Funkcje wykładnicza i logarytmiczna

Przypomnienie: Jeślia>0i $x=\frac{p}{q}\in\mathbb{Q},$ gdzie $p,q\in\mathbb{N},$ to

$$a^x = (\sqrt[q]{a})^p$$
, oraz $a^{-x} = \frac{1}{a^x}$.

Lemat o ciągach szybko zbieżnych do 0. Jeżeli $(a_n)_n$ jest ciągiem liczb rzeczywistych takim, że $na_n \to 0$, to

$$\lim_{n\to\infty} (1+a_n)^n = 1.$$

Tw. 1. (istnienie i własności funkcji wykładniczej). Dla każdego $x \in \mathbb{R}$ ciąg

$$a_n(x) = \left(1 + \frac{x}{n}\right)^n, \quad n \in \mathbb{N}$$

jest zbieżny do granicy $g(x) \in \mathbb{R}$, którą zapisujemy $\exp x$.

Funkcję exp : $\mathbb{R} \to \mathbb{R}$ nazywamy funkcją wykładniczą lub eksponentą. Ma ona następujące własności:

- (i) $\exp(x) > 0$ dla każdego $x \in \mathbb{R}$ oraz $\exp(x) \ge 1$ dla $x \ge 0$ i $\exp(x) \le 1$ dla $x \le 0$;
- (ii) $\exp(x+y) = \exp(x) \exp(y)$ dla dowolnych $x, y \in \mathbb{R}$;
- (iii) jeżeli $x \in \mathbb{Q}$, to $\exp x = e^x$;
- (iv) $\exp x \ge 1 + x$ dla każdego $x \in \mathbb{R}$ i $\exp x \le \frac{1}{1-x}$ dla x < 1;
- (v) funkcja exp jest ściśle rosnąca; jeśli $x_n \to +\infty$ to $\exp x_n \to +\infty$ i $\exp(-x_n) \to 0$.

Ze względu na punkty (ii) i (iii) ma sens zapis $e^x = \exp x$ dla dowolnego $x \in \mathbb{R}$.

Tw. 2. Obrazem funkcji exp jest cała półprosta $(0, +\infty)$. Zatem exp : $\mathbb{R} \to (0, +\infty)$ jest bijekcją.

Definicja. Logarytm naturalny liczby dodatniej y>0 jest to jedyna liczba $x\in\mathbb{R}$ taka, że $\exp(x)=y$. Piszemy wówczas

$$ln y = x.$$

Stw. 3. Dla każdego $x \in \mathbb{R}$ zachodzi $\ln(\exp x) = x$; dla każdego x > 0 zachodzi $\exp(\ln x) = x$, czyli $\ln: (0, +\infty) \to \mathbb{R}$ jest funkcją odwrotną do exp.

Stw. 4. (Własności logarytmu naturalnego)

- (i) Funkcja $\ln x$ jest rosnąca;
- (ii) $\ln(xy) = \ln x + \ln y$ dla dowolnych x, y > 0 i $\ln\left(\frac{1}{x}\right) = -\ln x$;

- (iii) dla każdego x > 0 spełnione są nierówności $1 \frac{1}{x} \le \ln x \le x 1$;
- (iv) jeżeli $t_n > 1$ dla $n \in \mathbb{N}$ i $t_n \to 0$, to $\lim_{n \to \infty} \ln(1 + t_n) = 0 = \ln 1$;
- (v) jeżeli $x_n > 0$ dla $n \in \mathbb{N}$ i $x_n \to x > 0$, to $\lim_{n \to \infty} \ln x_n = \ln x$;
- (vi) jeżli $x_n > 0$ i $x_n \to +\infty$, to $\ln x_n \to +\infty$;
- (vii) jeżli $x_n > 0$ i $x_n \to 0$, to $\ln x_n \to -\infty$.
 - 1. Wykaż, że jeśli $(x_n)_n$ jest ciągiem liczb rzeczywistych takim, że $\lim_{n\to\infty} x_n = x \in \mathbb{R}$, to $\lim_{n\to\infty} \exp x_n = \exp x$.
- **2.** Niech $x \in \mathbb{R}$ i $(t_n)_n$ jest ciągiem liczb rzeczywistych różnych od zera i zbieżnym do zera. Wykaż, że $\lim_{n \to \infty} \frac{\exp(x + t_n) \exp x}{t_n} = \exp x$.
- **3.** Udowodnij, że $\exp x = \lim_{n \to \infty} \sum_{k=0}^{n} \frac{x^k}{k!}$ dla każdego $x \in \mathbb{R}$.
- **4.** Wykaż, że dla każdego $x \in \mathbb{R}$ zachodzi nierówność $|e^x 1 x| \leq |x|^2 \cdot e^{|x|}$.
- **5.** Niech $q \in (0,1), x, y \in \mathbb{R}$ i $x \neq y$. Udowodnij nierówność

$$(1-q)\exp x + q\exp y > \exp((1-q)x + qy).$$

- **6.** Niech a > 0 i $x \in \mathbb{Q}$. Udowodnij, że $a^x = \exp(x \cdot \ln a)$.
- 7. Niech a > 0. Oblicz granicę $\lim_{n \to \infty} n \cdot (\sqrt[n]{a} 1)$.
- **8.** Niech $x_n \to x \in \mathbb{R}$. Udowodnij, że $\lim_{n \to \infty} \left(1 + \frac{x_n}{n}\right)^n = e^x$.
- **9.** Niech $t_n \to 0$ i x > 0. Udowodnij, że $\lim_{n \to \infty} \frac{\ln(x + t_n) \ln x}{t_n} = \frac{1}{x}$.
- **10.** Udowodnij, że ciąg $a_n = 1 + \frac{1}{2} + \ldots + \frac{1}{n} \ln n$ jest zbieżny.
- 11. Oblicz granice

(a)
$$\lim_{n \to \infty} \left(\frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{2n} \right)$$
, (b) $\lim_{n \to \infty} \sum_{k=1}^{n} \frac{(-1)^{k+1}}{k}$.

- **12.** Niech $a_1, a_2, \ldots, a_m > 0$. Oblicz granicę $\lim_{n \to \infty} \left(\frac{\sqrt[n]{a_1} + \sqrt[n]{a_2} + \ldots + \sqrt[n]{a_m}}{m} \right)^n$.
- 13. Wykaż, że dla dowolnych liczb rzeczywistych x_1, x_2, \dots, x_n prawdziwa jest nierówność

$$\frac{\exp x_1 + \exp x_2 + \ldots + \exp x_n}{n} \geqslant \exp\left(\frac{x_1 + x_2 + \ldots + x_n}{n}\right).$$

Funkcje wykładnicza i logarytmiczna II

Definicja (Potega o wykładniku rzeczywistym). Niech a > 0. Z zadania 6 zestawu 4a.1 wiemy, że jeśli $x \in \mathbb{Q}$, to $a^x = \exp(x \ln a)$. Ostatnia równość ma sens dla dowolnego $x \in \mathbb{R}$, wiec definiujemy potegę liczby a z wykładnikiem $x \in \mathbb{R}$ wzorem

$$a^x = \exp(x \ln a) = e^{x \ln a}.$$

Funkcje $f: \mathbb{R} \to (0, +\infty)$ dana wzorem $f(x) = a^x$ nazywamy funkcja wykładniczą o podstawie a.

Tw. 1. Jeżeli a, b > 0 i $x, y \in \mathbb{R}$ to

(i)
$$a^{x+y} = a^x \cdot a^y$$
 i $a^{-x} = \frac{1}{a^x} = \left(\frac{1}{a}\right)^x$ (ii) $a^{xy} = (a^x)^y$, (iii) $a^x \cdot b^x = (ab)^x$,

Tw. 2. Obrazem funkcji wykładniczej o podstawie $a \neq 1$ jest zbiór $(0, +\infty)$. Ponadto

- Jeżeli a > 1 to funkcja $x \to a^x$ jest ściśle rosnąca Jeśli $x_n \to +\infty$, to $a^{x_n} \to +\infty$ i $a^{-x_n} \to 0$.
- \bullet Jeżeli a<1to funkcja $x\to a^x$ jest ściśle malejąca Jeśli $x_n\to +\infty,$ to $a^{x_n}\to 0$ i $a^{-x_n} \to +\infty$.

Definicja (logarytm). Niech a>0 i $a\neq 1$. Wówczas funkcja $a^x:\mathbb{R}\to (0,+\infty)$ jest bijekcją, ma więc funkcję odwrotną. Logarytmem o podstawie a z liczby y > 0nazywamy jedyną liczbę rzeczywistą x taką, że $a^x = y$. Piszemy wówczas

$$\log_a y = x.$$

Logarytm o podstawie a = 10 nazywamy logarytmem dziesiętnym i zapisujemy $\log y = \log_{10} y$. Oczywiście $\ln y = \log_e y$.

Tw. 3. Jeżeli a > 0 i $a \neq 1$, to

- (i) $\log_a 1 = 0$ i $\log_a a = 1$;
- (ii) $\log_a(xy) = \log_a x + \log_a y \text{ dla } x, y > 0$;
- (iii) $\log_a(x^y) = y \cdot \log_a x \text{ dla } x > 0 \text{ i } y \in \mathbb{R}.$

Tw. 4. Funkcja $x \to \log_a x$, gdzie $x \in (0, +\infty)$ jest rosnąca dla a > 1 i malejąca dla a < 1, a jej obrazem jest cały zbiór liczb rzeczywistych.

Tw. 5. (Zmiana podstawy logarytmu) Niech $a, b > 0, a, b \neq 1, x > 0$. Wówczas

$$\log_a x = \frac{\log_b x}{\log_b a}.$$

1. Czy liczba niewymierna podniesiona do potegi niewymiernej może dać liczbe wymierna?

2. Wykaż, że dla $a_1, a_2, ..., a_k > 0, a_i \neq 1$

$$\log_{a_1} a_2 \cdot \log_{a_2} a_3 \cdot \ldots \cdot \log_{a_{k-1}} a_k \cdot \log_{a_k} a_1 = 1.$$

3. Wykaż, że dla a, b > 0, $a \neq 1$, oraz $p \neq 0$

$$\log_{a^p} b = \frac{1}{p} \log_a b.$$

4. Uprość wyrażenia

(a) $\log_{3\sqrt{3}} 27$

(f) $\log_{\sqrt{2}} 27 \cdot \log_9 16$

- (b) $2^{\log_3 5} 5^{\log_3 2}$
- (c) $(\sqrt{2})^{\log_2 9}$

(g) $\log_{16} \sqrt{5} \cdot \log_{25} \sqrt[3]{7} \cdot \log_{\pm} 32$

- (d) $(\sqrt[3]{9})^{\frac{1}{5\log_5 3}}$
- (e) $\log 5 \cdot \log 20 + (\log 2)^2$

(h) $\frac{\log_2 24}{\log_{10} 2} - \frac{\log_2 192}{\log_{12} 2}$

5. Dla jakich par liczb naturalnych m, n, gdzie m > 1, liczba $\log_m n$ jest wymierna?

6. Znajdź granice $(a > 0 \text{ i } a \neq 1)$

- (a) $\lim_{n \to \infty} (\log_a(n+1) \log_a n)$,
- (d) $\lim_{n \to \infty} \sqrt[n]{\log_a n}$,

(b) $\lim_{n \to \infty} \frac{\log_a n}{n^t}$, t > 0,

(e) $\lim_{n \to \infty} n^{\frac{1}{\log_a n}}$,

(c) $\lim_{n\to\infty} \log_n x, x>0,$

(f) $\lim_{n\to\infty} \log_n(n+1)$.

7. Wykaż, że jeśli 0 < a < 1 < b, to

$$\log_a b + \frac{1}{4} \log_b a + 1 \leqslant 0.$$

8. Wykaż, że dla x, y > 0

$$\frac{1 - x^{-y}}{y} \leqslant \ln x \leqslant \frac{x^y - 1}{y}.$$

- **9.** Niech a, b, c, x > 0 i $a, b, c, abc \neq 1$. Wiedząc, że $\log_a x = 2$, $\log_b x = 3$, $\log_c x = 6$, oblicz $\log_{abc} x$.
- **10.** Niech $x_1, x_2, ..., x_n, a > 0$ i $x_1 x_2 ... x_n = a$. Udowodnij, że

$$(\log_a x_1)^2 + (\log_a x_2)^2 + \ldots + (\log_a x_n)^2 \le \frac{1}{n}.$$

11. Niech $n \ge 2$. Wykaż, że dla dowolnych liczb rzeczywistych $a_1, a_2, \ldots, a_n > 1$

$$\log_{a_1}(a_2) + \log_{a_2}(a_3) + \ldots + \log_{a_{n-1}}(a_n) + \log_{a_n}(a_1) \ge n.$$

12. Niech $n \ge 2$. Wykaż, że dla dowolnych liczb rzeczywistych $a_1, a_2, \ldots, a_n, x > 1$

$$\log_{\sqrt[n]{a_1 a_2 \dots a_n}}(x) \leqslant \sqrt[n]{\log_{a_1}(x) \cdot \log_{a_2}(x) \cdot \dots \cdot \log_{a_n}(x)}.$$

Funkcje wykładnicza i logarytmiczna III

- 1. Niech x > 0. Udowodnij nierówność $x \frac{x^2}{2} \le \ln(1+x)$.
- **2.** Dany jest ciąg liczb dodatnich (a_n) taki, że $a_n \neq 1$ i $a_n \rightarrow 1$. Udowodnij, że

$$\lim_{n \to \infty} \frac{\ln a_n}{a_n - 1} = 1.$$

3. Oblicz granicę ciągu o wyrazach

$$a_n = \left(1 + \frac{1}{n^2}\right) \left(1 + \frac{2}{n^2}\right) \dots \left(1 + \frac{n}{n^2}\right).$$

4. Sinus i cosinus hiperboliczny. Niech

$$\cosh x = \frac{e^x + e^{-x}}{2}, \qquad \sinh x = \frac{e^x - e^{-x}}{2}, \qquad x \in \mathbb{R}.$$

- (a) Udowodnij, że funkcja $\cosh x$ maleje na półprostej $(-\infty,0]$ i rośnie na $[0, +\infty)$, natomiast funkcja sinh x jest ściśle rosnaca.
- (b) Wyznacz funkcję odwrotną do $\cos hx$ na $[0,+\infty)$ i funkcję odwrotną do $\sinh x$.
- (c) Udowodnij tożsamość zwaną jedynką hiperboliczną: $\cosh^2 x \sinh^2 x = 1$.
- (d) Udowodnij tożsamości:

$$\sinh(x+y) = \sinh x \cosh y + \cosh x \sinh y$$
$$\cosh(x+y) = \cosh x \cosh y + \sinh x \sinh y$$

5. Tangens hiperboliczny. Niech

$$tgh x = \frac{\sinh x}{\cosh x} = \frac{e^x - e^{-x}}{e^x + e^{-x}}, \qquad x \in \mathbb{R}.$$

Udowodnij, że funkcja tghx jest rosnącą bijekcją \mathbb{R} na przedział (-1,1) i wyznacz jej funkcję odwrotną.

6. Rozwiaż równania:

(a)
$$7^{x-5} = 9^{5-x}$$
,

(f)
$$2^{3x} \cdot 7^{x-2} = 4^{x-1}$$
,

(b)
$$7^{x+1} + 7^x = 56$$
,

(g)
$$8^x + 18^x = 2 \cdot 27^x$$
,

(c)
$$x^{x^2-5x+6} = 1$$
.

(h)
$$8^x(3x+1) = 4$$
,

(d)
$$8^x - 3 \cdot 4^x - 6 \cdot 2^x + 8 = 0$$
, (i) $\sqrt{x^x} = x^{\sqrt{x}}$,

(i)
$$\sqrt{x^x} = x^{\sqrt{x}}$$
,

(e)
$$4^{\sqrt{x-2}} + 16 = 10 \cdot 2^{\sqrt{x-2}}$$
,

(j)
$$9^x - 2^{x + \frac{1}{2}} = 2^{x + \frac{7}{2}} - 3^{2x - 1}$$
.

