read network

读取网络

evaluate_accessibility(ui,

multimodal=True,

mode='p',

time_dependent=False, demand_period_id=0, output_dir='.')

parameter:

multimodal: 如果为 True,则将对 settings.yml 中定义的所有 agent 进行可访问性评估 time_dependent: True:可达性将使用所选时期 link 的自由流旅行时间,换言之,可达性只与所选时期有关,与 agnet_type 无关

output:

accessibility_aggregated.csv accessibility.csv:

_update_min_travel_time(an, at, min_travel_times, time_dependent,

demand_period_id)

输出各个区域之间的最小旅行时间和其中最大的最小旅行时间 max _min (用于计算所需的时间区间数)

min_travel_times[(zone_id, to_zone_id, at_str)] = min_tt, min_dist an 的特点

有区域质心,区域质心与区域内所有点连接

update_generalized_link_cost(at, time_dependent, demand_period_id):

根据 at 和 demand_period, 更新 link_cost

$$link_{cost} = link_{fftt} + link_{routechoice} + \frac{link_{toll}}{agent_{vot}}$$

 $link_{routechoice} -?$

 $link_{toll}$ -?

 $agent_{vot}$ -?

interval_num = _get_interval_id(min(max_min, MAX_TIME_BUDGET)) + 1 计算所需的时间区间数

output

_output_accessibility(min_travel_times, zones, mode='p', output_dir='.')

输出 accessibility_aggregated.csv 文件

o_zone	d_zone	accessibility	distance	geometry
id 和 name	id 和 name	min_tt	min_dist	坐标

_output_accessibility_aggregated(min_travel_times, interval_num, zones, ats, output_dir='.')

输出 accessibility_aggregated.csv 文件

zone_id	geometry	mode	time_budget1	time_budget2	
	坐标	agent	<min_time_budget< td=""><td>MIN_TIME_BUDGET</td><td></td></min_time_budget<>	MIN_TIME_BUDGET	
			的区域的数量	+	
				BUDGET_TIME_INTVL	

get_accessible

get_accessible_nodes(self, source_node_id, time_budget, mode, time_dependent, tau)

tau: demand_period

返回 lable_cost<=time_budget 的 node 集合

get_accessible_links(self, source_node_id, time_budget, mode, time_dependent, tau)

lable_cost<=time_budget 的 node 的 pred_link 的集合