初等数论

吴伊涛

2022 年春

课程特点和设置

• 课程特点: 双语教学

• 参考教材: Kenneth H.Rosen著, 夏鸿刚译, 《初等数论及其应用》(第6版)

其它推荐阅读:

• 见习题课文件最后的"Suggest Reading"

教学内容、授课方式

- 1. 数学证明的基本方法: 反证法和数学归纳法(1周)
- 2. 整数理论(进制表示、整除和素数、算术基本定理、素数的分布、算术函数)(4周+1习题课)
- 3. 丢番图方程(组)理论(约3周+1习题课)
- 4. 同余理论(约5周+1习题课)

分数计算

- 1. 平时成绩=签到考勤分(10分)+上课纪律分(30分)+作业分数(20分)+讲题分+期中考试成绩×40%,大于100按100计算。
- 2. 作业分数:第1、3部分结束后各有一次大作业,会用大写字母评定等级。注意:这个等级评定是对你每次作业的评价,和平时成绩中的作业分数无关。具体参见每个作业文件附的说明
- 3. 期中考试成绩: 第2部分结束后有一次期中考试, 满分100分。
- 4. 讲题分:第1、2、3部分结束后有习题课,习题课文件的题目会在 每一部分开始时发给大家,需要大家习题课时上台讲解。每题讲 解正确的话会有讲题分(具体分数已经注明在习题课文件中), 此外,平时上课时也时常会请同学们上台解题,每次也有2分的讲 题分。

- 5. 总评成绩=平时成绩×40%+期末考试卷面成绩×60%。
- 6. 申请免听的同学需要做一下上学期的初等数论期末考试卷,80分以上才可以申请免听。

Proof by Contradiction(反证法)

Example 1: Prove $\sqrt{2}$ is an irrational number.

Proof: Assume not, then $\sqrt{2}$ is an rational number.

Then we can write $\sqrt{2} = \frac{p}{q}$, where p, q both are integers, with $q \neq 0$ and at least one of p, q is odd(Why?).

Now, we have

$$\sqrt{2} = \frac{p}{q} \qquad (*)$$

Squaring both sides of (*), we then get:

$$2q^2 = p^2 \qquad (**)$$

Since the left hand side(LHS for short) of (**) is an even number, thus p^2 is also even, which leads to p is also even(Why?). So $p = 2p_1$ for some integer p_1 .

Now, apply $p = 2p_1$ to (**), we then get:

$$q^2 = 2p_1^2 \qquad (***)$$

The right hand side(RHS for short) of (***) is an even number, thus q^2 is also even, which leads to q is also even. Thus p,q both even, a contradiction to the assumption that at least one of p,q is odd.

Explanations of red sentence.

The 1st red sentence can be deduced from the following fact: Every fractional(rational number) can be written in a form $\frac{a}{b}$ such that at least one of a, b is odd.

Reason: Given a fractional $\frac{x}{y}$, if one of x, y is odd, then nothing to do. If x, y are both even, then we can divide x, y by 2. Repeated this procedure, we get the required form. e.g.

$$\frac{3}{15} = \frac{3}{15}$$
$$\frac{6}{24} = \frac{3}{12}$$
$$\frac{8}{48} = \frac{4}{24} = \frac{2}{12} = \frac{1}{6}$$

Explanations of red sentence.

The 2nd red sentence can be deduced from the following fact: The square of odd is odd, the square of even is even.

square of even:

$$(2k)^2 = 4k^2 = 2(2k^2)$$

square of odd:

$$(2k+1)^2 = 4k^2 + 4k + 1 = 2(2k^2 + 2k) + 1$$

Exercise 1: Prove $\sqrt{3}$ is an irrational number.

Proof: Assume not, then $\sqrt{3}$ is an rational number.

Then we can write $\sqrt{3} = \frac{p}{q}$, where p, q both are integers, with $q \neq 0$ and at least one of p, q is not a multiple of 3(Why?).

Now, we have

$$\sqrt{3} = \frac{p}{q} \qquad (*)$$

Squaring both sides of (*), we then get:

$$3q^2 = p^2 \qquad (**)$$

Since the LHS of (**) is a multiple of 3, thus p^2 is also a multiple of 3, which leads to p is also a multiple of 3(Why?). So $p = 3p_1$ for some integer p_1 .

Now, apply $p = 3p_1$ to (**), we then get:

$$q^2 = 3p_1^2 \qquad (***)$$

The RHS of (***) is a multiple of 3, thus q^2 is also a multiple of 3, which leads to q is also a multiple of 3.

Thus p, q both are multiple of 3, a contradiction to the assumption that at least one of p, q is not a multiple of 3.

Explanations of blue sentence.

The 1st blue sentence can be deduced from the following fact: Every fractional(rational number) can be written in a form $\frac{a}{b}$ such that at least one of a, b is not a multiple of 3.

Reason: Given a fractional $\frac{x}{y}$, if one of x, y is not a multiple of 3, then nothing to do. If x, y are both multiples of 3, then we can divide x, y by 3. Repeated this procedure, we get the required form. e.g.

$$\frac{3}{15} = \frac{1}{5}$$

$$\frac{6}{24} = \frac{2}{8}$$

$$\frac{8}{48} = \frac{8}{48}$$

Explanations of blue sentence.

The 2nd blue sentence can be deduced from the following (stronger) fact: The square of a 3k-type integer is still a 3k-type integer, the square of a 3k+1-type or 3k+2 type integer is a 3k+1 type integer.

square of a 3k-type integer:

$$(3k)^2 = 9k^2 = 3(3k^2)$$

square of a 3k+1-type or 3k+2 type integer:

$$(3k+1)^2 = 9k^2 + 6k + 1 = 3(3k^2 + 2k) + 1$$

$$(3k+2)^2 = 9k^2 + 12k + 4 = 3(3k^2 + 4k + 1) + 1$$

Exercise 2: Prove $\sqrt{8}$ is an irrational number.

Proof: Assume not, then $\sqrt{8}$ is an rational number.

Then we can write $\sqrt{8} = \frac{p}{q}$, where p, q both are integers, with $q \neq 0$ and at least one of p, q is not a multiple of 8(Is this correct?).

Now, we have

$$\sqrt{8} = \frac{p}{q} \qquad (*)$$

Squaring both sides of (*), we then get:

$$8q^2 = p^2 \qquad (**)$$

Since the LHS of (**) is a multiple of 8, thus p^2 is also a multiple of 8, which leads to p is also a multiple of 8(Is this correct?). So $p = 8p_1$ for some integer p_1 .

Now, apply $p = 8p_1$ to (**), we then get:

$$q^2 = 8p_1^2 \qquad (***)$$

The RHS of (***) is a multiple of 8, thus q^2 is also a multiple of 8, which leads to q is also a multiple of 8(Is this correct?).

Thus p, q both are multiple of 8, a contradiction to the assumption that at least one of p, q is not a multiple of 8.

The 1st red sentence is correct from a similar argument as before.

The 2nd red sentence is wrong:

e.g. $m = 8, 4^2 = 16$ is a multiple of 8, but 4 is NOT a multiple of 8!

Thus the above proof of $\sqrt{8}$ is an irrational number is **wrong**.

Note: For general m, x^2 is a multiple of m doesn't imply that x is also a multiple of m!

Question 1

Q: For what m? x^2 is a multiple of m implies that x is also a multiple of m?

A: m is square free, i.e. m is not a multiple of any square except 1. (So 2 is square free, 3 is square free, but 8 is NOT square free since 8 is a multiple of $4 = 2^2$. Similarly, 12 is not square free, 500 is not square free...) Note: $\sqrt{8} = 2\sqrt{2}$, thus $\sqrt{8} = 2\sqrt{2}$ is irrational.

Similarly, one can get $\sqrt{12}=2\sqrt{3},\,\sqrt{500}=10\sqrt{5}$ are irrational...

Question 2

Q: In case it is hard to get the factorization of m, e.g. m = 1000009.

Can we say something about $\sqrt{1000009}$?

Question 3

Q: Let m be a positive integer, prove that \sqrt{m} is irrational if and only if m is not a square.

