Medições

Flaviano Williams Fernandes

Instituto Federal do Paraná Campus Irati

27 de março de 2023

Sumário

- Ordem de grandeza
- Sistema métrico
- Algarismos significativos
- Incerteza na medição
- Apêndice

Apêndice

Por que usamos potências da base 10?

No estudo da Física encontraremos grandezas muito pequenas ou muito grandes. Como por exemplo, ao medir o tamanho de um átomo encontraremos um valor igual a 0,000000001 m, e apenas uma célula com tamanho da ordem de 0,0000001 m pode possuir cerca de 2000000000000 átomos.

Uma técnica eficiente para efetuar cálculos com esses números é representá-los em forma de potência de 10, pois assim permite várias vantagens, como

- ✓ tornar a notação mais compacta e simples de ler;
- ✓ permite uma rápida comparação desses números entre si;
- ✓ facilita a realização de operações matemáticas.

Notação científica

Um número qualquer pode ser expresso como o produto de um número (n) que seja maior ou igual a 1 menor do que 10, por uma potência de 10 com expoente (m) adequado,

ou na forma

$$n \times 10^m$$

Exemplo

6 590 000 000 000 000, $0 = 6.59 \times 10^{15}$

Transformando um número em notação científica

- Passo 1: Escrever o número incluindo a vírgula.
- Passo 2: Andar com a vírgula até que somente reste um número diferente de zero no lado esquerdo.
- Passo 3: Colocar no expoente da potência de 10 o número de casas decimais que tivemos que "andar"com a vírgula. Se ao andar com a vírgula o valor do número diminuiu, o expoente ficará positivo, se aumentou o expoente ficará negativo.

Exemplo

6 590 000 000 000 000, $0 = 6.59 \times 10^{15}$

Ordem de grandeza e os prefixos

- ✓ Ordem de grandeza de um número é a potência de 10 mais próxima desse número:
- ✓ A ordem de grandeza também pode ser expressa em prefixos (veja a tabela ao lado).

Alguns exemplos

- ✓ Raio da Via Láctea: 10²⁶ m:
- ✓ Idade do universo: 10¹⁸ s:
- ✓ Massa do Sol: 10³⁰ kg.

Notação científica descrita por prefixos.

exa	Е	10 ¹⁸
peta	Ρ	10 ¹⁵
tera	Т	10 ¹²
giga	G	10 ⁹
mega	M	10 ⁶
quilo	k	10 ³
hecto	h	10^{2}
deca	da	10 ¹
÷	:	÷

Apêndice

Grandezas físicas

Uma grandeza física é uma entidade física de um objeto que pode ser determinada quantitativamente (mensurada) e qualitativamente (conceitualmente).

- ✓ Para investigar as leis que governam os fenômenos naturais, os cientistas devem realizar medidas das grandezas físicas envolvidas;
- ✓ Para efetuar medidas é necessário escolher uma unidade de medida para cada grandeza, onde o valor é tomado em relação a um padrão de referência.

Exemplo de grandeza física

Tempo = 20 segundos

- ✓ Qualitativamente dizemos que o tempo é a duração de um evento ou fato;
- ✓ Quantitativamente dizemos que o tempo pode ser 20 segundos, onde segundo é a unidade de medida.

Grandezas fundamentais e derivadas

Na natureza existe uma infinidade de grandezas físicas. Felizmente, não são todas independentes, ou seja, a maioria possui uma dependência com certas grandezas que chamamos de fundamentais. Assim foram escolhidas grandezas, por exemplo comprimento e tempo, como fundamentais e definidas a partir de um padrão universal, e cada uma foi associada uma unidade de medida. Outras grandezas são definidas a partir das fundamentais e são chamadas de grandezas derivadas.

Exemplo de grandeza derivada

Origem histórica das medições

Antigamente as medições (unidades de medida) eram definidas de maneira bem arbitrária, e variava muito de um lugar para o outro. Como exemplo, as pessoas tomavam como padrão de referência partes do corpo, como o pé, polegada, jarda, etc. Isso dificultava muito as transações comerciais, pois esses valores mudavam de pessoa para pessoa.

Medições de volume, massa e comprimento feitos antes da adoção de um padrão universal [2].

O sistema métrico decimal

As inconveniências econômicas que surgiram na França relacionadas a medições erradas, em 1789 desde a Revolução Francesa foi adotado um modelo formado por um conjunto de padrões considerado universal. Esse modelo foi chamado de sistema métrico decimal.

Principais características de um sistema métrico:

- ✓ O sistema é decimal, onde o valor pode ser representado por seus múltiplos e submúltiplos;
- ✓ Múltiplos e submúltiplos são representados por prefixos gregos e latinos. Exemplo: quilo = 10^3 , mili = 10^{-3} .
- ✓ O padrão para medir o comprimento é o metro, que desde 1983 passou a ser definido como o comprimento do trajeto percorrido pela luz no vácuo durante 1/299792458 segundo.

