

Schletter, Inc.		25° Tilt w/o Seismic Design
HCV	Standard PVMini Racking System	
	Representative Calculations - ASCE 7-05	

1. INTRODUCTION

1.1 Project Description

The following sections will cover the determination of forces and structural design calculations for the Schletter, Inc. PVMini ground mount system.

1.2 Construction

Photovoltaic modules are attached to aluminum purlins using clamp fasteners. Purlins are clamped to inclined aluminum girders, which are then connected to aluminum struts. Each support structure is equally spaced.

PV modules are required to meet the following specifications:

	<u>Maximum</u>		<u>Minimum</u>
Height =	1700 mm	Height =	1550 mm
Width =	1050 mm	Width =	970 mm
Dead Load =	3.00 psf	Dead Load =	1.75 psf

Modules Per Row = 1 Module Tilt = 25°

Maximum Height Above Grade = 3 ft

1.3 Technical Codes

- ASCE 7-05 Chapter 6, Wind Loads
- ASCE 7-05 Chapter 7, Snow Loads
- ASCE 7-05 Chapter 2, Combination of Loads
- International Building Code, IBC, 2003, 2006, 2009
- Aluminum Design Manual, Eighth Edition, 2005

Typical loading conditions of the module dead loads, snow loads, and wind loads are shown on the left.

2. LOAD ACTIONS

2.1 Permanent Loads

g _{MAX} =	=	3.00	psf
g _{мім} =	=	1.75	psf

2.2 Snow Loads

	30.00 psf	Ground Snow Load, P_g =
(ASCE 7-05, Eq. 7-2)	18.56 psf	Sloped Roof Snow Load, P _s =
	1.00	I _s =
	0.82	$C_s =$
	0.90	$C_e =$

 $C_t =$

1.20

2.3 Wind Loads

Design Wind Speed, V =	110 mph	Exposure Category = C
Height ≤	15 ft	Importance Category = II

Peak Velocity Pressure, q_z = 19.00 psf Including the gust factor, G=0.85. (ASCE 7-05, Eq. 6-15)

Pressure Coefficients

Cf+ TOP	=	1.1	Provided pressure coefficients are the result of wind tunnel
Cf+ BOTTOM	=	1.1 1.7 (Pressure)	testing done by Ruscheweyh Consult. Coefficients are
Cf- _{TOP}	=	-2.2 (Suction)	located in test report # 1127/0611-1e. Negative forces are
Cf- BOTTOM	=	-1 (Suction)	applied away from the surface.

2.4 Seismic Loads - N/A

S _S =	0.00	R = 1.25	ASCE 7, Section 12.8.1.3: A maximum S of 1.5
$S_{DS} =$	0.00	$C_S = 0$	may be used to calculate the base shear, C_s , of
$S_1 =$	0.00	$\rho = 1.3$	structures under five stories and with a period, T,
$S_{D1} =$	0.00	$\Omega = 1.25$	of 0.5 or less. Therefore, a S _{ds} of 1.0 was used to
$T_a =$	0.00	$C_d = 1.25$	calculate C _s .

2.5 Combination of Loads

ASCE 7 requires that all structures be checked by specified combinations of loads. Applicable load combinations are provided below.

Strength Design, LRFD

Component stresses are checked using the following LRFD load combinations:

1.2D + 1.6S + 0.8W 1.2D + 1.6W + 0.5S 0.9D + 1.6W ^M 1.54D + 1.3E + 0.2S ^R 0.56D + 1.3E ^R 1.54D + 1.25E + 0.2S ^O 0.56D + 1.25E O

Allowable Stress Design, ASD

Member deflection checks and foundation designs are done according to the following ASD load combinations:

1.0D + 1.0S 1.0D + 1.0W 1.0D + 0.75L + 0.75W + 0.75S 0.6D + 1.0W ^M (ASCE 7, Eq 2.4.1-1 through 2.4.1-8) & (ASCE 7, Section 12.4.3.2) 1.238D + 0.875E ° 1.1785D + 0.65625E + 0.75S ° 0.362D + 0.875E °

3. STRUCTURAL ANALYSIS

3.1 RISA Results

Appendix B.1 contains outputs from the structural analysis software package, RISA. These outputs are used to accurately determine resultant member and reaction forces from the loads seen throughout Section 2.

3.2 RISA Components

A member and node list has been provided below to correlate the RISA components with the design calculations in Section 4. Items of significance have been listed.

<u>Purlins</u>	<u>Location</u>	Diagonal Struts	<u>Location</u>	Front Reactions Lo	cation
M13	Тор	M3	Outer	N7 O	uter
M16	Bottom	M7	Inner	N15 In	ner
		M11	Outer	N23 O	uter
Girders	Location	Rear Struts	Location	Rear Reactions Lo	ocation
M1	Outer	M2	Outer	N8 O	uter
M5	Inner	M6	Inner	N16 In	ner
M9	Outer	M10	Outer	N24 O	uter
Front Struts M4 M8 M12	<u>Location</u> Outer Inner Outer	Bracing M18 M16	5		
IVIIZ	Outoi				

^M Uses the minimum allowable module dead load.

^R Include redundancy factor of 1.3.

^o Includes overstrength factor of 1.25. Used to check seismic drift.

4.1 Purlin Design

Aluminum purlins are used to transfer loads to the support structure. Purlins are designed as continous beams with cantilevers. These are considered beams with internal hinges that can be joined with splices at 25% of the support respective span. See Appendix A.1 for detailed member calculations. Section units are in (mm).

Purlin Type =	<u>ProfiPlus</u>	
Aluminum Type =	6105-T5	
$F_{ty} =$	35	ksi
L _b =	<u>60</u>	in
$\Phi F_{ty STRONG-AXIS} =$	29.31	ksi
$\Phi F_{ty WEAK-AXIS} =$	28.47	ksi
S _y =	0.51	in ³
$S_x =$	0.37	in ³
E =	10100	ksi
I _y =	0.60	in ⁴
I _x =	0.29	in ⁴
A =	0.90	in ²
g =	1.08	lbs/ft
M _y =	0.469	k-ft
$M_z =$	0.097	k-ft
$M_{y \text{ allowable}} =$	1.247	k-ft
M _{z allowable} =	0.871	k-ft
Utilization =	<u>49%</u>	

4.2 Girder Design

Loads from purlins are transferred using an inclined girder, which is connected to a set of aluminum struts. Loads on the girder result from the support reactions of the purlins. See Appendix A.2 for detailed member calculations. Section units are in (mm).

4.3 Front Strut Design

The front aluminum strut connects a portion of the girder to the foundation. Vertical girder forces are then transferred down through the strut into the foundation. The strut is attached with single M8 bolts at each end. See Appendix A.3 for detailed member calculations. Section units are in (mm).

4.4 Diagonal Strut Design

A diagonal aluminum strut braces the support structure. It connects at a front portion of the girder and transfers horizontal forces to the rear foundation connection. The strut is attached with single M8 bolts at each end. See Appendix A.4 for detailed member calculations. Section units are in (mm).

4.5 Rear Strut Design

An aluminum strut connects the rear portion of the girder to the rear foundation connection. Both vertical and horizontal forces are transferred from the girder. The strut is attached with single M8 bolts at each end. See Appendix A.5 for detailed member calculations. Section units are in (mm).

4.6 Cross Brace Design

In order to resist weak side loading, aluminum cross bracing kits are provided. The cross bracing is attached at one end of a rear aluminum strut diagonally down to the bottom end of an adjacent strut. Single M10 bolts are provided at each of the cross bracing. Section units are in (mm).

Brace Type = Aluminum Type =	1.5x0.25 6061-T6
$F_{ty} =$	35 ksi
Φ =	0.90
S _y =	0.02 in^3
Ē =	10100 ksi
I _y =	33.25 in ⁴
A =	$0.38 in^2$
g =	0.45 lbs/ft
M _y =	0.003 k-ft
P _n =	0.074 k
M _{y allowable} =	0.046 k-ft
P _{n allowable} =	11.813 k
Utilization =	<u>7%</u>

A cross brace kit is required every 27 bays and is to be installed in centermost bays.

5. FOUNDATION DESIGN CALCULATIONS

5.1 Helical Pile Foundations

The following LRFD loads include a safety factor of 1.3, and are to be used in conjunction with a Schletter, Inc. Geotechnical Investigation Report. The forces below should fall within the guidelines provided in the Geotechnical Investigation Report. If a Geotechnical Investigation Report is not present, please proceed to Section 5.2 for a concrete foundation design.

<u>Maximum</u>	<u>Front</u>	Rear	
Tensile Load =	<u>177.04</u>	<u>1713.48</u>	k
Compressive Load =	1276.52	1183.21	k
Lateral Load =	<u>1.85</u>	906.80	k
Moment (Weak Axis) =	0.00	0.00	k

5.2 Design of Ballast Foundations

Ballast foundations are used to secure the racking structure in place. The foundations are checked for potential overturning and sliding. Bearing pressures applied by the racking and ballast foundations are checked against the allowable bearing pressures provided by the IBC tables 1804.2 (2003, 2006) & 1806.2 (2009).

Concrete Properties Footing Reinforcement Weight of Concrete = 145 pcf Use fiber reinforcing with (1) #5 rebar. 2500 psi Compressive Strength = Yield Strength = 60000 psi Overturning Check $M_0 =$ 25482.0 in-lbs Resisting Force Required = 849.40 lbs A minimum 60in long x 22in wide x S.F. = 1.67 18in tall ballast foundation is required Weight Required = 1415.67 lbs to resist overturning. Minimum Width = Weight Provided = 1993.75 lbs Sliding 217.93 lbs Force = Use a 60in long x 22in wide x 18in tall Friction = 0.4 Weight Required = 544.83 lbs ballast foundation to resist sliding. Resisting Weight = 1993.75 lbs Friction is OK. Additional Weight Required = 0 lbs Cohesion Sliding Force = 217.93 lbs Cohesion = 130 psf Use a 60in long x 22in wide x 18in tall 9.17 ft² Area = ballast foundation. Cohesion is OK. Resisting = 996.88 lbs Additional Weight Required = 0 lbs Shear Key Additional Force = 0 lbs 200 psf/ft Lateral Bearing Pressure = Required Depth = 0.00 ft Shear key is not required. 2500 psi f'c =

	Ballast Width				
	22 in 23 in 24 in 25 i				
$P_{ftg} = (145 \text{ pcf})(5 \text{ ft})(1.5 \text{ ft})(1.83 \text{ ft}) =$	1994 lbs	2084 lbs	2175 lbs	2266 lbs	

ASD LC		1.0D ·	+ 1.0S		1.0D + 1.0W					.0D + 0.75L +	0.75W + 0.75	iS		0.6D +	1.0W	
Width	22 in	23 in	24 in	25 in	22 in	23 in	24 in	25 in	22 in	23 in	24 in	25 in	22 in	23 in	24 in	25 in
FA	439 lbs	439 lbs	439 lbs	439 lbs	459 lbs	459 lbs	459 lbs	459 lbs	637 lbs	637 lbs	637 lbs	637 lbs	-83 lbs	-83 lbs	-83 lbs	-83 lbs
FB	311 lbs	311 lbs	311 lbs	311 lbs	501 lbs	501 lbs	501 lbs	501 lbs	583 lbs	583 lbs	583 lbs	583 lbs	-823 lbs	-823 lbs	-823 lbs	-823 lbs
F _V	41 lbs	41 lbs	41 lbs	41 lbs	390 lbs	390 lbs	390 lbs	390 lbs	320 lbs	320 lbs	320 lbs	320 lbs	-436 lbs	-436 lbs	-436 lbs	-436 lbs
P _{total}	2744 lbs	2835 lbs	2925 lbs	3016 lbs	2954 lbs	3045 lbs	3135 lbs	3226 lbs	3214 lbs	3304 lbs	3395 lbs	3486 lbs	290 lbs	345 lbs	399 lbs	453 lbs
M	310 lbs-ft	310 lbs-ft	310 lbs-ft	310 lbs-ft	528 lbs-ft	528 lbs-ft	528 lbs-ft	528 lbs-ft	605 lbs-ft	605 lbs-ft	605 lbs-ft	605 lbs-ft	675 lbs-ft	675 lbs-ft	675 lbs-ft	675 lbs-ft
е	0.11 ft	0.11 ft	0.11 ft	0.10 ft	0.18 ft	0.17 ft	0.17 ft	0.16 ft	0.19 ft	0.18 ft	0.18 ft	0.17 ft	2.32 ft	1.96 ft	1.69 ft	1.49 ft
L/6	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft				
f _{min}	258.8 psf	257.0 psf	255.4 psf	253.9 psf	253.1 psf	251.6 psf	250.1 psf	248.8 psf	271.4 psf	269.1 psf	266.9 psf	265.0 psf	0.0 psf	0.0 psf	0.0 psf	0.0 psf
f _{max}	339.9 psf	334.5 psf	329.7 psf	325.2 psf	391.4 psf	383.8 psf	376.9 psf	370.5 psf	429.8 psf	420.5 psf	412.1 psf	404.3 psf	598.4 psf	220.8 psf	164.3 psf	143.3 psf

Maximum Bearing Pressure = 598 psf Allowable Bearing Pressure = 1500 psf Use a 60in long x 22in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Length =

Bearing Pressure

8 in

Weak Side Design

Overturning Check

 $M_0 = 192.2 \text{ ft-lbs}$

Resisting Force Required = 209.68 lbs S.F. = 1.67 Weight Required = 349.46 lbs

Minimum Width = 22 in in
Weight Provided = 1993.75 lbs

A minimum 60in long x 22in wide x 18in tall ballast foundation is required to resist overturning.

Bearing Pressure

	1 239D ± 0 975E										
ASD LC	1	.238D + 0.875	ΣE	1.1785	D + 0.65625E	+ 0.75S	0.362D + 0.875E				
Width		22 in			22 in			22 in			
Support	Outer	Inner	Outer	Outer	Inner	Outer	Outer	Inner	Outer		
F _Y	61 lbs	156 lbs	58 lbs	212 lbs	617 lbs	209 lbs	18 lbs	46 lbs	17 lbs		
F _V	0 lbs	0 lbs	0 lbs	1 lbs	1 lbs	0 lbs	0 lbs	0 lbs	0 lbs		
P _{total}	2529 lbs	2624 lbs	2526 lbs	2562 lbs 2966 lbs 25		2559 lbs	740 lbs	767 lbs	739 lbs		
М	0 lbs-ft	0 lbs-ft	0 lbs-ft	2 lbs-ft	1 lbs-ft	1 lbs-ft	0 lbs-ft	0 lbs-ft	0 lbs-ft		
е	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft		
L/6	0.31 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft		
f _{min}	275.8 sqft	286.2 sqft	275.5 sqft	278.6 sqft	323.3 sqft	278.9 sqft	80.7 sqft	83.7 sqft	80.6 sqft		
f _{max}	276.1 psf 286.3 psf 275.6			280.4 psf	323.9 psf	279.3 psf	80.7 psf	83.7 psf	80.6 psf		

Maximum Bearing Pressure = 324 psf Allowable Bearing Pressure = 1500 psf

Use a 60in long x 22in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Foundation Requirements: 60in long x 22in wide x 18in tall ballast foundation and fiber reinforcing with (1) #5 rebar.

5.3 Foundation Anchors

Threaded rods are anchored to the ballast foundations using the Simpson AT-XP epoxy solution. LRFD load results are compared to the allowable strengths of the epoxy solution. Please see the supplementary calculations provided by the Simpson Anchor Designer software.

6. DESIGN OF JOINTS AND CONNECTIONS

6.1 Anchorage of Modules to Purlins and Connection of Purlins to Girders

Modules are secured to the purlins with Schletter, Inc. Rapid2+ mounting clamps. Purlins are secured to the girders with the use of a Schletter, Inc. Klicktop connector. The reliability of calculations is uncertain due to limited standards, therefore the strength of the fasteners has been evaluated by load testing.

6.2 Bolted Connections

The aluminum struts connect the aluminum girder ends to custom brackets with mounting holes. Cross bracing is attached to rear struts to provide lateral stability. Single M8 bolts are used to attach each end of the strut to the girder and post. ASTM A193/A193M-86 equivalent stainless steel bolts are used.

Front Strut		Rear Strut	
Maximum Axial Load =	0.982 k	Maximum Axial Load =	1.166 k
M8 Bolt Capacity =	5.692 k	M8 Bolt Capacity =	5.692 k
Strut Bearing Capacity =	7.952 k	Strut Bearing Capacity =	7.952 k
Utilization =	<u>17%</u>	Utilization =	<u>20%</u>
Diagonal Strut		<u>Bracing</u>	
Maximum Axial Load =	0.478 k	Maximum Axial Load =	0.074 k
M8 Bolt Shear Capacity =	5.692 k	M10 Bolt Capacity =	8.894 k
Strut Bearing Capacity =	7.952 k	Strut Bearing Capacity =	7.952 k
Utilization =	<u>8%</u>	Utilization =	<u>1%</u>

Bolt and bearing capacities are accounting for double shear (ASCE 8-02, Eq. 5.3.4-1). Struts under compression are shown to demonstrate the load transfer from the girder. Single M8 bolts are located at each end of the strut and are subjected to double shear.

7. SEISMIC DESIGN

7.1 Seismic Drift - N/A

The racking structure has been analyzed under seismic loading. The allowable story drift of the structure must fall within the limits provided by (ASCE 7, Table 12.12-1).

 $\label{eq:mean_hamiltonian} \begin{array}{ll} \text{Mean Height, h}_{\text{sx}} = & 30.83 \text{ in} \\ \text{Allowable Story Drift for All Other} \\ \text{Structures, } \Delta = \{ & 0.020 h_{\text{sx}} \\ 0.617 \text{ in} \\ \text{Max Drift, } \Delta_{\text{MAX}} = & 0.012 \text{ in} \\ \hline N\!\!\! /\!\!\! A \end{array}$

reaction to seismic loads is shown to the right. The deflections have been magnified to provide a clear portrayal of potential

The racking structure's

story drift.

APPENDIX A

A.1 Design of Aluminum Purlins - Aluminum Design Manual, 2005 Edition

Purlin = **ProfiPlus**

Strong Axis:

3.4.14

$$L_b = 60.00 \text{ in}$$

$$J = 0.255$$

$$156.237$$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^{\frac{1}{2}}$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

S2 = 1701.56

S2 =
$$1701.56$$

 $\varphi F_L = \varphi b[Bc-1.6Dc^* \sqrt{(LbSc)/(Cb^* \sqrt{(JJ)/2)}}]$

$$\phi F_1 = 29.3 \text{ ksi}$$

3.4.16

b/t = 7.4

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi y Fcy$$

$$\varphi F_L = 33.3 \text{ ksi}$$

3.4.16.1 <u>Not Use</u>

Rb/t = 0.0

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

S2 = 141.0

$$\phi F_L = 1.17 \phi y F c y$$

$$\phi F_L = 38.9 \text{ ksi}$$

Weak Axis:

3.4.14

4.14
$$L_{b} = 60.00 \text{ in}$$

$$J = 0.255$$

$$162.242$$

$$S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}}Fcy}{1.6Dc}\right)^{2}$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_{c}}{1.6}\right)^{2}$$

$$S2 = 1701.56$$

$\phi F_L = \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$

$$\phi F_L = 29.2$$

3.4.16

b/t = 23.9

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$$\varphi F_L = 28.5 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

SCHLETTER

3.4.18

$$h/t = 23.9$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 30$$

$$Cc = 30$$

$$R = \frac{k_1Bbr}{m}$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\varphi F_L = 1.3 \varphi y F_C y$$

$$\varphi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 29.3 \text{ ksi}$$

$$lx = 250988 \text{ mm}^4$$

$$0.603 \text{ in}^4$$

$$y = 30 \text{ mm}$$

$$Sx = 0.511 \text{ in}^3$$

$$M_{max} St = 1.247 \text{ k-ft}$$

3.4.18

$$h/t = 7.4$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 20$$

$$Cc = 20$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L Wk = 28.5 \text{ ksi}$$

Compression

3.4.9

 $\begin{array}{lll} b/t = & 7.4 \\ S1 = & 12.21 \text{ (See 3.4.16 above for formula)} \\ S2 = & 32.70 \text{ (See 3.4.16 above for formula)} \\ \phi F_L = \phi y F c y \end{array}$

$$\phi F_L = \phi F_S = 33.3 \text{ ksi}$$

$$b/t = 23.9$$

$$S1 = 12.21$$

$$S2 = 32.70$$

$$\phi F_L = \phi c [Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.5 \text{ ksi}$$

Rb/t = 0.0

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^2$$

$$S1 = 6.87$$

$$S2 = 131.3$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 28.47 \text{ ksi}$$

A =
$$578.06 \text{ mm}^2$$

 0.90 in^2
 0.90 sp^2
 0.90 sp^2

A.2 Design of Aluminum Girders - Aluminum Design Manual, 2005 Edition

Girder = Flex Profi

Strong Axis:

