Lecture 4: Point Level Models

Class Intro

- What did we learn last time?
- For Today
 - What is point referenced data?
 - How do we predict the response at unobserved locations?

Overview of Point Level Models or Geostatistical Models

Visual Motivation

source: airnow.gov

Basic Notation

- The response, Y(s), is a random variable at location(s) s
- *s* varies continuously over the space
- Typically, $s \in \mathbb{R}^2$ or $s \in \mathcal{D}$, where $\mathcal{D} \subset \mathbb{R}^2$, such as Montana.
- Y(s) is a stochastic process, or a collection of random variables.

Lecture 4: Point Level Models

• In spatial settings, Y(s) is referred to as a spatial process.

Conceptual Challenge: Questions

Goals

- Inference about spatial process *Y*(*s*)
- Create a continous map of air quality, or more generally predict the response at new locations given the partial realization of the process Discussion Questions
- What is the dimension of the spatial process, Y(s)?
- How are predictions made at unsampled locations, and a related question, what does "inference about a spatial process" mean?

Conceptual Challenge: Solutions

Goals

- Inference about spatial process *Y*(*s*)
- Create a continous map of air quality, or more generally predict the response at new locations given the partial realization of the process Discussion Questions
- What is the dimension of the spatial process, Y(s)? It is defined across the entire space, so infinite dimensional.
- How are predictions made at unsampled locations, and a related question, what does "inference about a spatial process" mean? the spatial process is assumed to have mean (or covariate) properties as well as a specified covariance structure as a function of distance. Similar to a standard regression model, predictions are made using the covariates and covariance.

Spatial Covariance

- Spatial covariance is characterized by the distance between locations
- By specifying a structured form for the covariance function, few parameters are necessary
- A covariance function must be symmetric: $Cov(Y(s_1), Y(s_2)) = Cov(Y(s_2), Y(s_1))$
- A common covariance is the exponential covariance, where $Cov(Y(s_1), Y(s_2)) = \sigma^2 \exp(-\phi d_{12})$, where d_{12} is the distance between s_1 and s_2 .

Exponential Covariance: Questions

The exponential covariance function has two parameters:

$$Cov(Y(s_1), Y(s_2)) = \sigma^2 \exp(-\phi d_{12}),$$

Describe the how the parameters contribute to the covariance:

- φ
- σ^2

Exponential Covariance: Solution

The exponential covariance function has two parameters:

$$Cov(Y(s_1), Y(s_2)) = \sigma^2 \exp(-\phi d_{12}),$$

Describe the how the parameters contribute to the covariance:

- ϕ : controls the correlation. In particular, $\exp(-\phi d_{12})$ will be between 0 and 1 (with $\phi > 0$ and $d_{12} \ge 0$). When $d_{12} \gg \frac{1}{\phi}$, the correlation goes to zero and When $d_{12} \ll \frac{1}{\phi}$, the correlation goes to one. $\frac{1}{\phi}$ is known as the *range parameter*.
- σ^2 : is a scaling parameter associated with the correlation. σ^2 is called the partial sill

Exponential Covariance: Nugget

- Spatial models include a *nugget* effect to account point level variability. This can be thought of as measurement error, or randomness inherent in the process.
- Hence for a single point, $Cov(Y(s_i), Y(s_i)) = \sigma^2 \exp(-\phi d_{12}) + \tau^2$,
- In this setting, $\sigma^2 + \tau^2$ is called the *sill*.

Joint Distribution

A joint distribution is specified to model the spatial covariance using standard likelihood-based techniques.

- Let $Y := \{Y(s_i)\}$ for locations $s_i, i = 1, ..., n$
- Then assume

$$Y|\mu, \theta \sim MVN_n(\mu \mathbf{1}_n, \Sigma(\theta)),$$

where θ is a vector of parameters that determine the variance.

