. Siehe Übungsblatt 4.

Korollar 1.9.7 Sei $n \geq 0$. Es gilt $S_n = \langle [1, 2], [1, 2, \cdots, n] \rangle$.

Beweis. Sei $H = \langle [1,2], [1,2,\cdots,n] \rangle$. Sei $\sigma = [1,2,\cdots,n]$. Es gilt $H \ni \sigma^k[1,2]\sigma^{-k} = [\sigma^k(1),\sigma^k(2)] = [k+1,k+2]$. Da die einfache Transpositionen [i,i+1] die Gruppe S_n erzeugen, gilt $H = S_n$.

Definition 1.9.8 Sei $k \geq 0$. Eine Operation $G \times X \to X$ heißt k-transitiv falls für $x_1, \dots x_k \in X$ paarweise verschiedene Elemente und $y_1, \dots y_k \in X$ paarweise verschiedene Elemente es ein $g \in G$ gibt mit

$$g \cdot x_i = y_i$$
 für alle $i \in [1, k]$.

Beispiel 1.9.9 Sei $S_n \times [1, n] \to [1, n]$ die Operation $\gamma \cdot x = \gamma(x)$. Dann ist diese Operation *n*-transitiv.

Lemma 1.9.10 Sei $A_n \times [1, n] \to [1, n]$ die Operation gegeben durch $\gamma \cdot x = \gamma(x)$. Dann ist diese Operation (n-2)-transitiv.

Beweis. Seien $x_1, \dots x_{n-2} \in [1, n]$ paarweise verschieden und $y_1, \dots y_{n-2} \in [1, n]$ paarweise verschieden. Seien $x_{n-1}, x_n, y_{n-1}, y_n$ so, dass

$$\{x_1, \cdots, x_n\} = [1, n] = \{y_1, \cdots, y_n\}.$$

Da S_n n-transitiv operiert gibt es $\gamma \in S_n$ mit $\gamma(x_i) = y_i$ für alle $i \in [1, n]$. Fall $\gamma \in A_n$ sind wir fertig. Sonst, sei $\gamma' = \gamma \circ [x_{n-1}, x_n]$. Dann gilt $\gamma' \in A_n$ und $\gamma(x_i) = y_i$ für alle $i \in [1, n-2]$.

mente es ein $g \in G$ gibt mit

$$g \cdot x_i = y_i$$
 für alle $i \in [1, k]$.

Satz 1.9.11 1. In S_n sind alle r-Zykel sind konjugiert.

- 2. Für $n \geq 5$ sind alle 3-Zykel konjugiert in A_n .
- 3. Jedes Element in A_n ist ein Produkt gerader Anzahl von Transpositionen.
- 4. Ein r-Zyklus ist genau dann in A_n , wenn r ungerade ist.
- 5. Die Menge aller 3-Zykel erzeugt A_n .

Beweis. 1. Seien $\sigma = [x_1, \dots, x_r]$ und $\sigma' = [y_1, \dots, y_r]$ zwei r-Zykel. Da S_n n-transitiv operiert, gibt es $\gamma \in S_n$ mit $\gamma(x_i) = y_i$ für alle $i \in [1, r]$. Daraus folgt $\gamma \sigma \gamma^{-1} = \sigma'$.

- 2. Sei $\sigma = [x_1, x_2, x_3]$ und $\sigma' = [y_1, y_2, y_3]$. Da $n \geq 5$ gilt $n 2 \geq 3$. Da A_n n 2-transitiv operiert gibt es $\gamma \in A_n$ mit $\gamma(x_i) = y_i$ für alle $i \in [1, 3]$. Daraus folgt $\gamma \sigma \gamma^{-1} = \sigma'$.
- 3. Jede Permutation ist ein Produkt von Transpositionen und per Definition von A_n sind Element in A_n Produkt gerader Anzahl von Transpositionen.
- 4. Sei $\sigma = [x_1, \dots, x_r]$. Es gilt $\sigma = [x_1, x_2][x_2, x_3] \dots [x_{r-1}, x_r]$ also ist σ ein Produkt von r-1 Transpositionen und es gilt $\varepsilon(\sigma) = (-1)^r$.
- 4. Sei $[x_1, x_2][x_3, x_4]$ oder $[x_1, x_2][x_2, x_3]$ ein Produkt von 2 Transpositionen mit x_1 , x_2 , x_3 , x_4 paarweise verschieden. Es gilt

$$[x_1, x_2][x_3, x_4] = [x_1, x_3, x_2][x_1, x_3, x_4]$$
 und $[x_1, x_2][x_2, x_3] = [x_1, x_2, x_3]$

und daraus folgt, dass alle Element in A_n Produkte von 3-Zykel sind.

Korollar 1.9.12 Sei $n \geq 2$.

- 1. Es gilt $D(S_n) = A_n$.
- 2. Es gilt

$$D(A_n) = \begin{cases} \{ \text{Id} \} & \text{für } n = 2, 3 \\ V_4 & \text{für } n = 4 \\ A_n & \text{für } n \ge 5 \end{cases}$$

wobei $V_4 = \{ \text{Id}, [12][34], [13][24], [14][23] \}.$

Beweis. 1. Da $S_n/A_n \simeq \{\pm 1\} \simeq \mathbb{Z}/2\mathbb{Z}$ abelsch ist, gilt $D(S_n) \subset A_n$ (Lemma 1.6.2). Für n=2 gilt $A_n=\{\mathrm{Id}\}$ also $A_n\subset D(S_n)$. Für $n\geq 3$ gilt

$$[a, b, c] = [b, c][a, b][b, c][a, b] = [b, c][a, b][b, c]^{-1}[a, b]^{-1} = [[b, c], [a, b]] \in D(S_n).$$

Da A_n von den 3-Zykeln erzeugt ist, gilt $A_n \subset D(S_n)$.

2. Für n=2,3 ist A_n abelsch also gilt $D(A_n)=\{\mathrm{Id}\}$. Für n=4 gilt $V_4 \triangleleft A_4$ (Siehe Übungsblatt 3) und $A_4/V_4 \simeq \mathbb{Z}/3\mathbb{Z}$ ist abelsch. Nach Lemma 1.6.2 gilt $D(A_4) \subset V_4$. Umgekehrt gilt für $a,b,c,d\in[1,4]$ paarweise verschieden:

$$[a,b][c,d] = [a,b,c][a,b,d][a,c,b][a,d,b] = [a,b,c][a,b,d][a,b,c]^{-1}[a,b,d]^{-1} = [[a,b,c],[a,b,d]] \in D(A_4).$$

Daraus folgt $V_4 \subset D(A_4)$.

Sei $n \geq 5$, seien $a, b, c \in [1, n]$ paarweise verschieden und seien $x, y \in [1, n] \setminus \{a, b, c\}$. Es gilt

$$[a,b,c] = [a,b,x][a,c,y][a,x,b][a,y,c] = [a,b,x][a,c,y][a,b,x]^{-1}[a,c,y]^{-1} = [[a,b,x],[a,c,y]] \in D(A_n).$$

Es folgt $A_n \subset D(A_n)$ und da $D(A_n) \subset A_n$ ist die Behauptung bewiesen.

Man kann eingentlich das folgende Resultat zeigen (Siehe Übungsblatt 4 für den Fall n=5).

Theorem 1.9.13 Die Gruppe A_n ist einfach für $n \geq 5$.

1.10 Sylow Sätze

Definition 1.10.1 Sei G eine Gruppe und sei p ein Primteiler von |G| so, dass

$$|G| = p^{\alpha} m$$
 wobei $p \not | m$.

Eine Untergruppe von G der Ordnung p^{α} heißt p-Sylowuntergruppe.

Bemerkung 1.10.2 Sei G ine Gruppe und p eine Primzahl. Eine Untergruppe H ist genau dann eine p-Sylowuntergruppe, wenn H eine p-Gruppe ist und [G:H] und p teilerfremd sind.

Beispiel 1.10.3 Sei p eine Primzahl, sei $\mathbb{F}_p = \mathbb{Z}/p\mathbb{Z}$ und sei $G = \mathrm{GL}_n(\mathbb{F}_p)$. Es gilt

$$|G| = (p^n - 1)(p^n - p) \cdots (p^n - p^{n-1}) = p^{\frac{n(n-1)}{2}}(p^n - 1)(p^{n-1} - 1) \cdots (p-1).$$

Um es zu zeigen, zählen wir die Basen von \mathbb{F}_p^n ab. In \mathbb{F}_p^n gibt es p^n Elemente. Eine Basis ist der Form (v_1, \cdots, v_n) . Der erste Basisvektor v_1 kann beliebig in $\mathbb{F}_p^n \setminus \{0\}$ gewählt werden also p^n-1 Möglichkeiten. Der zweite Basisvektor v_2 kann beliebig in $\mathbb{F}_p^n \setminus \langle v_1 \rangle$ gewählt werden also p^n-p Möglichkeiten. Nach Induktion kann v_{k+1} kann beliebig in $\mathbb{F}_p^n \setminus \langle v_1, \cdots, v_k \rangle$ gewählt werden also p^n-p^k Möglichkeiten.

Sei H die Untergruppe von G, welche von oberen Dreieckmatrizen mit 1 auf der Diagonal besteht. Dann gilt

$$|H| = p^{\frac{n(n-1)}{2}}$$

und H ist eine Sylowuntergruppe von G.

Lemma 1.10.4 Sei G eine Gruppe mit $|G| = n = p^{\alpha}m$ mit $p \not | m$. Sei H eine Untergruppe von G und sei S eine p-Sylowuntergruppe von G. Dann gibt es ein $g \in G$ so, dass $gSg^{-1} \cap H$ eine p-Sylowuntergruppe von H ist. Insbesondere hat H auch eine p-Sylowuntergruppe.

