

AYXX KYDCERa

Index

The Capacitor 2 . 9		
Dielectrics 10 - 13		The Capaciton
Radial Leads	CHARLES SERVICE	Dielectrics
SKYCAPS 14 - 19 CERALAM 20 - 23 PACKAGING 24 - 25		Radial Leads
Two-Pin DIPs DIPGUARD 26 - 27		Two-Pin DIF
Axial Leads SPINGUARD 28 - 33 GLASS ENCAPSULATION 34 - 37 CERALAM 38 - 41 PACKAGING 42 - 43		Axial Leads
Military		Military
MIL-C-39014 44 - 47 Radial 48 - 51 Two-Pin DIPs 52 - 57	A CONTRACTOR OF THE PARTY OF TH	
MIL-C-11015 Radial		
MIL-C-20 Radial	reaction	D / PAR
MIL-C-123 Radial 68 - 69 Axial 70 - 71 Marking 72 Cross Ref. 72		3 A ANARAMA
THE REAL PROPERTY OF THE PARTY	· · · · · · · · · · · · · · · · · · ·	O AMARITA DILI
AND CORPORATION		
MINICAL CONTROL OF THE PROPERTY OF THE PROPERT		- monna
ANNA CENCELLA	The state of the s	
manua.	William Control of the Control of th	
	111111	
A A A A A A A	Manager State of the State of t	**************************************
The state of the s		
The state of the s		

The Capacitor

GENERAL INFORMATION

A capacitor is a component which is capable of storing electrical energy. It consists of two conductive plates (electrodes) separated by insulating material which is called the dielectric. A typical formula for determining capacitance is:

$$C = \frac{.224 \text{ KA}}{t}$$

C = capacitance (picofarads)

K = dielectric constant (Vacuum = 1)

A = area in square inches

t = separation between the plates in inches (thickness of dielectric)

.224 = conversion constant (.0884 for metric system in cm)

Capacitance — The standard unit of capacitance is the farad. A capacitor has a capacitance of 1 farad when 1 coulomb charges it to 1 volt. One farad is a very large unit and most capacitors have values in the micro (10⁻⁶), nano (10⁻⁹) or pico (10⁻¹²) farad level.

Dielectric Constant — In the formula for capacitance given above the dielectric constant of a vacuum is arbitrarily chosen as the number 1. Dielectric constants of other materials are then compared to the dielectric constant of a vacuum.

Dielectric Thickness — Capacitance is indirectly proportional to the separation between electrodes. Lower voltage requirements mean thinner dielectrics and greater capacitance per volume.

Area — Capacitance is directly proportional to the area of the electrodes. Since the other variables in the equation are usually set by the performance desired, area is the easiest parameter to modify to obtain a specific capacitance within a material group.

Energy Stored - The energy which can be stored in a capacitor is given by the formula:

$$E = \frac{1}{2}CV^2$$

E = energy in joules (watts-sec)

V = applied voltage C = capacitance in farads

Potential Change — A capacitor is a reactive component which reacts against a change in potential across it. This is shown by the equation for the linear charge of a capacitor:

$$I_{ideal} = C \frac{dV}{dt}$$

where

I = Current

C = Capacitance

dV/dt = Slope of voltage transition across capacitor

Thus an infinite current would be required to instantly change the potential across a capacitor. The amount of current a capacitor can "sink" is determined by the above equation.

Equivalent Circuit — A capacitor, as a practical device, exhibits not only capacitance but also resistance and inductance. A simplified schematic for the equivalent circuit is:

C = Capacitance

L = Inductance

R_o = Series Resistance

R = Parallel Resistance

Reactance — Since the insulation resistance (R_o) is normally very high, the total impedance of a capacitor is:

$$Z = \sqrt{R_s^2 + (X_c - X_t)^2}$$

where

Z = total impedance

 \mathbf{R}_{s} = Series Resistance \mathbf{X}_{c} = Capacitive Reactance = $\frac{1}{2 \pi \text{ fC}}$

 X_r = Inductive Reactance = 2 π fL

The variation of a capacitor's impedance with frequency determines its effectiveness in many applications.

Phase Angle — Power Factor and Dissipation Factor are often confused since they are both measures of the loss in a capacitor under AC application and are often almost identical in value. In a "perfect" capacitor the current in the capacitor will lead the voltage by 90°.

In practice the current leads the voltage by some other phase angle due to the series resistance $R_{\mbox{\tiny s}}$. The complement of this angle is called the loss angle and:

Power Factor (P.F.) = $\cos \phi$ or Sine δ Dissipation Factor (D.F.) = $\tan \delta$

for small values of δ the tan and sine are essentially equal which has led to the common interchangeability of the two terms in the industry.

Equivalent Series Resistance — The term E.S.R. or Equivalent Series Resistance combines all losses both series and parallel in a capacitor at a given frequency so that the equivalent circuit is reduced to a simple R-C series connection.

Dissipation Factor

The DF/PF of a capacitor tells what percent of the apparent power input will turn to heat in the capacitor.

Dissipation Factor =
$$\frac{\text{E.S.R.}}{\text{X}}$$
 = (2 π fC) (E.S.R.)

The watts loss are:

Watts loss =
$$(2 \pi fCV^2)$$
 (D.F.)

Very low values of dissipation factor are expressed as their reciprocal for convenience. These are called the "Q" or Quality factor of capacitors.

Insulation Resistance — Insulation Resistance is the resistance measured across the terminals of a capacitor and consists principally of the parallel resistance R_p shown in the equivalent circuit. As capacitance values and hence the area of dielectric increases, the LR. decreases and hence the product ($C \times IR$ or RC) is often specified in ohm farads or more commonly megohm microfarads. Leakage current is determined by dividing the rated voltage by IR (Ohm's Law).

Dielectric Strength — Dielectric Strength is an expression of the ability of a material to withstand an electrical stress. Although dielectric strength is ordinarily expressed in volts, it is actually dependent on the thickness of the dielectric and thus is also more generically a function of volts/mil.

Dielectric Absorption — A capacitor does not discharge instantaneously upon application of a short circuit, but drains gradually after the capacitance proper has been discharged. It is common practice to measure the dielectric absorption by determining the "reappearing voltage" which appears across a capacitor at some point in time after it has been fully discharged under short circuit conditions.

Corona — Corona is the ionization of air or other vapors which causes them to conduct current. It is especially prevalent in high voltage units but can occur with low voltages as well where high voltage gradients occur. The energy discharged degrades the performance of the capacitor and can in time cause catastrophic failures.

CERAMIC CAPACITORS

Multilayer ceramic capacitors are manufactured by mixing the ceramic powder in an organic binder (slurry) and casting it by one technique or another into thin layers typically ranging from about 3 mils in thickness down to 1 mil or thinner.

Metal electrodes are deposited onto the green ceramic layers which are then stacked to form a laminated structure. The metal electrodes are arranged so that their terminations alternate from one edge of the capacitor to another. Upon sintering at high temperature the part becomes a monolithic block which can provide extremely high capacitance values in small mechanical volumes. Figure 1 shows a pictorial view of a multilayer ceramic capacitor.

Multilayer ceramic capacitors are available in a wide range of characteristics. Electronic Industires Association (EIA) and the military have established categories to help divide the

The Capacitor

Figure 1

basic characteristics into more easily specified classes. The basic industry specification for ceramic capacitors is EIA specification RS-198 and as noted in the general section it specifies temperature compensating capacitors as Class 1 capacitors. These are specified by the military under specification MIL-C-20. General purpose capacitors with non-linear temperature coefficients are called Class 2 capacitors by EIA and are specified by the military under MIL-C-11015 and MIL-C-39014. The new high reliability military specification, MIL-C-123 covers both Class 1 and Class 2 dielectrics.

Class 1 — Class 1 capacitors or temperature compensating capacitors are usually made from mixtures of titanates where barium titanate is normally not a major part of the mix. They have predictable temperature coefficients and in general, do not have an aging characteristic. Thus they are the most stable capacitor available. Normally the T.C.s of Class 1 temperature compensating capacitors are NPO (negative-positive 0 ppm/°C). Class 1 extended temperature compensating capacitors are also manufactured in T.C.s from P100 through N2200.

Class 2 — General purpose ceramic capacitors are called Class 2 capacitors and have become extremely popular because of the high capacitance values available in very small size. Class 2 capacitors are "ferro electric" and vary in capacitance value under the influence of the environmental and electrical operating conditions. Class 2 capacitors are affected by temperature, voltage (both AC and DC), frequency and time. Temperature effects for Class 2 ceramic capacitors are exhibited as non-linear capacitance changes with temperature.

Table 1: EIA Temperature Compensating Ceramic Capacitor Codes

				TC TOLE	RANCES(1)					
Capacitance in pF	NPO	N030	N080	N150	N220	N330	N470	N750	N1500	N2200
				-55°C to +25	°C in PPM/°C				1	
10 and Over	+30 -75	+30 -80	+30 -90	+30 -105	+30 -120	+60 -180	+60 -210	+120 -340	+250 -670	+500 -1100
				+25°C to +85	°C in PPM/°C					
10 and Over	±30	±30	±30	±30	±30	±60	±60	±120	±250	±500
Closest MIL-C-20D Equivalent	CG	HG	LG	PG	RG	SH	TH	UJ	NONE	NONE
EIA Desig.	COG	S1G	U1G	P2G	R2G	S2H	Т2Н	U2J	РЗК	R3L

⁽¹⁾ Table I indicates the tolerance available on specific temperature characteristics. It may be noted that limits are established on the basis of measurements at +25°C and +85°C and that T.C. becomes more negative at low temperature. Wider tolerances are required on low capacitance values because of the effects of stray capacitance.

Table 2: MIL and EIA Temperature Stable and General Application Codes

	MIL CODE							
Symbol	Temperat	Temperature Range						
A	-55°C t	-55°C to +85°C						
В	-55°C to	-55°C to +125°C						
С	-55°C to +150°C							
Symbol	Cap. Change Zero Volts	Cap. Change Rated Volts						
R	+15%, -15%	+15%, -40%						
W	+22%, -56%	+22%, -66%						
X	+15%, -15%	+15%, -25%						
Y	+30%, -70%	+30%, -80%						
Z	+20%, -20%	+20%, -30%						

Temperature characteristic is specified by combining range and change symbols, for example BR or AW. Specification slash sheets indicate the characteristic applicable to a given style of capacitor.

EIA CODE Change Over Temperature Range
Temperature Range
-55°C to +125°C
-55°C to +85°C
-30°C to +85°C
+10°C to +85°C
Per Cent Capacity Change
±3.3% +4.7%
±7.5%
±10%
±15% ±22%
+22%, -33%
+22%, -56% +22%, -82%

EXAMPLE — A capacitor is desired with the capacitance value at 25°C to increase no more than 7.5% or decrease no more than 7.5% from -30°C to +85°C. EIA Code will be Y5F

In specifying capacitance change with temperature for Class 2 materials. EIA expresses the capacitance change over an operating temperature range by a 3 symbol code. The first symbol represents the cold temperature end of the temperature range, the second represents the upper limit of the operating temperature range and the third symbol represents the capacitance change allowed over the operating temperature range. Table 2 provides a detailed explanation of the EIA system.

Effects of Voltage — Variations in voltage affects only the capacitance and dissipation factor. The application of DC voltage reduces both the capacitance and dissipation factor while the application of an AC voltage within a reasonable range

tends to increase both capacitance and dissipation factor readings. If a high enough AC voltage is applied, eventually it will reduce capacitance just as a DC voltage will. Figure 2 shows the effects of AC voltage.

Capacitor specifications specify the AC voltage at which to measure (normally 0.5 or 1 VAC) and application of the wrong voltage can cause spurious readings. Figure 3 gives the voltage coefficient of dissipation factor for various AC voltages at 1 kilohertz. Applications of different frequencies will affect the percentage changes versus voltages.

D.F. vs. A.C. Measurement Volts AVX X7R T.C.

Figure 3

The Capacitor

The effect of the application of DC voltage is shown in Figure 4. The voltage coefficient is more pronounced for higher K dielectrics. These figures are shown for room temperature conditions. The combination characteristic known as voltage temperature limits which shows the effects of rated voltage over the operating temperature range is shown in Figure 5 for the military BX characteristic.

Figure 4

Typical Cap. Change vs. Temperature AVX X7R T.C.

Figure 5

Temperature Degrees Centigrade

Cap. Change vs. Frequency

"Q" vs. Frequency

Figure 7

Effects of Frequency - Frequency affects capacitance and dissipation factor as shown in Figures 6 and 7.

Variation of impedance with frequency is an important consideration for decoupling capacitor applications. Lead length, lead configuration and body size all affect the impedance level over more than ceramic formulation variations. (Figure 8)

Effects of Time — Class 2 ceramic capacitors change capacitance and dissipation factor with time as well as temperature, voltage and frequency. This change with time is known as aging. Aging is caused by a gradual re-alignment of the crystalline structure of the ceramic and produces an exponential loss in capacitance and decrease in dissipation factor versus time. A typical curve of aging rate for semistable ceramics is shown in Figure 9 and a table is given showing the aging rates of various dielectrics.

If a ceramic capacitor that has been sitting on the shelf for a period of time, is heated above its curie point, (125°C for 4 hours or 150°C for ½ hour will suffice) the part will de-age and return to its initial capacitance and dissipation factor readings. Because the capacitance changes rapidly, immediately after de-aging, the basic capacitance measurements are normally referred to a time period sometime after the deaging process. Various manufacturers use different time bases but the most popular one is one day or twenty-four hours after "last heat." Change in the aging curve can be caused by the application of voltage and other stresses. The possible changes in capacitance due to de-aging by heating the unit explain why capacitance changes are allowed after test, such as temperature cycling, moisture resistance, etc., in MIL specs. The application of high voltages such as dielectric withstanding voltages also tends to de-age capacitors and is why re-reading of capacitance after 12 or 24 hours is allowed in military specifications after dielectric strength tests have been performed.

Impedance vs. Frequency Effect of Dielectric — AVX DIPGuards

Impedance vs. Frequency
Effect of Lead Length — Military CKR05 .01mF

Figure 8

Characteristic NPO None X7R 1.5 5

Effects of Mechanical Stress — High "K" dielectric ceramic capacitors exhibit some low level piezoelectric reactions under mechanical stress. As a general statement, the piezoelectric output is higher, the higher the dielectric constant of the ceramic. It is desirable to investigate this effect before using high K dielectrics as coupling capacitors in extremely low level applications.

Reliability — Historically ceramic capacitors have been one of the most reliable types of capacitors in use today. The approximate formula for the reliability of a ceramic capacitor is:

$$\frac{L_{o}}{L_{t}} = \left(\frac{V_{t}}{V_{o}}\right)^{x} \left(\frac{T_{t}}{T_{o}}\right)^{x}$$

where

Figure 9

 $\begin{array}{lll} L_{_{0}} = \text{operating life} & T_{_{i}} = \text{test temperature and} \\ L_{_{f}} = \text{test life} & T_{_{0}} = \text{operating temperature} \\ V_{_{f}} = \text{test voltage} & \text{in } {^{\circ}C} \\ V = \text{operating voltage} & X, Y = \text{see text} \end{array}$

Historically for ceramic capacitors exponent X has been considered as 3. The exponent Y for temperature effects typically tends to run about 8.

The Capacitor

GENERAL ELECTRICAL AND ENVIRONMENTAL SPECIFICATIONS

Many AVX ceramic capacitors are purchased in accordance with Military Specifications, MIL-C-39014 MIL-C-11015, MIL-C-20, MIL-C-55681, and MIL-C-123 or according to individual customer specification. When ordered to these specifications, the parts will meet the requirements set forth in these documents. The General Electrical and Environmental Specifications listed below detail test conditions which are common to the foregoing and to most ceramic capacitor specifications. If additional information is needed, AVX Application Engineers are ready to assist you.

CAPACITANCE: Capacitance shall be tested in accordance with Method 305 of MIL-STD-202.

Class 1 dielectric to 100 pF measured at 1 MHz, \pm 100 KHz, > 100 pF measured at 1 KHz \pm 100 Hz both at 1.0 \pm 0.2 VAC. Class 2 dielectrics (except High K) to 100 pF shall be measured at 1 MHz \pm 100 KHz, > 100 pF measured at 1 KHz \pm 100 Hz both at 1.0 \pm 0.2 VAC.

High K dielectrics measured at 1 KHz \pm 100 Hz with less than 0.5 VAC or less applied.

Dissipation Factor — D.F. shall be measured at the same frequency and voltage as specified for capacitance.

Dielectric Strength — The dielectric strength shall be measured in accordance with Method 301 of MIL-STD-202 with a suitable resistor in series with the power supply to limit the charging current to 50 ma. max.

Insulation Resistance — Insulation Resistance shall be measured in accordance with Method 302 of MIL-STD-202 with rated voltage or 200 VDC whichever is less applied. The current shall be limited to 50 ma. max. and the charging time shall be 2.0 minutes maximum.

Burn-In — (Where specified.) 100% of the parts shall be subjected to 5 cycles of Thermal Shock per Method 107 Test Condition A of MIL-STD-202 followed by voltage conditioning at twice rated voltage and maximum rated temperature for 100 hours or as specified. After Burn-In, parts shall meet all initial requirements.

Barometric Pressure — Capacitors shall be tested in accordance with Method 105 of MIL-STD-202 Test Condition D (100,000 ft.) with 100% rated voltage applied for 5 seconds with current limited to 50 ma. No evidence of flashover or damage is permitted.

Solderability — Capacitors shall be tested in accordance with Method 208 of MIL-STD-202 with 95% coverage of new solder.

Vibration — Capacitors shall be tested in accordance with Method 208 Test Condition D of MIL-STD-202 with the bodies rigidly clamped. The specimens shall be tested in 3 mutually perpendicular planes for a total of 8 hours with 125% rated DC voltage applied. No evidence of opens, intermittents or shorts is permitted.

Shock — Capacitors shall be tested in accordance with Method 213 Condition 1 (100 Gs) of MIL-STD-202 with the bodies rigidly clamped. No evidence of opens, intermittents or shorts is permitted.

Thermal Shock and Immersion — Capacitors shall be tested in accordance with Method 107 Condition A of MIL-STD-202 with high test temperature (maximum rated operating temperature) followed by Method 104 of MIL-STD-202 Test Condition B.

Moisture Resistance — Capacitors shall be tested in accordance with Method 106 of MIL-STD-202 with rated voltage or 100 VDC whichever is less applied for the first 10 cycles.

Resistance to Solder Heat — Capacitors shall be tested in accordance with Method 210 of MIL-STD-202 with immersion to .050 of body. AVX Ceralam capacitors are manufactured with solder which melts at a temperature greater than 450°F.

General Considerations — The application of voltage or temperature usually causes temporary changes in the capacitance of Class 2 ceramic capacitors. These changes are normally in the positive direction and may cause out-of-tolerance capacitance readings. If a capacitance reading is made immediately after a dielectric strength or insulation resistance test and parts are high capacitance, they should be re-read after a minimum wait of 12 hours.

BASIC CAPACITOR FORMULAS

I. Capacitance (farads)

English:
$$C = \frac{.224 \text{ K A}}{T_D}$$

Metric:
$$C = \frac{.0884 \text{ K A}}{T_D}$$

II. Energy stored in capacitors (Joules, watt - sec) $E = \frac{1}{2} CV^2$

$$I = C \frac{dV}{dt}$$

$$Z = \sqrt{R_S^2 + (X_C - X_L)^2}$$

V. Capacitive Reactance (ohms)

$$x_c = \frac{1}{2 \pi fC}$$

VI. Inductive Reactance (ohms)

$$x_L = 2 \pi fL$$

VII. Phase Angles:

Ideal Capacitors: Current leads voltage 90° Ideal Inductors: Current lags voltage 90° Ideal Resistors: Current in phase with voltage

VIII. Dissipation Factor (%)

D.F. =
$$\tan \delta$$
 (loss angle) = $\frac{E.S.R.}{X_C}$ = (2 π fC) (E.S.R.)

IX. Power Factor (%)

P.F. = Sine δ (loss angle) = Cos ϕ (phase angle) P.F. = (when less than 10%) = DF

X. Quality Factor (dimensionless)

Q = Cotan δ (loss angle) =
$$\frac{1}{D.F.}$$

XI. Equivalent Series Resistance (ohms)

E.S.R. = (D.F.) (Xc) = (D.F.)
$$/$$
 (2 π fC)

XII. Power Loss (watts)

Power Loss = $(2 \pi fCV^2)$ (D.F.)

XIII. KVA (Kilowatts)

$$KVA = 2 \pi fCV^2 \times 10^{-3}$$

XIV. Temperature Characteristic (ppm/°C)

T.C. =
$$\frac{\text{Ct} - \text{C}_{25}}{\text{C}_{25} (\text{T}_1 - 25)} \times 10^6$$

XV. Cap Drift (%)

C.D. =
$$\frac{C_1 - C_2}{C_1}$$
 x 100

XVI. Reliability of Ceramic Capacitors

$$\frac{L_0}{L_t} = \left(\frac{V_t}{V_o}\right) X \left(\frac{T_t}{T_o}\right) Y$$

XVII. Capacitors in Series (current the same)

Any Number:
$$\frac{1}{C_{T}} = \frac{1}{C_{1}} + \frac{1}{C_{2}} - \frac{1}{C_{N}}$$

Two:
$$C_T = \frac{C_1 C_2}{C_1 + C_2}$$

XVIII. Capacitors in Parallel (voltage the same)

$$C_T = C_1 + C_2 - \cdots + C_N$$

XIX. Aging Rate

A.R. = $\% \Delta$ C/decade of time

XX. Decibels

$$db = 20 \log \frac{V_1}{V_2}$$

METRIC PREFIXES

$\begin{array}{cccc} X & 10^{-12} \\ X & 10^{-9} \\ X & 10^{-6} \\ X & 10^{-3} \\ X & 10^{-1} \\ X & 10^{+1} \\ X & 10^{+3} \\ X & 10^{+9} \\ X & 10^{+12} \end{array}$ Pico Nano Micro Milli Deci Deca Kilo Mega Giga

Tera

SYMBOLS

K	= Dielectric Constant	f	= frequency	L,	= Test life
A	= Area	L	= Inductance	V_{t}	= Test voltage
$T_{\text{\tiny D}}$	= Dielectric thickness	δ	= Loss angle	$V_{\rm o}$	= Operating voltage
V	= Voltage	φ	= Phase angle	T_{τ}	= Test temperature
t	= time	X & 7	Y = exponent effect of voltage and temp.	T_{\circ}	= Operating temperature
$R_{\mathfrak{s}}$	= Series Resistance	L_{\circ}	= Operating life		

NPO Dielectric "A"

GENERAL SPECIFICATIONS

Capacitance Range

See Individual Parts Specifications

Capacitance Test at 25°C

Measured at 1 VRMS max. at 1 KHz (1 MHz for 100 pF or less)

Capacitance Tolerances

 $\hat{C} = \pm .25 \text{ pF}, D = \pm .50 \text{ pF}, E = \pm 0.5\%, F = \pm 1.0\%, G = \pm 2\%, H = \pm 3\%,$ $I = \pm 5\%$, $K = \pm 10\%$, $M = \pm 20\%$

For values less than 10 pF tightest tolerance available is $\pm .25$ pF

Operating Temperature Range

-55°C to +125°C

Temperature Characteristic

 $0 \pm 30 \text{ ppm/°C}$

Voltage Ratings

200, 100 & 50 Vdc

Dissipation Factor

.15% max. (+25°C and +125°C) for values greater than 30 pF or $Q = 20 \times C + 400$ for values of 30 pF and below.

1.0 VRMS, 1 MHz for values \leq 100 pF, and

1 KHz for values > 100 pF

Insulation Resistance 25°C (MIL-STD-202-Method 302)

100 K megohms or 1000 megohms - μF minimum, whichever is less

Dielectric Strength

250% of rated Vdc

Life Test (1,000 hours)

200% rated voltage at +125°C

Moisture Resistance (MIL-STD-202-Method 106)

Thermal Shock (MIL-STD-202-Method 107, condition A. at rated elevated temperature)

-55°C to +125°C

Immersion Cycling (MIL-STD-202-Method 104, condition B)

For current reliability information, consult factory.