3.4.11 $L_b = 33.78 \text{ in}$

$$ry = 1.374$$

 $Cb = 1.24$
 22.039

$$S1 = \frac{1.2(Bc - \frac{\theta_y}{\theta_b}Fcy)}{Dc}$$
$$S1 = 1.37733$$

$$S2 = 1.2C_c$$

 $S2 = 79.2$
 $\varphi F_L = \varphi b[Bc-Dc*Lb/(1.2*ry*\sqrt{(Cb)})]$

3.4.15

N/A for Strong Direction

 $\phi F_L = 29.6 \text{ ksi}$

Weak Axis:

3.4.11

$$\begin{array}{lll} L_b = & 33.78 \text{ in} \\ ry = & 1.374 \\ Cb = & 1.24 \\ & 24.5845 \\ S1 = & \frac{1.2(Bc - \frac{\theta_y}{\theta_b}Fcy)}{Dc} \\ S1 = & 1.37733 \\ S2 = & 1.2C_c \\ S2 = & 79.2 \\ \phi F_L = & \phi b [Bc-Dc^*Lb/(1.2^*ry^*\sqrt{(Cb)})] \end{array}$$

3.4.15

b/t = 24.46

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{5.1Dp}$$

$$S1 = 3.8$$

$$S2 = \frac{k_1 Bp}{5.1Dp}$$

$$S2 = 14.7$$

$$F_{UT} = (\phi bk2^* \sqrt{(BpE)})/(5.1b/t)$$

$$F_{UT} = 9.4 \text{ ksi}$$

 $\phi F_1 = 29.6 \text{ ksi}$

3.4.16

$$b/t = 4.29$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1 + \frac{\theta_y}{\theta_b} Fcy}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{m}$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$
$$S2 = 46.7$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.3 \text{ ksi}$$

3.4.16

N/A for Weak Direction

3.4.16

N/A for Strong Direction

$$b/t = 24.46$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$F_{ST} = \phi b [Bp-1.6Dp*b/t]$$

$$F_{ST} = 28.2 \text{ ksi}$$

3.4.16.1 Not Used

Rb/t = 0.0

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_1 = 1.17 \varphi v Fc v$$

$$\phi F_L = 1.17 \phi y F c y$$

$$\phi F_L = 38.9 \text{ ksi}$$

3.4.16.2

N/A for Strong Direction

3.4.18

h/t = 24.46

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 34.4$$

$$m = 0.70$$

$$C_0 = 34.23$$

$$Cc = 37.77$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 72.1$$

$$\varphi F_L = 1.3\varphi y Fcy$$

$$\varphi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 29.6 \text{ ksi}$$

$$Ix = 364470 \text{ mm}^4$$

$$0.876 \text{ in}^4$$

$$y = 37.77 \text{ mm}$$

$$Sx = 0.589 \text{ in}^3$$

$$M_{max} St = 1.455 \text{ k-ft}$$

Compression

3.4.7

$$\lambda = 0.46067$$

$$r = 1.374 \text{ in}$$

$$S1^* = \frac{Bc - Fcy}{1.6Dc^*}$$

$$S1^* = 0.33515$$

$$S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$$

$$S2^* = 1.23671$$

$$\phi cc = 0.90326$$

$$\phi F_L = \phi cc(Bc-Dc^*\lambda)$$

$$\phi F_L = 30.1251 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.16.2

$$b/t = 24.46$$

$$t = 2.6$$

$$ds = 6.05$$

$$rs = 3.49$$

$$S = 21.70$$

$$\rho st = 0.22$$

$$F_{UT} = 9.37$$

$$F_{ST} = 28.24$$

$$\phi F_L = Fut + (Fst - Fut)\rho st < Fst$$

$$\phi F_L = 13.5 \text{ ksi}$$

$$h/t = 4.29$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 29$$

$$Cc = 29$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\varphi F_L = 1.3\varphi y F c y$$

$$\varphi F_L = 43.2 \text{ ksi}$$

$$\begin{split} \phi F_L W k &= 13.5 \text{ ksi} \\ ly &= 217168 \text{ mm}^4 \\ 0.522 \text{ in}^4 \\ x &= 29 \text{ mm} \\ Sy &= 0.457 \text{ in}^3 \\ M_{max} W k &= 0.513 \text{ k-ft} \end{split}$$

3.4.8

$$\begin{array}{lll} b/t = & 24.46 \\ S1 = & 3.83 \\ S2 = & 10.30 \\ \phi F_L = & (\phi ck2^* \sqrt{(BpE))}/(5.1b/t) \\ \phi F_1 = & 10.4 \text{ ksi} \end{array}$$

3.4.9

$$b/t = 4.29 \\ S1 = 12.21 \text{ (See 3.4.16 above for formula)} \\ S2 = 32.70 \text{ (See 3.4.16 above for formula)} \\ \phi F_L = \phi y F c y \\ \phi F_L = 33.3 \text{ ksi} \\ b/t = 24.46 \\ S1 = 12.21 \\ S2 = 32.70 \\ \phi F_L = \phi c [Bp-1.6Dp^*b/t]$$

3.4.9.1

 $\varphi F_L =$

$$b/t = 24.46$$

$$t = 2.6$$

$$ds = 6.05$$

$$rs = 3.49$$

$$S = 21.70$$

$$\rho st = 0.22$$

$$F_{UT} = 10.43$$

$$F_{ST} = 28.24$$

$$\phi F_{L} = Fut + (Fst - Fut)\rho st < Fst$$

$$\phi F_{L} = 14.3 \text{ ksi}$$

0.0

28.2 ksi

3.4.10

Rb/t =

$$S1 = \left(\frac{Bt - \theta_b rey}{Dt}\right)$$

$$S1 = 6.87$$

$$S2 = 131.3$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 14.29 \text{ ksi}$$

$$A = 576.21 \text{ mm}^2$$

$$0.89 \text{ in}^2$$

$$P_{max} = 12.76 \text{ kips}$$

A.3 Design of Aluminum Struts (Front) - Aluminum Design Manual, 2005 Edition

Strut = 30x30x3

Strong Axis:

3.4.14

$$L_{b} = 18.00 \text{ in}$$

$$J = 0.16$$

$$47.2194$$

$$S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}} Fcy}{1.6Dc}\right)^{2}$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

S2 = 1701.56

$$\phi F_L \text{= } \phi b [\text{Bc-1.6Dc*} \sqrt{(\text{LbSc})/(\text{Cb*} \sqrt{(\text{lyJ})/2)})}]$$

$$\varphi F_L = 31.2 \text{ ksi}$$

Weak Axis:

3.4.14

$$L_{b} = 18.00 \text{ in}$$

$$J = 0.16$$

$$47.2194$$

$$S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}}Fcy}{1.6Dc}\right)^{2}$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_{c}}{1.6}\right)^{2}$$

$$S2 = 1701.56$$

$$\phi F_{L} = \phi b[Bc-1.6Dc*\sqrt{(LbSc)/(Cb*\sqrt{(lyJ)/2)}}]$$

3.4.16

$$b/t = 7.75$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi y Fcy$$

$$\varphi F_1 = 33.3 \text{ ksi}$$

3.4.16

$$b/t = 7.75$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.3 \text{ ksi}$$

 $\phi F_L = 31.2$

3.4.16.1

4.16.1 Not Used

Rb/t = 0.0

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

$$\varphi F_L = 38.9 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

h/t = 7.75

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 15$$

$$Cc = 15$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 31.2 \text{ ksi}$$

$$S1 = \frac{Bbr - \frac{\theta_{y}}{\theta_{b}} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_{0} = 15$$

$$Cc = 15$$

$$S2 = \frac{k_{1}Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_{L} = 1.3\phi y Fcy$$

$$\phi F_{L} = 43.2 \text{ ksi}$$

$$\phi F_{L}Wk = 31.2 \text{ ksi}$$

$$ly = 39958.2 \text{ mm}^{4}$$

h/t = 7.75

$$\begin{array}{rcl} & \text{lx} = & 39958.2 \text{ mm}^4 \\ & & 0.096 \text{ in}^4 \\ & \text{y} = & 15 \text{ mm} \\ & \text{Sx} = & 0.163 \text{ in}^3 \\ & \text{M}_{\text{max}} \text{St} = & 0.423 \text{ k-ft} \end{array}$$

$$\begin{array}{rll} & \text{Iy} = & 39958.2 \text{ mm}^{2} \\ & & 0.096 \text{ in}^{4} \\ & \text{x} = & 15 \text{ mm} \\ & \text{Sy} = & 0.163 \text{ in}^{3} \\ & M_{\text{max}} \text{Wk} = & 0.423 \text{ k-ft} \end{array}$$

SCHLETTER

Compression

3.4.7

$$\begin{array}{lll} \lambda = & 0.77182 \\ r = & 0.437 \text{ in} \\ & S1^* = \frac{Bc - Fcy}{1.6Dc^*} \\ S1^* = & 0.33515 \\ & S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E} \\ S2^* = & 1.23671 \\ & \phi cc = & 0.83792 \\ & \phi F_L = \phi cc(Bc-Dc^*\lambda) \end{array}$$

 ϕF_L = 24.5226 ksi

3.4.9

$$\begin{array}{lll} b/t = & 7.75 \\ S1 = & 12.21 \text{ (See 3.4.16 above for formula)} \\ S2 = & 32.70 \text{ (See 3.4.16 above for formula)} \\ \phi F_L = & \phi F_C \\ \phi F_L = & 33.3 \text{ ksi} \\ \\ b/t = & 7.75 \\ S1 = & 12.21 \\ S2 = & 32.70 \\ \phi F_L = & \phi F_C \\ \phi F_L = & 33.3 \text{ ksi} \\ \end{array}$$

3.4.10

Rb/t =

$$S1 = \left(\frac{Bt - \theta_b - t - S}{Dt}\right)$$

$$S1 = 6.87$$

$$S2 = 131.3$$

$$\phi F_L = \phi F_C = 33.25 \text{ ksi}$$

$$\phi F_L = 24.52 \text{ ksi}$$

$$A = 323.87 \text{ mm}^2$$

$$0.50 \text{ in}^2$$

$$P_{max} = 12.31 \text{ kips}$$

0.0

A.4 Design of Aluminum Struts (Diagonal) - Aluminum Design Manual, 2005 Edition

Strut = 30x30x3

Strong Axis: 3.4.14

$$L_b = 46.38 \text{ in}$$
 $J = 0.16$
 121.663

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^{\frac{1}{2}}$$

$$SI = 0.5146$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$
oF = ob/Bc-1.6Dc*\(\frac{1}{1}\)((1 bSc)\(\frac{1}{1}\)((2 bSc)\(\frac{1}\)((2 bSc)\(\frac{1}{1}\)((2 bSc)\(\frac{1}\)((2 bSc)\(\frac{1}{1}\)((2 bSc)\(\frac{1}\)((2 bSc

$$\varphi F_L = \varphi b[Bc-1.6Dc*\sqrt{((LbSc)/(Cb*\sqrt{(lyJ)/2))}]}$$

$$\phi F_L = 29.8 \text{ ksi}$$

Weak Axis:

3.4.14

$$L_b = 46.38 \text{ in}$$
 $J = 0.16$
 121.663

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_L \text{= } \phi b [\text{Bc-1.6Dc*} \sqrt{(\text{LbSc})/(\text{Cb*} \sqrt{(\text{lyJ})/2)})}]$$

$\varphi F_L =$ 29.8

3.4.16

$$b/t = 7.75$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.3 \text{ ksi}$$

3.4.16

$$b/t = 7.75$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi y Fcy$$

$$\varphi F_L = 33.3 \text{ ksi}$$

3.4.16.1 Rb/t = 0.0

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\phi F_1 = 38.9 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

h/t = 7.75

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 15$$

$$Cc = 15$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\varphi F_L St = 29.8 \text{ ksi}$$

$$Ix = 39958.2 \text{ mm}$$

$$0.096 \text{ in}^4$$

$$\phi F_L St = 29.8 \text{ ksi}$$
 $Ix = 39958.2 \text{ mm}^4$
 0.096 in^4

y = 15 mm Sx = 0.163 in³ $M_{max}St =$ 0.404 k-ft

$$h/t = 7.75$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 15$$

$$Cc = 15$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\begin{array}{lll} \phi F_L W k = & 33.3 \text{ ksi} \\ \text{ly} = & 39958.2 \text{ mm}^4 \\ & 0.096 \text{ in}^4 \\ \text{x} = & 15 \text{ mm} \\ \text{Sy} = & 0.163 \text{ in}^3 \\ M_{\text{max}} W k = & 0.450 \text{ k-ft} \end{array}$$

SCHLETTER

Compression

3.4.7

$$\begin{array}{lll} \lambda = & 1.98863 \\ r = & 0.437 \text{ in} \\ S1^* = & \frac{Bc - Fcy}{1.6Dc^*} \\ S1^* = & 0.33515 \\ & S2^* = & \frac{Cc}{\pi} \sqrt{Fcy/E} \\ S2^* = & 1.23671 \\ & \phi cc = & 0.85841 \\ & \phi F_L = & (\phi cc Fcy)/(\lambda^2) \end{array}$$

 $\phi F_L = 7.59722 \text{ ksi}$

3.4.9

b/t = 7.75
S1 = 12.21 (See 3.4.16 above for formula)
S2 = 32.70 (See 3.4.16 above for formula)

$$\phi F_L = \phi y F c y$$

 $\phi F_L = 33.3 \text{ ksi}$
b/t = 7.75
S1 = 12.21
S2 = 32.70
 $\phi F_L = \phi y F c y$
 $\phi F_L = 33.3 \text{ ksi}$

3.4.10

Rb/t =

$$S1 = \left(\frac{g_b}{Dt}\right)$$

 $S1 = 6.87$
 $S2 = 131.3$
 $\phi F_L = \phi y F c y$
 $\phi F_L = 33.25 \text{ ksi}$
 $\phi F_L = 7.60 \text{ ksi}$
 $A = 323.87 \text{ mm}^2$
 0.50 in^2
 $P_{\text{max}} = 3.81 \text{ kips}$

0.0

A.5 Design of Aluminum Struts (Rear) - Aluminum Design Manual, 2005 Edition

Strut = 30x30x3

Strong Axis:

3.4.14

$$L_b = 36.18 \text{ in}$$
 $J = 0.16$
 94.9139

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$φF_L = φb[Bc-1.6Dc*√((LbSc)/(Cb*√(lyJ)/2))]$$

$$\phi F_L = 30.2 \text{ ksi}$$

3.4.16

b/t =
$$7.75$$

$$Bp - \frac{\theta_y}{2} Fcy$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$
$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$
$$S2 = 46.7$$

$$\phi F_L = \phi y F c y$$

 $\phi F_L = 33.3 \text{ ksi}$

i.16.1 Not U Rb/t = 0.0 Not Used

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\phi F_L = 1.17 \phi y F c y$$

$$\phi F_L = 38.9 \text{ ksi}$$

3.4.18

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} \cdot 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 15$$

$$Cc = 15$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$
$$S2 = 77.3$$

$$\varphi F_L = 1.3 \varphi y F_C y$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 30.2 \text{ ksi}$$

$$lx = 39958.2 \text{ mm}^4$$

 0.096 in^4

$$Sx = 0.163 \text{ in}^3$$

$$M_{max}St = 0.410 \text{ k-ft}$$

Weak Axis:

3.4.14

$$L_b = 36.18 \text{ in}$$
 $J = 0.16$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$S2 = \frac{1.6}{1.6}$$

 $S2 = \frac{170156}{1.6}$

$$\phi F_L = \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$$

$$\phi F_L = 30.2$$

3.4.16

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$1.6Dp$$
 S2 = 46.7

$$\phi F_1 = \phi y F c y$$

$$\varphi F_L = 33.3 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 15$$

 $C_0 = 15$

$$S2 = \frac{k_1 Bbr}{}$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$
$$S2 = 77.3$$

$$\varphi F_L = 1.3 \varphi y F_C y$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L W k = 33.3 \text{ ksi}$$

 $ly = 39958.2 \text{ mm}^4$

$$Sy = 0.163 \text{ in}^3$$

$$M_{max}Wk = 0.450 \text{ k-ft}$$

SCHLETTER

Compression

3.4.7
$$\lambda = 1.5514$$

$$r = 0.437 \text{ in}$$

$$S1^* = \frac{Bc - Fcy}{1.6Dc^*}$$

$$S1^* = 0.33515$$

$$S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$$

$$S2^* = 1.23671$$

$$\varphi cc = 0.7972$$

$$\varphi F_L = (\varphi cc Fcy)/(\lambda^2)$$

$$\varphi F_L = 11.5927 \text{ ksi}$$
3.4.9
$$b/t = 7.75$$

$$S1 = 12.21 \text{ (See 3.4.16 above for formula)}$$

$$S2 = 32.70 \text{ (See 3.4.16 above for formula)}$$

$$\phi F_L = 33.3 \text{ ksi}$$

 $\phi F_L = \phi y F c y$

b/t = 7.75
S1 = 12.21
S2 = 32.70

$$\phi F_L = \phi y F c y$$

 $\phi F_L = 33.3 \text{ ksi}$

3.4.10

Rb/t = 0.0

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^2$$
S1 = 6.87
S2 = 131.3
 $\phi F_L = \phi y Fcy$
 $\phi F_L = 33.25 \text{ ksi}$

$$\phi F_L = 11.59 \text{ ksi}$$

$$A = 323.87 \text{ mm}^2$$

$$0.50 \text{ in}^2$$

$$P_{max} = 5.82 \text{ kips}$$

APPENDIX B

B.1

The following pages will contain the results from RISA. Please refer back to Section 2 for load information and Section 4-5 for member and foundation design.

Model Name

: Schletter, Inc.: HCV

Standard PVMini Racking System

Dec 11, 2015

Checked By:____

Basic Load Cases

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distribut	.Area(Me.	.Surface(
1	Dead Load, Max	DĽ	•	-1				2	,	,
2	Dead Load, Min	DL		-1				2		
3	Snow Load	SL						2		
4	Wind Load - Pressure	WL						2		
5	Wind Load - Suction	WL						2		
6	Seismic - Lateral	EL								

Member Distributed Loads (BLC 1 : Dead Load, Max)

	Member Label	Direction	Start Magnitude[lb/ft,F	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-8.366	-8.366	0	0
2	M16	Υ	-8.366	-8.366	0	0

Member Distributed Loads (BLC 2 : Dead Load, Min)

	Member Label	Direction	Start Magnitude[lb/ft,F	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-4.45	-4.45	0	0
2	M16	Υ	-4.45	-4.45	0	0

Member Distributed Loads (BLC 3: Snow Load)

	Member Label	Direction	Start Magnitude[lb/ft,F] End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-51.748	-51.748	0	0
2	M16	Υ	-51.748	-51.748	0	0

Member Distributed Loads (BLC 4: Wind Load - Pressure)

	Member Label	Direction	Start Magnitude[lb/ft,F	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	-58.278	-58.278	0	0
2	M16	V	-90.067	-90.067	0	0

Member Distributed Loads (BLC 5: Wind Load - Suction)

	Member Label	Direction	Start Magnitude[lb/ft,F] End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	116.557	116.557	0	0
2	M16	V	52.98	52.98	0	0

Load Combinations

	Description	S	P	S	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa
1	LRFD 1.2D + 1.6S + 0.8W	Yes	Υ		1	1.2	3	1.6	4	.8														
2	LRFD 1.2D + 1.6W + 0.5S	Yes	Υ		1	1.2	3	.5	4	1.6														
3	LRFD 0.9D + 1.6W	Yes	Υ		2	.9					5	1.6												
4	LATERAL - LRFD 1.54D + 1.3E	Yes	Υ		1	1.54	3	.2			6	1.3												
5	LATERAL - LRFD 0.56D + 1.3E	Yes	Υ		1	.56					6	1.3												
6	LATERAL - LRFD 1.54D + 1.25	Yes	Υ		1	1.54	3	.2			6	1.25												
7	LATERAL - LRFD 0.56D + 1.25E	Yes	Υ		1	.56					6	1.25												
8																								
9	ASD 1.0D + 1.0S	Yes	Υ		1	1	3	1																
10	ASD 1.0D + 1.0W	Yes	Υ		1	1			4	1														
11	ASD 1.0D + 0.75L + 0.75W + 0	Yes	Υ		1	1	3	.75	4	.75														
12	ASD 0.6D + 1.0W	Yes	Υ		2	.6					5	1												
13	LATERAL - ASD 1.238D + 0.875E	Yes	Υ		1	1.2					6	.875												
14	LATERAL - ASD 1.1785D + 0.65.	.Yes	Υ		1	1.1	3	.75			6	.656												
15	LATERAL - ASD 0.362D + 0.875E	Yes	Υ		1	.362					6	.875												

