NESS registration and abstract submission summary

```
Henry Linder (mhlinder@gmail.com)
April 13, 2017
```

Setup

```
library(magrittr)
library(dplyr)

library(readr)
library(stringdist)

abs <-
    read_csv("../bak/abstracts.csv")
reg <-
    read_csv("../bak/reg.csv")</pre>
```

Abstracts submitted without a registration

Speakers without an abstract

Load data parsed from files:

- Invited sessions schedule and program
- Submitted abstracts
- Registration

We generate a data frame with rows representing an individual speaker.

```
load("../parsed.Rdata")
df_sessions <-
    lapply(sessions,
       function(x) {
           inspkrs <- x$speakers</pre>
           outspkrs <- list()</pre>
           for (i in 1:length(inspkrs)) {
                s <- inspkrs[[i]]
                outspkrs[[i]] <- data.frame(name</pre>
                                                          = ifelse(is.null(s$name), NA, s$name)
                                              affiliation = ifelse(is.null(s$affiliation), NA,
                                             paper
                                                          = ifelse(is.null(s$paper), NA, s$paper
                                              session
                                                          = x$title,
                                              stringsAsFactors = FALSE)
           }
           do.call(bind_rows, outspkrs)
    do.call(bind_rows, .)
```

Then we find the closest match to each row along three different fields in the submitted abstracts:

- Presenter name
- Affiliation
- Paper title

```
titles <- sapply(sessions, . %>% use_series(title))

df_sessions[c("ix_presenter", "ix_aff", "ix_title")] <- NA
for (i in 1:nrow(df_sessions)) {
    ## for (i in 1:1) {
        r <- df_sessions[i,]
        ix_session <- stringdist(r$session, abs$session) %>% which.min
        this_session <- abs$session[ix_session]
        candidates <- abs %>% filter(session == this_session)
        df_sessions$ix_presenter[i] <- stringdist(r$name, candidates$presenter) %>% which.min

    if (!is.na(r$affiliation))
        df_sessions$ix_aff[i] <- stringdist(r$affiliation, candidates$affiliation) %>% which
if (!is.na(r$paper))
        df_sessions$ix_title[i] <- stringdist(r$paper, candidates$title) %>% which.min

    r <- df_sessions[i,]
    cat("\n")</pre>
```

```
cat(sprintf("# %s\n", r$session))
    cat("\n")
    cat(sprintf("**%s**, %s: %s\n\n",
                  r$name,
                  r$affiliation,
                  r$paper))
    out_presenter <- sprintf("**%s**, %s: %s",</pre>
                              candidates$presenter[r$ix_presenter],
                              candidates $affiliation [r $ix_presenter],
                              candidates$title[r$ix_presenter])
    cat(sprintf("* %s\n (matched by presenter)\n", out_presenter))
    out_aff <- sprintf("**%s**, %s: %s",
                        candidates presenter [r ix aff],
                        candidates$affiliation[r$ix_aff],
                        candidates$title[r$ix_aff])
    cat(sprintf("* %s\n (matched by affiliation)\n", out_aff))
    if (!is.na(r$ix_title)) {
        out_title <- sprintf("**%s**, %s: %s",
                              candidates$presenter[r$ix_title],
                              candidates$affiliation[r$ix_title],
                              candidates$title[r$ix_title])
        cat(sprintf("* %s\n (matched by title)\n", out_title))
    }
    cat("\n")
    cat("----\n")
    cat("\n\n")
}
```

1. New Vistas in Statistics with Applications

Aleksey Polunchenko, Binghamton University: NA

- Aleksey Polunchenko, Binghamton University: Asymptotic Exponentiality of the First Exit Time of the Shiryaev-Roberts Diffusion with Constant Positive Drift (matched by presenter)
- Aleksey Polunchenko, Binghamton University: Asymptotic Exponentiality of the First Exit Time of the Shiryaev-Roberts Diffusion with Constant Positive Drift (matched by affiliation)

1. New Vistas in Statistics with Applications

Vasanthan Raghavan, Qualcomm Flarion Technologies, New Jersey: NA

- Emmanuel Yashchin, IBM Research: Alarm prioritization in Early Warning Systems (matched by presenter)
- Aleksey Polunchenko, Binghamton University: Asymptotic Exponentiality of the First Exit Time of the Shiryaev-Roberts Diffusion with Constant Positive Drift (matched by affiliation)

1. New Vistas in Statistics with Applications

Zuofeng Shang, Binghamton University: NA

- **Zuofeng Shang**, Binghamton University: Computationally Efficient Non-parametric Testing (matched by presenter)
- Aleksey Polunchenko, Binghamton University: Asymptotic Exponentiality of the First Exit Time of the Shiryaev-Roberts Diffusion with Constant Positive Drift (matched by affiliation)

1. New Vistas in Statistics with Applications

Emmanuel Yashchin, IBM: NA

- Emmanuel Yashchin, IBM Research: Alarm prioritization in Early Warning Systems (matched by presenter)
- Emmanuel Yashchin, IBM Research: Alarm prioritization in Early Warning Systems (matched by affiliation)

2. Non-Clinical in Pharmaceutical Industry

Don Bennett, Pfizer: NA

- QIQI DENG, Boehringer Ingelheim: Choosing timing and boundary for futility analysis based on cost-effective assessment (matched by presenter)
- Joseph C. Cappelleri, Pfizer Inc: Meta-Analysis of Safety Data in Clinical Trials (matched by affiliation)

2. Non-Clinical in Pharmaceutical Industry

Jerry Lewis, Biogen: NA

• **QIQI DENG**, Boehringer Ingelheim: Choosing timing and boundary for futility analysis based on cost-effective assessment (matched by presenter)

• Joseph C. Cappelleri, Pfizer Inc: Meta-Analysis of Safety Data in Clinical Trials (matched by affiliation)

2. Non-Clinical in Pharmaceutical Industry

Ray Liu, Takeda: NA

• **QIQI DENG**, Boehringer Ingelheim: Choosing timing and boundary for futility analysis based on cost-effective assessment (matched by presenter)

• Joseph C. Cappelleri, Pfizer Inc: Meta-Analysis of Safety Data in Clinical Trials (matched by affiliation)

2. Non-Clinical in Pharmaceutical Industry

Chi-Hse Teng, Novartis: NA

• Bushi Wang, Boehringer Ingelheim: How to Evaluate Type II Error Rate with Multiple Endpoints (matched by presenter)

• Joseph C. Cappelleri, Pfizer Inc: Meta-Analysis of Safety Data in Clinical Trials (matched by affiliation)

