Name: Mark = _____ / 57 Part 1: Multiple Choice Section 10 marks 1. Which of the following exhibits geometrical isomerism? trifluoroethene Α. B. 1-chloro-2-bromoethane C. methylpropene pent-2-ene D. 2. Which of the following is a tertiary alcohol? A. cyclobutanol B. 2-methylcyclobutanol C. 1-methylcyclopentanol dimethylpropan-1-ol D. 3. Addition of hydrogen chloride to propene can produce which of the following substances? I. 1-chloropropane II. 2-chloropropane III. 1,2-dichloropropane IV. 2-chloropropene I and II Α. I, II and III B. C. II only II and III D. 4. The oxidation of butan-2-ol with acidified potassium permanganate will produce? butanoic acid A.

The following two questions are about aspirin;

В.

C.

D.

butanal

butanone

no reaction

5. Aspirin contains the following substance:

Which of the following functional groups does aspirin contain?

- I. aldehyde
- II. ketone
- III. carboxylic acid
- IV. ester
- A. II and III
- B. III and IV
- C. I and II
- D. all of them
- 6 Aspirin can be manufactured from salicylic acid, whose structure is given below:

To convert salicylic acid into aspirin, what other substance should it be reacted with?

- A. ethanol
- B. ethanoic acid
- C. acidified potassium dichromate
- D. sodium hydroxide solution
- 7. The empirical formula of 1,4-dimethylbenzene is:
 - A. C_4H_5
 - B. C₆H₁₀
 - C. C₈H₁₀
 - D. CH₂
- 8. Which of the following is not an isomer of the other three?

- A. butanoic acid
- B. 2-propyl methanoate
- C. butan-1,2-diol
- D. methyl propanoate
- 9. Which of the following represents a soap?
 - A. CH₃(CH₂)₁₆COOK
 - B. NaOH
 - C. CH₃COONa
 - $\begin{array}{ccc} D. & CH_2OH \\ & | \\ & CHOH \\ & | \\ & CH_2OH \end{array}$
- 10. Which of the following reactants are capable of forming a condensation polymer under suitable conditions?
 - A. HOCH₂CH₂CH₂CH₂CH₂CH₂COOH
 - B. C=C / \ H C\$\ell\$

 - D. $\label{eq:hooch2CH2CH2CH2CH2CH2CH2CH2COOH} \text{ and }$

HOOCCH₂CH₂CH₂COOH

11. Name and draw full structural formula to represent the following substances;

A saturated isomer of C ₄ H ₈	
An alkene with 4 carbon atoms that does not exhibit geometric (cis/trans) isomerism	
The product of reacting cis-pent-2-ene with hydrogen	
A structural isomer of methyl methanoate that fizzes when added to sodium carbonate solution	
An amine with 5 hydrogen atoms	
The organic product formed when one molecule of cyclohexane reacts with one molecule of chlorine in the presence of UV light	

(12 marks)

12. Complete the following table.

Molecule	Major type of intermolecular attraction (choose from dispersion forces, dipole-dipole or hydrogen bonding)	Boiling point ranking (1 = highest, 5 = lowest)
H H H		
H H H H H H H H H H H H H H H H H H H		
CH3-CH2-CO-H		
H H H H H-C-C-C-C-H H H H H		
H — C — H — H — C — H — C — H		

(8 marks)

13. The structures of glycine and alanine are shown below:

(b)

(a)	To which class of compounds do they both belong?	

	(1 mark)
What is the main intermolecular force between alanine molecules?	

(c) A glycine molecule and an alanine molecule can react with each other in a condensation reaction to form a new substance called a dipeptide.

Draw one of the two possible dipeptides that could be formed below.

(3 marks)

(1 mark)

Alcohol	Oxidation product(s)

There are four isomeric alcohols, all of which have the molecular formula, $C_4H_{10}O$.

14.

10 marks

	g of an organic compound X is completely burnt in excess oxygen, forming 3 on dioxide and 1.32 g of water.	21 g of
(a)	Calculate the empirical formula of X.	
		7 marks)
	second experiment it was found that 0.473 g of X occupied 278 mL, measured ${\tt C}$ and 1.10 atm.	at
(b)	Calculate the molecular formula of the compound.	
(c)	Given that, at STP, X is a sweet smelling liquid, draw the structural formula X and name it.	(3 marks) of
	End of Test	2 marks)

15.

