Estructura de Computadors

Grado de Ingeniería Informática
ETSINF

Tema 7: Adaptadors e Interfícies d'Entrada/Eixida

Objectius

- Conèixer la visió del programador dels dispositius de Entrada
 / Eixida del computador
- Connectar interfícies de perifèric al bus
- Conèixer els elements basics de tota interfície de perifèric i saber com es connecta al bus del sistema
- Comprendre els diferents mecanismes d'adreçament de interficies a perifèrics.
- Dissenyar Sistemes de selecció de interfícies d'acord amb un mapa de entrada/eixida definit
- Escriure programes en assemblador que tracten interfícies de perifèric senzilles

Contingut

- I El sistema d'Entrada/Eixida
 - Elements de la unitat d'E/E
 - Funcions del adaptador d'E/E
 - Exemples de adaptadors
- 2 El concepte d'interfície de Entrada/Eixida
 - Diagrama simplificat de una interfície d'E/E
 - · Registres d'interfície
 - Adreçament de l'interfície
 - Exemple d'interfície: Visualitzador de 7 segments
 - Esquemes d'adreçament de les interfícies
- 3 Estructura interna de l'interfície
 - La selecció de l' interfície
 - Selecció i operació de les registres
 - Exemples

Bibliografia

- Patterson, D.A., Hennessy, J.L.
 - ✓ Estructura y diseño de computadores. La interfaz hardware-Software (4ª ed.). Ed. Reverté, 2011
 - Cap 6
- Stallings, W.
 - ✓ Organización y arquitectura de computadores (7ª ed.). Ed. Prentice Hall,
 2006
 - Cap. 7
- Hamacher, V.C., Vranesic, Z.G., Zaky, S.G.
 - ✓ Organización de computadores (5ª ed.). Ed. McGraw Hill, 2003

I - El sistema d'Entrada/Eixida

The Big Picture

El sistema d'Entrada/Eixida

- Comunicació del sistema UCP-memòria amb l'exterior
 - ✓ Com arriben els programes a la memòria? I les dades?
 - ✓ Com es poden visualitzar els resultats del programes?
- Diversitat d'aplicacions i de medis físics

Dispositiu	Ús	Medi físic
Teclat	Entrada de text	Electromecànic
Ratolí	Entrada gràfica Òptic	
Monitor	Visualització CRT, matriu TFT	
Disc dur	Emmagatzemament	Magnètic
DVD	Emmagatzemament Òptic	
Xarxa	Comunicació Cable Ethernet, línia telefònica	
Impressora	Visualització Electrostàtic, injecció de tinta, etc	

El sistema d'Entrada/Eixida

Com connectar els dispositius de E/E al sistema?

Elements de la Unitat d'E/E

- ✓ Tipus:
 - D'interacció amb humans: teclat, ratolí, pantalles,...
 - D'interacció amb altres dispositius: motores, actuadors, sensors,...
 - D' emmagatzemament: discs, CD, DVD,...
 - De comunicacions: targetes de Xarxa, dispositius Bluetooh,..
- ✓ No es poden connectar directament al bus del sistema.

Elements de la Unitat d'E/E

- Fa la conversió entre la tecnologia pròpia del perifèric y les senyals del bus
- Cada perifèric necessita el seu adaptador
- ✓ Construeix la interfície visible pel programador
 - Tradueix les ordenes dades sobre la interfície en accions sobre el perifèric
 - Tradueix les actuacions externes fetes pel perifèric en informació d'estat disponible en l'interfície
 - Permet la transferència de les dades

Funcions del adaptador d'E/E

- Las principals funcions de tot adaptador d'E/E son:
 - ✓ Comunicació amb el processador:
 - Interfase al bus del sistema
 - Conjunt de registres. Adreçament de l' E/E
 - ✓ Comunicació amb el dispositiu perifèric
 - Interfaz externa: Conjunt de senyals que connecten con el perifèric (cables y connectores)
 - √ Control y temporització
 - · Sincronització: proba d'estat vs. interrupcions
 - ✓ Transferència de dades:
 - Emmagatzemament temporal de dades (data buffering)
 - Transferència por programa vs. Access directe a memòria (ADM)
 - ✓ Control d'errors

