Package 'BioVizSeq'

December 22, 2024

Type Package						
Title Visualizing the Elements Within Bio-Sequences						
Version 1.0.0						
Maintainer Shiqi Zhao <zhaosq89@163.com></zhaosq89@163.com>						
Description Visualizing the types and distribution of elements within bio-sequences. At the same time, We have developed a geom layer, geom_rrect(), that can generate rounded rectangles. No external references are used in the development of this package.						
License Artistic-2.0						
Encoding UTF-8						
Language en-US						
RoxygenNote 7.2.3						
Repository CRAN						
Imports dplyr, ggplot2, httr, RColorBrewer, seqinr, stringr, tidyr, magrittr, ggtree, treeio, shiny						
NeedsCompilation no						
Author Shiqi Zhao [aut, cre, cph] (https://orcid.org/0000-0002-2360-956X)						
Date/Publication 2024-12-22 11:00:02 UTC						
Contents						
biovizseq 2 cdd_plot 3 cdd_to_loc 4 combi_p 4 fastaleng 5 geom_rrect 6 get_motif_location 5 gff_plot 5 gff_to_loc 16 meme_plot 10						

2	2 bio	ovizseq

motif_plot	2
motif_seq	3
pfam_plot	4
pfam_to_loc	5
plantcare_classify	5
plantcare_plot	6
plantcare_statistic1	7
plantcare_statistic2	7
plantcare_to_loc	8
smart_plot	9
smart_to_loc	<u>.</u> C
upload_fa_to_plantcare	20
2	, 1

biovizseq

Index

BioVizSeq shiny app start function.

Description

BioVizSeq shiny app start function.

Usage

biovizseq()

Value

Shinyapp: BioVizSeq shiny app.

Author(s)

Shiqi Zhao

Examples

1. Library BioVizSeq package
library(BioVizSeq)

cdd_plot 3

cdd_plot cdd_plot

Description

Visualization of domain in CDD file

Usage

```
cdd_plot(
  cdd_file,
  fasta_file,
  the_order = NULL,
  domain_select = NULL,
  shape = "RoundRect",
  r = 0.3,
  legend_size = 15,
  domain_color = NULL
)
```

Arguments

cdd_file The path of cdd file.
fasta_file The path of fasta file.

the_order The path of order file. A List of Gene ID , One ID Per Line.

domain_select The domain ID which you want to align with.

shape RoundRect or Rect.

r The radius of rounded corners.

legend_size The size of legend.
domain_color The color set of domain.

Value

p

Author(s)

Shiqi Zhao

```
hitdata_path <- system.file("extdata", "hitdata.txt", package = "BioVizSeq")
fa_path <- system.file("extdata", "idpep.fa", package = "BioVizSeq")
cdd_plot(hitdata_path, fa_path)

order_path <- system.file("extdata", "order.csv", package = "BioVizSeq")
cdd_plot(hitdata_path, fa_path, the_order = order_path)</pre>
```

combi_p

 ${\sf cdd_to_loc}$

 cdd_to_loc

Description

Extract the location information of domain from cdd file

Usage

```
cdd_to_loc(cdd_file)
```

Arguments

```
cdd_file CDD file.
```

Value

data.frame

Author(s)

Shiqi Zhao

Examples

```
hitdata_path <- system.file("extdata", "hitdata.txt", package = "BioVizSeq")
cdd_file <- readLines(hitdata_path)
domain_loc <- cdd_to_loc(cdd_file)</pre>
```

combi_p

 $combi_p$

Description

Get ggplot2 files to facilitate free combination in patchwork

Usage

```
combi_p(
   tree_path,
   gff_path = NULL,
   meme_path = NULL,
   pfam_path = NULL,
   cdd_path = NULL,
   fa_path = NULL,
   plantcare_path = NULL,
```

fastaleng 5

```
promoter_length = NULL,
shape = "RoundRect",
r = 0.3,
legend_size = 6
)
```

Arguments

tree_path The path of tree file (.newick).

gff_path The path of .gff/gtf file.

meme_path The path of .meme/mast file.

pfam_path The path of pfam result file (.tsv).

cdd_path The path of cdd result file (.txt).

fa_path The path of protein file (.fa/fasta).

plantcare_path The path of plantcare file (.tab).

promoter_length

The length of promoter.

shape RoundRect or Rect.

r The radius of rounded corners.

legend_size The size of legend.