7. Rozwiąż równanie
$$2^{-|x|} = \frac{|x+1| + |x-1|}{2}$$
.

8. Rozwiąż równanie
$$\left(\sqrt{2-\sqrt{3}}\right)^x + \left(\sqrt{2+\sqrt{3}}\right)^x = 4.$$

9. Rozwiaż równania

(a)
$$\log_{(x+2)} 16 = 2$$
,

(b)
$$\log_x 7 + \log_{x^2} 7 = 6$$

(c)
$$\log_4 (2 \log_3 (1 + \log_2 (1 + \log_2 x))) = \frac{1}{2}$$

(d)
$$\frac{1}{5 - 4\log x} + \frac{4}{1 + \log x} = 3,$$

(e)
$$\log_2(9^{x-1} + 7) = 2 + \log_2(3^{x-1} + 1)$$

(f)
$$\log_4(x+2) \cdot \log_x 2 = 1$$
,

(g)
$$x^{\frac{1}{4}(\log x+7)} = 10^{\log x+1}$$

(h)
$$x^{\ln x} = e$$

(i)
$$x^{1/\log x} = 10^{x^4}$$

(j)
$$x^{\log^2 x + \log(x^3) + 3} = \frac{2}{\frac{1}{\sqrt{1+x}-1} - \frac{1}{\sqrt{1+x}+1}}$$

10. Dla danych liczb rzeczywistych $a, b > 0, b \neq 1$ rozwiaż równanie

$$1 + \log_b(2\log a - x) \cdot \log_x b = \frac{2}{\log_b x}.$$

11. Dla danej liczby a > 0 rozwiąż równanie

$$1 + \log_x \frac{4 - x}{10} = (\log(\log a) - 1) \cdot \log_x 10.$$

Funkcje wykładnicza i logarytmiczna IV

1. Rozwiąż nierówności

(a)
$$\left(\frac{1}{2}\right)^{2x-1} \leqslant 8$$

(f)
$$\left(\frac{1}{2}\right)^x - 2^{x+1} \ge 1$$

(b)
$$\frac{1}{3^{x^2}} \cdot 9^{x+1} > \frac{1}{729}$$

(g)
$$3^{x+\frac{1}{2}} + 3^{x-\frac{1}{2}} > 4^{x+\frac{1}{2}} - 2^{2x-1}$$

(c)
$$8^x - 2 \le 18 \cdot 4^{x-1} - 3 \cdot 2^{x+1}$$

(h)
$$x^{\frac{3}{4}x} < (\sqrt{x})^{x^2 - x + 1}$$

(d)
$$x^2 \cdot 2^x + x \cdot 2^{x-1} > 0$$

(i)
$$(x^2 + x + 1)^x < 1$$

(e)
$$\frac{1}{2^x - 1} > \frac{1}{1 - 2^{x-1}}$$

(j)
$$|x|^{x^2-x-2} < 1$$

2. Rozwiąż nierówności

(a)
$$\log_3(x^2 - 1) < 1$$

(f)
$$\log_{\frac{1}{2}} \sqrt{x+1} < 1 + \log_{\frac{1}{2}} \sqrt{4-x^2}$$

(b)
$$\ln(x+1) - \ln x < 2$$

(g)
$$\log_x 2 \cdot \log_{2x} 2 > (\log_{4x} 2)^2$$

(c)
$$\log_{(2x-3)} x \le 1$$

(d) $\log_x (x-1) \ge 2$

(g)
$$\log_x Z \cdot \log_{2x} Z > 0$$

(e)
$$\log_{(x-3)} \frac{x-2}{x-4} \ge 1$$

(h)
$$\frac{\log(35 - x^3)}{\log(5 - x)} > 3$$

3. Niech $a \in (0,1)$. Rozwiąż nierówność

$$\log_a x > 6\log_x a - 1.$$

4. Niech a > 1. Rozwiąż nierówność

$$2\log_x a + \log_{ax} a + 3\log_{a^2x} a > 0.$$

5. Wyznacz największą i najmniejszą wartość funkcji

$$f(x) = 2^{\sin^2 x} + 2^{\cos^2 x}, \quad x \in \mathbb{R}.$$

6. Niech $a \in (0,1)$. Funkcja f jest określona wzorem

$$f(x) = a^x + (1 - a)^x, \quad x \in \mathbb{R}.$$

Rozwiąż nierówności f(x) < 1 i f(x) > 1.

7. Wykaż, że jeśli x, y > 1, to

$$\ln x \cdot \ln y \leqslant \ln \sqrt{xy} \cdot \ln \frac{x+y}{2}.$$

8. Wyznacz największą wartość funkcji $f:(0,1)\to\mathbb{R}$:

$$f(x) = \ln(x) + \ln(1 - x).$$

9. Wykaż, że dla x > 0

$$\ln x \leqslant \frac{1}{2}(x^2 - 1).$$

10. Liczba rzeczywista x spełnia warunek $\log_2(\log_{10}(x-1)) > 0$. Określ znaki liczb $\log_3(\log_{10}(x-1))$ i $\log_2(\log_9(x-1))$.

Funkcje wykładnicza i logarytmiczna V (powtórzenie)

- 1. Rozwiaż równania
 - (a) $16^x + 1 = 2^8 + 8^4$.
 - (b) $\log(x+5) + \log(x-4) = \log(x-3) + \log(x-2)$,
 - (c) $\log(\frac{1}{2} + x) = \log \frac{1}{2} \log x$,
 - (d) $x + \log(1 + 2^x) = x \log 5 + \log 6$
 - (e) $(2x+1)^{\ln(2x+1)-3} = \frac{1}{2^2}$.
- 2. Rozwiąż nierówności
 - (a) $5^{2x+1} > 5^x + 4$.
 - (b) $2^{x^2-6x+3} \geqslant \frac{1}{4}$
 - (c) $\log_2 x + \log_4 x + \log_8 x < 2$,
 - (d) $\log_x \frac{x+3}{x-1} > 1$.
- 3. Oblicz wartość wyrażenia

$$\frac{\log_6^2 3 + \log_6 16}{\log_6^3 \cdot \log_6 48 + \log_6^2 4}.$$

- **4.** Niech a, b > 0, $ab \neq 1$ i $\log_{ab} a = 4$. Oblicz $\log_{ab} \frac{\sqrt[3]{a}}{\sqrt{b}}$.
- **5.** Niech a, b, c > 0 i $a, b, ab \neq 1$. Oblicz wartość wyrażeń
 - (a) $(\log_{ab} a)(\log_{ab} (ab^2)) + (\log_{ab} b)^2$,
 - (b) $a^{\sqrt{\log_a b}} + b^{\sqrt{\log_b a}}$
- 6. Oblicz granice ciągów
- (a) $\lim_{n \to \infty} \frac{\ln(1 + e^n)}{n}$, (b) $\lim_{n \to \infty} n \cdot \sinh \frac{1}{n}$, (c) $\lim_{n \to \infty} n \left(\cosh \frac{1}{n} 1\right)$.
- 7. Udowodnij, że dla dowolnych $x, y \in \mathbb{R}$ zachodzi nierówność

$$\frac{\cosh x + \cosh y}{2} \geqslant \cosh \frac{x+y}{2},$$

natomiast dla $x, y \ge 0$ zachodzi także nierówność

$$\frac{\sinh x + \sinh y}{2} \geqslant \sinh \frac{x + y}{2}.$$

8. Udowodnij, że jeśli $x \in \mathbb{R}$, to

$$\cosh x \geqslant 1 + \frac{x^2}{2!} + \frac{x^4}{4!}.$$

9. Oblicz granice ciagów

- (a) $\lim_{n \to \infty} (1 + \ln(n+1) \ln n)^n$,
- (b) $\lim_{n \to \infty} \left(\frac{(3n+1) \cdot 3^n + n2^n}{n \cdot 3^{n+1} n2^n} \right)^n$,
- (c) $\lim_{n \to \infty} \left(\frac{\sqrt{n+2} + n\sqrt{n+1} (n+1)\sqrt{n}}{n(\sqrt{n+1} \sqrt{n})} \right)^n$,
- (d) $\lim_{n \to \infty} \left(\frac{(n+1)\sqrt[n]{e^2} 1}{n} \right)^n$

Wskazówka: Skorzystaj z tego, że jeśli $x_n \to x$, to $\left(1 + \frac{x_n}{n}\right)^n \to e^x$.

10. Udowodnij, że

(a)
$$\lim_{n \to \infty} \sum_{k=2}^{n} \frac{1}{(\ln n)^{2022}} = +\infty,$$

(b)
$$\lim_{n \to \infty} \sum_{k=2}^{n} \log_n(2022) = +\infty,$$

(c)
$$\lim_{n \to \infty} \sum_{k=1}^{n} \ln \left(\frac{n^2 + 1}{n^2} \right) < +\infty.$$

Granica funkcji

Definicja. Niech $A \in \mathbb{R}$. Mówimy, że liczba $b \in \mathbb{R}$ jest punktem skupienia zbioru A, jeżeli istnieje ciąg liczb $a_n \in A \setminus \{b\}$ taki, że $a_n \to b$. Przyjmujemy, że $+\infty$ jest punktem skupienia zbioru A niegoraniczonego z góry, a $-\infty$ jest punktem skupienia zbioru A niegoraniczonego z dołu. Umawiamy się, że $\mathbb{R} \cup \{-\infty, +\infty\} = \overline{\mathbb{R}}$.

Przykłady:

- Każda liczba z przedziału [a,b] jest punktem skupienia przedziału (a,b) jak i przedziału [a,b].
- Jedyne punkty skupienia zbioru \mathbb{Z} to $\pm \infty$.
- Każda liczba rzeczywista jest punktem skupienia zbioru liczb wymiernych Q.

Definicja Heinego (ciągowa) granicy funkcji w punkcie. Niech $A \subset \mathbb{R}, b \in \mathbb{R}$ jest punktem skupienia zbioru A i $f:A\to\mathbb{R}$. Mówimy, że $g\in\overline{\mathbb{R}}$ jest granicą funkcji f w punkcie b, jeżeli dla każdego ciągu $a_n \in A \setminus \{b\}$, takiego że $a_n \to b$ zachodzi $f(a_n) \to g$. Piszemy wówczas

$$\lim_{x \to b} f(x) = g \qquad \text{lub} \qquad f(x) \xrightarrow{x \to b} g.$$

Przykłady:

$$\lim_{x \to 0} (x^2 + 1) = 1, \ \lim_{x \to 0} \frac{1}{|x|} = +\infty, \ \lim_{x \to 1} \frac{x - 1}{\sqrt{x} - 1} = 2, \ \lim_{x \to -\infty} e^x = 0, \ \lim_{x \to \infty} \ln x = +\infty.$$

 $\lim \ \lfloor x \rfloor = 0,$

Funkcja f(x) = |x| nie ma granicy w żadnym punkcie $b \in \mathbb{Z}$.

Definicja granic jednostronnych. Mówimy, że q jest granica prawostronna (lewostronną) funkcji f w punkcie $b \in \mathbb{R}$ jeżeli dla każdego ciągu $a_n \in A \cap (b, +\infty)$ $(a_n \in A \cap (-\infty, b))$ takiego, że $a_n \to b$ zachodzi $f(a_n) \to g$. Piszemy wówczas

 $\lim_{x\to b^+} f(x) = g \text{ (granica prawostronna)} \qquad \text{i } \lim_{x\to b^-} f(x) = g \text{ (granica lewostronna)}.$

Przykłady: $\lim_{x\to 0^+} \frac{1}{x} = +\infty$, $\lim_{x\to 0^-} \frac{1}{x} = -\infty$, $\lim_{x\to 1^+} \lfloor x \rfloor = 1$,

Stw. 1. Niech $A \subset \mathbb{R}$, $b \in \overline{\mathbb{R}}$ jest punktem skupienia zbioru A i $f: A \to \mathbb{R}$. Wówczas $\lim_{x \to b} f(x) = g \text{ wtedy i tylko wtedy, gdy } \lim_{x \to b^+} f(x) = \lim_{x \to b^-} f(x) = g.$

Stw. 2. (Własności arytmetyczne granicy funkcji) Niech $A \subset \mathbb{R}, f, g : A \to \mathbb{R},$ $b \in \overline{\mathbb{R}}$ jest punktem skupienia zbioru A i istnieją granice

$$\lim_{x \to b} f(x) = c, \qquad \lim_{x \to b} g(x) = d, \qquad b, c \in \overline{\mathbb{R}}.$$

Wówczas

- (i) jeśli jest określona suma c+d, to $\lim_{x\to a} (f(x)+g(x)) = c+d$.
- (ii) jeśli jest określona różnica c-d, to $\lim_{x\to b}(f(x)-g(x))=c-d$.
- (iii) jeśli jest określony iloczyn $c \cdot d$, to $\lim_{x \to d} f(x)g(x) = c \cdot d$.
- (iv) jeśli jest określony iloraz $\frac{c}{d}$, to $\lim_{x\to b} \frac{f(x)}{g(x)} = \frac{c}{d}$.

Stw. 3. (Granica złożenia funkcji) Niech $A, B \subset \mathbb{R}, f: A \to \mathbb{R}, g: B \to \mathbb{R}$. Jeżeli

- $f(A) \subset B$,
- $a \in \mathbb{R}$ jest punktem skupienia zbioru A, $\lim_{x \to a} f(x) = b \in \mathbb{R}$ i $f(x) \neq b$ dla x dostatecznie bliskich a.
- b jest punktem skupienia zbioru B i $\lim_{y\to b}g(y)=c\in\overline{\mathbb{R}},$

to $\lim_{x \to a} g(f(x)) = c$.

Tw. 4. (Definicja Cauchy'ego granicy funkcji) Niech $A \subset \mathbb{R}$, $a \in \mathbb{R}$ jest punktem skupienia zbioru $A, f: A \to \mathbb{R}$ i $g \in \mathbb{R}$. Następujące warunki są równoważne:

- (i) Liczba q jest granica funkcji f w punkcie a.
- (ii) $\forall_{\varepsilon > 0} \exists_{\delta > 0} \forall_{x \in A \setminus \{a\}} |x a| < \delta \implies |f(x) g| < \varepsilon$.
- 1. Udowodnij, korzystając z definicji granicy funkcji w punkcie, że
 - (a) $\lim_{x \to 0^+} \ln x = -\infty$ (b) $\lim_{x \to 0} \sin x = 0$ (c) $\lim_{x \to 0} \cos x = 1$ (d) $\lim_{x \to +\infty} \frac{1}{\ln x} = 0$
- 2. Ważne granice. Udowodnij, że

 - (a) $\lim_{x \to 0} \frac{\sin x}{x} = 1$ (c) $\lim_{x \to 0} \frac{1 \cos x}{x^2} = \frac{1}{2}$ (e) $\lim_{x \to 0} \frac{e^x 1}{x} = 1$

- (b) $\lim_{x \to 0} \frac{\operatorname{tg} x}{x} = 1$ (d) $\lim_{x \to 0} \frac{\sqrt[k]{x+1} 1}{x} = \frac{1}{k}$ (f) $\lim_{x \to 0} \frac{\ln(1+x)}{x} = 1$
- **3.** Udowodnij, że dla każdego a > 0 $\lim_{x \to +\infty} \frac{e^x}{r^a} = +\infty$ i $\lim_{x \to +\infty} \frac{\ln x}{r^a} = 0$
- 4. Oblicz granice, o ile istnieją, badając odpowiednie granice jednostronne.
 - (a) $\lim_{x \to 0} \lceil x \rceil$

(c) $\lim_{x \to 0} \frac{1}{x} \lfloor x \rfloor$

(b) $\lim_{x\to 0} x \left| \frac{1}{x} \right|$

(d) $\lim_{x \to 0} \frac{1}{x + |x|}$

- 5. Oblicz granice
 - (a) $\lim_{x \to \infty} \sqrt{x+1} \sqrt{x-1}$

(c) $\lim_{x \to 1} \frac{x^2 - 1}{2x^2 - x - 1}$

(b) $\lim_{x\to 0} \frac{x^2-1}{2x^2-x-1}$

(d) $\lim_{x\to 0} \frac{(1+x)(1+2x)(1+3x)-1}{x}$

(e)
$$\lim_{x\to 0} \frac{(1+x)^5 - (1+5x)}{x^2 + 2x^5}$$

(f)
$$\lim_{x \to 1} \frac{x + x^2 + \dots + x^{2022} - 2022}{x^2 - 1}$$

(g)
$$\lim_{x \to 1} \frac{x^{257} - 257x + 256}{(x-1)^2}$$

(h)
$$\lim_{x \to \infty} \frac{\sqrt{x} + \sqrt[4]{x} + \sqrt[6]{x} + \sqrt[8]{x} + \sqrt[10]{x}}{\sqrt{961x + 1024}}$$
 (m) $\lim_{x \to 0} \frac{\sqrt{x+1} - \sqrt{x-1}}{\sqrt[3]{x+1} - \sqrt[3]{x-1}}$

