Задача 1. Простая сортировка

Отсортируйте массив целых чисел в порядке неубывания.

Формат входных данных

Первая строка входного файла содержит целое число n ($1 \le n \le 10\,000$). Вторая строка содержит n целых чисел (каждое число по модулю не превышает 10^6).

Формат результата

Выведите числа в порядке неубывания.

Примеры

входные данные	результат
5	1 2 2 7 9
9 2 7 1 2	

Примечание (во всех тестах массив содержит 10000 элементов)

Тест	Описание	
1	случайная перестановка случаных чисел	
2	тоже, что 1, но массив упорядочен по возрастанию	
3	тоже, что 1, но массив упорядочен по убыванию	
4	одно число	
57	тоже, что 13, только всего 2 различных числа	
810	тоже, что 13, только всего 5 различных чисел	
1113	тоже, что 13, только всего 20 различных чисел	
14	"пила", где каждый зуб это неубывающий массив из 5 элементов	
15	"пила", где каждый зуб это 25 элементов "вверх" и 25 "вниз"	
16	"пила", где каждый зуб это 125 элементов "вниз" и 125 "вверх"	
17	"пила", где каждый зуб это невозрастающий массив из 625 элементов	
1821	тоже, что 1417, только части состоят из одних и тех же 2 чисел	
2225	тоже, что 1417, только части состоят из одних и тех же 5 чисел	
2629	тоже, что 1417, только части состоят из одних и тех же 20 чисел	
3031	неубывающий массив + 10-sorted или 250-sorted	
3233	невозрастающий массив + 50-sorted или 1250-sorted	
3435	неубывающий массив в котором выполнено 100, 1000 инверсий	
3637	3637 невозрастающий массив в котором выполнено 300, 3000 инверсий	
38	38 тоже, что 1, но генератор возращает числа из нормального распределения	
39	неубывающий массив чисел из нормального распределения плюс 100 инверсий	
40	неубывающий массив чисел из нормального распределения плюс 5-sorted	
4142	тоже, что 3940, но массив невозрастающий и 1000 инверсий/25-sorted	

Задача 2. Хитрая сортировка

Дана последовательность из n чисел. Нужно упорядочить эти числа по неубыванию последней цифры, а при равенстве последних цифр — по неубыванию самих чисел.

Формат входных данных

Сначала вводится число $n\ (1\leqslant n\leqslant 100),$ а затем сами числа — натуральные и не превышающие 32000.

Формат результата

Выведите последовательность чисел, упорядоченную так, как указано в условии.

Примеры

входные данные	результат
7	20 1 12 13 43 15 15
12 15 43 13 20 1 15	

Задача 3. Итоги олимпиады (общие)

В олимпиаде по информатике участвовало n школьников, получивших уникальные номера от 1 до n. В результате решения задач, каждый участник набрал некоторое количество баллов (целое число от 0 до 800). Про каждого школьника известно сколько баллов он набрал. Требуется вывести итоговую таблицу, то есть перечислить участников олимпиады в порядке невозрастания набранных ими баллов.

Формат входных данных

В первой строке содержится число $n\ (1\leqslant n\leqslant 200)$. В последующих n строках записаны баллы набранные участниками.

Формат результата

Выведите участников в порядке невозрастания набранных ими баллов. В каждой строке сначала выведите номер участника, а затем количество набранных баллов. Если несколько участников набрали одинаковое количество баллов, то их можно вывести в произвольном порядке.

входные данные	результат
5	5 500
100	2 312
312	4 312
0	1 100
312	3 0
500	

Задача 4. Итоги олимпиады (с учётом класса)

В олимпиаде по информатике участвовало *п* школьников, получивших уникальные номера от 1 до *п*. В результате решения задач, каждый участник набрал некоторое количество баллов (целое число от 0 до 800). Про каждого школьника известно *в каком классе он учится* и сколько набрал баллов. Требуется вывести итоговую таблицу: перечислить участников в порядке неубывания класса, а участников из одного класса - в порядке невозрастания набранных баллов.

Формат входных данных

В первой строке содержится число n ($1 \le n \le 200$). В последующих n строках записаны два числа - класс (целое число от 1 до 11) и набранные баллов.

Формат результата

Выведите итоговую таблицу. В каждой строке сначала выведите класс участника, затем количество набранных баллов и его номер. Если несколько участников из одного класса набрали одинаковое количество баллов, то их можно вывести в произвольном порядке.

Примеры

входные данные	результат
5	10 312 4
10 100	10 312 2
10 312	10 100 1
11 0	11 500 5
10 312	11 0 3
11 500	

Задача 5. Итоги олимпиады (занятое место)

В олимпиаде по информатике участвовало n школьников, получивших уникальные номера от 1 до n. В результате решения задач, каждый участник набрал некоторое количество баллов (целое число от 0 до 800). Про каждого школьника известно сколько баллов он набрал. Требуется вывести место занятое каждым участником.

Примечание. Возможно, что задача на сортировку решается и без неё.

Формат входных данных

В первой строке содержится число n ($1 \le n \le 200$). В последующих n строках записаны баллы набранные участниками.

