

Lecture 5: Lazy Evaluation and Infinite Data Structures

Søren Haagerup

Department of Mathematics and Computer Science University of Southern Denmark, Odense

November 21, 2016

How does Haskell evaluate a program?

Since there are no side-effects in Haskell programs, the evaluation order of expressions is not specified by the order of the expressions:

root a b c =
$$(-b + sd) / (2 * a)$$

where
 $sd = sqrt d$
 $d = b * b - 4 * a * c$

This definition is perfectly valid, even though the definition of *d* is written after *sd*.

Lazy evaluation

- The purity of Haskell functions (= absense of side-effects) gives more freedom to the compiler, when it decides when to evaluate each expression:
- The idea is to wait with evaluating an expression until it is *needed*.
- This concept is also known as Lazy evaluation.
- Note: Not all functional programming languages use Lazy evaluation as its evaluation model. This is just a design choice in Haskell.

Advantages of Lazy evaluation

- 1. Avoids doing unnecessary evaluation
- 2. Allows programs to be more modular
- 3. Allows us to program with **infinite lists**

Example 1

$$a :: Bool$$
 $a = \neg a$

What happens if we evaluate *a*?

$$b = False$$

$$c = b \wedge a$$

What happens if we evaluate c?

$$c'$$
 :: Bool $c' = a \wedge b$

What about c'?

In other languages this behavior is called **short circuiting**, and is only possible in those languages because (\land) and (\lor) are built in to the language.

Note that (\land) and booleans *Bool* are *not* primitives in the Haskell language. They are just an ordinary function and an ordinary algebraic data type!

Example 2

In Haskell we can define our own "if"-function by

$$myIf :: Bool \rightarrow a \rightarrow a \rightarrow a$$
 $myIf True \ v = v$
 $myIf False \ v = v$

What happens when we evaluate

? We get the result *expr1*, and *expr2* never gets evaluated. This is clearly different from the way other languages like Java and Python would evaluate a similar function.

Reducible expressions

- We know that Haskell evaluates expressions by succesively applying definitions, until no more simplifications are possible.
- Expressions which can be simplified are called "reducible expressions".

Examples:

$(\lambda x \to x * 2)$	Not reducible
$(\lambda x \to x * 2) 5$	Reducible to $5 * 2$, which is reducible to 10
$(\lambda x \ y \to 13 * x + y) \ 2$	Reducible to $(\lambda y \rightarrow 13 * 2 + y)$.
	Then subexpression $13 * 2$ is reducible.
(7,5+3)	Not reducible, but subexpression $5 + 3$ is.
	1 1 2 1

Function application is also known as a β -reduction.

Reduction strategies for function application

Consider the function sqr x = x * x and the expression sqr (4+2)

• **Innermost reduction:** [call-by-value]

$$sqr(4+2) \equiv sqr6 \equiv 6*6 \equiv 36$$

Outermost reduction: [call-by-need]

$$sqr(4+2) \equiv (4+2) * (4+2) \equiv 6 * (4+2) \equiv 6 * 6 \equiv 36$$

Outermost reduction with sharing (= Graph reduction)

$$sqr(4+2) \equiv let \ x = 4+2 \ in \ x * x \equiv 6 * 6 \equiv 36$$

The general evaluation rule of Haskell can be described as

Leftmost outermost reduction with sharing

One more example

ackermann
$$m$$
 n

$$| m \equiv 0 = n+1$$

$$| m > 0 \land n \equiv 0 = ackermann (m-1) 1$$

$$| m > 0 \land n > 0 = ackermann (m-1) (ackermann $m (n-1)$)$$

How does Haskell evaluate?

const 5 (ackermann 4 2)

Primitive arithmetic operations (+), (-), (*),

Cannot be evaluated in outermost manner:

$$3*4+3*4$$
 \rightarrow {first operand not done}

 $3*4$
 \rightarrow {both operands done, arithmetic}

 12

... $12+3*4$
 \rightarrow {second operand not done}

 $3*4$
 \rightarrow {both operands done, arithmetic}

 12

... $12+12$
 \rightarrow {both operands done, arithmetic}

 24

We say that the functions are *strict* in both arguments.

