POSITIVE PHOTOSENSITIVE COMPOSITION

Publication number: JP10274845 (A)
Publication date: 1998-10-13

] JP3773139 (B2)

Also published as:

Inventor(s): AOSO TOSHIAKI; TAKITA SATOSHI; UENISHI KAZUYA +

Applicant(s): FUJI PHOTO FILM CO LTD +

Classification:

- international: G03F7/004; C07C381/12; G03F7/00; G03F7/039; H01L21/027;

G03F7/004; C07C381/00; G03F7/00; G03F7/039; H01L21/02; (IPC1-7): G03F7/004; C07C381/12; G03F7/00; G03F7/004;

G03F7/039; H01L21/027

- European:

Application number: JP19970081075 19970331 **Priority number(s):** JP19970081075 19970331

Abstract of JP 10274845 (A)

PROBLEM TO BE SOLVED: To ensure high efficiency of photodegradation and high sensitivity and to form a superior resist pattern by using a specified compd. generating sulfonic acid. SOLUTION: This photosensitive compsn. contains a resin having groups which are decomposed by the action of an acid and increase solubility in an alkali developer and a compd. represented by the formula and generating sulfonic acid when irradiated with active light or radiation. In the formula, each of R1 -R3 , is H, alkyl, cycloalkyl, alkoxy, etc., X<-> is a group such as benzenesulfonic acid or naphthalenesulfonic acid having at least one >=8C alkyl or alkoxy group, at least two 4-7C alkyl or alkoxy groups or at least three 1-3C alkyl or alkoxy groups and each of (l), (m) and (n) is an integer of 1-

Data supplied from the espacenet database — Worldwide

特期平10-274845

(43)公開日 平成10年(1998)10月13日

(51) Int.Cl. ⁶		識別記号		FΙ					
G03F	7/004	503		G 0	3 ਮੋ	7/004		503A	
		5 0 1						501	
C 0 7 C 381/12		C 0 7 C 381/12							
G03F	7/00	503		G 0	3 F	7/00		503	
	7/039	6 0 1				7/039		601	
			審査譜求	未請求	請求	で項の数4	OL	(全 51 頁)	最終頁に続く
(21) 出願番号	}	特願平9-81075		(71)	出願力	√ 000005	201		
						富士写	真フイ	ルム株式会社	
(22) 出顧日		平成9年(1997)3月31日				神奈川	県南足	柄市中沼210番	針地
					発明者	肾 青合	利明		
						静岡県	榛原郡	吉田町川尻400	00番地 富士写
						真フイ	ルム株	式会社内	
				(72)	発明者	皆 滝田	敏		
						静岡県	榛原郡	吉田町川尻400	00番地 富士写
						真フイ	ルム株	式会社内	
				(72)	発明者	皆 上西	一也		
						静岡県	榛原郡	吉吉町川尻400	00番地 富士写
						真フイ	ルム株	式会社内	
				(74)	代理人	人 弁理士	萩野	平 (外3:	名)

(54) 【発明の名称】 ポジ型感光性組成物

(57)【要約】 (修正有)

【課題】 感度が高く、優れたレジストパターンが得られ、露光により発生する酸の拡散性が小さく、露光後加熱処理までの経時でレジストパターンの細りが生じたり、レジストパターン表面の形状が丁型(T‐top)を呈することがなく、光酸発生剤としてのスルホニウム化合物の溶剤溶解性を改良して、感度の向上を図れるポ

ジ型感光性組成物を提供する。

【解決手段】 酸の作用により分解し、アルカリ現像液中での溶解性を増大させる基を有する樹脂、及び活性光線または放射線の照射により、スルホン酸を発生する特定の構造の化合物(例えば下記の化合物)を含有することを特徴とするポジ型感光性組成物。

$$\left(\begin{array}{c} {}^{\mathbf{s}}\mathbf{H}_{17}\mathbf{C}_{8} \\ \\ \end{array}\right)_{2}$$

【特許請求の範囲】

【請求項1】 酸の作用により分解し、アルカリ現像液中での溶解性を増大させる基を有する樹脂、及び活性光線または放射線の照射により、スルホン酸を発生する下記一般式(I)で表される化合物、を含有することを特徴とするポジ型感光性組成物。

【化1】

式中、R₁~R₃ は、同じでも異なっていてもよく、水 素原子、アルキル基、シクロアルキル基、アルコキシ 基、ヒドロキシ基、ハロゲン原子又は-S-R₄基を示 す。R4 はアルキル基又はアリール基を示す。X⁻ は、 炭素数8個以上のアルキル基又はアルコキシ基の群の中 から選ばれる基を少なくとも1個有するか、炭素数4~ 7個のアルキル基又はアルコキシ基の群の中から選ばれ る基を少なくとも2個有するか、もしくは炭素数1~3 個のアルキル基又はアルコキシ基の群の中から選ばれる 基を少なくとも3個有するベンゼンスルホン酸、ナフタ レンスルホン酸、又はアントラセンスルホン酸のアニオ ンを示す。1、m及びnは、同じでも異なってもよく、 1~3の整数を示す。1、m及びnが各々2又は3の場 合、2~3個の R_1 ~ R_3 のうちの各々の2個が互いに 結合して、炭素環、複素環又は芳香環を含む5~8個の 元素から成る環を形成しても良い。

【請求項2】 酸により分解し得る基を有し、アルカル 現像液中での溶解度が酸の作用により増大する、分子量 3000以下の低分子酸分解性溶解阻止化合物を含有す ることを特徴とする請求項1に記載のポジ型感光性組成 物。

【請求項3】 水に不溶でアルカリ水溶液に可溶な樹脂を含有することを特徴とする請求項1又は2に記載のポジ型感光性組成物。

【請求項4】 活性光線または放射線の照射により、スルホン酸を発生する請求項1に記載の一般式(I)で表される化合物、酸により分解し得る基を有し、アルカリ現像液中での溶解度が酸の作用により増大する、分子量300以下の低分子酸分解性溶解阻止化合物、及び水に不溶でアルカリ水溶液に可溶な樹脂を含有することを特徴とするポジ型感光性組成物。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、平版印刷板やIC等の

半導体製造工程、液晶、サーマルヘッド等の回路基板の 製造、更にその他のフォトファブリケーション工程に使 用されるポジ型感光性組成物に関するものである。

[0002]

【従来の技術】ポジ型フォトレジスト組成物としては、 一般にアルカリ可溶性樹脂と感光物としてのナフトキノ ンジアジド化合物とを含む組成物が用いられている。例 えば、「ノボラック型フェノール樹脂/ナフトキノンジ アジド置換化合物」として米国特許第3,666,473 号、米 国特許第4,115,128 号及び米国特許第4,173,470 号等 に、また最も典型的な組成物として「クレゾールーホル ムアルデヒドより成るノボラック樹脂/トリヒドロキシ ベンゾフェノンー1,2ーナフトキノンジアジドスルホ ン酸エステル」の例がトンプソン「イントロダクション ・トゥー・マイクロリソグラフィー」(L.F.Thompson 「Introduction to Microlithography」) (ACS出 版、No. 2, 19号、p112~121) に記載され ている。このような基本的にノボラック樹脂とキノンジ アジド化合物から成るポジ型フォトレジストは、ノボラ ック樹脂がプラズマエッチングに対して高い耐性を与 え、ナフトキノンジアジド化合物は溶解阻止剤として作 用する。そして、ナフトキノンジアジドは光照射を受け るとカルボン酸を生じることにより溶解阻止能を失い、 ノボラック樹脂のアルカリ溶解度を高めるという特性を 持つ。

【〇〇〇3】これまで、かかる観点からノボラック樹脂 とナフトキノンジアジド系感光物を含有する数多くのポ ジ型フォトレジストが開発、実用化され、O.8 μm~ 2μm程度までの線幅加工に於いては十分な成果をおさ めてきた。しかし、集積回路はその集積度を益々高めて おり、超LSIなどの半導体基板の製造に於いてはハー フミクロン以下の線幅から成る超微細パターンの加工が 必要とされるようになってきた。この必要な解像力を達 成するためにフォトリソグラフィーに用いられる露光装 置の使用波長は益々短波化し、今では、遠紫外光やエキ シマレーザー光(XeCl、KrF、ArFなど)が検 討されるまでになってきている。従来のノボラックとナ フトキノンジアジド化合物から成るレジストを遠紫外光 やエキシマレーザー光を用いたリソグラフィーのパター ン形成に用いると、ノボラック及びナフトキノンジアジ ドの遠紫外領域に於ける吸収が強いために光がレジスト 底部まで到達しにくくなり、低感度でテーパーのついた パターンしか得られない。

【0004】このような問題を解決する手段の一つが、 米国特許第4,491,628 号、欧州特許第249,139 号等に記 載されている化学増幅系レジスト組成物である。化学増 幅系ポジ型レジスト組成物は、遠紫外光などの放射線の 照射により露光部に酸を生成させ、この酸を触媒とする 反応によって、活性放射線の照射部と非照射部の現像液 に対する溶解性を変化させパターンを基板上に形成させ るパターン形成材料である。

【0005】このような例として、光分解により酸を発 生する化合物と、アセタールまたはO、N-アセタール 化合物との組合せ(特開昭48-89003号)、オル トエステル又はアミドアセタール化合物との組合せ(特 開昭51-120714号)、主鎖にアセタール又はケ タール基を有するポリマーとの組合せ(特開昭53-1 33429号)、エノールエーテル化合物との組合せ (特開昭55-12995号)、N-アシルイミノ炭酸 化合物との組合せ(特開昭55-126236号)、主 鎖にオルトエステル基を有するポリマーとの組合せ(特 開昭56-17345号)、第3級アルキルエステル化 合物との組合せ(特開昭60-3625号)、シリルエ ステル化合物との組合せ(特開昭60-10247 号)、及びシリルエーテル化合物との組合せ(特開昭6 0-37549号、特開昭60-121446号)等を 挙げることができる。これらは原理的に量子収率が1を 越えるため、高い感光性を示す。

【0006】同様に、室温経時下では安定であるが、酸 存在下加熱することにより分解し、アルカリ可溶化する 系として、例えば、特開昭59-45439号、特開昭 60-3625号、特開昭62-229242号、特開 昭63-27829号、特開昭63-36240号、特 開昭63-250642号、Polym.Eng.Sce.,23 巻、10 12頁(1983); ACS. Sym. 242 巻、11頁(1984); Semi co nductor World 1987年、11月号、91頁; Macromolecule s,21 巻、1475頁(1988); SPIE,920巻、42頁(1988) 等に記載されている露光により酸を発生する化合物と、 第3級又は2級炭素(例えばt-ブチル、2-シクロヘキセ ニル)のエステル又は炭酸エステル化合物との組合せ系 が挙げられる。これらの系も高感度を有し、且つ、ナフ トキノンジアジド/ノボラツク樹脂系と比べて、Deep-U V 領域での吸収が小さいことから、前記の光源短波長化 に有効な系となり得る。

【0007】上記ポジ型化学増幅レジストは、アルカリ 可溶性樹脂、放射線露光によつて酸を発生する化合物 (光酸発生剤)、及び酸分解性基を有するアルカリ可溶 性樹脂に対する溶解阻止化合物から成る3成分系と、酸 との反応により分解しアルカリ可溶となる基を有する樹 脂と光酸発生剤からなる2成分系に大別できる。これら 2成分系あるいは3成分系のポジ型化学増幅レジストに おいては、露光により光酸発生剤からの酸を介在させ て、熱処理後現像してレジストパターンを得るものであ る。ここで、上記のようなポジ型化学増幅レジストにお いて用いられる光酸発生剤については、N-イミドスル ホネート、Nーオキシムスルホネート、oーニトロベン ジルスルホネート、ピロガロールのトリスメタンスルホ ネート等が知られているが、光分解効率が大きく画像形 成性が優れるものとして、代表的には特開昭59-45 439号、米国特許第4,173,476号、同4,1

97,174号、Polym. Eng. Sci., 23,1012 (1983).、J. Polym. Sci., Polym. Chem. Ed., 18,2677,2697(1980)、同 22,1789(1984)等に記載されたスルホニウム、ヨードニウムのPF₆ - 、AsF₆ - 、SbF - 等の過フルオロルイス酸塩が使用されてきた。しかしながら半導体用レジスト材料に用いる場合、該光酸発生剤の対アニオンからのリン、砒素、アンチモン等の汚染が問題であった。

