

(12)特許協力条約に基づいて公開された国際出願

(19)世界知的所有権機関
国際事務局

(43)国際公開日
2002年10月24日 (24.10.2002)

PCT

(10)国際公開番号
WO 02/083446 A1

(51) 国際特許分類 ⁷ :	B60K 7/00, F16F 15/04	特願 2001-314518 2001年10月11日 (11.10.2001) JP
(21) 国際出願番号:	PCT/JP02/03730	特願 2001-314522 2001年10月11日 (11.10.2001) JP
(22) 国際出願日:	2002年4月15日 (15.04.2002)	
(25) 国際出願の言語:	日本語	(71) 出願人(米国を除く全ての指定国について): 株式会社ブリヂストン (KABUSHIKI KAISHA BRIDGESTONE) [JP/JP]; 〒104-8340 東京都 中央区 京橋1-10-1 Tokyo (JP).
(26) 国際公開の言語:	日本語	
(30) 優先権データ:		
特願2001-117110	2001年4月16日 (16.04.2001) JP	(72) 発明者; および
特願2001-132342	2001年4月27日 (27.04.2001) JP	(75) 発明者/出願人(米国についてのみ): 長屋 豪 (NAGAYA, Go) [JP/JP]; 〒187-8531 東京都 小平市 小川東町3-1-1 株式会社ブリヂストン技術センター内 Tokyo (JP).
特願2001-160686	2001年5月29日 (29.05.2001) JP	
特願 2001-314514	2001年10月11日 (11.10.2001) JP	

[締葉有]

(54) Title: FIXING METHOD OF IN-WHEEL MOTOR AND IN-WHEEL MOTOR SYSTEM

(54)発明の名称: インホイールモータの取付方法及びインホイールモータシステム

(57) Abstract: A nonrotational side inner case (3a) secured with the motor stator (3S) of an in-wheel motor (3) is coupled with a suspension system, i.e. a knuckle (5), through a first elastic member (11) and a rotational side case (3b) secured with a motor rotor (3R) and coupled with the nonrotational side case (3a) rotatably through a bearing (3j) is coupled with a wheel (2) rotating through a second elastic member (13) so that the in-wheel motor (3) is floatingly mounted for each part of a suspension system.

(57) 要約:

インホールモータ3のモータステータ3Sを固定した非回転側内ケース3aを、第1の弾性部材11を介して、車輪の足回り部品であるナックル5に結合し、上記非回転側ケース3aと軸受け3jを介して回転可能に結合された、モータロータ3Rを固定した回転側ケース3bを、第2の弾性部材13を介して回転するホイール2に結合することにより、インホールモータ3を足回り部の各部品に対してフローティングマウントするようにした。

WO 02/083446 A1

- (74) 代理人: 宮園 純一 (MIYAZONO,Junichi); 〒102-0072
東京都 千代田区 飯田橋三丁目 4 番 4 第 5 田中ビル
6 F Tokyo (JP). 添付公開書類:
— 國際調査報告書
- (81) 指定国 (国内): CN, JP, US.
- (84) 指定国 (広域): ヨーロッパ特許 (AT, BE, CH, CY, DE,
DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR). 2 文字コード及び他の略語については、定期発行される
各PCTガゼットの巻頭に掲載されている「コードと略語
のガイダンスノート」を参照。

明細書

インホイールモータの取付方法及びインホイールモータシステム

技術分野

本発明は、ダイレクトドライブホイールを駆動輪とする車輌において用いられるインホイールモータシステムとインホイールモータの取付方法に関するものである。

背景技術

近年、電気自動車などのモータによって駆動される車輌においては、スペース効率の高さや、駆動力の伝達効率の高さから、モータを車輪に内蔵するインホイールモータシステムが採用されつつある。

第78図は、例えば、特許第2676025号公報に記載された中空形状のアウターロータ型ダイレクトドライブモータ（インホイールモータ）70の取り付け状態を示す図で、このインホイールモータ70においては、ステータ70Sは固定部であるアップライト71に連結・支持されて、ダイレクトドライブホイール72のホイールディスク73の内側に配置されており、上記ホイールディスク73に連結された回転軸74とは軸受け74Jにより結合されている。また、上記ステータ70Sの外周側に配置されたロータ70Rは、上記回転軸74と結合された第1のブラケット75aと、上記アップライト71と軸受け71Jを介して回転可能に固定された第2のブラケット75bとにより支持されている。これにより、ロータ70Rがステータ70Sに対して回転可能に結合されるので、インホイールモータ70を駆動することにより、ホイール72に回転力を伝達することができ、ホイール72をダイレクトドライブすることが可能となる。

また、インホイールモータの取り付け方としては、第79図に示すように、ホイール81に固定されたハウジング82の内側に、磁気手段（永久磁石）80Mを有するロータ80Rを搭載し、上記磁気手段80Mの内側に、コイル80Cを有するステータ80Sを配置し、このステータ80Sをナックル83に連結され

た中空状のシャフト 84 に固定的に取り付けるとともに、上記ハウジング 82 の内側及び外側の側壁 82a, 82b を、軸受け 84a, 84b を介して上記ステータ 80S と結合することにより、インホイールモータ 80 のロータ 80R を、ステータ 80S に対して回転可能に結合する方法（例えば、特表平9-506236号公報）や、第80図に示すように、インホイールモータ 90 のステータ 90S を、軸受け 91 を介してハブ部 92 と接合されたステアリングナックル 93 に固定するとともに、ホイール 94 のリム部 94a をモータのロータとして機能させて、このロータ（リム部 94a）とステータ 90S とを回転可能に結合する方法（例えば、特開平10-305735号公報）などが提案されている。

一方、足回りにバネ等のサスペンション機構を備えた車両においては、一般に、ホイールやナックル、サスペンションアームといったバネ下に相当する部品の質量、いわゆるバネ下質量が大きい程、凹凸路を走行したときにタイヤの接地力が変動し、ロードホールディング性が悪化する。

また、車両のボディといった、いわゆるバネ上質量が小さい場合にもロードホールディング性が悪化する。このため、ロードホールディング性を向上させるには、バネ上質量に対するバネ下質量の低減が必須である。

しかしながら、インホールモータにおいては、上述したように、モータステータ部分が車両の足回りを構成する部品の一つである、アップライトまたはナックルと呼ばれる部品に接続するスピンドル軸に回転可能に固定されるため、上記インホールモータの搭載によりバネ下質量が増加してしまいロードホールディング性が悪化してしまうといった問題点があった。

そのため、インホールモータ車が、基本的にスペース効率や駆動力の伝達効率に優れ、電気自動車としては魅力的なパッケージングでありながら、現在でも採用例が極めて少ない。

本発明は、従来の問題点に鑑みてなされたもので、車両のタイヤ接地力の変動を低減して、車両のロードホールディング性を向上させることのできるインホイールモータの取り付け方法とインホイールモータシステムを提供することを目的とする。

発明の開示

本発明の請求の範囲 1 に記載のインホイールモータの取付方法は、ダイレクトドライブホイールにインホイールモータを取付ける際に、上記モータを、緩衝部材または緩衝装置を介して、車輪バネ下部に取付けるようにしたことを特徴とする。ここで、車輪バネ下部とは、ホイールや、ナックル、サスペンションアーム等の車輪の足回り部を構成する部材を指す。

請求の範囲 2 に記載のインホイールモータの取付方法は、請求の範囲 1 に記載のインホイールの取付方法において、上記モータの非回転側ケースとナックルとを第 1 の弾性体を介して結合し、回転側ケースとホイールとを第 2 の弾性体を介して結合したことを特徴とする。

請求の範囲 3 に記載のインホイールの取付方法は、請求の範囲 1 に記載のインホイールの取付方法において、上記モータのステータを支持する非回転側ケースと、車輪の足回り部品であるナックルとを直動ガイド機構により結合し、上記モータのロータを支持する回転側ケースとホイールとを、ホイールのラジアル方向に互いに偏心可能な駆動力伝達機構により結合したことを特徴とする。

請求の範囲 4 に記載のインホイールモータの取付方法は、請求の範囲 1 に記載のインホイールの取付方法において、上記モータの非回転側ケースとナックルとを、ダンパーを含む直動ガイド機構を介して結合し、回転側ケースとホイールとを、第 2 の弾性体を介して結合したことを特徴とする。

請求の範囲 5 に記載のインホイールモータの取付方法は、ダイレクトドライブホイールにインホイールモータを取付ける際に、上記モータの非回転側ケースを、緩衝装置を介して車体側に取付けるようにしたことを特徴とする。

請求の範囲 6 に記載のインホイールモータの取付方法は、請求の範囲 1 ～請求の範囲 5 のいずれかに記載のインホイールの取付方法において、上記取付けられたモータ部の共振周波数が、車輪バネ上部（車体）の共振周波数よりも高く、バネ下部の共振周波数よりも低い周波数となるように、上記モータを取付けるようにしたことを特徴とする。

また、請求の範囲 7 に記載のインホイールモータシステムは、車輪部に中空形

状の電気モータを備え、上記モータによりホイールを駆動するインホイールモータシステムにおいて、上記モータを緩衝部材または緩衝装置を介して、車輪バネ下部及び車体側のいずれか一方、あるいは、両方に取付けて成ることを特徴とするものである。

請求の範囲 8 に記載のインホイールモータシステムは、請求の範囲 7 に記載のインホイールモータシステムにおいて、モータとホイールとを、等速ジョイント、あるいは、ホイールのラジアル方向に互いに偏心可能な駆動力伝達機構により結合したものである。

請求の範囲 9 に記載のインホイールモータシステムは、請求の範囲 8 に記載のインホイールモータシステムにおいて、上記駆動力伝達機構を、複数枚の中空円盤状プレートと、隣接する上記プレート間を結合するとともに、上記隣接するプレートを互いに円盤のラジアル方向に案内する直動ガイドとを備えたカップリング機構により構成したものである。

請求の範囲 10 に記載のインホイールモータシステムは、請求の範囲 7 ～請求の範囲 9 のいずれかに記載のインホイールモータシステムにおいて、上記モータのステータを支持する非回転側ケースと、車輪の足回り部品であるナックルとを直動ガイド機構により結合したものである。

請求の範囲 11 に記載のインホイールモータシステムは、請求の範囲 7 ～請求の範囲 10 のいずれかに記載のインホイールモータシステムにおいて、上記モータの非回転側ケースとナックル間、及び、回転側ケースとホイール間の少なくとも一方あるいは両方に緩衝部材または緩衝装置を設けたものである。

請求の範囲 12 に記載のインホイールモータシステムは、請求の範囲 7 に記載のインホイールモータシステムにおいて、上記モータのステータを支持する非回転側ケースと、車輪の足回り部品であるナックルとを第 1 の弾性体を介して結合するとともに、ロータを支持する回転側ケースとホイールとを第 2 の弾性体を介して結合したものである。

請求の範囲 13 に記載のインホイールモータシステムは、請求の範囲 12 に記載のインホイールモータシステムにおいて、上記第 1 及び第 2 の弾性体の少なくとも一方あるいは両方を、空気バネにより構成したものである。

請求の範囲 1 4 に記載のインホイールモータシステムは、請求の範囲 1 2 に記載のインホイールモータシステムにおいて、上記第 2 の弾性体を円筒状とともに、この円筒の一端をホイールに結合させ、他端を回転側ケースに結合させたものである。

請求の範囲 1 5 に記載のインホイールモータシステムは、請求の範囲 1 2 に記載のインホイールモータシステムにおいて、ホイールと回転側ケースとを、ホイール接線方向と平行に等間隔で配置された 1 6 個以下の略板状弾性体によって結合させたものである。

請求の範囲 1 6 に記載のインホイールモータシステムは、請求の範囲 1 5 に記載のインホイールモータシステムにおいて、上記板状弾性体の幅方向の両端面に、モータの接線方向を軸とした回転継ぎ手機構を設けたものである。

請求の範囲 1 7 に記載のインホイールモータシステムは、請求の範囲 1 2 に記載のインホイールモータシステムにおいて、回転側ケースからホイール部方向に伸びるリブと、ホイールから回転側ケース方向に伸びるリブとを、複数箇所において、弾性体で結合したものである。

請求の範囲 1 8 に記載のインホイールモータシステムは、請求の範囲 1 2 ～ 請求の範囲 1 7 のいずれかに記載のインホイールモータシステムにおいて、上記第 1 及び第 2 の弾性体を構成する材料の縦弾性係数を 1 MPa ～ 1 2 0 MPa としたものである。

請求の範囲 1 9 に記載のインホイールモータシステムは、請求の範囲 1 2 ～ 請求の範囲 1 7 のいずれかに記載のインホイールモータシステムにおいて、上記第 1 及び第 2 の弾性体を構成する材料の縦弾性係数を 1 0 GPa ～ 3 0 0 GPa としたものである。

請求の範囲 2 0 に記載のインホイールモータシステムは、請求の範囲 1 2 ～ 請求の範囲 1 9 のいずれかに記載のインホイールモータシステムにおいて、上記第 1 の弾性体の、車輌に対して上下方向の弾性率を前後方向の弾性率よりも低くしたものである。

請求の範囲 2 1 に記載のインホイールモータシステムは、請求の範囲 1 2 ～ 請求の範囲 2 0 のいずれかに記載のインホイールモータシステムにおいて、上記第

1の弾性体に代えて、上記非回転側ケースを、スプリング及びダンパーを備えた直動ガイド機構を介してナックルに結合させたものである。

請求の範囲22に記載のインホイールモーターシステムは、請求の範囲12～請求の範囲21のいずれかに記載のインホイールモーターシステムにおいて、上記回転側ケースを、等速ジョイントを介してホイールに結合させたものである。

請求の範囲23に記載のインホイールモーターシステムは、上記請求の範囲22に記載のインホイールモーターシステムにおいて、第2の弾性体をモータ幅方向における上記モータの質量中心位置に取り付けるようにしたものである。

請求の範囲24に記載のインホイールモーターシステムは、請求の範囲12～請求の範囲21のいずれかに記載のインホイールモーターシステムにおいて、上記回転側ケースを、複数枚の中空円盤状のプレートと、隣接する上記プレート間を結合するとともに、上記隣接するプレートを互いに円盤のラジアル方向に案内する直動ガイドとを備えたカップリング機構を介して、ホイールに結合させたものである。

請求の範囲25に記載のインホイールモーターシステムは、請求の範囲7に記載のインホイールモーターシステムにおいて、上記モータのステータを支持する非回転側ケースを、緩衝部材または緩衝装置を介して、車輌の足回り部品であるナックルと結合させるとともに、モータの回転側ケースを、複数枚の中空円盤状のプレートと、隣接する上記プレート間を結合するとともに、上記隣接するプレートを互いに円盤のラジアル方向に案内する直動ガイドとを備えたカップリング機構を介して、ホイールと結合させたものである。

請求の範囲26に記載のインホイールモーターシステムは、請求の範囲7に記載のインホイールモーターシステムにおいて、上記モータのステータを支持する非回転側ケースを、緩衝部材または緩衝装置を介して、車輌の足回り部品であるナックルと結合させるとともに、モータの回転側ケースを、モータ側とホイール側とにそれぞれ複数の直動ガイドを備えた中空円盤状のプレートを介して、ホイールと結合させたものである。

請求の範囲27に記載のインホイールモーターシステムは、請求の範囲26に記載のインホイールモーターシステムにおいて、上記直動ガイドを中空円盤状のプレ

ートの周上に 90° または 180° 間隔で、かつ、上記プレートの表、裏の同位置にそれぞれ配置したものである。

請求の範囲 28 に記載のインホイールモータシステムは、請求の範囲 27 に記載のインホイールモータシステムにおいて、上記モータ側の全ての直動ガイドの稼動方向を中空円盤状プレートの径方向に対して 45° 方向とし、上記ホイール側の全ての直動ガイドの稼動方向を、上記モータ側の直動ガイドの稼動方向に対して直交する方向としたものである。

請求の範囲 29 に記載のインホイールモータシステムは、請求の範囲 7 に記載のインホイールモータシステムにおいて、上記モータのステータを支持する非回転側ケースを、緩衝部材または緩衝装置を介して、車輌の足回り部品であるナックルと結合させるとともに、モータの回転側ケースを、モータ側とホイール側とにそれぞれ複数の直動ガイドを備えた第 1 の中空円盤状のプレートと、この第 1 の中空円盤状のプレートの内側に配設され、複数の直動ガイドが上記第 1 の中空円盤状のプレートとは表、裏逆に配置された第 2 の中空円盤状のプレートとを介して、ホイールと結合させたものである。

請求の範囲 30 に記載のインホイールモータシステムは、請求の範囲 29 に記載のインホイールモータシステムにおいて、上記直動ガイドを第 1 及び第 2 の中空円盤状のプレートの周上にそれぞれ 90° または 180° 間隔で、かつ、上記プレートの表、裏の同位置にそれぞれ配置するとともに、上記第 1 及び第 2 の中空円盤状プレートのモータ側の全ての直動ガイドの稼動方向を上記各プレートの径方向に対して 45° 方向とし、上記各プレートのホイール側の全ての直動ガイドの稼動方向を、上記モータ側の直動ガイドの稼動方向に対して直交する方向としたものである。

請求の範囲 31 に記載のインホイールモータシステムは、請求の範囲 30 に記載のインホイールモータシステムにおいて、上記第 1 及び第 2 の中空円盤状のプレートの質量を等しくしたものである。

請求の範囲 32 に記載のインホイールモータシステムは、請求の範囲 24 ~ 請求の範囲 31 のいずれかに記載のインホイールモータシステムにおいて、上記直動ガイドを、上記プレートのラジアル方向に延長する少なくとも 1 つの凹部ある

いは凸部を有するガイドレールと、このガイドレールに係合するガイド部材とから構成したものである。

請求の範囲3 3に記載のインホイールモータシステムは、請求の範囲3 2に記載のインホイールモータシステムにおいて、上記ガイドレール及びガイド部材間に鋼球を配設したものである。

