```
In [1]:
         import numpy as np
         import pandas as pd
         from matplotlib import pyplot as plt
         import seaborn as sns
         from sklearn.model_selection import train_test_split
         from sklearn.svm import SVR
         from sklearn.metrics import mean_squared_error
         data = pd.read_csv("heart.csv")
In [2]:
         data.head()
In [3]:
Out[3]:
            age
                     cp trtbps chol fbs
                                          restecg
                                                  thalachh
                                                           exng
                                                                 oldpeak slp
                                                                              caa
                                                                                   thall output
                 sex
         0
             63
                   1
                       3
                                 233
                                       1
                                               0
                                                       150
                                                               0
                                                                      2.3
                                                                           0
                                                                                0
                                                                                      1
                                                                                              1
                            145
         1
             37
                   1
                      2
                            130
                                 250
                                       0
                                                       187
                                                              0
                                                                      3.5
                                                                           0
                                                                                0
                                                                                      2
                                                                                              1
         2
             41
                   0
                       1
                            130
                                 204
                                       0
                                               0
                                                       172
                                                               0
                                                                      1.4
                                                                           2
                                                                                0
                                                                                      2
                                                                                              1
                                                                                      2
         3
             56
                   1
                      1
                            120
                                 236
                                       0
                                                       178
                                                               0
                                                                      8.0
                                                                           2
                                                                                0
                                                                                              1
                                                                           2
                                                                                      2
                                                                                              1
         4
             57
                   0
                      0
                            120
                                 354
                                       0
                                               1
                                                       163
                                                               1
                                                                      0.6
                                                                                0
In [4]:
         data.shape
         (303, 14)
Out[4]:
         data.info()
In [5]:
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 303 entries, 0 to 302
         Data columns (total 14 columns):
              Column
                         Non-Null Count Dtype
                                          ----
          0
                         303 non-null
                                          int64
              age
          1
              sex
                         303 non-null
                                          int64
                         303 non-null
                                          int64
          2
              ср
          3
                         303 non-null
                                          int64
              trtbps
          4
              chol
                         303 non-null
                                          int64
                         303 non-null
          5
                                          int64
              fbs
                         303 non-null
                                          int64
          6
              restecg
          7
              thalachh
                         303 non-null
                                          int64
          8
                         303 non-null
                                          int64
              exng
          9
              oldpeak
                         303 non-null
                                          float64
                         303 non-null
                                          int64
          10
              slp
                         303 non-null
                                          int64
          11
             caa
              thall
                         303 non-null
                                          int64
          12
                         303 non-null
                                          int64
          13 output
         dtypes: float64(1), int64(13)
         memory usage: 33.3 KB
In [6]:
         data.describe()
```

```
chol
                                                                                          fbs
 Out[6]:
                                       sex
                                                             trtbps
                                                                                                  restecq
                                                                                                              thala
                          age
                                                    ср
                                303.000000
                                            303.000000
                                                         303.000000
                                                                     303.000000
                                                                                  303.000000
                                                                                                           303.000
           count 303.000000
                                                                                               303.000000
                    54.366337
                                  0.683168
                                               0.966997
                                                         131.623762
                                                                     246.264026
                                                                                     0.148515
                                                                                                 0.528053
                                                                                                            149.646
            mean
              std
                     9.082101
                                  0.466011
                                               1.032052
                                                          17.538143
                                                                       51.830751
                                                                                     0.356198
                                                                                                 0.525860
                                                                                                             22.90!
                    29.000000
             min
                                  0.000000
                                               0.000000
                                                          94.000000
                                                                      126.000000
                                                                                     0.000000
                                                                                                 0.000000
                                                                                                             71.000
                                                                                                 0.000000
             25%
                    47.500000
                                  0.000000
                                               0.000000
                                                         120.000000
                                                                     211.000000
                                                                                     0.000000
                                                                                                           133.500
             50%
                    55.000000
                                  1.000000
                                               1.000000
                                                         130.000000
                                                                     240.000000
                                                                                     0.000000
                                                                                                 1.000000
                                                                                                           153.000
                                  1.000000
                                               2.000000
                                                                                     0.000000
                                                                                                 1.000000
             75%
                    61.000000
                                                         140.000000
                                                                      274.500000
                                                                                                           166.000
                    77.000000
                                  1.000000
                                               3.000000
                                                         200.000000
                                                                      564.000000
                                                                                     1.000000
                                                                                                 2.000000
                                                                                                           202.000
             max
            data.isna().sum()
 In [7]:
                          0
           age
 Out[7]:
                          0
           sex
                          0
           ср
           trtbps
                          0
           chol
                          0
           fbs
                          0
                          0
           restecg
           thalachh
                          0
                          0
           exng
                          0
           oldpeak
           slp
                          0
           caa
                          0
                          0
           thall
                          0
           output
           dtype: int64
           data.head()
 In [8]:
                                            fbs
                                                          thalachh
                                                                            oldpeak slp
                                                                                                thall
 Out[8]:
                              trtbps
                                      chol
                                                 restecg
                                                                     exng
                                                                                           caa
                                                                                                      output
               age
                    sex
                         ср
           0
                63
                           3
                                 145
                                       233
                                              1
                                                       0
                                                                150
                                                                         0
                                                                                       0
                                                                                             0
                                                                                                   1
                                                                                                            1
                       1
                                                                                 2.3
                                              0
                                                       1
                                                                                                   2
           1
                37
                       1
                           2
                                 130
                                       250
                                                                187
                                                                         0
                                                                                 3.5
                                                                                       0
                                                                                             0
                                                                                                            1
           2
                41
                       0
                           1
                                 130
                                       204
                                              0
                                                       0
                                                                172
                                                                         0
                                                                                       2
                                                                                             0
                                                                                                   2
                                                                                                            1
                                                                                 1.4
                                                                                                   2
           3
                                 120
                                       236
                                              0
                                                                178
                                                                         0
                                                                                 0.8
                                                                                       2
                                                                                             0
                                                                                                            1
                56
                                                                                                   2
                57
                       0
                           0
                                 120
                                       354
                                              0
                                                       1
                                                                163
                                                                                 0.6
                                                                                       2
                                                                                             0
                                                                                                            1
           data = data.rename(columns = {"cp" : "Chest Pain" ,
 In [9]:
                                                 "trtbps" : "BP" ,
                                                 "chol" : "cholesterol" ,
                                                 "fbs" : "Suger" ,
                                                 "restecg" : "Restoelectrogram" ,
"thalachh" : "Max heart rate",
                                                "oldpeak" : "Dpression",
                                               })
            data
In [10]:
```

Out[10]:

	age	sex	Chest Pain	ВР	cholesterol	Suger	Restoelectrogram	Max heart rate	exng	Dpression	slp	ca
0	63	1	3	145	233	1	0	150	0	2.3	0	
1	37	1	2	130	250	0	1	187	0	3.5	0	
2	41	0	1	130	204	0	0	172	0	1.4	2	
3	56	1	1	120	236	0	1	178	0	0.8	2	
4	57	0	0	120	354	0	1	163	1	0.6	2	
•••												
298	57	0	0	140	241	0	1	123	1	0.2	1	
299	45	1	3	110	264	0	1	132	0	1.2	1	
300	68	1	0	144	193	1	1	141	0	3.4	1	
301	57	1	0	130	131	0	1	115	1	1.2	1	
302	57	0	1	130	236	0	0	174	0	0.0	1	

303 rows × 14 columns

In [12]: data.groupby("sex")["age"].count().plot(kind = "pie" , autopct = "%.2f" , xlabel =
Out[12]: <Axes: title={'center': 'no of peoples besed on age'}, ylabel='number of peoples'>

no of peoples besed on age

In [13]:	da	data.head()														
Out[13]:		age	sex	Chest Pain	ВР	cholesterol	Suger	Restoelectrogram	Max heart rate	exng	Dpression	slp	caa			
	0	63	1	3	145	233	1	0	150	0	2.3	0	0			
	1	37	1	2	130	250	0	1	187	0	3.5	0	0			
	2	41	0	1	130	204	0	0	172	0	1.4	2	0			
	3	56	1	1	120	236	0	1	178	0	0.8	2	0			
	4	57	0	0	120	354	0	1	163	1	0.6	2	0			
4													•			
In [14]:	ag	e_bi	ns =	data['	'age"].value_co	unts(bi	ns = 10)								
In [15]:	<pre>number_of_peoples_having_chest_pain = data.groupby(age_bins)["Chest</pre>							est Pain"]	.sum	() . sc						

