Sommersemester 2016

Einführung in die Funktionentheorie

Beweis ist relativ einfach. Haben kein Platz, also machen wir Platz. Prof. Dr. N. V. Shcherbina

Inhaltsverzeichnis

V	orwort	5
1	Der Körper C der komplexen Zahlen	7
2	Topologische Grundbegriffe	9
3	Konvergente Folgen komplexer Zahlen	13
4	Konvergente und absolut konvergente Reihen	17
5	Stetige Funktionen	21

Vorwort

Hier kommt noch das Vorwort hin, wenn mir was einfällt. Solang müsst ihr hier mit 'ner zu 90% leeren Seite auskommen.

1

Der Körper C der komplexen Zahlen

R - der Körper der reellen Zahlen

Im 2-dimensionalen \mathbb{R} -Vektorraum \mathbb{R}^2 der geordneten reellen Zahlenpaare z := (x, y) wird eine Multiplikation eingeführt vermöge

$$(x_1, y_1)(x_2, y_2) := (x_1, x_2 - y_1y_2, x_1y_2 + x_2y_1)$$

Dadurch wird \mathbb{R}^2 , zusammen mit der Vektorraumaddition

$$(x_1, y_1) + (x_2, y_2) := (x_1 + x_2, y_1 + y_2)$$

zu einem (kommutativen) Körper mit dem Element (1,0) als Einselement; das Inverse von $z = (x, y) \neq 0$ ist

$$z^{-1} := \left(\frac{x}{x^2 + y^2}, \frac{-y}{x^2 + y^2}\right)$$

Dieser Körper heißt der Körper C der komplexen Zahlen.

Man definiert weiter $i:=(0,1)\in\mathbb{C}$. Offensichtlich gilt $i^2=-1$, man nennt i die imaginäre Einheit von \mathbb{C} . Für jede Zahl $z=(x,y)\in\mathbb{C}$ besteht die eindeutige Darstellung (x,y)=(x,0)+(0,1)(y,0), d.h. z=x+iy mit $x,y\in\mathbb{R}$, (wir identifizieren die reellen Zahlen x mit der komplexen Zahl (x,0)). Man setzt

$$\operatorname{Re} z := x$$
, $\operatorname{Im} z := y$

wobei z = x + iy und nennt x bzw. y Realteil bzw. Imaginärteil von z. Die Zahl z heißt reell bzw. rein imaginär, wenn Imz = 0 bzw. Rez = 0, letzteres bedeutet z = y.

Skalarpodukt und absoluter Betrag

Für z = x + iy, $w = u + iv \in \mathbb{C}$ ist

$$\langle z, w \rangle := \text{Re}(w, \bar{z}) = xu + yv$$

(für z = x + iy ist $\bar{z} := x - iy$) das euklidische Skalarprodukt im reellen Vektorraum $\mathbb{C} = \mathbb{R}^2$. Die nicht-negative reelle Zahl

$$|z| \coloneqq \sqrt{\langle z, \bar{z} \rangle} = \sqrt{z\bar{z}} = \sqrt{x^2 + y^2}$$

ist die euklidische Länge von z, sie heißt der absolute Betrag von z. Es gilt:

- i) $|\bar{z}| = |z|$
- ii) $|\text{Re } z| \le |z|, |\text{Im } z| \le |z|$

iii)
$$z^{-1} = \frac{\bar{z}}{|z|^2}$$
 für $z \neq 0$

iv)
$$\langle aw, az \rangle = |a|^2 \langle w, z \rangle, \langle \bar{w}, \bar{z} \rangle = \langle w, z \rangle \forall w, z, a \in \mathbb{C}$$

v) $|\langle w, z \rangle| \le |w||z| \forall w, z \in \mathbb{C}$ (Cauchy-Schwarz-Ungleichung)

vi)
$$|w+z|^2 = |w|^2 + |z|^2 + 2\langle w, z \rangle \forall w, z \in \mathbb{C}$$
 (Cosinussatz)

Zwei Vektoren z, w heißen orthogonal, wenn $\langle z, w \rangle = 0$.

