23	
L15	Improper Integrals.
87.8	
	Consider the shaded region that extends to infinity in one direction.
	1 infinity in one direction.
	Q. Is the area of the
	Q. Is the area of the shaded region infinite?
0	A. NO!
	Here's why:
	Consider a sub-region :
	It's area is:
	A(t)= Styles
	r 17t 11
127	$= \begin{bmatrix} -1 \end{bmatrix}^{t} + \begin{bmatrix} 1 \\ x \end{bmatrix}_{a} = a - t$
	By Sending + 7 2 , the Sub-region becomes the
	original region , whose area ?
	By Sending t + 20, the sub-region becomes the original region, whose area is therefore:
N	\circ , \uparrow \uparrow
	limi A(t) = limi (a-t)
	= - a - lin =
	E-10
	$=\frac{1}{\alpha}<\infty$

 $\int_{0}^{\infty} f(x)dx := \lim_{t \to \infty} \int_{0}^{\infty} f(x)dx.$ · LHS is called an improper integral.

· If RHS exists, then improper integral is called cornorgent; otherwise it is divergent. EX Is, S = dx convergent or divergent? Sol ling 5 dx = linglet] = linglet = 00. = Sidx is divergent. Comparing the first and second examples we see that $1/x^2$ goes to zero fast enough as $x \to \infty$ that the growth of the sub-region's area arrests. EX Evaluate 5 xe dx Sol Sxe xdx := lim Sxe xdx Evaluate the second integral by parts: u= x ; dv = exdx du=dx; v= ex

Thus: lin Jxedx = -1 Evaluate Sxe-x2 dx. SN° $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} -x^2 dx = \int_{-\infty}^{\infty} -x^2 dx + \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} -x^2 dx$ $\int xe^{-x^2} dx = \int e^{-x^2} dx = \int e^{-x^2} dx$ $= -\frac{1}{2}e^{-u} = -\frac{1}{2}e^{-x^2}$ $\int_{xe}^{\infty} \frac{1}{x^2} dx = \left[-\frac{1}{2}e^{-x}\right]_{x}^{\infty} = \left[-\frac{1}{2}-\frac{1}{2}e^{-x}\right]$ $\Rightarrow \lim_{x \to \infty} \int_{x}^{0} e^{-x} dx = -\frac{1}{2} = \int_{-\infty}^{0} x e^{-x} dx$ $\int xe^{-x}dx = \left[\frac{1}{2}e^{-x}\right]_{0}^{t} = \left[\frac{1}{2}e^{-t}\right]_{0}^{t} = \left[\frac{1}{2}e^{-t}\right]_{0}^{t}$ lim Sxe dx = \frac{1}{2} = Sxe dx

Thus: $\int_{-\infty}^{\infty} e^{-x^2} dx = (-\frac{1}{2}) + (\frac{1}{2}) = 0.$ In hundsight, we would have gotten the answer by observing that the integrans Is Sinxdx convergent or divergent? x Sudu = 242 $\int \frac{\ln x}{x} dx = \frac{1}{2} \left[(\ln x)^2 \right]_1^{\frac{1}{2}} = \frac{1}{2} \left[$ $-y=\ln x.$ =) $\lim_{t\to\infty} (\ln t)^2 = \infty$ I have is divergent.

EX Composte , S - lox dx. SI Evaluate Sternada by parts: v= en dv = frdx $du = \frac{1}{2}dx$ $U = -\frac{1}{2}$ $\int \frac{\ln x}{x^2} dx = \left[-\frac{1}{2} \ln x \right] - \int \left(-\frac{1}{2} \right) \cdot \frac{1}{2} dx$ $= \left[-\frac{\ln x}{x} + \frac{x^{-1}}{x} \right]^{\frac{1}{2}}$ $= \left[-\frac{1}{x}\left(\ln x + 1\right)\right]^{\frac{1}{x}}$ $= \left[-\frac{1}{E}\left(\ln t + 1\right)\right] - \left[-1\right]$ $= -\frac{\ln t}{t} - \frac{1}{t} + 1.$ Now: Int and t both diverge as t > is 8- hre try l'Hôpitals Rule: $\lim_{t\to\infty}\frac{\ln t}{t}=\lim_{t\to\infty}\frac{1}{1}=0.$ Senx dx - lin Senx dx =

Consider. Stax. You might be tempted to unite: $S = \frac{dx}{x} = \frac{1}{2} \ln |x-1| = 0$ BUT THIS IS WRONG! To see why, examine the integrand: We see that the extend to a along
the vertical asymptote asymptote. The vertical asymptotic opens up the possibility that the shaded areas are each infinity. To find out, we must use $\int \frac{2}{x-1} = \lim_{t \to 1^-} \int \frac{dx}{x-1} + \lim_{t \to 1^+} \int \frac{2}{x-1} dx$ (ln/x-11) = ln/t-1

0 => en/t-1/ -> -00 This already implies that or divergent. $\int \frac{dx}{x^2-x^2}$ convergent or divergent? = A(x-2) + B(x+1)1 = B(3) => B= 1/3 $1 = A(-3) \Rightarrow A = -1/3$ vertical asymptote at x = 2Mus:

 $\int \frac{dx}{x-2} = \left[\ln \left| x-2 \right| \right]_{x}^{t} = \ln \left| t-2 \right| - \ln 2$ Thus of dx is divergent. 1+e- dx convergent or But Side diverges (p2). Thus