

UNIVERSITÀ DEGLI STUDI DI PADOVA

Projective geometry

Stefano Ghidoni

Agenda

- Geometry of projection
- Reference systems and transformations for
 - Modeling the projection
 - Modeling the sensor
 - Modeling the camera orientation

Describing projection

- We need to describe the geometry of projection quantitatively
- First element: relation between the two reference systems
 - 3D point in the world seen from the camera
 - 2D point on the image plane

IAS-LAB

Consider a point P and its projection p

IAS-LAB

Perspective view

Side view

- Now consider a plane that is
 - Parallel to the image plane
 - In front of the optical center
 - At the same distance f from the optical center
- Easier to work on this plane
 - Same geometrical relation
 - Avoid the upside-down effect

IAS-LAB

Perspective view

We move to this plane for deriving the geometrical description

- The Field of View (FoV) of a camera is the angle perceived by the camera
- Define α as the angle under which a point P is seen
- The maximum value for α is $\frac{1}{2}$ of the FoV

Field of view

IAS-LAB

- The FoV depends on $(Fov=2 \gamma)$
 - The sensor size d

of is the maximum value for &

— The focal length f

$$\varphi = \arctan\left(\frac{d}{2f}\right)$$

Field of view

IAS-LAB

50mm

28mm

85mm

From London and Upton

IAS-LAB

(recall)

IAS-LAB

• Similar triangle rule

$$\frac{Y_p}{y_p} = \frac{Z_p}{f}$$

Analogous for x

• Therefore:

$$x_p = f \frac{X_p}{Z_p}$$

$$y_p = f \frac{Y_p}{Z_p}$$

$$\tan(\alpha) = \frac{Y_p}{Z_p}$$

Loosing a dimension

IAS-LAB

 Projecting points on a 2D surface causes the loss of the distance information

Homogeneous coordinates

- The equations can be rearranged in matrix form using the homogeneous coordinates
- Points in 2D can be expressed in homogeneous coordinates
 - A "mathematical trick"

Homogeneous coordinates in 2D

IAS-LAB

To homogeneous coordinates

$$\begin{bmatrix} x \\ y \end{bmatrix} \longrightarrow \begin{bmatrix} \widetilde{w}x \\ \widetilde{w}y \\ \widetilde{w} \end{bmatrix} = \begin{bmatrix} \widetilde{x} \\ \widetilde{y} \\ \widetilde{w} \end{bmatrix}$$

From homogeneous coordinates

$$\begin{bmatrix} \widetilde{x} \\ \widetilde{y} \\ \widetilde{w} \end{bmatrix} \longrightarrow \begin{bmatrix} \widetilde{x}/\widetilde{w} \\ \widetilde{y}/\widetilde{w} \end{bmatrix}$$

Università

DEGLI STUDI

DI PADOVA

- Homogeneous coordinates can be extended to N dimensions
 - N-dimensional point transformed into (N+1) homogeneous coordinates
- We now want to exploit homogeneous coordinates to rewrite the equations:

$$x_p = f \frac{X_p}{Z_p}$$

$$y_p = f \frac{Y_p}{Z_p}$$

Projection matrix

IAS-LAB

The equations can be rearranged as:

P is the **projection matrix**

IAS-LAB

When f=1 we obtain the essential perspective projection

$$P = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} = [I|\mathbf{0}]$$

This represents the core of the projection process

Reference systems and meas. units

- So far: the projection matrix describes how the 3D world is mapped onto the image plane
- Now reflect:
 - What measurement unit is used for distances in the 3D world?
 - What measurement unit is used for distances on the projection plane?
 - What measurement unit do we commonly use for distances in a digital image?

• Anti-spoiler ©

Mapping to image coordinates

- We need to map points projected onto the image plane in the coordinates used for pixels
- From (x, y) to (u, v)

Mapping to image coordinates

- The transformation can be defined considering the coordinates of the principal point to be (u_0, v_0)
- The origin is in the top-left corner

