山大附中高三第一次阶段性考试

化学试题

本试卷满分为100分,考试用时90分钟。

注意事项:

- 1. 答题前, 考生先将自己的姓名、考生号、座号填写在相应位置, 认真核对条形码上的姓名、 考生号和座号,并将条形码粘贴在指定位置上。
- 2. 选择题答案必须使用2B铅笔(按填涂样例)正确填涂: 非选择题答案必须使用0. 5毫米黑色 签字笔书写,字体工整、笔迹清楚。
- 3. 请按照题号在各题目的答题区域内作答, 超出答题区域书写的答案无效: 在草稿纸、试题卷 上答题无效,保持卡面清洁,不折叠、不破损。

可能用到的相对原子质量:

H 1 C 12 N 14 O 16 Na 23 Ag108 S 32 C135.5 Cr 52 Fe 56 一、选择题:每小题 2 分,共 30 分。每小题只有一个选项符合题意。

- 1. 下列叙述不涉及化学变化的是

 - A. 用热纯碱液去除油污 B. 用福尔马林制作动物标本

 - C. 用双氧水清洗伤口 D. 用焰色反应鉴别 KCI 溶液和 NaCI 溶液
- 2. 下列物质应用错误的是
 - A. 钾钠合金可用于原子反应堆导热剂 B. 辆牲阳极保护法可采用废铜保护钢材
 - C. 铝罐槽车可用于运输冷的浓硝酸 D. 四氧化三铁用于制备激光打印墨
- 3.下列物质的化学性质与实际应用的对应关系正确的是

选项	化学性质	实际应用
A	Al 是活泼金属	用铝罐贮运浓硝酸
В	NaHCO3溶液显弱碱性	用作食品膨化剂
С	Al(OH)3 能与盐酸反应	用作胃酸中和剂
D	Fe ₂ O ₃ 能被CO等还原	用作红色颜料

- 4. 已知 N₄ 为阿伏加德罗常数,下列说法正确的是
 - A. 25℃时, 1.0LpH = 13的 Ba(OH), 溶液中含有的 OH 数目为 0.2 N_A
 - B. 0.1molH₂C₂O₄被氧化为CO₂,转移的电子数为0.1N_A
 - C. 32g 乙醇和 14g 二甲醚(H₃C-O-CH₃)组成的混合物中共价键数目为 8N_A

- D. lmolCaO2晶体所含离子总数为3Na
- 5. LiAlH₄是重要的还原剂与储氢材料,在 120℃下的干燥空气中相对稳定,其合成方法为: NaAlH₄+LiCl=LiAlH₄+NaCl。下列说法正确的是
- A. 该反应可以在水溶液中进行
- B. 基态锂原子的电子排布式为1s²2s¹,核外电子的空间运动状态有2种
- C. LiAlH₄中 Al 原子采用 sp³杂化, AlH₄离子的空间构型为正方形
- D. 上述物质中电负性最大的元素与电负性最小的元素形成的化合物,其电子式为 $Na^+[:H]^-$
- 6. 利用下列装置(夹持装置略)进行实验,能达到实验目的的是

- A. 用装置甲验证碳酸的酸性强于苯酚
- B. 用装置乙验证铁的吸氧腐蚀
- C. 用装置丙加热 NaOH 固体至熔融
- D. 用装置丁制备干燥的氨气
- 7. 工业上可通过"酸性歧化法"和"电解法"制备 $KMnO_4$ 。"酸性歧化法"中,利用软锰矿(主要成分为 MnO_2)先生成 K_2MnO_4 ,进而制备 $KMnO_4$ 的流程如下所示。

实验室中模拟"酸性歧化法"制备KMnO4。下列说法正确的是

- A. 为加快"熔融"反应速率,可将矿石粉碎,并用玻璃棒不断翻炒固体
- B. "酸化"时若改用盐酸,则反应为3MnO₄-+4H⁺=2MnO₄+MnO₃+2H₃O
- C. "结晶"获取 KMnO₄ 晶体时采用蒸发结晶
- D. 该流程中涉及到的氧化还原反应至少有2个
- 8. H_2O 、 H_2O_2 、 HO_2 (超氧化氢)都属于氢氧化合物,其中 HO_2 又叫超氧酸,与 H_2O_2 化学性质相似,又与 HX(X=C1)、 H_2O_3 化学性质相似。下列说法错误的是
 - A. HO2为极性分子
 - B. H₂O 的沸点低于 H₂O₂ 的沸点
 - C. HO2可与 AgNO3反应: HO2+AgNO3=AgO2↓+HNO3
 - D. H₂O、H₂O₂中O的杂化方式相同,H₂O₂为直线形分子