3. Space-Time Statistical Solutions at Ibm Research

Julie Novak, IBM T. J. Watson Research Center: Revenue Assessment in Large-Scale Businesses

- Julie Novak, IBM Research: Statistical Challenges of Large-Scale Revenue Forecasting (matched by presenter)
- Yasuo Amemiya, IBM T. J. Watson Research Center: Spatio-Temporal Analysis for System Management (matched by affiliation)
- Julie Novak, IBM Research: Statistical Challenges of Large-Scale Revenue Forecasting (matched by title)

3. Space-Time Statistical Solutions at Ibm Research

Xiao Liu, IBM T. J. Watson Research Center: A Spatio-Temporal Modeling Approach for Weather Radar Image Data

- Xiao Liu, IBM Thomas J. Watson Research Center: A spatio-temporal modeling framework for weather radar image data in tropical Southeast Asia (matched by presenter)
- Yasuo Amemiya, IBM T. J. Watson Research Center: Spatio-Temporal Analysis for System Management (matched by affiliation)
- Yasuo Amemiya, IBM T. J. Watson Research Center: Spatio-Temporal Analysis for System Management (matched by title)

3. Space-Time Statistical Solutions at Ibm Research

Rodrigue Ngueyep Tzoumpe, IBM T. J. Watson Research Center : Spatial Segmentation of Spatial-Temporal Lattice Models for Agricultural Management Zoning

- Rodrigue Ngueyep, IBM Thomas J. Watson Research Center: Spatial Segmentation of Spatial-Temporal Lattice Models for Agricultural Management Zoning (matched by presenter)
- Yasuo Amemiya, IBM T. J. Watson Research Center: Spatio-Temporal Analysis for System Management (matched by affiliation)
- Rodrigue Ngueyep, IBM Thomas J. Watson Research Center: Spatial Segmentation of Spatial-Temporal Lattice Models for Agricultural Management Zoning (matched by title)

3. Space-Time Statistical Solutions at Ibm Research

Yasuo Amemiya, IBM T. J. Watson Research Center: Spatio-Temporal Analysis for System Management

- Yasuo Amemiya, IBM T. J. Watson Research Center: Spatio-Temporal Analysis for System Management (matched by presenter)
- Yasuo Amemiya, IBM T. J. Watson Research Center: Spatio-Temporal Analysis for System Management (matched by affiliation)

• Yasuo Amemiya, IBM T. J. Watson Research Center: Spatio-Temporal Analysis for System Management (matched by title)

4. Graphical Models, Networks, Regulatome and Multivariate Analysis

Forrest W. Crawford, Yale: Causal Inference for Network Epidemics

- **Kuang-Yao Lee**, Yale University: Learning causal networks via additive faithfulness (matched by presenter)
- Kuang-Yao Lee, Yale University: Learning causal networks via additive faithfulness (matched by affiliation)
- Kuang-Yao Lee, Yale University: Learning causal networks via additive faithfulness (matched by title)

4. Graphical Models, Networks, Regulatome and Multivariate Analysis

Zhengqing Ouyang, Jackson Labs: NA

- **Kuang-Yao Lee**, Yale University: Learning causal networks via additive faithfulness (matched by presenter)
- Kuang-Yao Lee, Yale University: Learning causal networks via additive faithfulness (matched by affiliation)

4. Graphical Models, Networks, Regulatome and Multivariate Analysis

Sijian Wang, University of Wisconsin Madison: NA

- Kuang-Yao Lee, Yale University: Learning causal networks via additive faithfulness (matched by presenter)
- **Kuang-Yao Lee**, Yale University: Learning causal networks via additive faithfulness (matched by affiliation)

4. Graphical Models, Networks, Regulatome and Multivariate Analysis

Kuang-Yao Lee, Yale: Learning Causal Networks via Additive Faithfulness

- Kuang-Yao Lee, Yale University: Learning causal networks via additive faithfulness (matched by presenter)
- Kuang-Yao Lee, Yale University: Learning causal networks via additive faithfulness (matched by affiliation)
- Kuang-Yao Lee, Yale University: Learning causal networks via additive faithfulness (matched by title)

5. Big Data

Jacob Bien, Cornell University: Learning Local Dependence in Ordered Data

- Li Ma, Duke University: Fisher exact scanning for dependency (matched by presenter)
- Li Ma, Duke University: Fisher exact scanning for dependency (matched by affiliation)
- Li Ma, Duke University: Fisher exact scanning for dependency (matched by title)

5. Big Data

Li Ma, Duke University: Fisher exact scanning for dependency

- Li Ma, Duke University: Fisher exact scanning for dependency (matched by presenter)
- Li Ma, Duke University: Fisher exact scanning for dependency (matched by affiliation)
- Li Ma, Duke University: Fisher exact scanning for dependency (matched by title)

5. Big Data

Pengsheng Ji, University of Georgia: Flexible Spectral Methods for Community Detection

- Li Ma, Duke University: Fisher exact scanning for dependency (matched by presenter)
- Li Ma, Duke University: Fisher exact scanning for dependency (matched by affiliation)
- Li Ma, Duke University: Fisher exact scanning for dependency (matched by title)

5. Big Data

Chihwa Kao, University of Connecticut: Large Dimensional Econometrics and Identification

- Li Ma, Duke University: Fisher exact scanning for dependency (matched by presenter)
- Li Ma, Duke University: Fisher exact scanning for dependency (matched by affiliation)
- Li Ma, Duke University: Fisher exact scanning for dependency (matched by title)

6. Bayesian Applications in High-Dimensional and Multivariate Modeling

Seongho Song, University of Cincinnati: Bayesian Multivariate Gamma-Frailty Cox Model for Clustered Current Status Data

- Gyuhyeong Goh, Kansas State University: Bayesian variable selection using marginal posterior consistency (matched by presenter)
- Gyuhyeong Goh, Kansas State University: Bayesian variable selection using marginal posterior consistency (matched by affiliation)
- Gyuhyeong Goh, Kansas State University: Bayesian variable selection using marginal posterior consistency (matched by title)

6. Bayesian Applications in High-Dimensional and Multivariate Modeling

Xia Wang, University of Cincinnati: Scalable Massive Multivariate Data Modeling

- **Gyuhyeong Goh**, Kansas State University: Bayesian variable selection using marginal posterior consistency (matched by presenter)
- **Gyuhyeong Goh**, Kansas State University: Bayesian variable selection using marginal posterior consistency (matched by affiliation)
- Gyuhyeong Goh, Kansas State University: Bayesian variable selection using marginal posterior consistency (matched by title)

