Das Eigenwertproblem und die Jordansche Normalform

- Nullstellen von Polynomen
- Eigenwertproblem
- ► Jordansche Normalform

Zwei Matrizen $A,B\in\mathbb{K}^{n\times n}$ heißen *ähnlich*, wenn es eine reguläre Matrix $T\in\mathbb{K}^{n\times n}$ gibt mit

$$A = T^{-1}BT.$$

Zwei Matrizen $A,B\in\mathbb{K}^{n\times n}$ heißen *ähnlich*, wenn es eine reguläre Matrix $T\in\mathbb{K}^{n\times n}$ gibt mit

$$A = T^{-1}BT$$
.

Ähnlichkeit ist eine Äquivalenzrelation auf dem Raum der $(n \times n)$ -Matrizen.

Zwei Matrizen $A,B\in\mathbb{K}^{n\times n}$ heißen *ähnlich*, wenn es eine reguläre Matrix $T\in\mathbb{K}^{n\times n}$ gibt mit

$$A = T^{-1}BT$$
.

Ähnlichkeit ist eine Äquivalenzrelation auf dem Raum der $(n \times n)$ -Matrizen.

Wegen

 $A = E_n A E_n \Rightarrow A$ ist zu sich selber ähnlich.

Zwei Matrizen $A,B\in\mathbb{K}^{n\times n}$ heißen *ähnlich*, wenn es eine reguläre Matrix $T\in\mathbb{K}^{n\times n}$ gibt mit

$$A = T^{-1}BT$$
.

Ähnlichkeit ist eine Äquivalenzrelation auf dem Raum der $(n \times n)$ -Matrizen.

Wegen

$$A = E_n A E_n \Rightarrow A$$
 ist zu sich selber ähnlich.

Wir können oben nach B auflösen,

$$A = T^{-1}BT \Rightarrow B = TAT^{-1}$$

Ist A zu B und B zu C ähnlich, so

$$A = T^{-1}BT, \ B = T'^{-1}CT' \Rightarrow$$

$$A = T^{-1}T'^{-1}CT'T = (T'T)^{-1}C(T'T).$$

Sei

$$p(x) = a_n x^n + \ldots + a_1 x + a_0, \quad a_i \in \mathbb{C}, \ a_n \neq 0$$

ein Polynom vom Grad n.

Sei

$$p(x) = a_n x^n + \ldots + a_1 x + a_0, \quad a_i \in \mathbb{C}, \ a_n \neq 0$$

ein Polynom vom Grad n.

Wir sagen, q besitzt in x_0 eine Nullstelle der Vielfachheit k, wenn es ein Polynom q vom Grade n-k gibt mit

$$p(x) = (x - x_0)^k q(x)$$
 mit $q(x_0) \neq 0$.

Sei

$$p(x) = a_n x^n + \ldots + a_1 x + a_0, \quad a_i \in \mathbb{C}, \ a_n \neq 0$$

ein Polynom vom Grad n.

Wir sagen, q besitzt in x_0 eine Nullstelle der Vielfachheit k, wenn es ein Polynom q vom Grade n-k gibt mit

$$p(x) = (x - x_0)^k q(x)$$
 mit $q(x_0) \neq 0$.

Nach dem *Fundamentalsatz der Algebra* ist die Summe der Vielfachheiten der Nullstellen gerade *n*.

Sei

$$p(x) = a_n x^n + \ldots + a_1 x + a_0, \quad a_i \in \mathbb{C}, \ a_n \neq 0$$

ein Polynom vom Grad n.

Wir sagen, q besitzt in x_0 eine Nullstelle der Vielfachheit k, wenn es ein Polynom q vom Grade n-k gibt mit

$$p(x) = (x - x_0)^k q(x)$$
 mit $q(x_0) \neq 0$.

Nach dem *Fundamentalsatz der Algebra* ist die Summe der Vielfachheiten der Nullstellen gerade *n*.

