

Interface	Properties
node_dc_pwr	I _{Nominal} : 261mA I _{max} : 296mA V _{max} : 5.5V V _{min} : 4.5V
fused_acpwr	I _{Nominal} : 0 - 3A (depends on what's plugged in) I _{max} : 5A V _{max} : 125VAC V _{min} : 115VAC
sensor_to_node_asig	$I_{Nominal}: <1mA$ $I_{max}: <1mA$ $V_{max}: 3.3V$ $V_{min}: 0V$
system_to_outside_acpwr	I _{Nominal} : 0 - 3A (depends on what's plugged in) I _{max} : 5A V _{max} : 125VAC V _{min} : 115VAC
mcu_to_node_dsig	I _{Nominal} : 9mA I _{max} : 10mA V _{max} : 3.3V V _{min} : 0V

This block has the relay and current sensor functions built into one. It must be able to switch 120VAC (**fused_acpwr** to **system_to_outside_acpwr**) over 0 - 5A using a standard 3.3V (**mcu_to_node_dsig**) signal from the ESP32. This block will also send information about the magnitude of current being passed to the **system_to_outside_acpwr** net through a standard 3.3V signal line (**sensor_to_node_asig**).

Relay Functionality

- 1. Start with everything powered off/de-energized.
- 2. Apply 5V to the **node_dc_pwr** line
- 3. Apply 3.3V to the **mcu to node dsig** line
- 4. Visually confirm the status LED is active
- 5. Audibly confirm the relay is active (listen for the switch)
- 6. Using a multimeter in continuity mode, check that the relay terminals from NO to COM are connected.
- 7. Using a multimeter in ammeter mode, check the current flowing from mcu_to_node_dsig is less than 10mA
- 8. Repeat steps 3 7 for all other relays (if more than 1)

AC Power Functionality

- 1. Apply Relay Functionality steps 1 3
- 2. Using 120VAC standard household power lines, apply to fused acpwr
- While relay is active, measure voltage on COM (fused_acpwr) and NO (system_to_outside_acpwr) relay pins to confirm 120VAC (and that the relay is active)
- 4. De-energize AC circuit and place a multimeter in ammeter mode in series with the Hot line of the AC power
- 5. Energize the circuit with AC power
- 6. Slowly apply a load to the AC power lines until 5A is being drawn
- 7. Confirm relay is still active after 5A of current

Sensor Functionality

- 1. Apply Relay Functionality steps 1 3
- 2. Apply AC power steps 5 7
- 3. While ramping up current draw, measure voltage on **sensor_to_node_asig** and confirm up to 3.3V max (and linear scaling)
- 4. De-energize circuit and put ammeter in series with sensor to node asig
- Apply steps 1 2 and confirm current draw does not exceed 1mA on sensor_to_node_asig

Node Power functionality

- 1. Put ammeter in series with **node_dc_pwr**
- 2. Apply Relay functionality steps 1 3
- 3. Measure current draw and confirm it is not over 296mA