Modulkatalog Ingenieurwissenschaften (B.Eng.)

THB, 26.07.2018

Inhaltsverzeichnis

Abschlussprojekt	3
Analoge Schaltungen 1	5
Analoge Schaltungen 2	8
Angewandte Informatik	10
Automatisieren mit SPS	12
Automatisierungssysteme	15
Bachelorarbeit mit Kolloquium	17
Bachelorseminar	19
Chemie und Werkstoffe	21
Digitaltechnik	24
Einführung in die Ingenieurwissenschaften	26
Einführung in die Quantenphysik	28
Elektrische Antriebe	30
Elektrische Maschinen	32
Elektroanlagen in der Automatisierung	35
Elektrotechnik 1	37
Elektrotechnik 2	40
Elektrotechnik 3	43
Experimentalphysik	46
Fertigungsautomatisierung	48
Fertigungstechnologien der Elektrotechnik	50
Gebäudeautomation	52
Gebäudetechnik	55
Grundlagen der Mechatronik	58
Grundlagen der Mikrocontrollertechnik	61
Informatik 1	63
Informatik 2	65

Ingenieurmathematik 1	67
Ingenieurmathematik 2	69
Ingenieurmathematik 3	71
Interdisziplinäres Projekt 1	73
Interdisziplinäres Projekt 2	76
Konstruktionslehre	78
Lasertechnik 2	81
Lasertechnik und Spektroskopie	84
Leistungselektronik	86
Messtechnik	88
Methoden der Mechatronik	91
Optische Gerätetechnik	94
Physik für Ingenieure 1	96
Physik für Ingenieure 2	98
Praxisphase	100
Praxisprojekt	102
Projektstudium	104
Prozessleittechnik-Grundlagen	106
Prozessleittechnik-Projektierung	109
Regel- und Steuerungstechnik	112
Schaltungs- und Leiterplattenentwurf	114
Signale und Systeme	116
Simulations- und Regelungstechnik 1	118
Simulations- und Regelungstechnik 2	120
Studium Generale	122
Systemdynamik für Mechatronik	123
Technische Mechanik 1	126
Technische Mechanik 2	128
Technische Mechanik 3	130
Technische Optik 1	132
Technische Optik 2	134
Technische Sensorik	136
Vakuum- und Dünnschichttechnik	138
Vertiefung Optoelektronik	140

Abschlussprojekt

Studienrichtung:	IEIT, IAT, IMT, IOE, WEIT, WEUT, WMT
Modulbezeichnung:	Abschlussprojekt
	Final Project
ggf. Kürzel	
ggf. Untertitel	
ggf. Lehrveranstaltungen:	
Studiensemester:	7
Angebotsturnus:	jährlich im Wintersemester
Modulverantwortliche(r):	Studiendekane des FBT
Dozent(in):	
Sprache:	deutsch
Zuordnung zum Curriculum:	IEIT, 7. Semester, Pflichtfach
	IAT, 7. Semester, Pflichtfach
	IMT, 7. Semester, Pflichtfach
	IOE, 7. Semester, Pflichtfach
	WEIT, 7. Semester, Pflichtfach
	WMT, 7. Semester, Pflichtfach
	WEUT, 7. Semester, Pflichtfach
Lehrform / SWS:	4 SWS Seminar;
	Einführende Vorstellung und Erläuterungen,
	Selbststudium, Teamarbeit, regelmäßige Betreuung und
	Diskussion mit den Dozenten
Arbeitsaufwand:	450 h, davon 60 h Präsenz- und 390 h Eigenstudium
Kreditpunkte:	15
Voraussetzungen nach	
Prüfungsordnung:	
Empfohlene Voraussetzungen:	Ingenieurwissenschaftliches Grundstudium,
	fachspezifische Vertiefungen
Angestrebte Lernergebnisse:	Nach Abschluss des Praxisprojektes sind die
	Studierenden in der Lage
	- die erworbenen Kenntnisse der grundlegenden
	ingenieurwissenschaftlichen Theorien, Prinzipien,
	Modelle, Werkzeuge und Methoden anzuwenden und zu
	verknüpfen,
	- technologische Prozessabläufe zu erkennen, diese zu
	planen und nach Prioritäten zu ordnen
	- in einem Projekt mitzuarbeiten und eigene
	Lösungsvorschläge mit einzubringen bzw. zu erarbeiten
	- angepasst zu formulieren und zu argumentieren
	- die im Praxisprojekt durchgeführten Aufgaben zu
	bewerten
	- die im Praxisprojekt durchgeführten Aufgaben kritisch
	im Bezug auf ihre technische Relevanz zu reflektieren
	(unter Verwendung der aktuellen wissenschaftlichen

	Literatur)
	- innovative und praxisrelevante Ansätze für die
	Bachelorarbeit zu finden und während des
	Praxisprojekts die Grundlagen für auswertbares Material
	zu schaffen.
Inhalt:	
Studien- Prüfungsleistungen:	Benotete schriftliche Arbeit; Schriftliche Dokumentation
	der Projektarbeit, Präsentation, mündliche Prüfung
Medienformen:	Je nach Aufgabenstellung z. B. Literatur,
	Firmenprospekte, Laboreinrichtungen und Messgeräte,
	Stoffdaten, regelmäßige Beratung der Projektgruppe
Literatur:	Es wird erwartet, dass die Studierenden spezifisch für
	jedes Problem eine detaillierte Literaturrecherche
	durchführen und diese dokumentieren.

Analoge Schaltungen 1

Studienrichtung:	IEIT, IAT, IMT, IOE, WEIT, WEUT, WMT
Modulbezeichnung:	Analoge Schaltungen 1
	Analogue Circuits 1
ggf. Kürzel	AS1
ggf. Untertitel	
ggf. Lehrveranstaltungen:	
Studiensemester:	2
Angebotsturnus:	jährlich im Sommersemester
Modulverantwortliche(r):	Prof. DrIng. Steffen Doerner
Dozent(in):	Prof. DrIng. Steffen Doerner
Sprache:	deutsch
Zuordnung zum Curriculum:	IEIT, 2. Semester, Pflichtfach
3	IAT, 2. Semester, Pflichtfach
	IMT, 2. Semester, Pflichtfach
	IOE, 2. Semester, Pflichtfach
	WEIT, 2. Semester, Pflichtfach
	WMT, 2. Semester, Pflichtfach
	WEUT, 2. Semester, Pflichtfach
Lehrform / SWS:	2 SWS Vorlesung, 2 SWS Übung, 1 SWS Labor
Arbeitsaufwand:	150 h, davon 75 h Präsenz- und 75 h Eigenstudium
Kreditpunkte:	5
Voraussetzungen nach	keine
Prüfungsordnung:	
Empfohlene Voraussetzungen:	Erfolgreicher Abschluss des Moduls Grundlagen der
	Elektrotechnik 1
Angestrebte Lernergebnisse:	Die Studierenden sollen in der Lage sein, grundlegende
	Schaltungen mit Halbleiterbauelementen zu verstehen,
	aufzubauen und zu dimensionieren. Sie werden durch
	praxisnahe Fragestellungen an die späteren
	Arbeitsaufgaben eines Ingenieurs herangeführt.
	Die Studierenden sollen daran gewöhnt werden, den in
	den Vorlesungen behandelten Stoff selbstständig
	nachzubereiten und mittels Fachliteratur zu vertiefen.
	Ihr abstraktes und analytisches Denkvermögen soll
	gestärkt werden.
	Sie sollen lernen, elektrische Netzwerke durch
	angemessene Modelle nachzubilden und die Grenzen
	der Ergebnisse ihrer Rechenansätze zu erkennen.
	Die Gruppenarbeit im Labor fordert und fördert die
	Sozialkompetenz und Teamfähigkeit der Studierenden.
Inhalt:	Die Studierenden sollen Grundlagenwissen und
	zugehörige Kompetenzen in den folgenden
	Themenbereichen anwendungsbereit erwerben:
	Ersatzschaltbilder in der Analogtechnik:

	 differentieller Widerstand Kleinsignalverhalten Aktive Bauelemente: Halbleitermaterialien Dotierung Sperrschicht Bändermodell Ohmscher Übergang, Schottky-Übergang Halbleiterdiode: Diodenarten U/I-Kennlinie Kleinsignalersatzschaltbild Impulsverhalten Anwendungen mit Schaltungstechnik: Gleichrichtung, Spannungsvervielfachung, Gatter, Impulsformung,
	Spannungsvervielrachung, Gatter, Impulsformung, Begrenzung und Spannungsstabilisierung (Z-Diode), spannungsgesteuerte Kapazität Bipolartransistoren: - Einteilung und Bauarten - U/I-Kennlinien - statische und dynamische Kennwerte - Schaltungen zur Arbeitspunkteinstellung - Transistor als Schalter Feldeffekttransistoren: - Einteilung und Bauarten - U/I-Kennlinien
	 statische und dynamische Kennwerte Schaltungen zur Arbeitspunkteinstellung CMOS-Endstufe Transistorverstärker: Einteilung Aussteuerung im Kennlinienfeld Gleich- und Wechselstromarbeitsgerade nichtlineare Verzerrungen
Studien- Prüfungsleistungen:	Klausur; Vorlesungsteil: Prüfung (KL90); Benotung: Ja Laborteil: Laborschein; Benotung: Nein Das Labor ist dann bestanden, wenn alle Laborversuche erfolgreich durchgeführt wurden und alle zugehörigen Versuchsprotokolle vom Betreuer als "mit Erfolg bestanden" testiert wurden.
Medienformen:	Vorlesung mit gemischten Medien (Tafelarbeit, Beamer etc.);Übungsaufgabenblätter
Literatur:	Seifart, M.: Analoge Schaltungen. Verlag TechnikTietze, U.; Schenk, C., Gamm, E.: Halbleiter- Schaltungstechnik. Springer

Vieweg
- Göbel, H.: Einführung in die Halbleiter-
Schaltungstechnik. Springer-Verlag

Analoge Schaltungen 2

Studienrichtung:	IEIT, IOE
Modulbezeichnung:	Analoge Schaltungen 2
	Analogue Circuits 2
ggf. Kürzel	AS2
ggf. Untertitel	
ggf. Lehrveranstaltungen:	
Studiensemester:	3
Angebotsturnus:	jährlich im Wintersemester
Modulverantwortliche(r):	Prof. DrIng. Steffen Doerner
Dozent(in):	Prof. DrIng. Steffen Doerner
Sprache:	deutsch
Zuordnung zum Curriculum:	IEIT, 3. Semester, Pflichtfach
-	IOE, 3. Semester, Pflichtfach
Lehrform / SWS:	2 SWS Vorlesung, 2 SWS Übung, 1 SWS Labor
Arbeitsaufwand:	150 h, davon 75 h Präsenz- und 75 h Eigenstudium
Kreditpunkte:	5
Voraussetzungen nach	keine
Prüfungsordnung:	
Empfohlene Voraussetzungen:	Erfolgreicher Abschluss der Module: Elektrotechnik 1,
	Elektrotechnik 2, Analoge Schaltungen 1
Angestrebte Lernergebnisse:	Nach erfolgreichem Abschluss besitzen die
	Studierenden ein vertieftes Grundlagenwissen in der
	Schaltungstechnik und dem Zusammenwirken aktiver
	und passiver Bauelemente. Sie verstehen die
	Eigenschaften nichtlinearer Schaltungen und verfügen
	über Basiswissen zur Kompensation
	frequenzabhängiger Effekte.
	Die Studierenden kennen den Laborbetrieb mit den
	einschlägigen Sicherheitsvorschriften und beherrschen
	den Umgang mit Oszilloskopen, Signalgeneratoren und
	Frequenzzählern. Die Studierenden können erweiterte
	Schaltungen aufbauen und messtechnisch analysieren.
	Sie können selbstständig kleine technische Berichte
	verfassen, in denen die Ergebnisse von Messungen
	aussagekräftig dargestellt und kritisch diskutiert
	werden. Vorlesung und Labor des Moduls sind inhaltlich
	eng aufeinander abgestimmt. Die praktischen Versuche
	des Labors vertiefen und veranschaulichen den Stoff
	der Vorlesung und bereiten die Studierenden damit auf
	das gesamte Lernziel des Moduls vor.
	Die Studierenden sollen daran gewöhnt werden, den in
	den Vorlesungen behandelten Stoff selbstständig
	nachzubereiten und mittels Fachliteratur zu vertiefen.
	Ihr abstraktes und analytisches Denkvermögen soll

	mantäulit vanadam. Cia aallam lamaam, in dam Ülbirmanam
	gestärkt werden. Sie sollen lernen, in den Übungen
	gemeinsam Lösungsansätze zu schaltungstechnischen
	Fragestellungen zu erkennen und zu lösen.
	Die Gruppenarbeit im Labor fordert und fördert die
	Sozialkompetenz und Teamfähigkeit der Studierenden.
Inhalt:	- Rückkopplung:
	Rückkopplungsgleichung, Gegenkopplung, Mitkopplung,
	Stabilitätskriterien, Kippschaltungen,
	- Operationsverstärker:
	Eigenschaften idealer und realer OV, Komparator,
	Spannungsfolger, Nichtinvertierender und
	Invertierender Verstärker, Addierer, Strom-Spannungs-
	Wandler, Integrierer, Differenzierer, Differenz- und
	Instrumentationsverstärker
	- Analog-Digital-Umsetzer und Digital-Analog-Umsetzer:
	Abtastung, Quantisierung, Kodierung, Umsetzverfahren,
	Umsetzrate, Umsetzfehler, Abtasttheorem, Unter- und
	Überabtastung
	- Spannungsregler- und
	Spannungskonverterschaltungen:
	, ,
	Längsregler, Querregler, Wirkungsgrad, Dropout-
	Spannung, Hochsetzsteller, Tiefsetzsteller,
	Ladungspumpen
	- Optoelektronische Bauelemente:
	LED, Fotodiode, Fototransistor, Optokoppler,
	Lichtwellenleiter
	- Labor Analoge Schaltungen 2:
	Grundschaltungen der Operationsverstärkertechnik,
	Generatoren, A/D- und D/A-Umsetzer, Spannungsregler
	und DC/DC-Wandler
Studien- Prüfungsleistungen:	Klausur; Laborteil: Das Labor ist dann bestanden, wenn
	alle Laborversuche erfolgreich durchgeführt wurden
	und alle zugehörigen Versuchsprotokolle vom Betreuer
	als "mit Erfolg bestanden" testiert wurden.
Medienformen:	- Vorlesung mit gemischten Medien (Tafelarbeit,
	Beamer etc.);
	- Übungsaufgabenblätter
Literatur:	- Seifart, M.: Analoge Schaltungen. Verlag Technik
	- Tietze, U.; Schenk, C., Gamm, E.: Halbleiter-
	Schaltungstechnik. Springer Vieweg
	- Göbel, H.: Einführung in die Halbleiter-
	Schaltungstechnik. Springer-Verlag
	1

Angewandte Informatik

Studienrichtung:	IAT
Modulbezeichnung:	Angewandte Informatik
	Applied Informatics
ggf. Kürzel	
ggf. Untertitel	Objektorientierte Softwareentwicklung im
	Ingenieurwesen, Objektorientierte Programmierung in
	C++
ggf. Lehrveranstaltungen:	
Studiensemester:	3
Angebotsturnus:	jährlich im Wintersemester
Modulverantwortliche(r):	Prof. DrIng. Knut Stephan
Dozent(in):	Gerald Giese
Sprache:	deutsch
Zuordnung zum Curriculum:	IAT, 3. Semester, Pflichtfach
Lehrform / SWS:	2 SWS Vorlesung, 2 SWS Labor
Arbeitsaufwand:	150 h, davon 60 h Präsenz- und 90 h Eigenstudium
Kreditpunkte:	5
Voraussetzungen nach	keine
Prüfungsordnung:	
Empfohlene Voraussetzungen:	Module "Ingenieurinformatik"
Angestrebte Lernergebnisse:	Die Studierenden erlangen
	- grundlegendes Wissen über relationale Datenbanken
	und die Programmierung mit Visual Basic for
	Applications (VBA);
	- Fertigkeiten beim Entwurf und der Realisierung von
	Datenbankanwendungen mit Microsoft Access und der
	Programmerstellung mit VBA.
	Sie beherschen
	- die ingenieurtechnische Ausdrucksweise bei der
	Formulierung von Sachverhalten unter Verwendung der
	fachspezifischen Termini;
	- die Fähigkeit zur Analyse und Interpretation von
	Aufgaben- und Problemstellungen;
	- ein zielführendes, systematisches und selbstständiges
	Bearbeiten von vorgegebenen Aufgabenstellungen;
	- die Nutzung von Werkzeugen (Softwaretools) und
	Informationsquellen (Vorlesungsunterlagen,
	Handbücher, Internet) bei der Problemlösung; - das Erkennen von Zusammenhängen/Schnittstellen zu
Inhalt:	anderen Fachgebieten. Vorlesung
iiiiait.	Datenbanksysteme: Grundkonzept eines
	Datenbanksystems, Objekte und Objekt-typen,
	Schlüssel, Beziehungen und ihre Darstellung (Entity-
	Johnasson, Dezichangen and Interparstellang (Littity-

	Relationship-Diagramm, Komplexitätsgrade),
	relationales Datenmodell, Normalformen,
	Datenbanksprache SQL, Entwurf und Realisierung von
	Datenbankanwendungen mit Microsoft Access
	(Tabellen, Abfragen, Formulare, Berichte, Makros,
	Module);
	Visual Basic for Applications (VBA):
	Entwicklungsumgebung, Objektmodell, Datentypen,
	Kontrollstrukturen, Routinen, ereignisorientierte
	Programmierung, Komponentenmodell (COM), Data
	Access Objects (DAO), Einsatz von VBA in der
	Automatisierungstechnik.
	Labor mit MS Access
	AI-DB1: Tabellen
	AI-DB2: SQL-Anweisungen
	AI-DB3: Abfragen mit Query-By-Example-Editor
	AI-DB4: Formulare
	AI-DB5: Berichte
	AI-DB6: Makros
	AIVBA: Entwurf und Realisierung der
	Datenbankanwendung "Produktkonfigurator" mit Access
	und VBA
Studien- Prüfungsleistungen:	Klausur; Testierte Leistung für das Labor
Medienformen:	PC (Powerpoint) und Beamer, Tafel, Skriptvorlage für
	Studierende
Literatur:	R. Steiner: Grundkurs Relationale Datenbanken,
	Springer Vieweg;
	A. Minhorst: Access, Das Grundlagenbuch für
	Entwickler, Addison-Wesley Verlag.

Automatisieren mit SPS

Studienrichtung:	IAT
Modulbezeichnung:	Automatisieren mit SPS
	Automation Technology with PLC
ggf. Kürzel	AutSPS
ggf. Untertitel	
ggf. Lehrveranstaltungen:	
Studiensemester:	4
Angebotsturnus:	jährlich im Sommersemester
Modulverantwortliche(r):	Prof. DrIng. Knut Stephan
Dozent(in):	Prof. DrIng. Knut Stephan
Sprache:	deutsch
Zuordnung zum Curriculum:	IAT, 4. Semester, Pflichtfach
Lehrform / SWS:	2 SWS Vorlesung, 2 SWS Labor
Arbeitsaufwand:	150 h, davon 60 h Präsenz- und 90 h Eigenstudium
Kreditpunkte:	5
Voraussetzungen nach	keine
Prüfungsordnung:	
Empfohlene Voraussetzungen:	Modul "Automatisierungssysteme"
Angestrebte Lernergebnisse:	Fachliche Kompetenzen:
	Fundiertes und anwendbares Wissen über den Aufbau,
	die Funktion und die Softwareprojektierung von SPS-
	basierten Automatisierungssystemen mit
	- Speicherprogrammierbaren Steuerungen (SPS) zur
	Steuerung, Regelung und Überwachung,
	- HMI-Komponenten zur Visualisierung und Bedienung
	sowie
	- Bussystemen zur Vernetzung;
	Fertigkeiten bei der Projektierung von SPS (SIMATIC
	S7-1500/TIA-Portal), HMI (Bediendisplay TP700,
	Prozess-Visualisierungssystem WinCC) und
	Bussystemen (PROFIBUS mit ET200S, Ethernet
	TCP/IP).
	Ingenieurtechnische Ausdrucksweise bei der
	Formulierung von Sachverhalten unter Verwendung der
	fachspezifischen Termini;
	Überfachliche Kompetenzen:
	Fähigkeit zur Analyse und Interpretation von Aufgaben-
	und Problemstellungen;
	Zielführendes, systematisches und selbstständiges
	Bearbeiten von vorgegebenen Aufgabenstellungen;
	Nutzung von Werkzeugen (Softwaretools) und
	Informationsquellen (Vorlesungs-unterlagen,
	Handbücher, Internet) bei der Problemlösung;
	Erkennen von Zusammenhängen/Schnittstellen zu

	anderen Fachgebieten.
Inhalt:	Vorlesung
	Einführung: SPS-basiertes Automatisierungssystem mit
	SPS, Speicherprogrammierbare Steuerungen
	(Hardwareaufbau, prinzipielle Funktionsweise, SPS-
	Programmiersprachen, prinzipieller Ablauf bei der SPS-
	Programmierung);
	Programmieren mit STEP 7: Grundlagen (Struktur eines
	STEP 7-Anwenderprogramms, Anwenderbausteine,
	Variablen und Datentypen, SIMATIC S7-1500, TIA
	Portal, prinzipieller Ablauf der S7-Projektierung),
	Programmieren von STEP 7-Anwenderbausteinen
	(parametrierbare FCs/FBs, Organisationsbausteine,
	Anlauf S7-1500 und Nutzung OB100, globale
	Datenbausteine); Programmieren von
	Ablaufsteuerungen (Ablaufsprache GRAPH, Umsetzung
	Ablauf-Funktionsplan in GRAPH-Programm,
	Schnittstellenparameter des S7-GRAPH FBs,
	Vorgehensweise bei der Programmierung); Digital- und
	Analogwertverarbeitung (ausgewählte
	Digitaloperationen, Analogwertverarbeitung mit SPS,
	Skalierung und Deskalierung von Analogwerten,
	Regelkreis mit SPS, Reglerbaustein CONT_C);
	Visualisieren und Bedienen (HMI): Grundlagen HMI
	(Begriff HMI und Anforderungen, HMI-Funktionen des Automatisierungssystems, HMI-Realisierungsvarianten);
	prozessnahes Visualisieren und Bedienen mit
	Bediendisplays (Bediendisplay SIMATIC TP700, WinCC
	Advanced im TIA Portal, Bitmeldungs-Projektierung in
	STEP 7/WinCC (TIA), Ablauf der TP700-Projektierung);
	Visualisieren und Bedienen mit Prozess-
	Visualisierungssystemen (Prozess-Visualisierungssystem
	WinCC, Grundkomponenten, Projektstruktur, typische
	Bildobjekte, prinzipieller Projektierungsablauf).
	Vernetzen mit Bussystemen: Grundlagen (Bussysteme
	in der Auto-matisierungstechnik/im
	Automatisierungssystem, Grundstrukturen, ISO/OSI-
	Schichtenmodell); Feldbussystem PROFIBUS-DP
	(Übersicht, RS485-Übertragungstechnik, Fieldbus Data
	Link, Dezentrales Peripheriesystem ET200S, PROFIBUS
	DP-Diagnose und -Projektierung bei SIMATIC S7);
	Systembus Ethernet TCP/IP (System- und
	Schichtenstruktur, Standard-Ethernet, Switch-
	Technologie, Internet Protocol/IP, Transmission Control
	Protocol/TCP, TCP-Open User Communication mit
	TSEND_C und TRCV_C).
	Labor

	SPS-VS: Programmieren von Verknüpfungssteuerungen
	mit STEP 7;
	SPS-AS: Programmieren von Ablaufsteuerungen mit
	STEP 7;
	SPS-RÜ: Regeln und Überwachen mit SIMATIC;
	SPS-BD: Prozessnahes Visualisieren und Anzeigen mit
	Bediendisplay TP700;
	SPS-PV1: Prozess-Visualisierungssystem WinCC 1;
	SPS-PV2: Prozess-Visualisierungssystem WinCC 2;
	SPS-BK: Vernetzen mit PROFIBUS-DP und Ethernet
	TCP/IP.
Studien- Prüfungsleistungen:	Klausur; Testierte Leistung für das Labor
Medienformen:	PC (Powerpoint) und Beamer, Tafel, Skriptvorlage
	(unvollständig) für Studierende
Literatur:	Wellenreuther, Zastrow: Automatisieren mit SPS,
	Viewg+Teubner Verlag;
	Berger, H.: Automatisieren mit SIMATIC S7-1500,
	Publicis Publishing Erlangen.

Automatisierungssysteme

Studienrichtung:	IAT
Modulbezeichnung:	Automatisierungssysteme
	Automation Systems
ggf. Kürzel	
ggf. Untertitel	
ggf. Lehrveranstaltungen:	
Studiensemester:	3
Angebotsturnus:	jährlich im Wintersemester
Modulverantwortliche(r):	Prof. DrIng. Knut Stephan
Dozent(in):	Prof. DrIng. Knut Stephan
Sprache:	deutsch
Zuordnung zum Curriculum:	IAT, 3. Semester, Pflichtfach
Lehrform / SWS:	2 SWS Vorlesung, 1 SWS Übung, 1 SWS Labor
Arbeitsaufwand:	150 h, davon 60 h Präsenz- und 90 h Eigenstudium
Kreditpunkte:	5
Voraussetzungen nach	keine
Prüfungsordnung:	
Empfohlene Voraussetzungen:	gutes technisches Verständnis, Grundkenntnisse in
	Informatik und Digitaltechnik
Angestrebte Lernergebnisse:	Die Studierenden erwerben
	- fundiertes und anwendbares Wissen über den Aufbau
	(Struktur, Komponenten) und die Funktionen von
	Automatisierungssystemen in der Industrie und im
	Gebäude;
	- Fertigkeiten beim Entwurf und der Programmierung
	von Automatisierungsfunk-tionen, insbesondere von
	Binärsteuerungen und Regelungen.
	Überfachliche Kompetenzen:
	Ingenieurtechnische Ausdrucksweise bei der
	Formulierung von Sachverhalten unter Verwendung der
	fachspezifischen Termini;
	Fähigkeit zur Analyse und Interpretation von Aufgaben-
	und Problemstellungen;
	Zielführendes, systematisches und selbstständiges
	Bearbeiten von vorgegebenen Aufgabenstellungen;
	Nutzung von Werkzeugen (Softwaretools) und
	Informationsquellen (Vorlesungsunterlagen,
	Handbücher, Internet) bei der Problemlösung;
	Erkennen von Zusammenhängen/Schnittstellen zu
Inhalt:	anderen Fachgebieten.
iiiiait.	Vorlesung/Übung Einführung: Grundbegriffe, Automatisierungsobjekte,
	Automatisierungssystem, Automatisierungsfunktionen
	und -aufgaben, Signale in der Automatisierungstechnik;
	Tuna -auryaben, Signale in der Automatisierungstechnik;

Literatur:	Becker, N.: Automatisierungstechnik, Vogel Buchverlag
	(unvollständig) für Studierende
Medienformen:	PC (Powerpoint) und Beamer, Tafel, Skriptvorlage
Studien- Prüfungsleistungen:	Klausur; Testierte Leistung für das Labor
CL II. D. "C	Wärmeübertragers.
	LOGO-RÜ: Regelung und Überwachung eines
	LOGO-AS: Programmieren von Ablaufsteuerungen,
	Verknüpfungssteuerungen mit Speicherfunktionen,
	LOGO-VS: Programmieren von
	LOGO-EP: Einführung in die LOGO!-Programmierung,
	Labor
	Systembus/Netzwerke.
	Signalübertragung, Feldbussystem,
	Informationsübertragung: konventionelle
	Übertragungseinrichtungen-Signal- und
	typische Visualisierungs- und Bedienfunktionen;
	Bedienen, Visualisieren und Bedienen in der Leitwarte);
	Realisierungsvarianten (prozessnahes Anzeigen und
	Leitstationen-Anzeigen/Visualisieren und Bedienen:
	mit LOGO!, Anwendungsbeispiel);
	Regelungsentwurf, Analogwertverarbeitung und Regeln
	Gütekenngrößen, erweiterte Regelkreisstrukturen,
	Regler/Regelalgorithmen, Verhalten des Regelkreises,
	Beispiel, Übertragungsverhalten, Regelstreckenanalyse,
	Merkmale und Wirkungsweise, Standard-Regelkreis,
	(Regelungsaufgaben, Komponenten und Größen,
	Ablaufsteuerungen-Entwurf); Regelungen
	Speicherfunktionen-Entwurf, LOGO!-Steuerung,
	Verknüpfungssteuerungen ohne/mit
	(Steuerungsaufgaben, Begriff, Grundfunktionen,
	Überwachen, Sichern: Binärsteuerungen
	Automatisierungsstationen-Steuern, Regeln,
	pneumatisches Stellgerät;
	ausgewählte Stelleinrichtungen, Beispiel:
	Stelleinrichtungen-Stellen: Aufbau, Anforderungen,
	Widerstandsthermometer Pt100;
	ausgewählte Messgrößen, Beispiel: Kompakt-
	Messeinrichtungen-Messen: Aufbau, Anforderungen,

Bachelorarbeit mit Kolloquium

Studienrichtung:	IEIT, IAT, IMT, IOE, WEIT, WEUT, WMT
Modulbezeichnung:	Bachelorarbeit mit Kolloquium
	Bachelor Thesis
ggf. Kürzel	BAAKOLL
ggf. Untertitel	
ggf. Lehrveranstaltungen:	
Studiensemester:	7
Angebotsturnus:	jährlich im Wintersemester
Modulverantwortliche(r):	Studiendekane des FBT
Dozent(in):	
Sprache:	deutsch
Zuordnung zum Curriculum:	IEIT, 7. Semester, Pflichtfach
	IAT, 7. Semester, Pflichtfach
	IMT, 7. Semester, Pflichtfach
	IOE, 7. Semester, Pflichtfach
	WEIT, 7. Semester, Pflichtfach
	WMT, 7. Semester, Pflichtfach
	WEUT, 7. Semester, Pflichtfach
Lehrform / SWS:	3 SWS Seminar;
	Selbstständige Arbeit (Projektarbeit), Gruppengröße: 1
	Studierender
Arbeitsaufwand:	360 h, davon 45 h Präsenz- und 315 h Eigenstudium
Kreditpunkte:	12
Voraussetzungen nach	
Prüfungsordnung:	
Empfohlene Voraussetzungen:	
Angestrebte Lernergebnisse:	Die Studierenden
	- können selbständig und ingenieurmäßig eine
	komplexe Aufgabenstellung bearbeiten,
	- innerhalb eines vorgegebenen Zeitrahmens ein Projekt
	abschließen und das Ergebnis vorführen und
	präsentieren,
	- Stand der Technik, Lösungskonzepte, technische
	Aufbauten, entwickelte Software, erreichte Ergebnisse,
	mögliche Erweiterungen schriftlich in einer
	wissenschaftlichen Ausarbeitung beschreiben und
	dokumentieren.
Inhalt:	Die Bachelorarbeit dient der zusammenhängenden
	Beschäftigung mit einem umfassenden Thema und der
	daraus resultierenden Lösung einer praktischen oder
	theoretischen Problemstellung. In der Regel wird ein
	Thema aus der Industrie unter Betreuung durch einen
	Unternehmensvertreter bearbeitet. In Ausnahmefällen
	kann das Thema der Bachelorarbeit durch die THB

ausgegeben und betreut werden.
Die Bearbeitungszeit beträgt in der Regel 10 Wochen.
Thema, Aufgabenstellung und Umfang sind vom
Betreuer so zu begrenzen, dass die Bearbeitung in der
gegebenen Zeit und mit dem vorgesehenen Aufwand
von 12 Leistungspunkten grundsätzlich zu bewältigen
ist.
Die Bachelorarbeit ist – nach Absprache mit dem
Betreuer Deutsch oder in Englisch zu verfassen. Wenn
die Bachelorarbeit in Englisch verfasst ist, so ist eine
Zusammenfassung in deutscher Sprache vorzulegen.
Benotete schriftliche Arbeit; Gutachten aufgrund der
Abgabe einer schriftlichen Ausarbeitung und
gegebenenfalls Vorführung eines praktischen
Ergebnisses im Rahmen der Bachelor-Arbeit und
mündliche Abschlussprüfung
Fachliteratur abhängig von Thema der Bachelorarbeit

Bachelorseminar

Studienrichtung:	IEIT, IAT, IMT, IOE, WEIT, WEUT, WMT
Modulbezeichnung:	Bachelorseminar
	Bachelor Thesis Course
ggf. Kürzel	BASEM
ggf. Untertitel	
ggf. Lehrveranstaltungen:	
Studiensemester:	7
Angebotsturnus:	jährlich im Wintersemester
Modulverantwortliche(r):	Studiendekane des FBT
Dozent(in):	Prof. DrIng. Steffen Doerner
Sprache:	deutsch
Zuordnung zum Curriculum:	IEIT, 7. Semester, Pflichtfach
	IAT, 7. Semester, Pflichtfach
	IMT, 7. Semester, Pflichtfach
	IOE, 7. Semester, Pflichtfach
	WEIT, 7. Semester, Pflichtfach
	WMT, 7. Semester, Pflichtfach
	WEUT, 7. Semester, Pflichtfach
Lehrform / SWS:	2 SWS Seminar
Arbeitsaufwand:	90 h, davon 30 h Präsenz- und 60 h Eigenstudium
Kreditpunkte:	3
Voraussetzungen nach	
Prüfungsordnung:	
Empfohlene Voraussetzungen:	
Angestrebte Lernergebnisse:	Die Studierenden lernen und üben das Präsentieren und
	Diskutieren eigener Arbeitsergebnisse; zudem erwerben
	sie Kompetenzen im wissenschaftlich angeleiteten
	Dokumentieren.
	Die Studierenden beherrschen
	- die Methoden der Literaturrecherche,
	- die Regeln zur Anfertigung selbständiger
	wissenschaftlicher Arbeiten,
	- das Präsentieren wissenschaftlicher Ergebnisse,
	- die Herangehensweise an den Bewerbungsprozess.
Inhalt:	Das Bachelorseminar soll den Studierenden als
	thematische Vorbereitung (seminaristische Vermittlung
	von Fähigkeiten zur Unterstützung selbstständigen,
	methodischen Arbeitens) auf die Bachelorarbeit dienen
	und Gelegenheit zu wissenschaftlichem Feedback geben
	und wird begleitend zur Anfertigung der Bachelorarbeit
	durchgeführt.
	Inhalte:
	- Grundsätze der Arbeitsweise in der Phase der
	Bachelorarbeit (Dokumentation eigener Ergebnisse,

	begleitendes Literaturstudium usw.)
	- Grundsätze zur Anfertigung der Bachelorarbeit,
	Anforderungen an eine Bachelorarbeit (Gliederung,
	Verzeichnisse, Grafiken, Literaturzitate usw.)
	- Klärung von Sachfragen zur Dokumentation der
	Ergebnisse, Diskussion unter Einbeziehung vorliegender
	Abschlussarbeiten
	- Wissenschaftlicher Vortrag (Umfang, Aufbau,
	Gestaltung usw.)
	- Bewerbungstraining (Diskussion der Phasen in der
	Bewerbungsphase, praktische Übung mit Hilfe einer
	fiktiven Stellenausschreibung, Bewerbungsgespräch
	usw.)
	- Im Seminar zur Bachelorarbeit stellen die
	Studierenden ihren Arbeitsstand ihren Kommilitonen
	und ggf. dem Kollegium des eigenen Studiengangs vor.
	Sie präsentieren dabei die Teilergebnisse des Projektes
	in ca. 5 bis 10-minütigen Vorträgen.
Studien- Prüfungsleistungen:	Testierte Leistung; Abschluss erfolgt durch das
	Kolloquium zur Bachelorarbeit;
Medienformen:	z.T. Präsentation
Literatur:	Fachliteratur abhängig von Thema der Bachelorarbeit

