

GREET 프로그램 교육 세미나

Session – GREET 기본 계산 구조 설명

2021. 07. 06. 발표자 - 이민

전과정 평가

● 전과정 평가(LCA, Life Cycle Analysis)

다양한 연료 및 자동차 기술에 대한 객관적 평가 필요

Well-to-Wheel Analysis

출처: Michael Wang, GREET Model, Argonne National Laboratory, 2009

LCA 모델 (GREET)

● GREET (미국 아르곤 연구소 개발) 프로그램 사용

GREET (미국 Argonne National Lab), GHGenius (캐나다 (S&T)² Consultants Inc.), E3 Database (유럽 LBST Inc.,JEC) 등의 프로그램 중 **GREET**을 사용

- GREET은 Excel 스프레드시트 기반 모델
- 프로그램 내의 값 및 구조를 변경해 국내 특화 자동차 연료 LCA 분석 모델 및 데이터베이스 마련

	Bt	u/mile or g	grams/mile		Per
			Vehicle		
Item	Feedstock	Fuel	Operation	Total	Feedsto
Total Energy	272	762	4,908	5,943	4.0
Fossil Fuels	264	668	4,806	5,738	4.
Coal	35	52	0	87	40.
Natural Gas	160	279	0	439	36.
Petroleum	69	337	4,806	5,212	1.3
CO2 (w/ C in VOC & CO)	18	60	377	454	3.
CH4	0.457	0.078	0.015	0.550	83.
N2O	0.000	0.005	0.012	0.017	2.
GHGs	29	63	381	473	6.
VOC: Total	0.040	0.447	0.400	0.245	_

최종 온실가스 배출량

● 연소로 인한 배출량 + 비연소로 인한 배출량 + 공정 연료 전과정 배출량

(1) Combustion GHG emission of process fuel

(2) Non-Combustion GHG emission of process

Total GHG emission

(3) Life cycle GHG emission of process fuel

연소 배출량 기본 계산 구조

● 각 과정의 Energy use 및 GHG emission 값 계산 구조

1 Energy efficiency & Process fuel share

● GREET 프로그램(Excel로 작성)에서 각 과정의 기본 구조

GREET에서 각 과정의 기본 구조

연소 배출량 기본 계산 구조

● 각 과정의 Energy use 및 GHG emission 값 계산 구조

② Combustion technology share

● 각 Combustion technology로 부터 만들어진 에너지량 계산

각 Process fuel의 Energy use				
Residual Oil	10%	4603 kJ/GJ _{Product}		
Diesel	27.3%	12566 kJ/GJ _{Product}		
Natural gas	48.6%	22371 kJ/GJ _{Product}		
Electricity	12.6%	5800 kJ/GJ _{Product}		
Pet coke	1.5%	690 kJ/GJ _{Product}		

	Gasoline Refining
Residual oil industrial boiler	100.0%
Diesel commercial boiler	33.0%
Diesel stationary engine	33.0%
Diesel turbine	34.0%
NG large turbine	25.0%
NG large industrial boiler	60.0%
NG small industrial boiler	15.0%
Pet coke industrial boiler	100.0%

Combustion	technology	share	예시
	(GREET)		

각 Combustion technology의 Energy use				
Residual Oil	Industrial boiler	100%	4603 kJ/GJ _{Product}	
	Commercial boiler	33%	4146.8 kJ/GJ _{Product}	
Diesel	Stationary engine	33%	4146.8 kJ/GJ _{Product}	
	Turbine	34%	4272.4 kJ/GJ _{Product}	
	Large turbine	25%	5592.8 kJ/GJ _{Product}	
Natural gas	Large industrial boiler	60%	13422.6 kJ/GJ _{Product}	
	Small industrial boiler	15%	3355.7 kJ/GJ _{Product}	
Electricity		100%	5800 kJ/GJ _{Product}	
Pet coke	Industrial boiler	100%	690 kJ/GJ _{Product}	

