MathematicalFunctions

5.1

Generated by Doxygen 1.8.14

Contents

1	Mod	lule Inde	ex													1
	1.1	Module	es							 	 	 	 			 1
2	Nam	nespace	Index													3
	2.1	Names	pace List							 	 	 	 			 3
3	Data	a Structi	ure Index													5
	3.1	Data S	tructures							 	 	 	 			 5
4	File	Index														7
	4.1	File Lis	st							 	 	 	 			 7
5	Mod	lule Doc	umentatio	on												9
	5.1	Models	.							 	 	 	 			 9
		5.1.1	Detailed	Description	n					 	 	 	 			 9
	5.2	Utils .								 	 	 	 			 10
		5.2.1	Detailed	Description	n					 	 	 	 			 10
	5.3	Math .								 	 	 	 			 11
		5.3.1	Detailed	Description	n					 	 	 	 			 11
		5.3.2	Macro D	efinition D	ocume	entation	n			 	 	 	 			 11
			5.3.2.1	MAKE_N	MATH_	_MESS	SAGE	_COI	DE .	 	 	 	 			 11
6	Nam	nespace	Docume	ntation												13
	6.1	jeod Na	amespace	Referenc	е					 	 	 	 			 13
		6.1.1	Detailed	Description	n					 	 	 	 			 13
		6.1.2	Variable	Document	tation					 	 	 	 			 13
			6.1.2.1	SQRT_E	OBL_M	IIN				 	 	 	 			 13

ii CONTENTS

7	Data	Struct	re Documentatio	n	15
	7.1	jeod::G	aussQuadrature C	lass Reference	 15
		7.1.1	Detailed Descripti	on	 15
		7.1.2	Field Documentat	ion	 15
			7.1.2.1 gauss_	weights	 15
			7.1.2.2 gauss_	xvalues	 16
			7.1.2.3 max_or	der	 16
	7.2	jeod::N	athMessages Clas	s Reference	 16
		7.2.1	Detailed Descripti	on	 17
		7.2.2	Constructor & Des	structor Documentation	 17
			7.2.2.1 MathMe	essages() [1/2]	 17
			7.2.2.2 MathMe	essages() [2/2]	 17
		7.2.3	Member Function	Documentation	 17
			7.2.3.1 operato	r=()	 17
		7.2.4	Field Documentat	ion	 17
			7.2.4.1 ill_cond	litioned	 17
	7.3	jeod::N	atrix3x3 Class Ref	erence	 18
		7.3.1	Detailed Descripti	on	 19
		7.3.2	Member Function	Documentation	 19
			7.3.2.1 add() .		 19
			7.3.2.2 copy()		 19
			7.3.2.3 cross_r	natrix()	 20
			7.3.2.4 decr() .		 20
			7.3.2.5 identity	()	 20
			7.3.2.6 incr() .		 21
			7.3.2.7 initialize	e()	 21
			7.3.2.8 invert()		 21
			7.3.2.9 invert_s	symmetric()	 22
			7.3.2.10 negate) [1/2]	 23
			7.3.2.11 negate() [2/2]	 23

CONTENTS

		7.3.2.12	outer_product()	23
		7.3.2.13	print()	24
		7.3.2.14	product()	24
		7.3.2.15	product_left_transpose()	24
		7.3.2.16	product_right_transpose()	25
		7.3.2.17	product_transpose_transpose()	25
		7.3.2.18	scale() [1/2]	26
		7.3.2.19	scale() [2/2]	26
		7.3.2.20	subtract()	27
		7.3.2.21	transform_matrix()	27
		7.3.2.22	transpose() [1/2]	28
		7.3.2.23	transpose() [2/2]	28
		7.3.2.24	transpose_transform_matrix()	28
7.4	jeod::N	Numerical (Class Reference	29
	7.4.1	Detailed	Description	29
	7.4.2	Member	Function Documentation	29
		7.4.2.1	compare_exact()	29
		7.4.2.2	fabs()	30
		7.4.2.3	square()	30
		7.4.2.4	square_incr()	31
7.5	jeod::\	/ector3 Cla	ass Reference	31
	7.5.1	Detailed	Description	33
	7.5.2	Member	Function Documentation	33
		7.5.2.1	copy()	33
		7.5.2.2	cross()	33
		7.5.2.3	cross_decr()	34
		7.5.2.4	cross_incr()	34
		7.5.2.5	decr() [1/2]	35
		7.5.2.6	decr() [2/2]	35
		7.5.2.7	diff()	36

iv CONTENTS

7.5.2.8	dot()	 . 36
7.5.2.9	fill()	 . 36
7.5.2.10	incr() [1/2]	 . 37
7.5.2.11	incr() [2/2]	 . 37
7.5.2.12	initialize()	 . 38
7.5.2.13	negate() [1/2]	 . 38
7.5.2.14	negate() [2/2]	 . 38
7.5.2.15	normalize() [1/2]	 . 39
7.5.2.16	normalize() [2/2]	 . 39
7.5.2.17	scale() [1/2]	 . 40
7.5.2.18	scale() [2/2]	 . 40
7.5.2.19	scale_decr()	 . 41
7.5.2.20	scale_incr()	 . 41
7.5.2.21	sum() [1/2]	 . 42
7.5.2.22	sum() [2/2]	 . 42
7.5.2.23	transform() [1/2]	 . 42
7.5.2.24	transform() [2/2]	 . 43
7.5.2.25	transform_decr()	 . 43
7.5.2.26	transform_incr()	 . 44
7.5.2.27	transform_transpose() [1/2]	 . 44
7.5.2.28	transform_transpose() [2/2]	 . 45
7.5.2.29	transform_transpose_decr()	 . 45
7.5.2.30	transform_transpose_incr()	 . 46
7.5.2.31	unit()	 . 46
7.5.2.32	vmag()	 . 47
7.5.2.33	vmagsq()	 . 47
7.5.2.34	zero_small()	 . 48

