

FIG. 3

Summary of Polymerization Data

Branches Per 1000 carbons 1.45 1.43 1.41 386 619 342 323 429 294 307 286 333 263 331 Yield (g) 6.10 7.35 9.25 3.20 6.85 9.00 3.11 Time (min) Moles of Catalyst (x 10°) Entry

^aExperimental condition: in 200 mL of toluene, cocatalyst MMAO (Al:Ni ≈ 3000), 200 psi ethylene pressure.

^b TON = turnover number, which was calculated as the moles of ethylene per mole of catalyst; TOF = turnover frequency, i.e., TON per hour.

FIG. 4A
Examples of bidentate ligands

5/16

FIG. 4B Examples of bidentate ligands (continued)

FIG. 4CExamples of bidentate ligands (continued)

B ₁ = B ₂ = -T-Ar-T- R R R R H H H H H H H H H H H H H H H	15.	B ₁ = B ₂	18.
$B_1 = B_2 = -T - Ar - T -$ R R N N N N	14.	$B_1 = B_2 = -T \cdot Ar \cdot T \cdot$ $A = A \cdot Ar \cdot T \cdot$ $A \cdot A \cdot$	17.
B ₁ = B ₂ = -T-Ar-T- R R' R'' Ola R R R'' N AN R''	13,	$B_1 = B_2 = -T - Ar - T -$ R	16.

7/16

FIG. 4DExamples of bidentate ligands (continued)

half-cyclic structure for any of the above ligands $B_1 = B_2 = -T - Ar - T -$ FIG. 4E
Examples of bidentate ligands (continued) 26. 28. т Г $B_1 = B_2 = -T - Ar - T$ $B_1 = B_2 = -T - Ar - T -$ 25. 27.

9/16

FIG. 5A Examples of tridentate ligands

FIG. 5B
Examples of tridentate ligands (continued)

FIG. 6A

Examples of preference of metals for different types of ligands

FIG. 6B

Examples of preference of metals for different types of ligands (continued)

FIG. 6C

Examples of preference of metals for different types of ligands (continued)

In structures 1 through 42, Q, n, R4 and R5 are as defined in Formula 1 in the specification, n' is 1 through 4, and R' and R" are alkyl, alkenyl, aryl, aralkyl, or cycloalkyl.

WO 2005/014658 PCT/US2004/025586

14/16

FIG. 7
(Prior Art)

FIG. 8

FIG. 9

15/16

FIG. 10

Polymerization of 1-Hexene
(Catalyst Activity and Molecular Weight Data at 0 °C and at 25 °C)

entry	c at	Load (mmol)	Temp (oC)	Yield (g)	TON	Mw	Mn	PDI	DSC (°C)	Branch /1000c
F62	2	0.005	0	0.33	784	170 K	96 K	1.77	T _m 58	65
F36	2	0.01	0	0.41	488	305 K	292 K	1.05	T _m 63	61
F84	1	0.005	0	1.62	3850	719 K	627 K	1.15	T _m -42	104
Ref JACS 95, 6414	1	0.017 activated by Et ₂ AICI	0	2.1	1468	310 K	140 K	2.2	T _m -20 T _g -57	100
F60	2	0.005	25	1.68	3992	623 K	510 K	1.22	T _m 62	57
F72	1	0.005	25	1.90	4515	817 K	543 K	1.50	T _m -50	108
Ref <i>JACS 96,11664</i>	1	0.017 3.2 M; 30 min rxn.	23		2800	129 K	84 K	1.54	T _m -17 T _g -57	120
F74	3	0.005	25	0.80	1901	88 K	83 K	1.06	T _m 56	35
F42	2	0.005	75	2.21	5466	622 K	529 K	1.17	T _m 59	52
F68	1	0.005	75	0.43	1022	415 K	279 K	1.49	T _m -53	111
F70	3	0.005	75	0.26	618	131 K	92 K	1.43	T _m 73	38
F46	2	0.005	95	1.6	3802	252 K	125 K	2.00	T _m 57	54
F48	1	0.005	95	0.47	1117	287 K	171 K	1.68	T _m -53	113
F50	3	0.005	95	0.59	1402	77 K	59 K	1.29	T _m 76	40

FIG. 11