Chemie und Werkstoffe

Studienrichtung:	IEIT, IAT, IMT, IOE
Modulbezeichnung:	Chemie und Werkstoffe
	Chemistry and Materials
ggf. Kürzel	CWK
ggf. Untertitel	
ggf. Lehrveranstaltungen:	
Studiensemester:	3
Angebotsturnus:	jährlich im Wintersemester
Modulverantwortliche(r):	Dr. Frank Pinno
Dozent(in):	Dr. rer. nat. Christina Niehus, Dr. Frank Pinno
Sprache:	deutsch
Zuordnung zum Curriculum:	IEIT, 3. Semester, Pflichtfach
	IAT, 3. Semester, Pflichtfach
	IMT, 3. Semester, Pflichtfach
	IOE, 3. Semester, Pflichtfach
Lehrform / SWS:	4 SWS Vorlesung, 1 SWS Übung, 1 SWS Labor
Arbeitsaufwand:	150 h, davon 90 h Präsenz- und 60 h Eigenstudium
Kreditpunkte:	5
Voraussetzungen nach	keine
Prüfungsordnung:	
Empfohlene Voraussetzungen:	
Angestrebte Lernergebnisse:	Vorlesung Chemie:
	Die Studierenden verstehen die Grundlagen des
	Aufbaus der Materie und die grundlegenden Gesetze
	der Chemie. Sie kennen einfache Modelle der
	chemischen Bindung und den Einfluss der
	Bindungsarten auf die Struktur und das chemische
	Verhalten von Elementen und Verbindungen. Anhand
	beispielhafter Säure-Base-, Fällungs- und
	Redoxreaktionen verstehen sie die grundlegenden
	Prinzipien chemischer Reaktionen. Sie können einfache
	Redoxgleichungen aufstellen und haben ein
	grundlegendes Verständnis elektrochemischer
	Sachverhalte. Die Studierenden sollen einen Überblick
	über die elektrochemischen Energiespeicher und deren
	Anwendungen erlangen.
	Die Studierenden lernen begriffliche und theoretische
	Grundlagen und Zusammenhänge der Chemie kennen,
	um übergreifende fachliche Problemstellungen zu
	verstehen und um neuere technische Entwicklungen
	einordnen, verfolgen und mitgestalten zu können.
	Labor Chemie:
	Studierende werden in die Lage versetzt, das
	erworbene Wissen zur Elektrochemie praktisch

	anzuwenden, erlernen grundlegende Arbeitstechniken im Chemielabor, den sachgerechten Umgang mit Chemikalien und beherrschen charakteristische Versuchsaufbauten. Werkstoffe: Die Studierenden sollen die wesentlichen Werkstoffklassen, ihre Eigenschaften und entsprechende Technologien wie Halbleiterwerkstoffe, dielektrische und magnetische Werkstoffe kennen lernen und das erworbene Wissen anwenden können. Das Wissen über moderne Werkstoffe und entsprechende neue Entwicklungen geben einen Einblick in zukünftige Einsatzbereiche und Technologien.
Inhalt:	Vorlesung Chemie: Chemische Grundbegriffe, Atombau, PSE, ionische Bindung, kovalente Bindung, Metallbindung, Stöchiometrie, Redoxreaktionen Säuren und Basen, Lösungen Elektrochemie: Elektrolytische Leitung, Elektrodenpotenziale, elektrochemische Spannungsreihe, Elektrolyse, Galvanische Zellen, NERNST-Gleichung, Anwendungen der Elektrochemie wie Korrosion, aktiver/passiver Korrosionsschutz, primäre und sekundäre Zellen, Brennstoffzellen (Typenvergleich und deren Einsatz) Labor Chemie: Versuch 1: Elektrochemische Potentiale Versuch 2: Elektrochemische Energiespeicher Versuch 3: Brennstoffzellen (BZ) Vorlesung Werkstoffe: - Experimentelle Einführung, historische Entwicklung, grundlegende Experimente - Grundlagen der Werkstoffkunde, Aufbau der Atome und Periodensystem, chemische Bindungen, Kristalle, Struktur und Kristallbaufehler, Gefüge - Werkstoffherstellung, Kristallisation, Herstellung von Legierungen, Phasenumwandlungen, Phasendiagramme, Lote, - Temperaturbehandlung von Werkstoffen, Härten, Erholung, Rekristallisation - Mechanische Eigenschaften von Werkstoffen, konstruktive Eigenschaften, Verformung, Spannungs- Dehnungsdiagramm, Härte, Leichtmetalllegierungen, Verbundwerkstoffe - Thermische Eigenschaften von Werkstoffen,
	Temperaturbehandlung, Wärmekapazität,

	Wärmeausdehnung, Wärmeleitfähigkeit - Leiterwerkstoffe, elektrische Werkstoffeigenschaften, elektrische Eigenschaften, Transportmechanismen, elektrische Leiter, Kontaktwerkstoffe Werkstoffprüfung, Härteprüfung, Rissprüfung, Zugversuch, Ultraschallprüfung, Wirbelstromprüfung, Kerbschlagversuch, Biegeversuch, Härten, Gefügeuntersuchungen - Halbleiterwerkstoffe, Arten, Herstellung, Dotierung, Reinheit, Leitungsmechanismus, pn-Übergang, Technologie - Dielektrische Werkstoffe, Dielektrika, Isolatoren und Anwendungen - Magnetische Werkstoffe, Modelle, dia-, para-, ferromagnetische Werkstoffe, Magnetisierung, Weich-, Hartmagnetika - Moderne Werkstoffe und Entwicklungen, Keramiken, Polymere, metallische Gläser, Supraleiter, magnetische Flüssigkeiten, optische Werkstoffe
Studien- Prüfungsleistungen:	Klausur
Medienformen:	Tafel, ppt-Folien, Demonstrationsversuche, Videofilme, Übungsblätter, begleitende Vorlesungsunterlagen (kein Skript) auf moodle, Laborversuche
Literatur:	C. E. Mortimer; Chemie; Thieme Verlag Stuttgart 2003 P. W. Atkins, J.A. Beran; Chemie einfach alles; Verlag Chemie C. H. Hamann, W. Vielstich; Elektrochemie; Wiley-VCH Verlag Askeland, D. R.: Materialwissenschaften, Spektrum, Akad. Verlag., 1996, ISBN 3-86025-357-3 Seidel, W.: Werkstofftechnik, Carl Hanser Verlag München Wien, 2005, ISBN 3-446-22900-0 Bergmann, W.: Werkstofftechnik 1, Carl Hanser Verlag München Wien, 2003/2005, ISBN 3-446-22576-5 Frühauf, J.: Werkstoffe der Mikrotechnik, Carl Hanser Verlag München Wien, 2005, ISBN 3-446-22557-9

Digitaltechnik

Studienrichtung:	IEIT, IAT, IMT, IOE
Modulbezeichnung:	Digitaltechnik
	Digital Technology
ggf. Kürzel	DT
ggf. Untertitel	
ggf. Lehrveranstaltungen:	
Studiensemester:	2
Angebotsturnus:	jährlich im Sommersemester
Modulverantwortliche(r):	Prof. DrIng. Steffen Doerner
Dozent(in):	Prof. DrIng. Bernhard Hoier, Prof. DrIng. Steffen Doerner
Sprache:	deutsch
Zuordnung zum Curriculum:	IEIT, 2. Semester, Pflichtfach
	IAT, 2. Semester, Pflichtfach
	IMT, 2. Semester, Pflichtfach
	IOE, 2. Semester, Pflichtfach
Lehrform / SWS:	2 SWS Vorlesung, 2 SWS Übung, 1 SWS Labor
Arbeitsaufwand:	150 h, davon 75 h Präsenz- und 75 h Eigenstudium
Kreditpunkte:	5
Voraussetzungen nach	keine
Prüfungsordnung:	
Empfohlene Voraussetzungen:	Erfolgreicher Abschluss des Moduls Grundlagen der
	Elektrotechnik 2 und Analoge
	Schaltungen 1
Angestrebte Lernergebnisse:	Die Studierenden sollen in der Lage sein, Schaltungen
	mit Grundelementen der Digitaltechnik zu verstehen
	und aufzubauen. Sie werden durch praxisnahe
	Fragestellungen an die späteren Arbeitsaufgaben eines
	Ingenieurs herangeführt.
	Die Studierenden sollen daran gewöhnt werden, den in
	den Vorlesungen behandelten Stoff selbstständig
	nachzubereiten und mittels Fachliteratur zu vertiefen.
	Ihr abstraktes und analytisches Denkvermögen soll
	gestärkt werden.
	Sie sollen lernen, elektrische Netzwerke durch
	angemessene Modelle nachzubilden und die Grenzen der Ergebnisse ihrer Rechenansätze zu erkennen.
	Die Gruppenarbeit im Labor fordert und fördert die
	Sozialkompetenz und Teamfähigkeit der Studierenden.
Inhalt:	Die Studierenden sollen Grundlagenwissen und
milatt.	zugehörige Kompetenzen in den folgenden
	Themenbereichen anwendungsbereit erwerben:
	- Logikpegel, positive und negative Logik
	- Grundoperatoren der kombinatorischen Logik
	1 - 2. 2. 14 Operator on der Kombinatoriotheri Logik

	- Vereinfachung boolscher Funktionen, Karnaugh-
	Diagramm
	- Standard-Logikgatter
	- spezielle Logik: Register, Zähler, Schmitt-Trigger
	- Speicherbausteine
	- Zustandsdiagramme und Zustandsautomaten
Studien- Prüfungsleistungen:	Klausur; Vorlesungsteil: Prüfung (KL90); Benotung: Ja
	Laborteil: Laborschein; Benotung: Nein
	Das Labor ist dann bestanden, wenn alle Laborversuche
	erfolgreich durchgeführt wurden und alle zugehörigen
	Versuchsprotokolle vom Betreuer als "mit Erfolg
	bestanden" testiert wurden.
Medienformen:	- Vorlesung mit gemischten Medien (Tafelarbeit,
	Beamer etc.);
	- Übungsaufgabenblätter
Literatur:	- Seifart, M.; Beikirch, H.: Digitale Schaltungen. Verlag
	Technik
	- Tietze, U.; Schenk, C., Gamm, E.: Halbleiter-
	Schaltungstechnik. Springer
	Vieweg
	- Göbel, H.: Einführung in die Halbleiter-
	Schaltungstechnik. Springer-Verlag

Einführung in die Ingenieurwissenschaften

Studienrichtung:	IEIT, IAT, IMT, IOE, WEIT, WEUT, WMT
Modulbezeichnung:	Einführung in die Ingenieurwissenschaften
	Introduction to Engineering Sciences
ggf. Kürzel	
ggf. Untertitel	
ggf. Lehrveranstaltungen:	
Studiensemester:	1
Angebotsturnus:	jährlich im Wintersemester
Modulverantwortliche(r):	Prof. DrIng. Eckhard Endruschat
Dozent(in):	Lehrende des FBT
Sprache:	deutsch
Zuordnung zum Curriculum:	IEIT, 1. Semester, Pflichtfach
3	IAT, 1. Semester, Pflichtfach
	IMT, 1. Semester, Pflichtfach
	IOE, 1. Semester, Pflichtfach
	WEIT, 1. Semester, Pflichtfach
	WMT, 1. Semester, Pflichtfach
	WEUT, 1. Semester, Pflichtfach
Lehrform / SWS:	3 SWS Vorlesung, 1 SWS Übung, 1 SWS Projekt
Arbeitsaufwand:	150 h, davon 75 h Präsenz- und 75 h Eigenstudium
Kreditpunkte:	5
Voraussetzungen nach	keine
Prüfungsordnung:	
Empfohlene Voraussetzungen:	Spaß am kreativen und selbstständigen Arbeiten an
	einem technischen Entwicklungsprojekt auf
	Studienanfängerniveau
Angestrebte Lernergebnisse:	Fachliche Lernergebnisse:
	Die Studierenden erwerben ein praxisorientiertes
	Basiswissen des Projektmanagements und können
	dieses auf weniger komplexe Aufgabenstellungen
	anwenden.
	Sie besitzen die Fähigkeit zur systematischen Analyse
	von einfachen ingenieurtypischen Aufgabenstellungen.
	Die Studierenden wissen, wie eine sinnvolle
	Projektstruktur und Projektplanung aufgrund der
	Erstanalyse erstellt wird (Meilensteinplan, Teilprojekte,
	notwendige Ressourcen).
	Die Studierenden erwerben die Fähigkeit zur groben
	Abschätzung von Arbeitsaufwänden.
	Sie besitzen die Fähigkeit zum rechtzeitigen Erkennen
	von Abweichungen gegenüber dem Projektplan.
	Sie sind in der Lage, die notwendigen Informationen
	zur Lösung der Projektaufgabe zu beschaffen und diese
	zu bewerten.

	Die Ctudierenden Jernen den strektischen Umstans wirt.
	Die Studierenden lernen den praktischen Umgang mit
	modernen Werkzeugen und moderner Hardware.
	Sie können ihre Ergebnisse einem breiteren Publikum
	präsentieren.
	Die Studierenden
	- erlangen eine grundlegende Fähigkeit zum Arbeiten
	und Kommunizieren in einem interdisziplinär, heterogen
	und multikulturell zusammengesetzten
	Entwicklungsteam.
	- erwerben die Fähigkeit, effiziente
	Projektbesprechungen durchzuführen und die
	Sitzungsergebnisse nachvollziehbar zu protokollieren.
	- lernen, sich selbst zu organisieren und Arbeiten
	innerhalb der Entwicklergruppe und mit externen
	Partnern zu koordinieren.
	Sie werden befähigt, konstruktiv mit Konflikten in einem
	Entwicklungsteam umzugehen.
Inhalt:	Bearbeitung und Lösung einer interdisziplinären
	Entwicklungsaufgabe unter Benutzung einer Hardware-
	Grundausstattung und Präsentation des Ergebnisses am
	Ende des Semesters. Die Entwicklungsaufgabe wird zu
	Beginn der Vorlesungszeit ausgegeben. Die Benutzung
	zusätzlicher Hardware ist gestattet, wenn sie von der
	Gruppe selbst spezifisiert und beschafft wird.
Studion Drüfungsleistungen:	<u> </u>
Studien- Prüfungsleistungen:	Testierte Leistung; Das Modul ist bestanden, wenn die
	Mindestanforderungen It. Anforderungskatalog erfüllt sind.
	Pro Projektgruppe ist fristgerecht und mit mindestens
	ausreichender Qualität ein schriftlicher Projektbericht zu
	verfassen, in dem die individuellen Anteile der
	Gruppenmitglieder erkennbar sind.
	Erfolgreiche Präsentation des Projektergebnisses (inkl.
	praktischer Vorführung).
Medienformen:	Tafel, Beamer, praktische Kleingruppenarbeit im Labor
	u. Werkstätten, PC
Literatur:	Zu Beginn des Projekts wird den Studierenden die
	Projektaufgabe erläutert und ein Anforderungskatalog
	mit einem groben Meilensteinplan ausgegeben. Ggf.
	notwendige zusätzliche Informationen werden von den
	Studierenden mittels selbstständiger Online-
	Literaturrecherche beschafft. Dabei werden Sie von den
	Gruppenbetreuern und Gruppenbetreuerinnen
	unterstützt.
<u> </u>	1

Einführung in die Quantenphysik

Studienrichtung:	IOE
Modulbezeichnung:	Einführung in die Quantenphysik
	Introduction to Quantum Physics
ggf. Kürzel	QP
ggf. Untertitel	
ggf. Lehrveranstaltungen:	
Studiensemester:	3
Angebotsturnus:	jährlich im Wintersemester
Modulverantwortliche(r):	Prof. Dr. Thomas Kern
Dozent(in):	Prof. Dr. Thomas Kern
Sprache:	deutsch
Zuordnung zum Curriculum:	IOE, 3. Semester, Pflichtfach
Lehrform / SWS:	3 SWS Vorlesung, 1 SWS Übung
Arbeitsaufwand:	150 h, davon 60 h Präsenz- und 90 h Eigenstudium
Kreditpunkte:	5
Voraussetzungen nach	keine
Prüfungsordnung:	
Empfohlene Voraussetzungen:	Physik und Mathematikvorlesungen der ersten 2
	Semester
Angestrebte Lernergebnisse:	Die Studierenden hören eine Einführung in die
	Quantenphysik, beginnend mit den grundlegenden
	Experimenten im Widerspruch zur klassischen Physik.
	Sie lernen die Quantisierungsregeln, deren
	Anwendungen auf einfache Systeme bis hin zur
	Schrödinger'schen Formulierung
	Angestrebte Kompetenzen:
	Die Studierenden kennen die grundlegenden Begriffe
	der Themengebiete der Vorlesung, die ihnen durch die
	Diskussion von Experimenten verdeutlicht werden. Sie
	kennen die klassischen quantisierten Systeme,
	Systematik der Quantenzahlen bis hin zum Aufbau der
	Mehrelektronensysteme.
	Die Studierenden sollen daran gewöhnt werden, den in
	den Vorlesungen behandelten Stoff selbstständig
	nachzubereiten und mittels Fachliteratur zu vertiefen.
	Ihr abstraktes und analytisches Denkvermögen soll
	gestärkt werden. Sie sollen lernen, physikalische
	Prozesse durch angemessene Modelle nachzubilden und
	die Grenzen der Ergebnisse ihrer Rechenansätze zu
	erkennen.
Inhalt:	Klassische Experimente: Schwarzer Körper, Fotoeffekt,
	Franck-Hertz-Versuch
	Welle-Teilchen Dualismus
	Bohr'sche Axiome, einfache Bohr'sche Systeme,

	Quantisierungsbedingung
	Schrödinger-Ansatz, Wellenausbreitung, Born'sche
	Interpretation
	Ebene Welle an Potentialgrenzen, Tunneleffekt
	H-Atom, Mehrelektronensysteme, Periodensystem
Studien- Prüfungsleistungen:	Klausur
Medienformen:	- Vorlesung mit gemischten Medien (Tafelarbeit,
	Beamer etc.);
	- Übungsaufgabenblätter
	- Demonstrationsversuche
Literatur:	Alonso-Finn: Fundamental University Physics, Vol. 3:
	Quantum and Statistical Physics
	The Feynman Lectures on Physics, Bd-3
	Viele weitere Bücher zur Atomphysik

Elektrische Antriebe

Studienrichtung:	IEIT, IAT
Modulbezeichnung:	Elektrische Antriebe
	Electrical Drives
ggf. Kürzel	EA
ggf. Untertitel	
ggf. Lehrveranstaltungen:	
Studiensemester:	5
Angebotsturnus:	jährlich im Wintersemester
Modulverantwortliche(r):	Prof. DrIng. Sören Hirsch
Dozent(in):	N.N.
Sprache:	deutsch
Zuordnung zum Curriculum:	IEIT, 5. Semester, Pflichtfach
-	IAT, 5. Semester, Pflichtfach
Lehrform / SWS:	2 SWS Vorlesung, 1 SWS Übung, 1 SWS Labor
Arbeitsaufwand:	150 h, davon 60 h Präsenz- und 90 h Eigenstudium
Kreditpunkte:	5
Voraussetzungen nach	keine
Prüfungsordnung:	
Empfohlene Voraussetzungen:	Erfolgreicher Abschluss der Module Elektrotechnik 1-3,
	Elektrische Maschinen und Leistungselektronik
Angestrebte Lernergebnisse:	In der Vorlesung Elektrische Antriebe lernen die
	Studierenden die Grundlagen des Aufbaus, der
	Auslegung und Steuerung von elektrischen Antrieben
	kennen. Nach erfolgreichem Abschluss verstehen die
	Studieren Funktionsweise und Handhabung
	leistungselektronischer Stellglieder und Funktionsweise
	leistungselektronischer Wandler zur Antriebssteuerung.
	Die in den Übungen an praktischen Beispielen
	angewendeten und durch Berechnungen vertieften
	Kenntnisse können an realen Aufgaben der Industrie
	umgesetzt werden.
	Die Studierenden kennen den Laborbetrieb mit den
	einschlägigen Sicherheits-vorschriften und beherrschen
	den Umgang mit den Strom-, Spannungs- und
	Leistungsmessern. Die Studierenden können einfache
	Schaltungen zur Steuerung von elektrischen Antrieben
	aufbauen und messtechnisch analysieren. Sie können
	selbstständig kleine technische Berichte verfassen, in
	denen die Ergebnisse von Messungen aussagekräftig
	dargestellt und kritisch diskutiert werden. Vorlesung,
	Übung und Labor des Moduls sind inhaltlich eng
	aufeinander abgestimmt. Die praktischen Versuche des
	Labors vertiefen und veranschaulichen den Stoff der
	Vorlesung und bereiten die Studierenden damit auf das

Inhalt:	gesamte Lernziel des Moduls vor. Die Studierenden sollen daran gewöhnt werden, den in den Vorlesungen behandelten Stoff selbstständig nachzubereiten und mittels Fachliteratur zu vertiefen. Ihr abstraktes und analytisches Denkvermögen soll gestärkt werden. Sie sollen lernen, komplexe Sachverhalte und Aufgabenstellungen in Teilschritte zu zerlegen, Lösungen zu entwickeln und abzuarbeiten. Die Gruppenarbeit im Labor fordert und fördert die Sozialkompetenz und Teamfähigkeit der Studierenden. Antriebstechnische Grundlagen (Physikalische Grundlagen, Motor und Lastmaschine, Anpassung von Drehmoment und Drehzahl), Gleichstrommaschine (Aufbau und Wirkprinzip, Nebenschlussmotor, Reihenschlussmotor), Gleichstromsteller (Tiefsetzsteller,
	Hochsetzstelle, weitere Schaltungen), Drehfeldmaschine (Aufbau und Wirkprinzip, Drehmomententstehung, Kurzschlussläufer-Asynchronmotor, Synchronmaschine), Frequenzumrichter Labor Elektrische Antriebstechnik: Sicherheitsbestimmungen für den Laborbetrieb; Einführung in das Anfertigen technischer Berichte; Umgang mit den Aufbauten der einzelnen Maschinen; Bestimmung von Kennlinien, dynamisches Verhalten und Steuerung elektrischer Maschinen und Antriebe; Inbetriebnahme von Antriebssystemen; Funktionsweise analysieren und bewerten;
Studien- Prüfungsleistungen:	Aufbereitung und Diskussion von Testergebnissen. Klausur; Laborteil: Das Labor ist dann bestanden, wenn alle Laborversuche erfolgreich durchgeführt wurden und alle zugehörigen Versuchsprotokolle vom Betreuer als "mit Erfolg bestanden" testiert wurden.
Medienformen:	 Vorlesung mit gemischten Medien (Tafelarbeit, Projektorfolien etc.) Rechner mit Computersimulationen Übungsaufgabenblätter
Literatur:	 Wolfgang Gerke: Elektrische Maschinen und Aktoren, Eine anwendungs-orientierte Einführung, Oldenbourg Verlag München D. Schröder: Elektrische Antriebe - Grundlagen, Springer-Verlag Berlin G. Müller und B. Ponick: Grundlagen elektrischer Maschinen: Elektrische Maschinen 1, Wiley-VCH

Elektrische Maschinen

Studienrichtung:	IEIT, IAT, IMT
Modulbezeichnung:	Elektrische Maschinen
	Electrical Machines
ggf. Kürzel	EM
ggf. Untertitel	
ggf. Lehrveranstaltungen:	
Studiensemester:	4
Angebotsturnus:	jährlich im Sommersemester
Modulverantwortliche(r):	Prof. DrIng. Sören Hirsch
Dozent(in):	Prof. DrIng. Sören Hirsch
Sprache:	deutsch
Zuordnung zum Curriculum:	IEIT, 4. Semester, Pflichtfach
	IAT, 4. Semester, Pflichtfach
	IMT, 4. Semester, Pflichtfach
Lehrform / SWS:	2 SWS Vorlesung, 1 SWS Übung, 1 SWS Labor
Arbeitsaufwand:	150 h, davon 60 h Präsenz- und 90 h Eigenstudium
Kreditpunkte:	5
Voraussetzungen nach	keine
Prüfungsordnung:	
Empfohlene Voraussetzungen:	Erfolgreicher Abschluss der Module Elektrotechnik 1, 2
	und 3
Angestrebte Lernergebnisse:	In der Vorlesung elektrische Maschinen lernen die
	Studierenden die Wirkungs-prinzipien und die
	Einsatzmöglichkeiten rotierender und ruhender
	elektrischer Maschinen kennen. Die Studierenden
	erlernen die Funktionsweise des
	Drehstromtransformators, der Gleichstrommaschine,
	der Asynchron- und der Synchronmaschine kennen.
	Nach erfolgreichem Abschluss können die Studierenden
	das Betriebsverhalten ungeregelter Maschinen in
	Abhängigkeit von verschiedenen Parametern
	modellieren, mathematisch beschreiben und mit
	angemessenen Verfahren analysieren.
	Die Studierenden kennen den Laborbetrieb mit den
	einschlägigen Sicherheits-vorschriften und beherrschen
	den Umgang mit analogen und digitalen Strom- und
	Spannungsmessern, Leistungsmessgerät und
	Oszilloskop. Die Studierenden können elektrische
	Maschinen aufbauen und messtechnisch analysieren.
	Sie können selbstständig kleine technische Berichte
	verfassen, in denen die Ergebnisse von Messungen
	aussagekräftig dargestellt und kritisch diskutiert werden. Vorlesung und Labor des Moduls sind inhaltlich
	eng aufeinander abgestimmt. Die praktischen Versuche
	22

	1
	des Labors vertiefen und veranschaulichen den Stoff der Vorlesung und bereiten die Studierenden damit auf
	das gesamte Lernziel des Moduls vor.
	Die Studierenden sollen daran gewöhnt werden, den in
	den Vorlesungen behandelten Stoff selbstständig
	nachzubereiten und mittels Fachliteratur zu vertiefen.
	Ihr abstraktes und analytisches Denkvermögen soll
	gestärkt werden. Sie sollen lernen, elektrische
	Maschinen durch angemessene Modelle nachzubilden
	und die Grenzen der Ergebnisse ihrer Rechenansätze zu
	erkennen.
	Die Gruppenarbeit im Labor fordert und fördert die
Labali	Sozialkompetenz und Teamfähigkeit der Studierenden.
Inhalt:	Elektrische Maschinen:
	Dreiphasensystem (Elektrische Größen bei Stern- und
	Dreiecksschaltung, Symmetrische und Unsymmetrische
	Belastung);
	Grundlagen elektrischer Maschinen (Einteilung und
	Struktur),
	Drehstromtransformator;
	Gleichstrommaschine (Aufbau und Wirkungsweise,
	Betriebsverhalten und mathematische Beschreibung
	von fremderregte, Nebenschluss- und
	Reihenschlussmaschine);
	Synchronmaschine (Aufbau und Wirkungsweise,
	Ersatzschaltung der Vollpolmaschine, Stromdiagramm);
	Asynchronmaschine (Aufbau und Wirkungsweise,
	Ersatzschaltung, Kreisdiagramm);
	Labor Elektrische Maschinen:
	Sicherheitsbestimmungen für den Laborbetrieb;
	Einführung in das Anfertigen technischer Berichte;
	Umgang mit analogen und digitalen Strom-,
	Spannungs- und Leistungs-messgeräten und
	Oszilloskop;
	Messungen an elektrischen Maschinen (Inbetriebnahme
	elektrischer Maschinen, Aufnahme von
	Belastungskennlinien);
	Aufbereitung und Diskussion von Messergebnissen.
Studien- Prüfungsleistungen:	Klausur- Vorlesungsteil: Prüfung (KL90); Benotung: Ja
	- Laborteil: Laborschein; Benotung: Nein
	Das Labor ist dann bestanden, wenn alle Laborversuche
	erfolgreich durchgeführt wurden und alle zugehörigen
	Versuchsprotokolle vom Betreuer als "mit Erfolg
	bestanden" testiert wurden.
Medienformen:	- Vorlesung mit gemischten Medien (Tafelarbeit,
	Beamer etc.)
	Dournor Ctc.)

	- Übungsaufgabenblätter
Literatur:	- Fuest, Döring: Elektrische Maschinen und Antriebe.
	Vieweg Verlag
	- Kremser: Elektrische Maschinen und Antriebe. Vieweg
	+ Teubner Verlag
	- Hofmann: Elektrische Maschinen. Pearson Studium
	- Fischer: Elektrische Maschinen. Hanser Verlag
	- Schröder: Elektrische Antriebe, Bd. 1 – Grundlagen.
	Springer Verlag
	- Eckhardt: Grundzüge der elektrischen Maschinen.
	Teubner Verlag
	- Riefenstahl: Elektrische Antriebstechnik. Teubner
	Verlag

Elektroanlagen in der Automatisierung

Studienrichtung:	IAT
Modulbezeichnung:	Elektroanlagen in der Automatisierung
	Electrical Systems for Automation
ggf. Kürzel	EIAnlAut
ggf. Untertitel	
ggf. Lehrveranstaltungen:	
Studiensemester:	4
Angebotsturnus:	jährlich im Sommersemester
Modulverantwortliche(r):	Prof. DrIng. Knut Stephan
Dozent(in):	Gerald Giese
Sprache:	deutsch
Zuordnung zum Curriculum:	IAT, 4. Semester, Pflichtfach
Lehrform / SWS:	2 SWS Vorlesung, 1 SWS Übung, 1 SWS Labor
Arbeitsaufwand:	150 h, davon 60 h Präsenz- und 90 h Eigenstudium
Kreditpunkte:	5
Voraussetzungen nach	keine
Prüfungsordnung:	
Empfohlene Voraussetzungen:	Module "Elektrotechnik"
Angestrebte Lernergebnisse:	Die Studierenden erwerben
	- Grundlegendes Wissen über elektrische Anlagen in der
	Automatisierung und deren Planung (Auswahl und
	Dimensionierung der Komponenten)
	- Fertigkeiten bei der computerunterstützten Erstellung
	von Planungsunterlagen
	Überfachliche Kompetenzen:
	Ingenieurtechnische Ausdrucksweise bei der
	Formulierung von Sachverhalten unter Verwendung der
	fachspezifischen Termini;
	Fähigkeit zur Analyse und Interpretation von Aufgaben-
	und Problemstellungen;
	Zielführendes, systematisches und selbstständiges
	Bearbeiten von vorgegebenen Aufgabenstellungen;
	Nutzung von Werkzeugen (Softwaretools) und
	Informationsquellen (Vorlesungsunterlagen,
	Handbücher, Internet) bei der Problemlösung;
	Erkennen von Zusammenhängen/Schnittstellen zu anderen Fachgebieten.
Inhalt:	Vorlesung:
illilait.	Grundlagen: Aufbau Elektroenergie-
	Versorgungsnetz/Endkunden-Anlage;
	Komponenten von Elektroanlagen: Eigenschaften und
	Ausführungen von Überstrom-Schutzeinrichtungen
	(Niederspannungssicherungen, Überstrom-
	Schutzschalter), Fehlerstrom-Schutzeinrichtungen,
	35

	Schaltgeräte, Steckvorrichtungen, Leitungen/Kabel;
	Schutzmaßnahmen: Netzarten, IP-Schutzarten,
	Schutzklassen;
	Projektierung von Elektroanlagen: Rechtliche
	Grundlagen bei Planung/Errichtung: (Gesetze, Normen,
	Richtlinien), Spannungsfall, Strombelastbarkeit von
	Kabeln und Leitungen, Schutz durch Abschaltung,
	Schutz bei Überlast und Kurzschluss,
	Schaltvermögen/Backup-Schutz, Selektiver Netzaufbau;
	Technische Unterlagen: Einteilung von
	Schaltungsunterlagen, Darstellungsformen,
	Schaltzeichen, Referenzkennzeichnung, Pläne und
	Listen
	Übungen:
	Dimensionierung von Elektroanlagen: Berechnungen
	zum Spannungsfall, Strombelastbarkeit von Kabeln und
	Leitungen, Schutz durch Abschaltung im TN/TT-System,
	Schutz bei Überlast und Kurzschluss
	Labor:
	EA1: Schaltschrankprojektierung mit WSCAD-
	Einführung (Wendeschützschaltung)
	EA2: Schaltschrankprojektierung mit WSCAD-
	Pumpensteuerung mit SPS
Studien- Prüfungsleistungen:	Klausur; Testierte Leistung für das Labor
Medienformen:	PC (Powerpoint) und Beamer, Tafel, Skriptvorlage für
	Studierende
Literatur:	Gerhard Kiefer, Herbert Schmolke: VDE 0100 und die
	Praxis, VDE-Verlag;
	Ismail Kasikci: Projektierung von Niederspannungs- und
	Sicherheitsanlagen, Hüthig & Pflaum Verlag;
	Ayx, Kasikci: Projektierungshilfe elektrischer Anlagen in
	Gebäuden, VDE Verlag.