CONTENTS

8	File I	Documentation	49
	8.1	dm_invert.cc File Reference	49
		8.1.1 Detailed Description	49
	8.2	dm_invert_symm.cc File Reference	49
		8.2.1 Detailed Description	50
	8.3	gauss_quadrature.cc File Reference	50
		8.3.1 Detailed Description	50
	8.4	gauss_quadrature.hh File Reference	50
		8.4.1 Detailed Description	50
	8.5	math_messages.cc File Reference	50
		8.5.1 Detailed Description	51
	8.6	math_messages.hh File Reference	51
		8.6.1 Detailed Description	51
	8.7	matrix3x3.hh File Reference	51
		8.7.1 Detailed Description	52
		8.7.2 Macro Definition Documentation	52
		8.7.2.1 IDENTITY	52
	8.8	matrix3x3_inline.hh File Reference	52
		8.8.1 Detailed Description	53
	8.9	numerical.hh File Reference	53
		8.9.1 Detailed Description	53
	8.10	numerical_inline.hh File Reference	53
		8.10.1 Detailed Description	53
	8.11	vector3.hh File Reference	54
		8.11.1 Detailed Description	54
	8.12	vector3_inline.hh File Reference	54
		8.12.1 Detailed Description	54
Inc	lex		55

Module Index

1.1 Modules

Here is a list of all modules:

Models .								 														 			9
Utils																	 								10
M	lath	1																							11

2 Module Index

Namespace Index

	2.1	Namespace	List
--	-----	-----------	------

Here is a list of all Harriespaces w	itii bilei descriptions.	

jeod																						
	Namespace jeod															 						13

4 Namespace Index

Data Structure Index

3.1 Data Structures

Here are the data structures with brief descriptions:

jeod::GaussQuadrature	. 15
jeod::MathMessages	
Specifies the message IDs used in the math model	. 16
jeod::Matrix3x3	
Provides static methods for operations that involve 3x3 matrices	. 18
jeod::Numerical	
Provides miscellaneous numerical functions	. 29
jeod::Vector3	
Provides static methods for operations that involve 3-vectors	. 3

6 Data Structure Index

File Index

4.1 File List

Here is a list of all files with brief descriptions:

dm_invert.cc	
Define Matrix3x3::invert	49
dm_invert_symm.cc	
Define Matrix3x3::invert_symmetric	49
gauss_quadrature.cc	
Define Gauss Quadrature functionality	50
gauss_quadrature.hh	
Gauss Quadrature implementation	50
math_messages.cc	
Implement the class MathMessages	50
math_messages.hh	
Define the class MathMessages	51
matrix3x3.hh	
Matrix math inline functions	51
matrix3x3_inline.hh	
Matrix math inline functions	52
numerical.hh	
Miscellaneous math inline functions	53
numerical_inline.hh	
Vector math inline functions	53
vector3.hh	
Vector math inline functions	54
vector3_inline.hh	
Vector math inline functions	54

8 File Index

Module Documentation

5.1 Models

Modules

• Utils

5.1.1 Detailed Description

10 Module Documentation

5.2 Utils

Modules

Math

5.2.1 Detailed Description

5.3 Math 11

5.3 Math

Files

· file gauss_quadrature.hh

Gauss Quadrature implementation.

• file math_messages.hh

Define the class MathMessages.

· file matrix3x3.hh

Matrix math inline functions.

• file matrix3x3_inline.hh

Matrix math inline functions.

• file numerical.hh

Miscellaneous math inline functions.

file numerical_inline.hh

Vector math inline functions.

· file vector3.hh

Vector math inline functions.

• file vector3_inline.hh

Vector math inline functions.

· file dm invert.cc

Define Matrix3x3::invert.

file dm_invert_symm.cc

Define Matrix3x3::invert_symmetric.

• file gauss_quadrature.cc

Define Gauss Quadrature functionality.

• file math_messages.cc

Implement the class MathMessages.

Namespaces

• jeod

Namespace jeod.

Macros

#define MAKE_MATH_MESSAGE_CODE(id) JEOD_MAKE_MESSAGE_CODE(MathMessages, "utils/math/", id)

5.3.1 Detailed Description

5.3.2 Macro Definition Documentation

5.3.2.1 MAKE_MATH_MESSAGE_CODE

```
\label{eq:make_make_make_make_code} $$ $id $$) $$ JEOD_MAKE_MESSAGE_CODE (MathMessages, "utils/math/", id) $$
```

Definition at line 34 of file math_messages.cc.

12 Module Documentation

Namespace Documentation

6.1 jeod Namespace Reference

Namespace jeod.

Data Structures

- · class GaussQuadrature
- class MathMessages

Specifies the message IDs used in the math model.

class Matrix3x3

Provides static methods for operations that involve 3x3 matrices.

class Numerical

Provides miscellaneous numerical functions.

class Vector3

Provides static methods for operations that involve 3-vectors.

Variables

• static constexpr double SQRT_DBL_MIN {1.4916681462400413e-154}

6.1.1 Detailed Description

Namespace jeod.

6.1.2 Variable Documentation

6.1.2.1 SQRT_DBL_MIN

```
constexpr double jeod::SQRT_DBL_MIN {1.4916681462400413e-154} [static]
```

Definition at line 66 of file numerical_inline.hh.

 $Referenced\ by\ jeod::Numerical::square(),\ and\ jeod::Numerical::square_incr().$

Data Structure Documentation

7.1 jeod::GaussQuadrature Class Reference

```
#include <gauss_quadrature.hh>
```

Static Public Attributes

- static const int max order = 8
- static const double gauss_weights [max_order+1][max_order]
- static const double gauss_xvalues [max_order+1][max_order]

7.1.1 Detailed Description

Definition at line 69 of file gauss_quadrature.hh.

7.1.2 Field Documentation

7.1.2.1 gauss_weights

```
const double jeod::GaussQuadrature::gauss_weights [static]
```

Initial value:

Definition at line 73 of file gauss_quadrature.hh.

7.1.2.2 gauss_xvalues

```
const double jeod::GaussQuadrature::gauss_xvalues [static]
```

Initial value:

Definition at line 74 of file gauss quadrature.hh.

7.1.2.3 max_order

```
const int jeod::GaussQuadrature::max_order = 8 [static]
```

Definition at line 72 of file gauss_quadrature.hh.

The documentation for this class was generated from the following files:

- · gauss_quadrature.hh
- · gauss_quadrature.cc

7.2 jeod::MathMessages Class Reference

Specifies the message IDs used in the math model.

```
#include <math_messages.hh>
```

Public Member Functions

- MathMessages ()=delete
- MathMessages (const MathMessages &)=delete
- MathMessages & operator= (const MathMessages &)=delete

Static Public Attributes

static const char * ill_conditioned = "utils/math/" "ill_conditioned"
 Error issued when an ill-conditioned matrix is detected.

7.2.1 Detailed Description

Specifies the message IDs used in the math model.

Definition at line 71 of file math_messages.hh.

