LYCEE SAID BOU BAKKER MOKNINE PROF: HANNACHI SALAH

« 4^{éme} Sciences informatiques »

2016/2017

SERIE D'EXERCICES N°1

Les suites réelles

EXERCICE N 1:

On considère la suite (u_n) définie sur IN^* par : $\begin{cases} u_1 = 2 \\ u_{n+1} = \frac{2u_n + 3}{u_{n+1}} \end{cases}$

- 1) Montrer que $1 < u_n \le 2$ pour tout $n \in IN^*$
- 2) a) Montrer que la suite (u_n) est décroissante.
 - b) En déduire que la suite (u_n) est convergente puis calculer sa limite ℓ .
- 3) Soit $v_n = \frac{u_n 1}{u_n + 3}$ pour tout $n \in IN^*$ et on pose : $S_n = \sum_{k=0}^n v_k$
 - a) Montrer que la suite (v_n) est géométrique dont on précisera la raison et le premier terme.
 - b) Exprimer v_n puis u_n à l'aide de n. Puis retrouver $\lim_{n \to +\infty} u_n$
 - c) Montrer que $S_n = \frac{1}{4} \left[1 \left(\frac{1}{5}\right)^n\right]$ puis calculer $\lim_{n \to +\infty} S_n$

EXERCICE N 2:

On considère la suite définie sur IN par $u_0 = 1$ et $u_{n+1} = \frac{5u_n}{3u_1 + 5}$.

- 1) a) Montrer que pour tout entier naturel n, on a $u_n > 0$.
 - b) Montrer que la suite (u_n) est décroissante, en déduire qu'elle est convergente.
 - c) Déterminer alors sa limite.
- 2) On définit, pour tout entier naturel n, la suite $v_n = \frac{5}{u}$.
 - a) Prouver que la suite (v_n) est arithmétique.
 - b) Exprimer (v_n) en fonction de n, puis (u_n) en fonction de n.
- 3) Retrouver la limite de la suite (u_n) .

EXERCICE N 3: (OCM)

Cocher l'unique réponse exacte :

1) Soit la suite (u_n) définie sur IN^*par : $u_n = \frac{(-1)^n \cdot sin(n)}{n}$ alors:

$$\mathbf{a)} \lim_{n \to +\infty} u_n = -1$$

$$\lim_{n \to +\infty} u_n = 0$$

c) $\lim_{n\to+\infty} u_n$ n'existe pas

2) Soit la suite (u_n) définie sur IN par : $u_n = \frac{\sqrt{1+\left(\frac{3}{7}\right)^n}-1}{\left(\frac{3}{7}\right)^n}$ alors :

$$\mathbf{a)} \lim_{n \to +\infty} u_n = 0$$

b)
$$\lim_{n \to +\infty} u_n = \frac{1}{2}$$

b)
$$\lim_{n \to +\infty} u_n = \frac{1}{2}$$
 c) $\lim_{n \to +\infty} u_n = +\infty$

EXERCICE N 4:

On considère la suite (u_n) définie sur IN par : $u_n = \frac{n!}{3^n}$

- 1) Montrer que $\frac{u_{n+1}}{u_n} \ge \frac{4}{3}$ pour tout entier naturel $n \ge 3$
- 2) En déduire que pour tout entier naturel ≥ 3 , on a : $u_n \geq (\frac{4}{3})^{n-3}u_3$.

(Utiliser le principe de récurrence)

3) Déterminer alors $\lim_{n\to+\infty} u_n$

EXERCICE N 5:

Soit la suite (u_n) définie sur IN^* par : $u_n = \frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \dots + \frac{1}{\sqrt{n}}$

- 1) Montrer que suite (u_n) est croissante
- 2) Montrer que pour tout $n \in IN^*$ on a : $u_n \ge \frac{n}{\sqrt{n}}$. En déduire $\lim_{n \to +\infty} u_n$

EXERCICE N 6:

On considère la suite réelle (u_n) définie sur IN par $u_0 = \frac{1}{2}$ et $u_{n+1} = \frac{2u_n}{1+u_n^2}$

- 1) a) Montrer que pour tout n \in IN on a : $\frac{1}{2} \le u_n < 1$
- b) Etudier la monotonie de (u_n) . En déduire qu'elle converge puis donner sa limite L.
- 2) a) Montrer que pour tout n \in IN on a : $0 < 1 u_{n+1} \le \frac{2}{5}(1 u_n)$
- b) A l'aide de raisonnement par récurrence, déduire que pour tout $n \in IN$,

on a:
$$0 < 1 - u_n \le \frac{1}{2} \left(\frac{2}{5}\right)^n$$
:

c) Retrouver alors $\lim_{n\to+\infty} u_n$

EXERCICE N 7:

Soit la fonction f définie sur IR par : $f(x) = \frac{2x}{1+x^2}$ Dans le graphique ci-contre on a tracé une partie de la courbe (C) de f et la droit Δ : y=x. Soit la suite réelle (u_n) définie sur IN par :

$$\begin{cases} u_0 = \frac{1}{2} \\ u_{n+1} = f(u_n) \end{cases}$$

1) Indiquer sur l'axe des abscisses $(O, \vec{\iota})$ les quatre premiers termes de la suite (u_n) sans les calculer. Que peut-on conjecturer à propos de la monotonie de la suite (u_n) et de sa convergence.

- 2) a) Dresser le tableau de variation de la fonction f
- b) En déduire que : $0 < u_n < 1$ pour tout $n \in IN$.
- 3) a) Etudier le signe de f(x)-x suivant les valeurs de x dans [0,1].
- b) En déduire que la suite (u_n) est croissante
- 4) Montrer alors que la suite (u_n) est convergente et calculer sa limite