TYPICAL CHARACTERISTICS **Temperature Coefficient** △ Capacitance +0.5 -0.5 -55 -35 -15 +5 +25 +45 +65 +85 +105 +125 Temperature °C **Aging Rate** Capacitance +0 -01 100 1.000 10.000 Hours Voltage Coefficient △ Capacitance -0 125 150 100 D.C. Volts Applied Insulation Resistance vs. Temp. 10.000 -Farads) (Ohm 1.000 Resistance

+40 +60

Temperature °C

+80 +100

100

X7R Dielectric "C"

GENERAL SPECIFICATIONS

Capacitance Range

See Individual Parts Specifications

Capacitance Test at 25°C

Measured at 1 VRMS max, at 1 KHz

Capacitance Tolerances

 $I = \pm 5\%$, $K = \pm 10\%$, $M = \pm 20\%$

Operating Temperature Range -55°C to +125°C

Temperature Characteristic

± 15% (0 Vdc)

Voltage Ratings

200, 100 & 50 Vdc

Dissipation Factor

2.5% max. at 1 KHz, 1 VRMS max.

Insulation Resistance 25°C (MIL-STD-202-Method 302)

 $100~\mathrm{K}$ megohms or $1000~\mathrm{megohms}$ - $\mu\mathrm{F}$ minimum, whichever is less

Dielectric Strength

250% of rated Vdc

Life Test (1,000 hours)

200% rated voltage at +125°C

Moisture Resistance (MIL-STD-202-Method 106)

Thermal Shock (MIL-STD-202-Method 107, condition A, at rated elevated temperature)

-55°C to +125°C

Immersion Cycling (MIL-STD-202-Method 104, condition B)

For current reliability information, consult factory.

TYPICAL CHARACTERISTICS **Temperature Coefficient** +12 +6 Capacitance Λ -6 -12 _18 -24 -50 -25 0 +25 +50 +75 +100 +125 Temperature °C △ Capacitance vs. Frequency Capacitance 0 -10 1 kHz 10 kHz Frequency Voltage Coefficient 100 V dc Ra Capacitance -10 -20 -30 -40 D.C. Volts Applied Insulation Resistance vs. Temp. 10,000 (O 1 000 Resistance 100 Insulation +25 +40 +60 +80+100 +20 Temperature °C

Z5U Dielectric "E"

GENERAL SPECIFICATIONS

Capacitance Range

See Individual Parts Specifications

Capacitance Test at 25°C

Measured at 0.5 VRMS max. at 1 KHz.

Capacitance Tolerances

 $\hat{M} = \pm 20\%$, Z = +80%, -20%, P = GMV*

Operating Temperature Range

+10°C to +85°C

Temperature Characteristic

+22%, -56%

Voltage Ratings

100 & 50 Vdc

Dissipation Factor

4.0% max. at 1 KHz, .5 VRMS max.

Insulation Resistance 25°C (MIL-STD-202-Method 302)

10 K megohms or 100 megohms - μF minimum.

whichever is less

Dielectric Strength 200% of rated Vdc

Life Test (1.000 hours)

150% rated voltage at +85°C

Moisture Resistance (MIL-STD-202-Method 106)

Immersion Cycling (MIL-STD-202-Method 104, condition B)

For current reliability information, consult factory.

*Guaranteed Minimum Value

△ Capacitance vs. Frequency

Insulation Resistance vs. Temp.

Special Dielectrics

Y5V (Dielectric "G")

GENERAL SPECIFICATIONS

Capacitance Range Contact AVX

Capacitance Test at 25°C Measured at 0.3 VRMS max, at 1 KHz.

Capacitance Tolerances ±20%, [+80, -20]%

Operating Temperature Range -30°C to +85°C

Temperature Characteristic +22%, -82%

Voltage Ratings 100 & 50 Vdc

Dissipation Factor 4.0% max. at 1 KHz. .3 VRMS max.

Insulation Resistance 25°C (MIL-STD-202-Method 302) 10 K megohms or 100 megohms - μ F minimum, whichever is less

Dielectric Strength 200% of rated Vdc

Life Test (1,000 hours) 150% rated voltage at +85°C

Moisture Resistance (MIL-STD-202-Method 106) Immersion Cycling (MIL-STD-202-Method 104, condition B)

Special "T" Formulation

GENERAL SPECIFICATIONS

Capacitance Range Contact AVX

Capacitance Test at 25°C Measured at 0.3 VRMS max. at 1 KHz.

Capacitance Tolerances ±20%, [+80, -20]%

Operating Temperature Range -30°C to +85°C

Temperature Characteristic See Curve

Voltage Ratings 100 & 50 Vdc

Dissipation Factor 4.0% max. at 1 KHz, .3 VRMS max.

Insulation Resistance 25°C (MIL-STD-202-Method 302) 10 K megohms or 100 megohms - μ F minimum, whichever is less

Dielectric Strength 200% of rated Vdc

Life Test (1,000 hours) 150% rated voltage at +85°C

Moisture Resistance (MIL-STD-202-Method 106) Immersion Cycling (MIL-STD-202-Method 104, condition B)

Typical Temperature Characteristic of Special "T" Formulation (1)

(1) Temperature Characteristics

The ceramic dielectric constant temperature performance has been optimized by maximizing capacitance at or near the operating temperature. The peak capacitance occurs at 60°C as opposed to 25°C for most high k dielectrics.

Radial Leads/SkyCap®

GENERAL INFORMATION

AVX SR Series Conformally Coated Radial Leaded MLC Temperature Coefficients: NPO, X7R, Z5U 200, 100, 50 Volts Case Material: Epoxy Lead Material: Solderable

HOW TO ORDER

AVX Styles: SR15, SR20, SR21, SR22, SR27, SR30, SR40, SR50

Part Number Example

Part Number Codes

Voltages: 50V = 5, 100V = 1, 200V = 2

Temp. Coefficient: NPO = A, X7R = C, Z5U = E

Sig. Figures of Capacitance and Multiplier: First two digits are the significant figures of capacitance. Third digit indicates the additional number of zeros. For example, order 100,000 pF as 104. (For values below 10pF, use "R" in place of decimal point, e.g., 1R4 = 1.4pF).

Capacitance Tolerances:

 $\hat{N}PO: C = \pm .25pF, D = \pm .5pF (<10 pF only), F = \pm 1.0\% (>50 pF)$ only), G = $\pm 2.0\%$ (>25 pF only), J = $\pm 5\%$, K = $\pm 10\%$ X7R: J = $\pm 5\%$, K = $\pm 10\%$, M = $\pm 20\%$

Z5U: $M = \pm 20\%$, Z = +80%, -20%

Tolerance Codes F and G are not available in SR15.

Failure Rate: A = Not Applicable

Leads: T = Trimmed Leads, .230" ± .030" A = Long Leads, 1.25" minimum

MARKING

Marking is as size permits in descending order. (For code identification, see How to Order section.)

- Capacitance Code
- Tolerance Code
- A (AVX)
- Voltage Code
- Temperature Coefficient Code
- 3-Digit EIA Date Code/Lot Code

PACKAGING REQUIREMENTS

	Quantity per Bag
SR15, 20, 21, 22, 27, 30, 40	1000 Pieces
SR50	500 Pieces

Note: SR15, SR20, SR21, SR30, and SR40 available on tape and reel per EIA specifications RS-468. See Pages 24 and 25.

NPO Dielectric SIZE AND CAPACITANCE SPECIFICATIONS

	AVX Style	S	R1:	5	5	R20)	S	R2	L	S	R22	2	S	R27	7	SR	30	SR	40	SR	50
	Width (W)		.150			.200 (5.08)			.200 (5.08)			.200 (5.08)		(.260 6.604		.30	00	(ii	00 (16)	(12	00 .70)
	Height (H)		.150 (3.81)			.200 (5.08)			.200 (5.08)			.200 (5.08)			.250 (6.35)		.30			00 (16)		00 .70)
	Thickness (T)		.100 (2.54)			.125 3.175)		.125 3.175			.125 3.175))		.160		.1:			50 .81)	(5.	
	Lead Spacing		.100 (2.54)			.100			.200 (5.08)			.250 (6.35)	<u></u>		.300		.20			000 (08)		00 .16)
	Lead Diameter (L.D.)		.020		-	.020			.020			.020			.020		.00			120 108)		25 35)
Cap. in.* In	ndustry Preferred Values in Blue	-	WVDO)	_	WVDC	50	_	WVDO	,	_	WVDC	,	_	WVDO)		DC 50		VDC 50	-	/DC 50
1.0-9.9 10 15	SR151A1R0DAA SR151A100KAA SRA150KAA																					
22 33 39	SRA220KAA SRA330KAA SRA390KAA																					
47 68 100	SRA470KAA SRA680KAA SR151A101KAA																					
150 220 330	SRA151KAA SRA221KAA SRA331KAA																					
(**) 470 680	SRA391KAA SRA471KAA SRA681KAA																					
1000 1500 2200	SR211A102KAA SRA152KAA SRA222KAA																					
3900 4700 6800	SRA392KAA SRA472KAA SRA682KAA																					
8200 10,000 15,000	SRA822KAA SR305A103KAA SRA153KAA																					
22,000 33,000 39,000	SRA223KAA SRA333KAA SRA393KAA																					
47,000 68,000 100,000	SRA473KAA SRA683KAA SRA104KAA																					

For other styles, voltages, tolerances and lead lengths see Part No. Codes or contact factory.

^{*}Other capacitance values available upon special request.

Radial Leads/SkyCap®

X7R Dielectric SIZE AND CAPACITANCE SPECIFICATIONS

EIA Characteristic Dimensions: Inches (Millimeters)

	AVX Style	SR15	SR20	SR21	SR22	SR27	SR30	SR40	SR50
	Width (W)	.150 (3.81)	.200 (5.08)	.200 (5.08)	.200 (5.08)	.260 (6.604)	.300 (7.62)	.400 (10.16)	.500 (12.70)
	Height (H)	.150 (3.81)	.200 (5.08)	.200 (5.08)	200 (5.08)	.250 (6.35)	.300 (7.62)	.400 (10.16)	.500 (12.70)
	Thickness (T)	.100 (2.54)	(3.175)	(3.175)	.125 (3.175)	.160 (4.06)	.150 (3.81)	.150 (3.81)	.200 (5.08)
	Lead Spacing (L.S.)	.100 (2.54)	.100 (2.54)	.200 (5.08)	.250 (6.35)	.300 (7.62)	.200 (5.08)	.200 (5.08)	(10.16)
	Lead Diameter (L.D.)	.020 (.508)	.020 (.508)	.020 (.508)	.020 (.508)	.020 (.508)	.020 (.508)	.020 (.508)	.025 (.635)
Cap. in.* pF	Industry Preferred Values in Blue	WVDC 100 50	WVDC 100 50	WVDC 100 50	WVDC 100 50	WVDC 100 50	WVDC 100 50	WVDC 100 50	WVDC 100 50
470 1 000 1500	SRC471KAA SR155C102KAA SRC152KAA								
2200 3300 4700	SRC222KAA SRC332KAA SRC472KAA								
6800 10,000 15,000	SRC682KAA SR215C103KAA SRC153KAA								
22,000 33,000 47,000	SRC223KAA SRC333KAA SRC473KAA								
68,000 100,000 150,000	SRC683KAA SR215C104KAA SRC154KAA								
220,000 330,000 390,000	SR215C224KAA SRC334KAA SRC394KAA								
470,000 1.0 μF 2.2 μF	SR305C474KAA SR305C105KAA SR405C225KAA								
2.7 μF 4.7 μF	SR505C275KAA SR505C475KAA								

For other styles, voltages, tolerances and lead lengths see Part No. Codes or contact factory.

^{*}Other capacitance values available upon special request.

Z5U Dielectric SIZE AND CAPACITANCE SPECIFICATIONS

ELA Character	isuc							Dimensions: II	nches (Millimeters)
	AVX Style	SR15	SR20	SR21	SR22	SR27	SR30	SR40	SR50
	Width (W)	.150 (3.81)	.200 (5.08)	.200 (5.08)	.200 (5.08)	.260 (6.604)	.300 (7.62)	.400 (10.16)	.500 (12.70)
	Height (H)	.150 (3.81)	.200 (5.08)	.200 (5.08)	.200 (5.08)	.250 (6.35)	.300 (7.62)	.400 (10.16)	.500 (12.70)
	Thickness (T)	.100 (2.54)	.125 (3.175)	.125 (3.175)	.125 (3.175)	.160 (4.06)	.150 (3.81)	.150 (3.81)	.200 (5.08)
	Lead Spacing (L.S.)	.100 (2.54)	.100 (2.54)	.200 (5.08)	.250 (6.35)	.300 (7.62)	.200 (5.08)	.200 (5.08)	.400 (10.16)
	Lead Diameter (L.D.)	.020 (.508)	.020 (.508)	.020 (.508)	.020 (.508)	.020 (.508)	.020 (.508)	.020 (.508)	.025 (.635)
Cap. in.* pF	Industry Preferred Values in Blue	WVDC 100 50	WVDC 100 50	WVDC 100 50	WVDC 100 50	WVDC 100 50	WVDC 100 50	WVDC 100 50	WVDC 100 50
10,000 47,000 100,000	SR155E103ZAA SRE473ZAA SR215E104ZAA								
150,000 220,000 330,000	SRE154ZAA SR215E224ZAA SR215E334ZAA								
470,000 680,000 1.0 μF	SR215E474ZAA SRE684ZAA SR305E105ZAA								
1.5 μF 2.2 μF 3.3 μF	SRE155ZAA SRE225ZAA SRE335ZAA								
4.7 μF	SRE475ZAA								

For other styles, voltages, tolerances and lead lengths see Part No. Codes or contact factory.

^{*}Other capacitance values available upon special request.

SkyCap® Configurations by Lead Spacing

Notes: 1. All leads are #24 AWG unless otherwise noted.

Available in tape and reel packaging(*).
 Other styles are also available, contact factory.

4. (T = XXX) under type designation is maximum thickness in inches.

Radial Leads/Ceralam®

GENERAL INFORMATION

AVX MR Series Molded Radial Leaded MLC NPO, X7R, Z5U Temperature Coefficients 50, 100, 200 Volts

Case Material: Molded Epoxy Lead Material: Solderable

HOW TO ORDER

AVX Styles: MR04, MR05, MR06, MR07, MR08

Part Number Example

Part Number Codes

Voltages: 50V = 5, 100V = 1, 200V =2 Dielectric: NPO = A, X7R = C, Z5U = E

Sig. Figures of Capacitance and Multiplier: First two digits are the significant figures of capacitance. Third digit indicates the additional number of zeros. For example, order 560 pF as 561. (For values below 10pF, use "R" in place of decimal point, e.g., 1R4 = 1.4 pF).

Capacitance Tolerances:

NPO: D = $\pm .5$ pF (<10 pF only), F = $\pm 1.0\%$ (>50 pF only), G $\pm 2.0\%$ (>25 pF only), J = $\pm 5\%$, K = $\pm 10\%$

X7R: $J = \pm 5\%$, $K = \pm 10\%$, $M = \pm 20\%$ Z5U: $M = \pm 20\%$, Z = +80%, -20%

Failure Rate: Does not apply

Leads: A = Standard Solderable

 T^1 = Trimmed leads, .230" \pm .030"

¹ Trimmed lead length for the MR05 style will be measured from the bend in the lead (seating plane).

MARKING

Marking is as size permits: for code identification see How To Order.

- AVX
- Capacitance and Tolerance
- Voltage Rating
- Temperature Coefficient
- Date Code
- Lot Code

PACKAGING REQUIREMENTS

Bulk Packaging: 1000 pcs. per sealed package except MR07/MR08 (300 pcs.)

Tape and Reel: Available on MR04, MR05, and MR06 only. **Ammo Packaging:** Available on special request.

sions: Millim	eters (Inches)		.														
	AVX Style					MR05		MR06 7.36 (.290") 7.36 (.290")				MR07		MR08 12.44 (.490") 12.44 (.490")			
	Length		4.82 (.190")		4.82 (.190") 4.82 (.190")							2.44 (.490"					
		Width 4.82 (.190") Thickness 2.28 (.090")				4.82 (.190 2.28 (.090'		2.28 (.090")				2.44 (.490" 3.55 (.140")		6.09 (.240")			
	Lead Spacing		2.54 (.100")			5.08 (.200			5.08 (.200"			0.16 (.400"			10.16 (.400"		
	Lead Diameter	neter .635 (.025")				.635 (.025)		.635 (.025")		635 (.025")			.635 (.025"))	
Cap. in pF	Typical AVX Part Nos.	200	WVDC 100	50	200	WVDC 100	50	200	WVDC 100	50	200	WVDC 100	50	200	WVDC 100	5	
1.0	MR5A1R0DAA															\Box	
to 9.1	MR5A9R1DAA																
10	MR5A100KAA																
12 15	MR5A120KAA MR5A150KAA																
18	MR5A180KAA																
22 27	MR5A220KAA MR5A270KAA																
33 39	MR5A330KAA										1						
47	MR5A390KAA MR5A470KAA																
56 68	MR5A560KAA MR5A680KAA																
82	MR5A820KAA																
100 120 150	MR5A101KAA MR5A121KAA MR5A151KAA																
180	MR5A181KAA																
220 270	MR5A221KAA MR5A271KAA																
330 390	MR5A331KAA MR5A391KAA																
470	MR5A471KAA																
560 680 820	MR5A561KAA MR5A681KAA MR5A821KAA																
1000	MR5A102KAA																
1200 1500	MR5A122KAA MR5A152KAA																
1800	MR5A182KAA MR5A222KAA																
2200 2700	MR5A272KAA																
3300 3900	MR5A332KAA MR 5A392KAA																
4700	MR5A392KAA MR5A472KAA														-		
5600 6800	MR5A562KAA MR5A682KAA																
8200	MR5A822KAA																
10,000 12,000	MR5A103KAA MR5A123KAA																
15,000	MR5A153KAA MR5A183KAA	-			-		-										
22,000 27,000	MR5A223KAA																
33,000	MR5A273KAA MR5A333KAA				-												
39,000	MR5A393KAA																
47,000 56,000	MR5A473KAA MR5A563KAA																
68,000 82,000	MR5A683KAA MR5A823KAA																
00,000	MR5A104KAA																
120,000 150,000	MR5A124KAA MR5A154KAA																
180,000 220,000	MR5A184KAA MR5A224KAA																

^{*}Length, width and thickness dimensions are $\pm .254$ mm ($\pm .010$ "). Lead diameter is $\pm .05$ mm ($\pm .002$ "). Lead spacing is $\pm .381$ mm ($\pm .015$ ").

Radial Leads/Ceralam®

											Ļ						
sions: Millime			MDO4			MDOF			MDOG			MDOZ			MDOO		
	AVX Style Length		MR04 4.82 (.190")		MR05 4.82 (.190")		MR06 7.36 (.290")		MR07 12.44 (.490")			MR08 12.44 (.490")			
	Width		4.82 (.190")		4.82 (.190")			7.36 (290")			12.44 (.490")			2.44 (.490	r)	
	Thickness Lead Spacing		2.28 (.090" 2.54 (.100"			2.28 (.090" 5.08 (.200"		2.28 (.090") 5.08 (.200")				3.55 (.140°) 0.16 (.400°		6.09 (.240°) 10.16 (.400°)			
	Lead Diameter		.635 (.025"			.635 (.025"			.635 (.025")			635 (.025")			635 (.025"		
Cap. in pF	Typical AVX Part Nos.	200	WVDC 100	50	200	WVDC 100	50	WVDC 200 100 50			200	WVDC 100	50	200	WVDC 100		
100 120 150	MR5C101KAA MR5C121KAA MR5C151KAA	200			200		-	200	100	00	200	100		200	100	I	
180 220 270	MR5C181KAA MR5C221KAA MR5C271KAA																
330 390 470	MR5C331KAA MR5C391KAA MR5C471KAA															l	
560 680 820 1000	MR . 5C561KAA MR . 5C681KAA MR . 5C821KAA MR . 5C102KAA															1	
1200 1200 1500	MR5C102KAA MR5C122KAA MR5C152KAA MR5C182KAA																
2200 2700 3300	MR. 5C222KAA MR. 5C272KAA MR. 5C332KAA																
3900 4700 5600	MR. 5C392KAA MR. 5C472KAA MR. 5C562KAA															1	
6800 8200 10,000	MR 5C682KAA MR 5C822KAA MR 5C103KAA																
12,000 15,000 18,000	MR 5C123KAA MR 5C153KAA MR 5C183KAA MR 5C223KAA															1	
22,000 27,000 33,000 39,000	MR 5C273KAA MR 5C333KAA																
56,000 68,000	MR 5C473KAA MR 5C563KAA MR 5C683KAA															1	
82,000 00,000 120,000 150,000	MR 5C823KAA MR 5C104KAA MR5C124KAA																
180,000 220,000 270,000	MR5C154KAA MR 5C184KAA MR 5C224KAA MR 5C274KAA															l	
330,000 390,000 470,000	MR 5C334KAA MR 5C394KAA MR 5C474KAA															1	
560,000 580,000 320,000	MR 5C564KAA MR 5C684KAA MR 5C824KAA																
1.0 μF 1.2 μF 1.5 μF	MR 5C105KAA MR 5C125KAA MR 5C155KAA																
1.8 μF 2.0 μF 2.2 μF	MR 5C185KAA MR 5C205KAA MR 5C225KAA MR 5C275KAA															-	
2.7 μF 3.3 μF 3.9 μF	MR. 5C275KAA MR. 5C335KAA MR. 5C395KAA MR. 5C475KAA																

nensions: Millimet		1500						
	AVX Style	MR04 4.82	MR05 4.82	7.36	MR07	MR08		
	Length	(.190")	(.190°) 4.82	(290")	(.490")	(.490")		
	Width	4.82 (.190")	(.190")	7.36 (290°)	12.44 (.490°)	12.44 (.490")		
	Thickness	2.28 (.090")	2.28 (.090")	2.28 (.090")	3.55 (.140")	6.09 (.240")		
	Lead Spacing	2.54 (.100")	5.08 (200°)	5.08 (.200")	10.16 (.400")	10.16 (.400°)		
	Lead Diameter	.635 (.025")	.635 (.025")	.635 (.025")	.635 (.025")	.635 (.025")		
Cap. in pF	Typical AVX Part Nos.	WVDC 100 50	WVDC 50	WVDC 100 50	WVDC 100 50	WVDC 100 50		
10,000 12,000 15,000	MR5E103ZAA MR5E123ZAA MR5E153ZAA							
18,000 22,000 27,000	MR5E183ZAA MR5E223ZAA MR5E273ZAA							
33,000 39,000 47,000	MR5E333ZAA MR5E393ZAA MR5E473ZAA							
56,000 68,000 82,000	MR5E563ZAA MR5E683ZAA MR5E823ZAA							
100,000 120,000 150,000	MR5E104ZAA MR5E124ZAA MR5E154ZAA							
180,000 220,000 270,000	MR5E184ZAA MR5E224ZAA MR5E274ZAA							
330,000 390,000 470,000	MR5E334ZAA MR5E394ZAA MR5E474ZAA							
560,000 680,000 820,000	MR5E564ZAA MR5E684ZAA MR5E824ZAA							
1.0 μF 1.2 μF 1.5 μF	MR5E105ZAA MR5E125ZAA MR5E155ZAA							
1.8 μF 2.2 μF 2.7 μF	MR5E185ZAA MR5E225ZAA MR5E275ZAA							
3.3 μF 3.9 μF 4.7 μF	MR5E335ZAA MR5E395ZAA MR5E475ZAA							
5.6 μF 6.8 μF 8.2 μF	MR5E565ZAA MR5E685ZAA MR5E825ZAA							
10.0 μF 12.0 μF 15.0 μF	MR5E106ZAA MR5E126ZAA MR5E156ZAA							

^{*}Length, width and thickness dimensions are $\pm .254$ mm ($\pm .010$ "). Lead diameter is $\pm .05$ mm ($\pm .002$ "). Lead spacing is $\pm .381$ mm ($\pm .015$ ").

Radial Leads/Packaging

Tape and Reel

GENERAL INFORMATION

- 1. Standard reel diameter is 355 millimeters (14 inches) maximum.
- 2. Reeling standard (#1 or #2) should be specified when ordering.
- 3. Reeling direction is offered in either configuration A or B. If not specified, configuration B will be supplied as standard. (See Page 25).
- 4. TRX designs for SR21, SR63, and SR32 may be specified by placing "TRX" at the end of the catalog number (example SR215C104KAATRX).