Beweis. Sei X = G/S. Sei $G \times X \to X$ die Linkstranslation auf dem Quotient X = G/S definiert durch $g \cdot [g'] = [gg']$. Der Stabilisator von [g] = gS ist gSg^{-1} (Siehe Übungsblatt 4).

Per Einschränkung Operiert H auf X durch $H \times X \to X$ mit $h \cdot [g'] = [hg']$. Der Stabilisator $H_{[g]}$ von [g] = gS ist $gSg^{-1} \cap H$ (Siehe Übungsblatt 4).

Die Gruppen $gSg^{-1} \cap H$ sind p-Gruppen, da $|gSg^{-1} \cap H|$ die Ordnung $|S| = p^{\alpha}$ teilt. Wir zeigen, dass es ein g gibt so, dass $|H/(gSg^{-1} \cap H)| = [H: gSg^{-1} \cap H]$ und p teilerfremd sind.

Falls es nicht der Fall ist gilt nach der Bahnformel $|H \cdot [g]| = |H|/|H_{[g]}| = |H/(gSg^{-1} \cap H)| = [H : gSg^{-1} \cap H]$ und teilt p die Zahl $|H \cdot x|$ für alle $x = [g] \in X$. Nach der Bahngleichung

$$m = |G/S| = |X| = \sum_{[x] \in X/H} |H \cdot x|$$

würde m durch p teilbar sein. Ein Widerspruch.

Satz 1.10.5 (Erster Sylowsatz) Sei G eine Gruppe und p ein Primteiler von |G|. Dann hat G mindestens eine p-Sylowuntergruppe.

Beweis. Sei G eine Gruppe und p ein Primteiler von n = |G|. Nach dem Satz von Cayley ist G isomorph zu einer Untergruppe von S_n . Die Gruppe S_n ist aber eine Untergruppe von $GL_n(K)$ für jeden Körper K dank der Abbildung

$$\sigma \mapsto P_{\sigma}$$

wobei P_{σ} die Permutationsmatrix ist: $P_{\sigma} = (a_{i,j})_{i,j \in [1,n]}$ mit $a_{i,j} = \delta_{\sigma(i),j}$. Also für $K = \mathbb{F}_p$ ist G eine Untergruppe von $GL_n(\mathbb{F}_p)$. Da $GL_n(\mathbb{F}_p)$ eine p-Sylowuntergruppe hat, hat G auch eine p-Sylowuntergruppe nach dem obigen Lemma.

Korollar 1.10.6 (Satz von Cauchy) Sei G eine Gruppe und p ein Primteiler von p. Dann gibt es ein Element der Ordnung p.

Beweis. Sei $|G| = p^{\alpha}m$ mit $p \not\mid m$ und sei S eine p-Sylowuntergruppe von G. Sei $g \in S \setminus \{e_G\}$. Dann gilt $\operatorname{ord}(g) \neq 0$ und $\operatorname{ord}(g)|p^{\alpha}$ also $\operatorname{ord}(g) = p^k$ für $k \geq 1$. Dann gilt $\operatorname{ord}(g^{p^{k-1}}) = \frac{p^k}{\operatorname{ggT}(p^k,p^{k-1})} = \frac{p^k}{p^{k-1}} = p$.

Korollar 1.10.7 Eine Gruppe G ist genau dann eine p-Gruppe, wenn $\operatorname{ord}(g)$ eine Potenz von p ist für jedes $g \in G$.

Beweis. Sei G eine p-Gruppe. Nach dem Satz von Lagrange ist die Ordnung jedes Element einen Teiler von |G| also eine Potenz von p.

Umgekehrt, sei G eine Gruppe die keine p-Gruppe ist. Dann gibt es einen Primteiler q von |G| mit $p \neq q$ und G hat ein Element der Ordnung q.

Korollar 1.10.8 Sei p eine Primzal und G eine Untergruppe von S_p so, dass p ein Teiler von |G| ist und G eine Transposition enthält. Dann gilt $G = S_p$.

Beweis. Es gilt $|S_p| = p! = pm$ mit $p \not| m$. Da p die Ordnung |G| teilt gilt |G| = pm' mit $p \not| m'$. Sei $\sigma \in G$ der Ordnung p. Wir zeigen, dass σ ein p-Zykel ist. Sei $\sigma = c_1 \cdots c_k$ die Zerlegung von σ in Produkt von r-Zykeln mit disjunkten Träger. Es gilt $\operatorname{ord}(\sigma) = \operatorname{kgV}(\operatorname{ord}(c_1), \cdots, \operatorname{ord}(c_k))$ nach Korollar 1.9.5. Insberonde muss p die Ordnung $\operatorname{ord}(c_i)$ für ein i teilen. Für so ein i gilt $\operatorname{ord}(c_i) = p$ und c_i ist ein p-Zykel. Also enthält G eine Transposition τ und ein p-Zykel σ' .

Sei $\tau = [a, b]$. Es gibt ein $\gamma \in S_n$ so, dass $\gamma \tau \gamma^{-1} = [1, 2]$ (wähle γ mit $\gamma(a) = 1$ und $\gamma(b) = 2$). Es genügt zu zeigen, dass $G' = \gamma G \gamma^{-1} = S_n$ und es gilt $\gamma G \gamma^{-1} \ni [1, 2], \sigma = \gamma \sigma' \gamma^{-1}$ wobei σ ein p-Zykel ist. Da σ ein p-Zykel ist gibt es ein k mit $\sigma^k(1) = 2$. Außerdem gilt $\sigma^k \in \langle \sigma \rangle \setminus \{\text{Id}\}$ also $1 < \text{ord}(\sigma^k)|\text{ord}(\sigma) = p$. Es gilt also $\text{ord}(\sigma^k) = p$ und $\sigma^k = [1, 2, x_3, \cdots, x_p]$. Sei $\delta \in S_n$ mit $\delta(1) = 1, \delta(2) = 2$ und $\delta(x_i) = i$ für alle $i \ge 3$. Dann gilt $\delta[1, 2]\delta^{-1} = [1, 2]$ und $\delta\sigma^k\delta^{-1} = [1, 2, \cdots, p]$. Die Gruppe $G'' = \delta G'\delta^{-1}$ enthält [1, 2] und $[1, 2, \cdots, p]$ also nach Korollar $[1, 2, \cdots, p]$ of $[1, 2, \cdots, p]$ also nach Korollar $[1, 2, \cdots, p]$.

Korollar 1.10.9 Seien p und q Primzahlen und G eine Gruppe der Ordnung $|G| = p^k q^l$ mit $k, l \ge 1$ so, dass $q > p^k$. Dann gilt $G \simeq K_q \rtimes K_p$ wobei K_p und K_q beliebege p- und q-Sylowuntergruppen sind.

Beweis. Nach Korollar 1.8.12 gilt $K_q \triangleleft G$. Sei $H = K_p \cap K_q$. Dann ist |H| ein Teiler von $p^k = |K_p|$ und $q^l = |K_q|$ also |H| = 1 und $K_q \cap K_p = \{e_G\}$. Daraus folgt, dass die Abbildung $K_q \times K_p \to G$, $(a,b) \mapsto ab$ injektiv ist. Da $|K_p \times K_q| = p^k q^l = |G|$, folgt, dass diese Abbildung eine Bijektion ist also $G = K_q K_p$. Nach dem Satz 1.7.5 folgt $G \simeq K_q \rtimes K_p$.

Satz 1.10.10 (Zweiter Sylowsatz) Sei p eine Primzahl und G eine Gruppe der Ordnung $|G| = p^{\alpha}m$ mit $p \not | m$.

1. Sei H eine Untergruppe von G die eine p-Gruppe ist. Dann gibt es S eine p-Sylowuntergruppe von G mit $H \subset S$.

Sei k die Anzahl aller p-Sylowuntergruppen

- 2. Alle p-Sylowuntergruppe sind zueinander konjuguiert.
- 3. Es gilt k||G|.
- 4. Es gilt $k \equiv 1 \pmod{p}$ (also k teilt m).

Korollar 1.10.11 (Vom Satz 1.10.10.2) Sei G eine Gruppe und S ein p-Sylow-untergruppe. Dann gilt

 $S \triangleleft G \Leftrightarrow S$ ist der einzige p-Sylowuntergruppe von $G \Leftrightarrow k = 1$.

Beweis. Die letze äquivalenz ist klar da k die Anzahl von p-Sylowuntergruppen ist.

- (⇒). Sei S eine p-Sylowuntergruppe mit $S \triangleleft G$. Sei T eine weitere p-Sylowuntergruppe. Nach Satz 1.10.10.2 gibt es ein $g \in G$ mit $gSg^{-1} = T$. Da aber $S \triangleleft G$, folgt $S = gSg^{-1} = T$.
- (⇐). Sei S eine p-Sylowuntergruppe und sei $g \in G$. Dann ist gSg^{-1} auch eine p-Sylowuntergruppe. Daraus folgt nach Annahme, dass $gSg^{-1} = S$ und $S \triangleleft G$.

Beispiel 1.10.12 Sei G eine Gruppe der Ordnung 255. Dann ist G nicht einfach. Tatsächlich gilt $255 = 3 \times 5 \times 17$. Sei p = 17. Es gilt $|G| = p^{\alpha}m$ mit $\alpha = 1$ und $m = 3 \times 5 = 15$. Sei k die Anzahl von p-Sylowuntergruppen. Es gilt $k \equiv 1 \pmod{p}$ und k|m. Die Teiler von 15 sind 1, 3, 5 und 15. Da 3, 5, $15 \not\equiv 1 \pmod{p}$ gilt k = 1. Also ist K_{17} die einzige 17-Sylowuntergruppe und also ein Normalteiler. Es folgt, dass G nicht einfach ist.