(i)
$$\lim_{x \to 16} \frac{\sqrt{x\sqrt{x}} - 8}{\sqrt[4]{x} - 2}$$

(j)
$$\lim_{x \to -32} \frac{\sqrt{17 - x} - 7}{2 + \sqrt[5]{x}}$$

(k)
$$\lim_{x \to 0} \frac{\sqrt[3]{27 + 6x - 14x^7} - 3}{x + x^2 + x^3}$$

(g)
$$\lim_{x \to 1} \frac{x^{257} - 257x + 256}{(x-1)^2}$$
 (l) $\lim_{x \to 1} \frac{(1-\sqrt{x})(1-\sqrt[3]{3})\dots(1-\sqrt[99]{x})}{(1-x)^{99}}$

(m)
$$\lim_{x \to 0} \frac{\sqrt{x+1} - \sqrt{x-1}}{\sqrt[3]{x+1} - \sqrt[3]{x-1}}$$

(n)
$$\lim_{x \to +\infty} \sqrt[3]{x} \left(\sqrt[3]{(x+1)^2} - \sqrt[3]{(x-1)^2} \right)$$

6. Oblicz granice

(a)
$$\lim_{x \to 0} \frac{\sin(\alpha x)}{\sin(\beta x)}$$
, $\alpha, \beta \neq 0$

(b)
$$\lim_{x \to 0} \frac{\sin(\sin x)}{x}$$

(c)
$$\lim_{x \to 0} \frac{\sqrt[3]{x + \sin x} - \sqrt[3]{x - \sin x}}{\sqrt[3]{x}}$$
 (h) $\lim_{x \to 0} \frac{(1+x)^a - 1}{x}, a \in \mathbb{R}$

(d)
$$\lim_{x \to \infty} \sqrt{x} \cdot \sin(\sqrt{x+1} - \sqrt{x})$$

(e)
$$\lim_{x\to 0} \frac{1-\cos(e^x-1)}{\ln^2(1+\sin x)}$$

(f)
$$\lim_{x \to 0} \frac{\ln(\cos^2 x)}{e^{2x} - 2e^x + 1}$$

(g)
$$\lim_{x \to 0} \frac{a^x - 1}{x}$$
, $a > 0$

(h)
$$\lim_{x \to 0} \frac{(1+x)^a - 1}{x}, a \in \mathbb{R}$$

(i)
$$\lim_{x \to 0} \frac{\ln(e^{3x^2} - 1)}{\operatorname{tg}^2(\sin(5x))}$$

(j)
$$\lim_{x\to 0^+} (1+\sin x)^{\frac{a}{x}}, a>0$$

7. Oblicz granice $\lim_{x\to 0^+} x^x$, $\lim_{x\to 0^+} x^{\sin x}$, $\lim_{x\to 0^+} \left(\ln \frac{1}{x}\right)^{\infty}$.

8. Sformuluj i udowodnij warianty definicji Cauchy'ego granicy funkcji (tw. 4) dla przypadków gdy $b = \pm \infty$ lub $g = \pm \infty$.

9. Wykaż, że funkcja Dirichleta $f: \mathbb{R} \to \mathbb{R}$

$$f(x) = \begin{cases} 1 & \text{gdy } x \in \mathbb{Q} \\ 0 & \text{gdy } x \notin \mathbb{Q} \end{cases}$$

nie ma granicy w żadnym punkcie.

10. Wykaż, że funkcja Riemanna $f: \mathbb{R} \to \mathbb{R}$

$$f(x) = \begin{cases} \frac{1}{q} & \text{gdy } x \in \mathbb{Q} \setminus \{0\}, \ x = \frac{p}{q}, \ \text{gdzie } p \in \mathbb{Z}, \ q \in \mathbb{N}, \ \text{NWD}(p, q) = 1\\ 0 & \text{gdy } x \notin \mathbb{Q} \ \text{lub } x = 0 \end{cases}$$

ma w każdym punkcie $a \in \mathbb{R}$ granicę równą 0.

11. Funkcja $f:(-a,a)\setminus\{0\}\to(0,+\infty)$ spełnia warunek

$$\lim_{x \to 0} \left(f(x) + \frac{1}{f(x)} \right) = 2.$$

Udowodnij, że $\lim_{x\to 0} f(x) = 1$.

- 12. Funkcja $f: \mathbb{R} \to \mathbb{R}$ jest monotoniczna i $\lim_{x \to +\infty} \frac{f(2x)}{f(x)} = 1$. Udowodnij, że $\lim_{x \to +\infty} \frac{f(cx)}{f(x)} = 1 \text{ dla każdego } c > 0.$
- 13. Niech $f:[0,1]\to[-M,M],\ a,b>1$ i f(ax)=bf(x) dla $x\in[0,\frac{1}{a}].$ Udowodnij, że

Funkcje ciągłe I

Wszędzie I, J to przedziały (skończone lub nie) zawarte w \mathbb{R} .

Definicja. Funkcja $f: I \to \mathbb{R}$ jest ciągła w punkcie $c \in I$, jeżeli $\lim_{x \to c} f(x) = f(c)$. Funkcja f jest ciągła (na I) jeżeli jest ciągła w każdym punkcie $c \in I$.

Ciągłość funkcji f w punkcie c jest równoważna warunkowi:

$$\forall_{\varepsilon>0} \exists_{\delta>0} \forall_{x \in (c-\delta,c+\delta)} |f(x) - f(c)| < \varepsilon.$$

Stw. Jeżeli funkcje $f, g: I \to \mathbb{R}$ są ciągłe w punkcie $c \in I$, to funkcje f+g i $f \cdot g$ też są ciągłe w punkcie c. Ponadto, jeżeli $f(c) \neq 0$ to funkcja 1/f jest określona na pewnym przedziałe otwartym zawierającym punkt c i jest ciągła w c.

Wniosek. Każdy wielomian jest funkcją ciągłą na \mathbb{R} . Każda funkcja wymierna jest ciągła na całej swojej dziedzinie.

Stw. Jeżeli $f:I\to J,\ g:J\to\mathbb{R}$, funkcja f jest ciągła w punkcie $c\in I$ i funkcja g jest ciągła w punkcie f(c), to funkcja $g\circ f$ jest ciągła w punkcie c.

Stw. Funkcje $f,g:I\to\mathbb{R}$ są ciągłe i f(x)=g(x) dla każdego $x\in I\cap\mathbb{Q}.$ Wówczas f=g.

- 1. Udowodnij ciagłość poniższych funkcji zmiennej x:
 - (a) $x^a, x \ge 0, a > 0$

(d) $tg x, x \in (\frac{\pi}{2}, \frac{\pi}{2})$

(b) ${}^{2n+\sqrt{x}}, n \in \mathbb{N}, x \in \mathbb{R}$

(e) a^x , a > 0, $x \in \mathbb{R}$

(c) $\sin x$, $\cos x$, $x \in \mathbb{R}$

- (f) $\log_a x$, a > 0, x > 0
- **2.** Dla jakich $a, b \in \mathbb{R}$ ciagła jest funkcja

$$f(x) = \begin{cases} \frac{1 - \cos ax}{x^2} & \text{gdy } x \neq 0\\ b & \text{gdy } x = 0 \end{cases}$$

3. Dla jakich $a,b,c\in\mathbb{R}$ ciągła jest funkcja

$$f(x) = \begin{cases} \frac{\log(1+x)}{\sin(\sin(ax))} & \text{gdy } x < 0\\ b & \text{gdy } x = 0\\ x+c & \text{gdy } x > 0 \end{cases}$$

4. Funkcja $f:I\to\mathbb{R}$ jest ciągła. Udowodnij, że funkcja |f| też jest ciągła. Czy prawdziwa jest implikacja odwrotna?

- **5.** Funkcje $f, g: I \to \mathbb{R}$ są ciągłe. Czy funkcja $h(x) = \max(f(x), g(x))$ jest ciągła?
- 6. Znajdź zbiory punktów ciągłości funkcji $f,g:\mathbb{R}\to\mathbb{R}$

$$f(x) = \begin{cases} 0 & \text{gdy } x \in \mathbb{R} \setminus \mathbb{Q} \\ \sin|x| & \text{gdy } x \in \mathbb{Q} \end{cases} \qquad g(x) = \begin{cases} \operatorname{tg}(\pi x) & \text{gdy } x \in \mathbb{R} \setminus \mathbb{Q} \\ 0 & \text{gdy } x \in \mathbb{Q} \end{cases}$$

7. Liczby $a_n, b_n \in \mathbb{R}$, gdzie $n \in \mathbb{Z}$, spełniają warunki: $a_0 = 0$ i funkcja $f : \mathbb{R} \to \mathbb{R}$ dana wzorem

$$f(x) = \begin{cases} a_n + \sin(\pi x) & \text{gdy } x \in [2n, 2n+1], \ n \in \mathbb{Z} \\ b_n + \cos(\pi x) & \text{gdy } x \in (2n-1, 2n), \ n \in \mathbb{Z} \end{cases}$$

jest ciagła. Wyznacz liczby a_n i b_n .

- 8. Znajdź zbiory punktów ciągłości funkcji $f(x) = \lfloor x \rfloor \sin(\pi x)$ i $g(x) = \lfloor x^2 \rfloor \sin(\pi x)$, $x \in [0, +\infty)$.
- 9. Udowodnij, że funkcja Riemanna jest ciągła w każdym punkcie niewymiernym i nie jest ciągła w każdym punkcie wymiernym.
- 10. Zbadaj ciągłość funkcji $f: \mathbb{R} \to \mathbb{R}$ danej wzorem

$$f(x) = \begin{cases} |x| & \text{dla } x = 0 \text{ lub } x \in \mathbb{R} \setminus \mathbb{Q} \\ \frac{qx}{q+1} & \text{dla } x = \frac{p}{q}, \ p \in \mathbb{Z}, \ q \in \mathbb{N}, \ \text{NWD}(p,q) = 1. \end{cases}$$

11. Dla jakich $a, b > 0, c \in \mathbb{R}$ ciągła jest funkcja

$$f(x) = \begin{cases} \left(\frac{a^x + b^x}{2}\right)^{1/x} & \text{gdy } x \neq 0\\ c & \text{gdy } x = 0 \end{cases}$$

- **12.** Udowodnij, że funkcja $f: \mathbb{R} \to \mathbb{R}$ okresowa, ciągła i różna od stałej ma okres podstawowy (czyli minimalny okres dodatni).
- 13. Wyznacz wszystkie funkcje $f: \mathbb{R} \to \mathbb{R}$ ciągłe w 0 i takie, że f(x+y) = f(x) + f(y) dla dowolnych $x, y \in \mathbb{R}$.
- **14.** Wykaż, że jedyną funkcją ciągłą $f: \mathbb{R} \to \mathbb{R}$ taką, że f(x+y) = f(x)f(y) dla dowolnych $x,y \in \mathbb{R}$ oraz f(1) = e, jest funkcją $f(x) = e^x$.
- **15.** Wyznacz wszystkie funkcje $f: \mathbb{R} \to \mathbb{R}$ ciągłe w 0 i takie, że dla każdego $x \in \mathbb{R}$ spełniona jest równość 2f(2x) = f(x) + x.

Funkcje ciągłe II

Definicja. Kresy górny i dolny funkcji $f:A\to\mathbb{R}$ definiujemy odpowiednio jako kres górny i dolny zbioru $f(A)\subset\mathbb{R}$. Kresy to zapisujemy jako $\sup_{x\in A}f(x)$ i $\inf_{x\in A}f(x)$ lub $\sup_{A}f$ i $\inf_{A}f$.

Tw. Weierstrassa o kresach Jeżeli funkcja $f:[a,b]\to\mathbb{R}$ jest ciągła, to istnieją $c,d\in[a,b]$ takie, że $f(c)=\sup_{[a,b]}f$ i $f(d)=\inf_{[a,b]}f$.

Wniosek. Każdy wielomian parzystego stopnia o dodatnim (ujemnym) współczynniku wiodącym przyjmuje wartość najmniejszą (największą).

Wniosek. Jeżeli funkcja $f: \mathbb{R} \to \mathbb{R}$ jest ciągła i okresowa, to f przyjmuje wartość nawiększą i najmniejszą.

Definicja. Niech $I \subset \mathbb{R}$ to przedział. Mówimy, że funkcja $f: I \to \mathbb{R}$ ma własność Darboux (własność przyjmowania wartości pośrednich), jeżeli dla dowolnych $x_1, x_2 \in I$ i dowolnej liczby y leżącej pomiędzy $f(x_1)$ i $f(x_2)$ istnieje liczba t leżąca pomiędzy x_1 i x_2 i taka, że f(t) = y.

Twierdzenie. Funkcja ciągła $f:(a,b)\to\mathbb{R}$ ma własność Darboux.

Przykład. Funkcja $f: \mathbb{R} \to \mathbb{R}$,

$$f(x) = \begin{cases} \sin\frac{1}{x} & \text{dla } x \neq 0\\ 0 & \text{dla} x = 0 \end{cases}$$

ma własność Darboux, ale nie jest ciągła w 0.

Wniosek. Jeżeli funkcja $f:(a,b)\to\mathbb{R}$ jest ciągła, to dla każdego przedziału domkniętego $[c,d]\subset(a,b)$ jego obraz $f([c,d])\subset\mathbb{R}$ również jest przedziałem domkniętym.

Wniosek. Każdy wielomian nieparzystego stopnia ma pierwiastek rzeczywisty.

Wniosek. Funkcja $f:(a,b)\to\mathbb{R}$ ciągła i różnowartościowa jest ściśle monotoniczna.

Twierdzenie. Niech $I \subset \mathbb{R}$ będzie przedziałem. Jeżeli funkcja $f: I \to \mathbb{R}$ jest ciągła i róznowartościowa, to funkcja $f^{-1}: f(I) \to I$ jest ciągła.

- 1. Dane są wielomiany P i Q takie, że $\deg P$ jest liczbą nieparzystą, Q nie ma pierwiastków rzeczywistych i $\deg P < \deg Q$. Udowodnij, że funkcja $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \frac{P(x)}{Q(x)}$, przyjmuje wartość największą i najmniejszą.
- **2.** Funkcja $f: \mathbb{R} \to \mathbb{R}$ jest ciągła i okresowa. Udowodnij, że funkcja $g: \mathbb{R} \to \mathbb{R}$, $g(x) = f(x) \cdot x \cdot e^{-|x|}$ przyjmuje wartość największą i najmniejszą.
- 3. Funkcja $f:[0,+\infty)\to\mathbb{R}$ jest ciągła, funkcja $g:[0,+\infty)\to\mathbb{R}$ jest określona

wzorem

$$g(x) = \sup\{f(t) : 0 \leqslant t \leqslant x\}.$$

Udowodnij, że funkcja gjest ciągła i niemalejąca.

- 4. Podaj przykład funkcji ograniczonej na przedziale [0,1], która
 - (a) nie przyjmuje swego kresu górnego i dolnego,
 - (b) nie przyjmuje kresu górnego i dolnego na żadnym przedziale $[a,b] \subset (0,1)$.
- 5. Funkcja $f:[0,1] \to [0,1]$ jest ciągła. Udowodnij, że istnieje $c \in [0,1]$ takie, że f(c) = c.
- **6.** Funkcje $f,g:[a,b]\to\mathbb{R}$ są ciągłe, f(a)< g(a) i f(b)>g(b). Udowodnij, że istnieje $c\in(a,b)$ takie, że f(c)=g(c).
- 7. (a) Udowodnij, że równanie $2x = \sin x + 1$ ma rozwiązanie w przedziale (0,1).
 - (b) Udowodnij, że równanie $e^x = 3x$ ma co najmniej dwa rozwiązania.
 - (c) Udowodnij, że równanie $2^x = \frac{1}{x}$ ma dokładnie jedno rozwiązanie.
- 8. Funkcja $f: \mathbb{R} \to \mathbb{R}$ jest ciągła i malejąca. Udowodnij, że istnieje $c \in \mathbb{R}$ takie, że f(c) = c.
- 9. Funkcja $f:[0,1]\to\mathbb{R}$ jest ciągła i

$$\lim_{x \to 0} \frac{f(x + \frac{1}{3}) + f(x + \frac{2}{3})}{x} = 1.$$

Udowodnij, że istnieje punkt $x_0 \in [0,1]$ takie, że $f(x_0) = 0$.

