Algèbre

Martin Mugnier

DD ENSAE-HEC, 2019

Chapitre 2: Déterminants

Motivations

2 Déterminant, définition

3 Déterminant, calcul pratique

4 Applications du déterminant

Un exemple simple de modèle d'offre et de demande

On considère :

$$Q^{d} = aY - bP$$

$$Q^{s} = dP - cW$$

$$Q^{s} = Q^{d}$$

où les quantités Q^s, Q^d et les prix P sont des variables endogènes. On suppose que la consommation Y et les salaires W sont exogènes. On veut exprimer (Q^d, Q^s, P) en fonction de (Y, W).

La méthode du Pivot de Gauss

$$Q - dP = -cW \tag{1}$$

$$Q + bP = aY (2)$$

$$Q - dP = -cW$$
 (1)

$$(d+b)P = aY + cW$$
 (2) - (1)

soit finalement

$$P = \frac{aY + cW}{b + d}, \quad Q = \frac{adY - bcW}{b + d}$$

Système de Cramer (1750)

Considérons un système linéaire à deux équations, deux inconnues :

$$\begin{cases} a_{11} x_1 + a_{12} x_2 &= y_1 \\ a_{21} x_1 + a_{22} x_2 &= y_2 \end{cases}$$
 (1)

Si $a_{11}a_{22} - a_{12}a_{21} \neq 0$, il existe une unique solution :

$$\begin{cases} x_1 = \frac{a_{22}y_1 - a_{12}y_2}{a_{11}a_{22} - a_{12}a_{21}} \\ x_2 = \frac{-a_{21}y_1 + a_{11}y_2}{a_{11}a_{22} - a_{12}a_{21}} \end{cases}$$

En posant $Y := \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}$, $X := \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$, la réécriture matricielle du système (1) est :

$$Y = A.X$$

 $a_{11}a_{22} - a_{12}a_{21}$ est le déterminant de la matrice $A := \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$.

Martin Mugnier Algèbre

Algorithme, cas général du Pivot de Gauss

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1p}x_p = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2p}x_p = b_2 \\ \vdots \\ a_{n1}x_1 + a_{n2}x_2 + \dots + a_{np}x_p = b_n \end{cases}$$

Supposons que $a_{11} \neq 0$, on divise la première ligne par a_{11} , ce qui conduit à :

$$x_1 + \frac{a_{12}}{a_{11}}x_2 + \dots + \frac{a_{1p}}{a_{11}}x_p = \frac{b_1}{a_{11}}$$

Pour $i=2\cdots n$, on remplace l'équation i par l'équation i moins a_{i1} fois l'équation 1, ce qui conduit à

$$0.x_1 + \left(a_{i2} - \frac{a_{i1}a_{12}}{a_{11}}\right)x_2 + \dots + \left(a_{ip} - \frac{a_{i1}a_{1p}}{a_{11}}\right)x_p = b_i - \frac{a_{i1}b_1}{a_{11}}$$

- ◆ロ → ◆御 → ◆ き → ◆き → ・ き ・ かへの

On définit

$$\tilde{a}_{ij} = a_{ij} - \frac{a_{i1}a_{1j}}{a_{11}}$$
 et $\tilde{b}_i = b_i - \frac{a_{i1}b_1}{a_{11}}$

Le système d'équations $i=2\cdots n$ est un système linéaire avec (p-1) inconnues (x_2,\cdots,x_p) .

On itère l'algorithme sur ce sytème de taille (n-1,p-1), soit, si $\tilde{a}_{22} \neq 0$, on divise 2 par $\tilde{a}_{22}...$

Au final on obtient un système échelonné.

Calcul de volumes de pavés

L'application "volume du pavé" en dimension n vérifie :

- C'est une forme *n*-linéaire
- Un pavé engendré par (a_1,\ldots,a_n) à un volume nul si et seulement si il est "plat"

Il en découle que si $a_i = a_j$, $\forall i \neq j$ alors $Vol(a_1, \ldots, a_n) = 0$. Le calcul des valeurs se fait toujours relativement à une référence.

Groupe Symétrique

Une permutation de E est une bijection de E dans E.

Proposition

Soit n > 0 un entier, l'ensemble des permutations de $\{1, 2, ..., n\}$ est noté S_n et est de cardinal n!.

