Adatkezelés

Fizikai szervezés

- 1. Egy 1000 rekordból álló állományt ritka index szervezéssel tárolunk. A rekordhossz 850 bájt, egy blokk kapacitása (a fejrészt nem számítva) 4000 bájt. A kulcs 50 bájtos, egy mutatóhoz 18 bájt kell.
 - a) Hány rekord fér el egy blokkban?
 - b) Hány blokkot foglal el az indexstruktúra és mennyit a teljes állomány?
 - c) Melyik szinten, melyik blokkokban és blokkok között követeljük meg a rendezettséget?
 - d) Mennyi ideig tart legfeljebb egy rekord tartalmának kiolvasása, ha feltételezzük, hogy az index struktúra már benne van az operatív tárban? (egy blokkművelet ideje 5 ms)
 - e) Mennyi ideig tart legfeljebb egy rekord tartalmának kiolvasása, ha az index struktúra nem fér el az operatív tárban? (egy blokkművelet ideje 5 ms)
- 2. Egy 7 vödörrel rendelkező hash tábla leképező függvénye h(k) = k mod B. A következő rekordok érkeznek, amelyeket szeretnénk eltárolni: 56, 91, 27, 19, 36, 52, 79.
 - a) Feltételezve, hogy egy rekord egy blokknyi méretű, mennyi az átlagos rekordelérési idő?
 - b) Tetszőleges másik hash függvényeket választva mennyi az elméletileg elérhető legjobb és legrosszabb véletlenszerű rekordelérési idő ugyanekkora elemszámnál?
- 3. Vödrös hash szervezéssel tárolunk egy állományt, amelyben a rekordok száma 15000. Egy rekord hossza 120 bájt, egy blokkba 4000 bájt fér el, egy kulcs hossza 25 bájt, egy mutatóé 8 bájt. A szervezést 10 vödörrel oldjuk meg. (Feltételezhetjük, hogy a hash függvény egyenletesen osztja el a kulcsokat.)
- a) Mekkora az átlagos vödörméret?
 - b) Mekkora lemezterület szükséges a teljes struktúra tárolásához (valódi méret, illetve felhasznált tárterület)?
 - c) Mennyi az átlagos rekordelérési idő, ha a blokkelérési idő 5 ms? (A keresés során a vödör-katalógust a memóriában tároljuk.)
 - d) Mekkora legyen a vödrök minimális száma, ha a keresés során átlagosan 5 blokkelérési idő alatt akarjuk megtalálni a keresett rekordot?
- 4. Egy állományt kétféle szervezéssel tudunk tárolni: sűrű index, majd erre épített egyszintes ritka index vagy pedig hash algoritmussal. Az állományon néha intervallumkeresést is meg kell valósítani. Melyik szervezési módszert válasszuk? Adjon értelmes alsó becslést a szükséges blokkok számára az alábbi feltételek mellett:
- az állomány 3 000 000 rekordból áll
- a kulcshossz 45 bájt

• egy rekord hossza 300 bájt

egy mutató hossza 5 bájt

- egy blokk mérete 4000 bájt
- 5. Egy 10 000 000 rekordból álló állományt szeretnénk B*-fa szervezéssel tárolni. A rekordhossz 850 bájt, egy blokk kapacitása (a fejrészt nem számítva) 4000 bájt. A kulcs 50 bájtos, egy mutató tárolásához 18 bájt kell. Legalább hány blokkra van szükség? Mennyi az átlagos rekordelérési idő, ha a memóriában egy blokk fér el? (Egy blokk elérésének ideje 5 ms.)
- 6. Gondolkodtató kérdések
 - a) Elképzelhető-e sűrű index felhasználása hash szervezés esetén?
 - b) Mik a hash szervezés előnyei, hátrányai a B*-fával szemben?
 - c) Milyen adatszerkezetet tudsz elképzelni egy térképszoftver adatbázisának?
 - d) Milyen sorrendben kell beszúrnunk a rekordokat egy B*-fába ahhoz, hogy a legtöbb helyet pazaroljuk?
 - e) Legfeljebb hány ritka index építhető közvetlenül egy heap szervezésű állományra?
 - f) Milyen plusz feladataink vannak beszúráskor, illetve törléskor, ha sűrű indexek segítségével több B*-fát építünk az adatbázisunkra?
 - g) Lehet értelme egy kulcs szerint indexelt (B*) adatbázis esetén is használni sűrű indexet? Mit nyerünk vele, és mennyit? Mitől függ, hogy mennyit nyerünk?
 - h) Miért építünk B*-fát, ha ritka indexszel is logaritmikus a keresés?
 - i) Milyen nehézségeink adódnak, ha a töredékblokkokat is fel szeretnénk használni a merevlemezen?
 - j) Miben különbözik egy kicsi és egy nagy blokkméretű lemezen tárolt adatbázis?
 - k) Miért nem beszéltünk arról, hogy blokkon belül hogyan tároljuk az adatokat?
 - l) Helyezd el a következő kifejezéseket a táblázatban: "blokknyi" "egyetlen"

	hány rekordot jelöl egy	hány rekordot jelöl ki egy mutató érték?
	bejegyzése?	ertek?
Sűrű index		
Ritka index		

m) Hogyan változnának meg az adatbázisok, ha a jövőben a fizikai memóriában (az operatív tárban) helyezkedne el az adatbázisunk?