7.2.2 Constructor & Destructor Documentation

7.2.3 Member Function Documentation

7.2.3.1 operator=()

7.2.4 Field Documentation

7.2.4.1 ill_conditioned

```
char const * jeod::MathMessages::ill_conditioned = "utils/math/" "ill_conditioned" [static]
```

Error issued when an ill-conditioned matrix is detected.

```
trick_units(-)
```

Definition at line 78 of file math_messages.hh.

Referenced by jeod::Matrix3x3::invert(), and jeod::Matrix3x3::invert_symmetric().

The documentation for this class was generated from the following files:

- math_messages.hh
- math_messages.cc

7.3 jeod::Matrix3x3 Class Reference

Provides static methods for operations that involve 3x3 matrices.

```
#include <matrix3x3.hh>
```

Static Public Member Functions

• static void initialize (double mat[3][3])

Zero-fill matrix: mat[i][j] = 0.0.

• static void identity (double mat[3][3])

Construct identity matrix: mat[i][j] = delta_ij.

• static void cross_matrix (const double vec[3], double cross_mat[3][3])

Construct the skew symmetric cross product matrix: mat[i][k] = epsilon_ijk vec[j], epsilon_ijk is the Levi-Cevita symbol.

• static void outer_product (const double vec_left[3], const double vec_right[3], double prod[3][3])

Construct the outer product of two vectors: mat[i][j] = vec_left[i] * vec_right[j].

• static void negate (double mat[3][3])

Negated matrix in-place: mat[i][j] = -mat[i][j].

static void transpose (double mat[3][3])

Transpose matrix in-place: mat[i][j] = mat[j][i].

static void scale (double scalar, double mat[3][3])

Scale matrix in-place, mat[i][j] = scalar * mat[i][j].

• static void incr (const double addend[3][3], double mat[3][3])

Increment matrix in-place: mat[i][j] = mat[i][j] + addend[i][j].

• static void decr (const double subtrahend[3][3], double mat[3][3])

Decrement matrix in-place: mat[i][j] = mat[i][j] - subtrahend[i][j].

static void copy (const double input_mat[3][3], double copy[3][3])

Copy matrix: copy[i][j] = mat[i][j].

• static void negate (const double input_mat[3][3], double copy[3][3])

Negate matrix: copy[i][j] = -mat[i][j].

static void transpose (const double input_mat[3][3], double trans[3][3])

Transpose matrix: copy[i][j] = mat[j][i].

static void scale (const double mat[3][3], double scalar, double prod[3][3])

Scale matrix: copy[i][j] = scalar * mat[i][j].

• static void add (const double augend[3][3], const double addend[3][3], double sum[3][3])

Add matrices: sum[i][j] = augend[i][j] + addend[i][j].

• static void subtract (const double minuend[3][3], const double subtrahend[3][3], double diff[3][3])

Subtract matrices: diff[i][j] = minuend[i][j] - subtrahend[i][j].

• static void product (const double mat_left[3][3], const double mat_right[3][3], double prod[3][3])

Compute the matrix product mat_left * mat_right: prod[i][j] = mat_left[i][k] * mat_right[k][j].

• static void product_left_transpose (const double mat_left[3][3], const double mat_right[3][3], double prod[3][3])

Compute the matrix product mat_left $^T * mat_right: prod[i][j] = mat_left[k][i] * mat_right[k][j].$

• static void product_right_transpose (const double mat_left[3][3], const double mat_right[3][3], double prod[3][3])

Compute the matrix product $mat_left* mat_right^T: prod[i][j] = sum_k mat_left[i][k]* mat_right[j][k].$

• static void product_transpose_transpose (const double mat_left[3][3], const double mat_right[3][3], double prod[3][3])

Compute the matrix product mat_left $^T * mat_right^T$: prod[i][j] = sum_k mat_left[k][i] * mat_right[j][k].

static void transform_matrix (const double trans[3][3], const double mat[3][3], double prod[3][3])

Compute the matrix product trans * mat * trans $^{\land}$ T prod[i][j] = trans[i][k] * mat[k][l] * trans[j][i].

• static void transpose_transform_matrix (const double trans[3][3], const double mat[3][3], double prod[3][3])

Compute the matrix product trans $^{\wedge}T*$ mat * trans prod[i][j] = trans[k][i] * mat[k][i] * trans[i][j].

• static int invert (const double matrix[3][3], double inverse[3][3])

Compute the inverse of a 3x3 matrix.

• static int invert_symmetric (const double matrix[3][3], double inverse[3][3])

Compute the inverse of a symmetric 3x3 matrix.

• static void print (const double mat[3][3])

Print matrix to standard error.

7.3.1 Detailed Description

Provides static methods for operations that involve 3x3 matrices.

Definition at line 71 of file matrix3x3.hh.

7.3.2 Member Function Documentation

7.3.2.1 add()

Add matrices: sum[i][j] = augend[i][j] + addend[i][j].

Parameters

in	augend	Matrix
in	addend	Matrix
out	sum	Sum

Definition at line 326 of file matrix3x3 inline.hh.

7.3.2.2 copy()

Copy matrix: copy[i][j] = mat[i][j].

Parameters

in	input_mat	Source matrix	
out	сору	Matrix copy	

Definition at line 237 of file matrix3x3_inline.hh.

Referenced by negate().

7.3.2.3 cross_matrix()

Construct the skew symmetric cross product matrix: mat[i][k] = epsilon_ijk vec[j], epsilon_ijk is the Levi-Cevita symbol.

Parameters

in	vec	Vector	ı
out	cross_mat	Cross product matrix	ı

Definition at line 101 of file matrix3x3_inline.hh.

7.3.2.4 decr()

Decrement matrix in-place: mat[i][j] = mat[i][j] - subtrahend[i][j].

Parameters

in	subtrahend	Decrement
in, out	mat	Decremented matrix

Definition at line 219 of file matrix3x3_inline.hh.

7.3.2.5 identity()

Construct identity matrix: mat[i][j] = delta_ij.

Parameters

out	mat	Identity matrix
-----	-----	-----------------

Definition at line 86 of file matrix3x3_inline.hh.

7.3.2.6 incr()

Increment matrix in-place: mat[i][j] = mat[i][j] + addend[i][j].

Parameters

in	addend	Increment
in,out	mat	Incremented matrix

Definition at line 201 of file matrix3x3_inline.hh.

7.3.2.7 initialize()

Zero-fill matrix: mat[i][j] = 0.0.

Parameters

out	mat	Zero-filled matrix

Definition at line 73 of file matrix3x3_inline.hh.

7.3.2.8 invert()

Compute the inverse of a 3x3 matrix.

