

Supervised Learning

Javier Cañadillas - javier@canadillas.org

Esta presentación:

bit.ly/ks-sl-day1

Notas adicionales:

bit.ly/ks-sl-notes

Temario

- Introducción Aprendizaje supervisado, regresión y clasificación
- Modelos de aprendizaje supervisado
- Evaluación de modelos Sobre la marcha
- Laboratorios y ejercicios
- Refrescos, recapitulaciones y conclusiones

NOT(Temario)

- Matemáticas avanzadas y demostraciones
- Ingeniería de características
- Técnicas de descenso de gradiente
- Optimización y evaluación avanzada de modelos

Agenda y reparto aproximado

- Introducción
- k-Nearest Neighbors
- Modelos lineales de regresión
- Modelos lineales de clasificación —
- Naive Bayes
- Árboles de decisión
- Ensemble learning
- (Kernelized) Support Vector Machines
- Recap

Día 3

Día 1

Día 2

Repositorio de código

gitlab.com/Sh3llD00m/kschool-supervised-learning.git

0. Introducción

Aprendizaje supervisado en ML

Aprendizaje Supervisado vs No Supervisado

- Tenemos conocimiento previo de valores de salida (labels o etiquetas)
- Objetivo: encontrar función que, dado un dataset de entrada y unas salidas, aproxime de la mejor forma la relación existente entre ellos.
- Tipos de algoritmos supervisados:
 - Clasificación (binaria o multiclase)
 - Regresión (predicción número continuo)

Motores de reglas ↔ Aprendizaje Supervisado

```
import numpy as np
from sklearn.datasets import make_classification

rs = np.random.RandomState(42)
X, y = make_classification(n_samples = 10, random_state = rs)
```


Motores de reglas ↔ Aprendizaje Supervisado

```
def tomar_decision_super_importante(X):
    0.00
    Decidir si pasa algo gordo
    0.00
    row_sums = X.sum(axis=1)
    return (row_sums > 0).astype(int)
tomar_decision_super_importante(X)
```


Ejemplo de aprendizaje supervisado

```
from sklearn.linear_model import LogisticRegression
def aprender_leccion_vital(X,y):
    Aprender una lección y aplicarla en el futuro
    model = LogisticRegression().fit(X,y)
    return (lambda x: model.predict(x))
# Aprender una lección y aplicarla
decision_informada = aprender_leccion_vital(X,y)(X)
print(decision_informada)
```


¿Qué es aprendizaje supervisado?

Es un método de aprendizaje que **aprende una función** a partir de un **conjunto de muestras ya etiquetada** que **aproxima valores futuros de** *y*

Función de coste (loss function)

- Cuantifica un coste que el algoritmo minimiza
- Es una medida de lo bien que un modelo se ajusta a un problema

$$L(y, \hat{y}) \in \mathbb{R}$$

$$L = -\sum_{x} p(x) \log(1 - p(x)))$$

Entropía cruzada (clasificación)

$$L = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

Sumatorio error cuadrático (regresión)

Queremos minimizar L - ¿cómo?

Algoritmo general de minimización de gradiente

- Inicializamos los parámetros/pesos (theta) de manera aleatoria
- 2. Calculamos el gradiente **G** de la función de coste **L** con respecto a los parámetros
- Actualizamos los pesos con una cantidad proporcional al gradiente: w = w -(learning rate)*G
- 4. Repetimos hasta que L ya no se reduce más o alcanzamos otro criterio de parada.

¿Quién querrá comprar un barco?

Edad	# coches en propiedad	Tiene casa	# niños	Estado civil	Tiene perro	Tiene barco
66	1	SÍ	2	viudo	no	SÍ
52	2	SÍ	3	casado	no	SÍ
22	0	no	0	casado	SÍ	SÍ
25	1	no	1	soltero	no	no
44	0	no	2	divorciado	SÍ	no
39	1	SÍ	2	casado	SÍ	no
26	1	no	2	soltero	no	no
40	3	SÍ	1	casado	SÍ	no
53	2	SÍ	2	divorciado	no	SÍ
64	2	SÍ	3	divorciado	no	no
58	2	SÍ	2	casado	SÍ	SÍ
33	1	no	1	soltero	no	no

