

به نام خدا

دانشکده مهندسی برق، دانشگاه صنعتی شریف

مبانی رمزنگاری و امنیت شبکه

مقدمه، مرور کلی مفاهیم رمزنگاری و مبانی نظری

Introduction, Basic Concepts of Cryptography and preliminaries

مهتاب ميرمحسني

نیمسال دوم (بهار) ۹۹–۹۹

محتواي درس

• مقدمات

○ اهداف امنیتی و مدلهای حمله

- الگوریتمها و پروتکلهای رمزنگاری
- رمزنگاری متقارن و نامتقارن برای ایجاد محرمانگی (Confidentiality)
 الگوریتههای یکپارچگی داده (Data Integrity)
 - پروتکلهای احراز اصالت (Authentication)

- امنیت شبکه
- 🔾 عمدتاً بر پایه روشهای رمزنگاری
- پیشگیری، آشکارسازی و تصحیح موارد نقض امنیت

Security is much more than cryptography!

۳

سرفصل مطالب

- Introduction, Basic Concepts of security goals, adversary & attacks, and preliminaries
- Stream Ciphers
- Block Ciphers
- Public Key Cryptography
- Hash Functions, Message Authentication Codes and Digital Signature
- Key Management and Distribution
- User Authentication Protocols
- Access Control Models
- Network and internet Security
 - Transport level security: SSL; TLS; HTTPS; SSH
 - Email Security (PGP and S/MIME)
 - Security of Transient Data (IP Security and IPSec)
 - Intrusion Detection Systems
 - Access Control in Networks (Firewalls)

- مقدمه، مرور کلی مفاهیم رمزنگاری و مبانی نظری
 - سیستمهای رمز دنبالهای یا جریانی
 - سیستمهای رمز قالبی
 - سیستمهای کلید همگانی (نامتقارن)
- توابع چکیدهساز، کدهای احراز اصالت پیام و امضای دیجیتال
 - مدیریت کلید در سیستمهای رمزنگاری
 - یروتکلهای احراز اصالت
 - مدلهای کنترل دسترسی
 - سازو کارها و پروتکلهای امنیتی در شبکه
- (SSL; TLS; HTTPS; SSH) transport منیت لایه
 - ۰ امنیت پست الکترونیکی (PGP و S/MIME)
- امنیت داده در حال انتقال (امنیت IP و پروتکل IPSec)
 - o سیستم های تشخیص نفوذ (IDS و Honeypot)
 - کنترل دسترسی به شبکه (فایروالها)

سرفصل مطالب

Time permitting (Perhaps in projects):

- Physical layer attacks: Jamming and jamming-perpetrated attacks
- Wireless security
 - 802.11; Wired Equivalent Privacy (WEP); Wireless Application Protocol (WAP); Wireless transport layer security
 - Authentication: Kerberos; TLS; PEAP
- Privacy and privacy enhancing technologies
 - Requirements; Privacy by design; PGP; Mix-Nets; Onion routing; Location privacy protection
- Security for emerging networks and Internet of Things (IoT)
 - Pervasive computing and wireless sensor networks
 - Secure and private computation methods
 - o Block-chain based trust model
- Physical-layer key agreement for IoT

در صورت امکان:

- حملات لايه فيزيكي مانند اخلال
 - امنیت بیسیم
- 802.11; WEP; بی سیم: transport امنیت لایه ωνΔΡ۰
 - o احراز اصالت: Kerberos; TLS; PEAP
 - حريم خصوصي
 - نیازمندیها، طراحی با حفظ حریم خصوصی،
 PGP; Mix-Nets; Onion routing
 - امنیت در اینترنت اشیا و فناوری های نوظهور
 - ۰ شبکه های حسگری
 - ۰ محاسبات امن
 - مدل اعتماد بر پایه زنجیره قالبها
 - توافق كليد در لايه فيزيكي براي اينترنت اشيا

۵

نحوه ارزيابي

- تكاليف + تكاليف كامپيوترى ١٥٪
 - پروژه ۵٪ +
- امتحان میان ترم ۳۵٪ -چهار شنبه ۹۹/۲/۱۷
 - امتحان پایان ترم ۵۰٪ یکشنبه ۹۹/۴/۱

مراجع

- William Stallings, Cryptography and Network Security Principles and Practices, 7th Edition, Pearson, 2016.
- 1. Matt Bishop, Computer Security: Art and Science, Addison-Wesley, 2003.
- 2. D. Robling Denning Cryptography and Data Security, Addison-Wesley, 1982.
- 3. H. Beker and F. Piper, Cipher System, Northwood Books, 1982.
- 4. William Stallings, Network Security Essentials: Applications and Standards, Prentice Hall, 4th Edition, 2005.

