

Universidade Eduardo Mondlane

1	4)
	×۱
	7
1837	200

Disciplina:	Química	Nº Questões:	55
Duração:	120 minutos	Alternativas por questão:	5
Ano:	2014		

- Preencha as suas respostas na FOLHA DE RESPOSTAS que lhe foi fornecida no início desta prova. Não será aceite qualquer outra folha adicional, incluindo este enunciado. Na FOLHA DE RESPOSTAS, assinale a letra que corresponde à alternativa escolhida pintando completamente o interior do rectângulo por cima da letra. Por exemplo, pinte assim A, se a resposta escolhida for A
 A máquina de leitura óptica anula todas as questões com mais de uma resposta e/ou com borrões. Para evitar isto, preencha primeiro à lápis HB, e só depois, quando tiver

	certeza das respostas, à esferográfica.			
1.	Na explicação dos aspectos contraditório	os que o modelo de Rutherford apr	esentava, Bohr tomo	ou como base a:
		Геогіа do electromagnetismo Posição dos protões	C. Quantização	de energia
2.	O princípio que lida com a determinaçã	o simultânea da velocidade e da po	sição do electrão foi	formulado por:
	A. Bohr B. Pauli		D. De Broglie	E. Heisenberg
3.	São dados três átomos A, B e C. O átom de A. O átomo B é isóbaro de C e isótono			tem 94 neutrões e é isótopo
	A. 160 B. 84	C. 74	D. 164	E. 79
4.	Na tabela periódica, os elementos estão			1. 1)
	A. Número de massa B. Massa atómi	ca C. Número atómico	D. Raio atómico	E. Electroafinidade
5.	Um átomo tem nº de massa 31 e 16 neu			
	A . 2 B . 4	C. 5	D .3	E . 8
6.	Que método de separação de misturas é	mais adequado para separar arei	a da limalha de ferro	0?
	A. Separação magnética B. Filt Um átomo que possui configuração 1s ² 2	ração C. Ventilação	D. Catação	E. Decantação
7.	Um átomo que possui configuração 1s ² 2	2s ² 2p ⁶ 3s ² 3p ⁵ , apresenta na camad	la mais externa:	
	A. 5 electrões B. 7 electrões		D. 13 electrões	E. 15 electrões
8.	Quais, de entre as moléculas seguintes (1	noléculas 1 a 5), apresenta(m) a li	gação covalente apol	ar?
	1) CO 2) CO ₂ 3) O ₂ 4) Cl_2	5) HF	
	A. 2 e 4 O hipoclorito de cálcio [Ca(ClO) ₂], ur	C. 2 e 5	D. 1 e 5	E. 2, 3 e 5
9.	O hipoclorito de cálcio [Ca(ClO) ₂], ur indicada na fórmula, elementos das fam	n composto de larga aplicação n	o tratamento das á	guas, apresenta, na ordem
	A. Metal alcalino-terroso, halogénioB. Metal alcalino, calcogénio e halog			
	C. Metal alcalino, halogénio e calcog			
	D. Metal alcalino-terroso, halogénio			
10	E. Metal alcalino-terroso, calcogénio Um elemento químico com número atón			
10.		anco 15 e:		
	_			
11	A. Um metal B. Um não met	al C. Semi metal I	D. Um halogéneo	E. Gás nobre
11.	A. Um metal B. Um não metal Considere os átomos X, com número at	al C. Semi metal I		
11.	A. Um metal B. Um não metal Considere os átomos X, com número at composto com a seguinte fórmula:	al C. Semi metal I ómico 13, e os átomos Y com núm	ero atómico 8. Entro	e esses átomos forma-se um
11.	A. Um metal Considere os átomos X, com número at composto com a seguinte fórmula: A. X ₃ Y ₂ B. X ₂ Y ₃	al C. Semi metal I ómico 13, e os átomos Y com núm C. XY	ero atómico 8. Entre \mathbf{D} . $\mathbf{X}_4\mathbf{Y}_3$	e esses átomos forma-se um $ \textbf{E.} \ X_2 Y_5 $
