

TEXTBOOK QUESTIONS SOLVED

Question 1. What are hybridisation states of each carbon atom in the following compounds?

 $CH_2=C=O$, $CH_3CH=CH_2$, $(CH_3)_2CO$, $CH_2=CHCN$, C_6H_6 .

Answer:

Question 2. Indicate the a- and n-bonds in the following molecules: C_6H_6 , C_6H_{12} , CH_2Cl_2 , $CH=C=CH_2$, CH_3NO_2 , $HCONHCH_3$

Answer

Question 3. Write bond-line formulas for: Isopropyl alcohol, 2,3-Dimethylbutanal, Heptan-4-one. Answer:

Question 4. Give the TUPAC names of the following compounds:

(a)
$$(b)$$
 (c) (c) (d) (d)

Answer:

- (a) Propylbenzene
- (b) 3-Methylpentanenitrite
- (c) 2, 5-Dimethylheptane
- (d) 3-Bromo- 3-chloroheptane
- (e) 3-Chloropropanal

(f) 2, 2-Dichloroethanol

Question 5. Which of the following represents the correct TUPAC name for the compounds concerned?

- (a) 2, 2-Dimethylpentane or 2-Dimethylpentane
- (b) 2, 4, 7-Trimethyloctane or 2, 5, 7- Trimethyloctane
- (c) 2-Chloro-4-methylpentane or 4-Chloro-2-methylpentane
- (d) But-3-yn- I-ol or But-4-ol-yne.

Answer:

- (a) 2, 2-Demethylpentane
- (b) 2, 4, 7-Trimethyloctane. For two alkyl groups on the same carbon its locant is repeated twice, 2, 4, 7-locant set is lower than 2, 5, 7.
- (c) 2- Chloro-4-methylpentane. Alphabetical order of substituents.
- (d) But-3-yn-l-ol. Lower locant for the principal functional group, i.e., alcohol.

Question 6. Draw formulas for the first five members of each homologous series beginning with the following compounds,

- (a) H-COOH
- (b) CH₃COCH₃
- (c) H-CH=CH₂

Answer:

(a) CH_3 -COOH

CH3CH2-COOH CH3CH2CH2-COOH

CH3CH2CH2CH2-COOH

(b) CH₃COCH₃

CH₃COCH₂CH₃

CH₃COCH₂CH₂CH₃

CH3COCH2CH2CH2CH3

CH₃CO(CH₃)₄CH₃

(c) $H-CH=CH_2$

CH₃CH=CH₂

CH₃CH₂CH=CH₂

CH₃CH₂CH₂CH=CH₂

CH₃CH₂CH₂CH₂CH=CH₂

Question 7. Give condensed and bond line structural formulas and identify the functional group(s) present, if any, for: (a) 2, 2, 4-Trimethylpentane (b) 2-Hydroxy-l, 2, 3-propanetricarboxylic acid (c) Hexanedial.

Answer:

Condensed formula	Bond line formula	Functional group/s
(a) (CH ₃) ₃ CCH ₂ CH(CH ₃) ₂	\times	-
(<i>b</i>) HOOCCH ₂ C(OH) (COOH)CH ₂ COOH	HO 1 2 OH	O
(c) OHC(CH ₂) ₄ CHO	H	O

Question 8. Identify the functional groups in the following compounds:

(a)
$$OHO$$
 OHO OHO

Answer:

Question 9. Which of the two: $O_2NCH_2CH_2O^-$ or $CH_3CH_2O^-$ is expected to be more stable and why?

Question 10. Explain why alkyl groups act as electron donors when attached to a $\pi\mbox{-system}.$

Answer: Due to hyperconjugation, alkyl groups act as electron donors when attached to a π - system as shown below:

********* END *******