Beweis vom Satz 1.10.10. Wir zeigen 1. und 2. Sei H eine Untergruppe von G die eine p-Gruppe ist und sei S eine p-Sylowuntergruppe. Nach Lemma 1.10.4 gibt es ein $g \in G$ so, dass $gSg^{-1} \cap H$ eine p-Sylowuntergruppe von H ist. Da H eine p-Gruppe ist, ist eine p-Sylowuntergruppe die ganze Gruppe also $gSg^{-1} \cap H = H$ i.e. $H \subset gSg^{-1}$. Die Untergruppe gSg^{-1} hat Ordnung $|S| = p^{\alpha}$ und ist also eine p-Sylowuntergruppe. Daraus folgt 1.

Falls H eine pSylowuntergruppe ist gilt $H \subset gSg^{-1}$ und $|H| = p^{\alpha} = |gSg^{-1}|$ und es folgt $H = gSg^{-1}$. Dies zeigt 2.

- 3. Wir betrachten $X = \{p\text{-Sylowuntergruppen}\}$ und die Operation $G \times X \to X$ definiert durch $g \cdot S = gSg^{-1}$. Nach 2. ist diese Operation Transitiv also gilt $G \cdot S = X$. Nach der Bahnformel folgt, dass $k = |X| = |G \cdot S|$ ein teiler von |G| ist.
- 4. Sei S eine p-Sylowuntergruppe. Wir betrachten die Einschränkungen der obigen Operation auf S i.e. $S \times X \to X$ definiert durch $s \cdot T = sTs^{-1}$. Sei $S \cdot T$ eine Bahn dieser Operation. Nach der Bahnformel teilt $|S \cdot T|$ die Ordnung |S| also gilt

$$|S \cdot T| = \begin{cases} 1 & \text{für } S \cdot T = \{T\} \text{ i.e. } T \text{ Fixpunkt oder} \\ pa & \text{für ein } a \in \mathbb{N}. \end{cases}$$

Sei also X^S die Fixpunkte. Es gilt nach der Bahngleichung:

$$|X| = \sum_{[x] \in X/S} |S \cdot x| = \sum_{x \in X^S} |S \cdot x| + \sum_{[x] \in X/S, x \notin X^S} |S \cdot x| = |X^S| + pb.$$

Also gilt $k = |X| \equiv |X^S| \pmod{p}$. Es genügt zu zeigen, dass $X^S = \{S\}$ also $|X^S| = 1$. Sei $T \in X^S$. Also ist T eine p-Sylowuntergruppe mit $sTs^{-1} = T$ für alle $s \in S$. Sei

 $H = \langle S, T \rangle$. Dann sind S und T p-Sylowuntergruppe von H (beide sind schon p-Sylowuntergruppe von G). Außerdem gilt $T \subset N_H(T)$ und weil $sTs^{-1} = T$ für alle $s \in S$ gilt auch $S \subset N_H(T)$. Also gilt $H = \langle S, T \rangle \subset N_H(T)$. Daraus folgt $H = N_H(T)$ i.e. $T \triangleleft H$. Nach Korollar 1.10.11 hat H genau eine p-Sylowuntergruppe. Es folgt S = T.

Korollar 1.10.13 (Primärzerlegung abelscher Gruppen) Sei G eine endliche abelsche Gruppe. Dann ist für jeder Primteiler p von G die p-Sylowuntergruppe K_p von G eindeutig durch

$$K_p = \{g \in G \mid \operatorname{ord}(g) \text{ ist Potenz von } p\}$$

gegeben und es gilt

$$G = \prod_{p \text{ Primteiler von } |G|} K_p.$$

Beweis. Sei K_p eine p-Sylowuntergruppe. Da G abelsch ist K_p ein Normalteiler also ist K_p die einzige p-Sylowuntergruppe. Da $|K_p|$ eine Potenz von p ist gilt $K_p \subset \{g \in G \mid \operatorname{ord}(g) \text{ ist Potenz von } p\}$. Umgekehrt, sei $g \in G$ so, dass $\operatorname{ord}(g)$ eine Potenz von p ist. Dann ist $\langle g \rangle$ eine p-Gruppe und also in einer p-Sylowuntergruppe enthalten. Es folgt $g \in K_p$ da K_p die einzige p-Sylowuntergruppe ist.

Seien p_1, \dots, p_k die Primteiler von |G| und sei $f: \prod_{i=1}^k K_{p_i} \to G$ definiert durch $f(x_1, \dots, x_k) = x_1 \dots x_k$. Da G kommutativ ist ist f ein Gruppenhomomorphismus. Sei $(x_1, \dots, x_k) \in \operatorname{Ker} f$. Dann gilt $x_1 x_2 \dots x_k = e_G$. Sei $\operatorname{ord}(x_i) = p_i^{\alpha_i}$. Es folgt

$$e_G = (x_1 \cdots x_k)^{p_2^{\alpha_2} \cdots p_k^{\alpha_k}} = x_1^{p_2^{\alpha_2} \cdots p_k^{\alpha_k}}.$$

Da ggT $(p_1^{\alpha_1}, p_2^{\alpha_2} \cdots p_k^{\alpha_k}) = 1$ gibt es $a, b \in \mathbb{Z}$ mit $ap_1^{\alpha_1} + bp_2^{\alpha_2} \cdots p_k^{\alpha_k} = 1$. Es folgt

$$x_1 = x_1^{ap_1^{\alpha_1} + bp_2^{\alpha_2} \cdots p_k^{\alpha_k}} = e_G.$$

Analog gilt $x_i = e_G$ für alle i und f ist injektiv. Sei

$$|G| = p_1^{\beta_1} \cdots p_k^{\beta_k}.$$

Es gilt $|K_{p_i}| = p_i^{\beta_i}$ und $|\prod_{i=1}^k K_{p_i}| = |G|$. Daraus folgt, dass f bijektiv ist also ein Isomorphismus.

Beispiel 1.10.14 Sei G eine abelsche Gruppe der Ordnung $|G| = p_1 \cdots p_k$. Dann gilt

$$G \simeq \mathbb{Z}/p_1\mathbb{Z} \times \cdots \mathbb{Z}/p_k\mathbb{Z}.$$

Man kann sogar zeigen:

Theorem 1.10.15 Sei G eine endliche abelsche Gruppe. Dann gibt es Zahlen $a_1, \dots, a_k \in \mathbb{N}$ mit

$$G \simeq \mathbb{Z}/a_1\mathbb{Z} \times \cdots \times \mathbb{Z}/a_k\mathbb{Z}.$$

1.11 Auflösbare Gruppen

Definition 1.11.1 Sei G eine Gruppe. Die k-te derivierte Untergruppe $D^k(G)$ ist definiert per Induktion durch

$$D^0(G) = G, \ D^1(G) = D(G) \text{ und } D^{k+1}(G) = D(D^k(G)).$$

Beispiel 1.11.2 1. Für $n \ge 5$ gilt $D^0(S_n) = S_n$, $D^1(S_n) = D(S_n) = A_n$, $D^2(S_n) = D(D(S_n)) = D(A_n) = A_n$ und per Induktion $D^k(S_n) = A_n$ für alle $k \ge 1$.

2. Für n=4 gilt $D^0(S_4)=S_4$, $D^1(S_4)=A_4$, $D^2(S_4)=D(A_4)=V_4$, $D^3(S_4)=D(V_4)=\{\mathrm{Id}\}$ und $D^k(S_4)=\{\mathrm{Id}\}$ für alle $k\geq 3$.

Bemerkung 1.11.3 Sei G eine Gruppe. Es gilt

$$G = D^0(G) \triangleright D^1(G) \triangleright \cdots \triangleright D^k(G) \triangleright D^{k+1}(G) \triangleright \cdots$$

und $D^k(G)/D^{k+1}(G)$ ist abelsch.

Definition 1.11.4 Eine Gruppe G heißt **auflösbar** wenn es eine Folge von Untergruppen $(G_i)_{i \in [1,m]}$ gibt mit

- $G_0 = G \text{ und } G_m = \{e_G\},\$
- $G_{i+1} \triangleleft G_i$ und
- G_i/G_{i+1} ist abelsch.

Beispiel 1.11.5 1. Sei G abelsch, dann ist G auflösbar mit $G_1 = \{e_G\} \triangleleft G_1 = G$.

2. Die Gruppen S_n und A_n sind für $n \leq 4$ auflösbar mit den Folgen

$$\{\operatorname{Id}\} = A_1 = S_1, \quad \{\operatorname{Id}\} = A_2 \triangleleft S_2, \quad \{\operatorname{Id}\} \triangleleft A_3 \triangleleft S_3 \quad \text{und} \ \{\operatorname{Id}\} \triangleleft V_4 \triangleleft A_4 \triangleleft S_4.$$

Satz 1.11.6 Eine Gruppe G ist genau dann auflösbar, wenn es ein m gibt mit $D^m(G) = \{e_G\}.$

Beweis. (\Leftarrow). Sei $G_i = D^i(G)$. Dann ist G_i eine Folge von Untergruppen, die die Definition der Auflösbarkeit erfüllt.

(⇒). Sei $(G_i)_{i \in [1,m]}$ eine Folge von Untergruppen mit $G_0 = G$, $G_r = \{e_G\}$, $G_{i+1} \triangleleft G_i$ und G_i/G_{i+1} ist abelsch. Wir zeigen, dass $D^i(G) \subset G_i$ per Induktion nach i. Daraus folgt, dass $D^m(G) \subset G_m = \{e_G\}$ also $D^m(G) = \{e_G\}$.

Es gilt $D^0(G) = G = G_0$. Angenommen gilt $D^i(G) \subset G_i$. Da G_i/G_{i+1} abelsch ist gilt $D(G_i) \subset G_{i+1}$. Daraus folgt

$$D^{i+1}(G) = D(D^i(G)) \subset D(G_i) \subset G_{i+1}.$$

Korollar 1.11.7 Die Gruppen S_n und A_n sind für $n \geq 5$ nicht auflösbar.

Beweis. Es gilt
$$D^k(S_n) = D^k(A_n) = A_n$$
 für $k \ge 2$ und $n \ge 5$.

