Epidemische Informationsausbreitung II Algorithmen für verteilte Systeme

Sebastian Forster

Universität Salzburg

Dieses Werk ist unter einer Creative Commons Namensnennung 4.0 International Lizenz lizenziert.

• Netzwerkstruktur: vollständiger Graph mit n Knoten

- Netzwerkstruktur: vollständiger Graph mit *n* Knoten
- Kommunikation findet in synchronen Runden statt
- In jeder Runde ruft jeder Knoten einen uniform zufällig gewählten Knoten an

Der Einfachheit halber: Knoten können auch sich selbst anrufen

- Netzwerkstruktur: vollständiger Graph mit n Knoten
- Kommunikation findet in synchronen Runden statt
- In jeder Runde ruft jeder Knoten einen uniform zufällig gewählten Knoten an
 - Der Einfachheit halber: Knoten können auch sich selbst anrufen
- Drei Kommunikationsmodelle:
 - Push: Der Anrufer informiert den Angerufenen

- Netzwerkstruktur: vollständiger Graph mit *n* Knoten
- Kommunikation findet in synchronen Runden statt
- In jeder Runde ruft jeder Knoten einen uniform zufällig gewählten Knoten an
 - Der Einfachheit halber: Knoten können auch sich selbst anrufen
- Drei Kommunikationsmodelle:
 - **1** Push: Der Anrufer informiert den Angerufenen
 - Pull: Der Angerufene informiert den Anrufer

- Netzwerkstruktur: vollständiger Graph mit *n* Knoten
- Kommunikation findet in synchronen Runden statt
- In jeder Runde ruft jeder Knoten einen uniform zufällig gewählten Knoten an
 - Der Einfachheit halber: Knoten können auch sich selbst anrufen
- Drei Kommunikationsmodelle:
 - **1 Push:** Der Anrufer informiert den Angerufenen
 - Pull: Der Angerufene informiert den Anrufer
 - Push & Pull: Kombination von Push und Pull

Theorem ([Frieze/Grimmett '85])

Ausgehend von einem infizierten Knoten, sind um Push-Modell mit hoher Wahrscheinlichkeit nach $O(\log n)$ Runden alle Knoten infiziert.

Theorem ([Frieze/Grimmett '85])

Ausgehend von einem infizierten Knoten, sind um Push-Modell mit hoher Wahrscheinlichkeit nach $O(\log n)$ Runden alle Knoten infiziert.

• Ähnliche Analyse für $O(\log n)$ Runden im Pull-Modell

Theorem ([Frieze/Grimmett '85])

Ausgehend von einem infizierten Knoten, sind um Push-Modell mit hoher Wahrscheinlichkeit nach $O(\log n)$ Runden alle Knoten infiziert.

- Ähnliche Analyse für $O(\log n)$ Runden im Pull-Modell
- Pro Anruf eines infizierten Knotens wird eine Nachricht gesendet Unabhängig davon ob damit eine neue Infektion stattfindet

Theorem ([Frieze/Grimmett '85])

Ausgehend von einem infizierten Knoten, sind um Push-Modell mit hoher Wahrscheinlichkeit nach $O(\log n)$ Runden alle Knoten infiziert.

- Ähnliche Analyse für $O(\log n)$ Runden im Pull-Modell
- Pro Anruf eines infizierten Knotens wird eine Nachricht gesendet Unabhängig davon ob damit eine neue Infektion stattfindet
- Triviale Nachrichtenkomplexität $O(n \log n)$

Theorem ([Frieze/Grimmett '85])

Ausgehend von einem infizierten Knoten, sind um Push-Modell mit hoher Wahrscheinlichkeit nach $O(\log n)$ Runden alle Knoten infiziert.

- Ähnliche Analyse für $O(\log n)$ Runden im Pull-Modell
- Pro Anruf eines infizierten Knotens wird eine Nachricht gesendet Unabhängig davon ob damit eine neue Infektion stattfindet
- Triviale Nachrichtenkomplexität $O(n \log n)$

Frage: Wie kann die Nachrichtenkomplexität reduziert werden?

Theorem ([Frieze/Grimmett '85])

Ausgehend von einem infizierten Knoten, sind um Push-Modell mit hoher Wahrscheinlichkeit nach $O(\log n)$ Runden alle Knoten infiziert.

- Ähnliche Analyse für $O(\log n)$ Runden im Pull-Modell
- Pro Anruf eines infizierten Knotens wird eine Nachricht gesendet Unabhängig davon ob damit eine neue Infektion stattfindet
- Triviale Nachrichtenkomplexität $O(n \log n)$

Frage: Wie kann die Nachrichtenkomplexität reduziert werden?

Theorem ([Karp et al. '00])

Ausgehend von einem infizierten Knoten, sind um Push&Pull-Modell mit hoher Wahrscheinlichkeit nach $O(\log n)$ Runden mit insgesamt $O(n \log \log n)$ gesendeten Nachrichten alle Knoten infiziert.

