

第四章 组合逻辑电路设计

秦磊华 计算机学院

4.1 基本概念

若逻辑电路在任何时刻产生的**稳定输出值**仅仅取决于该时刻**各输入值**的组合,而与**过去的输入值无关**,则称为组合逻辑电路。

$$F_i = f_i(X_1, X_2, \dots, X_n)$$
 $i = 1, 2, \dots, m$

- •由逻辑门电路组成,不包含任何记忆(存储)元件
- •信号单向传输,不存在反馈回路

分析:

找出给定的逻辑电路输出与输入之间的逻辑关系;

目的:

得到给定逻辑电路功能,评价、 改进和完善不合理方案等

计算机组成原理

例1 分析下图所示组合逻辑电路。

解 根据逻辑电路图写出输出函数表达式

$$\mathbf{F} = \overline{\mathbf{P_4}\mathbf{P_5}} = \overline{\overline{\mathbf{A}(\mathbf{B} + \mathbf{C})}} \overline{\overline{\mathbf{ABC}}}$$

(用代数法) 化简输出函数表达式F

$$= \overline{A}(B + C) + A \overline{BC}$$

$$= \overline{AB} + \overline{AC} + A\overline{B} + A\overline{C}$$

$$= A \oplus B + A \oplus C$$

Α	В	С	F
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	0

该电路具有检查三个输入信号取值是否一致的逻辑功能,若输出为1,则表明输入不一致。通常称该电路为"不一致电路"

Α	В	С	F
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	1
_1	1	1	0

$$F = A \oplus B + A \oplus C \Longrightarrow$$

3级6门 到 2级3门

例2 分析下图所示逻辑电路。

解 写出输出函数表达式

$$S = \overline{\overline{AB} \cdot A} \cdot \overline{\overline{AB} \cdot B}$$

$$C = \overline{\overline{AB}}$$

用代数法化简输出函数如下:

$$S = \overline{\overline{AB} \cdot A} \cdot \overline{\overline{AB} \cdot B} = \overline{AB} \cdot A + \overline{AB} \cdot B$$

$$= (\overline{A} + \overline{B}) \cdot A + (\overline{A} + \overline{B}) \cdot B$$

$$= A\overline{B} + \overline{AB}$$

$$= A \oplus B$$

真值表

АВ	S C
0 0	0 0
0 1	1 0
1 0	1 0
1 1	0 1

$$C = \overline{\overline{AB}} = AB$$

求出特定条件下实现给定功能的逻辑电路,也称为逻辑综合。

设计的关键 → 将实际应用中的各种要求,包括逻辑问题和 非逻辑问题,抽象出问题的逻辑关系。

9

设计流程

1.建立给定问题的逻辑描述?

代数法

卡若图法

2.求出逻辑函数的最简表达式

3.选择器件并对表达式变换

4.画出逻辑电路图

分析流程

1.根据电路写出输出函数表达式

2.对函数表达式化简

3.列出函数真值表

4.功能评述与优化

例1 设计一个三变量"多数表决电路"

1)建立给定问题的逻辑描述

A B C	F
0 0 0	0
0 0 1	0
0 1 0	0
0 1 1	1
1 0 0	0
1 0 1	1
1 1 0	1
1 1 1	1

$$\rightarrow$$

$$F(A,B,C) = \sum m (3,5,6,7)$$

2)求出逻辑函数的最简表达式

$$F(A,B,C) = \sum m (3,5,6,7)$$

- 3)选择逻辑门类型实现电路
 - ●与门+或门
 - ●与非门

例2 设计一个比较两个三位二进制数是否相等的数值比较器。 (两个3位二进制数分别为 $A = a_3a_2a_1$, $B = b_3b_2b_1$)

1)建立给定问题的逻辑描述

尝试用真值表法描述该逻辑问题

如果是比较两个5位数是否相等,有如何处理?

$$F = (\overline{a_3} \cdot \overline{b_3} + a_3b_3) \cdot (\overline{a_2} \cdot \overline{b_2} + a_2b_2) \cdot (\overline{a_1} \cdot \overline{b_1} + a_1b_1)$$

