Devoir maison 13.

À rendre le lundi 2 juin 2025

Exercice 1

Soit n un entier supérieur ou égal à 2. Un joueur effectue une succession de n parties de « pile ou face ». Il gagne chaque fois qu'il obtient pile. La probabilité d'obtenir pile est $p \in [0, 1[$. On pose q = 1 - p.

Les deux questions sont indépendantes.

- $\mathbf{1}^{\circ}$) On suppose, dans cette question seulement, que $p = \frac{1}{2}$. Soit X le nombre de parties gagnées.
 - a) Reconnaître la loi de X, donner son espérance et sa variance.
 - **b)** Que représente n-X? En déduire, sans calcul, que $P\left(X > \frac{n}{2}\right) = P\left(X < \frac{n}{2}\right)$.
 - c) En déduire la probabilité qu'à l'issue de ces n parties, le joueur totalise un nombre de victoires strictement supérieur au nombre de défaites.

Indication: On distinguera 2 cas selon la parité de n.

L'un des calculs utilisera $\binom{n}{\frac{n}{2}}$ qu'on laissera sous cette forme.

 2°) Dans cette question p est un réel de l'intervalle]0,1[.

Pour $i \in \{1, ..., n\}$, on note Y_i la variable aléatoire égale à 1 si l'on obtient pile lors de la $i^{\text{ème}}$ partie et 0 sinon.

- a) Quelle est la loi suivie par la variable Y_i pour $i \in \{1, ..., n\}$?
- b) À l'aide des variables aléatoires Y_i , exprimer l'événement A: « au cours de ces n parties, un succès n'est jamais suivi d'un échec » comme une réunion.
- c) En déduire que : $P(A) = \sum_{i=0}^{n} q^{i} p^{n-i}$.
- d) Simplifier P(A).

Indication : On distinguera les cas : $p = \frac{1}{2}$, $p \neq \frac{1}{2}$.

Exercice 2

Soient n et c deux entiers naturels fixés, avec $c \ge 1$ et $n \ge 3$.

Une urne contient initialement une boule blanche et une boule noire. On tire une boule, on note sa couleur, puis on la remet dans l'urne, avec c boules de la couleur de la boule tirée. On répète cette épreuve, on réalise ainsi une succession de n tirages.

Pour tout i entre 1 et n, on note X_i la variable aléatoire égale à 1 si on tire une boule blanche au i-ème tirage, et 0 sinon.

On pose alors, pour tout $p \in \{1, ..., n\}$, $Z_p = \sum_{i=1}^p X_i$.

- $\mathbf{1}^{\circ}$) Que représente Z_p , pour tout $p \in \{1, \dots, n\}$?
- 2°) Donner la loi de X_1 et son espérance.
- 3°) Déterminer la loi de Z_2 .

- **4**°) Soit $p \in \{1, ..., n-1\}$.
 - a) Quel est l'ensemble $Z_p(\Omega)$ des valeurs prises par Z_p ?
 - b) Déterminer, pour tout $k \in \mathbb{Z}_p(\Omega)$, la valeur de $P_{(\mathbb{Z}_p=k)}(X_{p+1}=1)$.
 - c) En déduire : $P(X_{p+1} = 1) = \frac{1 + cE(Zp)}{2 + pc}$.
- 5°) Montrer par récurrence forte que pour tout $p \in \{1, \dots, n\}, X_p$ a même loi que X_1 .