Modelo 1

Edad	# coches en propiedad	Tiene casa	# niños	Estado civil	Tiene perro	Tiene barco
66	1	sí	2	viudo	no	SÍ
52	2	sí	3	casado	no	sí
22	0	no	0	casado	SÍ	sí
25	1	no	1	soltero	no	no
44	0	no	2	divorciado	SÍ	no
39	1	sí	2	casado	SÍ	no
26	1	no	2	soltero	no	no
40	3	SÍ	1	casado	SÍ	no
53	2	SÍ	2	divorciado	no	sí
64	2	SÍ	3	divorciado	no	no
58	2	SÍ	2	casado	SÍ	SÍ
33	1	no	1	soltero	no	no

(> 45 años) y (< 3 niños o (no divorciado)) → Sí

Modelo 2

Edad	# coches en propiedad	Tiene casa	# niños	Estado civil	Tiene perro	Tiene barco
66	1	sí	2	viudo	no	sí
52	2	sí	3	casado	no	sí
22	0	no	0	casado	SÍ	sí
25	1	no	1	soltero	no	no
44	0	no	2	divorciado	SÍ	no
39	1	sí	2	casado	SÍ	no
26	1	no	2	soltero	no	no
40	3	SÍ	1	casado	SÍ	no
53	2	SÍ	2	divorciado	no	sí
64	2	SÍ	3	divorciado	no	no
58	2	SÍ	2	casado	SÍ	SÍ
33	1	no	1	soltero	no	no

> 50 años → Sí

¿Cuál es mejor?

Underfitting, Overfitting y generalización

<u>Sobreajuste</u> (overfitting)

- Alto grado de complejidad
- Functiona bien en training set
- No generaliza bien

<u>Subajuste</u> (underfitting)

- Demasiado sencillo
- Predice mal, incluso en training set
- Generaliza demasiado

Se trata de buscar un compromiso

Complejidad del modelo y tamaño del dataset

- ↑ Dataset → ↑ Complejidad
 - ¿Y si tenemos 100k entradas de posibles compradores de barcos?
- Recoger más datos funciona muy bien para los modelos de Aprendizaje Supervisado

Lab 0 - Datasets de ejemplo

1. Conclusiones

- El uso de datasets sencillos es útil
- Hay que probar con datasets reales conocidos
- Importante desarrollar una intuición
- Realizar siempre trabajo exploratorio de los datos

1. k-Nearest Neighbors

k-Nearest Neighbors

- Algoritmo sencillo
 - No paramétrico
 - Basado en instancias
- Clasificación, o regresión
 - Training mínimo: construir modelo → almacenar dataset
- Predicción: encontrar datapoints más próximos en training set
 - Por defecto: min(métrica Minkowski o distancia euclídea)

k-Nearest Neighbors

Lab 1 - k-Nearest Neighbors

1. Conclusiones

- Dos parámetros importantes
 - \circ Número de vecinos \rightarrow 3 a 5, pero probar
 - Métrica de distancia → Fuera de alcance
- Fácil de entender, rendimiento razonable
 - Training rápido
 - Testing lento para grandes datasets
- Se usa menos que la regresión lineal

2. Modelos lineales de regresión

Regresión Lineal

- Simple, pero potente
- Aproxima la relación entre variables de entrada y la variable objetivo mediante un hiperplano
 - Recta, en una dimensión
- Su forma general es:

$$\hat{y} = w_0 \cdot x_0 + w_1 \cdot x_1 + \dots + w_p \cdot x_p + b$$

Un mínimo de matemáticas

$$\hat{y} = w_0 \cdot x_0 + w_1 \cdot x_1 + \dots + w_n \cdot x_n$$
 $x_0 = 1, w_0 = b$ \leftarrow Misma ecuación que antes

$$h_{ heta}(x) = heta^T x egin{pmatrix} heta_0 \ heta_1 \ ... \ heta_n \end{pmatrix} \in \mathbb{R}^{n+1}$$

$$J(\theta) = \frac{1}{2m} (X\theta - y)^T (X\theta - y) \qquad \leftarrow \text{Queremos minimizar esta función de coste, que no es más que la expresión matricial de los mínimos cuadrados}$$

$$\frac{\partial J}{\partial \theta} = 2X^T X \theta - 2X^T y = 0 \quad \leftarrow \text{El es gradiente} \qquad \qquad J(\theta_{0...n}) = \frac{1}{2m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)})^2$$

$$\theta = (X^T X)^{-1} X^T y$$
 \leftarrow Esta es la ecuación normal, cálculo a fuerza bruta de los pesos, que supone que la matriz es invertible (mucho suponer)

Coeficiente de determinación

- R² da una medida de cómo de bien se ajusta un modelo a los datos
 - \circ También correlación (R) \rightarrow R² más interpretable

Es el porcentaje de variación en los datos explicado por la relación entre dos variables

O, dicho de otra forma:

 ¿Cuánto mejor se ajusta la regresión lineal a los datos que simplemente la media?

