DIPARTIMENTO DI INFORMATICA E SISTEMISTICA ANTONIO RUBERTI

Least Squares and SLAM Pose-SLAM

Giorgio Grisetti

Part of the material of this course is taken from the Robotics 2 lectures given by G.Grisetti, W.Burgard, C.Stachniss, K.Arras, D. Tipaldi and M.Bennewitz

- Problem described as a graph
 - Every node corresponds to a robot position and to a laser measurement
 - An edge between two nodes represents a data-dependent spatial constraint between the nodes

KUKA Halle 22, courtesy of the P. Pfaff

- Problem described as a graph
 - Every node corresponds to a robot position and to a laser measurement
 - An edge between two nodes represents a data-dependent spatial constraint between the nodes

KUKA Halle 22, courtesy of the P. Pfaff

 Once we have the graph we determine the most likely map by "moving" the nodes

- Once we have the graph we determine the most likely map by "moving" the nodes
- ... like this

- Once we have the graph we determine the most likely map by "moving" the nodes
- ... like this
- Then, we can render a map based on the known poses

Graph Optimization

- In this lecture, we will not address the how to construct the graph but how to retrieve the position of its nodes which is maximally consistent the observations in the edges.
- A general Graph-based SLAM algorithm interleaves the two steps
 - Graph construction
 - Graph optimization
- A consistent map helps in determining the new constraints by reducing the search space.

- It has n nodes $x = x_{1:n}$
 - Each node x_i is a 2D or 3D transformation representing the pose of the robot at time t_i.
- There is a constraint e_{ij} between the node \mathbf{x}_i and the node \mathbf{x}_i if
 - either
 - the robot observed the same part of the environment from both x_i and x_j and,
 - via this common observation it constructs a "virtual measurement" about the position of x_i seen from.
 - Or
 - the positions are subsequent in time and there is an odometry measurement between the two.

- It has \mathbf{n} nodes $\mathbf{x} = \mathbf{x}_{1:n}$
 - Each node x_i is a 2D or 3D transformation representing the pose of the robot at time t_i.
- There is a constraint e_{ij} between the node \mathbf{x}_i and the node \mathbf{x}_i if
 - either
 - the robot observed the same part of the environment from both x_i and x_j and,
 - via this common observation it constructs a "virtual measurement" about the position of x_i seen from.
 - Or
 - the positions are subsequent in time and there is an odometry measurement between the two.

- It has n nodes $x = x_{1:n}$
 - Each node x_i is a 2D or 3D transformation representing the pose of the robot at time t_i.
- There is a constraint e_{ij} between the node \mathbf{x}_i and the node \mathbf{x}_i if
 - either
 - the robot observed the same part of the environment from both x_i and x_i and,
 - via this common observation it constructs a "virtual measurement" about the position of x_j seen from.
 - Or
 - the positions are subsequent in time and there is an odometry measurement between the two.

The edge represents the position of x_j seen from x_i , based on the **observations**

- It has n nodes $x = x_{1:n}$
 - Each node x_i is a 2D or 3D transformation representing the pose of the robot at time t_i.
- There is a constraint e_{ij} between the node \mathbf{x}_i and the node \mathbf{x}_i if
 - either
 - the robot observed the same part of the environment from both x_i and x_i and,
 - via this common observation it constructs a "virtual measurement" about the position of x_i seen from.
 - Or
 - the positions are subsequent in time and there is an odometry measurement between the two.

The edge represents the **odometry** measurement

The Edge Information Matrices

- To account for the different nature of the observations we add to the edge an information matrix Ω_{ij} to encode the uncertainty of the edge.
- The "bigger" (in matrix sense) Ω_{ij} is, the more the edge "matters" in the optimization procedure.

Questions:

- Any idea about the information matrices of the system in case we use scan-matching and odometry?
- What should these matrices look like in an endless corridor in both cases?

Pose Graph

• The input for the optimization procedure is a graph annotated as follows:

Goal:

Find the assignment of poses to the nodes of the graph which minimizes the negative log likelihood of the observations:

$$\hat{\mathbf{x}} = \operatorname{argmin} \sum_{ij} \mathbf{e}_{ij}^T \mathbf{\Omega}_{ij} \mathbf{e}_{ij}$$

SLAM as a Least Square Problem

The error function looks suitable for least squares

$$\hat{\mathbf{x}} = \operatorname{argmin} \sum_{ij} \mathbf{e}_{ij}^T(\mathbf{x}_i, \mathbf{x}_j) \Omega_{ij} \mathbf{e}_{ij}(\mathbf{x}_i, \mathbf{x}_j)$$

$$= \operatorname{argmin} \sum_{k} \mathbf{e}_{k}^T(\mathbf{x}) \Omega_k \mathbf{e}_{k}(\mathbf{x})$$

- We can regard each edge as a measurement, and use what we already now
- Questions:
 - What is the state vector?
 - What is the error function?

