Modelling Crowd Behaviour in the Polymensa using the Social Force Model

M. Vifian, M. Roggo, M. Aebli

GESS Presentations, December 2011

Outline

Introduction and Motivation Introduction, Motivation and Fundamental Questions Fundamental Questions

Description of Model Sources Description

Implementation

Simulation and Discussion

Outline

Introduction and Motivation
Introduction, Motivation and Fundamental Questions

Description of Model
Sources
Description

Implementation

Simulation and Discussion

- Mensa seems suboptimal.
- General motivation: mensa dynamics predictable?
- ▶ Matlab simulation
- Goal: Simulation with close resemblance to actual observed crowd behaviour.

- Mensa seems suboptimal.
- General motivation: mensa dynamics predictable?
- Matlab simulation
- Goal: Simulation with close resemblance to actual observed crowd behaviour.

- Mensa seems suboptimal.
- General motivation: mensa dynamics predictable?
- Matlab simulation
- Goal: Simulation with close resemblance to actual observed crowd behaviour.

- Mensa seems suboptimal.
- General motivation: mensa dynamics predictable?
- Matlab simulation
- Goal: Simulation with close resemblance to actual observed crowd behaviour.

Outline

Introduction and Motivation

Introduction, Motivation and Fundamental Questions
Fundamental Questions

Description of Model Sources Description

Implementation

Simulation and Discussion

- How do pedestrian groups with different destinations interact with one another?
- How do pedestrian groups interact when all pedestrians return to a cash register once they have obtained their meals?
- How accurately are pedestrian-dynamic models able to depict the empirically collected data?

- ► How do pedestrian groups with different destinations interact with one another?
- How do pedestrian groups interact when all pedestrians return to a cash register once they have obtained their meals?
- How accurately are pedestrian-dynamic models able to depict the empirically collected data?

- How do pedestrian groups with different destinations interact with one another?
- How do pedestrian groups interact when all pedestrians return to a cash register once they have obtained their meals?
- How accurately are pedestrian-dynamic models able to depict the empirically collected data?

- How do pedestrian groups with different destinations interact with one another?
- How do pedestrian groups interact when all pedestrians return to a cash register once they have obtained their meals?
- How accurately are pedestrian-dynamic models able to depict the empirically collected data?

Variables of Interests

- ► Time it takes for agents to enter and exit mensa.
- ► The number of times agent paths are blocked by other agents.
- Queue locations.

Variables of Interests

- Time it takes for agents to enter and exit mensa.
- The number of times agent paths are blocked by other agents.
- Queue locations.

Variables of Interests

- Time it takes for agents to enter and exit mensa.
- The number of times agent paths are blocked by other agents.
- Queue locations.

Outline

Introduction and Motivation
Introduction, Motivation and Fundamental Questions
Fundamental Questions

Description of Model Sources

Implementation

Simulation and Discussion

Social Force Model Sources

- Social Force Model for Pedestrian dynamics (1995) –
 Dirk Helbing et al. First publication of Social Force Model.
- Self-organized Pedestrian Crowd Dynamics (2005) Helbing et al. Extensions to Social Force Model.

Social Force Model Sources

- Social Force Model for Pedestrian dynamics (1995) –
 Dirk Helbing et al. First publication of Social Force Model.
- Self-organized Pedestrian Crowd Dynamics (2005) Helbing et al. Extensions to Social Force Model.

Outline

Introduction and Motivation
Introduction, Motivation and Fundamental Questions
Fundamental Questions

Description of Model

Sources

Description

Implementation

Simulation and Discussion

General

- ► All pedestrian interactions reduced to forces.
- ► Forces
 - Destination
 - Other Agents
 - 3. Boarders
 - Objects of Attraction

General

- ► All pedestrian interactions reduced to forces.
- Forces
 - 1. Destination
 - 2. Other Agents
 - 3. Boarders
 - 4. Objects of Attraction

Destination Force

Unit Vector towards destination:

$$lackbr{e}_lpha(t) := rac{ec{r}_lpha^k - ec{r}_lpha(t)}{||ec{r}_lpha^k - ec{r}_lpha(t)||}$$

Force towards destination:

$$\blacktriangleright \vec{F}^0_\alpha(\vec{v}_\alpha, \vec{v}^0_\alpha, \vec{e}_\alpha(t)) := \frac{1}{\tau_\alpha} (v^0_\alpha \vec{e}_\alpha - \vec{v}_\alpha)$$

Destination Force

Unit Vector towards destination:

$$ightharpoonup ec{e}_{lpha}(t) := rac{ec{r}_{lpha}^k - ec{r}_{lpha}(t)}{||ec{r}_{lpha}^k - ec{r}_{lpha}(t)||}$$

Force towards destination:

$$ightarrow \vec{F}^0_lpha(ec{v}_lpha,ec{v}^0_lpha,ec{e}_lpha(t)):=rac{1}{ au_lpha}(v^0_lphaec{e}_lpha-ec{v}_lpha)$$

