Versuchsprotokoll zum Versuch Nr. 104

Der Doppler-Effekt

Johannes Kollek johannes.kollek@udo.edu Jean-Marco Alameddine jean-marco.alameddine@udo.edu

Durchführung: 05.01.2016

TU Dortmund – Fakultät Physik

1 Theorie

Der Doppler-Effekt wird beobachtet, wenn sich der Sender einer Welle und dessen Empfänger relativ zueinander bewegen. Der Empfänger jener Welle nimmt diese sobald eine Relativgeschwindigkeit v vorliegt mit veränderter Frequenz war. Die Frequenzänderung $\Delta \nu$ muss jedoch in Bezug auf zwei Fälle untersucht werden, wenn sich die Welle in einem Medium ausbreitet.

1.1 Empfänger bewegt sich relativ zum Ausbreitungsmedium

Die in diesem Fall ruhende Quelle sende die Frequenz ν_0 aus, welche ohne Relativbewegung des Empfängers auch als solche wahrgenommen wird. Bewegt er sich aber, dann nimmt er je nach Bewegungsrichtung mehr oder weniger Wellenzüge Δz in der Zeit Δt wahr. Es folgt der Zusammenhang

$$\Delta z = \frac{\Delta t v}{\lambda_0},\tag{1}$$

wobei λ_0 der Wellenlänge der ausgesendeten Welle im System des Senders entspricht. An einem ruhenden Empfänger laufen jedoch nur

$$\Delta n = \Delta t \nu_0 \tag{2}$$

Schwingungen vorbei. Insgesamt nimmt er also

$$\Delta n + \Delta z = \Delta t \left(\nu_0 + \frac{v}{\lambda_0} \right) \tag{3}$$

Schwingungen wahr. Die empfangene Frequenz lautet demnach

$$\nu_{\rm E} = \nu_0 + \frac{v}{\lambda_0} \tag{4}$$

und in Bezug auf die Ausbreitungsgeschwindigkeit

$$c = \nu_0 \lambda_0 \tag{5}$$

folgt

$$\nu_{\rm E} = \nu_0 \left(1 + \frac{v}{c} \right). \tag{6}$$

Die gesuchte Frequenzänderung $\Delta \nu$ beträgt folglich

$$\Delta \nu = \nu_0 \frac{v}{c}.\tag{7}$$

Für eine Bewegung zum Sender (v > 0) ist die empfangene Frequenz $\nu_{\rm E}$ also größer als die Senderfrequenz ν_0 , entsprechend anders herum kleiner.

1.2 Sender bewegt sich relativ zum Ausbreitungsmedium

Da der Sender nun in einer Zeit Δt eine gewisse Strecke zurücklegt, erscheint die Wellenlänge, die beim ruhenden Beobachter ankommt, um

$$\Delta \lambda = \frac{v}{\nu_0} \tag{8}$$

verkürzt. Für die wahrgenommene Frequenz folgt entsprechend der Zusammenhang

$$\nu_{\mathbf{Q}} = \frac{c}{\lambda_0 - \Delta \lambda},\tag{9}$$

bzw.

$$\nu_{\mathbf{Q}} = \nu_0 \frac{1}{1 - v/c}.\tag{10}$$

Wird dieser Ausdruck entwickelt, zeigt sich, dass je nach Art der Bewegung, unterschiedliche Frequenzen beim Beobachter ankommen. Ist der Betrag der Relativgeschwindigkeit sehr viel kleiner als die Ausbreitungsgeschwindigkeit wird der Unterschied zwischen (7) und (10) beliebig klein.

1.3 Der Doppler-Effekt bei elektromagnetischen Wellen

Wenn sich die Ausbreitungsgeschwindigkeit nun der Lichtgeschwindigkeit annähert, muss ein relativistischer Ansatz gewählt werden. Dies führt auf eine wahrgenommene Frequenz von

$$\nu' = \nu_0 \frac{\sqrt{1 - v^2/c_0^2}}{1 - v/c_0}. (11)$$

Es besteht nun kein Unterschied mehr, ob sich nun der Sender oder der Empfänger relativ zum Ausbreitungsmedium bewegt. Durch diesen Zusammenhang kann z.B auf eine Relativbewegung zwischen der Erde und Fixsternen oder Galaxien geschlossen werden.

