Лабораторна робота

Основні закони розподілу неперервних випадкових величин

Рівномірний розподіл

Неперервна випадкова величина ξ , що приймає значення на відрізку [a,b], розподілена рівномірно на [a,b], якщо щільність розподілу $p_{\xi}(x)$ і функція розподілу випадкової величини ξ мають відповідно вигляд:

$$p_{\xi}(x) = \begin{cases} 0, & x \notin [a,b] \\ \frac{1}{b-a}, & x \in [a,b] \end{cases} \qquad F_{\xi}(x) = \begin{cases} 0, & x \le a \\ \frac{x-a}{b-a}, & a < x \le b \\ 1, & x > b \end{cases}$$

В R значення в точці х щільності розподілу і функції розподілу випадкової величини, що має рівномірний розподіл на відрізку [a,b], обчислюються за допомогою вбудованих функцій dunif(x,a,b) і punif(x,a,b).

Приклад 1. Побудувати в R графіки щільності розподілу і функції розподілу випадкової величини, що приймає значення на відрізку [0,1] і має рівномірний розподіл.

Реалізація в R:

```
1 x <- seq(-1,2,by=0.1)
2 plot(x, dunif(x,0,1), col="red",
3 type="l", xlab="x", ylab="dunif(x,0,1)", main = "Щільність розподілу")
4 plot(x, punif(x,0,1), col="red",
5 type="l", xlab="x", ylab="punif(x,0,1)", main = "Функція розподілу")
```


Показниковий розподіл

Неперервна випадкова величина ξ має показниковий розподіл з параметром $\lambda>0$, якщо щільність розподілу $p_{\xi}(x)$ має вигляд:

$$p_{\xi}(x) = \begin{cases} 0, & x \le 0 \\ \lambda e^{-\lambda x}, & x > 0 \end{cases}$$

Звідси видно, що показниково розподілена випадкова величина приймає тільки невід'ємні значення. Функція розподілу такої випадкової величини має вигляд:

$$F_{\xi}(x) = \begin{cases} 0, & x \le 0 \\ 1 - e^{-\lambda x}, & x > 0 \end{cases}$$

В R значення в точці х щільності розподілу і функції розподілу випадкової величини, що має показниковий розподіл з параметром λ , обчислюються за допомогою вбудованих функцій $dexp(x,\lambda)$ і $pexp(x,\lambda)$.

Приклад 2. Побудувати в R графіки щільностей розподілів і функцій розподілів випадкових величин, що мають показникові розподіли з параметрами $\lambda=1$ і $\lambda=2$.

Реалізація в R:

```
x < - seq(0,5,by=0.01)
 3 4
       par(mfrow=c(2,2))
 5 6 7
       plot(x, dexp(x,1), col="red", type="l", xlab="x", ylab="dexp(x,1)", main = expression(paste("Щільність розподілу (", lambda, " = 1)")))
 8
       plot(x, dexp(x,2), col="red", type="l", xlab="x", ylab="dexp(x,2)", main = expression(paste("Щільність розподілу (", lambda, " = 2)")))
 9
10
       plot(x, pexp(x,1), col="red", type="l", xlab="x", ylab="pexp(x,1)", main = expression(paste("Функція розподілу (", lambda, " = 1)")))
11
12
13
       plot(x, pexp(x,2), col="red", type="l", xlab="x", ylab="pexp(x,2)", main = expression(paste("Функція розподілу (", lambda, " = 2)")))
14
15
```


Нормальний розподіл

Цей розподіл відіграє винятково важливу роль в теорії ймовірностей і в математичній статистиці. Випадкова величина ξ нормально розподілена з параметрами a і σ , σ > 0 , якщо її щільність розподілу має вигляд:

$$p_{\xi}(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(x-a)^2}{2\sigma^2}}$$

Якщо випадкова величина ξ має нормальний розподіл з параметрами a і σ , то будемо записувати це у вигляді $\xi \sim N(a,\sigma)$. Випадкова величина ξ має стандартний нормальний розподіл, якщо a=0 і $\sigma=1$, $\xi \sim N(0,1)$. Щільність стандартного нормального розподілу має вигляд:

$$p_{\xi}(x) = \frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}$$

а його функція розподілу — $F_{\xi}(x) = \Phi(x)$, де $\Phi(x)$ — функція Лапласа:

$$\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{z^2}{2}} dz$$

Функція розподілу нормальної величини $\eta \sim N(a,\sigma)$ також виражається через функцію Лапласа

$$F_{\eta}(x) = \Phi(\frac{x-a}{\sigma})$$

В R значення в точці х щільності розподілу і функції розподілу нормальної випадкової величини з параметрами a, σ обчислюються за допомогою вбудованих функцій $dnorm(x,a,\sigma)$ і $pnorm(x,a,\sigma)$.

Приклад 3. Побудувати в R графіки щільностей розподілів і функцій розподілів для $\xi \sim N(0,1)$ і $\eta \sim N(1,2)$.