請求の範囲3 4に記載のインホイールモータシステムは、請求の範囲2 4～請求の範囲3 1のいずれかに記載のインホイールモータシステムにおいて、上記プレートの互いに対向する面に、ラジアル方向に切り取られた溝を設けるとともに、上記プレート間に、上記溝に沿って移動可能な鋼球を配設して、上記隣接するプレートを互いに円盤のラジアル方向に案内するようにしたものである。

請求の範囲3 5に記載のインホイールモータシステムは、請求の範囲2 4～請求の範囲3 4のいずれかに記載のインホイールモータシステムにおいて、上記プレートの枚数をNとしたとき、プレートの軸方向に隣り合う上記直動ガイドあるいは溝同士のなす角が、端部から $180 / (N - 1)$ 度づつ進角するように、上記プレートを配置したものである。

請求の範囲3 6に記載のインホイールモータシステムは、請求の範囲7に記載のインホイールモータシステムにおいて、上記モータのステータを支持する非回転側ケースと車輌の足回り部品であるナックルとを、一方のアームの端部が上記非回転側ケースに結合し、他方のアームの端部が車輌の足回り部品であるナックルに結合した、互いに回転可能に結合された2本のアームを有し、かつ、上記2本のアームをバネ及びダンパーにより結合して成る、少なくとも1組の略A型またはH型のリンク機構を備えた緩衝部材により結合させたものである。

請求の範囲3 7に記載のインホイールモータシステムは、請求の範囲7に記載のインホイールモータシステムにおいて、車軸式サスペンション機構を備えるとともに、上記モータのステータを支持する非回転側ケースと車軸とを、一方のアームの端部が上記非回転側ケースに結合し、他方のアームの端部が車軸に結合した、互いに回転可能に結合された2本のアームを有し、かつ、上記2本のアームをバネ及びダンパーにより結合して成る、少なくとも1組の略A型またはH型のリンク機構を備えた緩衝部材により結合させたものである。

請求の範囲 3 8 に記載のインホイールモータシステムは、請求の範囲 7 に記載のインホイールモータシステムにおいて、上記非回転側ケースとナックルとを、直動ガイドを介して互いに車輌上下方向に作動方向が限定された 2 枚のプレートにより結合するとともに、上記 2 枚のプレートを車輌上下方向に作動するバネ及びダンパーにより結合したものである。

請求の範囲 3 9 に記載のインホイールモータシステムは、請求の範囲 7 に記載のインホイールモータシステムにおいて、上記モータを直動ガイド及び緩衝装置を介して車輌の足回り部品であるナックルと車輌上下方向に搖動可能に支持するとともに、上記緩衝装置を、油圧シリンダとリザーバータンク間にバルブを備えた構造としたものである。

請求の範囲 4 0 に記載のインホイールモータシステムは、請求の範囲 3 9 に記載のインホイールモータシステムにおいて、上記油圧シリンダのピストン上室及びピストン下室とが、それぞれ、独立したバルブとリザーバータンクとを備えた作動油流路を有するものである。

請求の範囲 4 1 に記載のインホイールモータシステムは、請求の範囲 3 9 に記載のインホイールモータシステムにおいて、上記油圧シリンダのピストン上室及びピストン下室とが、それぞれ、独立したバルブを備えた作動油流路を有し、かつ、上記 2 つの作動油流路が共通のリザーバータンクに接続されているものである。

請求の範囲 4 2 に記載のインホイールモータシステムは、請求の範囲 3 9 に記載のインホイールモータシステムにおいて、上記油圧シリンダのピストン上室及びピストン下室とが、それぞれ、独立したバルブを備えた作動油流路により連結され、かつ、ピストン下室にリザーバータンクに接続されているものである。

請求の範囲 4 3 に記載のインホイールモータシステムは、請求の範囲 7 ～請求の範囲 4 2 のいずれかに記載のインホイールモータシステムにおいて、ハブ部に、車載の動力機関出力軸との連結機構を備えたものである。

請求の範囲 4 4 に記載のインホイールモータシステムは、請求の範囲 7 ～請求の範囲 4 3 のいずれかに記載のインホイールモータシステムにおいて、上記モータをアウターロータ型モータとしたものである。

請求の範囲4 5に記載のインホイールモータシステムは、請求の範囲7～請求の範囲4 3のいずれかに記載のインホイールモータシステムにおいて、上記モータをインナーロータ型モータとしたものである。

請求の範囲4 6に記載のインホイールモータシステムは、車輪部に電気モータを備え、上記モータによりホイールを駆動するインホイールモータシステムにおいて、上記モータを中空形状のインナーロータ型モータと減速ギヤを組合せたギヤードモータとし、このギヤードモータの非回転側ケースと車輪の足回り部品であるナックルとを、緩衝部材を介して結合するとともに、減速機出力軸とホイールとを、自在継手を有するシャフトにより連結したことを特徴とするものである。

請求の範囲4 7に記載のインホイールモータシステムは、請求の範囲4 6に記載のインホイールモータシステムにおいて、上記非回転側ケースとナックルとの間に、上記モータを上下方向に案内する直動ガイドを設けたものである。

請求の範囲4 8に記載のインホイールモータシステムは、中空形状のアウターロータ型モータのステータを支持する非回転側ケースを、車輪の足回り部品であるナックルに結合させ、ロータを支持する回転側ケースをホイールに結合するとともに、モータの内側にホイール支持機構を備えたことを特徴とするものである。

請求の範囲4 9に記載のインホイールモータシステムは、請求の範囲4 8に記載のインホイールモータシステムにおいて、回転側ケースをホイールに内接させるとともに、上記ナックルと上記ホイールの回転軸に連結されるハブ部とを、上記中空状のモータの内側に設けられたハブベアリングを介して結合させて、上記ホイールを支持するようにしたものである。

請求の範囲5 0に記載のインホイールモータシステムは、請求の範囲4 8または請求の範囲4 9に記載のインホイールモータシステムにおいて、上記回転側ケースを弾性体を介してホイールに結合させたものである。

請求の範囲5 1に記載のインホイールモータシステムは、請求の範囲5 0に記載のインホイールモータシステムにおいて、上記弾性体を構成する材料の縦弾性係数を1 MPa～120 MPaとしたものである。

請求の範囲 5 2 に記載のインホイールモータシステムは、請求の範囲 4 8 ~ 請求の範囲 5 1 のいずれかに記載のインホイールモータシステムにおいて、ハブ部に、ブレーキディスクまたはブレーキドラムを装着したものである。

請求の範囲 5 3 に記載のインホイールモータシステムは、請求の範囲 4 8 ~ 請求の範囲 5 1 のいずれかに記載のインホイールモータシステムにおいて、ハブ部に、車載の動力機関出力軸との連結機構を備えたものである。

請求の範囲 5 4 に記載のインホイールモータシステムは、車輪部に中空形状の電気モータを備え、上記モータによりホイールを駆動するインホイールモータシステムにおいて、上記モータを、直動ガイド及び緩衝部材を介して車輌の足回り部品であるナックルに対して車輌上下方向に支持し、かつ、直動ガイド及び緩衝部材を介して、上記ナックルに対して車輌前後方向にも支持するとともに、モータ回転側ケースとホイールとを、直交カップリングまたは等速ジョイントを介して偏心可能に結合したことを特徴とするものである。

請求の範囲 5 5 に記載のインホイールモータシステムは、請求の範囲 5 4 に記載のインホイールモータシステムにおいて、上記モータをアウターロータ型モータとしたものである。

請求の範囲 5 6 に記載のインホイールモータシステムは、請求の範囲 5 4 に記載のインホイールモータシステムにおいて、上記モータをインナーロータ型モータとしたものである。

請求の範囲 5 7 に記載のインホイールモータシステムは、車輪部に電気モータを備え、上記モータによりホイールを駆動するインホイールモータシステムにおいて、上記モータを中空形状のインナーロータ型モータと減速ギヤを組合せたギヤードモータとし、このギヤードモータの非回転側ケースを、直動ガイド及び緩衝部材を介して、車輌の足回り部品であるナックルに対して車輌上下方向に支持し、かつ、直動ガイド及び緩衝部材を介して、上記ナックルに対して車輌前後方向にも支持するとともに、減速機出力軸とホイールとを、自在継手を有するシャフトにより連結したことを特徴とするものである。

第1図は、本発明の最良の形態1に係わるインホイールモータシステムの構成を示す縦断面図である。

第2図は、本最良の形態1に係わるインホイールモータシステムの構成を示す正面断面図である。

第3図は、本最良の形態1に係わるインホイールモータの揺動状態を示す図である。

第4図は、本最良の形態1に係わるインホイールモータシステムの他の構成を示す図である。

第5図は、本最良の形態1に係わるインホイールモータシステムの他の構成を示す図である。

第6図は、本発明に係わる空気バネを用いたインホイールモータシステムの構成を示す図である。

第7図は、本発明に係わるダンパーを含めた直動ガイド機構を用いたインホイールモータシステムの構成を示す図である。

第8図は、第7図のインホイールモータの揺動状態を示す図である。

第9図は、本発明に係わるリブを弾性体で結合してなるダンパー機構を用いたインホイールモータシステムの構成を示す図である。

第10図は、円筒状弾性体を使用した場合のインホイールモータの揺動状態を示す図である。

第11図は、本発明に係わる板状弾性体の配置方法を示す図である。

第12図は、板状弾性体の配置数と上下剛性との関係を示す図である。

第13図は、本発明に係わるハイブリットタイプのインホイールモータシステムの構成を示す図である。

第14図は、本最良の形態2に係わる等速ジョイントを用いたインホイールモータシステムの構成を示す図である。

第15図は、等速ジョイントの動作を説明するための図である。

第16図は、本最良の形態3に係わるインホイールモータシステムの構成を示す縦断面図である。

第17図は、本最良の形態3に係わるインホイールモータシステムの構成を

示す要部断面図である。

第18図は、直動ガイドの配置を示す図である。

第19図は、直動ガイドの構成例を示す図である。

第20図は、フレキシブルカップリングの他の構成を示す図である。

第21図は、第20図の要部断面図である。

第22図は、第20図、第21図に示したフレキシブルカップリングの動作を説明するための図である。

第23図は、本発明の最良の形態4に係わるインホイールモータシステムの構成を示す縦断面図である。

第24図は、本最良の形態4に係わるフレキシブルカップリングの構成を示す図である。

第25図は、本最良の形態4に係わるフレキシブルカップリングの動作を説明するための図である。

第26図は、本発明の最良の形態5に係わるインホイールモータシステムの構成を示す縦断面図である。

第27図は、本最良の形態5に係わるフレキシブルカップリングの構成を示す図である。

第28図は、本最良の形態5に係わるフレキシブルカップリングの動作を説明するための図である。

第29図は、本発明によるフレキシブルカップリングの他の構成を示す図である。

第30図は、本最良の形態6に係わるインホイールモータシステムの構成を示す縦断面図である。

第31図は、本最良の形態7に係わるインホイールモータシステムの構成を示す縦断面図である。

第32図は、本最良の形態8に係わるインホイールモータシステムの構成を示す縦断面図である。

第33図は、本最良の形態8に係わる緩衝装置の構成を示す図である。

第34図、本最良の形態9に係わるインホイールモータシステムの構成を示す図である。

す縦断面図である。

第35図は、本最良の形態9に係わる油圧シリンダを備えた緩衝装置の構成を示す図である。

第36図は、油圧シリンダを備えた緩衝装置の詳細を示す図である。

第37図は、本最良の形態9に係わる油圧シリンダを備えた緩衝装置の他の構成を示す図である。

第38図は、本最良の形態9に係わる油圧シリンダを備えた緩衝装置の他の構成を示す図である。

第39図、本最良の形態10に係わるインホイールモータシステムの構成を示す縦断面図である。

第40図は、本最良の形態10に係わるインホイールモータシステムの構成を示す要部断面図である。

第41図は、従来のインホイールモータシステムにおける車輌振動モデルを示す図である。

第42図は、従来のインホイールモータシステムにダイナミックダンパーを装着した場合の車輌振動モデルを示す図である。

第43図は、本発明のインホイールモータシステムにおける車輌振動モデルを示す図である。

第44図は、各車輌振動モデルで設定した質量、バネ定数などの諸定数を示す表である。

第45図は、車輌振動モデルの解析結果を示す図である。

第46図は、タイヤ接地荷重とコーナリングパワー(CP)との関係を示す図である。

第47図、本最良の形態11に係わるインホイールモータシステムの構成を示す縦断面図である。

第48図、本発明によるインホイールモータシステムの他の構成を示す要部断面図である。

第49図、本発明によるインホイールモータシステムの他の構成を示す縦断面図である。

第50図、本最良の形態12に係わるインホイールモータシステムの構成を示す縦断面図である。

第51図、本発明によるインホイールモータシステムの他の構成を示す縦断面図である。

第52図は、従来のインホイールモータシステムにおける車輌振動モデルを示す図である。

第53図は、本発明の第50図に相当するインホイールモータシステムにおける車輌振動モデルを示す図である。

第54図は、本発明の第51図に相当するインホイールモータシステムにおける車輌振動モデルを示す図である。

第55図は、各車輌振動モデルで設定した質量、バネ定数などの諸定数を示す表である。

第56図は、車輌振動モデルの解析結果を示す図である。

第57図は、本最良の形態13に係わるインホイールモータシステムの構成を示す縦断面図である。

第58図は、本最良の形態13に係わるインホイールモータシステムの構成を示す要部断面図である。

第59図は、本最良の形態13に係わる第58図の44部の構成及び動作を示す図である。

第60図は、従来のインホイールモータシステムにおける車輌振動モデルを示す図である。

第61図は、従来のインホイールモータシステムにダイナミックダンパーを装着した場合の車輌振動モデルを示す図である。

第62図は、本発明のインホイールモータシステムにおける車輌振動モデルを示す図である。

第63図は、各車輌振動モデルで設定した質量、バネ定数などの諸定数を示す表である。

第64図は、車輌振動モデルの解析結果を示す図である。

第65図は、本最良の形態14に係わるインホイールモータシステムの構成

を示す縦断面図である。

第66図は、本最良の形態14に係わるインホイールモータシステムの取付方法を示す図である。

第67図は、本発明によるインホイールモータシステムの他の構成を示す縦断面図である。

第68図は、本最良の形態15に係わるインホイールモータシステムの構成を示す縦断面図である。

第69図は、第68図の要部断面図である。

第70図は、本最良の形態15に係わるインホイールモータシステムの取付方法を示す図である。

第71図は、従来の電気自動車システムにおける車両振動モデルを示す図である。

第72図は、従来のインホイールモータシステムにおける車両振動モデルを示す図である。

第73図は、従来のインホイールモータシステムにダイナミックダンパーを加えた車両振動モデルを示す図である。

第74図は、本発明のインホイールモータシステムにおける車両振動モデルを示す図である。

第75図は、各車両振動モデルで設定した質量、バネ定数などの諸定数を示す表である。

第76図は、車両振動モデルの解析結果を示す図である。

第77図は、車両振動モデルの解析結果を示す図である。

第78図は、従来のインホイールモータシステムの構成を示す図である。

第79図は、従来のインホイールモータシステムの構成を示す図である。

第80図は、従来のインホイールモータシステムの構成を示す図である。

発明を実施するための最良の形態

以下、本発明の最良の形態について、図面に基づき説明する。

最良の形態1.

第1図、第2図は、本最良の形態1に係わるインホールモータシステムの構成を示す図で、第1図は縦断面図、第2図は正面断面図である。各図において、1はタイヤ、2はリム2aとホイールディスク2bとから成るホイール、3は半径方向に対して内側に設けられた非回転側ケース3aに固定されたモータステータ（以下、ステータという）3Sと、半径方向に対して外側に設けられ、軸受け3jを介して上記非回転側ケース3aに対して回転可能に固定された回転側ケース3bに固定されたモータロータ（以下、ロータという）3Rとを備えたアウターロータ型のインホールモータで、上記ロータ3Rとステータ3Sとの間には、エアギャップ3gが形成されている。4は上記ホイール2とその回転軸において連結されたハブ部、5は上下のサスペンションアーム6a、6bに連結されるナックル、7はショックアブソーバ等から成るサスペンション部材、8は上記ハブ部4に装着されたブレーキロータ8aとブレーキキャリパー8bとを備えたブレーキディスクから成る制動装置である。なお、制動装置8としてはブレーキドラム等の他の制動装置を用いてもよい。

本例では、上記インホールモータ3のステータ3Sを固定した非回転側ケース3aを、ゴム等の弾性体から成る第1の弾性部材11と、上記第1の弾性部材11を半径方向内側から支持する支持部材12a及び上記支持部材12aからナックル5方向に延長する複数本の腕部12bとを有する連結部材12とを介して、車輪の足回り部品であるナックル5に結合するとともに、上記非回転側ケース3aと軸受け3jを介して回転可能に結合された、ロータ3Rを固定した回転側ケース3bを、第2の弾性部材13を介して、ホイール2に結合することにより、インホールモータ3をナックル5等の車輪足回り部の各部品に対してフローティングマウントするようしている。

したがって、上記インホールモータ3の回転軸は、ホイール2の回転軸とは別々に径方向に揺動可能となる。すなわち、インホールモータ3は、第3図に示すように、軸受け3jを介して、径方向外側と内側とに回転可能に分割されているため、上記インホールモータ3の回転軸は車軸とは別個に、径方向に揺動しながら、ロータ3Rが固定された上記回転側ケース3bが回転して、タイヤ1が装着されるホイール2に回転力を伝達する。

上記構成においては、インホールモータ3の質量はホイール2やナックル5等の車輌のバネ下質量相当部分から切り離されるとともに、上記質量は上記バネ下質量に対して、いわゆるダイナミックダンパーのウエイトとして作用する。したがって、上記ダイナミックダンパーの作用により、車輌の凹凸路走行時におけるタイヤ接地力の変動が低減され、車輌のロードホールディング性が向上する。また、悪路走行時においても、上記インホールモータ3には、直接振動が伝達されないので、インホールモータ3への振動負荷が低減される。

