Algoritmi e Strutture Dati

Capitolo 7 - Tabelle hash

Alberto Montresor Università di Trento

This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/2.5/ or send a letter to Creative Commons, 543 Howard Street, 5th Floor, San Francisco, California, 94105, USA.

Introduzione

* Dizionario (reloaded):

- Struttura dati per memorizzare insiemi dinamici di coppie (chiave, valore)
- * Il valore è un "dato satellite"
- Dati indicizzati in base alla chiave
- Operazioni: insert(), remove() e lookup()

+ Applicazioni:

- Le tabelle dei simboli di un compilatore
- La gestione della memoria nei sistemi operativi

Introduzione

• Possibili implementazioni e relativi costi

	Array non ordinato	Array ordinato	Lista	Alberi (abr, rb,)	Performance ideale	
insert()	0(1)	0 (n)	0(1)	O(log n)	0(1)	
looup()	0 (n)	O(log n)	0 (n)	O(log n)	0(1)	
remove()	0 (n)	0 (n)	0 (n)	O(log n)	0(1)	

Notazione

- + U Universo di tutte le possibili chiavi
- \star K Insieme delle chiavi effettivamente memorizzate
- + Possibili implementazioni
 - * |U| corrisponde al range [0..m-1], $|K| \sim |U| \rightarrow$
 - tabelle ad indirizzamento diretto
 - * U è un insieme generico, $|K| << |U| \rightarrow$
 - tabelle hash

Tabelle a indirizzamento diretto

* Implementazione:

- Basata su array ordinari
- * L'elemento con chiave k è memorizzato nel k-esimo "slot" del vettore
- Se $|K| \sim |U|$:
 - Non sprechiamo (troppo) spazio
 - * Operazioni in tempo O(1) nel caso peggiore
- + Se $|K| \ll |U|$: soluzione non praticabile
 - Esempio: studenti ASD con chiave "n. matricola"

valore

Tabelle hash

- + Tabelle hash:
 - Un vettore A[0..m-1]
 - + Una funzione hash $H: U \rightarrow \{0,..,m-1\}$

- Diciamo che H(k) è il valore hash della chiave k
- + Chiave k viene "mappata" nello slot A[H(k)]
- * Quando due o più chiavi nel dizionario hanno lo stesso valore hash, diciamo che è avvenuta una *collisione*
- * Idealmente: vogliamo funzioni hash senza collisioni

Problema delle collisioni

Utilizzo di funzioni hash perfette

+ Una funzione hash *H* si dice *perfetta* se è iniettiva, ovvero:

$$\forall u, v \in U : u \neq v \Rightarrow H(u) \neq H(v)$$

• Si noti che questo richiede che $m \ge |U|$

+ Esempio:

- Studenti ASD solo negli ultimi tre anni
- Distribuiti fra 234.717 e 235.716
- + H(k) = k 234.717, m = 1000
- + Problema: spazio delle chiavi spesso grande, sparso, non conosciuto
 - + E' spesso impraticabile ottenere una funzione hash perfetta

+ Se le collisioni sono inevitabili

- almeno cerchiamo di minimizzare il loro numero
- * vogliamo funzioni che distribuiscano *uniformemente* le chiavi negli indici [0...*m*-1] della tabella hash

+ Uniformità semplice:

- * sia P(k) la probabilità che una chiave k sia inserita nella tabella
- * sia $Q(i) = \sum_{k:H(k)=i} P(k)$ la probabilità che una chiave qualsiasi, finisca nella cella i.
- * Una funzione H gode della proprietà di uniformità semplice se

$$\forall i \in \{0, \dots, m-1\} : Q(i) = 1/m.$$

* Per poter ottenere una funzione hash con uniformità semplice, la distribuzione delle probabilità *P* deve essere nota

+ Esempio:

* *U* numeri reali in [0,1] e ogni chiave ha la stessa probabilità di essere scelta, allora

$$H(k) = |km|$$

soddisfa la proprietà di uniformità semplice

- + Nella realtà
 - La distribuzione esatta può non essere (completamente) nota
 - * Si utilizzano allora tecniche "euristiche"

+ Assunzioni:

- * Tutte le chiavi sono equiprobabili: P(k) = 1 / |U|
 - * Semplificazione necessaria per proporre un meccanismo generale
- + Le chiavi sono valori numerici non negativi
 - * E' possibile trasformare una chiave complessa in un numero
 - + ord(c): valore ordinale del carattere c
 - * bin(k): rappresentazione binaria della chiave k, concatenando i valori ordinali dei caratteri che lo compongono
 - * int(k): valore numerico associato ad una chiave k
 - + Esempio:

 - $+ int("DOG") → 68 \cdot 256^2 + 79 \cdot 256 + 71$ → 4.476.743

Come realizzare una funzione hash

Nei prossimi esempi, utilizziamo codice ASCII a 8 bit

$$bin("DOG") = ord("D") \quad ord("O") \quad ord("G")$$

$$= 01000100 \quad 01001111 \quad 01000111$$
 $int("DOG") = 68 \cdot 256^2 + \quad 79 \cdot 256 + \quad 71$

$$= 4,476,743$$

Domanda: come fate a trasformare questa sequenza di bit o questo numero in un valore compreso in [0, m-1]?

Funzione hash - Estrazione

Estrazione

- $m = 2^p$
- \bullet H(k)=int(b),dove b è un sottoinsieme di p bit presi da bin(k)

Problemi

- Selezionare bit presi dal suffisso della chiave può generare collisioni con alta probabilità
- Tuttavia, anche prendere parti diverse dal suffisso o dal prefisso può generare collisioni.

Nei prossimi esempi

- + ord(`a') = 1, ord(`b')=2, ..., ord(`z')=26, $ord(`\underline{b}')=32$
 - + <u>b</u> rappresenta lo spazio
- * Sono sufficienti 6 bit per rappresentare questi caratteri
- + Si considerino le seguente due stringhe: "weberb" e "webern"
- Rappresentazione binaria
 - + bin("weber<u>b</u>") = 010111 000101 000010 000101 010010 100000
 - + bin("webern") = 010111 000101 000010 000101 010010 001110
- Rappresentazione intera
 - * $int("weberb") = 23.64^5 + 5.64^4 + 2.64^3 + 5.64^2 + 18.64^1 + 32.64^0 = 24.780.493.966$
 - + $int("webern") = 23.64^5 + 5.64^4 + 2.64^3 + 5.64^2 + 18.64^1 + 14.64^0 = 24.780.493.984$

Funzioni hash - Estrazione

- + Assunzioni
 - + m=2p
- Come calcolare H(k)
 - + H(k) = int(b), dove b è un sottoinsieme di p bit presi da bin(k)
- + Esempio:
 - * $m = 2^8 = 256$, bit presi dalla posizione 15 alla posizione 22
 - + bin("weberb") = 010111 000101 000010 000101 010010 100000
 - + bin("webern") = 010111 000101 00<u>0010 0001</u>01 010010 001110
 - + da cui si ottiene:
 - + $H(\text{"weber}\underline{b}\text{"}) = bin(00100001) = 33$
 - + H("webern") = bin(00100001) = 33

Funzioni hash: XOR

- + Assunzioni
 - $+ m=2^p$
- Come calcolare H(k)
 - * H(k) = int(b), dove b è dato dalla somma modulo 2, effettuata bit a bit, di diversi sottoinsiemi di p bit di bin(k)
- + Esempio:
 - * $m = 2^8 = 256$, 5 gruppi di 8 bit, 40 bit ottenuti con 4 zeri di "padding"

 - + H(``webern'') = $int(01011100 \oplus 01010000 \oplus 10000101 \oplus 01001000 \oplus 1110\underline{0000})$ = int(00100001) = 33

Funzioni hash: metodo della divisione

- + Assunzioni:
 - * *m* dispari, meglio se primo
- Procedimento di calcolo
 - $H(k) = k \mod m$
- + Esempio:
 - + m = 383
 - + $H(\text{"weber}\underline{\mathbf{b}}\text{"}) = 24.780.493.966 \mod 383 = ?$
 - + H("webern") = 24.780.493.984 mod 383 = 242
- * Nota: il valore *m* deve essere scelto opportunamente

Non vanno bene:

- * $m=2^p$: solo i p bit più significativi vengono considerati
- $m=2^p-1$: permutazione di stringhe in base 2^p hanno lo stesso valore hash
 - Domanda: Dimostrazione

+ Vanno bene:

* Numeri primi, distanti da potenze di 2 (e di 10)