2 Aufbau und Durchführung

2.1 Aufbau

Im vorliegenden Versuchsaufbau wird ein kleiner Wagen mit Rollen betrachtet, welcher sich auf einer Schiene befindet. Mithilfe eines befestigten Seils, verbunden mit einem Synchronmotor, kann dieser Wagen die Strecke in zehn verschiedenen konstanten Geschwindigkeitseinstellungen vorwärts oder rückwärts zurücklegen. Auf dem Wagen kann ein Lautsprecher befestigt werden, welcher Töne wiedergeben kann. Diese werden mithilfe eines frequenzstabilen Generators erzeugt.

Am Ende der Strecke befindet sich ein Mikrophon, welches eine Signalspannung erzeugt,

die im Folgenden zur Betrachtung der aufgenommenen Wellen verwendet werden kann. Zudem sind zwei Lichtschranken vorhanden, die an der Schiene montiert werden können und somit das Durchfahren des Wagens registrieren können. Sie funktionieren, indem eine Infrarot-Lichtquelle einen konstanten Lichtstrahl auf einen gegenüberliegenden Phototransistor sendet. Sobald die Verbindungsstrecke zwischen beiden Elementen unterbrochen wird, bricht der Strom im Transistor zusammen. Dieser Impuls kann ebenfalls im Weiteren verwendet werden.

Um die genannten Impulse verarbeiten zu können, sind mehrere Bauteile mit logischen Funktionen vorhanden. Diese können die Impulse des Mikrophons sowie der Lichtschranke jedoch nur als TTL-Signale verarbeiten, so dass diese zunächst durch einen Schmitt-Trigger umgewandelt werden müssen.

2.2 Durchführung

2.2.1 Bestimmung der Wagengeschwindigkeiten

Die zehn verschiedenen Wagengeschwindigkeiten können, da es sich um lineare Bewegungen handelt, mit dem Weg-Zeit-Gesetz bestimmt werden. Der Aufbau ist in Abbildung 1 dargestellt. Mithilfe eines Maßbandes wird die Strecke zwischen zwei an der Strecke mon-

Abbildung 1: Aufbau zur Bestimmung der Wagengeschwindigkeiten. [1]

tierten Lichtschranken gemessen. Ein Zeitbasisgenerator liefert nun konstante Impuls im zeitlichen Abstand von 1 μs. Mithilfe eines dekadischen Untersetzers wird das Signal nun so verändert, dass die Häufigkeit der Impulse dem zeitlichen Rahmen des Experimentes angepasst wird. Hier sollen nur alle 10⁻⁴ s zeitliche Impulse abgegeben werden.

Sobald der Wagen die erste Lichtschranke passiert, wird dieser Impuls von einer bistabilen Kippstufe registriert. Dieser speichert diesen Impuls und behält ihn solange, bis durch

die zweite Lichtschranke ein weiterer Impuls abgegeben wird. Der gespeicherte Impuls äußert sich in einem anliegenden Potential. Dieses Potential wird an einem UND-Gatter mit dem Zeitsignal des dekadischen Untersetzers verbunden und an ein Zählwerk weitergegeben. Dementsprechend misst das Zählwerk die Impulse und somit die Zeit. die vergeht, während der Wagen sich zwischen den beiden Lichtschranken befindet.

Die angegebene Messung wird für alle zehn Geschwindigkeiten jeweils fünfmal wiederholt.

2.2.2 Frequenzmessung

Um die Frequenzverschiebung zwischen einem bewegten Sender sowie einem festen Empfänger zu bestimmen, wird der Lautsprecher auf dem Wagen montiert. Es soll die Anzahl der Schwingungen, die der Empfänger in einem fest eingestellten Zeitraum registriert, bestimmt werden. Der Versuchsaufbau ist in Abbildung 2 dargestellt. Es wird

Abbildung 2: Aufbau zur Bestimmung der Frequenz des Empfängers. [1]

eine Lichtschranke benötigt, welche den Start der Messreihe darstellt. Sobald diese vom Wagen passiert wird, speichert die bistabile Kippstufe den Impuls. Mithilfe eines UND-Gatters werden, zusammen mit dem Zeitbasisgenerator, Zeitsignale an den Untersetzer geliefert. Dieser zählt die eingehenden Zeitimpulse und gibt solange ein Signal aus, bis der voreingestellte Untersetzungsfaktor erreicht ist. Mit ihm kann somit wiederum das Zeitintervall der Messung eingestellt werden. Das konstante Signal des Untersetzers wird mit dem Signal der bistabilen Kippstufe an ein UND-Gatter angelegt und an das Zählwerk weitergegeben. Somit ist gewährleistet, dass nur während eines, durch den Untersetzer festgelegten Zeitraumes, die Schwingungen, die der Empfänger erhält, gezählt werden. Aus der Kenntnis der Schwingungen pro Zeiteinheit kann nun die Frequenz bestimmt werden.

