Chapter 2: Likelihood-based approach (Part 1)

Section 1: Introduction

Basic Setup (No missing data)

- $\mathbf{y} = (y_1, y_2, \dots y_n)$ is a realization of the random sample from a distribution P with density $\mathbf{f}(y)$ with dominating measure μ . Thus, $\mathbf{f} = dP/d\mu$.
- Assume that the true density f(y) belongs to a parametric family of densities $\mathcal{P} = \{f(y;\theta); \theta \in \Omega\}$ indexed by $\theta \in \Omega \subset \mathbb{R}^p$. That is, there exist $\theta_0 \in \Omega$ such that $f(y;\theta_0) = f(y)$ for all y.

Likelihood

Definitions for likelihood theory

• The likelihood function of θ is defined as

$$L(\theta) = f(\mathbf{y}; \theta)$$

where $f(\mathbf{y}; \boldsymbol{\theta})$ is the joint density of \mathbf{y} .

• Let $\hat{\theta}$ be the maximum likelihood estimator (MLE) of θ_0 if it satisfies

$$L(\hat{\theta}) = \max_{\boldsymbol{\theta} \in \Omega} L(\boldsymbol{\theta}).$$

3/20

Identifiability

Definition

Let $\mathcal{P} = \{P_{\theta}; \theta \in \Omega\}$ be a statistical model with parameter space Ω . Model \mathcal{P} is identifiable if the mapping $\theta \mapsto P_{\theta}$ is one-to-one:

$$P_{\theta_1} = P_{\theta_2} \Rightarrow \theta_1 = \theta_2.$$

If the distributions are defined in terms of the probability density functions (pdfs), then two pdfs should be considered distinct only if they differ on a set of non-zero measure (for example two functions $f_1(x) = I(0 \le x < 1)$ and $f_2(x) = I(0 \le x \le 1)$ differ only at a single point x = 1, a set of measure zero, and thus cannot be considered as distinct pdfs).

4 / 20

Lemma 2.1 Properties of identifiable distribution

Lemma 2.1.

If $\mathcal{P} = \{f(y; \theta); \theta \in \Omega\}$ is identifiable and $E\{|\ln f(Y; \theta)|\} < \infty$ for all θ , then

$$Q(\theta) = E_{\theta_0} \left[\ln f(Y; \theta) \right] = \int \{ \log f(y; \theta) \} f(y; \theta_0) d\mu(y)$$

has a unique maximum at $\theta = \theta_0$.

5/20

Kullback-Leibler divergence measure

Shannon-Kolmogorov information inequality

Let $f_0(y)$ and $f_1(y)$ be two density functions (wrt the denomating measure μ). The Kullback-Leibler divergence measure defined by

$$D_{\mathrm{KL}}(\mathit{f}_{0} \parallel \mathit{f}_{1}) \equiv \int \left\{ \ln rac{\mathit{f}_{0}(\mathit{y})}{\mathit{f}_{1}(\mathit{y})}
ight\} \mathit{f}_{0}(\mathit{y}) d\mu(\mathit{y}) = \mathit{E}_{0} \left[\ln rac{\mathit{f}_{0}(\mathit{Y})}{\mathit{f}_{1}(\mathit{Y})}
ight]$$

satisfies

$$D_{\mathrm{KL}}(f_0 \parallel f_1) \geq 0$$
,

with equality if and only if $P_0 \{f_0(Y) = f_1(Y)\} = 1$.

Chapter 2 (P1) 6 / 20

Proof

Jensen's inequality

If g(t) is a convex function, then for any random variable X, $g\{E(X)\} \le E\{g(X)\}$. Furthermore, if g(t) is strictly convex, then $E\{g(X)\} = g\{E(X)\}$ if and only if P(X = c) = 1 for some constant c.

Since $\phi(x) = -\ln(x)$ is a strictly convex function of x, we have, using Jensen's inequality,

$$D_{\mathrm{KL}}(f_0 \parallel f_1) = E_0 \left\{ -\ln \frac{f_1(Y)}{f_0(Y)} \right\} \ge -\ln E_0 \left\{ \frac{f_1(Y)}{f_0(Y)} \right\} = 0$$

with equality if and only if $P_0\{f_0(Y) = f_1(Y)\} = 1$.

Proof of Lemma 2.1

1 By Shannon-Kolmogorov information inequality, we can obtain that

$$Q(\theta) \leq Q(\theta_0)$$

for all $\theta \in \Omega$, with equality iff $P_{\theta_0}\{f(Y;\theta)=f(Y;\theta_0)\}=1$, which means that $Q(\theta)$ has a maximum at $\theta=\theta_0$.

