Algerian Forest Fire Dataset - Temperature Prediction

- Data Collection
- · Exploratory data analysis
- Data Cleaning
- · Linear Regression Model Traning
- Ridge Regression Model Traning
- · Lasso Regression Model Traning
- · Elastincet Regression Model Traning

Importing the Libraries

```
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
import warnings
warnings.filterwarnings("ignore")
%matplotlib inline
```

Data Reading and Cleaning

```
In [64]:
           \label{eq:df} df = pd.read\_csv(r"C:\Users\hrush\Downloads\Algerian\_forest\_fires\_dataset\_UPDATE\ (1).csv", header=1)
           df.head()
             day month year Temperature RH Ws Rain FFMC DMC
                                                                      DC ISI BUI FWI Classes
Out[64]:
              01
                     06 2012
                                       29 57
                                                18
                                                      0
                                                          65.7
                                                                      7.6 1.3
                                                                               3 4
                                                                                    0.5
                                                                                         not fire
              02
                     06 2012
                                       29 61
                                                13
                                                    1.3
                                                          64.4
                                                                 4.1
                                                                      7.6
                                                                           1 3.9
                                                                                    0.4
                                                                                         not fire
                     06 2012
                                       26 82
                                               22 13.1
                                                          47.1
                                                                 2.5
                                                                      7.1 0.3 2.7 0.1
                                                                                         not fire
              04
                     06 2012
                                       25 89
                                               13
                                                    2.5
                                                          28 6
                                                                 1.3 6.9
                                                                           0 1.7
                                                                                     0
                                                                                         not fire
             05
                     06 2012
                                       27 77 16
                                                      0
                                                          64.8
                                                                  3 14.2 1.2 3.9 0.5
                                                                                         not fire
```

Drop an row

```
In [65]:
    df.drop([122,123],inplace=True)
    df.reset_index(inplace=True)
    df.drop('index',axis=1,inplace=True)

In [66]:
    df.loc[:122, 'region'] = 'bejaia'
    df.loc[122:, 'region'] = 'Sidi-Bel Abbes'
```

Stripping the names of the columns

Dropping the Classes Feature

```
In [68]: df.drop('Classes',axis=1,inplace=True)
```

```
In [69]:
            df.head()
                  month year Temperature
                                             RH
                                                   Ws
                                                        Rain FFMC
                                                                                ISI BUI FWI region
Out[69]:
           0
               01
                       06
                          2012
                                          29
                                               57
                                                   18
                                                          0
                                                               65.7
                                                                      3.4
                                                                            7.6 1.3
                                                                                     3.4
                                                                                           0.5
                                                                                                bejaia
               02
                       06
                          2012
                                          29
                                               61
                                                    13
                                                         1.3
                                                               64.4
                                                                      4.1
                                                                            7.6
                                                                                     3.9
                                                                                           0.4
                                                                                                bejaia
               03
                       06 2012
                                          26
                                               82
                                                   22
                                                        13.1
                                                               47.1
                                                                      2.5
                                                                            7.1 0.3
                                                                                     2.7
                                                                                           0.1
                                                                                                bejaia
               04
                       06 2012
                                          25
                                               89
                                                   13
                                                         2.5
                                                               28 6
                                                                      13
                                                                            6.9
                                                                                 0
                                                                                     17
                                                                                            0
                                                                                                bejaia
               05
                       06 2012
                                          27
                                               77
                                                   16
                                                          0
                                                               64.8
                                                                        3 14.2 1.2
                                                                                     3.9
                                                                                           0.5
                                                                                                bejaia
```

Replacing the day, month, year feature with date feature

```
In [70]:
           df['date']=pd.to_datetime(df[['day','month','year']])
           df.drop(['day','month','year'],axis=1,inplace=True)
In [71]:
            df.head()
                                                          ISI BUI FWI region
             Temperature RH Ws Rain
                                         FFMC DMC
                                                      DC
Out[71]:
                                                                                      date
           0
                           57
                               18
                                      0
                                          65.7
                                                 3.4
                                                           1.3
                                                               3.4
                                                                     0.5
                                                                          bejaia 2012-06-01
                      29
                                                      7.6
                                                 4.1
                       29
                           61
                               13
                                     1.3
                                          64.4
                                                       7.6
                                                                3.9
                                                                     0.4
                                                                          bejaia
                                                                                2012-06-02
           2
                               22
                                    13.1
                                          47.1
                                                           0.3
                                                                2.7
                                                                     0.1
                                                                                2012-06-03
                                                                          bejaia
           3
                      25
                           89
                               13
                                     2.5
                                          28.6
                                                 1.3
                                                      6.9
                                                            0 1.7
                                                                      0
                                                                                2012-06-04
                                                                          bejaia
                      27
                          77
                               16
                                      0
                                          64.8
                                                   3 14.2 1.2 3.9
                                                                    0.5
                                                                          bejaia
                                                                                2012-06-05
```

Checking the datatypes of feature

```
In [72]:
           df.dtypes
          Temperature
                                    object
Out[72]:
          RH
                                    object
          Ws
                                     object
          Rain
                                    object
          FFMC
                                    object
          DMC
                                    object
          \mathsf{DC}
                                     object
          ISI
                                    object
          BUI
                                    object
          FWI
                                    object
          region
                                    object
                           datetime64[ns]
          date
          dtype: object
```

Checking the datatypes of features

float64

DMC

```
In [73]:
           df['Temperature']=df['Temperature'].astype(int)
           df['RH']=df['RH'].astype(int)
           df['Ws']=df['Ws'].astype(int)
           df['Rain']=df['Rain'].astype(float)
           df['FFMC']=df['FFMC'].astype(float)
           df['DMC']=df['DMC'].astype(float)
df['ISI']=df['ISI'].astype(float)
           df['BUI']=df['BUI'].astype(float)
In [74]:
           df.dtypes
          Temperature
                                      int32
Out[74]:
          RH
                                      int32
                                      int32
          Rain
                                    float64
                                    float64
          FFMC
```

```
DC object
ISI float64
BUI float64
FWI object
region object
date datetime64[ns]
dtype: object
```

Applying Label encoding in DC,FWI,region features

```
In [75]:
           from sklearn.preprocessing import LabelEncoder
          LabelEncoder=LabelEncoder()
In [76]:
           df['DC']=LabelEncoder.fit transform(df['DC'])
          df['FWI']=LabelEncoder.fit_transform(df['FWI'])
          df['region']=LabelEncoder.fit_transform(df['region'])
In [77]:
          df.dtypes
          Temperature
                                   int32
Out[77]:
                                   int32
                                   int32
         Ws
                                 float64
         Rain
          FFMC
                                  float64
          DMC
                                  float64
         DC
                                   int32
          ISI
                                  float64
          BUI
                                  float64
         FWI
                                   int32
          region
                                   int32
          date
                          datetime64[ns]
         dtype: object
In [78]:
           df.head()
            Temperature RH Ws Rain
                                     FFMC DMC
                                                 DC ISI BUI FWI region
                                                                              date
Out[78]:
                             18
                                 0.0
                                       65.7
                                                 150
                                                                       1 2012-06-01
                    29
                        61
                            13
                                 1.3
                                       64.4
                                             4.1 150 1.0
                                                         3.9
                                                                       1 2012-06-02
          2
                                                                       1 2012-06-03
                    26 82
                            22
                                13.1
                                       47.1
                                             2.5 146 0.3
                                                         2.7
                                                                1
                    25
                        89
                             13
                                       28.6
                                             1.3 136 0.0
                                                                       1 2012-06-04
                                 0.0
                                      64.8
                                            3.0
                                                 18 1.2 3.9
                                                                      1 2012-06-05
                            16
```

