Pairings in R1CS

Youssef El Housni^{1,2}

¹ConsenSys (gnark)

²Ecole Polytechnique (LIX)

zkSummit 7 - April 21, 2022

Overview

- Preliminaries
 - SNARKs
 - Bilinear pairings
- 2 Motivations
 - Applications
 - Curves constructions
- Pairings out-circuit
- Pairings in-circuit
 - R1CS
 - Optimizations

Y. El Housni zkSummit 7 - April 21, 2022

Overview

- Preliminaries
 - SNARKs
 - Bilinear pairings
- 2 Motivations
 - Applications
 - Curves constructions
- Pairings out-circuit
- Pairings in-circuit
 - R1CS
 - Optimizations

Y. El Housni zkSummit 7 - April 21, 2022

SNARKs examples: Groth16 and PLONK

- m = number of wires
- *n* = number of multiplications gates
- *a* = number of additions gates
- $\ell =$ number of public inputs
- ullet $M_{\mathbb G}=$ multiplication in ${\mathbb G}$
- P=pairing

	Setup	Prove	Verify
Groth16 [Gro16]	$3n$ $M_{\mathbb{G}_1}$ m $M_{\mathbb{G}_2}$	$ \begin{array}{c} (3n+m-\ell) \ \ \mathrm{M}_{\mathbb{G}_{1}} \\ n \ \ \mathrm{M}_{\mathbb{G}_{2}} \\ 7 \ \ \mathrm{FFT} \end{array} $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
PLONK (KZG) [GWC]	$egin{array}{cccc} d_{\geq n+a} & \mathtt{M}_{\mathbb{G}_1} \ 1 & \mathtt{M}_{\mathbb{G}_2} \ 8 & \mathtt{FFT} \end{array}$	$9(n+a)$ ${ m M}_{{ m \mathbb{G}}_1}$ 8 FFT	2 P 18 M _{G1}

Bilinear pairings

- $E: y^2 = x^3 + ax + b$ elliptic curve defined over \mathbb{F}_q , q a prime power.
- r prime divisor of $\#E(\mathbb{F}_q) = q+1-t$, t Frobenius trace.
- k embedding degree, smallest integer $k \in \mathbb{N}^*$ s.t. $r \mid q^k 1$.
- a bilinear pairing

$$e: \mathbb{G}_1 \times \mathbb{G}_2 \to \mathbb{G}_T$$

- ullet $\mathbb{G}_1\subset E(\mathbb{F}_q)$ a group of order r
- $\mathbb{G}_2 \subset E(\mathbb{F}_{q^k})$ a group of order r
- $\mathbb{G}_{\mathcal{T}} \subset \mathbb{F}_{q^k}^*$ group of r-th roots of unity

Overview

- Preliminaries
 - SNARKs
 - Bilinear pairings
- Motivations
 - Applications
 - Curves constructions
- Pairings out-circuit
- Pairings in-circuit
 - R1CS
 - Optimizations

Y. El Housni zkSummit 7 - April 21, 2022

Motivations

Applications

- Proof aggregation or
- Private computation (ZEXE)

e.g. G16 proof
$$\pi = (A, B, C) \in \mathbb{G}_1 \times \mathbb{G}_2 \times \mathbb{G}_1$$
 and $vk = (vk_1, vk_2, vk_3, vk_4) \in \mathbb{G}_T \times \mathbb{G}_1^{\ell+1} \times \mathbb{G}_2 \times \mathbb{G}_2$

$$V: \quad e(A,B) \stackrel{?}{=} vk_1 \cdot e(vk'_2,vk_3) \cdot e(C,vk_4) \qquad (O_{\lambda}(\ell)) \qquad (1)$$

and $vk_2' = \sum_{i=0}^{\ell} [x_i] vk_2$.

