CSC 411 Fall 2018 Machine Learning and Data Mining

Homework 7

Family name: Bhatia

Given name: Pooja

Q1 Representer Theorem

Solution part
(a)

$$Z = \omega^{T} \varphi(x) - 2$$

$$y = g(z) - 3$$

$$J(\omega) = \frac{1}{N} \sum_{i=1}^{N} L(y^{(i)}, t^{(i)}) + \frac{1}{2} ||\omega||^{2} - 0$$

$$\Psi = \left(\Psi(x^{(i)})^{T} \right) \text{ (feature matrix)}$$

$$\Psi = \left(\chi(x^{(i)})^{T} \right) \text{ (feature matrix)}$$

To minimize the loss plus regularization project woon a subspace $project won a subspace \\ span <math>\{ \psi(x^{(i)}) : 1 \le i \le N \}$

Wy is the component along the subspace WI is the component of thogonal/perpendicular to subspace.

W = Wy + W_ (Decomposition of w)

Now,
The regularizer term inequation () $||w||^2 = ||wp||^2 + ||wp||^2 \ge ||wp||^2 \le ||wp||^2$ then, $\frac{\lambda}{2} \left(||w||^2 \right) \ge \frac{\lambda}{2} (||wp||^2)$

hence This team is minimized for

M=Wy): Regularized term

minimized for when

 $U = U \varphi$ $T = 0 \quad \text{dual} \quad T = 0$

The objective is to minimize loss and regulizer in equation basically with a norm (12 h(y ii), ti) + 1 11 will)

The individual loss terms in this would be: from 0,0,0 equation and taking Feature matrix.

(w, \(\psi(x^{(i)}) \) = \(\psi \psi_3 \psi(x^{(i)}) \) + \(\psi_3 \psi(x^{(i)}) \)

 $\langle \omega, \psi(x^{(i)}) \rangle = \langle \omega \psi, \psi(x^{(i)}) \rangle + \langle \omega_{\perp}, \psi(x^{(i)}) \rangle$ $= \langle \omega \psi, \psi(x^{(i)}) \rangle$

Since $\langle \omega_{\perp}, \psi(x^{(i)}) \rangle = 0$ for all i=1. N as $\psi(x^{(i)})$ belongs to subspace, and ω_{\perp} is perpendicular to subspace.

in This implies that loss h(-) only depends on component of wo that less of the subspace. Hence to minimize loss || W_1 || 18 taken as Teso.

... The optimal weights lie in row space of 4. Solution

$$\omega = \varphi^T \alpha - 0$$

$$J(\omega) = \frac{1}{2N} 1 t - \psi \omega 11^2 + \frac{\lambda}{2} |\omega|^2 - 2$$

$$J(x) = \frac{1}{2N} ||f - \psi \psi^{T} x||^{2} + \frac{\lambda}{2} ||\psi^{T} x||^{2} - 3$$

gnen

GRAM MATRIX K = 44

substitute in equation 3

Substitute in
$$J(x) = \frac{1}{2N} \frac{|| t - K x ||^2}{|| t - K x ||^2} + \frac{\lambda}{2} \frac{|| \psi^T x ||^2}{|| t - K x ||^2}$$

$$T(\alpha) = \frac{1}{2N} \frac{11t - K\alpha 11^2}{11t - K\alpha 11^2 + \lambda} (\psi^T \psi \alpha^T \alpha)$$

$$T(\alpha) = \frac{1}{2N} \frac{11t - K\alpha 11^2 + \lambda}{2} (K\alpha^T \alpha)$$

$$J(\alpha) = \frac{1}{2N}$$

$$J(\alpha) = \frac{1}{2N} ||t - K\alpha||^2 + \frac{\lambda}{2} (K\alpha T\alpha)$$

$$J(\alpha) = \frac{1}{2N} ||t - K\alpha||^2 + \frac{\lambda}{2} (K\alpha T\alpha)$$

$$J(\alpha) = \frac{1}{2N} \frac{\|t - R\alpha\|^2}{2N}$$

$$J(\alpha) = \frac{1}{2N} \left(\frac{\|t\|^2}{2N} - 2t^T K\alpha + \frac{1}{2} \frac{K\alpha^T \alpha}{2N} \right)$$

$$J(x) = \frac{1}{2N} \left(\left\| t \right\|^2 - 2t^T K x + K^T K x^T x \right) + \frac{\lambda}{2} \left(k x^T x \right)$$

