Miller-Rabinov test prostosti

Ivona Raguž

svibanj, 2020.

1 Uvod

Prije Miller-Rabinova algoritma testiranja prostosti bila su poznata dva načina dokazivanja da je broj n složen:

- naći faktorizaciju broja n: $n = a \cdot b$, a, b > 1
- naći broj (bazu) a, td. $1 \le a \le n-1$ za koji vrijedi $a^{n-1} \not\equiv 1 \pmod{n}$

Opišimo sada koncept Miller-Rabinova algoritma testiranja prostosti za proizvoljan ulaz n.

1.1 Opis algoritma

Promotrimo na koji način dati odgovor o prostosti za različite ulaze n.

Ako je n = 2, zaključujemo da je n prost broj.

Ako imamo slučaj da je n > 2 i n paran, jasno je da je n složen.

Preostaje nam razmotriti kako ispitati neparne brojeve.

Neka je n neparan. Tada je n-1 paran, pa ga možemo zapisati kao

$$n - 1 = 2^s \cdot r, \quad s > 0, \quad r \ge 0 \text{ neparan.} \tag{1}$$

 \bullet Ako je n prost, tada iz Malog Fermatovog teorema za svaki $a~(1 \leq a \leq n-1)$ relativno prost snvrijedi

$$a^{n-1} \equiv 1 \pmod{n}. \tag{2}$$

Uvrštavajući (1) u (2), dobijemo:

$$a^{2^s r} \equiv 1 \pmod{n}. \tag{3}$$

Iz izraza (19), slijedi:

$$n|a^{2^{s_r}} - 1 \implies n|(a^{2^{s-1}r})^2 - 1 \implies n|(a^{2^{s-1}r} - 1)(a^{2^{s-1}r} + 1).$$
 (4)

Iz (4) slijedi:

$$n|(a^{2^{s-1}r}-1)$$
 ili $n|(a^{2^{s-1}r}+1),$ (5)

odnosno

$$a^{2^{s-1}r} \equiv \pm 1 \pmod{n}. \tag{6}$$

Ponavljanjem vađenja korijena iz kongruencije mogu se dogoditi dva slučaja:

- -u jednom trenutku za rezultat dobijemo -1,odnosno postoji $j\in\{0,1,\ldots,s-1\}$ takav da vrijedi $a^{2^jr}\equiv -1\pmod n$
- ne postoji $j \in \{0, \dots, s-1\}$ takav da $a^{2^j r} \equiv 1 \pmod{n}$, odnosno vrijedi $a^r \equiv 1 \pmod{n}$.
- \bullet Ako je n složen, tada ne vrijedi ni jedan od dva nabrojana slučaja.

Upravo ova dva slučaja služit će nam kao kriterij određivanja složenosti. Neka je n prirodan broj za kojeg želimo utvrditi je li prost ili nije. Jednostavno i pregledno možemo reći:

- u slučaju da za n i proizvoljnu bazu a ne vrijedi $a^r \equiv 1 \pmod{n}$ te ako ne postoji j, $0 \le j \le s 1$, td. $a^{2^j r} \equiv -1 \pmod{n}$, broj n je sigurno složen.
- u slučaju ispunjenosti nekog od uvjeta, ne možemo sa sigurnošću tvrditi da je broj prost. Možemo ponoviti test za drugu bazu a kako bismo eventualno povećali vjerojatnost pozitivnog odgovora na prostost. No, može se dogoditi da broj n ne prođe test za bazu a, pa dobijemo negativan odgovor prostosti.

Ako za ulaz algoritma imamo složen broj, može se dogoditi da za neku bazu a broj prođe test. Tada broj a nazivamo **strogim lažovom** za broj n.

U slučaju da broj n ne prođe test za prozvoljnu bazu a, a nazivamo **svjedokom složenosti** za broj n. U nastavku definiramo pojam koji opisuje neparne složene brojeve koji prolaze Miller-Rabinov test za proizvoljnu bazu a.

Definicija 1. Neka je n neparan složen broj te neka je $n-1=2^s r$, r neparan. Neka je a broj relativno prost s n. Ako vrijedi

$$a^r \equiv 1 \pmod{n}$$
 ili $\exists j, 0 \le j < s, a^{2^j r} \equiv 1 \pmod{n}$, (7)

kažemo da je n **jaki pseudoprosti broj** u bazi a.

Miller-Rabinovim testom prost broj ne može biti klasificiran kao složen, no može se dogoditi da je složen broj klasificiran kao prost.

Demonstrirajmo primjere testa za neke konkretne uaze.

Primjer 1. Ispitajmo prostost broja n = 91. Faktorizacijom broja 91, $91 = 7 \cdot 13$, zaključujemo da je 91 složen broj.

