RHRS calorimeter calibration with TMinuit

Tyler Kutz Zhihong Ye Mike Nycz Tong Su

February 14, 2018

Calibrating with TMinuit

Alternate to matrix approach, use TMinuit to calibrate calorimeter:

- The TMinuit package minimizes an arbitrary function with respect to an array of free parameters par[]
- Define function

$$\chi^2 = \sum_{j}^{events} \left(\sum_{i}^{blocks} \operatorname{par[i]} A_{ij} - p_j \right)^2$$

where

- par[0...47] are the preshower block gains
- par [48...122] are the shower block gains
- A_{ij} is the pedestal-subtracted ADC signal in block i for event j
- p_i is the track momentum for event j
- Use TMinuit to find block gains that minimize χ^2

Runs

Runs used for calibration

• 90838

• 90840

• 90849

• 90850

• 90854

• 90855

• 90856 • 90870

• 90873

• 90874

• 90877

• 90875

• 90876

(tritium) (deuterium)

(carbon foil)

(multifoil)

(hydrogen)

(hydrogen)

(helium)

(helium)

(helium)

(tritium)

(tritium)

(tritium)

(deuterium)

3/12

Good event cuts

Want to select clean high-energy tracks:

```
• T5 trigger
DL.evtypebits == 48 || 112
```

• Single tracks/clusters
R.tr.n == 1
R.vdc.{u1,u2,v1,v2}.nclust == 1

- Large gas Cherenkov signal R.cer.asum c > 5000.
- Positive track momentum R.tr.p > 0.
- Large calorimeter signal
 (R.ps.e + 0.85*R.sh.e) > 1500.
 R.ps.e > 250.
 R.sh.e > 750.

Resulting calorimeter events

Calorimeter distribution with applied cuts

One more cut!

Exclude events where the block with max signal lies on the perimeter

				_		
0	24					
1	25					
2	26	0	15	30	45	60
3	27	1	16	31	46	61
4	28	2	17	32	47	62
5	29					
•	30	3	18	33	48	63
7	31	4	19	34	49	64
	32	5	20	35	50	65
,	33	6	21	36	51	66
10	34					
11	35	7	22	37	52	67
12	36	. 8	23	38	53	68
13	37	9	24	39	54	69
14	38					
15	39	10	25	40	55	70
16	40	11	26	41	56	71
17	41	12	27	42	57	72
18	42					
19	43	13	28	43	58	73
20	44	14	29	44	59	74
21	45					
22	46					
23	47					

- Since all preshower blocks are perimeter blocks, this only applies to blocks 0, 23, 24, and 47
- For the shower calorimeter, this applies to all perimeter blocks
- Cut is not easily applied in ROOT (not included in previous plot)

Preshower good events

Shower good events

E/P results

E/P peak

E/P comparison

E/P peak comparison

