Let $H \leq G$ Define relation on G by $a \leq b$ iff $a^{-1} \cdot b \in H$ Similarly we can define the

"right" relation: $a \leq b$ iff $ab^{-1} \in H$

The left relation is reflexive $4 a \in G$ and $a = e \in H$ by ident. propand symmetric

4a,b∈G α~1b €H b~1a €H

by inverse prop

and transitive

4a,b,c €G av,b n b ~ (€) a - b €H n b - c € H

av_c ces a'c = (a'b)(b'c) EH

by closure prop

i. v_l is an equivalence
relation

(the sight relation is also an equiv. relation)

into nonempty, disjoint subsets called equiv. classes of form

Ea = \(\frac{1}{2} \) \(\in G \) \(\alpha \cdots \) \(\in G \) \(\alpha \cdots \) \(\in G \) \(

(for some a EG)

Fact 14 G is an abelian
group 4 H ≤ G, then

the left 4 right cosets for H in G
coincide

Proof

let a EG so aH = 3ah | h E H3

= 2hc | h E H3

= Ha

Examples
Find all left 4 right cosets for
the subgroups

$$(3) \leq \mathbb{Z}_{6}$$
 under abbition $(3,0) \leq (3,0) \leq (3,0$

$$0 + (3) = (3) + 0 = 20,33 = 3 + (3)$$

 $1 + (3) = (3) + 1 = 21,43$
 $2 + (3) = (3) + 2 = 22,53$

 +3
 <3>+0
 <3>+1
 <3>+2

 <3>+0
 <3>+1
 <3>+1
 <3>+1

 <3>+1
 <3>+1
 <3>+2
 <3>+0

 <3>+2
 <3>+2
 <3>+0
 <3>+1

has group structure

{<3>+0, <3>+1, <3>+2} \(\bigg[\bigg]_3, +3 \)