(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出顧公開番号

特開平6-297985

(43)公開日 平成6年(1994)10月25日

(51) Int.CL ¹ B 6 0 K 41/20 B 6 2 D 6/00 # B 6 2 D 113: 00 133: 00	識別記号	庁内整理番号 8920-3D 9034-3D	PI 技術			技術表示箇所	
			客主請求	水龍水	請求項の数 1	OL	(全 7 頁)
(21)出頭書号	特職平5-91613 (71)出職人 0000033 トヨタ				207 自動車株式会社		
(22)出版日	平成5年(1993)4月19日				豊田市トヨタ町	1 番地	
			(72)発明者		豊田市トヨタ町	1番地	トヨタ自動
		•	(74)代理人	弁理士	伊東 忠彦		

(54) 【発明の名称】 車輌の制御装置

(57)【夏約】

【目的】 車両の横転可能性の誤判定を低減して車両の 適切な制御を行なうことができる車両の制御装置を提供 することを目的とする。

【構成】 車両の重心高データを生成する重心高データ 生成手段10と、車両のロール角を算出するロール角算 出手段20と、重心高データ生成手段10による生成値 とロール角算出手段20による算出値とに基づいて車両 の横転判断の基準となる横転判断基準値を算出する機転 判断基準値算出手段30とを設ける。そして車両の運転 状態、何えば横加速度が横転判断基準値を超えた時に、 鉄車両が減速制御される。

【特許請求の範囲】

【請求項1】 車両の型心高データを生成する重心高デ ータ生成手段と、

車両のロール角を算出するロール角算出手段と、

前記重心高データ生成手段による生成値と前記ロール角 算出手段による算出値とに基づいて車両の横転判断の基 準となる横転判断基準値を算出する横転判断基準値算出 手段と、

を備え、

車両の運転状態が前記横転判断基準値算出手段によって 10 質用される機能判断基準値を招えた時に、数車資を減減 制御することを特徴とする草岡の制御技能。

【発明の詳細な説明】

[0001]

【富幸上の利用分野】本発明は車両の制御拡展に係り、 特に急旋回時における車両の模転を防止するための車両 の叙書芸蔵に関する。

[0002]

【従来の技術】車両の急旋回時等には車両の横加速度が 大きくなると共に、車両のロール角も大きくなるため、20 これらに起因して車両が横転するのを防止するための制 御塾園が従来より根据されている(特別平1-1685 5.5 母公鄉)。

【0003】上配公報の従来装置は、車輪のホイールス トロークと舵角と事体速とから内輪の浮上状態を検出 し、急旋回時において内輪が浮上した場合に、ブレーキ によるトラクション制御を停止すると共に、エンジン出 力を所定量だけ低下させて車両を減速させることによっ て車両の機転を防止するものである。

[0004]

【発明が解決しようとする課題】ところで、事質の模様 の可能性を判断するための車両のロール角は、車両の重 **心位量によって変動する。従って、上記従来装置のよう** に事論のホイールストローク等のみより事間の横転の可 能性を判断するのでは誤判定を生じる僕があるといった 問題があった。

【0005】また、従来装置においては車輪のホイール ストロークを検出するためのホイールストロークセンサ 等の多くのセンサを使用しなければならず、このため部 品点数がかなり増えてしまうといった問題もあった。

【0006】更に、車両のロール角が大きくなってから では横転を防ぐのは困難であるため、ロール角が大きく なる前に横転判定をしなくてはならず、このため車両の 旋回性鉛等が悪くなってしまうといった問題もあった。

【0007】本発明は上紀の点に鑑みなされたものであ り、部品点数を余り増やさずに車両のロール角を算出す ると共に重心高データを生成し、これら算出値及び生成 値に基づいて車両の横転判断基準値を算出することによ って、車両の横転可能性の誤判定を低減して車両の適切 な制御を行なうことができると共に、車両の旋回性能を 50 zzz)、(xzz, yzz, zzz)の位置に取り付けられて