6. Bayesian Applications in High-Dimensional and Multivariate Modeling

Gyuhyeong Goh, Kansas State University: Bayesian Variable Selection using Marginal Posterior Consistency

- **Gyuhyeong Goh**, Kansas State University: Bayesian variable selection using marginal posterior consistency (matched by presenter)
- Gyuhyeong Goh, Kansas State University: Bayesian variable selection using marginal posterior consistency (matched by affiliation)
- Gyuhyeong Goh, Kansas State University: Bayesian variable selection using marginal posterior consistency (matched by title)

6. Bayesian Applications in High-Dimensional and Multivariate Modeling

Jian Zou, Worcester Polytechnic Institute: High Dimensional Dynamic Modeling for Massive Spatio-Temporal Data

- **Gyuhyeong Goh**, Kansas State University: Bayesian variable selection using marginal posterior consistency (matched by presenter)
- Gyuhyeong Goh, Kansas State University: Bayesian variable selection using marginal posterior consistency (matched by affiliation)
- Gyuhyeong Goh, Kansas State University: Bayesian variable selection using marginal posterior consistency (matched by title)

7. New Advances in Analysis of Complex Data: Heterogeneity and High Dimensions

Dungang Liu, University of Cincinnati: Nonparametric Fusion Learning: Synthesize Inferences from Diverse Sources using Confidence Distribution, Data Depth and Bootstrap

- Dan Yang, Rutgers University-New Brunswick: Bilinear Regression with Matrix Covariates in High Dimensions (matched by presenter)
- Dan Yang, Rutgers University-New Brunswick: Bilinear Regression with Matrix Covariates in High Dimensions (matched by affiliation)
- Dan Yang, Rutgers University-New Brunswick: Bilinear Regression with Matrix Covariates in High Dimensions (matched by title)

7. New Advances in Analysis of Complex Data: Heterogeneity and High Dimensions

Dan Yang, Rutgers University: Bilinear Regression with Matrix Covariates in High Dimensions

- Dan Yang, Rutgers University-New Brunswick: Bilinear Regression with Matrix Covariates in High Dimensions (matched by presenter)
- Dan Yang, Rutgers University-New Brunswick: Bilinear Regression with Matrix Covariates in High Dimensions (matched by affiliation)
- Dan Yang, Rutgers University-New Brunswick: Bilinear Regression with Matrix Covariates in High Dimensions (matched by title)

7. New Advances in Analysis of Complex Data: Heterogeneity and High Dimensions

Pierre Bellec, Rutgers University: Slope Meets Lasso in Sparse Linear Regression

- Dan Yang, Rutgers University-New Brunswick: Bilinear Regression with Matrix Covariates in High Dimensions (matched by presenter)
- Dan Yang, Rutgers University-New Brunswick: Bilinear Regression with Matrix Covariates in High Dimensions (matched by affiliation)
- Dan Yang, Rutgers University-New Brunswick: Bilinear Regression with Matrix Covariates in High Dimensions (matched by title)

7. New Advances in Analysis of Complex Data: Heterogeneity and High Dimensions

Yiyuan She, Floriday State University: On cross-validation for sparse reduced rank regression

- Dan Yang, Rutgers University-New Brunswick: Bilinear Regression with Matrix Covariates in High Dimensions (matched by presenter)
- Dan Yang, Rutgers University-New Brunswick: Bilinear Regression with Matrix Covariates in High Dimensions (matched by affiliation)
- Dan Yang, Rutgers University-New Brunswick: Bilinear Regression with Matrix Covariates in High Dimensions (matched by title)

8. Machine Learning and Big Data Analytics

Sanguthevar Rajasekaran, University of Connecticut: The closest pair problem: Algorithms and applications

- Sheida Nabavi, University of Connecticut: Statistical machine learning to identify candidate drivers of drug resistance in cancer (matched by presenter)
- Sheida Nabavi, University of Connecticut: Statistical machine learning to identify candidate drivers of drug resistance in cancer (matched by affiliation)
- Michael Kane, Yale University: A First Look at Using Human Mobility Data to Assess Community Resilience (matched by title)

8. Machine Learning and Big Data Analytics

Renato Polimanti, Yale University: Resources to Investigate the Genetic Architecture of Complex Traits: Large-Scale Datasets and Summary Association Data

- Renato Polimanti, Yale University: Resources to Investigate the Genetic Architecture of Complex Traits: Large-Scale Datasets and Summary Association Data (matched by presenter)
- Renato Polimanti, Yale University: Resources to Investigate the Genetic Architecture of Complex Traits: Large-Scale Datasets and Summary Association Data (matched by affiliation)
- Renato Polimanti, Yale University: Resources to Investigate the Genetic Architecture of Complex Traits: Large-Scale Datasets and Summary Association Data (matched by title)

12

8. Machine Learning and Big Data Analytics

Sheida Nabavi, University of Connecticut: Statistical machine learning to identify candidate drivers of drug resistance in cancer

- Sheida Nabavi, University of Connecticut: Statistical machine learning to identify candidate drivers of drug resistance in cancer (matched by presenter)
- **Sheida Nabavi**, University of Connecticut: Statistical machine learning to identify candidate drivers of drug resistance in cancer (matched by affiliation)
- Sheida Nabavi, University of Connecticut: Statistical machine learning to identify candidate drivers of drug resistance in cancer (matched by title)

8. Machine Learning and Big Data Analytics

Michael Kane, Yale University: A First Look at Using Human Mobility Data to Assess Community Resilience

- Michael Kane, Yale University: A First Look at Using Human Mobility Data to Assess Community Resilience (matched by presenter)
- Renato Polimanti, Yale University: Resources to Investigate the Genetic Architecture of Complex Traits: Large-Scale Datasets and Summary Association Data (matched by affiliation)
- Michael Kane, Yale University: A First Look at Using Human Mobility Data to Assess Community Resilience (matched by title)

9. Statistical Approaches in Modeling and Incorporating Dependence

Mengyu Xu, University of Central Florida: Pearson's Chi-Squared Statistics: Approximation Theory and Beyond

- Mengyu Xu, University of Central Florida: Pearson's Chi-squared statistics: approximation theory and beyond (matched by presenter)
- Mengyu Xu, University of Central Florida: Pearson's Chi-squared statistics: approximation theory and beyond (matched by affiliation)
- Mengyu Xu, University of Central Florida: Pearson's Chi-squared statistics: approximation theory and beyond (matched by title)