Fundamental für das Rechnen mit dem Absolutbetrag sind folgende Regeln:

i)
$$|z| \ge 0$$
, $|z| = 0 \Leftrightarrow z = 0$

- ii) |zw| = |z||w| (Produktregel)
- iii) $|z+w| \le |z| + |w|$ (Dreiecksungleichung)

Auf Grund der Cauchy-Schwarzschen Ungleichung gilt:

$$-1 \leq \frac{\langle w, z \rangle}{|w||z|} \leq 1 \forall w, z \in \mathbb{C}^* := \mathbb{C} \setminus \{0\}$$

Es folgt:

$$\exists ! \varphi \in \mathbb{R}, 0 \le \varphi \le \pi : \cos \varphi = \frac{\langle w, z \rangle}{|z||w|}$$

Man nennt φ den Winkel zwischen $w, z \in \mathbb{C}$, in Zeichen $\angle(w, z) = \varphi$.

Topologische Grundbegriffe

Definition 2.1

Ist X irgendeine Menge, so heißt eine Funktion $d: X \times X \to \mathbb{R}$, $(x, y) \mapsto d(x, y)$, eine Metrik auf X, wenn $\forall x, y, z \in X$ gilt:

i)
$$d(x, y) \ge 0$$
, $d(x, y) = 0 \Leftrightarrow x = y$

ii)
$$d(x, y) = d(y, x)$$

iii)
$$d(x,z) \le d(x,y) + d(y,z)$$

(X,d) heißt metrischer Raum.

Im Fall $X=\mathbb{C}$ nennt man $d(w,z)\coloneqq |w-z|=\sqrt{(u-x)^2+(v-y)^2}$ (die euklidische Entfernung der Punkte w,z in der Zahlebene) die euklidische Metrik von \mathbb{C} . In einem metrischen Raum X mit Metrik d heißt die Menge

$$B_r(c) := \{x \in X \mid d(x,c) < r\}$$

die offene Kugel vom Radius r > 0 mit Mittelpunkt $c \in X$.

Im Fall der euklidischen Metrik auf C heißen die Kugeln

$$B_r(c) := \{ z \in \mathbb{C} \mid |z - c| < r \}$$

r > 0, offene Kreisscheibe in C. Wir schreiben durchweg

$$\mathbb{E} := B_1(0) = \{z \in C \mid |z| < 1\}$$

Definition 2.2

Eine Teilmenge $U \subset X$ eines metrischen Raumes X heißt offen (in X) $\Leftrightarrow \forall x \in U \exists r > 0$ so dass $B_r(x) \subset U$ (\emptyset ist offene Menge per definitionem).

i)
$$\{U_{\alpha}\}_{{\alpha}\in A} \Rightarrow \bigcup_{{\alpha}\in A} U_{\alpha}$$
 offen

ii)
$$U_1, U_2, ..., U_m$$
 offen $\Rightarrow \bigcap_{i=1}^m U_i$ offen

Definition 2.3

Eine Menge $A \subset X$ heißt abgeschlossen (in X) $\Leftrightarrow X \setminus A$ offen.

- i) $\{A_{\alpha}\}_{{\alpha}\in\mathscr{A}}$ abgeschlossene Mengen $\Rightarrow \bigcap_{{\alpha}\in\mathscr{A}} A_{\alpha}$ abgeschlossen
- ii) $A_1, A_2, ..., A_m$ abgeschlossen $\Rightarrow \bigcup_{i=1}^m A_i$ abgeschlossen

Definition 2.4

 $A \subset X$ beliebig. Die abgeschlossene Hülle \bar{A} von A ist $\bar{A} := \bigcap B$, so dass $B \supset A$, B abgeschlossen.

Eine Menge $W \subset X$ heißt Umgebung der Menge $M \subset X$, wenn $\exists V$ offen mit $M \subset V \subset W$. Sei $k \in \mathbb{N} := \{0, 1, 2, ...\}$. Eine Abbildung $\{k, k+1, k+2, ...\} \to X$, $n \mapsto c_n$, heißt Folge in X. Man schreibt kurz (c_n) , im Allgemeinen ist k = 0.