٧

Why security?

- Alice wants to communicate with Bob
- What could possibly go wrong?

امنیت Computer Security

- (National Institute of Standards and Technology) NIST •
- نیازمندیهای امنیتی: تحقق سه ویژگی زیر در منابع اطلاعاتی سیستم (CIA triad)
 - o محرمانگی (Confidentiality)
 - o یکپارچگی یا تمامیت (Integrity)
 - o دسترسپذیری (Availability)
 - 🔻 تضمین دسترسی به موقع افراد مجاز به خدمت

٩

محرمانگی (Confidentiality)

- محرمانگی داده: عدم افشای دادههای محرمانه یا خصوصی
- حریم خصوصی (Privacy): کنترل حریم دادهها توسط افراد

مشكلات برقراري امنيت

- برخلاف نیازمندیها، ساز و کارهای مورد نیاز جهت تامین آنها پیچیده است.
 - معمولا حملات موفق از دیدگاه جدیدی به الگوریتمها نگاه می کنند.
 - جایگاه استفاده از ساز و کارهای امنیتی مختلف، متفاوت است.
 - پیادهسازی ساز و کارهای امنیتی دشواریهایی از جمله توزیع اطلاعات امن (مانند کلید مخفی)، ملاحظات جدید پروتکلی و ... دارد.
- مهاجم (attacker) کافی است که تنها یک ضعف سیستم را بیابد ولی طراح میایست همه ضعفها را یافته و از بین ببرد.

۱۵

مشكلات برقراري امنيت

- پیش از شکست امنیتی، اهمیت آن برای کاربران و مدیران سیستم روشن نیست.
 - برقراری امنیت نیاز به نظارت دایمی دارد.
 - ملاحظات امنیتی در طراحی اولیه سیستمها در نظر گرفته نشده است.
 - برقراری امنیت به عنوان مانعی در برابر کارآیی در نظر گرفته میشود.

ساختار امنیتی OSI

- تعریف سیستماتیک نیازمندیهای امنیتی و روشهای ارضای آنها
- ITU-T X.800 "Security Architecture for OSI"
 - حمله امنیتی (Security attack)
 - عملی که امنیت اطلاعات سازمان را تهدید می کند.
 - ساز و کار امنیتی (Security mechanism)
 - فرآیندی که برای پیشگیری، تشخیص و بازیابی از حملات امنیتی طراحی شده است.
 - خدمات امنیتی (Security service)
- خدمات مخابراتی یا پردازشی که با استفاده از یک یا چند ساز و کار امنیتی به مقابله با حملات امنیتی
 میپردازند.

17

حمله فعال Active attack

- تغییر دنباله داده و یا تولید دنباله غلط
 - 1. حمله رخپوشی (masquerade)
 - 2. حمله تکرار (replay)
- ... حمله تغییر پیام (modification of messages)
 - 4. حمله منع خدمت (denial of service)
 - 5. حمله اخلال Jamming
 -
- پیشگیری مشکل: تنوع آسیبپذیریهای ممکن
 - هدف: آشکارسازی و بازیابی

خدمات امنیتی Security services

- X.800؛ ۵ گروه و ۱۴ خدمت امنیتی
 - (Authentication) احراز اصالت
- (Access Control) کنترل دسترسی (
- (Data Confidentiality) محرمانگی داده
 - (Data Integrity) یکپارچگی داده (
 - ○انکارناپذیری (Non-repudiation)

