Aluno : Lucas Araujo Azevedo

Matrícula: 2017104188

Temas: Diabetes

Motivação:

Verificar a possibilidade de descobrir diabetes a partir de alguns dados sobre a saúde do indivíduo. Possibilitando uma precaução antes mesmo de tê-la, previnindo a doença.

Perguntas:

Trabalho irá utilizar a base de dados do <u>Kagle sobre diabetes (https://www.kaggle.com/uciml/pima-indians-diabetes-database)</u> e focará em tentar resolver as seguintes perguntas:

- A grossura da pele do triceps tem alguma relação com a chance de ter diabetes?
- A gravidez gera uma tendência a ter diabetes?
- Existe relação entre glicose, insulina, pressão sanguinea?

Out[1]:

Show Cell

Out[2]:

Show Cell

In [3]:

df.head(2)

Out[3]:

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	DiabetesPedigreeFunction
0	6	148	72	35	0	33.6	0.62
1	1	85	66	29	0	26.6	0.35
<							>

Ajustando as colunas

Out[4]:

In [5]:

```
df.head(2)
```

Out[5]:

	quant_gravides	glicose	pressao_sangue	pele_triceps	insulina	imc	prob_diabetes_familia
0	6	148	72	35	0	33.6	0.627
1	1	85	66	29	0	26.6	0.351
<							>

Tendo ajustado o DataFrame, partiremos para a análise de dados, realizando verificações simples sobre balanceamento e buscando alguma relação entre os dados.

Partindo de uma visão mais simples, dividindo o nosso DataFrame em dois grupos principais: os que são diabéticos e os que não são, para comparar alguns números e buscar algum gráfico normal.

Out[6]:

Show Cell

df_diabetico.mean() - df_saudavel.mean()

quant_gravides	1.567672
glicose	31.277463
pressao_sangue	2.640627
pele_triceps	2.500179
insulina	31.543821
imc	4.838337
<pre>prob_diabetes_familia</pre>	0.120766
idade	5.877164
diabetico	1.000000

dtype: float64

Out[7]:

Show Cell

Observamos que a insulina e a glicose possuem uma média maior para pessoas diabéticas. Esse fato já era esperado, para verificação se não existe possíveis outliers, compararemos a mediana:

Saudáveis

Média glicose Saudaveis : 109.98 Mediana glicose Saudaveis : 107.0 Média insulina Saudaveis : 68.792 Mediana insulina Saudaveis: 39.0

Diabéticos

Média glicose Diabéticos : 141.25746268656715

Mediana glicose Diabéticos : 140.0

Média insulina Diabéticos : 100.33582089552239

Mediana insulina Diabéticos: 0.0

Vemos que Em geral não existe outliers (apenas no caso da insulina em diabét icos)

Out[8]:

Show Cell

Out[9]:

Show Cell

Vamos realizar uma verificação de correlação, para maior simplicidade e melhor visualização, plotaremos um gráfico de calor com as correlações

Out[10]:

Show Cell

Vemos que não existe uma correlação forte entre nenhum dos dados, mas isso não significa que não podemos utiliza-los

Vamos explorar mais profundamente o data frame seccionando apenas para as partes importantes para nossa pergunta.

Sabemos que glicose é fator importante na diabetes, então utilizaremos sempre essa variável como target para comparação dos outros dados. Ela também segue a reta normal mesmo sem a aplicação do Bootstrap

Out[11]:

Show Cell

Primeira pergunta "A grossura da pele do triceps tem alguma relação com a chance de ter diabetes?"

Out[12]:

Show Cell

Não existe correlação aparente a partir do gráfico de dispersão

Tentaremos aplicar um modelo de regressão para um teste se realmente não são relacionados e não geram

nenhum resultado plausível

Aplicando o KNN

Acurácia: 0.7086614173228346

Distribuições dos acertos

	precision	recall	f1-score	support
0	0.77	0.80	0.78	168
1	0.57	0.53	0.55	86
accuracy			0.71	254
macro avg	0.67	0.67	0.67	254
weighted avg	0.70	0.71	0.71	254

Out[13]:

Show Cell

Out[14]:

Show Cell

Aplicando uma Regressão Logística Acurácia: 0.7244094488188977

Distribuições dos acertos

	precision	recall	f1-score	support
0	0.76	0.86	0.80	168
1	0.62	0.47	0.53	86
accuracy			0.72	254
macro avg	0.69	0.66	0.67	254
weighted avg	0.71	0.72	0.71	254

Out[15]:

Show Cell

Utilizando um modelo de regressão observamos que a pele do triceps não é um fator totalmente determinante para a ocorrência do diabetes.

Segunda pergunta "A gravidez gera uma tendência a ter diabetes?"