Assumptions and Limitations

- Input and output matrices are distinct.
- Input matrix is well-conditioned.

Returns

0=success, non-zero=singular

Parameters

in	matrix	Matrix to invert
out	inverse	Inverse

Definition at line 72 of file dm_invert.cc.

References jeod::MathMessages::ill_conditioned.

7.3.2.9 invert_symmetric()

Compute the inverse of a symmetric 3x3 matrix.

Assumptions and Limitations

- Input and output matrices are distinct.
- Input matrix is symmetric.
- Determinate is non-zero.

Returns

0=success, non-zero=singular

Parameters

in	matrix	Symmetric matrix to invert
out	inverse	Inverse

Definition at line 73 of file dm_invert_symm.cc.

References jeod::MathMessages::ill_conditioned.

Negated matrix in-place: mat[i][j] = -mat[i][j].

Parameters

in,out	mat	Negated matrix
--------	-----	----------------

Definition at line 142 of file matrix3x3_inline.hh.

Negate matrix: copy[i][j] = -mat[i][j].

Assumptions and Limitations

• Input and output matrices are distinct.

Parameters

i	n	input_mat	Source matrix	
0	ut	сору	Negated matrix	

Definition at line 260 of file matrix3x3_inline.hh.

References copy().

7.3.2.12 outer_product()

Construct the outer product of two vectors: mat[i][j] = vec_left[i] * vec_right[j].

Parameters

in	vec_left	Vector
in	vec_right	Vector
Generated OUT	by Doxygen Prod	Outer product matrix

Definition at line 125 of file matrix3x3_inline.hh.

7.3.2.13 print()

Print matrix to standard error.

Parameters

in <i>mat</i>	Matrix to print
---------------	-----------------

Definition at line 540 of file matrix3x3_inline.hh.

7.3.2.14 product()

 $Compute \ the \ matrix \ product \ mat_left* \ mat_right: \ prod[i][j] = mat_left[i][k]* \ mat_right[k][j].$

Assumptions and Limitations

· Input and output matrices are distinct.

Parameters

in	mat_left	Multiplier
in	mat_right	Multiplicand
out	prod	Product

Definition at line 368 of file matrix3x3_inline.hh.

Referenced by transform_matrix(), and transpose_transform_matrix().

7.3.2.15 product_left_transpose()

```
const double mat_right[3][3],
double prod[3][3] ) [inline], [static]
```

Compute the matrix product mat_left $^T * mat_right: prod[i][j] = mat_left[k][i] * mat_right[k][j].$

Assumptions and Limitations

• Input and output matrices are distinct.

Parameters

in	mat_left	Multiplier
in	mat_right	Multiplicand
out	prod	Product

Definition at line 399 of file matrix3x3_inline.hh.

Referenced by transpose_transform_matrix().

7.3.2.16 product_right_transpose()

Compute the matrix product mat_left * mat_right^T: prod[i][j] = sum_k mat_left[i][k] * mat_right[j][k].

Assumptions and Limitations

· Input and output matrices are distinct.

Parameters

in	mat_left	Multiplier
in	mat_right	Multiplicand
out	prod	Product

Definition at line 432 of file matrix3x3_inline.hh.

 $Referenced\ by\ transform_matrix().$

7.3.2.17 product_transpose_transpose()

```
const double mat_right[3][3],
double prod[3][3] ) [inline], [static]
```

Compute the matrix product $mat_left^T*mat_right^T$: $prod[i][j] = sum_k mat_left[k][i] * mat_right[j][k]$.

Assumptions and Limitations

• Input and output matrices are distinct.

Parameters

in	mat_left	Multiplier
in	mat_right	Multiplicand
out	prod	Product

Definition at line 465 of file matrix3x3_inline.hh.

```
7.3.2.18 scale() [1/2]
```

Scale matrix in-place, mat[i][j] = scalar * mat[i][j].

Parameters

in	scalar	Scalar
in,out	mat	Scaled matrix

Definition at line 183 of file matrix3x3_inline.hh.

```
7.3.2.19 scale() [2/2]
```

Scale matrix: copy[i][j] = scalar * mat[i][j].

Parameters

in	mat	Matrix
in	scalar	Scalar
out	prod	Product

Definition at line 307 of file matrix3x3_inline.hh.

7.3.2.20 subtract()

Subtract matrices: diff[i][j] = minuend[i][j] - subtrahend[i][j].

Parameters

in	minuend	Matrix
in	subtrahend	Matrix
out	diff	Difference

Definition at line 345 of file matrix3x3_inline.hh.

7.3.2.21 transform_matrix()

Compute the matrix product trans * mat * trans T prod[i][j] = trans[i][k] * mat[k][l] * trans[j][l].

Assumptions and Limitations

• Input and output matrices are distinct.

Parameters

in	trans	Transformation matrix
in	mat	Matrix to transform
out	prod	Product

Definition at line 510 of file matrix3x3_inline.hh.

References product(), and product_right_transpose().

7.3.2.22 transpose() [1/2]

Transpose matrix in-place: mat[i][j] = mat[j][i].

Parameters

in,out <i>ma</i>	Transposed matrix
------------------	-------------------

Definition at line 161 of file matrix3x3_inline.hh.

7.3.2.23 transpose() [2/2]

Transpose matrix: copy[i][j] = mat[j][i].

Assumptions and Limitations

• Input and output matrices are distinct.

Parameters

in	input_mat	Source matrix
out	trans	Matrix transpose

Definition at line 283 of file matrix3x3 inline.hh.

7.3.2.24 transpose_transform_matrix()

 $Compute \ the \ matrix \ product \ trans^{T}* \ mat* \ trans \ prod[i][j] = trans[k][i]* \ mat[k][l]* \ trans[l][j].$

Assumptions and Limitations

• Input and output matrices are distinct.

in	trans	Transformation matrix
in	mat	Matrix to transform
out	prod	Product

Definition at line 528 of file matrix3x3_inline.hh.

References product(), and product_left_transpose().

The documentation for this class was generated from the following files:

- matrix3x3.hh
- matrix3x3 inline.hh
- dm_invert.cc
- dm_invert_symm.cc

7.4 jeod::Numerical Class Reference

Provides miscellaneous numerical functions.

```
#include <numerical.hh>
```

Static Public Member Functions

• static double fabs (double x)

Absolute value.

• static double square (double value)

Compute the square of a number, protecting against undeflow.

• static double square_incr (double value, double &sum)

Add number squared to accumulator, protecting against undeflow.

static bool compare_exact (double x, double y)

Compare two doubles for exact equality.

