Fertigungssystem

Dickbauer Y., Moser P., Perner M.

PS Computergestützte Modellierung, WS 2016/17

December 19, 2016

Outline

- Aufgabenstellung
- Plow Chart
- Programmcode
 - Main Funktion
 - Verwendete Funktionen
- Beispiel

Aufgabenstellung

In einem Fertigungssystem werden Aufträge auf einer Maschine bearbeitet. Es gibt zwei Typen von Produkten: Typ 1 (Typ 2) benötigt auf der Maschine eine Bearbeitungszeit, die stetig gleichverteilt zwischen 2 und 6 min (1.5 und 4.5 min) liegt. Die Wahrscheinlichkeit, dass ein Produkt vom Typ 1 ist, ist 0.4. Die Produkte kommen exponentialverteilt mit Erwartungswert von 4 in das System. Die Kapazität der Warteschlange ist mit 5 Stück begrenzt; Produkte, die in das System kommen, während die Warteschlangenkapazität ausgelastet ist, werden aus dem System eliminiert.

Aufgabenstellung

Anschließend an die Bearbeitungsphase kommt eine Inspektion. Die Zeit, die man braucht, um diese durchzuführen, ist für Produkttyp 1 (Produkttyp 2) gleichverteilt zwischen 3 und 5 min (1 und 3 min). Es wird überprüft, ob ein Produkt defekt ist oder nicht. Die Wahrscheinlichkeit, dass ein Produkt defekt ist und somit aussortiert wird, ist 0.1.

- (a) Zählen Sie die Stücke, die entfernt werden, weil die Kapazität der Warteschlange vor der Maschine zu gering war, und die Anzahl der defekten Stücke.
- (b) Bestimmen Sie die durchschnittliche Länge der Warteschlange vor der Inspektionsstation und die Auslastung der Maschine und der Inspektionsstation.
- (c) Wie lange brauchen die Produkte durchschnittlich, um durch das System geschleust zu werden?

Aufgabenstellung

Beginnen Sie die Simulation mit einer Aufwärmphase von 8h. Danach sollen alle statistischen Werte gelöscht werden. Die Zeit der tatsächlichen Simulation ist 800h. Stellen Sie im Rahmen der Präsentation den Ablauf des Programmes anhand von selbstgewählten Zufallszahlen vor.

- Eingabe: -
- Output: Verlauf von Produktion (Startzeit, Bearbeitungszeit, Endzeit je Produkt), Warteschlangenlänge bei Bearbeitung und Inspektion, sowie die oben angeführten Kennzahlen.

Flow Chart

Main Funktion - Programmeinstieg

```
def main():
    pass
```


Funktion user_input(input_vars, [use_defaults])

- Diese Funktion verlang vom User die geforderten Eingabeparameter und gibt diese als von der Programmiererin gewünschten Datentyp wieder zurück
- Funktion verlangt als ersten Eingabeparameter die Liste input_vars
- Falls use_defaults == True wird der User nicht nach Eingabe gefragt (Dient zum Testen)
- Diese Liste besteht wiederrum aus Listen mit je Länge = 3:
 - 0: Text, welcher dem User ausgegeben wird
 - 1: Datentyp (int/float/str)
 - 2: Default value: Dieser Wert wird zurueckgegeben, falls use_defaults
 == True

```
1 x, y = user_input((
2 ('Geben_Sie_einen_X_Wert_ein', int, 10),
3 ('Geben_Sie_einen_Y_Wert_ein', int, 5), False):
```


Beispiel anhand fixer Zufallszahlen

• Annahme der Zufallszahlen wie folgt:

iteration	0	1	2	3
ZZ	1	2	3	4

blub