CDO User's Guide

Climate Data Operators Version 1.7.2 June 2016

Uwe Schulzweida – MPI for Meteorology

1.	Intro	oductio		6
	1.1.	Buildir	g from sources	6
				7
		1.1.2.		7
	1.2.	Usage		7
		1.2.1.		8
		1.2.2.	*	9
		1.2.3.		9
		1.2.4.	•	9
			Parallelized operators	
		1.2.6.	Operator parameter	
	1.9		1 1	
	1.3.			
			Grid area weights	
	4 4		Grid description	
			lescription	
	1.5.		xis	
			Absolute time	
			Relative time	
			Conversion of the time	
	1.6.	Param	ter table	5
	1.7.	Missing	values	6
		1.7.1.	Mean and average	6
	1.8.	Percen	ile	7
		1.8.1.	Percentile over timesteps	7
				_
2.		erence n		
2.		Inform	tion	9
2.		Inform 2.1.1.	tion	9
2.		Inform 2.1.1. 2.1.2.	ation	9 0 1
2.		Inform 2.1.1. 2.1.2.	tion	9 0 1
2.		Inform 2.1.1. 2.1.2. 2.1.3.	ation	9 0 1 2
2.		Inform 2.1.1. 2.1.2. 2.1.3. 2.1.4.	tion	9 0 1 2
2.		Inform 2.1.1. 2.1.2. 2.1.3. 2.1.4. 2.1.5.	tion	9 10 12 13 14
2.		Inform 2.1.1. 2.1.2. 2.1.3. 2.1.4. 2.1.5. 2.1.6.	tion	9 0 1 2 3 4 5
2.	2.1.	Inform 2.1.1. 2.1.2. 2.1.3. 2.1.4. 2.1.5. 2.1.6. File op	INFO - Information and simple statistics	9 0 1 2 3 4 5 6
2.	2.1.	Inform 2.1.1. 2.1.2. 2.1.3. 2.1.4. 2.1.5. 2.1.6. File op 2.2.1.	tion	9 0 1 2 3 4 5 6 7
2.	2.1.	Inform 2.1.1. 2.1.2. 2.1.3. 2.1.4. 2.1.5. 2.1.6. File op 2.2.1. 2.2.2.	INFO - Information and simple statistics	9 10 12 3 4 5 6 7 8
2.	2.1.	Inform 2.1.1. 2.1.2. 2.1.3. 2.1.4. 2.1.5. 2.1.6. File op 2.2.1. 2.2.2. 2.2.3.	INFO - Information and simple statistics 2 SINFO - Short information 2 DIFF - Compare two datasets field by field 2 NINFO - Print the number of parameters, levels or times 2 SHOWINFO - Show variables, levels or times 2 FILEDES - Dataset description 2 erations 2 COPY - Copy datasets 2 REPLACE - Replace variables 2 DUPLICATE - Duplicates a dataset 2	9 10 12 3 4 4 5 6 7 8 8
2.	2.1.	Inform 2.1.1. 2.1.2. 2.1.3. 2.1.4. 2.1.5. 2.1.6. File op 2.2.1. 2.2.2. 2.2.3. 2.2.4.	INFO - Information and simple statistics 2 SINFO - Short information 2 DIFF - Compare two datasets field by field 2 NINFO - Print the number of parameters, levels or times 2 SHOWINFO - Show variables, levels or times 2 FILEDES - Dataset description 2 erations 2 COPY - Copy datasets 2 REPLACE - Replace variables 2 DUPLICATE - Duplicates a dataset 2 MERGEGRID - Merge grid 2	9 0 1 2 3 4 5 6 7 8 8 8
2.	2.1.	Inform 2.1.1. 2.1.2. 2.1.3. 2.1.4. 2.1.5. 2.1.6. File op 2.2.1. 2.2.2. 2.2.3. 2.2.4. 2.2.5.	INFO - Information and simple statistics 2 SINFO - Short information 2 DIFF - Compare two datasets field by field 2 NINFO - Print the number of parameters, levels or times 2 SHOWINFO - Show variables, levels or times 2 SHOWINFO - Dataset description 2 Erations 2 COPY - Copy datasets 2 REPLACE - Replace variables 2 DUPLICATE - Duplicates a dataset 2 MERGEGRID - Merge grid 2 MERGE - Merge datasets 2	9 0 1 2 3 4 5 6 7 8 8 8 9
2.	2.1.	Inform 2.1.1. 2.1.2. 2.1.3. 2.1.4. 2.1.5. 2.1.6. File op 2.2.1. 2.2.2. 2.2.3. 2.2.4. 2.2.5. 2.2.6.	INFO - Information and simple statistics 2 SINFO - Short information 2 DIFF - Compare two datasets field by field 2 NINFO - Print the number of parameters, levels or times 2 SHOWINFO - Show variables, levels or times 2 SHOWINFO - Dataset description 2 Erations 2 COPY - Copy datasets 2 REPLACE - Replace variables 2 DUPLICATE - Duplicates a dataset 2 MERGEGRID - Merge grid 2 MERGE - Merge datasets 2 SPLIT - Split a dataset 3	9 0 1 2 3 4 5 6 7 8 8 8 9 0
2.	2.1.	Inform 2.1.1. 2.1.2. 2.1.3. 2.1.4. 2.1.5. 2.1.6. File op 2.2.1. 2.2.2. 2.2.3. 2.2.4. 2.2.5. 2.2.6. 2.2.7.	INFO - Information and simple statistics	$\begin{array}{c} 9 \\ 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 8 \\ 9 \\ 0 \\ 2 \end{array}$
2.	2.1.	Inform 2.1.1. 2.1.2. 2.1.3. 2.1.4. 2.1.5. 2.1.6. File op 2.2.1. 2.2.2. 2.2.3. 2.2.4. 2.2.5. 2.2.6. 2.2.7. 2.2.8.	INFO - Information and simple statistics 2 SINFO - Short information 2 DIFF - Compare two datasets field by field 2 NINFO - Print the number of parameters, levels or times 2 SHOWINFO - Show variables, levels or times 2 FILEDES - Dataset description 2 Erations 2 COPY - Copy datasets 2 REPLACE - Replace variables 2 DUPLICATE - Duplicates a dataset 2 MERGEGRID - Merge grid 2 MERGE - Merge datasets 2 SPLIT - Split a dataset 3 SPLITTIME - Split timesteps of a dataset 3 SPLITSEL - Split selected timesteps 3	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
2.	2.1.	Inform 2.1.1. 2.1.2. 2.1.3. 2.1.4. 2.1.5. 2.1.6. File op 2.2.1. 2.2.2. 2.2.3. 2.2.4. 2.2.5. 2.2.6. 2.2.7. 2.2.8. 2.2.9.	tion	$\begin{array}{c} 9 \\ 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 8 \\ 9 \\ 0 \\ 2 \\ 3 \\ 4 \end{array}$
2.	2.1.	Inform 2.1.1. 2.1.2. 2.1.3. 2.1.4. 2.1.5. 2.1.6. File op 2.2.1. 2.2.2. 2.2.3. 2.2.4. 2.2.5. 2.2.6. 2.2.7. 2.2.8. 2.2.9. 2.2.10.	tion	901234567888902345
2.	2.1.	Inform 2.1.1. 2.1.2. 2.1.3. 2.1.4. 2.1.5. 2.1.6. File op 2.2.1. 2.2.2. 2.2.3. 2.2.4. 2.2.5. 2.2.6. 2.2.7. 2.2.8. 2.2.9. 2.2.10. Selection	tition	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
2.	2.1.	Inform 2.1.1. 2.1.2. 2.1.3. 2.1.4. 2.1.5. 2.1.6. File op 2.2.1. 2.2.2. 2.2.3. 2.2.4. 2.2.5. 2.2.6. 2.2.7. 2.2.8. 2.2.9. 2.2.10. Selectic 2.3.1.	tion	90123456788890234567
2.	2.1.	Inform 2.1.1. 2.1.2. 2.1.3. 2.1.4. 2.1.5. 2.1.6. File op 2.2.1. 2.2.2. 2.2.3. 2.2.4. 2.2.5. 2.2.6. 2.2.7. 2.2.8. 2.2.9. 2.2.10. Selectic 2.3.1. 2.3.2.	tion	901234567888902345679
2.	2.1.	Inform 2.1.1. 2.1.2. 2.1.3. 2.1.4. 2.1.5. 2.1.6. File op 2.2.1. 2.2.2. 2.2.3. 2.2.4. 2.2.5. 2.2.6. 2.2.7. 2.2.8. 2.2.9. 2.2.10. Selection 2.3.1. 2.3.2. 2.3.3.	tion	9012345678889023456791

2.4.	Condi	tional selection
	2.4.1.	COND - Conditional select one field
	2.4.2.	COND2 - Conditional select two fields
	2.4.3.	CONDC - Conditional select a constant
	2.4.4.	MAPREDUCE - Reduce fields to user-defined mask
2.5.	Compa	arison
	2.5.1.	COMP - Comparison of two fields
	2.5.2.	COMPC - Comparison of a field with a constant
2.6.	Modifi	cation
	2.6.1.	SETPARTAB - Set parameter table
	2.6.2.	SET - Set field info
	2.6.3.	SETTIME - Set time
	2.6.4.	CHANGE - Change field header
	2.6.5.	SETGRID - Set grid information
	2.6.6.	SETZAXIS - Set z-axis information
	2.6.7.	SETGATT - Set global attribute
	2.6.8.	INVERT - Invert latitudes
		INVERTLEV - Invert levels
	2.6.10	MASKREGION - Mask regions
	2 6 11	MASKBOX - Mask a box
		SETBOX - Set a box to constant
		ENLARGE - Enlarge fields
		SETMISS - Set missing value
2.7.	Arithn	netic
2.1.	2.7.1	EXPR - Evaluate expressions
	2.7.2.	MATH - Mathematical functions
	2.7.3.	ARITHC - Arithmetic with a constant
	2.7.4.	ARITH - Arithmetic on two datasets
	2.7.4. $2.7.5.$	MONARITH - Monthly arithmetic
	2.7.6.	YHOURARITH - Multi-year hourly arithmetic
	2.7.7.	YDAYARITH - Multi-year daily arithmetic
	2.7.8.	YMONARITH - Multi-year monthly arithmetic
	2.7.9.	YSEASARITH - Multi-year seasonal arithmetic
		ARITHDAYS - Arithmetic with days
2.8.		ical values
2.6.		CONSECSTAT - Consecute timestep periods
		ENSSTAT - Statistical values over an ensemble
		ENSSTAT - Statistical values over an ensemble
	2.8.4.	ENSVAL - Ensemble validation tools
	2.8.5.	FLDSTAT - Statistical values over a field
		ZONSTAT - Zonal statistical values
	2.8.6. 2.8.7.	MERSTAT - Meridional statistical values
	2.8.8. 2.8.9.	GRIDBOXSTAT - Statistical values over grid boxes
		TIMSELSTAT - Time range statistical values
		9.1.
		RUNSTAT - Running statistical values
		RUNPCTL - Running percentile values
		TIMSTAT - Statistical values over all timesteps
		TIMPCTL - Percentile values over all timesteps
		HOURSTAT - Hourly statistical values
		HOURPCTL - Hourly percentile values
		DAYSTAT - Daily statistical values
		DAYPCTL - Daily percentile values
		MONSTAT - Monthly statistical values
		MONPCTL - Monthly percentile values
		YEARMONSTAT - Yearly mean from monthly data
	2.8.23.	YEARSTAT - Yearly statistical values

	2.8.24. YEARPCTL - Yearly percentile values	
	2.8.25. SEASSTAT - Seasonal statistical values	
	2.8.26. SEASPCTL - Seasonal percentile values	116
	2.8.27. YHOURSTAT - Multi-year hourly statistical values	117
	2.8.28. YDAYSTAT - Multi-year daily statistical values	
	2.8.29. YDAYPCTL - Multi-year daily percentile values	
	2.8.30. YMONSTAT - Multi-year monthly statistical values	122
	2.8.31. YMONPCTL - Multi-year monthly percentile values	124
	2.8.32. YSEASSTAT - Multi-year seasonal statistical values	125
	2.8.33. YSEASPCTL - Multi-year seasonal percentile values	126
	2.8.34. YDRUNSTAT - Multi-year daily running statistical values	127
	2.8.35. YDRUNPCTL - Multi-year daily running percentile values	
2.9.	Correlation and co	
	2.9.1. FLDCOR - Correlation in grid space	
	2.9.2. TIMCOR - Correlation over time	
	2.9.3. FLDCOVAR - Covariance in grid space	
	2.9.4. TIMCOVAR - Covariance over time	
2.10.	Regression	
	2.10.1. REGRES - Regression	
	2.10.2. DETREND - Detrend time series	
	2.10.3. TREND - Trend of time series	
	2.10.4. SUBTREND - Subtract a trend	
9 11	EOFs	
2.11.	2.11.1. EOFS - Empirical Orthogonal Functions	
	2.11.1. EOFS - Empirical Orthogonal Functions	
0.10		
2.12.	. Interpolation	
	2.12.1. REMAPBIC Billinear interpolation	
	2.12.2. REMAPBIC - Bicubic interpolation	
	2.12.3. REMAPNN - Nearest neighbor remapping	
	2.12.4. REMAPDIS - Distance-weighted average remapping	
	2.12.5. REMAPYCON - First order conservative remapping	
	2.12.6. REMAPCON - First order conservative remapping	
	2.12.7. REMAPCON2 - Second order conservative remapping	
	2.12.8. REMAPLAF - Largest area fraction remapping	
	2.12.9. REMAP - Grid remapping	
	2.12.10REMAPETA - Remap vertical hybrid level	
	2.12.11.VERTINTML - Vertical interpolation	
	2.12.12.VERTINTAP - Vertical interpolation	
	2.12.13 INTLEVEL - Linear level interpolation	156
	2.12.14INTLEVEL3D - Linear level interpolation from/to 3d vertical coordinates	158
	2.12.15 INTTIME - Time interpolation	
	2.12.16 INTYEAR - Year interpolation	160
2.13.	. Transformation	161
	2.13.1. SPECTRAL - Spectral transformation	162
	2.13.2. WIND - Wind transformation	163
2.14.	. Import/Export	164
	2.14.1. IMPORTBINARY - Import binary data sets	165
	2.14.2. IMPORTCMSAF - Import CM-SAF HDF5 files	
	2.14.3. IMPORTAMSR - Import AMSR binary files	167
	2.14.4. INPUT - Formatted input	
	2.14.5. OUTPUT - Formatted output	
	2.14.6. OUTPUTTAB - Table output	
	2.14.7. OUTPUTGMT - GMT output	
2.15	. Miscellaneous	
	2.15.1. GRADSDES - GrADS data descriptor file	
	2.15.2. AFTERBURNER - ECHAM standard post processor	
	2.15.3. FILTER - Time series filtering	
	2.15.4. GRIDCELL - Grid cell quantities	
	2.10.1. Graid Child Con quantities	113

	2.15.5. SMOOTH - Smooth grid points	180
	2.15.6. REPLACEVALUES - Replace variable values	
	2.15.7. TIMSORT - Timsort	
	2.15.8. VARGEN - Generate a field	
	2.15.9. ROTUVB - Rotation	
	2.15.10MASTRFU - Mass stream function	184
	2.15.11DERIVEPAR - Sea level pressure	184
	2.15.12ADISIT - Potential temperature to in-situ temperature and vice versa	185
	2.15.13RHOPOT - Calculates potential density	185
	2.15.14HISTOGRAM - Histogram	186
	2.15.15SETHALO - Set the left and right bounds of a field	186
	2.15.16.WCT - Windchill temperature	187
	2.15.17FDNS - Frost days where no snow index per time period	187
	2.15.18STRWIN - Strong wind days index per time period	187
	2.15.19STRBRE - Strong breeze days index per time period	188
	2.15.20STRGAL - Strong gale days index per time period	188
	2.15.21 HURR - Hurricane days index per time period	188
Α.	Environment Variables	191
В.	Parallelized operators	192
C.	Standard name table	193
D.	Grid description examples	194
	D.1. Example of a curvilinear grid description	194
	D.2. Example description for an unstructured grid	
Op	perator index	196

1. Introduction

The Climate Data Operators (**CDO**) software is a collection of many operators for standard processing of climate and forecast model data. The operators include simple statistical and arithmetic functions, data selection and subsampling tools, and spatial interpolation. **CDO** was developed to have the same set of processing functions for GRIB [GRIB] and NetCDF [NetCDF] datasets in one package.

The Climate Data Interface [CDI] is used for the fast and file format independent access to GRIB and NetCDF datasets. The local MPI-MET data formats SERVICE, EXTRA and IEG are also supported.

There are some limitations for GRIB and NetCDF datasets. A GRIB dataset has to be consistent, similar to NetCDF. That means all time steps need to have the same variables, and within a time step each variable may occur only once. NetCDF datasets are only supported for the classic data model and arrays up to 4 dimensions. These dimensions should only be used by the horizontal and vertical grid and the time. The NetCDF attributes should follow the GDT, COARDS or CF Conventions.

The user interface and some operators are similar to the PINGO [PINGO] package.

The main **CDO** features are:

- More than 700 operators available
- Modular design and easily extendable with new operators
- Very simple UNIX command line interface
- A dataset can be processed by several operators, without storing the interim results in files
- Most operators handle datasets with missing values
- Fast processing of large datasets
- Support of many different grid types
- Tested on many UNIX/Linux systems, Cygwin, and MacOS-X

1.1. Building from sources

This section describes how to build **CDO** from the sources on a UNIX system. **CDO** uses the GNU configure and build system for compilation. The only requirement is a working ANSI C99 compiler.

First go to the download page (https://code.zmaw.de/projects/cdo) to get the latest distribution, if you do not have it yet.

To take full advantage of **CDO** features the following additional libraries should be installed:

- Unidata NetCDF library (https://www.unidata.ucar.edu/software/netcdf) version 3 or higher. This library is needed to process NetCDF [NetCDF] files with CDO.
- The ECMWF GRIB_API (http://www.ecmwf.int/products/data/software/grib_api.html) version 1.12 or higher. This library is needed to process GRIB2 files with CDO.
- HDF5 szip library (http://www.hdfgroup.org/doc_resource/SZIP) version 2.1 or higher. This library is needed to process szip compressed GRIB [GRIB] files with **CDO**.
- HDF5 library (http://www.hdfgroup.org/HDF5) version 1.6 or higher.
 This library is needed to import CM-SAF [CM-SAF] HDF5 files with the CDO operator import_cmsaf.

Introduction Usage

• PROJ.4 library (http://trac.osgeo.org/proj) version 4.6 or higher.

This library is needed to convert Sinusoidal and Lambert Azimuthal Equal Area coordinates to geographic coordinates, for e.g. remapping.

Magics library (https://software.ecmwf.int/wiki/display/MAGP/Magics) version 2.18 or higher.
 This library is needed to create contour, vector and graph plots with CDO.

CDO is a multi-threaded application. Therefor all the above libraries should be compiled thread safe. Using non-threadsafe libraries could cause unexpected errors!

1.1.1. Compilation

Compilation is done by performing the following steps:

1. Unpack the archive, if you haven't done that yet:

```
gunzip cdo-$VERSION.tar.gz  # uncompress the archive
tar xf cdo-$VERSION.tar  # unpack it
cd cdo-$VERSION
```

2. Run the configure script:

```
./configure
```

• Optionaly with NetCDF [NetCDF] support:

```
./configure --with-netcdf=<NetCDF root directory>
```

• and with GRIB_API:

```
./configure --with-grib_api=<GRIB_API root directory>
```

For an overview of other configuration options use

```
./configure --help
```

3. Compile the program by running make:

```
make
```

The program should compile without problems and the binary (cdo) should be available in the src directory of the distribution.

1.1.2. Installation

After the compilation of the source code do a make install, possibly as root if the destination permissions require that.

```
make install
```

The binary is installed into the directory <prefix>/bin. <prefix> defaults to /usr/local but can be changed with the -prefix option of the configure script.

Alternatively, you can also copy the binary from the src directory manually to some bin directory in your search path.

1.2. Usage

This section descibes how to use **CDO**. The syntax is:

```
cdo [ Options ] Operator1 [ -Operator2 [ -OperatorN ] ]
```

Usage Introduction

1.2.1. Options

All options have to be placed before the first operator. The following options are available for all operators:

-a Generate an absolute time axis.

-b <nbits> Set the number of bits for the output precision. The valid precisions depend on the file format:

<format></format>	<nbits></nbits>	
grb, grb2	P1 - P24	
nc, nc2, nc4, nc4c	I8/I16/I32/F32/F64	
grb2, srv, ext, ieg	F32/F64	

For srv, ext and ieg format the letter L or B can be added to set the byteorder to Little or Big endian.

--cmor CMOR conform NetCDF output. -C, --color Colorized output messages.

-f < format> Set the output file format. The valid file formats are:

File format	<format></format>
GRIB version 1	grb
GRIB version 2	grb2
NetCDF	nc
NetCDF version 2 (64-bit)	nc2
NetCDF-4 (HDF5)	nc4
NetCDF-4 classic	nc4c
SERVICE	srv
EXTRA	ext
IEG	ieg

GRIB2 is only available if **CDO** was compiled with GRIB_API support and all NetCDF file types are only available if **CDO** was compiled with NetCDF support! Define the default grid description by name or from file (see chapter 1.3 on page 11).

Available grid names are: r<NX>x<NY>, lon=<LON>/lat=<LAT>, n<N>, gme<NI>-h, --help Help information for the operators.

--no history Do not append to NetCDF history global attribute.

--netcdf_hdr_pad, --hdr_pad, --header_pad <nbr>

Pad NetCDF output header with *nbr* bytes.

-k < chunktype> NetCDF4 chunk type: auto, grid or lines.

-L Lock I/O (sequential access).

-M Switch to indicate that the I/O streams have missing values. -m <missval> Set the missing value of non NetCDF files (default: -9e+33).

-O Overwrite existing output file, if checked.

Existing output file is checked only for: ens<STAT>, merge, mergetime

--operators List of all operators.

-P < nthreads > Set number of OpenMP threads (Only available if OpenMP support was compiled in).

--percentile <method>

-g < grid >

Percentile method: nrank nist numpy numpy_lower numpy_higher numpy_nearest

--reduce_dim Reduce NetCDF dimensions (module: TIMSTAT, FLDSTAT).

-R, --regular Convert GRIB1 data from reduced to regular grid (only with cgribex lib).

-r Generate a relative time axis.

-S Create an extra output stream for the module TIMSTAT. This stream contains

the number of non missing values for each output period.

-s, --silent Silent mode.

--sort Alphanumeric sorting of NetCDF parameter names.

-t -t -t -t set the GRIB1 (cgribex) default parameter table name or file (see chapter 1.6 on page 15).

Predefined tables are: echam4 echam5 echam6 mpiom1 ecmwf remo

--timestat date <srcdate>

Target timestamp (time statistics): first, middle, midhigh or last source timestep.

Introduction Usage

```
    -V, --version
    -v, --verbose
    -W
    -z szip
    -z szip
    -z peg
    -
```

1.2.2. Environment variables

There are some environment variables which influence the behavior of **CDO**. An incomplete list can be found in Appendix A.

Here is an example to set the environment variable CDO_RESET_HISTORY for different shells:

```
Bourne shell (sh): CDO_RESET_HISTORY=1; export CDO_RESET_HISTORY
Korn shell (ksh): export CDO_RESET_HISTORY=1
C shell (csh): setenv CDO_RESET_HISTORY 1
```

1.2.3. Operators

There are more than 700 operators available. A detailed description of all operators can be found in the **Reference Manual** section.

1.2.4. Operator chaining

All operators with a fixed number of input streams and one output stream can pipe the result directly to an other operator. The operator must begin with "-", in order to combine it with others. This can improve the performance by:

- reducing unnecessary disk I/O
- · parallel processing

Use

```
cdo sub -dayavg ifile2 -timavg ifile1 ofile
```

instead of

```
cdo timavg ifile1 tmp1
cdo dayavg ifile2 tmp2
cdo sub tmp2 tmp1 ofile
rm tmp1 tmp2
```

Note: Operator chaining is implemented over POSIX Threads (pthreads). Therefore this **CDO** feature is not available on operating systems without POSIX Threads support!

All operators with an arbitrary number of input streams (ifiles) can't be combined with other operators if these operators are used with more than one input stream. Here is an incomplete list of these operators: copy, cat, merge, mergetime, select, ens < STAT >

Use single quotes if the input stream names are generated with wildcards. In this case CDO will do the pattern matching and the output can be combined with other operators. Here is an example for this feature:

```
cdo timavg -select,name=temperature 'ifile?' ofile
```

Horizontal grids Introduction

The CDO internal wildcard expansion is using the glob() function. Therefore internal wildcard expansion is not available on operating systems without the glob() function!

All operators with one input stream will process only one input stream! You need to take care when mixing those operators with operator with an arbitrary number of input streams. The following examples illustrate this problem.

```
    cdo info -timavg ifile?
    cdo info -timavg ifile1 ifile2
    cdo timavg ifile1 tmpfile
cdo info tmpfile ifile2
```

All three examples produce identical results. The time average will be computed only on the first input file.

1.2.5. Parallelized operators

Some of the **CDO** operators are shared memory parallelized with OpenMP. An OpenMP-enabled C compiler is needed to use this feature. Users may request a specific number of OpenMP threads nthreads with the '-P' switch.

Here is an example to distribute the bilinear interpolation on 8 OpenMP threads:

```
cdo -P 8 remapbil, targetgrid ifile ofile
```

Many **CDO** operators are I/O-bound. This means most of the time is spend in reading and writing the data. Only compute intensive **CDO** operators are parallelized. An incomplete list of OpenMP parallelized operators can be found in Appendix B.

1.2.6. Operator parameter

Some operators need one or more parameter. A list of parameter is indicated by the seperator ','.

• STRING

Unquoted characters without blanks and tabs. The following command select variables with the name pressure and tsurf:

```
cdo selvar, pressure, tsurf ifile ofile
```

• FLOAT

Floating point number in any representation. The following command sets the range between 0 and 273.15 of all fields to missing value:

```
cdo setrtomiss,0,273.15 ifile ofile
```

• INTEGER

A range of integer parameter can be specified by first/last[/inc]. To select the days 5, 6, 7, 8 and 9

```
cdo selday,5/9 ifile ofile
The result is the same as:
  cdo selday,5,6,7,8,9 ifile ofile
```

1.3. Horizontal grids

Physical quantities of climate models are typically stored on a horizonal grid. The maximum number of supported grid cells is 2147483647 (INT_MAX). This corresponds to a global regular lon/lat grid with 65455x32727 grid cells and a global resolution of 0.0055 degree.

Introduction Horizontal grids

1.3.1. Grid area weights

One single point of a horizontal grid represents the mean of a grid cell. These grid cells are typically of different sizes, because the grid points are of varying distance.

Area weights are individual weights for each grid cell. They are needed to compute the area weighted mean or variance of a set of grid cells (e.g. fldmean - the mean value of all grid cells). In **CDO** the area weights are derived from the grid cell area. If the cell area is not available then it will be computed from the geographical coordinates via spherical triangles. This is only possible if the geographical coordinates of the grid cell corners are available or derivable. Otherwise **CDO** gives a warning message and uses constant area weights for all grid cells.

The cell area is read automatically from a NetCDF input file if a variable has the corresponding "cell_measures" attribute, e.g.:

```
var:cell_measures = "area: cell_area" ;
```

If the computed cell area is not desired then the **CDO** operator setgridarea can be used to set or overwrite the grid cell area.

1.3.2. Grid description

In the following situations it is necessary to give a description of a horizontal grid:

- Changing the grid description (operator: setgrid)
- Horizontal interpolation (operator: remapXXX and genXXX)
- Generating of variables (operator: const, random)

As now described, there are several possibilities to define a horizontal grid.

1.3.2.1. Predefined grids

Predefined grids are available for global regular, gaussian or icosahedral-hexagonal GME grids.

Global regular grid: global_<DXY>

global_<DXY> defines a global regular lon/lat grid. The grid increment <DXY> can be selected at will. The longitudes start at $<DXY>/2 - 180^{\circ}$ and the latitudes start at $<DXY>/2 - 90^{\circ}$.

Global regular grid: r<NX>x<NY>

r<NX>x<NY> defines a global regular lon/lat grid. The number of the longitudes <NX> and the latitudes <NY> can be selected at will. The longitudes start at 0° with an increment of $(360/\langle NX\rangle)^{\circ}$. The latitudes go from south to north with an increment of $(180/\langle NY\rangle)^{\circ}$.

One grid point: lon=<LON>/lat=<LAT>

lon=<LON>/lat=<LAT> defines a lon/lat grid with only one grid point.

Global Gaussian grid: n<N>

n<N> defines a global Gaussian grid. N specifies the number of latitudes lines between the Pole and the Equator. The longitudes start at 0° with an increment of $(360/\text{nlon})^{\circ}$. The gaussian latitudes go from north to south.

Horizontal grids Introduction

Global icosahedral-hexagonal GME grid: gme<NI>

gme<NI> defines a global icosahedral-hexagonal GME grid. NI specifies the number of intervals on a main triangle side.

1.3.2.2. Grids from data files

You can use the grid description from an other datafile. The format of the datafile and the grid of the data field must be supported by **CDO** . Use the operator 'sinfo' to get short informations about your variables and the grids. If there are more then one grid in the datafile the grid description of the first variable will be used.

1.3.2.3. SCRIP grids

SCRIP (Spherical Coordinate Remapping and Interpolation Package) uses a common grid description for curvilinear and unstructured grids. For more information about the convention see [SCRIP]. This grid description is stored in NetCDF. Therefor it is only available if **CDO** was compiled with NetCDF support!

SCRIP grid description example of a curvilinear MPIOM [MPIOM] GROB3 grid (only the NetCDF header):

```
netcdf grob3s {
dimensions:
         grid\_size = 12120;
         grid_xsize = 120;
         grid_ysize = 101;
         grid\_corners = 4;
         grid\_rank = 2;
variables:
         int grid_dims(grid_rank)
         float grid_center_lat(grid_ysize, grid_xsize);
grid_center_lat:units = "degrees";
                  grid_center_lat:bounds = "grid_corner_lat" ;
         float grid_center_lon(grid_ysize, grid_xsize);
grid_center_lon:units = "degrees";
                  grid_center_lon:bounds = "grid_corner_lon" ;
         int grid_imask(grid_ysize, grid_xsize);
    grid_imask:units = "unitless";
                  grid_imask:coordinates = "grid_center_lon grid_center_lat" ;
         float grid_corner_lat(grid_ysize, grid_xsize, grid_corners) ;
     grid_corner_lat:units = "degrees" ;
         global attributes:
                  : title = "grob3s";
```

1.3.2.4. CDO grids

All supported grids can also be described with the **CDO** grid description. The following keywords can be used to describe a grid:

Introduction Horizontal grids

Keyword	Datatype	Description
gridtype	STRING	Type of the grid (gaussian, lonlat, curvilinear, unstructured).
${f gridsize}$	INTEGER	Size of the grid.
xsize	INTEGER	Size in x direction (number of longitudes).
ysize	INTEGER	Size in y direction (number of latitudes).
xvals	FLOAT ARRAY	X values of the grid cell center.
yvals	FLOAT ARRAY	Y values of the grid cell center.
\mathbf{xnpole}	FLOAT	X value of the north pole (rotated grid).
\mathbf{ynpole}	FLOAT	Y value of the north pole (rotated grid).
\mathbf{angle}	FLOAT	Angle of the rotated north pole (default: 0).
nvertex	INTEGER	Number of the vertices for all grid cells.
$\mathbf{x}\mathbf{b}\mathbf{o}\mathbf{u}\mathbf{n}\mathbf{d}\mathbf{s}$	FLOAT ARRAY	X bounds of each gridbox.
${f y}{f bounds}$	FLOAT ARRAY	Y bounds of each gridbox.
xfirst, xinc	FLOAT, FLOAT	Macros to define xvals with a constant increment,
		xfirst is the x value of the first grid cell center.
yfirst, yinc	FLOAT, FLOAT	Macros to define yvals with a constant increment,
		yfirst is the y value of the first grid cell center.

Which keywords are necessary depends on the gridtype. The following table gives an overview of the default values or the size with respect to the different grid types.

gridtype	lonlat	gaussian	curvilinear	unstructured
gridsize	xsize*ysize	xsize*ysize	xsize*ysize	ncell
xsize	nlon	nlon	nlon	gridsize
ysize	nlat	nlat	nlat	gridsize
xvals	xsize	xsize	gridsize	gridsize
yvals	ysize	ysize	gridsize	gridsize
xnpole	0			
ynpole	90			
angle	0			
nvertex	2	2	4	nv
xbounds	2*xsize	2*xsize	4*gridsize	nv*gridsize
ybounds	2*ysize	2*ysize	4*gridsize	nv*gridsize

The keywords nvertex, xbounds and ybounds are optional if area weights are not needed. The grid cell corners xbounds and ybounds have to rotate counterclockwise.

CDO grid description example of a T21 gaussian grid:

```
gridtype = gaussian
       = 64
xsize
ysize
       = 32
xfirst
       = 0
xinc
       = 5.625
yvals
       = 85.76
               80.27
                     74.75
                           69.21
                                 63.68
                                        58.14
                                              52.61
         41.53
               36.00 \quad 30.46 \quad 24.92
                                 19.38
                                       13.84
                                              8.31
              -2.77
        -47.07
```

CDO grid description example of a global regular grid with 60x30 points:

```
gridtype = lonlat
xsize = 60
ysize = 30
xfirst = -177
xinc = 6
yfirst = -87
yinc = 6
```

Z-axis description Introduction

For a lon/lat grid with a rotated pole, the north pole must be defined. As far as you define the keywords xnpole/ynpole all coordinate values are for the rotated system.

CDO grid description example of a regional rotated lon/lat grid:

```
gridtype = lonlat
xsize
         = 81
ysize
xfirst
             -19.5
xinc
                0.5
yfirst
             -25.0
               0.5
yinc
xnpole
            -170
ynpole
              32.5
```

Example CDO descriptions of a curvilinear and an unstructured grid can be found in Appendix C.

1.4. Z-axis description

Sometimes it is necessary to change the description of a z-axis. This can be done with the operator setzaxis. This operator needs an ASCII formatted file with the description of the z-axis. The following keywords can be used to describe a z-axis:

Keyword	Datatype	Description
zaxistype	STRING	type of the z-axis
size	INTEGER	number of levels
levels	FLOAT ARRAY	values of the levels
lbounds	FLOAT ARRAY	lower level bounds
${f ubounds}$	FLOAT ARRAY	upper level bounds
$\mathbf{vctsize}$	INTEGER	number of vertical coordinate parameters
\mathbf{vct}	FLOAT ARRAY	vertical coordinate table

The keywords **lbounds** and **ubounds** are optional. **vctsize** and **vct** are only necessary to define hybrid model levels.

Available z-axis types:

Z-axis type	Description	Units
surface	Surface	
pressure	Pressure level	pascal
hybrid	Hybrid model level	
height	Height above ground	meter
$depth_below_sea$	Depth below sea level	meter
$depth_below_land$	Depth below land surface	centimeter
isentropic	Isentropic (theta) level	kelvin

Z-axis description example for pressure levels 100, 200, 500, 850 and 1000 hPa:

```
zaxistype = pressure
size = 5
levels = 10000 20000 50000 85000 100000
```

Z-axis description example for ECHAM5 L19 hybrid model levels:

```
zaxistype = hybrid

size = 19

levels = 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

vctsize = 40

vct = 0 2000 4000 6046.10938 8267.92578 10609.5117 12851.1016 14698.5
```

Introduction Time axis

Note that the vctsize is twice the number of levels plus two and the vertical coordinate table must be specified for the level interfaces.

1.5. Time axis

A time axis describes the time for every timestep. Two time axis types are available: absolute time and relative time axis. **CDO** tries to maintain the actual type of the time axis for all operators.

1.5.1. Absolute time

An absolute time axis has the current time to each time step. It can be used without knowledge of the calendar. This is preferably used by climate models. In NetCDF files the absolute time axis is represented by the unit of the time: "day as %Y%m%d.%f".

1.5.2. Relative time

A relative time is the time relative to a fixed reference time. The current time results from the reference time and the elapsed interval. The result depends on the calendar used. **CDO** supports the standard Gregorian, proleptic Gregorian, 360 days, 365 days and 366 days calendars. The relative time axis is preferably used by numerical weather prediction models. In NetCDF files the relative time axis is represented by the unit of the time: "time-units since reference-time", e.g "days since 1989-6-15 12:00".

1.5.3. Conversion of the time

Some programs which work with NetCDF data can only process relative time axes. Therefore it may be necessary to convert from an absolute into a relative time axis. This conversion can be done for each operator with the **CDO** option '-r'. To convert a relative into an absolute time axis use the **CDO** option '-a'.

1.6. Parameter table

A parameter table is an ASCII formated file to convert code numbers to variable names. Each variable has one line with its code number, name and a description with optional units in a blank separated list. It can only be used for GRIB, SERVICE, EXTRA and IEG formated files. The **CDO** option '-t <partab>' sets the default parameter table for all input files. Use the operator 'setpartab' to set the parameter table for a specific file.

Example of a **CDO** parameter table:

```
134
                 surface pressure
     aps
141
                 snow depth [m]
     sn
                                     [W/m**2]
147
      ahfl
                 latent heat flux
172
     _{\mathrm{slm}}
                 land sea mask
175
     albedo
                 surface albedo
211
      siced
                 ice depth [m]
```

Missing values Introduction

1.7. Missing values

Most operators can handle missing values. The default missing value for GRIB, SERVICE, EXTRA and IEG files is $-9.e^{33}$. The **CDO** option '-m <missval>' overwrites the default missing value. In NetCDF files the variable attribute '_FillValue' is used as a missing value. The operator 'setmissval' can be used to set a new missing value.