Im Reellen ist dieser Satz nicht richtig, wie das Polynom

$$p(x) = x^2 + 1$$

beweist, das im Reellen keine Nullstellen besitzt.

ln

$$p(x) = (x - x_0)^k q(x).$$

besitzt q nach dem Fundamentalsatz der Algebra n-k Nullstellen, die wir ausklammern können.

ln

$$p(x) = (x - x_0)^k q(x).$$

besitzt q nach dem Fundamentalsatz der Algebra n-k Nullstellen, die wir ausklammern können.

Daher lässt sich

$$p(x) = a_n x^n + \ldots + a_1 x + a_0, \quad a_i \in \mathbb{C}, \ a_n \neq 0$$

schreiben als

$$p(x) = a_n(x - x_1) \dots (x - x_n).$$

ln

$$p(x) = (x - x_0)^k q(x).$$

besitzt q nach dem Fundamentalsatz der Algebra n-k Nullstellen, die wir ausklammern können.

Daher lässt sich

$$p(x) = a_n x^n + \ldots + a_1 x + a_0, \quad a_i \in \mathbb{C}, \ a_n \neq 0$$

schreiben als

$$p(x) = a_n(x - x_1) \dots (x - x_n).$$

Die x_i dürfen mehrfach vorkommen.

Wir betrachten Eigenwertprobleme nur über dem Körper $\mathbb C$. Wenn eine Matrix reellwertig ist, ist sie auch eine Matrix über $\mathbb C$.

Wir betrachten Eigenwertprobleme nur über dem Körper $\mathbb C$. Wenn eine Matrix reellwertig ist, ist sie auch eine Matrix über $\mathbb C$.

Sei $A \in \mathbb{C}^{n \times n}$. $\lambda \in \mathbb{C}$ heißt *Eigenwert* von A, wenn

$$Ax = \lambda x$$
 für ein $x \in \mathbb{C}^n \setminus \{0\}$.

Wir betrachten Eigenwertprobleme nur über dem Körper $\mathbb C$. Wenn eine Matrix reellwertig ist, ist sie auch eine Matrix über $\mathbb C$.

Sei $A \in \mathbb{C}^{n \times n}$. $\lambda \in \mathbb{C}$ heißt *Eigenwert* von A, wenn

$$Ax = \lambda x$$
 für ein $x \in \mathbb{C}^n \setminus \{0\}$.

x ist dann *Eigenvektor* zu λ .

Wir betrachten Eigenwertprobleme nur über dem Körper $\mathbb C$. Wenn eine Matrix reellwertig ist, ist sie auch eine Matrix über $\mathbb C$.

Sei $A \in \mathbb{C}^{n \times n}$. $\lambda \in \mathbb{C}$ heißt *Eigenwert* von A, wenn

$$Ax = \lambda x$$
 für ein $x \in \mathbb{C}^n \setminus \{0\}$.

x ist dann *Eigenvektor* zu λ .

Insbesondere ist $U = \operatorname{span} \{x\}$ ein *invarianter Raum*, d.h. $AU \subset U$.

Charakteristisches Polynom

 λ ist genau dann Eigenwert, wenn die Matrix $A - \lambda E_n$ singulär ist.

Charakteristisches Polynom

 λ ist genau dann Eigenwert, wenn die Matrix $A - \lambda E_n$ singulär ist.

Das charakteristische Polynom von A

$$\phi(\mu) = \det(A - \mu E_n)$$

besitzt in λ eine Nullstelle.

Algebraische Vielfachheit

Die Größe

$$\sigma(\lambda) = \text{Vielfachheit der Nullstelle } \lambda \text{ in } \phi$$

heißt algebraische Vielfachheit von λ .

Algebraische Vielfachheit

Die Größe

$$\sigma(\lambda) = \text{Vielfachheit der Nullstelle } \lambda \text{ in } \phi$$

heißt algebraische Vielfachheit von λ .

Die Summe der algebraischen Vielfachheiten der Eigenwerte ist n.

Geometrische Vielfachheit

Der Vektorraum

$$L(\lambda) = \{x \in \mathbb{C}^n : Ax = \lambda x\}$$

heißt Eigenraum zu λ .