Out[16]:

Out[17]:

Show Cell

Foi adicionado um ruído, para verificação de possíveis clusteres.

Out[18]:

Show Cell

Out[19]:

Show Cell

Vemos que não existem clusteres e nem uma correção forte entre os eixos

Realizando o mesmo teste aplicado a pele do tríceps

Aplicando o KNN

Acurácia: 0.594488188976378

Distribuições dos acertos

	precision	recall	f1-score	support
0	0.72	0.64	0.68	168
1	0.42	0.51	0.46	86
accuracy			0.59	254
macro avg	0.57	0.57	0.57	254
weighted avg	0.62	0.59	0.60	254

Out[20]:

Show Cell

Aplicando uma Regressão Logística

Acurácia: 0.6850393700787402

Distribuições dos acertos

	precision	recall	f1-score	support
0	0.70	0.92	0.79	168
1	0.59	0.23	0.33	86
accuracy			0.69	254
macro avg	0.64	0.57	0.56	254
weighted avg	0.66	0.69	0.64	254

Out[21]:

Show Cell

Obtemos uma performace melhor do que relacionando a pele do tríceps. Porém não temos uma acurácia grande.

Terceira pergunta "Existe relação entre glicose, insulina, pressão sanguinea?"

Out[22]:

	glicose	pressao_sangue	insulina
glicose	1.000000	0.152590	0.331357
pressao_sangue	0.152590	1.000000	0.088933
insulina	0.331357	0.088933	1.000000

Out[23]:

Show Cell

Out[24]:

Show Cell

Segundo o <u>Portal da Educação (https://www.portaleducacao.com.br/conteudo/artigos/enfermagem/funcao-dainsulina-no-corpo/34860)</u>:

A insulina promove o transporte de glicose para essas células de modo idêntico ao das outras células do corpo

Vemos que a influência existe e é biológica, porém no nosso dataframe ela não é forte e não é um fator que influência a pressão sanguínea da pessoa

Tentando obter melhores resultados com o DataFrame completo

```
Proporção dentro do Dataframe:

0 500

1 268

Name: diabetico, dtype: int64

Out[25]:

Show Cell
```

Nosso Dataframe está desbalanceado e ao aplicar algum modelo de Machine Learning ele provavelmente irá ficar enviesado. Para evitar isso, balancearemos o DataFrame.

```
0 265
Name: diabetico, dtype: int64
Out[26]:
Show Cell
1 268
0 265
Name: diabetico, dtype: int64
Out[27]:
```

Separando os dados de treino e teste.

Embaralhamos os dados dentro do Dataframe para que ao treinar o modelo tenha um pouco mais de dificuldade.

Out[28]:

Show Cell

Show Cell

Out[34]:

Regressão Logística

Acurácia: 0.7954545454545454

Distribuições dos acertos

	precision	recall	f1-score	support
0	0.85	0.77	0.81	98
1	0.74	0.83	0.78	78
accuracy			0.80	176
macro avg	0.80	0.80	0.79	176
weighted avg	0.80	0.80	0.80	176

Verificando a matriz de confusão [[75 23] [13 65]]

Out[35]:

Show Cell

Out[36]:

Show Cell

Random Forest

Acurácia: 0.7215909090909091

Distribuições dos acertos

	precision	recall	f1-score	support
0	0.78	0.69	0.74	98
1	0.66	0.76	0.71	78
accuracy			0.72	176
macro avg	0.72	0.73	0.72	176
weighted avg	0.73	0.72	0.72	176

Verificando a matriz de confusão [[68 30] [19 59]]

Out[40]:

Show Cell

Temos o RandomForest com desempenho melhor sobre todo o DataFrame, iremos testar o modelo dentro de todos os dados para ter uma acurácia geral final

Random Forest

Acurácia: 0.8255208333333334

Distribuições dos acertos

	precision	recall	f1-score	support
0	0.94	0.78	0.85	500
1	0.69	0.91	0.78	268
accuracy			0.83	768
macro avg	0.82	0.84	0.82	768
weighted avg	0.85	0.83	0.83	768

Verificando a matriz de confusão [[391 109] [25 243]]

Out[41]:

Show Cell

Aplicando o modelo geral, obtemos uma acurácia de 83%!

Explicando o motivo de utilização final do RandomForest e não da Regressão (Mesmo com performace inicial melhor):

Regressão Logística sobre todos os dados

Acurácia: 0.74609375

Distribuições dos acertos

	precision	recall	f1-score	support
0	0.87	0.72	0.79	500
1	0.60	0.79	0.68	268
accuracy			0.75	768
macro avg	0.73	0.76	0.74	768
weighted avg	0.77	0.75	0.75	768

Verificando a matriz de confusão [[361 139] [56 212]]

Out[44]:

Show Cell

Acurácia do RandomForest é maior que a da Regressão!