УНИВЕРСИТЕТ ИТМО

Факультет программной инженерии и компьютерной техники Дисциплина «Дискретная математика»

Курсовая работа Часть 2

Вариант 75

Студент XXX XXX XXX P31XX

Преподаватель Поляков Владимир Иванович

Задание

Построить комбинационную схему реализующую двоичный счетчик $C = (A+1) \mod 25$ (A и C по 5 бит).

Таблица истинности

Nº	a_1	a_2	a_3	a_4	a_5	c_1	c_2	c_3	c_4	c_5
0	0	0	0	0	0	0	0	0	0	1
1	0	0	0	0	1	0	0	0	1	0
2	0	0	0	1	0	0	0	0	1	1
3	0	0	0	1	1	0	0	1	0	0
4	0	0	1	0	0	0	0	1	0	1
5	0	0	1	0	1	0	0	1	1	0
6	0	0	1	1	0	0	0	1	1	1
7	0	0	1	1	1	0	1	0	0	0
8	0	1	0	0	0	0	1	0	0	1
9	0	1	0	0	1	0	1	0	1	0
10	0	1	0	1	0	0	1	0	1	1
11	0	1	0	1	1	0	1	1	0	0
12	0	1	1	0	0	0	1	1	0	1
13	0	1	1	0	1	0	1	1	1	0
14	0	1	1	1	0	0	1	1	1	1
15	0	1	1	1	1	1	0	0	0	0
16	1	0	0	0	0	1	0	0	0	1
17	1	0	0	0	1	1	0	0	1	0
18	1	0	0	1	0	1	0	0	1	1
19	1	0	0	1	1	1	0	1	0	0
20	1	0	1	0	0	1	0	1	0	1
21	1	0	1	0	1	1	0	1	1	0
22	1	0	1	1	0	1	0	1	1	1
23	1	0	1	1	1	1	1	0	0	0
24	1	1	0	0	0	0	0	0	0	0
25	1	1	0	0	1	d	d	d	d	d
26	1	1	0	1	0	d	d	d	d	d
27	1	1	0	1	1	d	d	d	d	d
28	1	1	1	0	0	d	d	d	d	d
29	1	1	1	0	1	d	d	d	d	d
30	1	1	1	1	0	d	d	d	d	d
31	1	1	1	1	1	d	d	d	d	d

Минимизация булевых функций на картах Карно

$$c_1 = a_1 \, \overline{a_2} \vee a_2 \, a_3 \, a_4 \, a_5 \quad (S_Q = 8)$$

$$c_2 = (a_2 \vee a_3) \ (a_2 \vee a_4) \ (a_2 \vee a_5) \ (\overline{a_1} \vee a_3) \ (\overline{a_2} \vee \overline{a_3} \vee \overline{a_4} \vee \overline{a_5}) \quad (S_Q = 17)$$

$$c_3 = (a_3 \lor a_4) \ (a_3 \lor a_5) \ (\overline{a_3} \lor \overline{a_4} \lor \overline{a_5}) \quad (S_Q = 10)$$

$$c_4 = (a_4 \vee a_5) \ (\overline{a_4} \vee \overline{a_5}) \quad (S_Q = 6)$$

$$c_5 = \overline{a_5} \ (\overline{a_1} \vee \overline{a_2}) \quad (S_Q = 4)$$

Преобразование системы булевых функций

$$\begin{cases} c_1 = a_1 \,\overline{a_2} \vee a_2 \, a_3 \, a_4 \, a_5 & (S_Q^{c_1} = 8) \\ c_2 = (a_2 \vee a_3) \, (a_2 \vee a_4) \, (a_2 \vee a_5) \, (\overline{a_1} \vee a_3) \, (\overline{a_2} \vee \overline{a_3} \vee \overline{a_4} \vee \overline{a_5}) & (S_Q^{c_2} = 17) \\ c_3 = (a_3 \vee a_4) \, (a_3 \vee a_5) \, (\overline{a_3} \vee \overline{a_4} \vee \overline{a_5}) & (S_Q^{c_3} = 10) \\ c_4 = (a_4 \vee a_5) \, (\overline{a_4} \vee \overline{a_5}) & (S_Q^{c_4} = 6) \\ c_5 = \overline{a_5} \, (\overline{a_1} \vee \overline{a_2}) & (S_Q = 45) \end{cases}$$

Проведем раздельную факторизацию системы.

$$\begin{cases} c_{1} = a_{1} \,\overline{a_{2}} \vee a_{2} \, a_{3} \, a_{4} \, a_{5} & (S_{Q}^{c_{1}} = 8) \\ c_{2} = (\overline{a_{1}} \vee a_{3}) \, (a_{2} \vee a_{3} \, a_{4} \, a_{5}) \, (\overline{a_{2}} \vee \overline{a_{3}} \vee \overline{a_{4}} \vee \overline{a_{5}}) & (S_{Q}^{c_{2}} = 14) \\ c_{3} = (a_{3} \vee a_{4} \, a_{5}) \, (\overline{a_{3}} \vee \overline{a_{4}} \vee \overline{a_{5}}) & (S_{Q}^{c_{3}} = 9) \\ c_{4} = (a_{4} \vee a_{5}) \, (\overline{a_{4}} \vee \overline{a_{5}}) & (S_{Q}^{c_{4}} = 6) \\ c_{5} = \overline{a_{5}} \, (\overline{a_{1}} \vee \overline{a_{2}}) & (S_{Q}^{c_{5}} = 4) \end{cases}$$

