Un asistente de demostración para lógica de primer orden con extracción de testigos usando la traducción de Friedman

Manuel Panichelli

Deparatamento de Computación, FCEyN, UBA

Diciembre 2024

Introducción

Repaso de lógica

Definiciones (Conceptos centrales)

- Teorema: Afirmación que puede ser demostrada.
- Axioma: Afirmación que es siempre válida (sin demostración).
- Demostración:
 - Argumento que establece que un teorema es cierto.
 - Usa *reglas de inferencia* a partir de *axiomas* y otros teoremas probados anteriormente.
 - Enmarcada en un sistema deductivo.

Ejemplo de teorema

Ejemplo (Teorema de Pitágoras)

$$a^2 + b^2 = c^2.$$

- Sistema: Geometría euclidiana.
- Axioma: Se puede dibujar una línea recta entre dos puntos.

- Los **asistentes de demostración** son herramientas que facilitan la escritura y el chequeo de demostraciones por computadora.
- Usos:
 - Formalización de teoremas matemáticos.
 - Verificación de programas.

¹Terence Tao - Machine Assisted Proof

- Los **asistentes de demostración** son herramientas que facilitan la escritura y el chequeo de demostraciones por computadora.
- Usos:
 - Formalización de teoremas matemáticos.
 - Verificación de programas.
- Ventajas:¹
 - Facilitan la colaboración a gran escala (mediante la confianza en el asistente).

¹Terence Tao - Machine Assisted Proof

- Los **asistentes de demostración** son herramientas que facilitan la escritura y el chequeo de demostraciones por computadora.
- Usos:
 - Formalización de teoremas matemáticos.
 - Verificación de programas.
- Ventajas:¹
 - Facilitan la colaboración a gran escala (mediante la confianza en el asistente).
 - Habilitan generación automática de demostraciones con IA. Por ej. un LLM (como ChatGPT) suele devolver alucinaciones, que pueden ser filtradas automáticamente con un asistente.

¹Terence Tao - Machine Assisted Proof

Extracción de testigos: De una demo de $\exists x.p(x)$, encontrar t tq p(t). Lógica constructiva = sencillo, no constructiva = complicado.

Diseñamos e implementamos en Haskell ppa (*Pani's Proof Assistant*). Dos partes:

- El lenguaje PPA para escribir demostraciones.
- Mecanismo de extracción de testigos de demostraciones no constructivas (aporte principal).

Ejemplo representación de demostraciones

Definición (Axiomas)

- Los alumnos que faltan a los exámenes, los reprueban.
- 2 Si se reprueba un final, se recursa la materia.

Ejemplo representación de demostraciones

Definición (Axiomas)

- Los alumnos que faltan a los exámenes, los reprueban.
- 2 Si se reprueba un final, se recursa la materia.

Teorema

Si un alumno falta al final de una materia, entonces la recursa

Demostración.

- Asumo que falta. Quiero ver que recursa.
- Por (1), sabemos que si falta, entonces reprueba. Por lo tanto reprobó.
- Por (2), sabemos que si reprueba, entonces recursa. Por lo tanto recursó.

Ejemplo representación de demostraciones

Definición (Axiomas)

- Los alumnos que faltan a los exámenes, los reprueban.
- 2 Si se reprueba un final, se recursa la materia.

Teorema

Si un alumno falta al final de una materia, entonces la recursa

Demostración.

- Asumo que falta. Quiero ver que recursa.
- Por (1), sabemos que si falta, entonces reprueba. Por lo tanto reprobó.
- Por (2), sabemos que si reprueba, entonces recursa. Por lo tanto recursó.

Deducción natural (DN)

Lógica de primer orden

Definición (Términos)

Los términos están dados por la gramática:

$$t ::= x$$
 (variables) $\mid f(t_1, \dots, t_n)$ (funciones)

Definición (Fórmulas)

Las fórmulas están dadas por la gramática:

$$\begin{array}{lll} A,B ::= p(t_1,\ldots,t_n) & \text{(predicados)} \\ & | \perp | \top & \text{(falso o } \textit{bottom} \textit{ y verdadero o } \textit{top}) \\ & | A \wedge B \mid A \vee B & \text{(conjunción y disyunción)} \\ & | A \rightarrow B \mid \neg A & \text{(implicación y negación)} \\ & | \forall x.A \mid \exists x.A & \text{(cuantificador universal y existencial)} \end{array}$$

Dos tipos para cada conectivo y cuantificador, dada una fórmula formada con un conectivo:

- Introducción: ¿Cómo la demuestro?
- Eliminación: ¿Cómo la uso para demostrar otra?

Definición (Reglas de inferencia)

$$\frac{\Gamma, A \vdash B}{\Gamma \vdash A \to B} \vdash \qquad \qquad \overline{\Gamma, A \vdash A} \land X$$

$$\frac{\Gamma \vdash A \to B \qquad \Gamma \vdash A}{\Gamma \vdash B} \vdash \qquad (modus ponens)$$

Definiciones

 Γ es un contexto de demostración y \vdash la relación de derivabilidad.

