Models and Methods for Computing Reduction Potentials, pK_as and Binding Constants: The Aquacobalamin System

Ryne C. Johnston, ^{‡,1} Jing Zhou, ^{‡,2} Jeremy C. Smith, ^{2,3} and Jerry M. Parks ^{*,1,2}

³Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee, 37996, USA

Figure 2. Experimental (gray) and computed (black) Pourbaix diagram for aquacobalamin. Upper-case letters refer to model reduction reactions and numbers refer to pK_as . Hydridocob(III)alamin was not included in the computed Pourbaix diagram.

¹UT/ORNL Center for Molecular Biophysics, Biosciences Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, Tennessee, 37831-6309, USA

²Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, Tennessee, 37996, USA