Einteilung in drei Phasen:

• Wachstum: $I(t) \le \frac{n}{\ln n}$ Dauer: $O(\log n)$ Runden #Nachrichten: O(n)

Einteilung in drei Phasen:

- Wachstum: $I(t) \le \frac{n}{\ln n}$ Dauer: $O(\log n)$ Runden #Nachrichten: O(n)
- **Schrumpfung:** $n \frac{n}{\ln n} > G(t) \ge \sqrt{3cn(\ln n)^5}$ Dauer: $O(\log \log n)$ Runden #Nachrichten: $O(n \log \log n)$

Einteilung in drei Phasen:

- Wachstum: $I(t) \le \frac{n}{\ln n}$ Dauer: $O(\log n)$ Runden #Nachrichten: O(n)
- **2 Schrumpfung:** $n \frac{n}{\ln n} > G(t) \ge \sqrt{3cn(\ln n)^5}$ Dauer: $O(\log \log n)$ Runden #Nachrichten: $O(n \log \log n)$
- **Schluss:** $G(t) < \sqrt{3cn(\ln n)^5}$ Dauer: O(1) Runden #Nachrichten: O(n)

Einteilung in drei Phasen:

- Wachstum: $I(t) \le \frac{n}{\ln n}$ Dauer: $O(\log n)$ Runden #Nachrichten: O(n)
- **Schrumpfung:** $n \frac{n}{\ln n} > G(t) \ge \sqrt{3cn(\ln n)^5}$ Dauer: $O(\log \log n)$ Runden #Nachrichten: $O(n \log \log n)$
- **Schluss:** $G(t) < \sqrt{3cn(\ln n)^5}$ Dauer: O(1) Runden #Nachrichten: O(n)

In jeder Phase: Garantie mit hoher Wahrscheinlichkeit

Gesamt: $O(\log n)$ Runden und $O(n \log \log n)$ Nachrichten mit hoher Wahrscheinlichkeit

Einteilung in drei Phasen:

- **①** Wachstum: $I(t) \leq \frac{n}{\ln n}$ Dauer: $O(\log n)$ Runden #Nachrichten: O(n)
- **2** Schrumpfung: $n \frac{n}{\ln n} > G(t) \ge \sqrt{3cn(\ln n)^5}$ Dauer: $O(\log \log n)$ Runden #Nachrichten: $O(n \log \log n)$
- **3** Schluss: $G(t) < \sqrt{3cn(\ln n)^5}$ Dauer: O(1) Runden #Nachrichten: O(n)

In jeder Phase: Garantie mit hoher Wahrscheinlichkeit

Gesamt: $O(\log n)$ Runden und $O(n \log \log n)$ Nachrichten mit hoher Wahrscheinlichkeit

Annahme: n ist "groß genug", d.h., größer als eine in der Analyse festgelegte Konstante n_0

Notation für Analyse

- n: Anzahl der Knoten
- \bullet I(t): Anzahl der infizierten Knoten am Beginn von Runde t
- G(t): Anzahl der gesunden Knoten
- $i(t) = \frac{I(t)}{n}$: relativer Anteil der infizierten Knoten
- $g(t) = \frac{G(t)}{n}$: relativer Anteil der gesunden Knoten

Achtung: Zufallsvariablen

Notation für Analyse

- n: Anzahl der Knoten
- \bullet I(t): Anzahl der infizierten Knoten am Beginn von Runde t
- G(t): Anzahl der gesunden Knoten
- $i(t) = \frac{I(t)}{n}$: relativer Anteil der infizierten Knoten
- $g(t) = \frac{G(t)}{n}$: relativer Anteil der gesunden Knoten

Achtung: Zufallsvariablen

Für jede Runde t gilt: i(t) + g(t) = 1

Notation für Analyse

- n: Anzahl der Knoten
- \bullet I(t): Anzahl der infizierten Knoten am Beginn von Runde t
- G(t): Anzahl der gesunden Knoten
- $i(t) = \frac{I(t)}{n}$: relativer Anteil der infizierten Knoten
- $g(t) = \frac{G(t)}{n}$: relativer Anteil der gesunden Knoten

Achtung: Zufallsvariablen

Für jede Runde t gilt: i(t) + g(t) = 1

Ordnung der Knoten im Beweis: Bei der Analyse von Runde t nehmen wir eine beliebige Ordnung der gesunden Knoten an und bezeichen die Knoten mit $1, \ldots, G(t)$

Analyse Push-Modell: Wachstumsphase dauert $t^* = O(\log n)$ Runden

Analyse Push-Modell: Wachstumsphase dauert $t^* = O(\log n)$ Runden (Wir dürfen annehmen, dass $\frac{n}{\ln n} \leq \frac{n}{3}$)

Analyse Push-Modell: Wachstumsphase dauert $t^* = O(\log n)$ Runden (Wir dürfen annehmen, dass $\frac{n}{\ln n} \le \frac{n}{3}$)

Nachrichtenkomplexität:

• Sei M(t) die Anzahl der in Runde t gesendeten Nachrichten

Analyse Push-Modell: Wachstumsphase dauert $t^* = O(\log n)$ Runden (Wir dürfen annehmen, dass $\frac{n}{\ln n} \le \frac{n}{3}$)