77

احراز اصالت Authentication

- احراز اصالت هستار همتا (Peer Entity Authentication)
 - ارتباط با اتصال
 - اتصال:
 - احراز اصالت هستار همتا در شروع اتصال
 - مقابله با حمله رخپوشی و تکرار در طول اتصال
 - احراز اصالت مبدا پیام (Data-Origin Authentication)
 - ارتباط بدون اتصال
 - o مثال: email، ...
 - پیام منفرد: احراز اصالت مبدا پیام

کنترل دسترسی Access Control

- پیشگیری از استفاده غیر مجاز منابع
- كنترل افراد مجاز، شرايط مجاز و نحوه استفاده افراد مجاز
- محدود و کنترل کردن دسترسی به منابع میزبان از طریق یالهای مخابراتی
 - ابتدا: احراز اصالت هستارها
 - سپس: تعیین دسترسیها

49

محرمانگی داده Data Confidentiality

- محافظت از دادهها + شار ترافیک در برابر حملات غیرفعال
 - رمزنگاری

Connection Confidentiality

The protection of all user data on a connection.

Connectionless Confidentiality

The protection of all user data in a single data block

Selective-Field Confidentiality

The confidentiality of selected fields within the user data on a connection or in a single data block.

Traffic-Flow Confidentiality

The protection of the information that might be derived from observation of traffic flows.

یکپارچگی داده Data Integrity

- اطمینان از دریافت دقیقا آنچه که فرستنده مجاز ارسال کرده است
 - ارتباط با اتصال
 - مقابله با تغییر، واردکردن، حذف و یا تکرار

Connection Integrity with Recovery

Provides for the integrity of all user data on a connection and detects any modification, insertion, deletion, or replay of any data within an entire data sequence, with recovery attempted.

Connection Integrity without Recovery

As above, but provides only detection without recovery.

Selective-Field Connection Integrity

Provides for the integrity of selected fields within the user data of a data block transferred over a connection and takes the form of determination of whether the selected fields have been modified, inserted, deleted, or replayed.

- دو دسته سرویس امنیتی:
 - بازیابی بعد از حمله
 - تشخیص حمله
 - كد احراز اصالت پيام، امضا

۳١

یکپارچگی داده Data Integrity

- ارتباط بدون اتصال
- مقابله با تغییر یا دستکاری پیام (modification)

Connectionless Integrity

Provides for the integrity of a single connectionless data block and may take the form of detection of data modification. Additionally, a limited form of replay detection may be provided.

Selective-Field Connectionless Integrity

Provides for the integrity of selected fields within a single connectionless data block; takes the form of determination of whether the selected fields have been modified.

- دو دسته سرویس امنیتی:
 - ۰ بازیابی بعد از حمله
 - تشخیص حمله

انگارناپذیری Non-repudiation

• پیشگیری از انکار پیام ارسالی در فرستنده و گیرنده

0 امضا

Nonrepudiation, Origin

Proof that the message was sent by the specified party.

Nonrepudiation, Destination

Proof that the message was received by the specified party.

• دسترسپذیری (Availability)

- منابع سیستم بر اساس تقاضای افراد مجاز (احراز اصالت شده) قابل دسترسی باشند
 - در X.800 این خاصیت را متصل به سایر خدمات تعریف کرده است.

٣٣

ساز و کارهای امنیتی Security mechanism

- در یک لایه خاص:
- رمز گذاری (Encipherment): الگوریتم ریاضی + کلید
 - امضای دیجیتال (Digital Signature)
 - کنترل دسترسی (Access Control)
 - یکپارچگی داده (Data Integrity)
- تبادل داده برای احراز اصالت (Authentication Exchange)
- لایه گذاری ترافیکی (Traffic Padding): مقابله با تحلیل ترافیک
 - كنترل مسيريابي (Routing Control): انتخاب مسيرهاي امن
- رسمی سازی (Notarization): استفاده از شخص ثالت معتمد (Notarization) (party

رابطه خدمات امنیتی و ساز و کارهای امنیتی

Mechanism

Service	Encipherment	Digital Signature	Access Control	Data Integrity	Authentication Exchange	Traffic Padding	Routing Control	Notarization
Peer Entity Authentication	Y	Y			Y			
Data Origin Authentication	Y	Y						
Access Control			Y					
Confidentiality	Y						Y	
Traffic Flow Confidentiality	Y					Y	Y	
Data Integrity	Y	Y		Y				
Nonrepudiation		Y		Y				Y
Availability				Y	Y			