	A. Um metal Considere os átomos X, com número at composto com a seguinte fórmula: A. X ₃ Y ₂ B. X ₂ Y ₃ O cloreto de sódio é largamente utilizad for consumido em excesso, favorecendo	al C. Semi metal I ómico 13, e os átomos Y com núm C. XY I o pela população na preparação do a retenção de líquidos e, conseq	ero atómico 8. Entre D. X_4Y_3 e alimentos, mas pod uentemente, produzi	e esses átomos forma-se um E. X ₂ Y ₅ le ser prejudicial à saúde se indo a elevação da pressão
	A. Um metal Considere os átomos X, com número at composto com a seguinte fórmula: A. X ₃ Y ₂ B. X ₂ Y ₃ O cloreto de sódio é largamente utilizad for consumido em excesso, favorecendo arterial. Em relação a essa substância,	al C. Semi metal I ómico 13, e os átomos Y com núm C. XY I o pela população na preparação do a retenção de líquidos e, conseq	ero atómico 8. Entre D. X_4Y_3 e alimentos, mas pod uentemente, produzi	e esses átomos forma-se um E. X ₂ Y ₅ le ser prejudicial à saúde se indo a elevação da pressão
	A. Um metal Considere os átomos X, com número at composto com a seguinte fórmula: A. X ₃ Y ₂ B. X ₂ Y ₃ O cloreto de sódio é largamente utilizad for consumido em excesso, favorecendo arterial. Em relação a essa substância, cloreto são, respectivamente:	al C. Semi metal I ómico 13, e os átomos Y com núm C. XY I o pela população na preparação de a retenção de líquidos e, conseq o tipo de ligação e o número total	ero atómico 8. Entre D. X ₄ Y ₃ e alimentos, mas pod uentemente, produz de pares de electrõe	e esses átomos forma-se um
	A. Um metal Considere os átomos X, com número at composto com a seguinte fórmula: A. X ₃ Y ₂ B. X ₂ Y ₃ O cloreto de sódio é largamente utilizad for consumido em excesso, favorecendo arterial. Em relação a essa substância, cloreto são, respectivamente: A. Covalente e 4 B. Iónica e 2	al C. Semi metal I ómico 13, e os átomos Y com núm C. XY I o pela população na preparação de a retenção de líquidos e, conseq o tipo de ligação e o número total C. Iónica e 6	ero atómico 8. Entre D. X ₄ Y ₃ e alimentos, mas pod uentemente, produz de pares de electrõe D. Iónica e 4	E. X_2Y_5 le ser prejudicial à saúde se indo a elevação da pressão es da última camada do ião E. Covalente e 8
12.	A. Um metal Considere os átomos X, com número at composto com a seguinte fórmula: A. X ₃ Y ₂ B. X ₂ Y ₃ O cloreto de sódio é largamente utilizad for consumido em excesso, favorecendo arterial. Em relação a essa substância, cloreto são, respectivamente: A. Covalente e 4 B. Iónica e 2 Uma ligação de carácter acentuadamente	al C. Semi metal I ómico 13, e os átomos Y com núm C. XY I o pela população na preparação do a retenção de líquidos e, conseq o tipo de ligação e o número total C. Iónica e 6 I te iónico se estabelece quando os át	ero atómico 8. Entre D. X ₄ Y ₃ e alimentos, mas pod uentemente, produz de pares de electrõe D. Iónica e 4	E. X_2Y_5 le ser prejudicial à saúde se indo a elevação da pressão es da última camada do ião E. Covalente e 8
12.	A. Um metal Considere os átomos X, com número at composto com a seguinte fórmula: A. X ₃ Y ₂ B. X ₂ Y ₃ O cloreto de sódio é largamente utilizad for consumido em excesso, favorecendo arterial. Em relação a essa substância, cloreto são, respectivamente: A. Covalente e 4 B. Iónica e 2	al C. Semi metal I ómico 13, e os átomos Y com núm C. XY I o pela população na preparação do a retenção de líquidos e, conseq o tipo de ligação e o número total C. Iónica e 6 I te iónico se estabelece quando os át	ero atómico 8. Entre D. X ₄ Y ₃ e alimentos, mas pod uentemente, produz de pares de electrõe D. Iónica e 4	E. X_2Y_5 le ser prejudicial à saúde se indo a elevação da pressão es da última camada do ião E. Covalente e 8