- **10.** Funkcja $f:[0,2] \to \mathbb{R}$ jest ciągła i f(0) = f(2). Udowodnij, ze istnieją punkty $a,b \in [0,2]$ takie, że b-a=1 i f(a)=f(b).
- **11.** Podaj przykład funkcji ciągłej $f: \mathbb{R} \to \mathbb{R}$, która przyjmuje każdą wartość dokładnie trzy razy. Czy istnieje funkcja ciągła $f: \mathbb{R} \to \mathbb{R}$, która przyjmuje każdą wartość dokładnie dwa razy?
- **12.** Funkcja $f:[1,+\infty)\to\mathbb{R}$ jest ciągłą i nieograniczona z góry i z dołu. Udowodnij że f przyjmuje każdą wartość nieskończenie wiele razy.
- 13. Funkcja $f: \mathbb{R} \to \mathbb{R}$ jest ciągła i różnowartościowa i istnieje $n \in \mathbb{N}$ takie, że n-ta iteracja funkcji f jest identycznością, czyli $f^n(x) = x$ dla wszystkich $x \in \mathbb{R}$. Udowodnij, że
 - (a) jeśli f jest rosnąca, to f(x) = x dla wszystkich $x \in \mathbb{R}$,
 - (b) jeśli f jest malejąca, to $f^2(x) = x$ dla wszystkich $x \in \mathbb{R}$.
- 14. Dana jest funkcja ciągła $f: \mathbb{R} \to \mathbb{R}$ spełniająca warunki

$$f(1000) = 999,$$
 $f(x) \cdot f(f(x)) = 1$ dla $x \in \mathbb{R}$.

Oblicz f(500).

Analiza - klasa 4a

Zestaw 9.

18.11.2022

Funkcje ciągłe III

Twierdzenie. Niech $I \subset \mathbb{R}$ będzie przedziałem. Jeżeli funkcja $f: I \to \mathbb{R}$ jest ciągła i róznowartościowa, to funkcja $f^{-1}: f(I) \to I$ jest ciągła.

Definicja (funkcje cyklometryczne).

- (i) Funkcja $s: [-\frac{\pi}{2}, \frac{\pi}{2}] \to [-1, 1], s(x) = \sin x$, jest bijekcją. Dla $y \in [-1, 1]$ definiujemy arc $\sin y = s^{-1}(y)$.
- (ii) Funkcja $c:[0,\pi]\to[-1,1],$ $c(x)=\cos x$ jest bijekcją. Dla $y\in[-1,1]$ definiujemy arc $\cos y=c^{-1}(y)$.
- (iii) Funkcja $t:(-\frac{\pi}{2},\frac{\pi}{2})\to\mathbb{R},\ t(x)=\lg x$ jest bijekcją. Dla $y\in\mathbb{R}$ definiujemy $\arg y=t^{-1}(y).$
- (iv) Funkcja $u:(0,\pi)\to\mathbb{R},\ u(x)=\operatorname{ctg} x$ jest bijekcją. Dla $y\in\mathbb{R}$ definiujemy $\operatorname{arc}\operatorname{ctg} y=u^{-1}(y).$

Stw. Funkcje cyklometryczne są ciągłe.

1. Dana jest funkcja $f(x)=x^3+x,\,x\in\mathbb{R}.$ Udowodnij, że f ma funkcję odwrotną i wyznacz granice

$$\lim_{x \to 0} f^{-1}(x), \qquad \lim_{x \to 0} \frac{f^{-1}(x)}{x}.$$

2. Dana jest funkcja $f(x)=\frac{x^3}{\sqrt{1+x^2+x^6}},\ x\in\mathbb{R}.$ Udowodnij, że f ma funkcję odwrotną i oblicz granicę

$$\lim_{y \to 0} \frac{f^{-1}(y)}{\sqrt[3]{y}}.$$

- 3. Które z funkcji cyklometrycznych są rosnące, malejące, parzyste, nieparzyste?
- **4.** Udowodnij, że dla x > 0

$$\arctan x < x < \arcsin x$$
.

- **5.** Oblicz granice funkcji $\operatorname{arctg} x$ i $\operatorname{arc} \operatorname{ctg} x \le \pm \infty$.
- **6.** Oblicz granice

(a)
$$\lim_{x\to 0} \frac{\arcsin x}{x}$$
, (b) $\lim_{x\to 0} \frac{\arctan x}{x}$, (c) $\lim_{x\to 1^-} \frac{\arccos x}{\sqrt{1-x}}$.

- 7. Udowodnij tożsamości
 - (a) $\cos(\arcsin x) = \sin(\arccos x) = \sqrt{1 x^2}, \quad x \in [-1, 1]$

(b)
$$\arcsin x = \arcsin (\sqrt{1 - x^2}), \quad x \in [0, 1]$$

(c)
$$\arcsin x = \frac{\arccos(2x^2 - 1)}{2}$$
, $\arcsin x = \frac{\arccos(1 - 2x^2)}{2}$, $x \in [0, 1]$

(d)
$$\sin(\operatorname{arctg} x) = \frac{x}{\sqrt{1+x^2}}$$
, $\cos(\operatorname{arctg} x) = \frac{1}{\sqrt{1+x^2}}$, $x \in \mathbb{R}$

(e)
$$\arctan x + \arctan x = \frac{\pi}{2}, \quad x \in \mathbb{R}$$

(f)
$$\arctan x + \arctan \frac{1}{x} = \frac{\pi}{2}$$
, $x > 0$

8. Zbadaj istnienie granicy

$$\lim_{x \to 1} \arctan \frac{1}{1 - x}.$$

9. Wielomiany Czebyszewa 1-go rodzaju. Dla $n \in \mathbb{N} \cup \{0\}$ definiujemy funkcje $T_n: [-1,1] \to \mathbb{R}$

$$T_n(x) = \cos(n\arccos x)$$
.

- (a) Udowodnij wzór rekurencyjny $T_{n+2}(x)=2xT_{n+1}(x)-T_n(x)$. Wykaż, że T_n jest wielomianem stopnia n. Wyznacz współczynniki wiodący wielomianu T_n .
- (b) Dla $n \ge 1$ wyznacz pierwiastki wielomianu T_n i punkty, w których przyjmuje on wartość najwiekszą i najmniejszą na przedziale [-1, 1].
- (c) Udowodnij, że dla $|x| \ge 1$

$$T_n(x) = \frac{1}{2} \left(\left(x - \sqrt{x^2 - 1} \right)^n + \left(x + \sqrt{x^2 - 1} \right)^n \right).$$

Przyjmujemy, że T_n są zadane wzorami z podp. (a).

(d) Wykaż, że dla $n \geqslant m$

$$2T_n(x)T_m(x) = T_{n+m}(x) + T_{n-m}(x).$$

(e) Wykaż, że dla $n, m \ge 0$

$$T_n(T_m(x)) = T_{nm}(x).$$

Powtórzenie

1. Oblicz granice

(a)
$$\lim_{x \to -1} \frac{x^4 + 3x^2 - 4}{x + 1}$$

(h)
$$\lim_{x \to 0} \frac{e^{1-\cos x} - 1}{\operatorname{arctg}^2 x}$$

(b)
$$\lim_{x \to 1} \frac{1 - \sqrt[3]{x}}{1 - \sqrt[5]{x}}$$

(i)
$$\lim_{x \to 0} \frac{1 - \cos(1 - \cos x)}{x^4}$$

(c)
$$\lim_{x \to 0} \frac{\sqrt{x^2 + 1} - \sqrt{x + 1}}{1 - \sqrt{x + 1}}$$

(j)
$$\lim_{x \to 0} \frac{\sin x \cdot \sin \left(\frac{x - \sin x}{\sin x}\right)}{x - \sin x}$$

(d)
$$\lim_{x \to \frac{\pi}{4}} \frac{\sqrt{\sin x} - \sqrt{\cos x}}{\sin x - \cos x}$$

(k)
$$\lim_{x \to +\infty} x \ln \left(1 + \frac{1}{x} \right)$$

(e)
$$\lim_{x \to \lg 1} \frac{\arctan x - 1}{\sqrt[3]{\arctan x} - 1}$$

(l)
$$\lim_{x \to -\infty} \sqrt{2x^2 + 1} + \sqrt[3]{x^3 - x + 2}$$

(f)
$$\lim_{x \to 0} x \operatorname{ctg} x$$

(m)
$$\lim_{x \to +\infty} \sqrt[3]{x(x+1)^2} - \sqrt[3]{x(x-1)^2}$$

(g)
$$\lim_{x \to 0} \frac{\sqrt[7]{x^2 + 1} - 1}{\ln(\cosh x)}$$

(n)
$$\lim_{x \to +\infty} \sin \sqrt{x+2} \cdot (\sin \sqrt{x+1} - \sin \sqrt{x})$$

- **2.** Czy można określić f(0) tak, aby otrzymać funkcję ciągłą $f: \mathbb{R} \to \mathbb{R}$, jeśli dla $x \neq 0$ (a) $f(x) = \exp(\frac{1}{x})$, (b) $f(x) = \exp(\frac{1}{x^2})$, (c) $f(x) = \exp(-\frac{1}{x^2})$?
- 3. Funkcja $f: \mathbb{R} \to \mathbb{R}$ jest dana wzorem

$$f(x) = \begin{cases} \frac{\sin x}{e^{2\operatorname{arctg} x} - 1} & \text{gdy } x \neq 0, \\ a & \text{gdy } x = 0. \end{cases}$$

Dla jakich wartości $a \in \mathbb{R}$ funkcja f jest ciągła?

- 4. Czy funkcja $f(x) = e^{-|x|} \sin x$ przyjmuje na \mathbb{R} wartość największą i najmniejszą?
- 5. Udowodnij, że
 - (a) równanie $e^{\sin x} = 2\cos x$ ma co najmniej 2 rozwiązania w przedziale $(0, 2\pi)$
 - (b) równanie $10\sqrt{x} = e^x$ ma co najmniej 2 rozwiązanie w przedziale $(0, +\infty)$.
- **6.** Funkcja $f:[0,\frac{\pi}{2})\to\mathbb{R}$ jest dana wzorem $f(x)=\sin x+\frac{1}{\sqrt{\cos x}}$. Wyznacz obraz funkcji f i udowodnij, że istnieje funkcja odwrotna $f^{-1}:f([0,\frac{\pi}{2}))\to[0,\frac{\pi}{2})$. Oblicz granice

$$\lim_{x \to 1^+} f^{-1}(x) \qquad \text{oraz} \qquad \lim_{x \to 1^+} \frac{f^{-1}(x)}{x - 1}.$$

Dowód zasadniczego twierdzenia algebry

Definicja. Ciąg liczb zespolonych (z_n) jest zbieżny do liczby zespolonej a wtedy i tylko wtedy, gdy $|z_n - a| \to 0$.

- $z_n \to a \iff \operatorname{Re}(z_n) \to \operatorname{Re}(a) \ \mathrm{i} \ \operatorname{Im}(z_n) \to \operatorname{Im}(a)$.
- Jeżeli $z_n \to a$, to $|z_n| \to |a|$.
- Z własności arytmetycznych granic ciągów liczb rzeczywistych wynikają identyczne własności arytmetyczne granic ciągów liczb zespolonych.

Stw. Z każdego ograniczonego ciągu liczb zespolonych można wybrać podciąg zbieżny.

Definicja. Funkcja $f: \mathbb{C} \to \mathbb{C}$ jest ciągła w punkcie $a \in \mathbb{C}$, jeżeli dla dowolnego ciągu $z_n \to a, z_n \neq a$, zachodzi $f(z_n) \to f(a)$. Funkcja f jest ciągła, jeżeli jest ciągła w każdym punkcie a.

Przykłady: Funkcja f(z) = |z| jest ciągła. Jeżeli P jest wielomianem o zespolonych współczynnikach, to P jest funkcją ciągłą. Wówczas funkcja g(z) = |P(z)| też jest ciągła.

Definicja. Zbiór $E \subset \mathbb{C}$ (lub $E \subset \mathbb{R}^2$ lub $E \subset \mathbb{R}$) jest domknięty, jeżeli dla każdego ciągu punktów $a_n \in E$ takiego, że $a_n \to a$ zachodzi $a \in E$.

Przykład: Koło $D_r = \{z \in \mathbb{C} : |z| \leq r\}$ jest zbiorem domkniętym.

Tw. Weierstrassa o kresach (wersja nad \mathbb{C}). Funkcja $f: \mathbb{C} \to \mathbb{R}$ jest ciągła, $E \subset \mathbb{C}$ jest zbiorem domkniętym i ograniczonym. Wówczas istnieją $a, b \in E$ takie, że

$$f(a) = \inf_{E} f$$
 i $f(b) = \sup_{E} f$.

Lemat. Niech $n \ge 1$, P(z) jest wielomianem o zespolonych współczynnikach stopnia n. Wówczas istnieje $z_0 \in \mathbb{C}$ takie, że

$$P(z_0) = \inf_{z \in \mathbb{C}} |P(z)|.$$

Zasadnicze tw. algebry. Każdy wielomian dodatniego stopnia o współczynnikach zespolonych ma pierwiastek zespolony.

Dowód: Za pomocą Lematu pokazujemy, że $\inf_{z \in \mathbb{C}} |P(z)| = 0$.

Pochodna funkcji I

Definicja. Mówimy, że funkcja $f:(a,b)\to\mathbb{R}$ jest rózniczkowalna w puncie $x_0\in(a,b)$, jeżeli istnieje skończona granica

$$f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h} = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}.$$

Liczbę $f'(x_0)$ nazywamy pochodną funkcji f w punkcie x_0 . Wyrażenie $\frac{f(x) - f(x_0)}{x - x_0}$ nazywamy ilorazem róznicowym.

Stosuje się także oznaczenie $f'(x_0) = \frac{df}{dx}(x_0)$.

Stw. Jeżeli funkcja $f:(a,b)\to\mathbb{R}$ jest różniczkowalna w punkcie $x_0\in(a,b)$, to jest ona ciągła w tym punkcie.

Tw. (Arytmetyczne własności pochodnych) Jeżeli funkcje $f, g:(a,b) \to \mathbb{R}$ są różniczkowalne w punkcie $x_0 \in (a,b)$, to

- (i) funkcja f + g jest różniczkowalna w x_0 i $(f + g)'(x_0) = f'(x_0) + g'(x_0)$;
- (ii) funkcja $f \cdot g$ jest różniczkowalna w x_0 i $(f \cdot g)'(x_0) = f'(x_0)g(x_0) + f(x_0)g'(x_0)$;
- (iii) gdy $g(x) \neq 0$ na pewnym otoczeniu x_0 , to funkcja $\frac{f}{g}$ jest różniczkowalna w x_0 i

$$\left(\frac{f}{g}\right)'(x_0) = \frac{f'(x_0)g(x_0) - f(x_0)g'(x_0)}{g(x_0)^2}.$$

Lemat o przybliżaniu funkcją liniową. Funkcja $f:(a,b)\to\mathbb{R}$ jest różniczkowalna w punkcie $x_0\in(a,b)$ wtedy i tylko wtedy, gdy istnieje liczba $k\in\mathbb{R}$ i funkcja $\phi:(a,b)\to\mathbb{R}$ takie, że

$$f(x) = f(x_0) + k \cdot (x - x_0) + \phi(x) \cdot (x - x_0)$$
 dla $x \in (a, b)$

oraz $\lim_{x \to x_0} \phi(x) = 0$. Wówczas $k = f'(x_0)$.