Definition 2.5

Eine Folge (c_n) heißt konvergent in X, wenn es einen Punkt $c \in X$ gibt, so dass in jeder Umgebung von c fast alle (d.h. alle bis auf endlich viele) Folgenglieder c_n liegen. Der Punkt c heißt ein Limes der Folge. In Zeichen:

$$c = \lim_{n \to \infty} c_n$$

Nicht konvergente Folgen heißen divergent.

Eine Menge $M \subset X$ ist genau dann abgeschlossen in X, wenn der Limes jeder konvergenten Folge (c_n) , $c_n \in M$, stets zu M gehört.

Definition 2.6

Ein Punkt $p \in X$ heißt Häufungspunkt einer Menge $M \subset X$: $\Leftrightarrow \forall$ Umgebung U von p gilt:

$$U \cap (M \setminus \{p\}) \neq \emptyset$$

In jeder Umgebung eines Häufungspunktes p von M liegen unendlich viele Punkte von M; es gibt stets eine Folge (c_n) in $M \setminus \{p\}$ mit $\lim c_n = p$.

Beispiel

- i) $X = \mathbb{R}$, $M = \mathbb{Q}$. Die Menge U aller Häufungspunkte? $U = \mathbb{R}$.
- ii) $X = \mathbb{R}, M = \mathbb{Z}. U = \emptyset.$

iii)
$$X = \mathbb{R}, M = \left\{\frac{1}{n}\right\}_{n=1}^{\infty}, U = \{0\}.$$

Definition 2.7

Eine Teilmenge A eines metrischen Raumes X heißt dicht, in $X:\Leftrightarrow \forall$ offene $U\subset X:U\cap A\neq \emptyset \Leftrightarrow \bar{A}=X.$

Beispiel

 $X = C[a,b], d(f,g) = \sup_{x \in [a,b]} |f(x) - g(x)|, f,g \in X, A = \mathcal{P} = \text{alle Polynome auf } [a,b].$

Satz 2.8 Äquivalenzsatz

Folgende Aussagen über einen metrischen Raum X sind äquivalent:

- i) Jede offene Überdeckung $U = \{U_j\}_{j \in J}$ von X besitzt eine endliche Teilüberdeckung. (Heine-Borel-Eigenschaft)
- ii) Jede Folge (x_n) in X besitzt eine konvergente Teilfolge. (Weierstraß-Bolzano-Eigenschaft)

Definition 2.9

Man nennt X kompakt, wenn die Bedingungen i) und ii) aus Satz 2.8 erfüllt sind. Eine Teilmenge K von X heißt kompakt, oder auch ein Kompaktum (in X), wenn K mit der induzierten Metrik ein kompakter Raum ist.

- (*) Jedes Kompaktum in X ist abgeschlossen in X. In einem kompakten Raum ist jede abgeschlossene Teilmenge kompakt.
- (**) Jede offene Menge D in $\mathbb C$ ist die Vereinigung von abzählbar unendlich vielen kompakten Teilmengen von D.

Konvergente Folgen komplexer Zahlen

Rechenregeln

Konvergiert die Folge c_n gegen $c \in \mathbb{C}$, so liegen in jeder Kreisscheibe $B_{\varepsilon}(c)$, $\varepsilon > 0$, um c fast alle Folgenglieder c_n .

Für jedes $z \in \mathbb{C}$ mit |z| < 1 ist die Potenzfolge z^n konvergent: $\lim z^n = 0$; für alle |z| > 1 ist die Folge z^n divergent.

Definition 3.1

Eine Folge c_n heißt beschränkt: $\Leftrightarrow \exists M > 0$, so dass $|c_n| \leq M \forall n \in \mathbb{N}$.

Wie im Reellen folgt: Jede konvergente Folge komplexer Zahlen ist beschränkt. Sind c_n, d_n konvergente Folgen, so gelten die Limesregeln:

i) $\forall a, b \in \mathbb{C}$ ist $ac_n + bd_n$ konvergent:

$$\lim(ac_n + bd_n) = a\lim c_n + b\lim d_n$$

(C-Linearität)

ii) Die Produktfolge $c_n d_n$ ist konvergent:

$$\lim(c_n d_n) = (\lim c_n)(\lim d_n)$$

- iii) Ist $\lim d_n \neq 0$, so gibt es ein $k \in \mathbb{N}$, so dass $d_n \neq 0 \forall n \geq k$; die Quotientenfolge $\left(\frac{c_n}{d_n}\right)_{n \geq k}$ konvergiert gegen $\frac{\lim c_n}{\lim d_n}$.
- iv) Die Betragsfolge $|c_n|$ reeller Zahlen ist konvergent:

$$\lim |c_n| = |\lim c_n|$$

v) Die Folge \bar{c}_n konvergiert gegen \bar{c} .