Geometrische Vielfachheit

Der Vektorraum

$$L(\lambda) = \{x \in \mathbb{C}^n : Ax = \lambda x\}$$

heißt *Eigenraum* zu λ .

$$\rho(\lambda) = \dim L(\lambda)$$

heißt geometrische Vielfachheit von λ .

Geometrische Vielfachheit

Der Vektorraum

$$L(\lambda) = \{x \in \mathbb{C}^n : Ax = \lambda x\}$$

heißt *Eigenraum* zu λ .

$$\rho(\lambda) = \dim L(\lambda)$$

heißt geometrische Vielfachheit von λ .

 $\rho(\lambda)$ ist die Zahl der linear unabhängigen Eigenvektoren zu λ .

Satz (a) Ist $p(\mu)$ ein Polynom und gilt $Ax = \lambda x$ für ein $x \neq 0$, so besitzt p(A) ebenfalls den Eigenvektor x zum Eigenwert $p(\lambda)$.

Satz (a) Ist $p(\mu)$ ein Polynom und gilt $Ax = \lambda x$ für ein $x \neq 0$, so besitzt p(A) ebenfalls den Eigenvektor x zum Eigenwert $p(\lambda)$.

(b) λ ist genau dann Eigenwert von A, wenn $\overline{\lambda}$ Eigenwert von \overline{A} ist.

Satz (a) Ist $p(\mu)$ ein Polynom und gilt $Ax = \lambda x$ für ein $x \neq 0$, so besitzt p(A) ebenfalls den Eigenvektor x zum Eigenwert $p(\lambda)$.

(b) λ ist genau dann Eigenwert von A, wenn $\overline{\lambda}$ Eigenwert von \overline{A} ist. Insbesondere: Ist die Matrix A reellwertig, so ist mit einem komplexen Eigenwert λ von A auch $\overline{\lambda}$ Eigenwert von A.

Satz (a) Ist $p(\mu)$ ein Polynom und gilt $Ax = \lambda x$ für ein $x \neq 0$, so besitzt p(A) ebenfalls den Eigenvektor x zum Eigenwert $p(\lambda)$.

- (b) λ ist genau dann Eigenwert von A, wenn $\overline{\lambda}$ Eigenwert von \overline{A} ist. Insbesondere: Ist die Matrix A reellwertig, so ist mit einem komplexen Eigenwert λ von A auch $\overline{\lambda}$ Eigenwert von A.
- (c) A und A^T besitzen die gleichen Eigenwerte.

- **Satz** (a) Ist $p(\mu)$ ein Polynom und gilt $Ax = \lambda x$ für ein $x \neq 0$, so besitzt p(A) ebenfalls den Eigenvektor x zum Eigenwert $p(\lambda)$.
- (b) λ ist genau dann Eigenwert von A, wenn $\overline{\lambda}$ Eigenwert von \overline{A} ist. Insbesondere: Ist die Matrix A reellwertig, so ist mit einem komplexen Eigenwert λ von A auch $\overline{\lambda}$ Eigenwert von A.
- (c) A und A^T besitzen die gleichen Eigenwerte.
- (d) Die Determinante von A stimmt mit dem Produkt aller Eigenwerte von A überein.

(e) Ähnliche Matrizen besitzen das gleiche charakteristische Polynom, also auch die gleichen Eigenwerte.

(e) Ähnliche Matrizen besitzen das gleiche charakteristische Polynom, also auch die gleichen Eigenwerte.

Wenn

$$B = T^{-1}AT$$

und A besitzt den Eigenwert λ mit Eigenvektor x, so besitzt B den Eigenwert λ mit Eigenvektor $T^{-1}x$.

Beweis (a)

Ist $p(\mu)$ ein Polynom und gilt $Ax = \lambda x$ für ein $x \neq 0$, so besitzt p(A) ebenfalls den Eigenvektor x zum Eigenwert $p(\lambda)$.