【0008】そこでこれらの汚染がないスルホニウム、 ヨードニウム化合物として、特開昭63-27829 号、特開平2-25850号、特開平2-150848 号、特開平5-134414号、特開平5-23270 5号等に記載されたトリフルオロメタンスルホン酸アニ オンを対アニオンとする塩が使用されている。但しこの 化合物の場合、露光により発生するトリフルオロメタン スルホン酸のレジスト膜中での拡散性が大きい為、露光 後加熱処理までの経時でレジストパターンの細りが生じ たり、レジストパターン表面の形状がT型(T-to p)を呈する問題があった。またスルホニウム、ヨード ニウムの別の対アニオンとして、トルエンスルホン酸ア ニオンの使用が特開平2-25850号、特開平2-1 50848号、特開平5-5993号、特開平6-43 653号、特開平6-123972号等に記載されてい るが、通常使用するレジスト溶剤への溶解性が十分でな く、その添加量が制限される為、結果として感度の点で 問題があった。また,溶剤溶解性も向上させるという観 点から直鎖のアルキル基、アルコキシ基を1個有するべ ンゼンスルホン酸、ナフタレンスルホン酸又はアントラ センスルホン酸のスルホニウム、ヨードニウム塩が、特 開平6-199770号公報に記載されている。しか し、この場合においても発生した酸のレジスト膜中での 拡散性の低減が十分でなく、露光後加熱処理までの経時 でレジストパターンの細りが生じる問題があった。

[0009]

【発明が解決しようとする課題】従って、本発明の目的は、上記従来の技術の課題を解決することであり、詳しくは光分解効率が大きく、従って感度が高く、優れたレジストパターンが得られるポジ型感光性組成物を提供することである。本発明の別の目的は、露光により発生する酸の拡散性が小さく、露光後加熱処理までの経時でレジストパターンの細りが生じたり、レジストパターン表面の形状が丁型(T-top)を呈することのないポジ型感光性組成物を提供することである。更に本発明の別の目的は、光酸発生剤としてのスルホニウム化合物の溶剤溶解性を改良して、組成物中でのその添加量を任意に増加でき、感度の向上を図れるポジ型感光性組成物を提供することである。

[0010]

【課題を解決するための手段】本発明者等は、上記諸特性に留意し鋭意検討した結果、本発明の目的が、ポジ型

化学増幅系において、下記のスルホン酸を発生する特定 の化合物を用いることで達成されることを見いだした。 即ち、本発明は、下記構成である。

(1) 酸の作用により分解し、アルカリ現像液中での溶解性を増大させる基を有する樹脂、及び活性光線または放射線の照射により、スルホン酸を発生する下記一般式(I)で表される化合物、を含有することを特徴とするポジ型感光性組成物。

[0011]

【化2】

【0012】式中、 $R_1 \sim R_3$ は、同じでも異なってい てもよく、水素原子、アルキル基、シクロアルキル基、 アルコキシ基、ヒドロキシ基、ハロゲン原子又は一S一 R₄基を示す。R₄ はアルキル基又はアリール基を示 す。X⁻ は、炭素数8個以上のアルキル基又はアルコキ シ基の群の中から選ばれる基を少なくとも1個有する か、炭素数4~7個のアルキル基又はアルコキシ基の群 の中から選ばれる基を少なくとも2個有するか、もしく は炭素数1~3個のアルキル基又はアルコキシ基の群の 中から選ばれる基を少なくとも3個有するベンゼンスル ホン酸、ナフタレンスルホン酸、又はアントラセンスル ホン酸のアニオンを示す。1、m及びnは、同じでも異 なってもよく、1~3の整数を示す。1、m及びnが各 $々2又は3の場合、2~3個の<math>R_1 \sim R_3$ のうちの各々 の2個が互いに結合して、炭素環、複素環又は芳香環を | 含む5~8個の元素から成る環を形成しても良い。

- (2) 酸により分解し得る基を有し、アルカル現像液中での溶解度が酸の作用により増大する、分子量300 0以下の低分子酸分解性溶解阻止化合物を含有すること を特徴とする上記(1)に記載のポジ型感光性組成物。
- (3) 水に不溶でアルカリ水溶液に可溶な樹脂を含有することを特徴とする上記(1)又は(2)に記載のポジ型感光性組成物。
- (4) 活性光線または放射線の照射により、スルホン酸を発生する上記(1)に記載の一般式(I)で表される化合物、酸により分解し得る基を有し、アルカリ現像液中での溶解度が酸の作用により増大する、分子量300以下の低分子酸分解性溶解阻止化合物、及び水に不溶でアルカリ水溶液に可溶な樹脂を含有することを特徴とするポジ型感光性組成物。

【0013】上記のように、光酸発生剤として上記一般

式(I)で表される化合物を用いることにより、化学増幅型レジストにおいて、見事に露光後加熱処理までの経時での問題が解決され、該光酸発生剤の溶剤溶解性が向上し、且つ光分解効率が高く、それにより光感度が高く、優れたレジストパターンが得られた。

[0014]

【発明の実施の形態】以下、本発明に使用する化合物について詳細に説明する。

[I] 一般式(I) で表される光酸発生剤

前記一般式(I)における、 $R_1 \sim R_4$ のアルキル基と しては、置換基を有してもよい、メチル基、エチル基、 プロピル基、n-ブチル基、sec-ブチル基、t-ブ チル基のような炭素数1~4個のものが挙げられる。シ クロアルキル基としては、置換基を有してもよい、シク ロプロピル基、シクロペンチル基、シクロヘキシル基の ような炭素数3~8個のものが挙げられる。アルコキシ 基としては、置換基を有してもよい、メトキシ基、エト キシ基、ヒドロキシエトキシ基、プロポキシ基、n-ブ トキシ基、イソブトキシ基、sec-ブトキシ基、t-ブトキシ基のような炭素数1~4個のものが挙げられ る。ハロゲン原子としては、フッ素原子、塩素原子、臭 素原子、沃素原子を挙げることができる。アリール基と しては、フェニル基、トリル基、メトキシフェニル基、 ナフチル基のような置換基を有してもよい炭素数6~1 4個のものが挙げられる。

【0015】上記更なる置換基として好ましくは、炭素 数1~4個のアルコキシ基、ハロゲン原子(フッ素原 子、塩素原子、沃素原子)、炭素数6~10個のアリー ル基、炭素数2~6個のアルケニル基、シアノ基、ヒド ロキシ基、カルボキシ基、アルコキシカルボニル基、ニ トロ基等が挙げられる。本発明で使用される一般式 (I) で表わされるスルホニウム化合物は、その対アニ オン、X⁻ として、直鎖状、分岐状又は環状の炭素数8 個以上、好ましくは10個以上のアルキル基又はアルコ キシ基を少なくとも1個以上有するか、直鎖状、分岐状 又は環状の炭素数4~7個のアルキル基又はアルコキシ 基を少なくとも2個以上有するか、もしくは直鎖状又は 分岐状の炭素数1~3個のアルキル基又はアルコキシ基 を少なくとも3個有するベンゼンスルホン酸、ナフタレ ンスルホン酸又はアントラセンスルホン酸のアニオンを 有する。これにより露光後発生する酸(上記基を有する ベンゼンスルホン酸、ナフタレンスルホン酸、又はアン トラセンスルホン酸)の拡散性が小さくなり、且つ該ス ルホニウム化合物の溶剤溶解性が向上する。特に、拡散 性を低減させるという観点からは上記基として直鎖状の アルキル基又はアルコキシ基より、分岐状又は環状のア ルキル基又はアルコキシ基の方が好ましい。上記基が1 個の場合は、直鎖状と分岐状又は環状との拡散性の差異 はより顕著になる。

【0016】炭素数8個以上、好ましくは炭素数8~2

【〇〇17】また、X⁻で表される芳香族スルホン酸に

○個のアルキル基としては、直鎖状、分岐状又は環状の オクチル基、ノニル基、デシル基、ウンデシル基、ドデ シル基、トリデシル基、テトラデシル基、オクタデシル 基等が挙げられる。炭素数8個以上、好ましくは炭素数 8~20個のアルコキシ基としては、直鎖状、分岐状又 は環状のオクチルオキシ基、ノニルオキシ基、デシルオ キシ基、ウンデシルオキシ基、ドデシルオキシ基、トリ デシルオキシ基、テトラデシルオキシ基、オクタデシル オキシ基等が挙げられる。炭素数4~7個のアルキル基 としては、直鎖状、分岐状又は環状のブチル基、ペンチ ル基、ヘキシル基、ヘプチル基等が挙げられる。炭素数 4~7個のアルコキシ基としては、直鎖状、分岐状又は 環状のブトキシ基、ペンチルオキシ基、ヘキシルオキシ 基、ヘプチルオキシ基等が挙げられる。炭素数1~3個 のアルキル基としては、メチル基、エチル基、nープロ ピル基、イソプロピル基が挙げられる。炭素数1~3個 のアルコキシ基としては、メトキシ基、エトキシ基、n ープロポキシ基、イソプロポキシ基が挙げられる。

[0020]

は、上記特定の置換基以外に、ハロゲン原子(フッ素原 子、塩素原子、臭素原子、沃素原子)、炭素数6~10 個のアリール基、シアノ基、スルフィド基、ヒドロキシ 基、カルボキシ基、ニトロ基等を置換基として含有して もよい。また、1、m、nが各々2又は3の場合、2又 は3個の $R_1 \sim R_4$ のうちの各々の2個が互いに結合し て、炭素環、複素環又は芳香環を含む5~8個の元素か らなる環を形成してもよい。 【〇〇18】一般式(Ⅰ)で表される化合物の感光性組 成物中の含量は、全組成物の固形分に対し、0.1~2 ○重量%が適当であり、好ましくは○.5~10重量 %、更に好ましくは1~7重量%である。以下に、これ らの化合物の具体例(I-1)~(I-28)を示す が、これに限定されるものではない。 [0019] 【化3】

[0021]

[0022]

[0023]

[0024]

【0025】尚、具体例中、nは直鎖、sは第2級、tは第3級、iは分岐であることを示す。一般式(I)で表される化合物は、例えば対応する $C1^-$ 塩(一般式(I)で X^- を $C1^-$ で置換した化合物)と、 X^- Y⁺で表わされる化合物(X^- は一般式(I)の場合と同義、 Y^+ は H^+ 、N a^+ 、 K^+ 、 NH_4 + 、N (CH_3) $_4$ +等のカチオンを示す。)とを水溶液中で塩交換させることにより合成できる。

【0026】〔II〕他の併用しうる光酸発生剤本発明において、上記スルホン酸を発生する一般式(I)で表わされる化合物以外に、他の活性光線または放射線の照射により分解して酸を発生する化合物を併用してもよい。本発明の一般式(I)で表わされる化合物と併用しうる光酸発生剤の比率は、モル比で100/0~20/80、好ましくは90/10~40/60、更に好ましくは80/20~50/50である。そのような併用可能な光酸発生剤としては、光カチオン重合の光開始剤、光ラジカル重合の光開始剤、色素類の光消色剤、光変色剤、あるいはマイクロレジスト等に使用されている公知の光により酸を発生する化合物およびそれらの混合物を適宜に選択して使用することができる。

【0027】たとえば S.I.Schlesinger,Photogr.Sci.Eng.,18,387(1974)、T.S.Bal etal,Polymer,21,423(1980)等に記載のジアゾニウム塩、米国特許第4,069,055号、同4,069,056号、同 Re 27,992号、特願平3-140,140号等に記載のアンモニウム塩、D.C.Necker etal,Macromolecules,17,2468(1984)、C.S.Wen etal,Teh,Proc.Conf.Rad.Curing ASIA,p478 Tokyo,Oct(1988)、米国特許第4,069,055号、同4,069,056号等に記載のホスホニウム塩、J.V.Crivello etal,Macromorecules,10(6),1307(1977)、Chem.&Eng.News,Nov.28,p31(1988)、欧州特

