Data Mining: Concepts and Techniques

— Slides for Textbook —— Chapter 10 —

© Jiawei Han and Micheline Kamber
Intelligent Database Systems Research Lab
School of Computing Science
Simon Fraser University, Canada
http://www.cs.sfu.ca

Chapter 7. Cluster Analysis

- What is Cluster Analysis?
- Types of Data in Cluster Analysis
- Major Clustering Approaches
 - Partitioning approach
 - Hierarchical approach
 - Density-based approach
- Evaluation of Clustering
- Summary

Hierarchical Clustering

- Use distance matrix as clustering criteria.
 - This method does not require the number of clusters k as an input, but needs a termination condition

AGNES (Agglomerative Nesting)

- Use the single-link method and the dissimilarity matrix
- Merge nodes that have the least dissimilarity
- Go on in a non-descending fashion
- Eventually all nodes belong to the same cluster

Dendrogram Visualization

- Decompose data objects into a several levels of nested partitioning (tree of clusters), called a dendrogram
- A clustering of the data objects is obtained by cutting the dendrogram at the desired level, then each connected component forms a cluster

DIANA (Divisive Analysis)

- Inverse order of AGNES
- Eventually each node forms a cluster on its own

Distance between Clusters

- Single link: smallest distance between an element in one cluster and an element in the other, i.e., dist(Ki, Kj) = min(tip, tjq)
- Complete link: largest distance between an element in one cluster and an element in the other, i.e., dist(Ki, Kj) = max(tip, tjq)
- Average: avg distance between an element in one cluster and an element in the other, i.e., dist(Ki, Kj) = avg(tip, tjq)
- Centroid: distance between the centroids of two clusters,
 i.e., dist(Ki, Kj) = dist(Ci, Cj)
- Medoid: distance between the medoids of two clusters,
 i.e., dist(Ki, Kj) = dist(Mi, Mj)
 - Medoid: a chosen, centrally located object in the cluster

Extensions to Hierarchical Clustering

- Major weakness of agglomerative clustering methods
 - Can never undo what was done previously
 - Do not scale well: time complexity of at least O(n2), where n is the number of total objects
- Integration of hierarchical & distance-based clustering
 - BIRCH: uses CF-tree and incrementally adjusts the quality of sub-clusters
 - CHAMELEON: hierarchical clustering using dynamic modeling

Density-Based Clustering Methods

- Clustering based on density (local cluster criterion), such as density-connected points
- Major features:
 - Discover clusters of arbitrary shape
 - Handle noise
 - One scan
 - Need density parameters as termination condition
- Several interesting studies:
 - DBSCAN: Density-based spatial clustering of applications with noise
 - OPTICS: Ordering Points To Identify Cluster Structure
 - DENCLUE: DENsity-based CLUstEring
 - CLIQUE: CLustering in QUEst (more grid-based)

Density-Based Clustering: Basic Concepts

- Two parameters:
 - Eps: Maximum radius of the neighbourhood
 - MinPts: Minimum number of points in an Epsneighbourhood of that point
- $N_{Eps}(p)$: {q belongs to D | dist(p,q) ≤ Eps}
- Directly density-reachable: A point p is directly density-reachable from a point q w.r.t. Eps, MinPts if
 - p belongs to $N_{Eps}(q)$
 - core point condition:

$$|N_{Eps}(q)| \ge MinPts$$

MinPts = 5

$$Eps = 1 cm$$

Density-Reachable and Density-Connected

Density-reachable:

A point p is density-reachable from a point q w.r.t. Eps, MinPts if there is a chain of core points p1,...,pn

Density-connected

 A point p is density-connected to a point q w.r.t. Eps, MinPts if there is a point o such that both, p and q are densityreachable

DBSCAN

- Density-Based Spatial Clustering of Applications with Noise
- Relies on a density-based notion of cluster: A cluster is defined as a maximal set of densityconnected points
- Discovers clusters of arbitrary shape in spatial databases with noise

DBSCAN: The Algorithm

- Arbitrary select a point p
- Retrieve all points density-reachable from p w.r.t. Eps and MinPts
- If p is a core point, a cluster is formed
- If p is a border point, no points are density-reachable from p and DBSCAN visits the next point of the database
- Continue the process until all of the points have been processed

DBSCAN: Sensitive to Parameters

Figure 8. DBScan results for DS1 with MinPts at 4 and Eps at (a) 0.5 and (b) 0.4.