- 9. 三草酸合铁酸钾($K_3[Fe(C_2O_4)_3] \cdot 3H_2O$)是制备铁触媒的主要原料。该配合物在光照下发生分解: $2K_3[Fe(C_2O_4)_3] \cdot 3H_2O$ <u>光照</u> $3K_2C_2O_4 + 2FeC_2O_4 + 2CO_2 \uparrow + 6H_2O$ 。下列说法错误的是
- A. Fe^{3+} 的最高能层电子排布式为 $3d^{5}$ B. $K_{3}[Fe(C_{2}O_{4})_{3}]$ 中铁离子的配位数为 6
- C. $C_2O_4^{2-}$ 中 C 原子的杂化方式为 sp² D. CO₂ 分子中σ键和π键数目比为 1: 1
- 10. 某补铁剂每片含硫酸亚铁 0.3g(相当于铁 60mg),为测定含铁量是否达标,某兴趣小组用实验室常用试剂将铁元素通过氧化、碱化等步骤转化为 Fe_2O_3 ,该过程不需要的操作为

- 二、选择题:本题共5小题,每小题4分,共20分。在每小题给出的四个选项中,有一个或两个选项符合题目要求,全部选对的得4分,选对但不全的得2分,有选错的得0分。
- 11. 下列关于 Fe、Cu、Mg、Al 四种金属元素的说法正确的是
 - A. 四种元素的单质都能和盐酸反应,生成相应的盐和氢气
 - B. 制备 AlCl₃、FeCl₃、CuCl₂ 固体均不能采用将溶液直接蒸干的方法
 - C. Mg 棒和 Al 棒作为原电池两个电极插入 NaOH 溶液中, Al 棒发生氧化反应
 - D. 铁锈的主要成分是氧化铁,铜锈的主要成分是氧化铜
- 12. 下列除杂(括号内为杂质)所选用试剂及操作方法均正确的是

选项	待提纯物质	选用的试剂	操作方法
A	Fe(Cu)	稀硫酸	过滤
В	$CO_2(SO_2)$	NaOH 溶液	洗气
С	NaCl溶液(I ₂)	CCl ₄	萃取分液
D	NaCl(Na ₂ CO ₃)	稀盐酸	蒸发结晶

13. 某低成本储能电池原理如下图所示。下列说法正确的是

- A. 放电时负极质量减小 B. 储能过程中电能转变为化学能
- C. 放电时右侧 H+通过质子交换膜移向左侧
- D. 放电总反应: $Pb + SO_4^{2-} + 2Fe^{3+} = PbSO_4 + 2Fe^{2+}$
- 14. 某水性钠离子电池电极材料由Na⁺、Fe²⁺、Fe³⁺、CN⁻组成,其立方晶胞嵌入和 嵌出 Na+过程中, Fe²⁺与 Fe³⁺含量发生变化,依次变为格林绿、普鲁士蓝、普鲁士白 三种物质,其过程如图所示。(所有 Na+都在晶胞内)下列说法错误的是

- A. 普鲁士蓝中 Fe²⁺ 与 Fe³⁺ 个数比为 1: 2
- B. 格林绿晶体中 Fe³⁺ 周围等距且最近的 Fe³⁺ 数为 6
- C. 每个Fe(CN), 晶胞完全转化为NaFe(CN), 晶胞, 转移8个e-
- D. 若普鲁士白的晶胞棱长为 a pm,则其晶体的密度为 $\frac{8 \times 157}{a^3 N} \times 10^{30} g \cdot cm^{-3}$
- 15. 一种以镍电极废料(含 Ni 以及少量 Al₂O₃、Fe₂O₃和不溶性杂质)为原料制备 NiOOH 的过程可表示为: 稀硫酸 KClO 溶液

"酸浸"后溶液中的金属离子除 Ni²⁺ 外还有少量的 Al³⁺和 Fe²⁺ 等, 下列说法错误的是

- A. 氧化性: Ni²⁺ > Fe³⁺
- B. 提高酸浸率可采用升高温度或将废料粉碎
- C. 除杂过程包括:调节 pH,将 Al3+和 Fe2+转化为沉淀,再过滤除去不溶性杂质
- D. 检验 NiOOH 是否洗涤干净可取洗涤液加入盐酸酸化的 BaCl,溶液