Dieses Messverfahren wird für alle Geschwindigkeiten jeweils fünfmal für den sich vom Mikrophon entfernenden Sender sowie jeweils fünfmal für den sich zum Mikrophon bewegenden Sender durchgeführt. Zusätzlich werden Messungen bei einem stehenden Wagen durchgeführt, um die Ruhefrequenz zu erhalten.

2.2.3 Bestimmung der Frequenzdifferenz mithilfe der Schwebungsmethode

Um die Frequenzdifferenz zwischen der Ruhefrequenz sowie der von einem ruhenden Empfänger aufgenommenen Frequenz zu ermitteln, wird die Schwebungsmethode verwendet. Der Versuchsaufbau ist in Abbildung 3 skizziert. Der Lautsprecher wird neben dem

Abbildung 3: Aufbau zur Bestimmung der Frequenzdifferenz mithilfe der Schwebungsmethode. [1]

Mikrophon am Ende der Schiene befestigt und in Richtung des Wagens ausgerichtet. Auf dem Wagen wird nun eine Metallplatte als Reflektor befestigt, welche die einfallenden Wellen in Richtung des Mikrophons reflektiert. Dementsprechend nimmt dieses sowohl die einfallenden Wellen, die direkt aus dem Lautsprecher stammen, als auch die Wellen, die von der Platte reflektiert werden, auf. Das aufgenommene Signal wird angemessen stark verstärkt, durch einen Gleichrichter mit Tiefpass sowie durch einen Impedanzwandler geleitet. Die Frequenzmessung mithilfe dieses Signals folgt analog zu dem in Kapitel 2.2.2 durchgeführten Vorgehen.

2.2.4 Bestimmung der Schallgeschwindigkeit

Zudem kann die Schallgeschwindigkeit mithilfe der Kenntnis der Ruhefrequenz ν_0 und der Wellenlänge λ bestimmt werden. Der dazugehörige Versuchsaufbau ist in Abbildung 4 dargestellt. Der Lautsprecher und ein Mikrophon werden hier auf einem Präzisionsschlitten mit Skala befestigt. Das vom Mikrophon aufgenommene Signal wird verstärkt und auf den Y-Eingang eines Oszillographen gegeben. Auf den X-Eingang wird die in den Lautsprecher eingespeiste Spannung gegeben, so dass man die Lissajous-Figuren betrachten kann. Der Wagen wird nun auf dem Schlitten verschoben, bis sich eine Gerade als Lissajous-Figur ergibt, die Phasenverschiebung also ein Vielfaches von $\frac{\pi}{2}$ beträgt. Die einzelnen Abstände zwischen diesen Punkten werden gemessen.

Abbildung 4: Aufbau zur Bestimmung der Schallgeschwindigkeit. [1]

3 Auswertung

3.1 Bestimmung der Wagengeschwindigkeit

Zunächst wird die Wagengeschwindigkeit bei den zehn verschiedenen Gangeinstellungen des Wagens, wie in Kapitel 2.2.1 beschrieben, bestimmt. Die Weglänge wird mithilfe eines Maßbandes zu

$$s = (43.8 \pm 0.1) \, \mathrm{cm}$$

bestimmt. Der jeweilige nominelle Wert für t wird aus dem Mittelwert der fünf Einzelmessungen bestimmt. Der Mittelwert berechnet sich dabei mithilfe der Formel

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i. \tag{12}$$

Der Fehler der Zeit wird mittels der Standardabweichung aus den fünf Einzelwerten bestimmt. Die Standardabweichung berechnet sich dabei nach

$$s = \sqrt{\frac{1}{n+1} \sum_{i=1}^{n} (x_i - \bar{x})}.$$
 (13)

Unter der Annahme einer linearen Bewegung wird die Geschwindigkeit nun mit dem Weg-Zeit-Gesetz berechnet. Für die Fehlerrechnung wird bei der vorliegenden Rechnung und bei allen folgenden Rechnungen das Gaußsche Fehlerfortpflanzungsgesetz

$$\Delta f = \sqrt{\left(\frac{\partial f}{\partial x_1} \Delta x_1\right)^2 + \left(\frac{\partial f}{\partial x_2} \Delta x_2\right)^2 + \dots + \left(\frac{\partial f}{\partial x_n} \Delta x_n\right)^2}$$
 (14)

für eine Funktion $f(x_1, x_2, ..., x_n)$, bei der die Größen $x_1, x_2, ..., x_n$ voneinander unabhängig sind, verwendet. Es ergeben sich hieraus die in Tabelle 1 angegebenen Werte.