Elektrotechnik 1

Studienrichtung:	IEIT, IAT, IMT, IOE, WEIT, WEUT, WMT
Modulbezeichnung:	Elektrotechnik 1
3	Electrical Engineering 1
ggf. Kürzel	ET1
ggf. Untertitel	Gleichstromtechnik
ggf. Lehrveranstaltungen:	
Studiensemester:	1
Angebotsturnus:	jährlich im Wintersemester
Modulverantwortliche(r):	Prof. DrIng. Sören Hirsch
Dozent(in):	Prof. DrIng. Sören Hirsch
Sprache:	deutsch
Zuordnung zum Curriculum:	IEIT, 1. Semester, Pflichtfach
3	IAT, 1. Semester, Pflichtfach
	IMT, 1. Semester, Pflichtfach
	IOE, 1. Semester, Pflichtfach
	WEIT, 1. Semester, Pflichtfach
	WMT, 1. Semester, Pflichtfach
	WEUT, 1. Semester, Pflichtfach
Lehrform / SWS:	2 SWS Vorlesung, 2 SWS Übung, 1 SWS Labor
Arbeitsaufwand:	150 h, davon 75 h Präsenz- und 75 h Eigenstudium
Kreditpunkte:	5
Voraussetzungen nach	keine
Prüfungsordnung:	
Empfohlene Voraussetzungen:	Grundkenntnisse in Physik und Mathematik
	entsprechend der Hochschulreife
Angestrebte Lernergebnisse:	In der Vorlesung Elektrotechnik I lernen die
	Studierenden die Grundbegriffe und grundlegenden
	Verfahren zur Beschreibung und Berechnung
	elektrischer Gleichstromnetzwerke kennen. Nach
	erfolgreichem Abschluss können die Studierenden das
	Verhalten linearer Gleichstromnetzwerken selbstständig
	mittels Ersatzschaltungen modellieren, mathematisch
	beschreiben und mit angemessenen Verfahren
	analysieren.
	Die Studierenden kennen den Laborbetrieb mit den
	einschlägigen Sicherheitsvorschriften und beherrschen
	den Umgang mit analogen und digitalen Strom- und
	Spannungsmessern. Die Studierenden können einfache
	Schaltungen aufbauen und messtechnisch analysieren.
	Sie können selbstständig kleine technische Berichte
	verfassen, in denen die Ergebnisse von Messungen
	aussagekräftig dargestellt und kritisch diskutiert
	werden. Vorlesung und Labor des Moduls sind inhaltlich
	eng aufeinander abgestimmt. Die praktischen Versuche

	des Labors vertiefen und veranschaulichen den Stoff
	der Vorlesung und bereiten die Studierenden damit auf
	das gesamte Lernziel des Moduls vor.
	Die Studierenden sollen daran gewöhnt werden, den in
	den Vorlesungen behandelten Stoff selbstständig
	nachzubereiten und mittels Fachliteratur zu vertiefen.
	Ihr abstraktes und analytisches Denkvermögen soll
	gestärkt werden. Sie sollen lernen, elektrische
	Netzwerke durch angemessene Modelle nachzubilden
	und die Grenzen der Ergebnisse ihrer Rechenansätze zu
	erkennen.
	Die Gruppenarbeit im Labor fordert und fördert die
	Sozialkompetenz und Teamfähigkeit der Studierenden.
Inhalt:	Gleichstromtechnik:
	Elektrische Grundgrößen (Ladung, Elektrische
	Feldstärke, Stromstärke, Spannung, Potential,
	Widerstand, Ohmsche Gesetz, Elektrische Leistung);
	Grundstromkreis (Kirchhoffsche Gesetze, Reihen-,
	Parallel- und Brücken-schaltungen, Elektrische Quellen,
	Spannungs- und Stromteilerregel);
	Verfahren zur Berechnung linearer elektrischer
	Netzwerke (Zweipol, Überlagerungssatz, Zweigstrom-
	und Maschenstromanalyse).
	Labor Elektrotechnik 1:
	Sicherheitsbestimmungen für den Laborbetrieb;
	Einführung in das Anfertigen technischer Berichte;
	Umgang mit analogen und digitalen Strom- und
	Spannungsmessgeräten;
	Messungen an einfachen, praxisrelevanten
	Gleichstromschaltungen; Aufbereitung und Diskussion
	von Messergebnissen.
CL III D III L L L	W
Studien- Prüfungsleistungen:	Klausur- Vorlesungsteil: Prüfung (KL90); Benotung: Ja
	- Laborteil: Laborschein; Benotung: Nein
	Das Labor ist dann bestanden, wenn alle Laborversuche
	erfolgreich durchgeführt wurden und alle zugehörigen
	Versuchsprotokolle vom Betreuer als "mit Erfolg
	bestanden" testiert wurden.
Medienformen:	- Vorlesung mit gemischten Medien (Tafelarbeit,
	Beamer etc.);
	- Übungsaufgabenblätter
Literatur:	- Albach: Elektrotechnik. Band 1 und 2. Pearson
	Studium
	- Führer, u. a.: Grundgebiete der Elektrotechnik. Bd. 1
	und 2.; Hanser Verlag
	- Lindner: Elektro-Aufgaben Bd. 1, Bd. 2 und Bd. 3;
	Hanser Verlag
L	

- Weißgerber: Elektrotechnik für Ingenieure. Bd. 1 und
2. Vieweg Verlag
- Zastrow: Elektrotechnik; Springer Vieweg

Elektrotechnik 2

Studienrichtung:	IEIT, IAT, IMT, IOE, WEIT, WEUT, WMT
Modulbezeichnung:	Elektrotechnik 2
	Electrical Engineering 2
ggf. Kürzel	ET2
ggf. Untertitel	Wechselstromtechnik
ggf. Lehrveranstaltungen:	
Studiensemester:	2
Angebotsturnus:	jährlich im Sommersemester
Modulverantwortliche(r):	Prof. DrIng. Sören Hirsch
Dozent(in):	Prof. DrIng. Sören Hirsch
Sprache:	deutsch
Zuordnung zum Curriculum:	IEIT, 2. Semester, Pflichtfach
	IAT, 2. Semester, Pflichtfach
	IMT, 2. Semester, Pflichtfach
	IOE, 2. Semester, Pflichtfach
	WEIT, 2. Semester, Pflichtfach
	WMT, 2. Semester, Pflichtfach
	WEUT, 2. Semester, Pflichtfach
Lehrform / SWS:	2 SWS Vorlesung, 2 SWS Übung, 1 SWS Labor
Arbeitsaufwand:	150 h, davon 75 h Präsenz- und 75 h Eigenstudium
Kreditpunkte:	5
Voraussetzungen nach	keine
Prüfungsordnung:	
Empfohlene Voraussetzungen:	Erfolgreicher Abschluss des Moduls Elektrotechnik I
Angestrebte Lernergebnisse:	In der Vorlesung Grundlagen der Elektrotechnik II
	lernen die Studierenden die Grundbegriffe und
	grundlegenden Verfahren zur Beschreibung und
	Berechnung elektrischer Wechselstromnetzwerke
	kennen. Sie können das Verhalten linearen
	Wechselstromschaltungen bei Anregung durch
	Sinusgrößen selbstständig mittels Ersatzschaltungen
	modellieren, mathematisch beschreiben und mit
	angemessenen Verfahren analysieren.
	Die Studierenden kennen den Laborbetrieb mit den
	einschlägigen Sicherheitsvorschriften und beherrschen
	den Umgang mit analogen und digitalen Strom- und
	Spannungsmessern und Oszilloskopen. Die
	Studierenden können komplexe Schaltungen aufbauen
	und messtechnisch analysieren. Sie können
	selbstständig kleine technische Berichte verfassen, in
	denen die Ergebnisse von Messungen aussagekräftig
	dargestellt und kritisch diskutiert werden. Vorlesung
	und Labor des Moduls sind inhaltlich eng aufeinander
	abgestimmt. Die praktischen Versuche des Labors

	vertiefen und veranschaulichen den Stoff der Vorlesung und bereiten die Studierenden damit auf das gesamte Lernziel des Moduls vor. Die Studierenden sollen daran gewöhnt werden, den in den Vorlesungen behandelten Stoff selbstständig nachzubereiten und mittels Fachliteratur zu vertiefen. Ihr abstraktes und analytisches Denkvermögen soll gestärkt werden. Sie sollen lernen, elektrische
	Netzwerke durch angemessene Modelle nachzubilden und die Grenzen der Ergebnisse ihrer Rechenansätze zu
	erkennen.
	Die Gruppenarbeit im Labor fordert und fördert die Sozialkompetenz und Teamfähigkeit der Studierenden.
Inhalt:	Wechselstromtechnik:
	Beschreibung von Wechselgrößen (Winkelfunktion, Wechselspannungsgrößen, Arithmetischer Mittelwert, Gleichrichtwert, Effektivwert); Elektrische Energiespeicher (Elektrisches Verhalten von Kondensator und Spule, Schaltvorgänge in RC- und RL-Netzwerken); Komplexe Berechnung (Widerstände im
	Wechselstromkreise, Berechnung, von Strom- und Spannungsbeziehungen im Wechselstromkreis,
	Frequenzabhängigkeit im Wechselstromkreis); Leistung im Wechselstromkreis (Wirkleistung, Blindleistung, Scheinleistung, Leistungsfaktor). Labor Elektrotechnik 2: Sicherheitsbestimmungen für den Laborbetrieb; Einführung in das Anfertigen technischer Berichte; Umgang mit analogen und digitalen Strom- und Spannungsmessgeräten und Oszilloskop; Messungen an einfachen, praxisrelevanten
	Wechselstromschaltungen; Aufbereitung und Diskussion von Messergebnissen.
Studien- Prüfungsleistungen:	Klausur- Vorlesungsteil: Prüfung (KL120); Benotung: Ja - Laborteil: Laborschein; Benotung: Nein Das Labor ist dann bestanden, wenn alle Laborversuche erfolgreich durchgeführt wurden und alle zugehörigen Versuchsprotokolle vom Betreuer als "mit Erfolg bestanden" testiert wurden.
Medienformen:	 Vorlesung mit gemischten Medien (Tafelarbeit, Beamer etc.); Übungsaufgabenblätter
Literatur:	- Albach: Elektrotechnik. Band 1 und 2. Pearson Studium - Führer, u. a.: Grundgebiete der Elektrotechnik. Bd. 1

und 2.; Hanser Verlag
- Lindner: Elektro-Aufgaben Bd. 1, Bd. 2 und Bd. 3;
Hanser Verlag
- Weißgerber: Elektrotechnik für Ingenieure. Bd. 1 und
2. Vieweg Verlag
- Zastrow: Elektrotechnik; Springer Vieweg

Elektrotechnik 3

Studienrichtung:	IEIT, IAT, IMT, IOE, WEIT, WEUT, WMT
Modulbezeichnung:	Elektrotechnik 3
	Electrical Engineering 3
ggf. Kürzel	ET3
ggf. Untertitel	Magnetische Felder
ggf. Lehrveranstaltungen:	
Studiensemester:	3
Angebotsturnus:	jährlich im Wintersemester
Modulverantwortliche(r):	Prof. DrIng. Sören Hirsch
Dozent(in):	Prof. DrIng. Sören Hirsch
Sprache:	deutsch
Zuordnung zum Curriculum:	IEIT, 3. Semester, Pflichtfach
-	IAT, 3. Semester, Pflichtfach
	IMT, 3. Semester, Pflichtfach
	IOE, 3. Semester, Pflichtfach
	WEIT, 3. Semester, Pflichtfach
	WMT, 3. Semester, Pflichtfach
	WEUT, 3. Semester, Pflichtfach
Lehrform / SWS:	2 SWS Vorlesung, 2 SWS Übung, 1 SWS Labor
Arbeitsaufwand:	150 h, davon 75 h Präsenz- und 75 h Eigenstudium
Kreditpunkte:	5
Voraussetzungen nach	keine
Prüfungsordnung:	
Empfohlene Voraussetzungen:	Erfolgreicher Abschluss der Module Elektrotechnik I und
	II
Angestrebte Lernergebnisse:	In der Vorlesung Elektrotechnik III lernen die
	Studierenden die Grundbegriffe und grundlegenden
	Verfahren zur Beschreibung und Berechnung
	magnetischer Kreise kennen. Durch die Vorlesung wird
	die Betrachtungsweise elektromagnetischer Phänomene
	von der netzwerkorientierten Sicht auf die
	feldorientierte Sicht erweitert. Das Bewusstsein für das
	Auftreten und die Notwendigkeit der Berücksichtigung
	parasitärer Effekte bei technischen Anwendungen wird
	geweckt. Nach erfolgreichem Abschluss können die
	Studierenden einfache Feldanordnungen mittels
	Ersatzschaltungen modellieren, mathematisch
	beschreiben und mit angemessenen Verfahren
	analysieren.
	Die Studierenden kennen den Laborbetrieb mit den
	einschlägigen Sicherheitsvorschriften und beherrschen
	den Umgang mit analogen und digitalen Strom- und
	Spannungsmessern und Oszilloskopen. Die
	Studierenden können komplexe Schaltungen aufbauen

	und messtechnisch analysieren. Sie können
	selbstständig kleine technische Berichte verfassen, in
	denen die Ergebnisse von Messungen aussagekräftig
	dargestellt und kritisch diskutiert werden. Vorlesung
	und Labor des Moduls sind inhaltlich eng aufeinander
	abgestimmt. Die praktischen Versuche des Labors
	vertiefen und veranschaulichen den Stoff der Vorlesung
	und bereiten die Studierenden damit auf das gesamte
	Lernziel des Moduls vor.
	Die Studierenden sollen daran gewöhnt werden, den in
	den Vorlesungen behandelten Stoff selbstständig
	nachzubereiten und mittels Fachliteratur zu vertiefen.
	Ihr abstraktes und analytisches Denkvermögen soll
	gestärkt werden. Sie sollen lernen, magnetische Kreise
	durch angemessene Modelle nachzubilden und die
	Grenzen der Ergebnisse ihrer Rechenansätze zu
	erkennen.
	Die Gruppenarbeit im Labor fordert und fördert die
	Sozialkompetenz und Teamfähigkeit der Studierenden.
Inhalt:	Magnetische Felder:
Timat.	Grundlagen der elektromagnetischen
	Energieumwandlung (Kraftwirkung,
	Durchflutungsgesetz, Materialgesetze,
	Induktionsgesetz);
	Berechnungen im unverzweigter und verzweigter
	magnetischen Kreis;
	Einphasentransformator (Aufbau, Betriebsverhalten,
	Ersatzschaltbild, Wirkungsgrad, Berechnungen der
	Ersatzschaltparameter);
	Transformatorgleichungen (Vierpol).
	Labor Elektrotechnik 3:
	Sicherheitsbestimmungen für den Laborbetrieb;
	Einführung in das Anfertigen technischer Berichte;
	Umgang mit analogen und digitalen Strom-,
	Spannungs- und Leistungsmessgeräten und
	Oszilloskop;
	·
	Messungen an Transformatorschaltungen;
	Aufbereitung und Diskussion von Messergebnissen.
Studion Drüfungeleistunger	Vieweyr Verlegungsteil, Drüftung (VI 00), Denetung In
Studien- Prüfungsleistungen:	Klausur- Vorlesungsteil: Prüfung (KL90); Benotung: Ja
	- Laborteil: Laborschein; Benotung: Nein
	Das Labor ist dann bestanden, wenn alle Laborversuche
	erfolgreich durchgeführt wurden und alle zugehörigen
	Versuchsprotokolle vom Betreuer als "mit Erfolg
	bestanden" testiert wurden.
Medienformen:	- Vorlesung mit gemischten Medien (Tafelarbeit,
	Beamer etc.)

	- Übungsaufgabenblätter
Literatur:	- Albach: Elektrotechnik. Band 1 und 2. Pearson
	Studium
	- Führer, u. a.: Grundgebiete der Elektrotechnik. Bd. 1
	und 2.; Hanser Verlag
	- Lindner: Elektro-Aufgaben Bd. 1, Bd. 2 und Bd. 3;
	Hanser Verlag
	- Weißgerber: Elektrotechnik für Ingenieure. Bd. 1 und
	2. Vieweg Verlag
	- Zastrow: Elektrotechnik; Springer Vieweg

Experimentalphysik

Studienrichtung:	IMT
Modulbezeichnung:	Experimentalphysik
	Experimental Physics
ggf. Kürzel	
ggf. Untertitel	
ggf. Lehrveranstaltungen:	
Studiensemester:	1
Angebotsturnus:	jährlich im Wintersemester
Modulverantwortliche(r):	Pof. Dr. habil. Michael Vollmer
Dozent(in):	Prof. Dr. sc. nat. Klaus-Peter Möllmann, Pof. Dr. habil. Michael Vollmer
Sprache:	deutsch
Zuordnung zum Curriculum:	IMT, 1. Semester, Pflichtfach
Lehrform / SWS:	3 SWS Vorlesung, 1 SWS Übung, 1 SWS Labor
Arbeitsaufwand:	150 h, davon 75 h Präsenz- und 75 h Eigenstudium
Kreditpunkte:	5
Voraussetzungen nach	keine
Prüfungsordnung:	Keine
Empfohlene Voraussetzungen:	Grundkenntnisse in Physik und Mathematik
Empromene voraussetzungen.	entsprechend der Hochschulreife
Angestrebte Lernergebnisse:	Die Studierenden hören eine Einführung in Mechanik
Angestrebte Lernergebnisse.	und Thermodynamik. Sie erlernen den Umgang mit
	physikalischen Begriffen und Gesetzen. Sie erlangen
	Grundfähigkeiten und -fertigkeiten bei der Anwendung
	auf einfache technische Phänomene bzw. Probleme. In
	den Übungen werden von den Studierenden im
	Selbststudium zu lösende Aufgaben besprochen.
	Angestrebte Kompetenzen:
	Die Studierenden kennen die grundlegenden Begriffe
	der Themengebiete der Vorlesung, die ihnen durch
	Experimente verdeutlicht werden. Sie beherrschen den
	Abstraktionsprozess von der Beobachtung eines
	physikalisch-technischen Vorgangs über seine
	Beschreibung bis hin zur formelmäßigen Umsetzung
	und Berechnung. Sie können physikalische Begriffe auf
	technische Anwendungen im Labor übertragen.
	Die Studierenden sollen die Durchführung und
	Auswertung einfacher physikalischer Experimente aus
	den Gebieten Mechanik und Wärmelehre beherrschen.
	Die Studierenden sollen daran gewöhnt werden, den in
	den Vorlesungen behandelten Stoff selbstständig
	nachzubereiten und mittels Fachliteratur zu vertiefen.
	Ihr abstraktes und analytisches Denkvermögen soll
	gestärkt werden. Sie sollen lernen, physikalische

	Prozesse durch angemessene Modelle nachzubilden und die Grenzen der Ergebnisse ihrer Rechenansätze zu erkennen. Die Studierenden beherrschen den Abstraktionsprozess von der Beobachtung eines physikalisch-technischen Vorgangs über seine Beschreibung bis hin zur formelmäßigen Umsetzung und Berechnung. Sie können physikalische Begriffe auf technische Anwendungen im Labor übertragen. Die Studierenden sollen die Durchführung und Auswertung einfacher physikalischer Experimente aus den Gebieten Mechanik und Wärmelehre beherrschen.
Inhalt:	Physikalische Größen und Einheiten, Kinematik und Dynamik, Impuls, Arbeit, Energie, Erhaltungssätze, Systeme von Punktmassen, starre/deformierbare Körper, ruhende und bewegte Flüssigkeiten, Schwingungen und Wellen, Wärmekapazität, Wärmeausdehnung, ideale und reale Gase, Zustandsänderungen, Wärmekraftmaschinen, Wärmeübertragung, Schallwellen
Studien- Prüfungsleistungen:	Klausur
Medienformen:	 Vorlesung mit gemischten Medien (Tafelarbeit, Beamer etc.); Übungsaufgabenblätter Laborversuche, Versuchsanleitungen
Literatur:	Detaillierte Literaturliste wird ausgegeben, darunter z.B.: Tipler, Paul A.: Physik (Spectrum Verlag) + Arbeitsbuch Halliday, David; Resnick, Robert; Walker, Jearl: Physik (Wiley VCH) Hering, Ekbert; Martin, Rolf; Stohrer, Martin: Physik für Ingenieure (Springer) Paus, Hans J.: Physik in Experimenten und Beispielen (Hanser) Gerthsen, Christian: Physik (Springer Verlag)

Fertigungsautomatisierung

Studienrichtung:	IAT
Modulbezeichnung:	Fertigungsautomatisierung
	Production Automation
ggf. Kürzel	
ggf. Untertitel	
ggf. Lehrveranstaltungen:	
Studiensemester:	6
Angebotsturnus:	jährlich im Sommersemester
Modulverantwortliche(r):	Prof. DrIng. Knut Stephan
Dozent(in):	Gerald Giese
Sprache:	deutsch
Zuordnung zum Curriculum:	IAT, 6. Semester, Wahlpflichtfach
Lehrform / SWS:	2 SWS Vorlesung, 2 SWS Labor
Arbeitsaufwand:	150 h, davon 60 h Präsenz- und 90 h Eigenstudium
Kreditpunkte:	5
Voraussetzungen nach	keine
Prüfungsordnung:	
Empfohlene Voraussetzungen:	Module: "Automatisierungssysteme", "Automatisieren
	mit SPS"
Angestrebte Lernergebnisse:	Die Studierenden erwerben
	- grundlegendes Wissen über Aufbau, Funktion,
	Projektierung/Programmierung von
	Industrierobotern/Industrierobotersystemen und deren
	Einsatz in der Fertigung;
	- Fertigkeiten beim Programmieren von
	Industrierobotern und SPSen in der
	Fertigungsautomatisierung.
	Ingenieurtechnische Ausdrucksweise bei der
	Formulierung von Sachverhalten unter Verwendung der fachspezifischen Termini;
	Fähigkeit zur Analyse und Interpretation von Aufgaben-
	und Problemstellungen;
	Zielführendes, systematisches und selbstständiges
	Bearbeiten von vorgegebenen Aufgabenstellungen;
	Nutzung von Werkzeugen (Softwaretools) und
	Informationsquellen (Vorlesungs-unterlagen,
	Handbücher, Internet) bei der Problemlösung;
	Erkennen von Zusammenhängen/Schnittstellen zu
	anderen Fachgebieten.
Inhalt:	Vorlesung
	Grundlagen der Fertigungsautomatisierung:
	Fertigungsprozesse, Mess- und Stelleinrichtungen,
	Typische Automatisierungsaufgaben
	Industrie-Roboter: Einsatzgebiete von Industrierobotern

	in der Fertigung; Aufbau/Funktionselemente von Industrierobotern (interne/externe Sensorik, Antriebe, Kinematik, Greifsysteme, Steuerung); allg. Merkmale von Industrierobotern (Achsen, Freiheitsgrade, Arbeitsraum, Belastung, Genauigkeit); Bauformen von Industrierobotern; Kinematik (Koordinatensysteme, Transformationen); Robotersteuerung/Bewegungssteuerung (PTP, Überschleifen, Vielpunkt, Bahnsteuerung); Normen, Richtlinien, Sicherheitsanforderungen; Projektierung von IR-Systemen; Einbindung der IR in die Fertigungsautomatisierung; Online- und Offline-Programmierung von IR. Fertigungsautomatisierung mit SPS: Einsatzgebiete von SPSen in der Fertigung, Ebenenmodell, Datenschnittstellen zwischen automatisierten Fertigungskomponenten und den Fertigungsebenen, Transportsteuerung, Teileidentifikation und Teileverfolgung (Barcode, RFID), Objekterkennung, Lagersysteme, Überwachung von Fertigungseinrichtungen, Anwendungsbeispiele aus der Fertigungsautomatisierung. Labor - textuelle und grafische Programmierung eines 6-Achsen-Roboters
	- Vertiefung SPS-Programmierung für typische Anwendungen in der Fertigung
Studien- Prüfungsleistungen:	Klausur
Medienformen:	PC (Powerpoint) und Beamer, Tafel, Skriptvorlage für Studierende
Literatur:	HJ. Gevatter: Handbuch der Mess- und Automatisierungstechnik in der Produktion, Springer- Verlag

Fertigungstechnologien der Elektrotechnik

Studienrichtung:	IEIT, WEIT
Modulbezeichnung:	Fertigungstechnologien der Elektrotechnik
	Production Technologies for Electrical Engineering
ggf. Kürzel	FT_ET_1
ggf. Untertitel	
ggf. Lehrveranstaltungen:	
Studiensemester:	5
Angebotsturnus:	jährlich im Wintersemester
Modulverantwortliche(r):	Prof. DrIng. Sören Hirsch
Dozent(in):	DrIng. habil. Markus Detert
Sprache:	deutsch
Zuordnung zum Curriculum:	IEIT, 5. Semester, Pflichtfach
j j	WEIT, 5. Semester, Pflichtfach
Lehrform / SWS:	2 SWS Vorlesung, 1 SWS Übung, 1 SWS Labor
Arbeitsaufwand:	150 h, davon 60 h Präsenz- und 90 h Eigenstudium
Kreditpunkte:	5
Voraussetzungen nach	keine
Prüfungsordnung:	
Empfohlene Voraussetzungen:	Grundkenntnisse in Physik, Mathematik und
, i	Elektrotechnik entsprechend der Hochschulreife
Angestrebte Lernergebnisse:	In der Vorlesung Fertigungstechnologien der
	Elektrotechnik lernen die Studierenden die
	Grundbegriffe und grundlegenden Verfahren zur
	Beschreibung der Fertigungstechnologien der
	Elektrotechnik kennen. Nach erfolgreichem Abschluss
	können die Studierenden die Technologieketten für die
	Herstellung von Produkten aus der Elektroindustrie an
	Beispielen beschreiben und mit den dazu gehörigen
	Verfahren und Methoden analysieren und darstellen.
	Die Studierenden lernen im Laborbetrieb den Umgang
	mit den Grundlagentechnologien zur Herstellung von
	elektronischen Schaltungen und Baugruppen am
	Beispiel der Kontaktier- und Montageprozesse der
	Elektronik kennen. Die Studierenden können einfache
	Baugruppen selbstständig aufbauen und
	charakterisieren. Sie können selbstständig kleine
	technische Berichte verfassen, in denen die Ergebnisse
	von Aufbauprozessen aussagekräftig dargestellt und
	kritisch diskutiert werden. Vorlesung und Labor des
	Moduls sind inhaltlich eng aufeinander abgestimmt. Die
	praktischen Versuche des Labors vertiefen und
	veranschaulichen den Stoff der Vorlesung und bereiten
	die Studierenden damit auf das gesamte Lernziel des
	Moduls vor.

Studien- Prüfungsleistungen:	Klausur- Vorlesungsteil: Prüfung (KL90); Benotung: Ja - Laborteil: Laborschein; Benotung: Nein Das Labor ist dann bestanden, wenn alle Laborversuche erfolgreich durchgeführt wurden und alle zugehörigen Versuchsprotokolle vom Betreuer als "mit Erfolg
Inhalt:	Identifikation der Bestandteile eines Produktes der Elektroindustrie: Elektronische Baugruppe, Gehäuse, Kabel, Verpackung, Begleitdokumentation Verarbeitungsprozesse elektronischer Baugruppen (Substrate, Montagetechniken, Kontaktierverfahren, Prüfverfahren). Verfahren und Technologien für die Gehäuseherstellung Verfahren und Technologien für die Kabelherstellung Möglichkeiten der regelkonformen Verpackung Prüfen und Testen (zerstörungsfreie und zerstörende Prüfverfahren) Labor Fertigungstechnologien der Elektrotechnik: Sicherheitsbestimmungen für den Laborbetrieb; Einführung in das Anfertigen technischer Berichte; Umgang mit Ausrüstungen für die Montage und das Kontaktieren von elektronischen Bauelementen in der Oberflächenmontage; Charakterisierung von Fertigungsfehlern an einfachen, praxisrelevanten Aufbauten; Aufbereitung und Diskussion von Messergebnissen.
	Die Studierenden sollen daran gewöhnt werden, den in den Vorlesungen behandelten Stoff selbstständig nachzubereiten und mittels Fachliteratur zu vertiefen. Ihr abstraktes und analytisches Denkvermögen soll gestärkt werden. Sie sollen lernen, elektrische Netzwerke durch angemessene Modelle nachzubilden und die Grenzen der Ergebnisse ihrer Rechenansätze zu erkennen. Die Gruppenarbeit im Labor fordert und fördert die Sozialkompetenz und Teamfähigkeit der Studierenden.

Gebäudeautomation

Studienrichtung:	IAT
Modulbezeichnung:	Gebäudeautomation
	Building Automation
ggf. Kürzel	
ggf. Untertitel	
ggf. Lehrveranstaltungen:	
Studiensemester:	6
Angebotsturnus:	jährlich im Sommersemester
Modulverantwortliche(r):	Prof. DrIng. Knut Stephan
Dozent(in):	Prof. DrIng. Knut Stephan
Sprache:	deutsch
Zuordnung zum Curriculum:	IAT, 6. Semester, Wahlpflichtfach
Lehrform / SWS:	2 SWS Vorlesung, 2 SWS Labor
Arbeitsaufwand:	150 h, davon 60 h Präsenz- und 90 h Eigenstudium
Kreditpunkte:	5
Voraussetzungen nach	keine
Prüfungsordnung:	
Empfohlene Voraussetzungen:	Module "Automatisierungssysteme", "Automatisieren
	mit SPS", "Gebäudetechnik"
Angestrebte Lernergebnisse:	Die Studierenden erwerben
	- fundiertes und anwendbares Wissen über den Aufbau,
	die Funktion und die Projektierung von
	Gebäudeautomationssystemen (GA-Systemen);
	- Fertigkeiten bei der Projektierung (Planung,
	Programmierung/Konfigurierung mit CODESYS) von GA-
	Systemen.
	Ingenieurtechnische Ausdrucksweise bei der
	Formulierung von Sachverhalten unter Verwendung der
	fachspezifischen Termini;
	Fähigkeit zur Analyse und Interpretation von Aufgaben-
	und Problemstellungen;
	Zielführendes, systematisches und selbstständiges
	Bearbeiten von vorgegebenen Aufgabenstellungen;
	Nutzung von Werkzeugen (Softwaretools) und
	Informationsquellen (Vorlesungsunterlagen,
	Handbücher, Internet) bei der Problemlösung;
	Erkennen von Zusammenhängen/Schnittstellen zu
Inhalt.	anderen Fachgebieten.
Inhalt:	Vorlesung Crundbagriffe der Cehäudeautemation
	Grundlagen: Grundbegriffe der Gebäudeautomation,
	Anwendungsbeispiele (Lüftungsanlage, Heizungsanlage,
	Kälteanlage, Einzelraum-Temperaturregelung), Gebäudeautomationssystem (Grundstruktur,
	Komponenten), Funktionen der Gebäudeautomation
	52

nach VDI3814: Mess- und Stelleinrichtungen in der Versorgungstechnik: Grundlagen, Messeinrichtungen für Temperatur, Druck/Differenzdruck, Strömung, relative Luftfeuchte, CO2-Gehalt, Zähler; Stellverfahren, typische Drossel-Stelleinrichtungen, Stellventile, Kugelhähne, Auslegung von Drossel-Stelleinrichtungen, typische Mess- und Stelleinrichtungen einer RLT-Anlage, RLT-Laboranlage (Aufbau, Mess- und Stelleinrichtungen); Regelungen und Steuerungen in der Versorgungstechnik: Regelungs- und Steuerungsaufgaben in der Versorgungstechnik, Regelungen (Grundlagen, Standardregelkreis), Raumtemperatur-Regelung (Regelkreis, Regelstrecke, Temperaturregler, Regelkreisverhalten, Gütemaße, Projektierung), spezielle Regelstrukturen (Kaskadenregelung, Sequenzansteuerung); Binärsteuerungen, Steuerungsbeispiele; Automationsstation WAGO IO/System 750; Programmieren von Regelungen und Steuerungen mit CODESYS (Anwenderprogramm-Struktur, Variablen und Datentypen, Analogwertverarbeitung, CODESYS-Programmierung mit CFC und AS; Ablauf der WAGO-Projektierung); Kommunikation in der Gebäudeautomation: Übersicht, Modbus RTU, M-Bus, LONWORKS, BACnet, OPC-Kommunikation; Visualisierung und Bedienung in der Gebäudeautomation: Bedienebenen, typische Visualisierungsfunktionen, Kommunikationsvarianten für die Visualisierung und Bedienung, Gestaltung von Anlagenbildern, Konfigurierung der CODESYS-Visualisierung: GA-Planung: Prozessphasen eines GA-Projektes, Datenpunkte und Datenpunktadressierung, Automationsschema, GA-Funktionsliste, GA-Funktionen nach VDI3814, Planungsbeispiel RLT-Anlage (Funktionsbeschreibung, Automations-schema, GA-Funktionsliste). Labor GA-RT: Einzelraum-Temperaturregelung, GA-RA: Automatisierung einer RLT-Anlage, GA-VB: Visualisierung und Bedienung mit CODESYS, GA-KO: Kommunikation in der Gebäudeautomation, GA-PL: GA-Planung. Studien- Prüfungsleistungen: Klausur

Medienformen:	PC (Powerpoint) und Beamer, Tafel, Skriptvorlage
	(unvollständig) für Studierende
Literatur:	Balow, J.: Systeme der Gebäudeautomation, cci Dialog
	GmbH;
	Arbeitskreis der Professoren für Regelungstechnik in der
	Versorgungstechnik: Regelungs- und Steuerungstechnik
	in der Versorgungstechnik, VDE Verlag GmbH.

Gebäudetechnik

Studienrichtung:	IAT
Modulbezeichnung:	Gebäudetechnik
	Building Technology
ggf. Kürzel	GT_AT5_IW
ggf. Untertitel	Elektrische Gebäudetechnik und Heizungs- und
	Raumlufttechnik
ggf. Lehrveranstaltungen:	
Studiensemester:	5
Angebotsturnus:	jährlich im Wintersemester
Modulverantwortliche(r):	Prof. DrIng. Knut Stephan
Dozent(in):	Gerald Giese, DiplIng. Andreas Niemann
Sprache:	deutsch
Zuordnung zum Curriculum:	IAT, 5. Semester, Pflichtfach
Lehrform / SWS:	2 SWS Vorlesung, 1 SWS Übung, 1 SWS Labor;
	El. Gebäudetechnik: V, L; Heizungs- und
	Raumlufttechnik: V, Ü
Arbeitsaufwand:	150 h, davon 60 h Präsenz- und 90 h Eigenstudium
Kreditpunkte:	5
Voraussetzungen nach	keine
Prüfungsordnung:	
Empfohlene Voraussetzungen:	Module "Elektrotechnik"
Angestrebte Lernergebnisse:	Elektrische Gebäudetechnik
	Fundiertes Wissen über Aufbau, Funktion, Projektierung
	und Einsatz des KNX-Bussystems in der Gebäudetechnik
	Fertigkeiten bei der Programmierung eines KNX-
	Bussystems
	Heizungs- und Raumlufttechnik
	Grundlegendes Wissen über die thermodynamische
	Funktion von Raumlufttechnischen Anlagen sowie
	Heizungsanlagen
	Ingenieurtechnische Ausdrucksweise bei der
	Formulierung von Sachverhalten unter Verwendung der
	fachspezifischen Termini;
	Fähigkeit zur Analyse und Interpretation von Aufgaben-
	und Problemstellungen;
	Zielführendes, systematisches und selbstständiges
	Bearbeiten von vorgegebenen Aufgabenstellungen;
	Nutzung von Werkzeugen (Softwaretools) und
	Informationsquellen (Vorlesungs-unterlagen,
	Handbücher, Internet) bei der Problemlösung;
	Erkennen von Zusammenhängen/Schnittstellen zu
Inhalt	anderen Fachgebieten.
Inhalt:	Elektrische Gebäudetechnik: Vorlesung
	Grundlagen der Buskommunikation: OSI-