Satz 3.2

Folgende Aussagen über eine Folge c_n sind äquivalent:

- i) c_n ist konvergent.
- ii) Die beiden reellen Folgen $\operatorname{Re} c_n$, $\operatorname{Im} c_n$ sind konvergent. Im Fall der Konvergenz gilt:

$$\lim c_n = \lim \operatorname{Re} c_n + i \lim \operatorname{Im} c_n$$

Beweis:

 $i)\Rightarrow ii)$ Limesregeln i) und v) und Re $c_n=\frac{1}{2}(c_n+\bar{c}_n),$ Im $c_n=\frac{1}{2i}(c_n-\bar{c}_n).$

 $ii) \Rightarrow i)$

 $\lim c_n = \lim (\operatorname{Re} c_n + i \operatorname{Im} c_n) = \lim \operatorname{Re} c_n + i \lim \operatorname{Im} c_n$

Definition 3.3

Eine Folge c_n heißt Cauchy-Folge, wenn $\forall \varepsilon > 0 \exists k \in \mathbb{N}$, so dass $|c_n - c_m| < \varepsilon \forall n, m \ge k$.

Satz 3.4 Konvergenzkriterium von Cauchy

Folgende Aussagen über eine Folge (c_n sind äquivalent:

- i) (c_n) ist konvergent.
- ii) (c_n) ist eine Cauchyfolge.

Beweis:

 $i)\Rightarrow ii)$ Da (c_n) konvergent ist, $\exists c$, so dass $\forall \frac{\varepsilon}{2} > 0 \exists k \in \mathbb{N} : |c_n - c| < \varepsilon \forall n \ge k$. Mit der Dreiecksungleichung folgt:

$$|c_n - c_m| \le |c_n - c| + |c - c_m| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon \forall n, m \ge k$$

ii)⇒i) (c_n) ist eine Cauchyfolge. Es gilt:

$$|\operatorname{Re} c_n - \operatorname{Re} c_m| \le |c_n - c_m|, \quad |\operatorname{Im} c_n - \operatorname{Im} c_m| \le |c_n - c_m|$$

Also sind $(\operatorname{Re} c_n)$ und $(\operatorname{Im} c_n)$ reelle Cauchy-Folgen, also nach Analysis 1 konvergent. Somit ist auch $c_n = \operatorname{Re} c_n + i \operatorname{Im} c_n$ konvergent.

Satz 3.5

Für $K \subset \mathbb{C}$ ist K kompakt $\Leftrightarrow K$ beschränkt und abgeschlossen.

Satz 3.6 Bolzano-Weierstraß

Jede beschränkte Folge komplexer Zahlen besitzt eine konvergente Teilfolge.

4

Konvergente und absolut konvergente Reihen

Definition 4.1

Ist $(a_v)_{v \ge k}$ eine Folge komplexer Zahlen, so heißt die Folge $(s_n)_{n \ge k}$, $s_n \coloneqq \sum_{v=k}^n a_v$, der Partialsummen eine (unendliche) Reihe mit den Gliedern a_v . Man schreibt $\sum_{v=k}^{\infty} a_v$, $\sum_{k=k}^{\infty} a_v$, $\sum_{v \ge k}^{\infty} a_v$, oder einfach $\sum a_v$.