許第104,143 号、米国特許第339,049 号、同第410,201 号、特開平2-150,848 号、特開平2-296,514 号等に記載 のヨードニウム塩、J.V.Crivello etal,Polymer J.17,7 3(1985) J.V.Crivello et al.J.Org.Chem., 43,3055(19 78) W.R. Watt etal, J. Polymer Sci., Polymer Chem. E d.,22,1789(1984) 、J.V.Crivello etal,Polymer Bul 1.,14,279(1985), J.V.Crivello et al, Macromorecules, 14(5),1141(1981) J.V.Crivello etal, J.PolymerSc i.,Polymer Chem.Ed.,17,2877(1979)、欧州特許第370,6 93 号、同3,902,114 号、同233,567 号、同297,443 号、同297,442 号、米国特許第4,933,377 号、同161,81 1号、同410,201号、同339,049号、同4,760,013号、 同4,734,444 号、同2,833,827 号、獨国特許第2,904,62 6号、同3,604,580号、同3,604,581号等に記載のスル ホニウム塩、J.V.Crivello etal, Macromorecules, 10 (6),1307(1977) J.V.Crivello etal, J.PolymerSci., P. olymer Chem. Ed., 17,1047(1979) 等に記載のセレノニ ウム塩、C.S.Wen etal,Teh,Proc.Conf.Rad.CuringASIA, p478 Tokyo,Oct(1988) 等に記載のアルソニウム塩等の オニウム塩、米国特許第3,905,815 号、特公昭46-4605 号、特開昭48-36281号、特開昭55-32070号、特開昭60-2 39736 号、特開昭61-169835 号、特開昭61-169837 号、 特開昭62-58241号、特開昭62-212401 号、特開昭63-702 43号、特開昭63-298339 号等に記載の有機ハロゲン化合 物、K.Meier etal, J.Rad.Curing, 13(4), 26(1986)、T.P. Gilletal, Inorg. Chem., 19, 3007(1980), D. Astruc, Acc. C hem. Res., 19(12), 377(1896)、特開平2-161445号等に記 載の有機金属/有機ハロゲン化物、S. Hayase etal, J. P olymer Sci., 25, 753(1987) E.Reichmanis et al, J.Phol ymer Sci., Polymer Chem. Ed., 23, 1(1985) Q.Q. Zhu eta 1, J. Photochem., 36, 85, 39, 317 (1987) B. Amitetal, Tetr ahedron Lett., (24) 2205(1973) D.H.R.Barton etal, J.C. hem Soc., 3571(1965) P.M. Collins et al, J. Chem. Soc., Perkin I,1695(1975) M. Rudinstein etal, Tetrahedron Lett., (17), 1445 (1975) J.W. Walker et al J. Am. Chem. S oc., 110,7170(1988) S.C.Busman et al, J. Imaging Tech nol., 11(4), 191(1985) H.M. Houlihan etal, Macormolec ules, 21, 2001(1988) P.M. Collins et al, J. Chem. Soc., Ch em. Commun., 532(1972) S. Hayase etal, Macromolecules, 18,1799(1985) E.Reichmanis et al, J. Electrochem. So c., Solid State Sci. Technol., 130(6) F.M. Houlihan e tal, Macromolcules, 21, 2001 (1988) 欧州特許第0290, 750 号、同046,083 号、同156,535 号、同271,851 号、同0, 388,343 号 米国特許第3,901,710 号、同4,181,531 号、特開昭60-198538 号、特開昭53-133022 号等に記載 のo-ニトロベンジル型保護基を有する光酸発生剤、M. TUNOOKA etal, Polymer Preprints Japan, 35(8) G. Bern er etal, J. Rad. Curing, 13(4) W. J. Mijs etal, Coating Technol., 55 (697), 45 (1983), Akzo H. Adachi etal, Po lymer Preprints, Japan, 37(3) 欧州特許第0199, 672号、 同84515 号、同199,672 号、同044,115 号、同0101,122 号、米国特許第618,564 号、同4,371,605 号、同4,431, 774 号、特開昭64-18143号、特開平2-245756号、特願平 3-140109号等に記載のイミノスルフォネート等に代表さ れる光分解してスルホン酸を発生する化合物、特開昭61 -166544 号等に記載のジスルホン化合物を挙げることが できる。

【0028】また、これらの光により酸を発生する基、あるいは化合物をポリマーの主鎖または側鎖に導入した化合物、たとえば、M.E.Woodhouse etal, J.Am. Chem. Soc., 104,5586(1982)、S.P.Pappas etal, J.Imaging Sci., 30(5),218(1986)、S.Kondoetal, Makromol. Chem., Rapid Commun., 9,625(1988)、Y.Yamadaetal, Makromol. Chem., 152,153,163(1972)、J.V.Crivello etal, J.Polymer Sci., Polymer Chem. Ed., 17,3845(1979)、米国特許第3,849,137号、獨国特許第3914407号、特開昭63-26653号、特開昭55-164824号、特開昭62-69263号、特開昭63-146038号、特開昭63-163452号、特開昭62-153853号、特開昭63-146029号等に記載の化合物を用いることができる。

【 O O 2 9 】 さらにV.N.R.Pillai, Synthesis, (1), 1(198 0)、A. Abad etal, Tetrahedron Lett., (47) 4555(1971)、D.H.R. Barton etal, J. Chem. Soc., (C), 329(1970)、米国特許第3,779,778 号、欧州特許第126,712 号等に記載の光により酸を発生する化合物も使用することができる。【 O O 3 O 】上記併用可能な活性光線または放射線の照射により分解して酸を発生する化合物の中で、特に有効に用いられるものについて以下に説明する。

(1)トリハロメチル基が置換した下記一般式(PAG 1)で表されるオキサゾール誘導体または一般式(PA G2)で表されるS-トリアジン誘導体。

【0031】 【化9】

【0032】式中、R²⁰¹ は置換もしくは未置換のアリール基、アルケニル基、R²⁰² は置換もしくは未置換のアリール基、アルケニル基、アルキル基、-C(Y)₃ をしめす。Yは塩素原子または臭素原子を示す。具体的には以下の化合物を挙げることができるがこれらに限定されるものではない。

[0033]

【化10】

$$CI - CH = CH - C C - CCI_3$$

$$(PAG1-1)$$

$$CH_3 - CH = CH - C C - CCl_3$$

$$(PAG1-2)$$

$$CH_3O \longrightarrow CH = CH - C \longrightarrow C - CBr_3$$

$$(PAG1-3)$$

$$(n)C_4H_9O \longrightarrow CH = CH - C \bigcirc C - CCl_3$$

$$(PAG1-4)$$

$$O \longrightarrow CH = CH - C \longrightarrow C - CCl_3$$

$$(PAG1-5)$$

$$CH = CH \qquad C-CCl_3$$

$$(PAG1-6)$$

$$CH = CH - C C - CCI_3$$

$$(PAG1-7)$$

$$CH = CH - CH = CH - CC_0 C - CCl_3$$
(PAG1-8)

【0034】 【化11】

 $C_{13}C$

Cl₃C

Cl₃C

CCl₃

CC13

CCl₃

OCH3

`CCl3

(PAG2-8)

COCH₃

(PAG2-2)

(PAG2 -4)

 OCH_3

(PAG2-6)

CH = CH

【0036】(2)下記の一般式(PAG3)で表され るヨードニウム塩、または一般式(PAG4)で表され るスルホニウム塩。

Cl₃C

CH = CH

(PAG2-9)

CCl₃

CH = CH

(PAG2-10)

[0037] 【化13】

Cl₃C

$$Ar^{1}$$
 R^{203}
 $R^{204}-S^{+}$
 R^{205}
 R^{205}
(PAG4)

【0038】式中、Ar¹、Ar² は各々独立に置換も しくは未置換のアリール基を示す。ここで、好ましい置 換基としては、アルキル基、ハロアルキル基、シクロア ルキル基、アリール基、アルコキシ基、ニトロ基、カル ボキシル基、アルコキシカルボニル基、ヒロドキシ基、 メルカプト基およびハロゲン原子が挙げられる。

【0039】R²⁰³、R²⁰⁴、R²⁰⁵ は各々独立に、置 換もしくは未置換のアルキル基、アリール基を示す。好 ましくは、炭素数6~14のアリール基、炭素数1~8 のアルキル基およびそれらの置換誘導体である。好まし い置換基としては、アリール基に対しては炭素数1~8 のアルコキシ基、炭素数1~8のアルキル基、ニトロ 基、カルボキシル基、ヒロドキシ基およびハロゲン原子 であり、アルキル基に対しては炭素数1~8のアルコキシ基、カルボキシル基、アルコシキカルボニル基である。

【0044】 【化15】

【0040】Z⁻ は対アニオンを示し、CF₃ SO₃ ⁻ 等のパーフルオロアルカンスルホン酸アニオン、ペンタ フルオロベンゼンスルホン酸アニオンを示す。

【0041】また R^{203} 、 R^{204} 、 R^{205} のうちの2つおよび Ar^1 、 Ar^2 はそれぞれの単結合または置換基を介して結合してもよい。

【 0 0 4 2 】 具体例としては以下に示す化合物が挙げられるが、これらに限定されるものではない。

[0043]

【化14】

$$(PAG3-2)$$
 CF₃SO₃

$$O_2N$$
 $-I^+$
 NO_2
(PAG3-3)

$$_{\rm H_3C}$$
 — $_{\rm CH_3}$ — $_{\rm CF_3SO_3}^{-}$ (PAG3-5)

$$H_3C$$
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3

(PAG3 - 1.7)

[0045]

【化16】

[0046] H₃C 【化17】 S+-CH₃ CH₃ CF₃SO₃ HO- $\mathrm{CF_3SO_3}^-$ H₃C (PAG4-7) (PAG4-1) CF_3SO_3 HO: $C_8F_{17}SO_3^-$ (PAG4-8) (PAG4-2) H₃CO CF3SO3 HO-(PAG4-3) H₃CO (PAG4-9) (n)C4H9 (PAG4-4) CF3SO3 HO-(n)C4Hg CF₃SO₃ (PAG4-10) (PAG4-5)CF₃SO₃ HO-CH₃ CF_3SO_3 (PAG4-11)[0048](PAG4-6) 【化19】

[0047]

【化18】

【0051】一般式(PAG3)、(PAG4)で示される上記オニウム塩は公知であり、たとえばJ.W.Knapcz

(PAG4 -25)

yk etal, J. Am. Chem. Soc., 91, 145(1969) 、A. L. Maycok e tal, J. Org. Chem., 35, 2532, (1970)、E. Goethas etal, Bu 11. Soc. Chem. Belg., 73, 546, (1964) 、H. M. Lei cester J. Ame. Chem. Soc., 51, 3587(1929) 、J. V. Crivello etal, J. Polym. Chem. Ed., 18, 2677(1980)、米国特許第2,807,648号および同4,247,473号、特開昭53-101,331号等に記載の方法により合成することができる。

【0052】(3)下記一般式(PAG5)で表される ジスルホン誘導体または一般式(PAG6)で表される イミノスルホネート誘導体。

[0053]

【化22】

$$Ar^3-SO_2-SO_2-Ar^4$$
 $R^{206}-SO_2-O-N$ A (PAG5)

【0054】式中、Ar³、Ar⁴は各々独立に置換もしくは未置換のアリール基を示す。R²⁰⁶ は置換もしくは未置換のアルキル基、アリール基を示す。Aは置換もしくは未置換のアルキレン基、アルケニレン基、アリーレン基を示す。具体例としては以下に示す化合物が挙げられるが、これらに限定されるものではない。

【0055】 【化23】

$$CI \longrightarrow SO_2 - SO_2 \longrightarrow CI$$

$$(PAG5-1)$$

$$H_3C \longrightarrow SO_2 - SO_2 \longrightarrow CH_3$$

$$(PAG5-2)$$

$$H_3C \longrightarrow SO_2 - SO_2 \longrightarrow CI$$

$$(PAG5-4)$$

$$F_3C \longrightarrow SO_2 - SO_2 \longrightarrow CI$$

$$(PAG5-4)$$

$$F_3C \longrightarrow SO_2 - SO_2 \longrightarrow CI$$

$$(PAG5-6)$$

$$H_5C_2O \longrightarrow SO_2 - SO_2 \longrightarrow CI$$

$$(PAG5-6)$$

$$H_5C_2O \longrightarrow SO_2 - SO_2 \longrightarrow CI$$

$$(PAG5-7)$$

$$SO_2 - SO_2 \longrightarrow CI$$

$$(PAG5-7)$$

$$SO_2 - SO_2 \longrightarrow CI$$

$$(PAG5-8)$$

【0056】 【化24】

【化25】

(PAG6-6)

[0058] 【化26】

$$N-0-SO_2$$
 O
 O
 O
 O
 O
 O
 O
 O
 O

【0059】 【化27】

$$\begin{array}{c|c}
 & O \\
 & N \\
 & O \\
 & F \\
 & F
\end{array}$$

(PAG6-14)

$$N-O-SO_2$$
 F
 F
 F

(PAG6-15)

