Geometry for Competitive Programming

Divergence

Vector field $\mathbf{v}(x,y) = (v_x(x,y), v_y(x,y))$ in a region Ω

E.g.: flow of corn in the unit states

Divergence

Vector field $\mathbf{v}(x,y) = (v_x(x,y),v_y(x,y))$ in a region Ω

E.g.: flow of corn in the unit states

In some places there are **sources**:

Divergence

Vector field $\mathbf{v}(x,y) = (v_x(x,y),v_y(x,y))$ in a region Ω

E.g.: flow of corn in the unit states

In some places there are **sources**:

Other places have sinks:

Divergence
$$\cdot \mathbf{v} = \frac{\partial v_x}{\partial x} + \frac{\partial v_y}{\partial y}$$

Vector field $\mathbf{v}(x,y) = (v_x(x,y),v_y(x,y))$ in a region Ω The **divergence** $\nabla \cdot \mathbf{v}$ measures how much a point is a source or sink

Divergence in Other Dimensions

Generalizes in the obvious way:

• 2D:
$$\nabla \cdot \mathbf{v} = \frac{\partial v_x}{\partial x} + \frac{\partial v_y}{\partial y}$$

• 3D:
$$\nabla \cdot \mathbf{v} = \frac{\partial v_x}{\partial x} + \frac{\partial v_y}{\partial y} + \frac{\partial v_z}{\partial z}$$

• 1D:
$$\nabla \cdot \mathbf{v} = \frac{\partial v_x}{\partial x} = v'$$

Let's say we want to measure the rate that corn is imported/exported from the United States

Approach #1: compute the divergence at every **interior** point and integrate it up:

$$\int_{\Omega} (\nabla \cdot \mathbf{v})(x, y) \, dA$$

Let's say we want to measure the rate that corn is imported/exported from the United States

Approach #2: measure how much corn is entering or leaving through the border:

$$\int_{\partial\Omega} \mathbf{v}(x,y) \cdot \hat{\mathbf{n}}(x,y) \, ds$$

Let's say we want to measure the rate that corn is imported/exported from the United States

Approach #2: measure how much corn is entering or leaving through the border:

$$\int \mathbf{v}(x,y) \cdot \hat{\mathbf{n}}(x,y) \, ds$$

boundary of region

outward-pointing

 $\hat{\mathbf{n}}$

Both methods must give same answer:

this is the (divergence form of) Stokes's Theorem

nswer:

Both methods must give same answer:

this is the (divergence form of) Stokes's Theorem

Turns annoying integrals on **interior** into much easier formulas on **boundary**

Let's use Stokes's Theorem to compute the area of an arbitrary polygon

Ω

Let's use Stokes's Theorem to compute the area of an arbitrary polygon

Solution strategy:

- 1. Express area as integral over the interior of polygon
- 2. Write the integrand as divergence of a vector field
- 3. Use Stokes's Theorem to move integral to boundary
- 4. Simplify the boundary integral

Let's use Stokes's Theorem to compute the area of an arbitrary polygon

$$A = \int_{\Omega} 1 \, dA$$

Solution strategy:

- 1. Express area as integral over the interior of polygon
- 2. Write the integrand as divergence of a vector field
- 3. Use Stokes's Theorem to move integral to boundary
- 4. Simplify the boundary integral

Reverse-Engineering the Vector Field ^{1}dA

Recall:
$$\nabla \cdot \mathbf{v} = \frac{\partial v_x}{\partial x} + \frac{\partial v_y}{\partial y}$$

We need to find arbitrary functions $v_x(x,y)$ and $v_y(x,y)$ satisfying $\nabla \cdot \mathbf{v} = 1$

Reverse-Engineering the Vector Field ^{1}dA

Recall:
$$\nabla \cdot \mathbf{v} = \frac{\partial v_x}{\partial x} + \frac{\partial v_y}{\partial y}$$

We need to find arbitrary functions $v_x(x,y)$ and $v_y(x,y)$ satisfying $\nabla \cdot \mathbf{v} = 1$

• one solution: $\mathbf{v}(x,y) = (x/2,y/2)$

Reverse-Engineering the Vector Field $^1 dA$

Recall:
$$\nabla \cdot \mathbf{v} = \frac{\partial v_x}{\partial x} + \frac{\partial v_y}{\partial y}$$

We need to find arbitrary functions $v_x(x,y)$ and $v_y(x,y)$ satisfying $\nabla \cdot \mathbf{v} = 1$

- one solution: $\mathbf{v}(x,y) = (x/2,y/2)$
- another: $\mathbf{v}(x,y) = (x,0)$

Reverse-Engineering the Vector Field $^{1 dA}$

Recall:
$$\nabla \cdot \mathbf{v} = \frac{\partial v_x}{\partial x} + \frac{\partial v_y}{\partial y}$$

We need to find arbitrary functions $v_x(x,y)$ and $v_y(x,y)$ satisfying $\nabla \cdot \mathbf{v} = 1$

- one solution: $\mathbf{v}(x,y) = (x/2,y/2)$
- another: $\mathbf{v}(x,y) = (x,0)$
- another: $\mathbf{v}(x,y) = \left(\sin\sqrt{e^{\tan y + 2}}, y\right)$

Let's use Stokes's Theorem to compute the area of an arbitrary polygon

$$A = \int_{\Omega} 1 \, dA = \int_{\Omega} \nabla \cdot (x/2, y/2) \, dA$$

Solution strategy:

- 1. Express area as integral over the interior of polygon
- 2. Write the integrand as divergence of a vector field
- 3. Use Stokes's Theorem to move integral to boundary
- 4. Simplify the boundary integral

Let's use Stokes's Theorem to compute the area of an arbitrary polygon

Solution strategy.

