Lecture 21: Difference of two proportions

Chapter 6.2

Question for today

How do we infer about a difference in proportions $p_1 - p_2$?

The way a question is phrased in survey can influence a person's response. Ex on p.281: the Pew Research Center conducted a survey with the following question:

The way a question is phrased in survey can influence a person's response. Ex on p.281: the Pew Research Center conducted a survey with the following question:

By 2014 all Americans will be required to have health insurance. X while Y. Do you approve of disapprove of this policy?

The way a question is phrased in survey can influence a person's response. Ex on p.281: the Pew Research Center conducted a survey with the following question:

By 2014 all Americans will be required to have health insurance. X while Y. Do you approve of disapprove of this policy?

where X and Y were randomly ordered between

- People who do not buy insurance will pay a penalty
- People who cannot afford it will receive financial help from the government

The way a question is phrased in survey can influence a person's response. Ex on p.281: the Pew Research Center conducted a survey with the following question:

By 2014 all Americans will be required to have health insurance. X while Y. Do you approve of disapprove of this policy?

where X and Y were randomly ordered between

- People who do not buy insurance will pay a penalty
- People who cannot afford it will receive financial help from the government

Let's infer about the difference in proportion of people who approve.

Example from Text

	Sample size n_i	Approve (%)	Disapprove (%)	Other (%)
people who do not buy it will pay a penalty	771	47	49	3
given first				
people who cannot afford it will receive financial help from the gov't given first	732	34	63	3

Example from Text

Lump in Other and Disapprove into "Don't Approve"

	Sample size n_i	Approve (%)	Don't Approve (%)
people who do not buy it	771	47	53
will pay a penalty			
given first			
people who cannot afford	732	34	66
it will receive financial			
help from the gov't			
given first			

Example from Text

Lump in Other and Disapprove into "Don't Approve"

	Sample size n_i	Approve (%)	Don't Approve (%)
people who do not buy it	771	47	53
will pay a penalty			
given first			
people who cannot afford	732	34	66
it will receive financial			
help from the gov't			
given first			

So $\widehat{p}_1 - \widehat{p}_2 = 0.47 - 0.34 > 0$: people are more likely to support Obamacare in the first scenario.

Conditions for Using Normal Model

What $p_1 \& p_2$?

Confidence Intervals

What is a 90% confidence interval for the difference in proportions?

Interpretation

Interpretation

More support Obamacare if stated as follows:

People who do not buy it will pay a penalty while people who cannot afford it will receive financial help from the government.

Hypothesis Tests

Exercise 6.31 on Page 319

A 2010 survey asked 827 randomly sample voters in California "How do you feel about drilling for oil and natural gas off the coast of California?"

	College Grad		
	Yes No		
Support	154	132	
Oppose	180	126	
Don't Know	104	131	
Total	438	389	

Exercise 6.31 on Page 319

A 2010 survey asked 827 randomly sample voters in California "How do you feel about drilling for oil and natural gas off the coast of California?"

	College Grad		
	Yes No		
Support	154	132	
Oppose	180	126	
Don't Know	104	131	
Total	438	389	

Test at the $\alpha=0.10$ significance level if the proportion of college graduates who support off-shore drilling is different than that of non-college graduates.

Preview of next lecture: In many trials a big issue is the racial makeup of the jury.

Preview of next lecture: In many trials a big issue is the racial makeup of the jury.

Question: is there a way to figure out if there is a racial bias in jury selection?

Say we have a juror pool (registered voters) where the racial breakdown is:

Race	White	Black	Hispanic	Other	Total
Registered Voters	72%	7%	12%	9%	100%

If we pick n = 100 jurors at random (i.e. unbiasedly), we expect the breakdown of counts to be:

Race	White	Black	Hispanic	Other	Total
Registered Voters	72%	7%	12%	9%	100%
Representation	72	7	12	9	n = 100

Say we observe the following counts:

Race	White	Black	Hispanic	Other	Total
Registered Voters	72%	7%	12%	9%	100%
Representation	0	0	100	0	n = 100

Say we observe the following counts:

Race	White	Black	Hispanic	Other	Total
Registered Voters	72%	7%	12%	9%	100%
Representation	0	0	100	0	n = 100

Fairly obvious bias in juror selection!

But what about the following? Is there a bias? i.e. a non-random mechanism at play?

Race	White	Black	Hispanic	Other	Total
Registered Voters	72%	7%	12%	9%	100%
Representation	75	6	11	8	n = 100

Next Two Lectures

Chi-square tests are used to compare expected counts with observed counts.

Next Two Lectures

Chi-square tests are used to compare expected counts with observed counts.

Two tests we'll see:

- Goodness-of-fit tests: for frequency tables
- ► Tests for independence: for contingency/two-way tables