DS 288 (AUG) 3:0 Numerical Methods

Homework-3

Question-1

The following table summarizes the results obtained from Neville's algorithm:

X	0	1	2
0.3	0.0000	0.0000	0.0000
0.4	0.55854731	0.0000	0.0000
0.5	0.56504161	0.56711122	0.0000
0.6	0.56754481	0.56714627	0.56714262

Figure 2: Neville's Interpolation Table

Figure 1: Convergence of Neville's Interpolation

Results

The approximated solution for x (where $y = x - e^{-x}$) is given by:

Approximated solution for x: 0.5671426235278707

The relative error of the approximation is calculated as follows:

Relative error: 0.000118%

Question-2

Figure 3: Interpolation of P(x,y) for different dt

Results

Optimal dt **Values:** dt = 0.8 and dt = 1 effectively approximate the shape of the letter "E" with minimal distortion, maintaining clarity in the representation but compromising smoothness.

Distortion with Lower dt: Both dt = 0.1 and dt = 0.5 or below them introduce noticeable distortions, compromising the accuracy of the letter's shape but enhances smothness of the curve.

Figure 4: Interpolation of P(x,y) and g(t) and f(t) for dt=1

Question-3

Figure 5: Interpolation of P(x,y) for different dt with Natural cubic spline

Natural Cubic Spline Coefficients

optimal dt = 0.3

Coff	0	1	2	3	4	5	6	7	8	9	10	11
$\overline{a_x}$	0.70	1.22	2.11	3.07	3.25	2.80	2.11	1.30	0.70	0.45	0.88	2.00
b_x	0.4379	0.6842	1.0554	0.6442	-0.2123	-0.6051	-0.7874	-0.7453	-0.4614	0.0408	0.8383	1.2562
c_x	0.00	0.2463	0.1250	-0.5362	-0.3204	-0.0724	-0.1099	0.1520	0.1320	0.3702	0.4273	-0.0093
d_x	0.0821	-0.0404	-0.2204	0.0719	0.0826	-0.0125	0.0873	-0.0067	0.0794	0.0190	-0.1455	0.0031

Table 1: Natural Cubic Spline Coefficients for x

Coff	0	1	2	3	4	5	6	7	8	9	10	11
a_y	2.25	1.77	1.61	1.75	2.30	2.76	2.91	2.76	2.25	1.37	0.56	0.08
b_y	-0.5522	-0.3356	-0.0255	0.3775	0.5853	0.3112	-0.0002	-0.3104	-0.7384	-0.9062	-0.7068	-0.1366
c_y	0.00	0.2166	0.0934	0.3096	-0.1018	-0.1722	-0.1392	-0.1709	-0.2571	0.0892	0.1102	0.4599
d_y	0.0722	-0.0411	0.0721	-0.1371	-0.0235	0.0110	-0.0106	-0.0287	0.1154	0.0070	0.1166	-0.1533

Table 2: Natural Cubic Spline Coefficients for y

Smoother Interpolation in Natural Cubic Spline

- The natural cubic spline produces smooth curves with continuous first and second derivatives.
- There are no sharp transitions between data points, resulting in a more flowing, natural curve.

Sharper Transitions in Neville's Interpolation

- Neville's interpolation leads to jagged transitions and sharp corners between the points.
- The piecewise interpolation used does not ensure smoothness, making the curve more angular.

Step Size Differences

- Natural Cubic Spline(dt = 0.3): Finer step size allows for higher precision and more frequent interpolation, creating a curve that closely matches the true data.
- Neville's Interpolation (dt = 1): Larger step size results in fewer interpolated points, causing the curve to appear less precise and more approximate.

Overall Comparison

- Natural Cubic Spline: Produces a smoother, more accurate representation of the data with finer detail.
- Neville's Interpolation: Yields a rougher, less smooth curve due to both the method and larger step size.

Question-4

To determine a and b from given equation $y = be^{-2\pi i n}$ from given 3 points using linear least square Method. I $y = be^{-2\pi i n}$

lugy = lug(be-attan) [Apply log on both sides logy = lugb - attan [: logy = slope.n+ intercept]

airen points (0,12), (16,9) (32,5)

Use heast square to find parameters

$$m_2 \frac{n(\xi n y) - (\xi n)(\xi y)}{n(\xi n^2) - (\xi x)^2}$$

$$C = \underbrace{\xi Y - m \xi x}_{M}$$

After calculations:

Using Non-linear Least square Approach:

Goal is to find that a, b which minimize s(a,b)

After calculations:

Error discussions =

Althrough both methods aim to minimize the residual between observed and predicted values. they yield different estimates for parameters.

-) We can see that different a and b for different methods. Linear error;

Non-linear enror:

error, non-linear = yobserved - yi predicted

while both methods arm to minimize the overall error the way they treat individual data points differ.

- I Non linear fit minimite absolute différence in y.
- -> Linear fit minimize the log difference, which are relative to size of y.

So this difference in how error are weighted across data points typically results difference in a & b.