Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет ИТМО»

Факультет Программной Инженерии и Компьютерной Техники

Домашняя работа № 2
По дискретной математике
Вариант 140
Выполнил:
Петров Вячеслав Маркович РЗ108
Проверил:
Поляков Владимир Иванович

Исходный граф:

V/V	e1	e2	e3	e4	e5	e6	e7	e8	e9	e10	e11	e12
e1	0		20 18		1	1		4	4			5
e2		0				3		5	1		4	5
e3			0		13 13			5		2	3	
e4				0	5	2				5	4	2
e5	1		200 1	5	0			1				
e6	1	3		2		0	1		2	1	4	
e7			25 5		13 13	1	0	1	2	3	1	3
e8	4	5	5		1		1	0	1	4		4
e9	4	1	20 1			2	2	1	0		4	4
e10			2	5		1	3	4		0		
e11		4	3	4	13 13	4	1	8 8	4		0	5
e12	5	5		2			3	4	4		5	0
							1					

Найти кратчайшие пути от начальной вершины e_1 ко всем остальным вершинам Воспользуемся алгоритмом Дейкстры

1. $I(e_1)=0^+;\ I(e_i)=\infty,$ для всех $i\neq 1,\ p=e_1$ Результаты итерации запишем в таблицу

	1
e ₁	0+
e ₂	∞
e ₃	8
e ₄	∞
e ₅	∞
e_6	8
e ₇	∞
e ₈	∞
e ₉	8
e ₁₀	8
e ₁₁	∞
e ₁₂	∞

2. $\Gamma e_1 = \{e_5, e_6, e_8, e_9, e_{12}\}$ - все пометки временные, уточним их:

$$I(e_5) = min[\infty, 0^++1] = 1;$$

 $I(e_6) = min[\infty, 0^++1] = 1;$
 $I(e_8) = min[\infty, 0^++4] = 4;$
 $I(e_9) = min[\infty, 0^++4] = 4;$
 $I(e_{12}) = min[\infty, 0^++5] = 5.$

- 3. $I(e_i^+) = min[I(e_i)] = I(e_5) = 1;$
- 4. Вершина e_5 получает постоянную пометку $I(e_5) = 1^+$, $p = e_5$

	1	2
e_1	0+	
e ₂	8	8
e ₃	_∞	∞

e ₄	∞	∞
e ₅	8	1+
e ₆	∞	1
e ₇	∞	∞
e ₈	∞	4
e ₉	∞	4
e 10	∞	∞
e ₁₁	∞	∞
e ₁₂	∞	5

5. Не все вершины имеют постоянные пометки,

$$\Gamma e_5 = \{e_1, e_4, e_8\}$$

Временные пометки имеют вершины е4, е8 - уточняем их:

$$I(e_4) = min[\infty, 1+5] = 6$$

$$I(e_8) = min[4, 1+1] = 2$$

6.
$$I(e_i^+) = min[I(e_i)] = I(e_6) = 1+;$$

7. Вершина e_6 получает постоянную пометку $I(e_6) = 1^+$, $p = e_6$

	1	2	3
e_1	0+		
e ₂	8	8	8
e ₃	8	∞	∞
e ₄	8	∞	6
e ₅	8	1+	
e ₆	8	1	1+
e ₇	8	8	∞
e ₈	8	4	2
e ₉	8	4	4
e ₁	∞	∞	∞
0			
e ₁	∞	∞	∞
1			
e ₁	∞	5	5
2			

8. Не все вершины имеют постоянные пометки,

$$\Gamma e_6 = \{e_1, e_2, e_4, e_7, e_9, e_{10}, e_{11}\}$$

Временные пометки имеют вершины e_2 , e_4 , e_7 , e_9 , e_{10} , e_{11} - уточняем их:

$$l(e_2) = min[\infty, 1 + 3] = 4$$

$$I(e_4) = min[6, 1 + 2] = 3$$

$$I(e_7) = min[\infty, 1 + 1] = 2$$

$$l(e_9) = min[4, 1 + 2] = 3$$

$$I(e_{10}) = min[\infty, 1 + 1] = 2$$

$$I(e_{11}) = min[\infty, 1 + 4] = 5$$

9.
$$I(e_i^+) = min[I(e_i)] = I(e_7) = 2^+$$

10. Вершина e_7 получает постоянную пометку $I(e_7) = 2^+$, $p = e_7$

	1	2	3	4
e ₁	0			

	+			
e ₂	8	8	8	4
e₃	8	8	8	∞
e ₄	8	8	6	3
e ₅	8	1		
e ₆	8	1	1+	
e ₇	8	8	8	2+
e ₈	8	4	2	2
e ₉	8	4	4	3
e ₁	8	8	8	2
0				
e_1	∞	∞	∞	5
1				
e ₁	8	5	5	5
2				