Y. El Housni

Motivations

Applications

BLS signatures

$$V: \quad e(\sigma, \mathbb{G}_2) \stackrel{?}{=} e(H(m), Q_{pk}) \tag{2}$$

8/39

where $\sigma \in \mathbb{G}_1$ is the signature, H(m) the message hashed into \mathbb{G}_1 and Q_{pk} the public key of the sender.

Y. El Housni zkSummit 7 - April 21, 2022

Motivations

Applications

Proof of KZG verification (zkEVM)

Proof of
$$P(z) = y \ (P \in \mathbb{F}_r[X])$$

$$V: \quad e(\pi, vk - [z]\mathbb{G}_2) \stackrel{?}{=} e(C - [y]\mathbb{G}_1, \mathbb{G}_2)$$
 (3)

where $C \in \mathbb{G}_1$ is the commitment and $vk \in \mathbb{G}_1$ the verification key.

Y. El Housni

Pairings in SNARKs

An arithmetic mismatch

- **F** any program is expressed in \mathbb{F}_r
- P proving is performed over $\mathbb{F}_r[X]$ and \mathbb{G}_1 (and \mathbb{G}_2)
- V verification (eq. 1, 2 and 3) is done in $\mathbb{F}_{q^k}^*$
- \digamma_V programs of V are natively expressed in $\mathbb{F}_{q^k}^*$ not \mathbb{F}_r

Pairings in SNARKs

An arithmetic mismatch

- **F** any program is expressed in \mathbb{F}_r
- P proving is performed over $\mathbb{F}_r[X]$ and \mathbb{G}_1 (and \mathbb{G}_2)
- V verification (eq. 1, 2 and 3) is done in $\mathbb{F}_{q^k}^*$
- \digamma_V programs of V are natively expressed in $\mathbb{F}_{q^k}^*$ not \mathbb{F}_r
- 1st attempt: choose a curve for which q = r (impossible)
- 2^{nd} attempt: simulate \mathbb{F}_q operations via \mathbb{F}_r operations ($\times \log q$ blowup)
- 3rd attempt: use a cycle/chain of pairing-friendly elliptic curves [CFH⁺15, BCTV14, BCG⁺20]

Pairings in SNARKs: solutions

A cycle of elliptic curves:

$$\#E_2(\mathbb{F}_{
ho_2})= rac{oldsymbol{\mathcal{E}_2(\mathbb{F}_{
ho_2})}}{oldsymbol{\mathcal{E}_1(\mathbb{F}_{
ho_1})}} \#E_1(\mathbb{F}_{
ho_1})= oldsymbol{p}_2$$

A 2-chain of elliptic curves:

$$egin{pmatrix} egin{pmatrix} E_2(\mathbb{F}_{p_2}) \ \# E_2(\mathbb{F}_{p_2}) = h \cdot p_1 \ E_1(\mathbb{F}_{p_1}) \end{pmatrix}$$

Pairings in SNARKs: 2-chains

Eurocrypt 2022 [EG22]

Groth16

KZG

Overview

- Preliminaries
 - SNARKs
 - Bilinear pairings
- 2 Motivations
 - Applications
 - Curves constructions
- Pairings out-circuit
- Pairings in-circuit
 - R1CS
 - Optimizations

Pairings out-circuit

A non-degenerate bilinear pairing $e: \mathbb{G}_1 \times \mathbb{G}_2 \to \mathbb{G}_T$ non-degenerate: $\forall P \in \mathbb{G}_1, \ P \neq \mathcal{O}, \ \exists Q \in \mathbb{G}_2, \ e(P,Q) \neq 1_{\mathbb{G}_T}$ $\forall Q \in \mathbb{G}_2, \ Q \neq \mathcal{O}, \ \exists P \in \mathbb{G}_1, \ e(P,Q) \neq 1_{\mathbb{G}_T}$ bilinear: $e([a]P,[b]Q) = e(P,[b]Q)^a = e([a]P,Q)^b = e(P,Q)^{ab}$

¹Courtesy of D. Aranha for the tikz figure.

