1 Коды БЧХ (Боуза - Чоудхури - Хоквингема)

Теорема 1. (Граница БЧХ)

 $\Pi y cm b \ g(x)$ порожедает код C и среди его корней есть

$$\alpha^m, \alpha^{m+j}, \alpha^{m+2j}, \dots, \alpha^{m+(d-2)j},$$

где α^j – примитивный элемент поля разложения g(x). Тогда минимальное расстояние кода C не менее d.

Доказательство. (от противного) Предположим d(C) < d, то есть в C есть кодовое слово расстояние которого меньше d. Выпишем его в виде многочлена

$$f(x) = \beta_1 x^{i_1} + \beta_2 x^{i_2} + \dots + \beta_{d-1} x^{i_{d-1}},$$

где, возможно, некоторые β_i нулевые, но сам f(x) отличен от нуля.

По определению циклических кодов g(x)|f(x), значит все корни g(x) являются конями f(x).

$$\begin{cases} \beta_{1}\alpha^{mi_{1}} + \beta_{2}\alpha^{mi_{2}} + \dots + \beta_{d-1}\alpha^{mi_{d-1}} &= 0\\ \beta_{1}\alpha^{(m+j)i_{1}} + \beta_{2}\alpha^{(m+j)i_{2}} + \dots + \beta_{d-1}\alpha^{(m+j)i_{d-1}} &= 0\\ \dots & \dots & \dots\\ \beta_{1}\alpha^{(m+(d-2)j)i_{1}} + \beta_{2}\alpha^{(m+(d-2)j)i_{2}} + \dots + \beta_{d-1}\alpha^{(m+(d-2)j)i_{d-1}} &= 0 \end{cases}$$

Это система из d-1 уравнения с d-1 неизвестным $\beta_1, \beta_2, ..., \beta_{d-1}$. Определитель системы:

$$\Delta = \alpha^{mi_1} \alpha^{mi_2} \dots \alpha^{mi_{d-1}} \begin{vmatrix} 1 & 1 & \dots & 1 \\ \alpha^{ji_1} & \alpha^{ji_2} & \dots & \alpha^{ji_{d-1}} \\ \dots & \dots & \dots & \dots \\ \alpha^{(d-2)ji_1} & \alpha^{(d-2)ji_2} & \dots & \alpha^{(d-2)ji_{d-1}} \end{vmatrix} \neq 0,$$

– отличен от нуля, следовательно имеется единственное решение системы, $\beta_i = 0, \forall i.$ Противоречие с условием $f(x) \neq 0.$

Определение 2. Пусть даны $d, m_0 \in \mathbb{Z}$ и $\alpha \in \mathrm{GF}(2^m)$, α примитивный корень. Код B ЧХ – код c порождающим многочленом $g(x) \in \mathrm{GF}(2)[x]$, наименьшей степени среди корней которого есть $\alpha^{m_0}, \alpha^{m_0+1}, ..., \alpha^{m_0+d-2}$. Если $m_0 = 1$, тогда это примитивный B ЧХ-код.

Замечание 3. $g(x)|x^{2^m-1}-1$.

Это верно, так как каждый элемент $GF(2^m)$ является корнем $x^{2^m} - x$, и $GF(2^m)$ является поле разложения g(x).

Замечание 4. Длинна БЧХ-кода $n = 2^m - 1$.

Это следует из условия, что $g(x)|x^n-1$ и n – минимальное с таким своиством.

Теорема 5. Приминивный БЧХ-код способен исправить $t \leqslant \frac{d-1}{2}$ ошибок.

Доказательство. Предположим, что при передаче сообщения произошло $\nu \leq t$ ошибок:

$$i(x)g(x) \longrightarrow_{+e(x)} f(x) = i(x)g(x) + e(x),$$

где e(x) многочлен ошибок:

$$e(x) = x^{i_1} + x^{i_2} + \dots + x^{i_{\nu}}$$
, где $i_i < 2^m - 1$.

