02. COURS

Transformations du plan

Translation

Soit \vec{u} un vecteur du plan. On définit la **translation de vecteur** \vec{u} par la transformation qui, à tout point M, associe un point M' tel que :

$$\overrightarrow{MM'} = \overrightarrow{u}$$

Pour construire l'image d'une figure par translation, il suffit de déplacer les points caractéristiques de cette figure en suivant le vecteur donné.

EXEMPLE

La figure rouge suivante est la translation de la figure verte par le vecteur $\overset{\longrightarrow}{v}$.

ROTATION

Soit un point A et un nombre réel θ . On définit la **rotation de centre** A **et d'angle** θ la transformation qui, à tout point M, associe un point M' tel que :

$$AM = AM'$$
 et $\widehat{MAM'} = \theta$

Pour construire l'image M' de M par la rotation de centre A et d'angle θ :

- 1ère étape : on centre le compas sur A, et on l'ouvre jusqu'en M. On trace alors un cercle.
- $\frac{2 \text{\`e}me \text{ \'e}tape}{\text{e}}$: on place le rapporteur sur [AM], centré sur A, et on mesure un angle θ . L'intersection entre cet angle et le cercle donne le point M'.

Exemple

La figure rouge suivante est la rotation de la figure verte de centre E et d'angle 90° (sens antihoraire).

Symétrie axiale / Réflexion

Soit (Δ) une droite du plan. On définit la **symétrie ou la réflexion d'axe** (Δ) par la transformation qui, à tout point M, associe un point M' tel que :

 (Δ) soit la médiatrice de [MM']

RAPPEL

Une médiatrice coupe un segment en son milieu et lui est perpendiculaire. Tout point situé sur la médiatrice est équidistant des extrémités du segment.

La symétrie d'axe (Δ) transformera M en M' de sorte que :

- $-(MM')\perp(\Delta)$
- Si I est le point d'intersection de (MM') et (Δ) alors : IM = IM'

Construction

Pour construire l'image M' de M par la symétrie axiale (Δ) :