- Sei M(t) die Anzahl der in Runde t gesendeten Nachrichten
- Drei Arten relevanter Interaktionen:
 - ightharpoonup A(t): Anzahl infizierter Knoten, die gesunde Knoten anrufen (Push)
 - \blacktriangleright B(t): Anzahl gesunder Knoten, die infizierte Knoten anrufen (Pull)
 - ightharpoonup C(t): Anzahl infizierter Knoten, die infizierte Knoten anrufen (Push&Pull)

Analyse Push-Modell: Wachstumsphase dauert $t^* = O(\log n)$ Runden (Wir dürfen annehmen, dass $\frac{n}{\ln n} \le \frac{n}{3}$)

- Sei M(t) die Anzahl der in Runde t gesendeten Nachrichten
- Drei Arten relevanter Interaktionen:
 - ightharpoonup A(t): Anzahl infizierter Knoten, die gesunde Knoten anrufen (Push)
 - \blacktriangleright B(t): Anzahl gesunder Knoten, die infizierte Knoten anrufen (Pull)
 - ightharpoonup C(t): Anzahl infizierter Knoten, die infizierte Knoten anrufen (Push&Pull)
- Es gilt: $M(t) = A(t) + B(t) + 2C(t) \le 3I(t) + B(t)$

Analyse Push-Modell: Wachstumsphase dauert $t^* = O(\log n)$ Runden (Wir dürfen annehmen, dass $\frac{n}{\ln n} \leq \frac{n}{3}$)

- Sei M(t) die Anzahl der in Runde t gesendeten Nachrichten
- Drei Arten relevanter Interaktionen:
 - ightharpoonup A(t): Anzahl infizierter Knoten, die gesunde Knoten anrufen (Push)
 - \blacktriangleright B(t): Anzahl gesunder Knoten, die infizierte Knoten anrufen (Pull)
 - ightharpoonup C(t): Anzahl infizierter Knoten, die infizierte Knoten anrufen (Push&Pull)
- Es gilt: $M(t) = A(t) + B(t) + 2C(t) \le 3I(t) + B(t)$
- Jeder Knoten kann nur ein Mal infiziert werden: $\sum_{t=1}^{t^*} B(t) \leq n$

Analyse Push-Modell: Wachstumsphase dauert $t^* = O(\log n)$ Runden (Wir dürfen annehmen, dass $\frac{n}{\ln n} \leq \frac{n}{3}$)

- Sei M(t) die Anzahl der in Runde t gesendeten Nachrichten
- Drei Arten relevanter Interaktionen:
 - ightharpoonup A(t): Anzahl infizierter Knoten, die gesunde Knoten anrufen (Push)
 - \blacktriangleright B(t): Anzahl gesunder Knoten, die infizierte Knoten anrufen (Pull)
 - ► *C*(*t*): Anzahl infizierter Knoten, die infizierte Knoten anrufen (Push&Pull)
- Es gilt: $M(t) = A(t) + B(t) + 2C(t) \le 3I(t) + B(t)$
- Jeder Knoten kann nur ein Mal infiziert werden: $\sum_{t=1}^{t^*} B(t) \le n$
- Anzahl der in der Wachstumsphase gesendeten Nachrichten:

$$\sum_{t=1}^{t^*} M(t) \le \sum_{t=1}^{t^*} (3I(t) + B(t))$$

Analyse Push-Modell: Wachstumsphase dauert $t^* = O(\log n)$ Runden (Wir dürfen annehmen, dass $\frac{n}{\ln n} \le \frac{n}{3}$)

- Sei M(t) die Anzahl der in Runde t gesendeten Nachrichten
- Drei Arten relevanter Interaktionen:
 - ightharpoonup A(t): Anzahl infizierter Knoten, die gesunde Knoten anrufen (Push)
 - \blacktriangleright B(t): Anzahl gesunder Knoten, die infizierte Knoten anrufen (Pull)
 - ightharpoonup C(t): Anzahl infizierter Knoten, die infizierte Knoten anrufen (Push&Pull)
- Es gilt: $M(t) = A(t) + B(t) + 2C(t) \le 3I(t) + B(t)$
- Jeder Knoten kann nur ein Mal infiziert werden: $\sum_{t=1}^{t^*} B(t) \leq n$
- Anzahl der in der Wachstumsphase gesendeten Nachrichten:

$$\sum_{t=1}^{t^*} M(t) \le \sum_{t=1}^{t^*} (3I(t) + B(t)) = \sum_{t=1}^{t^*} 3I(t) + \sum_{t=1}^{t^*} B(t)$$

Analyse Push-Modell: Wachstumsphase dauert $t^* = O(\log n)$ Runden (Wir dürfen annehmen, dass $\frac{n}{\ln n} \leq \frac{n}{3}$)