٣۶

اصول طراحي سيستمهاي امن

- Economy of mechanism: ساده ترین و سبک ترین طراحی ممکن شانس کمتر حمله مهاجم
- Fail-safe defaults: اعطای کنترل دسترسی بر پایه اجازه نه حذف تشخیص خطای پیادهسازی
 - Complete mediation: به روزرسانی خق دسترسی و پخش آن در شبکه ...
 - Open design •
 - Separation of privilege: احراز اصالت چند فاکتوره
 - Least privilege •
 - Psychological acceptability: حفظ کارآیی سیستم
 - Isolation •

طراحي خدمت امنيتي

- 1. طراحى الگوريتم مناسب براى اعمال امنيت
- 2. توليد اطلاعات مخفى مورد نياز الگوريتم (مانند كليد)
 - 3. راهکارهای توزیع و توافق درباره اطلاعات مخفی
- 4. طراحی پروتکل مناسب برای استفاده از موارد فوق جهت تضمین هدف خاص امنیتی

تاریخچه رمزنگاری

- مرحله اول: تا آغاز قرن بيستم
- 🔾 استفاده از سیستم های ساده جانشینی و جابجایی ساده (مانند سیستم سزار و سیستم اسپارتا)
 - قلم، کاغذ و ماشینهای ساده مکانیکی
 - مرحله دوم: از آغاز قرن بیستم تا آغاز دهه ۱۹۵۰
 - وسایل پیچیده مکانیکی و الکترومکانیکی و به تبع اَن سیستمهای رمزنگاری پیچیدهتر
 - مرحله سوم:
 - شروع با انتشار مقالات بسیار مهم شانون در سالهای ۱۹۴۸ و ۱۹۴۹ و پیشرفت سریع در
 صنایع میکروالکترونیک در دهه ۱۹۶۰
 - مرحله چهارم:
 - شروع از اواخر دهه ۱۹۷۰ با پیشنهاد سیستمهای رمزنگاری با کلید همگانی
 - 🔾 رمزنگاری مدرن
 - مرحله پنجم: از آغاز دهه ۱۹۹۰: همگانی شدن علم رمزنگاری

سیستم اسپارتا -رمز استوانهای

44

پایه علم رمز

- نظریه اطلاعات (Information Theory)
 - نظریه کدگذاری (Coding Theory)
- نظریه پیچیدگی (Complexity Theory)
 - نظریه اعداد (Number Theory)
 - جبر (Algebra)
- آمار و فرآیندهای تصادفی (Statistics and Stochastic Processes)
 - علوم کامپیوتر (Computer Science)
 - الكترونيك

تعاريف اساسي

- رمزنگاری (Cryptography): علم و مطالعه روشهای مختلف مبادله اطلاعات امن
- متن اصلی (Plaintext=cleartext): پیام یا متنی که میبایست پس از رمز شدن برای گیرنده خاصی ارسال شود
- متن رمزشده (Ciphertext=Cryptogram): متن رمز شده که توسط یک کانال ناامن ارسال می گردد
- عمل رمزگذاری (Encipherment=Encryption): فرآیند تبدیل متن اصلی به متن رمزشده
- الگوریتم (Algorithm): روشی که رمزکننده (Encipherer) برای رمز کردن متن اصلی بکار میبرد
 - کلید (Key): الگوریتم عموماً متکی به یک کلید است که میبایستی برای دریافت کننده متن رمز شده معلوم باشد و سایرین از آن اطلاعی نداشته باشند

49

تعاریف اساسی

- عمل رمزگشایی (Deciphering=Decryption): عمل استخراج متن اصلی از متن رمز شده توسط گیرنده و با استفاده از کلید
- کد (Code): نحوه ارسالی است که به کلید خاصی بستگی ندارد و فقط به کتاب کد (Codebook) وابسته است. یعنی فقط یک کلید دارد. بنابراین کد را به صورت سیستمی که به کلید وابسته نیست تعریف می کنیم
 - رمزشکن (Cryptanalyst): کسی که مجوز فهمیدن پیام را ندارد ولی در جستجوی آن است
 - رمزشکنی (Cryptanalysis): دانش و مطالعه روشهای مختلف بدست آوردن پیام توسط رمزشکن
 - رمزشناسی (Cryptology): دانش رمزنگاری و رمزشکنی را کلاً رمزشناسی نامند
- سیستم شکستپذیر (Breakable): سیستم شکستپذیر است هرگاه امکان دستیابی به کلید از روی متن رمزشده و یا از روی متن رمزشده و متن اصلی باشد