Value

list

Author(s)

Shiqi Zhao

Examples

```
tree_path <- system.file("extdata", "idpep.nwk", package = "BioVizSeq")
plot_file <- combi_p(tree_path)</pre>
```

fastaleng

fastaleng

Description

Statistical sequence length

Usage

```
fastaleng(fasta_file)
```

geom_rrect

Arguments

fasta_file The path of protein fasta file.

Value

data.frame

Author(s)

Shiqi Zhao

Examples

```
fasta_path <- system.file("extdata", "idpep.fa", package = "BioVizSeq")
fastaleng(fasta_path)</pre>
```

geom_rrect

geom_rrect

Description

Rounded rectangle

Usage

```
geom_rrect(
  mapping = NULL,
  data = NULL,
  stat = "identity",
  position = "identity",
  r = 0.2,
    ...,
  na.rm = FALSE,
  show.legend = NA,
  inherit.aes = TRUE
)
```

Arguments

mapping	Set of aesthetic mappings created by aes. If specified and inherit.aes = TRUE (the default), it is combined with the default mapping at the top level of the plot. You must supply mapping if there is no plot mapping.
data	A data.frame, or other object, will override the plot data. All objects will be fortified to produce a data frame.
stat	Name of stat to modify data.
position	The position adjustment to use for overlapping points on this layer.

geom_rrect 7

r	The radius of rounded corners.
	additional parameter, e.g. color, linewidth, alpha.
na.rm	If "FALSE" (default), missing values are removed with a warning. If "TRUE", missing values are silently removed, logical.
show.legend	Whether to show legend, logical.
inherit.aes	Whether to inherit aesthetic mappings, logical, defaults to "TRUE".

Details

draws rounded rectangle by using the locations of the four corners (xmin, xmax, ymin and ymax) like geom_rect().

Value

ggplot object

Aesthetics

geom_rrect() understands the following aesthetics (required aesthetics are in bold):

- xmin
- xmax
- ymin
- ymax
- alpha
- colour
- fill
- group
- linetype

Learn more about setting these aesthetics in vignette("ggplot2-specs").

Author(s)

Shiqi Zhao

```
library(ggplot2)
df <- data.frame(
    xmin = c(1, 2, 3),
    xmax = c(2, 3, 4),
    ymin = c(1, 2, 3),
    ymax = c(2, 3, 4),
    category = c("A", "B", "C")
)</pre>
```

get_motif_location

get_motif_location

get_motif_location

Description

Extract the location information of motif from mast or meme file

Usage

```
get_motif_location(motif_file)
```

Arguments

motif_file The motif data of mast or meme file.

Value

list

Author(s)

Shiqi Zhao

```
meme_path <- system.file("extdata", "meme.xml", package = "BioVizSeq")
meme_file <- readLines(meme_path)
motif_loc <- get_motif_location(meme_file)

mast_path <- system.file("extdata", "mast.xml", package = "BioVizSeq")
mast_file <- readLines(mast_path)
motif_loc <- get_motif_location(mast_file)</pre>
```

gff_plot 9

gff_plot

gff_plot

Description

Visualization of element in gff or gtf file

Usage

```
gff_plot(
  gff_file,
  the_order = NULL,
  shape = "Rect",
  r = 0.3,
  legend_size = 15,
  element_color = NULL
)
```

Arguments

gff_file The path of gff file.

the_order The path of order of mRNA. It is also the mRNA you want to showcase. A List

of Gene ID, One ID Per Line.

shape RoundRect or Rect.

r The radius of rounded corners.

legend_size The size of legend.

