# Sprawozdanie z listy 1

Jarosław Socha 268463

21 października 2023

## 1 Liczby maszynowe

Zadanie dzieli się na 3 podproblemy wyznaczenia konkretnej liczby maszynowej:

### • Wyznaczanie epsilona maszynowego

Epsilon maszynowy to najmniejsza liczba  $\epsilon$ , dla której  $fl(1+\epsilon)>1$ . Oczekiwana wartość  $\epsilon$  to dwukrotność względnego błędu arytmetyki  $2^{-t}$ , czyli  $2^{1-t}$ , gdzie t to liczba cyfr mantysy. W związku z tym, jako że wiemy, że ma być to potęga liczby 2, to wystarczy przyjać  $\epsilon=1.0$  a następnie dzielić go przez 2 aż nieprawdą będzie, że  $fl(1+\epsilon)>1$  lub  $fl(1+\epsilon)=1+\epsilon$ .

Napisałem osobną procedurę dla każdego z typów Float16, Float32 i Float64. Wyniki:

\$ julia 1/macheps16.j1
Wynik: 0.000977
0001010000000000

Sprawdzenie: 0.000977 0001010000000000

\$ julia 1/macheps32.jl

Sprawdzenie: 1.1920929e-7

\$ julia 1/macheps64.jl

Wynik: 2.220446049250313e-16

Sprawdzenie: 2.220446049250313e-16

Sprawdzenie za pomocą funkcji eps.

#### • Wyznaczanie liczby $\eta$

 $\eta$  to najmniejsza liczba większa od zera dla danego typu, znana również pod nazwą  $MIN_{sub}$ . Wyznaczamy ją dzieląc x=1.0 przez 2 aż fl(x/2)=0. Wyniki:

\$ julia 1/eta16.j1
Wynik: 6.0e-8
00000000000000001

\$ julia 1/eta32.jl
Wynik: 1.0e-45

Sprawdzenie: 1.0e-45

floatmin: 1.1754944e-38

\$ julia 1/eta64.jl
Wynik: 5.0e-324

Sprawdzenie: 5.0e-324

floatmin: 2.2250738585072014e-308

Wyniki sprawdzane przez nextfloat(0.0). Wartość floatmin danego typu to minimalna wartość znormalizowana, czyli  $MIN_{nor}$ .

#### • Wyznaczanie liczby MAX

MAX jest największą liczbą reprezentowalną w danym typie, która nie jest nieskończonością. Procedura jej wyznaczenia wygląda następująco: Na początku x=1 mnożymy przez 2 aż  $x\cdot 2=\infty$ . Następnie ustalamy  $\delta=\frac{x}{2}$  i dopóki nieprawdą jest, że  $fl(x+\delta)=\infty$  to dodajemy  $\delta$  do x a następnie zmniejszamy  $\delta$  o połowę ( $\delta=\frac{\delta}{2}$ ). Korzystamy z tego, że idąc od lewej do prawej w reprezentacji dwójkowej ciągu najpierw wypełniamy cechę maksymalną liczbą jedynek, a następnie mantysę. Wynik:

```
$ julia 1/max16.jl
Wynik: 6.55e4
0111101111111111
Sprawdzenie: 6.55e4
0111101111111111
```

Sprawdzenie przy pomocy floatmax.

Wyniki zgadzają się z plikiem nagłówkowym float.h.

### 2 Kahan

Celem zadania jest sprawdzenie, czy obliczając działanie  $3 \cdot (\frac{4}{3} - 1) - 1$  w arytmetyce Float otrzymamy epsilon maszynowy. Wynik:

```
$ julia 2/Kahan.jl
Poprawny 16: 0.000977
Kahan 16: -0.000977
Poprawny 32: 1.1920929e-7
Kahan 32: 1.1920929e-7
Poprawny 64: 2.220446049250313e-16
Kahan 64: -2.220446049250313e-16
```

Tak, otrzymujemy poprawny epsilon, choć czasami ma on inny znak.

