CS70 Countability

Kelvin Lee

kelvinlee@berkeley.edu

October 21, 2020

Overview

- Bijection
- Cardinality
- Cantor-Bernstein's Theorem
- 4 Cantor's Diagonalization

How do we determine if two sets have the same cardinality, or size?

• This is obvious for finite sets, but trickier for infinite sets.

- This is obvious for finite sets, but trickier for infinite sets.
- Two finite sets have the same size if and only if their elements can be paired up, so that each element of one set has a unique partner in the other set, and vice versa.

- This is obvious for finite sets, but trickier for infinite sets.
- Two finite sets have the same size if and only if their elements can be paired up, so that each element of one set has a unique partner in the other set, and vice versa.
- We formalize this through the concept of a bijection, which you should have already learned about.

- This is obvious for finite sets, but trickier for infinite sets.
- Two finite sets have the same size if and only if their elements can be paired up, so that each element of one set has a unique partner in the other set, and vice versa.
- We formalize this through the concept of a bijection, which you should have already learned about.
- To show that two infinite sets have the same **cardinality**, we need to establish a bijection (one-to-one correspondence) between the two sets.

Are there more natural numbers $\mathbb N$ than there are positive integers $\mathbb Z^+$?

Are there more natural numbers $\mathbb N$ than there are positive integers $\mathbb Z^+$?

 We can actually define a mapping between the natural numbers and the positive integers.

Are there more natural numbers $\mathbb N$ than there are positive integers $\mathbb Z^+$?

- We can actually define a mapping between the natural numbers and the positive integers.
- Define $f: \mathbb{N} \to \mathbb{Z}^+$ such that f(n) = n + 1. We can see there's a one-to-one correspondence (why?).

Are there more natural numbers $\mathbb N$ than there are positive integers $\mathbb Z^+$?

- We can actually define a mapping between the natural numbers and the positive integers.
- Define $f: \mathbb{N} \to \mathbb{Z}^+$ such that f(n) = n + 1. We can see there's a one-to-one correspondence (why?).

Are there more natural numbers $\mathbb N$ than there are positive integers $\mathbb Z^+$?

- We can actually define a mapping between the natural numbers and the positive integers.
- Define $f: \mathbb{N} \to \mathbb{Z}^+$ such that f(n) = n + 1. We can see there's a one-to-one correspondence (why?).

• This tells us that $|\mathbb{N}| = |\mathbb{Z}^+|$.

Are there more natural numbers $\mathbb N$ than there are positive integers $\mathbb Z^+$?

- We can actually define a mapping between the natural numbers and the positive integers.
- Define $f: \mathbb{N} \to \mathbb{Z}^+$ such that f(n) = n + 1. We can see there's a one-to-one correspondence (why?).

- This tells us that $|\mathbb{N}| = |\mathbb{Z}^+|$.
- We have just shown that $\infty + 1 = \infty!$

What about \mathbb{N} and \mathbb{Z} ?

What about \mathbb{N} and \mathbb{Z} ?

 They both actually have the same size! Let's see why, consider the following function f:

What about \mathbb{N} and \mathbb{Z} ?

 They both actually have the same size! Let's see why, consider the following function f:

$$f(x) = \begin{cases} \frac{x}{2}, & \text{if } x \text{ is even} \\ \frac{-(x+1)}{2}, & \text{if } x \text{ is odd} \end{cases}$$

What about \mathbb{N} and \mathbb{Z} ?

 They both actually have the same size! Let's see why, consider the following function f:

$$f(x) = \begin{cases} \frac{x}{2}, & \text{if } x \text{ is even} \\ \frac{-(x+1)}{2}, & \text{if } x \text{ is odd} \end{cases}$$

This function is in fact a bijection. Thus, the two sets have the same size.

• A set S is **countable** if there is a bijection between S and \mathbb{N} or some subset of \mathbb{N} .

- A set S is **countable** if there is a bijection between S and \mathbb{N} or some subset of \mathbb{N} .
- Intuitively, any finite set *S* is clearly **countable**.

- A set S is **countable** if there is a bijection between S and \mathbb{N} or some subset of \mathbb{N} .
- Intuitively, any finite set *S* is clearly **countable**.
- The examples we did earlier are countable because they are subsets of N, which is a countable set.

Now consider the set of rational numbers \mathbb{Q} , is it larger than \mathbb{N} ? Recall that $\mathbb{Q} = \left\{ \frac{x}{y} \mid x, y \in \mathbb{Z}, y \neq 0 \right\}$.

Now consider the set of rational numbers \mathbb{Q} , is it larger than \mathbb{N} ? Recall that $\mathbb{Q} = \left\{ \frac{x}{y} \mid x, y \in \mathbb{Z}, y \neq 0 \right\}$.