12.	A. Um metal Considere os átomos X, com número at composto com a seguinte fórmula: A. X ₃ Y ₂ B. X ₂ Y ₃ O cloreto de sódio é largamente utilizad for consumido em excesso, favorecendo arterial. Em relação a essa substância, cloreto são, respectivamente: A. Covalente e 4 B. Iónica e 2 Uma ligação de carácter acentuadament A. Números de oxidação acentuadam B. Electrões não compartilhados. C. Grupos diferentes de classificação	c. XY o pela população na preparação do a retenção de líquidos e, consequente o tipo de ligação e o número total C. Iónica e 6 de iónico se estabelece quando os át mente diferentes.	ero atómico 8. Entre D. X ₄ Y ₃ e alimentos, mas pod uentemente, produz de pares de electrõe D. Iónica e 4	E. X_2Y_5 le ser prejudicial à saúde se indo a elevação da pressão es da última camada do ião E. Covalente e 8
12.	A. Um metal Considere os átomos X, com número at composto com a seguinte fórmula: A. X ₃ Y ₂ B. X ₂ Y ₃ O cloreto de sódio é largamente utilizad for consumido em excesso, favorecendo arterial. Em relação a essa substância, cloreto são, respectivamente: A. Covalente e 4 B. Iónica e 2 Uma ligação de carácter acentuadamente A. Números de oxidação acentuadam B. Electrões não compartilhados.	c. XY co pela população na preparação do a retenção de líquidos e, consequentido de ligação e o número total C. Iónica e 6 de iónico se estabelece quando os átmente diferentes. Deperiódica. Expression de ligação e o periódica. Expression de ligação e o número de ligação e o número total de iónico se estabelece quando os átmente diferentes.	ero atómico 8. Entre D. X ₄ Y ₃ e alimentos, mas pod uentemente, produz de pares de electrõe D. Iónica e 4	E. X_2Y_5 le ser prejudicial à saúde se indo a elevação da pressão es da última camada do ião E. Covalente e 8

14.				
	conduz corrente em nenhuma situação. O tipo de	igação que existe nessas	s substancias e respectiv	'amente:
	A. Iónica, metálica e iónica.B. Metálica, iónica e covalente apolar.			
	C. Covalente polar, iónica e apolar.			
	D. Iónica, metálica e covalente apolar.			
	E. Nenhuma das opções			
15.	, <u> </u>	ção química abaixo: 3H ₂ SO ₄ → K ₂ SO ₄ + 2M	"CO ↓ 9U O ↓ 5 O	
	A. Pode ser usada em volumetria.	$\mathbf{SH}_2\mathbf{SO}_4 \rightarrow \mathbf{K}_2\mathbf{SO}_4 + \mathbf{ZM}_2$	$113O_4 + 3O_2O + 3O_2$	
	B. A variação do número de oxidação do mang			
	C. É acompanhada por uma intensa variação de	cor.		
	D. O ácido sulfúrico não sofre oxi-redução.E. O peróxido de hidrogénio é oxidante			
16.		O, NH ₃ , as que apresent	tam ligações polares e a	presentam carácter polar
	são:	•		•
	A. Todas, excepto C_2H_6 B. Todas, exce	onto CO o C U	C. Todas, excepto	СЦаСО
	D. Todas, excepto C_2H_6 e NH ₃ E. Todas	epto CO e C ₂ H ₆	C. Todas, excepto	$C_2\Pi_6 \in CO_2$
17.	7. A picada das formigas é irritante devido à presenç		ido nas suas secreções.	Qual das seguintes
	substâncias é mais eficiente para reduzir tal irrita	ção?		
	A. Sabão B. Suco de laranja C. So		D. Vinagre	E. Suco de limão
18.	3. Indique qual dos óxidos apresentados a seguir é un	n óxido ácido?		