13

9. Statistical Approaches in Modeling and Incorporating Dependence

Kun Chen, University of Connecticut: Robust Dimension Reduction of Correlated Multivariate Data

- **Kun Chen**, University of Connecticut: Regularized mixture regression with mixed and incomplete outcomes (matched by presenter)
- **Kun Chen**, University of Connecticut: Regularized mixture regression with mixed and incomplete outcomes (matched by affiliation)
- Forrest W. Crawford, Yale University: Causal inference for network epidemics (matched by title)

9. Statistical Approaches in Modeling and Incorporating Dependence

Liliya Lavitas, Boston University: Unsupervised Self-Normalized Change-Point Testing for Time Series

- Liliya Lavitas, Boston University: Unsupervised Self-Normalized Change-Point Testing for Time Series (matched by presenter)
- Liliya Lavitas, Boston University: Unsupervised Self-Normalized Change-Point Testing for Time Series (matched by affiliation)
- Liliya Lavitas, Boston University: Unsupervised Self-Normalized Change-Point Testing for Time Series (matched by title)

9. Statistical Approaches in Modeling and Incorporating Dependence

Buddika Peiris, Worcester Polytechnic Institute: Constrained Inference in Regression

- Buddika Peiris, Worcester Polytechnic Institute: Assistant Teaching Professor. (matched by presenter)
- Buddika Peiris, Worcester Polytechnic Institute: Assistant Teaching Professor. (matched by affiliation)
- Buddika Peiris, Worcester Polytechnic Institute: Assistant Teaching Professor. (matched by title)

10. Biopharmaceutical Statistics

Abidemi Adeniji, EMD Serono: NA

• Chi-Hse Teng, Novartis: Finding needles in a hay stack – an approach for a small-number-factor high-dimensional data (matched by presenter)

• **Donald Bennett**, Pfizer: Nonclinical Statistics in Drug Development: In vitro and In vivo examples (matched by affiliation)

10. Biopharmaceutical Statistics

Bushi Wang, Boehringer-Ingelheim: NA

• Ray Liu, Takeda: Building predictive genomics signatures in early clinical development – statistical and practical considerations (matched by presenter)

• Jerry Lewis, Biogen: Outlook on Outliers (matched by affiliation)

10. Biopharmaceutical Statistics

Joseph c Cappelleri, Pfizer: Meta-Analysis of Safety Data in Clinical Trials

- **Donald Bennett**, Pfizer: Nonclinical Statistics in Drug Development: In vitro and In vivo examples (matched by presenter)
- **Donald Bennett**, Pfizer: Nonclinical Statistics in Drug Development: In vitro and In vivo examples (matched by affiliation)
- Jerry Lewis, Biogen: Outlook on Outliers (matched by title)

10. Biopharmaceutical Statistics

Qiqi Deng, Boehringer Ingelheim: NA

- Chi-Hse Teng, Novartis: Finding needles in a hay stack an approach for a small-number-factor high-dimensional data (matched by presenter)
- Jerry Lewis, Biogen: Outlook on Outliers (matched by affiliation)

10. Biopharmaceutical Statistics

Birol Emir, Pfizer: NA

• Jerry Lewis, Biogen: Outlook on Outliers (matched by presenter)

• **Donald Bennett**, Pfizer: Nonclinical Statistics in Drug Development: In vitro and In vivo examples (matched by affiliation)

11. Extremes

John Nolan, American University: Mvevd: An R Package for Extreme Value Distributions

• Tom Chen, Harvard University: A stochastic second-order generalized estimating equations approach for estimating intraclass correlation in the presence of informative missing data (matched by presenter)

• Michael C. Burkhart, Brown University: The discriminative Kalman filter for nonlinear and non-Gaussian sequential Bayesian filtering (matched by affiliation)

• Shaoyang Ning, Harvard University: A Nonparametric Bayesian Approach to Copula Estimation (matched by title)

11. Extremes

Jingjing Zou, Columbia University: Extreme Value Analysis without the Largest Values: What can be Done?

• Jinxin Tao, Worcester Polytechnic Institute: Comparison between confidence intervals of multiple linear regression models with and without restriction (matched by presenter)

• Elizabeth Upton, Boston University: Bayesian Network Regularized Regression for Modeling Urban Crime Occurrences (matched by affiliation)

• Indrani Mandal, University of Rhode Island: Correlation analysis of multivariate Smartwatch data (matched by title)

11. Extremes

Karthyek Murthy, Columbia University: Distributionally Robust Extreme Value Analysis

- Kaitlin Dio, University of Rhode Island: Exploring Feedback in an Introductory Biostatistics Course: A Repeated Measures Analysis (matched by presenter)
- Elizabeth Upton, Boston University: Bayesian Network Regularized Regression for Modeling Urban Crime Occurrences (matched by affiliation)
- Xinyu Chen, Worcester Polytechnic Institute: Restricted Inference In Multiple Linear Regression (matched by title)

11. Extremes

Tiandong Wang, Cornell University: Asymptotic Normality of Degree Counts in the Preferential Attachment Network

- Shaoyang Ning, Harvard University: A Nonparametric Bayesian Approach to Copula Estimation (matched by presenter)
- Shaoyang Ning, Harvard University: A Nonparametric Bayesian Approach to Copula Estimation (matched by affiliation)
- Xinran Li, Harvard University: Asymptotic Theory of Rerandomization in Treatment-Control Experiments (matched by title)

12. Feinberg Memorial Session: Bayesian Statistics with Applications

Edoardo Airoldi, Harvard University: Bayesian Methods for Protein Quantification

- DIlli Bhatta, University of South Carolina Upstate: A Bayesian Test of Independence in a Two-Way Contingency Table Under Two-Stage Cluster Sampling with Covariates (matched by presenter)
- DIlli Bhatta, University of South Carolina Upstate: A Bayesian Test of Independence in a Two-Way Contingency Table Under Two-Stage Cluster Sampling with Covariates (matched by affiliation)
- DIlli Bhatta, University of South Carolina Upstate: A Bayesian Test of Independence in a Two-Way Contingency Table Under Two-Stage Cluster Sampling with Covariates (matched by title)

12. Feinberg Memorial Session: Bayesian Statistics with Applications

Bani Mallick, Texas A&M University: Fast Sampling with Gaussian Scale-Mixture Priors in High Dimensional Regression

