1. (Review Final - Chifan) Let f be an analytic function on the open disk \mathbb{D} . Assume that for every $z \in \mathbb{D}$ the power series expansion around z has a vanishing coefficient. Show that f is a polynomial function.

for every $z \in \mathbb{D}$ the power series expansion around z has a vanishing coefficient.

Let $3_n := \{z \in \mathbb{D} \mid f^{(n)}(z) = 0\}$, the set of points in the disk vanishing at the 1st derivative of f. Note $\bigcup_{n=0}^{\infty} 3_n$ is not countable as if confains every point in \mathbb{D} . Thus one of the 3_n must be uncountable; $\bigcup_{n=0}^{\infty} 3_n$ is a countable union of sets, which would be countable if every 3_n were countable.

Let \mathcal{J}_{K} be this uncountable set; then $f^{(K)} \equiv 0$. Assume not. Note $f^{(K)}$ is analytic, so its zeros are isolated, that is, for each $f \in \mathcal{J}_{K}$, there is a neighborhood U such that $f \in U$ and there are no other zeros in U. But for each such U we can associate to if a complex number $u \in V$, where $u \in V$. Thus we have a bijection between a subset of $u \in V$ as $u \in V$. So countable.

 \Rightarrow a derivative of f vanishes everywhere on p $\therefore f$ is a polynomial