Корнями многочлена g(x) являются α , α^2 , ..., α^{d-1} , таким образом $f(\alpha^j) = i(\alpha^j)$ $g(\alpha^j) + e(\alpha^j) = e(\alpha^j)$, при $j \in \{1, 2, ..., d-1\}$. Рассмотрим следующие объекты:

$$S_i = f(\alpha^j) = e(\alpha^j),$$

- синдромы.

2 ΠΑΡΑΓΡΑΦ 1

Задача исправления ошибок ставится следующим образом: имеются d-1 синдромов S_j , необходимо востановить многочлен ошибок e(x).

Многочлен e(x) определяется коэффицентами ν и $i_1, i_2, ..., i_{\nu}$.

Введём дополнительно вспомогательные объекты: $X_1=\alpha^{i_1}, X_2=\alpha^{i_2}, ..., X_{\nu}=\alpha^{i_{\nu}}$ – локаторы ошибок.

В таких обозначениях:

$$\begin{array}{rcl} e(\alpha) & = & X_1 + X_2 + \dots + X_{\nu} & = & S_1 \\ e(\alpha^2) & = & X_1^2 + X_2^2 + \dots + X_{\nu}^2 & = & S_2 \\ & & & & & & \\ e(\alpha^{2t}) & = & X_1^{2t} + X_2^{2t} + \dots + X_{\nu}^{2t} & = & S_{2t} \end{array}$$

Все локаторы различны, так как $X^k = X^l \Leftrightarrow \alpha^{i_k} = \alpha^{i_l} \Leftrightarrow i_k \equiv i_l \pmod{2^m-1}$, но $i_k, i_l < 2^m-1$; и отличны от нуля.

Рассмотрим матрицу:

$$M = \begin{pmatrix} S_1 & S_2 & \dots & S_t \\ S_2 & S_3 & \dots & S_{t+1} \\ \dots & \dots & \dots & \dots \\ S_t & S_{t+1} & \dots & S_{2t-1} \end{pmatrix} = \begin{pmatrix} 1 & 1 & \dots & 1 \\ X_1 & X_2 & \dots & X_{\nu} \\ \dots & \dots & \dots & \dots \\ X_1^{t-1} & X_2^{t-1} & \dots & X_{\nu}^{t-1} \end{pmatrix} \begin{pmatrix} X_1 & X_1^2 & \dots & X_1^t \\ X_2 & X_2^2 & \dots & X_2^t \\ \dots & \dots & \dots & \dots \\ X_{\nu} & X_2^2 & \dots & X_{\nu}^t \end{pmatrix} = \\ = \begin{pmatrix} 1 & 1 & \dots & 1 \\ X_1 & X_2 & \dots & X_{\nu} \\ \dots & \dots & \dots & \dots \\ X_1^{t-1} & X_2^{t-1} & \dots & X_{\nu}^{t-1} \end{pmatrix} \begin{pmatrix} X_1 & & & \\ & X_2 & & \\ & & \dots & & \dots \\ & & & & & 1 \end{pmatrix} \begin{pmatrix} 1 & X_1 & \dots & X_1^{t-1} \\ 1 & X_2 & \dots & X_2^{t-1} \\ \dots & \dots & \dots & \dots \\ 1 & X_{\nu} & \dots & X_{\nu}^{t-1} \end{pmatrix} = WIW^T.$$

Ранг матриц W и I равен ν , следовательно ранг матрицы M так же равен ν . Рассмотрим локаторный многочлен:

$$\Lambda(x) = (1 - x X_1)(1 - x X_2)...(1 - x X_{\nu}) = \Lambda_{\nu} x^{\nu} + \Lambda_{\nu - 1} x^{\nu - 1} + ... + \Lambda_1 x + 1.$$