Company Designer Job Number Model Name : Schletter, Inc. : HCV

1101

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

Envelope Joint Reactions

	Joint		X [lb]	LC	Y [lb]	LC	Z [lb]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
1	N8	max	182.86	2	276.995	2	0	5	0	9	0	1	0	1
2		min	-224.181	3	-406.481	3	14	3	0	3	0	1	0	1
3	N7	max	0	15	349.648	1	027	15	0	15	0	1	0	1
4		min	137	2	-31.935	3	691	1	001	1	0	1	0	1
5	N15	max	0	15	981.941	1	.317	1	0	1	0	1	0	1
6		min	-1.421	2	-136.181	3	521	3	0	3	0	1	0	1
7	N16	max	639.066	2	910.163	2	0	2	0	1	0	1	0	1
8		min	-697.535	3	-1318.06	3	-62.486	3	0	3	0	1	0	1
9	N23	max	0	15	349.58	1	1.419	1	.002	1	0	1	0	1
10		min	137	2	-31.446	3	.047	10	0	10	0	1	0	1
11	N24	max	182.861	2	279.769	2	62.99	3	0	1	0	1	0	1
12		min	-224.479	3	-405.004	3	.002	10	0	3	0	1	0	1
13	Totals:	max	1003.093	2	2997.939	1	0	15			·			
14		min	-1146.391	3	-2329.106	3	0	9						

Envelope Member Section Forces

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]		y-y Mome		z-z Mome	. LC
1	M2	1	max	249.71	1	.644	4	.26	1	0	15	0	15	0	1
2			min	-367.032	3	.152	15	076	3	0	1	0	1	0	1
3		2	max	249.826	1_	.598	4	.26	1	0	15	0	15	0	15
4			min	-366.945	3	.141	15	076	3	0	1	0	1	0	4
5		3	max	249.943	1	.552	4	.26	1	0	15	0	9	0	15
6			min	-366.858	3	.13	15	076	3	0	1	0	3	0	4
7		4	max	250.059	1	.507	4	.26	1	0	15	0	1	0	15
8			min	-366.77	3	.119	15	076	3	0	1	0	3	0	4
9		5	max	250.176	1	.461	4	.26	1	0	15	0	1	0	15
10			min	-366.683	3	.109	15	076	3	0	1_	0	3	0	4
11		6	max	250.292	1	.415	4	.26	1	0	15	0	1	0	15
12			min	-366.596	3	.098	15	076	3	0	1	0	3	0	4
13		7	max	250.408	1	.37	4	.26	1	0	15	0	1	0	15
14			min	-366.508	3	.087	15	076	3	0	1	0	3	0	4
15		8	max	250.525	1	.324	4	.26	1	0	15	0	1	0	15
16			min	-366.421	3	.077	15	076	3	0	1	0	3	0	4
17		9	max	250.641	1	.278	4	.26	1	0	15	0	1	0	15
18			min	-366.334	3	.066	15	076	3	0	1	0	3	0	4
19		10	max	250.758	1	.233	4	.26	1	0	15	0	1	0	15
20			min	-366.247	3	.055	15	076	3	0	1	0	3	0	4
21		11	max	250.874	1	.187	4	.26	1	0	15	0	1	0	15
22			min	-366.159	3	.044	15	076	3	0	1	0	3	0	4
23		12	max	250.99	1	.141	4	.26	1	0	15	0	1	0	15
24			min	-366.072	3	.034	15	076	3	0	1	0	3	0	4
25		13	max	251.107	1	.103	2	.26	1	0	15	0	1	0	15
26			min	-365.985	3	.017	12	076	3	0	1	0	3	0	4
27		14	max	251.223	1	.068	2	.26	1	0	15	0	1	0	15
28			min	-365.897	3	003	3	076	3	0	1	0	3	0	4
29		15	max	251.34	1	.032	2	.26	1	0	15	0	1	0	15
30			min	-365.81	3	03	3	076	3	0	1	0	3	0	4
31		16	max	251.456	1	003	2	.26	1	0	15	0	1	0	15
32			min	-365.723	3	056	3	076	3	0	1	0	3	0	4
33		17	max	251.573	1	02	15	.26	1	0	15	0	1	0	15
34			min	-365.635	3	087	4	076	3	0	1	0	3	0	4
35		18	max		1	031	15	.26	1	0	15	0	1	0	15
36				-365.548	3	133	4	076	3	0	1	0	3	0	4
37		19	max	251.805	1	042	15	.26	1	0	15	0	1	0	15

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:__

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC			Torque[k-ft	1 LC \	y-y Mome	LC	z-z Mome	<u>. LC</u>
38			min	-365.461	3	178	4	076	3	0	1	0	3	0	4
39	M3	1_	max		2	1.778	4	01	15	0	15	0	1	0	4
40			min	-130.29	3	.418	15	262	1	0	1	0	15	0	15
41		2	max		2	1.601	4	01	15	0	15	0	1	0	2
42			min	-130.342	3	.377	15	262	1	0	1 1	0	15	0	12
43		3	max		2	1.424	4	01	15	0	15	0	1	0	2
44		.	min	-130.393	3	.335	15	262	1	0	1	0	15	0	3
45		4	max		2	1.247	4	01	15	0	15	0	1	0	15
46		-			3	.293	15	262	1	0	1	0	15	0	4
47		5	max		2	1.07	4	01	15	0	15	0	1	0	15
48			min	-130.496	3	.252	15	262	1	0	1	0	15	0	4
49		6		130.507	2	.892	4	01	15	0	15	0	1	0	15
50		7	min	-130.547	3	.21	15	262	1	0	1	0	15	0	4
51		7		130.439	2	.715	4	01	15	0	15	0	1	0	15
52 53		8	min	<u>-130.599</u> 130.37	2	.168 .538	1 <u>5</u>	<u>262</u> 01	15	<u> </u>	15	<u> </u>	1 <u>5</u>	<u> </u>	15
54		0	max	-130.65	3	.127	15	262	1	0	1	0	15	001	4
55		9	min max		2	.361	4	202 01	15	0	15	0	1	<u>001</u> 0	15
56		9	min		3	.085	15	262	1	0	1	0	15	001	4
57		10	max		2	.184	4	202	15	0	15	0	1	001	15
58		10	min	-130.753	3	.043	15	262	1	0	1	0	15	001	4
59		11		130.164	2	.028	2	01	15	0	15	0	1	0	15
60			min		3	022	3	262	1	0	1	0	15	001	4
61		12		130.096	2	04	15	01	15	0	15	0	1	0	15
62		' <u>-</u>	min	-130.856	3	171	4	262	1	0	1	0	15	001	4
63		13	max		2	081	15	01	15	0	15	0	1	0	15
64			min	-130.908	3	348	4	262	1	0	1	0	15	001	4
65		14		129.959	2	123	15	01	15	0	15	0	1	0	15
66				-130.959	3	525	4	262	1	0	1	0	10	001	4
67		15	max		2	165	15	01	15	0	15	0	1	0	15
68			min	-131.01	3	702	4	262	1	0	1	0	10	0	4
69		16	max	129.821	2	206	15	01	15	0	15	0	15	0	15
70			min	-131.062	3	88	4	262	1	0	1	0	1	0	4
71		17	max	129.753	2	248	15	01	15	0	15	0	15	0	15
72			min	-131.113	3	-1.057	4	262	1	0	1	0	1	0	4
73		18	max		2	29	15	01	15	0	15	0	15	0	15
74			min	-131.165	3	-1.234	4	262	1	0	1	0	1	0	4
75		19	max		2	331	15	01	15	0	15	0	15	0	1
76			min		3	-1.411	4	262	1	0	1 1	0	1	0	1
77	M4	_1_	max	348.483	1	0	1	027	15	0	1	0	3	0	1
78				-32.808		0	1	734	1	0	1	0	2	0	1
79		2		348.548	1	0	1	027	15	0	1	0	15	0	1
80			min		3	0	1	734	1	0	1	0	1_	0	1
81		3		348.613	1	0	1	027	15	0	1	0	15	0	1
82		1	min	-32.711	3	0	1	734	1	0	1	0	1_	0	1
83		4	max		1	0	1	027	15	0	1	0	15	0	1
84		-	min	-32.663	3	0	1	734	1	0	1	0	1	0	1
85		5	max		1	0	1	027	15	0	1	0	15	0	1
86		6	min		3	0	1	734	1 1 5	0	1 1	0	1 1 5	0	1
87 88		6	max		3	0	1	027 734	15	0	1	<u>0</u> 	15 1	<u>0</u> 	1
89		7	min	348.872	<u>ა</u>	0	1	027	15	0	1	0	15	0	1
90			min		3	0	1	734	1	0	1	0	1	0	1
91		8		348.936	<u> </u>	0	1	027	15	0	1	0	15	0	1
92			min	-32.468	3	0	1	734	1	0	1	0	1	0	1
93		9	max		1	0	1	027	15	0	1	0	15	0	1
94			min		3	0	1	734	1	0	1	0	1	0	1
UT				ULITE				., 0-							

Model Name

Schletter, Inc.HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:__

	Member	Sec	1	Axial[lb]	LC	y Shear[lb]	LC			Torque[k-ft]	LC	y-y Mome		z-z Mome	. LC
95		10	max	349.066	1	0	1	027	15	0	1	0	15	0	1
96			min	-32.371	3	0	1	734	1	0	1_	0	1	0	1
97		11	max	349.131	1	0	1	027	15	0	1	0	15	0	1
98			min	-32.323	3	0	1	734	1	0	1	0	1	0	1
99		12	max	349.195	1	0	1	027	15	0	1	0	15	0	1
100			min	-32.274	3	0	1	734	1	0	1	0	1	0	1
101		13	max	349.26	1	0	1	027	15	0	1	0	15	0	1
102			min	-32.226	3	0	1	734	1	0	1	0	1	0	1
103		14	max	349.325	1	0	1	027	15	0	1	0	15	0	1
104		17		-32.177	3	0	1	734	1	0	1	0	1	0	1
		15	min				1		_	_	_	_	_		
105		15	max		1	0		027	15	0	1_	0	15	0	1
106		1.0	min		3	0	1	734	1	0	1_	0	1	0	1
107		16	max		1	0	1	027	15	0	_1_	0	15	0	1
108			min	-32.08	3	0	1	734	1	0	1_	001	1	0	1
109		17	max	349.519	_1_	0	1	027	15	0	_1_	0	15	0	1
110			min	-32.032	3	0	1	734	1	0	1	001	1	0	1
111		18	max	349.583	1	0	1	027	15	0	1	0	15	0	1
112			min	-31.983	3	0	1	734	1	0	1	001	1	0	1
113		19	max	349.648	1	0	1	027	15	0	1	0	15	0	1
114		'		-31.935	3	0	1	734	1	0	1	001	1	0	1
115	M6	1	max	797.699	1	.643	4	.074	1	0	3	0	3	0	1
116	IVIO		min	-1165.673	3	.151	15	221	3	0	2	0	2	0	1
		2							1		3	0			15
117		2		797.816	1	.597	4	.074	_	0			3	0	
118				-1165.585	3	.141	15	221	3	0	2	0	2	0	4
119		3			1	.551	4	.074	1	0	3_	0	3	0	15
120			min	-1165.498	3	.13	15	221	3	0	2	0	2	0	4
121		4		798.048	1	.506	4	.074	1	0	3	0	3	00	15
122			min	-1165.411	3	.119	15	221	3	0	2	0	2	0	4
123		5		798.165	1	.46	4	.074	1	0	3	0	1	0	15
124			min	-1165.323	3	.108	15	221	3	0	2	0	2	0	4
125		6	max	798.281	1	.42	2	.074	1	0	3	0	1	0	15
126			min	-1165.236	3	.098	15	221	3	0	2	0	3	0	4
127		7	max		1	.384	2	.074	1	0	3	0	1	0	15
128			min	-1165.149	3	.082	12	221	3	0	2	0	3	0	4
129		8	max	798.514	1	.349	2	.074	1	0	3	0	1	0	15
130		0	min	-1165.062	3	.064	12	221	3	0	2	0	3	0	4
										_			_		
131		9	max		1	.313	2	.074	1	0	3	0	1	0	15
132		1.0	min	-1164.974	3	.047	12	221	3	0	2	0	3	0	4
133		10	max		1	.277	2	.074	1	0	3	0	1	0	15
134			min	-1164.887	3	.029	12	221	3	0	2	0	3	0	2
135		11		798.863	1	.242	2	.074	1	0	3	0	1	0	15
136			min	-1164.8	3	.011	3	221	3	0	2	0	3	0	2
137		12	max	798.98	1	.206	2	.074	1	0	3	0	1	0	12
138			min	-1164.712	3	016	3	221	3	0	2	0	3	0	2
139		13		799.096	1	.171	2	.074	1	0	3	0	1	0	12
140		1.0	min	-1164.625	3	043	3	221	3	0	2	0	3	0	2
141		14		799.212	1	.135	2	.074	1	0	3	0	1	0	12
142		17		-1164.538	3	07	3	221	3	0	2	0	3	0	2
		15											1		
143		15	max		1	.1	2	.074	1	0	3	0		0	12
144		40		-1164.45	3	096	3	221	3	0	2	0	3	0	2
145		16	max		1	.064	2	.074	1	0	3	0	1	0	12
146			min	-1164.363	3	123	3	221	3	0	2	0	3	0	2
147		17	max	799.562	1_	.028	2	.074	1	0	3	0	1	0	12
148			min	-1164.276	3	15	3	221	3	0	2	0	3	0	2
149		18	max	799.678	1	007	2	.074	1	0	3	0	1	0	12
150			min	-1164.189	3	176	3	221	3	0	2	0	3	0	2
151		19		799.794	1	042	15	.074	1	0	3	0	1	0	12
					•						_		•		

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:__

	Member	Sec		Axial[lb]	LC					Torque[k-ft]		y-y Mome		z-z Mome	
152			min	-1164.101	3	203	3	221	3	0	2	0	3	0	2
153	<u>M7</u>	1		478.203	2	1.78	4	.015	3	0	1	0	1_	0	2
154			min	-385.038	3	.419	15	007	11	0	3	0	3	0	12
155		2	max	478.134	2	1.603	4	.015	3	0	1_	0	1_	0	2
156			min	-385.09	3_	.377	15	007	11	0	3	0	3	0	3
157		3	max		2	1.425	4	.015	3	0	1	0	1_	0	2
158			min	-385.141	3	.335	15	007	11	0	3	0	3	0	3
159		4	max		2	1.248	4	.015	3	0	1	0	1	0	2
160			min	-385.192	3	.294	15	007	11	0	3	0	3	0	3
161		5	max	477.929	2	1.071	4	.015	3	0	1	0	1	0	15
162			min	-385.244	3	.252	15	007	11	0	3	0	3	0	3
163		6	max	477.86	2	.894	4	.015	3	0	1	0	1	0	15
164			min	-385.295	3	.21	15	007	11	0	3	0	3	0	4
165		7	max	477.791	2	.717	4	.015	3	0	1	0	1	0	15
166			min	-385.347	3	.169	15	007	11	0	3	0	3	0	4
167		8	max		2	.539	4	.015	3	0	1	0	1	0	15
168			min	-385.398	3	.127	15	007	11	0	3	0	3	001	4
169		9	max		2	.362	4	.015	3	0	1	0	1	0	15
170			min	-385.45	3	.085	15	007	11	0	3	0	3	001	4
171		10	max	477.586	2	.219	2	.015	3	0	1	0	1	0	15
172		'		-385.501	3	.021	12	007	11	0	3	0	3	001	4
173		11		477.517	2	.081	2	.015	3	0	1	0	1	0	15
174				-385.553	3	078	3	007	11	0	3	0	3	001	4
175		12	max		2	04	15	.015	3	0	1	0	1	0	15
176		12	min	-385.604	3	181	3	007	11	0	3	0	3	001	4
177		13	max	477.38	2	081	15	.015	3	0	1	0	1	0	15
178		10	min	-385.656	3	347	4	007	11	0	3	0	3	001	4
179		14	max		2	123	15	.015	3	0	1	0	1	0	15
180		14		-385.707	3	524	4	007	11	0	3	0	3	001	4
181		15		477.243	2	165	15	.015	3	0	1	0	1	_	_
182		13	max	-385.758	3	701	4	007	11	0	3	0	3	0	15
183		16			2	206	15	.015	3	0	1	0	1	0	15
184		10	max	-385.81	3	878	4	007	11	0	3	0	3	0	4
		17	min						3		1		1	-	_
185		17	max	477.105	2	248	15	.015		0	_	0		0	15
186		40	min	-385.861	3	-1. <u>055</u>	4	007	11	0	3	0	3	0	4
187		18	max		2	29	15	.015	3	0	1	0	1	0	15
188		40	min	-385.913	3	-1.233	4	007	11	0	3	0	3	0	4
189		19	max		2	331	15	.015	3	0	1	0	1	0	1
190		.		-385.964	3_	-1.41	4	007	11	0	3	0	3	0	1
191	<u>M8</u>	1_	max		1_	0	1	.377	1	0	1	0	2	0	1
192				-137.054		0	1	51	3	0	1	0	1	0	1
193		2		980.841	_1_	0	1	.377	1	0	1	0	1	0	1
194			_	-137.006	3_	0	1	51	3	0	1	0	3	0	1
195		3		980.905	_1_	0	1	.377	1	0	1	0	1	0	1
196				-136.957	3_	0	1	51	3	0	1	0	3	0	1
197		4		980.97	_1_	0	1	.377	1	0	1	0	1	0	1
198				-136.909	3	0	1	51	3	0	1	0	3	0	1
199		5		981.035	_1_	0	1	.377	1	0	1	0	1	0	1
200				-136.86	3	0	1	51	3	0	1	0	3	0	1
201		6		981.099	_1_	0	1	.377	1	0	1	0	1	0	1
202				-136.812	3	0	1	51	3	0	1	0	3	0	1
203		7	max	981.164	1	0	1	.377	1	0	1	0	1	0	1
204			min	-136.763	3	0	1	51	3	0	1	0	3	0	1
205		8	max	981.229	1	0	1	.377	1	0	1	0	1	0	1
206				-136.715	3	0	1	51	3	0	1	0	3	0	1
207		9		981.294	1	0	1	.377	1	0	1	0	1	0	1
208				-136.666	3	0	1	51	3	0	1	0	3	0	1
					-							·			

Model Name

Schletter, Inc.

HCV

Standard PVMini Racking System

Dec 11, 2015

Checked By:____

200	Member	Sec		Axial[lb]								y-y Mome		_	
209		10	max	981.358	1	0	1	.377	3	0	1	0	1	0	1
210		11		<u>-136.618</u> 981.423	<u>3</u> 1	0	1	51 .377	1	0	<u>1</u> 1	0	<u>3</u> 1	0	1
212		11		-136.569	3	0	1	51	3	0	1	0	3	0	1
		12			<u>၂</u> ၂		1		1		1		<u>ა</u> 1		1
213		12	max min	-136.52	3	0	1	.377 51	3	0	1	0	3	0	1
215		13		981.552	1	0	1	.377	1	0	1	0	1	0	1
216		13		-136.472	3	0	1	51	3	0	1	0	3	0	1
217		14		981.617	<u> </u>	0	1	.377	1	0	+	0	<u> </u>	0	1
218		14		-136.423	3	0	1	51	3	0	1	0	3	0	1
219		15		981.682	<u> </u>	0	1	.377	1	0	+	0	<u> </u>	0	1
220		13		-136.375	3	0	1	51	3	0	1	0	3	0	1
221		16		981.746		0	1	.377	1	0	1	0	<u> </u>	0	1
222		10		-136.326	3	0	1	51	3	0	1	0	3	0	1
223		17		981.811	_ <u></u>	0	1	.377	1	0	1	0	1	0	1
224		17		-136.278	3	0	1	51	3	0	1	0	3	0	1
225		18		981.876		0	1	.377	1	0	1	0	1	0	1
226		10		-136.229	3	0	1	51	3	0	1	0	3	0	1
227		19		981.941	_ <u></u>	0	1	.377	1	0	1	0	<u> </u>	0	1
228		19		-136.181	3	0	1	51	3	0	1	0	3	0	1
229	M10	1	max	251.853	<u> </u>	.644	4	003	15	0	1	0	<u> </u>	0	1
230	IVITO		min	-328.2	3	.152	15	117	1	0	3	0	3	0	1
231		2		251.969		.598	4	003	15	0	<u> </u>	0	<u> </u>	0	15
232				-328.113	3	.141	15	117	1	0	3	0	3	0	4
233		3		252.086	<u> </u>	.552	4	003	15	0	<u> </u>	0	<u> </u>	0	15
234		3	max min	-328.026	3	.13	15	117	1	0	3	0	3	0	4
235		4		252.202		.507	4	003	15	0	1	0	1	0	15
236		4		-327.938	3	.119	15	117	1	0	3	0	3	0	4
237		5	max	252.318	<u> </u>	.461	4	003	15	0	<u> </u>	0	<u> </u>	0	15
238		5		-327.851	3	.109	15	117	1	0	3	0	3	0	4
239		6	max		<u> </u>	.415	4	003	15	0	1	0	<u> </u>	0	15
240		0		-327.764	3	.098	15	117	1	0	3	0	3	0	4
241		7		252.551	1	.37	4	003	15	0	<u> </u>	0	<u> </u>	0	15
242				-327.676	3	.087	15	117	1	0	3	0	3	0	4
243		8	max	252.668	<u></u>	.324	4	003	15	0	1	0	9	0	15
244		0	min	-327.589	3	.077	15	117	1	0	3	0	3	0	4
245		9	max	252.784	1	.278	4	003	15	0	1	0	9	0	15
246				-327.502	3	.066	15	117	1	0	3	0	3	0	4
247		10	max	252.9	1	.233	4	003	15	0	1	0	15	0	15
248		10		-327.415	3	.055	15	117	1	0	3	0	3	0	4
249		11		253.017	1	.187	4	003	15	0	1	0	15	0	15
250			min	-327.327	3	.044	15	117	1	0	3	0	3	0	4
251		12		253.133	1	.141	4	003	15	0	1	0	15	0	15
252		- '-	min	-327.24	3	.034	15	117	1	0	3	0	3	0	4
253		13	max	253.25	1	.103	2	003	15	0	1	0	15	0	15
254				-327.153	3	.023	15	117	1	Ö	3	0	3	Ö	4
255		14		253.366	1	.068	2	003	15	0	1	0	15	0	15
256				-327.065	3	.012	15	117	1	0	3	0	3	0	4
257		15	max		1	.032	2	003	15	0	1	0	15	0	15
258				-326.978	3	004	9	117	1	0	3	0	3	0	4
259		16		253.599	1	004	2	003	15	0	1	0	15	0	15
260				-326.891	3	041	4	117	1	0	3	0	3	0	4
261		17		253.715	1	02	15	003	15	0	1	0	15	0	15
262				-326.803	3	087	4	117	1	0	3	0	3	0	4
263		18		253.832	1	031	15	003	15	0	1	0	15	0	15
264				-326.716	3	133	4	117	1	0	3	0	3	0	4
265		19		253.948	1	042	15	003	15	0	1	0	15	0	15
			ux	_00.010	_						_				<u> </u>

