STOCHASTIC OPTIMAL GROWTH MODEL

MODEL

Consider the following social planner's problem:

$$\max_{c_t, k_{t+1}} \mathbb{E} \sum_{t=0}^{\infty} \beta^t u(c_t)$$

s.t $c_t+k_{t+1}=z_tf(k_t)$, where productivity z_t is a stochastic process. $k_0>0$ and $z_0>0$ are given.

TIMELINE

- 1. At the beginning of time t, the exogenous shock \boldsymbol{z}_t is realized.
- 2. Thus we know the pair (k_t, z_t) and current output $z_t k_t^{\alpha}$. (k_t, z_t) is called the state of the economy.
- 3. When consumption \boldsymbol{c}_t is chosen then at the end of period capital k_{t+1} is accumulated.

HISTORY OF THE SHOCK

ullet Let z^t denote a history of realizations of the shock

$$z^t := (z_0, z_1, ..., z_t) = (z^{t-1}, z_t)$$
.

• Let $c_t(z^t)$ and $k_{t+1}(z^t)$ denote contingent plans for consumption and capital accumulation conditional on z^t .

EXPECTATION

- z^t is unknown at t=0, hence $c_t(z^t)$ is unknown at t=0.
- ullet the (time-0 view) objective function is uncertain at t=0, hence expectation is used:

$$\mathbb{E}\sum_{t=0}^{\infty}\beta^t u(c_t) = \sum_{t=0}^{\infty}\sum_{z^t}\beta^t \pi(z^t) u(c_t(z^t)),$$

if assuming discrete states of z_t , where $\pi(z^t)$ denotes the probability of z^t .

SEQUENCE PROBLEM RESTATED

$$\max_{c_t(z^t), k_{t+1}(z^t)} \sum_{t=0}^{\infty} \sum_{z^t} \beta^t \pi(z^t) u(c_t(z^t)),$$

s.t.

$$c_t(z^t) + k_{t+1}(z^t) = z_t(z^t) f(k_t(z^{t-1})), \quad \forall z^t,$$

and given $\pi(z^t) \ge 0$, $k_0 > 0$, $z_0 > 0$.

LAGRANGIAN APPROACH

 \bullet Denote $\lambda_t(z^t) \geq 0$ as the stochastic multiplier for each constraint

$$\mathcal{L} = \sum_{t=0}^{\infty} \sum_{z^t} \beta^t \pi(z^t) u(c_t(z^t)) + \sum_{t=0}^{\infty} \sum_{z^t} \lambda_t(z^t) [z_t(z^t) f(k_t(z^{t-1})) - c_t(z^t) - k_{t+1}(z^t)]$$

• FOC

$$c_t(z^t) \colon \quad \beta^t \pi(z^t) u'(c_t(z^t)) = \lambda_t(z^t)$$

$$k_{t+1}(z^t) \colon \quad \lambda_t(z^t) = \sum_{z_{t+1} \mid z^t} \lambda_{t+1}(z^t, z_{t+1}) [z_{t+1} f'(k_{t+1}(z^t))]$$

where the realization of z_{t+1} may depend on the history z^t (serial correlation).

EULER EQUATION

• Eliminating the multipliers gives

$$u'(c_{t}(z^{t})) = \beta \sum_{z_{t+1} \mid z^{t}} u'(c_{t+1}(z^{t}, z_{t+1})) [z_{t+1} f'(k_{t+1}(z^{t}))] \frac{\pi(z^{t}, z_{t+1})}{\pi(z^{t})}$$

$$= \beta \sum_{z_{t+1} \mid z^{t}} u'(c_{t+1}(z^{t}, z_{t+1})) [z_{t+1} f'(k_{t+1}(z^{t}))] \pi(z_{t+1} \mid z^{t})$$

• This is the stochastic version of the Euler equation

$$u'(c_t) = \beta \mathbb{E}[u'(c_{t+1})z_{t+1}f'(k_{t+1}) \mid z^t]$$

RECURSIVE FORMULATION

• The Bellman equation can be written as

$$\begin{split} v(k_t, z_t) &= \max_{c_t, k_{t+1}} \left[u(c_t) + \beta \, \mathbb{E}[v(k_{t+1}, z_{t+1}) \mid z^t] \right] \\ &= \max_{c_t, k_{t+1}} \left[u(c_t) + \beta \sum_{z_{t+1} \mid z^t} v(k_{t+1}, z_{t+1}) \pi(z_{t+1} \mid z^t) \right] \end{split}$$

s.t
$$c_t + k_{t+1} = z_t f(k_t)$$
.