연소 배출량 기본 계산 구조

● 각 과정의 Energy use 및 GHG emission 값 계산 구조

3 Emission factor

● 각 Combustion technology의 emission factor를 이용하여 온실가스 량 계산

각 Combustion technology의 Energy use				
Residual Oil	Industrial boiler	100%	4603 kJ/GJ _{Product}	
	Commercial boiler	33%	4146.8 kJ/GJ _{Product}	
Diesel	Stationary engine	33%	4146.8 kJ/GJ _{Product}	
	Turbine	34%	4272.4 kJ/GJ _{Product}	
	Large turbine	25%	5592.8 kJ/GJ _{Product}	
Natural gas	Large industrial boiler	60%	13422.6 kJ/GJ _{Product}	
	Small industrial boiler	15%	3355.7 kJ/GJ _{Product}	
Electricity		100%	5800 kJ/GJ _{Product}	
Pet coke	Industrial boiler	100%	690 kJ/GJ _{Product}	

Emission factor [g/GJ] : 각 연소 기술에 대하여 과정연료 1 GJ 연소 시 발생하는 온실가스 배출량 (U.S. EPA 1995)

	Commercial Boiler
VOC	1.173
co	16.686
NOx	82.225
PM10	42.530
PM2.5	38.000
SOx	0.000
CH4	0.760
N2O	0.390
CO2	78,167

Emission Factor 예시 (GREET_ Diesel Commercial Boiler)

Diesel Commercial Boiler 온실가스 배출량		
CH4	0.00315 g/GJ _{Product}	
N20	0.00162 g/GJ _{Product}	
CO2	324.143 g/GJ _{Product}	
Total	324.704 g/GJ _{Product}	

Transportation & Distribution

● 다양한 운송수단 고려

Transportation & Distribution

● Energy use & GHG emission 계산 방법

T&D의 경우 다른 과정들과는 다른 parameter들이 Energy use 계산에 필요

- Energy intensity (kJ/ton·km), 이동거리, 적재량
- 각 운송수단의 Energy intensity에 이동거리와 적재량을 곱하여 총 Energy use 계산

Feedstock/Fuel	Conventional Gasoline
Transportation Mode	Ocean Tanker
Distance (km)	1,000
Share of Fuel Type Used:	
Diesel	0.0%
Residual Oil	100.0%
Natural Gas	
LPG	
Electricity	
Energy Intensity: kJ/ton-km	40
Energy Consumption: Btu/mmBtu of fuel trans	
Total energy	984.74

Fuel Transported (Tons)	Gasoline
Ocean Tanker	90,000
Barge	20,000
Heavy Heavy-Duty Truck	25
Medium Heavy-Duty Truck	

Energy use = Energy intensity X Distance X Cargo payload = 40 kJ/ton-km X 1000 km X 90000 ton = 3600 GJ

Conventional Gasoline을 1GJ 옮길 때 드는 에너지

:. Energy use = $\frac{3600 \text{ GJ}}{90000 \text{ ton X } 40.62 \text{ GJ/ton}} = 984.74 \text{ kJ/GJ}_{product}$

*40.62 GJ/ton = 순발열량(LHV, Lower Heating Value)

Energy use 에서부터 GHG emission 계산하는 과정은 앞의 과정들과 같음

Feed Loss

● Feed loss 에 의한 요인 계산

Leakage, Venting, Evaporation, Spillage 등에 의해 Feed loss가 일어날 수 있음

- Feed loss는 최종 product 단위 량을 만드는 데에 더 많은 Energy use와 GHG emission을 야기

Ex) [Processing] Loss factor = 2 / [Transportation] Loss factor = 1.1

Loss factor

● 전 과정의 Energy use 와 GHG emissions 를 계산할 때 Loss factor 사용

Ex) LPG process

	LPG Transportation and Distribution	LPG Storage
Loss factor	1.003	1.006
CH ₄	2.498	1.032

Loss factors

$$\therefore$$
 CH₄ Total emissions =2.498 × 1.006 + 1.032

공정연료 전과정 배출량 기본 계산 구조

▶ 해당 공정 연료의 생산에서부터 최종 분배까지의 총 배출량을 고려

Ex) Conventional diesel

	Refining	T&D	Storage
Loss factor	1.000	1.002 —	1.001
CO ₂	6,018	383	125

Conventional diesel Life cycle CO_2 emission = $6,018 \times 1.002 \times 1.001 + 383 \times 1.001 + 125 = 6,544.4$

<공정 연료 Life cycle emission DB>

	Crude oil	Gasoline	Diesel	
Loss factor	N/A	1.001	1.000	
CO ₂	3,390	7,439	6,544.4	

Conventional diesel을 공정 연료로 사용 시 전과정 배출량

 \rightarrow Energy use X (3,390 X 1.000 + 6,544.4)