CS310 Automata Theory – 2016-2017

Nutan Limaye

Indian Institute of Technology, Bombay
 nutan@cse.iitb.ac.in

Lecture 19: Extensions of DFA/NFAs February 16, 2017

Last class

Pushdown automata: NFA + Stack.

Formal definition of non-deterministic pushdown automata (NPDA).

Different acceptance conditions for NPDA.

Pumping lemma for CFLs.

Context-free grammars

Inductive definition of PAL.

 ϵ , 0, 1 are in PAL.

If w is in PAL then $0 \cdot w \cdot 0 \in PAL$.

If w is in PAL then $1 \cdot w \cdot 1 \in PAL$.

Context-free grammar for PAL.

$$S \rightarrow \epsilon$$
.

$$S \rightarrow 0$$
.

$$S \rightarrow 1$$
.

$$S \rightarrow 0S0$$
.

$$S \rightarrow 1S1$$
.

Context-free grammar

Definition

A context-free grammar (CFG) G is given by (V, T, P, S_0) , where

V is a set of variables,

T is a set of terminal symbols or the alphabet,

P is a set of productions, $P \subseteq V \times (V \cup T)^*$,

 $S_0 \in V$, a start symbol.

Example: Grammar for PAL.

$$S \rightarrow \epsilon.$$
 $G_{pal} = (V, T, P, S_0)$ such that $S \rightarrow 0.$ $V = \{S\},$ $T = \{0, 1\},$ $S \rightarrow 0S0.$ $P = \{S \rightarrow \epsilon, S \rightarrow 0, S \rightarrow 1, S \rightarrow 0S0, S \rightarrow 1S1\},$ $S \rightarrow 1S1.$ $S_0 = S.$

Drivations of a CFG

Definition

Let G be a CFG given by (V, T, P, S_0) .

Let $w, w' \in (V \cup T)^*$,

let $A \in V$ and let $(A \rightarrow v) \in P$ be a production in the grammar, where $v \in (V \cup T)^*$.

Then we say that $w \cdot A \cdot w'$ derives $w \cdot v \cdot w'$ in one step.

We denote it as follows: $w \cdot A \cdot w' \Rightarrow w \cdot v \cdot w'$.

Definition (\Rightarrow^*)

Let G be a CFG given by (V, T, P, S_0) .

For all $\alpha \in (V \cup T)^*$, we say that $\alpha \Rightarrow^* \alpha$.

For all $\alpha, \beta, \gamma \in (V \cup T)^*$,

if $\alpha \Rightarrow^* \beta$ and $\beta \Rightarrow \gamma$ then $\alpha \Rightarrow^* \gamma$.

Language of a CFG

Definition

Let G be a CFG given by (V, T, P, S_0) . The **language of** G, L(G), is the set of all the strings over T which can be derived from S_0 , i.e.

$$L(G) = \{ w \in T^* \mid S \Rightarrow^* w \}.$$

Lemma

 $L(G_{pal})$ is equal to PAL.

 $\forall w \in \{0,1\},^* w \in PAL \text{ if and only if } w = w^R.$

Proof.

By Induction on |w|. DIY!

Examples

Give context-free grammars for the following languages.

$$\{a^{i} \cdot b^{j} \cdot c^{k} \mid \text{ either } i \neq j \text{ or } j \neq k\}.$$

$$\{a^{i}b^{j} \mid \text{ either } i = j \text{ or } i = 2j\}.$$

$$\{x \mid x \neq w \cdot w, \text{ where } w \in \{a, b\}^{*}\}.$$

$$\{a^{i} \cdot b^{j} \cdot c^{k} \mid i = j + k\}.$$

The grammars of all the above languages and the correctness for the last one were discussed in class.