【〇〇6〇】〔ⅠⅠⅠ〕酸の作用により分解し、アルカ リ現像液中での溶解性を増大させる基を有する樹脂 本発明における化学増幅型レジストにおいて用いられる 酸により分解し、アルカリ現像液中での溶解性を増大さ せる基を有する樹脂としては、樹脂の主鎖または側鎖、 あるいは、主鎖及び側鎖の両方に、酸で分解し得る基を 有する樹脂である。この内、酸で分解し得る基を側鎖に 有する樹脂がより好ましい。酸で分解し得る基として好 ましい基は、-COOA®、-O-B®基であり、更に これらを含む基としては、一R° -COOA°、又は一 A_r -O-B^o で示される基が挙げられる。ここでA^o は、 $-C(R^{01})(R^{02})(R^{03})$ 、 $-Si(R^{01})$ R⁰⁶基を示す。B⁰ は、-A⁰ 又は-CO-O-A⁰ 基 を示す(R^0 、 $R^{01} \sim R^{06}$ 、及びArは後述のものと同 義)。

【0061】酸分解性基としては好ましくは、シリルエーテル基、クミルエステル基、アセタール基、テトラヒドロピラニルエステル基、エノールエステル基、第3級のアルキルエーテル基、第3級のアルキルエステル基、第3級のアルキルカーボネート基等である。更に好ましくは、第3級アルキルエステル基、第3級アルキルカーボネート基、クミルエステル基、アセタール基、テトラヒドロピラニルエーテル基である。

【0062】次に、これら酸で分解し得る基が側鎖として結合する場合の母体樹脂としては、側鎖に一〇Hもしくは一〇〇〇H、好ましくは一〇〇〇〇円もしくは一〇八〇〇円基を有するアルカリ可溶性樹脂である。例えば、後述するアルカリ可溶性樹脂を挙げることができる。

【0063】これらアルカリ可溶性樹脂のアルカリ溶解

速度は、0.261Nテトラメチルアンモニウムハイドロオキサイド(TMAH)で測定(23C)して170A/秒以上のものが好ましい。特に好ましくは330A/秒以上のものである(Aはオングストローム)。また、矩形プロファイルを達成する点から遠紫外光やエキシマレーザー光に対する透過率が高いアルカリ可溶性樹脂が好ましい。好ましくは、 1μ m膜厚の248nmでの透過率が $20\sim90\%$ である。このような観点から、特に好ましいアルカリ可溶性樹脂は、o-, m-, p-ポリ(ヒドロキシスチレン)、カロゲンもしくはアルキル置換ポリ(ヒドロキシスチレン)、ポリ(ヒドロキシスチレン)、ポリ(ヒドロキシスチレン)、ポリ(ヒドロキシスチレン)、ポリ(ヒドロキシスチレン)、ポリ(ヒドロキシスチレン)、ポリ(ヒドロキシスチレン)、ポリ(ヒドロキシスチレン)、ポリ(ヒドロキシスチレン)、ポリ(ヒドロキシスチレン)の一部、0-アルキル化もしくは0-アシル化物、スチレンーヒドロキシスチレン共重合体、 α

ーメチルスチレンーヒドロキシスチレン共重合体及び水 素化ノボラック樹脂である。

【0064】本発明に用いられる酸で分解し得る基を有する樹脂は、欧州特許254853号、特開平2-25850号、同3-223860号、同4-251259号等に開示されているように、アルカリ可溶性樹脂に酸で分解し得る基の前駆体を反応させる、もしくは、酸で分解し得る基の結合したアルカリ可溶性樹脂モノマーを種々のモノマーと共重合して得ることができる。

【0065】本発明に使用される酸により分解し得る基 を有する樹脂の具体例を以下に示すが、本発明がこれら に限定されるものではない。

【0066】

【化28】

【0067】 【化29】

【0068】 【化30】

[0069]

【化31】

【0070】酸で分解し得る基の含有率は、樹脂中の酸で分解し得る基の数(B)と酸で分解し得る基で保護されていないアルカリ可溶性基の数(S)をもって、B/(B+S)で表される。含有率は好ましくは0.01~0.5、より好ましくは0.05~0.40、更に好ましくは0.05~0.30である。B/(B+S)>0.5ではPEB後の膜収縮、基板への密着不良やスカムの原因となり好ましくない。一方、B/(B+S)<0.01では、パターン側壁に顕著に定在波が残ることがあるので好ましくない。

【0071】酸で分解し得る基を有する樹脂の重量平均分子量(Mw)は、2,000~200,000の範囲であることが好ましい。2,000未満では未露光部の現像により膜減りが大きく、200,000を越えるとアルカリ可溶性樹脂自体のアルカリに対する溶解速度が遅くなり感度が低下してしまう。より好ましくは、5,000~100,000の範囲であり、更に好ましくは8,000~50,000の範囲である。また、分散度(Mw/Mn)は、好ましくは1.0~4.0、より好ましくは1.0~2.0、特に好ましくは1.0~1.6であり、分散度が小さいほど、耐熱性、画像形成性(パターンプロファイル、デフォーカスラチチュード等)が良好となる。ここで、重量平均分子量は、ゲルパーミエーションクロマトグラフィーのポリスチレン換算値をもって定義される。

【0072】また、本発明における酸で分解し得る基を有する樹脂は2種類以上混合して使用しても良い。本発明におけるこれら樹脂の使用量は、感光性組成物の全重量(溶媒を除く)を基準として40~99重量%、好ましくは60~95重量%である。更に、アルカリ溶解性を調節するために、酸で分解し得る基を有さないアルカリ可溶性樹脂を混合しても良い。

【0073】上記酸発生剤、酸で分解し得る基を有する 樹脂とともに、後記する酸分解性低分子溶解阻止化合物 を混合することが好ましい。この場合、該溶解阻止化合 物の含量は、感光性組成物の全重量(溶媒を除く)を基 準として3~45重量%、好ましくは5~30重量%、 より好ましくは10~20重量%である。

【 0 0 7 4 】 〔 I V 〕本発明で使用されるアルカリ可溶性樹脂

本発明において、水不溶でアルカリ水溶液に可溶な樹脂 (以下、アルカリ可溶性樹脂ともいう)を用いることが 好ましい。本発明に用いられるアルカリ可溶性樹脂とし ては、例えばノボラック樹脂、水素化ノボラツク樹脂、 アセトンーピロガロール樹脂、oーポリヒドロキシスチ レン、mーポリヒドロキシスチレン、pーポリヒドロキ シスチレン、水素化ポリヒドロキシスチレン、ハロゲン もしくはアルキル置換ポリヒドロキシスチレン、ヒドロ キシスチレンーNー置換マレイミド共重合体、o/pー 及びm/pーヒドロキシスチレン共重合体、ポリヒドロ

キシスチレンの水酸基に対する一部〇-アルキル化物 (例えば、5~30モル%の〇ーメチル化物、〇一(1 ーメトキシ) エチル化物、O-(1-エトキシ) エチル 化物、〇-2-テトラヒドロピラニル化物、〇-(t-ブトキシカルボニル)メチル化物等)もしくは〇一アシ ル化物(例えば、5~30モル%のo-アセチル化物、 〇一(t-ブトキシ)カルボニル化物等)、スチレンー 無水マレイン酸共重合体、スチレンーヒドロキシスチレ ン共重合体、 $\alpha - \lambda$ チルスチレンーヒドロキシスチレン 共重合体、カルボキシル基含有メタクリル系樹脂及びそ の誘導体を挙げることができるが、これらに限定される ものではない。特に好ましいアルカリ可溶性樹脂はノボ ラック樹脂及びoーポリヒドロキシスチレン、mーポリ ヒドロキシスチレン、pーポリヒドロキシスチレン及び これらの共重合体、アルキル置換ポリヒドロキシスチレ ン、ポリヒドロキシスチレンの一部〇一アルキル化、も しくは〇一アシル化物、スチレンーヒドロキシスチレン 共重合体、 $\alpha-$ メチルスチレン-ヒドロキシスチレン共 重合体である。該ノボラック樹脂は所定のモノマーを主 成分として、酸性触媒の存在下、アルデヒド類と付加縮 合させることにより得られる。

【0075】所定のモノマーとしては、フェノール、m - クレゾール、p - クレゾール、o - クレゾール等のク レゾール類、2,5ーキシレノール、3,5ーキシレノ ール、3,4-キシレノール、2,3-キシレノール等 のキシレノール類、m-エチルフェノール、p-エチル フェノール、oーエチルフェノール、p-t-ブチルフ ェノール、pーオクチルフエノール、2,3,5ートリ メチルフェノール等のアルキルフェノール類、p-メト キシフェノール、mーメトキシフェノール、3,5ージ メトキシフェノール、2-メトキシー4-メチルフェノ ール、m-エトキシフェノール、p-エトキシフェノー ル、mープロポキシフェノール、pープロポキシフェノ ール、mーブトキシフェノール、pーブトキシフェノー ル等のアルコキシフェノール類、2-メチルー4-イソ プロピルフェノール等のビスアルキルフェノール類、m ークロロフェノール、pークロロフェノール、oークロ ロフェノール、ジヒドロキシビフェニル、ビスフェノー ルA、フェニルフェノール、レゾルシノール、ナフトー ル等のヒドロキシ芳香化合物を単独もしくは2種類以上 混合して使用することができるが、これらに限定される ものではない。

【0076】アルデヒド類としては、例えばホルムアルデヒド、パラホルムアルデヒド、アセトアルデヒド、プロピオンアルデヒド、ベンズアルデヒド、フェニルアセトアルデヒド、 α -フェニルプロピルアルデヒド、 β -フェニルプロピルアルデヒド、 α -フェニルプロピルアルデヒド、 β -フェニルプロピルアルデヒド、 α -ヒドロキシベンズアルデヒド、 α -ヒドロキシベンズアルデヒド、 α -ヒドロキシベンズアルデヒド、 α -クロロベンズアルデヒド、 α -

ルデヒド、oーニトロベンズアルデヒド、mーニトロベンズアルデヒド、pーニトロベンズアルデヒド、oーメチルベンズアルデヒド、mーメチルベンズアルデヒド、pーメチルベンズアルデヒド、pーエチルベンズアルデヒド、pーnーブチルベンズアルデヒド、フルフラール、クロロアセトアルデヒド及びこれらのアセタール体、例えばクロロアセトアルデヒドジエチルアセタール等を使用することができるが、これらのアルデヒド類は、単独でもしくは2種類以上組み合わせて用いられる。酸性触媒としては塩酸、硫酸、ギ酸、酢酸、シュウ酸等を使用することができる。

【〇〇77】こうして得られたノボラック樹脂の重量平 均分子量は、1,000~30,000の範囲であるこ とが好ましい。1,000未満では未露光部の現像後の 膜減りが大きく、30,000を越えると現像速度が小 さくなってしまう。特に好適なのは2,000~20, 000の範囲である。また、ノボラック樹脂以外の前記 ポリヒドロキシスチレン、及びその誘導体、共重合体の 重量平均分子量は、2000以上、好ましくは5000 \sim 200000、より好ましくは10000 \sim 1000 〇〇である。また、レジスト膜の耐熱性を向上させると いう観点からは、25000以上が好ましい。ここで、 重量平均分子量はゲルパーミエーションクロマトグラフ ィーのポリスチレン換算値をもって定義される。本発明 に於けるこれらのアルカリ可溶性樹脂は2種類以上混合 して使用しても良い。アルカリ可溶性樹脂の使用量は、 感光性組成物の全重量(溶媒を除く)を基準として、4 0~97重量%、好ましくは60~90重量%である。 【0078】〔V〕本発明に使用される低分子酸分解性 溶解阻止化合物

本発明において、低分子酸分解性溶解阻止化合物を用い ることが好ましい。本発明に用いられる酸分解性溶解阻 止化合物としては、その構造中に酸で分解し得る基を少 なくとも2個有し、該酸分解性基間の距離が最も離れた 位置において、酸分解性基を除く結合原子を少なくとも 8個経由する化合物である。本発明において、好ましく は酸分解性溶解阻止化合物は、その構造中に酸で分解し 得る基を少なくとも2個有し、該酸分解性基間の距離が 最も離れた位置において、酸分解性基を除く結合原子を 少なくとも10個、好ましくは少なくとも11個、更に 好ましくは少なくとも12個経由する化合物、又は酸分 解性基を少なくとも3個有し、該酸分解性基間の距離が 最も離れた位置において、酸分解性基を除く結合原子を 少なくとも9個、好ましくは少なくとも10個、更に好 ましくは少なくとも11個経由する化合物である。又、 上記結合原子の好ましい上限は50個、更に好ましくは 30個である。本発明において、酸分解性溶解阻止化合 物が、酸分解性基を3個以上、好ましくは4個以上有す る場合、又酸分解性基を2個有するものにおいても、該 酸分解性基が互いにある一定の距離以上離れている場合、アルカリ可溶性樹脂に対する溶解阻止性が著しく向上する。なお、本発明における酸分解性基間の距離は、酸分解性基を除く、経由結合原子数で示される。例えば、以下の化合物(1),(2)の場合、酸分解性基間