2 To show uniqueness, note that if θ_1 satisfies $Q(\theta_1) = Q(\theta_0)$, it should satisfy

$$P_{\theta_0}\{f(Y;\theta_1)=f(Y;\theta_0)\}=1,$$

which implies $\theta_1 = \theta_0$, by the identifiability assumption.

Remark

- **1** Lemma 2.1 simply says that, under identifiability, $Q(\theta) = E_{\theta_0} \{ \log f(Y; \theta) \}$ takes the (unique) maximum value at $\theta = \theta_0$.
- 2 Define

$$Q_n(\boldsymbol{\theta}) = \frac{1}{n} \sum_{i=1}^n \log f(y_i; \boldsymbol{\theta})$$

then the MLE $\hat{\theta}$ is the maximizer of $Q_n(\theta)$. Since $Q_n(\theta)$ converges in probability to $Q(\theta) = E_{\theta_0} \{ \log f(Y; \theta) \}$ for each θ , can we say that the maximizer of $Q_n(\theta)$ converges to the maximizer of $Q(\theta)$?

Theorem 2.1: (Weak) consistency of MLE

Theorem 2.1

Let

$$Q_n(\theta) = \frac{1}{n} \sum_{i=1}^n \log f(y_i, \theta)$$

and $\hat{\theta}_n = \arg\max_{\theta \in \Omega} Q_n(\theta)$. That is

$$Q_n(\hat{\theta}) = \max_{\boldsymbol{\theta} \in \Omega} Q_n(\boldsymbol{\theta}).$$

Assume the following two conditions:

1 Uniform weak convergence:

$$\sup_{\theta \in \Omega} |Q_n(\theta) - Q(\theta)| \stackrel{p}{\longrightarrow} 0$$

for some non-stochastic function $Q(\theta)$

2 Identification: $Q(\theta)$ is uniquely maximized at $\theta = \theta_0$.

Then, $\hat{\theta} \stackrel{p}{\longrightarrow} \theta_0$.

Remark

• Convergence in probability:

$$\hat{\theta} \stackrel{p}{\longrightarrow} \theta_0 \iff P\left\{|\hat{\theta} - \theta_0| > \epsilon\right\} \to 0 \text{ as } n \to \infty,$$

for any $\epsilon > 0$.

- If $\mathcal{P} = \{f(y; \theta); \theta \in \Omega\}$ is not identifiable, then $Q(\theta)$ may not have a unique maximum and $\hat{\theta}$ may not converge (in probability) to a single point.
- If the true distribution f(y) does not belong to the class $\mathcal{P} = \{f(y; \theta); \theta \in \Omega\}$, which point does $\hat{\theta}$ converge to?

Other properties of MLE

- Asymptotic normality (Theorem 2.2)
- Asymptotic optimality: MLE achieves Cramer-Rao lower bound
- Wilks' theorem:

$$2\{\ell_n(\hat{\theta}) - \ell_n(\theta_0)\} \stackrel{d}{\to} \chi_p^2$$
 where $\ell_n(\theta) = \sum_{i=1}^n \log f(y_i; \theta)$.

12 / 20

1 Introduction - Fisher information

Definition

1 Score function = the gradient function (wrt θ) of the log-density:

$$S(\theta; y) = \frac{\partial \log f(y; \theta)}{\partial \theta}$$

(Fisher) information function = negative Hessian matrix of the log-density:

$$I(\theta; y) = -\frac{\partial^2}{\partial \theta \partial \theta^T} \log f(y; \theta) = -\frac{\partial}{\partial \theta^T} S(\theta; y)$$

- **3** Observed (Fisher) information: $I(\hat{\theta}; y)$ where $\hat{\theta}$ is the MLE.
- **4** Expected (Fisher) information: $\mathcal{I}(\theta) = E_{\theta} \{ I(\theta; Y) \}$

Chapter 2 (P1) 13 / 20

- The Fisher information $I(\theta)$ is only meaningful in the neighborhood of $\hat{\theta}$.
- The observed information is always positive. The observed information applies to a single dataset.
- The expected information is meaningful as a function of θ across the admissible values of θ . The expected information is an average quantity over all possible datasets.
- $\mathcal{I}(\hat{\theta}) = I(\hat{\theta})$ for exponential family.