DESCRIPTION DIMENSIONS (MM)

A. Feed Hole Pitch

B. Feed Hole Diameter

C. Feed Hole Location

D. Component Lead Spacing

E. Component Lead Location

F. Component Lead Protrusion (edge of carrier to cut end of lead)

K. Component Body Location

L. Carrier Tape Width

M. Carrier Tape Assembly Thickness

N. Carrier Tape Spliced Thickness

(). Carrier Tape Spliced Length

Q. Adhesive Tape Border

R. Component Bent Leads (either direction)

S. Component Misalignment

T. Component Pitch

W. Adhesive Tape Width

X. Carrier Tape Thickness

Cumulative Pitch over 20 Pitches

 $12.70 \pm .20$

 $3.99 \pm .20$ $9.02 \pm .51$

5.00 ^{+.79}₋₂₀ or 2.54 ^{+.79}₋₂₀

 $3.81 \pm .51$ or $5.00 \pm .51$

for 2.54 lead spacing

2.00 maximum

 $6.35 \pm .41$

18.01 +1.02

.71 ±.20

1.42 maximum

50.80 - 88.90

3.00 maximum

.99 maximum

12.70 ±.99

 $12.50^{+3.00}_{-0}$

.51 ±.10 254 ±2.00

CONVERSION TABLE									
ММ	IN	MM	IN	MM	IN	MM	IN	MM	IN
.10	.004	1.52	.060	5.00	.197	9.91	.390	32.00	1.260
.20	.007	2.00	.079	5.08	.200	10.03	.395	38.10	1.500
.38	.015	2.54	.100	6.22	.245	10.16	.400	46.02	1.812
.41	.016	3.00	.118	6.35	.250	11.68	.460	50.80	2.000
.51	.020	3.18	.125	6.60	.260	12.50	.492	86.36	3.400
.71	.028	3.48	.137	6.99	.275	12.70	.500	88.90	3.500
.79	.031	3.81	.150	7.62	.300	16.00	.630	102.01	4.016
.99	.039	3.99	.157	8.89	.350	18.01	.709	254.00	10.000
1.02	.040	4.45	.175	9.02	.355	25.40	1.000	304.80	12.000
1.42	.056	4.98	.196	9.50	.374	30.48	1.200	355.00	14.000

Two Pin DIP/DIPGuard®

GENERAL INFORMATION

AVX MD Series

NPO (COG), X7R, Z5U, Y5V Temperature Coefficients 50, 100 Volts

For established reliability DIPGuards see MIL-C-39014 section on page 52.

HOW TO ORDER

AVX Styles: MD01, CKR22*, MD02, CKR23*, MD03, CKR24*

Part Number Example

Part Number Codes

Voltages: 50V = 5, 100V = 1**

Temp. Coefficient: NPO = A, X7R = C, Z5U = E, Y5V = G

Sig. Figures of Capacitance and Multiplier: First two digits are the significant figures of capacitance. Third digit indicates the additional number of zeros. For example, order 100,000 pF as 104.

Capacitance Tolerances:

NPO: $F = \pm 1\%$, $J = \pm 5\%$, $K = \pm 10\%$ X7R: $J = \pm 5\%$, $K = \pm 10\%$, $M = \pm 20\%$ Z5U: $M = \pm 20\%$, Z = +80%, -20%Y5V: $M = \pm 20\%$, Z = +80%, -20%

Failure Rate: A = Not Applicable

Molding Material: A = Epoxy Thermal Set, B = Ryton Thermal Plastic

* Reference pages 52 to 57.

** For 200V requirements consult factory.

MARKING

Part Number Example MD015 E 104MAB Top of Unit:

PACKAGING REQUIREMENTS

Standard Packaging: 200 pieces per slide pack.

Slide Package Dimensions

	MD01	MD02	MD03
(Ho) Overall Height	.400 ref.	.430 ref.	.545 ref.
(H _C) Channel Height	$.141 \pm .006$	$1.171 \pm .006$.295 ± .010
(H _t) Inside Height	.350	.380	.495
(Wo) Overall Width	.540 ref.	.540 ref.	.600 ref.
(W ₁) Inside Width	.490	.490	.550
(Wc) Channel Width	.210	.210	.170
(W _T) Top Width	.350	.310	.300
(L) Length	$20.073 \pm .06$	$20.073 \pm .06$	$20.073 \pm .06$

SIZE SPECIFICATIONS

Dimensions: Millimeters (Inches)

AVX Style	Length (L)	Height (H ₁)	Height (H ₂)	Thickness
MD01	6.60	3.43	4.19	2.54
	(.260 ± .020)	(.135 max.)	(.165 max.)	(.098 max.)
MD02	6.60	4.19	5.08	2.54
	(.260 ± .020)	(.165 max.)	(.195 max.)	(.098 max.)
MD03	6.60	7.37	8.13	2.54
	(.260 ± .020)	(.290 max.)	(.320 max.)	(.098 max.)

MILITARY CROSS REFERENCE GUIDE

Dimensions: Millimeters (Inches)

AVX Style	MIL-C-39014	Length (L)	Height (H ₁)	Height (H ₂)	Thickness
MD01	CKR22	6.60 (.260 ± .020)	3.43 (.135 max.)	4.19 (.165 max.)	2.54 (.092 ± .006)
MD02	CKR23	6.60 (.260 ± .020)	4.19 (.162 max.)	5.08 (.185 max.)	2.54 (.092 ± .006)
MD03	CKR24	6.60 (.260 ± .020)	7.37 (.290 max.)	8.13 (.320 max.)	2.54 (.092 ± .006)

Note: For CKR22/23/24, see MIL-C-39014 section in the Military Section pages 48 thru 53.

CAPACITANCE SPECIFICATIONS

	EIA Characteristic	NPO
	AVX Style	MD01
Cap. in pF*		WVDC 100 50
10 15 22	MD015A100KAB MD015A150KAB MD015A220KAB	
33 47 68	MD015A330KAB MD015A470KAB MD015A680KAB	
100 150 220	MD015A101KAB MD015A151KAB MD015A221KAB	
330 470 680	MD015A331KAB MD015A471KAB MD015A681KAB	
1000 1500 2200	MD015A102KAB MD015A152KAB MD015A222KAB	
3300	MD015A332KAB	
	AVX Style	MD02
Cap. in pF*		WVDC 100 50
4700 6800 10000	MD025A472KAA MD025A682KAA MD025A103KAA	

For other voltages and tolerances see Part No. Codes.

TONS	DIA	
	EIA Characteristic	X7R
	AVX Style	MD01
Cap. in pF*		WVDC 100 50
220 330 470	MD015C221KAB MD015C331KAB MD015C471KAB	
680 1000 1500	MD015C681KAB MD015C102KAB MD015C152KAB	
2200 3300 4700	MD015C222KAB MD015C332KAB MD015C472KAB	
6800 10,000 15,000	MD015C682KAB MD011C103KAB MD015C153KAB	
22,000 33,000 47,000	MD015C223KAB MD015C333KAB MD015C473KAB	
68,000 100,000	MD015C683KAB MD015C104KAB	
	AVX Style	MD02
Cap. in pF*		WVDC 100 50
150,000 220,000	MD025C154KAB MD025C224KAB	
	AVX Style	MD03
Cap. in pF*		WVDC 100 50
330,000 470,000 680,000 1,000,000	MD035C334KAA MD035C474KAA MD035C684KAA MD035C105KAA	

For other voltages and tolerances see Part No. Codes

	EIA Characteristic	Z5U
	AVX Style	MD01
Cap. in pF*		WVDC 100 50
10,000 15,000 22,000	MD015E103ZAB MD015E153ZAB MD015E223ZAB	
33,000 47,000 68,000	MD015E333ZAB MD015E473ZAB MD015E683ZAB	
100,000 150,000 220,000	MD015E104ZAB MD015E154ZAB MD015E224ZAB	
330,000	MD015E334ZAB	
	AVX Style	MD02
Cap. in pF*		WVDC 100 50
470,000	MD025E474ZAB	1
	AVX Style	MD03
Cap. in pF*		WVDC 100 50
680,000 1,000,000	MD035E684ZAA MD035E105ZAA	
	EIA Characteristic	Y5V
	AVX Style	MD02
Cap. in pF*		WVDC 100 50
1,000,000	MD025G105ZAB	

For other voltages and tolerances see Part No. Codes *Other capacitance values available upon special request.

Axial Leads/SpinGuard

1 - 40 8 11 9 5 200 8 5 1 1 1 3

AVX SA Series

Conformally Coated Axial Leaded MLC Temperature Coefficients: NPO, X7R, Z5U

50, 100, 200 Volts

Case Material: Epoxy (Flame Retardant to UL Bulletin 492, Par. 280)
Lead Material: Solderable

DESCRIPTION OF REAL PROPERTY.

AVX Styles: SA10, SA11, SA20, SA30, SA40

Part Number Example

Part Number Codes

Voltages: 50V = 5, 100V = 1, 200V = 2

Dielectric: NPO = A, X7R = C, Z5U = E

Sig. Figures of Capacitance and Multiplier: First two digits are the significant figures of capacitance. Third digit indicates the additional number of zeros. For example, order 100,000 pF as 104. (For values below 10 pF, use "R" in place of decimal point, e.g., 1R4 = 1.4 pF).

Capacitance Tolerances:

NPO: $C = \pm 0.25 \text{ pF}$, $D = \pm .5 \text{ pF}$, $F = \pm 1\%$, $G = \pm 2\%$, $J = \pm 5\%$, $K = \pm 10\%$

X7R: $J = \pm 5\%$, $K = \pm 10\%$, $M = \pm 20\%$

Z5U: M =±20%, Z = +80%, -20%

Failure Rate: Standard Leads: Standard (Solderable)

SUBSTITUTE OF STREET

SpinGuard marking includes full date code/lot code identification. A first in the industry, this format provides complete traceability to all manufacturing processes involving the basic chip and final assembly. Total Shipment traceability is also provided.

SA105E104ZAA LOT CODE/DATE CODE = 010AB

A STATE OF THE STA

A = Standard Reels (see Page 42)

B = 1000 piece reels (distributors only)

C = Ammo Pack (see Page 42)

D thru J = See Special Lead Configurations (Page 33)

NPO Dielectric SIZE AND CAPACITANCE SPECIFICATIONS

nensions: Millin	neters (Inches)				-	>-		> -		\supset		
	AVX Style		SA10		SA	11	SA	20	SA	30	SA	40
	Length (L)		4.32 (.170")			32 70")		60 60")	7.	37	10.	
	Diameter (D)		2.54 (.100")		3.	05 20")	2.		3.	81	3.8	31
	Lead		.483		.4	83	.4	83	.4	83	(.15	33
	Diameter Lead		(.019")			19") 5.4		19") 5.4	(.0)		(.01	
Cap. in	Length Typical AVX	-	(1.00") WVDC			00") /DC		00") /DC	(1.0 WV		(1.0 WV	
pF	Part Nos.	200	100	50	100	50	100	50	100	50	100	50
1.0*	SA102A1R0DAA											
9.1*	SA102A9R1DAA											
10 12 15	SA102A100JAA SA102A120JAA SA102A150JAA											
18 22 27	SA102A180JAA SA102A220JAA SA102A270JAA											
33 39 47	SA102A330JAA SA102A390JAA SA102A470JAA											
56 68 82	SA102A560JAA SA102A680JAA SA102A820JAA											
100 120 150	SA102A101JAA SA102A121JAA SA101A151JAA											
180 220 270	SA101A181JAA SA101A221JAA SA101A271JAA											
330 390 470	SA101A331JAA SA101A391JAA SA101A471JAA											
560 680 820	SA101A561JAA SA101A681JAA SA101A821JAA											
1000 1200 1500	SA105A102JAA SA201A122JAA SA201A152JAA											
1800 2200 2700	SA205A182JAA SA301A222JAA SA301A272JAA											
3300 3900 4700	SA301A332JAA SA301A392JAA SA305A472JAA											
5600 6800 8200	SA401A562JAA SA401A682JAA SA405A822JAA											
10,000 12,000	SA405A103JAA SA405A123JAA											

For other tolerances see Part No. Codes
For other voltages see Part No. Codes
AVX Style

= Industry preferred values

*"C & D" Tolerance Only

Axial Leads/SpinGuard

X7R Dielectric SIZE AND CAPACITANCE SPECIFICATIONS

nensions: Mill	imeters (Inches)				- (<u></u>		\supset		<u> </u>	-	
-	AVX Style		SA10		SA	11	SA	20	SA	.30	SA	40
	Length (L)			4.32 4.32			7.37 (.290")		10	.16		
	Diameter		2.54 (.100")		3.05 (.120")		2	54	3.81 (.150")		3.	
	(D) Lead		.483		.4	83	.4	83	.4	83	.4	83
	Diameter Lead		(.019")		25	19") 5.4	(.019")		(.019")		25	19") 5.4
Cap. in	Length Typical AVX		(1.00") WVDC			00") /DC	(1.0 WV		(1.0 W)	00") /DC	(1.0 w)	00") /DC
pF	Part Nos.	200	100	50	100	50	100	50	100	50	100	50
220 270 330	SA102C221KAA SA102C271KAA SA102C331KAA											
390 470 560	SA102C391KAA SA102C471KAA SA101C561KAA											
680 820 1000	SA101C681KAA SA101C821KAA SA101C102KAA											
1200 1500 1800	SA101C122KAA SA101C152KAA SA101C182KAA											
2200 2700 3300	SA101C222KAA SA101C272KAA SA101C332KAA											
3900 4700 5600	SA101C392KAA SA101C472KAA SA101C562KAA											
6800 8200 10,000	SA101C682KAA SA105C822KAA SA105C103KAA											
12,000 15,000 18,000	SA105C123KAA SA105C153KAA SA105C183KAA											
22,000 27,000 33,000	SA105C223KAA SA205C273KAA SA205C333KAA											
39,000 47,000 56,000	SA205C393KAA SA205C473KAA SA305C563KAA											
68,000 82,000 100,000	SA305C683KAA SA305C823KAA SA115C104KAA											
120,000 1 50,000 180,000	SA405C124KAA SA405C154KAA SA405C184KAA											
220,000 270,000 330,000	SA405C224KAA SA405C274KAA SA405C334KAA											
470,000	SA405C474KAA											

For other tolerances see Part No. Codes
For other voltages see Part No. Codes
AVX Style

Z5U Dielectric SIZE AND CAPACITANCE SPECIFICATIONS

Dimensions: Millin	meters (Inches)	-		—) —		<u> </u>	\subset	<u> </u>	-	<u> </u>
	AVX Style	SA10		SA	SA11		SA20		30	SA	40
	Length (L)	4.32 (.170	")	4.1 (.17	32 '0")	6.60 (.260")		7.37 (.290")		10.16 (.400")	
	Diameter (D)	2.54 (.100'		3.0)5	2.54 (.100")		3.81 (.150")		3.81 (.150")	
	Lead Diameter	.483		.48	33		83	.48	33	.483 (.019")	
	Lead Length	25.4 (1.00)		25	.4	25	25.4 (1.00")		0.4	25.4 (1.00")	
Cap. in pF	Typical AVX Part Nos.	WVDC 100 50		WVDC 50		100 WVDC 50		WVDC 100 50		WVDC 50	
10,000 15,000 22,000	SA105E103ZAA SA105E153ZAA SA105E223ZAA										
33,000 47,000 68,000	SA105E333ZAA SA105E473ZAA SA105E683ZAA										
*100,000 150,000 220,000	SA105E104ZAA SA105E154ZAA SA105E224ZAA										
330,000 470,000 680,000	SA115E334ZAA SA305E474ZAA SA305E684ZAA										
820,000 1, 000,000	SA305E824ZAA SA305E105ZAA										

For other tolerances see Part No. Codes
For other voltages see Part No. Codes
AVX Style

^{*}Preferred Industry Decoupling Capacitor — Insertable on .300" centers. SA105E104ZAA

Avial Leads/SpinGuard

Extended Range SpinGuards

Capacitance Range

220,000 pF, 330,000 pF, 1,000,000 pF

Capacitance Tolerances ±20%, [+80 -20]%

Operating Temperature Range

Z5U =+10°C to +85°C

Temperature Characteristics

E = Z5U

Voltage Ratings 50 Vdc

Dissipation Factor 25°C

Z5Û =4.0% max. at 1 KHz, .3 VRMS

Insulation Resistance 25°C (MIL-STD-202-Method 302)

Z5U =10 K megohms or 100 megohms - μ F minimum, whichever is less

Dielectric Strength

Z5U =200% of rated voltage

Moisture Resistance (MIL-STD-202-Method 106)

Immersion Cycling (MIL-STD-202-Method 104, condition B)

For current reliability information, consult factory.

a throughout the section of the

Dimension	s: Millimeters (Inches)		
	AVX Style	SA11*	SA30
	Length (L)	4.32 (.170")	7.37 (.290")
	Diameter (D)	3.05 (.120")	3.81 (.150")
0.22 μF 0.33 μF 1.0 μF	SA115E224ZAA **SA115E334ZAA SA305E105ZAA		

^{*} Automatically insertable on 0.300" centers (see page 42 for reel packing details)

Dimensions Millimeters (Inches)

0.483 ± .05 (.019" ± .002")

Max

25.4 (1.0")

Min. Lead Length

CASE OF THE PROPERTY OF THE PARTY OF T

Parameter	Test Conditions	Mi.	Typ.	Max.	Unit
V _L	di/dt = 200 ma/10 ns		80	90	mv
Inductance, L		_	4.0	4.5	nh
dv/dt	20 ns after pulse				
	di/dt = 200 ma/10 ns	-	0.53		mv/ns
Capacitance, C		.24	.33	_	μF
ESR	Resonance Freq., 4-5 MHz	-	.03	.08	Ω
Impedance (Total)	100 MHz (HP - 4192A)	_	4.4	5.0	Ω
Recovery Time, t _R		-	20		ns

^{**} RAMGuard: the 0.33 µF value capacitance is recommended for decoupling 256K and 1 Meg Dynamic RAMs.

Special Lead Configurations

 $\begin{array}{l} \textbf{Dimensions--Body dimensions Per Standard SpinGuard Configurations.} \\ \textbf{Formed dimensions as shown for types D, E, F, G, H, I, \& J configurations.} \end{array}$

Formed Dimensions:

LEAD SPACING*	SEATED HEIGHT (Max.)		
Nom.	D & E	F	G, H, I & J
.2"	.525"	.300″	.100"
.2"	.570"	.375″	.100"
.2"	.580"	.425″	.150"
.2"	.650"	.460"	.150"
	Nom. 2" 2" 2" 2"	Nom. D & E 2" .525" 2" .570" .2" .580"	Nom. D & E F 2" .525" .300" 2" .570" .375" 2" .580" .425"

^{*}Lead spacing can be varied by user to cover .1"-.3" spacing requirements for F, D, and E styles.

Arnal Leads/Glass Encapsulation

HANDING DESIGNATION

Lead Pull & Torsion per MIL-STD-202, Method 211, Condition A & D Resistance to Soldering Heat per MIL-STD-202, Method 210, Condition B Hermeticity per MIL-STD-202, Method 112, Condition C procedure III a. (Glass only)

Vibration and Shock per MIL-STD-202, Method 204, Condition B and Method 213, Condition I

Thermal Shock per MIL-STD-202, Method 107, Condition A (125°C)

Moisture Resistance per MIL-STD-202, Method 106 (20 cycles)

Life per MIL-C-39014

Part Number Example

Part Number Codes

Glass Axial Size: A = .170 × .075, B = .170 × .100, D = .260 × .100, E = .300 × .110, F = .400 × .150

Sig. Figures of Capacitance and Multiplier: First two digits are the significant figures of capacitance. Third digit indicates the additional number of zeros. For example, order 100,000 pF as 104

Capacitance Tolerances:

NPO: $F = \pm 1\%$, $G = \pm 2\%$, $J = \pm 5\%$, $K = \pm 10\%$, $M = \pm 20\%$

X7R: J = ±5%, K = ±10%, M = ±20% Z5U: M =±20%, Z = +80%, -20%, V = GMV

Voltage: D = 50V, E = 100V, F = 200V Dielectric: NPO = N, X7R = X, Z5U = Z

Glass Axial-Leaded Capacitor

THE RESIDENCE

NPO Dielectric

SIZE AND CAPACITANCE SPECIFICATIONS

Dimensions: Millimeters (Inches)

Dimensions: Millimeters (Ι.				_		
Package	_	В		D		E		F	
Body Length (max)	4.	32 70″)	6.	60 60")	(3)	62 00")		.16	
Body Dia.	2.	54	2.	54	2.	79	3.	81	
(max)		00")		00")		10")	(.1		EIA
Cap. in pF	Vol	tage 100	50	tage 100	Volt	tage 100	Volt 50	100	Capacitance Code
10	00	100	00	100	00	100	00	100	100
12 15									120
18	-			-					150
22 27									220 270
33 39									330 390
47									470
56									560
68 82									680 820
100									101
120									121 151
150 180									181
220									221
270									271
330 390									331 391
470									471
560									561
680 820									681 821
1000								\vdash	102
1200									122
1500									152
1800 2200									182 222 272
2700									
3300 3900									332 392
4700									472
5600									562
6800 8200									682 822
.01µF									103
.01μ1									100

= Industry preferred values

TYPICAL PERFORMANCE CURVES

Axial Leads/Glass Encapsulation

X7R Dielectric

SIZE AND CAPACITANCE SPECIFICATIONS

Dimensions: Millimeters (Inches)

Package	A	В	D	E	F	
Body Length (max) Body Dia.	4.32 (.170") 1.91	4.32 (.170") 2.54	6.60 (.260") 2.54	7.62 (.300") 2.79	10.16 (.400") 3.81	
(max) Cap. in pF	(.075") Voltage 50 100	(.100") Voltage 50 100	(.100") Voltage 50 100	(.110") Voltage 50 100	(.150") Voltage 50 100	EIA Capacitance Code
100 120 150	30 100	30 100	30 100	30 100	30 100	101 121 151
180 220 270						181 221 271
330 390 470						331 391 471
560 680 820						561 681 821
1000 1200 1500						102 122 152
1800 2200 2700						182 222 272
3300 3900 4700						332 392 472
5600 6800 8200						562 682 822
.01µF .012 .015						103 123 153
.018 .022 .027						183 223 273
.033 .039 .047						333 393 473
.056 .068 .082						563 683 823
.10 .12 .15						104 124 154
.18 .22 .33						184 224 334
.39 .47						394 474

= Industry preferred values

TYPICAL PERFORMANCE CURVES

Z5U Dielectric

SIZE AND CAPACITANCE SPECIFICATIONS

Dimensions: Millimeters (Inches)

Dimensions: Millime	теть (пк	lies)					_				
Package	1	4	1	3	I)	1	Ξ	I	3	
Body Length (max)		32 70")	4.7	32 70")	6.0	60 60")	7.0 (.30		10. (.40		
Body Dia.	1.	91	2.	54	2.	54	2.	79	3.81		
(max)		75")		00")	(.10		(.11		(.15		EIA
Cap. in pF	VOI 50	tage 100	50	age 100	Volt 50	age 100	Volt 50	age 100	Volt 50	age 100	Capacitance Code
1000 1200 1500											102 122 152
1800 2200 2700											182 222 272
3300 3900 4700											332 392 472
5600 6800 8200											562 682 822
.01μF .012 .015											103 123 153
.018 .022 .027											183 223 273
.033 .039 .047											333 393 473
.056 .068 .082											563 683 823
.10 .12 .15											104 124 154
.18 .22 .27											184 224 274
.33 .39 .47											334 394 474
.56 .68 .82											564 684 824
1.0											105

= Industry preferred values

TYPICAL PERFORMANCE CURVES

Amal Leads/Cemiliam

AVX MA Series Molded Axial Leaded MLC Temperature Coefficient: NPO, X7R, Z5U 50V, 100V and 200V Case Material: Molded Epoxy Lead Material: Solderable

AVX Styles: MA10, MA20, MA30, MA40, MA50, MA60

Part Number Example

Part Number Codes

Voltages: 50V = 5, 100V = 1, 200V = 2Dielectric: NPO = A, X7R = C, Z5U = E

Sig. Figures of Capacitance and Multiplier: First two digits are the significant figures of capacitance. Third digit indicates the additional number of zeros. For example, order 100,000 pF as 104. (For values below 10 pF, use "R" in place of decimal point, e.g., 1R4 = 1.4 pF).

Capacitance Tolerances:

 $\hat{N}PO: F = \pm 1.0\%, J = \pm 5\%, K = \pm 10\%, M = \pm 20\%,$

D = \pm .5pF <10 pF only X7R: J = \pm 5%, K = \pm 10%, M = \pm 20%

Z5U: $M = \pm 20\%$, Z = +80%, -20%

Failure Rate: Standard

Leads: Standard

± C tolerance available NPO from 1.0 to 9.1 pF only. Minimum tolerance for values 10 pF - 100 pF is D or F whichever is greater.