The **CDO** use of the missing value is shown in the following tables, where one table is printed for each operation. The operations are applied to arbitrary numbers a, b, the special case 0, and the missing value miss. For example the table named "addition" shows that the sum of an arbitrary number a and the missing value is the missing value, and the table named "multiplication" shows that 0 multiplied by missing value results in 0.

addition	b		miss
a	a + b		miss
miss	miss		miss
subtraction	b		miss
a	a-b		miss
miss	miss		miss
multiplication	b	0	miss
a	a * b	0	miss
0	0	0	0
miss	miss	0	miss
division	b	0	miss
a	a/b	miss	miss
0	0	miss	miss
miss	miss	miss	miss
maximum	b		miss
a	max(a,b)		a
miss	b		miss
minimum	b		miss
a	min(a,b)		a
miss	b		miss
sum	b		miss
a	a + b		a
miss	b		miss

The handling of missing values by the operations "minimum" and "maximum" may be surprising, but the definition given here is more consistent with that expected in practice. Mathematical functions (e.g. log, sqrt, etc.) return the missing value if an argument is the missing value or an argument is out of range.

All statistical functions ignore missing values, treading them as not belonging to the sample, with the side-effect of a reduced sample size.

1.7.1. Mean and average

An artificial distinction is made between the notions mean and average. The mean is regarded as a statistical function, whereas the average is found simply by adding the sample members and dividing the result by the sample size. For example, the mean of 1, 2, miss and 3 is (1+2+3)/3=2, whereas the average is (1+2+miss+3)/4=miss/4=miss. If there are no missing values in the sample, the average and mean are identical.

Introduction Percentile

1.8. Percentile

There is no standard definition of percentile. All definitions yield to similar results when the number of values is very large. The following percentile methods are available in **CDO**:

Percentile method	Description
nrank	Nearest Rank method, the default method used in CDO
nist	The primary method recommended by NIST
numpy	numpy.percentile with the option interpolation set to 'linear'
numpy_lower	numpy.percentile with the option interpolation set to 'lower'
numpy_higher	numpy.percentile with the option interpolation set to 'higher'
numpy_nearest	numpy.percentile with the option interpolation set to 'nearest'

The percentile method can be selected with the **CDO** option --percentile. The Nearest Rank method is the default percentile method in **CDO**.

The different percentile methods can lead to different results, especially for small number of data values. Consider the ordered list {15, 20, 35, 40, 50, 55}, which contains six data values. Here is the result for the 30th, 40th, 50th, 75th and 100th percentiles of this list using the different percentile methods:

Percentile P	nrank	nist	numpy	numpy lower	numpy higher	numpy nearest
30th	20	21.5	27.5	20	35	35
40th	35	32	35	35	35	35
50th	35	37.5	37.5	35	40	40
75th	50	51.25	47.5	40	50	50
100th	55	55	55	55	55	55

1.8.1. Percentile over timesteps

The amount of data for time series can be very large. All data values need to held in memory to calculate the percentile. The percentile over timesteps uses a histogram algorithm, to limit the amount of required memory. The default number of histogram bins is 101. That means the histogram algorithm is used, when the dataset has more than 101 time steps. The default can be overridden by setting the environment variable CDO_PCTL_NBINS to a different value. The histogram algorithm is implemented only for the Nearest Rank method.

2. Reference manual

This section gives a description of all operators. Related operators are grouped to modules. For easier description all single input files are named ifile or ifile1, ifile2, etc., and an arbitrary number of input files are named ifiles. All output files are named ofile or ofile1, ofile2, etc. Further the following notion is introduced:

- i(t) Timestep t of ifile
- i(t,x) Element number x of the field at timestep t of ifile
- o(t) Timestep t of ofile
- o(t,x) Element number x of the field at timestep t of ofile

Reference manual Information

2.1. Information

This section contains modules to print information about datasets. All operators print there results to standard output.

Here is a short overview of all operators in this section:

info Dataset information listed by parameter identifier infon Dataset information listed by parameter name

map Dataset information and simple map

sinfoShort information listed by parameter identifiersinfonShort information listed by parameter name

diff Compare two datasets listed by parameter id
diffn Compare two datasets listed by parameter name

Number of parameters npar nlevel Number of levels Number of years nyear Number of months nmon ndate Number of dates ntime Number of timesteps ngridpoints Number of gridpoints ngrids Number of horizontal grids

showformatShow file formatshowcodeShow code numbersshownameShow variable namesshowstdnameShow standard names

showlevel Show levels

showltype Show GRIB level types

showyearshow monthsShow months

showdateShow date informationshowtimeShow time informationshowtimestampShow timestamp

partabParameter tablecodetabParameter code tablegriddesGrid descriptionzaxisdesZ-axis description

vct Vertical coordinate table

Information Reference manual

2.1.1. INFO - Information and simple statistics

Synopsis

<operator> ifiles

Description

This module writes information about the structure and contents of all input files to standard output. All input files need to have the same structure with the same variables on different timesteps. The information displayed depends on the chosen operator.

Operators

info

Dataset information listed by parameter identifier

Prints information and simple statistics for each field of all input datasets. For each field the operator prints one line with the following elements:

- Date and Time
- Level, Gridsize and number of Missing values
- Minimum, Mean and Maximum
 The mean value is computed without the use of area weights!
- Parameter identifier

infon

Dataset information listed by parameter name

The same as operator info but using the name instead of the identifier to label the parameter.

map

Dataset information and simple map

Prints information, simple statistics and a map for each field of all input datasets. The map will be printed only for fields on a regular lon/lat grid.

Example

To print information and simple statistics for each field of a dataset use:

```
cdo infon ifile
```

This is an example result of a dataset with one 2D parameter over 12 timesteps:

```
Date
                      Time Level
                                     Size
                                            Miss: Minimum
                                                                 Mean Maximum: Name
  : 1987 - 01 - 31 \quad 12:00:00
                                     2048
                                            1361
                                                      232.77
                                                               266.65
                                                                         305.31
                                                                                 : SST
2 : 1987 - 02 - 28 \quad 12:00:00
                                 0
                                     2048
                                            1361
                                                      233.64
                                                               267.11
                                                                         307.15
                                                                                : SST
  : 1987-03-31 12:00:00
                                 0
                                     2048
                                            1361
                                                      225.31
                                                               267.52
                                                                         307.67 : SST
  : 1987-04-30 12:00:00
                                 0
                                     2048
                                            1361
                                                      215.68
                                                               268.65
                                                                         310.47 : SST
                                                                                : SST
  : 1987 - 05 - 31 \quad 12:00:00
                                 0
                                     2048
                                            1361
                                                      215.78
                                                               271.53
                                                                         312.49
                                                                         314.18 : SST
  : 1987-06-30 12:00:00
                                 0
                                     2048
                                            1361
                                                      212.89
                                                               272.80
                                                                         316.34 : SST
  : 1987 - 07 - 31 \quad 12:00:00
                                 0
                                     2048
                                            1361
                                                      209.52
                                                               274.29
                                            1361
                                                                                   SST
  : 1987-08-31 12:00:00
                                 0
                                     2048
                                                      210.48
                                                               274.41
                                                                         315.83 :
                                                               272.37
  : 1987 - 09 - 30 \quad 12:00:00
                                 0
                                     2048
                                            1361
                                                      210.48
                                                                         312.86
                                                                                   SST
    1987-10-31 12:00:00
                                 0
                                     2048
                                            1361
                                                      219.46
                                                               270.53
                                                                         309.51
                                                                                   SST
                                                                                   SST
  : 1987-11-30 12:00:00
                                 0
                                     2048
                                            1361
                                                      230.98
                                                               269.85
                                                                         308.61
  : 1987 - 12 - 31 \quad 12:00:00
                                     2048
                                            1361
                                                      241.25
                                                               269.94
                                                                         309.27
                                                                                 : SST
```

Reference manual Information

2.1.2. SINFO - Short information

Synopsis

<operator> ifiles

Description

This module writes information about the structure of ifiles to standard output. ifiles is an arbitrary number of input files. All input files need to have the same structure with the same variables on different timesteps. The information displayed depends on the chosen operator.

Operators

sinfo

Short information listed by parameter identifier

Prints short information of a dataset. The information is divided into 4 sections. Section 1 prints one line per parameter with the following information:

- institute and source
- timestep type
- number of levels and z-axis number
- horizontal grid size and number
- data type
- parameter identifier

Section 2 and 3 gives a short overview of all grid and vertical coordinates. And the last section contains short information of the time coordinate.

sinfon

Short information listed by parameter name

The same as operator sinfo but using the name instead of the identifier to label the parameter.

Example

To print short information of a dataset use:

```
cdo sinfon ifile
```

This is the result of an ECHAM5 dataset with 3 parameter over 12 timesteps:

```
-1: Institut Source
                                                                                                                                                                                                    Steptype Levels Num
                                                                                                                                                                                                                                                                                                                                                                             Points Num Dtype : Name
                                     1 : MPIMET
                                                                                                                                       ECHAM5
                                                                                                                                                                                                                                                                                                                                                                                            2048
                                                                                                                                                                                                                                                                                                                                                                                                                                                                      F32
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         : GEOSP
                                                                                                                                                                                                      constant
                                                                                                                                                                                                                                                                                                               1
                                                                                                                                                                                                                                                                                                                                             1
                                                                                                                                                                                                                                                                                                                                                                                                                                                1
                                     2 : MPIMET
                                                                                                                                       ECHAM5
                                                                                                                                                                                                    instant
                                                                                                                                                                                                                                                                                                                4
                                                                                                                                                                                                                                                                                                                                              2
                                                                                                                                                                                                                                                                                                                                                                                            2048
                                                                                                                                                                                                                                                                                                                                                                                                                                                                      F32
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          : T
                                                                                                                                                                                                                                                                                                                                                                                                                                                 1
                                     3 : MPIMET
                                                                                                                                      ECHAM5
                                                                                                                                                                                                   instant
                                                                                                                                                                                                                                                                                                                1
                                                                                                                                                                                                                                                                                                                                                                                            2048
                                                                                                                                                                                                                                                                                                                                                                                                                                                                      F32
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          : TSURF
                      Grid coordinates:
                                                                                                                                                                                                                                             : points = 2048 (64x32) np=16
                                       1 : gaussian
                                                                                                                                                               longitude: 0 to 354.375 by 5.625 degrees_east
                                                                                                                                                                        latitude : 85.7606 to -85.7606 degrees_north
                       Vertical coordinates:
                                                                                                                                                                                                                                             : levels=1
                                      1 : surface
                                     2 : pressure
                                                                                                                                                                                                                                             : levels=4
                                                                                                                                                                                             level: 92500 to 20000 Pa
                                                                                                                                                                   12 steps
                      Time coordinate:
YYYY-MM-DD hh:mm:ss YYYY-MM-DD hh:mm:ss YYYY-MM-DD hh:mm:ss YYYY-MM-DD hh:mm:ss
 1987 - 01 - 31 \quad 12:00:00 \quad 1987 - 02 - 28 \quad 12:00:00 \quad 1987 - 03 - 31 \quad 12:00:00 \quad 1987 - 04 - 30 \quad 12:00:00 \quad 1987 - 12:00:00 \quad 1987 -
 1987 - 05 - 31 \quad 12:00:00 \quad 1987 - 06 - 30 \quad 12:00:00 \quad 1987 - 07 - 31 \quad 12:00:00 \quad 1987 - 08 - 31 \quad 12:00:00
 1987 - 09 - 30 \quad 12:00:00 \quad 1987 - 10 - 31 \quad 12:00:00 \quad 1987 - 11 - 30 \quad 12:00:00 \quad 1987 - 12 - 31 \quad 12:00:00 \quad 1987 - 31 \quad 12:00:00 \quad
```

Information Reference manual

2.1.3. DIFF - Compare two datasets field by field

Synopsis

```
<operator> ifile1 ifile2
```

Description

Compares the contents of two datasets field by field. The input datasets need to have the same structure and its fields need to have the same header information and dimensions.

Operators

diff Compare two datasets listed by parameter id

Provides statistics on differences between two datasets. For each pair of fields the operator prints one line with the following information:

- Date and Time
- Level, Gridsize and number of Missing values
- Number of different values
- Occurrence of coefficient pairs with different signs (S)
- Occurrence of zero values (Z)
- Maxima of absolute difference of coefficient pairs
- Maxima of relative difference of non-zero coefficient pairs with equal signs
- Parameter identifier

$$Absdiff(t,x) = |i_1(t,x) - i_2(t,x)|$$

$$Reldiff(t,x) = \frac{|i_1(t,x) - i_2(t,x)|}{\max(|i_1(t,x)|,|i_2(t,x)|)}$$

diffn Compare two datasets listed by parameter name

The same as operator diff. Using the name instead of the identifier to label the parameter.

Example

To print the difference for each field of two datasets use:

```
cdo diffn ifile1 ifile2
```

This is an example result of two datasets with one 2D parameter over 12 timesteps:

```
Date
                   Time Level Size Miss Diff: S Z Max_Absdiff Max_Reldiff: Name
  : 1987-01-31 12:00:00
                             0 2048 1361
                                            273 : F F
                                                        0.00010681
                                                                     4.1660e - 07 : SST
                                            309 : F F
                                                                     2.3742e-07 : SST
 2 : 1987 - 02 - 28 \quad 12:00:00
                             0 2048 1361
                                                        6.1035e-05
                                            292 : F F
  : 1987-03-31 12:00:00
                             0\ 2048\ 1361
                                                        7.6294\,\mathrm{e}{\,-05}
                                                                     3.3784e-07 : SST
    1987-04-30 12:00:00
                             0 2048 1361
                                            183 : F F
                                                        7.6294e-05
                                                                     3.5117e - 07 : SST
    1987-05-31 12:00:00
                             0\ 2048\ 1361
                                            207 : F F
                                                        0.00010681
                                                                     4.0307e-07:
                             0 2048 1361
                                                                     3.5634e - 07
     1987-07-31 12:00:00
                                            317 : F F
                                                        9.1553e - 05
     1987-08-31 12:00:00
                             0\ 2048\ 1361
                                            219
                                                : F F
                                                        7.6294e-05
                                                                     2.8849e - 07
                                                  F F
     1987-09-30 12:00:00
                             0 2048
                                     1361
                                            188
                                                        7.6294e-05
                                                                     3.6168e - 07
                                                                                    SST
     1987 - 10 - 31 12:00:00
                             0 2048
                                     1361
                                                 F F
                                                        9.1553e-05
                                                                     3.5001e-07
                                            297
     1987-11-30 12:00:00
                             0 2048
                                     1361
                                            234
                                               : F F
                                                        6.1035e-05
                                                                     2.3839e-07
     1987-12-31 12:00:00
                             0 2048
                                     1361
                                            267 : F F
                                                        9.3553e-05
                                                                     3.7624e-07
11 of 12 records differ
```

Reference manual Information

2.1.4. NINFO - Print the number of parameters, levels or times

Synopsis

< operator > ifile

Description

This module prints the number of variables, levels or times of the input dataset.

Operators

npar Number of parameters

Prints the number of parameters (variables).

nlevel Number of levels

Prints the number of levels for each variable.

nyear Number of years

Prints the number of different years.

nmon Number of months

Prints the number of different combinations of years and months.

ndate Number of dates

Prints the number of different dates.

ntime Number of timesteps

Prints the number of timesteps.

ngridpoints Number of gridpoints

Prints the number of gridpoints for each variable.

ngrids Number of horizontal grids

Prints the number of horizontal grids.

Example

To print the number of parameters (variables) in a dataset use:

cdo npar ifile

To print the number of months in a dataset use:

cdo nmon ifile

Information Reference manual

2.1.5. SHOWINFO - Show variables, levels or times

Synopsis

< operator > ifile

Description

This module prints the format, variables, levels or times of the input dataset.

Operators

showformat Show file format

Prints the file format of the input dataset.

showcode Show code numbers

Prints the code number of all variables.

showname Show variable names

Prints the name of all variables.

showstdname Show standard names

Prints the standard name of all variables.

showlevel Show levels

Prints all levels for each variable.

showltype Show GRIB level types

Prints the GRIB level type for all z-axes.

showyear Show years

Prints all years.

showmon Show months

Prints all months.

showdate Show date information

Prints date information of all timesteps (format YYYY-MM-DD).

showtime Show time information

Prints time information of all timesteps (format hh:mm:ss).

showtimestamp Show timestamp

Prints timestamp of all timesteps (format YYYY-MM-DDThh:mm:ss).

Example

To print the code number of all variables in a dataset use:

cdo showcode ifile

This is an example result of a dataset with three variables:

129 130 139

To print all months in a dataset use:

cdo showmon ifile

This is an examples result of a dataset with an annual cycle:

 $1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \ 9 \ 10 \ 11 \ 12$

Reference manual Information

2.1.6. FILEDES - Dataset description

Synopsis

< operator > ifile

Description

This module provides operators to print meta information about a dataset. The printed meta-data depends on the chosen operator.

Operators

partab Parameter table

Prints all available meta information of the variables.

codetab Parameter code table

Prints a code table with a description of all variables. For each variable the operator

prints one line listing the code, name, description and units.

griddes Grid description

Prints the description of all grids.

zaxisdes Z-axis description

Prints the description of all z-axes.

vct Vertical coordinate table

Prints the vertical coordinate table.

Example

Assume all variables of the dataset are on a Gaussian N16 grid. To print the grid description of this dataset use:

```
cdo griddes ifile
```

Result:

gridtype : gaussian : 2048 gridsize xname : lon xlongname : longitude xunits : degrees_east yname : lat ylongname : latitude : degrees north yunits xsize : 64 ysize : 32 xfirst : 0 : 5.625 xinc $: \ 85.76058 \ \ 80.26877 \ \ 74.74454 \ \ 69.21297 \ \ 63.67863 \ \ 58.1429 \ \ 52.6065$ yvals $47.06964 \ \ 41.53246 \ \ 35.99507 \ \ 30.4575 \ \ 24.91992 \ \ 19.38223 \ \ 13.84448$ $8.306702 \ \ 2.768903 \ \ -2.768903 \ \ -8.306702 \ \ -13.84448 \ \ -19.38223$ $-24.91992 \ \ -30.4575 \ \ -35.99507 \ \ -41.53246 \ \ -47.06964 \ \ -52.6065$ $-58.1429 \quad -63.67863 \quad -69.21297 \quad -74.74454 \quad -80.26877 \quad -85.76058$

File operations Reference manual

2.2. File operations

This section contains modules to perform operations on files.

Here is a short overview of all operators in this section:

copy Copy datasets

cat Concatenate datasets

replace Replace variables

duplicate Duplicates a dataset

mergegrid Merge grid

mergeMerge datasets with different fieldsmergetimeMerge datasets sorted by date and time

split code Split code numbers

splitparam Split parameter identifiers

splitname Split variable names

splitlevelSplit levelssplitgridSplit gridssplitzaxisSplit z-axes

splittabnum Split parameter table numbers

splithourSplit hourssplitdaySplit dayssplitseasSplit seasonssplityearSplit years

splityearmon Split in years and months

splitmon Split months

splitsel Split time selection

distgrid Distribute horizontal grid

collgrid Collect horizontal grid

Reference manual File operations

2.2.1. COPY - Copy datasets

Synopsis

< operator > ifiles ofile

Description

This module contains operators to copy or concatenate datasets. if iles is an arbitrary number of input files. All input files need to have the same structure with the same variables on different timesteps.

Operators

copy Copy datasets

Copies all input datasets to ofile.

cat Concatenate datasets

Concatenates all input datasets and appends the result to the end of ofile. If ofile does not exist it will be created.

Example

To change the format of a dataset to NetCDF use:

```
cdo -f nc copy ifile ofile.nc
```

Add the option '-r' to create a relative time axis, as is required for proper recognition by GrADS or Ferret:

```
cdo -r -f nc copy ifile ofile.nc
```

To concatenate 3 datasets with different timesteps of the same variables use:

```
cdo copy ifile1 ifile2 ifile3 ofile
```

If the output dataset already exists and you wish to extend it with more timesteps use:

```
cdo cat ifile1 ifile2 ifile3 ofile
```

File operations Reference manual

2.2.2. REPLACE - Replace variables

Synopsis

replace ifile1 ifile2 ofile

Description

The replace operator replaces variables in ifile1 by variables from ifile2 and write the result to ofile. Both input datasets need to have the same number of timesteps.

Example

Assume the first input dataset ifile1 has three variables with the names geosp, t and tslm1 and the second input dataset ifile2 has only the variable tslm1. To replace the variable tslm1 in ifile1 by tslm1 from ifile2 use:

cdo replace ifile1 ifile2 ofile

2.2.3. DUPLICATE - Duplicates a dataset

Synopsis

duplicate/,ndup/ ifile ofile

Description

This operator duplicates the contents of ifile and writes the result to ofile. The optional parameter sets the number of duplicates, the default is 2.

Parameter

ndup INTEGER Number of duplicates, default is 2.

2.2.4. MERGEGRID - Merge grid

Synopsis

mergegrid ifile1 ifile2 ofile

Description

Merges grid points of all variables from ifile2 to ifile1 and write the result to ofile. Only the non missing values of ifile2 will be used. The horizontal grid of ifile2 should be smaller or equal to the grid of ifile1 and the resolution must be the same. Only rectilinear grids are supported. Both input files need to have the same variables and the same number of timesteps.

Reference manual File operations

2.2.5. MERGE - Merge datasets

Synopsis

<operator> ifiles ofile

Description

This module reads datasets from several input files, merges them and writes the resulting dataset to ofile.

Operators

merge Merge datasets with different fields

Merges time series of different fields from several input datasets. The number of fields per timestep written to ofile is the sum of the field numbers per timestep in all input datasets. The time series on all input datasets are required to have different fields and the same number of timesteps. The fields in each different input file either have to be different variables or different levels of the same variable. A mixture of different variables on different levels in different input files is not allowed.

mergetime Merge datasets sorted by date and time

Merges all timesteps of all input files sorted by date and time. All input files need to have the same structure with the same variables on different timesteps. After this operation every input timestep is in ofile and all timesteps are sorted by date and time.

Environment

SKIP_SAME_TIME If set to 1, skips all consecutive timesteps with a double entry of the same

timestamp.

Note

The operators in this module need to open all input files simultaneously. The maximum number of open files depends on the operating system!

Example

Assume three datasets with the same number of timesteps and different variables in each dataset. To merge these datasets to a new dataset use:

```
cdo merge ifile1 ifile2 ifile3 ofile
```

Assume you split a 6 hourly dataset with splithour. This produces four datasets, one for each hour. The following command merges them together:

cdo mergetime ifile1 ifile2 ifile3 ifile4 ofile

File operations Reference manual

2.2.6. SPLIT - Split a dataset

Synopsis

<operator>[,params] ifile obase

Description

This module splits if ile into pieces. The output files will be named <obase><xxx><suffix> where suffix is the filename extension derived from the file format. xxx and the contents of the output files depends on the chosen operator. params is a comma separated list of processing parameters.

Operators

splitcode Split code numbers

Splits a dataset into pieces, one for each different code number. xxx will have three

digits with the code number.

splitparam Split parameter identifiers

Splits a dataset into pieces, one for each different parameter identifier. xxx will be

a string with the parameter identifier.

splitname Split variable names

Splits a dataset into pieces, one for each variable name. xxx will be a string with

the variable name.

splitlevel Split levels

Splits a dataset into pieces, one for each different level. xxx will have six digits

with the level.

splitgrid Split grids

Splits a dataset into pieces, one for each different grid. xxx will have two digits

with the grid number.

splitzaxis Split z-axes

Splits a dataset into pieces, one for each different z-axis. xxx will have two digits

with the z-axis number.

splittabnum Split parameter table numbers

Splits a dataset into pieces, one for each GRIB1 parameter table number. xxx will

have three digits with the GRIB1 parameter table number.

Parameter

swap STRING Swap the position of obase and xxx in the output filename

uuid=<attname> STRING Add a UUID as global attribute <attname> to each output file

Environment

CDO_FILE_SUFFIX Set the default file suffix. This suffix will be added to the output file names

instead of the filename extension derived from the file format. Set this variable

to NULL to disable the adding of a file suffix.

Note

The operators in this module need to open all output files simultaneously. The maximum number of open files depends on the operating system!

Reference manual File operations

Example

Assume an input GRIB1 dataset with three variables, e.g. code number 129, 130 and 139. To split this dataset into three pieces, one for each code number use:

cdo splitcode ifile code

Result of 'dir code*':

 $\verb|code| 129.grb| code| 130.grb| code| 139.grb|$

File operations Reference manual

2.2.7. SPLITTIME - Split timesteps of a dataset

Synopsis

```
<operator> ifile obase
splitmon[,format] ifile obase
```

Description

This module splits if ile into timesteps pieces. The output files will be named <obase><xxx><suffix> where suffix is the filename extension derived from the file format. xxx and the contents of the output files depends on the chosen operator.

Operators

splithour Split hours

Splits a file into pieces, one for each different hour. xxx will have two digits with

the hour.

splitday Split days

Splits a file into pieces, one for each different day. xxx will have two digits with

the day.

splitseas Split seasons

Splits a file into pieces, one for each different season. xxx will have three characters

with the season.

splityear Split years

Splits a file into pieces, one for each different year. xxx will have four digits with

the year (YYYY).

splityearmon Split in years and months

Splits a file into pieces, one for each different year and month. xxx will have six

digits with the year and month (YYYYMM).

splitmon Split months

Splits a file into pieces, one for each different month. xxx will have two digits with

the month.

Parameter

format STRING C-style format for strftime() (e.g. %B for the full month name)

Environment

CDO_FILE_SUFFIX Set the default file suffix. This suffix will be added to the output file names

instead of the filename extension derived from the file format. Set this variable

to NULL to disable the adding of a file suffix.

Note

The operators in this module need to open all output files simultaneously. The maximum number of open files depends on the operating system!

Reference manual File operations

Example

Assume the input GRIB1 dataset has timesteps from January to December. To split each month with all variables into one separate file use:

```
cdo splitmon ifile mon
```

Result of 'dir mon*':

2.2.8. SPLITSEL - Split selected timesteps

Synopsis

```
splitsel,nsets[,noffset[,nskip]] ifile obase
```

Description

This operator splits if ile into pieces, one for each adjacent sequence $t_1, ..., t_n$ of timesteps of the same selected time range. The output files will be named cobase<</pre><nnnnnn</pre><suffix> where nnnnnn is the sequence number and suffix is the filename extension derived from the file format.

Parameter

nsets	INTEGER	Number of input timesteps for each output file
noffset	INTEGER	Number of input timesteps skipped before the first timestep range (optional) $$
nskip	INTEGER	Number of input timesteps skipped between timestep ranges (optional)

Environment

CDO_FILE_SUFFIX Set the default file suffix. This suffix will be added to the output file names instead of the filename extension derived from the file format. Set this variable

to NULL to disable the adding of a file suffix.

File operations Reference manual

2.2.9. DISTGRID - Distribute horizontal grid

Synopsis

 $\mathbf{distgrid}, nx[,ny]$ ifile obase

Description

This operator distributes a dataset into smaller pieces. Each output file contains a different region of the horizontal source grid. A target grid region contains a structured longitude/latitude box of the source grid. Only rectilinear and curvilinear source grids are supported by this operator. The number of different regions can be specified with the parameter nx and ny. The output files will be named <obase><xxx><suffix> where suffix is the filename extension derived from the file format. xxx will have five digits with the number of the target region.

Parameter

nx INTEGER Number of regions in x direction

ny INTEGER Number of regions in y direction [default: 1]

Note

This operator needs to open all output files simultaneously. The maximum number of open files depends on the operating system!

Example

Distribute a file into 6 smaller files, each output file receives one half of x and a third of y of the source grid:

cdo distgrid,2,3 ifile.nc obase

Below is a schematic illustration of this example:

On the left side is the data of the input file and on the right side is the data of the six output files.

Reference manual File operations

2.2.10. COLLGRID - Collect horizontal grid

Synopsis

collgrid[,nx[,names]] ifiles ofile

Description

This operator collects the data of the input files to one output file. All input files need to have the same variables and the same number of timesteps on a different horizonal grid region. A source region must be a structured longitude/latitude grid box. The parameter nx needs to be specified only for non regular lon/lat grids.

Parameter

nx INTEGER Number of regions in x direction [default: number of input files]names STRING Comma separated list of variable names [default: all variables]

Note

This operator needs to open all input files simultaneously. The maximum number of open files depends on the operating system!

Example

Collect the horizonal grid of 6 input files. Each input file contains a lon/lat region of the target grid:

cdo collgrid ifile[1-6] ofile

Below is a schematic illustration of this example:

On the left side is the data of the six input files and on the right side is the collected data of the output file.

Selection Reference manual

2.3. Selection

This section contains modules to select time steps, fields or a part of a field from a dataset.

Here is a short overview of all operators in this section:

select Select fields
delete Delete fields

selparamSelect parameters by identifierdelparamDelete parameters by identifierselcodeSelect parameters by code numberdelcodeDelete parameters by code number

selnameSelect parameters by namedelnameDelete parameters by name

selstdname Select parameters by standard name

sellevel Select levels

sellevidx Select levels by index

selgridSelect gridsselzaxisSelect z-axes

selzaxisnameSelect z-axes by nameselltypeSelect GRIB level types

seltabnum Select parameter table numbers

seltimestep Select timesteps seltime Select times selhour Select hours selday Select days selmonthSelect months selyear Select years selseason Select seasons seldate Select dates

selsmon Select single month

sellonlatbox Select a longitude/latitude box

selindexbox Select an index box

Reference manual Selection

2.3.1. SELECT - Select fields

Synopsis

< operator >, params ifiles ofile

Description

This module selects some fields from ifiles and writes them to ofile. ifiles is an arbitrary number of input files. All input files need to have the same structure with the same variables on different timesteps. The fields selected depends on the chosen parameters. Parameter is a comma separated list of "key=value" pairs. Wildcards can be used for string parameter.

Operators

select Select fields

Selects all fields with parameters in a user given list.

delete Delete fields

Deletes all fields with parameters in a user given list.

Parameter

name	STRING	Comma separated list of variable names.
param	STRING	Comma separated list of parameter identifiers.
code	INTEGER	Comma separated list of code numbers.
level	FLOAT	Comma separated list of vertical levels.
levidx	INTEGER	Comma separated list of index of levels.
zaxisname	STRING	Comma separated list of zaxis names.
zaxisnum	INTEGER	Comma separated list of zaxis numbers.
ltype	INTEGER	Comma separated list of GRIB level types.
gridname	STRING	Comma separated list of grid names.
gridnum	INTEGER	Comma separated list of grid numbers.
steptype	STRING	Comma separated list of timestep types.
date	STRING	$\label{thm:separated} Comma \ separated \ list \ of \ dates \ (format\ YYYY-MM-DDThh:mm:ss).$
startdate	STRING	Start date (format YYYY-MM-DDThh:mm:ss).
enddate	STRING	End date (format YYYY-MM-DDThh:mm:ss).
minute	INTEGER	Comma separated list of minutes.
hour	INTEGER	Comma separated list of hours.
day	INTEGER	Comma separated list of days.
month	INTEGER	Comma separated list of months.
season	STRING SOND or Al	Comma separated list of seasons (substring of DJFMAMJJA-NN).
year	INTEGER	Comma separated list of years.
timestep	INTEGER from the end	Comma separated list of timesteps. Negative values selects timesteps l (NetCDF only).
$timestep_of_year$	INTEGER	Comma separated list of timesteps of year.

Selection Reference manual

Example

Assume you have 3 inputfiles. Each inputfile contains the same variables for a different time period. To select the variable T,U and V on the levels 200, 500 and 850 from all 3 input files, use:

cdo select,name=T,U,V,level=200,500,850 ifile1 ifile2 ifile3 ofile

Reference manual Selection

2.3.2. SELVAR - Select fields

Synopsis

```
< operator>,params ifile ofile
selcode,codes ifile ofile
delcode,codes ifile ofile
selname,names ifile ofile
delname,names ifile ofile
selstdname,stdnames ifile ofile
sellevel,levels ifile ofile
sellevidx,levidx ifile ofile
selgrid,grids ifile ofile
selzaxis,zaxes ifile ofile
selzaxisname,zaxisnames ifile ofile
seltype,ltypes ifile ofile
seltabnum,tabnums ifile ofile
```

Description

This module selects some fields from if ile and writes them to of ile. The fields selected depends on the chosen operator and the parameters.

Operators

selparam Select parameters by identifier

Selects all fields with parameter identifiers in a user given list.

delparam Delete parameters by identifier

Deletes all fields with parameter identifiers in a user given list.

selcode Select parameters by code number

Selects all fields with code numbers in a user given list.

delcode Delete parameters by code number

Deletes all fields with code numbers in a user given list.

selname Select parameters by name

Selects all fields with parameter names in a user given list.

delname Delete parameters by name

Deletes all fields with parameter names in a user given list.

selstdname Select parameters by standard name

Selects all fields with standard names in a user given list.

sellevel Select levels

Selects all fields with levels in a user given list.

sellevidx Select levels by index

Selects all fields with index of levels in a user given list.

selgrid Select grids

Selects all fields with grids in a user given list.

Selection Reference manual

selzaxis Select z-axes

Selects all fields with z-axes in a user given list.

selzaxisname Select z-axes by name

Selects all fields with z-axis names in a user given list.

selltype Select GRIB level types

Selects all fields with GRIB level type in a user given list.

seltabnum Select parameter table numbers

Selects all fields with parameter table numbers in a user given list.

Parameter

params	INTEGER	Comma separated list of parameter identifiers
codes	INTEGER	Comma separated list of code numbers
names	STRING	Comma separated list of variable names
stdnames	STRING	Comma separated list of standard names
levels	FLOAT	Comma separated list of vertical levels
levidx	INTEGER	Comma separated list of index of levels
ltypes	INTEGER	Comma separated list of GRIB level types
grids	STRING	Comma separated list of grid names or numbers
zaxes	STRING	Comma separated list of z-axis types or numbers
zaxisnames	STRING	Comma separated list of z-axis names
tabnums	INTEGER	Comma separated list of parameter table numbers

Example

Assume an input dataset has three variables with the code numbers 129, 130 and 139. To select the variables with the code number 129 and 139 use:

```
cdo selcode,129,139 ifile ofile
```

You can also select the code number 129 and 139 by deleting the code number 130 with:

cdo delcode,130 ifile ofile

Reference manual Selection

2.3.3. SELTIME - Select timesteps

Synopsis

```
seltimestep,timesteps ifile ofile
seltime,times ifile ofile
selhour,hours ifile ofile
selday,days ifile ofile
selmonth,months ifile ofile
selyear,years ifile ofile
selseason,seasons ifile ofile
seldate,date1[,date2] ifile ofile
selsmon,month[,nts1[,nts2]] ifile ofile
```

Description

This module selects user specified timesteps from ifile and writes them to ofile. The timesteps selected depends on the chosen operator and the parameters.

Operators

seltimestep Select timesteps

Selects all timesteps with a timestep in a user given list.

seltime Select times

Selects all timesteps with a time in a user given list.

selhour Select hours

Selects all timesteps with a hour in a user given list.

selday Select days

Selects all timesteps with a day in a user given list.

selmonth Select months

Selects all timesteps with a month in a user given list.

selyear Select years

Selects all timesteps with a year in a user given list.

selseason Select seasons

Selects all timesteps with a month of a season in a user given list.

seldate Select dates

Selects all timesteps with a date in a user given range.

selsmon Select single month

Selects a month and optional an arbitrary number of timesteps before and after this

month.

Parameter

timesteps INTEGER Comma separated list of timesteps. Negative values selects timesteps from

the end (NetCDF only).

times STRING Comma separated list of times (format hh:mm:ss).

hours INTEGER Comma separated list of hours.

Selection Reference manual

days	INTEGER	Comma separated list of days.
months	INTEGER	Comma separated list of months.
years	INTEGER	Comma separated list of years.
seasons	STRING ANN).	Comma separated list of seasons (substring of DJFMAMJJASOND or
date1	STRING	Start date (format YYYY-MM-DDThh:mm:ss).
date2	STRING	End date (format YYYY-MM-DDThh:mm:ss) [default: date1].
nts1	INTEGER	Number of timesteps before the selected month [default: 0].
nts2	INTEGER	Number of timesteps after the selected month [default: nts1].

Reference manual Selection

2.3.4. SELBOX - Select a box of a field

Synopsis

```
sellonlatbox,lon1,lon2,lat1,lat2 ifile ofile
selindexbox,idx1,idx2,idy1,idy2 ifile ofile
```

Description

Selects a box of the rectangularly understood field. All input fields need to have the same horizontal grid.

Operators

sellonlatbox Select a longitude/latitude box

Selects a regular longitude/latitude box. The user has to give the longitudes and latitudes of the edges of the box. Considered are only those grid cells with the grid center inside the lon/lat box. For rotated lon/lat grids the parameter needs to be

rotated coordinates.

selindexbox Select an index box

Selects an index box. The user has to give the indexes of the edges of the box. The

index of the left edge may be greater then that of the right edge.

Parameter

lon1	FLOAT	Western longitude
lon2	FLOAT	Eastern longitude
lat1	FLOAT	Southern or northern latitude
lat2	FLOAT	Northern or southern latitude
idx1	INTEGER	Index of first longitude
idx2	INTEGER	Index of last longitude
idy1	INTEGER	Index of first latitude
idy2	INTEGER	Index of last latitude

Example

To select the region with the longitudes from $30\mathrm{W}$ to $60\mathrm{E}$ and latitudes from $30\mathrm{N}$ to $80\mathrm{S}$ from all input fields use:

```
cdo sellonlatbox, -30,60,30,80 ifile ofile
```

If the input dataset has fields on a Gaussian N16 grid, the same box can be selected with selindexbox by:

```
cdo selindexbox,60,11,3,11 ifile ofile
```

Conditional selection Reference manual

2.4. Conditional selection

This section contains modules to conditional select field elements. The fields in the first input file are handled as a mask. A value not equal to zero is treated as "true", zero is treated as "false".

Here is a short overview of all operators in this section:

ifthen If then ifnotthen If not then

ifthenelse If then else

ifthencIf then constantifnotthencIf not then constant

reducegrid Reduce input file variables to locations, where mask is non-zero.

Reference manual Conditional selection

2.4.1. COND - Conditional select one field

Synopsis

<operator> ifile1 ifile2 ofile

Description

This module selects field elements from ifile2 with respect to ifile1 and writes them to ofile. The fields in ifile1 are handled as a mask. A value not equal to zero is treated as "true", zero is treated as "false". The number of fields in ifile1 has either to be the same as in ifile2 or the same as in one timestep of ifile2 or only one. The fields in ofile inherit the meta data from ifile2.

