> Thomas Honold

Math 286 Introduction to Differential Equations

Thomas Honold

ZJU-UIUC Institute

Fall Semester 2021

> Thomas Honold

Outline

> Thomas Honold

Today's Lecture: BESSEL's Differential Equation

> Thomas Honold

Definition (BESSEL's Differential Equation)

The 2nd-order linear ODE

$$x^2y'' + xy' + (x^2 - \nu^2)y = 0,$$
 $x > 0,$

with parameter $\nu \geq 0$ is known as Bessel's Differential Equation. For $\nu \in \mathbb{Z}$ solutions are called *cylinder functions of order* ν .

Rewriting Bessel's ODE as

$$y'' + \frac{1}{x}y' + \left(1 - \frac{\nu^2}{x^2}\right)y = 0$$

shows that $x_0 = 0$ is a regular singular point with $p_0 = 1$, $q_0 = -\nu^2$, and that the corresponding indicial equation is

$$r^2 + (p_0 - 1)r + q_0 = r^2 - \nu^2 = (r - \nu)(r + \nu).$$

 \Longrightarrow The exponents at the singularity $x_0=0$ are $r_1=\nu, r_2=-\nu$. This means we are in Case 1 (for $\nu\notin\{0,\frac{1}{2},1,\frac{3}{2},2,\dots\}$, Case 3 (for $\nu=0$), or Case 4 (for $\nu\in\{\frac{1}{2},1,\frac{3}{2},2,\dots\}$, with $N=2\nu$) of the theorem.

Equations Thomas Honold

Math 286

Differential

the fractional power series "Ansatz" $y(x) = \sum_{n=0}^{\infty} a_n x^{n+\nu}$. $\implies L[v] = x^2v'' + xv' + (x^2 - v^2)v =$ $=\sum_{n=0}^{\infty}(n+\nu)(n+\nu-1)a_{n}x^{n+\nu}+\sum_{n=0}^{\infty}(n+\nu)a_{n}x^{n+\nu}$

Part 2 of the theorem guarantees that one solution is obtained by

$$= \sum_{n=0}^{\infty} (n+\nu)(n+\nu-1)a_n x^{n+\nu} + \sum_{n=0}^{\infty} (n+\nu)a_n x^{n+\nu}$$

$$+ \sum_{n=0}^{\infty} a_n x^{n+\nu+2} - \sum_{n=0}^{\infty} \nu^2 a_n x^{n+\nu}$$

$$= x^{\nu} \left(0a_0 + (2\nu+1)a_1 x + \sum_{n=0}^{\infty} (n(n+2\nu))a_n + a_{n-2} \right) x^n \right),$$

since
$$(n+\nu)(n+\nu-1)+(n+\nu)-\nu^2=(n+\nu)^2-\nu^2=n(n+2\nu)$$
.
 $L[y]=0$ implies $a_1=0$ (since $2\nu+1$ is ≥ 1 and hence nonzero)

and

$$a_n = -\frac{a_{n-2}}{n(n+2y)}$$
 for $n \ge 2$.

$$n(n+2\nu)$$
 $\implies a_{2m+1}=0,$
 $a_{2m}=-rac{a_{2(m-1)}}{4m(m+\nu)}=\cdots=rac{(-1)^m}{m!\,4^m(\nu+1)(\nu+2)\cdots(\nu+m)}\,a_0.$

Differential Equations Thomas Honold

Math 286

 $J_{\nu}(x) = x^{\nu} \sum_{m=0}^{\infty} \frac{(-1)^m}{m! \, 2^{2m+\nu} \nu! (\nu+1) (\nu+2) \cdots (\nu+m)} \, x^{2m}$

Normalizing by $a_0 = 1$ gives the solution

$$y_1(x) = x^{\nu} \sum_{m=0}^{\infty} \frac{(-1)^m}{m! \ 2^{2m} (\nu+1) (\nu+2) \cdots (\nu+m)} x^{2m}$$
 on $(0,\infty)$.
For $\nu \in \mathbb{N}_0$ a different normalization, which gives the coefficients a slightly simpler form, is $a_0 = \frac{1}{2^{\nu} \nu l}$. The corresponding solution is

 $= \sum_{m=0}^{\infty} \frac{(-1)^m}{m!(m+\nu)!} \left(\frac{x}{2}\right)^{\nu+2m}.$

This makes also sense for non-integral ν , provided we interpret $(m+\nu)!$ as $\Gamma(m+\nu+1)$ (which is true for $\nu\in\mathbb{N}_0$). In Exercise H62 of HW10 it is shown that $1/\Gamma$ can be continuously extended to \mathbb{R} . $\Longrightarrow 1/\Gamma(m+\nu+1)$ is defined for all $m \in \mathbb{N}_0$ and $\nu \in \mathbb{R}$.