- Sei M(t) die Anzahl der in Runde t gesendeten Nachrichten
- Drei Arten relevanter Interaktionen:
 - ightharpoonup A(t): Anzahl infizierter Knoten, die gesunde Knoten anrufen (Push)
 - \blacktriangleright B(t): Anzahl gesunder Knoten, die infizierte Knoten anrufen (Pull)
 - ► *C*(*t*): Anzahl infizierter Knoten, die infizierte Knoten anrufen (Push&Pull)
- Es gilt: $M(t) = A(t) + B(t) + 2C(t) \le 3I(t) + B(t)$
- Jeder Knoten kann nur ein Mal infiziert werden: $\sum_{t=1}^{t^*} B(t) \le n$
- Anzahl der in der Wachstumsphase gesendeten Nachrichten:

$$\sum_{t=1}^{t^*} M(t) \le \sum_{t=1}^{t^*} (3I(t) + B(t)) = \sum_{t=1}^{t^*} 3I(t) + \sum_{t=1}^{t^*} B(t)$$

$$\le \frac{n}{\ln n} \cdot t^* + n$$

Analyse Push-Modell: Wachstumsphase dauert $t^* = O(\log n)$ Runden (Wir dürfen annehmen, dass $\frac{n}{\ln n} \le \frac{n}{3}$)

- Sei M(t) die Anzahl der in Runde t gesendeten Nachrichten
- Drei Arten relevanter Interaktionen:
 - ightharpoonup A(t): Anzahl infizierter Knoten, die gesunde Knoten anrufen (Push)
 - \blacktriangleright B(t): Anzahl gesunder Knoten, die infizierte Knoten anrufen (Pull)
 - ightharpoonup C(t): Anzahl infizierter Knoten, die infizierte Knoten anrufen (Push&Pull)
- Es gilt: $M(t) = A(t) + B(t) + 2C(t) \le 3I(t) + B(t)$
- Jeder Knoten kann nur ein Mal infiziert werden: $\sum_{t=1}^{t^*} B(t) \le n$
- Anzahl der in der Wachstumsphase gesendeten Nachrichten:

$$\sum_{t=1}^{t^*} M(t) \le \sum_{t=1}^{t^*} (3I(t) + B(t)) = \sum_{t=1}^{t^*} 3I(t) + \sum_{t=1}^{t^*} B(t)$$

$$\le \frac{n}{\ln n} \cdot t^* + n = O(n)$$

Wahrscheinlichkeit, dass gesunder Knoten gesunden Knoten anruft: g(t)

Wahrscheinlichkeit, dass gesunder Knoten gesunden Knoten anruft: g(t) Somit:

$$\text{Ex}[G(t+1)] = G(t) \cdot g(t) = \frac{(G(t))^2}{n}$$

Wahrscheinlichkeit, dass gesunder Knoten gesunden Knoten anruft: g(t) **Somit:**

$$\operatorname{Ex}[G(t+1)] = G(t) \cdot g(t) = \frac{(G(t))^2}{n}$$

$$\operatorname{Ex}[g(t+1)] = \frac{G(t) \cdot g(t)}{n} = (g(t))^2$$

Wahrscheinlichkeit, dass gesunder Knoten gesunden Knoten anruft: g(t) Somit:

$$\operatorname{Ex}[G(t+1)] = G(t) \cdot g(t) = \frac{(G(t))^2}{n}$$

$$\operatorname{Ex}[g(t+1)] = \frac{G(t) \cdot g(t)}{n} = (g(t))^{2}$$

Allgemein:

$$\operatorname{Ex}[g(t+k)] = (g(t))^{(2^k)}$$

Wahrscheinlichkeit, dass gesunder Knoten gesunden Knoten anruft: g(t) **Somit:**

$$\text{Ex}[G(t+1)] = G(t) \cdot g(t) = \frac{(G(t))^2}{n}$$

$$\operatorname{Ex}[g(t+1)] = \frac{G(t) \cdot g(t)}{n} = (g(t))^2$$

Allgemein:

$$\operatorname{Ex}[g(t+k)] = (g(t))^{(2^k)}$$

Beobachtung

Für $G(t) < n - \frac{n}{\ln n}$ (und somit $g(t) < 1 - \frac{1}{\ln n}$) und $k \ge 2 \log_2(\ln n)$ gilt:

$$(g(t))^{(2^k)} < \left(1 - \frac{1}{\ln n}\right)^{(\ln n)^2} \le \frac{1}{e^{\ln n}} = \frac{1}{n}$$

Wahrscheinlichkeit, dass gesunder Knoten gesunden Knoten anruft: g(t) Somit:

$$\text{Ex}[G(t+1)] = G(t) \cdot g(t) = \frac{(G(t))^2}{n}$$

$$\operatorname{Ex}[g(t+1)] = \frac{G(t) \cdot g(t)}{n} = (g(t))^2$$

Allgemein:

$$\operatorname{Ex}[g(t+k)] = (g(t))^{(2^k)}$$

Beobachtung

Für $G(t) < n - \frac{n}{\ln n}$ (und somit $g(t) < 1 - \frac{1}{\ln n}$) und $k \ge 2 \log_2(\ln n)$ gilt:

$$(g(t))^{(2^k)} < \left(1 - \frac{1}{\ln n}\right)^{(\ln n)^2} \le \frac{1}{e^{\ln n}} = \frac{1}{n}$$

Idee: Zeige mit Chernoff Bound, dass quadratisches Schrumpfen mit hoher Wahrscheinlichkeit in jeder Runde der Schrumpfungsphase auftritt

$$X_j(t) := egin{cases} 1 & \text{falls gesunder Knoten } j \text{ in Runde } t \text{ gesunden Knoten anruft} \\ 0 & \text{andernfalls} \end{cases}$$

$$X_j(t) := \begin{cases} 1 & \text{falls gesunder Knoten } j \text{ in Runde } t \text{ gesunden Knoten anruft} \\ 0 & \text{andernfalls} \end{cases}$$