Operators

$$\begin{aligned} & \text{if then} & & \text{If then} \\ & & o(t,x) = \left\{ \begin{array}{ll} i_2(t,x) & \text{if } i_1([t,]x) \neq 0 & \wedge & i_1([t,]x) \neq \text{miss} \\ & \text{miss} & \text{if } i_1([t,]x) = 0 & \vee & i_1([t,]x) = \text{miss} \end{array} \right. \\ & \text{ifnotthen} & & \text{If not then} \\ & & o(t,x) = \left\{ \begin{array}{ll} i_2(t,x) & \text{if } i_1([t,]x) = 0 & \wedge & i_1([t,]x) \neq \text{miss} \\ & \text{miss} & \text{if } i_1([t,]x) \neq 0 & \vee & i_1([t,]x) = \text{miss} \end{array} \right. \\ \end{aligned}$$

Example

To select all field elements of ifile2 if the corresponding field element of ifile1 is greater than 0 use:

cdo ifthen ifile1 ifile2 ofile

2.4.2. COND2 - Conditional select two fields

Synopsis

ifthenelse ifile1 ifile2 ifile3 ofile

Description

This operator selects field elements from ifile2 or ifile3 with respect to ifile1 and writes them to ofile. The fields in ifile1 are handled as a mask. A value not equal to zero is treated as "true", zero is treated as "false". The number of fields in ifile1 has either to be the same as in ifile2 or the same as in one timestep of ifile2 or only one. ifile2 and ifile3 need to have the same number of fields. The fields in ofile inherit the meta data from ifile2.

$$o(t,x) = \begin{cases} i_2(t,x) & \text{if } i_1([t,]x) \neq 0 & \land i_1([t,]x) \neq \text{miss} \\ i_3(t,x) & \text{if } i_1([t,]x) = 0 & \land i_1([t,]x) \neq \text{miss} \\ \text{miss} & \text{if } i_1([t,]x) = \text{miss} \end{cases}$$

Example

To select all field elements of ifile2 if the corresponding field element of ifile1 is greater than 0 and from ifile3 otherwise use:

cdo ifthenelse ifile1 ifile2 ifile3 ofile

Conditional selection Reference manual

2.4.3. CONDC - Conditional select a constant

Synopsis

< operator >, c ifile ofile

Description

This module creates fields with a constant value or missing value. The fields in ifile are handled as a mask. A value not equal to zero is treated as "true", zero is treated as "false".

Operators

ifthenc If then constant

$$o(t,x) = \begin{cases} c & \text{if } i(t,x) \neq 0 & \land i(t,x) \neq \text{miss} \\ \text{miss} & \text{if } i(t,x) = 0 & \lor i(t,x) = \text{miss} \end{cases}$$

ifnotthenc If not then constant

$$o(t,x) = \begin{cases} c & \text{if } i(t,x) = 0 \land i(t,x) \neq \text{miss} \\ \text{miss } & \text{if } i(t,x) \neq 0 \lor i(t,x) = \text{miss} \end{cases}$$

Parameter

c FLOAT Constant

Example

To create fields with the constant value 7 if the corresponding field element of ifile is greater than 0 use:

cdo ifthenc,7 ifile ofile

Reference manual Conditional selection

2.4.4. MAPREDUCE - Reduce fields to user-defined mask

Synopsis

reducegrid,mask[,limitCoordsOutput] ifile ofile

Description

This module holds an operator for data reduction based on a user defined mask. The output grid is unstructured and includes coordinate bounds. Bounds can be avoided by using the additional 'nobounds' keyword. With 'nocoords' given, coordinates a completely suppressed.

Parameter

mask STRING file which holds the mask field

limitCoordsOutput STRING optional parameter to limit coordinates output: 'nobounds' dis-

ables coordinate bounds, 'nocoords' avoids all coordinate information

Example

To limit data fields to land values, a mask has to be created first with

```
cdo -gtc,0 -topo,ni96 lsm_gme96.grb
```

Here a GME grid is used. Say temp_gme96.grb contains a global temperture field. The following command limits the global grid to landpoints.

```
cdo -f nc reduce, lsm_gme96.grb temp_gme96.grb tempOnLand_gme96.nc
```

Note that output file type is NetCDF, because unstructured grids cannot be stored in GRIB format.

Comparison Reference manual

2.5. Comparison

This section contains modules to compare datasets. The resulting field is a mask containing 1 if the comparison is true and 0 if not.

Here is a short overview of all operators in this section:

$\mathbf{e}\mathbf{q}$	Equal
ne	Not equal
le	Less equal
lt	Less than
\mathbf{ge}	Greater equal
\mathbf{gt}	Greater than
eqc	Equal constant
nec	Not equal constant
nec lec	Not equal constant Less equal constant
lec	Less equal constant
lec ltc	Less equal constant Less than constant

Reference manual Comparison

2.5.1. COMP - Comparison of two fields

Synopsis

<operator> ifile1 ifile2 ofile

Description

This module compares two datasets field by field. The resulting field is a mask containing 1 if the comparison is true and 0 if not. The number of fields in ifile1 should be the same as in ifile2. One of the input files can contain only one timestep or one field. The fields in ofile inherit the meta data from ifile1 or ifile2. The type of comparison depends on the chosen operator.

Operators

$$o(t,x) = \begin{cases} 1 & \text{if } i_1(t,x) = i_2(t,x) & \wedge i_1(t,x), i_2(t,x) \neq \text{miss} \\ 0 & \text{if } i_1(t,x) \neq i_2(t,x) & \wedge i_1(t,x), i_2(t,x) \neq \text{miss} \\ \text{miss if } i_1(t,x) = \text{miss} & \vee i_2(t,x) = \text{miss} \end{cases}$$

$$o(t,x) = \left\{ \begin{array}{ll} 1 & \text{if } i_1(t,x) \neq i_2(t,x) & \wedge \ i_1(t,x), i_2(t,x) \neq \text{miss} \\ 0 & \text{if } i_1(t,x) = i_2(t,x) & \wedge \ i_1(t,x), i_2(t,x) \neq \text{miss} \\ \text{miss } & \text{if } i_1(t,x) = \text{miss} & \vee \ i_2(t,x) = \text{miss} \end{array} \right.$$

$$o(t,x) = \left\{ \begin{array}{ll} 1 & \text{if } i_1(t,x) \leq i_2(t,x) & \wedge \ i_1(t,x), i_2(t,x) \neq \text{miss} \\ 0 & \text{if } i_1(t,x) > i_2(t,x) & \wedge \ i_1(t,x), i_2(t,x) \neq \text{miss} \\ \text{miss } & \text{if } i_1(t,x) = \text{miss} & \vee \ i_2(t,x) = \text{miss} \end{array} \right.$$

$$o(t,x) = \left\{ \begin{array}{ll} 1 & \text{if } i_1(t,x) < i_2(t,x) & \wedge \ i_1(t,x), i_2(t,x) \neq \text{miss} \\ 0 & \text{if } i_1(t,x) \geq i_2(t,x) & \wedge \ i_1(t,x), i_2(t,x) \neq \text{miss} \\ \text{miss } & \text{if } i_1(t,x) = \text{miss} & \vee \ i_2(t,x) = \text{miss} \end{array} \right.$$

$$\mathbf{ge} \qquad \text{Greater equal} \\ o(t,x) = \left\{ \begin{array}{ll} 1 & \text{if } i_1(t,x) \geq i_2(t,x) & \wedge \ i_1(t,x), i_2(t,x) \neq \text{miss} \\ 0 & \text{if } i_1(t,x) < i_2(t,x) & \wedge \ i_1(t,x), i_2(t,x) \neq \text{miss} \\ \text{miss } & \text{if } i_1(t,x) = \text{miss} & \vee \ i_2(t,x) = \text{miss} \end{array} \right.$$

$$\begin{aligned} \mathbf{gt} & & \text{Greater than} \\ o(t,x) &= \left\{ \begin{array}{ccc} 1 & \text{if} \ i_1(t,x) > i_2(t,x) & \wedge \ i_1(t,x), i_2(t,x) \neq \text{miss} \\ 0 & \text{if} \ i_1(t,x) \leq i_2(t,x) & \wedge \ i_1(t,x), i_2(t,x) \neq \text{miss} \\ \text{miss} & \text{if} \ i_1(t,x) = \text{miss} & \vee \ i_2(t,x) = \text{miss} \end{array} \right. \end{aligned}$$

Example

To create a mask containing 1 if the elements of two fields are the same and 0 if the elements are different use:

cdo eq ifile1 ifile2 ofile

Comparison Reference manual

2.5.2. COMPC - Comparison of a field with a constant

Synopsis

 $<\!operator\!>$,c ifile ofile

Description

This module compares all fields of a dataset with a constant. The resulting field is a mask containing 1 if the comparison is true and 0 if not. The type of comparison depends on the chosen operator.

Operators

eqc Equal constant

$$o(t,x) = \begin{cases} 1 & \text{if } i(t,x) = c & \wedge i(t,x), c \neq \text{miss} \\ 0 & \text{if } i(t,x) \neq c & \wedge i(t,x), c \neq \text{miss} \\ \text{miss } & \text{if } i(t,x) = \text{miss} & \vee c = \text{miss} \end{cases}$$

nec Not equal constant

$$o(t,x) = \begin{cases} 1 & \text{if } i(t,x) \neq c & \wedge i(t,x), c \neq \text{miss} \\ 0 & \text{if } i(t,x) = c & \wedge i(t,x), c \neq \text{miss} \\ \text{miss } & \text{if } i(t,x) = \text{miss} & \vee c = \text{miss} \end{cases}$$

lec Less equal constant

$$o(t,x) = \begin{cases} 1 & \text{if } i(t,x) \le c & \wedge i(t,x), c \ne \text{miss} \\ 0 & \text{if } i(t,x) > c & \wedge i(t,x), c \ne \text{miss} \\ \text{miss } & \text{if } i(t,x) = \text{miss} & \vee c = \text{miss} \end{cases}$$

ltc Less than constant

$$o(t,x) = \begin{cases} 1 & \text{if } i(t,x) < c & \wedge i(t,x), c \neq \text{miss} \\ 0 & \text{if } i(t,x) \geq c & \wedge i(t,x), c \neq \text{miss} \\ \text{miss } & \text{if } i(t,x) = \text{miss} & \vee c = \text{miss} \end{cases}$$

gec Greater equal constant

$$o(t,x) = \begin{cases} 1 & \text{if } i(t,x) \ge c & \wedge i(t,x), c \ne \text{miss} \\ 0 & \text{if } i(t,x) < c & \wedge i(t,x), c \ne \text{miss} \\ \text{miss} & \text{if } i(t,x) = \text{miss} & \vee c = \text{miss} \end{cases}$$

gtc Greater than constant

$$o(t,x) = \left\{ \begin{array}{ccc} 1 & \text{if } i(t,x) > c & \wedge \ i(t,x), c \neq \text{miss} \\ 0 & \text{if } i(t,x) \leq c & \wedge \ i(t,x), c \neq \text{miss} \\ \text{miss } & \text{if } i(t,x) = \text{miss} & \vee \ c = \text{miss} \end{array} \right.$$

Parameter

c FLOAT Constant

Example

To create a mask containing 1 if the field element is greater than 273.15 and 0 if not use:

cdo gtc,273.15 ifile ofile

2.6. Modification

This section contains modules to modify the metadata, fields or part of a field in a dataset.

Here is a short overview of all operators in this section:

setpartabpSet parameter tablesetpartabnSet parameter table

setcodetab Set parameter code table

setcode Set code number

setparamSet parameter identifiersetnameSet variable namesetunitSet variable unit

setlevel Set level

setltype Set GRIB level type

setdate Set date

settime Set time of the day

setday Set day Set month setmon setyear Set year Set time units settunits Set time axis settaxis settbounds Set time bounds setreftime Set reference time setcalendar Set calendar shifttime Shift timesteps

chcodeChange code numberchparamChange parameter identifierchnameChange variable namechunitChange variable unit

chlevel Change level

chlevelc Change level of one codechlevelv Change level of one variable

setgridSet gridsetgridtypeSet grid typesetgridareaSet grid cell area

setzaxis Set z-axis

genlevelbounds Generate level bounds

setgattSet global attributesetgattsSet global attributes

invertlat Invert latitudes

invertlev Invert levels

maskregion Mask regions

masklonlatbox Mask a longitude/latitude box

maskindexbox Mask an index box

setclonlatbox Set a longitude/latitude box to constant

setcindexbox Set an index box to constant

enlarge Enlarge fields

setmissvalSet a new missing valuesetctomissSet constant to missing valuesetmisstocSet missing value to constantsetrtomissSet range to missing value

setvrange Set valid range

setmisstonn Set missing value to nearest neighbor

setmisstodis Set missing value to distance-weighted average

2.6.1. SETPARTAB - Set parameter table

Synopsis

<operator>,table[,convert] ifile ofile

Description

This module transforms data and metadata of ifile via a parameter table and writes the result to ofile. A parameter table is an ASCII formatted file with a set of parameter entries for each variable. Each new set have to start with "¶meter" and to end with "/".

The following parameter table entries are supported:

Entry	Type	Description
name	WORD	Name of the variable
out_name	WORD	New name of the variable
param	WORD	Parameter identifier (GRIB1: code[.tabnum]; GRIB2: num[.cat[.dis]])
out_param	WORD	New parameter identifier
type	WORD	Data type (real or double)
standard_name	WORD	As defined in the CF standard name table
long_name	STRING	Describing the variable
units	STRING	Specifying the units for the variable
comment	STRING	Information concerning the variable
cell_methods	STRING	Information concerning calculation of means or climatologies
cell_measures	STRING	Indicates the names of the variables containing cell areas and volumes
missing_value	FLOAT	Specifying how missing data will be identified
valid_min	FLOAT	Minimum valid value
valid_max	FLOAT	Maximum valid value
ok_min_mean_abs	FLOAT	Minimum absolute mean
ok_max_mean_abs	FLOAT	Maximum absolute mean
factor	FLOAT	Scale factor
delete	INTEGER	Set to 1 to delete variable
convert	INTEGER	Set to 1 to convert the unit if necessary

The search key for the variable depends on the operator. Use setpartabn to search variables by the name. This is typically used for NetCDF datasets. The operator setpartabp searches variables by the parameter ID.

Operators

setpartabp Set parameter table

Search variables by the parameter identifier.

setpartabn Set parameter table

Search variables by name.

Parameter

table STRING Parameter table file or name convert STRING Converts the units if necessary

Example

Here is an example of a parameter table for one variable:

To apply this parameter table to a dataset use:

```
cdo setpartabn,mypartab,convert ifile ofile
```

This command renames the variable \mathbf{t} to \mathbf{ta} . The standard name of this variable is set to \mathbf{air} _temperature and the unit is set to $[\mathbf{K}]$ (converts the unit if necessary). The missing value will be set to $\mathbf{1e} + \mathbf{20}$. In addition it will be checked whether the values of the variable are in the range of $\mathbf{157.1}$ to $\mathbf{336.3}$.

2.6.2. SET - Set field info

Synopsis

```
setcodetab,table ifile ofile
setcode,code ifile ofile
setparam,param ifile ofile
setname,name ifile ofile
setunit,unit ifile ofile
setlevel,level ifile ofile
setltype,ltype ifile ofile
```

Description

This module sets some field information. Depending on the chosen operator the parameter table, code number, parameter identifier, variable name or level is set.

Operators

setcodetab Set parameter code table

Sets the parameter code table for all variables.

setcode Set code number

Sets the code number for all variables to the same given value.

setparam Set parameter identifier

Sets the parameter identifier of the first variable.

setname Set variable name

Sets the name of the first variable.

setunit Set variable unit

Sets the unit of the first variable.

setlevel Set level

Sets the first level of all variables.

setltype Set GRIB level type

Sets the GRIB level type of all variables.

Parameter

table	STRING	Parameter table file or name
code	INTEGER	Code number
param	STRING	Parameter identifier (GRIB1: code[.tabnum]; GRIB2: num[.cat[.dis]])
name	STRING	Variable name
level	FLOAT	New level
ltype	INTEGER	GRIB level type

2.6.3. SETTIME - Set time

Synopsis

```
setdate, date ifile ofile
settime, time ifile ofile
setday, day ifile ofile
setmon, month ifile ofile
setyear, year ifile ofile
settunits, units ifile ofile
settaxis, date, time[,inc] ifile ofile
settebounds, frequency ifile ofile
setreftime, date, time[, units] ifile ofile
setcalendar, calendar ifile ofile
shifttime, sval ifile ofile
```

Description

This module sets the time axis or part of the time axis. Which part of the time axis is overwritten depends on the chosen operator.

Operators

setdate Set date

Sets the date in every timestep to the same given value.

settime Set time of the day

Sets the time in every timestep to the same given value.

setday Set day

Sets the day in every timestep to the same given value.

setmon Set month

Sets the month in every timestep to the same given value.

setyear Set year

Sets the year in every timestep to the same given value.

settunits Set time units

Sets the base units of a relative time axis.

settaxis Set time axis

Sets the time axis.

settbounds Set time bounds

Sets the time bounds.

setreftime Set reference time

Sets the reference time of a relative time axis.

setcalendar Set calendar

Sets the calendar of a relative time axis.

shifttime Shift timesteps

Shifts all timesteps by the parameter sval.

Parameter

day	INTEGER	Value of the new day
month	INTEGER	Value of the new month
year	INTEGER	Value of the new year
units	STRING	Base units of the time axis (seconds, minutes, hours, days, months, years) $$
date	STRING	Date (format: YYYY-MM-DD)
time	STRING	Time (format: hh:mm:ss)
inc	STRING fault: 1hour]	Optional increment (seconds, minutes, hours, days, months, years) [de-
frequency	STRING	Frequency of the time series (day, month, year)
calendar	STRING	Calendar (standard, proleptic_gregorian, 360_day, 365_day, 366_day)
sval	STRING	Shift value (e.g3hour)

Example

To set the time axis to 1987-01-16 12:00:00 with an increment of one month for each timestep use:

```
cdo settaxis,1987-01-16,12:00:00,1mon ifile ofile
```

Result of 'cdo showdate ofile' for a dataset with 12 timesteps:

To shift this time axis by -15 days use:

```
cdo shifttime,-15days ifile ofile
```

Result of 'cdo showdate ofile':

2.6.4. CHANGE - Change field header

Synopsis

chcode,oldcode,newcode[,...] ifile ofile
chparam,oldparam,newparam,... ifile ofile
chname,oldname,newname,... ifile ofile
chunit,oldunit,newunit,... ifile ofile
chlevel,oldlev,newlev,... ifile ofile
chlevelc,code,oldlev,newlev ifile ofile
chlevelv,name,oldlev,newlev ifile ofile

Description

This module reads fields from ifile, changes some header values and writes the results to ofile. The kind of changes depends on the chosen operator.

Operators

chcode Change code number

Changes some user given code numbers to new user given values.

chparam Change parameter identifier

Changes some user given parameter identifiers to new user given values.

chname Change variable name

Changes some user given variable names to new user given names.

chunit Change variable unit

Changes some user given variable units to new user given units.

chlevel Change level

Changes some user given levels to new user given values.

chlevelc Change level of one code

Changes one level of a user given code number.

chlevelv Change level of one variable

Changes one level of a user given variable name.

Parameter

code	INTEGER	Code number
$old code, new code, \dots$	INTEGER	Pairs of old and new code numbers
$old param, new param, \dots$	STRING	Pairs of old and new parameter identifiers
name	STRING	Variable name
$oldname, newname, \dots$	STRING	Pairs of old and new variable names
oldlev	FLOAT	Old level
newlev	FLOAT	New level
$old lev, new lev, \dots$	FLOAT	Pairs of old and new levels

Example

To change the code number 98 to 179 and 99 to 211 use:

cdo chcode, 98, 179, 99, 211 ifile ofile

2.6.5. SETGRID - Set grid information

Synopsis

```
setgrid,grid ifile ofile
setgridtype,gridtype ifile ofile
setgridarea,gridarea ifile ofile
```

Description

This module modifies the metadata of the horizontal grid. Depending on the chosen operator a new grid description is set, the coordinates are converted or the grid cell area is added.

Operators

setgrid Set grid

Sets a new grid description. The input fields need to have the same grid size as the

size of the target grid description.

setgridtype Set grid type

Sets the grid type of all input fields. The following grid types are available:

curvilinear Converts a regular grid to a curvilinear grid

unstructured Converts a regular or curvilinear grid to an unstructured grid

dereference Dereference a reference to a grid

regular Converts a reduced Gaussian grid to a regular Gaussian grid

lonlat Converts a regular lonlat grid stored as a curvilinear grid back to

a lonlat grid

setgridarea Set grid cell area

Sets the grid cell area. The parameter *gridarea* is the path to a data file, the first field is used as grid cell area. The input fields need to have the same grid size as the grid cell area. The grid cell area is used to compute the weights of each grid

cell if needed by an operator, e.g. for fldmean.

Parameter

grid STRING Grid description file or name

gridtype STRING Grid type (curvilinear, unstructured, regular, lonlat or dereference)

gridarea STRING Data file, the first field is used as grid cell area

Example

Assuming a dataset has fields on a grid with 2048 elements without or with wrong grid description. To set the grid description of all input fields to a Gaussian N32 grid (8192 gridpoints) use:

cdo setgrid, n32 ifile ofile

2.6.6. SETZAXIS - Set z-axis information

Synopsis

```
setzaxis,zaxis ifile ofile
genlevelbounds[,zbot[,ztop]] ifile ofile
```

Description

This module modifies the metadata of the vertical grid.

Operators

setzaxis Set z-axis

This operator sets the z-axis description of all variables with the same number

of level as the new z-axis.

genlevelbounds Generate level bounds

Generates the layer bounds of the z-axis.

Parameter

zaxis	STRING	Z-axis description file or name of the target z-axis
zbot	FLOAT z-axis.	Specifying the bottom of the vertical column. Must have the same units as
ztop	FLOAT	Specifying the top of the vertical column. Must have the same units as z-axis.

2.6.7. SETGATT - Set global attribute

Synopsis

```
setgatt,attname,attstring ifile ofile
setgatts,attfile ifile ofile
```

Description

This module sets global text attributes of a dataset. Depending on the chosen operator the attributes are read from a file or can be specified by a parameter.

Operators

setgatt Set global attribute

Sets one user defined global text attribute.

setgatts Set global attributes

Sets user defined global text attributes. The name and text of the global attributes are

read from a file.

Parameter

 $attname, attstring \hspace{0.5cm} {\tt STRING} \hspace{0.5cm} {\tt Name} \ and \ text \ of \ the \ global \ attribute \ (without \ spaces!)$

attfile STRING File name which contains global text attributes

Note

Besides NetCDF none of the supported data formats supports global attributes.

Example

To set the global text attribute "myatt" to "myattcontents" in a NetCDF file use:

```
cdo setgatt, myatt, myattcontents ifile ofile
```

Result of 'ncdump -h ofile':

2.6.8. INVERT - Invert latitudes

Synopsis

invertlat ifile ofile

Description

This operator inverts the latitudes of all fields on a rectilinear grid.

Example

To invert the latitudes of a 2D field from N->S to S->N use:

cdo invertlat ifile ofile

2.6.9. INVERTLEV - Invert levels

Synopsis

invertlev ifile ofile

Description

This operator inverts the levels of all 3D variables.

2.6.10. MASKREGION - Mask regions

Synopsis

maskregion, regions if ile of ile

Description

Masks different regions of fields with a regular lon/lat grid. The elements inside a region are untouched, the elements outside are set to missing value. Considered are only those grid cells with the grid center inside the regions. All input fields must have the same horizontal grid. The user has to give ASCII formatted files with different regions. A region is defined by a polygon. Each line of a polygon description file contains the longitude and latitude of one point. Each polygon description file can contain one or more polygons separated by a line with the character &.

Parameter

regions STRING Comma separated list of ASCII formatted files with different regions

Example

To mask the region with the longitudes from 120E to 90W and latitudes from 20N to 20S on all input fields use:

```
cdo maskregion, myregion ifile ofile
```

For this example the polygon description file myregion should contain the following four coordinates:

120 20			
120 -20			
270 -20			
270 20			

2.6.11. MASKBOX - Mask a box

Synopsis

```
masklonlatbox, lon1, lon2, lat1, lat2 ifile ofile maskindexbox, idx1, idx2, idy1, idy2 ifile ofile
```

Description

Masked a box of the rectangularly understood field. The elements inside the box are untouched, the elements outside are set to missing value. All input fields need to have the same horizontal grid. Use sellonlatbox or selindexbox if only the data inside the box are needed.

Operators

masklonlatbox Mask a longitude/latitude box

Masked a regular longitude/latitude box. The user has to give the longitudes and latitudes of the edges of the box. Considered are only those grid cells with

the grid center inside the lon/lat box.

maskindexbox Mask an index box

Masked an index box. The user has to give the indexes of the edges of the box. The index of the left edge can be greater then the one of the right edge.

Parameter

lon1	FLOAT	Western longitude
lon2	FLOAT	Eastern longitude
lat1	FLOAT	Southern or northern latitude
lat2	FLOAT	Northern or southern latitude
idx1	INTEGER	Index of first longitude
idx2	INTEGER	Index of last longitude
idy1	INTEGER	Index of first latitude
idy2	INTEGER	Index of last latitude

Example

To mask the region with the longitudes from 120E to 90W and latitudes from 20N to 20S on all input fields use:

```
cdo masklonlatbox, 120, -90, 20, -20 ifile ofile
```

If the input dataset has fields on a Gaussian N16 grid, the same box can be masked with maskindexbox by:

```
cdo maskindexbox,23,48,13,20 ifile ofile
```

2.6.12. SETBOX - Set a box to constant

Synopsis

```
setclonlatbox, c, lon1, lon2, lat1, lat2 ifile ofile setcindexbox, c, idx1, idx2, idy1, idy2 ifile ofile
```

Description

Sets a box of the rectangularly understood field to a constant value. The elements outside the box are untouched, the elements inside are set to the given constant. All input fields need to have the same horizontal grid.

Operators

setclonlatbox Set a longitude/latitude box to constant

Sets the values of a longitude/latitude box to a constant value. The user has to

give the longitudes and latitudes of the edges of the box.

setcindexbox Set an index box to constant

Sets the values of an index box to a constant value. The user has to give the indexes of the edges of the hory. The index of the left edges can be greater then

indexes of the edges of the box. The index of the left edge can be greater than

the one of the right edge.

Parameter

c	FLOAT	Constant
lon1	FLOAT	Western longitude
lon 2	FLOAT	Eastern longitude
lat1	FLOAT	Southern or northern latitude
lat2	FLOAT	Northern or southern latitude
idx1	INTEGER	Index of first longitude
idx2	INTEGER	Index of last longitude
idy1	INTEGER	Index of first latitude
idy2	INTEGER	Index of last latitude

Example

To set all values in the region with the longitudes from 120E to 90W and latitudes from 20N to 20S to the constant value -1.23 use:

```
cdo setclonlatbox,-1.23,120,-90,20,-20 ifile ofile
```

If the input dataset has fields on a Gaussian N16 grid, the same box can be set with setcindexbox by:

```
cdo setcindexbox,-1.23,23,48,13,20 ifile ofile
```

2.6.13. ENLARGE - Enlarge fields

Synopsis

```
enlarge, grid if ile of ile
```

Description

Enlarge all fields of ifile to a user given grid. Normally only the last field element is used for the enlargement. If however the input and output grid are regular lon/lat grids, a zonal or meridional enlargement is possible. Zonal enlargement takes place, if the xsize of the input field is 1 and the ysize of both grids are the same. For meridional enlargement the ysize have to be 1 and the xsize of both grids should have the same size.

Parameter

grid STRING Target grid description file or name

Example

Assumed you want to add two datasets. The first dataset is a field on a global grid (n field elements) and the second dataset is a global mean (1 field element). Before you can add these two datasets the second dataset have to be enlarged to the grid size of the first dataset:

```
cdo enlarge,ifile1 ifile2 tmpfile
cdo add ifile1 tmpfile ofile
```

Or shorter using operator piping:

```
cdo add ifile1 -enlarge,ifile1 ifile2 ofile
```

2.6.14. SETMISS - Set missing value

Synopsis

setmissval, newmiss ifile ofile setctomiss, c ifile ofile setmisstoc,c ifile ofile setrtomiss, rmin, rmax ifile ofile setvrange, rmin, rmax ifile ofile setmisstonn ifile ofile setmisstodis/,neighbors/ ifile ofile

Description

This module sets part of a field to missing value or missing values to a constant value. Which part of the field is set depends on the chosen operator.

Operators

setmissval

Set a new missing value $o(t,x) = \left\{ \begin{array}{ll} \text{newmiss} & \text{if} \ i(t,x) = \textit{miss} \\ i(t,x) & \text{if} \ i(t,x) \neq \textit{miss} \end{array} \right.$

setctomiss

Set constant to missing value $o(t,x) = \left\{ \begin{array}{ll} \text{miss} & \text{if } i(t,x) = c \\ i(t,x) & \text{if } i(t,x) \neq c \end{array} \right.$

setmisstoc Set missing value to constant

 $o(t,x) = \begin{cases} c & \text{if } i(t,x) = \text{miss} \\ i(t,x) & \text{if } i(t,x) \neq \text{miss} \end{cases}$

Set range to missing value setrtomiss

 $o(t,x) = \left\{ \begin{array}{ll} \text{miss} & \text{if } i(t,x) \geq r\min \land i(t,x) \leq r\max \\ i(t,x) & \text{if } i(t,x) < r\min \lor i(t,x) > r\max \end{array} \right.$

Set valid range setvrange

 $o(t,x) = \left\{ \begin{array}{ll} \text{miss} & \text{if} \ i(t,x) < \min \lor i(t,x) > \max \\ i(t,x) & \text{if} \ i(t,x) \geq \min \land i(t,x) \leq \max \end{array} \right.$

Set missing value to nearest neighbor setmisstonn

Set all missing values to the nearest non missing value.

 $o(t,x) = \left\{ \begin{array}{ll} i(t,y) & \text{if} \ i(t,x) = \text{miss} \land i(t,y) \neq \text{miss} \\ i(t,x) & \text{if} \ i(t,x) \neq \text{miss} \end{array} \right.$

Set missing value to distance-weighted average setmisstodis

> Set all missing values to the distance-weighted average of the nearest non missing values. The default number of nearest neighbors is 4.

Parameter

neighbors **INTEGER** Number of nearest neighbors New missing value newmiss **FLOAT FLOAT** Constant cLower bound **FLOAT** rmin Upper bound **FLOAT** rmax

Example

setrtomiss

Assume an input dataset has one field with temperatures in the range from 246 to 304 Kelvin. To set all values below 273.15 Kelvin to missing value use:

```
cdo setrtomiss,0,273.15 ifile ofile
```

Result of 'cdo info ifile':

-1 :	Date	Time	Code	Level	Size	$_{ m Miss}$:	Minimum	Mean	Maximum
1 :	1987 - 12 - 31	12:00:00	139	0	2048	0	:	246.27	276.75	303.71

Result of 'cdo info ofile':

	-1	:	Date	Time	Code	Level	Size	Miss	:	Minimum	Mean	Maximum
İ	1	:	$1987\!-\!12\!-\!31$	12:00:00	139	0	2048	871	:	273.16	287.08	303.71

setmisstonn

Set all missing values to the nearest non missing value:

```
cdo setmisstonn ifile ofile
```

Below is a schematic illustration of this example:

On the left side is input data with missing values in grey and on the right side the result with the filled missing values.

Reference manual Arithmetic

2.7. Arithmetic

This section contains modules to arithmetically process datasets.

Here is a short overview of all operators in this section:

expr Evaluate expressions

exprf Evaluate expressions script

aexprEvaluate expressions and append resultsaexprfEvaluate expression script and append results

absAbsolute valueintInteger value

nint Nearest integer value

powPowersqrSquaresqrtSquare rootexpExponentiallnNatural logarithmlog10Base 10 logarithm

sinSinecosCosinetanTangentasinArc sineacosArc cosineatanArc tangentreciReciprocal value

addc
subc
Subtract a constant
mulc
Multiply with a constant
divc
Divide by a constant

add
sub
Subtract two fields
mul
Multiply two fields
div
Divide two fields
min
Minimum of two fields
max
Maximum of two fields
atan2
Arc tangent of two fields

monaddAdd monthly time seriesmonsubSubtract monthly time seriesmonmulMultiply monthly time seriesmondivDivide monthly time series

yhouradd
yhoursubAdd multi-year hourly time seriesyhourmul
yhourdivSubtract multi-year hourly time seriesMultiply multi-year hourly time seriesDivide multi-year hourly time series

ydayadd Add multi-year daily time series
ydaysub Subtract multi-year daily time series
ydaymul Multiply multi-year daily time series
ydaydiv Divide multi-year daily time series

Arithmetic Reference manual

ymonadd Add multi-year monthly time series ymonsub Subtract multi-year monthly time series ymonmul Multiply multi-year monthly time series ymondiv Divide multi-year monthly time series yseasadd Add multi-year seasonal time series Subtract multi-year seasonal time series yseassub yseasmul ${\bf Multiply\ multi-year\ seasonal\ time\ series}$ Divide multi-year seasonal time series yseasdiv \mathbf{muldpm} Multiply with days per month divdpm Divide by days per month muldpy Multiply with days per year \mathbf{divdpy} Divide by days per year

Reference manual Arithmetic

2.7.1. EXPR - Evaluate expressions

Synopsis

```
expr,instr ifile ofile
exprf,filename ifile ofile
aexpr,instr ifile ofile
aexprf,filename ifile ofile
```

Description

This module arithmetically processes every timestep of the input dataset. Each individual assignment statement have to end with a semi-colon. Unlike regular variables, temporary variables are never written to the output stream. To define a temporary variable simply prefix the variable name with an underscore (e.g. _varname) when the variable is declared.

The following operators are supported:

Operator	Meaning	Example	Result
=	assignment	x = y	Assigns y to x
+	addition	x + y	Sum of x and y
-	subtraction	x - y	Difference of x and y
*	multiplication	x * y	Product of x and y
/	division	x / y	Quotient of x and y
^	exponentiation	x ^ y	Exponentiates x with y
==	equal to	x == y	1, if x equal to y; else 0
!=	not equal to	x != y	1, if x not equal to y; else 0
>	greater than	x > y	1, if x greater than y; else 0
<	less than	x < y	1, if x less than y; else 0
>=	greater equal	x >= y	1, if x greater equal y; else 0
<=	less equal	x <= y	1, if x less equal y; else 0
<=>	less equal greater	x <=> y	-1, if x less y; 1, if x greater y; else 0
&&	logical AND	х && у	1, if x and y not equal 0; else 0
	logical OR	x y	1, if x or y not equal 0; else 0
?:	ternary conditional	x ? y : z	y, if x not equal 0, else z

The following functions are supported:

Math intrinsics:

abs(x)	Absolute value of x
floor(x)	Round to largest integral value not greater than $\mathbf x$
ceil(x)	Round to smallest integral value not less than x
int(x)	Integer value of x
nint(x)	Nearest integer value of x
sqr(x)	Square of x
$\operatorname{sqrt}(x)$	Square Root of x
$\exp(x)$	Exponential of x
ln(x)	Natural logarithm of x
log10(x)	Base 10 logarithm of x

Arithmetic Reference manual

 $\sin(x)$ Sine of x, where x is specified in radians Cosine of x, where x is specified in radians $\cos(x)$ Tangent of x, where x is specified in radians tan(x)asin(x)Arc-sine of x, where x is specified in radians Arc-cosine of x, where x is specified in radians acos(x)atan(x)Arc-tangent of x, where x is specified in radians rad(x)Convert x from degrees to radians Convert x from radians to degrees deg(x)Coordinates: clon(x)Longitude coordinate of x (available only if x has geographical coordinates) clat(x)Latitude coordinate of x (available only if x has geographical coordinates) Grid cell area of x (available only if x has geographical coordinates) gridarea(x) clev(x)Level coordinate of x (0, if x is a 2D surface variable) Constants: ngp(x)Number of horizontal grid points nlev(x)Number of vertical levels Total number of elements (ngp(x)*nlev(x))size(x)missval(x) Returns the missing value of variable x Statistical values over a field: fldmin(x), fldmax(x), fldsum(x), fldmean(x), fldavg(x), fldstd(x), fldstd1(x), fldvar(x), fldvar1(x) Vertical statistical values: vertmin(x), vertmax(x), vertsum(x), vertmean(x), vertavg(x), vertstd(x), vertstd1(x), vertvar(x), vertvar1(x) Miscellaneous: sellevel(x,k) Select level k of variable x

sellevidx(x,k)Select level index k of variable x

remove(x) Remove variable x from output stream

Operators

Evaluate expressions expr

The processing instructions are read from the parameter.

exprf Evaluate expressions script

Contrary to expr the processing instructions are read from a file.

Evaluate expressions and append results aexpr

Same as expr, but keep input variables and append results

aexprf Evaluate expression script and append results

Same as exprf, but keep input variables and append results

Parameter

STRING Processing instructions (need to be 'quoted' in most cases) instr

filename **STRING** File with processing instructions Reference manual Arithmetic

Example

Assume an input dataset contains at least the variables 'aprl', 'aprc' and 'ts'. To create a new variable 'var1' with the sum of 'aprl' and 'aprc' and a variable 'var2' which convert the temperature 'ts' from Kelvin to Celsius use:

```
cdo expr,'var1=aprl+aprc;var2=ts-273.15;' ifile ofile
```

The same example, but the instructions are read from a file:

```
cdo exprf,myexpr ifile ofile
```

The file myexpr contains:

```
var1 = aprl + aprc;

var2 = ts - 273.15;
```

Arithmetic Reference manual

2.7.2. MATH - Mathematical functions

Synopsis

```
< operator > ifile ofile
```

Description

This module contains some standard mathematical functions. All trigonometric functions calculate with radians.

Operators

```
abs
            Absolute value
            o(t, x) = abs(i(t, x))
int
           Integer value
           o(t,x) = int(i(t,x))
            Nearest integer value
nint
           o(t, x) = nint(i(t, x))
pow
           o(t,x) = i(t,x)^y
           Square
\operatorname{sqr}
            o(t,x) = i(t,x)^2
           Square root
sqrt
            o(t,x) = \sqrt{i(t,x)}
            Exponential
exp
            o(t,x) = e^{i(t,x)}
           Natural logarithm
ln
           o(t, x) = \ln(i(t, x))
           Base 10 logarithm
log10
            o(t, x) = \log_{10}(i(t, x))
\sin
            Sine
            o(t, x) = \sin(i(t, x))
            Cosine
\cos
           o(t, x) = \cos(i(t, x))
           Tangent
tan
            o(t, x) = \tan(i(t, x))
            Arc sine
asin
           o(t, x) = \arcsin(i(t, x))
acos
            Arc cosine
            o(t, x) = \arccos(i(t, x))
atan
            Arc tangent
           o(t, x) = \arctan(i(t, x))
reci
           Reciprocal value
            o(t,x) = 1/i(t,x)
```

Example

To calculate the square root for all field elements use:

```
cdo sqrt ifile ofile
```

Reference manual Arithmetic

2.7.3. ARITHC - Arithmetic with a constant

Synopsis

< operator >, c ifile ofile

Description

This module performs simple arithmetic with all field elements of a dataset and a constant. The fields in ofile inherit the meta data from ifile.

