Two Stage Operational **Amplifier Design**

指導教授: 廖育德教授 學生: 陳子祈

Introduction

設計一個運算放大器在類比電路設計中非常重 要。就二階運算放大器來說,有一個優點是: 因為經過兩次放大電壓增益,在高增益放大電 路的配置下,運算放大器能產生一個比輸入端 電勢差大數十萬倍的輸出電勢。另外兩個優點 是如果使用差極模式可消除共模雜訊、有很大 的output voltage swing可使運算放大器有非 常大的工作範圍。

Circuit

Specification

	Specification		
Supply voltage	<1.8V		
Power (with biasing)	<20µW		
CL	1pF		
CC	<10pF		
DC gain	>60dB		
Unity-Gain BW	>5MHz		
Phase margin	>60°		
Slew-rate	>3V/μsec		
Output swing	>1.2V _{pp}		
PSRR	As large as possible		
CMRR	As large as possible		
FoM (2π*UGB/Power)	>8Mrad/μW		

Design flow

Design flow 說明

▶關於第5點及第7點的選擇

調高M6、M7的width,讓電流變大、放電速度變快, slew rate才會提高,不過電流變大,power也會 上升,所以M6、M7的width不要調太多,而且調高 M6、M7的width之後讓phase margin變小,為了讓 phase margin提高,調低Rz,但是phase margin 提高會造成Unit-gain bandwidth變小,Fom也會 變小,所以Rz不能調太多,我調到200k差不多剛 好可以讓phase margin大於60度。

formula

• Slew rate: $SR = \frac{I_5}{C_c}$

• First-stage Gain: $A_{v1} = \frac{-g_{m1}}{g_{ds2} + g_{ds4}} = \frac{-2g_{m1}}{I_5(\lambda_2 + \lambda_4)}$

• Second-stage Gain: $A_{v2} = \frac{-g_{m6}}{g_{ds6} + g_{ds7}} = \frac{-g_{m6}}{I_6(\lambda_6 + \lambda_7)}$

• Gain Bandwidth (GB): $GB = \frac{g_{m1}}{C_c}$

• Output Pole: $p_2 = \frac{-g_{m6}}{C_l}$

• RHP zero: $z_1 = \frac{g_{m6}}{C_c}$

• Positive CMR (Common-mode Range):

 $V_{in,max} = V_{DD} - \sqrt{\frac{I_5}{\beta_3}} - |V_{T3}| (max) + V_{T1}(min)$

• Negative CMR: $V_{in,min} = V_{SS} + \sqrt{\frac{I_5}{\beta_1}} + V_{T1}(max) + V_{DS5}(sat)$

• Saturation Voltage: $V_{DS}(\text{sat}) = \sqrt{\frac{2I_{ds}}{\beta}}$

Result – final design value

	W	L	m	Region	l _D	gm
M1	1.2u	0.4u	1	Saturation	1.8709u	36.4900u
M2	1.2u	0.4u	1	Saturation	1.8709u	36.4900u
M3	1.2u	0.4u	1	Saturation	-1.8709u	23.3384u
M4	1.2u	0.4u	1	Saturation	-1.8709u	23.3384u
M5	2.4u	0.4u	1	Saturation	3.7417u	72.5703u
M6	2.4u	0.4u	1	Saturation	-4.2245u	51.2839u
M7	2.4u	0.4u	1	Saturation	4.2245u	80.3233u
M _{BIAS}	1.2u	0.4u	1	Saturation	599.999n	11.6345u
	Size					
C _c	0.1p					
R _z	200k					

Performance

	Specification	Simulation Result	
Supply voltage	<1.8V	1.8 V	
Power (with biasing)	<20μW	15.4193uW	
CL	1pF	1pF	
CC	<10pF	0.1pF	
DC gain	>60dB	60.3dB	
Unity-Gain BW	>5MHz	39.6725MHz	
Phase margin	>60°	63.9226°	
Slew-rate	>3V/µsec	3.81MV/sec	
Output swing	>1.2V _{pp}	1.42V	
PSRR	As large as possible	72dB	
CMRR	As large as possible	63.63dB	
FoM (2π*UGB/Po wer)	>8Mrad/μW	16.166 Mrad/μW	

Result

