seguridad

Contenido

introducción fundamentos tecnologías nombres tiempo seguridad coordinación transacciones

seguridad

istemas ibuldos

seguridad

introducción

Contenido

introducción fundamentos tecnologías nombres tiempo seguridad coordinación transacciones

- Modelo de seguridad
 - Tipos de amenaza
- Técnicas básicas
 - Técnicas criptográficas
 - Secreto
 - Autenticación
 - Certificación y credenciales
 - Control de accesos
 - Auditoría de perfiles
- Algoritmos de encriptación simétricos y asimétricos
- Firmas digitales
- Aproximaciones al diseño de sistemas seguros
- Casos de estudio

Contenido

introducción fundamentos tecnologías nombres tiempo seguridad coordinación transacciones

seguridad

objetos y principales

- Objeto (o recurso)
 - Buzón de correo, sistema de archivo, parte de una web comercial
- Principal
 - Usuario o proceso que tiene derechos para realizar acciones
 - La identidad del principal es importante

seguridad

enemigo

Contenido

introducción fundamentos tecnologías nombres tiempo seguridad coordinación transacciones

Ataques

 En aplicaciones que manejan transacciones comerciales u otra información cuyo secreto o integridad es crucial

Amenazas

 A procesos, a los canales de comunicación, denegación de servicio

canales seguros

Contenido

introducción fundamentos tecnologías nombres tiempo seguridad coordinación transacciones

Propiedades

- Cada proceso está seguro de la identidad del otro
- Los datos son privados y protegidos contra la manipulación
- Protección contra repeticiones y reordenación de datos

Utiliza criptografía

- El secreto se preserva mediante ocultamiento criptográfico
- La autenticación basada en la prueba de posesión de secretos

canales seguros

lación

IS

Contenido

introducción fundamentos tecnologías nombres tiempo seguridad coordinación transacciones

Ocultamiento criptográfico basado en:

Confusión y difusión
Proposition

- Cada Posesión de secretos:
- Los c Claves convencionales compartidas
- Prote Pares de claves públicas/privadas
- Utiliza criptograna
 - El secreto se preserva mediante ocultamiento criptográfico
 - La autenticación basada en la prueba de posesión de secretos

Istemas Ibuidos

seguridad

amenazas y formas de ataque

Contenido

introducción fundamentos tecnologías nombres tiempo seguridad coordinación transacciones

- Escuchar a escondidas
 - Obteniendo información privada o secreta
- Enmascarse
 - Asumiendo la identidad de otro usuario/principal
- Manipular mensajes
 - Alterando el contenido de mensajes en tránsito
- Reenviar
 - Almacenando mensajes seguros y enviándolos más tarde
- Negación de servicio
 - Inundando un canal u otro recurso, negando acceso para los otros

Contenido

introducción fundamentos tecnologías nombres tiempo seguridad coordinación transacciones

seguridad

amenazas que superan los canales seguros

- Ataques de negación de servicio
 - El uso excesivo de recursos hasta el grado de impedir su uso a usuarios legítimos
 - por ejemplo, el ataque a Amazon y Yahoo en febrero del 2000
- Los caballos de Troya y otros virus
 - Los virus sólo pueden entrar en computadoras cuando el código de programa es importado.
 - Pero los usuarios a menudo requieren programas nuevos:
 - La instalación nueva de software
 - Código móvil importado dinámicamente (p. e., los applets Java)
 - La ejecución accidental de programas transmitidos subrepticiamente

<u>Defensas</u>: autenticación de código (mediante firmas), validación de código (comprobación de tipo), seguridad JVM... *ANÁLISIS, DISEÑO Y PRUDENCIA* ►

seguridad

ejemplo: todo empezó con un ping...

Contenido

introducción fundamentos tecnologías nombres tiempo seguridad coordinación transacciones

Desde un servidor malicioso se hacen ping a muchas máquinas:

ifalso origen!