Его корни обратны локаторам. Подставим вместо x локатор X_i^{-1} , получим:

$$\begin{split} \Lambda_{\nu}X_{i}^{-\nu}+\Lambda_{\nu-1}X_{i}^{1-\nu}+\ldots+\Lambda_{1}X_{i}^{-1}+1&=0, \text{ умножим на }X_{i}^{j+\nu},\\ \Lambda_{\nu}X_{i}^{j}+\Lambda_{\nu-1}X_{i}^{j+1}+\ldots+\Lambda_{1}X_{i}^{j+\nu-1}+X_{i}^{j+\nu}&=0, \text{ сложим по всем }i\in\{1...\nu\}.\\ \Lambda_{\nu}S_{j}+\Lambda_{\nu-1}S_{j+1}+\ldots+\Lambda_{1}S_{j+\nu-1}+S_{j+\nu}&=0. \end{split}$$

Получаем систему линейных уравнений с неизвествными Λ_i :

$$\star \left\{ \begin{array}{rcl} \Lambda_{\nu}S_{1} + \Lambda_{\nu-1}S_{2} + \ldots + \Lambda_{1}S_{\nu} & = & -S_{\nu+1} \\ \Lambda_{\nu}S_{2} + \Lambda_{\nu-1}S_{3} + \ldots + \Lambda_{1}S_{\nu+1} & = & -S_{\nu+2} \\ & \ldots & & \\ \Lambda_{\nu}S_{\nu} + \Lambda_{\nu-1}S_{\nu+1} + \ldots + \Lambda_{1}S_{2\nu-1} & = & -S_{2\nu} \end{array} \right.$$

Матрица этой системы:

$$\begin{pmatrix} S_1 & S_2 & \dots & S_{\nu} \\ S_2 & S_3 & \dots & S_{\nu+1} \\ \dots & \dots & \dots & \dots \\ S_{\nu} & S_{\nu+1} & \dots & S_{2\nu-1} \end{pmatrix}$$

— является подматрицией матрицы M и имеет размер $\nu \times \nu$, следовательно является линейно независимой. Система Крамеровская и $\Lambda_1, \Lambda_2, ..., \Lambda_\nu$ находятся.

Замечание 6. Система * в общем виде выглядит иначе

$$\begin{cases} \Lambda_{\nu}S_{1} + \Lambda_{\nu-1}S_{2} + \dots + \Lambda_{1}S_{\nu} &= -S_{\nu+1} \\ \Lambda_{\nu}S_{2} + \Lambda_{\nu-1}S_{3} + \dots + \Lambda_{1}S_{\nu+1} &= -S_{\nu+2} \\ \dots \\ \Lambda_{\nu}S_{t} + \Lambda_{\nu-1}S_{t+1} + \dots + \Lambda_{1}S_{2t-1} &= -S_{2t} \end{cases}$$

Алгоритм Берлекэмпа 3

но, находясь в рамках условия теоремы, решение сокращённой системы является решением обшей.

В общем случае, вообще говоря это не верно.

Предложение 7. Алгоритм исправления ошибок:

- 1. (предварительные вычисления) Вычисляем $S_1, S_2, ..., S_{2t}$.
- 2. $(инициализация) \nu = t$.
- 3. (шаг цикла) Считаем $\Delta = \begin{vmatrix} S_1 & \dots & S_{\nu} \\ \dots & \dots & \dots \\ S_{\nu} & \dots & S_{2\nu-1} \end{vmatrix}$.
- 4. (условие цикла) Если $\Delta = 0$, то $\nu = \nu 1$ и повторяем шаг 3.
- 5. (вычисляем коэффиценты $\Lambda(x)$) Решаем систему, находим $\Lambda_1, \Lambda_2, ..., \Lambda_{\nu}$.
- 6. (поиск локаторов) Подбираем корни $\Lambda(x)$, находим $X_1, X_2, ..., X_{\nu}$.
- 7. (востанавливаем e(x)) Находим $i_1, i_2, ..., i_{\nu}$.

