Machine Learning - Homework 2

Savinay Shukla

Q1) Please refer to the attached .ipynb for the working python code.

Figure 1.1 Binary Classification Error through iterations.

Figure 1.2 Perceptron Error through iterations.

Figure 1.3 Decision Boundary for the x1 and x2 input space.

Cross entropy error for a single data sample:

$$E = -\underbrace{\underbrace{\underbrace{\underbrace{\underbrace{t_i \log (n_i) + (1 - t_i) \log (1 - n_i)}}}_{i}}$$

Also, logistic activation function for output layer is given by:-

$$n_i = \frac{1}{1 + e^{-s_i}}$$
 where $s_i = \underbrace{s_j \omega_j}_{j} \omega_j$

For hidden layer:

$$y_j = \frac{1}{1 + e^{-5j}}$$
 where $s_j = \sum_{k} \sum_{k} w_{kj}$

DERIVATIVE :-OUTER LAYER'S

NOW CALCULATING OUTER LAYER'S DETERMINED

$$\int \frac{\partial E}{\partial \omega_{ji}} = \underbrace{\frac{\partial E}{\partial s_{i}}}_{i} \cdot \frac{\partial s_{i}}{\partial \omega_{ji}}$$

$$= -\underbrace{\frac{\partial E}{\partial s_{i}}}_{i} \cdot \underbrace{\frac{\partial E}{\partial s_{i}}}_{i} \cdot \underbrace{\frac{\partial S_{i}}{\partial \omega_{ji}}}_{i}$$

$$= -\underbrace{\frac{\partial E}{\partial s_{i}}}_{i} \cdot \underbrace{\frac{\partial S_{i}}{\partial s_{i}}}_{i} \cdot \underbrace{\frac{\partial S_{i}}{\partial \omega_{ji}}}_{i}$$

$$= -\underbrace{\frac{\partial E}{\partial s_{i}}}_{i} \cdot \underbrace{\frac{\partial E}{\partial s_{i}}}_{i} \cdot \underbrace{\frac{\partial S_{i}}{\partial \omega_{ji}}}_{i}$$

$$= -\underbrace{\frac{\partial E}{\partial s_{i}}}_{i} \cdot \underbrace{\frac{\partial E}{\partial s_{i}}}_{i} \cdot \underbrace{\frac{\partial S_{i}}{\partial \omega_{ji}}}_{i}$$

$$= -\underbrace{\frac{\partial E}{\partial s_{i}}}_{i} \cdot \underbrace{\frac{\partial E}{\partial s_{i}}}_{i} \cdot \underbrace{\frac{\partial S_{i}}{\partial \omega_{ji}}}_{i}$$

$$= -\underbrace{\frac{\partial E}{\partial s_{i}}}_{i} \cdot \underbrace{\frac{\partial E}{\partial s_{i}}}_{i} \cdot \underbrace{\frac{\partial S_{i}}{\partial \omega_{ji}}}_{i}$$

$$= -\underbrace{\frac{\partial E}{\partial s_{i}}}_{i} \cdot \underbrace{\frac{\partial E}{\partial s_{i}}}_{i} \cdot \underbrace{\frac{\partial S_{i}}{\partial \omega_{ji}}}_{i}$$

$$= -\underbrace{\frac{\partial E}{\partial s_{i}}}_{i} \cdot \underbrace{\frac{\partial E}{\partial s_{i}}}_{i} \cdot \underbrace{\frac{\partial S_{i}}{\partial \omega_{ji}}}_{i}$$

$$= -\underbrace{\frac{\partial E}{\partial s_{i}}}_{i} \cdot \underbrace{\frac{\partial E}{\partial s_{i}}}_{i} \cdot \underbrace{\frac{\partial S_{i}}{\partial \omega_{ji}}}_{i}$$

$$= -\underbrace{\frac{\partial E}{\partial s_{i}}}_{i} \cdot \underbrace{\frac{\partial E}{\partial s_{i}}}_{i} \cdot \underbrace{\frac{\partial S_{i}}{\partial \omega_{ji}}}_{i}$$

$$= -\underbrace{\frac{\partial E}{\partial s_{i}}}_{i} \cdot \underbrace{\frac{\partial E}{\partial s_{i}}}_{i} \cdot \underbrace{\frac{\partial E}{\partial s_{i}}}_{i}$$

$$= -\underbrace{\frac{\partial E}{\partial s_{i}}}_{i} \cdot \underbrace{\frac{\partial E}{\partial s_{i}}}_{i} \cdot \underbrace{\frac{\partial E}{\partial s_{i}}}_{i}$$

$$= -\underbrace{\frac{\partial E}{\partial s_$$

We can further simplify equation 1 as follows:-

 $\left(\frac{di}{n_i} - \frac{i-di}{i-n_i}\right) \cdot \frac{\partial n_i}{\partial s_i}$