			D . CO ₂	E . K ₂ O
19.	1 9 7	dicado quando se quer d	listinguir entre uma po	rção de água destilada e
	uma solução de água salgada, sem levar à boca, é:			
	A. Filtrar os líquidos B. Observar as D. Usar papel de indicador E. Decantar os	s diferentes colorações	C. Medir a condut	ividade eléctrica
20.	• •		ssim temos, por exem	nlo, sublimado corrosivo
	(HgCl ₂), cal viva (CaO), potassa cáustica (KOH)			
	cáustica e o espírito de sal pertencem, respectivam	ente, às funções:		
	A. Ácido, base, óxido, ácido B. Sal, sal, bas		C. Ácido, base, ba	ise, sal
21	D. Sal, óxido, base, ácido E. Ácido, base Sabendo que a solubilidade do PbBr ₂ à 25°C é igua	e, sal, óxido	V Genela.	
21.				T 2 6 10-6
22	A. 6.3x10 ⁻⁶ B. 0.92x10 ⁻⁴ C. Considere os seguintes óxidos: CO ₂ , NO, Cs ₂ O, e H	L. 9.2X10 LO Podem ser classific	D. 4.1X10 ados respectivamente c	E. 3.6x10 ⁻⁶
22.	_	co, básico, neutro	C. Ácido, neutro,	
		tro, neutro, ácido	C. Acido, fleutro,	basico, fieutro
23.		n partir do ácido concen	trado (16M), o volume	de água, em litros, a ser
	utilizado será de:			
			D. 1.03	E. 1.17
24.		uinte: + $H_2O(l) \rightarrow CO(g) + 3$	3 H. (a)	
	De acordo com as entalpias de formação seguintes			$I/mol\ e\ \Delta_f H(CO) = -108$
	KJ/mol, a entalpia da reacção acima à 25°C e 1 at		, 1 (2)	•
	A. + 254 kJ B. - 127 kJ	C . - 470 kJ	$\mathbf{D}_{\bullet} + 508 \text{ kJ}$	E. - 254 kJ
25.	5. O coeficiente de solubilidade de brometo de potáss	sio em 100 g de água a 3	0°C é de 70 g. Se se mis	
	de potássio com 1 L de água (densidade 1g/mL), a	mesma temperatura, fo	ormar-se-á uma solução	•
26			D. sobressaturada	E. colorida
26.	 Tendo em conta a equação termoquímica seguinte combustão de 96g de dióxido de enxofre será [Ar(s) 		$SO_3(g) \Delta H_r^{\circ} = -99.1 \text{ kJ. } C$) calor libertado pela
			D 0512 (1.1	TC 140.651.I
27.			D. 9513.6kJ fectam o estado de equi	E148.65kJ
		_	_	-
		aperfície de contacto e superfície de contacto	C. Pressão e catal	เรลน01
28.	3. Calcule a molalidade duma solução aquosa resulta	inte da mistura de duas	soluções de NaOH a 4%	% e a 36% (por massa).
	[Ar(Na)=23 uma; Ar(O)=16 uma; Ar(H)=1 uma]			
	A. 40 g B. 1 molal	C. 20 mol	D. 160 molal	E. 6.25 molal

29.	A fórmula empírica d (Dados: $M_C = 12$ uma		contém 40% de carbono; = 1 uma)	6,66% de hidrogénio e 5	53,33% de oxigénio é:
	A. C_2H_4O		$\mathbf{C.} \ \mathbf{C_2H_2O_4}$	D . CH₃O	E . $C_2H_3O_2$
30.	Em uma reacção, o co		C. C ₂ 11 ₂ O ₄	D . C113O	E . C ₂ H ₃ O ₂
	A. Sempre forma	nrodutos			
	B. É um compost				
		energia que os reagen			
	D. Possui mais ei E. Age como cat	nergia que os produtos alisador	s ou reagentes.		
31.			solução aquosa contendo	o 20g do ácido e 50g de á	gua é de: M _{H2SO4} = 98 g/mol e
	$M_{\rm H2O} = 18 \text{ g/mol}$				
	A. 0.068		C. 0.022	D. 0.011	E. 0.042
32.	De acordo com a teor	ia de ácidos e bases d	le Bronsted, o ácido conj	ugado da água é o:	
- 22	A. Ião hidroxila	B. Água oxigena	da C. Ião hidrón	nio D. hidrogéni	o Nenhuma das opções
33.		=	nde a concentração de iõ		
2.4	A. 6x10 ⁻⁴	B. 2x10 ⁻³	C. 4x10 ⁻¹ igual a 1.7x10 ⁻⁵ , o valor d	D. 2x10 ⁻¹	E. 9x10 ⁻³
34.					
