HW3

1. In Tutorial 05, we showed that the VC-dimension of homogeneous linear classifiers is $\geq d$.

Now we will show similarly that the VC-dimension of <u>non</u>homogeneous linear classifiers is $\geq d+1$.

Define
$$\mathcal{H}^d = \{ \boldsymbol{x} \mapsto \operatorname{sign}(\boldsymbol{w}^{\mathsf{T}}\boldsymbol{x} + b) \colon \boldsymbol{w} \in \mathbb{R}^d, b \in \mathbb{R} \}.$$

Prove rigorously that $VCdim(\mathcal{H}^d) \ge d + 1$.

<u>Hint</u>: As in the tutorial, you should show a <u>specific</u> set $x_1, ..., x_{d+1} \in \mathbb{R}^d$ and prove that it holds:

$$\forall y_1, \dots, y_{d+1} \in \{-1, +1\}: \exists w \in \mathbb{R}^d, b \in \mathbb{R}: \forall i \in [d+1]: \operatorname{sign}(w^\top x_i + b) = y_i.$$

$$\mathcal{C} = \{e_1, e_2, \dots, e_d, 0\}, \; e_i \in \mathbb{R}^d \;\; :$$
 הבאה C קיימת קבוצה

$$e_1 = egin{pmatrix} 1 \\ 0 \\ 0 \\ \vdots \\ 0 \\ 0 \end{pmatrix}, e_2 = egin{pmatrix} 0 \\ 1 \\ 0 \\ \vdots \\ 0 \\ 0 \end{pmatrix}, \dots, e_d = egin{pmatrix} 0 \\ 0 \\ 0 \\ \vdots \\ 0 \\ 1 \end{pmatrix}$$
 : מאשר e_i הוא וקטור הבסיס הסטנדרטי, כלומר : e_i

d ו-0 הוא וקטור האפס מימד |C| = d + 1

$$y_1, y_2, \dots, y_{d+1} \in \{-1,1\}$$
 יהי תיוג

 $Sign(w^Tx+b)=y_i$ מתקיים $\forall i\in[d+1]$ כך ש $w\in\mathbb{R}^d-$ ו $b\in\mathbb{R}$ נראה שקיים

: נגדיר את
$$w$$
 להיות $b=y_{d+1}$: b כאשר $w=\begin{pmatrix} y_1-b\\y_2-b\\y_3-b\\ \vdots\\y_{d-1}-b\\y_d-b \end{pmatrix}$: נגדיר את w להיות w להיות w בארי

$$\forall i \in [d], \quad w^T x_i + b = w^T e_i + b = y_i - b + b = y_i$$

for
$$i = d + 1$$
, $w^T x_{d+1} + b = w^T 0_{d \times 1} + b = 0 + b = y_{d+1}$

$$\forall i \in [d+1], \ sign(w^Tx+b) = sign(y_i) = y_i$$
 : לכן אנחנו מקבלים

: תשובה אפשרית נוספת

$$w_i=y_i$$
 כלומר , $w=egin{pmatrix} y_1\\y_2\\y_3\\\vdots\\y_{d-1}\\y_d \end{pmatrix}$: w שהראנו, נגדיר את C

, $b\in(0,1)\Leftarrow b<1$ אז $y_i=-1$ או אז b>-1 אם אז $y_i=1$ אם או $\forall i\in[d]$ איז אז לכה יתקיים :

 $\forall i \in [d], \quad sign(w^T x_i + b) = sign(w^T e_i + b) = sign(y_i + b) = sign(y_i) = y_i$

 y_{d+1} אם נבחר b שומר על הסימן פי (0,1) אם נבחר אם נבחר אם נעמוד בתנאים כי

 $\forall i \in [d+1], \ sign(w^Tx+b) = sign(y_i) = y_i$: ונקבל

$VC_{\dim}(\mathcal{H}^d) \geq d+1$: בשני הדרכים נקבל ש

2. Let $\phi: \mathcal{X} \to \mathbb{R}^{n_1}$, $\phi': \mathcal{X} \to \mathbb{R}^{n_2}$ be two feature mappings where $n_1, n_2 \in \mathbb{N}$.