Tw. (Pochodna złożenia funkcji) Jeżeli funkcja $g:(a,b)\to(c,d)$ jest różniczkowalna w punkcie $x_0\in(a,b)$ oraz funkcja $f:(c,d)\to\mathbb{R}$ jest różniczkowalna w punkcie $g(x_0)=y_0\in(c,d)$, to funkcja $F=f\circ g:(a,b)\to\mathbb{R}$ jest różniczkowalne w x_0 i

$$F'(x_0) = f'(y_0) \cdot g'(x_0) = f'(g(x_0)) \cdot g'(x_0).$$

Definicja. Pochodne jednostronne funkcji f w punkcie x_0 definiujemy jako

$$f'_{+}(x_0) = \lim_{h \to 0^{+}} \frac{f(x_0 + h) - f(x_0)}{h}$$
 pochodna prawostronna
$$f'_{-}(x_0) = \lim_{h \to 0^{-}} \frac{f(x_0 + h) - f(x_0)}{h}$$
 pochodna lewostronna

Jeżeli $f:[a,b)\to\mathbb{R}$ i istnieje $f'_+(a)$ to mówimy, że f jest różniczkowalna w punkcie a i $f'(a)=f'_+(a)$. Podobnie definujemy różniczkowalność i pochodną funkcji g:(a,b] w punkcie b.

Stw. Funkcja $f:(a,b)\to\mathbb{R}$ jest różniczkowalna w punkcie $x_0\in(a,b)$ wtedy i tylko wtedy gdy istnieją obie pochodne jednostronne funkcji f w punkcie x_0 , są skończone i są sobie równe.

Definicja. Niech $I \subset \mathbb{R}$ oznacza przedział, Mówimy, że funkcja $f: I \to \mathbb{R}$ jest różniczkowalna, jeżeli jest ona różniczkowalna w każdym punkcie $x_0 \in I$. Funkcję $x \to f'(x)$, $x \in (a, b)$, nazywamy pochodną funkcji f.

Stw. (Pochodne funkcji elementarnych)

- (i) $(x^a)' = ax^{a-1}$ dla $x \in \mathbb{R}$ i $a \in \mathbb{N}$ lub x > 0 i a > 0 lub $x \neq 0$ i $a \in \mathbb{Z}$ lub $x \neq 0$ i $a = \frac{1}{2n+1}, n \in \mathbb{N}$;
- (ii) $(a^x)' = \ln a \cdot a^x$ dla a > 0 i $x \in \mathbb{R}$;
- (iii) $(\log_a x)' = \frac{1}{x \ln a} dla \ x > 0;$
- (iv) $(\sin x)' = \cos x$, $(\cos x)' = -\sin x$ dla $x \in \mathbb{R}$;

$$(v) (tgx)' = \frac{1}{\cos^2 x} = 1 + tg^2 x dla \ x \neq \frac{(2k+1)\pi}{2}, (ctg x)' = \frac{-1}{\sin^2 x} dla \ x \neq k\pi, \ k \in \mathbb{Z}.$$

- 1. Oblicz z definicji pochodną funkcji $f(x) = \sqrt{4x+1}$ w punkcie $x_0 = 2$.
- **2.** Zbadaj różniczkowalność fukcji f(x) = |x| i $g(x) = \sqrt[3]{x}$ w punkcie $x_0 = 0$.
- 3. Wyznacz dziedzinę funkcji, oblicz jej pochodnę i wyznacz dziedzinę pochodnej:

(a)
$$f(x) = \sqrt[4]{2x - x^2}$$

(c)
$$f(x) = \frac{\sin x}{\sqrt{1 + x^3}}$$

(b)
$$f(x) = \frac{x^2 - 2x + 5}{x^4 - 9}$$

(d)
$$f(x) = \operatorname{tg}^4(\sin x)$$

(e)
$$f(x) = \left(\sqrt{x^2 + \sin^2 x} + 1\right) \cdot \left(\frac{1}{\sqrt{x^2 + \sin^2 x}} - 1\right)$$

(f)
$$f(x) = \frac{\log_2(x^2 - 1)}{\operatorname{arctg} x}$$

(i)
$$f(x) = x^{x^x}$$

(g)
$$f(x) = xe^{x^2} - 3 \cdot 2^{\cos x}$$

$$(j) f(x) = (\sin \sqrt{x})^{\cos x}$$

(h)
$$f(x) = x^x$$

$$(k) f(x) = \log_x e$$

$$(\Pi)$$
 $f(\omega)$

(l)
$$f(x) = \log_{x^2-1}(\cos x + 1)$$

4. Niech a > 0 i

$$f(x) = \begin{cases} |x|^a \cdot \sin\frac{1}{x} & \text{gdy } x \neq 0\\ 0 & \text{gdy } x = 0 \end{cases}$$

Dla jakich wartości a funkcja f jest różniczkowalna w 0?

Analiza - klasa 4a

Zestaw 13.

2.12.2022

Pochodna funkcji II

Tw. (Pochodna funkcji odwrotnej) Jeżeli funkcja $f:(a,b)\to(c,d)$ jest bijekcją, jest różniczkowalna w punkcie $x_0\in(a,b),\ f'(x_0)\neq0$ i funkcja odwrotna $f^{-1}:(c,d)\to(a,b)$ jest ciągła w punkcie $y_0=f(x_0),$ to funkcja f^{-1} jest różniczkowalna w punkcie $y_0=f(x_0)$ i

$$(f^{-1})'(y_0) = \frac{1}{f'(x_0)}.$$

Pochodne funkcji cyklometrycznych:

- $(\arcsin x)' = \frac{1}{\sqrt{1-x^2}}, x \in (-1,1)$
- $(\arccos x)' = \frac{-1}{\sqrt{1-x^2}}, x \in (-1,1)$
- $(\operatorname{arctg} x)' = \frac{1}{1+x^2}, x \in \mathbb{R}$
- $(\operatorname{arc}\operatorname{ctg} x)' = \frac{-1}{1+x^2}, x \in \mathbb{R}.$
- 1. Określ parametry a,b,c,d tak, aby funkcja f miała pochodną na całym zbiorze liczb rzeczywistych:

$$f(x) = \begin{cases} ax + b & \text{dla } x \le 1, \\ ax^2 + c & \text{dla } 1 < x \le 2, \\ \frac{dx^2 + 1}{x} & \text{dla } x \ge 2. \end{cases}$$

- 2. Wyznacz pochodne funkcji $f(x) = \sqrt[3]{x}$ i $g(x) = \ln x$ korzystając z tw. o pochodnej funkcji odwrotnej.
- 3. Oblicz pochodne
 - (a) $f(x) = \sin(\arccos x)$

- (c) $f(x) = \operatorname{arctg}(e^{5x})$
- (b) $f(x) = \arcsin\left(\frac{x}{1+x^2}\right)$
- (d) $f(x) = \ln^3(\operatorname{arctg} x + \frac{\pi}{2})$
- **4.** Liczba x_0 jest k-krotnym pierwiastkiem wielomianu P i k > 1. Wykaż, że x_0 jest (k-1)-krotnym pierwiastkiem wielomianu P'.
- 5. Funkcja $f:(a,b)\to\mathbb{R}$ jest rózniczkowalna w $x_0\in(a,b)$. Wykaż, że

$$\lim_{h \to 0} \frac{f(x+h) - f(x-h)}{2h} = f'(x_0).$$

Czy z istnienia powyższej granicy wynika różniczkowalność funkcji $f \le x_0$?

- **6.** Znajdź wzory dla sumy $\sum_{k=1}^{n} ke^{kx}$.
- 7. Funkcje f i g są różniczkowalne w punkcie a. Oblicz granice
 - (a) $\lim_{x \to a} \frac{xf(a) af(x)}{x a},$
 - (b) $\lim_{x \to a} \frac{f(x)g(a) f(a)g(x)}{x a},$
 - (c) $\lim_{x \to a} \frac{a^n f(x) x^n f(a)}{x a}, n \in \mathbb{N}$
- 8. Funkcja f jest różniczkowalna w 0 i $f'(0) \neq 0$. Oblicz granicę

$$\lim_{x \to 0} \frac{f(x)e^x - f(0)}{f(x)\cos x - f(0)}.$$

- **9.** Funkcje $f_1, f_2, \ldots, f_k : (a, b) \to \mathbb{R}$ są różniczkowalne w punkcie $x_0 \in (a, b)$. Znajdź wzór na $(f_1 \cdot f_2 \cdot \ldots \cdot f_k)'(x_0)$.
- 10. Załóżmy, że f(a) > 0 i f jest różniczkowalna w a. Oblicz granice

(a)
$$\lim_{n \to \infty} \left(\frac{f(a + \frac{1}{n})}{f(a)} \right)^{\frac{1}{n}}$$

(b)
$$\lim_{x \to a} \left(\frac{f(x)}{f(a)} \right)^{\frac{1}{\ln x - \ln a}}, a > 0$$

11. Niech $f(x) = a_1 \sin x + a_2 \sin 2x + \ldots + a_n \sin nx$, gdzie $a_1, a_2, \ldots, a_n \in \mathbb{R}$. Udowodnij, że jeśli $|f(x)| \leq |\sin x|$ dla $x \in \mathbb{R}$, to

$$|a_1 + 2a_2 + \ldots + na_n| \leqslant 1.$$

12. Niech f(0) = 0, funkcja f jest różniczkowalna w 0 i $k \in \mathbb{N}$. Znajdź granicę

$$\lim_{x \to 0} \frac{1}{x} \sum_{j=1}^{k} f\left(\frac{x}{j}\right).$$

Pochodna funkcji III (twierdzenia o wartości średniej)

Lemat Fermata. Jeżeli funkcja $f:(a,b)\to\mathbb{R}$ jest różniczkowalna w punkcie $c\in(a,b)$ i ma w tym punkcie ekstremum lokalne, to f'(c) = 0.

Tw. Rolle'a. Funkcja $f:[a,b]\to\mathbb{R}$ jest ciągła na [a,b] i różniczkowalna na (a,b). Jeżeli f(a) = f(b), to istnieje $\xi \in (a,b)$ takie, że $f'(\xi) = 0$.

Tw. Cauchy'ego o wartości średniej. Funkcje $f,g:[a,b]\to\mathbb{R}$ są ciągłe na [a,b] i różniczkowalne na (a,b) oraz $g'(x) \neq 0$ dla $x \in (a,b)$. Wówczas istnieje $\xi \in (a,b)$ takie,

$$\frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f'(\xi)}{g'(\xi)}.$$

Tw. Lagrange'a o wartości średniej. Funkcja $f:[a,b]\to\mathbb{R}$ jest ciągła na [a,b] i różniczkowalna na (a,b). Wówczas istnieje $\xi \in (a,b)$ takie, że

$$\frac{f(b) - f(a)}{b - a} = f'(\xi).$$

Wniosek. Funkcja $f:[a,b]\to\mathbb{R}$ jest ciągła na [a,b] i różniczkowalna na (a,b) oraz f'(x) = 0 dla każdego $x \in (a, b)$. Wówczas funkcja f jest stała.

Tw. Funkcja $f:(a,b)\to\mathbb{R}$ jest różniczkowalna. Wówczas funkcja f' ma własność Darboux.

- 1. Wielomian W o współczynnikach rzeczywistych ma n różnych pierwiastków rzeczywistych. Wykaż, że wielomian W' ma co najmniej n-1 różnych pierwiastków rzeczywistych.
- 2. Dwóch zawodników dotarło do jednocześnie do mety wyścigu. Udowodnij, że w pewnym momemncie obaj biegli z taka sama predościa.
- **3.** Funkcja $f:[a,+\infty)\to\mathbb{R}$ jest ciągła na $[a,+\infty)$ i różniczkowalna na $(a,+\infty)$ oraz $\lim_{x\to +\infty} f(x)=f(a).$ Wykaż, że istnieje $\xi\in (a,+\infty)$ takie, że $f'(\xi)=0.$
- **4.** Wielomian P stopnia n ma n różnych pierwiastków rzeczywistych. Wykaż, że dla dowolnej liczby $a \neq 0$ wielomian P'(x) + aP(x) ma n różnych pierwiastków rzeczywistych.
- 5. Funkcje $f,g:[a,b]\to\mathbb{R}$ są ciągłe na [a,b] i różniczkowalne na (a,b) oraz f(a) = f(b) = 0. Udowodnij, że istnieje $\xi \in (a, b)$ takie, że

$$g'(\xi)f(\xi) + f'(\xi) = 0.$$

6. Liczby rzeczywiste a_0, a_1, \ldots, a_n spełniają równość

$$a_0 + \frac{a_1}{2} + \ldots + \frac{a_n}{n+1} = 0.$$

Udowodnij, że wielomian $P(x) = a_n x^n + ... + a_1 x + a_0$ ma pierwiastek w przedziale (0,1).

7. Niech $a_1, a_2, \ldots, a_n \in \mathbb{R} \setminus \{0\}, b_1, b_2, \ldots, b_n \in \mathbb{R}$ oraz $b_i \neq b_i$ dla $i \neq j$. Udowodnij, że równanie

$$a_1 x^{b_1} + a_2 x^{b_2} + \ldots + a_n x^{b_n} = 0$$

ma co najwyżej n-1 pierwiastków dodatnich.

- 8. Funkcja : $(0,+\infty) \to \mathbb{R}$ jest różniczkowalna oraz inf f'>0. Udowodnij, że $\lim_{x \to \infty} f(x) = +\infty.$
- 9. Udowodnii tożsamości:
 - (a) $\arctan x + \arctan \frac{1-x}{1+x} = \frac{\pi}{4} \text{ dla } x \in (-1, +\infty);$
 - (b) $3 \arccos x \arccos(3x 4x^3) = \pi \text{ dla } x \in [-\frac{1}{2}, \frac{1}{2}].$
- 10. Podaj przykład funkcji różniczkowalnej, której pochodna nie jest ciągła.
- 11. Udowodnij nierówności:
 - (a) $|\lg x \lg y| \ge |x y| \, dla \, x, y \in (-\frac{\pi}{2}, \frac{\pi}{2});$
 - (b) $|\arctan x \arctan y| \le |x y| \, \text{dla } x, y \in \mathbb{R};$
 - (c) $\frac{a-b}{a} < \ln \frac{a}{b} < \frac{a-b}{b}$ dla 0 < b < a.
- 12. Stosując tw. Cauchy'ego o wartości średniej udowodnij nierówności:

 - (a) $1 \frac{x^2}{2!} < \cos x \, dla \, x \neq 0$, (c) $\cos x < 1 \frac{x^2}{2!} + \frac{x^4}{4!} \, dla \, x \neq 0$,

 - (b) $x \frac{x^3}{2!} < \sin x \, dla \, x > 0$, (d) $\sin x < x \frac{x^3}{2!} + \frac{x^5}{5!} \, dla \, x > 0$.
- 13. Funkcja $f:(a,+\infty)$ jest różniczkowalna i $\lim_{x\to+\infty}f'(x)=c$. Udowodnij, że

$$\lim_{x \to +\infty} (f(x+1) - f(x)) = c.$$

14. Niech $\alpha > 1$ i funkcja $f: \mathbb{R} \to \mathbb{R}$ spełnia warunek

$$|f(x) - f(y)| \le |x - y|^{\alpha}$$

dla dowolnych $x, y \in \mathbb{R}$. Udowodnij, że funkcja f jest stała.

15. Funkcja $f:[a,b]\to\mathbb{R}$ jest ciągła na [a,b] i różniczkowalna na (a,b) i f nie jest funkcją liniową. Wykaż, że istnieją $x, y \in (a, b)$ takie, że

$$f'(x) < \frac{f(b) - f(a)}{b - a} < f'(y).$$

16. Załóżmy, że $b-a>\pi$ i funkcja $f:(a,b)\to\mathbb{R}$ jest różniczkowalna. Wykaż, że istnieje $\xi \in (a, b)$ takie, że $f'(\xi) < 1 + f(\xi)^2$.

Analiza - klasa 4a

Zestaw 15.

21.12.2022

Pochodna funkcji IV

Tw. 1. Załóżmy, że funkcja $f:[a,b]\to\mathbb{R}$ jest ciągła na [a,b] i różniczkowalna na (a,b).

- (i) Jeżeli $f'(x) \ge 0$ dla $x \in (a, b)$, to funkcja f jest niemalejąca.
- (ii) Jeżeli f'(x) > 0 dla $x \in (a, b)$, to funkcja f jest rosnąca.
- (iii) Jeżeli $f'(x) \leq 0$ dla $x \in (a, b)$, to funkcja f jest nierosnąca.
- (iv) Jeżeli f'(x) < 0 dla $x \in (a, b)$, to funkcja f jest malejąca.