Also, equation @ can be written as:-

.. Substituting the simplified values in the derivative we get:

 $\frac{\partial E}{\partial \omega_{ji}} = -\left(\frac{\pm i}{\varkappa_{i}} - \frac{1-\pm i}{1-\varkappa_{i}}\right) \cdot \frac{\partial \varkappa_{i}}{\partial s_{i}} \cdot y_{j}$

 $= \left(\frac{1-ti}{1-xi} - \frac{ti}{xi}\right) \cdot \frac{dxi}{dsi} \cdot gi$

= $\frac{\lambda_i - a_i t_i - t_i + a_i t_i}{\lambda_i (1-a_i)} \cdot \frac{\partial a_i}{\partial s_i} \cdot y_i$

 $= \frac{x_i - x_i}{x_i(1-x_i)} \cdot \frac{\partial x_i}{\partial s_i} \cdot y_i$

We also know that
$$2i = \frac{1}{1+e^{-si}}$$

So, $\frac{\partial a_i}{\partial s_i} = \frac{1}{(1+e^{-si})^2} \cdot e^{-si}$

$$= \frac{1}{(1+e^{-si})} \cdot \frac{e^{-si}}{(1+e^{-si})}$$

$$= a_i \cdot (1-a_i)$$
Substituting the value we get!

$$\frac{\partial E}{\partial w_{i}} = (a_i - b_i)y_i$$

Now solving for the hidden layer:

We can write as follows:

$$\frac{\partial E}{\partial w_{kj}} = \underbrace{\frac{\partial E}{\partial s_{j}}}_{i} \cdot \frac{\partial s_{j}}{\partial s_{j}} \cdot \frac{\partial s_{j}}{\partial s_{j}} \cdot \frac{\partial s_{j}}{\partial s_{j}} \cdot \frac{\partial s_{j}}{\partial s_{k}}$$

We know:
$$-\frac{\partial s_{j}}{\partial w_{kj}} = z_{k}$$

Also since $s_{i} = \underbrace{z_{i}}_{y_{j}} \cdot w_{ji}$

Also since $y_{j} = \frac{1}{1+e^{-s_{j}}}$

Using chain tule we can calculate:

 $\frac{\partial s_{i}}{\partial s_{j}} = \frac{\partial s_{i}}{\partial y_{j}} \cdot \frac{\partial y_{j}}{\partial s_{j}}$
 $= w_{ji} \cdot y_{j} \cdot (1-y_{j})$

Substituting eq 3 and 4 in $\frac{\partial E}{\partial w_{kj}}$ we get:

 $\frac{\partial E}{\partial w_{ki}} = \underbrace{\frac{\partial E}{\partial s_i}}_{i} \cdot \underbrace{w_{ji}}_{ji} \cdot \underbrace{y_{j}[1-y_{j}]}_{i} \cdot \underbrace{z_{k}}_{k}$

Previously we found:-

$$\frac{\partial E}{\partial s_i} = n_i - \lambda_i$$

We have
$$E = -\underbrace{\leq}_{i} t_{i} \log(n_{i})$$

and
$$w_i = \frac{e^{s_i}}{\sum_{c=1}^{m} e^{s_c}}$$
 and $s_i = \sum_{j=1}^{m} y_j w_{ji}$

For the outer layer, we can find the gradient as follows:-

$$\frac{\partial E}{\partial w_{ji}} = \frac{\partial E}{\partial x_{i}} \cdot \frac{\partial z_{i}}{\partial s_{i}} \cdot \frac{\partial s_{i}}{\partial w_{ji}} = \frac{1}{2}$$

