Introduction to Coresets

Isak Falk¹

May 27, 2020

¹ucabitf@ucl.ac.uk

Outline

- Setup
- 2 Examples
- Recent Work
- 4 References

Isak Falk

Informal Statement

Coreset is a modern data summarization that approximates the original data in some provable sense with respect to a (usually infinite) set of questions, queries or models and an objective loss/cost function. – (Introduction to Coresets: Accurate Coresets [5])

Formal Statement

Ingredients

- ullet $\mathcal X$ is called the *query set*
- P' = (P, w) is a weighted set called the *input set* • The weighing function $w: P \to \mathbb{R}$ assigns a weight to each $p \in P$
- $f: P \times \mathcal{X} \to \mathbb{R}_{\geq 0}$ is called the *cost function*
- $\ell: \bigcup_{n=1}^{\infty} \mathbb{R}^n \to \mathbb{R}_{\geq 0}$ is called the *loss*

Query space

The tuple $(P, w, \mathcal{X}, f, \ell)$ is called a *query space*.

Accurate Coresets

For a query space $(P, w, \mathcal{X}, f, \ell)$, the *fitting error* of any weighted set $C' = (C, u) = (\{c_1, \dots, c_m\}, u)$ and $x \in \mathcal{X}$ is

$$f_{\ell}(C',x)=\ell(u(c_1)f(c_1,x),\cdots,u(c_m)f(c_m,x)).$$

C' is called an *accurate coreset* for the query space $(P, w, \mathcal{X}, f, \ell)$ if for every $x \in \mathcal{X}$

