Chapitre 21

Développements limités

Objectifs

- Établir la formule de Taylor avec différentes expressions du reste.
- Définir la notion de développement limité d'une fonction au voisinage d'un point (notion de partie régulière et de reste).
- Établir les développements limités en 0 des fonctions usuelles ainsi que les règles de calculs sur les développements limités (somme, produit, composition).
- Étudier des applications des développements limités.

Sommaire

I)	Formules de Taylor	
	1) Avec reste intégrale	
	2) Majoration du reste	
	3) Formule de Taylor-Young	
II)	Développements limités	
	1) Définition	
	2) Existence et propriétés	
	3) Développements usuels (compléments)	
III)	Applications	
	1) Recherche d'une limite	
	2) Étude locale d'une fonction au voisinage d'un point 7	
	3) Étude locale au voisinage de l'infini	
	4) Recherche d'un équivalent	
IV)	Étude locale en un point d'une courbe paramétrée	
	1) Tangente en un point	
	2) Classification des points	
V)	Exercices	

I) Formules de Taylor

1) Avec reste intégrale

-THÉORÈME 21.1

Soit $f: I \to \mathbb{C}$ une fonction de classe \mathscr{C}^{n+1} sur l'intervalle I, alors on a la formule suivante :

$$\forall a, x \in I, f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x-a)^k + \int_{a}^{x} \frac{(x-t)^n}{n!} f^{(n+1)}(t) dt.$$

Preuve: Celle-ci est laissée en exercice, il s'agit d'une simple récurrence sur n.

ØDéfinition 21.1

Soit $f: I \to \mathbb{C}$ une fonction, et soit $a \in I$, si f possède des dérivées jusqu'à l'ordre n en a, alors on appelle polynôme de Taylor de f en a à l'ordre n, la fonction polynomiale notée $T_{n,f,a}$ et définie par :

$$T_{n,f,a}(x) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x-a)^{k}.$$

La différence $f(x) - T_{n,f,a}(x)$ est notée $R_{n,f,a}(x)$ est appelée **reste** de f en a à l'ordre n.

Remarque: D'après le théorème précédent, si f est de classe \mathcal{C}^{n+1} sur I, alors

$$R_{n,f,a}(x) = \int_{a}^{x} \frac{(x-t)^{n}}{n!} f^{(n+1)}(t) dt.$$

Si f est n+1 fois dérivable en a, alors : $\left[T_{n+1,f,a}(x)\right]' = T_{n,f',a}(x)$.

Preuve: Celle-ci est simple et laissée en exercice.

Exemples:

- Final Problem 1. Final Problem 2. Final

2) Majoration du reste

THÉORÈME 21.3 (inégalité de Taylor-Lagrange 1)

Si $f: I \to \mathbb{C}$ est de classe \mathscr{C}^{n+1} sur I et si $|f^{(n+1)}|$ est majorée par un réel M, alors :

$$\forall x, a \in I, |f(x) - T_{n,f,a}(x)| \le M \frac{|x - a|^{n+1}}{(n+1)!}.$$

Preuve: Cette inégalité découle de la forme avec reste intégrale.

- Soit $z \in \mathbb{C}$, pour $t \in [0;1]$ on pose $f(t) = e^{tz}$, cette fonction est de classe \mathscr{C}^{∞} sur [0;1], pour $n \in \mathbb{N}$, on a $f^{(n+1)}(t) = z^{n+1}e^{tz}$, en posant z = a + ib, on a $|f^{(n+1)}(t)| \le |z|^{n+1}e^{ta} \le |z|^{n+1}M$ où M désigne le maximum de la fonction e^{ta} sur [0; 1], appliquons l'inégalité de Taylor-Lagrange entre 0 et 1 à l'ordre n:

$$\left| e^{z} - \sum_{k=0}^{n} \frac{z^{k}}{k!} \right| \le M \frac{|z|^{n+1}}{(n+1)!}.$$

On voit que le majorant tend vers 0 lorsque $n \to +\infty$, par conséquent :

$$\forall z \in \mathbb{C}, e^z = \lim_{n \to +\infty} \sum_{k=0}^n \frac{z^k}{k!}.$$

^{1.} LAGRANGE Joseph Louis (1736 – 1813): mathématicien qui fut un précurseur dans de nombreux domaines scientifiques.

- Avec la fonction sin : toutes ses dérivées sont majorées par 1, on a donc pour $x \in \mathbb{R}$ et $n \in \mathbb{N}$, en appliquant l'inégalité de Taylor-Lagrange entre 0 et x à l'ordre 2n + 1:

$$\left| \sin(x) - \sum_{k=0}^{n} (-1)^k \frac{x^{2k+1}}{(2k+1)!} \right| \le \frac{|x|^{2n+2}}{(2n+2)!}.$$

Là encore, on voit que le majorant tend vers 0 lorsque $n \to +\infty$ on en déduit donc que :

$$\forall x \in \mathbb{R}, \sin(x) = \lim_{n \to +\infty} \sum_{k=0}^{n} (-1)^k \frac{x^{2k+1}}{(2k+1)!}.$$

- Soit $f: I \to \mathbb{C}$ une fonction de classe \mathscr{C}^{n+1} sur I. Que peut-on dire de f lorsque $f^{(n+1)} = 0$?