 The two sets actually have the same cardinality! Let's first learn some new definitions and an important theorem.

Now consider the set of rational numbers \mathbb{Q} , is it larger than \mathbb{N} ? Recall that $\mathbb{Q}=\left\{\frac{x}{y}\mid x,y\in\mathbb{Z},y\neq0\right\}$.

• The two sets actually have the same cardinality! Let's first learn some new definitions and an important theorem.

Definition 1

Now consider the set of rational numbers \mathbb{Q} , is it larger than \mathbb{N} ? Recall that $\mathbb{Q} = \left\{ \frac{x}{y} \mid x, y \in \mathbb{Z}, y \neq 0 \right\}$.

 The two sets actually have the same cardinality! Let's first learn some new definitions and an important theorem.

Definition 1

If there is a injective function $f: A \to B$, then $|A| \le |B|$.

Now consider the set of rational numbers \mathbb{Q} , is it larger than \mathbb{N} ? Recall that $\mathbb{Q} = \left\{ \frac{x}{y} \mid x, y \in \mathbb{Z}, y \neq 0 \right\}$.

 The two sets actually have the same cardinality! Let's first learn some new definitions and an important theorem.

Definition 1

If there is a injective function $f: A \to B$, then $|A| \le |B|$.

Definition 2

Now consider the set of rational numbers \mathbb{Q} , is it larger than \mathbb{N} ? Recall that $\mathbb{Q} = \left\{ \frac{\mathsf{x}}{\mathsf{v}} \mid \mathsf{x}, \mathsf{y} \in \mathbb{Z}, \mathsf{y} \neq \mathsf{0} \right\}$.

 The two sets actually have the same cardinality! Let's first learn some new definitions and an important theorem.

Definition 1

If there is a injective function $f: A \to B$, then $|A| \le |B|$.

Definition 2

If there is a surjective function $f: A \to B$, then $|A| \ge |B|$.

Schröder-Bernstein Theorem (Cantor-Bernstein)

Schröder-Bernstein Theorem (Cantor-Bernstein)

If A and B are sets with $|A| \le |B|$ and $|B| \le |A|$, then |A| = |B|. In other words, if there are injective functions $f: A \to B$ and $g: B \to A$, then there is a bijection h between A and B.

Schröder-Bernstein Theorem (Cantor-Bernstein)

If A and B are sets with $|A| \le |B|$ and $|B| \le |A|$, then |A| = |B|. In other words, if there are injective functions $f: A \to B$ and $g: B \to A$, then there is a bijection h between A and B.

Proof:

Schröder-Bernstein Theorem (Cantor-Bernstein)

If A and B are sets with $|A| \le |B|$ and $|B| \le |A|$, then |A| = |B|. In other words, if there are injective functions $f: A \to B$ and $g: B \to A$, then there is a bijection h between A and B.

Proof:

The proof of this theorem is out of scope for this class. We'll skip that for now. \Box

Schröder-Bernstein Theorem (Cantor-Bernstein)

If A and B are sets with $|A| \le |B|$ and $|B| \le |A|$, then |A| = |B|. In other words, if there are injective functions $f: A \to B$ and $g: B \to A$, then there is a bijection h between A and B.

Proof:

The proof of this theorem is out of scope for this class. We'll skip that for now. \Box

• This theorem will be very useful when showing a set S is countable. We can give separate injections $f:S\to\mathbb{N}$ and $g:\mathbb{N}\to S$, instead of designing a bijection (which is trickier).

• Now back to our problem. First it is obvious that $|\mathbb{N}| \leq |\mathbb{Q}|$ because $\mathbb{N} \subseteq \mathbb{Q}.$

- Now back to our problem. First it is obvious that $|\mathbb{N}| \leq |\mathbb{Q}|$ because $\mathbb{N} \subseteq \mathbb{Q}.$
- Now the theorem comes in handy and all we need to do now is to prove $|\mathbb{Q}| \leq |\mathbb{N}|$.

- Now back to our problem. First it is obvious that $|\mathbb{N}| \leq |\mathbb{Q}|$ because $\mathbb{N} \subseteq \mathbb{Q}$.
- Now the theorem comes in handy and all we need to do now is to prove $|\mathbb{Q}| \leq |\mathbb{N}|$.
- Recall the definition, we must exhibit an injection $f: \mathbb{Q} \to \mathbb{N}$.

- Now back to our problem. First it is obvious that $|\mathbb{N}| \leq |\mathbb{Q}|$ because $\mathbb{N} \subseteq \mathbb{Q}$.
- Now the theorem comes in handy and all we need to do now is to prove $|\mathbb{Q}| \leq |\mathbb{N}|$.
- Recall the definition, we must exhibit an injection $f: \mathbb{Q} \to \mathbb{N}$.
- Notice that each rational number $\frac{a}{b}$ (gcd(a,b) = 1) can be represented by the point (a,b) $\in \mathbb{Z} \times \mathbb{Z}$ (the set of all pairs of integers).