2 Алгоритм Берлекэмпа

Постановка задачи. Даны $S_1, S_2, ..., S_{2t} \in \mathrm{GF}(2^m)$ и система

$$\begin{cases} \Lambda_{\nu}S_{1} + \Lambda_{\nu-1}S_{2} + \dots + \Lambda_{1}S_{\nu} &= -S_{\nu+1} \\ \Lambda_{\nu}S_{2} + \Lambda_{\nu-1}S_{3} + \dots + \Lambda_{1}S_{\nu+1} &= -S_{\nu+2} \\ \dots \\ \Lambda_{\nu}S_{t} + \Lambda_{\nu-1}S_{t+1} + \dots + \Lambda_{1}S_{2t-1} &= -S_{2t} \end{cases}, \nu \leqslant t.$$

Необходимо найти решение, состоящее из: наименьшего ν и $\Lambda_1, \Lambda_2, ..., \Lambda_{\nu} \in \mathrm{GF}(2^m)$. Пусть $\Lambda(x)$ – многочлено степени L со свободным члено 1 ($\Lambda_0 = 1$).

Определение 8. $\Lambda(x)$ порождает $S_1, S_2, ..., S_r$, если $\forall \rho \in \{L+1, ..., r\}$ выполняется

$$\Sigma_{j=0}^L \Lambda_j S_{p-j} = 0.$$

Теперь задачу можно сформулировать иначе: необходимо найти многочлен наименьшей степени порождающий все $S_1, S_2, ..., S_{2t}$.

Будем действовать интерационно, подгоняя $\Lambda(x)$ под синдромы.

Предложение 9. Алгоритм Берлекэмпа:

- 1. (инициализация) $\Lambda^{(0)}(x)=1$ многочлен который мы строим, $B^{(0)}(x)=1, L(0)=0,$ r=1 вспомогательные элементы.
- 2. (строим неувязку) $\Delta_r = \sum_{j=0}^{L(r-1)} \Lambda_j^{(r-1)} S_{r-j}$.
- 3. $(\Delta_r = 0)$ Ecau $\Delta_r = 0$, mo $\Lambda^{(r)}(x) = \Lambda^{(r-1)}(x)$, L(r) = L(r-1).
- 4. $(\Delta_r \neq 0)$ Ecau $\Delta_r \neq 0$, mo $\Lambda^{(r)}(x) = \Lambda^{(r-1)}(x) \Delta_r x$ $B^{(r-1)}(x)$, $L(r) = \max \{L(r-1), r L(r-1)\}$.
- 5. $(nepecчитываем B^{(r)})$

$$B^{(r)}(x) = \begin{cases} B^{(r-1)}(x)x, \ ecnu \ L(r) = L(r-1) \\ \Delta_r^{-1}\Lambda^{(r-1)}(x), \ ecnu \ L(r) > L(r-1). \end{cases}$$

6. (шаг) Если r < 2t, то продолжить выполнение c шага 2 при r = r + 1.

Докажем корректность.

 Φ Параграф 2

Пемма 10. Пусть $\Lambda^{(r-1)}(x)$ и $\Lambda^{(r)}(x)$ многочлены наименьших степеней порождающие синдромы $S_1, S_2, ..., S_{r-1}$ и $S_1, S_2, ..., S_r$ соответственно; $L(r-1) = \deg \Lambda^{(r-1)}(x)$, $L(r) = \deg \Lambda^{(r)}(x)$ и $\Lambda^{(r-1)}(x) \neq \Lambda^{(r)}(x)$, тогда $L(r) \geqslant \max \{L(r-1), r-L(r-1)\}$.

Доказательство. Из минимальности $\Lambda^{(r-1)}$ следует, что $L^{(r-1)} \leqslant L^{(r)}$, остаётся доказать, что $r-L(r-1) \leqslant L(r)$. Предположим обратное:

$$r - L(r-1) > L(r)$$
 или, что тоже самое, $r - L(r) > L(r-1)$.