On représente symboliquement la permutation sur deux lignes :

$$\left[\begin{array}{ccccc} 1 & 2 & \dots & n \\ \sigma(1) & \sigma(2) & \dots & \sigma(n) \end{array}\right]$$

On appelle support de $\sigma \in \mathcal{S}_n$ l'ensemble des points qui ne sont pas fixes.

Transposition

Définition

Soit n > 0 un entier et (a_i, a_j) un couple d'éléments de $\{1, 2, ..., n\}$. On appelle transposition (ou 2-cycle) la permutation qui réalise :

$$\begin{cases} \tau(a_i) = a_j \\ \tau(a_j) = a_i \\ \tau(a) = a \text{ si } a \neq a_j, a_i. \end{cases}$$

On a $\tau^2 = Id$.

Proposition (Décomposition d'une permutation en produit de transpositions)

Toute permutation de S_n se décompose en un produit fini de transpositions :

$$\forall \sigma \in \mathcal{S}_n, \exists m \in \mathbb{N}, \exists \tau_1, \ldots, \tau_m, \quad \sigma = \tau_1 \circ \cdots \circ \tau_m.$$

Signature d'une permutation

Définition

Soit $\sigma \in S_n$. On appelle signature de la permutation σ , $\epsilon(\sigma) = (-1)^{n(\sigma)}$, où $n(\sigma)$ est le nombre minimum de transpositions permettant d'obtenir σ .

Formes k-linéaires et k-linéaires alternées

Soit f une application linéaire, de $E^k \to \mathbb{R}$. On appelle j-ème application partielle associée l'application obtenue en gelant toutes composantes sauf la j-ème.

Définition (Formes k-linéaires)

On appelle forme k-linéaire sur E toute application de E^k dans $\mathbb R$ dont les applications partielles en tout point de E^k sont linéaires.

Définition (Formes k-linéaires alternées)

Une forme k-linéaire ϕ est dite alternée si et seulement si pour tout k-uplet de vecteur de E, avec deux vecteurs égaux, alors $\phi(x_1, \ldots, x_k) = 0$.

Formes k-linéaires et k-linéaires alternées

Proposition

Une forme k-linéaire ϕ est alternée si et seulement si elle est anti-symétrique : pour tout $(x_i)_{i=1,\dots,k} \in E^k$

$$\phi(x_1,\ldots,x_k) = -\phi(x_1,\ldots,x_{i-1},x_j,x_{i+1},\ldots,x_{j-1},x_i,x_{j+1},\ldots,x_k).$$

Proposition

Soit ϕ une forme k-linéaire alternée sur E et soit $\sigma \in S_k$. Alors

$$\phi(x_{\sigma(1)},\ldots,x_{\sigma(k)})=\epsilon(\sigma)\phi(x_1,\ldots,x_k).$$

Formes *n*-linéaires alternées en dimension *n*

Ici k=n, et E est un espace vectoriel de dimension finie et de base $B=(e_1,\ldots,e_n)$. On note par $\mathcal{A}_n(E)$ l'espace vectoriel des formes n-linéaires alternées. Soit (x_1,\ldots,x_n) un n-uplet de E alors on a pour tout $f\in\mathcal{A}_n(E)$:

$$f(x_1,\ldots,x_n) = \left(\sum_{\sigma\in\mathcal{S}_n} \epsilon(\sigma) \prod_{k=1}^n x_{\sigma(k),k}\right) f(e_1,\ldots,e_n).$$

Théorème

Une forme n-linéaire alternée f est caractérisée par $f(e_1, \ldots, e_n)$. Ou encore l'application

$$d: \mathcal{A}_n(E) \to \mathbb{R}$$
 $f \mapsto f(e_1, \dots, e_k).$

est un isomorphisme d'espace vectoriel de $A_n(E)$ sur \mathbb{R} .

Martin Mugnier Algèbre

Déterminant d'une matrice de dimension 2

Définition

Soit $A \in \mathcal{M}_{2,2}(\mathbb{R})$ de terme général $(a_{i,j})_{i,j}$. Alors le **déterminant de** $A = (A_1, A_2)$ dans la base canonique, qu'on note $det(A_1, A_2)$, est

$$det(A) = a_{11}a_{22} - a_{12}a_{21},$$

avec A_1 et A_2 les colonnes de A.

