20. Principal Stratification (Part 2)

lan Lundberg
Cornell Info 6751: Causal Inference in Observational Settings
Fall 2022

3 Nov 2022

Learning goals for today

At the end of class, you will be able to:

- 1. Finish the class exercise we started on Tuesday [solutions]
- 2. See principal stratification in action: quantifying racial bias in policing

doi:10.1017/S0003055420000039

© American Political Science Association 2020

Administrative Records Mask Racially Biased Policing

DEAN KNOX Princeton University

WILL LOWE Hertie School of Governance

JONATHAN MUMMOLO Princeton University

A police officer encounters a person 1. Stop them? Or not?

A police officer encounters a person

1. Stop them? Or not?

2. Use force? Or not?

A police officer encounters a person

- 1. Stop them? Or not?
- 2. Use force? Or not?

Effect of race:

Would the outcome of this encounter differ if the civilian were of a different race

A police officer encounters a person

- 1. Stop them? Or not?
- 2. Use force? Or not?

Effect of race:

Would the outcome of this encounter differ if the civilian were of a different race

Unit of analysis is an encounter not a person

FIGURE 1. Directed Acyclic Graph of Racial Discrimination in the Use of Force by Police

Notes: Observed *X* is left implicit; these covariates may be causally prior to any subset of *D*, *M*, and *Y*.

FIGURE 2. Principal Strata and Observed Police–Civilian Encounters

We would want the ATE

$$E(Y^{1M^1} - Y^{0M^0})$$

To estimate that, the authors say we need two things

- 1. Count of minority encounters¹
- 2. Count of white encounters within strata of X

¹(including all four strata)

Note: All steps are within X. Notation dropped.

Note: All steps are within X. Notation dropped.

Important caveat:

The following is my reconstruction of one of the simplest of many results in Knox, Lowe, & Mummolon 2020.

Point estimates Note: All steps are within X. Notation dropped.

Point estimates Note: All steps are within X. Notation dropped.

What proportion of encounters would involve force if they involved a minority civilian?

 $E(Y^1)$

Point estimates Note

Note: All steps are within X. Notation dropped.

What proportion of encounters would involve force if they involved a minority civilian?

$$\mathsf{E}(Y^1) = \mathsf{E}(Y^1 \mid D = 1)$$

Exchangeability

Note: All steps are within X. Notation dropped.

What proportion of encounters would involve force if they involved a minority civilian?

$$\mathsf{E}(Y^1) = \mathsf{E}(Y^1 \mid D = 1)$$

Exchangeability

$$= E(Y \mid D = 1)$$

Consistency

Note: All steps are within X. Notation dropped.

$$\mathsf{E}(Y^1) = \mathsf{E}(Y^1 \mid D = 1)$$
 Exchangeability
$$= \mathsf{E}(Y \mid D = 1)$$
 Consistency

$$= \overbrace{\mathsf{P}(M=1\mid D=1)}^{} \underbrace{\mathsf{E}(Y\mid D=1,M=1)}^{}$$
 Law of Total
$$+\underbrace{\mathsf{P}(M=0\mid D=1)}^{} \underbrace{\mathsf{E}(Y\mid D=1,M=0)}^{}$$
 Probability

Note: All steps are within X. Notation dropped.

$$\mathsf{E}(Y^1) = \mathsf{E}(Y^1 \mid D=1) \qquad \qquad \mathsf{Exchangeability}$$

$$= \mathsf{E}(Y \mid D=1) \qquad \qquad \mathsf{Consistency}$$

$$= \mathsf{P}(M=1 \mid D=1) \; \mathsf{E}(Y \mid D=1, M=1) \qquad \qquad \mathsf{Law of Total}$$

$$+ \mathsf{P}(M=0 \mid D=1) \; \mathsf{E}(Y \mid D=1, M=0) \qquad \qquad \mathsf{Probability}$$

Note: All steps are within X. Notation dropped.