Formule de Taylor-Young

[™]THÉORÈME 21.4

Soit $n \in \mathbb{N}$, soit $f: I \to \mathbb{C}$ une fonction de classe \mathscr{C}^n sur l'intervalle I, on $a: R_{n,f,a}(x) = \underset{a}{o}((x-a)^n)$, c'est à dire : $\lim_{x \to a} \frac{f(x) - T_{n,f,a}(x)}{(x-a)^n} = 0.$

Preuve: Par récurrence sur n: pour n = 0 il s'agit de la définition de continuité en a. Supposons le théorème démontré au rang n, et supposons f de classe \mathscr{C}^{n+1} sur I, supposons a < x et pour $t \in [a;x]$ posons $h(t) = f(t) - T_{n+1,f,a}(t)$, on a h dérivable et $h'(t) = f'(t) - T_{n,f',a}(t)$. On se donne $\varepsilon > 0$, l'hypothèse de récurrence appliquée à f' permet d'affirmer qu'il existe un voisinage V de a tel que $t \in V \cap I \Longrightarrow |h'(t)| \le \varepsilon(t-a)^n = g'(t)$ avec $g(t) = \varepsilon \frac{(t-a)^{n+1}}{n+1}$, l'inégalité des accroissements finis généralisée nous donne alors pour $x \in V$: $|h(x) - h(a)| \le g(x) - g(a)$, c'est à dire $x \in V \cap I \Longrightarrow |f(x) - T_{n+1,f,a}(x)| \le \varepsilon \frac{(x-a)^{n+1}}{n+1} \le \varepsilon (x-a)^{n+1}$, ce qu'il fallait démontrer. Le raisonnement est similaire pour x < a.

Remarques:

– Sous les mêmes hypothèses, on peut écrire qu'il existe une fonction ε telle que :

$$f(x) = T_{n,f,a}(x) + (x-a)^n \varepsilon(x)$$
 avec $\lim_{x \to a} \varepsilon(x) = 0$

- Si f est de classe \mathscr{C}^{∞} sur I alors la formule de Taylor-Young s'applique en tout point a de I et à n'importe quel ordre, c'est le cas des fonctions usuelles (avec a=0) :

$$-e^{x}=1+x+\frac{x^{2}}{2}+\ldots+\frac{x^{n}}{n!}+o_{0}(x^{n}).$$

$$-\ln(1+x) = x - \frac{x^2}{2} + \ldots + (-1)^{n+1} \frac{x^n}{n} + o(x^n).$$

$$-\sin(x) = x - \frac{x^3}{6} + \dots + (-1)^n \frac{x^{2n+1}}{(2n+1)!} + o_0(x^{2n+1}).$$

$$-\cos(x) = 1 - \frac{x^2}{2} + \dots + (-1)^n \frac{x^{2n}}{(2n)!} + o_0(x^{2n}).$$

$$-\cos(x) = 1 - \frac{x^2}{2} + \dots + (-1)^n \frac{x^{2n}}{(2n)!} + o(x^{2n}).$$

Développements limités II)

Définition 1)

DÉFINITION 21.2

Soit $f: I \to \mathbb{C}$ une fonction et soit $a \in I$ ou une borne réelle de I. Soit $n \in \mathbb{N}$, on dit que f admet un développement limité d'ordre n en a (ou un $dl_n(a)$) lorsqu'il existe un polynôme $P \in \mathbb{C}_n[X]$ tel que :

$$f(x) = P(x-a) + \underset{a}{o}((x-a)^n).$$

Si c'est le cas, alors le polynôme P(x - a) est appelé **partie régulière** du $dl_n(a)$.

Remarques:

- Le polynôme P(x-a) s'écrit $P(x-a) = \sum_{k=0}^{n} a_k (x-a)^k$, dans la pratique on **ne développe jamais** les termes
- Le reste du $dl_n(a)$, c'est à dire $o((x-a)^n)$ peut aussi se mettre sous la forme $(x-a)^n \varepsilon(x)$ où $\lim_{x\to a} \varepsilon(x) = 0$.
- Si f est une fonction polynomiale : $f(x) = \sum_{k} \alpha_k x^k$, alors d'après la formule de *Taylor* des polynômes, on peut écrire $f(x) = \sum_{k} \frac{f^{(k)}(a)}{k!} (x-a)^k$, en séparant les termes d'indice $k \ge n+1$, on obtient : $f(x) = \sum_{k} \frac{f^{(k)}(a)}{k!} (x-a)^k$ $\sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x-a)^k + o((x-a)^n).$ D'après la définition, c'est un $dl_n(a)$ de f.

