Bioinformatics CS300 Genome annotation and sequence-based

gene prediction

Fall 2017
Oliver Bonham-Carter

Goals:

- Determine complete genome sequence of an organism
- Annotate protein-coding genes and other important genome-encoded features
 - find
 - identify
 - characterize
 - describe
 - computational predictions later confirmed at the lab bench

Gene Prediction

- Sequence-based find features based on specific sequences
- What does a gene look like?
 - Qualities?
 - Behaviors?
 - Sequence trends?

Gene Prediction

- Two obvious questions:
- Why not just look to see what proteins are available?
- Could that tell us what gene must be there to make the protein?

gene silencing

Gene Prediction

- We look for specific features or land-marks in a sequence that may suggest that there is a gene at play.
 - The Shine-Dalgarno: found of a upstream of a DNA start codon: ATG

Shine-Dalgarno Sequence

- Shine and Dalgarno showed that the nucleotide tract at the 3' end of E. coli 16S ribosomal RNA (rRNA) is pyrimidine-rich and has the sequence: **Py-***ACCUCCU***UA-3'OH**.
- They proposed that these ribosomal nucleotides recognize the complementary purine-rich sequence AGGAGGU, which is found upstream of the start codon AUG in a number mRNAs found in viruses that affect E. coli.

Shine-Dalgarno Sequence

- The binding of mRNA to the 30S subunit is facilitated by a ribosomal-binding site or Shine-Dalgarno sequence
 - This is complementary to a sequence in the 16S rRNA

 Figure 13.18 outlines the steps that occur during translational initiation in bacteria

Prediction Algorithms

 Alignment-based – find genes/features based on conserved sequences is well-studied organisms (database searching)

- Automatic assignment based on sequence similarity (best BLAST hit): gene name, protein name, function
- Quality vs Quantity

Prediction Algorithms

- Content-based consider overall properties of the sequence when making predictions
- nucleotide frequency
- Codon frequency/codon bias
- GC Content for all V. vulnificus and V.naverensis gene predictions
- Most of the genomes contained a high percentage of genes with GC contents between 45-50%.

DISTRIBUTION OF GC CONTENT

Prediction Algorithms

ALLEGHENY COLLEGE

Input evidence

Database

Process

- Probabilistic –
 combination of
 sequence-based and
 content-based plus
 probability
- "annotation pipeline"

NCBI Prokaryotic Annotation Pipeline

- Combines sequence-based algorithm with alignment-based approach
 - Protein-coding genes
 - Structural RNAs (5S, 16S, 23S)
 - Transfer RNAs
 - Small non-coding RNAs
- Rely only on properties of DNA and training set of genes

- Masking
 - try to identify and ignore noncoding regions
- Alignment-based predictions
 - Where have we seen this sequence before?
- Sequence/content-based predictions from alignment-based
- Best selected (probability), named, and released

https://www.ncbi.nlm.nih.gov/genome/annotation_euk/process/#assemblies

ALLEGHENY COLLEGE

- The best models are selected among the RefSeq and the predicted models, named and accessioned (purple).
- At the end, the annotation products are formatted and deployed to public resources (yellow).

Natural Differences

 We can use the general differences in genetic presentation between types of organisms to find meaningful regions (which could be genes)

"Love" in Chinese, Japanese and Korean

Prokaryotic versus Eukaryotic Genomes

- Prokaryotes
 - A circular chromosome
 - "Genome"
 - Extra DNA in plasmids
 - smaller, self-replicating

Prokaryotic versus Eukaryotic Genomes

- Eukaryotes
 - Multiple linear Chromosomes
 - "Genome"
 - Extra DNA in Mitochondria/chloroplast

Need to know feature structure

Comparison of Prokaryotes vs Eukaryotes transcription unit structures

Prokaryotic versus Eukaryotic Genomes

Organism	Amount of DNA (bp)	# of genes	Genes per million bases
Escherichia coli	4,600,000	4,400	950
Saccharomyces cerevisiae	12,000,000	5,800	480
Drosophila melanogaster	180,000,000	13,700	76
Mus musculus	2,600,000,000	25,000	11
Homo sapiens	2,900,000,000	25,000	10

Eukaryotic cells

Prokaryotic cells

Table 9.3 Consensus sequences for gene expression in prokaryotes and eukaryotes.

Sequence	Consensus (5' \rightarrow 3')	Function	
Prokaryotes			
-10 sequence	TATAAT	RNA polymerase binds to start transcription	
-35 sequence	TTGACA 17±2 from -10	RNA polymerase binds to start transcription	
Shine-Dalgarno	AGGAGG 5±2 from ATG	Ribosome binds to find start codon	
Eukaryotes			
TATA box	TATAWAW	Core promoter; binds TFIID	
<i>Inr</i> sequence	YYCARR	Core promoter; contains +1 sequence (C)	
GC box	GGGCGG	Transcription factor binding site	
CAT box	CAAT	Transcription factor binding site	
Kozak consensus	gccRccATGG	Context of start codon	
5' splice site	MAG GTragt	Bound by spliceosome to remove introns	
3' splice site	cAG G	Bound by spliceosome to remove introns	
intron branch site	CTRAY	3' end of intron binds to mark for degradation	
polyadenylation site	AAUAAA	Cleavage of mRNA for poly(A) tail	

Open Reading Frame (ORF)

- Online tools:
 - NCBI:
 - https://www.ncbi.nlm.nih.gov/orffinder/
- Sequence Manipulation Suite:
 - http://www.bioinformatics.org/sms2/orf_find.html

```
atgcccaagctgaatagcgtagaggggtttcatcatttgaggacgatgtataa

1 atg ccc aag ctg aat agc gta gag ggg ttt tca tca ttt gag gac gat gta taa

M P K L N S V E G F S S F E D D V *

2 tgc cca agc tga ata gcg tag agg ggt ttt cat cat ttg agg acg atg tat

C P S * I A * R G F H H L R T M Y

3 gcc caa gct gaa tag cgt aga ggg gtt ttc atc att tga gga cga tgt ata

A Q A E * R R G V F I I * G R C I
```

Class Activity: NCBI – ORFfinder

- Use NCBI ORF Finder to annotate a plasmid
 - https://www.ncbi.nlm.nih.gov/orffinder/
- Try: NC_011604
 - Salmonella enterica subsp. enterica serovar Westhampton plasmid pWES-1, complete sequence
 - What are the red rectangles with the arrows?

