

On White II, Wassily Kandinsky 1923

Mecânica e Campo Eletromagnético

Aula 6 Exemplos

Cap.2- Movimento oscilatório

- Movimento harmónico simples
- Movimento amortecido
- Movimento forçado
- Exemplos

Isabel Malaquias imalaquias@ua.pt
Gab. 13.3.16

MCE_IM_2024-2025

- **8.** Um pêndulo balístico é constituído por um corpo suspenso dum fio. Um projétil de massa m_1 = 30 g penetra no corpo e fica cravado nele. O centro de massa do corpo eleva-se até uma altura h = 30 cm. A massa do corpo é m_2 = 3,0 kg.
- a) Deduza uma expressão para a velocidade do projétil em função destes dados.
- b) Calcule o valor numérico da velocidade do projétil quando este atinge o corpo.

MCE IM 2024-2025

ESTÁTICA

Binário de forças

mas

$$\sum \overrightarrow{\tau_i} \neq 0$$

CONDIÇÕES DE EQUILÍBRIO ESTÁTICO

$$\sum_{i} \overrightarrow{F_i} = 0$$

e, simultaneamente,

$$\sum \overrightarrow{\tau_i} = 0$$

MCE_IM_2024-2025

2

Capítulo 1.4.b

12. Uma barra uniforme AC de 4 m tem massa m = 50 kg. Existe um ponto fixo B em torno do qual a barra pode rodar. A barra está apoiada no ponto A. Um homem com massa igual a 75 kg anda ao longo da barra partindo de A. Calcule a distância máxima a que o homem pode deslocar-se, mantendo o equilíbrio.

Sugestão: usar as condições de equilíbrio estático No limite, a reacção sobre A anula-se

MCE_IM_2024-2025

MOVIMENTO HARMÓNICO SIMPLES (MHS)

Se a força que atua sobre um corpo:

- é proporcional ao deslocamento em relação à posição de equilíbrio
- aponta sempre para a posição de equilíbrio

$x = A\cos(\omega t + \phi)$

O corpo tem movimento **periódico**, **harmónico**, **oscilatório** ou **vibratório**

Ex: Bloco preso a uma mola, baloiço (pêndulo), corda a vibrar, moléculas a vibrar num sólido, etc...

 $\omega = 2\pi f$ (rad/s)

MCE_IM_2024-2025

.

MCE_IM_2024-2025

Pêndulo simples

Força restauradora:

 $-mg\sin\phi$

aceleração tangencial:

$$\frac{d^2s}{dt^2} = L\frac{d^2\phi}{dt^2}$$

$$-mg\sin\phi = m\frac{d^2s}{dt^2} = mL\frac{d^2\phi}{dt^2}$$

$$\frac{d^2\phi}{dt^2} = -\frac{g}{L}\sin\phi \approx -\frac{g}{L}\phi \text{ se } \phi \ll 1$$

$$\frac{d^2\phi}{dt^2} = -\omega^2\phi \quad \text{com} \quad \omega^2 = \frac{g}{L}$$

solução:
$$\phi = \phi_0 \cos(\omega t + \delta)$$

MCE_IM_2024-2025

Pêndulo simples

Para pequenos ângulos

sen $\phi \approx \phi$

Para pequenas oscilações, tem-se:

eq. movimento:

$$\frac{d^2\phi}{dt^2} = -\omega^2\phi \quad \text{com} \quad \omega^2 = \frac{g}{L}$$

solução:

$$\phi = \phi_0 \cos(\omega t + \delta)$$

período:

$$\phi = \phi_0 \cos(\omega t + \delta)$$

$$T = \frac{2\pi}{\omega} = 2\pi \sqrt{\frac{L}{g}}$$

MCE IM 2024-2025

Sistema massa-mola

Object oscillates around the equilibrium position with a displacement $y'=y-y_0$.