$$f_{\ell}(C',x)=f_{\ell}(P',x)$$

Practical Examples

Accurate coresets can be found for many settings including least squares

Practical Examples

Name	Input Weighted Set (P, w) of size $ P = n$	Query Set X	$\mathbf{cost\ function}\ f:P\times\mathcal{X}$	loss for f(p, x) over $p \in P$	Coreset C	Coreset Weights	Const. time	Query time	Section
1-Center	$P \subseteq \ell \subseteq \mathbb{R}^d$ $w \equiv 1$	$X = \mathbb{R}^d$	f(p,x) = p-x	- ∞	$C \subseteq P$ C = 2	u = 1	O(n)	O(d)	3.1
Monotonic function	$P \subseteq \mathbb{R}$ $w \equiv 1$	$X = \{g \mid g \text{ is monotonic} \}$ decreasing/increasing or increasing and then decreasing function	f(p, g) = g(p)	∙ ∞	$C \subseteq P$ C = 2	$u \equiv 1$	O(n)	O(1)	3.2
Vectors sum (1)	$P \subseteq \mathbb{R}^d$ $w : P \to \mathbb{R}$	$X = \mathbb{R}^d$	f(p, x) = p - x	Σ	$C \subseteq \mathbb{R}^d$ C = 1	$u \equiv \sum_{p \in P} w(p)$	O(n)	O(d)	3.3
Vectors sum (2)	$P \subseteq \mathbb{R}^d$ $w : P \to \mathbb{R}$	$X = \mathbb{R}^d$	f(p, x) = p - x	Σ	$C \subseteq P$ $ C \le d + 1$	$\sum_{p \in C} u(p) = \sum_{p \in P} w(p)$	$O(nd^2)$	$O(d^2)$	3.3.1
Vectors sum (3)	$P \subseteq \mathbb{R}^d$ $w : P \to [0, \infty)$	$\mathcal{X} = \mathbb{R}^d$	f(p,x)=p-x	Σ	$C \subseteq P$ $ C \le d + 2$	$u : C \rightarrow \left[0, \sum_{p \in P} w(p)\right]$ $\sum_{p \in C} u(p) = \sum_{p \in P} w(p)$	$O\left(\min\{n^2d^2, \\ nd + d^4logn\}\right)$	$O(d^2)$	3.3.2
1-Mean (1)	$P \subseteq \mathbb{R}^d$ $w : P \to \mathbb{R}$	$X = \mathbb{R}^d$	$f(p, x) = w(p) p - x ^2$	$ \cdot _1$	$C \subseteq \mathbb{R}^d \times \mathbb{Z} \times \mathbb{R}$ C = 3 Different loss	unweighted	O(nd)	O(d)	3.4
1-Mean (2)	$P\subseteq \mathbb{R}^d$ $w:P\to \mathbb{R}$	$X = \mathbb{R}^d$	$f(p, x) = w(p) p - x ^2$: 1	$C \subseteq P$ $ C \le d + 2$	$\begin{aligned} u: C &\to \mathbb{R} \\ \sum_{p \in C} u(p) &= \sum_{p \in P} w(p) \\ \sum_{p \in C} u(p) \ p\ ^2 &= \sum_{p \in P} w(p) \ p\ ^2 \end{aligned}$	$O(nd^2)$	$O(d^2)$	3.4.1
1-Mean (3)	$P \subseteq \mathbb{R}^d$ $w: P \to [0, \infty)$	$\mathcal{X} = \mathbb{R}^d$	$f(p, x) = w(p) p - x ^2$	- 1	$C \subseteq P$ $ C \le d + 3$	$\begin{aligned} u: C \rightarrow & \left[0, \sum_{p \in P} w(p)\right] \\ \sum_{p \in C} u(p) &= \sum_{p \in P} w(p) \\ \sum_{p \in C} u(p) &\ p\ ^2 &= \sum_{p \in P} w(p) \ p\ ^2 \end{aligned}$	$O\left(\min\{n^2d^2, \\ nd + d^4logn\}\right)$	$O(d^2)$	3.4.2
1-Segment	$P = \{(t_i \mid p_i)\}_{i=1}^n \subseteq \mathbb{R}^{d+1}$ $w : P \to [0, \infty)$	$\mathcal{X} = \{g \mid g : \mathbb{R} \to \mathbb{R}^d\}$	$f((t, p), g) = p - g(t) ^2$	$\ \cdot\ _1$	$C \subseteq \mathbb{R}^{a+1}$ C = d + 2	$u \equiv 1$	$O(nd^2)$	$O(d^2)$	3.5
Matrix 2-norm (1)	$P \subseteq \mathbb{R}^d$ $w : P \rightarrow [0, \infty)$	$X = \mathbb{R}^d$	$f(p, x) = (p^T x)^2$	$\ \cdot\ _{\lambda}$	$C \subseteq \mathbb{R}^d$ C = d	$u \equiv 1$	$O(nd^2)$	$O(d^2)$	3.6
Matrix 2-norm (2)	$P \subseteq \mathbb{R}^d$ $w : P \to [0, \infty)$	$X = \mathbb{R}^d$	$f(p,x) = (p^T x)^2$	- 1	$C \subseteq P$ $ C \le d^2 + 1$	$u : C \rightarrow \left[0, \sum_{p \in P} w(p)\right]$ $\sum_{p \in C} u(p) = \sum_{p \in P} w(p)$	$O\left(\min\{n^2d^4, nd^2 + d^8logn\}\right)$	$O(d^3)$	3.6.1
Least Mean Squares	$\begin{split} P &= \left\{ (a_i^T \mid b_i) \right\}_{i=1}^n \subseteq \mathbb{R}^{d+1} \\ w : P &\rightarrow \left[0, \infty \right) \end{split}$	$X = \mathbb{R}^d$	$f((a^T b), x) = (a^T x - b)^2$	- 1	$C \subseteq P$ $ C \le (d+1)^2 + 1$	$u: C \rightarrow \begin{bmatrix} 0, \sum_{p \in P} w(p) \end{bmatrix}$ $\sum_{p \in C} u(p) = \sum_{p \in P} w(p)$	$O\left(\min\{n^2d^4, nd^2 + d^8logn\}\right)$	$O(d^3)$	3.7

Figure: Table of settings and Accurate Coresets

Isak Falk Introduction to Coresets May 27, 2020

7/18

Example 1: 1-Center

Problem

Given n points on the real line can we preprocess the points such that for any point $x \in \mathbb{R}$ we can find the distance from x to the point farthest away in P in O(1) time?

Query Space

- $P = \{p_1, \ldots, p_n\} \in \mathbb{R}, w(p) = 1$
- \bullet $\mathcal{X} = \mathbb{R}$
- f(p, x) = |p x|
- $\ell(\cdot) = \|\cdot\|_{\infty}$

Example 1: 1-Center

Solution

From the image

$$f_{\ell}(P', x) = \|(|p_1 - x|, \dots, |p_n - x|)\|_{\infty}$$

$$= \max_{p \in P} |p - x|$$

$$= \max_{p \in \{p_{min}, p_{max}\}} |p - x|$$

$$= f_{\ell}(C', x)$$

where $C = \{p_{min}, p_{max}\}, u(p) = 1$ is an accurate coreset for the query space.

Example 1: Generalisations

The previous accurate coreset can be generalised to when

- Unweighted P' is a line in \mathbb{R}^d
 - ▶ But not when P' is weighted
- Replacing \mathcal{X} with all $g: \mathbb{R} \to [0, \infty)$ that are non-negative decreasing or increasing and increasing monotonic function after some point.