Beweis (a)

Ist $p(\mu)$ ein Polynom und gilt $Ax = \lambda x$ für ein $x \neq 0$, so besitzt p(A) ebenfalls den Eigenvektor x zum Eigenwert $p(\lambda)$.

Aus $Ax = \lambda x$ folgt $A^k x = \lambda^k x$ und

$$p(A)x = a_m A^m x + \ldots + a_0 x = p(\lambda)x.$$

Beweis (b)

 λ ist genau dann Eigenwert von A, wenn $\overline{\lambda}$ Eigenwert von \overline{A} ist.

Beweis (b)

 λ ist genau dann Eigenwert von A, wenn $\overline{\lambda}$ Eigenwert von \overline{A} ist.

$$\det(\overline{A} - \overline{\lambda}E_n) = \overline{\det(A - \lambda E_n)}.$$

Beweis (c)

A und A^T besitzen die gleichen Eigenwerte.

Beweis (c)

A und A^T besitzen die gleichen Eigenwerte.

$$\det(A - \lambda E_n) = \det(A - \lambda E_n)^T.$$

Beweis (d)

Die Determinante von A stimmt mit dem Produkt aller Eigenwerte von A überein.

Beweis (d)

Die Determinante von A stimmt mit dem Produkt aller Eigenwerte von A überein.

ln

$$\phi(\mu) = \det(A - \mu E_n) = (-1)^n (\mu - \lambda_1) \dots (\mu - \lambda_n)$$

setze man $\mu = 0$.

Beweis (e)

Ähnliche Matrizen besitzen das gleiche charakteristische Polynom, also auch die gleichen Eigenwerte.

Beweis (e)

Ähnliche Matrizen besitzen das gleiche charakteristische Polynom, also auch die gleichen Eigenwerte.

Mit dem Determinantenmultiplikationssatz folgt

$$\det(B - \lambda E_n) = \det(T^{-1}AT - \lambda I) = \det(T^{-1}(A - \lambda I)T)$$
$$= \det T^{-1}\det(A - \lambda E_n)\det T = \det(A - \lambda I).$$

Beweis (e)

Ähnliche Matrizen besitzen das gleiche charakteristische Polynom, also auch die gleichen Eigenwerte.

Mit dem Determinantenmultiplikationssatz folgt

$$\det(B - \lambda E_n) = \det(T^{-1}AT - \lambda I) = \det(T^{-1}(A - \lambda I)T)$$
$$= \det T^{-1}\det(A - \lambda E_n)\det T = \det(A - \lambda I).$$

Ferner gilt

$$BT^{-1}x = T^{-1}Ax = T^{-1}(\lambda x) = \lambda T^{-1}x.$$

Beispiel Jordan-Kästchen

Das Jordan-Kästchen der Länge ν zum Eigenwert λ ist definiert durch

$$\mathcal{C}_
u(\lambda) = egin{pmatrix} \lambda & 1 & & 0 \ & \ddots & \ddots & \ & & \ddots & 1 \ 0 & & & \lambda \end{pmatrix} \in \mathbb{C}^{
u imes
u}.$$

Beispiel Jordan-Kästchen

Das Jordan-Kästchen der Länge ν zum Eigenwert λ ist definiert durch

$$\mathcal{C}_
u(\lambda) = egin{pmatrix} \lambda & 1 & & 0 \ & \ddots & \ddots & \ & & \ddots & 1 \ 0 & & & \lambda \end{pmatrix} \in \mathbb{C}^{
u imes
u}.$$

Wegen

$$\det(C_{\nu}(\mu) - \lambda E_n) = (\mu - \lambda)^{\nu}$$

ist λ Eigenwert mit $\sigma(\lambda) = \nu$.

Beispiel Jordan-Kästchen

Das Jordan-Kästchen der Länge ν zum Eigenwert λ ist definiert durch

$$\mathcal{C}_
u(\lambda) = egin{pmatrix} \lambda & 1 & & 0 \ & \ddots & \ddots & \ & & \ddots & 1 \ 0 & & & \lambda \end{pmatrix} \in \mathbb{C}^{
u imes
u}.$$

Wegen

$$\det(C_{\nu}(\mu) - \lambda E_n) = (\mu - \lambda)^{\nu}$$

ist λ Eigenwert mit $\sigma(\lambda) = \nu$.

