CENG 2010 - Programming Language Concepts Week 5: (Operational) Semantics

Burak Ekici

April 3 - April 10, 2023

Architecture of Compilers and Interpreters

lexer : source code → tokens (keywords, variables, numbers, etc.) regu

regular expressions

Architecture of Compilers and Interpreters

lexer parser source code

tokens (keywords, variables, numbers, etc.)

regular expressions context free grammars

Architecture of Compilers and Interpreters

 $\mathsf{code} \ \mathsf{generator} \quad : \quad \mathsf{AST} \qquad \qquad \mapsto \quad \mathsf{intermediate} \ (\mathsf{OCamI}) \ \mathsf{code}$

Table of Contents

1 Formal Semantics

2 IMP Syntax

3 IMP Semantics

Syntax vs Semantics

syntax vs semantics

syntax grammatical structure semantics underlying meaning

Syntax vs Semantics

syntax vs semantics

syntax grammatical structure semantics underlying meaning

• similar semantics can be achieved by different syntax in different languages

	Physical Equality	Structural Equality
С	&a == &b	*a == *b
OCaml	a == b	a = b

Syntax vs Semantics

syntax vs semantics

syntax grammatical structure semantics underlying meaning

• similar semantics can be achieved by different syntax in different languages

	Physical Equality	Structural Equality
С	&a == &b	*a == *b
OCaml	a == b	a = b

• semantics in prose text vs formal semantics in mathematics

Formal Semantics of a Programming Language

• mathematical description of the meaning of programs written in that language

Formal Semantics of a Programming Language

- mathematical description of the meaning of programs written in that language
- main approaches to formal semantics

denotational algebraic objects operational abstract machines

operational abstract machines

axiomatic logical transformations

• denotational semantics: represent programs with mathematical objects

Formal Semantics

00000

- denotational semantics: represent programs with mathematical objects
 - convert programs into functions/functors mapping inputs to outputs

00000

- denotational semantics: represent programs with mathematical objects
 - convert programs into functions/functors mapping inputs to outputs
- operational semantics: define "how programs execute"

- denotational semantics: represent programs with mathematical objects
 - convert programs into functions/functors mapping inputs to outputs
- operational semantics: define "how programs execute"
 - often on an abstract machine (mathematical model of computer)

- denotational semantics: represent programs with mathematical objects
 - convert programs into functions/functors mapping inputs to outputs
- operational semantics: define "how programs execute"
 - often on an abstract machine (mathematical model of computer)
- axiomatic semantics: describe programs as predicate transformers, i.e. for converting initial assumptions into guaranteed properties after execution

- denotational semantics: represent programs with mathematical objects
 - convert programs into functions/functors mapping inputs to outputs
- operational semantics: define "how programs execute"
 - often on an abstract machine (mathematical model of computer)
- axiomatic semantics: describe programs as predicate transformers, i.e. for converting initial assumptions into guaranteed properties after execution
 - pre-conditions: assumed properties of initial states

- denotational semantics: represent programs with mathematical objects
 - convert programs into functions/functors mapping inputs to outputs
- operational semantics: define "how programs execute"
 - often on an abstract machine (mathematical model of computer)
- axiomatic semantics: describe programs as predicate transformers, i.e. for converting initial assumptions into guaranteed properties after execution
 - pre-conditions: assumed properties of initial states
 - post-condition: guaranteed properties of final states

- denotational semantics: represent programs with mathematical objects
 - · convert programs into functions/functors mapping inputs to outputs
- operational semantics: define "how programs execute"
 - often on an abstract machine (mathematical model of computer)
- axiomatic semantics: describe programs as predicate transformers, i.e. for converting initial assumptions into guaranteed properties after execution
 - pre-conditions: assumed properties of initial states
 - post-condition: guaranteed properties of final states
 - logical rules describe how to systematically build up these transformers from programs

• describe the evaluation of programs on an abstract machine

- describe the evaluation of programs on an abstract machine
- approach: benefiting rules in the form of judgments $\frac{H_1 \dots H_n}{C}$