Let $K, K': (\mathcal{X} \times \mathcal{X}) \to \mathbb{R}$ be two valid kernels defined as:

$$K(u,v) = \langle \phi(u), \phi(v) \rangle = \sum_{i=1}^{n_1} \phi_i(u) \phi_i(v), \ K'(u,v) = \langle \phi'(u), \phi'(v) \rangle = \sum_{i=1}^{n_2} \phi_i'(u) \phi_i'(v).$$

Prove that $G(u,v) \triangleq K(u,v) \cdot K'(u,v)$ is a valid kernel. That is, propose a feature mapping

 $\psi: \mathcal{X} \to \mathbb{R}^{n_3}$ for some $n_3 \in \mathbb{N}$ and <u>prove</u> that it holds $G(u, v) = \langle \psi(u), \psi(v) \rangle$.

<u>Hint</u>: You should use $n_3 = n_1 \cdot n_2$.

$$G(u,v) \triangleq K(u,v) \cdot K'(u,v) = \sum_{i=1}^{n_1} \phi_i(u)\phi_i(v) \cdot \sum_{j=1}^{n_2} \phi'_j(u)\phi'_j(v)$$

$$= \sum_{i=1}^{n_1} \sum_{j=1}^{n_2} \phi_i(u)\phi_i(v)\phi'_j(u)\phi'_j(v) = \sum_{i=1}^{n_1} \sum_{j=1}^{n_2} (\phi_i(u)\phi'_j(u)) (\phi_i(v)\phi'_j(v))$$

$$\stackrel{(*)}{=} \sum_{k=1}^{n_3} \psi_k(u)\psi_k(v) = \langle \psi(u)\psi(v) \rangle$$

. קרנל חוקיG(u,v) קרנל חוקי

 $_i,k=(j-1)n_1+i$: נסמן את $_j,k=(j-1)n_1+i$ ונתאים ערך של $_i,k=(j-1)n_1+i$ ונתאים ערך של $_i,k=(j-1)n_1+i$ ונתאים ערך של $_i,k=(j-1)n_1+i$ ונתאים ש $_i,k=(j-1)n_1+i$ ולכן $_i,k=(i-1)n_1+i$ ולכן $_i,k=(i-1)n_1+i$ ולכן $_i,k=(i-1)n_1+i$

. נראה שהפונקציה $k=(j-1)n_1+i$, k: $[n_1]\times[n_2]\to[n_1n_2]$ חד חד ערכית ועל. : $k(i_1,j_1)=k(i_2,j_2)$ אם $(i_1,j_1),(i_2,j_2)$ נקבל נראה חד חד ערכיות: יהי $(j_1-1)n_1+i_1=(j_2-1)n_1+i_2$ $j_1n_1-n_1+i_1=j_2n_1-n_1+i_2$ $n_1(j_1-j_2)=i_2-i_1$

 $j_1=j_2$ מתקיים ש $0< j_1, j_2$ מכיוון ש $|j_1-j_2|\leq 1$ מתקיים ש $|i_2-i_1|\leq n_1$ מתקיים ש $(i_1,j_1)=(i_2,j_2)$ אז אז $(i_1,j_1)=(i_2,j_2)$ אז אז $(i_1,j_1)=(i_2,j_2)$ אז גולכן $i_1=i_2$ מתקיים אמ"מ $i_2=i_2$ כלומר קיבלנו שאם גראה שהפונקציה היא על :

 $.k=(j-1)n_1+i$ לכל k קיימים i,j כך ש-i,j נית i,j היימים i,j היימים i,j היימים i,j היימים i,j היימים i,j היימים i,j

אם
$$j = \left\lceil \frac{k}{n_1} \right\rceil$$
-ו $i = k \pmod{n_1}$ קיימים $k > n_1$ אם $k > n$

: דרך החישוב נבעה מההסתכלות הבאה על הבעיה)

