Combinatorics 2018 Fall

Taught by: Professor Xiande Zhang

2018.11.8

Key words: Poset, chain, antichain, Pigeonhole Principle

Pigeonhole Principle and Poset

Definition. We say y covers x if x < y and $\nexists t$ such that x < t < y, denoted by $x \triangleleft y$.

Fact. $\forall x, y \in P = (X, \leq), x < y \text{ iff } \exists x_1, \dots, x_k \in X \text{ where } k \geq 0 \text{ s.t. } x \triangleleft x_1 \triangleleft \dots \triangleleft x_k \triangleleft y.$

proof: " \Leftarrow ": trivial. " \Rightarrow ": $\forall x < y$, let $M_{xy} = \{t \in X : x < t < y\} = [x, y] \setminus \{x, y\}$. Prove by induction on $|M_{xy}|$.

If $|M_{xy}| = 0$, then $x \triangleleft y$ holds.

Suppose the claim holds for any x < y with $|M_{xy}| < n$. Consider x < y with $|M_{xy}| = n \ge 1$.

Pick $t \in M_{xy}$. Consider $M_{x\underline{t}}$ and M_{ty} .

Since $M_{xt} \subsetneq M_{xy}$ and $M_{ty} \subsetneq M_{xy}$, we have $|M_{xt}| < n$ and $|M_{ty}| < n$. By induction, $\exists x_1, \dots, x_k \in X$ and $y_1, \dots, y_l \in X$ such that $x \lhd x_1 \lhd \dots \lhd x_k \lhd t$ and $t \lhd y_1 \lhd \dots \lhd y_l \lhd y$.

So
$$x \triangleleft x_1 \triangleleft \cdots \triangleleft x_k \triangleleft t \triangleleft y_1 \triangleleft \cdots \triangleleft y_l \triangleleft y$$
.

Definition. Hasse diagram of $P = (X, \leq)$ in the plane:

每层由独立的宣组成层之间有继关系.

- $\forall x \in X$ is drawn as a node.
- $\forall x, y \in X$ with $x \triangleleft y$ is connected by a line segment.
- If $x \triangleleft y$, then x appears lower than y.

Definition.

- (1) $A \subset P = (X, \leq)$ is a chain if any two elements of A are comparable, i.e. A is totally ordered. Let $\omega(P)$ be the maximum size of a chain of P.
- (2) $A \subset P = (X, \leq)$ is an antichain if any two elements of A are incomparable. Let $\alpha(P)$ be the maximum size of an antichain of P.

Remark. In Hasse diagram, $\omega(P)$ is called the height of P, and $\alpha(P)$ is called the width of P.

WIP)最长链

1

Fact. The set of minimal (or maximal) elements of $P = (X, \leq)$ forms an antichain.

Theorem 1. \forall finite poset $P = (X, \leq)$, we have $\alpha(P) \cdot \omega(P) \geqslant |X|$.

<u>proof:</u> Let $P_1 = P$, $X_1 = X$, $M_1 = \{\text{minimal elements of } P_1\}$. Let $X_2 = X_1 - M_1$, $P_2 = (X_2, \leqslant)$, $M_2 = \{\text{minimal elements of } P_2\}$. Inductively, we can define a sequence of posets $P_i = (X_i, \leqslant)$, and $M_i = \{\text{minimal elements of } P_i\}$. $X_i = X - \bigcup_{j=1}^{i-1} M_j$ for $i \leqslant l$, and $X_{l+1} = \emptyset$.

Each M_i is an antichain of P_i , thus it is also an antichain of P. So $|M_i| \leq \alpha(P)$.

Claim: $\forall x \in M_{i+1}, \exists y \in M_i \text{ such that } y < x.$ (Since otherwise $x \in M_i$.)

So, we can find a chain $x_1 < x_2 < \cdots < x_l$ in P with $x_i \in M_i$, which implies $l \leq \omega(P)$.

Since $X = M_1 \sqcup M_2 \sqcup \cdots \sqcup M_l$, we have:

$$|X| = \sum_{i=1}^{l} |M_i| \leqslant \alpha(P) \cdot l \leqslant \alpha(P) \cdot \omega(P).$$

Theorem 2 (Dilworth). For any $P = (X, \leq)$ with $|X| \geq sr + 1$, there exists a chain of size s + 1 or an antichain of size r + 1.

