REVIEW AND ANALYSIS OF "A MICROCLIMATE GREENHOUSE MULTIVARIABLE CONTROL: A GUIDE TO USE HARDWARE IN THE LOOP SIMULATION"

Aaron Rosenberg

ECE 763

4/19/2023

STATEMENT OF INTEREST

- Groundwork for home project
 - Maintain growth of tropical plants
 - Goal is to eventually grow food plants
- Benefits of greenhouses
 - Controlled environment (temperature/humidity)
 - Protected environment (weather/pests/animals)
 - Ability to grow out of season/conditions

Picture of inside of greenhouse [2]

BACKGROUND INFORMATION

How does **Temperature** affect plants? [4]

- Plant vigor
- Leaf size
- Leaf expansion rate
- Time to fruit development

How does **Humidity** affect plants? [4]

- Transpiration
 - Calcium uptake
 - Hormonal Distribution

Diagram of plant transpiration process [3]

TEMPERATURE/HUMIDITY RANGES FOR PLANTS

Rule of thumb for most horticultural crops [4]:

- Temperature ranging from 70 °F 79°F (21°C - 26°C) during the day, with temperatures ~10°F (5.5°C) lower at night.
- Relative humidity between 55% and 95%

Monstera Deliciosa https://commons.wikimedia.org/w/index.php?curid=7094

Plant	Ideal Temperature °F	Ideal Temperature °C	Ideal Relative Humidity
Monstera Deliciosa	65 - 90	18.33 - 32.22	60% - 80%
Golden Pothos	65 - 85	18.33 - 29.44	50% - 70%
Syngonium Wendlandii	59 - 86	15 - 30	60% - 80%
Poblano	70 - 85	21 - 29.44	70% - 80%
Serrano	71 - 85	22 - 29.44	70% - 80%
Tomato	70 - 79	21 - 26	80% - 90%

TEMPERATURE AND HUMIDITY

RELATIVE HUMIDITY

$$RH = \frac{amount\ of\ water\ vapor\ in\ air}{max\ capacity\ of\ water\ vapor\ in\ air}*100$$

- Temperature dependent
- Inversely proportional

ABSOLUTE HUMIDITY

$$AH = \frac{mass\ of\ water\ vapor\ present}{unit\ volume\ of\ air}$$

Temperature independent*

SPECIFIC HUMIDITY

$$SH = \frac{mass\ of\ water\ vapor\ present}{mass\ of\ dry\ air}$$

Temperature independent

*As long as the volume is kept constant

DESCRIPTION OF PHYSICAL SYSTEM

- Maintain the inside temperature and inside humidity at desired set point
 - Non-linear, coupled system
 - MIMO system; 3 input, 2 output, 3 disturbance inputs
 - Implement controller on Arduino and simulate control of greenhouse microclimate

Greenhouse Model Inputs, Outputs, and Disturbances [1]

MATHEMATICAL MODEL

$$\frac{dT_{in}}{dt} = \frac{Q_h}{\rho V C_p} + \frac{S_i}{\rho V C_p} - \frac{\gamma Q_{fog}}{\rho V C_p} - (T_{in} - T_{out}) \left[\frac{V_t}{V} + \frac{UA}{\rho V C_p} \right] \tag{1}$$

$$\frac{dW_{in}}{dt} = \frac{Q_{fog}}{\rho V} + \frac{E}{\rho V} - \frac{V_t(W_{in} - W_{out})}{\rho V}$$
(2)

Outputs

 T_{in} = Inside Temperature (°C) = x_1 W_{in} = Inside Humidity (g/m³) = x_2

Inputs

 V_t = Ventilation rate $(m^3/s) = u_1$ Q_{fog} = Water capacity of fog system $(g/s) = u_2$ Q_h = Heat provided by heater (Watts) = u_3

Disturbances

 T_{out} = Outside Temperature (°C) = d_1 W_{out} = Outside Humidity (g/m^3) = d_2 S_r = Intercepted solar radiant energy (Watts/ m^2) = d_3

TABLE I CONSTANTS AND VARIABLES IN THE EQUILIBRIUM POINT. [11]

Constant	Value	Variable	Value
V	$4000 \ m^3$	$\overline{S_r}$	$300 \ W/m^2$
U	$25 W/(m^2 \cdot K)$	$\overline{T_{out}}$	25 °C
A	$1000 \ m^2$	$\overline{W_{out}}$	$4 \ g/m^3$
ρ	$1.2 \ kg/m^3$	$\overline{V_t}$	$10 \ m^3/s$
C_p	1006 $J/(kg \cdot K)$	$\overline{Q_{fog}}$	$18 \ g/s$
γ	2257 J/g	-	-

DERIVATION OF MATHEMATICAL MODEL

Specific Heat Capacity – the amount of heat required to change the temperature of a mass by 1°C

$$\dot{Q} = mC\dot{T}$$

$$\dot{T} = \frac{\dot{Q}}{mC}$$
 (3)