Розподіл хі-квадрат (χ^2 -розподіл)

Розподіл хі-квадрат (χ^2 –розподіл)

Нехай $\,\xi_1,\xi_2,\ldots\,\xi_n\,$ — незалежні випадкові величини, кожна з яких має стандартний нормальний розподіл N(0,1). Складемо випадкову величину

$$\chi_n^2 = \xi_1^2 + \xi_2^2 + \dots + \xi_n^2$$

Її розподіл називається χ^2 -розподілом з n ступенями свободи.

В R значення в точці х щільності розподілу і функції χ^2 -розподілу з n ступенями свободи обчислюються за допомогою вбудованих функцій dchisq(x,n) і pchisq(x,n).

Приклад 4. Побудувати в R графіки щільностей розподілів і функцій розподілів χ^2 з 2, 4, 8 ступенями свободи.

Реалізація в R:

```
x < - seq(0,15,by=0.01);
      y1 \leftarrow dchisq(x,2)
     y2 \leftarrow dchisq(x,4)
      y3 \leftarrow dchisq(x,8)
 67
      #створення графічного вікна
      par(mfrow=c(1,2))
 8
      #побудова графіків щільностей розподілів
      plot(x,dchisq(x,2), type="l", col="red", xlab="x", ylab="p(x)",
10
     ylim=c(0,max(y1,y2,y3)), main="Шільності розподілів")
curve(dchisq(x,4), col="blue", lty=2, add=T)
curve(dchisq(x,8), col="violet", lty=3, add=T)
legend(8,0.5, c("n = 2","n = 4", "n = 8"),
11
12
13
14
               col=c("red","blue","violet"), lty=c(1,2,3))
15
16
17
      #побудова графіків функцій розподілів
      plot(x,pchisq(x,2), type="l", col="red", xlab="x", ylab="F(x)",
18
             main="Функції розподілів")
19
     curve(pchisq(x,4), col="blue", lty=2, add=T)
curve(pchisq(x,8), col="violet", lty=3, add=T)
legend(8,0.3, c("n = 2", "n = 4", "n = 8"),
20
21
22
               col=c("red","blue","violet"), lty=c(1,2,3))
23
```

Щільності розподілів

Функції розподілів

Розподіл Стьюдента (t-розподіл)

Нехай випадкова величина ξ має стандартний нормальний розподіл, а випадкова величина $\chi_n^2-\chi^2$ —розподіл з n ступенями свободи. Якщо ξ і χ_n^2 — незалежні, то про випадкову величину $au_n=\frac{\xi}{\sqrt{\frac{\chi_n^2}{n}}}$ кажуть, що вона має розподіл

Стьюдента з числом ступенів свободи n.

При великих n розподіл Стьюдента практично не відрізняється від стандартного нормального розподілу.

В R значення в точці х щільності розподілу і функції розподілу Стьюдента обчислюються вбудованими функціями dt(x,n) і pt(x,n).

Приклад 5. Побудувати в R графіки щільностей розподілів і функцій розподілів Стьюдента з числом ступенів свободи n = 2, 5, 10. Порівняти з відповідними графіками стандартного нормального розподілу.

F-розподіл Фішера

Нехай випадкові величини χ_n^2 і χ_m^2 — незалежні і мають розподіл χ^2 з n і m ступенями свободи відповідно. Тоді випадкова величина $F_{n,m}=\frac{\chi_n^2/n}{\chi_m^2/m}$ має F-розподіл. В R значення в точці х щільності розподілу і функції F-розподілу Фішера обчислюються вбудованими функціями df(x,n,m) і pf(x,n,m).

Приклад 6. Побудувати в R графіки щільностей розподілів і функцій розподілів Фішера для n = 2, 5 і m = 5, 2 відповідно.

Індивідульні завдання

Завдання 1

Побудувати в R графіки щільності розподілу і функції розподілу випадкової величини, що приймає значення на відрізку [L, L+2] і має рівномірний розподіл.

(L - номер варіанту)

Завдання 2

Побудувати в R графіки щільностей розподілів і функцій розподілів випадкових величин, що мають показникові розподіли з параметрами $\lambda = L + 2$ і $\lambda = L + 5$. (L – номер варіанту)

Завдання 3

Побудувати в R графіки щільностей розподілів і функцій розподілів для $\xi \sim N(0,1)$ і $\eta \sim N(2L-1,L)$.

Завдання 4

Побудувати в R графіки щільностей розподілів і функцій розподілів χ^2 з **L+2**, **L+3**, **L+7** ступенями свободи. (**L** – номер варіанту)

Завдання 5

Побудувати в R графіки щільностей розподілів і функцій розподілів Стьюдента з числом ступенів свободи $\mathbf{n} = \mathbf{L} + \mathbf{2}, \mathbf{L} + \mathbf{3}, \mathbf{L} + \mathbf{7}$. Порівняти з відповідними графіками стандартного нормального розподілу. ($\mathbf{L} - \mathbf{L} + \mathbf{0} + \mathbf$

Завдання 6

Побудувати в R графіки щільностей розподілів і функцій розподілів Фішера для $\mathbf{n} = \mathbf{L}, \mathbf{L} + \mathbf{2} \ \mathbf{i} \ \mathbf{m} = \mathbf{L} + \mathbf{2}, \mathbf{L}.$ (L — номер варіанту)