

TrenchT2[™] HiperFET[™] Power MOSFET

IXFH320N10T2 IXFT320N10T2

N-Channel Enhancement Mode Avalanche Rated Fast Intrinsic Diode

Symbol	Test Conditions	Maximum Ratings		
V _{DSS}	$T_{_{\rm J}}$ = 25°C to 175°C	100	V	
V_{DGR}	$T_J = 25^{\circ}C$ to 175°C, $R_{GS} = 1M\Omega$	100	V	
V _{GSS} V _{GSM}	Continuous Transient	± 20 ± 30	V	
I _{D25}	T _C = 25°C (Chip Capability)	320	A	
LRMS	Lead Current Limit, RMS	160	Α	
I _{DM}	$T_{\rm C} = 25^{\circ}$ C, Pulse Width Limited by $T_{\rm JM}$	800	А	
I _A	T _C = 25°C	160	A	
E _{as}	$T_{c} = 25^{\circ}C$	1.5	J	
dv/dt	$I_{_{S}} \le I_{_{DM}}, V_{_{DD}} \le V_{_{DSS}}, T_{_{J}} \le 175^{\circ}C$	15	V/ns	
P_{D}	T _C = 25°C	1000	W	
T_{J}		-55 +175	°C	
T _{JM}		175	°C	
T _{stg}		-55 +175	°C	
T _L	1.6mm (0.062in.) from Case for 10s Plastic Body for 10 seconds	300 260	°C °C	
M _d	Mounting Torque (TO-247)	1.13 / 10	Nm/lb.in.	
Weight	TO-247 TO-268	6 4	g 9	

Test Conditions nless Otherwise Specified)	Charac Min.			
$V_{GS} = 0V, I_{D} = 1mA$	100			V
$V_{DS} = V_{GS}, I_{D} = 250\mu A$	2.0		4.0	V
$V_{GS} = \pm 20V, V_{DS} = 0V$			±200	nA
$V_{DS} = V_{DSS}, V_{GS} = 0V$			25	μΑ
$T_J = 150^{\circ}C$			1.75	mA
$V_{GS} = 10V, I_{D} = 100A, Notes 1 & 2$			3.5	mΩ
	nless Otherwise Specified) $V_{GS} = 0V, I_D = 1mA$ $V_{DS} = V_{GS}, I_D = 250\mu A$ $V_{GS} = \pm 20V, V_{DS} = 0V$ $V_{DS} = V_{DSS}, V_{GS} = 0V$ $T_J = 150^{\circ}C$	mless Otherwise Specified) Min. $V_{GS} = 0V, I_D = 1mA$ 100 $V_{DS} = V_{GS}, I_D = 250\mu A$ 2.0 $V_{GS} = \pm 20V, V_{DS} = 0V$ $V_{DS} = V_{DSS}, V_{GS} = 0V$ $T_J = 150^{\circ}C$	mless Otherwise Specified) Min. Typ. $V_{GS} = 0V, I_{D} = 1mA$ 100 $V_{DS} = V_{GS}, I_{D} = 250\mu A$ 2.0 $V_{GS} = \pm 20V, V_{DS} = 0V$ $V_{DS} = V_{DSS}, V_{GS} = 0V$ $T_{J} = 150^{\circ}C$	mless Otherwise Specified) Min. Typ. Max. $V_{GS} = 0V, I_D = 1mA$ 100 $V_{DS} = V_{GS}, I_D = 250\mu A$ 2.0 4.0 $V_{GS} = \pm 20V, V_{DS} = 0V$ ± 200 $V_{DS} = V_{DSS}, V_{GS} = 0V$ 25 $T_J = 150^{\circ}C$ 1.75

 $V_{DSS} = 100V$ $I_{D25} = 320A$ $R_{DS(on)} \le 3.5m\Omega$

G = Gate D = DrainS = Source Tab = Drain

Features

- High Current Handling Capability
- Fast Intrinsic Diode
- Avalanche Rated
- Fast Intrinsic Diode
- Low R_{DS(on)}

Advantages

- Easy to Mount
- Space Savings
- High Power Density

Applications

- Synchronous Recification
- DC-DC Converters
- Battery Chargers
- Switch-Mode and Resonant-Mode Power Supplies
- DC Choppers
- AC Motor Drives
- Uninterruptible Power Supplies
- High Speed Power Switching Applications

