VESC 6 CAN Formats

Version 0.1

NOTE:

 OR IGINATOR OF FRAME TRANSMITS RECESSIVE (1) DURING ACK SLOT/DELIMITER. SUCCESSFUL TRANSMISSION OF MESSAGE FRAME REQUIRES AT LEAST ONE OTHER NODE TO TRANSMIT A DOMINANT (0) BIT DURING THE ACK SLOT.

Figure 4. CAN Standard Message Frame Fields

OTES

 ORIGINATOR OF FRAME TRANSMITS RECESSIVE (1) DURING ACK SLOT/DELIMITER. SUCCESSFUL TRANSMISSION OF MESSAGE FRAME REQUIRES AT LEAST ONE OTHER NODE TO TRANSMIT A DOMINANT (0) BIT DURING THE ACK SLOT.

- CAN Frame Definitions
 - Standard frames have 11 bit IDs
 - Extended frame have 29 bit IDs
- CRCs are usually calculated in hardware for many microprocessors
- VESC6 commands use extended frames
- Looks like an error in extended data frame (non remote) SRR should be 0

Command Formats Extracted from VESC6 SW

```
typedef struct {
 struct {
  uint8 t
                             /**< @brief Data length.
                  DLC:4;
  uint8 t
                  RTR:1;
                             /**< @brief Frame type.
                             /**< @brief Identifier type. */
  uint8 t
                  IDE:1;
 union {
  struct {
   uint32 t
                              /**< @brief Standard identifier.*/
                   SID:11;
  struct {
                              /**< @brief Extended identifier.*/
   uint32 t
                   EID:29;
  };
 union {
  uint8 t
                  data8[8];
                              /**< @brief Frame data.
  uint16 t
                   data16[4];
                                /**< @brief Frame data.
  uint32 t
                   data32[2];
                                /**< @brief Frame data.
} CANTxFrame;
```

```
typedef struct {
struct {
  uint8 t
                            /**< @brief Filter id.
                  FMI;
  uint16 t
                  TIME;
                              /**< @brief Time stamp.
                                                           */
 struct {
  uint8 t
                             /**< @brief Data length.
                  DLC:4;
                             /**< @brief Frame type.
  uint8 t
                  RTR:1;
  uint8 t
                  IDE:1;
                             /**< @brief Identifier type. */
 union {
  struct {
                              /**< @brief Standard identifier.*/
   uint32 t
                  SID:11;
  struct {
   uint32 t
                  EID:29;
                              /**< @brief Extended identifier.*/
 union {
  uint8 t
                  data8[8];
                              /**< @brief Frame data.
  uint16 t
                  data16[4];
                               /**< @brief Frame data.
                                                            */
                               /**< @brief Frame data.
                                                            */
  uint32 t
                  data32[2];
} CANRxFrame;
```

List of Command Numbers

```
CAN_PACKET_SET_DUTY = 0,
CAN PACKET SET CURRENT = 1,
CAN_PACKET_SET_CURRENT_BRAKE = 2,
CAN PACKET SET RPM = 3,
CAN PACKET SET POS = 4,
CAN_PACKET_FILL_RX_BUFFER = 5,
CAN_PACKET_FILL_RX_BUFFER_LONG = 6,
CAN_PACKET_PROCESS_RX_BUFFER = 7,
CAN_PACKET_PROCESS_SHORT_BUFFER = 8,
CAN PACKET STATUS = 9,
CAN_PACKET_SET_CURRENT_REL = 10,
CAN_PACKET_SET_CURRENT_BRAKE_REL = 11,
CAN PACKET SET CURRENT HANDBRAKE = 12,
CAN_PACKET_SET_CURRENT_HANDBRAKE_REL = 13,
CAN_PACKET_STATUS_2 = 14,
CAN_PACKET_STATUS_3 = 15,
CAN_PACKET_STATUS_4 = 16,
CAN PACKET PING = 17,
CAN PACKET PONG = 18,
CAN PACKET DETECT APPLY ALL FOC = 19,
CAN PACKET DETECT APPLY ALL FOC RES = 20,
CAN_PACKET_CONF_CURRENT_LIMITS = 21,
CAN_PACKET_CONF_STORE_CURRENT_LIMITS = 22,
CAN_PACKET_CONF_CURRENT_LIMITS_IN = 23,
CAN_PACKET_CONF_STORE_CURRENT_LIMITS_IN = 24,
CAN PACKET CONF FOC ERPMS = 25,
CAN_PACKET_CONF_STORE_FOC_ERPMS = 26,
CAN PACKET STATUS 5 = 27
```

 These command numbers are put in the second byte of the 29 bit ID for the extended CAN frame. You need an extended frame (29 bits) vs. standard frame (11 bits) since bits 0-7 are reserved for numbering the individual speed controllers (0-255). With only 3 bits left, only 8 commands would be available if you used a standard frame.

