Udacity's Deep Reinforcement Learning Nanodegree Project 2 Report:

December 24, 2018

1 Introduction

2 Learning Algorithm

The Deep Deterministic Policy Gradient (DDPG) algorithm [1, 2] is implemented in this project:

```
1: Initialize replay memory D with capacity N
```

- 2: Initialize critic network \hat{q} with random weights w^q
- 3: Initialize actor network μ with weights w^{μ}
- 4: Initialize target critic weights $w^{q-} \leftarrow w^q$
- 5: Initialize target actor weights $w^{\mu-} \leftarrow w^{\mu}$
- for the episode $e \leftarrow 1$ to M do
- 7: Initialize a random process \mathcal{N} for action exploration
- Receive initial input state S8:
- for time step $t \leftarrow 1$ to T do 9:
- Choose action $A = \mu(S|w^{\mu}) + \mathcal{N}$ 10:
- Take action A, observe reward R, and next input frame S'11:
- Store experience (S, A, R, S') in replay memory D12:
- 13: $S \leftarrow S'$
- Obtain minibatch of tuples (s_j, a_j, r_j, s_{j+1}) from D of size K. 14:
- 15:
- Set target $y_j = r_j + \gamma \hat{q}(s_{j+1}, \mu(S', w^{\mu-}), w^{q-})$ Update w^q : $\Delta w^q = -\alpha \frac{1}{N} \sum_j (y_j \hat{q}(s_j, a_j, w^q)) \nabla_{w^q} \hat{q}(s_j, a_j, w^q)$ 16:
- Update w^{μ} with policy gradient: 17:

$$\nabla_{w^{\mu}} J \approx \frac{1}{N} \sum_{i} \nabla_{a} \hat{q}(s_{i}, a\mu(s_{i})) \nabla_{w^{\mu}} \mu(s_{i}|w^{\mu})$$

18: Soft update
$$w^{q-}$$
: $w^{q-} \leftarrow (1-\tau)w^{q-} + \tau w^q$
19: Soft update $w^{\mu-}$: $w^{\mu-} \leftarrow (1-\tau)w^{\mu-} + \tau w^{\mu}$

3 Results and Plots of Rewards

4 Ideas for Future Work

References

- [1] Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa, David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. arXiv preprint arXiv:1509.02971, sep 2015.
- [2] Udacity. Deep Reinforcement Learning Nanodegree Course Material, 2018.