SLAM as a Least Square Problem

The error function looks suitable for least squares

$$\hat{\mathbf{x}} = \operatorname{argmin} \sum_{ij} \mathbf{e}_{ij}^T(\mathbf{x}_i, \mathbf{x}_j) \Omega_{ij} \mathbf{e}_{ij}(\mathbf{x}_i, \mathbf{x}_j)$$

$$= \operatorname{argmin} \sum_{k} \mathbf{e}_{k}^T(\mathbf{x}) \Omega_k \mathbf{e}_{k}(\mathbf{x})$$

 We can regard each edge as a measurement, and use what we already now

One block for each node

of the graph

• Questions:

• What is the state vector?

$$\mathbf{x}^T = \begin{pmatrix} \mathbf{x}_1^T & \mathbf{x}_2^T & \cdots & \mathbf{x}_n^T \end{pmatrix}$$

What is the error function?

The Error Function

• The generic error function of a constraint characterized by a mean \mathbf{z}_{ij} and an information matrix $\mathbf{\Omega}_{ij}$ is a vector of the same size as \mathbf{x}_i

$$\mathbf{e}_{ij}(\mathbf{x}_i, \mathbf{x}_j) = \mathsf{t2v}(\mathbf{Z}_{ij}^{-1}(\mathbf{X}_i^{-1} \cdot \mathbf{X}_j))$$

$$\mathsf{measurement} \quad \mathbf{x}_j \text{ in the reference of } \mathbf{x}_i$$

We can write the error as a function of all the state
 x.

$$e_{ij}(\mathbf{x}) = t2v(\mathbf{Z}_{ij}^{-1}(\mathbf{X}_i^{-1} \cdot \mathbf{X}_j))$$

Note that the error function is 0 when

$$\mathbf{Z}_{ij} = (\mathbf{X}_i^{-1} \cdot \mathbf{X}_j)$$

The Overall Procedure (Recap)

To find a minimum

- Define the error function
- Linearize the error function (Taylor)
- Compute its derivative
- Set it to zero
- Solve the linear system
- Iterate this procedure until convergence

Linearizing the Error Function

 We can approximate the error functions around an initial guess x via Taylor expansion

$$\mathbf{J}_{ij} = \frac{\partial \mathbf{e}_{ij}(\mathbf{x})}{\partial \mathbf{x}}$$

$$e_{ij}(x + \Delta x) = e_{ij}(x) + J_{ij}\Delta x$$

The Derivative of the Error Function

Does one error function e_{ij}(x) depend on all state variables?

The Derivative of the Error Function

- Does one error function e_{ij}(x) depend on all state variables?
 - No, only on x_i and x_j
- Is there any consequence on the structure of the Jacobian?

The Derivative of the Error Function

- Does one error function e_{ij}(x) depend on all state variables?
 - No, only on x_i and x_j
- Is there any consequence on the structure of the Jacobian?
 - Yes, it will be non-zero only in the rows corresponding to x_i and x_{i!}

$$\frac{\partial \mathbf{e}_{ij}(\mathbf{x})}{\partial \mathbf{x}} = \left(\mathbf{0} \cdots \frac{\partial \mathbf{e}_{ij}(\mathbf{x}_i)}{\partial \mathbf{x}_i} \cdots \frac{\partial \mathbf{e}_{ij}(\mathbf{x}_j)}{\partial \mathbf{x}_j} \cdots \mathbf{0} \right)$$
$$\mathbf{J}_{ij} = \left(\mathbf{0} \cdots \mathbf{A}_{ij} \cdots \mathbf{B}_{ij} \cdots \mathbf{0} \right)$$

Consequences of the Sparsity

 To apply least squares we need to compute the coefficient vectors and the coefficient matrices:

$$\mathbf{b}^{T} = \sum_{ij} \mathbf{b}_{ij}^{T} = \sum_{ij} \mathbf{e}_{ij}^{T} \mathbf{\Omega}_{ij} \mathbf{J}_{ij}$$

$$\mathbf{H} = \sum_{ij} \mathbf{H}_{ij} = \sum_{ij} \mathbf{J}_{ij}^{T} \mathbf{\Omega} \mathbf{J}_{ij}$$

- The sparse structure of J_{ij} , will result in a sparse structure of the linear system
- This structure will reflect the topology of the graph

