

sandipan_dey >

Next >

<u>Course</u> <u>Progress</u> <u>Dates</u> <u>Discussion</u> <u>Syllabus</u> <u>Outline</u> <u>laff routines</u> <u>Community</u>

☆ Course / Week 10: Vector Spaces, Orthogonality, and Lin... / 10.3 Orthogonal Vectors ...

()

10.3.1 Orthogonal Vectors

☐ Bookmark this page

< Previous

■ Calculator

Week 10 due Dec 16, 2023 07:42 IST Completed

10.3.1 Orthogonal Vectors

Discussion

Hide Discussion

Topic: Week 10 / 10.3.1

Add a Post

⊞ Calculator

Show all posts

Question on lecture note 10.3.1

Greetings, I was curious why under the section 10.3.1 - orthogonal vectors in the page 364 of our lecture note (pdf), you restrict the x, y to non-...

4/4 points (graded)

For each of the following, indicate whether the vectors are orthogonal:

$$ullet$$
 $\begin{pmatrix}1\\-1\end{pmatrix}$ and $\begin{pmatrix}1\\1\end{pmatrix}$

TRUE ✓ ✓ Answer: TRUE

 $oldsymbol{\cdot} \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ and $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$

TRUE ✓ ✓ Answer: TRUE

ullet The unit basis vectors $oldsymbol{e_i}$ and $oldsymbol{e_j}$.

Sometimes

Answer: Sometimes

$$ullet \left(egin{array}{c} \cos heta \ \sin heta \end{array}
ight)$$
 and $\left(egin{array}{c} -\sin heta \ \cos heta \end{array}
ight)$

Always ✓ Answer: Always

$$\begin{pmatrix} 1 \\ -1 \end{pmatrix} \text{ and } \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
 True because
$$\begin{pmatrix} 1 \\ -1 \end{pmatrix}^T \begin{pmatrix} 1 \\ 1 \end{pmatrix} = 0$$

$$\begin{pmatrix} 1 \\ 0 \end{pmatrix} \text{ and } \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$
 True because
$$\begin{pmatrix} 1 \\ 0 \end{pmatrix}^T \begin{pmatrix} 0 \\ 1 \end{pmatrix} = 0$$
 The unit basis vectors e_i and e_j . Sometimes because $e_i^T e_j = 0$ if $i \neq j$ but $e_i^T e_j = 1$ if $i = j$.
$$\begin{pmatrix} c \\ s \end{pmatrix} \text{ and } \begin{pmatrix} -s \\ c \end{pmatrix}$$
 Always because
$$\begin{pmatrix} c \\ s \end{pmatrix}^T \begin{pmatrix} -s \\ c \end{pmatrix} = 0$$

Submit

Answers are displayed within the problem

Homework 10.3.1.2

1/1 point (graded)

Let $A\in\mathbb{R}^{m imes n}$. Let a_{i}^{T} be a row of A and $x\in\mathcal{N}\left(A
ight)$. Then a_{i} is orthogonal to x .

Always ✓ ✓ Ansv

Answer: Always

Answer: Always Since $x \in \mathcal{N}(A)$, Ax = 0. But then, partitioning A by rows,

$$0 = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix} = Ax = \begin{pmatrix} a_0^T \\ a_1^T \\ \vdots \\ a_T^T \end{pmatrix} x = \begin{pmatrix} a_0^T x \\ a_1^T x \\ \vdots \\ \vdots \\ a_T^T x \end{pmatrix}.$$

Previous

Next >

edX

About

Affiliates

edX for Business

<u>Open edX</u>

Careers

News

Legal

Terms of Service & Honor Code

Privacy Policy

Accessibility Policy

Trademark Policy

<u>Sitemap</u>

Cookie Policy

Your Privacy Choices

Connect

<u>Idea Hub</u>

Contact Us

Help Center

Security

Media Kit

© 2023 edX LLC. All rights reserved.

深圳市恒宇博科技有限公司 <u>粤ICP备17044299号-2</u>