Heroon Polytechniou 9, Athens GR 15773, Greece, Office: 2.1.15, Email: valagiannopoulos@ece.ntua.gr

ΟΝΟΜΑΤΕΠΩΝΥΜ ΤΑΙΑ

Αθήνα, 4 Σεπτεμβρίου 2024

AE24

ΕΠΑΝΑΛΗΠΤΙΚΗ ΕΞΕΤΑΣΗ ΣΤΑ ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΑ **ΠΕΔΙΑ Α (Μ-Π)**

10 / 10

ΘEMA 1 [25%]

Διαθέτετε υλικό με σχετική μιγαδική διηλεκτρική επιτρεπτότητα $\varepsilon(\omega)$ και σχετική μαγνητική επιδεκτικότητα $\mu(\omega)$ που δίνονται ως:

$$\varepsilon(\omega) = 3 - \frac{\omega^2}{\omega_{\varepsilon}^2}$$

$$\mu(\omega) = \frac{\omega_2^2}{\omega_3^2 - \omega^2},$$

όπου $\omega_1, \omega_2, \omega_3 > 0$ είναι χαρακτηριστικές συχνότητες.

Να βρείτε τις συνθήκες για τις οποίες το μέσο υποστηρίζει μετάδοση χωρίς παραμόρφωση. Σε αυτή την περίπτωση να υπολογιστούν οι ταχύτητες φάσης και ομάδας. [10%]

Av $\omega_1 = \omega_2 = \omega_3 = \omega_0 > 0$:

Σχεδιάστε τις ποσότητες $\varepsilon(\omega)$ και $\mu(\omega)$ ως συναρτήσεις της σχετικής συχνότητας ω/ω_0 . [6%]

Ποοσδιορίστε τις συχνότητες ω που μπορεί να μεταδοθεί σήμα χωρίς εξασθένηση. [9%]

ΘEMA 2 [45%]

Θεωρούμε τέλεια αγώγιμο κύλινδρο ακτίνας a που περιβάλλεται από αέρα, όπως στο Σχήμα Ι. Στο εξωτερικό του κυλίνδρου (r>a) αναπτύσσεται ηλεκτρικό πεδίο με μετασχηματισμό Fourier στις κυλινδρικές συντεταγμένες (r, φ, z) :

$$\mathbf{E} = \hat{\mathbf{r}}A(\omega)e^{-(r/a)^2}e^{-\mathrm{i}\beta z}.$$

rudindpices burrerajtières

[4%] Να γράψετε τις μονάδες μέτρησης των παραμέτρων $A(\omega)$ και β . [4%]

Να υπολογίσετε το μετασχηματισμό Fourier του μαγνητικού πεδίου για r>a. [5%]

 \nearrow Να εξηγήσετε γιατί το παραπάνω ηλεκτρομαγνητικό πεδίο δεν μπορεί να υπάρξει χωρίς την παρουσία χωρικού ρεύματος m J στο χώρο m r > a. Να υπολογιστεί το αναγκαίο ρεύμα m J για τη δημιουργία του πεδίου. [10%]

Στα επόμενα, να θεωρήσετε ότι το ρεύμα] ρέει κατά τον άξονα z.

(Δ) Να υπολογίσετε την παράμετρο β . Να αναπαραστήσετε το μέτρο της συνιστώσας $|J_z|$ ως συνάρτηση της κανονικοποιημένης απόστασης r/a. [8%]

Aν $A(\omega) = A_0 \delta(\omega - \omega_0)$, με $A_0 > 0$, να οπολογίσετε το διάνοσμα Poynting για r > a. Να οπολογίσετε τη μέση χρονική τοχό που διαπερνά ένα επίπεδο σταθερού z σε μία περίοδο $2\pi/\omega_0$. [7%]

(Z) Αν $A(\omega)=A_0\frac{\omega_0}{\omega^2+\omega_0^2}$, να προσδιοριστεί το επιφανειακό ρεύμα $\mathcal{K}(z,t)$ στον κύλινδρο r=a, ως συνάρτηση του χρόνου t και της μεταβλητής z. Να σχεδιαστεί ποιοτικά ως προς z για $t=-1/\omega_0$, t=0, $t=1/\omega_0$ στο ίδιο σύστημα συντεταγμένων. [11%]

©EMA 3 [30%]

Επίπεδο κύμα έχει μαγνητικό πεδίο παράλληλο στον άξονα y και πλάτος A ενώ μεταδίδεται στο κενό κατά κατεύθυνση που σχηματίζει γωνία θ με τον άξονα z (Σχήμα II). Στην επιφάνεια z=0 συναντά διάταξη η οποία δεν υπακούει στο νόμο της ανάκλασης αλλά επιβάλλει στο σύνορό της την ακόλουθη συνοριακή συνθήκη για τους μετασχηματισμούς Fourier των πεδίων στο χώρο z>0:

$$\left. \eta \; H_{\mathcal{Y}} \right|_{z=0} + \left. E_{x} \right|_{z=0} = A(\eta - \eta_{0} \cos \theta) e^{-\mathrm{i} k_{0} x \sin \theta} + A \frac{\eta - \eta_{0}}{1 + \sin^{2} \theta}, \quad \gamma \iota \alpha \; \kappa \dot{\alpha} \theta \epsilon \; x \in \mathbb{R}.$$

Η ποσότητα $\eta>0$ είναι μία θετική παράμετρος που μετριέται σε Ohm ενώ το σύμβολο $\eta_0=\sqrt{\mu_0/\epsilon_0}$ είναι η κυματική αντίσταση του κενού και μετριέται επίσης σε Ohm.

- (A) Να βρείτε τη γωνία ανάκλασης φ , όπως ορίζεται στη Σχήμα ΙΙ και να αναπαρασταθεί το άθροισμα των γωνιών $(\theta + \varphi)$ σαν συνάρτηση της γωνία πρόσπτωσης $-\pi/2 < \theta < \pi/2$. [9%]
- Να βρείτε το συντελεστή ανάκλασης. [9%]
- (Γ) Να αναπαρασταθεί το τετράγωνο του μέτρου του συντελεστή ανάκλασης σαν συνάρτηση της γωνίας $0<\theta<\pi/2$ για $\eta=2\eta_0$ και για $\eta=10\eta_0$ στο ίδιο γράφημα. [7%]
- Να αναπαρασταθεί το τετράγωνο του μέτρου του συντελεστή ανάκλασης σαν συνάρτηση του λόγου $0<\eta/\eta_0<+\infty$, όταν έχουμε κάθετη πρόσπτωση $(\theta=0)$. [5%]