PING | source = x.x.x.x | destination = n.n.n.i

... resultando: $PONG \mid source = n.n.n.i \mid destination = x.x.x.x$

seguridad

técnicas de seguridad: nomenclatura

Contenido

introducción fundamentos tecnologías nombres tiempo seguridad coordinación transacciones

Bob Segundo participante

Carol Otro participante en los protocolos a tres o cuatro bandas

Dave Participante en los protocolos a cuatro bandas

Eve Fisgón

Mallory Atacante malevolente

Sara Un servidor

K_A Clave secreta de Alice

K_R Clave secreta de Bob

K_{AB} Clave secreta compartida por Alice y Bob

K_{Apriv} Clave privada de Alice (sólo conocida por Alice)

K_{Apub} Clave pública de Alice (publicada por Alice para

la lectura de cualquiera)

 $M \in M$ Mensaje M encriptado con la clave K

Mensaje M firmado con la clave K

escenario 1: secreto con clave compartida

Contenido

introducción fundamentos tecnologías nombres tiempo seguridad coordinación transacciones

Alice y Bob comparten una clave secreta KAR

- Alice usa K_{AB} y acuerda una función de encriptación E(K_{AB}, M) para codificar y enviar una serie de mensajes {M_i}_{KAB}
- 2. Bob lee los mensajes encriptados usando la correspondiente función D(K_{AR}, M).

Alice y Bob pueden funcionar con K_{AB} mientras estén seguros que K_{AB} no es conocida

Problemas:

- Distribución de clave: ¿Cómo envia Alice una clave compartida a Bob de forma segura?
- Caducidad de la comunicación: ¿Cómo sabe Bob que el mensaje no es una copia capturada por Mallory y reenviada más tarde?

Contenido

introducción fundamentos tecnologías nombres tiempo seguridad coordinación transacciones

seguridad

escenario 2: autenticación con servidor

Bob es un servidor de ficheros; Sara es un servidor de autenticación. Sara comparte K_A con Alice y K_B con Bob

- Alice envía un mensaje no encriptado a Sara identificándose y solicitando un ticket para acceder a Bob.
- 2. Sara responde a Alice con $\{\{\text{Ticket}\}_{K_B}, K_{AB}\}_{K_A}$. Consistente en un mensaje codificado según K_A con un ticket (para comunicar con Bob para cada fichero) encriptado según K_B y una nueva clave K_{AB} .
- 3. Alice usa K_A para desencriptar la respuesta.
- 4. Alice envía a Bob el ticket, su identidad y una respuesta R para acceder al fichero: {Ticket}_{KR}, Alice, R.
- 5. El ticket es realmente $\{K_{AB}, Alice\}_{K_B}$. Bob usa K_B para desencriptarlo, chequea la identidad y usa K_{AB} para encriptar las respuestas a Alice.

seguridad

escenario 2: autenticación con servidor

Contenido

introducción fundamentos tecnologías nombres tiempo seguridad Bob es un servidor de ficheros; Sara es un servidor de autenticación. Sara comparte K_A con Alice y K_B con Bob

1. Alice envía un mensaje no encriptado a Sara identificándose y solicitando un *ticket* para acceder a Bob. •

coordina transaccio

Un ticket es un mensaje encriptado conteniendo la identidad del principal solicitante y una clave compartida para la sesión

- 3. Alice usa K_A para desencriptar la respuesta.
- Esto es una simplificación del protocolo Needham and Schroeder (y Kerberos)
- 5. Edad y repetición resuelto en N-S y Kerberos completo
 - No válido para comercio electrónico...

Contenido

introducción fundamentos tecnologías nombres tiempo seguridad coordinación transacciones

seguridad

escenario 3: autenticación con clave pública

Bob genera un par de claves pública/privada <K_{Bpub}, K_{Bpriv}>

- 1. Alice obtiene un <u>certificado firmado por una autoridad de</u> <u>confianza</u> que posee la clave pública de Bob, K_{Bpub}
- 2. Alice crea una clave compartida K_{AB}, la encripta según K_{Bpub} un algoritmo de clave pública y envía el resultado a Bob
- 3. Bob usa K_{Bpriv} para desencriptar K_{AB} .

