2/03/03 - we are not oping to pursue the boson path integral in detail, but let's examine it a bit to see what is different from the o-path integral. · The boson and fermion path integrals actually look the same at this point of the differences are holden in suppressed spin indices, c-number Functions 4x1, 4x1 versus Grassmann functions for 4 and 24, and The boundary conditions on The Pields · We stress again that the 4's and 4's in the path integral for to are not operators (no 1's), so in the boson case they commute entirely. · In the fermion case they are also not operators, but they anti-commute · In the fermion case, we'll write

4t 4t 474 -> 4x(x) 4f(x) 4p(x) 2do(x) when a and B are spin indices and there is an implied summation & when indices are repeated. · Comparisons to o-path integral . If he most to add a source, we'll have the types > 2Ms ST(x) and 21(x) -> 57/4) · Instead of "a" we have the differential operator

[a -> st - 2m - u]

· but remember that this is a shorthand for fle (limit of a) discretized version. Iten this term is really a Gaussian matrix integral.

2/03/03 From page (5) we have the result Soz, den E = = 12:1 = (27) = [det 1] = (37) AT JE With a suitable generalization to two sources, in see that we get the determinant of (37-52-4) appearing and its inverse in the place of Bo. The generalization is to an integral over pairs of complex conjugate variables dzi dzi, which is (N+O pg. 34) (The dzi dzi ezithijz; + Mizi = [det H] 2 mi Hijni . This result is valid for any matrix H with a positive Hermitian port. IF H is, in fact, Hermitian, we prove it the same may that the result up top was proved:

and define a transformation $y_i = Z_i - H_{ij}^{-1} \eta_j$ and As complex conjugate a) transform H to dragonal form iii) evaluate $\int \frac{\partial z^{x}}{2\pi i} e^{-z^{x}} dz = \int_{-\infty}^{\infty} \frac{du}{dv} e^{-\alpha (u^{2} + v^{2})} = \frac{1}{\alpha}$ where z = utiv. We can take (dztdz = (dudr as
the definition of the measure dz*dz. (Stone has a more high brow discussion of pp.153-156). As noted, the integration is our all u and v from -00 to +00 · Summary: We get one over the determinant appearing this is just the multiplicative invesc) and then with

the "sources" of at not we have the matrix inverse,

20303 At this point it would be opportune to present the analogous formula for Grassmann (anti-commuting) voriables. Ite following is taken largely from Negele at Orland, set 15) So we'll start with a quick introduction to the essentials of Grassmann numbers, integrals, and all that. · We are really dealing with alaxbras of articommuting numbers, but for our purposes (For now at least) we can simply regard the following definitions and manipulations as a convenient and efficient matternational construction that builds in all of the minus signs associated with antisymmetry. > tere is no real to intrepret them physically. · Standard reference: Brézin, LeGuillou, Emm-Justin, Phys. Rev. D15 (1977) 1544; 1988 - An n-dimensional Grassman algebra is defined by a set of generators [} , x = 1, ..., n Plat satisfy onti-commutation relations! $\{2, 3p\} = \{2, p + \{p\}_{\alpha} = 0 \mid \alpha, \beta = 1, 2, ..., n\}$ · Note Plat Plese are not like The Rold operator enti-communitation relation where one could get a non-zero result - these always precisely anti-commute · An immediate consequence is fat ξ=0 for Aα so trese are somewhat unusual objects

=13/03 - We form a basis of the algebra by considering all distinct products of the openentors. = a number in the algebra is a linear combination
[11, 21, 201, 201, 200, 200, 200, 200]
with complex coefficients with a conventional ordering of the coefficients of <a <="" <<="" td="">
· We'll need to define complex conjugates, which we do when n is even by just assigning half of the generators to have corresponding of among the other half. The properties of complex conjugation are predictable:
$\left[\left(\frac{2}{3} \right)^{*} = \frac{2}{3} \left(\frac{2}{3} \right)^{*} = \frac{2}{$
If $\lambda \in C$ (a complex number), then $(N_{ra})^{*} = 1 \times 2 \times 1$
al $\left[\left(\xi_{\alpha_{1}}-\xi_{\alpha_{n}}\right)^{*}=\xi_{\alpha_{n}}^{*}\cdot\xi_{\alpha_{1}}^{*}\right]$
Let's see what happens with only two generators, ? and st, so the basis is [81, 8, 3*, 888]. A Punction of ? must be linear: [F(3) = fot fi. 3] because 82=1. So Taylor series always truncate!

÷ .

<u>...</u>

The state of the s

..._____.

.....