Aber $x = e_1$ ist einziger Eigenvektor von C_{ν} , also $\rho(\lambda) = 1$.

$$\rho(\lambda) \leq \sigma(\lambda)$$

Damit ist gezeigt, dass algebraische und geometrische Vielfachheit nicht übereinstimmen müssen. Es gilt aber

$$\rho(\lambda) \leq \sigma(\lambda)$$
.

9.2 Die Jordansche Normalform

Sei $A\in\mathbb{C}^{n\times n},\ \lambda_1,\ldots,\lambda_k$ seien die Eigenwerte von A mit geometrischen bzw. algebraischen Vielfachheiten

$$\rho(\lambda_i)$$
 und $\sigma(\lambda_i)$.

9.2 Die Jordansche Normalform

Sei $A \in \mathbb{C}^{n \times n}$, $\lambda_1, \ldots, \lambda_k$ seien die Eigenwerte von A mit geometrischen bzw. algebraischen Vielfachheiten

$$\rho(\lambda_i)$$
 und $\sigma(\lambda_i)$.

Zu jedem λ_i gibt es Zahlen $\nu_1^{(i)}, \dots, \nu_{\rho(\lambda_i)}^{(i)}$ mit

$$\sigma(\lambda_i) = \nu_1^{(i)} + \ldots + \nu_{\rho(\lambda_i)}^{(i)}.$$

Die Jordansche Normalform

Es gibt eine reguläre Matrix $T \in \mathbb{C}^{n \times n}$ mit $J = T^{-1}AT$,

Die Jordansche Normalform

Es gibt eine reguläre Matrix $T \in \mathbb{C}^{n \times n}$ mit $J = T^{-1}AT$,

$$J = \begin{pmatrix} C_{\nu_1^{(1)}}(\lambda_1) & & & & \\ & \ddots & & & & 0 \\ & & C_{\nu_{\rho(\lambda_1)}^{(1)}}(\lambda_1) & & & & \\ & & & C_{\nu_1^{(2)}}(\lambda_2) & & & \\ & & & & \ddots & & \\ & & & & & C_{\nu_{\rho(\lambda_k)}^{(k)}}(\lambda_k) \end{pmatrix}$$

J ist bis auf die Reihenfolge der Jordan-Kästchen eindeutig bestimmt.

Diagonalisierbare Matrizen

Eine Matrix heißt diagonalisierbar, wenn für alle Eigenwerte λ_i gilt

$$\rho(\lambda_i) = \sigma(\lambda_i).$$

Diagonalisierbare Matrizen

Eine Matrix heißt diagonalisierbar, wenn für alle Eigenwerte λ_i gilt

$$\rho(\lambda_i) = \sigma(\lambda_i).$$

Wenn man dann mehrfache Eigenwerte auch mehrfach zählt, folgt wegen $\nu_{j}^{(i)}=1,$

$$J = \begin{pmatrix} \lambda_1 & & 0 \\ & \ddots & \\ 0 & & \lambda_n \end{pmatrix}.$$

Diagonalisierbare Matrizen

Eine Matrix heißt diagonalisierbar, wenn für alle Eigenwerte λ_i gilt

$$\rho(\lambda_i) = \sigma(\lambda_i).$$

Wenn man dann mehrfache Eigenwerte auch mehrfach zählt, folgt wegen $\nu_i^{(i)}=1,$

$$J = \begin{pmatrix} \lambda_1 & & 0 \\ & \ddots & \\ 0 & & \lambda_n \end{pmatrix}.$$