2)求出逻辑函数最简表达式

$$F = (\overline{a_3} \cdot \overline{b_3} + a_3b_3) \cdot (\overline{a_2} \cdot \overline{b_2} + a_2b_2) \cdot (\overline{a_1} \cdot \overline{b_1} + a_1b_1)$$

3)选择逻辑门类型并进行逻辑函数变换(分析采用何种门最简单)

$$F = (\overline{a_3} \cdot \overline{b_3} + a_3b_3) \cdot (\overline{a_2} \cdot \overline{b_2} + a_2b_2) \cdot (\overline{a_1} \cdot \overline{b_1} + a_1b_1)$$

$$= \overline{a_3 \oplus b_3} \cdot \overline{a_2 \oplus b_2} \cdot \overline{a_1 \oplus b_1}$$

$$= (\overline{a_3 \oplus b_3}) + (\overline{a_2 \oplus b_2}) + (\overline{a_1 \oplus b_1})$$

在理解的基础上写出 F_{A>B},F _{A<B}的表达式

$$F = A_3\overline{B}_3 + (\overline{A}_3\overline{B}_3 + A_3B_3)A_2\overline{B}_2 + (\overline{A}_3\overline{B}_3 + A_3B_3)(\overline{A}_2\overline{B}_2 + A_2B_2)A_1\overline{B}_1$$

例3 设计组合逻辑电路实现下列真值表的功能(包含无关项)

ABCD	F	ABCD	F
0000	d	1000	0
0001	d	1001	1
0010	d	1010	0
0011	0	1011	1
0100	0	1100	1
0101	0	1101	d
0110	0	1110	d
0111	1	1111	d

 $F(A,B,C,D) = \sum m(7,9,11,12) + \sum d(0,1,2,13,14,15)$

$\langle A \rangle$				
CD	00	01	11	10
00	d	0		0
01	d	0	d	$\begin{bmatrix} 1 \end{bmatrix}$
11	0		d	1
10	d	0	d	0

$$F(A, B, C, D) = \overline{ABD} + \overline{ABCD} + \overline{ABCD}$$

$\langle A \rangle$	В			
CD	00	01	11	10
00	d	0		0
01	d	0	(d	1
11	0	[1]	d	1 ;
10	d	0	$\left[\frac{1}{d}\right]$	0

F(A, B, C, D) = AB + AD + BCD

使用无关项会带来问题吗?

1.竞争

- 1)信号经过任何部件都会产生时延,输入稳定时输出并不立即达到稳定
- 2)时延长短与信号经过门的级数、逻辑门的时延及导线长短等因数有关;
- 3)时延的危害:速度下降,信号波形参数变坏,产生竞争险象等;
- 4) 竞争:组合电路中,信号经不同途径达到某一会合点时存在时差的现象。

常见的逻辑门时延

at V_{CC} = 5V and T_A = 25°C $R_L = 2 k\Omega$						
Symbol	Parameter	C _L = 15 pF		C _L = 50 pF		Units
		Min	Max	Min	Max	1
t _{PLH}	Propagation Delay Time LOW-to-HIGH Level Output	3	10	4	15	ns
t _{PHL}	Propagation Delay Time HIGH-to-LOW Level Output	3	10	4	15	ns

2输入与非 74LS00

$$t_{PLH} = 0.69RC$$

深入理解微电子电路设计 Richard C. Jaeger 理查德.C 耶格著

fA的范围?

型 号	描述	传播延迟 典型值	工作电压	静态工作电流典型值
SGM7SZ00	单路双输入与非门	4.1ns		
SGM7SZ04	单路反相器	4.2ns		
SGM7SZ08	单路双输入与门	3.6ns		
SGM7SZ14	单路施密特触发反相器	4.2ns		
SGM7SZ19	单路2选1解码器/多路复用器	3.7ns	1.65V~5.5V	0.10μΑ
SGM7SZ32	单路双输入或门	3.8ns		
SGM7SZ86	单路异或门	4.2ns		
SGM7SZ125	单路三态输出缓冲器	3.5ns		
SGM7SZ126	单路三态输出缓冲器	3.4ns		
	表1 SGMICRO逻辑类芯片产品线			