35	A. 1.9x10 ⁻⁶	B. 1.0x10 ⁻¹⁻¹	C. 5,9x10 ⁻¹⁰ ram-se em equilíbrio con	D. 1.4x10 ⁻²	E . 6.3x10 ⁻⁴
33.	112O4 € 11O2, gases poi	uentes do ar, encont	N_2O_4	2 NO ₂	
	Em uma experiência.	. nas CNTP. introdu	•		L. Estabelecido o equilíbrio, a
			de Kc (em termos de con		
	A. 2.4 x 10 ⁻³	B. 4.8×10^{-3}	C. 5.0 x 10 ⁻⁴ escrita pelo equilíbrio seg	D. 5.2×10^{-3}	E. 8.3 x 10 ⁻²
36.	A combustão de mono	óxido de carbono é d	escrita pelo equilíbrio seg	guinte:	
	Sabendo que à 723°C.	o K. é 0.0020. calcul	$2CO(g) + O_2(g) = 2$ e o valor de K_c a esta tem		ntm/mol.K1
	A. 0.164	•	C. 0.12		
37.	Considere a seguinte	equação química:	C. 0.12	D. 5.5/X10	L. 1.28
			$HS^{-}_{(aq)} + H_2O_{(l)} \rightarrow H_2$	$_2S_{(aq)} + OH_{(aq)}$	
	Na equação química a	apresentada, HS:			
	A. é ácido conjugado		é base conjugada do acido	C. é base co	onjugada do acido H ₂ S
38.	D. é ácido conjugado	da base H ₂ S E.	nenhuma das opções 98K é de 9.33x10 ⁻⁵ , o seu	K _{n.} será ional a	
	A. 4.70x10 ⁻¹⁰	B. 1.59x10 ⁻¹³	C. 8.7x10 ⁻⁹	D. 0.59x10 ⁻¹⁰	E. 3.34x10 ⁻⁸
39.					concentração hidrogeniónica e
	o pH da solução, são,	respectivamente:		•	, ,
	A. 10 ⁻² e 2	B. 0.099 e 1	C. 10 ⁻³ e 3 scrito pela equação da re	D. 10^3 e 3	E. 10 ⁻² e 3
40.	O processo de decomp	posição de N ₂ O ₅ é des	scrito pela equação da re 12 for de 0.0072 mol/L.s, a	acção seguinte: $2N_2O_5(s)$	$\mathbf{g}) \rightarrow 4\mathbf{NO}_2(\mathbf{g}) + \mathbf{O}_2(\mathbf{g}).$
		•	-		•
41.			s C. 7.2x10 ⁻² mol/L.s Incia largamente utilizada		
т1.			o 0.1M, sabendo que esta		
	A. 0.01%	B. 3.0%	$\mathbf{C.}\ 10^{-3}\ \%$	D. 1.0%	E. 0.1%
42.				apresenta valores de pH	E. 0.1% que podem variar de 7,1 a 7,7.
	Sendo assim, pode-se	afirmar que este san	gue é:		
	A. ora ácido, ora alca		ora ácido, ora neutro	C. ora alcal	ino, ora neutro
43.	D. sempre ácido O produto de solubilio	<u>E.</u> dade de AgBr é de 5.	sempre alcalino 2x10 ⁻¹³ . Se a solução cont	tém 2x10 ⁻² mol/l de iões I	Br ⁻ , a concentração máxima de
13.	Ag ⁺ que pode existir r	1a solução sem que p	recipite o AgBr é:	ioni zaro inogi de 1005 i	, a concentração mamma de
	A. 2.0×10^{-2}	B. 2.6×10^{-11}	C. 2.0×10^2	D . 2.6×10^{11}	E . 3.2×10^{-11}
44.	A reacção CO(g) + 0	$Cl_2(g) = COCl_2(g)$	g) decorre num recipien	te fechado, a uma temp	peratura constante, em que os
					io restam 50% da quantidade ue a pressão inicial da mistura
	reagente era igual a 1		lamorio da imstura gaso	sa (cm ki a), savenuv q	ac a pressuo iniciai da iiistura
	A. 50	B. 75	C. 100	D. 125	E. 35
45.					