Operators

addc Add a constant

o(t,x) = i(t,x) + c

subc Subtract a constant

o(t,x) = i(t,x) - c

mulc Multiply with a constant

o(t, x) = i(t, x) * c

 $\mathbf{divc} \qquad \text{Divide by a constant}$

o(t,x) = i(t,x)/c

Parameter

c FLOAT Constant

Example

To sum all input fields with the constant -273.15 use:

cdo addc,-273.15 ifile ofile

Arithmetic Reference manual

2.7.4. ARITH - Arithmetic on two datasets

Synopsis

```
< operator > ifile1 ifile2 ofile
```

Description

This module performs simple arithmetic of two datasets. The number of fields in ifile1 should be the same as in ifile2. The fields in ofile inherit the meta data from ifile1. One of the input files can contain only one timestep or one variable.

Operators

```
add
            Add two fields
            o(t,x) = i_1(t,x) + i_2(t,x)
\mathbf{sub}
            Subtract two fields
            o(t, x) = i_1(t, x) - i_2(t, x)
mul
            Multiply two fields
            o(t,x) = i_1(t,x) * i_2(t,x)
div
            Divide two fields
            o(t,x) = i_1(t,x)/i_2(t,x)
_{\min}
            Minimum of two fields
            o(t, x) = \min(i_1(t, x), i_2(t, x))
            Maximum of two fields
max
            o(t, x) = \max(i_1(t, x), i_2(t, x))
            Arc tangent of two fields
atan2
            The atan2 operator calculates the arc tangent of two fields. The result is in radians, which
            is between -PI and PI (inclusive).
            o(t, x) = \text{atan2}(i_1(t, x), i_2(t, x))
```

Example

To sum all fields of the first input file with the corresponding fields of the second input file use:

cdo add ifile1 ifile2 ofile

Reference manual Arithmetic

2.7.5. MONARITH - Monthly arithmetic

Synopsis

< operator > ifile1 ifile2 ofile

Description

This module performs simple arithmetic of a time series and one timestep with the same month and year. For each field in ifile1 the corresponding field of the timestep in ifile2 with the same month and year is used. The header information in ifile1 have to be the same as in ifile2. Usually ifile2 is generated by an operator of the module MONSTAT.

Operators

monadd Add monthly time series

Adds a time series and a monthly time series.

monsub Subtract monthly time series

Subtracts a time series and a monthly time series.

monmul Multiply monthly time series

Multiplies a time series and a monthly time series.

mondiv Divide monthly time series

Divides a time series and a monthly time series.

Example

To subtract a monthly time average from a time series use:

cdo monsub ifile -monavg ifile ofile

Arithmetic Reference manual

2.7.6. YHOURARITH - Multi-year hourly arithmetic

Synopsis

< operator > ifile1 ifile2 ofile

Description

This module performs simple arithmetic of a time series and one timestep with the same hour and day of year. For each field in ifile1 the corresponding field of the timestep in ifile2 with the same hour and day of year is used. The header information in ifile1 have to be the same as in ifile2. Usually ifile2 is generated by an operator of the module YHOURSTAT.

Operators

yhouradd Add multi-year hourly time series

Adds a time series and a multi-year hourly time series.

yhoursub Subtract multi-year hourly time series

Subtracts a time series and a multi-year hourly time series.

yhourmul Multiply multi-year hourly time series

Multiplies a time series and a multi-year hourly time series.

yhourdiv Divide multi-year hourly time series

Divides a time series and a multi-year hourly time series.

Example

To subtract a multi-year hourly time average from a time series use:

cdo yhoursub ifile -yhouravg ifile ofile

Reference manual Arithmetic

2.7.7. YDAYARITH - Multi-year daily arithmetic

Synopsis

< operator > ifile1 ifile2 ofile

Description

This module performs simple arithmetic of a time series and one timestep with the same day of year. For each field in ifile1 the corresponding field of the timestep in ifile2 with the same day of year is used. The header information in ifile1 have to be the same as in ifile2. Usually ifile2 is generated by an operator of the module YDAYSTAT.

Operators

ydayadd Add multi-year daily time series

Adds a time series and a multi-year daily time series.

ydaysub Subtract multi-year daily time series

Subtracts a time series and a multi-year daily time series.

ydaymul Multiply multi-year daily time series

Multiplies a time series and a multi-year daily time series.

ydaydiv Divide multi-year daily time series

Divides a time series and a multi-year daily time series.

Example

To subtract a multi-year daily time average from a time series use:

cdo ydaysub ifile -ydayavg ifile ofile

Arithmetic Reference manual

2.7.8. YMONARITH - Multi-year monthly arithmetic

Synopsis

< operator > ifile1 ifile2 ofile

Description

This module performs simple arithmetic of a time series and one timestep with the same month of year. For each field in ifile1 the corresponding field of the timestep in ifile2 with the same month of year is used. The header information in ifile1 have to be the same as in ifile2. Usually ifile2 is generated by an operator of the module YMONSTAT.

Operators

ymonadd Add multi-year monthly time series

Adds a time series and a multi-year monthly time series.

ymonsub Subtract multi-year monthly time series

Subtracts a time series and a multi-year monthly time series.

ymonmul Multiply multi-year monthly time series

Multiplies a time series and a multi-year monthly time series.

ymondiv Divide multi-year monthly time series

Divides a time series and a multi-year monthly time series.

Example

To subtract a multi-year monthly time average from a time series use:

cdo ymonsub ifile -ymonavg ifile ofile

Reference manual Arithmetic

2.7.9. YSEASARITH - Multi-year seasonal arithmetic

Synopsis

<operator> ifile1 ifile2 ofile

Description

This module performs simple arithmetic of a time series and one timestep with the same season. For each field in ifile1 the corresponding field of the timestep in ifile2 with the same season is used. The header information in ifile1 have to be the same as in ifile2. Usually ifile2 is generated by an operator of the module YSEASSTAT.

Operators

yseasadd Add multi-year seasonal time series

Adds a time series and a multi-year seasonal time series.

yseassub Subtract multi-year seasonal time series

Subtracts a time series and a multi-year seasonal time series.

yseasmul Multiply multi-year seasonal time series

Multiplies a time series and a multi-year seasonal time series.

yseasdiv Divide multi-year seasonal time series

Divides a time series and a multi-year seasonal time series.

Example

To subtract a multi-year seasonal time average from a time series use:

cdo yseassub ifile -yseasavg ifile ofile

2.7.10. ARITHDAYS - Arithmetic with days

Synopsis

<operator> ifile ofile

Description

This module multiplies or divides each timestep of a dataset with the corresponding days per month or days per year. The result of these functions depends on the used calendar of the input data.

Operators

muldpm Multiply with days per month

 $o(t, x) = i(t, x) * days_per_month$

divdpm Divide by days per month

 $o(t,x) = i(t,x)/days_per_month$

muldpy Multiply with days per year

o(t,x) = i(t,x) * days per year

divdpy Divide by days per year

 $o(t,x) = i(t,x)/days_per_year$

2.8. Statistical values

This section contains modules to compute statistical values of datasets. In this program there is the different notion of "mean" and "average" to distinguish two different kinds of treatment of missing values. While computing the mean, only the not missing values are considered to belong to the sample with the side effect of a probably reduced sample size. Computing the average is just adding the sample members and divide the result by the sample size. For example, the mean of 1, 2, miss and 3 is (1+2+3)/3 = 2, whereas the average is (1+2+miss+3)/4 = miss/4 = miss. If there are no missing values in the sample, the average and the mean are identical.

This program is using the verification time to identify the time range for time-statistics. The time bounds are never used!

In this section the abbreviations as in the following table are used:

Here is a short overview of all operators in this section:

consecsumConsecutive SumconsectsConsecutive Timesteps

ensminEnsemble minimumensmaxEnsemble maximumenssumEnsemble sumensmeanEnsemble meanensavgEnsemble average

ensstd Ensemble standard deviation ensstd1 Ensemble standard deviation (n-1)

ensvarEnsemble varianceensvar1Ensemble variance (n-1)enspct1Ensemble percentiles

ensrkhistspaceRanked Histogram averaged over timeensrkhisttimeRanked Histogram averaged over spaceensrocEnsemble Receiver Operating characteristics

enscrps Ensemble CRPS and decomposition

ensbrs Ensemble Brier score

fldminField minimumfldmaxField maximumfldsumField sumfldmeanField meanfldavgField average

fldstd Field standard deviation fldstd1 Field standard deviation (n-1)

fldvarField variancefldvar1Field variance (n-1)fldpctlField percentiles

zonminZonal minimumzonmaxZonal maximumzonsumZonal sumzonmeanZonal meanzonavgZonal average

zonstdZonal standard deviationzonstd1Zonal standard deviation (n-1)

zonvarZonal variancezonvar1Zonal variance (n-1)zonpctlZonal percentiles

merminMeridional minimummermaxMeridional maximummersumMeridional summermeanMeridional meanmeravgMeridional average

merstd Meridional standard deviation merstd1 Meridional standard deviation (n-1)

mervarMeridional variancemervar1Meridional variance (n-1)merpctlMeridional percentiles

gridboxminGridbox minimumgridboxmaxGridbox maximumgridboxsumGridbox sumgridboxmeanGridbox meangridboxavgGridbox average

gridboxstd Gridbox standard deviation gridboxstd1 Gridbox standard deviation (n-1)

gridboxvar Gridbox variance Gridbox variance (n-1)

vertminVertical minimumvertmaxVertical maximumvertsumVertical sumvertmeanVertical meanvertavgVertical average

vertstd Vertical standard deviation vertstd1 Vertical standard deviation (n-1)

vertvarVertical variancevertvar1Vertical variance (n-1)

timselminTime range minimumtimselmaxTime range maximumtimselsumTime range sumtimselmeanTime range meantimselavgTime range average

timselstd Time range standard deviation timselstd1 Time range standard deviation (n-1)

timselvar Time range variance timselvar1 Time range variance (n-1)

timselpctl Time range percentiles

runminRunning minimumrunmaxRunning maximumrunsumRunning sumrunmeanRunning meanrunavgRunning average

runstdRunning standard deviationrunstd1Running standard deviation (n-1)

runvarrunvar1Running variance (n-1)

runpctl Running percentiles

timminTime minimumtimmaxTime maximumtimsumTime sumtimmeanTime meantimavgTime average

timstd Time standard deviation timstd1 Time standard deviation (n-1)

timvar Time variance timvar1 Time variance (n-1)

timpctl Time percentiles

hourminHourly minimumhourmaxHourly maximumhoursumHourly sumhourmeanHourly meanhouravgHourly average

hourstd Hourly standard deviation hourstd1 Hourly standard deviation (n-1)

hourvarhourly varianceHourly variance (n-1)

hourpctl Hourly percentiles

dayminDaily minimumdaymaxDaily maximumdaysumDaily sumdaymeanDaily meandayavgDaily average

daystdDaily standard deviationdaystd1Daily standard deviation (n-1)

dayvarDaily variancedayvar1Daily variance (n-1)

daypctl Daily percentiles

monminMonthly minimummonmaxMonthly maximummonsumMonthly summonmeanMonthly meanmonavgMonthly average

monstdMonthly standard deviationmonstd1Monthly standard deviation (n-1)

monvar Monthly variance monvar1 Monthly variance (n-1)

monpctl Monthly percentiles

yearmonmean Yearly mean from monthly data

yearmin
yearmax
yearsum
yearsum
yearmean
yearavg

Yearly minimum
Yearly maximum
Yearly sum
Yearly mean
Yearly average

yearstd Yearly standard deviation yearstd1 Yearly standard deviation (n-1)

yearvar Yearly variance yearvar1 Yearly variance (n-1)

yearpctl Yearly percentiles

seasminSeasonal minimumseasmaxSeasonal maximumseassumSeasonal sumseasmeanSeasonal meanseasavgSeasonal average

seasstdSeasonal standard deviationseasstd1Seasonal standard deviation (n-1)

seasvarSeasonal varianceseasvar1Seasonal variance (n-1)

seaspctl Seasonal percentiles

yhourminMulti-year hourly minimumyhourmaxMulti-year hourly maximumyhoursumMulti-year hourly sumyhourmeanMulti-year hourly meanyhouravgMulti-year hourly average

yhourstd Multi-year hourly standard deviation yhourstd1 Multi-year hourly standard deviation (n-1)

yhourvaryhourvar1Multi-year hourly variance (n-1)

ydayminMulti-year daily minimumydaymaxMulti-year daily maximumydaysumMulti-year daily sumydaymeanMulti-year daily meanydayavgMulti-year daily average

ydaystd Multi-year daily standard deviation ydaystd1 Multi-year daily standard deviation (n-1)

ydayvar Multi-year daily variance ydayvar1 Multi-year daily variance (n-1)

ydaypctl Multi-year daily percentiles

ymonminMulti-year monthly minimumymonmaxMulti-year monthly maximumymonsumMulti-year monthly sumymonmeanMulti-year monthly meanymonavgMulti-year monthly average

ymonstd Multi-year monthly standard deviation ymonstd1 Multi-year monthly standard deviation (n-1)

ymonvar Multi-year monthly variance ymonvar1 Multi-year monthly variance (n-1)

ymonpctl Multi-year monthly percentiles

yseasminMulti-year seasonal minimumyseasmaxMulti-year seasonal maximumyseassumMulti-year seasonal sumyseasmeanMulti-year seasonal meanyseasavgMulti-year seasonal average

yseasstdMulti-year seasonal standard deviationyseasstd1Multi-year seasonal standard deviation (n-1)

yseasvar Multi-year seasonal variance yseasvar1 Multi-year seasonal variance (n-1)

	yseaspctl	Multi-vear seasonal	percentiles
--	-----------	---------------------	-------------

ydrunminMulti-year daily running minimumydrunmaxMulti-year daily running maximumydrunsumMulti-year daily running sumydrunmeanMulti-year daily running meanydrunavgMulti-year daily running average

ydrunstdMulti-year daily running standard deviationydrunstd1Multi-year daily running standard deviation (n-1)

ydrunvar Multi-year daily running variance ydrunvar1 Multi-year daily running variance (n-1)

ydrunpctl Multi-year daily running percentiles

2.8.1. CONSECSTAT - Consecute timestep periods

Synopsis

< operator > ifile ofile

Description

This module computes periods over all timesteps in ifile where a certain property is valid. The property can be chosen by creating a mask from the original data, which is the expected input format for operators of this module. Depending on the operator full information about each period or just its length and ending date are computed.

Operators

consecsum Consecutive Sum

This operator computes periods of consecutive timesteps similar to a runsum, but periods are finished, when the mask value is 0. That way multiple periods can be found. Timesteps from the input are preserved. Missing values are handled like 0, i.e. finish periods of consecutive timesteps.

i.e. finish periods of consecutive timesteps.

consects Consecutive Timesteps

In contrast to the operator above consects only computes the length of each period together with its last timestep. To be able to perform statistical analysis like min,

max or mean, everything else is set to missing value.

Example

For a given time series of daily temperatures, the periods of summer days can be calculated with inplace maskting the input field:

cdo consects -gtc,20.0 ifile1 ofile

2.8.2. ENSSTAT - Statistical values over an ensemble

Synopsis

```
<operator> ifiles ofile
enspctl,p ifiles ofile
```

Description

This module computes statistical values over an ensemble of input files. Depending on the chosen operator the minimum, maximum, sum, average, variance, standard deviation or a certain percentile over all input files is written to ofile. All input files need to have the same structure with the same variables. The date information of a timestep in ofile is the date of the first input file.

Operators

```
ensmin
                 Ensemble minimum
                 o(t,x) = \min\{i_1(t,x), i_2(t,x), \dots, i_n(t,x)\}\
ensmax
                 Ensemble maximum
                 o(t,x) = \max\{i_1(t,x), i_2(t,x), \dots, i_n(t,x)\}\
                 Ensemble sum
enssum
                 o(t,x) = \mathbf{sum}\{i_1(t,x), i_2(t,x), \cdots, i_n(t,x)\}
ensmean
                 Ensemble mean
                 o(t,x) = \mathbf{mean}\{i_1(t,x), i_2(t,x), \cdots, i_n(t,x)\}\
                 Ensemble average
ensavg
                 o(t,x) = \mathbf{avg}\{i_1(t,x), i_2(t,x), \cdots, i_n(t,x)\}
ensstd
                 Ensemble standard deviation
                 Normalize by n.
                 o(t,x) = \mathbf{std}\{i_1(t,x), i_2(t,x), \cdots, i_n(t,x)\}
ensstd1
                 Ensemble standard deviation (n-1)
                 Normalize by (n-1).
                 o(t,x) = \mathbf{std1}\{i_1(t,x), i_2(t,x), \cdots, i_n(t,x)\}
                 Ensemble variance
ensvar
                 Normalize by n.
                 o(t, x) = \mathbf{var}\{i_1(t, x), i_2(t, x), \cdots, i_n(t, x)\}\
ensvar1
                 Ensemble variance (n-1)
                 Normalize by (n-1).
                 o(t,x) = \mathbf{var1}\{i_1(t,x), i_2(t,x), \cdots, i_n(t,x)\}
enspctl
                 Ensemble percentiles
                 o(t,x) = \mathbf{pth} \ \mathbf{percentile}\{i_1(t,x), i_2(t,x), \cdots, i_n(t,x)\}
```

Parameter

p FLOAT Percentile number in 0, ..., 100

Note

This operator needs to open all input files simultaneously. The maximum number of open files depends on the operating system!

Example

To compute the ensemble mean over 6 input files use:

cdo ensmean ifile1 ifile2 ifile3 ifile4 ifile5 ifile6 ofile

Or shorter with filename substitution:

cdo ensmean ifile[1-6] ofile

To compute the 50th percentile (median) over 6 input files use:

cdo enspctl,50 ifile1 ifile2 ifile3 ifile4 ifile5 ifile6 ofile

2.8.3. ENSSTAT2 - Statistical values over an ensemble

Synopsis

<operator> obsfile ensfiles ofile

Description

This module computes statistical values over the ensemble of ensfiles using obsfile as a reference. Depending on the operator a ranked Histogram or a roc-curve over all Ensembles ensfiles with reference to obsfile is written to ofile. The date and grid information of a timestep in ofile is the date of the first input file. Thus all input files are required to have the same structure in terms of the gridsize, variable definitions and number of timesteps.

All Operators in this module use obsfile as the reference (for instance an observation) whereas ensfiles are understood as an ensemble consisting of n (where n is the number of ensfiles) members.

The operators ensightstspace and ensightstime compute Ranked Histograms. Therefor the vertical axis is utilized as the Histogram axis, which prohibits the use of files containing more than one level. The histogram axis has nensfiles+1 bins with level 0 containing for each grid point the number of observations being smaller as all ensembles and level nensfiles+1 indicating the number of observations being larger than all ensembles.

ensrkhistspace computes a ranked histogram at each timestep reducing each horizontal grid to a 1x1 grid and keeping the time axis as in obsfile. Contrary ensrkhistspace computes a histogram at each grid point keeping the horizontal grid for each variable and reducing the time-axis. The time information is that from the last timestep in obsfile.

Operators

ensrkhistspace Ranked Histogram averaged over time

ensrkhisttime Ranked Histogram averaged over space

ensroc Ensemble Receiver Operating characteristics

Example

To compute a rank histogram over 5 input files ensfile1-ensfile5 given an observation in obsfile use:

cdo ensrkhisttime obsfile ensfile1 ensfile2 ensfile3 ensfile4 ensfile5 ofile

Or shorter with filename substitution:

cdo ensrkhisttime obsfile ensfile[1-5] ofile

2.8.4. ENSVAL - Ensemble validation tools

Synopsis

```
enscrps rfile ifiles ofilebase
ensbrs,x rfile ifiles ofilebase
```

Description

This module computes ensemble validation scores and their decomposition such as the Brier and cumulative ranked probability score (CRPS). The first file is used as a reference it can be a climatology, observation or reanalysis against which the skill of the ensembles given in ifiles is measured. Depending on the operator a number of output files is generated each containing the skill score and its decomposition corresponding to the operator. The output is averaged over horizontal fields using appropriate weights for each level and timestep in rfile.

All input files need to have the same structure with the same variables. The date information of a timestep in ofile is the date of the first input file. The output files are named as <ofilebase>.<type>.<filesuff where <type> depends on the operator and <filesuffix> is determined from the output file type. There are three output files for operator enscrps and four output files for operator ensbrs.

The CRPS and its decomposition into Reliability and the potential CRPS are calculated by an appropriate averaging over the field members (note, that the CRPS does *not* average linearly). In the three output files $\langle type \rangle$ has the following meaning: crps for the CRPS, reli for the reliability and crpspot for the potential crps. The relation $CRPS = CRPS_{pot} + RELI$

holds.

The Brier score of the Ensemble given by ifiles with respect to the reference given in rfile and the threshold x is calculated. In the four output files $\langle \text{type} \rangle$ has the following meaning: brs for the Brier score wrt threshold x; brsreli for the Brier score reliability wrt threshold x; brsreso for the Brier score resolution wrt threshold x; brsunct for the Brier score uncertainty wrt threshold x. In analogy to the CRPS the following relation holds: BRS(x) = RELI(x) - RESO(x) + UNCT(x).

The implementation of the decomposition of the CRPS and Brier Score follows Hans Hersbach (2000): Decomposition of the Continuous Ranked Probability Score for Ensemble Prediction Systems, in: Weather and Forecasting (15) pp. 559-570.

The CRPS code decomposition has been verified against the CRAN - ensemble validation package from R. Differences occur when grid-cell area is not uniform as the implementation in R does not account for that.

Operators

enscrps Ensemble CRPS and decomposition

ensbrs Ensemble Brier score

Ensemble Brier Score and Decomposition

Example

To compute the field averaged Brier score at x=5 over an ensemble with 5 members ensfile1-5 w.r.t. the reference rfile and write the results to files obase.brs.<suff>, obase.brsreli<suff>, obase.brsreso<suff>, obase.brsunct<suff> where <suff> is determined from the output file type, use

cdo ensbrs,5 rfile ensfile1 ensfile2 ensfile3 ensfile4 ensfile5 obase

or shorter using file name substitution:

cdo ensbrs,5 rfile ensfile[1-5] obase

2.8.5. FLDSTAT - Statistical values over a field

Synopsis

```
<operator> ifile ofile
fldpctl,p ifile ofile
```

Description

This module computes statistical values of the input fields. According to the chosen operator the field minimum, maximum, sum, average, variance, standard deviation or a certain percentile is written to ofile.

Operators

fldmin Field minimum

For every gridpoint $x_1, ..., x_n$ of the same field it is:

 $o(t,1) = \min\{i(t,x'), x_1 < x' \le x_n\}$

fldmax Field maximum

For every gridpoint $x_1, ..., x_n$ of the same field it is:

 $o(t,1) = \max\{i(t,x'), x_1 < x' \le x_n\}$

fldsum Field sum

For every gridpoint $x_1, ..., x_n$ of the same field it is:

 $o(t,1) = \mathbf{sum}\{i(t,x'), x_1 < x' \le x_n\}$

fldmean Field mean

For every gridpoint $x_1, ..., x_n$ of the same field it is:

 $o(t,1) = \mathbf{mean}\{i(t,x'), x_1 < x' \le x_n\}$

weighted by area weights obtained by the input field.

fldavg Field average

For every gridpoint $x_1,...,x_n$ of the same field it is:

 $o(t,1) = \mathbf{avg}\{i(t,x'), x_1 < x' \le x_n\}$

weighted by area weights obtained by the input field.

fldstd Field standard deviation

Normalize by n. For every gridpoint $x_1, ..., x_n$ of the same field it is:

 $o(t,1) = \mathbf{std}\{i(t,x'), x_1 < x' \le x_n\}$

weighted by area weights obtained by the input field.

fldstd1 Field standard deviation (n-1)

Normalize by (n-1). For every gridpoint $x_1, ..., x_n$ of the same field it is:

 $o(t,1) = \mathbf{std1}\{i(t,x'), x_1 < x' \le x_n\}$

weighted by area weights obtained by the input field.

fldvar Field variance

Normalize by n. For every gridpoint $x_1, ..., x_n$ of the same field it is:

 $o(t,1) = \mathbf{var}\{i(t,x'), x_1 < x' \le x_n\}$

weighted by area weights obtained by the input field.

fldvar1 Field variance (n-1)

Normalize by (n-1). For every gridpoint $x_1,...,x_n$ of the same field it is:

 $o(t,1) = \mathbf{var1}\{i(t,x'), x_1 < x' \le x_n\}$

weighted by area weights obtained by the input field.

fldpctl Field percentiles

For every gridpoint x = 1, ..., x = n of the same field it is:

 $o(t,1) = \mathbf{pth} \ \mathbf{percentile}\{i(t,x'), x_1 < x' \le x_n\}$

Parameter

p FLOAT Percentile number in 0, ..., 100

Example

To compute the field mean of all input fields use:

cdo fldmean ifile ofile

To compute the 90th percentile of all input fields use:

cdo fldpctl,90 ifile ofile

2.8.6. ZONSTAT - Zonal statistical values

Synopsis

```
<operator> ifile ofile
zonpctl,p ifile ofile
```

Description

This module computes zonal statistical values of the input fields. According to the chosen operator the zonal minimum, maximum, sum, average, variance, standard deviation or a certain percentile is written to ofile. This operator requires all variables on the same regular lon/lat grid.

Operators

zonmin Zonal minimum

For every latitude the minimum over all longitudes is computed.

zonmax Zonal maximum

For every latitude the maximum over all longitudes is computed.

zonsum Zonal sum

For every latitude the sum over all longitudes is computed.

zonmean Zonal mean

For every latitude the mean over all longitudes is computed.

zonavg Zonal average

For every latitude the average over all longitudes is computed.

zonstd Zonal standard deviation

For every latitude the standard deviation over all longitudes is computed. Normalize

by n.

zonstd1 Zonal standard deviation (n-1)

For every latitude the standard deviation over all longitudes is computed. Normalize

by (n-1).

zonvar Zonal variance

For every latitude the variance over all longitudes is computed. Normalize by n.

zonvar1 Zonal variance (n-1)

For every latitude the variance over all longitudes is computed. Normalize by (n-1).

zonpctl Zonal percentiles

For every latitude the pth percentile over all longitudes is computed.

Parameter

p FLOAT Percentile number in 0, ..., 100

Example

To compute the zonal mean of all input fields use:

```
cdo zonmean ifile ofile
```

To compute the 50th meridional percentile (median) of all input fields use:

```
cdo zonpctl,50 ifile ofile
```

2.8.7. MERSTAT - Meridional statistical values

Synopsis

```
<operator> ifile ofile
merpctl,p ifile ofile
```

Description

This module computes meridional statistical values of the input fields. According to the chosen operator the meridional minimum, maximum, sum, average, variance, standard deviation or a certain percentile is written to ofile. This operator requires all variables on the same regular lon/lat grid.

Operators

mermin Meridional minimum

For every longitude the minimum over all latitudes is computed.

mermax Meridional maximum

For every longitude the maximum over all latitudes is computed.

mersum Meridional sum

For every longitude the sum over all latitudes is computed.

mermean Meridional mean

For every longitude the area weighted mean over all latitudes is computed.

meravg Meridional average

For every longitude the area weighted average over all latitudes is computed.

merstd Meridional standard deviation

For every longitude the standard deviation over all latitudes is computed. Normalize

by n.

merstd1 Meridional standard deviation (n-1)

For every longitude the standard deviation over all latitudes is computed. Normalize

by (n-1).

mervar Meridional variance

For every longitude the variance over all latitudes is computed. Normalize by n.

mervar1 Meridional variance (n-1)

For every longitude the variance over all latitudes is computed. Normalize by (n-1).

merpctl Meridional percentiles

For every longitude the pth percentile over all latitudes is computed.

Parameter

p FLOAT Percentile number in 0, ..., 100

Example

To compute the meridional mean of all input fields use:

```
cdo mermean ifile ofile
```

To compute the 50th meridional percentile (median) of all input fields use:

```
cdo merpctl,50 ifile ofile
```

2.8.8. GRIDBOXSTAT - Statistical values over grid boxes

Synopsis

< operator >, nx, ny ifile ofile

Description

This module computes statistical values over surrounding grid boxes. According to the chosen operator the minimum, maximum, sum, average, variance, or standard deviation of the neighboring grid boxes is written to ofile. All gridbox operators only works on quadrilateral curvilinear grids.

Operators

gridboxmin Gridbox minimum

Minimum value of the selected grid boxes.

gridboxmax Gridbox maximum

Maximum value of the selected grid boxes.

gridboxsum Gridbox sum

Sum of the selected grid boxes.

gridboxmean Gridbox mean

Mean of the selected grid boxes.

gridboxavg Gridbox average

Average of the selected grid boxes.

gridboxstd Gridbox standard deviation

Standard deviation of the selected grid boxes. Normalize by n.

gridboxstd1 Gridbox standard deviation (n-1)

Standard deviation of the selected grid boxes. Normalize by (n-1).

gridboxvar Gridbox variance

Variance of the selected grid boxes. Normalize by n.

gridboxvar1 Gridbox variance (n-1)

Variance of the selected grid boxes. Normalize by (n-1).

Parameter

nx INTEGER Number of grid boxes in x directionny INTEGER Number of grid boxes in y direction

Example

To compute the mean over 10x10 grid boxes of the input field use:

cdo gridboxmean, 10, 10 ifile ofile

2.8.9. VERTSTAT - Vertical statistical values

Synopsis

 $<\!operator\!>$ ifile ofile

Description

This module computes statistical values over all levels of the input variables. According to chosen operator the vertical minimum, maximum, sum, average, variance or standard deviation is written to ofile.

Operators

vertmin Vertical minimum

For every gridpoint the minimum over all levels is computed.

vertmax Vertical maximum

For every gridpoint the maximum over all levels is computed.

vertsum Vertical sum

For every gridpoint the sum over all levels is computed.

vertmean Vertical mean

For every gridpoint the layer weighted mean over all levels is computed.

vertavg Vertical average

For every gridpoint the layer weighted average over all levels is computed.

vertstd Vertical standard deviation

For every gridpoint the standard deviation over all levels is computed. Normalize by

n.

vertstd1 Vertical standard deviation (n-1)

For every gridpoint the standard deviation over all levels is computed. Normalize by

(n-1).

vertvar Vertical variance

For every gridpoint the variance over all levels is computed. Normalize by n.

vertvar1 Vertical variance (n-1)

For every gridpoint the variance over all levels is computed. Normalize by (n-1).

Example

To compute the vertical sum of all input variables use:

cdo vertsum ifile ofile

2.8.10. TIMSELSTAT - Time range statistical values

Synopsis

<operator>,nsets[,noffset[,nskip]] ifile ofile

Description

This module computes statistical values for a selected number of timesteps. According to the chosen operator the minimum, maximum, sum, average, variance or standard deviation of the selected timesteps is written to ofile. The time stamp in ofile is from the middle contributing timestep of ifile.

Operators

timselmin Time range minimum

For every adjacent sequence $t_1, ..., t_n$ of timesteps of the same selected time

range it is:

 $o(t, x) = \min\{i(t', x), t_1 < t' \le t_n\}$

timselmax Time range maximum

For every adjacent sequence $t_1,...,t_n$ of timesteps of the same selected time

range it is:

 $o(t, x) = \max\{i(t', x), t_1 < t' \le t_n\}$

timselsum Time range sum

For every adjacent sequence $t_1,...,t_n$ of timesteps of the same selected time

range it is:

 $o(t, x) = \mathbf{sum}\{i(t', x), t_1 < t' \le t_n\}$

timselmean Time range mean

For every adjacent sequence $t_1, ..., t_n$ of timesteps of the same selected time

range it is:

 $o(t, x) = \mathbf{mean}\{i(t', x), t_1 < t' \le t_n\}$

timselavg Time range average

For every adjacent sequence $t_1, ..., t_n$ of timesteps of the same selected time

range it is:

 $o(t, x) = \mathbf{avg}\{i(t', x), t_1 < t' \le t_n\}$

timselstd Time range standard deviation

Normalize by n. For every adjacent sequence $t_1, ..., t_n$ of timesteps of the same

selected time range it is:

 $o(t, x) = \mathbf{std}\{i(t', x), t_1 < t' \le t_n\}$

timselstd1 Time range standard deviation (n-1)

Normalize by (n-1). For every adjacent sequence $t_1, ..., t_n$ of timesteps of the

same selected time range it is:

 $o(t, x) = \mathbf{std1}\{i(t', x), t_1 < t' \le t_n\}$

timselvar Time range variance

Normalize by n. For every adjacent sequence t=1,...,t=n of timesteps of the same

selected time range it is:

 $o(t, x) = \mathbf{var}\{i(t', x), t_1 < t' \le t_n\}$

timselvar1 Time range variance (n-1)

Normalize by (n-1). For every adjacent sequence t=1,...,t=n of timesteps of the

same selected time range it is:

 $o(t, x) = \mathbf{var1}\{i(t', x), t_1 < t' \le t_n\}$

Parameter

nsets	INTEGER	Number of input timesteps for each output timestep
noffset	INTEGER	Number of input timesteps skipped before the first timestep range (optional) $$
nskip	INTEGER	Number of input timesteps skipped between timestep ranges (optional)

Example

Assume an input dataset has monthly means over several years. To compute seasonal means from monthly means the first two month have to be skipped:

```
cdo timselmean, 3, 2 ifile ofile
```

2.8.11. TIMSELPCTL - Time range percentile values

Synopsis

```
\mathbf{timselpctl}, p, nsets[, noffset[, nskip]] ifile1 ifile2 ifile3 ofile
```

Description

This operator computes percentile values over a selected number of timesteps in ifile1. The algorithm uses histograms with minimum and maximum bounds given in ifile2 and ifile3, respectively. The default number of histogram bins is 101. The default can be overridden by setting the environment variable CDO_PCTL_NBINS to a different value. The files ifile2 and ifile3 should be the result of corresponding timselmin and timselmax operations, respectively. The time stamp in ofile is from the middle contributing timestep of ifile1.

For every adjacent sequence $t_1, ..., t_n$ of timesteps of the same selected time range it is:

```
o(t, x) = \mathbf{pth} \ \mathbf{percentile}\{i(t', x), t_1 < t' \le t_n\}
```

Parameter

p	FLOAT	Percentile number in 0,, 100
nsets	INTEGER	Number of input timesteps for each output timestep
noffset	INTEGER	Number of input timesteps skipped before the first timestep range (optional) $$
nskip	INTEGER	Number of input timesteps skipped between timestep ranges (optional)

Environment

CDO_PCTL_NBINS Sets the number of histogram bins. The default number is 101.

2.8.12. RUNSTAT - Running statistical values

Synopsis

< operator >, nts ifile ofile

Description

This module computes running statistical values over a selected number of timesteps. Depending on the chosen operator the minimum, maximum, sum, average, variance or standard deviation of a selected number of consecutive timesteps read from ifile is written to ofile. The time stamp in ofile is from the middle contributing timestep of ifile.

Operators

runmin	Running minimum $o(t + (nts - 1)/2, x) = \min\{i(t, x), i(t + 1, x),, i(t + nts - 1, x)\}$
runmax	Running maximum $o(t + (nts - 1)/2, x) = \max\{i(t, x), i(t + 1, x),, i(t + nts - 1, x)\}$
runsum	Running sum $o(t + (nts - 1)/2, x) = \mathbf{sum}\{i(t, x), i(t + 1, x),, i(t + nts - 1, x)\}$
runmean	Running mean $o(t + (nts - 1)/2, x) = \mathbf{mean}\{i(t, x), i(t + 1, x),, i(t + nts - 1, x)\}$
runavg	Running average $o(t + (nts - 1)/2, x) = \mathbf{avg}\{i(t, x), i(t + 1, x),, i(t + nts - 1, x)\}$
runstd	Running standard deviation Normalize by n.
	$o(t + (nts - 1)/2, x) = \mathbf{std}\{i(t, x), i(t + 1, x),, i(t + nts - 1, x)\}$
runstd1	Running standard deviation (n-1) Normalize by (n-1).
	$o(t + (nts - 1)/2, x) = \mathbf{std1}\{i(t, x), i(t + 1, x),, i(t + nts - 1, x)\}$
runvar	Running variance Normalize by n.
	$o(t + (nts - 1)/2, x) = \mathbf{var}\{i(t, x), i(t + 1, x),, i(t + nts - 1, x)\}$
runvar1	Running variance (n-1) Normalize by (n-1).
	$o(t + (nts - 1)/2, x) = \mathbf{var1}\{i(t, x), i(t + 1, x),, i(t + nts - 1, x)\}$

Parameter

nts INTEGER Number of timesteps

Environment

CDO_TIMESTAT_DATE Sets the time stamp in ofile to the "first", "middle" or "last" contributing timestep of ifile.

Example

To compute the running mean over 9 timesteps use:

```
cdo runmean,9 ifile ofile
```

2.8.13. RUNPCTL - Running percentile values

Synopsis

```
runpctl,p,nts ifile ofile
```

Description

This module computes running percentiles over a selected number of timesteps in ifile. The time stamp in ofile is from the middle contributing timestep of ifile.

```
o(t + (nts - 1)/2, x) = pth percentile\{i(t, x), i(t + 1, x), ..., i(t + nts - 1, x)\}
```

Parameter

p FLOAT Percentile number in 0, ..., 100

nts INTEGER Number of timesteps

Example

To compute the running 50th percentile (median) over 9 timesteps use:

cdo runpctl,50,9 ifile ofile

2.8.14. TIMSTAT - Statistical values over all timesteps

Synopsis

< operator > ifile ofile

Description

This module computes statistical values over all timesteps in ifile. Depending on the chosen operator the minimum, maximum, sum, average, variance or standard deviation of all timesteps read from ifile is written to ofile. The time stamp in ofile is from the middle contributing timestep of ifile.