$$J(x) = \frac{1}{2N} \left(\frac{\|t\|^2 - 2t^T K x + K^T K x^T x}{2N} + \frac{\lambda}{2} \left(\frac{K x^T x}{2N} \right) \right)$$

$$= \frac{\|t\|^2}{2N} - \frac{2t^T K x}{2N} + \frac{\lambda}{2N} \left(\frac{K x^T x}{2N} + \frac{\lambda}{2N} \right) \right) \right)$$

$$J(x) = \frac{x^T x}{2} \left(\frac{K^T K}{N} + \lambda K \right) - \left(\frac{2t^T K}{2N} \right) x + \frac{\|t\|^2}{2N} - \left(\frac{y}{2N} \right)$$

$$J(x) = \frac{x^T x}{2} \left(\frac{K^T K}{N} + \lambda K \right) - \left(\frac{2t^T K}{2N} \right) x + \frac{\|t\|^2}{2N} - \left(\frac{y}{2N} \right)$$

$$J(x) = \frac{x^T x}{2N} \left(\frac{K^T x}{N} + \frac{\lambda}{N} \right) - \left(\frac{2t^T x}{N} \right)$$

$$J(x) = \frac{x^T x}{2N} \left(\frac{K^T x}{N} + \frac{\lambda}{N} \right) - \left(\frac{2t^T x}{N} \right)$$

$$J(x) = \frac{x^T x}{2N} \left(\frac{K^T x}{N} + \frac{\lambda}{N} \right) - \left(\frac{2t^T x}{N} \right)$$

$$J(x) = \frac{x^T x}{2N} + \frac{\lambda}{N} \left(\frac{x^T x}{N} + \frac{\lambda}{N} \right) - \left(\frac{x^T x}{N} \right)$$

$$J(x) = \frac{x^T x}{2N} + \frac{\lambda}{N} \left(\frac{x^T x}{N} + \frac{\lambda}{N} \right) - \left(\frac{x^T x}{N} \right)$$

$$J(x) = \frac{x^T x}{2N} + \frac{\lambda}{N} \left(\frac{x^T x}{N} + \frac{\lambda}{N} \right) - \left(\frac{x^T x}{N} \right)$$

$$J(x) = \frac{x^T x}{2N} + \frac{\lambda}{N} \left(\frac{x^T x}{N} + \frac{\lambda}{N} \right)$$

$$J(x) = \frac{x^T x}{2N} + \frac{\lambda}{N} \left(\frac{x^T x}{N} + \frac{\lambda}{N} \right)$$

$$J(x) = \frac{x^T x}{2N} + \frac{\lambda}{N} \left(\frac{x^T x}{N} + \frac{\lambda}{N} \right)$$

$$J(x) = \frac{x^T x}{2N} + \frac{\lambda}{N} \left(\frac{x^T x}{N} + \frac{\lambda}{N} \right)$$

$$J(x) = \frac{x^T x}{2N} + \frac{\lambda}{N} \left(\frac{x^T x}{N} + \frac{\lambda}{N} \right)$$

$$J(x) = \frac{x^T x}{2N} + \frac{\lambda}{N} \left(\frac{x^T x}{N} + \frac{\lambda}{N} \right)$$

$$J(x) = \frac{x^T x}{2N} + \frac{\lambda}{N} \left(\frac{x^T x}{N} + \frac{\lambda}{N} \right)$$

$$J(x) = \frac{x^T x}{2N} + \frac{\lambda}{N} \left(\frac{x^T x}{N} + \frac{\lambda}{N} \right)$$

$$J(x) = \frac{x^T x}{2N} + \frac{\lambda}{N} \left(\frac{x^T x}{N} + \frac{\lambda}{N} \right)$$

$$J(x) = \frac{x^T x}{2N} + \frac{\lambda}{N} \left(\frac{x^T x}{N} + \frac{\lambda}{N} \right)$$

$$J(x) = \frac{x^T x}{2N} + \frac{\lambda}{N} \left(\frac{x^T x}{N} + \frac{\lambda}{N} \right)$$

$$J(x) = \frac{x^T x}{2N} + \frac{\lambda}{N} \left(\frac{x^T x}{N} + \frac{\lambda}{N} \right)$$

$$J(x) = \frac{x^T x}{2N} + \frac{\lambda}{N} \left(\frac{x^T x}{N} + \frac{\lambda}{N} \right)$$

