MMBL Symbiont Metabarcoding Workshop 2023

- 1. 16S rRNA sequence analysis (QIIME2)
- 2. ITS2 rRNA sequence analysis (SymPortal)

Analysis of 16S rRNA sequences for microbial diversity studies

MMBL Symbiont Metabarcoding Workshop

November 11-12, 2023

Jake Ivan P. Baquiran
John Bennedick Quijano
Dr. Cecilia Conaco

Outline

- 16S rRNA gene
- Sequencing platforms and protocol
- 16S rRNA sequence analysis pipeline
- Diversity measures
 - Alpha diversity
 - Beta diversity
- Ordination
- Demonstration

	Method	Advantages	Limitations
	Culturome	High-throughputTargeted selectionProvides microbial isolates	ExpensiveLaboriousInfluenced by media and the environment
	Amplicon (16S/18S/ITS)	Quick analysisLow-biomass requirementApplicable to samples contaminated by host DNA	PCR and primer biasesResolution limited to genus levelFalse positive in low-biomass samples
8 6 4 2 0 1-2	Metagenome	 Taxonomic resolution to species or strain level Functional potential Uncultured microbial genome 	 Expensive Time-consuming in analysis Host-derived contamination

Fig 1. Advantages and limitations of common HTS methods used in microbiome research.

16S rRNA gene

- Marker gene for bacterial phylogeny and taxonomy
- most well-studied and characterized gene
- present in almost all bacteria
- \circ 1,500 bp in length
- comprised of conserved and variable regions

Fig 2. The 2D-3D structures of the 16S rRNA gene.

Fig. 3. Schematic representation of the 16S rRNA gene. Location of variable (purple) and conserved (brown) regions in a bacterial 16S rRNA.

conserved regions- allow primers to be designed to target all bacteriavariable regions- allow for determination of various species

Fig. 4. Illustration of different variable regions.

Table 1. Pros and cons of different primer pairs

	V4–5	V4	V3–4	V1–2
Populations biases: consensus fron	n mock communities and fie	eld samples		
Populations under-represented ^b	SAR11 Deep 1	ZD0405 (field)	Euryarchaeota (field)	SAR11 Deep 1
	Pseudospirillum		Thaumarchaeota	Roseobacter
			SAR11 Surface 1	DC5-80-3
			SAR11 Deep 1	Roseobacter OCT
			some SAR116	
Populations over-represented ^b		Euryarchaeota	Euryarchaeota	Flavobacteria: NS5
		Thaumarchaeota	(mock)	
Populations not detected	Roseobacter OCT	some SAR116		Euryarchaeota ^c
				Thaumarchaeota ^c
				Roseobacter
				NAC11-7
				some SAR116
Clades with poor classification ^d	Rhodobacteraceae			Rhodobacteraceae

Cample				-				Г							
Sample	075	075		T1	5455		14455		075	075	0445	T7			44455
Primer Pairs	27F - 338R	27F - 534R	341F - 785R	515F - 806R	515F - 944R	939F - 1378R	1115F - 1492R		27F - 338R	27F - 534R	341F - 785R	515F - 806R	515F - 944R	939F - 1378R	1115F - 1492R
Actinobacteria													1, 1, 1,		
Bacteroidetes				P 55.	1		* - 1		117. 11	-* - ; '.	1 1	7. 4. 7		F- 3	
Firmicutes		4	111111	1 13-13			100					E. 5	1.000		
Lentisphaerae															
Proteobacteria			4	4 15				l	L-47-1	1 - 1 - 1		1 7		1000	
Tenericutes															
Verrucomicrobia															
unclassified Bacteria								Ì							
unknown <i>Bacteria</i>															
Sample				T17								T19			
Primer Pairs	27F -	27F -	341F -	515F -	515F -	939F -	1115F -		27F -	27F -	341F -	515F -	515F -	939F -	1115F -
Actinobacteria	338R	534R	785R	806R	944R	1378R	1492R		338R	534R	785R	806R	944R	1378R	1492R
Bacteroidetes							- 1		2 127						
Firmicutes								ļ							
Lentisphaerae															
Proteobacteria								ļ	100					17	
Tenericutes													1		
Verrucomicrobia												2000		1000	
unclassified <i>Bacteria</i>															
unknown <i>Bacteria</i>															
Sample								Г							
Primer Pairs	27F	27F	341F	T20 515F	515F	939F	1115F		27F	27F	341F	T22 515F	515F	939F	1115F
Primer Pairs	338R	534R	785R	- 806R	944R	1378R	1492R		338R	534R	- 785R	- 806R	944R	1378R	1492R
Actinobacteria								l						1	
Bacteroidetes				100			- 1	ı	7.5	- 1	1 11		77.0	E = 1	
Firmicutes									1,000		1				
Lentisphaerae								ľ							
Proteobacteria				1 17	7.1.11		71	ı	11 10	1-11-1		1 11		1477	
Tenericutes								ľ							
Verrucomicrobia				1 1 1											
unclassified															
Bacteria unknown															
Bacteria				7 7 7											
27F-3	38R				51	5F-944F	₹								
	27F-5	_ 34R _		341F-785						939F-	1378R		1115	-1492R	
. V1 .	. V2		V3	51	V4		V5 .		, V6		V7 ,	, V8 ,		V9 ,	_
V1	V Z	1 1	V3		V-4		V5		⊢ • • • • • • • • • • • • • • • • • • •	<u> </u>	V /	V6		V 9	
Conserve	d region		Vari	able reg	ion	H	Hypervaria	able	region						

