MARKS:

AMERICAN INTERNATIONAL UNIVERSITY-BANGLADESH (AIUB)

Data Communication Laboratory

Experiment No: 3

Section: G

Semester: Spring 20-21

Submitted to: Md Mehedi Hasan

Submitted by: ISLAM, MD. NAYMUL

Date of Performance: 9-Feb-21

Date of Submission: 16-Feb-21

Working Procedure:

My id= 19-40125-1

So,A=1, B=9, C=4, D=0, E=1, F=2, G=5, H=1

Given, $x_1(t) = A_1 \cos(2\pi (\frac{CDE}{100}t))$

So, $x_1(t) = A_1 \cos(2\pi (401*100)t)$

Ans. (A)

A1 = GD = 54

A2 = AF = 12

Ans. (B)

i. Ans:

Xmin=0

Xmax=5

m=4

So, L= 2^4= 16

ii. Ans:

 $\Delta = (Xmax-Xmin)/L$

= (5-0)/16

= 0.3125

iii. Ans:

The quantization level = 3.2/0.3125

 $= 10.\overline{24}$

=10

iv. Ans:

	1110	1011	0111	
	1110	1011	0111	
codes =	1110	1011	0111	
	1110	1011	0111	
1111	1110	1011	0111	
1111	1110	1011	0110	
1111	1110	1010	0110	
1111	1110	1010	0110	
1111	1110	1010	0110	
1111	1101	1010	0110	
1111	1101	1010	0110	
1111	1101	1010	0110	
1111	1101	1010	0110	
1111	1101	1010	0110	
1111	1101	1010	0101	
1111	1101	1001	0101	
1111	1101	1001	0101	
1111	1101	1001	0101	
1111	1101	1001	0101	
1111	1101	1001	0101	
1111	1101	1001	0101	
1111	1101	1001	0101	
1111	1100	1001	0101	
1111	1100	1001	0100	
1111	1100	1000	0100	
1111	1100	1000	0100	
1111	1100	1000	0100	
1111	1100	1000	0100	
1110	1100	1000	0100	
1110	1100	1000	0100	
1110	1100	1000	0100	
1110	1100	1000	0100	
1110	1100	1000	0011	
1110	1011	0111	0011	
1110	1011	0111	0011	
1110	1011	0111	0011	
*				

```
0011
                         0000
   0011
                         0000
   0011
                         0000
   0011
                         0000
   0010
                         0000
    0010
                         0000
   0010
                         0000
   0010
                         0000
   0010
                         0000
   0010
                         0000
   0010
                         0000
   0010
                         0000
   0010
                         0000
   0010
                         0000
   0010
                         0000
   0010
                         0000
   0010
                         0000
   0001
                         0000
   0001
                         0000
   0001
                         0000
    0001
                         0000
   0001
                         0000
   0001
                         >>
   0001
   0001
   0001
   0001
   0001
   0001
   0001
   0001
   0001
   0001
   0001
   0000
    0000
v. Ans:
A1=54;
A2=12;
CDE = 401;
fs = 40e3;
t = 0:1/fs:0.005;
x = A1*cos(2*pi*(CDE*100)*t);
m=4;
L=(2^m)-1;
delta = (max(x)-min(x))/L;
xq = min(x) + (round((x-min(x))/delta)).*delta
subplot(3,1,1)
bar(t,x,'r');
subplot(3,1,2);
stem(t,x,'b');
xlabel('time(s)')
ylabel('X[n]')
subplot(3,1,3);
stairs(t,xq,'b');
title('Quantized Signal');
xlabel('time');
ylabel('amplitude');
```

codes = dec2bin ((round((x-min(x))/delta)),n)

➢ Source Code:

```
A1=54;
A2=12;
CDE=401;
fs = 40e3;
t = 0:1/fs:0.005;
x= A1*cos(2*pi*(CDE*100)*t);
m=4;
L=(2^m)-1;
delta = (max(x)-min(x))/L;
xq = min(x) + (round((x-min(x))/delta)).*delta
subplot(3,1,1)
bar(t,x,'r');
subplot(3,1,2);
stem(t,x,'b');
xlabel('time(s)')
ylabel('X[n]')
subplot(3,1,3);
stairs(t,xq,'b');
title('Quantized Signal');
xlabel('time');
ylabel('amplitude');
codes = dec2bin ((round((x-min(x))/delta)),m)
```

➤ Result:

From Lab – 02

➤ Working Procedure:

A2=12;

```
Ans. (d):
pkg load communications
fs = 2000;
dt = 1/fs;
stopTime = 2;
A1=50;
A2=12;
C=4;
F=1;
t = (-2:dt:stopTime);
x1 = A1*cos(2 * pi * C * 100 *t);
x2 = A2*cos(2 * pi * F * 100 *t);
x3 = x1 + x2;
L=6;
delta = (max(x3) - min(x3))/L;
xq=min(x3)+(round((x3-min(x3))/delta)).*delta;
subplot(3,1,1);
bar(t,x3,'r');
subplot(3,1,2);
stem(t,x3,b');
xlabel('time(s)')
ylabel('X[n]');
subplot(3,1,3);
stairs(t,xq,'b');
title('Quantized Signal');
xlabel('time');
ylabel('amplitude');
  Code:
pkg load communications
fs = 2000;
dt = 1/fs;
stopTime = 2;
A1=50;
```

```
C=4;
F=1;
t = (-2:dt:stopTime);
x1 = A1*cos(2 * pi * C * 100 *t);
x2 = A2*cos(2*pi*F*100*t);
x3 = x1 + x2;
L=6;
delta = (max(x3) - min(x3))/L;
xq=min(x3)+(round((x3-min(x3))/delta)).*delta;
subplot(3,1,1);
bar(t,x3,'r');
subplot(3,1,2);
stem(t,x3,'b');
xlabel('time(s)')
ylabel('X[n]');
subplot(3,1,3);
stairs(t,xq,'b');
title('Quantized Signal');
xlabel('time');
ylabel('amplitude');
➤ Result:
```