11. Не все вершины имеют постоянные пометки,

$$\Gamma e_7 = \{e_6, e_8, e_9, e_{10}, e_{11}, e_{12}\}$$

Временные пометки имеют вершины e_8 , e_9 , e_{10} , e_{11} , e_{12} - уточняем их:

$$I(e_8) = min[2, 2 + 1] = 3$$

$$I(e_9) = min[3, 2+ 2] = 3$$

$$I(e_{10}) = min[2, 2+3] = 2$$

$$I(e_{11}) = min[5, 2+1] = 3$$

$$I(e_{12}) = min[5, 2+ 3] = 5$$

12.
$$I(e_i^+) = min[I(e_i)] = I(e_8) = 2$$

13. Вершина e_8 получает постоянную отметку $I(e_8) = 2^+$, $p = e_8$

	1	2	3	4	5
e_1	0+				
e ₂	8	∞	∞	4	4
e ₃	8	∞	8	8	8
e ₄	8	∞	6	3	ო
e ₅	8	1+			
e ₆	8	1	1+		
e ₇	8	∞	∞	2	
e ₈	8	4	2	2	2+
e ₉	8	4	4	3	3
e ₁	8	∞	8	2	2
e ₁	8	∞	∞	5	3
e ₁	8	5	5	5	5

14. Не все вершины имеют постоянные пометки,

$$\Gamma e_8 = \{e_1,\,e_2,\,e_3,\,e_5,\,e_7,\,e_9,\,e_{10},\,e_{12}\}$$

Временные пометки имеют вершины e_2 , e_3 , e_9 , e_{10} , e_{12} – уточняем их:

$$l(e_2) = min[4, 2 + 5] = 4$$

 $l(e_3) = min[\infty, 2 + 5] = 7$
 $l(e_9) = min[3, 2 + 1] = 3$

$$I(e_9) = min[3, 2 + 1] = 3$$

 $I(e_{10}) = min[2, 2 + 4] = 2$

$$I(e_{13}) = min[5, 2+4] = 5$$

$$I(e_{12}) = min[5, 2+4] = 5$$

15.
$$I(e_i^+) = min[I(e_i)] = I(e_{10}) = 2$$

16. Вершина e_{10} получает постоянную отметку $I(e_{10}) = 2^+$, $p = e_{10}$

	1	2	3	4	5	6
e ₁	0 +					
e ₂	8	∞	8	4	4	4
e ₃	8	∞	8	∞	∞	7
e ₄	8	∞	6	3	3	3
e ₅	8	1 +				
e ₆	8	1	1			
e ₇	8	∞	8	2		
e ₈	8	4	2	2	2	
e ₉	8	4	4	3	3	3
e ₁	8	∞	8	2	2	2
e ₁	8	∞	8	5	3	3
e ₁	8	5	5	5	5	5

17. Не все вершины имеют постоянные пометки, $\Gamma e_{10} = \{e_3, e_4, e_6, e_7, e_8\}$

Временные пометки имеют вершины е₃, е₄ - уточняем их:

$$I(e_3) = min[7, 2 + 2] = 4$$

$$I(e_4) = min[3, 2+5] = 3$$

18.
$$I(e_i^+) = min[I(e_i)] = I(e_4) = 3$$

19. Вершина e_4 получает постоянную отметку $I(e_4) = 3^+$, $p = e_4$

	1	2	3	4	5	6	7
e ₁	0 +						
e ₂	8	∞	8	4	4	4	4
e ₃	8	∞	8	8	8	7	4
e ₄	8	8	6	3	3	3	3
e ₅	8	1					
e ₆	8	1	1				
e ₇	8	∞	8	2			

				+			
e ₈	8	4	2	2	2		
e ₉	8	4	4	3	3	3	3
e ₁	8	8	8	2	2	2	
e ₁	8	8	∞	5	3	3	3
e ₁	8	5	5	5	5	5	5

20. Не все вершины имеют постоянные пометки,

$$\Gamma e_4 = \{e_5, e_6, e_{10}, e_{11}, e_{12}\}$$

Временные пометки имеют вершины e_{11} , e_{12} – уточняем их:

$$(e_{11}) = min[3, 3+4] = 3$$

$$(e_{12}) = min[5, 3+2] = 5$$

21.
$$I(e_i^+) = min[I(e_i)] = I(e_9) = 3$$

22. Вершина e_9 получает постоянную отметку $I(e_9) = 3^+$, $p = e_9$

	1	2	3	4	5	6	7	8
e ₁	0 +							
e ₂	8	8	∞	4	4	4	4	4
e ₃	8	8	∞	8	∞	7	4	4
e ₄	8	8	6	3	3	3	3	
e ₅	8	1						
e ₆	8	1	1 +					
e ₇	8	8	∞	2				
e ₈	8	4	2	2	2			
e ₉	8	4	4	3	3	3	3	3
e_1	8	8	∞	2	2	2		
0						+		
e ₁	8	8	∞	5	3	3	3	3
1								
e ₁	8	5	5	5	5	5	5	5

