EE5327: Optimization

Harsh Raj - MA17BTECH11003 Aravind Reddy K V - MA17BTECH11010

Mathematics and Computing, IIT-Hyderabad

Question

Question

Solve the following linear programming problem using **Simplex** method:

Minimize:
$$x_1+x_2+2x_3$$

Subject to

$$x_1+2x_2\geqslant 4$$

$$x_2+7x_3\leqslant 5$$

$$x_1-3x_2+5x_3=6$$

$$x_1,x_2\geqslant 0,\ x_3 \text{ is unrestricted}$$

1

Question

The dual to the above problem is:

Maximize: $4y_1+5y_2+6y_3$ Subject to

$$y_1 + y_3 \le 1$$

 $2y_1 + y_2 - 3y_3 \le 1$
 $7y_2 + 5y_3 = 2$

and further subject to:

- (A) $y_1 \geqslant 0$, $y_2 \leqslant 0$ and y_3 is unrestricted
- (B) $y_1 \geqslant 0$, $y_2 \geqslant 0$ and y_3 is unrestricted
- (C) $y_1 \ge 0$, $y_3 \le 0$ and y_2 is unrestricted
- (D) $y_3 \ge 0$, $y_2 \le 0$ and y_1 is unrestricted

Dual form of LPP

Dual Form of an LPP

The Dual for LPP is:

Primal:

Minimize:
$$f(\mathbf{y}) = \sum_{i=1}^{n} b_i y_i$$

subject to
$$\sum_{i=1}^{n} a_{ij} y_i \geqslant c_j$$

$$y_i \geqslant 0$$

$$y_i \geqslant 0$$

Dual:

Maximize:
$$f(\mathbf{x}) = \sum_{j=1}^{n} c_j x_j$$

Maximize:
$$f(\mathbf{x}) = \sum_{j=1}^{n} c_j x_j$$
 subject to
$$\sum_{j=1}^{n} a_{ij} x_i \leqslant b_i$$
 .
$$x_j \geqslant 0$$

$$x_j \geqslant 0$$

Dual Form of given LPP

Primal (in standard form)

Minimize:
$$x_1 + x_2 + 2x_4 - 2x_5$$

subject to $x_1 + 2x_2 + 0x_3 + 0x_4 + 0x_5 \geqslant 4$
. $0x_1 - x_2 + 0x_3 - 7x_4 + 7x_5 \geqslant -5$
. $x_1 - 3x_2 + 0x_3 + 5x_4 - 5x_5 \geqslant 6$
. $-x_1 + 3x_2 + 0x_3 - 5x_4 + 5x_5 \geqslant -6$
. $x_i \geqslant 0$

Dual:

Maximize:
$$4y_1 - 5y_2 + 6y_3 - 6y_4$$

subject to $y_1 + 0y_2 + y_3 - y_4 \le 1$
. $2y_1 - y_2 - 3y_3 + 3y_4 \le 1$
. $0y_1 + -7y_2 + 5y_3 - 5y_4 \le 2$
. $0y_1 + 7y_2 - 5y_3 + 5y_4 \le -2$
. $v_i \ge 0$

 $y_i \neq 0$

Converting Dual into form given in question

Current Form of Dual:

Maximize:
$$4y_1 - 5y_2 + 6y_3 - 6y_4$$

subject to $y_1 + 0y_2 + y_3 - y_4 \le 1$
. $2y_1 - y_2 - 3y_3 + 3y_4 \le 1$
. $0y_1 + -7y_2 + 5y_3 - 5y_4 \le 2$
. $0y_1 + 7y_2 - 5y_3 + 5y_4 \le -2$
. $y_i \ge 0$

- (i) Replace y_2 by $-y_2$, and constraint $y_2 \ge 0$ by $y_2 \le 0$
- (ii) See that $y_3 y_4$ is common in all constraints.
- . $y_3 \geqslant 0$, $y_4 \geqslant 0 \implies y_3 y_4$ unrestricted
- Put $y_3 = y_3 y_4$, and remove constraints $y_3 \ge 0$, $y_4 \ge 0$

Converting Dual into form given in question

Final Form of Dual:

Maximize:
$$4y_1 + 5y_2 + 6y_3$$

subject to $y_1 + y_3 \le 1$

$$2y_1 + y_2 - 3y_3 \leqslant 1$$

$$. 7y_2 + 5y_3 = 2$$

$$y_1 \geqslant 0$$
 , $y_2 \leqslant 0$

Solving Primal using Simplex

Minimize: $x_1+x_2+2x_3$ Subject to

$$x_1+2x_2 \geqslant 4$$

$$x_2+7x_3 \leqslant 5$$

$$x_1-3x_2+5x_3=6$$

$$x_1,x_2 \geqslant 0, x_3 \text{ is unrestricted}$$

First, we convert the given form to a standard form. Since, x_3 is unrestricted we rename x_3 as:

$$x_3 = x_3' - x_3''$$
 where $x_3', x_3'' \ge 0$

Maximize
$$-x_1 - x_2 - 2x_3' + 2x_3'' + 0s_1 + 0s_2 - Ma_1 - Ma_2$$

We get rid of inequality signs by introducing slack variables and artificial variables(if neccessary). So, the constraints become

$$x_1 + 2x_2 - s_1 + a_1 = 4$$

$$x_2 + 7x_3' - 7x_3'' + s_2 = 5$$

$$x_1 - 3x_2 + 5x_3' - 5x_3'' + a_2 = 6$$

$$x_1, x_2, x_3', x_3'', s_1, s_2, a_1, a_2 \ge 0$$

Iteration-1		C_j	-1	-1	-2	2	0	0	-M	-M	
В	$c_{\scriptscriptstyle B}$	X_B	<i>x</i> ₁	x ₂	x_3'	x3''	s_1	<i>s</i> ₂	A_1	A2	MinRatio $\frac{X_B}{x_3'}$
A ₁	-M	4	1	2	0	0	-1	0	1	0	
S_2	0	5	0	1	Ø	-7	0	1	0	0	$\frac{5}{7} = 0.7143 \rightarrow$
A2	-M	6	1	-3	5	-5	0	0	0	1	$\frac{6}{5} = 1.2$
Z = -10M		Z_j	-2M	М	-5M	5M	M	0	-M	-М	
		Z_j - C_j	-2M+1	M+1	-5M+2↑	5M - 2	M	0	0	0	

Pivot Element = 7
Entering =
$$x'_3$$
 Departing = s_2

$$r_2 = r_2/7$$

$$r_3 = r_3 - 5r_2$$

Iteration-2		C_{j}	-1	-1	-2	2	0	0	-M	-M	
В	C_B	X_B	x_1	<i>x</i> ₂	x3'	x3''	s_1	s_2	A_1	A_2	$\frac{MinRatio}{\frac{X_B}{x_1}}$
A_1	-M	4	1	2	0	0	-1	0	1	0	$\frac{4}{1} = 4$
x ₃ '	-2	$\frac{5}{7}$	0	$\frac{1}{7}$	1	-1	0	$\frac{1}{7}$	0	0	
A_2	-M	1 7 7	(1)	- 26 7	0	0	0	- 5 7	0	1	$\frac{\frac{17}{7}}{1} = \frac{17}{7} = 2.4286 \to$
$Z = -\frac{45M}{7} - \frac{10}{7}$		z_{j}	-2M	$\frac{12M}{7} - \frac{2}{7}$	-2	2	М	$\frac{5M}{7} - \frac{2}{7}$	-М	-M	
		Z_j - C_j	-2M+1↑	$\frac{12M}{7} + \frac{5}{7}$	0	0	М	$\frac{5M}{7} \cdot \frac{2}{7}$	0	0	

Pivot Element = 1 Entering = x'_1 Departing = a_2 $r_1 = r_1 - r_3$

Iteration-3		C_{j}	-1	-1	-2	2	0	0	-M	
В	$c_{\scriptscriptstyle B}$	X_B	<i>x</i> ₁	<i>x</i> ₂	x3'	x3''	s_1	S_2	A_1	$\frac{MinRatio}{\frac{X_B}{x_2}}$
A_1	-M	11 7	0	$\left(\frac{40}{7}\right)$	0	0	-1	5 7	1	$\frac{\frac{11}{7}}{\frac{40}{7}} = \frac{11}{40} = 0.275 \rightarrow$
x ₃ '	-2	$\frac{5}{7}$	0	$\frac{1}{7}$	1	-1	0	$\frac{1}{7}$	0	$\frac{\frac{5}{7}}{\frac{1}{7}} = 5$
<i>x</i> ₁	-1	1 7 7	1	- 26 7	0	0	0	- 5/7	0	
$Z = -\frac{11M}{7} - \frac{27}{7}$		z_{j}	-1	$-\frac{40M}{7} + \frac{24}{7}$	-2	2	М	$-\frac{5M}{7} + \frac{3}{7}$	-M	
		Z_j - C_j	0	$-\frac{40M}{7} + \frac{31}{7} \uparrow$	0	0	М	$-\frac{5M}{7} + \frac{3}{7}$	0	

Pivot Element =
$$40/7$$

Entering = x'_2 Departing = a_1
 $r_1 = 7/40r_1$
 $r_2 = r_2 - 1/7r_1$
 $r_3 = r_3 + 26/7r_1$

Iteration-4		C_{j}	-1	-1	-2	2	0	0	
В	$c_{\scriptscriptstyle B}$	X_B	<i>x</i> ₁	x ₂	x3'	x3''	s_1	S ₂	$\frac{\textbf{MinRatio}}{X_B}\\ \overline{s_2}$
<i>x</i> ₂	-1	11 40	0	1	0	0	- 7/40	$\left(\frac{1}{8}\right)$	$\frac{\frac{11}{40}}{\frac{1}{8}} = \frac{11}{5} = 2.2 \longrightarrow$
x ₃ '	-2	27 40	0	0	1	-1	$\frac{1}{40}$	1/8	$\frac{\frac{27}{40}}{\frac{1}{8}} = \frac{27}{5} = 5.4$
<i>x</i> ₁	-1	69 20	1	0	0	0	- 13 20	- 1/4	
$Z = -\frac{203}{40}$		z_{j}	-1	-1	- 2	2	31 40	- 1/8	
		$Z_j - C_j$	0	0	0	0	$\frac{31}{40}$	- 1 ↑	