We know
$$\frac{\partial E}{\partial n_i} = \frac{-t_i}{n_i}$$

Since
$$n_i = \underbrace{e^{s_i}}_{e^{s_e}}$$

Since
$$n_i = \frac{e^{s_i}}{\sum_{c=1}^{m} s_c}$$

$$\frac{\partial n_i}{\partial s_i} = \frac{e^{s_i}}{\sum_{c=1}^{m} s_c} - \frac{e^{s_i}}{\sum_{c=1}^{m} s_c}^2$$

$$\frac{\partial n_i}{\partial s_i} = \frac{e^{s_i}}{\sum_{c=1}^{m} s_c} - \frac{e^{s_i}}{\sum_{c=1}^{m} s_c}^2$$

$$\frac{\partial n_i}{\partial s_i} = \frac{e^{s_i}}{\sum_{c=1}^{m} s_c} - \frac{e^{s_i}}{\sum_{c=1}^{m} s_c}^2$$

$$\frac{\partial n_i}{\partial s_i} = \frac{e^{s_i}}{\sum_{c=1}^{m} s_c} - \frac{e^{s_i}}{\sum_{c=1}^{m} s_c}^2$$

$$\frac{\partial n_i}{\partial s_i} = \frac{e^{s_i}}{\sum_{c=1}^{m} s_c} - \frac{e^{s_i}}{\sum_{c=1}^{m} s_c}^2$$

$$\frac{\partial n_i}{\partial s_i} = \frac{e^{s_i}}{\sum_{c=1}^{m} s_c} - \frac{e^{s_i}}{\sum_{c=1}^{m} s_c}^2$$

$$\frac{\partial n_i}{\partial s_i} = \frac{e^{s_i}}{\sum_{c=1}^{m} s_c} - \frac{e^{s_i}}{\sum_{c=1}^{m} s_c}^2$$

$$\frac{\partial n_i}{\partial s_i} = \frac{e^{s_i}}{\sum_{c=1}^{m} s_c} - \frac{e^{s_i}}{\sum_{c=1}^{m} s_c}^2$$

$$\frac{\partial n_i}{\partial s_i} = \frac{e^{s_i}}{\sum_{c=1}^{m} s_c} - \frac{e^{s_i}}{\sum_{c=1}^{m} s_c}^2$$

$$\frac{\partial x_{i}}{\partial s_{i}} = \begin{cases}
\frac{\partial x_{i}}{\partial s_{i}} & = k \\
-x_{i} x_{k} & = k
\end{cases}$$

$$\frac{\partial E}{\partial s_{i}} = \begin{cases}
\frac{\partial E}{\partial x_{k}} & \frac{\partial z_{k}}{\partial s_{i}} \\
= \frac{\partial E}{\partial x_{i}} & \frac{\partial z_{i}}{\partial s_{i}} - \frac{\partial E}{\partial x_{k}} & \frac{\partial z_{k}}{\partial s_{i}}
\end{cases}$$

$$= -t_{i} (1-x_{i}) + \begin{cases}
\frac{\partial E}{\partial x_{k}} & \frac{\partial z_{k}}{\partial s_{i}} \\
= -t_{i} + x_{i} \\
= x_{i} - t_{i}
\end{cases}$$

$$\frac{\partial E}{\partial w_{ji}} = \begin{cases}
\frac{\partial E}{\partial x_{k}} & \frac{\partial E}{\partial x_{k}} & \frac{\partial E}{\partial x_{k}} \\
= x_{i} - t_{i}
\end{cases}$$

$$\frac{\partial E}{\partial w_{ji}} = \begin{cases}
\frac{\partial E}{\partial x_{k}} & \frac{\partial E}{\partial x_{k}} & \frac{\partial E}{\partial x_{k}} \\
= x_{i} - t_{i}
\end{cases}$$

$$\frac{\partial E}{\partial w_{ji}} = \begin{cases}
\frac{\partial E}{\partial x_{k}} & \frac{\partial E}{\partial x_{k}} & \frac{\partial E}{\partial x_{k}} \\
= x_{i} - t_{i}
\end{cases}$$

$$\frac{\partial E}{\partial w_{ji}} = \begin{cases}
\frac{\partial E}{\partial x_{k}} & \frac{\partial E}{\partial x_{k}} & \frac{\partial E}{\partial x_{k}} \\
= x_{i} - t_{i}
\end{cases}$$