- 1. Express area as integral over the interior of polygon
- 2. Write the integrand as divergence of a vector field
- 3. <u>Use Stokes's Theorem to move integral to boundary</u>
- 4. Simplify the boundary integral

Simplifying the Boundary Integral $\mathbf{p}_{i+1} = (x_{i+1}, y_{i+1})$

$$\mathbf{p}_i = (x_i, y_i)$$

Simplifying the Boundary Integral $\mathbf{p}_{i+1} = (x_{i+1}, y_{i+1})$

 $\mathbf{p}_i = (x_i, y_i)$

$$\hat{\mathbf{t}} = \frac{\mathbf{p}_{i+1} - \mathbf{p}_i}{L}$$

$$\hat{\mathbf{t}} = \frac{\mathbf{p}_{i+1} - \mathbf{p}_i}{L}$$

$$\int_0^L \left(\mathbf{p}_i + s\hat{\mathbf{t}} \right) \cdot \hat{\mathbf{n}} \, ds$$

$$\hat{\mathbf{t}} = \frac{\mathbf{p}_{i+1} - \mathbf{p}_i}{L}$$

$$\int_0^L \left(\mathbf{p}_i + \hat{\mathbf{x}} \right) \cdot \hat{\mathbf{n}} \, ds$$

Simplifying the Boundary Integral $\mathbf{p}_{i+1} = (x_{i+1}, y_{i+1})$

$$\hat{\mathbf{t}} = rac{\mathbf{p}_{i+1} - \mathbf{p}_i}{L}$$

$$L\mathbf{p}_i\cdot\hat{\mathbf{n}}$$

$$\hat{\mathbf{t}} = \frac{\mathbf{p}_{i+1} - \mathbf{p}_i}{L}$$

$$\hat{\mathbf{n}} = \hat{\mathbf{t}}^{\perp} = \frac{\mathbf{p}_{i+1}^{\perp} - \mathbf{p}_i^{\perp}}{L}$$

$$L\mathbf{p}_i\cdot\hat{\mathbf{n}}$$

$$\hat{\mathbf{t}} = rac{\mathbf{p}_{i+1} - \mathbf{p}_i}{L} \ \hat{\mathbf{n}} = \hat{\mathbf{t}}^{\perp} = rac{\mathbf{p}_{i+1}^{\perp} - \mathbf{p}_i^{\perp}}{L}$$

$$\mathbf{p}_i \cdot \left(\mathbf{p}_{i+1}^{\perp} - \mathbf{p}_i^{\perp}
ight)$$

$$\hat{\mathbf{t}} = \frac{\mathbf{p}_{i+1} - \mathbf{p}_i}{L}$$

$$\hat{\mathbf{n}} = \hat{\mathbf{t}}^{\perp} = \frac{\mathbf{p}_{i+1}^{\perp} - \mathbf{p}_i^{\perp}}{L}$$

$$\mathbf{p}_i \cdot \mathbf{p}_{i+1}^{\perp}$$

$$\hat{\mathbf{t}} = \frac{\mathbf{p}_{i+1} - \mathbf{p}_i}{L}$$

$$\hat{\mathbf{n}} = \hat{\mathbf{t}}^{\perp} = \frac{\mathbf{p}_{i+1}^{\perp} - \mathbf{p}_i^{\perp}}{L}$$

$$(x_i, y_i) \cdot (y_{i+1}, -x_{i+1})$$

$$\hat{\mathbf{t}} = \frac{\mathbf{p}_{i+1} - \mathbf{p}_i}{L}$$

$$\hat{\mathbf{n}} = \hat{\mathbf{t}}^{\perp} = \frac{\mathbf{p}_{i+1}^{\perp} - \mathbf{p}_i^{\perp}}{L}$$

$$x_i y_{i+1} - y_i x_{i+1}$$

"shoelace formula"

Calculate the area of a union of balls of different radii:

Calculate the area of a union of balls of different radii:

We already know that

We need to compute

$$\int_{\partial\Omega} (x,y) \cdot \hat{\mathbf{n}} \, ds$$

We need to compute

$$\int_{\partial\Omega} (x,y) \cdot \hat{\mathbf{n}} \, ds$$

$$\mathbf{p}(\theta) = (c_x + r\cos\theta, c_y + r\sin\theta)$$

We need to compute

$$\int_{\partial\Omega} (x,y) \cdot \hat{\mathbf{n}} \, ds$$

$$\mathbf{p}(\theta) = (c_x + r\cos\theta, c_y + r\sin\theta)$$
$$\hat{\mathbf{n}}(\theta) = (\cos\theta, \sin\theta)$$