Value

p

Author(s)

Shiqi Zhao

```
gff_path <- system.file("extdata", "test.gff", package = "BioVizSeq")
gff_plot(gff_path)</pre>
```

10 meme_plot

gff_to_loc

gff_to_loc

Description

Extract the location information of element from gff or gtf file

Usage

```
gff_to_loc(gff_data, mRNA_ID = NULL)
```

Arguments

gff_data

gff file.

 $mRNA_ID$

The mRNA you selected. If NULL, it means selecting all mRNAs.

Value

list

Author(s)

Shiqi Zhao

Examples

```
gff_path <- system.file("extdata", "test.gff", package = "BioVizSeq")
gff_data <- read.table(gff_path, header = FALSE, sep = '\t')
gff_loc <- gff_to_loc(gff_data)

ID_path <- system.file("extdata", "ID_select.csv", package = "BioVizSeq")
mRNA_ID <- readLines(ID_path)
gff_loc <- gff_to_loc(gff_data, mRNA_ID=mRNA_ID)</pre>
```

 $meme_plot$

meme_plot

Description

Visualization of motif in meme file or mast file

meme_plot 11

Usage

```
meme_plot(
  meme_file,
  the_order = NULL,
  motif_select = NULL,
  shape = "RoundRect",
  show_motif_id = FALSE,
  r = 0.3,
  legend_size = 15,
  motif_color = NULL
)
```

Arguments

meme_file The path of meme file or mast file.

the_order The path of order file. A List of Gene ID, One ID Per Line.

motif_select The motif ID which you want to align with.

shape RoundRect or Rect.

show_motif_id Display the name of the motif.

r The radius of rounded corners.

legend_size The size of legend.

motif_color The color set of motif.

Value

p

Author(s)

Shiqi Zhao

```
meme_path <- system.file("extdata", "meme.xml", package = "BioVizSeq")
meme_plot(meme_path)

mast_path <- system.file("extdata", "mast.xml", package = "BioVizSeq")
meme_plot(mast_path)

meme_plot(meme_path, motif_select="1", show_motif_id = TRUE)

order_path <- system.file("extdata", "order.csv", package = "BioVizSeq")
meme_plot(meme_path, the_order=order_path, motif_select="1")</pre>
```

12 motif_plot

motif_plot

motif_plot

Description

Draws multiple rounded rectangle.

Usage

```
motif_plot(
  motif_loc,
  gene_length,
  the_order = NULL,
  motif_select = NULL,
  shape = "RoundRect",
  show_motif_id = FALSE,
  r = 0.3,
  legend_size = 15,
  motif_color = NULL
)
```

Arguments

motif_loc A data.frame contains for columnus: ID, motif, start, end.

gene_length A data.fram of the length of biosequences. Two columns: ID, length.

the_order A List of Gene ID, One ID Per Line.

motif_select The motif ID which you want to align with.

shape RoundRect or Rect.

show_motif_id Display the name of the motif.

r The radius of rounded corners.

Details

motif_plot() draws multiple rounded rectangle to represent the above elements of biosequences, but not limited to biosequences

Value

p

Author(s)

Shiqi Zhao

motif_seq 13

Examples

```
df <- data.frame(
   ID = rep(c("geneA", "geneB", "geneC"), each = 3),
   motif = rep(c("1", "2", "3"), times = 3),
   start = c(1, 3, 6, 1, 6, 10, 10, 7, 17),
   end = c(3, 5, 11, 3, 8, 15, 12, 9, 22)
)

length_data <- data.frame(
   ID = c("geneA", "geneB", "geneC"),
   length = c(15, 27, 30)
)

order_data <- c("geneB", "geneA", "geneC")

motif_plot(df, length_data)
motif_plot(df, length_data, the_order = order_data)</pre>
```

motif_seq

motif_seq

Description

Get motif sequence from meme file or mast file

Usage

```
motif_seq(meme_file)
```

Arguments

meme_file

The path of meme file or mast file.