- describe the evaluation of programs on an abstract machine
- approach: benefiting rules in the form of judgments $\frac{H_1 \dots H_n}{C}$
- if the conditions $H_1 \dots H_n$ ("hypotheses") hold, then the condition C ("conclusion") holds

- describe the evaluation of programs on an abstract machine
- approach: benefiting rules in the form of judgments $\frac{H_1 \dots H_n}{C}$
- if the conditions $H_1 \dots H_n$ ("hypotheses") hold, then the condition C ("conclusion") holds
- if n = 0 (no hypotheses) then the conclusion automatically holds: an axiom

- · describe the evaluation of programs on an abstract machine
- approach: benefiting rules in the form of judgments $\frac{H_1 \dots H_n}{C}$
- if the conditions $H_1 \dots H_n$ ("hypotheses") hold, then the condition C ("conclusion") holds
- if n = 0 (no hypotheses) then the conclusion automatically holds: an axiom
- inference rules let one to speak about the evaluation steps of a given expression

- · describe the evaluation of programs on an abstract machine
- approach: benefiting rules in the form of judgments $\frac{H_1 \dots H_n}{C}$
- if the conditions $H_1 \dots H_n$ ("hypotheses") hold, then the condition C ("conclusion") holds
- if n = 0 (no hypotheses) then the conclusion automatically holds: an axiom
- inference rules let one to speak about the evaluation steps of a given expression
- · judgments are of
 - $(e, \Gamma) \longrightarrow e$ expressions $(c, \Gamma) \longrightarrow \Gamma$ commands

form that could be represented as OCaml functions

- · describe the evaluation of programs on an abstract machine
- approach: benefiting rules in the form of judgments $\frac{H_1 \dots H_n}{C}$
- if the conditions $H_1 \dots H_n$ ("hypotheses") hold, then the condition C ("conclusion") holds
- if n = 0 (no hypotheses) then the conclusion automatically holds: an axiom
- inference rules let one to speak about the evaluation steps of a given expression
- · judgments are of
 - $(e, \Gamma) \longrightarrow e$ expressions $(c, \Gamma) \longrightarrow \Gamma$ commands

form that could be represented as OCaml functions

• this way of presenting the semantics is handled by a definitional interpreter

Table of Contents

1 Formal Semantics

2 IMP Syntax

3 IMP Semantics

The IMP Language (Abstract Syntax)

• a prototypical imperative language with structured control flow

The IMP Language (Abstract Syntax)

- · a prototypical imperative language with structured control flow
- composed of expressions (arithmetic, Boolean) and commands

$$a ::= n | x | a_1 + a_2 | a_1 - a_2 | a_1 \times a_2 | a_1/a_2$$

$$b$$
 ::= true | false | $b_1 \&\& b_2 | b_1 | | b_2 | a_1 = a_2 | a_1 > a_2 | a_1 < a_2 | \sim b_1$

$$c$$
 ::= skip|int $x \mid x := a \mid c_1; c_2 \mid if(b) then\{c_1\} else\{c_2\} \mid while(b)\{c\}$

```
Example (An IMP Program – Factorial)
```

```
// input: an arbitrary integer in a

int a;
int res;
res := 1;
a := 6;
while(a > 1)
{
    res := a * res;
    a := a - 1
}

// output: a! in res
```

```
Example (An IMP Program – Division)
```

```
input: dividend in a, divisor in b
           int a;
           int b;
           int q;
           int r:
           a := 100;
           b := 3;
           r := a:
9
           q := 0;
10
           \dot{\text{while}}(b < r \mid\mid b = r)
12
13
              r := r - b:
              q := q + 1
14
16
   // output: quotient in q, remainder in r
```

a language containing

a language containing

• integer constants/values (v) ..., -5, 0, 1, 5, ...

a language containing

• integer constants/values (v) ..., -5, 0, 1, 5, ...

• variables x, y, \dots

a language containing

• integer constants/values (v) ..., -5, 0, 1, 5, ...

