Classification Trees

Quarto

Quarto enables you to weave together content and executable code into a finished presentation. To learn more about Quarto presentations see https://quarto.org/docs/presentations/.

Bullets

When you click the **Render** button a document will be generated that includes:

- Content authored with markdown
- Output from executable code

Code

When you click the **Render** button a presentation will be generated that includes both content and the output of embedded code. You can embed code like this:

[1] 2

Reading Materials

Max Kuhn. Chapter 14. Section 14.1

Decision Boundary in Classification

Classification is a process of finding the decision boundary that

Decision Boundary in Classification

Decision Tree

- ▶ Decision Tree for classification is **Classification Tree**
- Decision Tree for Regression is Regression Tree

Example of Classification Tree

Decision Tree: The Obama-Clinton Divide

Classification Tree

In two dimension, classification Tree's decision boundary is a collection of horizontal and vertical line

Data

➤ The tree starts by a vertical or horizontal line that best seperate the data

One way to seperate the reds and greens

One way to seperate the reds and greens

One way to seperate the reds and greens

Question

Question: Which is the best split?

Partial Answer

- ▶ It looks like Split 1 and 3 are better than Split 2 since it misclassifies less
- ▶ Which is the better split between Split 1 and Split 3?
- We need to find a way to measure how good a split is

Impurity Measure

- ➤ The impurity of a node (a node = a subset of the data or the original data) measure how uncertain the node is.
- ➤ For example, node A with 50% reds and 50% greens would be more uncertained than node B with 90% reds and 10% greens. Thus, node A has greater impurity than node B.
- ► More uncertained = Greater impurity

Impurity Measure

A split that *gains* more impurity is the **better split**!

Impurity Gain

 $IG = I_{parent} - \frac{N_{left}}{N} I_{left} - \frac{N_{right}}{N} I_{right}$

Impurity Measure

Impurity can be measured by: classification error, Gini Index, and Entropy.

Impurity Measure

Let p_0 and p_1 be the proportion of class 0 and class 1 in a node.

By Classification Error:
$$I=min\{p_0,p_1\}$$
 By Gini Index: $I=1-p_0^2-p_1^2$ By Entropy: $I=-p_0\log_2(p_0)-p_1\log_2(p_1)$

Calculation

Let's calculate the impurity gain of the three splits to decide which split is the best

IG By Classification Error

Let green and red be class 0 and class 1, respectively.

For Split 1: $N=5, N_{left}=1, N_{right}=4$

- Node parent, A: $p_0=\frac{2}{5}, p_1=\frac{3}{5}.$ Thus, $I_A=\min(\frac{2}{5},\frac{3}{5})=\frac{2}{5}$
- Node child left, L: $p_0=\frac{0}{1}=0, p_1=\frac{1}{1}=1.$ Thus, $I_L=\min(0,1)=0$

IG By Classification Error

For Split 2: $N=5, N_{left}=2, N_{right}=3$

- Node parent, A: $p_0=\frac{2}{5}, p_1=\frac{3}{5}$. Thus, $I_A=\min(\frac{2}{5},\frac{3}{5})=\frac{2}{5}$
- Node *child left*, L: $p_0 = \frac{1}{2}, p_1 = \frac{1}{2}$. Thus, $I_L = \frac{1}{2}$ Node *child right*, R: $p_0 = \frac{2}{3}, p_1 = \frac{1}{3}$. Thus, $I_R = \min(\frac{2}{3}, \frac{1}{3}) = \frac{1}{3}$

Impurity Gain of Split 2:

IG By Classification Error

For Split 3: $N = 5, N_{left} = 3, N_{right} = 2$

- Node parent, A: $p_0=\frac{2}{5}, p_1=\frac{3}{5}.$ Thus, $I_A=\min(\frac{2}{5},\frac{3}{5})=\frac{2}{5}$
- Node child left, L: $p_0=\frac{1}{3}, p_1=\frac{2}{3}$. Thus, $I_A=\min(\frac{1}{3},\frac{2}{3})=\frac{1}{3}$
- Node child right, R: $p_0=\frac{2}{2}, p_1=\frac{0}{2}$. Thus, $I_R=\min(1,0)=0$

Comparing IG By Classification Error

| IG | Split 1 | 0.2 | Split 2 | 0 | Split 3 | 0.2 |

▶ By classification error, Split 1 and Split 3 are tie as the best because they have the same impurity gain.

IG By Gini Index

For Split 1: $N = 5, N_{left} = 1, N_{right} = 4$

- Node parent, A: $p_0=\frac{2}{5}, p_1=\frac{3}{5}.$ Thus, $I_A=1-(\frac{2}{5})^2-(\frac{3}{5})^2=0.48$
- Node child left, L: $p_0 = \frac{0}{1} = 0, p_1 = \frac{1}{1} = 1$. Thus,

$$I_L = 1 - 0^2 - 1^2 = 0$$

IG By Gini Index

For Split 2: $N = 5, N_{left} = 2, N_{right} = 3$

- Node parent, A: $p_0 = \frac{2}{5}, p_1 = \frac{3}{5}$. Thus, $I_A = 1 (\frac{2}{5})^2 (\frac{3}{5})^2 = 0.48$
- Node *child left*, L: $p_0 = \frac{1}{2}, p_1 = \frac{1}{2}$. Thus, $I_L = 1 (\frac{1}{2})^2 (\frac{1}{2})^2 = 0.5$
- Node child right, R: $p_0 = \frac{2}{3}, p_1 = \frac{1}{3}$. Thus,

