Семантический анализ фотографий с помощью глубоких нейронных сетей

Выпускная квалификационная работы

02.03.02 - Фундаментальная информатика и информационные технологии

Выполнил:

студент 4 курса Ивахненко Дмитрий Игоревич

Научный руководитель:

к. ф.-м. н., ст.преп. М. В. Юрушкин

24 июня 2020 г.

Институт ММиКН им. И.И. Воровича, Южный Федеральный Университет

Цели работы

В данной работе были поставлены следующие задачи:

Проектирование архитектуры глубокой сверточной сети для задачи сегментации

Подготовка сопровождающего кода для расширения возможностей обучения сети

Реализация возможности полуавтоматической разметки данных

Пример задачи сегментации

1. Результат работы сети

3. Коррекция результата

2. Исходное изображение

4. Размеченная маска

Метрика

Визуализация метода сравнения площадей: 1. - истинная маска, 2. - предсказанная маска, 3. - пересечение, 4. - объединение

Общий вид FCN

Энкодер и декодер части сети. Такой подход позволяет выделить признаки, а затем генерализировать их для классификации.

Выходы декодер-части

Генерализация из признаков в декодер-части

Нормализация по пакету

1.
$$\mu_{\mathcal{B}} = \frac{1}{m} \sum_{i=1}^{m} x_i$$

2.
$$\sigma_{\mathcal{B}}^2 = \frac{1}{m} \sum_{i=1}^m (x_i - \mu_{\mathcal{B}})^2$$

3.
$$\hat{x}_i = \frac{x_i - \mu_B}{\sqrt{\sigma_B^2 + \epsilon}}$$

4.
$$BN_{\gamma,\beta}(x_i) = \gamma \hat{x}_i + \beta$$
 (12)

Оранжевым цветом отражен процесс обучеения без нормализации, серым - с нормализацией.

Softmax

Pre-softmax state; Size: torch.Size([2, 256, 256]),
1. tensor([-9.2658939, 10.0882759], dtype=torch.float64),

tensor([-9.2658939, 10.8882759], dtype=torch.ftoat64)
 tensor([4.1472898, -4.4603243], dtype=torch.ftoat64)

Post-softmax state; Size: torch.Size([2, 256, 256]),

1. tensor([0.0000000, 1.0000000], dtype=torch.float64), 2. tensor([0.9998173, 0.0001827], dtype=torch.float64) Формула:

$$Softmax(x_i) = \frac{e^{x_i}}{\sum_j e^{x_j}}$$

Свойства после применения

•
$$v_i \in [0, 1] \forall i \in [0, C]$$

•
$$\sum_{i=0}^{C} v_i = 1$$

Красный - регион примера 1., желтый - примера номер 2.

Полная архитектура сети

Обзор блоков

Оптимизация функции потерь

Сравнение процессов обучения

Оранжевым отражен процесс обучения с постоянными значениями, голубым - с применением one cycle policy

Примеры изображений SkyFinder

3 из 53 примеров сцен из датасета.

Коррекция результатов сети

Синтетическая разметка

Новый датасет строится на сочетании данных с синтетической разметкой и данных из SkyFinder.

Результаты работы сети

Верхняя тройка изображений получены с помощью сети, обученной на совмещенном датасете. Нижняя - сетью, в обучении которой использовался только SkyFinder.

Результаты работы

В рамках данной работы сделано:

Спроектирована и реализована архитектура сети для решения задачи сегментации

Peaлизована возможность обучения с использованием техники one cycle policy

Реализована возможность синтетической разметки датасета

Реализован загрузчик данных из нескольких источников с выбором количественного отношения в рамках пакета

Ссылка на репозиторий проекта: https://github.com/DmitIW/BachelorDiploma