Evolving Bids for a Fantasy-Football Auction Metaheuristics and Inverse Optimization in a Multi-Manager Setting

Marco De Rito

University of Trieste

2024/25

Agenda

- Problem Statement
- Software Architecture
- Representation
- 4 Algorithmic Formulas
- 5 Fitness
- Conflict Resolution
- 7 Example
- 8 Hyper-parameter Tuning
- 9 Inverse multi–tuning

Problem Statement

Goal

Optimise a multi-manager fantasy-football auction by evolving a vector of **bids** that maximises total team score while satisfying all hard constraints.

Notice legend

B current budget of one manager b_i bid placed by that manager for player i squad size

 $N_{
m rem}$ empty slots still to be filled m_r, M_r min / max players for role r

r role index: P, D, C, A

Constraints

- lacksquare Bid domain $b_i \in \{0\} \cup [1,\infty)$
- lacksquare Turn budget $\sum_i b_i \leq B$
- \bullet Per-player cap $b_i \leq 0.4B$
- Reserve credits $B \sum b_i \geq N_{\mathsf{rem}}$
- lacksquare Squad size $|{
 m team}|=N_{
 m max}$
- Role quotas enforced every turn

Inputs

- Initial budget per manager B (CLI)
- Number of managers (CLI)
- $\qquad \text{Algorithm for each manager } r \in \{PSO, DE, ES\}$ (CLI)
- lacktriangle squad size $N_{
 m max}$ (CLI)
- lacksquare Role quotas (m_r, M_r) for $r \in \{P, D, C, A\}$ (CLI)
- Data set: 600+ Serie A players (23/24 stats)

Project Files

Logical separation between data, logic, optimization and output.

Main Modules

- main.py CLI input & full pipeline control
- data_loader.py loads & cleans player data
- utils.py defines Player, Manager, score_player
- optimization.py implements PSO, DE, ES + auction logic
- report_generator.py generates PDF report

Tuning Scripts

- hyperparameter_tuning.py
- inverse_param_tuning.py

Supporting Files

• Fantacalcio_stat.csv, requirements.txt, .git/, venv/

Architecture

Genotype vs Phenotype

Genotype

- Continuous bid vector: $\mathbf{b} = (b_1, b_2, \dots, b_n)$
- Index i is bound to a fixed player
- Crossover / mutation touch numerical values only
- Example: $(30.5, 0, 7.8, \dots, 0)$

Phenotype

- Simulated squad obtained from b
- Includes roles, spent budget, expected score
- Graded via fantasy-football scoring rules

Algorithmic Formulas & Parameters

Particle Swarm Optimization (PSO)

$$\mathbf{v}_i^{t+1} = \omega \mathbf{v}_i^t + c_1 r_1 (\mathbf{p}_i - \mathbf{x}_i^t) + c_2 r_2 (\mathbf{g} - \mathbf{x}_i^t)$$
$$\mathbf{x}_i^{t+1} = \mathbf{x}_i^t + \mathbf{v}_i^{t+1}$$

Differential Evolution (DE)

$$\mathbf{y} = \mathbf{x}_a + F(\mathbf{x}_b - \mathbf{x}_c)$$

$$z_j = \begin{cases} y_j & \text{if } r_j < CR \text{ or } j = j_{\text{rand}} \\ x_{i,j} & \text{otherwise} \end{cases}$$

Evolution Strategies (ES)

$$\mathbf{x}_{\mathsf{child}} = \mathbf{x}_{\mathsf{parent}} + \sigma \mathcal{N}(0, I)$$

(best μ of parents + offspring survive)

Algorithm Parameters

Alg.	Param.	Desc.	Val.
PSO	ω	inertia	0.7
PSO	c_1	cog.	1.8
PSO	c_2	SOC.	1.8
DE	F	diff. w.	0.5-1.0
DE	CR	cross.	0.7
ES	μ	parents	40
ES	λ	offspr.	80

Fitness Function

$$\mathcal{F}(\mathbf{b}) = \text{Penalty}(\mathbf{b}) - \sum_{i \in \mathcal{A}(\mathbf{b})} w_i \text{Score}_i, \qquad \mathcal{A}(\mathbf{b}) = \{i \mid b_i \ge \mathsf{thr}\}$$

- Penalty mixes budget leftover, missing roles, squad size errors
- ullet w_i doubles if the role is currently under-represented
- ullet Minimisation problem: lower $\mathcal{F} \leftrightarrow$ stronger squad, fewer violations
- thr = 1

```
def score_player(player):
    goals = getattr(player, 'goals_scored', 0)
    ....
    matches = getattr(player, 'matches_played', 0)
    return (0.5 * goals + 0.2 * assists - 0.05 * yellow - 0.1 * red + 0.2 * rating + 0.2
        * pens - 0.5 * conceded + 0.5 * saved + 0.5 * matches)
```

