2018-2019-1 概率练习题答案

1、对于样本空间中任意两个事件 A 与 B,下列事件关系中**不正确**的是(D).

一、单项选择题

的概率为_171/172___.

(A) $A - B = A\overline{B}$	(B	$A \cup B = A \cup (B - AB)$
(C) $A = AB \cup A\overline{B}$	(D	$(A \cup B) - B = A$
2、设事件 A 与 B 是互不相容,	且 $P(A) > 0$, $P(B) > 0$,贝	 下列式子 正确 的是(C).
(A) $P(B A) > 0$	(B)	$P(A \mid B) = P(A)$
(C) $P(A B) = 0$	(D)	P(AB) = P(A)P(B)
3、若随机变量 X 的概率密度	乗为: $f(x) = \begin{cases} a/(x^2+1), \\ 0, \end{cases}$	-1 < x < 1 其他 ,则 a 的取值为:
(A).		
(A) $\frac{2}{\pi}$	B) $\frac{\pi}{2}$ (C)	0 (D) 无法
确定		
4 、设 X_1, X_2, \cdots, X_n 和 Y_1, Y_2, \cdots	\cdots , Y_n 均来自正态总体 $N(0,0)$	σ^2) 的两个独立样本,则统计
量 $U = \frac{X_1 + X_2 + \dots + X_n}{\sqrt{Y_1^2 + Y_2^2 + \dots + Y_n^2}}$	的分布是(B).	
(A) $\chi^2(n)$ (B)	t(n) (C) $F(n,n)$	<i>i</i>) (D) 不能确定
5、设 X_1, X_2, X_3, X_4 是来自正	态分布总体 $X \square N(\mu, \sigma^2)$	的样本,其中 μ 未知, σ^2 已
知,下列估计量中,关于 μ	的最有效的无偏估计量是(C).
(A) $T_1 = \frac{1}{6}(X_1 + X_2) + \frac{1}{3}(X_3)$	$+X_4$) (B) $T_2 = \frac{1}{5}$	$\frac{1}{5}(X_1 + 2X_2 + 3X_3 + 4X_4)$
(C) $T_3 = \frac{1}{4}(X_1 + X_2 + X_3 +$	X_4) (D) T_4 =	$=\frac{1}{5}(X_1+2X_2+X_3+X_4)$
二、填空题		
1、设事件 A 与 B 相互独立,」	且满足 $P(A \cup B) = 0.8$, P	(B) = 0.5,则 $P(AB) =$
0.3		
2、若一批产品中90%是合格品	品,检查时一个合格品被误让	人为是次品的概率为0.05,一
个次品被误认为是合格品的概率为	0.05,则一个经检查后被认为	为是合格品的产品确是合格品

3、设随机变量
$$X$$
 的分布律为: $P\{X=k\}=\frac{k}{10}$, $k=1,2,3,4$, 则 $P\{\frac{1}{2} < X \leq \frac{5}{2}\}=$ ___0.3______.

4、设随机变量 X 服从二项分布 b(100,0.2) ,随机变量 Y 服从正态分布 N(5,1) ,且 X 与 Y 的相关系数 $\rho_{XY}=0.25$,则 $E(X-2Y+1)=_11_______$, $D(X-2Y+1)=_16______$.

5、设样本 X_1, X_2, \cdots, X_6 来自总体N(0,1),且

$$Y = (X_1 + X_2)^2 + (X_3 + X_4)^2 + (X_5 + X_6)^2$$
,要使变量 CY 服从 χ^2 分布,则常数 $C = 0.5$ ______.

