HELIDA TECH DATA ACQUISITION BOARD

FFT DATA BOARD

HLD-CDL-NET-A2测风激光雷达采集卡

产品介绍

和力达科技的HLD-CDL-NET-A2采集卡,是专为测 风激光雷达系统设计的板卡。该板卡具有如下特性:

- 1 测量范围10MHz~150MHz
- 2 采用Rife算法,频率精度可达0.05MHz
- 3 内置FFT浮点计算内核
- 4 空间分辨率15米、30米、60米可选
- 5 频谱分辨率10MHz(@15米空间分辨率)
- 6 频谱分辨率5MHz(@30米空间分辨率)
- 7 最大测量距离1500米
- 8 具有1个模拟输入通道
- 9 采样率320Msps、位宽16bit
- 10 模拟输入带宽170MHz
- 11 模拟输入50欧姆匹配、DC耦合
- 12 触发输入50欧姆匹配、TTL电平
- 13 触发输入具有比较器(程控电压)
- 14 MMCX内孔高频接口
- 15 1000M/100M自适应网络接口
- 16 可扩展接口3个RS232 (需定制)

典型应用场所:

- 1 测风激光雷达
- 2 分析仪器 (FFT频谱与频率)

功能框图(Hardware block diagram)

图2 电路架构框图

软件与平台

操作系统	编程语言	支持软件
• Windows10, 11	• C, C++, C#, Python	• HLD-DAQ
• Linux kernel 3.10+	 Java, VB, Delphi 	• MATLAB
		LabView

参数说明(Specifications)

参数		规格	备注
模拟输入 (A-IN.A)	采样率	320Msps	固定
	分辨率	16 Bit	固定
	模拟带宽	170MHz	固定
	输入类型	单端	MMCX 内孔
	输入阻抗	50Ω	固定
	耦合方式	DC	固定
	输入范围	-1V~ + 1V (2Vpp)	固定
	串扰	>80dB	ADC>90dB
	信噪比(SNR)	>75dBFS >74dBFS >73dBFS	$\begin{aligned} f_{in} &= 30 MHz \\ f_{in} &= 70 MHz \\ f_{in} &= 170 MHz \end{aligned}$
	有效位宽(ENOB)	12.1Bits 11.8Bits 10.6Bits	$\begin{aligned} f_{in} &= 70 MHz \\ f_{in} &= 170 MHz \\ f_{in} &= 400 MHz \end{aligned}$
触发输入 (TRIG-IN)	触发频率	1K~100KHz	建议 10KHz 左右
	输入类型	单端/TTL	MMCX 内孔
	输入阻抗	50Ω	
	比较器	0-2.5V	程控
	触发类型	上升沿	
	触发与数据同步精度	≤5ns	
传输接口 NET(GBE)	网络接口	1000M/100M	自适应
	传输方式	TCP/IP	
功能	测量范围	10MHz~150MHz	
	采集模式	单次触发计算(多次累计)	
	FFT 内核	32位浮点处理器	
	FFT 精度	0.05MHz	@ (10-150) MHz
其它	尺寸	168×88×24 (长×宽×高)	带铝壳
	供电	24V/12V	3.81mm

使用简介

1 特别说明

- 1) 板卡默认IP为192.168.0.10,请将链接该板卡的网口IP设置在同一网段。
- 2) 需要关闭网关,否则无法正常工作,表现为在软件界面上没有数据;若触 发正常,即便不连接信号,也会刷新数据(板卡的噪声频率)。
- 3) 触发与信号的接口为MMCX内孔接头,请自行购买适配线缆。
- 4) 本板卡测量距离为1500米,可设置为15米×100、30米×50或60米×25。

2 软件界面

图3 Demo软件界面(80MHz)

图4 Demo软件界面(85MHz)

3 使用步骤

- 1) 上图3所示软件界面中,点击"刷新网卡列表",会显示出本机IP,若是 多网口可从下拉列表中选择与板卡连接的IP,注意本机IP要设置成 192.168.0.X,X不能为10。
- 2) 选择IP后,点击"板卡检索",会出现"192.168.0.10"的板卡的地址。
- 3) 点击"打开"后,会在FPGA版本后面出现版本号,表明连接正常。
- 4) 配置中触发电平建议设置在触发信号电平的0.3倍,当输入的触发信号电 平超过1V后,建议将"触发电平"值设定在0.5V。
- 5) "触发脉宽"的单位是纳秒,该值最小可设置5ns;由于带有内部滤波功能,当触发信号的脉宽较宽时,可将此值设置大些;当外部输入的触发信号脉宽大于此值后,触发有效。
- 6) "空间分辨率"网络接口的板卡,即HLD-CDL-NET-A2板卡的空间分辨率默

认为15米,此时有100个时间片,可探测1500米内的风速;当选择30米空间分辨率时,有50个时间片,也是探测1500米内的风速。

- 7) "采集间隔"单位为秒,最小可设置0.125秒,即每秒可输出8次计算结果 (频率值),FPGA内部会进行多次触发计算与累计,每次输出的结果是多 次累计所得,并非单次计算结果。
- 8) 为获得更高精度,可通过上位机进一步对结果做平均。

协议(DLL)

1. 采购后提供: