Analízis III

Előadásjegyzet fizikusoknak matematikusoktól

Izsák Ferenc Tarcsay Zsigmond Tüzes Dániel

Tartalomjegyzék

1	Differenciálegyenletek					
	1.1	Közön	séges differenciálegyenlet megoldásának létezése és egyértelműsége .	3		
		1.1.1	Mitől lesz a megoldás egyértelmű?	4		
2	A Hilbert tér geometriája, Fourier sorfejtés					
	2.1	Ortogo	onális kiegészítő altér	5		
		2.1.1	Ortogonális rendszerek	8		
		2.1.2	Ortogonális sorok, Fourier-sorok	9		
	2.2	Lineár	is és korlátos operátorok	13		
		2.2.1	Korlátos lineáris funkcionálok, duális tér (Hilbert tér esetén)	14		
			2.2.1.1 Korlátos lineáris funkcionálok	15		
			2.2.1.2 Duális (konjugált) tér	16		
			2.2.1.3 X'' tér, más szóval biduális, reflexív tér	17		
		2.2.2	Gyenge konvergencia	17		
		2.2.3	Gyenge konvergencia X -ben	18		
			2.2.3.1 Inverz operátor	19		
			2.2.3.2 Zárt gráf (grafikon) tétel	20		
	2.3	Sajáté	rték, reguláris érték, spektrum	20		
		2.3.1	Korlátos lineáris operátorok reguláris értékei	21		
		2.3.2	Példák, alkalmazások	23		
			2.3.2.1 A négyzetesen integrálható magú integráloperátorok	23		
			2.3.2.2 Folytonos magú integráloperátorok	27		
			2.3.2.3 Egy speciális eset	27		
3	Hilb	ert tér	operátorai	28		
	3.1	Az adj	jungált operátor	28		
		3.1.1	Négyzetesen integrálható magú integrál operátorok valós			
			vagy komplex függvényeken	31		
		3.1.2	Szimmetrikus és önadjungált operátorok	32		
		3.1.3	Izometrikus és unitér operátorok	36		

	3.1.4	Véges rendű operátorok	36
3.2	A más	sodfajú egyenlet véges rendű operátorokra	40
	3.2.1	Kompakt (teljesen folytonos) operátorok	4^{2}
	3.2.2	Másodfajú egyenlet kompakt operátorokra	44
	3.2.3	Önadjungált kompakt operátorok	47

Előadó e-mail címe: simonl a ludens.elte.hu-nál

Ez a jegyzet **nem** szakirodalom s nem garantált, hogy az órai anyagot teljesen lefedi, az előadásokra bejárni ajánlott.

Ha a jegyzetben helyesírási, tartalmi vagy formai hibát találsz, kérlek jelezd az előadónak!

1. Differenciálegyenletek

Mi a differenciálegyenlet?

Ρl

- 1. $\ddot{x}(t) = -\omega^2 x(t)$
- 2. $\ddot{x}(t) = F(t)/m$
- 3. $\partial_t u = \Delta u$
- 4. x(t) = x(t-1)

Ezeket lehet rendszerezni: ODE (ordenary differential equation, azaz közönséges differenciál-egyenlet, 1-es és 2-es), PDE (partial differential equation, 3-as), FDE (functional differential equation, 4-es).

Most az ODE-val foglalkozunk. Mi a közönséges differenciál-egyenlet?

Definíció:

Legyen $F: \mathbb{R}^{n+2} \to \mathbb{R}$, n-edrendű közönséges differenciálegyenlet: $\forall t$ -re $0 = F\left(t,x\left(t\right),\dot{x}\left(t\right),\ddot{x}\left(t\right),...,x^{(n)}\left(t\right)\right)$.

Megjegyzés:

Egy ilyen n-edrendű egyenlet átírató elsőrendű rendszerré. Pl: $\ddot{x}(t) = -\omega^2 x(t)$ egyenletet átírjuk: $y_1(t) = x(t)$, $y_2(t) = x(t)$. Ekkor y-ra az alábbi elsőrendű, kétismeretlenes rendszer áll fenn:

$$y_1(t) = y_2(t)$$

$$y_2(t) = -\omega^2 \cdot y_1(t).$$

Általánosan n-ed rendűnél: $y_1=x, y_2=x, \ldots, y_n=x^{(n-1)}$. Ekkor $(y_1,...,y_n)$ -re elsőrendű rendszert kapunk.

Definíció:

Legyen $f: \mathbb{R} \times \mathbb{R}^n \to \mathbb{R}^n$, x(t) = f(t, x(t)) elsőrendű (explicit) közönséges differenciálegyenlet-rendszer. Ismeretlen az $x: \mathbb{R} \to \mathbb{R}^n$ függvény. Koordinátánként kiírva:

$$x_{1}(t) = f_{1}(t, x_{1}(t), x_{2}(t), ..., x_{n}(t))$$

$$x_{2}(t) = f_{2}(t, x_{1}(t), x_{2}(t), ..., x_{n}(t))$$

$$\vdots$$

$$x_{n}(t) = f_{n}(t, x_{1}(t), x_{2}(t), ..., x_{n}(t))$$

Mivel foglalkozik a közönséges differenciálelmélet?

- 1. Mi a megoldás? Azaz számítsuk ki a megoldást. (Ezt már tanultuk.) Vannak:
 - a. képlettel megoldhatók
 - b. képlettel nem megoldhatók (de numerikusan közelíthetők)
- 2. Megoldás létezésének, egyértelműségének keresése, függése a paraméterektől
- 3. Milyen a megoldás? Pl periodikus-e, korlátos-e... A megoldást szeretnénk jellemezni annak kiszámítása nélkül. Pl x = x és x(0) > 0. Ekkor egyből látjuk, hogy x szigmon nő, akkor is, amikor még nem tudtuk, hogy konkrétan mi a megoldás.

1.1. Közönséges differenciálegyenlet megoldásának létezése és egyértelműsége

Példák:

• x(t) = x(t), ennek egy jó megoldása $x(t) = c \cdot e^t$, $c \in \mathbb{R}$, azaz végtelen sok megoldás van. Legyen kezdeti feltétel: $x(0) = a \in \mathbb{R}$ adott. Ekkor már csak 1 megoldás van az ilyen fajtákból: $c \cdot e^0 = a \Rightarrow c = a$, vagyis a megoldás $x(t) = a \cdot e^t$. De más fajtából lehetne még megoldás? Nem, ugyanis:

$$x(t) = x(t) x(t) \cdot e^{-t} - x(t) e^{-t} = 0 (x(t) \cdot e^{-t})' = 0 \Rightarrow x(t) \cdot e^{-t} = c.$$

Az implikáció csak akkor igaz, ha $D\left(x\right)$ (azaz a differenciáloperátor) egy intervallumon van értelmezve. Tehát $\exists k \in \mathbb{R} : x\left(t\right)e^{-t} = k \Leftrightarrow x\left(t\right) = k \cdot e^{t}$. A megoldás egyértelmű, mert bármilyen kezdőfeltételt adok meg, lesz pontosan 1 megoldás.

• $x(t) = \sqrt{|x(t)|}$. Mi a megoldás x > 0 -ra?

$$\frac{x\left(t\right)}{\sqrt{x\left(t\right)}} = 1 \Rightarrow 2\sqrt{x\left(t\right)} = t + c \Rightarrow x\left(t\right) = \left(\frac{t+c}{2}\right)^{2}$$

Hamis gyökök a parabolák "bal oldalai". x < 0 esetén a megoldás "lefelé fordított parabolák bal oldalai", hamis megoldás a parabolák "jobb oldalai". x = 0 esetén mindkét fajta megoldás jó. Így adott kezdeti feltétel mellett végtelen sok megoldás létezik. Ha $x(t_0) = a$ a kezdeti feltétel, akkor a > 0 esetén a megoldás csak lokálisan egyértelmű, de globálisan nem.

1.1.1. Mitől lesz a megoldás egyértelmű?

Tétel:

Ha x(t) = f(t, x(t)) közönséges diffegyenletben az f függvény az x változóban teljesíti a lokális Lipschitz feltételt, akkor a megoldás egyértelmű. Vagyis ha minden pont egy alkalmas környezetéhez $\exists L \in \mathbb{R}^+ : |f(t, p) - f(t, q)| \leq L \cdot |p - q|$, akkor a megoldás egyértelmű.

Példa:

 $g\left(x\right)=5x,$ vagy $g\left(x\right)=x^2$ teljesítik a lokális Lipschitz feltételt, de a $g\left(x\right)=\sqrt{|x|}$ már nem. Ez utóbbi 0-ban nem lok. Lip, csak 1-ben pl.

Észrevétel: ha a derivált létezik, és korlátos minden pont környezetében, akkor lok. Lip.

Gronwall lemma (egyszerű eset):

(Az előző tétel bizonyítása ezen a lemmán alapszik.) Legyen $u:[a,b] \to \mathbb{R}$ diffható, melyhez $\exists k \in \mathbb{R}^+: u(t) \leq k \cdot u(t) \ \forall t \in [a,b]$. Ekkor $u(t) \leq u(a) \cdot e^{k(t-a)} \ \forall t \in [a,b]$.

Bizonyítás (lemmáé):

```
Beszorzunk e^{-kt}-vel:

u(t) \cdot e^{-kt} - k \cdot u(t) \cdot e^{-kt} \le 0

\left(u(t) e^{-kt}\right)' \le 0

u(t) e^{-kt} \le u(a) e^{-ka}

u(t) \le u(a) e^{k(t-a)}
```

Tétel bizonyítása:

```
legyen x és y két megoldás, amelyekhez \exists \tau \in \mathbb{R}: x(\tau) = y(\tau). Belátjuk, hogy x(t) = y(t) \ \forall t. Bizonyítás n = 1 esetre: u(t) = (x(t) - y(t))^2, u(t) = 2(x(t) - y(t)) \cdot (x(t) - y(t)) = 2(x(t) - y(t)) (f(t, x(t)) - f(t, y(t))). u(t) \leq |u(t)| = 2|x(t) - y(t)| \cdot |f(t, x(t)) - f(t, y(t))| \leq 2|x(t) - y(t)| \cdot L \cdot |x(t) - y(t)| = 2L \cdot u(t) Gronwall alkalmazása: u(t) \leq u(a) \cdot e^{2L(t-a)}, u(\tau) = 0 \Rightarrow u(t) = (x(t) - y(t))^2 \leq 0 \Rightarrow x(t) = y(t) \ \forall t \geq \tau. Hasonlóan igaz a t \leq \tau-ra is.
```

Text

2. A Hilbert tér geometriája, Fourier sorfejtés

Kiegésztés: fogalmaink használatához be kell vezetni a komplex Euklideszi tér fogalmát. Komplex vektortér: a definíció analóg a valós vektortér definíciójával, kivéve: komplex számmal való szorzás is értelmezve van, a műveleti tulajdonságok ugyanazok.

Komplex Euklideszi tér: komplex vektortér (az alaptest a komplex számok halmaza, \mathbb{C}), plusz 2 elem skalárszorzata is értelmezve van, értéke komplex szám. A műveleti tulajdonságok analógok, eltérés: $\langle x,y\rangle = \overline{\langle y,x\rangle}$ (a felülhúzás a komplex konjugálás), ekkor amúgy $\langle \lambda x,y\rangle = \lambda \, \langle x,y\rangle$ és $\langle x,\lambda y\rangle = \overline{\lambda} \, \langle x,y\rangle$. (Vegyük észre, hogy a komplex vektortereken értelmezett skaláris szorzás kétféleképp definiálható. Itt - és a matematikában

általában - a skaláris szorzás az első változójában lineáris és a másodikban konjugált lineáris. Fizikában fordítva, azaz az első változójában lineáris, a másodikban konjugált lineáris: $\langle \lambda x, y \rangle = \overline{\lambda} \langle x, y \rangle$, illetve $\langle x, \lambda y \rangle = \lambda \langle x, y \rangle$.)

Példák (és megjegyzések) komplex euklideszi térre:

- \mathbb{C}^n esetén $x=(x_1,x_2,...,x_n), x_j\in\mathbb{C}$, akkor $\lambda x=(\lambda x_1,\lambda x_2,...,\lambda x_n), \langle x,y\rangle=\sum\limits_{j=1}^n x_j\overline{y_j}$
- $L^2(M)$ tér (komplex esetben), ha $M \subset \mathbb{R}^n$ mérhető halmaz: legyen $f: M \to \mathbb{C}$, $f = f_1 + i \cdot f_2$. Legyen továbbá f_1 , f_2 valós függvények. f mérhetősége azt jelenti, hogy f_1, f_2 mérhető $\Rightarrow \int_M f := \int_M f_1 + i \int_M f_2$. $f: M \to \mathbb{C}$ integrálható $\Leftrightarrow |f|$ integrálható, $|f|: M \to \mathbb{R}$ mérhető. Ekkor jelölje $L^2(M)$ az olyan $f: M \to \mathbb{C}$ mérhető függvények összességét, amelyekre $|f|^2$ integrálható. Könnyen belátható, hogy $L^2(M)$ komplex vektortér. Vezessük be ebben a következő skalárszorzatot: $\langle f, g \rangle := \int_M f \overline{g}$. Így egy Euklideszi teret kapunk. Sőt, a tér teljes, vagyis $L^2(M)$ Hilbert tér.
- Komplex l^2 tér, $x := (x_1, x_2, ..., x_j, ...), x_j \in \mathbb{C}, l^2$ komplex euklideszi tér, ebben a skaláris szorzás $\langle x, y \rangle = \sum_{j=1}^{\infty} x_j \overline{y_j}$. Bizonyítható, hogy teljes is.

2.1. Ortogonális kiegészítő altér

Definíció:

Legyen X Hilbert tér (vagy akár Banach is). Egy $Y \subset X$ halmazt altérnek nevezzük, ha az összeadás és számmal való szorzás nem vezet ki belőle és zárt részhalmaz (a konvergencia nem vezet ki).

Definíció:

Legyen X Hilbert tér, s két eleme x és y. Ezek merőlegesek, vagyis $x \perp y$, ha $\langle x,y \rangle = 0$.

Definíció:

Legyen X Hilbert tér, $Y\subset X$ altér. Azt mondjuk, hogy az $x\in X$ elem Y ortogonális, ha $\forall y\in Y$ -ra $\langle x,y\rangle=0$.

Definíció:

Legyen X Hilbert tér, $Y \subset X$ altér. Az Y altér ortogonális kiegészítő altérét, Y^{\perp} -t így értelmezzük: $Y^{\perp} := \{x \in X : x \perp Y\}$.

Állítás:

 $Y^{\perp} \subset X$ is altér.

Bizonyítás:

Az összeadás és számmal való szorzás nem vezet ki belőle, ugyanis tfh $y_1, y_2 \in Y^{\perp}$, $x \in Y$ tetszőleges. Ekkor $\langle \lambda_1 y_1 + \lambda_2 y_2, x \rangle = \lambda_1 \langle y_1, x \rangle + \lambda_2 \langle y_2, x \rangle = 0$. Y^{\perp} zárt halmaz, ugyanis legyen $y_j \in Y^{\perp}$, $\lim (y_j) = y \in X$. Tudjuk, hogy $\langle y_j, x \rangle = 0 \,\forall x \in Y$. $y_j \to y \Rightarrow \langle y_j, x \rangle \to \langle y, x \rangle$ minden rögzített x-re, ugyanis a skalárszorzat a tényezőktől folytonosan függ, tehát $\langle y, x \rangle = 0$, $\forall x \in X$ -re, vagyis $y \in Y^{\perp}$.

Megjegyzés:

Komplex Cauchy-Schwarz egyenlőtlenség, azaz $|\langle x,y\rangle| \leq \|x\|\cdot\|y\|$ bizonyítása:

$$0 \le \langle x + \lambda y, x + \lambda y \rangle = \langle x, x \rangle + \lambda \langle y, x \rangle + \overline{\lambda} \langle x, y \rangle + \lambda \overline{\lambda} \langle y, y \rangle$$

$$0 \le \langle x, x \rangle + \lambda \langle y, x \rangle + \overline{\lambda} \left[\langle x, y \rangle + \lambda \langle y, y \rangle \right]$$

A $\lambda \in \mathbb{C}$ számot válasszuk meg úgy, hogy $\overline{\lambda}$ együtthatója 0 legyen. Ez teljesül, ha $\lambda = -\frac{\langle x,y \rangle}{\langle y,y \rangle}$ (y=0 triviális eset, így feltesszük, hogy $y\neq 0$), behelyettesítve:

$$0 \le \langle x, x \rangle - \frac{\langle x, y \rangle}{\langle y, y \rangle} \langle y, x \rangle = \langle x, x \rangle - \frac{|\langle x, y \rangle|^2}{\langle y, y \rangle} \Rightarrow |\langle x, y \rangle|^2 \le \langle x, x \rangle \langle y, y \rangle.$$

Riesz-féle felbontási tétel:

Legyen X Hilbert tér, Y egy altere, Y^{\perp} az Y-nak ortogonális kiegészítő altere! Ekkor $\forall x \in X$ elemre x = y + z, ahol $y \in Y$, $z \in Y^{\perp}$ és a felbontás egyértelmű.

Lemma (paralelogramma egyenlőség):

Legyen X egy Hilbert tér. Ekkor $\forall a, b \in X$ esetén $||a+b||^2 + ||a-b||^2 = 2 ||a||^2 + 2 ||b||^2$.

Bizonyítás (lemmáé):

$$||a+b||^2 + ||a-b||^2 = \langle a+b, a+b \rangle + \langle a-b, a-b \rangle = = ||a||^2 + ||b||^2 + \langle a, b \rangle + \langle b, a \rangle + ||a||^2 + ||b||^2 - \langle a, b \rangle - \langle b, a \rangle = 2 ||a||^2 + 2 ||b||^2.$$

Bizonyítás (tételé):

Legyen $d := \inf \{ \|x - y\| : y \in Y \} \ge 0$ (d véges). Belátjuk, hogy

$$\exists y_0 \in Y : ||x - y_0|| = d.$$

6

Az infinimum definíciója miatt

$$\exists y_j \in Y : d^2 \le ||x - y_j||^2 < d^2 + 1/j \quad j \in \mathbb{N}.$$

Tekintsük az (y_i) sorozatot!

Állítás: (y_j) Cauchy sorozat. Ehhez felhasználjuk a paralelogramma egyenlőséget $a := x - y_j$, $b := x - y_k$ választással.

$$\|(x - y_j) + (x - y_k)\|^2 + \|(x - y_j) + (x - y_k)\|^2 = 2 \|x - y_j\|^2 + 2 \|x - y_k\|^2$$

$$\|y_k - y_j\|^2 = 2 \|x - y_j\|^2 + 2 \|x - y_k\|^2 - \underbrace{\|2x - (y_j + y_k)\|^2}_{4 \|x - \frac{y_j + y_k}{2}\|^2}$$

$$\leq 2 \left(d^2 + 1/j\right) + 2 \left(d^2 + 1/k\right) - 4d^2$$

$$= \frac{2}{j} + \frac{2}{k} < \varepsilon, \text{ ha } j, k \geqslant j_0.$$

Mivel X tér teljes $\Rightarrow \exists y_0 \in X : \lim_{j \to \infty} ||y_j - y_0|| = 0$. Mivel Y altér zár halmaz $\Rightarrow y_0 = \lim_{j \to \infty} (y_j) \in Y$.

Másrészt (mint ahogy már írtuk) $d = \inf \{ ||x - y|| : y \in Y \}$, $d^2 \le ||x - y_j||^2 < d^2 + \frac{1}{i}$, továbbá

$$\lim (y_j) = y_0 \implies \lim ||x - y_j|| = ||x - y_0|| \implies ||x - y_0||^2 = d^2.$$

Legyen $z_0=x-y_0$. Be kellene még látni, hogy $z_0\bot Y$, vagyis $x=y_0+z_0$, ahol $y_0\in Y, z_0\in Y^\bot$.

Legyen $y \in Y$! Mivel d a fenti infinimum, ezért tetszőleges $\lambda \in \mathbb{K}$ esetén $d^2 = \|x - y_0\|^2 \le \|x - y_0 - \lambda y\|^2 = \|z_0 - \lambda y\|^2 = \langle z_0 - \lambda y, z_0 - \lambda y \rangle = \|z_0\|^2 - \lambda \langle y, z_0 \rangle - \overline{\lambda} \left[\langle z_0, y \rangle - \lambda \|y\|^2 \right]$. Most λ -t megint úgy választjuk, hogy $\overline{\lambda}$ együtthatója 0 legyen, vagyis legyen $\lambda = \frac{\langle z_0, y \rangle}{\|y\|^2}$ (megint feltehetjük, hogy $y \neq 0$). Tehát $d^2 \le d^2 - \lambda \langle y, z_0 \rangle = d^2 - \frac{\langle z_0, y \rangle}{\|y\|^2} \langle y, z_0 \rangle = d^2 - \frac{|\langle z_0, y \rangle|^2}{\|y\|^2}$, $0 \le -\frac{|\langle z_0, y \rangle|^2}{\|y\|^2} \Rightarrow |\langle z_0, y \rangle|^2 = 0 \Rightarrow \langle z_0, y \rangle = 0$. Tehát $z_0 \in Y^{\perp}$, vagyis valóban lehetséges ilyen felbontás.

Indirekt bizonyítjuk, hogy a felbontás egyértelmű. Tfh két alakban is felírható x: $x = y_0 + z_0 = y_1 + z_1$, ahol $y_1, y_2 \in Y$ és $z_1, z_2 \in Y^{\perp}$. $Y \ni (y_0 - y_1) := a = (z_1 - z_0) \in Y^{\perp}$.

$$\langle y_0 - y_1, z_1 - z_0 \rangle = ||a||^2 = 0 \Rightarrow y_0 - y_1 = z_0 - z_1 = 0 \Rightarrow y_0 = y_1, z_0 = z_1$$

Text

2.1.1. Ortogonális rendszerek

Definíció:

Egy X vektortérben az M halmaz elemei lineárisan függetlenek, ha bármely véges sok lineárisan független.

Definíció:

Legyen X normált tér! X dimenziója az olyan lineárisan független elemek maximális száma, amelyek véges lineárkombinációi mindenütt sűrűn vannak X-ben (egy $A \subset X$ sűrű X-ben, ha $\overline{A} = X$, ahol a halmaz felülvonása a lezárást jelenti, ez amúgy ekvivalens azzal, hogy $\forall x \in X$ -nek minden környezetében van A-beli elem). Másképp fogalmazva: jelöljük $\mathcal{L}(x_1, x_2, ...)$ -val azt a lineáris teret, amely az $x_1, x_2, ...$ elemek véges lineárkombinációjaként előáll. (Az előálló lineáris tér egyértelmű, de egy teret több ilyen vektorrendszer is előállíthat.) Ekkor X tér dimenziója az olyan lineárisan független elemek maximális száma, melyekre $\overline{\mathcal{L}(x_1, x_2, ...)} = X$. A D dimenziószám egyértelmű, $0 \le D \le \infty$.

Definíció:

Egy X normált teret szeparábilisnak nevezünk, ha benne megadható megszámlálhatóan sok (azaz véges vagy megszámlálhatóan végtelen sok) lineárisan független elem, amelyek véges lineárkombinációi sűrűn vannak X-ben.

Definíció:

Legyen X Hilbert-tér! Azt mondjuk, hogy az $x_1, x_2, ..., x_k, ...$ elemek ortogonális rendszert alkotnak, ha $\forall x_j, x_k \neq 0$ esetén $\langle x_j, x_k \rangle = \begin{cases} 0 & j \neq k \\ \text{nem} 0 & j = k \end{cases}$. A rendszer ortonormált, ha $\forall x \in X$ esetén ||x|| = 1.

Kérdés: ha az X Hilbert-térben $y_1, y_2, ..., y_k, ...$ lineárisan függetlenek, akkor lehet-e ezekből ortonormált rendszert konstruálni, és ha igen, hogyan? Válasz: lehet, az ún.

Schmidt-féle ortogonalizációs eljárással.

Tétel:

Az $y_1, y_2, ..., y_k, ...$ lineárisan független elemekhez az $x_1, x_2, ..., x_k, ...$ elemek megkonstruálhatók úgy, hogy az utóbbiak ortonormált rendszert alkossanak, mégpedig úgy, hogy $\forall k$ -ra $\mathcal{L}(x_1, x_2, ..., x_k) = \mathcal{L}(y_1, y_2, ..., y_k)$.

Bizonyítás:

- 1. Legyen $x_1 = \frac{y_1}{\|y_1\|}$, ekkor $\|x_1\| = 1$. $y_1 \neq 0$, mert $y_1, y_2, ...$ lineárisan függetle-
- 2. $z_2 := y_2 \lambda_1 x_1$, ahol $\lambda_1 \in \mathbb{R}$. Ezt hogy válasszuk meg, hogy $z_2 \perp x_1$ teljesüljön? $0 = \langle z_2, x_1 \rangle = \langle y_2 - \lambda_1 x_1, x_1 \rangle = \langle y_2, x_1 \rangle - \lambda_1 \langle x_1, x_1 \rangle \Rightarrow \lambda_1 = \langle y_2, x_1 \rangle. \text{ Ekkor}$ $z_2 \neq 0$, mert y_1, y_2 lineárisan függetlenek. $x_2 := \frac{z_2}{\|z_2\|}$, ekkor $\|x_2\| = 1$ és $\langle x_1, x_2 \rangle = 0.$
- 3. $z_3 := y_3 \mu_1 x_1 \mu_2 x_2$, ahol $\mu_1, \mu_2 \in \mathbb{R}$. Ezeket hogy válasszuk meg, hogy $z_3 \perp x_1, x_2$ teljesüljenek?

$$0 = \langle y_3 - \mu_1 x_1 - \mu_2 x_2, x_1 \rangle = \langle y_3, x_1 \rangle - \mu_1 - 0 \Leftrightarrow \mu_1 = \langle y_3, x_1 \rangle$$
$$0 = \langle y_3 - \mu_1 x_1 - \mu_2 x_2, x_2 \rangle = \langle y_3, x_2 \rangle - 0 - \mu_2 \Leftrightarrow \mu_2 = \langle y_3, x_2 \rangle$$

 $z_3 \neq 0$ y_1, y_2, y_3 lineáris függetlensége miatt, ezért $x_3 := \frac{z_3}{\|z_2\|}$ jó választás, így $||x_3|| = 1$ és $x_3 \perp x_1, x_2$.

Nem nehéz belátni, hogy az eljárás folytatható $\forall k$ -ra és $\mathcal{L}(y_1, y_2, ..., y_k) =$ $\mathcal{L}(x_1, x_2, ..., x_k).$

2.1.2. Ortogonális sorok, Fourier-sorok

A továbbiakban legyen X szeparábilis Hilbert-tér, véges vagy végtelen dimenziós! Tudjuk, hogy ekkor X-ben megadható $x_1,x_2,...,x_k,...$ ortonormált rendszer. Egy $\sum c_k x_k$ alakú sort (összeget) – ahol $c_k \in \mathbb{K}$ – ortogonális sornak nevezünk.

Tételek:

- 1. Egy $\sum_{k} c_k x_k$ sor konvergens $\Leftrightarrow \sum_{k} |c_k|^2 < \infty$ 2. Ha $x = \sum_{k} c_k x_k$, akkor $c_l = \langle x, x_l \rangle$
- 3. $||x||^2 = \sum_{k} |c_k|^2$ (végtelen dimenziós Pitagorasz tétel).

Bizonyítás:

1. Véges dimenzióban triviális, így tegyük fel, hogy végtelen sok elemű az ortonormált rendszer! Legyen $s_j := \sum_{k=1}^{J} c_k x_k!$ A sor konvergenciája azt jelenti, hogy (s_i) sorozat konvergens $\Leftrightarrow (s_i)$ Cauchy sorozat.

$$||s_j - s_l||^2 = \langle s_j - s_l, s_j - s_l \rangle$$

$$= \left\langle \sum_{k=l+1}^j c_k x_k, \sum_{k=l+1}^j c_k x_k \right\rangle$$

$$= \sum_{k=l+1}^j c_k \bar{c}_k \langle x_k, x_k \rangle = \sum_{k=l+1}^j |c_k|^2$$

Ez a $\sum_{k=1}^{\infty} |c_k|^2$ sor egy "szelete". Tehát (s_j) X-beli sorozatra teljesül a Cauchy-kritérium $\Leftrightarrow \sum_{k=1}^{\infty} |c_k|^2$ sorra teljesül a Cauchy-kritérium $\Leftrightarrow (s_j)$ X-beli sorozat konvergens $\Leftrightarrow \sum_{k=1}^{\infty} |c_k|^2$ sor konvergens.

- 2. Tfh $x = \sum_{k} c_k x_k$, x_l -lel szorozzuk skalárisan (jobbról) az egyenlőséget (ezt megtehetjük, hisz nem nehéz belátni, hogy egy konvergens sor tagonként szorozható skalárisan), $\langle x, x_l \rangle = \left\langle \sum_{k} c_k x_k, x_l \right\rangle = \sum_{k} c_k \left\langle x_k, x_l \right\rangle = c_l$
- 3. $||x||^2 = \langle x, x \rangle = \left\langle \sum_k c_k x_k, x \right\rangle = \sum_k c_k \underbrace{\langle x_k, x \rangle}_{\bar{c}_k} = \sum_k |c_k|^2$

Definíció:

Legyen $x_1, x_2, ..., x_k$ ortonormált rendszer, $x \in X$ adott elem! Értelmezzük az x elem k-adik Fourier-együtthatóját: $c_k := \langle x, x_k \rangle$. Az így adódó $\sum_k c_k x_k$ "sort" az x elem Fourier-sorának nevezzük.

Kérdés: egy x elem Fourier-sora konvergens-e? Ha igen, mi az összege?

Tétel:

Egy $x \in X$ elem Fourier sora mindig konvergens, ugyanis teljesül az ún. Besselegyenlőtlenség: $\sum_{k} |c_k|^2 \le ||x||^2$. A sor összege pontosan akkor x, ha teljesül az ún Parseval egyenlőség, azaz $\sum_{k} |c_k|^2 = ||x||^2$.

Bizonyítás:

$$s_{j} := \sum_{k=1}^{j} c_{k} x_{k}, \text{ ekkor}$$

$$0 \le \|x - s_{j}\|^{2} = \langle x - s_{j}, x - s_{j} \rangle$$

$$= \|x\|^{2} - \langle s_{j}, x \rangle - \langle x, s_{j} \rangle + \|s_{j}\|^{2}$$

$$= \|x\|^{2} - \left\langle \sum_{k=1}^{j} c_{k} x_{k}, x \right\rangle - \left\langle x, \sum_{k=1}^{j} c_{k} x_{k} \right\rangle + \left\langle \sum_{k=1}^{j} c_{k} x_{k}, \sum_{k=1}^{j} c_{k} x_{k} \right\rangle$$

$$= \|x\|^{2} - \sum_{k=1}^{j} c_{k} \overline{c}_{k} - \sum_{k=1}^{j} \overline{c}_{k} c_{k} + \sum_{k=1}^{j} c_{k} \overline{c}_{k}$$

$$= \|x\|^{2} - \sum_{k=1}^{j} |c_{k}|^{2} \Leftrightarrow \sum_{k=1}^{j} |c_{k}|^{2} \le \|x\|^{2} \Rightarrow \sum_{k=1}^{\infty} |c_{k}|^{2} \le \|x\|^{2},$$

másrészt a fentiek szerint $||x - s_j||^2 = ||x||^2 - \sum_{k=1}^j |c_k|^2$. Ebből láthatjuk, hogy $s_j \to x \Leftrightarrow ||x||^2 - \sum_k |c_k|^2 = 0$, vagyis a sor összege pontosan akkor x, ha $||x||^2 - \sum_k |c_k|^2 = 0$.

Tétel:

Legyen $x_1, x_2, ..., x_k, ...$ ortonormált rendszer. Ekkor egy $x \in X$ elem Fouriersorának összege az x elemnek az $X_0 := \overline{\mathcal{L}(x_1, x_2, ..., x_k, ...)} \subset X$ alterén vett merőleges vetülete.

Bizonyítás:

Jelölje $x^* := \sum_k c_k x_k$, ahol $c_k := \langle x, x_k \rangle$. Azt kellene belátni, hogy $x^* \in X_0$ és $(x - x^*) \perp X_0$. $x^* \in X_0$, ugyanis $\sum_{k=1}^j c_k x_k \in \mathcal{L}(x_1, x_2, ..., x_j)$, így $\sum_k c_k x_k \in X_0$. $(x - x^*) \perp X_0$ ugyanis először legyen $y \in \mathcal{L}(x_1, x_2, ..., x_l)$ tetszőleges! Belátjuk, hogy $\langle x - x^*, y \rangle = 0$. $y = \sum_{j=1}^l d_j x_j$,

$$\langle x - x^*, y \rangle = \langle x, y \rangle - \langle x^*, y \rangle$$

$$= \left\langle x, \sum_{j=1}^l d_j x_j \right\rangle - \left\langle \sum_k c_k x_k, \sum_{j=1}^l d_j x_j \right\rangle$$

$$= \sum_{j=1}^l \bar{d}_j \underbrace{\langle x, x_j \rangle}_{c_j} - \sum_{j=1}^l \bar{d}_j \underbrace{\left\langle \sum_k c_k x_k, x_j \right\rangle}_{c_j} = 0.$$

Most legyen $y \in X_0 = \overline{\mathcal{L}(x_1, x_2, ...)}$, szeretnénk, ha ekkor $\langle x - x^*, y \rangle = 0$ is igaz lenne. Ehhez vegyünk egy (y_{ν}) , $\mathcal{L}(x_1, x_2, ...)$ -beli konvergens sorozatot, melyre

 $y_{\nu} \to y$. Ekkor $\langle x - x^*, y_{\nu} \rangle = 0$. Így, mivel $y_{\nu} \to y$, $\langle x - x^*, y \rangle = 0$, ugyanis

$$\begin{aligned} |\langle x - x^*, y \rangle| &= |\langle x - x^*, y \rangle - \langle x - x^*, y_{\nu} \rangle| \\ &= |\langle x - x^*, y - y_{\nu} \rangle| \\ &\leqslant ||x - x^*|| \cdot \underbrace{||y - y_{\nu}||}_{\to 0} \to 0. \end{aligned}$$

Definíció:

Az $x_1, x_2, ...$ ortonormált rendszert zártnak nevezzük, ha $\overline{\mathcal{L}(x_1, x_2, ...)} = X$.

Következmény: ha az $x_1, x_2, ...$ ortonormált rendszer zárt, akkor $\forall x \in X$ elem Fouriersorának összege x.

Definíció:

Egy $x_1, x_2, ...$ ortonormált rendszert teljesnek nevezzük, ha $x \perp x_k \forall k \Rightarrow x = 0$.

Tétel (bizonyítás nélkül):

Egy $x_1, x_2, ...$ ortonormált rendszer teljes \Leftrightarrow zárt.

Text

Példák zárt (teljes) ortonormált rendszerekre.

Észrevétel: ha egy $y_1, y_2, ..., y_k, ...$ lineárisan független rendszer olyan, hogy $\mathcal{L}(y_1, y_2, ...) = X$ (ha pl. X Hilbert-tér, akkor már a lineárisan független rendszer is zárt, ha kifeszíti a teljes teret, mert a Hilbert-tér zárt), akkor ebből a Schmidt ortogonalizálási eljárással zárt (teljes) ortonormált rendszert kapunk.

1. $X := L^2(a, b)$, ahol (a, b) véges intervallum.

Tétel:

Ebben az $t\mapsto 1, t\mapsto t, t\mapsto t^2, ..., t\mapsto t^k, ...$ lineárisan független függvények zárt rendszert alkotnak.

Bizonyítás (vázlat):

Egyrészt a függvényrendszer lineárisan független:

$$\sum_{j=0}^{k} a_j t^j = 0 \Leftrightarrow a_j = 0.$$

(Egy valós k-ad fokú polinomnak legfeljebb k db gyöke lehet $k \geq 1$.) Az, hogy a rendszer zárt, következik a Weierstrass approximációs tételéből. Eszerint tetszőleges $f:[a,b] \to \mathbb{R}$ folytonos függvényhez $\exists P_k$ polinom sorozat, amely egyenletesen tart f-hez. Legyen $g:(a,b)\to\mathbb{R}, g\in L^2(a,b)$. A Lebesgue integrál felépítéséből kiolvasható, hogy $g:[a,b]\to\mathbb{R}$ folytonos függvények sűrűn vannak $L^2(a,b)$ -n. A g folytonos függvényt Weierstrass approximációs tétele szerint tetszőleges előírt pontossággal meg lehet közelíteni polinomokkal, a szuprémum normában \Rightarrow ezek közelítik g-t L^2 normában is.

2. Komplex trigonometrikus rendszer $X:=L^{2}\left(0,2\pi\right)$, $\phi_{k}\left(t\right):=e^{ikt},t\in\left(0,2\pi\right)$, $k\in\mathbb{Z}$.

Tétel:

A fenti függvények egy zárt ortogonális rendszert alkotnak (biz. nélkül). Belátjuk, hogy $(\phi_k)_{k\in\mathbb{Z}}$ ortogonális. $\int\limits_0^{2\pi}\phi_k\left(t\right)\overline{\phi_l\left(t\right)}dt=\int\limits_0^{2\pi}e^{ikt}e^{-ilt}dt=\int\limits_0^{2\pi}e^{i(k-l)t}=\left[\frac{e^{i(k-l)t}}{i(k-l)}\right]_{t=0}^{2\pi}=0$ ha $k\neq l$. $\psi_k:=\frac{1}{\sqrt{2\pi}}\phi_k$ már ortonormált rendszer

3. Valós trigonometrikus rendszerek.

Legyen az X alaphalmaz a valós $L^2(0,2\pi)$. $e^{ikt}=\cos(kt)+i\sin(kt)$, $\cos(kt)=\frac{e^{ikt}+e^{-ikt}}{2}$, $\sin(kt)=\frac{e^{ikt}-e^{-ikt}}{2i}$. Egyszerű számolással adódik, hogy $1,\cos t,\sin t,\cos(2t),\sin(2t),...,\cos(kt),\sin(kt),...$ függvények páronként merőlegesek. Tehát ezek ortogonális rendszert alkotnak a valós $L^2(0,2\pi)$ -ben. Abból, hogy a komplex trigonometrikus rendszer zárt \Rightarrow a fenti rendszer valós ortogonális zárt rendszer. A fentiekből következik, hogy egy tetszőleges $f\in L^2(0,2\pi)$ függvénynek akár a komplex, akár a valós trigonometrikus rendszer szerint Fourier sora előállítja a függvényt L^2 normában.

4. Az $1, \cos t, \cos(2t), ..., \cos(kt), ...$ függvényrendszer zárt és ortogonális a $L^2(0,\pi)$ -ben. A szinuszos ugyanígy.

2.2. Lineáris és korlátos operátorok

Állítás:

Legyen X, Ynormált terek! Korábban bizonyítottuk, hogy $A:X\to Y$ lineráis operátor folytonos $\Leftrightarrow A$ korlátos.

13

Definíció:

Egy $A:X\to Y$ lineáris operátort korlátosnak nevezzük, ha $\exists c\geq 0:\|Ax\|_Y\leq c\,\|x\|_X\,\,\forall x\in X.$

Tétel:

Legyen X normált tér, Y teljes normált tér (Banach tér), $A:M\to Y$ korlátos lineáris operátor, ahol $M\subset X$ lineáris altér, de nem kell zártnak lennie. Ekkor az A-nak egyértelműen létezik korlátos lineáris kiterjesztése az \overline{M} -ra (M lezárására). Más szóval: $\exists ! \widetilde{A} : \overline{M} \to Y$ korlátos lineáris operátor, amelyre $\widetilde{A}x = Ax \quad \forall x \in M$. Spec eset, mikor $\overline{M} = X$.

Bizonyítás (vázlatos):

Legyen $x \in \overline{M}$. Ehhez $\exists x_k \in M : \lim(x_k) = x$. Tekintsük az $(Ax_k)_{k \in \mathbb{N}}$ sorozatot Y -ban! Belátjuk, hogy ez Cauchy sorozat. $||Ax_k - Ax_l||_Y = ||A(x_k - x_l)||_Y \le c \cdot ||x_k - x_l||_X$. Legyen $\varepsilon > 0$, $\exists k_0 : \forall k, l > k_0$ esetén $||x_k - x_l|| < \varepsilon \Rightarrow ||Ax_k - Ax_l|| \le c \cdot \varepsilon$. Y teljes $\Rightarrow \exists y \in Y : \lim(Ax_k) = y$. y csak x -től függ, nem függ (x_k) -tól és egyértelmű. $\widetilde{A}(x) := y$, \widetilde{A} lineáris, korlátos (és folytonos).

Tétel (Hahn-Banach-tétel):

Legyen X Banach tér, $X_0 \subset X$ valódi (zárt lineáris) altér, $f: X_0 \to \mathbb{K}$ korlátos lineáris funkcionál (azaz számértékű operátor). Ekkor $\exists \tilde{f}: X \to \mathbb{K}$ korlátos lineáris kiterjesztés, és $\|\tilde{f}\| = \|f\|$.

2.2.1. Korlátos lineáris funkcionálok, duális tér (Hilbert tér esetén)

Észrevétel: legyen X Hilbert tér, $y \in X$ tetszőleges rögzített elem. Értelmezzük az $f: X \to \mathbb{K}, f(x) := \langle x, y \rangle$ funkcionált.

Állítás:

Ekkor f korlátos lineáris funkcionál. f linearitása triviális, és korlátos is, ugyanis $|f(x)| = |\langle x, y \rangle| \le ||x|| \cdot ||y||$.

Tétel (Riesz-tétel):

Legyen X Hilbert tér (valós vagy komplex), f egy korlátos lineáris funkcionál X-en. Ekkor létezik egyetlen $y \in X$, hogy $f(x) = \langle x, y \rangle \ \forall x \in X$.

Bizonyítás:

Jelölje $X_0 := \{x \in X : f(x) = 0\}$ -vel f magterét. X_0 altér X -ben, azaz az algebrai műveletek nem vezetnek ki X_0 -ból, és zárt részhalmaz X -ben. Utóbbi azért igaz, mivel f folytonos, azaz ha $x_k \in X_0$, $(x_k) \to x \Rightarrow x \in X_0$. $f(x_k) \to f(x) \Rightarrow f(x) = 0$, mivel jelen esetben $f(x_k) = 0$.

- 1. Ha $X_0 = X$, $f(x) = 0 \forall x \in X$, triviális eset. Ekkor legyen y = 0.
- 2. X_0 valódi altér \Rightarrow (Riesz-féle felbontási tétel szerint) $\exists x_1 \neq 0 : x_1 \in X_0^{\perp}$. Legyen $x \in X$ tetszőleges, és tekintsük az $X \ni y_1 := f(x) x_1 f(x_1) x$ elemet.

Ekkor

$$f(y_1) = f(x) f(x_1) - f(x_1) f(x) = 0 \Rightarrow y_1 \in X_0 \Rightarrow \langle y_1, x_1 \rangle = 0.$$

Más szóval

$$0 = \langle y_1, x_1 \rangle = \langle f(x) x_1 - f(x_1) x, x_1 \rangle = f(x) ||x_1||^2 - f(x_1) \langle x, x_1 \rangle.$$

Átrendezve kapjuk, hogy $f(x) = \frac{f(x_1)\langle x, x_1 \rangle}{\|x_1\|^2} = \left\langle x, \frac{\overline{f(x_1)}x_1}{\|x_1\|^2} \right\rangle \Rightarrow \exists y$, nevezetesen $y = \frac{\overline{f(x_1)}}{\|x_1\|^2} x_1$.

3. y egyértelmű. Tfh

$$\langle x, y \rangle = \langle x, y^* \rangle \ \forall x \in X \Rightarrow \langle x, y - y^* \rangle = 0 \forall x \in X \Rightarrow y - y^* = 0 \Rightarrow y = y^*.$$

Text

2.2.1.1. Korlátos lineáris funkcionálok

Legyen X Hilbert tér $y \in X$ egy rögzített eleme, $f(x) := \langle x, y \rangle$. Ekkor a CS-ből következik: $||f|| \le ||y||$.

Megjegyzés:

 $\|f\|=\|y\|$, ugyanis egyrészt $|f\left(x\right)|=|\langle x,y\rangle|\leq \|x\|\cdot\|y\|\Rightarrow \|f\|\leq \|y\|$. Másrészt $\|f\|=\sup\left\{|f\left(x\right)|:\|x\|=1\right\}$. Válasszuk $x:=\frac{y}{\|y\|}\;(y\neq 0$, máskülönben triviális), ekkor $\|x\|=1$, $|f\left(x\right)|=\left|\left\langle\frac{y}{\|y\|},y\right\rangle\right|=\|y\|$. Tehát $\|f\|=\|y\|$.

Spec eset: $X:=L^2(M)$, $M\subset\mathbb{R}^n$ mérhető halmaz. Ekkor egy tetszőleges f korlátos lineáris funkcionál ilyen alakú: $f(\phi):=\langle\phi,\psi\rangle=\int_M\phi\overline{\psi}$, ahol $\psi\in L^2(M)$ rögzített. $\psi_0:=\overline{\psi}\in L^2(M)$ jelöléssel $f(\phi)=\int_M\phi\psi_0, \forall\phi\in L^2(M)$.

Korlátos lineáris funkcionálok $L^{p}(M)$ -en, ahol $1 (azaz <math>L^{\infty}(M)$ teret nem tárgyaljuk)

Legyen $\psi \in L^q(M)$ tetszőleges rögzített, $\frac{1}{p} + \frac{1}{q} = 1$! Értelmezzük az f funkcionált: $f(\phi) := \int_{M} \phi \psi$, ahol $\phi \in L^{p}(M)$.

Állítás:

f korlátos lineáris funkcionál $L^{p}(M)$ -en.

Bizonvítás:

Tudjuk, hogy $\phi \in L^p(M)$, $\psi \in L^q(M) \Rightarrow \phi \psi \in L^1(M)$, tehát a funkcionál értelmezve van az egész $L^p(M)$ -n, nyilván lineáris. A Hölder egyenlőtlenség szerint $|\int_M \phi \psi| \le \|\phi\|_{L^p(M)} \cdot \|\psi\|_{L^q(M)} \Rightarrow \|f\| \le \|\psi\|_{L^q(M)}$, vagyis korlátos is és normája $\leq \|\psi\|_{L^q(M)}$

Tétel:

 $||f|| = ||\psi||_{L^q(M)}.$

Tétel:

Legyen $1 . Ekkor tetszőleges <math>f: L^p(M) \to \mathbb{K}$ korlátos lineáris funkcionálhoz $\exists ! \psi \in L^q(M) : f(\phi) = \int_M \psi \phi$.

2.2.1.2. Duális (konjugált) tér

Definíció:

Legyen X normált tér! Az X-en értelmezett korlátos lineáris funkcionálok terét Xduálisának nevezzük és X'-vel jelöljük (van, ahol *-gal jelölik).

Megjegyzés:

 $X' = L(X, \mathbb{K})$. Tudjuk, hogy $X' = L(X, \mathbb{K})$ normált tér (norma az operátor normája), X' tér teljes, mivel \mathbb{K} alaptest teljes, így X' Banach tér.

Értelmezzük az előbbieket ezen fogalom rögzítésével!

X Hilbert tér. Tudjuk, hogy $\forall f \in X' \exists y \in X : f(x) = \langle x, y \rangle, ||f|| = ||y||$. Fordítva, $y \in X$ esetén $f(x) := \langle x, y \rangle, x \in X!$ Tehát ha X Hilbert tér, bijekció létesíthető X' és X között. Jelöljük: $\Phi(y) := f, f(x) := \langle x, y \rangle$. $\Phi: X \to X'$ bijekció. Ennek tulajdonságai:

- $\Phi(y_1 + y_2) = \Phi(y_1) + \Phi(y_2)$. $f_1(x) = \langle x, y_1 \rangle$, $f_2(x) = \langle x, y_2 \rangle$. $(f_1 + f_2)(x) = \langle x, y_2 \rangle$ $f_1(x) + f_2(x) = \langle x, y_1 \rangle + \langle x, y_2 \rangle = \langle x, y_1 + y_2 \rangle$, vagyis $f_1 + f_2 \leftrightarrow y_1 + y_2$.
- $\lambda \in \mathbb{K}$ esetén $\Phi(\lambda y) = \overline{\lambda}\Phi(y)$.

$$f(x) = \langle x, y \rangle \Rightarrow \langle x, \lambda y \rangle = \overline{\lambda} \langle x, y \rangle = \overline{\lambda} f(x) = (\overline{\lambda} f) x,$$

vagyis $\lambda y \leftrightarrow \overline{\lambda} f$, tehát Φ konjugált lineáris.

 $X=L^{p}\left(M\right)$ esete, mikor $1\leq p\leq\infty$ és $\frac{1}{p}+\frac{1}{q}=1$. Tudjuk, hogy tetszőleges $\psi\in L^{q}\left(M\right)$ esetén $f\left(\phi\right):=\int_{M}\phi\psi,\;\phi\in X$ mellett $f\in\mathcal{C}$ $(L^p(M))', ||f|| = ||\psi||$. Továbbá $(L^p(M))'$ minden eleme ilyen alakú $p < \infty$ esetén.

 $L^{q}(M) \ni \psi \leftrightarrow f \in (L^{p}(M))'$. Könnyen belátható, hogy az eddigiek alapján Φ bijekció, sőt, Φ lineáris. $L^{p}(M)$ izomorf és izometrikus (normatartó) $L^{q}(M)$ -vel, ha $p < \infty$.

2.2.1.3.~X'' tér, más szóval biduális, reflexív tér

Definíció:

Legyen X normált tér. Ekkor definíció szerint X'' := (X')'.

Állítás:

HaX Hilbert tér, akkor X'' izomorf, izometrikus az X térrel.

Definíció:

Legyen X Banach tér! Ha X'' izomorf és izometrikus X-szel, akkor X''-t reflexívnek nevezzük.

Állítás:

Legyen $X = L^{p}(M)$, ahol $1 Ekkor <math>L^{p}(M)$ reflexív.

Vizsgáljuk X"-t általános esetben, mikor X Banach tér! Tekintsük egy tetszőleges, rögzített $x \in X$ elemet, ehhez rendeljük hozzá a következő, $F_x \in X$ " elemet! $F_x(f) := f(x), \ \forall f \in X'$. Ekkor F_X jól definiált funkcionál X'-n, nyilván lineáris, korlátos is. $|F_x(f)| = |f(x)| \le ||f|| \cdot ||x||_X, \ \forall f \in X'. \Rightarrow ||F_x|| \le ||x||$.

Állítás:

 $||F_x|| = ||x||.$

Bizonyítás:

(Definíció szerint $||F_x|| = \sup_{f \in X'} \{|F_x(f)| = |f(x)| : ||f|| = 1\}$.) Azt kellene belátni, hogy $\exists f \in X' : ||f|| = 1$, melyre igaz, hogy $|F_x(f)| = ||x||$ bármely rögzített x esetén. Tekintsük a következő f_0 funkcionált X következő, 1 dimenziós alterén: $X_0 := \{\lambda x : \lambda \in \mathbb{K}\}$, ahol $x \in X$ rögzített. Legyen $f_0(\lambda x) := \lambda ||x||$. f_0 korlátos is, $|f_0(\lambda x)| = |\lambda| ||x|| = ||\lambda x|| \cdot 1 \Rightarrow ||f_0|| = 1$. A Hahn-Banach tétel szerint az X_0 altéren definiált f_0 korlátos lineáris funkcionál kiterjeszthető a korlátosság és linearitás megtartásával az egész X térre úgy, hogy $||f|| = ||f_0||$ (ezt persze nem bizonyítottuk). Jelölje ezt f! $f \in X'$, $||f|| = ||f_0|| = 1$. Erre $|F_x(f)| = |f(x)| = |f(1 \cdot x)| = f_0(1 \cdot x) = 1 \cdot ||x|| = ||x||$.

Általános esetben X'' egy részhalmaza izomorf és izometrikus X-szel. X''-nek lehetnek más elemei is (ha nem reflexív).

2.2.2. Gyenge konvergencia

Definíció:

Legyenek X, Y normált terek, és tfh $A_j \in L(X,Y), j \in \mathbb{N}$ (A_j korlátos lineáris operátor X-n). Azt mondjuk, hogy ez az A_j sorozat gyengén konvergál az A operátorhoz, ha $\forall x \in X$ elemre $(A_j x)_{j \in \mathbb{N}} \to Ax$ (pontonkénti konvergencia). (Y-beli norma szerinti konvergencia).

Állítás:

Ha $\lim ||A_j - A|| = 0$, azaz $(A_j) \to A$ az L(X, Y) norma szerint, akkor $(A_j) \to A$ gyengén, de fordítva nem mindig igaz.

Bizonyítás:

Tfh $\lim ||A_j - A|| = 0$. Ekkor

$$||A_j x - Ax||_Y = ||(A_j - A) x|| \le \underbrace{||A_j - A||}_{\to 0} \cdot ||x|| \to 0.$$

Speciális eset: $Y = \mathbb{K}$, L(X,Y) = X'. $(f_j) \to f$ gyengén X'-ben, ha bármely rögzített $x \in X$ esetén $(f_j(x)) \to f(x)$.

Példa:

X'-beli gyengén konvergens sorozatra, amely norma szerint nem konvergens. Legyen X szeparábilis, végtelen dimenziós Hilbert tér! Legyen ebben egy $y_1, y_2, ..., y_j, ...$ ortonormált, teljes rendszer! $f_j(x) := \langle x, y_j \rangle$. Ekkor $\langle x, y_j \rangle$ az $x \in X$ elem j-edik Fourier-egyeütthatója y_j ortonormált rendszer szerint, $c_j := \langle x, y_j \rangle$. Tudjuk, hogy $\sum\limits_{j=1}^{\infty} |c_j|^2 < \infty \Rightarrow \lim\limits_{j \to \infty} (c_j) = 0$, azaz $\lim\limits_{j \to \infty} f_j(x) = 0$, $\forall x \in X$. Más szóval (f_j) X'-beli sorozat gyengén tart f = 0 funkcionálhoz. Másrészt $||f_j|| = ||y_j||_X = 1$, így (f_j) nem tart a norma szerint az f = 0 funkcionálhoz. (Bebizonyítható, hogy véges dimenzióban a gyenge konvergencia egybeesik a norma szerinti konvergencia fogalmával.)

Tétel:

Tfh $A_j \in L(X,Y)$, ahol X, Y Banach terek, $(A_j) \to A$ gyengén. Ekkor $(\|A_j\|)_{j \in \mathbb{N}}$ korlátos. Ez a tétel következik az alábbi tételből.

Egyenletes korlátosság tétele (Banach-Steinhaus-tétel, bizonyítás nélkül): Legyenek X,Y Banach terek, $A_j \in L(X,Y)$. Ha az A_j operátor sorozat pontonként korlátos, azaz ha $\forall x \in X$ esetén $\sup_{j \in \mathbb{N}} \{\|A_j x\|\} < \infty \Rightarrow (\|A_j\|)$ korlátos.

Megjegyzés (gyenge kompaktsági kritérium):

Tekintsük a $X' = L(X, \mathbb{K})$ speciális esetet az egyszerűség kedvéért. Ha $f_j \in X'$ korlátos sorozatot alkot (X most Banach tér), akkor (f_j) -ból kiválasztható egy gyengén konvergens részsorozat.

Text

2.2.3. Gyenge konvergencia X-ben

Definíció:

Legyen X normált tér! Azt mondjuk, hogy egy $(x_j)_{j\in\mathbb{N}}$ X-beli sorozat gyengén konvergál egy $x\in X$ ponthoz, ha $\forall f\in X'$ funkcionálra $(f(x_j))_{j\in\mathbb{N}}\to f(x)$.

Megjegyzés:

Ha X reflexív Banach-tér, akkor minden korlátos X-beli sorozatnak létezik gyengén konvergens részsorozata. Ugyanis ekkor X = X'' = (X')'.

2.2.3.1. Inverz operátor

Emlékeztető: egy függvénynek létezik inverze, ha injektív. Tudjuk továbbá, hogy egy $A: X \to Y$ lineáris operátornak létezik inverze (azaz injektív) \Leftrightarrow a magtér csak a 0-ból áll, azaz $Ax = 0_Y \Leftrightarrow x = 0_X$. Továbbá, ha A^{-1} létezik, akkor A^{-1} lineáris operátor. Egy A operátor folytonos x_0 -ban, ha $\forall \varepsilon > 0 \exists \rho > 0 : ||x - x_0||_X < \rho \Rightarrow ||Ax - Ax_0||_Y < \varepsilon$.

Kérdés: ha X, Y normált terek, $A: X \to Y$ lineáris és injektív $\stackrel{?}{\Rightarrow} A^{-1}$ korlátos is? Általában nem, akkor sem, ha A korlátos.

Nyílt leképezések tétele (bizonyítás nélkül):

Legyenek X,Y Banach terek, $A:X\to Y$ korlátos lineáris operátor és $R_A=Y,$ vagyis ráképezés. Ekkor A operátor X minden nyílt halmazát Y nyílt halmazába képezi. Ebből következik:

Tétel (Banach-tétel):

Legyenek X, Y Banach terek, $A: X \to Y$ korlátos és lineáris, $R_A = Y$ és A injektív! Ekkor A^{-1} korlátos (azaz folytonos).

Bizonyítás:

Legyen tetszőleges $y_0 \in Y = R_A = D_{A^{-1}}$. $x_0 := A^{-1}y_0$. Belátjuk, hogy az A^{-1} folytonos y_0 -ban. Tekintsük $x_0 = A^{-1}y_0$ egy tetszőleges $B_r(x_0)$ nyílt környezetét! Ennek képe is nyílt az Y-ban az előbbi tétel szerint. Mivel $y_0 \in A(B_r(x_0))$, ami nyílt, ezért y_0 -nak van olyan környezete, melyre $B_\rho(y_0) \subset A(B_r(x_0))$. Ez azt jelenti, hogy ha $y \in B_\rho(y_0) \Rightarrow A^{-1}y \in B_r(x_0)$. Eszerint A^{-1} folytonos y_0 -ban.

2.2.3.2. Zárt gráf (grafikon) tétel

Definíció:

Legyenek X, Y normált terek, $A: M \to Y$ lineáris operátor, $M \subset X$. Ekkor A operátor gráfja, grafikonja az alábbi halmaz: $G_A := \{(x, Ax) : x \in M = D_A\}$.

Definíció:

Egy $A: M \to Y$ lineáris operátort zártnak nevezünk, ha a $G_A \subset X \times Y$ zárt halmaz $X \times Y$ -ban. $X \times Y = \{(x, y) : x \in X, y \in Y\}.$

Megjegyzés:

A szorzattéren értelmezett műveletek:

- $(x_1, y_1) + (x_2, y_2) = (x_1 + x_2, y_1 + y_2)$
- $\lambda(x,y) = (\lambda x, \lambda y)$
- $||(x,y)||_{X\times Y} := \sqrt{||x||^2 + ||y||^2}$, $X \times Y$ normált tér tehát.

Legyenek X, Y normált terek, $A: M \to Y$ lineáris operátor, $D_A = M \subset X$. A zárt \Leftrightarrow ha minden $(x_j)_{j \in \mathbb{N}}$ M-beli sorozatra, melyre $\lim (x_j) = x \in X$ és $\exists \lim (Ax_j) = y \in Y$, akkor $x \in M$ és y = Ax. Ezért ha A folytonos, akkor zárt is.

Példa:

Példa zárt, lineáris, de nem folytonos (nem korlátos) operátorra: X := C[0,1], $M = D_A = C^1[0,1]$, $A\phi := \phi'$, vagyis a differenciáloperátor. $(\phi_j) \to \phi$ egyenletesen (C[0,1]-beli konvergencia) és $(\phi'_j) \to \psi$ egyenletesen $\Rightarrow \psi = \phi'$, tehát A valóban zárt, lineáris (de nem korlátos, így nem is folytonos, ezt láttuk korábban).

Tétel (zárt gráf tétel):

Legyenek X, Y Banach terek, $A: X \to Y$ zárt, lineáris operátor (tehát $D_A = X$). Ekkor A folytonos (korlátos).

Bizonyítás:

 $G_A := \{(x,Ax): x \in D_A = X\} \subset X \times Y \text{ (utóbbi Banach-tér), ugyanis } G_A$ zárt halmaz $X \times Y$ -ban, az $X \times Y$ vektortenérnek altere: $(x_1,Ax_1) + (x_2,Ax_2) = (x_1 + x_2, A(x_1 + x_2)) \in G_A$, $\lambda(x,Ax) = (\lambda x, A(\lambda x)) \in G_A$. G_A az $X \times Y$ Banach tér zárt lineáris altere $\Rightarrow G_A$ Banach-tér. Tekintsük a következő két operátort: U(x,Ax) := x, V(x,Ax) := Ax, ahol $(x,Ax) \in G_A$. Ekkor $U:G_A \to X$, $R_U = X$, $V:G_A \to Y$. Most U-ra alkalmazható a Banach tétel (az inverz operátor korlátosságáról): $D_U = G_A$, $R_U = X$, U korlátos és injektív $\Rightarrow U^{-1}: X \to G_A$ korlátos (folytonos), $A = VU^{-1}$, mert $U^{-1}x = (x,Ax), V(U^{-1}(x)) = V(x,Ax) = Ax$. $V:G_A \to Y$ korlátos $\Rightarrow A = VU^{-1}$ is korlátos.

2.3. Sajátérték, reguláris érték, spektrum

Legyenek X, Y normált terek, $A: M \to Y$ lineáris operátor, $M \subset X$, $b \in Y$ adott elem.

1. Elsőfajú egyenlet: melyik az a $x \in M = D_A : Ax = b$?

2. Másodfajú egyenlet: legyen Y=X. Melyik az a $x\in X$, melyre $(\lambda I-A)\,x=b$, ahol $\lambda\in\mathbb{K},\ I$ az identitás. Ha $(\lambda I-A)$ nem injektív, azaz nem létezik az inverzre, akkor λ -t az A operátor sajátértékének nevezzük. Ez azt jelenti, hogy $\exists x_0\neq 0: (\lambda I-A)\,x_0=0 \Leftrightarrow Ax_0=\lambda x_0$.

Definíció:

Ha $\exists (\lambda I - A)^{-1}$, ez korlátos és $R_{\lambda I - A}$ értelmezési tartománya sűrű halmaz X-ben, akkor λ -t reguláris értéknek nevezzük.

Állítás:

Ha A zárt operátor, akkor reguláris érték esetén $D_{(\lambda I-A)^{-1}}=X$, azaz $R_{\lambda I-A}=X$.

Megjegyzés:

Ekkor reguláris értéke esetén $(\lambda I - A) x = b$ egyenletnek $\forall b \in X$ -hez $\exists ! x$ megoldás, és x folytonosan függ b-től, azaz $x = \underbrace{(\lambda I - A)}_{\text{folytonosan}} b$.

Definíció:

Az A operátor spektruma a reguláris értékek halmazának a komplementere az alaptestben. A sajátértékek halmaza része a spektrumnak.

2.3.1. Korlátos lineáris operátorok reguláris értékei

Tétel:

Legyen X Banach tér! Legyen $A: X \to X$ korlátos lineáris operátor. Ekkor $r_{\sigma}(A) := \lim_{k \to \infty} \left\| A^k \right\|^{1/k}$, ez létezik és véges. Ha $\lambda \in \mathbb{K}$ számra teljesül, hogy $|\lambda| > r_{\sigma}(A)$, akkor λ reguláris érték (A-ra nézve).

Definíció:

 $r_{\sigma}(A)$ számot az A korlátos lineáris operátor spektrálsugarának nevezzük.

Megjegyzések:

- $A, B \in L(X, X)$ esetén $||AB|| \le ||A|| ||B||$, ugyanis $||(AB)x|| = ||A(Bx)|| \le ||A|| \cdot ||Bx|| \le ||A|| \cdot ||B|| \cdot ||x||$ minden x-re, $\Rightarrow ||AB|| \le ||A|| ||B||$
- $||A^k|| \le ||A||^k$. $||A^k||^{1/k} \le (||A||^k)^{1/k} = ||A|| \Rightarrow r_\sigma(A) \le ||A||$. Következmény: ha $|\lambda| > ||A|| \Rightarrow \lambda$ reguláris érték.

Tétel (lemma 1):

Legyen Z Banach-tér, $z_k \in Z$. Ha $\sum\limits_{k=1}^\infty \|z_k\| < \infty \Rightarrow \sum\limits_{k=1}^\infty z_k$ konvergens Z Banach-téren.

Bizonyítás:

Legyen $s_j := \sum_{k=1}^j z_k$ részlet összeg! $||s_j - s_l|| = \left\|\sum_{k=l+1}^j z_k\right\| \le \sum_{k=l+1}^j ||z_k|| < \varepsilon$, ha $l, j > j_0$, tehát teljesül a Cauchy kritérium. Mivel Z Banach-tér, azaz teljes normált tér, ezért minden Cauchy-sorozatnak van határértéke Z-ben.

Tétel (lemma 2, bizonyítás nélkül):

Tfh $B_k \in L(X,X)$, $\sum_{k=1}^{\infty} B_k$ konvergens L(X,X)-en. Ekkor $\forall C \in L(X,X)$ operátorra $C\sum_{k=1}^{\infty} B_k = \sum_{k=1}^{\infty} CB_k$. A bizonyítás egyszerű a részletösszegek segítségével.

Text

Tétel:

Legyen X Banach-tér, $A: X \to X$ korlátos, lineáris operátor. Ekkor létezik és véges: $r_{\sigma}(A) := \lim_{k \to \infty} \left\|A^k\right\|^{1/k}$. Továbbá $|\lambda| > r_{\sigma}(A) \Rightarrow \lambda$ reguláris érték, $(\lambda I - A)^{-1} = \frac{1}{\lambda} \left(I - \frac{1}{\lambda}A\right)^{-1} = \frac{1}{\lambda} \sum_{k=0}^{\infty} \frac{1}{\lambda^k} A^k = \sum_{k=0}^{\infty} \lambda^{-k-1} A^k$. Ez a sor – a Neumann-sor – L(X, X) normában konvergens.

Bizonyítás:

1. Jelöljük: $r:=\inf\left\{\left\|A^k\right\|^{1/k}:k\in\mathbb{N}\right\}\geq0$, ez véges. Belátjuk, hogy $r_{\sigma}\left(A\right)=\lim_{k\to\infty}\left\|A^k\right\|^{1/k}=r=\inf\left\{\left\|A^k\right\|^{1/k}:k\in\mathbb{N}\right\}\geq0.$

Legyen $\varepsilon > 0$ tetszőleges, ekkor az alsó határ definíciójából következik, hogy $\exists m \in \mathbb{N} : r \leq \|A^m\|^{1/m} < r + \varepsilon$. Ezen m mellett válasszunk egy k > m számot, melyre k = pm + q, ahol $p \in \mathbb{N}$ és $0 \leq q < m$ (ez k-nak m-vel vett maradékos osztása, q a maradéktag). Ekkor $A^k = A^{pm+q} = (A^p)^m \cdot A^q$, így

$$||A^k|| \le ||A^m||^p \cdot ||A||^q \Rightarrow ||A^k||^{1/k} \le ||A^m||^{p/k} \cdot ||A||^{q/k} \le (r+\varepsilon)^{mp/k} ||A||^{q/k}.$$

Vegyük észre, hogy $\lim_{k\to\infty}\frac{mp}{k}=1$, mert $\lim_{k\to\infty}\frac{q}{k}=0$, így a fenti egyenlőtlenség

jobb oldala $\rightarrow r + \varepsilon$. Ebből következik, hogy

$$\exists k_0 : k > k_0 \Rightarrow r \le \left\| A^k \right\|^{1/k} \le r + 2\varepsilon \Rightarrow \lim_{k \to \infty} \left\| A^k \right\|^{1/k} = r.$$

- 2. Belátjuk, hogy a Neumann-sor L(X,X)-ben konvergens. Az 1. lemma szerint ehhez elég bizonyítani, hogy a sor tagjainak normáiból alkotott sor konvergens, azaz $\sum_{k=0}^{\infty} \left\| \lambda^{-k-1} A^k \right\| < \infty$. Válasszunk egy olyan r_1 számot, melyre $|\lambda| > r_1 > r_{\sigma}(A)$! Mivel $r_{\sigma}(A) = \lim_{k \to \infty} \left\| A^k \right\|^{1/k}$ és $r_1 > r_{\sigma}(A)$, ezért $\exists k_1 \in \mathbb{N} : k > k_1 \Rightarrow r_1 > \left\| A^k \right\|^{1/k}$, így $\left\| \lambda^{-k-1} A^k \right\| = \frac{1}{|\lambda|^{k+1}} \left\| A^k \right\| < \frac{1}{|\lambda|^{k+1}} r_1^k = \frac{1}{|\lambda|} \left(\frac{r_1}{|\lambda|} \right)^k$. Ezeket összegezve k szerint egy mértani sort kapunk, melynek kvóciense $0 < \frac{r_1}{|\lambda|} < 1$, így a sor konvergens, azaz $\sum_{k=1}^{\infty} \frac{1}{|\lambda|} \left(\frac{r_k}{|\lambda|} \right)^k < \infty$.
- 3. Jelöljük $B:=\sum\limits_{k=0}^{\infty}\lambda^{-k-1}A^k\in L\left(X,X\right)$. Előbb láttuk, hogy ez konvergens. Ebből következni fog, hogy $(\lambda I-A)^{-1}$ létezik és egyenlő B-vel. A 2. lemmát felhasználva: $(\lambda I-A)\,B=\lambda B-AB=\lambda\sum\limits_{k=0}^{\infty}\lambda^{-k-1}A^k-A\sum\limits_{k=0}^{\infty}\lambda^{-k-1}A^k=\sum\limits_{k=0}^{\infty}\lambda^{-k}A^k-\sum\limits_{k=0}^{\infty}\lambda^{-k-1}A^{k+1}=I$. Hasonlóképpen, $B\left(\lambda I-A\right)=I$. Következtetésképpen $(\lambda I-A)^{-1}$ létezik és egyenlő B-vel.

Következmény: $|\lambda| > r_{\sigma}(A)$ esetén a $(\lambda I - A) x = b$ másodfajú egyenletnek létezik egyetlen x megoldása, mégpedig

$$x = (\lambda I - A)^{-1} b = \left(\sum_{k=0}^{\infty} \lambda^{-k-1} A^k\right) b = \sum_{k=0}^{\infty} \left(\lambda^{-k-1} A^k\right) b = \sum_{k=0}^{\infty} \lambda^{-k-1} \left(A^k b\right),$$

ez a sor pedig X normában konvergens. A sor összege így is írható: $\frac{1}{\lambda}b + \sum_{k=1}^{\infty} \lambda^{-k-1}A^kb$. A fentiek még inkább érvényesek, ha $|\lambda| > ||A||$.

Allítás:

$$r_{\sigma}(A) = \sup\{|\lambda| : \lambda \in A_{\text{spektrum}}\}.$$

2.3.2. Példák, alkalmazások

2.3.2.1. A négyzetesen integrálható magú integráloperátorok.

Legyen $M \subset \mathbb{R}^n$ egy Lebesgue szerint mérhető halmaz, $X := L^2(M)$, ez ugye Hilbert tér. Legyen $\mathcal{K} \in L^2(M \times M)$ az úgynevezett magfüggvény, s $\phi \in L^2(M)$. Definiáljuk: $\psi(x) := \int_M \mathcal{K}(x, y) \phi(y) dy$.

Állítás:

 $\psi \in L^2(M)$, továbbá a $K(\phi) := \psi$ képlettel értelmezett $K : L^2(M) \to L^2(M)$ operátor lineáris, korlátos. A K operátort négyzetesen integrálató magú integráloperátornak nevezzük.

Bizonyítás:

A Cauchy-Schwarz egyenlőtlenség szerint majdnem minden x-re

$$|\psi\left(x\right)| \leq \int_{M} |\mathcal{K}\left(x,y\right)| \cdot |\phi\left(y\right)| \, dy \leq \left\{ \int_{M} |\mathcal{K}\left(x,y\right)|^{2} \, dy \right\}^{1/2} \cdot \left\{ \int_{M} |\phi\left(y\right)|^{2} \, dy \right\}^{1/2}.$$

Mivel $\mathcal{K} \in L^2(M \times M) \Rightarrow \int_{M \times M} |\mathcal{K}(x,y)|^2 dx dy < \infty$. Fubini-tételt használva $\int_M \int_M |\mathcal{K}(x,y)|^2 dy dx < \infty$, így

véges m.m. x-re

$$|\psi(x)|^2 \le \int_M |\mathcal{K}(x,y)|^2 dy \cdot \left[\int_M |\phi(y)|^2 dy \right] < \infty.$$

Integrálva:

$$\int_{M}\left|\psi\left(x\right)\right|^{2}dx \leq \left[\int_{M}\int_{M}\left|\mathcal{K}\left(x,y\right)\right|^{2}dydx\right] \cdot \left[\int_{M}\left|\phi\left(y\right)\right|^{2}dy\right] < \infty \Rightarrow \psi \in L^{2}\left(M\right).$$

K linearitása triviális. K korlátos, ugyanis

$$\left\|K\phi\right\|^{2}{}_{L^{2}(M)}=\left\|\psi\right\|^{2}{}_{L^{2}(M)}\leq\left\{\int_{M\times M}\left|\mathcal{K}\left(x,y\right)\right|^{2}dxdy\right\}\cdot\left\|\phi\right\|^{2},$$

sőt:
$$||K|| \le \{ \int_{M \times M} |\mathcal{K}(x,y)|^2 dx dy \}^{1/2} = ||\mathcal{K}||_{L^2(M \times M)}.$$

Következmény: $|\lambda| > \|\mathcal{K}\|_{L^2(M \times M)}$ esetén λ reguláris érték. Tudjuk, hogy $|\lambda| > r_{\sigma}(K)$ esetén λ reguláris érték és $(\lambda I - K)^{-1} = \sum_{k=0}^{\infty} \lambda^{-1-k} K^k$.

Kérdés: K integrál operátor hatványai hogyan számolhatók?

Állítás:

Legyen $\mathcal{K}, \mathcal{L} \in L^2(M \times M)$ és K, L a megfelelő integráloperátorok. Ekkor P := KL szintén négyzetesen integrálható magú operátor, amelynek magfüggvénye $\mathcal{P}(x,y) := \int_M \mathcal{K}(x,t) \mathcal{L}(t,y) dt$.

Bizonyítás:

 $\phi \in L^2(M)$ esetén

$$(P\phi)(x) = [K(L\phi)](x) = \int_{M} \mathcal{K}(x,t) \left[\int_{M} \mathcal{L}(t,y) \phi(y) dy \right] dt$$
$$= \int_{M} \underbrace{\left[\int_{M} \mathcal{K}(x,t) \mathcal{L}(t,y) dt \right]}_{\mathcal{P}(x,y)} \phi(y) dy,$$

ahol a Fubini-tételt ismét alkalmaztuk. $\mathcal{P} \in L^{2}(M \times M)$, merthogy $|\mathcal{P}(x,y)| \leq$

$$\left\{ \int_{M} \left| \mathcal{K}\left(x,t\right) \right|^{2} dt \right\}^{1/2} \left\{ \int_{M} \left| \mathcal{L}\left(t,y\right) \right|^{2} dy \right\}^{1/2}, \text{ fgy integrálva:}$$

$$\int_{M \times M} \left| \mathcal{P}\left(x,y\right) \right|^{2} dx dy \leqslant \underbrace{\int_{M} \left[\int_{M} \left| \mathcal{K}\left(x,t\right) \right|^{2} dt \right] dx}_{\mathcal{M}} \cdot \underbrace{\int_{M} \left[\int_{M} \left| \mathcal{L}\left(x,t\right) \right|^{2} dt \right] dy}_{\mathcal{M}} < \infty.$$

Következmény: $(K^{j}\phi)(x) = \int_{M} \mathcal{K}_{j}(x,y) \phi(y) dy, j = 1, 2, ..., \text{ ahol}$

$$\mathcal{K}_{1}(x,y) := \mathcal{K}(x,y)$$

$$\mathcal{K}_{2}(x,y) := \int_{M} \mathcal{K}(x,t) \,\mathcal{K}_{1}(t,y) \,dt$$

$$\mathcal{K}_{j}(x,y) := \int_{M} \mathcal{K}(x,t) \,\mathcal{K}_{j-1}(t,y) \,dt.$$

Ebből következik, hogy $(\lambda I - K)^{-1} b = \sum_{j=0}^{\infty} \lambda^{-j-1} K^{j} b$.

$$\left[(\lambda I - K)^{-1} b \right] (x) = \left[\sum_{j=0}^{\infty} \lambda^{-j-1} K^{j} b \right] (x)$$

$$= \sum_{j=0}^{\infty} \lambda^{-j-1} \left(K^{j} b \right) (x)$$

$$= \frac{b(x)}{\lambda} + \sum_{j=1}^{\infty} \lambda^{-j-1} \int_{M} \mathcal{K}_{j} (x, y) b(y) dy$$

$$\stackrel{?}{=} \frac{b(x)}{\lambda} + \int_{M} \underbrace{\left[\sum_{j=1}^{\infty} \lambda^{-j-1} \mathcal{K}_{j} (x, y) \right]}_{\in L^{2}(M \times M)} b(y) dy.$$

A sor $L^{2}\left(M\right)$ normában konvergál. Az utolsó egyenlőséget a következő órán látjuk be. Text

A korábbiak szerint $(\lambda I-A)\,x=b$ egyenletnek van egyértelmű megoldása x-re és $x=\sum\limits_{k=0}^{\infty}\lambda^{-k-1}\,\left(A^kb\right)$, ha λ reguláris érték, ugyanis ekkor a jobb oldal konvergens $X\ni x$ -ben.

Az előző példában $X:=L^2(M)$ volt, (ahol $M\subset\mathbb{R}^n$ mérhető halmaz,) illetve $\mathcal{K}\in L^2(M\times M)$, és

$$\psi(x) := (K\phi)(x) = \int_{M} \mathcal{K}(x, y) \phi(y) dy,$$

ahol $K: L^2(M) \to L^2(M)$ korlátos lineáris operátor és $r_{\sigma}(K) \leq ||K|| \leq ||K||_{L^2(M \times M)}$. $(\lambda I - K) \phi = b, \ b \in L^2(M)$ adott esetén mi a megoldás $\phi \in L^2(M)$ -re? Az egyenlet ekvivalens: $\lambda \phi(x) - \int_M \mathcal{K}(x,y) \phi(y) dy = b(x)$ majdnem minden $x \in M$ -re. Ha $|\lambda| > r_{\sigma}(K) \Rightarrow \phi = \sum_{j=0}^{\infty} \lambda^{-j-1} K^j b = \frac{b}{\lambda} + \sum_{j=1}^{\infty} \lambda^{-j-1} K^j b$. $(K^j b)(x) = \int_M \mathcal{K}_j(x,y) b(y) dy$,

$$\mathcal{K}_{i}(x,y) = \int_{M} \mathcal{K}_{i-1}(x,t) \mathcal{K}(t,y) dt$$
 és $\mathcal{K}_{1} = \mathcal{K}$. Így

$$\phi\left(x\right) = \frac{b\left(x\right)}{x} + \sum_{j=1}^{\infty} \lambda^{-j-1} \int_{M} \mathcal{K}_{j}\left(x,y\right) b\left(y\right) dy = \frac{b\left(x\right)}{\lambda} + \int_{M} \underbrace{\left[\sum_{j=1}^{\infty} \lambda^{-j-1} \mathcal{K}_{j}\left(x,y\right)\right]}_{R_{\lambda}\left(x,y\right) \in L^{2}\left(M \times M\right)} b\left(y\right) dy.$$

A sor $L^{2}(M \times M)$ -ben konvergens, ha $|\lambda| > r_{\sigma}(\mathcal{K})$.

A bizonyítás alapja: $\mathcal{K}_{j}(x,y) = \int_{M} \mathcal{K}_{j-1}(x,t) \mathcal{K}(t,y) dt \Rightarrow K^{j-1}$ operátor alkalmazva $t \mapsto \mathcal{K}(t,y)$ függvényre (y rögzített):

$$\left\{ \int_{M} \left| \mathcal{K}_{j}\left(x,y\right) \right|^{2} dx \right\}^{1/2} \leqslant \left\| \mathcal{K}^{j-1} \right\| \left\{ \int_{M} \left| \mathcal{K}\left(t,y\right) \right|^{2} dt \right\}^{1/2}$$

$$\downarrow \downarrow$$

$$\int_{M} \left| \mathcal{K}_{j}\left(x,y\right) \right|^{2} dx \leqslant \left\| K^{j-1} \right\|^{2} \int_{M} \left| \mathcal{K}\left(t,y\right) \right|^{2} dt.$$

Integrálva y szerint:

$$\int_{M\times M} \left| \mathcal{K}_{j}\left(x,y\right) \right|^{2} dx dy \leq \left\| K^{j-1} \right\|^{2} \int_{M\times M} \left| \mathcal{K}\left(t,y\right) \right|^{2} dt dy.$$

Nézzük:

$$\int_{M\times M} \frac{1}{\left|\lambda\right|^{2(j+1)}} |K_{j}\left(x,y\right)|^{2} dx dy \leqslant \underbrace{\frac{1}{\left|\lambda^{2(j+1)}\right|} \left\|K^{j-1}\right\|^{2}}_{\sum\limits_{j=1}^{\infty} \text{ sor konv. ha } |\lambda| > r_{\sigma}(K)} \cdot \left\|K\right\|_{L^{2}(M\times M)}^{2},$$

így a bal oldalból képzett számsor (ami ≥ 0) is konvergens.

2.3.2.2. Folytonos magú integráloperátorok.

Legyen $\Omega \subset \mathbb{R}^n$ korlátos tartomány (azaz nyílt és összefüggő), $X := C\left(\overline{\Omega}\right)$, $\overline{\Omega} \to \mathbb{K}$ folytonos függvények (a felülvonás a lezárást jelenti), tehát $C\left(\overline{\Omega}\right)$ az Ω korlátos tartomány lezárásán értelmezett folytonos függvények tere a $\|\phi\| = \sup_{\Omega} |\phi|$ normával. Legyen $\mathcal{K} \in C\left(\overline{\Omega} \times \overline{\Omega}\right)$, $\psi(x) := (K\phi)(x) := \int_{\overline{\Omega}} \mathcal{K}(x, y) \phi(y) dy$.

Állítás:

 $K: C(\overline{\Omega}) \to C(\overline{\Omega})$ korlátos, lineáris operátor.

Bizonyítás:

 $\begin{aligned} |\psi\left(x\right)| &= |\int_{\overline{\Omega}} \mathcal{K}\left(x,y\right) \phi\left(y\right) dy| \leq \int_{\overline{\Omega}} |\mathcal{K}\left(x,y\right)| \cdot |\phi\left(y\right)| dy \leq ||\phi|| \int_{\overline{\Omega}} |\mathcal{K}\left(x,y\right)| dy \leq \\ ||\phi|| \sup_{x \in \overline{\Omega}} \int_{\overline{\Omega}} |\mathcal{K}\left(x,y\right)| dy. & \text{Itt is igaz: } (K^{j}\phi)\left(x\right) = \int_{\overline{\Omega}} \mathcal{K}_{j}\left(x,y\right) \phi\left(y\right) dy. & \mathcal{K}_{j}\left(x,y\right) = \\ \int_{\overline{\Omega}} \mathcal{K}_{j-1}\left(x,t\right) \mathcal{K}\left(t,y\right) dt, & K_{j} \text{ folytonos.} \end{aligned}$

2.3.2.3. Egy speciális eset

Az előbbi spec esete: $\overline{\Omega} = [a,b] \subset \mathbb{R}$, ekkor $\mathcal{K} \in C([a,b] \times [a,b])$, továbbá $\mathcal{K}(x,y) = 0$, ha y > x. $(K\phi)(x) := \int\limits_a^b \mathcal{K}(x,y) \, \phi(y) \, dy = \int\limits_a^x \mathcal{K}(x,y) \, \phi(y) \, dy$ Voltera típusú operátor. Erre is igaz, hogy $\mathcal{K} : C[a,b] \to C[a,b]$ folytonos lineáris operátor.

Állítás:

 $r_{\sigma}(K) = 0$, így $\lambda \neq 0$ esetén λ reguláris érték, azaz létezik egyértelmű megoldása a $\lambda \phi(x) - \int_{a}^{x} \mathcal{K}(x,y) \phi(y) dy = b(x)$ másodfajú egyenletlnek bármely folytonos b(x) esetén.

Bizonyítás:

 $\mathcal{K}_{j}(x,y) = \int_{a}^{b} \mathcal{K}_{j-1}(x,t) \mathcal{K}(t,y) dt$, speciálisan

$$\mathcal{K}_{2}(x,y) = \int_{a}^{b} \underbrace{\mathcal{K}(x,t)}_{0 \text{ ha } t>x} \underbrace{\mathcal{K}(t,y)}_{0 \text{ ha } y>t} dt = \int_{y}^{x} \mathcal{K}(x,t) \mathcal{K}(t,y) dt,$$

mert csak $y \leq t \leq x$ esetén nem 0 az integrandus. Így $\mathcal{K}_2(x,y) = 0$, ha y > x. $\mathcal{K}_3(x,y) = \int_y^x \mathcal{K}_2(x,t) \mathcal{K}(t,y) dt = 0$ ha y > x. Ekkor $||K|| \leq \sup_{x \in [a,b]} \int_a^b |\mathcal{K}(x,y)| dy \leq \alpha (b-a)$, ugyanis $\mathcal{K} \in C([a,b] \times [a,b]) \Rightarrow \mathcal{K}$ korlátos és így $|\mathcal{K}(x,y)| < \alpha$, $\forall x,y \in [a,b]$.

$$||K^2|| \le \sup_{x \in [a,b]} \int_a^b |\mathcal{K}_2(x,y)| dy = \sup_{x \in [a,b]} \int_a^x |\mathcal{K}_2(x,y)| dy$$
. Az integrandusra

$$\left|\mathcal{K}_{2}\left(x,y\right)\right| = \left|\int_{y}^{x} \mathcal{K}\left(x,t\right) \mathcal{K}\left(t,y\right) dt\right| \leqslant \int_{y}^{x} \underbrace{\left|\mathcal{K}\left(x,t\right)\right|}_{\leq \alpha} \underbrace{\left|\mathcal{K}\left(t,y\right)\right|}_{\leq \alpha} dt \leqslant \alpha^{2} \left(x-y\right),$$

ha x > y. Így

$$\begin{aligned} \left\| K^{2} \right\| &\leq \sup_{x \in [a,b]} \int_{a}^{x} \left| \mathcal{K}_{2} \left(x,y \right) \right| dy \\ &\leq \sup_{x \in [a,b]} \int_{a}^{x} \alpha^{2} \left(x-y \right) dy \\ &= \alpha^{2} \sup_{x \in [a,b]} \left[-\frac{\left(x-y \right)^{2}}{2} \right]_{y=a}^{x} \\ &= \alpha^{2} \sup_{x \in [a,b]} \frac{\left(x-a \right)^{2}}{2} = \alpha^{2} \frac{\left(b-a \right)^{2}}{2}. \end{aligned}$$

 $||K^3||$ -re hasonló módon járunk el. Ekkor

$$\left|\mathcal{K}_{3}\left(x,y\right)\right| = \left|\int_{y}^{x} \mathcal{K}\left(x,t\right) \mathcal{K}_{2}\left(t,y\right) dt\right| \leqslant \int_{y}^{x} \underbrace{\left|\mathcal{K}\left(x,t\right)\right|}_{\leqslant \alpha} \underbrace{\left|\mathcal{K}_{2}\left(t,y\right)\right|}_{\leqslant \alpha} dt \leqslant \alpha^{3} \frac{\left(x-y\right)^{2}}{2}.$$

$$\text{ Így } \|K^3\| \ \leq \ \sup_{x \in [a,b]} \int\limits_a^x |\mathcal{K}_3\left(x,y\right)| \, dy \ \leq \ \sup_{x \in [a,b]} \int\limits_a^x \alpha^3 \frac{(x-y)^2}{2} dy \ = \ \alpha^3 \sup_{x \in [a,b]} \frac{(x-a)^3}{3!} \ \leq \ \alpha^3 \frac{(b-a)^3}{3!}.$$

Teljes indukcióval bizonyítható, hogy $||K^j|| \le \alpha^j \frac{(b-a)^j}{j!} \Rightarrow ||K^j||^{1/j} = \alpha \frac{b-a}{(j!)^{1/j}} \to 0$, ha $j \to \infty$.

3. Hilbert tér operátorai

3.1. Az adjungált operátor

Legyen X Hilbert tér, $A: D_A \to X$ lineáris operátor, ahol D_A az A-nak az értelmezési tartománya, $D_A \subset X$, $y \in X$ elem.

Kérdés: létezik-e illetve hány $y^* \in X$ létezik, melyre $\langle Ax, y \rangle = \langle x, y^* \rangle$, $\forall x \in D_A$ esetén? Mi az egyértelműség feltétele?

Állítás:

Legfeljebb egy y^* létezik $\Leftrightarrow \overline{D_A} = X$, vagyis ha az értelmezési tartomány sűrű X-ben.

Bizonyítás:

Legfeljebb egy y^* létezik \Leftrightarrow hogy ha $\langle x, y^* \rangle = \langle x, \widetilde{y} \rangle$, $\forall x \in D_A$ -ból következik, hogy $y^* = \widetilde{y}$. $\langle x, y^* \rangle = \langle x, \widetilde{y} \rangle$, $\forall x \in D_A$ pontosan azt jelenti, hogy $\langle x, y^* - \widetilde{y} \rangle = 0$, $\forall x \in D_A$

 D_A . Ebből következik: $y^* = \tilde{y} \Leftrightarrow \overline{D_A} = X$. (Felhasználjuk, hogy a skalárszorzat folytonosan függ a tényezőktől.)

Definíció:

Legyen X Hilbert tér, $A: D_A \to X$ lineáris operátor, $\overline{D_A} = X$. Ekkor A operátor adjungáltját, A^* operátort így értelmezzük:

$$D_{A^*} := \{ y \in X : \exists y^* \in X : \langle Ax, y \rangle = \langle x, y^* \rangle \ \forall x \in D_A \}$$

és
$$A^*(y) := y^*$$

Megjegyzés:

 $0 \in D_{A^*}$, ugyanis $\langle Ax, 0 \rangle = \langle x, 0 \rangle = 0, \forall x \in D_A$.

Állítás:

 A^* lineáris operátor.

Bizonyítás:

Legyen $y_1, y_2 \in D_{A^*}!$ Ekkor $\langle Ax, y_1 \rangle = \langle x, A^*(y_1) \rangle$, $\forall x \in D_A$ és $\langle Ax, y_2 \rangle = \langle x, A^*(y_2) \rangle$, $\forall x \in D_A$. Így $\langle Ax, y_1 \rangle + \langle Ax, y_2 \rangle = \langle x, A^*(y_1) \rangle + \langle x, A^*(y_2) \rangle$. $\langle Ax, y_1 + y_2 \rangle = \langle x, A^*(y_1) + A^*(y_2) \rangle$, $\forall x \in D_A$. Ebből következik, hogy $A^*(y_1 + y_2) = A^*(y_1) + A^*(y_2)$. Hasonlóan igazolható $A^*(\lambda g) = \lambda A^*(g)$.

Tétel:

Legyen $A:X\to X$ korlátos lineáris operátor. Ekkor $A^*:X\to X$ korlátos lineáris operátor és $\|A^*\|=\|A\|$.

Bizonyítás:

Tekintsünk tetszőleges, rögzített $y \in X$ elemet! Ekkor $f(x) := \langle Ax, y \rangle$, f lineáris funkcionál korlátos is: $|f(x)| = |\langle Ax, y \rangle| \le ||Ax|| \cdot ||y|| \le ||A|| \cdot ||x|| \cdot ||y|| = (||A|| ||y||) \cdot ||x||$, így $||f|| \le ||A|| \cdot ||y||$. A Riesz-tételből most következik, hogy $\exists ! y^* \in X : f(x) = \langle x, y^* \rangle$, azaz $\langle Ax, y \rangle = \langle x, y^* \rangle$, $\forall x \in X$ -re. Így $D_{A^*} = X$, $A^*y = y^*$. Továbbá $||A^*y|| = ||y^*|| = ||f|| \le ||A|| \cdot ||y||$, ezért A^* korlátos és $||A^*|| \le ||A||$. Az egyenlőség abból fog következni, hogy $(A^*)^* = A \Rightarrow ||A|| = ||(A^*)^*|| \le ||A^*||$.

Text

Legyen $A: X \to X$ korlátos lineáris operátor! Láttuk már, hogy $A^*: X \to X$ operátor korlátos és lineáris, és $||A^*|| \le ||A||$.

Tétel:

Legvenek $A, B: X \to X$ korlátos lineáris operátor! Ekkor

- 1. $(A+B)^* = A^* + B^*$
- 2. $(\lambda A)^* = \overline{\lambda} A^*$
- 3. $(A^*)^* = A$
- 4. $I = I^*, 0^* = 0$
- 5. $(AB)^* = B^*A^*$.

Bizonyítás:

Legyenek $x, y \in X$!

- 1. $\langle (A+B)x,y\rangle = \langle Ax+Bx,y\rangle = \langle Ax,y\rangle + \langle Bx,y\rangle = \langle x,A^*y\rangle + \langle x,B^*y\rangle = \langle x,A^*y+B^*y\rangle = \langle x,(A^*+B^*)y\rangle$
- 2. $\langle Ax, y \rangle = \langle x, A^*y \rangle = \overline{\langle A^*y, x \rangle} = \overline{\langle y, (A^*)^*x \rangle} = \langle (A^*)^*x, y \rangle$, tehát $Ax = (A^*)^*x$, $\forall x \in X \Rightarrow A = (A^*)^*$, így $||A^*|| \leq ||(A^*)^*|| = ||A||$, így az előző tétellel együtt: $||A|| = ||A^*||$.
- 3. $\langle x, (AB)^* y \rangle = \langle ABx, y \rangle = \langle Bx, A^*y \rangle = \langle x, B^*A^*y \rangle$

Megjegyzés:

Mi a helyezet a lineáris operátorok esetén (ha nem korlátos)? $D_A, D_B \subset X$, $\overline{D_A} = \overline{D_B} = X$.

Jelölés: ha $A^*x = Ax$, $\forall x \in D_A$, $D_A \subset D_{A^*}$, akkor A^* kiterjesztése A-nak s ezt így jelöljük: $A \subset A^*$. Ezzel a jelöléssel: $(A+B)^* \supset A^* + B^*$ és $D_{A^*+B^*} = D_{A^*} \cap D_{B^*}$. Ugyanis $\forall y \in (D_{A^*} \cap D_{B^*})$ esetén $\langle (A+B)x, y \rangle = \langle x, (A^*+B^*)y \rangle$, $\forall x \in (D_A \cap D_B)$. Továbbá $(\lambda A)^* = \overline{\lambda} A^*$, $(AB)^* \supset B^*A^*$, $(A^*)^* \supset A$ és $1 A \subset B \Rightarrow A^* \supset B^*$.

Példák:

 $X := \mathbb{K}^n$. Tudjuk, hogy ekkor minden lineáris operátor korlátos. $A : \mathbb{K}^n \to \mathbb{K}^n$ lineáris korlátos operátor. Tudjuk, hogy A reprezentálható egy A (valós vagy komplex elemekből alkotott), $n \times n$ -es mátrixszal úgy, hogy Ax = Ax. Ekkor $A^* : \mathbb{K}^n \to \mathbb{K}^n$ korlátos lineáris operátor. Kérdés: mi a lesz ennek a mátrixa?

$$\mathcal{A} = \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nn} \end{pmatrix}, \quad a_{jk} \in \mathbb{K}$$

Ekkor
$$x, y \in \mathbb{K}^n$$
 esetén $\langle \mathcal{A}x, y \rangle = \sum_{j=1}^n \left[\sum_{k=1}^n a_{jk} x_k \right] \overline{y_j} = \sum_{k=1}^n x_k \left[\sum_{j=1}^n a_{jk} \overline{y_j} \right] = \sum_{k=1}^n x_k \left[\sum_{j=1}^n \overline{a_{jk}} y_j \right] = \langle x, \mathcal{A}^* y \rangle, \text{ vagyis } a_{kj}^* = \overline{a_{jk}}, \text{ vagyis } \mathcal{A}^* = \begin{pmatrix} a_{11}^* & \cdots & a_{1n}^* \\ \vdots & \ddots & \vdots \\ a_{n1}^* & \cdots & a_{nn}^* \end{pmatrix} = \begin{pmatrix} \overline{a_{11}} & \cdots & \overline{a_{n1}} \\ \vdots & \ddots & \vdots \\ \overline{a_{1n}} & \cdots & \overline{a_{nn}} \end{pmatrix}.$

3.1.1. Négyzetesen integrálható magú integrál operátorok valós vagy komplex függvényeken

Legyen $X:=L^{2}\left(M\right) ,M\subset\mathbb{R}^{n}$ mérhető halmaz és

$$\mathcal{K} \in L^{2}\left(M \times M\right), \quad \left(K\phi\right)\left(x\right) := \int_{M} \mathcal{K}\left(x,y\right)\phi\left(y\right)dy.$$

Tudjuk, hogy $K: L^2(M) \to L^2(M)$ lineáris operátor, node mi K^* ? Legyen $\phi, \psi \in L^2(M)$, ekkor

$$\langle K\phi, \psi \rangle = \int_{M} (K\phi)(x) \overline{\psi(x)} dx$$

$$= \int_{M} \left[\int_{M} \mathcal{K}(x, y) \phi(y) dy \right] \overline{\psi(x)} dx$$
(Fubini)
$$= \int_{M} \phi(y) \left[\int_{M} \mathcal{K}(x, y) \overline{\psi(x)} dx \right] dy$$

$$= \int_{M} \phi(y) \left[\int_{M} \overline{\mathcal{K}(x, y)} \psi(x) dx \right] dy$$

$$(x \leftrightarrow y \text{ csere}) = \int_{M} \phi(x) \left[\overline{\int_{M} \overline{\mathcal{K}(y, x)} \psi(y) dy} \right] dx$$

$$= \int_{M} \phi(x) \left[\overline{\int_{M} \mathcal{K}^{*}(x, y) \psi(y) dx} \right] dy.$$

A bevezetett jelöléssel összhangban $(K^*\psi)(x) := \int_M \mathcal{K}^*(x,y) \, \psi(y) \, dy$, így az korábbiakkal együtt: $\langle K\phi,\psi\rangle = \int_M \phi(x) \, \overline{(K^*\psi)(x)} dx = \langle \phi,K^*\psi \rangle$.

Állítás:

Tetszőleges A lineáris operátor esetén (melyre $D_A \subset X$, $\overline{D_A} = X$) A^* zárt operátor.

Bizonyítás:

Azt kellene belátni, hogy ha $y_j \in D_{A^*}$, $(y_j)_{j \in \mathbb{N}} \to y$ X-ben, továbbá $(A^*y_j) \to z$ X-ben $\Rightarrow y \in D_{A^*}$ és $A^*y = z$. Tudtuk, hogy $\langle Ax, y_j \rangle = \langle x, A^*y_j \rangle$, $\forall x \in D_A$, $\forall y \in D_A$ (igy $j \to \infty$ esetén $\langle Ax, y \rangle = \langle x, z \rangle$, $\forall x \in D_A$. Ez azt jelenti, hogy $y \in D_{A^*}$ és $z = A^*y$.

Tétel:

Legyen X Hilbert tér, $A: X \to X$ korlátos lineáris operátor és $\lambda \in \mathbb{K}$. Ekkor $\overline{R_{(\lambda I - A)}}^{\perp} = S_{\overline{\lambda}}(A^*) := \{x \in X : (\overline{\lambda}I - A^*) | x = 0\}$, ahol R az értékkészletet jelöli.

Bizonyítás:

Világos, hogy $R_{(\lambda I-A)}$ lineáris altér, ezért $\overline{R_{(\lambda I-A)}}$ zárt altér. Másrészt $S_{\overline{\lambda}}(A^*)$ is zárt altér. Az $S_{\overline{\lambda}}(A^*)$ halmaz azért zárt, mert A^* folytonos lineáris operátor.

- Először tfh $y \in \overline{R_{\lambda I A}}^{\perp}$, ekkor $0 = \left\langle \underbrace{(\lambda I A) x}_{\in R_{\lambda I A} \subset \overline{R_{\lambda I A}}}, y \right\rangle = \left\langle x, (\lambda I A)^* y \right\rangle$, ez igaz $\forall x \in X \Rightarrow \underbrace{(\lambda I A)^*}_{=\overline{\lambda}I A^*} y = 0$, vagyis $y \in S_{\overline{\lambda}}(A^*)$.
- tfh $y \in S_{\overline{\lambda}}(A^*)$,azaz $(\overline{\lambda}I A^*)y = 0$, $\forall x \in X$,így $\langle (\lambda I A)x, y \rangle = \langle x, (\lambda I A)^*y \rangle = 0$,vagyis $y \perp R_{\lambda I A}$ minden elemére $\Rightarrow y \perp \overline{R_{\lambda I A}}$ minden elemére.

Megjegyzés:

Spec eset, mikor $R_{\lambda I-A}$ zárt halmaz, azaz $R_{\lambda I-A} = \overline{R_{\lambda I-A}}$. Ekkor a fenti tételből következik: $(\lambda I - A) \, x = b$ másodfajú egyenletnek létezik $x \in X$ megoldása pontosan akkor, ha $b \in R_{\lambda I-A} = S_{\overline{\lambda}} \, (A^*)^{\perp}$, azaz $\langle b, y \rangle = 0$ a $(\lambda I - A)^* \, y = 0$ egyenlet $\forall y \in X$ megoldására. Később látni fogjuk, hogy ha A ún. kompakt lineáris operátor, akkor $\lambda \neq 0$ esetén az $R_{\lambda I-A}$ zárt halmaz.

3.1.2. Szimmetrikus és önadjungált operátorok

Definíció:

Legyen X Hilbert tér, $D_A \subset X$ és $\overline{D_A} = X$ és $A: D_A \to X$ lineáris operátor. Ekkor A-t önadjungáltnak nevezzük, ha $A^* = A$ (ekkor ugyanott vannak értelmezve, $D_{A^*} = D_A$).

Definíció:

Legyen X Hilbert tér, $D_A \subset X$ és $\overline{D_A} = X$ és $A : D_A \to X$ lineáris operátor. Ekkor A-t szimmetrikusnak nevezzük, ha $A \subset A^*$. Tehát minden önadjungált operátor egyúttal szimmetrikus is.

Megjegyzés:

Ekvivalens definíció: A szimmetrikus, ha $\langle Ax, y \rangle = \langle x, Ay \rangle, \forall x, y \in D_A$.

Példa:

Ha $X = \mathbb{K}^n$, akkor $A : \mathbb{K}^n \to \mathbb{K}^n$ -nak megfelel egy \mathcal{A} mátrix. Tudjuk, hogy A^* mátrixa \mathcal{A}^* , melynek elemei $a_{jk}^* = \overline{a_{kj}}$. Ekkor A önadjungált $\Leftrightarrow a_{jk}^* = a_{jk}$, azaz $a_{jk} = \overline{a_{kj}}$.

Példa:

Legyen $X := L^2(M)$, $M \subset \mathbb{R}^n$ mérhető halmaz, $(K\phi)(x) := \int_M \mathcal{K}(x,y) \phi(y) dy$ korlátos operátor, ahol $\mathcal{K} \in L^2(M \times M)$. Ekkor $(K^*\phi)(x) = \int_M \mathcal{K}^*(x,y) \phi(y) dy$,

vagyis $\mathcal{K}^*(x,y) = \overline{\mathcal{K}(y,x)}$. K önadjugnált pontosan akkor, ha $\mathcal{K}(x,y) = \overline{\mathcal{K}(y,x)}$ majdnem minden $x,y \in M$.

Példa:

Legyen $X := L^2(0,1)$, $(A\phi)(t) := \phi''(t)$, midőn $t \in [0,1]$, vagyis legyen A a második derivált operátor (ami lineáris)! $D_A := \{\phi \in C^2[0,1] : \phi(0) = 0, \phi(1) = 0\}$, erre belátható, hogy $\overline{D_A} = L^2(0,1)$.

Állítás:

A szimmetrikus operátor (de nem önadjungált). Ennek igazolásához tekintsünk $\phi, \psi \in D_A$ tetszőleges függvényeket, ekkor parciális integrálással:

$$\langle A\phi, \psi \rangle = \int_{0}^{1} (A\phi(t)) \psi(t) dt$$

$$= \int_{0}^{1} \phi''(t) \psi(t) dt$$

$$= [\phi'(t) \psi(t)]_{0}^{1} - \int_{0}^{1} \phi'(t) \psi'(t) dt$$

$$= - [\phi(y) \psi'(t)]_{0}^{1} + \int_{0}^{1} \phi(t) \psi''(t) dt$$

$$= \langle \phi, A\psi \rangle.$$

Text

Állítás:

Legyen X komplex Hilbert tér! Ha $D_A \subset X$, $A:D_A \to X$ szimmetrikus operátor,

akkor $\langle Ax, x \rangle$ értéke valós $\forall x \in \mathbb{D}_A$ esetén.

Bizonyítás:

Mivel A szimmetrikus, ezért $\langle Ax, x \rangle = \langle x, Ax \rangle, \forall x \in D_A$, másrészt a skaláris szorzat tulajdonságából következően: $\langle Ax, x \rangle = \overline{\langle x, Ax \rangle} \Rightarrow \langle x, Ax \rangle = \overline{\langle x, Ax \rangle} \Rightarrow \langle x, Ax \rangle$ valós, így $\langle Ax, x \rangle$ is valós.

Megjegyzés:

Bebizonyítható, hogy ha X komplex Hilbert tér és $\langle Ax, x \rangle$ valós $\forall x \in D_A \Rightarrow A$ szimmetrikus.

Tétel:

Legyen X Hilbert tér (lehet valós is). Ha $D_A \subset X$, $A: D_A \to X$ szimmetrikus operátor, akkor A minden sajátértéke valós és a különböző sajátértékekhez tartozó sajátelemek ortogonálisak.

Bizonyítás:

- Tfh $Ax = \lambda x$ valamely $0 \neq x \in D_A$ elemer, $\lambda \in \mathbb{K}$. Ekkor $\underbrace{\langle Ax, x \rangle}_{\text{valós}} = \langle \lambda x, x \rangle = \langle \lambda x, x \rangle$
 - $\lambda \|x\|^2$. A norma értéke valós, így a sajátérték is az, mert szorzatuk valós.
- Tfh

$$Ax_1 = \lambda_1 x_1$$
$$Ax_2 = \lambda_2 x_2$$

és $\lambda_1 \neq \lambda_2$ valós sajátértékek. Szorozzuk skalárisan jobbról előbbit x_2 -vel!

$$\langle Ax_1, x_2 \rangle = \langle \lambda_1 x_1, x_2 \rangle = \lambda_1 \langle x_1, x_2 \rangle$$

illetve

$$\langle Ax_1, x_2 \rangle = \langle x_1, Ax_2 \rangle = \langle x_1, \lambda_2 x_2 \rangle = \lambda_2 \langle x_1, x_2 \rangle$$

így

$$\lambda_1 \langle x_1, x_2 \rangle = \lambda_2 \langle x_1, x_2 \rangle \Leftrightarrow \underbrace{(\lambda_1 - \lambda_2)}_{\neq 0 \Leftarrow \lambda_1 \neq \lambda_2} \langle x_1, x_2 \rangle = 0 \Rightarrow \langle x_1, x_2 \rangle = 0.$$

Tétel:

Legyen X Hilbert tér, $A:X\to X$ korlátos önadjungált operátor. Ekkor $\|A\|=\sup\{|\langle Ax,x\rangle|:x\in X,\|x\|=1\}.$

Bizonyítás:

Az operátor norma definíciója szerint $\|A\| = \sup\{\|Ax\| : x \in X, \|x\| = 1\}$. Ezért egyrészt a Cauchy-Schwarz egyenlőtlenségből $|\langle Ax, x \rangle| \leq \|Ax\| \cdot \|x\| \leq \|A\| \cdot \|x\|^2 = \|A\|$, ha $\|x\| = 1$. Jelöljük: $\alpha := \sup\{|\langle Ax, x \rangle| : x \in X, \|x\| = 1\}$. Az előbbiek szerint $\alpha \leq \|A\|$. Belátjuk a fordított egyenlőtlenséget. Tetszőleges $x, y \in X$

elemekre

$$\begin{split} \left\langle A\left(x+y\right),x+y\right\rangle &=\left\langle Ax+Ay,x+y\right\rangle \\ &=\left\langle Ax,x\right\rangle +\underbrace{\left\langle Ay,x\right\rangle}_{=\left\langle y,Ax\right\rangle =\overline{\left\langle Ax,y\right\rangle }}+\left\langle Ax,y\right\rangle +\left\langle Ay,y\right\rangle \\ &=\left\langle Ax,x\right\rangle +\left\langle Ay,y\right\rangle +2\Re\left\langle Ax,y\right\rangle .\end{split}$$

Hasonlóképpen:

$$\langle A(x-y), x-y \rangle = \langle Ax, x \rangle + \langle Ay, y \rangle - 2\Re \langle Ax, y \rangle.$$

A kapott 1. egyenlőségből a 2-at kivonva:

$$4\Re \langle Ax, y \rangle = \langle A(x+y), x+y \rangle - \langle A(x-y), x-y \rangle$$

$$\leq |\langle A(x+y), x+y \rangle| + |\langle A(x-y), x-y \rangle|$$

$$\leq \alpha ||x+y||^2 + \alpha ||x-y||^2$$

$$= \alpha \left(||x||^2 + 2\langle x, y \rangle^2 + ||y||^2 + ||x||^2 - 2\langle x, y \rangle^2 + ||y||^2 \right)$$

$$= 2\alpha \left(||x||^2 + ||y||^2 \right)$$

$$\Downarrow$$

$$\Re \langle Ax, y \rangle \leq \frac{\alpha}{2} \left(||x||^2 + ||y||^2 \right).$$

Tetszőleges $\lambda > 0$ számra:

$$\underbrace{\|Ax\|^{2}}_{\in \mathbb{R}_{0}^{+}} = \langle Ax, Ax \rangle$$

$$= \left\langle A\underbrace{(\lambda x)}_{:=f}, \underbrace{Ax/\lambda}_{:=g} \right\rangle$$

$$= \underbrace{\langle Af, g \rangle}_{\geqslant 0}$$

$$= \Re \langle Af, g \rangle$$

$$\leqslant \frac{\alpha}{2} \left[\|f\|^{2} + \|g\|^{2} \right]$$

$$= \frac{\alpha}{2} \left[\|\lambda x\|^{2} + \left\| \frac{Ax}{\lambda} \right\|^{2} \right].$$

$$= \frac{\alpha}{2} \left[\lambda^{2} \|x\|^{2} + \frac{\|Ax\|^{2}}{\lambda^{2}} \right]$$

Válasszuk: $\lambda^2:=\frac{\|Ax\|}{\|x\|}$, ekkor $\lambda>0$ teljesül (feltéve, hogy $Ax\neq 0$), és

$$||Ax||^{2} \leqslant \frac{\alpha}{2} \left[\frac{||Ax||}{||x||} ||x||^{2} + \frac{||x||}{||Ax||} ||Ax||^{2} \right]$$

$$= \frac{\alpha}{2} \left[||Ax|| \cdot ||x|| + ||x|| \cdot ||Ax|| \right]$$

$$= \alpha ||Ax|| \cdot ||x||.$$

 $\|Ax\|=0$ triviális esetet kivéve osztva $\|Ax\|>0$ -val: $\|Ax\|\leq \alpha\cdot \|x\|$. Ez igaz $\|Ax\|=0$ esetén is persze. Tehát $\|A\|\leq \alpha$. Előbb azt kaptuk, hogy $\alpha\leq \|A\|$, így a mostanival együtt: $\|A\|=\alpha$.

Állítás:

Vezessük be

$$M := \sup \{ \langle Ax, x \rangle : x \in X, ||x|| = 1 \}$$

$$m := \inf \{ \langle Ax, x \rangle : x \in X, ||x|| = 1 \}$$

jelöléseket! (Ekkor a fentiek miatt $[m,M] \subset [-\|A\|,\|A\|]$, és max $\{|m|,M\} = \|A\|$). Az A önadjungált korlátos operátor spektruma $\subset [m,M]$, más szóval, ha $\lambda \in \mathbb{K}$ -ra $\lambda \notin [m,M] \Rightarrow \lambda$ reguláris érték A-ra.

Megjegyzés:

Azt eddig is tudtuk, hogy $|\lambda| > ||A||$ esetén λ reguláris érték (ha A korlátos). Azt is tudtuk, hogy ha A szimmetrikus és $\Im \lambda \neq 0 \Rightarrow \lambda$ nem lehet sajátérték.

Definíció:

Legyen $A: D_A \to X$ lineáris operátor, $D_A \subset X$, $\overline{\mathbb{D}_A} = X$. Ha $\langle Ax, x \rangle \geq 0$, $\forall x \in D_A$, akkor A-t pozitív operátornak nevezzük (konzekvensen pozitív szemidefinitnek kéne nevezni).

Állítás:

Ha A pozitív, akkor A minden sajátértéke > 0.

Bizonyítás:

$$Ax = \lambda x \Rightarrow 0 < \langle Ax, x \rangle = \langle \lambda x, x \rangle = \lambda \|x\|^2 \Rightarrow \lambda > 0$$
, ha $\|x\|^2 \neq 0$.

3.1.3. Izometrikus és unitér operátorok

Definíció:

Legyen X Hilbert tér! Az $A: X \to X$ operátort izometrikusnak nevezzük, ha $||Ax|| = ||x||, \forall x \in X$. Ekkor látható, hogy A korlátos és ||A|| = 1.

Állítás:

Ha A izometrikus, akkor távolság és skalárszorzattartó (szögtartó).

Bizonyítás:

- ||Ax Ay|| = ||A(x y)|| = ||x y||.
- Belátjuk a skalárszorzattartást valós X Hilbert tér esetén.

$$I: ||x+y||^2 = ||x||^2 + 2\langle x, y \rangle + ||y||^2$$

$$II: ||x-y||^2 = ||x||^2 - 2\langle x, y \rangle + ||y||^2$$

$$I - II: \quad ||x + y||^2 - ||x - y||^2 = 4 \langle x, y \rangle \Rightarrow \langle x, y \rangle = \frac{||x + y||^2 - ||x - y||^2}{4}$$

Így

$$\langle Ax, Ay \rangle = \frac{1}{4} \left(\|Ax + Ay\|^2 - \|Ax - Ay\|^2 \right)$$

$$= \frac{1}{4} \left(\|A(x+y)\|^2 - \|A(x-y)\|^2 \right)$$

$$= \frac{1}{4} \left(\|x+y\|^2 - \|x-y\|^2 \right) \Rightarrow \langle x, y \rangle = \langle Ax, Ay \rangle.$$

• Komplex esetben $\langle x,y\rangle=\frac{1}{4}\left[\|x+y\|^2-\|x-y\|^2+i\|x+iy\|^2-i\|x-iy\|^2\right],$ így kicsit hosszabb a bizonyítás.

Következemény: ha $A: X \to X$ izometrikus operátor és $(x_1, x_2, ...)$ ortonormált rendszer, akkor $(Ax_1, Ax_2, ...)$ is ortonormált rendszer.

Kérdés: ha $(x_1, x_2, ...)$ teljes ortonormált rendszer, akkor ebből következik-e, hogy $(Ax_1, Ax_2, ...)$ is teljes ortonormált rendszer? Általában sajnos nem.

Példa:

Legyen X végtelen dimenziós, szeparábilis Hilbert tér és $(x_1, x_2, ..., x_k, ...)$ teljes ortonormált rendszer. Értelmezzük A-t! Egy $x \in X$ elemet fejtsük Fourier-sorba! $x = \sum_{k=1}^{\infty} c_k x_k = c_1 x_1 + c_2 x_2 + ..., Ax := \sum_{k=1}^{\infty} c_k x_{k+1} = c_1 x_2 + c_2 x_3 +$ Ez egy jól definiált lineáris operátor. Tudjuk, hogy $||Ax||^2 = \sum_{k=1}^{\infty} |c_k|^2 = ||x||^2$, tehát A izometrikus. Láthatjuk, hogy így $(Ax_1 = x_2, Ax_2 = x_3, ...)$ nem teljes. Az is kiolvasható A definíciójából, hogy $R_A = \mathcal{L}(x_2, x_3, ...)$ az X-nek valódi altere, így $R_A \neq X$.

Definíció:

 $A:X\to X$ izometrikus operátort unitérnek nevezzük, ha $R_A=X.$

Tétel:

Egy $A: X \to X$ korlátos operátor unitér $\Leftrightarrow \exists A^{-1} = A^*$.

Bizonyítás:

- \Rightarrow irányban: tfh A unitér. Ekkor A korlátossága lévén A^* értelmezve van X-n, továbbá ||Ax|| = ||x||, $\forall x \in X \Rightarrow A$ injektív $\Rightarrow A^{-1}$ is létezik. Belátjuk, hogy $A^* = A^{-1}$. Egyrészt $D_{A^{-1}} = R_A = X$, mivel A unitér. Ekkor $\forall x, y \in X$ elemre $\langle x, y \rangle = \langle Ax, Ay \rangle = \langle x, A^*Ay \rangle \Rightarrow y = A^*Ay$, $\forall y \in X \Rightarrow A^*A = I \Rightarrow A^*AA^{-1} = A^{-1} \Rightarrow A^* = A^{-1}$
- \Leftarrow irányban: tfh $A^* = A^{-1}$. Ekkor mivel $D_{A^*} = X \Rightarrow R_A = D_{A^{-1}} = X$, továbbá $||Ax||^2 = \langle Ax, Ax \rangle = \langle x, A^*Ax \rangle = \langle x, Ix \rangle = ||x||^2$, tehát A izometrikus is.

Text

Allítás:

Ha ${\cal A}$ unitér, akkor teljes ortonormált rendszer képe szintén teljes ortonormált rendszer.

Példák unitér operátorokra:

- 1. Triviális példa az identitás.
- 2. $X := \mathbb{K}^n$. Tudjuk, hogy egy $A : \mathbb{K}^n \to \mathbb{K}^n$ lineáris korlátos operátor megadható egy \mathcal{A} négyzetes mátrixszal,

$$\mathcal{A} = \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nn} \end{pmatrix} = \begin{pmatrix} \mathbf{a}_1 \\ \vdots \\ \mathbf{a}_n \end{pmatrix},$$
$$\mathcal{A}^* = (\bar{\mathbf{a}}_1^T, \bar{\mathbf{a}}_2^T, \dots, \bar{\mathbf{a}}_n^T).$$

A leképzés pontosan akkor unitér, ha

$$A^* = A^{-1} \Leftrightarrow AA^* = I = A^*A \Leftrightarrow \mathcal{A}\mathcal{A}^* = \mathcal{I} = \mathcal{A}^*\mathcal{A}.$$

$$\mathcal{A}\mathcal{A}^*$$
 elemei: $\mathbf{a}_j \overline{\mathbf{a}}_k^T = \langle a_j, a_k \rangle_{\mathbb{K}^n} = \delta_{jk} = \begin{cases} 1 \text{ ha } j = k \\ 0 \text{ ha } j \neq k \end{cases}$

A sorvektorok tehát ortonormáltak, belátható az $\mathcal{A}^*\mathcal{A} = \mathcal{I}$ egyenletből, hogy az oszlopvektorok is. Az ilyen – unitér operátorokat megadó – mátrixokat ortogonális mátrixoknak is nevezzük.

3. Fourier-operátor (Fourier-transzformáció): $X := L^2(\mathbb{R})$ Hilbert tér! Az \mathcal{F} fourier operátort így értelmezzük az $\phi \in L^2(\mathbb{R}) \cap L^1(\mathbb{R}) \subset L^2(\mathbb{R})$ függvényeken: $[\mathcal{F}(\phi)](x) := \frac{1}{\sqrt{2\pi}} \int\limits_{-\infty}^{\infty} e^{-ixy} \phi(y) \, dy$. Látható, hogy ennek csak akkor van értelme, ha $\phi(y)$ integrálható. Tudjuk, hogy $|e^{-ixy}\phi(y)| = |\phi(y)|$, mert $|e^{-ixy}| = 1$. $\phi \in L^2(\mathbb{R})$ esetén $[\mathcal{F}(\phi)](x) = \lim_{N \to \infty} \frac{1}{\sqrt{2\pi}} \int\limits_{-N}^{N} e^{-ixy} \phi(y) \, dy$ az $L^2(\mathbb{R})$ normával.

Tétel:

Az $\mathcal{F}: L^{2}(\mathbb{R}) \to L^{2}(\mathbb{R})$ operátor unitér, $\mathcal{F}^{-1} = \mathcal{F}^{*}$ a következő képlettel adható meg: $\left[\mathcal{F}^{-1}(\psi)\right](y) = \lim_{N \to \infty} \frac{1}{\sqrt{2\pi}} \int_{-N}^{N} e^{ixy} \psi(x) dx$, ahol a limesz $L^{2}(\mathbb{R})$ norma szerinti.

Bizonyítás (vázlatos):

1. Először értelmezzük \mathcal{F} -et a következő spec. alakú lépcsős függvényeken: $\phi_{\alpha}\left(x\right):=\begin{cases} 1 & \text{ha } x \text{ 0 \'es } \alpha \text{ köz\"ott van} \\ 0 & \text{egy\'ebk\'ent} \end{cases}.$

Egyszerű számolással $(\mathcal{F}\phi_{\alpha})(x) = \frac{1}{\sqrt{2\pi}} \frac{1-e^{-i\alpha x}}{ix}$. Bevezetjük a \mathcal{G} operátort $\phi \in L^2(\mathbb{R}) \cap L(\mathbb{R})$ függvényekre: $(\mathcal{G}\phi)(x) := \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{ixy} \phi(y) dy$. Hasonlóan adódik: $(\mathcal{G}\phi_{\alpha})(x) = \frac{1}{\sqrt{2\pi}} \frac{e^{i\alpha x}-1}{x}$. Állítás: tetszőleges $\phi_{\alpha}, \phi_{\beta}$ esetén $\langle \mathcal{F}\phi_{\alpha}, \mathcal{F}\phi_{\beta} \rangle = \langle \phi_{\alpha}, \phi_{\beta} \rangle$, $\langle \mathcal{G}\phi_{\alpha}, \mathcal{G}\phi_{\beta} \rangle = \langle \phi_{\alpha}, \phi_{\beta} \rangle$ és $\langle \mathcal{F}\phi_{\alpha}, \phi_{\beta} \rangle = \langle \phi_{\alpha}, \mathcal{G}\phi_{\beta} \rangle$ is igaz.

- Kiterjesztjük az állítást lépcsős függvényekre, amik láthatóan ilyen függvények lineárkombinációi.
- 3. A lépcsős függvények sűrűn vannak $L^2(\mathbb{R})$ -ben. Hasonló állítást kapok ezen lépcsős függvényekre. \mathcal{F} és \mathcal{G} -t a linearitás és korlátosság megtartásával egyértelműen kiterjeszthetjük $L^2(\mathbb{R})$ -re.
- 4. \mathcal{F} és \mathcal{G} képlete $L^2(\mathbb{R})$ -en megadandó.

Megjegyzés:

 \mathcal{F} operátor \mathbb{R}^n -ben: $(\mathcal{F}\phi)(x) = \frac{1}{(\sqrt{2\pi})^n} \int_{\mathbb{R}^n} e^{-i\langle x,y\rangle} \phi(y) dy$, ha $\phi \in L^2(\mathbb{R}^n) \cap L^1(\mathbb{R})$, ekkor \mathcal{F} unitér.

3.1.4. Véges rendű operátorok

Definíció:

Legyen X Hilbert tér! Egy $A:X\to X$ korlátos operátort véges rendűnek nevezünk, ha R_A véges dimenziós.

Példa:

Legyenek $\phi_1, ..., \phi_m$ lineárisan függetlenek, akárcsak $\psi_1, \psi_2, ..., \psi_m$, mind X-beli elemek! Az A operátort így értelmezzük: $A: X \to X$, $A(f) := \sum\limits_{j=1}^m \langle f, \psi_j \rangle \, \phi_j$. Látható, hogy ez véges rendű. Világos, hogy A operátor lineáris, $R_A = \mathcal{L}\left(\phi_1, \phi_2, ..., \phi_m\right)$ véges dimenziós. A korlátos is: $\|Af\|_X \leq \sum\limits_{j=1}^m \|\langle f, \psi_j \rangle \, \phi_j\| = \sum\limits_{j=1}^m |\langle f, \psi_j \rangle| \cdot \|\phi_j\|$, melyre a Cauchy-Schwarz szerint $\leq \sum\limits_{j=1}^m \|f\|_X \cdot \|\psi_j\|_X \cdot \|\phi_j\|_X = \|f\| \cdot \sum\limits_{j=1}^m \|\psi_j\|_X \cdot \|\phi_j\|_X$.

Állítás:

Legyen X Hilbert tér, $A: X \to X$ véges rendű operátor. Ekkor $\exists \phi_1, \phi_2, ..., \phi_m \in X$ lineárisan függetlenek és $\exists \psi_1, \psi_2, ..., \psi_m \in X$ lineárisan függetlenek a fentiek szerint,

és A a fenti alakú.

Bizonyítás:

 R_A véges, m dimenziós lineáris altér. Legyenek $\phi_1, \phi_2, ..., \phi_m$ lineárisan független elemek, $\mathcal{L}\left(\phi_1, \phi_2, ..., \phi_m\right) = R_A$. Ezek választhatók úgy, hogy ortonormáltak legyenek (a Schmidt eljárással). Ekkor, ha $f \in X$, $Af = \sum\limits_{j=1}^m c_j\left(f\right)\phi_j$. Ebben a c_j együtthatók egyértelműek, $c_j\left(f\right) = \langle Af, \phi_j \rangle$. Látjuk, hogy c_j lineáris funkcionál, továbbá korlátos is, és $|c_j\left(f\right)| = |\langle Af, \phi_j \rangle| \leq ||Af|| \cdot ||\phi_j|| \leq ||A|| \cdot ||f||$. Riesz-tétel segítségével $\exists ! \psi_j \in X : c_j\left(f\right) = \langle f, \psi_j \rangle \Rightarrow Af = \sum\limits_{j=1}^m c_j\left(f\right)\phi_j = \sum\limits_{j=1}^m \langle f, \psi_j \rangle \phi_j$. Nem nehéz belátni, hogy $\psi_1, \psi_2, ..., \psi_m$ is lineárisan függetlenek.

3.2. A másodfajú egyenlet véges rendű operátorokra

Legyen X Hilbert tér (véges vagy végtelen dimenziós), $A: X \to X$ véges rendű operátor. Tekintsük az A operátornak a másodfajú egyenletét: $(\lambda I - A) f = b$, ahol $b \in X$ adott és $f \in X$ keresett. Ezt az előbbiek szerint így írhatjuk: $\lambda f - \sum\limits_{j=1}^m \langle f, \psi_j \rangle \, \phi_j = b$. Belátjuk, hogy $\lambda \neq 0$ esetén ez az egyenlet ekvivalens egy lineáris algebrai egyenletrendszerrel.

Az előző egyenletet jobbról ψ_k -val skalárisan szorozva: $\lambda \langle f, \psi_k \rangle - \sum_{j=1}^m \langle f, \psi_j \rangle \langle \phi_j, \psi_k \rangle = \langle b, \psi_k \rangle, \ k \in \{1, 2, ..., m\}.$ Keressük $\xi_j := \langle f, \psi_j \rangle$ -t, adottak $a_{kj} := \langle \phi_j, \psi_k \rangle, \ \beta_k := \langle b, \psi_k \rangle.$ Ezzel a jelöléssel: $\lambda \xi_k - \sum_{j=1}^m a_{kj} \xi_j = \beta_k, \ k \in \{1, 2, ..., m\}.$ Ez egy lineáris egyenletrend-

szer ξ_k együtthatókra. $\xi := \begin{pmatrix} \xi_1 \\ \vdots \\ \xi_m \end{pmatrix}, \ \beta := \begin{pmatrix} \beta_1 \\ \vdots \\ \beta_m \end{pmatrix}, \ \mathcal{A} := \begin{pmatrix} a_{11} & \cdots & a_{1m} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mm} \end{pmatrix}$, így $(\lambda \mathcal{I} - \mathcal{A}) \xi = \beta$. Ha f kielégíti a másodfajú egyenletet $\Rightarrow \xi$ kielégíti a kapott lineáris algebrai egyenletrendszert $\lambda = 0$ esetén is!

Állítás

Legyen $\lambda \neq 0$ és tfh ξ kielégíti a lineáris algebrai egyenletrendszert! Ekkor $f := \frac{1}{\lambda}b + \frac{1}{\lambda}\sum\limits_{j=1}^{m}\xi_{j}\phi_{j}$ kielégíti a véges rendű operátorra vonatkozó másodafajú egyenletet.

Bizonyítás:

Behelyettesítünk a másodfajú egyenletbe, s kihasználjuk, hogy ξ kielégíti a lineáris algebrai egyenletrendszert.

Tétel:

Egy $f \in X$ elem kielégíti a véges rendű opertárra vonatkozó másodfajú egyenletet $\lambda \neq 0$ esetén $\Leftrightarrow \xi_j = \langle f, \psi_j \rangle$ képlettel értelmezett koordinátákból álló ξ kielégíti a fenti lineáris algebrai egyenletrendszert.

Ennek alapján a véges rendű operátorokra vonatkozó másodfajú egyenlet megoldhatóságának elmélete következik a lineáris algebrai egyenletrendszerek megoldhatóságának elméletéből. Két eset lehetséges:

- 1. Ha $\lambda \neq 0$ szám az \mathcal{A} mátrixnak nem sajátértéke $\Leftrightarrow \det |\lambda \mathcal{I} \mathcal{A}| \neq 0$, ekkor $(\lambda \mathcal{I} \mathcal{A}) \xi = \beta$ egyenletben $\forall \beta \in \mathbb{K}^n \exists ! \xi$ megoldás $\Rightarrow \exists ! f$ megoldás a $(\lambda I A) f = b$ egyenletre. Nem nehéz belátni, hogy f folytonosan függ b-től. Ekkor $\lambda \neq 0$ reguláris érték A-ra.
- 2. Ha $\lambda \neq 0$ az \mathcal{A} mátrixnak sajátértéke $\Rightarrow \lambda$ az A sajátéréke, s a kétféle rang egyenlő. $\lambda = 0$ végtelen rangú sajátértéke A-nak (ha X végtelen dimenziós).

Text

Állítás:

Ha X végtelen dimenziós vektortér, akkor $\lambda=0$ végtelen rangú sajátértéke az operátornak. $A\phi:=\sum\limits_{j=1}^m \langle\phi,\psi_j\rangle\,\phi_j.$ $\lambda=0$ sajátérték azt jelenti, hogy $A\phi=0\phi=0$ biztosan teljesül. Mivel ϕ_j -k lineárisan függetlenek, $\langle\phi,\psi_j\rangle=0$, $\forall j\in\{1,2,...,m\}\Leftrightarrow\phi\bot\mathcal{L}\,(\psi_1,\psi_2,...,\psi_m)$.

Összefoglalva: legyen X végtelen dimenziós szeparábilis Hilbert tér! Ekkor egy A véges rendű operátor spektruma csak sajátértékekből áll, mégpedig a 0-tól különböző (véges sok) sajátérték véges rangú (ezek megegyeznek az $\mathcal A$ mátrix sajátértékeivel, s ranguk is megegyezik), a 0 pedig végtelen rangú sajátérték. Minden más λ reguláris érték.

Példa véges rangú operátorokra (elfajult magú integrálegyenletek): $X := L^2(M)$, ahol M mérhető halmaz. $\mathcal{K}(x,y) = \sum_{j=1}^m \phi_j(x) \psi_j(y)$, ahol

$$\phi_{j}, \psi_{j} \in L^{2}(M) \Rightarrow \mathcal{K} \in L^{2}(M \times M).$$

$$(K\phi)(x) = \int_{M} \mathcal{K}(x, y) \phi(y) dy$$

$$= \int_{M} \left[\sum_{j=1}^{m} \phi_{j}(x) \psi_{j}(y) \right] \phi(y) dy$$

$$= \sum_{j=1}^{m} \phi_{j}(x) \int_{M} \psi_{j}(y) \phi(y) dy.$$

Röviden: $K\phi = \sum_{j=1}^{m} \phi_j \langle \phi, \psi_j \rangle$.

Az előbbiek alapján egy elfajult magú (elsőfajú) integrálegyenlet megoldása kiszámolható egy lineáirs algebrai egyenletrendszer megoldásával.

3.2.1. Kompakt (teljesen folytonos) operátorok

Definíció:

Egy $M\subset Y$ halmazt feltételesen (vagy relatíve) sorozatkompaktnak nevezünk, ha lezárása sorozatkompakt.

Megjegyzés:

M feltételesen sorozatkompakt, ha tetszőleges M-beli sorozatból kiválasztható konvergens részsorozat. \mathbb{R}^n -ben a feltételesen sorozatkompakt halmazok a korlátos halmazok.

Definíció:

Legyenek X,Y Banach terek! Egy $A:X\to Y$ lineáris operátort teljesen folytonosnak, avagy kompaktnak nevezünk, ha X tetszőleges korlátos halmazát feltételesen (avagy relatíve) sorozatkompakt halmazba képezi.

Megjegyzés:

Ekkor A korlátos is, továbbá két kompakt operátor összege és számszorosa is kompakt.

Állítás:

Egy $A:X\to Y$ operátor pontosan akkor kompakt, ha $\forall\,(x_k)_{k\in\mathbb{N}}\,,x_k\in X$ korlátos sorozatra $(Ax_k)_{k\in\mathbb{N}}$ -ból kiválasztható konvergens részsorozat.

Állítás:

Legyen X Hilbert tér, $A:X\to X$ véges rendű operátor. Ekkor A kompakt.

Tétel:

Legyenek X, Y Banach terek, $A_j \in L(X,Y)$ operátorok kompaktak, és $\exists A \in L(X,Y) : \lim_{j \to \infty} A_j = A \Rightarrow A$ is kompakt operátor.

Bizonyítás:

Legyen $(x_k)_{k\in\mathbb{N}}$ egy X -beli korlátos sorozat. Bizonyítani akarjuk, hogy $(Ax_k)_{k\in\mathbb{N}}$ -nek van konvergens részsorozata Y -ban. Tudjuk, hogy $A\in L(X,Y)$. Mivel A_1 kompakt, ezért az $(A_1x_k)_{k\in\mathbb{N}}$ sorozatból kiválasztható Y -ban konvergens részsorozat, legyen ez $(A_1x_{k1})_{k\in\mathbb{N}}$! $(A_2x_{k1})_{k\in\mathbb{N}}$ -ből kiválasztható konvergens részsorozat, legyen ez $(A_2x_{k2})_{k\in\mathbb{N}}$. $(A_3x_{k2})_{k\in\mathbb{N}}$ -ből megint kiválasztható...

$$x_1$$
 x_2 \cdots x_k \cdots
 A_1 x_{11} x_{21} \cdots x_{k1} \cdots részsorozatra $(A_1x_{k1})_{k\in\mathbb{N}}$ konvergens
 A_2 x_{12} x_{22} \cdots x_{k2} \cdots részsorozatra $(A_2x_{k2})_{k\in\mathbb{N}}$ konvergens
 A_3 A_4 A_5 A_5 A_7 A_7 A_8 A_8 A_9 A_9

Tekintsük az $(x_{kk})_{k\in\mathbb{N}}$ átlós sorozatot. Belátjuk, hogy $(Ax_{kk})_{k\in\mathbb{N}}$ konvergens Y-ban. $(x_{kk})_{k\in\mathbb{N}}$ az eredeti $(x_k)_{k\in\mathbb{N}}$ sorozatnak olyan részsorozata, amely bármelyik sorban levő részsorozatnak a részsorozata, bizonyos indextől kezdve.

$$||Ax_{kk} - Ax_{mm}||_{Y} = ||[Ax_{kk} - A_{j}x_{kk}] + [A_{j}x_{kk} - A_{j}x_{mm}] + [A_{j}x_{mm} - Ax_{mm}]||_{Y}$$

$$\leq ||(A - A_{j})x_{kk}||_{Y} + ||A_{j}x_{kk} - A_{j}x_{mm}||_{Y} + ||(A_{j} - A)x_{mm}||_{Y}$$

$$\leq ||A - A_{j}||_{L(X,Y)} \cdot ||x_{kk}||_{X} +$$

$$+ ||A_{j}x_{kk} - A_{j}x_{mm}||_{Y} + ||A_{j} - A||_{L(X,Y)} \cdot ||x_{mm}||_{X}$$

 $(x_{kk})_{k\in\mathbb{N}}$ korlátos sorozat, ehhez $\exists c>0: \|x_{kk}\|\leq c$. Legyen $\varepsilon>0$ tetszőleges. Mivel $\lim_{j\to\infty}\|A_j-A\|=0$, ezért $\exists j_0: j\geq j_0\Rightarrow \|A_j-A\|\leq \varepsilon$. Válasszuk pl: $j=j_0$. Mivel $(A_{j_0}x_{kk})_{k\in\mathbb{N}}$ konvergens, ezért $\exists k_0: k,l\geq k_0\Rightarrow \|A_{j_0}x_{kk}-A_{j_0}x_{ll}\|\leq \varepsilon$. Tehát $k,l\geq k_0$ esetén $\|Ax_{kk}-Ax_{ll}\|_Y\leq c\varepsilon+\varepsilon+c\varepsilon=(2c+1)\,\varepsilon\Rightarrow (Ax_{kk})$ Cauchy sorozat.

Következmény: kompakt operátorok alteret képeznek L(X,Y)-ban.

Tétel (bizonyítás nélkül):

Legyen X szeparábilis Hilbert tér. Ha $A:X\to X$ kompakt operátor, akkor $\exists A_j:X\to X$ véges rendű operátorok, hogy $\lim_{j\to\infty}\|A_j-A\|_{L(X,X)}=0$.

Összefoglalva: ha X szeparábilis Hilbert tér, akkor az $A:X\to X$ korlátos operátor kompakt \Leftrightarrow előáll véges rendű operátorok sorozatának norma szerinti limeszeként.

Példa:

Legyen $X = L^2(M)$ Hilbert tér, $K : L^2(M) \to L^2(M)$ négyzetesen integrálható magú integráloperátor, $(K\phi)(x) := \int_M \mathcal{K}(x,y) \phi(y) dy$. Ez a K operátor kompakt. Ennek igazolásának alapgondolata: tudjuk, hogy $L^2(M)$ szeparábilis Hilbert tér (végtelen dimenziós). Legyenek ebben teljes ortonormált rend-

szerek
$$\psi_1, \psi_2, \dots$$
 illetve ϕ_1, ϕ_2, \dots Ekkor $\mathcal{K}(x, y) = \sum_{m=1}^{\infty} \left(\sum_{j,k \leq m} c_{jk} \phi_j(x) \psi_k(y) \right),$

$$\mathcal{K}_N(x, y) = \sum_{m=1}^{N} \sum_{j,k \leq m} c_{jk} \phi_j(x) \psi_k(y), \lim_{N \to \infty} \|\mathcal{K}_N - \mathcal{K}\|_{L^2(M \times M)} = 0. \quad \mathcal{K}_N \text{-nek véges}$$
rendű operátorok felelnek meg. $\|K_N - K\|_{L(L^2(M), L^2(M))} \to 0$, ha $N \to \infty$.

3.2.2. Másodfajú egyenlet kompakt operátorokra

Legyen X szeparábilis Hilbert tér, és benne egy $A: X \to X$ kompakt operátor. Tekintsük a $(\lambda I - A) f = b$ másodfajú egyenletet, melyben $\lambda \neq 0$ rögzített. Tudjuk, hogy A kompakt operátor tetszőleges előírt pontossággal megközelíthatő egy B véges rendű operátorral. $\exists A_0: X \to X$ véges rendű operátor, hogy $||A - A_0|| < |\lambda|$. $B_0:=A-A_0 \Leftrightarrow A=A_0+B_0$, ahol A_0 véges rendű, és $||B_0|| < |\lambda|$. Tehát a másodfajú egyenlet így írható:

$$[\lambda I - (A_0 + B_0)] f = b \Leftrightarrow (\lambda I - B_0) f = b + A_0 f.$$

 $|\lambda| > ||B_0|| \Rightarrow |\lambda| > B_0$ korlátos operátor spektrálsugara $\Rightarrow \lambda$ reguláris érték B_0 operátorra nézve \Rightarrow a legutóbbi egyenlet ekvivalens:

$$f = (\lambda I - B_0)^{-1} (b + A_0 f) = \underbrace{(\lambda I - B_0)^{-1} b}_{\text{adott}} + (\lambda I - B_0)^{-1} A_0 f.$$

 λ -val beszorozva, átrendezve:

$$\lambda f - \underbrace{\lambda(\lambda I - B_0)^{-1} A_0}_{:=B:=B_\lambda} f = \underbrace{\lambda(\lambda I - B_0)^{-1}}_{:=q}.$$

A bevezetett jelöléssel $(\lambda I - B_{\lambda}) f = g$.

Észrevétel: B_{λ} véges rendű operátor, mert A_0 véges rendű operátor. Legyen $\delta > 0$ rögtített szám, és válasszuk A_0 -t úgy, hogy $||A - A_0|| < \delta$ legyen. Ekkor az előbbi gondolatmenet érvényes $\forall \lambda$ -ra, A_0 nem függ λ -tól, ha $\lambda \geq \delta$ (de δ -tól igen). A_0 véges rendű operátor $\lambda \geq \delta$ esetén, és $A_0 f = \sum\limits_{j=1}^m \langle f, \psi_j \rangle \, \phi_j$ alakban írható. $Bf = B_{\lambda} f = \lambda \, (\lambda I - B_0)^{-1} \sum\limits_{j=1}^m \langle f, \psi_j \rangle \, \phi_j = \sum\limits_{j=1}^m \lambda \, \langle f, \psi_j \rangle \, (\lambda I - B_0)^{-1} \, \phi_j$. A másodfajú egyenlet: $\lambda f - \sum\limits_{j=1}^m \lambda \, \langle f, \psi_j \rangle \, (\lambda I - B_0)^{-1} \, \phi_j = g = g_{\lambda}$.

Tehát kaptuk, hogy $\lambda f - \sum_{j=1}^{m} \lambda \langle f, \psi_j \rangle (\lambda I - B_0)^{-1} \phi_j = g = g_\lambda$. Ez megfelel egy lineáris algebrai egyenletrendszernek: $\lambda \mathcal{I}\xi - \mathcal{B}_\lambda \xi = \beta_\lambda$. Ekkor $\det (\lambda \mathcal{I} - \mathcal{B}_\lambda) = 0$ egyenlet gyökei a sajátértékek. A mátrix (\mathcal{B}_λ) és az operátor (B_λ) sajátértékei azonosak az eredeti operátor (A) sajátértékeivel, és rangjuk is azonos. Belátható, hogy a mátrix elemei a λ változónak holomorf függvényei! Így a determináns is holomorf függvénye λ -nak. Tudjuk, hogy egy holomorf függvény gyökei nem torlódhatnak egy véges pontban, hacsak nem az azonosan 0 függvény. Mivel $\lambda < \|A\|$, ezért csak véges sok gyök van. Tehát tetszőleges

rögzített δ esetén A operátornak véges sok δ -nál nagyobb abszolút értékű sajátértéke van, s ezek véges rangúak.

Tétel:

Ha A kompakt operátor, akkor A-nak legfeljebb megszámlálhatóan végtelen sok sajátértéke van, a 0-tól különböző sajátértékek véges rangúak, s a sajátértékek csak a 0-ban torlódhatnak. (Gondoljunk csak a $\delta := 1/k, k \in \mathbb{N}$ esetre!)

Tétel (biz. nélkül):

minden $\lambda \neq 0,$ ami nem sajátérték, az reguláris érték A (kompakt operátorra) nézve.

Következmény: ha $\lambda \neq 0$ nem sajátérték, $(\lambda I - A) f = b$ másodfajú egyenletnek $\forall b$ -re létezik egyetlen f megoldás, és ez folytonosan függ b-től.

Mi a helyzet, ha λ sajátérték?

Emlékeztető: tetszőleges korlátos lineáris operátor esetén

$$\overline{R_{\lambda I-A}}^{\perp} = S_{\overline{\lambda}}\left(A^{*}\right) \Leftrightarrow \overline{R_{\lambda I-A}} = S_{\overline{\lambda}}\left(A^{*}\right)^{\perp}.$$

Ha $R_{\lambda I-A}$ zárt altér, akkor $R_{\lambda I-A} = \overline{R_{\lambda I-A}} = S_{\overline{\lambda}} (A^*)^{\perp}$.

Tétel:

Ha A kompakt operátor, akkor $\lambda \neq 0$ esetén $R_{\lambda I-A}$ zárt altér.

Bizonyítás:

Látható, hogy $R_{\lambda I-A}$ lineáris altér. Azt kell bizonyítani, hogy $R_{\lambda I-A}$ zárt halmaz. Legyen tetszőleges $\psi_j \in R_{\lambda I-A}$ és $\exists \lim \psi_j = \psi$, ekkor $\psi \in R_{\lambda I-A}$? Mivel $\psi_j \in R_{\lambda I-A} \Rightarrow \exists \phi_j \in X : (\lambda I - A) \phi_j = \psi_j$. Jelöljük:

$$S_{\lambda}(A) := \{ \phi \in X : (\lambda I - A) = 0 \}.$$

Ekkor $S_{\lambda}(A)$ zárt lineáris altér (A folytonos). A Riesz-tétel következtében

$$X := S_{\lambda}(A) \oplus S_{\lambda}(A)^{\perp} \Leftrightarrow \forall x \in X \exists ! x_1, x_2 : x_1 \in S_{\lambda}(A), x_2 \in S_{\lambda}(A)^{\perp},$$

ahol $x = x_1 + x_2$. Ennek megfelelően $X \ni \phi_j = f_j + g_j$, ahol $f_j \in S_{\lambda}(A)$. $g_j \in S_{\lambda}(A)^{\perp}$,

$$\psi_j = (\lambda I - A) \,\phi_j = \underbrace{(\lambda I - A) \,f_j}_{0} + (\lambda I - A) \,g_j \Rightarrow (\lambda I - A) \,g_j = \psi_j.$$

Kis állítás (a bizonyításon belül):: $(g_j)_{j\in\mathbb{N}}$ korlátos sorozat X-ben.

Bizonyítás (a kis állításé):

Indirekt feltesszük, hogy $\exists (g_{jk})_{k \in \mathbb{N}}$ részsorozat, hogy $\lim_{k \to \infty} \|g_{jk}\|_X = \infty$. Legyen $h_{jk} = \frac{g_{jk}}{\|g_{jk}\|_X}$, ekkor $\|h_{jk}\|_X = 1$. $(\lambda I - A) g_{jk} = \psi_{jk}$ egyenletet osztva $\|g_{jk}\|$ -val: $(\lambda I - A) h_{jk} = \frac{\psi_{jk}}{\|g_{jk}\|_X} \to 0_X$, ugyanis ψ_j konvergens \Rightarrow korlátos. $\lim_{k \to \infty} (\lambda h_{jk} - A h_{jk}) = 0_X$. (h_{jk}) korlátos sorozat (mert $\|h_{jk}\| = 1$), A kompakt operátor, ezért $\exists (\tilde{h}_{jk})$ részsorozat, amelyre $(A\tilde{h}_{jk})$ konvergens $\Leftrightarrow (\lambda \tilde{h}_{jk})_{k \in \mathbb{N}}$ is konvergens. $\lambda \neq 0 \Rightarrow (\tilde{h}_{jk})$ konvergens, $(\tilde{h}_{jk})_{k \in \mathbb{N}} \to h_0 \Rightarrow (\lambda I - A) \tilde{h}_{jk} \to 0 \Rightarrow (\lambda I - A) h_0 = 0$. Ebből következik, hogy $h_0 \in S_{\lambda}(A)$. Másrészt $h_{jk} = \frac{g_{jk}}{\|g_{jk}\|}$, $g_{jk} \in S_{\lambda}(A)^{\perp} \Rightarrow h_{jk} \in S_{\lambda}(A)^{\perp} \Rightarrow$ limeszben $h_0 \in S_{\lambda}(A)^{\perp}$. Másrészt $h_0 \in S_{\lambda}(A)$, így $h_0 = 0$, de ez meg nem lehet, mert $\|\tilde{h}_{jk}\| = 1 \Rightarrow \|h_0\| = 1$ kéne lennie.

Tehát $(\lambda I - A) g_j = \psi_j$, $\lim (\psi_j) = \psi$, $\|g_j\|_X$ korlátos. Mivel A kompakt és g_j korlátos $\Rightarrow \exists \tilde{g}_{j_k}$ részsorozat, hogy $A\tilde{g}_{j_k}$ konvergens. ψ_{j_k} is konvergens $\Rightarrow \lambda g_{j_k}$ is konvergens, $\lambda \neq 0 \Rightarrow (g_{j_k})$ konvergens. $g_{j_k} \to g_0$ X-ben, $g_0 \in X$. $(\lambda I - A) g_0 = \psi \Rightarrow \psi \in R_{\lambda I - A}$.

Tétel

(bizonyítás nélkül): legyen $A:X\to X$ kompakt operátor. Ekkor A^* is kompakt. Továbbá $\lambda\neq 0$ az A-nak sajátértéke $\Leftrightarrow \overline{\lambda}$ sajátértéke A^* -nak, és ekkor a rangok egyenlők.

Összefoglalás (Fredholm alternatíva): legyen $A: X \to X$ kompakt operátor, $\lambda \neq 0$ tetszőleges szám s $(\lambda I - A) f = b$ másodfajú egyenlet. Ekkor két eset lehetséges:

- 1. Ha $\lambda \neq 0$ az A-nak nem sajátértéke (legfeljebb megszámlálhatóan végtelen sok, véges rangú, 0-ban torlódó sajátértékek), akkor a másodfajú egyenletnek $\forall b \in X$ esetén $\exists ! f$ megoldása és ez folytonosan függ b-től $((\lambda I A)^{-1}$ folytonos)
- 2. Ha $\lambda \neq 0$ sajátérték, akkor a másodfajú egyenletnek a megoldása nem egyértelmű, a homogén egyenletnek véges sok lineárisan független megoldása van. A megoldás

pontosan létezik, ha $b \perp S_{\overline{\lambda}}(A^*)$ minden elemére. Ez annyi db ortogonalitási feltétel, amennyi a λ sajátérték rangja.

3.2.3. Önadjungált kompakt operátorok

Tétel:

Legyen X szeparábilis Hilbert tér, $A: X \to X$ kompakt és önadjungált operátor, $A \neq 0$. Ekkor $\exists \lambda_1$ sajátérték: $|\lambda_1| = ||A|| = \sup\{|\langle Ax, x \rangle| : ||x||_X = 1\}$.

Megjegyzés:

Ha λ_1 az A operátor olyan sajátértéke, amelyre $|\lambda_1| = ||A||$ és x_1 olyan sajátelem, hogy $||x_1|| = 1$, azaz $Ax_1 = \lambda_1 x_1$, $||x_1|| = 1$, akkor $|\langle Ax_1, x_1 \rangle| = |\langle \lambda_1 x_1, x_1 \rangle| = |\lambda_1 \langle x_1, x_1 \rangle| = |\lambda_1| = ||A|| = \sup\{|\langle Ax, x \rangle : ||x||_X = 1|\}$. Más szóval, az $x \mapsto |\langle Ax, x \rangle|$, ahol ||x|| = 1, ez a függvény felveszi a suprémumot az $x = x_1$ sajátelemen, a maximum (ami most a suprémum is) értéke $= |\lambda_1|$. Fordítva: ha x^* olyan, hogy $||x^*|| = 1$, és arra $|\langle Ax, x \rangle|$ maximális, akkor ez sajátelem és a maximum egyenlő a sajátérték abszolút értékével. Ugyanis $|\langle Ax^*, x^* \rangle| \leq ||Ax^*|| \cdot ||x^*|| \leq ||A|| \cdot ||x^*||^2 = ||A||$, a Cauchy-Schwarz egyenlőtlenségben egyenlőség pontosan akkor áll fenn, amikor $Ax^* ||x^*$, azaz $Ax^* = const \cdot x^*$.

További sajátértékek, sajátelemek keresése.

Legyen $X_1 := \{x \in X : x \perp x_1\}$, ahol $A_1 := A|_{X_1}$, a leszűkítés, és $Ax_1 = \lambda_1 x_1$.

Állítás:

 X_1 invariáns altér, azaz $x \in X_1 \Rightarrow Ax \in X_1$.

Bizonyítás:

Tfh $x \in X_1!$ $\langle Ax, x_1 \rangle = \langle x, Ax_1 \rangle = \langle x, \lambda_1 x_1 \rangle = \lambda_1 \langle x, x_1 \rangle = 0$, tehát $Ax \in X_1$. Az előbbi tételt alkalmazhatjuk az A_1 operátorra X_1 Hilbert térben. Ekkor $\exists \lambda_2$ sajátérték, hogy $|\lambda_2| = ||A_1|| = \sup \{\langle A_1 x, x \rangle : ||x||_X = 1, x \in X_1\}$. A maximum helye x_2 sajátelem helyén van, $\lambda_2 x_2 = Ax_2, x_2 \bot x_1$. Így egymás után megkaphatjuk az A operátor sajátértékeit és sajátelemeit, $|\lambda_1| \ge |\lambda_2| \ge \dots$ Ha A véges rendű, akkor az eljárás véges sok lépés után befejeződik.

Tétel:

Legyenek az A önadjungált operátor sajátértékei $\lambda_1, \lambda_2, \ldots$ és sajátelemei x_1, x_2, \ldots A sajátelemekről feltehető, hogy ortonormált rendszert alkotnak. Ekkor $\forall x \in X$ elemre $Ax = \sum_k \lambda_k \langle x, x_k \rangle x_k$. Az (x_k) ortonormált rendszert kibővítve a $\lambda = 0$ -hoz tartozó sajátelemek ortonormált rendszerével, akkor ezek egy teljes ortonormált rendszert alkotnak.