Assume weight vector of initial decision boundary $w^T x = 0$ as w = [1,1]

$$y_{in} = w_1^T \dot{x}_i + b = w_i x_1 + w_i x_2 + b$$

Assume learning rate as 1

$$y = \{ 1 \text{ if } y_{in} > 0 \}$$

0 if
$$y_{in} = 0$$

-1 if
$$y_{in} < 0$$

$$\Delta\omega_1=\alpha t x_1$$

$$\Delta\omega_2 = \alpha t x_2$$

$$\Delta b = \alpha t$$

x_1	x_2	Class(t)	y_{in}	у	$\Delta\omega_1$	$\Delta\omega_2$	Δb	w_1	W_2	b
1	1	+1	2	+1	0	0	0	1	1	0
-1	-1	-1	-2	-1	0	0	0	1	1	0
0	0.5	-1	0.5	+1	0	-0.5	-1	1	0.5	-1
0.1	0.5	-1	-0.65	-1	0	0	0	1	0.5	-1
0.2	0.2	+1	-0.1	-1	0.2	0.2	1	1.2	0.7	0
0.9	0.5	+1	1.43	+1	0	0	0	1.2	0.7	0

x_1	x_2	Class(t)	y_{in}	у	$\Delta\omega_1$	$\Delta\omega_2$	Δb	w_1	w_2	b
1	1	+1	1.9	+1	0	0	0	1.2	0.7	0
-1	-1	-1	-1.9	-1	0	0	0	1.2	0.7	0
0	0.5	-1	0.35	+1	0	-0.5	-1	1.2	0.2	-1
0.1	0.5	-1	-0.78	-1	0	0	0	1.2	0.2	-1
0.2	0.2	+1	-0.72	-1	0.2	0.2	1	1.4	0.4	0
0.9	0.5	+1	1.46	+1	0	0	0	1.4	0.4	0

x_1	x_2	Class(t)	y_{in}	у	$\Delta\omega_1$	$\Delta\omega_2$	Δb	w_1	W_2	b
1	1	+1	1.8	+1	0	0	0	1.4	0.4	0
-1	-1	-1	-1.8	-1	0	0	0	1.4	0.4	0
0	0.5	-1	0.2	+1	0	-0.5	-1	1.4	-0.1	-1
0.1	0.5	-1	-0.81	-1	0	0	0	1.4	-0.1	-1
0.2	0.2	+1	-0.74	-1	0.2	0.2	1	1.6	0.1	0
0.9	0.5	+1	1.49	+1	0	0	0	1.6	0.1	0

x_1	x_2	Class(t)	y_{in}	у	$\Delta\omega_1$	$\Delta\omega_2$	Δb	w_1	w_2	b
1	1	+1	1.7	+1	0	0	0	1.6	0.1	0
-1	-1	-1	-1.7	-1	0	0	0	1.6	0.1	0
0	0.5	-1	0.05	+1	0	-0.5	-1	1.6	-0.4	-1
0.1	0.5	-1	-1.04	-1	0	0	0	1.6	-0.4	-1
0.2	0.2	+1	-0.76	-1	0.2	0.2	1	1.8	-0.2	0
0.9	0.5	+1	1.52	+1	0	0	0	1.8	-0.2	0

x_1	x_2	Class(t)	y_{in}	у	$\Delta\omega_1$	$\Delta\omega_2$	Δb	w_1	W_2	b
1	1	+1	1.6	+1	0	0	0	1.8	-0.2	0
-1	-1	-1	-1.6	-1	0	0	0	1.8	-0.2	0
0	0.5	-1	-0.1	+1	0	0	0	1.8	-0.2	0
0.1	0.5	-1	-0.08	-1	-0.1	-0.5	-1	1.7	-0.7	-1
0.2	0.2	+1	-0.8	-1	0.2	0.2	1	1.9	-0.5	0
0.9	0.5	+1	1.46	+1	0	0	0	1.9	-0.5	0

x_1	x_2	Class(t)	y_{in}	y	$\Delta\omega_1$	$\Delta\omega_2$	Δb	w_1	W_2	b
1	1	+1	1.4	+1	0	0	0	1.9	-0.5	0
-1	-1	-1	-1.4	-1	0	0	0	1.9	-0.5	0
0	0.5	-1	-0.25	-1	0	0	0	1.9	-0.5	0
0.1	0.5	-1	-0.06	-1	0	0	0	1.9	-0.5	0
0.2	0.2	+1	-0.28	+1	0	0	0	1.9	-0.5	0
0.9	0.5	+1	1.46	+1	0	0	0	1.9	-0.5	0

The perceptron learning algorithm converged in 6 steps:

The final weight vector of the decision boundary is w = [1.9,-0.5]

$$1.9x_1 + (-0.5)x_2 = 0$$

$$\Rightarrow$$
 1.9 x_1 -0.5 x_2 = 0

Let's plot the final decision boundary

We can see that 1.9 x_1 -0.5 x_2 = 0 line separates the two classes correctly

Neural Network Corresponding to the perceptron.