Check Units:

$$J = kg * \frac{J}{kgK} * K$$

Check Units:

$$watts = \frac{J}{s} = kg * \frac{J}{kgK} * \frac{K}{s}$$

DERIVATION OF MATHEMATICAL MODEL

Conduction – transfer of heat due to temperature gradient

Check Units:

$$watts = \frac{J}{s} = \frac{W}{m^2 K} * m^2 * R$$

EQUATION (1) REVISITED

$$\frac{dT_{in}}{dt} = \frac{Q_h}{\rho V C_p} + \frac{S_i}{\rho V C_p} - \frac{\gamma Q_{fog}}{\rho V C_p} - (T_{in} - T_{out}) [\frac{V_t}{V} + \frac{UA}{\rho V C_p}]$$
Heater Solar Fog Ventilation Conduction Term Term Term

Additional Discussion:

- 1. Solar Term
 - a. Derived from Eq. (3)
 - b. Heat added to system through solar radiation, watts
- 2. Fog Term
 - a. Derived from Eq. (3)
 - b. Heat removed from system due to addition of water vapor
- 3. Ventilation Term
 - a. Temperature change due to venting out air

EVAPOTRANSPIRATION RATE, E

$$E = \alpha \frac{S_i}{\gamma} - \beta_T W_{in} \tag{5}$$

Check Units:

$$\frac{g}{s} = \frac{\frac{W}{m^2} * m^2}{\frac{J}{g}} - \frac{g}{s}$$

Where:

$$S_i = S_r * A$$

 α – coefficient to account for leaf shading and leaf area index

 β – coefficient to account for thermodynamic constants

γ – latent heat of vaporization

EQUATION (2) REVISITED

$$\frac{dW_{in}}{dt} = \frac{Q_{fog}}{\rho V} + \frac{E}{\rho V} - \frac{V_t(W_{in} - W_{out})}{\rho V}$$
Fog Transpiration Venting Term Term

Additional Discussion:

- 1. Fog Term
 - a. Mass of water vapor added to system due to fogging
- 2. Transpiration Term
 - a. Mass of water vapor added to system through transpiration
- 3. Ventilation Term
 - a. Mass of water vapor removed from system through venting

LINEARIZED MODEL

$$P_{n_{(s)}} = \begin{pmatrix} G_{11(s)} & G_{12(s)} \\ G_{21(s)} & G_{22(s)} \end{pmatrix}.$$

$$P_{n_{(s)}} = \begin{pmatrix} \frac{-0.212 \cdot e^{-147.625s}}{126.892s + 1} & \frac{-0.061 \cdot e^{-147.625s}}{130.829s + 1} \\ \\ \frac{-0.281 \cdot e^{-147.625s}}{435.488s + 1} & \frac{0.100 \cdot e^{-147.625s}}{480.172s + 1} \end{pmatrix}$$

- Authors linearized non-linear model using non-linear system identification techniques
- Delay calculated from average of delays from reference source
- Delay added to account for sensor delay in real system

Transfer Functions:

- G₁₁ is Temperature response due to ventilation
- G₁₂ is Temperature response due to fogging
- G₂₁ is Humidity response due to ventilation
- G₂₂ is Humidity response due to fogging

COMPARISON TO ECE763 LINEARIZATION

$$A = \begin{bmatrix} \frac{\partial F}{\partial x_1} & \frac{\partial F}{\partial x_2} \\ \frac{\partial G}{\partial x_1} & \frac{\partial G}{\partial x_2} \end{bmatrix}$$

$$B = \begin{bmatrix} \frac{\partial F}{\partial u_1} & \frac{\partial F}{\partial u_2} \\ \frac{\partial G}{\partial u_1} & \frac{\partial G}{\partial u_2} \end{bmatrix}$$

$$C = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \tag{6}$$

RELATIVE GAIN ARRAY (RGA)

$$RGA(G) = \Lambda(G) \triangleq G \cdot * (G^{-1})^T \tag{7}$$

- Ratio of the open loop gain to the closed loop gain for each transfer function, $\forall \omega$ [7]
- "Measures" the amount of interaction between inputs and outputs
- All columns in the RGA sum to 1, all rows in the RGA sum to 1
- Entries ≈ 1 indicate strong interactions between input/output
- Entries ≈ 0.5 indicate strong coupling in system between inputs and outputs
- Negative entries indicate interactions in the opposite direction → instability

$$\Lambda = \begin{pmatrix} -0.212 & -0.061 \\ -0.281 & 0.100 \end{pmatrix} \begin{bmatrix} \begin{pmatrix} -0.212 & -0.061 \\ -0.281 & 0.100 \end{pmatrix}^{-1} \end{bmatrix}^{T}$$

$$\Lambda = \begin{pmatrix} 0.553 & 0.447 \\ 0.447 & 0.553 \end{pmatrix}.$$

DECENTRALIZED CONTROL

- Simplest approach for multivariable controller design [7]
- Diagonal controller
- Design controllers separately, to control a single output

$$K = \begin{bmatrix} k_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & k_n \end{bmatrix}$$