IG By Gini Index

For Split 3: $N = 5, N_{left} = 3, N_{right} = 2$

- Node parent, A: $I_A = 0.48$
- Node child left, L: $p_0 = \frac{1}{3}, p_1 = \frac{2}{3}$. Thus, $I_A = 1 (\frac{1}{3})^2 (\frac{2}{3})^2 = 0.44$
- Node child right, R: $p_0=\frac{2}{2}, p_1=\frac{0}{2}.$ Thus, $I_R=1-0^2-1^2=0$

Comparing IG By Gini Index

IG Split 1 0.18 Split 2 0.016 Split 3 0.216

▶ By Gini Index, Split 3 is the best because it has the greatest impurity gain.

IG By Entropy

For Split 1: $N=5, N_{left}=1, N_{right}=4$

- Node parent, A: $p_0 = \frac{2}{5}, p_1 = \frac{3}{5}$. Thus, $I_A = -log_2(\frac{2}{5}) log_2(\frac{3}{5}) = 0.971$
- Node child left, L: $p_0 = \frac{0}{1} = 0, p_1 = \frac{1}{1} = 1$. Thus, $I_L = 0$
- Node child right, R: $p_0 = \frac{3}{4}, p_1 = \frac{1}{4}$. Thus,

IG By Entropy

For Split 2: $N = 5, N_{left} = 2, N_{right} = 3$

- Node parent, A: $p_0 = \frac{2}{5}, p_1 = \frac{3}{5}$. Thus, $I_A = 0.971$
- Node child left, L: $p_0 = \frac{1}{2}, p_1 = \frac{1}{2}$. Thus, $I_L = -log_1(\frac{1}{2}) log_2(\frac{1}{2}) = 1$
- Node *child right*, R: $p_0 = \frac{2}{3}, p_1 = \frac{1}{3}$. Thus, $I_R = -log_2(\frac{2}{3}) log_2(\frac{1}{2}) = 0.918$

IG By Entropy

For Split 3: $N=5, N_{left}=3, N_{right}=2$

- Node parent, A: $I_A = 0.971$
- Node *child left*, L: $p_0 = \frac{1}{3}, p_1 = \frac{2}{3}$. Thus, $I_A = -log_2(\frac{1}{3}) log_2(\frac{2}{3}) = 0.918$
- Node child right, R: $p_0 = \frac{2}{2}, p_1 = \frac{0}{2}$. Thus, $I_R = 0$

Impurity Gain of Split 3:

Comparing IG By Entropy

	IG	
Split 1	L (0.322
Split 2	2 (0.02
Split 3	3 ().42

▶ By Gini Index, Split 3 is the best because it has the greatest impurity gain.

Comparing Impurity Measures

- Relation between impurity and the class probabilities. All impurity measures are maximized at $p_1=1/2$ and minimized at $p_1=0$ and $p_1=1$.

Another Example

- Which split is better?

Decide the best split using Chi-Square test of Independence

Besides impurity gain, one can use the Chi-square, χ^2 , test of independence to decide the best split.

Review of Chi-Square test of Independence

- \blacktriangleright Let X and Y be two categorical variables.
- \blacktriangleright We want to test if X and Y are independent/associated
 - $\blacktriangleright H_0$: X and Y are independent
 - $\blacktriangleright H_{\alpha}: X \text{ and } Y \text{ are dependent}$
- ► Test statistic:

$$\sum \frac{(e_i-o_i)^2}{e_i} \sim \chi^2 \text{ distribution with degree of } \mathrm{freedom}(n-1)(m-1)$$

Review of Chi-Square test of Independence

- In our context, the greater the χ^2 value, the smaller the p-value
- The smaller the p-value, the more dependent the two variables are. Thus the better the split is.
- ▶ Therefore, we look for the split with the **greatest** χ^2 **value.**

Applying to Our Example

- We will calculate the χ^2 values of the three splits.
- ▶ The best split is the split with the greatest χ^2 value.

Split 1

	Greens	Reds		
Left Branch	0 (Cell	1) 1	(Cell 2)	1
Right Branch	3 (Cell	3) 1	(Cell 4)	4
	3	2		

Split 2

Greens Re	ds	
1 (Cell 1)	1 (Cell 2)	2
2 (Cell 3)	1 (Cell 4)	3
3	2	
	1 (Cell 1)	Greens Reds 1 (Cell 1) 1 (Cell 2) 2 (Cell 3) 1 (Cell 4) 3 2

Split 3

(Greens Red	ls	
Left Branch	1 (Cell 1)	2 (Cell 2)	3
Right Branch	2 (Cell 3)	0 (Cell 4)	2
	3	2	

Comparing the three splits

,	χ^2
Split 1	1.875
Split 2	0.139
Split 3	2.222

▶ Split 3 is the best because it has the greatest χ^2 !