TP 7 Transfer Learning

Convolutional Layer

Different operations

Operation	Kernel ω	Image result g(x,y)		
Identity	$ \left[\begin{array}{ccc} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \right] $			
Edge detection	$ \left[\begin{array}{ccc} 1 & 0 & -1 \\ 0 & 0 & 0 \\ 1 & 0 & 1 \end{array}\right] $			
	$\left[\begin{array}{ccc} 0 & -1 & 0 \\ 1 & 4 & 1 \\ 0 & 1 & 0 \end{array}\right]$			
	$\begin{bmatrix} -1 & -1 & -1 \\ 1 & 8 & 1 \\ 1 & 1 & 1 \end{bmatrix}$			
Sharpen	$\left[\begin{array}{ccc} 0 & -1 & 0 \\ 1 & 5 & 1 \\ 0 & 1 & 0 \end{array}\right]$			

Convolutional Networks

Example of Train and Validation Learning Curves Showing an Overfit Model

ConvNets for NLP

Tips & Tricks

Why normalize inputs? $J(w,b) = \frac{1}{m} \sum_{i=1}^{m} \mathcal{L}(\hat{y}^{(i)}, y^{(i)})$ W. X: 1....lor∂ € Unnormalized: Normalized: W Andrew Ng

Data Augmentation

Tranable Data Augmentation

Figure 1. Overview of our proposed model. We propose to use a **differentiable data augmentation pipeline** to achieve faster policy search by using adversarial learning.

Strong Data Augmentation

Figure 4: A realization of AUGMIX. Augmentation operations such as translate_x and weights such as m are randomly sampled. Randomly sampled operations and their compositions allow us to explore the semantically equivalent input space around an image. Mixing these images together produces a new image without veering too far from the original.

Mixed Data Augmentation

Mixup in Action

Mix-up works by blending 2 images with alpha % from image_1 and (1-alpha) % from image_2

Optimizer

Dropout

Batch normalization

internal covariate shift?

Training loss smoother

VGG and Imagenet

VGG16

FIGURE 1 - Réseau VGG16

Summary of VGG16 Architecture

	Layer	Feature Map	Size	Kernel Size	Stride	Activation
Input	Image	1	224 x 224 x 3	-		-
1	2 X Convolution	64	224 x 224 x 64	3x3	1	relu
	Max Pooling	64	112 x 112 x 64	3x3	2	relu
	2 X Convolution	128	112 x 112 x 128	3x3	1	relu
	Max Pooling	128	56 x 56 x 128	3x3	2	relu
	2 X Convolution	256	56 x 56 x 256	3x3	1	relu
	Max Pooling	256	28 x 28 x 256	3x3	2	relu
	3 X Convolution	512	28 x 28 x 512	3x3	1	relu
	Max Pooling	512	14 x 14 x 512	3x3	2	relu
	3 X Convolution	512	14 x 14 x 512	3x3	1	relu
	Max Pooling	512	7 x 7 x 512	3x3	2	relu
13	FC	-	25088		-	relu
14	FC	-	4096	-	-	relu
15	FC	-	4096	-	-	relu
Output	FC	_	1000	-	2	Softmax

Imagenet

ImageNet Challenge

- 1,000 object classes (categories).
- Images:
 - 1.2 M train
 - 100k test.

The popular ImageNet Challenge based on the ImageNet Database

Network Complexity by Operations and Weights Sizes

New Datasets Internet of Things Satellites, Phones Social Media, etc.


```
vgg16 = torchvision.models.vgg16(pretrained=True)
vgg16.eval()
```

pred("cat.jpg")

Imagenet

ImageNet Challenge

- 1,000 object classes (categories).
- Images:
 - 1.2 M train
 - 100k test.

The popular ImageNet Challenge based on the ImageNet Database

15 scene dataset

Transfer Learning

Transfer learning and domain adaptation refer to the situation where what has been learned in one setting ... is exploited to improve generalization in another setting

Page 526, Deep Learning, 2016.

Traditional ML

vs Transfer Learning

- Isolated, single task learning:
 - Knowledge is not retained or accumulated. Learning is performed w.o. considering past learned knowledge in other tasks

- Learning of a new tasks relies on the previous learned tasks:
 - Learning process can be faster, more accurate and/or need less training data

Traditional Learning vs Transfer Learning

Figure 7. Comparative description of SIFT encoding and CNN transfer learning for the construction of informative features.

CNN Features off-the-shelf: an Astounding Baseline for Recognition

Ali Sharif Razavian Hossein Azizpour Josephine Sullivan Stefan Carlsson
CVAP, KTH (Royal Institute of Technology)
Stockholm, Sweden
{razavian, azizpour, sullivan, stefanc}@csc.kth.se

sculptures dataset. The results are achieved using a linear SVM classifier (or L2 distance in case of retrieval) applied to a feature representation of size 4096 extracted from a layer in the net. The representations are further modified using simple augmentation techniques e.g. jittering. The

Faster training process: As discussed in the previous point, the training time for transfer learning is less, compared to training from scratch: transfer learning reduces the number of trainable parameters.

Model generalizes better: Transfer learning allows the model to perform better on new, unseen data, because state-of-the-art pretrained models are trained to learn generic features, thus allowing them to avoid overfitting.

Which layers?

[Convolutional Neural Networks] features are more generic in early layers and more original-dataset-specific in later layers

- Transfer Learning, CS231n Convolutional Neural Networks for Visual Recognition

- co-adaptation: Gradient descent was able to find a good solution the first time, but this was only possible because the layers were jointly trained.
- specificity: the specialization of higher layer neurons to their original task

at the expense of performance on the target task, which was expected

Transfer Learning

Performances

ı

Train from scratch

Finetune all layers

Finetune the lower layers

Finetune the output dense layer

Data Similarity

Tips

- extraires features différentes résolutions
- petit learning rate quand fine tune

• attention à la batch normalization ! quelles statistiques utilisées ?