2/3/03 he define dematives by 35 = 1 but we have to anticommute the & until it is to the right of &. 25(\x \x) = \frac{95}{9} (-\frac{1}{2}\x \tau) = -\frac{2}{2}\tau If A(8x, 3) = aot a, 8+ a, 8* + a, 25 }, Ren $\frac{2}{35}A(5,\xi) = 0_1 - 0_{12}\xi^*$ 3×A(3,3) = ay + a/2 } 32 x 35 A(8*8) = - 0,2 = - 3 3 x A(3x,8) which illustrates that 32x and \$ (as well as their generalizations to n-dimensional algebra) anti-commute. Dk, so what about integrals. We con't do anything like the Riemannian sum as for ordinary voriables.

So he define integrals as anti-derivatives, which has the effect of making integrals the same as derivatives!

i.e. since = = 1, the definite integral of 1 is zero: 3 (81=0 Sof & = 1

(Don't narry if this seems weird; you just need to know the rules, but don't treat "A" as an intimitesimal, It's not!)

2/3/03 As with derivatives, you need to anti-commute dix. In Ex so they are adjacent, · Tritegration for complex conjugate variables is what you hould imagine? 1=4 x 2 = 0 and (32x xx=1 . So The integral exactly removes the corresponding variable (0 h rat available) OK, we can apply these rules to fl?) at A(5x,5) as ((3) F(3) = (3) (fo+f18) = f0.0+f2.1=f1 (8) A(8x3) = 105 (a0+0,8+0,8+0,8x) = a1-0,28x (12x A(x, s) = Q1 + Q,2) We can define a S-function as (with M another Grassmann variable) $S(\xi,\xi') = \int_{\mathbb{R}} \mathbb{E}^{M(\xi-\xi')} = \int_{\mathbb{R}} M(1-M(\xi-\xi')) = -(\xi-\xi')$ $= \int_{\mathbb{R}} \mathbb{E}^{M(\xi-\xi')} = \int_{\mathbb{R}} M(1-M(\xi-\xi')) = -(\xi-\xi')$ $= \int_{\mathbb{R}} \mathbb{E}^{M(\xi-\xi')} = \int_{\mathbb{R}} M(1-M(\xi-\xi')) = -(\xi-\xi')$ Check: (03' S(35') R(3') = - (05' (8-8') (Fo+ F_3') = Fo+ F_3 = F(8) V · Finally, we define the scalar product of Grassmann Functions (Fla) by

(Fla) = \(\delta \text{**} \delta \text{**} \text{**} \(\text{**} \) \(\delta \text{ = (96,98 (T-5,8)(+++++3)(00+048x)

= - Sox ox xx fo go + Sox or figure = fx qo + figure

	9/3/03
	OK, now we can generalize to 2n generators and Brick about Gaussian integrals.
	Suppose he have just ? at ? tan (with "a" a number)
	[33 45 E gas = [35 98 (1-3 a8) = a
	Due get "a" instead of "Va" as in the ordinary Ganssian integral.
	Now try Es, Es, Es, Es; [class try this!]
\ 	(25 ds, ds, ds, e = 3; Hr, 2;
.,	= 505 05 05 05 05 05 05 05 0 0 0 0 0 0 0
-	tond = \ 35\ 05\ 05\ 05\ 05\ 05\ 05\ 05\ 05\ 05\ 0
+	× (\\ \frac{1}{4} \frac{1}{16} \frac{1}{6} \frac{1}{16}
1	= \$ (H,,H22 - H21H12 - H22H11)
+	= H11H22-H12H21 = det H
	· So, again, le determinant is in le numerator rather Man
	The generalization, including Grassmann "sources" Mi at Mi, is
	() = 1 = (dot H) e + H; 17; = (dot H) e + H; 17;
	This works for H Hermitian. The proof (which requires showing how to change Grossmann variables), Is given in Negele + Orland section 15.
	ş v

2/3/03

So he see Plat the boson and fermion Gaussian integral formulas are quite similar, with the main distinction being [det H] in the former and [det H] in the latter.

· We have restrictions on H for bosons (positive definite)
to ensure that the integral converges

· No restrictions on H for Fermions, since he can expand the exponential eager and it terminates at first order, so he get a Pinite integral no matter what "a" is,

This distinction embodies the difference that the Pauli principle makes - 0, or 1 occupation numbers for fermions versus 0, 1,2,... for bosons.

· Recult the noninteracting Grand Cononical portition function evaluated in the occupation number basis:

$$Z_{\mathbf{G}}^{\circ} = T_{\mathbf{G}} = \rho (\mathbf{G} - \mu) \mathbf{n}_{\alpha}$$

where nx=0,1 for fermions, and nx=0,1,2,... for bosons.

For Fermions, Ea- \u2212 can be anything, but for busons, Ea- \u2212 of for all \u2212 or the partition function is not finite. \u2212 A-\u0312 no must be positive definite for bosons but not fermions.