

DBS-122 Elaine Chen

PURPOSE AND RESOURCE

Purpose: Find the best regression model to predict houses sale price in Ames, IA

Resource:

Data: https://www.kaggle.com/competitions/dsi-122-ames-housing-challenge/data

Google slides template: https://slidesgo.com/

TRAINING TIME AND ASSESSMENT

O4 CONCLUSIONS

INTRODUCTION

Training data size: 2,051 rows; 81 columns

Data cleaning: Repetitive column: PID

- Missing data
- Outliner

DATA CLEANING AND EDA

Dropping rows that column missing rate < 0.1%:

- Unfinished basement square feet
- Garage Area
- Type 1 finished square feet
- Quality of second finished area (if present)
- Total basement square feet
- Basement full bathrooms
- Basement half bathrooms

- Fence
- Alley
- Miscellaneous feature not covered in other categories
- Pool quality

Filling/Impute missing value columns

E.g. Using lot frontage by neighborhood mean to impute missing value of lot frontage

DATA CLEANING AND EDA

Outliers

EDA

Select numeric variables that have high correlation with sale price

SalePrice

EDA

O3. TRAINING TIME

FEATURES SELECTION

NUMERIC VARIABLES

CATEGORICAL VARIABLES

FEATURES PROCESS

- 1. Selecting numeric variables having >=0.3 (or <= -0.3) correlation with sale price
- 2. OneHot Encoded categorical features:

House Style,
Neighborhood,
General zoning classification,
Kitchen quality,
Roof material,
Foundation,

3. Add interaction features:

Garage Cars,
Overall quality,
Fireplaces,
Full bath,
Total rooms above grade

OLS COEFFICIENT OF DETERMINATION

RMSE	26130.52
Train model R ²	92.99%

88.59%

86.23%

Test model R²

Mean of cross validation score

LASSO COEFFICIENT OF DETERMINATION

RMSE	26010.26
Train model R ²	92.85%
Test model R ²	88.81%
Mean of cross validation score	87.46%

CONCLUSIONS

In this Ames house sale price model, LASSO regression has better coefficient of determination over Ordinary Least Squares regression. In training dataset, approximately 92.86% of the variance in the sale price can be explained by the features in the LASSO regression model; 88.81% of sale price can be explained by the features in testing dataset.

THANKS

Does anyone have any questions?

CREDITS: This presentation template was created by **Slidesgo**, including icons by **Flaticon**, and infographics & images by **Freepik** and illustrations by **Storyset**