Tabelle 1: Wagengeschwindigkeiten

Gang	$v[\mathrm{cm}\mathrm{s}^{-1}]$	$\Delta v [{\rm cms^{-1}}]$
6.0	5.10	0.01
12.0	10.22	0.03
18.0	15.27	0.11
24.0	20.46	0.05
30.0	25.55	0.07
36.0	30.71	0.07
42.0	35.87	0.10
48.0	41.10	0.11
54.0	46.25	0.13
60.0	51.43	0.15

3.2 Bestimmung der Ruhefrequenz

Als nächstes wird die Ruhefrequenz ν_0 , wie in der Durchführung in Kapitel 2.2.2 beschrieben, bestimmt. Dazu werden in einem Zeitintervall von $t=10\,\mathrm{s}$ die im Empfänger aufgenommenen Schwingungen gemessen. Es werden 7 Messungen durchgeführt, dessen Mittelwert und Standardabweichung sich zu

$$\nu_0 = (20741.40 \pm 0.06) \,\mathrm{s}^{-1}$$

ergeben und somit der Ruhefrequenz entsprechen.

3.3 Bestimmung der Schallgeschwindigkeit

Die Schallgeschwindigkeit wird, wie in Kapitel beschrieben, mittels eines Präzisionsschlitten bestimmt. Es werden dabei jeweils die Werte zwischen zwei benachbarten Extrema gleicher Phase verglichen. Der sich aus Mittelwert sowie Standardabweichung ergebene Wert für λ_0 , der Wellenlänge der Ruhefrequenz, ergibt sich zu

$$\lambda_0 = (17.4 \pm 0.6) \, \mathrm{mm}$$

sowie der Kehrwert der Wellenlänge zu

$$\frac{1}{\lambda_0} = (0.057 \pm 0.002) \,\mathrm{mm}^{-1}$$

Aus der Formel 5 sowie dem zuvor bestimmten Wert der Ruhefrequenz ergibt sich eine Schallgeschwindigkeit von

$$c = (361.8 \pm 12.9) \,\mathrm{m\,s^{-1}},$$

3.4 Bestimmung der Frequenzdifferenzen

Im Folgenden wird der Wagen in Bewegung gesetzt und die Frequenzdifferenzen, wie in Kapitel 2.2.2 beschrieben, bestimmt. Für die zehn zuvor bestimmten Geschwindigkeiten werden die Anzahl der am Empfänger erreichten Schwingungen notiert. Der betrachtete Zeitraum beträgt wiederum $t=10\,\mathrm{s}$. Aus den 5 Einzelmessungen wird jeweils ein Mittelwert sowie eine Standardabweichung gebildet. Dementsprechend ergeben sich die in Tabelle 2 angegebenen Differenzfrequenzen ν_{diff} zu den jeweiligen Geschwindigkeiten v, wobei die gemessenen Frequenzen im Vergleich zu den zuvor bestimmten Ruhefrequenzen betrachtet werden. Obwohl theoretisch 10 Geschwindigkeiten möglich sind, können bei

$v[\mathrm{cm}\mathrm{s}^{-1}]$	$\Delta v [\mathrm{cm}\mathrm{s}^{-1}]$	$\nu_{\rm diff}[{\rm Hz}]$	$\Delta\nu_{\rm diff}[{\rm Hz}]$
30.713	0.074	19.00	0.49
25.547	0.072	15.80	0.40
20.457	0.050	12.600	0.063
15.27	0.11	9.80	0.40
10.216	0.025	6.600	0.063
5.100	0.014	3.600	0.063
-5.100	0.014	-2.60	0.40
-10.216	0.025	-5.80	0.49
-15.27	0.11	-8.60	0.40
-20.457	0.050	-11.80	0.49
-25.547	0.072	-15.00	0.49
-30.713	0.074	-17.60	0.40
-35.87	0.10	-22.4	3.0

Tabelle 2: Frequenzdifferenzen durch Doppler-Effekt.

der Vorwärtsbewegung jeweils nur die ersten sieben sowie bei der Rückwärtsbewegung nur die ersten sechs Geschwindigkeiten betrachtet werden. Grund dafür ist, dass der Empfänger bei zu großer Distanz zum Lautsprecher keine zuverlässigen Werte mehr liefern kann.

