System Check Body 2450MHz

DUT: D2450V2-736

Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium: MSL 2450 170127 Medium parameters used: f = 2450 MHz; $\sigma = 1.972$ S/m; $\varepsilon_r = 53.836$; ρ

Date: 2017/1/27

 $= 1000 \text{ kg/m}^3$

Ambient Temperature : 23.1 °C; Liquid Temperature : 22.1 °C

DASY5 Configuration

- Probe: EX3DV4 SN3931; ConvF(7.73, 7.73, 7.73); Calibrated: 2016/10/3;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2016/9/28
- Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP:1227
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7373)

Pin=250mW/Area Scan (61x61x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 20.7 W/kg

Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 106.8 V/m; Power Drift = -0.18 dB

Peak SAR (extrapolated) = 24.6 W/kg

SAR(1 g) = 12.3 W/kg; SAR(10 g) = 5.86 W/kg

Maximum value of SAR (measured) = 20.1 W/kg

0 dB = 20.1 W/kg = 13.03 dBW/kg

System Check Body 2450MHz

DUT: D2450V2-736

Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium: MSL_2450_170204 Medium parameters used: f = 2450 MHz; σ = 2.013 S/m; ϵ_r = 53.149; ρ

Date: 2017/2/4

 $= 1000 \text{ kg/m}^3$

Ambient Temperature: 23.3 °C; Liquid Temperature: 22.3 °C

DASY5 Configuration

- Probe: EX3DV4 SN3955; ConvF(7.65, 7.65, 7.65); Calibrated: 2016/11/24;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1399; Calibrated: 2016/11/17
- Phantom: ELI v4.0; Type: QDOVA001BB; Serial: 1026
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7373)

Pin=250mW/Area Scan (61x61x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 20.9 W/kg

Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 105.1 V/m; Power Drift = -0.10 dB Peak SAR (extrapolated) = 24.9 W/kg

SAR(1 g) = 12.3 W/kg; SAR(10 g) = 5.78 W/kgMaximum value of SAR (measured) = 20.3 W/kg

0 dB = 20.3 W/kg = 13.07 dBW/kg

System Check Body 5250MHz

DUT: D5GHzV2-1128

Communication System: CW; Frequency: 5250 MHz; Duty Cycle: 1:1

Medium: MSL_5G_170127 Medium parameters used: f = 5250 MHz; $\sigma = 5.49$ S/m; $\varepsilon_r = 47.181$; $\rho = 6.49$ Medium: $\sigma = 6.49$ S/m; $\sigma = 6.49$ S

Date: 2017/1/27

 1000 kg/m^3

Ambient Temperature : 23.5 °C; Liquid Temperature : 22.5 °C

DASY5 Configuration

- Probe: EX3DV4 SN3931; ConvF(4.57, 4.57, 4.57); Calibrated: 2016/10/3;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2016/9/28
- Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP:1227
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7373)

Pin=100mW/Area Scan (71x71x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 17.9 W/kg

Pin=100mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 66.78 V/m; Power Drift = -0.10 dB

Peak SAR (extrapolated) = 30.8 W/kg

SAR(1 g) = 7.53 W/kg; SAR(10 g) = 2.01 W/kg

Maximum value of SAR (measured) = 19.0 W/kg

0 dB = 19.0 W/kg = 12.79 dBW/kg

System Check Body 5750MHz

DUT: D5GHzV2-1128

Communication System: CW; Frequency: 5750 MHz; Duty Cycle: 1:1

Medium: MSL_5G_170202 Medium parameters used: f = 5750 MHz; $\sigma = 6.181$ S/m; $\varepsilon_r = 46.14$; $\rho = 6.181$ Medium: $\sigma = 6.181$ S/m; $\sigma = 6.181$

Date: 2017/2/2

 1000 kg/m^3

Ambient Temperature: 23.4 °C; Liquid Temperature: 22.4 °C

DASY5 Configuration

- Probe: EX3DV4 SN3955; ConvF(4.12, 4.12, 4.12); Calibrated: 2016/11/24;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1399; Calibrated: 2016/11/17
- Phantom: ELI v4.0; Type: QDOVA001BB; Serial: 1026
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7373)

Pin=100mW/Area Scan (71x71x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 18.1 W/kg

Pin=100mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 63.41 V/m; Power Drift = 0.10 dB Peak SAR (extrapolated) = 32.0 W/kg

SAR(1 g) = 7.32 W/kg; SAR(10 g) = 2.02 W/kgMaximum value of SAR (measured) = 18.5 W/kg

0 dB = 18.5 W/kg = 12.67 dBW/kg