Tw. 2. Załóżmy, że funkcja $f:(a,b)\to\mathbb{R}$ jest różniczkowalne, $c\in(a,b)$ oraz f'(c)=0

- (i) Jeżeli istnieje $\delta > 0$ takie, że $f'(x) \leq 0$ dla $x \in (c-\delta, c)$ i $f'(x) \geq 0$ dla $x \in (c, c+\delta)$, to f ma w c minimum lokalne.
- (ii) Jeżeli istnieje $\delta > 0$ takie, że $f'(x) \ge 0$ dla $x \in (c-\delta, c)$ i $f'(x) \le 0$ dla $x \in (c, c+\delta)$, to f ma w c maksimum lokalne.

Jeżeli nierówności są ostre, to odp. ekstrema są właściwe.

1. Udowodnij nierówności Bernoulliego:

- (a) $(1+x)^r \ge 1 + rx \text{ dla } x \ge -1 \text{ i } r \ge 1$:
- (b) $(1+x)^r \le 1 + rx$ dla $x \ge -1$ i $0 \le r \le 1$:

2. Udowodnij nierówności:

- (a) $2x \arctan x \ge \ln(1+x^2) d \ln x \in \mathbb{R};$
- (b) $\ln(1+x) > \frac{\arctan x}{1+x} d \ln x > 0;$
- (c) $\ln x \leqslant \frac{x}{e}$ dla x > 0;
- (d) $\cos x < \frac{\sin^2 x}{x^2}$ dla $0 < x < \frac{\pi}{2}$;
- (e) $xe^{x/2} < e^x 1 \text{ dla } x > 0$;
- (f) $e^x < (1+x)^{1+x} dla x > 0$;
- (g) $\ln(1+x) < \frac{x}{\sqrt{1+x}} dla \ x > 0;$
- (h) $\left(\frac{x+1}{2}\right)^{x+1} \leqslant x^x \text{ dla } x > 0;$
- (i) $\frac{1}{3} \operatorname{tg} x + \frac{2}{3} \sin x > x$ dla $0 < x < \frac{\pi}{2}$;

(j)
$$\sin x \cdot \operatorname{tg} x \ge x^2 \operatorname{dla} -\frac{\pi}{2} < x < \frac{\pi}{2}$$
.

- 3. Która z liczb jest większa: e^{π} czy π^{e} ?
- **4.** Wykaż, że jeśli $x, y \ge 0$ i $\alpha \ge 1$, to

$$(x+y)^{\alpha} \geqslant x^{\alpha} + y^{\alpha}.$$

5. Udowodnij, że dla $0 < a < b < \frac{\pi}{2}$

$$\frac{\operatorname{tg} a}{a} < \frac{\operatorname{tg} b}{b}.$$

6. Wykaż, że dla dowolych liczb dodatnich a, b takich, że $a \neq b$ zachodzą nierówności

$$\sqrt{ab} < \frac{b-a}{\ln b - \ln a} < \frac{a+b}{2}.$$

Liczbę $\frac{b-a}{\ln b - \ln a}$ nazywamy średnią logarytmiczną liczb a i b.

7. Załóżmym, że a, b, x > 0 i $a \neq b$. Udowodnij nierówność

$$\left(\frac{a+x}{b+x}\right)^{b+x} > \left(\frac{a}{b}\right)^b.$$

8. Udowodnij, że jeśli b > a > 1 i c > 0, to

$$\log_a b > \log_{a+c}(b+c).$$

9. Wyznacz przedziały monotonicznośc, ekstrema lokalne i kresy funkcji

- (a) $f(x) = xe^{-x^2}$,
- (b) $f(x) = \frac{x^2 + 1}{x^2 + x + 1}$,
- (c) $f(x) = \sin(\sin x)$,
- (d) $f(x) = \sqrt[3]{x+1} \cdot \sqrt[5]{x^2 2x + 1}$,
- (e) $f(x) = x^x$.

10. Znajdź ekstrema lokalne funkcji $f(x) = x^m (1-x)^n$, gdzie $x \in \mathbb{R}, m, n \in \mathbb{N}$.

11. Znajdź największą i najmniejszą wartość funkcji $f(x) = x \arcsin x + \sqrt{1 - x^2}$ na przedziałe [-1, 1].

- **12.** Wyznacz kres górny zbioru $\{2^{-x} + 2^{-1/x} : x > 0\}$
- 13. Ile pierwiastków ma równanie $6 \ln(1+x^2) = e^x$?
- 14. Wyznacz liczbę pierwiastków równania $a^x = x$ w zależności od a > 0.
- 15. Udowodnij, że dla x>y>1 zachodzi nierówność

$$x^{y^x} > y^{x^y}.$$

16. Załóżmy, że $a \ge b \ge c > 0$. Udowodnij nierówność

$$a^c \cdot b^a \cdot c^b \geqslant a^b \cdot b^c \cdot c^a$$
.

Pochodna funkcji V - powtórka

- 1. Okno na poddaszu ma mieć kształt trapezu równoramiennego, którego krótsza podstawa i ramiona mają długość po 40 cm. Jaką długość powinna mieć dłuższa podstawa tego trapezu, aby okno miało największe pole powierzchni?
- 2. Rozpatrujemy wszystkie stożki, których przekrojem osiowym jest trójkąt o obwodzie 20. Oblicz wysokość i promień podstawy tego stożka, którego objętość jest największa.
- 3. Parabola o równaniu $y=2-\frac{x^2}{2}$ przecina oś OX w punktach A i B. Rozpatrujemy wszystkie trapezy ABCD takie, że punkty C i D leżą na tej paraboli w górnej połowie układu współrzędnych. Znajdź współrzędne punktów C i D, dla których pole trapezu ABCD jest największe.
- **4.** Trójkąty prostokątne o obwodzie 1 obracamy wokół przeciwprostokątnej. Czy dla któregoś z nich objętość otrzymanej bryły będzie największa? Jeśli tak, to znajdź tę największą objętość.
- 5. Oblicz pochodną funkcji we wszystkich punktach, w których istnieje:
 - (a) $\arcsin \frac{1-x^2}{1+x^2}$,
 - (b) $\sin^2(\sqrt{x})$,
 - (c) $\ln(1 + \sqrt[3]{\sin x})$.
- 6. Wyznacz wszystkie pary liczb rzeczywistych a, b takie, że funkcja

$$f(x) = \begin{cases} ax + b\cos x & \text{dla } x \ge 0\\ \frac{1 - \cos x}{x\sin x} & \text{dla } -\pi < x < 0 \end{cases}$$

jest różniczkowalna na przedziale $(-\pi, \infty)$.

- 7. Udowodnij, że funkcja $f(x)=e^x+x$ ma różniczkowalną funkcję odwrotną. Wyznacz $f^{-1}(1)$ i $(f^{-1})'(1)$.
- 8. Zbadaj przebieg zmienności funkcji i wyznacz ich ekstrema lokalne oraz kresy.
 - (a) $f(x) = (x^2 2x) \cdot \ln x \frac{3}{2}x^2 + 4x$,
 - (b) $f(x) = \frac{\sqrt{|x^2 2|}}{x^2 + x + 1}$
- 9. Dana jest funkcja $f(x) = \frac{x^2 + bx + 3}{\sqrt{1 + x^2}}$. Wyznacz liczbę i rodzaj ekstremów funkcji f w zależności od parametru $b \in \mathbb{R}$.

- 10. Wyznacz liczbę pierwiastków rzeczywistych trójmianu $x^3 px + q$ w zależności od wartości parametrów $p, q \in \mathbb{R}$.
- 11. Udowodnij nierówności:
 - (a) $\sqrt[3]{1+x} > 1 + \frac{1}{3}x \frac{1}{9}x^2, x > 0,$
 - (b) $\frac{2}{2x+1} < \ln\left(1+\frac{1}{x}\right) < \frac{1}{\sqrt{x^2+x}}, \ x > 0,$
 - (c) $\sin(\operatorname{tg} x) \ge x, x \in [0, \frac{1}{4}\pi].$
 - (d) $x^3 \frac{x^5}{10} < 3\sin x 3x\cos x < x^3, x \in (0, \frac{1}{2}\pi).$
- **12.** Niech $x \in (0,1)$ i $0 < \alpha < \beta$. Udowodnij nierówność

$$\frac{1 - x^{\beta}}{1 - x^{\alpha}} > \frac{\beta}{\alpha} x^{\beta - \alpha}.$$

13. Funkcja różniczkowalna $f:(0,+\infty)\to\mathbb{R}$ ma własność

$$\lim_{x \to +\infty} \frac{f(x)}{x} = 0.$$

Udowodnij, że istnieje ciąg $x_n \to +\infty$ taki, że $f'(x_n) \to 0$.

- 14. Sformuluj i udowodnij
 - (a) Lemat Fermata, tw. Rolle'a i tw. Cauchy'ego o wartości średniej.
 - (b) Twierdzenie o pochodnej funkcji odwrotnej.

Pochodna funkcji VI

Przypomnienie: Tw. Stolza. Ciągi liczb rzeczywistych $(a_n)_n$ i $(b_n)_n$ spełniają:

- (i) ciąg $(b_n)_n$ jest ściśle monotoniczny i $b_n \neq 0$ dla każdego n,
- (ii) istnieje granica $\lim_{n\to\infty} \frac{a_{n+1} a_n}{b_{n+1} b_n} = g$,
- (iii) $\lim_{n \to \infty} b_n = \pm \infty$ lub $\lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n = 0$. Wówczas $\lim_{n \to \infty} \frac{a_n}{b_n} = g$.

Tw. (Regula de l'Hospitala) Niech $b \in \mathbb{R} \cup \{+\infty\}$. Funkcje $f, g: (a, b) \to \mathbb{R}$ są różniczkowalne, $q'(x) \neq 0$ dla $x \in (a, b)$,

$$\lim_{x \to b} f(x) = \lim_{x \to b} g(x) = 0 \quad \text{lub} \quad \lim_{x \to b} g(x) = +\infty$$

oraz istnieje granica

$$\lim_{x \to b} \frac{f'(x)}{g'(x)} = C \in \mathbb{R} \cup \{-\infty, +\infty\}.$$

Wówczas

$$\lim_{x \to b} \frac{f(x)}{g(x)} = C.$$

Lemat. Niech $f:(a,b)\to\mathbb{R}$, gdzie $b\in\mathbb{R}\cup+\infty$ i dla każdego ciągu rosnącego $(x_n)_n$ takiego, że $x_n \to b$ zachodzi $f(x_n) \to c$. Wówczas $\lim_{x \to b} f(x) = c$.

1. Korzystając z reguły de l'Hospitala lub nie, oblicz granice:

(a) $\lim_{x\to 0} \frac{e^x - e^{-x} - x}{\sin x - 2x}$,

(h) $\lim_{x \to \frac{\pi}{2}} \frac{\operatorname{tg} x - 1}{\sin x - \cos x}$,

(b) $\lim_{x\to 0} \frac{e^x - e^{-x} - 2x}{\sin x - x}$,

(i) $\lim_{x \to 1} (x^2 - 1) \operatorname{tg} \frac{\pi x}{2}$,

(c) $\lim_{x \to 0} \frac{\sin x - x}{r^3},$

(j) $\lim_{x \to \frac{\pi}{2}} \frac{\operatorname{tg} x - 1}{2 \sin^2 x - 1}$,

(d) $\lim_{x \to 0^+} \frac{(1+x)^{\frac{1}{x}} - e}{r}$,

(k) $\lim_{x \to 0} \left(\frac{\sin x}{x} \right)^{\frac{1}{x}}$, (1) $\lim_{x \to 0} \left(\frac{\sin x}{r} \right)^{\frac{1}{x^2}}$,

(e) $\lim_{x \to \frac{\pi}{2}} \left(x - \frac{\pi}{2} \right) \operatorname{tg} x$, (f) $\lim_{x \to +\infty} \frac{x^2 \sin \frac{1}{x}}{2x - 1}$,

- (m) $\lim_{x \to +\infty} \left(x x^2 \ln \left(1 + \frac{1}{x} \right) \right)$,
- (g) $\lim_{x \to +\infty} (\pi 2\operatorname{arctg} x) \ln x$,
- (n) $\lim_{x \to 0} \left(e^{2x} + x \right)^{\frac{1}{x}}$,

(o) $\lim_{x\to 0} \left(\frac{1}{r^3} - \frac{1}{\sin^3 x} \right)$,

(q) $\lim_{x \to 1} (2-x) \operatorname{tg}(\pi x/2)$,

(p) $\lim_{x \to 1} \frac{x^x - x}{\ln x - x + 1}$,

- (r) $\lim_{x \to +\infty} \ln(e^x + x) \left(\left(1 + \frac{1}{x} \right)^x e \right)$
- **2.** Niech $f(x) = x \sin x$, $g(x) = 2x + \sin x$. Znajdź granicę $\lim_{x \to +\infty} \frac{f(x)}{g(x)}$ i wykaż, że granica $\lim_{x \to +\infty} \frac{f'(x)}{g'(x)}$ nie istnieje.
- **3.** Niech a > 0. Znajdź granice
 - (a) $\lim_{x \to 0} \frac{e^x 1 x \frac{x^2}{2}}{x^a}$, (b) $\lim_{x \to 0} \frac{\cos x 1 + \frac{x^2}{2}}{x^a}$, (c) $\lim_{x \to 0} \frac{\frac{\sin x}{x} 1}{x^a}$.
- 4. Oblicz granicę $\lim_{x\to 0} \frac{\sqrt{1+\sin(x^4)}-\cos(x^2)}{(\tan x \sin x)(\ln(1+\arcsin x))}.$
- 5. Oblicz granice
 - (a) $\lim_{x \to 0^+} \left(\operatorname{ctg} x \frac{1}{x} \right)$, (b) $\lim_{x \to 0^+} \frac{1}{x} \left(\operatorname{ctg} x \frac{1}{x} \right)$, (c) $\lim_{x \to 0^+} \left(\operatorname{ctg}^2 x \frac{1}{x^2} \right)$.
- **6.** Oblicz granicę $\lim_{x\to 0^+} \left(2\sin\sqrt{x} + \sqrt{x}\sin\frac{1}{x}\right)^x$.
- 7. Funkcja $f:\mathbb{R} \to \mathbb{R}$ jest różniczkowalna, granica $\lim_{x \to +\infty} f(x)$ istnieje i jest skończona oraz istnieje granica $\lim_{x \to +\infty} x f'(x)$. Udowodnij, że wówczas

$$\lim_{x \to +\infty} x f'(x) = 0.$$

8. Funkcja $f:(0,+\infty)\to\mathbb{R}$ jest różniczkowalna, a>0 oraz

$$\lim_{x \to +\infty} (af(x) + f'(x)) = b \in \mathbb{R}.$$

Udowodnij, że

$$\lim_{x \to +\infty} f(x) = \frac{b}{a}.$$

9. Dla danej liczby $\lambda \geq 1$ niech $f(\lambda)$ oznacza (jedyne) rozwiązanie równania $x(1 + \ln x) = \lambda$. Udowodnij, że

$$\lim_{\lambda \to \infty} \frac{\ln \lambda \cdot f(\lambda)}{\lambda} = 1.$$

Pochodne wyższych rzędów I

Definicja. Załóżmy, że $I \subset R$ jest przedziałem i $f: I \to R$. Pochodną rzędu 0 funkcji f nazywamy samą funkcję f. Możemy pisać $f^{(0)} = f$.

Pochodną rzędu n funkcji f w punkcie $a \in I$ definiujemy jako pochodnę funkcji $f^{(n-1)}$ w punkcie a, czyli

$$f^{(n)}(a) = (f^{(n-1)})'(a).$$

Jeżeli ta pochodna (jako odp. granica) istnieje, to mówimy, że funkcja f jest n-krotnie różniczkowalna w punkcie a. Jeżeli funkcja f jest n-krotnie różniczkowalna w każdym punkcie $x \in I$, to mówimy, że jest ona n-krotnie różniczkowalna (na przedziale I). Funkcję $x \mapsto f^{(n)}(x), \ (x \in I)$ nazywamy wówczas n-tą pochodną funkcji f lub pochodną rzędu n funkcji f.

