Cenni di Complessità computazionale

Complessità computazionale Analisi della complessità: stima del costo degli algoritmi in termini di risorse di calcolo Tempo, spazio di memoria Esempio: dato un vettore v di n interi ordinati in maniera non decrescente verificare se un intero k è presente o meno in v

Ricerca sequenziale

```
int ricerca(int v[], int size, int k)
{  int i;
  for (i=0; i<size; i++)
    if (v[i] == k) return i;
  return -1;
}</pre>
```

... nessun vantaggio dal fatto che v è ordinato ...

Valutazione del tempo di esecuzione

- Variabili che influenzano il tempo di esecuzione
 - La macchina usata
 - La dimensione dei dati
 - La configurazione dei dati
- Modello astratto per la valutazione del tempo
 - Indipendente dalla macchina usata
 - Stima in funzione della dimensione dell'input
 - Comportamento asintotico
 - Stima del caso peggiore di configurazione dei dati

Esempio di macchina astratta

- Istruzioni e condizioni atomiche hanno costo unitario
- Le strutture di controllo hanno un costo pari alla somma dei costi dell'esecuzione delle istruzioni interne, più la somma dei costi delle condizioni
- Le chiamate a funzione
 - hanno un costo pari al costo di tutte le sue istruzioni e condizioni;
 - il passaggio dei parametri ha costo nullo
- Istruzioni e condizioni con chiamate a funzioni hanno costo pari alla somma del costo delle funzioni invocate più uno

Esempio

Calcolare il costo per l'esempio precedente nel caso v[n] = {1, 3, 9, 17, 34, 95, 96, 101} e k=9

int ricerca(int v[], int size, int k)
{ int i;
 for (i=0; i<size; i++)
 if (v[i] == k) return i;
 return -1;
}

Totale = 10

Cosa cambia se k=10?

Caso peggiore

- Caso che a parità di dimensione produce il costo massimo
 - Se accettabile nel caso peggiore ...
- Nel caso dell'esempio, k non presente

```
int ricerca(int v[], int size, int k)
{  int i;
  for (i=0; i<size; i++)
    if (v[i] == k) return i;
  return -1;
}</pre>
Totale = 3n + 3
```

8

Caso medio

- Supponiamo che il numero cercato sia presente e che ci sia equiprobabilità dell'input
 - ► La probabilità che k sia in posizione i (1<=i<=n) vale 1/n
 - Costo del caso in posizione i: 3i+1
 - Costo caso medio:

$$\frac{1}{n} \sum_{i=1}^{n} (3i+1) = \frac{1}{n} (3^{n^2+n} + n) =$$

$$= \frac{3n+5}{2}$$

Costo come funzione
della dimensione dell'input

Cosa è la dimensione ?

Vettore ... numero di elementi
Albero ? ... numero dei nodi
Grafo ? ... numero archi più numero nodi

Esempio: calcolo del fattoriale, con tipo intero non limitato

```
int fattoriale(int n)
{
    int i = 1;
    int fatt = 1;
    while (i <=n) {
        fatt = fatt * i;
        i++;-}
    return fatt;
}

Totale = 3n + 4
```

Dimensione dell'input

- Parametro n
 - ■Costo = 3n+4 (lineare)
- Numero d di bit necessari per rappresentare n:

 - ightharpoonupCosto = $3 \times 2^d + 4$ (esponenziale)

12

Comportamento asintotico

- Nell'analizzare la complessità di tempo di un algoritmo siamo interessati a come aumenta il tempo al crescere della taglia n dell'input.
- Siccome per valori "piccoli" di n il tempo richiesto è comunque poco, ci interessa soprattutto il comportamento per valori "grandi" di n (il comportamento asintotico)

Comportamento asintotico

- Supponiamo di avere, per uno stesso problema, sette algoritmi diversi con diversa complessità.
- Supponiamo che un passo base venga eseguito in un microsecondo (10-6 sec).