7.4.1 Detailed Description

Provides miscellaneous numerical functions.

Definition at line 66 of file numerical.hh.

7.4.2 Member Function Documentation

7.4.2.1 compare_exact()

Compare two doubles for exact equality.

Returns

whether inputs are exactly the same

in	Χ	Value1
in	У	Value2

Definition at line 123 of file numerical_inline.hh.

7.4.2.2 fabs()

```
\label{local_double_sol} \mbox{double jeod::Numerical::fabs (} \\ \mbox{double $x$ ) [inline], [static] \\
```

Absolute value.

Returns

Absolute value of x

Parameters

Definition at line 73 of file numerical_inline.hh.

Referenced by square(), square_incr(), and jeod::Vector3::zero_small().

7.4.2.3 square()

Compute the square of a number, protecting against undeflow.

Returns

value^2 or zero if too small

Parameters

Definition at line 90 of file numerical_inline.hh.

References fabs(), and jeod::SQRT_DBL_MIN.

7.4.2.4 square_incr()

Add number squared to accumulator, protecting against undeflow.

Returns

Accumulated value

Parameters

in	value	Value
in,out	sum	Accumulator

Definition at line 108 of file numerical_inline.hh.

References fabs(), and jeod::SQRT_DBL_MIN.

The documentation for this class was generated from the following files:

- · numerical.hh
- · numerical inline.hh

7.5 jeod::Vector3 Class Reference

Provides static methods for operations that involve 3-vectors.

```
#include <vector3.hh>
```

Static Public Member Functions

```
• static double * initialize (double vec[3])
```

Zero-fill vector, vec[i] = 0.0.

static double * unit (unsigned int index, double vec[3])

Construct unit vector, vec[i] = delta_ij (delta_ij is the Kronecker delta)

• static double * fill (double scalar, double vec[3])

Construct a vector from scalar, vec[i] = scalar.

static double * zero_small (double limit, double vec[3])

 $\textit{Zero-out small components of a vector, vec[i] = 0 if abs(vec[i]) < \textit{limit}.}$

static double * copy (const double vec[3], double copy[3])

Copy vector contents, copy[i] = vec[i].

• static double dot (const double vec2[3], const double vec1[3])

Compute vector inner product, result = sum_i vec1[i] * vec2[i].

static double vmagsq (const double vec[3])

Compute square of vector magnitude, result = dot(vec,vec), but protects against underflow.

static double vmag (const double vec[3])

```
Compute vector magnitude, result = sqrt(vmagsq(vec))

    static double * normalize (double vec[3])

      Make vector a unit vector in-place, vec = vec * 1/vmag(vec)

    static double * normalize (const double vec[3], double unit vec[3])

      Construct unit vector, unit_vec = vec * 1/vmag(vec)

    static double * scale (double scalar, double vec[3])

      Scale a vector in-place, vec[i] = scalar.

    static double * scale (const double vec[3], double scalar, double prod[3])

      Scale a vector, prod[i] = vec[i] * scalar.
• static double * negate (double vec[3])
      Negate vector in-place, vec[i] = -vec[i].

    static double * negate (const double vec[3], double copy[3])

      Negate vector, copy[i] = -vec[i].

    static double * transform (const double tmat[3][3], const double vec[3], double prod[3])

      Transform a column vector, prod[i] = tmat[i][j]*vec[j].

    static double * transform (const double tmat[3][3], double vec[3])

      Transform a column vector in-place, vec[i] <- tmat[i][j]*vec[j].

    static double * transform_transpose (const double tmat[3][3], const double vec[3], double prod[3])

      Transform a column vector with the transpose, prod[i] = tmat[j][i]*vec[j].

    static double * transform_transpose (const double tmat[3][3], double vec[3])

      Transform a column vector in-place with the transpose, vec[i] <- tmat[j][i]*vec[j].

    static double * incr (const double addend[3], double vec[3])

      Increment a vector, vec[i] += addend[i].
• static double * incr (const double addend1[3], const double addend2[3], double vec[3])
      Increment a vector, vec[i] += addend1[i] + addend2[i].

    static double * decr (const double subtrahend[3], double vec[3])

      Decrement a vector, vec[i] -= subtrahend[i].

    static double * decr (const double subtrahend1[3], const double subtrahend2[3], double vec[3])

      Decrement a vector, vec[i] -= subtrahend1[i] + subtrahend2[i].

    static double * sum (const double addend1[3], const double addend2[3], double vec[3])

      Compute the sum of two vectors, vec[i] = addend1[i] + addend2[i].

    static double * sum (const double addend1[3], const double addend2[3], const double addend3[3], double

  vec[3])
      Compute the sum of three vectors, vec[i] = addend1[i] + addend2[i] + addend3[i].

    static double * diff (const double minuend[3], const double subtrahend[3], double vec[3])

      Compute the difference between two vectors, diff[i] = minuend[i] - subtrehend[i].

    static double * cross (const double vec_left[3], const double vec_right[3], double prod[3])

      Compute the cross product between two vectors, prod[i] = epsilon\_ijk * vec\_left[j] * vec\_right[k].

    static double * scale_incr (const double vec[3], double scalar, double prod[3])

      Increment a vector with a scaled vector, prod[i] += scalar*vec[i].

    static double * scale decr (const double vec[3], double scalar, double prod[3])

      Decrement a vector with a scaled vector, prod[i] += scalar*vec[i].

    static double * cross_incr (const double vec_left[3], const double vec_right[3], double prod[3])

      Increment a vector with the tre cross product between two vectors, prod[i] += epsilon_ijk * vec_left[j] * vec_right[k].

    static double * cross_decr (const double vec_left[3], const double vec_right[3], double prod[3])

      Decrement a vector with the tross product between two vectors, prod[i] -= epsilon_ijk * vec_left[j] * vec_right[k].

    static double * transform incr (const double tmat[3][3], const double vec[3], double prod[3])

      Increment a vector with a transformed column vector, prod[i] += tmat[i][j]*vec[j].

    static double * transform_decr (const double tmat[3][3], const double vec[3], double prod[3])

      Decrement a vector with a transformed column vector, prod[i] += tmat[i][j]*vec[j].

    static double * transform_transpose_incr (const double tmat[3][3], const double vec[3], double prod[3])

      Increment a vector with a transpose-transformed column vector, prod[i] += tmat[j][i]*vec[j].

    static double * transform_transpose_decr (const double tmat[3][3], const double vec[3], double prod[3])

      decrement a vector with a transpose-transformed column vector, prod[i] -= tmat[j][i]*vec[j]
```

7.5.1 Detailed Description

Provides static methods for operations that involve 3-vectors.