انواع حملهها براي رمزشكني (از نظر اطلاعات رمزشكن)

- 1. حمله بر اساس فقط متن رمزشده (Ciphertext Only Attack)
 - اطلاعات: الگوریتم رمزنگاری + متن رمزشده
 - حمله نوع اول
- 2. حمله بر اساس چند متن اصلی معلوم (Known Plaintext Attack)
- اطلاعات: الگوریتم رمزنگاری + متن رمزشده + یک یا چند متن اصلی و متون رمزشده متناظر
 - 🔾 هدف: يافتن كليد
 - 🔾 حمله نوع دوم
 - 3. حمله متن اصلی منتخب (Chosen Plaintext Attack)
- اطلاعات: الگوریتم رمزنگاری + متن رمزشده + هر متن اصلی منتخب و متون رمزشده متناظر
 - 🔾 هدف: يافتن كليد
 - حمله نوع سوم

انواع حملهها براي رمزشكني (ادامه)

- .4 حمله متن رمز منتخب (Chosen Ciphertext Attack)
- اطلاعات: الگوریتم رمزنگاری + متن رمزشده + هر متن رمزشده منتخب و متون اصلی
 رمزگشایی شده متناظر
 - هدف: یافتن کلید
 - حمله نوع چهارم
 - خاص سیستمهای کلید همگانی
 - 5. حمله متن منتخب (Chosen Text Attack)
- اطلاعات: الگوریتم رمزنگاری + متن رمزشده + هر متن اصلی منتخب و متون رمزشده متناظر
 + هر متن رمزشده منتخب و متون اصلی رمزگشایی شده متناظر
 - هدف: يافتن كليد

۵٠

امنیت در سیستمهای رمزنگاری

- 1. امنیت بدون شرط (unconditional security):
 - o مستقل از امکانات نامحدود رمزشکن، سیستم امن باشد
 - One time pad سیستم ورنام (Vernam) = سیستم ورنام
- 2. امنیت محاسباتی (computational security):
- رمزشکنی عملاً و از نظر محاسباتی پیچیده و طولانی باشد
- مانند رمز RSA: امنیت محاسباتی مبتنی بر تجزیه اعداد اول
- فاصله قابل شكست (unicity distance): حداقل طول متنى كه در حمله نوع اول لازم است
 - اولین بار توسط شانون
- C.E. Shannon, "Communication Theory of Secrecy Systems," *Bell System Tech. J., vol. 28, pp. 656-715, Oct., 1949.*

معیارهای پنجگانه ارزیابی شانون

- N_0 ميزان ايمنى سيستم: افزايش 1
- 2. اندازه کلید: تا اندازه ممکن کوچک ightarrow مدیریت توزیع و نگهداری کلید
- 3. پیچیدگی عملیات رمزگذاری و رمزگشایی: تا اندازه ممکن ساده باشند
 - 4. انتشار خطا: جلوگیری
 - 5. بسط یا گسترش پیام: منجر به افزایش ریت ارسال

۰ جلوگیری

۵۲

رمزنگاری – Encryption

- Kerckhoffs's principle
 - The enemy **knows** the system
- The cryptographic secret or private keys must be kept secret

