Max Wisniewski, Alexander Steen

Tutor: David Müßig

Aufgabe 1

Es seien G eine Menge und $\cdot: G \times G \to G, (g,h) \mapsto g \cdot h$, eine assoziative Verknüpfung mit einem linksneutralem Element $e \in G$ und einem linksneutralem Element $g' \in G$ für jedes $g \in G$.

a) Es seien $g \in G$ und $g' \in G$ ein Element mit $g' \cdot g = e$. Zeigen Sie $g \cdot g' = e$.

Beweis:

Es seien $g, g' \in G$, sodass $g' \cdot g = e$. Es sei $g'' \in G$ ein Linksinverses zu g'. Dann gilt:

$$e = g'' \cdot g' = g'' \cdot (e \cdot g') = g'' \cdot ((g' \cdot g) \cdot g')$$

$$\stackrel{assoz.}{=} (g'' \cdot g') \cdot (g \cdot g') = e \cdot (g \cdot g')$$

$$= g \cdot g'$$

b) Beweisen Sie, dass $g \cdot e = g$ für alle $g \in G$ gilt.

Beweis:

Es seien $g, g' \in G$, sodass $g' \cdot g = e$. Dann gilt:

$$e \cdot g = (g' \cdot g) \cdot g \stackrel{a)}{=} (g \cdot g') \cdot g$$

$$\stackrel{assoz.}{=} g \cdot (g' \cdot g) = g \cdot e$$

Aufgabe 2

Auf \mathbb{R} wird folgende Verknüpfung $\star : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$, mit $(a, b) \mapsto a \cdot b + a + b$ definiert.

a) Zeigen Sie, dass * das Assoziativgesetz erfüllt und es ein neutrales Element gibt.

Beweis:

Sei $a, b, c \in \mathbb{R}$. Dann gilt:

$$a \star (b \star c) = a \star (b \cdot c + b + c)$$

$$= a \cdot (b \cdot c + b + c) + a + (b \cdot c + b + c)$$

$$= a \cdot b \cdot c + a \cdot b + a \cdot c + a + b \cdot c + b + c$$

$$= (a \cdot b + a + b) \cdot c + (a \cdot b + a + b) + c$$

$$= (a \star b) \cdot c + (a \star b) + c = (a \star b) \star c$$

Behauptung: e = 0 ist das neutrale Element bzgl. \star . **Beweis**:

Sei $a \in \mathbb{R}$. Dann gilt:

$$0 \star a = 0 \cdot a + 0 + a = a$$

b) Welche Elemente in \mathbb{R} besitzen bzgl. \star keine Inversen? Geben Sie die kleinste Teilmenge $N \subset \mathbb{R}$ an, für die $(\mathbb{R} \setminus N, \star)$ eine Gruppe ist.

Suche Inverses $b' \in \mathbb{R}$ zu $b \in \mathbb{R}$:

$$b' \star b = 0 \Leftrightarrow b' \cdot b + b' + b = 0$$
$$\Leftrightarrow b' = \frac{-b}{b+1}$$

Also besitzt b=-1 kein Inverses, da $\frac{-b}{b+1}$ für b=-1 nicht existiert. $\Rightarrow N=\{-1\}\Rightarrow (\mathbb{R}\setminus\{-1\},\star)$ ist Gruppe.

Aufgabe 3

- a) Es sei $g \in G$ eine Gruppe, so dass $g^2 = e$ für alle $g \in G$ gilt. Weisen Sie nach, dass G abelsch ist. Geben Sie für jedes $k \geq 1$ eine Gruppe G mit 2k Elementen an, in der $g^2 = e$ für jedes Gruppenelement $g \in G$ gilt.
 - (1) $\forall g \in G : g^2 = e \Rightarrow G$ abelsch.

Beweis:

Sei $a, b \in G$. Dann gilt:

$$a \cdot b = e \cdot a \cdot b = b^{2} \cdot a \cdot b$$

$$= b \cdot (b \cdot a) \cdot b \cdot e = b \cdot (b \cdot a) \cdot b \cdot a^{2}$$

$$= b \cdot (b \cdot a) \cdot (b \cdot a) \cdot a = b \cdot (b \cdot a)^{2} \cdot a$$

$$= b \cdot e \cdot a = b \cdot a$$

(2) Je eine Gruppe G wie oben mit 2^k Elementen.