の距離は、各々結合原子4個であり、化合物(3)では 結合原子12個である。

(1)

【0079】 【化32】

$$B^0 - O = \frac{1}{2} \left(\frac{3}{2} \right)^4 - O - B^0$$

$$A^{0} - OOC - {^{1}CH_{2}} - {^{2}CH_{2}} - {^{3}CH_{2}} - {^{4}CH_{2}} - COO - A^{0}$$
 (2)

$$B^{0}-O \xrightarrow{CH_{3}} A \xrightarrow{5}_{CH_{2}} - {^{5}_{CH_{2}}} - {^{7}_{CH_{2}}} - {^{8}_{CH_{2}}} - {^{8}_{CH_{2}}} - {^{9}_{CH_{2}}} - {^{9}_{CH_{2}}} - {^{9}_{CH_{2}}} - {^{9}_{CH_{2}}} - {^{9}_{CH_{3}}}$$

$$(3)$$

酸分解性基:-COO-A⁰、-O-B⁰

【0080】また、本発明の酸分解性溶解阻止化合物 は、1つのベンゼン環上に複数個の酸分解性基を有して いても良いが、好ましくは、1つのベンゼン環上に1個 の酸分解性基を有する骨格から構成される化合物であ る。更に、本発明の酸分解性溶解阻止化合物の分子量は 3,000以下であり、好ましくは500~3,00 0、更に好ましくは1,000~2,500である。 【0081】本発明の好ましい実施態様においては、酸 により分解し得る基、即ち-COO-A⁰、-O-B⁰ 基を含む基としては、-Rº-COO-Aº、又は-A r-O-B⁰ で示される基が挙げられる。ここでA ⁰ は、-C(R⁰¹)(R⁰²)(R⁰³)、-Si(R⁰¹) R⁰⁶基を示す。B⁰ は、A⁰ 又は-CO-O-A⁰ 基を 示す。R⁰¹、R⁰²、R⁰³、R⁰⁴及びR⁰⁵は、それぞれ同 一でも相異していても良く、水素原子、アルキル基、シ クロアルキル基、アルケニル基もしくはアリール基を示 し、R06はアルキル基もしくはアリール基を示す。但 し、Rロ1~Rロ3の内少なくとも2つは水素原子以外の基 であり、又、R01~R03、及びR04~R06の内の2つの 基が結合して環を形成してもよい。Rº は置換基を有し ていても良い2価以上の脂肪族もしくは芳香族炭化水素 基を示し、-Ar-は単環もしくは多環の置換基を有し ていても良い2価以上の芳香族基を示す。

【0082】ここで、アルキル基としてはメチル基、エチル基、プロピル基、n-ブチル基、sec-ブチル基、t-ブチル基の様な炭素数1~4個のものが好ましく、シクロアルキル基としてはシクロプロピル基、シクロブチル基、シクロペキシル基、アダマンチル基の様な炭素数3~10個のものが好ましく、アルケニル基としてはビニル基、プロペニル基、アリル基、ブテニル基の様な炭素数2~4個のものが好ましく、アリール基とし

てはフエニル基、キシリル基、トルイル基、クメニル 基、ナフチル基、アントラセニル基の様な炭素数6~1 4個のものが好ましい。また、置換基としては水酸基、 ハロゲン原子(フツ素、塩素、臭素、ヨウ素)、ニトロ 基、シアノ基、上記のアルキル基、メトキシ基・エトキ シ基・ヒドロキシエトキシ基・プロポキシ基・ヒドロキ シプロポキシ基・n-ブトキシ基・イソブトキシ基・s ecーブトキシ基・tーブトキシ基等のアルコキシ基、 メトキシカルボニル基・エトキシカルボニル基等のアル コキシカルボニル基、ベンジル基・フエネチル基・クミ ル基等のアラルキル基、アラルキルオキシ基、ホルミル 基・アセチル基・ブチリル基・ベンゾイル基・シアナミ ル基・バレリル基等のアシル基、ブチリルオキシ基等の アシロキシ基、上記のアルケニル基、ビニルオキシ基・ プロペニルオキシ基・アリルオキシ基・ブテニルオキシ 基等のアルケニルオキシ基、上記のアリール基、フエノ キシ基等のアリールオキシ基、ベンゾイルオキシ基等の アリールオキシカルボニル基を挙げることができる。

【0083】酸により分解しうる基として、好ましくは、シリルエーテル基、クミルエステル基、アセタール基、テトラヒドロピラニルエーテル基、エノールエーテル基、第3級のアルキルエステル基、第3級のアルキルエステル基、第3級のアルキルカーボネート基等である。更に好ましくは、第3級アルキルエステル基、テトラヒドロピラニルエーテル基である。【0084】酸分解性溶解阻止化合物としては、好ましくは、特開平1-289946号、特開平3-128959号、特開平3-158855号、特開平3-179353号、特開平3-191351号、特開平3-200252号、特開平3-200252号、特開平3-200252号、特開平3-200252号、特開平3-200252号、特開平3-200252号、特開平3-200252号、特開平3-200

0253号、特開平3-200254号、特開平3-200255号、特開平3-259149号、特開平3-279958号、特開平3-279959号、特開平4-1650号、特開平4-1651号、特開平4-11260号、特開平4-12356号、特開平4-12357号、特願平3-33229号、特願平3-230790号、特願平3-320438号、特願平4-25157号、特願平4-52732号、特願平4-103215号、特願平4-104542号、特願平4-107885号、特願平4-107889号、同4-152195号等の明細書に記載されたポリヒドロキシ化合物のフエノール性OH基の一部もしくは全部を上に示した基、-R⁰-COO-A⁰もしくはB⁰基で結合し、保護した化合物が含まれる。

【0085】更に好ましくは、特開平1-289946号、特開平3-128959号、特開平3-158855号、特開平3-179353号、特開平3-200251号、特開平3-200255号、特開平3-259149号、特開平3-279958号、特開平4-1650号、特開平4-11260号、特開平4-12357号、特願平4-12357号、特願平4-103215号、特願平4-104542号、特願平4-107885号、特願平4-107889号、同4-152195号の明細書に記載されたポリヒドロキシ化合物を用いたものが挙げられる。

【0086】より具体的には、一般式 $[I] \sim [XVI]$ で表される化合物が挙げられる。

[0087]

[化33]
$$(R^{102}O)_{i_0}$$

$$R^{100}$$

$$(R^{103})_{d}$$

$$(R^{103})_{d}$$

$$(R^{104})_{c}$$

$$(R^{102}O)_f$$
 $(R^{106})_i$
 $(R^{106})_j$
 $(R^{107})_j$
 $(QR^{108})_g$
 $(QR^{108})_g$

【0088】 【化34】

$$(R^{116})_{v}$$
 $(R^{117})_{u}$
 $(R^{118})_{t}$
 $(R^{118})_{t}$

$$(R^{102}O)\chi$$
 $(OR^{101})_W$
 $(R^{122})_{a1}$ O $(R^{121})_z$
 $(R^{123})_{b1}$ $(OR^{108})_y$
[V]

$$(R^{102}O)X$$
 $(OR^{101})_{w}$ $(R^{122})_{a1}$ $(R^{123})_{b1}$ $(OR^{108})_{y}$ [VI]

[0089]

【化35】

$$(R^{101}O)_{g1} \qquad (R^{131})_{k1}$$

$$(R^{108}O)_{i1} \qquad A \qquad (QR^{130})_{j1}$$

$$(R^{134})_{in1} \qquad (QR^{134})_{in1} \qquad (QR^{133})_{j1}$$

$$(QR^{134})_{in1} \qquad (QR^{133})_{j1}$$

$$(R^{102}Q)_{p1}$$
 B
 $(R^{135})_{q1}$
 $(R^{138})_{q1}$
 $(R^{139})_{r1}$
 R^{137}
 R^{136}
 $(R^{138})_{q1}$

【0090】 【化36】

$$(R^{102}Q)_{t1}$$
 $(R^{140})_{u1}$ $(R^{141})_{v1}$ $(R^{142})_{v1}$

$$(R^{101})_{w1} \stackrel{R^{144}}{\overset{1}{\underset{K}{\bigcap}}}_{C-E}$$
(R¹⁴³)_{x1} $\stackrel{1}{\underset{R}{\bigcap}}_{R^{145}}$

【0091】R¹⁰¹、R¹⁰²、R¹⁰⁸、R¹³⁰:同一でも異なっていても良く、水素原子、-R⁰-COO-C(R⁰¹)(R⁰²)(R⁰³)又は-CO-O-C(R⁰¹)(R⁰²)(R⁰³)、但し、R⁰、R⁰¹、R⁰²及びR⁰³の定義は前記と同じである。

【0092】R¹⁰⁰:-CO-, -COO-, -NHCONH-, -NHCOO-, -O-、-S-, -SO-, -SO₂-, -SO₃-, もしくは

【0093】 【化37】

$$\begin{array}{c|c}
R^{150} \\
C \\
R^{151}
\end{array}$$

【0094】ここで、 $G=2\sim6$ 但し、G=2の時は R^{150} 、 R^{151} のうち少なくとも一方はアルキル基、 R^{150} 、 R^{151} :同一でも異なっていても良く、水素原子,アルキル基,アルコキシ基、-OH,-COOH,-CN,ハロゲン原子, $-R^{152}$ $-COOR^{153}$ もしく

 $t = R^{154} - OH$

R¹⁵² 、R¹⁵⁴ : アルキレン基、

R¹⁵³:水素原子,アルキル基,アリール基,もしくは アラルキル基、

R⁹⁹、R¹⁰³ ~R¹⁰⁷ 、R¹⁰⁹ 、R¹¹¹ ~R¹¹⁸ 、R ¹²¹ ~R¹²³ 、R¹²⁸ ~R¹²⁹ 、R¹³¹ ~R¹³⁴ 、R ¹³⁸ ~R¹⁴¹ 及びR¹⁴³ : 同一でも異なっても良く、水 素原子、水酸基、アルキル基、アルコキシ基、アシル 基、アシロキシ基、アリール基、アリールオキシ基、ア ラルキル基、アラルキルオキシ基、ハロゲン原子、ニト ロ基、カルボキシル基、シアノ基、もしくはーN(R¹⁵⁵) (R¹⁵⁶) (R¹⁵⁵、R¹⁵⁶: H、アルキル基、もしくはアリー ル基)

R¹¹⁰:単結合,アルキレン基,もしくは

【0095】

【化38】

$$-R^{157}$$
 R^{159} R^{159}

【 0 0 9 6 】 R¹⁵⁷ 、 R¹⁵⁹ :同一でも異なっても良く、単結合、アルキレン基、 - O - , - S - , - C O - , もしくはカルボキシル基、

R¹⁵⁸:水素原子,アルキル基,アルコキシ基,アシル基,アシロキシ基,アリール基,ニトロ基,水酸基,シアノ基,もしくはカルボキシル基、但し、水酸基が酸分解性基(例えば、セーブトキシカルボニルメチル基、テトラヒドロピラニル基、1-エトキシー1-エチル基、1-t-ブトキシー1-エチル基)で置き換ってもよい。

【0097】R¹¹⁹、R¹²⁰:同一でも異なっても良く、メチレン基、低級アルキル置換メチレン基、ハロメチレン基、もしくはハロアルキル基、但し本願において低級アルキル基とは炭素数 1~4のアルキル基を指す、

 $R^{124} \sim R^{127}$: 同一でも異なっても良く、水素原子もしくはアルキル基、

 R^{135} $\sim R^{137}$: 同一でも異なっても良く、水素原子、アルキル基、アルコキシ基、アシル基、もしくはアシロキシ基、

 R^{142} : 水素原子, $-R^{0}-COO-C(R^{01})$ (R^{02}) (R^{03}) 又は $-CO-O-C(R^{01})$ (R^{02}) (R^{03})、もしくは

[0098]

【化39】

【 0 0 9 9 】 R¹⁴⁴ 、 R¹⁴⁵ : 同一でも異なっても良く、水素原子, 低級アルキル基, 低級ハロアルキル基, もしくはアリール基、

R¹⁴⁶ ~R¹⁴⁹ :同一でも異なっていても良く、水素原子、水酸基、ハロゲン原子、ニトロ基、シアノ基、カルボニル基、アルキル基、アルコキシ基、アルコキシカルボニル基、アラルキル基、アラルキルオキシ基、アシル基、アシロキシ基、アルケニルオキシ基、アリール基、アリールオキシ基、もしくはアリールオキシカルボニル基、但し、各4個の同一記号の置換基は同一の基でなくても良い、