Satz 1.11.8 Sei $f: G \to G'$ ein Gruppenhomomorphismus und sei H eine Untergruppe von G.

- 1. Es gilt f(D(H)) = D(f(H)).
- 2. Es gilt $f(D^k(G)) \subset D^k(G')$ für alle k.
- 3. Falls f surjektiv ist, gilt $f(D^k(G)) = D^k(G')$ für alle k.

Beweis. 1. Folgt aus f([a,b]) = [f(a), f(b)].

- 2. Per Induktion nach k. Es gilt $f(D^0(G)) = f(G) \subset G' = D^0(G')$. Angenommen gilt $f(D^k(G)) \subset D^k(G')$. Dann gilt nach 1. $f(D^{k+1}(G)) = f(D(D^k(G))) = D(f(D^k(G))) \subset D(D^k(G')) = D^{k+1}(G)$.
- 3. Per Induktion nach k. Es gilt $f(D^0(G)) = f(G) = G' = D^0(G')$. Angenommen gilt $f(D^k(G)) = D^k(G')$. Dann gilt nach 1. $f(D^{k+1}(G)) = f(D(D^k(G))) = D(f(D^k(G))) = D(D^k(G')) = D^{k+1}(G)$.

Korollar 1.11.9 Sei G eine Gruppe, H eine Untergruppe und N ein Normalteiler.

- 1. Falls G auflösbar ist gilt H, N und G/N sind auflösbar.
- 2. Die Gruppe G ist genau dann auflösbar, wenn N und G/N auflösbar sind.

Beweis. 1. Sei m mit $D^m(G) = \{e_G\}$. Es gilt $D^m(H) \subset D^m(G)$ also ist H auflösbar. Das gleiche gilt für N. Nach dem obigen Satz mit $f: G \to G/N$ die kanonische Projektion gilt $f(D^m(G)) = D^m(G/N)$ also $D^m(G/N) = \{e_{G/N}\}$.

- $2. (\Rightarrow)$. Folgt aus 1.
- (⇐). Seien m und r mit $D^m(N) = \{e_G\}$ und $D^r(G/N) = \{e_{G/N}\}$. Sei $f: G \to G/N$ die kanonische Projektion. Nach dem obigen Satz gilt $f(D^r(G)) = D^r(G/N) = \{e_{G/N}\}$. Also gilt $D^r(G) \subset \text{Ker} f = N$. Daraus folgt $D^{m+r}(G) = D^m(D^r(G)) \subset D^m(N) = \{e_G\}$.

Korollar 1.11.10 Seien G_1, \dots, G_r, H und N Gruppen.

- 1. Das Produkt $G_1 \times \cdots \times G_r$ ist genau dann auflösbar, wenn G_i für alle $i \in [1, r]$ auflösbar ist.
- 2. Das semidirekte Produkt $N \rtimes H$ ist genau dann auflösbar, wenn N und H auflösbar sind.

Beweis. Siehe Übungsblatt 5.

Korollar 1.11.11 Jede *p*-Gruppe ist auflösbar.

Beweis. Siehe Übungsblatt 5.

Satz 1.11.12 Sei G endlich auflösbar. Jede Folge von Untergruppen $(G_i)_{i \in [1,r]}$ mit $G_0 = G$, $G_r = \{e_G\}$, $G_{i+1} \triangleleft G_i$ und G_i/G_{i+1} abelsch lässt sich verfeinern in einer Folge von Untergruppen $(G'_i)_{i \in [1,r]}$ mit

- $G'_0 = G$ und $G'_r = \{e_G\},$
- $G'_{i+1} \triangleleft G'_i$ und
- $G_i'/G_{i+1}' \simeq \mathbb{Z}/p_i\mathbb{Z}$ für eine Primzahl p_i .

Beweis. Sei $(G_i)_{i \in [1,r]}$ eine Folge die sich nicht verfeinern lässt aber mit ein k so, dass G_k/G_{k+1} nicht von Primzahlordnung. Sei p ein Primteiler von G_k/G_{k+1} und $x \in G_k/G_{k+1}$ ein Element der Ordnung p ist (Satz von Cauchy). Dann gilt $\{e\} \subsetneq \langle x \rangle \subsetneq G_k/G_{k+1}$. Da G_k/G_{k+1} abelsch ist gilt $\langle x \rangle \triangleleft G_k/G_{k+1}$. Sei $\pi: G_k \to G_k/G_{k+1}$ die kanonische Projektion und $H = \pi^{-1}(\langle x \rangle)$. Es gilt $G_{k+1} \subsetneq H \subsetneq G_k$ und $G_{k+1} \triangleleft H \triangleleft G_k$. Ein Widerspruch zur nicht Verfeinbarkeit.

Beispiel 1.11.13 Es gilt $S_4 \overset{\mathbb{Z}/2\mathbb{Z}}{\triangleright} A_4 \overset{\mathbb{Z}/3\mathbb{Z}}{\triangleright} V_4 \overset{\mathbb{Z}/2\mathbb{Z}}{\triangleright} \{ \mathrm{Id}, [12][34] \} \overset{\mathbb{Z}/2\mathbb{Z}}{\triangleright} \{ \mathrm{Id} \}.$

2 Ringe

2.1 Grundbegriffe

2.1.1 Definition

Definition 2.1.1 1. Ein **Ring** ist eine Menge R mit zwei Verknüpfungen $+: R \times R \to R$, $(a,b) \mapsto a+b$ und $\times: R \times R \to R$, $(a,b) \mapsto ab$ so, dass

- (R, +) ist eine kommutative Gruppe mit 0_R als neutrales Element,
- (ab)c = a(bc) für alle $a, b, c \in R$,
- a(b+c) = ab + ac und ba + ca = (b+c)a für alle $a,b,c \in R$,
- es gibt ein $1_R \in R$ mit $a \cdot 1_R = 1_R \cdot a = a$ für alle $a \in R$.
- 2. Falls \times kommutativ ist *i.e.* ab = ba für alle $a, b \in R$ heißt R kommutativer Ring.

Bemerkung 2.1.2 Sei R ein Ring.

- 1. Falls $1_R = 0_R$ gilt $R = \{0_R\}$. In diesem Fall heißt R der **Nullring**.
- 2. Für alle $a, b \in R$ gilt
 - $\bullet \ 0_R \cdot a = a \cdot 0_R = 0_R$
 - (-a)(-b) = ab

Beispiel 2.1.3 1. $(\mathbb{Z}, +, \times)$, $(\mathbb{Q}, +, \times)$, $(\mathbb{R}, +, \times)$ und $(\mathbb{C}, +, \times)$ sind Ringe.

- 2. $(\mathbb{Z}/n\mathbb{Z}, +, \times)$ in ein Ring.
- 3. Sei K ein Körper. $(M_n(K), +, \times)$ ist ein Ring, wobei + bzw. \times Matrixaddition bzw. Matrixmultiplikation sind.
- 4. Für $x \in \mathbb{C}$, sei $x \mapsto \bar{x}$ die komplexe Konjugation. Die Menge der Quaternionen

$$\mathbf{H} = \left\{ \left(\begin{array}{cc} x & y \\ -\bar{y} & \bar{x} \end{array} \right) \in M_2(\mathbb{C}) \mid x, y \in \mathbb{C} \right\}$$

mit Matrixaddition und Matrixmultiplikation ist ein nicht kommutativer Ring.

36 2 Ringe

Definition 2.1.4 Seien R und R' zwei Ringe. Das Produkt $R \times R'$ mit (a, a') + (b, b') = (a+b, a'+b') und (a, a')(b, b') = (ab, a'b') ist ein Ring und heißt **Produktring** von R und R'.

Definition 2.1.5 Sei R ein Ring.

1. Ein Element $a \in R$ heißt **Einheit** oder **invertierbar** falls es ein $b \in R$ gibt mit $ab = ba = 1_R$. Mann schreibt R^{\times} für die Menge aller Einheiten:

$$R^{\times} = \{ a \in R \mid a \text{ is eine Einheit} \}.$$

2. Ein Element $a \in R$ heißt **Nullteiler** falls es ein $b \in R \setminus \{0_R\}$ gibt mit $ab = 0_R$ oder $ba = 0_R$.

Bemerkung 2.1.6 Sei R ein Ring.

- 1. Die Menge (R^{\times}, \times) ist eine Gruppe. Insbesondere ist für $a \in R^{\times}$ das Element $b \in R$ mit $ab = ba = 1_R$ ein Element in R^{\times} und ist eindeutig bestimmt. Wir schreiben $b = a^{-1}$.
- 2. Es gilt $R^{\times} \subset R \setminus \{\text{Nullteiler}\}$: sei $b \in R$ mit $ab = 0_R$ oder $ba = 0_R$. Es gilt $0_R = a^{-1}ab = b$ oder $0_R = baa^{-1} = b$.

Definition 2.1.7 Sei R ein Ring.

- 1. R heißt Nullteilerfrei falls $(a \in R \text{ Nullteiler} \Rightarrow a = 0)$.
- 2. R heißt Intergritätring falls $R \neq \{0_R\}$, R kommtativ und Nullteilerfrei ist.
- 3. R heißt Schiefkörper falls $R^{\times} = R \setminus \{0_R\}$.
- 4. R heißt Körper falls R ein kommutativer Schiefkörper ist.

Beispiel 2.1.8 1. Der Ring \mathbb{Z} ist ein Integritätsring.

- 2. Der Ring $R = \mathbb{Z}/4\mathbb{Z}$ ist kein Integritätsring: Es gilt $[2] \neq 0_R$ aber $[2][2] = [4] = 0_R$.
- 3. Der Ring **H** ist ein nicht kommutativer Schiefkörper.

Bemerkung 2.1.9 Sei R ein nullteilerfreier Ring und S ein Unterring. Dann ist S nullteilerfrei.