このとき、上記取付けられたインホールモータ3を含むモータ部の共振周波数を、車輌のバネ上部（車体）の共振周波数よりも高く、かつ、ホイール2、ナックル5等を含むバネ下部の共振周波数よりも低くなるように、上記モータ3の質量や緩衝部材である第1及び第2の弾性部材11, 13の弾性定数等を適宜選択して、上記モータ3を取付けることにより、車輌の凹凸路走行時における接地力の変動レベルを効果的に低減することができる。

また、本構造を探ることにより、車輪毎の車輌重量は上記ハブ部4が支えるようになるため、インホールモータ3への荷重負荷も小さくなるので、ステータ3Sとロータ3R間に形成されたエアギャップ3gの変動を小さくすることができる。したがって、上記非回転側ケース3a及び回転側ケース3bの剛性を下げる所以ができるので、インホールモータ3を軽量化することができる。

また、上記第1の弾性部材11の径方向のバネ定数を、車輌に対して上下方向を前後方向に対して低くするように設定することにより、インホールモータ3を略上下方向にのみ揺動するようにできるので、ホイール2とインホールモータ3との連れ回りを抑制することができ、車輪の回転駆動効率を向上させることができるので、インホールモータ3を軽量化することができる。

上記第1の弾性部材11のバネ定数を、車輌に対して上下方向を低く前後方向を高くする方法としては、例えば、第4図に示すように、第1の弾性部材11として、前後方向にのみ弾性部材11a, 11bを配設したり、第5図に示すように、前後方向に長軸を有する楕円状の弾性部材11cを用いるなどの方法により実現することができる。なお、上記楕円状の弾性部材11cを用いる場合には、第5図に示すように、ナックル5の形状も上記弾性部材11cと同形状とする。

また、上下方向剛性を低く回転方向剛性を高くするには、材料剛性と形状剛性とをバランスさせることが重要である。本例のように、第1の弾性部材11及び第2の弾性部材13として、ゴム等の弾性材料を用いた場合、所定の剛性を得るために、上記第1及び第2の弾性部材11, 13を構成する材料として、縦弾性係数が1 MPa～120 MPaである材料を用いることが好ましい。また、上記縦弾性係数が1 MPa～40 MPaであれば、更に好ましい。

なお、上記第1及び第2の弾性部材11, 13として、金属バネ等のバネ部材を用いる場合には、上記第1及び第2の弾性部材11, 13を構成する材料の縦弾性係数を、10 GPa～300 GPaとすることが好ましい。

このように、本最良の形態1では、インホイールモータ3のステータ3Sを固定する非回転側ケース3aを、ナックル5から延長する連結部材12に取付けられた第1の弾性体11を介して、車輌の足回り部品であるナックル5に結合させ、ロータ3Rを固定する回転側ケース3bを、第2の弾性部材13を介して、ホイール2に結合させることにより、インホールモータ3をバネ下質量に対してダイナミックダンパーのウエイトとして作用させるようにしたので、車輌の凹凸路走行時における接地力の変動レベルを低減することができ、車輌のロードホールディング性を向上させることができるとともに、インホールモータ3への振動負荷を低減することができる。

また、本発明のインホイールモータシステムを採用することにより、スペース効率や駆動力の伝達効率に優れ、かつ車輌のロードホールディング性のよいインホールモータ車を実現することができる。

なお、上記最良の形態1では、インホイールモータ3の非回転側ケース3aを第1の弾性部材11を介してナックル5に取付け、回転側ケース3bを第2の弾性体13を介してホイール2に取付けた場合について説明したが、上記第1及び第2の弾性部材11, 13に代えて、第6図に示すような、タイヤ状の環状空気バネ11T, 13Tを用いるようにすれば、径方向のバネ定数が低いわりに剪断方向のバネ定数を高くすることができるので、軽量高弾性の弾性部材を構成する

ことができる。

また、第7図、第8図に示すように、上記第1の弾性部材11及び連結部材12に代えて、非回転側ケース3aとナックル5とを、ダンパー14aとこのダンパー14aを車輪の上下方向に支持する支持部材14bとを備えた直動ガイド機構14により結合させることによってよい。これにより、減衰力を発生しつつ、インホイールモータ3を上下運動方向に拘束することができるので、ホイール2とインホイールモータ3との連れ回りを抑制することができ、回転駆動効率を向上させることができる。

また、第9図に示すように、ホイール2の周上に渡って等間隔に、回転側ケース3bからホイール2方向に伸びるロータ側リブ2mと、ホイール2から上記回転側ケース3b方向に伸びるホイール側リブ2nとを、弾性体15を介して結合させることにより、ホイール2とインホイールモータ3とを結合するバネを、上下運動は剛性の低い剪断バネ、回転方向は剛性の高い圧縮引張りバネとすることができるので、インホイールモータ3を略上下方向にのみ搖動するようにでき、ホイール2との連れ回りを更に抑制することができる。

あるいは、第10図に示すように、ホイール2と回転側ケース3bとを結合する弾性体として上記第2の弾性体13に代えて、円筒状の弾性体13Rを用い、上記弾性体13Rの一方の面13hをホイール2に結合させ、他方の面13mを回転側ケース3bに結合せることによってよい。上記円筒状の弾性体13Rは、インホイールモータ3の上下運動及びトルク伝達をする際に、剪断変形を伴う剪断バネとして作用するので、回転方向には剛性が高くラジアル方向には剛性が低くなるので、回転駆動効率を向上させることができる。

また、第11図(a)に示すように、ホイール2と回転側ケース3bとを、ホイール2の接線方向と平行に等間隔で配置された、複数個の略板状の弾性体13a～13dにより連結することにより、上下方向の剛性を低く、回転方向剛性を高くすることができます。すなわち、上記板状弾性体13a～13dの幅方向の両端面13w、13wをホイール2に取付けてホイール2と回転側ケース3bとを連結したときに、上記板状弾性体13a～13dの板状の面(径方向に垂直な面)13sがインホイールモータ3ないしはホイール2の回転方向に平行となるた

め、径方向の剛性を低くし、回転方向の剛性を高くすることができる。上記板状弾性体13a～13dは、回転方向剛性を保つように、寸法を調整しながらその数を増やしてゆくと、第12図のグラフに示すように、上下方向の剛性を減少させることが可能となる。

上記上下方向の剛性は、ラジアル方向剛性の上下成分と、回転方向剛性の上下成分とに分解できる。したがって、上下方向の剛性を低減するためには、上記ラジアル方向剛性の上下成分と、回転方向剛性の上下成分とともに下げるようすればよいが、モータがトルクを位相差なしで伝達するためには、回転方向剛性を減少させることはできない。そこで、第11図(b)に示すように、板状弾性体13a～13dの幅方向の両端面13w, 13wに、モータの接線方向を軸とした回転継ぎ手機構13z, 13zを設け、この回転継ぎ手機構13z, 13zを介して、上記板状弾性体13a～13dをホイール2に取付けるようすれば、回転方向剛性を下げることなく、ラジアル方向剛性をなくして上下方向の剛性を低減させることができる。

上記板状弾性体13a～13dは、回転方向剛性を保つようにその数を増加させて行くと、第12図のグラフに示すように、上下方向の剛性も増加する。したがって、上記板状弾性体13a～13dの数として、16個以下とすることが望ましい。

なお、上記第10図に示した円筒状の弾性体13Rを設けた場合についても、上記弾性体13Rの一端をホイール2に結合させる際に、上記の場合と同様に、上記のような回転継ぎ手機構を設けることにより、上下方向の剛性を低減させることができる。

また、第13図に示すように、ホイール2とその回転軸において連結されたハブ部4に、通常の自動車と同様に、ドライブシャフト9との連結部を設け、ハブ部4とドライブシャフト9とを連結する構成としてもよい。これにより、インホイールモータ3以外の車載の動力機関またはモータからの動力を、上記ドライブシャフト9を介して、ホイール2に伝達することができるので、例えば、ガソリンエンジン車の出力軸を本発明のインホイールモータシステムのハブ部4に接続することにより、ハイブリットカーとすることが可能となる。

最良の形態2.

上記最良の形態1では、回転側ケース3bとホイール2とを第2の弾性体13を用いて結合したが、第14図、第15図に示すように、上記回転側ケース3bを、第2の弾性体13と等速ジョイント16とを介して、ホイール2に結合させるようにしてもよい。

すなわち、上記例のように、回転側ケース3bとホイール2とを弾性体を用いて結合すると、周方向の剪断変形によりホイール2と回転側ケース3bとの間に位相差が生じることから、上記回転側ケース3bとホイール2とを、上記第2の弾性体13で結合するとともに、等速ジョイント16を介して結合させる。このとき、ホイール側ジョイント16aの回転中心と、モータ側ジョイント16bの回転中心とをずらして配置することにより、インホイールモータ3はホイール2内で上下に揺動しながら、位相差なしで回転側ケース3bからホイール2にトルクを伝達することできる。したがって、上記位相差を最小にすむことができ、回転側ケース3bからホイール2へのトルクの伝達効率を向上させることができる。

更に、非回転側ケース3aとナックル5とを、上記最良の形態1の第7図、第8図に示したダンパー14aと支持部材14bとから成る直動ガイド機構14によって連結することで、上記位相差を更に低減させることができる。

このとき、第2の弾性部材13をモータ幅方向におけるモータの質量中心位置に取り付けることで、インホイールモータ3の質量はカウンターウエイトとしてのみ働くので、足回り部品にモータ質量が分担されることはない。

なお、上記直動ガイド機構14ではなく、例えば、上記第1図に示したように、第1の弾性部材11を用いて回転側3bとナックル5とを結合した場合には、足回り部品にモータ質量を分担させないようにするため、上記第1の弾性部材11についても、モータ幅方向におけるモータの質量中心位置に取り付けることが好ましい。

最良の形態3.

上記最良の形態2では、回転側ケース3bとホイール2とを、第2の弾性体13及び等速ジョイント16を介して結合したが、上記等速ジョイント16に代えて、回転側ケース3bとホイール2とを、ホイール2のラジアル方向に互いに偏心可能な駆動力伝達機構により結合することにより、回転側ケース3bからホイール2へのトルクの伝達効率を更に向上させることができる。

上記駆動力伝達機構としては、例えば、第16図～第18図に示すような、複数枚の中空円盤状のプレート18A～18Cと、隣接する上記プレート18A, 18B、及び、プレート18B, 18C間を結合するとともに、上記隣接するプレート18A, 18B及び18B, 18Cを互いに円盤のラジアル方向に案内する直動ガイド18p, 18qとを備えたフレキシブルカップリング18を用いることができる。このように、上記フレキシブルカップリング18を介して、回転側ケース3bをホイール2に結合させることにより、ホイール2と回転側ケース3bとの間の位相差を最小にして、回転側ケース3bからホイール2へのトルクの伝達効率を更に向上させることができる。

上記直動ガイド18p, 18qとしては、例えば、第19図に示すように、上記プレートのラジアル方向に延長する凸部を有するガイドレール18xと、上記プレートのラジアル方向に延長する凹部を有し、上記ガイドレール18xに係合するガイド部材18yと、上記ガイドレール18xとガイド部材18yとをより円滑にスライドさせるために、上記ガイドレールの凸部とガイド部材18yの凹部との間に配設された複数の鋼球18mとから構成される。

上記ガイドレール18xとガイド部材18yは、第18図に示すように、上記隣接するプレート18A, 18B及び18B, 18Cの、互いに対向する面にそれぞれ設けられる。

上記ガイドレール18x及びガイド部材18yは、上記隣接するプレート18A, 18B及び18B, 18Cを互いに円盤のラジアル方向に案内するようスライドするので、インホイールモータ3は上記直動ガイド18p, 18q作動方向、すなわち、円盤のラジアル方向沿っては動くことができるが、回転方向には動くことができないため、ホイール2に回転トルクを効率的に伝達することが可能となる。

また、角度を変えた2対以上の直動ガイド18p, 18qを設けることにより、上記インホイールモータ3は、車軸に対してどの方向に対しても偏心しながら駆動トルクをホイール2に伝達することができる。

また、構成される直動ガイド18p, 18qの数が少ないと、回転時に角速度変化が生じるため、好ましくは複数のプレートと直動ガイドとを組み合わせることが好ましい。なお、そのときには、第18図に示すように、上記中空円盤状のプレートの枚数をNとしたとき、端部の直動ガイド18pから $180/(N-1)$ 度づつ進角するように、上記プレート18A～18Cを配置するようにすれば、上記角速度変化の発生を確実に抑制することができる（本例では、N=3であるので、上記角度は90度となる）。

なお、上述した等速ジョイント16やフレキシブルカップリング18等の駆動力伝達機構を用いて回転側ケース3bとホイール2とを結合させる構造とした場合には、インホイールモータ3の駆動力が機械的にホイール2に伝達されるので、ダイナミックダンパー効果を発揮するための緩衝部材としては、非回転側ケース3aとナックル5間に配置した第1の弾性体11のみで十分である。

また、上記隣接するプレート18A～18Cを互いに円盤のラジアル方向に案内する機構としては、第20図～第22図に示すような、フレキシブルカップリング18Zを用いてもよい。このフレキシブルカップリング18Zは、上記プレート18A～18Cの互いに対向する面にラジアル方向に切り取られたペアリング溝18a～18cを設け、対向する中空円盤状のプレート18A, 18B及び18B, 18C間に、それぞれ、上記ペアリング溝18a, 18b及び18b, 18cに沿って移動可能な、鋼球から成るペアリング球18Mを配設したもので、上記ペアリング溝18a, 18b及び18b, 18cと上記ペアリング球18Mとにより直動ガイドを構成する。

すなわち、上記ペアリング溝18a～18cは、ペアリング球18Mが上記プレート18A～18Cのラジアル方向に転がるように形成されているため、インホイールモータ3は上記ペアリング溝18a～18c方向には動くことができるが、周方向には動くことができないため、ホイール2に回転トルクを効率的に伝達することが可能となる。また、角度を変えた2対以上のペアリング溝18a～

18cとペアリング球18Mとを組み合わせることにより、上記インホイールモータ3は、車軸に対してどの方向に対しても偏心しながら駆動トルクをホイール2に伝達することができる。

また、ペアリング溝が少ないと、回転時に角速度変化が生じるため、好ましくは複数のプレートとペアリング球とを組み合わせることが好ましい。なお、そのときには、上記直動ガイドの場合と同様に、第22図に示すように、上記プレートの枚数をNとしたとき、プレートの軸方向に隣り合う溝同士のなす角が、端部の溝から $180 / (N - 1)$ 度づつ進角するように、上記中空円盤状のプレートを配置すれば、上記角速度変化の発生を確実に抑制することができる。

なお、上記フレキシブルカップリング18, 18Zにおいて、端部側のプレートであるホイール2側のプレート18A（あるいは、プレート18Aとガイドフレール18x）をホイール2と一体化して構成したり、回転側ケース3b側のプレート18C（あるいは、プレート18Cとガイド部材18y）を回転側ケース3bと一体化して構成するようにしてもよい。このときには、上記進角の計算に用いるプレートの枚数Nとしては、両端部にプレートがあるものと想定したときの値とする。

最良の形態4.

上記最良の形態3では、回転側ケース3bとホイール2と結合する駆動力伝達機構として、表、裏が互いに直交する方向に配置された直動ガイド18p, 18qを備えた各中空円盤状のプレート18A～18Cから成るフレキシブルカップリング18を用いた例について説明したが、第23図、第24図に示すような、ホイール2側に位置し、ホイール2と結合する中空円盤状のプレート20Aと、モータ3側に位置し、モータ3の回転側ケース3bと結合する中空円盤状のプレート20Cと、モータ3側とホイール2側のそれぞれのプレート周上に90°または180°間隔で、かつ、プレートの表、裏の同位置にそれぞれ複数の直動ガイド19A, 19Bが配置され、直動ガイド19Aにより上記中空円盤状のプレート20Aと連結され、直動ガイド19Bにより上記中空円盤状のプレート20Cと連結された中空円盤状のプレート20Bとから成るフレキシブルカップ

リング19を用いて、回転側ケース3bとホイール2と結合するようにしてもよい。これにより、プレートの周方向に発生する圧縮・引張り力を相殺して、周方向におけるオフセットをなくすことが可能となり、インホイールモータ3からホイール2への駆動トルクを更に確実に伝達することができるとともに、駆動力伝達機構の耐久性を向上させることができとなる。

本例では、モータ3側に配置された直動ガイド19Bの稼動方向を中空円盤状プレート20A～20Cの径方向に対して45°方向とし、ホイール2側に配置された直動ガイド19Aの稼動方向を、上記直動ガイド19Bの稼動方向に対して直交する方向としている。

また、本例では、非回転側ケース3aとナックル5とを、上記非回転側ケース3aを車両の上下方向に案内する直動ガイド部材21aと、この直動ガイド部材21aの稼動方向に伸縮するバネ部材とダンパーとから成るショックアブソーバ21bとを備えた直動ガイド機構21によって連結するようにしたが、上記最良の形態1の第7図及び第8図に示した、ダンパー14aを備えた直動ガイド機構14等の緩衝部材を用いて非回転側ケース3aとナックル5とを連結するようにしてもよい。なお、本例では、上記最良の形態2、3と同様に、回転側ケース3bとホイール2とを、上記のような駆動力伝達機構を用いて結合させる構造としているので、回転側ケース3bとホイール2間に配置する第2の弾性体13を省略することができる。

次に、直動ガイド19A、19Bの配置について説明する。

直動ガイド19Aは、第24図に示すように、ガイド部材19aとガイドレール19bとから構成される。本例では、ホイール2側に位置する中空円盤状プレート（以下、ホイール側プレートという）20Aの周上に、90°間隔で、径方向に対して45°方向延長する凹部を有する4個のガイド部材19aを配置するとともに、中間に位置する中空円盤状プレート（以下、中間プレートという）20Bの上記各ガイド部材19aに対応する位置に、上記各ガイド部材19aに係合する凸部を有する4個のガイドレール19bを配置することにより、ホイール側プレート20Aと中間プレート20Bとを、互いに90°間隔で配置された4個の直動ガイド19Aを介して連結する。

また、直動ガイド19Bは、ガイドレール19cとガイド部材19dとから構成されており、上記中間プレート20Bの、モータ3側に位置する中空円盤状プレート（以下、モータ側プレートという）20C側の周上に、上記直動ガイド19Aのガイドレール19bと直交するように、90°間隔で4個のガイドレール19cを配置し、上記モータ側プレート20C周上の、上記各ガイドレール19cに対応する位置4個のガイド部材19dを配置することにより、中間プレート20Bとモータ側プレート20Cとを、互いに90°間隔で配置された4個の直動ガイド19Bを介して連結する。

上記構成において、インホイールモータ3の回転側ケース3bからの回転力が、モータ側プレート20Cを介して、ホイール2に結合されたホイール側プレート20Aに伝達される際に、上記各直動ガイド19A、19Bは中空円盤状プレート20A～20Cの軸方向に対して45°方向に配向されているため、第25図に示すように、上記中間プレート20Bには周方向に回転する力と径方向に押し広げられる力が作用する。しかしながら、上記中間プレート20Bの上記各直動ガイド19Bの裏側（ホイール2側）、すなわち、上記各直動ガイド19Bと同位置には、上記各直動ガイド19Bのそれぞれの稼動方向に対して直交する方向に稼動する直動ガイド19Aが配置されているので、上記中間プレート20Bを径方向に押し広げる力は、上記各直動ガイド19Aによる径方向に押し広げる力と釣り合って、結果的には回転力のみがホイール側プレート20Aに伝達され、この回転力がホイール2に伝達される。したがって、回転側ケース3bに結合されたモータ側プレート20Cから直動ガイド19Bに入力された回転力は上記中間プレート20Bを挿んでホイール側プレート20Aに伝達されるので、上記モータ3の駆動力をホイール2に確実に伝達させることができる。

なお、上記各直動ガイド19A、19Bは全ての稼動方向が同じであるので、各中空円盤状のプレート19A～19C円盤には圧縮と引張り応力が同時には発生せず、全体を径方向に拡張もしくは圧縮する力のみが作用する。また、各直動ガイド19Bも、全ての稼動方向が上記直動ガイド19Aの稼動方向と直交するので、圧縮と引張り応力が同時には発生しない。また、上記拡張もしくは圧縮する力は、中間プレート19Bを挿んだ両側のガイドレール19b、19cの両側

から伝達されるので、中間円盤状プレート 20B の周方向においては荷重のオフセットがなく、座屈の危険が減少する。

最良の形態 5.