良好に維持しながら車両の適切な制御を行なうことがで きる車翼の制御装置を提供することを目的とする。

[0008]

【課題を解決するための手段】図1は本発明の原理構成 切である。

【0009】 阿図に示すように本発明では、車両の重心 高データを生成する重心高データ生成手段10と車両の ロール角を算出するロール角算出手段20と、前配重心 高データ生成手段10による生成値と約配ロール角算出 手段20による算出値とに基づいて車両の機転判断の基 雄となる権転判断某準値を算出する機転判断基準値算出 **手段30と、を備え、車両の運転状態が設起機転判断基** 準値算出手段によって算出される横転判断基準値を超え た時に、該車両を減速制御することを特徴とするもので ある.

[0010]

【作用】重心高データ生成手段によって車両の重心高デ ータが生成されると共に、ロール角算出手段によって車 両のロール角が算出され、これら生成値及び算出値に基 づいて横転判断基準値算出手段によって横転判断基準値 が算出される。

【0011】そして、車両の運転状態例えば横加速度が 前記模転判断基準値を超えた時に、該車両が減速制御さ れる.

【0012】従って、車両の横転可能性の顕判定を低減 して享両の適切な制御を行なうことができると共に、車 顔の膝向性能を良好に維持しながら直面の適切な制御を 行なうことができる。

[0013]

【実施術】以下、太空期の一定論例について説明する。 30 図2は本党明に係る事項の制御装置を搭載した一例の車 両の概観斜視図であり、図3は本発明の裏部の構成を示 す要部構成図である。

【0014】図2中1は、本発明に係る享両の制御抜置 を搭載した車両であり、この車両1には三つの対地変位 計21~23と横加速度センサ24とが設けられてい る。そして、これら対地変位計21~23及び横加速度 センサ24は、夫々図3に示すようにECU(電子制御 装置)35に接続されている。

【0015】また前記車両1には、図3に示すようにE CU35に接続されていると共に、韓ECU35よりの 制御信号によって開閉動作する緊急プレーキハルブ41 と、この緊急プレーキパルプ41が開成されたときにプ レーキ機構42に所定のプレーキ圧を印加するためのエ アーを供給するエアータンク43とが設けられている。

(0016) 前記対地変位計21~23は、図2に示す ように車両1の任意の点例えば0点を原点とすると共 に、X, Y, Zの三輪より成るホデー産標系において、 夫々例えば(x21, y21, Z21)、 (x22, y22,

3

いる。そして、これら対地変位計21~23は図2及び 図4に示すように、夫々該対地変位計と対応する地表面 G上の点A, B, Cまでの距離L11, L11, 及びL11を 検出する機能を有するものである。尚、図2中、点CG は車両1のボデー座標系における重心であり、この重心 CGのボデー座標系における座標は例えばCG (C G1, CG1, CG1)となっている。

【0017】また前記機加速度センサ24は、車両1の 旋回時等に該車両1に生じる機加速度απ を検出する機 能を有するものである。

【0018】前記ECU35はマイクロコンピュータよ り成り、このマイクロコンピュータ35は前記対地変位 計21~23と共に前記した重心高データ生成手段10 をソフトウェア処理により実現すると共に、前記したロ ール角算出手段20及び横転判断基準値算出手段30を ソフトウェア処理により実現する制御装置であり、図 5 に示す如き公知のハードウェア構成を有している。図 5 において、マイクロコンピュータ35は中央処理装置 (CPU) 50、処理プログラムを終納したリード・オ ンリ・メモリ (ROM) 51、作業領域として使用され 20 るランダム・アクセス・メモリ (RAM) 52、エンジ ン停止後もデータを保持するパックアップRAM53、 マルチプレクサ付き入力インタフェース回路54、A/ Dコンパータ56及び入出カインタフェース回路55等 から構成されており、それらはパス57を介して接続さ れている。

【0019】前配入力インタフェース回路54には前配 対地変位計21~23及び横加速度センサ24からの検 出信号等を顧次切換えて時系列的に合成された直列信号 とし、これを単一のA/Dコンパータ56へ供給してア 30 ナログ・ディジタル変換させた後、パス57へ順次送出 させる。