23. Не все вершины имеют постоянные пометки,

$$\Gamma e_9 = \{e_1, e_2, e_6, e_7, e_8, e_{11}, e_{12}\}$$

Временные пометки имеют вершины e_2 , e_{11} , e_{12} – уточняем их:

$$(e_2) = min[4, 3+1] = 4$$

$$(e_{11}) = min[3, 3+4] = 3$$

$$(e_{12}) = min[5, 3+ 4] = 5$$

24.
$$I(e_i^+) = min[I(e_i)] = I(e_{11}) = 3$$

25. Вершина e_{11} получает постоянную отметку $I(e_{11})=3^+$, $p=e_{11}$

	1	2	3	4	5	6	7	8	9
e ₁	0 +								
e ₂	8	8	8	4	4	4	4	4	4
e ₃	8	8	8	8	∞	7	4	4	4
e ₄	8	8	6	3	3	3	3		
e ₅	8	1							
e ₆	8	1	1						
e ₇	8	8	8	2					
e ₈	8	4	2	2	2				
e ₉	8	4	4	3	3	3	3	3	
e ₁	8	8	8	2	2	2			
0						+			
e ₁	8	8	∞	5	3	3	3	3	3
1									+
e ₁	8	5	5	5	5	5	5	5	5
2									

26. Не все вершины имеют постоянные пометки,

$$\Gamma e_{11} = \{e_2, e_3, e_4, e_6, e_7, e_9, e_{12}\}$$

Временные пометки имеет вершина e_2 , e_3 , e_{12} - уточняем её:

$$(e_2) = min[4, 3 + 4] = 4$$

$$(e_3) = min[4, 3+ 3] = 4$$

$$(e_{12}) = min[5, 3+5] = 5$$

27.
$$I(e_i^+) = min[I(e_i)] = I(e_2) = 4$$

28. Вершина e_2 получает постоянную отметку $I(e_2) = 4^+$, $p = e_2$

	1	2	3	4	5	6	7	8	9	1 0
e ₁	0									
e ₂	∞	∞	8	4	4	4	4	4	4	4
e ₃	∞	∞	8	∞	∞	7	4	4	4	4
e ₄	∞	∞	6	3	3	3	3			
e ₅	∞	1								
e ₆	∞	1	1							
e ₇	∞	∞	8	2						
e ₈	∞	4	2	2	2					

e ₉	8	4	4	3	3	3	3	3		
e ₁	8	8	8	2	2	2				
e ₁	8	8	8	5	3	3	3	3	3	
e ₁	8	5	5	5	5	5	5	5	5	5

29. Не все вершины имеют постоянные пометки, $\Gamma e_2 = \{e_6,\,e_8,\,e_9,\,e_{11},\,e_{12}\}$

Временные пометки имеет вершина е₁₂- уточняем её:

$$(e_{12}) = min[5, 4+5] = 5$$

30. $I(e_i^+) = min[I(e_i)] = I(e_3) = 4$

31. Вершина e_3 получает постоянную отметку $I(e_3) = 4^+$, $p = e_3$

	1	2	3	4	5	6	7	8	9	1 0	1 1
e ₁	0 +										
e ₂	8	8	8	4	4	4	4	4	4	4	
e ₃	8	8	8	8	∞	7	4	4	4	4	4
e ₄	8	8	6	3	3	3	3				
e ₅	8	1									
e ₆	8	1	1								
e ₇	8	8	8	2							
e ₈	8	4	2	2	2						
e ₉	8	4	4	3	3	3	3	3			
e ₁	8	8	8	2	2	2					
e ₁	8	8	8	5	3	3	3	3	3		
e ₁	8	5	5	5	5	5	5	5	5	5	5

32. Не все вершины имеют постоянные пометки, $\Gamma e_3 = \{e_8, e_{10}, e_{11}\}$

Все смежные вершины имеют постоянные отметки, уточнение не требуется.

33.
$$I(e_i^+) = min[I(e_i)] = I(e_{12}) = 5$$

34. Вершина e_{12} получает постоянную отметку $I(e_{12})=5^+$, $p=e_{12}$

	1	2	3	4	5	6	7	8	9	1 0	1 1	12
e ₁	0 +											
e ₂	8	8	8	4	4	4	4	4	4	4		
e ₃	8	8	∞	8	∞	7	4	4	4	4	4	
e ₄	8	8	6	3	3	3	3					
e ₅	8	1										
e ₆	8	1	1									
e ₇	8	8	∞	2								
e ₈	8	4	2	2	2							
e ₉	8	4	4	3	3	3	3	3				
e ₁	8	8	∞	2	2	2						
e ₁	8	8	∞	5	3	3	3	3	3			
e ₁	8	5	5	5	5	5	5	5	5	5	5	5 +

Минимальные пути к вершинам равны их постоянным меткам.