پارامترهای یک سیستم رمزنگاری

- $orall M \in \mathcal{M}$:(plaintext message space): فضای پیام (متن) اصلی .1
 - 2. فضای پیام (متن) رمزشده (ciphertext message space):
- $orall C \in \mathcal{C}$ خضای کلید: $orall K \in \mathcal{K}$.3
 - 4. مجموعه تبدیلات رمزگذاری (Enciphering transformation):

$$E_K: \mathcal{M} \to \mathcal{C} \ , \ \forall K \in \mathcal{K}$$

5. مجموعه تبدیلات رمزگشایی (Deciphering transformation):

$$D_K: \mathcal{C} \to \mathcal{M} \ , \ \forall K \in \mathcal{K}$$

شرايط لازم براي محرمانگي پيام

- شنودگر نتواند بر اساس متن رمزشده، متن اصلی را بدست بیاورد:
- بدست آوردن تبدیل رمزگشایی D_K بر اساس متن رمزشده C و حتی با معلوم بودن متن اصلی متناظر با آن از نظر محاسباتی برای شنودگر غیرممکن باشد. یعنی، نتواند به صورت سیستماتیک D_K را و در نتیجه M را بیابد.
- بدست آوردن متن اصلی M از متن رمزشده C از نظر محاسباتی برای شنودگر غیرممکن باشد. یعنی، نتواند بدون داشتن تبدیل رمزگشایی D_K به متن اصلی M دست بیابد.
 - محرمانه D_K
 - ندهد. D_K ندهد بیازی به محرمانه بودن E_K نیست مشروط بر این که نازی به محرمانه بودن نیست مشروط نا

شرایط لازم برای اصالت یا اعتبار پیام (Authenticity requirements)

- متخاصم نتواند یک متن جعلی C' را به جای متن معتبر C قرار دهد. یعنی، در این صورت میبایست متن جعلی کشف شود:
- بدست آوردن تبدیل رمزگذاری E_K بر اساس متن رمزشده C و حتی با معلوم بودن متن اصلی M متناظر با آن از نظر محاسباتی برای متخاصم غیرممکن باشد. یعنی، نتواند متن جعلی M را برای گیرنده به صورت $C'=E_K(M')$ (که C') ارسال کند.
- بدست آوردن سیستماتیک C' به طوریکه $D_K(C')$ یک متن اصلی M باشد، از نظر محاسباتی برای متخاصم غیرممکن باشد. یعنی، نتواند متنی مثل C' را بیابد که به یک متن معتبر رمزگشایی شود (بدون اطلاع از تبدیل رمزگذاری E_K)
 - محرمانه E_K
 - نیازی به محرمانه بودن D_K نیست مشروط بر این که D_K اطلاعاتی از E_K ندهد. •

۵٨

انواع رمزنگاری

- رمزنگاری متقارن (کلید مخفی)
 - Symmetric=One Key o
- Classic crypto systems, conventional systems

- رمزنگاری نامتقارن (کلید همگانی)
 - Asymmetric=Two Key O
 - Public-Key Cryptography o

تقسیمبندی سیستمها از نظر تبدیلات رمزگذاری و رمزگشایی

- سیستم متقارن یا تک کلیدی (Symmetric=One Key)
- کلیدهای رمزگذاری و رمزگشایی یکسان یا به راحتی از روی یکدیگر قابل محاسبه
 - رابطه ساده میان تبدیلات رمزگذاری و رمزگشایی
 - 🔾 محرمانگی و اعتبار توام
 - 🔾 سیستمهای کلاسیک یا متداول
 - سیستم نامتقارن یا دو کلیدی (Asymmetric=Two Key)
 - رابطه مشکل (یک طرفه) میان تبدیلات رمزگذاری و رمزگشایی
 - کلیدهای رمزگذاری و رمزگشایی متفاوت
 - یکی از کلیدها میتواند آشکار (همگانی) باشد
 - محرمانگی و اعتبار به طور جداگانه نیز قابل بررسی
 - 🔾 سیستمهای مدرن: سیستمهای کلید همگانی

9.

