

Prof^a Priscilla Abreu priscilla.abreu@ime.uerj.br 2022.1

Roteiro da aula

- Listas lineares
 - Listas Sequenciais Particulares
 - Filas

Revisando...

Listas Linear

Listas lineares

Listas lineares gerais

SEM restrição de inserção e remoção de elementos

Listas particulares

COM restrição de inserção e remoção de elementos

Pilha

Filas

Fila

- São listas em que todas as inserções ocorrem em uma extremidade e as remoções em outra extremidade;
- Estruturas de dados do tipo FIFO (first-in first-out): o primeiro elemento a ser inserido, será o primeiro a ser removido.
- Exemplos: filas de banco, supermercado, fila de impressão de arquivos, etc.

Fila

Início da fila: extremidade onde ocorrem as remoções.

Final da fila: extremidade onde ocorrem as inserções.

Fila – aplicações

- Fila de arquivos para impressão;
- Atendimento de processos requisitados ao um sistema operacional;
- Processos de reserva e compra online;
- Buffer para gravação de dados em mídia;
- Processos de comunicação em redes de computadores.

Fila – operações

- Alocação sequencial:
 - Uso de vetores;
 - Variáveis controladoras para inicio e fim da fila:
 - Inicio e fim.
- Operações básicas:
 - Inserção
 - Remoção
- Situações extremas:
 - Fila cheia
 - Fila vazia

Fila – informações iniciais

i: posição do elemento que está no início da fila;

f: posição do último elemento inserido na fila;

M: tamanho máximo do vetor que representa a fila.

fila: estrutura que representa a fila.

Fila – funcionamento

Situação 1: Fila vazia

Fila: vetor de tamanho M

i: inicio da fila f: final da fila

i = f = -1

Fila – funcionamento

Situação 2: Insere(A)

Fila: vetor de tamanho M

i: inicio da fila

f: final da fila

Fila – funcionamento

Situação 3: Insere(B)

Fila: vetor de tamanho M

i: inicio da fila

f: final da fila

Fila – funcionamento

Fila: vetor de tamanho M

i: inicio da fila

f: final da fila

Fila – funcionamento

Situação 5: Remove()

i, f 🕇

Fila: vetor de tamanho M

i: inicio da fila

f: final da fila

i, f \uparrow

Fila: vetor de tamanho M

Fila – funcionamento

i f↑

Fila – Uso da fila circular!

Fila – circular

i: posição do elemento que está no início da fila;

f: posição do último elemento inserido na fila;

n: número de elementos na fila.

M: tamanho máximo do vetor que representa a fila.

fila: estrutura que representa a fila.

```
estrutura fila:
valores [1..M]: inteiro
i, f, n: inteiro
```

```
const int M = 10;

typedef struct filaSeq{
   int valores[MAX];
   int i, f, n;
} filaSeq;
```


Fila – Uso da fila circular!

n = 0

i = -1

f = -1

M = 16

O que fazer para enfileirar???

Fila – Uso da fila circular!

Fila - Uso da fila circular!

$$n = 1$$

i = 0

f = 0

M = 16

Inserindo novo valor

Fila – Uso da fila circular!

```
fila[f] = valor;
n = 1
i = 0
f = 0
M = 16
```


Fila – Uso da fila circular!

Após algumas

inserções...

$$n = 5$$

i = 0

f = 4

M = 16

f ++;

Fila – Uso da fila circular!

n = 6

i = 10

f = 15

M = 16

Mais inserções e remoções...

Como enfileirar?

f ++;

Fila – Uso da fila circular!

n = 6

i = 10

f = 15

M = 16

Mais inserções e remoções...

Como enfileirar?

Fila – Uso da fila circular!

$$n = 6$$

 $i = 10$
 $f = 15$
 $M = 16$
 $f = M-1$?
 $f = M-1$?