(si desean asegurar que el mensaje no ha sido manipulado, Alice puede incluir algún dato aceptado por ambos y Bob chequearlo)

Problemas:

Mallory puede interceptar la solicitud de certificado de clave pública y enviarle su propia clave pública, pudiendo desencriptar el resto de mensajes. La firma digital lo impide

seguridad

escenar. 4: firma digital con resumen seguro

Contenido

introducción fundamentos tecnologías nombres tiempo seguridad coordinación transacciones

Alice quiere publicar un documento M de forma que cualquiera pueda verificar su procedencia

- Alice calcula un resumen de longitud fija del documento Resumen(M) ⇒
- 2. Alice encripta el resumen con su clave privada, lo adjunta a M y hace el resultado (M, {Resumen(M)}_{KApriv}) público
- 3. Bob obtiene el documento firmado, extrae M y computa Resumen(M)
- 3. Bob usa la clave pública de Alice para desencriptar {Resumen(M)}_{KApriv} y lo compara con el resumen calculado por él. Si coincide, entonces la firma es válida.
- La función de resumen debe ser segura frente al "ataque del cumpleaños"

funciones de resumen seguro

Contenido

introducción fundamentos tecnologías nombres tiempo seguridad coordinación transacciones

Función de resumen seguro h=H(M):

- Dado M, debe ser fácil calcular h
- 2. Dado h, debe ser muy dificil calcular M
- 3. Dado M, debe ser dificil encontrar otro M', tal que H(M)=H(M')

También llamada función de dispersión de un solo sentido

Ataque sustentado sobre la "paradoja del cumpleaños":

La probabilidad de encontrar un par idéntico en un conjunto es mucho mayor que la de encontrar la pareja para un individuo dado. Con paciencia...

seguridad paradoja del cumpleaños

Contenido

introducción fundamentos tecnologías nombres tiempo seguridad coordinación transacciones

A = {"al menos dos personas celebran su cumpleaños a la vez"}

A^c = {"no hay dos personas que celebren su cumpleaños a la vez"}

$$P(A) = 1 - P(A^c)$$

P = Casos Favorables / Casos Posibles

n	prob	n	prob
5	0.027	30	0.706
10	0.117	35	0.814
15	0.253	40	0.891
18	0.347	50	0.970
20	0.411	60	0.9951
23	0.507	70	0.99916
25	0.569	80	0.99991
27	0.627	90	0.99999

seguridad

ataque de cumpleaños

Contenido

introducción fundamentos tecnologías nombres tiempo seguridad coordinación transacciones

- 1. Alice prepara dos versiones M y M' de un contrato para Bob. M favorable y M' desfavorable
- Alice fabrica varias versiones de M y M' sutilmente diferentes (espacios al final de línea,...). Ella compara los valores de dispersión de todos los M con todos los M' buscando un par igual
- Alice envía el contrato favorable M a Bob, éste lo firma digitalmente usando su clave privada
- 4. Cuando lo devuelve, Alice sustituye M por M', pero manteniendo la firma de Bob sobre M

seguridad

ataque de cumpleaños

Contenido

introducción fundamentos tecnologías nombres tiempo seguridad coordinación transacciones

- 1. Alice prepara dos versiones M y M' de un contrato para Bob. M favorable y M' desfavorable
- 2. Alice fabrica varias versiones de M y M' sutilmente diferentes

Por ejemplo, que para generar colisiones en una función aleatoria perfecta (en funciones hash) de n bits, con una probabilidad del 50% aproximadamente, se requieren solo **2**^{n/2} intentos.