Da Di (B Ar W Studien- Prüfungsleistungen: Kl m Kl Be Di be	erbrennungsprozesse: Einführung, Verbrennung fester nd flüssiger Brennstoffe, Verbrennung gasförmiger rennstoffe, Massen- und Energiebilanz; /ärmepumpe: Aufbau, Funktion, Prozessdarstellung im Jp,h-Diagramm, Energiebilanzen; euchte Luft und Klimatisierung: Zustandsverhalten, arstellung des Zustandsverhaltens im Molier h,x-iagramm, lufttechnische Prozesse, RLT-Anlagen Betriebsparameter, Unterscheidung von nlagenkonzepten, Anlagenschemata); /ärmeübertragung: Wärmestrahlung, Raumheizkörper. lausur; Klausur "Prozessleittechnik-Grundlagen", 60 nin; Bewertung mit Note; lausur "Heizungs- und Raumlufttechnik", 60 min; ewertung mit Note; ie Modulnote ergibt sich aus dem Mittelwert der eiden Einzelnoten. C (Powerpoint) und Beamer, Tafel, Skriptvorlage für
Da Di (B Ar W Studien- Prüfungsleistungen: Kl m Kl Be Di	erbrennungsprozesse: Einführung, Verbrennung fester nd flüssiger Brennstoffe, Verbrennung gasförmiger rennstoffe, Massen- und Energiebilanz; //ärmepumpe: Aufbau, Funktion, Prozessdarstellung im Jp,h-Diagramm, Energiebilanzen; euchte Luft und Klimatisierung: Zustandsverhalten, arstellung des Zustandsverhaltens im Molier h,x-iagramm, lufttechnische Prozesse, RLT-Anlagen Betriebsparameter, Unterscheidung von nlagenkonzepten, Anlagenschemata); //ärmeübertragung: Wärmestrahlung, Raumheizkörper. lausur; Klausur "Prozessleittechnik-Grundlagen", 60 nin; Bewertung mit Note; lausur "Heizungs- und Raumlufttechnik", 60 min; ewertung mit Note; ie Modulnote ergibt sich aus dem Mittelwert der
Da Di (B Ar W Studien- Prüfungsleistungen: M Kl Be	erbrennungsprozesse: Einführung, Verbrennung fester nd flüssiger Brennstoffe, Verbrennung gasförmiger rennstoffe, Massen- und Energiebilanz; //armepumpe: Aufbau, Funktion, Prozessdarstellung im pp,h-Diagramm, Energiebilanzen; euchte Luft und Klimatisierung: Zustandsverhalten, arstellung des Zustandsverhaltens im Molier h,x-iagramm, lufttechnische Prozesse, RLT-Anlagen Betriebsparameter, Unterscheidung von nlagenkonzepten, Anlagenschemata); //armeübertragung: Wärmestrahlung, Raumheizkörper. lausur; Klausur "Prozessleittechnik-Grundlagen", 60 nin; Bewertung mit Note; lausur "Heizungs- und Raumlufttechnik", 60 min; ewertung mit Note;
Da Di (B Ar W Studien- Prüfungsleistungen: Kl m Kl	erbrennungsprozesse: Einführung, Verbrennung fester nd flüssiger Brennstoffe, Verbrennung gasförmiger rennstoffe, Massen- und Energiebilanz; //ärmepumpe: Aufbau, Funktion, Prozessdarstellung im Jp,h-Diagramm, Energiebilanzen; euchte Luft und Klimatisierung: Zustandsverhalten, arstellung des Zustandsverhaltens im Molier h,x-iagramm, lufttechnische Prozesse, RLT-Anlagen Betriebsparameter, Unterscheidung von nlagenkonzepten, Anlagenschemata); //ärmeübertragung: Wärmestrahlung, Raumheizkörper. lausur; Klausur "Prozessleittechnik-Grundlagen", 60 nin; Bewertung mit Note; lausur "Heizungs- und Raumlufttechnik", 60 min;
Da Di (B Ar W Studien- Prüfungsleistungen: Kl m	erbrennungsprozesse: Einführung, Verbrennung fester nd flüssiger Brennstoffe, Verbrennung gasförmiger rennstoffe, Massen- und Energiebilanz; //ärmepumpe: Aufbau, Funktion, Prozessdarstellung im pp,h-Diagramm, Energiebilanzen; euchte Luft und Klimatisierung: Zustandsverhalten, arstellung des Zustandsverhaltens im Molier h,x-iagramm, lufttechnische Prozesse, RLT-Anlagen Betriebsparameter, Unterscheidung von nlagenkonzepten, Anlagenschemata); //ärmeübertragung: Wärmestrahlung, Raumheizkörper. lausur; Klausur "Prozessleittechnik-Grundlagen", 60 nin; Bewertung mit Note;
Da Di (B Ar W Studien- Prüfungsleistungen: Kl	erbrennungsprozesse: Einführung, Verbrennung fester nd flüssiger Brennstoffe, Verbrennung gasförmiger rennstoffe, Massen- und Energiebilanz; //ärmepumpe: Aufbau, Funktion, Prozessdarstellung im pp,h-Diagramm, Energiebilanzen; euchte Luft und Klimatisierung: Zustandsverhalten, arstellung des Zustandsverhaltens im Molier h,x-iagramm, lufttechnische Prozesse, RLT-Anlagen Betriebsparameter, Unterscheidung von nlagenkonzepten, Anlagenschemata); //ärmeübertragung: Wärmestrahlung, Raumheizkörper. lausur; Klausur "Prozessleittechnik-Grundlagen", 60
Da Di (B Ar W	erbrennungsprozesse: Einführung, Verbrennung fester nd flüssiger Brennstoffe, Verbrennung gasförmiger rennstoffe, Massen- und Energiebilanz; /ärmepumpe: Aufbau, Funktion, Prozessdarstellung im p,h-Diagramm, Energiebilanzen; euchte Luft und Klimatisierung: Zustandsverhalten, arstellung des Zustandsverhaltens im Molier h,x-iagramm, lufttechnische Prozesse, RLT-Anlagen Betriebsparameter, Unterscheidung von nlagenkonzepten, Anlagenschemata); /ärmeübertragung: Wärmestrahlung, Raumheizkörper.
Da Di (B Ar	erbrennungsprozesse: Einführung, Verbrennung fester nd flüssiger Brennstoffe, Verbrennung gasförmiger rennstoffe, Massen- und Energiebilanz; //ärmepumpe: Aufbau, Funktion, Prozessdarstellung im pp,h-Diagramm, Energiebilanzen; euchte Luft und Klimatisierung: Zustandsverhalten, arstellung des Zustandsverhaltens im Molier h,x-iagramm, lufttechnische Prozesse, RLT-Anlagen Betriebsparameter, Unterscheidung von nlagenkonzepten, Anlagenschemata);
Da Di (B	erbrennungsprozesse: Einführung, Verbrennung fester nd flüssiger Brennstoffe, Verbrennung gasförmiger rennstoffe, Massen- und Energiebilanz; /ärmepumpe: Aufbau, Funktion, Prozessdarstellung im p,h-Diagramm, Energiebilanzen; euchte Luft und Klimatisierung: Zustandsverhalten, arstellung des Zustandsverhaltens im Molier h,x-iagramm, lufttechnische Prozesse, RLT-Anlagen Betriebsparameter, Unterscheidung von
Da Di	erbrennungsprozesse: Einführung, Verbrennung fester nd flüssiger Brennstoffe, Verbrennung gasförmiger rennstoffe, Massen- und Energiebilanz; //ärmepumpe: Aufbau, Funktion, Prozessdarstellung im p,h-Diagramm, Energiebilanzen; euchte Luft und Klimatisierung: Zustandsverhalten, arstellung des Zustandsverhaltens im Molier h,x-iagramm, lufttechnische Prozesse, RLT-Anlagen
Da	erbrennungsprozesse: Einführung, Verbrennung fester nd flüssiger Brennstoffe, Verbrennung gasförmiger rennstoffe, Massen- und Energiebilanz; /ärmepumpe: Aufbau, Funktion, Prozessdarstellung im Jp,h-Diagramm, Energiebilanzen; euchte Luft und Klimatisierung: Zustandsverhalten, arstellung des Zustandsverhaltens im Molier h,x-
	erbrennungsprozesse: Einführung, Verbrennung fester nd flüssiger Brennstoffe, Verbrennung gasförmiger rennstoffe, Massen- und Energiebilanz; /ärmepumpe: Aufbau, Funktion, Prozessdarstellung im pp,h-Diagramm, Energiebilanzen; euchte Luft und Klimatisierung: Zustandsverhalten,
110	erbrennungsprozesse: Einführung, Verbrennung fester nd flüssiger Brennstoffe, Verbrennung gasförmiger rennstoffe, Massen- und Energiebilanz; /ärmepumpe: Aufbau, Funktion, Prozessdarstellung im p,h-Diagramm, Energiebilanzen;
	erbrennungsprozesse: Einführung, Verbrennung fester nd flüssiger Brennstoffe, Verbrennung gasförmiger rennstoffe, Massen- und Energiebilanz; /ärmepumpe: Aufbau, Funktion, Prozessdarstellung im
	erbrennungsprozesse: Einführung, Verbrennung fester nd flüssiger Brennstoffe, Verbrennung gasförmiger rennstoffe, Massen- und Energiebilanz;
	erbrennungsprozesse: Einführung, Verbrennung fester nd flüssiger Brennstoffe, Verbrennung gasförmiger
	erbrennungsprozesse: Einführung, Verbrennung fester
	_
	dealgas, reales Verhalten);
	hermodynamik, Zustandsverhalten reiner Stoffe
	hermodynamische Grundlagen: 1. Hauptsatz der
	eizungs- und Raumlufttechnik: Vorlesung
KI	NX-5: Info-Display und Visualisierungssoftware
	msetzer
KI	NX-4: Helligkeitsautomatik, Szenen, Telegramm-
	unktionen)
KI	NX-3: Lüftersteuerung mit Verknüpfungsgerät (Logik-
KI	NX-2: Dimmen absolut und relativ, Jalousiesteuerung
	inzelschaltung
K	NX-1: Beleuchtungssteuerung mit Gruppen- und
El	lektrische Gebäudetechnik: Labor
Ko	osten, Powerline.
Sc	oftware, Anwendungsgeräte, Visualisierungssoftware,
	elegrammaufbau, Szenen), Symbolik, Engineering-
	Kommunikationsobjekte, Gruppenadressen,
	usankoppler), Kommuni-kation
_	ystemgeräte (Netzteil, Koppler, Schnittstellen,
	Übertragungsmedien, Geräteadressierung),
	nstallationsbussystem KNX: Topologie
	opplung von Netzwerken;
	atensicherung/Fehlererkennung, Telegramme (UART),
	uszugriffsverfahren (MS, Token, CSMA),
	SK), Übertragungstechniken (EIA-232, EIA-485),
	chirmung), Bitcodierung (NRZ, Man-chester, FSK, ASK,
	atenübertragungsmedien (Wellenimpedanz,
	chichtenmodell, Netzwerktopologien,

	Für die Laborübungen stehen 9 Arbeitsplätze im Labor
	"Automatisierungssysteme" (Ausstattung: Multivendor-
	KNX-Geräte; Engineering-PC mit KNX-
	Engineeringsoftware ETS und Visualisierungssoftwar
Literatur:	Rose, Kriesel, Rennefahrt: EIB für die
	Gebäudesystemtechnik, Hüthig Verlag;
	Elsner: Grundlagen der technischen Thermodynamik.
	Akademie-Verlag;
	Schramek (Hrsg.): Taschenbuch für Heizung und
	Klimatechnik, Oldenbourg Industrieverlag;
	VDI-Wärmeatlas - Berechnungsblätter für den
	Wärmeübergang, Springer.

Grundlagen der Mechatronik

Studienrichtung:	IMT
Modulbezeichnung:	Grundlagen der Mechatronik
	Fundamentals of Mechatronic
ggf. Kürzel	
ggf. Untertitel	
ggf. Lehrveranstaltungen:	
Studiensemester:	3
Angebotsturnus:	jährlich im Wintersemester
Modulverantwortliche(r):	Prof. DrIng. Christian Oertel
Dozent(in):	Prof. DrIng. Christian Oertel
Sprache:	deutsch
Zuordnung zum Curriculum:	IMT, 3. Semester, Pflichtfach
Lehrform / SWS:	2 SWS Vorlesung, 2 SWS Übung
Arbeitsaufwand:	150 h, davon 60 h Präsenz- und 90 h Eigenstudium
Kreditpunkte:	5
Voraussetzungen nach	keine
Prüfungsordnung:	
Empfohlene Voraussetzungen:	Mathematik: lineare Differentialgleichungen, Analysis
Angestrebte Lernergebnisse:	Grundlagen der Fahrzeugtechnik-Technik
	- Kenntnisse: Baugruppen moderner Fahrzeuge und
	deren Bauformen benennen können, Zusammenhänge
	zwischen Funktion und Gestaltung herstellen können,
	Anwendungen der Mechatronik in der Fahrzeugtechnik
	identifizieren und deren Struktur darstellen,
	- Fertigkeiten: Funktion und Eigenschaften von
	Bussystemen wie CAN/LIN beherrschen, elementare
	Modelle für die Dynamik von Fahrzeugen erzeugen und
	betreiben
	Mechatronik Grundlabor
	- Kenntnisse: Einsatzmöglichkeiten der verschiedenen
	Systeme zur Messung und Simulation kennen,
	Systemauswahl für eine gegebene Aufgabenstellung
	treffen und begründen
	- Fertigkeiten: Vis ("virtual instruments") mit
	verschiedenen Funktionalitäten mit Hilfe von LabVIEW
	aufbauen, Messungen unterschiedlicher Größen
	durchführen und interpretieren können, Basisdaten wie
	Abtastraten und Eckfrequenzen von analogen Filter für
	eine gegebene Aufgabe bestimmen können,
	Grundlagen der Modellbildung mit blockorientierten
	Systemen beherrschen
Inhalt:	Grundlagen der Fahrzeugtechnik-Technik
	- Einführung: Ablauf und Entwicklungsphasen bei der
	Fahrzeugentwicklung, Einsatz von CA-Systemen,

- wesentliche Zielkonflikte und Lösungsansätze, Konzeptentwicklung, Gewicht 10 %
- Fahrwerk: Eigenschaften und Bauformen von Luftreifen, Elementarmodell für stationäres Reifenverhalten, Reifenkennlinien und kombinierte Schlupfzustände, Schwingungsverhalten im Hinblick auf NVH, Reifendruckkontroll- und Notlaufsysteme – Radaufhängungstypen, Bauformen und Eigenschaften, Federung und Dämpfung mit verschiedenen Elementen, adaptive Dämpfungen, Gewicht 30 %
- Brems- und Lenksysteme: elektrische und hydraulische Bremssysteme, Kombinationen (EHB), Regelsysteme für Bremsvorgänge (ABS), Bauarten von Lenksystemen, Aufbau und Auslegung von Überlagerungslenkungen und Allradlenkungen, Gewicht 30 %
- Fahrzeugmechatronik: Einsatz von mechatronischen Elementen in der Fahrzeugentwicklung, Assistenz- und Stabilitätssysteme, Zielkonflikte und adaptive Systeme, Kommunikationsstrukturen über Datenbusse, Grundlagen der Übertragungsprotokolle, Modellhierarchien in der Fahrzeugmodellierung, blockorientierte Modelle für Beobachter, MKS-Modelle, Gewicht 30 %

Mechatronik Grundlabor

- Versuch 1: Einführung LabVIEW, Grundlagen der blockorientierten Programmierung in LabVIEW, Gewicht 12,5 %
- Versuch 2: Datenerfassung mit LabVIEW, Kalibrierung von Sensordaten, Abtastraten und Aliasing, Signalfilterung, Gewicht 12,5 %
- Versuch 3: Sensorik, Vergleich von induktiven und optischen Sensoren, seismische Beschleunigungssensoren, Gewicht 12,5 %
- Versuch 4: Zweimassenschwinger Ausschwingen, Messung der Beschleunigungen eines gekoppelten Systems, Gewicht 12,5 %
- Versuch 5: Simulation SCILAB/SCICOS, Modellbildung mit SCICOS, Funktionsumfang der Bibliotheken, Gewicht 12,5 %
- Versuch 6: Simulation LabVIEW, Vergleich der Funktionalität verschiedener blockorientierter Systeme, Gewicht 12,5 %
- Versuch 7: Simulation MATLAB Simulink, Parallelen zwischen den verschiedenen Systemen, Dynamik geregelter Systeme, Aufbau einfacher Modelle, Gewicht 12,5 %

	- Versuch 8: CAN, Aufbau einer CAN-Botschaft, Analyse
	der Botschaft mit einem Oszilloskop, Gewicht 12,5 %
Studien- Prüfungsleistungen:	Abschlussklausur und Versuchsprotokolle
	Benotung: Ja.
	Die Note wird gewichtet aus Klausur und Protokollnoten
	und entspricht der Gesamtnote für das Prüfungsfach.
Medienformen:	Grundlagen der Fahrzeugtechnik mit verschiedenen
	Filmen und Animationen zu ausgewählten Kapiteln,
	Einsatz der Systeme LabVIEW und MATLAB/SIMULINK
	sowie SCILAB und SCICOS in den Laborübungen
Literatur:	Grundlagen der Fahrzeugtechnik-Technik
	HH. Braess und U. Seiffert: "Handbuch
	Kraftfahrzeugtechnik". Wiesbaden: Vieweg ATZ/MTZ
	Handbuch 2007
	J. Reimpell: "Fahrwerktechnik: Grundlagen". Würzburg:
	Vogel 2005
	J. Reimpell: "Fahrwerktechnik: Reifen und Räder".
	Würzburg: Vogel 1988
	J. Reimpell: "Fahrwerktechnik Fahrzeugmechanik".
	Würzburg: Vogel 1992
	W. Zimmermann und H. Schmidgall: "Bussysteme in der
	Fahrzeugtechnik: Protokolle und Standards".
	Wiesbaden: Vieweg ATZ/MTZ Handbuch 2008
	Mechatronik Grundlabor
	W. Georgi und E. Mertin: "Einführung in LabVIEW".
	Leipzig: Hanser 2007

Grundlagen der Mikrocontrollertechnik

Studienrichtung:	IEIT, IMT, IOE
Modulbezeichnung:	Grundlagen der Mikrocontrollertechnik
	Fundamentals of Microcontroller Technology
ggf. Kürzel	MCT
ggf. Untertitel	
ggf. Lehrveranstaltungen:	
Studiensemester:	4
Angebotsturnus:	jährlich im Sommersemester
Modulverantwortliche(r):	Prof. DrIng. Guido Kramann
Dozent(in):	Prof. DrIng. Guido Kramann
Sprache:	deutsch
Zuordnung zum Curriculum:	IEIT, 4. Semester, Pflichtfach
	IMT, 4. Semester, Pflichtfach
	IOE, 4. Semester, Pflichtfach
Lehrform / SWS:	2 SWS Vorlesung, 2 SWS Übung
Arbeitsaufwand:	150 h, davon 60 h Präsenz- und 90 h Eigenstudium
Kreditpunkte:	5
Voraussetzungen nach	keine
Prüfungsordnung:	
Empfohlene Voraussetzungen:	Informatik Grundkenntnisse zur Rechnerorganisation
	und zur
	Programmierung
Angestrebte Lernergebnisse:	Die Studierenden kennen den grundlegenden Aufbau
	und die Komponenten eines typischen Mikrocontrollers.
	Sie sind mit dem Programmiermodell und der
	Arbeitsweise des Mikrocontrollers vertraut und in der
	Lage, einfache Programmroutinen in Assembler und in
	C zu entwickeln und zu testen. Die Studierenden kennen
	eine typische Mikrocontroller-Familie und verfügen über
	Grundkenntnisse zur Auswahl eines konkreten
	Derivates.
	Sie können mit den Werkzeugen zur
	Programmentwicklung und zum Test umgehen.
Inhalt:	- Übersicht typischer Mikrocontroller-Familien
	- Aufbau, Funktion und Anwendungsmöglichkeiten von
	Mikrocontrollern
	- Auswahl und Programmierung eines konkreten
	Derivates
	- Interner Aufbau, Prozessorkern, Befehlssatz,
	Speicherorganisation, E/A-Ports, Timer, Interrupt,
	des 8051-Mikrocontrollers
	- Initialisierung und Nutzung der Controller-Bausteine
	- Entwicklungstools: Assembler, Linker, Konverter,
	CCompiler, Debugger, Monitor, Simulator

	- Entwicklung und Test kleiner Programme unter
	Nutzung der Mikrocontroller-Plattform SAB80C517A und
	der Applikationshardware (Sensoren, Aktoren,
	Anzeigeelemente)
Studien- Prüfungsleistungen:	Abschlussklausur, Lösen von Übungsaufgaben
	Die Modulnote setzt sich zusammen aus 75%
	Bewertung der Abschlussklausur und 25%
	Übungsbewertung
Medienformen:	
Literatur:	Klaus, R.: Die Mikrocontroller 8051, 8052 und 80C517,
	Zürich, vdf Verlag, 2001
	Schaaf, BD.: Mikrocomputertechnik – Mit
	Mikrocontrollern der Familie 8051, Hanser Verlag, 2005
	Manual SAB80C517A, Infineon
	Labor-Arbeitsmaterialien und Manuals der genutzten
	Entwicklungsumgebung sowie der
	Programmiersprachen Assembler und C

Informatik 1

Studienrichtung:	IEIT, IAT, IMT, IOE
Modulbezeichnung:	Informatik 1
	Informatics 1
ggf. Kürzel	INFO1
ggf. Untertitel	Prozedurale Softwareentwicklung im Ingenieurwesen,
	Prozedurale Programmierung in C/C++
ggf. Lehrveranstaltungen:	
Studiensemester:	1
Angebotsturnus:	jährlich im Wintersemester
Modulverantwortliche(r):	Prof. DrIng. Guido Kramann
Dozent(in):	Prof. DrIng. Guido Kramann, Jean Luther Muluem
Sprache:	deutsch
Zuordnung zum Curriculum:	IEIT, 1. Semester, Pflichtfach
	IAT, 1. Semester, Pflichtfach
	IMT, 1. Semester, Pflichtfach
	IOE, 1. Semester, Pflichtfach
Lehrform / SWS:	2 SWS Vorlesung, 2 SWS Übung, 1 SWS Labor
Arbeitsaufwand:	150 h, davon 75 h Präsenz- und 75 h Eigenstudium
Kreditpunkte:	5
Voraussetzungen nach	keine
Prüfungsordnung:	
Empfohlene Voraussetzungen:	
Angestrebte Lernergebnisse:	Die Studierenden kennen den Grundaufbau und die
	Grundfunktionalität eines PCs.
	Sie kennen die grundlegenden Unterschiede zwischen
	Interpreter- und Compiler-Sprachen, sowie zwischen
	prozeduralen und objektorientierten
	Programmiersprachen.
	Die Studierenden beherrschen eine höhere
	Programmiersprache in elementarer Weise.
	Insbesondere sind sie in der Lage, eine einfache
	Problemstellung in ein prozedurales
	Anwendungsprogramm umzusetzen. Sie sind in der
	Lage dies auch unter Anwendung einer in der
	Lehrveranstaltung vermittelten Software-
	Entwurfsmethode zu bewerkstelligen.
	Darüber hinaus sind die Studierenden in der Lage,
	Gemeinsamkeiten zwischen der erlernten
	Programmiersprache und anderen ihrem Studienfach
	nahen Anwendungsgebieten der Programmierung zu
	erkennen und sich dort einzuarbeiten. Beispiele hierzu:
	Tabellenkalkulation, Programmierung von
	Mikrocontrollern, CAE-Software.

elektronischer Form mit einer Gesamtdauer von 90Minuten, in denen sowohl die Theorie, als auch die praktischen Programmier-Fertigkeiten abgeprüft werden. Die Gesamtnote ergibt sich aus den gewichteten Teilnoten. Worlesung, PC-Pool, Tutorium		
Programmen, Umrechnung zwischen verschiedenen Zahlensystemen, Schreiben einfacher Hauptprogramme, Prozedurale Anwendungsprogramme im Ingenieurwesen. Anwendung von C/C++- Datentypen, C/C++-Kontrollstrukturen, Flußdiagrammen, Ein-/Ausgabeanweisung. Theoretische Grundlagen der Informatik: Geschichte der Informatik, Einführung in die Rechnerarchitektur / von Neumann Architektur, Speicherverwaltung des PCs., Boolesche Algebra, Speicherverwaltung, Test basierter Softwareentwurf, Techniken der Fehlersuche, Software-Ergonomie. Studien- Prüfungsleistungen: Pro Semester drei Semester begleitende Prüfungen in elektronischer Form mit einer Gesamtdauer von 90Minuten, in denen sowohl die Theorie, als auch die praktischen Programmier-Fertigkeiten abgeprüft werden. Die Gesamtnote ergibt sich aus den gewichteten Teilnoten. Medienformen: Vorlesung, PC-Pool, Tutorium Literatur: Folien zur Vorlesung als Portable Document Format- Datei verfügbar unter: http://www.kramann.info/10_Informatik1 (Seite des Modulverantwortlichen) Willemer, A. [2009]: Einstieg in C++, 4. Aufl., Verlag Galileo Computing, Bonn; oder als Internetrecource: www.willemer.de/informatik/cpp/ Stroustrup, B. [2000]: Die C++ Programmiersprache	Inhalt:	Softwareentwicklung: Umgang mit einer Shell, Erstellen
Zahlensystemen, Schreiben einfacher Hauptprogramme, Prozedurale Anwendungsprogramme im Ingenieurwesen. Anwendung von C/C++- Datentypen, C/C++-Kontrollstrukturen, Flußdiagrammen, Ein-/Ausgabeanweisung. Theoretische Grundlagen der Informatik: Geschichte der Informatik, Einführung in die Rechnerarchitektur / von Neumann Architektur, Speicherverwaltung des PCs., Boolesche Algebra, Speicherverwaltung, Test basierter Softwareentwurf, Techniken der Fehlersuche, Software-Ergonomie. Studien- Prüfungsleistungen: Pro Semester drei Semester begleitende Prüfungen in elektronischer Form mit einer Gesamtdauer von 90Minuten, in denen sowohl die Theorie, als auch die praktischen Programmier-Fertigkeiten abgeprüft werden. Die Gesamtnote ergibt sich aus den gewichteten Teilnoten. Medienformen: Vorlesung, PC-Pool, Tutorium Literatur: Folien zur Vorlesung als Portable Document Format- Datei verfügbar unter: http://www.kramann.info/10_Informatik1 (Seite des Modulverantwortlichen) Willemer, A. [2009]: Einstieg in C++, 4. Aufl., Verlag Galileo Computing, Bonn; oder als Internetrecource: www.willemer.de/informatik/cpp/ Stroustrup, B. [2000]: Die C++ Programmiersprache		und Kompilieren von Quellcode, Starten von
Hauptprogramme, Prozedurale Anwendungsprogramme im Ingenieurwesen. Anwendung von C/C++- Datentypen, C/C++-Kontrollstrukturen, Flußdiagrammen, Ein-/Ausgabeanweisung. Theoretische Grundlagen der Informatik: Geschichte der Informatik, Einführung in die Rechnerarchitektur / von Neumann Architektur, Speicherverwaltung des PCs., Boolesche Algebra, Speicherverwaltung, Test basierter Softwareentwurf, Techniken der Fehlersuche, Software-Ergonomie. Studien- Prüfungsleistungen: Pro Semester drei Semester begleitende Prüfungen in elektronischer Form mit einer Gesamtdauer von 90Minuten, in denen sowohl die Theorie, als auch die praktischen Programmier-Fertigkeiten abgeprüft werden. Die Gesamtnote ergibt sich aus den gewichteten Teilnoten. Medienformen: Vorlesung, PC-Pool, Tutorium Folien zur Vorlesung als Portable Document Format-Datei verfügbar unter: http://www.kramann.info/10_Informatik1 (Seite des Modulverantwortlichen) Willemer, A. [2009]: Einstieg in C++ , 4. Aufl., Verlag Galileo Computing, Bonn; oder als Internetrecource: www.willemer.de/informatik/cpp/ Stroustrup, B. [2000]: Die C++ Programmiersprache		Programmen, Umrechnung zwischen verschiedenen
im Ingenieurwesen. Anwendung von C/C++- Datentypen, C/C++-Kontrollstrukturen, Flußdiagrammen, Ein-/Ausgabeanweisung. Theoretische Grundlagen der Informatik: Geschichte der Informatik, Einführung in die Rechnerarchitektur / von Neumann Architektur, Speicherverwaltung des PCs., Boolesche Algebra, Speicherverwaltung, Test basierter Softwareentwurf, Techniken der Fehlersuche, Software-Ergonomie. Studien- Prüfungsleistungen: Pro Semester drei Semester begleitende Prüfungen in elektronischer Form mit einer Gesamtdauer von 90Minuten, in denen sowohl die Theorie, als auch die praktischen Programmier-Fertigkeiten abgeprüft werden. Die Gesamtnote ergibt sich aus den gewichteten Teilnoten. Medienformen: Vorlesung, PC-Pool, Tutorium Literatur: Folien zur Vorlesung als Portable Document Format- Datei verfügbar unter: http://www.kramann.info/10_Informatik1 (Seite des Modulverantwortlichen) Willemer, A. [2009]: Einstieg in C++ , 4. Aufl., Verlag Galileo Computing, Bonn; oder als Internetrecource: www.willemer.de/informatik/cpp/ Stroustrup, B. [2000]: Die C++ Programmiersprache		Zahlensystemen, Schreiben einfacher
Datentypen, C/C++-Kontrollstrukturen, Flußdiagrammen, Ein-/Ausgabeanweisung. Theoretische Grundlagen der Informatik: Geschichte der Informatik, Einführung in die Rechnerarchitektur / von Neumann Architektur, Speicherverwaltung des PCs., Boolesche Algebra, Speicherverwaltung, Test basierter Softwareentwurf, Techniken der Fehlersuche, Software-Ergonomie. Studien- Prüfungsleistungen: Pro Semester drei Semester begleitende Prüfungen in elektronischer Form mit einer Gesamtdauer von 90Minuten, in denen sowohl die Theorie, als auch die praktischen Programmier-Fertigkeiten abgeprüft werden. Die Gesamtnote ergibt sich aus den gewichteten Teilnoten. Medienformen: Vorlesung, PC-Pool, Tutorium Folien zur Vorlesung als Portable Document Format- Datei verfügbar unter: http://www.kramann.info/10_Informatik1 (Seite des Modulverantwortlichen) Willemer, A. [2009]: Einstieg in C++ , 4. Aufl., Verlag Galileo Computing, Bonn; oder als Internetrecource: www.willemer.de/informatik/cpp/ Stroustrup, B. [2000]: Die C++ Programmiersprache		Hauptprogramme, Prozedurale Anwendungsprogramme
Flußdiagrammen, Ein-/Ausgabeanweisung. Theoretische Grundlagen der Informatik: Geschichte der Informatik, Einführung in die Rechnerarchitektur / von Neumann Architektur, Speicherverwaltung des PCs., Boolesche Algebra, Speicherverwaltung, Test basierter Softwareentwurf, Techniken der Fehlersuche, Software-Ergonomie. Studien- Prüfungsleistungen: Pro Semester drei Semester begleitende Prüfungen in elektronischer Form mit einer Gesamtdauer von 90Minuten, in denen sowohl die Theorie, als auch die praktischen Programmier-Fertigkeiten abgeprüft werden. Die Gesamtnote ergibt sich aus den gewichteten Teilnoten. Medienformen: Vorlesung, PC-Pool, Tutorium Folien zur Vorlesung als Portable Document Format-Datei verfügbar unter: http://www.kramann.info/10_Informatik1 (Seite des Modulverantwortlichen) Willemer, A. [2009]: Einstieg in C++ , 4. Aufl., Verlag Galileo Computing, Bonn; oder als Internetrecource: www.willemer.de/informatik/cpp/ Stroustrup, B. [2000]: Die C++ Programmiersprache		im Ingenieurwesen. Anwendung von C/C++-
Theoretische Grundlagen der Informatik: Geschichte der Informatik, Einführung in die Rechnerarchitektur / von Neumann Architektur, Speicherverwaltung des PCs., Boolesche Algebra, Speicherverwaltung, Test basierter Softwareentwurf, Techniken der Fehlersuche, Software-Ergonomie. Studien- Prüfungsleistungen: Pro Semester drei Semester begleitende Prüfungen in elektronischer Form mit einer Gesamtdauer von 90Minuten, in denen sowohl die Theorie, als auch die praktischen Programmier-Fertigkeiten abgeprüft werden. Die Gesamtnote ergibt sich aus den gewichteten Teilnoten. Medienformen: Vorlesung, PC-Pool, Tutorium Folien zur Vorlesung als Portable Document Format-Datei verfügbar unter: http://www.kramann.info/10_Informatik1 (Seite des Modulverantwortlichen) Willemer, A. [2009]: Einstieg in C++ , 4. Aufl., Verlag Galileo Computing, Bonn; oder als Internetrecource: www.willemer.de/informatik/cpp/ Stroustrup, B. [2000]: Die C++ Programmiersprache		Datentypen, C/C++-Kontrollstrukturen,
der Informatik, Einführung in die Rechnerarchitektur / von Neumann Architektur, Speicherverwaltung des PCs., Boolesche Algebra, Speicherverwaltung, Test basierter Softwareentwurf, Techniken der Fehlersuche, Software-Ergonomie. Studien- Prüfungsleistungen: Pro Semester drei Semester begleitende Prüfungen in elektronischer Form mit einer Gesamtdauer von 90Minuten, in denen sowohl die Theorie, als auch die praktischen Programmier-Fertigkeiten abgeprüft werden. Die Gesamtnote ergibt sich aus den gewichteten Teilnoten. Medienformen: Vorlesung, PC-Pool, Tutorium Literatur: Folien zur Vorlesung als Portable Document Format-Datei verfügbar unter: http://www.kramann.info/10_Informatik1 (Seite des Modulverantwortlichen) Willemer, A. [2009]: Einstieg in C++ , 4. Aufl., Verlag Galileo Computing, Bonn; oder als Internetrecource: www.willemer.de/informatik/cpp/ Stroustrup, B. [2000]: Die C++ Programmiersprache		Flußdiagrammen, Ein-/Ausgabeanweisung.
von Neumann Architektur, Speicherverwaltung des PCs., Boolesche Algebra, Speicherverwaltung, Test basierter Softwareentwurf, Techniken der Fehlersuche, Software-Ergonomie. Studien- Prüfungsleistungen: Pro Semester drei Semester begleitende Prüfungen in elektronischer Form mit einer Gesamtdauer von 90Minuten, in denen sowohl die Theorie, als auch die praktischen Programmier-Fertigkeiten abgeprüft werden. Die Gesamtnote ergibt sich aus den gewichteten Teilnoten. Medienformen: Vorlesung, PC-Pool, Tutorium Folien zur Vorlesung als Portable Document Format- Datei verfügbar unter: http://www.kramann.info/10_Informatik1 (Seite des Modulverantwortlichen) Willemer, A. [2009]: Einstieg in C++ , 4. Aufl., Verlag Galileo Computing, Bonn; oder als Internetrecource: www.willemer.de/informatik/cpp/ Stroustrup, B. [2000]: Die C++ Programmiersprache		Theoretische Grundlagen der Informatik: Geschichte
PCs., Boolesche Algebra, Speicherverwaltung, Test basierter Softwareentwurf, Techniken der Fehlersuche, Software-Ergonomie. Studien- Prüfungsleistungen: Pro Semester drei Semester begleitende Prüfungen in elektronischer Form mit einer Gesamtdauer von 90Minuten, in denen sowohl die Theorie, als auch die praktischen Programmier-Fertigkeiten abgeprüft werden. Die Gesamtnote ergibt sich aus den gewichteten Teilnoten. Medienformen: Vorlesung, PC-Pool, Tutorium Folien zur Vorlesung als Portable Document Format-Datei verfügbar unter: http://www.kramann.info/10_Informatik1 (Seite des Modulverantwortlichen) Willemer, A. [2009]: Einstieg in C++ , 4. Aufl., Verlag Galileo Computing, Bonn; oder als Internetrecource: www.willemer.de/informatik/cpp/ Stroustrup, B. [2000]: Die C++ Programmiersprache		der Informatik, Einführung in die Rechnerarchitektur /
basierter Softwareentwurf, Techniken der Fehlersuche, Software-Ergonomie. Studien- Prüfungsleistungen: Pro Semester drei Semester begleitende Prüfungen in elektronischer Form mit einer Gesamtdauer von 90Minuten, in denen sowohl die Theorie, als auch die praktischen Programmier-Fertigkeiten abgeprüft werden. Die Gesamtnote ergibt sich aus den gewichteten Teilnoten. Medienformen: Vorlesung, PC-Pool, Tutorium Folien zur Vorlesung als Portable Document Format-Datei verfügbar unter: http://www.kramann.info/10_Informatik1 (Seite des Modulverantwortlichen) Willemer, A. [2009]: Einstieg in C++ , 4. Aufl., Verlag Galileo Computing, Bonn; oder als Internetrecource: www.willemer.de/informatik/cpp/ Stroustrup, B. [2000]: Die C++ Programmiersprache		von Neumann Architektur, Speicherverwaltung des
Software-Ergonomie. Studien- Prüfungsleistungen: Pro Semester drei Semester begleitende Prüfungen in elektronischer Form mit einer Gesamtdauer von 90Minuten, in denen sowohl die Theorie, als auch die praktischen Programmier-Fertigkeiten abgeprüft werden. Die Gesamtnote ergibt sich aus den gewichteten Teilnoten. Medienformen: Vorlesung, PC-Pool, Tutorium Folien zur Vorlesung als Portable Document Format-Datei verfügbar unter: http://www.kramann.info/10_Informatik1 (Seite des Modulverantwortlichen) Willemer, A. [2009]: Einstieg in C++ , 4. Aufl., Verlag Galileo Computing, Bonn; oder als Internetrecource: www.willemer.de/informatik/cpp/ Stroustrup, B. [2000]: Die C++ Programmiersprache		PCs., Boolesche Algebra, Speicherverwaltung, Test
Studien- Prüfungsleistungen: Pro Semester drei Semester begleitende Prüfungen in elektronischer Form mit einer Gesamtdauer von 90Minuten, in denen sowohl die Theorie, als auch die praktischen Programmier-Fertigkeiten abgeprüft werden. Die Gesamtnote ergibt sich aus den gewichteten Teilnoten. Medienformen: Vorlesung, PC-Pool, Tutorium Folien zur Vorlesung als Portable Document Format-Datei verfügbar unter: http://www.kramann.info/10_Informatik1 (Seite des Modulverantwortlichen) Willemer, A. [2009]: Einstieg in C++ , 4. Aufl., Verlag Galileo Computing, Bonn; oder als Internetrecource: www.willemer.de/informatik/cpp/ Stroustrup, B. [2000]: Die C++ Programmiersprache		basierter Softwareentwurf, Techniken der Fehlersuche,
elektronischer Form mit einer Gesamtdauer von 90Minuten, in denen sowohl die Theorie, als auch die praktischen Programmier-Fertigkeiten abgeprüft werden. Die Gesamtnote ergibt sich aus den gewichteten Teilnoten. Medienformen: Vorlesung, PC-Pool, Tutorium Folien zur Vorlesung als Portable Document Format- Datei verfügbar unter: http://www.kramann.info/10_Informatik1 (Seite des Modulverantwortlichen) Willemer, A. [2009]: Einstieg in C++ , 4. Aufl., Verlag Galileo Computing, Bonn; oder als Internetrecource: www.willemer.de/informatik/cpp/ Stroustrup, B. [2000]: Die C++ Programmiersprache		Software-Ergonomie.
90Minuten, in denen sowohl die Theorie, als auch die praktischen Programmier-Fertigkeiten abgeprüft werden. Die Gesamtnote ergibt sich aus den gewichteten Teilnoten. Medienformen: Vorlesung, PC-Pool, Tutorium Folien zur Vorlesung als Portable Document Format-Datei verfügbar unter: http://www.kramann.info/10_Informatik1 (Seite des Modulverantwortlichen) Willemer, A. [2009]: Einstieg in C++ , 4. Aufl., Verlag Galileo Computing, Bonn; oder als Internetrecource: www.willemer.de/informatik/cpp/ Stroustrup, B. [2000]: Die C++ Programmiersprache	Studien- Prüfungsleistungen:	Pro Semester drei Semester begleitende Prüfungen in
praktischen Programmier-Fertigkeiten abgeprüft werden. Die Gesamtnote ergibt sich aus den gewichteten Teilnoten. Medienformen: Vorlesung, PC-Pool, Tutorium Literatur: Folien zur Vorlesung als Portable Document Format- Datei verfügbar unter: http://www.kramann.info/10_Informatik1 (Seite des Modulverantwortlichen) Willemer, A. [2009]: Einstieg in C++ , 4. Aufl., Verlag Galileo Computing, Bonn; oder als Internetrecource: www.willemer.de/informatik/cpp/ Stroustrup, B. [2000]: Die C++ Programmiersprache		elektronischer Form mit einer Gesamtdauer von
werden. Die Gesamtnote ergibt sich aus den gewichteten Teilnoten. Medienformen: Vorlesung, PC-Pool, Tutorium Folien zur Vorlesung als Portable Document Format-Datei verfügbar unter: http://www.kramann.info/10_Informatik1 (Seite des Modulverantwortlichen) Willemer, A. [2009]: Einstieg in C++ , 4. Aufl., Verlag Galileo Computing, Bonn; oder als Internetrecource: www.willemer.de/informatik/cpp/ Stroustrup, B. [2000]: Die C++ Programmiersprache		90Minuten, in denen sowohl die Theorie, als auch die
gewichteten Teilnoten. Medienformen: Vorlesung, PC-Pool, Tutorium Folien zur Vorlesung als Portable Document Format- Datei verfügbar unter: http://www.kramann.info/10_Informatik1 (Seite des Modulverantwortlichen) Willemer, A. [2009]: Einstieg in C++ , 4. Aufl., Verlag Galileo Computing, Bonn; oder als Internetrecource: www.willemer.de/informatik/cpp/ Stroustrup, B. [2000]: Die C++ Programmiersprache		praktischen Programmier-Fertigkeiten abgeprüft
Medienformen: Vorlesung, PC-Pool, Tutorium Folien zur Vorlesung als Portable Document Format- Datei verfügbar unter: http://www.kramann.info/10_Informatik1 (Seite des Modulverantwortlichen) Willemer, A. [2009]: Einstieg in C++ , 4. Aufl., Verlag Galileo Computing, Bonn; oder als Internetrecource: www.willemer.de/informatik/cpp/ Stroustrup, B. [2000]: Die C++ Programmiersprache		werden. Die Gesamtnote ergibt sich aus den
Literatur: Folien zur Vorlesung als Portable Document Format- Datei verfügbar unter: http://www.kramann.info/10_Informatik1 (Seite des Modulverantwortlichen) Willemer, A. [2009]: Einstieg in C++ , 4. Aufl., Verlag Galileo Computing, Bonn; oder als Internetrecource: www.willemer.de/informatik/cpp/ Stroustrup, B. [2000]: Die C++ Programmiersprache		gewichteten Teilnoten.
Datei verfügbar unter: http://www.kramann.info/10_Informatik1 (Seite des Modulverantwortlichen) Willemer, A. [2009]: Einstieg in C++ , 4. Aufl., Verlag Galileo Computing, Bonn; oder als Internetrecource: www.willemer.de/informatik/cpp/ Stroustrup, B. [2000]: Die C++ Programmiersprache	Medienformen:	Vorlesung, PC-Pool, Tutorium
http://www.kramann.info/10_Informatik1 (Seite des Modulverantwortlichen) Willemer, A. [2009]: Einstieg in C++ , 4. Aufl., Verlag Galileo Computing, Bonn; oder als Internetrecource: www.willemer.de/informatik/cpp/ Stroustrup, B. [2000]: Die C++ Programmiersprache	Literatur:	Folien zur Vorlesung als Portable Document Format-
Modulverantwortlichen) Willemer, A. [2009]: Einstieg in C++, 4. Aufl., Verlag Galileo Computing, Bonn; oder als Internetrecource: www.willemer.de/informatik/cpp/ Stroustrup, B. [2000]: Die C++ Programmiersprache		Datei verfügbar unter:
Willemer, A. [2009]: Einstieg in C++, 4. Aufl., Verlag Galileo Computing, Bonn; oder als Internetrecource: www.willemer.de/informatik/cpp/ Stroustrup, B. [2000]: Die C++ Programmiersprache		http://www.kramann.info/10_Informatik1 (Seite des
Galileo Computing, Bonn; oder als Internetrecource: www.willemer.de/informatik/cpp/ Stroustrup, B. [2000]: Die C++ Programmiersprache		Modulverantwortlichen)
www.willemer.de/informatik/cpp/ Stroustrup, B. [2000]: Die C++ Programmiersprache		Willemer, A. [2009]: Einstieg in C++, 4. Aufl., Verlag
Stroustrup, B. [2000]: Die C++ Programmiersprache		Galileo Computing, Bonn; oder als Internetrecource:
i i i i i i i i i i i i i i i i i i i		www.willemer.de/informatik/cpp/
(2000), Adison Wesley, 3. Aufl., München.		Stroustrup, B. [2000]: Die C++ Programmiersprache
		(2000), Adison Wesley, 3. Aufl., München.