Operators

timmin Time minimum

 $o(1,x) = \min\{i(t',x), t_1 < t' \le t_n\}$

timmax Time maximum

 $o(1,x) = \max\{i(t',x), t_1 < t' \le t_n\}$

timsum Time sum

 $o(1, x) = \mathbf{sum}\{i(t', x), t_1 < t' \le t_n\}$

timmean Time mean

 $o(1,x) = \mathbf{mean}\{i(t',x), t_1 < t' \le t_n\}$

timavg Time average

 $o(1, x) = \mathbf{avg}\{i(t', x), t_1 < t' \le t_n\}$

timstd Time standard deviation

Normalize by n.

 $o(1, x) = \mathbf{std}\{i(t', x), t_1 < t' \le t_n\}$

timstd1 Time standard deviation (n-1)

Normalize by (n-1).

 $o(1, x) = \mathbf{std1}\{i(t', x), t_1 < t' \le t_n\}$

timvar Time variance

Normalize by n.

 $o(1,x) = \mathbf{var}\{i(t',x), t_1 < t' \le t_n\}$

 $\mathbf{timvar1} \qquad \quad \text{Time variance (n-1)}$

Normalize by (n-1).

 $o(1,x) = \mathbf{var1}\{i(t',x), t_1 < t' \le t_n\}$

Example

To compute the mean over all input timesteps use:

cdo timmean ifile ofile

2.8.15. TIMPCTL - Percentile values over all timesteps

Synopsis

```
timpctl,p ifile1 ifile2 ifile3 ofile
```

Description

This operator computes percentiles over all timesteps in ifile1. The algorithm uses histograms with minimum and maximum bounds given in ifile2 and ifile3, respectively. The default number of histogram bins is 101. The default can be overridden by setting the environment variable CDO_PCTL_NBINS to a different value. The files ifile2 and ifile3 should be the result of corresponding timmin and timmax operations, respectively. The time stamp in ofile is from the middle contributing timestep of ifile1.

```
o(1,x) = \mathbf{pth} \ \mathbf{percentile}\{i(t',x), t_1 < t' \le t_n\}
```

Parameter

```
p FLOAT Percentile number in 0, ..., 100
```

Environment

CDO_PCTL_NBINS Sets the number of histogram bins. The default number is 101.

Example

To compute the 90th percentile over all input timesteps use:

```
cdo timmin ifile minfile
cdo timmax ifile maxfile
cdo timpctl,90 ifile minfile maxfile ofile
```

Or shorter using operator piping:

```
cdo timpctl,90 ifile -timmin ifile -timmax ifile ofile
```

2.8.16. HOURSTAT - Hourly statistical values

Synopsis

< operator > ifile ofile

Description

This module computes statistical values over timesteps of the same hour. Depending on the chosen operator the minimum, maximum, sum, average, variance or standard deviation of timesteps of the same hour is written to ofile. The time stamp in ofile is from the middle contributing timestep of ifile.

Operators

hourmin Hourly minimum

For every adjacent sequence $t_1, ..., t_n$ of timesteps of the same hour it is:

 $o(t, x) = \min\{i(t', x), t_1 < t' \le t_n\}$

hourmax Hourly maximum

For every adjacent sequence $t_1, ..., t_n$ of timesteps of the same hour it is:

 $o(t, x) = \max\{i(t', x), t_1 < t' \le t_n\}$

hoursum Hourly sum

For every adjacent sequence $t_1,...,t_n$ of timesteps of the same hour it is:

 $o(t, x) = \mathbf{sum}\{i(t', x), t_1 < t' \le t_n\}$

hourmean Hourly mean

For every adjacent sequence $t_1, ..., t_n$ of timesteps of the same hour it is:

 $o(t, x) = \mathbf{mean}\{i(t', x), t_1 < t' \le t_n\}$

houravg Hourly average

For every adjacent sequence $t_1,...,t_n$ of timesteps of the same hour it is:

 $o(t, x) = \mathbf{avg}\{i(t', x), t_1 < t' \le t_n\}$

hourstd Hourly standard deviation

Normalize by n. For every adjacent sequence $t_1, ..., t_n$ of timesteps of the same

hour it is:

 $o(t,x) = \mathbf{std}\{i(t',x), t_1 < t' \le t_n\}$

hourstd1 Hourly standard deviation (n-1)

Normalize by (n-1). For every adjacent sequence $t_1, ..., t_n$ of timesteps of the same

hour it is:

 $o(t, x) = \mathbf{std1}\{i(t', x), t_1 < t' \le t_n\}$

hourvar Hourly variance

Normalize by n. For every adjacent sequence $t_1, ..., t_n$ of timesteps of the same

hour it is:

 $o(t, x) = \mathbf{var}\{i(t', x), t_1 < t' \le t_n\}$

hourvar1 Hourly variance (n-1)

Normalize by (n-1). For every adjacent sequence $t_1, ..., t_n$ of timesteps of the same

hour it is:

 $o(t, x) = \mathbf{var1}\{i(t', x), t_1 < t' \le t_n\}$

Example

To compute the hourly mean of a time series use:

cdo hourmean ifile ofile

2.8.17. HOURPCTL - Hourly percentile values

Synopsis

```
hourpctl,p ifile1 ifile2 ifile3 ofile
```

Description

This operator computes percentiles over all timesteps of the same hour in ifile1. The algorithm uses histograms with minimum and maximum bounds given in ifile2 and ifile3, respectively. The default number of histogram bins is 101. The default can be overridden by setting the environment variable CDO_PCTL_NBINS to a different value. The files ifile2 and ifile3 should be the result of corresponding hourmin and hourmax operations, respectively. The time stamp in ofile is from the middle contributing timestep of ifile1.

For every adjacent sequence $t_1, ..., t_n$ of timesteps of the same hour it is:

```
o(t,x) = \mathbf{pth} \ \mathbf{percentile}\{i(t',x), t_1 < t' \le t_n\}
```

Parameter

```
p FLOAT Percentile number in 0, ..., 100
```

Environment

CDO_PCTL_NBINS Sets the number of histogram bins. The default number is 101.

Example

To compute the hourly 90th percentile of a time series use:

```
cdo hourmin ifile minfile
cdo hourmax ifile maxfile
cdo hourpctl,90 ifile minfile maxfile ofile
```

Or shorter using operator piping:

```
cdo hourpctl,90 ifile -hourmin ifile -hourmax ifile ofile
```

2.8.18. DAYSTAT - Daily statistical values

Synopsis

< operator > ifile ofile

Description

This module computes statistical values over timesteps of the same day. Depending on the chosen operator the minimum, maximum, sum, average, variance or standard deviation of timesteps of the same day is written to ofile. The time stamp in ofile is from the middle contributing timestep of ifile.

Operators

daymin Daily minimum

For every adjacent sequence $t_1,...,t_n$ of timesteps of the same day it is:

 $o(t, x) = \min\{i(t', x), t_1 < t' \le t_n\}$

daymax Daily maximum

For every adjacent sequence $t_1, ..., t_n$ of timesteps of the same day it is:

 $o(t, x) = \max\{i(t', x), t_1 < t' \le t_n\}$

daysum Daily sum

For every adjacent sequence $t_1,...,t_n$ of timesteps of the same day it is:

 $o(t, x) = \mathbf{sum}\{i(t', x), t_1 < t' \le t_n\}$

daymean Daily mean

For every adjacent sequence $t_1, ..., t_n$ of timesteps of the same day it is:

 $o(t, x) = \mathbf{mean}\{i(t', x), t_1 < t' \le t_n\}$

dayavg Daily average

For every adjacent sequence $t_1, ..., t_n$ of timesteps of the same day it is:

 $o(t, x) = \mathbf{avg}\{i(t', x), t_1 < t' \le t_n\}$

daystd Daily standard deviation

Normalize by n. For every adjacent sequence $t_1, ..., t_n$ of timesteps of the same day

it is:

 $o(t, x) = \mathbf{std}\{i(t', x), t_1 < t' \le t_n\}$

daystd1 Daily standard deviation (n-1)

Normalize by (n-1). For every adjacent sequence $t_1, ..., t_n$ of timesteps of the same

day it is:

 $o(t, x) = \mathbf{std1}\{i(t', x), t_1 < t' \le t_n\}$

dayvar Daily variance

Normalize by n. For every adjacent sequence $t_1, ..., t_n$ of timesteps of the same day

it is:

 $o(t, x) = \mathbf{var}\{i(t', x), t_1 < t' \le t_n\}$

dayvar1 Daily variance (n-1)

Normalize by (n-1). For every adjacent sequence $t_1, ..., t_n$ of timesteps of the same

day it is:

 $o(t, x) = \mathbf{var1}\{i(t', x), t_1 < t' \le t_n\}$

Example

To compute the daily mean of a time series use:

cdo daymean ifile ofile

2.8.19. DAYPCTL - Daily percentile values

Synopsis

```
daypctl,p ifile1 ifile2 ifile3 ofile
```

Description

This operator computes percentiles over all timesteps of the same day in ifile1. The algorithm uses histograms with minimum and maximum bounds given in ifile2 and ifile3, respectively. The default number of histogram bins is 101. The default can be overridden by defining the environment variable CDO_PCTL_NBINS. The files ifile2 and ifile3 should be the result of corresponding daymin and daymax operations, respectively. The time stamp in ofile is from the middle contributing timestep of ifile1.

For every adjacent sequence $t_1, ..., t_n$ of timesteps of the same day it is:

```
o(t,x) = \mathbf{pth} \ \mathbf{percentile}\{i(t',x), t_1 < t' \le t_n\}
```

Parameter

```
p FLOAT Percentile number in 0, ..., 100
```

Environment

CDO_PCTL_NBINS Sets the number of histogram bins. The default number is 101.

Example

To compute the daily 90th percentile of a time series use:

```
cdo daymin ifile minfile
cdo daymax ifile maxfile
cdo daypctl,90 ifile minfile maxfile ofile
```

```
cdo daypctl,90 ifile -daymin ifile -daymax ifile ofile
```

2.8.20. MONSTAT - Monthly statistical values

Synopsis

< operator > ifile ofile

Description

This module computes statistical values over timesteps of the same month. Depending on the chosen operator the minimum, maximum, sum, average, variance or standard deviation of timesteps of the same month is written to ofile. The time stamp in ofile is from the middle contributing timestep of ifile.

Operators

monmin Monthly minimum

For every adjacent sequence $t_1,...,t_n$ of timesteps of the same month it is:

 $o(t, x) = \min\{i(t', x), t_1 < t' \le t_n\}$

monmax Monthly maximum

For every adjacent sequence $t_1, ..., t_n$ of timesteps of the same month it is:

 $o(t, x) = \max\{i(t', x), t_1 < t' \le t_n\}$

monsum Monthly sum

For every adjacent sequence $t_1, ..., t_n$ of timesteps of the same month it is:

 $o(t, x) = \mathbf{sum}\{i(t', x), t_1 < t' \le t_n\}$

monmean Monthly mean

For every adjacent sequence $t_1, ..., t_n$ of timesteps of the same month it is:

 $o(t, x) = \mathbf{mean}\{i(t', x), t_1 < t' \le t_n\}$

monavg Monthly average

For every adjacent sequence $t_1, ..., t_n$ of timesteps of the same month it is:

 $o(t, x) = \mathbf{avg}\{i(t', x), t_1 < t' \le t_n\}$

monstd Monthly standard deviation

Normalize by n. For every adjacent sequence $t_1, ..., t_n$ of timesteps of the same

month it is:

 $o(t,x) = \mathbf{std}\{i(t',x), t_1 < t' \le t_n\}$

monstd1 Monthly standard deviation (n-1)

Normalize by (n-1). For every adjacent sequence $t_1, ..., t_n$ of timesteps of the same

month it is:

 $o(t, x) = \mathbf{std1}\{i(t', x), t_1 < t' \le t_n\}$

monvar Monthly variance

Normalize by n. For every adjacent sequence $t_1, ..., t_n$ of timesteps of the same

month it is:

 $o(t, x) = \mathbf{var}\{i(t', x), t_1 < t' \le t_n\}$

monvar1 Monthly variance (n-1)

Normalize by (n-1). For every adjacent sequence $t_1, ..., t_n$ of timesteps of the same

month it is:

 $o(t, x) = \mathbf{var1}\{i(t', x), t_1 < t' \le t_n\}$

Example

To compute the monthly mean of a time series use:

cdo monmean ifile ofile

2.8.21. MONPCTL - Monthly percentile values

Synopsis

```
monpctl,p ifile1 ifile2 ifile3 ofile
```

Description

This operator computes percentiles over all timesteps of the same month in ifile1. The algorithm uses histograms with minimum and maximum bounds given in ifile2 and ifile3, respectively. The default number of histogram bins is 101. The default can be overridden by setting the environment variable CDO_PCTL_NBINS to a different value. The files ifile2 and ifile3 should be the result of corresponding monmin and monmax operations, respectively. The time stamp in ofile is from the middle contributing timestep of ifile1.

For every adjacent sequence $t_1, ..., t_n$ of timesteps of the same month it is:

```
o(t,x) = \mathbf{pth} \ \mathbf{percentile}\{i(t',x), t_1 < t' \le t_n\}
```

Parameter

```
p FLOAT Percentile number in 0, ..., 100
```

Environment

CDO_PCTL_NBINS Sets the number of histogram bins. The default number is 101.

Example

To compute the monthly 90th percentile of a time series use:

```
cdo monmin ifile minfile
cdo monmax ifile maxfile
cdo monpctl,90 ifile minfile maxfile ofile
```

```
cdo monpctl,90 ifile -monmin ifile -monmax ifile ofile
```

2.8.22. YEARMONSTAT - Yearly mean from monthly data

Synopsis

yearmonmean ifile ofile

Description

This operator computes the yearly mean of a monthly time series. Each month is weighted with the number of days per month. The time stamp in ofile is from the middle contributing timestep of ifile.

For every adjacent sequence $t_1,...,t_n$ of timesteps of the same year it is: $o(t,x) = \mathbf{mean}\{i(t',x),t_1 < t' \le t_n\}$

Environment

CDO_TIMESTAT_DATE

Sets the date information in ofile to the "first", "middle" or "last" contributing timestep of ifile.

Example

To compute the yearly mean of a monthly time series use:

cdo yearmonmean ifile ofile

2.8.23. YEARSTAT - Yearly statistical values

Synopsis

< operator > ifile ofile

Description

This module computes statistical values over timesteps of the same year. Depending on the chosen operator the minimum, maximum, sum, average, variance or standard deviation of timesteps of the same year is written to ofile. The time stamp in ofile is from the middle contributing timestep of ifile.

Operators

yearmin Yearly minimum

For every adjacent sequence $t_1, ..., t_n$ of timesteps of the same year it is: $o(t, x) = \min\{i(t', x), t_1 < t' \le t_n\}$

yearmax Yearly maximum

For every adjacent sequence $t_1, ..., t_n$ of timesteps of the same year it is: $o(t, x) = \max\{i(t', x), t_1 < t' \le t_n\}$

yearsum Yearly sum

For every adjacent sequence $t_1,...,t_n$ of timesteps of the same year it is: $o(t,x) = \mathbf{sum}\{i(t',x),t_1 < t' \le t_n\}$

yearmean Yearly mean

For every adjacent sequence $t_1, ..., t_n$ of timesteps of the same year it is:

 $o(t, x) = \mathbf{mean}\{i(t', x), t_1 < t' \le t_n\}$

yearavg Yearly average

For every adjacent sequence $t_1, ..., t_n$ of timesteps of the same year it is: $o(t, x) = \mathbf{avg}\{i(t', x), t_1 < t' \le t_n\}$

yearstd Yearly standard deviation

Normalize by n. For every adjacent sequence $t_1, ..., t_n$ of timesteps of the same year it is:

 $o(t, x) = \mathbf{std}\{i(t', x), t_1 < t' \le t_n\}$

yearstd1 Yearly standard deviation (n-1)

Normalize by (n-1). For every adjacent sequence $t_1,...,t_n$ of timesteps of the same

year it is:

 $o(t, x) = \mathbf{std1}\{i(t', x), t_1 < t' \le t_n\}$

yearvar Yearly variance

Normalize by n. For every adjacent sequence $t_1, ..., t_n$ of timesteps of the same

year it is:

 $o(t, x) = \mathbf{var}\{i(t', x), t_1 < t' \le t_n\}$

yearvar1 Yearly variance (n-1)

Normalize by (n-1). For every adjacent sequence $t_1, ..., t_n$ of timesteps of the same

year it is:

 $o(t, x) = \mathbf{var1}\{i(t', x), t_1 < t' \le t_n\}$

Note

The operators yearmean and yearavg compute only arithmetical means!

Example

To compute the yearly mean of a time series use:

```
cdo yearmean ifile ofile
```

To compute the yearly mean from the correct weighted monthly mean use:

```
cdo yearmonmean ifile ofile
```

2.8.24. YEARPCTL - Yearly percentile values

Synopsis

```
yearpctl,p ifile1 ifile2 ifile3 ofile
```

Description

This operator computes percentiles over all timesteps of the same year in ifile1. The algorithm uses histograms with minimum and maximum bounds given in ifile2 and ifile3, respectively. The default number of histogram bins is 101. The default can be overridden by setting the environment variable CDO_PCTL_NBINS to a different value. The files ifile2 and ifile3 should be the result of corresponding yearmin and yearmax operations, respectively. The time stamp in ofile is from the middle contributing timestep of ifile1.

For every adjacent sequence $t_1, ..., t_n$ of timesteps of the same year it is:

```
o(t, x) = \mathbf{pth} \ \mathbf{percentile}\{i(t', x), t_1 < t' \le t_n\}
```

Parameter

```
p FLOAT Percentile number in 0, ..., 100
```

Environment

CDO PCTL NBINS Sets the number of histogram bins. The default number is 101.

Example

To compute the yearly 90th percentile of a time series use:

```
cdo yearmin ifile minfile
cdo yearmax ifile maxfile
cdo yearpctl,90 ifile minfile maxfile ofile
```

```
cdo yearpctl,90 ifile -yearmin ifile -yearmax ifile ofile
```

2.8.25. SEASSTAT - Seasonal statistical values

Synopsis

<operator> ifile ofile

Description

This module computes statistical values over timesteps of the same season. Depending on the chosen operator the minimum, maximum, sum, average, variance or standard deviation of timesteps of the same season is written to ofile. The time stamp in ofile is from the middle contributing timestep of ifile. Be careful about the first and the last output timestep, they may be incorrect values if the seasons have incomplete timesteps.

Operators

seasmin Seasonal minimum

For every adjacent sequence $t_1, ..., t_n$ of timesteps of the same season it is:

 $o(t, x) = \min\{i(t', x), t_1 < t' \le t_n\}$

seasmax Seasonal maximum

For every adjacent sequence $t_1, ..., t_n$ of timesteps of the same season it is:

 $o(t, x) = \max\{i(t', x), t_1 < t' \le t_n\}$

seassum Seasonal sum

For every adjacent sequence $t_1,...,t_n$ of timesteps of the same season it is:

 $o(t, x) = \mathbf{sum}\{i(t', x), t_1 < t' \le t_n\}$

seasmean Seasonal mean

For every adjacent sequence $t_1,...,t_n$ of timesteps of the same season it is:

 $o(t, x) = \mathbf{mean}\{i(t', x), t_1 < t' \le t_n\}$

seasavg Seasonal average

For every adjacent sequence $t_1, ..., t_n$ of timesteps of the same season it is:

 $o(t, x) = \mathbf{avg}\{i(t', x), t_1 < t' \le t_n\}$

seasstd Seasonal standard deviation

Normalize by n. For every adjacent sequence $t_1, ..., t_n$ of timesteps of the same

season it is:

 $o(t, x) = \mathbf{std}\{i(t', x), t_1 < t' \le t_n\}$

seasstd1 Seasonal standard deviation (n-1)

Normalize by (n-1). For every adjacent sequence $t_1, ..., t_n$ of timesteps of the same

season it is:

 $o(t, x) = \mathbf{std1}\{i(t', x), t_1 < t' \le t_n\}$

seasvar Seasonal variance

Normalize by n. For every adjacent sequence $t_1, ..., t_n$ of timesteps of the same

season it is:

 $o(t, x) = \mathbf{var}\{i(t', x), t_1 < t' \le t_n\}$

seasvar1 Seasonal variance (n-1)

Normalize by (n-1). For every adjacent sequence $t_1, ..., t_n$ of timesteps of the same

season it is:

 $o(t, x) = \mathbf{var1}\{i(t', x), t_1 < t' \le t_n\}$

Example

To compute the seasonal mean of a time series use:

cdo seasmean ifile ofile

2.8.26. SEASPCTL - Seasonal percentile values

Synopsis

```
\mathbf{seaspctl}, p ifile1 ifile2 ifile3 ofile
```

Description

This operator computes percentiles over all timesteps in ifile1 of the same season. The algorithm uses histograms with minimum and maximum bounds given in ifile2 and ifile3, respectively. The default number of histogram bins is 101. The default can be overridden by setting the environment variable CDO_PCTL_NBINS to a different value. The files ifile2 and ifile3 should be the result of corresponding seasmin and seasmax operations, respectively. The time stamp in ofile is from the middle contributing timestep of ifile1. Be careful about the first and the last output timestep, they may be incorrect values if the seasons have incomplete timesteps.

For every adjacent sequence $t_1, ..., t_n$ of timesteps of the same season it is:

```
o(t, x) = \mathbf{pth} \ \mathbf{percentile}\{i(t', x), t_1 < t' \le t_n\}
```

Parameter

```
p FLOAT Percentile number in 0, ..., 100
```

Environment

CDO_PCTL_NBINS Sets the number of histogram bins. The default number is 101.

Example

To compute the seasonal 90th percentile of a time series use:

```
cdo seasmin ifile minfile
cdo seasmax ifile maxfile
cdo seaspctl,90 ifile minfile maxfile ofile
```

```
cdo seaspctl,90 ifile -seasmin ifile -seasmax ifile ofile
```

2.8.27. YHOURSTAT - Multi-year hourly statistical values

Synopsis

```
< operator > ifile ofile
```

Description

This module computes statistical values of each hour and day of year. Depending on the chosen operator the minimum, maximum, sum, average, variance or standard deviation of each hour and day of year in ifile is written to ofile. The date information in an output field is the date of the last contributing input field.

Operators

```
yhourmin
                     Multi-year hourly minimum
                      o(0001, x) = \min\{i(t, x), day(i(t)) = 0001\}
                      o(8784, x) = \min\{i(t, x), \operatorname{day}(i(t)) = 8784\}
yhourmax
                     Multi-year hourly maximum
                      o(0001, x) = \max\{i(t, x), \operatorname{day}(i(t)) = 0001\}
                      o(8784, x) = \max\{i(t, x), \operatorname{day}(i(t)) = 8784\}
yhoursum
                     Multi-year hourly sum
                      o(0001, x) = \mathbf{sum}\{i(t, x), day(i(t)) = 0001\}
                      o(8784, x) = \mathbf{sum}\{i(t, x), \operatorname{day}(i(t)) = 8784\}
                     Multi-year hourly mean
yhourmean
                      o(0001, x) = \mathbf{mean}\{i(t, x), day(i(t)) = 0001\}
                      o(8784, x) = \mathbf{mean}\{i(t, x), day(i(t)) = 8784\}
                     Multi-year hourly average
yhouravg
                      o(0001, x) = \mathbf{avg}\{i(t, x), day(i(t)) = 0001\}
                      o(8784, x) = \mathbf{avg}\{i(t, x), day(i(t)) = 8784\}
yhourstd
                     Multi-year hourly standard deviation
                     Normalize by n.
                      o(0001,x) = \mathbf{std}\{i(t,x), \mathrm{day}(i(t)) = 0001\}
                      o(8784, x) = \mathbf{std}\{i(t, x), day(i(t)) = 8784\}
yhourstd1
                     Multi-year hourly standard deviation (n-1)
                     Normalize by (n-1).
                      o(0001, x) = \mathbf{std1}\{i(t, x), day(i(t)) = 0001\}
                      o(8784, x) = \mathbf{std1}\{i(t, x), day(i(t)) = 8784\}
```

yhourvar Multi-year hourly variance

Normalize by n.

$$o(0001, x) = \mathbf{var}\{i(t, x), \operatorname{day}(i(t)) = 0001\}$$

$$o(8784,x) = \mathbf{var}\{i(t,x), \mathrm{day}(i(t)) = 8784\}$$

yhourvar1 Multi-year hourly variance (n-1)

Normalize by (n-1).

$$o(0001,x) = \mathbf{var1}\{i(t,x), \mathrm{day}(i(t)) = 0001\}$$

:

$$o(8784,x) = \mathbf{var1}\{i(t,x), \mathrm{day}(i(t)) = 8784\}$$

2.8.28. YDAYSTAT - Multi-year daily statistical values

Synopsis

```
< operator > ifile ofile
```

Description

This module computes statistical values of each day of year. Depending on the chosen operator the minimum, maximum, sum, average, variance or standard deviation of each day of year in ifile is written to ofile. The date information in an output field is the date of the last contributing input field.

Operators

```
ydaymin
                   Multi-year daily minimum
                     o(001, x) = \min\{i(t, x), day(i(t)) = 001\}
                     o(366, x) = \min\{i(t, x), \operatorname{day}(i(t)) = 366\}
ydaymax
                    Multi-year daily maximum
                     o(001, x) = \max\{i(t, x), \operatorname{day}(i(t)) = 001\}
                     o(366, x) = \max\{i(t, x), \operatorname{day}(i(t)) = 366\}
ydaysum
                    Multi-year daily sum
                     o(001, x) = \mathbf{sum}\{i(t, x), day(i(t)) = 001\}
                     o(366, x) = \mathbf{sum}\{i(t, x), day(i(t)) = 366\}
ydaymean
                   Multi-year daily mean
                     o(001, x) = \mathbf{mean}\{i(t, x), day(i(t)) = 001\}
                     o(366, x) = \mathbf{mean}\{i(t, x), day(i(t)) = 366\}
                    Multi-year daily average
ydayavg
                     o(001, x) = \mathbf{avg}\{i(t, x), day(i(t)) = 001\}
                     o(366, x) = \mathbf{avg}\{i(t, x), day(i(t)) = 366\}
ydaystd
                    Multi-year daily standard deviation
                    Normalize by n.
                     o(001,x) = \mathbf{std}\{i(t,x), \mathrm{day}(i(t)) = 001\}
                     o(366, x) = \mathbf{std}\{i(t, x), day(i(t)) = 366\}
ydaystd1
                    Multi-year daily standard deviation (n-1)
                    Normalize by (n-1).
                     o(001, x) = \mathbf{std1}\{i(t, x), day(i(t)) = 001\}
                     o(366, x) = \mathbf{std1}\{i(t, x), \operatorname{day}(i(t)) = 366\}
```

 $\label{eq:ydayvar} \begin{tabular}{ll} Multi-year daily variance \\ Normalize by n. \\ \\ o(001,x) = \mathbf{var}\{i(t,x), \mathrm{day}(i(t)) = 001\} \\ & \vdots \\ o(366,x) = \mathbf{var}\{i(t,x), \mathrm{day}(i(t)) = 366\} \\ \begin{tabular}{ll} \mathbf{ydayvar1} & \mathrm{Multi-year\ daily\ variance\ (n-1)} \\ \mathrm{Normalize\ by\ (n-1).} \\ o(001,x) = \mathbf{var1}\{i(t,x), \mathrm{day}(i(t)) = 001\} \\ & \vdots \\ o(366,x) = \mathbf{var1}\{i(t,x), \mathrm{day}(i(t)) = 366\} \\ \end{tabular}$

Example

To compute the daily mean over all input years use:

cdo ydaymean ifile ofile

2.8.29. YDAYPCTL - Multi-year daily percentile values

Synopsis

```
ydaypctl,p ifile1 ifile2 ifile3 ofile
```

Description

This operator writes a certain percentile of each day of year in ifile1 to ofile. The algorithm uses histograms with minimum and maximum bounds given in ifile2 and ifile3, respectively. The default number of histogram bins is 101. The default can be overridden by setting the environment variable CDO_PCTL_NBINS to a different value. The files ifile2 and ifile3 should be the result of corresponding ydaymin and ydaymax operations, respectively. The date information in an output field is the date of the last contributing input field.

```
o(001, x) = \mathbf{pth} \ \mathbf{percentile}\{i(t, x), \operatorname{day}(i(t)) = 001\}

\vdots

o(366, x) = \mathbf{pth} \ \mathbf{percentile}\{i(t, x), \operatorname{day}(i(t)) = 366\}
```

Parameter

p FLOAT Percentile number in 0, ..., 100

Environment

CDO_PCTL_NBINS Sets the number of histogram bins. The default number is 101.

Example

To compute the daily 90th percentile over all input years use:

```
cdo ydaymin ifile minfile
cdo ydaymax ifile maxfile
cdo ydaypctl,90 ifile minfile maxfile ofile
```

```
cdo ydaypctl,90 ifile -ydaymin ifile -ydaymax ifile ofile
```

2.8.30. YMONSTAT - Multi-year monthly statistical values

Synopsis

```
< operator > ifile ofile
```

Description

This module computes statistical values of each month of year. Depending on the chosen operator the minimum, maximum, sum, average, variance or standard deviation of each month of year in ifile is written to ofile. The date information in an output field is the date of the last contributing input field.

Operators

```
ymonmin
                     Multi-year monthly minimum
                      o(01, x) = \min\{i(t, x), \text{month}(i(t)) = 01\}
                      o(12, x) = \min\{i(t, x), \text{month}(i(t)) = 12\}
ymonmax
                     Multi-year monthly maximum
                      o(01, x) = \max\{i(t, x), \text{month}(i(t)) = 01\}
                      o(12, x) = \max\{i(t, x), \text{month}(i(t)) = 12\}
ymonsum
                     Multi-year monthly sum
                      o(01, x) = \mathbf{sum}\{i(t, x), \text{month}(i(t)) = 01\}
                      o(12, x) = \mathbf{sum}\{i(t, x), \text{month}(i(t)) = 12\}
                     Multi-year monthly mean
ymonmean
                      o(01, x) = \mathbf{mean}\{i(t, x), \mathbf{month}(i(t)) = 01\}
                      o(12, x) = \mathbf{mean}\{i(t, x), \mathbf{month}(i(t)) = 12\}
                     Multi-year monthly average
ymonavg
                      o(01, x) = \mathbf{avg}\{i(t, x), \text{month}(i(t)) = 01\}
                      o(12, x) = \mathbf{avg}\{i(t, x), \mathbf{month}(i(t)) = 12\}
ymonstd
                     Multi-year monthly standard deviation
                     Normalize by n.
                      o(01, x) = \mathbf{std}\{i(t, x), \mathbf{month}(i(t)) = 01\}
                      o(12, x) = \mathbf{std}\{i(t, x), \mathbf{month}(i(t)) = 12\}
ymonstd1
                     Multi-year monthly standard deviation (n-1)
                     Normalize by (n-1).
                      o(01, x) = \mathbf{std1}\{i(t, x), \mathbf{month}(i(t)) = 01\}
                      o(12, x) = \mathbf{std1}\{i(t, x), \mathbf{month}(i(t)) = 12\}
```

 $\label{eq:monvar} \begin{tabular}{ll} Multi-year monthly variance \\ Normalize by n. \\ &o(01,x) = \mathbf{var}\{i(t,x), \mathrm{month}(i(t)) = 01\} \\ &\vdots \\ &o(12,x) = \mathbf{var}\{i(t,x), \mathrm{month}(i(t)) = 12\} \\ \begin{tabular}{ll} \mathbf{ymonvar1} & \mathrm{Multi-year \ monthly \ variance \ (n-1)} \\ \mathrm{Normalize \ by \ (n-1).} \\ &o(01,x) = \mathbf{var1}\{i(t,x), \mathrm{month}(i(t)) = 01\} \\ &\vdots \\ &o(12,x) = \mathbf{var1}\{i(t,x), \mathrm{month}(i(t)) = 12\} \\ \end{tabular}$

Example

To compute the monthly mean over all input years use:

cdo ymonmean ifile ofile

2.8.31. YMONPCTL - Multi-year monthly percentile values

Synopsis

```
ymonpctl,p ifile1 ifile2 ifile3 ofile
```

Description

This operator writes a certain percentile of each month of year in ifile1 to ofile. The algorithm uses histograms with minimum and maximum bounds given in ifile2 and ifile3, respectively. The default number of histogram bins is 101. The default can be overridden by setting the environment variable CDO_PCTL_NBINS to a different value. The files ifile2 and ifile3 should be the result of corresponding ymonmin and ymonmax operations, respectively. The date information in an output field is the date of the last contributing input field.

```
\begin{split} o(01,x) &= \mathbf{pth} \ \mathbf{percentile}\{i(t,x), \mathrm{month}(i(t)) = 01\} \\ & \vdots \\ o(12,x) &= \mathbf{pth} \ \mathbf{percentile}\{i(t,x), \mathrm{month}(i(t)) = 12\} \end{split}
```

Parameter

```
p FLOAT Percentile number in 0, ..., 100
```

Environment

CDO_PCTL_NBINS Sets the number of histogram bins. The default number is 101.

Example

To compute the monthly 90th percentile over all input years use:

```
cdo ymonmin ifile minfile
cdo ymonmax ifile maxfile
cdo ymonpctl,90 ifile minfile maxfile ofile
```

```
cdo ymonpctl,90 ifile -ymonmin ifile -ymonmax ifile ofile
```

2.8.32. YSEASSTAT - Multi-year seasonal statistical values

Synopsis

```
<operator> ifile ofile
```

Description

This module computes statistical values of each season. Depending on the chosen operator the minimum, maximum, sum, average, variance or standard deviation of each season in ifile is written to ofile. The date information in an output field is the date of the last contributing input field.

Operators

```
yseasmin
                     Multi-year seasonal minimum
                       o(1,x) = \min\{i(t,x), \text{month}(i(t)) = 12, 01, 02\}
                       o(2, x) = \min\{i(t, x), \text{month}(i(t)) = 03, 04, 05\}
                       o(3, x) = \min\{i(t, x), \text{month}(i(t)) = 06, 07, 08\}
                       o(4, x) = \min\{i(t, x), \text{month}(i(t)) = 09, 10, 11\}
yseasmax
                     Multi-year seasonal maximum
                       o(1,x) = \max\{i(t,x), \text{month}(i(t)) = 12, 01, 02\}
                       o(2, x) = \max\{i(t, x), \text{month}(i(t)) = 03, 04, 05\}
                       o(3,x) = \max\{i(t,x), \text{month}(i(t)) = 06, 07, 08\}
                       o(4, x) = \max\{i(t, x), \text{month}(i(t)) = 09, 10, 11\}
yseassum
                     Multi-year seasonal sum
                       o(1, x) = \mathbf{sum}\{i(t, x), \mathbf{month}(i(t)) = 12, 01, 02\}
                       o(2, x) = \mathbf{sum}\{i(t, x), \text{month}(i(t)) = 03, 04, 05\}
                       o(3,x) = \mathbf{sum}\{i(t,x), \mathbf{month}(i(t)) = 06, 07, 08\}
                       o(4, x) = \mathbf{sum}\{i(t, x), \mathbf{month}(i(t)) = 09, 10, 11\}
                     Multi-year seasonal mean
yseasmean
                       o(1,x) = \mathbf{mean}\{i(t,x), \mathbf{month}(i(t)) = 12, 01, 02\}
                       o(2, x) = \mathbf{mean}\{i(t, x), \mathbf{month}(i(t)) = 03, 04, 05\}
                       o(3, x) = \mathbf{mean}\{i(t, x), \mathbf{month}(i(t)) = 06, 07, 08\}
                       o(4, x) = \mathbf{mean}\{i(t, x), \mathbf{month}(i(t)) = 09, 10, 11\}
                     Multi-year seasonal average
yseasavg
                       o(1,x) = \mathbf{avg}\{i(t,x), \text{month}(i(t)) = 12, 01, 02\}
                       o(2, x) = \mathbf{avg}\{i(t, x), \text{month}(i(t)) = 03, 04, 05\}
                       o(3, x) = \mathbf{avg}\{i(t, x), \mathbf{month}(i(t)) = 06, 07, 08\}
                       o(4, x) = \mathbf{avg}\{i(t, x), \text{month}(i(t)) = 09, 10, 11\}
                     Multi-year seasonal standard deviation
yseasstd
                       o(1,x) = \mathbf{std}\{i(t,x), \mathbf{month}(i(t)) = 12, 01, 02\}
                       o(2, x) = \mathbf{std}\{i(t, x), \mathbf{month}(i(t)) = 03, 04, 05\}
                       o(3, x) = \mathbf{std}\{i(t, x), \mathbf{month}(i(t)) = 06, 07, 08\}
                       o(4,x) = \mathbf{std}\{i(t,x), \mathbf{month}(i(t)) = 09, 10, 11\}
yseasstd1
                     Multi-year seasonal standard deviation (n-1)
                       o(1,x) = \mathbf{std1}\{i(t,x), \mathbf{month}(i(t)) = 12, 01, 02\}
                       o(2, x) = \mathbf{std1}\{i(t, x), \mathbf{month}(i(t)) = 03, 04, 05\}
                       o(3,x) = \mathbf{std1}\{i(t,x), month(i(t)) = 06, 07, 08\}
                       o(4,x) = \mathbf{std1}\{i(t,x), \mathbf{month}(i(t)) = 09, 10, 11\}
```

Example

To compute the seasonal mean over all input years use:

```
cdo yseasmean ifile ofile
```

2.8.33. YSEASPCTL - Multi-year seasonal percentile values

Synopsis

```
yseaspctl,p ifile1 ifile2 ifile3 ofile
```

Description

This operator writes a certain percentile of each season in ifile1 to ofile. The algorithm uses histograms with minimum and maximum bounds given in ifile2 and ifile3, respectively. The default number of histogram bins is 101. The default can be overridden by setting the environment variable CDO_PCTL_NBINS to a different value. The files ifile2 and ifile3 should be the result of corresponding yseasmin and yseasmax operations, respectively. The date information in an output field is the date of the last contributing input field.

```
o(1,x) = pth percentile\{i(t,x), month(i(t)) = 12, 01, 02\}

o(2,x) = pth percentile\{i(t,x), month(i(t)) = 03, 04, 05\}

o(3,x) = pth percentile\{i(t,x), month(i(t)) = 06, 07, 08\}

o(4,x) = pth percentile\{i(t,x), month(i(t)) = 09, 10, 11\}
```

Parameter

```
p FLOAT Percentile number in 0, ..., 100
```

Environment

CDO_PCTL_NBINS Sets the number of histogram bins. The default number is 101.