Jacobians and Sparsity

• In error function e_{ij} of a constraint depends only on the two parameter blocks x_i and x_j

$$e_{ij}(\mathbf{x}) = e_{ij}(\mathbf{x}_i, \mathbf{x}_j)$$

• Thus the Jacobian will be 0 everywhere but in the columns of \mathbf{x}_i and $\mathbf{x}_{i.}$

$$\mathbf{J}_{ij} \; = \; \left[egin{array}{ccccc} \mathbf{0} & \cdots & \mathbf{0} & rac{\partial \mathbf{e}(\mathbf{x}_i)}{\partial \mathbf{x}_i} & \mathbf{0} & \cdots & \mathbf{0} & rac{\partial \mathbf{e}(\mathbf{x}_j)}{\partial \mathbf{x}_j} & \mathbf{0} & \cdots & \mathbf{0} & rac{\partial \mathbf{e}(\mathbf{x}_j)}{\partial \mathbf{x}_j} & \mathbf{0} & \cdots & \mathbf{0} & rac{\partial \mathbf{e}(\mathbf{x}_j)}{\partial \mathbf{x}_j} & \mathbf{0} & \cdots & \mathbf{0} & \mathbf{0}$$

 This leads to a sparse pattern in the matrix H, that reflects the adjacency matrix of the graph.

$$\mathbf{H}_{ij} = \mathbf{J}_{ij}^T \mathbf{\Omega}_{ij} \mathbf{J}_{ij}$$

Non zero only @ x_i and x_i

Non zero on the main diagonal

$$\mathbf{H}_{ij} = \mathbf{J}_{ij}^T \mathbf{\Omega}_{ij} \mathbf{J}_{ij}$$

Non zero only @ x_i and x_j

Non zero on the main diagonal $@ x_i$ and x_i

$$\mathbf{H} = \sum_{ij} \mathbf{H}_{ij}$$

Consequences of the Sparsity

- An edge of the graph contribute s to the linear system via its coefficient vector b_{ij} and its coefficient matrix H_{ij}.
 - The coefficient vector is:

$$\mathbf{b}_{ij}^{T} = \mathbf{e}_{ij}^{T} \mathbf{\Omega}_{ij} \mathbf{J}_{ij}$$

$$= \mathbf{e}_{ij}^{T} \mathbf{\Omega}_{ij} \left(\mathbf{0} \cdots \mathbf{A}_{ij} \cdots \mathbf{B}_{ij} \cdots \mathbf{0} \right)$$

$$= \left(\mathbf{0} \cdots \mathbf{e}_{ij}^{T} \mathbf{\Omega}_{ij} \mathbf{A}_{ij} \cdots \mathbf{e}_{ij}^{T} \mathbf{\Omega}_{ij} \mathbf{B}_{ij} \cdots \mathbf{0} \right)$$

• It is non-zero only in correspondence of x_i and x_j

Consequences of the Sparsity (cont.)

• The coefficient matrix of an edge is:

$$egin{array}{lll} \mathbf{H}_{ij} &=& \mathbf{J}_{ij}^T \mathbf{\Omega}_{ij} \mathbf{J}_{ij} \ &=& \left(egin{array}{c} dots \ \mathbf{A}_{ij}^T \ dots \ \mathbf{B}_{ij}^T \ dots \end{array}
ight) \mathbf{\Omega}_{ij} \left(egin{array}{c} \cdots \mathbf{A}_{ij} \cdots \mathbf{B}_{ij} \cdots
ight) \ &=& \left(egin{array}{c} \mathbf{A}_{ij}^T \mathbf{\Omega}_{ij} \mathbf{A}_{ij} & \mathbf{A}_{ij}^T \mathbf{\Omega}_{ij} \mathbf{B}_{ij} \ &=& \mathbf{B}_{ij}^T \mathbf{\Omega}_{ij} \mathbf{A}_{ij} & \mathbf{B}_{ij}^T \mathbf{\Omega}_{ij} \mathbf{B}_{ij} \end{array}
ight) \end{array}$$

Is non zero only in the blocks i,j.

Consequences of the Sparsity (cont.)