Line 1, A (for AVX), 5 = 50 Volts (V is optional), E = TC

Line 2, 104Z = Capacitance Code

Line 3. Tolerance, 2 digit Lot Code

Date Code: 0 = 1990

10 = Week

Four Digit Date Code Optional

MILITARY CROSS REFERENCE AND DIMENSIONS GUIDE

	Pe	er MIL-Spec		Case Size						
AVX Style MIL-C-11015		MIL-C-39014	MIL-C-20	Length (L)	Diameter (D)	Lead Diameter (LD)				
MA10	CK12	CKR11	CCR75/CC75	4.07 ± .25 (.160" ± .010")	2.29 ± .25 (.090" ± .010")	.48 ± .05 (.019 ± .002")				
MA20	CK13	CKR12	CCR76/CC76	6.35 ± .25 (.250" ± .010")	2.29 ± .25 (.090" ± .010")	.48 ± .05 (.019 ± .002")				
MA40	CK14	CKR14	CCR77/CC77	9.91 ± .25 (.390" ± .010")	3.36 ± .25 (.140" ± .010")	.63 ± .05 (.025 ± .002")				
MA50	CK15	CKR15	CCR78/CC78	12.7 ± .51 (.500" ± .020")	6.35 ± .38 (.250" ± .015")	.63 ± .05 (.025 ± .002")				
MA60	CK16	CKR16	CCR79/CC79	17.53 ± .51 (.690" ± .020")	8.89 ± .51 (.350" ± .015")	.63 ± .05 (.025 ± .002")				

For Military/Established Reliability Molded/Axial Lead see MIL-C-11015, MIL-C-39014, MIL-C-20 Section.

Dimensions: Millimeters (Inches)

NPO Dielectric SIZE AND CAPACITANCE SPECIFICATIONS

nsions: Millime	ters (Inches)			_	_		_				[]						
	AVX Style	1	MA10			MA20			MA30			MA40			MA50			MA60	1
	Length	(.1	4.07 ± .2 60" ± .01	5 10")	(.2)	5.35 ± .2 50" ± .01	5 10")	(.2	5.09 ± .2 40" ± .01	5 10")	(.3	9.91 ± .2 90" ± .01	5 [0")	12.7 ± .51 (.500" ± .020")		(.6	7.53 ± .5 90" ± .02	0")	
	Diameter	(.0	2.29 ± .2 90" ± .01	5 (0")	2	2.29 ± .2 90" ± .01	5	3	3.30 ± .2 30" ± .01	5	(.1	3.36 ± .2 40" ± .01	5 10")	(.2)	5.35 ± .3 50" ± .01	8 5")	8.89 ± .51 (.350" ± .015")		
	Lead Diameter		.48 ± .05 19" ± .00	5	(.0)	.48 ± .05 19" ± .00	5)2")	(.0)	.48 ± .05 19" ± .00	02")		.63 ± .05 25" ± .00	5		.63 ± .05 25" ± .00	5		.63 ± .05 25" ± .00	5
	Lead Length		25.4 (1.00")			25.4 (1.00")			25.4 (1.00")			25.4 (1.00")			25.4 (1.00")			25.4 (1.00")	
Cap. in pF	Typical AVX Part Nos.	200	WVDC 100	50	200	WVDC 100	50	200	WVDC 100	50	200	WVDC 100	50	200	WVDC 100	50	200	WVDC 100	50
1.0	MA5A1R0DAA	500	100		500	T	T	200	100	1	200	100		200	100		200	100	30
to 9.1	MA5A9R1DAA																		
10 12 15	MA5A100KAA MA5A120KAA MA5A150KAA																		
18 22 27	MA5A180KAA MA5A220KAA MA5A270KAA																		
33 39 47	MA5A330KAA MA5A390KAA MA5A470KAA																		
56 68 82	MA5A560KAA MA5A680KAA MA5A820KAA																		
100 120 150	MA5A101KAA MA5A121KAA MA5A151KAA																		
180 220 270	MA5A181KAA MA5A221KAA MA5A271KAA																		
330 390 470	MA5A331KAA MA5A391KAA MA5A471KAA																		
560 680 820	MA5A561KAA MA5A681KAA MA5A821KAA																		
1000 1200 1500	MA5A102KAA MA5A122KAA MA5A152KAA																		
1800 2200 2700	MA5A182KAA MA5A222KAA MA5A272KAA																		
3300 3900 4700	MA5A332KAA MA5A392KAA MA5A472KAA																		
5600 6800 8200	MA5A562KAA MA5A682KAA MA5A822KAA																		
10,000 12,000 15,000	MA5A103KAA MA5A123KAA MA5A153KAA																		
18,000 22,000 27,000	MA5A183KAA MA5A223KAA MA5A273KAA																		
33,000 39,000 47,000	MA5A333KAA MA5A393KAA MA5A473KAA																		
56,000 68,000 82,000	MA5A563KAA MA5A683KAA MA5A823KAA																		
100,000 120,000 150,000	MA5A104KAA MA5A124KAA MA5A154KAA																		

For other tolerances see Part No. Codes
For other voltages see Part No. Codes
AVX Style

Axial Leads/Ceralam®

X7R Dielectric SIZE AND CAPACITANCE SPECIFICATIONS

sions: Millimet	ters (Inches)	_						-			[}				L		
	AVX Style	1	MA10			MA20)		MA30			MA40			MA50		1	MA60	
	Length	(.16	.07 ± .23 60" ± .01	5.0")	(.2:	5.35 ± .2. 50" ± .01	5 10")	(.24	.09 ± .23 10" ± .01	0")	(.39	0.91 ± .23 00" ± .01	0")	(.50	2.7 ± .5 00" ± .02	1(0")	(.69	7.53 ± .5	0")
	Diameter	(.09	.29 ± .21 90" ± .01	5 (0")	(.0)	2.29 ± .2. 90" ± .01	10")	(.13	.30 ± .25 30" ± .01	5 0")	(.14	3.36 ± .24 40" ± .01	5 0")	(25	5.35 ± .31 50" ± .01	8 5")	(.3	3.89 ± .5 50" ± .01	1 (5")
	Lead Diameter		48 ± .05 19" ± .00		(0	.48 ± .05 19" ± .00)2")	(.0	48 ± .05 19" ± .00	2")	(.02	.63 ± .05 25" ± .00	12")		.63 ± .05 25" ± .00		.63 ± .05 (.025" ± .002")		
	Lead Length		25.4 (1.00")			25.4 (1.00")			25.4 (1.00")			25.4 (1.00°)			25.4 (1.00°)			25.4 (1.00°)	
Cap. in	Typical AVX		WVDC	50	200	WVDC		200	WVDC	50	200	WVDC	50	200	WVDC	50		WVDC 100	
pF 220	Part Nos. MA 5C221KAA	200	100	50	200	100	50	200	100	50	200	100	50	200	100	50	200	100	5
270 330	MA 5C271KAA MA 5C331KAA												_						
390 470	MA 5C331KAA MA 5C391KAA MA5C471KAA																		
560 680 820	MA5C561KAA MA5C681KAA MA5C821KAA																		
1000 1200 1500	MA5C102KAA MA5C122KAA MA5C152KAA																		
1800 2200 2700	MA5C182KAA MA5C222KAA MA5C272KAA																		
3300 3900 4700	MA 5C332KAA MA 5C392KAA MA 5C472KAA																		
5600 6800 8200	MA5C562KAA MA5C682KAA MA5C822KAA																		
10,000 12,000 15,000	MA5C103KAA MA5C123KAA MA5C153KAA																		
18,000 22,000 27,000	MA5C183KAA MA5C223KAA MA5C273KAA																		
33,000 39,000 47,000	MA 5C333KAA MA 5C393KAA MA 5C473KAA																		
56,000 68,000 82,000	MA 5C563KAA MA 5C683KAA MA 5C823KAA																		
100,000 120,000 150,000	MA5C104KAA MA5C124KAA MA5C154KAA																		
180,000 220,000 270,000	MA 5C184KAA MA 5C224KAA MA 5C274KAA																		
330,000 390,000 470,000	MA 5C334KAA MA 5C394KAA MA 5C474KAA																		
560,000 680,000 820,000	MA 5C564KAA MA 5C684KAA MA 5C824KAA																		
1.0 μF 1.2 μF 1.5 μF	MA5C105KAA MA5C125KAA MA 5C155KAA																		
1.8 µF 22 µF 27 µF	MA 5C185KAA MA 5C225KAA MA 5C275KAA																		
33 pF 39 pF	MA 5C335KAA MA 5C395KAA																		

For other tolerances see Part No. Codes
For other voltages see Part No. Codes
AVX Style

Z5U Dielectric SIZE AND CAPACITANCE SPECIFICATIONS

nsions: Millimete	ers (Inches)	_			_														
	AVX Style		MA10)		MA20)]	MA30)]	MA40)		MA50)]	MA60	,
	Length	(.1)	1.07 ± .2 60" ± .01	5 (0")	(.2)	5.35 ± .2 50" ± .01	5 (0")	(.24	.09 ± .2 10" ± .01	5.0")	(.39	9.91 ± .21 90" ± .01	5 .0")	(.50	12.7 ± .5 00" ± .02	1(0")	(.69	7.53 ± .5	120")
	Diameter	(.0	2.29 ± .2 90" ± .01	5 (0")	(.0	2.29 ± .2 90" ± .01	5 10″)	(.13	.30 ± .2 30" ± .01	5.0")	(.14	3.36 ± .21 40" ± .01	5 .0")	(.2)	6.35 ± .36 50" ± .01	8 !5")		5.89 ± .5 50" ± .01	
	Lead Diameter		.48 ± .05 19" ± .00		(.0	.48 ± .05 19" ± .00)2")	(.0	48 ± .05 19" ± .00)2")	(.02	.63 ± .05 25" ± .00	12")	(.02	.63 ± .05 25" ± .00)2")	(.02	.63 ± .05 25" ± .00	2")
	Lead Length		25.4 (1.00")			25.4 (1.00")			25.4 (1.00")			25.4 (1.00")			25.4 (1.00")			25.4 (1.00")	
Cap. in pF	Typical AVX Part Nos.	200	WVDC 100	50	200	WVDC 100	50	200	WVDC 100	50	200	WVDC 100	50	200	WVDC 100	50	200	WVDC 100	
1000 1200 1500	MA5E102ZAA MA5E122ZAA MA5E152ZAA																		
1800 2200 2700	MA5E182ZAA MA5E222ZAA MA5E272ZAA																		
3300 3900 4700	MA5E332ZAA MA5E392ZAA MA5E472ZAA																		
5600 6800 8200	MA5E562ZAA MA5E682ZAA MA5E822ZAA																		
10,000 12,000 15,000	MA5E103ZAA MA5E123ZAA MA5E153ZAA																		
18,000 22,000 27,000	MA5E183ZAA MA5E223ZAA MA5E273ZAA																		
33,000 39,000 47,000	MA5E333ZAA MA5E393ZAA MA5E473ZAA																		
56,000 68,000 82,000	MA5E563ZAA MA5E683ZAA MA5E823ZAA																		
100,000 120,000 150,000	MA5E104ZAA MA5E124ZAA MA5E154ZAA																		
180,000 220,000 270,000	MA5E184ZAA MA5E224ZAA MA5E274ZAA																		
330,000 390,000 470,000	MA5E334ZAA MA5E394ZAA MA5E474ZAA																		
560,000 680,000 820,000	MA5E564ZAA MA5E684ZAA MA5E824ZAA																		
1.0 μF 1.2 μF 1.5 μF	MA5E105ZAA MA5E125ZAA MA5E155ZAA																		
1.8 μF 2.2 μF 2.7 μF	MA 5E185ZAA MA 5E225ZAA MA 5E275ZAA																		
3.3 μF 3.9 μF 4.7 μF	MA . 5E335ZAA MA . 5E395ZAA MA . 5E475ZAA																		
5.6 μF 6.8 μF 8.2 μF	MA5E565ZAA MA5E685ZAA MA5E825ZAA																		

For other tolerances see Part No. Codes
For other voltages see Part No. Codes
AVX Style

Axial Leads/Packaging

· (Are of the Prince)

CLASS I RS-296

A.	5mm ± 0.5mm (.200" ± 0.020")
B*.	52.4mm ± 1.5mm (2.063" ± 0.059")
C.	6.35mm ± 0.4mm (0.250" ± 0.016")
D^1 - D^2 .	1.4mm (0.055" MAX.)
E.	1.2mm (0.047" MAX.)
F.	1.6mm (0.063" MAX.)
G.	356mm (14.00")
H.	76mm (3.000")
I.	25.4mm (1.000")
J.	84mm (3.300")
K.	70mm (2.750")

Leader Tape: 300mm min. (12")

Splicing: Tape Only

Missing Parts: 0.25% of component count max.-No consecutive missing parts

THE OWNER WHEN

SA10 7,500 pcs. MA10 5,000 pcs.
SA11 5,000 pcs. SA20 5,000 pcs. SA30 5,000 pcs. SA30 5,000 pcs. SA40 5,000 pcs. MA20 5,000 pcs. MA30 3,000 pcs. MA40 3,000 pcs. MA50 950 pcs. MA60 650 pcs.

 \updownarrow 1000 pc. reels available for distribution pack only in $\pm1\%$ and $\pm2\%$ tolerance.

*Standard Tape Spacing Shown. Also available in 26.0mm + 1.5mm, $-0\,\mathrm{mm},\,(1.023\,\mathrm{in},\,+.059\,\mathrm{in}.\,-0\,\mathrm{in}.)$ for SpinGuards only. EIA class I, II and III tape spacings are available for all axials.

Additional Packaging Available

AMERICA PROPERTY.

Tape Spacing	MA10, SA10 MA20, SA20	SA11 SA30	MA30, MA40, SA40		BOX SIZES (Nominal)				
Spacing	WILLO, SILLO	Shoo	MINTO, SNAO	L	W	Н			
52.4mm ± 1.5mm (2.062" ± .059")	4,000 pcs.	3000	2,000 pcs.	255mm (10.039")	73mm (2.874")	93mm (3.661")			
26.0mm + 1.5mm - 0mm (1.023" + .059" - 0")	4,000 pcs.*	3000	2,000 pcs.*	255mm (10.039")	48mm (1.889")	113mm (4.448")			

^{*}SpinGuard only

TOTAL VICE (Vinder Assessment

MA10 MA20 MA30 MA40	100 pcs (bag)
MA50 MA60	50 pcs. (bag)

Glass Axial Leaded MLC Capacitors Packaging

NOTE 1: Customer Part Number, AVX Part Number, Customer P.O. Number, Quantity, Date Code

Component zone equals max body lingth plus (30 [8]) - 0.47 max (1.2) - 0.47 max (1.2) - 0.200 ± 0.20 (5 ± 5) (5 ± 5) (1.2 ± 0.030 (8.8) (9.3 ± 1.5) (1.4) (2.60 ± 0.59 (52.3 ± 1.5)

CONTRACTOR OF THE PARTY OF THE

GLASS ENCAPSULATED												
Case Size	A	В	D	E	F							
Quantity	8000	6000	6000	5000	4000							

MIL-C-39014/Radial Leads

HOW TO ORDER

Military Type Designation: Styles CKR04, CKR05, CKR06, CKR08

Dash Number Option: MIL-C-39014/01 (Appropriate Dash Number)

Part Number Example

MIL Part No. Codes

Style: CK = general purpose, ceramic dielectric, fixed capacitors.
R = Established Reliability parts.

05 = Remaining two numbers identify shape and dimension.

Voltage-Temperature Limits:

First letter identifies temperature range. B = -55°C to +125°C Second letter identifies voltage-temperature coefficient.

Capacitance	Capacitance Change with Reference to 25°C								
Second Letter	No Voltage	Rated Voltage							
X	+15, -15%	+15, -25%							

Sig. Fig. Capacitance and Multiplier:

First two digits are the significant figures of capacitance. Third digit indicates the additional number of zeros. For example, order 100,000 pF as 104. (For values below 10 pF, use "R" in place of decimal point, e.g., 1R4 = 1.4 pF).

Capacitance Tolerances: $K = \pm 10\%$, $M = \pm 20\%$

Military Failure Rate: M = 1% per 1000 hours; P = 0.1% per 1000 hours; R = 0.01% per 1000 hours; S = 0.001% per 1000 hours

Note: AVX reserves the right to substitute a lower failure rate part

Note: AVX reserves the right to substitute a lower failure rate part per MIL-C-39014. Substitutability for failure rate levels shall be as follows:

Failure Rate Level	Will Replace Failure Rate Level
S (STD) (X-ray)	R, P, M, L
R (STD) (No X-ray)	P, M, L
P	M, L
M	L

To order standoff option, place "V" at the end of the part number. For example: CKR05BX104KSV.

PACKAGING REQUIREMENTS

Packaging: 100 pcs/bag; Radial Tape and Reel Packaging available upon request.

SIZE SPECIFICATIONS

Dimensions: Millimeters (Inches)

Per Mil Spec		Case Size							
MIL-C-39014	Length (L)	Width (W)	Thickness (T)		Lead Diameter (L.D.)				
CKR04	4.38±.25	4.38±.25	2.29±.25	2.54±.38	.64±.05				
(Fig. 2)	(.190±.010)	(.190±.010)	(.090±.010)	(.100±.015)	(.025±.002)				
CKR05	4.38±.25	4.38±.25	2.29±.25	5.08±.38	.64±.05				
(Fig. 1, 4)	(.190±.010)	(.190±.010)	(.090±.010)	(.200±.015)	(.025±.002)				
CKR06	7.37±.25	7.37±.25	2.29±.25	5.08±.38	.64±.05				
(Fig. 2, 3)	(.290±.010)	(.290±.010)	(.090±.010)	(.200±.015)	(.025±.002)				
CKR08	7.37±.25	7.37±.25	3.68±.38	5.08±.38	.64±.05				
(Fig. 2)	(.290±.010)	(.290±.010)	(.145±.015)	(.200±.015)	(.025±.002)				

MARKING Radial Lead

MILITARY DASH NUMBER IDENTIFICATION CKR04 to MIL-C-39014/23 (Dash Number From Table)

Military		Failure Rate Leve	Cit	Capacitance			
Type Designation	1.0 (M)	0.1 (P)	0.01 (R)	0.001 (S)	Capacitance (pF)	Tolerance ±Percent	WVDC
			CKR04 (BX)				
CKR04BX100K_ CKR04BX100M_ CKR04BX120K_ CKR04BX150K_ CKR04BX150M_	0001 0002 0003 0004 0005	0101 0102 0103 0104 0105	0201 0202 0203 0204 0205	0301 0302 0303 0304 0305	10 10 12 15 15	10 20 10 10 20	200 200 200 200 200 200
CKR04BX180M_ CKR04BX220K_ CKR04BX220M_ CKR04BX270K_ CKR04BX330K_	0006 0007 0008 0009 0010	0106 0107 0108 0109 0110	0206 0207 0208 0209 0210	0306 0307 0308 0309 0310	18 22 22 22 27 33	10 10 20 10 10	200 200 200 200 200 200
CKR04BX330M_ CKR04BX390K_ CKR04BX470K_ CKR04BX470M_ CKR04BX560K_	0011 0012 0013 0014 0015	0111 0112 0113 0114 0115	0211 0212 0213 0214 0215	0311 0312 0313 0314 0315	33 39 47 47 56	20 10 10 20 10	200 200 200 200 200 200
CKR04BX680K_ CKR04BX680M_ CKR04BX820K_ CKR04BX101K_ CKR04BX101M_	0016 0017 0018 0019 0020	0116 0117 0118 0119 0120	0216 0217 0218 0219 0220	0316 0317 0318 0319 0320	68 68 82 100 100	10 20 10 10 20	200 200 200 200 200 200
CKR04BX121K_ CKR04BX151K_ CKR04BX151M_ CKR04BX181K_ CKR04BX221K_	0021 0022 0023 0024 0025	0121 0122 0123 0124 0125	0221 0222 0223 0224 0225	0321 0322 0323 0324 0325	120 150 150 180 220	10 10 20 10 10	200 200 200 200 200 200
CKR04BX221M_ CKR04BX271K_ CKR04BX331K_ CKR04BX331M_ CKR04BX391K_	0026 0027 0028 0029 0030	0126 0127 0128 0129 0130	0226 0227 0228 0229 0230	0326 0327 0328 0329 0330	220 270 330 330 390	20 10 10 20 10	200 200 200 200 200 200
CKR04BX471K_ CKR04BX471M_ CKR04BX561K_ CKR04BX681K_ CKR04BX681M_	0031 0032 0033 0034 0035	0131 0132 0133 0134 0135	0231 0232 0233 0234 0235	0331 0332 0333 0334 0335	470 470 560 680 680	10 20 10 10 20	200 200 200 200 200 200
CKR04BX821K_ CKR04BX102K_ CKR04BX102M_ CKR04BX122K_ CKR04BX152K_	0036 0037 0038 0039 0040	0136 0137 0138 0139 0140	0236 0237 0238 0239 0240	0336 0337 0338 0339 0340	820 1,000 1,000 1,200 1,500	10 10 20 10 10	200 200 200 100 100
CKR04BX152M_ CKR04BX182K_ CKR04BX222K_ CKR04BX222M_ CKR04BX272K_	0041 0042 0043 0044 0045	0141 0142 0143 0144 0145	0241 0242 0243 0244 0245	0341 0342 0343 0344 0345	1,500 1,800 2,200 2,200 2,700	20 10 10 20 10	100 100 100 100 100
CKR04BX332K_ CKR04BX332M_ CKR04BX392K_ CKR04BX472K_ CKR04BX472M_	0046 0047 0048 0049 0050	0146 0147 0148 0149 0150	0246 0247 0248 0249 0250	0346 0347 0348 0349 0350	3,300 3,300 3,900 4,700 4,700	10 20 10 10 20	100 100 100 100 100
CKR04BX562K_ CKR04BX682K_ CKR04BX682M_ CKR04BX822K_ CKR04BX103K_	0051 0052 0053 0054 0055	0151 0152 0153 0154 0155	0251 0252 0253 0254 0255	0351 0352 0353 0354 0355	5,600 6,800 6,800 8,200 10,000	10 10 20 10 10	100 100 100 100 100
CKR04BX103M_ CKR04BX123K_ CKR04BX153K_ CKR04BX153M_ CKR04BX183K_	0056 0057 0058 0059 0060	0156 0157 0158 0159 0160	0256 0257 0258 0259 0260	0356 0357 0358 0359 0360	10,000 12,000 15,000 15,000 18,000	20 10 10 20 10	100 50 50 50 50 50
CKR04BX223K_ CKR04BX223M_ CKR04BX273K_ CKR04BX333K_ CKR04BX333M_	0061 0062 0063 0064 0065	0161 0162 0163 0164 0165	0261 0262 0263 0264 0265	0361 0362 0363 0364 0365	22,000 22,000 27,000 33,000 33,000	10 20 10 10 20	50 50 50 50 50
CKR04BX393K CKR04BX473K CKR04BX473M CKR04BX563K CKR04BX683K	0066 0067 0068 0069 0070	0166 0167 0168 0169 0170	0266 0267 0268 0269 0270	0366 0367 0368 0369 0370	39,000 47,000 47,000 56,000 68,000	10 10 20 10 10	50 50 50 50 50
CKR04BX683M_ CKR04BX823K_ CKR04BX104K_ CKR04BX104M_	0071 0072 0073 0074	0171 0172 0173 0174	0271 0272 0273 0274	0371 0372 0373 0374	68,000 82,000 100,000 100,000	20 10 10 20	50 50 50 50

- Add appropriate failure rate level letter (M. P. R or S)

MIL-C-39014/Radial Leads

MILITARY DASH NUMBER IDENTIFICATION CKR05 to MIL-C-39014/01 (Dash Number From Table)