三、一加法器同时收到 30 个噪声电压 V_k $(k=1,2,\cdots,30)$,设它们是相互独立的随机变量,且都在区间(0,10)上服从均匀分布,记 $V=\sum_{k=1}^{30}V_k$,求 $P\{V>130\}$ 的近似值. (结果用标准正态分布函数 $\Phi(x)$ 表示,x>0)

解: 由题意知 $E(V_k) = 5$, $D(V_k) = \frac{100}{12}$, 由中心极限定理可知所求概率为:

$$P\{V > 130\} = P\{\sum_{k=1}^{30} V_k > 130\} = 1 - P\{\sum_{k=1}^{30} V_k \le 130\} = 1 - P\{\frac{\sum_{k=1}^{30} V_k - 30 \times 5}{\sqrt{30 \times \frac{100}{12}}} \le \frac{130 - 30 \times 5}{\sqrt{30 \times \frac{100}{12}}}\}$$

$$\approx 1 - \Phi(-\frac{2\sqrt{10}}{5}) = 1 - [1 - \Phi(\frac{2\sqrt{10}}{5})] = \Phi(\frac{2\sqrt{10}}{5})$$

四、设随机变量(X,Y)的概率分布律为:

X	0	1	2
-1	0.1	0.1	0.4
1	0.1	0.2	0.1

求(1) 关于 Z = X + Y的分布律; (2) 概率 $P\{X + Y \le 1\}$; (3) E(Y) 和 D(Y); (4) Cov(X,Y).

解: (1) 关于Z = X + Y的分布律为:

Z	-1	0	1	2	3
P	0.1	0.1	0.5	0.2	0.1

(2)
$$P{X+Y \le 1} = 1 - P{X+Y=2} - P{X+Y=3} = 0.7$$

(3) 关于Y的边缘分布律为:

Y	-1	1
P	0.6	0.4

从而有 $E(Y) = -1 \times 0.6 + 1 \times 0.4 = -0.2$, $E(Y^2) = (-1)^2 \times 0.6 + 1^2 \times 0.4 = 1.0$,故

$$D(Y) = E(Y^2) - [E(Y)]^2 = 1.0 - (-0.2)^2 = 0.96$$

(4) 关于X 的边缘分布律为:

X	0	1	2
P	0.2	0.3	0.5

从而有: $E(X) = 0 \times 0.2 + 1 \times 0.3 + 2 \times 0.5 = 1.3$,

$$E(XY) = 0 \times (-1) \times 0.1 + 0 \times 1 \times 0.1 + 1 \times (-1) \times 0.1 + 1 \times 1 \times 0.2 + 2 \times (-1) \times 0.4 + 2 \times 1 \times 0.1 = -0.5$$

从而有 $Cov(X,Y) = E(XY) - E(X)E(Y) = -0.5 - 1.3 \times (-0.2) = -0.24$

五、设二维随机变量(X,Y)的概率函数为:

$$f(x, y) = \begin{cases} Cxy, & 0 < x < 1, 0 < y < x^2; \\ 0, & \text{ 其他.} \end{cases}$$

(2)求关于 X 和 Y 的边缘概率密度; (3) 问 X 和 Y 是否相互独立?需 (1)求常数C; 说明理由: (4)求 E(XY). (5) 求 $Z = X^2 - Y$ 的分布函数.

解: (1)由
$$\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(x, y) dx dy = 1$$
,从而有 $\int_{0}^{1} dx \int_{0}^{x^{2}} Cxy dy = 1$,所以 $C = 12$;

$$f_{\infty} = \int_{-\infty}^{+\infty} f(x, y) dy = \begin{cases} \int_{0}^{x^2} 12xy dy = 6x^5, & 0 < x < 1, \\ 0, & otherwise. \end{cases}$$

(2)关于
$$X$$
 的边缘概率密度: $f_X(x) = \int_{-\infty}^{+\infty} f(x, y) dy = \begin{cases} \int_0^x 12xy dy = 6x \\ 0, & otherwise \end{cases}$ 从而其分布函数为: $F_X(x) = \int_{-\infty}^x f_X(x) dx = \begin{cases} 0, & x < 0 \\ \int_0^x 6x^5 dx = x^6, & 0 \le x < 1, \\ 1, & x \ge 1. \end{cases}$ 关 于 Y 的 边 缘 概 率 密

从而其分布函数为:
$$F_{Y}(y) = \int_{-\infty}^{y} f_{Y}(y) dy = \begin{cases} 0, & y < 0 \\ \int_{0}^{y} 6y(1-y) dy = 3y^{2} - 2y^{3}, & 0 \le y < 1, \\ 1, & y \ge 1. \end{cases}$$

(3)显然, $f(x,y) \neq f_x(x) f_y(y)$, 所以 X 和 Y 不相互独立.