Informatik 2

Studienrichtung:	IEIT, IAT, IMT, IOE
Modulbezeichnung:	Informatik 2
	Informatics 2
ggf. Kürzel	INFO2
ggf. Untertitel	
ggf. Lehrveranstaltungen:	
Studiensemester:	2
Angebotsturnus:	jährlich im Sommersemester
Modulverantwortliche(r):	Prof. DrIng. Guido Kramann
Dozent(in):	Prof. DrIng. Guido Kramann, Jean Luther Muluem
Sprache:	deutsch
Zuordnung zum Curriculum:	IEIT, 2. Semester, Pflichtfach
	IAT, 2. Semester, Pflichtfach
	IMT, 2. Semester, Pflichtfach
	IOE, 2. Semester, Pflichtfach
Lehrform / SWS:	2 SWS Vorlesung, 2 SWS Übung, 1 SWS Labor
Arbeitsaufwand:	150 h, davon 75 h Präsenz- und 75 h Eigenstudium
Kreditpunkte:	5
Voraussetzungen nach	keine
Prüfungsordnung:	
Empfohlene Voraussetzungen:	Informatik 1 oder vergleichbare Grundkenntnisse
Angestrebte Lernergebnisse:	Die Studierenden sollen in der Verwendung einer
	höheren Programmiersprache vertiefte Kenntnisse
	erlangt haben, z.B. über die Lebensdauer und den
	Speicherbedarf unterschiedlicher Repräsentationsarten
	von Daten und der Performance unterschiedlicher
	Umsetzungen von Methoden. Sie sollen dazu fähig sein,
	Effizienz-Bewertungen einer Softwarelösung
	vorzunehmen.
	Die Studierenden sollen ferner in elementarer Weise in
	der Lage sein, objektorientierten Software-Entwurf zu
	betreiben. In diesem Zusammenhang sollen sie bei der
	Planung einer neuen Software selbständig
	Modularisierungen vorzunehmen können, z.B. in
	Berechnungsteil und Benutzerschnittstelle. Kenntnisse
	der objektorientierten Paradigmen und deren
	Repräsentation in der erlernten Computersprache, wie
	Vererbung und Kapselung, sollen ihnen dabei
lab alk	zugutekommen.
Inhalt:	Softwareentwicklung: Erstellen prozeduraler
	modularisierter Anwendungsprogramme. Elementare
	Einführung in die objektorientierte Programmierung.
	Gewicht 60%.
	Theoretische Grundlagen der Informatik: Komplexität

	T I
	von Algorithmen, Typen von Programmiersprachen,
	Techniken der Fehlersuche, Zeiger, Funktionen,
	eindimensionale Felder, Gültigkeitsbereich von
	Variablen, call by value / call by reference, Begriff des
	Algorithmus, Libraries. Gewicht 40 %.
Studien- Prüfungsleistungen:	Pro Semester drei Semester begleitende Prüfungen in
	elektronischer Form mit einer Gesamtdauer von
	mindestens 90Minuten, in denen sowohl die Theorie,
	als auch die praktischen Programmier-Fertigkeiten
	abgeprüft werden. Die Gesamtnote ergibt sich aus den
	gewichteten Teilnoten.
Medienformen:	Vorlesung, PC-Pool, Tutorium
Literatur:	Folien zur Vorlesung als Portable Document Format-
	Datei verfügbar unter:
	http://www.kramann.info/10_Informatik1 (Seite des
	Modulverantwortlichen)
	Willemer, A. [2009]: Einstieg in C++, 4. Aufl., Verlag
	Galileo Computing, Bonn; oder als Internetrecource:
	www.willemer.de/informatik/cpp/
	Stroustrup, B. [2000]: Die C++ Programmiersprache
	(2000), Adison Wesley, 3. Aufl., München.

Ingenieurmathematik 1

Studienrichtung:	IEIT, IAT, IMT, IOE, WEIT, WEUT, WMT
Modulbezeichnung:	Ingenieurmathematik 1
, and the second	Engineering Mathematics 1
ggf. Kürzel	
ggf. Untertitel	
ggf. Lehrveranstaltungen:	
Studiensemester:	1
Angebotsturnus:	jährlich im Wintersemester
Modulverantwortliche(r):	Prof. Dr. rer. nat. Roland Uhl
Dozent(in):	Prof. Dr. rer. nat. Roland Uhl, Dr. Josef Esser
Sprache:	deutsch
Zuordnung zum Curriculum:	IEIT, 1. Semester, Pflichtfach
3	IAT, 1. Semester, Pflichtfach
	IMT, 1. Semester, Pflichtfach
	IOE, 1. Semester, Pflichtfach
	WEIT, 1. Semester, Pflichtfach
	WMT, 1. Semester, Pflichtfach
	WEUT, 1. Semester, Pflichtfach
Lehrform / SWS:	2 SWS Vorlesung, 2 SWS Übung, 1 SWS Labor
Arbeitsaufwand:	150 h, davon 75 h Präsenz- und 75 h Eigenstudium
Kreditpunkte:	5
Voraussetzungen nach	keine
Prüfungsordnung:	
Empfohlene Voraussetzungen:	Gute Kenntnisse und Fertigkeiten im Rahmen der
	Schulmathematik
Angestrebte Lernergebnisse:	Vorlesung und Übung Ingenieurmathematik 1:
	Die Studierenden sind mit mathematischen
	Schreibweisen und Formulierungen vertraut und
	können diese anwenden.
	Sie beherrschen sicher das Rechnen mit komplexen
	Zahlen, Vektoren und Matrizen.
	Sie besitzen die Fähigkeit zur selbstkritischen
	Überprüfung von mathematischen Ergebnissen.
	Sie besitzen ein Grundverständnis für verschiedene
	Anwendungen der Mathematik, beispielsweise
	komplexe Zahlen bei der Wechselstromrechnung,
	Vektoren zur Beschreibung geometrischer,
	physikalischer und technischer Sachverhalte.
	Labor Ingenieurmathematik 1:
	Die Studierenden besitzen die Fähigkeit zur Lösung
	einfacher mathematischer Probleme mit einem
	gängigen Computeralgebraprogramm inklusiv der
	Dokumentation des Rechengangs.
Inhalt:	Vorlesung und Übung Ingenieurmathematik 1:

	Fachhochschulen
	Fetzer/Fränkel: Mathematik, Lehrbuch für
	Naturwissenschaftler, Band 1, 2, Vieweg-Verlag
Literatur:	Papula, Lothar: Mathematik für Ingenieure und
Medienformen:	Tafel, Beamer, Manuskript in pdf-Form
Studien- Prüfungsleistungen:	Klausur
	wird an Einzelplätzen am PC geübt.
	Fachsemesters. Der Umgang mit dem CAS-Programm
	ingenieurwissenschaftlicher Aufgabenstellungen des 1.
	mathematischer, physikalischer und
	"SMath-Studio") am Beispiel relevanter
	Computeralgebrasystem (CAS, etwa "Maxima" oder
	Labor Ingenieurmathematik 1:
	Matrix, Determinanten
	Matrizenrechnung, lineare Gleichungssysteme, inverse
	Vektorräume und Matrizen: Rn und Cn, Matrizenbegriff,
	Spatprodukt, Vektorprodukt
	Skalaren, Ortsvektoren, Koordinaten, Skalarprodukt,
	Vektorbegriff, Vektoraddition und -multiplikation mit
	Vektorrechnung in der Ebene und im Raum:
	Linearfaktorzerlegung
	komplexe Polynome, Fundamentalsatz der Algebra,
	Zahlenebene, Eulersche Formel, Exponentialdarstellung,
	Komplexe Zahlen: der Körper C, komplexe
	und Brüche, grundlegende Rechenregeln
	Algebraische Strukturen: Gruppen, Körper, Potenzen
	Satz, trigonometrische und Arcusfunktionen
	Bijektivität, Umkehrfunktion, Verkettung, binomischer
	Mengenoperationen, Funktionsbegriff, Injektivität und
	von Mengen, Teilmengenbeziehung,
	Aussagenoperationen, Mengenbegriff, Schreibweisen
	Logik und Mengenlehre: Aussagen,

Ingenieurmathematik 2

Studienrichtung:	IEIT, IAT, IMT, IOE, WEIT, WEUT, WMT
Modulbezeichnung:	Ingenieurmathematik 2
	Engineering Mathematics 2
ggf. Kürzel	
ggf. Untertitel	
ggf. Lehrveranstaltungen:	
Studiensemester:	2
Angebotsturnus:	jährlich im Sommersemester
Modulverantwortliche(r):	Prof. Dr. rer. nat. Roland Uhl
Dozent(in):	Prof. Dr. rer. nat. Roland Uhl, Dr. Josef Esser
Sprache:	deutsch
Zuordnung zum Curriculum:	IEIT, 2. Semester, Pflichtfach
_	IAT, 2. Semester, Pflichtfach
	IMT, 2. Semester, Pflichtfach
	IOE, 2. Semester, Pflichtfach
	WEIT, 2. Semester, Pflichtfach
	WMT, 2. Semester, Pflichtfach
	WEUT, 2. Semester, Pflichtfach
Lehrform / SWS:	3 SWS Vorlesung, 1 SWS Übung, 1 SWS Labor
Arbeitsaufwand:	150 h, davon 75 h Präsenz- und 75 h Eigenstudium
Kreditpunkte:	5
Voraussetzungen nach	
Prüfungsordnung:	
Empfohlene Voraussetzungen:	Gute Kenntnisse und Fertigkeiten im Rahmen der
	Schulmathematik
Angestrebte Lernergebnisse:	Die Studierenden beherrschen die grundlegenden
	Rechentechniken beim Differenzieren von Funktionen
	und Bestimmen von Extremwerten.
	Sie besitzen anwendungsbereite Kenntnisse in der
	Integralrechnung für Funktionen mit einer Variablen.
	Sie beherrschen die wichtigsten Integrationsmethoden
	(Substitution, partielle Integration,
	Partialbruchzerlegung).
	Sie kennen die wichtigsten Eigenschaften unendlicher
	Reihen wie Konvergenz und Approximation und können
	Konvergenzkriterien anwenden.
Inhalt:	Ergänzungen zu Vektorräumen: Linearkombinationen,
	lineare Unabhängigkeit, Basen, Basiswechsel,
	Dimensionen
	Lineare Abbildungen: Begriff der linearen Abbildung,
	Drehungen im R2 und R3, Eigenwertprobleme
	Stetigkeit und Grenzwerte im Eindimensionalen:
	Stetigkeitsbegriff, Extrem- und Zwischenwertsatz,
	Grenzwertbegriffe, Exponential-, Logarithmus- und

	Potenzfunktionen
	Differenzialrechnung im Eindimensionalen:
	Ableitungsbegriff, Rechenregeln und Differenziation,
	Bestimmung von Extrema, Ableitungen höherer
	Ordnung, numerisches Lösen von Gleichungen
	Integration von Funktionen einer reellen Variablen:
	Substitution, partielle Integration,
	Partialbruchzerlegung, uneigentliche Integrale,
	numerische Integration (Regel von SIMPSON),
	Anwendungen des bestimmten Integrals beispielsweise
	bei mechanischen Momenten und in der Elektrotechnik
	Reihen: Zahlenreihen, Konvergenzkriterien,
	Potenzreihen, TAYLOR-Reihen, die Reihen der
	wichtigsten elementaren Funktionen, FOURIER-Reihen,
	Anwendungen auf gerade und ungerade Funktionen
Studien- Prüfungsleistungen:	Klausur
Medienformen:	Tafel, Beamer, Manuskript in pdf-Form
Literatur:	Papula, Lothar: Mathematik für Ingenieure und
	Naturwissenschaftler, Band 1-3 Vieweg-Verlag
	Fetzer/Fränkel: Mathematik, Lehrbuch für
	Fachhochschulen

Ingenieurmathematik 3

Studienrichtung:	IEIT, IAT, IMT, IOE
Modulbezeichnung:	Ingenieurmathematik 3
	Engineering Mathematics 3
ggf. Kürzel	
ggf. Untertitel	
ggf. Lehrveranstaltungen:	
Studiensemester:	3
Angebotsturnus:	jährlich im Wintersemester
Modulverantwortliche(r):	Prof. Dr. rer. nat. Roland Uhl
Dozent(in):	Prof. Dr. habil. Jürgen Socolowsky, Dr. Josef Esser
Sprache:	deutsch
Zuordnung zum Curriculum:	IEIT, 3. Semester, Pflichtfach
	IAT, 3. Semester, Pflichtfach
	IMT, 3. Semester, Pflichtfach
	IOE, 3. Semester, Pflichtfach
Lehrform / SWS:	3 SWS Vorlesung, 1 SWS Übung
Arbeitsaufwand:	150 h, davon 60 h Präsenz- und 90 h Eigenstudium
Kreditpunkte:	5
Voraussetzungen nach	
Prüfungsordnung:	
Empfohlene Voraussetzungen:	
Angestrebte Lernergebnisse:	Die Studierenden können partielle Ableitungen sicher
	berechnen und diese bei Extremwertaufgaben für
	Funktionen mehrerer reeller Variabler anwenden.
	Sie beherrschen Kurvenintegrale und kennen deren
	Anwendung in Elektrotechnik und Mechanik.
	Sie können wichtige Klassen gewöhnlicher
	Differentialgleichungen der Physik und Technik
	selbständig analytisch lösen.
	Sie können numerische Verfahren dort einzusetzen, wo
	analytische Lösungsverfahren nicht existieren.
	Sie kennen die Bedeutung von Bereichsintegralen und
	können diese berechnen.
	Sie beherrschen die Hauptbegriffe der deskriptiven
	Statistik (Standardabweichung, lineare Korrelation und
	Regression).
Inhalt:	Differentialrechnung für Funktionen mehrerer reeller
	Variabler: partielle Ableitungen, Gradient, totales
	Differential und Linearisierung, Extremwertaufgaben,
	erweiterte Kettenregel
	Kurvenintegrale: Wegunabhängigkeit, Anwendungen in
	der Vektoranalysis
	Gewöhnliche Differentialgleichungen: allgemeine
	Lösungstheorie, separierbare Gleichungen, lineare

	Clairly was a sound assets as a survey of all a
	Gleichungen und -systeme, numerische
	Lösungsverfahren
	Bereichsintegrale: Definition, Berechnung durch
	iterierte Integrale
	Grundbegriffe der deskriptiven Statistik: Mittelwerte,
	Standardabweichung, lineare Korrelation und
	Regression
Studien- Prüfungsleistungen:	Klausur
Medienformen:	Tafel, Beamer, Manuskript in pdf-Form
Literatur:	Papula, Lothar: Mathematik für Ingenieure und
	Naturwissenschaftler, Band 2, 3, Vieweg-Verlag
	Fetzer/Fränkel: Mathematik, Lehrbuch für
	Fachhochschulen
	Sachs, Michael: Wahrscheinlichkeitsrechnung und
	Statistik für Ingeni-eurstudenten an Fachhochschulen,
	Fachbuchverlag

Interdisziplinäres Projekt 1

Studienrichtung:	IEIT, IMT, WEIT, WEUT, WMT
Modulbezeichnung:	Interdisziplinäres Projekt 1
	Interdisciplinary Project 1
ggf. Kürzel	
ggf. Untertitel	
ggf. Lehrveranstaltungen:	
Studiensemester:	4
Angebotsturnus:	jährlich im Sommersemester
Modulverantwortliche(r):	N.N.
Dozent(in):	
Sprache:	deutsch
Zuordnung zum Curriculum:	IEIT, 4. Semester, Pflichtfach
	IMT, 4. Semester, Pflichtfach
	WEIT, 4. Semester, Pflichtfach
	WMT, 4. Semester, Pflichtfach
	WEUT, 4. Semester, Pflichtfach
Lehrform / SWS:	1 SWS Vorlesung, 1 SWS Übung, 2 SWS Projekt;
	Einführende Vorstellung und Erläuterungen,
	Selbststudium, Teamarbeit, regelmäßige Betreuung und
	Diskussion mit den Dozenten
Arbeitsaufwand:	150 h, davon 60 h Präsenz- und 90 h Eigenstudium
Kreditpunkte:	5
Voraussetzungen nach	keine
Prüfungsordnung:	
Empfohlene Voraussetzungen:	Abgeschlossenes Grundstudium
Angestrebte Lernergebnisse:	Im Modul Interdisziplinäres Projekt erwerben die
	Studierenden durch gemeinsame, interdisziplinäre
	Bearbeitung einer praxisnahen Aufgabe in einer Gruppe
	von 8-10 Studierenden die Fähigkeit zur
	Projektbearbeitung in der industriellen Ingenieurpraxis
	eines Unternehmens. Dazu zählen Methoden zur
	Ideenfindung und deren Bewertung, methodisch-
	strategische Projektplanung und Durchführung,
	Projektorganisation und Problemanalyse und der
	dokumentierende Projektabschluss.
	Die Studierenden beherrschen die:
	gemeinsame, interdisziplinäre Bearbeitung einer
	praxisnahen Aufgabe: Identifikation mit der Aufgabe
	(Literatur- und Marktrecherche, Stand der Technik, des
	Umfeldes), Projektdefinition und Projektziel im Team
	festlegen
	Anwendung von Methoden zur Ideenfindung und
	deren Bewertung: Variantendiskussionen
	(Brainstorming), morphologischer Kasten

	methodisch-strategische Projektplanung und
	Durchführung: Projektgliederung und
	Meilensteinplanung, Feinstrukturierung in Teilvorgänge
	und Verantwortlichkeiten, Projektplanung mittels
	Projektablaufplänen und Identifizierung der
	Arbeitspakete, Kapazitätsplan, Kostenplan
	Projektorganisation und Problemanalyse:
	Wahrnehmung von Führungsaufgaben (Koordination,
	Teamleitung, Festlegung von Verbindlichkeiten und
	Zuständigkeiten zur Lösung der Aufgabe), Erweiterung
	der sozialen Kompetenz aller Teammitglieder,
	Entwicklung einer interdisziplinären Streitkultur,
	praktische Anwendung von Motivations-
	,Gesprächsführungs- und
	Entscheidungsfindungstechniken)
	Projektabschluss: Wissenschaftliche Zwischen- und
	Abschlussberichte erstellen sowie Präsentationen
	vorbereiten und durchführen
Inholt.	
Inhalt:	Die konkreten Inhalte ergeben sich aus den
	Problemstellungen der Unternehmensprojekte.
	Beispiele bereits abgeschlossener Projekte:
	Erstellung eines Lärmkatasters für eine Beschuldtage bei der
	Produktionshalle durch Ermittlung von
	Lärmschwerpunkten für Heidelberger Druckmaschinen
	AG und ZF Brandenburg
	• Erarbeitung einer umweltrelevanten Rechtsdatei unter
	besonderer Berücksichtigung der Gesetzgebung
	Produktentwicklung und parallele Erstellung einer
	Marktanalyse sowie eines Marketingkonzepts auf der
	Grundlage vorgegebener Produktideen
	(Wasserkraftgenerator, Windkraftgenerator,
	Spezialschleifmaschine)
	Verfahrensentwicklung zur Stoßdämpferdiagnose am
	ICE I
	Erarbeitung von Vorschlägen zur Reduzierung von
	Werkzeug- und Teilebeständen in der Fertigung
	Überprüfung und Bewertung des Wartungsintervalls
	der Belüftungsanlage in der Kläranlage Briest (Kosten-
	NutzenAnalyse)
	Montage – und zugehörige Logistikabläufe in der
	neuen Sechsgangmontagelinie bei ZF Brandenburg:
	Technischwirtschaftliche Optimierungsansätze
	Herstellung von Biokraftstoffen aus nachwachsenden
	Rohstoffen – eine Machbarkeitsstudie für den
	Industriestandort Premnitz
	Senkung der Lärmemissionen der Produktionshalle
	durch Ermittlung von Lärmschwerpunkten und

	Schallschutzmaßnahmen für das Unternehmen ISAF
	Drahtwerke GmbH Brielow
	Analyse und Optimierung von betrieblichen
	Geschäftsprozessen in einem KMU, Mela Glöwen
	Ist-Analyse und Entwicklung eines neuen Konzeptes
	zur Bereitstellung von Heizungsenergie für ein Kinder-
	und Jugenderholungszentrum, Bollmannsruh
	Untersuchungen der Möglichkeiten zur Einführung
	eines neuartigen Abfallwirtschaftskonzeptes an der FHB
	Analyse der physischen und psychischen Belastungen
	an Montagearbeitsplätzen – Defizite und Potentiale im
	Hinblick auf die alternsgerechte Gestaltung der Arbeit
	am Montageband DT 11, ZF Brandenburg
Studien- Prüfungsleistungen:	Vortrag und schriftliche Arbeit; Schriftliche
	Dokumentation der Projektarbeit, Präsentation,
	mündliche Prüfung
Medienformen:	Je nach Aufgabenstellung z. B. Literatur,
	Firmenprospekte, Laboreinrichtungen und Messgeräte,
	Stoffdaten, regelmäßige Beratung der Projektgruppe
Literatur:	Spezielle Literatur wird je nach Aufgabenstellung
	empfohlen

Interdisziplinäres Projekt 2

Studienrichtung:	IEIT, IMT, WEIT, WEUT, WMT, MPE, MAnT, MEVT
Modulbezeichnung:	Interdisziplinäres Projekt 2
	Interdisciplinary Project 2
ggf. Kürzel	
ggf. Untertitel	
ggf. Lehrveranstaltungen:	
Studiensemester:	6
Angebotsturnus:	jährlich im Sommersemester
Modulverantwortliche(r):	N.N. (Konstruktionstechnik)
Dozent(in):	N.N. (Konstruktionstechnik)
Sprache:	deutsch
Zuordnung zum Curriculum:	IEIT, 6. Semester, Pflichtfach
	IMT, 6. Semester, Pflichtfach
	WEIT, 6. Semester, Pflichtfach
	WMT, 6. Semester, Pflichtfach
	WEUT, 6. Semester, Pflichtfach
	MPE, 6. Semester, Pflichtfach
	MAnT, 6. Semester, Pflichtfach
	MEVT, 6. Semester, Pflichtfach
Lehrform / SWS:	1 SWS Vorlesung, 1 SWS Übung, 2 SWS Projekt;
	Einführende Vorstellung und Erläuterungen,
	Selbststudium, Teamarbeit, regelmäßige Betreuung und
	Diskussion mit den Dozenten
Arbeitsaufwand:	150 h, davon 60 h Präsenz- und 90 h Eigenstudium
Kreditpunkte:	5
Voraussetzungen nach	keine
Prüfungsordnung:	
Empfohlene Voraussetzungen:	Abgeschlossenes Grundstudium
Angestrebte Lernergebnisse:	Die Studierenden erhalten im Rahmen eines
	technischen Entwicklungsprojekts einen Einblick in die
	Projektarbeit und lernen die Phasen des
	Produktentwicklungsprozesses kennen. Sie bauen ihre
	Kompetenz in der fachlichen Kommunikation aus
	(Recherche, Berichte, Präsentationen, Zeichnungen).
Inhalt:	Entwicklung, Fertigung, Inbetriebnahme und Erprobung
	von CNC-gesteuerten Kleinmaschinen, wie 3D-Drucker,
	Fräsen, Gravurgeräten, Schneidplottern,
	Koordinatenmessmaschinen und ähnlichem.
	Mechanische Konstruktion für das Maschinengestell
	Auswahl und Auslegung von Antriebstechnik für die
	Bewegungsachsen und Arbeitswerkzeuge
	 Prozesskette vom CAD-Modell zum Bewegungsablauf
	Analysieren des Verhaltens und Ermitteln des
	Einflusses auf die Fertigungsqualität

	Bei Übernahme der Materialkosten können die
	Studierenden ihre eigene Maschine bauen.
	Analyse der Aufgabenstellung, Teambildung,
	Konzeptentwicklung, Konzeptpräsentation,
	Detailkonstruktion und Dokumentation. Teilefertigung
	durch die Zentralwerkstatt der THB und in der Offenen
	Werkstatt, Aufbau und Inbetriebnahme, Demonstration
	und Vermessung.
Studien- Prüfungsleistungen:	Vortrag und schriftliche Arbeit; Schriftliche
	Dokumentation der Projektarbeit, Präsentation,
	mündliche Prüfung
Medienformen:	Je nach Aufgabenstellung z.B. Literatur,
	Firmenprospekte, Laboreinrichtungen und Messgeräte,
	Stoffdaten, regelmäßige Beratung der Projektgruppe
Literatur:	Spezielle Literatur wird je nach Aufgabenstellung
	empfohlen

Konstruktionslehre

Studienrichtung:	IEIT, IAT, IMT, IOE
Modulbezeichnung:	Konstruktionslehre
	Mechanical Design
ggf. Kürzel	
ggf. Untertitel	
ggf. Lehrveranstaltungen:	
Studiensemester:	1
Angebotsturnus:	jährlich im Wintersemester
Modulverantwortliche(r):	N.N. (Konstruktionstechnik)
Dozent(in):	DiplIng. Steffen Rotsch
Sprache:	deutsch
Zuordnung zum Curriculum:	IEIT, 1. Semester, Pflichtfach
	IAT, 1. Semester, Pflichtfach
	IMT, 1. Semester, Pflichtfach
	IOE, 1. Semester, Pflichtfach
Lehrform / SWS:	2 SWS Vorlesung, 2 SWS Übung, 1 SWS Labor
Arbeitsaufwand:	150 h, davon 75 h Präsenz- und 75 h Eigenstudium
Kreditpunkte:	5
Voraussetzungen nach	keine
Prüfungsordnung:	
Empfohlene Voraussetzungen:	Kenntnisse der Geometrie, projektives Zeichnen,
	praktische Kenntnisse Metallbearbeitung aus
	Lehrausbildung oder Vorpraktikum
Angestrebte Lernergebnisse:	Die Studierenden können einen technischen
	Sachverhalt in einer freihändigen Skizze darstellen.
	Sie können eine gegebene technische Zeichnung lesen
	und erkennen die Zuordnung der Ansichten.
	Sie identifizieren die Maßangaben die
	Zeichnungsangaben von Werkstoffen und Halbzeugen
	sowie die Kennzeichnung der Oberflächenrauheit eines
	in einer Zeichnung dargestellten Bauteils.
	Sie können Toleranzangaben in technischen
	Zeichnungen identifizieren und erläutern.
	Sie können eine technische Zeichnung für einfache
	Dreh- und Frästeile ausführen unter Berücksichtigung
	der Regeln zur Abwicklung der Ansichten, ein
	Bezugssystem festlegen und Maße fertigungs- und
	funktionsgerecht eintragen. Sie können eine
	Werkstoffangabe normgerecht in eine Zeichnung
	eintragen.
	Sie können mit einem CAD-System ein Projekt erstellen,
	ein neues Volumenmodell für ein Bauteil aufbauen und
	eine Zeichnung von diesem ableiten. Sie können
	einfache Baugruppen aus Einzelmodellen

	zusammenstellen, Verknüpfungen zwischen den Volumenmodellen herstellen und eine Stückliste ableiten.
Inhalt:	Vorlesung: Technischen Produktdokumentation Einführung: Aufbau und Funktion, Fertigungszeichnung, Zusammenbauzeichnung, Stückliste, Stücklistenarten (Struktur und Inhalt), ZUS Einführung technisches Zeichnen: Blattformate, Maßstäbe, Blattaufteilung, Schriftfelder, Linienarten, Textangaben Darstellungslehre: Projektionsarten, Normalprojektion, Isometrie, 3-Tafelprojektion, Abwicklungsmethode 1, 3 und Pfeilmethode Schnitte und Ansichten: Vollschnitt, Teilschnitt, Ausbruch, Detailansichten, gedrehte Ansichten Bemaßung: Bestandteile, Maßlinienendezeichen, Maßeintragung, Regeln, Bemaßungsarten (Bezugsbemaßung, Kettenbemaßung) steigende Bemaßung, Koordinatenbemaßung) Bezugssystem, funktions-, fertigungs- und prüfgerechte Maßeintragung, Beispiele Einführung in die Tolerierung: Allgemeintoleranz, ISO- Toleranzsystem, System Einheitsbohrung, System Einheitswelle, Form und Lagetolerierung Angaben in Fertigungszeichnungen: Halbzeuge, Werkstoffe, Sachnummer und Benennung, Oberflächen, Werkstückkanten, Wärmebehandlung Einführung in die Maschinenelemente: Verbindungselemente am Beispiel Schraubverbindung, Welle-Nabe-Verbindungen am Beispiel Passfeder, Lagerungen am Beispiel Wälzlager Fertigungstechnik: Übersicht, Spanende Formgebung (Drehen Fräsen), Formgebung durch Umformen (Blechbearbeitung, Zuschnitt, Biegen, Tiefziehen), Formgebung durch Urformen (Kunststoffspritzguss) Übung/Praktikum: Technik des freihändigen Skizzierens Einführung in das Arbeiten mit CAD am Beispiel Inventor Übung zur Darstellungslehre
	- Übung Fertigungszeichnung- Übung Zusammenbauzeichnung und Stückliste- Übung Schraubverbindung- Übung Welle-Nabe-Verbindung

Studien- Prüfungsleistungen:	Klausur
Medienformen:	Tafel, Beamer, verwendete Folien in pdf-Form,
	Hausarbeiten, Übungen, CAD-System
Literatur:	- Gomeringer und Heinzler: Tabellenbuch Metall; Verlag
	Europa Lehrmittel
	- Grollius: Technisches Zeichnen für Maschinenbauer;
	Hanserverlag
	- Hoenow: Gestalten und Entwerfen im Maschinenbau;
	Hanserverlag,
	- Schmidt: Konstruktionslehre Maschinenbau; Verlag
	Europa Lehrmittel

Lasertechnik 2

IOE
Lasertechnik 2
Laser Technology 2
Laser2
5
jährlich im Wintersemester
Prof. Dr. Justus Eichstädt
Prof. Dr. Justus Eichstädt
deutsch
IOE, 5. Semester, Pflichtfach
3 SWS Vorlesung, 1 SWS Übung
150 h, davon 60 h Präsenz- und 90 h Eigenstudium
5
keine
Alle Optoelektronik-Veranstaltungen der ersten 4
Semester
Lasertechnik
Die Studierenden können die wichtigsten
Gefährdungen, Normen und Schutzmaßnahmen zum
Thema Lasersicherheit aufzählen, können das
Grundprinzip und den grundlegenden Aufbau eines
Lasers erklären, können Lasersysteme in Ihrem Aufbau
und Ihrer Funktion vergleichen, können die
grundlegenden Begriffe und Berechnungen der
Lasertechnik anwenden, können die Zusammenhänge
zwischen den Fachgebieten Optik und Lasertechnik
erkennen und entsprechend Strukturieren, können die
Eigenschaften eines Lasergerätes analysieren und
beurteilen, können die Sicherheit eines Lasergerätes
nach den entsprechenden Kriterien und Normen prüfen
und kritisch bewerten und sind in der Lage das Gelernte
zu einem Gesamtüberblick über das Thema
Lasertechnik zusammenzuführen.
Lasermaterialbearbeitung
Die Studierenden können bedeutendsten Anwendungen
der Lasertechnik in der Fertigungstechnik darlegen,
können den grundlegenden Aufbau eine Laseranlage
zur Materialbearbeitung erklären
können unterschiedliche Laseranlagen in Ihrem Aufbau
und Ihrer Funktion vergleichen können die
grundlegenden Begriffe und Berechnungen der

Lasermaterialbearbeitung anwenden, können Laserstrahlguellen und Laseranlagen für entsprechende Anwendungen anhand Ihrer Eigenschaften und Parameter auswählen, können die Zusammenhänge zwischen den Fachgebieten Optik, Lasertechnik und Lasermaterialbearbeitung erkennen und entsprechend Strukturieren, können die Eigenschaften einer Laseranlage zur Materialbearbeitung analysieren und beurteilen, können die Sicherheit einer Laseranlage nach den entsprechenden Kriterien und Normen prüfen und kritisch bewerten und sind in der Lage das Gelernte zu einem Gesamtüberblick über das Thema Lasermaterialbearbeitung zusammenzuführen. Angestrebte übergeordnete nicht fachspezifische Lernergebnisse Die Studierenden sind in der Lage, die zur Inbetriebnahme eines Lasersystems notwendigen Informationen gezielt zu beschaffen (Internet, Datenblätter, Fachliteratur, etc.), sind in der Lage, Aufgabenstellungen im Team zu diskutieren und zu lösen und sind in der Lage, neuartige Aufgabenstellungen systematisch zu analysieren und selbständig geeignete Lösungsansätze zu erarbeiten. Lasertechnik Grundlagen: Räumliche und zeitliche Kohärenz, nichtlineare Optik, Bauelemente Pulsbetrieb: Relaxationsoszillationen, Gain-switching, Qswitching, Cavity Dumping, Modenkopplung, Pulskompression, Chirped Pulse Amplification, Realisierung Frequenzmodifikation: Selektion, Umsetzung, Abstimmung, technische Realisierung Lasersicherheit: Gefährdung, Normen, Laserklassen, Schutzmaßnahmen Lasermaterialbearbeitung Einordnung der Lasermaterialbearbeitung in die Fertigungstechnik Strahlguellen: Grundbegriffe, Laserstrahlguellen für die Lasermaterialbearbeitung, Auswahl von Strahlquellen Anlagentechnik: Grundaufbau, Anlagenkonzepte, Strahlformung, Strahlführung, Handhabungssysteme, Messsysteme und Sensorik zur Prozessregelung und -

steuerung, Anlagensteuerung und Programmierung

Wechselwirkung von Licht mit Materie, Einteilung der Bearbeitungsverfahren, Bearbeitungsparameter,