- Alice envía el contrato favorable M a Bob, éste lo firma digitalmente usando su clave privada
- 4. Cuando lo devuelve, Alice sustituye M por M', pero manteniendo la firma de Bob sobre M

seguridad

certificados

Contenido

introducción fundamentos tecnologías nombres tiempo seguridad coordinación transacciones

Certificado de cuenta de Alice

1. Tipo de certificado: Número de cuenta

2. Nombre: Alice

3. C Certificado: sentencia firmada por un principal que

4. A sirve de credencial y/o autenticación.

5. F

Un certificado necesita:

Ce

Un formato estándar acordado

 Acuerdo sobre la forma en que se construyen las cadenas de certificados

2. A

3. C

1. 7

Fechas de expiración, de forma que pueda ser

revocado

4. Autoridad certificadora: Fred, la Federación de Banqueros

5. Firma: {Resumen(campo2+campo3)}_{Fpriv}

istribula os

seguridad

certificados

Contenido

introducción fundamentos tecnologías nombres tiempo seguridad coordinación transacciones

Certificado de cuenta de Alice

1. Tipo de certificado: Número de cuenta

2. Nombre: Alice

3. Cuenta: 6262626

4. Autoridad certificadora: Banco de Bob

5. Firma: $\{Resumen(campo\ 2 + campo\ 3)\}_{K_{Bpriv}}$

Certificado de clave pública del Banco de Bob

1. *Tipo de certificado:* Clave pública

2. *Nombre:* Banco de Bob

3. Cuenta: K_{Bpub}

4. Autoridad certificadora: Fred, la Federación de Banqueros

5. Firma: {Resumen(campo2+campo3)}_{Fpriv}

seguridad

algoritmos criptográficos

Contenido

introducción fundamentos tecnologías nombres tiempo seguridad coordinación transacciones Mensaje: M, clave: K, funciones criptográficas E, D

Simétricos (clave secreta)

$$E(K, M) = \{M\}_K$$

D(K, E(K, M)) = M

La misma clave para E y D

M debe ser difícil de computar si se desconoce K

La forma usual de ataque es la fuerza bruta. Resistente haciendo K suficientemente grande ~ 128 bits

Asimétricos (clave pública)

Claves de encriptación y desencriptación separadas: K_e, K_d

$$D(K_d. E(K_{e'} M)) = M$$

se basa en el uso de funciones de *puerta falsa*. E tiene un alto coste computacional. Las claves son muy grandes > 512 bits

Protocolos híbridos – usados en SSL (actualmente llamado TLS)

Usa criptografía asimétrica para transmitir la clave simétrica que es usada para encriptar la sesión

seguridad

cifradores de bloque, de cadena y de flujo

Contenido

introducción fundamentos tecnologías nombres tiempo seguridad coordinación transacciones La mayoría de cifradores trabajan sobre bloques de 64 bits

Debilidad de un cifrador de bloque simple: los patrones repetidos pueden ser detectados

- El bloque encriptado en el paso anterior es combinado con el siguiente mediante XOR
- Existe debilidad en el primer bloque cifrado. Se usa vector de inicialización
- 3. La conexión debe ser fiable, no se pueden perder bloques

algoritmos de encriptación simétrica

Contenido

introducción fundamentos tecnologías nombres tiempo seguridad coordinación transacciones Todos estos algoritmos realizan operaciones de confusión y de difusión sobre bloques de datos binarios

- TEA: un simple pero efectivo algoritmo desarrollado en U. Cambridge (1994) [lo explicaremos a continuación]. Clave de 128-bit, 700 kbytes/s
- **DES**: US Data Encryption Standard (1977). No demasiado fuerte en su formato original. Clave de *56-bit, 350 kbytes/s*
- **Triple-DES**: aplica DES tres veces con dos claves distintas. $E_{DES}(K_1, D_{DES}(K_2, E_{DES}(K_1, M)))$. Clave 112-bit, 120 KB/s
- IDEA: International Data Encryption Algorithm (1990). Parecido al TEA. 128-bit key, 700 kbytes/sec
- AES: US Advanced Encryption Standard (1997). Clave de 128/256-bit

