

GOLDS-UFSC Documentation

GOLDS-UFSC Documentation SpaceLab, Universidade Federal de Santa Catarina, Florianópolis - Brazil

GOLDS-UFSC Documentation

January, 2021

Project Chief:

Eduardo Augusto Bezerra

Authors:

Gabriel Mariano Marcelino André Martins Pio de Mattos Eduardo Augusto Bezerra

Contributing Authors:

Revision Control:

Version	Author	Changes	Date
0.1	Gabriel M. Marcelino	Document creation	2020/06/05

© 2021 by SpaceLab. GOLDS-UFSC Documentation. This work is licensed under the Creative Commons Attribution–ShareAlike 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/.

List of Figures

1.1	GOLDS-UFSC mission patch	2
4.1	Reference diagram of the PC-104 bus	Ć

List of Tables

3.1	Mission schedule	5
4.1	PC-104 bus pinout	10
4.2	PC-104 bus signal description	11

Nomenclature

ADCS Attitude Determination and Control System.

EDC Environmental Data Collection.

EPS *Electrical Power System.*

GOLDS Global Open Collecting Data System

INPE Instituto Nacional de Pesquisas Espaciais.

LIT Laboratório de Integração e Testes.

OBDH *On-Board Data Handling.*

PCB Printed Circuit Board.

TTC Telemetry, Tracking and Command Module.

Contents

Lis	st of Figures	V
Lis	st of Tables	vii
No	omenclature	ix
1	Introduction1.1 Mission Description1.2 Mission Objectives1.3 Mission Patch	1 1 1
2	Mission Requirements	3
3	Mission Schedule	5
4	Overall Description 4.1 General Diagrams 4.2 General Behaviour 4.3 Orbit Parameters 4.4 Power Budget 4.5 Link Budget 4.5.1 VHF Link 4.5.2 UHF Links 4.6 PC-104 Bus	7 7 7 7 7 7 8 8
5	Subsystems 5.1 On-Board Data Handling	13 13 13 13 13 13 13 13 14 14
6	Test Plan and Results	15

Contents

7	Ground Segment	17
8	Operation Planning	19
Re	eferences	21

Introduction

GOLDS stands for Global Open Collecting Data System...

INPE

LIT

PCB

1.1 Mission Description

.

1.2 Mission Objectives

- 1. To serve as a host platform for the EDC payload.
- 2. Validate the EDC payload in orbit.
- 3. Validate EDC functionality in orbit.
- 4. Validate core-satellite functions in orbit.
- 5. Evaluate the behavior of the core modules.
- 6. Perform experiments on radiation effects in electronic components in orbit.
- 7. Serve as relay for amateur radio communications.

1.3 Mission Patch

The mission patch of the GOLDS-UFSC can be seen in Figure 1.1, it is inspired by the FloripaSat-I patch [1].

Figure 1.1: GOLDS-UFSC mission patch.

Mission Requirements

- 1. The power system shall be able to harvest solar energy.
- 2. The power system shall be able to store energy for use when GOLDS-UFSC is eclipsed.
- 3. The power system shall supply energy to all other modules.
- 4. The data handling system shall communicate with the other modules and store their data.
- 5. The communications system shall send a beacon signal periodically using VHF radio.
- 6. The communications system shall send the CubeSat telemetry using UHF radio.
- 7. The communications system shall be able to receive telecommands and respond to them accordingly.
- 8. The attitude system shall be able to perform a 1-axis stabilization of the CubeSat.
- 9. GOLDS-UFSC shall have the capability to receive and execute a shutdown telecommand, therefore ceasing all transmissions.
- 10. The downlink transmissions shall be done once at a time, either telemetry or beacon.
- 11. The ground station shall operate under the proper radio frequency communication licenses.
- 12. GOLDS-UFSC shall comply with international and Brazilian radio license agreements and restrictions.
- 13. The team shall build and operate a ground station for full communication with GOLDS-UFSC.

Mission Schedule

Table 3.1: Mission schedule.