Definition 2.1.10 Sei R ein Ring.

1. Der **Polynomring zu** R ist

$$R[X] = \{ \sum_{k=0}^{\infty} r_k X^k \mid r_k \neq 0 \text{ nur für endlich viele } k \}$$

mit

$$\left(\sum_{k=0}^{\infty} r_k X^k\right) + \left(\sum_{k=0}^{\infty} r'_k X^k\right) = \sum_{k=0}^{\infty} (r_k + r'_k) X^k$$

und

$$\left(\sum_{k=0}^{\infty} r_k X^k\right) \times \left(\sum_{k=0}^{\infty} r'_k X^k\right) = \sum_{k=0}^{\infty} \left(\sum_{a+b=k} r_a r'_b\right) X^k.$$

2. Per Induktion definiert man den Polynomring mit n Unbekannten zu R als

$$R[X_1, \cdots, X_n] = (R[X_1, \cdots, X_{n-1}])[X_n].$$

Bemerkung 2.1.11 Sei R ein Ring.

- 1. Sei P ein Polynom in R[X]. Dann definiert P eine polynomiale Abbildung f_P : $R \to R$ durch $f_P(r) = P(r)$.
- 2. Man sollte aber Polynome und polynomiale Abbildungen nicht verwechseln. Zum Beispiel für $R = \mathbb{F}_2 = \mathbb{Z}/2\mathbb{Z}$ sind die Polynome P = 0 und $Q = X + X^2$ verschieden aber die Abbildungen die sie definieren sind $f_P : \mathbb{F}_2 \to \mathbb{F}_2$ und $f_Q : \mathbb{F}_2 \to \mathbb{F}_2$ und es gilt $f_P(x) = 0 = f_Q(x)$ für alle $x \in \mathbb{F}_2$ also $f_P = f_Q$.

Lemma 2.1.12 Sei R ein nullteilerfreier Ring. Dann ist R[X] nullteilerfrei.

Beweis. Seien $P, Q \in R[X] \setminus \{0\}$. Wir schreiben $P = \sum_{k=0}^{n} r_k X^k$ und $m = \sum_{k=0}^{m} s_k X^k$ mit $r_n \neq 0 \neq s_m$. Es gilt

$$PQ = \sum_{k=0}^{nm} \left(\sum_{a+b=k} r_a s_b \right) X^k = \sum_{k=0}^{nm} t_k X^k.$$

Insbesondere gilt $t_{nm} = r_n s_m$. Da R nulteilerfrei ist gilt $t_{nm} \neq 0$ also $PQ \neq 0$.

2.1.2 Ringhomomorphismus

Definition 2.1.13 Ein **Ringhomomorphismus** ist eine Abbildung $f: R \to R'$, wobei R und R' ringe sind so, dass für alle $a, b \in R$ gilt

$$f(a+b) = f(a) + f(b), f(ab) = f(a)f(b) \text{ und } f(1_R) = 1_{R'}.$$

Lemma 2.1.14 Sei $f: R \to R'$ ein Ringhomomorphismus.

- 1. Dann gilt $f(R^{\times}) \subset R^{\prime \times}$.
- 2. Die induzierte Abbildung $f: R^{\times} \to R'^{\times}$ ist ein Gruppenhomomorphismus.

38 2 Ringe

2.1.3 Unterringe und Ideale

Definition 2.1.15 Sei R ein Ring.

- 1. Eine Untergruppe $R' \subset R$ heißt **Unterring** falls
 - $1_R \in R'$ und
 - $ab \in R'$ für alle $a, b \in R'$.
- 2. Eine Untergruppe $I \subset R$ heißt **Ideal** falls $ab, ba \in I$ für alle $a \in I$ und alle $b \in R$.

Lemma 2.1.16 Sei R ein Ring und I ein Ideal. Dann gilt

$$I = R \Leftrightarrow 1_R \in I$$
.

Beweis. Übung.

Beispiel 2.1.17 1. $\mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R} \subset \mathbb{C} \subset \mathbf{H}$ sind Unterringe.

- 2. Sei R ein Ring. Die Menge $\{0_R\}$ ist ein Ideal und heißt **Nullideal**.
- 3. Sei R ein kommutativer Ring und $r \in R$. Dann ist $(r) = rR = \{ra \in R \mid a \in R\}$ ein Ideal.
- 4. Zum Beispiel ist $n\mathbb{Z} \subset \mathbb{Z}$ ein Ideal. Alle Ideale in \mathbb{Z} sind dieser Form (schon alle Untergruppen sind dieser Form!).
- 5. Sei K ein Körper und R = K[X]. Dann sind alle Ideale I in R der Form I = (P) für ein $P \in K[X]$ (Siehe LAII Übungsblatt 8 Übung 1).

Lemma 2.1.18 Sei $f: R \to R'$ ein Ringhomomorphismus, seien $S \subset R$ und $S' \subset R'$ Unterringe und $I \subset R$ und $I' \subset R'$ Ideale.

1. Dann sind f(S) und $f^{-1}(S')$ Unterringe von R' und R. Insbesondere ist im f ein Unterring.

- 2. 1. Dann ist $f^{-1}(I')$ ein Ideal von R. Insbesondere ist Kerf ein Ideal.
- 3. Falls f surjektiv ist, ist f(I) ein Ideal in R'.

Beweis. Bilder und Urbilder von Untergruppen sind Untergruppen.

1. Es gilt $1_R \in S$ also $1_{R'} = f(1_R) \in f(S)$. Seien $f(a), f(b) \in f(S)$ mit $a, b \in S$. Dann gilt $ab \in S$ und $f(a)f(b) = f(ab) \in f(S)$.

Es gilt $f(1_R) = 1_{R'} \in S'$ also $1_R \in f^{-1}(S')$. Seien $a, b \in f^{-1}(S')$ also $f(a), f(b) \in S'$. Dann gilt $f(ab) = f(a)f(b) \in S'$ also $ab \in f^{-1}(S')$.

2. Sei $a \in f^{-1}(I')$ und $b \in R$. Dann gilt $f(a) \in I'$ und $f(ab) = f(a)f(b) \in I'$ und $f(ba) = f(b)f(a) \in I'$.

3. Sei $f(a) \in f(I)$ mit $a \in I$ und sei $b' \in R'$. Da f surjektiv ist, gibt es ein $b \in R$ mit f(b) = b'. Es folgt $ab, ba \in I$ und $f(a)f(b) = f(ab) \in f(I)$ und $f(b)f(a) = f(ba) \in f(I)$.

2.1.4 Quotienten

Sei R ein Ring und I ein Ideal. Dann ist (R/I, +) eine Gruppe und die kanonische Projektion $\pi: R \to R/I$ ist ein Gruppenhomomorphismus.

Lemma 2.1.19 Sei R ein Ring und I ein Ideal.

- 1. Dann ist die Verknüpfung $\times : R/I \times R/I \to R/I$, ([a], [b] \mapsto [ab] wohl definiert.
- 2. $(R/I, +, \times)$ ist ein Ring und die kanonische Projektion $\pi: R \to R/I$ ist ein Ringhomomorphismus.

Beweis. 1. Seien $a', b' \in R$ mit [a'] = [a] und [b'] = [b]. Es gibt $c, d \in I$ mit a' = a + c und b' = b + d. Dann gilt a'b' = ab + ad + cb + cd und da $ad, cb, cd \in I$ gilt [a'b'] = [ab].

2. Übung. ■

Definition 2.1.20 Sei R ein Ring und I ein Ideal. Dann heißt R/I mit [a] + [b] = [a + b] und [a][b] = [ab] der **Quotientring**.

Bemerkung 2.1.21 Sei R ein Ring und I ein Ideal. Dann gilt $I=\mathrm{Ker}\pi,$ wobei $\pi:R\to R/I$ die kanonische Projektion. Also ist jeder Ideal der Kern eines Ringhomomorphismus.

Satz 2.1.22 Sei $f: R \to R'$ ein Ringhomomorphismus, sei I ein Ideal von R und sei $\pi: R \to R/I$ die kanonische Projektion.

1. Es gibt ein eindeutig bestimmter Ringhomomorphismus $\bar{f}:R/I\to R'$ so, dass das Diagram

kommutiert, genau dann wenn $I \subset \operatorname{Ker} f$.

Angenommen $I \subset \operatorname{Ker} f$ und sei \bar{f} wie in 1.

- 2. Die Abbildung \bar{f} ist genau dann injektiv, wenn $I = \operatorname{Ker} f$.
- 3. Die Abbildung \bar{f} ist genau dann surjektiv, wenn f surjektiv ist.

40 2 Ringe

Beweis. 1. Nach Satz 1.2.10.1 existiert ein eindeutig bestimmter Gruppenhomomorphismus \bar{f} wie oben genau dann, wenn $I \subset \operatorname{Ker} f$. Wir zeigen, dass \bar{f} ein Ringhomomorphismus ist. Es gilt $\bar{f}([1_{R/I}]) = \bar{f}(\pi(1_R)) = f(1_R) = 1_{R'}$. Seien $a, b \in R$. Es gilt $\bar{f}([a][b]) = \bar{f}([ab]) = \bar{f}(\pi(ab)) = f(ab) = f(ab) = f(ab) = f(ab)$.

- 2. Folgt aus Satz 1.2.10.2.
- 3. Folgt aus Satz 1.2.10.3.

Korollar 2.1.23 Sei $f: R \to R'$ ein surjektiver Ringhomomorphismus. Dann gilt $R/\mathrm{Ker} f \simeq R'$.

Beispiel 2.1.24 Es gilt $\mathbb{R}[X]/(X^2+1) \simeq \mathbb{C}$.

2.1.5 Erzeuger

Lemma 2.1.25 Sei R ein Ring. Sei $(R_a)_{a\in A}$ ein Familie von Unterringe und sei $(I_a)_{a\in A}$ eine Familie von Ideale. Seien I und J zwei Ideale.