Las mediciones se refieren a un Pentium II a 330 MHZ

algoritmos de encriptación simétrica

Contenido

introducción fundamentos tecnologías nombres tiempo seguridad coordinación transacciones Todos estos algoritmos realizan operaciones de confusión y de difusión sobre bloques de datos binarios

- DES: debido al coste computacional se implementó VLSI computación. Clave de
- En 1997 fue derrotado por fuerza bruta por un consorcio de usuarios de Internet (en 12 semanas y 25%)
- En 1998 una máquina de EFF podía resolver claves DES en 3 días
 - Parecido al TEA. 128-bit key, 700 kbytes/sec
- AES: US Advanced Encryption Standard (1997). Clave de 128/256-bit

Las mediciones se refieren a un Pentium II a 330 MHZ

seguridad

algoritmo de encriptación TEA

Contenido

introducción fundamentos tecnologías nombres tiempo seguridad coordinación transacciones

clave 4 x 32 bits

```
void encrypt(unsigned long k[], unsigned long text[]) {
    unsigned long y = text[0], z = text[1];
    unsigned long delta = 0x9e3779b9, sum = 0; int n;
    for (n = 0; n < 32; n++) {
        sum += delta;
        y += ((z << 4) + k[0]) ^ (z+sum) ^ ((z >> 5) + k[1]); 5
        z += ((y << 4) + k[2]) ^ (y+sum) ^ ((y >> 5) + k[3]); 6
    }
    text[0] = y; text[1] = z;
}
```

XOR

desplazamiento

Triple de veloz que el DES

Contenido

introducción fundamentos tecnologías nombres tiempo seguridad coordinación transacciones

seguridad

algoritmos de encriptación asimétrica

- Todos ellos dependen del uso de funciones de puerta falsa:
 - funciones de un solo sentido con una salida secreta: p.e. producto de dos números grandes (primos); fácil de multiplicar, imposible de factorizar (obtener multiplicandos)
- RSA: El primer algoritmo práctico (Rivest, Shamir y Adelman 1978) y el más frecuentemente usado. Tamaño de la clave puede variar, 512-2048 bits. Velocidad 1-7 kbytes/s
- Curvas elípticas: Método reciente, claves más cortas y más veloz (Menezes 1993 – elliptic curve public key crypto)
- Los algoritmos asimétricos son ~1000 veces más lentos y no son prácticos para encriptaciones masivas; sin embargo, sus propiedades los hacen idóneos para distribución de claves y para autenticación

seguridad

algoritmo RSA

Contenido

introducción fundamentos tecnologías nombres tiempo seguridad coordinación transacciones Para encontrar el par de claves e, d:

1. Elegir dos primos muy grandes, Py Q (mayor de 10^{100}), y calcular:

$$N = P \times Q$$
$$Z = (P-1) \times (Q-1)$$

2. Para *d* elegir un número primo respecto a *Z* (es decir, *d* no tiene factores comunes con *Z*).

Ilustramos los cálculos con valores pequeños de P y Q:

$$P = 13$$
, $Q = 17 \rightarrow N = 221$, $Z = 192$
 $d = 5$

3. Para encontrar *e* se resuelve la ecuación:

$$e x d = 1 \mod Z$$

 $e \times d$ es el elemento más pequeño divisible por d en la serie Z+1, 2Z+1, 3Z+1, ...

$$e \times d = 1 \mod 192 = 1, 193, 385, ...$$

385 es divisible por d
 $e = 385/5 = 77$

algoritmo RSA

Contenido

introducción fundamentos tecnologías nombres tiempo seguridad coordinación transacciones Para encriptar según RSA, el texto se divide en bloques de k bits donde $2^k < N$ (el valor numérico de un bloque es siempre menor que N; k entre 512 y 1024)

$$k = 7$$
, entonces $2^7 = 128$ (< $N = 221$)