Provedimo Miller-Rabinov test za broj 91. Iz rastava broja $91-1=90=2^1\cdot 45$, sukladno oznakama iz testa prostosti, označimo s=1, r=45.

Odaberimo prizvoljnu bazu $a \in \{1, \ldots, 90\}$. Neka je nasumično odabrani a = 9. Provjerimo vrijedi li kriterij (7) za a. Vrijedi $9^{45} \equiv 1 \pmod{91}$, pa je 91 jaki pseudoprost broj u bazi 9. Broj 9 je strogi lažov za 91.

Provedimo test za još jednu bazu a. Neka je u drugom provođenju testa a=5. Provjerom kriterija, dobijemo $5^{45} \equiv 83 \not\equiv 1 \pmod{91}$, što implicira složenost broja 91.

```
Primjer 2. Ispitajmo prostost broja n = 6553.
Provedimo Miller-Rabinov test za broj 6553. Iz rastava 6553 - 1 = 6552 = 2^3 \cdot 819. označimo s = 3, r = 819.
```

Nasumično odaberimo a. Neka je a = 123. Računamo 123⁸¹⁹. Kako je

$$123^{819} \equiv 8 \not\equiv 1 \pmod{6553}$$
, te
 $123^{819} \equiv 8 \not\equiv -1 \pmod{6553}$,

sljedeći korak je uzastopno kvadriranje kongruencije, najviše s-1=2 puta.

$$(123^{819})^2 \equiv 123^{2^1 \cdot 819} \equiv 3367 \not\equiv -1 \pmod{6553}$$

 $((123^{819})^2)^2 = 123^{2^2 \cdot 819} \equiv 6552 \equiv -1 \pmod{6553}$

Zaključujemo da je 6553 jak pseudoprost broj u bazi 123.

2 Pseudokod

U nastavku navodimo pseudokod Miller-Rabinova testa prostosti koji će nam poslužiti pri analizi složenosti algoritma.

```
Ulaz: n
if n \equiv 0 \pmod{2} i n \neq 2 then
  return n je složen
end if
if n=2 then
  return n je prost
end if
zapiši n-1=2^s r, r neparan
odaberi a \in \{1, 2, ..., n-1\}
if gcd(a, n) \neq 1 then
  return n je složen
else
  izračunaj y = a^r \pmod{n}
  if y \neq 1 i y \neq -1 then
    for j = 1, ..., s - 1 do
       y \leftarrow y^2 \pmod{n}
       if y = -1 then
         return n je pseudoprost
       end if
       if y = 1 then
         return n je složen
       end if
    end for
    if y \neq -1 then
       return n je složen
    end if
```

end if end if return n je pseudoprost

Ukoliko vrijedi $a^r \equiv 1 \pmod n$ ili za $s=0, \ a^r \equiv -1 \pmod n$, n je prošao test za bazu a. Ukoliko ne vrijedi ništa od tog, nastavljamo kvadrirati. Nastavak algoritma temelji se na traženju j-ta za kojeg je $a^{2^j r} \equiv -1 \pmod n$. Ukoliko naiđemo na takav s, algoritam se zaustavlja i n je prošao test. Ukoliko u nekom trenutku nađemo j za koji je $a^{2^j r} \equiv 1 \pmod n$, daljnjim kvadriranjem nikad nećemo dobiti -1 kao rezultat, pa je n složen.

3 Točnost algoritma

Ukoliko je n neparan složen broj, vjerojatnost da slučajno odabrani broj a nije svjedok složenosti za n je $\leq \frac{1}{4}$. Tvrdnja slijedi iz sljedećeg teorema.

Teorem 1. Neka je n neparan složen prirodan broj, n > 9. Rastavimo $n - 1 = 2^s r$, $s \ge 1$ i r neparan. Neka je

$$S = \{a : 1 \leq a < n \ \land \ (a^r \equiv 1 \pmod n) \ \lor \ \exists j, \ 0 \leq j < s, \ a^{2^j r} \equiv -1 \pmod n)\}.$$

Tada je

$$\frac{|S|}{\varphi(n)} \le \frac{1}{4},$$

gdje je φ Eulerova funkcija ($\varphi(n)$ predstavlja broj elemenata skupa $\{1,\ldots,n\}$ relativno prostih s n).

Dokaz: Faktorizirajmo $n=p_1^{\alpha_1}\cdots p_k^{\alpha_k}$, gdje su p_i -evi međusobno različiti prosti brojevi, α_i odgovarajuće potencije prostih brojeva. Neka je 2^l najveća potencija od 2 koja dijeli svaki p_i-1 , gdje je p_i prost faktor broja n. Skup S je sadržan u skupu S'koji je definiran s:

$$S' = \{a : 1 \le a < n \land a^{2^{l}r} \equiv \pm 1 \pmod{n}\}.$$

Pokažimo da vrijedi $S \subseteq S'$.