Listing: Function score

Auction Conflict Heuristic

- ① Gather all bids (mgr, player, b)
- ② Group by player
- Single bidder ⇒ immediate assignment
- 4 Otherwise:
 - Sort bids $b_1 \geq b_2 \geq \dots$
 - If $b_1 b_2 > g_{\text{trigger}} \Rightarrow \text{highest wins}$
 - Else launch up to 5 dynamic rebids

(rebids = recompute bids with small noise or fallback threshold)

```
# Inputs: b1 = top bid, b2 = second bid, B = second manager's remaining budget, n = number
    of players still needed
ratio = B / n
gap = b1 - b2
#Compute dynamic rebid increment
dynamic_inc = max(1, int(round(gap / 2 * ratio))) + 1
# Apply rebid
b2 += dynamic_inc
```

Listing: Semplified Dynamic rebid heuristic

Example: Manager and Player Distributions

Manager Distribution by Strategy

Example: Budget and Forced Assignments

Example: Tabular Analyses

Performance by Strategy

Str.	Mgr	Avg Score	Avg Forced
PSO	4	49.9	6
DE	4	51.8	7
ES	4	44.8	4

	Mgr	Forced	Spent	Score
r Recap	1	6	494	52.9
	2	9	492	51.5
	3	6	494	44.5
	4	7	493	53.6
	5	4	496	49.2
	6	5	495	46.0
	7	5	496	47.0
	8	6	494	55.3
	9	2	498	44.2
	10	6	494	46.6
	11	5	495	40.0
	12	7	494	53.2
	Recap	Recap 1 2 3 4 5 6 7 8 9 10 11	Recap 6 5 7 5 8 6 9 2 10 6 11 5	Recap 1 6 494 2 9 492 3 6 494 4 7 493 5 4 496 6 5 495 7 5 496 8 6 494 9 2 498 10 6 494 11 5 495

Player Score Summary

	Best	Worst	Avg
Score	12.9	0.68	2.84

Hyper-parameter Tuning – Design

Methodology

- Same 25-player pool, fixed seed, 60 auction turns
- Test manager + 1 random rival (guarantees bidding pressure)

Cartesian products ⇒ 24 runs

- PSO = 2 inertia weights \times 2 swarm sizes = 4 runs
- DE = 3 population sizes \times 2 F ranges \times 2 CR = 12 runs
- ES = 4 (μ, λ) pairs \times 2 generation counts = **8** runs

Why these ranges?

• Values are the standard defaults most cited in the literature (Clerc and Kennedy for PSO, Storn and Price for DE, $\lambda > \mu$ rule for ES)

Hyper-parameter Tuning – Results

Best configuration for algorithm

Alg.	Best h-p	Sum Score
ES	$\mu = 20, \ \lambda = 40, \ ngen = 50$	104.7
DE	pop = 15, F = (0.5, 1.0), CR = 0.7	93.3
PSO	swarm= 60 , $w = 0.9$, $c_1 = c_2 = 1.49445$	92.4

Parameter grid

PSO	$w \in \{0.9, 0.5\}, c_1 = c_2 = 1.49445$, swarm
	$\{30, 60\}$
DE	pop $\{10, 15, 20\}, F \in \{(0.5, 1.0), (0.7, 1.2)\},\$
	$CR \in \{0.7, 0.9\}$
ES	$(\mu+\lambda) \in \{(15+30), (15+40), (20+30), (20+40)\},\$
	$naen \in \{50, 80\}$

Sum of score for every configuration (higher = better).

Inverse multi-tuning/1

Goal

Fit the hyper-parameters of **PSO**, **DE & ES** so that each auctioned roster reproduces a target triple (score, forced picks, leftover) = (100, 4, 0).

$$\mathcal{L}(\theta) = |\operatorname{score} - 100| + |\operatorname{forced} - 4| + |\operatorname{leftover} - 0| \longrightarrow \min_{\theta}$$

- Outer optimiser: 30-particle PSO (40 iterations, $\omega = 0.7, c_1 = c_2 = 1.5$).
- Search space: $algo_id \in \{0:PSO, 1:DE, 2:ES\} + 4 \text{ real h-params}.$
- Best configuration found: DE (pop = 10, F = [0.7, 1.2], CR = 0.7) $\Rightarrow \mathcal{L}_{\min} = 0.278$.

Inverse multi-tuning/2

Inverse multi-tuning/3

Top-5 trials

Alg.	Pop./Swarm $/$ (μ,λ)	$F/(\omega)$	$CR/c_{1,2}$	\mathcal{L}
DE	10	0.7-1.2	0.7	0.278
ES	(20,30)	_	_	1.86
ES	(20,40)	_	_	1.98
PSO	60	0.5	1.49	4.08
DE	20	0.7 - 1.2	0.7	4.20

Best configurations found during inverse tuning: DE and ES performed best in reproducing the target profile.

KPI comparison: the best configuration closely matches the target (score 100, 4 forced picks, 0 leftover credits).