Command Duty Cycle (-1 to 1)

Start	Top 11 E	Bits Of ID	SRR	Frame Type		Bottome 18 B	Bits	Remote	Spare	Data Length				Data	Field			
1 bit	bits 26-28	bits 18-25	1 bit	1 bit	bits 16-17	bits 8-15	bits 0-7	1 bit	2 bits	4 bits	data 7	data 6	data 5	data 4	data 3	data 2	data 1 da	ata 0
	0	0	0	1	0	SET_DUTY=0	0-255 Unit ID	0		4	0	0	0	0	Dut	ty Cycle	* 100000	0
																Int 3	32	

- Command a duty cycle from -1 (-100%) to 1 (100%)
 - This is direct command of MOSFET PWM modulation
 - Is this limited by temperature and current limits?

Command Set Current

Start	Top 11 B	its Of ID	SRR	Frame Type		Bottome 18 Bit	S	Remote	Spare	Data Length				Data	Field			
1 bit	bits 26-28	bits 18-25	1 bit	1 bit	bits 16-17	bits 8-15	bits 0-7	1 bit	2 bits	4 bits	data 7	data 6	data 5	data 4	data 3	data 2 da	ata 1 c	data 0
	0	0	0	1	0	SET_CURRENT=1	0-255 Unit ID	0		4	0	0	0	0		Current *	1000	
														Int 32	2			

- Command a current in milliamps (any level up to +/-2e6 amps)
 - This is direct command of the current control loops
 - Is this limited by temperature and current limits?

Command Set Current Brake

Start	Top 11 B	its Of ID	SRR	Frame Type		Bottome 18 Bits		Remote	Spare	Data Length				Data	Field	
1 bit	bits 26-28	bits 18-25	1 bit	1 bit	bits 16-17	bits 8-15	bits 0-7	1 bit	2 bits	4 bits	data 7	data 6	data 5	data 4	data 3 data 2 data	a 1 data 0
	0	0	0	1	0	SET_CURRENT_BRAKE =2	0-255 Unit ID	0		4	0	0	0	0	Current * 10	000
															Int 32	

- Command a current brake in milliamps (any level up to +/-2e6 amps)
 - This is direct command of the current control loops
 - Is this limited by temperature and current limits?

Command Set RPM

Ī	Start	Top 11 B	its Of ID	SRR	Frame Type		Bottome 18 Bits		Remote	Spare	Data Length				Data	Field			
I	1 bit	bits 26-28	bits 18-25	1 bit	1 bit	bits 16-17	bits 8-15	bits 0-7	1 bit	2 bits	4 bits	data 7	data 6	data 5	data 4	data 3	data 2	data 1	data 0
I		0	0	0	1	0	SET_RPM = 3	0-255 Unit ID	0		4	0	0	0	0		RP	М	
I																	Int	32	

- Command angular velocity in rpm
 - This is command of the closed loop PID angular velocity
 - How is this limited by temperature and current limits?

Command Set POS

Start	Top 11 B	its Of ID	SRR	Frame Type		Bottome 18 Bits		Remote	Spare	Data Length				Data	Field		
1 bit	bits 26-28	bits 18-25	1 bit	1 bit	bits 16-17	bits 8-15	bits 0-7	1 bit	2 bits	4 bits	data 7	data 6	data 5	data 4	data 3	data 2 data 1	data 0
	0	0	0	1	0	SET_POS = 4	0-255 Unit ID	0		4	0	0	0	0		Pos	
																Int 32	

Command position

- This is command of the closed loop PID position, but what are the units?
 Encoder steps? Hall sensor steps?
- How is this limited by temperature and current limits? Are the gains backed off or is the torque limited?

Command Relative Current (-1 to 1)

Start	Top 11 B	its Of ID	SRR	Frame Type		Bottome 18 Bits		Remote	Spare	Data Length				Data	Field		
1 bit	bits 26-28	bits 18-25	1 bit	1 bit	bits 16-17	bits 8-15	bits 0-7	1 bit	2 bits	4 bits	data 7	data 6	data 5	data 4	data 3 data 2	data 1	data 0
	0	0	0	1	0	SET_CURRENT_RELATIVE = 10	0-255 Unit ID	C)	4	0	0	0	0	Ratio (-1 to	1) * 100	0000
															Int	32	

- Command a relative current from -1 (-100%) to 1 (100%)
 - -1 is equal to the lower current limit, +1 is equal to the upper current limit
 - NOTE that if the upper and lower current limits are not symmetric, sending 0 will NOT result in 0 current.
 - Is this limited by temperature?

