Sommes

I Manipulation des signes \sum et \prod

I.1 Définition des notations

Soit I un ensemble fini et $(a_i)_{i\in I}$ une famille de nombres réels ou complexes.

- On note $\sum_{i \in I} a_i$ la somme des a_i pour $i \in I$.
- On note $\prod_{i \in I} a_i$ le produit des a_i pour $i \in I$.
- Lorque $I=[\![n,m]\!]$, avec $n\leq m$, on note $\sum_{i=n}^m a_i$ la somme des a_i pour $i\in [\![n,m]\!]$.

On dit que i une variable muette, il est donc possible de remplacer i par une autre lettre. Cependant, il est impossible de remplacer i par une lettre déjà utilisée dans la somme.

Si
$$I=\emptyset$$
, alors par convention $\sum_{i\in I}a_i=0$ et $\prod_{i\in I}a_i=1$.

On définit la factorielle de n par $n! = \prod_{k=1}^{n} k$.

I.2 Changements d'indice

On a I et J deux ensembles finis, et $f: I \xrightarrow{\approx} J$ une bijection, alors $\sum_{j \in J} a_j = \sum_{i \in I} a_{f(i)}$. (On peut remplacer \sum par \prod).

Il est aussi possible de translater l'indice, c'est-à-dire de remplacer i par i-l. On a alors $\sum_{i=n}^m a_i = \sum_{i=n-l}^{m-l} a_{i+l}$.

I.3 Sommation par groupement de termes

On suppose
$$I=I_1 \uplus I_2$$
, avec I fini, ainsi $\sum_{i \in I} a_i = \sum_{i \in I_1} a_i + \sum_{i \in I_2} a_i$.

On peut ainsi généraliser à n ensembles $I_1,I_2,...,I_n$, avec $I=I_1\uplus I_2\uplus...\uplus I_n$, on a alors $\sum_{i\in I}a_i=\sum_{i\in I_1}a_i+\sum_{i\in I_2}a_i+...+\sum_{i\in I_n}a_i=\sum_{k=1}^n\sum_{i\in I_k}a_i$.

I.4 Linéarité

Soit λ et μ deux nombres réels ou complexes, alors on a $\sum_{i \in I} a_i + \sum_{i \in I} b_i = \sum_{i \in I} (a_i + b_i)$ et $\lambda \sum_{i \in I} a_i = \sum_{i \in I} \lambda a_i$.

Ainsi on en déduit
$$\sum_{i \in I} (\lambda a_i + \mu b_i) = \lambda \sum_{i \in I} a_i + \mu \sum_{i \in I} b_i$$
.

On a E un ensemble fini, et a un nombre réel ou complexe, alors $\sum_{i\in I} a = |E| \times a$.

I.5 Sommes télescopiques

On dit que $\sum_{k=0}^{n} a_k$ est une somme télescopique si $a_k = b_{k+1} - b_k$.

On a alors
$$\sum_{k=0}^{n}a_{k}=\sum_{k=0}^{n}(b_{k+1}-b_{k})=b_{n+1}-b_{0}.$$

I.6 Cas des produits

• Si
$$I_1\cap I_2=\emptyset$$
, alors $\prod_{i\in I_1}a_i imes\prod_{i\in I_2}a_i=\prod_{i\in I_1\uplus I_2}a_i$

• Si
$$\left(\prod_{i\in I} a_i\right)^{\lambda} \left(\prod_{i\in I} b_i\right)^{\mu} = \prod_{i\in I} (a_i)^{\lambda} (b_i)^{\mu}$$

•
$$\prod_{i \in I} a = a^{|I|}$$

On dit que $\prod_{k=0}^n a_k$ est une produit télescopique si $a_k = \frac{b_{k+1}}{b_k}$.

On a alors
$$\prod_{k=0}^{n} a_k = \prod_{k=0}^{n} \left(\frac{b_{k+1}}{b_k} \right) = \frac{b_{n+1}}{b_0}$$
.

