Achtung: Den Rechner auf rad einstellen!

1.	Wovon hängt die Schwingungsdauer eines Federpendels ab?
	Amplitude Masse, die schwingt Federkonstante Länge der Feder Fallbeschleunigung
2.	Vervollständigen Sie die folgenden Sätze:
a)	Je grösser die schwingende Masse eines Federpendels ist, desto ist
	die Periode, und desto ist die Frequenz.
b)	Je weicher die Feder eines Federpendels ist, desto ist die Periode,
	und desto ist die Frequenz.
2	Ein Stein (m = 400 g) hängt an einer Feder (D = 3.6 $\frac{N}{cm}$). Der Stein wird zur Zeit t = 0 um
J.	2.3 cm nach oben ausgelenkt und dann losgelassen. Er schwingt harmonisch auf und ab.
a)	Wie gross sind Kreisfrequenz, Frequenz, Periode und Amplitude?
,	Wie gross ist die Anfangsphase φ_0 ? Schreiben Sie die Funktion $y(t)$, die diese Schwingung beschreibt, auf.
	Wie gross ist die Auslenkung zur Zeit $t = 0.30$ s?
4.	Hängt man an eine Feder eine Masse von 0.100 kg, so wird sie um 1.50 cm verlängert.
a) b)	Wie gross ist die Federkonstante der Feder? Berechnen Sie die Schwingungsdauer (Periode) dieses Federpendels.
,	
5.	40 Schwingungen eines Federpendels dauern 21 s. Die Masse des schwingenden Körpers beträgt 250 g.
a)	Mit welcher Frequenz schwingt das Federpendel?
b)	Berechnen Sie die Federkonstante.
6.	Wovon hängt die Schwingungsdauer eines Fadenpendels ab?
	Amplitude
	☐ Masse, die schwingt☐ Länge des Fadens
	Dicke des Fadens
	☐ Fallbeschleunigung
7.	Vervollständigen Sie die folgenden Sätze:
a)	Je länger der Faden eines Fadenpendels, desto die Periode, und
	desto die Frequenz.
b)	Je grösser die Fallbeschleunigung, desto die Periode, und desto
	die Frequenz eines Fadenpendels.

- 8. Ein Stein (m = 400 g) hängt an einem Faden ($\ell = 1.09$ m). Der Stein wird zur Zeit t = 0 um 6.30 cm nach rechts (positive Richtung) ausgelenkt und dann losgelassen. Er schwingt harmonisch hin und her.
- a) Wie gross sind Kreisfrequenz, Frequenz, Periode und Amplitude?
- b) Wie gross ist die Anfangsphase φ_0 ?
- c) Schreiben Sie die Funktion y(t), die diese Schwingung beschreibt, auf.
- d) Wie gross ist die Auslenkung zur Zeit t = 0.75 s?
- 9. 20 volle Schwingungen eines Fadenpendels, das sich auf dem Mond befindet, dauern 32 s. Wie lang ist der Faden?
- 10. Die Länge des Fadenpendels wird verdoppelt. Um wieviel Prozent ändert sich die Frequenz?
- 11. Ein Federschwinger mit einer Federkonstanten von 5.0 $\frac{N}{cm}$ führt 75 Schwingungen pro
- a) Welche Masse hängt an der Feder?
- b) Wie gross ist die maximale Rückstellkraft bei einer Amplitude von 2.0 cm?
- 12. An eine unbelastete Feder wird ein Körper der Masse 200 g gehängt. Er dehnt die Feder um 20 cm aus. Nun zieht man die Feder weitere 10 cm auseinander und lässt sie zur Zeit

Geben Sie die Ortsfunktion y (t) für den entstehenden Schwingungsvorgang an und skizzieren Sie diese!

- 13. Der Körper eines Federpendels hat eine Masse von 300 g. Es schwingt mit einer Periode von 1.25 s und einer Amplitude von 5.0 cm. Mit welcher Geschwindigkeit schwingt es durch die Ruhelage?
- 14. Die Abbildung zeigt das Galileische Hemmungspendel.
- a) Berechnen Sie die Schwingungsdauer.
- b) Skizzieren Sie ein Weg-Zeit-Diagramm für diese Schwingung (qualitativ)

Lösungen:

- 3. a) $\omega = 30 \text{ s}^{-1}$, f = 4.8 Hz, T = 0.21 s, $\hat{y} = 2.3 \text{ cm}$ b) $\frac{\pi}{2}$ c) $y(t) = 2.3 \text{ cm} \cdot \sin(30 \text{ s}^{-1} \cdot t + \frac{\pi}{2})$ d) 2.1 cm

- 4. a) 65.4 $\frac{N}{m}$ b) 0.246 s 5. a) 1.90 Hz b) 36.5 $\frac{N}{m}$

- 8. a) $\omega = 3.00 \text{ s}^{-1}$, f = 0.477 Hz, T = 2.09 s, $\hat{y} = 6.3 \text{ cm}$ b) $\frac{\pi}{2}$ c) $y(t) = 6.3 \text{ cm} \cdot \sin{(3.00 \text{ s}^{-1} \cdot t + \frac{\pi}{2})}$ d) 3.96 cm
- 10. um 29 % kleiner 11. a) 8.1 kg 7.0 s⁻¹ · t + $\frac{3\pi}{2}$) 13. 0.25 $\frac{\text{m}}{\text{s}}$ 12. $y(t) = 10 \text{ cm} \cdot \sin(7.0 \text{ s}^{-1} \cdot t + \frac{3\pi}{2})$