Notations

 \mathbb{N} : natural numbers

 \mathbb{Z} : integers (\mathbb{Z}^+ : positive integers, \mathbb{Z}^- : negative integers)

 \mathbb{Q} : rational numbers

 \mathbb{R} : real numbers

 \mathbb{C} : complex numbers

Example 2: Prove $\sqrt{2} \in \mathbb{R} \setminus \mathbb{Q}$.

Proof: Assume not, then $\sqrt{2} \in \mathbb{Q}$.

Then we can write $\sqrt{2} = \frac{p}{q}$, where $p, q \in \mathbb{Z}$, with $q \neq 0$ and at least one of p, q is odd.

Now, we have

$$\sqrt{2} = \frac{p}{q} \qquad (*)$$

Squaring both sides of (*), we then get:

$$2q^2 = p^2 \qquad (**)$$

The LHS of (**) is an even number $\Rightarrow p^2$ is even $\Rightarrow p$ is also even $\Rightarrow p = 2p_1$ for some integer p_1 .

Now, apply $p = 2p_1$ to (**), we then get:

$$q^2 = 2p_1^2 \qquad (***)$$

The RHS of (***) is an even number $\Rightarrow q^2$ is also even $\Rightarrow q$ is also even. Thus p,q both even, a contradiction to the assumption that at least one of p,q is odd. Example 3: Prove $\sqrt{2} + \sqrt{3} \in \mathbb{R} \setminus \mathbb{Q}$.

Proof: Assume not, then $\sqrt{2} + \sqrt{3} \in \mathbb{Q}$.

Then we can write $\sqrt{2} + \sqrt{3} = \frac{p}{q}$, where $p, q \in \mathbb{Z}$, with $q \neq 0$. Now, we

have

$$\sqrt{2} + \sqrt{3} = \frac{p}{q} \qquad (*)$$

Squaring both sides of (1), we then get:

$$5 + 2\sqrt{6} = \frac{p^2}{q^2}$$

which equivalents to

$$\sqrt{6} = \frac{p^2 - 5q^2}{2q^2} \qquad (**)$$

Claim: $\sqrt{6} \in \mathbb{R} \setminus \mathbb{Q}$

Assume not, then $\sqrt{6} \in \mathbb{Q}$.

Then we can write $\sqrt{6} = \frac{a}{b}$, where $a, b \in \mathbb{Z}$, with $b \neq 0$ and at least one of a, b is odd.

Now, we have

$$\sqrt{6} = \frac{a}{b} \tag{1}$$

Squaring both sides of (1), we then get:

$$6b^2 = a^2 \qquad (2)$$

The LHS of (2) is an even number $\Rightarrow a^2$ is even $\Rightarrow a$ is also even $\Rightarrow a = 2a_1$ for some integer p_1 .

Now, apply $p = 2p_1$ to (2), we then get:

$$3b^2 = 2a_1^2 (3)$$

The RHS of (3) is an even number $\Rightarrow 3b^2$ is also even $\Rightarrow b^2$ is also even $\Rightarrow b$ is also even. Thus a, b both even, a contradiction to the assumption that at least one of a, b is odd. So, $\sqrt{6} \in \mathbb{R} \setminus \mathbb{Q}$, we get the claim.

Now, the LHS of (**) is irrational, but the RHS of (**) is rational, a contradiction. Thus $\sqrt{2} + \sqrt{3} \in \mathbb{R} \setminus \mathbb{Q}$.

Question 4

*Q: Prove $\sqrt{2} + \sqrt{3} + \sqrt{5} + \sqrt{7} + \sqrt{11} \in \mathbb{R} \setminus \mathbb{Q}$?

${\bf Question}\ 5$

Q: Let m, n be positive integers, prove that $\sqrt{m} + \sqrt{n}$ is irrational if and only if at least one of m, n is not a square.

Math Induction(数学归纳法)

1. 1st math induction(第一数学归纳法).

Aim: Want to prove statement P(n) holds for any positive integer $n \ge n_0$, where n_0 is a fixed integer.

Step 1: Prove $P(n_0)$.(Be careful here!)

Step 2: Assume when $n = k(k \ge n_0)$, P(n) holds.