No of peoples having chest pain bease on age


```
In [16]: sns.barplot(data = data , x = "Chest Pain" , y = "age" , hue = "sex")
   plt.xlabel("chest pain")
   plt.ylabel("age")
   plt.title("chest pain based on age and gender")
```

Out[16]: Text(0.5, 1.0, 'chest pain based on age and gender')

chest pain based on age and gender

In [17]: data.head()

Out[17]:		age	sex	Chest Pain	ВР	cholesterol	Suger	Restoelectrogram	Max heart rate	exng	Dpression	slp	caa
	0	63	1	3	145	233	1	0	150	0	2.3	0	0
	1	37	1	2	130	250	0	1	187	0	3.5	0	0
	2	41	0	1	130	204	0	0	172	0	1.4	2	0
	3	56	1	1	120	236	0	1	178	0	0.8	2	0
	4	57	0	0	120	354	0	1	163	1	0.6	2	0

In [18]: data.groupby(age_bins)["BP"].count().plot(kind = "pie" , autopct = "%.2f")

Out[18]: <Axes: ylabel='BP'>

data.head() In [19]: Out[19]: Max Chest age sex cholesterol Suger Restoelectrogram heart exng Dpression slp caa Pain rate 3 145 2.3 2 130 3.5 1 130 1.4 1 120 8.0 0 120 0.6 •

In [20]: data.groupby("age").count()["cholesterol"].plot(kind = "bar" , color = "red")

Out[20]: <Axes: xlabel='age'>


```
In [21]: sns.scatterplot(data = data , x = "age" , y = "output" , hue = "age")
Out[21]: <Axes: xlabel='age', ylabel='output'>
```



```
In [ ]:

In [ ]:
```

In [22]: data

Out[22]:

	age	sex	Chest Pain	ВР	cholesterol	Suger	Restoelectrogram	Max heart rate	exng	Dpression	slp	ca
0	63	1	3	145	233	1	0	150	0	2.3	0	
1	37	1	2	130	250	0	1	187	0	3.5	0	
2	41	0	1	130	204	0	0	172	0	1.4	2	
3	56	1	1	120	236	0	1	178	0	0.8	2	
4	57	0	0	120	354	0	1	163	1	0.6	2	
•••				•••								
298	57	0	0	140	241	0	1	123	1	0.2	1	
299	45	1	3	110	264	0	1	132	0	1.2	1	
300	68	1	0	144	193	1	1	141	0	3.4	1	
301	57	1	0	130	131	0	1	115	1	1.2	1	
302	57	0	1	130	236	0	0	174	0	0.0	1	

303 rows × 14 columns

In [23]: x = data.drop("output" , axis = 1)

In [24]: y = data[["output"]]

In [25]: x

Out[25]:

	age	sex	Chest Pain	ВР	cholesterol	Suger	Restoelectrogram	Max heart rate	exng	Dpression	slp	ca	
0	63	1	3	145	233	1	0	150	0	2.3	0		
1	37	1	2	130	250	0	1	187	0	3.5	0		
2	41	0	1	130	204	0	0	172	0	1.4	2		
3	56	1	1	120	236	0	1	178	0	0.8	2		
4	57	0	0	120	354	0	1	163	1	0.6	2		
•••													
298	57	0	0	140	241	0	1	123	1	0.2	1		
299	45	1	3	110	264	0	1	132	0	1.2	1		
300	68	1	0	144	193	1	1	141	0	3.4	1		
301	57	1	0	130	131	0	1	115	1	1.2	1		
302	57	0	1	130	236	0	0	174	0	0.0	1		

303 rows × 13 columns

In [26]: y

300

301

302

303 rows × 1 columns

0

0

In [27]: x_train , x_test ,y_train ,y_test = train_test_split(x,y,test_size = 0.2 , random_s

In [28]: x_train

Out[28]:

•		age	sex	Chest Pain	ВР	cholesterol	Suger	Restoelectrogram	Max heart rate	exng	Dpression	slp	ca
	254	59	1	3	160	273	0	0	125	0	0.0	2	
	99	53	1	2	130	246	1	0	173	0	0.0	2	
	189	41	1	0	110	172	0	0	158	0	0.0	2	
	186	60	1	0	130	253	0	1	144	1	1.4	2	
	20	59	1	0	135	234	0	1	161	0	0.5	1	
	•••												
	199	65	1	0	110	248	0	0	158	0	0.6	2	
	155	58	0	0	130	197	0	1	131	0	0.6	1	
	156	47	1	2	130	253	0	1	179	0	0.0	2	
	133	41	1	1	110	235	0	1	153	0	0.0	2	
	245	48	1	0	124	274	0	0	166	0	0.5	1	

242 rows × 13 columns

In [29]: x_train.shape

Out[29]: (242, 13)

In [30]:	y_train
----------	---------

Out[30]:

	output
254	0
99	1
189	0
186	0
20	1
•••	
199	0
155	1
156	1
133	1
245	0

242 rows × 1 columns

In [31]: y_train.shape

Out[31]: (242, 1)

In [32]: x_test

Out[32]:

•		age	sex	Chest Pain	ВР	cholesterol	Suger	Restoelectrogram	Max heart rate	exng	Dpression	slp	ca
	201	60	1	0	125	258	0	0	141	1	2.8	1	
	197	67	1	0	125	254	1	1	163	0	0.2	1	
	64	58	1	2	140	211	1	0	165	0	0.0	2	
	134	41	0	1	126	306	0	1	163	0	0.0	2	
	145	70	1	1	156	245	0	0	143	0	0.0	2	
	•••												
	50	51	0	2	130	256	0	0	149	0	0.5	2	
	92	52	1	2	138	223	0	1	169	0	0.0	2	
	275	52	1	0	125	212	0	1	168	0	1.0	2	
	86	68	1	2	118	277	0	1	151	0	1.0	2	
	191	58	1	0	128	216	0	0	131	1	2.2	1	

61 rows × 13 columns

In [33]: x_test.shape

```
Out[33]: (61, 13)
```

```
In [34]: y_test
```

```
Out[34]:
                 output
           201
                      0
           197
            64
                      1
           134
           145
                      1
            50
                      1
            92
           275
                      0
            86
           191
```

61 rows × 1 columns

```
In [35]:
         y_test.shape
         (61, 1)
Out[35]:
         from sklearn.preprocessing import StandardScaler
In [36]:
         scalar = StandardScaler()
         x_train_scalar = scalar.fit_transform(x_train)
In [37]:
         x test scalar = scalar.transform(x test)
In [38]: x_train_scalar
         array([[ 0.52433249, 0.70929937, 1.94537163, ..., 1.00497103,
Out[38]:
                 -0.69140238, -0.4917684 ],
                [-0.13597174, 0.70929937, 0.97867772, ..., 1.00497103,
                  2.46556698, -0.4917684],
                [-1.45658021, 0.70929937, -0.9547101, ..., 1.00497103,
                 -0.69140238, 1.16111984],
                [-0.79627597, 0.70929937, 0.97867772, ..., 1.00497103,
                 -0.69140238, -0.4917684 ],
                \hbox{[-1.45658021, 0.70929937, 0.01198381, ..., 1.00497103,}\\
                 -0.69140238, -0.4917684 ],
                [-0.68622527, 0.70929937, -0.9547101, ..., -0.59504864,
                 -0.69140238, 1.16111984]])
```