- THÉORÈME 21.5 (unicité du dl)

Si f admet un $dl_n(a)$ alors celui-ci est unique.

Preuve: Si $f(x) = P(x-a) + o((x-a)^n) = Q(x-a) + o((x-a)^n)$, avec $P,Q \in \mathbb{C}_n[X]$, alors en posant $R(X) = P(x-a) + o((x-a)^n)$ P(X) - Q(X), on a que $R(x - a) = o((x - a)^n)$, ou encore que $R(u) = o(u^n)$, or $deg(R) \le n$, ce qui entraı̂ne que R = 0, i.e. P = Q.

Changement de variable : on peut toujours se ramener en a = 0 :

- On pose u = x - a, on a alors f(x) = f(u + a) = g(u), d'où :

$$f$$
 admet un $dl_n(a) \iff \exists P \in \mathbb{C}_n[X], f(x) = P(x-a) + \underset{a}{o}((x-a)^n)$
 $\iff \exists P \in \mathbb{C}_n[X], g(u) = P(u) + \underset{0}{o}(u^n)$
 $\iff g$ admet un $dl_n(0)$.

- Si f est définie au voisinage de ±∞ : on pose u = 1/x, on a alors f(x) = f(1/u) = g(u). Si g admet un $dl_n(0)$; alors il existe un polynôme $P \in \mathbb{C}_n[X]$ tel que $g(u) = P(u) + o(u^n)$, ce qui donne $f(x) = P(1/x) + o_{\pm \infty}(1/x^n)$, on dit alors que f admet un développement asymptotique en 1/x d'ordre n en $\pm \infty$, on remarquera que la partie régulière n'est pas un polynôme en x mais en 1/x.

2) Existence et propriétés

THÉORÈME 21.6

Soit $f: I \to \mathbb{C}$ et soit $a \in I$, si f est de classe \mathscr{C}^n sur l'intervalle I, alors f admet un $\mathrm{dl}_n(a)$ et sa partie régulière est $T_{n,f,a}(x)$, c'est à dire son polynôme de Taylor en a à l'ordre n.

Preuve: Celle-ci découle directement de la formule de Taylor-Young.

Si f est de classe \mathscr{C}^{∞} sur I, alors f admet un dl en tout point de I et à n'importe quel ordre.

Application aux fonctions usuelles en 0 :

$$-\exp(x) = \sum_{k=0}^{n} \frac{x^{k}}{k!} + o(x^{n}).$$

$$-\ln(1+x) = \sum_{k=1}^{n} (-1)^{k-1} \frac{x^{k}}{k} + o(x^{n}).$$

$$-\sin(x) = \sum_{k=0}^{n} (-1)^{k} \frac{x^{2k+1}}{(2k+1)!} + o(x^{2n+2}) \text{ (il s'agit du dl}_{2n+2}(0)).$$

$$-\cos(x) = \sum_{k=0}^{n} (-1)^{k} \frac{x^{2k}}{(2k)!} + o(x^{2n+1}) \text{ (il s'agit d'un dl}_{2n+1}(0)).$$

$$-\operatorname{sh}(x) = \sum_{k=0}^{n} \frac{x^{2k+1}}{(2k+1)!} + o(x^{2n+2}) \text{ (il s'agit du dl}_{2n+2}(0)).$$

$$- \operatorname{ch}(x) = \sum_{k=0}^n \frac{x^{2k}}{(2k)!} + o\left(x^{2n+1}\right) \text{ (il s'agit d'un } \operatorname{dl}_{2n+1}(0)).$$

$$- (1+x)^\alpha = \sum_{k=0}^n \binom{\alpha}{k} x^k + o(x^n), \text{ où } \binom{\alpha}{k} = \frac{\alpha(\alpha-1)\cdots(\alpha-k+1)}{k!}, \text{ formule des coefficients du binôme généralisée.}$$

🛜 - THÉORÈME 21.7

f admet un $dl_0(a)$ ssi f admet une limite finie en a.

f admet un $dl_1(a)$ ssi f admet un prolongement continue dérivable en a.

Si f admet un $dl_n(0)$, alors la partie régulière a la même parité que f.