Fig. 5. "Presence-and-absence" map of human samples on phylum level for different V-regions.

Sequencing platforms

Table 2. Different platforms comparisons.

	Roche 454	Ion Torrent	Illumina MiSeq
Sequencing Kit	GS FLX Titanium XLR70	PGM 400 Sequencing	MiSeq Reagent Kits v2
Expected Read Length	Up to 600 bp	Up to 400 bp	MiSeq Reagent Kit v2: Up to 2×250 bp
Typical Throughput	450 Mb	lon 314™ Chip v2: Up to 100 Mb lon 316™ Chip v2: Up to 1 Gb lon 318™ Chip v2: Up to 2 Gb	Up to 8.5 Gb
Reads per Run	~1000,000 shotgun, ~700,000 amplicon	lon 314™ Chip v2: 400–550 thousand lon 316™ Chip v2: 2–3 millions lon 318™ Chip v2: 4–5.5 millions	~15 million reads
Consensus Accuracy	99.995%	99%	99%
Run Time	10 h	lon 314™ Chip v2: 2.3 to 3.7 h lon 316™ Chip v2: 3.0 to 4.9 h lon 318™ Chip v2: 4.4 to 7.3 h	4 h and approximately 39 h depending on the number of cycles
Sample Input	gDNA, cDNA, or amplicons (PCR products)	gDNA, cDNA, or amplicons (PCR products)	gDNA, cDNA, or amplicons (PCR products) Small genome, amplicon, and targeted gene panel sequencing
Weight	532 lbs. (242 kg)	65 lbs. (30 kg)	120 lbs. (54.5 kg)
Instrument cost	~\$500 K	~ \$80 k	~ \$125 k

16S pipeline

Quantitative Insights Into Microbial Ecology version 2 (https://docs.qiime2.org)

Mothur

(https://www.mothur.org)

SILVAngs

(https://www.arb-silva.de/silvangs)

and others

QIIME2 pipeline overview

Demultiplexing

Adapter Barcode Overhang adapter Primer

Primer Overhang adapter Barcode Adapter

Multiplexing:

During sequencing, samples were mixed together or multiplex to minimize sequencing cost.

How do we know which sample each read came from?

This is typically done by appending a **unique barcode** (a.k.a. index or tag) sequence to one or both ends of each sequence. Detecting these barcode sequences and mapping them back to the samples they belong allows us to *demultiplex* sequences.

Demultiplexing

Adapter Barcode Overhang adapter

Overhang adapter Barcode Adapter

Sample ID	Barcode sequence
Sample 1	AAGAGGCAGTAAGGAG
Sample 2	GTAGAGGAACTGCATA
Sample 3	GCTCATGAAAGGAGTA
Sample 4	ATCTCAGGCTAAGCCT
Sample 5	ACTCGCTACGTCTAAT
Sample 6	GGAGCTACTCTCCG

Removing non-biological sequences

For example:

16S Amplicon PCR Forward Primer
TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCCTACGGGNGGCWGCAG

16S Amplicon PCR Reverse Primer
GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGACTACHVGGGTATCTAATCC

Available tools to remove non-biological sequences:

- Trimmomatic
- Trim Galore
- Sickle
- Cutadapt available in Qiime2 workflow

Minimizing the effects of targeted sequencing error

Strategies:

- **a. OTU clustering-** based upon the idea that related/similar organisms will have similar target gene sequences and that rare sequencing errors will have a trivial contribution
- clusters often being generated using a similarity threshold of 97% sequence identity
- Reference-free (De novo) OTU Clustering and Reference-based OTU Clustering (Open and Closed).