Definition

For $\nu \in \mathbb{R}$, the function

 $J_{\nu}(x) = \sum_{n=0}^{\infty} \frac{(-1)^{nn}}{m! \, \Gamma(m+\nu+1)} \left(\frac{x}{2}\right)^{\nu+2m}, \quad x \in (0,\infty),$

is called Bessel function of order ν .

Thomas

Honold

Figure: Bessel functions of orders $\nu=-2,-\frac{3}{2},-1,-\frac{1}{2},0,\frac{1}{2},1,\frac{3}{2},2$ with domain $(0,\infty)$

Differential Equations Thomas Honold

Math 286

For the analysis of the different cases of Bessel's Differential Equation (depending on ν) we switch back to the convention $\nu \geq 0$ adopted earlier. Though it is not needed for most cases, we first determine the

rational functions $a_n(r)$ arising from the condition $L[\phi] = L\left[\sum_{n=0}^{\infty} a_n(r)x^{r+n}\right] = F(r)x^r.$ Since p(x) = 1/x, $q(x) = 1 - \nu^2/x^2$, all coefficients p_i , q_i are zero except for $p_0 = 1$, $q_0 = -\nu^2$ and $q_2 = 1$. This gives

except for
$$p_0 = 1$$
, $q_0 = -\nu^2$ and $q_2 = 1$. This gives
$$L[\phi] = \sum_{n=0}^{\infty} \left(F(r+n)a_n(r) + \sum_{k=0}^{n-1} [(r+k)p_{n-k} + q_{n-k}] a_k(r) \right) x^{r+n}$$
$$= F(r)a_0(r)x^r + F(r+1)a_1(r)x^{r+1} + \sum_{n=0}^{\infty} [F(r+n)a_n(r) + a_{n-2}(r)] x^{r+n}$$

$$\implies a_0(r) = 1, \ a_1(r) = 0, \ a_n(r) = -\frac{a_{n-2}(r)}{F(r+n)} = -\frac{a_{n-2}(r)}{(r+n-\nu)(r+n+\nu)}$$

 $\implies a_{2m+1}(r) = 0, \quad a_{2m}(r) = \frac{(-1)^{n}}{\prod_{i=1}^{m} [(r+2i-\nu)(r+2i+\nu)]}.$

$$= F(r)a_0(r)x^r + F(r+1)a_1(r)x^{r+1} + \sum_{n=2}^{\infty} [F(r+n)a_n(r) + a_{n-2}(r)]x$$

$$\implies a_0(r) = 1 \quad a_1(r) = 0 \quad a_2(r) = -\frac{a_{n-2}(r)}{2} = -\frac{a_{n-2}(r)}{2}$$

(Check that for $r = \nu$ this reduces to the previous formula

 $a_{2m} = a_{2m}(\nu) = \frac{(-1)^m}{2^{2m}m!(\nu+1)!(\nu+2)...(\nu+m)}.$

$$= F(r)a_0(r)x^r + F(r+1)a_1(r)x^{r+1} + \sum_{n=2}^{\infty} [F(r+n)a_n(r) + a_{n-2}(r)]$$

Math 286 Differential Equations

> Thomas Honold

The case $\nu \notin \mathbb{Z}$

In this case we claim that there exists a fundamental system of solutions of the form

$$y_1(x) = x^{\nu} \sum_{n=0}^{\infty} a_n(\nu) x^n, \quad y_2(x) = x^{-\nu} \sum_{n=0}^{\infty} a_n(-\nu) x^n$$

with $a_0(\nu) = a_0(-\nu) = 1$.

We have already computed $y_1(x)$ and observed that $J_{\nu}(x)$ is a constant multiple of $y_1(x)$.

