

Formes différentielles

Fiche de A. Gammella-Mathieu (IUT de Mesures Physiques de Metz – Université de Lorraine)

Exercice 1

Déterminer si les formes différentielles suivantes sont exactes et dans ce cas, les intégrer :

1.
$$\omega_1 = 2xydx + x^2dy$$

2.
$$\omega_2 = xydx - zdy + xzdz$$

3.
$$\omega_3 = 2xe^{x^2-y}dx - 2e^{x^2-y}dy$$

4.
$$\omega_4 = yz^2dx + (xz^2 + z)dy + (2xyz + 2z + y)dz$$
.

Correction ▼ [006873]

Exercice 2

On considère le changement de variables en coordonnées sphériques suivant :

$$\begin{cases} x = r\cos\varphi\cos\theta \\ y = r\cos\varphi\sin\theta \\ z = r\sin\varphi \end{cases}$$

- 1. Calculer dx, dy, dz.
- 2. Vérifier que xdx + ydy + zdz = rdr. En déduire $\frac{\partial r}{\partial x}$, $\frac{\partial r}{\partial y}$ et $\frac{\partial r}{\partial z}$.

Correction ▼ [006874]

Exercice 3

On considère la forme différentielle $\omega = (x^2 + y^2 + 2x)dx + 2ydy$.

- 1. Montrer que ω n'est pas exacte.
- 2. Trouver une fonction $\psi(x)$ telle que $\psi(x)\omega = df$. Préciser alors f. (On dit que ψ est un facteur intégrant.)

Correction ▼ [006875]

Exercice 4

On considère le champ vectoriel $\vec{V}(x,y) = (1+2xy,x^3-3)$. Ce champ est-il un champ de gradient?

Correction ▼ [006876]

Exercice 5

Quel est le champ vectoriel qui dérive du potentiel

$$U(x,y,z) = 1 + x + xy + xyz$$
?

Correction ▼ [006877]

Exercice 6

Calculer la circulation du champ vectoriel $\vec{V}(x,y) = (3x,x+y)$ le long du cercle C de centre O et de rayon 1, parcouru dans le sens direct.

Correction ▼ [006878]

Exercice 7

Calculer le travail W de la force $\vec{F}(x,y,z)=(yz,zx,xy)$ le long de l'hélice H paramétrée par $x=\cos t$, $y=\sin t$ et z=t où t varie de 0 à $\frac{\pi}{4}$.

Correction ▼ [006879]

Exercice 8

On donne le champ vectoriel

$$\vec{V}(x, y, z) = (y^2 \cos x, 2y \sin x + e^{2z}, 2ye^{2z}).$$

- 1. Montrer que ce champ est un champ de gradient.
- 2. Déterminer le potentiel U(x,y,z) dont dérive ce champ sachant qu'il vaut 1 à l'origine.
- 3. Quelle est la circulation de ce champ de A(0,1,0) à $B(\frac{\pi}{2},3,0)$?

Correction ▼ [006880]

Exercice 9

En utilisant la formule de Green-Riemann, calculer $I = \iint_{\mathcal{D}} xydxdy$ où

$$\mathcal{D} = \{(x, y) \in \mathbb{R}^2 \mid x \geqslant 0; y \geqslant 0; x + y \leqslant 1\}.$$

Indication ▼ Correction ▼ [006881]

Exercice 10

On considère la forme différentielle

$$\omega = \frac{-y}{x^2 + y^2} dx + \frac{x}{x^2 + y^2} dy.$$

- 1. Dans quel domaine cette forme différentielle est-elle définie?
- 2. Calculer l'intégrale curviligne $\int_C \omega$ où C est le cercle de centre O et de rayon 1, parcouru dans le sens direct.
- 3. La forme ω est-elle exacte?

Correction ▼ [006882]

Références

- P. Thuillier, J.C. Belloc, Mathématiques, analyse tome 1, 2ème édition, Masson (1990).
- D. Duverney, S. Heumez, G. Huvent, Toutes les mathématiques MPSI, PCSI, PTSI, TSI, Ellipses (2004).

Indication pour l'exercice 9 A

On rappelle la formule de Green-Riemann qui permet de faire le lien entre intégrale double et intégrale curviligne :

Théorème. Soit \mathscr{D} un domaine de \mathbb{R}^2 limité par une courbe fermée \mathscr{C} que l'on suppose coupée par toute parallèle aux axes en deux points au plus. On considère une forme différentielle $\omega = Pdx + Qdy$ définie sur \mathscr{D} . Si les fonctions P et Q sont de classe C^1 , on a :

$$\int_{\mathscr{C}^+} P dx + Q dy = \iint_{\mathscr{D}} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right) dx dy$$

où l'on a noté \mathscr{C}^+ la courbe \mathscr{C} que l'on a orientée dans le sens direct.