•
$$G(t+1) = \sum_{j=1}^{G(t)} X_j(t)$$

$$X_j(t) := \begin{cases} 1 & \text{falls gesunder Knoten } j \text{ in Runde } t \text{ gesunden Knoten anruft} \\ 0 & \text{andernfalls} \end{cases}$$

- $G(t+1) = \sum_{j=1}^{G(t)} X_j(t)$
- $\mu := \operatorname{Ex}[G(t+1)] = \frac{(G(t))^2}{n}$

$$X_j(t) := \begin{cases} 1 & \text{falls gesunder Knoten } j \text{ in Runde } t \text{ gesunden Knoten anruft} \\ 0 & \text{andernfalls} \end{cases}$$

- $G(t+1) = \sum_{j=1}^{G(t)} X_j(t)$
- $\mu := \operatorname{Ex}[G(t+1)] = \frac{(G(t))^2}{n}$
- Setze $\delta = \frac{1}{(\ln n)^2}$

$$X_j(t) := \begin{cases} 1 & \text{falls gesunder Knoten } j \text{ in Runde } t \text{ gesunden Knoten anruft} \\ 0 & \text{andernfalls} \end{cases}$$

- $G(t+1) = \sum_{j=1}^{G(t)} X_j(t)$
- $\mu := \text{Ex}[G(t+1)] = \frac{(G(t))^2}{n}$
- Setze $\delta = \frac{1}{(\ln n)^2}$
- In Schrumpfungsphase: $G(t) \ge \sqrt{3cn(\ln n)^5}$

Zufallsvariable für jeden gesunden Knoten

 $X_j(t) := \begin{cases} 1 & \text{falls gesunder Knoten } j \text{ in Runde } t \text{ gesunden Knoten anruft} \\ 0 & \text{andernfalls} \end{cases}$

- $G(t+1) = \sum_{j=1}^{G(t)} X_j(t)$
- $\mu := \operatorname{Ex}[G(t+1)] = \frac{(G(t))^2}{n}$
- Setze $\delta = \frac{1}{(\ln n)^2}$
- In Schrumpfungsphase: $G(t) \ge \sqrt{3cn(\ln n)^5}$

$$\Pr\left[\sum_{j=1}^{G(t)} X_j(t) > (1+\delta) \cdot \mu\right] \le \frac{1}{e^{\frac{\delta^2}{3} \cdot \mu}}$$

$$X_j(t) := \begin{cases} 1 & \text{falls gesunder Knoten } j \text{ in Runde } t \text{ gesunden Knoten anruft} \\ 0 & \text{andernfalls} \end{cases}$$

- $G(t+1) = \sum_{j=1}^{G(t)} X_j(t)$
- $\mu := \operatorname{Ex}[G(t+1)] = \frac{(G(t))^2}{n}$
- Setze $\delta = \frac{1}{(\ln n)^2}$
- In Schrumpfungsphase: $G(t) \ge \sqrt{3cn(\ln n)^5}$

$$\Pr\left[\sum_{j=1}^{G(t)} X_j(t) > (1+\delta) \cdot \mu\right] \leq \frac{1}{e^{\frac{\delta^2}{3} \cdot \mu}} = \frac{1}{e^{\frac{\delta^2}{3} \cdot \frac{(G(t))^2}{n}}}$$

$$X_j(t) := \begin{cases} 1 & \text{falls gesunder Knoten } j \text{ in Runde } t \text{ gesunden Knoten anruft} \\ 0 & \text{andernfalls} \end{cases}$$

- $G(t+1) = \sum_{j=1}^{G(t)} X_j(t)$
- $\mu := \operatorname{Ex}[G(t+1)] = \frac{(G(t))^2}{n}$
- Setze $\delta = \frac{1}{(\ln n)^2}$
- In Schrumpfungsphase: $G(t) \ge \sqrt{3cn(\ln n)^5}$

$$\Pr\left[\sum_{j=1}^{G(t)} X_j(t) > (1+\delta) \cdot \mu\right] \le \frac{1}{e^{\frac{\delta^2}{3} \cdot \mu}} = \frac{1}{e^{\frac{\delta^2}{3} \cdot \frac{(G(t))^2}{n}}}$$
$$\le \frac{1}{e^{\frac{\delta^2}{3} \cdot \frac{3cn(\ln n)^5}{n}}}$$

Zufallsvariable für jeden gesunden Knoten

 $X_j(t) := \begin{cases} 1 & \text{falls gesunder Knoten } j \text{ in Runde } t \text{ gesunden Knoten anruft} \\ 0 & \text{andernfalls} \end{cases}$