- Neka je $a \in S$ takav da je $a^r \equiv 1 \pmod{n}$. Tada je očito $a^{2^l}r \equiv 1 \pmod{n} \implies a \in S'$.
- Neka je $a \in S$ takav da postoji j, $0 \le j < s$, $a^{2^j r} \equiv -1 \pmod{n}$. Vrijedi $a^{2^j r} \equiv -1 \pmod{n} \implies n | a^{2^j r} + 1$. Promotrimo li proste faktore p_i broja n, dobijemo:

$$n|a^{2^{j}r} + 1 \text{ i } p_i|n \implies p_i|a^{2^{j}r} + 1 \implies a^{2^{j}r} \equiv -1 \pmod{p_i}.$$

Tada je $(a^{2^j r})^2 \equiv a^{2^{j+1} r} \equiv (-1)^2 \equiv 1 \pmod{p_i}$. Odatle slijedi da 2^{j+1} dijeli red elementa $a \mod p_i$. Kako je p_i prost broj, po Malom Fermatovom

teoremu vrijedi $a^{p_i-1} \equiv 1 \pmod{p_i}$. Sada vrijedi da $2^{j+1}|p_i-1$. Potenciju 2^l smo izabrali tako da je ona najveća potencija od 2 koja dijeli p_i-1 , pa slijedi da je $l \geq j+1$.

$$a^{2^{l-1}r} \equiv a^{2^{j}r \cdot 2^{l-1-j}} \equiv (a^{2^{j}r})^{2^{l-1-j}} \equiv (-1)^{2^{l-1-j}} \pmod{n}$$

Rezultat kongruencije je 1 ili -1, ovisno o parnosti potencije. Dobili smo da vrijedi $a^{2^{l-1}r} \equiv \pm 1 \pmod{n}$, pa je $a \in S'$.

Kako je $S \subseteq S'$, vrijedi $|S| \le |S'|$. Za tvrdnju teorema bit će dovoljno pokazati $\frac{|S'|}{|S|} \le \frac{1}{4}$.

Broj rješenja $a, 1 \leq a \leq n-1$, kongruencije $a^{2^{l-1}r} \equiv 1 \pmod n$ jednak je umnošku broja rješenja kongruencija $x^{2^{l-1}r} \equiv 1 \pmod {p_i^{\alpha_i}}$, gdje su p_i -evi i α_i -evi oni iz rastava $n = p_1^{\alpha_1} \dots p_k^{\alpha_k}$. Kako zaključujemo ovo? Promotrimo sustav kongruencija:

$$a^{2^{l-1}r} \equiv 1 \pmod{p_1^{\alpha_1}}$$

$$\vdots$$

$$a^{2^{l-1}r} \equiv 1 \pmod{p_k^{\alpha_k}}$$
(8)

Jasno je da je svako rješenje kongruencije

$$a^{2^{l-1}r} \equiv 1 \pmod{n} \tag{9}$$

ujedno i rješenje svake kongruencije iz sustava (8). Pokažimo: neka je x_0 rješenje kongruencije (9). Tada:

$$ax_0 \equiv 1 \pmod{n} \implies n|ax_0 - 1 \xrightarrow{p_i^{\alpha_i}|n} p_i^{\alpha_i}|ax_0 - 1 \implies ax_0 \equiv 1 \pmod{p_i^{\alpha_i}},$$

za $i=1,\ldots,k$. Neka a_1,\ldots,a_k predstavljaju redom po jedno rješenje svake pojedine kongruencija iz sustava (8), tj. a_i je rješenje kongruencije $a^{2^{l-1}r}\equiv 1\pmod{p_i^{\alpha_i}}$. Promotrimo sustav:

$$a \equiv a_1 \pmod{p_1^{\alpha_1}}$$

$$\vdots$$

$$a \equiv a_k \pmod{p_k^{\alpha_k}}$$
(10)

Kako su $p_1^{\alpha_i}, \ldots, p_k^{\alpha_k}$ u parovima relativno prosti, po Kineskom teoremu o ostacima postoji rješenje (mod $p_1^{\alpha_1} \ldots p_k^{\alpha_k}$) sustava (10) i jedinstveno je. Označimo ga s a_0 . Pokažimo da je a_0 rješenje kongruencije (9).

$$a_0^{2^{l-1}r} \equiv a_i^{2^{l-1}r} \equiv 1 \pmod{p_i^{\alpha_i}} \implies p_i^{\alpha_i} | a_0^{2^{l-1}r} - 1, \ i = 1, \dots, k$$

$$\implies p_1^{\alpha_1} \dots p_k^{\alpha_k} | a_0^{2^{l-1}r} - 1 \implies n | a_0^{2^{l-1}r} - 1 \implies a_0^{2^{l-1}r} \equiv 1 \pmod{n}.$$
(11)