• FOC and envelope condition

$$u'(c_t) = \beta \mathbb{E}[v_k(k_{t+1}, z_{t+1}) \mid z^t]$$
$$v_k(k_t, z_t) = u'(c_t)z_t f'(k_t)$$

ullet Eliminating v_k we have

$$u'(c_t) = \beta \mathbb{E}[u'(c_{t+1})z_{t+1}f'(k_{t+1}) \mid z^t]$$

TWO SPECIAL CASES

- $\bullet \text{ i.i.d.: } \pi(z_{t+1} \mid z^t) = \pi(z)$

CASE 1: I.I.D.

- $u(c) = \ln c$
- $f(k) = k^{\alpha}$
- ullet Suppose the productivity z_t is an i.i.d. sequence which takes values uniformly distributed in a set of discrete points:

$$z_t \in \{0.9792, 0.9896, 1.0000, 1.0106, 1.0212\}$$
.

SOLUTION

• Analytical solution

$$k_{t+1} = \alpha \beta z_t k_t^{\alpha},$$

$$c_t = (1 - \alpha \beta) z_t k_t^{\alpha},$$

which will allow us to assess the accuracy of the solution we compute.

• Note that $\{k_t\}$ will **not** converge to a fixed point because $\{z_t\}$ is random. But we can still calculate its expection:

$$k^* := \lim_{t \to \infty} \mathbb{E}_0(k_t) = \frac{\ln(\alpha\beta) + \mathbb{E}(\ln z)}{1 - \alpha}.$$

CALIBRATION

- $\alpha = 1/3$
- $\beta = 0.95$
- $\bullet \ z_t \in \{0.9792, 0.9896, 1.0000, 1.0106, 1.0212\}.$
- $k^* = (\alpha \beta)^{\frac{1}{1-\alpha}}$
- $k \in \{0.95k^*, 1.05k^*\}$

CODE FRAGMENTS

import

```
import timeit
import numpy as np
import matplotlib.pyplot as plt
```

parameter

```
beta = 0.95
alpha = 1 / 3
kss = (alpha * beta) ** (1 / (1 - alpha))
kmin = 0.95 * kss
kmax = 1.05 * kss
n_k = 100
kgrid = np.linspace(kmin, kmax, n_k)
zgrid = np.array([0.9792, 0.9896, 1.0000, 1.0106, 1.0212])
P = np.array([0.2, 0.2, 0.2, 0.2]) # probability of z
n_z = len(zgrid)
```

ANALYTICAL POLICY FUNCTION

g_analytical = np.outer(alpha*beta*kgrid**alpha, zgrid) # vectorized calculation

ORGANIZE THE FUNCTION (1)

- ullet How can we organize the value function, for example, V(k,z) (as well as the policy function) if there are two or more state variables?
 - treat V as a matrix
 - ullet treat V as a vector

ORGANIZE THE FUNCTION (2)

- ullet as a matrix: For example, use k grids as row index, and z grids as column index.
 - lacktriangleright What if there are many random state variables? Suppose at each period we have two (or more) random state variables: $s=(s_1,s_2)$ and $z=(z_1,z_2,z_3)$. We can define a new (composite) state variable $x:=s\otimes z$ (Kronecker product):

$$\begin{split} x &= (x_1, x_2, x_3, x_4, x_5, x_6) \\ &= ((s_1, z_1), (s_1, z_2), (s_1, z_3), (s_2, z_1), (s_2, z_2), (s_2, z_3)) \end{split}$$

ORGANIZE THE FUNCTION (3)