- DIlli Bhatta, University of South Carolina Upstate: A Bayesian Test of Independence in a Two-Way Contingency Table Under Two-Stage Cluster Sampling with Covariates (matched by presenter)
- DIlli Bhatta, University of South Carolina Upstate: A Bayesian Test of Independence in a Two-Way Contingency Table Under Two-Stage Cluster Sampling with Covariates (matched by affiliation)
- DIlli Bhatta, University of South Carolina Upstate: A Bayesian Test of Independence in a Two-Way Contingency Table Under Two-Stage Cluster Sampling with Covariates (matched by title)

12. Feinberg Memorial Session: Bayesian Statistics with Applications

Sudipto Banerjee, UCLA: High-Dimensional Bayesian Geostatistics

- DIlli Bhatta, University of South Carolina Upstate: A Bayesian Test of Independence in a Two-Way Contingency Table Under Two-Stage Cluster Sampling with Covariates (matched by presenter)
- DIlli Bhatta, University of South Carolina Upstate: A Bayesian Test of Independence in a Two-Way Contingency Table Under Two-Stage Cluster Sampling with Covariates (matched by affiliation)
- DIlli Bhatta, University of South Carolina Upstate: A Bayesian Test of Independence in a Two-Way Contingency Table Under Two-Stage Cluster Sampling with Covariates (matched by title)

1. Panel Discussion on Careers in Statistics

Birol Emir, Pfizer: NA

- Jerry Lewis, Biogen: Outlook on Outliers (matched by presenter)
- **Donald Bennett**, Pfizer: Nonclinical Statistics in Drug Development: In vitro and In vivo examples (matched by affiliation)

1. Panel Discussion on Careers in Statistics

Chun Wang, University of Connecticut: NA

• Chi-Hse Teng, Novartis: Finding needles in a hay stack – an approach for a small-number-factor high-dimensional data (matched by presenter)

• Chi-Hse Teng, Novartis: Finding needles in a hay stack – an approach for a small-number-factor high-dimensional data (matched by affiliation)

1. Panel Discussion on Careers in Statistics

Yasuo Amemiya, IBM T. J. Watson Research Center: NA

• Jerry Lewis, Biogen: Outlook on Outliers (matched by presenter)

• Jerry Lewis, Biogen: Outlook on Outliers (matched by affiliation)

1. Panel Discussion on Careers in Statistics

Minge Xie, NA: NA

• Ray Liu, Takeda: Building predictive genomics signatures in early clinical development – statistical and practical considerations (matched by presenter)

• NA, NA: NA (matched by affiliation)

2. Statistical Applications in Finance and Insurance

Liang Peng, Georgia State University: Inference for Predictive Regressions

• Liang Peng, Georgia State University: Professor (matched by presenter)

• Liang Peng, Georgia State University: Professor (matched by affiliation)

• Liang Peng, Georgia State University: Professor (matched by title)

2. Statistical Applications in Finance and Insurance

Fangfang Wang, University of Connecticut: A Common Factor Analysis of Stock Market Trading Activity

- Fangfang Wang, UConn: A Common Factor Analysis of Stock Market Trading Activity (matched by presenter)
- Fangfang Wang, UConn: A Common Factor Analysis of Stock Market Trading Activity (matched by affiliation)
- Fangfang Wang, UConn: A Common Factor Analysis of Stock Market Trading Activity (matched by title)

2. Statistical Applications in Finance and Insurance

Oleksii Mostovyi, University of Connecticut: Sensitivity analysis of the expected utility maximization problem

- Liang Peng, Georgia State University: Professor (matched by presenter)
- Fangfang Wang, UConn: A Common Factor Analysis of Stock Market Trading Activity (matched by affiliation)
- Fangfang Wang, UConn: A Common Factor Analysis of Stock Market Trading Activity (matched by title)

2. Statistical Applications in Finance and Insurance

Aritra Halder, Shariq Mohammed, Matthew Lamoureux, Brien Aronov, University of Connecticut: Towards differential pricing in auto insurance via large-scale predictive modeling: a partnership between Travelers and UConn

- Brien Aronov, Aritra Halder, Matthew Lamoureux and Shariq Mohammed, University of Connecticut and Travelers Insurance: Modelling of Large Insurance Claims and Occurrence Data: A UConn Travelers Partnership (matched by presenter)
- Fangfang Wang, UConn: A Common Factor Analysis of Stock Market Trading Activity (matched by affiliation)
- Brien Aronov, Aritra Halder, Matthew Lamoureux and Shariq Mohammed, University of Connecticut and Travelers Insurance: Modelling of Large Insurance Claims and Occurrence Data: A UConn - Travelers Partnership (matched by title)

3. Application of Statistical/Predictive Modeling in Health Related Industry

Xiaoyu Jia, Icahn School of Medicine at Mount Sinai: NA

- Xiaoyu Jia, Icahn School of Medicine at Mount Sinai: Opportunities and Challenges in Leveraging Results from Analysis of National Cancer Data Base (NCDB): A Call for Improvement in Quality and Reproducibility (matched by presenter)
- Xiaoyu Jia, Icahn School of Medicine at Mount Sinai: Opportunities and Challenges in Leveraging Results from Analysis of National Cancer Data Base (NCDB): A Call for Improvement in Quality and Reproducibility (matched by affiliation)

3. Application of Statistical/Predictive Modeling in Health Related Industry

Zhaonan Sun, IBM T. J. Watson Research: Exploiting Convolutional Neural Network for Risk Prediction with Medical Feature Embedding

- Zhaonan Sun, IBM Research: Exploiting Convolutional Neural Network for Risk Prediction with Medical Feature Embedding (matched by presenter)
- Zhaonan Sun, IBM Research: Exploiting Convolutional Neural Network for Risk Prediction with Medical Feature Embedding (matched by affiliation)
- Zhaonan Sun, IBM Research: Exploiting Convolutional Neural Network for Risk Prediction with Medical Feature Embedding (matched by title)

3. Application of Statistical/Predictive Modeling in Health Related Industry

Victoria Gamerman, Boehringer Ingelheim Pharmaceuticals, Inc.: NA

- Victoria Gamerman, Boehringer-Ingelheim Pharmaceuticals, Inc.: Focusing on patients: going beyond RCTs (matched by presenter)
- Victoria Gamerman, Boehringer-Ingelheim Pharmaceuticals, Inc.: Focusing on patients: going beyond RCTs (matched by affiliation)

21

3. Application of Statistical/Predictive Modeling in Health Related Industry

Nan Shao, New York Life Insurance: Statistical Modeling in the Life Insurance Industry

