DIVERGENZA DELLO SVILUPPO PERTURBATIVO PER L'OSCILLATORE ANARMONICO

Manuel Deodato

INDICE

1 Un esempio di divergenza

3

I Un esempio di divergenza

Molte serie perturbative in meccanica quantistica sono divergenti; l'origine di questa divergenza appare connessa con altri aspetti, apparentemente sconnessi, fra cui:

- la possibilià di ricostruire il risultato esatto da uno sviluppo asintotico;
- l'analiticità della struttura del problema in esame;
- la stabilità del sistema.

Si vuole studiare un esempio concreto per capire come approcciare il problema. A tal proposito, si usa, come sistema esempio, un oscillatore anarmonico descritto da

$$\hat{H} = \frac{1}{2}\hat{p}^2 + \frac{1}{2}\hat{x}^2 + \frac{1}{2}g\hat{x}^4 \tag{I.I.}$$

dove si sono scelti $m=1, \omega=1$. Esprimendo \hat{x}^4 tramite gli operatori di creazione e distruzione, ci si convince che gli elementi di matrice della perturbazione possono connettere solamente stati che hanno $|\Delta n| \leq 4$. L'espansione perturbativa dell'energia è della forma $E=1/2+\sum g^n E_n$, mentre la funzione d'onda del fondamentale imperturbato è della forma $\psi_0 \propto e^{-x^2/2}$. Visto che la funzione d'onda dell'n-esimo stato è un polinomio di grado n moltiplicato per ψ_0 , si cerca soluzione della forma $B(x)e^{-x^2/2}$ all'equazione differenziale

$$\left(-\frac{1}{2}\frac{d^2}{dx^2} + \frac{1}{2}x^2 + \frac{1}{2}gx^4\right)\psi = E\psi\tag{1.2}$$

Sostituendo l'ansatz, si trova

$$\frac{d^2B}{dx^2} - 2x\frac{dB}{dx} - gx^4B + (2E - 1)B = 0$$

Essendo interessati particolarmente allo sviluppo dello stato fondamentale e visto che \hat{P}_a commuta con la perturbazione, lo stato fondamentale, che originariamente è pari, rimane pari; allora avrà senso la seguente scelta:

$$B(x) = \sum_{k=0}^{+\infty} B_k(x)$$
 $B_k(x) = \sum_{j=0}^{2k} A_{kj} x^{2j}$

con $A_{k0}=1$. Le energie si potranno scrivere come $2E=\sum_{k=0}^{+\infty}\epsilon_kg^k$, dove $\epsilon_0=1$. La condizione di normalizzazione per queste funzioni d'onda è $B_k(0)=1$. Sostituendo nell'equazione trovata per B, si ottiene:

$$\begin{split} B_k'' - 2B_k' - x^4 B_{k-1} + \sum_{s=0}^k \epsilon_s B_{k-s} - B_k &= 0 \\ \Rightarrow \sum_{\ell=1}^{2k} 2\ell (2\ell - 1) A_{k,\ell} x^{2\ell - 1} - 2 \sum_{j=1}^{2k} 2j A_{k,j} x^{2j} - \sum_{\ell=0}^{2k - 2} A_{k-1,\ell} x^{2\ell + 4} \\ - \sum_{j=0}^{2k} A_{k,j} x^{2j} + \sum_{s=0}^k \epsilon_s \sum_{j=0}^{2k - 2s} A_{k-s,j} x^{2j} &= 0 \end{split}$$

Si adotta la convenzione per cui $A_{k,j}=0$ per j>2k; così facendo, sostituendo nella prima somma $\ell=j+1$ e nella terza $\ell=j-2$, si trova che:

$$\sum_{j=0}^{2k} x^{2j} \left[(2j+2)(2j+1)A_{k,j+1} - 4jA_{k,j} - A_{k-1,j-2} - A_{k,j} + \sum_{s=0}^{k} \epsilon_s A_{k-s,j} \right] = 0$$

Tutti i coefficienti di questo polinomio devono essere nulli. Usando che $\epsilon_0=1$, si trova che il termine s=0 cancella $-A_{k,j}$:

$$(2j+2)(2j+1)A_{k,j+1} - 4jA_{k,j} - A_{k-1,j-2} + \sum_{s=1}^{k} \epsilon_s A_{k-s,j} = 0$$
 (1.3)

Inoltre, il termine per s=k nella somma ha coefficiente $A_{0,j}$, che è pari a 1 per j=0 e nullo altrimenti; da questo, si ottiene una relazione ricorsiva per le energie ϵ_k , quando siano noti i coefficienti $A_{k,1}$:

$$\epsilon_k = -2A_{k,1} - \sum_{s=1}^{k-1} \epsilon_s \tag{1.4}$$

Considerando, invece, $j \neq 0$:

$$(2j+2)(2j+1)A_{k,j+1} - 4jA_{k,j} - A_{k-1,j-2} + \sum_{s=1}^{k-1} \epsilon_s A_{k-s,j} = 0$$

Si nota che in questa espressione, il termine ϵ_k non compare più. Si prende j=2k, per cui $A_{k,2k+1}=0$. Questo permette di trovare una relazione ricorsiva per $A_{k,j}$:

$$A_{k,j} = \frac{1}{4j} \left[(2j+2)(2j+1)A_{k,j+1} - A_{k-1,j-2} + \sum_{s=1}^{k-1} \epsilon_s A_{k-s,j} \right]$$
 (1.5)

$$con j = 2k, 2k - 1, ..., 1.$$

Trovati gli $A_{k,1}$, si possono determinare le energie ϵ_k ; facendolo, si osserva che questi termini, di segno alterno, aumentano molto velocemente.