Causal diagrams (DAGs)

ADVANCED EPIDEMIOLOGY

22 JANUARY 2019

REGINA PRIGGE: S1570624@SMS.ED.AC.UK

COLIN FISCHBACHER: COLIN.FISCHBACHER@NHS.NET

Why do we need causal diagrams?

- Interest: The relationship between depression and subsequent cardiovascular diseases
- Literature
 - 1. To define hypotheses
 - 2. To identify other variables that have a relationship with depression as well as with CVD:
 - Physical activity, alcohol intake, menopausal status, age, sex, ethnicity, diet, weight gain, different medications, biological dysregulations, and many more...
- Need to communicate to others what my theory is
 - Can be difficult to explain in words
 - Causal diagram as a way of making clear what our theories and assumptions are

Usefulness of causal diagrams

- Identifies variables relevant to research
- Summarize knowledge
- Visualize assumptions
- Graphic representation of causal network
- Enhance communication among researchers

Directed acyclic graphs (DAGs)

Directed: Edges (arrowheads) imply a direction

$$\begin{array}{ccc} A & & & Y \\ \text{(treatment)} & & \text{(outcome)} \end{array}$$

Acyclic: A variable cannot cause itself

Visualization of DAGs

- Presence of arrow:
 - We assume direct causal effect
 - We are not willing to assume that causal effect does not exist
- Absence of arrow = strong assumption:
 - We are willing to assume that causal effect does not exist
- Direction of arrow:
 - Assumed direction of effect
- Time flows from left to right
- We do not distinguish between harmful and protective effects

What does this DAG tell us?

Ideal RCTs

- What do I mean by "ideal" RCT?
 - Treatment groups are exchangeable
 - No loss to follow-up
 - Double-blinding
 - Perfect adherence to treatment strategies
- Unconditional exchangeability

Non-ideal RCTs and observational studies

- Conditional exchangeability (more than two variables)
- What type of other variables could there be?
 - Common sources
 - Common effects
 - Mediators

Common sources – non-collider

- Association flows between variables regardless of the direction of the causal arrows (association from $A \rightarrow L \rightarrow Y$)
 - "back-door path" is open

Common sources – non-collider

- "Back-door path" is open
- We can only estimate causal effects if there is no open back-door path

Common sources – non-collider

- "Back-door path" is open
- We can interpret our estimates causally if there is no open backdoor-path

Open and blocked paths – non-collider

OPEN PATH

 No conditioning on non-collider (common source)

BLOCKED PATH

 Conditioning on non-collider (common source)

Conditioning

ADJUSTMENT

"In our statistical analysis we adjusted our results for smoking"

Effect estimates:

Unadjusted (crude):

OR 1.22 (1.14-1.56)

Adjusted for smoking:

• OR 1.15 (1.05-1.25)

STRATIFICATION

"We report our results separately for smoker and non-smoker"

Effect estimates:

Smoker:

• OR: 1.48 (1.36-1.57)

Non-smoker:

• OR: 1.21 (1.15-1.34)

RESTRICTION

"We only selected participants that were smokers"

Effect estimates:

Smoker:

OR: 1.48 (1.36-1.57)

Confounding

Confounding diagram in Intro to Epi:

 This is what our diagram looked like when we did not condition on the common source (non-collider):

We did not close an open "back-door path"

- Association does not flow between variables when two arrowheads point towards a variable (no association from A→L←Y)
 - "Back-door path" is blocked
 - We can interpret our estimates causally if there is no open backdoorpath

If we restrict our sample to participants with heart disease...

- Association does flow between variables when two arrowheads point towards a variable, and this variable was conditioned on (association from $A \rightarrow \Box \leftarrow Y$)
 - "back-door path" is open

- Association does not flow between variables when two arrowheads point towards a variable (no association from A→L←Y)
 - "back-door path" is closed

- "Back-door path" is open
- Estimates cannot be interpreted causally

 We might unwillingly condition on a collider because we lose information of those lost to follow-up

- Association does flow between variables when two arrowheads point towards a variable, and this variable was conditioned on (association from $A \rightarrow \Box \leftarrow Y$)
 - "back-door path" is open

Conditioning on descendent of a collider

- Association flows between variables when it was conditioned on the descendent of a collider
 - "back-door path" is open
- Think of descendent of collider as common effect of A and Y through L

Open and blocked paths – collider

OPEN PATH

Conditioning on collider (common effect)

 Conditioning on effect of collider (common effect)

BLOCKED PATH

 No conditioning on collider AND no conditioning on effect of collider

Selection bias

 Conditioning on common effect (collider) or conditioning on descendent of collider

We opened a closed "back-door path"

Confounding vs selection bias

Confounding:

 Not conditioning on common source (non-collider) → we did not close an open "back-door path"

Selection bias:

Conditioning on common effect (collider) or conditioning on effect of collider
→ we opened a closed "back-door path"

Mediation

Factor is on the causal pathway

What do we want to do here?

Mediation – Estimation of total effect

Mediation – Estimation of indirect and direct effect

complete mediation

incomplete mediation

The world is more complicated than that...

A conceptual causal diagram

DAGitty

- Free software for drawing causal diagrams
- Helps you identify the variable you have to condition on in order to interpret your estimate causally
- http://www.dagitty.net/ dags.html#

References

Greenland, S., Pearl, J. and Robins, J.M., 1999. Causal diagrams for epidemiologic research. *Epidemiology*, pp.37-48.

Hernán, M.A., Hernández-Díaz, S. and Robins, J.M., 2004. A structural approach to selection bias. *Epidemiology*, 15(5), pp.615-625.

Hernán, M.A. and Robins, J.M., (forthcoming). Graphical representation of causal effects. In: *Causal inference*. Boca Raton, FL: CRC, p.69-82.

Hernán, M.A. and Robins, J.M., (forthcoming). Confounding. In: *Causal inference*. Boca Raton, FL: CRC, p.83-94.

Hernán, M.A. and Robins, J.M., (forthcoming). Selection bias. In: *Causal inference*. Boca Raton, FL: CRC, p.95-108.

Textor, J., Hardt, J. and Knüppel, S., 2011. DAGitty: a graphical tool for analyzing causal diagrams. *Epidemiology*, 22(5), p.745.

Rehfuess, E., Best, N., Briggs, D. and Joffe, M. (2013). Diagram-based Analysis of Causal Systems (DACS): elucidating inter-relationships between determinants of acute lower respiratory infections among children in sub-Saharan Africa. *Emerging Themes in Epidemiology*, 10(1), p.13.

Röhrig, N., Strobl, R., Müller, M., Perz, S., Kääb, S., Martens, E., Peters, A., Linkohr, B. and Grill, E. (2014). Directed acyclic graphs helped to identify confounding in the association of disability and electrocardiographic findings: results from the KORA-Age study. Journal of Clinical Epidemiology, 67(2), pp.199-206.

Recap - Unconditional exchangeability

- Achieved through randomization
- Groups are equal in all aspects other than their exposure status

 Treatment effect would have been the same among the untreated if they had been treated

Recap - Conditional exchangeability

Groups are <u>different</u> in aspects other than their exposure status

 Within each strata of symptom status, treatment effect would have been the same among the untreated if they had been treated