Fila – Uso da fila circular!

$$n = 7$$

 $i = 10$
 $f = 0$
 $M = 16$


```
#include <stdio.h>
#define M 10

typedef struct filaSeq{
   int valores[MAX];
   int i, f, n;
} filaSeq;
```

```
void inicializa_fila(int *i, int *f){
 *i = -1;
 *f = -1;
```

```
int fila_vazia(int n){
    if (n==0)
        return 1;
    return 0;
}
int fila_cheia(int n){
    if (n==M)
        return 1;
    return 0;
}
```

```
void mostrar_Proximo(filaSeq *fila){
    if(!fila_vazia(fila->n)){
        printf("\nPróximo da fila: %d.\n",fila->valores[i]);
    }
    else{
        printf("\nFila vazia!\n");
    }
}
```

```
void mostrar_Ultimo(filaSeq *fila){
   if(!fila_vazia(fila->n)){
       printf("\nÚltimo da fila: %d.\n",fila->valores[f]);
   }
   else{
      printf("\nFila vazia!\n");
   }
}
```

Fila – implementação – ENFILEIRAR

Consiste em inserir um valor no final da fila, caso a fila não esteja cheia.

Fila – implementação – ENFILEIRAR

```
void enfileirar(fliaSeq *fila, int valor ){
   if(!fila_cheia(fila->n)){
           if(fila->f==M-1)
                       fila->f=0;
           else
                       (fila->f)++;
           fila->valores[fila->f]=valor;
           if((fila->i)==-1)
                       (fila->i)++;
           (fila->n)++;
           printf("\nValor enfileirado!\n");
  else
           printf("\nFila cheia!\n");
```

Fila – implementação – DESENFILEIRAR

- Consiste em retirar um valor do início da fila e em seguida, ajustar o início.
- Só é possível se a pilha não estiver vazia.

Desenfileirar

i = 0

M = 16

desenfileirar?

Como

n = 5

f = 4

i++;

$$i = 1$$

$$M = 16$$

$$n = 4$$

$$f = 4$$

Desenfileirar

i = 15

M = 16

n = 8

Mais inserções e remoções...

Como desenfileirar?

i++; ???

$$i = 0$$
 $M = 16$
 $n = 7$

Desenfileirar

$$i = 0$$

f = 0

M = 16

n = 1

Como desenfileirar?

$$i = -1$$

$$f = -1$$

$$M = 16$$

$$n = 0$$

Fila – implementação – DESEMPILHAR

```
void desenfileirar(fliaSeq *fila){
   if(!fila_vazia(fila->n)){
            printf("\nValor %d desenfileirado!\n", fila->valores[fila->i]);
            if(fila->n==1){//um só elemento na fila
                         * fila->i =-1;
                         * fila->f =-1:
            else{//Mais de um elemento armazenado
                         if(fila->i==M-1) //Última posição
                                      fila -> i = 0:
                         else //Qualquer posição
                                      (fila->i)++;
            (fila->n)--;
   else
            printf("\nFila vazia!\n");
```

```
int main(){
  filaSeq fila[MAX];
  int valor, op;
  inicializa_fila(&fila->i,&fila->f);
  do{
          printf("\n1- Enfileirar");
          printf("\n2- Desenfileirar");
          printf("\n3- Mostrar próximo");
          printf("\n4- Mostrar último");
          printf("\n5- Sair");
          printf("\nInforme sua opção: ");
          scanf("%d",&op);
```

```
switch (op){
         case 1:{
                  printf("\nInforme o valor a enfileirar: ");
                  scanf("%d",&valor);
                  enfileira(fila,valor);
                  break;
         case 2:{
                  desenfileira(fila);
                  break;
```

```
case 3:{
         mostra_proximo(fila);
         break;
}
case 4:{
         mostra_ultimo(fila);
         break;
}
```

```
case 5:{
                         printf("\nFinalizando...\n");
                         break;
                default:{
                         printf("\nOpção inválida!\n");
                         break;
}while(op!=5);
```

Exercício

Faça um programa que implemente uma fila sequencial. O usuário deverá informar números inteiros, que serão inseridos na fila. Ao final da leitura de dados, o programa deverá inverter a ordem dos elementos na fila, isto é, os últimos serão os primeiros!

Você pode utilizar estruturas auxiliares, dentre as que já foram vistas. Decida que estrutura poderá auxiliar nessa tarefa!