Step 3: Prove P(k+1).

Example 4: Use induction to prove: for any positive integer n,

$$1^{2} + 2^{2} + \dots + n^{2} = \frac{n(n+1)(2n+1)}{6}$$

Proof:

Denote the equality in the statement as (*).

Use induction on n.

When n = 1, the LHS of (*) = $1^2 = 1$, the RHS of (*) = $\frac{1 \times 2 \times 3}{6} = 1$. The equality (*) holds.

Assume when $n = k(k \ge 1)$, (*) holds, i.e. $1^2 + 2^2 + \dots + k^2 = \frac{k(k+1)(2k+1)}{6}$

When n = k + 1, we need to prove (*) also holds.

The LHS of (*) =
$$1^2 + 2^2 + \dots + k^2 + (k+1)^2 = (1^2 + 2^2 + \dots + k^2) + (k+1)^2 = \frac{k(k+1)(2k+1)}{6} + (k+1)^2 = \frac{k+1}{6}(2k^2 + 7k + 6)$$
 (By induction hypothesis).

The RHS of (*) = $\frac{(k+1)(k+2)(2k+3)}{6}$ = $\frac{k+1}{6}(2k^2+7k+6)$ = The LHS of (*).

So (*) also holds when n = k + 1.

By Math induction, the equality holds for any positive integer n.

Example 5: Use induction to prove: for any integer n greater than 2,

$$n < 2^{n-1}$$
. (i.e. $\forall n \in \mathbb{Z}^{>2}, n < 2^{n-1}$.)

Proof:

Use induction on n.

When n = 3, $3 < 2^{3-1} = 4$, the inequality holds.

Assume when $n = k(k \ge 3)$, $n < 2^{n-1}$.

When n = k + 1, we need to prove $k + 1 < 2^k$.

By induction hypothesis, $k < 2^{k-1}$, thus $k + 1 < 2k < 2 \cdot 2^{k-1} = 2^k$.

So the inequality also holds when n = k + 1. By Math induction, the inequality holds for all integers greater than 2.

Exercise 3: Use induction to prove: for any positive integer $n, n! > 3^{n-2}$.

Proof:

Use induction on n.

When n = 1, $1! = 1 > 3^{1-2} = \frac{1}{3}$, the inequality holds.

When n = 2, $2! = 1 \times 2 = 2 > 3^{2-2} = 1$, the inequality still holds.

Assume when $n = k(k \ge 2)$, $n! > 3^{n-2}$.

When n = k + 1, we need to prove $(k + 1)! > 3^{k+1-2} = 3^{k-1}$.

By induction hypothesis, $k! > 3^{k-2}$. So

$$(k+1)! = k! \cdot (k+1) > 3^{k-2} \cdot (k+1) \ge 3^{k-1}$$

So the inequality also holds when n = k + 1. By Math induction, the inequality holds for all positive integers.

2. 2nd math induction(第二数学归纳法).

Aim: Want to prove statement P(n) holds for any positive integer $n \ge n_0$, where n_0 is a fixed integer.

Step 1: Prove $P(n_0)$.(Be careful here!)

Step 2: Assume when $n \le k(k \ge n_0)$, P(n) holds.

Step 3: Prove P(k+1).

Example 6: Use induction to prove: for any integer n greater than 1, there exist natural numbers x, y, such that n = 2x + 3y.

(i.e.
$$\forall n \in \mathbb{Z}^{>1}$$
, $\exists x, y \in \mathbb{N}$, $s.t.n = 2x + 3y$.)

Proof:

Use induction on n.

When n = 2, $2 = 2 \times 1 + 3 \times 0$, the statement holds.

When n = 3, $3 = 2 \times 0 + 3 \times 1$, the statement also holds. (Why this step?)

Assume when $n \le k(k \ge 3)$, the statement holds, i.e. $\forall 2 \le n \le k(k \ge 3)$, there exist natural numbers x, y (depends on n), such that n = 2x + 3y.

When n = k + 1, we need to find natural numbers x, y, such that k + 1 = 2x + 3y.

