❖如下圖所示之懸臂樑,長度L=0.3m,截面高 H=0.006m,厚度B=0.003m ,楊氏模數 E=2200MPa,密度ρ=1100kg/m³。求其無外 力之橫向(y方向)振動自然頻率與模態振型。分析 單位系統採用SI制:m、N、Pa、kg。

FINISH

/CLEAR

/TITLE,ex10-1a: Free Vibration of Cantilever Beam

/FILNAME,ex10-1a

B=0.003

H=0.006

AREA=B*H

IZ=(1/12)*B*H*H*H

/PREP7

ET,1,BEAM3 *element type BEAM3

R,1, AREA, IZ, H,, *特性參數 → R,參考編號,參數(R1-R6)

MP,EX,1,2200e6 *材料性質 → 楊式模數

MP,DENS,1,1100 *材料性質 → 密度

K,1,0,0,, *關鍵點建立 → K,點編號,X 值,Y 值

K,2,0.3,0,,

LSTR,1,2 *將關鍵點連線

TYPE,1

MAT,1

REAL,1

LESIZE,1,,,70,,,,,1 *將線段劃分(對所選擇線設置網格單元大小)

LESIZE,選擇線段數,,,number of divisions per line,,,,,YES(1)

LMESH,1 *在線上生成節點單元

EPLOT

DK,1,ALL,0,,0, *固定端 → 點 1 所有自由度固定

FINISH

/SOLU

ANTYPE, MODAL

MODOPT, LANB, 10, 0, 500,

- *設定模態抓取
- → MODOPT,LANB(block lanczos method),模態抓取數目,0 至 500HZ

MXPAND,10

*模態擴展數設定 10 個

SOLVE

FINISH

/POST1

SET,LIST

SET,1,1

PLDISP,1

上課的練習題為懸臂樑橫向振動之模態分析,現在,改為簡支樑,長度 L=0.3m,截面高 H=0.006m,厚度 B=0.003m ,楊氏模數 E=2200MPa,密度 ρ =1100kg/m³。求其無外力之橫向(y 方向)振動之前 4 個自然頻率。分析單位系統採用 SI 制:m、N、Pa、kg。

FINISH

/CLEAR

/TITLE,hw6

/FILNAME,hw6

B=0.003

H=0.006

AREA=B*H

IZ=(1/12)*B*H*H*H

/PREP7

ET,1,BEAM3

R,1, AREA, IZ, H,,

MP,EX,1,2200e6

*材料性質 楊式模數

MP,DENS,1,1100 *材料性質 密度

K,1,0,0,,

*關鍵點設定

K,2,0.3,0,,

LSTR,1,2

*關鍵點連線

TYPE,1

MAT,1

REAL,1

LESIZE,1, , ,70, , , , ,1

*線段分割

LMESH,1

*生成節點單元

EPLOT

DK,1,ALL,0,,0,

*固定端 點 1 所有自由度固定

DK,2,UY

*支撐端 點 2 Y 方向固定

FINISH

/SOLU

ANTYPE, MODAL

MODOPT, LANB, 10, 0, 500,

!0~500 Hz ; 4th mode=522 Hz

MXPAND,10

SOLVE

FINISH

/POST1

SET,LIST

SET,1,1

PLDISP,1

三個質點彈簧系統之振動頻率。 $m_1 = 1 \text{ kg}$ 、 $m_2 = 2 \text{ kg}$ 、 $m_3 = 3 \text{ kg}$,質點間隔為1 m ; $k_1 = 1000 \text{ N/m}$ 、 $k_2 = 2000 \text{ N/m}$ 、 $k_3 = 2000 \text{ N/m}$ 、 $k_4 = 1000 \text{ N/m}$,用Block Lanczos方法求取前三個自然頻率。