Eine Reihe $\sum a_v$ heißt konvergent, wenn die Partialsummenfolge (s_n) konvergiert, andernfalls heißt sie divergent. Im Konvergenzfall schreibt man suggestiv:

$$\sum a_{v} := \lim s_{n}$$

Wegen $a_n = s_n - s_{n-1}$ gilt $\lim a_n = 0$ für jede konvergente Reihe. Die Limesregeln i) und v) übertragen sich sofort auf Reihen:

$$\sum_{v \ge k} (aa_v + bb_v) = a \sum_{v \ge k} a_v + b \sum_{v \ge k} b_v$$

$$\overline{\sum_{v \ge k} a_v} = \sum_{v \ge k} \bar{a}_v$$

Speziell folgt: Die komplexe Reihe $\sum_{v \geq k} a_v$ ist genau dann konvergent wenn die beiden reellen Reihen $\sum_{v \geq k} \operatorname{Re} a_v$ und $\sum_{v \geq k} \operatorname{Im} a_v$ konvergieren; also dann gilt:

$$\sum_{v \ge k} a_v = \sum_{v \ge k} \operatorname{Re} a_v + \sum_{v \ge k} \operatorname{Im} a_v$$

Satz 4.2 Konvergenzkriterium von Cauchy

Eine Reihe $\sum a_{\nu}$ konvergiert genau dann wenn $\forall \varepsilon > 0 \exists n_0 \in \mathbb{N}$ so dass

$$\left| \sum_{m+1}^{n} a_{\nu} \right| < \varepsilon \, \forall \, m, n \ge n_0$$

Definition 4.3

Eine Reihe $\sum a_{\nu}$ heißt absolut konvergent, wenn die Reihe $\sum |a_{\nu}|$ nichtnegativer reeller Zahlen konvergiert.

Satz 4.4 Majorantenkriterium

Es sei $\sum_{v\geq k} t_v$ eine konvergente Reihe mit reellen Gliedern $t_v\geq 0$; es sei $(a_v)_{v\geq k}$ eine komplexe Zahlenfolge, so dass $\forall v: |a_v|\leq t_v$. Dann ist $\sum_{v\geq k} a_v$ absolut konvergent.

Beweis:

$$\sum_{m+1}^{n} |\alpha_{\nu}| \le \sum_{m+1}^{n} t_{\nu} < {}^{1}\varepsilon$$

Also ist $\sum |a_{\nu}|$ konvergent.

Wegen $\max(|\operatorname{Re} a|, |\operatorname{Im} a|) \le |a| \le |\operatorname{Re} a| + |\operatorname{Im} a|$ gilt (nach dem Majorantenkriterium): $\sum a_{\nu}$ ist absolut konvergent $\Leftrightarrow \sum \operatorname{Re} a_{\nu}$, $\sum \operatorname{Im} a_{\nu}$ sind absolut konvergent.

Satz 4.5 Umordnungssatz

 $\sum_{v\geq 0} a_v$ konvergiere absolut. Dann konvergiert jede 'Umordnung' dieser Reihe.

Beweis: $\sum_{v\geq 0}$ absolut konvergent $\Rightarrow \sum_{v\geq 0} \operatorname{Re} a_v$, $\sum_{v\geq 0} \operatorname{Im} a_v$ absolut konvergent, i.e. $\forall \varepsilon > 0 \exists n_0 \in \mathbb{N}$ so dass $\sum_{m+1}^n |\operatorname{Re} a_v| < \varepsilon$, $\sum_{m+1}^n |\operatorname{Im} a_v| < \varepsilon \forall m, n \geq n_0$. $\tau \colon \mathbb{N} \to \mathbb{N}$ Bijektion $\Rightarrow \exists N_0 \in \mathbb{N}$ so dass $\tau(n) \geq n_0 \forall n \geq N_0$. Also:

$$\sum_{N_0+1}^N |\operatorname{Re} a_{\tau(\nu)}| < \varepsilon, \qquad \sum_{N_0+1}^N |\operatorname{Im} a_{\tau(\nu)}| < \varepsilon$$

Diese Reihen sind konvergent nach Cauchy, somit auch absolut konvergent und die Behauptung folgt. \Box

Sind $\sum_{0}^{\infty} a_{\mu}$, $\sum_{0}^{\infty} a_{\nu}$ zwei Reihen, so heißt jede Reihe $\sum_{0}^{\infty} c_{\lambda}$, wobei $c_{0}, c_{1}, c_{2}, ...$ genau einmal alle Produkte $a_{\mu}b_{\nu}$ durchläuft, eine Produktreihe von $\sum a_{\mu}$ und $\sum b_{\nu}$. Die wichtigste Produktreihe