Now for hidden layer:

$$\frac{\partial E}{\partial E} = \underbrace{\sum \frac{\partial E}{\partial s_{j}}}_{j} \cdot \underbrace{\frac{\partial s_{j}}{\partial w_{k_{j}}}}_{j}$$

$$= \underbrace{\sum \frac{\partial E}{\partial s_{i}}}_{j} \cdot \underbrace{\frac{\partial s_{i}}{\partial w_{k_{j}}}}_{j}$$

$$\frac{\partial E}{\partial w_{k_{j}}} = \underbrace{(x_{i} - t_{i})}_{j} \cdot \underbrace{\frac{\partial s_{i}}{\partial s_{j}}}_{j} \cdot \underbrace{\frac{\partial s_{i}}{\partial w_{k_{j}}}}_{j}$$

$$\frac{\partial E}{\partial w_{k_{j}}} = \underbrace{(x_{i} - t_{i})}_{j} \cdot \underbrace{\frac{\partial s_{i}}{\partial s_{j}}}_{j} \cdot \underbrace{\frac{\partial s_{j}}{\partial w_{k_{j}}}}_{j}$$

$$\frac{\partial S_{i}}{\partial s_{j}} = \underbrace{\frac{\partial s_{i}}{\partial s_{j}}}_{j} \cdot \underbrace{\frac{\partial S_{j}}{\partial s_{j}}}_{j} = \underbrace{y_{j}(1 - y_{j})}_{j}$$

$$\frac{\partial S_{i}}{\partial s_{j}} = \underbrace{\frac{\partial s_{i}}{\partial s_{j}}}_{j} \cdot \underbrace{\frac{\partial S_{j}}{\partial s_{j}}}_{j}$$

$$\frac{\partial S_{i}}{\partial s_{j}} = \underbrace{\frac{\partial s_{i}}{\partial s_{j}}}_{j} \cdot \underbrace{\frac{\partial S_{j}}{\partial s_{j}}}_{j}$$

$$\frac{\partial S_{i}}{\partial s_{j}} = \underbrace{\frac{\partial s_{i}}{\partial s_{j}}}_{j} \cdot \underbrace{\frac{\partial S_{j}}{\partial s_{j}}}_{j}$$

$$\frac{\partial S_{i}}{\partial s_{j}} = \underbrace{\frac{\partial s_{i}}{\partial s_{j}}}_{j} \cdot \underbrace{\frac{\partial S_{j}}{\partial s_{j}}}_{j}$$

$$\frac{\partial S_{i}}{\partial s_{j}} = \underbrace{\frac{\partial s_{i}}{\partial s_{j}}}_{j} \cdot \underbrace{\frac{\partial S_{j}}{\partial s_{j}}}_{j}$$

$$\frac{\partial S_{i}}{\partial s_{j}} = \underbrace{\frac{\partial S_{i}}{\partial s_{j}}}_{j} \cdot \underbrace{\frac{\partial S_{j}}{\partial s_{j}}}_{j}$$

$$\frac{\partial S_{i}}{\partial s_{j}} = \underbrace{\frac{\partial S_{i}}{\partial s_{j}}}_{j} \cdot \underbrace{\frac{\partial S_{i}}{\partial s_{j}}}_{j}$$

$$\frac{\partial S_{i}}{\partial s_{j}} = \underbrace{\frac{\partial S_{i}}{\partial s_{j}}}_{j} \cdot \underbrace{\frac{\partial S_{j}}{\partial s_{j}}}_{j}$$

$$\frac{\partial S_{i}}{\partial s_{j}} = \underbrace{\frac{\partial S_{i}}{\partial s_{j}}}_{j} \cdot \underbrace{\frac{\partial S_{i}}{\partial s_{j}}}_{j}$$

$$\frac{\partial S_{i}}{\partial s_{j}} = \underbrace{\frac{\partial S_{i}}{\partial s_{j}}}_{j} \cdot \underbrace{\frac{\partial S_{i}}{\partial s_{j}}}_{j}$$

$$\frac{\partial S_{i}}{\partial s_{j}} = \underbrace{\frac{\partial S_{i}}{\partial s_{j}}}_{j} \cdot \underbrace{\frac{\partial S_{i}}{\partial s_{j}}}_{j}$$

$$\frac{\partial S_{i}}{\partial s_{j}} = \underbrace{\frac{\partial S_{i}}{\partial s_{j}}}_{j} \cdot \underbrace{\frac{\partial S_{i}}{\partial s_{j}}}_{j}$$

$$\frac{\partial S_{i}}{\partial s_{j}} = \underbrace{\frac{\partial S_{i}}{\partial s_{j}}}_{j} \cdot \underbrace{\frac{\partial S_{i}}{\partial s_{j}}}_{j}$$

