

PROBLEM 1 (EIGENVECTORS OF TRANSITION MATRICES)

Let (X_n) be an irreducible and recurrent Markov chain with (doubly-infinite) transition matrix P. Let $\psi : \mathbb{N} \to \mathbb{N}$ be a bounded function satisfying

$$\sum_{i=1}^{\infty} P_{ij}\psi(j) = \psi(i) \quad \text{for all } i \in \mathbb{N}.$$

Show that ψ is a constant function.

(Hint: check that $\psi(X_n)$ is a bounded martingale, and apply the martingale convergence theorem.)

Problem 2 (Stopped σ -Algebra)

Let S and T be stopping times with respect to a filtration (\mathcal{F}_n) . Denote by \mathcal{F}_T the collection of events F such that $F \cap \{T \leq n\} \in \mathcal{F}_n$ for all n.

- (a) Show that \mathcal{F}_T is a σ -algebra.
- (b) Show that T is measurable with respect to \mathcal{F}_T .
- (c) If $E \in \mathcal{F}_S$, show that $E \cap \{S \leq T\} \in \mathcal{F}_T$.
- (d) Show that if $S \leq T$ a.s. then $\mathcal{F}_S \subset \mathcal{F}_T$.

Problem 3 (Stopped σ -algebra: reconstruction from the limit)

Let (X_n) be a uniformly bounded martingale with respect to the filtration (\mathcal{F}_n) . Let S and T be two stopping times satisfying $S \leq T$ a.s. Prove that

$$X_T = \mathbb{E}[X|\mathcal{F}_T]$$
 and $X_S = \mathbb{E}[X_T|\mathcal{F}_S]$

where X is the almost sure limit of X_n .

Problem 4

A die is rolled repeatedly. Which of the following are Markov chains? For those that are, compute the transition matrix.

- (a) The largest number X_n shown up to the *n*-th roll.
- (b) The number N_n of sixes in n rolls.
- (c) At time r, the time C_r since the most recent six.
- (d) At time r, the time B_r until the next six.

PROBLEM 5 (REFLECTED RANDOM WALK)

Let (S_n) be a simple random walk starting at $S_0 = 0$. Show that $X_n = |S_n|$ is a Markov chain.

PROBLEM 6 (MARKOV PROPERTY FOR STOPPING TIMES)

Let (X_n) me a Markov chain, and let T be a stopping time with respect to the filtration $\mathcal{F}_n = \sigma(X_1, \ldots, X_n)$. Show that

$$\mathbb{P}\left\{X_{T+1} = j \mid X_k = x_k \text{ for } 0 \le k < T, X_T = i\right\} = \mathbb{P}\left\{X_{T+1} = j \mid X_T = i\right\}$$

for all $m \geq 0$, i, j, and x_k .

PROBLEM 7 (MARKOV PROPERTY FOR STOPPING TIMES)

Find an example of two Markov chains (X_n) and (Y_n) such that $X_n + Y_n$ is not a Markov chain.

PROBLEM 8 (RANDOM WALK ON A CUBE)

A particle performs a random walk on the vertices of a three-dimensional cube. At each step it remains where it is with probability 1/4, or moves to one of its neighboring vertices each having probability 1/4. Compute the mean number of steps until the particle returns to the vertex from which the walk started.

(Hint: Let $v \to s \to t \to w$ be a path from the original vertex v to the diametrically opposite vertex w. Conditioning on the first step and using a symmetry argument, write down a system of linear equations for μ_v , μ_s , μ_t and μ_w , the mean number of steps to reach v from v, s, t, w respectively.)

PROBLEM 9 (RECURRENCE OF A SYMMETRIC RANDOM WALK)

Prove that the symmetric random walk on \mathbb{Z}^2 is recurrent, the symmetric random walk on \mathbb{Z}^3 is transient.

Problem 10 (Reversible Markov Chains)

Which of the following are reversible Markov chains?

- (a) Move from 0 to 1 with probability p and stay at 0 with probability 1-p; move from 1 to 0 with probability q and stay at 1 with probability 1-q.
- (b) A random walk on the vertices of a given triangle: at each time, move to the next vertex counterclockwise with probability p and clockwise with probability 1-p.

PROBLEM 11 (CHESS)

A king performs a random walk on a chessboard; at each step it is equally likely to make any one of the available moves (and never stays put). What is the mean recurrence time of a comer square?