Image Representation

•

classical image -> quantum statu. NEQR — 2006 quantum reg Intensity - 0/, position _ 00/01/10/11 2 quantum reg 3 = 3 classical guantum rag.

of a gubit Rapresantation $|\psi\rangle = \langle \psi\rangle$ = $\langle \psi\rangle$ prob of being in Ket vector column vecto $|0\rangle = (0) \qquad |1\rangle = (0)$ $|\psi\rangle = \propto |0\rangle + |3|1\rangle$ $|\psi\rangle = |2670 \text{ rate}$

Pzon =
$$\frac{1}{2}$$
 = $\frac{1}{\sqrt{2}}$

Pone = $\frac{1}{2}$ = $\frac{1}{\sqrt{2}}$
 $|\psi\rangle = \frac{1}{\sqrt{2}}|0\rangle + \frac{1}{\sqrt{2}}|1\rangle$
 $|\psi\rangle = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$

Superposition State

$$\frac{1}{\sqrt{2}} \left[|00\rangle + |61\rangle + |10\rangle + |12\rangle \right]$$

$$\left(\frac{1}{2}\right)^{2} = \frac{1}{4} = 0.25 \implies H$$

$$= \frac{1}{\sqrt{2}} \left(\frac{1}{0}\right) (10) + (\frac{1}{0}) (0) + (\frac{1}{1}) (10)$$

$$= (9) (01)$$

$$\frac{1}{\sqrt{2}} \left[\begin{bmatrix} 1 & 0 \\ 6 & 0 \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} \right]$$

$$= \frac{1}{\sqrt{2}} \left[\begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} \right]$$

$$H = \frac{1}{\sqrt{2}} \left(\frac{1}{1 - 1} \right)$$

Matin of Hgate

Interval $|0\rangle$ To $|0\rangle$ Then $|0\rangle$ Tion $|0\rangle$ Then $|0\rangle$ The

C [3]

$$\frac{1}{\sqrt{2}} \left[10 \right] \times \left[10 \right] + \left| 10 \right]$$

$$= \frac{1}{2} \left[100 \right] + \left| 10 \right] + \left| 10 \right]$$

Intensity
Position

Intensity T $|0\rangle$ $|0\rangle$

Identity gate - I - buffer do nothing. $C_1 C_2 T_1$ remaun the same H -> Superposition C=11 -> flipthe X - notgate. touget bit CCNOT/ TO ffo lligate 2 control lits 1 + auge + bits