- Zhaonan Sun, IBM Research: Exploiting Convolutional Neural Network for Risk Prediction with Medical Feature Embedding (matched by presenter)
- Zhaonan Sun, IBM Research: Exploiting Convolutional Neural Network for Risk Prediction with Medical Feature Embedding (matched by affiliation)
- Victoria Gamerman, Boehringer-Ingelheim Pharmaceuticals, Inc.: Focusing on patients: going beyond RCTs (matched by title)

4. Survival Analysis

Daniel Nevo, Harvard: NA

- Daniel Nevo, Harvard University: Calibration models for survival analysis with interval-censored exposure or treatment starting time (matched by presenter)
- Daniel Nevo, Harvard University: Calibration models for survival analysis with interval-censored exposure or treatment starting time (matched by affiliation)

4. Survival Analysis

Bella Vakulenko-Lagun, Harvard: NA

- Bella Vakulenko-Lagun, Harvard University: Cox regression for right-truncated data (matched by presenter)
- Daniel Nevo, Harvard University: Calibration models for survival analysis with interval-censored exposure or treatment starting time (matched by affiliation)

4. Survival Analysis

Jing Qian, UMass: NA

• Jing Qian, University of Massachusetts-Amherst: Multiple imputation of randomly censored covariates in regression analysis (matched by presenter)

• Daniel Nevo, Harvard University: Calibration models for survival analysis with interval-censored exposure or treatment starting time (matched by affiliation)

4. Survival Analysis

Sangwook Kang, NA: NA

• Sangwook Kang, Yonsei University, Korea: Accelerated failure time modeling via nonparametric infinite scale mixtures (matched by presenter)

• NA, NA: NA (matched by affiliation)

5. Complex Data/Network Modeling

Yize Zhao, Weill Cornell Medical College, Cornell: Hierarchical Feature Selection of the Complex Biomedical Data

- **Xizhen Cai**, Temple University: Variable Selection for Dynamic Citation Networks (matched by presenter)
- **Xizhen Cai**, Temple University: Variable Selection for Dynamic Citation Networks (matched by affiliation)
- **Xizhen Cai**, Temple University: Variable Selection for Dynamic Citation Networks (matched by title)

5. Complex Data/Network Modeling

Heather Shappell, Biostatistics, Boston University: Methods for Longitudinal Complex Network Analysis in Neuroscience

- **Xizhen Cai**, Temple University: Variable Selection for Dynamic Citation Networks (matched by presenter)
- Xuan Bi, Yale University: Genome-Wide Mediation Analysis of Psychiatric and Cognitive Traits through Imaging Phenotypes (matched by affiliation)

• Xizhen Cai, Temple University: Variable Selection for Dynamic Citation Networks (matched by title)

5. Complex Data/Network Modeling

Krista Gile, Math and Statistics, UMASS: Inference from Link-Tracing Network Samples

- Xuan Bi, Yale University: Genome-Wide Mediation Analysis of Psychiatric and Cognitive Traits through Imaging Phenotypes (matched by presenter)
- Xuan Bi, Yale University: Genome-Wide Mediation Analysis of Psychiatric and Cognitive Traits through Imaging Phenotypes (matched by affiliation)
- **Xizhen Cai**, Temple University: Variable Selection for Dynamic Citation Networks (matched by title)

5. Complex Data/Network Modeling

Xizhen Cai, Temple: Variable Selection for Dynamic Networks

- **Xizhen Cai**, Temple University: Variable Selection for Dynamic Citation Networks (matched by presenter)
- **Xizhen Cai**, Temple University: Variable Selection for Dynamic Citation Networks (matched by affiliation)
- **Xizhen Cai**, Temple University: Variable Selection for Dynamic Citation Networks (matched by title)

5. Complex Data/Network Modeling

Xuan Bi, Department of Biostatistics, Yale University: Genome-Wide Mediation Analysis of Psychiatric and Cognitive Traits in the Philadelphia Neurodevelopmental Cohort

- Xuan Bi, Yale University: Genome-Wide Mediation Analysis of Psychiatric and Cognitive Traits through Imaging Phenotypes (matched by presenter)
- Xuan Bi, Yale University: Genome-Wide Mediation Analysis of Psychiatric and Cognitive Traits through Imaging Phenotypes (matched by affiliation)

• Xuan Bi, Yale University: Genome-Wide Mediation Analysis of Psychiatric and Cognitive Traits through Imaging Phenotypes (matched by title)

6. Spatial Analysis of Public Health Data

Harrison Quick, Dornsife School of Public Health, Drexel University: Spatiotemporal Trends in Heart Disease Mortality

- Harrison Quick, Drexel University: Spatiotemporal trends in stroke mortality (matched by presenter)
- Harrison Quick, Drexel University: Spatiotemporal trends in stroke mortality (matched by affiliation)
- Harrison Quick, Drexel University: Spatiotemporal trends in stroke mortality (matched by title)

6. Spatial Analysis of Public Health Data

Joshua Warren, Yale School of Public Health: A Bayesian Spatial Kernel Smoothing Method to Estimate Local Vaccine Uptake using Administrative Records

- Joshua Warren, Yale University: A Spatial Method to Estimate Local Vaccine Uptake Using Administrative Records (matched by presenter)
- Joshua Warren, Yale University: A Spatial Method to Estimate Local Vaccine Uptake Using Administrative Records (matched by affiliation)
- Joshua Warren, Yale University: A Spatial Method to Estimate Local Vaccine Uptake Using Administrative Records (matched by title)

6. Spatial Analysis of Public Health Data

Gavino Puggioni, University of Rhode Island: Spatiotemporal Analysis of Vector-Borne Disease Risk

- Gavino Puggioni, University of Rhode Island: Spatiotemporal Analysis of Vector-borne Disease Risk (matched by presenter)
- Gavino Puggioni, University of Rhode Island: Spatiotemporal Analysis of Vector-borne Disease Risk (matched by affiliation)
- Gavino Puggioni, University of Rhode Island: Spatiotemporal Analysis of Vector-borne Disease Risk (matched by title)

6. Spatial Analysis of Public Health Data

Chanmin Kim, Harvard T. H. Chan School of Public Health: Public Health Impact of Pollutant Emissions

- Chanmin Kim, Harvard University: Public Health Impact of Pollutant Emissions (matched by presenter)
- Chanmin Kim, Harvard University: Public Health Impact of Pollutant Emissions (matched by affiliation)
- Chanmin Kim, Harvard University: Public Health Impact of Pollutant Emissions (matched by title)

