E-Commerce Customer Churn Analysis

```
In [1]:

1 import pandas as pd
2 import numpy as np
3 import matplotlib.pyplot as plt
4 import seaborn as sns
```

Out[2]:

	CustomerID	Churn	Tenure	PreferredLoginDevice	CityTier	WarehouseToHome	PreferredPayment
0	50001	1	4.0	Mobile Phone	3	6.0	Debi
1	50002	1	NaN	Phone	1	8.0	
2	50003	1	NaN	Phone	1	30.0	Debi
3	50004	1	0.0	Phone	3	15.0	Debi
4	50005	1	0.0	Phone	1	12.0	

In [3]: 1 # # describe() method returns description of the data in the DataFrame (i.e.
2 df.describe()

Out[3]:

	CustomerID	Churn	Tenure	CityTier	WarehouseToHome	HourSpendOnApp
count	5630.000000	5630.000000	5366.000000	5630.000000	5379.000000	5375.000000
mean	52815.500000	0.168384	10.189899	1.654707	15.639896	2.931535
std	1625.385339	0.374240	8.557241	0.915389	8.531475	0.721926
min	50001.000000	0.000000	0.000000	1.000000	5.000000	0.000000
25%	51408.250000	0.000000	2.000000	1.000000	9.000000	2.000000
50%	52815.500000	0.000000	9.000000	1.000000	14.000000	3.000000
75%	54222.750000	0.000000	16.000000	3.000000	20.000000	3.000000
max	55630.000000	1.000000	61.000000	3.000000	127.000000	5.000000
4						•

```
In [4]:
            # Gives the information about types of data
          1
          2
             df.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 5630 entries, 0 to 5629
        Data columns (total 20 columns):
         #
             Column
                                           Non-Null Count
                                                            Dtype
         0
             CustomerID
                                           5630 non-null
                                                            int64
         1
             Churn
                                           5630 non-null
                                                            int64
         2
             Tenure
                                           5366 non-null
                                                            float64
             PreferredLoginDevice
                                           5630 non-null
                                                           object
         3
         4
             CityTier
                                           5630 non-null
                                                            int64
         5
             WarehouseToHome
                                                            float64
                                           5379 non-null
         6
             PreferredPaymentMode
                                           5630 non-null
                                                            object
         7
             Gender
                                           5630 non-null
                                                            object
         8
             HourSpendOnApp
                                           5375 non-null
                                                            float64
         9
             NumberOfDeviceRegistered
                                                            int64
                                           5630 non-null
             PreferedOrderCat
         10
                                           5630 non-null
                                                            object
         11 SatisfactionScore
                                           5630 non-null
                                                            int64
         12 MaritalStatus
                                           5630 non-null
                                                            object
         13 NumberOfAddress
                                           5630 non-null
                                                            int64
                                           5630 non-null
                                                            int64
         14 Complain
         15 OrderAmountHikeFromlastYear
                                                            float64
                                           5365 non-null
         16 CouponUsed
                                           5374 non-null
                                                            float64
         17 OrderCount
                                           5372 non-null
                                                            float64
         18 DaySinceLastOrder
                                           5323 non-null
                                                            float64
         19 CashbackAmount
                                           5630 non-null
                                                            float64
        dtypes: float64(8), int64(7), object(5)
        memory usage: 879.8+ KB
In [5]:
             # Gives information about rows and columns in table
          1
          2
             df.shape
Out[5]: (5630, 20)
             # Gives information about Payment methods with corresponding counts.
In [6]:
            df['PreferredPaymentMode'].value_counts()
Out[6]: Debit Card
                             2314
        Credit Card
                             1501
        E wallet
                              614
        UPI
                              414
        COD
                              365
        CC
                              273
        Cash on Delivery
                              149
        Name: PreferredPaymentMode, dtype: int64
```

```
In [7]:
              # Gives information about customers preferred order category along with value
              df['PreferedOrderCat'].value counts()
Out[7]: Laptop & Accessory
                                2050
         Mobile Phone
                                1271
         Fashion
                                 826
         Mobile
                                 809
                                 410
         Grocery
         Others
                                 264
         Name: PreferedOrderCat, dtype: int64
              # Describe the preferred login device of customer with counts.
In [8]:
             df['PreferredLoginDevice'].value counts()
Out[8]: Mobile Phone
                          2765
         Computer
                          1634
         Phone
                          1231
         Name: PreferredLoginDevice, dtype: int64
             # Checking the null values in corresonding columns in dataset
In [9]:
              df.isnull().sum()
Out[9]: CustomerID
                                           0
         Churn
                                            0
         Tenure
                                          264
         PreferredLoginDevice
                                            0
         CityTier
                                            0
         WarehouseToHome
                                          251
         PreferredPaymentMode
                                            a
         Gender
                                            0
                                         255
         HourSpendOnApp
         NumberOfDeviceRegistered
                                            0
         PreferedOrderCat
                                            0
