AUTOIT

•••

Members: Willy Lee, Jonathan Rogers, Rushil Mojidra, Tiger Ruan, Jacob Pfeiffer

Background of AutoML

- What is AutoML
 - Automated Machine Learning
 - Focuses on automating preprocessing of data and model selection
 - Seeks to automate tedious parts of the machine learning process

- Benefits of AutoML
 - Give data scientist more time to work on the more technical aspects of ML
 - Makes the analytical power of ML available to smaller companies with less Data science expertise

AutoML Libraries

- AutoKeras
 - Based on Keras library
 - Supports image classification/regression, text classification/regression, structured data classification/regression

- Auto-PyTorch
 - Based on PyTorch library
 - Supports automl for neural architectures
 - Automated deep learning

- Auto-sklearn
 - Based on scikit-learn library
 - Automated classification, regression, and clustering

- Many others

Project 1-1

-Image classification with Autokeras

Applying AutoML--pipeline

ResNet and Xception are merged into the architecture search in pipeline

Data prep - Flower dataset

Classification - Flower Recognition

- 4232 images of flowers
- Five classes about 800 photos each
- Photos are of different proportions

Data prep - Flower dataset

Classification - Flower Recognition

- Dataset split 80% training & 20% testing (for each class)
- Reduced resolution 128 x 128 pixels
- RGB channel and Gray channel

Deeper into the architecture

Xception(extreme inception)

fewer connections with lighter model

Standard Conv

Xception

ResNet(Residual Networks)

Good way to solve degradation problem in deeper neural network.

Results

Gray scale

RGB scale


```
test
```

Model summary

Best fit model

Layer (type)	Output	Shape	Param #	Connected to
input_1 (InputLayer)	[(None	, 150, 150, 3)		
cast_to_float32 (CastToFloat32)	(None,	150, 150, 3)	0	input_1[0][0]
normalization (Normalization)	(None,	150, 150, 3)	7	cast_to_float32[0][0]
conv2d (Conv2D)	(None,	148, 148, 32)	896	normalization[0][0]
conv2d_1 (Conv2D)	(None,	146, 146, 32)	9248	conv2d[0][0]
max_pooling2d (MaxPooling2D)	(None,	73, 73, 32)	0	conv2d_1[0][0]
conv2d_2 (Conv2D)	(None,	71, 71, 32)	9248	max_pooling2d[0][0]
conv2d_3 (Conv2D)	(None,	69, 69, 32)	9248	conv2d_2[0][0]
max_pooling2d_1 (MaxPooling2D)	(None,	34, 34, 32)	0	conv2d_3[0][0]
resnet50 (Functional)	(None,	5, 5, 2048)	23587712	normalization[0][0]
xception (Functional)	(None,	5, 5, 2048)	20861480	normalization[0][0]
flatten (Flatten)	(None,	36992)	0	max_pooling2d_1[0][0]
flatten_1 (Flatten)	(None,	51200)	0	resnet50[0][0]
flatten_2 (Flatten)	(None,	51200)	0	xception[0][0]
concatenate (Concatenate)	(None,	139392)	0	flatten[0][0] flatten_1[0][0] flatten_2[0][0]
dense (Dense)	(None,	5)	696965	concatenate[0][0]
classification_head_1 (Softmax)	(None,	5)	0	dense [0] [0]

Project 1-2

-.txt data classification/regression with self-built automl model

Tested on breast_cancer data/txt file

Overall pipeline is similar to autokeras, still in progress to refine parameters

```
model.best_pipeline
{'estimator': GradientBoostingClassifier(ccp alpha=0.0, criterion='friedman mse', init=None,
                           learning rate=0.9, loss='deviance', max depth=3,
                           max features=None, max leaf nodes=None,
                           min_impurity_decrease=0.0, min_impurity_split=None,
                           min samples leaf=1, min samples split=2,
                           min weight fraction leaf=0.0, n estimators=415,
                          n_iter_no_change=None, presort='deprecated',
                          random state=0, subsample=1.0, tol=0.0001,
                           validation fraction=0.1, verbose=0,
                          warm_start=False),
 'estimator_learning_rate': 0.9,
 'estimator n estimators': 415,
 'feature_selector_k': 21,
 preprocessor_numerical_cleaner_strategy': 'median',
 preprocessor numerical scaler: None
balanced accuracy score(v test, model.predict(X test))
0.9510317720275139
```

Discussion

- Differences are observed in different trains. Result hard to reproduce.
- Still takes quite a bit computational power, parallel training with GPU would be helpful
- Need better understanding behind the hp tuning for better performance

Potential Optimizations

- Make our auto model more stable for training
- Could implement transfer training in next steps

Future of AutoML is bright

- Data scientist's productivity
- Deep Learning improvement
- Getting more and more exposed to business models