Command Relative Brake Current (-1 to 1)

9	Start	Top 11 E	its Of ID	SRR	Frame Type		Во	ottome 18 Bits		Remote	Spare	Data Length				Data	Field			
:	L bit	bits 26-28	bits 18-25	1 bit	1 bit	bits 16-17	bits 8-15		bits 0-7	1 bit	2 bits	4 bits	data 7	data 6	data 5	data 4	data 3	data 2	data 1	data 0
		0	0	0	1	0	SET_CURRENT	_RELATIVE_BRAKE = 11	0-255 Unit ID	0		4	0	0	0	0	Ratio	o (-1 to :	1) * 100	0000
ſ																		Int	32	

- Command a relative brake current from -1 (-100%) to 1 (100%)
 - -1 is equal to the lower current limit, +1 is equal to the upper current limit
 - NOTE that if the upper and lower current limits are not symmetric, sending 0 should NOT result in 0 current.
 - Is this limited by temperature?

Set Current Limits

Sta	rt T	Гор 11 В	its Of ID	SRR	Frame Type			Bottom 18 Bits		Remote	Spare	Data Length				Data	Field			
1 b	it bits	s 26-28	bits 18-25	1 bit	1 bit	bits 16-17	bits 8-15		bits 0-7	1 bit	2 bits	4 bits	data 7	data 6	data 5	data 4	data 3	data 2	data 1	data 0
		0	0	0	1	0	CAN_PACKET	_CONF_CURRENT_LIMITS = 21	0-255 Unit ID	0		8	Max	Current	t Limit *	1000	Min (Current	Limit *	1000
														Int	: 32			Int	32	

Sta	rt Top	o 11 Bits Of ID	SRR	Frame Type			Bottom 18 Bits		Remote	Spare	Data Length		Data	Field		
1 b	t bits 2	26-28 bits 18-25	1 bit	1 bit	bits 16-17	bits 8	3-15	bits 0-7	1 bit	2 bits	4 bits	data 7 data 6	data 5 data 4	data 3	data 2 data	1 data 0
		0 0	0	1	0	CAN_	PACKET_CONF_STORE_CURRENT_LIMITS = 22	0-255 Unit ID	0		8	Max Current	Limit * 1000	Min C	Current Limit	* 1000
												Int	32		Int 32	

- Command a set of current limits
 - There are two versions of this command, command 21 sets the operating current limits, command 22 sets the operating current limits and sends them to EEPROM

Set Input Current Limits

S	tart	Top 11 B	its Of ID	SRR	Frame Type	Bottom 18 Bits		Remote Spare	Data Length	Data	Field
1	bit	bits 26-28	bits 18-25	1 bit	1 bit	bits 16-17 bits 8-15	bits 0-7	1 bit 2 bits	4 bits	data 7 data 6 data 5 data 4	data 3 data 2 data 1 data 0
		0	0	0	1	0 CAN_PACKET_CONF_CURRENT_LIMITS_IN = 23	0-255 Unit ID	0	8	Max Current Limit * 1000	Min Current Limit * 1000
										Int 32	Int 32

Star	Top 11 B	its Of ID	SRR	Frame Type		Bottom 18 Bits		Remote	Spare	Data Length	Data	Field
1 bit	bits 26-28	bits 18-25	1 bit	1 bit	bits 16-17	bits 8-15	bits 0-7	1 bit	2 bits	4 bits	data 7 data 6 data 5 data 4	data 3 data 2 data 1 data 0
	0	0	0	1	0	CAN_PACKET_CONF_STORE_CURRENT_LIMITS_IN = 24	0-255 Unit ID	0		8	Max Current Limit * 1000	Min Current Limit * 1000
											Int 32	Int 32

- Command a set of input current limits
 - There are two versions of this command, command 23 sets the operating current limits, command 24 sets the operating current limits and sends them to EEPROM

Telemetry Data Structures On Microprocessor

```
typedef struct {
            float v in;
            float temp mos1;
            float temp mos2;
            float temp mos3;
            float temp mos4;
            float temp mos5;
            float temp mos6;
            float temp pcb;
            float current motor;
            float current in;
            float rpm;
            float duty now;
            float amp hours;
            float amp hours charged;
            float watt hours;
            float watt hours charged;
            int tachometer;
            int tachometer abs;
            mc fault code fault code;
} mc values;
```