Die berechneten Frequenzen können gegen die Geschwindigkeit aufgetragen werden. Es ergibt sich ein linearer Zusammenhang, welcher linear an die Funktion

$$y = mx + b$$

gefittet wird. Der Fit wird dabei in Python mit SciPy erstellt. Es ergeben sich für die Ausgleichsgerade die Parameter

$$c = (0.607 \pm 0.005) \,\mathrm{cm}^{-1},$$

 $b = (0.4 \pm 0.1) \,\mathrm{s}^{-1}.$

Der Parameter entspricht c dabei laut Formel 7 näherungsweise $\frac{\nu_0}{c}$. Der sich ergebende Plot ist in Abbildung 5 dargestellt.

Abbildung 5: Frequenzdifferenz in Abhängigkeit der Relativgeschwindigkeit.

3.5 Bestimmung der Frequenzdifferenzen mittels Schwebungsmethode

Zudem können die Frequenzdifferenzen mithilfe der in Kapitel 2.2.3 beschriebenen Schwebungsmethode erfasst werden. Es können für die ersten fünf Geschwindigkeiten jeweils drei Messwerte aufgenommen werden, es wird nur die Rückwärtsbewegung der Reflexionsplatte betrachtet. Aus den drei Werten wird wiederum ein Mittelwert und eine Standardabweichung gebildet. Die Ergebnisse für die Frequenzdifferenz $\nu_{\rm diff}$ wird mit den dazugehörigen Geschwindigkeiten in Tabelle 3 dargestellt. Bei den Geschwindigkeiten ist zu beachten, dass durch die Bewegung der Reflexionsplatte eine effektive Geschwindigkeit in die Frequenzdifferenz eingeht, welche dem doppelten der realen Wagengeschwindigkeit entspricht. Es ergeben sich Werte, für die eine lineare Ausgleichsrechnung analog zur vorherigen Rechnung durchgeführt wird. Hierbei ergeben sich die Fitparameter zu

$$c = (0.57 \pm 0.03) \,\mathrm{cm}^{-1},$$

 $b = (1 \pm 1) \,\mathrm{s}^{-1}.$

Der Parameter c entspricht wiederum laut Formel 7 näherungsweise $\frac{\nu_0}{c}$. Die dargestellten Werte mit Ausgleichsgerade sind in Abbildung 6 dargestellt.

 ${\bf Tabelle~3:}~ {\bf Frequenz differenzen~durch~Doppler-Effekt~mithilfe~der~Schwebungsmethode.}$

$v[\mathrm{cm}\mathrm{s}^{-1}]$	$\Delta v [\mathrm{cm}\mathrm{s}^{-1}]$	$\nu_{ m diff}[{ m Hz}]$	$\Delta \nu_{ m diff}[{ m Hz}]$
51.09	0.14	28.67	0.47
40.91	0.10	25.00	0
30.53	0.21	19.00	0
20.431	0.051	12.00	0
10.199	0.028	6.00	0

Abbildung 6: Frequenzdifferenz in Abhängigkeit der Relativgeschwindigkeit aus Schwebungsmethode.

4 Diskussion

Zunächst soll der nominelle Unterschied der Formeln 7 und 10, also der Relativbewegung vom Empfänger zum Sender bzw. umgekehrt betrachtet werden. Betrachtet man die Ruhefrequenz

$$\nu_0 = (20741.40 \pm 0.06) \,\mathrm{s}^{-1},$$

die der Literatur [2] entnommene Schallgeschwindigkeit bei Raumtemperatur

$$c = 342.2 \,\mathrm{m \, s^{-1}}$$

sowie die maximale Wagengeschwindigkeit $v_{\rm max}$, so ergibt sich ein sehr kleine Abweichung der beiden Formeln von

$$\Delta nu = 0.05 \,\mathrm{s}^{-1}.$$

Dementsprechend kann der Unterschied beider Formeln vernachlässigt und für beide Fälle einen linearen Zusammenhang annehmen.

Wird der experimentell bestimmte Wert der Schallgeschwindigkeit von

$$c = (361.8 \pm 12.9) \,\mathrm{m \, s^{-1}}$$

mit dem oben genannten Literaturwert, so ergibt sich eine Abweichung von

$$\Delta c = 5.43\%$$
.