Eixemples d'adaptadors

Necessitem un cert nivell d'abstracció

2 - El concepte d'interfície d'E/E

La visió del programador

Concepte d'interfície d'E/E

- Interfície d'un perifèric
 - ✓ És un conjunt (heterogeni) de registres que permeten els programes comunicar-se amb un perifèric donat
 - ✓ Cada perifèric té la seua interfície que, en general, serà distinta de la de qualsevol altre perifèric quant al nombre i a l'ús dels registres
 - ✓ Cada registre de la interfície té una adreça en l'espai d'adreçament del processador
 - ✓ El conjunt de registres de cada interfície ocupa adreces consecutives en l'espai d'adreçament a partir d'una certa adreça: l'adreça base de la interfície
 - ✓ Els registres són accessibles mitjançant instruccions de lectura i escriptura en l'espai d'adreçament, però la seua funció no és d'emmagatzemar dades o instruccions

Diagrama simplificat d'una interfície d'E/E

Registres de la interfície

• Mida:

• Típics: 8,16 o 32 bits

Mode d'accés:

- Un registre pot ser accessible per a lectura (/RD), per a escriptura (/WR) o per ambdues operacions (R/W*).
- Escriure en un registre de lectura no té cap efecte; llegir d'un registre d'escriptura no dóna cap informació útil.

Continguts:

- El valor d'un registre pot estar estructurat o no. Si està estructurat, cada bit o grup de bits del registre té un significat propi, independent de la resta
- En general, entre els bits útils d'un registre hi pot haver d'altres indefinits.

Tipus:

- Ordres: per a produir accions en el perifèric
- Estat: per a obtindre informació actual de la operació del perifèric
- Dades: per a transmetre o rebre dades cap/des el perifèric

Adreçament de la interfície

- ✓ Cada registre de la interfície te una ADDREÇA en un espai d'adreçament del processador:
 - Espai únic: (Memory-Mapped I/O) → Modelo MIPS
 - Espais separats (I/O Mapped I/O)
 → Modelo Intel
- ✓ El conjunt de registres de cada interfície ocupa un rang d'adreces consecutives:

√ L'adreça inicial s'anomena ADREÇA BASE de la interfície.

Exemple d'interfície: Visualitzador de 7 segments

REGISTRE D' ORDRES:

8 bits - escriptura - Dir: 0xFFFF0100 (DB)

Activa el visualitzador i el parpelleig

- ON (bit 0): encés a 1, apagat a 0
- Frec (bits 6..4): freqüéncia intermitent en Hz
- Frec = 0: continu

REGISTRE DE DADES:

8 bits - escriptura - Dir: 0xFFFF0104 (DB+4)

bits a...h: a 1 activan el segment corresponent

Estructura de Computadors

Visualitzador de 7 segments: programació

```
la $t0,0xFFFF0100
# apaga el visualitzador
      sw $zero,0($t0)
# presenta un cero continu
      li $t1,0x3F
      sw $t1,4($t0)
      li $t1,1
      sw $t1,0($t0)
# presenta un "3" a 1 Hz
      li $t1,0x4F
      sw $t1,4($t0)
      li $t1,0x11
      sw $t1,0($t0)
```


Esquemes d'adreçament de les interfícies

- Memory-Mapped I/O
 - ✓ Mapa d'adreçament únic (Modelo MIPS). Las interfícies d'E/E comparteixen l'espai d'adreçament amb la memória.
 - √ L'accés als registres es fa amb les instruccions 'Load' i 'Store'.

