

LinAlgDat

Hamming code

De reelle tal \mathbb{R} er et eksempel på et såkaldt legeme. Vi skal ikke komme ind på den præcise definition af et legeme, men det indebærer blandt andet, at \mathbb{R} er udstyret med addition + og multiplikation \cdot , som opfylder nogle naturlige regneregler. En anden vigtig egenskab er, at ethvert ikke-nul element $x \in \mathbb{R}$ har en multiplikativ invers $x^{-1} \in \mathbb{R}$, som opfylder $xx^{-1} = 1$. De komplekse tal \mathbb{C} er også et legeme. Et vigtigt eksempel fra datalogi er legemet med to elementer, som skrives $\mathbb{F}_2 = \{0,1\}$ (0 = FALSE og 1 = TRUE), hvori addition og multiplikation er defineret som følger (også kaldet legemet med to elementer):

Meget af det vi lærer i LinAlgDat, som fx matrixregning og Gauss-Jordan eliminering, fungerer problemfrit hvis man erstatter de reelle tal \mathbb{R} med et vilkårligt andet legeme, som fx \mathbb{C} eller \mathbb{F}_2 .

Nytten af matricer med indgange fra legemet \mathbb{F}_2 illustreres af fænomenet *Hamming code*:

En *afsender* sender en 4-bit databesked $\mathbf{d} = (d_1, d_2, d_3, d_4)$, hvor $d_i \in \mathbb{F}_2 = \{0, 1\}$, til en *modtager*. Beskeden går gennem en *kanal med moderat støj*, hvilket betyder, at den besked $\mathbf{r} = (r_1, r_2, r_3, r_4)$ som modtageren får højst afviger én bit fra den oprindeligt afsendte besked \mathbf{d} .

Afsender
$$\longrightarrow$$
 Kanal med moderat støj \longrightarrow Modtager
$$\mathbf{d} = \begin{pmatrix} d_1 \\ d_2 \\ d_3 \\ d_4 \end{pmatrix} \longrightarrow \mathbf{r} = \begin{pmatrix} r_1 \\ r_2 \\ r_3 \\ r_4 \end{pmatrix}$$

Hvis fx modtageren får beskeden $\mathbf{r} = (1,0,0,1)$, så må den oprindeligt afsendte besked have været en blandt følgende:

$$\mathbf{d} = (1,0,0,1), (0,0,0,1), (1,1,0,1), (1,0,1,1), (1,0,0,0),$$

men det er som udgangspunkt umuligt at vide hvilken af ovenstående beskeder der er den korrekte. Hamming code løser dette problem på en elegant måde. Den grundlæggende idé er følgende:

I stedet for at afsende 4-bit beskeden $\mathbf{d} = (d_1, d_2, d_3, d_4)$, så afsender man en (kodet) 7-bit besked

$$\tilde{\mathbf{d}} = (\tilde{d}_1, \tilde{d}_2, \tilde{d}_3, \tilde{d}_4, \tilde{d}_5, \tilde{d}_6, \tilde{d}_7) := (p_1, p_2, d_1, p_3, d_2, d_3, d_4).$$

Her er p_1, p_2, p_3 de såkaldte *paritets-bit*, som er snedigt konstrueret ud fra de oprindelige data-bit d_1, d_2, d_3, d_4 og som omtales nærmere nedenfor. Af tekniske grunde er de tre paritets-bit indsat på koordinatnumrene $1 = 2^0, 2 = 2^1$ og $4 = 2^2$ i vektoren $\tilde{\mathbf{d}}$ mens de oprindelige data-bit udfylder de resterende koordinatnumre 3, 5, 6 og 7 i vektoren $\tilde{\mathbf{d}}$.

Modtageren får altså en 7-bit besked $\tilde{\mathbf{r}} = (\tilde{r}_1, \tilde{r}_2, \tilde{r}_3, \tilde{r}_4, \tilde{r}_5, \tilde{r}_6, \tilde{r}_7)$ som højst afviger én bit fra $\tilde{\mathbf{d}}$. Det smarte ved hele konstruktionen er, at uanset hvilken (om nogen) af de 7 bit i vektoren $\tilde{\mathbf{d}}$ der ændres, så er det faktisk muligt at genskabe den oprindeligt afsendte 4-bit besked $\mathbf{d} = (d_1, d_2, d_3, d_4)$.

