

Python: Seikitlearn

Session - 5

Previous sessions:

Data Types, Collections

Control Statements, Operators

This Session:

ScikitLearn

Introduction

Python has a rich and healthy ecosystem of various libraries for data analysis.

But one of them stands out as the best and most effective library. No points for guessing, it is **Scikit-Learn**,

Scikit-learn was initially developed by David Cournapeau as a Google summer of code project in 2007. In the same year, Matthieu Brucher joined the project. In 2010 Fabian Pedregosa, Gael Varoquaux, Alexandre Gramfort and Vincent Michel of INRIA got involved with the project and made the first public release, February the 1st 2010. Since then, several new contributions have been made to the project.

Introduction

Machine Learning library

Designed to inter-operate with Numpy and SciPy

Scikit-learn provides a range of supervised and unsupervised learning algorithms via a consistent interface in Python.

The library is built upon the SciPy (Scientific Python)

Extensions or modules for SciPy care conventionally named <u>SciKits</u>. As such, the module provides learning algorithms and is named scikit-learn.

What are the features

Clustering: for grouping unlabeled data such as KMeans.

Cross Validation: for estimating the performance of supervised models on unseen data

Datasets: for test datasets and for generating datasets with specific properties for investigating model behavior.

Dimensionality Reduction: for reducing the number of attributes in data for summarization, visualization and feature selection such as Principal component analysis

What are the features

Ensemble methods: for combining the predictions of multiple supervised models.

Feature extraction: for defining attributes in image and text data.

Feature selection: for identifying meaningful attributes from which to create

supervised models.

Parameter Tuning: for getting the most out of supervised models.

Manifold Learning: For summarizing and depicting complex multi-dimensional data.

Supervised Models: a vast array not limited to generalized linear models, discriminate analysis, naive bayes, lazy methods, neural networks, support vector machines and decision trees.

ScikitLearn

ScikitLearn

Pre-Processing	
Function	Description
sklearn.preprocessing.StandardScaler	Standardize features by removing the mean and scaling to unit variance
sklearn.preprocessing.Imputer	Imputation transformer for completing missing values
sklearn.preprocessing.LabelBinarizer	Binarize labels in a one-vs-all fashion
sklearn.preprocessing.OneHotEncoder	Encode categorical integer features using a one-hot a.k.a one-of-K scheme
sklearn.preprocessing.PolynomialFeatures	Generate polynomial and interaction features

Loading Datasets:

scikit-learn comes with a few standard datasets, for instance the **iris and digits datasets** for classification and the **Boston house prices** dataset for regression.

```
In [26]: from sklearn import datasets
import pandas as pd
iris_data=datasets.load_iris()
```


Available Datasets:

scikit-learn comes with a few small standard datasets that do not require to download any file from some external website.

Regression	
Function	Description
sklearn.tree.DecisionTreeRegressor	A decision tree regressor
sklearn.svm.SVR	Epsilon-Support Vector Regression
sklearn.linear_model.LinearRegression	Ordinary least squares Linear Regression
sklearn.linear_model.Lasso	Linear Model trained with L1 prior as regularized (a.k.a the lasso)
sklearn.linear_model.SGDRegressor	Linear model fitted by minimizing a regularized empirical loss with SGD
sklearn.linear_model.ElasticNet	Linear regression with combined L1 and L2 priors as regularizor
sklearn. ensemble. Random Forest Regressor	A random forest regressor
sklearn.ensemble.GradientBoostingRegres sor	Gradient Boosting for regression
sklearn.neural_network.MLPRegressor	Multi-layer Perceptron regressor

classification	
Function	Description
sklearn.neural_network.MLPClassifier	Multi-layer Perceptron classifier
sklearn.tree.DecisionTreeClassifier	A decision tree classifier
sklearn.svm.SVC	C-Support Vector Classification
sklearn.linear_model.LogisticRegression	Logistic Regression (a.k.a logit, Max Ent) classifier
sklearn.linear_model.SGDClassifier	Linear classifiers (SVM, logistic regression, a.o.) with SGD training
sklearn.naive_bayes.GaussianNB	Gaussain Naïve Bayes
sklearn.neighbors.KNeighborsClassifier	Classifier implementing the k-nearest neighbors vote
sklearn.ensemble.RandomForestClassifier	A random forest classifier
sklearn.ensemble.GradientBoostingClassifi er	Gradient Boosting for classification

Clustering	
Function	Description
sklearn.cluster.Kmeans	K-Means clustering
sklearn.cluster.DBSCAN	perform DBSCAN clustering from vector array or distance matrix
sklearn.cluster.AgglomerativeClustering	Agglomerative clustering
sklearn.cluster.SpectralBiclustering	Spectral bi-clustering

Dimensionality Reduction

Function	Description
sklearn.decomposition.PCA	Principal component analysis (PCA)
sklearn.decomposition.LatentDirichletAlloca tion	Latent Dirichlet Allocation with online variational Bayes algorithm
sklearn.decomposition.SparseCoder	Sparse coding
sklearn.decomposition.DictionaryLearning	Dictionary learning

Dimensionality Reduction

Function	Description
sklearn.decomposition.PCA	Principal component analysis (PCA)
sklearn.decomposition.LatentDirichletAlloca tion	Latent Dirichlet Allocation with online variational Bayes algorithm
sklearn.decomposition.SparseCoder	Sparse coding
sklearn.decomposition.DictionaryLearning	Dictionary learning

Model Selection

Function	Description
sklearn.model_selection.Kfold	K-Folds cross-validator
sklearn.model_selection.StratifiedKFold	Stratified K-Flods cross-validator
sklearn.model_selection.TimeSeriesSplit	Time Series cross-validator
sklearn.model_selection.train_test_split	Split arrays or matrices into random train and test subsets
sklearn.model_selection.GridSearchCV	Exhaustive search over specified parameter value for an estimator
sklearn.model_selection.cross_val_score	Evaluate a score by cross-validation

Metric	
Function	Description
sklearn.metrics.accuracy_score	Classification Metric: Accuracy classification score
sklearn.metrics.log_loss	Classification Metric: Log loss, a.k.a logistic loss or cross-entropy loss
sklearn.metrics.roc_auc_score	Classification Metric: Compute Receiver operating characteristics ROC
sklearn.metrics.mean_absolute_error	Regression Metric: Mean absolute error regression loss
sklearn.metrics.r2_score	Regression Metric: R^2 (coefficient of determination) regression score
sklearn.metrics.label_ranking_loss	Ranking Metric: Compute Ranking loss measure
sklearn.metrics.mutual_info_score	Clustering Metric: Mutual Information between two clustering.

Miscellaneous	
Function	Description
sklearn.datasets.load_boston	Load and return the Boston house prices data set (regression)
sklearn.datasets.make_classification	Generate a random n-class classification problem
sklearn.feature_extraction.FeatureHasher	Implements feature hashing, a.k.a the hashing trick
sklearn.feature_selection.SelectKBest	Select features according to the k highest scores
sklearn.pipeline.Pipeline	Pipeline of transforms with a final estimator
sklearn.semi_supervised.LabelPropagation	Label Propagation classifier for semi- supervised learning

