

RV College of Engineering[®], Bengaluru-560 059 Autonomous Institution affiliated to Visvesvaraya Technological University <u>Manuscript of Question Paper</u>

COURSE CODE:21AI52	SEM: V					
COURSE TITLE : Artificial Intelligence and Machine Learning						
Duration of Paper: 03 Hrs						

Instructions to Candidates:

- 1. Answer all questions from Part A
- 2. Any 5 Full questions from Part B choosing one from each side. (Question No.2 is compulsory)

Question No	PART A						
1.1	State two advantages of DFS?	02					
1.2	How 8 queens problem can be viewed as a Constraint Satisfaction Problem?						
1.3	Define Hill Climbing problem?						
1.4	Define two parameters in Alpha Beta Pruning?						
1.5	State any two advantages of Decision Tree?	02					
1.6	State two reasons for model over fitting?						
1.7	State two methods of estimating the probability of data when it has continuous attributes?						
1.8	State two necessary condition for an ensemble classifier?	02					
1.9	State any two data characteristics that affect the proximity in unsupervised learning?						
1.10	State two limitations of K-means algorithm?	02					
	PART B						
2(a)	Differentiate between model based reflex agents and Goal based reflex agents with an example?	6					
2(b)	Apply BFS method for the following graph? Give its advantages and disadvantages?	10					
3(a)	Consider the following graph shown in figure 3.a: 8 8 5 5 3 1 2	6					

	Find the r Algorithm		ffective p	oath to reac	ch from s	tart state A	A to final state J using A*	
3(b)	For the following two-ply game tree shown in figure 3b., the terminal nodes show the utility values computed by the utility function. Use the Min-Max algorithm to compute the utility values for other nodes in the given game tree.						10	
	MAX			A				
	MIN		B.)			C		
	MAX 3	5	6	9	F 1	2	G 0 -1	
4()	D: 1	·	1	.1 1	OR	1	2	0.5
4(a) 4(b)		ow gaming n-max algo				cn strateg	y'!	06
	B 4 C -3 H 1 J K L M N 0 -1 4 2 6 -3 -5 0 7 Terminal values							10
5(a)	Consider the given dataset given below. Write a pseudo code and Illustrate the Decision Tree algorithm to build a model using Information gain as a metric to split the attributes?							
	Day	Outlook	Temp	Humidity	Wind	Play Volleyball		
	D1	Sunny	Hot	High	Weak	No		
	D2 D3	Sunny Overcast	Hot	High High	Strong Weak	No Yes		
	D4	Rain	Mild	High	Weak	Yes		
	D5	Rain Rain	Cool	Normal Normal	Weak Strong	Yes No		
	D7	Overcast	Cool	Normal	Strong	Yes		
	D8	Sunny	Mild	High	Weak	No		
	D9	Sunny	Cool	Normal Normal	Weak Weak	Yes		
	D11	Sunny	Mild	Normal	Strong	Yes		10
	D12	Rain Overcast	Mild Hot	High Normal	Strong Weak	No Yes		10
	D14	Overcast	Mild	High	Strong	Yes		
5(b)	Summaria	ze the splitt	ing of at	tributes bas	sed on co	ntinuous	Attributes?	06
					OR			
6(a)	Consider	the given d	ataset gi	ven below.	Write a	pseudo co	de and Illustrate the	06

	Decision Tr	ee algoi	rithm to b	uild a mo	odel using (Gini as a m	netric	to split the	
	attributes?	ſ	<u> </u>	T C:	T T	C		İ	
			Age	City		e Group	Car		
			Medium		Norma	-	Yes		
			Medium		Norma	al	No		
			Eleder	Metro	High		Yes		
			Medium	_	High		Yes		
			Young	Metro	High		No		
			Eleder	Metro	Norma	al	Yes		
			Young	Urban	High		No		
			Young	Rural	Norma	al	Yes		
6(b)	Discuss the	charact	eristics of	decision	tree?				06
7(a)	Given a da	ataset.	train a k	K-nearest	neighbors	(KNN)	mode	l using the KNN	
/ (a)					_			vide a pseudo code	
	_					-	_	_	
			cess. Afte	r training	g the model	, predict i	is res	ponse for a specific	
	test example		ID 154	(21045 (J F	1. 4	20.1	D	
	Test Examp					naie, Age	– 20, 1	Purchased-?	
	User ID 15624510	Gender Male	Age I	EstimatedSalary 19000	y Purchased 0				
	15810944	Male	35	20000	0				
	15668575 15603246	Female Female	26 27	43000 57000	0				
	15804002	Male	19	76000	0				
	15728773	Male	27	58000	0				
	15598044 15694829	Female Female	27 32	84000 150000	0				
	15600575	Male	25	33000	0				
	15727311	Female	35	65000	0				
	15570769	Female	26	80000	0				
	15606274 15746139	Female Male	26 20	52000 86000	0				
	15704987	Male	32	18000	0				
	15628972	Male	18	82000	0				
	15697686 15733883	Male Male	29 47	80000 25000	0				
	15617482	Male	45	26000	1				
	15704583	Male	46	28000	1				
	15621083 15649487	Female Male	48 45	29000 22000	1				10
	15736760	Female	47	49000	1				
7 (b)	Discuss diff	ferent m	ethods to	improve	KNN effic	iency?			6
					OR				
8(a)	Consider the data set shown below:								
	Instance	$A \mid B$	$C \subset C$	lass					
	1	0 0		_					
	2	$\begin{array}{ c c c c }\hline 1 & 0 \end{array}$		+					
	3	$\begin{bmatrix} 0 & 1 \end{bmatrix}$	0	_					
	$\frac{1}{4}$	$\begin{array}{ c c c c c } 1 & 0 \end{array}$		_					
	5	$\begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix}$		+					
	6	$\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$		<u> </u>					
	7	$\left \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{bmatrix} 1 \\ 0 \end{bmatrix}$	_					
	8	$\begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$		_					
		$\begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$		+					
	10	$\begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}$	_	<u> </u>					
							.	41 \ 5/2	
						(A = 1 +)	, P(B	= 1 +), P(C = 1 +),	
	P(A =	1 -), P($\mathbf{B}=1 -),$	and P(C	= 1 -)				
	(b) Use the conditional probabilities in part (a) to predict the class label for a test								
	sample $(A = 1, B = 1, C = 1)$ using the naive Bayes approach.								

	(c) Compare P(A = 1), P(B = 1), and P(A=1, B = 1). State the relationships between A and B.					
8(b)	Discuss the different ways to constructing the Ensemble Classifiers?					
9(a)	Discuss the role of clustering in Machine Learning? Discuss the different types of clusters in Machine Learning					
9(b)	Demonstrate the K-Means algorithm for the following data considering K =3 Point Coordinates A1 (2,10) A2 (2,6) A3 (11,11) A4 (6,9) A5 (6,4) A6 (1,2) A7 (5,10) A8 (4,9) A9 (10,12) A10 (7,5) A11 (9,11) A12 (4,6) A13 (3,10) A14 (3,8) A15 (6,11)	6				
	OR					
10(a)	Discuss the need for Bisecting K –means and write the pseudo code for the same?	10				
10(b)	Discuss the different measures used in Measuring the clustering validity?					