Pairings out-circuit

ate pairing

$$e: \mathbb{G}_1 \times \mathbb{G}_2 \to \mathbb{G}_T$$

 $(P,Q) \mapsto f_{t-1,Q}(P)^{(q^k-1)/r}$

- $f_{t-1,Q}(P)$ is the Miller function
- $f \mapsto f^{(q^k-1)/r}$ is the final exponentiation

Examples: For polynomial families in the seed x,

BLS12
$$e(P, Q) = f_{x,Q}(P)^{(q^{12}-1)/r}$$

BLS24 $e(P, Q) = f_{x,Q}(P)^{(q^{24}-1)/r}$

Definition

Miller algorithm computes the Miller function $f_{s,Q}$ such that Q is a zero of order s and [s]Q is a pole of order s, i.e.

$$div(f_{s,Q}) = s(Q) - ([s]Q) - (s-1)O$$

For integers i and j,

$$f_{i+j,Q} = f_{i,Q}f_{j,Q}\frac{\ell_{[i]Q,[j]Q}}{v_{[i+j]Q}},$$

where $\ell_{[i]Q,[j]Q}$ and $v_{[i+j]Q}$ are the two lines needed to compute [i+j]Q from [i]Q and [j]Q (ℓ intersecting the two points and v the vertical).

return m

```
Algorithm 1: MillerLoop(s, P, Q)
Output: m = f_{s,O}(P)
m \leftarrow 1; R \leftarrow Q
for b from the second most significant bit of s to the least do
    \ell \leftarrow \ell_{R,R}(P); R \leftarrow [2]R;
                                                                                     Doubling Step
     m \leftarrow m^2 \cdot \ell
    if b=1 then
       \ell \leftarrow \ell_{R,Q}(P); R \leftarrow R + Q; \\ m \leftarrow m \cdot \ell
                                                                                     Addition Step
return m
```

```
Algorithm 1: MillerLoop(s, P, Q)Output: m = f_{s,Q}(P)m \leftarrow 1; R \leftarrow Qfor b from the second most significant bit of s to the least do \ell \leftarrow \ell_{R,R}(P); R \leftarrow [2]R;Doubling Step m \leftarrow m^2 \cdot \ell if b = 1 then \ell \leftarrow \ell_{R,Q}(P); R \leftarrow R + Q;Addition Step m \leftarrow m \cdot \ell
```

return m

 \mathbb{G}_2 :

- Coordinates compressed in $\mathbb{F}_{a^{k/d}}$ instead of \mathbb{F}_{a^k} (where d is the twist degree) [BN06]
- Homogeneous projective coordinates (X, Y, Z) [AKL+11, ABLR14]
- Sharing computation between Double/Add and lines evaluation [AKL+11, ABLR14]

Finite fields:
$$-\mathbb{F}_p \to \cdots \to \mathbb{F}_{p^{k/d}} \to \cdots \to \mathbb{F}_{p^k}$$

- efficient representation of line (multiplying the line evaluation by a factor \rightarrow wiped out later) [ABLR14]
- efficient sparse multiplications in \mathbb{F}_{n^k} [Sco]

Pairings out-circuit: Final exponentiation

$$\frac{p^{k}-1}{r} = \underbrace{\frac{p^{k}-1}{\Phi_{k}(p)}}_{\text{easy part}} \cdot \underbrace{\frac{\Phi_{k}(p)}{r}}_{\text{hard part}}$$

easy part: a polynomial in p with small coefficients (Frobenius maps) e.g. (BLS12): 1F2 + 1Conj + 1Inv + 1Mul in $\mathbb{F}_{p^{12}}$

hard part: More expensive. Vectorial or lattice-based Optimizations [HHT, AFK $^+$ 13, GF16] dominating cost: CycloSqr [GS10, Kar13] + Mul in \mathbb{F}_{n^k}

