N-04 (ANSYS)

Формулировка задачи:

Дано: Е, q, a, l, I_{u32} , I_{κ} , v=0.25.

Консольная многосвязная плоскопространственная рама из стержней постоянного поперечного сечения, наружена внешним моментом и одной распределённой силой.

2) Вертикальное перемещение точки А: δ_{A} .

Аналитический расчёт (см. N-04) даёт следующие решения:

$$\delta_{A} = \frac{31}{24} \cdot \frac{q \cdot l^{4}}{E \cdot I_{z}} = 1,292 \cdot \frac{q \cdot l^{4}}{E \cdot I_{z}} - \text{вверх.}$$
Puc. 1.

Задача данного примера: при помощи ANSYS Multyphisics получить этот же результат методом конечных элементов.

Предварительные настройки:

Для решения задачи используется ANSYS Multiphysics 14.0:

С меню M_M и U_M работают мышью, выбирая нужные опции.

В окно С_Р вручную вводят текстовые команды, после чего следует нажать на клавиатуре Enter.

Меняем чёрный цвет фона на белый следующими действиями:

U_M > PlotCtrls > Style > Colors > Reverse Video

B меню оставить только пункты, относящиеся к прочностным расчётам: M M > Preferences > Отметить "Structural" > OK

При построениях полезно видеть номера точек и линий твердотельной модели:

```
U_M > PlotCtrls > Numbering >
Отметить KP, LINE ;
Установить Elem на "No numbering";
Установить [/NUM] на "Colors & numbers"> ОК
```

Для большей наглядности увеличим размер шрифта:

```
U_M > PlotCtrls > Font Controls > Legend Font > Установить «Размер» на «22»> ОК
U_M > PlotCtrls > Font Controls > Entity Font > Установить «Размер» на «22»> ОК
```

Предварительные настройки выполнены, можно приступать к решению задачи.

http://www.tychina.pro/библиотека-задач-1/

Решение задачи:

Параметрам задачи, входящим в формулы (E, q, l, E, I_z) присваиваем значение l. Тогда результатами расчёта будут коэффициенты перед формулами. Величину a задаём произвольно, она в формулы не входит.

No	Действие	Результат
1	Задаём параметры расчёта — базовые величины задачи: U_M > Parameters > Scalar Parameters > E=1	Scalar Parameters
2	Первая строчка в таблице конечных элементов — балочный тип BEAM44: M_M > Preprocessor C_P > ET,1,BEAM44 > Enter Посмотрим таблицу конечных элементов: M_M > Preprocessor > Element Type > Add/Edit/Delete > Close	Defined Element Types: Type 1 BIFAM44 Add Options Delete Close Help

No	Действие	Результат
3	Реальные константы для элемента BEAM44: C_P> R,1,ASect,Iz,Iy,a,a,Ik > Enter Посмотрим таблицу реальных констант: M_M > Preprocessor > Real Constants > Add/Edit/Delete > Close	Real Constants Defined Real Constant Sets Set 1 Add Edit Delete Close Help
4	Cooйcmoa материала стержня—модуль упругости и коэффициент Пуассона: M_M > Preprocessor > Material Props > Material Models > Structural > Linear > Elastic > Isotropic > B окошке EX пишем "E", в окошке PRXY пишем "nu" > ОК Закрываем окно «Deine Material Model Behavior».	Coron Material Model Behavior Material Foot Ferrotte: Help Material Models Defined Material Models Available Material Models Defined Material Models Available Linear Isotropic Material Properties for Material Number 1 Linear Isotropic Material Properties for Material Number 1 T1 Temperatures EX PROY Add Temperature Delete Temperature OK Covoil Help
	Основная система. Твердотельное модели	прование:
5	Координаты узлов рамы: Создаём твердотельную модель в плоскости х-z. Определяемся с положением узлов рамы относительно глобальной декартовой системы координат.	$B(l;0;l)$ $A(l;0;0)$ $C(2\cdot l;0;l)$

№	Действие	Результат
6	 Изометрия: □ изометрия; □ автоформат (размер изображения по размеру окна рабочего поля). 	NODE NUM
7	Ключевые точки $A \rightarrow 1$, $B \rightarrow 2$, $C \rightarrow 3$ и $D \rightarrow 4$: М_M> Preprocessor> Modeling> Create> Keypoints> In Active CS> NPT пишем 1 X, Y, Z пишем l , 0 , 0 > Apply > NPT пишем 2 X, Y, Z пишем l , 0 , l > Apply > NPT пишем 3 X, Y, Z пишем $2*l$, 0 , l > Apply > NPT пишем 4 X, Y, Z пишем $4*l$, 0 , 0 > OK Прорисовываем всё, что есть: U_M > Plot > Multi-Plots - автоформат.	POINTS XX 1 2 4