Chapter 7. Cluster Analysis

- What is Cluster Analysis?
- Types of Data in Cluster Analysis
- Major Clustering Approaches
- Evaluation of Clustering
- Summary

- Empirical method
 - # of clusters $\approx \sqrt{n/2}$ for a dataset of *n* points
- Elbow method
 - Use the turning point in the curve of <u>sum of within cluster variance</u> <u>w.r.t the # of clusters</u> (sum of squared distance of members with centroid)
 - Choose number of clusters so that adding another cluster does not give much better modeling of the data

Determine the Number of Clusters

- Cross validation method
 - Divide a given data set into m parts
 - Use m 1 parts to obtain a clustering model
 - Use the remaining part to test the quality of the clustering
 - Example:
 - Given test set data points $\mathbf{x} = \{x_1, ..., x_n\}$
 - Assign each point in the test set, x_n to cluster based on closest centroid, C_i
 - Calculate the sum of squared distance between x and the closest respective centroids C_i
 - Distance measure how well the model fits the test set
 - For any k > 0, repeat it m times, compare the overall quality measure w.r.t. different ks, and find # of clusters that fits the data the best

Measuring Clustering Quality

- Two methods: extrinsic vs. intrinsic
- Extrinsic: supervised, i.e., the ground truth is available
 - Compare a clustering against the ground truth using certain clustering quality measure
 - Ex. BCubed precision and recall metrics
- Intrinsic: unsupervised, i.e., the ground truth is unavailable
 - Evaluate the goodness of a clustering by considering how well the clusters are separated, and how compact the clusters are
 - Ex. Silhouette coefficient
 - Mean intra-cluster distance (a) and the mean nearestcluster distance (b) for each sample.
 - The Silhouette Coefficient for a sample is (b a) / max(a, b)

Extrinsic Methods

- Clustering quality measure: $Q(C, C_g)$, for a clustering C given the ground truth C_g .
- Q is good if it satisfies the following 4 essential criteria
 - Cluster homogeneity: the purer, the better
 - Cluster completeness: should assign objects belong to the same category in the ground truth to the same cluster
 - Rag bag: putting a heterogeneous object into a pure cluster should be penalized more than putting it into a rag bag (i.e., "miscellaneous" or "other" category)
 - Small cluster preservation: splitting a small category into pieces is more harmful than splitting a large category into pieces

Chapter 7. Cluster Analysis

- What is Cluster Analysis?
- Types of Data in Cluster Analysis
- Major Clustering Approaches
- Evaluation of Clustering
- Summary

Summary

- Cluster analysis groups objects based on their similarity and has wide applications
- Measure of similarity can be computed for various types of data
- Clustering algorithms can be categorized into partitioning methods, hierarchical methods, density-based methods, grid-based methods, and model-based methods
- K-means algorithm is a popular partitioningbased clustering algorithms
- DBSCAN is an interesting density-based algorithms
- Quality of clustering results can be evaluated in various ways

References (1)

- R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan. Automatic subspace clustering of high dimensional data for data mining applications. SIGMOD'98
- M. R. Anderberg. Cluster Analysis for Applications. Academic Press, 1973.
- M. Ankerst, M. Breunig, H.-P. Kriegel, and J. Sander. Optics: Ordering points to identify the clustering structure, SIGMOD'99.
- P. Arabie, L. J. Hubert, and G. De Soete. Clustering and Classification. World Scietific, 1996
- M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. A density-based algorithm for discovering clusters in large spatial databases. KDD'96.
- M. Ester, H.-P. Kriegel, and X. Xu. Knowledge discovery in large spatial databases:
 Focusing techniques for efficient class identification. SSD'95.
- D. Fisher. Knowledge acquisition via incremental conceptual clustering. Machine Learning, 2:139-172, 1987.
- D. Gibson, J. Kleinberg, and P. Raghavan. Clustering categorical data: An approach based on dynamic systems. In Proc. VLDB'98.
- S. Guha, R. Rastogi, and K. Shim. Cure: An efficient clustering algorithm for large databases. SIGMOD'98.
- A. K. Jain and R. C. Dubes. Algorithms for Clustering Data. Printice Hall, 1988.

References (2)

- L. Kaufman and P. J. Rousseeuw. Finding Groups in Data: an Introduction to Cluster Analysis. John Wiley & Sons, 1990.
- E. Knorr and R. Ng. Algorithms for mining distance-based outliers in large datasets.
 VLDB'98.
- G. J. McLachlan and K.E. Bkasford. Mixture Models: Inference and Applications to Clustering. John Wiley and Sons, 1988.
- P. Michaud. Clustering techniques. Future Generation Computer systems, 13, 1997.
- R. Ng and J. Han. Efficient and effective clustering method for spatial data mining.
 VLDB'94.
- E. Schikuta. Grid clustering: An efficient hierarchical clustering method for very large data sets. Proc. 1996 Int. Conf. on Pattern Recognition, 101-105.
- G. Sheikholeslami, S. Chatterjee, and A. Zhang. WaveCluster: A multi-resolution clustering approach for very large spatial databases. VLDB'98.
- W. Wang, Yang, R. Muntz, STING: A Statistical Information grid Approach to Spatial Data Mining, VLDB'97.
- T. Zhang, R. Ramakrishnan, and M. Livny. BIRCH: an efficient data clustering method for very large databases. SIGMOD'96.

http://www.cs.sfu.ca/~han