Military			el (%/1,000 Hours)			Capacitance	
Type Designation	1.0 (M)	0.1 (P)	0.01 (R)	0.001 (S)	Capacitance (pF)	Tolerance ±Percent	WVDC
		T	CKR05 (BX)	1			
CKR05BX100K_ CKR05BX100M_ CKR05BX120K_ CKR05BX150K_ CKR05BX150M_	1201 1202 1203 1204 1205	1241 1242 1243 1244 1245	1281 1282 1283 1284 1285	1321 1322 1323 1324 1325	10 10 12 15 15	10 20 10 10 20	200 200 200 200 200 200
CKR05BX180K_ CKR05BX220K_ CKR05BX220M_ CKR05BX270K_ CKR05BX330K_	1206 1207 1208 1209 1210	1246 1247 1248 1249 1250	1286 1287 1288 1289 1290	1326 1327 1328 1329 1330	18 22 22 22 27 33	10 10 20 10 10	200 200 200 200 200 200
CKR05BX330M_ CKR05BX390K_ CKR05BX470K_ CKR05BX470M_ CKR05BX560K_	1211 1212 1213 1214 1215	1251 1252 1253 1254 1255	1291 1292 1293 1294 1295	1331 1332 1333 1334 1335	33 39 47 47 56	20 10 10 20 10	200 200 200 200 200 200
CKR05BX680K_ CKR05BX680M_ CKR05BX820K_ CKR05BX101K_ CKR05BX101M_	1216 1217 1218 1219 1220	1256 1257 1258 1259 1260	1296 1297 1298 1299 1300	1336 1337 1338 1339 1340	68 68 82 100 100	10 20 10 10 20	200 200 200 200 200 200
CKR05BX121K_ CKR05BX151K_ CKR05BX151M_ CKR05BX181K_ CKR05BX221K_	1221 1222 1223 1224 1225	1261 1262 1263 1264 1265	1301 1302 1303 1304 1305	1341 1342 1343 1344 1345	120 150 150 180 220	10 10 20 10 10	200 200 200 200 200 200
CKR05BX221M_ CKR05BX271K_ CKR05BX331K_ CKR05BX331M_ CKR05BX391K_	1226 1227 1228 1229 1230	1266 1267 1268 1269 1270	1306 1307 1308 1309 1310	1346 1347 1348 1349 1350	220 270 330 330 390	20 10 10 20 10	200 200 200 200 200 200
CKR05BX471K_ CKR05BX471M_ CKR05BX561K_ CKR05BX681K_ CKR05BX681M_	1231 1232 1233 1234 1235	1271 1272 1273 1274 1275	1311 1312 1313 1314 1315	1351 1352 1353 1354 1355	470 470 560 680 680	10 20 10 10 20	200 200 200 200 200 200
CKR05BX821K_ CKR05BX102K_ CKR05BX102M_ CKR05BX122K_ CKR05BX152K_	1236 1237 1238 1239 1240	1276 1277 1278 1279 1280	1316 1317 1318 1319 1320	1356 1357 1358 1359 1360	820 1,000 1,000 1,200 1,500	10 10 20 10 10	200 200 200 100 100
CKR05BX152M_ CKR05BX182K_ CKR05BX222K_ CKR05BX222M_ CKR05BX272K_	1441 1442 1443 1444 1445	1481 1482 1483 1484 1485	1521 1522 1523 1524 1525	1561 1562 1563 1564 1565	1,500 1,800 2,200 2,200 2,700	20 10 10 20 10	100 100 100 100 100 100
CKR05BX332K_ CKR05BX332M_ CKR05BX392K_ CKR05BX472K_ CKR05BX472M_	1446 1447 1448 1449 1450	1486 1487 1488 1489 1490	1526 1527 1528 1529 1530	1566 1567 1568 1569 1570	3,300 3,300 3,900 4,700 4,700	10 20 10 10 20	100 100 100 100 100 100
CKR05BX562K_ CKR05BX682K_ CKR05BX682M_ CKR05BX822K_ CKR05BX103K_	1451 1452 1453 1454 1455	1491 1492 1493 1494 1495	1531 1532 1533 1534 1535	1571 1572 1573 1574 1575	5,600 6,800 6,800 8,200 10,000	10 10 20 10 10	100 100 100 100 100 100
CKR05BX103M_ CKR05BX123K_ CKR05BX153K_ CKR05BX153M_ CKR05BX183K_	1456 1457 1458 1459 1460	1496 1497 1498 1499 1500	1536 1537 1538 1539 1540	1576 1577 1578 1579 1580	10,000 12,000 15,000 15,000 15,000	20 10 10 20 10	100 50 50 50 50 50
CKR05BX223K_ CKR05BX223M_ CKR05BX273K_ CKR05BX333K_ CKR05BX333M_	1461 1462 1463 1464 1465	1501 1502 1503 1504 1505	1541 1542 1543 1544 1545	1581 1582 1583 1584 1585	22,000 22,000 27,000 33,000 33,000	10 20 10 10 20	50 50 50 50 50
CKR05BX393K_ CKR05BX473K_ CKR05BX473M_ CKR05BX563K_ CKR05BX683K_	1466 1467 1468 1469 1470	1506 1507 1508 1509 1510	1546 1547 1548 1549 1550	1586 1587 1588 1589 1590	39,000 47,000 47,000 56,000 68,000	10 10 20 10	50 50 50 50 50
CKR05BX683M_ CKR05BX823K_ CKR05BX104K_ CKR05BX104M_	1471 1472 1473 1474	1511 1512 1513 1514	1551 1552 1553 1554	1591 1592 1593 1594	68,000 82,000 100,000 100,000	20 10 10 20	50 50 50 50

Add appropriate failure rate level (M, P, R, or S).

MILITARY DASH NUMBER IDENTIFICATION CKR06 to MIL-C-39014/02 (Dash Number From Table)

Military Type		Failure Rate Level	0	Capacitance						
Designation	1.0 (M)	0.1 (P)	0.01 (R)	0.001 (S)	Capacitance (pF)	Tolerance ±Percent	WVDC			
		CKR06 (BX)								
CKR06BX122K_ CKR06BX152K_ CKR06BX152M_ CKR06BX182K_ CKR06BX222K_	1201 1202 1203 1204 1206	1241 1242 1243 1244 1246	1281 1282 1283 1284 1286	1321 1322 1323 1324 1326	1200 1500 1500 1800 2200	10 10 20 10 10	200 200 200 200 200 200			
CKR06BX222M_ CKR06BX272K_ CKR06BX332K_ CKR06BX332M_ CKR06BX392K_	1207 1208 1209 1210 1211	1247 1248 1249 1250 1251	1287 1288 1289 1290 1291	1327 1328 1329 1330 1331	2200 2700 3300 3300 3900	20 10 10 20 10	200 200 200 200 200 200			
CKR06BX472K_ CKR06BX472M_ CKR06BX562K_ CKR06BX682K_ CKR06BX682M_	1212 1213 1214 1215 1216	1252 1253 1254 1255 1256	1292 1293 1294 1295 1296	1332 1333 1334 1335 1336	4700 4700 5600 6800 6800	10 20 10 10 20	200 200 200 200 200 200			
CKR06BX822K_	1217	1257	1297	1337	8200	10	200			
CKR06BX103K_	1218	1258	1298	1338	10,000	10	200			
CKR06BX103M_	1219	1259	1299	1339	10,000	20	200			
CKR06BX123K_	1231	1271	1311	1351	12,000	10	100			
CKR06BX153K_	1220	1260	1300	1340	15,000	10	100			
CKR06BX183K_	1221	1261	1301	1341	18,000	10	100			
CKR06BX223K_	1222	1262	1302	1342	22,000	10	100			
CKR06BX273K_	1232	1272	1312	1352	27,000	10	100			
CKR06BX333K_	1223	1263	1303	1343	33,000	10	100			
CKR06BX393K_	1224	1264	1304	1344	39,000	10	100			
CKR06BX473K_	1225	1265	1305	1345	47,000	10	100			
CKR06BX563K_	1226	1266	1306	1346	56,000	10	100			
CKR06BX683K_	1227	1267	1307	1347	68,000	10	100			
CKR06BX823K_	1229	1269	1309	1349	82,000	10	100			
CKR06BX104K_	1230	1270	1310	1350	100,000	10	100			
CKR06BX124K_	1233	1273	1313	1353	120,000	10	50			
CKR06BX154K_	1234	1274	1314	1354	150,000	10	50			
CKR06BX184K_	1235	1275	1315	1355	180,000	10	50			
CKR06BX224K_	1236	1276	1316	1356	220,000	10	50			
CKR06BX274K_	1237	1277	1317	1357	270,000	10	50			
CKR06BX334K_	1238	1278	1318	1358	330,000	10	50			
CKR06BX394K_	1239	1279	1319	1359	390,000	10	50			
CKR06BX474K_	1240	1280	1320	1360	470,000	10	50			
CKR06BX564K_	1404	1408	1412	1416	560,000	10	50			
CKR06BX684K_	1405	1409	1413	1417	680,000	10	50			
CKR06BX824K_	1406	1410	1414	1418	820,000	10	50			
CKR06BX105K_	1407	1411	1415	1419	1,000,000	10	50			

Add appropriate failure rate level letter (M, P, R, or S)

CKR08 to MIL-C-39014/20 (Dash Number From Table)

Military	Failure Rate Level (%/1,000 Hours)				0	Capacitance	
Type Designation	1.0 (M)	0.1 (P)	0.01 (R)	0.001 (S)	Capacitance (pF)	Tolerance ±Percent	WVDC
			CKR08 (BX)				
CKR08BX125K_ CKR08BX155K_ CKR08BX205K_	0104 0105 0106	0107 0108 0109	0110 0111 0112	0113 0114 0115	1,200,000 1,500,000 2,000,000	10 10 10	50 50 50

Add appropriate failure rate level letter (M, P, R or S)

CROSS REFERENCE CHART - AVX MILITARY FOR MOLDED RADIAL LEAD

Dimensions: Millimeters (Inches)

			Per Mil-Spec		Case Size					
Figure	AVX Style	MIL-C-11015	MIL-C-39014	MIL-C-20	Length(L)	Width (W)	Lead Thickness (T)	Lead Spacing (LS)	Diameter (LD)	
1	MR05	CK05	CKR05	CCR05/CC05	4.83±.25 (.190±.010)	4.83±.25 (.190±.010)	2.29±.25 (.090±.010)	5.08±.38 (.200±.015)	.64±.05 (.025±.002)	
2	MR04	_	CKR04	CCR09/CC09	4.83±.25 (.190±.010)	4.83±.25 (.190±.010)	2.29±.25 (.090±.010)	2.54±.38 (.100±.015)	.64±.05 (.025±.002)	
2	MR06	CK06	CKR06	CCR06/CC06	7.37±.25 (.290±.010)	7.37±.25 (.290±.010)	2.29±.25 (.090±.010)	5.08±.38 (.200±.015)	.64±.05 (.025±.002)	
2	CR08	_	CKR08		7.37±.25 (.290±.010)	7.37±.25 (.290±.010)	3.68±.38 (.145±.015)	5.08±.38 (.200±.015)	.64±.05 (.025±.002)	
2	MR07	_	_	CCR07/CC07	12.19±.51 (.480±.020)	12.19±.51 (.480±.020)	3.56±.25 (.140±.010)	10.16±.51 (.400±.020)	.64±.05 (.025±.002)	
2	MR08	_	_	CCR08/CC08	12.19±.51 (.480±.020)	12.19±.51 (.480±.020)	6.1±.25 (.240±.010)	10.16±.51 (.400±.020)	.64±.05 (.025±.002)	

MIL-C-39014/Axial Leads

MIL-C-39014/Axial Lead

HOW TO ORDER

Military Type Designation: Styles CKR11, CKR12, CKR14, CKR15, CKR16

Dash Number Option

MIL-C-39014/05 (Add appropriate dash number)

Part Number Example

MIL Part No. Codes

Style: CK = general purpose, ceramic dielectric, fixed capacitors.

R = Established Reliability parts.

11 = Remaining two numbers identify shape and dimension.

Voltage-Temperature Limits:

First letter identifies temperature range. $B = -55^{\circ}C$ to $+125^{\circ}C$

Second letter identifies voltage-temperature coefficient.

Capacitance Change with Reference to 25°C						
Second Letter	No Voltage	Rated Voltage				
R X	+15, -15% +15, -15%	+15, -40% +15, -25%				

Sig. Fig. Capacitance and Multiplier:

First two digits are the significant figures of capacitance. Third digit indicates the additional number of zeros. For example, order 10,000 pF as 103.

Capacitance Tolerances: $K = \pm 10\%$, $M = \pm 20\%$

Military Failure Rate: M = 1% per 1000 hours

P = 0.1% per 1000 hours R = 0.01% per 1000 hours S = 0.001% per 1000 hours

Note: AVX reserves the right to substitute a lower failure rate part per MIL-C-39014/5E. Substitutability for failure rate levels shall be as follows:

Failure Rate Level	Will Replace Failure Rate Level
S (STD) (X-ray)	R, P, M, L
R (STD) (No X-ray)	P, M, L
P	M, L
M	L

PACKAGING REQUIREMENTS

Packaging: 50 pcs/bag

SIZE SPECIFICATIONS

Dimensions: Millimeters (Inches)

Per Mil Spec	Case Size							
MIL-C-39014	Length (L)	Diameter (D)	Lead Diameter (L.D.)					
CKR11	4.07±.25	2.29±.25	.48±.05					
	(.160±.010)	(.090±.010)	(.019±.002)					
CKR12	6.35±.25	2.29±.25	.48±.25					
	(.250±.010)	(.090±.010)	(.019±.002)					
CKR14	9.91±.25	3.36±.25	.63±.25					
	(.390±.010)	(.140±.010)	(.025±.002)					
CKR15	12.7±.51	6.35±.38	.63±.05					
	(.500±.020)	(.250±.015)	(.025±.002)					
CKR16	17.53±.51	8.89±.51	.63±.05					
	(.690±.020)	(.350±.010)	(.025±.002)					

MILITARY DASH NUMBER IDENTIFICATION CKR11 to MIL-C-39014/05 (Dash Number From Table)

Military		Failure Rate Leve	l (%/1,000 Hours)			Capacitance			
Type Designation	1.0 (M)	0.1 (P)	0.01 (R)	0.001 (S)	Capacitance (pF)	Tolerance ±Percent	WVDC		
	CKR11 (BX)								
CKR11BX100K_	2601	2801	2001	2201	10	10	100		
CKR11BX100M_	2602	2802	2002	2202	10	20	100		
CKR11BX120K_	2603	2803	2003	2203	12	10	100		
CKR11BX150K_	2604	2804	2004	2204	15	10	100		
CKR11BX150M_	2605	2805	2005	2205	15	20	100		
CKR11BX180K_ CKR11BX220K_ CKR11BX220M_ CKR11BX270K_ CKR11BX330K_	2606 2607 2608 2609 2610	2806 2807 2808 2809 2810	2006 2007 2008 2009 2010	2206 2207 2208 2209 2210	18 22 22 22 27 33	10 10 20 10 10	100 100 100 100 100 100		
CKR11BX330M_ CKR11BX390K_ CKR11BX470K_ CKR11BX470M_ CKR11BX560K_	2611 2612 2613 2614 2615	2811 2812 2813 2814 2815	2011 2012 2013 2014 2015	2211 2212 2213 2214 2215	33 39 47 47 47 56	20 10 10 20 10	100 100 100 100 100 100		
CKR11BX680K_ CKR11BX680M_ CKR11BX820K_ CKR11BX101K_ CKR11BX101M_	2616 2617 2618 2619 2620	2816 2817 2818 2819 2820	2016 2017 2018 2019 2020	2216 2217 2218 2219 2220	68 68 82 100 100	10 20 10 10 20	100 100 100 100 100 100		
CKR11BX121K_	2621	2821	2021	2221	120	10	100		
CKR11BX151K_	2622	2822	2022	2222	150	10	100		
CKR11BX151M_	2623	2823	2023	2223	150	20	100		
CKR11BX181K_	2624	2824	2024	2224	180	10	100		
CKR11BX221K_	2625	2825	2025	2225	220	10	100		
CKR11BX221M_	2626	2826	2026	2226	220	20	100		
CKR11BX271K_	2627	2827	2027	2227	270	10	100		
CKR11BX331K_	2628	2828	2028	2228	330	10	100		
CKR11BX331M_	2629	2829	2029	2229	330	20	100		
CKR11BX391K_	2630	2830	2030	2230	390	10	100		
CKR11BX471K_	2631	2831	2031	2231	470	10	100		
CKR11BX471M_	2632	2832	2032	2232	470	20	100		
CKR11BX561K_	2633	2833	2033	2233	560	10	100		
CKR11BX681K_	2634	2834	2034	2234	680	10	100		
CKR11BX681M_	2635	2835	2035	2235	680	20	100		
CKR11BX821K_	2636	2836	2036	2236	820	10	100		
CKR11BX102K_	2637	2837	2037	2237	1000	10	100		
CKR11BX102M_	2638	2838	2038	2238	1000	20	100		
CKR11BX122K_	2639	2839	2039	2239	1200	10	100		
CKR11BX152K_	2640	2840	2040	2240	1500	10	100		
CKR11BX152M_	2641	2841	2041	2241	1500	20	100		
CKR11BX182K_	2642	2842	2042	2242	1800	10	100		
CKR11BX222K_	2643	2843	2043	2243	2200	10	100		
CKR11BX222M_	2644	2844	2044	2244	2200	20	100		
CKR11BX272K_	2645	2845	2045	2245	2700	10	100		
CKR11BX332K_	2646	2846	2046	2246	3300	10	100		
CKR11BX332M_	2647	2847	2047	2247	3300	20	100		
CKR11BX392K_	2648	2848	2048	2248	3900	10	100		
CKR11BX472K_	2649	2849	2049	2249	4700	10	100		
CKR11BX472M_	2650	2850	2050	2250	4700	20	100		
CKR11BX562K_ CKR11BX682K_ CKR11BX682M_ CKR11BX22K_ CKR11BX103K_ CKR11BX103M_	2651 2652 2653 2654 2655 2656	2851 2852 2853 2854 2855 2856	2051 2052 2053 2054 2055 2056	2251 2252 2253 2254 2255 2256	5600 6800 6800 8200 10,000	10 10 20 10 10 20	50 50 50 50 50 50 50		

_ Add appropriate failure rate level (M, P, R, or S)

MIL-C-39014/Axial Leads

MILITARY DASH NUMBER IDENTIFICATION CKR12/14/15 to MIL-C-39014/05 (Dash Number From Table)

Military Type Designation		Failure Rate Leve	l (%/1,000 Hours)		Conscitons	Capacitance	
	1.0 (M)	0.1 (P)	0.01 (R)	0.001 (S)	Capacitance (pF)	Tolerance ±Percent	WVDC
			CKR12 (BX)				
CKR12BX562K_ CKR12BX682K_ CKR12BX682M_ CKR12BX822K_ CKR12BX103K_	2657 2658 2659 2660 2661	2857 2858 2859 2860 2861	2057 2058 2059 2060 2061	2257 2258 2259 2260 2261	5600 6800 6800 8200 10,000	10 10 20 10 10	100 100 100 100 100 100
CKR12BX103M_ CKR12BX123K_ CKR12BX153K_ CKR12BX153M_ CKR12BX183K_	2662 2663 2664 2665 2666	2862 2863 2864 2865 2866	2062 2063 2064 2065 2066	2262 2263 2264 2265 2266	10,000 12,000 15,000 15,000 18,000	20 10 10 20 10	100 50 50 50 50 50
CKR12BX223K_ CKR12BX223M_ CKR12BX273K_ CKR12BX333K_ CKR12BX333M_	2667 2668 2669 2670 2671	2867 2868 2869 2870 2871	2067 2068 2069 2070 2071	2267 2268 2269 2270 2271	22,000 22,000 27,000 33,000 33,000	10 20 10 10 20	50 50 50 50 50
CKR12BX393K_ CKR12BX473K_ CKR12BX473M_	2672 2673 2674	2872 2873 2874	2072 2073 2074	2272 2273 2274	39,000 47,000 47,000	10 10 20	50 50 50
			CKR14 (BX)				
CKR14BX123K_ CKR14BX153K_ CKR14BX153M_ CKR14BX183K_ CKR14BX223K_	2675 2676 2677 2678 2679	2875 2876 2877 2878 2879	2075 2076 2077 2078 2079	2275 2276 2277 2278 2279	12,000 15,000 15,000 18,000 22,000	10 10 20 10 10	100 100 100 100 100 100
CKR14BX223M_ CKR14BX273K_ CKR14BX333K_ CKR14BX333M_ CKR14BX393K_	2680 2681 2682 2683 2684	2880 2881 2882 2883 2884	2080 2081 2082 2083 2084	2280 2281 2282 2283 2284	22,000 27,000 33,000 33,000 39,000	20 10 10 20 10	100 100 100 100 100
CKR14BX473K_ CKR14BX473M_ CKR14BX563K_ CKR14BX683K_ CKR14BX683M_	2685 2686 2687 2688 2689	2885 2886 2887 2888 2889	2085 2086 2087 2088 2089	2285 2286 2287 2288 2289	47,000 47,000 56,000 68,000 68,000	10 20 10 10 20	100 100 50 50 50
CKR14BX823K_ CKR14BX104K_ CKR14BX104M_	2690 2691 2692	2890 2891 2892	2090 2091 2092	2290 2291 2292	82,000 100,000 100,000	10 10 20	50 50 50
			CKR14 (BR)				
CKR14BR563K_ CKR14BR683K_ CKR14BR683M_ CKR14BR823K_ CKR14BR104K_	2693 2694 2695 2696 2697	2893 2894 2895 2896 2897	2093 2094 2095 2096 2097	2293 2294 2295 2296 2297	56,000 68,000 68,000 82,000 100,000	10 10 20 10 10	100 100 100 100 100
CKR14BR104M_ CKR14BR124K_ CKR14BR154K_ CKR14BR154M_ CKR14BR184K_	2698 2699 2700 2701 2702	2898 2899 2900 2901 2902	2098 2099 2100 2101 2102	2298 2299 2300 2301 2302	100,000 120,000 150,000 150,000 180,000	20 10 10 20 10	100 50 50 50 50 50
CKR14BR224K_ CKR14BR224M_ CKR14BR274K_	2703 2704 2705	2903 2904 2905	2103 2104 2105	2303 2304 2305	220,000 220,000 270,000	10 20 10	50 50 50
			CKR15 (BX)				
CKR15BX563K CKR15BX683K CKR15BX683M CKR15BX823K CKR15BX104K CKR15BX104M	2706 2707 2708 2709 2710 2711	2906 2907 2908 2909 2910 2911	2106 2107 2108 2109 2110 2111	2306 2307 2308 2309 2310 2311	56,000 68,000 68,000 82,000 100,000 100,000	10 10 20 10 10 20	100 100 100 100 100 100

_ Add appropriate failure rate level (M, P, R, or S).

MILITARY DASH NUMBER IDENTIFICATION CKR15/16 to MIL-C-39014/05 (Dash Number From Table)

Military Type		Failure Rate Level	(%/1,000 Hours)		0 :	Capacitance	
Designation	1.0 (M)	0.1 (P)	0.01 (R)	0.001 (S)	Capacitance (pF)	Tolerance ±Percent	WVDC
			CKR15 (BR)				
CKR15BR124K_ CKR15BR154K CKR15BR154M_ CKR15BR184K_ CKR15BR224K_	2712 2713 2714 2715 2716	2912 2913 2914 2915 2916	2112 2113 2114 2115 2116	2312 2313 2314 2315 2316	120,000 150,000 150,000 180,000 220,000	10 10 20 10 10	100 100 100 100 100 100
CKR15BR224M_ CKR15BR274K_ CKR15BR334K_ CKR15BR334M_ CKR15BR474K_	2717 2718 2719 2720 2721	2917 2918 2919 2920 2921	2117 2118 2119 2120 2121	2317 2318 2319 2320 2321	220,000 270,000 330,000 330,000 470,000	20 10 10 20 10	100 100 100 100 100 50
CKR15BR474M_ CKR15BR684K CKR15BR684M_ CKR15BR105K_ CKR15BR105M_	2722 2723 2724 2725 2726	2922 2923 2924 2925 2926	2122 2123 2124 2125 2126	2322 2323 2324 2325 2326	470,000 680,000 680,000 1,000,000 1,000,000	20 10 20 10 20	50 50 50 50 50 50
			CKR16 (BR)				
CKR16BR474K_ CKR16BR474M_ CKR16BR684K_ CKR16BR684M_ CKR16BR105K_	2727 2728 2729 2730 2731	2927 2928 2929 2930 2931	2127 2128 2129 2130 2131	2327 2328 2329 2330 2331	470,000 470,000 680,000 680,000 1,000,000	10 20 10 20 10	100 100 100 100 100
CKR16BR105M_ CKR16BR225K_ CKR16BR225M_ CKR16BR335K_ CKR16BR335M_	2732 2733 2734 2735 2736	2932 2933 2934 2935 2936	2132 2133 2134 2135 2136	2332 2333 2334 2335 2336	1,000,000 2,200,000 2,200,000 3,300,000 3,300,000	20 10 20 10 20	100 50 50 50 50 50

Add appropriate failure rate level (M, P, R or S).