7. Network Data Analysis

Jp Onnela, Harvard University: Inference and model selection for mechanistic network models

- JP Onnela, Harvard University: Parameter Inference and Model Selection for Mechanistic Network Models (matched by presenter)
- JP Onnela, Harvard University: Parameter Inference and Model Selection for Mechanistic Network Models (matched by affiliation)
- JP Onnela, Harvard University: Parameter Inference and Model Selection for Mechanistic Network Models (matched by title)

7. Network Data Analysis

Vishesh Karwa, Harvard University: Estimating average treatment effects under interference: Modes of failure and solutions

- Vishesh Karwa, Harvard University: Estimating average treatment effects under interference: Modes of failure and solutions (matched by presenter)
- JP Onnela, Harvard University: Parameter Inference and Model Selection for Mechanistic Network Models (matched by affiliation)
- Vishesh Karwa, Harvard University: Estimating average treatment effects under interference: Modes of failure and solutions (matched by title)

7. Network Data Analysis

Xinran Li, Harvard University: Randomization Inference for Peer Effects

- **Xinran Li**, Harvard University: Randomization Inference for Peer Effects (matched by presenter)
- JP Onnela, Harvard University: Parameter Inference and Model Selection for Mechanistic Network Models (matched by affiliation)
- **Xinran Li**, Harvard University: Randomization Inference for Peer Effects (matched by title)

8. Statistical Approaches to Data Modeling and Analysis

Evan Ray, University of Massachusetts Amherst: Feature-Weighted Ensembles for Probabilistic Time-Series Forecasts

- Evan L. Ray, University of Massachusetts, Amherst: Feature-Weighted Ensembles for Probabilistic Time-Series Forecasts (matched by presenter)
- Patrick Flaherty, University of Massachusetts-Amherst: A Deterministic Global Optimization Method for Variational Inference (matched by affiliation)
- Evan L. Ray, University of Massachusetts, Amherst: Feature-Weighted Ensembles for Probabilistic Time-Series Forecasts (matched by title)

8. Statistical Approaches to Data Modeling and Analysis

Daeyoung Kim, University of Massachusetts Amherst: Assessment of the Adequacy of Asymptotic Theory in Statistical Inference

- Daeyoung Kim, University of Massachusetts-Amherst: Confidence distribution sampling and its application (matched by presenter)
- Patrick Flaherty, University of Massachusetts-Amherst: A Deterministic Global Optimization Method for Variational Inference (matched by affiliation)
- Patrick Flaherty, University of Massachusetts-Amherst: A Deterministic Global Optimization Method for Variational Inference (matched by title)

27

8. Statistical Approaches to Data Modeling and Analysis

Patrick Flaherty, University of Massachusetts: A Deterministic Global Optimization Method for Variational Inference

- Patrick Flaherty, University of Massachusetts-Amherst: A Deterministic Global Optimization Method for Variational Inference (matched by presenter)
- Patrick Flaherty, University of Massachusetts-Amherst: A Deterministic Global Optimization Method for Variational Inference (matched by affiliation)
- Patrick Flaherty, University of Massachusetts-Amherst: A Deterministic Global Optimization Method for Variational Inference (matched by title)

8. Statistical Approaches to Data Modeling and Analysis

Matthias Steinruecken, University of Massachusetts Amherst: Unraveling the Demographic History of Modern Humans using Full- Genome Sequencing Data

- Matthias Steinruecken, University of Massachusetts-Amherst: Unraveling the demographic history of modern humans using full-genome sequencing data (matched by presenter)
- Patrick Flaherty, University of Massachusetts-Amherst: A Deterministic Global Optimization Method for Variational Inference (matched by affiliation)
- Matthias Steinruecken, University of Massachusetts-Amherst: Unraveling the demographic history of modern humans using full-genome sequencing data (matched by title)

8. Statistical Approaches to Data Modeling and Analysis

Zheng Wei, University of Massachusetts Amherst: On Multivariate Asymmetric Dependence Using Multivariate Skew-Normal Copula-Based Regression

Daeyoung Kim, University of Massachusetts-Amherst: Confidence distribution sampling and its application (matched by presenter)

- Patrick Flaherty, University of Massachusetts-Amherst: A Deterministic Global Optimization Method for Variational Inference (matched by affiliation)
- Daeyoung Kim, University of Massachusetts-Amherst: Confidence distribution sampling and its application (matched by title)

9. Social Networks and Causal Inference

Daniel Sussman, Boston University: Optimal Unbiased Estimation of Causal Effects under Network Interference

- Daniel Sussman, Boston University: ptimal Unbiased Estimation of Causal Effects under Network Interference (matched by presenter)
- Daniel Sussman, Boston University: ptimal Unbiased Estimation of Causal Effects under Network Interference (matched by affiliation)
- Daniel Sussman, Boston University: ptimal Unbiased Estimation of Causal Effects under Network Interference (matched by title)

9. Social Networks and Causal Inference

Alex Volfovsky, Duke University: Causal Inference in the Presence of Networks: Randomization and Observation

- Alexander Volfovsky, Duke University: Causal inference in the presence of networks: randomization and observation (matched by presenter)
- Alexander Volfovsky, Duke University: Causal inference in the presence of networks: randomization and observation (matched by affiliation)
- Alexander Volfovsky, Duke University: Causal inference in the presence of networks: randomization and observation (matched by title)

9. Social Networks and Causal Inference

Dean Eckles, Massachusetts Institute of Technology: Estimating Peer Effects in Networks with Peer Encouragement Designs

- **Dean Eckles**, MIT: Estimating peer effects in networks with peer encouragement designs (matched by presenter)
- Alexander Volfovsky, Duke University: Causal inference in the presence of networks: randomization and observation (matched by affiliation)

• **Dean Eckles**, MIT: Estimating peer effects in networks with peer encouragement designs (matched by title)

9. Social Networks and Causal Inference

Hyunseung Kang, University of Wisconsin at Madison: Peer Encouragement Designs in Causal Inference with Partial Interference and Identification of Local Average Network Effects

- Hyunseung Kang, University of Wisconsin Madison: Peer Encouragement Designs in Causal Inference with Partial Interference and Identification of Local Average Network Effects (matched by presenter)
- Hyunseung Kang, University of Wisconsin Madison: Peer Encouragement Designs in Causal Inference with Partial Interference and Identification of Local Average Network Effects (matched by affiliation)
- Hyunseung Kang, University of Wisconsin Madison: Peer Encouragement Designs in Causal Inference with Partial Interference and Identification of Local Average Network Effects (matched by title)