Preuve: La preuve des trois points est simple et laissée en exercice. Montrons cependant qu'une fonction peut avoir un $dl_2(a)$ sans être deux fois dérivable en $a: f(x) = \exp(-1/x^2)\sin(\exp(1/x^2))$, on a pour tout entier $n, f(x) = o(x^n)$, donc f admet des dl en 0 à n'importe quel ordre et la partie régulière est nulle, en particulier f se prolonge par continuité en 0 en posant f(0) = 0, et ce prolongement est dérivable en 0 avec f'(0) = 0. Pour $x \neq 0$, on a $f'(x) = 2/x^3 f(x) - 2/x^3 \cos(\exp(1/x^2))$, or la fonction $x \mapsto \frac{1}{x^4} \cos(\exp(1/x^2))$ n'a pas de limite en 0 (considérer par exemple la suite $u_n = \frac{1}{\sqrt{\ln(n\pi)}}$), on en déduit que $\frac{f'(x)}{x}$ n'a pas de limite en 0 et donc que f n'est pas deux fois

🌳 THÉORÈME 21.8 (règles de calculs)

Si f, g admettent un $dl_n(0)$, $f(x) = P(x) + \underset{0}{o}(x^n)$ et $g(x) = Q(x) + \underset{0}{o}(x^n)$, avec $P, Q \in \mathbb{C}_n[X]$.

- ∀ λ ∈ ℂ, λf + g admet un dl_n(0) dont la partie régulière en λP(x)+Q(x).
- $-f(x) \times g(x)$ admet un $\mathrm{dl}_n(0)$ dont la partie régulière est $[P(x)Q(x)]_n$ (polynôme $P(x) \times Q(x)$
- tronqué au degré n).

 Si $\lim_{x\to 0} g(x) = 0$, alors f(g(x)) admet un $dl_n(0)$ dont la partie régulière est $[P(Q(x))]_n$.

 Si f' admet un $dl_n(0)$ dont la partie régulière est P(x), alors f admet un $dl_{n+1}(0)$ dont la partie régulière est : $f(0) + \int_0^x P(t) dt$.

Preuve: Donnons un exemple pour la composition avec n = 2: $f(x) = a + bx + cx^2 + x^2u(x)$ et $g(x) = \alpha x + \beta x^2 + x^2u(x)$ $x^2v(x)$, avec u et v de limite nulle en 0, on en déduit en composant : $f(g(x)) = a + b(\alpha x + \beta x^2 + x^2v(x)) + c(\alpha x + x^2v(x))$ $\beta x^2 + v(x))^2 + (\alpha x + \beta x^2 + x^2 v(x))^2 u(g(x))$, ce qui donne après avoir développer et regrouper les puissances de x strictement supérieures à $2: f(g(x)) = a + b\alpha x + [b\beta + c\alpha^2]x^2 + o(x^2)$, on peut vérifier que la partie régulière est

la troncature au degré 2 de P(Q(x)).

Pour le dernier point : on a $f'(t) = P(t) + t^n u(t)$ avec $\lim_{x \to 0} u(x) = 0$. On se donne $\varepsilon > 0$, au voisinage de 0 on aura $|f'(t) - P(t)| \le |t|^n \varepsilon$, en appliquant l'inégalité des accroissements finis généralisée, on obtient pour x au voisinage de 0, $|f(x) - f(0) - \int_0^x P(t) dt| \le \varepsilon |x|^{n+1}$, ce qui prouve le résultat.

Développements usuels (compléments)

Pour $x \neq 1$, on a $\sum_{k=0}^{n} x^k = \frac{1-x^{n+1}}{1-x}$, on en déduit :

$$\frac{1}{1-x} = \sum_{k=0}^{n} x^k + \frac{x^{n+1}}{1-x} = \sum_{k=0}^{n} x^k + o(x^n).$$

En substituant $-x \ a \ x$, on obtient :

$$\frac{1}{1+x} = \sum_{k=0}^{n} (-1)^k x^k + o(x^n).$$

En intégrant ce dernier développement, on obtient :

$$\ln(1+x) = \sum_{k=0}^{n} (-1)^k \frac{x^{k+1}}{k+1} + o_0(x^{n+1}).$$

En substituant x^2 à x dans l'avant dernier, on obtient :

$$\frac{1}{1+x^2} = \sum_{k=0}^{n} (-1)^k x^{2k} + o_0(x^{2n+1}) \text{ c'est un dl}_{2n+1}(0).$$

En intégrant ce dernier développement, on obtient :

$$\arctan(x) = \sum_{k=0}^{n} (-1)^k \frac{x^{2k+1}}{2k+1} + o_0(x^{2n+2}).$$

On a:

$$\frac{1}{\sqrt{1+x}} = \sum_{k=0}^{n} {\binom{-1/2}{k}} x^k + o(x^n).$$

Or $\binom{-1/2}{k} = (-1)^k \frac{1 \times 3 \times \dots \times (2k-1)}{k! 2^k} = (-1)^k \frac{\binom{2k}{k}}{4^k}$, on a finalement :

$$\frac{1}{\sqrt{1+x}} = \sum_{k=0}^{n} (-1)^k \frac{\binom{2k}{k}}{4^k} x^k + o(x^n).$$

On en déduit que :

$$\frac{1}{\sqrt{1-x^2}} = \sum_{k=0}^{n} \frac{\binom{2k}{k}}{4^k} x^{2k} + o_0(x^{2n+1}).$$