Checking the null values

```
In [79]:
           df.isnull().sum()
                            0
          Temperature
Out[79]:
          RH
                            0
                            0
          Ws
          Rain
                            0
          FFMC
                            0
           \mathsf{DMC}
                            0
          DC
           ISI
                            0
           BUI
                            0
           FWI
           region
                            0
           date
                            0
          dtype: int64
```

Observation

Zero null value in the dataset

Univariate Analysis

```
In [80]:    numeric_features = [feature for feature in df.columns if df[feature].dtype != '0']

In [81]:    numeric_features

Out[81]:    ['Temperature',
    'RH',
    'Ws',
    'Rain',
    'FFMC',
    'DMC',
    'DC',
    'ISI',
    'BUI',
    'FWI',
    'region',
    'date']
```

Features Information

```
*Date : (DD/MM/YYYY) Day, month ('june' to 'september'), year (2012) Weather data observations
```

*RH: Relative Humidity in %: 21 to 90

*Ws:Wind speed in km/h: 6 to 29

*Rain: total day in mm: 0 to 16.8 FWI Components

*Fine Fuel Moisture Code (FFMC) index from the FWI system: 28.6 to 92.5

*Duff Moisture Code (DMC) index from the FWI system: 1.1 to 65.9

*Drought Code (DC) index from the FWI system: 7 to 220.4

*Initial Spread Index (ISI) index from the FWI system: 0 to 18.5

*Buildup Index (BUI) index from the FWI system: 1.1 to 68

*Fire Weather Index (FWI) Index: 0 to 31.1

```
plt.figure(figsize=(15,15))
plt.suptitle('Univariate Analysis of Numerical Feature', fontsize=20, fontweight=20)

for i in range(0, len(numeric_features)):
    plt.subplot(5, 3, i+1)
    sns.kdeplot(x=df[numeric_features[i]],shade=True, color='r')
    plt.xlabel(numeric_features[i])
    plt.tight_layout()
```


^{*}Temp: temperature noon (temperature max) in Celsius degrees: 22 to 42

Visualization of Target Feature

```
plt.subplots(figsize=(14,7))
sns.histplot(x=df.Temperature, ec = "black", color='orange', kde=True)
plt.title("Temperature Distribution", weight="bold", fontsize=20, pad=20)
plt.ylabel("Count", weight="bold", fontsize=15)
plt.xlabel("Temperatures", weight="bold", fontsize=12)
plt.show()
```

Temperature Distribution

Observation

Temperature occur most of the time in range 32.5 to 35.0

Temperature Vs Rain

```
import matplotlib
matplotlib.rcParams['figure.figsize']=(20,10)
sns.barplot(x="Temperature",y="Rain",data=df)
```

Jut[84]: <AxesSubplot:xlabel='Temperature', ylabel='Rain'>

```
10 -
```


Observation

When the temperature is around 22, most of the rain occur

Which region has most temperature?

```
import matplotlib
matplotlib.rcParams['figure.figsize']=(20,10)
sns.barplot(x="region",y="Temperature",data=df)
```

Out[86]: <AxesSubplot:xlabel='region', ylabel='Temperature'>

Observation

Region represented by 0 i.e. 'Sidi-Bel Abbes' has highest temperature

Correlation of the features

In [87]:

df.corr()

Out[87]:		Temperature	RH	Ws	Rain	FFMC	DMC	DC	ISI	BUI	FWI	region
	Temperature	1.000000	-0.654443	-0.278132	-0.326786	0.677491	0.483105	-0.165840	0.607551	0.455504	0.380581	-0.273496
	RH	-0.654443	1.000000	0.236084	0.222968	-0.645658	-0.405133	0.041651	-0.690637	-0.348587	-0.295093	0.406424
	Ws	-0.278132	0.236084	1.000000	0.170169	-0.163255	-0.001246	0.040958	0.015248	0.029756	-0.081447	0.176829
	Rain	-0.326786	0.222968	0.170169	1.000000	-0.544045	-0.288548	0.324748	-0.347105	-0.299171	-0.340412	0.041080
	FFMC	0.677491	-0.645658	-0.163255	-0.544045	1.000000	0.602391	-0.319086	0.739730	0.589652	0.617445	-0.224680
	DMC	0.483105	-0.405133	-0.001246	-0.288548	0.602391	1.000000	-0.200609	0.674499	0.982073	0.384628	-0.191094
	DC	-0.165840	0.041651	0.040958	0.324748	-0.319086	-0.200609	1.000000	-0.152717	-0.226445	-0.118684	0.016293
	ISI	0.607551	-0.690637	0.015248	-0.347105	0.739730	0.674499	-0.152717	1.000000	0.635891	0.412512	-0.268421
	BUI	0.455504	-0.348587	0.029756	-0.299171	0.589652	0.982073	-0.226445	0.635891	1.000000	0.375234	-0.087370
	FWI	0.380581	-0.295093	-0.081447	-0.340412	0.617445	0.384628	-0.118684	0.412512	0.375234	1.000000	-0.108099
	region	-0.273496	0.406424	0.176829	0.041080	-0.224680	-0.191094	0.016293	-0.268421	-0.087370	-0.108099	1.000000

Multivariate analysis

```
import seaborn as sns
plt.figure(figsize=(10,8))
sns.heatmap(df.corr())
```

Out[88]: <AxesSubplot:>

Observation

2012-09-15

The target feature Temperature is highly positively correlated with FFMC,ISI

Temperature Vs date feature

Temperature Vs FFMC

```
In [90]: plt.figure(figsize=(10,10))
    sns.jointplot(x='Temperature',y='FFMC',data=df,color='g')
Out[90]: <seaborn.axisgrid.JointGrid at 0x1c390143d90>
```

<Figure size 720x720 with 0 Axes>

Temperature Vs ISI

```
In [91]:
    plt.figure(figsize=(10,10))
    sns.regplot(x='Temperature',y='ISI',data=df)
```

contigning AxesSubplot:xlabel='Temperature, ylabel='ISI'>

Checking the outliers of the target 'Temperature' feature

Boxplot of Rain Vs Temperature

Boxplot of 'FFMC' Vs Temperature

```
In [94]: sns.boxplot(x ='Temperature', y ='FFMC', data = df)
Out[94]: <AxesSubplot:xlabel='Temperature', ylabel='FFMC'>
```