No	Действие	Результат
8	Линии - ocu cmepжней рамы: M_M > Preprocessor > Modeling > Create > Lines > Lines > Straight Line > Левой кнопкой мыши последовательно нажать на ключевые точки: 1 и 2 2 и 3 4 и 3 > ОК Прорисовываем всё, что есть: U_M > Plot > Multi-Plots	Let ZX La
9	Заделка в точке D: M_M > Preprocessor > Loads > Define Loads > Apply > Structural > Displacement > On Keypoints > Левой кнопкой мыши нажать на 4 ключевую точку > ОК > Lab2 установить "All DOF" > ОК Прорисовываем всё, что есть: U_M > Plot > Multi-Plots	Lek ZXX U ROT Li Li Li Li Li Li Li Li Li L

No	Действие	Результат
	Размер элементов: Линии без распределённых нагрузок можно бить одним конечным элементом. Но форма изогнутой оси будет выглядеть красиво, если каждый стержень будет разбит несколькими элементами:	D O III
12	M_M > Preprocessor > Meshing > Size Cntrls > ManualSize > Lines > All Lines > NDIV пишем 10 > OK Обновляем изображение: U_M > Plot > Multi-Plots	L12 L3
13	Указываем, что именно нужно теперь прорисовывать по команде Multi-Plots: U_M > PlotCtrls > Multi-Plot Controls > Появляется первое окно Multi-Plotting > OK > Появляется второе окно Multi-Plotting > Оставляем в нём отметки только напротив Nodes и Elements > OK	Multi-Plotting Edit Window G Window 2 G Window 2 G Window 3 G Window 3 G Window 4 G Window 5 Display Type G Early Plott G Graph Plott OK Cancel Help OK Apply Cancel Help

N₂	Действие	Результат
19	Вид сверху: вид сверху; вид сверху; автоформат (размер изображения по размеру окна рабочего поля).	E-N —1 M REFOR RMOM PRES-NORM 1
20	<pre>U_ветовая шкала будет состоять из десяти цветов: U_M > PlotCtrls > Style > Contours > Uniform Contours > NCONT пишем 10 > OK</pre>	
21	Cocmaвление эпюры внутреннего изгибающего момента Musz: M_M > General Postproc > Element Table > Define Table > Add > "By sequence num", "SMISC,", "6" > Apply > "By sequence num", "SMISC,", "12" > OK > > Close Cмотрим таблицу результатов: M_M > General Postproc > Element Table > Define Table > Close	Currently Defined Data and Status: Label Item Comp Time Stamp Status SMIS6 SMIS 6 Time= 1,0000 (Current) SMIS12 SMIS 12 time= 1,0000 (Current) Add Update Delete Close Help

No	Действие	Результат
24	Элюра на центральных конечных элементах: Прорисовываем: U_M > Plot > Replot Выделяем нужные конечные элементы: U_M > Select > Entities > Устанавливаем "Elements" и "By Num/Pick" Селектор на "From Full" > ОК Кликаем левой кнопкой мыши на конечные элементы правого стержня > ОК Прорисовываем: U_M > Plot > Replot Выделяем всё, что есть: U_M > Select > Everything	LINE STRESS STEP=1 SUB =1 TIME=1 SMIS6 SMIS12 MIN =-1 ELEM=21 MAX = .124E-11 ELEM=30 -18642 .124E-11
25	Cocmaвление эпюры внутреннего крутящего момента Мкр: M_M > General Postproc > Element Table > Define Table > Add > "By sequence num", "SMISC,", "4" > Apply > "By sequence num", "SMISC,", "10" > OK > > Close Смотрим таблицу результатов: M_M > General Postproc > Element Table > Define Table > Close	Currently Defined Data and Status: Label Item Comp Time Stamp Status SMIS6 SMIS 6 Time= 1.0000 (Current) SMIS12 SMIS 12 Time= 1.0000 (Current) SMIS4 SMIS 4 Time= 1.0000 (Current) SMIS10 SMIS 10 Time= 1.0000 (Current) SMIS10 SMIS 10 Time= 1.0000 (Current) MIS10 SMIS 10 Time= 1.0000 (Current)

Сохраняем проделанную работу:

U M > File > Save as Jobname.db

Закройте ANSYS:

U M > File > Exit > Quit - No Save! > OK

После выполнения указанных действий в рабочем каталоге остаются файлы с расширениями ".BCS", ".db", ".emat", ".err", ".esav", ".full", ".log", ".mntr", ".rst", ".stat" и "SECT".

Интерес представляют ".db" (файлы модели), ".rst" (файл результатов расчёта) и файл ".SECT" (поперечное сечение), остальные файлы промежуточные, их можно удалить.