         SatisfactionScore
                                            0
         MaritalStatus
                                            0
         NumberOfAddress
                                           0
         Complain
                                           0
         OrderAmountHikeFromlastYear
                                          265
         CouponUsed
                                          256
         OrderCount
                                         258
         DaySinceLastOrder
                                          307
         CashbackAmount
                                           0
         dtype: int64
In [10]:
              # Dropping null value from the dataset
              df.dropna(inplace=True)
```

```
In [11]. 1 # Now the dataset contains zone null values
```

```
# Now the dataset contains zero null values
In [11]:
           1
             df.isnull().sum()
Out[11]: CustomerID
                                         0
         Churn
                                         0
         Tenure
                                         0
         PreferredLoginDevice
                                         0
         CityTier
                                         0
         WarehouseToHome
                                         0
         PreferredPaymentMode
         Gender
                                         0
         HourSpendOnApp
                                         0
         NumberOfDeviceRegistered
                                         0
         PreferedOrderCat
         SatisfactionScore
                                         0
         MaritalStatus
                                         a
         NumberOfAddress
                                         0
         Complain
                                         0
         OrderAmountHikeFromlastYear
                                         0
         CouponUsed
                                         0
         OrderCount
                                         0
         DaySinceLastOrder
                                         0
         CashbackAmount
         dtype: int64
In [12]:
              # Changing the datatype of columns to approriate format
             df['WarehouseToHome']= df['WarehouseToHome'].astype('int64')
           3
             df['HourSpendOnApp'] = df['HourSpendOnApp'].astype('int64')
             df['Tenure']= df['Tenure'].astype('int64').astype('int64')
             df['OrderAmountHikeFromlastYear']=df['OrderAmountHikeFromlastYear'].astype('
             df['CouponUsed']=df['CouponUsed'].astype('int64')
           7
             df['OrderCount']=df['OrderCount'].astype('int64')
             df['DaySinceLastOrder']=df['DaySinceLastOrder'].astype('int64')
           9
             df['CashbackAmount'] = df['CashbackAmount'].astype('int64')
          10
          11
In [13]:
              # Here phone and Mobile Phone referes to same device so relace it with same
             df['PreferredLoginDevice']=df['PreferredLoginDevice'].replace('Phone','Mobil
           3
             df['PreferedOrderCat'] =df['PreferedOrderCat'].replace('Mobile','Mobile Phon
             # Cheking the unique value corresponding to 'Prefered order category'
In [14]:
           2 df['PreferedOrderCat'].unique()
Out[14]: array(['Laptop & Accessory', 'Mobile Phone', 'Fashion', 'Others',
                 'Grocery'], dtype=object)
```

```
In [15]:
             # verifying the changed data types
           1
              df.info()
         <class 'pandas.core.frame.DataFrame'>
         Int64Index: 3774 entries, 0 to 5629
         Data columns (total 20 columns):
          #
              Column
                                            Non-Null Count
                                                            Dtype
          0
              CustomerID
                                            3774 non-null
                                                            int64
          1
              Churn
                                            3774 non-null
                                                            int64
          2
              Tenure
                                            3774 non-null
                                                            int64
              PreferredLoginDevice
          3
                                            3774 non-null
                                                            object
          4
              CityTier
                                            3774 non-null
                                                            int64
          5
              WarehouseToHome
                                            3774 non-null
                                                            int64
          6
              PreferredPaymentMode
                                                            object
                                            3774 non-null
          7
              Gender
                                            3774 non-null
                                                            object
          8
              HourSpendOnApp
                                            3774 non-null
                                                            int64
              NumberOfDeviceRegistered
          9
                                            3774 non-null
                                                            int64
          10
              PreferedOrderCat
                                            3774 non-null
                                                            object
          11 SatisfactionScore
                                            3774 non-null
                                                            int64
          12 MaritalStatus
                                            3774 non-null
                                                            object
          13 NumberOfAddress
                                            3774 non-null
                                                            int64
          14 Complain
                                            3774 non-null
                                                            int64
          15 OrderAmountHikeFromlastYear 3774 non-null
                                                            int64
          16 CouponUsed
                                            3774 non-null
                                                            int64
          17 OrderCount
                                            3774 non-null
                                                            int64
          18 DaySinceLastOrder
                                            3774 non-null
                                                            int64
          19 CashbackAmount
                                            3774 non-null
                                                            int64
         dtypes: int64(15), object(5)
         memory usage: 619.2+ KB
In [16]:
              # Removing duplicate rows
           1
              df.drop_duplicates(inplace = True)
```