Y. El Housni

Overview

- Preliminaries
 - SNARKs
 - Bilinear pairings
- 2 Motivations
 - Applications
 - Curves constructions
- Pairings out-circuit
- Pairings in-circuit
 - R1CS
 - Optimizations

Example: Pairing on inner BLS12

$$(E/\mathbb{F}_{p(x)}): Y^2 = X^3 + 1$$

$$r(x) = x^4 - x^2 + 1;$$
 $p(x) = (x - 1)^2 \cdot r(x)/3 + x;$ $t(x) = x + 1$

with $x \equiv 1 \mod 3 \cdot 2^L$ (input $L \in \mathbb{N}^*$ the desired 2-adicity). e.g. for BLS12-377 x = 0x8508c0000000001.

- $k = 12 \implies \mathbb{G}_T \text{ over } \mathbb{F}_{p^{12}}$
- ullet $d=6 \implies \mathbb{G}_2 ext{ over } \mathbb{F}_{p^2}=\mathbb{F}_{p^{k/d}}$
- $\mathbb{F}_p \to \mathbb{F}_{p^2} \to \mathbb{F}_{p^6} \to \mathbb{F}_{p^{12}}$ or $\mathbb{F}_p \to \mathbb{F}_{p^2} \to \mathbb{F}_{p^4} \to \mathbb{F}_{p^{12}}$ (better compression ratio: 1/3 with XTR or CEILIDH)
- $e(P,Q) = f_{x,Q}(P)^{(p(x)^{12}-1)/r(x)}$ (best optims. [ABLR14, HHT, GS10])

Y. El Housni

Rank-1 Constraint System

$$x^3 + x + 5 = 35$$
 (x = 3)

constraints:

$$o = l \cdot r$$

$$a = x \cdot x$$

 $b = a \cdot x$

$$c = (b+x) \cdot 1$$
$$d = (c+5) \cdot 1$$

witness:

$$\vec{w} = \begin{pmatrix} \text{one} & x & d & a & b & c \end{pmatrix}$$
$$= \begin{pmatrix} 1 & 3 & 35 & 9 & 27 & 30 \end{pmatrix}$$

Algorithm optimizations

	Time	Constraints
BLS12-377	< 1 ms	\approx 80 000

Miller loop:

- Affine coordinates →≈ 19k (arkworks)
- Division in extension fields
- Double-and-Add in affine
- lines evaluations (1/y, x/y)
- Loop with short addition chains
- Torus-based arithmetic
- Final Exponentiation:
 - Cyclotomic squarings
 - Torus-based arithmetic
 - Exp. with short addition chains

 $19k \rightarrow \approx 11k \text{ (gnark)}$

Finite fields

R1CS is about writing $o = l \cdot r$

- Over \mathbb{F}_p (\mathbb{F}_r of BW6):
 - Square = Mul $(o = I \cdot I)$
 - Inv = Mul + 1C $(1/I = o \rightarrow 1 \stackrel{?}{=} I \cdot o \text{ with } o \text{ an input hint})$
 - Div = Mul + 1C $(r/l = o \rightarrow r \stackrel{?}{=} l \cdot o \text{ with } o \text{ an input hint})$
 - $Inv+Mul \rightarrow Div$
- Over \mathbb{F}_{p^e} :
 - Square \neq Mul (e.g. \mathbb{F}_{p^2} 2C vs 3C)
 - Inv = Mul + eC (1/ $I = o \rightarrow 1 \stackrel{?}{=} I \cdot o$ with o an input hint)
 - Div = Mul + eC $(r/l = o \rightarrow r \stackrel{?}{=} l \cdot o \text{ with } o \text{ an input hint})$
 - $Inv+Mul \rightarrow Div$