CROSS REFERENCE CHART - AVX MILITARY FOR MOLDED AXIAL LEAD

Dimensions: Millimeters (Inches)

		Per Mil-Spec		Case Size			
AVX Style	MIL-C-11015	MIL-C-39014	MIL-C-20	Length (L)	Diameter (D)	Lead Diameter (LD)	
MA10	CK12	CKR11	CCR75/CC75	4.07 ±.25 (.160 ±.010)	2.29±.25 (.090±.010)	.48 ±.05 (.019 ±.002)	
MA20	CK13	CKR12	CCR76/CC76	6.35 ±.25 (.250 ±.010)	2.29±.25 (.090±.010)	.48 ±.05 (.019 ±.002)	
MA30		-	-	6.10 ±.25 (.240 ±.010)	3.30±.25 (.130±.010)	.48 ±.05 (.019 ±.002)	
MA40	CK14	CKR14	CCR77/CC77	9.91 ±.25 (.390 ±.010)	3.36±.25 (.140±.010)	.63 ±.05 (.025 ±.002)	
MA50	CK15	CKR15	CCR78/CC78	12.7 ±.51 (.500 ±.020)	6.35±.38 (.250±.015)	.63 ±.05 (.025 ±.002)	
MA60	CK16	CKR16	CCR79/CC79	17.53 ±.51 (.690 ±.020)	8.89±.51 (.350±.015)	.63 ±.05 (.025 ±.002)	

MIL-C-39014/2 Pin DIP

HOW TO ORDER

Military Type Designation: Styles CKR22, CKR23, CKR24

Dash Number Option

MIL-C-39014/22 (Appropriate Dash Number)

Part No. Example

MIL Part No. Codes

Style: CK = general purpose, ceramic dielectric, fixed capacitors.

R = Established Reliability parts.

22 = Remaining two numbers identify shape and dimension.

Voltage-Temperature Limits:

First letter identifies temperature range.

 $B = -55^{\circ}C$ to $+125^{\circ}C$

 $C = -55^{\circ}C \text{ to } +150^{\circ}C$

Send letter identifies voltage-temperature coefficient.

Capacitance	Capacitance Change with Reference to 25°C						
Second Letter	No Voltage	Rated Voltage					
G H R X	+30,-30ppm +60,-60ppm +15, -15% +15, -15%	+30,-30ppm +60,-60ppm +15, -40% +15, -25%					

Sig. Fig. Capacitance and Multiplier:

First two digits are the significant figures of capacitance. Third digit indicates the additional number of zeros. For example, order 100,000 pF as 104. (For values below 10 pF, use "R" in place of decimal point, e.g., 1R5 = 1.5 pF).

Capacitance Tolerances: D = \pm .5pF, F = \pm 1%, J = \pm 5%, K = \pm 10%, M = \pm 20%

Military Failure Rate: M = 1% per 1000 hours

P = 0.1% per 1000 hours

R = 0.01% per 1000 hours

S = 0.001% per 1000 hours

*Special lead length of 0.150'' min. are available, consult factory for details.

Note: AVX reserves the right to substitute a lower failure rate part per MIL-C-39014. Substitutability for failure rate levels shall be as follows:

Failure Rate Level	Will Replace Failure Rate Level
S (STD) (X-ray)	R, P, M, L
R (STD) (No X-ray)	P, M, L
P	M, L
M	L

PACKAGING REQUIREMENTS

Packaging: 200 pcs/slide pack. See page 26.

SIZE SPECIFICATIONS

MIL-C-39014	Length (L)	Height (H ₁)	Height (H ₂)	Thickness
CKR22	.260 ±.020	.128 ± .007	.175 max.	.092 ± .006
	(6.60)	(3.25)	(4.45)	(2.34)
CKR23	.260 ±.020	.155 ± .007	.195 max.	.092 ± .006
	(6.60)	(3.94)	(4.95)	(2.34)
CKR24	.260 ±.020	283 ± .007	.320 max.	.092 ± .006
	(6.60)	(7.19)	(8.13)	(2.34)

Dimensions: Inches (Millimeters)

MILITARY DASH NUMBER IDENTIFICATION CKR22 to MIL-C-39014/22 (Dash Number From Table)

Military		Failure Rate Leve	l (%/1,000 Hours)		0 :	0 :	
Type Designation	1.0 (M)	0.1 (P)	0.01 (R)	0.001 (S)	Capacitance (pF)	Capacitance Tolerance	WVDC
		Style CKR22, vo	oltage-temperature lin	nits of 0±60 ppm/°C.			
CKR22CH1R0D CKR22CH1R2D CKR22CH1R5D CKR22CH1R8D CKR22CH2R2D CKR22CH2R2D CKR22CH3R3D CKR22CH3R3D CKR22CH3R3D CKR22CH3R6D CKR22CH6R8D CKR22CH6R8D CKR22CH100D CKR22CH100D CKR22CH100L CKR22CH10D	0001 0004 0007 0010 0013 0016 0019 0022 0025 0028 0031 0034 0037 0038 0039 0040 0041 0042 0043 0045 0045 0046	0301 0304 0307 0310 0313 0316 0319 0325 0328 0331 0334 0337 0338 0339 0340 0341 0342 0343 0345 0345	0601 0604 0607 0610 0613 0616 0619 0622 0625 0628 0631 0634 0637 0638 0639 0640 0641 0642 0643 0644 0645 0646 0647	0901 0904 0907 0913 0913 0913 0919 0922 0925 0928 0934 0934 0937 0938 0939 0940 0941 0945 0945 0945	1.0 1.2 1.5 1.8 2.2 2.7 3.3 3.9 4.7 5.6 6.8 8.2 10 10 10 12 12 12 15 15 15 18 18	DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD	200
		Style CKR22, vo	ltage-temperature lin	nits of 0±30 ppm/°C.			
CKR22CG220D CKR22CG220L CKR22CG220L CKR22CG220L CKR22CG270L CKR22CG270L CKR22CG270L CKR22CG270L CKR22CG330D CKR22CG330L CKR22CG330L CKR22CG330L CKR22CG390L CKR22CG390L CKR22CG470L CKR22CG470L CKR22CG470L CKR22CG470L CKR22CG470L CKR22CG470L CKR22CG560L CKR22CG560L CKR22CG560L CKR22CG560L CKR22CG560L CKR22CG560L CKR22CG560L CKR22CG50L CKR22CG30L CKR22CG31L CKR22CG21L	0049 0050 0051 0052 0053 0054 0055 0066 0057 0058 0069 0061 0063 0066 0066 0066 0067 0068 0069 0071 0072 0073 0074 0075 0076 0076 0077 0078 0077 0078 0079 0080 0081 0081 0083 0084 0085 0086	0349 0350 0351 0351 0352 0353 0354 0355 0356 0357 0358 0359 0360 0361 0362 0363 0364 0365 0366 0366 0367 0367 0372 0372 0373 0374 0375 0376 0377 0378 0379 0380 0381 0382 0383 0384 0385 0386 0386	0649 0650 0651 0652 0653 0654 0655 0666 0667 0668 0660 0661 0663 0664 0665 0666 0677 0668 0667 0672 0672 0673 0674 0675 0678 0677 0678 0679 0671 0672 0673	0949 0950 0951 0951 0952 0953 0954 0956 0956 0956 0966 0961 0963 0964 0965 0966 0967 0968 0969 0971 0972 0972 0973 0974 0975 0976 0977 0978 0977 0978 0979 0981 0982 0983	22 22 22 27 27 27 27 33 33 33 39 39 47 47 47 56 68 68 68 68 68 68 82 82 100 100 120 120 120 120 120 120 120 12	DJKDJ KDJKD JKDJK DJKFJ KFJKFJKFJK FJKFJ KFJKFI	200

Add appropriate failure rate level (M, P, R, or S).

MIL-C-39014/2 Pin DIP

MILITARY DASH NUMBER IDENTIFICATION CKR22 to MIL-C-39014/22 (Dash Number From Table)

Military		Failure Rate Level	Conscitones	Conscitones			
Type Designation	1.0 (M)	0.1 (P)	0.01 (R)	0.001 (S)	Capacitance (pF)	Capacitance Tolerance	WVDC
		Style CKR22, Voltage	-temperature limits of	±30 ppm/°C (continu	ied)		
CKR22CG271K_ CKR22CG331F_ CKR22CG331J_ CKR22CG331K_ CKR22CG391F_ CKR22CG391K_ CKR22CG391K_ CKR22CG471F_ CKR22CG471J_ CKR22CG471J_ CKR22CG471J_ CKR22CG471K_	0090 0091 0092 0093 0094 0095 0096 0097 0098 0099	0390 0391 0392 0393 0394 0395 0396 0397	0690 0691 0692 0693 0694 0695 0696 0697 0698	0990 0991 0992 0993 0994 0995 0996 0997 0998	270 330 330 330 330 390 390 470 470	K F J K F J K F J K	200
CKR22CG561F_ CKR22CG561J_ CKR22CG561K_ CKR22CG681F_ CKR22CG681J_ CKR22CG681K_ CKR22CG821F_ CKR22CG821F_ CKR22CG821K_ CKR22CG821K_ CKR22CG821K_ CKR22CG821K_ CKR22CG821K_	0100 0101 0102 0103 0104 0105 0106 0107 0108 0109	0400 0401 0402 0403 0404 0405 0406 0407 0408 0409	0700 0701 0701 0702 0703 0704 0705 0706 0707 0708 0709	1000 1001 1002 1003 1004 1005 1006 1007 1008 1009	560 560 560 680 680 680 820 820 820 820	F J K F J K F J K F J K F J	100
CKR22CG102J_ CKR22CG102K_ CKR22CG102F_ CKR22CG122J_ CKR22CG122K_ CKR22CG152F_ CKR22CG152J_ CKR22CG152K_ CKR22CG152K_ CKR22CG182K_ CKR22CG182F_ CKR22CG182J_	0110 0111 0112 0113 0114 0115 0116 0117 0118 0119	0410 0411 0412 0413 0414 0415 0416 0417 0418 0419	0710 0711 0712 0713 0714 0715 0716 0717 0718 0719	1010 1011 1012 1013 1014 1015 1016 1017 1018 1019	1000 1000 1200 1200 1200 1500 1500 1500	J K F J K F J	
CKR22CG182K CKR22CG222F CKR22CG22ZJ CKR22CG22XK CKR22CG272F CKR22CG272ZJ CKR22CG27ZZ CKR22CG332F CKR22CG33ZL CKR22CG33ZL	0120 0121 0122 0123 0124 0125 0126 0127 0128 0129	0420 0421 0422 0423 0424 0425 0426 0427 0428 0429	0720 0721 0722 0723 0724 0725 0726 0727 0728 0729	1020 1021 1022 1023 1024 1025 1026 1027 1028 1029	1800 2200 2200 2200 2700 2700 2700 2700 3300 33	K F J K F J K F J K	100 50
CKR22CG392F_ CKR22CG392L CKR22CG392K_ CKR22CG472F_ CKR22CG472J_ CKR22CG472K_ CKR22CG562F_ CKR22CG562J_	0130 0131 0132 0133 0134 0135 0136 0137	0430 0431 0432 0433 0434 0435 0436 0437	0730 0731 0732 0733 0734 0735 0736 0737	1030 1031 1032 1033 1034 1035 1036 1037	3900 3900 3900 4700 4700 4700 5600 5600	F J K J K F	
CKR22CG562K CKR22CG682F CKR22CG682J CKR22CG682K CKR22CG822F CKR22CG822J CKR22CG82ZK	0138 0139 0140 0141 0142 0143 0144	0438 0439 0440 0441 0442 0443 0444	0738 0739 0740 0741 0742 0743 0744	1038 1039 1040 1041 1042 1043 1044	5600 6800 6800 6800 8200 8200 8200	K F J K F J K	
CKR22CG103F_ CKR22CG103J_ CKR22CG103K_	0145 0146 0147	0445 0446 0447	0745 0746 0747	1045 1046 1047	10,000 10,000 10,000	F J K	50

Add appropriate failure rate level (M, P, R, or S).

MILITARY DASH NUMBER IDENTIFICATION CKR22 to MIL-C-39014/22 (Dash Number From Table)

Military		Failure Rate Leve	0	0 1			
Type Designation	1.0 (M)	0.1 (P)	0.01 (R)	0.001 (S)	Capacitance (pF)	Capacitance Tolerance	WVDC
	Style	CKR22, Voltage-temp	erature limits of ±159	% (+15%, -25% for Rate	ed Voltage)		
CKR22BX271K_	0148	0448	0748	1048	270	K	200
CKR22BX331K_	0149	0449	0749	1049	330	K	
CKR22BX331M_	0150	0450	0750	1050	330	M	
CKR22BX391K_	0151	0451	0751	1051	390	K	
CKR22BX471K_	0152	0452	0752	1052	470	K	
CKR22BX471M_	0153	0453	0753	1053	470	M	200
CKR22BX561K_	0154	0454	0754	1054	560	K	
CKR22BX681K_	0155	0455	0755	1055	680	K	
CKR22BX681M_	0156	0456	0756	1056	680	M	
CKR22BX821K_	0157	0457	0757	1057	820	K	
CKR22BX102K_	0158	0458	0758	1058	1,000	K	100
CKR22BX102M_	0159	0459	0759	1059	1,000	M	
CKR22BX122K_	0160	0460	0760	1060	1,200	K	
CKR22BX152K_	0161	0461	0761	1061	1,500	K	
CKR22BX152M_	0162	0462	0762	1062	1,500	M	
CKR22BX182K_	0163	0463	0763	1063	1,800	K	
CKR22BX222K_	0164	0464	0764	1064	2,200	K	
CKR22BX222M_	0165	0465	0765	1065	2,200	M	
CKR22BX272K_	0166	0466	0766	1066	2,700	K	
CKR22BX332K_	0167	0467	0767	1067	3,300	K	
CKR22BX332M_	0168	0468	0768	1068	3,300	M	
CKR22BX392K_	0169	0469	0769	1069	3,900	K	
CKR22BX472K_	0170	0470	0770	1070	4,700	K	
CKR22BX472M_	0171	0471	0771	1071	4,700	M	
CKR22BX562K_	0172	0472	0772	1072	5,600	K	
CKR22BX682K_	0173	0473	0773	1073	6,800	K	100
CKR22BX682M_	0174	0474	0774	1074	6,800	M	
CKR22BX822K_	0175	0475	0775	1075	8,200	K	
CKR22BX103K_	0176	0476	0776	1076	10,000	K	
CKR22BX103M_	0177	0477	0777	1077	10,000	M	
CKR22BX123K_	0178	0478	0778	1078	12,000	K	50
CKR22BX153K_	0179	0479	0779	1079	15,000	K	
CKR22BX153M_	0180	0480	0780	1080	15,000	M	
CKR22BX183K_	0181	0481	0781	1081	18,000	K	
CKR22BX223K_	0182	0482	0782	1082	22,000	K	
CKR22BX223M_	0183	0483	0783	1083	22,000	M	
CKR22BX273K_	0184	0484	0784	1084	27,000	K	
CKR22BX333K_	0185	0485	0785	1085	33,000	K	
CKR22BX333M_	0186	0486	0786	1086	33,000	M	
CKR22BX393K_	0187	0487	0787	1087	39,000	K	
CKR22BX473K_	0188	0488	0788	1088	47,000	K	
CKR22BX473M_	0189	0489	0789	1089	47,000	M	
CKR22BX563K_	0190	0490	0790	1090	56,000	K	
CKR22BX683K_	0191	0491	0791	1091	68,000	K	
CKR22BX683M_	0192	0492	0792	1092	68,000	M	
CKR22BX823K_	0193	0493	0793	1093	82,000	K	50
CKR22BX104K_	0194	0494	0794	1094	100,000	K	
CKR22BX104M_	0195	0495	0795	1095	100,000	M	

_ Add appropriate failure rate level (M, P, R, or S).

MIL-C-39014/2 Pin DIP

MILITARY DASH NUMBER IDENTIFICATION CKR23 to MIL-C-39014/22 (Dash Number From Table)

Military Type		Failure Rate Leve	1 (%/1,000 Hours)		Capacitance	Conscitonor	
Type Designation	1.0 (M)	0.1 (P)	0.01 (R)	0.001 (S)	(pF)	Capacitance Tolerance	WVDC
		Style CKR23, V	oltage-temperature lir	nits of 0±60 ppm/°C.			
CKR23G561F. CKR23G561F. CKR23G561K. CKR23G561K. CKR23G681F. CKR23G681F. CKR23G681F. CKR23G681F. CKR23G681F. CKR23G621L. CKR23G621L. CKR23G612F. CKR23G6102F. CKR23G6102F. CKR23G6102F. CKR23G6102F. CKR23G6102F. CKR23G6102F. CKR23G612Z. CKR23G612Z. CKR23G612Z. CKR23G612Z. CKR23G612Z. CKR23G627Z. CKR23G62Z. CKR23G632Z. CKR23G632Z. CKR23G632Z. CKR23G632Z. CKR23G632Z. CKR23G632C. CKR23G632C. CKR23G63C. CKR23G6	0258 0259 0260 0261 0261 0262 0263 0264 0265 0266 0267 0270 0271 0272 0273 0274 0275 0276 0276 0277 0278 0278 0278 0288 0284 0285 0286 0286 0287 0287 0288 0287	0558 0559 0560 0561 0562 0563 0564 0565 05667 0568 05667 0568 0569 0571 0577 0578 0578 0579 0588 05881 0582 0583 0584 0585	0858 0859 0860 0861 0861 0862 0863 0864 0865 0866 0867 0868 0869 0870 0871 0873 0874 0875 0876 0876 0876 0878 0878 0878 0878 0878	1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1180 1181 1182 1183 1184 1185 1186 1186 1187 1188 1188 1188	\$60 \$60 \$60 \$60 \$80 \$80 \$20 \$20 \$20 \$20 \$20 \$20 \$20 \$20 \$20 \$2	F J K F J K	200 200 100 100 50
CKR23CG103J_ CKR23CG103K_	0292 0293	0592 0593	0892 0893	1192 1193	10,000 10,000	J K	50
	Style C	CKR23, Voltage-temp	erature limits of ±15%	(+15%, -25% for Rat	ed Voltage).		
CKR23BX102M. CKR23BX122M. CKR23BX122K. CKR23BX122M. CKR23BX122M. CKR23BX222M. CKR23BX222M. CKR23BX222M. CKR23BX222M. CKR23BX322M. CKR23BX322M. CKR23BX322M. CKR23BX32M. CKR23BX103M. CKR23BX103M. CKR23BX133M.	0196 0197 0198 0199 0200 0201 0202 0203 0204 0206 0207 0208 0209 0210 0211 0212 0213 0214 0215 0216 0217 0218 0219 0211 0211	0496 0497 0498 0499 0500 0500 0501 0502 0503 0504 0505 0506 0507 0508 0509 0511 0511 0513 0514 0515 0517 0512 0513	0796 0797 0798 0799 0800 0801 0802 0803 0804 0805 0806 0807 0808 0811 0811 0811 0811 0811 0811	1096 1097 1098 1099 1100 11101 1102 1103 11104 1105 11106 11107 11108 11109 1110 1111 11113 11114 1115 11115 11116 1117 1118 1119 1119 1119 1119 1119 1119	1,000 1,000 1,200 1,200 1,500 1,500 1,500 2,200 2,700 3,300 3,300 4,700 5,600 6,800 6,800 6,800 10,000 12,000 15,000 15,000 15,000 18,000 22,000 23,000 22,0	K MK KK MK KK MK KK MK KK MK KK MK KK MK KK MK M	200
CKR23BX333M CKR23BX393K CKR23BX473M CKR23BX473M CKR23BX563K CKR23BX563K CKR23BX563K CKR23BX104K CKR23BX104K CKR23BX104K CKR23BX104K CKR23BX14K CKR23BX14K CKR23BX154K CKR23BX154K CKR23BX154K CKR23BX154K CKR23BX154K CKR23BX154K CKR23BX154K	02225 02225 02227 02227 0228 0230 0231 0233 0233 0233 0235 0235 0236 0236 0236	0524 0525 0527 0527 0528 0529 0530 0531 0532 0534 0535 0534 0535 0534	0824 0825 0825 0827 0827 0828 0829 0831 0831 0831 0831 0835 0836 0836	1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139	33,000 39,000 47,000 47,000 56,000 68,000 68,000 100,000 120,000 150,000 150,000 120,000 220,000 220,000	M K K K K M K K K K K M K K	100 100 100 50 50

- Add appropriate failure rate level (M, P, R, or S)

MILITARY DASH NUMBER IDENTIFICATION CKR24 to MIL-C-39014/22 (Dash Number From Table)

Military		Failure Rate Level	(%/1,000 Hours)		Conscitones	Cit	
Type Designation	1.0 (M)	0.1 (P)	0.01 (R)	0.001 (S)	Capacitance (pF)	Capacitance Tolerance	WVDC
	Style	CKR24, Voltage-temp	perature limits of ±15	% (+15, -40% for Rate	d Voltage)		
CKR24BR124K. CKR24BR154K. CKR24BR154M. CKR24BR184M. CKR24BR224K. CKR24BR224M. CKR24BR224M. CKR24BR334M. CKR24BR334M. CKR24BR334M. CKR24BR34F4K. CKR24BR366K. CKR24BR684K. CKR24BR684K. CKR24BR864K. CKR24BR864M. CKR24BR864M. CKR24BR105K. CKR24BR105M.	0240 0241 0242 0243 0244 0245 0246 0247 0248 0249 0250 0251 0252 0253 0254 0255 0256 0257	0540 0541 0542 0543 0544 0545 0546 0547 0548 0549 0550 0551 0552 0553 0554 0555 0555	0840 0841 0842 0843 0844 0845 0846 0847 0848 0849 0851 0851 0852 0853 0854 0854	1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1166	120,000 150,000 150,000 180,000 220,000 220,000 270,000 330,000 390,000 470,000 470,000 680,000 680,000 820,000 1,000,000	K K M K K K K M K K K M K K M	100 100 100 50

Add appropriate failure rate level (M, P, R, or S).

MARKING

MIL-C-11015/Radial Leads

HOW TO ORDER

Military Type Designation: Styles CK05, CK06

For values, tolerances, voltages, sizes configurations and dielectrics not shown, contact AVX facilities directly for information.

Part No. Example

MIL Part No. Codes

Style: CK = general purpose, ceramic dielectric, fixed capacitors. 05 = Remaining two numbers identify shape and dimension.

Voltage-Temperature Limits:

First letter identifies temperature range. B = -55°C to +125°C

Second letter identifies voltage-temperature coefficient.

Capacitanc	Capacitance Change with Reference to 25°C						
Second Letter							
X	+15, -15%	+15, -25%					

Sig. Fig. Capacitance and Multiplier:

First two digits are the significant figures of capacitance. Third digit indicates the additional number of zeros. For example, order 100,000 pF as 104.

Capacitance Tolerances: $K = \pm 10\%$, $M = \pm 20\%$

Packaging: CK05 1000 per bag CK06 1000 per bag

Radial tape and reel packaging available upon request.

