Association Rule Mining

Dr. Faisal Kamiran

Association Rule Mining

 Given a set of transactions, find rules that will predict the occurrence of an item based on the occurrences of other items in the transaction

Market-Basket transactions

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Example of Association Rules

```
 \begin{aligned} &\{ \text{Diaper} \} \rightarrow \{ \text{Beer} \}, \\ &\{ \text{Milk, Bread} \} \rightarrow \{ \text{Eggs,Coke} \}, \\ &\{ \text{Beer, Bread} \} \rightarrow \{ \text{Milk} \}, \end{aligned}
```

Implication means co-occurrence, not causality!

Definition: Frequent Itemset

Itemset

- A collection of one or more items
 - Example: {Milk, Bread, Diaper}
- k-itemset
 - An itemset that contains k items

Support count (σ)

- Frequency of occurrence of an itemset
- E.g. $\sigma(\{Milk, Bread, Diaper\}) = 2$

Support

- Fraction of transactions that contain an itemset
- E.g. $s(\{Milk, Bread, Diaper\}) = 2/5$

Frequent Itemset

 An itemset whose support is greater than or equal to a *minsup* threshold

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Definition: Association Rule

Association Rule

- An implication expression of the form
 X → Y, where X and Y are itemsets
- Example:{Milk, Diaper} → {Beer}

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Rule Evaluation Metrics

- Support (s)
 - Fraction of transactions that contain both X and Y
- Confidence (c)
 - Measures how often items in Y appear in transactions that contain X

Example:

 $\{Milk, Diaper\} \Rightarrow Beer$

$$s = \frac{\sigma(\text{Milk, Diaper, Beer})}{|T|} = \frac{2}{5} = 0.4$$

$$c = \frac{\sigma(\text{Milk, Diaper, Beer})}{\sigma(\text{Milk, Diaper})} = \frac{2}{3} = 0.67$$

Association Rule Mining Task

- Given a set of transactions T, the goal of association rule mining is to find all rules having
 - support ≥ minsup threshold
 - confidence ≥ minconf threshold
- Brute-force approach:
 - List all possible association rules
 - Compute the support and confidence for each rule
 - Prune rules that fail the minsup and minconf thresholds
 - ⇒ Computationally prohibitive!

Mining Association Rules

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Example of Rules:

```
{Milk, Diaper} \rightarrow {Beer} (s=0.4, c=0.67)
{Milk, Beer} \rightarrow {Diaper} (s=0.4, c=1.0)
{Diaper, Beer} \rightarrow {Milk} (s=0.4, c=0.67)
{Beer} \rightarrow {Milk, Diaper} (s=0.4, c=0.67)
{Diaper} \rightarrow {Milk, Beer} (s=0.4, c=0.5)
{Milk} \rightarrow {Diaper, Beer} (s=0.4, c=0.5)
```

Observations:

- All the above rules are binary partitions of the same itemset: {Milk, Diaper, Beer}
- Rules originating from the same itemset have identical support but can have different confidence
- Thus, we may decouple the support and confidence requirements

Mining Association Rules

- Two-step approach:
 - 1. Frequent Itemset Generation
 - Generate all itemsets whose support ≥ minsup

2. Rule Generation

- Generate high confidence rules from each frequent itemset,
 where each rule is a binary partitioning of a frequent itemset
- Frequent itemset generation is still computationally expensive

Frequent Itemset Generation

Frequent Itemset Generation

- Brute-force approach:
 - Each itemset in the lattice is a candidate frequent itemset
 - Count the support of each candidate by scanning the database

- Match each transaction against every candidate
- Complexity ~ O(NMw) => Expensive since M = 2^d !!!