In [39]: x_test_scalar

```
array([[ 0.6343832 , 0.70929937, -0.9547101 , -0.37531416, 0.20140385,
Out[39]:
                 -0.40430377, -0.97132985, -0.39884669, 1.47790748, 1.51384339,
                 -0.59504864, 0.36092074, 1.16111984],
                [ 1.40473814, 0.70929937, -0.9547101 , -0.37531416, 0.12667832,
                  2.47338777, 0.90916474, 0.56112608, -0.67663234, -0.7347644,
                 -0.59504864, 1.41324386, 1.16111984],
                [ 0.41428179, 0.70929937, 0.97867772, 0.48315491, -0.67662123,
                  2.47338777, -0.97132985, 0.64839634, -0.67663234, -0.90773423,
                  1.00497103, -0.69140238, -0.4917684 ],
                [-1.45658021, -1.40984195, 0.01198381, -0.31808289, 1.09811032,
                 -0.40430377, 0.90916474, 0.56112608, -0.67663234, -0.90773423,
                  1.00497103, -0.69140238, -0.4917684 ],
                [ 1.73489025, 0.70929937, 0.01198381, 1.39885525, -0.04145415,
                 -0.40430377, -0.97132985, -0.31157644, -0.67663234, -0.90773423,
                  1.00497103, -0.69140238, -0.4917684],
                \lceil -0.24602244, 0.70929937, -0.9547101, -1.34824578, -0.26563076, \rceil
                  2.47338777, 0.90916474, -0.13703593, -0.67663234, -0.82124932,
                  1.00497103, 2.46556698, 1.16111984],
                [ 0.85448461, 0.70929937, 0.97867772, -0.08915781, -0.30299353,
                 -0.40430377, 0.90916474, -0.18067106, -0.67663234, 0.64899424,
                 -0.59504864, 2.46556698, 1.16111984],
                [ 1.07458602, -1.40984195, -0.9547101 , 2.77240576, 1.45305663,
                 -0.40430377, 0.90916474, 0.16840995, 1.47790748, -0.90773423,
                  1.00497103, -0.69140238, -0.4917684 ],
                [ 0.30423108, 0.70929937, -0.9547101 , 0.02530474, -0.75134677,
                 -0.40430377, 0.90916474, 0.77930171, 1.47790748, -0.90773423,
                  1.00497103, -0.69140238, 1.16111984],
                [0.85448461, 0.70929937, 0.01198381, -0.20362035, -0.73266538,
                  2.47338777, -0.97132985, -0.44248182, -0.67663234, -0.90773423,
                  1.00497103, -0.69140238, -0.4917684 ],
                [-1.12642809, 0.70929937, 0.97867772, -0.66147052, -0.39640046,
                 -0.40430377, 0.90916474, 0.82293684, -0.67663234, -0.90773423,
                  1.00497103, -0.69140238, -0.4917684 ],
                [-1.67668162, -1.40984195, 0.97867772, -2.14948358, -0.90079785,
                 -0.40430377, 0.90916474, 1.2592881, -0.67663234, -0.90773423,
                  1.00497103, -0.69140238, -0.4917684 ],
                [-1.67668162, 0.70929937, 0.97867772, 0.48315491, 1.37833109,
                 -0.40430377, -0.97132985, 1.39019348, -0.67663234, -0.90773423,
                  1.00497103, -0.69140238, -0.4917684 ],
                [\ \ 1.18463673,\ -1.40984195,\ -0.9547101\ ,\ \ 1.05546762,\ -0.41508184,
                 -0.40430377, -0.97132985, -1.57699509, -0.67663234, -0.04288508,
                 -0.59504864, 2.46556698, 1.16111984],
                [0.96453532, 0.70929937, -0.9547101, -0.08915781, 1.54646356,
                  2.47338777, -0.97132985, -0.79156282, 1.47790748, 0.64899424,
                  1.00497103, 2.46556698, 1.16111984],
                [-0.35607315, 0.70929937, 0.97867772, -2.14948358, -0.37771907,
                 -0.40430377, 0.90916474, 0.16840995, 1.47790748, -0.90773423,
                  1.00497103, 0.36092074, 1.16111984],
                [ 1.29468743, 0.70929937, -0.9547101 , 1.62778034, -0.35903769,