<u>proof:</u> Suppose not, i.e. $\alpha(P) \leqslant r$ and $\omega(P) \leqslant s$. Then by Theorem 1, $|X| \leqslant \alpha(P) \cdot \omega(P) \leqslant sr$, a contradiction.

Definition. Let $A = (a_1, \dots, a_n)$ be a sequence of n different real numbers, and $B = (a_{i_1}, \dots, a_{i_k})$ with $i_1 < \dots < i_k$ be a subsequence. Call B an increasing subsequence (or decreasing subsequence) if $a_{i_1} \leq \dots \leq a_{i_k}$ (or $a_{i_1} \geq \dots \geq a_{i_k}$).

Theorem 3 (Erdös–Szekeres). Let $A = (a_1, \dots, a_n)$ be a sequence of n different real numbers. If $n \ge sr + 1$, then there exists an increasing subsequence of length s + 1 or a decreasing subsequence of length t + 1.

proof: Let $X = \{a_1, \dots, a_n\}$. Define a poset $P = (X, \preccurlyeq)$, where $a_i \preccurlyeq a_j$ iff $a_i \leqslant a_j$ and $i \leqslant j$ (i.e. a_j appears after a_i in A). Verify that P is indeed a poset:

- (1) $a_i \preccurlyeq a_i, \forall i \in [n].$
- (2) If $a_i \leq a_j$ and $a_j \leq a_i$, then $a_i = a_j$.
- (3) If $a_i \leq a_j$ and $a_j \leq a_l$, then $a_i \leq a_l$.

In $P = (X, \preceq)$, a chain $a_{i_1} \prec \cdots \prec a_{i_k}$ is an increasing subsequence, since $a_{i_j} < a_{i_{j+1}}$ and $i_j < i_{j+1}$ for $j \in [k-1]$; an antichain $\{b_{i_1}, \cdots, b_{i_k}\}$ with $i_1 < \cdots < i_k$ is a decreasing subsequence, since b_{i_j} and $b_{i_{j+1}}$ are incomparable, which means $b_{i_j} < b_{i_{j+1}}$, $\forall j \in [k-1]$. By Theorem 2, we can get the desired result.

Rational approximation (Dirichlet, 1879)

Theorem 4. Given any integer $n > 0, \forall x \in \mathbb{R}, \exists$ a rational

number
$$\frac{p}{q}$$
 with $1 \leqslant q \leqslant n$ and $|x - \frac{p}{q}| < \frac{1}{nq} \leqslant \frac{1}{n}$.

proof: Let $\{x\} = x - |x|$ be the fractional part of x.

Consider $\{ax\}$ for $a=1,\dots,n+1$, which are n+1 real numbers in [0,1).

Put these numbers into n pigeonholes: $[0, \frac{1}{n}), [\frac{1}{n}, \frac{2}{n}), \cdots, [\frac{n-1}{n}, 1)$. Then by P-P, there are 2 numbers, say $\{ax\}$ and $\{bx\}$ with a > b, are in the same interval. So $|\{ax\} - \{bx\}| < \frac{1}{n}$.

Since $ax - bx = (\lfloor ax \rfloor - \lfloor bx \rfloor) + \{ax\} - \{bx\}$, we have $\{ax\} - \{bx\} = (a - b)x - (\lfloor ax \rfloor - \lfloor bx \rfloor)$.

Let
$$q = a - b$$
, so $1 \le q \le n$, and let $p = \lfloor ax \rfloor - \lfloor bx \rfloor$.
So we have $|qx - p| < \frac{1}{n}$, i.e. $|x - p/q| < \frac{1}{nq}$.

Subset without divisors

Question. How large a subset $S \subset [2n]$ can be such that for $\forall i, j \in S$, we have $i \nmid j$ and $j \nmid i$?

Example. $S = \{n + 1, n + 2, \dots, 2n\}$ with |S| = n.

Theorem 5. For any $S \subset [2n]$ with $|S| \ge n+1$, $\exists i, j \in S$ such that $i \mid j$.

<u>proof</u>: For each $k \in [n]$, let $S_k = \{x \in S : x \text{ can be written as } x = 2^i(2k-1) \text{ for some } i\}$. Then S can be partitioned into n sets: S_1, S_2, \dots, S_n .

Since $|S| \ge n+1$, by P-P, $\exists k$ such that $|S_k| \ge 2$. Assume $i, j \in S_k \subset S$, then either $i \mid j$ or $j \mid i$.