# **Policy Evaluation**

The Big Picture

#### Marius Lindauer







Winter Term 2021

## Recap I: Markov Decision Process (MDP)

- Markov Decision Process is Markov Reward Process + actions
- Definition of MDP
  - ▶ S is a (finite) set of Markov states  $s \in S$
  - ▶ A is a (finite) set of actions  $a \in A$
  - $lackbox{ }P$  is dynamics/transition model for each action, that specifies  $P(s_{t+1}=s'\mid s_t=s, a_t=a)$
  - $\blacktriangleright \ R \text{ is a reward function } R(s_t = s, a_t = a) = \mathbb{E}[r_r \mid s_t = s, a_t = a]$ 
    - lacktriangle Sometimes R is also defined based on (s) or on (s,a,s')
  - ▶ Discount factor  $\gamma \in [0, 1]$
- ▶ MDP is tuple  $(S, A, P, R, \gamma)$

### Recap I: Markov Decision Process (MDP)

- Markov Decision Process is Markov Reward Process + actions
- Definition of MDP
  - ▶ S is a (finite) set of Markov states  $s \in S$
  - ▶ A is a (finite) set of actions  $a \in A$
  - lacktriangleq P is dynamics/transition model for each action, that specifies  $P(s_{t+1}=s'\mid s_t=s, a_t=a)$
  - $\blacktriangleright \ R \text{ is a reward function } R(s_t = s, a_t = a) = \mathbb{E}[r_r \mid s_t = s, a_t = a]$ 
    - ightharpoonup Sometimes R is also defined based on (s) or on (s, a, s')
  - ▶ Discount factor  $\gamma \in [0, 1]$
- ▶ MDP is tuple  $(S, A, P, R, \gamma)$
- → Unfortunately, we often do not have access to true MDP models

### Recap II

- ▶ Definition of Return  $G_t$  (for a MRP)
  - ▶ Discounted sum of rewards from time step t to horizon

$$G_t = r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \gamma^3 r_{t+3} + \dots$$

### Recap II

- ▶ Definition of Return  $G_t$  (for a MRP)
  - Discounted sum of rewards from time step t to horizon

$$G_t = r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \gamma^3 r_{t+3} + \dots$$

- ▶ Definition of State Value Function  $V^{\pi}(s)$ 
  - lacktriangle Expected return from starting in state s under policy  $\pi$

$$V^{\pi}(s) = \mathbb{E}[G_t \mid s_t = s] = \mathbb{E}_{\pi}[r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \gamma^3 r_{t+3} + \dots \mid s_t = s]$$

## Recap II

Lindauer

- ▶ Definition of Return  $G_t$  (for a MRP)
  - Discounted sum of rewards from time step t to horizon

$$G_t = r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \gamma^3 r_{t+3} + \dots$$

- ▶ Definition of State Value Function  $V^{\pi}(s)$ 
  - lacktriangle Expected return from starting in state s under policy  $\pi$

$$V^{\pi}(s) = \mathbb{E}[G_t \mid s_t = s] = \mathbb{E}_{\pi}[r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \gamma^3 r_{t+3} + \dots \mid s_t = s]$$

- ▶ Definition of State-Action Value Function  $Q^{\pi}(s,a)$ 
  - lacktriangle Expected return from starting in state s, taking action a and then following policy  $\pi$

$$\begin{array}{lcl} Q^{\pi}(s,a) & = & \mathbb{E}_{\pi}[G_t \mid s_t = s, a_t = a] \\ & = & \mathbb{E}_{\pi}[r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \gamma^3 r_{t+3} + \dots \mid s_t = s, a_t = a] \end{array}$$

#### Goal for this week

- Assumption: We don't have the exact model of the environment (i.e., model-free), but we can query the environment ("playing roll-outs")
  - state space and action space are in principle known
  - we don't know the transition probabilities beforehand
  - we don't know the reward distribution beforehand

#### Goal for this week

- Assumption: We don't have the exact model of the environment (i.e., model-free), but we can query the environment ("playing roll-outs")
  - state space and action space are in principle known
  - we don't know the transition probabilities beforehand
  - we don't know the reward distribution beforehand

#### Remarks:

- ▶ If we would know the MDP, we only have to do "planning" to find the optimal policy
- ▶ If we first learn the MDP and then apply planning to the learned MDP, we do "model-based" RL (not today!)

### Goal for this week

- Assumption: We don't have the exact model of the environment (i.e., model-free), but we can query the environment ("playing roll-outs")
  - state space and action space are in principle known
  - we don't know the transition probabilities beforehand
  - we don't know the reward distribution beforehand

#### Remarks:

- ▶ If we would know the MDP, we only have to do "planning" to find the optimal policy
- ▶ If we first learn the MDP and then apply planning to the learned MDP, we do "model-based" RL (not today!)
- ▶ Goal for this week: We want to learn  $V^{\pi}(s)$  or  $Q^{\pi}(s,a)$  (depending on the RL algorithm we want to use) by only querying the unknown MDP