

3PC: Three Point Compressors for Communication-Efficient Distributed Training and a Better Theory for Lazy Aggregation

ETH zürich

Peter Richtárik¹ Igor Sokolov ¹ Ilyas Fatkhulin ² Elnur Gasanov ¹ Zhize Li ¹ Eduard Gorbunov ³

¹KAUST ²ETH Zurich ³MIPT

The problem

Nonconvex distributed optimization problem:

$$\min_{x \in \mathbb{R}^d} \left[f(x) := \frac{1}{n} \sum_{i=1}^n f_i(x) \right],$$

- n number of clients
- $f_i(x)$ smooth local loss function, i.e., $\|\nabla f_i(x) \nabla f_i(y)\| \le L_i \|x y\|$ for all $x, y \in \mathbb{R}^d$, $f^{\inf} := \inf_{x \in \mathbb{R}^d} f(x) > -\infty$

Goal: find \hat{x} such that $\mathbb{E}[\|\nabla f(\hat{x})\|^2] \leq \varepsilon^2$

Compressed learning

Contractive compressor: a (possibly randomized) map $\mathcal{C}: \mathbb{R}^d \to \mathbb{R}^d$ is called a *contractive compressor*, if there exists a constant $0 < \alpha \le 1$:

$$\mathbb{E}\left[\|\mathcal{C}(x) - x\|^2\right] \le (1 - \alpha) \|x\|^2, \qquad \forall x \in \mathbb{R}^d.$$

Top-k (greedy) sparsification operator is defined via

$$C(x) := \sum_{i=d-k+1}^{d} x_{(i)} e_{(i)},$$

where $|x_{(1)}| \le |x_{(2)}| \le \cdots \le |x_{(d)}|$. Then $\alpha = \frac{k}{d}$.

Error feedback with contractive compressor

♦ Motivation for error feedback – the method of type

$$x^{t+1} = x^t - \gamma \frac{1}{n} \sum_{i=1}^n g_i^t,$$

$$g_i^t = \mathcal{C}\left(\nabla f_i(x^t)\right)$$

- may diverge [1] for a biased compressor \mathcal{C} and n > 1
- ♦ Original error feedback (EF) [1]
 - bounded gradients $\|\nabla f_i(x)\| \leq G$ not optimal complexity $\mathcal{O}(1/\varepsilon^3)$
- \Diamond Modern error feedback (**EF21**) [2]:
 - simple analysis optimal complexity $\mathcal{O}\left(1/\varepsilon^2\right)$ better in practice

Lazy aggregation

♦ Motivation for LAG [3]: reduce communication by sending gradients only when they change significantly:

$$g_{i}^{t} = \begin{cases} \nabla f_{i}\left(x^{t}\right) & \text{if } \left\|g_{i}^{t-1} - \nabla f_{i}\left(x^{t}\right)\right\|^{2} > \zeta \left\|\nabla f_{i}\left(x^{t}\right) - \nabla f_{i}\left(x^{t-1}\right)\right\|^{2} \\ g_{i}^{t-1} & \text{otherwise,} \end{cases}$$

where $\zeta > 0$ is the trigger.

• not optimal complexity $\mathcal{O}\left(1/\varepsilon^3\right)$ • difficult analysis

References

- [1] Seide, F., Fu, H., Droppo, J., Li, G., Yu, D. 1-bit stochastic gradient descent and its application to data-parallel distributed training of speech DNNs. Interspeech, 2014.
- [2] P. Richtárik, I. Sokolov, I. Fatkhullin. EF21: A new, simpler, theoretically better, and practically faster error feedback. NeurIPS'21, arXiv:2106.05203, 2021.
- [3] Chen, T., Giannakis, G., Sun, T., Yin, W. LAG: Lazily aggregated gradient for communication-efficient distributed learning. NeurIPS'18.
- [4] Gorbunov, E., Burlachenko, K. P., Li, Z., and Richtárik, P. MARINA: Faster non-convex distributed learning with compression. ICML'21
 [5] Sun, J., Chen, T., Giannakis, G., and Yang, Z. Communication-efficient dis-
- tributed learning via lazily aggregated quantized gradients. NeurIPS'19.