IAS-LAB

Mapping to image coordinates

- Metric distances are converted to pixels using the pixel width \boldsymbol{w} and \boldsymbol{h} height
- Evaluate the coordinates of the principal point in pixel
- Conversion factors are usually defined as

$$-k_u = \frac{1}{w}$$

$$-k_{v} = \frac{1}{h}$$

IAS-LAB

Mapping to image coordinates

• Mapping from (x, y) to (u, v)is obtained by translation and scaling:

$$u = u_0 + \frac{x_p}{w} = u_0 + k_u x_p$$

$$v = v_0 + \frac{y_p}{h} = v_0 + k_v y_p$$

From 3D to pixel coordinates

IAS-LAB

- We can combine the mappings:
 - From 3D to 2D image plane
 - From image plane to pixels

By substituting the last equations into the projection equation

From 3D to pixel coordinates

IAS-LAB

$$u = u_0 + k_u x_p = u_0 + k_u f \frac{X_p}{Z_p} = u_0 + f_u \frac{X_p}{Z_p}$$

Where $k_u f \triangleq f_u$ is the focal length **in pixels**

• Summarizing and applying a similar conversion for \boldsymbol{v} yields:

$$u = u_0 + f_u \frac{X_p}{Z_p}$$

$$v = v_0 + f_v \frac{Y_p}{Z_p}$$

The projection is now expressed as

$$P = \begin{bmatrix} f_u & 0 & u_0 & 0 \\ 0 & f_v & v_0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \triangleq K[I|\mathbf{0}]$$

Where *K* is the **camera matrix**

- The previous equation $\widetilde{\boldsymbol{m}} \simeq P\widetilde{\boldsymbol{M}}$ still holds
 - Just a different formulation for P

IAS-LAB

We moved from:

$$P = \begin{bmatrix} f & 0 & 0 & 0 \\ 0 & f & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

To

$$P = \begin{bmatrix} f_u & 0 & u_0 & 0 \\ 0 & f_v & v_0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \triangleq K[I|\mathbf{0}]$$

Compare the two matrices (concepts embedded in the matrix elements)

Camera matrix

IAS-LAB

Consider the camera matrix

$$K = \begin{bmatrix} f_u & 0 & u_0 \\ 0 & f_v & v_0 \\ 0 & 0 & 1 \end{bmatrix}$$

How many parameters are involved?

• Anti-spoiler ©

Consider the camera matrix

$$K = \begin{bmatrix} f_u & 0 & u_0 \\ 0 & f_v & v_0 \\ 0 & 0 & 1 \end{bmatrix}$$

- K depends on: k_u , k_v , u_0 , v_0 , f
 - They are called intrinsic parameters
 - Define the projection characteristics of the camera
 - Highlight: f_u , f_v embed three parameters

Camera vs real world

- So far, we mapped
 - World to image plane
 - Image plane to pixels
- However, a different reference frame can be defined on the world
- This is always defined as a rototranslation

Camera vs real world

IAS-LAB

 A rototranslation in 3D in homogeneous coordinates is expressed as

$$T = \begin{bmatrix} R & \boldsymbol{t} \\ \mathbf{0} & 1 \end{bmatrix}$$

The correspondence becomes

$$\widetilde{\boldsymbol{m}} \simeq PT\widetilde{\boldsymbol{M}}$$

Rototranslation params

- Consider the rototranslation matrix T
- How many parameters are involved?

Rototranslation params

- Consider the rototranslation matrix T
- How many parameters are involved?
 - 3 for translations
 - 3 for rotations
- They are called extrinsic parameters
 - Define the relation between camera and world

Projection recap

- The whole projection process involves
 - Four reference systems
 - Three transformations

Projection recap

Inverse projection

IAS-LAB

The projection process is described as:

$$\widetilde{\boldsymbol{m}} \simeq PT\widetilde{\boldsymbol{M}}$$

- Evaluates the projected point (\widetilde{m}) given the 3D point (\widetilde{M})
- Is it possible to invert the transformation?

• Anti spoiler ©

Inverse projection

- Two elements are not invertible:
 - Projection from 3D to 2D
 - Pixel quantization

- Two elements are not invertible:
 - Projection from 3D to 2D
 - Pixel quantization
- We can invert the projection if
 - We accept as a result the direction of the object,
 not the 3D position, or
 - We have additional constraints providing the location on the line

- Two elements are not invertible:
 - Projection from 3D to 2D
 - Pixel quantization
- We can invert the projection if
 - We neglect the quantization effect: the pixel location and the projected point are considered the same
 - Acceptable for high-resolution sensors

UNIVERSITÀ DEGLI STUDI DI PADOVA

Projective geometry

Stefano Ghidoni