また、上記最良の形態 3 のフレキシブルカップリング 18 に代えて、第 26 図、第 27 図に示すような、ホイール側に位置し、ホイール 2 と結合する中空円盤状のプレート（ホイール側プレート）20A と、モータ 3 側に位置し、モータ 3 の回転側ケース 3b と結合する中空円盤状のプレート（モータ側プレート）20C と、モータ 3 側とホイール 2 側とのそれぞれのプレート周上に 90° または 180° 間隔で、かつ、プレートの表、裏の同位置にそれぞれ複数の直動ガイド 19P, 19Q が配置され、直動ガイド 19P により上記ホイール側プレート 20A と連結され、直動ガイド 19Q により上記モータ側プレート 20C と連結された中空円盤状の第 1 の中間プレート 20M と、この第 1 の中間プレート 20M の内側に配設され、複数の直動ガイド 19R, 19S が上記第 1 の中間のプレートとは表、裏逆に配置され、直動ガイド 19R により上記ホイール側プレート 20A と連結され、直動ガイド 19S により上記モータ側プレート 20C と連結された中空円盤状の第 2 の中間プレート 20N とから成るフレキシブルカップリング 20 を用いて、回転側ケース 3b とホイール 2 と結合させるようにしてもよい。これにより、上記プレートの偏心回転運動による振動を低減することが可能となり、インホイールモータ 3 からホイール 2 への駆動トルクを確実に伝達することができる。

なお、本例では、上記最良の形態 4 と同様に、非回転側ケース 3a とナックル 5 とを、上述した、非回転側ケース 3a を車輌の上下方向に案内する直動ガイド部材 21a と、この直動ガイド部材 21a の稼動方向に伸縮するバネ部材とダンパーとから成るショックアブソーバ 21b とを備えた直動ガイド機構 21 によって連結している。

次に、上記直動ガイド 19P, 19Q、及び、直動ガイド 19R, 19S の配置について説明する。

直動ガイド 19P は、第 27 図に示すように、ガイド部材 19i とガイドレー

ル19jとから構成される。本例では、ホイール2側に位置するホイール側プレート20Aの第1の中間プレート20M側の周上に180°間隔で設けられた、上記第1の中間プレート20Mのラジアル方向に延長する凹部を有する2個のガイド部材19i, 19iと、第1の中間プレート20Mのホイール側プレート20A側の周上の、上記ガイド部材19i, 19iに対応する位置に設けられ、上記ガイド部材19i, 19iに係合する凸部を有する2個のガイドレール19j, 19jとにより構成され、ホイール側プレート20Aと第1の中間プレート20Mとを互いにプレート径方向に案内する。

また、直動ガイド19Qは、第1の中間プレート20Mのモータ側プレート20C側の周上の、上記ガイドレール19j, 19jの位置から90°回転した位置に、180°間隔で設けられた2個のガイドレール19p, 19pと、モータ側プレート20Cの周上の、上記ガイドレール19p, 19pに対応する位置に設けられた2個のガイド部材19q, 19qとにより構成され、モータ側プレート20Cと第1の中間プレート20Mとを、互いにディスク径方向に案内する。

一方、直動ガイド19Rは、上記ガイド部材19i, 19iのホイール径方向内側の周上に、上記ガイド部材19i, 19iを90度回転させた方向に、180°間隔で設けられた、上記ホイール側プレート20Aのラジアル方向に延長する凹部を有する2個のガイド部材19m, 19mと、第2の中間プレート20Nのホイール側プレート20A側の周上の、上記ガイド部材19m, 19mに対応する位置に設けられ、上記ガイド部材19m, 19mに係合する凸部を有する2個のガイドレール19n, 19nとにより構成され、直動ガイド19Sは、第2の中間プレート20Nのモータ側プレート20C側の周上に、上記ガイドレール19n, 19nの位置から90°回転した位置に、180°間隔で設けられた2個のガイドレール19r, 19rと、モータ側プレート20Cの周上の、上記ガイドレール19r, 19rに対応する位置に設けられ、上記ガイドレール19r, 19rに係合する凹部を有する2個のガイド部材19s, 19sにより構成される。

上記の構成により、モータ3はホイール2に対して下方向に偏心したまま回転

する。具体的には、モータトルクはモータ側プレート20Cにまず入力され、このモータ側プレート20Cに入力された周方向の力は、直動ガイド19Qを介して第1の中間プレート20Mに入力されるとともに、上記直動ガイド19Qに直交する方向に稼動する直動ガイド19Sを介して第2の中間プレート20Nに入力される。

上記第1の中間プレート20Mに入力された周方向の力は、直動ガイド19Pを介してホイール側プレート20Aに入力され、上記第2の中間プレート20Nに入力された周方向の力は、上記直動ガイド19Pに直交する方向に稼動する直動ガイド19Rを介してホイール側プレート20Aに入力される。

したがって、例えば、第28図(a)～(c)に示すように、モータ3がホイール2に対して下方向に偏心したまま時計周りに回転する場合、外側にある第1中間プレート20Mは、ホイール側プレート20Aの軸とホイール側プレート20Aの軸間の中点を中心にして、下→左→上と偏心したまま時計周りに回転する。一方、内側にある第2の中間プレート20Nは、ホイール側プレート20Aの軸とモータ側プレート20Cの軸間の中点を中心にして、上→右→下と偏心したまま時計周りに回転する。

ここで、上記第2の中間プレート20Nの質量を第1の中間プレート20Mの質量と同じにすれば、上記第1及び第2の中間プレート20M, 20Nは、上記のように点対称の方向に偏心したまま回転するので、偏心による振動が相殺され、モータ側プレート20Cとホイール側プレート20Aとは、上下方向にのみ偏心し前後方向には偏心しない。したがって、中空円盤状のプレート(プレート20A, 20M, 20N, 20C)の偏心回転運動による振動を低減することができ、ホイール2に確実に駆動力を伝達させることができる。

また、第29図に示すように、上記直動ガイド19P, 19Q、及び、直動ガイド19R, 19Sに代えて、それぞれの稼動方向が、プレート20A, 20M, 20N, 20Cの径方向に対して45°方向となるような、直動ガイド22P, 22Q、及び、直動ガイド22R, 22Sを、上記第1及び第2の中間プレート20M, 20Nの表裏の同位置に取り付けるようにすれば、上記最良の形態4と同様に、上記各中空円盤状のプレート20A, 20M, 20N, 20Cに

は圧縮と引張り応力が同時には発生せず、全体を径方向に拡張もしくは圧縮する力のみが作用するとともに、各直動ガイド22Q, 22Sも、全ての稼動方向が上記直動ガイド22P, 22Rの稼動方向と直交するので、圧縮と引張り応力が同時には発生しないようにすることができる。したがって、上記第1及び第2の中間プレート20M, 20Nの周方向においては荷重のオフセットがなく、座屈の危険が減少し、駆動力伝達機構の耐久性を向上させることができる。

なお、直動ガイド22P、及び、直動ガイド22Qは、第29図に示すように、それぞれ、ガイド部材22aとガイドレール22b、ガイドレール22cとガイド部材22dとから構成され、直動ガイド22R、及び、直動ガイド22Sは、それぞれ、ガイド部材22eとガイドレール22f、ガイドレール22gとガイド部材22hとから構成され、上記最良の形態4と同様に、ガイド部材22aと、ガイド部材22eとはホイール側プレート20Aに配置される。また、ガイドレール22bは第1の中間プレート20Mのホイール側プレート20A側に、ガイドレール22cは第1の中間プレート20Mのモータ側プレート20C側に、ガイドレール22fは第2の中間プレート20Nのホイール側プレート20A側に、ガイドレール22gは第2の中間プレート20Nのモータ側プレート20C側に、ガイド部材22dと、ガイド部材22hとはホイール側プレート20Cに配置される。

最良の形態6.

上記最良の形態1～5では、インホイールモータ3の非回転側ケース3aと車輪の足回り部品であるナックル5とを第1の弾性体11や、直動ガイド部材21aと、この直動ガイド部材21aの稼動方向に伸縮するバネ部材とダンパーとから成るショックアブソーバ21bとを備えた直動ガイド機構21などの緩衝部材を用いて結合した場合について説明したが、第30図に示すように、一端がナックル5に連結され、他端側でモータ3を支持する緩衝機構23A, 23Bにより、非回転側ケース3aとナックル5とを結合することにより、タイヤ接地変動力を更に減少させることができる。

なお、本例では、回転側ケース3bとホイール2とを上記最良の形態3で用い

たフレキシブルカップリング18を用いて結合する構造としたが、上記最良の形態2に示した等速ジョイント16や上記最良の形態5、6のフレキシブルカップリング19、20等の駆動力伝達機構を用いて結合する構造としてもよい。

上記緩衝機構23A、23Bとしては、例えば、連結点23Zで互いに回転可能に結合された2本のアーム23m、23nから成る略A型あるいは略H型のリンク機構の、上記2本のアーム23m、23nをバネまたは／及びダンパーから成る緩衝部材23kにより結合したものを用いることができる。なお、本例では、緩衝部材23kの一端側を上記アーム23mに取付けられた取付け部材23sに固定し、他端側を上記アーム23nに直接取付けるようにしたが、緩衝部材23kの両端側をそれぞれ、アーム23m、23nに直接取付けるようにしてもよい。

上記緩衝機構23A、23Bと、インホイールモータ3の非回転側ケース3a及びナックル5の結合方法としては、上記緩衝機構23A、23Bの一方のアーム23mの端部23Xを上記モータ3の非回転側ケース3aに取付け、他方のアーム23nの端部23Yをナックル5に取付ける。このとき、上記緩衝部材23kの伸縮方向が車輌の上下方向と一致するように上記緩衝機構23A、23Bを取付ける。これにより、上記アーム23mの非回転側ケース3aとの接続点23Xと、上記アーム23nのナックル5接続点23Yの変動方向は、上記バネまたはダンパーから成る緩衝部材23kの伸縮方向に限定されるので、非回転側ケース3aとナックル5とを、モータ3の上下方向に搖動可能に結合することが可能となる。

すなわち、本例では、インホイールモータ3のロータ3Rを固定する回転側ケース3bとホイール2とがフレキシブルカップリング18（あるいは、フレキシブルカップリング19、20）で結合されるとともに、ステータ3Sを固定する非回転側ケース3aが、車輌の足回り部品であるナックル5に対して、回転方向には固定され、上下方向には弾性支持されるので、回転側ケース3bからホイール2へのトルクの伝達効率を向上させることができるとともに、タイヤ接地変動力を更に減少させることができ、車輌のロードホールディング性を向上させることができる。

最良の形態7.

上記最良の形態6では、緩衝部材23kにより結合された2本のアーム23m, 23nから成る略A型あるいは略H型のリンク機構から成る緩衝機構23A, 23Bを用いて、インホイールモータ3の非回転側ケース3aと車輌の足回り部品であるナックル5とを結合した場合について説明したが、インホイールモータ3を搭載する車輌が車軸式サスペンション機構を備えた車輌である場合には、第31図に示すように、上記緩衝機構23A, 23Bと同様の構成の緩衝機構24により、非回転側ケース3aと車軸9Jとを結合することにより、タイヤ接地変動力を減少させることができる。

上記緩衝機構24としては、例えば、それぞれが車軸9Jに回転可能に結合された2本のアーム24m, 24nから成る略H型あるいは略A型のリンク機構の、上記2本のアーム24m, 24nをバネまたはダンパーから成る緩衝部材24kにより結合したものを用いることができる。なお、本例では、2本のアーム24m, 24nを、車軸9Jを介して、互いに回転可能に結合させるとともに、伸縮方向が車輌の上下方向と一致するように、その一端が車軸9Jに結合された2つの緩衝部材24k, 24kを介して、2本のアーム24m, 24nを連結する構成とした。なお、上記緩衝部材24k, 24kは、取付け部材24sを介して、アーム24m, 24nに取付けてもよいし、アーム24m, 24nに直接取付けてもよい。

これにより、車軸式サスペンション機構を備えた車輌においても、非回転側ケース3aとナックル5とを、モータ3の上下方向に揺動可能に結合することができる、タイヤ接地変動力を更に減少させることができる。

最良の形態8.

第32図は、本最良の形態8に係わるインホイールモータシステムの構成を示す図で、同図において、1はタイヤ、2はリム2aとホイールディスク2bとから成るホイール、3はアウターロータ型のインホールモータ、4は上記ホイール2とその回転軸において連結されたハブ部、5は車軸9Jに連結される車輌の足

回り部品であるナックル、7はショックアブソーバ等から成るサスペンション部材、8は上記ハブ部4に装着された制動装置、18は上記最良の形態3の第16図～第18図に示した、プレート表裏に作動方向が直交するように配置された複数の直動ガイドが取付けられた中空円盤状のプレートを備え、インホールモータ3のロータ3Rを支持する回転側ケース3bとホイール2とを、ホイール2のラジアル方向に互いに偏心可能に結合するフレキシブルカップリング、25はインホールモータ3のステータ3Sを支持する非回転側ケース3aを、ナックル5に対して車輌上下方向に弾性的に支持するための緩衝装置である。なお、上記フレキシブルカップリング18に代えて、回転側ケース3bとホイール2とを、上記最良の形態2に示した等速ジョイント16や上記最良の形態5、6のフレキシブルカップリング19、20等の駆動力伝達機構を用いて結合してもよい。

上記緩衝装置25は、第33図に示すように、直動ガイド25aを介して互いに車輌の上下方向に作動方向が限定され、かつ、車輌の上下方向に作動するバネ25b及びダンパー25cにより結合された2枚のプレート25A、25Bを備えたもので、本例では、ナックル5に結合された車軸9Jに連結され、サスペンション部材7側に位置するプレート（以下、ナックル取付けプレートという）25Bの4隅に、車輌の上下方向に伸縮する4個のバネ25bを取付け、その中央部に設けられた車軸9Jとの連結孔25mの両側に、車輌の上下方向に伸縮する2個のダンパー25cを取り付け、モータ3側に位置するプレート（以下、モータ取付けプレートという）25Aの上記バネ25bの上部あるいは下部に対応する位置にバネ受け部25dを、上記ダンパー25cの上部に対応する位置、すなわち、車軸9Jとの連結孔25nの両側の上部に、ダンパー受け部25eを取付けるとともに、上記プレート25A、25Bとを、プレートの中心に対して対称な位置に配置された4個の直動ガイド25aにより結合したものである。

上記モータ取付けプレート25Aとナックル取付けプレート25Bとは、上記4個の直動ガイド25aにより、車輌上下方向に案内されるとともに、バネ25b及びダンパー25cにより結合されているので、減衰力を発生しつつ、インホールモータ3を上下運動方向に拘束することができる。

このように、本最良の形態8では、インホールモータ3のロータ3Rを固定

する回転側ケース3bとホイール2とをフレキシブルカップリング18で結合し、ステータ3Sを支持する非回転側ケース3aはホイール2（または、車軸9J）の回転方向に対して固定され、車輪上下方向に揺動可能に結合するようにしたので、回転側ケース3bからホイール2へのトルクの伝達効率を向上させることができるとともに、タイヤ接地変動力を減少させることができ、車輪のロードホールディング性を向上させることができる。

最良の形態9.

