Intrusion Detection

- ► Signature based
- ► Anomaly based
- ► Host based
- ► Network based

Anomaly based Network Intrusion Detection (A-NIDS)

- ► Statistical based
 - ► Univariate
 - ► Multivariate
- Knowledge based
- ► Machine learning based

Exploiting Communication Regularities

- ► Learn the normal sequences of messages on a network
- ► Build a model describing these sequences

Machine Learning

- ► Bayesian networks
- ► Markov models
- ► Neural networks
- ► Fuzzy logic
- ► Genetic algorithm
- ► Etc.

Hidden Markov Model

Figure : PAutomaC: a PFA/HMM Learning Competition, Sicco Verwer et al., 2012

Hidden Markov Model - Urn and Ball

Figure : An Introduction to Hidden Markov Models, L. R. Rabiner B. H. juang, 1986

Hidden Markov Model

- ightharpoonup T = length of observation sequence
- \triangleright *N* = number of states in the model
- ightharpoonup M = number of observation symbols
- $Q = \{q_1, q_2, ..., q_N\}$, states
- ► $V = \{v_1, v_2, ..., v_M\}$, observation symbols
- ► $A = \{a_{ij}\}$, $a_{ij} = Pr(q_j, \text{ at } t + 1 | q_i \text{ at } t)$, state transition probability distribution
- ► $B = \{b_j(k)\}, b_j(k) = Pr(v_k \text{ at } t|q_j \text{ at } t),$ observation symbol probability distribution
- $\pi = {\pi_i}, \pi_i = Pr(q_i \text{ at } t = 1),$ initial state distribution
- $\lambda = (A, B, \pi)$, the HMM