- 1. Dann ist $\bigcap_{a \in A} R_a$ ein Unterring
- 2. Dann sind $\bigcap_{a \in A} I_a$, $I + J = \{a + b \in R \mid a \in I, b \in J\}$ Ideale.
- 3. Sei $A \subset R$ eine Teilmenge. Dann gibt es ein kleinster Unterring S mit $A \subset S$.
- 4. Sei $A \subset R$ eine Teilmenge. Dann gibt es ein kleinstes Ideal I mit $A \subset I$. Beweis. 1+2 Übung.
- 3 + 4. Der kleinste Unterring bzw. das kleinste Ideal sind

$$\bigcap_{S\supset A,\ S\ \text{Unterring}} S\ \text{und}\ \bigcap_{I\supset A,\ I\ \text{Ideal}} I.$$

Definition 2.1.26 Sei R ein Ring, A eine Teilmenge in R, S ein Unterring und I, J Ideale in R.

1. Der kleinste Unterring die S und A enthält heißt **der von** S **und** A **erzeugte Unterring**.

Man schreibt S[A] für den von S und A erzeugten Unterring.

2. Das kleinste Ideal die A enthält heißt das von A erzeugte Ideal.

Man schreibt (A) für das von A erzeugte Ideal. Falls $A = \{a\}$ schreibt man (A) = (a). Ein solches Ideal heißt **Hauptideal**.

- 2. Die Summe von I und J ist das Ideal $I + J = \{a + b \in R \mid a \in I, b \in J\}$.
- 3. Das Produktideal von I und J ist $IJ = (ab \mid a \in I, b \in J)$ i.e. das von Produkte ab mit $a \in I$ und $b \in J$ erzeugte Ideal.

Beispiel 2.1.27 1. $\mathbb{Z}[\sqrt{2}] = \{a + b\sqrt{2} \mid a, b \in \mathbb{Z}\}$ ist der von $\sqrt{2}$ erzeugte Unterring von \mathbb{R} .

2. Allgemeiner gilt für R kommutativ, $S \subset R$ Unterring und $r \in R$:

$$S[r] = \{ P(r) \in R \mid P \in S[X] \}.$$

3. Sei R ein kommutativer Ring und $r \in R$. Dann gilt $(r) = \{ra \in R \mid a \in R\}$.

Bemerkung 2.1.28 Es gilt $IJ \subset I \cap J$.

2.1.6 Isomorphiesätze

Satz 2.1.29 (Erster Isomorphiesatz) Sei R ein Ring und seien I, J Ideale.

- 1. Dann ist I ein Ideal in I + J und $I \cap J$ ist ein Ideal in J.
- 2. Die Abbildung $J/(I\cap J)\to (I+J)/I,\ [a]_{I\cap J}\mapsto [a]_I$ ist wohl definiert und ein Gruppenisomorphimus.

Beweis. 1. Klar.

2. Folgt aus dem ersten Isomorphiesatz für Gruppen.

Satz 2.1.30 (Zweiter Isomorphiesatz) Sei R ein Ring und I ein Ideal. Sei $J \supset I$ eine Untergruppe.

- 1. Dann ist J genau dann ein Ideal in R, wenn J/I ein Ideal in R/I ist.
- 2. Die Abbildung $(R/I)/(J/I) \to R/J$, $[[a]_I]_{J/I} \mapsto [a]_J$ ist wohl definiert und ein Ringisomorphimus.

Beweis. 1. Sei J ein Ideal und seien $[a] \in J/I$ und $[b] \in R/I$. Dann gilt $[a][b] = [ab] \in J/I$ und $[b][a] = [ba] \in J/I$ da $ab, ba \in J$.

Umgekehrt sei J/I ein Ideal. Seien $a \in J$ und $b \in R$. Dann gilt $[ab] = [a][b] \in J/I$ und $[ba] = [b][a] \in J/I$ also $ab, ba \in J$.

2. Aus dem zweiten Isomorphiesatz für Gruppen folgt, dass die Abbildung wohl definiert ist und ein Gruppenisomorphismus. Aber per Definition des Produkts ist diese Abbildung ein Ringhomomorphismus.

Korollar 2.1.31 Sei R ein Ring und I ein Ideal in R und $\pi: R \to R/I$ die kanonische Projektion. Dann ist die Abbildung

$$\{ J \text{ Ideal von } R \mid J \supset I \} \rightarrow \{ \bar{J} \text{ Ideal von } R/I \}, J \mapsto \pi(J) = J/I \}$$

bijektiv und es gilt $R/J \simeq (R/I)/\pi(J) = (R/I)/(J/I)$.

Beweis. Die Umkehrabbildung ist $\bar{J} \mapsto \pi^{-1}(\bar{J})$.

42 Ringe

2.1.7 Primideale und maximale Ideale

Lemma 2.1.32 Sei R ein kommutativer Ring. Es gilt

R Körper \Leftrightarrow die einzige Ideale in R sind R und 0.

Beweis. (\Rightarrow). Sei I ein Ideal mit $I \neq 0$. Sei $a \in I$ mit $a \neq$. Dann ist a invertierbar und es gilt $1_R = a^{-1}a \in I$ also I = R.

(⇐). Sei $a \in R$ mit $a \neq 0$ und sei I = (a). Dann gilt $I \neq 0$ also I = R und $1_R \in I$. Es gibt also ein $r \in R$ mit $ra = ar = 1_R$ also a ist invertierbar.

Lemma 2.1.33 Sei $f: K \to R$ ein Ringhomomorphismus mit K ein Körper und $R \neq 0$. Dann ist f injektiv.

Beweis. Der Kern Kerf ist ein Ideal. und $f(1_K) = 1_R \neq 0_R$ also gilt Ker $f \neq K$. Da K ein Körper ist hat K nur zwei Ideale: K und K 0. Es folgt KerK = 0.

Definition 2.1.34 Sei R ein Ring und I ein Ideal.

1. Das Ideal I heiß **Primideal**, wenn $I \neq R$ und für $a, b \in R$ gilt

$$(ab \in I) \Rightarrow (a \in I \text{ oder } b \in I).$$

1. Das Ideal I heiß **maximal**, wenn $I \neq R$ und für J ein Ideal gilt

$$(I \subset J) \Rightarrow (J = I \text{ oder } J = R).$$

Beispiel 2.1.35 Sei $R = \mathbb{Z}$. Dann ist $n\mathbb{Z}$ genau dann ein Primideal, wenn n = 0 oder n eine Primzahl ist.

Lemma 2.1.36 Sei R ein kommutativer Ring und I ein Ideal.

- 1. Das Ideal I ist genau dann ein Primideal, wenn A/I ein Integritätsring ist.
- 2. Das Ideal I ist genau dann maximal, wenn A/I ein Körper ist.

Beweis. Das Ideal ist genau dann echt $(I \neq R)$, wenn $R/I \neq 0$.

1. Sei I Primideal und seien $[a], [b] \in R/I$ mit [a][b] = [0]. Es gilt [ab] = [0] also $ab \in I$. Da I Primideal ist, gilt $a \in I$ oder $b \in I$ also [a] = [0] oder [b] = [0].

Umgekehrt, sei R/I Integritätsring und seien $a, b \in R$ mit $ab \in I$. Dann gilt [a][b] = [ab] = [0] also [a] = [0] oder [b] = [0]. Daraus folgt $a \in I$ oder $b \in I$.

2. Sei $\pi: R \to R/I$ die kanonische Projektion. Sei I maximal und sei \bar{J} ein Ideal in R/I. Dann ist $\pi^{-1}(\bar{J})$ ein Ideal in R mit $I \subset \pi^{-1}(\bar{J})$. Da I maximal ist, folgt $\pi^{-1}(\bar{J}) = I$ oder $\pi^{-1}(\bar{J}) = R$. Es folgt $\bar{J} = \pi(\pi^{-1}(\bar{J})) = I/I = ([0])$ oder $\bar{J} = R/I$. Nach dem Lemma 2.1.32 folgt, dass R/I ein Körper ist.

Umgekehrt, sei R/I ein Körper und sei J ein Ideal mit $I \subset J$. Dann ist $\pi(J)$ ein Ideal in R/I also nach Lemma 2.1.32 gilt $\pi(J) = ([0])$ oder $\pi(J) = R/I$. Daraus folgt $J = \pi^{-1}(\pi(J)) = I$ oder J = R und I ist maximal.

Beispiel 2.1.37 Sei $R = \mathbb{Z}[X]$. Dann ist (X) ein Primideal aber nicht maximal: es gilt $\mathbb{Z}[X]/(X) = \mathbb{Z}$ Integritätsring aber kein Körper. Das Ideal $(X,2) \supset (X)$ ist maximal: $\mathbb{Z}[X]/(X,2) \simeq \mathbb{Z}/(2) = \mathbb{F}_2$ ist ein Körper. Das Ideal (X^2) ist kein Primideal.

Korollar 2.1.38 Ein maximales Ideal ist ein Primideal.

Beweis. Ein Körper ist immer ein Integritätsring.

Beispiel 2.1.39 1. Das Ideal $I = (X^2 + 1)$ ist ein Primideal und sogar ein maximales Ideal in $\mathbb{R}[X]$: es gilt $\mathbb{R}[X]/(X^2 + 1) \simeq \mathbb{C}$ aber kein Primideal in $\mathbb{C}[X]$: es gilt $X - i \notin I$, $X + i \notin I$ aber $(X - i)(X + i) = X^2 + 1 \in I$.

2. Sei $x \in \mathbb{R}^n$, sei $R = C^0(\mathbb{R}^n, \mathbb{R})$ und $\mathfrak{M}_x = \{f \in R \mid f(x) = 0\}$. Dann gilt $R/\mathfrak{M}_x \simeq \mathbb{R}$ und \mathfrak{M}_x ist ein maximales Ideal in R.

