Random Variable Reference

Discrete Random Variables

Binomial Random Variable

Notation: $X \sim \text{Bin}(n, p)$

Description: Number of "successes" in n identical, independent experiments each with

probability of success p.

Parameters: $n \in \{0, 1, \ldots\}$, the number of experiments.

 $p \in [0,1]$, the probability that a single experiment gives a "success".

Support: $x \in \{0, 1, \dots, n\}$

PMF equation: $P(X = x) = \binom{n}{x} p^x (1-p)^{n-x}$

Expectation: $E[X] = n \cdot p$

Variance: $Var(X) = n \cdot p \cdot (1-p)$

Poisson Random Variable

Notation:

Description: Number of events in a fixed time frame if (a) the events occur with a constant mean

rate and (b) they occur independently of time since last event.

 $\lambda \in \mathbb{R}^+$, the constant average rate. **Parameters:**

 $x \in \{0,1,\ldots\}$ **Support:**

 $\mathrm{P}(X=x) = rac{\lambda^x e^{-\lambda}}{x!}$ PMF equation:

 $\mathrm{E}[X] = \lambda$ **Expectation:**

Variance: $\operatorname{Var}(X)=\lambda$

Geometric Random Variable

Notation: $X \sim \mathrm{Geo}(p)$

Description: Number of experiments until a success. Assumes independent experiments each

with probability of success p.

Parameters: $p \in [0,1]$, the probability that a single experiment gives a "success".

Support: $x \in \{1, \dots, \infty\}$

 $\mathrm{P}(X=x) = (1-p)^{x-1}p$ PMF equation:

 $\mathrm{E}[X] = rac{1}{p}$ $\mathrm{Var}(X) = rac{1-p}{p^2}$ **Expectation:** Variance:

Negative Binomial Random Variable

Notation: $X \sim \mathrm{NegBin}(r,p)$

Description: Number of experiments until r successes. Assumes each experiment is independent

with probability of success p.

Parameters: r > 0, the number of success we are waiting for.

 $p \in [0,1]$, the probability that a single experiment gives a "success".

 $x \in \{r, \dots, \infty\}$ **Support:**

 $\mathrm{P}(X=x) = \binom{x-1}{r-1} p^r (1-p)^{x-r}$ PMF equation:

Expectation:

 $\mathrm{E}[X] = rac{r}{p}$ $\mathrm{Var}(X) = rac{r \cdot (1-p)}{p^2}$ Variance:

Continuous Random Variables

A continuous random variable that takes on values, with equal likelihood, between

Parameters: $\alpha \in \mathbb{R}$, the minimum value of the variable.

 $\beta \in \mathbb{R}$, $\beta > \alpha$, the maximum value of the variable.

Support:

PDF equation:

CDF equation:

 $f(x) = egin{cases} rac{1}{eta - lpha} & ext{for } x \in [lpha, eta] \\ 0 & ext{else} \end{cases}$ $F(x) = egin{cases} rac{x - lpha}{eta - lpha} & ext{for } x \in [lpha, eta] \\ 0 & ext{for } x < lpha \\ 1 & ext{for } x > eta \end{cases}$

 $\mathrm{E}[X] = \frac{1}{2}(\alpha + \beta)$ **Expectation:**

 $\operatorname{Var}(X) = \frac{1}{12}(\beta - \alpha)^2$ Variance:

PDF graph:

Parameter β : 1 Parameter α : 0

Exponential Random Variable

Notation: $X \sim \operatorname{Exp}(\lambda)$

Description: Time until next events if (a) the events occur with a constant mean rate and (b) they

occur independently of time since last event.

Parameters: $\lambda \in \mathbb{R}^+$, the constant average rate.

Support: $x \in \mathbb{R}^+$

PDF equation: $f(x) = \lambda e^{-\lambda x}$ CDF equation: $F(x) = 1 - e^{-\lambda x}$

Expectation: $\mathrm{E}[X] = 1/\lambda$ Variance: $\mathrm{Var}(X) = 1/\lambda^2$

PDF graph:

TDF graph.

Normal (aka Gaussian) Random Variable

Notation: $X \sim \mathrm{N}(\mu, \sigma^2)$

Description: A common, naturally occurring distribution.

Parameters: $\mu \in \mathbb{R}$, the mean.

 $\sigma^2 \in \mathbb{R}$, the variance.

Support: $x \in \mathbb{R}$

PDF equation: $f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$

CDF equation: $F(x) = \phi(\frac{x-\mu}{\sigma})$ Where ϕ is the CDF of the standard normal

Expectation: $\mathrm{E}[X] = \mu$

Variance: $Var(X) = \sigma^2$

PDF graph:

Parameter μ : 5 Parameter σ : 5

Beta Random Variable

Notation: $X \sim \text{Beta}(a, b)$

Description: A belief distribution over the value of a probability p from a Binomial distribution

after observing a-1 successes and b-1 fails.

Parameters: a > 0, the number successes + 1

b > 0, the number of fails + 1

Support: $x \in [0,1]$

PDF equation: $f(x) = B(a,b) \cdot x^{a-1} \cdot (1-x)^{b-1}$ where $B(a,b) = \frac{\Gamma(a)\Gamma(b)}{\Gamma(a,b)}$

CDF equation: No closed form $Expectation: E[X] = \frac{a}{a+b}$

Variance: $Var(X) = \frac{ab}{(a+b)^2(a+b+1)}$

PDF graph:

Parameter a: 2 Parameter b: 4