- There are up to five different telemetry messages that are available from the unit
 - You can chose 1, 1&2,
 1&2&3, 1&2&3&4, and all

Sta	art	Top 11 B	its Of ID	SRR	Frame Type		Bottom 18 Bits		Remote	Spare	Data Length			D	ata Field	
1 l	oit l	oits 26-28	bits 18-25	1 bit	1 bit	bits 16-17	bits 8-15	bits 0-7	1 bit	2 bits	4 bits	data 7	data 6	data 5	data 4	data 3 data 2 data 1 data 0
		0	0	0	1	0	CAN_PACKET_STATUS = 9	0-255 Unit ID	0		8	Duty Cy	cle * 1000			rpm
												In	t 16	Int	: 16	Int 32

Automatically sent telemetry message #1

- Three states are packed in this message
 - RPM 32 bits probably because int16 is +/- 32k which may be less than needed for some high speed motors
 - Total Current Current in all units summed together with a scale factor of 10 assumed amps
 - Duty cycle latest duty cycle (-1 to 1) multiplied by 1000

S	Start	Top 11 Bi	ts Of ID	SRR	Frame Type		Bottom 18 Bits	Remote	Spare	Data Length		Data Field							
1	Lbit	bits 26-28 k	oits 18-25	1 bit	1 bit	bits 16-17	bits 8-15	bits 0-7	1 bit	2 bits	4 bits	data 7	data 6	data 5	data 4	data 3	data 2	data 1	data 0
		0 0 0 1			1	0	CAN_PACKET_STATUS_2 = 14	0-255 Unit ID	0		8	Amp	Hours Ch	narged *	10000	An	որ Hour	s * 100	00
											Int	: 32	•		Int	32			

- Automatically sent telemetry message #2
 - Two states are packed in this message
 - Amp hours total amp hours consumed by unit
 - Amp hours charged total regenerative amp hours put back in battery

S	Start	rt Top 11 Bits Of ID SRR Frame Type Bottom 18 Bits Re					Remote	Spare	Data Length	ata Length Data Field										
1	l bit	bits 26-28	oits 18-25	1 bit	1 bit	bits 16-17	bits 8-15		bits 0-7	1 bit	2 bits	4 bits	data 7	data 6	data 5	data 4	data 3	data 2	data 1	data 0
	0 0 0 1			C	CAN_PACKET_	STATUS_3 = 15	0-255 Unit ID	0		8	Wat	t Hours Ch	arged * 1	.0000		Watt Hou	ırs * 10000)		
												Int	32			In	t 32			

- Automatically sent telemetry message #3
 - Two states are packed in this message
 - Watt hours total watt hours consumed by unit
 - Watt hours charged total regenerative watt hours put back in battery

Sta	rt Top 11	Bits Of ID	SRR	Frame Type		Bottom 18 Bits	Remote	Spare	Data Length	Data Field							
1 b	it bits 26-28	bits 18-25	1 bit	1 bit	bits 16-17	bits 8-15	bits 0-7	1 bit	2 bits	4 bits	data 7 data 6	data 5 data 4	data 3 data 2	data 1 data 0			
	0	0	0	1	0	CAN_PACKET_STATUS _4 = 16	0-255 Unit ID	0		8	PID Pos * 50	Toal Current In*	.0 Motor Temp * 10	FET Temp *10			
											Int 16	Int 16	Int 16	Int16			

- Automatically sent telemetry message #4
 - Four states are packed in this message
 - MOSFET temperature * 10 assumed deg C?
 - Motor temperature *10 assumed deg C?
 - Total input current *10 assumed amps
 - Current PID Position not sure about units

Sta	art	Top 11 B	its Of ID	SRR	Frame Type			Bottom 18 Bits	Remote	Spare	Data Length		Data Field							
1 l	bit	bits 26-28	bits 18-25	1 bit	1 bit	bits 16-17	bits 8-15		bits 0-7	1 bit	2 bits	4 bits	data 7	data 6	data 5	data 4	data 3	data 2	data 1	data 0
		0 0 0 1		0	CAN_PACKET_	_STATUS_5 = 27	0-255 Unit ID	0		8	Rese	erved	Input Vo	ltage * 10		Tachom	eter value			
													Int	t 16	In	t 16		In	t 32	

- Automatically sent telemetry message #5
 - Three states are packed in this message
 - Tachometer assumed rpm?
 - Input Voltage * 10
 - Reserved