Boxplot of ISI Vs Temperature

```
In [95]: sns.boxplot(x ='Temperature', y ='ISI', data = df)
Out[95]: <AxesSubplot:xlabel='Temperature', ylabel='ISI'>
```


Boxplot of region Vs Temperature

Boxplot of BUI Vs Temperature

```
In [97]: sns.boxplot(x ='Temperature', y ='BUI', data = df)
Out[97]: <AxesSubplot:xlabel='Temperature', ylabel='BUI'>
```

Boxplot DMC Vs Temperature

Creating Dependent and Independent features

Independent Features

```
In [129...
                 RH
Out[129...
                                                    ISI
                                                         BUI
                 57
                                  65.7
                 61
                      13
                                  64.4
                                               150 1.0
                                                          3.9
                            1.3
                                          4.1
                  82
                       22
                           13.1
                                  47.1
                                                    0.3
                                                                 0
                 89
                       13
                            2.5
                                  28.6
                                          1.3 136 0.0
                 77
                            0.0
                                  64.8
                                          3.0
                                                   1.2
                                                          3.9
                                                                 5
                                                18
            239
                 65
                            0.0
                                  85.4
                                         16.0 112 4.5 16.9
                                                               106
```

240	87	15	4.4	41.1	6.5	164	0.1	6.2	0	0
241	87	29	0.5	45.9	3.5	153	0.4	3.4	2	0
242	54	18	0.1	79.7	4.3	25	1.7	5.1	7	0
243	64	15	0.2	67.3	3.8	34	1.2	4.8	5	0

244 rows × 10 columns

Dependent Features

TrainTest Split

Independent training dataset

```
In [136… x_train
```

Out[136		RH	Ws	Rain	FFMC	DMC	DC	ISI	BUI	FWI	region
	237	49	6	2.0	61.3	11.9	77	0.6	11.9	4	0
	78	54	18	0.0	89.4	20.0	8	9.7	27.5	47	1
	25	64	18	0.0	86.8	17.8	157	6.7	21.6	20	1
	124	80	14	2.0	48.7	2.2	150	0.3	2.6	1	0
	176	64	9	1.2	73.8	11.7	28	1.1	11.4	7	0
	64	69	13	0.0	85.0	8.2	53	4.0	8.2	86	1
	15	89	13	0.7	36.1	1.7	150	0.0	2.2	0	1
	228	51	13	0.0	88.7	16.0	122	6.9	17.8	124	0
	125	64	14	0.0	79.4	5.2	26	2.2	5.6	10	0
	9	79	12	0.0	73.2	9.5	114	1.3	12.6	9	1

163 rows × 10 columns

Independent Test Dataset

In [137- x_test

Out[137...

	RH	Ws	Rain	FFMC	DMC	DC	ISI	BUI	FWI	region
162	56	15	2.9	74.8	7.1	185	1.6	6.8	8	0
60	64	17	0.0	87.2	31.9	22	6.8	41.2	45	1
61	45	14	0.0	78.8	4.8	1	2.0	4.7	9	1
63	63	14	0.3	76.6	5.7	0	1.7	5.5	8	1
69	59	17	0.0	87.4	14.8	132	6.9	17.9	125	1
169	68	15	0.0	86.1	23.9	123	5.2	23.9	120	0
232	41	8	0.1	83.9	24.9	177	2.7	28.9	99	0
144	59	16	8.0	74.2	7.0	166	1.6	6.7	8	0
208	37	16	0.0	92.2	61.3	38	13.1	64.0	89	0
105	76	26	8.3	47.4	1.1	145	0.4	1.6	1	1

81 rows × 10 columns

Dependent Training Dataset

In [138...

y_train

Out[138...

	Temperature	
237	26	
78	36	
25	31	
124	29	
176	39	
64	34	
15	29	
228	32	
125	30	
9	28	

163 rows × 1 columns

```
In [139... y_test
Out[139...
                 Temperature
            162
                          35
             60
             61
                          36
             63
                          35
             69
                          35
            169
                          33
                          29
            232
            144
                          33
            208
                          33
            105
                          22
           81 rows × 1 columns
```

Standardizing or Feature Scaling

```
In [140...
            from sklearn.preprocessing import StandardScaler
            scaler=StandardScaler() ## Initialising
In [141...
            scaler
          StandardScaler()
Out[141...
In [142...
            x train=scaler.fit transform(x train)
In [143...
            x_test=scaler.transform(x_test)
In [144...
            x train
Out[144_ array([[-0.85631108, -3.36419461, 0.88853946, ..., -0.32535487,
                     -1.03738328, -0.98176139],
                    [-0.52508491, 0.99944243, -0.441414 , ..., 0.76565444, -0.01141751, 1.01857744],
                    [\ 0.13736742,\ 0.99944243,\ -0.441414\ ,\ \ldots,\ 0.35302912,
                     -0.65562857, 1.01857744],
                    \hbox{$[-0.72382061,\ -0.81873967,\ -0.441414\ ,\ \dots,\ 0.08727045,}
                      1.825777 , -0.98176139],
                    [ \ 0.13736742 \, , \ -0.45510325 \, , \ -0.441414 \quad , \ \dots, \ -0.76595478 \, ,
                    -0.89422526, -0.98176139],
[ 1.13104591, -1.18237609, -0.441414 , ..., -0.27639932,
                     -0.91808493, 1.01857744]])
In [145...
            x test
Out[145_ array([[-3.92594448e-01, -9.14668296e-02, 1.48701853e+00,
                     -1.82411230e-01, -6.02677495e-01, 1.41938909e+00, -7.33442383e-01, -6.82030988e-01, -9.41944600e-01,
                     -9.81761387e-01],
                    [ 1.37367416e-01, 6.35806011e-01, -4.41414004e-01, 6.64566895e-01, 1.37979749e+00, -1.44016117e+00,
                                          1.72378441e+00, -5.91368483e-02,
                      4.94418103e-01,
                      1.01857744e+00],
                    [-1.12129201e+00, -4.55103250e-01, -4.41414004e-01,
                      9.08075201e-02, -7.86536062e-01, -1.80856948e+00,
                     -6.38991577e-01, -8.28897625e-01, -9.18084931e-01,
                      1.01857744e+00],
                    [ 7.11221826e-02, -4.55103250e-01, -2.41920984e-01, -5.94627923e-02, -7.14591405e-01, -1.82611273e+00,
                     -7.09829682e-01, -7.72948430e-01, -9.41944600e-01,
```

