Python Class 6: Sorting algorithms and recursion

Michelle Torres

August 11, 2016

- **1** Complexity
 - Overview Complexity
- Sorting Algorithms

Insertion

Selection

Bubble

Merge

Merge

Merge

Recursion

 The amount of time / the number of operations necessary to complete a task.

- The amount of time / the number of operations necessary to complete a task.
- O(n) notation
 - Big-O notation is a relative representation of the complexity of an algorithm.
 - Gives complexity in terms of the size of the input.
 - eg. How many operations do I need to perform when adding numbers? How many comparisons do I need to sort a list of n items?
 - Addition → 3+4, 24+36, 123+456,...

- The amount of time / the number of operations necessary to complete a task.
- O(n) notation
 - Big-O notation is a relative representation of the complexity of an algorithm.
 - Gives complexity in terms of the size of the input.
 - eg. How many operations do I need to perform when adding numbers? How many comparisons do I need to sort a list of n items?
 - *Addition* \rightarrow 3+4, 24+36, 123+456,... \rightarrow *O*(*n*)
 - Multiplication → 3×5, 12 × 11, 3456 × 1234, ...

- The amount of time / the number of operations necessary to complete a task.
- O(n) notation
 - Big-O notation is a relative representation of the complexity of an algorithm.
 - Gives complexity in terms of the size of the input.
 - eg. How many operations do I need to perform when adding numbers? How many comparisons do I need to sort a list of n items?
 - *Addition* \rightarrow 3+4, 24+36, 123+456,... \rightarrow *O*(*n*)
 - Multiplication \rightarrow 3×5, 12 × 11, 3456 × 1234, ... \rightarrow $O(n^2)$ (!)
 - Consider only the term with the highest order of n: $O(n^2 + 2n) \rightarrow O(n^2)$

- The amount of time / the number of operations necessary to complete a task.
- O(n) notation
 - Big-O notation is a relative representation of the complexity of an algorithm.
 - Gives complexity in terms of the size of the input.
 - eg. How many operations do I need to perform when adding numbers? How many comparisons do I need to sort a list of n items?
 - *Addition* \rightarrow 3+4, 24+36, 123+456,... \rightarrow *O*(*n*)
 - Multiplication \rightarrow 3×5, 12 × 11, 3456 × 1234, ... \rightarrow $O(n^2)$ (!)
 - Consider only the term with the highest order of n: $O(n^2 + 2n) \rightarrow O(n^2)$

- The amount of time / the number of operations necessary to complete a task.
- O(n) notation
 - Big-O notation is a relative representation of the complexity of an algorithm.
 - Gives complexity in terms of the size of the input.
 - eg. How many operations do I need to perform when adding numbers? How many comparisons do I need to sort a list of n items?
 - Addition → 3+4, 24+36, 123+456,...→ O(n)
 - *Multiplication* \to 3×5, 12 × 11, 3456 × 1234, ... \to $O(n^2)$ (!)
 - Consider only the term with the highest order of n: $O(n^2 + 2n) \rightarrow O(n^2)$
- What about a 3456 × 123?
- Check the best case, the average case and the worst case.

VISUALIZING COMPLEXITY

Recursion

VISUALIZING COMPLEXITY

Big-O Complexity Chart

INSERTION SORT

- Start with the element in the second position.
- Insert it to the appropriate position among the numbers to its left.
 - Check whether it is greater than the last element to its left.
 - If not, check the second to last element to its left.
 - ..
- Continue with the element in the third position.

SELECTION SORT

- Go over the unsorted list to find the minimum and place it as your first element of your sorted list.
- Repeat.

BUBBLE SORT

- Compare swap stage
 - Compare the first two elements and swap them if necessary.
 - Compare the second and third elements and swap them if necessary.
 - Repeat until the end of the list.
- If you did any swaps in the first stage, repeat it with the first n-1 elements.
- Repeat.

MERGE SORT

- Divide the list into sublists each with one element.
- Merge the sublists to create new sublists each with two elements.
- Repeat until you have a single list

MERGE SORT

- Divide the list into sublists each with one element.
- Merge the sublists to create new sublists each with two elements.
- · Repeat until you have a single list
- See it in action: https://youtu.be/JSceec-wEyw

MERGE SORT

- Divide the list into sublists each with one element.
- Merge the sublists to create new sublists each with two elements.
- Repeat until you have a single list
- See it in action: https://youtu.be/JSceec-wEyw

All in action: https://visualgo.net/bn/sorting

RECURSION

- Function calls itself.
- You need to know:
 - the base case
 - when to call the function
 - when to stop
- The typical example:

$$n! = \begin{cases} 1 & \text{if } n = 0\\ (n-1)! \times n & \text{if } n > 0 \end{cases}$$