1. Pour ω_1 , on pose P(x,y)=2xy et $Q(x,y)=x^2$. Comme ω_1 est définie sur l'ouvert étoilé \mathbb{R}^2 et que $\frac{\partial P}{\partial y}=\frac{\partial Q}{\partial x}=2x$, le théorème de Poincaré permet de dire que ω_1 est exacte. On cherche f tel que $df=\omega_1$. Ceci équivaut à résoudre le système

$$\begin{cases} \frac{\partial f}{\partial x} = 2xy \\ \frac{\partial f}{\partial y} = x^2 \end{cases}$$

En intégrant la première ligne par rapport à x, on trouve $f(x,y) = x^2y + c(y)$. En dérivant l'expression que l'on vient d'obtenir par rapport à y et en identifiant avec la deuxième ligne du système, on trouve

$$\frac{\partial f}{\partial y} = x^2 + c'(y) = x^2.$$

Il s'ensuit que c'(y)=0 et donc que $c(y)=c\in\mathbb{R}$. Par suite, la fonction f cherchée est :

$$f(x, y) = x^2y + c$$

où c est une constante réelle.

- 2. Pour ω_2 , on pose P(x,y,z) = xy, Q(x,y,z) = -z et R(x,y,z) = xz. On constate que $\frac{\partial P}{\partial y} = x$ alors que $\frac{\partial Q}{\partial x} = 0$. La forme ω_2 n'est donc pas exacte.
- 3. Pour ω_3 , on pose $P(x,y) = 2xe^{x^2-y}$ et $Q(x,y) = -2e^{x^2-y}$. Là aussi, $\frac{\partial P}{\partial y} \neq \frac{\partial Q}{\partial x}$ puisque $\frac{\partial P}{\partial y} = -2xe^{x^2-y}$ alors que $\frac{\partial Q}{\partial x} = -4xe^{x^2-y}$; ω_3 n'est donc pas exacte.
- 4. Pour ω_4 , posons $P(x,y,z)=yz^2$, $Q(x,y,z)=xz^2+z$, R(x,y,z)=2xyz+2z+y. On constate que
 - (a) $\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x} = z^2$
 - (b) $\frac{\partial P}{\partial z} = \frac{\partial R}{\partial x} = 2zy$
 - (c) $\frac{\partial Q}{\partial z} = \frac{\partial R}{\partial y} = 2xz + 1$.

La forme ω_4 est de plus définie sur l'ouvert étoilé \mathbb{R}^3 , elle est donc exacte d'après le théorème de Poincaré. Cherchons maintenant f telle que $df = \omega_4$, ceci revient à résoudre le système :

$$\begin{cases} \frac{\partial f}{\partial x} = yz^2\\ \frac{\partial f}{\partial y} = xz^2 + z\\ \frac{\partial f}{\partial z} = 2xyz + 2z + y \end{cases}$$

En intégrant la première équation par rapport à x, on trouve

$$f(x, y, z) = xyz^2 + \psi(y, z).$$

Maintenant, en dérivant l'expression obtenue successivement par y et z et en égalisant avec les deux dernières équations du système, on obtient un nouveau système

$$\begin{cases} xz^2 + \frac{\partial \psi}{\partial y} &= xz^2 + z \\ 2xyz + \frac{\partial \psi}{\partial z} &= 2xyz + 2z + y \end{cases}$$

qui équivaut à :

$$\begin{cases}
\frac{\partial \psi}{\partial y} = z & (1) \\
\frac{\partial \psi}{\partial z} = 2z + y & (2)
\end{cases}$$

Finalement, en intégrant (1) par rapport à y, il vient $\psi(y,z)=zy+c(z)$. En dérivant cette expression de ψ par rapport à z et en égalisant avec (2), on trouve y+c'(z)=2z+y, c'est-à-dire c'(z)=2z donc $c(z)=z^2+c$ où $c\in\mathbb{R}$. Ainsi, la fonction f telle que $\omega_4=df$ est de la forme

$$f(x, y, z) = xyz^2 + zy + z^2 + c$$

où $c \in \mathbb{R}$.

Correction de l'exercice 2

- 1. On vérifie que:
 - (a) $dx = \cos \varphi \cos \theta dr r \sin \varphi \cos \theta d\varphi r \sin \theta \cos \varphi d\theta$
 - (b) $dy = \cos \varphi \sin \theta dr r \sin \varphi \sin \theta d\varphi + r \cos \theta \cos \varphi d\theta$
 - (c) $dz = \sin \varphi dr + r \cos \varphi d\varphi$.