Gender-wise Churn rate

```
In [17]: 1
2    ax = sns.countplot(x='Churn',data=df,width=0.3,hue='Gender',palette='Set2')
3    4    for bars in ax.containers:
        ax.bar_label(bars)
```


Result: Churn rate is higher in males as compared to females.

Distribution of Number of Customer Orders

Conclusion: The frequency of customers ordering upto 2 products is highest and retention rate is also high for customer ordering 2 orders.

Order category-wise company customers

Conclusion: Churn rate is higher for customer purchasing Mobile phone and Laptop & Accesory.

```
# distribution of customer based on preferred Login device counts
In [20]:
              data=df['PreferredLoginDevice'].value_counts()
           3
             data
Out[20]: Mobile Phone
                          2663
         Computer
                          1111
         Name: PreferredLoginDevice, dtype: int64
In [21]:
              device_percentage = ((data)/data.sum())*100
              device percentage
Out[21]: Mobile Phone
                         70.561738
                          29.438262
```

Name: PreferredLoginDevice, dtype: float64

Customer preference to login on company website

Preferred Login devices

Conclusion : 70% customer prefers to login via Mobile phone while 29 % customers prefers to login via computer.

Out[23]:

	index	PreferredPaymentMode
0	Debit Card	1538
1	Credit Card	1124
2	E wallet	443
3	COD	301
4	UPI	285
5	Cash on Delivery	48
6	CC	35

Payment mode wise distribution of customers

Conclusion: Most of the customers used to pay via debit card and credit card while very small number of customers prefer cash on delivery.

Scatter plot of Number of Orders and Coupon Used

conclusion : As number of Order increases chances of getting couponcode increases and also churn rate is high for order count 10 as compared to others.

Conclusion : As the years with company increases customer chances of churning increases.

Heatmap of checking correlation between variables.

```
y = {'fontsize': 10,'color':'black'}
In [27]:
                 1
                     numeric columns = df.select dtypes(include='number').drop(columns=['Customer')
                     fig, ax = plt.subplots(figsize=(10,6))
                     sns.heatmap(numeric columns.corr(), center=0, cmap='BrBG', annot=True,annot
                     plt.show()
                                                                                                                                    1.0
                                              -0.34 0.074 0.087 0.061 0.15 0.096 0.076 0.24 0.017 0.011 -0.002 -0.14 -0.059
                                                     -0.057-0.016 -0.03 -0.059 -0.01 0.2 -0.035 0.012 0.076 0.11 0.12 0.21
                                    CityTier - 0.074 -0.057 0.0045 -0.07-0.00860.019-0.0460.00610.028 0.013 0.035 0.014 0.15
                          WarehouseToHome - 0.087 -0.0160.0045 0.053 0.0250.0004B.00340.00380.032 -0.0140.00880.011 -0.012
                                                                                                                                   - 0.6
                           HourSpendOnApp -0.061 -0.03 -0.07 0.053
                                                                     0.29 0.04 0.12 0.02 0.097 0.16 0.093 0.02 0.13
                  NumberOfDeviceRegistered - 0.15 -0.0590.00860.025 0.29
                                                                           -0.018 0.067 0.019 0.083 0.11 0.07 -0.05 0.11
                                                                                                                                    0.4
                           SatisfactionScore - 0.096 -0.01 -0.019.000430.04 -0.018 0.055 -0.0450.008 0.00670.00460.013 0.012
                           NumberOfAddress - 0.076 0.2 -0.0460.0034 0.12 0.067 0.055 -0.017 0.01 -0.018-0.079 -0.15 0.097
                                  Complain - 0.24 -0.0350.006D.0038 0.02 0.019-0.045-0.017 1 0.00330.00550.00190.056 0.01
                                                                                                                                   0.2
                OrderAmountHikeFromlastYear - 0.017 0.012 -0.028 0.032 0.097 0.083-0.0081 0.01 0.0033 0.049 0.043 0.018 0.014
                                CouponUsed -0.011 0.076 0.013-0.014 0.16 0.11 0.0067-0.0180.00550.049
                                OrderCount -0.002 0.11 0.0350.00880.093 0.07-0.00460.0790.00190.043
                          DaySinceLastOrder - -0.14 0.12 0.014 0.011 0.02 -0.05 0.013 -0.15 -0.056 0.018 0.32
                                                                                                                                    -0.2
                           CashbackAmount -0.059 0.21 0.15 -0.012 0.13
                                                                         0.11 0.012 0.097
                                                                                          0.01 0.014
                                                               NarehouseToHome
                                                                                                            OrderCount
                                                         CityTier
                                                                    HourSpendOnApp
                                                                                     NumberOfAddress
                                                                                                      CouponUsed
                                                                                                                  DaySinceLastOrder
                                                                          NumberOfDeviceRegistered
                                                                                                 OrderAmountHikeFromlastYear
```