Anders ausgedrückt: Im diagonalisierbaren Fall gibt es eine Basis aus Eigenvektoren $\{x_1, \ldots, x_n\}$ und die Matrix T hat die Gestalt

$$T=(x_1|\ldots|x_n).$$

Wir bestimmen die Eigenwerte und Eigenvektoren der Matrix

$$A = \begin{pmatrix} 1 & 2 & 1 \\ 1 & 2 & 2 \\ 0 & 0 & 2 \end{pmatrix}.$$

Wir bestimmen die Eigenwerte und Eigenvektoren der Matrix

$$A = \begin{pmatrix} 1 & 2 & 1 \\ 1 & 2 & 2 \\ 0 & 0 & 2 \end{pmatrix}.$$

Wir berechnen das charakteristische Polynom

$$\begin{aligned} \det(A - \lambda E_3) &= \det \begin{pmatrix} 1 - \lambda & 2 & 1 \\ 1 & 2 - \lambda & 2 \\ 0 & 0 & 2 - \lambda \end{pmatrix} \\ &= (1 - \lambda)(2 - \lambda)^2 - 1 \cdot 2(2 - \lambda) = (2 - \lambda)((1 - \lambda)(2 - \lambda) - 2) \\ &= (2 - \lambda)(2 - 3\lambda + \lambda^2 - 2) = (2 - \lambda)\lambda(\lambda - 3). \end{aligned}$$

Wir bestimmen die Eigenwerte und Eigenvektoren der Matrix

$$A = \begin{pmatrix} 1 & 2 & 1 \\ 1 & 2 & 2 \\ 0 & 0 & 2 \end{pmatrix}.$$

Wir berechnen das charakteristische Polynom

$$\begin{aligned} \det(A - \lambda E_3) &= \det \begin{pmatrix} 1 - \lambda & 2 & 1 \\ 1 & 2 - \lambda & 2 \\ 0 & 0 & 2 - \lambda \end{pmatrix} \\ &= (1 - \lambda)(2 - \lambda)^2 - 1 \cdot 2(2 - \lambda) = (2 - \lambda)((1 - \lambda)(2 - \lambda) - 2) \\ &= (2 - \lambda)(2 - 3\lambda + \lambda^2 - 2) = (2 - \lambda)\lambda(\lambda - 3). \end{aligned}$$

Wir haben also die drei einfachen Eigenwerte $\lambda_1=2,\ \lambda_2=0,\ \lambda_3=3.$

Die Kernvektoren von $A-\lambda_i E_3$ bestimmen wir mit dem Gauß-Algorithmus.

$$A - 2E_3 = \begin{pmatrix} -1 & 2 & 1 \\ 1 & 0 & 2 \\ 0 & 0 & 0 \end{pmatrix} \longrightarrow \begin{pmatrix} -1 & 2 & 1 \\ 0 & 2 & 3 \\ 0 & 0 & 0 \end{pmatrix}.$$

Die Kernvektoren von $A-\lambda_i E_3$ bestimmen wir mit dem Gauß-Algorithmus.

$$A - 2E_3 = \begin{pmatrix} -1 & 2 & 1 \\ 1 & 0 & 2 \\ 0 & 0 & 0 \end{pmatrix} \longrightarrow \begin{pmatrix} -1 & 2 & 1 \\ 0 & 2 & 3 \\ 0 & 0 & 0 \end{pmatrix}.$$

Die ersten beiden Spaltenvektoren spannen das Bild auf.

Die Kernvektoren von $A-\lambda_i E_3$ bestimmen wir mit dem Gauß-Algorithmus.

$$A - 2E_3 = \begin{pmatrix} -1 & 2 & 1 \\ 1 & 0 & 2 \\ 0 & 0 & 0 \end{pmatrix} \longrightarrow \begin{pmatrix} -1 & 2 & 1 \\ 0 & 2 & 3 \\ 0 & 0 & 0 \end{pmatrix}.$$

Die ersten beiden Spaltenvektoren spannen das Bild auf.