上記最良の形態8では、プレート25A, 25Bとを、直動ガイド25a, バネ25b及びダンパー25cにより結合したが、上記ダンパー25c, 25cに代えて、第34図、第35図に示すように、油圧シリンダ26と、この油圧シリンダ26と耐圧ホース27, 28により連結されたリザーバータンク29とを備えた緩衝装置30, 30を用いることにより、ステータ3Sを支持する非回転側ケース3aをホイール2（または、車軸9J）の回転方向に対してより確実に固定することができるとともに、車輪上下に揺動可能に結合させることができるので、タイヤ接地変動力を更に減少させることができる。

第36図は、上記油圧シリンダを備えた緩衝装置30の詳細を示す図で、本例では、上記リザーバータンク29を、ピストンロッド26Lの一端側が固定されたピストン26Pにより隔てられた、油圧シリンダ26の上室26aに連通する伸び側リザーバータンク29Aと、油圧シリンダ26の下室26bに連通する縮み側リザーバータンク29Bとに分け、上記油圧シリンダ26の上室26aと伸び側リザーバータンク29Aとを伸び側バルブ（オリフィス）27mを介して連結するとともに、下室26bと縮み側リザーバータンク29Bとを縮み側バルブ（オリフィス）28mを介して連結するようになっている。なお、27n, 28nは上記伸び側バルブ27mと縮み側バルブ28mのそれぞれを迂回する分岐油流路27k, 28kにそれぞれ設けられた、リザーバータンク29から油圧シリンダ26への作動油29sの逆流を防止するための伸び側チェック弁と縮み側チェック弁である。

なお、本例では、第35図に示すように、足回り部品であるナックル5に連結

されるナックル取付けプレート 25B には、構造の単純な油圧シリンダ 26 のみを配置し、減衰力を発生させる作動油 29S の流量を保証するリザーバータンク 29 を足回り以外の位置（ここでは、車軸 9J の図示しない車体側）に装着するようしている。

本例の緩衝装置 30 では、油圧シリンダ 26 のピストン上室 26a 及び下室 26b を、独立したバルブ 27m, 28m とリザーバータンク 29A, 29B とにそれぞれ耐圧ホース 27, 28 にて接続した構造としているので、緩衝装置 30 の伸び側の減衰力と縮み側の減衰力を別個に調整することができるという利点を有する。

また、第 37 図に示すように、油圧シリンダ 26 のピストン上室 26a との下室 26b とを、それぞれ、独立したバルブ 27m, 28m で接続した後、両流路を共通のリザーバータンク 29C に接続する構成としたり、第 38 図に示すように、油圧シリンダ 26 のピストン上室 26a との下室 26b とを、それぞれ、独立したバルブ 27m, 28m で接続した後、ピストン下室 26b とリザーバータンク 29C とを接続する構成とすれば、緩衝装置 30 の部品点数を減らすことができるとともに、緩衝装置 30 を小型化することができる。

最良の形態 10.

第 39 図は、本上記最良の形態 10 に係わるインホイールモータシステムの構成を示す図で、第 40 図はその要部断面図である。各図において、1 はタイヤ、2 はリム 2a とホイールディスク 2b とから成るホイール、3I は半径方向に対して外側に設けられた非回転側ケース 3a に固定されたステータ 3S と、半径方向に対して内側に設けられ、軸受け 3j を介して上記非回転側ケース 3a に対して回転可能に接合された回転側ケース 3b に固定されたロータ 3R とを備えた中空形状のインナーロータ型モータ（インホイールモータ）である。

4 は上記ホイール 2 とその回転軸において連結されたハブ部、5 は上下のサスペンションアーム 6a, 6b に連結されるナックル、7 はショックアブソーバ等から成るサスペンション部材、8 は上記ハブ部 4 に装着されたブレーキロータ 8a とブレーキキャリパー 8b とを備えたブレーキディスクから成る制動装置であ

る。

本例では、上記インホイールモータ3Iの外側ケースである非回転側ケース3aと車輌の足回り部品であるナックル5とを、上記非回転側ケース3aを車輌の上下方向に案内する直動ガイド部材21aと、この直動ガイド部材21aの稼動方向に伸縮するバネ部材とダンパーとから成るショックアブソーバ21bとを備えた直動ガイド機構21を用いて結合するとともに、上記モータ3の内側ケースである回転側ケース3bとホイール2とを、上記最良の形態3の第16図～第18図に示した、プレートの表裏に作動方向が直交するように配置された複数の直動ガイド18p, 18qが取付けられた中空円盤状のプレート18A～18Cから成るフレキシブルカップリング18を用いて結合する。上記フレキシブルカップリング18により、インホールモータ3のロータ3Rを支持する回転側ケース3bとホイール2とは、ホイール2のラジアル方向に互いに偏心可能に結合される。

なお、直動ガイド機構21は、断面形状がL字型の連結部材21tの一方の切片を非回転側ケース3aのホイール2とは反対側の側面に固定し、他方の切片に、一端がナックル5に固定された上記直動ガイド機構21の上端部を取付けるようすればよい。

本最良の形態10では、上記のように、上記非回転側ケース3aを車輌の上下方向に案内する直動ガイド部材21aと、この直動ガイド部材21aの稼動方向に伸縮するバネ部材とダンパーとから成るショックアブソーバ21bとを備えた直動ガイド機構21を用いてナックル5に取り付け、インホールモータ3を車輌の足回り部品であるバネ下部分に対してフローティングマウントすることができるよう構成したので、モータ軸と車輪軸とは別々に径方向に振動可能となる。このため、モータ質量は、車輌のバネ下質量相当分から切り離され、いわゆるダイナミックダンパーのウェイトとして作用する。

ダイナミックダンパーのウェイトは、凹凸路走行時におけるバネ下振動を打ち消すため、タイヤ接地力の変動が低減されるので、車輌のロードホールディング性が向上するだけでなく、悪路走行時のモータ3への振動入力を減少させることができるので、モータ3の振動負荷を低減することができる。

また、インホイールモータ3の回転側ケース3bとホイール2とをフレキシブルカップリング18を用いて連結したので、インホイールモータ3はフレキシブルカップリング18の直動ガイド18p, 18qの作動方向、すなわち、中空円盤状のプレート18A～18Cのラジアル方向沿っては動くことができるが、回転方向には上記直動ガイド18p, 18qの制限によって動くことができない。したがって、ロータ3Rからの回転トルクをホイール2に効率的に伝達することができる。

また、悪路走行時にはモータが振動してモータ軸と車輪軸とが偏心するが、上記フレキシブルカップリング18を用いることにより、偏心しても回転をスムーズに伝達することができる。

なお、上記フレキシブルカップリング18に代えて、上記最良の形態4または最良の形態5に示したフレキシブルカップリング19, 20等の駆動力伝達機構を用いることにより、駆動伝達効率を更に向上させることが可能となる。

また、本発明のインホイールモータシステムにおいても、車両質量はハブ部4が支えるため、モータ3本体への荷重負荷が小さい。したがって、ロータ3Rとステータ3Sとの間のエアギャップ変化を小さくできるので、ケース剛性を下げることができ、モータ3を軽量化することができる。

なお、本発明にアウターロータ型モータを使用した場合には、回転部のペアリングはアウターレース側が回転することになり、モータが高速回転する際にはその遠心力によりアウターレースが径方向外側に拡大してペアリングにガタが生じ、耐久性において好ましくない。

したがって、本例のように、内側が回転するインナーロータ型モータを用いることにより、ペアリングはインナーレースが回転するため、高速回転時にはインナーレースが径方向に拡大するので、ペアリングのガタは発生しない。また、インナーロータ型はアウターロータ型に比べて回転部分の半径が小さいので、慣性モーメントを小さくでき、アクセル操作に対する応答性も向上させることができるので、車両の走行安定性に優れたインホイールモータ車を実現することが可能となる。

<実施例1>

本実施の形態1の構成によるインホイールモータシステムにおける振動レベルを、以下の第41図～第43図及び第44図の表に示すような、凹凸路走行時の車輛振動モデルにより解析し、従来のシステムにおける接地力の変動レベルと比較した結果を第45図のグラフに示す。

なお、第45図において、横軸は加振周波数(Hz)、縦軸はタイヤ接地力の変動レベル(N)である。また、比較例1-1は、インホイールモータが搭載されていない場合の車輛振動モデルである。

従来のシステムでは、ホイールやナックル等のバネ下質量相当部分に対してインホイールモータが直接装着されるので、その車輛振動モデルは、第41図に示すような2自由度の振動モデルで表わされる(比較例1-2)。詳細には、バネ下質量 m_1 がタイヤの接地面Rと弾性体 k_1 及びダッシュポット c_1 により結合され、上記バネ下質量 m_1 とバネ上質量 m_2 とが弾性体 k_2 及びダッシュポット c_2 により結合された振動モデルにおいて、上記バネ下質量 m_1 にインホイールモータの質量が付加されるようなモデルとなる。このように、モータが直接装着された場合には、バネ下質量が増大するためタイヤ接地力の変動レベルが増大する。タイヤは、図46に示すように、接地荷重に対する非線形性を有するので、接地力の変動が大きいと、タイヤCP(コーナリングパワー)等の能力が低下し、ロードホールディング性が低下する。これを上記比較例1-1のレベルに維持するためには、モータと足回り部品の総重量を同一にする必要がある。しかしながら、要求される強度を満足させながら足回り部品を大幅に軽量化するためには、軽合金等を多用するなど、深刻なコストアップが予想されるので、実用的とは言えない。

一方、軽量化を実施せずに凹凸路走行時の荷重変動レベルを低減する方法としてダイナミックダンパーと呼ばれる方法がある。このダイナミックダンパーは、第42図に示すように、上記第41図に示した2自由度モデルに対して、弾性体 k_3 とダッシュポット c_3 を介して、新たな質量 m_3 を追加した3自由度モデル(比較例1-3)で表わせるもので、この方法によれば、軽量化対策をすることなく、タイヤ接地力の変動レベルを低減することができる。しかしながら、上記ダ

イナミックダンパーにおいては、ウエイトを増やすほど変動低減効果が向上するが、この追加ウエイトは、車両にとって車重増等の悪影響があるため、あまり上記ウエイトを増やすことができないので、変動低減効果には限界がある。

これに対して、本発明のインホールモータシステムにおいては、第1図や第7図、あるいは、第39図に示すように、インホイールモータが弾性体または弾性体とガイド機構を介して足回り部品（バネ下部）に結合されているので、車両振動モデルとしては、第43図に示すような、ダイナミックダンパーのウエイトが上記インホイールモータの質量 m_3 に相当する3自由度モデルで表わせる（実施例1-1）。

したがって、第45図のグラフに示すように、余分に車重を増すことなく変動レベルを低減することができる。

このとき、上記取付けられたインホイールモータの共振周波数 f_3 を、下記の式に示すように、バネ上部の共振周波数 f_2 よりも高く、かつ、バネ下部の共振周波数 f_1 よりも低くなるように、インホイールモータの質量 m_3 と、バネ下部とを結合する弾性体の弾性定数 k_3 とを調整することにより、タイヤ接地力の変動レベルを確実に低減することができる。

【数1】

$$f_2 < f_3 < f_1$$

$$f_1 = \frac{1}{2\pi} \sqrt{\frac{m_1}{k_1}} \quad f_2 = \frac{1}{2\pi} \sqrt{\frac{m_2}{k_2}} \quad f_3 = \frac{1}{2\pi} \sqrt{\frac{m_3}{k_3}}$$

また、実施例1-2のように、上記構成において、モータ及び足回り部品を軽量化したり、実施例1-3のように、弾性体の弾性定数を小さくしたり、更に、実施例4のように、両者を組み合わせた場合には、変動レベルを更に低減することができる（第44図の表、第46図のグラフを参照）。

最良の形態11.

図47は、本最良の形態11に係わるインホイールモータシステムの構成を示す図で、同図において、1はタイヤ、2はリム2aとホイールディスク2bとか

ら成るホイール、3は非回転側ケース3aに固定されたステータ3Sと、半径方向に対して外側に設けられ、軸受け3jを介して上記非回転側ケース3aに対して回転可能に接合された回転側ケース3bに固定されたロータ3Rとを備えたアウターロータ型のインホールモータである。

また、4はホイール2とその回転軸において連結されたハブ部、5はサスペンションアーム6a、6bに連結された、車輌の足回り部品であるナックル、7はサスペンション部材、8は制動装置である。

本最良の形態11では、インホールモータ3の非回転側ケース3aを、車輌の足回り部品であるナックル5に結合し、上記非回転側ケース3aと軸受け3jを介して回転可能に接合された回転側ケース3bを、回転するホイール2に内接するように結合するとともに、上記ホイール2とその回転軸において連結されたハブ部4とナックル5とを、上記中空形状のインホールモータ3の内側に設けられた、ハブペアリング31により接合するように構成することにより、車輌重量をホイール2と、上記非回転側ケース3a、軸受け3j、及び、回転側ケース3bとにより構成されるモータケース3Cとに分配することを可能とした。

すなわち、上記構造を採ることにより、車輌重量は、「ハブペアリングの剛性を含むホイール剛性」と「モータケースの剛性」との比で、ホイール2とモータケース3Cとに配分されるので、車輪毎の車輌重量は、モータケース3Cのみではなく、ハブペアリング31にも分担される。これにより、モータケース3Cへの荷重負荷が低減され、ロータ3Rとステータ3Sとの間に形成されたエアギャップ3gの変化を小さくすることができるので、モータケース3Cの剛性を下げるか、あるいは、モータ自身を小型化するなどして、インホールモータ3を軽量化することができる。したがって、車輌のバネ下、バネ上振動レベルを低減することができるので、車輌の乗り心地性を向上させることができる。

また、本例では、外側ケースである回転側ケース3bがホイール2に内接するように結合しているので、インホールモータ3からホイール2にトルクを伝達することができるとともに、制動装置8をハブ部4に装着するようにしているので、制動時には、上記ハブ部4及びナックル5にのみ制動トルクが伝達し、モータケース3Cには制動反力が作用しない。したがって、モータケース3Cの剛性

を小さくできるので、インホイールモータ3を更に軽量化することができる。

このとき、第48図に示すように、回転側ケース3bを、弾性部材32を介してホイール2に結合させることにより、モータケース3Cの歪を更に低減することができる。

すなわち、ホイール2は、路面等から様々な方向の応力を受けて歪んだ状態で回転するので、このホイール2の変形を上記弾性部材32により吸収することにより、モータケース3Cの歪を低減することができる。したがって、モータケース3Cの剛性を更に小さくでき、インホイールモータ3を軽量化することができる。また、上記構成においては、回転側ケース3bとホイール2とは、弾性部材32により結合されているので、ホイール2が歪んでいても、インホイールモータ3からホイール2にトルクを伝達することができる。

上記弾性部材32として、ゴム等の弾性材料を用いた場合には、上記弾性部材32を構成する材料としては、縦弾性係数が1MPa～120MPaである材料を用いることが好ましい。また、上記縦弾性係数が1MPa～40MPaであれば、更に好ましい。

なお、第49図に示すように、ハブ部4に、通常の自動車と同様に、ドライブシャフト9との連結部4Dを設けるようにすれば、インホイールモータ3以外の車載の動力機関またはモータからの動力を、ドライブシャフト9を介して、ホイール2に伝達することができる。したがって、例えば、ガソリンエンジン車の出力軸を本例のインホイールモータシステムのハブ部4に接続することにより、ハイブリットカーとすることが可能となる。

最良の形態12.

第50図は、本最良の形態12に係わるインホイールモータシステムの構成を示す図で、同図において、1はタイヤ、2はリム2aとホイールディスク2bから成るホイール、3は半径方向に対して内側に設けられた非回転側ケース3aに固定されたステータ3Sと、半径方向に対して外側に設けられ、軸受け3jを介して、上記非回転側ケース3aに対して回転可能に接合された回転側ケース3bに固定されたロータ3Rとを備えたアウターロータ型のインホールモータであ

る。

4はホイール2とその回転軸において連結されたハブ部、5は上下のサスペンションアーム6a, 6bにそれぞれ連結された、車輌の足回り部品であるナックル、7はショックアブソーバ等から成るサスペンション部材、8は上記ハブ部4に装着されたブレーキディスクから成る制動装置である。

また、33は上記インホイールモータ3を車体100側に取付けるためのモータ専用の緩衝装置、34はインホイールモータ3とホイール2間に設けられた、上記最良の形態4と同様の構成の駆動力伝達機構であるフレキシブルカップリング、35は上記非回転側ケース3aとナックル5間に設けられた、上記最良の形態4と同様の構成の直動ガイド機構で、この直動ガイド機構35には、上記非回転側ケース3aには直接連結されず、ナックル5にのみ連結された、ホイール2とインホイールモータ3との衝突を防止するための衝突防止用のバネ部材36が設けられている。

上記モータ専用の緩衝装置33は、車体100側に延長するモーター用アーム33aと、このモーター用アーム33aと車体100とを結合する弾性体あるいはバネ部材から成るダンパー33bとから構成され、このダンパー33bを介して車体100側に連結された上記モーター用アーム33aにより、インホイールモータ3の非回転側ケース3aを支持する。したがって、フレキシブルカップリング34により、インホイールモータ3を車体100及びホイール2に対して、回転方向には振動せず、上下方向にのみ振動させて、回転トルクを効率的に伝達することができるとともに、上記モータ3を、上記モータ専用の緩衝装置33を用いて車体100側に取付けることにより、インホイールモータ3をバネ上部分に搭載するような構成とすることが可能となる。

本最良の形態12のインホールモータシステムにおいては、インホイールモータ3の非回転側ケース3aをモータ専用の緩衝装置33を介して車体100側に取付けるようにしているので、インホイールモータ3をバネ上部分に搭載することになり、バネ下質量を低減することができる。したがって、タイヤ接地力変動を低減することができ、車輌の走行安定性を向上させることができる。

また、本例では、ホイール2とインホイールモータ3との間に設けられた衝突

防止用のバネ部材 3 6 が、ホイール 2 とインホイールモータ 3 とが衝突することを防止するバンプラバーの役割をするので、車体のロール等によりサスペンションが大きくストロークしたような場合でも、ホイール 2 とインホイールモータ 3 とが直接衝突することを防止することができる。なお、上記衝突防止用のバネ部材 3 6 は、回転側ケース 3 b とホイール 2 との間に設けても、同様の効果を得ることができる。また、上記衝突防止用のバネ部材 3 6 をケースーナックル間、あるいはホイールモータ間とケースーナックル間の両方に設けてもよい。

