PH 712 Probability and Statistical Inference

Part X: Confidence Set/Interval

Zhiyang Zhou (zhou67@uwm.edu, zhiyanggeezhou.github.io)

2024/12/09 14:04:27

Confidence set (CB Sec 9.2.1 & 9.3.1)

- Called a confidence interval (CI) If the set is an interval
- True (but unknown) value of parameter θ , say θ_0
- $(1-\alpha) \times 100\%$ confidence set, say $C(X_1, \dots, X_n)$: $C(X_1, \dots, X_n)$ covers θ_0 with probability AT LEAST $(1-\alpha) \times 100\%$, i.e., $\Pr\{\theta_0 \in C(X_1, \dots, X_n)\} \ge (1-\alpha) \times 100\%$
 - $-C(X_1,\ldots,X_n)$ is a set defined on sample X_1,\ldots,X_n and hence is randomized, while θ_0 is fixed
 - Coverage probability: $(1 \alpha) \times 100\%$

Construction of a confidence set by inverting a level α test

- (CB Thm 9.2.2) Implementation
 - 1. For each $\theta^* \in \Theta$, find the rejection region, say $R(\theta^*)$, of a level α test of hypotheses $H_0: \theta = \theta^*$ vs. $H_1: \theta \neq \theta^*$
 - 2. $C(x_1, \ldots, x_n) = \{\theta : (x_1, \ldots, x_n) \in \operatorname{supp}(X_1, \ldots, X_n) / R(\theta)\},$ - $\operatorname{supp}(X_1, \ldots, X_n) / R(\theta)$: the complementary set of $R(\theta)$.
- $(1 \alpha) \times 100\%$ confidence set $C(X_1, \dots, X_n)$ does not cover $\theta_0 \Leftrightarrow \text{reject } H_0 : \theta = \theta_0 \text{ (vs. } H_1 : \theta \neq \theta_0)$ at level α
- Special cases:
 - $-(1-\alpha) \times 100\%$ (asymptotic) LRT confidence set for θ : $\{\theta : -2(\ell(\theta) \ell(\hat{\theta}_{ML}))\} < \chi^2_{1,1-\alpha}\}$
 - $-(1-\alpha) \times 100\%$ Wald confidence set for θ : $\{\theta: |\hat{\theta}_{\mathrm{ML}} \theta|/\sqrt{\widehat{\mathrm{var}}(\hat{\theta}_{\mathrm{ML}})} < \Phi_{1-\alpha/2}^{-1}\}$
 - $-(1-\alpha) \times 100\%$ score confidence set for θ : $\{\theta : |\ell'(\theta)|/\sqrt{I_n(\theta)} < \Phi_{1-\alpha/2}^{-1}\}$

```
options(digits = 4)
set.seed(1)
B = 1e4L
n = 1e3L
alpha = .05
x = rbinom(n, 1, prob = .6)
theta_ml = mean(x)
theta_star_np = numeric(B)
theta_star_p = numeric(B)
# Nonparametric bootstrap
for (b in 1:B){
    x_star = sample(x, size = n, replace = T)
```

```
theta_star_np[b] = mean(x_star)
}
quantile(theta_star_np, probs = c(alpha/2, 1-alpha/2))
# Parametric bootstrap
for (b in 1:B){
    x_star = rbinom(n, size = 1, prob = theta_ml)
    theta_star_p[b] = mean(x_star)
}
quantile(theta_star_p, probs = c(alpha/2, 1-alpha/2))
```