

What is Churn?

Customer cancels their subscription with a service provider

Churned customers equal lost revenue and profit:

• \$100 billion loss globally!*

Costs more to acquire new customers than to retain existing customers:

• 5-10 times more!*

Reducing churn can save costs and increase revenue/profit:

• 5% reduction = 25-85% revenue boost!*

*(Almana, Aksoy, & Alzahran, 2014)

Questions to Consider

What factors influence churn?

What types of customers churn?

Can we predict who will churn?

Research Outline

Statistical Analysis

Clustering Analysis

Predictive Analysis

Statistical Analysis

.....

Chi Square Tests CA Trend Tests

Boxplot Analysis

Logistic Regression Odds Ratios

Chi Square Tests

- Statistically significant association between complaint and churn
- Statistically significant association between tariff plan and churn
- Statistically significant association between active status and churn

```
Contingency Table for complaint by churn:

complaint 0 1

churn

0 2614 41

1 295 200
```

Chi2 statistic: 886.21, p-value: 0.0000

•••••

Chi2 statistic: 781.11, p-value: 0.0000

Cochran-Armitage Trend Tests

- No trend exists for age group with respect to churn
- Trend exists for charge amount with respect to churn
- Age group may not be informative in later modeling

Results for Variable: age_group Contingency Table: churn 0 123 853 1195 316 168 0 184 230 79 Statistic: 7518,0000

Null Mean: 7502.3449 Null SD: 18.2435 Z-score: 0.8581 P-value: 0.3908

Results for Variable: charge_amt Contingency Table:

charge_amt churn

> **0** 1347 574 372 192 75 30 11 14 19 14 7 **1** 421 43 23 7 1 0 0 0 0 0

Statistic: 5511.0000 Null Mean: 5174.8501 Null SD: 31.4262 Z-score: 10.6965 P-value: 0.0000

Spineplots

Boxplot Analysis

Lots of outliers!

Logistic Regression

• Initial Model:

- Statistically insignificant variables: total call seconds, distinct calls, age group, and tariff plan
- AIC = 1,411.13
- BIC = 1,489.84
- Deviance = 1,385.13
- HL-Test = 22.90; p-value = 0.003
- VIF over 10 = customer value, total texts, total calls, total call seconds, age group, months subscribed

Logistic Regression

- Reduced Model after Backward Elimination:
 - AIC = 1,407.87
 - BIC = 1,462.37
 - Deviance = 1,389.87
 - HL-Test = 28.74; p-value = 0.00035
 - VIF over 10 = customer value, total texts, total calls

Logistic Regression

- Reduced Model with Interaction Term:
 - Interaction = complaint : active status
 - AIC = 1,384.35
 - BIC = 1,444.90
 - Deviance = 1,364.35
 - HL-Test = 12.49; p-value = 0.13
 - VIF over 10 = customer value, total texts, total calls

Adjusted Odds Ratios

- Complaint:
 - Point estimate = 19.95
 - 95% CI = 11.13 to 35.77
- Active status:
 - Point estimate = 0.23
 - 95% CI = 0.16 to 0.35

Residual Plots

Cluster Analysis

K-Prototypes

Factor Analysis of Mixed Data with K-Means

K-Prototypes

- Combo of K-Means and K-Modes
- K = 2, maybe 3
- 3 clusters may be more useful for segmentation
- Results:
 - Very High activity group
 - Moderate-to-High activity group
 - Low activity group

••••••••••

FAMD with K-Means

- Dimensionality reduction for mixed data
- K = 2, maybe 3
- 3 clusters used again
- Same results:
 - Very High activity group
 - Moderate-to-High activity group
 - Low activity group

FAMD Plot

- Good separation
- Potentially more clusters out of cluster 2

Predictive Analysis

......

Preprocessing Workflow Classification Methods

Hyperparameter Tuning

Model Selection

Final Model Evaluation

Feature Importance

Preprocessing Workflow

- Training (50%), Validation (30%), and Test
 (20%) stratified partitions
- Add cluster label feature using K-Prototypes
- Standardize continuous numeric features only
- Add interaction term feature (complaint : active status)
- One-hot encode cluster label feature
- Apply SMOTETomek for class balancing

Classification Methods

Hyperparameter Tuning

Randomized search algorithm

Stratified 5-fold cross validation

250 iterations

Best estimator = best mean recall score

Fit best estimator to full training set

Model Selection

- Evaluated on validation set
- Top two models:
 - Histogram-based GB
 - XGBoost

Final Model Evaluation

- Combined training and validation sets
- Retrained top two models on combined set
- Evaluated on test set
- Best model = Histogram-based GB (narrowly)
- Best recall + satisfactory precision
- Computationally efficient

Test Results for HistGB: accuracy: 0.9380952380952381 recall: 0.92929292929293 precision: 0.7419354838709677 f1: 0.8251121076233184

roc_auc: 0.9763453746504593

Test Results for XGBoost: accuracy: 0.9349206349206349 recall: 0.9090909090909091 precision: 0.7377049180327869

f1: 0.8144796380090498

roc_auc: 0.9764880442846545

Comparison Plots

Feature Importance

- Important features = complaint, active status
- Non-important = clusters labels and interaction
- Redundancy of engineered features

Summary of Findings

Complaint and active status appear significant

Age may not be a factor for churn

Strategies to address or preempt common complaints

Strategies to boost customer activity

More customer data to improve segmentation efforts

Best predictive method = Histogram-based GB

References

- Ahn, J.-H., Han, S.-P., & Lee, Y.-S. (2006). Customer churn analysis: Churn determinants and mediation effects of partial defection in the Korean mobile telecommunications service industry. Telecommunications Policy, 30(10-11), 552-568. https://doi.org/10.1016/j.telpol.2006.09.006
- Almana, A. M., Aksoy, M. S., & Alzahran, R. (2014). A Survey On Data Mining Techniques In Customer Churn Analysis For Telecom Industry. International Journal of Engineering Research and Applications, 4(5), 165-171.
- Celik, O., & Osmanoglu, U. O. (2019). Comparing to Techniques Used in Customer Churn Analysis. Journal of Multidisciplinary Developments, 4(1), 30-38.
- * Keramati, A., & Ardabili, S. M. S. (2011). Churn analysis for an Iranian mobile operator. Telecommunications Policy, 35(4), 344-356. https://doi.org/10.1016/j.telpol.2011.02.009

Thank You!