10. Statistical Innovations in Genomics

Hongkai Ji, Johns Hopkins Bloomberg School of Public Health: NA

- Hongkai Ji, Johns Hopkins University: Single-cell RNA-seq Analysis by Spanning Trees (matched by presenter)
- Hongkai Ji, Johns Hopkins University: Single-cell RNA-seq Analysis by Spanning Trees (matched by affiliation)

10. Statistical Innovations in Genomics

Pei Wang, Mount Sinai School of Medicine: Constructing Tumor-Specific Gene Regulatory Networks Based on Samples with Tumor Purity Heterogeneity

- Hongkai Ji, Johns Hopkins University: Single-cell RNA-seq Analysis by Spanning Trees (matched by presenter)
- Hongkai Ji, Johns Hopkins University: Single-cell RNA-seq Analysis by Spanning Trees (matched by affiliation)
- Hongkai Ji, Johns Hopkins University: Single-cell RNA-seq Analysis by Spanning Trees (matched by title)

10. Statistical Innovations in Genomics

Yuping Zhang, University of Connecticut: NA

• Hongkai Ji, Johns Hopkins University: Single-cell RNA-seq Analysis by Spanning Trees (matched by presenter)

• Hongkai Ji, Johns Hopkins University: Single-cell RNA-seq Analysis by Spanning Trees (matched by affiliation)

10. Statistical Innovations in Genomics

Kai Wang, Columbia University: Long Read Sequencing to Study Human Genome Variation

- Hongkai Ji, Johns Hopkins University: Single-cell RNA-seq Analysis by Spanning Trees (matched by presenter)
- Hongkai Ji, Johns Hopkins University: Single-cell RNA-seq Analysis by Spanning Trees (matched by affiliation)
- Hongkai Ji, Johns Hopkins University: Single-cell RNA-seq Analysis by Spanning Trees (matched by title)

11. Recent Developments on High-Dimensional Statistics and Regularized Estimation

Ethan Fang, Penn State: Blessing of Massive Scale: Spatial Graphical Model Estimation with a Total Cardinality Constraint Approach

- Ethan Fang, Pennsylvania State University-Main Campus: Blessing of Massive Scale: Spatial Graphical Model Estimation with a Total Cardinality Constraint Approach (matched by presenter)
- Sahand Negahban, Yale University: On Approximation Guarantees for Greedy Low Rank Optimization (matched by affiliation)
- Ethan Fang, Pennsylvania State University-Main Campus: Blessing of Massive Scale: Spatial Graphical Model Estimation with a Total Cardinality Constraint Approach (matched by title)

31

11. Recent Developments on High-Dimensional Statistics and Regularized Estimation

Cheng Yong Tang, Temple University: Sufficient Dimension Reduction with Missing Data

- Cheng Yong Tang, Temple University: Sufficient dimension reduction with missing data (matched by presenter)
- Cheng Yong Tang, Temple University: Sufficient dimension reduction with missing data (matched by affiliation)
- Cheng Yong Tang, Temple University: Sufficient dimension reduction with missing data (matched by title)

11. Recent Developments on High-Dimensional Statistics and Regularized Estimation

Sahand Nagahban, Yale University: Restricted Strong Convexity Implies Weak Sub-Modularity

- Sahand Negahban, Yale University: On Approximation Guarantees for Greedy Low Rank Optimization (matched by presenter)
- Sahand Negahban, Yale University: On Approximation Guarantees for Greedy Low Rank Optimization (matched by affiliation)
- Cheng Yong Tang, Temple University: Sufficient dimension reduction with missing data (matched by title)

11. Recent Developments on High-Dimensional Statistics and Regularized Estimation

Ting Zhang, Boston University: A Thresholding-Based Prewhitened Long-Run Variance Estimator and Its Dependence-Oracle Property

- Ting Zhang, Boston University: A Thresholding-Based Prewhitened Long-Run Variance Estimator and Its Dependence-Oracle Property (matched by presenter)
- **Ting Zhang**, Boston University: A Thresholding-Based Prewhitened Long-Run Variance Estimator and Its Dependence-Oracle Property (matched by affiliation)
- Ting Zhang, Boston University: A Thresholding-Based Prewhitened Long-Run Variance Estimator and Its Dependence-Oracle Property (matched by title)

12. Subgroup Analysis

 $\mathbf{Yanxun}\ \mathbf{Xu},$ Johns Hopkins University: A Nonparametric Bayesian Basket Trial Design

- Yanxun Xu, Johns Hopkins University: A Nonparametric Bayesian Basket Trial Design (matched by presenter)
- Yanxun Xu, Johns Hopkins University: A Nonparametric Bayesian Basket Trial Design (matched by affiliation)
- Yanxun Xu, Johns Hopkins University: A Nonparametric Bayesian Basket Trial Design (matched by title)

12. Subgroup Analysis

Lynn Lin, Pennsylvania State University: Clustering with Hidden Markov Model on Variable Blocks

- Yanxun Xu, Johns Hopkins University: A Nonparametric Bayesian Basket Trial Design (matched by presenter)
- Yanxun Xu, Johns Hopkins University: A Nonparametric Bayesian Basket Trial Design (matched by affiliation)
- Yanxun Xu, Johns Hopkins University: A Nonparametric Bayesian Basket Trial Design (matched by title)

12. Subgroup Analysis

Jared Huling, University of Wisconsin-Madison: Heterogeneity of Intervention Effects and Subgroup Identification based on Longitudinal Outcomes

- Jared Huling, University of Wisconsin-Madison: Heterogeneity of Intervention Effects and Subgroup Identification based on Longitudinal Outcomes (matched by presenter)
- Jared Huling, University of Wisconsin-Madison: Heterogeneity of Intervention Effects and Subgroup Identification based on Longitudinal Outcomes (matched by affiliation)
- Jared Huling, University of Wisconsin-Madison: Heterogeneity of Intervention Effects and Subgroup Identification based on Longitudinal Outcomes (matched by title)

33

12. Subgroup Analysis

Wai-Ki Yip, Foundation Medicine, Inc.: STEPP Analysis for continuous, binary, and count outcomes and other recent STEPP development

- Wai-Ki Yip, Foundation Medicine, Inc.: Sr. Biostatistician (matched by presenter)
- Wai-Ki Yip, Foundation Medicine, Inc.: Sr. Biostatistician (matched by affiliation)
- Yanxun Xu, Johns Hopkins University: A Nonparametric Bayesian Basket Trial Design (matched by title)