Tw. (Wzór Taylora z resztą Lagrange'a) Załóżmy, że funkcja $f:(a,b)\to\mathbb{R}$ ma w przedziale (a,b) pochodne do rzędu n+1 włącznie. Niech $c\in(a,b)$ Wówczas dla dowolnego $x\in(a,b)$, istnieje punkt ξ leżący pomiędzy c i x, że

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(c)}{k!} (x-c)^{k} + \frac{f^{(n+1)}(\xi)}{(n+1)!} (x-c)^{n+1}.$$

Uwaga: Występujący w powyższym wzorze wielomian $T_n(x) = \sum_{k=0}^n \frac{f^{(k)}(c)}{k!} (x-c)^k$ nazywamy n-tym wielomianem Taylora funkcji f w punkcie c, funkcję $R_n(x) = f(x) - T_n(x)$ nazywamy n-tq resztq Taylora funkcji f w punkcie c.

- 1. Wyznacz funkcję $f^{(n)}(x)$ dla (a) $f(x) = x^a$, $a \in \mathbb{R}$, (b) $f(x) = \ln(a+x)$, a > 0, (c) $f(x) = e^{ax}$, $a \neq 0$, (d) $f(x) = \sin(ax)$, $a \neq 0$, (e) $f(x) = \log_a(x)$, a > 0, (f) $f(x) = a^x$, a > 0.
- 2. Wzór Leibniza. Załóżmy, że funkcje $f,g:I\to\mathbb{R}$ są n-krotnie różniczkowalne w punkcie $a\in I$. Udowodnij, że

$$(fg)^{(n)}(a) = \sum_{k=0}^{n} \binom{n}{k} f^{(k)}(a)g^{(n-k)}(a).$$

- **3.** Oblicz *n*-tą pochodną funkcji (a) $f(x) = xe^x$, (b) $g(x) = x^3 \sin(5x)$.
- 4. Niech

$$f(x) = \begin{cases} e^{-1/x^2} & \text{dla } x \neq 0, \\ 0 & \text{dla } x = 0. \end{cases}$$

Wykaż, że $f^{(n)}(0) = 0$ dla każdego $n \in \mathbb{N}$ i $f^{(n)}(x) = e^{-1/x^2} P_n(1/x)$ dla $x \neq 0$, gdzie P_n jest wielomianem o współczynnikach całkowitych.

5. Wielomiany Hermite'a. Niech $f(x) = e^{-x^2}$ i dla n = 0, 1, 2, ...

$$H_n(x) = (-1)^n e^{x^2} \cdot f^{(n)}(x), \qquad x \in \mathbb{R}$$

- (a) Wykaż, że dla $n = 0, 1, 2, \dots$ funkcja H_n jest wielomianem stopnia n.
- (b) Udowodnij zależność rekurencyjną $H_{n+1}(x) = 2xH_n(x) 2nH_{n-1}(x)$.
- 6. Wielomiany Laguerre'a. Wykaż, że dla $n=0,1,2,\ldots$ funkcja

$$L_n(x) = \frac{e^x}{n!} \cdot (x^n e^{-x})^{(n)}, \qquad x \in \mathbb{R}$$

jest wielomianem stopnia n.

- (a) Wykaż zależność rekurencyjną $L_{n+1}(x) = \frac{(2n+1-x)L_n(x) nL_{n-1}(x)}{n+1}$.
- (b) Udowodnij wzór $L_n(x) = \sum_{k=0}^n \binom{n}{k} \frac{(-1)^k}{k!} x^k$. (c) Oblicz $L_n(0)$ i $L'_n(0)$.
- 7. Załóżmy, że P jest wielomianem stopnia n. Udowodnij, że dla dowolnych $c, x \in \mathbb{R}$

$$P(x) = P(c) + \frac{P'(c)}{1!}(x - c) + \frac{P''(c)}{2!}(x - c)^2 + \ldots + \frac{P^{(n)}(c)}{n!}(x - c)^n.$$

Wyznacz k-ty wielomian Taylora wielomianu P w punkcie c.

8. Udowodnij, że dla każdego $x \in \mathbb{R}$ prawdziwe są wzory:

$$\sin x = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{(2n+1)!}, \qquad \cos x = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{(2n)!}.$$

- **9.** Wyznacz *n*-ty wielomian i resztę Taylora w zerze funkcji z zadania 4.
- 10. Udowodnij, że dla każdej liczby rzeczywistej x > 0 zachodzą nierówności

$$1 + \frac{1}{2}x - \frac{1}{8}x^2 < \sqrt{1+x} < 1 + \frac{1}{2}x.$$

- 11. Znajdź przybliżenie wymierne liczby \sqrt{e} z dokładnością 10^{-3} .
- 12. Udowodnij, że

$$\ln 2 = \sum_{n=1}^{\infty} \frac{(-1)^{k-1}}{k}.$$

13. Wykaż, że dla x > 0 prawdziwe są oszacowania

$$0 < 1 - \frac{1}{2}x + \frac{3}{8}x^2 - \frac{1}{\sqrt{1+x}} < \frac{5}{16}x^3.$$

14. Wykaż, że dla $n \in \mathbb{N}$ i $x \ge 0$

$$e^x - \sum_{k=0}^n \frac{x^k}{k!} \leqslant \frac{xe^x}{n}.$$

15. Wykaż, że jeśli $x \in [0, \frac{\pi}{3}]$, to $\operatorname{tg}(\sin x) \ge x$.

Funkcje wypukłe

Niech $I \subset \mathbb{R}$ bedzie przedziałem, półprostą lub prostą. Mówimy, że funkcja $f: I \to \mathbb{R}$ jest wypukła, jeżeli dla wszystkich $x,y \in I$ i dowolnego $\lambda \in (0,1)$ zachodzi nierówność

$$f((1-\lambda)x + \lambda y) \le (1-\lambda)f(x) + \lambda f(y),$$

zwana nierównością Jensena. Jeżeli ta nierówność jest ostra dla dowolnych x,y,t j.w. to mówimy, że f jest ściśle wypukla. Jeżeli nierówność Jensena zachodzi w przeciwną strone, to mówimy, że f jest wklesla.

Uwaga: Funkcja f jest (ściśle) wypukła wtw. gdy -f jest (sciśle) wklęsła.

Interpretacja geometryczna. Funkcja f jest ściśle wypukła wtw. gdy każda cięciwa łącząca dwa punkty należące do wykresu f leży nad tym wykresem lub się z nim pokrywa.

Nierówność Jensena. Jeżeli $f:I\to\mathbb{R}$ jest wypukła, $x_1,x_2,\ldots,x_n\in I,$ $t_1,t_2,\ldots,t_n\in[0,1]$ i $t_1+t_2+\ldots+t_n=1,$ to

$$f\left(\sum_{k=1}^{n} t_k x_k\right) \leqslant \sum_{k=1}^{n} t_k f(x_k).$$

Lemat. Funkcja $f: I \to \mathbb{R}$ jest wypukła wtw. gdy dla dowolnych $x, c, y \in I, x < c < y$ zachodzi nierówność

$$\frac{f(x) - f(c)}{x - c} \leqslant \frac{f(y) - f(c)}{y - c}.$$

W przypadku funkcji ściśle wypukłych nierówność jest ostra.

Tw. 2. Funkcja różniczkowalna $f:(a,b)\to\mathbb{R}$ jest wypukła (ściśle wypukła) wtw. gdy funkcja f' jest niemalejąca (ściśle rosnąca). Funkcja f jest wklęsła (ściśle wklęsła) wtw. gdy f' jest nierosnąca (ściśle malejąca)

Wniosek. Funkcja 2-krotnie różniczkowalna $f:(a,b)\to\mathbb{R}$ jest wypukła (ściśle wypukła) wtw. gdy funkcja f" jest nieujmena (dodatnia); f jest wklęsła (ściśle wklęsła) wtw. gdy f" jest niedodatnia (ujemna).

- **1.** Zbadaj, na jakich przedziałach są wklęsłe / wypukłe funkcje (a) $f(x) = xe^x$, (b) $\sin x$, (c) $\operatorname{tg} x$, (d) $f(x) = x^4 7x^2 + 6x$ (e) $f(x) = x^n$, $n \in \mathbb{N}$
- **2.** Jak jest maksymalna liczba przedziałów wklęsłości / wypukłości wielomianu stopnia n?
- 3. Wykaż, że funkcja $f(x)=\sqrt{1+x^2}-\ln\left(\frac{1}{x}+\sqrt{1+\frac{1}{x^2}}\right)$ jest rosnąca i wklęsła na $(0,+\infty)$

4. Uogólniona nierówność Cauchy'ego: Niech $\alpha_1, \alpha_2, \dots, \alpha_n > 0$ i $\alpha_1 + \alpha_2 + \dots + \alpha_n = 1$. Wykaż, że dla dowolnych liczb dodatnich x_1, x_2, \dots, x_n

$$\alpha_1 x_1 + \alpha_2 x_2 + \ldots + \alpha_n x_n \geqslant x^{\alpha_1} \cdot x^{\alpha_2} \cdot \ldots \cdot x^{\alpha_n}$$
.

5. Niech a > 1 i $x_1, x_2, \ldots, x_n \ge 0$. Wykaż, że

$$\left(\frac{x_1 + x_2 + \ldots + x_n}{n}\right)^a \leqslant \frac{x_1^a + x_2^a + \ldots + x_n^a}{n}.$$

6. Udowodnij Nierówność Younga: Jeśli p,q>1 i $p^{-1}+q^{-1}=1$, to dla dowolnych $x,y\geqslant 0$

$$xy \leqslant \frac{x^p}{p} + \frac{y^q}{q}.$$

7. Udowodnij Nierówność Höldera: Jeśli $n \in \mathbb{N}$, p, q > 1 i $p^{-1} + q^{-1} = 1$, to dla dowolnych $x_1, \ldots, x_n, y_1, \ldots, y_n$ spełniona jest nierówność

$$\sum_{k=1}^{n} x_k y_k \le \left(\sum_{k=1}^{n} x_k^p\right)^{\frac{1}{p}} \cdot \left(\sum_{k=1}^{n} y_k^q\right)^{\frac{1}{q}}.$$

Oblicz granicę prawej strony, gdy $p \to +\infty$.

8. Stosując nierówność Höldera udowodnij, nierówność Minkowskiego: Jeśli $x_1,\ldots,x_n,y_1,\ldots,y_n\in\mathbb{R}$ i $p\geqslant 1,$ to

$$\left(\sum_{i=1}^{n} |x_i + y_i|^p\right)^{\frac{1}{p}} \leqslant \left(\sum_{i=1}^{n} |x_i|^p\right)^{\frac{1}{p}} + \left(\sum_{i=1}^{n} |y_i|^p\right)^{\frac{1}{p}}.$$

9. Niech $x_1, x_2, \ldots, x_n \in (0, \pi)$ i $x = \frac{x_1 + x_2 + \ldots + x_n}{n}$. Udowodnij nierówności

(a)
$$\prod_{k=1}^{n} \sin x_k \le (\sin x)^n$$
, (b) $\prod_{k=1}^{n} \frac{\sin x_k}{x_k} \le \left(\frac{\sin x}{x}\right)^n$.

10. Niech $a, b, c, d \in \mathbb{R}$. Wykaż, że

$$1 + \sqrt[4]{e^a e^b e^c e^d} \leqslant \sqrt[4]{(1 + e^a)(1 + e^b)(1 + e^c)(1 + e^d)}.$$

11. Niech $x, y, z \in [0, \frac{\pi}{4}]$. Wykaż, że

$$\left(1 - \operatorname{tg}\left(\frac{x + y + z}{3}\right)\right)^{3} \geqslant (1 - \operatorname{tg} x)(1 - \operatorname{tg} y)(1 - \operatorname{tg} z).$$

- 12. Funkcja $f:(0,+\infty)\to\mathbb{R}$ jest wypukła i $\lim_{x\to 0^+}f(x)=0$. Udowodnij, że funkcja $g(x)=\frac{f(x)}{x}$ jest rosnąca na $(0,+\infty)$.
- 13. Udowodnij, że funkcja wypukła $f:(a,b)\to\mathbb{R}$ jest ciągła.

Powtórzenie

- 1. Oblicz granice
 - (a) $\lim_{x \to \frac{\pi}{4}} \frac{\sqrt[3]{\lg x} 1}{2\sin^2 x 1}$,
 - (b) $\lim_{x \to +\infty} \left(\frac{2}{\pi} \operatorname{arctg} x\right)^x$,
 - (c) $\lim_{x \to 1} \frac{\arctan \frac{x^2 1}{x^2 + 1}}{x 1}$,
 - (d) $\lim_{x\to 0^+} (1-\sin x)^{\frac{1}{x}}$,
 - (e) $\lim_{x \to 0} \frac{x \cot x 1}{x^2}$.
- **2.** Oblicz *n*-tą pochodną funkcji $f(x) = (x^3 + x^2)e^{2x}$.
- **3.** Funkcja $f:(a,b)\to\mathbb{R}$ jest 2-krotnie różniczkowalna i f'' jest ciągła w punkcie x. Udowodnij, że

$$\lim_{h \to 0} \frac{f(x+h) - 2f(x) + f(x-h)}{h^2} = f''(x).$$

4. Udowodnij, że dla $x \in \mathbb{R}$

$$\ln(1 + e^x) \le \ln 2 + \frac{1}{2}x + \frac{1}{24}x^2,$$

- 5. Wyznacz przedziały wklęsłości i wypukłości funkcji
 - (a) $f(x) = \frac{1}{1+x^2}$
 - (b) $f(x) = x + \sin x$.
- 6. Niech $x_1, x_2, \dots, x_n \in \mathbb{R}$ i $a = x_1 + x_2 + \dots + x_n$. Udowodnij nierówność

$$a \cdot \operatorname{arctg} \frac{a}{n} \leqslant \sum_{k=1}^{n} x_k \cdot \operatorname{arctg} x_k.$$

7. Udowodnij, że dla dowolnych liczb dodatnich u, v zachodzi nierówność

$$\frac{\sqrt[3]{uv}}{1+\sqrt[3]{uv}} \geqslant \frac{1}{3}\left(\frac{1}{2} + \frac{u}{1+u} + \frac{v}{1+v}\right).$$

Wskazówka: każda liczba dodatnia jest postaci e^x .

8. Funkcja $f:(0,+\infty)\to\mathbb{R}$ jest 2-krotnie różniczkowalna, f'' jest funkcją ograniczoną i $\lim_{x\to\infty}f(x)=0$. Udowodnij, że $\lim_{x\to\infty}f'(x)=0$

Całka nieoznaczona I

Operacja odwrotna do różniczkowania funkcji nazywana jest całkowaniem: mając daną funkcję f szukamy funkcji F takiej, że F'=f. Niestety, w odróżnieniu od różniczkowania, które w zasadzie jest czynnością mechaniczną, całkowanie funkcji bywa trudne, wymaga pomysłowości i nie zawsze jest wykonalne.

Definicja. Załóżmy, że zbiór $D \subset \mathbb{R}$ jest sumą rozłącznych przedziałów i dana jest funkcja $f: D \to \mathbb{R}$. Każdą funkcję $F: D \to \mathbb{R}$ taką, że dla każdego $x \in D$ zachodzi F'(x) = f(x) nazywamy całką nieoznaczoną lub funkcją pierwotną funkcji f. Piszemy

$$F(x) = \int f(x) \, \mathrm{d}x.$$

Najważniejsze funkcje pierwotne:

$$\int x^a \, \mathrm{d}x = \frac{1}{1+a} x^{a+1} + C \, \mathrm{dla} \, a \neq 1 \, \mathrm{i} \, \mathrm{ka\dot{z}dego} \, x, \, \mathrm{dla} \, \mathrm{kt\acute{o}rego} \, \mathrm{okre\acute{s}lona} \, \mathrm{jest} \, \mathrm{funkcja} \, x^a,$$

$$\int e^x \, \mathrm{d}x = e^x + C, \quad \int \frac{1}{x} \, \mathrm{d}x = \ln|x| + C, \quad \int \cos x \, \mathrm{d}x = \sin x + C, \quad \int \sin x \, \mathrm{d}x = -\cos x + C,$$

$$\int \frac{1}{1+x^2} \, \mathrm{d}x = \mathrm{arctg} \, x + C, \qquad \int \frac{1}{\sqrt{1-x^2}} \, \mathrm{d}x = \mathrm{arc} \sin x + C, \qquad \int \frac{1}{\cos^2 x} \, \mathrm{d}x = \mathrm{tg} \, x + C,$$

$$\int \frac{1}{\sin^2 x} \, \mathrm{d}x = -\cot x + C.$$

Występująca w powyższych wzorach stała C jest nazywana stałą całkowania. Jeżeli dziedzina funkcji składa się z więcej niż jednego przedziału, na każdym przedziałe wartość stałej całkowania może być inna. (Ściśle: na każdej składowej spójności dziedziny stała całkowania może mieć inną wartość).