1.01857744e+00], [-1.93858749e-01, 6.35806011e-01, -4.41414004e-01,

```
6.78227832e-01, 1.28490116e-02, 4.89596678e-01,
   5.18030804e-01, 9.42640966e-02, 1.84963667e+00,
   1.01857744e+00],
[-5.91330147e-01, 2.72169591e-01, -4.41414004e-01,
   8.21667676e-01, 1.83544698e+00, -1.19455562e+00, 1.34447536e+00, 2.16438432e+00, 5.85074214e-01,
   1.01857744e+00],
[-5.91330147e-01, 1.36307885e+00, -4.41414004e-01, 8.01176270e-01, 1.96707579e-01, 1.61236488e+00, 1.25002456e+00, 5.13883061e-01, -1.06856186e-01,
   1.01857744e+00],
[-5.91330147e-01, 6.35806011e-01, -1.08925637e-01,
   1.86434082e-01, 4.84486205e-01, -1.40507466e+00,
4.73702665e-01, 9.82457572e-01, 1.27700461e+00,
  -4.73702665e-01.
  -9.81761387e-01],
[ 5.34838813e-01, -4.55103250e-01, -4.41414004e-01,
   3.64026270e-01, -4.18818928e-01, -2.47219954e-01,
  -3.55639157e-01, -3.81304063e-01, 8.47530573e-01,
   1.01857744e+00],
[ 7.11221826e-02, -4.55103250e-01, -4.41414004e-01,
   6.50905957e-01, -2.98911167e-01, -1.41960435e-01, 2.11065683e-01, -2.83392971e-01, 1.44402230e+00,
   1.01857744e+00],
[-3.92594448e-01, 2.72169591e-01, -4.41414004e-01, 7.80684863e-01, 7.32295578e-01, 5.07139931e-01, 8.24995926e-01, 5.06889412e-01, -3.45452876e-01,
  -9.81761387e-01],
[ 9.98555444e-01, 2.09035169e+00, 7.55544118e-01, -1.29577764e+00, -1.01835773e+00, 1.10361054e+00, -8.51505892e-01, -9.89751562e-01, -1.06124295e+00,
   1.01857744e+00],
\hbox{$[-1.84998957e+00,}\quad 2.72169591e-01,}\quad -3.08418657e-01,
   7.39702051e-01, 1.80719877e-01, 1.56274868e-01, 6.59707014e-01, 6.62894990e-02, -6.79488242e-01,
  -9.81761387e-01],
[ 6.01084046e-01, -4.55103250e-01, 3.88093477e+00, -8.85949510e-01, -9.06443823e-01, 1.36675933e+00,
  -8.75118593e-01, -9.12821418e-01, -1.03738328e+00,
  -9.81761387e-01],
[-9.88801544e-01, 9.99442431e-01, 3.54844640e+00,
  2.27416895e-01, -3.86843525e-01, 1.43693235e+00, -3.79251858e-01, -5.00196103e-01, 7.52091897e-01,
  -9.81761387e-01],
[ 5.34838813e-01, 2.72169591e-01, -4.41414004e-01, 5.82601270e-01, -1.47028003e-01, -6.15628269e-01,
   1.63840280e-01, -2.69405673e-01, 1.42016263e+00,
  -9.81761387e-01],
[-5.25084914e-01, -1.54601251e+00, -3.74916331e-01,
  4.25500489e-01, -4.98757435e-01, -5.80541763e-01, -3.79251858e-01, -5.07189753e-01, 7.75951566e-01,
  -9.81761387e-01],
[ 1.06480068e+00, -4.55103250e-01, 4.89553424e-01, -2.21789092e+00, -1.01835773e+00, 7.87831981e-01, -1.06402021e+00, -9.89751562e-01, -1.10896228e+00,
   1.01857744e+00],
[-1.78374434e+00, -9.14668296e-02, -4.41414004e-01,
   1.11537783e+00, 6.68344772e-01, 8.61018558e-02, 2.59594855e+00, 4.43946567e-01, 5.37354876e-01,
   ·9.81761387e-01],
[-7.90065846e-01, 2.72169591e-01, -4.41414004e-01, 8.48989551e-01, 1.44374829e+00, 8.75548246e-01, 1.13196105e+00, 1.12233056e+00, 1.07880835e-01,
  -9.81761387e-01],
[ 2.03612648e-01, -4.55103250e-01, -4.41414004e-01, 4.80144239e-01, -1.71009555e-01, 4.19423665e-01, -1.66737544e-01, -5.26025410e-02, 1.22928528e+00,
   1.01857744e+00],
[-1.93858749e-01, 1.36307885e+00, -4.41414004e-01,
   7.94345801e-01, 1.05204961e+00, -1.14192586e+00, 1.20279915e+00, 1.59090507e+00, 2.51038848e-01,
  -9.81761387e-01],
[-5.91330147e-01, 9.99442431e-01, -4.41414004e-01, 7.87515332e-01, 5.56430862e-01, 1.20887006e+00, 1.06112294e+00, 6.46762400e-01, -1.54575524e-01,
   1.01857744e+00],
[ 4.87694966e-03, 2.72169591e-01, -4.41414004e-01,
   7.05549707e-01, 1.48744474e-01, -2.29676700e-01, 5.41643506e-01, -1.06406445e-02, 1.75419799e+00,
  -9.81761387e-01],
[-1.91623481e+00, 6.35806011e-01, -4.41414004e-01,
   1.10854736e+00, 1.96707579e-01, -3.17392966e-01, 2.95013907e+00, 2.43276025e-02, 2.74898517e-01,
 -9.81761387e-01],
[ 1.85974347e+00, -9.14668296e-02, -4.41414004e-01,
  \hbox{-7.28848729e-01, -5.94683644e-01, -1.47524767e+00,}\\
  -8.27893190e-01, -6.61050040e-01, -9.89663938e-01,
  -9.81761387e-01],
[-6.13682833e-02, 9.99442431e-01, -2.41920984e-01, 1.86434082e-01, -2.34960361e-01, 1.50710536e+00,
```

```
-4.50089963e-01, 7.32831484e-02, 1.08612726e+00,
   1.01857744e+00],
[-9.88801544e-01, -4.55103250e-01, 2.40697100e-02,
 2.01142638e-03, -6.02677495e-01, 1.17378355e+00, -6.86216980e-01, -6.82030988e-01, -9.18084931e-01,
   1.01857744e+00],
[ 1.19729114e+00, 2.72169591e-01, 7.55544118e-01, -2.05395967e+00, -9.38419226e-01, 8.22918487e-01, -1.04040750e+00, -9.47789665e-01, -1.10896228e+00,
   1.01857744e+00],
[ 1.13104591e+00, -9.14668296e-02, -4.41414004e-01, 5.41618457e-01, 1.10800656e+00, -1.54542068e+00,