 [6] Ghadikolaei, H. S., Stich, S., and Jaggi, M. LENA: Communication-efficient
- distributed learning with self- triggered gradient uploads. AISTATS'21

 [7] Salandala B. Taurin A. Biehtérila B. Bermutation compressors for provably factor.
- [7] Szlendak R, Tyurin A, Richtárik P. Permutation compressors for provably faster distributed nonconvex optimization. arXiv preprint arXiv:2110.03300, 2021

Table 1:Summary of the methods fitting our general 3PC framework. For each method we give the formula for the 3PC compressor $\mathcal{C}_{h,y}(x)$, its parameters A, B, and the ratio B/A appearing in the convergence rate. Notation: $\alpha = \text{parameter}$ of the contractive compressor \mathcal{C} , $\omega = \text{parameter}$ of the unbiased compressor \mathcal{Q} , $A_1, B_1 = \text{parameters}$ of three points compressor $\mathcal{C}_{h,y}^1(x)$, $\bar{\alpha} = 1 - (1 - \alpha_1)(1 - \alpha_2)$, where α_1, α_2 are the parameters of the contractive compressors $\mathcal{C}_1, \mathcal{C}_2$, respectively.

Variant of 3PC	Citation	$C_{h,y}(x) =$	A	B	$\frac{B}{A}$
EF21	[2]	$h + \mathcal{C}(x - h)$	$1 - \sqrt{1 - \alpha}$	$\frac{1-\alpha}{1-\sqrt{1-\alpha}}$	$\mathcal{O}\left(\frac{1-lpha}{lpha^2}\right)$
LAG	[3]	$\begin{cases} x, & \text{if } x-h ^2 > \zeta x-y ^2, \\ h, & \text{otherwise} \end{cases}$	1	ζ	$\mathcal{O}\left(\zeta ight)$
CLAG	NEW	$\begin{cases} h + \mathcal{C}(x - h), & \text{if } x - h ^2 > \zeta x - y ^2, \\ h, & \text{otherwise} \end{cases}$	$1 - \sqrt{1 - \alpha}$	$\max\left\{\frac{1-\alpha}{1-\sqrt{1-\alpha}},\zeta\right\}$	$\mathcal{O}\left(\max\left\{\frac{1-\alpha}{\alpha^2},\frac{\zeta}{\alpha}\right\}\right)$
3PCv1	NEW	y + C(x - y)	1	$1-\alpha$	$1-\alpha$
3PCv2	NEW	$b + \mathcal{C}(x - b)$, where $b = h + \mathcal{Q}(x - y)$	lpha	$(1-\alpha)\omega$	$\frac{(1-\alpha)\omega}{\alpha}$
3PCv3	NEW	$b + \mathcal{C}(x - b)$, where $b = \mathcal{C}^1_{h,y}(x)$	$1 - (1 - \alpha)(1 - A_1)$	$(1-\alpha)B_1$	$\frac{(1-\alpha)B_1}{1-(1-\alpha)(1-A_1)}$
3PCv4	NEW	$b + \mathcal{C}_1(x - b)$, where $b = h + \mathcal{C}_2(x - h)$	$1 - \sqrt{1 - \bar{\alpha}}$	$\frac{1-\bar{\alpha}}{1-\sqrt{1-\bar{\alpha}}}$	$\mathcal{O}\left(\frac{1-\bar{lpha}}{\bar{lpha}^2}\right)$
3PCv5	NEW	$\begin{cases} x, & \text{w.p. } p \\ h + \mathcal{C}(x-y), & \text{w.p. } 1-p \end{cases}$	$1 - \sqrt{1 - p}$	$\frac{(1-p)(1-\alpha)}{1-\sqrt{1-p}}$	$\mathcal{O}\left(\frac{(1-p)(1-\alpha)}{p^2}\right)$
MARINA	[4]	N/A	p	$\frac{(1-p)\omega}{n}$	$\frac{(1-p)\omega}{np}$

Main contribution

We propose Three Point Compressor (3PC) – a general concept unifying contractive compression and lazy aggregation.

1. Three point compressor (3PC)

3PC. We say that a (possibly randomized) map

$$C_{h,y}(x): \underbrace{\mathbb{R}^d}_{h\in} \times \underbrace{\mathbb{R}^d}_{y\in} \times \underbrace{\mathbb{R}^d}_{x\in} \to \mathbb{R}^d$$

is a three point compressor (3PC) if there exist constants $0 < A \le 1$ and $B \ge 0$ such that the following relation holds for all $x, y, h \in \mathbb{R}^d$

$$\mathbb{E}\left[\|\mathcal{C}_{h,y}(x) - x\|^{2}\right] \leq (1 - A)\|h - y\|^{2} + B\|x - y\|^{2}. \tag{1}$$

The vectors $y \in \mathbb{R}^d$ and $h \in \mathbb{R}^d$ are parameters defining the compressor.