© Alberto Montresor

Funzioni hash: Moltiplicazione

+ Assunzioni

- * m numero qualsiasi (potenze 2 consigliate)
- + C una costante reale, 0 < C < 1

Procedimento di calcolo

- i = int(bin(k))
- $\star H(k) = |m(iC |iC|)|$

+ Esempio

- $C = (\sqrt{5} 1)/2 \text{ e } m = 256.$
- + $H(\text{Webern}) = |m(iC |iC|)| = |256 \cdot 0.9996833801...| = 255.$

- **+** Come implementare il metodo della moltiplicazione:
 - Si scelga un valore $m=2^p$
 - * Sia w la dimensione in bit della parola di memoria: $k, m \le 2^w$
 - Sia $s = \lfloor C \cdot 2^w \rfloor$
 - * $k \cdot s$ può essere scritto come $r_1 \cdot 2^w + r_0$
 - * r₁ contiene la parte intera di *kA*
 - → r₀ contiene la parte frazionaria di kA
 - * Ritorniamo i p bit più significativi di r₀

w bit

Funzioni hash - continua

- Non è poi così semplice...
 - * Il metodo della moltiplicazione suggerito da Knuth non è poi così buono....
- * Test moderni per valutare
 - * Avalanche effect:
 - * Se si cambia un bit nella chiave, deve cambiare almeno la metà dei bit del valore hash
 - Test statistici (Chi-square)
 - Funzioni crittografiche (SHA-1)

© Alberto Montresor

Funzioni hash moderne

Nome	Note	Link
FNV Hash	Funzione hash non crittografica, creata nel 1991.	[Wikipedia] [Codice]
Murmur Hash	Funzione hash non crittografica, creata nel 2008, il cui uso è ormai sconsigliato perchè debole.	[Wikipedia] [Codice]
City Hash	Una famiglia di funzioni hash non-crittografiche, progettate da Google per essere molto veloce. Ha varianti a 32, 64, 128, 256 bit.	[Wikipedia] [Codice]
Farm Hash	Il successore di City Hash, sempre sviluppato da Google.	[Codice]

Alberto Montresor (UniTN)

ASD - Hashing

2018/11/07

Problema delle collisioni

- + Abbiamo ridotto, ma non eliminato, il numero di collisioni
- Come gestire le collisioni residue?
 - Dobbiamo trovare collocazioni alternative per le chiavi
 - * Se una chiave non si trova nella posizione attesa, bisogna andare a cercare nelle posizioni alternative
 - * Le operazioni possono costare $\Theta(n)$ nel caso peggiore...
 - + ...ma hanno costo $\Theta(1)$ nel caso medio
- Due delle possibili tecniche:
 - * Liste di trabocco o memorizzazione esterna
 - * *Indirizzamento aperto* o memorizzazione interna

© Alberto Montresor

Tecniche di risoluzione delle collisioni

Liste di trabocco (chaining)

- * Gli elementi con lo stesso valore hash *h* vengono memorizzati in una lista
- * Si memorizza un puntatore alla testa della lista nello slot *A[h]* della tabella hash

Operazioni:

- Insert: inserimento in testa
- * Lookup, Delete: mrichiedono di scandire la lista alla ricerca della chiave

n=1 numero di chiavi memorizzate nella tabella hash m=1 dimensione della tabella hash $\alpha=n/m$ (fattore di carico) $I(\alpha)=1$ numero medio di accessi alla tabella per la ricerca di una chiave non presente nella tabella ($ricerca\ con\ insuccesso$) $S(\alpha)=1$ numero medio di accessi alla tabella per la ricerca di una chiave presente nella tabella ($ricerca\ con\ successo$)

+ Analisi del caso pessimo:

- Tutte le chiavi sono collocate in unica lista
 - Insert: $\Theta(1)$
 - * Search, Delete: $\Theta(n)$

+ Analisi del caso medio:

- Dipende da come le chiavi vengono distribuite
- Assumiamo hashing uniforme semplice
- + Costo funzione di hashing f: $\theta(1)$

+ Teorema:

* In tavola hash con concatenamento, una ricerca senza successo richiede un tempo atteso $\Theta(1 + \alpha)$

+ Dimostrazione:

- Una chiave non presente nella tabella può essere collocata in uno qualsiasi degli
 m slot
- Una ricerca senza successo tocca tutte le chiavi nella lista corrispondente
- * Tempo di hashing: 1 + lunghezza attesa lista: $\alpha \to \Theta(1+\alpha)$

+ Teorema:

- * In tavola hash con concatenamento, una ricerca con successo richiede un tempo atteso di $\Theta(1+\alpha)$
- Più precisamente: $\Theta(1 + \alpha/2)$
- + Dimostrazione: idee chiave
 - * Si assuma che l'elemento cercato *k* sia uno qualsiasi degli n elementi presenti nella tabella
 - * Il numero di elementi esaminati durante una ricerca con successo:
 - → 1 (l'elemento cercato) +
 - in media, dovrò scandire metà della lista (di lunghezza attesa α)

© Alberto Montresor

- Qual è il significato del fattore di carico:
 - Influenza il costo computazionale delle operazioni sulle tabelle hash
 - se n = O(m), $\alpha = O(1)$
 - quindi tutte le operazioni sono $\Theta(1)$

Indirizzamento aperto

- Problema della gestione di collisioni tramite concatenamento
 - * Struttura dati complessa, con liste, puntatori, etc.
- + Gestione alternativa: indirizzamento aperto
 - Idea: memorizzare tutte le chiavi nella tabella stessa
 - + Ogni slot contiene una chiave oppure nil
 - * Inserimento:
 - * Se lo slot prescelto è utilizzato, si cerca uno slot "alternativo"
 - * Ricerca:
 - * Si cerca nello slot prescelto, e poi negli slot "alternativi" fino a quando non si trova la chiave oppure **nil**

© Alberto Montresor

Indirizzamento aperto

- * Ispezione: Uno slot esaminato durante una ricerca di chiave
- * Sequenza di ispezione: La lista ordinata degli slot esaminati
- + Funzione hash: estesa come
 - + $H: U \times [0 ... m-1] \rightarrow [0 ... m-1]$
- * <u>n. sequenza</u> indice array
- + La sequenza di ispezione $\{H(k, 0), H(k, 1), ..., H(k, m-1)\}$ è una permutazione degli indici [0...m-1]
 - + Può essere necessario esaminare ogni slot nella tabella
 - * Non vogliamo esaminare ogni slot più di una volta

Gestione collision

 ${\bf Indirizzamento\ aperto}$

Esempio

\mathbf{k}_1	\mathbf{k}_2	\mathbf{k}_3	k ₄	\mathbf{k}_{5}		

H(k,0)

Alberto Montresor (UniTN)

ASD - Hashing

2018/11/07

32 / 52

Gestione collision

 ${\bf Indirizzamento\ aperto}$

Esempio

\mathbf{k}_1	\mathbf{k}_2	\mathbf{k}_3	k ₄	\mathbf{k}_{5}		

H(k,0)

Alberto Montresor (UniTN)

ASD - Hashing

2018/11/07

32 / 52

Gestione collisioni

Indirizzamento aperto

Esempio

H(k,0)

H(k, 1)

Gestione collisioni

Indirizzamento aperto

Gestione collision:

Indirizzamento aperto

Gestione collision:

Indirizzamento aperto

Gestione collision:

Indirizzamento aperto

Indirizzamento aperto

- Cosa succede al fattore di carico α?
 - + Compreso fra 0 e 1
 - La tabella può andare in overflow
 - + Inserimento in tabella piena
 - + Esistono tecniche di crescita/contrazione della tabella
 - linear hashing

Tecniche di ispezione

+ La situazione ideale prende il nome di hashing uniforme

- Ogni chiave ha la stessa probabilità di avere come sequenza di ispezione una qualsiasi delle *m*! permutazioni di [0...*m*-1]
- Generalizzazione dell'hashing uniforme semplice

Nella realtà:

- E' difficile implementare il vero uniform hashing
- * Ci si accontenta di ottenere semplici permutazioni

+ Tecniche diffuse:

- * Ispezione lineare
- Ispezione quadratica
- Doppio hashing

Ispezione lineare

- + Funzione: $H(k, i) = (H(k) + h \cdot i) \mod m$ chiave n. ispezione funzione hash base
- + Il primo elemento determina l'intera sequenza
 - $+ H(k), H(k)+h, H(k)+2\cdot h..., H(k)+(m-1)\cdot h$ (tutti modulo m)
 - * Solo *m* sequenze di ispezione distinte sono possibili
- + Problema: agglomerazione primaria (primary clustering)
 - Lunghe sotto-sequenze occupate...
 - ... che tendono a diventare più lunghe:
 - * uno slot vuoto preceduto da i slot pieni viene riempito con probabilità (i+1)/m