Matematikken bag Hamming code er baseret på følgende to matricer (som har størelser hhv. 7×4 og 3×7) med indgange fra $\mathbb{F}_2 = \{0, 1\}$:

$$\mathbf{G} = \begin{pmatrix} 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \quad \text{og} \quad \mathbf{H} = \begin{pmatrix} 1 & 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 \end{pmatrix}.$$

Matricen G kaldes *kodningsmatricen* og bruges til at skabe beskeden $\tilde{\mathbf{d}}$ ud fra \mathbf{d} ; man definerer:

$$\tilde{\mathbf{d}} := \mathbf{G}\mathbf{d} = \begin{pmatrix} 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} d_1 \\ d_2 \\ d_3 \\ d_4 \end{pmatrix} = \begin{pmatrix} d_1 + d_2 + d_4 \\ d_1 + d_3 + d_4 \\ d_1 \\ d_2 + d_3 + d_4 \\ d_2 \\ d_3 \\ d_4 \end{pmatrix}.$$

Mao. så er de tre paritets-bit p_1 , p_2 og p_3 i vektoren $\tilde{\mathbf{d}} = (p_1, p_2, d_1, p_3, d_2, d_3, d_4)$ givet ved:

$$p_1 = d_1 + d_2 + d_4$$

 $p_2 = d_1 + d_3 + d_4$
 $p_3 = d_2 + d_3 + d_4$.

Husk at regning med bit foregår i legemet $\mathbb{F}_2 = \{0,1\}$. Systemet i hvilke data-bit d_1, d_2, d_3, d_4 der bidrager til hvilke paritets-bit p_1, p_2, p_3 illustreres af følgende figur (et såkaldt Venn-diagram):

Matricen \mathbf{H} kaldes *afkodningsmatricen* og er lavet sådan, at den i'te søjle i \mathbf{H} giver tallet i i det bineære talsystem, altså:

i	<i>i</i> 'te søjle i H	Bineær fremstilling af tallet <i>i</i>
1	1 0 0	$1 \cdot 2^0 + 0 \cdot 2^1 + 0 \cdot 2^2 = 1$
2	0 1 0	$0 \cdot 2^0 + 1 \cdot 2^1 + 0 \cdot 2^2 = 2$
3	1 1 0	$1 \cdot 2^0 + 1 \cdot 2^1 + 0 \cdot 2^2 = 3$
4	0 0 1	$0 \cdot 2^0 + 0 \cdot 2^1 + 1 \cdot 2^2 = 4$
5	1 0 1	$1 \cdot 2^0 + 0 \cdot 2^1 + 1 \cdot 2^2 = 5$
6	0 1 1	$0 \cdot 2^0 + 1 \cdot 2^1 + 1 \cdot 2^2 = 6$
7	1 1 1	$1 \cdot 2^0 + 1 \cdot 2^1 + 1 \cdot 2^2 = 7$

Bemærk, at pga. den specielle addition og multiplikation i legemet $\mathbb{F}_2=\{0,1\}$ har man:

her er **O** altså nulmatricen af størrelse 3×4 med indgange fra legemet $\mathbb{F}_2 = \{0, 1\}$.

Hamming code fungerer nu således: Afsenderen har kodningsmatricen **G** og den 4-bit besked **d** han ønsker at sende; modtageren har afkodningsmatricen **H** og hvad end han måtte modtage fra afsenderen.

I stedet for at afsende den ønskede 4-bit besked **d**, så afsendes 7-bit beskeden $\tilde{\mathbf{d}} = \mathbf{G}\mathbf{d}$; altså **d** kodet med matricen **G**. Hvis man fx ønsker at sende $\mathbf{d} = (1,0,0,1)$, så afsender man i stedet for

$$\tilde{\mathbf{d}} = \mathbf{G}\mathbf{d} = \begin{pmatrix} 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 1 \\ 1 \\ 0 \\ 0 \\ 1 \end{pmatrix}. \tag{*}$$

Modtageren kender som udgangspunkt hverken **d** eller $\tilde{\mathbf{d}}$; han har jo kun den modtagne besked $\tilde{\mathbf{r}} = (\tilde{r}_1, \tilde{r}_2, \tilde{r}_3, \tilde{r}_4, \tilde{r}_5, \tilde{r}_6, \tilde{r}_7)$ og afkodningsmatricen **H**. Følgende resultat fortæller hvordan den oprindelige besked **d** rekonstrueres ud fra disse informationer.

