## 1. Carbon Cycle

# 2. Analytical techniques in chemical oceanography

12.097 Lecture January 18, 2006



# The Marine C Cycle

Image removed due to copyright considerations.

Please see: Valiela, 1994. (See readings.)

# **DOC** distribution

Image removed due to copyright considerations. Please see: Williams 2000. (See readings.)

Summary depth profile of DOC in open ocean, separated into low and high molecular weight components.

## Sources of DOC to surface ocean

Image removed due to copyright considerations.

Please see: Nagata, 2000. (See readings.)

## What is DOC?

Image removed due to copyright considerations.

Please see: Williams, 2000. (See readings.)

## POC distribution



# Particulate Organic Carbon (POC)

Image removed due to copyright considerations.

Please see: S. Wakeham (www.skio.peachnet.edu/research/biogeochemlab/)

- POC falls in episodic "clumps"
- Cannot be sampled adequately by Niskin bottles – must use (semi-)permanently moored sediment traps
- Flux: 1-100 mgC / m<sup>2</sup> / d
- Varies seasonally
- Labile organic matter is transported quickly to ocean floor.

# Carbon cycle rates

Image removed due to copyright considerations.

Please see: Williams, 2000. (See readings.)

#### Analytical techniques in chemical oceanography



# Nutrient analyzer

Matt Charette's lab in Marine Chemistry dept at WHOI



- Lachat nutrient auto-analyzer: measures total dissolved nitrogen (TDN), ammonia, nitrate, nitrite, phosphate, silicate
- Based on standard spectrophotmetric techniques

## Metals: ICP-MS

| 1<br>H    |                | Multicollector ICP-MS |                |            |          |          |          |          |          |                    |                |          |          |          | 2<br>He  |          |          |                   |
|-----------|----------------|-----------------------|----------------|------------|----------|----------|----------|----------|----------|--------------------|----------------|----------|----------|----------|----------|----------|----------|-------------------|
| 3         | 4              |                       |                |            |          |          |          |          |          |                    |                |          | 5        | 6        | 7        | 8        | 9        | 10                |
| Li        | Be             |                       |                |            |          |          |          |          |          |                    |                |          | В        | С        | N        | 0        | F        | Ne                |
| 11<br>No. | 12<br>Ma       |                       |                |            |          |          |          |          |          |                    |                |          | 13       | 14       | 15<br>D  | 16       | 17       | 18                |
| Na        | Mg             | 21                    | 22             | 22         | 2.4      | 2.5      | 26       | 0.7      | 20       |                    | 10             | 20       | Al       | Si       | P        | S        | C1       | Ar                |
| 19<br>K   | 20<br>Ca       | 21<br>Sc              | 22<br>Ti       | 23<br>V    | 24<br>Cr | 25<br>Mn | 26<br>Fe | 27<br>Co | 28<br>Ni |                    | 29<br>Cu       | 30<br>Zn | 31<br>Ga | 32<br>Ge | 33<br>As | 34<br>Se | 35<br>Br | 36<br>Kr          |
| 37        | 38             | 39                    | 40             | <b>4</b> 1 | 42       | 43       | 44       | 45       | 46       | _                  | .u<br>!7       | 48       | 49       | 50       | 51       | 52       | 53       | 54                |
| Rb        | Sr             | Y                     | Zr             | Nb         | Mo       | Tc       | Ru       | Rh       | Pd       |                    | \g             | Cd       | In       | Sn       | Sb       | Te       | I        | Xe                |
| 55        | 56             | 57                    | 72             | 73         | 74       | 75       | 76       | 77       | 78       | _                  | 19             | 80       | 81       | 82       | 83       | 84       | 85       | 86                |
| Cs        | Ba             | La                    | Hf             | Ta         | W        | Re       | Os       | Ir       | Pt       | A                  | Λu             | Hg       | T1       | Pb       | Bi       | Po       | At       | Rn                |
| 87        | 88             | 89                    | 104            | 105        | 106      | 107      | 108      | 109      | 110      | 0 1                | 11             | 112      | (112)    | (114)    | (115)    | (116)    | (117)    | (118)             |
| Fr        | Ra             | Ac                    | Rf             | На         | Sg       | Ns       | Hs       | Mt       |          |                    |                |          | (113)    | (114)    | (113)    | (110)    | (117)    | (110)             |
|           | (120)<br>Lanth |                       | <sub>S</sub> 5 | 8 5        | 9 6      | 0 (      | 61       | 62       | 63       | 0) (10<br>64<br>Gd | 61)<br>6:<br>T | 5 6      | 6 6      | 57 6     | 58 (     | 59 7     | 70 7     | (168)<br>'1<br>Lu |
| Actinides |                |                       | 5              |            |          |          | -        |          | 95<br>Am | 96<br>Cm           | 97<br>Bl       |          |          |          |          | -        |          | 03<br>Lr          |
|           |                |                       | 1              |            | 23) (1   |          |          |          |          |                    |                |          | 7 (      |          |          |          |          | 7                 |

