1	2	3	4	grade	
			Ī		

Discrete Exer. 11. Student name Vuta Nemoto Student ID 5/240234

- 1. Which of the following words are accepted by the automaton?
 - a) 0110; b) 00111; c) 10101; d) 000111; e) 11001

2. Construct the state transition table of the finite-state automaton whose diagram is shown

State	Table
State	next state f Input a b c
So Si	So S, S2 S2 J, S3
S z	Sa S3 S,
S ₃	53 S3 S2

(albambanba)(b)apbabbabas)

3. Describe the words w made of the alphabet $\{a,b\}$ accepted by the automaton shown in the

For example,

bbb

ababab

aaabbaab

bbbbbbb

abbabaaabbbbb)

abbabaaabbbbb

 $\omega = \left\{ abababa : 1, m, n, 0 : s integer, and \\ 1, m, n, 0 \ge 0 \right\}$ $\omega = \left\{ anb^{3+4}m : n, m : s integer and n, m \ge 0 \right\}$

4. Draw the state diagram for the finite-state machine with the following state table:

	Stat	e Tab	ol	е		
	next state f			output g		
	Input			Input		
State	0	1		0	1	
s_0	s_1	s_0		0	0	
s_1	s_2	s_0		1	1	
s_2	s_0	s_3		0	1	
s ₃	s_1	s_2		1	0	