FINISH

/CLEAR

/FILNAME, EX5-10

/UNITS, SI

/TITLE, Mass-Spring Vibration System

/PREP7	
ET, 1, COMBIN14, , , 2	*材料使用 → 2-D longitudinal spring-damper(2)
ET, 2, MASS21, , , 4	*材料使用 → 2-D mass without rotary inertia(4)
R, 1, 1000	*設定各 real constant 數值
R, 2, 2000	→ k1=k4=1000; k2=k3=2000
R, 3, 1	→ m1=1; m2=2; m3=3
R, 4, 2	
R, 5, 3	
N, 1, 0, 0	*五點位生成
N, 2, 1, 0	
N, 3, 2, 0	
N, 4, 3, 0	
N, 5, 4, 0	
TYPE, 1	*元素種類編號 1 → spring 連接
REAL, 1	*元素 real constant → k1=k4=1000
E, 1, 2	*點位連接 spring1 和 spring4
E, 4, 5	
TYPE, 1	*元素種類編號 1 → spring 連接
REAL, 2	*元素 real constant → k2=k3=2000
E, 2, 3	*點位連接 spring2 和 spring3
E, 3, 4	" - + TENET (E.H.E)
TYPE, 2	*元素種類編號 2 → mass
REAL, 3	*元素 real constant(3) → m1=1
E, 2	*施加於點位 2 上
REAL, 4	*元素 real constant(4) → m2=2
E, 3	*施加於點位 3 上
REAL, 5	*元素 real constant(5) → m3=3
E, 4	*施加於點位 4 上
FINISH	
/SOLU	
ANTYPE, MODAL	
MODOPT, LANB, 3	
!MODOPT, SUBSP, 3	
MXPAND, 3	
D, 1, ALL, 0, , 5, 4	*頭尾固定端 → D,NODE,方向,值,,同樣施加於 NEND 至 NINI(5)
D, 2, UY, 0, , 4, 1	*Y 方向固定 → D,NODE,方向,值,,同樣施加於 NEND 至 NINI(4-2)
SOLVE	
FINISH	

/POST1

SET, LIST	*define the data set to be read from the result file
SET, 1, 1	
PLDISP	*1st mode
SET, 1, 2	
PLDISP	*2nd mode
SET, 1, 3	
PLDISP	*3rd mode

 如下圖所示之懸臂樑,長度L=0.3m,截面高 H=0.006m,厚度B=0.003m,楊氏模數 E=2200MPa,密度ρ=1100kg/m³,阻尼比 ζ=0.01。若自由端給定一y方向簡諧力F=F₀sinωt, 其振幅為F₀=0.001N,求其振動位移與外力激發頻 率之關係。分析單位系統採用SI制:m、N、Pa、kg。

FINISH

/CLEAR

/TITLE,ex10-1b : Forced Harmonic Vibration of Cantilever Beam /FILNAME,ex10-1b

B=0.003

H=0.006

AREA=B*H

IZ=(1/12)*B*H**3

/PREP7

ET,1,BEAM3

R,1, AREA, IZ, H,,

MP,EX,1,2200e6

MP,DENS,1,1100

K,1,0,0,, *建立關鍵點

K,2,0.3,0,,

LSTR,1,2 * 關鍵點連接

TYPE,1

REAL,1 LESIZE,1,,,70,,,,1 LMESH, 1 EPLOT DK,1,ALL,0,,0, FINISH	*線段分割 *生成節點單元 *點 1 固定端
/SOLU ANTYPE,HARMIC HROPT,FULL HROUT,OFF HARFRQ, 0, 500 NSUBST,100 KBC,1 OUTRES,ALL,ALL DMPRAT, 0.01	*設定求解法 → FULL METHOD *結果輸出格式 → 振幅與相位角表示(amplitude+phase) *計算頻率範圍 → 0-500HZ *頻率範圍分割 100 等份 *階梯負荷設定(stepped) *於輸出結果檔中將所有頻率結果儲存 *設定結構阻尼比 → 0.01
F, 2,FY, 0.001,0 !FK,2,FY, 0.001,0 SOLVE FINISH	*點二(懸臂端)振幅設定 → 0.01
/POST26 NSOL,2,2,U,Y,END-UY PRCPLX,1 PLCPLX,0 PLVAR,2,,,,,,,, PRVAR,2, /GROPT,LOGY,ON PLVAR,2,,,,,,,,,	*結果輸出格式 → 振幅與相位角表示(amplitude+phase) *結果輸出格式 → 繪圖為振幅值 *以變數 2 為縱軸 頻率為橫軸製圖 *取變數 2 log 值作圖
FINISH /POST1 SET,LIST SET,1,3 HRCPLX,1,3,-33.7943 PLDISP,1	*由上結果得最大振幅(UY)發生於頻率 15HZ 相位角-33.7943 將相位角=-33.7963 之位移振幅算出並繪出變形圖

MAT,1

如 下圖 的二維懸臂樑問題,樑之長度 $L=6\,\mathrm{m}$,矩形截面 $b=200\,\mathrm{mm}$ 和 h = 400 mm,楊氏模數 E = 12 GPa,密度 $\rho = 1500 \text{ kg/m}^3$,假設其 Rayleigh 阻 尼係數 $\alpha = 0$ 和 $\beta = 0.006$ 。懸臂樑初始條件為施加一負 y 方向位移 $v_0 = 40$ mm 於右端,且其初始速度 $\dot{v}_0 = 0$ 。試求右端的初始拘束釋放後,右端在2秒內的 暫態位移響應,分析單位系統採用:m、N、Pa、kg。