# Metals: ICP-MS

Image removed due to copyright considerations.

Please see: Thermo-Finnigan NEPTUNE/TRITON brochure

# Organic Carbon Analyses 1

#### Bulk analyses:

- Elemental analysis
  - Amt of C, H, or N in solid sample
  - Used on particulate material or freeze-dried "dissolved" material
- Carbon combustion
  - Amt of C in sample after removal of CO<sub>2</sub>
  - High-temperature combustion (>800°C)
  - Used for aqueous samples only.

Image removed due to copyright considerations.

Please see: http://www.uark.edu/ua/isotope/about/elemental\_analyzer.jpg

Image removed due to copyright considerations. Please see: L. Guo(http://denali.frontier.iarc.uaf.edu/)

## Organic Carbon Analyses 2

- Compound-specific analyses require (relatively) large amounts of a single compound: need to concentrate initial sample!
- Polar compounds: remove water
  - Analysis by HPLC
- Nonpolar compounds: extract with organic solvent or solid organic matrix (SPE)
  - Analysis by GC
- Semi-polar compounds
  - Change pH of solution to make compound neutral (non-ionic)
  - Derivatize polar component with non-polar functional group
- Mass spectrometry
  - Used to characterize structure and/or composition of individual molecules



Schematic of a gas chromatagraph



From: www.chemterra.com/imgs/hc-mkwfig10.jpg

### Organic Carbon: Isotopes Overview

- There are 3 isotopes of carbon:
  - <sup>12</sup>C: 6 neutrons, 6 protons, stable, 98.89% of all carbon
  - 13C: 7 neutrons, 6 protons, stable, 1.11% of all carbon
  - <sup>14</sup>C: 8 neutrons, 6 protons, radioactive, 10<sup>-10</sup>%
- Dominant process for determining <sup>13</sup>C/<sup>12</sup>C: fractionation
  - The small mass difference (approx 1 Da) creates a small (but significant) in energy requirements for bonds between <sup>13</sup>C and the more abundant <sup>12</sup>C atoms.
  - Thus, biological systems will preferentially use <sup>12</sup>C over <sup>13</sup>C, resulting in a decreased <sup>13</sup>C/<sup>12</sup>C in biological material and an increased <sup>13</sup>C/<sup>12</sup>C in the reservoir.
  - Reported values:  $\delta^{13}$ C

$$\partial^{13}C = \left[\frac{\left(\frac{^{13}C}{^{12}C}\right)_{sample} - \left(\frac{^{13}C}{^{12}C}\right)_{std}}{\left(\frac{^{13}C}{^{12}C}\right)_{std}}\right] * 1000$$

#### $\delta^{13}$ C ratios in environment

Image removed due to copyright considerations.

Please see: http://basinisotopes.org/basin/tutorial/gifs\_2/irms\_diagram.html

Image removed due to copyright considerations.

Please see: http://www.geosc.psu.edu/~dbice/DaveSTELLA/Carbon/c\_isotope\_models.htm

Image removed due to copyright considerations.

Please see: http://www.eva.mpg.de/evolution/images/isotope.jpg