HELP MANUAL

Clustering using k-Means and MeanShift Algorithm

k-Means Clustering on Lists

- Required packages to implement k-Means
 Clustering algorithm on Lists
 - import numpy as np
 - import matplotlib.pyplot as plt
 - from sklearn.cluster import KMeans

- Creating Lists and displaying them
 - \square x=[1,5,1.5,8,1,9]
 - \square y=[2,8,1.8,8,0.6,11]
 - print (x)
 - print (y)
- Plot and display scatter chart of x and y
 - plt.scatter(x,y)
 - plt.show()
- Creating an array X which stores pair (x, y)
 - X=np.array([[1,2],[5,8],[1.5,1.8],[8,8],[1,0.6],[9,11]])

- Apply KMeans function with two number of clusters and store its output in variable kmeans, representing a clustering model
 - kmeans=KMeans(n_clusters=2)
- Fit kmeans clustering model on array X.
 - kmeans.fit(X)
- Extract centroids and labels from the model kmeans and print them on console.
- centroids=kmeans.cluster_centers_
- print(centroids)
- labels=kmeans.labels_
- print (labels)

- Define color list having two different colors red and green to represent two clusters.
 - colors=["r.","g."]
- For each element of the array X
 - Print coordinates and labels along with the element of X
 - Plot each element of X using colors and labels
- Solution:
 - for i in range(len(X)):
 - print ("coordinate:",X[i],"labels:",labels[i])
 - plt.plot(X[i][0],X[i][1],colors[labels[i]])

- Plot centroids of both clusters
 - plt.scatter(centroids[:,0],centroids[:,1],marker="x",s=150)
- Display scatter chart showing all elements of X
 with designed clusters in specified colors.
- plt.show()
- Import "pandas" package" and copy dataset "faithful.csv" to the Destop folder on your system
 - import pandas as pd

11-Jun-19

- Open dataset file "faithful.csv" and store it a variable "d"
 - d=pd.read_csv('c:/users/username/Desktop/DDCN-2019/faithful.csv')
- Print first five records of the variable "d"
 - print (d.head())
- Plot scatter chart of columns "eruptions" and "waiting" of the variable "d"
 - plt.scatter(d.eruptions,d.waiting)

- Show scatter chart with chart title as "Old Faithfull Data Scatter Plot", x axis as "Length of eruptions", and y axis as "Time between eruptions".
 - plt.title('Old Faithfull Data Scatter Plot')
 - plt.xlabel('Length of eruptions')
 - plt.ylabel('Time between eruptions')
 - plt.show()

- Create an array "d1" which stores the elements of the variable "d".
 - \square d1=np.array(d)
- Apply KMeans function with two number of clusters and store its output in variable kmeans, representing a clustering model.
 - \square k=2
 - kmeans=cluster.KMeans(n_clusters=k)

- □ Fit kmeans clustering model on array "d1".
 - kmeans.fit(d1)
- Extract centroids and labels from the model kmeans.
 - labels=kmeans.labels_
 - centroids=kmeans.cluster_centers_

- For each element of the array "d1"
 - Extract observations for each level from the array "d1" and store it in variable "ds"
 - Plot both columns from the variable ds and centroids for each cluster
 - Increase the size of centroid points

Solution:

- □ for i in range (k):
- ds=d1[np.where(labels==i)]
- plt.plot(ds[:,0],ds[:,1],'o',markersize=7)
- lines=plt.plot(centroids[i,0],centroids[i,1],'kx')
- plt.setp(lines,ms=15.0)
- plt.setp(lines,mew=4.0)

- Display scatter chart showing all elements of the datasets with designated clusters and centroids.
 - plt.show()

Hierarchical Clustering using MeanShift Algorithm

- Required packages to implement Hierachichal
 Clustering using MeanShift algorithm
 - import numpy as np
 - import matplotlib.pyplot as plt
 - from sklearn.cluster import MeanShift
- Import packages to generate sample data
 - from sklearn.datasets.samples_generator import make blobs

- □ Define center points as [1,1],[5,5]
 - \square centers=[[1,1],[5,5]]
- Generate sample of data sets and store it in X,Y
 - X,Y=make_blobs(n_samples=200,centers=centers, cluster_std=1)
- Display scatter chart of generated sample data (X)
 - plt.scatter(X[:,0],X[:,1])
 - plt.show()

- Apply MeanShift function and store its output in variable kmeans, representing a clustering model.
 - ms=MeanShift()
- Fit generated clustering model on the data X.
 - ms.fit(X)
- Extract centroids and labels from the cluster model.
- # Extracting labels
- labels=ms.labels_
- # Extracting cluster centres
- clusters_centers=ms.cluster_centers_

- Extract number of clusters from the cluster model and print the number of clusters on console.
 - n_clusters=len(np.unique(labels))
 - print ("Number of Estimated Clusters",n_clusters)
- Define list of colors
 - colors=["g.","r.","c.","y.","b.","k","y.","m."]
- Print colors and labels
- print(colors)
- print(labels)

- For each observation of data X
 - Plot observations with suitable colors according to the designated labels
- □ Solution:
 - for i in range(len(X)):
 - #print ("coordinate:",X[i],"labels:",labels[i])
 - plt.plot(X[i][0],X[i][1],colors[labels[i]],markersize=10)

- Plot scatter chart of cluster centers and mark them with "x"
 - plt.scatter(clusters_centers[:,0],clusters_centers[:,1],marker=
 "x",s=150,linewidth=5, zorder=10)
- Display scatter chart
 - plt.show()