Minimizing the effects of targeted sequencing error

Strategies:

- **b. Amplicon sequence variant approach-** determines which exact sequences were read and how many times each exact sequence was read
- -even a single base difference in the sequence will result in a unique ASV
- -data will be combined with an an error model for the sequencing run, enabling the comparison of similar reads to determine the probability that a given read at a given frequency is not due to sequencer error
- -sometimes called exact sequence variant or zero-radius OTU (zOTU)

Taxonomic assignment

Table 3. Overview of different taxonomic classifications

Taxonomy	Domains	Lowest rank	Latest release	Sources
SILVA	Bacteria, Archaea, Eukarya	Species	August 2020	Bergey's Taxonomic Outlines; List of Prokaryotic Names with Standing in Nomenclature; International Society of Protistologists
Ribosomal Database Project (RDP)	Bacteria, Archaea, Fungi	Genus	August 2020	International Nucleotide Sequence Database Collaboration
Greengenes (GG)	Bacteria, Archaea	Species	October 2022	Mainly NCBI
NCBI	All organisms	Species	Today	Catalog of Life; the Encyclopedia of Life; Name- Bank; WikiSpecies
Open tree of life taxonomy (OTT)	All organisms	Species	September 2023	IndexFungorum; SILVA, NCBI, Global Biodiversity Information Facility; Interim Register of Marine and Nonmarine Genera

View the taxonomic classification and raw count table

Data analysis

Rarefaction curve: estimates covered diversity by available sequencing depth
 -Plateauing means sufficient sequencing effort

Diversity measures

Alpha diversity (within)

What is there? How much is there?

- Diversity within one sample
- Richness
- Evenness

Beta diversity (between)

How similar or different are samples?

- Diversity between samples (comparison)
- Dissimilarity

Species Richness- species counts

Sample A

Endozoicomonas acroporae Endozoicomonas montiporae Endozoicomonas gorgoniicola

Sample B

Endozoicomonas acroporae Endozoicomonas montiporae

Sample C

Endozoicomonas acroporae

Conclusion:

Sample A is more diverse than Sample B, and B is more diverse than C.

Fig. 6. Richness of microbes from different coral compartments.

Species Richness- species counts

Sample A

Endozoicomonas acroporae Endozoicomonas montiporae Endozoicomonas gorgoniicola

Sample B

Endozoicomonas acroporae Endozoicomonas montiporae Vibrio coralliilyticus

Richness: Sample A:3

Sample B:3

Sample C:3

Conclusion:

Samples A, B and C are

equally diverse.

Sample C

Endozoicomonas acroporae Vibrio coralliilyticus Bacillus flexus

*ignores relatedness of the species

o Phylogenetic divesity index (PD) - based on phylogeny

Sample A

Endozoicomonas acroporae Endozoicomonas montiporae Endozoicomonas gorgoniicola

Sample B

Endozoicomonas acroporae Endozoicomonas montiporae Hahella chejuensis

Sample C

Endozoicomonas acroporae Vibrio coralliilyticus Bacillus flexus

o Phylogenetic divesity index (PD) - based on phylogeny

Sample A

Endozoicomonas acroporae Endozoicomonas montiporae Endozoicomonas gorgoniicola 0.03 0.25 0.15 0.03 0.18 **PD**= 0.18+0.03+0.11+0.08= **0.4** 40

o Phylogenetic divesity index (PD) - based on phylogeny

Sample B

Endozoicomonas acroporae Endozoicomonas montiporae Hahella chejuensis

o Phylogenetic divesity index (PD) - based on phylogeny

Sample C

Endozoicomonas acroporae

Vibrio coralliilyticus Bacillus flexus

PD= 0.13+0.03+0.25+0.06+0.04+0.12+0.15+ 0.03+0.03+0.03+0.11= **0.98**

o Phylogenetic divesity index (PD) - based on phylogeny

Sample A

Endozoicomonas acroporae Endozoicomonas montiporae Endozoicomonas gorgoniicola

Sample B

Endozoicomonas acroporae Endozoicomonas montiporae Hahella chejuensis

Sample C

Endozoicomonas acroporae Vibrio coralliilyticus Bacillus flexus

$$PD = 0.40$$

<

PD= 0.45

<

PD = 0.98

Conclusion:

Sample C is more diverse than Sample B, which is more diverse than Sample A

 Shannon Diversity index (H)- measures the number of species richness but scales them based on the evenness of the community, more weight on species richness

Sample A

Abundance= 10 Species Richness= 4 Diversity= ?

Sample B

Abundance= 10 Species Richness= 4 Diversity= ?

 Shannon Diversity index (H)- measures the number of species richness but scales them based on the evenness of the community, more weight on species richness

$$H = -\sum (Pi) \times In(Pi)$$

where Pi is the proportion of individuals in each species

Sample A

Species	Abundance	Pi	Ln (Pi)	Pi x Ln(Pi)
Blue	7	0.70	-0.51	-0.36
Yellow	1	0.10	-2.30	-0.23
Green	1	0.10	-2.30	-0.23
Violet	1	0.10	-2.30	-0.23
Total	10			-1.05

Sample A **H= 1.05**

 Shannon Diversity index (H)- measures the number of species richness but scales them based on the evenness of the community

$$H = -\sum (Pi) \times In(Pi)$$

where Pi is the proportion of individuals in each species

Sample B

Species	Abundance	Pi	Ln (Pi)	Pi x Ln(Pi)
Blue	2	0.20	-1.61	-0.32
Yellow	3	0.30	-1.20	-0.36
Green	3	0.30	-1.20	-0.36
Violet	2	0.20	-1.61	-0.32
Total	10			-1.36

Sample B H= **1.36**

 Shannon Diversity index (H)- measures the number of species richness but scales them based on the evenness of the community

Sample A

Abundance= 10
Species Richness= 4
H= 1.00

Sample B

Abundance= 10 Species Richness= 4 H= 1.36

Conclusion:

Sample B is more diverse than Sample A

o **Inverse Simpson (D)-** measures the number of species richness but scales them based on the evenness of the community, more weight on species evenness

$$D = \frac{N(N-1)}{\sum n(n-1)}$$

N = total number of organisms of all species found

n = number of individuals of a particular species

Sample A

$$D = 2.14$$

o **Inverse Simpson (D)-** measures the number of species richness but scales them based on the evenness of the community, more weight on species evenness

$$D = \frac{N(N-1)}{\sum n(n-1)}$$

N = total number of organisms of all species found n = number of individuals of a particular species

Sample B

$$D= 10 (10-1)/3(3-1)+3(3-1)+2(2-1)+2(2-1)$$

D=90/6+6+2+2

D = 90/16

D=5.62

Conclusion:

Sample B is more diverse than Sample A

Chao1- considers rare species

$$S_1 = S_{obs} + \frac{F_1^2}{2F_2}$$

where F₁ and F₂ are the count of singletons and doubletons, respectively, and S is the number of observed species.

Measure of overall change between samples

Fig. 7. Beta-diversity pattern of microbial communities from different environments.

oBray-Curtis dissimilarity-based on abundance or read count data

$$BC_{ij} = 1 - rac{2C_{ij}}{S_i + S_j}$$

i & j are the two samples,

S_i is the total number of all individuals counted on Sample A,

S_i is the total number of all individuals counted on Sample B,

 \mathbf{C}_{ij} is the sum of only the lesser counts for each species found in both sites.

values are from 0 to 1

0 means both samples share the same species at exact the same abundances 1 means both samples have complete different species abundances

oBray-Curtis dissimilarity-based on abundance or read count data

$$BC_{ij} = 1 - rac{2C_{ij}}{S_i + S_j}$$

$$C_{ij} = 6+4 = 10$$

 $Si = 6+7+4=17$
 $Si = 10+6=16$

$$BC_{ij} = 1 - (2 * 10) / (17 + 16),$$

= 1 - 0.61
= **0.39**

Conclusion:

Samples A and B are 39% dissimilar to each other

oJaccard index-based on presence or absence of species (does not include abundance information)

Jaccard Index = (the number of species in both sets) / (the number species in either set) * 100

or

$$J(A,B) = |A \cap B| / |A \cup B|$$

values are from 0% to 100%

0% means both samples share exact the same species 1 00% means both samples have no species in common

o **Jaccard index-**based on presence or absence of species (does not include abundance information)

$$J(A,B) = |A \cap B| / |A \cup B| *100$$

Conclusion:

Samples A and B are 33% similar.