Wir setzen daher $x_3=1$ und erhalten aus $(A-2E_3)x=0$ für die anderen Komponenten $x_2=-\frac{3}{2},\ x_1=-2.$

Die Kernvektoren von $A-\lambda_i E_3$ bestimmen wir mit dem Gauß-Algorithmus.

$$A - 2E_3 = \begin{pmatrix} -1 & 2 & 1 \\ 1 & 0 & 2 \\ 0 & 0 & 0 \end{pmatrix} \longrightarrow \begin{pmatrix} -1 & 2 & 1 \\ 0 & 2 & 3 \\ 0 & 0 & 0 \end{pmatrix}.$$

Die ersten beiden Spaltenvektoren spannen das Bild auf.

Wir setzen daher $x_3=1$ und erhalten aus $(A-2E_3)x=0$ für die anderen Komponenten $x_2=-\frac{3}{2},\ x_1=-2.$

Man kann hier noch die Probe machen:

$$Ax = \begin{pmatrix} -4 \\ -3 \\ 2 \end{pmatrix} = 2 \begin{pmatrix} -2 \\ -3/2 \\ 1 \end{pmatrix}.$$

$$A - 0E_3 = \begin{pmatrix} 1 & 2 & 1 \\ 1 & 2 & 2 \\ 0 & 0 & 2 \end{pmatrix} \quad \longrightarrow \quad \begin{pmatrix} 1 & 2 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 2 \end{pmatrix} \quad \longrightarrow \quad \begin{pmatrix} 1 & 2 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}.$$

$$A - 0E_3 = \begin{pmatrix} 1 & 2 & 1 \\ 1 & 2 & 2 \\ 0 & 0 & 2 \end{pmatrix} \quad \longrightarrow \quad \begin{pmatrix} 1 & 2 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 2 \end{pmatrix} \quad \longrightarrow \quad \begin{pmatrix} 1 & 2 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}.$$

Hier spannen die Spalten 1 und 3 das Bild auf.

$$A - 0E_3 = \begin{pmatrix} 1 & 2 & 1 \\ 1 & 2 & 2 \\ 0 & 0 & 2 \end{pmatrix} \quad \longrightarrow \quad \begin{pmatrix} 1 & 2 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 2 \end{pmatrix} \quad \longrightarrow \quad \begin{pmatrix} 1 & 2 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}.$$

Hier spannen die Spalten 1 und 3 das Bild auf.

Wir setzen daher $x_2 = 1$ und erhalten $x_3 = 0$ und $x_1 = -2$.

$$A - 3E_3 = \begin{pmatrix} -2 & 2 & 1 \\ 1 & -1 & 2 \\ 0 & 0 & -1 \end{pmatrix} \longrightarrow \begin{pmatrix} -2 & 2 & 1 \\ 0 & 0 & 5/2 \\ 0 & 0 & -1 \end{pmatrix}$$

$$\longrightarrow \begin{pmatrix} -2 & 2 & 1 \\ 0 & 0 & 5/2 \\ 0 & 0 & 0 \end{pmatrix}.$$

$$A - 3E_3 = \begin{pmatrix} -2 & 2 & 1 \\ 1 & -1 & 2 \\ 0 & 0 & -1 \end{pmatrix} \longrightarrow \begin{pmatrix} -2 & 2 & 1 \\ 0 & 0 & 5/2 \\ 0 & 0 & -1 \end{pmatrix}$$

$$\longrightarrow \begin{pmatrix} -2 & 2 & 1 \\ 0 & 0 & 5/2 \\ 0 & 0 & 0 \end{pmatrix}.$$

Wie zuvor setzen wir $x_2 = 1$ und erhalten $x_3 = 0$, $x_1 = 1$.

Insgesamt erhalten wir eine Basis aus Eigenvektoren

$$T = \begin{pmatrix} -2 & -2 & 1 \\ -3/2 & 1 & 1 \\ 1 & 0 & 0 \end{pmatrix}.$$

Insgesamt erhalten wir eine Basis aus Eigenvektoren

$$T = \begin{pmatrix} -2 & -2 & 1 \\ -3/2 & 1 & 1 \\ 1 & 0 & 0 \end{pmatrix}.$$

Es gilt

$$\begin{pmatrix} 2 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 3 \end{pmatrix} = T^{-1}AT.$$