Another example

Consider again the function

$$sqr x = x * x$$

How does Haskell evaluate

```
sqr (sqr 2) \equiv \mathbf{let} \ x = sqr \ 2 \ \mathbf{in} \ x * x  -- (apply outer sqr)

\equiv \mathbf{let} \ x = 2 * 2 \ \mathbf{in} \ x * x  -- (apply inner sqr)

\equiv \mathbf{let} \ x = 4 \ \mathbf{in} \ x * x  -- (apply inner (*))

\equiv 16 -- (apply outer (*))
```

Innermost and outermost reductions

Which is innermost and which is outermost?

- when an expression contains no reducible subexpression, it is in normal form
- some expressions might not have a normal form
- an expression has at most one normal form
- outermost reduction always reaches the normal form if there exists a reduction strategy that reaches the normal form
- outermost reduction with sharing uses at most as many reduction steps as innermost reduction

The evaluation rule for function application

- 1. Evaluate the function until it is a lambda term
- 2. Then plug in the arguments.
- 3. Multiple occurences of a formal argument must all point to the same actual argument (sharing)

Example (function which is not a lambda term)


```
(if True then (\lambda c \to (c,0)) else (\lambda c \to (c,1))) blah \to \{\text{need function}\}\

if True then (\lambda c \to (c,0)) else (\lambda c \to (c,1)) \to \{\text{if-then-else}\}\
(\lambda c \to (c,0))
... (\lambda c \to (c,0)) blah \to \{\text{function application}\}\
(blah,0)
```



```
(\lambda c \rightarrow c) True (3*4+3*4)
\rightarrow {need function}
         (\lambda c \rightarrow c) True
     \rightarrow {function application}
         (\setminus \_ \to True)
... (\setminus \to True) (3 * 4 + 3 * 4)
\rightarrow {function application}
    True
```

Quiz time!

What does the following expressions evaluate to?

$$\begin{array}{lll} (\lambda x \rightarrow x) \; \textit{True} & = \textit{True} \\ (\lambda x \rightarrow x) \; \bot & = \; \bot \\ (\lambda x \rightarrow ()) \; \bot & = \; () \\ (\lambda x \rightarrow \bot) \; () & = \; \bot \\ (\lambda x \; f \rightarrow f \; x) \; \bot & = \; \lambda f \rightarrow f \; \bot \\ \textit{length} \; (\textit{map} \; \bot \; [1,2]) = 2 \end{array}$$

Pattern matching

Rule: For each pattern (in order), evaluate the expression "as much as needed" to be able to verify or refute a pattern.

Pattern matching summarized

- Reduce the expression to be pattern matched to Weak
 Head Normal Form, and check for constructor match with
 outermost constructor in pattern.
- Repeat for corresponding subpatterns and subexpressions.

An expression is in **Weak Head Normal Form (WHNF)**, if it is either:

- a constructor (eventually applied to arguments) like *True*, *Just* (*square* 42) or (:) 1 []
- a built-in function applied to too few arguments (perhaps none) like (+) 2 or sqrt.
- or a lambda abstraction $\lambda x \rightarrow expression$.