- OuniFrac- sequence distances (phylogenetic tree)
 - -based on the fraction of branch length that is shared between two samples or unique to one or the other sample

weighted UniFrac: branch lengths are weighted by relative abundances (includes both sequence and abundance information); emphasizes the dominant species

unweighted UniFrac: purely based on sequence distances (does not include abundance information); emphasizes the minor species

-summarizes community data by producing low-dimensional ordination space; similar species and samples are plotted close together, and dissimilar species and samples are placed far apart

Fig. 8. Bacterial community structure and relative dispersion of the coral species A. hemprichii and P. verrucosa.

oPrincipal component analysis (PCA)- converts the correlations (or lack thereof) among all the samples into 2-D graph

Inversely correlated= dissimilar samples

	Sample A	Sample B	Sample C
Species 1	3	0.25	2.8
Species 2	2.9	0.8	2.2
Species 3	2.2	1	1.5
Species 4	2	1.4	2
Species 5	1.3	1.6	1.6
Species 6	1.5	2	2.1
Species 7	1.1	2.2	1.2
Species 8	1	2.7	0.9
Species 9	0.4	3	0.6

oPrincipal component analysis (PCA)- converts the correlations (or lack thereof) among all the samples into 2-D graph

positively correlated= similar samples

Sample A	Sample B	Sample C
3	0.25	2.8
2.9	0.8	2.2
2.2	1	1.5
2	1.4	2
1.3	1.6	1.6
1.5	2	2.1
1.1	2.2	1.2
1	2.7	0.9
0.4	3	0.6
	A 3 2.9 2.2 2 1.3 1.5 1.1	AB30.252.90.82.2121.41.31.61.521.12.212.7

oPrincipal coordinate analysis (PCoA)- converts distances among all the samples into 2-D graph

BC	_ 1	$2C_{ij}$	
BC_{ij}	_	Т	$\overline{S_i + S_i}$

	Sample A	Sample B	Sample C
Species 1	3	0.25	2.8
Species 2	2.9	0.8	2.2
Species 3	2.2	1	1.5
Species 4	2	1.4	2
Species 5	1.3	1.6	1.6
Species 6	1.5	2	2.1
Species 7	1.1	2.2	1.2
Species 8	1	2.7	0.9
Species 9	0.4	3	0.6

oNon metric multidimensional analysis (nMDS)- relies on rank orders (distances) for ordination to identify similarity in a data set

Raw data	Sp1	Sp2	Sp3	Sp4	Sp5
Sample A	3	5	7	1	2
Sample B	4	4	10	2	2

Sp1	Sp2	Sp3	Sp4	Sp5
3 =5	5 =8	7 =9	1 =1	2 =2
4 =6	4 =7	10 =10	2 =3	2 =4

FOR "4":

$$9/3 = 3$$

13/2 = 6.5

Ranked data

Sample A

Sample B

Sp1	Sp2	Sp3	Sp4	Sp5
5.00	8.00	9.00	1.00	3.00
6.50	6.50	10.00	3.00	3.00

oNon metric multidimensional analysis (nMDS)- relies on rank orders (distances) for ordination to identify similarity in a data set

Stress – indicator of goodness-of-fit

Stress values:

- >0.2 are generally poor
- <0.1 are good
- < 0.05 are excellent

oCanonical Correspondece Analysis (CCA)-directly relates species to environmental variables

Other Multivariate statistical tools

- Multivariate analysis of variance with permutation (PERMANOVA) the sum of squared differences between points and their centroid is equal to the sum of the squared interpoint distances divided by the number of points.
 - -based on distance matrices and permutation
 - -R-squared = variations between samples (0-1; 0=similar, 1=highly variable)
 - -F-ratio= indicates group separation (higher the value=more pronounced separation)
 - -p value = tells you whether or not this result was likely a result of chance

Fig. 2. The sum of squared distances from individual points to their centroid is equal to the sum of squared interpoint distances divided by the number of points.