Affine arithmetic

G₂ Double:
$$[2](x_1, y_1) = (x_3, y_3)$$
 G₂ Add: $(x_1, y_1) + (x_2, y_2) = (x_3, y_3)$

$$\lambda = 3x_1^2/2y_1 \qquad \qquad \lambda = (y_1 - y_2)/(x_1 - x_2)$$

$$x_3 = \lambda^2 - 2x_1 \qquad \qquad x_3 = \lambda^2 - x_1 - x_2$$

$$y_3 = \lambda(x_1 - x_3) - y_1 \qquad \qquad y_3 = \lambda(x_2 - x_3) - y_2$$

	Div (5C)	Sq (2C)	Mul (3C)	total
Double	1	2	1	12C
Add	1	1	1	10C

Tailored optimization: Short addition chain of the seed x with inverted Double/Add wieghts! (cf. github.com/mmcloughlin/addchain)

Affine arithmetic

In the Miller loop, when
$$b=1 \Longrightarrow [2]R+Q \to \mathbf{22C}$$

Instead: $[2]R+Q=(R+Q)+R \to \mathbf{20C}$
Better: omit y_{R+Q} computation in $(R+Q)+R \to \mathbf{17C}$ [ELM03] \mathbb{G}_2 Double-and-Add: $[2](x_1,y_1)+(x_2,y_2)=(x_4,y_4)$
$$\lambda_1=(y_1-y_2)/(x_1-x_2)$$

$$x_3=\lambda_1^2-x_1-x_2$$

$$\lambda_2=-\lambda_1-2y_1/(x_3-x_1)$$

$$x_4=\lambda_2^2-x_1-x_3$$

$$y_4=\lambda_2(x_1-x_4)-y_1$$

	Div (5C)	Sq (2C)	Mul (3C)	total
Double-and-Add	2	2	1	17C

lines evaluation

- ℓ is $ay + bx + c = 0 \in \mathbb{F}_{p^2}$
- $\ell_{\psi([2]R)}(P)$ and $\ell_{\psi(R+Q)}(P)$ are of the form $(a'y_P, 0, 0, b'x_P, c', 0) \in \mathbb{F}_{p^{12}} \ (\psi : E'(\mathbb{F}_{p^{k/d}}) \to E(\mathbb{F}_{p^k}))$ [ABLR14] \to sparse multiplication (1) in $\mathbb{F}_{p^{12}}$
- precompute $1/y_P$ (5C) and x_P/y_P (5C) and $\ell(P)$ becomes $(1,0,0,b'x_P/y_P,c'/y_P,0) \in \mathbb{F}_{p^{12}}$
 - \rightarrow better sparse multiplication (2) in $\mathbb{F}_{p^{12}}$

	total
Full Mul	54C
Sparse Mul (1)	39C
Sparse Mul (2)	30C

Final exponentiation

Easy part:

```
t.Conjugate(m)
m.Inverse(m) // 66C
t.Mul(t, m) // 54C
m.FrobeniusSquare(t)
m.Mul(m, t) // 54C
```

Final exponentiation

Easy part:

```
t.Conjugate(m)
t.Div(t, m) // 66C
m.FrobeniusSquare(t)
m.Mul(m, t) // 54C
```

Final exponentiation

```
Easy part: (more on that later)
```

```
t.Div(-m[0], m[1]) // 18C
m.TorusFrobeniusSquare(t)
m.TorusMul(m, t) // 42C
r := Decompress(m) // 48C
```

	total	
Old	174	
New 120		
New (Torus)	60 (or 108)	

Final exponentiation

Hard part (Hayashida et al. [HHT])

```
t[0].CyclotomicSquare(m)
t[1].Expt(m) // m^x addchain (Mul + CycloSqr)
t[2]. Conjugate (m)
t[1].Mul(t[1], t[2])
t[2].Expt(t[1])
t[1]. Conjugate(t[1])
t[1].Mul(t[1], t[2])
t[2].Expt(t[1])
t[1]. Frobenius (t[1])
t[1].Mul(t[1], t[2])
m.Mul(m, t[0])
t[0].Expt(t[1])
t[2].Expt(t[0])
t[0]. Frobenius Square (t[1])
t[1]. Conjugate(t[1])
t[1].Mul(t[1], t[2])
t[1].Mul(t[1], t[0])
m.Mul(m, t[1])
```