Definition at line 66 of file vector3.hh.

7.5.2 Member Function Documentation

7.5.2.1 copy()

Copy vector contents, copy[i] = vec[i].

Returns

Copied vector

Parameters

in	vec	Source vector
out	сору	Copied vector

Definition at line 143 of file vector3_inline.hh.

Referenced by negate(), normalize(), transform(), and transform_transpose().

7.5.2.2 cross()

Compute the cross product between two vectors, prod[i] = epsilon_ijk * vec_left[j] * vec_right[k].

Returns

Cross product vector

in	vec_left	Left vector
in	vec_right	Right vector
out	prod	Cross product vector

Definition at line 484 of file vector3 inline.hh.

7.5.2.3 cross_decr()

Decrement a vector with the tross product between two vectors, prod[i] -= epsilon_ijk * vec_left[j] * vec_right[k].

Returns

Decremented vector

Parameters

in	vec_left	Left vector
in	vec_right	Right vector
in,out	prod	Decremented vector

Definition at line 552 of file vector3_inline.hh.

7.5.2.4 cross_incr()

Increment a vector with the tree cross product between two vectors, prod[i] += epsilon_ijk * vec_left[j] * vec_right[k].

Returns

Cross product vector

Parameters

in	vec_left	Left vector
in	vec_right	Right vector
in,out	prod	Cross product vector

Definition at line 535 of file vector3_inline.hh.

```
7.5.2.5 decr() [1/2]
```

Decrement a vector, vec[i] -= subtrahend[i].

Returns

Decremented vector

Parameters

in	subtrahend	Decrement
in,out	vec	Vector

Definition at line 398 of file vector3_inline.hh.

```
7.5.2.6 decr() [2/2]
```

Decrement a vector, vec[i] -= subtrahend1[i] + subtrahend2[i].

Returns

Decremented vector

Parameters

in	subtrahend1	Decrement
in	subtrahend2	Decrement
in,out	vec	Vector

Definition at line 415 of file vector3_inline.hh.

7.5.2.7 diff()

Compute the difference between two vectors, diff[i] = minuend[i] - subtrehend[i].

Returns

Difference vector

Parameters

in	minuend	Minuend
in	subtrahend	Subtrahend
out	vec	Difference vector

Definition at line 467 of file vector3_inline.hh.

7.5.2.8 dot()

```
double jeod::Vector3::dot (  {\rm const\ double\ } vec2[3],   {\rm const\ double\ } vec1[3]\ ) \quad [inline], \ [static]
```

Compute vector inner product, result = $sum_i vec1[i] * vec2[i]$.

Returns

Inner product

Parameters

in	vec2	Vector 2
in	vec1	Vector 1

Definition at line 159 of file vector3_inline.hh.

7.5.2.9 fill()

Construct a vector from scalar, vec[i] = scalar.

Returns

Filled vector

Parameters

in	scalar	Scalar
out	vec	Filled vector

Definition at line 103 of file vector3_inline.hh.

double vec[3]) [inline], [static]

Increment a vector, vec[i] += addend[i].

Returns

Incremented vector

Parameters

in	addend	Increment
in,out	vec	Vector

Definition at line 365 of file vector3_inline.hh.

Increment a vector, vec[i] += addend1[i] + addend2[i].

Returns

Incremented vector

Parameters

in	addend1	Increment
in	addend2	Increment
in Out Generated by Do	Vec oxygen	Vector

Definition at line 382 of file vector3_inline.hh.

7.5.2.12 initialize()

Zero-fill vector, vec[i] = 0.0.

Returns

Zero-filled vector

Parameters

out	vec	Zero-filled vector
-----	-----	--------------------

Definition at line 76 of file vector3_inline.hh.

Referenced by normalize().

```
7.5.2.13 negate() [1/2]
```

Negate vector in-place, vec[i] = -vec[i].

Returns

Negated vector

Parameters

```
in, out | vec | Vector
```

Definition at line 261 of file vector3_inline.hh.

```
7.5.2.14 negate() [2/2]
```

Negate vector, copy[i] = -vec[i].

Returns

Negated vector

Parameters

in	vec	Source vector
out	сору	Negated vector

Definition at line 277 of file vector3_inline.hh.

References copy().

7.5.2.15 normalize() [1/2]

Make vector a unit vector in-place, vec = vec * 1/vmag(vec)

Returns

Normalized vector

Parameters

in,out	vec	Vector

Definition at line 192 of file vector3_inline.hh.

References initialize(), scale(), and vmag().

Referenced by normalize().

7.5.2.16 normalize() [2/2]

Construct unit vector, unit_vec = vec * 1/vmag(vec)

Returns

Unit vector

in	vec	Vector
out	unit_vec	Unit vector

Definition at line 215 of file vector3_inline.hh.

References copy(), and normalize().

```
7.5.2.17 scale() [1/2]
```

Scale a vector in-place, vec[i] = scalar.

Returns

Scaled vector

Parameters

in	scalar	Scalar
in,out	vec	Scaled vector

Definition at line 229 of file vector3_inline.hh.

Referenced by normalize().

```
7.5.2.18 scale() [2/2]
```

Scale a vector, prod[i] = vec[i] * scalar.

Returns

Scaled vector

Parameters

in	vec	Source vector
in	scalar	Scalar
out	prod	Scaled vector

Definition at line 246 of file vector3_inline.hh.

7.5.2.19 scale_decr()

Decrement a vector with a scaled vector, prod[i] += scalar*vec[i].

Returns

Decremented vector

Parameters

in	vec	Source vector
in	scalar	Scalar
in,out	prod	Decremented vector

Definition at line 518 of file vector3_inline.hh.

7.5.2.20 scale_incr()

Increment a vector with a scaled vector, prod[i] += scalar*vec[i].

Returns

Incremented vector

Parameters

in	vec	Source vector
in	scalar	Scalar
in,out	prod	Incremented vector

Definition at line 501 of file vector3_inline.hh.

Compute the sum of two vectors, vec[i] = addend1[i] + addend2[i].

double vec[3]) [inline], [static]

Returns

Sum vector

Parameters

in	addend1	Addend
in	addend2	Addend
out	vec	Sum vector

Definition at line 432 of file vector3_inline.hh.

Compute the sum of three vectors, vec[i] = addend1[i] + addend2[i] + addend3[i].