• variables x, y, \dots

• operations $e_1 + e_2$, $e_1 - e_2$, $e_1 \times e_2$ and e_1/e_2

where e_1, e_2 arithmetic expressions

a language containing

```
• integer constants/values (v) ..., -5, 0, 1, 5, ...
```

• variables x, y, \dots

• operations $e_1 + e_2$, $e_1 - e_2$, $e_1 \times e_2$ and e_1/e_2

where e_1, e_2 arithmetic expressions

Implementation (OCaml)

The IMP Language (Boolean Expressions)

a language comprising

The IMP Language (Boolean Expressions)

- a language comprising
 - boolean constants/values (v) true and false

The IMP Language (Boolean Expressions)

a language comprising

• boolean constants/values (v) true and false

• boolean operators $b_1 \&\& b_2, \ b_1 || b_2, \ a_1 = a_2, \ a_1 > a_2, \ a_1 < a_2 \sim b_1$

where a_1, a_2 arithmetic expressions;

 b_1, b_2 boolean expressions

The IMP Language (Boolean Expressions)

- a language comprising
 - boolean constants/values (v) true and false
 - boolean operators $b_1 \&\& b_2, \ b_1 || b_2, \ a_1 = a_2, \ a_1 > a_2, \ a_1 < a_2 \sim b_1$

```
where a_1, a_2 arithmetic expressions; b_1, b_2 boolean expressions
```

Implementation (OCaml)

```
type bexpr =
   Bconst: bool
                         → bexpr
   And
          : (bexpr*bexpr) → bexpr
   Or
         : (bexpr*bexpr) → bexpr
         : (aexpr*aexpr) → bexpr
   Eq
   GĖ
        : (aexpr*aexpr) → bexpr
         : (aexpr*aexpr) → bexpr
   Lt
                         → bexpr
   Neg
          : bexpr
```

The IMP Language (Commands)

a language made of

skip do nothing

int x variable declaration and initialization (set to 0) integer type only

x := a variable assignment arithmetic expressions only

 $c_1; c_2$ sequencing if(b)then $\{c_1\}$ else $\{c_2\}$ branching

while(b){c} looping

arithmetic expressions only

The IMP Language (Commands)

a language made of

skip do nothing

int xvariable declaration and initialization (set to 0) integer type only

variable assignment x := a

sequencing $C_1 : C_2$ $if(b)then\{c_1\}else\{c_2\}$ branching $while(b)\{c\}$ looping

Implementation (OCaml)

tvpe cmd =Skip : cmd

Declare : string \rightarrow cmd Assign : (string*aexpr) \rightarrow cmd Sequence: (cmd*cmd) \rightarrow cmd (bexpr*cmd*cmd) → cmd Ite While

• IMP allows for imperative updates

- IMP allows for imperative updates
- maintains a program state (informally) = external memory

- IMP allows for imperative updates
- maintains a program state (informally) = external memory
- state (formally) = a list of variable-value pairs:

```
\begin{array}{ll} \Gamma := & \\ & [ \ ] & \text{``empty'' state} \\ & [ \ \Gamma, (x,n) & \text{``non-empty'' state} \end{array}
```

- IMP allows for imperative updates
- maintains a program state (informally) = external memory
- state (formally) = a list of variable-value pairs:

```
\begin{array}{ll} \Gamma := & \\ & \mid \ [ \ ] & \text{``empty'' state} \\ & \mid \ \Gamma, (x, n) & \text{``non-empty'' state} \end{array}
```

captures variable declaration and initializations

- IMP allows for imperative updates
- maintains a program state (informally) = external memory
- state (formally) = a list of variable-value pairs:

```
\begin{array}{ll} \Gamma := & \\ & | & [ \ ] & \text{``empty'' state} \\ & | & \Gamma , (x,n) & \text{``non-empty'' state} \end{array}
```

- captures variable declaration and initializations
- interface functions:

```
 \begin{array}{lll} \text{lookup} & : & \Gamma \rightarrow \text{variable} \rightarrow \mathbb{Z} \\ \text{update} & : & \Gamma \rightarrow \text{variable} \rightarrow \mathbb{Z} \rightarrow \Gamma \\ \text{extend} & : & \Gamma \rightarrow \text{variable} \rightarrow \mathbb{Z} \rightarrow \Gamma \\ \end{array}
```

```
Implementation (OCaml)
```