Arithmetic in cyclotomic groups

Table: Square in cyclotomic $\mathbb{F}_{p^{12}}$

	Compress	Square	Decompress
Normal	0	36	0
Granger-Scott [GS10]	0	18	0
Karabina [Kar13] SQR2345	0	12	19
Karabina [Kar13] SQR12345	0	15	8
Torus $(\mathbb{T}_2)[RS03]$	24	24	48

- ullet 1 or 2 squarings \Longrightarrow Granger-Scott
- 3 squarings ⇒ Karabina SQR12345
- \geq 4 squarings \implies Karabina SQR2345

Arithmetic in cyclotomic groups

Table: Mul in cyclotomic $\mathbb{F}_{p^{12}}$

	Compress	Multiply	Decompress
Normal	0	54	0
Torus $(\mathbb{T}_2)[RS03]$	24	42	48

- Compression/Decompression only once!
- ullet Whole final exp. in compressed form over \mathbb{F}_{p^6}
- Better:
 - Absorb the compression in the easy part computation
 - Do we really need decompression?

Algebraic tori

Definition

Let \mathbb{F}_q be a finite field and \mathbb{F}_{q^k} a field extension of \mathbb{F}_q . Then the norm of an element $\alpha \in \mathbb{F}_{q^k}$ with respect to \mathbb{F}_q is defined as the product of all conjugates of α over \mathbb{F}_q , namely $N_{\mathbb{F}_{q^k}/\mathbb{F}_q} = \alpha \alpha^q \cdots \alpha^{q^{k-1}} = \alpha^{(q^k-1)/(q-1)}$

$$T_k(\mathbb{F}_q) = \bigcap_{\mathbb{F}_q \subset F \subset \mathbb{F}_{q^k}} ker(N_{\mathbb{F}_{q^k}/F})$$

Lemma

Let $\alpha \in \mathbb{F}_{q^k}$, then $\alpha^{(q^k-1)/\Phi_k(q)} \in \mathcal{T}_k(\mathbb{F}_q)$

Algebraic tori in cryptography

$$\begin{split} \mathbb{T}_2 \text{ cryptosystem introduced by Rubin and Silverberg [RS03]}. \\ \text{Let } \alpha &= c_0 + \omega c_1 \in \mathbb{F}_{q^k} - \{1, -1\} \text{ (cyclotomic subgroup), we have } \\ \text{compress } f(\alpha) &= (1+c_0)/c_1 = \beta \in \mathbb{F}_{q^{k/2}} \\ \text{decompress } f^{-1}(\beta) &= (\beta+\omega)/(\beta-\omega) = \alpha \\ \text{Mul } \beta_1 \times \beta_2 &= (\beta_1\beta_2 + \omega)/(\beta_1 + \beta_2) \\ \text{Square } \beta^2 &= \frac{1}{2}(\beta+\omega/\beta) \\ \text{Inverse } 1/\beta &= -\beta \end{split}$$

\mathbb{T}_2 arithmetic is R1CS-friendly!

