Algorithm Design and Analysis Dynamic Programming I 8/2/2022

The First Example

Input: A set of balls arranged in a row; each ball has a weight

Output: Pick balls of maximum possible total weight; No two adjacent

balls can be picked

Attempt I: Pick the ball of maximum weight unless you have picked its neighbors and continue...

Attempt I: Pick the ball of maximum weight unless you have picked its neighbors and continue...

Attempt I: Pick the ball of maximum weight unless you have picked its neighbors and continue...

Attempt I: Pick the ball of maximum weight unless you have picked its neighbors and continue Total weight of greedy solution = 11 + 2 = 13

Attempt I: Pick the ball of maximum weight unless you have picked its neighbors and continue

Total weight of greedy solution = \mathbb{Z} \mathbb{Z}

But optimal solution is = 14

$$T(n) = 4 T(n/2)$$

$$O(n^2)$$

A Recursive approach

Recap:

A recursive algorithm is one which solves a problem by invoking itself repeatedly on inputs of strictly smaller sizes until the size is so small that one can solve it trivially

Understanding the Optimal Solution

Observation I:

If Last ball is not part of the optimal solution, then
Optimal solution = Optimal solution with the last ball removed from input
(a strictly smaller input !!)

Understanding the Optimal Solution

Optimal solution to the original problem = Optimal solution to the problem without last two balls (a strictly smaller solution) + weight of last ball

Formal Recurrence Opt [i]: The optimal solution with balls {b1, b2, ---, bi} [Subproblem defin] + i= 0, 1, 2, ..., ~ opt [0] = 0; opt [1] = b weight (1).

opt [i] = max of opt [i-1] Case I

Opt [i-2] + weight (i) &

Proof: optimal solution for b, b, ..., bi with b;

revnoved IS an optimal solution for b, b, ..., bi-2

Space this is not true. [opt [i-2] = opt [i] - weight (i)

Upshot: The optimal solution for balls $b_1, b_2, \cdots b_n$ can look only two different ways –

Upshot: The optimal solution for balls $b_1, b_2, \cdots b_n$ can look only two different ways –

1. b_n not in the solution :Then the overall solution is just the solution with balls $b_1, b_2, \cdots b_{n-1}$

Upshot: The optimal solution for balls $b_1, b_2, \cdots b_n$ can look **only two** different ways –

- 1. b_n not in the solution :Then the overall solution is just the solution with balls $b_1, b_2, \cdots b_{n-1}$
- 2. b_n is in the solution :Then overall solution is solution with balls $b_1, b_2, \dots b_{n-2}$ plus b_n

Upshot: The optimal solution for balls $b_1, b_2, \cdots b_n$ can look **only two** different ways –

- 1. b_n not in the solution :Then the overall solution is just the solution with balls $b_1, b_2, \cdots b_{n-1}$
- 2. b_n is in the solution :Then overall solution is solution with balls $b_1, b_2, \dots b_{n-2}$ plus b_n

Trouble: We do not know the optimal solution So, we do not know which option to take!

Upshot: The optimal solution for balls $b_1, b_2, \cdots b_n$ can look **only two** different ways –

- 1. b_n not in the solution :Then the overall solution is just the solution with balls $b_1, b_2, \cdots b_{n-1}$
- 2. b_n is in the solution :Then overall solution is solution with balls $b_1, b_2, \dots b_{n-2}$ plus b_n

Trouble: We do not know the optimal solution So, we do not know which option to take!

Way out: Try both and take the best

A Recursive Algorithm

SelectBalls
$$(b_1, b_2, \cdots b_n, n)$$

If $n==1$, return b_1 Else If If $v \in 0$, refuse $0 \in lse$
 $w_1 = \text{SelectBalls}(b_1, b_2, \cdots b_{n-1}, n-1)$
 $w_2 = \text{SelectBalls}(b_1, b_2, \cdots b_{n-2}, n-2)$
+ weight of b_n
Return $\max\{w_1, w_2\}$
 $T(v) = T(v-1)$
 $+ T(v-2) + C$

A Recursive Algorithm: Runtime

SelectBalls
$$(b_1, b_2, \dots b_n, n)$$

If n==1, return b_1 Else

$$w_1 = \mathsf{SelectBalls}(b_1, b_2, \cdots b_{n-1}, n-1)$$

$$w_2 = \text{SelectBalls}(b_1, b_2, \dots b_{n-2}, n-2) + \text{weight of } b_n$$

Return
$$\max\{w_1, w_2\}$$

$$T(n) = T(n-1) + T(n-2) + c$$

A Recursive Algorithm: Runtime

SelectBalls
$$(b_1, b_2, \cdots b_n, n)$$

If n==1, return b_1 Else

$$w_1 = \mathsf{SelectBalls}(b_1, b_2, \cdots b_{n-1}, n-1)$$

$$w_2 = \text{SelectBalls}(b_1, b_2, \cdots b_{n-2}, n-2)$$

+ weight of b_n

Return
$$\max\{w_1, w_2\}$$

$$T(n) = T(n-1) + T(n-2) + c$$

$$T(n) = \frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2} \right)^n - \frac{1}{\sqrt{5}} \left(\frac{1-\sqrt{5}}{2} \right)^n$$

Why is the Runtime So Horrible?

Overlapping Subproblems SB (n-2) SB(n-1) [SB (N-4) SB (n-3) (SB(n-3)

The MOST important insight

Question: How many distinct recursive subproblems is this algorithm really solving?

Answer: γ

The MOST important insight

Question: How many distinct recursive subproblems is this algorithm really solving?

Answer:n

Obvious Fix: Cache already computed subproblem values in an array and look them up in O(1) time if available; otherwise recurse [memo(r?!)ization]

Eliminating Redundancy

0/sf []

Tab: Array of size $n \rightarrow Memois ation$ Table

SelectBalls $(b_1, b_2, \cdots b_n)$ If Tab[n] is valid return Tab[n] else

If n==0, Tab[n]= 0 Else If

If n=1, Tab[n]= weight of b_1 Else

 $w_1 = \text{SelectBalls}(b_1, b_2, \cdots b_{n-1})$

 $w_2 = \text{SelectBalls}(b_1, b_2, \cdots b_{n-2}) + \text{weight}$ of b_n

Tab[n] = $\max\{w_1, w_2\}$

A Linear Time Iterative Solution

Tab :Array of size n+1SelectBalls $(b_1, b_2, \dots b_n)$

for $i = 2, 3, \dots$

Tab[i] = max
$$\int \frac{[ab[i-1]]}{[ab[i-2]} + weight(hi)$$
.

Return Tab [n]

Reconstruction Tab / 1-2/1-1/1 'solution' for each Obviou:- Maintain entry. The Better: Use the already computed Tab. Ball i

selected

Tab [i] = Tab[i-2]

+ weight(i) Key Point:

Reconstruction

Reconstruct-(Tab) S: Ø [Store The balls] while i > 1 if Tab[i] = Tab[i-2] + weight (bi) & add i to S decrement i by 2. else dec. di by 1.

Return S.

Reconstruction

