Cyfrowe Techniki Foniczne

Laboratorium nr. 2 Karol Król

Zadanie nr 1

Po przesłuchaniu dźwięków w 3 kombinacjach (jedna, dwie i trzy powichrzenie odbijające dźwięk) wyraźnie słychać, że gdy jest ich więcej dźwięk jest lepiej słyszalny i wyraźniej słychać wysokie jak i niskie tony. Wydaje mi się, że jest to spowodowane, że fala, która uderz w ścianę odbija się w idealnie pod kątem padania na powichrzenie. Gdy jest ich więcej fale dźwiękowe zaczynają odbijają się w wielu kierunkach i "lepiej wypełnią powichrzę pomieszczenia". Dlatego w sytuacji, w której chcemy polepszyć akustykę w pokoju stosuje się grube zasłony, regały z książkami a bardziej profesjonalnie pianki.

Zadanie nr 2

Jak widać na wykresach wartości są wyższe na 2 pomiarze, czyli gdy korzystaliśmy z roku pokoju. Obrazuje nam to przypuszczenia z zadania 1 że ściany powodują nałożenie się fal i "zwiększenie mocy"

Zadanie nr 3

Pusta butelka	Pełna butelka
Szkło V = 500 ml	Szkło V = 400 ml
	A = 2 cm
A = 2 cm L = 8 cm	L = 8 cm
Wyliczone F = 122.779 Hz	Wyliczone F = 137.271 Hz
Zmierzone F = 163Hz	Zmierzone = 186 Hz
20:34 5,7kB/s <mark>◎</mark>	20:51 0,0kB/s № 60 \$ # 19 **
dB × ►:	dB
-20	-20
-30	-30
-40	-40
-50	-50
-60	-60
-70 -79 dB	-70 -77 dB 113 Hz
-80	-80
-90 11-94 dg 11-11	-90
-94	-97
-100	-100
-110	-110
-120	-120
-130 100163 ²⁷⁰ 1000 1000 H	-130 -100 100186 1000 1000Hz
■ © <	• • •

Jak widać w obu przypadkach zmierzona częstotliwość jest wyższa niż wyliczona. Wiąże się to na pewno z błędami w pomiarze wymiarów butelki, sposobu mierzenia i środowiska, w którym były wykonywany pomiar aplikacją.