Verfahren der Lasermaterialbearbeitung:

Abtragen und Strukturieren, Laserbohren,

Inhalt:

	Laserbeschriftung, Laserschneiden, Laserschweißen und
	-Löten, Lasergestützte generative Fertigungsverfahren
	Laseranlagensicherheit: Gefährdung, Normen und
	Richtlinien, Laserklassen, Schutzmaßnahmen,
	Wechselwirkung mit Organen.
Studien- Prüfungsleistungen:	Klausur
Medienformen:	- Vorlesung mit gemischten Medien (Tafelarbeit,
	Beamer etc.);
	- Übungsaufgabenblätter
	- Demonstrationsversuche an Laborgeräten
Literatur:	- Iffländer, R. (1990). Festkörperlaser zur
	Materialbearbeitung (Laser in Technik und Forschung).
	Springer-Verlag Berlin and Heidelberg GmbH & Co. KG.
	- Bliedtner, J. & Müller, H. Lasermaterialbearbeitung,
	Fachbuchverlag Leipzig im Carl Hanser Verlag,
	München, 2013
	- Erhardt, KM. Laser in der Materialbearbeitung, Vogel
	Buchverlag, Würzburg, 1993
	- Poprawe, R. Lasertechnik für die Fertigung. Springer
	Verlag, Berlin Heidelberg, 2005
	- Hügel, H. Laser in der Fertigung, Vieweg+Teubner
	Verlag 2009
	- Eichler, J. Laser, Springer Verlag, 2006

Lasertechnik und Spektroskopie

Studienrichtung:	IOE
Modulbezeichnung:	Lasertechnik und Spektroskopie
	Laser technology and Spectroscopy
ggf. Kürzel	LaserSpek
ggf. Untertitel	
ggf. Lehrveranstaltungen:	
Studiensemester:	4
Angebotsturnus:	jährlich im Sommersemester
Modulverantwortliche(r):	Pof. Dr. habil. Michael Vollmer
Dozent(in):	Pof. Dr. habil. Michael Vollmer
Sprache:	deutsch
Zuordnung zum Curriculum:	IOE, 4. Semester, Pflichtfach
Lehrform / SWS:	3 SWS Vorlesung, 1 SWS Übung
Arbeitsaufwand:	150 h, davon 60 h Präsenz- und 90 h Eigenstudium
Kreditpunkte:	5
Voraussetzungen nach	keine
Prüfungsordnung:	
Empfohlene Voraussetzungen:	Alle Physik und Mathematikvorlesungen der ersten 3
	Semester
Angestrebte Lernergebnisse:	Die Studierenden hören eine Einführung in die
	Lasertechnik und Spektroskopie. In den Übungen
	werden von den Studenten im Selbststudium zu
	lösende Aufgaben besprochen.
	Angestrebte Kompetenzen:
	Die Studierenden kennen die grundlegenden Begriffe
	der Themengebiete der Vorlesung, die ihnen durch
	Experimente verdeutlicht werden. Sie beherrschen den
	Abstraktionsprozess von der Beobachtung eines
	Vorgangs über seine Beschreibung bis hin zur
	formelmäßigen Umsetzung und Berechnung. Sie sollen
	ferner entsprechende Geräte bedienen und verstehen.
	Die Studierenden sollen daran gewöhnt werden, den in
	den Vorlesungen behandelten Stoff selbstständig
	nachzubereiten und mittels Fachliteratur zu vertiefen.
	Ihr abstraktes und analytisches Denkvermögen soll
	gestärkt werden. Sie sollen lernen, Laser und
	spektroskopische Untersuchungen durch angemessene
	Modelle qualitativ zu beschreiben und auch quantitativ
Lordo att	zu verstehen.
Inhalt:	Laser:
	Absorption/Emission von Licht, Spontanemission,
	induzierte Emission, Absorption, Aufbau von Lasern,
	Geometrie und Ausbreitung von Laserstrahlung,
	exemplarische Behandlung ausgewählter Laser 84

	Spektroskopie:
	Energieniveaus in Atomen, Molekülen und Festkörpern,
	Breite und Form von Spektrallinien, Grundlegender
	Aufbau von Spektrometern, Spezielle Methoden:
	Absorptions- und Emissionsspektroskopien,
	FTIR, AAS, Optische Fernerkundung
Studien- Prüfungsleistungen:	Klausur
Medienformen:	- Vorlesung mit gemischten Medien (Tafelarbeit,
	Beamer etc.);
	- Übungsaufgabenblätter
	- Demonstrationsversuche an Laborgeräten
Literatur:	Neben Atom- und Molekülphysiklehrbüchern (z.B.
	Alonso Finn u.a.) wird eine detaillierte aktuelle
	Literaturliste ausgegeben, darunter z.B.:
	- Eichler, Eichler, Laser, Springer
	- Meschede, Optik, Licht und Laser, Teubner
	- Webb, Laser Physics, Oxford
	- W. Schmidt, Optische Spektroskopie, Wiley
	- H. Günzler, H.M. Heise, IR Spektroskopie, VCH
	- Griffiths, de Haseth, Fourier Transform Infrared
	Spectroscopy, Wiley

Leistungselektronik

Studienrichtung:	IEIT, IAT
Modulbezeichnung:	Leistungselektronik
	Power Electronics
ggf. Kürzel	LE
ggf. Untertitel	
ggf. Lehrveranstaltungen:	
Studiensemester:	4
Angebotsturnus:	jährlich im Sommersemester
Modulverantwortliche(r):	Prof. DrIng. Sören Hirsch
Dozent(in):	N.N.
Sprache:	deutsch
Zuordnung zum Curriculum:	IEIT, 4. Semester, Pflichtfach
-	IAT, 4. Semester, Pflichtfach
Lehrform / SWS:	2 SWS Vorlesung, 1 SWS Übung, 1 SWS Labor
Arbeitsaufwand:	150 h, davon 60 h Präsenz- und 90 h Eigenstudium
Kreditpunkte:	5
Voraussetzungen nach	keine
Prüfungsordnung:	
Empfohlene Voraussetzungen:	Mathematik, Physik, Elektrotechnik 1 und 2, Analoge
	Schaltungen
Angestrebte Lernergebnisse:	In der Vorlesung Angewandte Leistungselektronik lernen die Studierenden den Aufbau, das Verhalten und die Ansteuerung von Leistungshalbleitern und -modulen kennen. Nach erfolgreichem Abschluss kennen die Studierenden die wichtigsten Umrichterschaltungen zur Steuerung von elektrischen Maschinen und Antrieben. Die Studierenden können einfache leistungselektronische Schaltungen lesen, entsprechend einer gestellten technischen Aufgabenstellung entwerfen und dimensionieren sowie in ein Simulationsprogramm implementieren und analysieren. Eventuelle gegenseitige Beeinflussungen der leistungselektronischen Komponenten aufgrund der EMV wissen sie zu reduzieren oder gar zu vermeiden. Die Studierenden sollen daran gewöhnt werden, den in den Vorlesungen behandelten Stoff selbstständig nachzubereiten und mittels Fachliteratur zu vertiefen. Ihr abstraktes und analytisches Denkvermögen soll gestärkt werden. Sie sollen lernen, komplexe Sachverhalte in Teilaufgaben zu zerlegen und lösen zu können.
Inhalt:	Leistungselektronische Bauelemente und deren dynamisches Verhalten (Leistungs-Diode, Leistungs- MOSFET, IGBT), Leistungsmodule (MOSFET-Module,

	Module mit IGBTs und Dioden, Aufbau- und
	Verbindungstechnik), Ansteuerung von
	Leistungshalbleitern, Umrichterschaltungen
	(Gleichrichter, Gleichspannungswandler,
	Wechselrichter, Frequenzumrichter),
	Leistungselektronik und EMV (Grundbegriffe,
	Kopplungsmechanismen, Entstörmaßnahmen),
	Schaltungssimulation
Studien- Prüfungsleistungen:	Klausur
Medienformen:	- Vorlesung mit gemischten Medien (Tafelarbeit,
	Projektorfolien etc.)
	- Rechner mit Computersimulationen
	- Übungsaufgabenblätter
Literatur:	- Wintrich u.a.: Applikationshandbuch
	Leistungshalbleiter, SEMIKRON International
	- Dieter Anke: Leistungselektronik, Oldenbourg Verlag
	München Wien
	- Joachim Specovius: Grundkurs Leistungselektronik,
	Vieweg & Sohn Verlag
	- Manfred Michel: Leistungselektronik, Springer-Verlag
	Berlin Heidelberg
	- Josef Lutz: Halbleiter-Leistungsbauelemente - Physik,
	Eigenschaften, Zuverlässigkeit, Springer-Verlag Berlin
	Heidelberg

Messtechnik

Studienrichtung:	IEIT, IAT, IMT, IOE, WEIT, WEUT, WMT
Modulbezeichnung:	Messtechnik
	Measurement Technology
ggf. Kürzel	
ggf. Untertitel	
ggf. Lehrveranstaltungen:	
Studiensemester:	4
Angebotsturnus:	jährlich im Sommersemester
Modulverantwortliche(r):	Prof. DrIng. Eckhard Endruschat
Dozent(in):	Prof. DrIng. Eckhard Endruschat
Sprache:	deutsch
Zuordnung zum Curriculum:	IEIT, 4. Semester, Pflichtfach
	IAT, 4. Semester, Pflichtfach
	IMT, 4. Semester, Pflichtfach
	IOE, 4. Semester, Pflichtfach
	WEIT, 4. Semester, Pflichtfach
	WMT, 4. Semester, Pflichtfach
	WEUT, 4. Semester, Pflichtfach
Lehrform / SWS:	2 SWS Vorlesung, 1 SWS Übung, 1 SWS Labor
Arbeitsaufwand:	150 h, davon 60 h Präsenz- und 90 h Eigenstudium
Kreditpunkte:	5
Voraussetzungen nach	keine
Prüfungsordnung:	
Empfohlene Voraussetzungen:	Der erfolgreiche Abschluss der Module ET1, ET2, Physik
	für Ingenieure 1 und 2
Angestrebte Lernergebnisse:	Die Studierenden
	- kennen das SI-Maßeinheitensystem und können es
	anwenden (Wiederholung)
	- kennen und verstehen die Begriffe Messkette,
	Messunsicherheit, Vertrauenswahrscheinlichkeit,
	systematischer Messfehler und können diese bei
	einfachen Messaufgaben bestimmen.
	- können Messunsicherheiten von zusammengesetzten
	Messgrößen mittels des Fehlerfortpflanzungsgesetzes
	berechnen oder abschätzen
	- können Messreihen mit einfachen Algorithmen
	numerisch auswerten und die Ergebnisse visualisieren
	- besitzen Grundkenntnisse über elektrische /
	elektronische Messtechnik und können diese auf
	weniger komplexe Messaufgaben anwenden
	- kennen und verstehen grundsätzlich die Eigenschaften
	kabelgebundener Übertragungsstrecken für elektrische
	Messsignale
	- kennen und verstehen die grundsätzlichen

	Eigenschaften digitalisierender Messgeräte bzw
	verfahren
	- besitzen Grundkenntnisse über rechnergesteuerte
	Messtechnik und können diese anwenden
	- kennen und verstehen die Messverfahren für die
	wichtigsten nichtelektrischen Größen im Kontext
	industrieller Produktion und können diese anwenden
	- Verbesserung der Fähigkeit zur gezielten
	Informationsbeschaffung mittels moderner und
	klassischer Medien
	- Fähigkeit, Aufgabenstellungen im Team zu lösen und
	zu diskutieren
	- Fähigkeit, Aufgabenstellungen systematisch zu
	analysieren
Inhalt:	Vorlesungsteil mit integrierten Übungen:
	- Messunsicherheiten, ihre Bestimmung und korrekte
	Angabe von Messergebnissen (absolute u. relative
	Messunsicherheit, Vertrauenswahrscheinlichkeit,
	korrekte Interpretation von Gerätedaten, Mittelwert,
	Standardabweichung, Berechnung der statistischen
	Messunsicherheit, Fortpflanzung von
	Messunsicherheiten, systematische Messfehler)
	- Messumformer und Messverstärker, analoge
	Standardsignale, Abgrenzung zu Feldbus-gestützten
	Messsystemen
	- Das Digital-Speicher-Oszilloskop und verwandte
	Geräte
	- Übertragung von elektrischen Messsignalen über
	Leitungen
	- Zeit- und Frequenzmessung
	- Messverfahren mit zugehöriger Sensorik für
	Temperatur, Druck, Kraft, Beschleunigung, Position
	(Weg/Abstand, Drehwinkel, 3D-Koordinaten),
	Durchfluss, Füllstand, Magnetfelder, Luftfeuchte,
	- Binäre Sensoren
	- Optische Messverfahren für nichtelektrische Größen
	Laborpraktikum:
	7 ausgewählte Versuche (mittlere Bearbeitungszeit: 3 h
	pro Versuchsprogramm) aus folgenden Gebieten:
	Temperaturmessung u. Wärmeleitung, Messungen mit
	dem DSO, Messung von Impedanzen und
	Übertragungskennlinien, Eigenschaften optischer
	Sensoren, Signale auf Leitungen, Einführung in
	LabView, Digitale Messtechnik, Charakterisierung von
	Halbleiter-Lichtquellen (Kennlinien, dynamische
	Eigenschaften), Lasertriangulation
Studien- Prüfungsleistungen:	nach Absprache- Schriftliche oder mündliche Prüfung

	am Ende des 4. Semesters
	- Erfolgreich bestandener Laborschein (Persönliche
	Teilnahme an allen Laborversuchen und fristgerechte
	Testierung aller ausgearbeiteten Laborprotokolle durch
	die Betreuer)
Medienformen:	Tafel, Beamer, verwendete Folien in pdf-Form,
	Laboranleitungen
	Übungsaufgaben und Laborauswertungen dürfen und
	sollen ausdrücklich mit einem geeigneten Computer-
	Algebra-Programm (CAS) bearbeitet werden, wenn in
	der Aufgabenstellung nichts Anderes verlangt
Literatur:	Johannes Prock, Einführung in die Prozessmesstechnik,
	Teubner Verlag
	HR. Tränkler, G. Fischerauer, Das Ingenieurwissen:
	Messtechnik, Springer Vieweg (2013), ISBN: 978-3-662-
	44029-2, e-book: 978-3-662-44030-8
	Johannes Niebuhr, Gerhard Lindner, Physikalische
	Messtechnik mit Sensoren, Deutscher Industrieverlag
	(2011), ISBN-13: 978-3835631519
	J. Hoffmann, Taschenbuch der Messtechnik, 7., neu
	bearbeitete Auflage 2015.
	Hanser ISBN 978-3-446-44271-9
	Ekbert Hering, Rolf Martin, Optik für Ingenieure und
	Naturwissenschaftler Grundlagen und Anwendungen,
	ISBN: 978-3-446-44281-8
	Versuchsanleitungen zu den Laborversuchen
	Internet-Literatur:
	Die meisten der in diesem Modul behandelten Inhalte
	sind auch auf Wikipedia (www.wikipedia.org) recht
	gut beschrieben. Zum Lernen u.U. nützlich.
	Im Internet findet man auch eine Fülle von Skripten
	zum Thema Messtechnik.
	"Googeln" mit Stichworten wie "Skript Messtechnik",
	"Lecture notes measurement technique", "lecture notes
	sensors", "lecture notes optical sensors", etc. liefert
	i.A. sehr viele Treffer.
	Bei Nutzung solcher Quellen ist aber unbedingt das
	Copyright des Autors zu beachten! D.h., nur wenn der
	Autor ausdrücklich die Benutzung seines Skripts für
	externe Nutzer zu privaten Zwecken erlaubt, ist der
	Gebrauch solcher Quellen legal. Im Zweifelsfall immer
	per E-Mail beim Autor um Erlaubnis bitten!
<u> </u>	The F Mail Boill Mater all Fliadollis pitteri:

Methoden der Mechatronik

Studienrichtung:	IMT, WMT
Modulbezeichnung:	Methoden der Mechatronik
	Mechatronics Methods
ggf. Kürzel	
ggf. Untertitel	Maschinendynamik und Projektarbeit
ggf. Lehrveranstaltungen:	
Studiensemester:	5
Angebotsturnus:	jährlich im Wintersemester
Modulverantwortliche(r):	Prof. DrIng. Christian Oertel
Dozent(in):	Prof. DrIng. Christian Oertel
Sprache:	deutsch
Zuordnung zum Curriculum:	IMT, 5. Semester, Pflichtfach
	WMT, 5. Semester, Wahlpflichtfach
Lehrform / SWS:	2 SWS Vorlesung, 1 SWS Übung, 1 SWS Labor
Arbeitsaufwand:	150 h, davon 60 h Präsenz- und 90 h Eigenstudium
Kreditpunkte:	5
Voraussetzungen nach	keine
Prüfungsordnung:	
Empfohlene Voraussetzungen:	- Mathematik: lineare Differentialgleichungen, Analysis
	- Mechanik: Grundlagen der Kinematik und Kinetik
Angestrebte Lernergebnisse:	Maschinendynamik
	Kenntnisse: Bedeutung der Prozessketten im Aufbau
	von Modellen mechanischer Systeme kennen, Elemente
	verschiedener Prozessketten auswählen und
	kombinieren, Grundlagen der Dynamik der Kontinua
	kennen und im Experiment umsetzen können
	Fertigkeiten: Beschreibung nichtlinearer dynamischer
	Systeme der Mechanik mit wenigen Freiheitsgraden
	unter Zuhilfenahme der Methoden der Symbolik
	erzeugen, Lagrange-Gleichungen eines mechanischen
	Systems bestimmen und die Bewegungsgleichungen
	des Systems ermitteln, Umsetzung in ein
	blockorientiertes System durch eine geschlossene
	Prozesskette darstellen, Ableitung von Echtzeitsystemen
	aus der symbolischen Behandlung des mechanischen
	Modells, Eigenschaften kontinuierlicher Systeme im
	Gegensatz zu diskreten Systemen darstellen können
	Projektarbeit
	Kenntnisse: Strukturierungsmöglichkeiten zu einer
	gegebenen Aufgabenstellung, Analyse von
	Fehlereinflussmöglichkeiten
	Fertigkeiten: Selbständiges Bearbeiten von komplexen
	Aufgaben der Mechatronik aufgrund von unscharfen
	Aufgabenstellungen, Präzisierung der Aufgabenstellung,

	Abschätzung des Projektaufwandes und Erarbeitung
	eines Angebotes mit Meilensteinplanung,
	Reviewtechniken
Inhalt:	Maschinendynamik
	Einführung: Prinzip der virtuellen Arbeit in der Statik,
	geometrische Interpretation der virtuellen
	Verschiebungen, nichtlineare Systeme, Beispiel
	zweidimensionales allgemeines Stabwerk mit
	geometrischer Nichtlinearität, Gewicht 10 %
	Dynamik diskreter Systeme: Prinzip von d'Alembert und
	Lagrange-Gleichungen, Systeme mit
	Zwangsbedingungen, Modellhierarchien am Beispiel der
	Dynamik eines Getriebes, durchgängige Prozessketten
	für Systeme mit Zwangsbedingungen ausgehend von
	der Lagrange-Funktionen und den nichtlinearen
	algebraischen Zwängen, Gewicht 50 %
	Dynamik kontinuierlicher Systeme: Prinzip von
	Hamilton, Beschreibung der Rand- und
	Übergangsbedingungen am Beispiel des abgesetzten
	Stabes und Balkens, Bestimmung der
	Bewegungsgleichungen, Lösungsweg über den
	Produktansatz, Eigenfrequenzen und Eigenformen
	kontinuierlicher Systeme, Übertragungsverhalten,
	Gewicht 30 %
	Rotordynamik: Begriff der Unwucht und der
	Übermassen, statische Wuchtung in zwei Ebenen,
	Wuchten elastischer Systeme am Beispiel der Laval-
	Welle, modales Wuchten, Gewicht 10 %
	Projektarbeit
	Erste Phase eines Projektes strukturieren und
	Gliederung, Vorgehensweise und Projektplan
	erarbeiten, Definition von Abnahmekriterien und
	Abbruchkriterien, Mitwirkungspflichten des
	Auftraggebers (Verantwortlicher der Veranstaltung)
CL II D "C LLI	festlegen
Studien- Prüfungsleistungen:	Abschlussreferat
	Benotung: Ja.
Medienformen:	Einsatz der Systeme SCILAB und SCICOS sowie
	MAXIMA in den Vorlesungen und den Übungen,
	Animationen in den Vorlesungen, Skript und
	Übungsvorlagen mit Lösungen als pdf-Dokumente
Literatur:	B. Heimann, W. Gerth und K. Popp: "Mechatronik".
	München; Wien: Hanser 2007
	F. Holzweißig und H. Dresig: "Maschinendynamik".
	Berlin; Heidelberg; New York: Springer 2006
	Ch. Oertel: "Maschinendynamik". Brandenburg: FH-
	Brandenburg, Vorlesungsskript 2007

W.D. Pietruszka: "MATLAB und Simulink in der
Ingenieurpraxis: Modellbildung, Berechnung und
Simulation". Wiesbaden: Teubner 2006
W. Roddeck: "Einführung in die Mechatronik".
Wiesbaden: Teubner 2006

Optische Gerätetechnik

Studienrichtung:	IOE
Modulbezeichnung:	Optische Gerätetechnik
	Optical Equipment Technology
ggf. Kürzel	OptGer
ggf. Untertitel	
ggf. Lehrveranstaltungen:	
Studiensemester:	5
Angebotsturnus:	jährlich im Wintersemester
Modulverantwortliche(r):	Prof. Dr. Martin Regehly
Dozent(in):	Prof. Dr. Martin Regehly
Sprache:	deutsch
Zuordnung zum Curriculum:	IOE, 5. Semester, Pflichtfach
Lehrform / SWS:	2 SWS Vorlesung, 2 SWS Übung
Arbeitsaufwand:	150 h, davon 60 h Präsenz- und 90 h Eigenstudium
Kreditpunkte:	5
Voraussetzungen nach	keine
Prüfungsordnung:	
Empfohlene Voraussetzungen:	Technische Optik 1 und 2, Physik 1 und 2
Angestrebte Lernergebnisse:	Kenntnisse/Wissen
	Die Studierenden erwerben fundierte Kenntnisse in den
	grundlegenden optisch physikalischen Messtechniken,
	die in der Forschung und Industrie oft Anwendung
	finden. Der besondere Fokus liegt auf der Vermittlung
	von nicht invasiven, optisch bildgebenden Methoden.
	Gleichzeitig werden übergreifende Limitierungen
	derartiger Systeme vermittelt.
	Fertigkeiten
	Die Studierenden erwerben die Fähigkeit, die
	Funktionsweise optischer Geräte zu verstehen, zu
	bewerten und untereinander vergleichen zu können.
	Die Studierenden erlangen die Fähigkeit, als potentielle
	Entwickler und Anwender optischer Geräte tätig zu
	werden sowie deren Stärken und
	Schwächen in Bezug auf unterschiedliche Anwendungen
	theoretisch und praktisch zu berücksichtigen.
	Das Arbeiten im Team gehört zum praktischen Teil des
	Moduls.
	Selbstständigkeit (Soziale Kompetenz).
	Die Studierenden sind in der Lage, Messverfahren und
	Messprozesse in Forschung, Entwicklung und
	Produktion einzusetzen und Messaufgaben mit den
	erworbenen, vertieften ingenieurtechnischen
	Spezialkenntnissen zu lösen.
	Die Studierenden erwerben die Kompetenz, selbständig

	versahiedene Messeufachen und die zugehörigen
	verschiedene Messaufgaben und die zugehörigen
	Anforderungen an die Präzision aus vorgegebenen
	ingenieurtechnischen Problemstellungen abzuleiten und
	in entsprechende Messstrategien umzusetzen.
Inhalt:	Mikroskopie
	Bildgebende Photodetektoren
	Auflösungsvermögen optischer Systeme (incl.
	Wellenfront Aberrationen, Zernike Polynome)
	Topometrische Messverfahren
	Wellenfront Messverfahren
	Tomographische Messverfahren
Studien- Prüfungsleistungen:	Prüfung Vortrag (15 Min) und Klausur (60 Min)
	Noten gehen jeweils zu 50% in die Gesamtnote ein
Medienformen:	Tafel, Beamer, Experimente
Literatur:	Optische Mikroskopie, Funktionsweise und
	Kontrastierverfahren, Jörg Haus
	Online http://www.mikroskopie.de/pfad/
	Halbleiter-Elektronik, Bd.11: Optoelektronik II.
	Photodioden, Phototransistoren, Photoleiter und
	Bildsensoren, Winstel, Weyrich, Plihal
	Digitale Kameratechnik, Maschke
	Online
	https://de.wikibooks.org/wiki/Digitale_bildgebende_Verf
	ahren
	Corneal Topography in the Wavefront Era: A Guide for
	Clinical Application, Ming X. Wang
	Wavefront Optics for Vision Correction, Guangming Dai
	Handbook of Retinal OCT: Optical Coherence
	Tomography, Duker, Waheed, Goldman
	1. S

Physik für Ingenieure 1

IEIT, IAT, IOE, WEIT, WEUT, WMT
Physik für Ingenieure 1
Physics for Engineers 1
Phys1
1
jährlich im Wintersemester
Pof. Dr. habil. Michael Vollmer
Prof. Dr. sc. nat. Klaus-Peter Möllmann, Pof. Dr. habil. Michael Vollmer
deutsch
IEIT, 1. Semester, Pflichtfach IAT, 1. Semester, Pflichtfach IOE, 1. Semester, Pflichtfach
WEIT, 1. Semester, Pflichtfach WMT, 1. Semester, Pflichtfach WEUT, 1. Semester, Pflichtfach
3 SWS Vorlesung, 2 SWS Übung
150 h, davon 75 h Präsenz- und 75 h Eigenstudium
5
keine
Grundkenntnisse in Physik und Mathematik
entsprechend der Hochschulreife
Die Studierenden hören eine Einführung in Mechanik und Thermodynamik. Sie erlernen den Umgang mit physikalischen Begriffen und Gesetzen. Sie erlangen Grundfähigkeiten und -fertigkeiten bei der Anwendung auf einfache technische Phänomene bzw. Probleme. In den Übungen werden von den Studierenden im Selbststudium zu lösende Aufgaben besprochen. Angestrebte Kompetenzen: Die Studierenden kennen die grundlegenden Begriffe der Themengebiete der Vorlesung, die ihnen durch Experimente verdeutlicht werden. Sie beherrschen den Abstraktionsprozess von der Beobachtung eines physikalisch-technischen Vorgangs über seine Beschreibung bis hin zur formelmäßigen Umsetzung und Berechnung. Sie können physikalische Begriffe auf technische Anwendungen im Labor übertragen.

	Die Studierenden sollen daran gewöhnt werden, den in den Vorlesungen behandelten Stoff selbstständig nachzubereiten und mittels Fachliteratur zu vertiefen. Ihr abstraktes und analytisches Denkvermögen soll gestärkt werden. Sie sollen lernen, physikalische
	Prozesse durch angemessene Modelle nachzubilden und
	die Grenzen der Ergebnisse ihrer Rechenansätze zu erkennen.
Inhalt:	Physikalische Größen und Einheiten, Kinematik und
	Dynamik, Impuls, Arbeit, Energie, Erhaltungssätze,
	Systeme von Punktmassen, starre/deformierbare
	Körper, ruhende und bewegte Flüssigkeiten,
	Schwingungen und Wellen, Wärmekapazität,
	Wärmeausdehnung, ideale und reale Gase,
	Zustandsänderungen, Wärmekraftmaschinen,
	Wärmeübertragung, Schallwellen
Studien- Prüfungsleistungen:	Klausur
Medienformen:	- Vorlesung mit gemischten Medien (Tafelarbeit,
	Beamer etc.);
	- Übungsaufgabenblätter
Literatur:	Detaillierte Literaturliste wird ausgegeben, darunter
	z.B.:
	Tipler, Paul A.: Physik (Spectrum Verlag) + Arbeitsbuch
	Halliday, David; Resnick, Robert; Walker, Jearl: Physik
	(Wiley VCH)
	Hering, Ekbert; Martin, Rolf; Stohrer, Martin: Physik für
	Ingenieure (Springer)
	Paus, Hans J.: Physik in Experimenten und Beispielen
	(Hanser)
	Gerthsen, Christian: Physik (Springer Verlag)

Physik für Ingenieure 2

Studienrichtung:	IEIT, IAT, IOE, WEIT, WEUT, WMT
Modulbezeichnung:	Physik für Ingenieure 2
	Physics for Engineers 1
ggf. Kürzel	Phys2
ggf. Untertitel	
ggf. Lehrveranstaltungen:	
Studiensemester:	2
Angebotsturnus:	jährlich im Sommersemester
Modulverantwortliche(r):	Pof. Dr. habil. Michael Vollmer
Dozent(in):	Prof. Dr. sc. nat. Klaus-Peter Möllmann, Pof. Dr. habil.
	Michael Vollmer
Sprache:	deutsch
Zuordnung zum Curriculum:	IEIT, 2. Semester, Pflichtfach
3	IAT, 2. Semester, Pflichtfach
	IOE, 2. Semester, Pflichtfach
	WEIT, 2. Semester, Pflichtfach
	WMT, 2. Semester, Pflichtfach
	WEUT, 2. Semester, Pflichtfach
Lehrform / SWS:	2 SWS Vorlesung, 1 SWS Übung, 2 SWS Labor
Arbeitsaufwand:	150 h, davon 75 h Präsenz- und 75 h Eigenstudium
Kreditpunkte:	5
Voraussetzungen nach	keine
Prüfungsordnung:	
Empfohlene Voraussetzungen:	Grundkenntnisse in Physik und Mathematik
	entsprechend der Hochschulreife
Angestrebte Lernergebnisse:	Die Studierenden hören eine Einführung in
	Elektrodynamik, Optik und einige Aspekte moderner
	Physik. Sie erlernen den Umgang mit physikalischen
	Begriffen und Gesetzen. Sie erlangen Grundfähigkeiten
	und - fertigkeiten bei der Anwendung auf einfache
	technische Phänomene bzw. Probleme. In den Übungen
	werden von den Studenten im Selbststudium zu
	lösende Aufgaben besprochen.
	Angestrebte Kompetenzen:
	Die Studierenden kennen die grundlegenden Begriffe
	der Themengebiete der Vorlesung, die ihnen durch
	Experimente verdeutlicht werden. Sie beherrschen den
	Abstraktionsprozess von der Beobachtung eines
	physikalisch-technischen Vorgangs über seine
	Beschreibung bis hin zur formelmäßigen Umsetzung
	und Berechnung. Sie können physikalische Begriffe auf
	technische Anwendungen im Labor übertragen.
	Die Studierenden sollen die Durchführung und
	Auswertung einfacher physikalischer Experimente aus

	dan Cabiatan Flaktuadunansik und Ontik bahamaahan
	den Gebieten Elektrodynamik und Optik beherrschen. Die Studierenden sollen daran gewöhnt werden, den in den Vorlesungen behandelten Stoff selbstständig nachzubereiten und mittels Fachliteratur zu vertiefen. Ihr abstraktes und analytisches Denkvermögen soll gestärkt werden. Sie sollen lernen, physikalische Prozesse durch angemessene Modelle nachzubilden und die Grenzen der Ergebnisse ihrer Rechenansätze zu erkennen.
Inhalt:	Ladungen, Kräfte, Felder, Spannung, elektrischer Strom, Widerstand, Kondensator, Mechanismen der Stromleitung, Magnetismus der Materie, Felder von Strömen, Lorentzkraft, Induktion, Wirbelströme, Spulen, Transformatoren, Elektromagnetische Wellen, Brechung, Reflexion, Totalreflexion, Dispersion, Linsengleichung und optische Abbildungen, einfache optische Geräte, Wellenoptik Labor Physik: Sicherheitsbestimmungen für den Laborbetrieb; Einführung in das Anfertigen von Versuchsprotokollen; Messungen an einfachen Aufbauten aus diversen Gebieten; Aufbereitung und Diskussion von Messergebnissen.
Studien- Prüfungsleistungen:	Klausur; Laborteil: Laborschein; Benotung: Nein Das Labor ist dann bestanden, wenn alle Laborversuche erfolgreich durchgeführt wurden und alle zugehörigen Versuchsprotokolle vom Betreuer als "mit Erfolg bestanden" testiert wurden.
Medienformen:	 Vorlesung mit gemischten Medien (Tafelarbeit, Beamer etc.); Übungsaufgabenblätter Laborversuche
Literatur:	Detaillierte Literaturliste wird ausgegeben, darunter z.B.: Tipler, Paul A.: Physik (Spectrum Verlag) + Arbeitsbuch Halliday, David; Resnick, Robert; Walker, Jearl: Physik (Wiley VCH) Hering, Ekbert; Martin, Rolf; Stohrer, Martin: Physik für Ingenieure (Springer) Paus, Hans J.: Physik in Experimenten und Beispielen (Hanser) Gerthsen, Christian: Physik (Springer Verlag) Versuchsbeschreibungen, Praktikumsskript Physikbücher zum Physiklabor (Walcher o.ä.)