Par suite, on a:

- (a) $xdx = r\cos^2\varphi\cos^2\theta dr r^2\sin\varphi\cos\varphi\cos^2\theta d\varphi r^2\sin\theta\cos\theta\cos^2\varphi d\theta$
- (b) $ydy = r\cos^2\varphi\sin^2\theta dr r^2\sin\varphi\cos\varphi\sin^2\theta d\varphi + r^2\cos\theta\sin\theta\cos^2\varphi d\theta$
- (c) $zdz = r \sin^2 \varphi dr + r^2 \cos \varphi \sin \varphi d\varphi$.
- 2. En additionnant, on obtient xdx + ydy + zdz = rdr. On en déduit que :

$$xdx + ydy + zdz = r(\frac{\partial r}{\partial x}dx + \frac{\partial r}{\partial y}dy + \frac{\partial r}{\partial z}dz).$$

Ainsi

$$\frac{\partial r}{\partial x} = \frac{x}{r}$$
 $\frac{\partial r}{\partial y} = \frac{y}{r}$ $\frac{\partial r}{\partial z} = \frac{z}{r}$.

Correction de l'exercice 3

- 1. Posons $P(x,y) = x^2 + y^2 + 2x$ et Q(x,y) = 2y. On voit facilement que $\frac{\partial P}{\partial y} \neq \frac{\partial Q}{\partial x}$. La forme ω n'est donc pas exacte.
- 2. Comme ω est définie sur \mathbb{R}^2 , il suffit que $\psi \omega$ soit exacte pour que f existe. Maintenant, $\psi \omega$ est exacte si et seulement si

$$\frac{\partial (\psi(x)(x^2+y^2+2x))}{\partial y} = \frac{\partial (\psi(x)2y)}{\partial x}.$$

Ceci équivaut à $2y\psi(x) = 2y\psi'(x)$. Ainsi, $\psi(x) = \psi'(x)$ pour tout x. Donc $\psi(x) = ke^x$ avec k constante. On peut choisir k = 0. Ainsi

$$\psi \omega = e^x(x^2 + y^2 + 2x)dx + e^x(2y)dy.$$

On cherche ensuite f telle que :

$$\begin{cases} \frac{\partial f}{\partial x} = e^{x}(x^{2} + y^{2} + 2x) \\ \frac{\partial f}{\partial y} = e^{x}(2y) \end{cases}$$

En intégrant la deuxième équation par rapport à y, on trouve

$$f(x,y) = e^x y^2 + c(x).$$

En dérivant cette expression par rapport à x et en égalisant avec la première équation du système, on obtient

$$e^{x}y^{2} + c'(x) = e^{x}(x^{2} + y^{2} + 2x)$$

c'est-à-dire

$$c'(x) = e^x(x^2 + 2x).$$

Il en résulte que $c(x) = x^2 e^x + c$ et donc que

$$f(x,y) = e^x(x^2 + y^2) + c$$

avec c dans \mathbb{R} .

Correction de l'exercice 4 A

Au champ $\vec{V}(x,y)$ est associée la forme

$$\omega = (1 + 2xy)dx + (x^3 - 3)dy.$$

Cette forme n'est pas exacte puisque $\frac{\partial (1+2xy)}{\partial y} \neq \frac{\partial (x^3-3)}{\partial x}$. Il s'ensuit que $V(\vec{x},y)$ n'est pas un champ de gradient.

Correction de l'exercice 5

Le champ vectoriel qui dérive du potentiel U est

$$\overrightarrow{\operatorname{grad}}(U) = (\frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}, \frac{\partial u}{\partial z}).$$

Il s'agit donc du champ vectoriel de composantes :

$$\overrightarrow{\text{grad}}(U) = (1 + y + yz, x + xz, xy).$$

Correction de l'exercice 6 ▲

Soit $\omega = 3xdx + (x+y)dy$ la forme différentielle naturellement associée à $\vec{V}(x,y)$ et considérons $x = \cos t$ et $y = \sin t$ comme paramétrage du cercle de centre O et de rayon 1 (avec $t \in [0; 2\pi]$). Il s'ensuit que la circulation $\int_C \vec{V} \cdot d\vec{l}$ n'est autre que :

$$\int_{C} \vec{V} \cdot d\vec{l} = \int_{C} w = \int_{0}^{2\pi} (3\cos t(-\sin t) + (\cos t + \sin t)\cos t)dt.$$

