RNA Editing Project

In Silico Analysis Pipeline of RNA Motifs

Anna Sim PhD Student Eric Kofman Advisor Dr. Eran Mukamel

Outline

- Background
- Research Question
- Data Description
- Pipeline
- Results
- Next Steps

Background

Many physiological and functional aspects of RNA editing are not well understood

Distinguishing true RNA editing sites is challenging due to:

- Genomic Variation [4]
- Low frequency[2]
- Various types of modifications (site-selective/ hyper-editing) [2]
- Sequencing Artifacts
- PCR Errors

By examining the motifs and providing evidence that discovered RNA edit sites are bona fide ADAR-edited sites, the project aims to quality control the filtering approach of MARINE software

Dataset Description

- 123 samples of wild-type and knockouts linked to Autism Spectrum Disorder
- Databases: REDIportal, dbSNP, Craig Venter HuRef SNPs

Example of MARINE Output:

site_id	barcode	contig	position	ref	alt	strand	count	coverage	conversion	feature_nam	feature_strar	feature_type	feature_con
AACCGCGC	AACCGCGC	chr14	95544529	Α	G	+	4	4	A>G	GLRX5	+	protein_codi	A>G
AACCGCGC	AACCGCGC	chr2	27067657	Α	G	+	1	1	A>G	AGBL5	+	protein_codi	A>G
AACCGCGC	AACCGCGC	chr17	1783116	T	С	+	1	1	T>C	SMYD4	-	protein_codi	A>G
AACCGCGC	AACCGCGC	chr7	12233526	Α	G	+	1	1	A>G	TMEM106B	+	protein_codi	A>G
AACCGCGC	AACCGCGC	chr1	37493849	T	С	+	1	1	T>C	MEAF6	-	protein_codi	A>G
AACCGCGC	AACCGCGC	chr4	82893670	T	С	+	1	1	T>C	THAP9-AS1	-	IncRNA	A>G
AACCGCGC	AACCGCGC	chr4	82893670	T	С	+	1	1	T>C	SEC31A	-	protein_codi	A>G
AACCGCGC.	AACCGCGC	chr1	230869142	T	С	+	1	1	T>C	C1orf198	-	protein_codi	A>G
AACCGCGC	AACCGCGC	chr1	8012028	T	С	+	1	2	T>C	ERRFI1	-	protein_codi	A>G
AACCGCGC.	AACCGCGC	chr2	112756248	T	С	+	1	1	T>C	CKAP2L	-	protein_codi	A>G
AACCGCGC	AACCGCGC	chr12	10847109	T	С	+	1	1	T>C	PRR4	-	protein_codi	A>G
AACCGCGC.	AACCGCGC	chr12	10847109	T	С	+	1	1	T>C	PRH1		protein_codi	A>G
AACCGCGC	AACCGCGC	chr1	92837557	Α	G	+	6	11	A>G	RPL5	+	protein_codi	A>G

Pipeline

get_stream.py

class FileLoader(sample.tsv, fasta.fa)

class SequenceMatcher(contig, position, feature_strand, num_neighbor)

class NucleotideCounter(expanded_stream):

generate_logo.py folder_path -file 1.csv -file 2.csv -file 3.csv class FileLoader(folder_path, output_path) class FigureGenerator(normalized_df, output_path, title)

file.csv

ΑТ	C T	G₹	ΤT
287045	260170	238542	181899
967656	0	0	0
247839	175978	391569	152270

example.png

References

RESEARCH Open Access

Human A-to-I RNA editing SNP loci are enriched in GWAS signals for autoimmune diseases and under balancing selection

The nucleotides neighboring both the non-SNP and SNP editing sites show a pattern consistent with known ADAR preference. The motif is characterized by the underrepresentation of G upstream to the editing site.

REVIEW Open Access

Rewriting the transcriptome: adenosine-toinosine RNA editing by ADARs

Carl R. Walkley^{1,2*} and Jin Billy Li^{3*}

ADAR has a preferred sequence motif neighboring the targeted adenosine, in particular the 5' and 3' nearest neighboring positions to the editing site, with the depletion and enrichment of G upstream and downstream of the editing site, respectively [50, 112, 113].

Results

Results

Non-SNP Editing Site REDI Filtered Editing Site

Results

Article | Open access | Published: 30 May 2022

Cellular and genetic drivers of RNA editing variation in the human brain

Winston H. Cuddleston, Junhao Li, Xuanjia Fan, Alexey Kozenkov, Matthew Lalli, Shahrukh Khalique, Stella Dracheva, Fran A. Mukamel & Michael S. Breen [™]

Nature Communications 13, Article number: 2997 (2022) | Cite this article

6599 Accesses | 15 Citations | 12 Altmetric | Metrics

Next Steps

- Regenerate the figures with a new filtering algorithm
- Confirm that the novel sites have similar motifs and are in line with the context of REDIportal data
- Continue to optimize the script for ease of use and efficiency