 -1.44863200e-03, 1.45802573e+00, -6.31768904e-01,
   1.01857744e+00],
[ 1.26353638e+00, 2.09035169e+00, 3.41545106e+00,
 -1.97199404e+00, -9.30425375e-01, 8.22918487e-01, -1.01679480e+00, -9.47789665e-01, -1.10896228e+00,
  1.01857744e+00],
[ 1.59476254e+00, 2.72169591e-01, -4.41414004e-01, -2.70285420e+00, -1.09829624e+00, 1.06852403e+00,
 -1.08763291e+00, -1.05968806e+00, -1.13282195e+00,
 -9.81761387e-01],
[-5.25084914e-01, -8.18739670e-01, -4.41414004e-01,
  7.32871582e-01, -3.78849674e-01, -3.70022725e-01, 3.99967296e-01, -3.95291362e-01, 1.51560130e+00,
   1.01857744e+00],
[-7.23820613e-01, 2.72169591e-01, 2.08549759e+00, 2.01142638e-03, -5.30732838e-01, 1.41938909e+00, -6.38991577e-01, -6.19088143e-01, -8.46505925e-01,
 -9.81761387e-01],
[ 1.37367416e-01, -9.14668296e-02, -4.41414004e-01,
   6.30414551e\text{-}01\text{, }-3.51140928e\text{-}02\text{, } 6.47485956e\text{-}01\text{, }
   2.34678385e-01, 1.22238694e-01, 1.65875932e+00,
   1.01857744e+00],
[ 3.36103114e-01, 1.36307885e+00, -4.41414004e-01, -1.41428417e-01, -9.38419226e-01, -1.24718538e+00, -6.38991577e-01, -8.77853171e-01, -9.41944600e-01,
 -9.81761387e-01],
[ 1.19729114e+00, 2.72169591e-01, -1.75423310e-01, -1.20698154e+00, -8.98449972e-01, -5.45455257e-01,
 -8.98731295e-01, -8.00923028e-01, -1.03738328e+00,
   1.01857744e+00],
[ 4.87694966e-03, -9.14668296e-02, -4.41414004e-01,
 3.98178614e-01, -7.06597555e-01, -1.08929610e+00, -2.13962947e-01, -7.10005585e-01, 7.99811235e-01,
 -9.81761387e-01],
[ 1.32978161e+00, -9.14668296e-02, -1.75423310e-01, -2.22472138e+00, -1.09829624e+00, 7.52745475e-01,
 -1.06402021e+00, -1.05968806e+00, -1.13282195e+00,
   1.01857744e+00],
[-9.22556312e-01, -8.18739670e-01, -4.41414004e-01,
   8.76311426e-01, 6.04393966e-01, -1.70330996e+00,
   9.43059434e-01, 8.98533779e-01, -1.06856186e-01,
   1.01857744e+00],
[ 4.02348347e-01, 1.36307885e+00, -4.41414004e-01, 7.39702051e-01, 9.00166443e-01, -1.56296394e+00, 9.66672136e-01, 1.26919720e+00, 6.01614966e-02,
   1.01857744e+00],
[-4.58839681e-01, -9.14668296e-02, -4.41414004e-01, 8.08006738e-01, 1.09201886e+00, 7.00115715e-01, 8.48608628e-01, 8.21603635e-01, -2.26154531e-01,
 -9.81761387e-01],
\hbox{[-1.32002771e+00,}\quad 2.09035169e+00, -4.41414004e-01,}\\
  8.96802832e-01, 2.84639937e-01, -3.70022725e-01, 2.05285641e+00, 1.01257746e-01, 3.63018276e-02,
 -9.81761387e-01],
[ 8.66064978e-01, 2.72169591e-01, -4.41414004e-01, 3.23043457e-01, -8.18511465e-01, -6.85801282e-01,
 -3.32026455e-01, -7.37980183e-01, 3.94196862e-01,
 -9.81761387e-01],
[-1.38627294e+00, -1.90964893e+00, -3.74916331e-01,
  9.92429394e-01, 6.36369369e-01, 6.65029209e-01, 1.13196105e+00, 5.34864009e-01, -1.78435193e-01,
 -9.81761387e-01],
[-4.58839681e-01, -4.55103250e-01, -4.41414004e-01, 7.80684863e-01, 3.16615340e-01, 6.82572462e-01, 6.36094313e-01, 3.74010073e-01, -5.60189897e-01,
   1.01857744e+00],
 \hbox{\tt [ 1.19729114e+00, 2.09035169e+00, 1.07301951e+01,} \\
 -1.70560576e+00, -4.74775883e-01, 1.15624030e+00, -9.69569400e-01, -5.77126247e-01, -1.06124295e+00,
   1.01857744e+00],
[-1.18753724e+00, -8.18739670e-01, -4.41414004e-01,
   8.62650488e-01, -1.63015705e-01, -9.31406825e-01,
   8.48608628e-01, -2.83392971e-01, 1.77805766e+00,
 -9.81761387e-01],
[-4.58839681e-01, -9.14668296e-02, -4.41414004e-01,
  7.94345801e-01, 5.00473906e-01, 1.21188362e-01, 7.77770523e-01, 2.97079929e-01, -5.12470559e-01,
```

```
-9.81761387e-01],
[ 1.72725301e+00, -8.18739670e-01, -4.41414004e-01, -4.41969042e-01, -9.62400778e-01, -1.21209888e+00,
 -8.27893190e-01, -8.98834119e-01, -1.01352361e+00,
  1.01857744e+00],
[ 1.06480068e+00, -4.55103250e-01, -4.41414004e-01,
 2.41077832e-01, -6.66628301e-01, -3.34936219e-01, -4.97315367e-01, -5.70132597e-01, 3.46477524e-01,
  1.01857744e+00],
[ 4.02348347e-01, -4.55103250e-01, -4.41414004e-01, 5.41618457e-01, -2.02984958e-01, 1.03645109e-01, -2.50613337e-02, -1.64500931e-01, 1.30086428e+00,
  1.01857744e+00],
[-1.25378248e+00, 2.72169591e-01, -4.41414004e-01,
  9.37785644e-01, 2.51492429e+00, -1.52787743e+00, 1.60421508e+00, 2.35321286e+00, 6.32793552e-01,
 -9.81761387e-01],
[ 3.36103114e-01, -4.55103250e-01, -4.41414004e-01,
 3.50365332e-01, -7.06597555e-01, -7.91060800e-01, -3.79251858e-01, -6.68043689e-01, 3.94196862e-01,
  1.01857744e+00],
[ 1.46227207e+00, 9.99442431e-01, -4.41414004e-01, 4.32330957e-01, -9.10710479e-02, 2.79077640e-01, -4.86740353e-02, -3.86152421e-02, 1.34858362e+00,
   1.01857744e+00],
[ \ 6.01084046e\text{-}01, \ 6.35806011e\text{-}01, \ -2.41920984e\text{-}01, \\
