Super-Polynomial Lower Bound of TSP Extended Formula

Soham Chatterjee

May 2025

Introduction

Introduction

Definition (Travelling Salesman)

Given a graph G=(V,E), $S\subseteq V$ and weights $w:E\to\mathbb{R}$ find minimum weight cycle which visits every vertex of S exactly once.

Introduction

Definition (Travelling Salesman)

Given a graph G = (V, E), $S \subseteq V$ and weights $w : E \to \mathbb{R}$ find minimum weight cycle which visits every vertex of S exactly once.

We will focus on S = V.

- We know Traveling Salesman Problem is NP-complete.
- In [Yannkakis, 1988, STOC] he proved every symmetric LP for the TSP has expnential size.
- Here we will show TSP admits no polynomial-size LP.
- This proof also shows unconditional super-polynomial lower bound on the number of inequalities.
- Therefore it is impossible to prove P = NP by means of a polynomial size LP.

Let $P = \{x \in \mathbb{R}^n \mid Ax \leq b\} = conv(V)$ is a polytope with $A \in \mathbb{R}^{m \times d}$, $b \in \mathbb{R}^m$ and $V \subseteq \mathbb{R}^d$. We will consider V as the characteristic vector for all hamiltonian paths.

Let $P = \{x \in \mathbb{R}^n \mid Ax \leq b\} = conv(V)$ is a polytope with $A \in \mathbb{R}^{m \times d}, b \in \mathbb{R}^m$ and $V \subseteq \mathbb{R}^d$. We will consider V as the characteristic vector for all hamiltonian paths.

Definition (Extension Polytope)

An extension of P is a polytope $Q \subseteq \mathbb{R}^{d+e}$ such that there is a linear map $\pi : \mathbb{R}^{d+e} \to \mathbb{R}^d$ such that $\pi(Q) = P$.

Let $P = \{x \in \mathbb{R}^n \mid Ax \leq b\} = conv(V)$ is a polytope with $A \in \mathbb{R}^{m \times d}, b \in \mathbb{R}^m$ and $V \subseteq \mathbb{R}^d$. We will consider V as the characteristic vector for all hamiltonian paths.

Definition (Extension Polytope)

An extension of P is a polytope $Q \subseteq \mathbb{R}^{d+e}$ such that there is a linear map $\pi : \mathbb{R}^{d+e} \to \mathbb{R}^d$ such that $\pi(Q) = P$.

Definition (Extended Formula)

An EF Q is an extension of P is a linear system in variable s (x,y) such that

$$x \in P \iff \exists y (x,y) \in Q$$

Let $P = \{x \in \mathbb{R}^n \mid Ax \leq b\} = conv(V)$ is a polytope with $A \in \mathbb{R}^{m \times d}, b \in \mathbb{R}^m$ and $V \subseteq \mathbb{R}^d$. We will consider V as the characteristic vector for all hamiltonian paths.

Definition (Extension Polytope)

An extension of P is a polytope $Q \subseteq \mathbb{R}^{d+e}$ such that there is a linear map $\pi : \mathbb{R}^{d+e} \to \mathbb{R}^d$ such that $\pi(Q) = P$.

Definition (Extended Formula)

An EF Q is an extension of P is a linear system in variable s (x,y) such that

$$x \in P \iff \exists y (x,y) \in Q$$

Extension Complexity

Extension complexity of P is the minimum size EF of P where size of a polytope is the number inequalities. We denote by xc(P).

Extension Complexity

Extension complexity of P is the minimum size EF of P where size of a polytope is the number inequalities. We denote by xc(P).

Lemma

Let P, Q and F be polytopes. Then the following holds:

- (i) If F is an extension of P then $xc(F) \ge xc(P)$.
- (ii) If F is a face of Q then $xc(Q) \ge xc(F)$.

• TSP(n) is the traveling salesman polytope for $K_n = (V_n, E_n)$. Let $C \subseteq E_n$ denotes a tour of K_n . Then χ^C denotes the characteristic vector of C. Then

• TSP(n) is the traveling salesman polytope for $K_n = (V_n, E_n)$. Let $C \subseteq E_n$ denotes a tour of K_n . Then χ^C denotes the characteristic vector of C. Then

$$TSP(n) := conv\{\chi^{C} \mid C \subseteq E_n \text{ is a tour of } K_n\}$$

• TSP(n) is the traveling salesman polytope for $K_n = (V_n, E_n)$. Let $C \subseteq E_n$ denotes a tour of K_n . Then χ^C denotes the characteristic vector of C. Then

$$TSP(n) := conv\{\chi^{\mathbb{C}} \mid C \subseteq E_n \text{ is a tour of } K_n\}$$

• Given G = (V, E), for any $S \subseteq V$, χ^S denote characteristic vector of S. Then

• TSP(n) is the traveling salesman polytope for $K_n = (V_n, E_n)$. Let $C \subseteq E_n$ denotes a tour of K_n . Then χ^C denotes the characteristic vector of C. Then

$$TSP(n) := conv\{\chi^{\mathbb{C}} \mid C \subseteq E_n \text{ is a tour of } K_n\}$$

• Given G = (V, E), for any $S \subseteq V$, χ^S denote characteristic vector of S. Then

$$IND(G) := conv\{\chi^{S} \mid S \text{ is independent set of } G\}$$

• The correlation polytope COR(n) is

$$COR(n) := conv\{bb^T \mid b \in \{0,1\}^n\}$$

Proof Flow

Step 1: First we will prove $xc(COR(n)) = 2^{\Omega(n)}$

Proof Flow

Step 1: First we will prove $xc(COR(n)) = 2^{\Omega(n)}$

Step 2: For all n, \exists graph G_n with n vertices such that $xc(IND(G_n)) \ge xc(COR(n'))$ where $n' = n^{\frac{1}{d}}$ for some d > 1.

Proof Flow

Step 1: First we will prove $xc(COR(n)) = 2^{\Omega(n)}$

Step 2: For all n, \exists graph G_n with n vertices such that $xc(IND(G_n)) \ge xc(COR(n'))$ where $n' = n^{\frac{1}{d}}$ for some d > 1.

Step 3: For any *n*-vertex graph G, IND(G) is linear projection of a face of TSP(k) where $k = O(n^2)$.

Correlation Polytope Lower Bound