La función de encriptación de un bloque de texto *M* es:

$$E'(e,N,M) = M^e \mod N$$

para M, el texto cifrado es M^{77} mod 221

La función de desencriptación del bloque cifrado *c* es:

$$D'(d,N,c) = c^d \mod N$$

Rivest, Shamir and Adelman probaron que E'y D'son inversas mutuas:

$$E'(D'(x)) = D'(E'(x)) = x) \ 0 \le P \le N_{\blacktriangleright}$$

algoritmos de resumen seguro

Contenido

introducción fundamentos tecnologías nombres tiempo seguridad coordinación transacciones

- MD5: Desarrollado por Rivest (1992). Calcula un resumen de 128 bits. Velocidad: 1740 kbytes/s
 - Cuatro vueltas con una de cuatro funciones no lineales sobre cada 32 bits de un bloque de 512 bits de texto
- SHA: (1995) basado en MD4 de Rivest, pero más seguro, produce un resumen de 16*0-bit. Velocidad:* 750 kbytes/s

Cualquier algoritmo simétrico se puede usar en CBC (cifrador de cadena):

El último bloque es el resumen H(M)

seguridad

firma digital con claves públicas

Contenido

introducción fundamentos tecnologías nombres tiempo seguridad coordinación transacciones

seguridad

caso estudio: protocolo Needham-Schroeder

Contenido

introducción fundamentos tecnologías nombres tiempo seguridad coordinación

transacciones

- En los primeros sistemas distribuidos (1974-84) era difícil proteger los servidores:
 - P.e. contra ataques enmascarados sobre un servidor de ficheros
 - No había mecanismos de autenticación del origen de la petición
 - La criptografía de clave pública no estaba disponible
 - computadoras demasiado lentas para cálculos importantes
 - RSA no disponible hasta 1978
- Needham y Schroeder desarrollaron un protocolo de autenticación y distribución de claves para uso en red local:
 - Supuso un primer ejemplo del cuidado en el diseño de protocolos de seguridad
 - Introdujeron varias ideas de diseño: p.e. ocasiones

Seguridad N-S: autenticación de clave secreta

Contenido

introducción fundamentos tecnologías nombres tiempo seguridad coordinación transacciones

Encabezado Mensaje) Mensaje	Notas	
))	1. A->S:	A, B, N_A	A solicita una clave a S para comunicarse con B	
	 S->A: Ticket A->B: 	$\{N_A, B, K_{AB}, \{K_{AB}, A\}_{K_B}, K_A\}$	S devuelve un mensaje encriptado en la clave secreta de A, con una clave nueva K_{AB} y un "ticket" encriptado en la clave secreta de B. La ocasión N_A demuestra que el mensaje fue enviado en respuesta al anterior. A confía en que S envió el mensaje porque sólo S conoce la clave secreta de A A envía el "ticket" a B	
	4. B->A:	$\{N_B^{}\}_{KAB}$	B desencripta el "ticket" y utiliza la nueva clave K_{AB} para encriptar otra ocasión N_{B}	
	5. A->B:	{N _B - 1} _{KAB}	A demuestra a B que fue el emisor del mensaje anterior devolviendo una transformación acordada sobre N_B .	

seguridad

N-S: autenticación de clave secreta

Contenido

introducción fundamentos tecnologías nombres tiempo seguridad coordinación

transacciones

Encabezado Mensaje	Notas
--------------------	-------

1. A->S: A, B, N_A A solicita una clave a S para comunicarse con B

N_A es una ocasión: entero que se añaden a los mensajes para demostrar la frescura de la transacción. Son generados por el proceso emisor cuando se necesita (p.e. incrementando contador o leyendo el tic del reloj)