For $r = -\nu$ we have $a_{2m+1}(-\nu) = 0$,

$$a_{2m}(-\nu) = \frac{(-1)^m}{2 \cdot 4 \cdots 2m(2 - 2\nu)(4 - 2\nu) \cdots (2m - 2\nu)}$$
$$= \frac{(-1)^m}{2^{2m} m! (1 - \nu)(2 - \nu) \cdots (m - \nu)},$$

which is defined for all m, since $\nu \notin \mathbb{Z}$. Since $F(-\nu) = 0$, the function $y_2(x)$ defined in this way must then satisfy $L[y_2] = 0$. Moreover, y_1 and y_2 are linearly independent since $y_1(x) \simeq x^{\nu}$, $y_2(x) \simeq x^{-\nu}$ for $x \downarrow 0$.

> Thomas Honold

The case $\nu \notin \mathbb{Z}$ cont'd

Multiplication of $y_2(x)$ with $\frac{2^{\nu}}{\Gamma(1-\nu)}$ yields $J_{-\nu}(x)$ (use the functional equation $\Gamma(x+1)=x\,\Gamma(x)$ repeatedly) and shows that in this case the two Bessel functions $J_{\nu},\,J_{-\nu}$ form a fundamental system of solutions.

Remark

For $\nu \in \left\{\frac{1}{2}, \frac{3}{2}, \frac{5}{2}, \dots\right\}$ the number $N = r_1 - r_2 = 2\nu$ is a nonzero integer and Case 4 of our "big theorem" (Case 3 in [BDM17], Th. 5.6.1) applies. Thus it is rather surprising that there is such a simple formula for $y_2(x)$ (the same as in Case 1 of the theorem). *Explanation:* Since $N = 2\nu$ is odd in this case, we have $a_N(r) = 0$ and hence $a = \lim_{r \to r_2} (r - r_2) a_N(r) = 0$. Thus the formula for $y_2(x)$ in Case 4 of the theorem contains no logarithmic term. Moreover, all functions $a_n(r)$ are analytic at $r_2 = -\nu$ and hence

$$\alpha'_{n}(r) = \frac{\mathrm{d}}{\mathrm{d}r} [(r - r_{2})a_{n}(r)] = a_{n}(r) + (r - r_{2})a'_{n}(r),$$

$$\alpha'_{n}(r_{2}) = a_{n}(r_{2}),$$

reducing the formula for $y_2(x)$ to that in Case 1.

> Thomas Honold

The case $\nu = 0$ In this case

$$J_0(x) = \sum_{m=0}^{\infty} \frac{(-1)^m}{2^{2m} (m!)^2} x^{2m} = \sum_{m=0}^{\infty} \frac{(-1)^m}{(m!)^2} \left(\frac{x}{2}\right)^{2m}$$

is a solution.

 $J_0(x)$ is defined for $x \in \mathbb{R}$, as is easily shown using the ratio test. This is also guaranteed by the theorem, because p(x) = 1/x and q(x) = 1 have no singularity except $x_0 = 0$.)

Note

J₀ solves the IVP

$$xy'' + y' + xy = 0$$
, $y(0) = 1$, $y'(0) = 0$.

> Thomas Honold

According to Case 3 (the case $r_1=r_2$) of our theorem, there exists a 2nd fundamental solution (linearly independent of J_0) of the form

$$y_2(x) = J_0(x) \ln x + \sum_{n=1}^{\infty} b_n x^n, \quad b_n = a'_n(0).$$

For $\nu=0$ the coefficient functions $a_n(r)$ specialize to $a_{2m+1}(r)=0$ and

$$a_{2m}(r) = \frac{(-1)^m}{(r+2)^2(r+4)^2\cdots(r+2m)^2}.$$

It follows that $a'_n(0) = 0$ for odd n, so that the 2nd summand in $y_2(x)$ is an even function of x, just like $J_0(x)$.

For even n we use the fact that the *logarithmic derivative* Id(f) = f'/f (which in the case f > 0 coincides with In(f')) satisfies

$$\frac{(f^ag^b)'}{f^ag^b} = \frac{(af^{a-1}f')g^b + f^a(bg^{b-1}g')}{f^ag^b} = a\frac{f'}{f} + b\frac{g'}{g} \quad \text{for } a,b \in \mathbb{Z}.$$

In particular Id(fg) = Id(f) + Id(g) and $Id(f^a) = a Id(f)$, relations that resemble those of the logarithm.