Sætning. Modtageren udregner vektoren $\mathbf{z} := \mathbf{H}\tilde{\mathbf{r}}$; husk at alle udregninger foregår i $\mathbb{F}_2 = \{0, 1\}$. Lad $\mathbf{z} = (z_0, z_1, z_2)$ være koordinaterne i \mathbf{z} og sæt $j := z_0 2^0 + z_1 2^1 + z_2 2^2 \in \{0, ..., 7\}$.

- Hvis $j \in \{0,1,2,4\}$ så er den oprindelige besked $\mathbf{d} = (\tilde{r}_3, \tilde{r}_5, \tilde{r}_6, \tilde{r}_7)$.
- Hvis j = 3 så er den oprindelige besked $\mathbf{d} = (\tilde{r}_3 + 1, \tilde{r}_5, \tilde{r}_6, \tilde{r}_7)$.
- Hvis j = 5 så er den oprindelige besked $\mathbf{d} = (\tilde{r}_3, \tilde{r}_5 + 1, \tilde{r}_6, \tilde{r}_7)$.
- Hvis j = 6 så er den oprindelige besked $\mathbf{d} = (\tilde{r}_3, \tilde{r}_5, \tilde{r}_6 + 1, \tilde{r}_7)$.
- Hvis j = 7 så er den oprindelige besked $\mathbf{d} = (\tilde{r}_3, \tilde{r}_5, \tilde{r}_6, \tilde{r}_7 + 1)$.

Bevis. Fordi transmissionen foregår gennem en kanal med moderat støj vides det, at den modtagne besked $\tilde{\mathbf{r}}$ højst afviger én bit fra den afsendte $\tilde{\mathbf{d}} = \mathbf{G}\mathbf{d}$. Man har altså $\tilde{\mathbf{r}} = \tilde{\mathbf{d}}$ i det tilfælde hvor ingen bit er ændret, og $\tilde{\mathbf{r}} = \tilde{\mathbf{d}} + \mathbf{e}_i$ i det tilfælde at netop én bit (den *i*'te bit) er ændret. Her er \mathbf{e}_i vektoren med 1 på den *i*'te koordinat og 0 på de øvrige koordinater, fx er $\mathbf{e}_3 = (0,0,1,0,0,0,0)$.

I det tilfælde hvor $\tilde{\mathbf{r}} = \tilde{\mathbf{d}}$, så bliver \mathbf{z} nul-vektoren idet jo:

$$z = H\tilde{r} = H\tilde{d} = HGd = Od = 0.$$

Altså er $j = 0 \cdot 2^0 + 0 \cdot 2^1 + 0 \cdot 2^2 = 0$. Da $\tilde{\mathbf{d}} = (p_1, p_2, d_1, p_3, d_2, d_3, d_4)$ er lig med $\tilde{\mathbf{r}} = (\tilde{r}_1, \tilde{r}_2, \tilde{r}_3, \tilde{r}_4, \tilde{r}_5, \tilde{r}_6, \tilde{r}_7)$ følger det, at $\mathbf{d} = (d_1, d_2, d_3, d_4) = (\tilde{r}_3, \tilde{r}_5, \tilde{r}_6, \tilde{r}_7)$, som påstået i sætningen.

I det tilfælde hvor $\tilde{\mathbf{r}} = \tilde{\mathbf{d}} + \mathbf{e}_i$ for et eller andet indeks i = 1, ..., 7 (der jo som udgangspunkt er ukendt for modtageren), så bliver vektoren $\mathbf{z} = (z_0, z_1, z_2)$ den *i*'te søjle i **H** fordi:

$$\mathbf{z} = \mathbf{H}\mathbf{\tilde{r}} = \mathbf{H}(\mathbf{\tilde{d}} + \mathbf{e}_i) = \mathbf{H}\mathbf{\tilde{d}} + \mathbf{H}\mathbf{e}_i = \mathbf{0} + \mathbf{H}\mathbf{e}_i = \mathbf{H}\mathbf{e}_i$$
.