R² - Significado

- Var(media) = 32
- Var(línea) = 8
- R² = 0.81, hay un 81% menos
 de variación alrededor de la línea que alrededor de la media
- La mayoría de la variación en los datos se explica por la relación tamaño/peso

Tamaño ratón

R² - Significado

- Var(media) = 32
- Var(línea) = 30
- R² = 0.06, hay un 6% menos
 de variación alrededor de la línea que alrededor de la media
- Apenas hay variación de los datos explicada por la relación olisqueo/peso

Tiempo empleado olisqueando piedras

Lab 2 - Modelos lineales de Regresión

3. Modelos lineales de clasificación

Modelos lineales para clasificación

- Clasificación binaria, o multiclase
- Resolvemos para la ecuación:

$$\hat{y} = w_0 \cdot x_0 + w_1 \cdot x_1 + \dots + w_p \cdot x_p + b$$

- Binaria: y > 0, clase 1, y < 0, clase -1
- Y → límite de decisión (hiperplano)
- Tipos de algoritmos
 - Cómo miden la idoneidad de w y b (L)
 - Qué tipo de regularización utilizan

Característica 0

Modelos lineales de clasificación más comunes

- Regresión logística
 - linear model.LogisticRegression
- Linear Support Vector Machines (Linear SVMs) o Support Vector Classifiers (SVCs)
 - o svm.LinearSVC

Regresión Logística

- Es una regresión, produce valores continuos
- Se utiliza para clasificación, con los valores 0 o 1
- En vez de ajustar línea, ajusta una función logística a los datos
- Si p > 50% \rightarrow 1, p < 50% \rightarrow 0
- No puede usar OLS, ni R² es válido → se usa la máxima verosimilitud

Un mínimo de matemáticas

Maximum margin classifier

- La distancia entre el umbral y el borde se llama margen
- Cuando la distancia es máxima, estamos usando un clasificador de margen máximo

Support Vector Classifier

- Un clasificador de margen máximo es demasiado sensible a valores atípicos
- Tenemos que permitir clasificaciones erróneas → soft margin

Support Vector Classifier (SVC)

- Usamos validación cruzada para obtener el mejor soft margin → Support Vector Classifier (SVC)
- La frontera es un hiperplano (línea → hiperplano dimensión 1)

Lab 3 - Modelos Lineales de Clasificación

Conclusiones - Modelos Lineales

- Parámetro principal: alpha (regresión) o C (LinearSVC, LogisticRegression)
 - Optimizar parámetro se buscan en escala logarítmica
- Elegir regularización L1 o L2

Ventajas - Modelos Lineales

- Entrenamiento y predicción rápidos
- Escalan bien con tamaño de dataset, tolerancia a datos dispersos
 - Datasets muy grandes → solver = 'sag' en LogisticRegression y Ridge
- Fácil entender cómo se predice
- Funcionan bien con ratio características/muestras alto

Inconvenientes - Modelos Lineales

- Fácil entender cómo se predice pero
 - No siempre está claro por qué los coeficientes son como son (Datasets con características con alta correlación)
- En espacios con bajas dimensiones, no logran la mejor generalización

4. Clasificador Naive Bayes

Spam Detector

Spam Detector

		Spar	m (S)	No sp	am (H)	
	Total	25		75		
	Buy (B)	20	4/5	5	1/5	
	Cheap (C)	15	3/5	10	2/15	
В	uy & Cheap (B∩C)	12	12/25	2/3 ←	2/225	-

Naive, pero mejor que asumir cero o incrementar los datos

$$P(S|B\cap C) = \frac{12}{12+2/3} = \frac{36}{38} = 94.737\% \qquad \text{Prob. de que un correo que contiene } \text{Buy y Cheap sea spam}$$