MCE_IM_2024-2025

_

Sistema massa-mola

F: Força restauradora F = -kx

k: constante da mola

Equação do movimento

$$F = -kx = ma_{x} \qquad \Longrightarrow \qquad a_{x} = -\frac{k}{m}x$$

$$\Longrightarrow \qquad \frac{d^{2}x}{dt^{2}} + \frac{k}{m}x = 0$$

$$\Longrightarrow \qquad \frac{d^{2}x}{dt^{2}} + \omega^{2}x = 0$$

definimos $\omega^2 = \frac{k}{m}$ or $\omega = \sqrt{\frac{k}{m}}$

ω: frequência angular (radianos/s)

período:
$$T=2\pi\sqrt{\frac{m}{k}}$$

MCE IM 2024-2025

solução: $x = x_0 \cos(\omega t + \varphi)$

COMPARANDO...

Circuito LC

A intensidade da corrente I funciona como análoga à velocidade v

$$I = \frac{dQ}{dt} \qquad v = \frac{dx}{dt}$$

$$v = \frac{dx}{dt}$$

k MMMMMMMM

$$L\frac{dI}{dt} + \frac{Q}{C} = 0$$

$$L\frac{d^2Q}{dt^2} + \frac{1}{C}Q = 0$$
 $m\frac{d^2x}{dt^2} + kx = 0$

$$m\frac{d^2x}{dt^2} + kx = 0$$

MCE_IM_2024-2025

Energia no Movimento Harmónico Simples (MHS)

Num M.H.S. a Energia Mecânica é constante:

$$E = \frac{1}{2} kA^2$$

Energia potencial elástica:

$$E_{Pe} = \frac{1}{2}kx^2$$

E_{pe}(0)=0 (posição de equilíbrio)

Energia cinética:
$$E_c = E - E_{pe} = \frac{1}{2}k(A^2 - x^2)$$

MCE IM 2024-2025

Energia no MHS em função de x

Energia no MHS em função de t

$$E = \frac{1}{2}mv_x^2 + \frac{1}{2}kx^2 = \frac{1}{2}kA^2 = \frac{1}{2}mv_{\text{max}}^2 = \text{constante}$$

MCE IM 2024-2025

13 13

Pêndulo físico ou Pêndulo composto

Para pequenos ângulos sen $\phi \approx \phi$

$$\tau = -MgDsen\varphi \approx -MgD\varphi$$

$$\tau = I \alpha = -MgD\phi \quad \cos \alpha = \frac{d^2\phi}{dt^2}$$

$$T = 2\pi \sqrt{\frac{I}{MgD}}$$

NB - O período do pêndulo físico depende da distribuição de massa, mas não da massa total, M. O momento de inércia I é proporcional a M, pelo que <u>a razão</u> I/M é independente de M

MCE_IM_2024-2025

Oscilador amortecido

EXEMPLO de força dissipativa: Força devida à viscosidade de um fluido

MCE_IM_2024-2025

Oscilador amortecido

A solução é:

$$x = A_o e^{-\frac{b}{2m}t} \cos(\omega t + \phi)$$

Quando o amortecimento não é muito intenso, inferior a um valor crítico (b_c), esperamos que a solução corresponda a uma oscilação cuja amplitude diminua com o tempo

E a frequência de oscilação é

$$\omega = \sqrt{\frac{k}{m} - \left(\frac{b}{2m}\right)^2}$$

Esta solução só é válida se:

$$\frac{b}{2m} < \omega_o$$
 $b < 2m \omega_0$
e amortecimento $b_c = 2m \omega_0$

$$b < 2m\omega_0$$

$$\omega_0 = \sqrt{\frac{k}{m}}$$

Coeficiente de amortecimento crítico (b_c)

$$b_c = 2m \omega_0$$

MCE IM 2024-2025

Oscilador amortecido

Na ausência de forças externas, a AMPLITUDE de um oscilador DIMINUI no tempo, devido a forças dissipativas (atrito,

viscosidade, etc)

$$\overrightarrow{F_a} = -b\vec{v}$$

Se A diminui, a Energia Mecânica diminui também

$$\omega = \sqrt{\left[\frac{k}{m} - \left(\frac{b}{2m}\right)^2\right]}$$

MCE IM 2024-2025

Oscilador amortecido

Graus de Amortecimento

$$x = A_o e^{-\frac{b}{2m}t} \cos(\omega t + \phi)$$

Para b < b_c

À medida que **b** aumenta, o decréscimo da amplitude das oscilações é cada vez mais rápido.

