Proof by Induction: Matrices

Proof by Induction of a formula for the nth power of a matrix

The good news is that matrices proofs are almost identical in structure to series proofs and the algebra is normally easier.

With series proofs, the trick we used was to split the sum to k+1 into the sum to k plus the k+1th term. Our trick now is to split the k+1th power of matrix M into the kth power of M multiplied by M once more.

e.g.
$$M=\begin{pmatrix} 3 & -1 \\ 4 & -1 \end{pmatrix}$$
. Prove that $M^n=\begin{pmatrix} 2n+1 & -n \\ 4n & 1-2n \end{pmatrix}$ for all positive integers n .

Base case		
$ \frac{\text{base case}}{\text{If } n = 1} $		These are equal so the statement is true for $n=1$
Induction step		
Assume true for $n = k$	$\begin{pmatrix} 3 & -1 \\ 4 & -1 \end{pmatrix}^k = \begin{pmatrix} 2k+1 & -k \\ 4k & 1-2k \end{pmatrix}$	If the statement is true for $n = k$
Then for $n = k + 1$	LHS	
	$= \begin{pmatrix} 3 & -1 \\ 4 & -1 \end{pmatrix}^{k+1}$	
	$= \begin{pmatrix} 3 & -1 \\ 4 & -1 \end{pmatrix}^{k} \begin{pmatrix} 3 & -1 \\ 4 & -1 \end{pmatrix}$ $= \begin{pmatrix} 2k+1 & -k \\ 4k & 1-2k \end{pmatrix} \begin{pmatrix} 3 & -1 \\ 4 & -1 \end{pmatrix}$ $= \begin{pmatrix} 2k+3 & -k-1 \\ 4k+4 & -2k-1 \end{pmatrix}$	
	$=\begin{pmatrix} 4 & -1 \end{pmatrix} \begin{pmatrix} 4 & -1 \end{pmatrix} \begin{pmatrix} 3 & -1 \end{pmatrix}$	
	$\begin{pmatrix} 4k & 1-2k/\sqrt{4} & -1/ \\ 2k+2 & k+1 \end{pmatrix}$	
	$=\begin{pmatrix} 2k+3 & -k-1 \\ 4k+4 & -2k-1 \end{pmatrix}$	
	$= \begin{pmatrix} 2[k+1] + 1 & -[k+1] \\ 4[k+1] & 1 - 2[k+1] \end{pmatrix}$	
	- (4[k+1] 1-2[k+1])	
	= RHS	then it is also true for $n = k + 1$
<u>Conclusion</u>	• True for $n=1$	
	• If true for $n = k$ then true for $n = k + 1$	
	 Hence true for all positive integers n 	