 -5.37595604e-01, -9.14437674e-01, -4.05109232e-01,
 -7.57055085e-01, -8.00923028e-01, -9.89663938e-01,
  1.01857744e+00],
[ 2.69857881e-01, -9.14668296e-02, -3.74916331e-01, 3.57195801e-01, 1.44374829e+00, 1.57727837e+00, -3.32026455e-01, 1.32514639e+00, 1.58718031e+00,
 -9.81761387e-01],
[-1.65125387e+00, -8.18739670e-01, -4.41414004e-01,
  1.02658174e+00, 1.00408650e+00, 3.49250653e-01, 1.65144048e+00, 7.37679842e-01, 1.79459842e-01,
 -9.81761387e-01],
[ 7.11221826e-02, 6.35806011e-01, 2.90060404e-01, -3.19020605e-01, 5.00473906e-01, 4.72053425e-01, -7.33442383e-01, 3.60022774e-01, 3.94196862e-01,
 -9.81761387e-01],
[-8.56311079e-01, 1.36307885e+00, -4.41414004e-01,
   7.60193457e-01, -2.50948063e-01, -2.64763207e-01,
  1.03751024e+00, -2.90386621e-01, -7.03347911e-01,
 -9.81761387e-01],
[ 2.03612648e-01, -9.14668296e-02, -3.74916331e-01, 2.68399707e-01, -1.86997257e-01, 6.12399450e-01, -4.50089963e-01, -3.64699509e-03, 1.03840792e+00,
  1.01857744e+00],
[ 7.33574512e-01, -9.14668296e-02, -4.41414004e-01, 6.23584082e-01, 9.64117249e-01, -1.59805044e+00,
  2.11065683e-01, 1.29017815e+00, -5.36330228e-01,
   1.01857744e+00],
[-6.13682833e-02, -8.18739670e-01, 4.23055751e-01,
 -8.92779979e-01, -8.42493017e-01, 8.05375234e-01, -8.75118593e-01, -8.84846821e-01, -1.03738328e+00,
  1.01857744e+00],
[ 1.32978161e+00, 2.45398811e+00, 8.26978122e+00, -2.07445107e+00, -9.70394629e-01, 7.35202221e-01,
 -1.04040750e+00, -9.68770614e-01, -1.10896228e+00,
  1.01857744e+00],
\hbox{[-1.27613516e-01, } 9.99442431e-01, -2.41920984e-01,
 -2.53104486e-02, -2.66935764e-01, 2.08904628e-01, -5.91766173e-01, -1.71494581e-01, 4.18056531e-01,
  1.01857744e+00],
[-1.84998957e+00, -4.55103250e-01, -4.41414004e-01,
   1.08122549e+00, -3.06905018e-01, -8.26147307e-01,
  2.14730722e+00, -4.16272310e-01, -3.21593207e-01,
 -9.81761387e-01],
[ 1.66100777e+00, 9.99442431e-01, -4.41414004e-01,
  1.72773145e-01, -2.26966510e-01, -4.57738991e-01,\\
 -4.50089963e-01, -3.32348517e-01, 7.99811235e-01,
 -9.81761387e-01],
[ 2.69857881e-01, 2.45398811e+00, -1.75423310e-01, -6.33222167e-01, -3.30886570e-01, 8.93091499e-01, -6.86216980e-01, -8.05771386e-02, 3.22617855e-01,
  1.01857744e+00],
[-5.91330147e-01, -4.55103250e-01, -4.41414004e-01,
  8.21667676e-01, 2.11523175e+00, -1.58050719e+00, 7.77770523e-01, 2.02451133e+00, 1.55600173e-01,
 -9.81761387e-01],
[-4.58839681e-01, -4.55103250e-01, -4.41414004e-01,
  5.96262207e-01, -5.06751286e-01, -1.01912309e+00, 6.93894730e-02, -5.84119896e-01, 1.13384660e+00,
 -9.81761387e-01],
[ 9.32310211e-01, 1.72671527e+00, 2.40697100e-02, -9.81576073e-01, -9.62400778e-01, 1.38430259e+00,
 -8.04280488e-01, -9.47789665e-01, -1.01352361e+00,
  1.01857744e+00],
```

```
\hbox{[-5.25084914e-01, }9.99442431e-01, -3.74916331e-01,\\
  1.52281739e-01, -8.26505316e-01, -1.38753141e+00,
 -7.09829682e-01, -8.00923028e-01, -9.65804269e-01,
 -9.81761387e-01],
[ 7.33574512e-01, -9.14668296e-02, -4.41414004e-01, 6.23584082e-01, -2.02984958e-01, -7.17874223e-02,
  2.11065683e-01, -2.13456477e-01, 1.46788197e+00,
  1.01857744e+00],
[ 1.37367416e-01, -9.14668296e-02, -3.08418657e-01,
 -6.94696386e-01, -8.66474569e-01, -1.22964213e+00,
 -8.27893190e-01, -8.21903976e-01, -1.01352361e+00,
 -9.81761387e-01],
[ 4.68593580e-01, -8.18739670e-01, 2.40697100e-02, -7.42509667e-01, -6.90609853e-01, 1.40184584e+00, -8.51505892e-01, -7.51967482e-01, -1.01352361e+00,
1.01857744e+00],
[ 1.32978161e+00, 2.09035169e+00, -4.41414004e-01,
  5.07466114e-01, 2.58686895e+00, -8.43690560e-01,
 -7.22867370e-02, 2.98963495e+00, -3.45452876e-01,
  1.01857744e+00],
[ 4.02348347e-01, -9.14668296e-02, -4.41414004e-01,
  5.89431738e-01, 7.40289429e-01, 3.31707400e-01, 1.16614876e-01, 5.13883061e-01, 1.73033833e+00,
 -9.81761387e-01],
[-1.38627294e+00, -2.63692177e+00, -3.74916331e-01,
  4.39161426e-01, 8.20227936e-01, 1.27904307e+00,
 -4.73702665e-01, 8.63565532e-01, 1.22928528e+00,
 -9.81761387e-01],
[-1.93858749e-01, 2.72169591e-01, 9.05673835e-02, -2.23394042e-01, -6.10671346e-01, 1.08606728e+00, -7.33442383e-01, -6.89024637e-01, -9.41944600e-01,
 -9.81761387e-01],
[-1.65125387e+00, 2.72169591e-01, -4.41414004e-01, 1.00609033e+00, 3.72998960e+00, -1.15946912e+00,
  1.98201831e+00, 3.31833647e+00, 9.90688587e-01,
 -9.81761387e-01],
[ 9.32310211e-01, 3.90853379e+00, 5.07789289e+00,
 -2.05395967e+00, -1.08230854e+00, 7.17658968e-01,
 -1.01679480e+00, -1.04570076e+00, -1.10896228e+00,
  1.01857744e+00]])
```

