Вступ до теорії груп. Короткий огляд

Аксіоми групи

Групою називається непорожня множина G, на якій задано бінарну алгебраїчну дію *, що задовольняє наступні аксіоми:

і. Замкненість: $\forall a, b \in G$: $a * b \in G$.

іі. Асоціативність: $(a * b) * c = a * (b * c), \forall a, b, c \in G$.

ііі. Існування нейтрального елемента: $\exists \ e \in G$, який називається нейтральним елементом G, такий, що $\forall \ a \in G$ виконується a * e = e * a = a.

iv. Існування оберненого: $\forall \ a \in G \ \exists \ a^{-1} \in G$, який називається оберненим до a, такий, що $a * a^{-1} = a^{-1} * a = e$.

Деякі властивості груп

і. Абелева група. Група G називається абелевою, якщо a*b=b*a $\forall a,b\in G.$

іі. Скінченна група. Група G називається скінченною, якщо вона складається зі скінченної кількості елементів.

ііі. Скорочення у групі. Якщо $a*b=a*c, \forall a,b,c \in G$, то b=c. Якщо $b*a=c*a, \forall a,b,c \in G$, то b=c.

іv. Єдиність нейтрального та оберненого.

• У групі існує єдиний нейтральний елемент;

• $\forall \ a \in G, \ a^{-1}$ визначений однозначно;

• $(a^{-1})^{-1} = a \ \forall \ a \in G;$

• $(a * b)^{-1} = (b^{-1}) * (a^{-1});$

• для $a_1, a_2, ..., a_n \in G$ значення виразу $a_1 * a_2 * \cdots * a_n$ не залежить від способу розстановки дужок.

Приклади груп

і. Діедральна група D_n — група рухів правильного n-кутника. Порядок групи = 2n.

іі. Симетрична група S_n — це група всіх бієктивних перетворень n-елементної множини. Порядок групи = n!

ііі. Четверна група Кляйна K_4 — група рухів ромба, або ж група з 4 елементів, у якій кожний елемент є оберненим сам до себе.

іv. Група \mathbb{Z}_n лишків за модулем $n \in \mathbb{N}$. Порядок групи = n.

v. Загальна лінійна група $GL_n(\mathbb{R})$ всіх невироджених матриць порядку n з дійсними коефіцієнтами. Нескінченна група.

Підгрупи

Нехай G — група. Непорожня підмножина H групи G називається **підгру**пою, якщо H є групою відносно заданої на G дії.

Критерій підгрупи. Непорожня підмножина H групи G є підгрупою \Leftrightarrow \forall $x,~y \in H:~xy^{-1} \in H.$

Гомоморфізми та ізоморфізми

і. Гомоморфізм. Нехай (G, *) та (H, \circ) — групи.

Відображення $\varphi:G\to H$ називається **гомоморфізмом**, якщо $\varphi(x*y)=\varphi(x)\circ\varphi(y)\ \ \forall\ x,y\in G.$

іі. Ізоморфізм. Гомоморфізм $\varphi: G \to H$ називається ізоморфізмом, якщо φ є бієкцією.

ііі. Автоморфізм. Ізоморфізм групи G на себе називається **автоморфі- змом**. Множина всіх автоморфізмів групи G позначається Aut G.

Теорема Келі

Теорема Келі: Кожна група ізоморфна деякій підгрупі симетричної групи. Якщо |G| = n, то G ізоморфна підгрупі групи S_n .

Порядок елемента -

Порядком елемента називається найменше таке $n \in \mathbb{N}$, що $g^n = e$. Якщо такого n не існує, то порядок елемента вважають нескінченним. Позначається ord g

i. ord $(g^{-1}) = \text{ord}(g)$.

іі. Якщо $\operatorname{ord}(g) = n$, то $g^m = e \Leftrightarrow n \mid m$.

iii. Якщо ord(g) = n, то ord $g^k = \frac{n}{(kn)}$.

Циклічні групи

Підмножина X групи G називається системою твірних групи G, якщо кожний елемент $g \in G$ можна записати у вигляді добутку степенів елементів з X. Позначається $G = \langle X \rangle$.

Група G називається **циклічною**, якщо існує такий елемент $g \in G$, що всі елементи групи є його степенями. Позначається $G = \langle g \rangle$. Такий елемент g називається **твірним** групи G.

• Циклічна група може мати більше одного твірного.

• Всі циклічні групи абелеві.

• Усі нескінченні циклічні групи ізоморфні.

• Дві скінченні циклічні групи ізоморфні 🖨 у них однакові порядки.

Класи суміжності та факторгрупи

Для довільних $N \leq G$ $g \in G$ множини

• $gN = \{gn \mid n \in N\} = \{g, gn_1, gn_2 \dots\}$ та

• $Ng = \{ng \mid n \in N\} = \{g, n_1g, n_2g \dots\}$ називаються лівим та правим класом суміжності G за N відповідно.

Підгрупа N < G називається нормальною, якщо $gN = Ng \ \forall g \in G.$ Позначається $N \lhd G.$

Критерій нормальної підгрупи. $N \triangleleft G \Leftrightarrow \forall g \in G \ \forall n \in N \colon g^{-1}ng \in N.$

Факторгрупа G за $N \triangleleft G$ — це група, елементами якої є класи суміжності gN з операцією gN*hN = (g*h)N.

