Joint Communication and Sensing (JCAS) based Object Identification using Machine Learning

28.07.2023

Marion Lorenz

Outline

- 1. Motivation
- 2. Background
- 3. Simulation Setup
- 4. Data Generation
- 5. Results
- 6. Conclusion

Motivation

Motivation

- 6G JCAS: Joint Communication and Sensing, Integrated Communication and Sensing, Joint Communication and Radar
- JCAS: communication and sensing together in one system and frequency spectrum
 - applications: communication link optimization, intrusion and proximity detection, gesture detection ...
- Machine Learning as central aspect of 6G

Motivation

Problem

Idea / Intuition

Room Representation

Estimated Channel Impulse Responses Learning Model

Training Data for Machine

Background

- Bistatic Joint Communication And Sensing
- related work:
 - Object localization

in other frequencies, e.g. audio

- mmWave RADAR
- ...

Simulation Setup

Simulation Setup

- Number of TX/RX
- Signal:
- Distance between TX and RX:
- Antenna:
- Mechanical beam steering:
- Simulation method:
- Frequency:
- Scenario:

1

Pseudo Noise Sequence

5,5m

Horn antenna

x angles per device

MATLAB's Raytracing (SBR)

60GHz

Line of Sight

Simulation Setup

Simulation Setup - Limitations

- no permeability of objects
- only first order reflections
 - o no higher order reflections
 - no diffractions
 - no scattering-effects

same surface-material for all object in a room

plasterboard

o metal

Data Generation - Raytracing

- MATLAB
- Method : SBR (shooting and bouncing rays)
 - approximate number of propagation paths
 - exact geometric accuracy
- Only reflections (no diffractions)
- launched rays: 655,362

Data Generation

- Room Model:
- 2D grid
 - o 100 x 100 grid-units
 - fixed position for RX and TX
- TX-position [50, 22.5, 1]
- RX-position \[50, 77.5, 1 \]
- results for static room

of 10m x 10m:

- TX [5, 2,25, 1]
- RX [5, 7,75, 5, 1] 10cm "stepsize"

Data Generation - Sensing Area

- plasterboard and metal
- yellow: "Sensing Area"
 - o maximal influence of an object above a threshold
- blue: "ignored" area

Sensing Area for -90° - 90°, angular step of 30′

Threshold for "Sensing Area"

Material	Threshold for object influence		
plasterboard	0.001		
metal	0.025		

Distribution of reflection-points in datasets

Data Generation - Input Vector

- position in grid
- for each angle-pair: maximal gain + time point of maximal gain
- 1 for object, 0 for no object
- 20% testdata

X	Y	max Gain 1	time 1	max Gain 2	time 2	maxGain 3		Probability
35	21	0.001	82	0.02	21	0.009		1
34	56	0.001	82	0.02	21	0.009		0
25	77						•••	

Results

Selection of Machine Learning Model

Results of Classification Learner					
name of model	accuracy	comments			
Fine Tree	78.8%				
Narrow Neural Network	98.0%				
Medium Neural Network	98.9%				
Wide Neural Network	99.3%				
Gaussian Naive Bayes	60.4%				
Neural Network	99.0%	3 layers of size 11			
Bagged Trees	99.1%				

Testing of different Models in MATLAB

Multilayer Perceptron

Model

Experimental Verification

- Trained Models:
 - Random Forest Model
 - Multilayer Perceptron Model
- Characteristics of Training Data:

Material	SNR in dB	Angular span	Angular step γ	Number of objects
metal, plasterboard	Inf, 30, 20, 10	-90° to 90°	60°	1, 1-3, 3
metal, plasterboard	Inf, 30, 20, 10	-90° to 90°	30°	1, 1-3, 3
metal	10	-63° to 63°	14°	1-3
metal	10	-91° to 91°	14°	1-3
metal	10	-77° to 63°	28°	1-3

- Tested on simulated data
 - constructed the same way as training data
 - o whole "room", all positions for visualization
- Tested on experimental data
 - o data from anechoic chamber

Evaluation on simulated data

- Angular step of 30° and 60°, angular span from -90° to 90°
- Accuracy, Precision and Recall
 - SNR: minor influence
 - Material: minor influence (metal > plasterboard)
 - o 90° and 60° angular close in quantitative analysis
 - High Recall values + low precison -> False Positives
 - Best results: trained on single-object rooms, tested on single object rooms
 - **0.97**
 - Most robust: one to three objects in training dataset
 - Issue: unknown number of objects
 - Importance of classification threshold

Results - trained on single-object rooms

Results - trained on three-object rooms

Results - trained on one - three object rooms

Results - experimental data

- trained on one-two-three-object rooms
- material metal

Conclusion

- low impact of SNR value
- unseen number of objects harder to predict
- less accurate on experimental data then numerical approach

Extensions:

- different machine learning models
- simulation setup including scattering
- higher order reflections
- experimental data with a lower SNR value for testing
- different surfaces ...