Model Training

```
In [146... from sklearn.linear_model import LinearRegression

In [147... regression=LinearRegression()

In [148... regression fit(x_train,y_train)

Out[148... LinearRegression()
```

Coefficient

Intercept

```
In [150... print(regression.intercept_)
[32.17791411]
```

Precdiction for Test Data

```
In [151...
          reg_pred=regression.predict(x_test)
In [152...
           reg_pred
Out[152... array([[31.35728286],
                 [33.48448971],
                 [33.68885621],
                 [32.00434093],
                 [32.90791395],
                 [35.12184072],
                 [32.88392257],
                 [34.41877632],
                 [31.94627835],
                 [32.98721461],
                 [33.30675698],
                 [27.36975802],
                 [35.07784211],
                 [29.24028529],
                 [31.85823402],
                 [32.41802576],
                 [34.37535576],
                 [28.09756027],
                 [36.26505018],
                 [34.01992072],
                 [32.55507349],
                 [34.37404142],
                 [32.95376928],
                 [33.26908507],
                 [36.11652279],
                 [29.43281151],
                 [31.64047533],
                 [32.38849979],
                 [27.56606986],
                 [32.22728534],
                 [25.99441341],
                 [27.23155419],
                 [34.06867619],
                 [31.64327002],
                 [32.76692249],
                 [31.05185077],
                 [29.01675218],
                 [33.06175783],
                 [27.69372403],
                 [35.63560078],
                 [32.8693709],
                 [33.63210892],
                 [34.17783984],
                 [31.5433198],
                 [36.08261913],
                 [33.41675348],
                 [24.66437356],
                 [35.74882134],
                 [33.62798919],
                 [29.69949092],
                 [31.06668332],
                 [32.38004487],
                 [36.25233174],
                 [32.16965552],
                 [30.17098904],
                 [30.08639562],
                 [32.50310102],
                 [36.07831078],
                 [31.40637145],
                 [33.45272801],
                 [32.10289562],
                 [32.80364988],
                 [30.70110717],
                 [24.64737332],
                 [31.51727723],
                 [36.35580039],
                 [29.95761627],
                 [29.70472774],
                 [35.38938777],
                 [34.07489424],
                 [27.95824128],
                 [32.55161796],
                 [31.90597354],
                 [31.60138869],
                 [30.05790994],
                 [31.14615789],
                 [32.6846203],
                 [36.0426106],
                 [31.28209795],
                 [36.91863039],
```

[25.08477191]])

```
import seaborn as sns
sns.distplot(reg_pred-y_test)
```

Out[154... <AxesSubplot:ylabel='Density'>

Assumption of Linear Regression

```
plt.scatter(y_test,reg_pred)
plt.xlabel("Test truth data")
plt.ylabel('Test predicted data')
```

Text(0, 0.5, 'Test predicted data')

Residuals

```
In [156... residual=y_test-reg_pred
```

- ----

	Temperature
162	2.642717
60	1.515510
61	2.311144
63	2.995659
69	2.092086
169	0.315380
232	-7.042611
144	1.717902
208	-3.918630
	-3.084772

```
In [158... sns.displot(residual,kind='kde')
```

Out[158... <seaborn.axisgrid.FacetGrid at 0x1c39909b550>

Scatterplot with prediction and residual

```
In [159... plt.scatter(reg_pred,residual)
```

Out[159... <matplotlib.collections.PathCollection at 0x1c39909a1c0>

Performance Metrics

```
from sklearn.metrics import mean_squared_error
from sklearn.metrics import mean_absolute_error
print(mean_squared_error(y_test,reg_pred))
print(mean_absolute_error(y_test,reg_pred))
print(np.sqrt(mean_squared_error(y_test,reg_pred)))

7.504766973062432
2.2354993752323624
2.739482975501478
```

R square and adjusted R square

```
from sklearn.metrics import r2_score
score=r2_score(y_test,reg_pred)
print(score)

0.5037314185907535
```

Adjusted R square

```
In [162... 1-(1-score)*(len(y_test)-1)/(len(y_test)-x_test.shape[1]-1)

Out[162... 0.43283590696086116
```

Ridege Regression Algorithm

```
In [163...
          from sklearn.linear_model import Ridge
In [164...
           ridge=Ridge()
In [165...
           ridge
         Ridge()
Out[165...
In [166...
           ridge.fit(x_train,y_train)
Out[166...
In [167...
          ## Coefficient
          print(ridge.coef_)
          [[-1.25483718 -0.53296814 -0.20702885 0.72895886 -0.60290935 -0.32591751
             0.24045074 0.93900788 0.21118476 -0.1916003 ]]
```

```
In [168... ## Intercept
```

```
[32.17791411]
In [169...
          ridge_pred=ridge.predict(x_test)
In [170...
          ridge_pred
Out[170... array([[31.35162743],
                 [33.40986612],
                 [33.72771064],
                 [32.07338971],
                 [32.90931259],
                 [35.0319983],
                 [32.79015818],
                 [34.17178646],
                 [31.97942736],
                 [33.01801414],
                 [33.36867288],
                 [27.41069432],
                 [35.06294721],
                 [29.21943029],
                 [31.86814167],
                 [32.4415311],
                 [34.32301905],
                 [28.10883976],
                 [36.28106232],
                 [34.1156651],
                 [32.5477257],
                 [34.12721932],
                 [32.95790766],
                 [33.29642758],
                 [36.10629748],
                 [29.45172695],
                 [31.55350828],
                 [32.44406184],
                 [27.6048532],
                 [32.16940933],
                 [26.0626233],
                 [27.15902083],
                 [34.09770279],
                 [31.64258349],
                 [32.74172122],
                 [31.00145744],
                 [29.02397313],
                 [33.02208479],
                 [27.70413671],
                 [35.54562191],
                 [32.78559985],
                 [33.71213911],
                 [34.19881056],
                 [31.48850848],
                 [36.06072934],
                 [33.43404309],
                 [24.81171141],
                 [35.7280546],
                 [33.67748084],
                 [29.73906751],
                 [31.08558962],
                 [32.40946204],
                 [36.27999474],
                 [32.1989361],
                 [30.22249483],
                 [30.08807274],
                 [32.52930384],
                 [36.1226345],
                 [31.43466997],
                 [33.42545678],
                 [32.07007099],
                 [32.74547017],
                 [30.74281953],
                 [24.73332347],
                 [31.51966611],
                 [36.32138028],
                 [30.00101555],
                 [29.64684244],
                 [35.40167579],
                 [34.05569841],
                 [28.00372035],
                 [32.50468393],
                 [31.96302548],
                 [31.53812647],
                 [30.11946542],
                 [31.09359251],
```

print(ridge.intercept_)

```
[32.75250885],
[35.95392448],
[31.27455865],
[37.0485867],
[25.1392405]])
```

```
import seaborn as sns
sns.displot(ridge_pred-y_test,kind='kde')
```

Out[171... <seaborn.axisgrid.FacetGrid at 0x1c38911c880>

Assumption on Ridge Regression

```
plt.scatter(y_test,reg_pred)
plt.xlabel("Test truth data")
plt.ylabel('Test predicted data')
```

Out[172_ Text(0, 0.5, 'Test predicted data')


```
In [173... # Residual
    residual=y_test-ridge_pred
```

