

Sistemas Virtualizados

Sumário

- Sistemas tradicionais: multiprogramação
- Virtualização
- Virtualização de hardware
- Sistemas de virtualização de servidores
- VirtualBox
- Microsoft Hyper-V

Sistemas Tradicionais: Multiprogramação

Sistemas tradicionais: Multiprogramação

- Simula de um ambiente operacional no qual cada aplicação possui um processador
- o Sistema Operacional Multiprogramação
 - Criação da abstração de processo
 - Cada processo possui a disposição uma máquina virtual de alto nível
 - Suporte do hardware:
 - · Controlador temporizador
 - Modos de operação do processador (usuário/supervisor)
 - · Memória virtual

Sistemas Tradicionais: Multiprogramação

Sistemas Tradicionais: Multiprogramação

Virtualização

Virtualização

- Seu papel é criar um ambiente de computação simulado ou virtual em vez de um ambiente físico;
- Nela costuma incluir versões de hardware, sistemas operacionais, dispositivos de armazenamento e outros, todas geradas por computador;
- Assim, permite que empresas particionem um único computador físico ou servidor em diversas máquinas virtuais;
- Cada MV pode interagir de forma independente e executar diferentes sistemas operacionais ou aplicativos ao mesmo tempo.

Virtualização

Seu Funcionamento:

- Num ambiente de virtualização existe tanto o convidado ou hóspede, quanto o hospedeiro. Podemos compreender o hospedeiro como um SO que é colocado em prática por uma máquina física. Já o convidado é o sistema virtualizado que precisa ser efetuado pelo hospedeiro.
- A virtualização vai acontecer quando ambos os fatores existirem.
- As máquinas virtuais, que apresentam alta disponibilidade, vão ficar guardadas em uma SAN, ou seja, num local de armazenamento que é compartilhado por todos os servidores.
- Este espaço é conhecido como STORAGE. E se a SAN for virtual, o nome que vai receber é VSAN.

Virtualização

- A virtualização pode ocorrer em diferentes níveis:
 - Nível da linguagem de programação
 - Interpretação de uma linguagem ou instruções virtuais
 - Nível de biblioteca
 - User level API
 - Nível do sistema operacional
 - Chamadas ao sistema (system calls)
 - Nível de abstração de hardware
 - HAL (Hardware Abstraction Layer)
 - Nível do conjunto de instruções
 - ISA (Instruction Set Architecture)

Virtualização

Quais são as principais diferenças entre a virtualização e a computação na nuvem?

- A virtualização, pode ser considerada um produto, uma vez que é possível adquirir soluções por meio de um software.
- Já a computação na nuvem é um conceito de arquitetura de TI.
- Porém, os serviços oferecidos pela nuvem são totalmente correlacionados à virtualização para as soluções de software e também para ambientes mobile.

Virtualização

Quais são as vantagens da virtualização?

- Redução do consumo de energia
- Aumento da produtividade
- Otimização de gerenciamento
- Melhoria de processos
- Otimização do espaço físico
- Integração de hardware
- Redução de custos
- Variedade de plataformas
- Segurança

Virtualização de Hardware

Virtualização de Hardware

- Virtualização ao nível de Hardware Abstraction Layer (HAL)
- Disponibiliza uma máquina virtual que corresponde a:
 - Instruction Set Architecture (ISA) +
 - Virtualização dos dispositivos, processador e memória
- Características
 - Host hóspede e hospedeiro utilizam o mesma ISA (Instruction Set Architecture)

Continua...

Virtualização de Hardware

Virtualização de Hardware

Técnica utilizada

- Mapeamento recursos virtuais sobre os recursos físicos
- Máquina virtual:
 - Processamento (aplicações e sistema operacional) é realizado diretamente sobre o processador físico
 - Instruções privilegiadas: são tratadas pelo sistema de virtualização
 - Acesso a dispositivos: intermediado pelo sistema de virtualização

Virtualização de Hardware

> Tipos de sistemas de virtualização

Hosted

- A virtualização é realizada com o auxílio de um sistema operacional hospedeiro
- Stand alone (ou Bare Metal)
 - A virtualização é realizada sem auxílio de um sistema operacional hospedeiro

Sistema tipo hosted

Virtualização de Hardware

Sistema tipo Stand Alone (ou Bare Metal)

Vantagens

- Pouca sobrecarga (rápido)
- Isolamento e independência dos hosts hóspedes
- Possibilidade de utilização de diferentes sistemas operacionais nos hosts hóspedes