Pivot Element =
$$1/8$$

Entering = s'_2 Departing = x_2
 $r_1 = 8r_1$
 $r_2 = r_2 - 1/8r_1$
 $r_3 = r_3 + 1/4r_1$

Iteration-5		C_j	-1	-1	-2	2	0	0	
В	C_B	X_B	x_1	x_2	x3'	x3''	s_1	S_2	MinRatio
S ₂	0	11 5	0	8	0	0	- 7/5	1	
x ₃ '	-2	$\frac{2}{5}$	0	-1	1	-1	$\frac{1}{5}$	0	
x_1	-1	4	1	2	0	0	-1	0	
$Z = -\frac{24}{5}$		z_j	-1	0	-2	2	3 5	0	
		Z_j - C_j	0	1	0	0	3 5	0	

All $z_i - c_j$ are positive, hence we have reached optimal solution.

$$x_1 = 4, x_2 = 0, x_3' = 2/5, x_3'' = 0$$

Optimized cost = -4.8

Solving Dual using Simplex

Maximize
$$4x_1 - 5x_2 + 6x_3' - 6x_3'' + 0s_1 + 0s_2 - Ma_1$$

We get rid of inequality signs by introducing slack variables and artificial variables(if neccessary). So, the constraints become

$$x_1 + x_3' - x_3'' + s_1 = 1$$

$$2x_1 - x_2 - 3x_3' + 3x_3'' + s_2 = 1$$

$$-7x_2 + 5x_3' - 5x_3'' + a_1 = 2$$

$$x_1, x_2, x_3', x_3'', s_1, s_2, a_1 \ge 0$$

Iteration-1		C_{i}		-5	,				-M	
Iteration-1		c_j	4	-5	6	-6	0	0	-M	
В	$c_{\scriptscriptstyle B}$	X_B	<i>x</i> ₁	х2	x ₃ '	x3''	s_1	S_2	A_1	MinRatio $\frac{X_B}{x_3'}$
<i>s</i> ₁	0	1	1	0	1	-1	1	0	0	$\frac{1}{1} = 1$
S_2	0	1	2	-1	-3	3	0	1	0	
A_1	-M	2	0	-7	(5)	-5	0	0	1	$\frac{2}{5} = 0.4 \rightarrow$
Z = -2M		Z_{j}	0	7.M	-5M	5M	0	0	-M	
		$Z_j - C_j$	-4	7M + 5	-5M - 6 ↑	5M+6	0	0	0	

Pivot Element = 5
Entering =
$$x'_3$$
 Departing = a_1
 $r_3 = 1/5r_3$
 $r_1 = r_1 - r_3$
 $r_2 = r_2 + 3r_3$

Iteration-2		C_{j}	4	-5	6	-6	0	0	
В	$c_{\scriptscriptstyle B}$	X_B	<i>x</i> ₁	x ₂	x3'	x3''	s_1	S2	$\frac{X_B}{x_1}$
s_1	0	$\frac{3}{5}$	(1)	$\frac{7}{5}$	0	0	1	0	$\frac{\frac{3}{5}}{1} = \frac{3}{5} = 0.6 \longrightarrow$
S ₂	0	11/5	2	- 26 5	0	0	0	1	$\frac{\frac{11}{5}}{2} = \frac{11}{10} = 1.1$
x ₃ '	6	$\frac{2}{5}$	0	- 7/5	1	-1	0	0	
$Z = \frac{12}{5}$		z_j	0	- 42 5	6	-6	0	0	
		Z_j - C_j	-4 ↑	- 17 5	0	0	0	0	

Pivot Element = 1
Entering =
$$x'_1$$
 Departing = a_2
 $r_2 = r_2 - 2r_1$

Iteration-3		c_j	4	-5	6	-6	0	0	
В	C_B	X_B	x_1	x ₂	x3'	x3''	s_1	S2	MinRatio
x_1	4	3 5	1	$\frac{7}{5}$	0	0	1	0	
S_2	0	1	0	-8	0	0	-2	1	
x_3	6	$\frac{2}{5}$	0	- 7/5	1	-1	0	0	
$Z=\frac{24}{5}$		z_{j}	4	- 14 5	6	-6	4	0	
		Z_j - C_j	0	11 5	0	0	4	0	

All $z_j - c_j$ are positive, hence we have reached optimal solution.

$$x_1 = 3/5, x_2 = 0, x_3' = 2/5, x_3'' = 0$$

Optimized cost = 4.8