Table of Contents

Formal Semantics

2 IMP Syntax

3 IMP Semantics

The IMP Language (Small-step Operational Semantics – Arithmetic and Boolean Expressions)

 \rightarrow_a : $\Gamma \rightarrow$ arithmetic expression \rightarrow arithmetic expression

The IMP Language (Small-step Operational Semantics – Arithmetic and Boolean Expressions)

 \leadsto_a : $\Gamma \rightarrow$ arithmetic expression \rightarrow arithmetic expression

 \leadsto_b : $\Gamma \rightarrow$ boolean expression \rightarrow boolean expression

The IMP Language (Small-step Operational Semantics – Arithmetic and Boolean Expressions)

```
Implementation (OCaml)
```

```
let rec evalAexpr(a: aexpr) (m: state): aexpr =
 match a with
   Aconst i
                → Aconst i
   Var s
          → Aconst(lookup m s)
    Plus(a1, a2) \rightarrow let ea1 = evalAexpr a1 m in
                      let ea2 = evalAexpr a2 m in
                      begin
                        match (eal. ea2) with
                          (Aconst v1, Aconst v2) \rightarrow Aconst(v1+v2)
                          (_{-},_{-})
                                                   → Plus(ea1, ea2)
  | Mult(a1, a2) \rightarrow let ea1 = evalAexpr a1 m in
                      let ea2 = evalAexpr a2 m in
                      begin
                        match (ea1, ea2) with
                          (Aconst v1, Aconst v2) \rightarrow Aconst(v1*v2)
                          (_, _)
                                                   → Mult(ea1, ea2)
                     end
                        . . .
```

Implementation (OCaml)

```
let rec evalBexpr(b: bexpr) (m: state): bexpr =
  match b with
    Boonst b → Boonst b
   And(b1, b2) \rightarrow let eb1 = evalBexpr b1 m in
                    let eb2 = evalBexpr b2 m in
                    begin
                       match (eb1, eb2) with
                         (Bconst v1, Bconst v2) → Bconst(v1 && v2)
                                                   \rightarrow And(eb1, eb2)
                         (_, _)
                    end
  \mid Eq(a1, a2) \rightarrow
                   let eal = evalAexpr al m in
                    let ea2 = evalAexpr a2 m in
                    begin
                       match (eal, ea2) with
                         (Aconst v1. Aconst v2) \rightarrow Bconst(v1 = v2)
                                                   \rightarrow Eq(ea1, ea2)
                         (_{-},_{-})
                    end
```

The IMP Language (Small-step Operational Semantics – Commands)

 \leadsto_c : command $\to \Gamma \to \Gamma$

The IMP Language (Small-step Operational Semantics – Commands)

$$\begin{array}{lll} & : \operatorname{command} \to \Gamma \to \Gamma \\ & & \overline{\Gamma, \operatorname{skip} \leadsto_c \Gamma} & (\operatorname{skip}) & \overline{\Gamma, (\operatorname{int} \ x) \leadsto_c (x, 0) :: \Gamma} & (\operatorname{decl}) \\ & & & \overline{\Gamma, c_1 \leadsto_c \Gamma'} & \Gamma', c_2 \leadsto_c \Gamma'' \\ & & \overline{\Gamma, (c_1; c_2) \leadsto_c \Gamma''} & (\operatorname{seq}) & \overline{\Gamma, x := a \leadsto_c \Gamma[x \leftarrow v]} & (\operatorname{assign}) \\ & & & \overline{\Gamma, b \leadsto_b \operatorname{true}} & \overline{\Gamma, b \leadsto_b \operatorname{false}} \\ & & \overline{\Gamma, (\operatorname{if}(b) \operatorname{then}\{c_1\} \operatorname{else}\{c_2\}) \leadsto_c \Gamma, c_1} & (\operatorname{ite}_1) & \overline{\Gamma, b \leadsto_b \operatorname{false}} \\ & & \overline{\Gamma, (\operatorname{if}(b) \operatorname{then}\{c_1\} \operatorname{else}\{c_2\}) \leadsto_c \Gamma, c_2} & (\operatorname{ite}_2) \\ & & & \overline{\Gamma, (\operatorname{while}(b)\{c\}) \leadsto_c \Gamma, (c; \operatorname{while}(b)\{c\})} & (\operatorname{loop}_1) & \overline{\Gamma, b \leadsto_b \operatorname{false}} \\ & & \overline{\Gamma, (\operatorname{while}(b)\{c\}) \leadsto_c \Gamma, (c; \operatorname{while}(b)\{c\})} & (\operatorname{loop}_2) & \overline{\Gamma, (\operatorname{while}(b)\{c\}) \leadsto_c \Gamma} & (\operatorname{loop}_2) \\ & & & \overline{\Gamma, (\operatorname{while}(b)\{c\}) \leadsto_c \Gamma, (c; \operatorname{while}(b)\{c\})} & \overline{\Gamma, (\operatorname{while}(b)\{c\}) \leadsto_c \Gamma} & (\operatorname{loop}_2) \\ & & & \overline{\Gamma, (\operatorname{while}(b)\{c\}) \leadsto_c \Gamma, (\operatorname{close}(b)\{c\})} & \overline{\Gamma, (\operatorname{while}(b)\{c\}) \leadsto_c \Gamma} & (\operatorname{loop}_2) \\ & & & \overline{\Gamma, (\operatorname{while}(b)\{c\}) \leadsto_c \Gamma, (\operatorname{close}(b)\{c\})} & \overline{\Gamma, (\operatorname{while}(b)\{c\}) \leadsto_c \Gamma} & (\operatorname{loop}_2) \\ & & & \overline{\Gamma, (\operatorname{while}(b)\{c\}) \leadsto_c \Gamma, (\operatorname{close}(b)\{c\})} & \overline{\Gamma, (\operatorname{while}(b)\{c\})} & \overline{\Gamma, (\operatorname{while$$

```
Implementation (OCaml)
let rec evalCmd(c: cmd) (m: state): state =
  match c with
    Skip
                      \rightarrow m
    Declare s \rightarrow update m s 0
                      → let ea = evalAexpr a m in
    Assign(s. a)
                         beain
                           match ea with
                                Aconst v \rightarrow update m s v
                                         → failwith "assignment error"
                         end
    Sequence(c1, c2) \rightarrow let m' = evalCmd c1 m in evalCmd c2 m'
    Ite(b, c1, c2) \rightarrow let eb = evalBexpr b m in
                         begin
                           match eh with
                              Boonst v \rightarrow if v then evalCmd c1 m else evalCmd c2 m
                                       → failwith "ite error"
                         end
  While(b, c1)
                      → let eb = evalBexpr b m in
                         begin
                          match eb with
                            Boonst v \rightarrow if v then evalCmd(Sequence(c1, (While(b, c1)))) m else m
                                      → failwith "while error"
                         end
```

• operational semantics (and similarly styled typing rules) can handle full languages

- operational semantics (and similarly styled typing rules) can handle full languages
 - with records, recursive variant types, objects, first-class functions, and more

- operational semantics (and similarly styled typing rules) can handle full languages
 - with records, recursive variant types, objects, first-class functions, and more
- provides a concise notation for explaining what a language does by clarifying:

- operational semantics (and similarly styled typing rules) can handle full languages
 - with records, recursive variant types, objects, first-class functions, and more
- provides a concise notation for explaining what a language does by clarifying:
 - evaluation order

- operational semantics (and similarly styled typing rules) can handle full languages
 - with records, recursive variant types, objects, first-class functions, and more
- provides a concise notation for explaining what a language does by clarifying:
 - evaluation order
 - call-by-value vs. call-by-name

- operational semantics (and similarly styled typing rules) can handle full languages
 - with records, recursive variant types, objects, first-class functions, and more
- provides a concise notation for explaining what a language does by clarifying:
 - evaluation order
 - · call-by-value vs. call-by-name
 - ...

Thanks! & Questions?