The main goal of intelligent transportation systems (ITS) is to improve traffic efficiency and mobile safety. The Dedicated Short Range Communication system (DSRC) standard based inter-vehicle communications system plays a key role in ITS [1]. In October 1999, the Federal Communications Commission (FCC) allocated the frequency spectrum between 5.850 and 5.925 GHz for DSRC, which will enable vehicles to communicate with the road infrastructure, and allows for a large number of ITS applications. This provides an opportunity for automakers, government agencies, and related commercial entities to improve highway safety. However, inter-vehicle communications must operate effectively within transmit power limits and under received signal strength fluctuations and Doppler spread. Conventionally, Convolutional coding was employed for forward error correction (FEC); however, in this book, we consider DSRC performance using Low Density Parity Check (LDPC) codes and Quasi-Cyclic (QC)-LDPC codes under different channel conditions. Results show that a QC-LDPC code provide an attractive trade off between performance and complexity, and should be considered as an alternative for DSRC systems.

Najmeh Khosroshahi

Najmeh Khosroshahi

Graduated with B.Sc. Diploma in 'Electrical Engineering' from University of Tehran, Iran and M.Sc Diploma in 'Wireless Communications and Information Theory' from University of Victoria, B.C., Canada. Worked as 'Wireless Interoperability Protocol Associate' at RIM-Blackberry(CA). Experienced in 'Programming Digital Processing Board Prototypes'.

978-3-659-39398-

Inter-vehicle Communication Systems Improvement

Having Safety and Speed Synchronized, Requires The Best Possible Error Correction in Communication Systems

Najmeh Khosroshahi

Inter-vehicle Communication Systems Improvement

Najmeh Khosroshahi

Inter-vehicle Communication Systems Improvement

Having Safety and Speed Synchronized, Requires
The Best Possible Error Correction in
Communication Systems

LAP LAMBERT Academic Publishing

Impressum / Imprint

Bibliografische Information der Deutschen Nationalbibliothek: Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

Alle in diesem Buch genannten Marken und Produktnamen unterliegen warenzeichen, marken- oder patentrechtlichem Schutz bzw. sind Warenzeichen oder eingetragene Warenzeichen der jeweiligen Inhaber. Die Wiedergabe von Marken, Produktnamen, Gebrauchsnamen, Handelsnamen, Warenbezeichnungen u.s.w. in diesem Werk berechtigt auch ohne besondere Kennzeichnung nicht zu der Annahme, dass solche Namen im Sinne der Warenzeichen- und Markenschutzgesetzgebung als frei zu betrachten wären und daher von jedermann benutzt werden dürften.

Bibliographic information published by the Deutsche Nationalbibliothek: The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data are available in the Internet at http://dnb.d-nb.de.

Any brand names and product names mentioned in this book are subject to trademark, brand or patent protection and are trademarks or registered trademarks of their respective holders. The use of brand names, product names, common names, trade names, product descriptions etc. even without a particular marking in this works is in no way to be construed to mean that such names may be regarded as unrestricted in respect of trademark and brand protection legislation and could thus be used by anyone.

Coverbild / Cover image: www.ingimage.com

Verlag / Publisher:
LAP LAMBERT Academic Publishing
ist ein Imprint der / is a trademark of
OmniScriptum GmbH & Co. KG
Heinrich-Böcking-Str. 6-8, 66121 Saarbrücken, Deutschland / Germany
Email: info@lap-publishing.com

Herstellung: siehe letzte Seite / Printed at: see last page ISBN: 978-3-659-39398-3

Zugl. / Approved by: Victoria (B.C. CA), University of Victoria, 2011

Copyright © 2014 OmniScriptum GmbH & Co. KG Alle Rechte vorbehalten. / All rights reserved. Saarbrücken 2014

Contents

Acknowledgements

Dedication

1	Intr	Introduction						
	1.1	Dedicated Short Range Communication (DSRC)	2					
		1.1.1 FCC DSRC Frequency Allocation	2					
		1.1.2 The ASTM DSRC Standard	:					
		1.1.3 The DSRC Spectrum	;					
		1.1.4 Current Activities	Ę					
	1.2	DSRC and Error Control Coding	Ę					
	1.3	The Objectives of this Thesis	(
2	The	DSRC Transceiver	8					
	2.1	The DSRC Transmitter	ç					
	2.2	The DSRC Channel	10					
	2.3	The DSRC Receiver	10					
	2.4	Puncturing	11					
	2.5	DSRC Scrambler Structure	11					
	2.6	Orthogonal Frequency Division Multiplexing (OFDM)	12					

3	Cha	nnel Model	22
	3.1	Small-Scale Fading	24
		3.1.1 Factors that Influence Small-Scale Fading	24
		3.1.2 Slow and Fast Fading	25
		3.1.3 Frequency-Flat and Frequency-Selective Fading $\ \ldots \ \ldots \ \ldots$	26
		3.1.4 Modelling a Flat Fading Channel \hdots	28
	3.2	The DSRC Channel	30
		3.2.1 The DSRC Channel Model	31
4	Cor	volutional Coding	32
	4.1	Convolutional Encoder	33
		4.1.1 D-Transform Domain	35
		4.1.2 Convolutional Code Representation	36
	4.2	Minimum Free Distance of a Convolutional Code $\ \ \ldots \ \ \ldots \ \ \ldots$	37
	4.3	Convolutional Decoding: The Viterbi Algorithm	38
	4.4	Convolutional Decoding Complexity	42
5	Reg	ular and Quasi-Cyclic LDPC Codes	43
	5.1	Regular LDPC Codes	44
		5.1.1 Linear Block Codes	44
		5.1.2 Cyclic Codes	46
		5.1.3 Quasi-Cyclic Codes	48
		5.1.4 Regular LDPC Codes	49
	5.2	Random LDPC Codes	51
	5.3	QC-LDPC Code Construction	53
		5.3.1 Distance Graph	53
		5.3.2 Construction Algorithm for QC-LDPC Codes	54
	5.4	The Sum Product Algorithm	57
		5.4.1 Logarithmic SPA Decoding	65
	5.5	Decoding Complexity	66

Multiple Carriers for Data Transmission

Overlapping Sub-channels in Multicarrier Modulation

Discrete Fourier Transform (DFT) and Inverse DFT (IDFT) $% \left(1\right) =\left(1\right) \left(1$

13

15

17

17

19

2.6.1

2.6.2

2.6.3

2.6.4

2.6.5

6	Simulation Results	68
7	Conclusions 7.1 Future Work	81
Bibliography		84