O sistema internacional de unidades

A partir de 1971, o sistema métrico foi redefinido e foram selecionadas como fundamentais sete grandezas físicas para constituir o Sistema Internacional de Unidades (SI). A intenção era que este sistema fosse adotado por todos os países. sem exceção. Entretanto, alguns países como Myammar, Libéria e Estados Unidos ficaram relutantes em segui-lo, preferindo adotar o seu próprio sistema.

Grandeza	Unidade	Símbolo
Comprimento	metro	m
Massa	quilograma	kg
Tempo	segundo	S
Corrente elétrica	Ampere	Α
Temperatura	Kelvin	K
Matéria	mol	mol
Intensidade	candela	cd

Unidades fundamentais do SI.

Mudança de um sistema de unidades para outro

Muitas vezes, precisamos mudar as unidades nas quais uma grandeza física está expressa, o que pode ser feito usando um método conhecido como conversão em cadeia. Nesse método, multiplicamos o valor original por um fator de conversão.

Exemplo de fator de conversão

Sabemos que 1 minutos corresponde ao mesmo valor de 60 segundos, portanto para converter o valor de minuto para segundo devemos multiplicar o valor correspondente pelo fator de conversão 60,

Conversão de unidades em uma dimensão

$$1~\text{mm} = 1\times 10^{(-1)\times \textcolor{red}{2}}~\text{dm} \rightarrow 1\times 10^{-2}~\text{dm}$$

$$2,5~kg=2,5\times10^{(1)\times6}~mg\rightarrow2,5\times10^6~mg$$

10 ms =
$$10 \times 10^{(-1) \times 3}$$
 s $\to 10 \times 10^{-3}$ s

$$1 \text{ mm}^2 = 1 \times 10^{(-2) \times 2} \text{ dm}^2 \rightarrow 1 \times 10^{-4} \text{ dm}^2$$

$$2,5 \text{ m}^2 = 2,5 \times 10^{(2) \times 3} \text{ mm}^2 \rightarrow 2,5 \times 10^6 \text{ mm}^2$$

$$10 \text{ ms}^2 = 10 \times 10^{(-2) \times \textcolor{red}{3}} \text{ s}^2 \rightarrow 10 \times 10^{-6} \text{ s}^2$$

Conversão de unidades em três dimensões

$$1 \text{ mm}^3 = 1 \times 10^{(-3) \times 2} \text{ dm}^3 \rightarrow 1 \times 10^{-6} \text{ dm}^3$$

$$2,5 \text{ m}^3 = 2,5 \times 10^{(3) \times \textcolor{red}{3}} \text{ mm}^3 \rightarrow 2,5 \times 10^9 \text{ mm}^3$$

$$2.5 \text{ km}^3 = 2.5 \times 10^{(3) \times 6} \text{ mm}^3 \rightarrow 2.5 \times 10^{18} \text{ mm}^3$$

O que são algarismos significativos

Vimos que toda grandeza física é mensurável e seu valor quantitativo é obtido através de um instrumento de medição. Entretanto, no ato da medição o valor encontrado traz consigo erros que está diretamento associado a precisão do seu equipamento de medida. Algarismo significativo é o valor que se obtém comparando-se o objeto com o padrão da grandeza (dizemos que são algarismos significativos os números que temos plena certeza mais um duvidoso.)

Em uma medida o zero à esquerda não é significativo, pois seu papel é apenas ancorar a vírgula. Entretanto, zeros à direita devem ser considerados, pois fixa a exatidão da medida.

$$3$$
, 0 cm (2 a.s.),

Representação de um algarismo significativo

Na figura abaixo temos total certeza que o tamanho da peça é de pelo menos 3 cm (valor exato), e poderíamos dizer que também há uma incerteza de cerca de mais ou menos 0,2 cm a mais. Assim, poderíamos representar o seu valor como 3,2 cm. o segundo número (2) seria o algarismo duvidoso e 3 o exato.

conteúdo...

Regra de arredondamento

Ao aplicar operações matemáticas com valores envolvendo algarismos significativos devemos fazer aproximações, implicando inevitavelmente em erros de aproximação. Contudo, o resultado obtido após a operação não deve refletir uma precisão maior que aquele medido através do seu instrumento. Portanto, devemos aplicar regras de arredondamento com esse fim.

