BLG311E - FORMAL LANGUAGES AND AUTOMATA

2017 SPRING

RECITEMENT 4 (MIDTERM 1 SOLUTIONS)

Q1) (30p) Consider the following state transition table of machine M.

	1	2	3	4	
Α	F/1	-/-	H/-	E/0	
В	E/0	E/1 H/1		D/-	
С	-/1	H/1	D/0	D/1	
D	A/1	-/1	G/0	C/1	
Ε	E/0	B/1	A/1	C/1	
F	A/1	A/0	F/-	-/0	
G	A/1	-/1	C/0	C/1	
Н	A/1	H/0	H/0	E/0	

- **a)** Simplify machine *M*.
- **b)** Draw the state diagram for the simplified machine (Mealy model).
- c) Transform the simplified machine into Moore model.

Solution:

a)

	Α							
	Χ	В						
	Χ	Χ	С					
	Χ	Χ	D-G	D	_			
	Х	A-H C-D	X	X	E	_		
	F-H	Χ	Χ	Χ	Χ	F		
	Χ	Χ	C-D	C-G	Χ	Χ	G	_
1	A-F	Χ	Χ	Χ	Χ	А-Н	Χ	Н

		1	2	3	4
So)	S ₀ /1	S ₀ /0	S ₀ /0	S ₁ /0
S_1		S ₁ /0	S ₁ /1	S ₀ /1	S ₂ /1
S ₂		S ₀ /1	S ₀ /1	S ₂ /0	S ₂ /1

c)

		1	2	3	4	Çıkış
S ₀ /0	Q_0	Q_1	Q_0	Q_0	Q_2	0
S ₀ /1	Q_1	Q_1	Q_0	Q_0	Q_2	1
S ₁ /0	Q_2	Q_2	Q ₃	Q_1	Q_5	0
S ₁ /1	Q₃	Q_2	Q ₃	Q_1	Q_5	1
S ₂ /0	Q ₄	Q_1	Q_1	Q ₄	Q_5	0
S ₂ /1	Q_5	Q_1	Q_1	Q_4	Q_5	1

Q2) (20p) Examine the erroneous proof steps given below. Let A,B and C be languages defined on the alphabet $\Sigma = \{a,b\}$.

$$A(B \cap C) = AB \cap AC$$

$$\forall z[(z=xy) \land (z \in AB \land z \in AC)] \tag{1}$$

$$xy \in AB \land xy \in AC$$
 (2)

$$x \in A \land y \in B \land x \in A \land y \in C \tag{3}$$

$$x \in A \land y \in B \land y \in C \tag{4}$$

$$x \in A \land y \in B \cap C \tag{5}$$

$$xy \in A(B \cap C) \tag{6}$$

$$z \in A(B \cap C) \tag{7}$$

- a) Which step transition contains the mistake?
- **b)** Show the mistake on an example.

Solution:

- a) (2) \rightarrow (3) contains the mistake
- $\begin{array}{ll} \textbf{b)} & z = abbabab \\ & abb \in A & abab \in B & abab \notin C \\ & abbab \in A & ab \notin B & ab \in C \end{array} \right\} \rightarrow \begin{array}{ll} z = abbabab \in AB \cap AC \\ & z = abbabab \notin A(B \cap C) \\ & B \cap C = \{\Lambda\} \end{array}$

Q3) (20p) Let α be a relation defined on $\Sigma = \{a, b, c\}$, and $t(\alpha) - s(\alpha)$ be the transitive and symmetric closures of α respectively. Examine the erroneous expression given below.

$$\forall (x,y)[(x,y) \in ts(\alpha) \Leftrightarrow (x,y) \in st(\alpha)]$$

Show the mistake in this expression by providing an example for each of the 3 relations below. Afterwards, state the correct form of the expression.