【0020】 前配入出力インタフェース回路55はパス57か6入力された各個号を前配緊急プレーキパルプ41等に選択的に送出して該緊急プレーキパルプ41等を制御する。

【0021】上記の構成のマイクロコンピュータ35の CPU50はROM51内に格納されたプログラムに従来 *い、以下に説明するフローチャートの処理を実行する。 【0022】図6は、本発明の要部の一実施例の動作説 明用のフローチャートである。

【0023】図6のステップ102で、先ず車両1の重心高Hccのデータ生成を行なう。ここで、重心高Hccのデータ生成方法について詳述する。先ず、前配対地変位計21~23の夫々と対応する地表面上の点A,B,Cのボデー座標系における座標A(X_A,Y_A,Z_A)、B(X_B,Y_B,Z_B)、C(X_C,Y_C,Z_C)を求

10 める。

【0024】ここでA点のX座標値(Xi)及びY座標値(Yi)は、天々ボデー座標系を基準としているため対地変位計21のX座標値(Xi)及びY座標値(yi)と同一の値となり、またA点のZ座標値(Zi)と試対地変位計21によって計測される前配距離Liにとより一銭的に求めることができ、また同様にしてB点のX座標値(スiの)、Y座標値(Yi)、Z座標値(Zi)、及びC点のX座標値(Xi)、Y座課値(Yi)、Z座標値(Zi)も一銭的に求めることができる。

【0025】次いで、下配の(1)式で示す平面の式に 前配A, B, Cの各点の座標値を代入して下配の(2) 式~(4)式で示す地表面の方程式を立て、これら (2)式~(4)式を速立させて保数a, b及びcを求 める。

[0026]

 $a \cdot X + bY + cZ + 1 = 0 \qquad \cdots (1)$

 $a \cdot X_A + b Y_A + c Z_A + 1 = 0$... (2)

 $a \cdot X_1 + bY_1 + cZ_1 + 1 \qquad \cdots (3)$

) a·Xc+bYc+cZc+1 …(4) ここで、既述のとおりXc, Yc, Zc, Xi, Yi,

 2_1 、及び X_c , Y_c , 2_c は既知の値であるので、 a, b, c は一截的に求めることができる。

【0027】そして、これら α ,b及び α と、前知慮心 CGの座標CG(CG_1 , CG_2 , CG_3)とより下記 α (5)式により重心高 $H_{\rm CE}$ (選心CGから地表面Gまでの番短距離)本生成する。

[0028]

Hee = | a · CG: +b · CG: +c · CG: +1 |

/ (a 1 +b1 +C1) 1/2 --- (5)

次に、ステップ104で車両1のロール角α: の算出を 行なう。ここでロール角α: の算出方法について述べ る。尚、ロール角とは、地表面Gとポデー座標系のYZ 平面との交線がY軸をなす角、具体的には後述する図7 にα: で示す角を置う。

』は一種的に求めることができる。
【0030】更に、ステップ106で車両1の模転判断
基準値Kの算出を行なう。ここで模転判断基準値Kの算 出方法について図7(a)及び(b)を参照しながら述 べる。尚、図7(a)中7は車輪72及び73の上部に 車体71が取り付けられている車両であり、この車両7 は成明の便宜上層体であるものとすると共に、車両7の重 心である。また図7(a)中CG1は車両7の重 心である。

102で既に一義的に求められているので、ロール角 α \mathcal{Q} 【0031】図?(α)において前記字周7に模加速度

α11が生じると、図7 (b) に示すように重心CG: に 該横加速度 αzz に基づく外力m・αzz が生じて、車体7 1が同数 (b) に示すように外力が作用する方向に傾 く。尚、このときの重心CGrの重心高はHear である とする。ところで、この車体71には該車体71の質量 mに基づいた重力m・gが作用している。尚、gは重力 加速度である。そして、この場合に享両?が模転するか 否かを判断するには、車輪73の地表面Gとの接地中心 であるD点における前配外力m・ arr に基づくモーメン トと前記重力m・gに基づくモーメントを比較すればよ 20 して求めることができる。従って、機転判断基準値Kは い。即ちD点における外力m・αι・に基づくモーメント*