Figure: Non-negative decreasing g then increasing function

10 / 18

Problem

- $P = \{p_1, \dots, p_n\}$ $p_i = (a_i, b_i)^\mathsf{T}, \ a_i \in \mathbb{R}^d, b_i \in \mathbb{R} \ \text{and} \ w : P \to [0, \infty).$ $\mathsf{Denote} \ w_i = w(p_i)$
- $oldsymbol{\circ} \mathcal{X} = \mathbb{R}^d$
- $f((a,b)^T) = (a^Tx b)^2$
- $\bullet \ \ell(\cdot) = \|\cdot\|_1$

This leads to

$$f_{\ell}((P, w), x) = \sum_{i=1}^{n} w_{i}(a_{i}^{\mathsf{T}}x - b_{i})^{2}$$

which is the weighted *least squares* objective function in statistics / ml.

Fact: Subset coreset of bounded weights

We will not prove, but use coresets for the matrix 2-norm. Let $\boldsymbol{A} \in \mathbb{R}^{n \times d}$, where the *i*'th row of \boldsymbol{A} is $\sqrt{w_i}p_i$. Then there exists a matrix $\boldsymbol{Z} \in \mathbb{R}^{d^2+1 \times d}$ such that he set of rows is a weighted subset of the rows of \boldsymbol{A} , for any $x \in \mathbb{R}^d$

$$\|\mathbf{A}x\|_2 = \|\mathbf{Z}x\|_2$$

and this corresponds to the query space $(P, w, \mathcal{X} = \mathbb{R}^d, f = \langle \cdot, \cdot \rangle^2, \| \cdot \|_1)$.

- Consider the original Least Squares query problem, but with $f(p,x) = (p^Tx)^2$.
- From previous slide there exist a coreset (C, u) of size $m = (d+1)^2 + 1$ for this query space where $C \subseteq P(d+1)$ since $p = (a, b)^T$.

Call $C = \{(\hat{a}_1, \hat{b}_1)^\mathsf{T}, \dots, (\hat{a}_m, \hat{b}_m)^\mathsf{T}\} = \{q_1, \dots, q_m\}$ and $u_i = u(q_i)$. Since C is an accurate coreset, for any $x' \in \mathbb{R}^{d+1}$

$$\sum_{i=1}^{n} w_{i} (p_{i}^{\mathsf{T}} x')^{2} = \sum_{j=1}^{m} u_{i} (q_{i}^{\mathsf{T}} x')^{2}$$

Choosing $x' = (x, -1)^T$ we see that

$$\sum_{i=1}^{n} w_i (a_i^{\mathsf{T}} x - b)^2 = \sum_{i=1}^{n} w_i (p_i^{\mathsf{T}} x')^2$$
$$= \sum_{i=1}^{m} u_i (q_i^{\mathsf{T}} x')^2$$

which means that (C, u) is an accurate coreset for the original least squares query space.

Recent Work

Coresets (potentially approximate) have recently been applied in machine learning and statistics

- Logistic Regression [6]
- K-means [1]
- Kernel Density Estimation [7]
- Bayesian Inference [4, 3, 2]

References I

- Olivier Bachem, Mario Lucic, and Andreas Krause. "Scalable k-means clustering via lightweight coresets". In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. 2018, pp. 1119–1127.
- Trevor Campbell and Tamara Broderick. "Automated Scalable Bayesian Inference Via Hilbert Coresets". In: *The Journal of Machine Learning Research* 20.1 (2019), pp. 551–588.
- Trevor Campbell and Tamara Broderick. "Bayesian Coreset Construction Via Greedy Iterative Geodesic Ascent". In: arXiv preprint arXiv:1802.01737 (2018).
- Jonathan Huggins, Trevor Campbell, and Tamara Broderick. "Coresets for scalable Bayesian logistic regression". In: *Advances in Neural Information Processing Systems*. 2016, pp. 4080–4088.

References II

- Ibrahim Jubran, Alaa Maalouf, and Dan Feldman, "Introduction To Coresets: Accurate Coresets". In: arXiv preprint arXiv:1910.08707 (2019).
- Alexander Munteanu et al. "On coresets for logistic regression". In: Advances in Neural Information Processing Systems. 2018, pp. 6561–6570.
 - Jeff M Phillips and Wai Ming Tai. "Near-Optimal Coresets of Kernel Density Estimates". In: Discrete & Computational Geometry (2019), pp. 1–21.