Für jedes k ist \mathbb{Z}_2^k eine Gruppe, für die das obere gilt und die 2^k Elemente hat. Das es sich um eine Gruppe handelt, wurde in der VL gezeigt. Die Gruppe ist abelsch, da jede Komponente verknüpft mit sich selbst das neutrale Elemente ist (siehe \mathbb{Z}_2 .

b) Es sei G eine endliche abelsche Gruppe. Zeigen Sie, dass

$$\prod_{g \in G} g^2 = e.$$

Reweis.

Sei $\kappa: G \to G, g \mapsto g^{-1}$ eine Funktion, wobei $g^{-1} \in G$ das Inverse zu $g \in G$ beschreibt. Da G Gruppe, besitzt jedes Element ein eindeutiges Inverses $\Rightarrow \kappa$ bijektiv

 $\Rightarrow \kappa(G) = G$. Also gilt:

$$\prod_{g \in G} g^2 = \prod_{g \in G} g \cdot g \stackrel{\text{G abelsch}}{=} \prod_{g \in G} g \prod_{g \in G} g$$

$$\stackrel{\kappa \text{ bij.}}{=} \prod_{g \in G} g \prod_{g \in G} \kappa(g) \stackrel{\text{Def.}}{=} \prod_{g \in G} g \prod_{g \in G} g^{-1}$$

$$\prod_{g \in G} g \cdot g^{-1} = \prod_{g \in G} e = e$$

Aufgabe 4

Es sei G eine endliche Gruppe und $\mathfrak{M} := \{M \subset G \mid M \text{ zyklisch}\}$ die Menge aller zyklischen Teilmengen von G.

a) Zeigen Sie, dass der Durchschnitt zweier zyklischen Teilmengen von G zyklisch ist.

Seien $A, B \in \mathfrak{M}$ zyklische Teilmengen von G. Seien $a, b \in \mathfrak{M}$ Elemente, so dass

$$\langle a \rangle = A$$
 and $\langle b \rangle = B$.

Nun gilt: (*) $A \cap B \neq \emptyset$.

Beweis: Da für eine zyklische Teilmenge $\langle q \rangle$ gilt: $q^n = q$. Damit ist q^{n-1} da neutrale Element, da $e \cdot q = q$. Das neutrale Element ist also in jeder zyklischen Teilmenge enthalten.

Da wir ein Element im Schnitt haben, können wir dieses über a und b bilden. Sei $k=\min\{k|k\geq 0 \ \land \ a^k\in B\}$ Sei nun $x=a^k$ Element dieses Schnittes. Nun zeigen wir:

Lemma 1: x (wie oben konstruiert) ist erzeugendes Element für den Schnitt, d.h. $\langle x \rangle = A \cap B$

Beweis: Da $x \in A \cap B \Rightarrow \exists l \geq 0 : b^l = x$. Wir zeigen nun, dass $\langle x \rangle = A \cap B$ $\subseteq :$

Sei
$$m \ge 0$$
.
 $x^m = (a^k)^m = a^{m \cdot k} \overset{m \cdot k \le 0}{\Rightarrow} x^m \in A$
 $x^m = (b^l)^m = b^{m \cdot l} \overset{m \cdot l \ge 0}{\Rightarrow} x^m \in B$
 $\Rightarrow \forall m \ge 0 : x^m \in A \cap B$

⊇:

Angenommen es existiert ein $y \in A \cap B$, so dass $\forall t \geq 0 : x^t \neq y$. Seien nun $a_y, b_y \geq 0$, so dass $a^{a_y} = y$ und $b^{b_y} = y$. Nun müssten wir zeigen, dass es keine Zerlegung gibt, so dass gilt: $t \cdot k = a_y \wedge t \cdot l = b_y$.

Aus Lemma 1 folgt direkt, dass der Schnitt $A \cap B$ eine zyklische Teilmenge von G ist.

b) Zeichnen Sie die Zykelgraphen von $\mathbb{Z}_n, n \in \mathbb{N}$, der Gruppen aus Aufgabe 3 a) und der Diedergruppe D_6 .

c) Geben Sie eine Gruppe mit dem Zykelgraphen vom Aufgabenblatt an. Die Gruppe $\mathbb{Z}_3 \times \mathbb{Z}_3$ besitzt genau den Zykelgraphen vom Aufgabenblatt. Dabei ist die Zuordnung der Gruppenelemente z.B.:

$$e = (0,0)$$

$$g_1 = (1,1), g_2 = (2,2)$$

$$g_3 = (1,0), g_4 = (2,0)$$

$$g_5 = (0,1), g_6 = (0,2)$$

$$g_6 = (1,2), g_7 = (2,1)$$