# НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ «ЛЬВІВСЬКА ПОЛІТЕХНІКА» Кафедра загальної фізики

#### **3BIT**

## про виконання лабораторної роботи № 30

**Назва роботи** «визначення ширини забороненої зони напівпровідників з температурної залежності їх провідності»

Виконав: Марущак А.С.

студент групи ПЗ-15

інституту ІКНІ

Лектор: доцент Рибак О.В

Керівник лабораторних занять:

Ільчук Г.А.

**Мета роботи:** Оволодіти методикою визначення ширини забороненої зони напівпровідників з температурної залежності їх провідності

**Прилади та матеріали:** Зразок власного напівпровідника з електричними контактами, цифровий мілівольтметр, цифровий прилад для вимірювання опору, автотрансформатор, резистивний нагрівник, термопара

#### Короткі теоретичні відомості:

Як відомо, для власних напівпровідників залежність питомої провідності  $\sigma$  від температури Т описується виразом  $\sigma = \sigma_{\infty} e^{-\frac{\Delta E}{2kT}}$ . Цю залежність можна подати так:

$$\ln \sigma = \ln \sigma_{\infty} - \frac{\Delta E}{2kT'}$$

Де  $\sigma_{\infty}$  - питома провідність власного напівпровідника при  $T \to \infty$ ;  $\Delta E$  - ширина забороненої зони напівпровідника; k - стала Больцмана.

Остання формула описує пряму  $\ln \sigma = f(\frac{1}{T})$ , тангенс кута нахилу якої до осі абсцис дорівнює:  $tg\alpha = \frac{\Delta E}{2k}$ . Тому ширину Е забороненої зони власного напівпровідника можна визначити із співвідношення:

$$\Delta E = 2k \cdot tg\alpha = 2k \cdot \frac{\ln \sigma_1 - \ln \sigma_2}{\left|\frac{1}{T_1} - \frac{1}{T_2}\right|}$$



В даній лабораторній роботі використовується лабораторна установка, яка схематично наведена на рис. 2.



Рис. 2

Напівпровідниковий зразок 1 розміщений всередині нагрівного елемента 3. Живлення нагрівного елемента здійснюється від автотрансформатора 4, увімкненого в мережу 220 В. Напруга на нагрівнику контролюється вольтметром 7. Для вимірювання температури використовується термопара 2 хромель—копель, яка під'єднана до мілівольтметра 5. Опір досліджуваного зразка вимірюється за допомогою цифрового приладу 6 для вимірювання опору.

Досліджуваний зразок має форму паралелепіпеда довжиною L=3 мм та площею поперечного перерізу  $S=0.1~{\rm mm}^2$ . Питому провідність зразка розраховують за даними вимірювання його опору R та відомими значеннями довжини зразка і площі його поперечного перерізу, використовуючи формулу

$$\sigma = \frac{L}{R \cdot S}$$

## Контрольні запитання

1. Поясніть як утворюються енергетичні зони в кристалах?

При зближенні ізольованих атомів і утворення з них кристалу, що складається з N атомів, кожний окремий атом взаємодіє з своїми сусідам, що приводить до появи в кристалі N близько розміщених один від одного підрівнів, які утворюють енергетичну зону. Найбільший вплив поле гратки чинить на зовнішні валентні електрони атомів. Тому стани цих електронів в кристалі відчувають найбільші зміни, а енергетичні зони, які утворені з енергетичних рівнів цих електронів, виявляються найбільш широкими. Внутрішні ж електрони, які сильно зв'язані з ядром, відчувають лише незначні