### 3 Odstępy

Celem zadania jest sprawdzić odstępy między kolejnymi liczbami w przedziale. Odstęp taki wynosi  $2^{m-t}$ , gdzie m to liczba którą tworzy cecha, a t to liczba cyfr mantysy. Spodziewamy się że odległość między kolejnymi liczbami w przedziałach  $[2^a, 2^{a+1}]$  będzie zależała wykładniczo od a (podwajała się z każdym nowym przedziałem). Wynik:



Rysunek 1: Odstęp na danym przedziale

Wynik zgadza się z przewidywaniami, liczby są równo rozmieszczone w danych przedziałach, a odstępy na dwukrotnie większych przedziałach również rosną dwukrotnie.

## 4 Mnożenie przez odwrotność

Celem jest znaleźć najmniejszą liczbę, dla której ta liczba pomnożona przez swoją odwrotność jest różna od 1, czyli takie x, że  $fl(x \cdot fl(\frac{1}{x})) \neq 1$ . Iterujemy po kolejnych liczbach od 1 w górę dodając epsilon obliczony w zadaniu poprzednim  $(2^{-52})$  aż nie spełnimy nierówności. Wynik:

## 5 Iloczyn skalarny

Zadanie ma na celu sprawdzić różnice w iloczynie skalarnym prawie prostopadłych wektorów w zależności od kolejności liczenia. Badane kolejności to:

- 1. w kolejności rosnącej (po indeksach)
- 2. w kolejności malejącej (po indeksach)
- 3. od najmniejszego do największego osobno dla ujemnych i dodatnich
- 4. odwrotnie do 3.

#### Wynik:

```
$ julia 5/dot32.jl
1) -0.12593332
2) -0.23105995
3) 5.510957e6
```

4) 4008.25

```
$ julia 5/dot64.jl
1) 1.0251881368296672e-10
2) -1.5643308870494366e-10
3) 5.510957390881553e6
4) 4008.4028031835333
```

Wartość dokładna to  $1.00657107000000 \cdot 10^{11}$ . Zadanie jest źle uwarunkowane dla prawie prostopadłych wektorów, więc trudnym jest uzyskać bliski wynik. Mała precyzja Float32 sprawia, że żaden wynik nie jest blisko, widać jednak że w dwóch ostatnich punktach krok odjęcia od siebie dwóch podobnych liczb tworzy bardzo duży błąd.

## 6 Błąd odejmowania

Celem jest zobaczyć błąd odejmowania bliskich sobie liczb, na przykładzie wyrażeń  $\sqrt{x^2+1}-1$  i  $\frac{x^2}{\sqrt{x^2+1}+1}$ , które powinny dawać te same wyniki. Wynik:

Jak widać, wartość pierwszego wyrażenia od pewnego momentu to 0, gdyż odejmujemy od siebie bardzo bliskie liczby

### 7 Pochodna

Celem jest zbadać błąd przy liczeniu pochodnej wzorem  $\bar{f}'(x_0) \approx \frac{f(x_0+h)-f(x_0)}{h}$  badamy różnicę między przybliżeniem dla funkcji  $f(x) = \sin(x) + \cos(3x)$ , a wartością rzeczywistej pochodnej  $f'(x) = \cos(x) - 3\sin(3x)$  dla  $x_0 = 1$  i dla  $h \in [2^0, 2^{-54}]$ . Wynik:



Rysunek 2: Wykres błędu w zależności od  $h\left(\bar{f}'(x_0) - f'(x_0)\right)$ 

Bardzo duże h tworzą duże błędy, a przy malutkich h powstają artefakty, więc aby zobaczyć moment, w którym przybliżenie odbiega od wartości, zawęzimy wartości h do przedziału  $[2^{-25}, 2^{-40}]$ 



Rysunek 3: Wykres błędu w zależności od h dla mniejszego przedziału

Widać, że różnica zaczyna sie zwiększać już od  $h=2^{-32}$  i szybko rośnie. Są ku temu dwa powody, pierwszy to dodawanie do siebie dużej i małej liczby (1.0+h), a drugi to odejmowane od siebie bliskich sobie liczb (f(1.0+h)-f(1)).