FINISH

/CLEAR

/FILNAME,ex11-1,

/TITLE,ex11-1. Transient analysis of cantilever beam

/PREP7

ET,1,BEAM3

R,1,0.4*0.2,1/12*0.2*0.064,0.4, , , ,

*設定 Real constant → R,1, Area, IZ,H

MP,EX,1,12E9

*材料性質 楊式模數

MP, DENS, 1, 1500

*材料性質 密度

K,,0,0

*設定關鍵點

K,,6,0

LSTR, 1, 2

*關鍵點連接

TYPE, 1

MAT, 1

REAL, 1

ESIZE, 0.2, 0,

*指定劃分單元的邊長 → ESIZE, SIZE, number of line division

LMESH,1,

*生成節點單元

NPLOT

EPLOT

DK,1,ALL,0,,0,

*點1固定端

FINISH

/SOLU

ANTYPE, TRANS

TRNOPT,FULL *full method

OUTRES,ALL,1 *write every Nth substep (N=1)

ALPHAD,0

BETAD, 0.006

TIME, 0.0001 *At time equals 0.0001s = 0s

NSUBST,2

TIMINT,OFF *Transient effects

KBC,1 *階梯負荷設定(stepped)

D, 2,UY,-0.04 *點二(懸臂端)Y 方向位移 → 0.04

SOLVE

TIME,2

DELTIM,0.01,0.005,0.02 *Specifies the time step sizes AUTOTS,ON *Automatic time stepping

TIMINT,ON

DDELE, 2,UY *Delete the DOF constraints at the end "NODE"

SOLVE FINISH

/POST26

NSOL,2,2,U,Y,END-UY *Calls data for UY deflection at node 2

PLVAR,2,,,,,,,,,,

❖下圖為一薄壁之圓板(circular plate),半徑為 a=100mm,板厚度t=5mm,板面受壓力 p=0.2MPa,圓周受到固定拘束。圓板材料之楊 氏模數E=70GPa,普松比v=0.33,試求圓板邊 緣的彎曲應力與圓心的位移。分析單位系統採用: mm、N、MPa。

❖因t/a=1/20,所以本例可使用SHELL63薄殼元

素來模擬

FINISH

/CLEAR

/FILNAME,ex5-7,

/TITLE,ex5-7. circular shell

/PREP7

ET,1,SHELL63	
KEYOPT,1,1,0	*Bending and membrane stiffness (查表得)
KEYOPT,1,3,0	*Include extra displacement shapes (查表得)
R,1,5, , , , ,	*厚度 5mm, If the element has a constant thickness, only TK(I) need to be
	input.
MP,EX,1,70000	*材料性質 楊式模數
MP,NUXY,1,0.33	*材料性質 蒲松比
K,1,0,0,0,	*設定關鍵點(圓心與二角點)
K,2,100,0,0,	
K,3,0,100,0,	
LARC,2,3,1,100,	*建立扇形面(畫弧、接線、面積填入)
LSTR, 3, 1	
LSTR, 1, 2	
AL,3,2,1	
TYPE, 1	
MAT, 1	
REAL, 1	
ESIZE,10	*指定劃分單元的邊長 → ESIZE, SIZE, number of line division
MSHKEY,1	*free mesh: 0 /mapped mash: 1
AMESH,1	*在面上生成節點單元,mesh area for area3
,	
EPLOT	
FINISH	
/SOLU	
ANTYPE,0	*=ANTYPE,STATIC
DL,1, ,ALL,0	*圓周(弧線 L1)固定
DL,2, ,UX,0	*側邊線 L2, X 方向位移與轉動固定
DL,2, ,ROTY,0	
DL,3, ,UY,0	*側邊線 L3, Y 方向位移與轉動固定
DL,3, ,ROTX,0	7472 WAY -7 73 1 3 HE 12 2 X 1 3 23 1 1 7 C
,_,,	
SFA,1,2,PRES,0.2	*Surface loads on the selection area
SOLVE	→ SFA, AREA, LKEY=2(by element type), lab(受面壓 PRES), values(=0.2)
FINISH	
/POST1	
PLNSOL,U,Z,0,1	
PLNSOL,S,X,0,1	
PLNSOL,S,Y,O,1	

PLNSOL,S,EQV,0,1