Московский государственный университет имени М. В. Ломоносова Факультет вычислительной математики и кибернетики

Отчёт по практикуму Сборка при помощи Dockerfile интерактивного веб-приложения, реализующего модели случайного леса и градиентного бустинга

Илюхин Владислав 317 группа

Содержание

1	Пос	становка задачи
	1.1	Случайный лес и градиентный бустинг
	1.2	Веб-приложение
		GitHub
2	Дат	тасет
	2.1	Описание датасета
	2.2	Предобработка данных
3		учайный лес
	3.1	Описание алгоритма
	$3.1 \\ 3.2$	Описание алгоритма
	3.2	Описание алгоритма Реализация Эксперименты
4	3.2	Реализация
4	3.2 3.3 Гр а	Реализация Эксперименты

1 Постановка задачи

1.1 Случайный лес и градиентный бустинг

Случайный лес и градиентный бустинг - ансамблевые методы машинного обучения. Первая часть задания состоит в их реализации и подборе оптимальных параметров на датасете HouseSalesinKingCounty, USA.

1.2 Веб-приложение

Для того, чтобы незнакомые с Python пользователи могли использовать обученные модели, необходимо реализовать веб-приложение с простым и удобным интерфейсом на основе Dockerfile и Flask, позволяющее клиентам взаимодействовать с построенными ансамблями.

1.3 *GitHub*

Весь проект необходимо вести на платформе Github в соответствии с приведенными в задании правилами. В конце необходимо сдать заполненный данными приватный репозиторий вместе с его содержимым.

2 Датасет

2.1 Описание датасета

Датасет описывает продажи домов в округе Кинг штата Вашингтон США в период с мая 2014 года по май 2015 года. Признаки - цена, время продажи, а также различные характеристики дома.

2.2 Предобработка данных

Значения столбца Date (дата продажи) преобразовал в признаки Day (день продажи), Week (неделя продажи), Month (месяц продажи). Во втором домашнем задании по MMPO именно такое преобразование даты дало хорошие результаты на обучении модели.

3 Случайный лес

3.1 Описание алгоритма

Случайный лес - ансамблевый метод машинного обучения, представляющий из себя бэггинг над методом случайных подпространств для решающих деревьев.

Для данных выборки X с ответами y строим $n_estimators$ решающих деревьев с максимальной глубиной max_depth . Далее для каждого из решающих деревьев:

- Из множества объектов X выбираем случайное подмножество \overline{X} размером 60% от исходного (на лекциях 60-80% указывались как оптимальный параметр).
- После этого в подвыборке оставляем значения только $k_frac\%$ от всех признаков (с округлением числа оставленных признаков вверх), получаем подвыборку $\overline{\overline{X}}$.
- ullet На полученной подвыборке $\overline{\overline{X}}$ обучаем решающее дерево

3.2 Реализация

Алгоритм реализован на языке Python с использованием класса DecisionTreeRegressor из библиотеки sklearn. Содержится в файле ensembles.py в директории src Github-репозитория.

3.3 Эксперименты

На занятиях рассказывалось, что бэггинг показывает наилучшие результаты, когда объединяется много переобученных моделей - каждая из них переобучается "по-своему и в результате усреднение по этим различным переобучениям дает маленький разброс. При этом с ростом $n_{estimators}$ результаты бэггинга не ухудшаются - просто происходит усреднение базовых моделей.

На графиках эти закономерности четко видны - при увеличении $n_estimators$ все столбцы графика показывают меньший разброс. При этом качество не уменьшается. Отметим также, что качество при $max_depth=3,5$ сильно хуже, чем

при больших значениях параметра. При $max_depth=8$ также получаем не очень хорошее качество. А вот при большой (и даже неограниченной глубине) получаем лучшие качетсва, что показывает - в случайном лесу хорошо, когда модели по отдельности переобучаются.

Лучшая модель - $n_estimators = 500, k_frac = 0.1, max_depth = None, RMSE = 129829.43795132353.$

4 Градиентный бустинг

4.1 Описание алгоритма

В общем случае градиентный бустинг можно применять над большим количеством разных моделей машинного обучения, однако в рамках данного задании он будет применяться исключительно над решающими деревьями. blah

4.2 Реализация

Алгоритм реализован на языке Python с использованием класса DecisionTreeRegressor из библиотеки sklearn. Содержится в файле ensembles.py в директории src Github-репозитория.