Other Multivariate statistical tools

Multivariate analysis of dispersion (PERMDISP)- involves calculating the distance from each data point to its group centroid and then testing whether those distances differ among the groups.

-p value = tells you whether or not this result was likely due to differences in location or dispersion

Fig. 2.1. Schematic diagram showing two groups of samples in a bivariate system (two dimensions) that (a) do not differ in either location or dispersion, (b) differ only in their location in multivariate space, (c) differ only in their relative dispersions and (d) differ in both their location and in their relative dispersion.

Other Multivariate statistical tools

- Analysis of group similarities (ANOSIM)- used to the mean of ranked dissimilarities between groups to the mean of ranked dissimilarities within groups
 - -R=variations between samples (0-1; 0=similar, 1=dissimilar)
- -p value = tells you whether or not this result was likely a result of chance

Helpful resources

- GUide to STatistical Analysis in Microbial Ecology (GUSTA ME)! (https://mb3is.megx.net/gustame)
- https://rachaellappan.github.io/VL-QIIME2-analysis/pre-processing-ofsequence-reads.html
- https://qiime2.org

Demo

- Rarefaction curve
- Relative abundance plot
- o Alpha diversity
- Beta diversity
- **Ordination**

Demo

○ Details

- Microbiome of ball sponges in Bolinao Samples:
 - Cinachyrella sp. (n=3)
 - Paratetilla (n=3)
- ►16S rRNA V34 region sequenced

Cinachyrella sp.

Paratetilla sp.

Objective: Examine associated prokaryotic microbial communities of two species of ball sponges from two variable environmental conditions

References

- Abellan-Schneyder I, Matchado MS, Reitmeier S, Sommer A, Sewald Z, Baumbach J, List M, Neuhaus K. 2021. Primer, pipelines, parameters: issues in 16S rRNA gene sequencing. mSphere 6:e01202-20.
- Allali A, Arnold JW, Roach, J, Cadenas MB, Butz, N, Hasaan M, Koci M, Ballou, A, Mendoza M, Ali RizwN, Azacarate-Peril MA. 2017. A comparison of sequencing platforms and bioinformatics pipelines for compositional analysis of the gut microbiome. *BMC Microbiology* 17:194.
- Nearing JT, Douglas GM, Comeau AM, Langille MGI. 2018. Denoising the Denoisers: an independent evaluation of microbiome sequence error-correction approaches. *PeerJ*6:e5364
- Kim, B., Shin, J., Guevarra, R. B., Lee, J. H., Kim, D. W., Seol, K., Lee, J., Kim, H. B., & Isaacson, R. E. 2017. Deciphering diversity indices for a better understanding of microbial communities. *Journal of Microbiology and Biotechnology*, 27(12), 2089-2093.
- Pollock, F.J., McMinds, R., Smith, S. et al. 2018. Coral-associated bacteria demonstrate phylosymbiosis and cophylogeny. Nat Commun 9, 4921.
- Pollock, J., Glendinning, L., Wisedchanwet, T., & Watson, M. 2018. The madness of microbiome: Attempting to find consensus "Best practice" for 16S microbiome studies. *Applied and Environmental Microbiology*, 84(7).
- Thomas, T., Moitinho-Silva, L., Lurgi, M. et al. 2016. Diversity, structure and convergent evolution of the global sponge microbiome. Nat Commun 7, 11870.
- Wear EK, Wilbanks EG, Nelson CE, Carlson CA. 2018. Primer selection impacts specific population abundances but not community dynamics in a monthly time-series 16S rRNA gene amplicon analysis of coastal marine bacterioplankton. *Environmental Microbiology*, 20, 2709–2726.
- Yang B, Wang Y, Qian P-Y. 2016. Sensitivity and correlation of hypervariable regions in 16S rRNA genes in phylogenetic analysis. BMC Bioinformatics 17:135.
- Walters KE, Martiny JBH .2020. Alpha-, beta-, and gamma-diversity of bacteria varies across habitats. PLoS ONE 15(9): e0233872.