Der Literaturwert befindet sich jedoch nicht im Fehlerintervall.

Mithilfe der beiden Plots kann ein linearer Zusammenhang zwischen der Relativgeschwindigkeit und der Frequenzdifferenz bestätigt werden. Der in Kapitel 3.4 mittels linearer Regression berechnete Wert von

$$\frac{\nu_0}{c} = (0.607 \pm 0.005) \,\mathrm{cm}^{-1}$$

entspricht dem aus Formel 7 bestimmten Theoriewert

$$\frac{\nu_0}{c_t} = 60.611 \,\mathrm{m \, s^{-1}}.$$

Zusammen mit der zuvor bestimmten Ruhefrequenz folgt hier eine Schallgeschwindigkeit von

$$c = (341.7 \pm 2.9) \,\mathrm{m \, s^{-1}}.$$

Diese weist eine Abweichung zum Literaturwert von

$$\Delta c = 0.43\%$$

auf.

Der mittels Schwebungsmethode gemessene Wert von

$$\frac{\nu_0}{c} = (0.57 \pm 0.03) \,\mathrm{cm}^{-1}$$

weicht zwar stärker von dem Theoriewert ab, jener liegt dennoch weiterhin im Fehlerintervall. Aus diesem Wert lässt sich wiederum die Schallgeschwindigkeit zu

$$c = (364 \pm 21) \,\mathrm{m \, s^{-1}}$$

ableiten, die Abweichung zum Literaturwert beträgt

$$\Delta c = 5.97 \%$$
.

Die hier vorhandene stärkere Abweichung lässt sich damit erklären, dass bei dieser Messung weniger Messwerte aufgenommen werden konnten.

5 Anhang

<u>Ù/min</u>	+ /20%	1045 t,	1045		
6	47106	82	647	85844	
12	44217	- 4	2900	42940	
18	12197	2 78	579	28625	
74	40692	21	393	21391	
30	9466	17	130	17131	
36	8546	14	251	14265	
42			185		
49		10	652	10 689	
54				9446	
60		85	17	8500	
6	85975	85958	8 8	6013	
12	42816	42857	4	2862	
18	79066	285 78	28	5.95	
74	71410	21421	216	141	
30	17109	17173	17,	182	
3 6	14275	14245	142	69	
42	17198	12729	1220	Ug .	
48	10664	10644	1066	2	
54	9469	9464	9489		
60	8498	8523	854	3	

Abbildung 7: Originaldaten Teil 1.

		chefrequenz				
		Zahldar Scho	rio gorgen:	7074	14 70	77415
				2070	16 70	7414
				207131		
				07414		
			7	07413		
Evak,	oh J U	(m): +1	P2	P3	+	le Pr
	6	70735	70739	70738	207	39 70739
	n:	D0736	20736	2073		36 20735
	18:	20733	20733	70733		2 70733
	74:	70730	20779	7093	0 7073	9 20730
	30	: 70777	70777	7077	6 20726	20776
	36:	20774	70773	7077	+ 20721	
	Ett:	20711	20720	7071	3 7077-	1 70770
Evernal	D 0/m	P4	Pz	P3	Pu	Ps
	6:	20745	20745	70745	20745	20745
	n:	20748	70748	70748	20748	
	18:	20751	20752	70751		70751
	74;	70754	70784	70754	20754	
	30:	20758	20757	70757	70757	
	36	20761	20760	70760		20360
	42					

Abbildung 8: Originaldaten Teil 2.

```
Grandy ]
           (Threty mosting)
W/m1 Df O2
           0/3
            6
   6 6
   12 12
           12
18
   19 19
           19
           25
24
   75 75
30 29 78
Messary der Schall gerchwadishat
    5 0,34 mm R 0,034 nem
    2 0,905 mn A 0,905 cm
                7 7,694 (m
                3578 Cm
                1 4.393 cm
```

Abbildung 9: Original daten Teil 3.

Abbildung 10: Dokumentation der Versuchsdurchführung.

Literatur

- [1] TU Dortmund. Versuchsanleitung, Versuch Nr. 104. 2015. URL: http://129.217. 224.2/HOMEPAGE/PHYSIKER/BACHELOR/AP/SKRIPT/V104.pdf.
- [2] D.C. Giancoli. *Physik: Lehr- und Uebungsbuch.* 2010. URL: https://books.google.de/books?id=blIf3HCpDy8C.