Praxisphase

Studienrichtung:	IEIT, IAT, IMT, IOE, WEIT, WEUT, WMT
Modulbezeichnung:	Praxisphase
	Internship Phase
ggf. Kürzel	PRAX
ggf. Untertitel	
ggf. Lehrveranstaltungen:	
Studiensemester:	5
Angebotsturnus:	jährlich im Wintersemester
Modulverantwortliche(r):	Studiendekane
Dozent(in):	
Sprache:	
Zuordnung zum Curriculum:	IEIT, 5. Semester, Pflichtfach
	IAT, 5. Semester, Pflichtfach
	IMT, 5. Semester, Pflichtfach
	IOE, 5. Semester, Pflichtfach
	WEIT, 5. Semester, Pflichtfach
	WMT, 5. Semester, Pflichtfach
	WEUT, 5. Semester, Pflichtfach
Lehrform / SWS:	2 SWS Seminar;
	Tätigkeit in einer Einrichtung der beruflichen Praxis
Arbeitsaufwand:	450 h, davon 30 h Präsenz- und 420 h Eigenstudium
Kreditpunkte:	15
Voraussetzungen nach	Die Praxisphase kann nur begonnen werden, wenn die
Prüfungsordnung:	Praxisstelle durch den zuständigen Praxisbeauftragten
	bestätigt und ein Prüfungsberechtigter als Betreuer
	benannt wurde.
Empfohlene Voraussetzungen:	Ingenieurwissenschaftliche Grundlagen aus dem
	Basisstudium und für die Praxisphase notwendige
	fachspezifische Vertiefungen
Angestrebte Lernergebnisse:	Die Studierenden
	- kennen praktische Arbeitsbereiche eines Ingenieurs,
	wie Entwicklung und Labor, Arbeitsvorbereitung und
	Fertigung, Prüfung und Qualitätskontrolle,
	Inbetriebnahme und Wartung
	- bekommen durch konkrete Aufgabenstellungen und
	deren Lösung einen Einblick in ingenieurmäßiges
	Arbeiten
	- können die Inhalte und Ergebnisse ihrer praktischen
	Tätigkeit dokumentieren
	- können Arbeitsergebnisse vor einem Publikum
	präsentieren
	- Fachunabhängig Fähigkeiten: (Teamfähigkeit,
	Arbeitsmethodik, Entscheidungsfähigkeit,
	Projektmanagement, betriebliche Kommunikation,

	Zielbewusstsein, Dokumentation)
	Praxisseminar:
	Die Studierenden lernen und üben dabei das
	Präsentieren und Diskutieren eigener Arbeitsergebnisse;
	zudem erwerben sie Kompetenzen im wissenschaftlich
	angeleiteten Dokumentieren.
Inhalt:	Betreute praktische Tätigkeit in den Bereichen:
	- Entwicklung, Projektierung und Labor,
	- Arbeitsvorbereitung und Fertigung,
	- Prüfung und Qualitätskontrolle,
	- Inbetriebnahme und Wartung
	- Dokumentationen über Projektarbeiten
	Im Praxisseminar stellen die Studierenden ihren
	Abschlussbericht zur Praxisphase ihren Kommilitonen
	und dem Kollegium des eigenen Studiengangs vor. Sie
	stellen das Unternehmen vor und präsentieren die
	Ergebnisse des Praxisprojektes in einem ca. 10-20
	minütigen Vortrag. Dabei wird die Vortragstechnik
	diskutiert.
	Neben dem ausführlichen Bericht zu den Ergebnissen
	der Praxisphase werden in einem einseitigen Bericht
	Thema, Aufgabenstellung, Ergebnisse, Kontaktadressen
	u. ä. zusammengefasst.
	Es werden Grundsätze zur Anfertigung des Berichts
	(Umfang, Gliederung, Verzeichnisse, Grafiken,
	Literaturzitate usw.) vermittelt und Sachfragen zur
	Dokumentation der Ergebnisse unter Einbeziehung
	vorliegender Berichte erörtert.
Studien- Prüfungsleistungen:	Testierte Leistung
Medienformen:	
Literatur:	

Praxisprojekt

Studienrichtung:	IOE
Modulbezeichnung:	Praxisprojekt
ggf. Kürzel	
ggf. Untertitel	
ggf. Lehrveranstaltungen:	
Studiensemester:	6
Angebotsturnus:	jährlich im Sommersemester
Modulverantwortliche(r):	Pof. Dr. habil. Michael Vollmer
Dozent(in):	Vollmer, Möllmann, Pinno
Sprache:	deutsch
Zuordnung zum Curriculum:	IOE, 6. Semester, Pflichtfach
Lehrform / SWS:	1 SWS Vorlesung, 1 SWS Übung, 2 SWS Projekt
Arbeitsaufwand:	150 h, davon 60 h Präsenz- und 90 h Eigenstudium
Kreditpunkte:	5
Voraussetzungen nach	keine
Prüfungsordnung:	
Empfohlene Voraussetzungen:	Alle Optoelektronik-Veranstaltungen der ersten 4
	Semester
Angestrebte Lernergebnisse:	Die Studierenden führen ein Praxisprojekt aus den
	Bereichen Optik oder Mikrotechnologien durch. Dabei
	sollen sie durch Selbststudium (durch Lehrende
	unterstützt) Lösungen für gestellte Aufgaben finden.
	Angestrebte Kompetenzen:
	Die Studierenden können grundlegende Prozesse in
	Optik und Mikrotechnologien praktisch anwenden. Sie
	beherrschen den Abstraktionsprozess von der Planung
	eines Projekts über seine Durchführung bis hin zur
	qualitativen und quantitativen Dokumentation.
	Die Studierenden sollen daran gewöhnt werden, den in
	den Vorlesungen behandelten Stoff selbstständig
	nachzubereiten, mittels Fachliteratur zu vertiefen und
	auf neue Praxisprobleme anzuwenden. Ihr abstraktes
	und analytisches Denkvermögen soll gestärkt werden.
	Sie sollen insbesondere lernen eigene Praxislösungen
	durch angemessene Modelle auch quantitativ zu
	beschreiben und zu verstehen.
Inhalt:	Orientiert sich an den vorgegebenen Projekten z.B.
	könnte dies sein:
	- Planung einer speziellen optischen Beschichtung,
	Realisierung der optischen Beschichtung, Überprüfung
	der Qualität der Schichten und Vergleich mit der
	Planung.
	- Planung eines bestimmten mikrotechnologischen
	Bauteils (z.B. Sensor), Realisierung durch

	mikrotechnologische Prozessschritte, Test des fertigen Bauteils hinsichtlich der Vorgaben
Studien- Prüfungsleistungen:	Semesterbegleitende Prüfung
Medienformen:	- Seminaristische Vorlesungsanteile mit gemischten
	Medien
	- Experimente
Literatur:	Es wird erwartet, dass die Studierenden spezifisch für
	jedes Problem eine detaillierte Literaturrecherche
	durchführen und diese dokumentieren.

Projektstudium

Studienrichtung:	IMT
Modulbezeichnung:	Projektstudium
	Project Studies
ggf. Kürzel	T-WPF 5.1
ggf. Untertitel	
ggf. Lehrveranstaltungen:	
Studiensemester:	5
Angebotsturnus:	jährlich im Wintersemester
Modulverantwortliche(r):	Prof. DrIng. Christian Oertel
Dozent(in):	Prof. DrIng. Christian Oertel
Sprache:	deutsch
Zuordnung zum Curriculum:	IMT, 5. Semester, Pflichtfach
Lehrform / SWS:	4 SWS Vorlesung
Arbeitsaufwand:	150 h, davon 60 h Präsenz- und 90 h Eigenstudium
Kreditpunkte:	5
Voraussetzungen nach	keine
Prüfungsordnung:	
Empfohlene Voraussetzungen:	Methoden der Mechatronik-I, Grundlagen der
	Mechatronik, eingebettete Systeme
Angestrebte Lernergebnisse:	Kenntnisse: Strukturierungsmöglichkeiten zu einer
	gegebenen Aufgabenstellung, Analyse von
	Fehlereinflussmöglichkeiten
	Fertigkeiten: Selbständiges Bearbeiten von komplexen
	Aufgaben der Mechatronik aufgrund von unscharfen
	Aufgabenstellungen, Präzisierung der Aufgabenstellung
	anhand von Literaturrecherchen und Internetquellen,
	Abschätzung des Projektaufwandes und Erarbeitung
	eines Angebotes mit Meilensteinplanung, Analyse der
	benötigten Komponenten und deren Eigenschaften,
	Systementwurf und Systemintegration in Bezug auf das
	gewählte Projektthema, Methoden zur Behandlung von
	Problemen bei der Projektbearbeitung (trouble
	shooting), Erarbeiten von Fertigungsunterlagen wie
	technischen Zeichnungen oder Schaltplänen,
	Beschaffung und Prüfung von Komponenten, technische
	Dokumentation der Projektergebnisse, Erarbeitung von
	Vortragsunterlagen, Reviewtechniken
Inhalt:	Durchführung der geplanten Projekte mit
	Dokumentation der Lastverteilung, Vorbereitung des
	Abschlussvortrages und der Dokumentation, Review
	des Projektes
Studien- Prüfungsleistungen:	Dokumentation zum Projekt, Vortrag und Poster sowie
	HTML-Datei, Benotung: Ja

Medienformen:	Dokumentation, Vortrag, Poster und HTML-Datei
Literatur:	aufgabenspezifisch

Prozessleittechnik-Grundlagen

Studienrichtung:	IAT
Modulbezeichnung:	Prozessleittechnik-Grundlagen
	Foundations of Process Control Systems
ggf. Kürzel	ProzLeit
ggf. Untertitel	Prozessleittechnik-Grundlagen und Verfahrenstechnik
ggf. Lehrveranstaltungen:	
Studiensemester:	5
Angebotsturnus:	jährlich im Wintersemester
Modulverantwortliche(r):	Prof. DrIng. Knut Stephan
Dozent(in):	Prof. DrIng. Knut Stephan, DiplIng. Andreas
	Niemann
Sprache:	deutsch
Zuordnung zum Curriculum:	IAT, 5. Semester, Pflichtfach
Lehrform / SWS:	2 SWS Vorlesung, 1 SWS Übung, 1 SWS Labor
Arbeitsaufwand:	150 h, davon 60 h Präsenz- und 90 h Eigenstudium
Kreditpunkte:	5
Voraussetzungen nach	keine
Prüfungsordnung:	
Empfohlene Voraussetzungen:	Module "Automatisierungssysteme", "Automatisieren mit SPS"
Angestrebte Lernergebnisse:	Die Studierenden erwerben
	- fundiertes Wissen über Aufbau und Funktion von
	leittechnischen Anlagen mit Prozessleitsystemen;
	- grundlegendes Verständnis für technologische
	Prozesse in verfahrenstechnischen Anlagen.
	Überfachliche Kompetenzen:
	Ingenieurtechnische Ausdrucksweise bei der
	Formulierung von Sachverhalten unter Verwendung der
	fachspezifischen Termini;
	Fähigkeit zur Analyse und Interpretation von Aufgaben-
	und Problemstellungen;
	Zielführendes, systematisches und selbstständiges
	Bearbeiten von vorgegebenen Aufgabenstellungen;
	Nutzung von Werkzeugen (Softwaretools) und
	Informationsquellen (Vorlesungsunterlagen,
	Handbücher, Internet) bei der Problemlösung;
	Erkennen von Zusammenhängen/Schnittstellen zu
	anderen Fachgebieten.
Inhalt:	Prozessleittechnik-Grundlagen: Vorlesung
	Einführung: Einordnung und Begriff der
	Prozessleittechnik, Zusammenwirken in der
	Prozessleittechnik, leittechnische Aufgaben/Funktionen,
	Begriff Prozessleittechnik, technologische Prozesse in

der PLT, Beispiele;

Leittechnische Anlagen: Struktur und Komponenten; Prozess-Messeinrichtungen: Grundlagen (Aufbau, Funktion, Anforderungen), typische Messverfahren und -einrichtungen in der Prozessleittechnik; Prozess-Stelleinrichtungen: Grundlagen (Aufbau, Funktion, Anforderungen), Stellverfahren, pneumatisches Stellgerät (Einsatz, Aufbau, Merkmale, Ventildaten):

Informationsübertragung zwischen Feldbereich und Elektronikraum: konventionelle Signalübertragung, Feldtrenner, konventionelle Signalübertragung mit HART-Kommunikation, HART-Kommunikation (Merkmale, Signalcodierung, Telegrammaufbau), Feldbusmultiplexer, Feldbussystem, PROFIBUS-PA (Systemstruktur, Merkmale);

Grundlagen des Explosionsschutzes: Entstehung von Explosionen, europäische Normen und Richtlinien, Beurteilung der Explosionsgefahr, Zündschutzarten, Maßnahmen zur Eigensicherheit, Kennzeichnung von Feldgeräten für den Ex-Bereich;

Prozessleitsysteme: historische Entwicklung, Dezentrale Prozessleitsysteme (Struktur und Komponenten, Merkmale, Prozessleitsystem SIMATIC PCS 7); Prozessleitwarte: Funktion, Aufbau, Gestaltung des Wartenraums.

Prozessleittechnik-Grundlagen: Labor

PLT-BS: Automatisierung eines Behältersystems mit SIMATIC.

Verfahrenstechnik: Vorlesung

Einführung: Begriffsdefinitionen, Teilgebiete der Verfahrenstechnik, Übersicht über Grundoperationen, Grundprinzipien thermischer Stoffwandlungen, Fließbilder;

Fördern von Fluiden: Strömungsmechanische Grundlagen, Definition des Druckes, Koninuitätsgleichung, Bernoulli-Gleichung, reibungsbehaftete Strömung, Normen für Rohrleitungsanlagen, Flüssigkeitsförderung (Pumpenübersicht und -auslegung, Pumpenkennlinien, Pumpenschaltungen, Kavitation), Übersicht zur Förderung von Gasen;

Wärmeübertragung: Grundlagen (Triebkraftprozess, Triebkraft), Wärmetransportvorgänge (Wärmeleitung, Konvektion, Wärmedurchgang), Darstellung des Auslegungsganges eines Wärmeübertragers, Bauarten von Wärmeübertragern;

	Verdampfung/Kondensation: Behältersieden,
	Kondensation ruhender Dämpfe, Eindampfanlagen
	(Stoffgemische, Problematik Siedepunkterhöhung);
	Rektifikation: Grundlagen der destillativen Trennung
	(Begriffe, ideales und azeotropes Flüssigkeitsgemisch,
	grafische Darstellung der Stoffgleichgewichte),
	Rektifikation (Unterschied Laboranlage - großtechnische
	Durchführung in Kolonnen, Funktion eines
	Kolonnenbodens, Bestimmung der Trennstufenzahl
	nach Thiele-Mc Cabe, Temperatur als Messgröße zur
	Regelung von Rektifikationskolonnen).
Studien- Prüfungsleistungen:	Klausur; Klausur "Prozessleittechnik-Grundlagen", 60
	min; Bewertung mit Note;
	Klausur "Verfahrenstechnik", 60 min; Bewertung mit
	Note;
	Die Modulnote ergibt sich aus dem Mittelwert der
	beiden Einzelnoten.
	Testierte Leistung: für Labor.
Medienformen:	PC (Powerpoint) und Beamer, Tafel, Skriptvorlage für
	Studierende
Literatur:	Strohrmann: Automatisierung verfahrenstechnischer
	Prozesse, Oldenbourg Industrieverlag, 2002;
	Früh/Maier (Hrsg.): Handbuch der
	Prozessautomatisierung, Oldenbourg Industrieverlag,
	2004;
	Tiemeyer/Konopasek: Access 2000, Markt+Technik
	Verlag, 1999.

Prozessleittechnik-Projektierung

Studienrichtung:	IAT
Modulbezeichnung:	Prozessleittechnik-Projektierung
	Development of Process Control Systems
ggf. Kürzel	
ggf. Untertitel	
ggf. Lehrveranstaltungen:	
Studiensemester:	6
Angebotsturnus:	jährlich im Sommersemester
Modulverantwortliche(r):	Prof. DrIng. Knut Stephan
Dozent(in):	Prof. DrIng. Knut Stephan
Sprache:	deutsch
Zuordnung zum Curriculum:	IAT, 6. Semester, Pflichtfach
Lehrform / SWS:	2 SWS Vorlesung, 2 SWS Labor
Arbeitsaufwand:	150 h, davon 60 h Präsenz- und 90 h Eigenstudium
Kreditpunkte:	5
Voraussetzungen nach	keine
Prüfungsordnung:	
Empfohlene Voraussetzungen:	Module "Automatisierungssysteme", "Automatisieren
	mit SPS" und "Grundlagen der Prozessleittechnik"
Angestrebte Lernergebnisse:	Die Studierenden erwerben
	- fundierte und anwendbare Kenntnisse über die
	Projektierung von prozessleittechnischen Anlagen mit
	Prozessleitsystemen;
	- Fertigkeiten bei der leittechnischen Planung (Basic-
	und Detail-Engineering) sowie bei der Konfigurierung
	von Prozessleitsystemen (SIMATIC PCS 7).
	Überfachliche Kompetenzen:
	Ingenieurtechnische Ausdrucksweise bei der
	Formulierung von Sachverhalten unter Verwendung der fachspezifischen Termini;
	Fähigkeit zur Analyse und Interpretation von Aufgaben-
	und Problemstellungen;
	Zielführendes, systematisches und selbstständiges
	Bearbeiten von vorgegebenen Aufgabenstellungen;
	Nutzung von Werkzeugen (Softwaretools) und
	Informationsquellen (Vorlesungsunterlagen,
	Handbücher, Internet) bei der Problemlösung;
	Erkennen von Zusammenhängen/Schnittstellen zu
	anderen Fachgebieten.
Inhalt:	Vorlesung
	Einführung: Struktur leittechnischer Anlagen;
	Abwicklung von Prozessleittechnik-Projekten, PLT-
	Datenmodell mit Dokumentation, PLT-Stellenkonzept;
	Grundlagenermittlung: Inhalt eines PLT-Lastenheftes,

	Grundfließ-, Verfahrensfließ- und R&I-Fließschema nach
	DIN EN ISO 10628
	Basic-Engineering: Planungstätigkeiten und -unterlagen,
	Darstellung von PLT-Aufgaben im R&I-Fließschema
	nach DIN 19227 und DIN EN 62424, , Beispiel:
	Rührkessel (prozessleittechnische Aufgaben, R&I-
	Fließschema, PLT-Stellenliste), PLT-Stellenblatt (Inhalt,
	Beispiel), leittechnisches Mengengerüst (Zweck,
	Struktur), Beispiel: Mengengerüst für
	Farbstoffsynthese/Farbstoffproduktion, technologische
	Aufgabenstellung zur PLT- Projektierung für Methanol-
	Versorgungsanlage;
	Detail-Engineering: Planungstätigkeiten und -
	unterlagen, Projektunterlagen, Beispiele (Stellenblatt,
	Stellenplan, Kabelbelegungslisten, Elektronikschrank-
	Layout, PLT-Stellenfunktionspläne, Montageanordung),
	Auslegung von Stellventilen (Ventil-Durchflussverhalten,
	Ventil-Betriebsverhalten, Vorgehensweise bei der
	Auslegung, Berechnung und Auswahl von Stellventilen
	mit CONVAL;
	Prozessleitsystem-Konfigurierung:
	Projektierungstätigkeiten Tätigkeiten, Prozessleitsystem
	SIMATIC PCS 7, PCS 7-Laborarbeitsplatz, Continuous
	Function Chart (CFC), Funktionen/Bausteine der
	Advanced Process Library, Sequential Function Chart
	(SFC), PCS 7-Operator Station (Prozessbild, Graphics
	Designer), PCS 7-Konfigurierung mit dem SIMATIC
	Manager;
	CAE-Systeme für die PLT-Planung: Grundlagen (Einsatz,
	Entwicklung, Grundforderungen, Auswahlkriterien),
	Aufbau, Grundstruktur der CAE-Applikationssoftware,
	Planungsablauf.
	Labor
	PLT-BE: Basic-Engineering;
	PLT-BE: Basic-Engineering; PLT-DE: Detail-Engineering.
	9
	PLT-EK: Einführung in die PCS 7-Konfigurierung,
	PLT-AS: Konfigurierung der MVA-
	Automatisierungsstation,
	PLT-OS: Konfigurierung der MVA-Operator Station,
	PLT-IB: PCS 7-Inbetriebnahme für eine Methanol-
Charling Deliferant L. L.	Versorgungsanlage.
Studien- Prüfungsleistungen:	nach Absprache; Prüfungsleistung: Klausur (90 min)
	oder mdl. Prüfung (30 min); Bewertung mit Note
	Testierte Leistung: für Laborübungen
Medienformen:	PC (Powerpoint) und Beamer, Tafel, Skriptvorlage
	(unvollständig) für Studierende
Literatur:	Bindel, Hofmann: Projektierung von

Modulkatalog Ingenieurwissens	schaften (B.Eng.)	SPO WS 2018/19	. Arbeitsstand	26.07.2018
modulitatalog migorilodi mosonis	, on a rear (B.E. 19.)	0. 0 110 20 10, 17	, ,	_0.07.20.0

Automatisierungsanlagen, Springer Vieweg Verlag

Regel- und Steuerungstechnik

Studienrichtung:	IEIT, IAT
Modulbezeichnung:	Regel- und Steuerungstechnik
	Control Technology
ggf. Kürzel	RST
ggf. Untertitel	
ggf. Lehrveranstaltungen:	
Studiensemester:	3
Angebotsturnus:	jährlich im Wintersemester
Modulverantwortliche(r):	Prof. DrIng. Sören Hirsch
Dozent(in):	N.N.
Sprache:	deutsch
Zuordnung zum Curriculum:	IEIT, 3. Semester, Pflichtfach
	IAT, 3. Semester, Pflichtfach
Lehrform / SWS:	3 SWS Vorlesung, 1 SWS Übung, 1 SWS Labor
Arbeitsaufwand:	150 h, davon 75 h Präsenz- und 75 h Eigenstudium
Kreditpunkte:	5
Voraussetzungen nach	keine
Prüfungsordnung:	
Empfohlene Voraussetzungen:	Mathematik, Physik, Elektrotechnik 1 und 2
Angestrebte Lernergebnisse:	In der Vorlesung Steuer- und Regelungstechnik lernen
	die Studierenden die Grundbegriffe und grundlegenden
	Verfahren zur Beschreibung von Steuerungen und
	Berechnung von Regelkreisen kennen. Nach
	erfolgreichem Abschluss können die Studierenden das
	Verhalten linearer Regelkreisen selbstständig durch
	Signalflussgraphen modellieren, mathematisch
	beschreiben und analysieren.
	Die Studierenden kennen die verschiedenen
	Steuerungsarten sowie deren Beschreibungsformen und
	können technische Aufgabenstellungen in einer SPS
	selbständig umsetzen.
	Die Studierenden kennen den Laborbetrieb mit den
	einschlägigen Sicherheitsvorschriften und beherrschen
	den Umgang mit einer Simulationssoftware für
	Regelkreise und SPS. Die Studierenden können einfache
	Regelungen entwerfen und Regler dimensionieren
	sowie gegebene Steuerungsaufgaben in eine
	Programmiersprache umsetzen, in eine SPS
	implementieren und testen. Vorlesung, Übung und
	Labor des Moduls sind inhaltlich eng aufeinander
	abgestimmt. Die praktischen Versuche des Labors
	vertiefen und veranschaulichen den Stoff der Vorlesung
	und bereiten die Studierenden damit auf das gesamte
	Lernziel des Moduls vor.

	Die Studierenden sollen daran gewöhnt werden, den in
	den Vorlesungen behandelten Stoff selbstständig
	nachzubereiten und mittels Fachliteratur zu vertiefen.
	Ihr abstraktes und analytisches Denkvermögen soll
	gestärkt werden. Sie sollen lernen, lineare Regelkreise
	und Steuerungen durch angemessene Modelle
	nachzubilden, zu analysieren und die Grenzen der
	_
	Ergebnisse ihrer Rechenansätze zu erkennen. Die
	Gruppenarbeit im Labor fordert und fördert die
	Sozialkompetenz und Teamfähigkeit der Studierenden.
Inhalt:	Regelungstechnik:
	Mathematische Grundlagen (Differenzialgleichungen,
	Laplace-Transformation), Der Standard-Regelkreis
	(Bauteile, Das Rückkopplungsprinzip, Grundgleichung),
	Verhalten linearer Regelkreise (Übertragungsfunktion,
	Grenzwertsatz der Laplace-Transformation,
	Frequenzgang, Bode-Diagramm)
	Steuerungstechnik:
	Die Steuerkette und deren Komponenten,
	Steuerungsarten, Beschreibungsformen, Boole'sche
	Schaltalgebra, Grundlagen speicherprogrammierbarer
	Steuerungen
	- Labor Steuer- und Regelungstechnik:
	Sicherheitsbestimmungen für den Laborbetrieb;
	Einführung in das Anfertigen technischer Berichte;
	Umgang mit Regelkreis- und SPS-Emulationssoftware;
	Umsetzen einfacher, praxisrelevanter Steuer- bzw.
	Regelungsaufgaben; Aufbereitung und Diskussion von
	Testergebnissen.
Studien- Prüfungsleistungen:	Klausur; Laborteil: Das Labor ist dann bestanden, wenn
- Ctadion Trainingsioistangen.	alle Laborversuche erfolgreich durchgeführt wurden
	und alle zugehörigen Versuchsprotokolle vom Betreuer
	als "mit Erfolg bestanden" testiert wurden.
Medienformen:	- Vorlesung mit gemischten Medien (Tafelarbeit,
Wiedle Hild Hiell.	Projektorfolien etc.)
	- Rechner mit Computersimulationen
	·
Litaratur	- Übungsaufgabenblätter
Literatur:	- Fritz Tröster: Steuerungs- und Regelungstechnik für
	Ingenieure, Oldenbourg Verlag München
	- Gerd Schulz: Regelungstechnik 1, Oldenbourg Verlag
	München Wien
	- Otto Föllinger: Regelungstechnik: Einführung in die
	Methoden und ihre Anwendung, Verlag Hüthig,
	Heidelberg
	- Lutz, Wendt: Taschenbuch de Regelungstechnik,
	Verlag Harry Deutsch

Schaltungs- und Leiterplattenentwurf

Studienrichtung:	IEIT
Modulbezeichnung:	Schaltungs- und Leiterplattenentwurf
	Circuit Simulation and PCB Design
ggf. Kürzel	LP
ggf. Untertitel	
ggf. Lehrveranstaltungen:	
Studiensemester:	3
Angebotsturnus:	jährlich im Wintersemester
Modulverantwortliche(r):	Prof. DrIng. Steffen Doerner
Dozent(in):	Prof. DrIng. Steffen Doerner
Sprache:	deutsch
Zuordnung zum Curriculum:	IEIT, 3. Semester, Pflichtfach
Lehrform / SWS:	2 SWS Vorlesung, 2 SWS Übung, 1 SWS Projekt
Arbeitsaufwand:	150 h, davon 75 h Präsenz- und 75 h Eigenstudium
Kreditpunkte:	5
Voraussetzungen nach	keine
Prüfungsordnung:	
Empfohlene Voraussetzungen:	Erfolgreicher Abschluss der Module: Elektrotechnik 1-3,
	Analoge Schaltungen 1-2
Angestrebte Lernergebnisse:	Nach erfolgreichem Abschluss sind die Studierenden mit
	dem selbstständigen Entwerfen elektronischer
	Schaltungen vertraut. Sie sind in der Lage, mithilfe der
	Projektarbeits-Aufgabenstellung unter Zuhilfenahme
	von Datenblättern, technologischen Schriften und
	Fachbüchern die zur Umsetzung erforderlichen
	Schaltungsgruppen abzuleiten und in eine Leiterplatte
	zu überführen. Durch den stark iterativen
	Entwicklungsprozess lernen die Studierenden, sich
	intensiv mit dem Gebiet der Schaltungsentwicklung und
	des Leiterplattenentwurfs auseinanderzusetzten.
	Die praktische Inbetriebnahme vertieft und
	veranschaulicht den Stoff der Vorlesung und bereit die
	Studierenden damit auf das gesamte Lernziel des
	Moduls vor.
	Die Studierenden sollen daran gewöhnt werden, den in
	den Vorlesungen behandelten Stoff selbstständig
	nachzubereiten und mittels Fachliteratur zu vertiefen.
	Ihr abstraktes und analytisches Denkvermögen soll
	gestärkt werden.
Inhalt:	Schaltungssimulation
	- Einführung in die Schaltungssimulation
	- Simulation im Zeitbereich
	- Simulation im Bildbereich
	- parametrische Simulation

	1
	Grundlagen der Leiterplattenfertigung
	- Leiterplattenaufbau
	- Mehrlagige Leiterplatten
	- Durchkontaktierungsarten
	- Thermisches Management
	Schaltungsentwicklung
	- Einführung in den computergestützten
	Schaltungsentwurf
	- Verwendung von Bauteilbibliotheken
	- Erstellen von Symbolen
	- Zeichnen von elektronischen Schaltplänen
	- Erzeugen von Netzlisten
	- Prüfen der Einhaltung der Designregeln
	Leiterplattenlayout
	- Übernahme von Netzlisten
	- Erstellen von Footprints
	- Festlegen der Design Constraints
	- Layermanagement
	- Platzieren
	- Routen
	- Prüfen der Einhaltung der Designregeln
	- Erstellen der Fertigungsdaten
	Bestücken und Inbetriebnahme
	- Aufrakeln der Lotpaste
	- Placement
	- Reflow-Löten
	- Reinigung
	- Sichtprüfung
	- Abschnittsweise Inbetriebnahme
Studien- Prüfungsleistungen:	benotete Projektarbeit
Medienformen:	- Vorlesung mit gemischten Medien (Tafelarbeit,
	Beamer etc.);
	- Aufgabenblätter für die Schaltungssimulation
Literatur:	- Heinemann, R.: PSPICE – Einführung in die
	Elektroniksimulation. Hanser Verlag
	- Seifart, M.: Analoge Schaltungen. Verlag Technik
	- Tietze, U.; Schenk, C., Gamm, E.: Halbleiter-
	Schaltungstechnik. Springer Vieweg
	- Göbel, H.: Einführung in die Halbleiter-
	Schaltungstechnik. Springer-Verlag
<u> </u>	, 5

Signale und Systeme

Studienrichtung:	IEIT, IOE
Modulbezeichnung:	Signale und Systeme
	Theory of Signals and Systems
ggf. Kürzel	SISY
ggf. Untertitel	
ggf. Lehrveranstaltungen:	
Studiensemester:	5
Angebotsturnus:	jährlich im Wintersemester
Modulverantwortliche(r):	Prof. DrIng. Heinrich Schwierz
Dozent(in):	Prof. DrIng. Heinrich Schwierz
Sprache:	deutsch
Zuordnung zum Curriculum:	IEIT, 5. Semester, Pflichtfach
3	IOE, 5. Semester, Pflichtfach
Lehrform / SWS:	3 SWS Vorlesung, 1 SWS Übung
Arbeitsaufwand:	150 h, davon 60 h Präsenz- und 90 h Eigenstudium
Kreditpunkte:	5
Voraussetzungen nach	keine
Prüfungsordnung:	
Empfohlene Voraussetzungen:	Mathematik für Ingenieure 1 und 2, Experimentalphysik 1 und 2, Elektrotechnik 1 und 2, Analoge Schaltungen 1 und 2
Angestrebte Lernergebnisse:	 Die Studierenden kennen die wichtigsten Unterschiede zwischen der Signal- und Systemdarstellung im Zeitund Frequenzbereich Die Studierenden beherrschen das theoretische und methodische Rüstzeug für die theoretische und messtechnische Untersuchung von Signalen und Übertragungssystemen Die Studierenden können grundsätzliche Lösungsstrategien und Lösungsmethoden für einfache Systeme entwickeln Die Studierenden sind in der Lage, einfache Signale und Systeme zu entwerfen, zu dimensionieren und praktisch zu realisieren Die Studierenden erwerben die wichtige Fähigkeit, aus formelmäßig dargestellten Zusammenhängen physikalisch-technische Sachverhalte und Modellansätze zu erkennen und zu verstehen
Inhalt:	Vorlesung - Einführung - Signale im Zeitbereich - Systembeschreibung im Zeitbereich - Signale im Frequenzbereich - Systembeschreibung im Frequenzbereich

	- Modulationsverfahren
	- Diskrete Signale und Systeme
	- Beschreibung von Zufallssignalen
	- Signalverzerrungen und Störungen
	Übung: Berechnung von Übungsaufgaben zu den
	Vorlesungsinhalten
	- Grundlagen der komplexen Zahlen
	- Berechnung und Transformation einfacher Signale
	- Berechnung von Fourier-Reihen und
	Fouriertransformation
	- Erzeugung und Analyse modulierter Signale
	- Untersuchung einfacher Übertragungssysteme
	Labor: Durchführung von Praktikumsversuchen zu den
	Vorlesungsinhalten
	- Klassifizierung und Analyse von Signalen
	- Fourieranalyse und -synthese
	- Modulationsverfahren
	- Übertragungsverhalten linearer und nichtlinearer
	Systeme
Studien- Prüfungsleistungen:	Die Gesamtnote besteht aus 85 % Bewertung der
	Klausur und 15 % Laborbewertung
Medienformen:	Tafel, Beamer, Folien-Präsentation
Literatur:	Karrenberg, U.: Signale, Prozesse und Systeme,
	Springer Verlag, Berlin, 2005
	Mäusl, R.: Analoge Modulationsverfahren, Hüthig
	Verlag, Heidelberg, 1992
	Rennert, I., Bundschuh, B.: Signale und Systeme, Fach-
	buchverlag Leipzig, München, 2013
	Werner, M.: Signale und Systeme, Vieweg Verlag,
	Wiesbaden, 2005

Simulations- und Regelungstechnik 1

Studienrichtung:	IMT
Modulbezeichnung:	Simulations- und Regelungstechnik 1
	Simulation and Control Technology 1
ggf. Kürzel	SR1
ggf. Untertitel	
ggf. Lehrveranstaltungen:	
Studiensemester:	4
Angebotsturnus:	jährlich im Sommersemester
Modulverantwortliche(r):	Prof. DrIng. Guido Kramann
Dozent(in):	Prof. DrIng. Guido Kramann
Sprache:	deutsch
Zuordnung zum Curriculum:	IMT, 4. Semester, Pflichtfach
Lehrform / SWS:	2 SWS Vorlesung, 2 SWS Übung
Arbeitsaufwand:	150 h, davon 60 h Präsenz- und 90 h Eigenstudium
Kreditpunkte:	5
Voraussetzungen nach	keine
Prüfungsordnung:	
Empfohlene Voraussetzungen:	Fertigkeit prozedural in C zu programmieren.
	Mathematische Grundlagen: Lineare Algebra, Analyses,
	insb. Numerische Integrationsverfahren, Eigenwerte,
	Laplace-Transformation.
Angestrebte Lernergebnisse:	Kenntnisse:
	- Die Studierenden bekommen einen Überblick über die
	im technischen Bereich gebräuchlichen Methoden zur
	Modellbildung von linearen Regelstrecken, zu deren
	Simulation, zu linearen Reglertypen und zur
	Reglerauslegung, sowie zur Optimierung der Regler und
	zur Parameteridentifikation.
	Fertigkeiten:
	- Die Studierenden sind nach Belegung des Kurses in
	der Lage sowohl Methoden zur Reglerauslegung im
	Laplace- als auch Methoden im Zeitbereich anzuwenden
	und auch Regelstrecken und Regelsysteme zwischen
	beiden Bereichen hin- und her zu transformieren.
	- Die Studierenden sind in der Lage gegebene nicht
	lineare Regelstrecken zwecks Reglerauslegung um den
	Sollzustand herum zu linearisieren und auch
	abzuschätzen, ob eine Linearisierung sinnvoll ist. Die
	Studierenden besitzen die Fertigkeit, die eingeführten
	theoretischen Methoden praktisch mit Hilfe eines CAE-
	Werkzeugs umzusetzen.
Inhalt:	Einführung: Modellierung linearer dynamischer
	Systeme, Bedeutung der Eigenwerte, PID-Regler,
	klassische Auslegungsmethoden. Gewicht 20%.

	Vertiefungen: Übertragungs- und Störverhalten,
	Numerische Optimierungsverfahren, Zustandsregler,
	Polvorgabe. Gewicht 40%.
	Anwendung: Umgang mit Scilab und Processing (Java)
	zu Modellierung, Simulation, Animation und
	Optimierung von Regelkreisen. "Realwelt-Beispiel" (z.B.
	autonome Elektrokutsche, Balancierendes Einachs-
	Vehikel, Lenkregelung für AV u.ä.) 40%.
Studien- Prüfungsleistungen:	Zwei Semester begleitende Klausuren in elektronischer
	Form (E-Test).
	Benotung: Ja.
	Die Note ergibt sich als Mittelwert aus den Noten beider
	Teilklausuren.
Medienformen:	Vorlesung, PC-Pool: Verwendung von Scilab und
	Processing.
Literatur:	Beater, P.: Regelungstechnik und Simulationstechnik
	mit Scilab und Modelica. Books on Demand,
	Norderstedt 2010.
	Föllinger, O.: Regelungstechnik. Hüthig, Heidelberg
	1994.

Simulations- und Regelungstechnik 2

Studienrichtung:	IMT
Modulbezeichnung:	Simulations- und Regelungstechnik 2
	Simulation and Control Technology 2
ggf. Kürzel	SR2
ggf. Untertitel	
ggf. Lehrveranstaltungen:	
Studiensemester:	5
Angebotsturnus:	jährlich im Wintersemester
Modulverantwortliche(r):	Prof. DrIng. Guido Kramann
Dozent(in):	Prof. DrIng. Guido Kramann
Sprache:	
Zuordnung zum Curriculum:	IMT, 5. Semester, Pflichtfach
Lehrform / SWS:	2 SWS Vorlesung, 2 SWS Übung
Arbeitsaufwand:	150 h, davon 60 h Präsenz- und 90 h Eigenstudium
Kreditpunkte:	5
Voraussetzungen nach	
Prüfungsordnung:	
Empfohlene Voraussetzungen:	Fertigkeit prozedural in C zu programmieren.
	Mathematische Grundlagen: Lineare Algebra, Analyses.
Angestrebte Lernergebnisse:	Kenntnisse: - Die Studierenden haben Methoden und Strategien zur Regelung und Optimierung Nicht-linearer Systeme kennengelernt, wie beispielsweise Fuzzy-Logik, Fuzzy-
	Regler, Genetische Optimierungsalgorithmen und Neuronale Netze. Fertigkeiten:
	- Die Studierenden sind in der Lage Fuzzy-Regler zu entwerfen, zu implementieren und eine Optimierung der Fuzzy-Regler durchzuführen. Sie sind im Umgang mit Software zur Beschreibung, Simulation und Optimierung von Regelsystemen geschult.
	 Nach erfolgreicher Belegung des Kurses können die Studierenden auch selbst lernende Regelsysteme, z.B. unter Verwendung Neuronaler Netze entwickeln. Anhand praktischer Beispiele wird auch ein Bewusstsein für die Unzulänglichkeiten (Grenzen der
	Modellgenauigkeit, Störgrößen beim realen System, Grenzen der Modellgültigkeit, usw.) geschaffen, denen zum Trotz die Regler am Rechner entworfen und dann erfolgreich am realen System eingesetzt werden. Entsprechende Erfahrungen werden typischerweise
	anhand geeigneter Aufgaben in Gruppenarbeiten gemacht und anschließend im Kurs diskutiert (Systemdenken fördern / Teamfähigkeit ausbilden).