Motivações para virtualização

- Consolidação de servidores
- Ambientes de teste e homologação de sistemas
- Depuração de aplicações complexas e do sistema operacional
- Migração de sistemas

Exemplos

- VMware
- Xen
- VirtualBox
- Microsoft Hiper-V (Windows Server Virtualization)

Sistemas de Virtualização de Servidores

Sistemas de Virtualização de Servidores

- Utilizam a técnica de virtualização HAL
- Requisitos desejáveis
 - Sistema de armazenamento compartilhado (storage)
- Funcionalidades adicionais
 - Virtualização de componentes de rede
- Exemplos
 - VMware
 - Xen
 - VirtualBox
 - Microsoft Hiper-V (Windows Server Virtualization)

Sistemas de Virtualização de Servidores

- Principais motivações para virtualização
 - Consolidação de servidores;
 - Agrupar vários servidores virtuais em um conjunto reduzido de servidores físicos.
 - Consolidação de aplicações;
 - Ambientes de teste e homologação de sistemas;
 - Execução de aplicações que utilizam diferentes sistemas operacionais;
 - Migração de sistemas;
 - Provisionamento de servidores;
 - Recuperação de desastres.

Sistemas de Virtualização de Servidores

Terminologia

- Sistema operacional hóspede e hospedeiro
- Tipos de virtualização HAL
 - Virtualização total
 - Para-virtualização
- Máquina Virtual (MV)
- Hypervisor ou monitor de máquina virtual (MMV)

Sistemas de Virtualização de Servidores

Sistema operacional hóspede

 Sistema operacional que executa sobre uma máquina virtual

Sistema operacional hospedeiro

- Sistema operacional que executa diretamente sobre a máquina real
- Utilizado como infra-estrutura para criação das máquinas virtuais

Sistemas de Virtualização de Servidores

Virtualização total

- A virtualização ocorre sem a inclusão de otimizações ao Sistema Operacional para virtualização
- Gera certa quantidade de sobrecarga pois o Monitor de Máquina virtual deve oferecer à Máquina Virtual uma imagem semelhante a um sistema real, incluindo:
 - BIOS virtual
 - Espaço de memória virtual
 - Gerenciamento de memória virtual
 - Dispositivos virtuais

Sistemas de Virtualização de Servidores

Para-virtualização

- Técnica de virtualização onde o sistema operacional hóspede é modificado para otimizar o desempenho.
- A máquina virtual HAL é similar, porém não idêntica àquela do hardware real.
- Aumenta o desempenho da execução na máquina virtual

Máquina Virtual (ou Domínio)

- Ambiente que é virtualizado, correspondendo ao sistema operacional e aplicações deste sistema operacional
- Monitor de Máquina Virtual (Hypervisor)
 - Responsável pelas atividades de gerenciamento dos recursos da máquina virtual

Virtual Box

Virtual Box

- Adquirido pela Oracle em 2010.
- Oracle VM VirtualBox é um sistema de virtualização tipo hosted (hosted hypervisor) livre e de código aberto (opensource) para arquiteturas x86.
- Pode ser instalado em sistemas operacionais Windows, macOS, Linux, Solaris, OpenSolaris, dentre outros sistemas.
- Suporta a criação e gerenciamento de máquinas virtuais hóspedes executando os sistemas Windows, Linux, BSD, OS/2, Solaris, Haiku, and OSx86, dentre outros sistemas.
- Para alguns sistemas operacionais hóspedes, para melhoria do desempenho, fornece um pacote de device drivers denominado "Guest Additions".

Virtual Box

Arquitetura:

Virtualização de hardware hosted

Virtual Box

Arquitetura hosted

Virtual Box

Virtualização de Linux Fedora sobre Windows

Microsoft Hyper-V

Microsoft Hyper-V

Microsoft Hyper-V

- Tecnologia que permite a virtualização do hardware em um computador físico.
- Possível criar e gerenciar computadores virtuais e seus recursos, onde cada VM é considerada um sistema isolado.
- Aplicação prática e muito comum, onde é possível a utilização de diversos SO na mesma máquina.
- Se baseia no hipervisor, uma camada adicional entre os recursos físicos e virtuais, de forma a gerenciar os recursos de HW e que seja distribuída eficientemente entre as VMs.

Microsoft Hyper-V

Referências

- _https://www.portalgsti.com.br/hyper-v/sobre/
- _https://azure.microsoft.com/pt-br/overview/what-is-virtualization/
- _https://www.softwareone.com/pt-br/blog/artigos/2020/01/14/virtualizacao-2
- _https://www.profissionaisti.com.br/o-que-e-virtualizacao/