En intégrant, obtient :

$$\arcsin(x) = \sum_{k=0}^{n} \frac{\binom{2k}{k}}{4^k (2k+1)} x^{2k+1} + o\left(x^{2n+2}\right).$$

et:

$$\arccos(x) = \frac{\pi}{2} - \sum_{k=0}^{n} \frac{\binom{2k}{k}}{4^k (2k+1)} x^{2k+1} + o\left(x^{2n+2}\right).$$

Exemples:

- Calculer un dl₃(0) de $\exp(\sin(x))$. On a $\sin(x) = x - \frac{x^3}{6} + o(x^3)$ et $\exp(u) = 1 + u + \frac{u^2}{2} + \frac{u^3}{6} + o(u^3)$. Comme $\lim_{x \to 0} \sin(x) = 0$, on peut appliquer le théorème de composition, et composer les parties régulières jusqu'à l'ordre 3, ce qui donne :

$$\exp(\sin(x)) = 1 + x + \frac{x^2}{2} + o(x^3).$$

- Calculer un dl₄(0) de $(1 + \sin(x))^x$. L'expression est égale à $\exp[x \ln(1 + \sin(x))]$. Un dl₃(0) de $\sin(x)$ est $\sin(x) = x - \frac{x^3}{6} + o(x^3)$, et $\ln(1 + u) = u - \frac{u}{2} + \frac{u^3}{3} + o(u^3)$, on obtient par composition, $\ln(1 + \sin(x)) = x - \frac{x^2}{2} + \frac{x^3}{6} + o(x^3)$ et donc $x \ln(1 + \sin(x)) = x^2 - \frac{x^3}{2} + \frac{x^4}{6} + o(x^4)$. On a également $\exp(v) = 1 + v + \frac{v^2}{2} + o(v^2)$, d'où par composition :

$$\exp[x\ln(1+\sin(x))] = 1 + x^2 - \frac{x^3}{2} + 2\frac{x^4}{3} + o(x^4).$$

- Calculer un dl₅(0) de tan(x): On a tan(x) = $\sin(x) \times \frac{1}{\cos(x)}$. $\sin(x) = x - \frac{x^3}{6} + \frac{x^5}{120} + o(x^5)$. D'autre part $\frac{1}{\cos(x)} = \frac{1}{1+u}$ avec $u = \cos(x) - 1$, comme $u \to 0$, on pourra donc composer, $\cos(x) - 1 = -\frac{x^2}{2} + \frac{x^4}{24} + o(x^5)$ et $\frac{1}{1+u} = 1 - u + u^2 + o(u^2)$, ce qui donne: $\frac{1}{\cos(x)} = 1 + \frac{x^2}{2} + 5\frac{x^4}{24} + o(x^5)$. On effectue ensuite le produit avec le dl de $\sin(x)$, ce qui donne:

$$\tan(x) = x + \frac{x^3}{3} + \frac{2x^5}{15} + o_0(x^5).$$

Autre méthode : on a $\tan(x) = 0 + o(1)$, d'où $1 + \tan(x)^2 = 1 + o(1)$, en intégrant, on obtient $\tan(x) = x + o(x)$. Puis on recommence : $1 + \tan(x)^2 = 1 + x^2 + o(x^2)$ et donc $\tan(x) = x + \frac{x^3}{3} + o(x^3)$, mais alors $1 + \tan(x)^2 = 1 + x^2 + \frac{2x^4}{3} + o(x^4)$, et donc $\tan(x) = x + \frac{x^3}{3} + \frac{2x^5}{15} + o(x^5)$... etc

III) Applications

1) Recherche d'une limite

- Soit $f(x) = \frac{x^2 1 2x \ln(x)}{x(x-1)\ln(x)}$, calculer $\lim_{x \to 1} f(x)$. Il s'agit bien d'une forme indéterminée, on ramène le problème en 0 en posant u = x 1, ce qui donne $f(x) = \frac{u^2 + 2u 2(1 u)\ln(1 + u)}{u(1 + u)\ln(1 + u)} \sim \frac{u^2 + 2u 2(1 + u)\ln(1 + u)}{u^2}$. On cherche alors un dl₂(0) du numérateur, ce qui donne $o(u^2)$, on a donc $f(x) = f(1 + u) \sim o(1)$ et donc la limite cherchée est nulle.
- Calculer $\lim_{x \to +\infty} x^2 \ln(\frac{x}{1+x}) + x 1$. Il s'agit bien d'une forme indéterminée, on se ramène en 0 en posant u = 1/x, on a alors $f(x) = f(1/u) = \frac{-1}{u^2} \ln(1+u) + \frac{1}{u} - 1$, ce qui donne $f(1/u) = \frac{-1}{2} + o(1)$, et donc la limite cherchée est $\frac{-1}{2}$.