Computational Complexity

- Given d unique items:
 - Total number of itemsets = 2^d
 - Total number of possible association rules:

$$=3^{d}-2^{d+1}+1$$

If d=6, R = 602 rules

Frequent Itemset Generation Strategies

- Reduce the number of candidates (M)
 - Complete search: M=2^d
 - Use pruning techniques to reduce M
- Reduce the number of transactions (N)
 - Reduce size of N as the size of itemset increases
 - Used by DHP and vertical-based mining algorithms
- Reduce the number of comparisons (NM)
 - Use efficient data structures to store the candidates or transactions
 - No need to match every candidate against every transaction

Reducing Number of Candidates

- Apriori principle:
 - If an itemset is frequent, then all of its subsets must also be frequent
- Apriori principle holds due to the following property of the support measure:

$$\forall X, Y : (X \subseteq Y) \Rightarrow s(X) \ge s(Y)$$

- Support of an itemset never exceeds the support of its subsets
- This is known as the anti-monotone property of support

Illustrating Apriori Principle

Illustrating Apriori Principle

Item	Count
Bread	4
Coke	2
Milk	4
Beer	3
Diaper	4
Eggs	1

Items (1-itemsets)

Itemset	Count
{Bread,Milk}	3
{Bread,Beer}	2
{Bread,Diaper}	3
{Milk,Beer}	2
{Milk,Diaper}	3
{Beer,Diaper}	3

Pairs (2-itemsets)

(No need to generate candidates involving Coke or Eggs)

Minimum Support = 3

 ${}^{6}C_{1} + {}^{6}C_{2} + {}^{6}C_{3} = 41$ With support-based pruning,

$$6 + 6 + 1 = 13$$

Triplets (3-itemsets)

Itemset	Count
{Bread,Milk,Diaper}	3

What about {Beer, Diaper, Milk}? And, {Bread, Milk, Beer}? And, {Bread, Diaper, Beer}?

Apriori Algorithm

Method:

- Let k=1
- Generate frequent itemsets of length 1
- Repeat until no new frequent itemsets are identified
 - Generate length (k+1) candidate itemsets from length k frequent itemsets
 - Count the support of each candidate by scanning the DB
 - Eliminate candidates that are infrequent, leaving only those that are frequent