SIZE SPECIFICATIONS

Dimensions: Millimeters (Inches)

Difficiolotic, National Control			
Case Size	Per MIL Spec		
MIL-C-11015	CK05 (Fig. 1)	CK06 (Fig. 2)	
Length (L)	4.83 ±.25 (.190 ±.010)	7.37 ±.25 (.290 ±.010)	
Width (W)	4.83 ±.25 (.190 ±.010)	7.37 ±.25 (.290 ±.010)	
Thickness (T)	2.29 ±.25 (.090 ±.010)	2.29 ±.25 (.090 ±.010)	
Lead Spacing (L.S.)	5.08 ±.38 (.200 ±.015)	5.08 ±.38 (.200 ±.015)	
Lead Diameter (L.D)	.64 ±.05 (.025 ±.002)	.64 ±.05 (.025 ±.002)	

MILITARY PART NUMBER IDENTIFICATION CK05 and CK06

Military Type Designation	Capacitance (pF)	Capacitance Tolerance	WVDC	
		CK05 (BX)		
CK05BX100_ CK05BX120K_ CK05BX150_ CK05BX180K_ CK05BX220_	10 12 15 18 22	K, M K K, M K K, M	200 200 200 200 200 200	
CK05BX270K_ CK05BX330_ CK05BX390K_ CK05BX470_ CK05BX560K_	27 33 39 47 56	K K, M K K, M K	200 200 200 200 200 200	
CK05BX680_ CK05BX820K_ CK05BX101_ CK05BX121K_ CK05BX151_	68 82 100 120 150	K, M K K, M K K, M	200 200 200 200 200 200	
CK05BX181K_ CK05BX221_ CK05BX271K_ CK05BX331_ CK05BX391K_	180 220 270 330 390	K K, M K K, M K	200 200 200 200 200 200	
CK05BX471_ CK05BX561K_ CK05BX681_ CK05BX821K_ CK05BX102_	470 560 680 820 1,000	K, M K K, M K K, M	200 200 200 200 200 200	
CK05BX122_ CK05BX152_ CK05BX182K_ CK05BX222_ CK05BX272K_	1,200 1,500 1,800 2,200 2,700	K K, M K K, M K	100 100 100 100 100	
CK05BX332_ CK05BX392K_ CK05BX472_ CK05BX562K_ CK05BX662_	3,300 3,900 4,700 5,600 6,800	K, M K K, M K K, M	100 100 100 100 100	
CK05BX822K_ CK05BX103_ CK05BX123K_ CK05BX153_ CK05BX183K_	8,200 10,000 12,000 15,000 18,000	K K, M K K, M K	100 100 50 50 50	
CK05BX223_ CK05BX273K_ CK05BX333_ CK05BX393K_ CK05BX473_	22,000 27,000 33,000 39,000 47,000	K, M K K, M K K, M	50 50 50 50 50	
CK05BX563K_ CK05BX683_ CK05BX823K_ CK05BX104_	56,000 68,000 82,000 100,000	K K, M K K, M	50 50 50 50	

Military Type Designation	Capacitance (pF)	Capacitance Tolerance	WVDC
		CK06 (BX)	
CK06BX122K_ CK06BX152_ CK06BX182K_ CK06BX222_ CK06BX272K_	1,200 1,500 1,800 2,200 2,700	K K, M K K, M K	200 200 200 200 200 200
CK06BX332_ CK06BX392K_ CK06BX472_ CK06BX562K_ CK06BX682_	3,300 3,900 4,700 5,600 6,800	K, M K K, M K K, M	200 200 200 200 200 200
CK06BX822K_ CK06BX103_ CK06BX123K_ CK06BX153_ CK06BX183K_	8,200 10,000 12,000 15,000 18,000	K K, M K K, M K	200 200 100 100 100
CK06BX223_ CK06BX273K_ CK06BX333_ CK06BX393K_ CK06BX473_	22,000 27,000 33,000 39,000 47,000	K, M K K, M K K, M	100 100 100 100 100
CK06BX563K_ CK06BX683_ CK06BX823K_ CK06BX104_ CK06BX124K_	56,000 68,000 82,000 100,000 120,000	K K, M K K, M K	100 100 100 100 100 50
CK06BX154_ CK06BX184K_ CK06BX224_ CK06BX274K_ CK06BX334_	150,000 180,000 220,000 270,000 330,000	K, M K K, M K K, M	50 50 50 50 50
CK06BX394K_ CK06BX474_ CK06BX564K_ CK06BX684_ CK06BX824K_	390,000 470,000 560,000 680,000 820,000	K K, M K K, M	50 50 50 50 50
CK06BX105_	1.0 mfd	K, M	50

Add capacitance tolerance letter $K = \pm 10\%$ or $M = \pm 20\%$

Add capacitance tolerance letter K = ±10% or M = ±20%

MARKING

CK05/CK06

MIL-C-11015/Axial Leads

HOW TO ORDER

Military Type Designation: Styles CK12, CK13, CK15, CK16 Part No. Example

MIL Part No. Codes

Style: CK = general purpose, ceramic dielectric, fixed capacitors.

12 = Remaining two numbers identify shape and dimension.

Voltage-Temperature Limits:

First letter identifies temperature range. $B = -55^{\circ}C$ to $+125^{\circ}C$

Second letter identifies voltage-temperature coefficient.

Capacitance Change with Reference to 25°C			
Second Letter	No Voltage	Rated Voltage	
R X	+15, -15% +15, -15%	+15, -40% +15, -25%	

Sig. Fig. Capacitance and Multiplier:

First two digits are the significant figures of capacitance. Third digit indicates the additional number of zeros. For example, order 10,000 pF as 103.

Capacitance Tolerances: $K = \pm 10\%$, $M = \pm 20\%$

SIZE SPECIFICATIONS

Dimensions: Millimeters (Inches)

Case Size	Per MIL Spec				
MIL-C-11015	CK12	CK13	CK14	CK15	CK16
Length (L)	4.07 ±.25	6.35 ±.25	9.91 ±.25	12.7 ±.51	17.53 ±.51
	(.160 ±.010)	(.250 ±.010)	(.390 ±.010)	(.500 ±.020)	(.690 ±.020)
Diameter (D)	2.29 ±.25	2.29 ±.25	3.36 ±.25	6.35 ±.38	8.89 ±.51
	(.090 ±.010)	(.090 ±.010)	(.140 ±.010)	(.250 ±.015)	(.350 ±.015)
Lead	.48 ±.05	.48 ±.05	.63 ±.051	.63 ±.05	.63 ±.05
Diameter (L.D)	(.019 ±.002)	(.019 ±.002)	(.025 ±.002)	(.025 ±.002)	(.025 ±.002)

PACKAGING REQUIREMENTS

Packaging: 50 pcs per bag

MILITARY PART NUMBER IDENTIFICATION CK12 thru CK16

Military Type Designation	Capacitance (pF)	Capacitance Tolerance	WVDC	
		CK12 (BX)		
CK12BX100_	10	K, M	100	
CK12BX120K	12	K	100	
CK12BX150_	15	K, M	100	
CK12BX180K	18	K	100	
CK12BX220_	22	K, M	100	
CK12BX270K	27	K	100	
CK12BX330_	33	K, M	100	
CK12BX390K	39	K	100	
CK12BX470_	47	K, M	100	
CK12BX560K	56	K	100	
CK12BX680_	68	K, M	100	
CK12BX820K	82	K	100	
CK12BX101_	100	K, M	100	
CK12BX121K	120	K	100	
CK12BX151_	150	K, M	100	
CK12BX181K	180	K	100	
CK12BX221_	220	K, M	100	
CK12BX271K	270	K	100	
CK12BX331_	330	K, M	100	
CK12BX391K	390	K	100	
CK12BX471_	470	K, M	100	
CK12BX561K	560	K	100	
CK12BX681_	680	K, M	100	
CK12BX821K	820	K	100	
CK12BX102_	1,000	K, M	100	
CK12BX122K	1,200	K	100	
CK12BX152_	1,500	K, M	100	
CK12BX182K	1,800	K	100	
CK12BX222_	2,200	K, M	100	
CK12BX272K	2,700	K	100	
CK12BX332_	3,300	K, M	100	
CK12BX392K	3,900	K	100	
CK12BX472_	4,700	K, M	100	
CK12BX562K	5,600	K	50	
CK12BX682_	6,800	K, M	50	
CK12BX822K	8,200	K	50	
CK12BX103_	10,000	K, M	50	
		CK13 (BX)		
CK13BX562K CK13BX682_ CK13BX822K CK13BX103_ CK13BX123K	5,600 6,800 8,200 10,000 12,000	K K, M K K, M K	100 100 100 100 100 50	
CK13BX153_	15,000	K, M	50	
CK13BX183K	18,000	K	50	
CK13BX223_	22,000	K, M	50	
		CK13 (BR)		
CK13BR273K	27,000	K	50	
CK13BX333_	33,000	K, M	50	
CK13BX393K	39,000	K	50	
CK13BX473_	47,000	K, M	50	

Military Type Designation	Capacitance (pF)	Capacitance Tolerance	WVDC
		CK14 (BX)	
CK14BX123K CK14BX153_ CK14BX183K CK14BX223_ CK14BX273K	12,000 15,000 18,000 22,000 27,000	K K, M K K, M K	100 100 100 100 100 100
CK14BX333_ CK14BX393K CK14BX473_	33,000 39,000 47,000	K, M K K, M	100 100 100
		CK14 (BR)	
CK14BR563K CK14BR683_ CK14BR823K CK14BR104_ CK14BR124K	56,000 68,000 82,000 100,000 120,000	K K, M K K, M	100 100 100 100 100 50
CK14BR154_ CK14BR184K CK14BR224_ CK14BR274K	150,000 180,000 220,000 270,000	K, M K K, M K	50 50 50 50
		CK15 (BX)	
CK15BX104K	100,000	K, M	100
		CK15 (BR)	
CK15BR124K CK15BR154_ CK15BR184K CK15BR224_ CK15BR274K	120,000 150,000 180,000 220,000 270,000	K K, M K K, M K	100 100 100 100 100
CK15BR334_ CK15BR474K CK15BR105_	330,000 470,000 1,000,000	K, M K K, M	100 50 50
		CK16 (BR)	
CK16BR474K CK16BR105_ CK16BR225_ CK16BR335_	470,000 1,000,000 2,200,000 3,300,000	K, M K, M K, M K, M	100 100 50 50

Add capacitance tolerance letter K=±10% or M=±20%.

Add capacitance tolerance letter K=±10% or M=±20%.

MARKING

MIL-C-20/Radial Leads

HOW TO ORDER

Military Type Designation:

Established Reliability = CCR05, CCR06, CCR07, CCR08, CCR09 Non-Established Reliability = CC05, CC06, CC07, CC08, CC09

Part No. Example

MIL Part No. Codes

Style: CC=identifies temperature compensating, ceramic dielectric, fixed capacitors.

R = identifies Established Reliability parts. 06 = Numbers identify shape and dimension.

Temperature Characteristic:

Peru	Permissible capacitance change from capacitance at +25°C in ppm/°C						
Temp.		Characteristic					
	CX	CK CJ CH CG					
+125°C	1/	±250 ppm/°C	±120 ppm/°C	±60 ppm/°C	±30 ppm/°C		
-55°C 2∕	1/	+246.25 -326.25	+116.25 -166.25	+55.00 -91.25	+27.50 -53.75		

Not practically measurable. The ppm/°C values for -55°C were calculated by dividing ppm by negative 80°C

Capacitance Code:

First two digits are the significant figures of capacitance. Third digit indicates the additional number of zeros. For example, order 18,000 pF as 183. (For values below 10 pF, use "R" in place of decimal point, e.g., 1R4 = 1.4 pF).

Capacitance Tolerance:

 $C = \pm 0.25 \text{ pF}, D = \pm 0.5 \text{ pF}, F = \pm 1\%, G = \pm 2\%, J = \pm 5\%, K = \pm 10\%.$

Military Failure Rate:

M = 1% per 1000 hours, P = 0.1% per 1000 hours, R = 0.01% per 1000 hours, S = 0.001% per 1000 hours.

Figure 1 Figure 2

To order stand-off option, place "V" at the end of the part number. For example: CCR05CG332FSV

SIZE SPECIFICATIONS

Dimensions: Millimeters (Inches)

Per MIL Spec	Case Size				
MIL-C-20	Length (L)	Width (W)	Thickness (T)	Lead Spacing (L.S.)	Lead Diameter (L.D.)
CCR05/CC05	4.38±.25	4.38±.25	2.29±.25	5.08±.38	.64±.05
Figures 1, 4	(.190±.010)	(.190±.010)	(.090±.010)	(.200±.015)	(.025±.002)
CCR06/CC06	7.37±.25	7.37±.25	2.29±.25	5.08±.38	.64±.05
Figures 2, 3	(.290±.010)	(.290±.010)	(.090±.010)	(.200±.015)	(.025±.002)
CCR07/CC07	12.19±.51	12.91±.51	3.56±.25	10.16±.51	.64±.05
Figure 2	(.480±.020)	(.480±.020)	(.140±.010)	(.400±.020)	(.025±.002)
CCR08/CC08	12.19±.51	12.10±.51	6.1±.25	10.16±.51	.64±.05
Figure 2	(.480±.020)	(.480±.020)	(.240±.010)	(.400±.020)	(.025±.002)
CCR09/CC09	4.38±.25	4.38±.25	2.29±.25	2.54±.38	.64±.05
Figure 2	(.190±.010)	(.190±.010)	(.090±.010)	(.100±.015)	(.025±.002)

PACKAGING REQUIREMENTS

Packaging: CCR0X: 100 pcs/bag; CC0X: 1000 pcs/bag

MILITARY PART NUMBER IDENTIFICATION

Military Type Designation	Capacitance (pF)	Capacitance Tolerance	WVDC
	CC05	-CCR05, CC09-C	CR09
CCR05CXIR0_ CCR05CXIR1_ CCR05CXIR2_ CCR05CXIR3_ CCR05CXIR6_ CCR05CXIR6_ CCR05CXIR6_ CCR05CXIR6_ CCR05CXIR6_ CCR05CXIR6_ CCR05CXIR2_ CCR05CXIR4_ CCR05CXIR4_ CCR05CXIR7_ CCR05CXIR7_ CCR05CXIR7_ CCR05CXIR3_ CCR05CXIR3_ CCR05CXIR3_ CCR05CXIR3_	1.0 1.1 1.2 1.3 1.5 1.6 1.8 2.0 2.2 2.4 2.7 3.0 3.3 3.6	CCCCC CCCCC CCCCC	200 200 200 200 200 200 200 200 200 200

Add approp. failure rate level (M, P, R, or S), add V for Stand-off
Add appropriate cap. tolerance letter

Military Type Designation	Capacitance (pF)	Capacitance Tolerance	WVDC
	CC05	CCR05, CC09-C	CR09
CCR05CJ4R3. CCR05CJ4R7. CCR05CJ5R1. CCR05CJ5R6. CCR05CJ5R6. CCR05CJ6R8. CCR05CJ6R8. CCR05CJ6R8. CCR05CH8R2. CCR05CH8R1. CCR05CH100. CCR05CH100. CCR05CH100. CCR05CH130. CCR05CH130. CCR05CH130. CCR05CH130. CCR05CH130. CCR05CH130.	4.3 4.7 5.6 6.2 6.8 7.5 8.2 9.1 10 11 12 13 15	0.000 0.000	200 200 200 200 200 200 200 200 200 200

—Add approp. failure rate level (M, P, R, or S), add V for Stand-off —Add appropriate cap. tolerance letter

MILITARY PART NUMBER IDENTIFICATION

Military Type Designation	Capacitance (pF)	Capacitance Tolerance	WVDC	
	CC05-CCR05, CC09-CCR09			
CCR05CH180_ CCR05CG200_ CCR05CG220_ CCR05CG240_ CCR05CG270_	18 20 22 24 27	G, J G, J G, J G, J F, G, J	200 200 200 200 200 200	
CCR05CG300_ CCR05CG330_ CCR05CG360_ CCR05CG390_ CCR05CG430_	30 33 36 39 43	F, G, J F, G, J F, G, J F, G, J F, G, J	200 200 200 200 200 200	
CCR05CG470_ CCR05CG510_ CCR05CG560_ CCR05CG620_ CCR05CG680_	47 51 56 62 68	F, G, J F, G, J F, G, J F, G, J F, G, J	200 200 200 200 200 200	
CCR05CG750_ CCR05CG820_ CCR05CG910_ CCR05CG101_ CCR05CG111_	75 82 91 100 110	F, G, J F, G, J F, G, J F, G, J F, G, J	200 200 200 200 200 200	
CCR05CG121_ CCR05CG131_ CCR05CG151_ CCR05CG161_ CCR05CG181_	120 130 150 160 180	F, G, J F, G, J F, G, J F, G, J F, G, J	200 200 200 200 200 200	
CCR05CG201_ CCR05CG221_ CCR05CG241_ CCR05CG271_ CCR05CG301_	200 220 240 270 300	F, G, J F, G, J F, G, J F, G, J F, G, J	200 200 200 200 200 200	
CCR05CG331_ CCR05CG361_ CCR05CG391_ CCR05CG431_ CCR05CG471_	330 360 390 430 470	F, G, J F, G, J F, G, J F, G, J F, G, J	200 100 100 100 100	
CCR05CG511_ CCR05CG561_ CCR05CG621_ CCR05CG681_ CCR05CG751_	510 560 620 680 750	F, G, J F, G, J F, G, J F, G, J F, G, J	100 100 100 100 100	
CCR05CG821_ CCR05CG911_ CCR05CG102_ CCR05CG112_ CCR05CG122_	820 910 1,000 1,100 1,200	F, G, J F, G, J F, G, J F, G, J F, G, J	100 100 100 100 100	
CCR05CG132_ CCR05CG152_ CCR05CG162_ CCR05CG182_ CCR05CG202_	1,300 1,500 1,600 1,800 2,000	F, G, J F, G, J F, G, J F, G, J F, G, J	100 100 100 100 50	
CCR05CG222_ CCR05CG242_ CCR05CG272_ CCR05CG302_ CCR05CG332_	2,200 2,400 2,700 3,000 3,300	F, G, J F, G, J F, G, J F, G, J F, G, J	50 50 50 50 50	
		CC06, CCR06		
CCR06CG361_ CCR06CG391_ CCR06CG431_ CCR06CG471_ CCR06CG511_	360 390 430 470 510	F, G, J F, G, J F, G, J F, G, J F, G, J	200 200 200 200 200 200	
CCR06CG561_ CCR06CG621_ CCR06CG681_ CCR06CG751_ CCR06CG821_	560 620 680 750 820	F, G, J F, G, J F, G, J F, G, J F, G, J	200 200 200 200 200 200	

Military Type Designation	Capacitance (pF)	Capacitance Tolerance	WVDC
	C	C06, CCR06 (cor	nt)
CCR06CG911_ CCR06CG102_ CCR06CG112_ CCR06CG122_ CCR06CG132_	910 1,000 1,100 1,200 1,300	F, G, J F, G, J F, G, J F, G, J F, G, J	200 200 200 200 200 200
CCR06CG152_ CCR06CG162_ CCR06CG182_ CCR06CG202_ CCR06CG222_	1,500 1,600 1,800 2,000 2,200	F, G, J F, G, J F, G, J F, G, J F, G, J	200 200 200 100 100
CCR06CG242_ - CCR06CG272_ - CCR06CG302_ - CCR06CG332_ - CCR06CG362_	2,400 2,700 3,000 3,300 3,600	F, G, J F, G, J F, G, J F, G, J F, G, J	100 100 100 100 100 100
CCR06CG392_ CCR06CG432_ CCR06CG472_ CCR06CG512_ CCR06CG562_	3,900 4,300 4,700 5,100 5,600	F, G, J F, G, J F, G, J F, G, J, K F, G, J, K	100 100 100 50 50
CCR06CG622_ CCR06CG682_ CCR06CG752_ CCR06CG822_ CCR06CG912_	6,200 6,800 7,500 8,200 9,100	F, G, J, K F, G, J, K F, G, J, K F, G, J, K F, G, J, K	50 50 50 50 50
CCR06CG103_ CCR06CG123_ CCR06CG153_ CCR06CG183_	10,000 12,000 15,000 18,000	F, G, J, K F, G, J, K F, G, J, K F, G, J, K	50 50 50 50
	CC07, CCR07		
CCR07CG222_ CCR07CG272_ CCR07CG332_ CCR07CG392_ CCR07CG472_	2,200 2,700 3,300 3,900 4,700	F, G, J, K F, G, J, K F, G, J, K F, G, J, K F, G, J, K	200 200 200 200 200 200
CCR07CG562_ CCR07CG682_ CCR07CG822_ CCR07CG103_ CCR07CG123_	5,600 6,800 8,200 10,000 12,000	F, G, J, K F, G, J, K F, G, J, K F, G, J, K F, G, J, K	100 100 100 100 100
CCR07CG153_ CCR07CG183_ CCR07CG223_ CCR07CG273_ CCR07CG333_	15,000 18,000 22,000 27,000 33,000	F, G, J, K F, G, J, K F, G, J, K F, G, J, K F, G, J, K	50 50 50 50 50
CCR07CG393_ CCR07CG473_ CCR07CG563_ CCR07CG683_ CCR07CG823_	39,000 47,000 56,000 68,000 82,000	F, G, J, K F, G, J, K F, G, J, K F, G, J, K F, G, J, K	50 50 50 50 50
CCR07CG104_	100,000	F, G, J, K	50
a a para a a a a a a a a a a a a a a a a	0.000	CC08, CCR08	200
CCR08CG392_ CCR08CG472_ CCR08CG153_ CCR08CG183_ CCR08CG563_	3,900 4,700 15,000 18,000 56,000	G, J, K G, J, K G, J, K G, J, K G, J, K	200 200 100 100 50
CCR08CG683_	68,000	G, J, K	50

L Add appropriate failure rate level (M, P, R, or S) Add appropriate cap. tolerance letter

Note: For marking information, see page 67.

Add appropriate failure rate level (M, P, R, or S)
Add appropriate cap. tolerance letter

MIL-C-20/Axial Leads

HOW TO ORDER

Military Type Designation:

Established Reliability = CCR75, CCR76, CCR77, CCR78, CCR79 Non-Established Reliability = CC75, CC76, CC77, CC78, CC79

Part No. Example

MIL Part No. Codes

Style: CC = identifies temperature compensating, ceramic di-

electric, fixed capacitors.

R = identifies Established Reliability parts.

76 = Numbers identify shape and dimension.

Temperature Characteristic:

Per	Permissible capacitance change from capacitance at +25°C in ppm/°C				
Temp.	Characteristic				
	CX	CK	CJ	CH	CG
+125°C	1/	±250 ppm/°C	±120 ppm/°C	±60 ppm/°C	±30 ppm/°C
-55°C 2/	1/	+246.25 -326.25	+116.25 -166.25	+55.00 -91.25	+27.50 -53.75

1/ Not practically measurable.

Capacitance Code:

First two digits are the significant figures of capacitance. Third digit indicates the additional number of zeros. For example, order 1,000 pF as 102. (For values below 10 pF, use "R" in place of decimal point, e.g., 1R8 = 1.8 pF).

Capacitance Tolerance:

C = ± 0.25 pF, D = ± 0.5 pF, F = $\pm 1\%$, G = $\pm 2\%$, J = $\pm 5\%$, K = $\pm 10\%$.

Military Failure Rate:

M = 1% per 1000 hours, P = 0.1% per 1000 hours, R = 0.01% per 1000 hours, S = 0.001% per 1000 hours.