                 -0.40430377, -0.97132985, -0.52975207, -0.67663234, 1.08141882,
                  1.00497103, -0.69140238, -2.14465665],
                [-1.3465295 \ , \ 0.70929937, \ -0.9547101 \ , \ 0.25422982, \ 1.26624279,
                 -0.40430377, 0.90916474, -1.09700871, 1.47790748, 0.64899424,
                 -0.59504864, -0.69140238, -2.14465665],
                [-0.35607315, -1.40984195, 0.97867772, -0.66147052, 0.89261509,
                 -0.40430377, -0.97132985, 0.29931533, -0.67663234, -0.38882474,
                  1.00497103, -0.69140238, -0.4917684 ],
                [-0.02592103, 0.70929937, -0.9547101, -1.23378324, -0.77002815,
                 -0.40430377, -0.97132985, -1.83880585, 1.47790748, -0.90773423,
                 -0.59504864, 0.36092074, -0.4917684 ],
                [ 0.85448461, -1.40984195, -0.9547101 , 1.05546762, -0.06013553,
                 -0.40430377, 0.90916474, 0.16840995, 1.47790748, 0.30305458,
                 -0.59504864, -0.69140238, -0.4917684 ],
                [ 1.29468743, 0.70929937, 0.01198381, 1.62778034, -0.02277276,
```

```
-0.40430377, 0.90916474, -1.31518434, 1.47790748, -0.90773423,
-0.59504864, 2.46556698, -2.14465665],
[0.6343832, 0.70929937, -0.9547101, 0.76931126, 0.64975709,
 -0.40430377, -0.97132985, -0.35521156, 1.47790748, 1.51384339,
 -0.59504864, 1.41324386, 1.16111984],
[ 0.52433249, 0.70929937, 0.97867772, -0.31808289, -0.54585154,
  2.47338777, 0.90916474, -0.70429257, -0.67663234, 0.9949339,
 -0.59504864, 0.36092074, -2.14465665],
[-1.23647879, 0.70929937, -0.9547101, -0.66147052, -1.31178831,
 -0.40430377, -0.97132985, -1.31518434, 1.47790748, 1.25438865,
 -0.59504864, -0.69140238, 1.16111984],
[ 1.18463673, -1.40984195, 0.97867772, 1.34162398, 0.40689909,
 -0.40430377, 0.90916474, -0.09340081, -0.67663234, -0.21585491,
 1.00497103, -0.69140238, -0.4917684 ],
[0.41428179, 0.70929937, 0.97867772, 0.02530474, -0.43376323,
 -0.40430377, -0.97132985, 0.99747734, -0.67663234, 1.85978305,
  1.00497103, 1.41324386, 1.16111984],
[\ 0.85448461,\ -1.40984195,\ -0.9547101\ ,\ 0.36869236,\ 0.87393371,
  2.47338777, 0.90916474, -1.9260761, -0.67663234, 0.73547916,
 -0.59504864, 2.46556698, -0.4917684 ],
[\ 0.30423108,\ 0.70929937,\ 0.97867772,\ 1.05546762,\ -2.26453893,
  2.47338777, 0.90916474, 0.99747734, -0.67663234, -0.7347644,
  1.00497103, 0.36092074, 1.16111984],
[ 0.52433249, 0.70929937, -0.9547101, 0.48315491, -1.31178831, 
 -0.40430377, 0.90916474, 0.51749096, 1.47790748, -0.90773423,
  1.00497103, 0.36092074, 1.16111984],
[-1.23647879, 0.70929937, -0.9547101, 0.02530474, -0.00409138,
  2.47338777, -0.97132985, -0.31157644, 1.47790748, -0.82124932,
-0.59504864, 3.5178901, 1.16111984],
[-0.57617456, -1.40984195, -0.9547101, -0.08915781, 0.40689909,
 -0.40430377, 0.90916474, 0.56112608, -0.67663234, -0.90773423,
 1.00497103, -0.69140238, -0.4917684 ],
[-0.79627597, 0.70929937, 0.97867772, 0.36869236, 0.18272247,
 -0.40430377, -0.97132985, 0.2556802, -0.67663234, -0.90773423,
 1.00497103, -0.69140238, -0.4917684 ],
[-1.12642809, 0.70929937, 0.97867772, -0.08915781, -0.26563076,
 \hbox{-0.40430377,} \quad \hbox{0.90916474,} \quad \hbox{1.2592881 ,} \quad \hbox{1.47790748,} \quad \hbox{-0.56179457,}
  1.00497103, -0.69140238, -0.4917684 ],
[-1.45658021, -1.40984195, 0.97867772, -1.11932069, 0.3882177,
 -0.40430377, -0.97132985, 0.95384222, 1.47790748, -0.90773423,
  1.00497103, -0.69140238, -0.4917684 ],
[\ \ 1.51478884,\ \ 0.70929937,\ -0.9547101\ ,\ \ 0.71207999,\ -1.01288615,
  2.47338777, 0.90916474, -0.39884669, -0.67663234, 2.03275288,
 -0.59504864, 1.41324386, 1.16111984],