P2 M3 M2 MI

Mapa de Memòria

Interfícies de perifèric

- Per a tractar els perifèrics
- Cada interfície abasta unes poques adreces
- Cada registre d'una interfície té un ús concret

Mòduls de memòria

- Per a emmagatzemar instruccions i dades
- Gran capacitat (actualment, de l'ordre del GB)
- Totes les paraules de la memòria tenen el mateix ús

Esquemes d'adreçament de les interfícies

- Input/Output-Mapped I/O
 - ✓ Mapas d'adreçaments separats per a la memòria i la E/E (Modelo Intel)
 - √ L'accés a la memòria es fa amb instruccions de tipus load/store
 - ✓ L'accés als perifèrics es fa amb instruccions de tipus input/output

Administrador de dispositius de Windows

Adaptador IDE-SATA (discs)

Adaptador de Xarxa local (Realtek)

Mapeat en dues espais: E/E i Memòria

3 - Estructura interna de la interfície

Detalls del hardware

La selecció de la interfície

Hi ha que definir les funcions de selecció de la interficie en el mapa de adreçes corresponens

La selecció de la interfície

- Implementació de la selecció amb mapa únic
 - ✓ Eixample amb 16 línees d'adreça, ample de paraula de 8 bits.
 - ✓ Interfície amb tres registres (n=16, p=2), DB = $0 \times F590$.

La selecció de la interfície

Implementació de la selecció (mapa separat)

✓ Una línea en el bus permiteix distingir entre los dos espais

d'adreçament

M/IO = 1: espai de Memòria

M/IO = 0: espai d' Entrada/Eixida

Selecció i operació dels registres

- ✓ Els registres tenen senyal d'escriptura (CLK, flanc de rellotge), de lectura (OE*) o ambdós y entrada/eixida de dades paral lela connectada al bus de dades.
- ✓ Dos línees del bus defineixen l'operació: RD* per a lectura y WR* per a escriptura.

Empleo de BE* en la selecció de la interfície

Eixemple I: Selecció del visualitzador

Ejemplo 2: Multi-sensor de temperatura

- ✓ Dos sensors de temperatura (termopars T1 y T2)
- ✓ Adreça base (DB) = 0xFFFF0200

✓ Registres de 32 bits:

Dos registres en la mateixa Adreça (un de lectura i altre d'escriptura)

Nom	Dir.	Acceso	Estructura
Ordre	DB	Escr.	Bit 0: (AQ) a '1' activa l'adquisició de temperatura
Estat	DB	Lect.	Bit 7: (R) a '1' indica temperatura ha sigut adquirida es posa a '0' quan es llegeix la temperatura
Temp1	DB+4	Lect.	Bits 70: (T1) temperatura del sensor 1 entre 0 y 255 °C
Temp 2	DB+8	Lect	Bits 70: (T2) temperatura del sensor 2 entre 0 y 255 °C
		Σ	DB - Ordres

Exercici de clase

- ✓ Realitzeu un esquema del circuit de selecció de la interfície del multisensor de temperatura indicat anteriorment.
- ✓ Escriviu un fragment de codi en assemblador del MIPS per adquirir la temperatura de los dos sensors (T1 y T2) y guardar-la en dos variables de memòria 'Temp1' y 'Temp2'.
 - Observeu que deu emitir-se l'ordre d'adquirir i esperar a que la interfície indiqueu que la adquisició ha acabat, abans de llegir el resultat dels dos registres de temperatura.

Solución

Eixample 3: Visualitzador de 8 digits

(8 bits – escriptura)

Ordres (DB+8)

Activa el Visualitzador y el parpelleig

- ON (bit 0): ences a 1, apagat a 0
- Frec (bits 6..4): freqüència intermitent en Hz
- Frec = 0: continu

Eixample 3: Visualitzador de 8 digits

Exercici de casa

- ✓ Realitzeu un esquema del circuit de selecció de la interfície del visualitzador de 8 dígits.
 - Los registres de D1 a D7 se poden accedir com bytes individuals (sb) o de 4 en 4 como una word (sw).
 - Para això deveu fer participar en la selecció als Bytes Enables (BE0*.. BE3*)
- ✓ Escriviu un fragment de codi en assemblador del MIPS per a visualitzar un rètol lliscant.