 $Y: -CO-, \& U < \& L-SO_2-,$

Z, B:単結合, もしくは-O-、

A:メチレン基,低級アルキル置換メチレン基,ハロメチレン基,もしくはハロアルキル基、

E:単結合,もしくはオキシメチレン基、

a~z, a1~y1:複数の時、() 内の基は同一または異なっていてもよい、

a~q、s,t,v,g1~i1,k1~m1,o1,q1,s1,u1:0もしくは 1~5の整数、

r,u,w,x,y,z,a1~f1,p1,r1,t1,v1~x1:0もしくは1~ 4の整数、

j1,n1,z1,a2,b2,c2,d2:Oもしくは1~3の整数、

z1,a2,c2,d2のうち少なくとも1つは1以上、

y1:3~8の整数、

(a+b), (e+f+g), (k+1+m), (q+r+s), (w+x+y), (c1+d1), (g1+h1+i1+j1), (o1+p1), (s1+t1) ≥ 2 ,

 $(j1+n1) \leq 3$

(r+u), (w+z), (x+a1), (y+b1), (c1+e1), (d1+f1), (p1+r1), (t1+v1), $(x1+w1) \le 4$ 、但し一般式 [V] の場合は(w+z), $(x+a1) \le 5$ 、

$$\begin{split} &(a+c)\,,\,(b+d)\,,\,(e+h)\,,\,(f+i)\,,\,(g+j)\,,\,(k+n)\,,\,(1+o)\,,\,(m+p)\,,\,(q\\ &+t)\,,\,(s+v)\,,\,(g1+k1)\,,\,(h1+l1)\,,\,(i1+m1)\,,\,(o1+q1)\,,\,(s1+u1)\\ &\leq 5\,, \end{split}$$

を表す。

[0100]

【化40】

O || R¹⁵⁰ : 有機基、単結合、-S-、-SO-もしくは**-**S-|| O

R¹⁶¹: 水素原子、一価の有機基もしくは

R¹⁶² R¹⁶³ R¹⁶⁴ R¹⁶⁵ R¹⁶⁶ R

R¹⁶²~R¹⁶⁶: 同一でも異なっていても良く、水素原子、水酸基、ハロゲン原子、アルキル基、アルコキシ基、アルケニル基、-O-R⁰-COO-C(R⁰¹)(R⁰²)(R⁰³)もしくは-O-CO-O-C(R⁰¹)(R⁰²)(R⁰³)、但し、少なくとも2つは-O-R⁰-COO-C(R⁰¹)(R⁰²)(R⁰³)である、又、各4もしくは6個の同一記号の置換基は同一の基でなくても良い、

X :2価の有機基、

e2 :0もしくは1、を表わす。

[0101]

【化41】

R¹⁶⁷~R¹⁷⁰: 同一でも異なっても良く、水素原子、水酸基、

ハロゲン原子、アルキル基、アルコキシ基、も しくはアルケニル基、但し、各4~6個の同一記 号の置換基は同一の基でなくても良い、

 R^{171} , R^{172} : 水素原子、アルキル基もしくは R^{167} R^{168}

R^{1.73}: 少なくとも2つは-O-R⁰-COO-C(R⁰¹) (R⁰²) (R⁰³)基もし

くは-O-CO-O-C(R⁰¹)(R⁰²)(R⁰³)基であり、その他は水

酸基である、

f2, h2: 0もしくは1、

g?: 0もしくは1~4の整数、

を表す。

[0102]

【化42】

R^{1/4}~R¹⁸⁰: 同一でも異なっても良く、水素原子、水酸基、ハロゲン原子、アルキル基、アルコキシ基、ニトロ基、アルケニル基、アリール基、アラルキル基、アルコキシカルボニル基、アリールカルボニル基、アシロキシ基、アシル基、アラルキルオキシ基もしくはアリールオキシ基、但し、各6個の同一配号の置換基は同一の基でなくても良い、

 R^{181} : 少なくとも2つは $-O-R^0-COO-C(R^{01})$ (R^{02}) (R^{03}) 基もしくは $-O-CO-O-C(R^{01})$ (R^{02})(R^{03}) 基であり、その他は水酸基である、

を表す。

[0103]

【化43】

R¹⁸²: 水素原子もしくはアルキル基、但し、全部同一でなく ても良い、

R¹⁸³~R¹⁸⁶: 水酸基、水素原子、ハロゲン原子、アルキル 基、もしくはアルコキシ基、但し、各3個の同 一記号の置換基は同一の基でなくても良い、

 R^{187} : 少なくとも2つは $-O-R^0-COO-C(R^{01})$ (R^{02}) (R^{03})基もしくは、 $-O-CO-O-C(R^{01})$ (R^{02})(R^{03})基であり、その他は水酸基である、

を表す。

【0104】好ましい化合物骨格の具体例を以下に示

す。 【0105】

【化44】

【0106】 【化45】

$$H_3C$$
 RO
 CH_2
 CH_3
 CH_3

RO
$$\longrightarrow$$
 CH \longrightarrow OR \longrightarrow OR \longrightarrow OR \longrightarrow OR \longrightarrow OH \longrightarrow OH (9)

【0107】 【化46】

$$RO$$
 CH_3
 CH

$$CH_3$$
 CH_3 CH_3

【0108】 【化47】

$$CH_3$$
 CH_3 OR CH_3 OR CH_3 OR OR OR OR OR OR OR

$$RO \longrightarrow CH_3$$
 CH_3
 OR
 OR
 OR
 OR

【0109】 【化48】

$$CH_3$$
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3

【0110】 【化49】

$$H_3C$$
 CH_3
 CH_3

$$CH_3$$
 CH_3 CH_3

【0111】 【化50】

$$CH_3$$
 CH_3
 COR
 CO

$$\begin{array}{c|c}
OR & OR & OR \\
RO & OR & OR \\
CI3 & OR \\
CI3 & OR
\end{array}$$
(24)

【0112】 【化51】

$$\begin{array}{c|c} CH_3 & OR & CH_3 \\ RO & OR & OR \\ H_3C & OR & CH_3 \\ \end{array}$$

$$\begin{array}{c|c} CH_3 & OR & CH_3 \\ CH_3 & OR & CH_3 \\ \end{array}$$

RO
$$\bigcirc$$
 OR OR OR \bigcirc C = O \bigcirc (28)

【0113】 【化52】

【0114】 【化53】

$$\begin{array}{c|c} & \text{OR} & \text{CH}_3 \\ & \text{CH}_2 & \text{OR} \\ & \text{CH}_2 & \text{OR} \\ & \text{CH}_2 & \text{CH}_3 \\ & \text{CH}_3 & \text{CH}_3 \\ & \text{CH}_3 & \text{CH}_3 \\ & \text{OR} \\ & \text{OR} & \text{CH}_3 \\ & \text{OR} \\ & \text{OR} & \text{CH}_3 \\ & \text{OR} \\ &$$

$$CH_3$$
 RO
 H_3C
 CH_3
 OR
 OR
 (35)

【0115】 【化54】

【0116】 【化55】

$$H_{3}C$$
 CH_{3}
 $H_{3}C$
 CH_{3}
 C

$$RO$$
 H_3C
 CH_3
 H_3C
 CH_3
 H_3C
 CH_3
 CH

【0117】 【化56】

$$H_3C$$
 H_3C
 CH_3
 CH_3

【0118】 【化57】

【0119】 【化58】

Cl RO—OR RO—OR Cl Cl (50)

$$H_3C$$
 CH_3
 RO
 OR
 H_3C
 CH_3
 CH_3

【0120】 【化59】

【0121】 【化60】

【0122】 【化61】

RO
$$\longrightarrow$$
 CH₂ \longrightarrow CH₂ \longrightarrow OR
OR
(58)

RO
$$\bigcirc$$
 CH₂CH₂-C- \bigcirc OR \bigcirc OR \bigcirc (59)

[0123] 【化62】

 $-\cos -c_4 H_9^t$,

【0126】を表す。但し、少なくとも2個、もしくは 構造により3個は水素原子以外の基であり、各置換基R は同一の基でなくても良い。

【0127】本発明において、上記溶解阻止化合物の添 加量は、酸発生化合物、アルカリ可溶性樹脂と組み合わ せる場合、感光性組成物の全重量(溶媒を除く)を基準 として3~50重量%であり、好ましくは5~40重量 %、より好ましくは10~35重量%の範囲である。

【 0 1 2 8 】 〔 V I 〕 本発明に使用されるその他の成分 本発明の感光性組成物には必要に応じて、更に染料、顔 料、可塑剤、界面活性剤、光増感剤、有機塩基性化合物

RO
$$CH_3$$
 CH_3 CH_3

$$CH_3$$
 CH_3 CH_3

【0124】化合物(1)~(63)中のRは、水素原 子、

$$--CH_2 - COO - C_4H_9^{t}$$

及び現像液に対する溶解性を促進させるフエノール性〇 H基を2個以上有する化合物などを含有させることがで きる。

【0129】本発明で使用できるフェノール性〇H基を 2個以上有する化合物は、好ましくは分子量1000以 下のフェノール化合物である。また、分子中に少なくと も2個のフェノール性水酸基を有することが必要である が、これが10を越えると、現像ラチチュードの改良効 果が失われる。また、フェノール性水酸基と芳香環との 比が 0.5未満では膜厚依存性が大きく、また、現像ラ チチュードが狭くなる傾向がある。この比が1.4を越 えると該組成物の安定性が劣化し、高解像力及び良好な 膜厚依存性を得るのが困難となって好ましくない。

【0130】このフェノール化合物の好ましい添加量はアルカリ可溶性樹脂に対して2~50重量%であり、更に好ましくは5~30重量%である。50重量%を越えた添加量では、現像残渣が悪化し、また現像時にパターンが変形するという新たな欠点が発生して好ましくない。

【0131】このような分子量1000以下のフェノール化合物は、例えば、特開平4-122938、特開平2-28531、米国特許第4916210、欧州特許第219294等に記載の方法を参考にして、当業者に於て容易に合成することが出来る。フェノール化合物の具体例を以下に示すが、本発明で使用できる化合物はこれらに限定されるものではない。

【0132】レゾルシン、フロログルシン、2,3,4 ートリヒドロキシベンゾフェノン、2,3,4,4′ー テトラヒドロキシベンゾフェノン、2,3,4,3′, 4′,5′ーヘキサヒドロキシベンゾフェノン、アセト ンーピロガロール縮合樹脂、フロログルコシド、2, 4,2′,4′ービフェニルテトロール、4,4′ーチ オビス(1,3ージヒドロキシ)ベンゼン、2,2′, 4,4′ーテトラヒドロキシジフェニルエーテル、2, 2′,4,4′ーテトラヒドロキシジフェニルスルフォ

キシド、2,2′,4,4′ーテトラヒドロキシジフェ ニルスルフォン、トリス(4-ヒドロキシフェニル)メ タン、1,1-ビス(4-ヒドロキシフェニル)シクロ ヘキサン、4, $4-(\alpha-メチルベンジリデン) ビスフ$ ェノール、 α , α' , α'' ートリス(4ーヒドロキシフ ェニル)-1,3,5-トリイソプロピルベンゼン、 α , α' , α'' ートリス (4ーヒドロキシフェニル)ー 1-エチルー4-イソプロピルベンゼン、1,2,2-トリス(ヒドロキシフェニル)プロパン、1,1,2-トリス(3,5-ジメチル-4-ヒドロキシフェニル) プロパン、2,2,5,5ーテトラキス(4ーヒドロキ シフェニル) ヘキサン、1,2-テトラキス(4-ヒド ロキシフェニル) エタン、1、1、3ートリス(ヒドロ キシフェニル) ブタン、パラ〔 α , α , α , α トラキス(4-ヒドロキシフェニル)〕-キシレン等を 挙げることができる。

【0133】本発明で用いることのできる好ましい有機塩基性化合物とは、フェノールよりも塩基性の強い化合物である。中でも含窒素塩基性化合物が好ましい。好ましい化学的環境として、下記式(A)~(E)の構造を挙げることができる。

