ADVANCED IMAGE ANALYSIS GENERATIVE ADVERSARIAL NETWORK

Date:

Professor: Abdul Qayyum

Presented by: Muhamad Izzul Azri

Martin Emile

Pranavan Ramakrishnan

16 December 2020

TABLE OF CONTENTS

01

Introduction to GANs

Basics & Overview of model

0З

Applications of GANs

Paper Review

02

GANS Methodology

A brief Method based on DCGAN's

04

References

INTRODUCTION

- Motivation for generative models
 - GANs Architecture
 - GANs Objective
 - DCGANs

What is GAN?

"Training a network to correctly classify adversarial examples(Discriminator) by training the network on adversarial examples(Generator)." - Ian Goodfellow

Discriminator:

Generator:

The training process:

Deep Convolutional GAN:

- Replace any pooling layers with strided convolutions(discriminator) and fractional-strided convolutions(generator).
- Use batchnorm in both the generator and the discriminator.
- Remove fully connected hidden layers for deeper architectures.

Methodology

- Advantages of GANs
- Autoencoders
- Context Encoders for Image Generation
 - Encoder
 - Channel-wise Fully Connected Layer
 - Decoder
 - Loss Function

Advantages of GANs

- Plenty of existing work on Deep Generative Models
 - Boltzmann Machine
 - Deep BeliefNets
 - Variational AutoEncoders (VAE)
- Why GANs?
 - Sampling (or generation) is straightforward.
 - Training doesn't involve Maximum Likelihood estimation
 - Robust to Overfitting since Generator never sees the training data
 - Empirically, GANs are good at capturing the modes of the distribution.

Autoencoders

- CNN structure that is used for reconstruction tasks
- The structure of the model is:
 - Output size is same as input size
 - O Have two parts:
 - Encoder: for feature encoding, aiming for a compact latent feature representation of input
 - Decoder: For decoding the latent feature representation
 - The middle layer is usually call low-dimensional "bottleneck" layer.

Figure 1. Autoencoders structure (encoder-decoder structure)

Context Encoders for Image Generation

- The figure below is the proposed context encoder
 - First, The input is masked image (The missing in image)
 - The input is fed into encoder for obtaining encoded features
 - Then, The Channel-wise Fully Connected Layer is placed between encoded features and decoded features for getting better semantic features (Bottleneck)
 - Finally, A decoder reconstruct the missing parts using bottleneck features

Figure 2. Overview of the proposed Context Encoder

Figure 3. Detailed architecture of the proposed network

Encoder

- Follows the AlexNet architecture. Trained their network from scratch with randomly initialized weights
- Compared to original AlexNet architecture and Autoencoders as shown in <u>Figure 1</u>,
 - The main difference is the middle **Channel-wise Fully Connected Layer**
 - If only convolutional layers in the network, it's no way to make use of the features at distant spatial locations in feature maps. To solve this,
 - Use fully-connected layers such the value of each neuron at current layer is depended on all the values of the neurons at previous layer.
 - However, fully-connected layer induces many parameters.
 - As example, 4x4x512= 8192 results in 8192x8192 = 67.1M parameters.
 - The proposed method was channel-wise fully connected layer

Channel-wise Fully Connected Layer

- Fully connect each channel independently instead of all the channels.
- As example,
 - \circ We have m feature maps with size of n x n. If standard fully-connected layer is used, we will have m² n⁴ parameters excluding bias term
 - For channel-wise fully-connected layer, we have mn^4 parameters.
 - Therefore, we can capture the features from distant spatial locations without adding so many extra parameters

Decoder

- It is simply reverse of the encoding process
- Use a series of transposed convolutions to obtain reconstructed image with desired size

Figure 4. Encoder

Figure 5. Decoder

Loss Function

- It is consist of two terms
 - First term, reconstruction loss (L2 loss) which focuses on pixel-wise reconstruction accuracy (PSNER-Oriented loss) and always results in blurry images
 - Second term, an adversarial loss which is commonly used in GANs. It encourages closer data distributions between real images and filled images.

$$\mathcal{L}_{rec}(x) = \|\hat{M} \odot (x - F((1 - \hat{M}) \odot x))\|_{2}^{2}, \quad (1)$$

Figure 6. Reconstruction Loss (L2 Loss), M(hat) indicates the missing regions (1 for missing parts, 0 for valid pixels), F is the generator

• L2 Loss: Compute the L2 distance (Euclidean distance) between generated pixels and ground truth pixels from corresponding real image

Loss Function

$$\mathcal{L}_{adv} = \max_{D} \quad \mathbb{E}_{x \in \mathcal{X}}[\log(D(x)) + \log(1 - D(F((1 - \hat{M}) \odot x)))], \quad (2)$$

Figure 7. Adversarial Loss, D is the discriminator. We want to train a discriminator that can distinguish filled images from real images

Adversarial Loss: The structure of adversarial discriminator is shown in previous figure. The
output of the discriminator is single binary value either 0 or 1. If the input is real image
while 0 if the input is a filled image

$$\mathcal{L} = \lambda_{rec} \mathcal{L}_{rec} + \lambda_{adv} \mathcal{L}_{adv}.$$

Figure 8. Joint Loss. Lambda_rec is set to 0.999 while Lambda_adv is set to 0.001

 Both generator and discriminator are trained alternately using Stochastic Gradient Descent (SGD), Adam optimizer

Our Chosen Application of GAN

Image Inpainting

Applications on GAN

Type of losses

- Contextual loss "What to fill !!"
- Perceptual Loss "Is it real!!"

Statistical image

Most probable Image

Generating fake Images

Construction

Input		Binary Mask			Output		
1	2	0	1	0	=	1	0
3	4		0	1		0	4

$$x=M\odot y+(1-M)\odot G(z^{*})$$

L perceptual (z)=log(1-D(G(z)))

Generating fake Images

Visual Result

Arrange in coulombs: 1- Real Image 2- Input Image 3- Context encoder 4- The paper result

Thank You For your Attention