なお、第 5 1 図に示すように、上記直動ガイド機構 3 5 及び衝突防止用のバネ部材 3 6 に加えて、インホイールモータ 3 の非回転側ケース 3 a とナックル 5 との間をバネ部材からなる緩衝部材 3 7 によって連結することにより、タイヤ接地力の変動を更に低減することができる。すなわち、インホイールモータ 3 を車輌のバネ下質量相当部分であるナックル 5 に緩衝部材 3 7 を介して連結することで、インホイールモータ 3 の質量は、バネ下質量に対して、いわゆるダイナミックダンパーのウエイトとして作用する。したがって、車輌の凹凸路走行時におけるタイヤ接地力の変動を更に低減することができ、車輌のロードホールディング性を向上させることができる。また、上記構成により、インホイールモータ 3 の質量は車輌のバネ下質量相当部分から切り離されるので、悪路走行時においても、上記インホイールモータ 3 には、直接振動が伝達されず、インホイールモータ 3 への振動負荷も低減される。

<実施例 2 >

本最良の形態 1 2 によるインホイールモータシステムと従来のシステムにおける接地力の変動レベルを、以下の第 5 2 図～図 5 4、及び、第 5 5 図の表に示すような、凹凸路走行時の車輌振動モデルにより解析した結果を第 5 6 図のグラフに示す。なお、比較例 2-1 は、通常のインホイールモータシステムを採用していない電気自動車の例で、ここでは、モータは車体側に搭載されたため、モータ質量はバネ上質量に相当する。

なお、第 5 6 図において、横軸は加振周波数 (Hz) 、縦軸はタイヤ接地力の変動レベル (N) である。

例えば、上記第79図に示したような従来のインホイールモータシステムでは、モータはホイールやナックル等に取付けられるため、モータ質量はバネ上質量に相当するので、車輌振動モデルとしては、図52に示すような2自由度のバネ下振動モデルで表わされる（比較例2-2）。詳細には、バネ下質量 m_1 がタイヤの接地面と弾性体 k_1 及びダッシュポット c_1 により結合され、上記バネ下質量 m_1 とバネ上質量 m_2 とが弾性体 k_2 及びダッシュポット c_2 により結合された振動モデルにおいて、上記バネ下質量 m_1 にインホイールモータの質量が付加されるようなモデルとなる。このように、モータが直接装着された場合には、バネ下質量が増大するためタイヤ接地力変動レベルが増大し、タイヤ能力が低下（第56図）する。

このタイヤ接地力変動レベルを上記比較例2-1のレベルに維持するためには、比較例2-3に示すように、モータと足回り部品の総重量を同一にする必要がある。しかしながら、要求される強度を満足させながら足回り部品を大幅に軽量化するためには、軽合金等を多用するなど、深刻なコストアップが予想されるので、実用的とは言えない。

これに対して、本発明のインホールモータシステムにおいては、第50図に示すように、インホールモータを、弾性体 k_3 とダッシュポット c_3 に相当する緩衝装置を介して車体側に取付けるとともに、モータ専用の緩衝装置を介して車体100側に取付ける構成としているので、車輌振動モデルとしては、第53図に示すように、上記第52図に示した2自由度モデルに対して、モータの質量 m_3 を弾性体 k_3 とダッシュポット c_3 を介してバネ上質量 m_2 に結合させた3自由度モデル（実施例2-1）で表わすことができる。

したがって、第56図のグラフに示すように、接地力変動レベルを、上記比較例1に示した、通常のインホイールモータシステムを採用していない電気自動車と同等レベルにすることができる。

また、第51図に示すように、インホイールモータを、上記緩衝装置を介して車体側に取付けるとともに、インホイールモータと足回り部品との間に、弾性体 k_4 とダッシュポット c_4 で構成される緩衝部材を加えた構造とした場合には、車輌振動モデルとしては、第54図に示すような、モータの質量 m_3 が弾性体 k

c_3 とダッシュポット c_3 によりバネ上質量 m_2 に結合させるとともに、上記モータの質量 m_3 がバネ下質量 m_1 に対してダイナミックダンパーのウェイトとなるように結合されたモデルで表わせる（実施例 2-2）。

したがって、第 5 6 図のグラフに示すように、余分に車重を増すことなく、10 Hz 以上の接地力変動レベルを低減することができる。

また、実施例 2-3 のように、インホイールモータと車体間のバネ力 k_3 を弱くし、モータと足回り部品との間のバネ力 k_4 を強くすることにより、更に 10 Hz 以上の接地力変動レベルを低減することができる。

最良の形態 13.

上記最良の形態 1～12 では、通常のインホイールモータ 3 について説明したが、中空形状のインナーロータ型モータと減速ギヤとを組み合わせたギヤードモータについても、上記モータを緩衝部材または緩衝装置を介して、車輪バネ下部に取付けることにより、タイヤ接地力変動を低減して、ロードホールディング性を向上させることができるとともに、ホイールに確実に回転力を伝達させることができる。

第 5 7 図は、本最良の形態 13 に係わるインホイールモータシステムの構成を示す図で、第 5 8 図はその要部断面図である。各図において、1 はタイヤ、2 はリム 2a とホイールディスク 2b とから成るホイール、40 は電気モータ 41 と遊星減速機 42 とをモータケース 43 に一体に組み込んだギヤードモータ（インホイールモータ）、4 はホイール 2 とその回転軸において連結されたハブ部、5 は上下のサスペンションアーム 6a、6b にそれぞれ連結された、車輪の足回り部品であるナックル、7 はショックアブソーバ等から成るサスペンション部材、8 は上記ハブ部 4 に装着されたブレーキディスクから成る制動装置である。

また、44 はギヤードモータ 40 の非回転部であるモータケース 43 とナックル 5 とを連結するための弾性体、45 は遊星減速機 42 の出力軸とホイール 2 を連結する、自在継手 45j を有するシャフトである。

ギヤードモータ 40 の電気モータ 41 は、半径方向に対して外側に設けられた非回転側ケース 41a に固定されたステータ 41S と、半径方向に対して内側に

設けられ、軸受け 4 1 j を介して上記非回転側ケース 4 1 a に対して回転可能に接合された回転側ケース 4 1 b に固定されたロータ 4 1 R とを備えた中空形状のインナーロータ型モータで、上記非回転側ケース 4 1 a は、固定部であるナックル 5 に弾性体 4 4 を介して結合されたモータケース 4 3 に取り付けられており、回転側ケース 4 1 b は、連結部材 4 1 d により遊星減速機 4 2 のサンギヤ 4 2 a と連結されるとともに、モータケース 4 3 の中空状の軸部を構成する内壁 4 3 a に軸受け 4 3 b を介して回転可能に取り付けられている。上記遊星減速機 4 2において、上記サンギヤ 4 2 a の回転速度はプラネタリーギヤ 4 2 b の公転周期に相当する速度に変換されて減速され、キャリア 4 2 c から遊星減速機 4 2 の出力軸に連結された上記シャフト 4 5 を介してホイール 2 に伝達される。

本例では、モータケース 4 3 とナックル 5 とを弾性体 4 4 を介して結合する際に、第 59 図に示すように、円板状のモータ取付部材 4 6 上に 4 個の弾性体 4 4 を対称に配置するとともに、上記弾性体 4 4 , 4 4 間に、モータケース 4 3 を上下方向に案内する直動ガイド 4 7 k をそれぞれ設けたモータ取付け機構 4 7 を用いて結合することにより、モータの揺動方向を車輪に対して上下方向に限定するようしている。

本例では、上記のように、ギヤードモータ 4 0 の非回転部であるモータケース 4 3 を、弾性体 4 4 を用いてナックル 5 に取り付けることにより、上記ギヤードモータ 4 0 を車両の足回り部品であるバネ下部分に対してフローティングマウントすることができるよう構成したので、モータ軸と車輪軸とは別々に径方向に揺動可能となる。このため、モータ質量は、車両のバネ下質量相当分から切り離され、上記最良の形態 1 ~ 12 の場合と同様に、いわゆるダイナミックダンパーのウェイトとして作用するので、凹凸路走行時におけるバネ下振動を打ち消して、タイヤ接地力の変動が低減される。したがって、車両のロードホールディング性が向上するだけでなく、悪路走行時のギヤードモータ 4 0 への振動入力を減少させることができるので、上記モータ 4 0 の振動負荷を低減することができる。

また、モータケース 4 3 とナックル 5 とを、弾性体 4 4 とモータケース 4 3 を上下方向に案内する直動ガイド 4 7 k を備えたモータ取付け機構 4 7 により結合したので、ギヤードモータ 4 0 は車両の上下方向に沿って動くことはできるが、

回転方向には直動ガイド47の制限によって動くことができないため、非回転部であるモータケース43の周り止めができる。また、悪路走行時にはモータが振動してモータ軸と車輪軸が偏心するが、上記自在継手45jを用いることにより、偏心してもモータの回転をスムーズに伝達することができる。

また、本最良の形態のインホイールモータシステムにおいては、車両質量はハブ部4が支えるため、モータ40本体への荷重負荷が小さい。したがって、ロータ41Rとステータ41Sとの間のエアギャップ変化を小さくできるので、ケース剛性を下げることができ、モータ40を軽量化することができる。

また、ギヤードモータ40は、その中心を通る自在継手45jを有するシャフト45によりハブ部4と連結されるため、ギヤードモータ40が足回り部分に対して相対的に揺動しても、ホイール2に確実に回転力を伝達することができる。

また、本例では、インホイールモータとしてギヤードモータ40を使用しているので、アウターロータ型ダイレクトドライブモータを使用した場合に比較して、同一のトルクを発生するのにモータの容量を小さくできるとともに、モータ重量も低減することができるので、車両総重量の低減やモータ製造コストの軽減が可能となる。更に、ギヤードモータ40はギヤ比が選択できるため、同一のモータでトルクカーブを自由に設定できるため、アウターロータ型ダイレクトドライブに比べて汎用性が向上する。

<実施例3>

上記最良の形態13によるインホイールモータシステムと従来のシステムにおける接地力の変動レベルを、以下の第60図～第62図及び第63図の表に示すような、凹凸路走行時の車両振動モデルにより解析した結果を第64図のグラフに示す。

なお、比較例3-1は、通常のインホイールモータシステムを採用していない電気自動車の例で、ここでは、モータは車体側に搭載されるため、モータ質量はバネ上質量に相当する。

従来のインホイールモータシステムでは、モータはホイールやナックル等のバネ下質量相当に装着されるので、車両振動モデルとしては、第60図に示すよう

な2自由度のバネ下振動モデルで表わされる（図63の表の比較例3-2）。詳細には、バネ下質量 m_1 がタイヤの接地面と弾性体 k_1 及びダッシュポット c_1 により結合され、上記バネ下質量 m_1 とバネ上質量 m_2 とが弾性体 k_2 及びダッシュポット c_2 により結合された振動モデルにおいて、上記バネ下質量 m_1 にインホイールモータの質量が付加されるようなモデルとなる。このように、バネ下質量相当部分に対してモータを直接装着した場合には、バネ下質量が増大するため、第64図に示すように、タイヤ接地力変動レベルが増大しロードホールディング性が悪化する。

このタイヤ接地力変動レベルを上記比較例3-1のレベルに維持するためには、モータと足回り部品の総重量を同一にする必要がある。しかしながら、要求される強度を満足させながら足回り部品を大幅に軽量化するためには、軽合金等を多用するなど、深刻なコストアップが予想されるので、実用的とは言えない。

一方、特に軽量化を実施せずに凹凸路走行時のタイヤ接地力の変動を低減する方法としては、第61図に示すようなモデルで表わされるダイナミックダンパーと呼ばれる方法がある（第63図の表の比較例3-3）。これは、上記第60図の2自由度モデルのバネ下質量 m_1 に対して、弾性体 k_3 とダッシュポット c_3 を介して新たなウェイト m_3 を追加した3自由度モデルで表せるもので、第64図に示すように、タイヤ接地力の変動を低減する効果を有する。

この方法では、追加ウェイト m_3 を増やすほど効果があるが、この追加ウェイトは、上記変動低減以外には車両重量を増加させるだけなので、車両にとっては悪影響となることから、上記ウェイト m_3 の増加には限界があった。

これに対して、本発明のインホイールモータシステムにおいては、第57図に示すように、インホイールモータ（ギヤードモータ）40を弾性体44を介して車体側に取り付ける構成としているので、車両振動モデルとしては、第62図に示すように、モータ質量を弾性体 k_3 とダッシュポット c_3 とを介してバネ下質量 m_1 に結合させた3自由度モデル（実施例3-1）で表わすことができる。これは、上記第61図において、バネ下質量 m_1 に付加されたモータ質量を取り去り、このモータ質量をダイナミックダンパーに使用する追加ウェイト m_3 としたものである。したがって、第64図のグラフに示すように、余分に車重を増すこ

となく、接地力変動レベルを、上記比較例3-1に示した、通常のインホイールモータシステムを採用していない電気自動車と同等レベルにすることができる。

また、上記実施例3-1に対して、モータ及び足回り部品とともに軽量化した場合（実施例3-2）や、弾性体の弾性係数を小さくした場合（実施例3-3）、両者を組み合わせた場合（実施例3-4）には、タイヤ接地力の変動レベルを更に低減することができる。

最良の形態14.

第65図は、本最良の形態14に係わるインホイールモータシステムの構成を示す図で、同図において、1はタイヤ、2はリム2aとホイールディスク2bから成るホイール、3は半径方向に対して内側に設けられた非回転側ケース3aに固定されたステータ3Sと、半径方向に対して外側に設けられ、軸受け3jを介して上記非回転側ケース3aに対して回転可能に接合された回転側ケース3bに固定されたロータ3Rとを備えたアウターロータ型のインホイールモータである。

4はホイール2とその回転軸において連結されたハブ部、5は上下のサスペンションアーム6a, 6bにそれぞれ連結された、車輌の足回り部品であるナックル、7はショックアブソーバ等から成るサスペンション部材、8は上記ハブ部4に装着されたブレーキディスクから成る制動装置である。

本例では、上記インホイールモータ3の回転側ケース3bとホイール2とを、フレキシブルカップリング51により結合している。上記フレキシブルカップリング51としては、例えば、上記最良の形態4の第22図～第25図、上記最良の形態5の第29図、第30図、あるいは、上記最良の形態6の第32図、第33図などに示したフレキシブルカップリング18, 19, 20と同様の構成のものを用いることができる。

一方、非回転側ケース3aは、第66図にも示すように、中央に切り欠き部52Sが形成された円盤状のモータ取付部材52の外周部に取り付けられており、このモータ取付部材52が、車輌上下方向に案内するライドガイド53Gに装着されたバネ部材から成るダンパー53と、車輌上下方向に案内する直動ガイド

5 4 とを介して、前後方向に長軸を有する中空楕円盤状のモータ上下支持部材 5 5 に結合されている。更に、このモータ上下支持部材 5 5 は、弾性体 5 6 と車輛前後方向に案内する直動ガイド 5 7、及び、中空円盤状のナックル取付部材 5 8 を介して固定部であるナックル 5 に取り付けられている。なお、本例では、上記モータ取付部材 5 2 とモータ上下支持部材 5 5 との間を結合するダンパー 5 3 及び直動ガイド 5 4 と、上記モータ上下支持部材 5 5 とナックル取付部材 5 8 との間を結合する弾性体 5 6 及び直動ガイド 5 7 とを交互にかつ円周方向に対称に 4 個ずつ配置した。

これにより、インホイールモータ 3 を車輛上下方向に直動ガイド及び弾性体を介して支持するとともに、上下方向支持部品と足回り部品であるナックルを車輛前後方向に直動ガイド及び弾性体を介して支持することができる。

すなわち、インホイールモータ 3 の非回転側ケース 3 a を、中空楕円盤状のモータ上下支持部材 5 5 に、車輛上下方向に案内するダンパー 5 3 及び直動ガイド 5 4 とを介し結合するようにしたので、インホイールモータ 3 を車輛の足回り部品であるバネ下部分に対してフローティングマウントすることができ、モータ軸と車輪軸とは別々に上下方向にのみ搖動可能となる。このため、モータ質量は、車輛のバネ下質量相当分から切り離され、いわゆるダイナミックダンパーのウェイトとして作用する。ダイナミックダンパーのウェイトは、凹凸路走行上記におけるバネ下振動を打ち消すため、タイヤ接地力の変動が低減し、車輛のロードホールディング性が向上するだけでなく、悪路走行時のモータ 3 への振動負荷を小さくすることができる。

また、モータ 3、モータ取付部材 5 2 及びモータ上下支持部材 5 5 とナックル 5 とを、弾性体 5 6 及び車輛前後方向に案内する直動ガイド 5 7 とを介して結合させることにより、上記ナックル 5 に対して車輛前後方向にも支持するようにしたので、モータ軸と車輪軸とは別々に車輛前後方向にも搖動可能となり、これにより、タイヤ前後力変動も減少させることができ、タイヤ性能を安定化することができる。

また、本例では、モータ 3 の回転側ケース 3 b とホイール 2 とを、フレキシブルカップリング 5 1 により結合するようにしたので、ロータ 3 R からの回転トル

クをホイール2に効率的に伝達することができるとともに、悪路走行時にはモータが振動してモーター軸と車輪軸とが偏心した場合でも、回転をスムーズに伝達することができる。

なお、上記回転側ケース3bとホイール2とを結合する手段として、上記最良の形態2の第20図、第21に示すような、等速ジョイントを用いてもよい。このとき、ホイール側のジョイントの回転中心とモータ側ジョイントの回転中心とをずらして配置することにより、インホイールモータ3はホイール2内で上下及び前後に揺動するので、偏心しても回転をスムーズに伝達することができる。

また、本例においても、車両質量はハブ部4が支えるため、モータ3本体への荷重負荷が小さい。したがって、ステーターロータ間のエアギャップ変化を小さくできるので、ケース剛性を下げることができ、モータ3を軽量化することができる。

なお、上記例では、インホイールモータ3として、アウターロータ型モータを使用したが、第67図に示すように、インナーロータ型モータ3Iを使用した場合にも、同様の効果を得ることができる。

最良の形態15.

