

ENIGNEERING COMPUTATIONAL FLUID DYNAMICS (ECFD)

Dr Xiangdong Li Module 2 – CFD Workflow

CFD workflow

Some people say

 Geometry 	Pre-processing
• Mesh	
 Physics 	
 Mathematical model 	
 Equation solution 	Solving
 Pesentation of results 	Post-processing

CFD workflow

More people say

CFD workflow

This module

- Sequential steps of a CFD simulation
- The basic operations with Ansys, including
 - Planning
 - SpaceClaim: Geometry
 - Fluent Meshing: domain discretisation
 - Fluent: Model setup and solver
 - CFD Post: Data visualisation and analysis

CAE workflow

The computational case

https://www.simscale.com/docs/validation-cases/thermal-comfort-underfloor-

air-distribution/

Element	X [m]	Y [m]	Z [m]
Room	4.8	4.2	2.4
Hum Sim	0.38	0.9	0.38
Inlets	0.25	_	0.25
Exhaust	0.25	_	0.25
Lamps	1.5	_	0.1

Material: Air

Viscosity model: Newtonian

•(v) Kinematic viscosity: 1.5295e-5 m2/s

•(ρ) *Density*: 1.1965 kg/m3

•Thermal expansion coefficient: 0.00343 1K

•(T0) Reference temperature: 298.15 K

•Specific heat: 1004 Jkg.K

The computational case

Element	Boundary Type	Boundary Condition Description
Inlet	Velocity inlet	0.0472 m3/s per inlet, at 293 K
Exhaust	Pressure outlet	Gauge pressure fixed at 0 Pa
Human simulators (top face)	Wall	No-slip condition with a turbulent heat flux. The power heat source is defined as 9.6 W per face.
Human simulators (side faces)	Wall	No-slip condition with a turbulent heat flux. The power heat source is defined as 22.6 W per face.
Lamps	Wall	No-slip condition with a turbulent heat flux. The power heat source is defined as 64 W per lamp.
Wall: positive x-direction	Wall	No-slip condition, with a fixed temperature of 297.7 K
Wall: negative x-direction	Wall	No-slip condition, with a fixed temperature of 298 K
Ceiling: positive y-direction	Wall	No-slip condition, with a fixed temperature of 298.7 K
Floor: negative y-direction	Wall	No-slip condition, with a fixed temperature of 297 K
Wall: positive z-direction	Wall	No-slip condition, with a fixed temperature of 298.5 K
Wall: negative z-direction	Wall	No-slip condition, with a fixed temperature of 298.3 K

Today's work

Today's work

The computational results

- Particle sources
- Particle measurement
- Velocity measurement

https://www.simscale.com/docs/validationcases/thermal-comfort-underfloor-airdistribution/

Velocity [m/s]

Velocity [m/s]

over V2

LET'S DO IT

Assignment

- Finish the computation
- Show the flow field and temperature field
- Compare your results against the data shown in Slide 10. Are you happy with the results?
- Analyse what cause the errors
- Briefly report your results and analysis in no more than two A4 pages (no format requirement)
- **❖ Submit your report via DingTalk by 5:00 pm Wednesday 29/09/2021**