Symbol (T _J = 25°C,	Test Conditions Unless Otherwise Specified)	Charac Min.	teristic Typ.	Values Max.
g _{fs}	$V_{DS} = 10V, I_{D} = 60A, \text{ Note } 1$	80	130	S
C _{iss}			26	nF
C _{oss}	$V_{GS} = 0V, V_{DS} = 25V, f = 1MHz$		2250	pF
C _{rss}			450	pF
R_{Gi}	Gate Input Resistance		1.48	Ω
t _{d(on)}	Desirative Control in Times		36	ns
t _r	Resistive Switching Times V _{GS} = 10V, V _{DS} = 0.5 • V _{DSS} , I _D = 100A		46	ns
t _{d(off)}			73	ns
t ,)	$R_{\rm G} = 1\Omega$ (External)		177	ns
$Q_{g(on)}$			430	nC
Q _{gs}	$V_{GS} = 10V, V_{DS} = 0.5 \cdot V_{DSS}, I_{D} = 0.5 \cdot I_{D25}$		110	nC
Q_{gd}			125	nC
R _{thJC}				0.15 °C/W
R _{thCH}	TO-247		0.21	°C/W

Source-Drain Diode

SymbolTest ConditionsCharacteristics $(T_J = 25^{\circ}\text{C}, \text{ Unless Otherwise Specified})$ Min.			cteristic Typ.	Values Max.	
I _s	$V_{GS} = 0V$			320	Α
I _{SM}	Repetitive, Pulse Width Limited by T_{\scriptscriptstyleJM}			1200	Α
V _{SD}	$I_F = 100A, V_{GS} = 0V, \text{ Note 1}$			1.2	V
t _{rr}	$I_{\rm F} = 150 {\rm A}, V_{\rm GS} = 0 {\rm V}$		98		ns
I _{RM}	-di/dt = 100A/μs		6.6		Α
Q _{RM}	V _R = 50V		320		nC

Notes:

- 1. Pulse test, $t \le 300\mu s$, duty cycle, $d \le 2\%$.
- 2. Includes lead resistance.

ADVANCE TECHNICAL INFORMATION

The product presented herein is under development. The Technical Specifications offered are derived from a subjective evaluation of the design, based upon prior knowledge and experience, and constitute a "considered reflection" of the anticipated result. IXYS reserves the right to change limits, test conditions, and dimensions without notice.

TO-247 (IXFH) Outline

Terminals: 1 - Gate 2 - Drain 3 - Source

Dim.	Millimeter		Inc	Inches	
	Min.	Max.	Min.	Max.	
Α	4.7	5.3	.185	.209	
A,	2.2	2.54	.087	.102	
A ₂	2.2	2.6	.059	.098	
b	1.0	1.4	.040	.055	
b,	1.65	2.13	.065	.084	
b ₂	2.87	3.12	.113	.123	
С	.4	.8	.016	.031	
D	20.80	21.46	.819	.845	
Е	15.75	16.26	.610	.640	
е	5.20	5.72	0.205	0.225	
L	19.81	20.32	.780	.800	
L1		4.50		.177	
ØP	3.55	3.65	.140	.144	
Q	5.89	6.40	0.232	0.252	
R	4.32	5.49	.170	.216	
S	6.15	BSC	242	BSC	

TO-268 (IXFT) Outline

Terminals: 1 - Gate 2 - Drain 3 - Source 4 - Drain

MY2	INCHES		MILLIMETER	
21M	MIN	MAX	MIN	MAX
Α	.193	.201	4.90	5.10
A1	.106	.114	2.70	2.90
A2	.001	.010	0.02	0.25
b	.045	.057	1.15	1.45
b2	.075	.083	1.90	2.10
С	.016	.026	0.40	0.65
C2	.057	.063	1.45	1.60
D	.543	.551	13.80	14.00
D1	.488	.500	12.40	12.70
Ε	.624	.632	15.85	16.05
E1	.524	.535	13.30	13.60
е	.215 BSC		5.45 BSC	
Н	.736	.752	18.70	19.10
L	.094	.106	2.40	2.70
L1	.047	.055	1.20	1.40
L2	.039	.045	1.00	1.15
L3	.010	.010 BSC 0.25 BSC		BSC
L4	.150	.161	3.80	4.10

IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.

Fig. 1. Output Characteristics @ T_J = 25°C

Fig. 2. Extended Output Characteristics @ T_J = 25°C

Fig. 3. Output Characteristics @ T_J = 150°C

Fig. 4. $R_{DS(on)}$ Normalized to $I_D = 160A$ Value vs. Junction Temperature

Fig. 5. $R_{DS(on)}$ Normalized to $I_D = 160A$ vs. Drain Current

Fig. 6. Drain Current vs. Case Temperature

IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.

Fig. 13. Resistive Turn-on Rise Time vs.
Junction Temperature

Fig. 15. Resistive Turn-on Switching Times vs.

Gate Resistance

Fig. 17. Resistive Turn-off Switching Times vs.

Drain Current

Fig. 14. Resistive Turn-on Rise Time vs.

Drain Current

Fig. 16. Resistive Turn-off Switching Times vs.
Junction Temperature

Fig. 18. Resistive Turn-off Switching Times vs.
Gate Resistance

