Suites arithmétiques et géométriques

I – Suites arithmétiques

A – Définition et propriétés

- Une suite (u_n) est une suite arithmétique s'il existe un nombre r tel que pour tout entier n, on a : $u_{n+1}=u_n+r$. Le nombre r est appelé **raison** de la suite
- Pour tout entier naturel n, on a : $u_n = u_0 + nr$

B – Variations

Propriété : (u_n) est une suite arithmétique de raison r.

- Si r > 0 alors la suite (u_n) est croissante.
- Si r < 0 alors la suite (u_n) est décroissante.

C – Représentation graphique

Les points de la représentation graphique d'une suite arithmétique sont alignés.

D – Somme de termes consécutifs

n est un entier naturel non nul alors on a

$$1+2+3+\ldots+n=\frac{n(n+1)}{2}$$

II - Suites géométriques

A – définition et propriétés

- Une suite (u_n) est une suite géométrique s'il existe un nombre q tel que pour tout entier n, on a : $u_{n+1}=q\times u_n$. Le nombre q est appelé **raison** de la suite.
- Pour tout entier naturel n, on a : $u_n = u_0 \times q^n$

B – Variations

Pour $u_0 > 0$:

- Si q > 1 alors la suite (u_n) est croissante.
- Si 0 < q < 1 alors la suite (u_n) est décroissante.

Pour $u_0 < 0$:

- Si q > 1 alors la suite (u_n) est décroissante.
- Si 0 < q < 1 alors la suite (u_n) est croissante

C - Représentation graphique

Si q < 0: la suite géométrique n'est ni croissante ni décroissante.

D – Somme de termes consécutifs

n est un entier naturel non nul et q un réel différent de 1 alors :

$$1 + q + q^2 + q^3 + \dots + q^n = \frac{1 - q^{n+1}}{1 - q}$$