Den måde hvorpå ${\bf H}$ er konstrueret giver derfor, at $i=z_02^0+z_12^1+z_22^2=j$ (mao. det a priori ukendte indeks i viser sig altså alligevel at være "kendt" for modtageren, idet det åbenbart netop er det tal j, altså $2^0+z_12^1+z_22^2$, som modtageren beregnede ud fra vektoren ${\bf z}$). De i sætningen angivne formler for ${\bf d}$ følger nu ved at gennemgå de 7 forskellige muligheder for j. Hvis fx j=1 så er altså ${\bf \tilde r}=(\tilde r_1,\tilde r_2,\tilde r_3,\tilde r_4,\tilde r_5,\tilde r_6,\tilde r_7)$ lig med ${\bf \tilde d}+{\bf e}_1=(p_1+1,p_2,d_1,p_3,d_2,d_3,d_4)$ og det følger, at

$$\mathbf{d} = (d_1, d_2, d_3, d_4) = (\tilde{r}_3, \tilde{r}_5, \tilde{r}_6, \tilde{r}_7).$$

Hvis fx j = 3 så er $\tilde{\mathbf{r}} = (\tilde{r}_1, \tilde{r}_2, \tilde{r}_3, \tilde{r}_4, \tilde{r}_5, \tilde{r}_6, \tilde{r}_7)$ lig med $\tilde{\mathbf{d}} + \mathbf{e}_3 = (p_1, p_2, d_1 + 1, p_3, d_2, d_3, d_4)$ og det følger, at

$$\mathbf{d} = (d_1, d_2, d_3, d_4) = (\tilde{r}_3 + 1, \tilde{r}_5, \tilde{r}_6, \tilde{r}_7),$$

som påstået. ///

Lad os se hvordan Hamming code og sætningen ovenfor virker i praksis: Hvis afsenderen ønsker at sende beskeden $\mathbf{d} = (1,0,0,1)$ så skal han i stedet for sende

$$\tilde{\mathbf{d}} = \mathbf{G}\mathbf{d} = (0, 0, 1, 1, 0, 0, 1),$$

som udregnet i (*) ovenfor. Fordi transmissionen foregår gennem en kanal med moderat støj vil den modtagne besked $\tilde{\mathbf{r}}$ højst afvige én bit fra $\tilde{\mathbf{d}}$.

Lad os sige at modtageren får beskeden

$$\tilde{\mathbf{r}} = (\tilde{r}_1, \tilde{r}_2, \tilde{r}_3, \tilde{r}_4, \tilde{r}_5, \tilde{r}_6, \tilde{r}_7) = (0, 0, 1, 1, 0, 0, 1).$$

(Kanalen med moderat støj ændrede i dette tilfælde ingen bit i $\tilde{\mathbf{d}}$, men det ved modtageren jo som udgangspunkt ikke noget om.) Han udregner nu vektoren

$$\mathbf{z} = \mathbf{H}\tilde{\mathbf{r}} = \begin{pmatrix} 1 & 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ 1 \\ 1 \\ 0 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}.$$

Eftersom $\mathbf{z} = (0,0,0)$ er $j = 0 \cdot 2^0 + 0 \cdot 2^1 + 0 \cdot 2^2 = 0$, så modtageren konkluderer ifølge sætningen ovenfor, at den oprindelige databesked \mathbf{d} er $(\tilde{r}_3, \tilde{r}_5, \tilde{r}_6, \tilde{r}_7) = (1,0,0,1)$, hvilket jo er korrekt!

Lad os sige at modtageren får beskeden

$$\tilde{\mathbf{r}} = (\tilde{r}_1, \tilde{r}_2, \tilde{r}_3, \tilde{r}_4, \tilde{r}_5, \tilde{r}_6, \tilde{r}_7) = (0, 0, 1, 1, 1, 0, 1).$$

(Kanalen med moderat støj ændrede i dette tilfælde den 5'te bit i $\tilde{\mathbf{d}}$, men det ved modtageren jo som udgangspunkt ikke noget om.) Han udregner nu vektoren

$$\mathbf{z} = \mathbf{H}\tilde{\mathbf{r}} = \begin{pmatrix} 1 & 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ 1 \\ 1 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}.$$

Eftersom $\mathbf{z} = (1,0,1)$ er $j = 1 \cdot 2^0 + 0 \cdot 2^1 + 1 \cdot 2^2 = 5$, så modtageren konkluderer ifølge sætningen ovenfor, at den oprindelige databesked \mathbf{d} er $(\tilde{r}_3, \tilde{r}_5 + 1, \tilde{r}_6, \tilde{r}_7) = (1, 1 + 1, 0, 1) = (1, 0, 0, 1)$, hvilket jo er korrekt!

Henrik Holm (holm@math.ku.dk) Henrik Laurberg Pedersen (henrikp@math.ku.dk)