 $Sup_{min} = 2$

Tid	Items
10	A, C, D
20	B, C, E
30	A, B, C, E
40	B, E

 $Sup_{min} = 2$

Tid	Items	
10	A, C, D	
20	В, С, Е	
30	A, B, C, E	
40	B, E	

Itemset	sup
{A}	2
{B}	3
{C}	3
{D}	1
{E}	3

 $Sup_{min} = 2$

Tid	Items	
10	A, C, D	
20	В, С, Е	
30	A, B, C, E	
40	B, E	

Itemset	sup
{A}	2
{B}	3
{C}	3
{D}	1
{E}	3

 $Sup_{min} = 2$

Tid	Items
10	A, C, D
20	B, C, E
30	A, B, C, E
40	B, E

Itemset	sup
{A}	2
{B}	3
{C}	3
{D}	1
{E}	3

 $Sup_{min} = 2$

Tid	Items
10	A, C, D
20	B, C, E
30	A, B, C, E
40	B, E

Itemset	sup
{A}	2
{B}	3
{C}	3
{D}	1
{E}	3

Z_2	Itemset	sup
	{A, B}	1
	{A, C}	2
	{A, E}	1
	{B, C}	2
	{B, E}	3
	{C, E}	2

Itemset
{A, B}
{A, C}
{A, E}
{B, C}
{B, E}
{C, E}

 $Sup_{min} = 2$

Database TDB

Tid	Items
10	A, C, D
20	В, С, Е
30	A, B, C, E
40	B, E

C₁

1st scan

 C_2

Itemset	sup
{A}	2
{B}	3
{C}	3
{D}	1
{E}	3

	Itemset	sup
L_1	{A}	2
	{B}	3
	{C}	3
	{E}	3

2	Itemset	sup	
	{A, C}	2	
	{B, C}	2	
	{B, E}	3	
	{C, E}	2	

Itemset	sup
{A, B}	1
{A, C}	2
{A, E}	1
{B, C}	2
{B, E}	3
{C, E}	2

 $\begin{array}{c} C_2 \\ \\ 2^{\mathrm{nd}} \operatorname{scan} \end{array}$

Itemset
{A, B}
{A, C}
{A, E}
{B, C}
{B, E}
{C, E}

 $Sup_{min} = 2$

Database TDB

Tid	Items
10	A, C, D
20	B, C, E
30	A, B, C, E
40	B, E

 C_1 1st scan

Itemset	sup
{A}	2
{B}	3
{C}	3
{D}	1
{E}	3

	Itemset	sup
L_1	{A}	2
	{B}	3
	{C}	3
	{E}	3

C_2	

Itemset	sup
{A, B}	1
{A, C}	2
{A, E}	1
{B, C}	2
{B, E}	3
{C, E}	2

 $\begin{array}{c|c} & \textbf{Itemset} \\ \textbf{2}^{\text{nd}} \, \text{scan} & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & &$

{B, C, E}

 C_3

Tid	Items
10	A, C, D
20	В, С, Е
30	A, B, C, E
40	B, E

C₁

1st scan
→

3rd scan

Itemset	sup
{A}	2
{B}	3
{C}	3
{D}	1
{E}	3

	Itemset	sup
L_1	{A}	2
	{B}	3
	{C}	3
	{E}	3

 C_2

Itemset	sup
{A, B}	1
{A, C}	2
{A, E}	1
{B, C}	2
{B, E}	3
{C, E}	2

 Itemset

 {A, B}

 {A, C}

 {A, E}

 {B, C}

 {B, E}

 {C, E}

Itemset	sup
{B, C, E}	2

 $2^{nd} \, scan$

 L_3

ECLAT

For each item, store a list of transaction ids (tids)

Horizontal Data Layout

TID	Items
1	A,B,E
2	B,C,D
3	C,E
4	A,C,D
5	A,B,C,D
6	A,E
7	A,B
8	A,B,C
9	A,C,D
10	В

Vertical Data Layout

Α	В	С	D	Е
1	1	2	2	1
4	2	2 3 4	4	3 6
5	2 5	4	2 4 5 9	6
4 5 6 7	7	8 9	9	
7	8 10	9		
8 9	10			
9				
ı				

ECLAT

 Determine support of any k-itemset by intersecting tidlists of two of its (k-1) subsets.

A		В		AB
1		1		1
4		2		5
5	^	5	\rightarrow	7
6		7		8
7		8		
8		10		
Я				

- 3 traversafapproaches:
 - top-down, bottom-up and hybrid
- Advantage: very fast support counting
- Disadvantage: intermediate tid-lists may become too large for memory

Rule Generation

- Given a frequent itemset L, find all non-empty subsets f ⊂ L such that f → L − f satisfies the minimum confidence requirement
 - If {A,B,C,D} is a frequent itemset, candidate rules:

ABC
$$\rightarrow$$
D, ABD \rightarrow C, ACD \rightarrow B, BCD \rightarrow A, A \rightarrow BCD, B \rightarrow ACD, C \rightarrow ABD, D \rightarrow ABC AB \rightarrow CD, AC \rightarrow BD, AD \rightarrow BC, BC \rightarrow AD, BD \rightarrow AC, CD \rightarrow AB,

If |L| = k, then there are 2^k – 2 candidate
 association rules (ignoring L → Ø and Ø → L)

Rule Generation

- How to efficiently generate rules from frequent itemsets?
 - In general, confidence does not have an antimonotone property
 c(ABC →D) can be larger or smaller than c(AB →D)
 - But confidence of rules generated from the same itemset has an anti-monotone property
 - e.g., L = {A,B,C,D}:

$$c(ABC \to D) \geq c(AB \to CD) \geq c(A \to$$
 BCD)