$$\frac{\partial S_{i}}{\partial s_{j}} = \underbrace{\frac{\partial S_{i}}{\partial s_{j}}}_{j} \cdot \underbrace{\frac{\partial S_{i}}{\partial s_{j}}}_{j}$$

$$\frac{\partial S_{i}}{\partial s_{j}} = \underbrace{\frac{\partial S_{i}}{\partial s_{j}}}_{j} \cdot \underbrace{\frac{\partial S_{i}}{\partial s_{j}}}_{j}$$

$$\frac{\partial S_{i}}{\partial s_{j}} = \underbrace{\frac{\partial S_{i}}{\partial s_{j}}}_{j} \cdot \underbrace{\frac{\partial S_{i}}{\partial s_{j}}}_{j}$$

$$\frac{\partial S_{i}}{\partial s_{j}} = \underbrace{\frac{\partial S_{i}}{\partial s_{j}}}_{j} \cdot \underbrace{\frac{\partial S_{i}}{\partial s_{j}}}_{j}$$

$$\frac{\partial S_{i}}{\partial s_{j}} = \underbrace{\frac{\partial S_{i}}{\partial s_{j}}}_{j} \cdot \underbrace{\frac{\partial S_{i}}{\partial s_{j}}}_{j}$$

$$\frac{\partial S_{i}}{\partial s_{j}} = \underbrace{\frac{\partial S_{i}}{\partial s_{j}}}_{j} \cdot \underbrace{\frac{\partial S_{i}}{\partial s_{j}}}_$$

The given Entropy function:

$$H = -\sum_{k=1}^{N} P_k \log P_k$$
Also, the given constraint:

$$\sum_{k=1}^{N} -1 = 0$$
Using Lagrange Multipliers we got:

$$\mathcal{L}(P_k, \lambda) = \underbrace{S}_{k=1}^{N} - \underbrace{P_k \log P_k}_{k=1} - \lambda \left(\underbrace{\sum_{k=1}^{N} P_k}_{k=1} -1\right) \underbrace{S}_{k=1}^{N}$$
Maximizing $\lambda(P_k, \lambda)$ with respect to P_k :

$$\frac{\partial \lambda}{\partial P_k} = -\log(P_k) - 1 - \lambda = 0$$

$$0 \cdot P_k = e^{-(1+\lambda)} - 1$$
Manimizing $\lambda(P_k, \lambda)$ with respect to λ :

$$\frac{\partial \lambda}{\partial P_k} = -\underbrace{\sum_{k=1}^{N} P_k}_{k=1} + 1 = 0$$

$$0 \cdot P_k = 1$$

$$\begin{cases} x = -(1+\lambda) \\ x = 1 \end{cases}$$

$$\begin{cases} x = -(1+\lambda) \\ y = 1 \end{cases}$$

$$\begin{cases} x = -(1+\lambda) \\ -(1+\lambda) = 1 \end{cases}$$

Also we know:
$$\Rightarrow e^{-(1+\lambda)} = P(k)$$

Hence every P_i where $i \in [1, N]$, will have the same probability = $\frac{1}{N}$.

.. A uniform probability distribution given by $P_{K} = \frac{1}{N}$, will manimize the given entropy $H = -\sum_{k=1}^{N} P_{k} \log P_{k}$

Man Entropy:-
$$N = -\frac{1}{N} \log(\frac{1}{N})$$

Since N does not depend on summation:

man
$$H = \frac{1}{N} \times \log(\frac{1}{N}) = \log N$$

VC Dimension for the axis-aligned squares = 3.

We can easily demonstrate that axis-aligned squares can shatter 3 data points in its 2-dimensional input space for all their possible configurations – i.e. $2^3 = 8$ data point configurations:

So we know for certain that VC-Dimension for the axis-aligned square is at least 3.

However, when we consider 4 data points in the 2-dimensional input space, the axis-aligned square cannot shatter all 2^4 data point combinations.

One particular example is the following configuration:

If we consider any two points which belong to the same class (either class A or class B), we can't possibly create a square without including the data point belonging to the other class, which is incorrect. The minimum inclosing axis-aligned square, will contain at least one incorrectly shattered point.

This is true for any axis-aligned orientation of the square in the 2-D input space.

Since,
$$VC - Dimension \neq 4$$

$$\Rightarrow$$
 VC - Dimension = 3