三. 非选择题(共5个大题,共60分)

16. (11分) 金属钠是在 1807 年通过电解氢氧化钠制得的,这个原理应用于工业生 产,约在1891年才获得成功。1921年实现了电解氯化钠制钠的工业方法,其反应 原理是 $2NaCl(熔融)^{\underline{e}}$ $2Na+Cl_2\uparrow$ 。回答下列有关单质钠的问题:

(1)保存金属钠的正确方法是	Ė

- A. 放在棕色瓶 B. 放在细沙中 C. 放在水中 D. 放在煤油中
- (2)Na、NaOH 久置于空气中最终都变为 (填化学式)。
- (3)除去碳酸钠粉末中混有的少量碳酸氢钠固体的最适宜的方法为 , 所 涉及到的化学方程式为
- (4)工业上以 NaCl、NH₃、CO₂等为原料先制得 NaHCO₃,反应的化学方程式为: NaCl+NH₃+CO₂+H₂O=NaHCO₃↓+NH₄Cl, 进而生产纯碱。

某活动小组根据上述原理,制备碳酸氢钠。实验装置如图所示(夹持、固定用仪器未

画出)。

(填分离操作名称)。

(5)已知该装置是一个电解池,使用时,先向水中加入一勺食盐。电解 过程中 NaCl 没有参与反应, 请分析 NaCl 在整个装置中起到的作 用。

17. (12分)某小组同学设计如下实验,研究亚铁盐与H₂O₂溶液的反应。

【实验 1】试剂: 酸化的 $0.5 \text{mol} \cdot L^{-1} \text{FeSO}_4$ 溶液 (pH = 0.2), $5\% \text{H}_2 \text{O}_2$ 溶液 (pH = 5)

操作	现象
取 2mL 上述 FeSO ₄ 溶液于试管中,加入 5 滴 5%H ₂ O ₂ 溶液	溶液立即变为棕黄色,稍后,产生气泡。测得反应后溶液pH=0.9
向反应后的溶液中加入KSCN溶液	溶液变红

(1)上述实验中H ₂ O ₂ 溶液与FeSO ₄ 溶液反应的离子方程式是。			
(2)产生气泡的原因是。			
【实验Ⅱ】试剂:未酸化的0.5n	$\text{nol}\cdot\text{L}^{-1}\text{FeSO}_4$ 溶液(pH=3), 5% H_2O_2 溶液(pH=5)		
操作	现象		
取2mL5%H ₂ O ₂ 溶液于试管中,加入5滴上述FeSO ₄ 溶液	溶液立即变为棕黄色,产生大量气泡,并放热,反应混合物颜色加深且有浑浊。测得反应后溶液 pH = 1.4		
(3)将上述混合物分离,得到棕黄色沉淀和红褐色胶体。取部分棕黄色沉淀洗净,加			
$4 mol \cdot L^1$ 盐酸,沉淀溶解得到黄色溶液。初步判断该沉淀中含有 $Fe_2 O_3$,经检验还含			
有SO ₄ -。检验棕黄色沉淀中SO ₄ -的方法是。			
(4)对于生成红褐色胶体的原因,提出两种假设:			
i. H ₂ O ₂ 溶液氧化Fe ²⁺ 消耗H ⁺ ii. Fe ²⁺ 氧化的产物发生了水解			
①根据实验 II 记录否定假设 i , 理由是。			
②实验验证假设 ii: 取	,加热,溶液变为红褐色,pH下降,证明假设ii成		
$\overrightarrow{\underline{\mathcal{V}}}$.			
(5)将FeSO ₄ 溶液加入H ₂ O ₂ 溶液后	f,产生红褐色胶体,反应的离子方程式		
是:			
18. (13 分)阅读下面一段材料	并回答问题。		
高铁酸钾使用说明书			
	【化学式】K ₂ FeO ₄		
【性状】暗紫色具有金属光泽的粉末,无臭无味			
【产品特点】干燥品在室温下稳定,在强碱溶液中稳定,随着 pH 减小,稳定性下			
降,与水反应放出氧气, K_2 FeO4通过强烈的氧化作用可迅速杀灭细菌,有消毒作用,			
同时不会产生有害物质。 K_2 FeO ₄ 与水反应还能产生具有强吸附性的 Fe(OH) ₃ 胶体,			
可除去水中细微的悬浮物,有净水作用			
【用途】主要用于饮用水消毒净化、城市生活污水和工业污水处理			
【用量】消毒净化 1L 水投放 5mgK ₂ FeO ₄ 即可达到卫生标准			
(1)将 K ₂ FeO ₄ 与水反应的化学方	程式补充完整:		
K_2FeO_4+ $H_2O=$	Fe(OH)3(胶体)+O2↑+KOH		
(2) Na ₂ FeO ₄ 可通过多种方法律	导到。		