Rule Generation for Apriori Algorithm

Rule Generation for Apriori Algorithm

 Candidate rule is generated by merging two rules that share the same prefix in the rule consequent

join(CD=>AB,BD=>AC)
 would produce the candidate
 rule D => ABC

 Prune rule D=>ABC if its subset CD=>AB does not have high confidence

CD=>AB

BD=>AC

Pattern Evaluation

- Association rule algorithms tend to produce too many rules
 - many of them are uninteresting or redundant
 - Redundant if {A,B,C} → {D} and {A,B} → {D} have same support & confidence
- Interestingness measures can be used to prune/rank the derived patterns
- In the original formulation of association rules, support & confidence are the only measures used

Computing Interestingness Measure

• Given a rule $X \rightarrow Y$, information needed to compute rule interestingness can be obtained from a contingency table

Contingency table for $X \to Y$

	Υ	Y	
X	f ₁₁	f ₁₀	f ₁₊
X	f ₀₁	f ₀₀	f _{o+}
	f ₊₁	f ₊₀	T

f₁₁: support of X and Y

 f_{10} : support of X and \overline{Y}

f₀₁: support of X and Y

f₀₀: support of X and Y

Used to define various measures

support, confidence, lift, Gini, J-measure, etc.

Drawback of Confidence

	Coffee	Coffee	
Tea	15	5	20
Tea	75	5	80
	90	10	100

Association Rule: Tea → Coffee

- Confidence = P(Coffee | Tea)
- but P(Coffee)
- Although confidence is high, rule is misleading
- P(Coffee|Tea) :

Statistical-based Measures

Measures that take into account statistical dependence

$$Lift = \frac{P(Y \mid X)}{P(Y)}$$

Example: Lift/Interest

	Coffee	Coffee	
Tea	15	5	20
Tea	75	5	80
	90	10	100

Association Rule: Tea → Coffee

Confidence = P(Coffee|Tea) = 0.75

but P(Coffee) = 0.9

 \Rightarrow Lift = 0.75/0.9= 0.8333 (< 1, therefore is negatively associated)

Sequence Data

Sequence Database:

Object	Timestamp	Events
Α	10	2, 3, 5
Α	20	6, 1
Α	23	1
В	11	4, 5, 6
В	17	2
В	21	7, 8, 1, 2
В	28	1, 6
С	14	1, 8, 7

Sequence Data

Sequence Database	Sequence	Element (Transaction)	Event (Item)
Customer	Purchase history of a given customer	A set of items bought by a customer at time t	Books, diary products, CDs, etc
Web Data	Browsing activity of a particular Web visitor	A collection of files viewed by a Web visitor after a single mouse click	Home page, index page, contact info, etc
Event data	History of events generated by a given sensor	Events triggered by a sensor at time t	Types of alarms generated by sensors
Genome sequences	DNA sequence of a particular species	An element of the DNA sequence	Bases A,T,G,C

Formal Definition of a Sequence

 A sequence is an ordered list of elements (transactions)

$$S = \langle e_1 e_2 e_3 ... \rangle$$

Each element contains a collection of events (items)

$$e_i = \{i_1, i_2, ..., i_k\}$$

- Each element is attributed to a specific time or location
- Length of a sequence, |s|, is given by the number of elements of the sequence
- A k-sequence is a sequence that contains k events (items)

Examples of Sequence

- Web sequence:
 - < {Homepage} {Electronics} {Digital Cameras} {Canon Digital Camera} {Shopping Cart} {Order Confirmation} {Return to Shopping} >
- Sequence of books checked out at a library:

<{Fellowship of the Ring} {The Two Towers} {Return of the King}>

Formal Definition of a Subsequence

A sequence <a₁ a₂ ... a_n> is contained in another sequence <b₁ b₂ ... b_m> (m ≥ n) if there exist integers i₁ < i₂ < ... < i_n such that a₁ ⊆ b_{i1}, a₂ ⊆ b_{i1}, ..., a_n ⊆ b_{in}

Data sequence	Subsequence	Contain?
< {2,4} {3,5,6} {8} >	< {2} {3,5} >	Yes
< {1,2} {3,4} >	< {1} {2} >	No
< {2,4} {2,4} {2,5} >	< {2} {4} >	Yes