Example

To compute the seasonal 90th percentile over all input years use:

```
cdo yseasmin ifile minfile
cdo yseasmax ifile maxfile
cdo yseaspctl,90 ifile minfile maxfile ofile
```

```
cdo yseaspctl,90 ifile -yseasmin ifile -yseasmax ifile ofile
```

2.8.34. YDRUNSTAT - Multi-year daily running statistical values

Synopsis

< operator >, nts ifile ofile

Description

This module writes running statistical values for each day of year in ifile to ofile. Depending on the chosen operator, the minimum, maximum, sum, average, variance or standard deviation of all timesteps in running windows of which the medium timestep corresponds to a certain day of year is computed. The date information in an output field is the date of the timestep in the middle of the last contributing running window. Note that the operator have to be applied to a continuous time series of daily measurements in order to yield physically meaningful results. Also note that the output time series begins (nts-1)/2 timesteps after the first timestep of the input time series and ends (nts-1)/2 timesteps before the last one. For input data which are complete but not continuous, such as time series of daily measurements for the same month or season within different years, the operator yields physically meaningful results only if the input time series does include the (nts-1)/2 days before and after each period of interest.

Operators

```
ydrunmin
                    Multi-year daily running minimum
                     o(001,x) = \min\{i(t,x), i(t+1,x), ..., i(t+nts-1,x); \operatorname{day}[(i(t+(nts-1)/2)] = 001\} :
                     o(366, x) = \min\{i(t, x), i(t+1, x), ..., i(t+nts-1, x); day[(i(t+(nts-1)/2))] = 366\}
ydrunmax
                    Multi-year daily running maximum
                     o(001,x) = \max\{i(t,x), i(t+1,x), ..., i(t+nts-1,x); \operatorname{day}[(i(t+(nts-1)/2)] = 001\}
                     o(366, x) = \max\{i(t, x), i(t + 1, x), ..., i(t + nts - 1, x); \text{day}[(i(t + (nts - 1)/2))] = 366\}
vdrunsum
                    Multi-year daily running sum
                     o(001,x) = \mathbf{sum}\{i(t,x), i(t+1,x), ..., i(t+nts-1,x); \mathrm{day}[(i(t+(nts-1)/2)] = 001\}
                     o(366, x) = \mathbf{sum}\{i(t, x), i(t + 1, x), ..., i(t + nts - 1, x); day[(i(t + (nts - 1)/2))] = 366\}
ydrunmean
                    Multi-year daily running mean
                     o(001, x) = \mathbf{mean}\{i(t, x), i(t+1, x), ..., i(t+nts-1, x); \operatorname{day}[(i(t+(nts-1)/2))] = 001\}
                     o(366,x) = \mathbf{mean}\{i(t,x), i(t+1,x), ..., i(t+nts-1,x); \mathrm{day}[(i(t+(nts-1)/2)] = 366\}
ydrunavg
                    Multi-year daily running average
                     o(001,x) = \mathbf{avg}\{i(t,x), i(t+1,x), ..., i(t+nts-1,x); \mathrm{day}[(i(t+(nts-1)/2)] = 001\}
                     o(366, x) = \mathbf{avg}\{i(t, x), i(t+1, x), ..., i(t+nts-1, x); day[(i(t+(nts-1)/2))] = 366\}
ydrunstd
                    Multi-year daily running standard deviation
                    Normalize by n.
                     o(001,x) = \mathbf{std}\{i(t,x), i(t+1,x), ..., i(t+nts-1,x); \operatorname{day}[(i(t+(nts-1)/2)] = 001\}
                     o(366, x) = \mathbf{std}\{i(t, x), i(t+1, x), ..., i(t+nts-1, x); day[(i(t+(nts-1)/2)] = 366\}
```

 $o(366,x) = \mathbf{var1}\{i(t,x), i(t+1,x), ..., i(t+nts-1,x); \operatorname{day}[(i(t+(nts-1)/2)] = 366\}$

Parameter

nts INTEGER Number of timesteps

Example

Assume the input data provide a continuous time series of daily measurements. To compute the running multi-year daily mean over all input timesteps for a running window of five days use:

```
cdo ydrunmean,5 ifile ofile
```

Note that except for the standard deviation the results of the operators in this module are equivalent to a composition of corresponding operators from the YDAYSTAT and RUNSTAT modules. For instance, the above command yields the same result as:

cdo ydaymean -runmean,5 ifile ofile

2.8.35. YDRUNPCTL - Multi-year daily running percentile values

Synopsis

```
ydrunpctl,p,nts ifile1 ifile2 ifile3 ofile
```

Description

This operator writes running percentile values for each day of year in ifile1 to ofile. A certain percentile is computed for all timesteps in running windows of which the medium timestep corresponds to a certain day of year. The algorithm uses histograms with minimum and maximum bounds given in ifile2 and ifile3, respectively. The default number of histogram bins is 101. The default can be overridden by setting the environment variable CDO_PCTL_NBINS to a different value. The files ifile2 and ifile3 should be the result of corresponding ydrunmin and ydrunmax operations, respectively. The date information in an output field is the date of the timestep in the middle of the last contributing running window. Note that the operator have to be applied to a continuous time series of daily measurements in order to yield physically meaningful results. Also note that the output time series begins (nts-1)/2 timesteps after the first timestep of the input time series and ends (nts-1)/2 timesteps before the last. For input data which are complete but not continuous, such as time series of daily measurements for the same month or season within different years, the operator only yields physically meaningful results if the input time series does include the (nts-1)/2 days before and after each period of interest.

```
o(001, x) = \mathbf{pth} \ \mathbf{percentile}\{i(t, x), i(t+1, x), ..., i(t+nts-1, x); \operatorname{day}[(i(t+(nts-1)/2)] = 001\}
\vdots
o(366, x) = \mathbf{pth} \ \mathbf{percentile}\{i(t, x), i(t+1, x), ..., i(t+nts-1, x); \operatorname{day}[(i(t+(nts-1)/2)] = 366\}
```

Parameter

```
p FLOAT Percentile number in 0, ..., 100nts INTEGER Number of timesteps
```

Environment

CDO PCTL NBINS Sets the number of histogram bins. The default number is 101.

Example

Assume the input data provide a continuous time series of daily measurements. To compute the running multi-year daily 90th percentile over all input timesteps for a running window of five days use:

```
cdo ydrunmin,5 ifile minfile
cdo ydrunmax,5 ifile maxfile
cdo ydrunpctl,90,5 ifile minfile maxfile ofile
```

```
cdo ydrunpctl,90,5 ifile -ydrunmin ifile -ydrunmax ifile ofile
```

Correlation and co. Reference manual

2.9. Correlation and co.

This sections contains modules for correlation and co. in grid space and over time. In this section the abbreviations as in the following table are used:

Covariance
$$n^{-1} \sum_{i=1}^{n} (x_i - \overline{x})^2 (y_i - \overline{y})^2$$

$$\text{covar weighted by } \left\{ w_i, i = 1, ..., n \right\} \qquad \left(\sum_{j=1}^{n} w_j \right)^{-1} \sum_{i=1}^{n} w_i \left(x_i - \left(\sum_{j=1}^{n} w_j \right)^{-1} \sum_{j=1}^{n} w_j x_j \right) \left(y_i - \left(\sum_{j=1}^{n} w_j \right)^{-1} \sum_{j=1}^{n} w_j y_j \right)$$

Here is a short overview of all operators in this section:

fldcor Correlation in grid space

timcor Correlation over time

fldcovar Covariance in grid space

timcovar Covariance over time

Reference manual Correlation and co.

2.9.1. FLDCOR - Correlation in grid space

Synopsis

fldcor ifile1 ifile2 ofile

Description

The correlation coefficient is a quantity that gives the quality of a least squares fitting to the original data. This operator correlates all gridpoints of two fields for each timestep. With

$$S(t) = \{x, i_1(t, x) \neq missval \land i_2(t, x) \neq missval\}$$

it is

$$o(t,1) = \frac{\sum\limits_{x \in S(t)} i_1(t,x) i_2(t,x) w(x) - \overline{i_1(t,x)} \ \overline{i_2(t,x)} \sum\limits_{x \in S(t)} w(x)}{\sqrt{\left(\sum\limits_{x \in S(t)} i_1(t,x)^2 w(x) - \overline{i_1(t,x)}^2 \sum\limits_{x \in S(t)} w(x)\right) \left(\sum\limits_{x \in S(t)} i_2(t,x)^2 w(x) - \overline{i_2(t,x)}^2 \sum\limits_{x \in S(t)} w(x)\right)}}$$

where w(x) are the area weights obtained by the input streams. For every timestep t only those field elements x belong to the sample, which have $i_1(t,x) \neq missval$ and $i_2(t,x) \neq missval$.

2.9.2. TIMCOR - Correlation over time

Synopsis

timcor ifile1 ifile2 ofile

Description

The correlation coefficient is a quantity that gives the quality of a least squares fitting to the original data. This operator correlates each gridpoint of two fields over all timesteps. With

$$S(x) = \{t, i_1(t, x) \neq missval \land i_2(t, x) \neq missval\}$$

it is

$$o(1,x) = \frac{\sum_{t \in S(x)} i_1(t,x)i_2(t,x) - n \ \overline{i_1(t,x)} \ \overline{i_2(t,x)}}{\sqrt{\left(\sum_{t \in S(x)} i_1(t,x)^2 - n \ \overline{i_1(t,x)}^2\right) \left(\sum_{t \in S(x)} i_2(t,x)^2 - n \ \overline{i_2(t,x)}^2\right)}}$$

For every gridpoint x only those timesteps t belong to the sample, which have $i_1(t,x) \neq missval$ and $i_2(t,x) \neq missval$.

Correlation and co. Reference manual

2.9.3. FLDCOVAR - Covariance in grid space

Synopsis

fldcovar ifile1 ifile2 ofile

Description

This operator calculates the covariance of two fields over all gridpoints for each timestep. With

$$S(t) = \{x, i_1(t, x) \neq missval \land i_2(t, x) \neq missval\}$$

it is

$$o(t,1) = \left(\sum_{x \in S(t)} w(x)\right)^{-1} \sum_{x \in S(t)} w(x) \left(i_1(t,x) - \frac{\sum_{x \in S(t)} w(x) i_1(t,x)}{\sum_{x \in S(t)} w(x)}\right) \left(i_2(t,x) - \frac{\sum_{x \in S(t)} w(x) i_2(t,x)}{\sum_{x \in S(t)} w(x)}\right)$$

where w(x) are the area weights obtained by the input streams. For every timestep t only those field elements x belong to the sample, which have $i_1(t,x) \neq missval$ and $i_2(t,x) \neq missval$.

2.9.4. TIMCOVAR - Covariance over time

Synopsis

timcovar ifile1 ifile2 ofile

Description

This operator calculates the covariance of two fields at each gridpoint over all timesteps. With

$$S(x) = \{t, i_1(t, x) \neq missval \land i_2(t, x) \neq missval\}$$

it is

$$o(1,x) = n^{-1} \sum_{t \in S(x)} \left(i_1(t,x) - \overline{i_1(t,x)} \right)^2 \left(i_2(t,x) - \overline{i_2(t,x)} \right)^2$$

For every gridpoint x only those timesteps t belong to the sample, which have $i_1(t,x) \neq missval$ and $i_2(t,x) \neq missval$.

Reference manual Regression

2.10. Regression

This sections contains modules for linear regression of time series.

Here is a short overview of all operators in this section:

regression Regression

detrend Detrend

trend Trend

subtrend Subtract trend

Regression Reference manual

2.10.1. REGRES - Regression

Synopsis

regres ifile ofile

Description

The values of the input file if ile are assumed to be distributed as $N(a+bt,\sigma^2)$ with unknown a, b and σ^2 . This operator estimates the parameter b. For every field element x only those timesteps t belong to the sample S(x), which have $i(t,x) \neq \text{miss}$. It is

$$o(1,x) = \frac{\sum_{t \in S(x)} \left(i(t,x) - \frac{1}{\#S(x)} \sum_{t' \in S(x)} i(t',x) \right) \left(t - \frac{1}{\#S(x)} \sum_{t' \in S(x)} t' \right)}{\sum_{t \in S(x)} \left(t - \frac{1}{\#S(x)} \sum_{t' \in S(x)} t' \right)^2}$$

2.10.2. DETREND - Detrend time series

Synopsis

detrend ifile ofile

Description

Every time series in ifile is linearly detrended. For every field element x only those timesteps t belong to the sample S(x), which have $i(t,x) \neq \text{miss}$. With

$$a(x) = \frac{1}{\#S(x)} \sum_{t \in S(x)} i(t, x) - b(x) \left(\frac{1}{\#S(x)} \sum_{t \in S(x)} t \right)$$

and

$$b(x) = \frac{\sum_{t \in S(x)} \left(i(t, x) - \frac{1}{\#S(x)} \sum_{t' \in S(x)} i(t', x) \right) \left(t - \frac{1}{\#S(x)} \sum_{t' \in S(x)} t' \right)}{\sum_{t \in S(x)} \left(t - \frac{1}{\#S(x)} \sum_{t' \in S(x)} t' \right)^2}$$

it is

$$o(t,x) = i(t,x) - (a(x) + b(x)t)$$

Note

This operator has to keep the fields of all timesteps concurrently in the memory. If not enough memory is available use the operators trend and subtrend.

Example

To detrend the data in ifile and to store the detrended data in ofile use:

cdo detrend ifile ofile

Reference manual Regression

2.10.3. TREND - Trend of time series

Synopsis

trend ifile ofile1 ofile2

Description

The values of the input file if ile are assumed to be distributed as $N(a + bt, \sigma^2)$ with unknown a, b and σ^2 . This operator estimates the parameter a and b. For every field element x only those timesteps t belong to the sample S(x), which have $i(t, x) \neq \text{miss.}$ It is

$$o_1(1,x) = \frac{1}{\#S(x)} \sum_{t \in S(x)} i(t,x) - b(x) \left(\frac{1}{\#S(x)} \sum_{t \in S(x)} t \right)$$

and

$$o_2(1,x) = \frac{\sum\limits_{t \in S(x)} \left(i(t,x) - \frac{1}{\#S(x)} \sum\limits_{t' \in S(x)} i(t',x) \right) \left(t - \frac{1}{\#S(x)} \sum\limits_{t' \in S(x)} t' \right)}{\sum\limits_{t \in S(x)} \left(t - \frac{1}{\#S(x)} \sum\limits_{t' \in S(x)} t' \right)^2}$$

Thus the estimation for a is stored in ofile1 and that for b is stored in ofile2. To subtract the trend from the data see operator subtrend.

2.10.4. SUBTREND - Subtract a trend

Synopsis

subtrend ifile1 ifile2 ifile3 ofile

Description

This operator is for subtracting a trend computed by the operator trend. It is

$$o(t,x) = i_1(t,x) - (i_2(1,x) + i_3(1,x) \cdot t)$$

where t is the timesteps.

Example

The typical call for detrending the data in ifile and storing the detrended data in ofile is:

```
cdo trend ifile afile bfile
cdo subtrend ifile afile bfile ofile
```

The result is identical to a call of the operator detrend:

```
cdo detrend ifile ofile
```

EOFs Reference manual

2.11. EOFs

This section contains modules to compute Empirical Orthogonal Functions and - once they are computed - their principal coefficients.

An introduction to the theory of principal component analysis as applied here can be found in:

Principal Component Analysis [Peisendorfer]

Details about calculation in the time- and spatial spaces are found in:

Statistical Analysis in Climate Research [vonStorch]

EOFs are defined as the eigen values of the scatter matrix (covariance matrix) of the data. For the sake of simplicity, samples are regarded as **time series of anomalies**

$$(z(t)), t \in \{1, \ldots, n\}$$

of (column-) vectors z(t) with p entries (where p is the gridsize). Thus, using the fact, that $z_j(t)$ are anomalies, i.e.

$$\langle z_j \rangle = n^{-1} \sum_{i=1}^n z_j(i) = 0 \ \forall \ 1 \le j \le p$$

the scatter matrix S can be written as

$$\mathbf{S} = \sum_{t=1}^{n} \left[\sqrt{\mathbf{W}} z(t) \right] \left[\sqrt{\mathbf{W}} z(t) \right]^{T}$$

where **W** is the diagonal matrix containing the area weight of cell p_0 in z at $\mathbf{W}(x,x)$.

The matrix **S** has a set of orthonormal eigenvectors e_j , $j=1,\ldots p$, which are called *empirical orthogonal* functions (EOFs) of the sample z. (Please note, that e_j is the eigenvector of **S** and not the weighted eigen-vector which would be $\mathbf{W}e_j$.) Let the corresponding eigenvalues be denoted λ_j . The vectors e_j are spatial patterns which explain a certain amount of variance of the time series z(t) that is related linearly to λ_j . Thus, the spatial pattern defined by the first eigenvector (the one with the largest eigenvalue) is the pattern which explains a maximum possible amount of variance of the sample z(t). The orthonormality of eigenvectors reads as

$$\sum_{x=1}^{p} \left[\sqrt{\mathbf{W}(x,x)} e_j(x) \right] \left[\sqrt{\mathbf{W}(x,x)} e_k(x) \right] = \sum_{x=1}^{p} \mathbf{W}(x,x) e_j(x) e_k(x) = \begin{cases} 0 & \text{if } j \neq k \\ 1 & \text{if } j = k \end{cases}$$

If all EOFs e_i with $\lambda_i \neq 0$ are calculated, the data can be reconstructed from

$$z(t,x) = \sum_{j=1}^{p} \mathbf{W}(x,x)a_j(t)e_j(x)$$

where a_j are called the *principal components* or *principal coefficients* or *EOF coefficients* of z. These coefficients - as readily seen from above - are calculated as the projection of an EOF e_j onto a time step of the data sample $z(t_0)$ as

$$a_j(t_0) = \sum_{x=1}^p \left[\sqrt{\mathbf{W}(x,x)} e_j(x) \right] \left[\sqrt{\mathbf{W}(x,x)} z(t_0,x) \right] = \left[\sqrt{\mathbf{W}} z(t_0) \right]^T \left[\sqrt{\mathbf{W}} e_j \right].$$

Here is a short overview of all operators in this section:

eof Calculate EOFs in spatial or time space

eoftime Calculate EOFs in time space eofspatial Calculate EOFs in spatial space

eof3d Calculate 3-Dimensional EOFs in time space

eofcoeff Calculate principal coefficients of EOFs

Reference manual EOFs

2.11.1. EOFS - Empirical Orthogonal Functions

Synopsis

<operator>,neof ifile ofile1 ofile2

Description

This module calculates empirical orthogonal functions of the data in ifile as the eigen values of the scatter matrix (covariance matrix) S of the data sample z(t). A more detailed description can be found above.

Please note, that the input data are assumed to be anomalies.

If operator eof is chosen, the EOFs are computed in either time or spatial space, whichever is the fastest. If the user already knows, which computation is faster, the module can be forced to perform a computation in time- or gridspace by using the operators eoftime or eofspatial, respectively. This can enhance performance, especially for very long time series, where the number of timesteps is larger than the number of grid-points. Data in ifile are assumed to be anomalies. If they are not, the behavior of this module is **not well defined**. After execution ofile1 will contain all eigen-values and ofile2 the eigenvectors e_{j} . All EOFs and eigen-values are computed. However, only the first neof EOFs are written to ofile2. Nonetheless, ofile1 contains all eigen-values.

Missing values are not fully supported. Support is only checked for non-changing masks of missing values in time. Although there still will be results, they are not trustworthy, and a warning will occur. In the latter case we suggest to replace missing values by 0 in ifile.

Operators

eof Calculate EOFs in spatial or time space

eoftime Calculate EOFs in time space

eofspatial Calculate EOFs in spatial space

eof3d Calculate 3-Dimensional EOFs in time space

Parameter

neof INTEGER Number of eigen functions

Environment

CDO_SVD_MODE Is used to choose the algorithm for eigenvalue calculation. Options are 'jacobi' for a one-sided parallel jacobi-algorithm (only executed in parallel if -P flag

is set) and 'danielson_lanczos' for a non-parallel d/l algorithm. The default

setting is 'jacobi'.

CDO_WEIGHT_MODE It is used to set the weight mode. The default is 'on'. Set it to 'off' for a non

weighted version.

MAX_JACOBI_ITER Is the maximum integer number of annihilation sweeps that is executed if the

jacobi-algorithm is used to compute the eigen values. The default value is 12.

FNORM_PRECISION Is the Frobenius norm of the matrix consisting of an annihilation pair of

eigenvectors that is used to determine if the eigenvectors have reached a sufficient level of convergence. If all annihilation-pairs of vectors have a norm below this value, the computation is considered to have converged properly.

Otherwise, a warning will occur. The default value 1e-12.

EOFs Reference manual

Example

To calculate the first 40 EOFs of a data-set containing anomalies use:

```
cdo eof,40 ifile ofile1 ofile2
```

If the dataset does not containt anomalies, process them first, and use:

```
cdo sub ifile1 -timmean ifile1 anom_file
cdo eof,40 anom_file ofile1 ofile2
```

Reference manual EOFs

2.11.2. EOFCOEFF - Principal coefficients of EOFs

Synopsis

eofcoeff ifile1 ifile2 obase

Description

This module calculates the time series of the principal coefficients for given EOF (empirical orthogonal functions) and data. Time steps in ifile1 are assumed to be the EOFs, time steps in ifile2 are assumed to be the time series. Note, that this operator calculates a weighted dot product of the fields in ifile1 and ifile2. For consistency set the environment variable CDO_WEIGHT_MODE=off when using eof or eof3d. Given a set of EOFs e_j and a time series of data z(t) with p entries for each timestep from which e_j have been calculated, this operator calculates the time series of the projections of data onto each EOF

$$o_j(t) = \sum_{x=1}^{p} W(x, x) z(t, x) e_j(x)$$

where W is the diagonal matrix containing area weights as above. There will be a seperate file o_j for the principal coefficients of each EOF.

As the EOFs e_{j} are uncorrelated, so are their principal coefficients, i.e.

$$\sum_{t=1}^{n} o_j(t) o_k(t) = \begin{cases} 0 \text{ if } j \neq k \\ \lambda_j \text{ if } j = k \end{cases} \text{ with } \sum_{t=1}^{n} o_j(t) = 0 \forall j \in \{1, \dots, p\}.$$

There will be a separate file containing a time series of principal coefficients with time information from ifile2 for each EOF in ifile1. Output files will be numbered as cobase><neof><suffix> where neof+1 is the number of the EOF (timestep) in ifile1 and suffix is the filename extension derived from the file format.

Environment

CDO_FILE_SUFFIX

Set the default file suffix. This suffix will be added to the output file names instead of the filename extension derived from the file format. Set this variable to NULL to disable the adding of a file suffix.

Example

To calculate principal coefficients of the first 40 EOFs of anom_file, and write them to files beginning with obase, use:

```
export CDO_WEIGHT_MODE=off
cdo eof,40 anom_file eval_file eof_file
cdo eofcoeff eof_file anom_file obase
```

The principal coefficients of the first EOF will be in the file obase000000.nc (and so forth for higher EOFs, nth EOF will be in obase<n-1>).

If the dataset if ile does not containt anomalies, process them first, and use:

```
export CDO_WEIGHT_MODE=off
cdo sub ifile -timmean ifile anom_file
cdo eof,40 anom_file eval_file eof_file
cdo eofcoeff eof_file anom_file obase
```

Interpolation Reference manual

2.12. Interpolation

This section contains modules to interpolate datasets. There are several operators to interpolate horizontal fields to a new grid. Some of those operators can handle only 2D fields on a regular rectangular grid. Vertical interpolation of 3D variables is possible from hybrid model levels to height or pressure levels. Interpolation in time is possible between time steps and years.

Here is a short overview of all operators in this section:

remapbil Bilinear interpolation

genbil Generate bilinear interpolation weights

remapbic Bicubic interpolation

genbic Generate bicubic interpolation weights

remapnn Nearest neighbor remapping

gennn Generate nearest neighbor remap weights

remapdis Distance-weighted average remapping

gendis Generate distance-weighted average remap weights

remapycon First order conservative remapping

genycon Generate 1st order conservative remap weights

remapcon First order conservative remapping

gencon Generate 1st order conservative remap weights

remapcon2 Second order conservative remapping

gencon2 Generate 2nd order conservative remap weights

remaplaf Largest area fraction remapping

genlaf Generate largest area fraction remap weights

remap Grid remapping

remapeta Remap vertical hybrid level

ml2pl Model to pressure level interpolation ml2hl Model to height level interpolation

ap2pl Air pressure to pressure level interpolationap2hl Air pressure to height level interpolation

intlevel Linear level interpolation

intlevel3d Linear level interpolation onto a 3d vertical coordinate

intlevelx3d like intlevel3d but with extrapolation

inttime Interpolation between timesteps intntime Interpolation between timesteps

intyear Interpolation between two years

Reference manual Interpolation

2.12.1. REMAPBIL - Bilinear interpolation

Synopsis

<operator>,grid ifile ofile

Description

This module contains operators for a bilinear remapping of fields between grids in spherical coordinates. The interpolation is based on an adapted SCRIP library version. For a detailed description of the interpolation method see [SCRIP]. This interpolation method only works on quadrilateral curvilinear source grids. Below is a schematic illustration of the bilinear remapping:

The figure on the left side shows the input data on a regular lon/lat source grid and on the right side the remapped result on an unstructured triangular target grid. The figure in the middle shows the input data with the target grid. Grid cells with missing value are grey colored.

Operators

remapbil Bilinear interpolation

Performs a bilinear interpolation on all input fields.

genbil Generate bilinear interpolation weights

> Generates bilinear interpolation weights for the first input field and writes the result to a file. The format of this file is NetCDF following the SCRIP convention. Use the operator remap to apply this remapping weights to a data file with the same source grid.

Parameter

STRING Target grid description file or name grid

Environment

REMAP EXTRAPOLATE This variable is used to switch the extrapolation feature 'on' or 'off'. By

default the extrapolation is enabled for circular grids.

Example

Say if ile contains fields on a quadrilateral curvilinear grid. To remap all fields bilinear to a Gaussian N32 grid, type:

cdo remapbil, n32 ifile ofile

Interpolation Reference manual

2.12.2. REMAPBIC - Bicubic interpolation

Synopsis

< operator >, grid ifile ofile

Description

This module contains operators for a bicubic remapping of fields between grids in spherical coordinates. The interpolation is based on an adapted SCRIP library version. For a detailed description of the interpolation method see [SCRIP]. This interpolation method only works on quadrilateral curvilinear source grids. Below is a schematic illustration of the bicubic remapping:

The figure on the left side shows the input data on a regular lon/lat source grid and on the right side the remapped result on an unstructured triangular target grid. The figure in the middle shows the input data with the target grid. Grid cells with missing value are grey colored.

Operators

remapbic Bicubic interpolation

Performs a bicubic interpolation on all input fields.

genbic Generate bicubic interpolation weights

Generates bicubic interpolation weights for the first input field and writes the result to a file. The format of this file is NetCDF following the SCRIP convention. Use the operator remap to apply this remapping weights to a data file with the same source

grid.

Parameter

grid STRING Target grid description file or name

Environment

REMAP_EXTRAPOLATE This variable is used to switch the extrapolation feature 'on' or 'off'. By

default the extrapolation is enabled for circular grids.

Example

Say if ile contains fields on a quadrilateral curvilinear grid. To remap all fields bicubic to a Gaussian N32 grid, type:

cdo remapbic, n32 ifile ofile

Reference manual Interpolation

2.12.3. REMAPNN - Nearest neighbor remapping

Synopsis

<operator>,grid ifile ofile

Description

This module contains operators for a nearest neighbor remapping of fields between grids in spherical coordinates. Below is a schematic illustration of the nearest neighbor remapping:

The figure on the left side shows the input data on a regular lon/lat source grid and on the right side the remapped result on an unstructured triangular target grid. The figure in the middle shows the input data with the target grid. Grid cells with missing value are grey colored.

Operators

remapnn Nearest neighbor remapping

Performs a nearest neighbor remapping on all input fields.

gennn Generate nearest neighbor remap weights

Generates nearest neighbor remapping weights for the first input field and writes the result to a file. The format of this file is NetCDF following the SCRIP convention. Use the operator remap to apply this remapping weights to a data file with the same

source grid.

Parameter

grid STRING Target grid description file or name

Environment

REMAP_EXTRAPOLATE This variable is used to switch the extrapolation feature 'on' or 'off'.

By default the extrapolation is enabled for this remapping method.

CDO_GRIDSEARCH_RADIUS Grid search radius in degree, default 180 degree.

Interpolation Reference manual

2.12.4. REMAPDIS - Distance-weighted average remapping

Synopsis

remapdis,grid[,neighbors] ifile ofile
gendis,grid ifile ofile

Description

This module contains operators for a distance-weighted average remapping of the four nearest neighbor values of fields between grids in spherical coordinates. The interpolation is based on an adapted SCRIP library version. For a detailed description of the interpolation method see [SCRIP]. Below is a schematic illustration of the distance-weighted average remapping:

The figure on the left side shows the input data on a regular lon/lat source grid and on the right side the remapped result on an unstructured triangular target grid. The figure in the middle shows the input data with the target grid. Grid cells with missing value are grey colored.

Operators

remapdis Distance-weighted average remapping

Performs a distance-weighted average remapping of the nearest neighbors value on all

input fields. The default number of nearest neighbors is 4.

gendis Generate distance-weighted average remap weights

Generates distance-weighted average remapping weights of the four nearest neighbor values for the first input field and writes the result to a file. The format of this file is NetCDF following the SCRIP convention. Use the operator remap to apply this

remapping weights to a data file with the same source grid.

Parameter

grid STRING Target grid description file or name

neighbors INTEGER Number of nearest neighbors

Environment

REMAP_EXTRAPOLATE This variable is used to switch the extrapolation feature 'on' or 'off'.

By default the extrapolation is enabled for this remapping method.

CDO_GRIDSEARCH_RADIUS Grid search radius in degree, default 180 degree.

2.12.5. REMAPYCON - First order conservative remapping

Synopsis

< operator >, grid ifile ofile

Description

This module contains operators for a first order conservative remapping of fields between grids in spherical coordinates. The operators in this module uses code from the YAC software package to compute the conservative remapping weights. For a detailed description of the interpolation method see [YAC]. The interpolation method is completely general and can be used for any grid on a sphere. The search algorithm for the conservative remapping requires that no grid cell occurs more than once. Below is a schematic illustration of the 1st order conservative remapping:

The figure on the left side shows the input data on a regular lon/lat source grid and on the right side the remapped result on an unstructured triangular target grid. The figure in the middle shows the input data with the target grid. Grid cells with missing value are grey colored.

Operators

remapycon First order conservative remapping

Performs a first order conservative remapping on all input fields.

genycon Generate 1st order conservative remap weights

Generates first order conservative remapping weights for the first input field and writes the result to a file. The format of this file is NetCDF following the SCRIP convention. Use the operator remap to apply this remapping weights to a data file

with the same source grid.

Parameter

grid STRING Target grid description file or name

Environment

CDO_REMAP_NORM

This variable is used to choose the normalization of the conservative interpolation. By default CDO_REMAP_NORM is set to 'fracarea'. 'fracarea' uses the sum of the non-masked source cell intersected areas to normalize each target cell field value. This results in a reasonable flux value but the flux is not locally conserved. The option 'destarea' uses the total target cell area to normalize each target cell field value. Local flux conservation is ensured, but unreasonable flux values may result.

REMAP_AREA_MIN

This variable is used to set the minimum destination area fraction. The default of this variable is 0.0.

Example

Say if ile contains fields on a quadrilateral curvilinear grid. To remap all fields conservative to a Gaussian N32 grid, type:

cdo remapycon,n32 ifile ofile

2.12.6. REMAPCON - First order conservative remapping

Synopsis

< operator >, grid ifile ofile

Description

This module contains operators for a first order conservative remapping of fields between grids in spherical coordinates. The interpolation is based on an adapted SCRIP library version. For a detailed description of the interpolation method see [SCRIP]. The interpolation method is completely general and can be used for any grid on a sphere. The search algorithm for the conservative remapping requires that no grid cell occurs more than once. Below is a schematic illustration of the 1st order conservative remapping:

The figure on the left side shows the input data on a regular lon/lat source grid and on the right side the remapped result on an unstructured triangular target grid. The figure in the middle shows the input data with the target grid. Grid cells with missing value are grey colored.

Operators

remapcon First order conservative remapping

Performs a first order conservative remapping on all input fields.

gencon Generate 1st order conservative remap weights

Generates first order conservative remapping weights for the first input field and writes the result to a file. The format of this file is NetCDF following the SCRIP convention. Use the operator remap to apply this remapping weights to a data file

with the same source grid.

Parameter

grid STRING Target grid description file or name

Environment

CDO_REMAP_NORM

This variable is used to choose the normalization of the conservative interpolation. By default CDO_REMAP_NORM is set to 'fracarea'. 'fracarea' uses the sum of the non-masked source cell intersected areas to normalize each target cell field value. This results in a reasonable flux value but the flux is not locally conserved. The option 'destarea' uses the total target cell area to normalize each target cell field value. Local flux conservation is ensured, but unreasonable flux values may result.

REMAP_AREA_MIN This variable is used to set the minimum destination area fraction. The default of this variable is 0.0.

Note

The SCRIP conservative remapping method doesn't work correctly for some grid combinations. Please use remapycon or genycon in case of problems.

Example

Say if ile contains fields on a quadrilateral curvilinear grid. To remap all fields conservative to a Gaussian N32 grid, type:

cdo remapcon, n32 ifile ofile

2.12.7. REMAPCON2 - Second order conservative remapping

Synopsis

< operator >, grid ifile ofile

Description

This module contains operators for a second order conservative remapping of fields between grids in spherical coordinates. The interpolation is based on an adapted SCRIP library version. For a detailed description of the interpolation method see [SCRIP]. The interpolation method is completely general and can be used for any grid on a sphere. The search algorithm for the conservative remapping requires that no grid cell occurs more than once. Below is a schematic illustration of the 2nd order conservative remapping:

The figure on the left side shows the input data on a regular lon/lat source grid and on the right side the remapped result on an unstructured triangular target grid. The figure in the middle shows the input data with the target grid. Grid cells with missing value are grey colored.

Operators

remapcon2 Second order conservative remapping

Performs a second order conservative remapping on all input fields.

gencon2 Generate 2nd order conservative remap weights

Generates second order conservative remapping weights for the first input field and writes the result to a file. The format of this file is NetCDF following the SCRIP convention. Use the operator remap to apply this remapping weights to a data file with the same source grid.

Parameter

grid STRING Target grid description file or name

Environment

CDO_REMAP_NORM

This variable is used to choose the normalization of the conservative interpolation. By default CDO_REMAP_NORM is set to 'fracarea'. 'fracarea' uses the sum of the non-masked source cell intersected areas to normalize each target cell field value. This results in a reasonable flux value but the flux is not locally conserved. The option 'destarea' uses the total target cell area to normalize each target cell field value. Local flux conservation is ensured, but unreasonable flux values may result.

REMAP_AREA_MIN This variable is used to set the minimum destination area fraction. The default of this variable is 0.0.

Note

The SCRIP conservative remapping method doesn't work correctly for some grid combinations.

Example

Say if ile contains fields on a quadrilateral curvilinear grid. To remap all fields conservative (2nd order) to a Gaussian N32 grid, type:

cdo remapcon2,n32 ifile ofile

2.12.8. REMAPLAF - Largest area fraction remapping

Synopsis

<operator>,grid ifile ofile

Description

This module contains operators for a largest area fraction remapping of fields between grids in spherical coordinates. The operators in this module uses code from the YAC software package to compute the largest area fraction. For a detailed description of the interpolation method see [YAC]. The interpolation method is completely general and can be used for any grid on a sphere. The search algorithm for this remapping method requires that no grid cell occurs more than once. Below is a schematic illustration of the largest area fraction conservative remapping:

The figure on the left side shows the input data on a regular lon/lat source grid and on the right side the remapped result on an unstructured triangular target grid. The figure in the middle shows the input data with the target grid. Grid cells with missing value are grey colored.

Operators

remaplaf Largest area fraction remapping

Performs a largest area fraction remapping on all input fields.

genlaf Generate largest area fraction remap weights

Generates largest area fraction remapping weights for the first input field and writes the result to a file. The format of this file is NetCDF following the SCRIP convention. Use the operator remap to apply this remapping weights to a data file with the same

source grid.

Parameter

grid STRING Target grid description file or name

Environment

REMAP_AREA_MIN This variable is used to set the minimum destination area fraction. The default

of this variable is 0.0.

2.12.9. REMAP - Grid remapping

Synopsis

remap, grid, weights if ile of ile

Description

Interpolation between different horizontal grids can be a very time-consuming process. Especially if the data are on an unstructured and/or a large grid. In this case the interpolation process can be split into two parts. Firstly the generation of the interpolation weights, which is the most time-consuming part. These interpolation weights can be reused for every remapping process with the operator remap. This operator remaps all input fields to a new horizontal grid. The remap type and the interpolation weights of one input grid are read from a NetCDF file. More weights are computed if the input fields are on different grids. The NetCDF file with the weights should follow the SCRIP convention. Normally these weights come from a previous call to one of the genXXX operators (e.g. genbil) or were created by the original SCRIP package.

Parameter

grid STRING Target grid description file or name

weights STRING Interpolation weights (SCRIP NetCDF file)

Environment

CDO_REMAP_NORM	This variable is used to choose the normalization of the conservative interpolation. By default CDO_REMAP_NORM is set to 'fracarea'. 'fracarea' uses the sum of the non-masked source cell intersected areas
	to normalize each target cell field value. This results in a reasonable flux value but the flux is not locally conserved. The option 'destarea'
	uses the total target cell area to normalize each target cell field value. Local flux conservation is ensured, but unreasonable flux values may result.

REMAP_EXTRAPOLATE This variable is used to switch the extrapolation feature 'on' or 'off'.

By default the extrapolation is enabled for remapdis, remapnin and

for circular grids.

REMAP_AREA_MIN This variable is used to set the minimum destination area fraction.

The default of this variable is 0.0.