[ 1.73489025, 0.70929937, -0.9547101 , -0.08915781, 1.39701248,
 -0.40430377, -0.97132985, -1.79517072, -0.67663234, 1.16790373,
-0.59504864, 2.46556698, -0.4917684 ],
[-1.01637738, 0.70929937, -0.9547101, 0.59761745, 1.15415448,
-0.40430377, -0.97132985, -0.13703593, 1.47790748, -0.90773423,
 -0.59504864, 2.46556698, 1.16111984],
[ 1.18463673, 0.70929937, -0.9547101 , -0.66147052, -1.31178831,
 -0.40430377, 0.90916474, -0.44248182, -0.67663234, -0.56179457,
  1.00497103, -0.69140238, 1.16111984],
[1.07458602, 0.70929937, 1.94537163, -1.23378324, -0.67662123,
-0.40430377, -0.97132985, -0.26794131, 1.47790748, 0.64899424,
-0.59504864, -0.69140238, -0.4917684 ],
[-0.24602244, 0.70929937, -0.9547101, -1.11932069, -0.32167492,
 \hbox{-0.40430377,} \quad \hbox{0.90916474,} \quad \hbox{0.43022071,} \quad \hbox{-0.67663234,} \quad \hbox{-0.90773423,}
 1.00497103, 0.36092074, -0.4917684 ],
[0.30423108, 0.70929937, -0.9547101, 1.05546762, 0.53766878,
 -0.40430377, -0.97132985, -1.66426535, 1.47790748, -0.38882474,
 -0.59504864, 0.36092074, -2.14465665],
[ 0.30423108, 0.70929937, 0.97867772, 1.05546762, -1.47992077,
 -0.40430377, 0.90916474, 1.04111247, -0.67663234, 0.47602441,
```

```
1.00497103, -0.69140238, -0.4917684 ],
                 [ 0.52433249, 0.70929937, 1.94537163, 2.65794322, 0.42558047,
                  -0.40430377, -0.97132985, -0.22430619, -0.67663234, 2.72463221,
                  -2.19506831, -0.69140238, 1.16111984],
                 [ 0.7444339 , 0.70929937, -0.9547101 , -0.66147052, 0.23876662, -0.40430377, 0.90916474, -0.44248182, 1.47790748, 2.20572272,
                  -0.59504864, 0.36092074, 1.16111984],
                 [-0.13597174, 0.70929937, -0.9547101 , -0.48977671, 0.64975709,
                  -0.40430377, 0.90916474, -2.40606249, 1.47790748, 0.82196407,
                  -0.59504864, 1.41324386, 1.16111984],
                 [-1.12642809, 0.70929937, 0.01198381, -0.66147052, 0.29481078,
                  \hbox{-0.40430377,} \quad \hbox{0.90916474,} \quad \hbox{0.99747734,} \quad \hbox{-0.67663234,} \quad \hbox{-0.90773423,}
                   1.00497103, -0.69140238, 1.16111984],
                 [-1.3465295 , -1.40984195 , 0.97867772 , -0.66147052 , -0.713984
                  -0.40430377, 0.90916474, 0.99747734, -0.67663234, -0.90773423,
                  -0.59504864, -0.69140238, -0.4917684 ],
                 [ 0.41428179, 0.70929937, -0.9547101 , -0.20362035, 0.22008524,
                  -0.40430377, -0.97132985, -0.87883308, 1.47790748, 1.68681322,
                  -0.59504864, 1.41324386, 1.16111984],
                 [-1.01637738, -1.40984195, 0.01198381, -1.11932069, -1.62937185,
                  -0.40430377, 0.90916474, -0.52975207, -0.67663234, -0.90773423,
                  -0.59504864, -0.69140238, -0.4917684 ],
                 [-0.24602244, 0.70929937, 1.94537163, 1.16993016, 0.94865924,
                   2.47338777, 0.90916474, 1.21565297, -0.67663234, 0.13008475,
                  -0.59504864, -0.69140238, 1.16111984],
                 [ 0.41428179, 0.70929937, -0.9547101 , 0.82654254, -0.54585154,
                  -0.40430377, 0.90916474, -1.96971123, -0.67663234, 0.82196407,
                  -0.59504864, 0.36092074, 1.16111984],
                 [-0.46612386, \ -1.40984195, \ -0.9547101 \ , \ -1.23378324, \ \ 0.12667832,
                  \hbox{-0.40430377, -0.97132985, 0.38658558, -0.67663234, -0.90773423,}\\
                   1.00497103, -0.69140238, -0.4917684 ],
                 [1.07458602, 0.70929937, -0.9547101, -0.66147052, -0.02277276,
                  -0.40430377, -0.97132985, -2.36242736, 1.47790748, 0.9949339,