Ex 1/4: Pattern matching (Level 1) - Built-in primitive

```
case 3 * 4 of \{0 \rightarrow True; \_ \rightarrow False\}

→ \{\text{evaluate argument for pattern } 0\}

3 * 4

→ \{\text{arithmetic}\}

12

... case 12 of \{0 \rightarrow True; \_ \rightarrow False\}

→ \{\text{match pattern}\}

False
```

Ex 2/4: Pattern matching (Level 0) - Variable wildcard

case 3 * 4 **of** $\{x \rightarrow True\}$ \rightarrow {match pattern} *True*

Ex 3/4: Pattern matching (Level 1) - Variable in pattern

case *Just*
$$(3*4)$$
 of { *Just* $x \rightarrow (x,x)$; *Nothing* $\rightarrow (0,0)$ } \rightarrow {match pattern} **let** $x = 3*4$ **in** (x,x)

Ex 4/4: Pattern matching in function definitions

```
cond :: Bool \rightarrow a \rightarrow a \rightarrow a
cond True x y = x
cond False x y = y
```

Evaluate

```
cond (4 < 2) (5 * 17) (2 * 3)
  → {check if expression matches True}
       4 < 2
→ {primitive comparison}
       False
  ... cond False (5 * 7) (2 * 3)
  → {check if expression matches False}
     2 * 3
  \rightarrow {primitive aritmetic}
     6
```

Lists

How do we proceed when evaluating

in the **leftmost outermost reduction with sharing**? Recall that

$$map f [] = []$$

 $map f (x : xs) = f x : map f xs$

See that we calculate elements of the resulting list one by one. So the list we are working on could potentially be infinite, if we only consume finitely many elements!

Infinite lists

Lazy evaluation allows us to program with **infinite lists** of values!

Consider the recursive definition

```
ones :: [Int]
ones = 1 : ones
```

Unfolding the recursion a few times gives

```
ones = 1 : ones
= 1 : 1 : ones
= 1 : 1 : 1 : ones
= ...
```

That is, *ones* is the **infinite list** of 1's.

Innermost vs. outermost

1. Now consider evaluating *head ones* using innermost reduction:

```
head\ ones = head\ (1:ones)
= head\ (1:1:ones)
= head\ (1:1:1:ones)
= ...
```

Does not terminate!

2. And with outermost reduction:

$$head \ ones = head \ (1 : ones)$$

= 1

Terminates!

Infinite lists

We now see that

ones = 1 : ones

really defines a **potentially infinite list** that is only evaluated as much as needed by the context in which it is used.

Modular programming

We can generate **finite** lists by taking elements from infinite lists. For example

- take 5 ones = [1, 1, 1, 1, 1]
- *take* 5[1..] = [1, 2, 3, 4, 5]

Lazy evaluation allows us to make programs **more modular**, by separating control from data:

$$\underbrace{take\ 5}_{control}\underbrace{[1..]}_{data}$$

Using lazy evaluation, the data is only evaluated as much as required by the control part.

Modular programming: Example

Consider

replicate :: Int
$$\rightarrow a \rightarrow [a]$$

In a non-lazy language, we would define it like:

replicate
$$0 \ v = []$$

replicate $n \ v = v$: replicate $(n-1) \ v$

Since Haskell is lazy, we can make the even simpler function

repeat ::
$$a \rightarrow [a]$$

repeat $v = vs$ where $vs = v : vs$

and define replicate by

$$replicate n = take n \circ repeat$$

Primes: The seive of Eratosthenes


```
primes :: [Integer]

primes = seive [2..]

seive :: [Integer] \rightarrow [Integer]

seive (p:xs) = p: seive [x \mid x \leftarrow xs, x \text{ 'mod' } p \neq 0]

primes = [2,3,5,7,11,13,17,19...]
```

Fibonacci numbers


```
 \begin{aligned} \textit{fibs} &:: [\textit{Integer}] \\ \textit{fibs} &= 0:1: \textit{zipWith} \ (+) \textit{fibs} \ (\textit{tail fibs}) \end{aligned}
```

Cyclic structures

Two similar structures with different representation in the computer's memory:

```
ones = forever 1

forever x = x: forever x

ones' = forever' 1

forever' x = zs where zs = x: zs
```


The efficiency of *iterate*

iterate f(x) = x : *iterate* f(f(x))

The efficiency of *iterate*

iterate' f x = x : map f (iterate' f x)

Demo with:sprint.