14 / 20

Properties of score function

Theorem 2.3. Bartlett identities

Under the regularity conditions allowing for the exchange of the order of integration and differentiation,

$$E_{\theta} \{ S(\theta; Y) \} = 0$$
 and $V_{\theta} \{ S(\theta; Y) \} = \mathcal{I}(\theta)$.

Proof

1 Introduction - Fisher information

Remark

- Under some regularity conditions, the MLE $\hat{\theta}$ converges in probability to the true parameter θ_0 . (Theorem 2.1)
- Since $\hat{\theta} \stackrel{p}{\longrightarrow} \theta_0$, we can apply a Taylor linearization on $n^{-1} \sum_{i=1}^n S(\hat{\theta}; y_i) = 0$ to get

$$\hat{\theta} - \theta_0 \cong \{\mathcal{I}(\theta_0)\}^{-1} n^{-1} \sum_{i=1}^n S(\theta_0; y_i).$$

Here, we use the fact that $n^{-1} \sum_{i=1}^{n} I(\theta; y_i)$ converges in probability to $\mathcal{I}(\theta)$.

• Thus, the (asymptotic) variance of MLE is

$$V(\hat{\theta}) \stackrel{:}{=} n^{-1} \{ \mathcal{I}(\theta_0) \}^{-1} V\{ S(\theta_0; Y) \} \{ \mathcal{I}(\theta_0) \}^{-1}$$
$$= n^{-1} \{ \mathcal{I}(\theta_0) \}^{-1} ,$$

where the last equality follows from Theorem 2.3.

Chapter 2 (P1) 17 / 20

Advanced topic: Information projection

• The entropy H(P) of a probability distribution P is defined as

$$H(P) = -\int P(x) \log P(x) d\mu(x)$$

The KL divergence of P with respect to Q is defined as

$$D_{\mathrm{KL}}(P \parallel Q) = \int P(x) \log \left\{ \frac{P(x)}{Q(x)} \right\} d\mu(x)$$

• Let \hat{P} be the empirical distribution of the sample. Assume that P belongs to a family \mathcal{P} of distributions (closed, convex). The maximum likelihood estimator of P can be defined as the minimizer of $D_{\mathrm{KL}}(\hat{P} \parallel P)$ for $P \in \mathcal{P}$.

Chapter 2 (P1) 18 / 20

- Let Π be a (non-empty) closed, convex set of distributions
- The information projection of Q onto Π is $P^* \in \Pi$ such that

$$D_{\mathrm{KL}}(P^* \parallel Q) = \min_{P \in \Pi} D_{\mathrm{KL}}(P \parallel Q).$$

One important family of distributions is a linear family:

$$\mathcal{L}(\alpha) = \left\{ P; \int T_i(x) P(x) d\mu(x) = \alpha_i, i = 1, \cdots, k \right\} \subset \Pi.$$

Note that the linear family is orthogonal to $T_i-\alpha_i$ for $i=1,\cdots,k$. Moreover, $\mathcal L$ is closed, convex (indeed, linear). To show the linearity of $\mathcal L$, it suffices to show that $\mathcal L$ is closed under the scalar multiplication. Scalar addition is not under consideration since

$$\int P(x)d\mu(x) = 1 \text{ for all } P \in \Pi.$$

19 / 20

Information projection (Csiszár and Shields, 2004)

• Since the function $D_{\mathrm{KL}}(P \parallel Q)$ is continuous and strictly convex in P, so that P^* satisfying

$$D_{\mathrm{KL}}(P^* \parallel Q) = \min_{P \in \mathcal{L}(\alpha)} D_{\mathrm{KL}}(P \parallel Q).$$

exists and is unique.

• Moreover, P^* , the information projection of Q onto $\mathcal{L}(\alpha)$ is of the form

$$P^*(x) = Q(x) \frac{\exp\left\{\sum_{i=1}^K \theta_i T_i(x)\right\}}{E_Q\left[\exp\left\{\sum_{i=1}^K \theta_i T_i(x)\right\}\right]}.$$
 (1)

- Thus, the exponential family of distributions can be derived as the information projection onto the space \mathcal{L} using $Q(\cdot)$ as the baseline distribution.
- Note that there is an one-to-one correspondence between $\theta_1, \ldots, \theta_k$ (canonical parameter) and $\alpha_1, \ldots, \alpha_k$ (natural parameter).

REFERENCES

Csiszár, Imre and P. C. Shields (2004), *Information theory and Statistics: A tutorial*, Now Publishers Inc.