נסתכל על הפיתוח של הסכומים:

$$= \left(\phi_{1}(u)\phi_{1}(v) + \dots + \phi_{n_{1}}(u)\phi_{n_{1}}(v)\right) \cdot \left(\phi'_{1}(u)\phi'_{1}(v) + \dots + \phi'_{n_{2}}(u)\phi'_{n_{2}}(v)\right)$$

$$= \phi_{1}(u)\phi_{1}(v) \left(\phi'_{1}(u)\phi'_{1}(v) + \dots + \phi'_{n_{2}}(u)\phi'_{n_{2}}(v)\right) + \dots + \phi_{n_{1}}(u)\phi_{n_{1}}(v) \left(\phi'_{1}(u)\phi'_{1}(v) + \dots + \phi'_{n_{2}}(u)\phi'_{n_{2}}(v)\right)$$

$$= \phi_{1}(u)\phi'_{1}(u)\phi_{1}(v)\phi'_{1}(v) + \phi_{1}(u)\phi'_{2}(u)\phi_{1}(v)\phi'_{3}(u) + \dots + \phi_{1}(u)\phi'_{n_{2}}(u)\phi_{1}(v)\phi'_{n_{2}}(v)$$

$$+\phi_{2}(u)\phi'_{1}(u)\phi_{2}(v)\phi'_{1}(v) + \phi_{2}(u)\phi'_{2}(u)\phi_{2}(v)\phi'_{3}(u) + \dots + \phi_{2}(u)\phi'_{n_{2}}(u)\phi_{2}(v)\phi'_{n_{2}}(v)$$

$$+ \dots + \phi_{n_{1}}(u)\phi'_{1}(u)\phi_{n_{1}}(v)\phi'_{1}(v) + \phi_{n_{1}}(u)\phi'_{2}(u)\phi_{n_{1}}(v)\phi'_{3}(u) + \dots + \phi_{n_{1}}(u)\phi'_{n_{2}}(u)\phi_{n_{1}}(v)\phi'_{n_{2}}(v)$$

 $\psi_k(u)=\phi_i(u){\phi'}_i(u)$ נסמן את

i ובכל שורה n_1 , ובכל שורה n_1 , אנחנו רואים פה שבכל טור i גדל ב-1, כלומר רץ מ1 ל n_1 ובכל שורה i נרצה למצוא את n_2 משאר קבוע וi רץ מ1 ל n_2

 $i=f(k)=k (mod\ n1)+1\ , j=g(k)=\left\lceil rac{k}{n_1}
ight
ceil$: את הפונקציות הבאות שמתאימות לזה לזה $n_3=n_1\cdot n_2$ נבחר את הפונקציות הבאות שk רץ מ1 ל $n_1\cdot n_2$ נסמן $n_1\cdot n_2$ נפתיחת הסכומים ניתן לראות שk רץ מ1 ל $n_1\cdot n_2$ ניסמן $m_1\cdot n_2$ לפי פתיחת הסכומים ניתן לראות ש $m_1\cdot n_2$ אוני בחר $m_2\cdot n_3=n_1$ בחרים $m_1\cdot n_2$ ($m_1\cdot n_2\cdot n_3=n_1$) ביו $m_1\cdot n_2\cdot n_3=n_1$ ($m_1\cdot n_2\cdot n_3=n_1$) ביו $m_1\cdot n_2\cdot n_3=n_1$ ($m_1\cdot n_2\cdot n_3=n_1$) ביו $m_1\cdot n_2\cdot n_3=n_1$ ($m_1\cdot n_2\cdot n_3=n_1$) ביו $m_1\cdot n_2\cdot n_3=n_1$ ($m_1\cdot n_2\cdot n_3=n_1$) ביו $m_1\cdot n_2\cdot n_3=n_1$ ($m_1\cdot n_2\cdot n_3=n_1$) ביו $m_1\cdot n_3=n_1$ ($m_1\cdot n_2\cdot n_3=n_1$) ביו $m_1\cdot n_3=n_1$ ($m_1\cdot n_2\cdot n_3=n_1$) ביו $m_1\cdot n_3=n_1$ ($m_1\cdot n_3=n_1$) ($m_1\cdot n_1$) ($m_1\cdot n_2=n_1$) ($m_1\cdot n_3=n_1$) ($m_1\cdot n_1$) ($m_1\cdot n_2=n_2$) ($m_1\cdot n_1$) ($m_1\cdot n_2=n_2$) ($m_1\cdot n_1$) ($m_1\cdot n_2=n_2$) ($m_1\cdot n_2=n_2$) ($m_1\cdot n_1$) ($m_1\cdot n_2=n_2$) ($m_1\cdot n_2=n_2$) ($m_1\cdot n_1$) ($m_1\cdot n_2=n_2$) ($m_1\cdot n_2=n_2$) ($m_1\cdot n_1$) ($m_1\cdot n_2=n_2$) (m