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		Axial[lb]		y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]		y-y Mome	LC	z-z Mome	<u>. LC</u>
266			min	-326.629	3	178	4	117	1	0	3	0	1	0	4
267	M11	1	max	130.37	2	1.778	4	.288	1	0	1	0	3	0	4
268			min	-130.947	3	.418	15	028	3	0	15	0	1	0	15
269		2	max	130.301	2	1.601	4	.288	1	0	1	0	3	0	2
270			min	-130.999	3	.377	15	028	3	0	15	0	1	0	12
271		3	max	130.233	2	1.424	4	.288	1	0	1	0	3	0	2
272			min	-131.05	3	.335	15	028	3	0	15	0	1	0	3
273		4	max	130.164	2	1.247	4	.288	1	0	1	0	3	0	15
274			min	-131.101	3	.293	15	028	3	0	15	0	1	0	3
275		5	max	130.096	2	1.07	4	.288	1	0	1	0	3	0	15
276			min	-131.153	3	.252	15	028	3	0	15	0	1	0	4
277		6	max	130.027	2	.892	4	.288	1	0	1	0	3	0	15
278			min	-131.204	3	.21	15	028	3	0	15	0	1	0	4
279		7	max	129.958	2	.715	4	.288	1	0	1	0	3	0	15
280			min	-131.256	3	.168	15	028	3	0	15	0	1	0	4
281		8	max	129.89	2	.538	4	.288	1	0	1	0	3	0	15
282			min	-131.307	3	.127	15	028	3	0	15	0	1	001	4
283		9	max	129.821	2	.361	4	.288	1	0	1	0	3	0	15
284			min	-131.359	3	.085	15	028	3	0	15	0	1	001	4
285		10	max	129.753	2	.184	4	.288	1	0	1	0	3	0	15
286			min	-131.41	3	.043	15	028	3	0	15	0	1	001	4
287		11	max		2	.028	2	.288	1	0	1	0	3	0	15
288			min	-131.462	3	038	3	028	3	0	15	0	1	001	4
289		12	max		2	04	15	.288	1	0	1	0	3	0	15
290			min	-131.513	3	171	4	028	3	0	15	0	1	001	4
291		13	max	129.547	2	082	15	.288	1	0	1	0	3	0	15
292			min	-131.565	3	348	4	028	3	0	15	0	1	001	4
293		14	max	129.478	2	123	15	.288	1	0	1	0	3	0	15
294			min	-131.616	3	525	4	028	3	0	15	0	1	001	4
295		15	max	129.41	2	165	15	.288	1	0	1	0	3	0	15
296		10	min	-131.667	3	702	4	028	3	0	15	0	2	0	4
297		16	max		2	206	15	.288	1	0	1	0	3	0	15
298		10	min	-131.719	3	88	4	028	3	0	15	0	10	0	4
299		17	max	129.272	2	248	15	.288	1	0	1	0	3	0	15
300		11	min	-131.77	3	-1.057	4	028	3	0	15	0	10	0	4
301		18	max	129.204	2	29	15	.288	1	0	1	0	3	0	15
302		10	min	-131.822	3	-1.234	4	028	3	0	15	0	15	0	4
303		19	max	129.135	2	331	15	.288	1	0	1	0	1	0	1
304		13	min	-131.873	3	-1.411	4	028	3	0	15	0	15	0	1
305	M12	1	max	348.415	1	0	1	1.505	1	0	1	0	2	0	1
306	IVIIZ			-32.32	3	0	1	.049	10	0	1	0	3	0	1
307		2	max		1	0	1	1.505	1	0	1	0	1	0	1
308			min	-32.271	3	0	1	.049	10	0	1	0	15	0	1
309		3	max		1	0	1	1.505	1	0	1	0	1	0	1
310			min	-32.223	3	0	1	.049	10	0	1	0	15	0	1
311		4	max		1	0	1	1.505	1	0	1	0	1	0	1
312		-	min	-32.174	3	0	1	.049	10	0	1	0	15	0	1
		5			1	0	1	1.505	1	0	1		1	0	1
313		- O	max min	-32.125	3	0	1	.049	10	0	1	<u>0</u> 	15	0	1
		6					1		10		1		1		
315		6	max	348.739	3	0	1	1.505	10	0	1	<u> </u>	15	0	1
316		7	min	-32.077				.049							-
317		7		348.804	1	0	1	1.505	1	0	1	0	1	0	1
318		_	min	-32.028	3	0	1	.049	10	0	1	0	15	0	1
319		8	max		1	0	1	1.505	1	0	1	0	1	0	1
320		_	min	-31.98	3	0	1	.049	10	0	1 1	0	15	0	1
321		9	max		1	0	1	1.505	1	0	1	.001	1	0	1
322			min	-31.931	3	0	1	.049	10	0	1	00	15	0	1

Schletter, Inc. HCV

Model Name : Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
323		10	max	348.998	1	0	1	1.505	1	0	1	.001	1	0	1
324			min	-31.883	3	0	1	.049	10	0	1	0	15	0	1
325		11	max	349.062	1	0	1	1.505	1	0	1	.001	1	0	1
326			min	-31.834	3	0	1	.049	10	0	1	0	15	0	1
327		12	max	349.127	1	0	1	1.505	1	0	1	.001	1	0	1
328			min	-31.786	3	0	1	.049	10	0	1	0	15	0	1
329		13	max	349.192	1	0	1	1.505	1	0	1	.002	1	0	1
330		1.0	min	-31.737	3	0	1	.049	10	0	1	0	15	0	1
331		14	max	349.257	1	0	1	1.505	1	0	1	.002	1	0	1
332		1 -	min	-31.689	3	0	1	.049	10	0	1	0	10	0	1
333		15	max	349.321	1	0	1	1.505	1	0	1	.002	1	0	1
334		13	min	-31.64	3	0	1	.049	10	0	1	0	10	0	1
335		16		349.386	1	0	1	1.505	1	0	1	.002	1	0	1
336		10	max	-31.592	3	0	1	.049	10	0	1	0	10	0	1
		17	min				1	1.505			1	.002			
337		17	max	349.451	1	0	1		1	0	1		1	0	1
338		40	min	-31.543	3	0	_	.049	10	0		0	10	0	
339		18	max	349.515	1	0	1	1.505	1	0	_1_	.002	1_	0	1
340		1.0	min	-31.495	3	0	1	.049	10	0	1	0	10	0	1
341		19	max	349.58	1	0	1	1.505	1	0	_1_	.002	_1_	0	1
342			min	-31.446	3	0	1	.049	10	0	1_	0	10	0	1
343	<u>M1</u>	1_	max	92.151	1	345.805	3	-1.168	15	0	_1_	.06	_1_	0	2
344			min	3.388	15	-251.529	1	-30.675	1	0	3	.002	15	0	3
345		2	max	92.269	1	345.616	3	-1.168	15	0	<u>1</u>	.054	<u>1</u>	.055	1
346			min	3.424	15	-251.782	1	-30.675	1	0	3	.002	15	075	3
347		3	max	59.861	3	5.104	9	-1.158	15	0	3	.046	1_	.108	1
348			min	-7.626	10	-19.461	2	-30.538	1	0	1	.002	15	149	3
349		4	max	59.949	3	4.893	9	-1.158	15	0	3	.04	1	.109	1
350			min	-7.527	10	-19.714	2	-30.538	1	0	1	.002	15	145	3
351		5	max	60.038	3	4.682	9	-1.158	15	0	3	.033	1	.113	2
352			min	-7.429	10	-19.967	2	-30.538	1	0	1	.001	15	141	3
353		6	max	60.126	3	4.471	9	-1.158	15	0	3	.027	1	.117	2
354			min	-7.331	10	-20.22	2	-30.538	1	0	1	.001	15	137	3
355		7	max	60.215	3	4.26	9	-1.158	15	0	3	.02	1	.122	2
356			min	-7.232	10	-20.473	2	-30.538	1	0	1	0	15	133	3
357		8	max	60.303	3	4.049	9	-1.158	15	0	3	.013	1	.126	2
358			min	-7.134	10	-20.726	2	-30.538	1	Ö	1	0	15	129	3
359		9	max	60.392	3	3.838	9	-1.158	15	0	3	.007	1	.131	2
360			min	-7.036	10	-20.979	2	-30.538	1	0	1	0	15	125	3
361		10	max	60.48	3	3.627	9	-1.158	15	0	3	.001	3	.135	2
362		1.0	min	-6.937	10	-21.232	2	-30.538	1	0	1	0	10	12	3
363		11	max		3	3.416	9	-1.158	15	0	3	0	3	.14	2
364			min	-6.839	10	-21.486	2	-30.538	1	0	1	007	1	116	3
365		12	max	60.657	3	3.206	9	-1.158	15	0	3	007	12	.145	2
366		14	min	-6.74	10	-21.739	2	-30.538	1	0	1	013	1	112	3
367		13			3	2.995	9	-30.536 -1.158	15		3	013 0	<u>1</u> 15	.149	2
368		13	max	-6.642	10	-21.992	2	-30.538	1	0	<u> </u>	02	15 1	108	3
		4.4	min		_					0	_	02			
369		14	max		3	2.784	9	-1.158	15	0	3		<u>15</u>	.154	2
370		4.5	min	-6.544	10	-22.245	2	-30.538	1_	0	1	026	1_	103	3
371		15	max		3	2.573	9	-1.158	15	0	3	001	<u>15</u>	.159	2
372		40	min	-6.445	10	-22.498	2	-30.538	1	0	1	033	1_	099	3
373		16	max		2	78.216	2	-1.168	15	0	1	002	<u>15</u>	.163	2
374			min	-20.167	3	-123.537	3	-30.77	1_	0	12	04	1_	094	3
375		17	max	87.255	2	77.963	2	-1.168	15	0	1	002	<u>15</u>	.146	2
376			min	-20.078	3	-123.727	3	-30.77	1	0	12	047	1_	067	3
377		18		-3.423	15	338.803	2	-1.195	15	0	3	002	<u>15</u>	.074	2
378			min	-92.251	1	-153.69	3	-31.542	1	0	2	053	1_	034	3
379		19	max	-3.387	15	338.55	2	-1.195	15	0	3	002	15	0	2

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:__

	Member	Sec		Axial[lb]	LC	y Shear[lb]			LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	
380			min	-92.133	1	-153.88	3	-31.542	1	0	2	06	1	0	3
381	M5	1	max	213.783	1	1128.384	3	0	2	0	1	.007	3	0	3
382			min	3.537	12	-819.068	1	-56.406	3	0	3	0	10	0	2
383		2	max	213.901	1	1128.195	3	0	2	0	1	0	1	.177	1
384			min	3.596	12	-819.321	1	-56.406	3	0	3	005	3	244	3
385		3	max	172.773	3	5.84	9	6.276	3	0	3	0	1	.352	1
386			min	-27.006	10	-70.752	2	408	1	0	1	017	3	484	3
387		4	max	172.861	3	5.629	9	6.276	3	0	3	0	1	.358	1
388			min	-26.908	10	-71.005	2	408	1	0	1	015	3	47	3
389		5	max	172.95	3	5.419	9	6.276	3	0	3	0	1	.369	2
390			min	-26.809	10	-71.258	2	408	1	0	1	014	3	455	3
391		6	max	173.038	3	5.208	9	6.276	3	0	3	0	1	.384	2
392			min	-26.711	10	-71.511	2	408	1	0	1	012	3	441	3
393		7	max	173.127	3	4.997	9	6.276	3	0	3	0	1	.4	2
394			min	-26.613	10	-71.764	2	408	1	0	1	011	3	427	3
395		8	max	173.215	3	4.786	9	6.276	3	0	3	0	1	.415	2
396			min	-26.514	10	-72.017	2	408	1	0	1	01	3	412	3
397		9	max	173.304	3	4.575	9	6.276	3	0	3	0	1	.431	2
398			min	-26.416	10	-72.27	2	408	1	0	1	008	3	398	3
399		10	max	173.392	3	4.364	9	6.276	3	0	3	0	2	<u></u>	2
400		10	min	-26.318	10	-72.523	2	408	1	0	1	007	3	384	3
401		11	max	173.481	3	4.153	9	6.276	3	0	3	0	2	.462	2
402			min	-26.219	10	-72.776	2	408	1	0	1	006	3	369	3
403		12	max	173.569	3	3.942	9	6.276	3	0	3	000	2	<u>309 </u>	2
404		12		-26.121	10	-73.029	2	408	1	0	1	004	3	355	3
405		13	min	173.658		3.731	9	6.276	3	0	3	004 0	2	<u>355</u> .494	2
		13	max		3				1		1	003	3		3
406		11	min	-26.023	10	-73.283	9	408	3	0	_		2	34	
407		14	max	173.746	3	3.52		6.276	1	0	3	0		.51	2
408		4.5	min	-25.924	10	-73.536	2	408	•	0		002	3	326	3
409		15	max	173.835	3	3.31	9	6.276	3	0	3	0	1	.526	2
410		4.0	min	-25.826	10	-73.789	2	408	•	0		0		<u>311</u>	3
411		16	max	287.776	2	301.59	2	6.243	3	0	3	0	3	.539	2
412		47	min	-66.211	3	-369.411	3	419	1	0	2	0	1	294	3
413		17	max	287.894	2	301.337	2	6.243	3	0	3	.002	3	.473	2
414		10	min	-66.122	3	-369.601	3	<u>419</u>	1	0	2	0	1	214	3
415		18	max	-5.635	12	1099.959	2	5.736	3	0	3	.003	3	.238	2
416			min	-213.934	_1_	-494.536	3	095	1	0	1	0	1	107	3
417		19	max	-5.576	12	1099.706	2	5.736	3	0	3	.005	3	0	3
418					_1_	-494.726	3	095	1	0	1	0	1	0	2
419	<u>M9</u>	1	max	91.873	1_	345.754	3	60.348	3	0	3	002	15	0	2
420			min			-251.528			15		1	06	1	0	3
421		2	max		_1_	345.564	3	60.348	3	0	3	0	12	.055	1
422			min	3.411	15	-251.781	1_	1.19	15	0	1	053	1	075	3
423		3	max	59.713	3	5.083	9	29.879	1	0	1	.011	3	.108	1
424			min	-7.241	10	-19.433	2	-1.788	3	0	15	045	1	149	3
425		4	max	59.801	3_	4.872	9	29.879	1	0	1	.011	3	.109	1
426			min	-7.143	10	-19.686	2	-1.788	3	0	15	039	1	145	3
427		5	max	59.89	3	4.661	9	29.879	1	0	1	.011	3	.113	2
428			min	-7.044	10	-19.939	2	-1.788	3	0	15	032	1	141	3
429		6	max	59.978	3	4.45	9	29.879	1	0	1	.01	3	.117	2
430			min	-6.946	10	-20.192	2	-1.788	3	0	15	026	1	137	3
431		7	max	60.067	3	4.239	9	29.879	1	0	1	.01	3	.122	2
432			min	-6.848	10	-20.445	2	-1.788	3	0	15	02	1	133	3
433		8	max	60.155	3	4.028	9	29.879	1	0	1	.01	3	.126	2
434			min	-6.749	10	-20.698	2	-1.788	3	0	15	013	1	129	3
435		9	max	60.244	3	3.817	9	29.879	1	0	1	.009	3	.131	2
436			min	-6.651	10	-20.951	2	-1.788	3	0	15	007	1	125	3
				0.001		_0.001	_	00	_				- 1		

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		Axial[lb]		y Shear[lb]			LC	Torque[k-ft]	LC			z-z Mome	LC
437		10	max	60.332	3	3.606	9	29.879	1	0	1	.009	3	.135	2
438			min	-6.553	10	-21.204	2	-1.788	3	0	15	0	1	12	3
439		11	max	60.421	3	3.395	9	29.879	1	0	1	.008	3	.14	2
440			min	-6.454	10	-21.457	2	-1.788	3	0	15	0	15	116	3
441		12	max	60.509	3	3.184	9	29.879	1	0	1	.013	1	.145	2
442			min	-6.356	10	-21.71	2	-1.788	3	0	15	0	15	112	3
443		13	max	60.598	3	2.974	9	29.879	1	0	1	.019	1	.149	2
444			min	-6.258	10	-21.963	2	-1.788	3	0	15	0	15	108	3
445		14	max	60.686	3	2.763	9	29.879	1	0	1	.026	1	.154	2
446			min	-6.159	10	-22.216	2	-1.788	3	0	15	0	15	103	3
447		15	max	60.775	3	2.552	9	29.879	1	0	1	.032	1	.159	2
448			min	-6.061	10	-22.47	2	-1.788	3	0	15	.001	15	099	3
449		16	max	87.299	2	77.869	2	30.137	1	0	15	.039	1	.163	2
450			min	-20.713	3	-123.974	3	-1.808	3	0	1	.001	15	094	3
451		17	max	87.417	2	77.616	2	30.137	1	0	15	.046	1	.146	2
452			min	-20.624	3	-124.164	3	-1.808	3	0	1	.002	15	067	3
453		18	max	-3.41	15	338.804	2	31.643	1	0	2	.053	1	.074	2
454			min	-91.975	1	-153.684	3	-1.385	3	0	3	.002	15	034	3
455		19	max	-3.375	15	338.55	2	31.643	1	0	2	.06	1	0	2
456			min	-91.857	1	-153.874	3	-1.385	3	0	3	.002	15	0	3
457	M13	1	max	60.345	3	251.264	1	-3.375	15	0	2	.06	1	0	1
458			min	1.19	15	-345.778	3	-91.866	1	0	3	.002	15	0	3
459		2	max	60.345	3	177.968	1	-2.573	15	0	2	.015	1	.164	3
460			min	1.19	15	-244.676	3	-69.765	1	0	3	0	10	119	1
461		3	max	60.345	3	104.672	1	-1.77	15	0	2	.007	3	.272	3
462			min	1.19	15	-143.575	3	-47.665	1	0	3	018	1	198	1
463		4	max	60.345	3	31.377	1	967	15	0	2	.004	3	.324	3
464			min	1.19	15	-42.474	3	-25.564	1	0	3	038	1	236	1
465		5	max	60.345	3	58.628	3	.898	10	0	2	.002	3	.319	3
466			min	1.19	15	-41.919	1	-3.464	1	0	3	046	1	233	1
467		6	max	60.345	3	159.729	3	18.636	1	0	2	0	3	.258	3
468			min	1.19	15	-115.215	1	-1.955	3	0	3	042	1	189	1
469		7	max	60.345	3	260.83	3	40.737	1	0	2	0	12	.142	3
470			min	1.19	15	-188.511	1	787	3	0	3	026	1	105	1
471		8	max	60.345	3	361.932	3	62.837	1	0	2	.004	2	.021	1
472			min	1.19	15	-261.806	1	.374	12	0	3	0	3	031	3
473		9	max	60.345	3	463.033	3	84.938	1	0	2	.044	1	.186	1
474			min	1.19	15	-335.102	1	1.152	12	0	3	0	3	261	3
475		10	max	60.345	3	564.135	3	107.038	1	0	2	.097	1	.393	1
476			min	1.19	15	-408.398	1	1.931	12	0	3	006	3	546	3
477		11	max		1	335.102	1	82	12	0	3	.044	1	.186	1
478			min	1.168	15		3	-84.659	1	0	2	007	3	261	3
479		12	1	30.742	1	261.806	1	.147	3	0	3	.004	2	.021	1
480			min	1.168	15	-361.932	3	-62.559	1	0	2	007	3	031	3
481		13		30.742	1	188.511	1	1.315	3	0	3	0	15	.142	3
482			min	1.168	15	-260.83	3	-40.459	1	0	2	026	1	105	1
483		14	max	30.742	1	115.215	1	2.483	3	0	3	002	15	.258	3
484			min	1.168	15	-159.729	3	-18.358	1	0	2	042	1	189	1
485		15	max	30.742	1	41.919	1	3.742	1	0	3	002	15	.319	3
486			min	1.168	15	-58.628	3	897	10	0	2	046	1	233	1
487		16	max	30.742	1	42.474	3	25.843	1	0	3	001	12	.324	3
488			min	1.168	15	-31.377	1	.98	15	0	2	038	1	236	1
489		17	max	30.742	1	143.575	3	47.943	1	0	3	.001	3	.272	3
490			min	1.168	15	-104.673	1	1.783	15	0	2	018	1	198	1
491		18		30.742	1	244.676	3	70.043	1	0	3	.015	1	.164	3
491		10	min	1.168	15	-177.968	1	2.586	15	0	2	0	10	119	1
493		10	max	30.742	1	345.778	3	92.144	1	0	3	.06	1	0	1
433		ן וא	шах	30.742		J4J.770	J	32.144		U	J	.00		U	