2. Distributed compressed GD with 3PC

Algorithm 1.

- Server broadcasts g^t to the workers; workers compute $x^{t+1} = x^t \gamma g^t$
- Workers apply 3PC $g_i^{t+1} = \mathcal{C}_{g_i^t, \nabla f_i(x^t)}(\nabla f_i(x^{t+1}))$ and send the result to the server
- Server aggregates received messages $g^{t+1} = \frac{1}{n} \sum_{i=1}^{n} g_i^{t+1}$

3. Special cases

♦ GD: if we do not employ any compression, i.e., if we set

$$C_{h,y}(x) \equiv x,$$

then Algorithm 1 reduces to vanilla GD and (1) holds with B=1 and A=0.

 \diamondsuit EF21 [2]: let $\mathcal{C}: \mathbb{R}^d \to \mathbb{R}^d$ be a contractive compressor and

$$\mathcal{C}_{h,y}(x) := h + \mathcal{C}(x - h).$$

Then, Algorithm 1 reduces to **EF21** and (1) holds with $A := 1 - (1 - \alpha)(1 + s)$ and $B := (1 - \alpha)(1 + s^{-1})$, where s > 0 satisfies $(1 - \alpha)(1 + s) < 1$.

 \diamondsuit LAG [3] and CLAG: let $\mathcal{C}: \mathbb{R}^d \to \mathbb{R}^d$ be a contractive compressor. Choose a trigger $\zeta > 0$, and define

$$C_{h,y}(x) := \begin{cases} h + C(x - h), & \text{if } ||x - h||^2 > \zeta ||x - y||^2, \\ h, & \text{otherwise,} \end{cases}$$

Then, Algorithm 1 reduces to CLAG and (1) holds with $A := 1 - (1 - \alpha)(1 + s)$ and $B := \max\{(1 - \alpha)(1 + s^{-1}), \zeta\}$, where s > 0 satisfies $(1 - \alpha)(1 + s) < 1$. If $\mathcal{C}(x) \equiv 0$ ($\alpha = 1$), we recover LAG.

 \diamondsuit In Table 1 we summarize several further 3PC compressors and the new algorithms they lead to (e.g., 3PCv1 — 3PCv5).

4. Main result

Assumption 1. The functions $f_1, \ldots, f_n : \mathbb{R}^d \to \mathbb{R}$ are differentiable. Moreover, there exists $f^{\inf} \in \mathbb{R}$ such that $f(x) \geq f^{\inf}$ for all $x \in \mathbb{R}^d$. **Assumption 2.** The function $f : \mathbb{R}^d \to \mathbb{R}$ is L--smooth, i.e., it is differentiable and its gradient satisfies

$$\|\nabla f(x) - \nabla f(y)\| \le L_{-}\|x - y\| \quad \forall x, y \in \mathbb{R}^{d}.$$

Assumption 3. There is a constant $L_+ > 0$ such that $\frac{1}{n} \sum_{i=1}^n ||\nabla f_i(x) - \nabla f_i(y)||^2 \le L_+^2 ||x - y||^2$ for all $x, y \in \mathbb{R}^d$. Let L_+ be the smallest such number. It is easy to see that $L_- \le L_+$.

Theorem 1

Let Assumptions 1-3 hold. Assume that the stepsize γ of the **3PC** method satisfies $0 \le \gamma \le 1/M_1$, where $M_1 = L_- + L_+ \sqrt{\frac{B}{A}}$. Then, for any $T \ge 1$ we have

$$\mathbb{E}\left[\|\nabla f(\hat{x}^T)\|^2\right] \le \frac{2\Delta^0}{\gamma T} + \frac{\mathbb{E}\left[G^0\right]}{AT},$$

where \hat{x}^T is sampled uniformly at random from the points $\{x^0, x^1, \dots, x^{T-1}\}$ produced by $\mathsf{3PC}$, $\Delta^0 := f(x^0) - f^{\inf}$, and $G^0 := \frac{1}{n} \sum_{i=1}^n \|g_i^0 - \nabla f_i(x^0)\|^2$.