Returns

Sum vector

Parameters

in	addend1	Addend
in	addend2	Addend
in	addend3	Addend
out	vec	Sum vector

Definition at line 450 of file vector3_inline.hh.

```
const double vec[3],
double prod[3] ) [inline], [static]
```

Transform a column vector, prod[i] = tmat[i][j]*vec[j].

Returns

Transformed vector

Parameters

in	tmat	Transformation matrix
in	vec	Source vector
out	prod	Transformed vector

Definition at line 294 of file vector3_inline.hh.

Referenced by transform().

7.5.2.24 transform() [2/2]

Transform a column vector in-place, vec[i] <- tmat[i][j]*vec[j].

Returns

Transformed vector

Parameters

in	tmat	Transformation matrix
in,ou	t <i>vec</i>	Transformed vector

Definition at line 312 of file vector3_inline.hh.

References copy(), and transform().

7.5.2.25 transform_decr()

Decrement a vector with a transformed column vector, prod[i] += tmat[i][j]*vec[j].

Returns

Decremented vector

Parameters

in	tmat	Transformation matrix
in	vec	Source vector
in,out	prod	Decremented vector

Definition at line 588 of file vector3_inline.hh.

7.5.2.26 transform_incr()

Increment a vector with a transformed column vector, prod[i] += tmat[i][j]*vec[j].

Returns

Incremented vector

Parameters

in	tmat	Transformation matrix
in	vec	Source vector
in,out	prod	Incremented vector

Definition at line 569 of file vector3_inline.hh.

7.5.2.27 transform_transpose() [1/2]

Transform a column vector with the transpose, prod[i] = tmat[j][i]*vec[j].

Returns

Transformed vector

in	tmat	Transformation matrix
in	vec	Source vector
out	prod	Transformed vector

Definition at line 330 of file vector3_inline.hh.

Referenced by transform_transpose().

7.5.2.28 transform_transpose() [2/2]

Transform a column vector in-place with the transpose, vec[i] <- tmat[j][i]*vec[j].

Returns

Transformed vector

Parameters

in	tmat	Transformation matrix
in,out	vec	Transformed vector

Definition at line 348 of file vector3_inline.hh.

References copy(), and transform_transpose().

7.5.2.29 transform_transpose_decr()

decrement a vector with a transpose-transformed column vector, prod[i] -= tmat[j][i]*vec[j]

Returns

Decremented vector

in	tmat	Transformation matrix
in	vec	Source vector
in,out	prod	Decremented vector

Definition at line 626 of file vector3_inline.hh.

7.5.2.30 transform_transpose_incr()

Increment a vector with a transpose-transformed column vector, prod[i] += tmat[j][i]*vec[j].

Returns

Incremented vector

Parameters

in	tmat	Transformation matrix
in	vec	Source vector
in,out	prod	Incremented vector

Definition at line 607 of file vector3_inline.hh.

7.5.2.31 unit()

Construct unit vector, vec[i] = delta_ij (delta_ij is the Kronecker delta)

Returns

Unit vector

Parameters

in	index	Unit index: 0,1,2=x,y,z hat
out	vec	Unit vector

Definition at line 89 of file vector3_inline.hh.

7.5.2.32 vmag()

Compute vector magnitude, result = sqrt(vmagsq(vec))

Returns

Vector magnitude

Parameters

Definition at line 181 of file vector3_inline.hh.

References vmagsq().

Referenced by normalize().

7.5.2.33 vmagsq()

Compute square of vector magnitude, result = dot(vec,vec), but protects against underflow.

Returns

Inner product

Parameters

Definition at line 170 of file vector3_inline.hh.

Referenced by vmag().

7.5.2.34 zero_small()

Zero-out small components of a vector, vec[i] = 0 if abs(vec[i]) < limit.

Returns

Truncated vector

Parameters

in	limit	Limit
in,out	vec	Truncated vector

Definition at line 116 of file vector3_inline.hh.

References jeod::Numerical::fabs().

The documentation for this class was generated from the following files:

- vector3.hh
- vector3_inline.hh

Chapter 8

File Documentation

8.1 dm_invert.cc File Reference

Define Matrix3x3::invert.

```
#include <cmath>
#include "utils/message/include/message_handler.hh"
#include "../include/math_messages.hh"
#include "../include/matrix3x3.hh"
```

Namespaces

• jeod

Namespace jeod.

8.1.1 Detailed Description

Define Matrix3x3::invert.

8.2 dm_invert_symm.cc File Reference

Define Matrix3x3::invert_symmetric.

```
#include <cmath>
#include "utils/message/include/message_handler.hh"
#include "../include/math_messages.hh"
#include "../include/matrix3x3.hh"
```

Namespaces

• jeod

Namespace jeod.

50 File Documentation

8.2.1 Detailed Description

Define Matrix3x3::invert_symmetric.

8.3 gauss_quadrature.cc File Reference

Define Gauss Quadrature functionality.

```
#include "../include/gauss_quadrature.hh"
```

Namespaces

• jeod

Namespace jeod.

8.3.1 Detailed Description

Define Gauss Quadrature functionality.

8.4 gauss_quadrature.hh File Reference

Gauss Quadrature implementation.

Data Structures

· class jeod::GaussQuadrature

Namespaces

• jeod

Namespace jeod.

8.4.1 Detailed Description

Gauss Quadrature implementation.

8.5 math_messages.cc File Reference

Implement the class MathMessages.

```
#include "utils/message/include/make_message_code.hh"
#include "../include/math_messages.hh"
```

Namespaces

• jeod

Namespace jeod.

Macros

#define MAKE_MATH_MESSAGE_CODE(id) JEOD_MAKE_MESSAGE_CODE(MathMessages, "utils/math/", id)

8.5.1 Detailed Description

Implement the class MathMessages.

8.6 math_messages.hh File Reference

Define the class MathMessages.

Data Structures

• class jeod::MathMessages

Specifies the message IDs used in the math model.

Namespaces

• jeod

Namespace jeod.

8.6.1 Detailed Description

Define the class MathMessages.

8.7 matrix3x3.hh File Reference

Matrix math inline functions.

```
#include "matrix3x3_inline.hh"
```

Data Structures

• class jeod::Matrix3x3

Provides static methods for operations that involve 3x3 matrices.

52 File Documentation

Namespaces

• jeod

Namespace jeod.

Macros

• #define IDENTITY

8.7.1 Detailed Description

Matrix math inline functions.

8.7.2 Macro Definition Documentation

8.7.2.1 IDENTITY

```
#define IDENTITY
```

Value:

```
{1.0, 0.0, 0.0}, {0.0, 1.0, 0.0},
{
0.0, 0.0, 1.0
```

Definition at line 180 of file matrix3x3.hh.

