SMOOTH MANIFOLD CHART LEMMA

To make a set M into a smooth manifold, it suffices to endow it with a candidate for a smooth atlas. There is a unique topology which makes everything work.

Proposition. Let M be a set. Let $A = \{(U_{\alpha}, \varphi_{\alpha})\}_{\alpha \in I}$ be a collection of pairs, where each U_{α} is a subset of M, and each $\varphi_{\alpha}: U_{\alpha} \to \varphi_{\alpha}(U_{\alpha}) \subseteq \mathbb{R}^n$ is a map. Suppose the following is true:

- (i) Each $\varphi_{\alpha}: U_{\alpha} \to \varphi_{\alpha}(U_{\alpha})$ is a bijection, where $\varphi_{\alpha}(U_{\alpha}) \subseteq \mathbb{R}^n$ is open.
- (ii) For each $\alpha, \beta \in I$, $\varphi_{\alpha}(U_{\alpha} \cap U_{\beta})$ and $\varphi_{\beta}(U_{\alpha} \cap U_{\beta})$ are open in \mathbb{R}^{n} . (iii) Each transition map $\varphi_{\beta} \circ \varphi_{\alpha}^{-1} : \varphi_{\alpha}(U_{\alpha} \cap U_{\beta}) \to \varphi_{\beta}(U_{\alpha} \cap U_{\beta})$ is smooth.
- (iv) Countably many $U_{\alpha}s$ cover M.
- (v) If p and q are distinct points in M, then either $p,q \in U_{\alpha}$ for some $\alpha \in I$, or p and q are separated by disjoint sets in A.

Then M has a unique topology \mathcal{T} which makes (M,\mathcal{T}) a topological manifold with A as a smooth atlas.

Proof. Define $\mathcal{B} := \{ \varphi_{\alpha}^{-1}(V) \mid \alpha \in I, \ V \subseteq \mathbb{R}^n \text{ is open} \}$. Let us show that (a) \mathcal{B} forms a basis, (b) M is a topological manifold with the topology \mathcal{T} generated by \mathcal{B} , and (c) \mathcal{T} is the unique topology such that \mathcal{A} is a smooth atlas.

(a) Observe that $U_{\alpha} = \varphi_{\alpha}^{-1}(\mathbb{R}^n)$, so (iv) implies that \mathcal{B} covers M. Given two elements $\varphi_{\alpha}^{-1}(V)$ and $\varphi_{\beta}^{-1}(W)$ in \mathcal{B} , we find their intersection is again in \mathcal{B} :

$$\varphi_{\alpha}^{-1}(V)\cap\varphi_{\beta}^{-1}(W)=\varphi_{\alpha}^{-1}(V\cap(\varphi_{\beta}\circ\varphi_{\alpha}^{-1})^{-1}(W)).$$

Thus, \mathcal{B} is a basis. Let \mathcal{T} be the topology generated by \mathcal{B} .

- (b) It is straightforward to show that each $\varphi_{\alpha}: U_{\alpha} \to \varphi_{\alpha}(U_{\alpha})$ is a homeomorphism. Thus, M is locally-Euclidean. Hausdorffness follows from (v). Finally, secondcountability follows because each U_{α} is second-countable, and M is covered by countably many U_{α} s.
- (c) It follows from (iv) and (iii) that \mathcal{A} is a smooth atlas for (M, \mathcal{T}) .

Now, suppose \mathcal{T} is another topology for M such that \mathcal{A} is an atlas for $(M, \widetilde{\mathcal{T}})$. This means that each U_{α} belongs to $\widetilde{\mathcal{T}}$, and each $\varphi_{\alpha}: U_{\alpha} \to \varphi_{\alpha}(U_{\alpha})$ is a homeomorphism with respect to $\widetilde{\mathcal{T}}$. It follows that \mathcal{B} is contained in $\widetilde{\mathcal{T}}$, so $\widetilde{\mathcal{T}} = \mathcal{T}$.