✓ Se $x \ge 5$, onde x é o numéro de influência, arredonde para cima.

$$(1, \underbrace{5}_{a.d.}, \underbrace{5}_{X}7 = 1, 6)$$
 $(6, 2, \underbrace{3}_{a.d.}, \underbrace{7}_{X} = 6, 24)$ $(2, 12, \underbrace{5}_{a.d.}, \underbrace{6}_{X}7 = 2, 126)$

✓ Se x < 5, onde x é o numéro de influência, o valor é mantido.

$$(1, \underbrace{5}_{a.d.} \underbrace{47}_{x} = 1, 5)$$
 $(6, 2 \underbrace{3}_{a.d.} \underbrace{1}_{x} = 6, 23)$ $(2, 12 \underbrace{5}_{a.d.} \underbrace{27}_{x} = 2, 125)$

Operações envolvendo dois algarismos significativos

✓ Em operações envolvendo adição e subtração, o resultado não deve conter mais dígitos após a vírgula do que o valor com menos dígitos após a vírgula.

$$4,371 + 302,5?? = 306,871 \approx 306,9$$
 (1 algarismo após a virgula)

✓ Em operações envolvendo multiplicação e divisão, o resultado não deve conter mais algarismos significativos do que o fator menos preciso.

$$3,142: 8,05 = 0,39031 \approx 0,390$$
 (3 algarismos significativos)

Dessa maneira podemos ver que o erro permanece apenas no algarismo duvidoso, preservando os algarismos exatos.

Operações envolvendo apenas algarismo significativo

Em operações envolvendo apenas um algarismo significativo, como potenciação, radiciação, logaritmação, funções trigonométricas, etc., o resultado arredondado deve manter o número de algarismos significativos do valor anterior.

```
\sqrt{148.51} = 12.18646791 \approx 12.186 (5 algarismos significativos),
(12, 186)^2 = 148,498595 \approx 148,50 (5 algarismos significativos)
```

Dessa maneira podemos ver que o erro permanece apenas no algarismo duvidoso, preservando os algarismos exatos.

Corollary

Ao realizar qualquer operação matemática, grande atenção deverá ser dada ao tratar as unidades de medida de cada grandeza física envolvida na operação.

Representação de um valor medido

Definimos valor verdadeiro aquele obtido através de um processo de medida exato e o resultado comparado com a unidade padrão. Entretanto, toda medida traz consigo erros intrínsecos, cuias causas são as mais variadas. Portanto, qualquer resultado deve sempre ser representado ao lado do seu valor medido a incerteza na medição,

$$(Resultado) = (Valor) \pm (Incerteza).$$

O sinal pm significa que o erro pode contribuir tanto positivamente quanto negativamente. Como exemplo, imaginemos que ao medir a massa m de um objeto encontramos um valor de 3g e uma incerteza de 0,5g, assim a completa representação do valor seria

$$m = (3 \pm 0, 5) g$$

Isso quer dizer que o valor provável da massa m pode estar entre 2,5g a 3,5g.

Valor médio

Considere que numa segunda-feira medimos a massa m de um objeto e encontramos o valor de 2.5a. Na terca tentamos medir novamente e encontramos outro valor de 3.0g, e na guarta outro valor de 3.5a. Podemos ver que por algum motivo o valor está variando entre 2,5g e 3.5g. o que causa uma incerteza de 0.5g para cima e para baixo.

Agora, como obter a medida mais provável, uma vez que ela está mudando a cada medida. Um método bastante eficaz é representar o seu valor médio < *m* >. onde

$$< m> = \frac{2,5g+3,0g+3,5g}{3}$$

 $< m> = 3g$

Valor médio

Definimos valor médio ou média como a somatória dos valores dividido pelo número de medidas.

Incerteza na medicão

Agora, como podemos obter a interteza na medição de N medidas, que também chamamos de intervalo de confiança? Uma estratégia é utilizar a seguinte fórmula abaixo, chamado erro padrão ou desvio padrão,

$$\Delta s = \sqrt{\frac{\sum (< m > -m)^2}{N-1}},$$

onde

$$m = \langle m \rangle \pm \Delta s$$
.

Medida	Valor (g)	$(< m > -m)^2 (g^2)$
1	2,5	0,25
2	3,0	0,00
3	3,5	0,25

O desvio padrão calculado foi 0,5 g, o que dá o seguinte resultado,

$$m = (3 \pm 0, 5) g$$

Lembrando que \(\Delta s\) n\(\text{n\text{\text{o}}}\) poder\(\text{a}\) ser menor que a precisão do seu equipamento.

Alfabeto grego

Alfa	Α	α
Beta	В	β
Gama	Γ	γ
Delta	Δ	δ
Epsílon	Ε	ϵ , ε
Zeta	Z	ζ
Eta	Η	η
Teta	Θ	θ
lota	1	ι
Capa	K	κ
Lambda	Λ	λ
Mi	Μ	μ

Ni	Ν	ν
Csi	Ξ	ξ
ômicron	0	0
Pi	П	π
Rô	Ρ	ρ
Sigma	Σ	σ
Tau	Τ	au
ĺpsilon	Υ	v
Fi	Φ	ϕ, φ
Qui	X	χ
Psi	Ψ	ψ
Ômega	Ω	ω

Referências e observações¹

https://sistemametricodecimal.wordpress.com/2016/07/12/ objetivos/

> Esta apresentação está disponível para download no endereço https://flavianowilliams.github.io/education

¹Este material está sujeito a modificações. Recomenda-se acompanhamento permanente.