Tempi di esecuzione (in secondi) in base a n.

	n=10	n=100	n=1000	$n=10^6$
\sqrt{n}	3*10 ⁻⁶	10 ⁻⁵	3*10-5	10 ⁻³
n + 5	15*10 ⁻⁶	10^{-4}	10^{-3}	1 sec
2*n	2*10 ⁻⁵	2*10-4	2*10-3	2 sec
n^2	10^{-4}	10^{-2}	1 sec	$10^6 (\sim 12 \text{gg})$
$n^2 + n$	10^{-4}	10^{-2}	1 sec	$10^6 (\sim 12 \text{gg})$
n^3	10^{-3}	1 sec	$10^5 (\sim 1 \mathrm{g})$	10^{12} (~300
				secoli)
2 ⁿ	10^{-3}	$\sim 4*10^{14}$	$\sim 3*10^{287}$	$\sim 3*10^{301016}$
		secoli	secoli	secoli

1.0

Comportamento asintotico

- Per piccole dimensioni dell'input, osserviamo che tutti gli algoritmi hanno tempi di risposta non significativamente differenti.
- L' algoritmo di complessità esponenziale ha tempi di risposta ben diversi da quelli degli altri algoritmi (migliaia di miliardi di secoli contro secondi, ecc.)
- Per grandi dimensioni dell'input (n=106), i sette algoritmi si partizionano nettamente in cinque classi in base ai tempi di risposta:

Algoritmo rad(n) frazioni di secondo

Algoritmo n+5, 2*n secondi

Algoritmo n², n²+n giorni

■ Algoritmo n³ secoli

Algoritmo 2ⁿ miliardi di secoli

Notazione O ed Ω

- f e g funzioni dai naturali ai reali positivi
- f(n) è O di g(n), f(n)∈O(g(n)), se esistono due costanti positive c ed n_o tali che se n >= n_o, f(n) <= c g(n)
 - Applicata alla funzione di complessità f(n),la notazione O ne limita superiormente la crescita e fornisce quindi una indicazione della bontà dell'algoritmo
- ► f(n) è Omega di g(n), $f(n) \in \Omega(g(n))$, se esistono due costanti positive c ed n_o tali che se $n \ge n_o$, c $g(n) \le f(n)$
 - La notazione Ω limita inferiormente la complessità, indicando così che il comportamento dell'algoritmo non è migliore di un comportamento assegnato

18

Notazione asintotica O (limite superiore asintotico)

Esempi

$$f(n) = 2n^{2} + 5n + 5 = O(n^{2})$$
infatti $0 \le 2n^{2} + 5n + 5 \le cn^{2}$
per $c = 4$ ed $n_{0} = 5$

Vedremo che in generale per $a_{2} > 0$

$$f(n) = a_{2}n^{2} + a_{1}n + a_{0} = O(n^{2})$$

$$f(n) = 2 + \sin n = O(1)$$
infatti $0 \le 2 + \sin n \le c \cdot 1$
per $c = 3$ ed $n_{0} = 1$

Notazione asintotica Θ (limite asintotico stretto)

22

Complessità dei Problemi

- Studiare la complessità di un problema (ossia quello che un algoritmo risolve) è molto diverso dallo studiare la complessità di un algoritmo.
 - Per poter dire che un problema ha complessità O(g(n)) (ipotizziamo di parlare del caso peggiore) basta trovare un qualsiasi algoritmo che lo risolva con O(g(n)).
 - Per poter affermare che un problema è $\Omega(g(n))$ occorre invece dimostrare matematicamente che tutti i possibili algoritmi (inventati o non) lo risolvano alla meglio come $\Omega(g(n))$.
- Per limitare superiormente un problema basta trovare almeno un algoritmo con complessità O(g(n)),
- Per limitare il problema inferiormente bisogna studiare ogni possibile soluzione (il problema, in linea teorica, potrebbe essere risolto in tempo costante, ma si può sempre dimostrare il contrario).
 - Quando la complessità di un algoritmo è pari al limite inferiore di complessità determinato per un problema, l'algoritmo si dice ottimo (in ordine di grandezza)