I.7 Sommes multiples

Certaines sommes sont indexées sur un produit cartésien.

Ainsi on a $K \subset I \times J$,

- Soit $i \in I$, on définit la coupe de K suivant $i:K_{i, \bullet} = \{j \in J \mid (i, j) \in K\}$
- Soit $j \in J$, on définit la coupe de K suivant $j: K_{ullet,j} = \{i \in I \mid (i,j) \in K\}$

On définit aussi
$$K'_{i,ullet}=\left\{(i,j)\mid j\in K_{i,ullet}
ight\}$$
 et $K'_{ullet,j}=\left\{(i,j)\mid i\in K_{ullet,j}
ight\}$.

On a l'inversion des signes sommes, ainsi :

$$\sum_{(i,j) \in K} a_{i,j} = \sum_{i \in I} \sum_{j \in K_{i,\bullet}} a_{i,j} = \sum_{i \in I} \sum_{(i,j) \in K'_{i,\bullet}} a_{i,j} = \sum_{j \in J} \sum_{i \in K_{\bullet,j}} a_{i,j} = \sum_{j \in J} \sum_{(i,j) \in K'_{\bullet}} a_{i,j}$$

Si K=I imes J on a $K_{i,ullet}=J$ et $K_{ullet,j}=I$, ainsi

$$\sum_{(i,j)\in I\times J}a_{i,j}=\sum_{i\in I}\sum_{j\in J}a_{i,j}=\sum_{j\in J}\sum_{i\in I}a_{i,j} \text{ (somme sur un pav\'e)}$$

On a aussi $\sum_{i=0}^n \sum_{j=i}^n a_{i,j} = \sum_{j=0}^n \sum_{i=0}^j a_{i,j}$ (somme sur un triangle)

I.8 Produits de sommes

On a
$$\left(\sum_{i\in I}a_i\right)\left(\sum_{j\in J}b_j\right)=\sum_{i\in I}\sum_{j\in J}a_ib_j=\sum_{(i,j)\in I\times J}a_ib_j$$

⚠ Il est important de rentre les indices idépendants comme dit précédemment.

Théorème de distributivité généralisé : On a :

$$\prod_{k=1}^n \left(\sum_{i=1}^{m_k} a_{k,i} \right) = \sum_{(i_1,\dots,i_n) \in [\![1,m_1]\!] \times \dots \times [\![1,m_n]\!]} a_{1,i_1} a_{2,i_2} \dots a_{n,i_n}$$

II Sommes classiques à connaître

II.1 Sommes de puissances d'entiers

•
$$\sum_{k=1}^{n} k^0 = \sum_{k=1}^{n} 1 = n$$

•
$$\sum_{k=1}^{n} k = \frac{n(n+1)}{2}$$

•
$$\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}$$

•
$$\sum_{k=1}^{n} k^3 = \left(\frac{n(n+1)}{2}\right)^2$$

II.2 Sommes géométriques

On a a et b deux nombres réels ou complexes, et $n \in \mathbb{N}$, ainsi :

•
$$a^n - b^n = (a - b) \sum_{k=0}^{n-1} a^{n-1-k} b^k$$

• Si b=1, $a^n-1=(a-1)\sum_{k=0}^{n-1}a^k$ • Si n est impair, on a $a^n+b^n=(a+b)\sum_{k=0}^{n-1}(-1)^ka^{n-1-k}b^k$ Soit x un nombre réel ou complexe, on a $\sum_{k=0}^nx^k=\left\{ \frac{n+1\text{ si }x=1}{1-x}\frac{1-x^{n+1}}{1-x}\frac{1-x}\frac{1}{1-x}\frac{1}{1-x}\frac{1}{1-x}\frac{1}{1-x}\frac{1}{1-x}\frac{1}{1-x}\frac{1}{1-$