Each activity of Table 3.1 is decribed below:

- 1. Acquisition and manufacturing of critical elements and components for the solo platform.
- 2. Acquisition and manufacture of elements and components critical to the payload.
- 3. Acquisition and manufacturing of critical elements and components for the solo segment.
- 4. Compatibility tests between platform and payload in SpaceLab UFSC.
- 5. Integration of the engineering model in SpaceLab UFSC.
- 6. Preparation and suitability of the ground segment.
- 7. Verification and validation of the engineering model at SpaceLab UFSC.
- 8. Verification and validation of the flight model at SpaceLab UFSC.

- 9. Data collection platforms installation.
- 10. Verification and validation tests of Engineering Model compatibility with EMMN in the INPE / CRN in Natal.
- 11. Environmental tests at the Integration and Testing Laboratory (LIT/INPE).
- 12. Flight model acceptance and ground segment review.
- 13. Ground segment delivery.
- 14. Flight model delivery.

Overall Description

.

4.1 General Diagrams

.

4.2 General Behaviour

.

4.3 Orbit Parameters

.

4.4 Power Budget

.

4.5 Link Budget

4.5.1 VHF Link

• Direction: Downlink

• Frequency: 145,97 MHz

• Modulation: MSK

• Datarate: 1200 bps

• Output Power: 30 dBm (1 W)

• Protocol: NGHam

4.5.2 UHF Links

Main UHF Link

• Direction: Downlink and uplink

• Frequency: 436,9 MHz

• Modulation: MSK

• Datarate: 4800 bps

• Output power: 30 dBm (1 W)

• Protocol: NGHam

EDC UHF Link

• Direction: Uplink

• Frequency: 401.635 MHz

• Modulation: ????

• Datarate: ???? bps

4.6 PC-104 Bus

Figure 4.1: Reference diagram of the PC-104 bus.

Pin Row	H1 Odd	H1 Even	H2 Odd	H2 Even
1-2	-	_	-	_
3-4	_	_	EDC_1_EN	EDC_2_EN
5-6	-	_	BE_UART_RX	_
7-8	RA_GPIO_0	RA_GPIO_1	BE_UART_TX	GPIO_0
9-10	RA_GPIO_2	_	_	_
11-12	RA_RESET	RA_EN	BE_SPI_MOSI	BE_SPI_CLK
13-14	-	_	BE_SPI_CS	BE_SPI_MISO
15-16	-	_	_	_
17-18	EDC_UART_RX/TX	PLX_EN	-	GPIO_1
19-20	EDC_UART_TX/RX	GPIO_2	-	GPIO_3
21-22	-	_	-	GPIO_4
23-24	-	_	-	_
25-26	-	_	-	-
27-28	-	_	-	-
29-30	GND	GND	GND	GND
31-32	GND	GND	GND	GND
33-34	-	_	-	-
35-36	RD_SPI_CLK	_	ANT_VCC	ANT_VCC
37-38	RD_SPI_MISO	_	-	_
39-40	RD_SPI_MOSI	RD_SPI_CS	-	-
41-42	PL_I2C_SDA	_	-	GPIO_5
43-44	PL_I2C_SCL	_	-	-
45-46	OBDH_VCC	OBDH_VCC	BAT_VCC	BAT_VCC
47-48	EDC_VCC	EDC_VCC	-	-
49-50	RD_VCC	RD_VCC	EPS_I2C_SDA	-
51-52	BE_VCC	BE_VCC	EPS_I2C_SCL	-

Table 4.1: PC-104 bus pinout.