سیستمهای کلید همگانی (Public Key Systems)

- معرفی در سال ۱۹۷۶ توسط دیفی و هلمن (Diffie & Hellman)
 - معرفی مستقلاً توسط مرکل (Merkle)
 - هر کاربر دارای دو کلید است: مثلاً کاربر A
 - Pu_A یک کلید همگانی (public): همه می دانند \circ
 - Pr_A مخفی: تنها نزد خود کاربر (private) مخفی یک کلید خصوصی \circ
 - توابع یکطرفه:
 - از روی Pu_A از نظر محاسباتی غیرممکن Pr_A
 - ساده Pr_A از روی ا Pu_A ساده
 - محرمانگی و اصالت (اعتبار) به طور جداگانه

امضای دیجیتال Digital Signature

B منبع A توسط منبع M توسط منبع A به منبع اصالت یا اعتبار اطلاعات دریافتی: ارسال پیام امضا شده

- 1. اصالت امضای فرستنده (Sender authenticity)
 - گیرنده مطمئن باشد که پیام از منبع فرستنده است
- A است \rightarrow تایید اصالت امضای A است A بیام متعلق به A
 - 2. اصالت پیام (Message (data) authenticity
 - امکان تغییر پیام توسط دیگری و یا حتی گیرنده نباشد
- جعل امضای A برای هر فرد و از جمله خود B غیرممکن باشد. یعنی هیچ منبع دیگری نتواند پیامی را به نام منبع A برای B ارسال کند و حتی B هم نتواند پیامی غیر از M را به عنوان پیامی از جانب A ارائه دهد
 - 3. انکارناپذیری (منبع)
 - فرستنده بعداً نتواند ارسال پیام را انکار کند
 - هر مرجعی با بررسی پیام دریافتی بتواند منبع ارسال آن یعنی A را مشخص کند

امضای دیجیتال سیستمهای کلید همگانی

- کلید خصوصی Pr_A : نقش امضا \bullet
- منبع A پیام M را با کلید خصوصی Pr_A امضا کرده و برای B میفرستد \bullet
 - متن رمزشده $C=Pr_A(M)$ متن رمزشده •
- می کند A را کشف می کند A با استفاده از کلید همگانی A یعنی A، اصالت (اعتبار) پیام و تعلق آن به A
 - (*Pr_A(M)*: ييام امضا شده
 - عوسط B توسط $Pu_A(c)=Pu_A(Pr_A(M))=M$ •
 - در صورت بروز اختلاف، مرجع سوم می تواند ادعای B مبنی بر ارسال پیام توسط A را با بررسی متن امضا شده یعنی $Pr_A(M)$, بررسی کند
 - ون $Pu_A(c)=M$ است و هیچ منبعی جز A اطلاع از کلید Pr_A ندارد، پیام Pr_A متعلق به A است و نمی تواند ارسال آن را انکار نماید

94

امضای د**یجیتال** سیستم متقارن

- Merkle •
- منبع سوم مورد اعتماد (S) : کلیدهای رمزگذاری و رمزگشایی A و B را میداند
 - B درسال ییام امضا شده M توسط منبع \bullet
 - منبع A پیام رمزشده ($C = D_A(M)$ میفرستد \bullet
 - برای بررسی اصالت، B پیام رمزشده c برای c میفرستد
- S صحت آن را با محاسبه $E_A(c)=M$ مشخص کرده و پیام M را با استفاده از کلید محرمانه B برای B می فرستد
 - B پیام M را رمزگشایی می کند

مروری بر نظریه اطلاعات (Information Theory)

- مقاله ۱۹۴۹ شانون: نظریه رمزنگاری بر اساس نظریه اطلاعات
 - آنتروپی یک منبع اطلاعات گسسته و بدون حافظه
 - اطلاعات متقابل (Mutual Information)

99

ارزیابی کیفی سیستم رمزنگاری

- هدف مهاجم: كليد
- ۰ متن رمزشده حداقل اطلاعات را در مورد کلید بدهد
 - O H(K|C) حداكثر شود

 $H(K|C) \leq H(K) \leq \log |\mathcal{K}|$ اندازه الفبای کلید

- دنباله کلید مستقل از دنباله متن رمزشده باشد
 - كليدها با احتمال مساوى اتفاق بيفتند
 - تعداد كليدها افزايش يابد
- با ارزیابی عملی شانون جهت مدیریت کلید مغایرت دارد

