Übungsblatt 1

Hausaufgabe 4

- (a) $b \in L(\mathcal{A}_1)$ $\epsilon \in L(\mathcal{A}_2)$
- (b) $bc \notin L(\mathcal{A}_1)$ $aa \notin L(\mathcal{A}_2)$
- (c) $L(\mathcal{A}_1) = \{a^* \cdot b \cdot \{a, b\}^*\} \ L(\mathcal{A}_2) = \{w \in \{a, b\}^* \mid |w|_b \le |w|_a \le 4\}$

Hausaufgabe 5

 \mathcal{A}_1

 \mathcal{A}_2

 \mathcal{A}_3

 \mathcal{A}_4

Hausaufgabe 6

(a)
$$L_1 \cdot (L_2 \cup L_3) \Leftrightarrow \{u \cdot v \mid u \in L_1 \land v \in L_2 \text{ oder } L_3\}$$

$$(L_1 \cdot L_2) \cup (L_1 \cdot L_3) \Leftrightarrow \{u \cdot v \mid u \in L_1 \land v \in L_2\} \cup \{u \cdot v \mid u \in L_1 \land v \in L_3\}$$

$$\Leftrightarrow \{u \cdot v \mid u \in L_1 \land v \in L_2 \text{ oder } L_3\}$$

$$\Leftrightarrow L_1 \cdot (L_2 \cup L_3)$$

(b)
$$L_1^* \cdot L_1 = \bigcup_{i \in \mathbb{N}_0} L^i \cdot L_1$$
 Sei $L_1 = \{a, b\}$. Dann gilt $L_1^* = \{\epsilon, a, b, aa, bb, ab, ba, aaa, \ldots\}$

Hausaufgabe 7

- (a) Der Automat $\mathcal{A} = \{\{q_0\}, \{a\}, \delta, \{q_0\}\}, \delta(q_0, a) = q_0 \text{ hat als einzigen akzeptierenden Zustand den Anfangszustand } q_0, \text{ allerdings ist in diesem Fall } L(\mathcal{A}) = \{a\}^*$
- (b) Ein deterministisch endlicher Automat \mathcal{A} hat für jede mögliche Kombination von Zustand und Symbol einen Folgezustand definiert, und da alle Zustände akzeptierend sind, akzeptiert \mathcal{A} auch alle Wörter über dem Alphabet Σ , also Σ^* .