CDO_GRIDSEARCH_RADIUS Grid search radius in degree, default 180 degree.

Example

Say if ile contains fields on a quadrilateral curvilinear grid. To remap all fields bilinear to a Gaussian N32 grid use:

```
cdo genbil,n32 ifile remapweights.nc
cdo remap,n32,remapweights.nc ifile ofile
```

The result will be the same as:

```
cdo remapbil,n32 ifile ofile
```

2.12.10. REMAPETA - Remap vertical hybrid level

Synopsis

remapeta, vct[,oro] ifile ofile

Description

This operator interpolates between different vertical hybrid levels. This include the preparation of consistent data for the free atmosphere. The procedure for the vertical interpolation is based on the HIRLAM scheme and was adapted from [INTERA]. The vertical interpolation is based on the vertical integration of the hydrostatic equation with few adjustments. The basic tasks are the following one:

- at first integration of hydrostatic equation
- extrapolation of surface pressure
- Planetary Boundary-Layer (PBL) profile interpolation
- interpolation in free atmosphere
- merging of both profiles
- final surface pressure correction

The vertical interpolation corrects the surface pressure. This is simply a cut-off or an addition of air mass. This mass correction should not influence the geostrophic velocity field in the middle troposhere. Therefore the total mass above a given reference level is conserved. As reference level the geopotential height of the 400 hPa level is used. Near the surface the correction can affect the vertical structure of the PBL. Therefore the interpolation is done using the potential temperature. But in the free atmosphere above a certain n (n=0.8 defining the top of the PBL) the interpolation is done linearly. After the interpolation both profiles are merged. With the resulting temperature/pressure correction the hydrostatic equation is integrated again and adjusted to the reference level finding the final surface pressure correction. A more detailed description of the interpolation can be found in [INTERA]. This operator requires all variables on the same horizontal grid.

Parameter

vct	STRING	File name of an ASCII dataset with the vertical coordinate table
oro	STRING	File name with the orography (surf. geopotential) of the target dataset (optional)

Environment

REMAPETA_PTOP Sets the minimum pressure level for condensation. Above this level the humidity is set to the constant 1.E-6. The default value is 0 Pa.

Note

The code numbers or the variable names of the required parameter have to follow the [ECHAM] convention. Presently, the vertical coordinate definition of a NetCDF file has also to follow the ECHAM convention. This means:

- the dimension of the full level coordinate and the corresponding variable is called mlev,
- the dimension of the half level coordinate and the corresponding variable is called ilev (ilev must have one element more than mlev)
- the hybrid vertical coefficient a is given in units of Pa and called hyai (hyam for level midpoints)
- the hybrid vertical coefficient b is given in units of 1 and called hybi (hybm for level midpoints)

• the mlev variable has a borders attribute containing the character string 'ilev'

Use the sinfo command to test if your vertical coordinate system is recognized as hybrid system.

In case remapeta complains about not finding any data on hybrid model levels you may wish to use the setzaxis command to generate a zaxis description which conforms to the ECHAM convention. See section "1.4 Z-axis description" for an example how to define a hybrid Z-axis.

Example

To remap between different hybrid model level data use:

```
cdo remapeta,vct ifile ofile
```

Here is an example vct file with 19 hybrid model level:

```
0.000000000000000000
                                      0.000000000000000000
      2000.000000000000000000
                                      0.000000000000000000
1
2
      4000.000000000000000000
                                      0.000000000000000000
      6046.109375000000000000
                                      0.00033899326808751
3
      8267.92968750000000000
                                      0.00335718691349030
4
5
     10609.51171875000000000
                                      0.01307003945112228
6
     12851.101562500000000000
                                      0.03407714888453484
     14698.500000000000000000
                                      0.07064980268478394
     15861.128906250000000000
                                      0.12591671943664551
     16116.23828125000000000
                                      0.20119541883468628
10
     15356.921875000000000000
                                      0.29551959037780762
11
     13621.460937500000000000
                                      0.40540921688079834
     11101.55859375000000000
12
                                      0.52493220567703247
13
      8127.144531250000000000
                                      0.64610791206359863
      5125.140625000000000000
                                      0.75969839096069336
14
                                      0.85643762350082397
      2549.96899414062500000
15
       783.19506835937500000
                                      0.92874687910079956
16
17
         0.000000000000000000
                                      0.97298520803451538
         0.000000000000000000
                                      0.99228149652481079
18
19
         0.000000000000000000
                                      1.0000000000000000000
```

2.12.11. VERTINTML - Vertical interpolation

Synopsis

```
ml2pl,plevels ifile ofile
ml2hl,hlevels ifile ofile
```

Description

Interpolate 3D variables on hybrid sigma pressure level to pressure or height levels. The input file should contain the log. surface pressure or the surface pressure. To interpolate the temperature, the surface geopotential is also needed. The pressure, temperature, and surface geopotential are identified by their GRIB1 code number or NetCDF CF standard name. Supported parameter tables are: WMO standard table number 2 and ECMWF local table number 128. Use the alias ml2plx/ml2hlx or the environment variable EXTRAPOLATE to extrapolate missing values. This operator requires all variables on the same horizontal grid.

Operators

ml2pl Model to pressure level interpolation

Interpolates 3D variables on hybrid sigma pressure level to pressure level.

ml2hl Model to height level interpolation

Interpolates 3D variables on hybrid sigma pressure level to height level. The procedure is the same as for the operator mh2pl except for the pressure levels being calculated from the heights by: plevel = 101325 * exp(hlevel / - 7000)

Parameter

plevels FLOAT Pressure levels in pascal

hlevels FLOAT Height levels in meter (max level: 65535 m)

Environment

EXTRAPOLATE If set to 1 extrapolate missing values.

Example

To interpolate hybrid model level data to pressure levels of 925, 850, 500 and 200 hPa use:

```
cdo ml2pl,92500,85000,50000,20000 ifile ofile
```

2.12.12. VERTINTAP - Vertical interpolation

Synopsis

```
ap2pl,plevels ifile ofile
ap2hl,hlevels ifile ofile
```

Description

Interpolate 3D variables on hybrid sigma height coordinates to pressure or height levels. The input file must contain the 3D air pressure. The air pressure is identified by the NetCDF CF standard name air_pressure. Use the alias ap2plx/ap2hlx or the environment variable EXTRAPOLATE to extrapolate missing values. This operator requires all variables on the same horizontal grid.

Operators

ap2pl Air pressure to pressure level interpolation

Interpolates 3D variables on hybrid sigma height coordinates to pressure level.

ap2hl Air pressure to height level interpolation

Interpolates 3D variables on hybrid sigma height coordinates to height level. The procedure is the same as for the operator ap2pl except for the pressure levels being calculated from the heights by: plevel = 101325 * exp(hlevel/-7000)

Parameter

plevels FLOAT Pressure levels in pascal

hlevels FLOAT Height levels in meter (max level: 65535 m)

Environment

EXTRAPOLATE If set to 1 extrapolate missing values.

Note

This is a specific implementation for NetCDF files from the ICON model, it may not work with data from other sources.

Example

To interpolate 3D variables on hybrid sigma height level to pressure levels of 925, 850, 500 and 200 hPa use:

cdo ap2p1,92500,85000,50000,20000 ifile ofile

2.12.13. INTLEVEL - Linear level interpolation

Synopsis

intlevel,levels ifile ofile

Description

This operator performs a linear vertical interpolation of non hybrid 3D variables.

Parameter

levels FLOAT Target levels

Example

To interpolate 3D variables on height levels to a new set of height levels use:

cdo intlevel, 10, 50, 100, 500, 1000 ifile ofile

2.12.14. INTLEVEL3D - Linear level interpolation from/to 3d vertical coordinates

Synopsis

<operator>,icoordinate ifile1 ifile2 ofile

Description

This operator performs a linear vertical interpolation of 3D variables fields with given 3D vertical coordinates.

Operators

intlevel3d Linear level interpolation onto a 3d vertical coordinate

intlevelx3d like intlevel3d but with extrapolation

Parameter

icoordinate STRING filename for vertical source coordinates variable ifile2 STRING target vertical coordinate field (intlevel3d only)

Example

To interpolate 3D variables from one set of 3d height levels into another one where

- icoordinate contains a single 3d variable, which represents the input 3d vertical coordinate
- ifile1 contains the source data, which the vertical coordinate from icoordinate belongs to
- ifile2 only contains the target 3d height levels

cdo intlevel3d,icoordinate ifile1 ifile2 ofile

2.12.15. INTTIME - Time interpolation

Synopsis

```
inttime,date,time[,inc] ifile ofile
intntime,n ifile ofile
```

Description

This module performs linear interpolation between timesteps.

Operators

inttime Interpolation between timesteps

This operator creates a new dataset by linear interpolation between timesteps. The

user has to define the start date/time with an optional increment.

intntime Interpolation between timesteps

This operator performs linear interpolation between timesteps. The user has to define

the number of timesteps from one timestep to the next.

Parameter

date	STRING	Start date (format YYYY-MM-DD)
time	STRING	Start time (format hh:mm:ss)
inc	STRING 0hour]	Optional increment (seconds, minutes, hours, days, months, years) [default:
n	INTEGER	Number of timesteps from one timestep to the next

Example

Assumed a 6 hourly dataset starts at 1987-01-01 12:00:00. To interpolate this time series to a one hourly dataset use:

```
cdo inttime, 1987-01-01, 12:00:00, 1hour ifile ofile
```

2.12.16. INTYEAR - Year interpolation

Synopsis

intyear, years ifile1 ifile2 obase

Description

This operator performs linear interpolation between two years, timestep by timestep. The input files need to have the same structure with the same variables. The output files will be named <obsep><yyyy><suffix> where yyyy will be the year and suffix is the filename extension derived from the file format.

Parameter

years INTEGER Comma separated list of years

Environment

CDO_FILE_SUFFIX Set the default file suffix. This suffix will be added to the output file names

instead of the filename extension derived from the file format. Set this variable

to NULL to disable the adding of a file suffix.

Note

This operator needs to open all output files simultaneously. The maximum number of open files depends on the operating system!

Example

Assume there are two monthly mean datasets over a year. The first dataset has 12 timesteps for the year 1985 and the second one for the year 1990. To interpolate the years between 1985 and 1990 month by month use:

cdo intyear,1986,1987,1988,1989 ifile1 ifile2 year

Example result of 'dir year*' for NetCDF datasets:

year1986.nc year1987.nc year1988.nc year1989.nc

Reference manual Transformation

2.13. Transformation

This section contains modules to perform spectral transformations.

Here is a short overview of all operators in this section:

sp2gp	Spectral to gridpoint
$\mathbf{sp2gpl}$	Spectral to gridpoint (linear)
$\mathbf{gp2sp}$	Gridpoint to spectral
$\mathbf{gp2spl}$	Gridpoint to spectral (linear)
sp2sp	Spectral to spectral
dv2uv	Divergence and vorticity to U and V wind
dv2uv dv2uvl	Divergence and vorticity to U and V wind Divergence and vorticity to U and V wind (linear)
	· ·
dv2uvl	Divergence and vorticity to U and V wind (linear)
dv2uvl uv2dv	Divergence and vorticity to U and V wind (linear) U and V wind to divergence and vorticity

Transformation Reference manual

2.13.1. SPECTRAL - Spectral transformation

Synopsis

<operator> ifile ofile
sp2sp,trunc ifile ofile

Description

This module transforms fields on Gaussian grids to spectral coefficients and vice versa.

Operators

sp2gp Spectral to gridpoint

Convert all fields with spectral coefficients to a regular Gaussian grid. The number of latitudes of the resulting Gaussian grid is calculated from the triangular truncation by: $nlat = NINT((trunc * \boxed{3} + 1.)/2.)$

sp2gpl Spectral to gridpoint (linear)

Convert all fields with spectral coefficients to a regular Gaussian grid. The number of latitudes of the resulting Gaussian grid is calculated from the triangular truncation by: nlat = NINT((trunc*2 + 1.)/2.)

Use this operator to convert ERA40 data e.g. from TL159 to N80.

gp2sp Gridpoint to spectral

Convert all Gaussian gridpoint fields to spectral coefficients. The triangular truncation of the resulting spherical harmonics is calculated from the number of latitudes by: $trunc = (nlat * 2 - 1)/\sqrt{3}$

gp2spl Gridpoint to spectral (linear)

Convert all Gaussian gridpoint fields to spectral coefficients. The triangular truncation of the resulting spherical harmonics is calculated from the number of latitudes by: $\text{trunc} = (\text{nlat} * 2 - 1)/\boxed{2}$

Use this operator to convert ERA40 data e.g. from N80 to TL159 instead of T106.

sp2sp Spectral to spectral

Change the triangular truncation of all spectral fields. The operator performs downward conversion by cutting the resolution. Upward conversions are achieved by filling in zeros.

Parameter

trunc INTEGER New spectral resolution

Example

To transform spectral coefficients from T106 to N80 Gaussian grid use:

cdo sp2gp ifile ofile

To transform spectral coefficients from TL159 to N80 Gaussian grid use:

cdo sp2gpl ifile ofile

Reference manual Transformation

2.13.2. WIND - Wind transformation

Synopsis

<operator> ifile ofile

Description

This module converts relative divergence and vorticity to U and V wind and vice versa. Divergence and vorticity are spherical harmonic coefficients in spectral space and U and V are on a regular Gaussian grid. The Gaussian latitudes need to be ordered from north to south.

Operators

dv2uv Divergence and vorticity to U and V wind

Calculate U and V wind on a Gaussian grid from spherical harmonic coefficients of relative divergence and vorticity. The divergence and vorticity need to have the names sd and svo or code numbers 155 and 138. The number of latitudes of the resulting Gaussian grid is calculated from the triangular truncation by:

nlat = NINT((trunc * [3] + 1.)/2.)

dv2uvl Divergence and vorticity to U and V wind (linear)

Calculate U and V wind on a Gaussian grid from spherical harmonic coefficients of relative divergence and vorticity. The divergence and vorticity need to have the names sd and svo or code numbers 155 and 138. The number of latitudes of the resulting Gaussian grid is calculated from the triangular truncation by:

nlat = NINT((trunc * | 2 | + 1.)/2.)

uv2dv U and V wind to divergence and vorticity

Calculate spherical harmonic coefficients of relative divergence and vorticity from U and V wind. The U and V wind need to be on a Gaussian grid and need to have the names u and v or the code numbers 131 and 132. The triangular truncation of the resulting spherical harmonics is calculated from the number of latitudes by:

trunc = (nlat * 2 - 1)/|3|

uv2dvl U and V wind to divergence and vorticity (linear)

Calculate spherical harmonic coefficients of relative divergence and vorticity from U and V wind. The U and V wind need to be on a Gaussian grid and need to have the names u and v or the code numbers 131 and 132. The triangular truncation of the resulting spherical harmonics is calculated from the number of latitudes by:

trunc = (nlat * 2 - 1)/2

dv2ps D and V to velocity potential and stream function

Calculate spherical harmonic coefficients of velocity potential and stream function from spherical harmonic coefficients of relative divergence and vorticity. The divergence and vorticity need to have the names sd and svo or code numbers 155 and 138.

Example

Assume a dataset has at least spherical harmonic coefficients of divergence and vorticity. To transform the spectral divergence and vorticity to U and V wind on a Gaussian grid use:

cdo dv2uv ifile ofile

Import/Export Reference manual

2.14. Import/Export

This section contains modules to import and export data files which can not read or write directly with CDO.

Here is a short overview of all operators in this section:

import_cmsaf Import CM-SAF HDF5 files

import_amsr Import AMSR binary files

input ASCII input

inputsrv SERVICE ASCII input inputext EXTRA ASCII input

outputASCII outputoutputfFormatted outputoutputintInteger output

outputsrvSERVICE ASCII outputoutputextEXTRA ASCII output

outputtab Table output

gmtxyz GMT xyz format

gmtcells GMT multiple segment format

Reference manual Import/Export

2.14.1. IMPORTBINARY - Import binary data sets

Synopsis

```
import_binary ifile ofile
```

Description

This operator imports gridded binary data sets via a GrADS data descriptor file. The GrADS data descriptor file contains a complete description of the binary data as well as instructions on where to find the data and how to read it. The descriptor file is an ASCII file that can be created easily with a text editor. The general contents of a gridded data descriptor file are as follows:

- Filename for the binary data
- Missing or undefined data value
- Mapping between grid coordinates and world coordinates
- Description of variables in the binary data set

A detailed description of the components of a GrADS data descriptor file can be found in [GrADS]. Here is a list of the supported components: BYTESWAPPED, CHSUB, DSET, ENDVARS, FILE-HEADER, HEADERBYTES, OPTIONS, TDEF, TITLE, TRAILERBYTES, UNDEF, VARS, XDEF, XYHEADER, YDEF, ZDEF

Note

Only 32-bit IEEE floats are supported for standard binary files!

Example

To convert a binary data file to NetCDF use:

```
cdo -f nc import_binary ifile.ctl ofile.nc
```

Here is an example of a GrADS data descriptor file:

```
DSET ^ifile.bin
OPTIONS sequential
UNDEF -9e+33
XDEF 360 LINEAR -179.5 1
YDEF 180 LINEAR -89.5 1
ZDEF 1 LINEAR 1 1
TDEF 1 LINEAR 00:00 Z15jun1989 12hr
VARS 1
param 1 99 description of the variable
ENDVARS
```

The binary data file ifile bin contains one parameter on a global 1 degree lon/lat grid written with FORTRAN record length headers (sequential).

Import/Export Reference manual

2.14.2. IMPORTCMSAF - Import CM-SAF HDF5 files

Synopsis

import_cmsaf ifile ofile

Description

This operator imports gridded CM-SAF (Satellite Application Facility on Climate Monitoring) HDF5 files. CM-SAF exploits data from polar-orbiting and geostationary satellites in order to provide climate monitoring products of the following parameters:

Cloud parameters: cloud fraction (CFC), cloud type (CTY), cloud phase (CPH), cloud top height, pressure and temperature (CTH,CTP,CTT), cloud optical thickness (COT), cloud water path (CWP).

Surface radiation components: Surface albedo (SAL); surface incoming (SIS) and net (SNS) shortwave radiation; surface downward (SDL) and outgoing (SOL) longwave radiation, surface net longwave radiation (SNL) and surface radiation budget (SRB).

Top-of-atmosphere radiation components: Incoming (TIS) and reflected (TRS) solar radiative flux at top-of-atmosphere. Emitted thermal radiative flux at top-of-atmosphere (TET).

Water vapour: Vertically integrated water vapour (HTW), layered vertically integrated water vapour and layer mean temperature and relative humidity for 5 layers (HLW), temperature and mixing ratio at 6 pressure levels.

Daily and monthly mean products can be ordered via the CM-SAF web page (www.cmsaf.eu). Products with higher spatial and temporal resolution, i.e. instantaneous swath-based products, are available on request (contact.cmsaf@dwd.de). All products are distributed free-of-charge. More information on the data is available on the CM-SAF homepage (www.cmsaf.eu).

Daily and monthly mean products are provided in equal-area projections. CDO reads the projection parameters from the metadata in the HDF5-headers in order to allow spatial operations like remapping. For spatial operations with instantaneous products on original satellite projection, additional files with arrays of latitudes and longitudes are needed. These can be obtained from CM-SAF together with the data.

Note

To use this operator, it is necessary to build CDO with HDF5 support (version 1.6 or higher). The PROJ.4 library (version 4.6 or higher) is needed for full support of the remapping functionality.

Example

A typical sequence of commands with this operator could look like this:

```
cdo -f nc remapbil,r360x180 -import_cmsaf cmsaf_product.hdf output.nc
```

(bilinear remapping to a predefined global grid with 1 deg resolution and conversion to NetCDF).

If you work with CM-SAF data on original satellite project, an additional file with information on geolocation is required, to perform such spatial operations:

```
cdo -f nc remapbil,r720x360 -setgrid,cmsaf_latlon.h5 -import_cmsaf cmsaf.hdf out.nc
```

Some CM-SAF data are stored as scaled integer values. For some operations, it could be desirable (or necessary) to increase the accuracy of the converted products:

Reference manual Import/Export

2.14.3. IMPORTAMSR - Import AMSR binary files

Synopsis

import_amsr ifile ofile

Description

This operator imports gridded binary AMSR (Advanced Microwave Scanning Radiometer) data. The binary data files are available from the AMSR ftp site (ftp://ftp.ssmi.com/amsre). Each file consists of twelve (daily) or five (averaged) 0.25 x 0.25 degree grid (1440,720) byte maps. For daily files, six daytime maps in the following order, Time (UTC), Sea Surface Temperature (SST), 10 meter Surface Wind Speed (WSPD), Atmospheric Water Vapor (VAPOR), Cloud Liquid Water (CLOUD), and Rain Rate (RAIN), are followed by six nighttime maps in the same order. Time-Averaged files contain just the geophysical layers in the same order [SST, WSPD, VAPOR, CLOUD, RAIN]. More information to the data is available on the AMSR homepage http://www.remss.com/amsr.

Example

To convert monthly binary AMSR files to NetCDF use:

cdo -f nc amsre_yyyymmv5 amsre_yyyymmv5.nc

Import/Export Reference manual

2.14.4. INPUT - Formatted input

Synopsis

input,grid[,zaxis] ofile
inputsrv ofile
inputext ofile

Description

This module reads time series of one 2D variable from standard input. All input fields need to have the same horizontal grid. The format of the input depends on the chosen operator.

Operators

input ASCII input

Reads fields with ASCII numbers from standard input and stores them in ofile. The numbers read are exactly that ones which are written out by the output operator.

inputsrv SERVICE ASCII input

Reads fields with ASCII numbers from standard input and stores them in ofile. Each field should have a header of 8 integers (SERVICE likely). The numbers that are read

are exactly that ones which are written out by the outputsry operator.

inputext EXTRA ASCII input

Read fields with ASCII numbers from standard input and stores them in ofile. Each field should have header of 4 integers (EXTRA likely). The numbers read are exactly

that ones which are written out by the outputext operator.

Parameter

grid STRING Grid description file or name

zaxis STRING Z-axis description file

Example

Assume an ASCII dataset contains a field on a global regular grid with 32 longitudes and 16 latitudes (512 elements). To create a GRIB1 dataset from the ASCII dataset use:

cdo -f grb input,r32x16 ofile.grb < my_ascii_data</pre>

Reference manual Import/Export

2.14.5. OUTPUT - Formatted output

Synopsis

output ifiles

outputf,format[,nelem] ifiles

outputint ifiles
outputsrv ifiles
outputext ifiles

Description

This module prints all values of all input datasets to standard output. All input fields need to have the same horizontal grid. All input files need to have the same structure with the same variables. The format of the output depends on the chosen operator.

Operators

output ASCII output

Prints all values to standard output. Each row has 6 elements with the C-style format

"%13.6g".

outputf Formatted output

Prints all values to standard output. The format and number of elements for each row have to be specified by the parameters *format* and *nelem*. The default for *nelem*

is 1.

outputint Integer output

Prints all values rounded to the nearest integer to standard output.

outputsrv SERVICE ASCII output

Prints all values to standard output. Each field with a header of 8 integers (SERVICE

likely).

outputext EXTRA ASCII output

Prints all values to standard output. Each field with a header of 4 integers (EXTRA

likely).

Parameter

format STRING C-style format for one element (e.g. %13.6g)

nelem INTEGER Number of elements for each row (default: nelem = 1)

Example

To print all field elements of a dataset formatted with "%8.4g" and 8 values per line use:

cdo outputf,%8.4g,8 ifile

Example result of a dataset with one field on 64 grid points:

261.7	262	257.8	252.5	248.8	247.7	246.3	246.1
250.6	252.6	253.9	254.8	252	246.6	249.7	257.9
273.4	266.2	259.8	261.6	257.2	253.4	251	263.7
267.5	267.4	272.2	266.7	259.6	255.2	272.9	277.1
275.3	275.5	276.4	278.4	282	269.6	278.7	279.5
282.3	284.5	280.3	280.3	280	281.5	284.7	283.6
292.9	290.5	293.9	292.6	292.7	292.8	294.1	293.6
293.8	292.6	291.2	292.6	293.2	292.8	291	291.2

Import/Export Reference manual

2.14.6. OUTPUTTAB - Table output

Synopsis

outputtab, params ifiles ofile

Description

This operator prints a table of all input datasets to standard output. if iles is an arbitrary number of input files. All input files need to have the same structure with the same variables on different timesteps. All input fields need to have the same horizontal grid.

The contents of the table depends on the chosen paramters. The format of each table parameter is keyname[:len]. len is the optional length of a table entry. Here is a list of all valid keynames:

Keyname	Type	Description		
value	FLOAT	Value of the variable [len:8]		
name	STRING	Name of the variable [len:8]		
param	STRING	Parameter ID (GRIB1: code[.tabnum]; GRIB2: num[.cat[.dis]]) [len:11]		
code	INTEGER	Code number [len:4]		
lon	FLOAT	Longitude coordinate [len:6]		
lat	FLOAT	Latitude coordinate [len:6]		
lev	FLOAT	Vertical level [len:6]		
xind	INTEGER	Grid x index [len:4]		
yind	INTEGER	Grid y index [len:4]		
timestep	INTEGER	Timestep number [len:6]		
date	STRING	Date (format YYYY-MM-DD) [len:10]		
time	STRING	Time (format hh:mm:ss) [len:8]		
year	INTEGER	Year [len:5]		
month	INTEGER	Month [len:2]		
day	INTEGER	Day [len:2]		
nohead	INTEGER	Disable output of header line		

Parameter

params STRING Comma separated list of keynames, one for each column of the table

Example

To print a table with name, date, lon, lat and value information use:

```
cdo outputtab, name, date, lon, lat, value ifile
```

Here is an example output of a time series with the yearly mean temperatur at lon=10/lat=53.5:

7	# name	e date	lon	lat	value
	tsurt	1991-12-31	10	53.5	8.83903
	tsurt	1992-12-31	10	53.5	8.17439
	tsurt	1993-12-31	10	53.5	7.90489
	tsurt	1994-12-31	10	53.5	10.0216
	tsurt	1995-12-31	10	53.5	9.07798

Reference manual Import/Export

2.14.7. OUTPUTGMT - GMT output

Synopsis

< operator > ifile

Description

This module prints the first field of the input dataset to standard output. The output can be used to generate 2D Lon/Lat plots with [GMT]. The format of the output depends on the chosen operator.

Operators

gmtxyz GMT xyz format

The operator exports the first field to the GMT xyz ASCII format. The output can be

used to create contour plots with the GMT module pscontour.

gmtcells GMT multiple segment format

The operator exports the first field to the GMT multiple segment ASCII format. The

output can be used to create shaded gridfill plots with the GMT module psxy.

Example

1) GMT shaded contour plot of a global temperature field with a resolution of 4 degree. The contour interval is 3 with a rainbow color table.

```
cdo gmtxyz temp > data.gmt
makecpt -T213/318/3 -Crainbow > gmt.cpt
pscontour -K -JQ0/10i -Rd -I -Cgmt.cpt data.gmt > gmtplot.ps
pscoast -O -J -R -Dc -W -B40g20 >> gmtplot.ps
```


2) GMT shaded gridfill plot of a global temperature field with a resolution of 4 degree. The contour interval is 3 with a rainbow color table.

Import/Export Reference manual

```
cdo gmtcells temp > data.gmt
makecpt -T213/318/3 -Crainbow > gmt.cpt
psxy -K -JQ0/10i -Rd -L -Cgmt.cpt -m data.gmt > gmtplot.ps
pscoast -O -J -R -Dc -W -B40g20 >> gmtplot.ps
```


Reference manual Miscellaneous

2.15. Miscellaneous

This section contains miscellaneous modules which do not fit to the other sections before.

Here is a short overview of all operators in this section:

gradsdes GrADS data descriptor file

after ECHAM standard post processor

bandpassBandpass filteringlowpassLowpass filteringhighpassHighpass filtering

gridarea Grid cell area Grid cell weights

smoothsmooth grid pointssmooth99 point smoothing

setvals Set list of old values to new values

setrtoc Set range to constant

setrtoc2 Set range to constant others to constant2

timsort Sort over the time

const Create a constant field

random Create a field with random numbers topo Create a field with topography

for Create a time series

stdatm Create values for pressure and temperature for hydrostatic atmosphere

rotuvb Backward rotation

mastrfu Mass stream function

sealevelpressure Sea level pressure

adisit Potential temperature to in-situ temperatureadipot In-situ temperature to potential temperature

rhopot Calculates potential density

histcountHistogram counthistsumHistogram sumhistmeanHistogram meanhistfreqHistogram frequency

sethalo Set the left and right bounds of a field

wct Windchill temperature

fdns Frost days where no snow index per time period

strwin Strong wind days index per time period

strbre Strong breeze days index per time period

strgal Strong gale days index per time period

hurr Hurricane days index per time period

Miscellaneous Reference manual

2.15.1. GRADSDES - GrADS data descriptor file

Synopsis

```
gradsdes[,mapversion] ifile
```

Description

Creates a GrADS data descriptor file. Supported file formats are GRIB1, NetCDF, SERVICE, EXTRA and IEG. For GRIB1 files the GrADS map file is also generated. For SERVICE and EXTRA files the grid have to be specified with the CDO option '-g <grid>'. This module takes ifile in order to create filenames for the descriptor (ifile.ctl) and the map (ifile.gmp) file.

Parameter

mapversion

INTEGER Format version of the GrADS map file for GRIB1 datasets. Use 1 for a machine specific version 1 GrADS map file, 2 for a machine independent version 2 GrADS map file and 4 to support GRIB files >2GB. A version 2 map file can be used only with GrADS version 1.8 or newer. A version 4 map file can be used only with GrADS version 2.0 or newer. The default is 4 for files >2GB, otherwise 2.

Example

To create a GrADS data descriptor file from a GRIB1 dataset use:

```
cdo gradsdes ifile.grb
```

This will create a descriptor file with the name ifile.ctl and the map file ifile.gmp.

Assumed the input GRIB1 dataset has 3 variables over 12 timesteps on a Gaussian N16 grid. The contents of the resulting GrADS data description file is approximately:

```
^ifile.grb
DSET
DTYPE GRIB
       `ifile.gmp
INDEX
XDEF 64 LINEAR 0.000000 5.625000
YDEF 32 LEVELS -85.761 -80.269 -74.745 -69.213 -63.679 -58.143
                -52.607 -47.070 -41.532 -35.995 -30.458 -24.920
               -19.382 -13.844
                                 -8.307
                                         -2.769
                                                  2.769
                                                          8.307
                        19.382
                13.844
                                24.920
                                         30.458
                                                 35.995
                                                         41.532
                47.070
                        52.607
                                58.143
                                         63.679
                                                 69.213
                80.269
                        85.761
ZDEF 4 LEVELS 925 850 500 200
TDEF 12 LINEAR 12:00 Z1jan1987 1mo
TITLE ifile.grb T21 grid
OPTIONS yrev
UNDEF -9e+33
VARS 3
            129,1,0 surface geopotential (orography)
geosp
                                                        [m^2/s^2]
            130,99,0 temperature [K]
t
tslm1
           139,1,0 surface temperature of land
ENDVARS
```

Reference manual Miscellaneous

2.15.2. AFTERBURNER - ECHAM standard post processor

Synopsis

```
after[,vct] ifiles ofile
```

Description

The "afterburner" is the standard post processor for [ECHAM] data which provides the following operations:

- Extract specified variables and levels
- Compute derived variables
- Transform spectral data to Gaussian grid representation
- Vertical interpolation to pressure levels
- Compute temporal means

This operator reads selection parameters as namelist from stdin. Use the UNIX redirection "<namelistfile" to read the namelist from file.

Namelist

Namelist parameter and there defaults:

```
TYPE=0, CODE=-1, LEVEL=-1, INTERVAL=0, MEAN=0, EXTRAPOLATE=0
```

TYPE controls the transformation and vertical interpolation. Transforming spectral data to Gaussian grid representation and vertical interpolation to pressure levels are performed in a chain of steps. The TYPE parameter may be used to stop the chain at a certain step. Valid values are:

```
0 : Hybrid
TYPE
                       level spectral coefficients
TYPE
     = 10 : Hybrid
                       level fourier coefficients
TYPE
      = 11 : Hybrid
                       level zonal mean sections
TYPE
      = 20 : Hybrid
                       level gauss grids
      = 30 : Pressure level gauss grids
TYPE
      = 40
          : Pressure level fourier
TYPE
      = 41 : Pressure level zonal mean sections
TYPE
      = 50 : Pressure level spectral coefficients
TYPE
      = 60
           : Pressure level fourier
                                      coefficients
TYPE
      = 61
           : Pressure level zonal mean sections
TYPE
      = 70 : Pressure level
                            gauss grids
```

Vorticity, divergence, streamfunction and velocity potential need special treatment in the vertical transformation. They are not available as types 30, 40 and 41. If you select one of these combinations, type is automatically switched to the equivalent types 70, 60 and 61. The type of all other variables will be switched too, because the type is a global parameter.

CODE selects the variables by the ECHAM GRIB1 code number (1-255). The default value **-1** processes all detected codes. Derived variables computed by the afterburner:

Miscellaneous Reference manual

Code	Name	Longname	Level	Needed Codes/Computation
34	low_cld	low cloud	single	223 on modellevel
35	mid_cld	mid cloud	single	223 on modellevel
36	hih_cld	high cloud	single	223 on modellevel
131	u	u-velocity	atm (ml+pl)	138, 155
132	v	v-velocity	atm (ml+pl)	138, 155
135	omega	vertical velocity	atm (ml+pl)	138, 152, 155
148	stream	streamfunction	atm (ml+pl)	131, 132
149	velopot	velocity potential	atm (ml+pl)	131, 132
151	slp	mean sea level pressure	surface	129, 130, 152
156	geopoth	geopotential height	atm (ml+pl)	129, 130, 133, 152
157	rhumidity	relative humidity	atm (ml+pl)	130, 133, 152
189	sclfs	surface solar cloud forcing	surface	176-185
190	tclfs	surface thermal cloud forcing	surface	177-186
191	sclf0	top solar cloud forcing	surface	178-187
192	tclf0	top thermal cloud forcing	surface	179-188
259	windspeed	windspeed	atm (ml+pl)	$\operatorname{sqrt}(u^*u+v^*v)$
260	precip	total precipitation	surface	142+143

LEVEL selects the hybrid or pressure levels. The allowed values depends on the parameter **TYPE**. The default value **-1** processes all detected levels.

INTERVAL selects the processing interval. The default value 0 process data on monthly intervals. INTERVAL=1 sets the interval to daily.

MEAN=1 compute and write monthly or daily mean fields. The default value 0 writes out all timesteps.

EXTRAPOLATE=0 switch of the extrapolation of missing values during the interpolation from model to pressure level (only available with MEAN=0 and TYPE=30). The default value 1 extrapolate missing values.

Possible combinations of TYPE, CODE and MEAN:

TYPE	CODE	MEAN
0/10/11	130 temperature	0
0/10/11	131 u-velocity	0
0/10/11	132 v-velocity	0
0/10/11	133 specific humidity	0
0/10/11	138 vorticity	0
0/10/11	148 streamfunction	0
0/10/11	149 velocity potential	0
0/10/11	152 LnPs	0
0/10/11	155 divergence	0
>11	all codes	0/1

Parameter

vct STRING File with VCT in ASCII format

Example

To interpolate ECHAM hybrid model level data to pressure levels of 925, 850, 500 and 200 hPa, use:

Reference manual Miscellaneous

cdo after ifile ofile << EON
 TYPE=30 LEVEL=92500,85000,50000,20000
EON</pre>

Miscellaneous Reference manual

2.15.3. FILTER - Time series filtering

Synopsis

bandpass,fmin,fmax ifile ofile
lowpass,fmax ifile ofile
highpass,fmin ifile ofile

Description

This module takes the time series for each gridpoint in ifile and (fast fourier) transforms it into the frequency domain. According to the particular operator and its parameters certain frequencies are filtered (set to zero) in the frequency domain and the spectrum is (inverse fast fourier) transformed back into the time domain. To determine the frequency the time-axis of ifile is used. (Data should have a constant time increment since this assumption applies for transformation. However, the time increment has to be different from zero.) All frequencies given as parameter are interpreted per year. This is done by the assumption of a 365-day calendar. Consequently if you want to perform multiyear-filtering accurately you have to delete the 29th of February. If your ifile has a 360 year calendar the frequency parameters fmin respectively fmax should be multiplied with a factor of 360/365 in order to obtain accurate results. For the set up of a frequency filter the frequency parameters have to be adjusted to a frequency in the data. Here fmin is rounded down and fmax is always rounded up. Consequently it is possible to use bandpass with fmin=fmax without getting a zero-field for of ile. Hints for efficient usage:

- to get reliable results the time-series has to be detrended (cdo detrend)
- the lowest frequency greater zero that can be contained in ifile is 1/(N*dT),
- the greatest frequency is 1/(2dT) (Nyquist frequency),

with N the number of timesteps and dT the time increment of ifile in years.

Operators

bandpass Bandpass filtering

Bandpass filtering (pass for frequencies between fmin and fmax). Suppresses all vari-

ability outside the frequency range specified by [fmin,fmax].

lowpass Lowpass filtering

Lowpass filtering (pass for frequencies lower than fmax). Suppresses all variability

with frequencies greater than fmax.

highpass Highpass filtering

Highpass filtering (pass for frequencies greater than fmin). Suppresses all variabilty

with frequencies lower than fmin.

Parameter

fmin FLOAT Minimum frequency per year that passes the filter.fmax FLOAT Maximum frequency per year that passes the filter.

Example

Now assume your data are still hourly for a time period of 5 years but with a 365/366-day- calendar and you want to suppress the variability on timescales greater or equal to one year (we suggest here to use a number x bigger than one (e.g. x=1.5) since there will be dominant frequencies around the peak (if there is one) as well due to the issue that the time series is not of infinite length). Therefor you can use the following:

Reference manual Miscellaneous

```
cdo highpass,x -del29feb ifile ofile
```

Accordingly you might use the following to suppress variability on timescales shorter than one year:

```
cdo lowpass,1 -del29feb ifile ofile
```

Finally you might be interested in 2-year variability. If you want to suppress the seasonal cycle as well as say the longer cycles in climate system you might use

```
cdo bandpass,x,y -del29feb ifile ofile
```

with x <= 0.5 and y >= 0.5.