By induction hypothesis, there exist natural numbers s, t, such that k - 1 = 2s + 3t, then k + 1 = k - 1 + 2 = 2(s + 1) + 3t, thus the statement also holds when n = k + 1. By Math induction, the statement holds for all positive integer greater than 1.

Example 7: Consider the Fibonacci sequence f_n :

$$1, 1, 2, 3, 5, 8, 13, 21, \cdots$$

(i.e.
$$f_1 = 1, f_2 = 1, f_{n+2} = f_n + f_{n+1} \ (n \ge 1)$$
)

Use induction to prove: for any positive integer n,

$$f_n = \frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2}\right)^n - \frac{1}{\sqrt{5}} \left(\frac{1-\sqrt{5}}{2}\right)^n$$

Proof:

Denote the equality $f_n = \frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2}\right)^n - \frac{1}{\sqrt{5}} \left(\frac{1-\sqrt{5}}{2}\right)^n$ as (*).

Use induction on n.

When
$$n = 1$$
, the LHS of (*) = $f_1 = 1$

the RHS of (*) =
$$\frac{1}{\sqrt{5}}(\frac{1+\sqrt{5}}{2})^1 - \frac{1}{\sqrt{5}}(\frac{1-\sqrt{5}}{2})^1 = 1$$

(*) holds.

When
$$n = 2$$
, the LHS of (*) = $f_2 = 1$

the RHS of (*) =
$$\frac{1}{\sqrt{5}} (\frac{1+\sqrt{5}}{2})^2 - \frac{1}{\sqrt{5}} (\frac{1-\sqrt{5}}{2})^2 = \frac{1}{\sqrt{5}} (\frac{6+2\sqrt{5}}{4}) - \frac{1}{\sqrt{5}} (\frac{6-2\sqrt{5}}{4}) = 1$$

(*) holds.

(Why this step?)

Assume when $n \le k(k \ge 2)$, (*) holds.

When
$$n = k + 1$$
,

The LHS of (*) =
$$f_{k+1} = f_{k-1} + f_k$$
.

By induction hypothesis,

$$f_{k-1} = \frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2}\right)^{k-1} - \frac{1}{\sqrt{5}} \left(\frac{1-\sqrt{5}}{2}\right)^{k-1}$$
$$f_k = \frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2}\right)^k - \frac{1}{\sqrt{5}} \left(\frac{1-\sqrt{5}}{2}\right)^k$$

Thus the LHS of (*) =
$$f_{k+1} = f_{k-1} + f_k = \frac{1}{\sqrt{5}} (\frac{1+\sqrt{5}}{2})^{k-1} + \frac{1}{\sqrt{5}} (\frac{1+\sqrt{5}}{2})^k - \frac{1}{\sqrt{5}} (\frac{1-\sqrt{5}}{2})^{k-1} - \frac{1}{\sqrt{5}} (\frac{1-\sqrt{5}}{2})^k = \frac{1}{\sqrt{5}} (\frac{1+\sqrt{5}}{2})^{k-1} (\frac{1+\sqrt{5}}{2}+1) - \frac{1}{\sqrt{5}} (\frac{1-\sqrt{5}}{2})^{k-1} (\frac{1-\sqrt{5}}{2}+1) + \frac{1}{\sqrt{5}} (\frac{1-\sqrt{5}}{2})^{k-1} (\frac{1-\sqrt{5}}{2})^{k-1} (\frac{1-\sqrt{5}}{2})^{k-1} (\frac{1-\sqrt{5}}{2})^{k-1} (\frac{1-\sqrt{5}}{2})^{k-1} (\frac{1-\sqrt{5}}{2})^{k-1} = 0$$
the RHS of (*)

By Math induction, (*) holds for all positive integers.

Exercise: The Lucas numbers are defined recursively by

$$1, 3, 4, 7, 11, 18, 29, 47, \cdots$$

$$(L_1 = 1, L_2 = 3, L_{n+2} = L_n + L_{n+1} \ (n \ge 1))$$

Use induction to prove: for any positive integer n,

$$L_n = (\frac{1+\sqrt{5}}{2})^n + (\frac{1-\sqrt{5}}{2})^n$$