$$J(x) = \frac{x^T x}{2N} + \frac{\lambda}{N} \left(\frac{x^T x}{N} + \frac{\lambda}{N} \right)$$

$$J(x) = \frac{x^T x}{2N} + \frac{\lambda}{N} \left(\frac{x^T x}{N} + \frac{\lambda}{N} \right)$$

$$J(x) = \frac{x^T x}{2N} + \frac{\lambda}{N} \left(\frac{x^T x}{N} + \frac{\lambda}{N} \right)$$

$$J(x) = \frac{x^T x}{2N} + \frac{\lambda}{N} \left(\frac{x^T x}{N} + \frac{\lambda}{N} \right)$$

$$J(x) = \frac{x^T x}{2N} + \frac{\lambda}{N} \left(\frac{x^T x}{N} + \frac{\lambda}{N} \right)$$

$$J(x) = \frac{x^T x}{2N} + \frac{\lambda}{N} \left(\frac{x^T x}{N}$$

Q2 Compositional Kernels

Solution Poolt
$$K_{1}(x, x') = \psi_{1}(x)^{T}\psi_{1}(x') - 0$$

$$K_{2}(x, x') = \psi_{2}(x)^{T}\psi_{2}(x') - 0$$

$$K_{3}(x, x') = K_{1}(x, x') + K_{2}(x, x')$$

$$= \psi_{1}(x)^{T}\psi_{1}(x') + \psi_{2}(x)^{T}\psi_{2}(x')$$

$$= \psi_{1}(x)^{T}\psi_{1}(x') + \psi_{2}(x)^{T}\psi_{2}(x')$$

$$= (\psi_{1}(x), \psi_{2}(x)) \left(\psi_{1}(x') - 3\right)$$

$$= (\psi_{1}(x), \psi_{2}(x)) - 3$$

$$K_s(x, x') = \psi_s(x)^T \psi_s(x') - \Theta$$

comparing 3 and 4

$$\psi_s(x)^T = (\psi_s(x), \psi_z(x)) \text{ and } \psi_s(x') = (\psi_s(x'))$$

$$\psi_s(x) = \left(\psi_1(x)\right)$$
Ans

Solution post (b)

 $K_i(x,x') = \psi_i(x)^T \psi_i(x') - 0$

 $K_2(x, x') = \Psi_2(x)^T \Psi_2(x') - 2$

(from sub Dand 2) $K_{p}(x, x') = K_{1}(x, x') K_{2}(x, x')$

 $= \sum_{i=1}^{n} \Psi_{ii}(x) \Psi_{ii}(x') \sum_{j=1}^{m} \Psi_{2j}(x) \Psi_{2j}(x')$

 $= \frac{2}{2} \sum_{i=1}^{\infty} (\psi_{ii}(x) \psi_{2j}(x)) (\psi_{ii}(x') \psi_{2j}(x'))$

= E 412K (X) 412K (X')

 $K_p(x,x') = \Psi_p(x)^T \Psi_p(x') - \Psi_p(x')$

Up 18 a feature map:

 Ψ_p $(x) = \Psi_1(x) \times \Psi_2(x)$ (cartesian)

ANS

(By comparing) 2 and 4)

4p(x) = 4, (x) x 42(x)

In the above Solution, I have taken $\Psi_1(x)$ to be a dimensional vector and $\Psi_2(x)$ to be an dimensional vector where $\Psi_1(x)$ is the ith feature value under feature map Ψ_1 and $\Psi_2(x)$ is the jth feature value under feature value under feature map Ψ_2 . We can also solve the same by taking limit/range to a instead of a and m. The

 $K_{p}(X,X') = K_{i}(X,X') K_{2}(X,X')$ $= \left(\underset{i=1}{\overset{\sim}{\sum}} \Psi_{i}(X) \Psi_{i}(X') \right) \left(\underset{j=1}{\overset{\sim}{\sum}} \Psi_{2j}(X) \Psi_{2j}(X') \right)$

 $= \sum_{i,j} \Psi_{ii}(x) \Psi_{i}(x') \Psi_{2j}(x) \Psi_{2j}(x') \longrightarrow \bigcirc$

 $\left(\psi_{p}(x) = \psi_{1}(x) \times \psi_{2}(x) \right)$

(from comparing and 5)

L) Ans