The approach was first presented by Jon Bentley, Dorothea Haken, and James B. Saxe in 1980

$$T(n) = a T\left(\frac{n}{h}\right) + \theta(n^k \log^p n)$$

 $a \ge 1, b > 1$ and $k \ge 0$ and p' is any real number

Case 1: If $a > b^k$, $T(n) = \theta(n^{\log_b a})$

Case 2: If $a = b^k$

(a) If
$$p > -1$$
 $\theta(n^{\log_b a} \log^{p+1} n)$

(b) If
$$p = -1$$
 $\theta(n^{\log_b a} \log_2 \log_2 n)$

(c) If
$$p < -1 \theta(n^{\log_b a})$$

Case 3: If $a < b^k$

(a) If
$$p \ge 0$$
 $\theta(n^k \log^p n)$

(b) If
$$p < 0 \ 0(n^k)$$