- $G(t+1) = \sum_{j=1}^{G(t)} X_j(t)$
- $\mu := \operatorname{Ex}[G(t+1)] = \frac{(G(t))^2}{n}$
- Setze $\delta = \frac{1}{(\ln n)^2}$
- In Schrumpfungsphase: $G(t) \ge \sqrt{3cn(\ln n)^5}$

$$\Pr\left[\sum_{j=1}^{G(t)} X_j(t) > (1+\delta) \cdot \mu\right] \le \frac{1}{e^{\frac{\delta^2}{3} \cdot \mu}} = \frac{1}{e^{\frac{\delta^2}{3} \cdot \frac{(G(t))^2}{n}}} \\ \le \frac{1}{e^{\frac{\delta^2}{3} \cdot \frac{3cn(\ln n)^5}{n}}} = \frac{1}{e^{c \ln n}} = \frac{1}{n^c}$$

Quadratisches Schrumpfen:

$$G(t+1) \le (1+\delta) \cdot (G(t))^2$$
 bzw. $g(t+1) \le (1+\delta) \cdot (g(t))^2$

mit hoher Wahrscheinlichkeit in jeder Runde der Schrumpfungsphase

Quadratisches Schrumpfen:

$$G(t+1) \le (1+\delta) \cdot (G(t))^2$$
 bzw. $g(t+1) \le (1+\delta) \cdot (g(t))^2$

mit hoher Wahrscheinlichkeit in jeder Runde der Schrumpfungsphase

Allgemein:

$$g(t+k) \le (1+\delta)^{(2^k)-1} \cdot (g(t))^{(2^k)} \le (1+\delta)^{(2^k)} \cdot (g(t))^{(2^k)}$$

mit hoher Wahrscheinlichkeit nach k Runden der Schrumpfungsphase

Quadratisches Schrumpfen:

$$G(t+1) \le (1+\delta) \cdot (G(t))^2$$
 bzw. $g(t+1) \le (1+\delta) \cdot (g(t))^2$

mit hoher Wahrscheinlichkeit in jeder Runde der Schrumpfungsphase

Allgemein:

$$g(t+k) \le (1+\delta)^{(2^k)-1} \cdot (g(t))^{(2^k)} \le (1+\delta)^{(2^k)} \cdot (g(t))^{(2^k)}$$

mit hoher Wahrscheinlichkeit nach k Runden der Schrumpfungsphase

$$\text{Mit } G(t) < n - \tfrac{n}{\ln n} \text{ (also } g(t) < 1 - \tfrac{1}{\ln n} \text{) und } k = \lceil 2 \log_2(\ln n) \rceil = \lceil \log_2 \tfrac{1}{\delta} \rceil \text{:}$$

Quadratisches Schrumpfen:

$$G(t+1) \le (1+\delta) \cdot (G(t))^2$$
 bzw. $g(t+1) \le (1+\delta) \cdot (g(t))^2$

mit hoher Wahrscheinlichkeit in jeder Runde der Schrumpfungsphase

Allgemein:

$$g(t+k) \le (1+\delta)^{(2^k)-1} \cdot (g(t))^{(2^k)} \le (1+\delta)^{(2^k)} \cdot (g(t))^{(2^k)}$$

mit hoher Wahrscheinlichkeit nach k Runden der Schrumpfungsphase

$$\text{Mit } G(t) < n - \tfrac{n}{\ln n} \text{ (also } g(t) < 1 - \tfrac{1}{\ln n} \text{) und } k = \lceil 2 \log_2(\ln n) \rceil = \lceil \log_2 \tfrac{1}{\delta} \rceil \text{:}$$

$$(1+\delta)^{(2^k)}(g(t))^{(2^k)} \le (1+\delta)^{\frac{1}{\delta}\cdot 2}(g(t))^{(2^k)}$$

Quadratisches Schrumpfen:

$$G(t+1) \le (1+\delta) \cdot (G(t))^2$$
 bzw. $g(t+1) \le (1+\delta) \cdot (g(t))^2$

mit hoher Wahrscheinlichkeit in jeder Runde der Schrumpfungsphase

Allgemein:

$$g(t+k) \le (1+\delta)^{(2^k)-1} \cdot (g(t))^{(2^k)} \le (1+\delta)^{(2^k)} \cdot (g(t))^{(2^k)}$$

mit hoher Wahrscheinlichkeit nach k Runden der Schrumpfungsphase

Mit
$$G(t) < n - \frac{n}{\ln n}$$
 (also $g(t) < 1 - \frac{1}{\ln n}$) und $k = \lceil 2 \log_2(\ln n) \rceil = \lceil \log_2 \frac{1}{\delta} \rceil$:
$$(1 + \delta)^{(2^k)} (g(t))^{(2^k)} \le (1 + \delta)^{\frac{1}{\delta} \cdot 2} (g(t))^{(2^k)} < e^2 \cdot \frac{1}{n}$$

Mit Grenzwertdefinition der Eulerschen Zahl: $\left(1+\frac{1}{x}\right)^x \leq e$ für x>0