(Redundancy of a language) افزونگی یک زبان

- نرخ واقعی زبان (actual rate of a language)
 - متوسط اطلاعات موجود در هر سمبل
 - انگلیسی: r=1-1.5 بیت بر سمبل
 - فارسى: r=1.5 بيت بر سمبل
- نرخ مطلق زبان (absolute rate of a language)
- \circ نرخ اطلاعات در هر سمبل وقتی سمبلها به صورت مستقل و با احتمال مساوی تولید شوند
 - تعداد سمبلهای زبان مورد نظر (تعداد حروف الفبا)-L
 - $R = \log 26 = 4.7 \, \text{bit/sym}$ انگلیسی:
 - O فارسى:
 - $R = \log 32 = 5 \, \text{bit/sym}$
 - D=R-r افزونگی: تفاوت نرخ واقعی و مطلق •

۶٨

ساختار زبان (فركانس حروف)

- توزیع فرکانس نسبی حروف (تک حرفی):
- XYZ حروف فركانس بالا: RATE حروف فركانس پايين: \circ
 - فارسی: حروف فرکانس بالا: ای رد حروف فرکانس پایین: ژ ث

حرف	فر کانس
E	7.18
T	7.9
Α	7.Υ.Δ
X	7. • . 1 ۵
Z	7. · . · V۴

 $r = \lim_{n \to \infty} \frac{H(X)}{N}$

 $R = \log L$

حرف	فر کانس
- 1	7.14.0
ی	7.9
ر	7.∧.۵
٥	7.7.4
ث	7. • . • 9
ژ	'/ • . • Y

ساختار زبان (فرکانس حروف)

• توزیع فرکانس نسبی دوحرفیها (Digram):

حرف	فر کانس
TH	7.4.01
ER	7.1.18
AN	7.1.47
EN	7.1.14
VP	/ • • • ١
ZB	•

حرف	فر کانس
ان	7.7.41
ای	7.1.98
چب	

- توزیع فرکانس نسبی سه حرفیها (Trigram):
- \circ برخی سه حرفیها مانند ING ،THE و AND خیلی بیشتر از سایر سه حرفیها تکرار می شوند

٧.

مدل رمزنگاری شانون

 $X = \hat{X} \mapsto H(X|Y,K) = 0$

• عدم ابهام در رمزگشایی:

- $I(X;Y) = 0 \Longleftrightarrow X \coprod Y$
- $H(K) \ge H(X)$
- $Y = X \oplus K$

- سیستم امن کامل (Perfectly secure):
 - 🔾 ابهام کلید بیشتر از ابهام متن اصلی
 - one-time pad) سیستم ورنام

فاصله قابل شكست (unicity distance)

- حداقل طول متن رمزشده که در حمله نوع اول لازم است تا رمز شکسته شود
- مور شود تقریباً برابر صفر شود n سمبل متن رمز شده ابهام کلید تقریباً برابر صفر شود $H(K|Y_1,\dots,Y_n) pprox 0$
 - محاسبه اغلب مشكل و غيرعملي
 - هلمن شانون

 $N_0 = \frac{H(K)}{D}$

رمزهای تصادفی (Random cipher)

٧٢

دو ساختار پیشنهادی شانون برای کاهش اثرات حملههای آماری

- 1. پراکنش (Diffusion): تبدیلاتی را شامل می شود که خواص آماری متن اصلی را در طول متن رمزشده پراکنده می کند
- هر سمبل متن اصلی روی تعداد زیادی از سمبلهای متن رمزشده تاثیر گذارد یا به طور معادل هر سمبل متن رمزشده از تعداد زیادی از سمبلهای متن اصلی تاثیر پذیرد
 - رابطه بین متن اصلی و متن رمز شده پیچیده میشود
 - تغییر فرکانس نسبی
 - o جايگشت (permutation) + اعمال توابع
 - 2. آشفته سازی (Confusion): رابطه بین کلید و متن رمزشده پیچیده شود
 - الگوريتم جانشيني (substitution) پيچيده
 - اساس طراحی رمزهای قالبی مدرن

/٣

نظریه اعداد (Number Theory)

- همنهشتها (congruence) و حساب پیمانهای (congruence)
 - lacktriangle mod n محاسبه معکوس (ضربی) اعداد در فضای
 - 🔾 تابع اول
 - قضيه اولر فرمت
 - حل معادلات همنهشتی
 - قضیه باقیمانده چینی (The Chinese Remainder Theorem)
 - میدان گالوا (Galois field)
 - ⊙ میدانهای متناهی ⊙