圣邦微电子(SG MICRO) 推出的小逻辑系列芯

时延: 4.1ns

时延: 7.8ns

4)竞争的类型

- •非临界竞争:不产生输出错误的竞争
- •临界竞争: 导致输出错误的竞争

21

2. 险象

1)险象的概念: 由竞争导至的错误输出信号

2)现象的特征

组合电路中的险象是一种瞬态现象,它表现为在输出端产生不应有的尖脉冲,暂时地破坏正常逻辑关系。一旦瞬态过程结束,即可恢复正常逻辑关系。

2. 险象

$$F = \overline{\overline{AB}} + \overline{\overline{AC}}$$

$$= A\overline{ABC}$$

$$= A\overline{A} (B=C=1)$$

A从0到1:"1"型险像

从1到0:不发生险像

2. 险象

$$F = \overline{\overline{AB}} \cdot \overline{\overline{AC}} = AB + \overline{AC}$$
$$= \overline{A} + \overline{\overline{A}} \quad (B = C = 1)$$

A从0到1: 不发生险像

从1到0:"0"型险像

3) 0"型与"1"型险象

"1"型险象

$$F = A + \overline{A}$$

$$F = A + \overline{A}$$

$$F = A \overline{A}$$

3. 险象的判断

$$F = A + \overline{A}$$
 $F = A \overline{A}$

- 1)当变量X同时以原变量和反变量的形式出现在函数表达式中;
- 2)在一定条件下该函数表达式可简化成 X + X 或 $X \cdot X$ 。
- 代数方法
- •卡诺图方法

例1 已知描述某组合电路的逻辑函数表达式为

$$F = \overline{AC} + \overline{AB} + AC$$

判断该逻辑电路是否可能产生险象。

解 由表达式知,变量A和C均具备竞争条件,对他们分别进行分析。 变量A:

BC=00
$$F = \overline{A}$$

BC=01 $F = A$
BC=10 $F = \overline{A}$
BC=11 $F = A + \overline{A}$

即:当B=C=1时,A的变化可能使电路产生0型险象。

类似地分析变量C的竞争是否可能产生险象。

例2 判断函数 $F = (A + B) \cdot (\overline{A} + C) \cdot (\overline{B} + C)$ 逻辑电路中是否可能产生险象。

解 函数表达式可知,变量A和B均具备竞争条件。

考察变量B:

$$\begin{array}{ll} AC=00 & F=B\overline{B} \\ AC=01 & F=B \\ AC=10 & F=0 \\ AC=11 & F=1 \end{array}$$

可见, 当A=C=0时, B的变化可能使电路输出产生1型险象

类似地分析变量A的竞争是否可能产生险象。

例3 判断函数表达式 $F = \overline{AD} + \overline{AC} + AB\overline{C}$ 对应的电路是否可能产生险象。

解 作出函数的卡诺图

由图可知,卡诺图 1 和卡诺图 2 之间存在相邻最小项m₅和m₁₃,且m₅和m₁₃不被同一卡诺圈所包含,两个卡诺圈"相切"。

即 B=D=1, C=0, $F=A+\overline{A}$

5.险象的消除

1)增加冗余项

$$F = A \cdot \overline{A} \Longrightarrow$$
 与冗余"或项"

冗余项的选择可以采用代数法或者卡诺图法确定。

例1 用增加冗余项的方法消除右图所示电路中可能产生的险象。

$$\mathbf{M}$$: $\mathbf{F} = \mathbf{AB} + \overline{\mathbf{AC}}$

当B=C=1时, A的变化可能使输出产生"0"型险象。

若在函数表达式中增加冗余项BC:

基于简化后的表达式

可消除"0"型险象。

冗余项也可以通过卡诺图方法添加(现场练习)

$$F = AB + \overline{A}C$$

$$F = \overline{A}C + B\overline{C}D + A\overline{B}\overline{C}$$

2)增加惯性延时环节

图中RC电路是**低通滤波器**。由于竞争引起的险象是一些频率很高的尖脉冲信号,因此,险象在通过RC电路后能基本被滤掉.

3)选通法

利用选通脉冲从时间上使输出避开险象脉冲。

选通脉冲对电路的输出门加以控制,使输出避开险象脉冲,送出稳定输出信号。

计算机组成原理 35