- The support of a subsequence w is defined as the fraction of data sequences that contain w
- A sequential pattern is a frequent subsequence (i.e., a subsequence whose support is ≥ minsup)

Sequential Pattern Mining: Definition

- Given:
 - a database of sequences
 - a user-specified minimum support threshold, minsup
- Task:
 - Find all subsequences with support ≥ minsup

Sequential Pattern Mining: Challenge

- Given a sequence: <{a b} {c d e} {f} {g h i}>
 - Examples of subsequences:
 <{a} {c d} {f} {g} >, < {c d e} >, < {b} {g} >, etc.
- How many k-subsequences can be extracted from a given n-sequence?

Object	Timestamp	Events
А	1	1,2,4
А	2	2,3
Α	3	5
В	1	1,2
В	2	2,3,4
С	1	1, 2
С	2	2,3,4
С	3	2,4,5
D	1	2
D	2	3, 4
D	3	4, 5
Е	1	1, 3
E	2	2, 4, 5

$$Minsup = 50\%$$

< {1,2} {2,3} >

Object	Timestamp	Events
А	1	1,2,4
А	2	2,3
А	3	5
В	1	1,2
В	2	2,3,4
С	1	1, 2
С	2	2,3,4
С	3	2,4,5
D	1	2
D	2	3, 4
D	3	4, 5
Е	1	1, 3
E	2	2, 4, 5

$$Minsup = 50\%$$

< {1,2} {2,3} >

Object	Timestamp	Events
Α	1	1,2,4
А	2	2,3
Α	3	5
В	1	1,2
В	2	2,3,4
С	1	1, 2
С	2	2,3,4
С	3	2,4,5
D	1	2
D	2	3, 4
D	3	4, 5
Е	1	1, 3
E	2	2, 4, 5

$$Minsup = 50\%$$

< {1,2} {2,3} >

Object	Timestamp	Events
Α	1	1,2,4
Α	2	2,3
Α	3	5
В	1	1,2
В	2	2,3,4
С	1	1, 2
С	2	2,3,4
С	3	2,4,5
D	1	2
D	2	3, 4
D	3	4, 5
Е	1	1, 3
E	2	2, 4, 5

$$Minsup = 50\%$$

Object	Timestamp	Events
Α	1	1,2,4
А	2	2,3
А	3	5
В	1	1,2
В	2	2,3,4
С	1	1, 2
С	2	2,3,4
С	3	2,4,5
D	1	2
D	2	3, 4
D	3	4, 5
Е	1	1, 3
E	2	2, 4, 5

$$Minsup = 50\%$$

Object	Timestamp	Events
А	1	1,2,4
А	2	2,3
А	3	5
В	1	1,2
В	2	2,3,4
С	1	1, 2
С	2	2,3,4
С	3	2,4,5
D	1	2
D	2	3, 4
D	3	4, 5
Е	1	1, 3
E	2	2, 4, 5

$$Minsup = 50\%$$

Object	Timestamp	Events
Α	1	1,2,4
Α	2	2,3
Α	3	5
В	1	1,2
В	2	2,3,4
С	1	1, 2
С	2	2,3,4
С	3	2,4,5
D	1	2
D	2	3, 4
D	3	4, 5
Е	1	1, 3
E	2	2, 4, 5

$$Minsup = 50\%$$

Object	Timestamp	Events
А	1	1,2,4
Α	2	2,3
А	3	5
В	1	1,2
В	2	2,3,4
С	1	1, 2
С	2	2,3,4
С	3	2,4,5
D	1	2
D	2	3, 4
D	3	4, 5
Е	1	1, 3
E	2	2, 4, 5