Value

data.frame

Author(s)

Shiqi Zhao

```
meme_path <- system.file("extdata", "meme.xml", package = "BioVizSeq")
meme_file <- readLines(meme_path)
motifseq<- motif_seq(meme_file)

mast_path <- system.file("extdata", "mast.xml", package = "BioVizSeq")</pre>
```

pfam_plot

```
mast_file <- readLines(mast_path)
motifseq<- motif_seq(mast_file)</pre>
```

pfam_plot

pfam_plot

Description

Visualization of domain in pfam result file

Usage

```
pfam_plot(
  pfam_file,
  the_order = NULL,
  domain_select = NULL,
  shape = "RoundRect",
  r = 0.3,
  legend_size = 15,
  domain_color = NULL
)
```

Arguments

pfam_file The path of meme file or mast file.

the_order The path of order file. A List of Gene ID, One ID Per Line.

domain_select The domain ID which you want to align with.

shape RoundRect or Rect.

r The radius of rounded corners.

legend_size The size of legend.
domain_color The color set of domain.

Value

p

Author(s)

Shiqi Zhao

```
pfam_path <- system.file("extdata", "iprscan.tsv", package = "BioVizSeq")
order_path <- system.file("extdata", "order.csv", package = "BioVizSeq")
pfam_plot(pfam_path)
pfam_plot(pfam_path, the_order=order_path)</pre>
```

pfam_to_loc 15

pfam_to_loc

pfam_to_loc

Description

Extract the location information of domain from pfam result

Usage

```
pfam_to_loc(pfam_data)
```

Arguments

pfam_data

The result file (.tsv) of pfam (via InterPro).

Value

list

Author(s)

Shiqi Zhao

Examples

```
pfam_path <- system.file("extdata", "iprscan.tsv", package = "BioVizSeq")
pfam_file <- read.table(pfam_path, sep='\t', header = FALSE)
motif_loc <- pfam_to_loc(pfam_file)</pre>
```

plantcare_classify

plantcare_classify

Description

Classify the functions of cis element from Plantcare

Usage

```
plantcare_classify(plantcare_file)
```

Arguments

```
plantcare_file The result file (.tab) of Plantcare.
```

Value

data.frame

16 plantcare_plot

Author(s)

Shiqi Zhao

Examples

```
plantcare_path <- system.file("extdata", "plantCARE_output.tab", package = "BioVizSeq")
plantcare_file <- read.table(plantcare_path, header = FALSE, sep = '\t', quote="")
plantcare_data <- plantcare_classify(plantcare_file)</pre>
```

plantcare_plot

plantcare_plot

Description

Visualization of cis-element in plantcare result file

Usage

```
plantcare_plot(
  plantcare_file,
  promoter_length = 2000,
  the_order = NULL,
  shape = "Rect",
  r = 6,
  legend_size = 15,
  element_color = NULL
)
```

Arguments

```
plantcare_file The path of plantcare result file (.tab).
promoter_length
```

The promoter length.

the_order The path of order file. A List of Gene ID, One ID Per Line.

shape RoundRect or Rect.

r The radius of rounded corners.

legend_size The size of legend.

element_color The color set of cis-element.

Value

p

Author(s)

Shiqi Zhao

plantcare_statistic1 17

Examples

```
plantcare_path <- system.file("extdata", "plantCARE_output.tab", package = "BioVizSeq")
plantcare_plot(plantcare_path, promoter_length = 2000)</pre>
```

```
plantcare_statistic1 plantcare_statistic1
```

Description

Count the number of cis element from Plantcare for heatmap

Usage

```
plantcare_statistic1(plantcare_data)
```

Arguments

plantcare_data The result of plantcare_classify().