Sada konačno možemo zaključiti da je različitih a_0 onoliko koliko ima različitih sustava (10), što je jednako $\prod_{i=1}^k |\{a: a^{2^{l-1}r} \equiv 1 \pmod{p_i^{\alpha_i}}\}|$ (jasno iz načina na koje smo birali a_i -eve iz sustava (10)). Nakon što smo dokazali prethodno i problem pronalaska broja rješenja kongruencije $a^{2^{l-1}r} \equiv 1 \pmod{n}$ formulirali u drugom obliku, nameće se sljedeće pitanje:

Koliko rješenja ima kongruencija $x^{2^{l-1}r} \equiv 1 \pmod{p_i^{\alpha_i}}$ za fiksirani $i \in \{1,\ldots,k\}$?

Koristimo činjenicu da je $\mathbb{Z}_{p_i^{\alpha_i}}$ ciklička grupa. Generator te grupe označimo s a_0 . Ako je a rješenje kongruencije $x^{2^{l-1}r} \equiv 1 \pmod{p_i^{\alpha_i}}$ (za fiksirani i), tada je $a=a_0^y$, za neki y, odnosno vrijedi $a_0^{y2^{l-1}r} \equiv 1 \pmod{p_i^{\alpha_i}}$. Kako je red grupe jednak $\varphi(p_i^{\alpha_i})$ i a_0 generator grupe, zaključujemo da je red od a_0 jednak $\varphi(p_i^{\alpha_i})$. Iz prethodno napisane kongruencije i saznanja o redu od a_0 , zaključujemo da $\varphi(p_i^{\alpha_i})|y2^{l-1}r$, tj. $y2^{l-1}r \equiv 0 \pmod{p_i^{\alpha_i-1}(p_i-1)}$.

Koliki je broj rješenja kongruencije $y2^{l-1}r \equiv 0 \pmod{p_i^{\alpha_i-1}(p_i-1)}$?

Promotrimo općenitu kongruenciju $ax\equiv b\pmod m$ i izvedimo zaključaj o broju rješenja te kongruencije.

Zaključak ćemo izvesti iz sljedeće tvrdnje: Neka je gcd(a,m)=d>1. Kongruencija $ax\equiv b\pmod m$ ima rješenje ako i samo ako d|b. U tom slučaju, kongruencija ima d rješenja danih s

$$x = x_0 + \frac{tm}{d}, t = 0, 1, \dots, d - 1,$$

gdje je x_0 rješenje kongruencije $\frac{a}{d}x \equiv \frac{b}{d} \pmod{\frac{m}{d}}.$

Pokažimo tvrdnju. Neka je x_0 rješenje kongruencije $ax \equiv b \pmod{m}$. Tada vrijedi: $ax_0 \equiv b \pmod{m} \implies ax_0 - b \equiv 0 \pmod{m} \implies ax_0 - b = tm$, za neki $t \in \mathbb{Z} \implies ax_0 - tm = b$. Zapišemo li $a = \gcd(a,m)a'$, $m = \gcd(a,m)m'$, vrijedi: $\gcd(a,m)[a'x_0 - tm'] = b$. Stoga, zaključujemo $\gcd(a,m)[b]$. Ako ne

vrijedid|b,kongruencija $ax\equiv b\pmod m$ nema rješenja.

U nastavku pretpostavimo da d|b. Tada je $gcd\left(\frac{a}{d}, \frac{m}{d}\right) = 1$.

Kongruencija $\frac{a}{d}x \equiv \frac{b}{d} \pmod{\frac{m}{d}}$ ima jedinstveno rješenje - označimo ga s x_0 $\left(x_0 = \left(\frac{a}{d}\right)^{-1} \frac{b}{d}$, gdje je $\left(\frac{a}{d}\right)^{-1}$ inverz elementa $\frac{a}{d}$ modulo $\frac{m}{d}$). No, x_0 je također rješenje polazne kongruencije $ax \equiv b \pmod{m}$. Pokažimo:

$$\frac{a}{d}x_0 \equiv \frac{b}{d} \pmod{\frac{m}{d}} \implies \frac{a}{d}x_0 - \frac{b}{d} = k\frac{m}{d}, \text{ za neki } k \in \mathbb{Z}$$

$$\implies \left(\frac{a}{d}x_0 - \frac{b}{d}\right)d = \left(k\frac{m}{d}\right)d, \ k \in \mathbb{Z}$$

$$\implies ax_0 - b = km, k \in \mathbb{Z}$$

$$\implies ax_0 \equiv b \pmod{m}.$$
(12)