再び図6の説明に戻り、ステップ108で享両1の横加 速度α』がステップ106で算出された横転判断基準値 Kより大きいか否か、即ち横加速度 Ga > f (ロール角 α_1) /重心高Hcoであるか否かが判定され、 α_1 > f (ロール角 a1) /重心高Hc2 であると利定されたとき は、ステップ110で緊急プレーギバルブ41を開成し て処理は終了するが、この緊急プレーキバルブ41の開 成によってプレーキ機構42に所定のプレーキ圧が印加 20 を良好に維持しながら車両の適切な制御を行なうことが され、更に鉄プレーキ機構42によって車両1の図示し ない車輪がロックされて鉄車両1が停止される。

[0033] 一方、ステップ108で機加速度 ax >f (ロール角 au) /重心高Hrsでないと判定されたとき は、処理はステップ102にループする。

【0034】以上のような実施例によれば、専両1の重 心高日にのデータを生成すると共に、ロール角 α を算 出し、これら生成値及び算出値に基づいて車両1の横転 判断基準値Kを算出し、この横転判断基準値Kに基づい て車両1の横転可能性を判断し、横加速度が該機転判断 30 基準値Kを超えた時に、該車両1が減速制御されるの で、享買1の機転可能性の誤判定を低減して該享買1の 制御を行なうことができると共に、 車両 1 の旋回性能を 真好に維持しながら車両1の制御を行なうことができ

【0035】また、従来装置のように専両1の横転可能 性を判断するのに各車輪缶にホイールストロークセンサ を設ける場合や、重心高Hccを計算するのに何えば車速 センサを使用すると共に、ロール角 α: を計測するのに 例えばレートジャイロを使用する場合等と比較して、本 40 42 プレーキ機構 実施例によれば値か3個の対地変位計21~23のみに よって享買1の重心高Hce及びロール角ca を検出する ことができるので、車両1の部品点数を低減させること ができる。

+m・αxy・Hccy と、前記重力m・gに基づくモーメン トm・g・tとを比較すればよい。

[0032] そして享買7が検転するのはm・ax・H ter >m・g・tのとき、即ち、aur>t・g/Httr のときである。ところで、αετは、検加速度センサ24 によって検出され、またHeer は既述した(6)式によ って算出され、更にgは定数であるので、tを求めるこ とによって東南7の横転可能性を判断することができる が、この t は図7 (b) に示したロール角 as の関数と 下記の(6)式によって算出することができる。

横転判断基準値K=f(ロール角 as)/真心高Hcc …(6)

[0036]

【発明の効果】本発明によれば、車両の重心高データを 生成すると共にロール角を算出し、これら生成値及び算 出値に基づいて享回の横転判断基準値を算出し、この横 転判断基準値に基づいて享買の機転可能性を判断してい るので、車両の機転可能性の製料定を低減して車両の道 切な制御を行なうことができると共に、宣風の控向件的 できる.

(図面の簡単な説明)

【図1】本発明の原理構成図である。

[図2] 本発明に係る車両の制御装置を搭載した一例の 車両の転組斜視関である。

【図3】本発明の要部の構成を示す要部構成図である。

【図4】対地変位計の機能を説明するための図である。

【図5】マイクロコンピュータのハードウェアの一例の 構成図である。

【図6】本発明の要部の一実施例の動作説明用のフロー チャートである。

【図7】 横転判断基準値の算出方法を説明するための図 である.

【符号の説明】

1 享買

21, 22, 23 対地変位計

24 横加速度センサ

35 ECU (マイクロコンピュータ)

41 緊急ブレーキパルブ

43 エアータンク

α. ロール角

CG 重心

Hes 單心藥

(7)

特別平6-297985

[図7]