$$Minsup = 50\%$$

Object	Timestamp	Events
А	1	1,2,4
А	2	2,3
А	3	5
В	1	1,2
В	2	2,3,4
С	1	1, 2
С	2	2,3,4
С	3	2,4,5
D	1	2
D	2	3, 4
D	3	4, 5
Е	1	1, 3
E	2	2, 4, 5

```
Minsup = 50\%
Examples of Frequent Subsequences:
                  s=60%
< {1,2} >
< {1,2} > s=60%
< {2,3} > s=60%
< {2,4}>
                     s=80%
< {3} {5}>
                     s=80%
< \{1\} \{2\} >  s=80%
< {2} {2} > s=60%

< {1} {2,3} > s=60%

< {2} {2,3} > s=60%
< \{1,2\} \{2,3\} > s=60\%
```

Extracting Sequential Patterns

- Given n events: i₁, i₂, i₃, ..., i_n
- Candidate 1-subsequences:

$$<\{i_1\}>, <\{i_2\}>, <\{i_3\}>, ..., <\{i_n\}>$$

Candidate 2-subsequences:

$$\langle \{i_1, i_2\} \rangle, \langle \{i_1, i_3\} \rangle, \dots, \langle \{i_1\} \{i_1\} \rangle, \langle \{i_1\} \{i_2\} \rangle, \dots, \langle \{i_{n-1}\} \{i_n\} \rangle$$

Candidate 3-subsequences:

$$<\{i_1, i_2, i_3\}>, <\{i_1, i_2, i_4\}>, ..., <\{i_1, i_2\} \{i_1\}>, <\{i_1, i_2\} \{i_2\}>, ..., <\{i_1\} \{i_1, i_2\}>, <\{i_1\} \{i_1, i_2\}>, <\{i_1\} \{i_1\} \{i_2\}>, ..., <\{i_1\} \{i_1\} \{i_2\}>, ..., <\{i_2\} \{i_3\}>, ..., <\{i_3\} \{i_4\} \{i_4\}>, ..., <\{i_4\} \{i_5\}>, ..., <\{i_5\} \{i_8\}>, ..., <\{i_8\} \{i_9\}>, ...$$

Generalized Sequential Pattern (GSP)

Step 1:

 Make the first pass over the sequence database D to yield all the 1element frequent sequences

Step 2:

Repeat until no new frequent sequences are found

- Candidate Generation:
 - Merge pairs of frequent subsequences found in the (k-1)th pass to generate candidate sequences that contain k items

— Candidate Pruning:

◆ Prune candidate k-sequences that contain infrequent (k-1)-subsequences

— Support Counting:

 Make a new pass over the sequence database D to find the support for these candidate sequences

— Candidate Elimination:

Eliminate candidate k-sequences whose actual support is less than minsup

Candidate Generation

- Base case (k=2):
 - Merging two frequent 1-sequences $<\{i_1\}>$ and $<\{i_2\}>$ will produce two candidate 2-sequences: $<\{i_1\}$ $\{i_2\}>$ and $<\{i_1$ $i_2\}>$
- General case (k>2):
 - A frequent (k-1)-sequence w₁ is merged with another frequent (k-1)-sequence w₂ to produce a candidate k-sequence if the subsequence obtained by removing the first event in w₁ is the same as the subsequence obtained by removing the last event in w₂
 - The resulting candidate after merging is given by the sequence w₁ extended with the last event of w₂.
 - If the last two events in w₂ belong to the same element, then the last event in w₂ becomes part of the last element in w₁
 - Otherwise, the last event in w₂ becomes a separate element appended to the end of w₁

Candidate Generation Examples

- Merging the sequences $w_1 = <\{1\} \{2\ 3\} \{4\}> \text{ and } w_2 = <\{2\ 3\} \{4\ 5\}>$ will produce the candidate sequence $<\{1\} \{2\ 3\} \{4\ 5\}>$ because the last two events in w_2 (4 and 5) belong to the same element
- Merging the sequences $w_1 = <\{1\} \{2\ 3\} \{4\} > \text{ and } w_2 = <\{2\ 3\} \{4\} \{5\} > \text{ will produce the candidate sequence} < \{1\} \{2\ 3\} \{4\} \{5\} > \text{ because the last two events in } w_2 (4 \text{ and } 5) \text{ do not belong to the same element}$
- We do not have to merge the sequences $w_1 = <\{1\} \{2\} \{3\} > \text{ and } w_2 = <\{1\} \{2,5\} >$