Corollary 1

Let the assumptions of Theorem 1 hold and choose the stepsize $\gamma = \frac{1}{L_- + L_+ \sqrt{B/A}}$. Then, to achieve $\mathbb{E}\left[\|\nabla f(\hat{x}^T)\|^2\right] \leq \varepsilon^2$ for some $\varepsilon > 0$, the **3PC** method requires

$$T = \mathcal{O}\left(rac{\Delta^0 \left(L_- + L_+ \sqrt{\frac{B}{A}}
ight)}{arepsilon^2} + rac{\mathbb{E}\left[G^0
ight]}{Aarepsilon^2}
ight)$$

iterations (=communication rounds).

 \diamondsuit Initialization with $g_i^0 = \nabla f_i(x^0)$ implies $G^0 = 0$ and

$$T = \mathcal{O}\left(rac{\Delta^0\left(L_- + L_+\sqrt{{}^{B}/{}^{A}}
ight)}{arepsilon^2}
ight)$$

- \diamondsuit The smaller B/A, the better
- ♦ We also have the results under the Polyak-Łojasiewicz (PŁ) condition

5. Comparison of methods with lazy aggregation

Table 2:Comparison of existing and proposed theoretically-supported methods employing lazy aggregation. In the rates for our methods, $M_1 = L_- + L_+ \sqrt{\frac{B}{A}}$ and $M_2 = \max \left\{ L_- + L_+ \sqrt{\frac{2B}{A}}, \frac{A}{2\mu} \right\}$.

Method	Simple	Uses a contractive	Strongly convey rate	ex rate PŁ nonconvex rate	General nonconvey rate
Wichiod	method?	compressor C ?	Durongry Convex rate		
LAG [3]	✓	X	linear	X	X
LAQ [5]	×	\checkmark	linear	X	X
LENA [6]	✓	✓	$\mathcal{O}(G^4/T^2\mu^2)$	$\mathcal{O}(G^4/T^2\mu^2)$	$\mathcal{O}(G^{4/3}/T^{2/3})$
LAG (NEW)	✓	X	$\mathcal{O}(\exp(-T\mu/M_2))$	$\mathcal{O}(\exp(-T\mu/M_2))$	$\mathcal{O}(M_1/T)$
clag (NEW)	✓	✓	$\mathcal{O}(\exp(-T\mu/M_2))$	$\mathcal{O}(\exp(-T\mu/M_2))$	$\mathcal{O}(M_1/T)$

6. Experiments

♦ Training of the **autoencoder model**

$$\min_{oldsymbol{D} \in \mathbb{R}^{d_f imes d_e}, oldsymbol{E} \in \mathbb{R}^{d_e imes d_f}} \left[f(oldsymbol{D}, oldsymbol{E}) := rac{1}{n} \sum_{i=1}^n \| oldsymbol{D} oldsymbol{E} a_i - a_i \|^2
ight],$$

where a_i are flattened representations of images with $d_f = 784$, \mathbf{D} and \mathbf{E} are learnable parameters.

Figure 1:Number of clients n = 100, compression level K = 251.

♦ Logistic regression problem with a non-convex regularizer

$$\min_{x \in \mathbb{R}^d} \left[f(x) := \frac{1}{n} \sum_{i=1}^n \log(1 + e^{-y_i a_i^\top x}) + \lambda \sum_{j=1}^d \frac{x_j^2}{1 + x_j^2} \right],$$

where $a_i \in \mathbb{R}^d$, $y_i \in \{-1, 1\}$ are the training data and labels, and $\lambda = 0.1$.

Figure 2:Number of clients n = 20. The red-contoured cell indicates the experiment with the smallest communication cost.

♦ Synthetic quadratic problem

$$\min_{x \in \mathbb{R}^d} \left[f_i(x) = \frac{1}{n} \sum_{i=1}^n \left(\frac{1}{2} x^\top \mathbf{A}_i x - x^\top b_i \right) \right],$$

where $\mathbf{A}_i \in \mathbb{R}^{d \times d}$, $b_i \in \mathbb{R}^d$, and $\mathbf{A}_i = \mathbf{A}_i^{\top}$ is the training data that belongs to the device/worker i. In all experiments, we fix d = 1000. We refer to the quantity $L_+^2 \geq 0$ by the name $Hessian\ variance\ [7]$, which is defined as

$$\frac{1}{n} \sum_{i=1}^{n} \|\nabla f_i(x) - \nabla f_i(y)\|^2 - \|\nabla f(x) - \nabla f(y)\|^2 \le L_{\pm}^2 \|x - y\|^2, \quad \forall x, y \in \mathbb{R}^d.$$

Figure 3:Number of clients n = 100.