2.15.4. GRIDCELL - Grid cell quantities

Synopsis

< operator > ifile ofile

Description

This module reads the grid cell area of the first grid from the input stream. If the grid cell area is missing it will be computed from the grid description. Depending on the chosen operator the grid cell area or weights are written to the output stream.

Operators

gridarea Grid cell area

Writes the grid cell area to the output stream. If the grid cell area have to be

computed it is scaled with the earth radius to square meters.

gridweights Grid cell weights

Writes the grid cell area weights to the output stream.

Environment

PLANET_RADIUS This variable is used to scale the computed grid cell areas to square meters. By

default PLANET_RADIUS is set to an earth radius of 6371000 meter.

Miscellaneous Reference manual

2.15.5. SMOOTH - Smooth grid points

Synopsis

```
smooth[,options] ifile ofile
smooth9 ifile ofile
```

Description

Smooth all grid points of a horizontal grid. Options is a comma separated list of "key=value" pairs with optional parameters.

Operators

smooth Smooth grid points

Performs a N point smoothing on all input fields. The number of points used depend on the search radius (radius) and the maximum number of points (maxpoints). Per default all points within the search radius of 1degree are used. The weights for the points depend on the form of the curve and the distance. The implemented form of the curve is linear with constant default weights of 0.25 at distance 0 (weight0) and at the search radius (weightR).

smooth9 9 point smoothing

Performs a 9 point smoothing on all fields with a quadrilateral curvilinear grid. The result at each grid point is a weighted average of the grid point plus the 8 surrounding points. The center point receives a weight of 1.0, the points at each side and above and below receive a weight of 0.5, and corner points receive a weight of 0.3. All 9 points are multiplied by their weights and summed, then divided by the total weight to obtain the smoothed value. Any missing data points are not included in the sum; points beyond the grid boundary are considered to be missing. Thus the final result may be the result of an averaging with less than 9 points.

Parameter

nsmooth	INTEGER	Number of times to smooth, default $nsmooth=1$
radius	STRING	Search radius, default radius=1deg (units: deg, rad, km, m)
maxpoints	INTEGER	Maximum number of points, default maxpoints= 2147483647
form	STRING	Form of the curve, default form=linear
weight0	FLOAT	Weight at distance 0, default weight 0=0.25 $$
weightR	FLOAT	Weight at the search radius, default weight R=0.25 $$

2.15.6. REPLACEVALUES - Replace variable values

Synopsis

```
setvals,oldval,newval[,...] ifile ofile
setrtoc,rmin,rmax,c ifile ofile
setrtoc2,rmin,rmax,c,c2 ifile ofile
```

Description

This module replaces old variable values with new values, depending on the operator.

Operators

setvals Set list of old values to new values

Supply a list of n pairs of old and new values.

setrtoc Set range to constant

 $o(t,x) = \left\{ \begin{array}{ll} \mathbf{c} & \text{if } i(t,x) \geq r\min \wedge i(t,x) \leq r\max \\ i(t,x) & \text{if } i(t,x) < r\min \vee i(t,x) > r\max \end{array} \right.$

setrtoc2 Set range to constant others to constant2

 $o(t,x) = \begin{cases} c & \text{if } i(t,x) \ge r\min \land i(t,x) \le r\max \\ c2 & \text{if } i(t,x) < r\min \lor i(t,x) > r\max \end{cases}$

Parameter

oldval,newval,...FLOATPairs of old and new valuesrminFLOATLower boundrmaxFLOATUpper boundcFLOATNew value - inside rangec2FLOATNew value - outside range

2.15.7. TIMSORT - Timsort

Synopsis

timsort ifile ofile

Description

Sorts the elements in ascending order over all timesteps for every field position. After sorting it is:

$$o(t_1, x) \le o(t_2, x) \qquad \forall (t_1 < t_2), x$$

Example

To sort all field elements of a dataset over all timesteps use:

cdo timsort ifile ofile

2.15.8. VARGEN - Generate a field

Synopsis

```
const,const,grid ofile
random,grid[,seed] ofile
topo[,grid] ofile
for,start,end[,inc] ofile
stdatm,levels ofile
```

Description

Generates a dataset with one or more fields

Operators

const Create a constant field

Creates a constant field. All field elements of the grid have the same value.

random Create a field with random numbers

Creates a field with rectangularly distributed random numbers in the interval [0,1].

topo Create a field with topography

Creates a field with topography data, per default on a global half degree grid.

for Create a time series

Creates a time series with field size 1 and field elements beginning with a start value in

time step 1 which is increased from one time step to the next.

stdatm Create values for pressure and temperature for hydrostatic atmosphere

Creates pressure and temperature values for the given list of vertical levels. The formu-

lars are:

$$P(z) = P_0 \exp\left(-\frac{g}{R} \frac{H}{T_0} \log\left(\frac{\exp\left(\frac{z}{H}\right)T_0 + \Delta T}{T_0 + \Delta T}\right)\right)$$

$$T(z) = T_0 + \Delta T \exp\left(-\frac{z}{H}\right)$$

with the following constants

 $T_0 = 213$ K : offset to get a surface temperature of 288K

 $\Delta T = 75$ K : Temperature lapse rate for 10Km

 $P_0 = 1013.25 \text{hPa}$: surface pressure H = 10000.0 m : scale height $g = 9.80665 \frac{\text{m}}{\text{S}^2}$: earth gravity

 $R = 287.05 \frac{\text{J}}{\text{kgK}}$: gas constant for air

This is the solution for the hydrostatic equations and is only valid for the troposphere (constant positive lapse rate). The temperature increase in the stratosphere and other effects of the upper atmosphere are not taken into account.

Parameter

const FLO	AT Constan	t
seed INTE	EGER The seed	d for a new sequence of pseudo-random numbers [default: 1]
grid STR	ING Target g	rid description file or name
start FLO	AT Start val	lue of the loop
end FLO	AT End valu	ne of the loop
inc FLO	AT Incremen	nt of the loop [default: 1]
levels FLO	AT Target le	evels in metre above surface

Example

To create a standard atmosphere dataset on a given horizontal grid:

cdo enlarge,gridfile -stdatm,10000,8000,5000,3000,2000,1000,500,200,0 ofile

2.15.9. ROTUVB - Rotation

Synopsis

```
rotuvb,u,v,... ifile ofile
```

Description

This is a special operator for datsets with wind components on a rotated grid, e.g. data from the regional model REMO. It performs a backward transformation of velocity components U and V from a rotated spherical system to a geographical system.

Parameter

u,v,... STRING Pairs of zonal and meridional velocity components (use variable names or code numbers)

Example

To transform the u and v velocity of a dataset from a rotated spherical system to a geographical system use:

cdo rotuvb,u,v ifile ofile

2.15.10. MASTRFU - Mass stream function

Synopsis

```
mastrfu ifile ofile
```

Description

This is a special operator for the post processing of the atmospheric general circulation model ECHAM. It computes the mass stream function (code=272). The input dataset have to be a zonal mean of v-velocity [m/s] (code=132) on pressure levels.

Example

To compute the mass stream function from a zonal mean v-velocity dataset use:

```
cdo mastrfu ifile ofile
```

2.15.11. DERIVEPAR - Sea level pressure

Synopsis

```
sealevelpressure ifile ofile
```

Description

This operator computes the sea level pressure (air_pressure_at_sea_level). Required input fields are surface_air_pressure, surface_geopotential and air_temperature on hybrid sigma pressure levels.

2.15.12. ADISIT - Potential temperature to in-situ temperature and vice versa

Synopsis

```
adisit[,pressure] ifile ofile
adipot ifile ofile
```

Description

Operators

adisit

Potential temperature to in-situ temperature

This is a special operator for the post processing of the ocean and sea ice model output. It converts potential temperature adiabatically to in-situ temperature to(t, s, p). Required input fields are sea water potential temperature (name=tho; code=2) and sea water salinity (name=sao; code=5). Pressure is calculated from the level information or can be specified by the optional parameter. Output fields are sea water temperature (name=to; code=20) and sea water salinity (name=s; code=5).

adipot

In-situ temperature to potential temperature

This is a special operator for the post processing of the ocean and sea ice model outpu. It converts in-situ temperature to potential temperature tho(to, s, p). Required input fields are sea water in-situ temperature (name=t; code=2) and sea water salinity (name=sao,s; code=5). Pressure is calculated from the level information or can be specified by the optional parameter. Output fields are sea water temperature (name=tho; code=2) and sea water salinity (name=s; code=5).

Parameter

pressure

FLOAT

Pressure in bar (constant value assigned to all levels)

2.15.13. RHOPOT - Calculates potential density

Synopsis

```
rhopot[,pressure] ifile ofile
```

Description

This is a special operator for the post processing of the ocean and sea ice model MPIOM. It calculates the sea water potential density (name=rhopoto; code=18). Required input fields are sea water in-situ temperature (name=to; code=20) and sea water salinity (name=sao; code=5). Pressure is calculated from the level information or can be specified by the optional parameter.

Parameter

pressure FLOAT

Pressure in bar (constant value assigned to all levels)

Example

To compute the sea water potential density from the potential temperature use this operator in combination with adisit:

cdo rhopot -adisit ifile ofile

2.15.14. HISTOGRAM - Histogram

Synopsis

<operator>,bounds ifile ofile

Description

This module creates bins for a histogram of the input data. The bins have to be adjacent and have non-overlapping intervals. The user has to define the bounds of the bins. The first value is the lower bound and the second value the upper bound of the first bin. The bounds of the second bin are defined by the second and third value, aso. Only 2-dimensional input fields are allowed. The ouput file contains one vertical level for each of the bins requested.

Operators

histcount Histogram count

Number of elements in the bin range.

histsum Histogram sum

Sum of elements in the bin range.

histmean Histogram mean

Mean of elements in the bin range.

histfreq Histogram frequency

Relative frequency of elements in the bin range.

Parameter

bounds FLOAT Comma separated list of the bin bounds (-inf and inf valid)

2.15.15. SETHALO - Set the left and right bounds of a field

Synopsis

sethalo, lhalo, rhalo ifile ofile

Description

This operator sets the left and right bounds of the rectangularly understood fields. Positive numbers of the parameter lhalo enlarges the left bound by the given number of columns from the right bound. The parameter rhalo does the similar for the right bound. Negative numbers of the parameter lhalo/rhalo can be used to remove the given number of columns of the left and right bounds.

Parameter

lhalo INTEGER Left halorhalo INTEGER Right halo

2.15.16. WCT - Windchill temperature

Synopsis

wct ifile1 ifile2 ofile

Description

Let ifile1 and ifile2 be time series of temperature and wind speed records, then a corresponding time series of resulting windchill temperatures is written to ofile. The wind chill temperature calculation is only valid for a temperature of $T \le 33$ °C and a wind speed of $v \ge 1.39$ m/s. Whenever these conditions are not satisfied, a missing value is written to ofile. Note that temperature and wind speed records have to be given in units of °C and m/s, respectively.

2.15.17. FDNS - Frost days where no snow index per time period

Synopsis

fdns ifile1 ifile2 ofile

Description

Let ifile 1 be a time series of the daily minimum temperature TN and ifile 2 be a corresponding series of daily surface snow amounts. Then the number of days where TN < 0 °C and the surface snow amount is less than 1 cm is counted. The temperature TN have to be given in units of Kelvin. The date information of a timestep in ofile is the date of the last contributing timestep in ifile.

2.15.18. STRWIN - Strong wind days index per time period

Synopsis

 \mathbf{strwin}/v ifile ofile

Description

Let ifile be a time series of the daily maximum horizontal wind speed VX, then the number of days where VX > v is counted. The horizontal wind speed v is an optional parameter with default v = 10.5 m/s. A further output variable is the maximum number of consecutive days with maximum wind speed greater than or equal to v. Note that both VX and v have to be given in units of m/s. Also note that the horizontal wind speed is defined as the square root of the sum of squares of the zonal and meridional wind speeds. The date information of a timestep in ofile is the date of the last contributing timestep in ifile.

Parameter

v FLOAT Horizontal wind speed threshold (m/s, default v = 10.5 m/s)

2.15.19. STRBRE - Strong breeze days index per time period

Synopsis

strbre ifile ofile

Description

Let ifile be a time series of the daily maximum horizontal wind speed VX, then the number of days where VX is greater than or equal to 10.5 m/s is counted. A further output variable is the maximum number of consecutive days with maximum wind speed greater than or equal to 10.5 m/s. Note that VX is defined as the square root of the sum of squares of the zonal and meridional wind speeds and have to be given in units of m/s. The date information of a timestep in ofile is the date of the last contributing timestep in ifile.

2.15.20. STRGAL - Strong gale days index per time period

Synopsis

strgal ifile ofile

Description

Let ifile be a time series of the daily maximum horizontal wind speed VX, then the number of days where VX is greater than or equal to 20.5 m/s is counted. A further output variable is the maximum number of consecutive days with maximum wind speed greater than or equal to 20.5 m/s. Note that VX is defined as the square root of the sum of square of the zonal and meridional wind speeds and have to be given in units of m/s. The date information of a timestep in ofile is the date of the last contributing timestep in ifile.

2.15.21. HURR - Hurricane days index per time period

Synopsis

hurr ifile ofile

Description

Let ifile be a time series of the daily maximum horizontal wind speed VX, then the number of days where VX is greater than or equal to 32.5 m/s is counted. A further output variable is the maximum number of consecutive days with maximum wind speed greater than or equal to 32.5 m/s. Note that VX is defined as the square root of the sum of squares of the zonal and meridional wind speeds and have to be given in units of m/s. The date information of a timestep in ofile is the date of the last contributing timestep in ifile.

Bibliography

```
[CDI]
    Climate Data Interface, from the Max Planck Institute for Meteorologie
[CM-SAF]
    Satellite Application Facility on Climate Monitoring, from the German Weather Service (Deutscher
    Wetterdienst, DWD)
[ECHAM]
    The atmospheric general circulation model ECHAM5, from the Max Planck Institute for Meteorologie
    The Generic Mapping Tool, from the School of Ocean and Earth Science and Technology (SOEST)
[GrADS]
    Grid Analysis and Display System, from the Center for Ocean-Land-Atmosphere Studies (COLA)
    GRIB version 1, from the World Meteorological Organisation (WMO)
[GRIBAPI]
    GRIB API decoding/encoding, from the European Centre for Medium-Range Weather Forecasts
    (ECMWF)
    HDF version 5, from the HDF Group
[INTERA]
    INTERA Software Package, from the Max Planck Institute for Meteorologie
    Magics Software Package, from the European Centre for Medium-Range Weather Forecasts (ECMWF)
[MPIOM]
    Ocean and sea ice model, from the Max Planck Institute for Meteorologie
[NetCDF]
    NetCDF Software Package, from the UNIDATA Program Center of the University Corporation for
    Atmospheric Research
[PINGO]
    The PINGO package, from the Model & Data group at the Max Planck Institute for Meteorologie
    Regional Model, from the Max Planck Institute for Meteorologie
[Peisendorfer]
    Rudolph W. Peisendorfer: Principal Component Analysis, Elsevier (1988)
    Cartographic Projections Library, originally written by Gerald Evenden then of the USGS.
[SCRIP]
    SCRIP Software Package, from the Los Alamos National Laboratory
    Szip compression software, developed at University of New Mexico.
```

Bibliography Bibliography

[vonStorch]

Hans von Storch, Walter Zwiers: Statistical Analysis in Climate Research, Cambridge University Press (1999)

 $[{\rm YAC}]$ ${\rm YAC}$ - Yet Another Coupler Software Package, from DKRZ and MPI for Meteorologie

A. Environment Variables

The following table describes the environment variables that affect ${\bf CDO}.$

Variable name	Default	Description
CDO_FILE_SUFFIX	None	Default file suffix. This suffix will be added to the output file
		name instead of the filename extension derived from the file
		format. NULL will disable the adding of a file suffix.
CDO_HISTORY_INFO	1	Append NetCDF global attribute histroy
CDO_PCTL_NBINS	101	Number of histogram bins.
CDO_RESET_HISTORY	0	Set to 1 to reset the NetCDF history global attribute.
CDO_REMAP_NORM	fracarea	Choose the normalization for the conservative interpolation
CDO_GRIDSEARCH_RADIUS	180	Grid search radius in degree. Used by the operators
		setmisstonn, remapdis and remapnn.
CDO_TIMESTAT_DATE	None	Set target timestamp of a time statistic operator to the "first",
		"middle", "midhigh" or "last" contributing source timestep.
CDO_USE_FFTW	1	Set to 0 to switch off usage of FFTW. Used in the Filter module.
CDO_VERSION_INFO	1	Set to 0 to disable NetCDF global attribute CDO

B. Parallelized operators

Some of the **CDO** operators are parallelized with OpenMP. To use **CDO** with multiple OpenMP threads, you have to set the number of threads with the option '-P'. Here is an example to distribute the bilinear interpolation on 8 OpenMP threads:

cdo -P 8 remapbil, targetgrid ifile ofile

The following **CDO** operators are parallelized with OpenMP:

Module	Operator	Description
Detrend	detrend	Detrend
Ensstat	ensmin	Ensemble minimum
Ensstat	ensmax	Ensemble maximum
Ensstat	enssum	Ensemble sum
Ensstat	ensmean	Ensemble mean
Ensstat	ensavg	Ensemble average
Ensstat	ensvar	Ensemble variance
Ensstat	ensstd	Ensemble standard deviation
Ensstat	enspctl	Ensemble percentiles
Filter	bandpass	Bandpass filtering
Filter	lowpass	Lowpass filtering
Filter	highpass	Highpass filtering
Fourier	fourier	Fourier transformation
Genweights	genbil	Generate bilinear interpolation weights
Genweights	genbic	Generate bicubic interpolation weights
Genweights	gendis	Generate distance-weighted average remap weights
Genweights	gennn	Generate nearest neighbor remap weights
Genweights	gencon	Generate 1st order conservative remap weights
Genweights	gencon2	Generate 2nd order conservative remap weights
Genweights	genlaf	Generate largest area fraction remap weights
Gridboxstat	gridboxmin	Gridbox minimum
Gridboxstat	gridboxmax	Gridbox maximum
Gridboxstat	gridboxsum	Gridbox sum
Gridboxstat	gridboxmean	Gridbox mean
Gridboxstat	gridboxavg	Gridbox average
Gridboxstat	gridboxvar	Gridbox variance
Gridboxstat	gridboxstd	Gridbox standard deviation
Remapeta	remapeta	Remap vertical hybrid level
Remap	remapbil	Bilinear interpolation
Remap	remapbic	Bicubic interpolation
Remap	remapdis	Distance-weighted average remapping
Remap	remapnn	Nearest neighbor remapping
Remap	remapcon	First order conservative remapping
Remap	remapcon2	Second order conservative remapping
Remap	remaplaf	Largest area fraction remapping

C. Standard name table

The following CF standard names are supported by $\boldsymbol{\mathsf{CDO}}.$

CF standard name	Units	GRIB 1 code	variable name
surface_geopotential	m2 s-2	129	geosp
air_temperature	K	130	ta
specific_humidity	1	133	hus
surface_air_pressure	Pa	134	aps
air_pressure_at_sea_level	Pa	151	psl
geopotential_height	m	156	zg

D. Grid description examples

D.1. Example of a curvilinear grid description

Here is an example for the **CDO** description of a curvilinear grid. xvals/yvals describe the positions of the 6x5 quadrilateral grid cells. The first 4 values of xbounds/ybounds are the corners of the first grid cell.

```
= curvilinear
gridsize
            = 30
            = 6
xsize
ysize
            = 5
                                0
                                     11
                                            21
                                                  30
                                                       -25
                                                              -13
                                                                       0
                                                                            13
                 -21
                       -11
xvals
                  ^{25}
                        36
                             -31
                                    -16
                                             0
                                                  16
                                                         31
                                                               43
                                                                     -38
                                                                           -21
                        21
                                     52
                                                 -30
                                                               30
                                                                     51
                              38
                                           -51
xbounds
                       -14
                              -17
                                    -28
                                                 -14
                                                         -5
                                                               -6
                                                                     -17
                                                                                   -5
                                                                                          5
                                                                                                 6
                                                                                                      -6
                   5
                        14
                              17
                                      6
                                                  14
                                                         23
                                                               28
                                                                      17
                                                                                   23
                                                                                         32
                                                                                                38
                                                                                                      28
                 -28
                       -17
                              -21
                                    -34
                                                  -17
                                                         -6
                                                                     -21
                                                                                   -6
                                                                                          6
                                                                                                 7
                                                         28
                                                               34
                                                                                                      34
                   6
                               21
                                      7
                                                                     21
                                                                                   28
                                                                                         38
                        17
                                                  17
                                                                                                44
                 -34
                       -21
                              -27
                                    -41
                                                 -21
                                                               -9
                                                                     -27
                                                                                                      -9
                        21
                               27
                                                  21
                                                         34
                                                               41
                                                                     27
                                                                                   34
                                                                                                52
                                                                                                      41
                                      9
                 -41
                       -27
                              -35
                                    -51
                                                 -27
                                                         -9
                                                              -13
                                                                     -35
                                                                                   -9
                                                                                          9
                                                                                                13
                                                                                                     -13
                        27
                               35
                                     13
                                                  27
                                                         41
                                                               51
                                                                      35
                                                                                   41
                                                                                         52
                                                                                                63
                                                                                                      51
                 -51
                       -35
                              -51
                                    -67
                                                 -35
                                                        -13
                                                              -21
                                                                                  -13
                                                                                         13
                                                                                                21
                                                                                                     -21
                                                                     -51
                  13
                        35
                               51
                                     21
                                                  35
                                                         51
                                                               67
                                                                      51
                                                                                   51
                                                                                                      67
yvals
                  29
                        32
                               32
                                     32
                                            29
                                                  26
                                                         39
                                                               42
                                                                      42
                                                                            42
                  39
                                            52
                        35
                               48
                                     51
                                                  51
                                                         48
                                                               43
                                                                      57
                                                                            61
                  62
                        61
                               57
                                     51
                                                  70
                                                         72
                                                               70
                                                                      65
                  23
                               36
                                     32
                                                  26
                                                         27
                                                               37
                                                                      36
                                                                                   27
                                                                                         27
                                                                                                37
                                                                                                      37
ybounds
                        26
                  27
                        26
                               36
                                     37
                                                  26
                                                         23
                                                                                   23
                                                               32
                                                                      36
                                                                                         19
                                                                                                ^{28}
                                                                                                      32
                                                         37
                                                               47
                                                                                   37
                                                                                                47
                                                                                                      47
                  37
                        36
                                                  36
                                                         32
                                                                                   32
                               45
                                     47
                                                               41
                                                                      45
                                                                                         28
                                                                                                36
                                                                                                      41
                  41
                        45
                               55
                                     50
                                                  45
                                                         47
                                                               57
                                                                      55
                                                                                   47
                                                                                         47
                                                                                                57
                                                                                                      57
                  47
                        45
                               55
                                     57
                                                  45
                                                         41
                                                               50
                                                                      55
                                                                                   41
                                                                                         36
                                                                                                44
                                                                                                      50
                  50
                        55
                               64
                                     58
                                                  55
                                                         57
                                                               67
                                                                      64
                                                                                   57
                                                                                         57
                                                                                                67
                                                                                                      67
                  57
                        55
                               64
                                     67
                                                  55
                                                         50
                                                               58
                                                                      64
                                                                                   50
                                                                                         44
                                                                                                51
                                                                                                      58
                  58
                        64
                               72
                                                  64
                                                         67
                                                               77
                                                                      72
                                                                                   67
                                                                                         67
                                                                                                77
                                                                                                      77
                                     64
                               72
                  67
                                     77
                                                  64
                                                               64
                                                                      72
                                                                                   58
                                                                                                56
                                                                                                      64
```


Figure D.1.: Orthographic and Robinson projection of the curvilinear grid, the first grid cell is colored red

D.2. Example description for an unstructured grid

Here is an example of the **CDO** description for an unstructured grid. xvals/yvals describe the positions of 30 independent hexagonal grid cells. The first 6 values of xbounds/ybounds are the corners of the first grid cell. The grid cell corners have to rotate counterclockwise. The first grid cell is colored red.

gridtype	= uns	tructui	ed												
gridsize	= 30														
nvertex	= 6														
xvals	= -3	6 36	0	-18	18	108	72	54	90	180	144	126	162	-108	-144
		2 - 126	-72	-90	-54	0	72	36	144		-144	180		-108	
xbounds	= 33		0	288	288	309		21	51	72	72	0	0		
		0 16	21	0	339	344		340	0	-0	344	324	324		
	2		36	16	0	0		93	123	144	144	72	72		
	7		93	72	51	56		52	72	72	56	36	36		
	9		108	88	72	72		165	195	216	216	144	144		
	14		165	144	123	128		124	144	144	128	108	108		
	16		180	160	144	144		237	267	288	288	216	216		
	21		237	216	195	200		196	216	216	200	180	180		
	23		252	232	216	216		288	304	309	288	267	272		
	26		288	272	252	252		308	324	324	304	288	288		
	34		324	36	36	15		36	36	108	108	87	57		
	2		36	57	52	36		108	108	180	180	159	129		
	9		108	129	124	108		180	180	252	252	231	201		
	16		180	201	196	180		252	252	324	324	303	273		
	23		252	273	268	252		308	303	324	345	340	324		
yvals	= 5	8 58	32	0	0	58	32	0	0	58	32	0	0	58	32
		0 0	32	0	0	-58	-58	-32	-58	-32	-58	-32	-58	-32	-32
ybounds	= 4	1 53	71	71	53	41		41	41	53	71	71	53		
	1	1 19	41	53	41	19		-19	-7	11	19	7	-11		
	-1	9 - 11	7	19	11	-7		41	41	53	71	71	53		
	1	1 19	41	53	41	19		-19	-7	11	19	7	-11		
	-1	9 - 11	7	19	11	-7		41	41	53	71	71	53		
	1	1 19	41	53	41	19		-19	-7	11	19	7	-11		
	-1	9 -11	7	19	11	-7		41	41	53	71	71	53		
	1	1 19	41	53	41	19		-19	-7	11	19	7	-11		
	-1	9 -11	7	19	11	-7		11	19	41	53	41	19		
	-1	9 - 7	11	19	7	-11		-19	-11	7	19	11	-7		
	-4	1 -53	-71	-71	-53	-41		-53	-71	-71	-53	-41	-41		
	-1	9 - 41	-53	-41	-19	-11		-53	-71	-71	-53	-41	-41		
	-1	9 - 41	-53	-41	-19	-11		-53	-71	-71	-53	-41	-41		
	-1	9 - 41	-53	-41	-19	-11		-53	-71	-71	-53	-41	-41		
	-1	9 -41	-53	-41	-19	-11		-19	-41	-53	-41	-19	-11		

Figure D.2.: Orthographic and Robinson projection of the unstructured grid

Operator index

A	
A	delparam
abs	detrend
acos	diff
add 76	diffn 22
addc	distgrid 34
adipot	div
adisit 185	divc
aexpr 71	divdpm 81
aexprf 71	divdpy 81
after 175	duplicate
ap2hl 155	dv2ps
ap2pl 155	dv2uv
asin	dv2uvl
atan 74	
atan2 76	${f E}$
ъ.	enlarge 66
В	ensavg 89
bandpass 178	ensbrs 92
	enscrps 92
\mathbf{C}	ensmax
cat	ensmean 89
chcode 58	ensmin
chlevel 58	enspctl 89
chlevelc	ensrkhistspace 91
chlevelv 58	ensrkhisttime 91
chname 58	ensroc 91
chparam 58	ensstd 89
chunit 58	ensstd1 89
codetab 25	enssum 89
collgrid 35	ensvar 89
consecsum	ensvar1 89
consects 88	eof 137
const	eof3d 137
copy 27	eofcoeff
cos	eofspatial
	eoftime 137
D	eq
dayavg 108	eqc 50
daymax 108	exp 74
daymean	expr 71
daymin	exprf
daypctl 109	
daystd 108	${f F}$
daystd1	fdns
daysum 108	fldavg 94
dayvar 108	fldcor 131
dayvar1 108	fldcovar
delcode 39	fldmax 94
delete	fldmean
delname	fldmin 94

Operator index Operator index

		т
fldpetl		1
fldstd		ifnotthen
fldstd1	_	ifnotthenc
fldsum	94	ifthen
fldvar	94	ifthenc
fldvar1	94	ifthenelse
for	182	import_amsr
		import_binary 165
${f G}$	40	import_cmsaf
ge	49	info
gec	50	infon
genbic	142	input
genbil	141	inputext
gencon	147	inputsrv
gencon2	149	intlevel
gendis	144	intlevel3d
genlaf	151	intlevelx3d
genlevelbounds		intuitime
gennn	143	inttime
genycon	145	intyear
gmtcells	171	invertlat
gmtxyz	171	invertlev
gp2sp	162	
gp2spl	162	${f L}$
gradsdes	174	le 49
gridarea	179	lec 50
gridboxavg		ln 74
gridboxmax		log10 74
gridboxmean	98 98	lowpass
gridboxmin	98 98	lt 49
gridboxstdgridboxstd1		ltc 50
gridboxsum		D. //
gridboxvar	98	\mathbf{M}
gridboxvar1		map 20
griddes	$\frac{36}{25}$	maskindexbox
gridweights	179	masklonlatbox
gt		maskregion
gtc	-	mastrfu
8.6	00	max
Н		meravg
highpass	178	merge
histcount	186	mergetime
histfreq	186	mermax
histmean	186	mermean
histsum	186	mermin
houravg	106	merpctl
hourmax	106	merstd
hourmean	106	merstd1
hourmin	106	mersum
hourpetl	107	mervar
hourstd	106	mervar1 97
hourstd1	106	min
hoursum	106	ml2hl
hourvar	106	ml2pl 155
hourvar1	106	monadd 77
hurr	188	monavg 110

Operator index

Operator index

3:	, , , , , , , , , , , , , , , , , , , 	-h <i>t</i>	105
		· r · ·	185
			184
		0	102
			102
monmul			102
monpctl 11			102
		•	103
monstd1 11			102
monsub	77		102
monsum 11	10		102
monvar 11			102
monvar1 11	10	runvar1	102
mul 7	76	${f S}$	
	75		104
	O- -	1	184
muldpy 8	<u> </u>	3	115
N T			115
\mathbf{N}			115
	_0		115
		1	116
	00		115
8 -4	_0		115
0	20		115
	• •		115
			115
		selcode	39
r	_0	seldate	41
ntime 2		selday	41
nyear 2	20	select	37
0		selgrid	39
O		selhour	41
r		selindexbox	43
		sellevel	39
r	~ ~	sellevidx	39
r		sellonlatbox	43
1		selltype	39
outputtab	70	selmonth	41
P		selname	39
-		selparam	39
r · · · · · ·		selseason	41
pow	74	selsmon	41
${f R}$		selstdname	39
		seltabnum	39
random 18	82		41
:	7.4	seltime	4.1
		seltimestep	41
reducegrid	47	seltimestep selyear	41
reducegrid	47 34	seltimestep	41 39
reducegrid 4 regres 15 remap 15	47 34 52	seltimestep	41 39 39
reducegrid 4 regres 15 remap 15 remapbic 14	47 34 52 42	seltimestep selyear selzaxis selzaxisname setcalendar	41 39 39 56
reducegrid regres 13 remap 15 remapbic 14 remapbil 14	47 34 52 42 41	seltimestep	41 39 39 56 65
reducegrid 4 regres 13 remap 15 remapbic 14 remapbil 14 remapcon 14	47 34 52 42 41 47	seltimestep selyear selzaxis selzaxisname setcalendar setcindexbox setclonlatbox	41 39 39 56 65 65
reducegrid 4 regres 13 remap 15 remapbic 14 remapbil 14 remapcon 14 remapcon2 14	47 34 52 42 41 47	seltimestep selyear selzaxis selzaxisname setcalendar setcindexbox setclonlatbox setcode	41 39 39 56 65 65 55
reducegrid 4 regres 13 remap 15 remapbic 14 remapbil 14 remapcon 14 remapcon2 14 remapdis 14	47 34 52 42 41 47 49	seltimestep selyear selzaxis selzaxisname setcalendar setcindexbox setclonlatbox setcode setcodetab	41 39 39 56 65 65 55 55
reducegrid 4 regres 13 remap 15 remapbic 14 remapbil 14 remapcon 14 remapcon2 14 remapdis 14 remapeta 15	47 34 52 42 41 47 49 44 53	seltimestep selyear selzaxis selzaxisname setcalendar setcindexbox setclonlatbox setcode setcodetab setctomiss	41 39 39 56 65 65 55 55
reducegrid 4 regres 13 remap 15 remapbic 14 remapbil 14 remapcon 14 remapcon2 14 remapdis 14 remapeta 15 remaplaf 15	47 34 52 42 41 47 49 44 53	seltimestep selyear selzaxis selzaxisname setcalendar setcindexbox setclonlatbox setcode setcodetab setctomiss setcdate	41 39 39 56 65 65 55 57 56
reducegrid 4 regres 13 remap 15 remapbic 14 remapbil 14 remapcon 14 remapcon2 14 remapdis 14 remapeta 15 remaplaf 15 remapnn 14	47 34 52 42 41 47 49 44 53 51	seltimestep selyear selzaxis selzaxisname setcalendar setcindexbox setclonlatbox setcode setcodetab setctomiss setdate setday	41 39 39 56 65 65 55 57 56 56
reducegrid 4 regres 13 remap 15 remapbic 14 remapbil 14 remapcon 14 remapcon2 14 remapdis 14 remapeta 15 remaplaf 15 remapnn 14 remapycon 14	47 34 52 42 41 47 49 44 53 51 43	seltimestep selyear selzaxis selzaxisname setcalendar setcindexbox setclonlatbox setcode setcodetab setctomiss setdate setday setgatt	41 39 39 56 65 65 55 57 56 67
reducegrid 4 regres 13 remap 15 remapbic 14 remapbil 14 remapcon 14 remapcon2 14 remapdis 14 remapeta 15 remaplaf 15 remapnn 14 remapycon 14	47 34 52 42 41 47 49 44 53 51 43	seltimestep selyear selzaxis selzaxisname setcalendar setcindexbox setclonlatbox setcode setcodetab setctomiss setdate setday	41 39 39 56 65 65 55 57 56 56

Operator index Operator index

setgrid	59	splittabnum	30
	59	splityear	$\frac{30}{32}$
	59	splityearmon	32
	86	splitzaxis	30
	55	sqr	
setltype	55	1	
* -	67	<u> </u>	182
	67	_	188
	67	strgal	188
	67	<u> </u>	187
setmon	56	sub	76
setname	55	subc	75
setparam	55	subtrend	135
	53		
-	53	${f T}$	
setreftime	56	tan	74
setrtoc	81	timavg	104
setrtoc2	81	timcor	131
setrtomiss	67	timcovar	132
settaxis	56	timmax	104
settbounds	56	timmean	104
	56	timmin	104
	56	timpctl	105
setunit	55	timselavg	100
setvals	81	timselmax	100
setvrange	67	timselmean	100
~	56		100
· ·	60	timselpctl	101
shifttime	56	timselstd	100
showcode	24	timselstd1	100
showdate	24	timselsum	100
showformat	24		100
showlevel	24	timselvar1	100
	24	timsort	182
showmon	24		104
showname	24		104
showstdname	24		104
showtime	24	timvar	104
showtimestamp	24	timvar1	104
showyear	24	topo	182
sin	74	trend	135
sinfo	21	\mathbf{U}	
sinfon	21		163
smooth 18	80		163
smooth9 18	80	uvzuvi	100
sp2gp 16	62	\mathbf{V}	
sp2gpl 16	62	vct	25
sp2sp 16	62	vertavg	99
splitcode	30	vertmax	99
splitday	32	vertmean	99
1 0	30	vertmin	99
splithour	32	vertstd	99
1	30	vertstd1	99
1	32	vertsum	99
1	30	vertvar	99
1 1	30	vertvar1	99
1	32		
splitsel	33	${f W}$	

Operator index Operator index

wct	187	J I I	$\frac{124}{122}$
\mathbf{Y}		<i>y</i>	$\frac{122}{122}$
ydayadd	. 79	ymonsub	80
ydayavg	119		122
ydaydiv		J	$\frac{122}{122}$
	119	<i>3</i>	
ydaymax			122
ydaymean	119	yseasadd	81
ydaymin	119	v G	125
ydaymul		yseasdiv	81
ydaypctl	121	<i>y</i>	125
ydaystd	119	yseasmean	125
ydaystd1	119	yseasmin	125
ydaysub	. 79	yseasmul	81
ydaysum	119	yseaspctl	126
ydayvar	119	yseasstd	125
ydayvar1	119	yseasstd1	125
ydrunavg	127	yseassub	81
ydrunmax	127	· ·	125
ydrunmean	127	v	$12\overline{5}$
ydrunmin	127	J =	125
ydrunpetl	129	y seems verification and a seem of the seems verification and the seems ver	120
ydrunstd	127	${f Z}$	
ydrunstd1	127	zaxisdes	25
ydrunsum	127	zonavg	96
_	127	zonmax	96
ydrunvar			96
ydrunvar1	127	zonmean	96
yearavg	113	zonmin	
yearmax	113	zonpctl	96
yearmean	113	zonstd	96
yearmin	113	zonstd1	96
yearmonmean	112	zonsum	96
yearpctl	114	zonvar	96
yearstd	113	zonvar1	96
yearstd1	113		
yearsum	113		
yearvar	113		
yearvar1	113		
yhouradd	. 78		
yhouravg	117		
yhourdiv			
yhourmax	117		
yhourmean	117		
yhourmin			
yhourmul			
yhourstd			
	117		
yhourstd1			
yhoursub	10		
yhoursum			
rula arranga n	117		
yhourvar	117 117		
yhourvar1	117 117 117		
yhourvar1ymonadd	117 117 117 . 80		
yhourvar1 ymonadd ymonavg	117 117 117 . 80 122		
yhourvar1 ymonadd ymonavg ymondiv	117 117 117 . 80 . 122 . 80		
yhourvar1 ymonadd ymonavg	117 117 117 . 80 . 122 . 80		
yhourvar1 ymonadd ymonavg ymondiv ymonmax ymonmean	117 117 117 80 122 80 122 122		
yhourvar1 ymonadd ymonavg ymondiv ymonmax ymonmean ymonmin	117 117 117 . 80 122 . 80 122 122 122		
yhourvar1 ymonadd ymonavg ymondiv ymonmax ymonmean	117 117 117 . 80 122 . 80 122 122 122		