Parameter Estimation: Questions

- Write out the likelihood for *Y*
- Describe the process for estimating the parameters in the model

Parameter Estimation: Solutions

• Write out the likelihood for *Y*:

$$Y|\mu, \boldsymbol{\theta} = (2\pi)^{n/2} |\Sigma(\boldsymbol{\theta})|^{-1/2} \exp\left[-\frac{1}{2} (\boldsymbol{Y} - \boldsymbol{1}\mu)^T \Sigma(\boldsymbol{\theta})^{-1} (\boldsymbol{Y} - \boldsymbol{1}\mu)\right]$$

• Describe the process for estimating the parameters in the model maximum likelihood for μ , and θ or with Bayesian techniques using prior distributions and Markov Chain Monte Carlo

Gaussian Process

Given that we assume $Y | \mu, \theta \sim MVN_n(\mu \mathbf{1}_n, \Sigma(\theta)),$

- it is also reasonable to assume that the response at a set of unobserved locations, $Y(s^*)$ also follows a multivariate normal distribution.
- this results in an infinite dimensional normal distribution, which is also know as a Gaussian Process (GP)
- prediction, say $Y(s^*)|Y(s)$ follows a conditional multivariate normal distribution

Elements of Geostatistical models

Stationarity

- Assume the spatial process, Y(s) has a mean, $\mu(s)$, and that the variance of Y(s) exists everywhere.
- The process is **strictly stationary** if: for any $n \ge 1$, any set of n sites $\{s_1, \ldots, s_n\}$ and any $h \in \mathbb{R}^r$ (typically r = 2), the distribution of $(Y(s_1), \ldots, Y(s + h_n))$ is the same as $Y(s + h_1)$

Strict Stationarity

Is this strictly stationary?

Weak Stationarity

- Weak stationarity, or second-order stationarity of a spatial process, requires a constant mean and covariance that is a function of h, Cov(Y(s), Y(s + h)) = C(h), where C(h) is a covariance function that only requires the distance between the points.
- Typically with spatial models, the process is assumed to be mean zero as covariates explain the mean structure. So second-order stationarity is primarily focused on the covariance structure.

Weak Stationarity

Is this weakly stationary?

Intrinsic Stationarity

- A third kind of stationarity, known as intrinsic stationarity, describes the behavior of differences in the spatial process, rather than the data.
- Intrinsic stationarity assumes E[Y(s+h) Y(s)] = 0 then define $E[Y(s+h) Y(s)]^2 = Var(Y(s+h) Y(s)) = 2\gamma(h)$, which only works, and satisfies intrinsic stationarity, if the equation only depends on h.

Variograms

- Intrinsic stationary justifies the use of variograms $2\gamma(h)$
- Variograms are often used to visualize spatial patterns:
 - If the distance between points is small, the variogram is expected to be small

Lecture 4: Point Level Models

- As the distance between points increases, the variogram increases
- There is a mathematical link between the covariance function C(h) and the variogram $2\gamma(h)$.

Isotropy

- If the variogram $2\gamma(h)$ depends only on the length of h, ||h||, and not the direction, then the variogram is isotropic.
- If the direction of *h* impacts the variogram, then the variogram is anisotropic.

More about Variograms

Variogram to the Covariance Function

$$2\gamma(h) = Var(Y(s+h) - Y(s))$$
= $Var(Y(s+h)) + Var(Y(s)) - 2Cov(Var(Y(s+h), Y(s)))$
= $C(0) + C(0) - 2C(h)$
= $2[C(0) + C(h)]$

- Given *C*(), the variogram can easily be recovered
- Going the other way, $2\gamma() \rightarrow C()$, requires additional assumptions

Linear semivariogram

$$\gamma(d) = \begin{cases} \tau^2 + \sigma^2 d & \text{if } d > 0 \\ 0 & \text{otherwise} \end{cases}$$

Spherical semivariogram: exercise

$$\gamma(d) = \begin{cases} \tau^2 + \sigma^2 & \text{if } d \ge 1/\phi \\ \tau^2 + \sigma^2 \left[\frac{3\phi d}{2} - \frac{1}{2} (\phi d)^3 \right] \\ 0 & \text{otherwise} \end{cases}$$

- Sketch, or generate in R, a spherical semivariogram
- On this figure label the nugget, sill, partial sill, and range.