Example 4.2: Three-bar truss (p. 230)

The cross-sectional areas of elements 1 and 2 is 200 mm² and that of element 3 is 600 mm². All elements are made of the same material with $E=200\,\mathrm{GPa}$. The applied load is $P=20\,\mathrm{kN}$. The nodal coordinates are as follows.

Node	x(m)	y(m)	z(m)
1	0.96	1.92	0
2	-1.44	1.44	0
3	0	0	0
4	0	0	2

The complete computations are as follows. The numerical values are in the $N-\min$ units. The computed displacements are in mm and the stresses in MPa.

Specified nodal loads

$$\begin{array}{ccc} Node & dof & Value \\ & u_4 & 0 \\ 4 & v_4 & -20000 \\ & w_4 & 0 \end{array}$$

Global equations at start of the element assembly process

Equations for element 1

$$E = 210000$$
 $A = 200$

Element node	Global node number	X	y	z
1	1	960.	1920.	0
2	4	0	0	2000.
Direction cosines, $\ell_s = -0.3$	$m_s = -0.6$	35441	$n_{s} = 0.6$	81677

Substituting into the truss element equations we get

$$\begin{pmatrix} 1532.63 & 3065.27 & -3192.99 & -1532.63 & -3065.27 & 3192.99 \\ 3065.27 & 6130.53 & -6385.97 & -3065.27 & -6130.53 & 6385.97 \\ -3192.99 & -6385.97 & 6652.06 & 3192.99 & 6385.97 & -6652.06 \\ -1532.63 & -3065.27 & 3192.99 & 1532.63 & 3065.27 & -3192.99 \\ -3065.27 & -6130.53 & 6385.97 & 3065.27 & 6130.53 & -6385.97 \\ 3192.99 & 6385.97 & -6652.06 & -3192.99 & -6385.97 & 6652.06 \end{pmatrix} \begin{pmatrix} u_1 \\ v_1 \\ w_1 \\ u_4 \\ v_4 \\ w_4 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

The element contributes to {1, 2, 3, 10, 11, 12} global degrees of freedom.

Adding element equations into appropriate locations we have

Equations for element 2

$$E = 210000$$
 $A = 200$

Element node	Global node number	X	y	Z
1	2	-1440 .	1440.	0
2	4	0	0	2000.

 $\label{eq:ms} Direction \ cosines, \ \ell_s = 0.504497 \qquad \qquad m_s = -0.504497 \qquad \qquad n_s = 0.70069$

Substituting into the truss element equations we get

$$\begin{pmatrix} 3745.09 & -3745.09 & 5201.51 & -3745.09 & 3745.09 & -5201.51 \\ -3745.09 & 3745.09 & -5201.51 & 3745.09 & -3745.09 & 5201.51 \\ 5201.51 & -5201.51 & 7224.32 & -5201.51 & 5201.51 & -7224.32 \\ -3745.09 & 3745.09 & -5201.51 & 3745.09 & -3745.09 & 5201.51 \\ 3745.09 & -3745.09 & 5201.51 & -3745.09 & 3745.09 & -5201.51 \\ -5201.51 & 5201.51 & -7224.32 & 5201.51 & -5201.51 & 7224.32 \end{pmatrix} \begin{pmatrix} u_2 \\ v_2 \\ w_2 \\ u_4 \\ v_4 \\ w_4 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

The element contributes to {4, 5, 6, 10, 11, 12} global degrees of freedom.

Adding element equations into appropriate locations we have

 $n_s = 1$.

Equations for element 3

$$E = 210000$$
 $A = 600$

Element node	Global node number	X	y	Z
1	3	0	0	0
2	4	0	0	2000.

Direction cosines, $\ell_s = 0$ $m_s = 0$

Substituting into the truss element equations we get

The element contributes to {7, 8, 9, 10, 11, 12} global degrees of freedom.

