Graph Theory: Bipartite Graphs

Emilio Esparza

August 2025

1 Introduction

Everyone knows bipartite graphs are the funny graphs where we can group the vertices into two different disjoint sets and the vertices in each set only have edges to the other! Let us make some more formal claims about them...

2 Bipartite Graph Definitions

Def: An Independent Set in graph G is a set of vertices $x \subseteq V(G)$ such that no two vertices are adjacent.

Def: A graph G is <u>bipartite</u> if V(G) can be partitioned into two independent sets (disjoint):

$$x, y \subseteq (G), x \cup y = V(G), x \cap y = \emptyset$$

here (x, y) is a bipartition of the graph G. Also note that the order of sets x, y matters here. If we create a bipartition as the ordered pair (y, x) then this counts as a different bipartition than (x, y).

Question: How many bipartitions does the graph with n vertices and no edges have? (looking for most or maximal bipartitions)

$$G = \underbrace{\bullet \bullet \cdots \bullet}_{n \text{ vertices}}$$

The answer¹ is 2^n because x can be any subset of V(G) and $Y = V(G) \setminus X$

NOTE: Complete bipartite graphs have the least bipartitions!

Def: Complete Bipartite Graph - graph G with bipartition (x, y) such that every vertex in x is adjacent to every vertex in y. If one side has t verts and the other has s verts, then $G = K_{t,s}$ where $|E(K_{t,s})| = ts$

 $^{^1\}mathrm{Answer}$ is not entirely clear to me from this explanation but I am an idiot so whatever...

Question: When $s, t \ge 1$ how many bipartitions of $K_{t,s}$ are there? 2

3 More Misc Definitions

Def: Complete Graph (Clique) - graph G where every pair of distinct vertices is adjacent. A complete graph on t vertices is K_t .

Question: How many edges in K_t : $\binom{t}{2}$ edges (maximal edges in graphs) **Question**: How many Graphs are there on vertex set $\{1, 2, ..., n\} = [n]$: $2^{\binom{n}{2}}$

Def: Clique in Graph G is set $x \subseteq V(G)$ of pairwise adjacent vertices. **Def:** $\bar{\mathbf{G}}$ is graph $(V(G), E(\bar{G}))$ where $E(\bar{G})$ swaps edges and non-edges.

$$G \cup \bar{G} = K_{|V(G)|} \wedge |E(G)| + |E(\bar{G})| = |E(K_{|V(G)|})|$$

 $G \cong \bar{G} \implies G$ is self complementary by default

NOTE: $x \subseteq V(G)$ is independent set \iff it is a clique in G

Question: What is \bar{G} , if G is the graph of components K_3 and K_4 ?

$$\bar{\mathbf{G}} = \mathbf{K_{3.4}}$$

Def: Odd Cycle is a cycle with odd length, e.g. C_1, C_3, C_5, \ldots and so on

4 König Theorem

This exercise is sort of a lemma used in the proof of König's Theorem:

Prove any G that contains an odd cycle is not bipartite

4.1 Theorem (König 1936):

A graph is bipartite \iff it does not contain an odd cycle

4.2 Proof:

 (\Longrightarrow) [Insert Excercise Here!]

(\iff) We show by induction on |E(G)| that any graph that does not contain an odd cycle is bipartite.

NOTE: This proof is missing the base case that |E(G)| = 1 is bipartite

\bullet Case 1: G is a Disconnected Graph

Let C_1, \ldots, C_r be components of G. No component contains an odd cycle [by the premise of the proof]. So by induction on |E(G)|, each component of G, C_i has a bipartition: (x_i, y_i)

Then $(x_1 \cup x_2 \cup \dots, y_1 \cup y_2 \cup \dots)$ is also a bipartition of G

• Case 2: G is a Connected Graph

Let $v \in V(G)$, Let $L_0 = \{v\}$, Let $L_1 = \{u : uv \in E(G)\}$, and so on. Suppose we had defined L_0, L_1, \ldots, L_i Then $L_{i+1} = \{u \in V(G) : (u \notin L_0 \cup L_2 \cup \cdots \cup L_i) \land (\exists x \in L_i, xu \in E(G))\}$

NOTE: We call each set of vertices, L_i , a layer or level

Since G is connected then $\exists k \in \mathbb{Z} \text{ s.t. } V(G) = L_0 \cup L_1 \cup \cdots \cup L_i$

NOTE: No edges skip over adjacent layers, all endpoints are contained in one layer or consecutive layers!

Lemma:

For each $i \in \{0, 1, ..., k\}$ there is no edge with endpoints in L_i

Proof of Lemma:

Suppose to the contrary that $\exists x, y \in L_i$ s.t. $x, y \in E(G)$ Note x has neighbor $x_1 \in L_{i-1}$, x_1 has neighbor $x_2 \in L_{i-2}$, and so on.

In this manner we can obtain a path P_x such that:

- 1. The ends of P_x are v, x
- 2. If we order the path vertices beginning with u and ending with x, then its vertices are in layers L_0, L_1, \ldots, L_i respectively.

Similarly \exists a path P_y by similar construction

Let $j \in \{0, 1, ..., i\}$ be the largest integer st $z \in v(P_x) \cap V(P_y) \cap L_i$ Then G has a cycle formed by xy, the path P_x between x and z and the path P_y between y and z.

Lemma

Continuing the proof of case 2: By this lemma, G has a bipartition (x, y) where x is the union of the even layers L_0, L_2, \ldots and y is the union of the odd layers L_1, L_3, \ldots

 $Proof \square$