                  -2.19506831, 0.36092074, -0.4917684 ],
                 [-1.56663091, \quad 0.70929937, \quad -0.9547101 \quad , \quad 1.16993016, \quad -0.45244461,
                  -0.40430377, 0.90916474, 1.34655835, -0.67663234, -0.90773423,
                   1.00497103, -0.69140238, 1.16111984],
                 [-1.45658021, -1.40984195, 0.01198381, -1.51993959, -0.91947923,
                  -0.40430377, 0.90916474, 0.77930171, -0.67663234, -0.90773423,
                   1.00497103, 0.36092074, -0.4917684 ],
                 [-0.35607315, -1.40984195, 0.97867772, -0.08915781, 0.16404109,
                  -0.40430377, -0.97132985, -0.04976568, -0.67663234, -0.47530966,
                   1.00497103, -0.69140238, -0.4917684 ],
                 [-0.24602244, 0.70929937, 0.97867772, 0.36869236, -0.45244461,
                  -0.40430377, 0.90916474, 0.82293684, -0.67663234, -0.90773423,
                   1.00497103, 3.5178901, -0.4917684],
                 [-0.24602244, 0.70929937, -0.9547101, -0.37531416, -0.65793984,
                  -0.40430377, 0.90916474, 0.77930171, -0.67663234, -0.04288508,
                   1.00497103, 1.41324386, 1.16111984],
                 [ 1.51478884, 0.70929937, 0.97867772, -0.77593306, 0.55635016,
                  -0.40430377, 0.90916474, 0.03750457, -0.67663234, -0.04288508,
                   1.00497103, 0.36092074, 1.16111984],
                 [ 0.41428179, 0.70929937, -0.9547101, -0.20362035, -0.58321431, ]
                  -0.40430377, -0.97132985, -0.83519795, 1.47790748, 0.9949339,
                  -0.59504864, 2.46556698, 1.16111984]])
In [ ]:
         model = SVR(kernel = "rbf")
In [44]:
         model.fit(x_train_scalar , y_train)
In [45]:
```

```
C:\Users\godde\anaconda3\Lib\site-packages\sklearn\utils\validation.py:1184: DataC
         onversionWarning: A column-vector y was passed when a 1d array was expected. Pleas
         e change the shape of y to (n_samples, ), for example using ravel().
           y = column_or_1d(y, warn=True)
         ▼ SVR
Out[45]:
         SVR()
         y_prediction = model.predict(x_test_scalar)
In [46]:
         model
In [47]:
Out[47]:
          ▼ SVR
         SVR()
In [48]: model.fit(x_train,y_train)
         C:\Users\godde\anaconda3\Lib\site-packages\sklearn\utils\validation.py:1184: DataC
         onversionWarning: A column-vector y was passed when a 1d array was expected. Pleas
         e change the shape of y to (n_samples, ), for example using ravel().
           y = column_or_1d(y, warn=True)
Out[48]:
         ▼ SVR
         SVR()
         y_prediction[:10]
In [49]:
         array([-0.10968341,
                               0.38198476,
                                            1.04143739, 1.08039946,
                                                                       0.30343952,
Out[49]:
                 0.37341665,
                               0.12303239,
                                           0.30586577, 0.42026224,
                                                                       0.81318492])
In [ ]:
In [50]:
         y_predictions = model.predict(x_test)
In [ ]:
In [ ]:
In [51]:
         y_predictions[:10]
         array([0.51558008, 0.74601425, 0.77313558, 0.70378048, 0.41690722,
Out[51]:
                 0.70125808, \ 0.586247 \quad , \ 0.32430583, \ 0.83668284, \ 0.57230711]) 
In [52]: y_test[:10]
```

Out[52]:		output
	201	0
	197	0
	64	1
	134	1
	145	1
	97	1
	52	1
	110	1
	91	1
	137	1

In [53]:	<pre>error = mean_squared_error(y_test , y_predictions)</pre>
In [55]:	error
Out[55]:	0.17922969756439228
In []:	
Tn []⋅	