Bemerkung 2.1.40 Aus dem Auswahl-Axiom kann man Zeigen

Satz 2.1.41 (Satz von Krull) Sei R ein Ring und I ein Ideal mit $I \neq R$. Dann gibt est ein maximales Ideal \mathfrak{M} mit $I \subset \mathfrak{M}$.

Lemma 2.1.42 Sei $f: R \to R'$ ein Ringhomomorphismus zwischen zwei kommutativen Ringe und sei I' ein Ideal in R'.

1. Es gilt $(I' \text{ Primideal}) \Rightarrow (f^{-1}(I') \text{ Primideal}).$

Sei f surjektiv

- 2. Es gilt (I' Primideal) \Leftrightarrow ($f^{-1}(I')$ Primideal).
- 3. Es gilt (I' maximales Ideal) \Leftrightarrow (I' maximales Ideal).

Beweis. 1. Seien $a, b \in R$ mit $ab \in f^{-1}(I')$. Es gilt $f(a)f(b) = f(ab) \in I'$ also $f(a) \in I'$ oder $f(b) \in I'$. Daraus folgt $a \in f^{-1}(I')$ oder $b \in f^{-1}(I')$.

Da f surjektiv ist gilt $R' \simeq R/\mathrm{Ker} f$ und nach identifizierung von R' mit $R/\mathrm{Ker} f$ ist die Abbildung $f: R \to R'$ mit der kanonischen Projektion $\pi: R \to R/\mathrm{Ker} f$ identifiziert.

2 und 3. Sei I' ein Ideal in $R' = R/\mathrm{Ker}f$. Sei $I = \pi^{-1}(I')$. Es gilt $I \supset J$ und $I/J = \pi(I) = I'$. Nach dem zwieten Isomorphiesatz gilt

$$R/I \simeq (R/J)/(I/J) = R'/I'.$$

Insbesondere ist R/I genau dann Integritätsring bzw. Körper, wenn R'/I' Integritätsring bzw. Körper ist.

Beispiel 2.1.43 1. Sei $f: \mathbb{R}[X] \to \mathbb{C}[X]$ und $I = (X^2 + 1) \subset \mathbb{C}[X]$. Dann gilt $f^{-1}(I) = (X^2 + 1) \subset \mathbb{R}[X]$ und $f^{-1}(I)$ ist ein Primideal und maximal aber I ist nicht maximal und kein Primideal.

2. Sei $f: \mathbb{Z} \to \mathbb{Q}$ die enthaltung. Sei $I = (0) \subset \mathbb{Q}$. Dann gilt $f^{-1}(I) = (0) \subset \mathbb{Z}$. Das Ideal I ist ein Primideal in \mathbb{Q} und sogar maximal aber $f^{-1}(I)$ ist ein Primideal aber nicht maximal.

2 Ringe

2.1.8 Teilerfremde Ideale

In diesem Abschnitt ist R ein kommutativer Ring.

Definition 2.1.44 Zwei Elemente $a, b \in R$ heißen teilerfremd falls

 $(c \mid a \text{ und } c \mid b \Rightarrow c \in R^{\times}) \text{ für alle } c \in R.$

Beispiel 2.1.45 1. Seien $n, m \in \mathbb{Z}$. Dann sind n und m genau dann teilerfremd, wenn ggT(n, m) = 1.

2. Sei K ein Körper und R = K[X,Y]. Dann sind X und Y teilerfremd: sei P mit P|X und P|Y. Dann gilt $P = \lambda$ oder $P = \lambda X$ für $\lambda \in K^{\times}$ und $P = \lambda$ oder $P = \lambda Y$ für $\lambda \in K^{\times}$. Es folgt $P = \lambda \in K^{\times} \subset R^{\times}$.

Definition 2.1.46 Sei R ein Ring. Zwei Ideale I und J heißen teilerfremd falls I+J=R.

Beispiel 2.1.47 1. Sei $R = \mathbb{Z}$, $I = n\mathbb{Z} = (n)$ und $J = m\mathbb{Z} = (m)$. Dann sind I und J genau dann teilerfremd, wenn n und m teilerfremd sind.

2. Sei K ein Körper und R = K[X,Y]. Seien I = (X) und J = (Y). Dann sind I und J nicht teilerfremd: es gilt I + J = (X) + (Y). Sei $P \in I + J$. Dann gibt es Polynome $S, T \in R$ mit P = XR + YT. Daraus folgt P(0,0) = 0. Insbesondere gilt $1 \notin I + J$ und $I + J \neq R$.

Lemma 2.1.48 Sei R ein kommutativer Ring. Seien $a, b \in R$ und I = (a), J = (b).

1. Es gilt: (I und I sind teilerfremd) \Rightarrow (a und b sind teilerfremd).

Sei R ein Hauptidealring i.e. alle Ideale I' sind der Form I' = (a') für ein $a' \in R$.

2. Es gilt: (I und I sind teilerfremd) \Leftrightarrow (a und b sind teilerfremd).

Beweis. 1. Es gilt (a) + (b) = I + J = R. Es gibt also $x, y \in R$ mit 1 = ax + by. Sei $c \in R$ mit $c \mid a$ und $c \mid b$. Es gibt also $\alpha, \beta \in R$ mit $a = c\alpha$ und $b = c\beta$. Daraus folgt

$$1 = ax + by = c\alpha x + c\beta y = c(\alpha x + \beta y)$$

und c ist invertierbar.

2. (\Rightarrow) folgt aus 1. (\Leftarrow). Da R ein Hauptidealring ist gibt es ein $c \in R$ mit (a) + (b) = I + J = (c). Es genügt zu zeigen, dass $c \in R^{\times}$ gilt: daraus folgt (c) = R. Es gilt $a \in (a) + (b) = (c)$ also gibt es ein $\alpha \in R$ mit $a = c\alpha$ *i.e.* c|a. Analog gilt c|b. Da a und b teilerfremd sind folgt $c \in R^{\times}$.

Satz 2.1.49 (Chinesischer Restsatz) Sei R ein kommutativer Ring und I_1, \dots, I_n paarweise teilerfremde Ideale. Dann ist die Abbildung

$$R/\bigcap_k I_k \to \prod_k R/I_k, \ [a] \mapsto ([a]_{R/I_1}, \cdots, [a]_{R/I_n}).$$

wohl definiert und ein Isomorphismus.

Beweis. Die Abbildung $f': R \to \prod_k R/I_k$, $a \mapsto ([a]_{R/I_1}, \cdots, [a]_{R/I_n})$ ist wohl definiert. Die obige Abbildung f wird wohl definiert sei sobald $\bigcap_k I_k \subset \operatorname{Ker} f'$. Sei $a \in \bigcap_k I_k$. Dann gilt $a \in I_k$ für alle k. Daraus folgt $[a]_{R/I_k} = [0]_{R/I_k}$ und $a \in \operatorname{Ker} f'$.

Wir zeigen $\operatorname{Ker} f' = \bigcap_k I_k$. Sei $a \in \operatorname{Ker} f'$. Dann gilt $[a]_{R/I_k} = [0]_{R/I_k}$ für alle k also gilt $a \in I_k$ für alle k und es folgt $a \in \bigcap_k I_k$. Daraus folgt, dass f injektiv ist.

Es bleibt zu zeigen, dass f surjektiv ist. Es genügt jetzt zu zeigen, dass f' surjektiv ist. Sei $j \in [1, n]$. Wir zeigen zuerst, dass I_j und $\bigcap_{k \neq j} I_k$ teilerfremd sind. Für $k \neq j$ sind I_j und I_k teilerfremd also $I_j + I_k = R$ und es gibt $a_{j,k} \in I_j$ und $b_k \in I_k$ mit $1 = a_{j,k} + b_k$ Daraus folgt

$$1 = \prod_{k \neq j} (a_{j,k} + b_k) = c_j + \prod_{k \neq j} b_k$$

wobei $c_j \in I_j$. Da $b_k \in I_k$ gilt $\prod_{k \neq j} b_k \in I_k$ für alle $k \neq j$ also $\prod_{k \neq j} b_k \in \bigcap_{k \neq j} I_k$. Daraus folgt $1 \in I_j + \bigcap_{k \neq j} I_k$ und $R = I_j + \bigcap_{k \neq j} I_k$. Sei $d_j = \prod_{k \neq j} b_k$. Es gilt $c_j + d_j = 1$, $c_j \in I_j$ und $d_j \in \bigcap_{k \neq j} I_k$.

Sei $\pi_j: R \to R/I_j$ die kanonische Projektion. Es gilt $\pi_j(c_j) = [c_j]_{R/I_j} = [0]_{R/I_j}$ da $c_j \in I_j$. Es gilt $\pi_j(d_j) = \pi_j(1 - c_j) = \pi_j(1) = [1]_{R/I_j}$. Und es gilt $\pi_j(d_\ell) = [d_\ell]_{R/I_j} = [0]_{R/I_j}$ für $\ell \neq j$ da $d_\ell \in \bigcap_{k \neq \ell} I_k$ und $j \in \{k \mid k \neq \ell\}$.

Sei $([a_1]_{R/I_1}, \cdots, [a_n]_{R/I_n}) \in \prod_k R/I_k$ und sei

$$a = \sum_{\ell=1}^{n} d_{\ell} a_{\ell}.$$

Es gilt

$$\pi_j(a) = \sum_{\ell=1}^n \pi_j(d_\ell) \pi_j(a_\ell) = [a_j]_{R/I_j}.$$

Daraus folgt $f(a) = ([a_1]_{R/I_1}, \dots, [a_n]_{R/I_n})$ und f ist surjektiv.

Korollar 2.1.50 Seien $n, m \in \mathbb{Z}$ teilerfremd. Es gilt

$$\mathbb{Z}/mn\mathbb{Z} \simeq \mathbb{Z}/m\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z}.$$

Beweis. Da n und m teilerfremd sind, gilt $n\mathbb{Z} \cap m\mathbb{Z} = mn\mathbb{Z}$.