(5)
$$\Leftrightarrow F_Z(z) = P\{Z \le z\} = P\{X^2 - Y \le z\},$$

当 z < 0时, $F_z(z) = P\{X^2 - Y \le z\} = 0$; 当 $0 \le z < 1$ 时,

$$F_{Z}(z) = P\{X^{2} - Y \le z\} = 1 - P\{Y \le X^{2} - z\} = 1 - \int_{\sqrt{z}}^{1} dx \int_{0}^{x^{2} - z} 12xy dy = z^{3} + 3z - 3z^{2}$$

$$\exists z \ge 1 \, \forall i, \quad F_{Z}(z) = P\{X^{2} - Y \le z\} = 1.$$

即 分 布 函 数 :
$$F_z(z) = \begin{cases} 0, & z < 0, \\ z^3 + 3z - 3z^2, 0 \le z < 1, & \text{密 度 函 数 为 :} \\ 1, & z \ge 1 \end{cases}$$

$$f_{Z}(z) = \begin{cases} 3z^{2} + 3 - 6z, 0 \le z < 1, \\ 0, & \text{其它} \end{cases}$$

六、设总体 X 具有指数分布,其概率密度为 $f(x;\theta) = \begin{cases} \frac{1}{\theta}e^{-\frac{x}{\theta}}, x > 0\\ 0, x \leq 0 \end{cases}$,其中 θ 是未知参数. 又

 X_1, X_2, \cdots, X_n 为来自该总体的一个样本, x_1, x_2, \cdots, x_n 为样本值. 试**分别**求未知参数 θ 的矩估计量和最大似然估计量 $\hat{\theta}$.

解: (1) 先求矩估计量:
$$\bar{X} = E(X) = \int_{-\infty}^{+\infty} x \cdot f(x) dx = \int_{0}^{+\infty} x \cdot \frac{1}{\theta} e^{-x/\theta} dx = \int_{0}^{+\infty} x d(-e^{-x/\theta})$$

(2)再求最大似然估计量: 其似然函数
$$L(\theta) = \prod_{i=1}^{n} f(x_i, \theta) = \prod_{i=1}^{n} \left[\frac{1}{\theta} e^{-x_i/\theta} \right] = \theta^{-n} e^{-\frac{1}{\theta} \sum_{i=1}^{n} x_i}$$

取对数
$$\ln L(\theta) = -n \ln \theta - \frac{1}{\theta} \sum_{i=1}^{n} x_i$$
, 令 $\frac{d \ln L(\theta)}{d \theta} = -\frac{n}{\theta} + \frac{1}{\theta^2} \sum_{i=1}^{n} x_i = 0$, 得 $\theta = \frac{1}{n} \sum_{i=1}^{n} x_i$, 即

未知参数 θ 的最大似然估计量 $\hat{\theta} = \frac{1}{n} \sum_{i=1}^{n} X_i = \bar{X}$ 。

七、 设测量零件的长度产生的误差 X 服从正态分布 $N(\mu,\sigma^2)$,其中 μ 和 σ^2 均未知,今随机地测量 25 个零件,得样本均值 $\overline{x}=0.5$,样本均方差 s=1.52 ,求 μ 的置信水平为 0.95 的置信区间.

(己知:
$$t_{0.025}(25) = 2.0595$$
, $t_{0.05}(25) = 1.7081$, $t_{0.025}(24) = 2.0639$, $t_{0.05}(24) = 1.7109$)

解: 由题意, n=25, $\alpha=0.05$, μ 的置信区间为

$$\left(\overline{x} \pm \frac{s}{\sqrt{n}} t_{\frac{\alpha}{2}}(n-1)\right) = \left(\overline{x} - \frac{s}{\sqrt{n}} t_{\frac{\alpha}{2}}(n-1), \overline{x} + \frac{s}{\sqrt{n}} t_{\frac{\alpha}{2}}(n-1)\right)$$