DECOUPLER DESIGN

$$G^* = GW_1 = \begin{bmatrix} G_{11} & G_{12} \\ G_{21} & G_{22} \end{bmatrix} * \begin{bmatrix} 1 & D_{12} \\ D_{21} & 1 \end{bmatrix}$$

$$G^* = \begin{bmatrix} G_{11} + G_{12}D_{21} & G_{11}D_{12} + G_{12} \\ G_{21} + G_{22}D_{21} & G_{21}D_{12} + G_{22} \end{bmatrix},$$

$$G^* = \begin{bmatrix} G_{11} - \frac{G_{12}G_{21}}{G_{22}} & 0 \\ 0 & G_{22} - \frac{G_{21}G_{12}}{G_{11}} \end{bmatrix}$$
(9)

$$D_{12} = -\frac{G_{12}}{G_{11}} \qquad D_{21} = -\frac{G_{21}}{G_{22}}$$
 (8)

DECOUPLER DESIGN

$$D_{12(s)} = -\frac{G_{12(s)}}{G_{11(s)}} = -0.287.$$

$$D_{21(s)} = -\frac{G_{21(s)}}{G_{22(s)}} = 2.813.$$

$$\Lambda(G^*) = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

CONTROLLER DESIGN

$$Gc_{1(s)} = -2.027 \left[\frac{(126.892)s + 1}{(126.892)s} \right]$$

$$Gc_{2(s)} = 16.263 \left[\frac{(480.172)s + 1}{(480.172)s} \right]$$

Reduce gain to improve control performance

$$Gc_{1(s)} = -1.014 \left[\frac{(126.892)s + 1}{(126.892)s} \right]$$

$$Gc_{2(s)} = 3.253 \left[\frac{(480.172)s + 1}{(480.172)s} \right].$$

CONVERSION TO DISCRETE TIME

"Tustin Approximation" [8]

$$z = e^{sT_s} \approx \frac{1 + sT_s/2}{1 - sT_s/2}$$
 (10)

$$H_d(z) = H(s'), s' = \frac{2}{T_s} \frac{z-1}{z+1}$$
 (11)

$$Gc_{1(z)} = -1.092 \cdot \left(\frac{z - 0.856}{z - 1}\right)$$

$$Gc_{2(z)} = 3.320 \cdot \left(\frac{z - 0.960}{z - 1}\right)$$

$$u_{1(k)} = u_{1(k-1)} - (1.092)e_{1(k)} + (1.092)(0.856)e_{1(k-1)}$$

$$u_{2(k)} = u_{2(k-1)} + (3.320)e_{2(k)} - (3.320)(0.960)e_{2(k-1)}$$

ARTICLE RESULTS

SYSTEM INSIGHTS: DECOUPLING VS COUPLING

SYSTEM INSIGHTS: VALIDITY OF LINEAR MODEL

Linear model matches nonlinear system well for most variables over realistic ranges

Linear model breaks down under very little change in venting $(\pm 1 \,\mathrm{m}^3/\mathrm{s})$

SYSTEM INSIGHTS: DISTURBANCE RESPONSES

SYSTEM INSIGHTS: S,T, AND SGD

$$\bar{\sigma}(T) \approx 1 \text{ for } \omega < 0.001 \frac{rad}{s}$$

- Good tracking at steady state
- Good noise rejection

$$\bar{\sigma}(SG_d) > 3$$
dB, $0.002 < \omega < 0.012$

Bad disturbance rejection in this range

DISTURBANCE REJECTION

Outside Temperature Step Response (ω =0)

Outside Temperature Response(ω =0.01)

REFERENCES

[1]	G. Cevallos, J. Pinzon, and O. Camacho, "A microclimate greenhouse multivariable control: A guide to use hardware in the Loop Simulation," 2022 IEEE International Conference on Automation/XXV Congress of the Chilean Association of Automatic Control (ICA-ACCA), 2022.		
[2]	Energy Producing Greenhouse: Organic Photovoltaics Integrated Greenhouse. 2023.		
[3]	S. Trimble. <i>Transpiration in Plants: Its Importance and Applications</i> . 2022.		
[4]	Environmental Control Systems. [Online]. Available: https://cals.arizona.edu/hydroponictomatoes/system.htm. [Accessed: 30-Mar-2023].		
[5]	S. J. Lilly, "Chapter 11: Plant Health Care," in Arborists' Certification Study Guide, P. Currid, Ed. Atlanta, GA: International Society of Arboriculture, 2010, p. 180.		
[6]	G. Acquaah, Horticulture: Principles and Practices. Upper Saddle River, NJ: Pearson Education, Inc., 2009.		
[7]	S. Skogestad and I. Postlethwaite, Multivariable Feedback Control: Analysis and Design. Chichester: Wiley, 2005.		
[8]	"Continuous-Discrete Conversion Methods," Continuous-Discrete Conversion Methods - MATLAB & Simulink. [Online]. Available: https://www.mathworks.com/help/ident/ug/continuous-discrete-conversion-methods.html#bs78nig-8. [Accessed: 15-Apr-2023].		