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]		Torque[k-ft]		y-y Mome		z-z Mome	_LC_
494			min	1.168	15	-251.264	1	3.388	15	0	2	.002	15	0	3
495	M16	1	max	1.387	3	338.682	2	-3.375	15	0	3	.06	1	0	2
496			min	-31.574	1	-153.895	3	-91.865	1	0	2	.002	15	0	3
497		2	max	1.387	3	239.889	2	-2.572	15	0	3	.015	1	.073	3
498			min	-31.574	1	-109.306	3	-69.764	1	0	2	0	10	161	2
499		3	max	1.387	3	141.096	2	-1.77	15	0	3	0	12	.121	3
500			min	-31.574	1	-64.718	3	-47.664	1	0	2	018	1	267	2
501		4	max	1.387	3	42.303	2	967	15	0	3	001	15	.145	3
502			min	-31.574	1	-20.129	3	-25.563	1	0	2	038	1	317	2
503		5	max	1.387	3	24.459	3	.891	10	0	3	002	15	.144	3
504			min	-31.574	1	-56.49	2	-3.463	1	0	2	046	1	314	2
505		6	max	1.387	3	69.048	3	18.637	1	0	3	002	15	.118	3
506			min	-31.574	1	-155.284	2	96	3	0	2	042	1	255	2
507		7	max	1.387	3	113.636	3	40.738	1	0	3	0	15	.067	3
508			min	-31.574	1	-254.077	2	.208	3	0	2	026	1	141	2
509		8	max	1.387	3	158.225	3	62.838	1	0	3	.004	2	.028	2
510			min	-31.574	1	-352.87	2	.996	12	0	2	005	3	008	3
511		9	max	1.387	3	202.813	3	84.939	1	0	3	.044	1	.251	2
512			min	-31.574	1	-451.663	2	1.775	12	0	2	004	3	109	3
513		10	max	-1.198	15	-9.595	15	107.039	1	0	15	.097	1	.529	2
514		10	min	-31.574	1	-550.456	2	-4.466	3	0	2	.002	12	234	3
515		11	max	-1.195	15	451.663	2	-2.244	12	0	2	.044	1	.251	2
516			min	-31.476	1	-202.813	3	-84.663	1	0	3	0	12	109	3
517		12	max	-1.195	15	352.87	2	-1.465	12	0	2	.004	2	.028	2
518		12	min	-31.476	1	-158.225	3	-62.562	1	0	3	0	3	008	3
519		13		-31.476 -1.195	15	254.077	2	686	12	0	2	0	15	.067	3
		13	max	-31.476			3				3	026	1		2
520		1.1	min		1	-113.636		-40.462	3	0				141	
521		14	max	-1.195	15	155.284	2	.206	1	0	2	001	12	.118	3
522		4.5	min	-31.476	1	-69.048	3	-18.361		0	3	042	-	255	
523		15	max	-1.195	15	56.49	2	3.739	1	0	3	001	12	.144	3
524		4.0	min	-31.476	1_	-24.459	3	891	10	0		046	1	314	2
525		16	max	-1.195	15	20.129	3	25.839	1	0	2	0	12	.145	3
526		47	min	-31.476	1_	-42.303	2	.979	15	0	3	038	1	317	2
527		17	max	-1.195	15	64.718	3	47.94	1	0	2	.001	3	.121	3
528		4.0	min	-31.476	1_	-141.096	2	1.782	15	0	3	018	1	267	2
529		18	max	-1.195	15	109.306	3	70.04	1	0	2	.015	1	.073	3
530			min	-31.476	1	-239.889	2	2.585	15	0	3	0	10	161	2
531		19	max	-1.195	15	153.895	3	92.141	1	0	2	.06	1	0	2
532			min	-31.476	1	-338.682	2	3.387	15	0	3	.002	15	0	3
533	<u>M15</u>	1	max	0	1	1.028	3	.09	3	0	1	0	1	0	1
534				-73.111	3	0	1	0	1	0	3	0	3	0	1
535		2	max	0	1	.914	3	.09	3	0	1	0	1	0	1
536			min	-73.176	3	0	1	0	1	0	3	0	3	0	3
537		3	max	0	1	.8	3	.09	3	0	1	0	1	0	1
538			min	-73.242	3	0	1	0	1	0	3	0	3	0	3
539		4	max	0	1	.686	3	.09	3	0	1	0	1	0	1
540			min	-73.307	3	0	1	0	1	0	3	0	3	0	3
541		5	max	0	1	.571	3	.09	3	0	1	0	1	0	1
542			min	-73.372	3	0	1	0	1	0	3	0	3	001	3
543		6	max	0	1	.457	3	.09	3	0	1	0	1	0	1
544			min	-73.437	3	0	1	0	1	0	3	0	3	001	3
545		7	max	0	1	.343	3	.09	3	0	1	0	3	0	1
546			min	-73.502	3	0	1	0	1	0	3	0	1	001	3
547		8	max	0	1	.229	3	.09	3	0	1	0	3	0	1
548			min	-73.568	3	0	1	0	1	0	3	0	1	001	3
549		9	max	0	1	.114	3	.09	3	0	1	0	3	0	1
550			min	-73.633	3	0	1	0	1	0	3	0	1	001	3
				. 5.000	_	•		•						1001	

: Schletter, Inc. : HCV

Job Number :
Model Name : Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC			Torque[k-ft]	LC	y-y Mome		z-z Mome	LC
551		10	max	0	1	0	1	.09	3	0	1	0	3	0	1
552			min	-73.698	3	0	1	0	1	0	3	0	1	002	3
553		11	max	0	1	0	1	.09	3	0	1	0	3	0	1
554			min	-73.763	3	114	3	0	1	0	3	0	1	001	3
555		12	max	00	1	0	1	.09	3	0	1	0	3	0	1
556		40	min	-73.828	3	229	3	0	1	0	3	0	1	001	3
557		13	max	0	1	0	1	.09	3	0	1	0	3	0	1
558		4.4	min	<u>-73.894</u>	3	343	3	0	1	0	3	0	1	001	3
559		14	max	0 70.050	1	0	1	.09	3	0	1	0	3	0	1
560		4.5	min	-73.959	3	457	3	0	1	0	3	0	1	001	3
561		15	max	74.004	1	0	1	.09	3	0	1	0	3	0	1
562		4.0	min	-74.024	3	571	3	0	1	0	3	0	1	001	3
563		16	max	74,000	1	0	1	.09	3	0	1	0	3	0	1
564		47	min	-74.089	3	686	3	0	1	0	3	0	1	0	3
565		17	max	74454	1	8	1	.09	3	0	1	0	3	0	3
566		4.0	min	<u>-74.154</u>	3		3	0	•	0	3	0		0	-
567		18	max	0 -74.22	3	0	1	.09	3	0	1	0	3	0	1
568		40	min			914	3	0	1	0	3	0	1	0	3
569		19	max	<u>0</u>	1	1 000	1	.09	3	0	1	0	3	0	1
570	MAGA	1	min	-74.285	2	-1.028	3	.033	1	0	3	0	1	0	1
571	M16A		max	-73.202		1.759	2		3	0	3	0	3	0	1
572		2	min		2	1 564		036		0	_		_	T T	_
573		2	max	0		1.564	4	.033	1	0	3	0	3	0	2
574		2	min	-73.137	3	0	2	036	3	0		0		0	4
575		3	max	-73.072	3	1.368	2	.033	3	0	3	0	3	001	2
576		1	min			1 172		036		_					4
577		4	max	<u>0</u>	2	1.173	4	.033	1	0	3	0	3	0	2
578		_	min	-73.007	3	0	2	036	3	0	1	0	1	001	4
579		5	max	0 70 044	2	.977	4	.033	1	0	3	0	3	0	2
580		6	min	-72.941 0	2	.782	4	036 .033	1	0	3	0	3	002 0	2
581 582		0	max	-72.876	3	0	2	036	3	0	1	0	1	002	4
		7	min		2	_			1		_	0	3	002 0	_
583			max	<u>0</u> -72.811		.586	2	.033 036	3	0	3	0	1	002	2
584		0	min		2	.391			1	_		0		002 0	2
585 586		8	max	0 -72.746	3	.391	2	.033 036	3	0	3	0	3	002	4
587		9	min	0	2	.195	4	.033	1	0	3	0	3	002 0	2
588		9	max	-72.681	3		2	036	3	0	1	0	1	003	4
589		10	min	0	2	0	1	.033	1	0	3	0	3	003 0	2
590		10	max min	-72.615	3	0	1	036	3	0	1	0	1	003	4
591		11	max		2	0	2	.033	1	0	3	0	3	003 0	2
592		11	min	-72.55	3	195	4	036	3	0	1	0	1	003	4
593		12	max	<u>-72.55</u> 0	2	0	2	.033	1	0	3	0	3	003 0	2
594		12	min	-72.485	3	391	4	036	3	0	1	0	1	002	4
595		13	max	.04	13	0	2	.033	1	0	3	0	1	002	2
596		13	min	-72.42	3	586	4	036	3	0	1	0	4	002	4
597		14	max	.129	13	0	2	.033	1	0	3	0	1	0	2
598		17	min	-72.355	3	782	4	036	3	0	1	0	3	002	4
599		15	max	.219	13	0	2	.033	1	0	3	0	1	0	2
600		13	min	-72.289	3	977	4	036	3	0	1	0	3	002	4
601		16	max	.309	13	0	2	.033	1	0	3	0	1	0	2
602		10	min	-72.224	3	-1.173	4	036	3	0	1	0	3	001	4
603		17	max	.398	13	0	2	.033	1	0	3	0	1	0	2
604		17	min	-72.159	3	-1.368	4	036	3	0	1	0	3	001	4
605		18	max	.488	13	0	2	.033	1	0	3	0	1	0	2
606		10	min	-72.094	3	-1.564	4	036	3	0	1	0	3	0	4
607		19	max	.578	13	0	2	.033	1	0	3	0	1	0	1
		13	παχ	.070	l 13	U		.033		U	⊥ J	U		U	

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

Envelope Member Section Forces (Continued)

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
608			min	-72.029	3	-1.759	4	036	3	0	1	0	3	0	1

Envelope Member Section Deflections

LIIV	еюре метн	UEI C	Jecur	on Dene	Cuo	13									
	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/v Ratio	LC	(n) L/z Ratio	LC
1	M2	1	max	.002	1	.008	2	.006	1	-1.76e-5	15	NC	3	NC	2
2			min	003	3	008	3	002	3	-4.676e-4	1	4536.008	2	6214.07	1
3		2	max	.002	1	.007	2	.005	1		15	NC	3	NC	2
4		_	min	003	3	007	3	001	3	-4.478e-4	1	4941.184	2	6710.987	
5		3	max	.002	1	.007	2	.005	1	-1.612e-5	15	NC	3	NC	2
6			min	003	3	007	3	001	3	-4.28e-4	1	5421.455	2	7297.266	
7		4	max	.002	1	.006	2	.005	1	-1.538e-5	15	NC	1	NC	2
8		_	min	003	3	007	3	001	3	-4.082e-4	1	5994.736	2	7994.5	1
9		5		.002	1	.005	2	.004	1	-1.465e-5	15	NC	1	NC	2
		3	max		3		3	004 001	3		1	6684.853	2		
10			min	003		006				-3.884e-4				8831.533	
11		6	max	.002	1	.005	2	.004	1	-1.391e-5	<u>15</u>	NC 7504 005	1_	NC 0047 F00	2
12		-	min	002	3	006	3	0	3	-3.686e-4	1_	7524.005	2	9847.592	1
13		7	max	.001	1	.004	2	.003	1		<u>15</u>	NC	1_	NC	1
14			min	002	3	006	3	0	3	-3.489e-4	_1_	8556.553	2	NC	1
15		8	max	.001	1	.004	2	.003	1	-1.243e-5	15	NC	_1_	NC	1
16			min	002	3	005	3	0	3	-3.291e-4	1	9844.984	2	NC	1
17		9	max	.001	1	.003	2	.002	1	-1.169e-5	<u>15</u>	NC	_1_	NC	1
18			min	002	3	005	3	0	3	-3.093e-4	1_	NC	1_	NC	1
19		10	max	.001	1	.003	2	.002	1	-1.096e-5	<u>15</u>	NC	_1_	NC	1
20			min	002	3	005	3	0	3	-2.895e-4	1	NC	1	NC	1
21		11	max	0	1	.002	2	.002	1	-1.022e-5	15	NC	1	NC	1
22			min	001	3	004	3	0	3	-2.697e-4	1	NC	1	NC	1
23		12	max	0	1	.002	2	.001	1		15	NC	1	NC	1
24			min	001	3	004	3	0	3	-2.499e-4	1	NC	1	NC	1
25		13	max	0	1	.001	2	.001	1	-8.743e-6	15	NC	1	NC	1
26			min	001	3	003	3	0	3	-2.302e-4	1	NC	1	NC	1
27		14	max	0	1	.001	2	0	1	-8.005e-6	15	NC	1	NC	1
28			min	0	3	003	3	0	3	-2.104e-4	1	NC	1	NC	1
29		15	max	0	1	0	2	0	1	-7.267e-6		NC	1	NC	1
30		10	min	0	3	002	3	0	3	-1.906e-4	1	NC	1	NC	1
31		16	max	0	1	0	2	0	1	-6.53e-6	15	NC	1	NC	1
32		10	min	0	3	002	3	0	3	-1.708e-4	1	NC	1	NC	1
33		17		0	1	<u>002</u> 0	2	0	1	-5.792e-6	15	NC	1	NC	1
		17	max	_	3	001		0	3			NC NC	1		1
34		40	min	0			3			-1.51e-4	1_			NC NC	
35		18	max	0	1	0	2	0	1	-5.054e-6	<u>15</u>	NC	1	NC	1
36		40	min	0	3	0	3	0	3	-1.312e-4	1_	NC NC	1_	NC NC	1
37		19	max	0	1	0	1	0	1	-4.034e-6	<u>10</u>	NC	1	NC	1
38	1.10		min	0	1	0	1	0	1	-1.115e-4	1	NC	1_	NC	1
39	M3	1	max	0	1	0	1	0	1	5.187e-5	1	NC	1	NC	1
40			min	0	1	0	1	0	1	1.887e-6		NC	1_	NC	1
41		2	max	0	3	0	2	0	10	6.529e-5	1_	NC	_1_	NC	1
42			min	0	2	0	3	0	1	2.501e-6	15	NC	1	NC	1
43		3	max	0	3	0	2	0	12		1	NC	_1_	NC	1
44			min	0	2	002	3	0	1	2.995e-6	15	NC	1	NC	1
45		4	max	0	3	0	2	0	12	9.211e-5	1	NC	1	NC	1
46			min	0	2	002	3	0	1	3.488e-6	15	NC	1	NC	1
47		5	max	0	3	0	2	0	3	1.055e-4	1	NC	1	NC	1
48			min	0	2	003	3	0	1	3.982e-6	15	NC	1	NC	1
49		6	max	0	3	0	2	0	3	1.189e-4	1	NC	1	NC	1
50			min	0	2	004	3	0	1	4.476e-6	15	NC	1	NC	1
51		7	max	0	3	0	2	0	3	1.323e-4	1	NC	1	NC	1
JI	1		πιαλ	U	J	U		U	J	1.0206-4		INC		INC	

Model Name

Schletter, Inc.HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

Envelope Member Section Deflections (Continued)

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC		LC		
52			min	0	2	005	3	0	1	4.969e-6	15	NC	1	NC	1
53		8	max	0	3	0	2	0	2	1.458e-4	<u>1</u>	NC	_1_	NC	1
54			min	0	2	005	3	0	9	5.463e-6	15	NC	1	NC	1
55		9	max	0	3	.001	2	0	2	1.592e-4	1_	NC	1_	NC	1_
56			min	0	2	006	3	0	9	5.956e-6	15	NC	1	NC	1
57		10	max	0	3	.002	2	0	2	1.726e-4	1_	NC	1	NC	1
58			min	0	2	006	3	0	15	6.45e-6	15	NC	1	NC	1
59		11	max	0	3	.002	2	0	1	1.86e-4	1	NC	1	NC	1
60			min	0	2	007	3	0	15	6.943e-6	15	NC	1	NC	1
61		12	max	0	3	.003	2	0	1	1.994e-4	1	NC	1	NC	1
62			min	0	2	007	3	0	15	7.437e-6	15	NC	1	NC	1
63		13	max	0	3	.003	2	.001	1	2.128e-4	1	NC	1	NC	1
64			min	0	2	007	3	0	15	7.93e-6	15	NC	1	NC	1
65		14	max	.001	3	.004	2	.001	1	2.262e-4	1	NC	1	NC	1
66			min	001	2	007	3	0	15	8.424e-6	15	NC	1	NC	1
67		15	max	.001	3	.005	2	.002	1	2.396e-4	1	NC	1	NC	1
68		10	min	001	2	008	3	0	15	8.918e-6		9588.696	2	NC	1
69		16	max	.001	3	.006	2	.002	1	2.53e-4	1	NC	1	NC	1
70		10	min	001	2	008	3	0	15	9.411e-6		8089.178	2	NC	1
71		17	max	.001	3	.007	2	.002	1	2.665e-4	1	NC	1	NC	1
72		17	min	001	2	008	3	0	15	9.905e-6	15	6935.985	2	NC	1
73		18	max	.001	3	.008	2	.003	1	2.799e-4	1	NC	3	NC	1
		10			2		3					6038.409		NC	1
74		40	min	001		008		0	15	1.04e-5			2		
75		19	max	.001	3	.009	2	.003	1	2.933e-4	1_	NC 5000 400	3	NC NC	1
76	N 4 4	1	min	<u>001</u>	2	008	3	0	15	1.089e-5		5333.168	2	NC NC	1
77	<u>M4</u>	1_	max	.002	1	.009	2	0			<u>15</u>	NC	1	NC 04.40.004	2
78			min	0	3	008	3	002	1	-3.834e-4	1_	NC	1_	8148.624	1
79		2	max	.002	1	.009	2	0	15		<u>15</u>	NC		NC	2
80			min	0	3	007	3	002	1	-3.834e-4	_1_	NC	1_	8890.008	
81		3	max	.001	1	.008	2	0		-1.449e-5		NC	_1_	NC	2
82			min	0	3	007	3	002	1	-3.834e-4	1_	NC	1_	9772.346	1
83		4	max	.001	1	.008	2	0	15	-1.449e-5	<u>15</u>	NC	_1_	NC	1
84			min	0	3	006	3	002	1	-3.834e-4	<u>1</u>	NC	1_	NC	1
85		5	max	.001	1	.007	2	0	15	-1.449e-5	15	NC	1_	NC	1
86			min	0	3	006	3	002	1	-3.834e-4	1_	NC	1_	NC	1
87		6	max	.001	1	.007	2	0	15		<u>15</u>	NC	_1_	NC	1
88			min	0	3	006	3	001	1	-3.834e-4	1	NC	1	NC	1
89		7	max	.001	1	.006	2	0	15	-1.449e-5	15	NC	1	NC	1
90			min	0	3	005	3	001	1	-3.834e-4	1	NC	1	NC	1
91		8	max	.001	1	.006	2	0	15	-1.449e-5	15	NC	1	NC	1
92			min	0	3	005	3	001	1	-3.834e-4	1	NC	1	NC	1
93		9	max	0	1	.005	2	0		-1.449e-5		NC	1	NC	1
94			min	0	3	004	3	0	1	-3.834e-4	1	NC	1	NC	1
95		10	max	0	1	.005	2	0	15	-1.449e-5	15	NC	1	NC	1
96			min	0	3	004	3	0	1	-3.834e-4	1	NC	1	NC	1
97		11	max	0	1	.004	2	0	15	-1.449e-5	15	NC	1	NC	1
98			min	0	3	003	3	0	1	-3.834e-4	1	NC	1	NC	1
99		12	max	0	1	.004	2	0	15		15	NC	1	NC	1
100		14	min	0	3	003	3	0	1	-3.834e-4	1	NC	1	NC	1
101		13	max	0	1	.003	2	0		-1.449e-5		NC	1	NC	1
102		13	min	0	3	003	3	0	1	-3.834e-4	1	NC NC	1	NC	1
		11					2					NC NC			-
103		14	max	0	1	.003		0	15		<u>15</u>		1	NC NC	1
104		4.5	min	0	3	002	3	0	1	-3.834e-4	4.5	NC NC	1_	NC NC	1
105		15	max	0	1	.002	2	0	15	-1.449e-5	<u>15</u>	NC	1	NC	1
106		1.0	min	0	3	002	3	0	1	-3.834e-4	1_	NC	1	NC	1
107		16	max	0	1	.002	2	0	15		<u>15</u>	NC	1	NC	1
108			min	0	3	001	3	0	1	-3.834e-4	<u>1</u>	NC	1	NC	1