SIZE SPECIFICATIONS

Dimensions: Millimeters (Inches)

Per MIL Spec	Case Size		
MIL-C-20	Length (L)	Diameter (D)	Lead Diameter (L.D.)
CCR75	4.07 ±.25	2.29 ±.25	.48 ±.05
CC75	(.160 ±.010)	(.090 ±.010)	(.019 ±.002)
CCR76	6.35 ±.25	2.29 ±.25	.48 ±.05
CC76	(.250 ±.010)	(.090 ±.010)	(.019 ±.002)
CCR77	9.91 ±.25	3.36 ±.25	.63 ±.051
CC77	(.390 ±.010)	(.140 ±.010)	(.025 ±.002)
CCR78	12.7 ±.51	6.35 ±.38	.63 ±.05
CC78	(.500 ±.020)	(.250 ±.015)	(.025 ±.002)
CCR79	17.53 ±.51	8.89 ±.51	.63 ±.05
CC79	(.690 ±.020)	(.350 ±.015)	(.025 ±.002)

PACKAGING REQUIREMENTS

Packaging:

Bulk or Tape and Reel CCR75/CC75 and CCR76/CC76 - 4500 pcs/reel CCR77/CC77 - 3000 pcs/reel

MILITARY PART NUMBER IDENTIFICATION CC75 thru CC79 and CCR75 thru CCR79

Military Type Designation	Capacitance (pF)	Capacitance Tolerance	WVDC
		CC75-CCR75	
CCR75CX1R0_ CCR75CX1R1_ CCR75CX1R2_ CCR75CX1R3_ CCR75CX1R5_	1.0 1.1 1.2 1.3 1.5	CCCC	200 200 200 200 200 200
CCR75CX1R6_ CCR75CX1R8_ CCR75CX2R0_ CCR75CK2R2_ CCR75CK2R4_	1.6 1.8 2.0 2.2 2.4	CCCCC	200 200 200 200 200 200
CCR75CK2R7_ CCR75CK3R0_ CCR75CK3R3_ CCR75CK3R6_ CCR75CK3R9_	2.7 3.0 3.3 3.6 3.9	C, D C, D C, D C, D C, D	200 200 200 200 200 200
CCR75CJ4R3_ CCR75CJ4R7_ CCR75CJ5R1_ CCR75CJ5R6_ CCR75CJ6R2_ CCR75CJ6R8_	4.3 4.7 5.1 5.6 6.2 6.8	C, D C, D C, D C, D C, D C, D	200 200 200 200 200 200 200
CCR75CJ7R5_ CCR75CH8R2_ CCR75CH8R1_ CCR75CH100_ CCR75CH110_	7.5 8.2 9.1 10 11	C, D C, D C, D G, J G, J	200 200 200 200 200 200
CCR75CH120_ CCR75CH130_ CCR75CH150_ CCR75CH160_ CCR75CH160_	12 13 15 16 18	G, J G, J G, J G, J	200 200 200 200 200 200
CCR75CG200_ CCR75CG220_ CCR75CG240_ CCR75CG270_ CCR75CG300_	20 22 24 27 30	F, G, J F, G, J F, G, J F, G, J F, G, J	200 200 200 200 200 200

	L_ Add	appropriate failure rate level (M, P, R, or S)	
l	— Add	appropriate cap. tolerance letter	

Military Type Designation	Capacitance (pF)	Capacitance Tolerance	WVDC
		CC75-CCR75	
CCR75CG330_ CCR75CG360_ CCR75CG390_ CCR75CG430_ CCR75CG470_	33 36 39 43 47	F, G, J F, G, J F, G, J F, G, J F, G, J	200 200 200 200 200 200
CCR75CG510_ CCR75CG560_ CCR75CG620_ CCR75CG680_ CCR75CG750_	51 56 62 68 75	F, G, J F, G, J F, G, J F, G, J F, G, J	200 200 200 200 200 200
CCR75CG820_	82	F, G, J	100
CCR75CG910_	91	F, G, J	100
CCR75CG101_	100	F, G, J	100
CCR75CG111_	110	F, G, J	100
CCR75CG121_	120	F, G, J	100
CCR75CG131_	130	F, G, J	100
CCR75CG151_	150	F, G, J	100
CCR75CG161_	160	F, G, J	100
CCR75CG181_	180	F, G, J	100
CCR75CG201_	200	F, G, J	100
CCR75CG221_	220	F, G, J	100
CCR75CG241_	240	F, G, J	100
CCR75CG271_	270	F, G, J	50
CCR75CG301_	300	F, G, J	50
CCR75CG331_	330	F, G, J	50
CCR75CG361_	360	F, G, J	50
CCR75CG391_	390	F, G, J	50
CCR75CG431_	430	F, G, J	50
CCR75CG471_	470	F, G, J	50
CCR75CG511_	510	F, G, J	50
CCR75CG561_	560	F, G, J	50
CCR75CG621_	620	F, G, J	50
CCR75CG681_	680	F, G, J	50

Add appropriate failure rate level (M, P, R, or S Add appropriate cap. tolerance letter

Note: For marking information, see page 67.

MIL-C-20/Axial Leads

MILITARY PART NUMBER IDENTIFICATION CC75 thru CC79 and CCR75 thru CCR79

Military Type Designation	Capacitance (pF)	Capacitance Tolerance	WVDC
		CC76, CCR76	
CCR76CG820_ CCR76CG910_ CCR76CG101_ CCR76CG111_ CCR76CG121_	82 91 100 110 120	F, G, J F, G, J F, G, J F, G, J F, G, J	200 200 200 200 200 200
CCR76CG131_ CCR76CG271_ CCR76CG301_ CCR76CG331_ CCR76CG361_	130 270 300 330 360	F, G, J F, G, J F, G, J F, G, J F, G, J	200 100 100 100 100
CCR76CG391_ CCR76CG431_ CCR76CG471_ CCR76CG511_ CCR76CG561_	390 430 470 510 560	F, G, J F, G, J F, G, J F, G, J F, G, J	100 100 100 100 100
CCR76CG621_ CCR76CG681_ CCR76CG751_ CCR76CG821_ CCR76CG911_	620 680 750 820 910	F, G, J F, G, J F, G, J F, G, J F, G, J	100 100 50 50 50
CCR76CG102_	1,000	F, G, J	50
		CC77, CCR77	
CCR77CG151_ CCR77CG161_ CCR77CG181_ CCR77CG201_ CCR77CG221_	150 160 180 200 220	F, G, J F, G, J F, G, J F, G, J F, G, J	200 200 200 200 200 200
CCR77CG241_ CCR77CG271_ CCR77CG301_ CCR77CG331_ CCR77CG361_	240 270 300 330 360	F, G, J F, G, J F, G, J F, G, J F, G, J	200 200 200 200 200 200
CCR77CG391_ CCR77CG431_ CCR77CG471_ CCR77CG511_ CCR77CG561_ CCR77CG561_	390 430 470 510 560 620	F, G, J F, G, J F, G, J F, G, J F, G, J	200 200 200 200 200 200 200
CCR77CG681_ CCR77CG751_ CCR77CG821_ CCR77CG911_ CCR77CG102_	680 750 820 910 1,000	F, G, J F, G, J F, G, J F, G, J F, G, J	200 100 100 100 100
CCR77CG112_ CCR77CG122_ CCR77CG132_ CCR77CG152_ CCR77CG162_	1,100 1,200 1,300 1,500 1,600	F, G, J F, G, J F, G, J F, G, J F, G, J	100 100 100 100 100
CCR77CG182_ CCR77CG202_ CCR77CG222_ CCR77CG242_ CCR77CG272_	1,800 2,000 2,200 2,400 2,700	F, G, J F, G, J F, G, J F, G, J F, G, J	100 100 100 50 50

Military Type Designation	Capacitance (pF)	Capacitance Tolerance	WVDC
	C	C77, CCR77, (cont	:)
CCR77CG302_ CCR77CG332_ CCR77CG362_ CCR77CG392_ CCR77CG432_	3,000 3,300 3,600 3,900 4,300	F, G, J F, G, J F, G, J F, G, J F, G, J	50 50 50 50 50
CCR77CG472_ CCR77CG512_ CCR77CG562_	4,700 5,100 5,600	F, G, J F, G, J, K F, G, J, K	50 50 50
		CC78, CCR78	
CCR78CG821_ CCR78CG102_ CCR78CG122_ CCR78CG152_ CCR78CG182_	820 1,000 1,200 1,500 1,800	F, G, J, K F, G, J, K F, G, J, K F, G, J, K F, G, J, K	200 200 200 200 200 200
CCR78CG222_ CCR78CG272_ CCR78CG332_ CCR78CG392_ CCR78CG472_	2,200 2,700 3,300 3,900 4,700	F, G, J, K F, G, J, K F, G, J, K F, G, J, K F, G, J, K	200 200 200 100 100
CCR78CG562_ CCR78CG682_ CCR78CG822_ CCR78CG103_ CCR78CG123_	5,600 6,800 8,200 10,000 12,000	F, G, J, K F, G, J, K F, G, J, K F, G, J, K F, G, J, K	100 100 100 100 100
CCR78CG153_ CCR78CG183_ CCR78CG223_ CCR78CG273_	15,000 18,000 22,000 27,000	F, G, J, K F, G, J, K F, G, J, K F, G, J, K	50 50 50 50
		CC79, CCR79	
CCR79CG392_ CCR79CG472_ CCR79CG562_ CCR79CG682_ CCR79CG822_	3,900 4,700 5,600 6,800 8,200	F, G, J, K F, G, J, K F, G, J, K F, G, J, K F, G, J, K	200 200 200 200 200 200
CCR79CG103_ CCR79CG153_ CCR79CG183_ CCR79CG223_ CCR79CG273_	10,000 15,000 18,000 22,000 27,000	F, G, J, K F, G, J, K F, G, J, K F, G, J, K F, G, J, K	200 100 100 100 100 100
CCR79CG333_ CCR79CG393_ CCR79CG473_ CCR79CG563_ CCR79CG683_	33,000 39,000 47,000 56,000 68,000	F, G, J, K F, G, J, K F, G, J, K F, G, J, K F, G, J, K	100 100 50 50 50
CCR79CG823_	82,000	F, G, J, K	50

L Add appropriate failure rate level (M, P, R, or S) Add appropriate cap. tolerance letter

Note: Complete type designation will include the appropriate capacitance tolerance in the 11th digit. For CC styles, delete 3rd and 12th digits.

Note: For marking information, see page 67.

Add appropriate failure rate level (M, P, R, or S)
Add appropriate cap. tolerance letter

MIL-C-20

MARKING

Radials

CC05 & CC09

9022 A0 4222 BACK Date Code
A=Lot Letter
0=1st Digit of AVX FSCM #
4222=Last four digits of
AVX FSCM #

CCR05 & CCR09

CCR0	9032
5CH1	AJ0
00GM	4222
FRONT	BACK

Date Code
A=Lot Letter
J='J" or "JAN" Brand
0=lst Digit of AVX FSCM #
4222=Last four digits of
AVX FSCM #

CC06

CC06	9032A
CG	200V
102F	04222
FRONT	BACK

Date Code & Lot Letter 200V=Rated Voltage 04222=AVX FSCM #

CCR06

9032A

1200V

04222

BACK

	CCR06	7	Г
	CG102		ı
	FM		
T	FRONT	Γ	٦

Date Code & Lot Letter J="J" or "JAN" Brand 200V=Rated Voltage 04222=AVX FSCM #

CC07

Characteristic Capacitance Value Cap. Tolerance & Year Code (0 for 1990) Lot Code & Trademark

CCR07

"J" Brand (J) and Characteristic (CG) Capacitance Value Cap. Tolerance (G) FR Level (M), & year code (0 for 1990) Lot Code (A); and Trademark (AVX)

CC08

CC08CG 392K AVX 96095 200V 9003A

Trademark or Manufacturer's Name Source Code (FSCM) Voltage, Date Code and Lot Symbol

CCR08

CCR	:08CG
392KM	
JAN AVX	
96095	
200V	9003A
T	

"JAN" Brand & Trademark or Manufacturer's Name Source Code (FSCM) Voltage, Date Code and Lot Symbol

Axials

CC75, CC76

CCR75, CCR76

CC77

CC77C G151F	Type Designation
04222 9020AA	FSCM 4 digit Date Code, 2 digit Lot Code

CCR77

CC78, CC79

CCR78, CCR79

MIL-C-123

MIL-C-123

HOW TO ORDER

Military Type Designation: Capacitors, Fixed, Ceramic Dielectric, (Temperature Stable and General Purpose), High Reliability

Part Number Example

Part Number Codes

Voltage-Temperature Limits:

	Capacitance change with reference to 25°C over temperature range -55°C to =125°C			
Symbol	Without Voltage	With Rated DC Voltage		
BP BX	0 ± 30 ppm/°C +15, -15 percent	0 ± 30 ppm/°C +15, -25 percent		

Rated Voltage:

Capacitance Tolerance:

Symbol	Rated Voltage Volts, DC
A	25
В	50
С	100
D	200
E	500

0 1 1	Cap. Tolerance
Symbol	<u> </u>
C	0.25 pF
D	0.5 pF
F	1%
J	5%
K	10%

Termination:

Lead capacitors					
Symbol Termination Style					
C W	Copper, solder coated (type C-4 or C-5 of MIL-STD-1276) Copper clad steel, solder coated (type W-4 or W-5 of MIL-STD-1276)				

CROSS REFERENCE MIL-SPEC TEST REQUIREMENTS

TEST DESCRIPTION	MIL-C-123	MIL-C-39014	MIL-C-20	MIL-C-55681
NDT (Non-Destructive Test)	100% Ultrasonic Scan or Neutron-Radiography	No	No	No
Pre-Cap Visual (Pre-Encapsulation Visual Examination)	100%	No	No	No
D.P.A. (Destructive Physical Analysis)	Lot by Lot—Pre-Termination Lot by Lot—Finished Product	No	No	No
Pre-Cap Terminal Strength (Pre-Encapsulation Pull Test)	Lot by Lot	No	No	No
Life Test (Lot by Lot)	Lot by Lot—1000 Hours	No	No	No
Low Voltage Humidity	Lot by Lot	No	No	No
Thermal Shock 100 Cycles	Lot by Lot	No	No	No

MIL-C-123/Radial Leads

MIL-C-123/STYLE CKS05, -/01

Part Number 1/	Capacitance pF	Capacitance Tolerance	Voltage- Temperature Limits	Rated Voltage
MIZSAOIBPCART.C MIZSAOIBPCART.C MIZSAOIBPCSRI.C MIZSAOIBPCSRI.C MIZSAOIBPCSRI.C MIZSAOIBPCSRI.C MIZSAOIBPCSRI.C MIZSAOIBPCRI.C MIZSAOIBPCRI.C MIZSAOIBPCRI.C MIZSAOIBPCIO.C MIZSAOIBPCO.C	4.7 5.6 6.2 6.8 7.5 8.2 9.1 10 11 12 12 13 15 16 18 22 22 27 27 33 33 36 39 47 56 68 68 75 82 91 100 110 111 120 131 15 16 18 18 18 19 10 10 111 111 121 131 15 16 18 18 18 18 18 18 18 18 18 18 18 18 18	C, J, K F, J, K	BP	100
M123A01BPB27L C M123A01BPB301 C M123A01BPB301 C M123A01BPB301 C M123A01BPB301 C M123A01BPB301 C M123A01BPB301 C M123A01BPB501 C M123A01BPB501 C M123A01BPB501 C M123A01BPB501 C M123A01BPB901 C M123A01BPB01 C	270 300 330 360 380 470 510 680 680 750 830 1,000 1,100 1,200 1,500 1,500 1,500 1,500 2,200 2,200 2,700	F.J.K	BP BP	50
M123A01BXC271KC M123A01BXC331KC M123A01BXC331KC M123A01BXC391KC M123A01BXC561KC M123A01BXC561KC M123A01BXC81KC M123A01BXC102KC M123A01BXC102KC M123A01BXC12KC M123A01BXC12KC M123A01BXC12KC M123A01BXC12KC M123A01BXC12KC M123A01BXC32KC	270 330 390 470 560 680 820 1,000 1,200 1,500 1,800 2,200 2,700 3,300 4,700	K	BX BX	100
M123A01BXB562KC M123A01BXB682KC M123A01BXB822KC M123A01BXB103KC	5,600 6,800 8,200 10,000	К К	BX BX	50 50

MIL-C-123/STYLE CKS06, -/02

Part Number 1/	Capacitance pF	Capacitance Tolerance	Voltage- Temperature Limits	Rated Voltage
MI23A02BPC27L C MI23A02BPC3BL C	270 330 330 330 430 470 510 620 910 1,000 1,200 1,500 1,600 1,600 1,600 1,800 1,800 1,800 2,200 2,200 2,200 2,200	F,J,K	BP BP	100
M123A02BPB272_C M123A02BPB302_C M123A02BPB302_C M123A02BPB302_C M123A02BPB302_C M123A02BPB302_C M123A02BPB472_C	2,700 3,000 3,300 3,600 3,900 4,300 4,700	F, J, K	BP BP	50 V 50
M123A02BXC562KC M123A02BXC682KC M123A02BXC682KC M123A02BXC103KC M123A02BXC103KC M123A02BXC133KC M123A02BXC133KC M123A02BXC23KC M123A02BXC23KC M123A02BXC33KC M123A02BXC33KC M123A02BXC33KC	5,600 6,800 8,200 10,000 12,000 15,000 18,000 22,000 27,000 39,000 47,000	K V K	BX BX	100
M123A02BXB8563KC M123A02BXB863KC M123A02BXB863KC M123A02BXB163KC M123A02BXB104KC M123A02BXB134KC M123A02BXB134KC M123A02BXB134KC M123A02BXR924KC M123A02BXR934KC M123A02BXR934KC M123A02BXR934KC M123A02BXR934KC M123A02BXR934KC	56,000 68,000 82,000 100,000 120,000 150,000 220,000 270,000 330,000 390,000 470,000	K K	BX BX	50

MIL-C-123/Axial Leads

Dimensions: Millimeters (Inches)

MIL-C-123/STYLE CKS11, -/04

Part Number 1/	Capacitance pF	Capacitance Tolerance	Voltage- Temperature Limits	Rated Voltage
MIZSAO4BPC4R7 W MIZSAO4BPC5R2	4.7 5.2 6.8 7.5 8.1 10 111 12 13 15 16 18 20 24 27 30 33 36 43 47 51 62 68 75 22 47 51 60 60 60 60 60 60 60 60 60 60 60 60 60	C,J,K	BP	100
M123A04BPB11L W M123A04BPB12L W M123A04BPB13L W M123A04BPB13L W M123A04BPB15L W M123A04BPB16L W M123A04BPB16L W M123A04BPB20L W M123A04BPB20L W M123A04BPB21L W	110 120 130 150 160 180 200 220 240 270 300 360 390 470 560	F, J, K	BP BP	50
M123A04BXC 101KW M123A04BXC 121KW M123A04BXC 121KW M122A04BXC 181KW M122A04BXC 281KW M122A04BXC 281KW M122A04BXC 281KW M122A04BXC 281KW M122A04BXC 381KW	100 120 150 180 220 270 330 390 470 560 680 820 1,000	K	BX	100
M123A04BXB122KW M123A04BXB152KW M123A04BXB152KW M123A04BXB272KW M123A04BXB272KW M123A04BXB372KW M123A04BXB372KW M123A04BXB372KW M123A04BXB372KW	1,200 1,500 1,800 2,200 2,700 3,300 3,900 4,700	K K	BX BX	50 50

MIL-C-123/STYLE CKS12, -/05

Part Number 1/	Capacitance pF	Capacitance Tolerance	Voltage- Temperature Limits	Rated Voltage
M123A05BPC111_W M123A05BPC121_W M123A05BPC131_W M123A05BPC131_W M123A05BPC161_W M123A05BPC161_W M123A05BPC201_W M123A05BPC201_W M123A05BPC201_W	110 120 130 150 160 180 200 220	F, J, K	BP BP	100
M123A05BPB241_W M123A05BPB271_W	240 270	F, J, K	BP I	50
M123A05BPB301_W M123A05BPB331_W M123A05BPB361_W M123A05BPB391_W M123A05BPB431_W M123A05BPB471_W	300 330 360 390 430 470	F.I.K	₩ BP	50
M123A05BXC122KW M123A05BXC152KW M123A05BXC182KW M123A05BXC182KW M123A05BXC272KW M123A05BXC32KW M123A05BXC32KW M123A05BXC34ZKW M123A05BXC472KW	1,200 1,500 1,800 2,200 2,700 3,300 3,900 4,700	K	BX BX	100
M123A05BXB562KW M123A05BXB682KW M123A05BXB822KW M123A05BXB103KW	5,600 6,800 8,200 10,000	K K	BX BX	50 50

MIL-C-123/STYLE CKS14, -/06

Part Number 1/	Capacitance pF	Capacitance Tolerance	Voltage- Temperature Limits	Rated Voltage
M123A06BPC241_W M123A06BPC271_W M123A06BPC301_W M123A06BPC331_W M123A06BPC331_W	240 270 300 330 360	F, J, K	BP	100
M123A06BPC391_W M123A06BPC431_W M123A06BPC471_W M123A06BPC511_W M123A06BPC561_W	390 430 470 510 560			
M123A06BPC621_W M123A06BPC681_W M123A06BPC751_W M123A06BPC821_W M123A06BPC911_W	620 680 750 820 910		V	
M123A06BPC102_W	1,000	F, J, K	BP	100
M123A06BPB112_W M123A06BPB122_W M123A06BPB132_W M123A06BPB152_W M123A06BPB162_W	1,100 1,200 1,300 1,500 1,600	F, J, K	BP	50
M123A06BPB182_W M123A06BPB202_W M123A06BPB222_W M123A06BPB242_W	1,800 2,000 2,200 2,400	F, J, K	BP	50

MIL-C-123

MIL-C-123/STYLE CKS14, -/06 (continued)

Part Number 1/	Capacitance pF	Capacitance Tolerance	Voltage- Temperature Limits	Rated Voltage
M123A06BPB272_W M123A06BPB302_W M123A06BPB362_W M123A06BPB362_W M123A06BPB392_W M123A06BPB432_W M123A06BPB472_W M123A06BPB512_W	2,700 3,000 3,300 3,600 3,900 4,300 4,700 5,100	F, S, K	BP	50
M123A06BPB562_W M123A06BPB622_W M123A06BPB682_W	5,100 5,600 6,200 6,800	F, J, K	BP	50
M123A06BXC562KW M123A06BXC682KW M123A06BXC822KW M123A06BXC103KW	5,600 6,800 8,200 10,000	К К	BX BX	100 100
M123A06BXB123KW M123A06BXB153KW M123A06BXB183KW M123A06BXB223KW M123A06BXB273KW M123A06BXB333KW M123A06BXB333KW M123A06BXB333KW	12,000 15,000 18,000 22,000 27,000 33,000 39,000 47,000	K 	BX BX	50

MIL-C-123/STYLE CKS15. -/07

Part Number 1/	Capacitance pF	Capacitance Tolerance	Voltage- Temperature Limits	Rated Voltage
M123A07BPC112_W M123A07BPC132_W M123A07BPC132_W M123A07BPC132_W M123A07BPC182_W M123A07BPC182_W M123A07BPC202_W M123A07BPC202_W	1,100 1,200 1,300 1,500 1,600 1,800 2,000 2,200	F, J, K	BP W BP	100
M123407BPB342. W M123407BPB372. W M123407BPB362. W M123407BPB362. W M123407BPB362. W M123407BPB362. W M123407BPB362. W M123407BPB342. W M123407BPB342. W M123407BPB342. W M123407BPB362. W M123407BPB362. W M123407BPB362. W M123407BPB362. W M123407BPB362. W M123407BPB313. W M123407BPB313. W M123407BPB313. W M123407BPB33. W	2,400 2,700 3,000 3,000 3,000 3,900 4,700 5,100 5,600 6,200 6,200 6,800 9,100 10,000 11,000 12,000 15,000 15,000 15,000 16,000 16,000 16,000 20,000 2	F, J, K	BP BP	50
M123A07BXC123KW M123A07BXC153KW M123A07BXC153KW M123A07BXC223KW M123A07BXC273KW M123A07BXC333KW M123A07BXC333KW M123A07BXC473KW M123A07BXC473KW M123A07BXC473KW M123A07BXC473KW M123A07BXC83KW M123A07BXC83KW M123A07BXC83KW	12,000 15,000 18,000 22,000 27,000 33,000 39,000 47,000 56,000 68,000 82,000	K 	BX BX	100
M123A07BXB124KW M123A07BXB154KW M123A07BXB184KW	120,000 150,000 180,000	K I K	BX I BX	50 1 50

MIL-C-123/STYLE CKS16. -/08

Part Number 1/	Capacitance pF	Capacitance Tolerance	Voltage- Temperature Limits	Rated Voltage
M123A08BPC242_W M123A08BPC272_W M123A08BPC302_W M123A08BPC332_W	2,400 2,700 3,000 3,300	F, J, K	BP	100
M123A08BPC362_W M123A08BPC392_W M123A08BPC432_W M123A08BPC472_W M123A08BPC512_W	3,600 3,900 4,300 4,700 5,100			
M123A08BPC562_W M123A08BPC622_W M123A08BPC682_W M123A08BPC822_W M123A08BPC912_W	5,600 6,200 6,800 8,200 9,100			
M123A08BPC103_W	10,000	F, J, K	BP	100
M123A08BPB113. W M123A08BPB123. W M123A08BPB133. W M123A08BPB153. W M123A08BPB163. W M123A08BPB183. W M123A08BPB203. W M123A08BPB203. W	11,000 12,000 13,000 15,000 16,000 18,000 20,000 22,000	F, J, K	BP BP	50
M123A08BXC124KW M123A08BXC154KW M123A08BXC184KW M123A08BXC224KW M123A08BXC224KW M123A08BXC334KW M123A08BXC394KW M123A08BXC394KW M123A08BXC474KW	120,000 150,000 180,000 220,000 270,000 330,000 390,000 470,000	K	BX BX	100
M123A08BXC4/4KW		K	BX	50
M123A08BXB684KW M123A08BXB824KW M123A08BXB105KW	560,000 680,000 820,000 1,000,000	I K	BX BX	50

AVVX CORPORATION A KYOCERA GROUP COMPANY

Myrtle Beach, SC / Tel: 803-448-9411 / FAX: 803-448-1943
Vancouver, WA / Tel: 206-696-2840 / FAX: 206-695-5836
Olean, NY / Tel: 716-372-6811 / FAX: 716-372-6316
Raleigh, NC / Tel: 919-878-6200 / FAX: 919-878-6462
Biddeford, ME / Tel: 207-283-1207 / FAX: 207-283-5111
AVX Limited, Aldershot, England / Tel: 252-336868 / FAX: 252-346643
AVX, Hong Kong / Tel: 852-363-3303 / FAX: 852-765-8185