1	Que volumes (em litro	os) das soluções de H	Cl 2M e HCl 6M se deve	juntar para obter 500 m	ı de uma solução 3 M?

D. álcool, cetona e amina

	· · · · · · · · · · · · · · · · · · ·
	A. 0.125 e 0.375 B. 0.365 e 0.135 C. 0.165 e 0.335 D. 0.275 e 0.225 E. 0.145 e 0.355
46.	Para aumentar o pH de uma solução aquosa é necessário borbulhar nela o gás:
	A. Clorídrico (HCl) B. Amoníaco (NH ₃) C. Carbónico (CO ₂) D. Hidrogénio (H ₂) E. Hélio (He)
47.	O esquema a seguir representa a pilha ferro-hidrogénio (eletrodo-padrão)
	Ferro sólido Ponte Salina
	O voltímetro indica a força eletromotriz em condições-padrão. O ânodo desta pilha e o potencial padrão de redução do ferro são, respectivamente:
10	A. Eléctrodo de ferro e - 0,44V B. Eléctrodo de ferro e + 0,22V C. Eléctrodo de ferro e + 0,44V D. Eléctrodo de H^+/H^2 e - 0,44V E. Eléctrodo de H^+/H^2 e + 0,44V
48.	Mergulhando uma placa de cobre numa solução de $AgNO_3$, observa-se a formação de uma coloração azulada, característica da presença de $Cu^{2+}(aq)$ e de um depósito de prata. Sobre essa reacção, pode-se afirmar que:
	 A. A [NO₃⁻] diminui no processo. B. Cu metálico é oxidado pelo Ag⁺. C. Ag⁺ cede electrões à placa de cobre. D. Ag⁺ é o agente redutor. E. Um ião Ag⁺ é reduzido por cada átomo de cobre.
49.	Na reacç ão re presentada pela equação seguinte, os coeficientes x, y, z e y assumen respectivamente, os valores:
	$A.$ L, 8, \bigcirc L \bigcirc L, 5, 6, 7 e 4
50.	O tempo necessário para depositar 54 g de prata em um processo electrolítico cuja intensidade de corrente é 9,65 A usando uma solução de $AgNO_3$ é igual a: (Dados: $M_{Ag} = 108$ uma)
	A . 1 h 20 min 23s B . 1 h 16 min 23s C . 1 h 20 min 55s D . 1 h 19 min 40s E . 1 h 23 min 20s
51.	A substância de fórmula C_8H_{16} representa um:
	 A. Alcano de cadeia aberta D. Composto aromático B. Alceno de cadeia aberta C. Alcino de cadeia aberta E. Alcino de cadeia fechada
52.	Da reacção de etanoato de isopropilo com excesso da solução aquosa de hidróxido de sódio, obtém-se:
	 A. Etanoato de hidroxilo e isopropilato de sódio. B. Isopropanol e acetato de sódio. C. Anidrido etanóico e água. D. Isopropilato de sódio e Acetato de etilo. E. Ácido isopropílico e etanol
53.	A aspirina, um dos medicamentos que obteve maior sucesso na terapêutica moderna, também se pode chamar?
	A. Ácido tiosalicílico B. Ácido acetil-salicílico C. Acetanilida D. Ácido para-amino benzóico E. Nenhuma das opçoes
54.	Quantos átomos de carbono tem um alcano com 42 átomos de hidrogênio?
٠	A. 20 B. 19 C. 23 D. 42 E. 24
55.	No composto H ₂ N – CH ₂ – CH ₂ – COOH, as funções presentes são:
	A. Nitrilo e ácido B. Amina e ácido C. Amida e álcool

E. álcool, aldeído e amina