- α:
- $ts(\alpha)$:
- $st(\alpha)$:

Solution:

$$\alpha = \{(a,b), (b,c)\}$$

$$s(\alpha) = \{(a,b), (b,a), (b,c), (c,b)\}$$

$$ts(\alpha) = \{(a,a), (a,b), (a,c), (b,a), (b,b), (b,c), (c,a), (c,b), (c,c)\}$$

$$t(\alpha) = \{(a,b), (b,c), (a,c)\}$$

$$st(\alpha) = \{(a,b), (b,a), (b,c), (c,b), (a,c), (c,a)\}$$

For example, $(a, a) \in ts(\alpha)$, $(a, a) \notin st(\alpha)$ shows that the given expression is wrong.

Corrected expression: $\forall (x,y)[(x,y) \in st(\alpha) \Rightarrow (x,y) \in ts(\alpha)]$

Q4) (30p) Consider the grammar G defined below. Let L(G) be the language corresponding to this grammar G.

$$S \rightarrow ACB$$

$$A \rightarrow aY \mid a$$

$$B \rightarrow Xa \mid a$$

$$X \rightarrow aYb \mid ab$$

$$Y \rightarrow bXa \mid ba$$

$$aCa \rightarrow Cba \mid cba$$

$$abC \rightarrow Cba \mid cba$$

- a) Which type does this grammar G belong to according to the Chomsky hierarchy?
- **b)** Is it possible to produce abc and cba by using this grammar G? Draw the parsing sequence if it is possible for either of these strings.
- c) Heuristically, find the simplest regular expression L(G) for this grammar G.
- **d)** Heuristically, find the simplest Type-3 grammar which is equivalent to this grammar G.

Solution:

- a) Type-1
- **b)** abc cannot be produced. cba can be produced as $S \to ACB \to aCB \to aCB \to aCa \to cba$.

c)
$$X \to aYb \mid ab \to (ab)^{+} \quad Y \to bXa \mid ba \to (ba)^{+}$$
 $A \to aY \mid a \to a(ba)^{+} \lor a \quad B \to Xa \mid a \to (ab)^{+}a \lor a$

$$a(ba)^{+}C(ab)^{+}a$$
 $S \to ACB \to (a(ba)^{+} \lor a)C((ab)^{+}a \lor a) \to a(ba)^{+}Ca$

$$aC(ab)^{+}a$$

$$aC(ab)^{+}a \to aC(ab)^{+}a$$

$$a(ba)^{+}Cbaba(ba)^{+}$$

$$a(ba)^{+}Cbaba(ba)^{+} \lor (ab)^{*}cbaba(ba)^{+} \lor (ab)^{*}cbaba(ba)^{+}$$

$$a(ba)^{*}c(ba)^{+}ba(ba)^{+}$$

$$a(ba)^{*}c(ba)^{+}ba(ba)^{+}$$

$$a(ba)^{*}c(ba)^{+}ba(ba)^{+}ba$$

$$a(ba)^{*}c(ba)^{+}ba(ba)^{+}ba$$

$$a(ba)^{*}c(ba)^{+}ba(ba)^{+}ba$$

$$a(ba)^{*}c(ba)^{+}ba(ba)^{+}ba$$

$$a(ab)^{*}c(ba)^{+}ba$$

$$a(ab)^{*}c(ba)^{+}ba$$

$$a(ab)^{*}c(ba)^{+}ba$$

$$a(ab)^{*}c(ba)^{+}ba(ba)^{+} \lor (ab)^{*}cba(ba)^{+} \lor (ab)^{*}cba(ba)^{+} \lor (ab)^{*}cba(ba)^{+}$$

$$a(ab)^{*}c(ba)^{+}ba(ba)^{*} \lor (ab)^{*}cba(ba)^{*}$$

$$a(ab)^{*}c(ba)^{+}ba(ba)^{*} \lor (ab)^{*}cba(ba)^{*}$$

$$a(ab)^{*}c(ba)^{+}ba(ba)^{*} \lor (ab)^{*}cba(ba)^{*}$$

$$a(ab)^{*}c(ba)^{+}(ba)^{+}ba(ba)^{*}$$

$$a(ab)^{*}c(ba)^{+}(ba)^{+}(ba)^{+}$$

$$a(ab)^{*}c(ba)^{+}(ba)^{+}(ba)^{+}$$

$$d) A \rightarrow abA \mid cB$$

$$B \rightarrow baB \mid ba$$

 $L(G) = (ab)^*c(ba)^+$