Atomistic modeling of cyclic loading and heat treatment processes for tuning the mechanical properties of amorphous alloys

Nikolai V. Priezjev

Department of Mechanical and Materials Engineering

Wright State University

Movies, preprints @ http://www.wright.edu/~nikolai.priezjev/

- N. V. Priezjev, Accelerated relaxation in disordered solids under cyclic loading with alternating shear orientation, *J. Non-Cryst. Solids* **525**, 119683 (2019).
- N. V. Priezjev, The effect of cryogenic thermal cycling on aging, rejuvenation, and mechanical properties of metallic glasses, *J. Non-Cryst. Solids* **503**, 131 (2019).

Outline

- Brief introduction (metallic glasses, amorphous structure, mechanical properties, etc)
- Part I: Cyclic loading with <u>alternating shear orientation</u> ("mechanical annealing")
 N. V. Priezjev, Accelerated relaxation in disordered solids under cyclic loading with alternating shear orientation, J. Non-Cryst. Solids 525, 119683 (2019).
- Part II: Cryogenic <u>thermal cycling</u> and mechanical properties of metallic glasses
 N. V. Priezjev, The effect of cryogenic thermal cycling on aging, rejuvenation, and mechanical properties of metallic glasses, *J. Non-Cryst. Solids* 503, 131 (2019).
- Part III: Aging and rejuvenation during <u>elastostatic loading</u> of amorphous alloys
 - N. V. Priezjev, Aging and rejuvenation during elastostatic loading of amorphous alloys: A molecular dynamics simulation study, *Comput. Mater. Sci.* **168**, 125 (2019).
- Conclusions

Amorphous structure, dynamical heterogeneity, and shear transformations

Metallic glasses: multicomponent alloys; high strength and elastic limit but low ductility

Cu-Zr-Al-Ag; ~30mm Inoue & Takeuchi (2011)

Biocompatible: Implantable medical devices and surgical tools (Mg-based)

al Wear, corrosion ed) resistant

Sporting goods: *e.g.*, golf clubs

Disordered structure; no long-range order

Spatial map of single-particle displacements, Berthier & Biroli (2011)

Localized shear transformations Spaepen (1977) & Argon (1979)

Thermomechanical processing: Structural relaxation and rejuvenation

Metallic glasses: mechanical properties include high strength and low ductility (brittle)

Sun, Concustell, and Greer, Thermomechanical processing of metallic glasses: extending the range of the glassy state, *Nature Reviews Materials* **1**, 16039 (2016).

Relaxation: (1) cyclic loading or "mechanical annealing", (2) ultrastable glasses by deposition

Part I: Cyclic loading with alternating shear orientation ("mechanical annealing")

Periodic shear; one plane Priezjev *JNCS* (2018) Sastry *et al.* (2017)

N. V. Priezjev, Accelerated relaxation in disordered solids under cyclic loading with alternating shear orientation, *J. Non-Cryst. Solids* **525**, 119683 (2019).

Details of molecular dynamics simulations and parameter values

Binary Lennard-Jones Kob-Andersen mixture:

$$V_{LJ}(r) = 4\varepsilon_{\alpha\beta} \left[\left(\frac{\sigma_{\alpha\beta}}{r} \right)^{12} - \left(\frac{\sigma_{\alpha\beta}}{r} \right)^{6} \right]$$
Ni₈₀P₂₀

Parameters for $\alpha\beta = A$ and B particles:

$$\varepsilon_{AA} = 1.0, \, \varepsilon_{AB} = 1.5, \, \, \varepsilon_{BB} = 0.5, \, m_A = m_B$$

$$\sigma_{AA} = 1.0, \sigma_{AB} = 0.8, \ \sigma_{BB} = 0.88$$

Monomer density: $\rho = \rho_A + \rho_B = 1.20 \, \sigma^{-3}$

Temperature: $T_{LJ} = 0.01 \ \epsilon/k_B << T_g = 0.435 \ \epsilon/k_B$

System size: $L = 36.84 \,\text{\sigma}$, $N_p = 60000$

Lees-Edwards periodic boundary conditions

LAMMPS, Nose-Hoover thermostat, $\Delta t_{MD} = 0.005 \tau$

Fast annealing rate: $10^{-2} \varepsilon/k_B \tau$ (poorly annealed glass) higher energy sample