数据代入有:
$$(0.5 - \frac{1.52}{\sqrt{25}}t_{0.025}(24), 0.5 + \frac{1.52}{\sqrt{25}}t_{0.025}(24)) = (-0.13, 1.12)$$

八、 设两位化验员 A、B 独立地对某种聚合物含氯量用相同的方法各作 10 次测定,其测定值的样本方差依次为 $S_A^2 = 0.552$ 和 $S_B^2 = 0.606$. 设 σ_A^2 和 σ_B^2 分别为 A、B 所测定的测定值总体的方差,设两个总体均为正态的,且两样本独立,问根据这些数据能否推断这种聚合物含氯量的波动性有无显著

的变化. 即检验假设: $H_0:\sigma_A^2=\sigma_B^2$, $H_1:\sigma_A^2\neq\sigma_B^2$, 取显著性水平 $\alpha=0.05$. (已知:

$$F_{0.025}(9,9) = 4.03$$
, $F_{0.05}(9,9) = 3.18$)

解: 由题意 $n_{\!\scriptscriptstyle 1}=n_{\!\scriptscriptstyle 2}=10$,需检验假设: $H_{\!\scriptscriptstyle 0}:\sigma_{\!\scriptscriptstyle A}^2=\sigma_{\!\scriptscriptstyle B}^2$, $H_{\!\scriptscriptstyle 1}:\sigma_{\!\scriptscriptstyle A}^2\neq\sigma_{\!\scriptscriptstyle B}^2$,则拒绝域为:

$$F \geq F_{\alpha/2}(n_1 - 1, n_2 - 1) \stackrel{\text{\tiny def}}{\boxtimes} F \leq F_{1 - \alpha/2}(n_1 - 1, n_2 - 1) \;, \; \stackrel{\text{\tiny def}}{\boxtimes} F = \frac{S_A^2}{S_B^2}$$

由于
$$F_{1-\alpha/2}(n_1-1,n_2-1)=\frac{1}{F_{\alpha/2}(n_2-1,n_1-1)}$$
,从而拒绝域为: $\frac{s_A^2}{s_B^2} \geq F_{0.025}(9,9)=4.03$ 或

$$\frac{s_A^2}{s_B^2} \le F_{1-0.025}(9,9) = \frac{1}{4.03} = 0.248 \text{ 。 现} \frac{s_A^2}{s_B^2} = \frac{052}{0606} = 091 \quad \text{,不在拒绝域内,从而接受} H_0 \text{,}$$

即认为波动性无显著的变化。

九、设随机变量 X 的密度函数为 $f(x) = \begin{cases} \frac{x^n}{n!}e^{-x}, x > 0\\ 0, x \le 0 \end{cases}$,用切比雪夫不等式证明:

$$P{0 < X < 2(n+1)} \ge \frac{n}{n+1}$$
.

证明: 由
$$E(X) = \int_{-\infty}^{+\infty} x \cdot f(x) dx = \int_{0}^{+\infty} x \frac{x^{n}}{n!} e^{-x} dx = \int_{0}^{+\infty} \frac{x^{n+1}}{n!} d(-e^{-x})$$

$$= \left[-\frac{x^{n+1}}{n!} e^{-x} \right]^{+\infty} + \int_{0}^{+\infty} (n+1) \frac{x^{n}}{n!} e^{-x} dx = 0 + (n+1) \int_{0}^{+\infty} \frac{x^{n}}{n!} e^{-x} dx = n+1$$

同理,可计算出
$$E(X) = \int_{-\infty}^{+\infty} x^2 \cdot f(x) dx = (n+2)(n+1)$$

$$\overrightarrow{m} D(X) = E(X^2) - [E(X)]^2 = (n+2)(n+1) - (n+1)^2 = (n+1)$$

由切比雪夫不等式, 得 $P{0 < X < 2(n+1)} = P{-(n+1) < X - (n+1) < n+1}$

$$= P\{|X - (n+1)| < n+1\} \ge 1 - \frac{n+1}{(n+1)^2} = \frac{n}{n+1}$$