Absorbing the compression

Easy part:
$$m^{(q^{12}-1)/\Phi_k(\rho)} = m^{(\rho^6-1)(\rho^2+1)}$$

Let $\alpha = c_0 + \omega c_1 \in \mathbb{F}_{q^{12}} - \{1\}$ (cyclotomic subgroup),
$$\alpha^{\rho^6-1} = (c_0 + \omega c_1)^{\rho^6-1}$$

$$= (c_0 + \omega c_1)^{\rho^6}/(c_0 + \omega c_1)$$

$$= (c_0 - \omega c_1)/(c_0 + \omega c_1)$$

$$= (-c_0/c_1 + \omega)/(-c_0/c_1 - \omega)$$

$$f(\alpha) = (-c_0/c_1)^{\rho^2+1}$$

$$= (-c_0/c_1)^{\rho^2} \times (-c_0/c_1)$$

 \rightarrow 60C

Further optimizations

Carry the whole Miller loop in compressed form (e.g. [NBS08])

- Isolate m=1 (just $m=\ell \to$ less constraints)
- Write *m* as: $f(m) = (-c_0/c_1)^{p^2} \times (-c_0/c_1)$
- Use \mathbb{T}_2 cyclotomic squaring
- Write lines as

$$(1,0,0,b'x/y,c'/y,0) \in \mathbb{F}_{p^{12}} \mapsto -1/(b'x/y+\omega c'/y)^{p^2+1} = -1/D \in \mathbb{F}_{p^6}$$

Cyclotomic sparse Mul as:

$$f(m) \times f(\ell) = (f(m)f(\ell) + \omega)/(f(m) + f(\ell))$$
$$= (-f(m) + \omega D)/(f(m)D + 1)$$

Conclusion

Implementation open-sourced (MIT/Apache-2.0) at https://github.com/ConsenSys/gnark e.g. For BLS12-377,

	Constraints
Pairing	11535
Groth16 verifier	19378
BLS sig. verifier	14888
KZG verifier	20679

For BLS24-315, a pairing is **27608** contraints . More optimizations in mind:

- Quadruple-and-Add Miller loop [CBGW10]
- Fixed argument Miller loop (KZG, BLS sig) [CS10]
- Longa's sums of products Mul [Lon22]

Conclusion

Let's play with gnark!

https://play.gnark.io/

References I

Diego F. Aranha, Paulo S. L. M. Barreto, Patrick Longa, and Jefferson E. Ricardini

The realm of the pairings.

In Tanja Lange, Kristin Lauter, and Petr Lisonek, editors, *SAC 2013*, volume 8282 of *LNCS*, pages 3–25. Springer, Heidelberg, August 2014.

Diego F. Aranha, Laura Fuentes-Castañeda, Edward Knapp, Alfred Menezes, and Francisco Rodríguez-Henríquez.

Implementing pairings at the 192-bit security level.

In Michel Abdalla and Tanja Lange, editors, *PAIRING 2012*, volume 7708 of *LNCS*, pages 177–195. Springer, Heidelberg, May 2013.

References II

Diego F. Aranha, Koray Karabina, Patrick Longa, Catherine H. Gebotys, and Julio Cesar López-Hernández.

Faster explicit formulas for computing pairings over ordinary curves.

In Kenneth G. Paterson, editor, *EUROCRYPT 2011*, volume 6632 of *LNCS*, pages 48–68. Springer, Heidelberg, May 2011.

Sean Bowe, Alessandro Chiesa, Matthew Green, Ian Miers, Pratyush Mishra, and Howard Wu.

Zexe: Enabling decentralized private computation.

In 2020 IEEE Symposium on Security and Privacy (SP), pages 1059–1076, Los Alamitos, CA, USA, may 2020. IEEE Computer Society.

Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and Madars Virza.

Scalable zero knowledge via cycles of elliptic curves.

In Juan A. Garay and Rosario Gennaro, editors, *CRYPTO 2014, Part II*, volume 8617 of *LNCS*, pages 276–294. Springer, Heidelberg, August 2014.

Y. El Housni zkSummit 7 - April 21, 2022

2/8

References III

Paulo S. L. M. Barreto and Michael Naehrig.

Pairing-friendly elliptic curves of prime order.

In Bart Preneel and Stafford Tavares, editors, *SAC 2005*, volume 3897 of *LNCS*, pages 319–331. Springer, Heidelberg, August 2006.

