

Figure 24.13: An affine subspace V and its direction \overrightarrow{V} .

Proposition 24.2. Let $\langle E, \overrightarrow{E}, + \rangle$ be an affine space.

(1) A nonempty subset V of E is an affine subspace iff for every point $a \in V$, the set

$$\overrightarrow{V_a} = \{ \overrightarrow{ax} \mid x \in V \}$$

is a subspace of \overrightarrow{E} . Consequently, $V = a + \overrightarrow{V_a}$. Furthermore,

$$\overrightarrow{V} = \{ \overrightarrow{xy} \mid x, y \in V \}$$

is a subspace of \overrightarrow{E} and $\overrightarrow{V}_a = \overrightarrow{V}$ for all $a \in E$. Thus, $V = a + \overrightarrow{V}$.

(2) For any subspace \overrightarrow{V} of \overrightarrow{E} and for any $a \in E$, the set $V = a + \overrightarrow{V}$ is an affine subspace.

Proof. The proof is straightforward, and is omitted. It is also given in Gallier [70]. \Box

In particular, when E is the natural affine space associated with a vector space \overrightarrow{E} , Proposition 24.2 shows that every affine subspace of E is of the form $u + \overrightarrow{U}$, for a subspace \overrightarrow{U} of \overrightarrow{E} . The subspaces of \overrightarrow{E} are the affine subspaces of E that contain 0.

The subspace \overrightarrow{V} associated with an affine subspace V is called the *direction of* V. It is also clear that the map $+: V \times \overrightarrow{V} \to V$ induced by $+: E \times \overrightarrow{E} \to E$ confers to $\langle V, \overrightarrow{V}, + \rangle$ an affine structure. Figure 24.13 illustrates the notion of affine subspace.

By the dimension of the subspace V, we mean the dimension of \overrightarrow{V} .

An affine subspace of dimension 1 is called a line, and an affine subspace of dimension 2 is called a plane.