

## SCHOOL OF ELECTRONICS ENGINEERING WINTER SEMESTER \_ 2023-24 CONTINUOUS ASSESSMENT TEST (CAT)-1 BECE301L- DIGITAL SIGNAL PROCESSING

Course

: B.Tech (ECE)

Class Nbrs

: VL2023240501354, 1338, 1343, 1345, 1348, 1352, 3749,

Course Type : ETH

Course Mode: CBL

Slot : C2+TC2

Date : 13th February 2024

Marks

Duration : 90 Min

Faculty: RAMACHANDRA REDDYS KALAIVANI, ABHIJIT BHOWMICK, SUDHAKAR M S, LAVANYA SARANYA K.C, ANANTHAKRISHNA CHINTANPALLI.

Each Question carries 10 marks

:50

| Q.N  | No Question                                                                                     | Model   |   |
|------|-------------------------------------------------------------------------------------------------|---------|---|
|      |                                                                                                 | Marks   |   |
| 1    | 1. Determine the following;                                                                     | 10      | i |
|      | The DT system $y[n] = sgn x[n] $ is static or dynamic                                           |         |   |
|      | The DT systemy $[n] = \sum_{k=-\infty}^{n+4} x[k]$ is causal or not                             |         |   |
|      | The system $h[n] = 2^n u[-n]$ is stable or not                                                  |         |   |
|      | The signal $x[n] = e^{\frac{j2\pi}{3}n} + e^{\frac{j3\pi}{4}n}$ is periodic or not. If periodic |         |   |
|      | find the fundamental period                                                                     |         |   |
|      | The signal $x[n] = 2e^{j(\pi n + \theta)}$ is energy or power signal.                           |         |   |
|      | Justify your answer                                                                             | 1 3 3 3 |   |
| 1    | 2. (a) A causal LTI system is given by the difference equation:                                 | 2+3+5   |   |
| ~    | y[n] + 2y[n-1] + y[n-2] = x[n]                                                                  |         |   |
| 1    | (i). Determine the transfer function $H(z)$ of the system.                                      |         |   |
| 1    | (ii) Draw the pole-zero diagram of $H(z)$ .                                                     |         |   |
| 1    | Is the system stable? Justify.                                                                  |         |   |
| 1    | (b). Find DTFT of the following signal:                                                         |         |   |
| 1    | $x[n] = (n+1) \left(\frac{1}{4}\right)^n u(n)$                                                  |         |   |
| 1    | (4)                                                                                             |         |   |
| 2    | Find circular convolution of the following sequences                                            |         |   |
| 0    | $x(n) = \{1,1,1,2\}; y(n) = \{1,2,3,2\} \text{ using DFT and IDFT method.}$                     | 10      |   |
|      | (1) (1) (1) (1) (1) Using DF1 and IDFT method.                                                  |         |   |
| A.   | Using the properties of DFT find the following If, $DFT\{x(n)\} = X(k) = \{4, -2i, 0, 2i\}$     |         |   |
| /    | $X(k) = \{4, -2j, 0, 2j\},$                                                                     | 10      |   |
|      | $\int_{C} DFT \ of \ x(n-2)$                                                                    |         |   |
| - 1  | (il.) DFT of $x(-n)$                                                                            |         |   |
|      | DFT of $x^2(n)$                                                                                 |         |   |
|      | iv. Signal Energy.                                                                              |         |   |
|      |                                                                                                 |         |   |
| 15/1 | Compute the eight-point DFT of the sequence                                                     |         |   |
| 12   | x(n) = [0.5, 0.5, 0.5, 0.5, 0, 0, 0, 0]. Using DIF -FFT algorithm.                              | 10      |   |
| I    | ndicate the intermediate node values.                                                           | la band |   |
|      |                                                                                                 |         |   |