【0134】 【化64】

ここで、 R^{250} 、 R^{251} および R^{252} は、同一または異なり、水素原子、 炭素数1~6のアルキル基、炭素数1~6のアミノアルキル基、炭素数 1~6のヒドロキシアルキル基または炭素数6~20の置換もしくは非置 換のアリール基であり、ここで R^{254} と R^{255} は互いに結合して環を形成してもよい。

$$-N-C=N- \cdots (B)$$

$$= C-N=C- \cdots (C)$$

$$= C-N- \cdots (D)$$

$$= C-N- \cdots (D)$$

$$R^{254} R^{255}$$

$$R^{253}-C-N-C-R^{256} \cdots (E)$$

(式中、 R^{253} 、 R^{254} 、 R^{255} および R^{256} は、同一または異なり、炭素数1~6のアルキル基を示す)

【 0 1 3 5 】 更に好ましい化合物は、一分子中に異なる 化学的環境の窒素原子を 2 個以上有する含窒素塩基性化 合物であり、特に好ましくは、置換もしくは未置換のア

ミノ基と窒素原子を含む環構造の両方を含む化合物もしくはアルキルアミノ基を有する化合物である。好ましい 具体例としては、置換もしくは未置換のグアニジン、置 換もしくは未置換のアミノピリジン、置換もしくは未置 換のアミノアルキルピリジン、置換もしくは未置換のア ミノピロリジン、置換もしくは未置換のインダーゾル、 置換もしくは未置換のピラゾール、置換もしくは未置換 のピラジン、置換もしくは未置換のピリミジン、置換も しくは未置換のプリン、置換もしくは未置換のイミダゾ リン、置換もしくは未置換のピラゾリン、置換もしくは 未置換のピペラジン、置換もしくは未置換のアミノモル フォリン、置換もしくは未置換のアミノアルキルモルフ ォリン等が挙げられる。好ましい置換基は、アミノ基、 アミノアルキル基、アルキルアミノ基、アミノアリール 基、アリールアミノ基、アルキル基、アルコキシ基、ア シル基、アシロキシ基、アリール基、アリールオキシ 基、ニトロ基、水酸基、シアノ基である。特に好ましい 化合物として、グアニジン、1,1-ジメチルグアニジ ン、1,1,3,3,一テトラメチルグアニジン、2一 アミノピリジン、3ーアミノピリジン、4ーアミノピリ ジン、2-ジメチルアミノピリジン、4-ジメチルアミ ノピリジン、2-ジエチルアミノピリジン、2-(アミ ノメチル) ピリジン、2-アミノ-3-メチルピリジ ン、2-アミノー4-メチルピリジン、2-アミノー5 ーメチルピリジン、2-アミノ-6-メチルピリジン、 3-アミノエチルピリジン、4-アミノエチルピリジ ン、3-アミノピロリジン、ピペラジン、N-(2-ア ミノエチル) ピペラジン、N-(2-アミノエチル) ピ ペリジン、4-アミノー2,2,6,6-テトラメチル ピペリジン、4ーピペリジノピペリジン、2ーイミノピ ペリジン、1-(2-アミノエチル)ピロリジン、ピラ ゾール、3-アミノ-5-メチルピラゾール、5-アミ ノー3-メチルー1-p-トリルピラゾール、ピラジ · ン、2-(アミノメチル)-5-メチルピラジン、ピリ ミジン、2,4ージアミノピリミジン、4,6ージヒド ロキシピリミジン、2ーピラゾリン、3ーピラゾリン、 ルフォリンなどが挙げられるがこれに限定されるもので はない。

【0136】これらの含窒素塩基性化合物は、単独であるいは2種以上一緒に用いられる。含窒素塩基性化合物の使用量は、感光性樹脂組成物(溶媒を除く)100重量部に対し、通常、0.001~10重量部、好ましくは0.01~5重量部である。0.001重量部未満では本発明の効果が得られない。一方、10重量部を超えると感度の低下や非露光部の現像性が悪化する傾向がある。

【0137】好適な染料としては油性染料及び塩基性染料がある。具体的にはオイルイエロー#101、オイルイエロー#103、オイルピンク#312、オイルグリーンBG、オイルブルーBOS、オイルブルー#603、オイルブラックBY、オイルブラックBS、オイルブラックT-505(以上オリエント化学工業株式会社

製)、クリスタルバイオレット(CI42555)、メチルバイオレット(CI42535)、ローダミンB(CI45170B)、マラカイトグリーン(CI42000)、メチレンブルー(CI52015)等を挙げることができる。

【0138】さらに、下記に挙げるような分光増感剤を 添加し、使用する光酸発生剤が吸収を持たない遠紫外よ り長波長領域に増感させることで、本発明の感光性組成 物をiまたはg線に感度を持たせることができる。好適 な分光増感剤としては、具体的にはベンゾフェノン、 p, p'-テトラメチルジアミノベンゾフェノン、p, p'ーテトラエチルエチルアミノベンゾフェノン、2-クロロチオキサントン、アントロン、9-エトキシアン トラセン、アントラセン、ピレン、ペリレン、フェノチ アジン、ベンジル、アクリジンオレンジ、ベンゾフラビ ン、セトフラビンーT、9,10-ジフェニルアントラ セン、9-フルオレノン、アセトフェノン、フェナント レン、2-ニトロフルオレン、5-ニトロアセナフテ ン、ベンゾキノン、2-クロロー4-ニトロアニリン、 N-アセチル-p-ニトロアニリン、p-ニトロアニリ ン、、N-アセチルー4-ニトロー1-ナフチルアミ ン、ピクラミド、アントラキノン、2-エチルアントラ キノン、2-tert-ブチルアントラキノン1,2-ベン ズアンスラキノン、3ーメチルー1,3ージアザー1, 9-ベンズアンスロン、ジベンザルアセトン、1,2-ナフトキノン、3,3'ーカルボニルービス(5,7-ジメトキシカルボニルクマリン)及びコロネン等である がこれらに限定されるものではない。また、これらの分 光増感剤は、光源の遠紫外光の吸光剤としても使用可能 である。この場合、吸光剤は基板からの反射光を低減 し、レジスト膜内の多重反射の影響を少なくさせること で、定在波改良の効果を発現する。

【0139】本発明の感光性組成物は、上記各成分を溶 解する溶媒に溶かして支持体上に塗布する。ここで使用 する溶媒としては、エチレンジクロライド、シクロヘキ サノン、シクロペンタノン、2-ヘプタノン、 $\gamma-$ ブチ ロラクトン、メチルエチルケトン、エチレングリコール モノメチルエーテル、エチレングリコールモノエチルエ ーテル、2-メトキシエチルアセテート、エチレングリ コールモノエチルエーテルアセテート、プロピレングリ コールモノメチルエーテル、プロピレングリコールモノ メチルエーテルアセテート、トルエン、酢酸エチル、乳 酸メチル、乳酸エチル、メトキシプロピオン酸メチル、 エトキシプロピオン酸エチル、ピルビン酸メチル、ピル ビン酸エチル、ピルビン酸プロピル、N,N-ジメチル ホルムアミド、ジメチルスルホキシド、Nーメチルピロ リドン、テトラヒドロフラン等が好ましく、これらの溶 媒を単独あるいは混合して使用する。

【 0 1 4 0 】上記溶媒に界面活性剤を加えることもできる。具体的には、ポリオキシエチレンラウリルエーテ

ル、ポリオキシエチレンステアリルエーテル、ポリオキ シエチレンセチルエーテル、ポリオキシエチレンオレイ ルエーテル等のポリオキシエチレンアルキルエーテル 類、ポリオキシエチレンオクチルフェノールエーテル、 ポリオキシエチレンノニルフェノールエーテル等のポリ オキシエチレンアルキルアリルエーテル類、ポリオキシ エチレン・ポリオキシプロピレンブロックコポリマー 類、ソルビタンモノラウレート、ソルビタンモノパルミ テート、ソルビタンモノステアレート、ソルビタンモノ オレエート、ソルビタントリオレエート、ソルビタント リステアレート等のソルビタン脂肪酸エステル類、ポリ オキシエチレンソルビタンモノラウレート、ポリオキシ エチレンソルビタンモノパルミテート、ポリオキシエチ レンソルビタンモノステアレート、ポリオキシエチレン ソルビタントリオレエート、ポリオキシエチレンソルビ タントリステアレート等のポリオキシエチレンソルビタ ン脂肪酸エステル類等のノニオン系界面活性剤、エフト ップEF301、EF303、EF352(新秋田化成 (株)製)、メガファックF171, F173 (大日 本インキ(株)製)、フロラードFC430, FC43 1(住友スリーエム(株)製)、アサヒガードAG71 $0, \forall -7 \Box \nu S - 382, SC101, SC102,$ SC103, SC104, SC105, SC106 (旭 硝子(株)製)等のフッ素系界面活性剤、オルガノシロ キサンポリマーKP341(信越化学工業(株)製)や アクリル酸系もしくはメタクリル酸系(共)重合ポリフ ローNo. 75, No. 95(共栄社油脂化学工業 (株)製)等を挙げることができる。これらの界面活性 剤の配合量は、本発明の組成物中の固形分100重量部 当たり、通常、2重量部以下、好ましくは1重量部以下 である。これらの界面活性剤は単独で添加してもよい し、また、いくつかの組み合わせで添加することもでき る。

【0141】上記感光性組成物を精密集積回路素子の製造に使用されるような基板(例:シリコン/二酸化シリコン被覆)上にスピナー、コーター等の適当な塗布方法により塗布後、所定のマスクを通して露光し、ベークを行い現像することにより良好なレジストパターンを得ることができる。

【0142】本発明の感光性組成物の現像液としては、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、ケイ酸ナトリウム、メタケイ酸ナトリウム、アンモニア水等の無機アルカリ類、エチルアミン、nープロピルアミン等の第一アミン類、ジエチルアミン、ジーnーブチルアミン等の第二アミン類、トリエチルアミン、メチルジエチルアミン等の第三アミン類、ジメチルエタノールアミン、トリエタノールアミン等のアルコールアミン類、テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド等の第四級アンモニウム塩、ピロール、ピヘリジン等の環状アミン類等のアルカ

リ性水溶液を使用することができる。更に、上記アルカリ性水溶液にアルコール類、界面活性剤を適当量添加して使用することもできる。

[0143]

【実施例】以下、本発明を実施例により更に詳細に説明するが、本発明の内容がこれにより限定されるものではない。

「合成例1〕4、4′ービス(ジフェニルスルホニオ)ジフェニルスルフィドC1塩の45%水溶液20.9g(0.015モル)をイオン交換水200mlに溶解した。この溶液に下記構造のハード型(分岐型)ドデシルベンゼンスルホン酸のNa塩10.5g(0.030モル)のイオン交換水400ml溶液を、室温にて攪拌下添加した。析出した粘調固体をデカントにて分離し、イオン交換水1しにて水洗した。得られた粘調固体をアセトン100mlに溶解し、イオン交換水500mlに攪拌下投入して再晶析させた。析出物を真空下、50℃にて乾燥した結果、ガラス状固体15.9gを得た。NMR測定により、この固体が本発明の化合物(I-4)であることを確認した。

[0144]

【化65】

【0145】〔合成例2〕合成例1のドデシルベンゼンスルホン酸Na塩10.5g(0.030モル)の代わりに分岐型オクチルオキシベンゼンスルホン酸Na塩9.3g(0.030モル)を用い、その他は合成例1と同様にしてガラス状固体13.6gを得た。NMR測定により、この固体が本発明の化合物(I-8)であることを確認した。

【0146】〔合成例3〕合成例1のドデシルベンゼンスルホン酸Na塩10.5g(0.030モル)の代わりにジブチルナフタレンスルホン酸Na塩の40%水溶液25.7g(0.030モル)を用い、その他は合成例1と同様にしてガラス状固体15.2gを得た。NMR測定により、この固体が本発明の化合物(I-15)であることを確認した。以下、上記と同様にして、用いる本発明のスルホニウム化合物を合成した。

【0147】〔溶解阻止剤化合物の合成例-1〕 α , α' , α' ' - トリス(4 - ヒドロキシフエニル)-1, 3, 5 - トリイソプロピルベンゼン20g をテトラヒドロフラン400m1に溶解した。この溶液に窒素雰囲気下で tert-ブトキシカリウム14g を加え、室温にて10分間 攪拌後、ジーtert-ブチルジカーボネート29.2g を加えた。室温下、3 時間反応させ、反応液を氷水に注ぎ、生成物を酢酸エチルで抽出した。酢酸エチル層を更に水洗浄し、乾燥させた後溶媒を留去した。得られた結晶性の固体を再結晶後(ジエチルエーテル)、乾燥さ