Spam Detector

$$P(S|\boldsymbol{B}) = \frac{P(\boldsymbol{B}|S)}{P(\boldsymbol{B}|S)P(S) + P(\boldsymbol{B}|H)P(H)} \longleftarrow \text{Teorema de Bayes de evaluación de hipótesis basada en evidencia}$$

$$P(S|\mathbf{B} \cap \mathbf{C}) = \frac{P(\mathbf{B}|S)P(\mathbf{C}|S)P(S)}{P(\mathbf{B}|S)P(\mathbf{C}|S)P(S) + P(\mathbf{B}|H)P(\mathbf{C}|H)P(H)}$$

In a nutshell

- Similares a los modelos lineales
- Aprenden parámetros analizando las características de manera individual, sin correlaciones o interdependencias
- Tres implementaciones:
 - GaussianNB: datos continuos, altas dimensiones
 - BernoulliNB: datos binarios
 - MultinomialNB: datos de conteo (enteros, frecuencias de aparición de palabras en una frase....)

Lab 4 - Naive Bayes Classifier

Conclusiones

- MultinomialNB y BernoulliNB tienen ambos un único parámetro a ajustar, alpha (controla complejidad del modelo)
 - Se añaden *alpha* más muestra virtuales con valores positivos para todas las características
 - \circ Alpha \uparrow → \uparrow suavizado → \downarrow complejidad.
 - Optimiz. de alpha no crítico para rendimiento, pero mejora precisión.

Ventajas

- Parecidas a las de los modelos lineales
 - Entrenamiento y predicción rápidos
 - Proceso de entrenamiento comprensible
- Robustos a los parámetros
- Buenos modelos de base, usados en datasets muy grandes.

Inconvenientes

 Aunque el modelo se parece a una predicción lineal, los coeficientes no tienen el mismo significado

5. Decision Trees

Ejemplo de árbol de decisión binario

Otros tipos de clasificaciones

Cómo se construye un árbol

Dolor pecho	Buena circulación	Bloqueo arterial	Enfermedad coronaria
No	No	No	No
Sí	Sí	Sí	Sí
Sí	Sí	No	No
Sí	No	???	Sí

Impureza de Gini

Dolor pecho	Buena circulación	Bloqueo arterial	Enfermedad coronaria
No	No	No	No
Sí	Sí	Sí	Sí
Sí	Sí	No	No
Sí	No	???	Sí

Selección del nodo raíz

Dolor pecho	Buena circulación	Bloqueo arterial	Enfermedad coronaria
No	No	No	No
Sí	Sí	Sí	Sí
Sí	Sí	No	No
Sí	No	???	Sí

Se aplica iterativamente y...

Lab 5 - Decision Trees

Conclusiones

- Control de complejidad → pre-pruning
 - o max depth, max leaf nodes, min samples leaf

Ventajas

- El modelo es fácilmente visualizable y comprensible para cualquiera
- Es invariante frente al escalado de los datos
 - Características procesadas de manera independiente
 - No hacen falta estrategias de pre-procesado como normalización o estandarización de características

Inconvenientes

- Tendencia al sobreajuste
- Mal rendimiento de generalización → Ensemble learning

6. Ensembles of Decision Trees

Ensembles de árboles de decisión

- Combinar métodos ML para crear mejores modelos
- 2 tipos muy frecuentes con base en árboles de decisión
 - Random Forests
 - Gradient boosting machines

Random Forests

Problema fundamental → imprecisión (inflexibilidad)

1. Crear un dataset bootstrapped (remuestreo)

Dolor pecho	Buena circulación		Bloqueo arterial	Peso	Enfermedad coronaria
No		No	No	70	No
Sí		Sí	Sí	100	Sí
Sí		Sí	No	90	No
Sí		No	???	75	Sí

Dolor pecho	Buena circulación	Bloqueo arterial	Peso	Enfermedad coronaria
Sí	Sí	Sí	100	Sí
No	No	No	70	No
Sí	Sí	No	90	No
Sí	Sí	No	90	No

Selección aleatoria de filas (con repetición) para cada árbol

2. Construir nodos con features aleatorias

3. Iterar, cientos de veces

4. Ejecución de una predicción (**Bagging**)

- Introducimos muestra en cada árbol, y anotamos la predicción
- Contamos el resultado y elegimos la predicción máxima

Enfermedad coronaria						
Sí	No					
14	2					

Grado de exactitud de un Random Forest

- Elegimos el out-of-bag dataset
 - Muestras no incluidas en la creación inicial del árbol
- Ejecutamos la predicción del random forest para este dataset, contabilizando si ha sido correcta o no.
- Tenemos una medida de la exactitud del random forest por el porcentaje de acierto en el out-of-bag dataset → Out-of-bag Error

Optimización de la creación de un Random Forest

- Seguimos este proceso iterativo
 - Construir random forest
 - Calcular error out-of-bag
 - Cambiar número de variables
 - Repeat until out-of-bag error es mínimo
- Típicamente, se empieza con el cuadrado del número de variables.
 - Se prueba varias veces por encima y debajo de ese número

En Scikit-Learn

- RandomForestRegressor y RandomForestClassifier
- Número de árboles a generar → parámetro n_estimators
- Límite de features a seleccionar → parámetro max features
 - o max_features = n_features?
 - o n features \?
 - o n features ↓?