Inhalt:	Einführung: Biologisch inspirierte Verfahren im Bereich der Regelungstechnik, der Optimierung und der Bildverarbeitung. Gewicht 20%. Vertiefungen: Modellierung, Simulation, Regelung und Regler-Optimierung ausgewählter dynamischer Systeme auf Basis von Fuzzy-Reglern und genetischen Algorithmen. Umgang mit Modell- und Zustandsunsicherheiten. Adaptive Regler. Gewicht 40%. Anwendung: Java-Implementierung von Fuzzy-Logik und genetischen Algorithmen (GA). Implementierungsstrategien für Fuzzy und GA auf eingebetteten Systemen. Extraktion von Zustandsgrößen mittels Bildverarbeitungsmethoden (Kamera). 40%.
Studien- Prüfungsleistungen:	Zwei Semester begleitende Klausuren in elektronischer Form (E-Test). Benotung: Ja. Die Note ergibt sich als Mittelwert aus den Noten beider Teilklausuren.
Medienformen:	Vorlesung, PC-Pool: Verwendung von Scilab und Processing.
Literatur:	Borgelt, C., Klawonn, F., Kruse, R., Nauck, D.: Neuro-Fuzzy-Systeme. Vieweg, Wiesbaden 2003. Harris, C.J., Moore, C.G., Brown, M.: Intelligent Control – Aspects of Fuzzy Logic and Neural Nets. World Scientific, London 1994. Köhler, T.: Analog and Digital Hardware Implementations of Biologically Inspired Algorithms in Mobile Robotics. Der Andere Verlag, Tönning 2009. Sivanandam, S.N., Deepa, S.N.: Introduction to Genetic Algorithms. Springer, Heidelberg 2010.

Studium Generale

Studienrichtung:	IEIT, IAT, IMT, IOE, WEIT, WEUT, WMT
Modulbezeichnung:	Studium Generale
ggf. Kürzel	
ggf. Untertitel	
ggf. Lehrveranstaltungen:	
Studiensemester:	6
Angebotsturnus:	jährlich im Sommersemester
Modulverantwortliche(r):	Studiendekane des FBT
Dozent(in):	N.N.
Sprache:	abhängig von der besuchten LV
Zuordnung zum Curriculum:	IEIT, 6. Semester, Pflichtfach
	IAT, 6. Semester, Pflichtfach
	IMT, 6. Semester, Pflichtfach
	IOE, 6. Semester, Pflichtfach
	WEIT, 6. Semester, Pflichtfach
	WMT, 6. Semester, Pflichtfach
	WEUT, 6. Semester, Pflichtfach
Lehrform / SWS:	4 SWS Vorlesung;
	unverbindlich; variiert je nach besuchter Veranstaltung
Arbeitsaufwand:	150 h, davon 60 h Präsenz- und 90 h Eigenstudium
Kreditpunkte:	5
Voraussetzungen nach	keine
Prüfungsordnung:	
Empfohlene Voraussetzungen:	
Angestrebte Lernergebnisse:	Die Studierenden arbeiten sich in fachlich heterogenen
	Gruppen in Themenbereiche ein, die außerhalb ihres
	fachlichen Schwerpunkts liegen können.
Inhalt:	Erfolgreiche Teilnahme an einem durch den
	Fachbereichsrat für das Studium Generale zugelassenen
	Lehrangebot mit mindestens 5 Leistungspunkten an der
	THB. Es wird eine hochschulweite Regelung angestrebt.
Studien- Prüfungsleistungen:	Testierte Leistung
Medienformen:	
Literatur:	

Systemdynamik für Mechatronik

Studienrichtung:	IMT
Modulbezeichnung:	Systemdynamik für Mechatronik
	System Dynamics for Mechatronics
ggf. Kürzel	
ggf. Untertitel	Dynamik und Modellierung linearer Systeme
ggf. Lehrveranstaltungen:	
Studiensemester:	4
Angebotsturnus:	jährlich im Sommersemester
Modulverantwortliche(r):	Prof. DrIng. Christian Oertel
Dozent(in):	Prof. DrIng. Christian Oertel
Sprache:	deutsch
Zuordnung zum Curriculum:	IMT, 4. Semester, Pflichtfach
Lehrform / SWS:	2 SWS Vorlesung, 2 SWS Übung
Arbeitsaufwand:	150 h, davon 60 h Präsenz- und 90 h Eigenstudium
Kreditpunkte:	5
Voraussetzungen nach	keine
Prüfungsordnung:	
Empfohlene Voraussetzungen:	- Mathematik: lineare Systeme, insbesondere
	Matrizenrechnung, Eigensysteme und lineare
	Differentialgleichungen, Analysis
	- Mechanik: Schnittprinzip, Grundgleichungen der
	Dynamik
Angestrebte Lernergebnisse:	Kenntnisse: Aufgabenstellungen der Systemintegration
	sowie eingesetzte Werkzeuge und Verknüpfungen der
	Methoden kennen, Mächtigkeit von
	Simulationssystemen und deren Einsatzgebiete kennen
	und unterscheiden, Vorgehensweise bei der
	Modellvalidierung kennen
	Fertigkeiten: lineare Modelle für mechatronische
	Systeme aufbauen und in Zustandsform sowie als
	Übertragungsfunktion(en) durch Laplace-
	Transformationen darstellen können, Aufbau von
	blockorientiertem Modellen sowie Modellbeschreibung
	mit Hilfe der SCILAB-Syntax, Bestimmung und
	Interpretation des Eigensystems hinsichtlich
	charakteristischer Eigenschaften und Stabilität,
	Bestimmung und Interpretation des
	Übertragungsverhaltens linearer Systeme hinsichtlich
	Amplitude und Phase, Benennen von Grenzen linearer
	Modellbildung mit Bezug auf reale Prozesse
	(Amplitudenabhängigkeiten, Nichtlinearitäten)
Inhalt:	Grundlagen: Aufgabenstellung der Systemdynamik
	anhand einer Fallstudie zur Systemintegration eines
	Hexapods, eingesetzte Werkzeuge, mathematische

	Grundlagen anhand mechatronischer Beispielsysteme,
	Beschreibung durch Differentialgleichungssysteme
	erster und zweiter Ordnung, Gewicht 10 %
	Komponenten- und Systemdynamik: Transformation
	gekoppelter Systeme auf ein System erster Ordnung,
	Beispiele für SISO und MIMO, modale Darstellung
	linearer Systeme, Beschreibung im Zustandsraum,
	Eingangs- und Ausgangsmatrizen, Interpretation des
	Eigensystems im Hinblick auf Stabilität und Dämpfung,
	Laplace- und Fourier-Transformation, Anregungen und
	Testsignale, dynamische Stabilität, ausgeführte
	Beispiele, Gewicht 35 %
	Modellierungsstrategien: diskrete und kontinuierliche
	Beschreibung von Bauteilen, hybride Modelle,
	Steifigkeits- und Dämpfungseigenschaften, Dissipation
	in technischen Systemen, Modellbildung bei
	hydraulischen Systemen, Aufbau und Einsatz von
	Modellhierarchien, Ausblick auf wesentliche
	Nichtlinearitäten Beispielprojekte mechatronischer
	Systeme, Gewicht 35 %
	Parameterbestimmung und –optimierung: direkte und
	·
	indirekte Parameterbestimmung, Versuchsplanung und
	Auswertung – design of experiments,
	Optimierungsverfahren, ausgeführte Beispiele, Gewicht
	5 %
	Simulationswerkzeuge: Abbildung linearer Systeme
	durch die Matrizen (A,B,C und D) der
	Zustandsraumdarstellung, Berechnung des
	Eigensystems und des Übertragungsverhaltens,
	Überführung in andere Darstellungen wie z.B. G(s),
	blockorientierte Systeme sowie deren Methodenvorrat,
	Schnittstellen zu Anwenderfunktionen,
	Computeralgebra, Simulationssysteme für diskrete und
	finite Systeme, Beispielprojekte, Gewicht 15 %
Studien- Prüfungsleistungen:	Klausur
Medienformen:	Einsatz der Systeme SCILAB und SCICOS sowie
	MAXIMA in den Vorlesungen und den Übungen,
	Animationen in den Vorlesungen, Übungsvorlagen mit
	Lösungen als pdf-Dokumente
Literatur:	B. Heimann, W. Gerth und K. Popp: "Mechatronik".
	HanMünchen; Wien: Hanser 2007
	R. Isermann: "Mechatronische Systeme". Berlin;
	Heidelberg: Springer 2007
	Ch. Oertel: "Einführung in die Systemdynamik".
	Brandenburg; Vorlesungsskript, FH-Brandenburg 2007
	R. Unbehauen: "Systemtheorie I". München; Wien:
	Oldenburg 1997
L	· · · · · · · · · · · · · · · · · · ·

R. Unbehauen: "Systemtheorie II". München; Wien:
Oldenburg 1997

Technische Mechanik 1

Studienrichtung:	IMT
Modulbezeichnung:	Technische Mechanik 1
	Engineering Mechanics 1
ggf. Kürzel	TM1
ggf. Untertitel	Statik
ggf. Lehrveranstaltungen:	
Studiensemester:	2
Angebotsturnus:	jährlich im Sommersemester
Modulverantwortliche(r):	Prof. DrIng. Christian Oertel
Dozent(in):	DiplIng. Roland Wald
Sprache:	deutsch
Zuordnung zum Curriculum:	IMT, 2. Semester, Pflichtfach
Lehrform / SWS:	3 SWS Vorlesung, 1 SWS Übung
Arbeitsaufwand:	150 h, davon 60 h Präsenz- und 90 h Eigenstudium
Kreditpunkte:	5
Voraussetzungen nach	
Prüfungsordnung:	
Empfohlene Voraussetzungen:	Mathematik 1, Physik
Angestrebte Lernergebnisse:	Die Studierenden können Auflagerreaktionen und
	Schnittlasten in statisch bestimmten einfachen ebenen
	räumlichen Systemen mit dem Schnittprinzip und den
	Gleichgewichtsbedingungen bestimmen.
	Die Studierenden können die Gleichungen für Roll-,
	Gleit und Haftreibung zwischen starren Körpern und
	zwischen starren Körpern und Seilen aufstellen und
	auswerten.
	Die Studierenden können wirkende Lasten an Balken
	auf die Balkenachse reduzieren und die Querkraft- und
	Biegemomentenlinie semigrafisch ermitteln.
	Die Studierenden können Auflager-, Stab-, und
	Gelenkkräfte an Mehrkörpersystemen bestimmen.
Inhalt:	Statik starrer Körper:
	Resultierende Kraft Gleichgewicht am Massenpunkt,
	Resultierendes Moment, Gleichgewicht am Starren
	Körper,
	Stabkräfte in Fachwerken
	Gelenkreaktionen in Mehrkörpersystemen
	Schwerpunktberechnung
	Coulombsches Reibgesetz, Seilreibung
	Schnittlastenverläufe in stabförmigen Tragwerken,
	Schnittmethode, Differenzialgleichungslösung und
	grafisches Verfahren
	Auflagerreaktionen und Schnittlasten bei einfachen 3D-
	Tragwerken 126

Studien- Prüfungsleistungen:	Klausur
Medienformen:	Tafel und Kreide, Folien/Beamer, Anschauungsmodelle
	an der Magnettafel
Literatur:	Gross, Hauger, Schröder, Wall: Technische Mechanik,
	Band 1, Statik
	Gross, Hauger, Wriggers: Formeln und Aufgaben zur
	Technischen Mechanik 1, Statik,
	Kabus: Mechanik und Festigkeitslehre
	Kabus: Mechanik und Festigkeitslehre Aufgaben
	Hibbeler, Technische Mechanik 1, Statik

Technische Mechanik 2

Studienrichtung:	IMT
Modulbezeichnung:	Technische Mechanik 2
	Engineering Mechanics 2
ggf. Kürzel	TM2
ggf. Untertitel	Festigkeitslehre
ggf. Lehrveranstaltungen:	
Studiensemester:	3
Angebotsturnus:	jährlich im Wintersemester
Modulverantwortliche(r):	Prof. DrIng. Christian Oertel
Dozent(in):	DiplIng. Roland Wald
Sprache:	deutsch
Zuordnung zum Curriculum:	IMT, 3. Semester, Pflichtfach
Lehrform / SWS:	3 SWS Vorlesung, 1 SWS Übung
Arbeitsaufwand:	150 h, davon 60 h Präsenz- und 90 h Eigenstudium
Kreditpunkte:	5
Voraussetzungen nach	keine
Prüfungsordnung:	
Empfohlene Voraussetzungen:	Technische Mechanik 1 und 2, Mathematik 1-3
Angestrebte Lernergebnisse:	Die Studierenden können die Belastungsarten
	Zug/Druck, Biegung, Torsion und Querkraftschub
	unterscheiden und dafür Spannungskomppnenten und
	Verformungen berechnen. Für die
	Verformungsberechnung können sie Standardlösungen
	superponieren, die Verschiebungs-
	Differenzialgleichungen integrieren oder den Arbeitssatz anwenden.
	Sie können die dafür erforderlichen Querschnittswerte berechnen.
	Sie können Auflagerreaktionen und Schnittlasten an
	9
	statisch unbestimmten Systeme unter Berücksichtigung des elastischen Verhaltens bestimmen.
	Sie können Spannungen, Verzerrungen und
	Trägheitsmomente unter Verwendung auf verschiedene
	Achsensysteme und insbesondere auf Hauptachsen
	transformieren und dies am Mohrschen Kreis
	illustrieren.
Inhalt:	- Zug/Druck, Elastizitätstheorie für axial beanspruchte
	Stabsysteme: Spannung, Dehnung, Stoffgesetz, DGL für
	Einzelstab, Analogie Feder-Stab, thermische Dehnung,
	- Kraftgrößenverfahren für statisch unbestimmte
	Systeme.
	- Torsion, Elastisches Gesetz für den Torsionsstab,
	Schubspannung, polares Trägheitsmoment.
	Dünnwandige geschlossene und offene Querschnitte,
	128

	Bredtsche Formeln
	- Gerade Biegung, Normalspannung,
	Flächenträgheitsmomente einfacher und
	zusammengesetzter Querschnitte (Satz von Steiner),
	Biege-DGL und deren Integration zur Biegelinie
	- Superposition von Standardlösungen,
	Kraftgrößenverfahren.
	- Querkraftschub, Schubspannungsformel, Schubfaktor
	- Ebener Spannungszustand, Hauptspannungen,
	Festigkeitshypothesen, Vergleichsspannungen,
	Mohrscher Spannungskreis,
	- Kesselformeln, Verzerrungszustand, elastisches
	Gesetz, Hauptdehnungen, Anwendung auf
	Dehnungsmessung
	- Verformungsberechnung mit dem Arbeitssatz
	- Knicken von längskraftbelasteten Biegeträgern,
	Eulerfälle
Studien- Prüfungsleistungen:	Klausur
Medienformen:	Tafel und bunte Kreide, Präsentationen am Beamer,
	Anschauungsmodelle
Literatur:	Schnell-Gross-Hauger, Technische Mechanik 2:
	Elastostatik, Schnell-Ehlers-Wriggers, Formeln und
	Aufgaben zur Technischen Mechanik 2,
	Hibbeler, Technische Mechanik 2, Festigkeitslehre
	Mattheck: Warum alles kaputt geht

Technische Mechanik 3

Studienrichtung:	IMT
Modulbezeichnung:	Technische Mechanik 3
	Engineering Mechanics 3
ggf. Kürzel	
ggf. Untertitel	Kinematik und Kinetik
ggf. Lehrveranstaltungen:	
Studiensemester:	3
Angebotsturnus:	jährlich im Wintersemester
Modulverantwortliche(r):	Prof. DrIng. Christian Oertel
Dozent(in):	DiplIng. Roland Wald
Sprache:	deutsch
Zuordnung zum Curriculum:	IMT, 3. Semester, Pflichtfach
Lehrform / SWS:	3 SWS Vorlesung, 1 SWS Übung
Arbeitsaufwand:	150 h, davon 60 h Präsenz- und 90 h Eigenstudium
Kreditpunkte:	5
Voraussetzungen nach	keine
Prüfungsordnung:	
Empfohlene Voraussetzungen:	Technische Mechanik 1 und 2, Mathematik 1 und 2
Angestrebte Lernergebnisse:	Die Studierenden können die ebene Bewegung von
	Massenpunkten und starren Körpern beschreiben und
	Geschwindigkeit und Beschleunigungen berechnen.
	Sie können unter Verwendung von Energie- und
	Impulssatz Stoßvorgänge analysieren.
	Sie können Bewegungsgleichungen für ebene Systeme
	unter Verwendung von Trägheitskräften und
	Lagrangeschen Gleichungen in generalisierten
	Koordinaten aufstellen.
	Sie kennen analytische und numerische
	Lösungsverfahren für die entstehenden
	Differenzialgleichungsssteme und können sie für
	einfache Fälle anwenden.
	Sie können Schwingungsvorgänge quantitativ
	beschreiben.
	Sie haben am Beispiel des Einmassenschwingers und
	des Zweimassenschwingers technisch relevante
	Phänomene wie Resonanz, Schwingungsisolation und
	Schwingungstilgung kennengelernt.
Inhalt:	Ebene Kinematik des Massenpunktes und des starren
	Körpers,
	- Kinetische Energie der Drehung und der Translation,
	Energieerhaltung.
	- Impuls und Drehimpuls, Impulserhaltungssatz,
	elastischer und inelastischer Stoß.
	- Aufstellung von Bewegungsgleichungen mit dem

	Prinzip von d'Alembert und mit Lagrangeschen
	Gleichungen in generalisierten Koordinaten.
	- Harmonische Schwingungen als Lösungen linearer
	Differenzialgleichungen.
	- Einmassenschwinger, freie und erzwungene,
	gedämpfte und ungedämpfte Schwingungen,
	Vergrößerungsfunktion, Resonanz
	- Zweimassenschwinger, Amplitudenfrequenzgang,
	Schwingungstilgung, Schwingungsisolation
	- Aufbereitung von Differenzialgleichungen für und
	deren Lösung mit numerischen Verfahren,
Studien- Prüfungsleistungen:	Klausur
Medienformen:	Tafel und bunte Kreide, Präsentationen am Beamer,
	Anschauungsmodelle
Literatur:	Gross, Hauger, Schröder, Wall, Technische Mechanik 3:
	Kinetik
	Hibbeler, Technische Mechanik 3, Dynamik

Technische Optik 1

Studienrichtung:	IOE
Modulbezeichnung:	Technische Optik 1
	Technical Optics 1
ggf. Kürzel	TO1
ggf. Untertitel	
ggf. Lehrveranstaltungen:	
Studiensemester:	3
Angebotsturnus:	jährlich im Wintersemester
Modulverantwortliche(r):	Pof. Dr. habil. Michael Vollmer
Dozent(in):	Pof. Dr. habil. Michael Vollmer
Sprache:	deutsch
Zuordnung zum Curriculum:	IOE, 3. Semester, Pflichtfach
Lehrform / SWS:	3 SWS Vorlesung, 1 SWS Übung
Arbeitsaufwand:	150 h, davon 60 h Präsenz- und 90 h Eigenstudium
Kreditpunkte:	5
Voraussetzungen nach	keine
Prüfungsordnung:	
Empfohlene Voraussetzungen:	Physik und Mathematikvorlesungen der ersten 2
	Semester
Angestrebte Lernergebnisse:	Die Studierenden hören eine Einführung in die
	technische Optik. Sie erlernen den Umgang mit
	optischen Begriffen und Gesetzen. Sie erlangen
	Grundfähigkeiten und - fertigkeiten bei der Anwendung
	auf einfache optische Phänomene bzw. Probleme. In
	den Übungen werden von den Studenten im
	Selbststudium zu lösende Aufgaben besprochen.
	Angestrebte Kompetenzen:
	Die Studierenden kennen die grundlegenden Begriffe
	der Themengebiete der Vorlesung, die ihnen durch
	Experimente verdeutlicht werden. Sie beherrschen den
	Abstraktionsprozess von der Beobachtung eines
	optischen Vorgangs über seine Beschreibung bis hin zur
	formelmäßigen Umsetzung und Berechnung.
	Die Studierenden sollen daran gewöhnt werden, den in
	den Vorlesungen behandelten Stoff selbstständig
	nachzubereiten und mittels Fachliteratur zu vertiefen.
	Ihr abstraktes und analytisches Denkvermögen soll
	gestärkt werden. Sie sollen lernen, physikalische
	Prozesse durch angemessene Modelle nachzubilden und
	die Grenzen der Ergebnisse ihrer Rechenansätze zu
	erkennen.
Inhalt:	Optische Phänomene
	geometrische Optik und Wellenoptik
	Brechungsindex

	Linsen und Linsenkombinationen
	einfache Abbildungen
	optische Geräte
	Prismen
	Blenden
Studien- Prüfungsleistungen:	Klausur
Medienformen:	- Vorlesung mit gemischten Medien (Tafelarbeit,
	Beamer etc.);
	- Übungsaufgabenblätter
	- Demonstrationsversuche
Literatur:	Detaillierte aktuelle Literaturliste wird ausgegeben,
	darunter z.B.:
	- H. Naumann, G. Schröder: Bauelemente der Optik,
	Hanser (1992)
	- G. Litfin (Hrsg.): Technische Optik in der Praxis,
	Springer (1997)
	- J. Bliedtner, G. Gräfe: Optiktechnologie, Hanser
	(2008)
	- Pedrotti, Optik : eine Einführung, Prentice Hall (1996)
	- E. Hecht, Optik, Addison-Wesley, (1989), 3. Auflage
	2001.
	- Falk, Brill, Stork: Ein Blick ins Licht, Birkhäuser und
	Springer (1990)
	- Lipson-Lipson-Tannhauser: Optik, Springer (1997)

Technische Optik 2

Studienrichtung:	IOE
Modulbezeichnung:	Technische Optik 2
	Technical Optics 2
ggf. Kürzel	TO2
ggf. Untertitel	
ggf. Lehrveranstaltungen:	
Studiensemester:	4
Angebotsturnus:	jährlich im Sommersemester
Modulverantwortliche(r):	Pof. Dr. habil. Michael Vollmer
Dozent(in):	Pof. Dr. habil. Michael Vollmer
Sprache:	deutsch
Zuordnung zum Curriculum:	IOE, 4. Semester, Pflichtfach
Lehrform / SWS:	1 SWS Vorlesung, 1 SWS Übung, 2 SWS Labor
Arbeitsaufwand:	150 h, davon 60 h Präsenz- und 90 h Eigenstudium
Kreditpunkte:	5
Voraussetzungen nach	keine
Prüfungsordnung:	
Empfohlene Voraussetzungen:	Physik und Mathematikvorlesungen der ersten 2
	Semester, Technische Optik 1
Angestrebte Lernergebnisse:	Die Studierenden hören eine Einführung in die
	technische Optik. Sie erlernen den Umgang mit
	optischen Begriffen und Gesetzen. Sie erlangen
	Grundfähigkeiten und - fertigkeiten bei der Anwendung
	auf einfache optische Phänomene bzw. Probleme. In
	den Übungen werden von den Studenten im
	Selbststudium zu lösende Aufgaben besprochen.
	Angestrebte Kompetenzen:
	Die Studierenden kennen die grundlegenden Begriffe
	der Themengebiete der Vorlesung, die ihnen durch
	Experimente verdeutlicht werden. Sie beherrschen den
	Abstraktionsprozess von der Beobachtung eines
	optischen Vorgangs über seine Beschreibung bis hin zur
	formelmäßigen Umsetzung und Berechnung.
	Die Studierenden sollen daran gewöhnt werden, den in
	den Vorlesungen behandelten Stoff selbstständig
	nachzubereiten und mittels Fachliteratur zu vertiefen.
	Ihr abstraktes und analytisches Denkvermögen soll
	gestärkt werden. Sie sollen lernen, physikalische
	Prozesse durch angemessene Modelle nachzubilden und
	die Grenzen der Ergebnisse ihrer Rechenansätze zu
	erkennen.
Inhalt:	Abbildungsfehler
	(photometrische) Größen der technischen Optik
	Lichtquellen und Detektoren

Studien- Prüfungsleistungen:	winkelabhängige Reflexionen (Fresnelgl.) Polarisation Interferometrie Labor TO: Sicherheitsbestimmungen für den Laborbetrieb; Einführung in das Anfertigen von Versuchsprotokollen; Messungen an einfachen Aufbauten aus diversen Gebieten; Aufbereitung und Diskussion von Messergebnissen Klausur; Laborteil: Laborschein; Benotung: Nein Das Labor ist dann bestanden, wenn alle Laborversuche erfolgreich durchgeführt wurden und alle zugehörigen Versuchsprotokolle vom Betreuer als "mit Erfolg bestanden" testiert wurden.
Medienformen:	 Vorlesung mit gemischten Medien (Tafelarbeit, Beamer etc.); Übungsaufgabenblätter Demonstrationsversuche
Literatur:	Detaillierte aktuelle Literaturliste wird ausgegeben, darunter z.B.: 1) G. Schröder, Technische Optik, Vogel Fachbuch Verlag (1990) 2) H. Naumann, G. Schröder: Bauelemente der Optik, Hanser (1992) 3) G. Litfin (Hrsg.): Technische Optik in der Praxis, Springer (1997) 4) J. Bliedtner, G. Gräfe: Optiktechnologie, Hanser (2008) 5) Pedrotti, Optik: eine Einführung, Prentice Hall (1996) 6) E. Hecht, Optik, Addison-Wesley, (1989), 3. Auflage 2001. 7) Bergmann, Schäfer: Experimentalphysik III (Optik) de Gruyter 8) Falk, Brill, Stork: Ein Blick ins Licht, Birkhäuser und Springer (1990) 9) Lipson-Lipson-Tannhauser: Optik, Springer (1997)

Technische Sensorik

Studienrichtung:	IEIT, IAT, MAnT
Modulbezeichnung:	Technische Sensorik
	Sensor Technology
ggf. Kürzel	TS
ggf. Untertitel	
ggf. Lehrveranstaltungen:	
Studiensemester:	4
Angebotsturnus:	jährlich im Sommersemester
Modulverantwortliche(r):	Prof. DrIng. Steffen Doerner
Dozent(in):	Prof. DrIng. Steffen Doerner
Sprache:	deutsch
Zuordnung zum Curriculum:	IEIT, 4. Semester, Pflichtfach
	IAT, 4. Semester, Pflichtfach
	MAnT, 4. Semester, Wahlpflichtfach
Lehrform / SWS:	3 SWS Vorlesung, 1 SWS Labor
Arbeitsaufwand:	150 h, davon 60 h Präsenz- und 90 h Eigenstudium
Kreditpunkte:	5
Voraussetzungen nach	keine
Prüfungsordnung:	
Empfohlene Voraussetzungen:	Abgeschlossene Module: Physik für Ingenieure 1-2,
	Mathematik 1-3, Elektrotechnik 1-3, Chemie und
	Werkstoffe
Angestrebte Lernergebnisse:	Nach dem erfolgreichen Absolvieren dieses Moduls
	verfügen die Studierenden über:
	- Grundlegendes Verständnis der Wandlung
	physikalischer, chemischer und biologischer
	Messgrößen in elektrische Signale
	- Vertiefende Kenntnisse zu verbreiteten
	Sensorprinzipien
	- den Überblick über kommerziell erhältliche Sensoren
	und Befähigung zur deren Auswahl entsprechend des
	Anwendungsgebiets und der Einsatzbedingungen
	- eine Einführung in "Smart Sensors" und
	Multisensorkonzepte
	Die Studierenden sollen daran gewöhnt werden, den in
	den Vorlesungen behandelten Stoff selbstständig nachzubereiten und mittels Fachliteratur zu vertiefen.
	Die Technische Sensorik besitzt eine große
	Interdisziplinarität und verknüpft die Gebiete der
	Physik, Chemie und Biologie über Schnittstellen mit der
	Elektrotechnik. Studierende erlernen hierdurch eine
	abstrakte Sicht- und Herangehensweise über bzw. an
	gestellte sensortechnische Aufgabenstellungen.
Inhalt:	Mechanische Sensoren
mmait.	MOGNATION OF SOLISOFOLE

	- Abstand/Position,
	- Druck,
	- Kraft,
	- Drehzahl,
	- Beschleunigung,
	- Durchfluss
	Optische Sensoren
	- Fototransistoren,
	- CCD-Sensoren,
	- Faseroptische Sensoren
	Magnetische Sensoren
	- Hallsensoren,
	- magnetoresistive Sensoren,
	- AMR/GMR,
	- Wirbelstromsensoren,
	Temperatursensoren
	- Thermoelemente,
	- resistive Temperatursensoren,
	- radiometrische Temperatursensoren
	Spektroskopische Sensoren
	- dielektrische Sensoren (NIR, UV-VIS, Radiowellen)
	- Massenspektrometer
	- Ionenmobilitätsspektrometer
	Chemisch/biologische Sensoren
	- elektrochemische Sensoren,
	- Biosensoren
	Intelligente Sensorsysteme
	- Smart Sensors,
	- Multisensorkonzepte, Mehrkomponentenanalyse
	- Mikrofluidische Systeme
Studien- Prüfungsleistungen:	Klausur; Laborteil: Das Labor ist dann bestanden, wenn
- Stadion Traidingsioistangen.	alle Laborversuche erfolgreich durchgeführt wurden
	und alle zugehörigen Versuchsprotokolle vom Betreuer
	als "mit Erfolg bestanden" testiert wurden.
Medienformen:	- Vorlesung mit gemischten Medien (Tafelarbeit,
	Beamer etc.);
	- Übungsaufgabenblätter
Literatur:	- Tränkler; Obermeier (Hrsg.): Sensortechnik –
Literatur.	Handbuch für Praxis und Wissenschaft. Springer-Verlag
	Tranabach fur Frakis und Wissenschaft. Springer-Verlag

Vakuum- und Dünnschichttechnik

Studienrichtung:	IOE
Modulbezeichnung:	Vakuum- und Dünnschichttechnik
	Vacuum and Thin Film Technology
ggf. Kürzel	VakDS
ggf. Untertitel	
ggf. Lehrveranstaltungen:	
Studiensemester:	4
Angebotsturnus:	jährlich im Sommersemester
Modulverantwortliche(r):	Pof. Dr. habil. Michael Vollmer
Dozent(in):	Pof. Dr. habil. Michael Vollmer, Dr. Frank Pinno
Sprache:	deutsch
Zuordnung zum Curriculum:	IOE, 4. Semester, Pflichtfach
Lehrform / SWS:	3 SWS Vorlesung, 1 SWS Übung
Arbeitsaufwand:	150 h, davon 60 h Präsenz- und 90 h Eigenstudium
Kreditpunkte:	5
Voraussetzungen nach	keine
Prüfungsordnung:	
Empfohlene Voraussetzungen:	Alle Physik und Mathematikvorlesungen der ersten 3
	Semester
Angestrebte Lernergebnisse:	Die Studierenden hören eine Einführung in die
	Vakuumtechnik und Dünnschichttechnologien. In den
	Übungen werden von den Studenten im Selbststudium
	zu lösende Aufgaben besprochen.
	Angestrebte Kompetenzen:
	Die Studierenden kennen die grundlegenden Begriffe
	der Themengebiete der Vorlesung. Sie haben ein
	Verständnis für Aufbau und Funktion von Geräten und
	Anlagen der Vakuumtechnik und
	Bedampfungstechnologien.
	Die Studierenden sollen daran gewöhnt werden, den in
	den Vorlesungen behandelten Stoff selbstständig
	nachzubereiten und mittels Fachliteratur zu vertiefen.
	Ihr abstraktes und analytisches Denkvermögen soll
	gestärkt werden. Sie sollen lernen,
	Vakuumanwendungen und beschichtungstechnische
	Aufgaben durch angemessene Modelle qualitativ zu
	beschreiben und auch quantitativ zu verstehen.
Inhalt:	Vakuum:
	Theoretische Beschreibung der Vakuumparameter,
	Erzeugen von Vakuum, Kenngrößen von Pumpen,
	Dimensionierung von Anlagen, Messen von Vakuum,
	Komponenten der Vakuumtechnik, Lecksuche,
	klassische Anwendungen
	Dünnschichttechnik:

	Methoden zur Herstellung dünner Schichten, Epitaxie,
	Oxidation, PVD, Physikalische Grundlagen des
	Schichtwachstums, Physikalische Eigenschaften dünner
	Schichten, Anwendungen
Studien- Prüfungsleistungen:	Klausur
Medienformen:	- Vorlesung mit gemischten Medien (Tafelarbeit,
	Beamer etc.);
	- Übungsaufgabenblätter
	- Demonstrationsversuche an Laborgeräten
Literatur:	Es wird eine detaillierte aktuelle Literaturliste
	ausgegeben, darunter z.B.:
	- Pupp, Hartmann, Vakuumtechnik - Grundlagen und
	Anwendungen, Hanser
	- Wutz/ Adam/Walcher, Theorie und Praxis der
	Vakuumtechnik, Vieweg
	- Edelmann, Vakuumphysik, Spektrum Akademischer
	Verlag
	- H. Frey (Hrsg.), Vakuumbeschichtung (Bd. 1 - 5),
	VDI-Verlag GmbH
	- Frey, Kienel (Hrsg.): Dünnschichttechnologie, VDI-
	Verlag GmbH, Düsseldorf 1987

Vertiefung Optoelektronik

Studienrichtung:	IOE
Modulbezeichnung:	Vertiefung Optoelektronik
	Advanced Topics in Optoelectronics
ggf. Kürzel	
ggf. Untertitel	
ggf. Lehrveranstaltungen:	
Studiensemester:	4
Angebotsturnus:	jährlich im Sommersemester
Modulverantwortliche(r):	Pof. Dr. habil. Michael Vollmer
Dozent(in):	Prof. Dr. sc. nat. Klaus-Peter Möllmann, N.N.
Sprache:	deutsch
Zuordnung zum Curriculum:	IOE, 4. Semester, Pflichtfach
Lehrform / SWS:	3 SWS Vorlesung, 1 SWS Übung
Arbeitsaufwand:	150 h, davon 60 h Präsenz- und 90 h Eigenstudium
Kreditpunkte:	5
Voraussetzungen nach	keine
Prüfungsordnung:	
Empfohlene Voraussetzungen:	Alle Physik und Mathematikvorlesungen der ersten 3
	Semester
Angestrebte Lernergebnisse:	Die Studierenden hören eine Einführung in die
	Festkörperphysik. In den Übungen werden von den
	Studenten im Selbststudium zu lösende Aufgaben
	besprochen.
	Angestrebte Kompetenzen:
	Die Studierenden kennen die grundlegenden Begriffe
	der Themengebiete der Vorlesung, die ihnen durch
	Experimente verdeutlicht werden. Sie beherrschen den
	Abstraktionsprozess von der Beobachtung eines
	festkörperphysikalischen Phänomens über seine
	Beschreibung bis hin zur formelmäßigen Umsetzung
	und Berechnung. Sie können die Begriffe auf
	Anwendungen im Labor übertragen.
	Die Studierenden sollen daran gewöhnt werden, den in
	den Vorlesungen behandelten Stoff selbstständig
	nachzubereiten und mittels Fachliteratur zu vertiefen.
	Ihr abstraktes und analytisches Denkvermögen soll
	gestärkt werden.
	Die Studierenden kennen die Grundlagen der
	Festkörper- und Halbleiterphysik und sind in der Lage
	diese Kenntnisse in der Beschreibung
Inholt.	optoelektronischer Bauelemente anzuwenden.
Inhalt:	Festkörperphysik:
	Struktur fester Körper, Elektronen in Festkörpern,
	Halbleiter, Optische Eigenschaften von Festkörpern

Studien- Prüfungsleistungen:	Klausur
Medienformen:	- Vorlesung mit gemischten Medien (Tafelarbeit,
	Beamer etc.);
	- Übungsaufgabenblätter
	- Demonstrationsversuche
Literatur:	Es wird eine detaillierte aktuelle Literaturliste
	ausgegeben, darunter z.B.:
	- K. Kopitzki, Einführung in die Festkörperphysik,
	Teubner Studienbücher Physik, Stuttgart 1993
	- Ch. Kittel, Einführung in die Festkörperphysik, R.
	Oldenbourg Verlag München Wien 1991
	- J. R. Christman, Festkörperphysik (Die Grundlagen),
	R. Oldenbourg Verlag München Wien 1995
	- M.N. Rudden, J. Wilson, Elementare Festkörper- und
	Halbleiterelektronik, Spektrum Akademischer Verlag
	Heidelberg, Berlin, Oxford 1995
	- Guinier, R. Julien, Die physikalischen Eigenschaften
	von Festkörpern, Carl Hanser Verlag München Wien
	1992