$$\mathsf{E}(Y^1) = \mathsf{E}(Y^1 \mid D=1) \qquad \qquad \mathsf{Exchangeability}$$

$$= \mathsf{E}(Y \mid D=1) \qquad \qquad \mathsf{Consistency}$$

$$= \mathsf{E}(Y \mid D=1) \qquad \mathsf{Exchangeability}$$

$$= \mathsf{E}(Y \mid D=1) \qquad \mathsf{Exchangeability}$$

$$= \mathsf{E}(Y \mid D=1) \qquad \mathsf{Exchangeability}$$

$$= \mathsf{Exchangeability}$$

$$= \mathsf{E}(Y \mid D=1) \qquad \mathsf{Exchangeability}$$

$$= \mathsf{$$

Note: All steps are within X. Notation dropped.

What proportion of encounters would involve force if they involved a minority civilian?

minority encounters

$$\mathsf{E}(Y^1) = \mathsf{E}(Y^1 \mid D=1) \qquad \qquad \mathsf{Exchangeability}$$

$$= \mathsf{E}(Y \mid D=1) \qquad \qquad \mathsf{Consistency}$$

$$= \mathsf{E}(Y \mid D=1) \qquad \mathsf{Use of force among stopped minority encounters}$$

$$= \mathsf{P}(M=1 \mid D=1) \; \mathsf{E}(Y \mid D=1, M=1) \qquad \mathsf{Law of Total}$$

$$+ \mathsf{P}(M=0 \mid D=1) \; \mathsf{E}(Y \mid D=1, M=0) \qquad \mathsf{Probability}$$

 $E(Y^1) = E(Y^1 | D = 1)$

Note: All steps are within X. Notation dropped.

non-stopped minority encounters (=0)

Exchangeability

What proportion of encounters would involve force if they involved a minority civilian?

minority encounters

$$= \mathsf{E}(Y \mid D = 1) \qquad \qquad \mathsf{Consistency}$$

$$= \mathsf{E}(Y \mid D = 1) \qquad \mathsf{Use of force among} \\ = \mathsf{P}(M = 1 \mid D = 1) \; \mathsf{E}(Y \mid D = 1, M = 1) \\ + \mathsf{P}(M = 0 \mid D = 1) \qquad \mathsf{E}(Y \mid D = 1, M = 0) \\ \mathsf{Non-stop rate among} \qquad \mathsf{Use of force among} \qquad \mathsf{Probability}$$

Note: All steps are within X. Notation dropped.

$$\mathsf{E}(Y^1) = \mathsf{E}(Y^1 \mid D = 1)$$
 Exchangeability
$$= \mathsf{E}(Y \mid D = 1)$$
 Consistency

Stop rate among minority encounters

Use of force among stopped minority encounters

$$= P(M=1 \mid D=1) E(Y \mid D=1, M=1) \\
+ P(M=0 \mid D=1) E(Y \mid D=1, M=0) \\
Non-stop rate among minority encounters

Use of force among Use of force among non-stopped minority encounters

Use of force among Probability$$

Stop rate among minority encounters stopped minority encounters
$$= P(M=1 \mid D=1) E(Y \mid D=1, M=1)$$

Point estimates Note: All steps are within X. Notation dropped.

Stop rate among minority encounters Stopped minority encounters
$$E(Y^1) = P(M=1 \mid D=1) E(Y \mid D=1, M=1)$$

Note: All steps are within X. Notation dropped.

What proportion of encounters would involve force if they involved a minority civilian?

Stop rate among minority encounters Stopped minority encounters
$$E(Y^1) = P(M=1 \mid D=1) E(Y \mid D=1, M=1)$$

vs if they involved a non-minority civilian?

Note: All steps are within X. Notation dropped.

What proportion of encounters would involve force if they involved a minority civilian?