$$G(u,v) \triangleq K(u,v) \cdot K'(u,v) = \sum_{i=1}^{n} \sum_{j=1}^{n} (\phi_i(u)\phi'_{j}(u)) (\phi_i(v)\phi''_{j}(v))$$

$$= \sum_{k=1}^{n_3} (\phi_{k(mod\ n1)}(u)\phi'_{\left[\frac{k}{n_1}\right]}(u)) (\phi_{k(mod\ n1)}(v)\phi''_{\left[\frac{k}{n_1}\right]}(v))$$

$$\sum_{k=1}^{n_3} \psi_k(u)\psi_k(v) = \langle \psi(u)\psi(v) \rangle$$

3. **Refute** (with a simple example): Let $f, g: \mathbb{R} \to \mathbb{R}$ be two convex functions.

The composition $h \triangleq f \circ g$ (that is, h(x) = f(g(x))) is also a convex function.

: נגדיר את שתי הפונקציות הבאות

$$f(x) = -x$$

$$g(x) = x^2$$

נראה ששתי הפונקציות הבאות הן קמורות בדרכים שונות:

f(x) = -x

: פונקציה $f: \mathcal{C} \to \mathbb{R}$ היא קמורה אם

$$\forall x_1, x_2 \in C, \ \forall t \in [0,1]: tf(x_1) + (1-t)f(x_2) \ge f(tx_1 + (1-t)x_2)$$

, לכן, $f: \mathbb{R} \to \mathbb{R}$

$$\forall x_1, x_2 \in \mathbb{R}, \forall t \in [0,1]: \ tf(x_1) + (1-t)f(x_2) = -tx_1 - x_2(1-t)$$
$$f(tx_1 + (1-t)x_2) = -tx_1 - x_2(1-t)$$
$$tf(x_1) + (1-t)f(x_2) = f(tx_1 + (1-t)x_2)$$

- אנחנו גם יודעים מהתרגול שכל פונקציה לינארית היא קמורה.
 - . זאת קבוצה קמורה \mathbb{R}

- קמורה $g(x) = x^2$

 $\mathsf{V}^2\,f\geqslant 0$ נראה לפי המשפט מהתרגול : כל פונקציה גזירה פעמים $f\colon\mathcal{C}\to\mathbb{R}$ היא קמורה אמ"מ $g\colon\mathbb{R}\to\mathbb{R}$ היא g''(x)=2 ומתקיים $g\colon\mathbb{R}\to\mathbb{R}$ ומתקיים $g\colon\mathbb{R}\to\mathbb{R}$ ולכן $g''(x)\geqslant 0$ ולכן $g''(x)\geqslant 0$

$$h(x)=f\circ g=fig(g(x)ig)=-x^2$$
 נסתכל על

:נראה ש h לא קמורה

$$h'(x) = -2x, \quad h''(x) = -2$$
 -ש מתקיים ש- לכן לפי המשפט $h''(x) < 0$ ולכן לא קמורה.

: מטריצת האסיאן לפונקציה במימד אחד היא מהצורה הבאה

$$V^2 f = \left[\frac{\partial^2 f}{\partial x^2} \right] \geqslant 0 \iff \frac{\partial^2 f}{\partial x^2} \ge 0$$

הראנו שהרכבה של פונקציות קמורות לא בהכרח קמורה.

4. We will now prove that the following Soft-SVM problem is convex:

$$\underset{w \in \mathbb{R}^d}{\operatorname{argmin}} \frac{1}{m} \sum_{i=1}^m \max\{0, 1 - y_i \cdot w^{\mathsf{T}} x_i\} + \lambda \|w\|_2^2$$

Let $f, g: C \to \mathbb{R}$ be two convex functions defined over a convex set C.

Lemma (no need to prove): $q(z) \triangleq \max\{f(z), g(z)\}\$ is convex w.r.t z.

