Discrete Fourier Transform (DFT) Correspondence Table

For a length-
$$N$$
 sequence $x[n], n=0,\ldots,N-1$:
$$X[k] = \sum_{n=0}^{N-1} x[n] \, \mathrm{e}^{-\mathrm{j} \frac{2\pi}{N} k n}, \quad x[n] = \frac{1}{N} \sum_{k=0}^{N-1} X[k] \, \mathrm{e}^{\mathrm{j} \frac{2\pi}{N} k n}, \quad k=0,\ldots,N-1.$$
 Let $W_N \coloneqq \mathrm{e}^{-\mathrm{j} 2\pi/N}$ and all indices be understood mod N .

Notes: This sheet uses the standard engineering DFT with a 1/N factor in the inverse only. For real-valued x[n], X[0] and (if N even) X[N/2] are real, and $X[k] = X^*[(N-k) \mod N]$ (conjugate symmetry).

A. Common DFT Pairs

Time sequence $x[n]$	DFT $X[k]$	Notes
$\delta[n]$	1	Unit sample at $n=0$
$\delta[n-n_0]$	$e^{-j\frac{2\pi}{N}kn_0}$	Pure phase ramp
1 (constant)	$X[0] = N, \ X[k \neq 0] = 0$	DC only
$\mathrm{e}^{\mathrm{j}rac{2\pi}{N}m_{0}n}$	$N \delta[(k-m_0) \bmod N]$	Single spectral line at $k=m_0$
$\frac{\cos\left(\frac{2\pi}{N}m_0n\right)}{\sin\left(\frac{2\pi}{N}m_0n\right)}$	$\frac{\frac{N}{2}}{\frac{N}{2}} \left[\delta[k - m_0] + \delta[k - (N - m_0)] \right] \\ \frac{\frac{N}{2}}{\frac{N}{2}} \left[\delta[k - m_0] - \delta[k - (N - m_0)] \right]$	Two real symmetric lines
$\sin(\frac{2\pi}{N}m_0n)$	$\frac{N}{2i} \left[\delta[k-m_0] - \delta[k-(N-m_0)] \right]$	Odd imaginary pair
Rectangular window: $ \begin{cases} 1, & 0 \le n \le L - 1 \end{cases} $	$W_L[k] = e^{-j\frac{\pi}{N}k(L-1)} \frac{\sin(\frac{\pi kL}{N})}{\sin(\frac{\pi k}{N})}$	Dirichlet kernel; $W_L[0] = L$
$w_L[n] = \begin{cases} 1, & 0 \le n \le L - 1 \\ 0, & \text{else} \end{cases}$		
Shifted rectangle: $w_L[n-n_0]$	$e^{-j\frac{2\pi}{N}kn_0}W_L[k]$	Time shift \Rightarrow linear phase

B. Core Properties (indices modulo N)

Time domain	DFT domain	Comments
Linearity: $ax[n] + by[n]$	aX[k] + bY[k]	$a,b \in \mathbb{C}$
Circular time shift:	$e^{-j\frac{2\pi}{N}kn_0}X[k]$	Linear phase factor
$x[(n-n_0) \bmod N]$		
Modulation: $e^{j\frac{2\pi}{N}k_0n}x[n]$	$X[(k-k_0) \bmod N]$	Frequency shift by k_0 bins
Circular convolution: $(x \circledast y)[n]$	X[k] Y[k]	$(x \circledast y)[n] =$
		$\sum_{m} x[m]y[(n-m) \bmod N]$
Pointwise product: $x[n]y[n]$	$\frac{1}{N}(X*Y)[k]$	Circular convolution in k
Time reversal: $x[(-n) \mod N]$	$X [(-k) \mod N]$	Spectrum reversal
Conjugation: $x^*[n]$	$X^*[(-k) \bmod N]$	Conjugate symmetry link
Parseval/Plancherel	$\sum_{n=0}^{N-1} x[n] ^2 = \frac{1}{N} \sum_{k=0}^{N-1} X[k] ^2$ $R_{xy}[k] = X[k] Y^*[k]$	Energy conservation
Correlation: $r_{xy}[n] =$	$R_{xy}[k] = X[k] Y^*[k]$	Circular correlation
$\sum_{m} x[m] y^*[(m-n) \bmod N]$		
Zero padding to $M > N$	Samples DTFT more densely	Improves spectral interpolation
		(not resolution of content)

Implementation tips.

- Leakage: Non-integer-bin sinusoids spread due to the rectangular window (Dirichlet sidelobes). Use windows (Hann, Hamming, Blackman) to trade mainlobe width for lower sidelobes.
- **Picket-fence effect:** Spectral peaks may fall between bins; zero-pad to sample the DTFT more densely and improve peak estimates.

• Real signals: S	Store only $k = 0, \dots, \lfloor N/2 \rfloor$	(others follow by conjug	ate symmetry).