せ、化合物例(31:Rは全てt-BOC基)25.6g を 得た。

【0148】〔溶解阻止剤化合物の合成例-2〕 α , α' , α' ' - トリス(4- ヒドロキシフエニル)-1, 3, 5- トリイソプロピルベンゼン20g をジエチルエーテル400m1 に溶解した。この溶液に窒素雰囲気下で3, 4- ジヒドロ-2 H- ピラン31. 6 g 、触媒量 の塩酸を加え、リフラツクス下24 時間反応させた。反応終了後、少量の水酸化ナトリウムを加え沪過した。沪液の溶媒を留去し、得られた生成物をカラムクロマトグラフィーで精製し、乾燥させ、化合物例(31: Rは総てTHP基)を得た。

【0149】〔溶解阻止剤化合物の合成例-3〕 α , α' , α'' ートリス(4ーヒドロキシフエニル)-1, 3, 5ートリイソプロピルベンゼン19.2g(0.0 40モル)のN, Nージメチルアセトアミド120m1 溶液に、炭酸カリウム21.2g(0.15モル)、更にブロモ酢酸セーブチル27.1g(0.14モル)を添加し、120Cにて7時間撹拌した。その後反応混合物を水1.51に投入し、酢酸エチルにて抽出した。硫酸マグネシウムにて乾燥後、抽出液を濃縮し、カラムクロマトグラフイー(担体:シリカゲル,展開溶媒:酢酸エチル/n-ヘキサン=3/7(体積比))にて精製した結果淡黄色粘稠固体30gを得た。NMRにより、これが化合物例(31:Rは総て $-CH_2$ COOC4 H_9 は基)であることを確認した。

【0150】〔溶解阻止剤化合物の合成例-4〕1-[α -メチル $-\alpha$ -(4'-ヒドロキシフェニル)エチル]-4-[α ', α '-ビス(4"-ヒドロキシフェニル)エチル〕ベンゼン42.4g(0.10モル)をN,N-ジメチルアセトアミド300m1に溶解し、これに炭酸カリウム49.5g(0.35モル)、及びブロモ酢酸クミルエステル84.8g(0.33モル)を添加した。その後、120℃にて7時間撹拌した。反応混合物をイオン交換水21に投入し、酢酸にて中和した後、酢酸エチルにて抽出した。酢酸エチル抽出液を濃縮し、合成例[3]と同様に精製し、化合物例(18:Rは総て-CH $_2$ COOC(CH $_3$) $_2$ C $_6$ H $_5$ 基)70gを得た。

モル)を添加し、120℃にて7時間撹拌した。その 後、反応混合物を水1.51に投入し、酢酸エチルにて 抽出した。硫酸マグネシウムにて乾燥後、抽出液を濃縮 し、カラムクロマトグラフイー(担体:シリカゲル、展 開溶媒:酢酸エチル/n-ヘキサン=2/8(体積 比)) にて精製した結果、淡黄色粉体24gを得た。N MRにより、これが化合物例(62:Rは総て-CH₂ $-COO-C_4$ H_9 ^t 基)であることを確認した。 【 0 1 5 2 】 〔溶解阻止剤化合物の合成例 – 6 〕 α, 3, 5-トリイソプロピルベンゼン20g(0.042 モル)をテトラヒドロフラン(THF)400m1に溶 解した。この溶液に窒素雰囲気下でセーブトキシカリウ ム9.3g(0.083モル)を加え、室温にて10分 間撹拌後、ジーセーブチルジカーボネート19.5g (0.087モル)を加えた。室温下、3時間反応さ せ、反応液を氷水に注ぎ、生成物を酢酸エチルで抽出し た。酢酸エチル抽出液を濃縮し、カラムクロマトグラフ イー(担体:シリカゲル、展開溶媒:酢酸エチル/n-ヘキサン= 1/5(体積比)) にて分別精製した結果、 化合物例(31:2個のRはt-BOC基、1個のRは 水素原子)7gを得た。

【0154】実施例1

上記合成例に示した方法により得られた本発明の化合物を用い、下記溶剤に対する溶解性を調べた。比較例の化合物の結果を含め、下記表1に示す。尚、溶解性は、各溶剤10mlに、各本発明の化合物を0.2gを溶解させた時の特性を目視で評価した。

【0155】

【表1】

表1:溶剤に対する溶解性

	使用した溶剤		
本発明の化合物	アセトン	PGMEA	EL/EEP (7/3)
化合物 (I -1)	0	0	0
化合物 (1-3)	0	0	0
化合物 (I-4)	0	0	0
化合物 (I - 5)	0	0	0
化合物(I -10)	0	0	0
化合物(I -13)	0	0	0
化合物(I -15)	0	0	0
化合物 (I-22)	0	0	0
化合物 (I -26)	0	0	0
比較例の化合物(A)	Δ	×	×
比較例の化合物(B)	Δ	×	×

[表中の記号]

○:溶解 △:一部溶解 ×:不溶

[使用した溶剤]

PGMEA: プロピレングリコールモノメチルエーテルアセテート

EL:乳酸エチル

EEP:エチル 3-エトキシプロピオネート

[比較例の化合物]

(A):トリフェニルスルホニウム p-トルエンスルホン酸塩

(B):ジフェニルヨードニウム p-トルエンスルホン酸塩

【0156】上記表1の結果から、本発明の光酸発生剤 製した。そのときの処方を下記表2に示す。

は各溶剤に対する溶解性が優れていることが判る。

【0158】

【0157】実施例2~10、及び比較例1~4

【表2】

上記合成例で示した本発明の化合物を用いレジストを調

表2:感光性組成物の処方

	本発明の光酸発生剤 (g)	樹 脂 (g)		添 加 剤 (溶解阻止剤、 アルカリ可溶性樹脂)	酸分解 性基
実施例 2	化合物(I-4) 0.10g	PHS/EES 1	.90g	_	_
実施例 3	化合物(I-3) 0.10g	PIIS/THPS 1	.90g	1	_
実施例 4	化合物(I-5) 0.10g	PHS/BES 1	.90g	_	_
実施例 5	化合物(I-11) 0.10g	PHS/TBOMS 1	.60g	溶解阻止剤(//) 0.30g	EE
実施例 6	化合物(I-4) 0.10g	PHS/THPS 1	.60g	溶解阻止剤(16) 0.30g	твн
実施例 7	化合物(I-15) 0.10g	PHS/TBOMS 1	.60g	溶解阻止剂(18) 0.30g	THP
実施例 8	化合物(I-92) 0.10g	PHS/TBOMS 1	.60g	溶解阻止剤(41) 0.30g	EE
実施例 9	化合物(I-26) 0.10g	PHS/THPS 1	•	溶解阻止剤(18) 0.30g PHS/AcST 0.40g	
実施例 10	化合物(I-28) 0.10g	_		溶解阻止剤(62) 0.50g PHS/St 1.40g	THP
比較例1	比較例の化合物(C) 0.10g		.90g		
比較例 2	比較例の化合物(C) 0.10g	PHS/THPS 1	.60g	溶解阻止剤(16) 0.30g	тве
比較例 3	比較例の化合物(U) 0.10g	_		溶解阻止剤(62) 0.50g PHS/St 1.40g	
比較例 4	比較例の化合物(D) 0.10g	PHS/EES 1	.90g	_	_

【0159】表2において使用した略号は下記の内容を 表す。

<ポリマー>()内はモル比

PHS/EES p-ヒドロキシスチレン/p-(1- エトキシエトキシ) スチレン共重

合体(70/30) (重量平均分子量21,000)

PHS/BES p-ヒドロキシスチレン/p-(1-t- ブトキシエトキシ) スチレン共

重合体(70/30) (重量平均分子量22,000)

PHS/TBOMS p-ヒドロキシスチレン/t-ブトキシカルボニルメチルオキシスチ

レン共重合体(80/20)(重量平均分子量20,000)

PHS/THPS p-ヒドロキシスチレン/p-(2- テトラヒドロピラニルオキシ)

スチレン共重合体(70/30) (重量平均分子量22,000)

PHS/St p-ヒドロキシスチレン/スチレン共重合体(85/15)

(重量平均分子量35,000)

PHS/AcST p-ヒドロキシスチレン/p-アセトキシスチレン共重合体

(80/20) (重量平均分子量20,000)

PHS/OHS p-ヒドロキシスチレン/o-ヒドロキシスチレン共重合体

(80/20) (重量平均分子量32,000)

【0160】<溶解阻止剤中酸分解性基>

【化66】

[0161]

 $TBOC := O - COO - C_4H_9^t$

 $TBE : -O - CH_2 - COO - C_4H_9^t$

$$THP: -O \bigcirc O$$

EE: -O-CH-O-C₂H₅

比較例の化合物

$$(C):$$
 $(C):$ $(C)_3$ S^+ $(C)_3$ $(C)_3$ $(C)_4$ $(C)_5$ $(C)_5$ $(C)_5$ $(C)_5$ $(C)_5$ $(C)_5$ $(C)_5$ $(C)_5$ $(C)_5$ $(C)_6$ $(C)_6$ $(C)_6$ $(C)_6$ $(C)_6$ $(C)_6$ $(C)_6$ $(C)_6$ $(C)_7$ $(C)_7$ $(C)_7$ $(C)_7$ $(C)_7$ $(C)_7$ $(C)_7$ $(C)_7$ $(C)_8$ $(C)_8$

(D):
$$(CH_3(CH_2)_{11} - CH_3(CH_2)_{11}$$

(トリフェニルスルホニウム n -ドデシルベンゼンスルホン酸塩)

【0162】「感光性組成物の調製と評価〕表2に示す 各素材に4-ジメチルアミノピリジン0.02gを加 え、プロピレングリコールモノメチルエーテルアセテー ト9.5gに溶解し、0.2 μ mのフィルターで沪過し てレジスト溶液を作成した。このレジスト溶液を、スピ ンコーターを利用して、シリコンウエハー上に塗布し、 110℃90秒間真空吸着型のホットプレートで乾燥し て、膜厚0.83μmのレジスト膜を得た。このレジス ト膜に、248nmKrFエキシマレーザーステツパー (NA=0.42)を用いて露光を行った。露光直後に それぞれ100℃の真空吸着型ホットプレートで60秒 間加熱を行い、ただちに2.38%テトラメチルアンモ ニウムハイドロオキサイド (TMAH) 水溶液で60秒 間浸漬し、30秒間水でリンスして乾燥した。このよう にして得られたシリコンウエハー上のパターンのプロフ ァイル、感度、解像力を各々下記のように評価し、比較 した。その結果を下記表3に示す。

【0163】〔プロファイル〕このようにして得られた シリコンウエハー上のパターンを走査型電子顕微鏡で観 察し、レジストのプロファイルを評価した。

〔感度〕感度は 0.40μ mのマスクパターンを再現する露光量をもって定義した。

〔解像力〕解像力は 0.40μ mのマスクパターンを再現する露光量における限界解像力を表す。

【0164】更に同様にして露光後2時間経時した後、上記の通り加熱し、ただちに2.38%テトラメチルアンモニウムハイドロオキサイド(TMAH)水溶液で60秒間浸漬し、 $30秒間水でリンスして乾燥した。このようにして得られた0.35<math>\mu$ mのマスクパターンの線巾を測り、露光直後の加熱での値からの変化率を計算した。その結果を表3に示す。

[0165]

【表3】

表3:評価結果

	感度(mJ/cm²)	解像力(µ m)	レジストパターン	露光直後及び2時間
			のプロファイル	後加熱での線巾変化
実施例 2	20	0.28	矩形	0
実施例 3	21	0.30	矩形	0
実施例 4	19	0.30	矩形	Δ
実施例 5	21	0.28	矩形	0
実施例 6	20	0.28	矩形	0
実施例 7	21	0.30	矩形	
実施例 8	19	0.28	矩形	0
実施例 9	22	0.28	矩形	<u> </u>
実施例 10	21	0.30	矩形	Δ
比較例 1	24	0.30	矩形	х
比較例 2	23	0.30	矩形	×
比較例3	23	0.30	矩形	×
比較例 4	26	0.30	矩形	x

〔表中の記号(線巾変化:細り)〕○:0~7% △:8~14% ×:15%以上

【0166】表3の結果から本発明のレジストは、良好なプロファイルと高感度、高解像力を有し、且つ比較例1~4に対し露光後経時でのパターンの線巾変化の小さいポジ型感光性組成物であることがわかる。

[0167]

【発明の効果】本発明の化学増幅型のポジ型感光性組成物により、良好なプロファイルと高感度、高解像力を有し、露光後経時での性能変化の少ないポジ型感光性組成物を提供することができる。

フロントページの続き

(51) Int. Cl. ⁶ H O 1 L 21/027 識別記号

H O 1 L 21/30

FΙ

502R