15.1, 15.2, 15.3: Double Integrals

Over Rectangles

Let f(x,y) be continuous over rectangle $\mathcal{R}: a \leq x \leq b, c \leq y \leq d$. Let \mathcal{P} be a partition of \mathcal{R} and let m_{ij} and M_{ij} be maximum values of f on the i,j sub-rectangle \mathcal{R}_{ij} . Then:

1. Lower sum

$$L_f(\mathcal{P}) = \sum_{i=1}^m \sum_{j=1}^n \overbrace{\Delta x_i \Delta y_j}^{ ext{area}} m_{ij}$$

2. Upper sum

$$U_f(\mathcal{P}) = \sum_{i=1}^m \sum_{j=1}^n \overbrace{\Delta x_i \Delta y_j}^{ ext{area}} M_{ij}$$

The **double integral** of f over \mathcal{P} is the unique number I satisfying $L_f(\mathcal{P}) \leq I \leq U_f(\mathcal{P})$ for all partitions \mathcal{P} .

$$I = \iint_{\mathcal{R}} f(x,y) \, dx \, dy$$
 or $I = \iint_{\mathcal{R}} f(x,y) \, dA$

Fubini's Theorem (first form)

If f(x,y) is continuous throughout rectangular region $R: a \leq x \leq b, c \leq y \leq d$:

$$\iint_R f(x,y)\,dA = \int_c^d \int_a^b f(x,y)\,dx\,dy = \int_a^b \int_c^d f(x,y)\,dy\,dx$$

Volume

If f(x,y) is a positive function over a rectangular region R in xy-plane, the volume of the solid region over the xy-plane bounded below by R and above by f(x,y) is:

$$V = \iint_{R} f(x,y) \, dA$$

Example

Evaluate $\int_0^3 \int_{-2}^0 (x^2y-2xy)\,dy\,dx$.

(From bounds: $-2 \le y \le 0, 0 \le x \le 3$)

Like partials, hold one constant while integrating other.

$$\int_{-2}^{0} (x^2y - 2xy) \, dy \ = x^2 rac{y^2}{2} - xy^2 igg|_{-2}^{0} \ = -2x^2 + 4x \ \int_{0}^{3} (-2x^2 + 4x) \, dx \ = -rac{2}{3}x^3 + 2x^2 igg|_{0}^{3} \ = 0$$

Over General Regions

Fubini's Theorem (stronger form)

Let f(x,y) be continuous on a region R.

1. If R is defined by $a \leq x \leq b, g_1(x) \leq y \leq g_2(x)$ (such that g_1 and g_2 are continuous on [a,b])

$$\iint_R f(x,y) \, dA = \int_a^b \int_{g_1(x)}^{g_2(x)} f(x,y) \, dy \, dx$$

2. If R is defined by $c \leq y \leq d, h_1(y) \leq x \leq h_2(y)$ (such that h_1 and h_2 are continuous on [c,d])

$$\iint_R f(x,y) \, dA = \int_c^d \int_{h_1(x)}^{h_2(x)} f(x,y) \, dx \, dy$$

Changing Order of Integration

Vertical cross sections (1) and horizontal cross sections (2) are used. You can switch between them.

Properties

Given continuous functions f(x, y), g(x, y) on bounded region R:

1. Constant mutiple

$$\iint_R cf(x,y)\,dA = c\iint_R f(x,y)dA$$

2. Sum and difference

$$\iint_R (f(x,y)\pm g(x,y))\,dA = \iint_R f(x,y)dA \pm \iint_R g(x,y)dA$$

3. Domination

$$\iint_R f(x,y)\,dA\geq 0 ext{ if } f(x,y)\geq 0 ext{ on } R$$
 $\iint_R f(x,y)\,dA\geq \iint_R g(x,y)\,dA ext{ if } f(x,y)\geq g(x,y) ext{ on } R$

4. Additivity: If R is the union of two non-overlapping regions R_1 and R_2 :

$$\iint_R f(x,y)\,dA = \iint_{R_1} f(x,y)\,dA + \iint_{R_2} f(x,y)\,dA$$

Example

Evaluate $\iint_R x^3 y \, dA$ where $R: 0 \leq x \leq 1, 0 \leq y \leq x.$ R:

$$\int_{0}^{1} \underbrace{\int_{0}^{x} x^{3}y \, dy}_{0} \, dx$$

$$= \frac{1}{2} x^{3} y^{2} \Big|_{0}^{x}$$

$$= \frac{1}{2} x^{5}$$

$$\int_{0}^{1} \frac{1}{2} x^{5} \, dx$$

$$= \frac{1}{12} x^{6} \Big|_{0}^{1}$$

$$= \frac{1}{12}$$

Application: Area

The **area** of a closed, bounded plane region R is:

$$A=\iint_R\,dA$$

Application: Average Value

Average value of
$$f$$
 over $R = \frac{1}{\text{area of } R} \iint_R f \, dA$