Deux propriétés caractérisent cette application

- $(A_1, A_2) \rightarrow \det(A_1, A_2)$ est bilinéaire (linéaire par rapport à chaque variable) et $\det(A_1, A_2) = -\det(A_2, A_1)$.
- 2 Le déterminant de la base canonique $\det \left(\begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right) = 1.$

Martin Mugnier

Déterminant d'une matrice carrée, cas général

Définition

Soit $A \in \mathcal{M}_{n,n}(\mathbb{R})$ de terme général (a_{ij}) et de vecteurs colonnes (A_1, \ldots, A_n) , alors le déterminant dans la base canonique est l'application $\mathbb{R}^n \times \cdots \times \mathbb{R}^n \to \mathbb{R}$, qui est caractérisée par

• $det(A_1, ..., A_n)$ est linéaire par rapport à chaque variable séparément, et qui en échangeant deux vecteurs adjacents change de signe.

$$det \left(\left(\begin{array}{c} 1 \\ 0 \\ \vdots \\ 0 \end{array} \right), \dots, \left(\begin{array}{c} 0 \\ 0 \\ \vdots \\ 1 \end{array} \right) \right) = 1.$$

On a

$$\det(A) = |A_1, \dots, A_n| = \sum_{\sigma \in \mathcal{S}_n} \epsilon(\sigma) \prod_{j=1}^n a_{\sigma(j),j}.$$

- 4 ロ M 4 部 M 4 き M 4 き M 9 C で

Déterminant : Propriétés

Proposition

Soit A et B deux éléments de $\mathcal{M}_{n,n}(\mathbb{R})$. Nous avons :

- $det(AB) = det(A) \times det(B)$; $det(A^T) = det(A)$;
- A est inversible si et seulement si son déterminant est différent de zéro;
- det(A) devient son opposé si on échange deux colonnes;
- det(A) reste inchangé si on ajoute à une colonne un multiple d'une autre colonne.
- Le déterminant d'une matrice triangulaire inférieure, triangulaire supérieure, ou diagonale est le produit de ses éléments diagonaux.

Déterminant d'une famille de n vecteurs dans une base

Soit une base $B=(e_1,\ldots,e_n)$ de E et $(x_j)_{j=1}^n$ n vecteurs de E de coordonnées $x_j=\sum_{i=1}^n x_{j,i}e_i$.

Définition

On appelle déterminant dans la base B et on note det_B l'unique forme n-linéaire alternée sur E telle que $det_B(e_1, \ldots, e_n) = 1$. Elle s'exprime par

$$det_B(x_1,\ldots,x_n) = \sum_{\sigma\in\mathcal{S}_n} \epsilon(\sigma) \prod_{j=1}^n x_{\sigma(j),j}.$$

On a

- $\det_B(\alpha x_1, \dots, \alpha x_n) = \alpha^n \det_B(x_1, \dots, x_n)$
- Si il existe (i,j) tel que $x_i = x_j$ alors $\det_B(x_1, \dots, x_n) = 0$
- Si on effectue une permutation σ de deux vecteurs on a $\det_B(x_{\sigma(1)},\ldots,x_{\sigma(n)})=\epsilon(\sigma)\det_B(x_1,\ldots,x_n).$
- $\det_B \left(x_1, \ldots, x_j + \sum_{i=1, i \neq j} \alpha_i x_i, \ldots, x_n \right) = \det_B \left(x_1, \ldots, x_n \right).$

Martin Mugnier Algèbre

Déterminant d'une famille de *n* vecteurs dans une base

Si un des vecteurs est combinaison linéaire des autres, le déterminant est nul.

Théorème

Soit B et B' deux bases de E. Alors

$$det_B(\cdot) = det_B(B')det_{B'}(\cdot).$$

Théorème (Caractérisation des bases)

Soit B une base de E. La famille de vecteurs (k_1, \ldots, k_n) est une autre base de E si et seulement si $\det_B(k_1, \ldots, k_n) \neq 0$.

