

planetmath.org

Math for the people, by the people.

Ω -stability theorem

Canonical name OmegastabilityTheorem Date of creation 2013-03-22 14:30:55

Last modified on 2013-03-22 14:30:55

Owner Koro (127) Last modified by Koro (127)

Numerical id 8

Author Koro (127) Entry type Theorem Classification msc 37C75

Synonym omega-stability theorem Synonym Smale's Ω -stability theorem

 $\begin{array}{ll} \text{Defines} & \Omega\text{-stable} \\ \text{Defines} & \text{omega-stable} \\ \text{Defines} & \Omega\text{-stability} \\ \text{Defines} & \text{omega-stability} \\ \end{array}$

Let M be a differentiable manifold and let $f: M \to M$ be a \mathcal{C}^k diffeomorphism. We say that f is \mathcal{C}^k - Ω -stable, if there is a neighborhood \mathcal{U} of f in the \mathcal{C}^k topology of $\mathrm{Diff}^k(M)$ such that for any $g \in \mathcal{U}$, $f|_{\Omega(f)}$ is topologically conjugate to $g|_{\Omega(g)}$.

 Ω -stability theorem. If f is Axiom A and satisfies the no-cycles condition, then f is \mathcal{C}^1 - Ω -stable.

Remark. The reciprocal of this theorem is also true (the difficult part is showing that Ω -stability implies Axiom A), but it is unknown whether \mathcal{C}^k - Ω -stability implies Axiom A when k > 1. This is known as the \mathcal{C}^k Ω -stability conjecture.