29

* I tempi medi di inserimento e cancellazione crescono

- Lunghe sotto-sequenze occupate...
- ... che tendono a diventare più lunghe: uno slot vuoto preceduto da i slot pieni viene riempito con probabilità (i+1)/m
- I tempi medi di inserimento e cancellazione crescono

- Lunghe sotto-sequenze occupate...
- ... che tendono a diventare più lunghe: uno slot vuoto preceduto da i slot pieni viene riempito con probabilità (i+1)/m
- I tempi medi di inserimento e cancellazione crescono

- Lunghe sotto-sequenze occupate...
- ... che tendono a diventare più lunghe: uno slot vuoto preceduto da i slot pieni viene riempito con probabilità (i+1)/m
- I tempi medi di inserimento e cancellazione crescono

- Lunghe sotto-sequenze occupate...
- ... che tendono a diventare più lunghe: uno slot vuoto preceduto da i slot pieni viene riempito con probabilità (i+1)/m
- I tempi medi di inserimento e cancellazione crescono

- Lunghe sotto-sequenze occupate...
- ... che tendono a diventare più lunghe: uno slot vuoto preceduto da i slot pieni viene riempito con probabilità (i+1)/m
- I tempi medi di inserimento e cancellazione crescono

Ispezione quadratica

+ Funzione: $H(k, i) = (H(k) + h \cdot i^2) \mod m$ chiave n. ispezione funzione hash base

- Sequenza di ispezioni:
 - + L'ispezione iniziale è in H(k)
 - * Le ispezione successive hanno un offset che dipende da una funzione quadratica nel numero di ispezione *i*
 - * Solo *m* sequenze di ispezione distinte sono possibili
- + Problema: la sequenza così risultante non è una permutazione
- + Problema: agglomerazione secondaria (secondary clustering)
 - * Se due chiavi hanno la stessa ispezione iniziale, le loro sequenze sono identiche

Ispezione pseudo-casuale

- + Funzione: $H(k, i) = (H(k) + r_i) \mod m$ chiave n. ispezione funzione hash base
- Sequenza di ispezioni:
 - + L'ispezione iniziale è in H(k)
 - * r_i è l'i-esimo elemento restituito da un generatore di numeri casuali fra $[0 \dots m-1]$
 - * Solo *m* sequenze di ispezione distinte sono possibili
- + La sequenza così risultante è una permutazione
- + Problema: agglomerazione secondaria (secondary clustering)
 - Questo problema rimane

31

Doppio hashing

+ Funzione: $H(k, i) = (H(k) + i \cdot H'(k)) \mod m$ chiave n. ispezione funzioni hash base, ausiliaria

- **+** Due funzioni ausiliarie:
 - * *H* fornisce la prima ispezione
 - * H' fornisce l'offset delle successive ispezioni
 - * m^2 sequenze di ispezione distinte sono possibili
- * Nota: Per garantire una permutazione completa, H'(k) deve essere relativamente primo con m
 - * Scegliere $m = 2^p$ e H'(k) deve restituire numeri dispari
 - * Scegliere m primo, e H'(k) deve restituire numeri minori di m

32

Cancellazione

- * Non possiamo semplicemente sostituire la chiave che vogliamo cancellare con un nil. Perché?
- + Approccio
 - * Utilizziamo un speciale valore **deleted** al posto di **nil** per marcare uno slot come vuoto dopo la cancellazione
 - + Ricerca: **deleted** trattati come slot pieni
 - * Inserimento: **deleted** trattati come slot vuoti
- * Svantaggio: il tempo di ricerca non dipende più da α.
- * Concatenamento più comune se si ammettono cancellazioni

Gestione collision:

Indirizzamento aperto

Cancellazione

Non possiamo semplicemente sostituire la chiave che vogliamo cancellare con un **nil**. Perché?