- збурення від інших атомів, внаслідок чого їх енергетичні рівні в кристалі залишаються практично такими ж вузькими, як і в ізольованих атомах
- 2. Як розуміти терміни валентна зона, зона провідності, заборонена зона з точки зору зонної теорії? Найвища зона, яка цілком заповнена електронами при T=0 K, називається валентною зоною.
  - Зона, яка заповнена електронами частково або вільна від електронів при T=0 K, називається зоною провідності.
  - Зони дозволених енергій розділені областями заборонених енергій забороненими зонами.
- 3. Які речовини називаються провідниками, діелектриками і напівпровідниками?
  - **Провідник** матеріал, що проводить електричний струм. Для провідника характерні високі тепло- або електропровідність. Найчастіше провідник  $\epsilon$  речовиною, яка ма $\epsilon$  багато вільних електронів.
  - **Діелектрики** речовини, що не проводять електричний струм і питомий опір яких становить  $10^8...10^{17}$ Ом·см. У таких речовинах заряди не можуть пересуватися з однієї частини в іншу. Зв'язаними зарядами є заряди, що входять до складу атомів або молекул діелектрика, заряди іонів, в кристалах з іонною граткою.
  - **Напівпровідники** матеріали, електропровідність яких має проміжне значення між провідностями провідника та діелектрика. Відрізняються від провідників сильною залежністю питомої провідності від концентрації домішок, температури та різних видів випромінювання.
- 4. Який напівпровідник називається власним? Домішковим? Власними напівпровідниками є хімічно чисті напівпровідники, їх провідність називається власною провідністю. Провідність напівпровідників, яка зумовлена домішками, називається домішковою провідністю, а самі напівпровідники домішковими напівпровідниками.
- **5.** Чим зумовлена провідність власного і домішкового напівпровідників?

Провідність власних напівпровідників може бути зумовлена електронами і дірками.

Провідність власних напівпровідників, яка зумовлена електронами, називається електронною провідністю або провідністю п— типу.

Провідність власних напівпровідників, зумовлена дірками, називається дірковою провідністю або провідністю р-типу

В домішкових напівпровідниках провідність може бути також зумовлена електронами і дірками.

в напівпровідниках з домішкою, валентність якої на одиницю більша, ніж валентність основних атомів, носіями струму  $\epsilon$  електрони, виника $\epsilon$  електронна домішкова провідність n—типу. Напівпровідники з такою провідністю називаються електронними (n-типу).

в напівпровідниках з домішкою, валентність якої на одиницю менша, ніж валентність основних атомів, носіями струму  $\epsilon$  дірки — виника $\epsilon$  діркова провідність. Напівпровідники з такою провідністю називаються дірковими (р—типу)

**6.** Чим пояснюється зміна концентрації вільних носіїв заряду у власних напівпровідниках від температури?

У напівпровідниках поряд з процесом генерації електронів і дірок відбувається і процес рекомбінації: електрони переходять із зони провідності у валентну зону, віддаючи енергію ґратці або випускаючи кванти електромагнітного випромінювання. Цим і пояснюється, що в результаті для кожної температури у власному напівпровіднику встановлюється певна рівноважна концентрація електронів і дірок.

7. В чому полягає суть методики визначення ширини  $\Delta E$  забороненої зони напівпровідників з температурної залежності їх провідності? Ми вимірюємо питому провідність напівпровідника при 2 різних температурах. Потім, використовуючи робочу формулу

$$\Delta E = 2k \cdot tg\alpha = 2k \cdot \frac{\ln \sigma_1 - \ln \sigma_2}{\left|\frac{1}{T_1} - \frac{1}{T_2}\right|}$$

Обчислюємо  $\Delta E$ . Геометрично вираз після 2k означатиме тангенс кута нахилу прямої  $\ln \sigma = f(\frac{1}{T})$  до осі абсцис.

Задані величини:

$$L = 3 \text{ MM}$$
$$S = 0.1 \text{ MM}^2$$

Робоча формула:

$$\Delta E = 2k \cdot tg\alpha = 2k \cdot \frac{\ln \sigma_1 - \ln \sigma_2}{\left|\frac{1}{T_1} - \frac{1}{T_2}\right|}$$