3. A->B:	$\{K_{AB}, A\}_{K_B}$	de A A envía el "ticket" a B
4. B->A:	$\{N_B^{}\}_{K_{AB}}$	B desencripta el "ticket" y utiliza la nueva clave K_{AB} para encriptar otra ocasión N_B
5. A->B:	{N _B - 1} _{KAB}	A demuestra a B que fue el emisor del mensaje anterior devolviendo una transformación acordada sobre N_B .

seguridad

caso estudio: Kerberos

Contenido

introducción fundamentos tecnologías nombres tiempo seguridad coordinación transacciones

- Comunicación segura con servidores en una red local
 - Desarrollado en el MIT en 80s para ofrecer seguridad en la red del campus > 5000 usuarios
 - basado en Needham Schroeder
- Estandarizado e incluido en muchos SO
 - Internet RFC 1510, OSF DCE
 - BSD UNIX, Linux, Windows 2000, NT, XP, etc.
 - Disponible en la web del MIT
- El servidor Kerberos crea una clave secreta compartida para cada servidor solicitado y la envía encriptada al computador del usuario
- El password del usuario es el secreto compartido inicial en Kerberos

Arquitectura del sistema

Kerberos

introducción

TGS: ที่เปล่า TGS: ที่เปล่า TGS de distribución de claves de Kerberos

Authen-

tication

service A

grantingtecno service nor

Step A ti

1. Requestur TGSORKHE

transacy 2. TGS 0

TGS \
ticket

Login
session setup
Server
session setup

DoOperation

Client

- 3. Request for server ticket
- 4. Server ticket
- 5. Service request

Step C

Ticket-

granting

service 7

Request encrypted with session key

Authentication

database

Reply encrypted with session key

Service

function

Protocolo

Needham - Schroeder

- 1. A->S: A, B, N_A
- 2. S->A: $\{N_A, B, K_{AB}, \{K_{AB}, A\}_{KB}\}_{KA}$
- 3. A->B: $\{K_{AB}, A\}_{KB}$
- 4. B->A: $\{N_B\}_{KAB}$
- 5. A->B: $\{N_B 1\}_{KAB}$

Paso A una vez por inicio de sesión

Paso B una vez por sesión clienteservidor

Paso C una vez por transacción del servidor

seguridad

guías de diseño. Asunción del peor caso

Contenido

introducción fundamentos tecnologías nombres tiempo seguridad coordinación transacciones

- Las interfaces están desprotegidas
 - un atacante puede enviar un mensaje a cualquier interfaz
- Las redes son inseguras
 - se pueden falsificar fuentes, IPs de cualquier host, ...
- Limítese el tiempo y alcance del secreto
 - una clave segura es la que se usa sólo una vez
 - todas las claves deberían tener caducidad
 - cuanto más usemos una clave, mayor es el riesgo
- Los algoritmos y código están disponibles
 - cuanto más se difunde un secreto, mayor es el riesgo
 - Los algoritmos secretos propietarios son inadecuados para los entornos de red de gran escala
 - Lo mejor es publicar los algoritmos criptográficos empleados, descansando la privacidad en la clave

Contenido

introducción fundamentos tecnologías nombres tiempo seguridad coordinación transacciones

seguridad

guías de diseño. Asunción del peor caso

- Los atacantes tienen acceso a suficientes recursos
 - el coste de la capacidad computacional es decreciente y a un ritmo cada vez mayor
 - Al diseñar el sistema se debe presuponer que a lo largo de la vida del sistema, los computadores serán mucho más potentes.
 - Presuponed varios órdenes de magnitud más para contemplar desarrollos inesperados
- Minimizar la base confiable
 - porciones del sistema, los componentes SW y HW, responsables de la seguridad
 - puesto que cualquier error o fallo en esta base provoca inseguridad, esta deberá ser lo más pequeña posible
 - los programas de usuario no deben ser los dignos de proteger sus propios datos