Adding element equations into appropriate locations we have

1	1532.63	3065.27	-3192.99	0	0	0	0	0	0	-1532.63	-3065.27
	3065.27	6130.53	-6385.97	0	0	0	0	0	0	-3065.27	-6130.53
	-3192.99	-6385.97	6652.06	0	0	0	0	0	0	3192.99	6385.97
	0	0	0	3745.09	-3745.09	5201.51	0	0	0	-3745.09	3745.09
	0	0	0	-3745.09	3745.09	-5201.51	0	0	0	3745.09	-3745.09
	0	0	0	5201.51	-5201.51	7224.32	0	0	0	-5201.51	5201.51
	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	63000.	0	0
	-1532.63	-3065.27	3192.99	-3745.09	3745.09	-5201.51	0	0	0	5277.72	-679.818
	-3065.27	-6130.53	6385.97	3745.09	-3745.09	5201.51	0	0	0	-679.818	9875.62
	3192.99	6385.97	-6652.06	-5201.51	5201.51	-7224.32	0	0	-63000.	2008.52	-11587.5

Essential boundary conditions

Node	dof	Value
	\mathbf{u}_1	0
1	$\mathbf{v_1}$	0
	\mathbf{w}_1	0
	$\mathbf{u_2}$	0
2	\mathbf{v}_2	0
	$\tilde{\mathbf{w}_2}$	0
	u_3	0
3	\mathbf{v}_3	0
	\mathbf{w}_3	0

Remove {1, 2, 3, 4, 5, 6, 7, 8, 9} rows and columns.

After adjusting for essential boundary conditions we have

$$\left(\begin{array}{cccc} 5277.72 & -679.818 & 2008.52 \\ -679.818 & 9875.62 & -11587.5 \\ 2008.52 & -11587.5 & 76876.4 \end{array} \right) \left(\begin{array}{c} u_4 \\ v_4 \\ w_4 \end{array} \right) = \left(\begin{array}{c} 0 \\ -20000. \\ 0 \end{array} \right)$$

Solving the final system of global equations we get

$$\{u_4=-0.178143,\,v_4=-2.46857,\,w_4=-0.367431\}$$

Complete table of nodal values

	u	V	W
1	0	0	0
2	0	0	0
3	0	0	0
4	-0.178143	-2.46857	-0.367431

Computation of reactions

Equation numbers of dof with specified values: {1, 2, 3, 4, 5, 6, 7, 8, 9}

Extracting equations {1, 2, 3, 4, 5, 6, 7, 8, 9} from the global system we have

1532.63	3065.27	-3192.99	0	0	0	0	0	0	-1532.63	-3065.27	3
3065.27	6130.53	-6385.97	0	0	0	0	0	0	-3065.27	-6130.53	6:
-3192.99	-6385.97	6652.06	0	0	0	0	0	0	3192.99	6385.97	-60
0	0	0	3745.09	-3745.09	5201.51	0	0	0	-3745.09	3745.09	-5
0	0	0	-3745.09	3745.09	-5201.51	0	0	0	3745.09	-3745.09	5
0	0	0	5201.51	-5201.51	7224.32	0	0	0	-5201.51	5201.51	-7:
0	0	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	63000.	0	0	-630

Substituting the nodal values and re-arranging

$\int R_1$)	1532.63	3065.27	-3192.99	0	0	0	0	0	0	-1532.63	-3065.1
R_2		3065.27	6130.53	-6385.97	0	0	0	0	0	0	-3065.27	-6130 .
R_3		-3192.99	-6385.97	6652.06	0	0	0	0	0	0	3192.99	6385.
R_4		0	0	0	3745.09	-3745.09	5201.51	0	0	0	-3745.09	3745.
R_5	=	0	0	0	-3745.09	3745.09	-5201.51	0	0	0	3745.09	-3745.0
R ₆		0	0	0	5201.51	-5201.51	7224.32	0	0	0	-5201.51	5201.
R ₇		0	0	0	0	0	0	0	0	0	0	0
R ₈		0	0	0	0	0	0	0	0	0	0	0
R_9	J	0	0	0	0	0	0	0	0	63000.	0	0

Carrying out computations, the reactions are as follows.

Label	dof	Reaction
R_1	\mathbf{u}_1	6666.67
R_2	\mathbf{v}_1	13333.3
R_3	\mathbf{w}_1	-13888.9
R_4	$\mathbf{u_2}$	-6666.67
R_5	\mathbf{v}_2	6666.67
R_6	\mathbf{w}_2	-9259.26
R_7	\mathbf{u}_3	0
R_8	\mathbf{v}_3	0
R_0	W۹	23148.1

Sum of Reactions

Solution for element 1

Nodal coordinates

Element node	Global node number	X	y	Z
1	1	960.	1920.	0
2	4	0	0	2000.