Model Name

Schletter, Inc.HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

Envelope Member Section Deflections (Continued)

	Member	Sec		x [in]	LC	y [in]	LC	z [in]		x Rotate [r	LC		LC		LC
109		17	max	0	1	.001	2	0	15	-1.449e-5	15	NC	1_	NC	1
110			min	0	3	0	3	0	1	-3.834e-4	1_	NC	1_	NC	1
111		18	max	0	1	0	2	0	15	-1.449e-5	15	NC	1	NC	1
112			min	0	3	0	3	0	1	-3.834e-4	1	NC	1	NC	1
113		19	max	0	1	0	1	0	1	-1.449e-5	15	NC	1	NC	1
114			min	0	1	0	1	0	1	-3.834e-4	1	NC	1	NC	1
115	M6	1	max	.007	1	.027	2	.002	1	3.63e-4	3	NC	3	NC	1
116			min	01	3	024	3	005	3	-7.8e-8	2	1328.056	2	7689.802	3
117		2	max	.007	1	.026	2	.002	1	3.526e-4	3	NC	3	NC	1
118			min	01	3	023	3	004	3	-7.363e-8	2	1419.941	2	8199.557	3
119		3	max	.006	1	.024	2	.002	1	3.421e-4	3	NC	3	NC	1
120		-	min	009	3	021	3	004	3	-6.926e-8	2	1525.092	2	8800.61	3
121		4		.006	1	.022	2	.002	1	3.316e-4	3	NC	3	NC	1
122		4	max		3	022	3		3			1646.172	2	9513.004	3
		-	min	009				004		-1.01e-6	<u>11</u>				
123		5	max	.006	1	.02	2	.002	1	3.211e-4	3	NC 4700 C4	3	NC NC	1
124			min	008	3	019	3	004	3	-4.075e-6	1_	1786.61	2	NC	1
125		6	max	.005	1	.019	2	.001	1	3.107e-4	3	NC	3	NC	1
126			min	008	3	018	3	003	3	-7.431e-6	1_	1950.898	2	NC	1
127		7	max	.005	1	.017	2	.001	1	3.002e-4	3	NC	3	NC	1
128			min	007	3	016	3	003	3	-1.079e-5	1_	2145.028	2	NC	1
129		8	max	.004	1	.015	2	.001	1	2.897e-4	3	NC	3	NC	1
130			min	006	3	015	3	003	3	-1.414e-5	1	2377.182	2	NC	1
131		9	max	.004	1	.014	2	0	1	2.792e-4	3	NC	3	NC	1
132			min	006	3	014	3	002	3	-1.75e-5	1	2658.815	2	NC	1
133		10	max	.004	1	.012	2	0	1	2.688e-4	3	NC	3	NC	1
134			min	005	3	012	3	002	3	-2.086e-5	1	3006.479	2	NC	1
135		11	max	.003	1	.011	2	0	1	2.583e-4	3	NC	3	NC	1
136			min	005	3	011	3	002	3	-2.421e-5	1	3445.004	2	NC	1
137		12	max	.003	1	.009	2	0	1	2.478e-4	3	NC	3	NC	1
138		12	min	004	3	01	3	001	3	-2.757e-5	1	4013.409	2	NC	1
139		13	max	.002	1	.008	2	0	1	2.374e-4	3	NC	3	NC	1
140		10	min	003	3	008	3	001	3	-3.092e-5	1	4776.722	2	NC	1
141		14		.002	1	.006	2		1	2.269e-4	3	NC	3	NC	1
142		14	max		3		3	<u> </u>	3		1	5851.983	2	NC NC	1
		4.5	min	003		007				-3.428e-5	-				
143		15	max	.002	1	.005	2	0	1	2.164e-4	3	NC 7472.250	1	NC NC	1
144		40	min	002	3	006	3	0	3	-3.764e-5	1_	7473.259	2	NC NC	
145		16	max	.001	1	.004	2	0	1	2.059e-4	3_	NC	1_	NC NC	1
146			min	002	3	004	3	0	3	-4.099e-5	1_	NC	1_	NC	1
147		17	max	0	1	.002	2	0	1	1.955e-4	3	NC	1_	NC	1
148			min	001	3	003	3	0	3	-4.435e-5	1_	NC	1_	NC	1
149		18	max	0	1	.001	2	0	1	1.85e-4	3	NC	1_	NC	1
150			min	0	3	001	3	0	3	-4.77e-5	1_	NC	1_	NC	1
151		19	max	0	1	0	1	0	1	1.745e-4	3	NC	_1_	NC	1
152			min	0	1	0	1	0	1	-5.106e-5	1	NC	1_	NC	1
153	M7	1	max	0	1	0	1	0	1	2.358e-5	1	NC	1	NC	1
154			min	0	1	0	1	0	1	-8.081e-5	3	NC	1	NC	1
155		2	max	0	3	.001	2	0	3	2.036e-5	1	NC	1	NC	1
156			min	0	2	002	3	0	1	-6.085e-5	3	NC	1	NC	1
157		3	max	0	3	.003	2	0	3	1.715e-5	1	NC	1	NC	1
158		Ĭ	min	0	2	004	3	0	1	-4.088e-5	3	NC	1	NC	1
159		4	max	0	3	.004	2	.001	3	1.393e-5	1	NC	1	NC	1
160			min	0	2	005	3	0	1	-2.092e-5	3	NC	1	NC	1
161		5	max	0	3	.005	2	.001	3	1.071e-5	1	NC	1	NC	1
162		J	min	001	2	007	3	0	1	-9.569e-7	3	8784.882	2	NC NC	1
		6					2					NC		NC NC	
163		6	max	.001	3	.007		.002	3	1.901e-5	3		1		1
164		-	min	002		009	3	0	1	0	2	7042.987	2	NC NC	1
165		7	max	.001	3	.008	2	.002	3	3.897e-5	3	NC	3	NC	1_

Model Name

Schletter, Inc.HCV

. : Standard PVMini Racking System

Dec 11, 2015

Checked By:____

Envelope Member Section Deflections (Continued)

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r					
166			min	002	2	01	3	0	1	-2.335e-7	4	5851.236	2	NC	1
167		8	max	.002	3	.009	2	.002	3	5.893e-5	3	NC	3	NC	1
168			min	002	2	012	3	0	1	-2.552e-6	9	4977.139	2	NC	1
169		9	max	.002	3	.011	2	.002	3	7.89e-5	3	NC	3	NC	1
170			min	002	2	013	3	0	1	-5.111e-6	9	4304.886	2	NC	1
171		10	max	.002	3	.012	2	.002	3	9.886e-5	3	NC	3	NC	1
172			min	003	2	015	3	0	1	-7.67e-6	9	3770.299	2	NC	1
173		11	max	.002	3	.014	2	.003	3	1.188e-4	3	NC	3	NC	1
174			min	003	2	016	3	0	1	-1.023e-5	9	3334.841	2	NC	1
175		12	max	.003	3	.015	2	.003	3	1.388e-4	3	NC	3	NC	1
176			min	003	2	017	3	0	1	-1.279e-5	9	2973.845	2	NC	1
177		13	max	.003	3	.017	2	.003	3	1.588e-4	3	NC	3	NC	1
178			min	004	2	019	3	001	1	-1.535e-5	9	2670.666	2	NC	1
179		14	max	.003	3	.019	2	.003	3	1.787e-4	3	NC	3	NC	1
180			min	004	2	02	3	001	1	-1.823e-5	1	2413.562	2	NC	1
181		15	max	.003	3	.021	2	.003	3	1.987e-4	3	NC	3	NC	1
182			min	004	2	021	3	001	1	-2.144e-5	1	2193.937	2	NC	1
183		16	max	.004	3	.023	2	.003	3	2.186e-4	3	NC	3	NC	1
184			min	005	2	021	3	001	1	-2.466e-5	1	2005.302	2	NC	1
185		17	max	.004	3	.025	2	.003	3	2.386e-4	3	NC	3	NC	1
186			min	005	2	022	3	001	1	-2.787e-5	1	1842.637	2	NC	1
187		18	max	.004	3	.027	2	.002	3	2.586e-4	3	NC	3	NC	1
188			min	005	2	023	3	001	1	-3.109e-5	1	1701.983	2	NC	1
189		19	max	.004	3	.029	2	.002	3	2.785e-4	3	NC	3	NC	1
190			min	005	2	024	3	001	1	-3.431e-5	1	1580.171	2	NC	1
191	M8	1	max	.005	1	.031	2	.001	1	-8.818e-8	10	NC	1	NC	1
192			min	0	3	024	3	002	3	-2.118e-4	3	NC	1	NC	1
193		2	max	.004	1	.029	2	.001	1	-8.818e-8	10	NC	1	NC	1
194			min	0	3	023	3	001	3	-2.118e-4	3	NC	1	NC	1
195		3	max	.004	1	.027	2	0	1	-8.818e-8	10	NC	1	NC	1
196			min	0	3	021	3	001	3	-2.118e-4	3	NC	1	NC	1
197		4	max	.004	1	.026	2	0	1	-8.818e-8	10	NC	1	NC	1
198			min	0	3	02	3	001	3	-2.118e-4	3	NC	1	NC	1
199		5	max	.004	1	.024	2	0	1	-8.818e-8	10	NC	1	NC	1
200			min	0	3	019	3	001	3	-2.118e-4	3	NC	1	NC	1
201		6	max	.003	1	.022	2	0	1	-8.818e-8	10	NC	1	NC	1
202			min	0	3	017	3	0	3	-2.118e-4	3	NC	1	NC	1
203		7	max	.003	1	.021	2	0	1	-8.818e-8	10	NC	1	NC	1
204			min	0	3	016	3	0	3	-2.118e-4	3	NC	1	NC	1
205		8	max	.003	1	.019	2	0	1	-8.818e-8		NC	1	NC	1
206			min	0	3	015	3	0		-2.118e-4	3	NC	1	NC	1
207		9	max	.003	1	.017	2	0	1	-8.818e-8		NC	1	NC	1
208			min	0	3	013	3	0	3	-2.118e-4	3	NC	1	NC	1
209		10	max	.002	1	.015	2	0	1	-8.818e-8		NC	1	NC	1
210		10	min	0	3	012	3	0	3	-2.118e-4	3	NC	1	NC	1
211		11	max	.002	1	.014	2	0	1	-8.818e-8	10	NC	1	NC	1
212		+ ' '	min	0	3	011	3	0	3	-2.118e-4	3	NC	1	NC	1
213		12	max	.002	1	.012	2	0	1	-8.818e-8	10	NC	1	NC	1
214		12	min	0	3	009	3	0	3	-2.118e-4	3	NC	1	NC	1
215		13	max	.002	1	.01	2	0	1	-8.818e-8		NC	1	NC	1
216		13	min	0	3	008	3	0	3	-2.118e-4	3	NC	1	NC	1
217		14	max	.001	1	.009	2	0	1	-8.818e-8		NC	1	NC	1
218		14	min	0	3	007	3	0	3	-2.118e-4	3	NC	1	NC	1
219		15		.001	1	.007	2	<u> </u>	1		10	NC NC	1	NC NC	1
220		10	max min	.001	3	00 <i>7</i>	3	0	3	-2.118e-4	3	NC NC	1	NC NC	1
221		16		0	1	005 .005	2	0	1	-2.118e-4 -8.818e-8		NC NC	1	NC NC	1
		10	max												
222			min	0	3	004	3	0	3	-2.118e-4	3	NC	1_	NC	1

Model Name

: Schletter, Inc. : HCV

. : Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio) LC
223		17	max	0	1	.003	2	0	1	-8.818e-8	10	NC	_1_	NC	1
224			min	0	3	003	3	0	3	-2.118e-4	3	NC	1_	NC	1
225		18	max	00	1	.002	2	0	1		10	NC	_1_	NC	1
226			min	0	3	001	3	0	3	-2.118e-4	3	NC	1_	NC	1
227		19	max	0	1	0	1	0	1	-8.818e-8	10	NC	_1_	NC	1
228	140		min	0	1	0	1	0	1	-2.118e-4	3	NC NC	1_	NC NC	1
229	<u>M10</u>	1	max	.002	1	.008	2	0	3	4.809e-4	1_	NC 4540.400	3_	NC	1
230			min	003	3	008	3	<u>001</u>	1	-4.329e-4	3	4542.168	2	NC NC	1
231		2	max	.002	1	.007	2	0	3	4.565e-4	1	NC	3	NC	1
232		2	min	003	3	007	2	<u>001</u>	3	-4.19e-4 4.321e-4	<u>3</u> 1	4948.061 NC	2	NC NC	1
233		3	max	.002	3	.007	3	0 001		-4.051e-4	3	5429.212	3	NC NC	1
235		4	min	003 .002	1	007 .006	2	<u>001</u> 0	3			NC	<u>2</u> 1	NC NC	1
236		4	max	002	3	007	3	001	1	4.077e-4 -3.912e-4	<u>1</u> 3	6003.586	2	NC NC	1
237		5	max	.002	1	.005	2	<u>001</u> 0	3	3.833e-4	<u> </u>	NC	1	NC	1
238			min	002	3	007	3	001	1	-3.773e-4	3	6695.07	2	NC	1
239		6	max	.002	1	.005	2	0	3	3.589e-4	1	NC	1	NC	1
240			min	002	3	006	3	0	1	-3.634e-4	3	7535.956	2	NC	1
241		7	max	.002	1	.004	2	0	3	3.345e-4	1	NC	1	NC	1
242			min	002	3	006	3	0	1	-3.496e-4	3	8570.734	2	NC	1
243		8	max	.001	1	.004	2	0	3	3.101e-4	1	NC	1	NC	1
244			min	002	3	006	3	0	1	-3.357e-4	3	9862.079	2	NC	1
245		9	max	.001	1	.003	2	0	3	2.857e-4	1	NC	1	NC	1
246			min	002	3	005	3	0	1	-3.218e-4	3	NC	1	NC	1
247		10	max	.001	1	.003	2	0	3	2.613e-4	1	NC	1	NC	1
248			min	001	3	005	3	0	1	-3.079e-4	3	NC	1	NC	1
249		11	max	.001	1	.002	2	0	3	2.369e-4	1	NC	1	NC	1
250			min	001	3	004	3	0	1	-2.94e-4	3	NC	1	NC	1
251		12	max	0	1	.002	2	0	3	2.125e-4	1	NC	1	NC	1
252			min	001	3	004	3	0	1	-2.801e-4	3	NC	1	NC	1
253		13	max	0	1	.001	2	0	3	1.881e-4	1_	NC	_1_	NC	1
254			min	0	3	003	3	0	1	-2.662e-4	3	NC	1_	NC	1
255		14	max	0	1	.001	2	0	3	1.637e-4	_1_	NC	_1_	NC	1
256			min	0	3	003	3	0	1	-2.524e-4	3	NC	1_	NC	1
257		15	max	0	1	0	2	0	3	1.393e-4	1_	NC	_1_	NC	1
258			min	0	3	002	3	0	1	-2.385e-4	3	NC	1_	NC	1
259		16	max	0	1	0	2	0	3	1.149e-4	1_	NC	1_	NC	1
260			min	0	3	002	3	0	1	-2.246e-4	3	NC	1_	NC NC	1
261		17	max	0	1	0	2	0	3	9.053e-5	1	NC		NC	1
262		40	min	0	3	001	3	0	1	-2.107e-4	3	NC NC	1_	NC NC	1
263		18	max	0	1	0	2	0		6.613e-5		NC NC	1	NC NC	1
264		10	min	0	3	0	3	0	1	-1.968e-4	3	NC NC	1_	NC NC	1
265		19	max	0	1	0	1	0	1	4.173e-5	1_2	NC NC	1	NC NC	1
266 267	M11	1	min	<u> </u>	1	<u> </u>	1	0	1	-1.829e-4 8.523e-5	3	NC NC	1	NC NC	1
268	IVI I I		max min	0	1	0	1	0	1	-1.985e-5	<u> </u>	NC NC	1	NC NC	1
269		2	max	0	3	0	2	0	1	6.523e-5	3	NC	1	NC	1
270			min	0	2	0	3	0	3	-4.001e-5	1	NC	1	NC	1
271		3	max	0	3	0	2	0	2	4.523e-5	3	NC	1	NC	1
272		<u> </u>	min	0	2	002	3	0	3	-6.017e-5	1	NC	1	NC	1
273		4	max	0	3	<u>002</u> 0	2	0	2	2.523e-5	3	NC	1	NC	1
274			min	0	2	002	3	001	3	-8.033e-5	1	NC	1	NC	1
275		5	max	0	3	0	2	0	2	5.234e-6	3	NC	1	NC	1
276			min	0	2	003	3	001	3	-1.005e-4	1	NC	1	NC	1
277		6	max	0	3	<u>.003</u>	2	0	2		15	NC	1	NC	1
278			min	0	2	004	3	002	3	-1.206e-4	1	NC	1	NC	1
279		7	max	0	3	0	2	0	10		15	NC	1	NC	1
			,an							, 5.55 .6 6				<u> </u>	

Model Name

: Schletter, Inc. : HCV

. : Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC x Rotate [r	LC		LC		LC
280			min	0	2	005	3	002	3 -1.408e-4	1	NC	1	NC	1
281		8	max	0	3	00	2	0	10 -6.144e-6	<u>15</u>	NC	_1_	NC	1
282			min	0	2	005	3	002	3 -1.61e-4	<u>1</u>	NC	<u>1</u>	NC	1
283		9	max	0	3	.001	2	0	10 -6.925e-6	15	NC	1_	NC	1
284		40	min	0	2	006	3	002	3 -1.811e-4	1_	NC	1_	NC	1
285		10	max	0	3	.002	2	0	10 -7.705e-6	<u>15</u>	NC	1	NC NC	1
286		44	min	0	2	006	3	002	3 -2.013e-4	1_	NC NC	1_	NC NC	1
287		11	max	0	3	.002	2	0	10 -8.485e-6	<u>15</u>	NC NC	1_	NC NC	1
288		40	min	0	2	007	3	003	3 -2.214e-4	1_	NC NC	1_1	NC NC	1
289		12	max	<u> </u>	3	.003	3	003	10 -9.266e-6	<u>15</u>	NC NC	<u>1</u> 1	NC NC	1
290 291		13	min		3	007	2	003 0	1 -2.416e-4	1_	NC NC	1	NC NC	1
292		13	max	0	2	.003 007	3	003	10 -1.005e-5 1 -2.618e-4	<u>15</u> 1	NC NC	1	NC NC	1
293		14	max	.001	3	.007	2	<u>003</u> 0	10 -1.083e-5	15	NC NC	1	NC NC	1
294		14	min	001	2	008	3	003	1 -2.819e-4	1	NC	1	NC	1
295		15	max	.001	3	.005	2	- <u>003</u> 0	10 -1.161e-5	15	NC	1	NC	1
296		10	min	001	2	008	3	004	1 -3.021e-4	1	9604.06	2	NC	1
297		16	max	.001	3	.006	2	0	10 -1.239e-5	15	NC	1	NC	1
298		10	min	001	2	008	3	004	1 -3.222e-4	1	8100.785	2	NC	1
299		17	max	.001	3	.007	2	<u></u> 0	15 -1.317e-5	15	NC	1	NC	2
300		<u> </u>	min	001	2	008	3	005	1 -3.424e-4	1	6945.008	2	9474.821	1
301		18	max	.001	3	.008	2	0	15 -1.395e-5	15	NC	3	NC	2
302			min	001	2	008	3	005	1 -3.626e-4	1	6045.617	2	8703.332	1
303		19	max	.001	3	.009	2	0	15 -1.473e-5	15	NC	3	NC	2
304			min	001	2	008	3	006	1 -3.827e-4	1	5339.078	2	8079.678	1
305	M12	1	max	.002	1	.009	2	.005	1 3.45e-4	1	NC	1	NC	2
306			min	0	3	008	3	0	15 1.315e-5	15	NC	1	4020.059	1
307		2	max	.002	1	.009	2	.004	1 3.45e-4	1	NC	1	NC	2
308			min	0	3	007	3	0	15 1.315e-5	15	NC	1	4384.387	1
309		3	max	.001	1	.008	2	.004	1 3.45e-4	1_	NC	1_	NC	2
310			min	0	3	007	3	0	10 1.315e-5	15	NC	1_	4818.05	1
311		4	max	.001	1	.008	2	.004	1 3.45e-4	_1_	NC	1_	NC	2
312			min	0	3	006	3	0	10 1.315e-5	15	NC	1_	5339.325	1
313		5	max	.001	1	.007	2	.003	1 3.45e-4	_1_	NC	_1_	NC	2
314			min	0	3	006	3	0	10 1.315e-5	15	NC	_1_	5973.112	1
315		6	max	.001	1	.007	2	.003	1 3.45e-4	_1_	NC	_1_	NC	2
316		<u> </u>	min	0	3	006	3	0	10 1.315e-5	<u>15</u>	NC	1_	6754.043	1
317		7	max	.001	1	.006	2	.002	1 3.45e-4	_1_	NC	1_	NC NC	2
318			min	0	3	005	3	0	10 1.315e-5	15	NC	1_	7731.452	1
319		8	max	.001	1	.006	2	.002	1 3.45e-4	1_	NC NC	1_	NC	2
320			min	0	3	005	3	0	10 1.315e-5				8977.578	
321		9	max	0	3	.005	3	.002	1 3.45e-4 10 1.315e-5	1_	NC NC	<u>1</u> 1	NC NC	1
323		10	min	0	1	004 .005	2	.002		<u>15</u>	NC NC	1	NC NC	1
324		10	max min	0 0	3	005	3	<u>.002</u>	1 3.45e-4 10 1.315e-5	1 15	NC NC	1	NC NC	1
325		11	max	0	1	.004	2	.001	1 3.45e-4	1	NC	1	NC	1
326			min	0	3	003	3	0	10 1.315e-5	15	NC	1	NC	1
327		12	max	0	1	.004	2	0	1 3.45e-4	1	NC	1	NC	1
328		12	min	0	3	003	3	0	10 1.315e-5	15	NC	1	NC	1
329		13	max	0	1	.003	2	0	1 3.45e-4	1	NC	1	NC	1
330		10	min	0	3	003	3	0	10 1.315e-5	15	NC	1	NC	1
331		14	max	0	1	.003	2	0	1 3.45e-4	1	NC	1	NC	1
332			min	0	3	002	3	0	10 1.315e-5	15	NC	1	NC	1
333		15	max	0	1	.002	2	0	1 3.45e-4	1	NC	1	NC	1
334			min	0	3	002	3	0	10 1.315e-5	15	NC	1	NC	1
335		16	max	0	1	.002	2	0	1 3.45e-4	1	NC	1	NC	1
336			min	0	3	001	3	0	10 1.315e-5	15	NC	1	NC	1
					_		_							