- 1) There is strong correlation between coupon used and order count. beacause customers hope that they will get more coupon as number of order increases.
- 2) There is negative relation between churn rate and tenure.
- 3) churn rate is also depends on satisfication score of customers.
- 4) There is co-relation between customer churn rate and complain by customer.It is obvious that if complain are not handled properly customer churning rate increases.

Boxplot of Order count with city tier.

Conclusion: Average order count for all city is same ie. 2, Maximum order count for city1 and city 3 is also same i.e. 6 and Churn rate is high for tier 1 and tier 3 city average order count is 3 for respective city.

Payment wise Churn rate

Out[29]:

	PreferredPaymentMode	Churn
4	Debit Card	230
3	Credit Card	169
5	E wallet	94
1	COD	73
6	UPI	48
0	CC	10
2	Cash on Delivery	7

conclusion : Churn rate is higher in case of debit card and credit card users.Least in cash on Delivery customers.

Gender-wise cashback Amount

conclusion: Males are likely to receive more cashback amount as compared to females. Because males prefer to purchase online more as compared to females.

Distribution of Satisfaction Score for Churned and Retained Customers.

In [32]:

- sns.countplot(y='SatisfactionScore', hue='Churn', palette='viridis', data=df plt.title("Distribution of Satisfaction Score for Churned and Retained custon
- 3 plt.show()

Distribution of Satisfaction Score for Churned and Retained customers

conclusion: Customer with satisfaction score 3 on service are more likely to be churned and more likely to be retained in service. While customer with satisfaction score 2 are less likely churned as well as less likely retained.

Distribution of Marital Status base on Churned and Retained Customer.

Distribution of marital Status based on Churned and Retained customer

Conclusion: Chances of churning is higher in case unmarried person. while retaintion rate is higher in married person.

Churned and retained by preferred Login Devices

```
In [34]: 1 grouped_data= df.groupby(['PreferredLoginDevice','Churn']).size().unstack().
2 plt.ylabel('churn count')
3 plt.title('Churned and retained by preferred Login Devices')
4
5
6 plt.show()
7
```


Conclusion: Customer login with Mobile Phone are more likely churned and retained because Most of the customer login via Mobile phone as compared to computer.

PreferredLoginDevice

Recommendations

- Address and resolve customer complaints promptly and efficiently. A high correlation between churn and customer complaints suggests that better customer service can retain more customers.
- Focus on increasing customer satisfaction scores. A higher satisfaction score indicates a lower likelihood of churning. Conduct surveys and gather feedback to identify areas for improvement.
- 3. Implement customer retention programs, such as loyalty rewards and personalized offers. This

- 3. Implement customer retention programs, such as loyalty rewards and personalized offers. This can incentivize customers to continue shopping with your platform.
- 4. Since males tend to receive more cashback, consider tailoring cashback offers to female customers to make them more competitive. Offer cashback on a broader range of products to increase its appeal.
- 5. As a majority of customers prefer mobile devices for shopping, focus on improving your mobile app's user experience. Ensure it is user-friendly, fast, and offers all the features that customers need.
- 6. Customers with longer tenure are more likely to churn. Offer special deals, discounts, or exclusive access to long-term customers to reward their loyalty.
- 7. Actively engage with customer feedback and implement suggested improvements. Customers appreciate being heard, and it can lead to increased loyalty.
- 8. Ensure hassle-free returns and refunds for customers. This can build trust and increase customer satisfaction.
- 9. Keep an eye on the market and offer competitive pricing. Regularly check competitor pricing and adjust your rates accordingly.

---- END-----