Из условия теоремы, мы имеем:

$$\begin{split} \forall \rho \in \{L(r-1)+1,r-1\} \text{ имеем } \Sigma_{j=0}^{L(r-1)} \Lambda_j^{(r-1)} S_{\rho-j} &= 0 \Rightarrow S_\rho = -\Sigma_{j=1}^{L(r-1)} \Lambda_j^{(r-1)} S_{\rho-j}; \\ \forall \rho \in \{L(r)+1,r\} \text{ имеем } \Sigma_{j=0}^{L(r)} \Lambda_j^{(r)} S_{\rho-j} &= 0 \Rightarrow S_\rho = -\Sigma_{j=1}^{L(r)} \Lambda_j^{(r)} S_{\rho-j}. \end{split}$$

При этом получаем:

$$S_r \neq -\sum_{j=1}^{L(r-1)} \Lambda_j^{(r-1)} S_{r-j}$$
, где $r-j$ пробегает от $r-1$ до $r-L(r-1)$, что больше $L(r)$; $S_r = -\sum_{j=1}^{L(r)} \Lambda_j^{(r)} S_{r-j}$, где $r-j$ пробегает от $r-1$ до $r-L(r)$, что больше $L(r-1)$.

Таким образом подставляя первые уравнения во вторые (что допустимо из оценок на интервалы по которым пробегают параметры) получаем:

$$S_r \neq -\sum_{j=1}^{L(r-1)} \Lambda_j^{(r-1)} (-\sum_{i=1}^{L(r)} \Lambda_i^{(r)} S_{r-j-i}),$$

$$S_r = -\sum_{j=1}^{L(r)} \Lambda_j^{(r)} (-\sum_{i=1}^{L(r-1)} \Lambda_i^{(r-1)} S_{r-j-i})$$

— противоречие, так как одна сумма получается из другой переименованием переменных. $\hfill\Box$

Пемма 11. Пусть $\forall i \in \{1, ..., r-1\}$ $\Lambda^{(i)}(x)$ наименьший многочлен порождающий S_1 , $S_2, ..., S_i$; $L(i) = \deg \Lambda^{(i)}(x)$; u $\Lambda^{(r-1)}(x)$ не порождает S_r . Тогда $\star \Lambda^{(r)}(x) = \Lambda^{(r-1)}(x) - \Delta_r \Delta_m^{-1} x^{r-m} \Lambda^{(m-1)}(x)$, где m – последний номер, где произошло увеличение (L(m-1) < L(m)), порождает $S_1, S_2, ..., S_r$, имеет наименьшую степень, u $\deg \Lambda^{(r)}(x) = \max \{L(r-1), r-L(r-1)\}$.

Доказательство. По из условия на m мы имеем L(r-1) = L(m) > L(m-1);

$$\Sigma_{j=0}^{L(r-1)}\Lambda_j^{(r-1)}S_{p-j} = \left\{ \begin{array}{l} 0 \;,\; \text{если}\; p \in \{L(r-1)+1,...,r-1\} \\ \Delta_r \;,\; \text{если}\; p = r. \end{array} \right.$$

Можно считать, что

$$\Sigma_{j=0}^{L(m-1)}\Lambda_j^{(m-1)}S_{p-j}\!=\!\left\{\begin{array}{l}0\;,\;\text{если}\;p\!\in\!\{L(m-1)+1,...,m-1\}\\\Delta_r\!\neq\!0\;,\;\text{если}\;p\!=\!m,\end{array}\right.$$

при этом L(m) = m - L(m-1).

Найдём степень $\Lambda^{(r)}(x)$ из формулы \star :

$$\begin{split} \deg & \Lambda^{(r)}(x) & \leqslant & \max \left\{ L(r-1), L(m-1) + r - m \right\} \\ & = & \max \left\{ L(r-1), r - L(m) \right\} \\ & = & \max \left\{ L(r-1), r - L(r-1) \right\}. \end{split}$$

Покажем, что $\Lambda^{(r)}(x)$ порождает $S_1, S_2, ..., S_r$, тогда по Лемме 10: $\deg \Lambda^{(r)}(x) \geqslant \max \{L(r-1), r-L(r-1)\}$, таким образом, учитывая предыдущее, степень $\Lambda^{(r)}(x)$ будет точно

$$\deg \Lambda^{(r)}(x) \geqslant \max \{ L(r-1), r - L(r-1) \},$$

то есть $\Lambda^{(r)}(x)$ – многочлен наименьшей степени порождающий $S_1, S_2, ..., S_r$.