Također, lako vidimo da je svaki broj $x \equiv x_0 \pmod{\frac{m}{d}}$ rješenje kongruencije $\frac{a}{d}x \equiv \frac{b}{d} \pmod{\frac{m}{d}}$, a time i polazne kongruencije $ax \equiv b \pmod{m}$ (pokažemo

na sličan način kao (12)).

$$x \equiv x_0 \pmod{\frac{m}{d}}$$
rješenja kongruencije $ax \equiv b \pmod{m}$
 $\implies x = x_0 + n\frac{m}{d}, \ n \in \mathbb{Z},$ rješenja kongruencije $ax \equiv b \pmod{m},$

Sva međusobno neekvivalentna rješenja x originalne kongruencije su dana sx = x $x_0 + n \frac{m}{d}, n = 0, 1, \dots, d - 1.$

Dakle, ako d|b,onda kongruencija $ax \equiv b \pmod m$ ima točno $d = \gcd(a,m)$ rješenja.

Primjenimo sada ovu tvrdnju pri zaključivanju o broju rješenja kongruencije $y2^{l-1}r \equiv 0 \pmod{p_i^{\alpha_i-1}(p_i-1)}$. Kako $gcd(2^{l-1}r, p_i^{\alpha_i-1}(p_i-1))|0$, vrijedi:

$$|\{y: y2^{l-1}r \equiv 0 \pmod{p_i^{\alpha_i-1}(p_i-1)}\}| = \gcd(2^{l-1}r, p_i^{\alpha_i-1}(p_i-1)).$$

Kako $2^{l-1}r|(p_i-1), p_i \nmid r$ te $2 \nmid p_i$ (jer je n neparan),

$$gcd((p_i-1)p_i^{\alpha_i-1}, 2^{l-1}r) = gcd(p_i-1, r)2^{l-1}.$$

Zaključujemo da za fiksirani i vrijedi:

$$|\{x: x^{2^{l-1}r} \equiv 1 \pmod{p_i^{\alpha_i}}\}| = |\{y: y2^{l-1}r \equiv 0 \pmod{p_i^{\alpha_i-1}(p_i-1)}\}|$$

$$= \gcd(p_i-1, r)2^{l-1}.$$
(13)

Iz svega gore napisanog, slijedi:

$$|\{a: 1 \le a < n \land a^{2^{l-1}r} \equiv 1 \pmod{n}\}| = \prod_{p_i \mid n} gcd(p_i - 1, r)2^{l-1}.$$

Na isti način dobijemo da je broj rješenja kongruencije $x^{2^l r} \equiv 1 \pmod{p_i^{\alpha_i}}$ jednak $gcd(p_i-1,r)2^l$. Broj rješenja te kongruencije dvaput je veći od broja rješenja kongruencije $a^{2^{l-1}r} \equiv 1 \pmod{p_i^{\alpha_i}}$. Odatle slijedi da je broj rješenja kongruencije $a^{2^{l-1}r} \equiv -1 \pmod{n}$ jednak broju rješenja kongruencije $a^{2^{l-1}r} \equiv 1$ \pmod{n} (sva rješenja kongruencije $a^{2^{l-1}r}\equiv -1\pmod{n}$ kvadriranjem postaju rješenja kongruencije $a^{2^l r} \equiv 1 \pmod{n}$.

$$|S'| = 2 \prod_{p_i|n} \gcd(p_i - 1, r) 2^{l-1}$$
(14)

Podijelimo li jednakost s $\varphi(n)$ te iskoristimo li multiplikativnost funkcije φ , $\varphi(n) = \varphi(p_1^{\alpha_1}) \cdots \varphi(p_k^{\alpha_k})$, dobijemo:

$$\frac{|S'|}{\varphi(n)} = 2 \prod_{p_i \mid n} \frac{\gcd(p_i - 1, r)2^{l-1}}{p_i^{\alpha_i - 1}(p_i - 1)}$$
(15)

Želimo dobiti da vrijedi: $\frac{|S'|}{\varphi(n)} \leq \frac{1}{4}$.