- Now back to our problem. First it is obvious that $|\mathbb{N}| \leq |\mathbb{Q}|$ because $\mathbb{N} \subseteq \mathbb{Q}$.
- Now the theorem comes in handy and all we need to do now is to prove $|\mathbb{Q}| \leq |\mathbb{N}|$.
- Recall the definition, we must exhibit an injection $f: \mathbb{Q} \to \mathbb{N}$.
- Notice that each rational number $\frac{a}{b}$ (gcd(a,b) = 1) can be represented by the point (a,b) $\in \mathbb{Z} \times \mathbb{Z}$ (the set of all pairs of integers).
- However, not all points are valid.

- Now back to our problem. First it is obvious that $|\mathbb{N}| \leq |\mathbb{Q}|$ because $\mathbb{N} \subseteq \mathbb{Q}$.
- Now the theorem comes in handy and all we need to do now is to prove $|\mathbb{Q}| \leq |\mathbb{N}|$.
- Recall the definition, we must exhibit an injection $f: \mathbb{Q} \to \mathbb{N}$.
- Notice that each rational number $\frac{a}{b}$ (gcd(a,b) = 1) can be represented by the point (a,b) $\in \mathbb{Z} \times \mathbb{Z}$ (the set of all pairs of integers).
- However, not all points are valid.
- Thus, we can actually tell that $|\mathbb{Z} \times \mathbb{Z}| \ge |\mathbb{Q}|$.

- Now back to our problem. First it is obvious that $|\mathbb{N}| \leq |\mathbb{Q}|$ because $\mathbb{N} \subseteq \mathbb{Q}.$
- Now the theorem comes in handy and all we need to do now is to prove $|\mathbb{Q}| \leq |\mathbb{N}|$.
- Recall the definition, we must exhibit an injection $f: \mathbb{Q} \to \mathbb{N}$.
- Notice that each rational number $\frac{a}{b}$ (gcd(a, b) = 1) can be represented by the point (a, b) $\in \mathbb{Z} \times \mathbb{Z}$ (the set of all pairs of integers).
- However, not all points are valid.
- Thus, we can actually tell that $|\mathbb{Z} \times \mathbb{Z}| \ge |\mathbb{Q}|$.
- If we are able to come up with an injection from $\mathbb{Z} \times \mathbb{Z}$ to N, then this will also be an injection from \mathbb{Q} to \mathbb{N} (why?).

• Map each pair (a, b) to its position along the spiral, starting at the origin(indexing through each point starting from index 0).

- Map each pair (a, b) to its position along the spiral, starting at the origin(indexing through each point starting from index 0).
- This mapping maps every pair of integers injectively to a natural number.

- Map each pair (a, b) to its position along the spiral, starting at the origin(indexing through each point starting from index 0).
- This mapping maps every pair of integers injectively to a natural number.
- Thus we have $|\mathbb{Q}| \leq |\mathbb{Z} \times \mathbb{Z}| \leq |\mathbb{N}|$. Remember that $|\mathbb{N}| \leq |\mathbb{Q}|$, then by the Cantor-Bernstein Theorem $|\mathbb{N}| = |\mathbb{Q}|$.

 An set S is uncountable if it is not countable, or cannot be enumerated. This introduces the concept of diagonalization.

- An set S is uncountable if it is not countable, or cannot be enumerated. This introduces the concept of diagonalization.
- The idea of **diagonalization** is that we can always create an element that does not belong to the set, i.e., enumeration is impossible.

- An set S is uncountable if it is not countable, or cannot be enumerated. This introduces the concept of diagonalization.
- The idea of **diagonalization** is that we can always create an element that does not belong to the set, i.e., enumeration is impossible.
- One example would be $\mathbb{R}[0,1]$ demonstrated in lecture.

- An set S is uncountable if it is not countable, or cannot be enumerated. This introduces the concept of diagonalization.
- The idea of **diagonalization** is that we can always create an element that does not belong to the set, i.e., enumeration is impossible.
- ullet One example would be $\mathbb{R}[0,1]$ demonstrated in lecture.
- We can create a real number where each of its *i*th digit differs from the *i*th digit of the *i*th element.

- An set S is uncountable if it is not countable, or cannot be enumerated. This introduces the concept of diagonalization.
- The idea of **diagonalization** is that we can always create an element that does not belong to the set, i.e., enumeration is impossible.
- ullet One example would be $\mathbb{R}[0,1]$ demonstrated in lecture.
- We can create a real number where each of its *i*th digit differs from the *i*th digit of the *i*th element.
- ullet Thus the real interval $\mathbb{R}[0,1]$ is uncountable, so do its supersets.

Problem Time!