Quadratisches Schrumpfen:

$$G(t+1) \le (1+\delta) \cdot (G(t))^2$$
 bzw. $g(t+1) \le (1+\delta) \cdot (g(t))^2$

mit hoher Wahrscheinlichkeit in jeder Runde der Schrumpfungsphase

Allgemein:

$$g(t+k) \le (1+\delta)^{(2^k)-1} \cdot (g(t))^{(2^k)} \le (1+\delta)^{(2^k)} \cdot (g(t))^{(2^k)}$$

mit hoher Wahrscheinlichkeit nach k Runden der Schrumpfungsphase

$$\begin{split} \text{Mit } G(t) < n - \frac{n}{\ln n} \text{ (also } g(t) < 1 - \frac{1}{\ln n} \text{) und } k &= \lceil 2 \log_2(\ln n) \rceil = \lceil \log_2 \frac{1}{\delta} \rceil \text{:} \\ (1 + \delta)^{(2^k)} (g(t))^{(2^k)} &\leq (1 + \delta)^{\frac{1}{\delta} \cdot 2} \left(g(t) \right)^{(2^k)} < e^2 \cdot \frac{1}{n} \leq \frac{\sqrt{3cn(\ln n)^5}}{n} \\ \text{(Wir dürfen annehmen, dass } \sqrt{3cn(\ln n)^5} \geq e) \end{split}$$

Mit Grenzwertdefinition der Eulerschen Zahl: $\left(1+\frac{1}{x}\right)^x \leq e$ für x>0

Quadratisches Schrumpfen:

$$G(t+1) \le (1+\delta) \cdot (G(t))^2$$
 bzw. $g(t+1) \le (1+\delta) \cdot (g(t))^2$

mit hoher Wahrscheinlichkeit in jeder Runde der Schrumpfungsphase

Allgemein:

$$g(t+k) \le (1+\delta)^{(2^k)-1} \cdot (g(t))^{(2^k)} \le (1+\delta)^{(2^k)} \cdot (g(t))^{(2^k)}$$

mit hoher Wahrscheinlichkeit nach k Runden der Schrumpfungsphase

$$\begin{split} \text{Mit } G(t) < n - \frac{n}{\ln n} \text{ (also } g(t) < 1 - \frac{1}{\ln n} \text{) und } k &= \lceil 2 \log_2(\ln n) \rceil = \lceil \log_2 \frac{1}{\delta} \rceil \text{:} \\ (1 + \delta)^{(2^k)} (g(t))^{(2^k)} &\leq (1 + \delta)^{\frac{1}{\delta} \cdot 2} \left(g(t) \right)^{(2^k)} < e^2 \cdot \frac{1}{n} \leq \frac{\sqrt{3cn(\ln n)^5}}{n} \\ \text{(Wir dürfen annehmen, dass } \sqrt{3cn(\ln n)^5} \geq e) \end{split}$$

Mit Grenzwertdefinition der Eulerschen Zahl: $\left(1 + \frac{1}{x}\right)^x \le e$ für x > 0

Somit: Mit hoher Wahrscheinlichkeit weniger als $k = O(\log \log n)$ Runden für Schrumpfungsphase

Wahrscheinlichkeit, dass gesunder Knoten gesunden Knoten anruft:

$$\leq p := \frac{\sqrt{3cn(\ln n)^5}}{n}$$

Wahrscheinlichkeit, dass gesunder Knoten gesunden Knoten anruft:

$$\leq p := \frac{\sqrt{3cn(\ln n)^5}}{n}$$

Wahrscheinlichkeit, dass gesunder Knoten in 2c+3 Runden nur gesunde Knoten anruft: $\leq p^{2c+3}$

Wahrscheinlichkeit, dass gesunder Knoten gesunden Knoten anruft:

$$\leq p := \frac{\sqrt{3cn(\ln n)^5}}{n}$$

Wahrscheinlichkeit, dass gesunder Knoten in 2c + 3 Runden nur gesunde Knoten anruft:

 $\leq p^{2c+3}$

Wahrscheinlichkeit, dass in 2c + 3 Runden mindestens einer der gesunden Knoten nur gesunde Knoten anruft (und damit gesund bleibt):

Wahrscheinlichkeit, dass gesunder Knoten gesunden Knoten anruft:

$$\leq p := \frac{\sqrt{3cn(\ln n)^5}}{n}$$

Wahrscheinlichkeit, dass gesunder Knoten in 2c + 3 Runden nur gesunde Knoten anruft:

 $\leq p^{2c+3}$

Wahrscheinlichkeit, dass in 2c+3 Runden mindestens einer der gesunden Knoten nur gesunde Knoten anruft (und damit gesund bleibt):

$$\leq \sqrt{3cn(\ln n)^5}\cdot p^{2c+3}$$

Wahrscheinlichkeit, dass gesunder Knoten gesunden Knoten anruft:

$$\leq p := \frac{\sqrt{3cn(\ln n)^5}}{n}$$

Wahrscheinlichkeit, dass gesunder Knoten in 2c + 3 Runden nur gesunde Knoten anruft:

 $\leq p^{2c+3}$

Wahrscheinlichkeit, dass in 2c+3 Runden mindestens einer der gesunden Knoten nur gesunde Knoten anruft (und damit gesund bleibt):

$$\leq \sqrt{3cn(\ln n)^5} \cdot p^{2c+3} = \frac{\left(\sqrt{3cn(\ln n)^5}\right)^{2c+4}}{n^{2c+3}}$$

Wahrscheinlichkeit, dass gesunder Knoten gesunden Knoten anruft:

$$\leq p := \frac{\sqrt{3cn(\ln n)^5}}{n}$$

Wahrscheinlichkeit, dass gesunder Knoten in 2c + 3 Runden nur gesunde Knoten anruft:

 $\leq p^{2c+3}$

Wahrscheinlichkeit, dass in 2c+3 Runden mindestens einer der gesunden Knoten nur gesunde Knoten anruft (und damit gesund bleibt):

$$\leq \sqrt{3cn(\ln n)^5} \cdot p^{2c+3} = \frac{\left(\sqrt{3cn(\ln n)^5}\right)^{2c+4}}{n^{2c+3}}$$
$$= \frac{(3c(\ln n)^5)^{c+2} \cdot n^{c+2}}{n^{2c+3}}$$

Wahrscheinlichkeit, dass gesunder Knoten gesunden Knoten anruft:

$$\leq p := \frac{\sqrt{3cn(\ln n)^5}}{n}$$

Wahrscheinlichkeit, dass gesunder Knoten in 2c + 3 Runden nur gesunde Knoten anruft:

 $\leq p^{2c+3}$

Wahrscheinlichkeit, dass in 2c+3 Runden mindestens einer der gesunden Knoten nur gesunde Knoten anruft (und damit gesund bleibt):

$$\leq \sqrt{3cn(\ln n)^5} \cdot p^{2c+3} = \frac{\left(\sqrt{3cn(\ln n)^5}\right)^{2c+4}}{n^{2c+3}}$$

$$= \frac{(3c(\ln n)^5)^{c+2} \cdot n^{c+2}}{n^{2c+3}} = \frac{(3c(\ln n)^5)^{c+2}}{n^c}$$

Wahrscheinlichkeit, dass gesunder Knoten gesunden Knoten anruft:

$$\leq p := \frac{\sqrt{3cn(\ln n)^5}}{n}$$

Wahrscheinlichkeit, dass gesunder Knoten in 2c + 3 Runden nur gesunde Knoten anruft:

 $\leq p^{2c+3}$

Wahrscheinlichkeit, dass in 2c+3 Runden mindestens einer der gesunden Knoten nur gesunde Knoten anruft (und damit gesund bleibt):

(Union Bound)

$$\leq \sqrt{3cn(\ln n)^5} \cdot p^{2c+3} = \frac{\left(\sqrt{3cn(\ln n)^5}\right)^{2c+4}}{n^{2c+3}}$$

$$= \frac{(3c(\ln n)^5)^{c+2} \cdot n^{c+2}}{n^{2c+3}} = \frac{(3c(\ln n)^5)^{c+2}}{n^c} \leq \frac{1}{n^c}$$

(Wir dürfen annehmen, dass $n \ge (3c(\ln n)^5)^{c+2}$)

Zusammenfassung: Push & Pull

Einteilung in drei Phasen:

- Wachstum: $I(t) \le \frac{n}{\ln n}$ Dauer: $O(\log n)$ Runden #Nachrichten: O(n)
- **Schrumpfung:** $n \frac{n}{\ln n} > G(t) \ge \sqrt{3cn(\ln n)^5}$ Dauer: $O(\log \log n)$ Runden #Nachrichten: $O(n \log \log n)$
- **Schluss:** $G(t) < \sqrt{3cn(\ln n)^5}$ Dauer: O(1) Runden #Nachrichten: O(n)

In jeder Phase: Garantie mit hoher Wahrscheinlichkeit

Gesamt: $O(\log n)$ Runden und $O(n \log \log n)$ Nachrichten mit hoher Wahrscheinlichkeit

Techniken

- Standard-Tools:
 - Union Bound
 - Chernoff Bound
 - Binomialverteilung
 - Abschätzung durch Gegenereignis
 - $(1 \frac{1}{x})^x \le \frac{1}{e}$ $(1 + \frac{1}{x})^x \le e$

Techniken

- Standard-Tools:
 - Union Bound
 - Chernoff Bound
 - Binomialverteilung
 - Abschätzung durch Gegenereignis

 - $(1 \frac{1}{x})^x \le \frac{1}{e}$ $(1 + \frac{1}{x})^x \le e$
- Chernoff-Bound benötigt untere Schranke an Erwartungswert
 - → Spezialfall zur Einhaltung dieser Schranke muss abgedeckt werden

Techniken

- Standard-Tools:
 - Union Bound
 - Chernoff Bound
 - Binomialverteilung
 - Abschätzung durch Gegenereignis

 - $(1 \frac{1}{x})^x \le \frac{1}{e}$ $(1 + \frac{1}{x})^x \le e$
- Chernoff-Bound benötigt untere Schranke an Erwartungswert → Spezialfall zur Einhaltung dieser Schranke muss abgedeckt werden
- Analyse "kippt" sobald gewisser Anteil an Knoten infiziert wurde, sowohl bei Push also auch bei Pull

Quellen

Der Inhalt dieser Vorlesungseinheit basiert zum Teil auf Vorlesungseinheiten von Robert Elsässer und Christian Schindelhauer.

Literatur:

 Richard M. Karp, Christian Schindelhauer, Scott Shenker, Berthold Vöcking. "Randomized Rumor Spreading". In: Proc. of the Symposium on Foundations of Computer Science (FOCS). 2000, S. 565–574