Aprendizado Automático

João Paulo Pordeus Gomes

Redução de Dimensionalidade

Classificação e Regressão

- Diversos problemas reais têm muitos atributos
 - Reconhecimento de faces
 - Classificação de textos
 - Reconhecimento de impressões digitais
 - · ...

Classificação e Regressão

- Diversos problemas reais têm muitos atributos
 - Reconhecimento de faces
 - Classificação de textos
 - Reconhecimento de impressões digitais
 - **...**
- Overfitting

Classificação e Regressão

- Diversos problemas reais têm muitos atributos
 - Reconhecimento de faces
 - Classificação de textos
 - Reconhecimento de impressões digitais
 - **...**
- Overfitting
- Custo computacional
- Custo de armazenamento

Redução de Dimensionalidade

- Duas estratégias mais comuns
 - Seleção de atributos
 - Combinação de atributos

Seleção de atributos

Duas abordagens

- Usar algum critério para definir o quão bom é um atributo (Filter)
- Selecionar subgrupos de atributos e ver o resultado na classificação/regressão (Wrapper)

Filter

Fisher Score

Toma cada um dos atributos e calcula

$$V(i) = \frac{(\mu_{(+)}(i) - \mu_{(-)}(i))^2}{\sigma_{(+)}^2(i) + \sigma_{(-)}^2(i)}$$

Filter

▶ Fisher Score

Wrapper

- Problema de otimização combinatória
- Escolher um subconjunto das variáveis originais que fornece o melhor resultado para classificação

Wrapper

- Problema de otimização combinatória
- Escolher um subconjunto das variáveis originais que fornece o melhor resultado para classificação
- Pode utilizar uma estratégia gulosa (greedy)

Combinação de atributos

- Combinar os atributos originais de forma a transformá-los em vetores de atributos de menor dimensão
- Como combinar ?
 - Linearmente
 - Não linearmente
- Qual critério usar para combinar ?

Análise de Componentes Principais

- Principal Component Analysis (PCA)
- Método de combinação linear dos atributos para a geração de novos atributos.
- Redução de dimensão se dá pela seleção de um subgrupo destes atributos

Idéia

- Ax = x'
- lacktriangle Vamos definir u como uma parte de A

- Ax = x'
- ightharpoonup Vamos definir u como uma parte de A
- \blacktriangleright Temos que encontrar u, tal que:
 - $\sigma^2 = \frac{1}{N-1} \sum_{i=1}^{N} (x' \mu) (x' \mu)^T$
- Seja o maior possível

- Ax = x'
- Vamos definir u como uma parte de A
- \blacktriangleright Temos que encontrar u, tal que:

$$\sigma^2 = \frac{1}{N-1} \sum_{i=1}^{N} (x' - \mu) (x' - \mu)^T$$

- Seja o maior possível
- Sob certas restrições
- $u^t u = 1$

$$max \frac{1}{N-1} \sum_{i=1}^{N} (x' - \mu) (x' - \mu)^{T}$$

s.t

 $u^t u = 1$

$$max \frac{1}{N-1} \sum_{i=1}^{N} (x') (x')^{T}$$

s.t

$$u^t u = 1$$

$$\rightarrow max \frac{1}{N-1} \sum_{i=1}^{N} (x') (x')^T$$

s.t

- $u^t u = 1$
- Como:
- $\rightarrow max \frac{1}{N-1} \sum_{i=1}^{N} (x') (x')^T$
- $ightharpoonup = max \frac{1}{N-1} \sum_{i=1}^{N} (ux) (ux)^{T}$

$$\rightarrow max \frac{1}{N-1} \sum_{i=1}^{N} (x') (x')^T$$

s.t

- $u^t u = 1$
- Como:
- $max \frac{1}{N-1} \sum_{i=1}^{N} (x') (x')^{T}$
- $ightharpoonup = max \frac{1}{N-1} \sum_{i=1}^{N} (ux) (ux)^{T}$
- $ightharpoonup = max u^T \sum u$

- $\rightarrow max u^T \sum u$
- s.t
- $u^t u = 1$

- $\rightarrow max u^T \sum u$
- s.t
- $u^t u = 1$
- Multiplicadores de Lagrange

- $\rightarrow max u^T \sum u$
- s.t
- $u^t u = 1$
- Multiplicadores de Lagrange
- $L = u^T \sum u \lambda (u^t u 1)$

- $\rightarrow max u^T \sum u$
- s.t
- $u^t u = 1$
- Multiplicadores de Lagrange
- $L = u^T \sum u \lambda (u^t u 1)$

- $\rightarrow max u^T \sum u$
- s.t
- $u^t u = 1$
- Multiplicadores de Lagrange
- $L = u^T \sum u \lambda (u^t u 1)$
 - $\sum u = \lambda u$
 - $u^t u = 1$

- Como resolver
 - $\sum u = \lambda u$

- Como resolver
 - $\sum u = \lambda u$
- Problema de Autovetores e autovalores

- Como resolver
 - $\sum u = \lambda u$
- Problema de Autovetores e autovalores
- \blacktriangleright Para achar u, basta calcular os autovetores da matriz Σ
- λ são os autovalores associados
- Os autovalores correspondem a variância explicada em cada novo atributo

PCA na prática

- Toma os dados de entrada
- Subtrai as médias
- Calcula a matriz de covariância
- Calcula os autovalores e autovetores
- Escolhe os k maiores autovalores
- Utiliza os k autovetores correspondentes para criar k novos atributos

Dúvidas?