Pretpostavimo da je $\frac{|S'|}{\varphi(n)} > \frac{1}{4}$, pa ćemo kontadikcijom dobiti traženo. Pretpostavimo da je

$$\frac{1}{4} < \frac{|S'|}{\varphi(n)} = 2 \prod_{p_i \mid n} \frac{\gcd(p_i - 1, r)2^{l-1}}{p_i^{\alpha_i - 1}(p_i - 1)}.$$
 (16)

Ograničimo desnu stranu jednakosti (15). Koristimo sljedeće: $gcd(p_i-1,r)|(p_i-1),\ 2^l|(p_i-1),\ odnosno\ 2^{l-1}|\frac{p_i-1}{2}$. Kako je r neparan te $2^l\nmid gcd(p_i-1,r)$ iz svega navedenog slijedi: $gcd(p_i-1,r)2^l|(p_i-1) \Longrightarrow_{l\geq 1} gcd(p_i-1,r)2^{l-1}|\frac{p_i-1}{2}$. Za desnu stranu izraza (16) vrijedi:

$$2\prod_{p_{i}|n} \frac{gcd(p_{i}-1,r)2^{l-1}}{p_{i}^{\alpha_{i}-1}(p_{i}-1)} = 2\prod_{p_{i}|n} \frac{1}{2} \frac{gcd(p_{i}-1,r)2^{l-1}}{p_{i}^{\alpha_{i}-1}(\frac{p_{i}-1}{2})}$$

$$\leq 2\prod_{p_{i}|n} \frac{1}{2} \frac{\frac{p_{i}-1}{2}}{p_{i}^{\alpha_{i}-1}(\frac{p_{i}-1}{2})} \leq 2\prod_{p_{i}|n} \frac{1}{2} = 2 \cdot 2^{-t} = 2^{1-t},$$

$$(18)$$

gdje je t broj p_i -eva (prostih faktora) u rastavu od n. Kako je broj p_i -eva ≥ 1 , $2^{1-t} \leq 1$. Promotrimo nejednakosti u ovisnosti o broju prostih faktora broja n.

• Neka je t=1. To znači da je n oblika $n=p^{\alpha}$, gdje je p neparan prost broj. Jasno je da je $\alpha \geq 2$ jer bi u suprotnom vrijedilo da je n=p prost broj, a pretpostavili smo da je n složen. Uvrstimo li oblik broja n u nejednakost (16), vrijedi:

$$\frac{1}{4} < 2 \cdot \frac{gcd(p-1,r)2^{l-1}}{p^{\alpha-1}(p-1)} = \frac{gcd(p-1,r)2^{l-1}}{p^{\alpha-1}(\frac{p-1}{2})} \le \frac{1}{p^{\alpha-1}} \implies p^{\alpha-1} < 4.$$

Iz gornjeg uvjeta i uvjeta o neparnosti prostog broja p te složenosti broja n ($\alpha \geq 2$), vrijedi p=3 i $\alpha=2$. Dobijemo da je $n=3^2$, što je kontadikcija s pretpostavkom teorema da je n>9.

• Promotrimo n oblika $n=p_1^{\alpha_1}p_2^{\alpha_2}$. Promotrimo slučaj kada je barem jedan od eksponenata $\alpha_i \geq 2$. Tada desna strana od (16) izgleda ovako:

$$2 \cdot \frac{\gcd(p_1 - 1, r)2^{l-1}}{p_1^{\alpha_1 - 1}(p_1 - 1)} \cdot \frac{\gcd(p_2 - 1, r)2^{l-1}}{p_2^{\alpha_2 - 1}(p_2 - 1)} = (*)$$
(19)

Opet koristimo činjenicu da $gcd(p_i-1,r)2^{l-1}|\frac{p_i-1}{2}$. Također, znamo da vrijedi $p_1^{\alpha_1-1}p_2^{\alpha_2-1} \geq 3^{2-1}=3$. Nastavimo li s raspisom od (19), dobijemo:

$$\begin{split} (*) &= \frac{\gcd(p_1-1,r)2^{l-1}}{p_1^{\alpha_1-1}\frac{p_1-1}{2}} \cdot \frac{\gcd(p_2-1,r)2^{l-1}}{p_2^{\alpha_2-1}\frac{p_2-1}{2}} \cdot \frac{1}{2} \\ &\leq \frac{1}{p_1^{\alpha_1-1}} \cdot \frac{1}{p_2^{\alpha_2-1}} \cdot \frac{1}{2} \leq \frac{1}{3} \cdot \frac{1}{2} = \frac{1}{6} \end{split}$$

Došli smo do kontradikcije jer $\frac{1}{4} \nleq \frac{1}{6}$. Ova kontradikcija nas navodi da je svaki α_i u rastavu $n=p_1^{\alpha_1}p_2^{\alpha_2}$ jednak

Sukladno tome, $n = p_1 p_2$, $\alpha_1 = \alpha_2 = 1$. Sada izraz (16) izgleda:

$$\frac{1}{4} < 2 \cdot \frac{\gcd(p_1 - 1, r)2^{l - 1}}{p_1^{\alpha_1 - 1}(p_1 - 1)} \cdot \frac{\gcd(p_2 - 1, r)2^{l - 1}}{p_2^{\alpha_2 - 1}(p_2 - 1)} = \frac{1}{2} \cdot \frac{\gcd(p_1 - 1, r)2^l}{p_1 - 1} \cdot \frac{\gcd(p_2 - 1, r)2^l}{p_2 - 1}$$