MCE IM 2024-2025

Oscilador amortecido

Graus de Amortecimento

Sub-Amortecido

(Amortecimento fraco)

Amortecido criticamente

(Amortecimento forte)

Sobre Amortecido

(Amortecimento muito forte)

 $b < 2m \omega_0$ $b_c = 2m \omega_0$

MCE_IM_2024-2025

Oscilador Forçado

"mola" ligada a um "motor"

MCE_IM_2024-2025

Oscilador Forçado

- Para manter um sistema a oscilar na presença de forças dissipativas, temos de fornecer energia, aplicando uma força externa. Ao fim de algum tempo, o movimento terá a frequência da força externa.
- Nessa altura, a energia fornecida (numa oscilação) será igual à dissipada, a amplitude mantém-se constante, e o seu valor depende da frequência externa.

MCE_IM_2024-2025

21

Equações do movimento

$$\frac{d^2x}{dt^2} + 2\gamma \frac{dx}{dt} + \omega_0^2 x = \frac{F_0}{m} \cos \omega t \qquad \cos \omega t$$

MCE IM 2024-2025 2²/₂2

Solução geral

 $x(t) = x_t(t) + x_p(t)$ solução:

solução transiente:

$$\frac{d^2x}{dt^2} + 2\gamma \frac{dx}{dt} + \omega_0^2 x = 0$$

solução permanente:

$$\frac{d^2x}{dt^2} + 2\gamma \frac{dx}{dt} + \omega_0^2 x = \frac{F_0}{m} \cos \omega t$$

MCE_IM_2024-2025

Solução transiente + solução permanente

MCE_IM_2024-2025

Solução permanente

$$X_p(t) = A\cos(\omega t - \delta)$$

com
$$A = \frac{F_0 / m}{\sqrt{(\omega_0^2 - \omega^2)^2 + 4\gamma^2 \omega^2}}$$
 amplitude

$$\delta = \arctan \frac{2\gamma\omega}{\omega_0^2 - \omega^2} \quad \text{desfasamento entre a} \\ \text{posição x e a força} \\ 0 \leq \delta \leq \pi$$

MCE_IM_2024-2025

OSCILADOR FORÇADO

Força externa: $F_{\text{ext}}(t) = F_0 \cos(\omega t)$

Posição: $\mathbf{X}_{p}(t) = \mathbf{A}\cos(\omega t - \delta)$

Mesma frequência!

Amplitude:
$$A = \frac{\frac{F_0}{m}}{\sqrt{\left(\omega^2 - \omega_0^2\right)^2 + \left(\frac{b\omega}{m}\right)^2}}$$

$$\omega_0 = \sqrt{\frac{k}{m}}$$

MCE_IM_2024-2025

Ressonância no oscilador forçado

Sobre a energia

Considerando a solução permanente,

NA RESSONÂNCIA, verifica-se:

- energia máxima dissipada
- trabalho máximo realizado pelo motor
- energia mecânica máxima do oscilador

NUM PERÍODO:

energia dissipada pelo atrito = trabalho realizado pelo motor

MCE_IM_2024-2025 28

The Tacoma **Narrows Bridge Collapse**

1940

https://youtu.be/7saC-DnQ9Rc?t=36

A Ponte do Estreito de Tacoma caiu em 1940, devido a torques vibracionais induzidos pelo vento, fazendo a ponte oscilar com ω≈ frequência de ressonância!

MCE_IM_2024-2025

29 29

Osciladores acoplados

16 Duas molas iguais de constante K_{mola} estão penduradas e ligadas a corpos de massa m como está representado na figura ao lado. Desprezando a massa das molas calcule:

- a) as frequências dos modos normais de oscilação do sistema.
- b) a relação das amplitudes de oscilação das massas nos dois modos normais de oscilação.

