

The LNM Institute of Information Technology

Department: ECE
Basic Electronics (ECE103)
Exam Type: Mid Term

Time: 90 minutes

Date: 25/09/2019

Max. Marks: 30

Instructions: 1. This question paper consists of 3 printed pages.

- 2. All the questions are compulsory.
- 3. Attempt each new question in a fresh page.
- 4. Clearly mark all the answers with a box or underline.
- Q.1 a) In the circuit shown below (Fig. 1a), find the total resistance R_T, with terminals
 a and b: i) open circuited ii) short circuited.

- b) In the interval $0 > t > 5\pi$ ms, a 20-mF capacitance has a voltage $v = 50.0 \sin 200t$ (V). Obtain the charge, power, and energy. Plot energy (w_c) assuming w = 0 at t = 0. [3]
- Q.2 a) In the circuit shown below (Fig. 2a), find the resistance R_{ab} , with the value of each resistance being 30Ω .

b) Obtain voltages V_1 and V_2 given in the circuit shown in (Fig. 2b).

[3]

[2]

Q.3 a) In the circuit shown below (Fig. 3a), find the Thevenin's equivalent V_{th} and R_{th} to the left of terminals a and b (in terms of V_{tn}). Also calculate the transfer resistance $R_{transfer} = V_{tn}/I_4$ in terms of R_L when R_L is connected.

b) Find the value of the adjustable resistance R which results in maximum power transfer across the terminals ab for the circuit shown in Fig. 3b. Also determine the value of the maximum power Pmax.

Q.4 a) In the circuit shown in *Fig. 4a*, the initial voltages across the capacitors C_1 and C_2 are 1V and 3V respectively. The switch is closed at time t=0. How much energy will be dissipated (in Joules) in the resistor R until the steady state is reached. [3]

Fig. 4a

[3]

[3]

b) In the given circuit *Fig. 4b*, the switch S is closed at t = 0. Derive the expression for the rate of change of current $\frac{di(t)}{dt}$ at $t=0^+$. [2]

Fig. 4b

Q5. a) The responses of a series RLC circuit are:

$$v_C(t) = 30 - 10e^{-20t} + 30e^{-10t} \text{ V}$$

 $i_L(t) = 40e^{-20t} - 60e^{-10t} \text{ mA}$

where v_C is the capacitor voltage and i_L is the inductor current. Calculate the value of R, L and C.

b) For the circuit shown in Fig. 5b, the switch is closed for a long time and opens at t=0. Find the response of the system and voltage across capacitor as a function of time for t>0.

Q6. a) For the circuit shown Fig. 6a, the switch is closed at t=0. Find response of the system and i(t) for t>0.

b) Using superposition principle, calculate V_x in the circuit shown in Fig. 6b if $v_s = 50 \sin 2t$ V and $i_s = 12 \cos (6t + 10^0)$ A.