2) Étude locale d'une fonction au voisinage d'un point

Si f a un $\mathrm{dl}_2(a)$, $f(x)=a_0+a_1(x-a)+a_2(x-a)^2+o_a\big((x-a)^2\big)$, alors on voit que $\lim_{x\to a}f(x)=a_0$, on peut donc prolonger f par continuité en a, en posant $f(a)=a_0$ (si ce n'est pas déjà fait!). Le taux d'accroissement en a s'écrit : $\frac{f(x)-a_0}{x-a}=a_1+o_a(1)$, donc ce prolongement est dérivable en a et $f'(a)=a_1$. L'équation de la tangente à la courbe au point d'abscisse a est $y=a_1(x-a)+a_0$, et l'étude de la position courbe-tangente se fait en étudiant le signe de $f(x)-[a_0+a_1(x-a)]=(x-a)^2[a_2+o_a(1)]$, d'où la discussion :

- si $a_2 > 0$: alors au voisinage de a on a $[a_2 + o(1)] > 0$ et donc $f(x) > a_0 + a_1(x a)$, *i.e.* la courbe est au-dessus de sa tangente **au voisinage** de a.
- si $a_2 < 0$: c'est la situation inverse.
- si $a_2 = 0$: on ne peut rien dire, il faut aller plus loin dans le développement limité. Dans la pratique on s'arrête au premier terme non nul de degré supérieur ou égal à 2.

Exemple: Soit $f(x) = \frac{x \ln(x)}{x^2 - 1}$, effectuons une étude locale en a = 1: on pose u = x - 1 d'où $f(x) = f(1 + u) = \frac{\ln(1+u)}{u}(1+u)\frac{1}{2[1+u/2]}$, le calcul donne $f(x) = f(1+u) = \frac{1}{2} - \frac{u^2}{12} + o(u^2)$. On en déduit que f se prolonge par continuité en 1 en posant $f(1) = \frac{1}{2}$, ce prolongement est dérivable en 1 et f'(1) = 0, de plus, au voisinage de 1, la courbe est en-dessous de la tangente.

3) Étude locale au voisinage de l'infini

Si f est définie au voisinage de ∞ et admet une limite infinie, alors on peut étudier la branche infinie de f de la manière suivante : on pose $g(x) = \frac{f(x)}{x}$, on se ramène en 0 en posant u = 1/x, ce qui donne g(x) = g(1/u) = uf(1/u), et on cherche un $dl_2(0)$ de cette expression : $uf(1/u) = a_0 + a_1u + a_2u^2 + o_0(u^2)$, ce qui donne en revenant à x, $f(x) = a_0x + a_1 + a_2\frac{1}{x} + o_0(\frac{1}{x})$, d'où $\lim_{x \to \infty} f(x) - [a_0x + a_1] = 0$, donc la droite d'équation $y = a_0x + a_1$ est asymptote à C_f au voisinage de ∞ . Pour la position courbe-asymptote, on étudie la différence : $f(x) - [a_0x + a_1] = \frac{1}{x}[a_2 + o(1)]$, l'étude du signe se fait comme dans le paragraphe précédent si $a_2 \neq 0$. Lorsque $a_2 = 0$ il faut aller plus loin dans le développement pour avoir le signe.

Exemple: $f(x) = \sqrt[3]{\frac{x^4}{x-3}}$ au voisinage de $+\infty$.

On voit que f est définie au voisinage de $+\infty$ et que $f(x) \underset{+\infty}{\sim} x$, il y a donc une branche infinie de direction asymptotique y = x. Posons u = 1/x, on a alors $f(x)/x = uf(1/u) = 1 + u + 2u^2 + o(u^2)$, d'où

 $f(x) = x + 1 + \frac{2}{x} + o_{+\infty}(\frac{1}{x})$. Donc la droite d'équation y = x + 1 est asymptote à la courbe de f en $+\infty$, et au voisinage de $+\infty$ la courbe de f est au-dessus.

Recherche d'un équivalent

🧑 - THÉORÈME 21.9

Si f admet un $\mathrm{dl}_n(a)$, alors f(x) est équivalente en a au terme **non nul de plus bas degré** de la partie régulière, s'il existe.

Preuve: Soit $a_p(x-a)^p$ le premier terme non nul, on a alors $f(x) = a_p(x-a)^p + o((x-a)^p) = (x-a)^p [1 + o(1)]$, ce qui prouve l'équivalence annoncée.

Remarques:

- En se ramenant en 0, on peut également trouver un équivalent d'une fonction en $\pm \infty$.
- Avec ce théorème, on retrouve tous les équivalents dits « classiques ».

Exercice: Équivalent en 0 de la fonction $f(x) = \frac{\arcsin(x)}{\sqrt{1-x^2}} - \frac{3x}{3-2x^2}$.

Réponse: On a $\frac{1}{\sqrt{1-x^2}} = 1 + \frac{x^2}{2} + \frac{3x^4}{8} + o(x^5)$, en intégrant on obtient $\arcsin(x) = x + \frac{x^3}{6} + \frac{3x^5}{40} + o(x^5)$, en effectuant le produit, il vient que : $\frac{\arcsin(x)}{\sqrt{1-x^2}} = x + \frac{2x^3}{3} + \frac{8x^5}{15} + o(x^5)$.