Теорема Лагранжа

Теорема Лагранжа: У скінченній групі G порядок кожної її підгрупи H ділить порядок G.

Наслідки

• Якщо G — скінченна група, H < G, то кількість класів суміжності G за H дорівнює $\frac{|G|}{|H|}$.

• Якщо G — скінченна група та $g \in G$, то $\operatorname{ord}(g) \mid |G|$ та $g^{|G|} = e \ \forall \ g \in G$.

• Якщо G — група простого порядку, то G циклічна.

Лема Коші

Лема Коші: Якщо порядок скінченної групи ділиться на просте число p, то в групі є елемент порядку p.

Теореми про гомоморфізм

і. Перша теорема про гомоморфізм: Нехай $\varphi:G\to G'$ — гомоморфізм груп G та G'. Тоді $\operatorname{Ker} \varphi\lhd G$, $\operatorname{Im} \varphi< G'$ та $G/\operatorname{Ker} \varphi\simeq \operatorname{Im} \varphi$.

іі. Друга теорема про гомоморфізм: Нехай G — група, H — підгрупа групи G, N — нормальна підгрупа групи G. Тоді HN < G, $N \triangleleft HN$, $H \cap N \triangleleft H$ та $H/H \cap N \simeq HN/N$.

ііі. Третя теорема про гомоморфізм: Нехай G — група, $N \triangleleft G$. Тоді існує взаємно однозначна відповідність між підгрупами G/N і підгрупами $H \triangleleft G$, що містять N, та $H/N \triangleleft G/N \Leftrightarrow H \triangleleft G$ та $G/H \simeq (G/N)/(H/N)$.

Дія групи на множині

Дія групи G на множині M — це відображення з $M \times G$ в M, яке парі $(m,g) \in M \times G$ ставить у відповідність елемент $m^g \in M$ та яке має властивості:

i. $m^e = m, \forall m \in M;$

ii. $m^{g_1g_2} = (m^{g_1})^{g_2}, \forall m \in M, \forall g_1, g_2 \in G.$

• Стабілізатором точки $m \in M$ називається множина

 $St_g(m) = \{g \in G \mid m^g = m\}$. Зауважимо, що $St_g(m) \leq G$.

• Ядром дії групи G на множині M називається множина $Ker(f) = \{g \in G \mid m^g = m \ \forall \ m \in M\}.$

Централізатори та нормалізатори

• Централізатором множини A у групі G називається множина $Z_G(A) = \{g \in G \mid g^{-1}ag = a \ \forall \ a \in A\}$. Зауважимо, що $Z_G(A) < G$.

• Центром групи *G* називається множина

 $Z(G) = \{g \in G \mid gx = xg \ \forall \ x \in G\}$. Зокрема, $Z(G) = Z_G(G), \ Z(G) \triangleleft G$.

• **Нормалізатором** множин A у групі G називається множина $N_G(A) = \{g \in G \mid g^{-1}ag \in A \ \forall a \in A\}$. Зокрема, $Z_G(A) \leq N_G(A)$.

Орбіти дії

• Група G діє на множині M. Тоді $a \sim b \iff a = b^g$ для деякого $g \in G$, де \sim — відношення еквівалентності, його класи — **орбіти** дії.

• **Орбіта** точки $a \in M$ — це множина $O(a) = \{a^g | g \in G\}$.

• Дія G на M називається транзитивною, якщо вона має лише одну орбіту. **Теорема:** Нехай скінченна група G діє на множині M. Тоді для будь-якого $m \in M$: $|O(m)||St_G(m)| = |G|$.

Спряженість та формула класів

• **Клас спряженості** групи G — це орбіти дії групи G на собі спряженням, тобто $\{g^{-1}ag \mid g \in G\}$.

• **Формула класів** для скінченної групи G:

 $|G| = |Z(G)| + \sum |(\text{Неодноелементні класи спряженості } G)|.$

Основна теорема про скінченні абелеві групи

Теорема: Скінченна абелева група розкладається у прямий добуток своїх підгруп $H_1 \times \cdots \times H_k$, де кожна H_i — циклічна група порядку $p_i^{n_i}$, p_i — (не обов'язково різні) прості числа, $n_i \in \mathbb{N}$. Цей розклад однозначний з точністю до порядку множників.

р-групи та силовські р-підгрупи

• **р-група** — це група, порядки елементів якої є степенями простого числа p. Скінченна група є р-групою $\Leftrightarrow |G| = p^k$ для деякого $k \in \mathbb{N}$.

• силовська р-підгрупа Нехай G — скінченна група, p — просте число. Якщо $p^k \mid |G|$, а $p^{k+1} \nmid |G|$, то підгрупа порядку p^k називається силовською p-підгрупою.

Теореми Силова

і. Перша теорема Силова: Якщо p ділить |G|, то в G існує силовська рпідгрупа.

іі. Друга теорема Силова: Довільні дві силовські *p*-підгрупи скінченної групи спряжені.

ііі. Третя теорема Силова: Нехай p — просте число, G — скінченна група порядку $p^k m$, де (p,m)=1, n_p — кількість силовських p-підгруп. Тоді $n_p\equiv 1\pmod p$; $n_p\mid m$.

€. Кочубінська. Оригінал: https://imgur.com/a/cjA61w3