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC		LC	(n) L/y Ratio			LC
337		17	max	0	1	.001	2	00	1	3.45e-4	_1_	NC	_1_	NC	1_
338			min	0	3	0	3	0	10	1.315e-5	15	NC	1_	NC	1
339		18	max	0	1	0	2	0	1	3.45e-4	_1_	NC	_1_	NC	1
340		1.0	min	0	3	0	3	0	10	1.315e-5	15	NC	1_	NC	1
341		19	max	0	1	0	1	0	1	3.45e-4	1_	NC	1_	NC	1
342	N 4 4	4	min	0	1	0	1	0	1	1.315e-5	<u>15</u>	NC NC	1_	NC NC	1
343	M1	1	max	.007	3	.023	3	.003	3	9.257e-3	1	NC	1_	NC	1
344		2	min	008		02	2	002	1	-1.253e-2	3	NC NC	1_	NC NC	1
345			max	.007	3	.013	3	.002	1	4.446e-3 -6.183e-3	<u>1</u>		3	NC NC	1
346 347		3	min	008 .007	3	011 .004	3	004 .002	3	4.424e-5	3	4844.04 NC	<u>3</u> 4	NC NC	1
348		3	max	008	2	003	2	006	1	-2.755e-4	1	2512.698	3	NC NC	1
349		4	max	.007	3	.003	2	.000	3	4.495e-5	3	NC	4	NC	1
350		-	min	008	2	004	3	007	1	-2.329e-4	1	1795.486	3	NC	1
351		5	max	.007	3	.011	2	<u>007</u> 0	3	4.566e-5	3	NC	4	NC	2
352			min	008	2	01	3	007	1	-1.902e-4	1	1437.746	2	9712.144	1
353		6	max	.007	3	.016	2	0	3	4.637e-5	3	NC	4	NC	1
354			min	008	2	015	3	006	1	-1.476e-4	1	1223.5	2	NC	1
355		7	max	.007	3	.021	2	0	3	4.708e-5	3	NC	5	NC	1
356			min	008	2	019	3	006	1	-1.05e-4	1	1091.598	2	NC	1
357		8	max	.007	3	.024	2	0	3	4.779e-5	3	NC	5	NC	1
358			min	008	2	022	3	004	1	-6.237e-5	1	1009.132	2	NC	1
359		9	max	.007	3	.026	2	0	3	4.85e-5	3	NC	5	NC	1
360			min	008	2	023	3	003	1	-2.203e-5	9	960.579	2	NC	1
361		10	max	.007	3	.027	2	0	3	4.921e-5	3	NC	5	NC	1
362			min	008	2	023	3	002	1	6.012e-7	15	938.557	2	NC	1
363		11	max	.007	3	.026	2	0	3	6.55e-5	1	NC	5	NC	1
364			min	008	2	023	3	0	9	2.234e-6	15	940.439	2	NC	1
365		12	max	.007	3	.024	2	0	1	1.081e-4	_1_	NC	5	NC	1
366			min	008	2	021	3	0	15	3.866e-6	15	967.367	2	NC	1
367		13	max	.007	3	.021	2	.002	1	1.507e-4	1	NC	5	NC	1
368			min	008	2	018	3	0	15	5.498e-6	15	1024.855	2	NC	1
369		14	max	.007	3	.017	2	.003	1	1.934e-4	_1_	NC	4_	NC	1
370			min	008	2	<u>014</u>	3	0	15	7.131e-6		1125.562	2	NC	1_
371		15	max	.007	3	.011	2	.003	1	2.36e-4	1_	NC 4007.000	4_	NC	2
372		40	min	008	2	009	3	0	15	8.763e-6	<u>15</u>	1297.208	2	9904.729	1
373		16	max	.007	3	.004	2	.003	1	2.665e-4	1_	NC	4	NC	1
374		47	min	008	2	003	3	0	15	9.934e-6	<u>15</u>	1607.407	2	NC NC	1
375		17	max	.007	3	.003	3	.002	1	4.544e-5	3	NC	4	NC NC	1
376 377		10	min max	008 .007	3	005 .011	3	0	1 <u>5</u>	-3.188e-6 6.198e-3		2270.923 NC	4	NC NC	1
378		10	min	008	2	015	2	0	15	-2.919e-3		4396.628	2	NC NC	1
379		19	max	.007	3	.018	3	0	3	1.248e-2	2	NC	1	NC	1
380		19	min	008	2	026	2	001	1	-5.939e-3		NC	1	NC	1
381	M5	1	max	.022	3	.075	3	.003	3	3.379e-6	3	NC	1	NC	1
382	IVIO		min	026	2	067	2	002	1	0	15	NC	1	NC	1
383		2	max	.022	3	.043	3	.004	3	9.849e-5	3	NC	4	NC	1
384			min	026	2	038	2	002	1	-4.17e-5	1	1506.659	3	NC	1
385		3	max	.022	3	.013	3	.005	3	1.918e-4	3	NC	5	NC	1
386			min	026	2	01	2	002	1	-8.265e-5	1	781.811	3	NC	1
387		4	max	.022	3	.015	2	.005	3	1.869e-4	3	NC	5	NC	1
388			min	026	2	012	3	002	1	-7.845e-5	_	552.928	2	NC	1
389		5	max	.022	3	.036	2	.006	3	1.821e-4	3	NC	5	NC	1
390			min	026	2	032	3	002	1	-7.424e-5		438.149	2	NC	1
391		6	max	.022	3	.053	2	.006	3	1.773e-4	3	NC	5	NC	1
392			min	026	2	049	3	002	1	-7.003e-5		372.619	2	NC	1
393		7	max	.022	3	.068	2	.006	3	1.725e-4	3	NC	5	NC	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]			LC	(n) L/y Ratio			
394			min	026	2	061	3	002	1	-6.582e-5	1_	332.255	2	NC	1
395		8	max	.022	3	.078	2	.006	3	1.677e-4	3_	NC	5	NC	1_
396			min	026	2	069	3	002	1	-6.161e-5		306.995	2	NC	1
397		9	max	.022	3	.085	2	.006	3	1.629e-4	3_	NC	5_	NC	1
398		40	min	026	2	074	3	002	1	-5.741e-5	1_	292.092	2	NC NC	1
399 400		10	max	.022 026	2	.088 075	3	.006 002	3	1.581e-4 -5.32e-5	3	NC 285.286	<u>5</u>	NC NC	1
401		11	min max	026 .022	3	.086	2	.002	3	1.533e-4	<u>1</u> 3	NC	5	NC NC	1
402			min	026	2	072	3	002	1	-4.899e-5	1	285.768	2	NC NC	1
403		12	max	.022	3	.081	2	.005	3	1.484e-4	3	NC	5	NC	1
404		12	min	026	2	066	3	002	1	-4.478e-5	1	293.88	2	NC	1
405		13	max	.022	3	.071	2	.004	3	1.436e-4	3	NC	5	NC	1
406			min	026	2	057	3	001	1	-4.058e-5	1	311.297	2	NC	1
407		14	max	.022	3	.056	2	.004	3	1.388e-4	3	NC	5	NC	1
408			min	026	2	044	3	001	1	-3.637e-5	1	341.869	2	NC	1
409		15	max	.022	3	.037	2	.003	3	1.34e-4	3	NC	5	NC	1
410			min	026	2	029	3	001	1	-3.216e-5	1_	394.041	2	NC	1
411		16	max	.021	3	.013	2	.002	3	1.253e-4	3_	NC	5	NC	1_
412			min	026	2	011	3	001	1	-3.058e-5	1_	488.439	2	NC	1
413		17	max	.022	3	.01	3	.002	3	2.46e-5	3_	NC	5_	NC	1_
414		40	min	026	2	016	2	001	1	-9.144e-5	1_	690.88	2	NC NC	1
415		18	max	.022	2	.033	3	.001	3	1.12e-5	3	NC	4	NC NC	1
416		10	min	026		05	3	001	3	-4.674e-5	1_0	1338.386	1	NC NC	1
417 418		19	max min	.022 026	2	.058 086	2	001	1	0 -5.529e-7	<u>9</u> 3	NC NC	1	NC NC	1
419	M9	1	max	.007	3	.023	3	.002	3	1.253e-2	3	NC NC	1	NC	1
420	IVIO		min	008	2	02	2	003	1	-9.256e-3	1	NC	1	NC	1
421		2	max	.007	3	.013	3	.001	3	6.196e-3	3	NC	4	NC	1
422			min	008	2	011	2	0	9	-4.536e-3	1	4845.615	3	NC	1
423		3	max	.007	3	.004	3	.001	1	9.739e-5	1	NC	4	NC	1
424			min	008	2	003	2	0	3	-2.45e-5	3	2513.532	3	NC	1
425		4	max	.007	3	.004	2	.002	1	6.216e-5	1	NC	4	NC	1
426			min	008	2	004	3	001	3	-3.175e-5	3	1796.065	3	NC	1
427		5	max	.007	3	.011	2	.003	1	3.591e-5	2	NC	4	NC	1
428			min	008	2	01	3	002	3	-3.9e-5	3	1438.098	2	NC	1
429		6	max	.007	3	.016	2	.002	1	2.317e-5	2	NC	4	NC	1
430		_	min	008	2	015	3	003	3	-4.624e-5	3	1223.814	2	NC	1
431		7	max	.007	3	.021	2	.002	1	1.042e-5	2	NC 1001.00	5	NC	1
432			min	008	2	019	3	003	3	-5.349e-5		1091.89	2	9388.315	3
433 434		8	max min	.007 008	3	.024 022	3	004	2	-8.572e-7	10	NC 1009.413	5	NC	1
435		9	max	.007	3	.026	2	004 0	2	-2.819e-6		NC	5	NC	1
436		1 3	min	008	2	023	3	004	3	-1.14e-4		960.856	2	8647.505	_
437		10	max	.007	3	.027	2	0	2	-4.781e-6		NC	5	NC	1
438		10	min	008	2	024	3	004	3	-1.492e-4		938.837	2	8649.443	3
439		11	max	.007	3	.026	2	0	10	-6.743e-6		NC	5	NC	1
440			min	008	2	023	3	004	3	-1.844e-4		940.728	2	8873.141	3
441		12	max	.007	3	.024	2	0	10			NC	5	NC	1
442			min	008	2	021	3	004	1	-2.197e-4	1	967.673	2	9343.719	3
443		13	max	.007	3	.021	2	0	10	-9.809e-6	15	NC	5	NC	1
444			min	008	2	018	3	005	1	-2.549e-4	1	1025.186	2	NC	1
445		14	max	.007	3	.017	2	0	15	-1.114e-5		NC	4	NC	2
446			min	008	2	014	3	006	1	-2.901e-4		1125.932	2	9829.145	1
447		15	max	.007	3	.011	2	0		-1.247e-5		NC	4	NC	2
448		40	min	008	2	009	3	006	1_	-3.254e-4		1297.638	2	9336.476	1_
449		16	max	.007	3	.004	2	0	15			NC	4	NC 0047.000	2
450			min	008	2	003	3	006	1	-3.527e-4	1	1607.934	2	9817.362	1_

Model Name

Schletter, Inc.HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
451		17	max	.007	3	.003	3	0	15 2.622e-5	3	NC	4	NC	1
452			min	008	2	005	2	005	1 -1.934e-4	1	2271.613	2	NC	1
453		18	max	.007	3	.011	3	0	10 2.956e-3	3	NC	4	NC	1
454			min	008	2	015	2	003	1 -6.198e-3	2	4397.92	2	NC	1
455		19	max	.007	3	.018	3	0	3 5.938e-3	3	NC	1	NC	1
456			min	008	2	026	2	0	1 -1.248e-2	2	NC	1	NC	1
457	M13	1	max	.003	1	.023	3	.007	3 3.76e-3	3	NC	1	NC	1
458	IVITO		min	002	3	02	2	008	2 -3.406e-3	2	NC	1	NC	1
459		2		.002	1	.104	3	.007	9 4.69e-3	3	NC	4	NC	1
			max		3		1			2	1486.498		NC	1
460			min	002		079		004	10 -4.266e-3			3		
461		3	max	.002	1	.171	3	.021	1 5.62e-3	3	NC	5	NC	2
462			min	002	3	128	1	004	10 -5.126e-3	2	813.422	3	4732.989	
463		4	max	.002	1	.214	3	.032	1 6.55e-3	3_	NC	5	NC	2
464			min	002	3	161	1	004	10 -5.986e-3	2	628.383	3	3299.936	1
465		5	max	.002	1	.23	3	.036	1 7.48e-3	3	NC	5	NC	2
466			min	002	3	173	1	005	10 -6.846e-3	2	581.023	3	2958.565	1
467		6	max	.002	1	.218	3	.032	1 8.41e-3	3	NC	5	NC	2
468			min	002	3	165	1	007	10 -7.706e-3	2	616.6	3	3290.533	1
469		7	max	.002	1	.184	3	.021	1 9.34e-3	3	NC	5	NC	2
470			min	002	3	141	1	009	10 -8.566e-3	2	747.577	3	4827.315	
471		8		.002	1	.138	3	.017	3 1.027e-2	3	NC	5	NC	1
		0	max											
472			min	003	3	11	2	016	2 -9.426e-3	2	1048.448	3_	NC NC	1
473		9	max	.002	1	.095	3	.02	3 1.12e-2	3	NC	4	NC	1
474			min	003	3	08	2	023	2 -1.029e-2	2	1677.192	3	7849.974	2
475		10	max	.002	1	.075	3	.022	3 1.213e-2	3	NC	4	NC	4
476			min	003	3	067	2	026	2 -1.115e-2	2	2315.144	3	6477.493	2
477		11	max	.002	1	.095	3	.024	3 1.12e-2	3	NC	4	NC	1
478			min	003	3	08	2	023	2 -1.029e-2	2	1677.191	3	7045.442	3
479		12	max	.002	1	.138	3	.025	3 1.027e-2	3	NC	5	NC	1
480		1-	min	003	3	11	2	016	2 -9.426e-3	2	1048.447	3	6722.774	
481		13	max	.002	1	.184	3	.025	3 9.344e-3	3	NC	5	NC	2
482		13	min	003	3	141	1	009	10 -8.566e-3	2	747.576	3	4804.167	1
		4.4												
483		14	max	.002	1	.218	3	.032	1 8.415e-3	3_	NC	5_	NC	2
484			min	003	3	1 <u>65</u>	1	007	10 -7.706e-3	2	616.6	3	3287.022	1
485		15	max	.002	1	.23	3	.036	1 7.486e-3	3_	NC	5	NC	2
486			min	003	3	173	1	005	10 -6.846e-3	2	581.022	3	2962.595	
487		16	max	.002	1	.214	3	.032	1 6.557e-3	3	NC	5	NC	2
488			min	003	3	161	1	004	10 -5.986e-3	2	628.383	3	3312.176	1
489		17	max	.002	1	.171	3	.021	1 5.628e-3	3	NC	5	NC	2
490			min	003	3	128	1	004	10 -5.126e-3	2	813.421	3	4765.015	1
491		18	max	.002	1	.104	3	.01	3 4.7e-3	3	NC	4	NC	1
492			min	003	3	079	1	004	10 -4.266e-3	2	1486.497	3	NC	1
493		19	max	.002	1	.023	3	.007	3 3.771e-3	3	NC	1	NC	1
		19			3		2		2 -3.406e-3		NC	1		1
494	N44.C	4	min	003		02	_	008		2			NC NC	
495	<u>M16</u>	1	max	0	1	.018	3	.007	3 4.159e-3	2	NC NC	1	NC NC	1
496			min	0	3	026	2	008	2 -2.898e-3	3	NC	1_	NC	1
497		2	max	0	1	.057	3	.01	3 5.217e-3	2	NC	_4_	NC	1
498			min	0	3	<u>107</u>	2	004	10 -3.595e-3	3	1491.611	2	NC	1
499		3	max	0	1	.089	3	.021	1 6.274e-3	2	NC	5	NC	2
500			min	0	3	173	2	004	10 -4.292e-3	3	814.937	2	4742.285	1
501	<u> </u>	4	max	0	1	.11	3	.032	1 7.332e-3	2	NC	5	NC	2
502			min	0	3	217	2	004	10 -4.989e-3	3	627.779	2	3306.709	
503		5	max	0	1	.12	3	.036	1 8.389e-3	2	NC	5	NC	2
504			min	0	3	234	2	005	10 -5.686e-3	3	577.772	2	2965.807	
		6					_							
505		6	max	.001	1	.116	3	.032	1 9.447e-3	2	NC	5	NC	2
506		-	min	0	3	223	2	007	10 -6.383e-3	3	608.433	2	3301.699	
507		7	max	.001	1	.103	3	.023	3 1.05e-2	2	NC	5	NC	2