Lab 6a - Random forests

Conclusiones

- Unos de los métodos más usados para regresión y clasificación
- Potentes, funcionan sin mucha optimización paramétrica
- No requieren de escalado de los datos
- Ajuste de:
 - o n estimators → mejor cuanto más grande
 - o max_features → empezar con valor por defecto
 - Clasificación: (n features)²
 - Regresión: log₂(n_features)
 - o max depth → pre prunning
 - o max_leaf_nodes → para reducir consumo recursos

Ventajas

Comparten las de los árboles de decisión, sin sus inconvenientes.

Inconvenientes

- No suministran una visión tan compacta del proceso de decisión como los árboles de decisión
- La construcción de un gran bosque consume recursos (parámetro n_jobs para paralelizar), son más lentos de entrenar o predecir que modelos lineales.
- No funcionan bien en datos de muy alta dimensión o dispersión (e.g. texto)

Boosting Machines

- Construimos árboles de manera secuencial con weak learners
- Cada árbol intenta corregir los errores del previo
- No hay aleatoriedad, hay pre prunning fuerte (stumps)

Gradient Boosting Machines

- Corrección de errores del árbol previo
 - AdaBoost: asignamos mayor peso a los datapoints que queremos corregir en el siguiente árbol
 - **Gradient Boosting**: uso de gradientes en una función de pérdida o coste (y=ax + b + e)

Gradient Boosting Machines

- Aparecen con frecuencia como ganadores en competiciones de ML
- Más sensibles a parametrización que los random forests, más precisión
- Parámetros importantes
 - Pre prunning
 - Número de árboles (n estimators)
 - o learning rate → dureza de ajuste de errores

Lab 6b - Gradient Boosting Machines

Conclusiones

- Unos de los métodos más usados y potentes
- Requieren optimización fina y tiempo de entrenamiento
- Funcionan bien sin escalado y con tipos distintos de características
- No funcionan muy bien con datasets dispersos en altas dimensiones
- Parámetros, interconectados:
 - o n estimators
 - o learning rate
 - o max depth

7. (Kernelized) Support Vector Machines

Maximum margin classifier

- La distancia entre el umbral y el borde se llama margen
- Cuando la distancia es máxima, estamos usando un clasificador de margen máximo

Support Vector Classifier

- Un clasificador de margen máximo es demasiado sensible a valores atípicos
- Tenemos que permitir clasificaciones erróneas → soft margin

Support Vector Classifier (SVC)

- Usamos validación cruzada para obtener el mejor soft margin → Support Vector Classifier (SVC)
- La frontera es un hiperplano (línea → hiperplano dimensión 1)

Support Vector Classifier?

SCV no funciona bien en este tipo de datos

Support Vector Machines

- Los datos son ahora 2D
- Podemos usar un SVC para delimitar la frontera
- SVMs encuentra SVCs en dimensiones más altas de manera sistemática

Support Vector Machines

- y=x² es un Kernel polinómico
- Para encontrar la frontera, calculamos relaciones entre cada par de observaciones (producto)
- Finalmente, aplicamos
 validación cruzada

Funciones Kernel (y su truco)

- Movemos dataset a un espacio de más dimensiones
- Para encontrar el SVC, lo que nos interesa es el producto entre puntos en ese nuevo espacio, no la transformación en sí a ese espacio de más dimensiones
- "Si un algoritmo se describe en términos de productos en el espacio de entradas, entonces puede trasladarse al espacio de características sustituyendo esos productos por $K(x_i,x_j)$ (a esto se le llama Kernel Trick)"

Subjendo dimensiones - The Kernel Trick

Bender:

puntos $\mathbb{R}^2 \to \mathbb{R}^3$ con $\Phi(x)$ Cálculo de SVC mediante multiplicación en \mathbb{R}^3

Flexo:

- Encontrar una función (¡kernel!) donde calcular
- productos sea sencillo 2. Calcular en \mathbb{R}^2 , sin $\Phi(x)$

Subiendo dimensiones - Kernel Trick

The Kernel Trick

Bender:

$$\langle \Phi(\mathbf{x}_i), \Phi(\mathbf{x}_j) \rangle$$

$$= \langle \{x_{i1}^2, x_{i2}^2, \sqrt{2}x_{i1}x_{i2}\}, \{x_{j1}^2, x_{j2}^2, \sqrt{2}x_{j1}x_{j2}\} \rangle$$

$$= x_{i1}^2 x_{j1}^2 + x_{i2}^2 x_{j2}^2 + 2x_{i1}x_{i2}x_{j1}x_{j2}$$

- 3 x 2 ops para transformar + 3 ops producto = 9 operaciones
- Para 5D, 16 operaciones, más dimensiones, aún más operaciones

- 2 ops producto + 1 op transformación = 3 operaciones
- 5D, 9D, más Ds.... ¡**3 operaciones!** Kernel $K(x_i, x_i) = (1 + \langle \mathbf{x}_i, \mathbf{x}_i \rangle)^2$

The kernel trick - conceptualmente

Una función Kernel nos
permite operar en el
espacio original de
características sin calcular
las coordenadas de los
datos en un espacio de
mayores dimensiones.

Radial Basis Function (RBF) Kernel

- Encuentra SVCs en dimensiones infinitas (no visualizable)
- En el caso de una observación 1D, RBF se comporta como un k Nearest Neighbors

Sigue siendo una operación en el espacio de entrada (2D en este caso)

Lab 7 - Kernelized SVMs

Parámetros importantes

- Regularización C:
- Elección del kernel, ej. RBF
- Parámetros específicos del kernel elegido, ej. gamma para RBF

Conclusiones

- Modelos potentes, funcionan bien en multitud de datasets
- Permiten fronteras de decisión complejas, incluso con pocas características
- Funcionan bien con baja y alta dimensión de características
 - No escalan muy bien con el número de muestras
 - \circ ~1000 muestras \rightarrow OK, 100k ó más \rightarrow elevado consumo de recursos
- Requieren de mucho preprocesado de datos y optimización de parámetros
 - Preferencia por modelos basados en árbol

Conclusiones

- Difíciles de inspeccionar
- Merece la pena considerarlos, especialmente si:
 - Características en mismas unidades (ej.: intensidades de pixel)
 - Características en similar escala

Generalización

- Difíciles de inspeccionar
- Merece la pena considerarlos, especialmente si:
 - Características en mismas unidades (ej.: intensidades de pixel)
 - Características en similar escala

Modelos

- kNN: datasets pequeños, bueno como baseline, fácil de explicar
- Modelos lineales: primer modelo habitual, datasets muy grandes, †dim características
- Naive Bayes: sólo clasificación. Más rápido que lineales, bueno para †datos y †dim características. Menos precisos que lineales.
- Decision Trees: Muy rápidos, no requieren escalado datos.
 Visualizables y explicables

Modelos

- Random Forests: mejor rendim. que un sólo árbol, robustos y potentes. No requieren escalado datos. Malos con †dim características y †dispersión datos.
- Gradient Boosted Trees: Algo más precisos que random forests.
 Entrenamiento más lento pero predicción más rápida, menos consumo RAM. Más optimización paramétrica que
- **Support Vector Machines**: potentes para tamaños medios de dataset. Sensibles a parámetros, requieren escalado datos.

Tengo un dataset nuevo, ¿y ahora qué?

- 1. **Empieza con un modelo sencillo** (Lineal, Naive Bayes, kNN)
- 2. Prueba a ver hasta dónde llegas con él
- 3. Aprovéchalo para **conocer más tus datos**
- 4. **Considera un algoritmo más complejo** (Random Forests, Gradient Bo<mark>ost</mark>ed Decision Trees, SVMs o... redes neuronales)
- 5. Siempre, investiga qué han hecho otros

Material Adicional

Separación Training/Test y Validación Cruzada

Separación Training - Test

Cuando buscamos optimizamos parámetros del modelo, ¿no corremos el riesgo de optimizar con respecto a test?

Separación Training - Validation - Test

Validación cruzada de k (10) iteraciones

Preci<mark>sión final:</mark> Media (Iteración 1, Iteración 2, ... Iteración 10)