Na₂FeO₄可通过 Fe(NO₃)₃溶液与 NaClO 溶液在碱性条件下反应制备(NaClO 被还 原为 NaCl), 此反应的离子方程式为 : Na₂FeO₄可用 于氧化去除高氯(含高浓度 Cl')废水中的有机物。将 Na₂FeO₄ 溶液酸化时,FeO₄ 迅 速分解而转化为 Fe3+并放出 O2。酸性溶液中 FeO4 的氧化性大于 Cl2 的氧化性。FeO4 处理高氯废水中的有机物需在碱性条件下进行, 其原因 是

(3) 某兴趣小组欲利用废金属屑(主要成分为 Fe 和 Cu, 含有少量 Fe₂O₃)制取高铁 酸钠并回收金属 Cu, 其工艺流程如下:

- ①试剂 a 为
- ②在过滤操作中要使用玻璃棒,其作用是
- ③检验滤液 I 中是否存在 Fe³⁺, 可用 KSCN 溶液, 溶液变红。向红色溶液中加入 KCN 溶液,会观察到红色褪去,生成[Fe(CN)₆]³⁻。请从配位键的强弱与离子反应发生条 件角度说明为何该反应可以发生。
- 19. (12 分) 某探究小组在实验室中用铝土矿(主要成分为 Al₂O₃, 还含有 Fe₂O₃、SiO₂) 提取氧化铝。回答下列问题:

(1)在实验中需用 1 $mol \cdot L^{-1}$ 的 NaOH 溶液 480 mL, 配制该溶液已有下列仪器: 托盘 天平(砝码)、胶头滴管、药匙、玻璃棒,还缺少的仪器是 在灼烧操作中用到下列仪器中的一种,其名称是

(2)写出步骤①中发生反应的离子方程式

(3)操作③中的洗涤操作如何进行?。
(4)甲同学在实验室中用如图装置制备 CO2 气体,并通入滤液 B 中制备 Al(OH)3 时,
结果没有产生预期现象。
乙同学分析认为: 甲同学通入 CO ₂ 的量不足是导 盐酸
致实验失败的原因之一,你认为乙的分析是否合
理?。若合理,请用离子方程式解释其原
因(若你认为不
合理,该空不作答)。丙同学分析认为:甲同学通
入的 CO ₂ 中含有 HCl 气体,也是导致实验失败的 装置 I 装置 II
原因,在实验中增加某装置可解决这个问题。请帮助丙同学画出该装置图,并注明
试剂名称。
20. (12分)铜是生活中常见的金属,请回答下列问题:
(1)Cu 不活泼, 通常情况下不与稀硫酸反应, 但向 Cu 和稀硫酸的混合物中滴入 H ₂ O ₂
溶液后,溶液很快变蓝色,试写出该反应的离子方程式:。
(2)将硫酸铜溶液和碳酸钠溶液混合,会析出 Cu ₂ (OH) ₂ CO ₃ 绿色固体,试写出该反应
的离子方程式:。
(3)火法炼铜的原理为 Cu ₂ S+O ₂ 加热 2Cu+SO ₂ , 在反应中每生成 1 mol Cu,
转移mol e¯。
(4)据报道,有一种叫 Thibacillus Ferroxidans 的细菌在有氧气存在的酸性溶液中,可
将黄铜矿 CuFeS ₂ 氧化成硫酸盐: 4CuFeS ₂ +2H ₂ SO ₄ +17O ₂ =4CuSO ₄ +2Fe ₂ (SO ₄) ₃ +
2H ₂ O。利用反应后的溶液,按如下流程可制备胆矾(CuSO ₄ ·5H ₂ O):
上述溶液 加CuO 调pH 浊液B 操作b ← CuSO ₄ ·5H ₂ O
①检验溶液 B 中 Fe ³⁺ 是否被除尽的实验方法:。
②在实验室中,设计两个原理不同的方案,从溶液 B 中提炼金属铜(要求:一种方
案只用一个反应来完成)。写出两种方案中涉及的化学方程式:
方案一; 方案二。