Nota: não é necessário considerar a aceleração da gravidade porque esta não tem influência na oscilação.

$$\mathbf{1} \qquad \mathbf{F}_1 = -\mathbf{k}_1 \mathbf{x}_1 + \mathbf{k}_2 \left(\mathbf{x}_2 - \mathbf{x}_1 \right)$$

1
$$F_1 = -k_1 x_1 + k_2 (x_2 - x_1)$$
 $m_1 \frac{d^2 x_1}{dt^2} = -k_1 x_1 + k_2 (x_2 - x_1)$

$$F_2 = -k_2 x_2 - k_2 (x_2 - x_1)$$

$$F_2 = -k_2 x_2 - k_2 (x_2 - x_1)$$
 $m_2 \frac{d^2 x_2}{dt^2} = -k_2 x_2 - k_2 (x_2 - x_1)$

$$k_1 = k_2 = k$$
 $m_1 = m_2 = m$

$$m_1 = m_2 = m$$

Osciladores acoplados

16 Duas molas iguais de constante K_{mola} estão penduradas e ligadas a corpos de massa m como está representado na figura ao lado. Desprezando a massa das molas calcule:

a) as frequências dos modos normais de oscilação do sistema.

$$\frac{1}{dt^2} = -\frac{k}{m} x_1 - \frac{k}{m} (x_1 - x_2) \iff \frac{d^2 x_1}{dt^2} + \frac{k}{m} x_1 + \frac{k}{m} (x_1 - x_2) = 0$$

$$\frac{d^2x_1}{dt^2} + \frac{k}{m}x_1 + \frac{k}{m}(x_1 - x_2) = 0$$

 $x_1 = A \cos \omega t$ $x_2 = B \cos \omega t$

$$\frac{dt^2}{dt^2} = -\frac{k}{m} x_2 - \frac{k}{m} (x_2 - x_1) \iff \frac{dt^2}{dt^2} + \frac{k}{m} x_2 + \frac{k}{m} (x_2 - x_1) = 0$$

$$x_2 = B \cos \omega t$$
Derivar le 2 vezes x₁ e x₂ e substituir nas equações diferenciais

1 -
$$mA\omega^2 \cos \omega t + 2kA \cos \omega t - kB \cos \omega t = 0$$

$$\iff$$

$$- mA\omega^{2} + 2kA - kB = 0$$

$$- mB\omega^{2} + 2kB - kA = 0$$

$$- kA + B(2k - m\omega^{2}) = 0$$

- mB
$$\omega^2$$
 cos ω t +2kB cos ω t - kA cos ω t = 0

 $\begin{bmatrix} 2k - m\omega^2 & -k \\ -k & k - m\omega^2 \end{bmatrix} \begin{bmatrix} A \\ B \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

Resolvendo o determinante, deveremos chegar a alguma conclusão

$$(2k - m\omega^2)(k - m\omega^2) - k^2 = 0$$

$$k^2 - 3km\omega^2 + m^2\omega^4 = 0$$

Usando a fórmula resolvente para equações de 2º grau, obtém-se

$$\omega_1^2 = \frac{3 k + \sqrt{5} k}{2 m}$$

$$\omega_2^2 = \frac{3 k - \sqrt{5} k}{2 m}$$

 $\omega_1^2 = \frac{3 \ k + \sqrt{5} \ k}{2 \ m}$ $\omega_2^2 = \frac{3 \ k - \sqrt{5} \ k}{2 \ m}$ FREQUÊNCIAS DOS MODOS NORMAIS DE VIBRAÇÃO DO SISTEMA $(\omega_1 \in \omega_2)$

16. b) a relação das amplitudes de oscilação das massas nos dois modos normais de oscilação.

Tínhamos
$$A(2k - m\omega^2) - kB = 0$$
$$- kA + B(2k - m\omega^2) = 0$$

$$\frac{A}{B} = \frac{2}{(1-\sqrt{5})} = -1,61$$
 valor negativo \Rightarrow oposição de fase

$$\frac{A}{B} = \frac{2}{(1+\sqrt{5})} = 0.61$$
 valor positivo \implies em fase