

Pedestrian Detection and Localization

Members:

Đặng Trương Kh ánh Linh 0612743Bùi Huỳnh Lam Bửu 0612733

Advisor:

A.Professor LêHo ài Bắc

UNIVERSITY OF SCIENCE
ADVANCED PROGRAM IN COMPUTER SCIENCE
Year 2011

Problem statement

- Build up a system which automatically detects and localizes pedestrians in static image.
- Constraints:
 - Pedestrians stand up and fully visible people.
 - Size of pedestrian is not less than 64x128 pixels.

Some examples

Applications

- Using in smart car system, or smart camera in general.
- Build a software to categorize personal album images to proper catalogue.

Challenges

- Huge variation in intra-class.
- Variable appearance and clothing.
- Complex background.
- Non-constraints illumination.
- Occlusions, different scales.

Outline

- Existing approaches.
- Motivation.
- Overview of methodology.
 - Learning phase
 - Detection
- Some contributions:
 - Spatial selective approach
 - Multi-level based approach
- Non-maxima Suppression
- Conclusions
- Future work
- Reference

Existing approaches

- Haar wavelets + SVM: Papageorgiou & Poggio, 2000; Mohan et al 2000
- Rectangular differential features + adaBoost: Viola & Jones, 2001
- Model based methods: Felzenszwalb & Huttenlocher, 2000; Loffe & Forsyth, 1999
- Lowe, 1999 (SIFT).
- ❖ LBP, HOG, ...

Motivation of choosing HOG

- The blob structure based methods are false to object detection problem.
- Use the advantage of rigid shape of object.
- Low complexity and fast running time.
- Has a good performance.

Contributions

- Re-implement HOG description.
- Spatial Selective Method.
- Multi-level Method.

Dataset

INRIA pedestrian dataset

Train:

1208 positive windows 1218 negative images

Test:

566 positive windows453 negative images

Overview of methodology

Learning Phase

Detection Phase

Scan image at all positions and scales

Result of experiment

Some Contributions

Spatial Selective Approach

Less informative region

Spatial Selective Approach

Examples:

KHTN

Result

Vector Length v.s Speed

A:B \rightarrow Deleted cell(s): Overlap cell(s)

Multi-level Approach

Purpose: enhance the performance by getting more information about shape and contour of object.

Multi-level Approach

[A1,..,Z1]

[A3,..,Z3]

[A1,..,Z1, A2,..,Z2, A3,..,Z3, A4,..,Z4]

KHTN

Result

Result(cont...)

Mean Shift as Non-maxima Suppression

Mean shift clustering

- Cluster: all data points in the attraction basin of a mode
- Attraction basin: the region for which all trajectories lead to the same mode

Non-maximum suppression

Using non-maximum suppression such as mean shift to find the modes.

Conclusions

- Successfully re-implement HOG descriptor.
- Propose the Spatial Selective Approach which take advantages of less informative center region of image window.
- Multi-level has more information about shape and contour of object.

Future work

- Non-uniform grid of points.
- Combination of Spatial Selective and Multi-level approach.

Non-uniform grid of points

₩ KHTN

References

- N. Dalal and B. Triggs, "Histograms of oriented gradients for human detection," in IEEE Conference on Computer Vision and Pattern Recognition, 2005.
- Subhransu Maji et al. Classification using Intersection Kernel Support Vector Machines is Efficient. IEEE Computer Vision and Pattern Recognition 2008
- C. Harris and M. Stephens. A combined corner and edge detector. In Alvey Vision Conference, pages 147–151, 1988.
- ❖ D. G. Lowe. Distinctive image features from scaleinvariant keypoints. International Journal of Computer Vision, 60(2):91−110, 2004.