Student-T Process Instead of Gaussian Process for Empirical Kernel

資工21 周聖諺

Empirical Kernel & SGD

According to the **Deep learning versus kernel learning: an empirical study of loss landscape geometry and the time evolution of the Neural Tangent Kernel**(presented by 袁哥), chaotic sensitivity of basin fate to **SGD choices** early in training.

Why not just add some random noise to the NTK?

With inverse Wishart distribution $\Sigma \sim \mathcal{IW}(\nu,K)$ where the degree of freedom $\nu>2$ and K is positive definite, we can generate a random matrix Σ with expectation $\mathbb{E}[\Sigma]=\frac{K}{\nu-2}.$

Normal-Wishart Distribution

Consider the **randomness of the kernel matrix**, with Bayesian rule, we can model the kernel matrix with **Inverse Wishart distribution**.

$$p(y|\phi,
u,K) = \int p(y|\phi,\Sigma)p(\Sigma|
u,K)d\Sigma = \mathcal{TP}(\phi,K,
u)$$

Denote Inverse Wishart distribution as $\Sigma \sim \mathcal{IW}(\nu,K) = p(\Sigma|\nu,K)$ and the Gaussian process as $y|\phi,\Sigma \sim \mathcal{GP}(\phi,\Sigma) = p(y|\phi,\Sigma)$. Note that the random matrix $\Sigma \in \mathbb{R}^{N \times N}$ is generated by Inverse Wishart. The hyperparameters are $K \in \mathbb{R}^{N \times N}$, $\nu \in \mathbb{R}$, $\phi \in \mathbb{R}^N$.

Finally, $\mathcal{TP}(\phi, K, \nu)$ is the **Student-T process**.

Student-T Process

The Student-T process can be written as

$$y \sim \mathcal{TP}(\phi, K,
u)$$

The hyperparameter ν is called **degrees of freedom**, it can control the covariance of the output $cov(y)=\frac{\nu}{\nu-2}K$. Thus, the relation between \mathcal{TP} and \mathcal{GP} is

$$\mathcal{GP}(\phi,K) = \lim_{
u o \infty} \mathcal{TP}(\phi,K,
u)$$

Student-T Process

Figure 2: Uncorrelated bivariate samples from a Student-t copula with $\nu = 3$ (left), a Student-t copula with $\nu = 10$ (centre) and a Gaussian copula (right). All marginal distributions are N(0, 1) distributed.

Degrees of freedom is the number of values in the final calculation of a statistic that are free to vary.

Student-T Process Posterior

Given a training dataset $\{X_1,Y_1\}$ with n_1 samples and a testing dataset $\{X_2,Y_2\}$ with n_2 samples where $X_1\in\mathbb{R}^{n_1 imes d}$, $Y_1\in\mathbb{R}^{n_1}$, and $X_2\in\mathbb{R}^{n_2 imes d}$, $Y_1\in\mathbb{R}^{n_2}$.

Denote the mean function as z and the kernel function as k. Thus, $\phi_i=z(X_i)$ and $K_{ij}=k(X_i,X_j)$

$$egin{pmatrix} egin{pmatrix} Y_1 \ Y_2 \end{pmatrix} \sim \mathcal{TP}(egin{pmatrix} \phi_1 \ \phi_2 \end{pmatrix}, egin{pmatrix} K_{11} & K_{12} \ K_{21} & K_{22} \end{pmatrix})$$

Student-T Process Posterior

The posterior is

$$y_2|y_1 \sim \mathcal{TP}(\hat{\phi}, rac{
u + eta + -2}{
u + n_1 - 2} \hat{K}_{22},
u + n_1)$$

Where

$$egin{aligned} \hat{\phi} &= K_{21} K_{11}^{-1} (Y_1 - \phi_1) + \phi_2 \ eta &= (Y_1 - \phi_1)^ op K_{11}^{-1} (Y_1 - \phi_1) \ \hat{K}_{22} &= K_{22} - K_{21} K_{11}^{-1} K_{12} \end{aligned}$$

Experiment

We've already known, if $\nu=\infty$, the student-T process will converge to Gaussian process. In the above figure, we compare the result of fitting a $\sin()$ function with \mathcal{TP} and \mathcal{GP} respectively. The left part of above figure shows the training/testing progress of fitting.

As the blue line shows above, as the training progress goes, the ν gets lower. It shows that we can control ν of \mathcal{TP} to achieve a better fitting.

Conclusion

- During training progress, the ν gets lower.
- By controlling the value of ν of \mathcal{TP} we can get a better prediction on the training loss rather than \mathcal{GP}
- If the NTK follows the \mathcal{TP} , the bigger training dataset, the larger degree of freedom of the posterior.