Laziness for memoization


```
fibs = map fib' [0..]
fib' \ 0 = 0
fib' \ 1 = 1
fib' \ n = fib \ (n-1) + fib \ (n-2)
fib n = fibs !! n
       > fib 20000
       2531162323732361242240155...
       (2.01 secs, 21312464 bytes)
       > fib 20000
       2531162323732361242240155...
       (0.02 secs, 4668504 bytes)
```

Laziness for memoization


```
fibs = map fib' [0..]
  fib' \ 0 = 0
  fib' 1 = 1
  fib' \ n = fib \ (n-1) + fib \ (n-2)
  fib n = fibs !! n
*Main> :sprint fibs
fibs =
*Main> take 1 fibs
[0]
*Main> :sprint fibs
fibs = 0 :
*Main> fib 10
55
*Main> :sprint fibs
fibs = 0 : 1 : 1 : 2 : 3 : 5 : 8 : 13 : 21 : 34 : 55 :
*Main>
```

The dark side of Lazy Evaluation

- We have seen, that *lazy evaluation* always uses the same or fewer number of reduction steps as *eager evaluation*.
- But: If you are not careful, your algorithm might use more space than needed. The unevaluated expressions take up space!

Summing up numbers


```
foldr f[z] = z
foldr f z (x : xs) = f x (foldr f z xs)
foldr(+) 0 (1:2:3:[]) = 1 + foldr(+) 0 (2:3:[])
                        = 1 + (2 + foldr (+) 0 (3:[]))
                        = 1 + (2 + (3 + foldr (+) 0 []))
                        = 1 + (2 + (3 + 0))
                        = 1 + (2 + 3)
                        = 1 + 5
                        =6
```

O(n) space! Overflow for large lists!

Summing up numbers


```
foldl f[z] = z
fold f(z)(x:xs) = fold f(f(z)x)xs
foldl(+) 0 (1:2:3:[]) = foldl(+) (0+1) (2:3:[])
                    = foldl(+)((0+1)+2)(3:[])
                    = foldl(+)(((0+1)+2)+3)([])
                    =((0+1)+2)+3
                    =(1+2)+3
                    = 3 + 3
                    =6
```

O(n) space again! What do we do?

Forcing evaluation

Haskell has the following primitive function

$$seq :: a \rightarrow b \rightarrow b$$
 -- primitive

The call

evaluates x before returning y.

The function *seq* can be used to define strict function application:

$$(\$!) :: (a \rightarrow b) \rightarrow a \rightarrow b$$

 $f \$! x = x \text{ 'seq' } f x$

Quiz time!

Forcing only evaluates to weak head normal form (i.e., a lambda abstraction, literal or constructor application) What does the following expressions evaluate to?

$$(\lambda x \to ()) \$! \perp = \perp$$

 $seq (\perp, \perp) () = ()$
 $snd \$! (\perp, \perp) = \perp$
 $(\lambda x \to ()) \$! (\lambda x \to \perp) = ()$
 $length \$! map \perp [1,2] = 2$
 $seq (\perp + \perp) () = \perp$
 $seq (foldr \perp \perp) () = ()$
 $seq (1: \perp) () = ()$

Summing up numbers


```
foldl' f z [] = z
foldl' f z (x : xs) = \text{let } z' = f z x \text{ in } z' \text{ 'seq' (foldl } f z' xs)
foldl'(+) 0 (1:2:3:[])
 = let z' = (0+1) in z' 'seq' foldl' (+) z' (2:3:[])
 = foldl'(+) 1 (2:3:[])
 = let z' = (1+2) in z' 'seg' foldl' (+) z' (3:[])
 = foldl'(+) 3 (3:[])
 = let z' = (3+3) in z' 'seg' foldl' (+) z' (3:[])
 = foldl'(+) 6
 = 6
```

O(1) space.