$$\sigma = \frac{L}{R \cdot S}$$

## Хід роботи

- **1.** Вмикаю цифровий мілівольтметр 5 та прилад 6 для вимірювання опору в мережу 220 В.
- **2.** Регулятор вихідної напруги на автотрансформаторі 4 встановлюю в положення "І". Вмикаю автотрансформатор в мережу 220 В. Через кожні ~10 хв послідовно переміщаю регулятор напруги в положення 2, 3, 4,...8.
- **3.** Проводжу вимірювання опору досліджуваного зразка при різних значеннях температури через кожні 0,2 мВ за показами мілівольтметра. Нагрівання здійснюю до температури, яка вказана на робочому місці.
- **4.** Користуючись графіком градуювання термопари визначаю температуру досліджуваного зразка напівпровідника.
- **5.** Встановлюю регулятор вихідної напруги на автотрансформаторі в положення «0»
- 6. Вимикаю автотрансформатор і прилади з мережі 220 В.
- **7.** За отриманими значеннями опору напівпровідникового зразка розраховую величину його питомої провідності  $\sigma$  і  $\ln \sigma$  для різних температур, використовуючи співвідношення.
- **8.** Будую графік залежності  $\ln \sigma = f(\frac{1}{T})$ . Вибрати на графіку ділянку, де найбільше проявляється пряма лінія, і для довільно вибраних значень  $\frac{1}{T_1}$  і  $\frac{1}{T_2}$  знайти відповідні значення  $\ln \sigma_1$  та  $\ln \sigma_2$ .
- **9.** Обчислюю ширину  $\Delta E$  забороненої зони досліджуваного напівпровідника за формулою.
- 10. Аналізую отримані результати та роблю висновки.

## Таблиця результатів

Табл 1.

| №   | $\boldsymbol{E}_{	ext{	iny T}}$ , мВ | t,°C | <i>T</i> , <i>K</i> | $T^{-1}$ , $10^{-1} K^{-1}$ | <b>R</b> , Ом |                   | $\ln \sigma$ | Δ <b>E</b> , eB |
|-----|--------------------------------------|------|---------------------|-----------------------------|---------------|-------------------|--------------|-----------------|
| п/п |                                      |      |                     |                             |               | . <sub>M</sub> -1 |              |                 |
| 1   | 0                                    | 20   | 293                 | 3.41                        | 886           | 33.86             | 3.52         |                 |
| 2   | 0.2                                  | 23   | 296                 | 3.38                        | 877           | 34.2              | 3.53         | 0.08625         |
| 3   | 0.4                                  | 26   | 299                 | 3.34                        | 860           | 34.88             | 3.55         | 0100020         |
| 4   | 0.6                                  | 29   | 302                 | 3.31                        | 851           | 35.25             | 3.56         |                 |

| 5  | 0.8 | 32 | 305 | 3.28  | 840 | 35.71 | 3.57 |
|----|-----|----|-----|-------|-----|-------|------|
| 6  | 1   | 35 | 308 | 3.25  | 827 | 36.28 | 3.59 |
| 7  | 1.2 | 38 | 311 | 3.22  | 815 | 36.81 | 3.61 |
| 8  | 1.4 | 41 | 314 | 3.18  | 803 | 37.36 | 3.62 |
| 9  | 1.6 | 44 | 317 | 3.15  | 791 | 37.93 | 3.64 |
| 10 | 1.8 | 47 | 320 | 3.125 | 779 | 38.51 | 3.65 |
| 11 | 2   | 50 | 323 | 3.10  | 767 | 39.11 | 3.67 |
| 12 | 2.2 | 53 | 326 | 3.07  | 755 | 39.74 | 3.68 |
| 13 | 2.4 | 56 | 329 | 3.04  | 742 | 40.43 | 3.7  |
| 14 | 2.6 | 59 | 332 | 3.01  | 730 | 41.1  | 3.72 |
| 15 | 2.8 | 62 | 335 | 2.985 | 718 | 41.78 | 3.73 |
| 16 | 3   | 65 | 338 | 2.96  | 705 | 42.55 | 3.75 |

Графік

Так як ми маємо лінійну залежність, то використаємо апроксимацію лінійним поліномом і отримаємо наступний графік



Наочно можна бачити, що найбільша точність досягається у точках M і G, тому братимемо значення в них.