Kako su $p_i - 1 > 0$, $gcd(p_i - 1, r)2^l > 0$, izraz možemo transformirati u sljedeći oblik:

$$\frac{p_1 - 1}{\gcd(p_1 - 1, r)2^l} \cdot \frac{p_2 - 1}{\gcd(p_2 - 1, r)2^l} < 2. \tag{20}$$

Kako vrijedi $gcd(p_i - 1, r)|(p_i - 1), 2^l|(p_i - 1)$ te $gcd(gcd(p_i - 1, r), 2^l) = 1$, vrijedi $gcd(p_i-1,r)2^l|(p_i-1)$. Sada zaključujemo da su faktori na lijevoj strani u izrazu (20) prirodni brojevi. Sada je jasno da su oba faktora jednaka 1.

$$p_1 - 1 = \gcd(p_1 - 1, r)2^l \tag{21}$$

$$p_2 - 1 = \gcd(p_2 - 1, r)2^l \tag{22}$$

Znamo da je p_i-1 paran broj, $gcd(p_i-1,r)$ neparan broj, pa zaključujemo da je 2^l upravo potencija od 2 u rastavu broja $p_i - 1$. Neparni dio broja p_i-1 jednak je $gcd(p_i-1,r)$, tj. neparni dio broja p_i-1 dijeli r. Prisjetimo se oblika broja n: $n = (n-1) + 1 = 2^{s}r + 1$, a u ovom slučaju n je oblika p_1p_2 , pa $p_1p_2=2^sr+1$. Želimo vidjeti odnose neparnih dijelova brojeva $p_i - 1, i = 1, 2.$

Neparni dio broja $p_i - 1$ jednak je $gcd(p_i - 1, r)$.

$$n = 2^{s}r + 1$$
 \wedge $gcd(p_{i} - 1, r)|r \implies r|(n - 1)$ \wedge $gcd(p_{i} - 1, r)|r \implies gcd(p_{i} - 1, r)|(n - 1) \implies n \equiv 1 \pmod{gcd(p_{i} - 1, r)}$

Iz te kongruencije slijedi da $gcd(p_1-1,r)|gcd(p_2-1,r)|$ i $gcd(p_2-1,r)|gcd(p_1-1,r)|$ 1, r). Ta relacija implicira jednakost brojeva $gcd(p_1 - 1, r)$ i $gcd(p_2 - 1, r)$.

$$\gcd(p_1-1,r)=\gcd(p_2-1,r)$$
i jednakost parnih dijelova brojeva
$$p_1-1,p_2-1\implies p_1-1=p_2-1\implies p_1=p_2.$$

Ponovno smo dobili kontradikciju. Gornjim nizom implikacija zaključujemo da su prosti faktori u rastavu od n jednaki, tj. n je oblika $n=p_1^2$. To je kontadikcija s pretpostavkom da je broj različitih prostih prostih faktora broja n jednak 2.

• Promotrimo li slučaj gdje n ima barem 3 različita prosta faktora, tada desna strana izraza (18) nije veća od $2^{1-3} = \frac{1}{4}$, što svakako nije veće od lijeve strane izraza, tj. $\frac{1}{4}$.

Za svaki od ovih slučajeva dobili smo kontradikciju, tj. ne vrijedi $\frac{1}{4}<\frac{|S'|}{\varphi(n)}.\quad \Box$

Ukoliko test ponavljamo k puta, vjerojatnost da se ni u jednoj iteraciji ne pojavi svjedok složenosti je $\leq \frac{1}{4^k}$. Miller-Rabinov test je sigurniji od Fermatovog testa (manja vjerojatnost pogreške).

4 Složenost

Složenost algoritma provest ćemo direktno analizom pseudokoda.

Promotrimo složenost nekih osnovnih operacija.

Za početak, promotrimo proizvoljan broj n. Binarna reprezentacija broja n bit će duljine $|\log_2 n| + 1$ bitova.

