Certamen Global Introducción a la Informática Teórica

	19 de diciembre de 2011
1.	Determine cuáles de los lenguajes siguientes son regulares o de contexto libre. a) $\{0^n10^n:1\leq n\leq 100\}$ b) $\{a^mb^nc^{2m+3n}:m\geq 1\ \text{y}\ n\geq 1\}$ c) $\{\omega\omega^{\mathrm{R}}:\omega\in\Sigma^+\}$ d) $\{\omega\omega:\omega\in\Sigma^+\}$ (20 puntos)
2.	Explique cómo puede resolver los siguientes problemas para un lenguaje regular $\mathscr L$ dado: a) $\mathscr L$ es vacío b) El complemento de $\mathscr L$ es finito c) $\mathscr L$ contiene palabras de largo par (20 puntos)
3.	Diseñe un autómata apilador que acepte palabras sobre $\{a,b\}$ que contengan tantas a como b . Muestre su diseño en nuestra notación gráfica, y explíquelo. (15 puntos)
4.	Un autómata linealmente acotado (LBA, por linearly bounded automaton) es una máquina de Turing a la que no se le permite escribir más allá de lo que hay inicialmente en la cinta. Demuestre que si un lenguaje \mathscr{L} es aceptado por un LBA, es aceptado por una máquina de Turing determinista que siempre se detiene.
_	(25 puntos)
Э.	Defina los siguientes términos: a) Reducción b) Reducción polinomial c) Problema en \mathscr{S} d) Problema \mathscr{NP} -completo e) Problema en \mathscr{P} f) Problema no decidible (20 puntos)
6.	Suponga problemas P en \mathscr{P} , N en \mathscr{NP} , D que es \mathscr{NP} -duro, C que es \mathscr{NP} -completo, e I que es no decidible. Con la notación $A \leadsto B$ significando una reducción de A a B , y $A \leadsto_p B$ para indicar una reducción polinomial, explique $brevemente$ la importancia (si tiene alguna) de las siguientes reducciones:
	a) $N \leadsto P$ b) $P \leadsto_p N$ c) $I \leadsto N$ d) $N \leadsto_p C$ e) $C \leadsto_p D$ f) $D \leadsto N$ (30 puntos)