Other Agents Force

Other Agents Force (alternative)

according to more recent Social Force model:

$$ec{F}_{lphaeta}(t) = A_{lpha}^{1} \exp\left[(r_{lphaeta} - d_{lphaeta})/B_{lpha}^{1}
ight] ec{n}_{lphaeta} \ \cdot \left(\lambda_{lpha} + (1 - \lambda_{lpha}) rac{1 + \cos(arphi_{lphaeta})}{2}
ight) \ + A_{lpha}^{2} \exp\left[(r_{lphaeta} - d_{lphaeta})/B_{lpha}^{2}
ight] ec{n}_{lphaeta}$$

Boundary Forces

Boundary Forces:

lacktriangle boundry Repulsion Force $ec{F}_{lpha B} = -
abla_{ec{r_{lpha B}}} U_{0}{}_{lpha B} e^{-||ec{r}_{lpha B}||/R}$

Total Forces

► Note: attractive object forces calculated in similar fashion.

Superposition of all Forces:

$$\vec{F}_{\alpha}(t) = \vec{F}_{\alpha}^{0}(\vec{v}_{\alpha}\vec{v}_{\alpha}^{0}\vec{e}_{\alpha}) + \sum_{\beta}\vec{F}_{\alpha\beta}(\vec{e}_{\alpha},\vec{r}_{\alpha} - \vec{r}_{\beta}) + \sum_{B}\vec{F}_{\alpha B}(\vec{e}_{\alpha},\vec{r}_{\alpha} - \vec{r}_{\beta}) + \sum_{B}\vec{F}_{\alpha B}(\vec{e}_{\alpha},\vec{r}_{\alpha} - \vec{r}_{i},t)$$

Using the force

Putting it all together

- $\frac{d\vec{w_{\alpha}}}{dt} := \vec{F}_{\alpha}(t) + fluctuations$
- Actual velocity $\vec{v}_{\alpha} = \vec{w}_{\alpha} \cdot \begin{cases} 1 & , \text{ if } ||\vec{w}_{\alpha}|| < v_{0}^{\alpha} \\ \frac{v_{0}^{\alpha}}{||\vec{w}_{\alpha}||} & , \text{ otherwise} \end{cases}$

Structure of our Program

- No objects
 - Objects need loops
 - Matrices are faster (usually)
- All agents stored inside one matrix

```
% | Agent 1 | Agent 2 | Agent 3
%------
% 1 position x |
% 2 position y |
% 3 speed x |
% 4 speed y |
% 5 desired speed v0|
% 6 goal |
% 7 last counter
% 8 ETR from FM
% 9 Red Carpet...
```

- Rather scripts than functions
 - Functions: pass by value
 - ► Global Variables: pass by "reference"

Simulation: Euler Method

Calculate forces

```
agents_f(:,agentID) = agents_force(A,agentID);
agents_p(:,agentID) =
potential_force(round(A(1,agentID)),round(A(2,agentID)));
```

Resulting Velocities

```
A(3:4,agentID) = (agents_p(:,agentID)...
*agents_f(:,agentID)...
+10 *[(rand(1)-.5);(rand(1)-.5)])...
*timestep;
```

▶ New positions: $\vec{x_{n+1}} = \vec{x_n} + \vec{v} \cdot \Delta t$

```
▶ deltaPos=A(3:4,:)*timestep;
A(1:2,:)=A(1:2,:)+deltaPos;
```

Desired Direction

Agent Forces

- Distances to other Agents: A single matrix multiplication
 - ▶ distances=A(1:2,:)-A(1:2,alpha)*ones(1,size(A,2))
- Neglect agents outside 1 meter

```
close_agents =
  sqrt(sum(r_alphabeta_matrix.^2))<sight;
  agent_others = A(:,close_agents);</pre>
```

Calculate resulting interaction forces

```
F_agents = A2*sum(...
  (ones(2,1)...
  *exp((2+tray_factor*(agent_alpha(6)==1)...
  *sigma*ones(1,agent_number_back-1)-sum(r_alphabeta_matrity)
  +sigma*tray_factor*(agent_others(6,:)==1))/B2)...
).*e_beta_matrix,2);
```

Simple Queueing

Algorithm

- Look around. Who is headed towards the same goal?
- Who ist last in line?
- Join him/her

Implementation

- Fast Marching offers the expected time until reaching a certain goal
- Take those closer to the goal than you (less time expected)
- Of those take the last (max time)

Testing Heuristics

- ► Basic social force model
- additional Queuing
- additional real-time-Path-planning

Basic Social Force Model

Queuing

Real-time Path Planning

► Path planning takes 250 ms

The Real Mensa

Finding The Balance

Measuring The Balance

Comparison In The Mensa

Video demo

- Struggling to get through waiting lines
- No waiting at the serving counters and checkouts

- Fetching food is way more than bare queueing
- We were able to reproduce some characteristics of the polymensa-Crowd
- Simulating 2 Frames/second is tedious

- Fetching food is way more than bare queueing
- We were able to reproduce some characteristics of the polymensa-Crowd
- Simulating 2 Frames/second is tedious

- Fetching food is way more than bare queueing
- We were able to reproduce some characteristics of the polymensa-Crowd
- Simulating 2 Frames/second is tedious