- \bullet Množenje brojeva a i b modulo n izvršimo jednostavnim množenjem brojeva a i b, a potom uzimanjem ostatka pri dijeljenju s n. Modularno množenje ćemo koristiti u analizi modularnog eksponenciranja. Promotrimo množenje brojeva a i b koji su prikazani u binarnom zapisu. Množenje brojeva vršimo na način da svaki bit broja a množimo svakim bitom broja b te potom zbrojimo dobivene produkte. Izvrši se $\mathcal{O}(\log_2 a)$ $\log_2 b$) množenja. Zbrajanje dobivenih međurezultata ne zahtjeva više od $\mathcal{O}(\log_2 a \cdot \log_2 b)$ operacija, pa je složenost množenja $\mathcal{O}(\log_2 a \cdot \log_2 b)$. Nakon završetka običnog množenja, umnožak dijelimo s n. Dijeljenje možemo izvršiti uzastopnim oduzimanjem broja n. Broj oduzimanja broja nje upravo $\lfloor \frac{ab}{n} \rfloor,$ a takvih oduzimanja ne može biti više od n. U našem algoritmu, brojevi a i b koji će se množiti modulo n ovisit će o n $(a, b \in$ $\{1, \ldots, n-1\}$, broj bitova a i b je manji ili jednak broju bitova broja n). Operacija modularnog množenja je složenosti $\mathcal{O}(\log_2^2 n)$. U pseudokodu, množenja $y \leftarrow y \cdot y$, tj. $y \leftarrow y^2$ vršimo najviše s-1 puta, gdje je s onaj iz rastava broja $n-1, n-1=2^s r$, pa je $s=\mathcal{O}(\log_2(n))$.
- Modularno potenciranje je sastavni dio pseudokoda u kojem računamo izraz oblika $a^e\pmod{n}$, za proizvoljne a,e. Trivijalni algoritam kojim bi se a^e računao kao $a\cdot a\cdot \cdots \cdot a$ pomoću e-1 množenja bio bi vrlo neefikasan i zauzimao veliku količinu računalne memorije. Najjednostavnija efikasna metoda je metoda uzastopnim kvadriranjem. Temelji se na binarnoj reprezentaciji eksponenta e:

$$e = \alpha_0 + \alpha_1 \cdot 2^1 + \dots + \alpha_k \cdot 2^k.$$

Broj znamenaka broja e u binarnom zapisu je $\lfloor \log_2 e \rfloor + 1 = k + 1$. Zapišimo potenciju na sljedeći način:

$$a^e = a^{\sum_{i=0}^k \alpha_i 2^i} = \prod_i a^{\alpha_i 2^i} = \prod_{\alpha_j = 1} a^{2^j}.$$

Demonstrirajmo algoritam za $a^{32} \pmod{n}$. Za potrebe ovog modularnog eksponenciranja, računamo samo sljedeće produkte modulo $n\colon a\cdot a, a^2\cdot$

```
a^2, a^4 \cdot a^4, a^{16} \cdot a^{16}.
```

Ovaj postupak je vrlo efikasan, posebice ako ga promatramo na računalu, jer su brojevi već zapisani u binarnom zapisu.

Zapišimo pseudokod algoritma koji bi za proizvoljne ulaze a, e, n računao $a^e \pmod n$.

```
\begin{aligned} & produkt \leftarrow 1 \\ & a_{pot} \leftarrow a \\ & \textbf{while } e > 0 \textbf{ do} \\ & \textbf{ if } e \mod 2 == 1 \textbf{ then} \\ & & produkt \leftarrow (produkt \cdot a_{pot}) \mod n \\ & \textbf{ end if} \\ & e \leftarrow e/2 \\ & a_{pot} \leftarrow (a_{pot} \cdot a_{pot}) \mod n \\ & \textbf{ end while} \end{aligned}
```

Broj množenja i dijeljenja modulo n nalazi se između $\lfloor \log_2 e \rfloor$ i $2 \lfloor \log_2 e \rfloor$, ovisno o broju jedinica u binarnom zapisu. Složenost modularnog potenciranja $\mathcal{O}(\log_2 e \cdot \log_2^2 n)$ za prizvoljan a, e. U slučaju da je broj e u binarnom zapisu sastavljen samo od jedinica, broj množenja modulo n bit će jednak broju bitova broja e ($\lfloor \log_2 e \rfloor + 1$). U pseudokodu, računamo $a^r \pmod{n}$, a kako je r < n, broja bitova broja r nije veći od $\lfloor \log_2 n \rfloor + 1$ bitova.

Složenost Miller-Rabinova testa je $\mathcal{O}(\log_2^3 n)$, a ako test provodimo k puta (za različite a-ove), složenost algoritma je $\mathcal{O}(k \cdot \log_2^3 n)$.

Literatura

```
[1] https://www.cs.upc.edu/~diaz/slides4-19.pdf
```

- [2] https://web.math.pmf.unizg.hr/~duje/kript/miller.html
- [3] https://shoup.net/ntb/ntb-v2.pdf
- [4] https://www.cmi.ac.in/~shreejit/primality.pdf
- [5] https://repozitorij.pmf.unizg.hr/islandora/object/pmf%3A5409/ datastream/PDF/view
- [6] http://www.math.leidenuniv.nl/~psh/ANTproc/05rene.pdf
- [7] https://cpb-us-w2.wpmucdn.com/blog.nus.edu.sg/dist/2/3912/ files/2014/09/Chapter3-2k5sbwd.pdf