Model Name

Schletter, Inc.HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:__

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r			LC		
508			min	0	3	191	2	009	10	-7.08e-3	3	727.74	2	4856.072	1
509		8	max	.001	1	.084	3	.023	3	1.156e-2	2	NC	5_	NC	1
510			min	0	3	147	2	016	2	-7.777e-3	3	994.748	2	7405.98	3
511		9	max	.001	1	.066	3	.023	3	1.262e-2	2	NC	4	NC	1
512			min	0	3	105	2	023	2	-8.474e-3	3	1515.411	2	7641.114	3
513		10	max	.001	1	.058	3	.022	3	1.368e-2	2	NC	4	NC	4
514			min	0	3	086	2	026	2	-9.171e-3	3	1996.983	2	6476.937	2
515		11	max	.001	1	.066	3	.02	3	1.262e-2	2	NC	4	NC	1
516			min	0	3	105	2	023	2	-8.473e-3	3	1515.411	2	7848.044	2
517		12	max	.001	1	.084	3	.019	3	1.156e-2	2	NC	5	NC	1
518			min	0	3	147	2	016	2	-7.775e-3	3	994.748	2	9745.06	3
519		13	max	.001	1	.103	3	.02	1	1.051e-2	2	NC	5	NC	2
520			min	0	3	191	2	009	10	-7.077e-3	3	727.74	2	4849.178	1
521		14	max	.001	1	.116	3	.032	1	9.448e-3	2	NC	5	NC	2
522			min	0	3	223	2	007	10	-6.378e-3	3	608.433	2	3306.647	1
523		15	max	.001	1	.12	3	.036	1	8.39e-3	2	NC	5	NC	2
524			min	0	3	234	2	005	10	-5.68e-3	3	577.772	2	2976.68	1
525		16	max	.001	1	.11	3	.032	1	7.333e-3	2	NC	5	NC	2
526			min	0	3	217	2	004	10	-4.982e-3	3	627.779	2	3326.609	1
527		17	max	.001	1	.089	3	.021	1	6.276e-3	2	NC	5	NC	2
528			min	0	3	173	2	004	10	-4.284e-3	3	814.937	2	4786.594	1
529		18	max	.001	1	.056	3	.008	3	5.218e-3	2	NC	4	NC	1
530			min	0	3	107	2	004	10	-3.585e-3	3	1491.611	2	NC	1
531		19	max	.001	1	.018	3	.007	3	4.161e-3	2	NC	1	NC	1
532			min	0	3	026	2	008	2	-2.887e-3	3	NC	1	NC	1
533	M15	1	max	0	1	0	1	0	1	3.687e-4	3	NC	1	NC	1
534			min	0	1	0	1	0	1	-5.993e-5	2	NC	1	NC	1
535		2	max	0	3	001	15	0	1	8.337e-4	3	NC	1	NC	1
536			min	0	2	005	4	0	3	-5.301e-4	2	NC	1	NC	1
537		3	max	0	3	002	15	.003	1	1.299e-3	3	NC	3	NC	1
538		1	min	0	2	01	4	003	3	-1.e-3	2	7254.701	4	NC	1
539		4	max	0	3	003	15	.006	1	1.764e-3	3	NC	5	NC	4
540			min	0	2	014	4	007	3	-1.471e-3	2	4977.148	4	6188.718	
541		5	max	0	3	004	15	.01	1	2.229e-3	3	NC	5	NC	4
542		Ť	min	0	2	018	4	011	3	-1.941e-3	2	3883.719	4	4065.47	3
543		6	max	0	3	005	15	.015	1	2.694e-3	3	NC	15	NC	4
544		T .	min	0	2	022	4	016	3	-2.411e-3	2	3268.56	4	2961.984	
545		7	max	0	3	006	15	.019	1	3.159e-3	3	NC	15	NC	4
546			min	001	2	024	4	022	3	-2.881e-3	2	2898.623	4	2316.493	_
547		8	max	0	3	024	15	.023	1	3.624e-3	3	NC	15	NC	4
548		10	min		2	027	4	027	3	-3.351e-3		2676.606	<u>15</u>	1910.618	
549		9	max	0	3	027	15	.027	1	4.089e-3	3	NC	15	NC	4
550		-	min	001	2	028	4	031	3	-3.822e-3	2	2557.102	4	1644.972	
551		10		0	3	028	15	.03	1	4.554e-3	3	NC	15	NC	4
552		10	max min	002	2	028	4	035	3	-4.292e-3	2	2519.297	4	1469.628	
553		11		002 0	3	026 007	15	.032	1	5.019e-3	3	NC	15	NC	5
		+ 1 1	max												
554		40	min	002	2	028	4	037	3	-4.762e-3	2	2557.102	4_	1358.375	
555		12	max	0	3	006	15	.033	1	5.484e-3	3	NC 2676 606	<u>15</u>	NC	5
556		40	min	002	2	027	4	038	3	-5.232e-3	2	2676.606	4	1298.207	3
557		13	max	0	3	006	15	.033	1	5.949e-3	3	NC	<u>15</u>	NC	5
558		4.4	min	002	2	025	4	037	3	-5.702e-3	2	2898.623	4	1285.361	3
559		14	max	0	3	005	15	.03	1	6.414e-3	3_	NC	<u>15</u>	NC	5
560		1-	min	002	2	022	4	034	3	-6.173e-3	2	3268.56	4_	1325.453	
561		15	max	.001	3	004	15	.025	1	6.879e-3	3_	NC	_5_	NC 4 400 000	4
562		4.0	min	003	2	<u>019</u>	4	028	3	-6.643e-3	2	3883.719	4_	1439.083	
563		16	max	.001	3	003	15	.018	1	7.344e-3	3	NC	5	NC	4
564			min	003	2	015	4	02	3	-7.113e-3	2	4977.148	4	1682.186	3

Company Designer Job Number Model Name : Schletter, Inc. : HCV

Standard PVMini Racking System

Dec 11, 2015

Checked By:__

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
565		17	max	.001	3	002	12	.008	1	7.809e-3	3	NC	3	NC	4
566			min	003	2	01	4	008	3	-7.583e-3	2	7254.701	4	2230.238	3
567		18	max	.001	3	0	2	.007	3	8.274e-3	3	NC	1	NC	4
568			min	003	2	006	4	01	2	-8.054e-3	2	NC	1	3970.918	3
569		19	max	.001	3	.004	2	.026	3	8.739e-3	3	NC	1	NC	1
570			min	003	2	002	9	028	2	-8.524e-3	2	NC	1	NC	1
571	M16A	1	max	0	10	0	10	.008	3	2.545e-3	3	NC	1	NC	1
572			min	001	3	0	9	008	2	-2.519e-3	2	NC	1	NC	1
573		2	max	0	10	001	15	.002	9	2.443e-3	3	NC	1	NC	1
574			min	001	3	005	4	003	2	-2.405e-3	2	NC	1	NC	1
575		3	max	0	10	002	15	.006	1	2.34e-3	3	NC	3	NC	4
576			min	001	3	01	4	004	3	-2.291e-3	2	7254.701	4	6356.311	3
577		4	max	0	10	003	15	.009	1	2.237e-3	3	NC	5	NC	4
578			min	001	3	014	4	008	3	-2.177e-3	2	4977.148	4	4836.102	3
579		5	max	0	10	004	15	.012	1	2.135e-3	3	NC	5	NC	4
580			min	001	3	018	4	01	3	-2.064e-3	2	3883.719	4	4178.317	3
581		6	max	0	10	005	15	.013	1	2.032e-3	3	NC	15	NC	4
582			min	0	3	022	4	012	3	-1.95e-3	2	3268.56	4	3892.415	3
583		7	max	0	10	006	15	.014	1	1.93e-3	3	NC	15	NC	4
584			min	0	3	025	4	013	3	-1.836e-3	2	2898.623	4	3824.923	3
585		8	max	0	10	006	15	.014	1	1.827e-3	3	NC	15	NC	4
586			min	0	3	027	4	013	3	-1.722e-3	2	2676.606	4	3923.745	3
587		9	max	0	10	006	15	.013	1	1.724e-3	3	NC	15	NC	4
588			min	0	3	028	4	012	3	-1.608e-3	2	2557.102	4	4182.635	3
589		10	max	0	10	007	15	.012	1	1.622e-3	3	NC	15	NC	4
590			min	0	3	028	4	011	3	-1.494e-3	2	2519.297	4	4628.631	3
591		11	max	0	10	006	15	.01	1	1.519e-3	3	NC	15	NC	4
592			min	0	3	028	4	01	3	-1.38e-3	2	2557.102	4	5328.36	3
593		12	max	0	10	006	15	.008	1	1.417e-3	3	NC	15	NC	4
594			min	0	3	026	4	008	3	-1.267e-3	2	2676.606	4	6414.502	3
595		13	max	0	10	006	15	.006	1	1.314e-3	3	NC	15	NC	2
596			min	0	3	024	4	006	3	-1.153e-3	2	2898.623	4	8153.97	3
597		14	max	0	10	005	15	.005	1	1.211e-3	3	NC	15	NC	1
598			min	0	3	022	4	004	3	-1.039e-3	2	3268.56	4	NC	1
599		15	max	0	10	004	15	.003	1	1.109e-3	3	NC	5	NC	1
600			min	0	3	018	4	002	3	-9.25e-4	2	3883.719	4	NC	1
601		16	max	0	10	003	15	.001	1	1.006e-3	3	NC	5	NC	1
602			min	0	3	014	4	0	3	-8.111e-4	2	4977.148	4	NC	1
603		17	max	0	10	002	15	0	9	9.036e-4	3	NC	3	NC	1
604			min	0	3	01	4	0	2	-6.972e-4	2	7254.701	4	NC	1
605		18	max	0	10	001	15	0	4	8.01e-4	3	NC	1	NC	1
606			min	0	3	005	4	0	2	-5.834e-4	2	NC	1	NC	1
607		19	max	0	1	0	1	0	1	6.984e-4	3	NC	1	NC	1
608			min	0	1	0	1	0	1	-4.695e-4	2	NC	1	NC	1

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	1/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment:

Project description: Location: Fastening description:

2. Input Data & Anchor Parameters

General

Design method:ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: -Anchor ductility: Yes hmin (inch): 8.50 cac (inch): 9.67 C_{min} (inch): 1.75 Smin (inch): 3.00

Load and Geometry

<Figure 1>

Load factor source: ACI 318 Section 9.2

Load combination: not set Seismic design: No

Anchors subjected to sustained tension: No Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: No

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}$: 1.0

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Base Plate

Length x Width x Thickness (inch): 4.00 x 4.00 x 0.28

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	2/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	3/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)	
1	405.0	6.0	101.0	101.2	
Sum	405.0	6.0	101.0	101.2	_

Maximum concrete compression strain (‰): 0.00 Maximum concrete compression stress (psi): 0

Resultant tension force (lb): 405 Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'_{Vx} (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'_{Vy} (inch): 0.00

<Figure 3>

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N _{sa} (lb)	ϕ	ϕN_{sa} (lb)
8095	0.75	6071

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}}^{1.5}$ (Eq. D-7)

Kc	λ	f'_c (psi)	h _{ef} (in)	N_b (lb)			
17.0	1.00	2500	5.333	10469			
$\phi N_{cb} = \phi (A_N$	$_{lc}$ / A_{Nco}) $\Psi_{ed,N}$ $\Psi_{c,N}$	$_{N}\Psi_{cp,N}N_{b}$ (Sec.	D.4.1 & Eq. D-4)			
A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ed,N}$	$arPsi_{c,N}$	$arPsi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cb} (lb)
253 92	256.00	0 995	1.00	1 000	10469	0.65	6717

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

Ksat

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

f_{short-term}

 $\tau_{k,cr}$ (psi)

1035	1.00	1.00	1035				
$N_{a0} = \tau_{k,cr} \pi d_a$	h _{ef} (Eq. D-16f)						
$\tau_{k,cr}$ (psi)	d _a (in)	h _{ef} (in)	N_{a0} (lb)				
1035	0.50	6.000	9755				
$\phi N_a = \phi (A_{Na})$	/ A _{Na0}) Ψ _{ed,Na} Ψ _{p,l}	NaNa0 (Sec. D.4	I.1 & Eq. D-16a)				
A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{ extsf{p}, extsf{Na}}$	N _{a0} (lb)	ϕ	ϕN_a (lb)	
109.66	109.66	1.000	1.000	9755	0.55	5365	

 $\tau_{k,cr}$ (psi)

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	4/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{grout}\phi V_{sa}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in y-direction:

$V_{by} = 7(I_e/d_e)$	$(a)^{0.2}\sqrt{d_a}\lambda\sqrt{f'_c}c_{a1}^{1.2}$	⁵ (Eq. D-24)					
le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V _{by} (lb)		
4.00	0.50	1.00	2500	8.00	8488		
$\phi V_{cby} = \phi (A_V$	$(c/A_{Vco})\Psi_{ed,V}\Psi_{c,v}$	$_{V}\varPsi_{h,V}V_{by}$ (Sec.	D.4.1 & Eq. D-2	1)			
Avc (in ²)	A_{Vco} (in ²)	$\Psi_{ed,V}$	$arPsi_{ extsf{c}, extsf{V}}$	$\Psi_{h,V}$	V _{by} (lb)	ϕ	ϕV_{cby} (lb)
238.44	288.00	0.897	1.000	1.000	8488	0.70	4411

Shear perpendicular to edge in x-direction:

$V_{bx} = 7(I_e/d_s)$	$(a)^{0.2}\sqrt{d_a}\lambda\sqrt{f'_c}c_{a1}^{1.5}$	⁵ (Eq. D-24)					
I _e (in)	d _a (in)	λ	f'c (psi)	<i>c</i> _{a1} (in)	V_{bx} (lb)		
4.00	0.50	1.00	2500	7.87	8282		
$\phi V_{cbx} = \phi (A_V$	$(c/A_{Vco})\Psi_{ed,V}\Psi_{c,v}$	$_{V}\Psi_{h,V}V_{bx}$ (Sec.	D.4.1 & Eq. D-2	1)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbx} (lb)
188.88	278.72	0.903	1.000	1.000	8282	0.70	3549

Shear parallel to edge in x-direction:

$V_{by} = 7(I_e/d_e)$	a) ^{0.2} √ d aλ√ f 'c C a1 ^{1.5}	5 (Eq. D-24)					
I _e (in)	d _a (in)	λ	f'c (psi)	c _{a1} (in)	V_{by} (lb)		
4.00	0.50	1.00	2500	8.00	8488		
$\phi V_{cbx} = \phi (2)(2)$	Avc/Avco) \Ped, V	$\Psi_{c,V}\Psi_{h,V}V_{by}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ed,V}$	$\varPsi_{c,V}$	$arPsi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbx} (lb)
238.44	288.00	1.000	1.000	1.000	8488	0.70	9838

Shear parallel to edge in y-direction:

$V_{bx} = 7(I_e/d$	$_{a})^{0.2}\sqrt{d_{a}}\lambda\sqrt{f'_{c}c_{a1}}^{1.5}$	⁵ (Eq. D-24)						
le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V _{bx} (lb)			
4.00	0.50	1.00	2500	7.87	8282			
$\phi V_{cby} = \phi (2)($	$(A_{Vc}/A_{Vco})\Psi_{ed,V}$	$\mathcal{V}_{c,V} \mathcal{V}_{h,V} V_{bx}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)				
Avc (in ²)	A_{Vco} (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cby} (lb)	
188.88	278.72	1.000	1.000	1.000	8282	0.70	7858	_

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

IV. OUTICI	ote i iyout ou	cingui di Anc	iloi ili olicai	(OCC. D.0.0)				
$\phi V_{cp} = \phi \text{mi}$	$\phi V_{cp} = \phi \min k_{cp} N_a; k_{cp} N_{cb} = \phi \min k_{cp} (A_{Na} / A_{Na0}) \Psi_{ed,Na} \Psi_{p,Na} N_{a0}; k_{cp} (A_{Nc} / A_{Nco}) \Psi_{ed,N} \Psi_{c,N} \Psi_{cp,N} N_{b} \text{ (Eq. D-30a)}$							
Kcp	A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$\Psi_{p,Na}$	N _{a0} (lb)	Na (lb)		
2.0	109.66	109.66	1.000	1.000	9755	9755		
A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ed,N}$	$\Psi_{c,N}$	$arPsi_{cp,N}$	N_b (lb)	N_{cb} (lb)	ϕ	ϕV_{cp} (lb)
253.92	256.00	0.995	1.000	1.000	10469	10334	0.70	13657

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	5/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	405	6071	0.07	Pass
Concrete breakout	405	6717	0.06	Pass
Adhesive	405	5365	0.08	Pass (Governs)
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	101	3156	0.03	Pass (Governs)
T Concrete breakout y+	101	4411	0.02	Pass
T Concrete breakout x+	6	3549	0.00	Pass
Concrete breakout y+	6	9838	0.00	Pass
Concrete breakout x+	101	7858	0.01	Pass
Concrete breakout, combined	-	-	0.02	Pass
Pryout	101	13657	0.01	Pass
Interaction check Nua	/φN _n V _{ua} /φV _n	Combined Rati	o Permissible	Status
Sec. D.7.1 0.0	8 0.00	7.5 %	1.0	Pass

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	1/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment:

2. Input Data & Anchor Parameters

General

Design method:ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: Anchor ductility: Yes
hmin (inch): 8.50
cac (inch): 9.67
Cmin (inch): 1.75
Smin (inch): 3.00

Load and Geometry

<Figure 1>

Load factor source: ACI 318 Section 9.2

Load combination: not set Seismic design: No

Anchors subjected to sustained tension: No Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: No Base Material

Location:

Project description:

Fastening description:

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}$: 1.0

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Base Plate

Length x Width x Thickness (inch): 9.00 x 4.00 x 0.28

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	2/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	3/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)
1	732.5	499.5	0.0	499.5
2	732.5	499.5	0.0	499.5
Sum	1465.0	999.0	0.0	999.0

Maximum concrete compression strain (%): 0.00

Maximum concrete compression stress (psi): 0

Resultant tension force (lb): 1465

Resultant compression force (lb): 0 Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00

Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'_{Vx} (inch): 0.00

Eccentricity of resultant shear forces in y-axis, e^{iy}_y (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e^{iy}_y (inch): 0.00

<Figure 3>

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N _{sa} (lb)	ϕ	ϕN_{sa} (lb)	
8095	0.75	6071	

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}}^{1.5}$ (Eq. D-7)

256.00

k c	λ	f'c (psi)	h _{ef} (in)	N_b (lb)				
17.0	1.00	2500	5.333	10469				
$\phi N_{cbg} = \phi (A$	Nc / A Nco $)$ Ψ ec,N Ψ ec	$_{l,N} arPsi_{c,N} arPsi_{cp,N} \mathcal{N}_b$ (Sec. D.4.1 & Eq	. D-5)				
A_{Nc} (in ²)	A_{Nco} (in ²)	$arPsi_{ec,N}$	$\Psi_{ed,N}$	$\Psi_{c,N}$	$arPsi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cbg} (lb)

1.00

1.000

10469

0.65

7233

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

1.000

0.865

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

314.72

τ _{k,cr} (psi)	f _{short-term}	K _{sat}	τ _{k,cr} (psi)					
1035	1.00	1.00	1035					
$N_{a0} = \tau_{k,cr} \pi d_a$	hef (Eq. D-16f)							
$\tau_{k,cr}$ (psi)	d _a (in)	h _{ef} (in)	N _{a0} (lb)					
1035	0.50	6.000	9755					
$\phi N_{ag} = \phi (A_N$	$_{a}$ / $A_{Na0})$ $\Psi_{ed,Na}$ Ψ_{g}	$_{ extstyle I,Na}arPhi_{ extstyle ec,Na}arPhi_{ extstyle p,Na} \Lambda$	l _{a0} (Sec. D.4.1 &	Eq. D-16b)				
A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{g,Na}$	$\Psi_{ec,Na}$	$\mathscr{\Psi}_{ extsf{ extsf{p}}, extsf{Na}}$	$N_{a0}(lb)$	ϕ	ϕN_{ag} (lb)
177.03	109.66	0.952	1.021	1.000	1.000	9755	0.55	8418

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	4/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in x-direction:

$V_{bx} = 7(I_e/d$	la) ^{0.2} √daλ√f'c C a1 ^{1.}	⁵ (Eq. D-24)					
le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V_{bx} (lb)		
4.00	0.50	1.00	2500	12.00	15593		
$\phi V_{cbx} = \phi (A_1)$	$_{Vc}$ / A_{Vco}) $\Psi_{ed,V}$ $\Psi_{c,v}$	$_{V}\Psi_{h,V}V_{bx}$ (Sec.	D.4.1 & Eq. D-2	1)			
Avc (in ²)	Avco (in ²)	$\Psi_{\sf ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbx} (lb)
288.00	648.00	0.833	1.000	1.000	15593	0.70	4043

Shear parallel to edge in x-direction:

$V_{by} = 7(I_e/a$	$(J_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.2}$	⁵ (Eq. D-24)						
I _e (in)	d _a (in)	λ	f_c (psi)	c _{a1} (in)	V_{by} (lb)			
4.00	0.50	1.00	2500	8.00	8488			
$\phi V_{cbgx} = \phi (2$	$2)(A_{Vc}/A_{Vco})\Psi_{ec}$	V $\Psi_{\text{ed,V}} \Psi_{\text{c,V}} \Psi_{\text{h,V}}$	V _{by} (Sec. D.4.1, [D.6.2.1(c) & Eq.	D-22)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ec,V}$	$\Psi_{\sf ed,V}$	$\Psi_{c,V}$	$arPsi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbgx} (lb)
284.04	288.00	1.000	1.000	1.000	1.000	8488	0.70	11720

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

$\phi V_{cpg} = \phi \mathrm{m}$	in <i>kcpNag</i> ; <i>kcpN</i>	$I_{cbg} = \phi \min k_{cp} $	(ANa/ANa0)Ψe	$_{d,Na} arPsi_{g,Na} arPsi_{ec,Na} arPsi_{ec,Na}$	$\Psi_{p,Na}N_{a0}$; $K_{cp}(A_{c})$	Nc / ANco) $\Psi_{\text{ec},N} \Psi$	$V_{ed,N} \Psi_{C,N} \Psi_{Cp,N} N_{b}$	(Eq. D-30b)
K cp	A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$\varPsi_{g,Na}$	$\Psi_{ec,Na}$	$\Psi_{ m p,Na}$	N_{a0} (lb)	Na (lb)
2.0	177.03	109.66	0.952	1.021	1.000	1.000	9755	15305
Anc (in²)	Anco (in²)	$\Psi_{ec,N}$	$\Psi_{ed,N}$	$\Psi_{c,N}$	$arPsi_{cp,N}$	N _b (lb)	Ncb (lb)	ϕ
314.72	256.00	1.000	0.865	1.000	1.000	10469	11128	0.70

φV_{cpg} (lb) 15580

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	733	6071	0.12	Pass
Concrete breakout	1465	7233	0.20	Pass (Governs)
Adhesive	1465	8418	0.17	Pass
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	500	3156	0.16	Pass
T Concrete breakout x+	999	4043	0.25	Pass (Governs)
Concrete breakout y-	999	11720	0.09	Pass (Governs)
Pryout	999	15580	0.06	Pass
Interaction check Nua/g	φNn Vua/φVn	Combined Rati	o Permissible	Status

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	5/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

Sec. D.7.3	0.20	0.25	45.0 %	1.2	Pass

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.