Oscillatory shear strain: $\gamma(t) = \gamma_0 \sin(\omega t)$

Oscillation period: $T = 2\pi / \omega = 5000 \tau$

Potential energy per particle U during 1400 oscillation cycles for different γ_0

With increasing strain amplitude γ_0 (below yield strain), the system relocates to deeper energy minima (via collective rearrangements of atoms).

Potential energy minima during 4 different deformation protocols for $\gamma_0 = 0.06$

For the strain amplitude $\gamma_0 = 0.06$ (just below yield strain), each additional alternation of the shear orientation in the deformation protocol results in lower energy states.

The potential energy U during 3 deformation protocols for the indicated γ_0

For <u>strain amplitudes</u> γ_0 (below yield strain), each additional alternation of the shear orientation in the deformation protocol results in lower energy states.

Shear modulus G and yielding peak σ_Y during startup shear deformation

The height of the yielding peak σ_Y increases when an additional shear orientation is introduced in the cyclic loading protocol. The shear modulus G is larger along the shear directions that were not used during cyclic deformation.

Snapshots of the strained glass after aging during 1400 T (no cyclic loading)

N. V. Priezjev, J. Non-Cryst. Solids 525, 119683 (2019).

Snapshots of strained glass after 1400 alternating shear cycles (xz, yz, xy)

N. V. Priezjev, J. Non-Cryst. Solids 525, 119683 (2019).

Yielding transition and shear band at the critical strain amplitude γ_0 =0.067

Conclusions:

2400 shear cycles

- Periodic shear deformation (in the "elastic" range) leads to relaxed, lower energy states ("mechanical annealing").
- For a fixed strain amplitude (below yield strain), each additional alternation of the shear orientation in the deformation protocol results in lower energy states.
- The yielding peak increases in glasses deformed at higher strain amplitudes.
- The shear modulus is larger along the shear directions that were not cyclically loaded.

N. V. Priezjev, Accelerated relaxation in disordered solids under cyclic loading with alternating shear orientation, *J. Non-Cryst. Solids* **525**, 119683 (2019).

Part II: The effect of cryogenic <u>thermal cycling</u> on potential energy states and mechanical properties of metallic glasses

100 thermal cycles

Ketov, Sun, Nachum, Lu, Checchi, Beraldin, Bai, Wang, Louzguine-Luzgin, Carpenter, and Greer, Rejuvenation of metallic glasses by non-affine thermal strain, *Nature* **524**, 200 (2015).

Shang, Guan, and Barrat, Role of <u>thermal expansion heterogeneity</u> in the cryogenic rejuvenation of metallic glasses, *J. Phys.: Mater.* **1**, 015001 (2018).

Priezjev, The effect of cryogenic thermal cycling on aging, rejuvenation, and mechanical properties of metallic glasses, *J. Non-Cryst. Solids* **503**, 131 (2019).

Details of molecular dynamics simulations and parameter values

Binary Lennard-Jones Kob-Andersen mixture:

$$V_{LJ}(r) = 4\varepsilon_{\alpha\beta} \left[\left(\frac{\sigma_{\alpha\beta}}{r} \right)^{12} - \left(\frac{\sigma_{\alpha\beta}}{r} \right)^{6} \right]$$
 Ni₈₀P₂₀