Year 12 Chemistry

Topic Test #3 - 2011

Name: **ANSWERS** Mark = _____ / **57**

Part 1: Multiple Choice Section

10 marks

1. D 2. C 3. A 4. C 5. B 6. B 7. A 8. C 9. A 10. A

Part 2: Short Answer Section

47 marks

11. Name and draw full structural formula to represent the following substances;

A saturated isomer of C ₄ H ₈		CH ₃
	cyclobutane	methylcyclopropane
An alkene with 4 carbon atoms that does not exhibit geometric (cis/trans) isomerism	H CH ₃	HC=CH2-CH3
	methylpropene	1-butene
The product of reacting cis-pent-2-ene with hydrogen	н н н н н-с-с-с-с-н н н н н pentane	
A structural isomer of methyl methanoate that fizzes when added to sodium carbonate solution	H O H O O O O O O O O O O O O O O O O O	
	ethanoic acid	
An amine with 5 hydrogen atoms	H)-	H -CH -H
	methanamine	
The organic product formed when one molecule of cyclohexane reacts with one molecule of chlorine in the presence of UV light	CI	
	chlorocyc	

✓ each (12 marks)

12. Complete the following table.

Molecule	Major type of intermolecular attraction (choose from dispersion forces, dipole-dipole or hydrogen bonding)	Boiling point ranking (1 = highest, 5 = lowest)
H H H 	hydrogen bonding	2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	dipole-dipole forces	3
сн ₃ -сн ₂ -с	hydrogen bonding	1
H H H H H-C-C-C-C-H H H H H	dispersion forces	4
H H H H H H H H H H H H H H H H H H H	dispersion forces	5

✓ each (8 marks)

13. The structures of glycine and alanine are shown below:

(a) To which class of compounds do they both belong?

Amino acids

✓
(1 mark)

(b) What is the main intermolecular force between alanine molecules?

Hydrogen bonding ✓

(1 mark)

(3 marks)

(c) A glycine molecule and an alanine molecule can react with each other in a condensation reaction to form a new substance called a dipeptide.

Draw one of the two possible dipeptides that could be formed below.

11

14. There are four isomeric alcohols, all of which have the molecular formula, $C_4H_{10}O$.

Draw each of these alcohols, and draw their oxidation product(s) when reacted with acidified potassium dichromate solution.

Alcohol	Oxidation product(s)	
CH₃CH₂CH₂CH₂OH (1-butanol)	CH₃CH₂CH₂CHO	CH₃CH₂CH₂COOH
CH₃CH₂CHOHCH₃ (2-butanol)	CH₃CH₂COCH₃	
CH₃CH(CH₃)CH₂OH (methyl-1-propanol)	СН₃СН(СН₃)СНО	СН₃СН(СН₃)СООН
CH₃CH(OH)(CH₃)CH₃ (methyl-2-propanol)	none	

✓ each (10 marks)

- 15. 2.19 g of an organic compound X is completely burnt in excess oxygen, forming 3.21 g of carbon dioxide and 1.32 g of water.
 - (a) Calculate the empirical formula of X.

0.0729

1 2 1

∴ EF = CH₂O ✓

(7 marks)

In a second experiment it was found that 0.473 g of X occupied 278 mL (= 0.278 L), measured at 200°C (= 473.1 K) and 1.10 atm (= $1.10/1 \times 101.3 = 111.4 \text{ kPa}$).

(b) Calculate the molecular formula of the compound.

n = PV/RT = (111.4 x 0.278)/(8.315 x 473.1) = 0.00787 mol
M = m/n = 0.473 / 0.00787 = 60.1 g mol⁻¹

$$\checkmark$$

M/EFM = 60.1 / 30.026 ≈ 2
∴ MF = 2 x EF = C₂H₄O₂ \checkmark

(c) Given that, at STP, X is a sweet smelling liquid, draw the structural formula of X and name it.

∴ ester

methyl methanoate

(2 marks)

(3 marks)

End of Test