Direction cosines, $\ell_s = -0.327205$

$$m_s = -0.65441$$

$$n_s = 0.681677$$

Global to local transformation matrix, T =

$$\begin{pmatrix} -0.327205 & -0.65441 & 0.681677 & 0 & 0 & 0 \\ 0 & 0 & 0 & -0.327205 & -0.65441 & 0.681677 \end{pmatrix}$$

Element nodal displacements in global coordinates, $\mathbf{d} = \begin{pmatrix} u_1 \\ v_1 \\ w_4 \\ v_4 \\ w_4 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ -0.178143 \\ -2.46857 \\ -0.367431 \end{pmatrix}$

Element nodal displacements in local coordinates, $d_{\ell} = T d = \begin{pmatrix} 0. \\ 1.42328 \end{pmatrix}$

Axial displacements at element ends, $d_1 = 0$. $d_2 = 1.42328$

$$E = 210000$$
 $A = 200$

Axial strain, $\epsilon = (d_2 - d_1)/L = 0.000485109$

Axial stress,
$$\sigma = \text{E}\epsilon = 101.873$$

Axial force =
$$\sigma A = 20374.6$$

Solution for element 2

Nodal coordinates

Element node	Global node number	X	y	Z
1	2	-1440.	1440.	0
2	4	0	0	2000.

Direction cosines, $\ell_s = 0.504497$

$$m_s = -0.504497$$

 $n_s = 0.70069$

Global to local transformation matrix, T =

$$\begin{pmatrix} 0.504497 & -0.504497 & 0.70069 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0.504497 & -0.504497 & 0.70069 \end{pmatrix}$$

Element nodal displacements in global coordinates, $\mathbf{d} = \begin{pmatrix} u_2 \\ v_2 \\ u_4 \\ v_4 \\ w_4 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ -0.178143 \\ -2.46857 \\ -0.367431 \end{pmatrix}$

Element nodal displacements in local coordinates, $d_{\ell} = T \ d = \begin{pmatrix} 0. \\ 0.89806 \end{pmatrix}$

Axial displacements at element ends, $d_1 = 0$.

 $d_2 = 0.89806$

$$E = 210000$$

$$A = 200$$

Axial strain, $\epsilon = (d_2 - d_1)/L = 0.000314631$

Axial stress, $\sigma = \text{E}\epsilon = 66.0725$

Axial force = σ A = 13214.5

Solution for element 3

Nodal coordinates

Element node Global node number
$$x$$
 y z 1 3 0 0 0 0 $2000.$

Direction cosines, $\ell_s = 0$

$$m_s = 0 n_s = 1.$$

Global to local transformation matrix, $T = \begin{pmatrix} 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}$

Element nodal displacements in global coordinates,
$$\mathbf{d} = \begin{pmatrix} u_3 \\ v_3 \\ w_3 \\ u_4 \\ v_4 \\ w_4 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ -0.178143 \\ -2.46857 \\ -0.367431 \end{pmatrix}$$

Element nodal displacements in local coordinates, $d_{\ell} = T d = \begin{pmatrix} 0. \\ -0.367431 \end{pmatrix}$

Axial displacements at element ends, $d_1 = 0$.

 $d_2 = -0.367431$

E = 210000

A = 600

Axial strain, $\epsilon = (d_2 - d_1)/L = -0.000183715$

Axial stress, $\sigma = \text{E}\epsilon = -38.5802$

Axial force = $\sigma A = -23148.1$

Solution summary

Nodal solution

	x-coord	y-coord	z-coord	u	v	w
1	960.	1920.	0	0	0	0
2	-1440.	1440.	0	0	0	0
3	0	0	0	0	0	0
4	0	0	2000.	-0.178143	-2.46857	-0.367431

Element solution

	Stress	Axial force
1	101.873	20374.6
2	66.0725	13214.5
3	-38.5802	-23148.1

Support reactions

Node	dof	Reaction
1	$\mathbf{u_1}$	6666.67
1	\mathbf{v}_1	13333.3
1	\mathbf{w}_1	-13888.9
2	\mathbf{u}_2	-6666.67
2	\mathbf{v}_2	6666.67
2	\mathbf{w}_2	-9259.26
3	\mathbf{u}_3	0.
3	\mathbf{v}_3	0.
3	\mathbf{w}_3	23148.1

Sum of applied loads \rightarrow (0 -20000. 0)

 $Sum \ of \ support \ reactions \rightarrow (\ 0 \quad 20000. \quad 0\)$