Parameters for $\alpha, \beta = A$ and B particles:

$$\varepsilon_{AA} = 1.0$$
, $\varepsilon_{AB} = 1.5$, $\varepsilon_{BB} = 0.5$, $m_A = m_B$

$$\sigma_{AA} = 1.0, \sigma_{AB} = 0.8, \ \sigma_{BB} = 0.88$$

Temperature: $T_{LJ} = 0.01 \ \epsilon/k_B < T_g \approx 0.35 \ \epsilon/k_B$

LAMMPS: $N_p = 60000$, MD step $\Delta t_{MD} = 0.005 \tau$

<u>Initial quench rates</u>: $10^{-2} \epsilon/k_B \tau$ to $10^{-5} \epsilon/k_B \tau$

16

Pressure P = 0 and thermal period $T = 5000\tau = 10^6$ MD steps

Potential energy per atom during 100 thermal cycles for different max T_{LJ}

poorly-annealed glass

N. V. Priezjev, J. Non-Cryst. Solids 503, 131 (2019).

Potential energy per atom during 100 thermal cycles for different max T_{LJ}

N. V. Priezjev, J. Non-Cryst. Solids 503, 131 (2019).

Tensile stress vs strain after 100 cycles: effects of quench rate and max T_{LI}

Aged glasses (black curves): higher yield peak at slower quench rates

Highest yield peak (blue curves) at maximum $T_{LJ} = 0.30 \, \epsilon / k_B$

Strain rate = $10^{-5} 1/\tau$

The yielding peak σ_Y , elastic modulus E, and U_{min} versus maximum T_{LJ}

- Highest yield peak and elastic modulus after thermal loading with maximum $T_{LJ} = 0.30 \, \epsilon / k_B$
- A correlation between minimum potential energy U_{min} and maximum values of σ_Y and E.

Conclusions:

100 thermal cycles

- MD simulations of binary 3D Lennard-Jones glasses that are initially prepared with different cooling rates and then subjected to repeated cycles of heating and cooling.
- The potential energy in rapidly annealed glasses decreases during thermal cycling, while the energy in slowly annealed glasses increases at large cycling amplitudes ($>T_g$).
- The elastic modulus and the yielding peak (after the thermal treatment) acquire maximum values at a particular $max\ T_{LI}$ which coincides with the minimum of the potential energy.

N. V. Priezjev, The effect of cryogenic thermal cycling on aging, rejuvenation, and mechanical properties of metallic glasses, *Journal of Non-Crystalline Solids* **503-504**, 131-138 (2019).

Part III: Aging and rejuvenation during <u>elastostatic loading</u> of amorphous alloys

Constant applied stress σ_{zz}

At what stress, temperature to load, and for how long?

N. V. Priezjev, Aging and rejuvenation during elastostatic loading of amorphous alloys: A molecular dynamics simulation study, *Comput. Mater. Sci.* **168**, 125 (2019).

Setup: Temperature profiles, annealing time, glass transition temperature

Variation of the potential energy vs. annealing time at different temp T_a

Constant applied stress σ_{zz} is up to ~70-80% of the yielding peak at a given temperature T_a

Aging: high $T_a < T_g = 0.35 \ \epsilon/k_B$ and low stress σ_{zz} Rejuvenation: low T_a and high σ_{zz}

Collective nonaffine displacements vs. annealing time at $T_a = 0.1 \ \epsilon/k_B$

Empty regions correspond to atoms that remained in their cages during the annealing time

The elastic modulus E vs. annealing time t_a at different temperatures T_a

Maximum effect of rejuvenation due to elastostatic loading: about 10% decrease in E

Conclusions:

- Well-annealed binary glass at zero pressure is elastostatically loaded during extended time intervals (~10⁸ MD steps) in a wide range of annealing temperatures.
- Annealing: high $T_a < T_g = 0.35 \ \epsilon/k_B$ and low stress σ_{zz} Rejuvenation: low T_a and high σ_{zz} $T_a < 0.6 \ T_g \qquad \sigma_{zz} \approx 0.8 \ \sigma_Y$
- Maximum effect of rejuvenation due to elastostatic loading: about 10% decrease in E

N. V. Priezjev, Aging and rejuvenation during elastostatic loading of amorphous alloys: A molecular dynamics simulation study, *Comput. Mater. Sci.* **168**, 125 (2019).