D'un autre côté, on a $\frac{3x}{3-2x^2} = x \frac{1}{1-2x^2/3} = x \left[1 + \frac{2x^2}{3} + \frac{4x^4}{9} + o(x^4)\right] = x + \frac{2x^3}{3} + \frac{4x^5}{9} + o(x^5)$. Finalement, on a $f(x) = \frac{4x^5}{45} + o(x^5)$, et donc :

$$f(x) \sim \frac{4x^5}{45}.$$

Étude locale en un point d'une courbe paramétrée

Tangente en un point

Soit $C = (I, f, \Gamma)$ une courbe de classe \mathscr{C}^n $(n \ge 1)$, on suppose que $\forall t \in I, \exists k \in [1..n]$, tel que $f^{(k)}(t) \neq 0.$

DÉFINITION 21.3

Soit $t \in I$, on appelle **premier entier caractéristique au point** M(t) le plus petit entier $p \in [1..n]$, tel que $f^{(p)}(t) \neq 0$. On remarquera que M(t) est régulier $\iff p = 1$.

Soit $t_0 \in I$, effectuons un développement limité de f(t) en t_0 à l'ordre p:

$$f(t_0+h)-f(t_0)=\frac{h^p}{p!}f^{(p)}(t_0)+h^p\varepsilon(h) \text{ avec } \lim_{h\to 0}\varepsilon(h)=0.$$

On en déduit que $\frac{p!}{h^p}\overline{M(t_0)M(t_0+h)} = f^{(p)}(t_0) + o(1)$, or le vecteur $\frac{p!}{h^p}\overline{M(t_0)M(t_0+h)}$ est un vecteur directeur de la droite $(M(t_0)M(t_0+h))$, donc lorsque h tend vers 0, cette droite « tend » vers la droite qui passe par $M(t_0)$ et dirigée par le vecteur $f^{(p)}(t_0)$.

Définition 21.4

La droite qui passe par $M(t_0)$ et dirigée par $f^{(p)}(t_0)$ est appelée tangente à la courbe au point $M(t_0)$.

En un point régulier la tangente est portée par le vecteur vitesse, car p = 1.

Classification des points

Soit $C = (I, f, \Gamma)$ une courbe de classe \mathscr{C}^n $(n \ge 2)$, on suppose que $\forall t \in I, \exists k \in [p+1..n]$ tel que $f^{(k)}(t_0)$ soit non colinéaire à $f^{(p)}(t_0)$, i.e. $\det_{\mathfrak{B}}(f^{(p)}(t_0), f^{(k)}(t_0)) \neq 0$.

DÉFINITION 21.5

On appelle deuxième entier caractéristique au point M(t) le plus petit des entiers $k \in [p+1..n]$ tel que $\det_{\mathfrak{B}}(f^{(p)}(t_0), f^{(k)}(t_0)) \neq 0$, cet entier est noté q. On remarquera que M(t) est birégulier \iff p = 1 et q = 2.

Le développement de *Taylor* de f en t_0 à l'ordre q donne :

$$f(t_0+h)-f(t_0)=\frac{h^p}{p!}f^{(p)}(t_0)+\ldots+\frac{h^q}{q!}f^{(q)}(t_0)+o(h^q).$$

Tous les vecteurs figurant dans les points de suspension sont colinéaires à $f^{(p)}(t_0)$, d'autre part le vecteur $o(h^q)$ est combinaison linéaire des vecteurs $f^{(p)}(t_0)$ et $f^{(q)}(t_0)$, on peut donc écrire :

$$\overrightarrow{M(t_0)M(t_0+h)} = f(t_0+h) - f(t_0) = \frac{h^p}{p!} [1 + \underset{0}{o}(1)] f^{(p)}(t_0) + \frac{h^q}{q!} [1 + \underset{0}{o}(1)] f^{(q)}(t_0).$$

Posons $V_1 = f^{(p)}(t_0)$ et $V_2 = f^{(q)}(t_0)$, lorsque h est voisin de 0, la coordonnée de $\overline{M(t_0)M(t_0+h)}$ sur V_1 est du signe de h^p , et celle sur V_2 est du signe de h^q . Ce qui permet de faire la classification suivante :

	p impair	p pair
q pair	point ordinaire	rebroussement de 2ième espèce
q impair	point d'inflexion	rebroussement de 1ière espèce

Point ordinaire

Point d'inflexion

Rebroussement 1ère espèce

Rebroussement 2ème espèce

 $\stackrel{\clubsuit}{\hookrightarrow}$ La tangente est portée par le vecteur $f^{(p)}(t_0)$ et un point birégulier est un point ordinaire.