Individuazione di limiti inferiori

- Dimensione n dei dati: se nel caso peggiore occorre analizzare tutti i dati allora Ω(n) è un limite inferiore alla complessità del problema
 - Esempio: ricerca di un elemento o del massimo in un array
 - E' una tecnica banale, la maggior parte dei problemi hanno limiti inferiori più alti
- <u>Eventi contabili</u>: la ripetizione di un evento un dato numero di volte è essenziale per la risoluzione di un problema
 - ► Esempio: generare tutte le permutazioni di n oggetti
 - L'evento è la generazione di una nuova permutazione che si ripete per tutte le permutazioni, ossia n! volte.

24

Regole per la valutazione della complessità (1)

- Scomposizione
 - alg è la sequenza di alg1 ed alg2;
 - alg1 è O(g1(n)); alg2 è O(g2(n))
 - alg è O(max(g1(n),g2(n)))
- Esempio

Regole per la valutazione della complessità (1)

- Blocchi annidati
 - alg è composto da due blocchi annidati;
 - Blocco esterno è O(g1(n)); blocco interno è O(g2(n))
 - alg è O(g1(n)*g2(n))
- Esempio

Esempio: Prodotto di matrici float A[N][M], B[M][P], C[N][P]; int i, j, k; for(i=0; i<N; i++) for(j=0; j<P; j++) { C[i][j]=0; for(k=0; k<M; k++) C[i][j]+=A[i][k] * B[k][j]; }

Esempio: Prodotto di matrici

```
float A[N][M], B[M][P], C[N][P];
int i, j, k;

for(i=0; i<N; i++)
   for(j=0; j<P; j++) {
        C[i][j]=0;
        for(k=0; k<M; k++)
        C[i][j]+=A[i][k] * B[k][j];
}</pre>
```

Complessità asintotica del programma: O(N*P*M).

28

Regole per la valutazione della complessità (2)

- Sottoprogrammi ripetuti
 - alg applica ripetutamente un certo insieme di istruzioni la cui complessità all'i-esima esecuzione vale f_i(n); il numero di ripetizioni è g(n)

■alg è O($\sum f_i(n)$)

i = 1

per f;(n) tutte uguali ... O(g(n) f(n))

Regole per la valutazione della complessità (3)

- Operazione dominante
 - Sia f(n) il costo di esecuzione di un algoritmo alg;
 - ■Un'istruzione i è dominante se viene eseguita g(n) volte, con f(n) <= a g(n)</p>
 - Se un algoritmo ha una operazione dominante allora è O(g(n))

Esempio 30 Ricerca Binaria int ricerca(int v [], int size, int k) { int inf =0, sup = size-1; while (sup >=inf) Istruzione int med = (sup + inf) / 2;dominante if (k==v[med])return med; else if (k>v[med]) inf = med+1;else sup = med-1return -1; }

Ricerca binaria Complessità

- Osserviamo che la dimensione del problema si dimezza ad ogni ciclo.
 - Inizialmente è n, quindi n/2, poi n/4, e così via.
- Il ciclo si arresta quando la dimensione del problema è 1, dopo circa log₂ n iterazioni.
- Eseguiamo un numero costante di confronti per ogni iterazione. Il numero massimo di confronti sarà:

$$f(n) = O(\log n)$$

32 Esercizio

- Scrivere la versione ricorsiva dell'algoritmo di ricerca binaria
 - Versione iterativa:

Ricorsione e valutazione della complessità

- Negli algoritmi ricorsivi la soluzione di un problema si ottiene applicando lo stesso algoritmo ad uno o più sottoproblemi
- La complessità viene espressa nella forma di una relazione di ricorrenza
 - La funzione di complessità f(n) è definita in termini di se stessa su una dimensione inferiore dei dati
- Per la valutazione della complessità valutiamo:
 - Il lavoro di combinazione (preparazione delle chiamate ricorsive e combinazione dei risultati ottenuti risultati ottenuti), che può essere:
 - Costante, lineare, ...
 - La forma dell'equazione di ricorrenza, che può essere
 - Con o senza partizione dei dati
 - Il numero di termini ricorsivi (chiamate ricorsive nella funzione)