Math 286

Differential

 $\Rightarrow \frac{a'_{2m}(r)}{a_{2m}(r)} = m \operatorname{Id}(-1) - 2 \operatorname{Id}(r+2) - 2 \operatorname{Id}(r+4) - \dots - 2 \operatorname{Id}(r+2m)$ $= 0 - \frac{2}{r+2} - \frac{2}{r+4} - \dots - \frac{2}{r+2m} \quad \text{for } m \ge 1$ Equations Thomas Honold $\implies \frac{a'_{2m}(0)}{a_{2m}(0)} = -\left(1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{m}\right)$

> The numbers $H_m = 1 + \frac{1}{2} + \frac{1}{3} + \cdots + \frac{1}{m}$ are called *harmonic* numbers, because they form the partial sums of the harmonic series. In all we obtain, using $a_{2m}(0) = \frac{(-1)^m}{2^{2m}(m)^2}$,

$$y_2(x) = J_0(x) \ln x + \sum_{m=1}^{\infty} \frac{(-1)^{m+1} H_m}{2^{2m} (m!)^2} x^{2m}$$

Another choice for the 2nd fundamental solution is

$$\begin{aligned} \mathbf{Y}_{0}(x) &= \frac{2}{\pi} \left(y_{2}(x) + (\gamma - \ln 2) \mathbf{J}_{0}(x) \right) \\ &= \frac{2}{\pi} \left[\left(\ln \frac{x}{2} + \gamma \right) \mathbf{J}_{0}(x) + \sum_{m=1}^{\infty} \frac{(-1)^{m+1} \mathbf{H}_{m}}{2^{2m} (m!)^{2}} x^{2m} \right], \end{aligned}$$

where $\gamma = \lim_{n \to \infty} (H_n - \ln n) \approx 0.577$ is the *Euler-Mascheroni constant*.

Thomas Honold

Definition

 Y_0 is called *Neumann function* of order 0.

Other names are Weber function or Bessel function of the 2nd kind of order 0.

In contrast with J_0 , the function Y_0 is not analytic at x=0 (not even defined there) and satisfies

$$Y_0(x) \simeq \frac{2}{\pi} \ln x \quad \text{for } x \downarrow 0.$$

If you want to learn more about J_0 and Y_0 (as well as about Bessel functions in general and many further so-called *special functions*), look for the *Handbook of Mathematical Functions* edited by M. Abramowitz and I. A. Stegun, the classic reference on this topic.

> Thomas Honold

Figure: The Bessel and Neumann functions of order $\nu=0$ with domain $\mathbb{R}^+.$

Thomas Honold

The case $\nu \in \mathbb{Z}^+$

In this case the Bessel function J_{ν} of order ν provides one solution, valid on the whole of \mathbb{R} . It is characterized as the unique solution that is analytic at $x_0=0$ and has normalization constant $a_0=\frac{1}{2^{\nu}\nu!}$.

$$J_{\nu}(x) = \sum_{m=0}^{\infty} \frac{(-1)^m}{m!(m+\nu)!} \left(\frac{x}{2}\right)^{\nu+2m} \quad \text{for } x \in \mathbb{R}.$$

Observe that $J_{\nu}(0) = J'_{\nu}(0) = \cdots = J^{(\nu-1)}_{\nu}(0) = 0$ and $J^{(\nu)}_{\nu}(0) = \nu! a_0 = \frac{1}{2^{\nu}}$.

A second solution $Y_{\nu}(x)$, linearly independent of $J_{\nu}(x)$, can be obtained in a similar (but increasingly more complicated) way as for $\nu=0$. Since $N=2\nu\in\mathbb{Z}^+$, Case 4 of our "big theorem" (Case 3 in [BDM17], Th. 5.6.1) applies, and there is no simplification this time. The case $\nu=1$ is discussed as part of HW9, Ex. H59.

Remark

The function $J_{-\nu}$ also solves the Bessel ODE on \mathbb{R} , but for $\nu \in \mathbb{Z}^+$ is linearly dependent on J_{ν} ; cf. HW10, Ex. H62 c).