8.8 matrix3x3_inline.hh File Reference

Matrix math inline functions.

```
#include <cstdio>
#include "matrix3x3.hh"
```

Namespaces

• jeod

Namespace jeod.

8.8.1 Detailed Description

Matrix math inline functions.

8.9 numerical.hh File Reference

Miscellaneous math inline functions.

```
#include "numerical_inline.hh"
```

Data Structures

· class jeod::Numerical

Provides miscellaneous numerical functions.

Namespaces

• jeod

Namespace jeod.

8.9.1 Detailed Description

Miscellaneous math inline functions.

8.10 numerical_inline.hh File Reference

Vector math inline functions.

```
#include "numerical.hh"
```

Namespaces

• jeod

Namespace jeod.

Variables

• static constexpr double jeod::SQRT_DBL_MIN {1.4916681462400413e-154}

8.10.1 Detailed Description

Vector math inline functions.

54 File Documentation

8.11 vector3.hh File Reference

Vector math inline functions.

```
#include "vector3_inline.hh"
```

Data Structures

• class jeod::Vector3

Provides static methods for operations that involve 3-vectors.

Namespaces

• jeod

Namespace jeod.

8.11.1 Detailed Description

Vector math inline functions.

8.12 vector3_inline.hh File Reference

Vector math inline functions.

```
#include <cmath>
#include "numerical.hh"
#include "vector3.hh"
```

Namespaces

• jeod

Namespace jeod.

8.12.1 Detailed Description

Vector math inline functions.

Index

add	invert
jeod::Matrix3x3, 19	jeod::Matrix3x3, 21
•	invert_symmetric
compare_exact	jeod::Matrix3x3, 22
jeod::Numerical, 29	
сору	jeod, 13
jeod::Matrix3x3, 19	SQRT_DBL_MIN, 13
jeod::Vector3, 33	jeod::GaussQuadrature, 15
cross	gauss_weights, 15
jeod::Vector3, 33	gauss_xvalues, 15
cross_decr	max_order, 16
jeod::Vector3, 34	jeod::MathMessages, 16
cross_incr	ill_conditioned, 17
jeod::Vector3, 34	MathMessages, 17
cross_matrix	operator=, 17
jeod::Matrix3x3, 20	jeod::Matrix3x3, 18
	add, 19
decr	copy, 19
jeod::Matrix3x3, 20	cross_matrix, 20
jeod::Vector3, 35	decr, 20
diff	identity, 20
jeod::Vector3, 35	incr, 21
dm_invert.cc, 49	initialize, 21
dm_invert_symm.cc, 49	invert, 21
dot	invert_symmetric, 22
jeod::Vector3, 36	negate, 22, 23
fabs	outer_product, 23
jeod::Numerical, 30	print, 24
fill	product, 24
jeod::Vector3, 36	product_left_transpose, 24
Jeou vectors, ou	product_right_transpose, 25
gauss_quadrature.cc, 50	product_transpose_transpose, 25
gauss_quadrature.hh, 50	scale, 26
gauss_weights	subtract, 27
jeod::GaussQuadrature, 15	transform_matrix, 27
gauss_xvalues	transpose, 27, 28
jeod::GaussQuadrature, 15	transpose_transform_matrix, 28
, , , , , , , , , , , , , , , , , , , ,	jeod::Numerical, 29
IDENTITY	compare_exact, 29
matrix3x3.hh, 52	fabs, 30
identity	square, 30
jeod::Matrix3x3, 20	square_incr, 30
ill_conditioned	jeod::Vector3, 31
jeod::MathMessages, 17	copy, <mark>33</mark>
incr	cross, 33
jeod::Matrix3x3, 21	cross_decr, 34
jeod::Vector3, 37	cross_incr, 34
initialize	decr, 35
jeod::Matrix3x3, 21	diff, 35
jeod::Vector3, 38	dot, <mark>36</mark>

56 INDEX

fill, 36	jeod, 13
incr, 37	scale
initialize, 38	jeod::Matrix3x3, 26
negate, 38	jeod::Vector3, 40
normalize, 39	scale_decr
scale, 40	jeod::Vector3, 41
scale_decr, 41	scale incr
scale_incr, 41	jeod::Vector3, 41
sum, 41, 42	square
transform, 42, 43	jeod::Numerical, 30
transform_decr, 43	square_incr
transform incr, 44	jeod::Numerical, 30
transform_transpose, 44, 45	subtract
transform_transpose_decr, 45	jeod::Matrix3x3, 27
transform_transpose_incr, 46	sum
unit, 46	jeod::Vector3, 41, 42
	jeodvector3, 41, 42
vmag, 47	transform
vmagsq, 47	jeod::Vector3, 42, 43
zero_small, 47	transform decr
MAKE_MATH_MESSAGE_CODE	jeod::Vector3, 43
Math, 11	•
Math, 11	transform_incr
MAKE_MATH_MESSAGE_CODE, 11	jeod::Vector3, 44
math_messages.cc, 50	transform_matrix
	jeod::Matrix3x3, 27
math_messages.hh, 51	transform_transpose
MathMessages	jeod::Vector3, 44, 45
jeod::MathMessages, 17	transform_transpose_decr
matrix3x3.hh, 51	jeod::Vector3, 45
IDENTITY, 52	transform_transpose_incr
matrix3x3_inline.hh, 52	jeod::Vector3, 46
max_order	transpose
jeod::GaussQuadrature, 16	jeod::Matrix3x3, 27, 28
Models, 9	transpose_transform_matrix
negate	jeod::Matrix3x3, 28
jeod::Matrix3x3, 22, 23	
jeod::Vector3, 38	unit
normalize	jeod::Vector3, 46
	Utils, 10
jeod::Vector3, 39	vector 2 bb E4
numerical.hh, 53	vector3.hh, 54
numerical_inline.hh, 53	vector3_inline.hh, 54
operator=	vmag
jeod::MathMessages, 17	jeod::Vector3, 47
outer_product	vmagsq
jeod::Matrix3x3, 23	jeod::Vector3, 47
joodwatiixoxo, 20	zero small
print	jeod::Vector3, 47
jeod::Matrix3x3, 24	jeodvectoro, 47
product	
jeod::Matrix3x3, 24	
product_left_transpose	
jeod::Matrix3x3, 24	
product_right_transpose	
jeod::Matrix3x3, 25	
product_transpose_transpose	
jeod::Matrix3x3, 25	
•	
SORT DBL MIN	