Value

data.frame

Author(s)

Shiqi Zhao

Examples

```
plantcare_path <- system.file("extdata", "plantCARE_output.tab", package = "BioVizSeq")
plantcare_file <- read.table(plantcare_path, header = FALSE, sep = '\t', quote="")
plantcare_data <- plantcare_classify(plantcare_file)
statistic_data1 <- plantcare_statistic1(plantcare_data)</pre>
```

```
plantcare_statistic2 plantcare_statistic2
```

Description

Count the number of cis element from Plantcare for Bar chart

Usage

```
plantcare_statistic2(plantcare_data)
```

18 plantcare_to_loc

Arguments

```
plantcare_data The result of plantcare_classify().
```

Value

data.frame

Author(s)

Shiqi Zhao

Examples

```
plantcare_path <- system.file("extdata", "plantCARE_output.tab", package = "BioVizSeq")
plantcare_file <- read.table(plantcare_path, header = FALSE, sep = '\t', quote="")
plantcare_data <- plantcare_classify(plantcare_file)
statistic_data2 <- plantcare_statistic2(plantcare_data)</pre>
```

plantcare_to_loc

plantcare_to_loc

Description

Extract the location information of cis-element from Plantcare

Usage

```
plantcare_to_loc(plantcare_data)
```

Arguments

plantcare_data The result of plantcare_classify().

Value

data.frame

Author(s)

Shiqi Zhao

```
plantcare_path <- system.file("extdata", "plantCARE_output.tab", package = "BioVizSeq")
plantcare_file <- read.table(plantcare_path, header = FALSE, sep = '\t', quote="")
plantcare_data <- plantcare_classify(plantcare_file)
plantcare_loc <- plantcare_to_loc(plantcare_data)</pre>
```

smart_plot 19

smart_plot

smart_plot

Description

Visualization of domain in SMART result file

Usage

```
smart_plot(
  fasta_file,
  the_order = NULL,
  domain_select = NULL,
  shape = "RoundRect",
  r = 0.3,
  legend_size = 15,
  domain_color = NULL
)
```

Arguments

fasta_file The path of protein fasta file.

the_order The path of order file. A List of Gene ID, One ID Per Line.

domain_select The domain ID which you want to align with.

shape RoundRect or Rect.

r The radius of rounded corners.

legend_size The size of legend.

 ${\tt domain_color} \qquad {\tt The \ color \ set \ of \ domain.}$

Value

p

Author(s)

Shiqi Zhao

smart_to_loc

smart_to_loc

Description

Extract the location information of domain from SMART result

Usage

```
smart_to_loc(input_file, do_pfam = TRUE)
```

Arguments

input_file The path of potein fasta file.

do_pfam Include the pfam domain or not.

Value

list

Author(s)

Shiqi Zhao

```
upload_fa_to_plantcare
```

 $upload_fa_to_plantcare$

Description

Upload the promoter file to Plantcare database

Usage

```
upload_fa_to_plantcare(fasta_file, email)
```

Arguments

fasta_file The path of promoter file.

email e-mail address.

Details

Due to the file size limitation of plantcare on fasta, upload_fa_to_plantcare() first splits fasta file. Then uploads the splited fasta files to the plantcare database, and automatically returns the results to the email provided by the user.

```
upload_fa_to_plantcare("the path/test.fasta", "your e-mail address")
```

Value

plantcare_result

Author(s)

Shiqi Zhao

Index

```
aes, 6
alpha, 7
biovizseq, 2
cdd_plot, 3
cdd_to_loc, 4
colour, 7
combi\_p, 4
fastaleng, 5
fill, 7
geom_rrect, 6
get_motif_location, 8
gff_plot, 9
gff\_to\_loc, 10
group, 7
linetype, 7
meme_plot, 10
\verb|motif_plot|, 12|
motif\_seq, 13
pfam_plot, 14
pfam_to_loc, 15
plantcare\_classify, 15
plantcare_plot, 16
plantcare_statistic1, 17
plantcare_statistic2, 17
plantcare_to_loc, 18
smart_plot, 19
\verb|smart_to_loc|, 20|
upload_fa_to_plantcare, 20
xmax, 7
xmin, 7
ymax, 7
ymin, 7
```