Алгоритм Берлекэмпа 5

Считаем *j*-й коэффицент в $\Lambda^{(r)}(x)$:

$$\begin{split} \Lambda_j^{(r)} &= \Lambda_j^{(r-1)} - \Delta_r \Delta_m^{-1} \Lambda_{j-r+m}^{(m-1)} \text{, где } \Lambda_i^{(m-1)} = 0 \text{, для } i < 0. \\ \Sigma_{j=0}^{L(r)} \Lambda_j^{(r)} S_{p-j} &= \Sigma_{j=0}^{L(r-1)} \Lambda_j^{(r-1)} S_{p-j} - \Delta_r \Delta_m^{-1} \Sigma_{j=0}^{L(m-1)} \Lambda_j^{(m-1)} S_{p-r+m-j} = \\ &= [p \in \{L(r)+1, ..., r\} \Rightarrow p-r+m \leqslant m] &= \\ &= [\Sigma_{j=0}^{L(m-1)} \Lambda_j^{(m-1)} S_t = \left\{ \begin{array}{l} 0 \text{, при } t < m \\ \Delta_m \text{, при } t = m \end{array} \right] &= \\ &= \left\{ \begin{array}{l} 0 + 0 = 0 \text{, при } p \leqslant r-1 \\ \Delta_r - \Delta_r \Delta_m^{-1} \Delta_m = 0 \text{, при } p = m. \end{array} \right. \end{split}$$

 $|GF(2^m)| g(x)$ k d_{BYX} корни $x^3 + x + 1$ α, α^2 4 3 2^{4} $x^4 + x + 1$ 15 11 3 α, α^2 $(x^4+x+1)(x^4+x^3+x^2+x+1)$ $\alpha, \alpha^2, \alpha^3, \alpha^4$ 15 7 5 $(x^4+x+1)(x^4+x^3+x^2+x+1)(x^2+x+1)$ $\alpha, \alpha^2, \alpha^3, \alpha^4, \alpha^5, \alpha^6$ 15 5 7 $x^5 + x^2 + 1$ 2^5 31 26 3 $(x^5 + x^2 + 1)(x^5 + x^4 + x^3 + x^2 + 1)$ 31 21 5 $\alpha, \alpha^2, \alpha^3, \alpha^4$ $(x^5 + x^2 + 1)(x^5 + x^4 + x^2 + x + 1)(x^5 + x^4 + x^3 + x^2 + 1)$ 31 16 7 $\alpha, \alpha^2, \alpha^3, \alpha^4, \alpha^5, \alpha^6$ $(x^5 + x^2 + 1)(x^5 + x^3 + x^2 + x + 1)(x^5 + x^4 + x^2 + x + 1)$ $(x^5 + x^4 + x^3 + x^2 + 1)$ $\alpha, \alpha^2, \alpha^3, \alpha^4, \alpha^5, \dots$ 31 11 11 $(x^5 + x^2 + 1)(x^5 + x^3 + x^2 + x + 1)(x^5 + x^4 + x^2 + x + 1)$ $(x^5 + x^4 + x^3 + x + 1)(x^5 + x^4 + x^3 + x^2 + 1)$ $\alpha, \alpha^2, \alpha^3, \alpha^4, \alpha^5, \dots$ 31 6 15 2^{6} 63 57 3 $63 \ 51 \ 5$ $63 \ 45 \ 7$ 63 39 9 63 36 11 $63 \ 30 \ 13$ 63 24 15 63 18 21