Tw. 1. Jeżeli $I \subset \mathbb{R}$ jest przedziałem i funkcja $f: I \to \mathbb{R}$ jest ciągła, to funkcja f ma funkcję pierwotną. (dowód pomijamy)

Stw. 2. Jeżeli $I \subset \mathbb{R}$ jest przedziałem, $f: I \to \mathbb{R}$ i F jest funkcją pierwotną funkcji f, to F jest funkcją ciągłą.

Stw. 3. (liniowość całki). Jeżeli funkcje $f,g:D\to\mathbb{R}$ mają funkcje pierwotne i $a,b\in\mathbb{R},$ to

$$\int (af(x) + bg(x)) dx = a \int f(x) dx + b \int g(x) dx.$$

Stw. 4. (podstawienie liniowe). Jeżeli $a \in \mathbb{R} \setminus \{0\}, b \in \mathbb{R}$ oraz $\int f(x) dx = F(x) + C$, to

$$\int f(ax+b) dx = \frac{1}{a}F(ax+b) + C.$$

Tw. 5. (Wzór na całkowanie przez części). Jeżeli funkcje $f,g:A\to\mathbb{R}$ są różniczkowalne, to

$$\int f'(x)g(x) dx = f(x)g(x) - \int f(x)g'(x) dx.$$

Oblicz całki nieoznaczone:

1.
$$\int (x^4 + 2x^3 - x^2 - 7) \, \mathrm{d}x$$
,

12.
$$\int xe^x dx$$
,

$$2. \int \frac{1}{\sqrt[3]{x}} \, \mathrm{d}x,$$

$$13. \int \sin x \cdot e^x dx,$$

$$3. \int \cos^2 x \, \mathrm{d}x, \int \sin^2 x \, \mathrm{d}x$$

$$14. \int x^2 e^{-x} \, \mathrm{d}x,$$

4.
$$\int (4\sin(5x) - 5\cos(4x)) dx$$
,

$$15. \int \ln^2 x \, \mathrm{d}x,$$

5.
$$\int |x| \, \mathrm{d}x,$$

$$16. \int x^3 \sin x \, \mathrm{d}x,$$

$$6. \int \sqrt{|x|} \, \mathrm{d}x,$$

17.
$$\int x \cos^2 x \, \mathrm{d}x,$$

$$7. \int a^x \, \mathrm{d}x, \, a > 0,$$

$$18. \int x^2 \cos^2 x \, \mathrm{d}x,$$

$$8. \int \frac{1}{3-2x} \, \mathrm{d}x,$$

$$19. \int \sin^3 x \, \mathrm{d}x,$$

9.
$$\int \frac{1}{4+9x^2} \, \mathrm{d}x$$
,

20.
$$\int x \operatorname{arctg} x \, \mathrm{d}x,$$

10.
$$\int \frac{1}{1-x^2} dx$$
.

21.
$$\int x \sin x e^x \, \mathrm{d}x,$$

11.
$$\int \ln_a x \, dx, \, a > 0,$$

22.
$$\int \cos(\ln x) \, \mathrm{d}x,$$

23. Załóżmy, że $I\subset\mathbb{R}$ jest przedziałem i funkcja $f:I\to\mathbb{R}\setminus\{0\}$ jest różniczkowalna. Udowodnij, że

$$\int \frac{f'(x)}{f(x)} dx = \ln|f(x)| + C.$$

Oblicz całki nieoznaczone:

24.
$$\int \operatorname{tg} x \, \mathrm{d} x$$

$$27. \int \frac{e^x}{3+e^x} \, \mathrm{d}x,$$

25.
$$\int \frac{x}{1+x^2} \, \mathrm{d}x$$
,

$$28. \int \frac{1}{x \ln x} \, \mathrm{d}x,$$

26.
$$\int \frac{x^2}{1 - x^3} \, \mathrm{d}x,$$

$$\mathbf{29.} \int \frac{1}{\arccos x \cdot \sqrt{1-x^2}} \, \mathrm{d}x.$$

Całka nieoznaczona II

Funkcje hiperboliczne. Przypomnijmy:

$$sinh x = \frac{e^x - e^{-x}}{2}, \qquad \cosh x = \frac{e^x + e^{-x}}{2}.$$

Łatwo wyprowadzić tożsamości

$$\cosh^2 x - \sinh^2 x = 1$$
 (tzw. jedynka hiperboliczna), $\cosh(2x) = 2\sinh^2 x - 1$, $\sinh(2x) = 2\cosh x \cdot \sinh x$.

Łatwo sprawdzić, że $\int \sinh x \, dx = \cosh x + C$ i $\int \cosh x \, dx = \sinh x + C$.

Sinus i cosinus hiperboliczny mają swoje funkcje odwrotne:

$$\operatorname{arsinh} y = \ln\left(y + \sqrt{y^2 + 1}\right), \ y \in \mathbb{R}, \qquad \operatorname{arcosh} y = \ln\left(y + \sqrt{y^2 - 1}\right), \ y \geqslant 1$$

oraz

$$(\operatorname{arsinh} y)' = \frac{1}{\sqrt{y^2 + 1}}, \quad (\operatorname{arcosh} y)' = \frac{1}{\sqrt{y^2 - 1}}, \ y > 1.$$

Mamy więc kolejne ważne funkcje pierwotne:

$$\int \frac{\mathrm{d}x}{\sqrt{x^2 + 1}} = \operatorname{arsinh} x + C, \qquad \int \frac{\mathrm{d}x}{\sqrt{x^2 - 1}} = \operatorname{arcosh} x + C.$$

Tw. o całkowaniu przez podstawienie. Załóżmy, że funkcja f jest ciągła, funkcja g jest różniczkowalna i g' jest ciągła, oraz F jest funkcją pierwotną funkcji f. Wówczas

$$\int f(g(x)) \cdot g'(x) \, \mathrm{d}x = F(g(x)) + C.$$

Do całkowania funkcji wymiernych przydatne jest twierdzenie:

 ${f Tw.~o~rozkładzie~funkcji~wymiernej~na~ułamki~proste.}$ Każda funkcja wymierna F jest sumą pewnego wielomianu i pewnej liczby ułamków prostych, czyli funkcji wymiernych postaci

$$\frac{A}{(x-a)^k},\,A,a\in\mathbb{R},k\in\mathbb{N},\qquad \frac{Ax+B}{((x-a)^2+b^2)^k},\,A,B,a\in\mathbb{R},b>0,k\in\mathbb{N}.$$

Mianowniki tych ułamków prostych są dzielnikami mianownika F.

1. Oblicz całki, stosując tw. o całkowaniu przez podstawienie:

(a)
$$\int xe^{-x^2} dx$$
(b)
$$\int x\sqrt{4-x^2} dx$$
(c)
$$\int \frac{dx}{(1+x^2)^2}$$
(d)
$$\int \frac{dx}{\cos x}$$
(e)
$$\int e^{\sqrt{x}} dx$$
(f)
$$\int \frac{\ln^5 x}{x} dx$$
(g)
$$\int \frac{\cos \sqrt{x}}{\sqrt{x}}$$
(i)
$$\int \sqrt{x^2-1} dx$$
(j)
$$\int \sqrt{1+x^2} dx$$
(l)
$$\int \frac{dx}{\sqrt{1+e^{2x}}},$$
(m)
$$\int \frac{dx}{\sqrt{x(x+1)}}$$
(n)
$$\int \frac{dx}{(x^2+1)^{3/2}},$$

(g)
$$\int \frac{\cos\sqrt{x}}{\sqrt{x}}$$
 (n) $\int \frac{dx}{(x^2+1)}$

(h)
$$\int \sqrt{1-x^2} dx$$
 (o)
$$\int \frac{dx}{\sqrt{x} (1+\sqrt[3]{x})}.$$

2. Oblicz całki $\int \arcsin x \, \mathrm{d}x, \quad \int \sinh x \, \mathrm{d}x, \quad \int \frac{\mathrm{d}x}{\cosh^2 x}.$

3. Oblicz całki z funkcji wymiernych:

(a)
$$\int \frac{dx}{1+x^3}$$

(b)
$$\int \frac{dx}{x+x^3}$$

(c)
$$\int \frac{x}{1+x^3} dx$$

(d)
$$\int \frac{dx}{x^4+4}$$

(e)
$$\int \frac{x^3}{x^4+1} dx$$

(f)
$$\int \frac{x^2}{1-x^4} dx$$

4. Udowodnij istnienie funkcji pierwotnej funkcji $f:\mathbb{R}\to\mathbb{R}$ określonej wzorem

$$f(x) = \begin{cases} 0 & \text{dla } x = 0\\ \sin \frac{1}{x} & \text{dla } x \neq 0 \end{cases}$$

Całka Newtona

Definicja. Niech a < b i $f: [a,b] \to \mathbb{R}$ będzie funkcją ciągłą. $Calka\ Newtona\ (calka\ oznaczona)$ funkcji f na przedziale [a,b] jest to liczba

$$\int_{a}^{b} f(x) dx = F(b) - F(a),$$

gdzie F oznacza dowolną funkcję pierwotną funkcji f. Ten sam wzór uznajemy za definicję całki oznaczonej w przypadku a>b.

Stw. 1. (Liniowość całki Newtona) Jeżeli funkcje $f,g:[a,b]\to\mathbb{R}$ są ciągłe, $\alpha,\beta\in\mathbb{R}$, to $\int_a^b \left(\alpha f(x)+\beta g(x)\right)\mathrm{d}x=\alpha\int_a^b f(x)\,\mathrm{d}x+\beta\int_a^b g(x)\,\mathrm{d}x.$

Stw. 2. (Wzór na całkowanie przez części) Jeżeli funkcje $f,g:[a,b]\to\mathbb{R}$ są różniczkowalne i funkcje f',g' są ciągłe, to

$$\int_{a}^{b} f(x)g'(x) dx = f(b)g(b) - f(a)g(a) - \int_{a}^{b} f'(x)g(x) dx.$$

Stw. 3. (Wzór na całkowanie przez podstawienie) Niech $g:[a,b]\to I\subset\mathbb{R}$ będzie funkcją różniczkowalną taką, że funkcja g' jest ciągła i $f:I\to\mathbb{R}$ będzie funkcją ciągłą. Wówczas

$$\int_{a}^{b} f(g(x))g'(x) dx = \int_{g(a)}^{g(b)} f(t) dt = F(g(b)) - F(g(a)),$$

gdzie F oznacza dowolną funkcję pierwotną funkcji f.

Stw. 4. (Monotoniczność całki) Jeżeli funkcje $f,g:[a,b]\to\mathbb{R}$ są ciągłe i $f\geqslant g$ na [a,b], to $\int_a^b f(x)\,\mathrm{d}x\geqslant \int_a^b g(x)\,\mathrm{d}x.$

Stw. 5. (Tw. o wartości średniej dla całek) Jeżeli funkcja $f:[a,b]\to\mathbb{R}$ jest ciągła, to dla pewnego $\xi\in(a,b)$ zachodzi $\frac{1}{b-a}\int_a^b f(x)\,\mathrm{d}x=f(\xi).$

Tw. 6. (Przybliżanie całki sumami całkowymi) Niech $f:[a,b] \to \mathbb{R}$ będzie funkcją ciągłą, $\varepsilon > 0$. Wówczas istnieje $\delta > 0$, że dla dowolnych punktów $a = x_0 < x_1 < \ldots < x_n = b$ takich, że $x_i - x_{i-1} < \delta$ dla $i = 1, 2, \ldots, n$ oraz $t_i \in [x_{i-1}, x_i]$ zachodzi

$$\left| \int_a^b f(x) \, \mathrm{d}x - \sum_{i=1}^n f(t_i)(x_i - x_{i-1}) \right| < \varepsilon.$$

Interpretacja geometryczna całki Newtona: Jeżeli $f:[a,b] \to [0,+\infty)$ jest funkcją ciągłą, to całka $\int_a^b f(x) dx$ jest równa polu pod wykresem funkcji f.

1. Oblicz całki (a) $\int_{1/e}^{e} \ln x \, dx$, (b) $\int_{0}^{\pi} x \sin x \, dx$, (c) $\int_{0}^{\frac{\pi}{4}} \operatorname{tg}^{2} x \, dx$. (d) $\int_{-1}^{2} x e^{x^{2}} \, dx$.

2. Znajdź wzory rekurencyjne dla całek $\int_0^{\frac{\pi}{2}} \sin^n x \, \mathrm{d}x, \int_0^{\frac{\pi}{2}} \cos^n x \, \mathrm{d}x, \int_0^1 (1-x^2)^n \, \mathrm{d}x.$

3. Funkcja $f:[a,b]\to\mathbb{R}$ jest ciągła. Udowodnij nierówności

$$(b-a)\inf_{[a,b]}f\leqslant \int_a^b f(x)\,\mathrm{d}x\leqslant (b-a)\sup_{[a,b]}f,\qquad \left|\int_a^b f(x)\,\mathrm{d}x\right|\leqslant \int_a^b |f(x)|\,\mathrm{d}x.$$

4. Funkcja $f:[-a,a]\to\mathbb{R}$ jest ciągła. Wykaż, że (a) jeśli f jest parzysta, to $\int_{-a}^a f(x)\,\mathrm{d}x=2\int_0^a f(x)\,\mathrm{d}x,$

(b) jeśli f jest nieparzysta, to $\int_{-a}^{a} f(x) dx = 0$.

5. Funkcja $f:[0,1] \to \mathbb{R}$ jest ciągła. Udowodnij równości
(a) $\int_0^{\frac{\pi}{2}} f(\sin x) \, \mathrm{d}x = \int_0^{\frac{\pi}{2}} f(\cos x) \, \mathrm{d}x$, (b) $\int_0^{\pi} x f(\sin x) \, \mathrm{d}x = \pi \int_0^{\frac{\pi}{2}} f(\sin x) \, \mathrm{d}x$.

6. Oblicz całkę $\int_0^\pi \frac{x \sin x}{1 + \cos^2 x} \, \mathrm{d}x.$

7. Udowodnij, że $\int_0^1 x^m (1-x)^n dx = \int_0^1 x^n (1-x)^m dx dla m, n \in \mathbb{N}.$

8. Udowodnij nierówność $\frac{17}{18} < \int_0^1 \frac{\sin x}{x} \, \mathrm{d}x < \frac{17}{18} + \frac{1}{600}$.

9. Funkcja f jest ciągła na pewnym przedziale zawierającym liczbę a. Udowodnij że $\lim_{\varepsilon \to 0^+} \frac{1}{2\varepsilon} \int_{a-\varepsilon}^{a+\varepsilon} f(x) \, \mathrm{d}x = f(a)$.

10. Oblicz granice (a) $\lim_{x \to +\infty} \frac{1}{\sqrt{x}} \int_{1}^{x} \ln\left(1 + \frac{1}{\sqrt{t}}\right) dt$, (b) $\lim_{x \to 0^{+}} x \int_{x}^{1} \frac{\cos^{2} t}{t^{2}} dt$, (c) $\lim_{x \to +\infty} \left(\int_{0}^{x} e^{-t^{2}} dt\right)^{\frac{1}{x^{2}}}$, (d) $\lim_{x \to +\infty} \left(\int_{0}^{x} e^{t^{2}} dt\right)^{\frac{1}{x^{2}}}$.

11. Udowodnij następujące uogólnienie tw. o wartości średniej dla całek: Funkcje $f,g:[a,b]\to\mathbb{R}$ są ciągłe i g nie zmienia znaku. Wówczas istnieje $\xi\in(a,b)$ takie, że $\int_a^b f(x)g(x)\,\mathrm{d}x=f(\xi)\int_a^b g(x)\,\mathrm{d}x.$

12. Niech 0 < a < b i $f: [0, b] \to \mathbb{R}$ jest ciągła. Wyznacz $\lim_{t \to 0^+} \int_{ta}^{tb} \frac{f(x)}{x} dx$.

13. Wyprowadź wzór na pole elipsy o równaniu $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$.

14. Oblicz granice (a) $\lim_{n \to \infty} \sum_{k=1}^{n} \frac{1}{n+k}$, (b) $\lim_{n \to \infty} n \sum_{k=1}^{n} \frac{1}{n^2 + k^2}$.