Stop rate among minority encounters stopped minority encounters
$$\mathsf{E}(Y^1) = \overbrace{\mathsf{P}(M=1 \mid D=1)}^{\mathsf{Stop rate among}} \underbrace{\mathsf{E}(Y \mid D=1, M=1)}^{\mathsf{Use of force among}}$$

vs if they involved a non-minority civilian?

Stop rate among non-minority encounters stopped non-minority encounters
$$E(Y^0) = P(M=1 \mid D=0) \quad E(Y \mid D=0, M=1)$$

Note: All steps are within X. Notation dropped.

What proportion of encounters would involve force if they involved a minority civilian?

Stop rate among minority encounters Stopped minority encounters
$$E(Y^1) = P(M=1 \mid D=1) E(Y \mid D=1, M=1)$$

vs if they involved a non-minority civilian?

Stop rate among Use of force among non-minority encounters stopped non-minority encounters
$$E(Y^0) = P(M=1 \mid D=0)$$
 $E(Y \mid D=0, M=1)$

Difference is the ATE.

Note: All steps are within X. Notation dropped.

What proportion of encounters would involve force if they involved a minority civilian?

Stop rate among minority encounters stopped minority encounters
$$E(Y^1) = P(M=1 \mid D=1) E(Y \mid D=1, M=1)$$

vs if they involved a non-minority civilian?

Stop rate among Use of force among non-minority encounters stopped non-minority encounters
$$E(Y^0) = P(M=1 \mid D=0)$$
 $E(Y \mid D=0, M=1)$

Difference is the ATE.

You just needed to augment the data with stop rates!

Note: All steps are within X. Notation dropped.

What proportion of encounters would involve force if they involved a minority civilian?

Stop rate among minority encounters stopped minority encounters
$$E(Y^1) = P(M=1 \mid D=1) E(Y \mid D=1, M=1)$$

vs if they involved a non-minority civilian?

Stop rate among Use of force among non-minority encounters stopped non-minority encounters
$$E(Y^0) = P(M=1 \mid D=0)$$
 $E(Y \mid D=0, M=1)$

Difference is the ATE.

You just needed to augment the data with stop rates!

Works because of two key factors:

Note: All steps are within X. Notation dropped.

What proportion of encounters would involve force if they involved a minority civilian?

Stop rate among minority encounters Stopped minority encounters
$$E(Y^1) = P(M=1 \mid D=1) E(Y \mid D=1, M=1)$$

vs if they involved a non-minority civilian?

Stop rate among Use of force among non-minority encounters stopped non-minority encounters
$$E(Y^0) = P(M=1 \mid D=0)$$
 $E(Y \mid D=0, M=1)$

Difference is the ATE.

You just needed to augment the data with stop rates!

Works because of two key factors:

ightharpoonup Race is assumed exchangeable given X

Note: All steps are within X. Notation dropped.

What proportion of encounters would involve force if they involved a minority civilian?

Stop rate among minority encounters Stopped minority encounters Stopped minority encounters
$$E(Y^1) = P(M=1 \mid D=1) E(Y \mid D=1, M=1)$$

vs if they involved a non-minority civilian?

Stop rate among Use of force among non-minority encounters stopped non-minority encounters
$$E(Y^0) = P(M=1 \mid D=0)$$
 $E(Y \mid D=0, M=1)$

Difference is the ATE.

You just needed to augment the data with stop rates!

Works because of two key factors:

- ightharpoonup Race is assumed exchangeable given X
- ▶ When M = 0 (no stop), then Y = 0 (no force)

► ATE: $E(Y^{1M^1} - Y^{0M^0})$

- ► ATE: $E(Y^{1M^1} Y^{0M^0})$
 - ightharpoonup Racial bias, where non-stops are coded Y=0

- ► ATE: $E(Y^{1M^1} Y^{0M^0})$
 - ightharpoonup Racial bias, where non-stops are coded Y=0
- ► CDE: $E(Y^{11} Y^{01})$

- ► ATE: $E(Y^{1M^1} Y^{0M^0})$
 - ightharpoonup Racial bias, where non-stops are coded Y=0
- ► CDE: $E(Y^{11} Y^{01})$
 - ► Racial bias if we stopped everyone

