

planetmath.org

Math for the people, by the people.

power set

Canonical name PowerSet

Date of creation 2013-03-22 11:43:46 Last modified on 2013-03-22 11:43:46

Owner matte (1858) Last modified by matte (1858)

Numerical id 23

Author matte (1858)
Entry type Definition
Classification msc 03E99
Classification msc 03E10
Classification msc 37-01
Synonym powerset
Related topic PowerObject

Related topic ProofOfGeneralAssociativity

Defines finite power set
Defines finite powerset

Definition If X is a set, then the *power set of* X, denoted by $\mathcal{P}(X)$, is the set whose elements are the subsets of X.

Properties

- 1. If X is finite, then $|\mathcal{P}(X)| = 2^{|X|}$.
- 2. The above property also holds when X is not finite. For a set X, let |X| be the cardinality of X. Then $|\mathcal{P}(X)| = 2^{|X|} = |2^X|$, where 2^X is the set of all functions from X to $\{0,1\}$.
- 3. For an arbitrary set X, Cantor's theorem states: a) there is no bijection between X and $\mathcal{P}(X)$, and b) the cardinality of $\mathcal{P}(X)$ is greater than the cardinality of X.

Example

Suppose $S = \{a, b\}$. Then $\mathcal{P}(S) = \{\emptyset, \{a\}, \{b\}, S\}$. In particular, $|\mathcal{P}(S)| = 2^{|S|} = 4$.

Related definition

If X is a set, then the *finite power set of* X, denoted by $\mathcal{F}(X)$, is the set whose elements are the **finite** subsets of X.

Remark

Due to the canonical correspondence between elements of $\mathcal{P}(X)$ and elements of 2^X , the power set is sometimes also denoted by 2^X .