Déterminant d'un endomorphisme

Théorème

On appelle déterminant de $u \in \mathcal{L}(E)$ le déterminant de la matrice représentative de u dans une base B arbitraire. Ce scalaire est le facteur par lequel sont multipliés les déterminants des vecteurs quand on applique u:

$$\forall (x_1,\ldots,x_n) \in E^n, \quad \det_B(u(x_1),\ldots,u(x_n)) = \det u \times \det_B(x_1,\ldots,x_n)$$

Déterminant : Développement selon une ligne

Définition

Soit A une matrice de taille $n \times n$ et de terme général $(a_{i,j})_{i,j}$. On note $\Delta_{i,j}$ de déterminant de la matrice A obtenu en enlevant la ligne i et la colonne j (qu'on appelle le (i,j)ème **mineur de** A). On appelle (i,j)ème **cofacteur de** A la quantité

$$C_{i,j}=(-1)^{i+j}\Delta_{i,j}.$$

On appelle **déterminant de** A la quantité :

$$\det(A) = \sum_{j=1}^{n} a_{i,j} C_{i,j}$$

pour tout $i \in \{1, \ldots, n\}$.

Déterminant : Exemple dans \mathbb{R}^3

• Développement selon une ligne $det(A) = \begin{vmatrix} x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \\ x_3 & y_3 & z_3 \end{vmatrix}$

$$\det(A) = x_1 \begin{vmatrix} y_2 & z_2 \\ y_3 & z_3 \end{vmatrix} - y_1 \begin{vmatrix} x_2 & z_2 \\ x_3 & z_3 \end{vmatrix} + z_1 \begin{vmatrix} x_2 & y_2 \\ x_3 & y_3 \end{vmatrix}.$$

• Calcul du déterminant de

$$\left(\begin{array}{ccc} 3 & 2 & 5 \\ 4 & 6 & 1 \\ 2 & 3 & 1 \end{array}\right).$$

Applications du déterminant

- Inverse et systèmes linéaires
- Recherche de valeurs propres (Chapitre 3)
- Réduction d'endomorphismes (Chapitre 3)
- Équations différentielles linéaires

Première application : Inverse d'une matrice

Définition

Soit $A \in \mathcal{M}_{n,n}(\mathbb{R})$ de terme général $(a_{i,j})_{i,j}$. On appelle cofacteur relatif au terme $a_{i,j}$

$$A_{i,j}=(-1)^{i+j}\Delta_{i,j}.$$

On appelle matrice des cofacteurs (M^* ou Com(M)) $M^* = (A_{i,j})_{i,j}$.

Théorème

Soit
$$A \in \mathcal{M}_{n,n}(\mathbb{R})$$
, alors $A(M^*)^T = (M^*)^T A = \det(A)I$. Si A est inversible, alors $A^{-1} = \frac{1}{\det(A)}(M^*)^T$.

Seconde application : Déterminant et systèmes linéaires

Proposition

On considère le système de Cramer de taille $n \times n$, AX = B. L'unique solution $X = (x_1, \dots, x_n)$ est donnée par

$$x_i = \frac{\det(A_i(B))}{\det(A)}, \ i = 1, \dots, n,$$

où $\det(A_i(B)) = |(A_1, ..., A_{i-1}, B, A_{i+1}, ..., A_n)|$ et $(A_j)_{j \in \{1,...,n\}}$ sont les colonnes de A.

Déterminant et systèmes linéaires

Exemple : un système de taille 3×3 , AX = B avec

$$\left(\begin{array}{ccc}
a_1 & b_1 & c_1 \\
a_2 & b_2 & c_2 \\
a_3 & b_3 & c_3
\end{array}\right) \left(\begin{array}{c}
x \\
y \\
z
\end{array}\right) = \left(\begin{array}{c}
d_1 \\
d_2 \\
d_3
\end{array}\right)$$

Alors, **si** $det(A) \neq 0$, c'est un **système de Cramer** et la solution est

$$x = \frac{\det(A_1(B))}{\det(A)}, y = \frac{\det(A_2(B))}{\det(A)}, z = \frac{\det(A_3(B))}{\det(A)},$$

οù

$$A_1(B) = \left(\begin{array}{ccc} d_1 & b_1 & c_1 \\ d_2 & b_2 & c_2 \\ d_3 & b_3 & c_3 \end{array} \right), \ A_2(B) = \left(\begin{array}{ccc} a_1 & d_1 & c_1 \\ a_2 & d_2 & c_2 \\ a_3 & d_3 & c_3 \end{array} \right), \ A_3(B) = \left(\begin{array}{ccc} a_1 & b_1 & d_1 \\ a_2 & b_2 & d_2 \\ a_3 & b_3 & d_3 \end{array} \right).$$