西	安	交	通	大	学	考	试	题
---	---	---	---	---	---	---	---	---

		- <u>-</u>	数学物3			成绩					
								_ =	火		
£	专业场	任号				考试日期 2018年9月 日					
ţ	生	名				学 号期末 ✓					
		题 号	_	<u> </u>	三	四	五.	六	七		
		得分									
	, -					1		<u>I</u>		J	
	. 填	空(每是	页6分,	共 36 分	分)						
1.	. 长为 L 的柔软细弦做微小自由横振动,则弦振动方程为。又若弦的两端固定,则边界条件为										
					_°						
2.	2. 说明贝塞尔函数 $J_n(x)$ 的奇偶性										
	,这里 <i>n</i> 为正整数。										
3. 有一均匀材质球体,其内部热源为 $f(x, y, z)$,试写出其内部温度满足的方程。											
4. 考虑特征值问题											
$\begin{cases} X'' + \lambda X = 0, & 0 < x < 1 \\ X(0) = 0, X'(1) = 0 \end{cases}$											
	其特	征值为									
5、	函数	$\Gamma(5+1)$	/ 2) =					o			
	5、方程 $x^2y'' + xy' + 2(x^2 - 2)y = 0$ 的通解 $y = $										

二. (10 分) 求解下列问题

$$\begin{cases} u_{tt} = 2u_{xx}, & -\infty < x < \infty, \quad t > 0 \\ u|_{t=0} = x^2 + 1, u_t|_{t=0} = e^x, -\infty < x < \infty \end{cases}$$

三. (10分) 求解下列柯西问题

$$\begin{cases} u_t - tu_x = 0, & -\infty < x < \infty, \quad t > 0 \\ u|_{t=0} = \varphi(x), & -\infty < x < \infty \end{cases}$$

四. (10 分) 求解平面区域 $\Omega = \{(x, y) | x < 0, y \in R\}$ 的格林函数。

五、($\mathbf{10}$ 分) 将函数 f(x) = 2 在区间 [0,2] 上按贝塞尔函数系 $J_0(\frac{\mu_m^{(0)}}{2}x)$ (m=1,2,...,) 展成贝塞尔级数。

六、(10分) 求解下列定解问题

$$\begin{cases} u_{tt} = a^{2}u_{xx}, & 0 < x < l, \quad t > 0 \\ u|_{x=0} = 0, & u_{x}|_{x=l} = 0, \quad t \ge 0 \\ u|_{t=0} = \varphi(x), & u_{t}|_{t=0} = 0, \quad 0 \le x \le l \end{cases}$$

七、(14分) 求解下列定解问题

$$\begin{cases} u_t = a^2 u_{xx} + \sin \frac{\pi}{2} x, & 0 < x < 1, \quad t > 0 \\ u \mid_{x=0} = 0, & u_x \mid_{x=1} = 0, \quad t \ge 0 \\ u \mid_{t=0} = x, & 0 \le x \le 1 \end{cases}$$