Honold

Figure: Bessel functions of various integral orders $\nu \geq 0$ with domain $\mathbb R$

Thomas Honold

The case $\nu = \frac{1}{2}$

This case is in a way special: The fractional power series "Ansatz" $y(x) = x^{-1/2} \sum_{n=0}^{\infty} a_n x^n$ yields two linearly independent solutions, since a_0 and a_1 can be chosen freely. For this recall that $L\left[\sum_{n=0}^{\infty} a_n x^{n\pm\nu}\right] = x^{\pm\nu} \left(0a_0 + (\pm 2\nu + 1)a_1 x + \cdots\right)$.

For $(a_0, a_1) = (1, 0)$ the recursion $a_n = -\frac{a_{n-2}}{n(n+2\nu)} = -\frac{a_{n-2}}{n(n-1)}$ yields $a_{2m-1} = 0$, $a_{2m} = \frac{(-1)^m}{(2m)!}$, and hence

$$y(x) = \sum_{m=0}^{\infty} \frac{(-1)^m}{(2m)!} x^{2m-1/2} = \frac{\cos x}{\sqrt{x}}.$$

For $(a_0, a_1) = (0, 1)$ the recursion similarly yields $a_{2m} = 0$, $a_{2m+1} = \frac{(-1)^m}{(2m+1)!}$, and hence

$$y(x) = \sum_{m=0}^{\infty} \frac{(-1)^m}{(2m+1)!} x^{2m+1/2} = \frac{\sin x}{\sqrt{x}}.$$

It follows that $\frac{\cos x}{\sqrt{x}}$, $\frac{\sin x}{\sqrt{x}}$ form a fundamental system of solutions of $x^2y'' + xy' + (x^2 - \frac{1}{4})y = 0$, which can also be verified directly; cf. also HW8, Ex. H51.

Honold

The case $\nu = \frac{1}{2}$ cont'd

This case is of course contained in the case $\nu\notin\mathbb{Z}$ considered earlier, which tells us that the Bessel functions $J_{1/2}$ and $J_{-1/2}$ form a fundamental system of solutions. The link is best illustrated by computing $J_{1/2}$ and $J_{-1/2}$ from the general formula for J_{ν} :

$$\begin{split} J_{\frac{1}{2}}(x) &= \sqrt{\frac{x}{2}} \sum_{m=0}^{\infty} \frac{(-1)^m x^{2m}}{m! \, \Gamma(m + \frac{3}{2}) 2^{2m}} \\ &= \sqrt{\frac{x}{2}} \sum_{m=0}^{\infty} \frac{(-1)^m x^{2m}}{m! \, \Gamma(\frac{1}{2}) \frac{3}{2} \frac{5}{2} \cdots \frac{2m+1}{2} 2^{2m}} \\ &= \sqrt{\frac{x}{2}} \sum_{m=0}^{\infty} \frac{2(-1)^m x^{2m}}{(2m+1)! \sqrt{\pi}} = \sqrt{\frac{2}{\pi x}} \sin x, \\ J_{-\frac{1}{2}}(x) &= \sqrt{\frac{2}{x}} \sum_{m=0}^{\infty} \frac{(-1)^m x^{2m}}{m! \, \Gamma(m + \frac{1}{2}) 2^{2m}} = \cdots = \sqrt{\frac{2}{\pi x}} \cos x, \end{split}$$

using $\Gamma(x+1) = x \Gamma(x)$ and $\Gamma(\frac{1}{2}) = \sqrt{\pi}$.

Thus $J_{1/2}$ and $J_{-1/2}$ are just scalar multiples of the fundamental solutions previously determined.

> Thomas Honold

An Application of Bessel Functions

Solutions of the 2-dimensional wave equation

Theorem

Suppose $f: \mathbb{R}^+ \to \mathbb{C}$ is a \mathbb{C}^2 -function, $\nu \in \mathbb{Z}$, $\lambda, c > 0$, $D = \{(x, y, t) \in \mathbb{R}^3; x^2 + y^2 > 0\}$, and $u: D \to \mathbb{C}$ is defined by

$$u(x, y, t) = f(\lambda r)e^{i(\nu\phi \pm \lambda ct)}, \quad x = r\cos\phi, \ y = r\sin\phi.$$

Then u solves the 2-dimensional wave equation,

$$\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} - \frac{1}{c^2} \frac{\partial^2}{\partial t^2}\right) u(x, y, t) = 0 \quad on D,$$

iff f solves the Bessel ODE with parameter ν ,

$$s^2 f''(s) + s f'(s) + (s^2 - \nu^2) f(s) = 0, \qquad s \in \mathbb{R}^+.$$

> Thomas Honold

Notes

- **1** Solutions having the indicated form arise form the separation ansatz $u(x, y, t) = a(r)b(\phi)c(t)$.
- 2 The theorem can be used to determine the so-called normal modes of a vibrating circular membrane of radius R, for which u must also be defined and continuous at (0,0,t), and satisfy the boundary condition

$$u(x, y, t) = 0$$
 if $x^2 + y^2 = R^2$.

