Corso di Algebra per Informatica

Lezione 10: Esercizi

- (1) Studiare le seguenti operazioni binarie, stabilendo per ciascuna di esse se è commutativa, se è associativa e se è dotata di elementi neutri a sinistra, a destra o neutri:
 - $\alpha:(x,y)\in\mathbb{Z}\times\mathbb{Z}\mapsto x+y+1\in\mathbb{Z};$
 - $\beta:(x,y)\in\mathbb{Z}\times\mathbb{Z}\mapsto -xy\in\mathbb{Z};$
 - $\gamma: (x,y) \in \mathbb{Q} \times \mathbb{Q} \mapsto (x+y)/2 \in \mathbb{Q}$;
 - $\delta:(x,y)\in\mathbb{Z}\times\mathbb{Z}\mapsto 2xy\in\mathbb{Z};$
 - ε : $(x, y) \in \mathbb{Q} \times \mathbb{Q} \mapsto 2xy \in \mathbb{Q}$;
 - $\zeta:(x,y)\in\mathbb{N}\times\mathbb{N}\mapsto x10^y\in\mathbb{N};$
 - $\eta: (x,y) \in P(\mathbb{Z}) \times P(\mathbb{Z}) \mapsto x \cup y \cup \{1\} \in P(\mathbb{Z});$
 - $\theta: (x,y) \in \mathbb{N} \times \mathbb{N} \mapsto x(y^x + 3xy^2) + 1 \in \mathbb{N}$.
- (2) Studiare associatività, commutatività ed elementi neutri della struttura ($\mathbb{Q} \setminus \{0\}$, /), dove l'operazione / è la divisione in $\mathbb{Q} \setminus \{0\}$, ovvero $(\forall a, b \in \mathbb{Q} \setminus \{0\})(/(a, b) = a/b)$.
- (3) Trovare un'operazione binaria su \mathbb{Z} per la quale esista un unico elemento neutro sinistro e nessun elemento neutro destro.
- (4) Sia (S, α) una struttura algebrica e sia $\overline{\alpha}$ l'operazione opposta di α . Dimostrare le seguenti:
 - (i) $\alpha = \overline{\alpha}$ se e solo se α è commutativa;
 - (ii) α è l'operazione opposta di $\overline{\alpha}$;
 - (iii) $\bar{\alpha}$ è associativa se e solo se lo è α ;
 - (iv) per ogni elemento $x \in S$, x è neutro a sinistra in (S, α) se e solo se x è neutro a destra in $(S, \overline{\alpha})$;
 - (v) per ogni elemento $x \in S$, x è neutro a destra in (S, α) se e solo se x è neutro a sinistra in $(S, \overline{\alpha})$;
 - (vi) la funzione $\bar{a}: \alpha \in Map(s \times s, s) \mapsto \bar{\alpha} \in Map(s \times s, s)$ è biettiva.