Comme $\cos^2 t = \frac{\cos(2t)+1}{2}$, on obtient :

$$\int_{C} \vec{V} \cdot \vec{dl} = \int_{0}^{2\pi} (-2\sin t \cos t + \frac{\cos(2t) + 1}{2}) dt = [\cos^{2}(t) + \frac{1}{4}\sin(2t) + \frac{t}{2}]_{0}^{2\pi} = \pi.$$

Remarquons que si la forme ω avait été exacte, on aurait obtenu $\int_C \vec{V} \cdot \vec{dl} = 0$ comme réponse, puisque l'intégrale curviligne d'une forme exacte sur une courbe fermée est nulle.

Correction de l'exercice 7 A

Notons $\omega = yzdx + zxdy + xydz$ la forme différentielle associée à $\vec{F}(x,y,z)$. Par définition de W, on a $W = \int_H \vec{F} \cdot d\vec{l} = \int_H \omega$. D'après le paramétrage donné pour H, on a

$$W = \int_0^{\frac{\pi}{4}} yzdx + zxdy + xydz$$
$$= \int_0^{\frac{\pi}{4}} ((\sin t)t(-\sin t) + t\cos^2 t + \cos t \sin t)dt$$
$$= \int_0^{\frac{\pi}{4}} (t\cos(2t) + \cos t \sin t)dt.$$

On a utilisé ici la formule trigonométrique : $\cos(2t) = \cos^2 t - \sin^2 t$. En faisant une intégration par parties, on constate que

$$\int_0^{\frac{\pi}{4}} t \cos(2t) dt = \left[\frac{t \sin(2t)}{2} \right]_0^{\frac{\pi}{4}} - \int_0^{\frac{\pi}{4}} \frac{\sin(2t)}{2} dt.$$

On en déduit que

$$W = \left[\frac{t\sin(2t)}{2}\right]_0^{\frac{\pi}{4}} + \frac{1}{4}\left[\cos(2t)\right]_0^{\frac{\pi}{4}} + \frac{1}{2}\left[\sin^2(t)\right]_0^{\frac{\pi}{4}} = \frac{\pi}{8} - \frac{1}{4} + \frac{1}{4} = \frac{\pi}{8}.$$

Remarquons que $\omega = yzdx + zxdy + xydz$ est exacte. De plus, on vérifie aisément que $\omega = d(xyz)$. On peut alors retrouver le résultat précédent en faisant :

$$W = f(B) - f(A)$$

où l'on a posé f(x, y, z) = xyz,

$$B = (\cos(\frac{\pi}{4}), \sin(\frac{\pi}{4}), \frac{\pi}{4}) = (\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}, \frac{\pi}{4})$$

et

$$A = (\cos(0), \sin(0), 0) = (1, 0, 0).$$

Correction de l'exercice 8

- 1. On note $P(x,y,z) = y^2 \cos x$, $Q(x,y,z) = 2y \sin x + e^{2z}$ et $R(x,y,z) = 2ye^{2z}$. La forme $\omega = Pdx + Qdy + Rdz$, naturellement associée au champ $\vec{V}(x,y,z)$, est exacte puisqu'elle est définie sur \mathbb{R}^3 et
 - (a) $\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x} = 2y\cos x$
 - (b) $\frac{\partial P}{\partial z} = \frac{\partial R}{\partial x} = 0$
 - (c) $\frac{\partial Q}{\partial z} = \frac{\partial R}{\partial y} = 2e^{2z}$.

Le champ $\vec{V}(x,y,z)$ est donc un champ de gradient.

2. Cherchons U tel que $\omega = dU$. Cela nous conduit à résoudre le système :

$$\begin{cases} \frac{\partial U}{\partial x} = y^2 \cos x \\ \frac{\partial U}{\partial y} = 2y \sin x + e^{2z} \\ \frac{\partial U}{\partial z} = 2y e^{2z} \end{cases}$$

En intégrant la première équation par rapport à x, on trouve :

$$U(x, y, z) = y^2 \sin x + \psi(y, z).$$

Maintenant, en utilisant les deux dernières équations, on est amené à résoudre le système suivant :

$$\begin{cases} \frac{\partial \psi}{\partial y} = e^{2z} \\ \frac{\partial \psi}{\partial z} = 2ye^{2z} \end{cases}$$

Par suite, on vérifie que $\psi(y,z) = e^{2z}y + c(z)$ avec c'(z) = 0. Donc c(z) = c avec c constante réelle et finalement :

$$U(x, y, z) = y^2 \sin x + e^{2z}y + c$$

avec $c \in \mathbb{R}$. Par ailleurs, on veut que U(0,0,0) = 1 ce qui donne c = 1.