#### Обчислення

Табл 1.

$$\begin{split} &\sigma_1 = \frac{3 \cdot 10^{-3}}{886 \cdot 0.1 \cdot 10^{-6}} = 33.86 \; (\text{Om}^{-1} \cdot \text{m}^{-1}) \\ &\sigma_2 = \frac{3 \cdot 10^{-3}}{877 \cdot 0.1 \cdot 10^{-6}} = 34.21 \; (\text{Om}^{-1} \cdot \text{m}^{-1}) \\ &\sigma_3 = \frac{3 \cdot 10^{-3}}{860 \cdot 0.1 \cdot 10^{-6}} = 34.88 \; (\text{Om}^{-1} \cdot \text{m}^{-1}) \\ &\sigma_4 = \frac{3 \cdot 10^{-3}}{851 \cdot 0.1 \cdot 10^{-6}} = 35.25 \; (\text{Om}^{-1} \cdot \text{m}^{-1}) \end{split}$$

$$\sigma_{5} = \frac{3 \cdot 10^{-3}}{840 \cdot 0.1 \cdot 10^{-6}} = 35.71 \, (\text{Om}^{-1} \cdot \text{M}^{-1})$$

$$\sigma_{6} = \frac{3 \cdot 10^{-3}}{827 \cdot 0.1 \cdot 10^{-6}} = 36.28 \, (\text{Om}^{-1} \cdot \text{M}^{-1})$$

$$\sigma_{7} = \frac{3 \cdot 10^{-3}}{815 \cdot 0.1 \cdot 10^{-6}} = 36.81 \, (\text{Om}^{-1} \cdot \text{M}^{-1})$$

$$\sigma_{8} = \frac{3 \cdot 10^{-3}}{803 \cdot 0.1 \cdot 10^{-6}} = 37.36 \, (\text{Om}^{-1} \cdot \text{M}^{-1})$$

$$\sigma_{9} = \frac{3 \cdot 10^{-3}}{791 \cdot 0.1 \cdot 10^{-6}} = 37.93 \, (\text{Om}^{-1} \cdot \text{M}^{-1})$$

$$\sigma_{10} = \frac{3 \cdot 10^{-3}}{767 \cdot 0.1 \cdot 10^{-6}} = 38.51 \, (\text{Om}^{-1} \cdot \text{M}^{-1})$$

$$\sigma_{11} = \frac{3 \cdot 10^{-3}}{767 \cdot 0.1 \cdot 10^{-6}} = 39.11 \, (\text{Om}^{-1} \cdot \text{M}^{-1})$$

$$\sigma_{12} = \frac{3 \cdot 10^{-3}}{755 \cdot 0.1 \cdot 10^{-6}} = 39.74 \, (\text{Om}^{-1} \cdot \text{M}^{-1})$$

$$\sigma_{13} = \frac{3 \cdot 10^{-3}}{742 \cdot 0.1 \cdot 10^{-6}} = 40.43 \, (\text{Om}^{-1} \cdot \text{M}^{-1})$$

$$\sigma_{14} = \frac{3 \cdot 10^{-3}}{730 \cdot 0.1 \cdot 10^{-6}} = 41.1 \, (\text{Om}^{-1} \cdot \text{M}^{-1})$$

$$\sigma_{15} = \frac{3 \cdot 10^{-3}}{718 \cdot 0.1 \cdot 10^{-6}} = 41.78 \, (\text{Om}^{-1} \cdot \text{M}^{-1})$$

$$\sigma_{16} = \frac{3 \cdot 10^{-3}}{705 \cdot 0.1 \cdot 10^{-6}} = 42.55 \, (\text{Om}^{-1} \cdot \text{M}^{-1})$$

$$\Delta E = 2 \cdot 1.38 \cdot 10^{-23} \cdot \frac{3.7 - 3.61}{3.22 \cdot 10^{-3} - 3.04 \cdot 10^{-3}} = 1.38 \cdot 10^{-20}$$
 Дж  $= 0.08625$  eB.

**Висновок:** Виконавши цю лабораторну роботу, ми оволоділи методикою визначення ширини забороненої зони напівпровідників з температурної залежності їх провідності, ознайомились з явищем напівпровідності. Ми отримали, що енергія забороненої зони досліджуваного провідника становить 0.08625 eB.