In [174… residual

Out[174		Temperature
	162	2.648373
	60	1.590134
	61	2.272289
	63	2.926610
	69	2.090687
	169	0.247491

232

144

208 105

81 rows × 1 columns

-6.953924

1.725441

-4.048587

-3.139240

In [175... sns.displot(residual,kind='kde')

<seaborn.axisgrid.FacetGrid at 0x1c39956b520>

Scatter plot with residual and prediction

In [176... plt.scatter(ridge_pred,residual)

76_ <matplotlib.collections.PathCollection at 0x1c39c15e370>


```
-8 -
26 28 30 32 34 36
```

Performance Matrics

```
from sklearn.metrics import mean_squared_error
from sklearn.metrics import mean_absolute_error
print(mean_squared_error(y_test,ridge_pred))
print(mean_absolute_error(y_test,ridge_pred))
print(np.sqrt(mean_squared_error(y_test,ridge_pred)))

7.444528719288363
2.2355295943587614
2.728466367630058
```

R square

```
from sklearn.metrics import r2_score
ridge_score=r2_score(y_test,ridge_pred)
print(ridge_score)

0.5077148004671435
```

Adjusted R square

Lasso Regression

```
In [180. from sklearn.linear_model import Lasso

In [181. lasso=Lasso()

In [182. lasso

Out[182. Lasso()

In [183. lasso.fit(x_train,y_train)

Out[183. Lasso()
```

Coefficients and Intercepts

```
In [185... print(lasso.intercept_)
```

```
In [186... ## Prediction for test data
    lasso_pred = lasso.predict(x_test)
```

```
33.15976154, 30.29861247, 34.17172792, 30.95174825, 33.0931383, 32.31497272, 32.93691477, 29.42489766, 34.46059856, 33.50695377, 32.46152593, 33.02899752, 33.30888217, 32.80645043, 34.5498142, 30.18680443, 32.38908351, 32.89121556, 29.47641605, 31.8492542, 29.50217524, 28.6091198, 33.21226395, 32.70054654, 32.64380834, 31.80937418, 30.23515603, 32.53110125, 29.22810977, 33.62676377, 32.55104126, 33.23190428, 33.93112391, 31.84411936, 34.06445535, 33.20742879, 29.78847846, 33.80519505, 33.21966653, 30.53913152, 31.62769114, 32.373594, 33.92016988, 32.24993288, 31.51301599, 31.26381066, 32.303719, 34.28571873, 31.84095256, 33.47507571, 32.27184094, 32.20868418, 31.42230192, 29.36272493, 32.24706577, 34.47767146, 31.13749714, 31.41648274, 33.33947653, 33.04221928, 30.62774778, 32.69215994, 32.20868418, 31.45674741, 31.17557904, 31.67565808, 32.4164261, 33.56882682, 32.11728577, 34.26736212, 29.66708507])
```

Performance Matrics

[32.17791411]

```
from sklearn.metrics import mean_squared_error
from sklearn.metrics import mean_absolute_error
print(mean_squared_error(y_test,lasso_pred))
print(mean_absolute_error(y_test,lasso_pred))
print(np.sqrt(mean_squared_error(y_test,lasso_pred)))

9.10609532182792
2.4978660766652734
```

R square

3.0176307464346794

```
from sklearn.metrics import r2_score
lasso_score=r2_score(y_test,lasso_pred)
print(lasso_score)
```

0.39784019626969913

Adjusted R square

```
In [190... 1-(1-lasso_score)*(len(y_test)-1)/(len(y_test)-x_test.shape[1]-1)
Out[190... 0.31181736716537045
```

Elastic - Net regression

```
In [191... from sklearn.linear_model import ElasticNet

In [192... elastic=ElasticNet()

In [193... elastic
```

```
In [194...
             elastic.fit(x_train,y_train)
Out[194... ElasticNet()
           Coefficients and Intercepts
In [195...
             print(elastic.coef_)
             \begin{bmatrix} -0.69396083 & -0.10315403 & -0.01507374 & 0.6926462 & 0.10752205 & -0. \end{bmatrix} 
              0.28392506 0.07544656 0.05920494 -0.
In [197...
             print(elastic.intercept_)
            [32.17791411]
In [198...
             ## Prediction for test data
             elastic pred = elastic.predict(x test)
In [199...
             elastic pred
Out[199_ array([31.93076461, 32.89925279, 32.68965549, 31.74550697, 32.98836724,
                     33.91299333, 33.41776043, 32.72078781, 31.98790062, 32.72490467,
                     33.30044153, 29.87165926, 34.12217082, 30.65936304, 32.72255437,
                     32.28333638,\ 32.84852051,\ 29.39040946,\ 35.0786389\ ,\ 33.86050655,
                     32.42586731, 33.31820617, 33.43805315, 32.91463826, 35.09348452, 29.99111145, 32.16696212, 32.5466324 , 29.35144729, 31.97557447,
                     29.14216505, 28.60375228, 33.27376701, 32.28678221, 32.70561446,
                     31.30843328, 30.01197805, 32.32347658, 29.15902087, 33.91042464, 32.74766721, 33.47903767, 34.12940549, 31.56461381, 34.44958031,
                     33.30036678, 29.35558024, 33.99794233, 33.3293338 , 30.2978916 ,
                     31.4241864 , 32.36311525, 34.61701506, 32.03023331, 31.41948172, 30.89419347, 32.508051 , 34.7691147 , 31.73370163, 33.3687946 ,
                    32.1509131 , 32.34603101, 31.21296836, 28.90195873, 31.96458545, 34.79046967, 30.91855019, 31.0841594 , 33.82121587, 32.95120309, 30.20921418, 32.14232146, 32.22575701, 31.16525171, 30.98976689,
                     31.86034438,\ 32.57697932,\ 33.81340658,\ 31.74661525,\ 35.27207415,
                     29.07891997])
           Assumption of Elastic Net Regression
In [200...
             plt.scatter(y_test,elastic_pred)
             plt.xlabel("Test truth data")
             plt.ylabel('Test predicted data')
           Text(0, 0.5, 'Test predicted data')
Out[200...
              33
              32
            Est
              31
```

Out[193... ElasticNet()

Performance Matrix

```
from sklearn.metrics import mean_squared_error
from sklearn.metrics import mean_absolute_error
print(mean_squared_error(y_test,elastic_pred))
print(mean_absolute_error(y_test,elastic_pred))
print(np.sqrt(mean_squared_error(y_test,elastic_pred)))
```

- 8.34600759092681
- 2.3987645425349116
- 2.888945757698959

R square

```
from sklearn.metrics import r2_score
elastic_score=r2_score(y_test,elastic_pred)
print(elastic_score)

0.4481026043251144
```

Adjusted R square

```
In [204... 1-(1-elastic_score)*(len(y_test)-1)/(len(y_test)-x_test.shape[1]-1)
Out[204... 0.36926011922870217
```

Loading [MathJax]/extensions/Safe.js