34

Ricorsione e valutazione della complessità

- Lavoro di combinazione costante
 - a) $T(n) = a_1 T(n-1) + a_2 T(n-2) + ... a_n T(n-h) + b per n > h$
 - <u>Esponenziale con n</u>: se sono presenti almeno 2 termini (l'algoritmo contiene almeno 2 chiamate ricorsive)
 - <u>Lineare con n</u>: se è presente un solo termine (singola chiamata ricorsiva)
 - b) T(n) = a T(n/p) + b per n > 1
 - log n se a = 1 (singola chiamata ricorsiva)
 - n^{log}_p a se a > 1 (più chiamate ricorsive)
- 2. Lavoro di combinazione lineare
 - a) T(n) = T(n-h) + b n + d per n > hQuadratico con n
 - b) T(n) = a T(n/p) + b n + d
 - Lineare con n se a < p</p>
 - n log n se a = p
 - n^{log} a se a > p

Relazioni di ricorrenza

Lavoro di combinazione costante (1)

- Esempio: Fibonacci
 - T(0) = T(1) = C
 - \rightarrow T(n) = T(n-1) + T(n-2) + b
- unsigned fib(unsigned n) {
 if (n<2) return n;
 else return fib(n-1)+fib(n-2);
 }</pre>
- Rientra nel caso 1.a: Lavoro di combinazione costante, senza partizione dei dati
- a) $T(n) = a_1 T(n-1) + a_2 T(n-2) + ... a_n T(n-h) + b per n > h$
 - <u>Esponenziale con n</u>: se sono presenti almeno 2 termini (l'algoritmo contiene almeno 2 chiamate ricorsive)
 - <u>Lineare con n</u>: se è presente un solo termine (singola chiamata ricorsiva)
 - Sono presenti 2 termini, quindi T(n) è esponenziale con n

36

Relazioni di ricorrenza

Lavoro di combinazione costante (2)

- Esempio: Fattoriale (h = 1)
 - T(0) = T(1) = C
 - T(n) = T(n-1) + b

- int fact(int n) {
 if (n==0) return 1;
 else return n*fact(n-1);
 }
- Rientra nel caso 1.a: Lavoro di combinazione costante, senza partizione dei dati
- a) $T(n) = a_1 T(n-1) + a_2 T(n-2) + ... a_n T(n-h) + b per n > h$
 - Esponenziale con n: se sono presenti almeno 2 termini (l'algoritmo contiene almeno 2 chiamate ricorsive)
 - Lineare con n: se è presente un solo termine (singola chiamata ricorsiva)
 - ▶ È presente un solo termine, quindi T(n) è lineare con n

Relazioni di ricorrenza

Lavoro di combinazione costante (3)

- Esempio: Ricerca binaria
 - T(1) = C
 - T(n) = T(n/2) + b
- Rientra nel caso 1.b: Lavoro di combinazione costante, con partizione dei dati
 - b) T(n) = a T(n/p) + b per n > 1log n se a = 1 (singola chiamata ricorsiva) $n^{\log_p a}$ se a > 1 (più chiamate ricorsive)
 - È presente una sola chiamata ricorsiva (a=1), quindi T(n) è logaritmico con n

38

Ricerca Binaria Ricorsiva

```
int ricercaBinaria(int valore, int vettore[], int primo, int
ultimo)
{
    if (primo > ultimo) return -1;
    int mid=(primo+ultimo)/2;
    if (valore==vettore[mid])
        return mid;
    if (valore<vettore[mid])
        return ricercaBinaria(valore,vettore,primo,mid-1);
    else
        return ricercaBinaria(valore,vettore,mid+1,ultimo);
}</pre>
```