Lemma (no need to prove): the sum of <u>any</u> number of convex functions is convex.

- 4.1. Prove (by definition): Given a constant $\alpha \in \mathbb{R}_{\geq 0}$, the function $\alpha f(z)$ is convex w.r.t z.
- 4.2. Using a rule from Tutorial 07, conclude that $\max\{0, 1 y_i \mathbf{w}^{\mathsf{T}} \mathbf{x}_i\}$ is convex w.r.t \mathbf{w} .
- 4.3. Using the above (and properties from Tutorial 07), conclude that the Soft-SVM optimization problem is convex w.r.t w.

<u>:4.1</u>

בהינתן קמורה לפי הגדרה $f\colon\mathcal{C}\to\mathbb{R}$ ו- $\alpha\in\mathbb{R}_{\geq 0}$ היא קמורה לפי הגדרה: $f\colon\mathcal{C}\to\mathbb{R}$ ו- $\alpha\in\mathbb{R}_{\geq 0}$ בהינתן כלומר נראה ש

$$\forall z_1, z_2 \in C$$
, $\forall t \in [0,1]: th(z_1) + (1-t)h(z_2) \ge h(tz_1 + (1-t)z_2)$

: הוכחה

$$\forall x_1, x_2 \in C, \ \forall t \in [0,1]: \ th(z_1) + (1-t)h(z_2) = t\alpha f(x_1) + (1-t)\alpha f(x_2)$$

$$= \alpha \Big(tf(x_1) + (1-t)f(x_2) \Big) \underset{f \ is \ convex}{\underset{\alpha \ge 0}{\succeq}} \alpha \Big(f(tz_1 + (1-t)z_2) \Big) = h(tz_1 + (1-t)z_2)$$

<u>: 4.2</u>

- נסתכל על הפונקציה הבאה : $s:\mathbb{R}^d \to \mathbb{R}$, $s(w)=-yw^Tx$: נסתכל על הפונקציה הבאה s זאת פונקציה לינארית לכל \mathbb{R}^d היא קבוצה קמורה ו-s זאת פונקציה לינארית היא קמורה ולכן s היא פונקציה קמורה.
 - הפונקציה הקבועה 1 היא גם לינארית ולכן גם היא קמורה.
- י אנחנו יודעים מהנתון בשאלה שסכום פונקציות קמורות גם היא קמורה ולכן הפונקציה 1+s(w) היא קמורה.
 - י הפונקציה הקבועה 0 היא גם לינארית ולכן גם היא קמורה.
- . מהנתון בשאלה אנחנו יודעים ש $\{f(z),g(z)\}$ קמורה אם $q(z)\triangleq\max\{f(z),g(z)\}$ קמורות $q(w)=\max\{0,1-yw^Tx\}$ ו הראנו ששתיהן קמורות ולכן f(w)=1+s(w) ו קמורה.

. w קמורה על max $\{0,1 - yw^Tx\}$ קיבלנו

<u>:4.3</u>

- $\max\{0,1-yw^Tx\}$ נתון בשאלה שכל סכום של פונקציות קמורות היא קמורה וראינו בסעיף הקודם ש $\sum_{i=1}^m \max\{0,1-y_iw^Tx_i\}$ קמורה ולכן
- קמורה $\frac{1}{m}\sum_{i=1}^m \max\{0.1-y_iw^Tx_i\}$ מתקיים ש $\frac{1}{m}$ חיובית ולכן נוכל להשתמש בסעיף 4.1 ונקבל ש $\frac{1}{m}$ קמורה של $\frac{1}{m}$ על $\frac{1}{m}$

- . ראינו בתרגול בשקופית 12 ש-|w| היא קמורה ולפי סעיף 4.1 גם $\lambda \left||w|\right|^2$ קמורה. $\mu |w|^2$ קמורה פונקציות קמורות היא פונקציה קמורה ולכן $\mu |w|^2$: סכום של פונקציות קמורות היא פונקציה קמורה ולכן $\mu |w|^2$: סכום של פונקציות קמורות היא פונקציה קמורה ולכן היא קמורה. soft-SVM קיבלנו שבעיית האופטימזציה