Recurrent Neural Networks

- 1. Suppose your training examples are sentences (sequences of words). Which of the following refers to the j^{th} word in the i^{th} training example?
 - $\bigcirc x^{(i) < j >}$
 - $\bigcirc \ x^{< i > (j)}$
 - $\bigcirc \ x^{(j) < i >}$
 - $\bigcirc \ x^{< j > (i)}$
- 2. Consider this RNN:

This specific type of architecture is appropriate when:

 $\bigcap T_x = T_y$

Activate W Go to Settings

- $\bigcap T_x < T_y$
- $\bigcap T_x > T_y$
- $\bigcap T_x = 1$
- 3. To which of these tasks would you apply a many-to-one RNN architecture? (Check all that apply).

1 point

- Speech recognition (input an audio clip and output a transcript)
- Sentiment classification (input a piece of text and output a 0/1 to denote positive or negative sentiment)

Activate

- ☐ Image classification (input an image and output a label)
- Gender recognition from speech (input an audio clip and output a label indicating the speaker's gender)
- 4. You are training this RNN language model.

1 point

At the t^{th} time step, what is the RNN doing? Choose the best answer.

- $\bigcirc \ \ \operatorname{Estimating} P(y^{<1>},y^{<2>},\dots,y^{< t-1>})$
- $\bigcirc \ \ \operatorname{Estimating} P(y^{< t>})$
- $\bigcirc \ \, \operatorname{Estimating} P(y^{< t>} \mid y^{< 1>}, y^{< 2>}, \ldots, y^{< t-1>})$
- $igcup ext{Estimating } P(y^{< t>} \mid y^{< 1>}, y^{< 2>}, \ldots, y^{< t>})$
- 5. You have finished training a language model RNN and are using it to sample random sentences, as follows:

Act Go to

1 point

What are you doing at each time step t?

- \bigcirc (i) Use the probabilities output by the RNN to pick the highest probability word for that time-step as $\hat{y}^{< t>}$. (ii) Then pass the ground-truth word from the training set to the next time-step.
- (i) Use the probabilities output by the RNN to randomly sample a chosen word for that time-step as $\hat{y}^{< t>}$. (ii) Then pass the ground-truth word from the training set to the next time-step.
- \bigcirc (I) Use the probabilities output by the RNN to pick the highest probability word for that time-step as $\hat{y}^{< t>}$, (ii) Then pass this selected word to the next time-step.
- (i) Use the probabilities output by the RNN to randomly sample a chosen word for that time-step as $\hat{y}^{<t>}$. (ii) Then pass this selected word to the next time-step.

Activate

6.	6. You are training an RNN, and find that your weights and activations are all taking on the value of NaN ("Not a Number"). 1 point Which of these is the most likely cause of this problem?			
	Vanishing gradient problem.			
	Exploding gradient problem.			
	ReLU activation function g(.) used to compute g(z), where z is too large.			
	Sigmoid activation function g(.) used to compute g(z), where z is too large.			
		ing an LSTM with 100-dimensional	1 point 1 point	Activate Go to Settir
Alice proposes to simplify the GRU by always removing the Γ_u . I.e., setting Γ_u = 1. Betty proposes to simplify the GRU by removing the Γ_r . I. e., setting Γ_r = 1 always. Which of these models is more likely to work without vanishing gradient problems even when trained on very long input sequences? Alice's model (removing Γ_u), because if $\Gamma_r \approx 0$ for a timestep, the gradient can propagate back through that				
timestep without much decay.				
	\bigcirc Alice's model (removing Γ_u), because if $\Gamma_rpprox 1$ for a timestep, the gradient can propagate back through that timestep without much decay.			
	\bigcirc Betty's model (removing Γ_r), because if $\Gamma_u \approx 0$ for a timestep, the gradient can propagate back through that timestep without much decay.			
\bigcirc Betty's model (removing Γ_r), because if $\Gamma_u \approx 1$ for a timestep, the gradient can propagate back through that timestep without much decay.				
	9. Here are the equations for the GRU and the LSTM:			1 point
	GRU	LSTM		
	$\tilde{c}^{< t>} = \tanh(W_c[\Gamma_r * c^{< t-1>}, x^{< t>}] + b_c)$	$z^{< t>} = \tanh(W_c[a^{< t-1>}, x^{< t>}] +$	$+b_c)$	Ac
	$\Gamma_u = \sigma(W_u[c^{< t-1>}, x^{< t>}] + b_u)$	$\Gamma_u = \sigma(W_u[a^{< t-1>}, x^{< t>}] + b_u)$)	Go

- 1. $x^{(i) < j}$
- $2. \quad T_x = T_y$

3

- Sentiment classification(input a piece of text and output 0/1 to denote positive or negative sentiment)
- b. Gender recognition from speech(input an audio clip and output a label indicating the speaker's gender)
- 4. Estimating $P(y^{< t>} | y^{< 1>}, ..., y^{< t-1>})$
- 5. (i) Use the probabilties output by the RNN to randomly sample a chosen word for that time-step as $\hat{y}^{< t>}$. (ii) Then pass this selected word to the next time-step.
- 6. Exploding gradient problem
- 7. 100
- 8. Betty's model (removing Γ_r), because if $\Gamma_u \approx 0$ for a timestep, the gradient can propagate back through that timestep without much decay.
- 9. Γ_u and Γ_{1-u}
- 10. Unidierectional RNN, because the value of $y^{< t>}$ depends only on $x^{< 1>}, ..., x^{< t>}$, but not $x^{< t+1>}, ..., x^{< 365>}$