

TRANSFORMING DEMAND FORECASTING: LEVERAGING TRANSFORMER MODELS AND DEMAND-SENSING IN THE FMCG INDUSTRY cinforms.

BUSINESS PROBLEM

The fast-moving consumer goods (FMCG) industry is a competitive market where best in class demand forecasting drives product availability leading to superior financial performance. Companies in this space are looking for new and innovative demand forecasting methods to improve forecasting accuracy to enhance their competitive position.

BUSINESS BENEFITS

Enhanced product availability boosting brand image

COST **OPTIMIZATION**

Efficient production planning reducing costs

INCREASED REVENUE

Preventing stock-outs to maximize sales

RESEARCH OBJECTIVES

- Can transformer models effectively improve demand forecasting accuracy?
- What are the benefits of integrating external factors with current demand forecasting methods?
- How does the combination of transformer models and demandsensing techniques compare to traditional forecasting methods?

RESEARCH TOOL-KIT

ANALYTICS PROBLEM

Encode data into tokens, applying Combine short-term sensing with Transformer-based techniques for long-term trends to enhance temporal and variate correlation forecasting accuracy **Demand Sensing** iTransformer **Embedding** 03. 04. **05.** Comprehensive Data Integration Attention & & Preprocessing Nonlinear Forecast Learning

Utilize self-attention and Feed-

Forward Networks to learn from

large lookback windows and

diverse variates

METHODOLOGY

Gather and process consumption,

sentiment, product & competitor

interest, and shipment data for

analysis

Figure 1: Methodology explaining the research process and the steps that were taken to create, train, and validate the transformer model

DATA

External data was extracted from Amazon and Google Trends at a brand level to measure customer sentiments and gain an understanding of brand and competitor interest.

Data is then integrated and cleaned to allow visualizations to be made and a holistic model to be created.

MODEL BUILDING

Output a nuanced demand

forecast, integrating diverse

datasets for operational and

strategic planning.

Figure 2: iTransformer architecture

DEMAND SENSING RESULTS

	Model	Shipment			Consumption		
Mod		Ensemble	Gradient Boosting	XGBoost	Ensemble	Gradient Boosting	XGBoost
MS	SE	15,834.61	15,322.67	16,890.92	11,768.22	12,841.09	15,788.81

TRANSFORMER RESULTS

Dotosot	Prediction	iTrans	sformer	TimesNet	
Dataset	Length	MSE	MAE	MSE	MAE
	48	0.313	0.356	0.470	0.493
ETTm1	96	0.342	0.376	0.546	0.532
	192	0.382	0.396	0.636	0.570

iTRANSFORMER FORECAST

Prediction

Prediction

Figure 3: iTransformer forecast with Sequence Length of 96 Timepoints

CONCLUSION & INSIGHTS

DATA BREADTI was significant

O Cross channel sentiment from social media data Effective for products that are

Demand Sensing Insights

Effective for high value products

PRODUCT LIFE CYCLE DEVELOPMENT

Costs must be weighed agains

benefits with competetive

Dataset Size & Granularity

10+ years of historical data

Regional demand data

Suitable for legacy products

External Data Sources

Social media data Regional weather data

Cost Benefit Analysis Performance versus costs Competitive landscape

ACKNOWLEDGEMENTS

We would like to thank Professor Yang Wang, Professor Matthew Lanham and our industry partner for this opportunity, as well as their guidance and their support throughout this project.

Purdue University, Daniels School of Business