3. La circulation du champ de A(0,1,0) à $B(\frac{\pi}{2},3,0)$ est

$$\int_{\widehat{AB}} \vec{V} \cdot \vec{dl} = \int_{\widehat{AB}} \omega = U(B) - U(A) = U(\frac{\pi}{2}, 3, 0) - U(0, 1, 0) = 11.$$

Remarquons que lorsque ω est exacte, pour calculer l'intégrale curviligne de ω sur un chemin, il suffit de connaître l'origine et l'extrémité du chemin. Autrement dit, l'intégrale curviligne d'une forme exacte sur $\stackrel{\frown}{AB}$ ne dépend que de A et de B, et non du chemin choisi pour aller de A à B.

Correction de l'exercice 9

On rapporte le plan à un repère orthonormé direct d'origine O. D'après la formule de Green-Riemann, en choisissant de prendre P=0 et $Q=x^2y$ de sorte que $\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}=xy$, on obtient :

$$I = \iint_{\mathscr{D}} xy dx dy = \int_{T} x^2 y dy$$

où l'on a noté T le triangle OAB orienté dans le sens direct avec O(0,0), A(1,0) et B(1,1). Ainsi

$$I = \iint_{\mathscr{D}} xydxdy = \int_{\widehat{OA}} x^2ydy + \int_{\widehat{AB}} x^2ydy + \int_{\widehat{BO}} x^2ydy.$$

L'intégrale curviligne d'une forme différentielle sur un chemin est indépendant du paramétrage choisi pour ce chemin. Pour le calcul, nous choisissons de paramétrer $\stackrel{\frown}{OA}$ par x=t et y=0 avec t variant de 0 à 1 et ainsi $\int_{\stackrel{\frown}{OA}} x^2 y dy = 0$. De même, nous choisissons de paramétrer $\stackrel{\frown}{BO}$ par x=t et y=t avec t variant de 1 à 0 et ainsi $\int_{\stackrel{\frown}{BO}} x^2 y dy = 0$. Enfin, nous choisissons de paramétrer $\stackrel{\frown}{AB}$ par x=t et y=1-t avec t allant de 1 à 0 et donc :

$$I = \iint_{\mathscr{Q}} xy dx dy = \int_{\widehat{AR}} x^2 y dy = \int_1^0 \frac{t^2 (1-t)}{2} (-dt) = \int_0^1 \frac{t^2 (1-t)}{2} dt = \frac{1}{24}.$$

Remarquons qu'il n'aurait pas été plus difficile ici de calculer directement l'intégrale double sans utiliser la formule de Green-Riemann :

$$\iint_{\mathcal{D}} xydxdy = \int_{0^1} \left(\int_0^{1-x} xydy \right) dx = \int_0^1 x \left[\frac{y^2}{2} \right]_0^{1-x} dx = \int_0^1 x \frac{(1-x)^2}{2} dx = \frac{1}{24}.$$

Correction de l'exercice 10 A

- 1. La forme $\omega = \frac{-y}{x^2+y^2}dx + \frac{x}{x^2+y^2}dy$ est définie sur $\mathbb{R}^2 \setminus \{(0,0)\}$.
- 2. Paramétrons le cercle C par $x = \cos t$, $y = \sin t$ avec $t \in [0; 2\pi]$. On obtient :

$$\int_{C} \boldsymbol{\omega} = \int_{0}^{2\pi} (-\sin t (-\sin t) + \cos t (\cos t)) dt$$

$$= \int_{0}^{2\pi} \sin^{2} t + \cos^{2} t dt$$

$$= \int_{0}^{2\pi} 1 dt$$

$$= 2\pi.$$

3. La forme ω n'est pas exacte, sinon son intégrale curviligne sur la courbe fermée C serait nulle et cela contredirait notre résultat de la question précédente. Remarquons cependant que

$$\frac{\partial}{\partial y}(\frac{-y}{x^2+y^2}) = \frac{\partial}{\partial x}(\frac{x}{x^2+y^2}) = \frac{y^2-x^2}{(x^2+y^2)^2}.$$

En fait, avec cet exemple, on voit que dans le théorème de Poincaré, l'hypothèse que l'ouvert doit être étoilé, est indispensable. Ici $\mathbb{R}^2 \setminus \{(0,0)\}$ n'est pas étoilé, c'est un domaine "troué". De plus, $\int_C \omega$ n'est pas nulle car le cercle entoure le "trou".