46 2 Ringe

Lemma 2.1.51 Sei $n \in \mathbb{Z}$. Dann gilt

$$(\mathbb{Z}/n\mathbb{Z})^{\times} = \{ [m] \in \mathbb{Z}/n\mathbb{Z} \mid m \text{ und } n \text{ sind teilerfremd} \}.$$

Beweis. Siehe Übungsblatt 6.

Definition 2.1.52 Die Eulersche φ -Funktion ist die Abbildung $\varphi: \mathbb{Z}_{>0} \to \mathbb{N}$ definiert durch

$$\varphi(n) = |(\mathbb{Z}/n\mathbb{Z})^{\times}| = |\{[m] \in \mathbb{Z}/n\mathbb{Z} \mid m \text{ und } n \text{ sind teilerfremd}\}|.$$

Bemerkung 2.1.53 Es gilt $\varphi(1) = 1$ und $\varphi(p) = p - 1$ für p ein Primzahl.

Lemma 2.1.54 Sei
$$p$$
 ein Primzahl und $\alpha \in \mathbb{N}_{>0}$. Es gilt $\varphi(p^{\alpha}) = p^{\alpha} - p^{\alpha-1}$.

Beweis. Ein Element $m \in [1, p^{\alpha}]$ is genau dann teilerfremd mit p^{α} , wenn p kein Teiler von m ist. Die Elemente in [1, p] die durch p teilbar sind, sind die Elemente pk mit $k \in [1, p^{\alpha - 1}]$. Es sind also genau $p^{\alpha - 1}$ Elemente die durch p teilbar sind und $p^{\alpha} - p^{\alpha - 1}$ Elemente die durch p nicht teilbar sind.

Lemma 2.1.55 Seien
$$R_1, \dots, R_n$$
 Ringe. Es gilt $(\prod_k R_k)^{\times} = \prod_k (R_k^{\times})$.

Korollar 2.1.56 Sei $n \in \mathbb{Z}$ und $n = p_1^{\alpha_1} \cdots p_r^{\alpha_r}$ die Primzahlzerlegung. Es gilt

$$\varphi(n) = \prod_{i=1}^{r} (p_i^{\alpha_i} - p_i^{\alpha_1 - 1}) = n \cdot \prod_{i=1}^{r} \left(1 - \frac{1}{p_i}\right).$$

Beweis. Da die Zahlen $p_i^{\alpha_i}$ paarweise teilerfremd sind, sind die Ideale $p_i^{\alpha_i}\mathbb{Z}$ paarweise teilerfremd und es gilt

$$\mathbb{Z}/n\mathbb{Z} = \mathbb{Z}/\cap_i p_i^{\alpha_i}\mathbb{Z} \simeq \prod_i \mathbb{Z}/p_i^{\alpha_i}\mathbb{Z}.$$

Nach dem obigen Lemma gilt

$$\varphi(n) = |(\mathbb{Z}/n\mathbb{Z})^{\times}| = |(\prod_{i} \mathbb{Z}/p_{i}^{\alpha_{i}}\mathbb{Z})^{\times}| = \prod_{i} |(\mathbb{Z}/p_{i}^{\alpha_{i}}\mathbb{Z})^{\times}| = \prod_{i} \varphi(p_{i}^{\alpha_{i}}).$$

Nach Lemma 2.1.54 folgt die Aussage.

Satz 2.1.57 Sei $n \in \mathbb{Z}$. Dann ist die Abbildung

$$\Phi: (\mathbb{Z}/n\mathbb{Z})^{\times} \to \operatorname{Aut}(\mathbb{Z}/n\mathbb{Z})$$

definiert durch $a \mapsto \Phi_a$, wobei $\Phi_a : \mathbb{Z}/n\mathbb{Z} \to \mathbb{Z}/n\mathbb{Z}$, $x \mapsto ax$ ist ein Gruppenisomorphismus.

Beweis. Siehe Übungsblatt 6.

2.2 Quotientkörper

In diesem Abschnitt ist R ein Integritätsring.

Definition 2.2.1 Sei \sim die Relation auf $R \times (R \setminus \{0\})$ definiert durch

$$(a,b) \simeq (c,d) \Leftrightarrow ad = bc.$$

Lemma 2.2.2 Die Relation \sim ist eine Äquivalenzrelation.

Beweis. Es gilt ab = ba also $(a, b) \sim (a, b)$. Seien $(a, b) \sim (c, d)$. Es gilt ad = bc also cb = da und es folgt $(c, d) \sim (a, b)$. Seien $(a, b) \sim (c, d) \sim (e, f)$. Es gilt ad = bc und cf = de. Daraus folgt adf = bcf = bde. Da $d \neq 0$ und R Integritätsring folgt af = be also $(a, b) \sim (e, f)$.

Definition 2.2.3 Sei Frac $(R) = (R \times (R \setminus \{0\})) / \sim$ die Menge aller Äquivalenzklassen für \sim . Wir Schreiben $\frac{a}{b}$ für die Äquivalenzklasse [(a,b)] von (a,b).

Satz 2.2.4 Sei R ein Integritätsring.

- 1. Die Menge Frac(R) mit $\frac{a}{b} + \frac{c}{d} = \frac{ad+bc}{bd}$ und $\frac{a}{b} \cdot \frac{c}{d} = \frac{ac}{bd}$ ist ein Körper.
- 2. Die Abbildung $R \to \operatorname{Frac}(R), \ a \mapsto \frac{a}{1}$ is ein injektiver Ringhomomorphimus.

Beweis. 1. Zuerst zeigen wir , dass die Addition und die Multiplikation wohl definiert sind. Sei $\frac{a}{b} = \frac{a'}{b'}$ und $\frac{c}{d} = \frac{c'}{d'}$. Dann gilt $\frac{ac}{bd} = \frac{acb'd'}{bdb'd'} = \frac{ba'c'd}{bdb'd'} = \frac{a'c'}{b'd'}$. Analog ist die Addition wohl definiert.

Da das Produkt in R assoziativ und kommutativ ist ist das Produkt in $\operatorname{Frac}(R)$ auch kommutativ und assoziativ. Da R ein kommutativer Ring folgt, dass + kommutativ ist. Man überprüft leicht, dass $\frac{0}{1}$ ein neutrales Element für + ist und es gilt $\frac{a}{b} + \frac{-a}{b} = \frac{0}{b} = \frac{0}{1}$ also ist $(\operatorname{Frac}(R), +)$ eine kommutative Gruppe. Distributivitätsgesetzt überprüft man leicht. Es gilt $\frac{1}{1} \cdot \frac{a}{b} = \frac{a}{b}$ also ist $\frac{1}{1}$ ein neutrales Element für die Multiplikation.

Sei $\frac{a}{b} \neq \frac{0}{1}$. Dann gilt $a \neq 0$ also ist $\frac{b}{a}$ wohl definiert. Es gilt $\frac{a}{b} \cdot \frac{b}{a} = \frac{ab}{ab} = \frac{1}{1}$. Also ist Frac(R) ein Körper.

2. Es gilt $\frac{ab}{1} = \frac{a}{1} \cdot \frac{b}{1}$ also ist die Abbildung ein Ringhomomorphismus. Sei $\frac{a}{1}$ im Kernel. Es gilt $\frac{a}{1} = \frac{0}{1}$ und es folgt a = 0.

Index

$D^k(G)$, 32	Isomorphismus, 6
k-te derivierte Untergruppe, 32	Körpor 26
p-Gruppe, 23	Körper, 36
äußere Automorphismen, 6	kanonische Projektion, 7
abolseh 4	kommutativ, 4
abelsch, 4	Kommutator, 16
Alternierende Gruppe, 6	Kommutator Untergruppe, 16
assoziativ, 4	Linksklassen, 6
auflösbar, 32	,
Automorphismus, 6	Mächtigkeit, 7
Bahn, 20	maximal Ideal, 42
Derivierte Gruppe, 16	${\rm neutrales\ Element,\ 4}$
	Normalisator, 10
erzeugte Untergruppe, 14	Normalteiler, 8
Eulersche Funktion, 46	0 11 10
exakte Sequenz, 10	Operation, 19
D. 1. 00	k-transitiv, 25
Fixpunkt, 20	Konjugation, 20
Gruppe, 4	Linkstranslation, 20
einfach, 10	transitiv, 20
Gruppenhomomorphismus, 5	treu, 20
Gruppenautomorphismus, 6	Triviale Operation, 20
Gruppenisomorphismus, 6	Orbit, 20
innerer, 6	Ordnung, 7
Kern, 6	Ordnung eines Elements, 15
Konjugation mit g , 6	Polynomring, 36
	Polynomring mit n Unbekannten, 37
Ideal, 38	Primideal, 42
m erzeugtes Ideal, 40	Produkt-Gruppe, 5
m Hauptideal, 40	 '
Nullideal, 38	Quotient G/H , 7
Produktideal, 40	Quotient $H\backslash G$, 7
Summe, 40	Quotient einer Menge
m teiler fremd, 44	nach einer Gruppe, 20
inverses Element, 4	Quotientgruppe, 9
invertierbares Element 36	Quotientring 39

INDEX 49

```
Rechtsklassen, 7
Ring, 35
   Einheit, 36
   erzeugter Unterring, 40
   Integritätsring, 36
   kommutativ, 35
   Nullring, 35
   Nullteiler, 36
   Nullteilerfrei, 36
   Produkt, 36
   Schiefkörper, 36
Semidirektes Produkt, 17
Stabilisator, 20
Sylowuntergruppe, 27
Trivialeuntergruppe, 5
Untergruppe, 5
   Index, 7
Unterring, 38
Zentralisator, 12
Zentrum, 12
Zykel, 24
   fremd, 24
   Länge, 24
   Träger, 24
zyklische Gruppe, 14
```