UNIT 5 Wiki Activity: Clustering

Murthy Kanuri Machine Learning University of Essex

Table of Contents

1	Wh	at is K-Means Alogirthm logic	3
2	Cor	mparing the K-Means Algorithm logic with both Algorithm Logic	3
	2.1	Shabal.in	3
	2.2	Naftali Harris	3
	2.3	Legal, Social, Ethical, and Professional Considerations in Machine Learning	3
	2.4	Images for Reference (Shabal.in)	4
	2.5	Images for Reference (Naftali Harris)	5

1 What is K-Means Algorithm logic

The K-Means Algorithm is an iterative algorithm that splits a data set into non-overlapping subgroups called clusters. The number of clusters created is determined by the value of k, a hyperparameter chosen before the algorithm runs.

Steps for K-Means

- 1. Choose the number of clusters(k) you wish to put the data into
- 2. Randomly initialise k points; these are called centroids
- 3. Identify the points closest to each centroid
- 4. Calculate the mean of the points in each cluster and move each centroid to that mean point
- 5. Repeat Step 3and four until the centroid value stays the same

2 Comparing the K-Means Algorithm logic with both Algorithm Logic

2.1 Shabal.in

- Demonstrates the principles of K-Means clustering algorithm logic
- Clicking on any of the points demonstrates the step-by-step visualisation of K-means clustering, focusing on centroid movement and cluster assignment process.
- Manual control allows the users to interact and observe

2.2 Naftali Harris

- Demonstrates the principles of K-Means clustering algorithm logic
- Three options are shown I'll Choose, Randomly and Farthest Point. Select any option that shows further options such as "Uniform Points", Gaussian Mixture etc
- The process is shown in continuous animation and dynamic view (automated and hands-off)

2.3 Legal, Social, Ethical, and Professional Considerations in Machine Learning

- Ensuring GDPR Compliance or HIPAA in Healthcare clustering
- Data biases can lead to discrimination or unethical profiling
- All the stakeholders should have transparency about the data being used
- Qualified professionals should be made responsible for algorithmic decisions to follow ethical standards

• Ensure that datasets used for clustering are accurate and true representatives.

2.4 Images for Reference (Shabal.in)

2.5 Images for Reference (Naftali Harris)

References

Shabal. (n.d.) K-Means Clustering Visualization. Available at: https://shabal.in/visuals/kmeans/2.html (Accessed: 10 November 2024).

Harris, N. (n.d.) Visualizing K-Means Clustering. Available at: https://www.naftaliharris.com/blog/visualizing-k-means-clustering/ (Accessed: 10 November 2024).

Patel, S. (2019) K-means Clustering Algorithm: Implementation and Critical Analysis. Saarbrücken: Scholars' Press.

Dwivedi, G. (2023) Optimization of K-Means Clustering Using Genetic Algorithm. Saarbrücken: LAP LAMBERT Academic Publishing.