Alberto Montresor (UniTN)

ASD - Hashing

2020/11/16

39 / 51

Cancellazione

Approccio

- Utilizziamo un speciale valore **deleted** al posto di **nil** per marcare uno slot come vuoto dopo la cancellazione
 - Ricerca: deleted trattati come slot pieni
 - Inserimento: **deleted** trattati come slot vuoti
- \bullet Svantaggio: il tempo di ricerca non dipende più da α
- Concatenamento più comune se si ammettono cancellazioni

Alberto Montresor (UniTN)

ASD - Hashing

2020/11/16

39 / 51

Gestione collisioni

Indirizzamento aperto

Implementazione - Hashing doppio

```
HASH

ITEM[] K

ITEM[] V

M

Tabella delle chiavi

M

Tabella delle chiavi
```

Implementazione - Hashing doppio

Implementazione - Hashing doppio

```
 \begin{split} & \text{ITEM lookup}(\text{ITEM } k) \\ & \text{int } i = \text{scan}(k, \text{false}) \\ & \text{if } K[i] == k \text{ then} \\ & | \text{ return } V[i] \\ & \text{else} \\ & | \text{ return nil} \\ \\ & \text{insert}(\text{ITEM } k, \text{ITEM } v) \\ & | \text{ int } i = \text{scan}(k, \text{true}) \\ & | \text{ if } K[i] == \text{nil or } K[i] == \text{deleted or } K[i] == k \text{ then} \\ & | K[i] = k \\ & | V[i] = v \\ & \text{else} \\ & | \% \text{ Errore: tabella hash piena} \end{split}
```

Alberto Montresor (UniTN)

ASD - Hashing

2020/11/16

Gestione collision:

Indirizzamento aperto

Implementazione - Hashing doppio

Alberto Montresor (UniTN)

ASD - Hashing

2020/11/16

Gestione collisioni

Indirizzamento aperto

Complessità

Metodo	lpha	I(lpha)	S(lpha)
Lineare	$0 \le \alpha < 1$	$\frac{(1-\alpha)^2+1}{2(1-\alpha)^2}$	$\frac{1-\alpha/2}{1-\alpha}$
Hashing doppio	$0 \le \alpha < 1$	$\frac{1}{1-\alpha}$	$-\frac{1}{\alpha}\ln(1-\alpha)$
Liste di trabocco	$\alpha \ge 0$	$1 + \alpha$	$1 + \alpha/2$

Complessità

Reality check

Java hashcode()

Esempio: java.lang.String

- Override di equals() per controllare l'uguaglianza di stringhe
- hashCode() in Java 1.0, Java 1.1
 - Utilizzati 16 caratteri della stringa per calcolare l'hashCode()
 - Problemi con la regola (3) cattiva performance nelle tabelle
- hashCode() in Java 1.2 e seguenti:

$$h(s) = \sum_{i=0}^{n-1} s[i] \cdot 31^{n-1-i}$$

(utilizzando aritmetica int)

Gestione collision

Reality check

Java hashcode()

Cosa non fare

```
public int hashCode()
{
   return 0;
}
```

Alberto Montresor (UniTN)

ASD - Hashing

2020/11/16

Reality check

Linguaggio	Tecnica	t_{α}	Note
Java 7 HashMap	Liste di trabocco basate su LinkedList	0.75	O(n) nel caso pessimo Overhead: $16n + 4m$ byte
Java 8 HashMap	Liste di trabocco basate su RB Tree	0.75	$O(\log n)$ nel caso pessimo Overhead: $48n + 4m$ byte
C++ sparse_hash	Ind. aperto, scansione quadratica	?	Overhead: $2n$ bit
C++ dense_hash	Ind. aperto, scansione quadratica	0.5	X byte per chiave-valore $\Rightarrow 2\text{-}3X$ overhead
C++ STL unordered_map	Liste di trabocco basate su liste	1.00	MurmurHash
Python	Indirizzam. aperto, scansione quadratica	0.66	

Alberto Montresor (UniTN)

ASD - Hashing

2020/11/16

Conclusioni

Considerazioni finali

Problemi con hashing

- Scarsa "locality of reference" (cache miss)
- Non è possibile ottenere le chiavi in ordine

Hashing utilizzato in altre strutture dati

- Distributed Hash Table (DHT)
- Bloom filters

Oltre le tabelle hash

- Data deduplication
- Protezioni dati con hash crittografici (MD5)

Alberto Montresor (UniTN)

ASD - Hashing

2020/11/16

51 / 51