Craig Costello, Colin Boyd, Juan Manuel González Nieto, and Kenneth Koon-Ho Wong.

Avoiding full extension field arithmetic in pairing computations.

In Daniel J. Bernstein and Tanja Lange, editors, *AFRICACRYPT 10*, volume 6055 of *LNCS*, pages 203–224. Springer, Heidelberg, May 2010.

References IV

Craig Costello, Cédric Fournet, Jon Howell, Markulf Kohlweiss, Benjamin Kreuter, Michael Naehrig, Bryan Parno, and Samee Zahur.

Geppetto: Versatile verifiable computation.

In 2015 IEEE Symposium on Security and Privacy, SP 2015, San Jose, CA, USA, May 17-21, 2015, pages 253–270. IEEE Computer Society, 2015. ePrint 2014/976.

Craig Costello and Douglas Stebila.

Fixed argument pairings.

In Michel Abdalla and Paulo S. L. M. Barreto, editors, *LATINCRYPT 2010*, volume 6212 of *LNCS*, pages 92–108. Springer, Heidelberg, August 2010.

References V

Youssef El Housni and Aurore Guillevic.

Families of SNARK-friendly 2-chains of elliptic curves.

In Orr Dunkelman and Stefan Dziembowski, editors, *Eurocrypt'2022*, LNCS. Springer, 2022.

To appear, ePrint 2021/1359.

Kirsten Eisenträger, Kristin Lauter, and Peter L. Montgomery.

Fast elliptic curve arithmetic and improved Weil pairing evaluation.

In Marc Joye, editor, *CT-RSA 2003*, volume 2612 of *LNCS*, pages 343–354. Springer, Heidelberg, April 2003.

Loubna Ghammam and Emmanuel Fouotsa.

On the computation of the optimal ate pairing at the 192-bit security level.

Cryptology ePrint Archive, Report 2016/130, 2016.

https://eprint.iacr.org/2016/130.

References VI

Jens Groth.

On the size of pairing-based non-interactive arguments.

In Marc Fischlin and Jean-Sébastien Coron, editors, *EUROCRYPT 2016*, *Part II*, volume 9666 of *LNCS*, pages 305–326. Springer, Heidelberg, May 2016.

Robert Granger and Michael Scott.

Faster squaring in the cyclotomic subgroup of sixth degree extensions.

In Phong Q. Nguyen and David Pointcheval, editors, *PKC 2010*, volume 6056 of *LNCS*, pages 209–223. Springer, Heidelberg, May 2010.

Ariel Gabizon, Zachary J. Williamson, and Oana Ciobotaru.

PLONK: Permutations over lagrange-bases for oecumenical noninteractive arguments of knowledge.

ePrint 2019/953.

References VII

Daiki Hayashida, Kenichiro Hayasaka, and Tadanori Teruya.

Efficient final exponentiation via cyclotomic structure for pairings over families of elliptic curves.

ePrint 2020/875.

Koray Karabina.

Squaring in cyclotomic subgroups.

Math. Comput., 82(281):555-579, 2013.

Patrick Longa.

Efficient algorithms for large prime characteristic fields and their application to bilinear pairings and supersingular isogeny-based protocols.

Cryptology ePrint Archive, Report 2022/367, 2022.

https://ia.cr/2022/367.

References VIII

Michael Naehrig, Paulo S. L. M. Barreto, and Peter Schwabe.

On compressible pairings and their computation.

In Serge Vaudenay, editor, *AFRICACRYPT 08*, volume 5023 of *LNCS*, pages 371–388. Springer, Heidelberg, June 2008.

Karl Rubin and Alice Silverberg.

Torus-based cryptography.

In Dan Boneh, editor, *CRYPTO 2003*, volume 2729 of *LNCS*, pages 349–365. Springer, Heidelberg, August 2003.

Michael Scott.

Pairing implementation revisited.

ePrint 2019/077.