上記最良の14では、ダイレクトドライブモータであるインホイールモータ3を取り付ける場合について説明したが、同様にして、第68図及び第69図に示すように、上記最良の形態13の第57図、第58に示した、電気モータ41と減速ギヤ（遊星減速機）42とをモータケース43に一体に組み込んだギヤードモータ40を取り付けることも可能である。

ギヤードモータ40の取り付けは、第70図に示すように、非回転部であるモータケース43を、車両上下方向に案内する直動ガイド61と弾性体62とを介して、中空円盤状のモータ取付部材63に取り付け、このモータ取付部材63を、弾性体64と車両前後方向に案内する直動ガイド65を介して、中空円盤状のナックル取付部材66を介して固定部であるナックル5に取り付けるようすればよい。また、上記最良の形態13と同様に、減速ギヤ42の出力軸とホイール2とを自在継手45jを有するシャフト45により連結する（第68図、第69

図参照)。

ロータ41Rの回転速度は、サンギヤ42aの周りを公転するプラネタリーギヤ42bの公転周期に相当する速度に変換されて減速され、キャリア42cから遊星減速機42の出力軸に連結された上記シャフト45を介してホイール2に伝達される。

なお、本例では、上記モータケース43とモータ取付部材63との間を結合する直動ガイド61と弾性体62と、上記モータ取付部材63とナックル取付部材66との間を結合する弾性体64及び直動ガイド65とを交互にかつ円周方向に対称に4個ずつ配置した。

これにより、ギヤードモータ40を車輌上下方向に直動ガイド及び弾性体を介して支持するとともに、上下方向支持部品と足回り部品であるナックルを車輌前後方向に直動ガイド及び弾性体を介して支持するようにしたので、上記ギヤードモータ40を車輌の足回り部品であるバネ下部分に対してフローティングマウントすることができ、モータ軸と車輪軸とは別々に径方向に揺動可能となるだけでなく、モータ軸と車輪軸とは別々に車輌前後方向にも揺動可能となる。したがって、タイヤ接地力の変動を低減させ、車輌のロードホールディング性を向上させることができるとともに、タイヤ前後力変動も減少させることができるので、タイヤ性能を安定化することができる。

また、ギヤードモータ40は、その中心を通る自在継手45jを有するシャフト45によりハブ部4と連結されるため、ギヤードモータ40が足回り部分に対して相対的に揺動しても、ホイール2に確実に回転力を伝達することができる。

<実施例4>

上記最良の形態15によるインホイールモータシステムと従来のシステムにおける接地力の変動レベル及び前後力変動を、以下の第71図～第74図及び第75図の表に示すような、凹凸路走行時の車輌振動モデルにより解析した結果を第76図及び第77図のグラフに示す。なお、第71図～第74図において、(a)図は上下方向振動モデルであり、(b)図は前後方向振動モデルである。また、第76図、図77において、横軸は加振周波数(Hz)、縦軸はそれぞれ、タ

イヤ接地力の変動レベル（N）、タイヤ前後力の変動レベル（N）を示す。

比較例4-1～4-3は、通常のサスペンション形式の電気自動車（EV）であり、モータは車体側に搭載されるため、モータ質量はバネ上質量に相当するので、車両振動モデルとしては、図71(a), (b)に示すような2自由度のバネ下振動モデルで表わされる。詳細には、バネ下質量 m_1 がタイヤの接地面と弾性体 k_1 及びダッシュポット c_1 により結合され、上記バネ下質量 m_1 とバネ上質量 m_2 とが弾性体 k_2 及びダッシュポット c_2 により結合された振動モデルにおいて、上記バネ上質量 m_1 に電気モータの質量が付加されるようなモデルとなる。

また、上記第78図～第80図に示した従来のインホイールモータシステムを採用した車両（IWM）では、モータはホイールやナックル等に取り付けられるため、モータ質量はバネ上質量に相当するので、車両振動モデルとしては、第72図(a), (b)に示すような、バネ下質量 m_1 にインホイールモータの質量が付加される2自由度のバネ下振動モデルで表わされる（比較例4-4）。このように、バネ下質量相当部分に対してモータを直接装着した場合には、バネ下質量が増大するため、第76図に示すように、タイヤ接地力変動レベルが増大しロードホールディング性が悪化する。また、第77図に示すように、タイヤ前後力変動レベルも増大しタイヤ性能が不安定になる。

そこで、上記比較例4-2のように、比較例4-1に対してバネ下重量を軽減したり、上記比較例4-3のように、サスペンションの前後剛性を上げるようすればタイヤ前後力変動レベルは軽減するが、この比較例4-4では、バネ下質量 m_1 にインホイールモータの質量が付加されているので、結果的に、タイヤ前後力変動レベルは増大する。

したがって、これをモータが装着されていない上記比較例4-1のレベルに維持するためには、モータと足回り部品の総重量を同一にする必要がある。しかしながら、要求される強度を満足させながら足回り部品を大幅に軽量化するためには、軽合金等を多用するなど、深刻なコストアップが予想されるので、実用的とは言えない。

一方、特に軽量化を実施せずに凹凸路走行時のタイヤ接地力の変動を低減する方法としては、第73図(a), (b)に示すようなモデルで表わされるダイナ

ミックダンパーと呼ばれる方法がある（第75図の表の比較例4-5）。これは、上記第72図（a），（b）の2自由度モデルのバネ下質量 m_1 に対して、弾性体 k_3 とダッシュポット c_3 を介して新たなウェイト m_3 を追加した3自由度モデルで表せるもので、第76図、第77図に示すように、タイヤ接地力の変動レベル及びタイヤ前後力の変動レベルをともに低減する効果を有する。

この方法では、追加ウェイト m_3 を増やすほど効果があるが、この追加ウェイトは、上記変動レベルの低減以外には車輌重量を増加させるだけなので、車輌にとっては悪影響となることから、上記ウェイト m_3 の増加には限界があった。

これに対して、本発明のインホイールモータシステムにおいては、第65図、第67図、あるいは、第68図に示すように、インホイールモータ3（3I, 40）を弾性体及び／または減衰機構を介して車体側に取り付ける構成としているので、車輌振動モデルとしては、第74図（a），（b）に示すように、モータ質量を弾性体 k_3 とダッシュポット c_3 とを介してバネ下質量 m_1 に結合させた3自由度モデル（第75図の実施例4-1）で表わすことができる。これは、上記第74図（a），（b）において、バネ下質量 m_1 に付加されたモータ質量を取り去り、このモータ質量をダイナミックダンパーに使用する追加ウェイト m_3 としたものである。したがって、第76図、第77図のグラフに示すように、余分に車重を増すことなく、接地力変動レベルと前後力変動レベルとを、上記比較例1に示した通常のインホイールモータシステムを採用していない電気自動車と同等レベルにすることができる。

また、上記実施例1に対してモータを重くした場合（第75図の実施例4-2）には、ダイナミックダンパーのウェイトが増加するので、タイヤ接地力の変動レベル及びタイヤ前後力の変動レベルを更に低減することができる。

また、弾性体の弾性係数を大きくした場合（実施例4-3）には、上記変動レベルは増大するので、弾性体の弾性係数は小さくすることが好ましい。

産業上の利用可能性

以上説明したように、本発明によれば、ダイレクトドライブホイールにインホールモータを取付ける際に、上記モータを緩衝部材または緩衝装置を介して、車両のバネ下部に取付けて、インホールモータをバネ下質量に対してダイナミックダンパーのウエイトとして作用させるようにしたので、車両の凹凸路走行における接地力の変動レベルを低減することができ、車両のロードホールディング性を向上させることができるとともに、インホールモータへの振動負荷を低減させることができる。

また、本発明のインホールモータシステムを採用することにより、スペース効率や駆動力の伝達効率に優れ、かつ車両のロードホールディング性のよいインホールモータ車を実現することが可能となる。

請求の範囲

1. ダイレクトドライブホイールにインホイールモータを取付ける際に、上記モータを緩衝部材または緩衝装置を介して、車輪バネ下部に取付けるようにしたことを特徴とするインホイールモータの取付方法。
2. 上記モータの非回転側ケースとナックルとを第1の弾性体を介して結合し、回転側ケースとホイールとを第2の弾性体を介して結合したことを特徴とする請求の範囲1に記載のインホイールモータの取付方法。
3. 上記モータのステータを支持する非回転側ケースと、車輪の足回り部品であるナックルとを直動ガイド機構により結合し、上記モータのロータを支持する回転側ケースとホイールとを、ホイールのラジアル方向に互いに偏心可能な駆動力伝達機構により結合したことを特徴とする請求の範囲1に記載のインホイールモータの取付方法。
4. 上記モータの非回転側ケースとナックルとを、ダンパーを含む直動ガイド機構を介して結合し、回転側ケースとホイールとを、第2の弾性体を介して結合したことを特徴とする請求の範囲1に記載のインホイールモータの取付方法。
5. ダイレクトドライブホイールにインホイールモータを取付ける際に、上記モータの非回転側ケースを、緩衝装置を介して車体側に取付けるようにしたことを特徴とするインホイールモータの取付方法。
6. 上記取付けられたモータ部の共振周波数が、車輪バネ上部の共振周波数よりも高く、バネ下部の共振周波数よりも低い周波数となるように、上記モータを取付けるようにしたことを特徴とする請求の範囲1～請求の範囲5のいずれかに記載のインホイールモータの取付方法。
7. 車輪部に中空形状の電気モータを備え、上記モータによりホイールを駆動するインホイールモータシステムにおいて、上記モータを、緩衝部材または緩衝装置を介して、車輪バネ下部、及び、車体側のいずれか一方、あるいは、両方に取付けて成ることを特徴とするインホイールモータシステム。
8. モータとホイールとを、等速ジョイント、あるいは、ホイールのラジアル

方向に互いに偏心可能な駆動力伝達機構により結合したことを特徴とする請求の範囲7に記載のインホイールモータシステム。

9. 上記駆動力伝達機構を、複数枚の中空円盤状プレートと、隣接する上記プレート間を結合するとともに、上記隣接するプレートを互いに円盤のラジアル方向に案内する直動ガイドとを備えたカップリング機構により構成したことを特徴とする請求の範囲8に記載のインホイールモータシステム。
10. 上記モータのステータを支持する非回転側ケースと、車輌の足回り部品であるナックルとを直動ガイド機構により結合したことを特徴とする請求の範囲7～請求の範囲9のいずれかに記載のインホイールモータシステム。
11. 上記モータの非回転側ケースとナックル間、及び、回転側ケースとホイール間の少なくとも一方あるいは両方に緩衝部材または緩衝装置を設けたことを特徴とする請求の範囲7～請求の範囲10のいずれかに記載のインホイールモータシステム。
12. 上記モータのステータを支持する非回転側ケースと、車輌の足回り部品であるナックルとを第1の弾性体を介して結合するとともに、ロータを支持する回転側ケースとホイールとを第2の弾性体を介して結合したことを特徴とする請求の範囲7に記載のインホイールモータシステム。
13. 上記第1及び第2の弾性体の少なくとも一方あるいは両方を、空気バネにより構成したことを特徴とする請求の範囲12に記載のインホイールモータシステム。
14. 上記第2の弾性体を円筒状とするとともに、この円筒の一端をホイールに結合させ、他端を回転側ケースに結合させたことを特徴とする請求の範囲12に記載のインホイールモータシステム。
15. ホイールと回転側ケースとを、ホイール接線方向と平行に等間隔で配置された16個以下の略板状弾性体によって結合させたことを特徴とする請求の範囲12に記載のインホイールモータシステム。
16. 上記板状弾性体の幅方向の両端面に、モータの接線方向を軸とした回転継ぎ手機構を設けたことを特徴とする請求の範囲15に記載のインホイー

ルモータシステム。

17. 回転側ケースからホイール部方向に伸びるリブと、ホイールから回転側ケース方向に伸びるリブとを、複数箇所において、弾性体で結合したことを特徴とする請求の範囲12に記載のインホイールモータシステム。
18. 上記第1及び第2の弾性体を構成する材料の縦弾性係数を1 MPa～120 MPaとしたことを特徴とする請求の範囲12～請求の範囲17のいずれかに記載のインホイールモータシステム。
19. 上記第1及び第2の弾性体を構成する材料の縦弾性係数を10 GPa～300 GPaとしたことを特徴とする請求の範囲12～請求の範囲17のいずれかに記載のインホイールモータシステム。
20. 上記第1の弾性体の、車輪に対して上下方向の弾性率を前後方向の弾性率よりも低くしたことを特徴とする請求の範囲12～請求の範囲19のいずれかに記載のインホイールモータシステム。
21. 上記第1の弾性体に代えて、上記非回転側ケースを、スプリング及びダンパーを備えた直動ガイド機構を介してナックルに結合させたことを特徴とする請求の範囲12～請求の範囲20のいずれかに記載のインホイールモータシステム。
22. 上記回転側ケースを、等速ジョイントを介してホイールに結合させたことを特徴とする請求の範囲12～請求の範囲21のいずれかに記載のインホイールモータシステム。
23. 第2の弾性体をモータ幅方向における上記モータの質量中心位置に取り付けるようにしたことを特徴とする上記請求の範囲22に記載のインホイールモータシステム。
24. 上記回転側ケースを、複数枚の中空円盤状のプレートと、隣接する上記プレート間を結合するとともに、上記隣接するプレートを互いに円盤のラジアル方向に案内する直動ガイドとを備えたカップリング機構を介して、ホイールに結合させたことを特徴とする請求の範囲12～請求の範囲21のいずれかに記載のインホイールモータシステム。
25. 上記モータのステータを支持する非回転側ケースを、緩衝部材または緩

衝装置を介して、車輌の足回り部品であるナックルと結合させるとともに、モータの回転側ケースを、複数枚の中空円盤状のプレートと、隣接する上記プレート間を結合するとともに、上記隣接するプレートを互いに円盤のラジアル方向に案内する直動ガイドとを備えたカップリング機構を介して、ホイールと結合させたことを特徴とする請求の範囲7に記載のインホイールモータシステム。

26. 上記モータのステータを支持する非回転側ケースを、緩衝部材または緩衝装置を介して、車輌の足回り部品であるナックルと結合させるとともに、モータの回転側ケースを、モータ側とホイール側とにそれぞれ複数の直動ガイドを備えた中空円盤状のプレートを介して、ホイールと結合させたことを特徴とする請求の範囲7に記載のインホイールモータシステム。

27. 上記直動ガイドを中空円盤状のプレートの周上に90°または180°間隔で、かつ、上記プレートの表、裏の同位置にそれぞれ配置したことを特徴とする請求の範囲26に記載のインホイールモータシステム。

28. 上記モータ側の全ての直動ガイドの稼動方向を中空円盤状プレートの径方向に対して45°方向とし、上記ホイール側の全ての直動ガイドの稼動方向を上記モータ側の直動ガイドの稼動方向に対して直交する方向としたことを特徴とする請求の範囲27に記載のインホイールモータシステム。

29. 上記モータのステータを支持する非回転側ケースを、緩衝部材または緩衝装置を介して、車輌の足回り部品であるナックルと結合させるとともに、モータの回転側ケースを、モータ側とホイール側とにそれぞれ複数の直動ガイドを備えた第1の中空円盤状のプレートと、この第1の中空円盤状のプレートの内側に配設され、複数の直動ガイドが上記第1の中空円盤状のプレートとは表、裏逆に配置された第2の中空円盤状のプレートとを介して、ホイールと結合させたことを特徴とする請求の範囲7に記載のインホイールモータシステム。

30. 上記直動ガイドを第1及び第2の中空円盤状のプレートの周上にそれぞれ90°または180°間隔で、かつ、上記プレートの表、裏の同位置にそれぞれ配置するとともに、上記第1及び第2の中空円盤状プレートのモ

ータ側の全ての直動ガイドの稼動方向を上記各プレートの径方向に対して 45° 方向とし、上記各プレートのホイール側の全ての直動ガイドの稼動方向を上記モータ側の直動ガイドの稼動方向に対して直交する方向としたことを特徴とする請求の範囲 29 に記載のインホイールモータシステム。

- 3 1. 上記第 1 及び第 2 の中空円盤状のプレートの質量を等しくしたことを特徴とする請求の範囲 30 に記載のインホイールモータシステム。
- 3 2. 上記直動ガイドを、上記プレートのラジアル方向に延長する少なくとも 1 つの凹部あるいは凸部を有するガイドレールと、このガイドレールに係合するガイド部材とから構成したことを特徴とする請求の範囲 24 ~ 請求の範囲 31 のいずれかに記載のインホイールモータシステム。
- 3 3. 上記ガイドレール及びガイド部材間に鋼球を配設したことを特徴とする請求の範囲 32 に記載のインホイールモータシステム。
- 3 4. 上記プレートの互いに対向する面に、ラジアル方向に切り取られた溝を設けるとともに、上記プレート間に、上記溝に沿って移動可能な鋼球を配設して、上記隣接するプレートを互いに円盤のラジアル方向に案内するようにしたことを特徴とする請求の範囲 24 ~ 請求の範囲 31 のいずれかに記載のインホイールモータシステム。
- 3 5. 上記プレートの枚数を N としたとき、プレートの軸方向に隣り合う上記直動ガイドあるいは溝同士のなす角が、端部から $180 / (N - 1)$ 度づつ進角するように、上記プレートを配置したことを特徴とする請求の範囲 24 ~ 請求の範囲 34 のいずれかに記載のインホイールモータシステム。
- 3 6. 上記モータのステータを支持する非回転側ケースと車輌の足回り部品であるナックルとを、一方のアームの端部が上記非回転側ケースに結合し、他方のアームの端部が車輌の足回り部品であるナックルに結合した、互いに回転可能に結合された 2 本のアームを有し、かつ、上記 2 本のアームをバネ及びダンパーにより結合して成る、少なくとも 1 組の略 A 型または H 型のリンク機構を備えた緩衝部材により結合させたことを特徴とする請求の範囲 7 に記載のインホイールモータシステム。
- 3 7. 車軸式サスペンション機構を備えるとともに、上記モータのステータを