Проведем совместную декомпозицию системы.

$$\begin{cases} \varphi_0 = a_4 \, a_5 & (S_Q^{\varphi_0} = 2) \\ c_1 = a_1 \, \overline{a_2} \vee \varphi_0 \, a_2 \, a_3 & (S_Q^{c_1} = 7) \\ c_2 = (\overline{a_1} \vee a_3) \, (a_2 \vee \varphi_0 \, a_3) \, (\overline{\varphi_0} \vee \overline{a_2} \vee \overline{a_3}) & (S_Q^{c_2} = 12) \\ c_3 = (a_3 \vee \varphi_0) \, (\overline{\varphi_0} \vee \overline{a_3}) & (S_Q^{c_3} = 6) \\ c_4 = (a_4 \vee a_5) \, \overline{\varphi_0} & (S_Q^{c_4} = 4) \\ c_5 = \overline{a_5} \, (\overline{a_1} \vee \overline{a_2}) & (S_Q^{c_5} = 4) \end{cases}$$

 $\varphi_0 = a_4 \, a_5, \quad \overline{\varphi_0} = \overline{a_4} \vee \overline{a_5}$

$$c_4 = (a_4 \lor a_5) \overline{\varphi_0}$$

$$c_4 = (\overline{a_4} \lor \overline{a_5}) \overline{\varphi_0}$$

$$(S_Q^{c_4} = 4)$$

$$(S_Q^{c_5} = 4)$$

$$\overline{a_5} \ (\overline{a_1} \lor \overline{a_2}) \tag{S_Q^{c_5} = 4}$$

Проведем совместную декомпозицию системы.

$$\varphi_1 = \varphi_0 \, a_3, \quad \overline{\varphi_1} = \overline{\varphi_0} \vee \overline{a_3}$$

$$\begin{cases} \varphi_0 = a_4 \, a_5 & (S_Q^{\varphi_0} = 2) \\ c_4 = (a_4 \vee a_5) \, \overline{\varphi_0} & (S_Q^{c_4} = 4) \\ c_5 = \overline{a_5} \, (\overline{a_1} \vee \overline{a_2}) & (S_Q^{c_5} = 4) \\ \varphi_1 = \varphi_0 \, a_3 & (S_Q^{\varphi_1} = 2) \\ c_1 = a_1 \, \overline{a_2} \vee \varphi_1 \, a_2 & (S_Q^{c_1} = 6) \\ c_2 = (\overline{a_1} \vee a_3) \, (a_2 \vee \varphi_1) \, (\overline{\varphi_1} \vee \overline{a_2}) & (S_Q^{c_2} = 9) \\ c_3 = (a_3 \vee \varphi_0) \, \overline{\varphi_1} & (S_Q^{c_3} = 4) \end{cases}$$

$$(S_Q = 33)$$

Проведем совместную декомпозицию системы.

$$\varphi_2 = \varphi_1 \, a_2, \quad \overline{\varphi_2} = \overline{\varphi_1} \vee \overline{a_2}$$

$$\varphi_{2} = \varphi_{1} \, a_{2}, \quad \overline{\varphi_{2}} = \overline{\varphi_{1}} \vee \overline{a_{2}}$$

$$\begin{cases} \varphi_{0} = a_{4} \, a_{5} & (S_{Q}^{\varphi_{0}} = 2) \\ c_{4} = (a_{4} \vee a_{5}) \, \overline{\varphi_{0}} & (S_{Q}^{c_{4}} = 4) \\ c_{5} = \overline{a_{5}} \, (\overline{a_{1}} \vee \overline{a_{2}}) & (S_{Q}^{c_{5}} = 4) \\ \varphi_{1} = \varphi_{0} \, a_{3} & (S_{Q}^{\varphi_{1}} = 2) \\ c_{3} = (a_{3} \vee \varphi_{0}) \, \overline{\varphi_{1}} & (S_{Q}^{c_{3}} = 4) \\ \varphi_{2} = \varphi_{1} \, a_{2} & (S_{Q}^{\varphi_{2}} = 2) \\ c_{1} = a_{1} \, \overline{a_{2}} \vee \varphi_{2} & (S_{Q}^{c_{1}} = 4) \\ c_{2} = (\overline{a_{1}} \vee a_{3}) \, (a_{2} \vee \varphi_{1}) \, \overline{\varphi_{2}} & (S_{Q}^{c_{2}} = 7) \\ (S_{Q} = 32) \end{cases}$$

Синтез комбинационной схемы в булемов базисе

Будем анализировать схему на следующем наборе аргументов:

$$a_1 = 0$$
, $a_2 = 0$, $a_3 = 1$, $a_4 = 0$, $a_5 = 0$

Выходы схемы из таблицы истинности:

Цена схемы: $S_Q=32$. Задержка схемы: $T=5\tau$.