GSP Example

Frequent 3-sequences

< {1} {2} {3} >
< {1} {2 5} >
< {1} {2 5} >
< {1} {5} {3} >
< {2} {3} {4} >
< {2 5} {3} >
< {3} {4} {5} >
< {5} {3 4} >

Candidate Generation

Candidate Pruning

< {1} {2 5} {3} >

Timing Constraints (I)

x_g: max-gap

n_g: min-gap

$$x_g = 2, n_g = 0$$

Data sequence	Subsequence	Contain?
< {2,4} {3,5,6} {4,7} {4,5} {8} >	< {6} {5} >	Yes
< {1} {2} {3} {4} {5}>	< {1} {4} >	No
< {1} {2,3} {3,4} {4,5}>	< {2} {3} {5} >	Yes
< {1,2} {3} {2,3} {3,4} {2,4} {4,5}>	< {1,2} {5} >	No

Timing Constraints (I)

- Maxgap = 3
- Mingap = 1

Data Sequence, s	Sequential Pattern, t	maxgap	mingap
$<\{1,3\}$ $\{3,4\}$ $\{4\}$ $\{5\}$ $\{6,7\}$ $\{8\}$ $>$	< {3} {6} >	-	
$\{1,3\}$ $\{3,4\}$ $\{4\}$ $\{5\}$ $\{6,7\}$ $\{8\}$ >	< {6} {8} >		
$\{1,3\}$ $\{3,4\}$ $\{4\}$ $\{5\}$ $\{6,7\}$ $\{8\}$	$<\{1,3\}\ \{6\}>$		
$\{1,3\}$ $\{3,4\}$ $\{4\}$ $\{5\}$ $\{6,7\}$ $\{8\}$ >	< {1} {3} {8} >		

Timing Constraints (I)

- Maxgap = 3
- Mingap = 1

Data Sequence, s	Sequential Pattern, t	maxgap	mingap
$<\{1,3\}$ $\{3,4\}$ $\{4\}$ $\{5\}$ $\{6,7\}$ $\{8\}$ $>$	< {3} {6} >	Pass	Pass
$<\{1,3\}$ $\{3,4\}$ $\{4\}$ $\{5\}$ $\{6,7\}$ $\{8\}$ $>$	< {6} {8} >	Pass	Fail
$<\{1,3\}$ $\{3,4\}$ $\{4\}$ $\{5\}$ $\{6,7\}$ $\{8\}$ $>$	$<\{1,3\}\{6\}>$	Fail	Pass
$<\{1,3\}$ $\{3,4\}$ $\{4\}$ $\{5\}$ $\{6,7\}$ $\{8\}$ $>$	< {1} {3} {8} >	Fail	Fail

Mining Sequential Patterns with Timing Constraints

- Approach 1:
 - Mine sequential patterns without timing constraints
 - Postprocess the discovered patterns
- Approach 2:
 - Modify GSP to directly prune candidates that violate timing constraints
 - Question:
 - Does Apriori principle still hold?

Apriori Principle for Sequence Data

Object	Timestamp	Events
Α	1	1,2,4
Α	2	2,3
Α	3	5
В	1	1,2
В	2	2,3,4
С	1	1, 2
С	2	2,3,4
С	3	2,4,5
D	1	2
D	2	3, 4
D	3	4, 5
E	1	1, 3
Е	2	2, 4, 5

Suppose:

$$x_g = 1 \text{ (max-gap)}$$
 $n_g = 0 \text{ (min-gap)}$
 $minsup = 60\%$

Problem exists because of max-gap constraint

No such problem if max-gap is infinite