Формат результата

Выведите место занятое каждым участником. Будем считать, что участник занял место k если ровно k-1 участников набрали больше баллов, чем он. Например, если два участника набрали 800 баллов, четыре - 700 баллов, а один 600 баллов, то первые два заняли первое место, следующие четыре третье место и последний участник занял седьмое место.

входные данные	результат
7	3
700	7
600	1
800	3
700	3
700	1
800	3
700	

Задача 6. Такси

После затянувшегося совещания директор фирмы решил заказать такси, чтобы развезти сотрудников по домам. Он заказал n машин — ровно столько, сколько у него сотрудников. Но когда они подъехали, оказалось, что у каждого водителя такси свой тариф за 1 километр.

Каждый сотрудник сказал директору, сколько километров ему нужно проехать до дома. Разные сотрудники должны сесть в разные такси. Теперь директор хочет определить, какой из сотрудников на каком такси должен поехать домой, чтобы суммарные затраты на такси (а их несёт фирма) были минимальны.

Формат входных данных

Сначала записано натуральное число n ($1 \le n \le 1000$) — количество сотрудников компании (совпадающее с количеством вызванных машин такси). Далее записано n чисел, задающих расстояния в километрах от работы до домов сотрудников компании (первое число — для первого сотрудника, второе — для второго и т.д.). Все расстояния — положительные целые числа, не превышающие 1000. Далее записано еще n чисел — тарифы за проезд одного километра в такси (первое число — в первой машине такси, второе — во второй и т.д.). Тарифы выражаются положительными целыми числами, не превышающими 10000.

Формат результата

Выведите n чисел — оптимальное распределение сотрудников по такси. Первым выведите номер такси, в которое должен сесть первый сотрудник, вторым — номер такси, в которое должен сесть второй и т.д. Если есть несколько вариантов рассадки сотрудников, при которых затраты минимальны, выведите любой из них.

Примеры

входные данные	результат
3	1 3 2
10 20 30	
50 20 30	
5	1 2 3 5 4
10 20 1 30 30	
3 3 3 2 3	

Задача 7. Сортировка

Отсортируйте массив целых чисел в порядке неубывания.

Формат входных данных

Первая строка входного файла содержит целое число n ($1 \le n \le 100\,000$). Вторая строка содержит n целых чисел (каждое число по модулю не превышает 10^9).

Формат результата

Данные числа следует вывести в порядке неубывания.

входные данные	результат
5	-1 2 2 7 9
9 2 7 -1 2	

Задача 8. Различные числа - 2

В массиве $A = a_1, a_2, \dots, a_n$ каждый элемент это целое число в диапазоне $[-10^9..10^9]$. Сколько различных чисел в данном массиве?

Формат входных данных

В первой строке содержится целое число n ($1 \le n \le 100\,000$). Во второй строке записаны целые числа a_1, a_2, \ldots, a_n ($-10^9 \le a_i \le 10^9$).

Формат результата

Выведите количество различных чисел.

Примеры

входные данные	результат
4	4
25 0 10 1	
5	3
0 11 0 2 0	

Задача 9. Сортировка по полярному углу

На площади стоит n человек. Местоположение каждого человека задаётся координатами x_i, y_i относительно центра площади. В центре площади находится прожектор. Изначально луч прожектора смотрит в направлении $(\infty, 0)$. Затем прожектор делает полный оборот вокруг своей оси, вращаясь **против** часовой стрелки. Требуется определить кто, и в какой последовательности, будет освещён прожектором. Если одновременно несколько человек находится на луче прожектора, то освещается только ближайший из них.

Формат входных данных

В первой строке содержится количество людей n ($1 \le n \le 100\,000$). Далее следуют n местоположений. Каждое местоположение задаётся своими координатами x_i, y_i ($-10\,000 \le x_i, y_i \le 10\,000$). Гарантируется, что никто не стоит в точке (0,0) и, что два человека не стоят в одной точке.

Формат результата

Выведите номера людей в том порядке, в котором они будет освещены прожектором.

входные данные	результат
1	1
19 2	
5	4 5 2 3
10 0	
0 -1	
1 -3	
9 0	
4 5	

Задача 10. Какой алгоритм сортировки лучше? (*)

Ответ на вопрос, который поставлен в названии можно узнать, проведя небольшое самостоятельное исследование. Разные алгоритмы ведут себя по разному в зависимости от того какие данные необходимо упорядочить. Но дело в том, что с помощью проверяющего сервера сравнить алгоритмы сложно. Если мы дадим задачу отсортировать массив большой длины (может быть миллион), то ваше решение будет состоять из трёх частей:

- 1. Чтение данных
- 2. Сортировка
- 3. Вывод данных

Так вот, шаги 1 и 3 будут занимать практически всё время и измеряться будет не время работы алгоритма сортировки, а время ввода/вывода. Чтобы этого избежать, необходимо изменить программу таким образом:

- 1. Чтение данных
- 2. Старт таймера
- 3. Сортировка
- 4. Остановка таймера
- 5. Вывод данных

Это можно сделать без проверяющего сервера. И тогда вы увидете, как разные сортировки ведут себя на разных видах тестов. Разные тесты (см. примечание к задаче "Простая сортировка") у нас есть. После того, как вы проведёте исследование, мы добавим ваши результаты в таблицу ниже.