- ► ATE: $E(Y^{1M^1} Y^{0M^0})$
 - ightharpoonup Racial bias, where non-stops are coded Y=0
- ► CDE: $E(Y^{11} Y^{01})$
 - ► Racial bias if we stopped everyone
- ► ATE among the stopped

- ► ATE: $E(Y^{1M^1} Y^{0M^0})$
 - ightharpoonup Racial bias, where non-stops are coded Y=0
- ► CDE: $E(Y^{11} Y^{01})$
 - ► Racial bias if we stopped everyone
- ► ATE among the stopped
 - ► ATE_{M=1} = E($Y^{1M^1} \mid M = 1$) E($Y^{0M^0} \mid M = 1$)

- ► ATE: $E(Y^{1M^1} Y^{0M^0})$
 - ightharpoonup Racial bias, where non-stops are coded Y=0
- ► CDE: $E(Y^{11} Y^{01})$
 - ► Racial bias if we stopped everyone
- ► ATE among the stopped
 - ► ATE_{M=1} = E($Y^{1M^1} \mid M = 1$) E($Y^{0M^0} \mid M = 1$)
- Proportion of minority stops due to race

- ► ATE: $E(Y^{1M^1} Y^{0M^0})$
 - ightharpoonup Racial bias, where non-stops are coded Y=0
- ► CDE: $E(Y^{11} Y^{01})$
 - ► Racial bias if we stopped everyone
- ► ATE among the stopped

► ATE_{M=1} = E(
$$Y^{1M^1} \mid M = 1$$
) - E($Y^{0M^0} \mid M = 1$)

- ► Proportion of minority stops due to race
 - ightharpoonup E($Y^{1M^1} Y^{0M^0} \mid D = 1, M = 1$)

Many estimands: Necessary Assumptions

- 1. Mandatory reporting: $Y_i^{d0} = 0$ for all i and d
- 2. Mediator monotonicity: $M_i^1 \geq M_i^0$
- 3. Relative nonseverity of racial stops:

$$\mathsf{E}(Y^{dm}\mid D=d', \overbrace{M^1=1,M^0=1,X}^{\mathsf{Always Stop Stratum}}) \ \geq \mathsf{E}(Y^{dm}\mid D=d', \underbrace{M^1=1,M^0=0,X}_{\mathsf{Racial Stop Stratum}})$$

- 4. Treatment ignorability
 - $ightharpoonup M^d \perp D \mid X$
 - $ightharpoonup Y^{dm} \perp D \mid M^0, M^1, X$

Many Estimands: Necessary Assumptions

Assume absence of W and V. Ok to have U.

Many Estimands: Strong (As In Doubtful) Assumptions

Studies about the effect of race conditional on an interaction implicitly assume these things:

- 1. Mediator ignorability: $Y^{dm} \perp M^0 \mid D = d, M^1 = 1, X$
 - "violence rates in always-stop encounters must be identical to those in observationally equivalent racial stops"
- 2. No racial stops: $M^0 = M^1 \mid M = 1$
 - "all reported encounters were of the always-stop kind"

Knox, Lowe, & Mummolo argue that the above are implausible assumptions in the context of policing.

Without the strong assumptions, things can be learned

FIGURE 4. Bounds for Racially Discriminatory Use of Force, any Severity

Proportion of racially discriminatory stops

— naïve ATE_{M=1} × #{stopped} – - ATT_{M=1} × #{stopped minorities} ATE_{M=1} × #{stopped}

Learning goals for today

At the end of class, you will be able to:

- 1. Finish the class exercise we started on Tuesday [solutions]
- 2. See principal stratification in action: quantifying racial bias in policing

Let me know what you are thinking

tinyurl.com/CausalQuestions

Office hours TTh 11am-12pm and at calendly.com/ianlundberg/office-hours Come say hi!