This is achieved by choosing f as a scalar multiple of J_{ν} , $\nu=0,1,2,\ldots$, and $\lambda=z_{\nu n}/R$, where $z_{\nu n}$ denotes the n-th positive zero of J_{ν} . (It can be shown that the positive zeros of J_{ν} form an infinite sequence $z_{\nu 1}>z_{\nu 2}>z_{\nu 3}>\cdots$.) See https://commons.wikimedia.org/wiki/File:Vibrating_drum_Bessel_function.gif for an animation.

3 The case $\nu=0$ corresponds to rotation-invariant solutions of the 2-dimensional wave equation. Solutions satisfying the boundary conditions in (2) have the form $u(x,y,t)=J_0(\lambda r)(c_1\mathrm{e}^{\mathrm{i}\lambda ct}+c_2\mathrm{e}^{-\mathrm{i}\lambda ct}), \ \lambda=z_{0n}/R, \ c_1, \ c_2\in\mathbb{C}.$

Thomas Honold

Proof of the theorem.

We use the representation of the Laplace operator in polar coordinates (known from an exercise in Calculus III):

$$\Delta = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial v^2} = \frac{\partial^2}{\partial r^2} + \frac{1}{r} \frac{\partial}{\partial r} + \frac{1}{r^2} \frac{\partial^2}{\partial \phi^2}.$$

We have

$$\Delta u(x, y, t) = e^{i(\nu\phi \pm \lambda ct)} \left(\frac{\partial^2}{\partial r^2} + \frac{1}{r} \frac{\partial}{\partial r} \right) f(\lambda r) + \frac{f(\lambda r)e^{\pm i\lambda ct}}{r^2} \frac{\partial^2 e^{i\nu\phi}}{\partial \phi^2}$$

$$= e^{i(\nu\phi \pm \lambda ct)} \left(\lambda^2 f''(\lambda r) + \frac{\lambda}{r} f'(\lambda r) - \frac{\nu^2}{r^2} f(\lambda r) \right),$$

$$\frac{\partial^2}{\partial t^2} u(x, y, t) = f(\lambda r)e^{i\nu\phi} \frac{\partial^2 e^{\pm i\lambda ct}}{\partial t^2} = -\lambda^2 c^2 f(\lambda r)e^{i(\nu\phi \pm \lambda ct)}.$$

Since $e^{i\nu\phi\pm i\lambda ct}\neq 0$, it follows that u(x,y,t) solves the 2-dimensional wave equation iff

$$\lambda^{2}f''(\lambda r) + \frac{\lambda}{r}f'(\lambda r) - \frac{\nu^{2}}{r^{2}}f(\lambda r) = -\lambda^{2}f(\lambda r).$$

Multiplying this equation by r^2 and setting $s = \lambda r$ gives the Bessel ODE for f(s), as asserted.

> Thomas Honold

Exercise

Determine a fundamental system of solutions for Bessel's ODE with $\nu = \frac{1}{2}$,

$$y'' + \frac{1}{t}y' + \left(1 - \frac{1}{4t^2}\right)y = 0,$$

using the ansatz $z = \sqrt{t} y$. Then compare your result with that of the lecture.

Exercise

Determine the general solution of the following ODE's:

a)
$$(2t+1)y'' + (4t-2)y' - 8y = (6t^2 + t - 3)e^t$$
, $t > -1/2$;

b)
$$t^2(1-t)y'' + 2t(2-t)y' + 2(1+t)y = t^2$$
, $0 < t < 1$.

Hints: The associated homogeneous ODE in a) has a solution of the form $y(t) = e^{\alpha t}$ and that in b) a solution of the form $y(t) = t^{\beta}$ with constants α, β . In both cases a particular solution of the inhomogeneous ODE can be determined by reducing it to a first-order system and using variation of parameters (though this may not be the most economic solution).