- An edge between x_i and x_j in the graph contributes only
 - to the ith and the jth blocks of the coefficient vector,
 - to the blocks ii, jj, ij and ji of the coefficient matrix.
- The resulting system is sparse, and can be computed by iteratively "accumulating" the contribution of each edge
- Efficient solvers can be used
 - Sparse Cholesky decomposition with COLAMD
 - Conjugate Gradients
 - ... many others

The Linear System

Vector of the states increments:

$$\mathbf{\Delta}\mathbf{x}^T = (\mathbf{\Delta}\mathbf{x}_1^T \ \mathbf{\Delta}\mathbf{x}_2^T \ \cdots \ \mathbf{\Delta}\mathbf{x}_n^T)$$

Coefficient vector:

$$\mathbf{b}^T = \begin{pmatrix} \bar{\mathbf{b}}_1^T & \bar{\mathbf{b}}_2^T & \cdots & \bar{\mathbf{b}}_n^T \end{pmatrix}$$

System Matrix:

$$\mathbf{H} = \begin{pmatrix} \bar{\mathbf{H}}^{11} & \bar{\mathbf{H}}^{12} & \cdots & \bar{\mathbf{H}}^{1n} \\ \bar{\mathbf{H}}^{21} & \bar{\mathbf{H}}^{22} & \cdots & \bar{\mathbf{H}}^{2n} \\ \vdots & \ddots & & \vdots \\ \bar{\mathbf{H}}^{n1} & \bar{\mathbf{H}}^{n2} & \cdots & \bar{\mathbf{H}}^{nn} \end{pmatrix}$$

The linear system is a block system with n
blocks, one for each node of the graph.

Building the Linear System

- x is the current linearization point
- Initialization

$$b = 0 \qquad H = 0$$

- For each constraint
 - Compute the error

$$\mathbf{e}_{ij} = \mathsf{t2v}(\mathbf{Z}_{ij}^{-1}(\mathbf{X}_i^{-1} \cdot \mathbf{X}_j))$$

Compute the blocks of the Jacobian:

$$\mathbf{A}_{ij} = \frac{\partial \mathbf{e}(\mathbf{x}_i, \mathbf{x}_j)}{\partial \mathbf{x}_i}$$
 $\mathbf{B}_{ij} = \frac{\partial \mathbf{e}(\mathbf{x}_i, \mathbf{x}_j)}{\partial \mathbf{x}_j}$

• Update the coefficient vector:

$$\bar{\mathbf{b}}_{i}^{T} + = \mathbf{e}_{ij}^{T} \mathbf{\Omega}_{ij} \mathbf{A}_{ij} \qquad \bar{\mathbf{b}}_{j}^{T} + = \mathbf{e}_{ij}^{T} \mathbf{\Omega}_{ij} \mathbf{B}_{ij}$$

Update the system matrix:

$$\bar{\mathbf{H}}^{ii} + = \mathbf{A}_{ij}^T \mathbf{\Omega}_{ij} \mathbf{A}_{ij} \qquad \bar{\mathbf{H}}^{ij} + = \mathbf{A}_{ij}^T \mathbf{\Omega}_{ij} \mathbf{B}_{ij}$$

$$\bar{\mathbf{H}}^{ji} + = \mathbf{B}_{ij}^T \mathbf{\Omega}_{ij} \mathbf{A}_{ij} \qquad \bar{\mathbf{H}}^{jj} + = \mathbf{B}_{ij}^T \mathbf{\Omega}_{ij} \mathbf{B}_{ij}$$

Algorithm

- x: the initial guess
- While (! converged)
 - <H,b> = buildLinearSystem(x);
 - Δx = solveSparse($H \Delta x = -b$);
 - $\mathbf{x} \times \mathbf{x} = \Delta x$

Exercise(s)

Consider a 2D graph, where each pose x_i is parameterized as

$$\mathbf{x}_i^T = (x_i \ y_i \ \theta_i)$$

Consider the error function

$$\mathbf{e}_{ij} = \mathsf{t2v}(\mathbf{Z}_{ij}^{-1}(\mathbf{X}_i^{-1} \cdot \mathbf{X}_j))$$

Compute the blocks of the Jacobian J

$$\mathbf{A}_{ij} = \frac{\partial \mathbf{e}(\mathbf{x}_i, \mathbf{x}_j)}{\partial \mathbf{x}_i}$$
 $\mathbf{B}_{ij} = \frac{\partial \mathbf{e}(\mathbf{x}_i, \mathbf{x}_j)}{\partial \mathbf{x}_j}$

 Hint: write the error function by using rotation matrices and translation vectors

$$\mathbf{e}_{ij}(\mathbf{x}_i, \mathbf{x}_j) = \mathbf{Z}_{ij}^{-1} \begin{pmatrix} \mathbf{R}_i^T(\mathbf{t}_j - \mathbf{t}_i) \\ \theta_j - \theta_i \end{pmatrix}$$

Conclusions

- A part of the SLAM problem can be effectively solved with least square optimization.
- The algorithm described in this lecture has been entirely implemented in octave. Get the package from the web-page of the course.
- Play with the example, and figure out the relation between
 - the connectivity of the graph and
 - the structure of the matrix **H**.