支持する非回転側ケースと車軸とを、一方のアームの端部が上記非回転側ケースに結合し、他方のアームの端部が車軸に結合した、互いに回転可能に結合された2本のアームを有し、かつ、上記2本のアームをバネ及びダンパーにより結合して成る、少なくとも1組の略A型またはH型のリンク機構を備えた緩衝部材により結合させたことを特徴とする請求の範囲7に記載のインホイールモータシステム。

3 8 . 上記非回転側ケースとナックルとを、直動ガイドを介して互いに車輌上下方向に作動方向が限定された2枚のプレートにより結合するとともに、上記2枚のプレートを車輌上下方向に作動するバネ及びダンパーにより結合したことを特徴とする請求の範囲7に記載のインホイールモータシステム。

3 9 . 上記モータを直動ガイド及び緩衝装置を介して車輌の足回り部品であるナックルと車輌上下方向に搖動可能に支持するとともに、上記緩衝装置を、油圧シリンダとリザーバータンク間にバルブを備えた構造としたことを特徴とする請求の範囲7に記載のインホイールモータシステム。

4 0 . 上記油圧シリンダのピストン上室及びピストン下室とが、それぞれ、独立したバルブとリザーバータンクとを備えた作動油流路を有することを特徴とする請求の範囲3 9に記載のインホイールモータシステム。

4 1 . 上記油圧シリンダのピストン上室及びピストン下室とが、それぞれ、独立したバルブを備えた作動油流路を有し、かつ、上記2つの作動油流路が共通のリザーバータンクに接続されていることを特徴とする請求の範囲3 9に記載のインホイールモータシステム。

4 2 . 上記油圧シリンダのピストン上室及びピストン下室とが、それぞれ、独立したバルブを備えた作動油流路により連結され、かつ、ピストン下室にリザーバータンクに接続されていることを特徴とする請求の範囲3 9に記載のインホイールモータシステム。

4 3 . ハブ部に、車載の動力機関出力軸との連結機構を備えたことを特徴とする請求の範囲7～請求の範囲4 2のいずれかに記載のインホイールモータシステム。

- 4 4 . 上記モータをアウターロータ型モータとしたことを特徴とする請求の範囲7～請求の範囲4 3のいずれかに記載のインホイールモータシステム。
- 4 5 . 上記モータをインナーロータ型モータとしたことを特徴とする請求の範囲7～請求の範囲4 3のいずれかに記載のインホイールモータシステム。
- 4 6 . 車輪部に電気モータを備え、上記モータによりホイールを駆動するインホイールモータシステムにおいて、上記モータを中空形状のインナーロータ型モータと減速ギヤを組合わせたギヤードモータとし、このギヤードモータの非回転側ケースと車輌の足回り部品であるナックルとを、緩衝部材を介して結合するとともに、減速機出力軸とホイールとを、自在継手を有するシャフトにより連結したことを特徴とするインホイールモータシステム。
- 4 7 . 上記非回転側ケースとナックルとの間に、上記モータを上下方向に案内する直動ガイドを設けたことを特徴とする請求の範囲4 6に記載のインホイールモータシステム。
- 4 8 . 中空形状のアウターロータ型モータのステータを支持する非回転側ケースを、車輌の足回り部品であるナックルに結合させ、ロータを支持する回転側ケースをホイールに結合させるとともに、モータの内側にホイール支持機構を備えたことを特徴とする請求の範囲4 6に記載のインホイールモータシステム。
- 4 9 . 請求の範囲4 8に記載のインホイールモータシステムにおいて、回転側ケースをホイールに内接させるとともに、上記ナックルと上記ホイールの回転軸に連結されるハブ部とを、上記中空状のモータの内側に設けられたハブペアリングを介して結合させて、上記ホイールを支持するようにしたものである。
- 5 0 . 上記回転側ケースを弾性体を介してホイールに結合させたことを特徴とする請求の範囲4 8または請求の範囲4 9に記載のインホイールモータシステム。
- 5 1 . 上記弾性体を構成する材料の縦弾性係数を1 MPa～1 2 0 MPaとしたことを特徴とする請求の範囲5 0に記載のインホイールモータシステム

- 。
52. ハブ部に、ブレーキディスクまたはブレーキドラムを装着したことを特徴とする請求の範囲48～請求の範囲51のいずれかに記載のインホイールモータシステム。
53. ハブ部に、車載の動力機関出力軸との連結機構を備えたことを特徴とする請求の範囲48～請求の範囲51のいずれかに記載のインホイールモータシステム。
54. 車輪部に中空形状の電気モータを備え、上記モータによりホイールを駆動するインホイールモータシステムにおいて、上記モータを、直動ガイド及び緩衝部材を介して、車輌の足回り部品であるナックルに対して車輌上下方向に支持し、かつ、直動ガイド及び緩衝部材を介して、上記ナックルに対して車輌前後方向にも支持するとともに、モータ回転側ケースとホイールとを、直交カップリングまたは等速ジョイントを介して偏心可能に結合したことを特徴とするインホイールモータシステム。
55. 上記モータをアウターロータ型モータとしたことを特徴とする請求の範囲54に記載のインホイールモータシステム。
56. 上記モータをインナーロータ型モータとしたことを特徴とする請求の範囲54に記載のインホイールモータシステム。
57. 車輪部に電気モータを備え、上記モータによりホイールを駆動するインホイールモータシステムにおいて、上記モータを中空形状のインナーロータ型モータと減速ギヤを組合せたギヤードモータとし、このギヤードモータの非回転側ケースを、直動ガイド及び緩衝部材を介して、車輌の足回り部品であるナックルに対して車輌上下方向に支持し、かつ、直動ガイド及び緩衝部材を介して、上記ナックルに対して車輌前後方向にも支持するとともに、減速機出力軸とホイールとを、自在継手を有するシャフトにより連結したことを特徴とするインホイールモータシステム。

1 / 65

第1図

2 / 65

第2図

第3図

3 / 65

第4図

第5図

4 / 65

第6図

5 / 65

第7図

第8図

6 / 65

第9図

第10図

7 / 65

第11図

第12図

8 / 65

第13図

9 / 65

第14図

第15図

10 / 65

第16図

11 / 65

第17図

12 / 65

第18図

第19図

13 / 65

第20図

第21図

14 / 65

第22図

15 / 65

第23図

第24図

第25図

17 / 65

第26図

18 / 65

第27図

第29図

第30図

第31図

第32図

第33図

25 / 65

第34図

26 / 65

第35図

27 / 65

第36図

28 / 65

第37図

29 / 65

第38図

30 / 65

第39図

第40図

31 / 65

第4 1図

第4 2図

32 / 65

第43図

第44図

	比較例1-1	比較例1-2	比較例1-3	実施例1-1	実施例1-2	実施例1-3	実施例1-4
	m ₂	m ₂	m ₃				
モータ装着部	—	—	重	重	軽	重	重
モータ重量	—	—	重	重	軽	重	重
足回り重量	重	重	重	重	軽	重	軽
ダイナミックダンパー ワエイト種	—	—	通常 ウエイト	モータ	モータ	モータ	モータ
モータW (kg)～1輪	0	25	25	25	15	25	25
足回りW (kg)～1輪	40	40	40	40	24	40	24
ダイナミックダンパー ワエイトW (kg)～1輪	0	0	25	25	15	25	25
m ₁ (kg)～2輪	80	130	80	80	48	80	48
m ₂ (kg)～2輪	470	420	420	420	420	420	420
m ₃ (kg)～2輪	—	—	50	50	30	50	50
k ₁ (N/m)～2輪	400000	400000	400000	400000	400000	400000	400000
k ₂ (N/m)～2輪	80000	80000	80000	80000	80000	80000	80000
k ₃ (N/m)～2輪	—	—	80000	80000	80000	60000	60000
c ₁ (N·s/m)～2輪	100	100	100	100	100	100	100
c ₂ (N·s/m)～2輪	5000	5000	5000	5000	5000	5000	5000
c ₃ (N·s/m)～2輪	—	—	1000	1000	1000	1000	1000

33 / 65

34 / 65

第45図

第46図

35 / 65

第47図

36 / 65

第48図

37 / 65

第49図

38 / 65

第50図

39 / 65

第51図

40 / 65

第52図

第53図

41 / 65

第54図

42 / 65

第55図

	比較例2-1	比較例2-2	比較例2-3	実施例2-1	実施例2-2	実施例2-3
モータ重量	重	重	軽	重	重	重
足回り重量						
モータ(kg)	25	25	15	25	25	25
足回り(kg)	40	40	25	40	40	40
m ₁ (kg)	40	65	40	40	40	40
m ₂ (kg)	250	225	225	225	225	225
m ₃ (kg)	0	0	0	25	25	25
k ₁ (N/m)	220000	220000	220000	220000	220000	220000
k ₂ (N/m)	60000	60000	60000	60000	60000	60000
k ₃ (N/m)	—	—	—	30000	30000	10000
k ₄ (N/m)	—	—	—	—	10000	30000
c ₁ (N·s/m)	50	50	50	50	50	50
c ₂ (N·s/m)	30000	30000	30000	30000	30000	3000
c ₃ (N·s/m)	—	—	—	1000	1000	500
c ₄ (N·s/m)	—	—	—	—	500	1000

43 / 65

第56図

44 / 65

第57図

45 / 65

第58図

46 / 65

第59図

47 / 65

第60図

第61図

48 / 65

第62図

49 / 65

第63図

	比較例3-1	比較例3-2	比較例3-3	実施例3-1	実施例3-2	実施例3-3	実施例3-4
モータ装着部	—	m_1	m_1	m_3	m_3	m_3	m_3
モータ重量	—	重	重	重	軽	重	重
足回り重量	重	重	重	重	軽	重	軽
ダイナミックダンパー	—	—	通常ウェイト	モータ	モータ	モータ	モータ
モータ(kg)	—	25	25	15	25	25	25
足回り(kg)	40	40	40	24	40	40	24
ダンパーウェイト(kg)	0	0	25	15	25	25	25
m_1 (kg)	80	130	80	80	48	80	48
m_2 (kg)	470	420	420	420	420	420	420
m_3 (kg)	—	—	50	50	30	50	50
k_1 (N/m)	4000000	4000000	4000000	4000000	4000000	4000000	4000000
k_2 (N/m)	80000	80000	80000	80000	80000	80000	80000
k_3 (N/m)	—	—	80000	80000	80000	60000	60000
c_1 (N·s/m)	100	100	100	100	100	100	100
c_2 (N·s/m)	5000	5000	5000	5000	5000	5000	5000
c_3 (N·s/m)	—	—	1000	1000	1000	1000	1000

50 / 65

第64図

51 / 65

第65図

52/65

第66図

53 / 65

第67図

54 / 65

第68図

55 / 65

第69図

56 / 65

第70図

57 / 65

第71図

(a)

(b)

58 / 65

第72図

(a)

(b)

59 / 65

第73図

(a)

(b)

60 / 65

第74図

(a)

(b)

61 / 65

第75図

	比較例4-1	比較例4-2	比較例4-3	比較例4-4	比較例4-5	実施例4-1	実施例4-2	実施例4-3
通常EV1	通常EV2	通常EV3	従来IWM	ダイナミック	ダイナミック	免明IWM1	免明IWM2	免明IWM3
バネ下質量 m_1 (kg)	45	30	45	70	70	45	45	45
バネ上質量 m_2 (kg)	300	300	300	230	230	220	220	230
ダイナミックダンパー m_3 (kg)	—	—	—	—	50	25	35	25
タイヤ総バネ K_1 (N/m)	190000	190000	190000	190000	190000	190000	190000	190000
サス上下剛性 K_2 (N/m)	27000	27000	27000	27000	27000	27000	27000	27000
モータ上下支持バネ剛性 K_3 (N/m)	—	—	—	—	40000	40000	40000	60000
タイヤ上下減衰 C_1 (N·s/m)	50	50	50	50	50	50	50	50
サス上下減衰 C_2 (N·s/m)	1000	1000	1000	1000	1000	1000	1000	1000
モータ上下支持減衰 C_3 (N·s/m)	—	—	—	—	1000	1000	1000	1000
タイヤ前後バネ $K_{1'}$ (N/m)	1900000	1900000	1900000	1900000	1900000	1900000	1900000	1900000
サス前後剛性 $K_{2'}$ (N/m)	200000	200000	300000	200000	200000	200000	200000	200000
モータ前後支持バネ剛性 $K_{3'}$ (N/m)	—	—	—	—	400000	400000	400000	500000
タイヤ前後減衰 $C_{1'}$ (N·s/m)	50	50	50	50	50	50	50	50
サス前後減衰 $C_{2'}$ (N·s/m)	2400	2400	2400	2400	2400	2400	2400	2400
モータ前後支持減衰 $C_{3'}$ (N·s/m)	—	—	—	—	1000	1000	1000	1000

62 / 65

第76図

63 / 65

第77図

64 / 65

第78図

65 / 65

第79図

第80図

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP02/03730

A. CLASSIFICATION OF SUBJECT MATTER
Int.Cl⁷ B60K7/00, F16F15/04

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

Int.Cl⁷ B60K7/00, F16F15/04

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Jitsuyo Shinan Koho	1926-1996	Toroku Jitsuyo Shinan Koho	1994-2002
Kokai Jitsuyo Shinan Koho	1971-2002	Jitsuyo Shinan Toroku Koho	1996-2002

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	JP 2000-309269 A (Mitsubishi Heavy Industries, Ltd.), 07 November, 2000 (07.11.00), (Family: none)	7
Y		1,5
Y		
A	JP 3-31029 A (Tokyo R & D Kabushiki Kaisha), 08 February, 1991 (08.02.91), (Family: none)	7-57
A	WO 95/16300 A1 (Hydro-Quebec), 15 June, 1995 (15.06.95), & EP 729664 A & AU 5558494 A & JP 9-506236 A & FI 955760 A & BR 9307853 A & NO 954981 & NZ 258088 A	1-57

 Further documents are listed in the continuation of Box C. See patent family annex.

"A"	Special categories of cited documents: document defining the general state of the art which is not considered to be of particular relevance	"T"	later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
"E"	earlier document but published on or after the international filing date	"X"	document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
"L"	document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)	"Y"	document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
"O"	document referring to an oral disclosure, use, exhibition or other means	"&"	& document member of the same patent family
"P"	document published prior to the international filing date but later than the priority date claimed		

Date of the actual completion of the international search 01 May, 2002 (01.05.02)	Date of mailing of the international search report 21 May, 2002 (21.05.02)
--	---

Name and mailing address of the ISA/ Japanese Patent Office	Authorized officer
--	--------------------

Facsimile No.	Telephone No.
---------------	---------------

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP02/03730

C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	JP 10-305735 A (Toyota Motor Corp.), 17 November, 1998 (17.11.98), (Family: none)	1-57
A	US 5894902 A1 (Chahee P. Cho), 20 April, 1999 (20.04.99), (Family: none)	1-57
A	JP 7-81430 A (Director General of Agency of National Institute of Environmental Studier), 28 March, 1995 (28.03.95), (Family: none)	46-53

国際調査報告

国際出願番号 PCT/JP02/03730

A. 発明の属する分野の分類 (国際特許分類 (IPC))
Int. C1. 7 B60K 7/00, F16F 15/04

B. 調査を行った分野

調査を行った最小限資料 (国際特許分類 (IPC))
Int. C1. 7 B60K 7/00, F16F 15/04

最小限資料以外の資料で調査を行った分野に含まれるもの

日本国実用新案公報	1926-1996年
日本国公開実用新案公報	1971-2002年
日本国登録実用新案公報	1994-2002年
日本国実用新案登録公報	1996-2002年

国際調査で使用した電子データベース (データベースの名称、調査に使用した用語)

C. 関連すると認められる文献

引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
X	JP 2000-309269 A (三菱重工業株式会社)	7
Y	2000. 11. 07 (ファミリーなし)	1, 5
Y	JP 3-31029 A (東京アールアンドデー)	1, 5
A	1991. 02. 08 (ファミリーなし)	7-57
A	WO 95/16300 A1 (HYDRO-QUEBEC) 1995. 06. 15, & EP 729664 A & AU 5558494 A & JP 9-506236 A & FI 955760 A & BR 9307853 A &	1-57

 C欄の続きにも文献が列挙されている。 パテントファミリーに関する別紙を参照。

* 引用文献のカテゴリー

「A」特に関連のある文献ではなく、一般的技術水準を示す
もの

「E」国際出願日前の出願または特許であるが、国際出願日
以後に公表されたもの

「L」優先権主張に疑義を提起する文献又は他の文献の発行
日若しくは他の特別な理由を確立するために引用する
文献 (理由を付す)

「O」口頭による開示、使用、展示等に言及する文献

「P」国際出願日前で、かつ優先権の主張の基礎となる出願

の日の後に公表された文献

「T」国際出願日又は優先日後に公表された文献であって
出願と矛盾するものではなく、発明の原理又は理論
の理解のために引用するもの

「X」特に関連のある文献であって、当該文献のみで発明
の新規性又は進歩性がないと考えられるもの

「Y」特に関連のある文献であって、当該文献と他の1以
上の文献との、当業者にとって自明である組合せに
よって進歩性がないと考えられるもの

「&」同一パテントファミリー文献

国際調査を完了した日

01. 05. 02

国際調査報告の発送日

21.05.02

国際調査機関の名称及びあて先

日本国特許庁 (ISA/JP)

郵便番号 100-8915

東京都千代田区霞が関三丁目4番3号

特許庁審査官 (権限のある職員)

山口 直

3Q 8510

電話番号 03-3581-1101 内線 3381

C(続き) 関連すると認められる文献		
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
A	NO 954981 & NZ 258088 A JP 10-305735 A (トヨタ自動車株式会社) 1998. 11. 17 (ファミリーなし)	1-57
A	US 5894902 A1 (Chahee P. Cho) 1999. 04. 20, (ファミリーなし)	1-57
A	JP 7-81430 A (国立環境研究所長) 1995. 03. 28 (ファミリーなし)	46-53