Exercices V)

★Exercice 21.1

Calculer les développements limités suivants en 0, à l'ordre indiqué :

$$a) \frac{\tan(x)}{2 + \cos(x)} (5) \quad b) \frac{\exp(x)}{\sqrt{1 + 2x}} (3) \quad c) \exp(\cosh(x)) (4) \quad d) \left(\frac{\sin(x)}{x}\right)^{n} (4) \quad e) (1 + \sin(x))^{1/x} (2).$$

★Exercice 21.2

Calculer les développements limités suivants :

- b) $dl_2(\pi/4)$ de arctan(x).
- a) $dl_3(\pi/4) de \tan(x)$. b) $dl_2(\pi/4) de \arctan(x)$ c) $dl_3(1) de \frac{\ln(1+x)}{x^2}$. d) $dl_3(\pi/4) de \sqrt{\tan(x)}$.
- e) $dl_2(\pi/3)$ de $sin(\pi cos(x))$.

★Exercice 21.3

Calculer les limites suivantes :

a)
$$x \tan(x) - \frac{\pi}{2\cos(x)}$$
 en $\pi/2$.

b)
$$x^2 \left(e^{1/x} - e^{1/(1+x)} \right)$$
 en ∞ .

c)
$$\frac{2}{\sin(x)^2} - \frac{1}{1 - \cos(x)}$$
 en 0.
e) $\sqrt{x^2 + x + 1} - \sqrt[3]{x^3 + ax^2 + 1}$ en $+\infty$.

d)
$$\left(2 - \frac{x}{a}\right)^{\tan\left(\frac{\pi x}{2a}\right)}$$
 en a .

★Exercice 21.4

- a) Étude locale au voisinage de 0 de la fonction $f(x) = \frac{1}{\sin(x)} \frac{1}{x}$.
- b) Étude locale au voisinage de $+\infty$ de la fonction $f(x) = \frac{x^2 + 1}{x} \arctan(x)$.
- c) Déterminer un équivalent en $+\infty$ de la fonction $f(x) = \ln(\frac{1 + e^{1/x}}{2}) \frac{4x + 1}{8x^2}$.
- d) Déterminer un équivalent en 1 de la fonction $f(x) = \arccos(x)$

★Exercice 21.5

Soit *I* un intervalle de \mathbb{R} contenant 0, soit $f: I \to J$ une bijection de classe \mathscr{C}^n sur I $(n \ge 1)$ telle que f(0) = 0 et telle que f' ne s'annule pas.

- a) Montrer que f^{-1} admet un $dl_n(0)$.
- b) Montrer qu'à partir de la relation $f^{-1} \circ f(x) = x$, et à partir du $dl_n(0)$ de f, on peut obtenir le dl_n(0) de f^{-1} .
- c) Exemple: montrer que la fonction $f(x) = e^x x^2 1$ induit une bijection au voisinage de 0, et calculer un $dl_4(0)$ de la réciproque.

★Exercice 21.6

Soit f une fonction de classe \mathscr{C}^2 sur \mathbb{R} telle que $\|f\|_{\infty} \leqslant 1$ et $\|f''\|_{\infty} \leqslant 1$. Montrer que $\|f'\|_{\infty} \leqslant \sqrt{2}$. On pourra appliquer *Taylor-Lagrange* entre x + h et x, puis entre x - h et x.

★Exercice 21.7

Soient f de classe \mathscr{C}^2 sur \mathbb{R} telles que :

$$\forall x, y \in \mathbb{R}, f(x-y)f(x+y) \leqslant f^2(x)$$

Montrer que $\forall x \in \mathbb{R}, f(x)f''(x) \leq f'^2(x)$.

★Exercice 21.8

Montrer que $\forall x \in \mathbb{R}, \cos(x) = \lim_{n \to +\infty} \sum_{k=0}^{n} (-1)^k \frac{x^{2k}}{(2k)!}$

★Exercice 21.9

Soient $a, b \in \mathbb{R}$ non tous deux nuls, pour $t \in \mathbb{R}$, on pose $f(t) = e^{at} \sin(bt)$. Calculer pour $n \in \mathbb{N}$ un $dl_n(0)$ de f. Plus généralement, pour $t_0 \in \mathbb{R}$, calculer un $dl_n(t_0)$ de f.

★Exercice 21.10

- a) Étudier la courbe paramétrée par : $\begin{cases} x(t) = \cos(t) \\ y(t) = \sin(t)[1+\cos(t)] \end{cases}, t \in [0; 2\pi].$
- b) Déterminer les points d'inflexions.

★Exercice 21.11

On considère la courbe paramétrée par $x(t) = 2\cos(2t)$ et $y(t) = \sin(3t)$.

- a) Montrer que l'on peut réduire le domaine d'étude à $[0; \frac{\pi}{2}]$.
- b) Déterminer la tangente au point de paramètre $\frac{\pi}{2}$.
- c) Étudier et représenter cette courbe.