GND	111 20 111 20		
	H1-29, H1-30,	All	Ground reference
	H1-31, H1-32,		
	H2-29, H2-30,		
BAT_VCC	H2-31, H2-32 H2-45, H2-46	EPS	Rattery terminals (1)
ANT_VCC	H2-35, H2-36	EPS, ANT	Battery terminals (+) Antenna power supply (3.3 V)
OBDH_VCC	H1-45, H1-46	EPS, OBDH	OBDH power supply (3.3 V)
EDC_VCC	H1-47, H1-48	EPS, EDC 1,	EDC power supply (5 V)
LDC_VCC	111 17,111 10	EDC 2	LBC power supply (5 v)
RD_VCC	H1-49, H1-50	EPS, TTC	Main radio power supply (5 V)
BE_VCC	H1-51, H1-52	EPS, TTC	Beacon power supply (6 V)
RD_SPI_CLK	H1-35	OBDH, TTC	CLK signal of the main radio
		,	SPI bus
RD_SPI_MISO	H1-37	OBDH, TTC	MISO signal of the main
			radio SPI bus
RD_SPI_MOSI	H1-39	OBDH, TTC	MOS signal of the main
			radio SPI bus
RD_SPI_CS	H1-40	OBDH, TTC	CS signal of the main radio
			SPI bus
EPS_I2C_SDA	H2-49	OBDH, EPS	SDA signal of the EPS I2C
EDC 120 CCI	110 54	ODDU EDC	bus
EPS_I2C_SCL	H2-51	OBDH, EPS	SCL signal of the EPS I2C
BE_UART_RX	H2-5	EPS, TTC	bus EPS TX, Beacon RX (UART
DL_UAINI_IM	112-3	Lr 3, TTC	bus)
BE_UART_TX	H2-7	EPS, TTC	EPS RX, Beacon TX (UART
DL_O/II(I_I/(112 7	LI 3, 11C	bus)
EDC UART TX/RX	H1-25	OBDH, EDC	OBDH TX, EDCs RX (UART
		1, EDC 2	bus)
EDC_UART_RX/TX	H1-27	OBDH, EDC	OBDH RX, EDCs TX (UART
		1, EDC 2	bus)
EDC_1_EN	H2-3	OBDH, EDC	EDC 1 enable signal
		1	
EDC_2_EN	H2-4	OBDH, EDC	EDC 2 enable signal
		2	
PLX_EN	H1-18	OBDH,	Payload X enable (GPIO)
DI 100 004	114 44	Payload X	CDA
PL_I2C_SDA	H1-41	OBDH,	SDA signal of the payload
DI 120 CO	111 42	Payload X	12C bus
PL_I2C_SCL	H1-43	OBDH,	SCL signal of the payload I2C bus
GPIO_N	H2-8, H2-18,	Payload X OBDH	GPIO pin (not used)
ar io_iv	H1-20, H2-20,	ODDII	ar to put (not useu)
	H2-22, H2-42		

Table 4.2: PC-104 bus signal description.

Subsystems

.

5.1 On-Board Data Handling

OBDH [2]

5.2 Telemetry, Tracking and Command Module

TTC [3]

5.3 Electrical Power System

EPS [4]

5.3.1 Battery Module

[5]

5.4 Attitude Determination and Control System

ADCS

5.5 Mechanical Structure

.

5.6 Interconnection Modules

5.6.1 PC-104 Interconnection Boards

[6]

5.6.2 External Connection Boards

[7]

5.7 Payloads

5.7.1 Environmental Data Collection

EDC [8]

Test Plan and Results

[9]

Ground Segment

.

Operation Planning

.

Bibliography

- [1] Space Technology Research Laboratory (SpaceLab). FloripaSat-I Documentation, 2019. Available at https://github.com/spacelab-ufsc/floripasat-doc.
- [2] Space Technology Research Laboratory (SpaceLab). *OBDH 2.0 Documentation*, 2020. Available at https://github.com/spacelab-ufsc/obdh2.
- [3] Space Technology Research Laboratory (SpaceLab). *TTC Documentation*, 2021. Available at https://github.com/spacelab-ufsc/ttc.
- [4] Space Technology Research Laboratory (SpaceLab). *EPS 2.0 Documentation*, 2021. Available at https://github.com/spacelab-ufsc/eps2.
- [5] Space Technology Research Laboratory (SpaceLab). *Battery Module 4C Documentation*, 2021. Available at https://github.com/spacelab-ufsc/battery-module-4c.
- [6] Space Technology Research Laboratory (SpaceLab). *PC-104 Adapter Documentation*, 2021. Available at https://github.com/spacelab-ufsc/pc104-adapter.
- [7] Space Technology Research Laboratory (SpaceLab). *Documentation of Interstage Inter-face Panels*, 2021. Available at https://github.com/spacelab-ufsc/interface-board.
- [8] Instituto Nacional de Pesquisas Espaciais (INPE). *Environmental Data Collector User Guide*, October 2019. CNS-MNL-PY-00-002-V01.
- [9] Space Technology Research Laboratory (SpaceLab). *Flatsat Platform Documentation*, 2021. Available at https://github.com/spacelab-ufsc/flatsat-platform.