Project II

Problem

- Given m documents, compute the term-term relevance using MapReduce and Spark
- Input: A text file, each line represents a document
- Output: A list of term-term pairs sorted by their similarity descending

```
t1 t2 s1 t3 t4 s2
```

Sub-problems:

- Compute Term Frequency Inverse Document Frequency (TF-IDF) for each term
 - Output: mxn matrix (m: #documents, n: #terms)
- Computer and sort term-term relevance between a query term and all terms associated with the TF-IDF matrix
 - Input: a query term t
 - Output: term-term relevance between the query term and those terms in the tfidf matrix sorted by the relevance score (descending)

TF-IDF

- Term Frequency Inverse Document Frequency
 - Relevant to text processing
 - Common web analysis algorithm

The Algorithm, Formally

$$\mathrm{tf_i} = \frac{n_i}{\sum_k n_k}$$
 $\mathrm{idf_i} = \log \frac{|D|}{|\{d: t_i \in d\}|}$ $\mathrm{tfidf} = \mathrm{tf} \cdot \mathrm{idf}$

- | D | : total number of documents in the corpus
- $|\{d: t_i \in d\}|$ humber of documents where the term t_i appears (that is $n_i \neq 0$.

Semantic Similarity

$$similarity = cos(\theta) = \frac{A \cdot B}{\|A\| \|B\|} = \frac{\sum_{i=1}^{n} A_i B_i}{\sqrt{\sum_{i=1}^{n} A_i^2} \sqrt{\sum_{i=1}^{n} B_i^2}}$$

D1: I like data science

D2: I hate data

D3: want A

	D1	D2	D3
I	1	1	0
like	1	0	0
data	1	1	0
scienc e	1	0	0
hate	0	1	0
want	0	0	1
Α	0	0	1

tf

D1: I like data science

D2: I hate data

D3: want A

	D1	D2	D3
1	1/4	1/3	0
like	1/4	0	0
data	1/4	1/3	0
scienc e	1/4	0	0
hate	0	1/3	0
want	0	0	1/2
Α	0	0	1/2

idf

D1: I like data science

D2: I hate data

D3: I want A

	D1	D2	D3
1	log(3/2)	log(3/2)	log(3/2)
like	log(3/1)	log(3/1)	log(3/1)
data	log(3/2)	log(3/2)	log(3/2)
science	log(3/1)	log(3/1)	log(3/1)
hate	log(3/1)	log(3/1)	log(3/1)
want	log(3/1)	log(3/1)	log(3/1)
Α	log(3/1)	log(3/1)	log(3/1)

tf*idf

D1: I like data science

D2: I hate data

D3: I want A

	D1	D2	D3
1	0.044	0.059	0.0
like	0.119	0.0	0.0
data	0.044	0.059	0.0
science	0.119	0.0	0.0
hate	0.0	0.159	0.0
want	0.0	0.0	0.238
Α	0.0	0.0	0.238

```
(0.044,
                    0.059,
                              0.0)
          (0.0,
                    0.0,
                              0.238)
Α
```

```
(0.044*0.0+0.059*0.0+0.0*0.238)
Similarity (I, A) =
```

sqrt(0.044*0.044+0.059*0.059+0.0*0.0) x sqrt(0.0*0.0+0.0*0.0+0.238*0.238)

Project II

- Rubric
 - Distributed Algorithm design
 - MapReduce (40 points)
 - Report in print (20 points)
 - Must present during your project review!
 - Implementation
 - Local on spark (40 points)

Project II

- Due Date
 - -4:00pm, 12/19
 - No overdue
- Project Review
 - -12/19