Given a circular arc:

We need to compute

$$\int_{\partial\Omega} (x,y) \cdot \hat{\mathbf{n}} \, ds$$

$$\mathbf{p}(\theta) = (c_x + r\cos\theta, c_y + r\sin\theta)$$

$$\hat{\mathbf{n}}(\theta) = (\cos\theta, \sin\theta)$$

$$ds = r d\theta$$

Given a circular arc:

We need to

$$\int_{\partial\Omega} (x,y) \cdot \hat{\mathbf{n}} \, ds$$

$$\mathbf{p}(\theta) = (c_x + r\cos\theta, c_y + r\sin\theta)$$

$$\hat{\mathbf{n}}(\theta) = (\cos\theta, \sin\theta)$$

$$ds = r d\theta$$

We need to

$$\int_{\partial\Omega} (x,y) \cdot \hat{\mathbf{n}} \, ds$$

$$= r \int_{\theta_1}^{\theta_2} (c_x \cos \theta + c_y \sin \theta + r) d\theta$$

We need to

$$\int_{\partial\Omega} (x,y) \cdot \hat{\mathbf{n}} \, ds$$

$$= r \int_{\theta_1}^{\theta_2} (c_x \cos \theta + c_y \sin \theta + r) d\theta$$

Example 3: Center of Ma

Given a polygon, find the vertical line $x=c_x$ that divides the area exactly in half

Example 3: Center of Ma

Given a polygon, find the vertical line $x=c_x$ that divides the area exactly in half

Example 3: Center of Ma

Given a polygon, find the vertical line $x=c_x$ that divides the area exactly in half

Several methods possible:

- linear sweep
- binary search
- Stokes's Theorem

Example 3: Center of Mass

Given a polygon, find the vertical line $x=c_x$ that divides the area exactly in half

Solution strategy:

- 1. Express c_x as integral over the **interior** of polygon
- 2. Write the integrand as divergence of a vector field
- 3. Use Stokes's Theorem to move integral to boundary
- 4. Simplify the boundary integral

Example 3: Center of Mass

Given a polygon, find the vertical line $x=c_x$ that divides the area exactly in half

$$c_x = \frac{1}{A} \int_{\Omega} x \, dA$$

Solution strategy:

- 1. Express c_x as integral over the interior of polygon
- 2. Write the integrand as divergence of a vector field
- 3. Use Stokes's Theorem to move integral to boundary
- 4. Simplify the boundary integral

$c_x = \frac{1}{A} \int_{\Omega} x \, dA$ Reverse-Engineering the Vector Field

Recall:
$$\nabla \cdot \mathbf{v} = \frac{\partial v_x}{\partial x} + \frac{\partial v_y}{\partial y}$$

We need to find arbitrary functions $v_x(x,y)$ and $v_y(x,y)$ satisfying $\nabla \cdot \mathbf{v} = x$

$$c_x = \frac{1}{A} \int_{\Omega} x \, dA$$

$c_x = \frac{1}{A} \int_{\Omega} x \, dA$ Reverse-Engineering the Vector Field

Recall:
$$\nabla \cdot \mathbf{v} = \frac{\partial v_x}{\partial x} + \frac{\partial v_y}{\partial y}$$

We need to find arbitrary functions $v_x(x,y)$ and $v_y(x,y)$ satisfying $\nabla \cdot \mathbf{v} = x$

• one solution: $\mathbf{v}(x,y) = (x^2/2,0)$

$$c_x = \frac{1}{A} \int_{\Omega} x \, dA$$

$c_x = \frac{1}{A} \int_{\Omega} x \, dA$ Reverse-Engineering the Vector Field

Recall:
$$\nabla \cdot \mathbf{v} = \frac{\partial v_x}{\partial x} + \frac{\partial v_y}{\partial y}$$

We need to find arbitrary functions $v_x(x,y)$ and $v_y(x,y)$ satisfying $\nabla \cdot \mathbf{v} = x$

- one solution: $\mathbf{v}(x,y) = (x^2/2,0)$
- another: $\mathbf{v}(x,y) = (0,xy)$

Simplifying the Boundary Integral $\mathbf{p}_{i+1} = (x_{i+1}, y_{i+1})$

$$\hat{\mathbf{t}} = \frac{\mathbf{p}_{i+1} - \mathbf{p}_i}{L}$$

$$\hat{\mathbf{t}} = \frac{\mathbf{p}_{i+1} - \mathbf{p}_i}{L}$$

$$\int_0^L \left(\left[p_i \right]_x + s \hat{t}_x \right)^2 \hat{n}_x \, ds$$

Simplifying the Boundary Integral

Other Applications of Stokes's Theorem

Calculating volumes, center of mass, etc. in 3D

"shoelace formula" for polyhedral

Determining if a point is inside or outside a polygon/polyhedron

by computing the winding number

