ØVING 1

KJ1041: KJEMISK BINDING, SPEKTROSKOPI OG KINETIKK

- 1) I kvantemekanikken er ethvert fysisk system beskrevet av en $b \emptyset lgefunksjon \ \psi$, også kalt en tilstand. For eksempel, en partikkel som lever langs x-aksen, mellom x=0 og x=L ('en partikkel i boks'), er beskrevet av en b \emptyset lgefunksjon $\psi(x)$. Hva sier Borns fortolkning om sannsynligheten for at man finner partikkelen i et område (a,b) på x-aksen i en måling av partikkelens posisjon?
- 2) La oss anta at partikkelens tilstand er som følger:

$$\psi(x) = \sqrt{\frac{2}{L}} \sin\left(\frac{2\pi x}{L}\right). \tag{1}$$

Vi gjør så en måling av partikkelens posisjon. Hva er sannsynligheten for at vi finner partikkelen mellom $\frac{1}{4}L$ og $\frac{3}{4}L$? Et nyttig integral: $\int \sin(x)^2 dx = -\frac{1}{2}\sin(x)\cos(x) + \frac{x}{2} + C$.

3) Vis at

$$\int_0^L |\psi(x)|^2 \, \mathrm{d}x = 1. \tag{2}$$

Hva sier denne likningen ved Borns fortolkningsregel? Gi en kort forklaring på hvorfor en bølgefunksjon må være normalisert for at Born-regelen skal gi mening.

- 4) For hver observerbar størrelse Ω finnes en tilhørende operator $\hat{\Omega}$. Hva er definisjonen på en operator?
- 5) Man kan måle partikkelens posisjon x og bevegelsesmengde p_x , og disse størrelsene har tilhørende operatorer, \hat{x} og \hat{p}_x , definert ved

$$\hat{x}\varphi(x) = x\varphi(x), \quad \hat{p}_x\varphi(x) = -i\hbar\frac{\partial}{\partial x}\varphi(x),$$
 (3)

der $\varphi(x)$ er en vilkårlig funksjon.

Anta at vi preparerer partikkelen i tilstanden ψ og måler dens posisjon og bevegelsesmengde fem tusen ganger. En god tilnærming av gjennomsnittet til den observerte posisjonen og bevegelsesmengden er da gitt ved forventningsverdiene $\langle \hat{x} \rangle$ og $\langle \hat{p}_x \rangle$:

$$\langle \hat{x} \rangle = \int_0^L \psi(x)^* \, \hat{x} \, \psi(x) \, \mathrm{d}x, \quad \langle \hat{p}_x \rangle = \int_0^L \psi(x)^* \, \hat{p}_x \, \psi(x) \, \mathrm{d}x. \tag{4}$$

Her er $\psi(x)^*$ den kompleks-konjugerte av $\psi(x)$. Vis at

$$\langle \hat{x} \rangle = L/2, \quad \langle \hat{p}_x \rangle = 0,$$
 (5)

for en partikkel med tilstand ψ gitt i likning (1).

6) I likning (4) har vi antatt at $\psi(x)$ er en normalisert bølgefunksjon. Gi definisjonene på $\langle \hat{x} \rangle$ og $\langle \hat{p}_x \rangle$ for en ikke-normalisert bølgefunksjon $\tilde{\psi}(x)$.

2 ØVING 1

- 7) En funksjon φ er en egenfunksjon av en operator $\hat{\Omega}$ dersom $\hat{\Omega}\varphi(x) = \omega\varphi(x)$, der ω er et tall kalt egenverdien. Hvis dette er tilfellet sier vi at tilstanden φ har den bestemte verdien ω for den observerbare størrelsen Ω (en måling av Ω vil alltid gi verdien ω).
 - a) Kan vi si at partikkelen beskrevet av ψ i likning (1) har en bestemt posisjon og/eller bevegelsesmengde? (Hint: sjekk om ψ er en egenfunksjon av \hat{x} og \hat{p}_x .)
 - b) Hvordan kan man forstå resultatet $\langle \hat{p}_x \rangle = 0$ når partikkelen ikke er i ro (med andre ord, ikke har en bestemt bevegelsesmengde lik null)?