Sistemas Operacionais - Sistemas de Informação - EACH-USP Prof. Alexandre da Silva Freire Primeira Prova - 11 de outubro de 2018

Nome: NUSP: NOTA:

Boa Prova!

Questão 1 (Valor: 1 ponto). Cite ao menos 5 serviços essenciais, explicando sucintamente cada um deles, que um sistema operacional deve prover.

Questão 2 (Valor: 1 ponto)

- Item (a): Quais são os 5 estados que um processo pode assumir?
- Item (b): Descreva sucintamente cada um de tais estados e descreva como ocorrem as transições entre eles.

Questão 3 (Valor: 1 ponto)

- Item (a): Do que decorre a necessidade de o sistema operacional ter um escalonador de processos?
- **Item (b):** Qual é a diferença entre um escalonador preemptivo e um não-preemptivo?
- Item (c): Cite ao menos 3 critérios que podem ser utilizados para comparar diferentes escalonadores.
- **Item (d):** Segundo qual critério o escalonador *Shortest Job First* é sempre ótimo (não dá para fazer melhor)?

Questão 4 (Valor: 2 pontos). Simule os escalonadores *Shortest Remaining Time First* (SRTF) e o *Round Robin* (RR), com quantum de tempo igual a 2, para o seguinte cenário:

Processo	P_1	P ₂	P ₃	P ₄	P_5	P_6
Tempo de burst	10	11	1	5	3	1
Inst. de chegada	1	1	3	6	7	8

Questão 5 (Valor: 2 pontos)

- Item (a): O que é um semáforo?
- **Item (b):** O que é um *mutex*?

- Item (c): No chamado problema de leitores-escritores, tem-se a necessidade de compartilhar uma base de dados entre vários processos concorrentes, sendo que alguns deles só leem, enquanto outros podem ler e escrever. Descreva, em linhas gerais (não há necessidade de escrever o código), qual foi a solução vista em aula para resolver o problema de sincronismo neste contexto
- **Item (d):** Na solução apresentada para o problema de leitores-escritores pode haver *starvation*? Justifique.

Questão 6 (Valor: 2 pontos)

- Item (a): O que é um deadlock?
- **Item (b):** Quais são as 4 condições necessárias para que possa ocorrer um *deadlock*?
- Item (c): O que é estado seguro?
- Item (d): Como se pode verificar se um sistema está ou não em estado seguro, considerando apenas recursos de uma única instância?
- Item (e): Explique como funciona o algoritmo de prevenção de *deadlock* para recursos de uma única instância.

Questão 7 (Valor: 1 ponto)

- Item (a): O que é fragmentação interna e externa de memória?
- Item (b): Como funciona a alocação contígua de memória?
- **Item (c):** Como funciona a paginação de memória?
- Item (d): Quais são as principais diferenças entre paginação e segmentação de memória?