- as a vector: we can use Kronecker product for all state variables (both k and z):
 - ullet define a new (composite) state variable $x:=k\otimes z$, calculate the new function $V_{vector}(x)$
 - In this manner, the function with multiple state variables can be uniformly expressed.
 - Restore V(k,z) from $V_{vector}(x)$: i_x = i_k * n_z + i_z , where i denotes the index (location), and n denotes the total number. Either use a loop

```
for i_x in range(n_k * n_z):
    i_k = i_x // n_z # quotient
    i_z = i_x % n_z # remainder
    V[i_k,i_z] = V_vector(i_x)
```

Or,

```
V=V_vector.reshape(n_k,n_z) # by row
```

CODE FRAGMENTS

• The following are code examples treating the value function V_next as a matrix (row is k and column is z):

```
def V_current(k_next, k_index, z_index, V_next):
    """objective value function to be maximized"""
    c = zgrid[z_index]*kgrid[k_index]**alpha - k_next
    EV = np.sum(P*V_next[k_index,:]) # expectation
    res = u(c) + beta * EV
    return res

def V_max(k_index, z_index, V_next)
    """loop over possible k_next to max v"""
    ...
```

CODE FRAGMENTS

- If using the concavity and monotonicity tricks, then the z loop must be executed first!
- If using the monotonicity trick, then the z loop can still be parallelized!

TEST

```
V0 = np.zeros((n_k, n_z))
start_time = timeit.default_timer()
V, g = V_iteration(V0)
print("The time difference is :", timeit.default_timer() - start_time)

Error at iteration 50 is: 0.3875261474470548
Error at iteration 100 is: 0.02981818983440121
Error at iteration 150 is: 0.0022943598796203446
Error at iteration 200 is: 0.0001765394642241347
```

Converged in 301 iterations.

The time difference is : 0.0314454699982889

Error at iteration 250 is: 1.358382472460562e-05 Error at iteration 300 is: 1.0452070711153283e-06

PLOT

CASE 2: MARKOV PROCESS

- ullet A (first-order) Markov process has the property that, conditional on the current z_t , future realizations are independent of z^{t-1} . In this sense, the current z_t is a sufficient statistic for the past.
- Markov processes are recursive, and so are a natural setting for dynamic programming approaches.
- ullet Consider z_t with discrete support, usually referred to as a Markov chain. Markov processes with continuous support have a similar structure.

MARKOV CHAIN (1)

- A finite Markov chain $\{z_t\}$ is a triple (z,P,ψ_0) .
 - z is an n-vector listing the possible states (outcomes) of the chain
 - \circ A realization of z_t takes on the value of one of the states in z.
 - lacksquare P is an $n \times n$ probability transition matrix $[p_{ij}]_{n \times n}$.
 - \bullet $p_{ij}=\operatorname{Prob}[z_{t+1}=z_j\mid z_t=z_i]$, $0\leq p_{ij}\leq 1$, $\sum_j p_{ij}=1$ for all i.
 - ψ_0 is an n-vector initial distribution over the states.

$$\phi = \psi_{0,i} = \operatorname{Prob}[z_0 = z_i]$$
, $0 \le \psi_{0,i} \le 1$, $\sum_i \psi_{0,i} = 1$.

MARKOV CHAIN (2)

ullet Suppose the productivity z_t takes values in a 5-point Markov chain

$$z_t \in \{0.9792, 0.9896, 1,0000, 1.0106, 1.0212\}$$

with transition matrix:

$$\Pi = \begin{pmatrix} 0.9727 & 0.0273 \\ 0.0041 & 0.9806 & 0.0153 \\ & 0.0082 & 0.9837 & 0.0081 \\ & & 0.0153 & 0.9806 & 0.0041 \\ & & & 0.0273 & 0.9727 \end{pmatrix}.$$

CODE FRAGMENTS

```
def V_current(k_next, k, z_index, V_next):
    c = budget(k_next, k, z_index)
    EV = np.sum(P[z_index]*V_next)
    res = u(c) + beta * EV
    return res
```

NEXT QUESTION

- Now we have solved the policy function $k_{t+1} = g(k_t, z_t)$ numerically.
- We cannot expect $\{k_t\}$ to converge to some steady state k^* . What about the limiting distribution of k_t when $t\to\infty$?
- A stochastic analogue to a steady state of a deterministic system is a stationary (invariant) distribution.
 - ullet Does the sequence of k_t converge to a stationary limiting distribution? If so, what does the limiting distribution look like?