Die Schrödinger Gleichung Eine Einführung

Christian Hirsch

Begriffserklärung

Was ist die Schrödingergleichung?

Begriffserklärung

Was ist die Schrödingergleichung?

Die Schrödingergleichung ist die Grundgleichung der nichtrelativistischen Quantenmechanik. Sie beschreibt als Wellengleichung die zeitliche Entwicklung des Zustands eines unbeobachteten Quantensystems.

(Wikipedia)

■ Der Zustand eines Teilchens kann durch die Wellenfunktion $\psi(x)$ beschrieben werden.

- Der Zustand eines Teilchens kann durch die Wellenfunktion $\psi(x)$ beschrieben werden.
- $|\psi(x)|^2$ ist die Wahrscheinlichkeit, dass sich das Teilchen am Ort x aufhält.

- Der Zustand eines Teilchens kann durch die Wellenfunktion $\psi(x)$ beschrieben werden.
- $|\psi(x)|^2$ ist die Wahrscheinlichkeit, dass sich das Teilchen am Ort x aufhält.

- Der Zustand eines Teilchens kann durch die Wellenfunktion $\psi(x)$ beschrieben werden.
- $|\psi(x)|^2$ ist die Wahrscheinlichkeit, dass sich das Teilchen am Ort x aufhält.

- Der Zustand eines Teilchens kann durch die Wellenfunktion $\psi(x)$ beschrieben werden.
- $|\psi(x)|^2$ ist die Wahrscheinlichkeit, dass sich das Teilchen am Ort x aufhält.

Formel

 Nun zur zeitunabhängigen, eindimensionalen Schrödingergleichung

Formel

 Nun zur zeitunabhängigen, eindimensionalen Schrödingergleichung

$$-\frac{\hbar^2}{2m}\psi''(x) + E_{pot}\psi(x) = E_{ges}\psi(x)$$

Herleitung?

■ Fundament der Quantentheorie

Herleitung?

- Fundament der Quantentheorie
- Keine Herleitung im eigentlichen Sinne möglich

Herleitung?

- Fundament der Quantentheorie
- Keine Herleitung im eigentlichen Sinne möglich
- Allerdings: Plausibilitätsbetrachtungen möglich; z.B. Potentialtopf

■ Ein Teilchen besitzt im Bereich (0; *L*) ein konstantes Potential

- Ein Teilchen besitzt im Bereich (0; *L*) ein konstantes Potential
- Wahl des günstigen Bezugssystem $\Rightarrow E_{pot} = 0$

- Ein Teilchen besitzt im Bereich (0; *L*) ein konstantes Potential
- Wahl des günstigen Bezugssystem $\Rightarrow E_{pot} = 0$

$$-\frac{\hbar^2}{2m}\psi''(x) + \frac{\mathbf{0}}{\mathbf{\cdot}}\psi(x) = E_{ges}\psi(x)$$

- Ein Teilchen besitzt im Bereich (0; *L*) ein konstantes Potential
- Wahl des günstigen Bezugssystem $\Rightarrow E_{pot} = 0$

$$-\frac{\hbar^2}{2m}\psi''(x) = E_{ges}\psi(x)$$

■ Probeansatz: $\psi(x) = A \sin(bx)$

■ Probeansatz: $\psi(x) = A \sin(bx)$

$$-\frac{\hbar^2}{2m}(A\sin(bx))'' = E_{ges}A\sin(bx)$$

- Probeansatz: $\psi(x) = A \sin(bx)$
- $-\frac{\hbar^2}{2m}(A\sin(bx))'' = E_{ges}A\sin(bx)$

- Probeansatz: $\psi(x) = A \sin(bx)$
- $-\frac{\hbar^2}{2m}(A\sin(bx))'' = E_{ges}A\sin(bx)$

$$\psi(0) = 0, \ \psi(L) = 0$$

$$\psi(0) = 0, \ \psi(L) = 0$$

$$-\psi(0) = 0, \ \psi(L) = 0$$

$$bL = k\pi \implies b = \frac{k\pi}{L}$$

$$-\psi(0) = 0, \ \psi(L) = 0$$

$$bL = k\pi \implies b = \frac{k\pi}{L}$$

■ Einsetzen in
$$E_{ges} = \frac{\hbar^2}{2m}b^2 = \frac{h^2}{8\pi^2 m}b^2$$

$$\psi(0) = 0, \ \psi(L) = 0$$

$$\psi(x) = A\sin(bx)$$

$$bL = k\pi \implies b = \frac{k\pi}{L}$$

■ Einsetzen in
$$E_{ges} = \frac{\hbar^2}{2m}b^2 = \frac{h^2}{8\pi^2 m}b^2$$

$$\blacksquare E_{ges} = \frac{h^2 k^2}{8mL^2}$$

$$A^2 \int_0^L \frac{1 - \cos(2bx)}{2} dx = 1$$

$$A^2 \int_0^L \frac{1 - \cos(2bx)}{2} dx = 1$$

$$A^2 \int_0^L \frac{1 - \cos(2bx)}{2} dx = 1$$

$$A^2 \frac{L}{2} = 1 \implies A = \sqrt{\frac{2}{L}}$$

Interpretation als stehende Welle

Ergebnis der Schrödingergleichung

$$\psi(x) = \sqrt{\frac{2}{L}}\sin(\frac{k\pi}{L}x)$$

Interpretation als stehende Welle

Ergebnis der Schrödingergleichung

$$\psi(x) = \sqrt{\frac{2}{L}}\sin(\frac{k\pi}{L}x)$$

$$\blacksquare \frac{k\pi}{L}\lambda = 2\pi \implies \lambda = \frac{2L}{k} \implies \frac{\lambda}{2}k = L$$

Interpretation als stehende Welle

Ergebnis der Schrödingergleichung

$$\psi(x) = \sqrt{\frac{2}{L}}\sin(\frac{k\pi}{L}x)$$

Interpretation als stehende Welle

Ergebnis der Schrödingergleichung

$$\psi(x) = \sqrt{\frac{2}{L}}\sin(\frac{k\pi}{L}x)$$

Interpretation als stehende Welle

Ergebnis der Schrödingergleichung

$$\psi(x) = \sqrt{\frac{2}{L}}\sin(\frac{k\pi}{L}x)$$

$$\blacksquare \frac{k\pi}{L}\lambda = 2\pi \implies \lambda = \frac{2L}{k} \implies \frac{\lambda}{2}k = L$$

Interpretation als stehende Welle

Ergebnis der Schrödingergleichung

$$\psi(x) = \sqrt{\frac{2}{L}}\sin(\frac{k\pi}{L}x)$$

■ Untersuchung des Terms $-\frac{\hbar^2}{2m}\psi''(x)$:

■ Untersuchung des Terms $-\frac{\hbar^2}{2m}\psi''(x)$:

$$-\frac{\hbar^2}{2m}\psi''(x) = -\frac{\hbar^2}{2m}(\sqrt{\frac{2}{L}}\sin(\frac{k\pi}{L}x))''$$

■ Untersuchung des Terms $-\frac{\hbar^2}{2m}\psi''(x)$:

$$-\frac{\hbar^2}{2m}\psi''(x) = -\frac{\hbar^2}{2m}(\sqrt{\frac{2}{L}}\sin(\frac{k\pi}{L}x))''$$

$$= \frac{h^2}{8\pi^2 m} \frac{k^2 \pi^2}{L^2} \sqrt{\frac{2}{L}} \sin(\frac{k\pi}{L}x) = \frac{h^2}{8m} \frac{k^2}{(k\frac{\lambda}{2})^2} \psi(x)$$

- Untersuchung des Terms $-\frac{\hbar^2}{2m}\psi''(x)$:
- $-\frac{\hbar^2}{2m}\psi''(x) = -\frac{\hbar^2}{2m}(\sqrt{\frac{2}{L}}\sin(\frac{k\pi}{L}x))''$
- $= \frac{h^2}{8\pi^2 m} \frac{k^2 \pi^2}{L^2} \sqrt{\frac{2}{L}} \sin(\frac{k\pi}{L}x) = \frac{h^2}{8m} \frac{k^2}{(k\frac{\lambda}{2})^2} \psi(x)$

Nur ganz bestimmte, diskrete Werte für E_{ges} möglich (*Eigenwerte*)

- Nur ganz bestimmte, diskrete Werte für E_{ges} möglich (*Eigenwerte*)
- Bei anderen Werten: Divergenz im unendlichen

- Nur ganz bestimmte, diskrete Werte für E_{ges} möglich (Eigenwerte)
- Bei anderen Werten: Divergenz im unendlichen
- Komplexitätssteigerung bei mehrdimensionalen, zeitabhängigen Prozessen

- Nur ganz bestimmte, diskrete Werte für E_{ges} möglich (Eigenwerte)
- Bei anderen Werten: Divergenz im unendlichen
- Komplexitätssteigerung bei mehrdimensionalen, zeitabhängigen Prozessen
- Oft keine Lösung in geschlossener Form möglich

Ausblicke: Endlicher Potentialtopf

Ausblicke: Endlicher Potentialtopf

Ausblicke: Endlicher Potentialtopf

Für Spielereien

```
www.schulphysik.de/java/physlet/applets/quant2.html
http://www.cip.physik.uni-muenchen.de/~milq/kap10/images/slange.exe
http://www.cip.physik.uni-muenchen.de/~milq/kap10/images/wippe.exe
http://phys.educ.ksu.edu/vqm/
```