¹ Cauchy-Kriterium

 $^{2 \}sum a_{\tau(v)}, \tau : \mathbb{N} \to \mathbb{N}$ Bijektion

ist das Cauchyprodukt $\sum p_{\lambda}$ mit $p_{\lambda} \coloneqq \sum_{\mu+\nu=\lambda} a_{\mu} b_{\nu}$. Diese Bildung wird nahegelegt, wenn man Potenzreihen formal ausmultipliziert:

$$\left(\sum_{0}^{\infty} a_{\mu} x^{\mu}\right) \left(\sum_{0}^{\infty} b_{\nu} x^{\nu}\right) = \sum_{0}^{\infty} p_{\lambda} x^{\lambda}$$

Satz 4.6 Reihenproduktsatz

Es seien $\sum_0^\infty a_\mu$, $\sum_0^\infty b_\nu$ absolut konvergente Reihen. Dann konvergiert jede Produktreihe $\sum_0^\infty c_\lambda$ absolut. Es gilt stets:

$$\left(\sum_{0}^{\infty} a_{\mu}\right) \left(\sum_{0}^{\infty} b_{\nu}\right) = \sum_{0}^{\infty} p_{\lambda}$$

Beweis: $\forall l \in \mathbb{N} \exists m \in \mathbb{N}$, so dass $c_0, c_1, c_2, ..., c_l$ unter den Produkten $a_{\mu}b_{\nu}$, $0 \ge \mu, \nu \ge m$, vorkommen. Dann:

$$\sum_{0}^{l} |c_{\lambda}| \leq \left(\sum_{0}^{m} |a_{\mu}|\right) \left(\sum_{0}^{m} |b_{\nu}|\right) \leq \left(\sum_{0}^{\infty} |a_{\mu}|\right) \left(\sum_{0}^{\infty} |b_{\nu}|\right) < +\infty$$

Also ist $\sum_0^\infty |c_\lambda|$ konvergent, also $\sum_0^\infty c_\lambda$ absolut konvergent und somit unabhängig von Umordnungen. Insbesondere:

$$(a_0 + a_1 + ... + a_m)(b_0 + b_1 + ... + b_m) = (c_0 + c_1 + ... + c_{(m+1)^2-1})$$

Es folgt:

$$\left(\sum_{0}^{\infty} a_{\mu}\right) \left(\sum_{0}^{\infty} b_{\nu}\right) = \sum_{0}^{\infty} p_{\lambda}$$

5

Stetige Funktionen

 $f: X \to Y$, f heißt Funktion oder Abbildung, X heißt Argumentbereich und Y Wertebereich. Man schreibt auch $X \ni x \to f(x) \in Y$.

Definition 5.1

Eine Abbildung $f: X \to Y$ heißt stetig im Punkt $a \in X$, wenn das f-Urbild $f^{-1}(V) = \{x \in X \mid f(x) \in V\}$ einer jeden Umgebung V von f(a) in Y eine Umgebung von a in X ist.

Definition 5.2

Die Funktion $f: X \to Y$ konvergiert bei Annäherung an $a \in X$ gegen $b \in Y$, in Zeichen $\lim_{x \to a} f(x) = b$ oder $f(x) \to b$ wenn $x \to a$, wenn es zu jeder Umgebung V von b in Y eine Umgebung U von a in X gibt mit $f(U \setminus \{a\}) \subset V$.

Bemerkung

f ist stetig in $a \Leftrightarrow \exists \lim_{x \to a} f(x) = f(a)$.

Satz 5.3 Folgenkriterium

Genau dann ist $f: X \to Y$ stetig in a, wenn $\forall \text{Folge } (x_n)$ von Punkten $x_n \in X$ mit $\lim x_n = a$ gilt: $\lim f(x_n) = f(a)$.

Zwei Abbildungen $f: X \to Y$ und $g: Y \to Z$ werden zusammengesetzt zu $g \circ f: X \to Z$, $z \to (g \circ f)(x) := g(f(x))$. Bei dieser Komposition von Abbildungen vererbt sich die Stetig-

keit: Ist $f: X \to Y$ stetig in $a \in X$ und ist $g: Y \to Z$ stetig in $f(a) \in Y$, so ist $g \circ f: X \to Z$ stetig in a.