Ejemplo (Teorema en DN)

Notamos:

- $F \equiv \text{falta}(juan, \text{final}(logica))$
- $X \equiv \text{reprueba}(juan, \text{final}(logica))$
- $R \equiv recursa(juan, logica)$

Axiomas $F \to X$ y $X \to R$. Afirmamos $F \to R$.

Ejemplo (Teorema en DN)

Notamos:

- $F \equiv \text{falta}(juan, \text{final}(logica))$
- $X \equiv \text{reprueba}(juan, \text{final}(logica))$
- $R \equiv recursa(juan, logica)$

Axiomas $F \to X$ y $X \to R$. Afirmamos $F \to R$.

$$\frac{\Gamma = (F \to X), (X \to R), F \vdash R}{(F \to X), (X \to R) \vdash F \to R} \mid \to$$

Ejemplo (Teorema en DN)

Notamos:

- $F \equiv \text{falta}(juan, \text{final}(logica))$
- $X \equiv \text{reprueba}(juan, \text{final}(logica))$
- $R \equiv recursa(juan, logica)$

Axiomas $F \to X$ y $X \to R$. Afirmamos $F \to R$.

$$\frac{\Gamma = (F \to X), (X \to R), F \vdash R}{(F \to X), (X \to R) \vdash F \to R} \stackrel{\mathsf{E} \to}{\mathsf{I} \to}$$

Ejemplo (Teorema en DN)

Notamos:

- $F \equiv \text{falta}(juan, \text{final}(logica))$
- $X \equiv \text{reprueba}(juan, \text{final}(logica))$
- $R \equiv recursa(juan, logica)$

Axiomas $F \to X$ y $X \to R$. Afirmamos $F \to R$.

$$\frac{\Gamma \vdash X \to R \qquad \Gamma \vdash X}{\Gamma = (F \to X), (X \to R), F \vdash R} \to \bot \to \bot$$

Ejemplo (Teorema en DN)

Notamos:

- $F \equiv \text{falta}(juan, \text{final}(logica))$
- $X \equiv \text{reprueba}(juan, \text{final}(logica))$
- $R \equiv recursa(juan, logica)$

Axiomas $F \to X$ y $X \to R$. Afirmamos $F \to R$.

$$\frac{\overline{\Gamma \vdash X \to R} \xrightarrow{\mathsf{Ax}} \overline{\Gamma \vdash X}}{\overline{\Gamma = (F \to X), (X \to R), F \vdash R}} \xrightarrow{\mathsf{E} \to} \frac{\Gamma \vdash X}{(F \to X), (X \to R) \vdash F \to R} \xrightarrow{\mathsf{I} \to} 1$$

Ejemplo (Teorema en DN)

Notamos:

- $F \equiv \text{falta}(juan, \text{final}(logica))$
- $X \equiv \text{reprueba}(juan, \text{final}(logica))$
- $R \equiv recursa(juan, logica)$

Axiomas $F \to X$ y $X \to R$. Afirmamos $F \to R$.

Otras reglas de inferencia

- I¬, E¬, I∧
- $I\lor_1$, $I\lor_2$, $E\lor$
- I∀, E∀, I∃, E∃
- E⊥, I⊤, LEM

Otras reglas de inferencia

- I¬, E¬, I∧
- $I\lor_1$, $I\lor_2$, $E\lor$
- I∀, E∀, I∃, E∃
- E⊥, I⊤, LEM

No tenemos regla por ej. para modus tollens: $(A \to B) \land \neg B \to \neg A$

- Queremos un sistema lógico minimal: no agregamos las reglas admisibles, derivables a partir de las existentes.
- Se implementan como funciones o macros.

Otras reglas de inferencia

- I¬, E¬, I∧
- $I\vee_1$, $I\vee_2$, $E\vee$
- I∀, E∀, I∃, E∃
- E⊥, I⊤, LEM

No tenemos regla por ej. para modus tollens: $(A \to B) \land \neg B \to \neg A$

- Queremos un sistema lógico minimal: no agregamos las reglas admisibles, derivables a partir de las existentes.
- Se implementan como funciones o macros.

Alfa equivalencia

- Podemos usar $\exists x.p(x)$ y $\exists y.p(y)$ de forma intercambiable.
- Son α -equivalentes (renombrando variables ligadas de forma apropiada, son iguales).

Sustitución

Eliminación de universal

$$\frac{\Gamma \vdash \forall x.A}{\Gamma \vdash A\{x := t\}} \, \mathsf{E} \forall$$

Sustitución

Eliminación de universal

$$\frac{\Gamma \vdash \forall x.A}{\Gamma \vdash A\{x := t\}} \, \mathsf{E} \forall$$

Definición (Sustitución)

 $A\{x := t\}$ sustituir todas las ocurrencias libres de la variable x por el término t en la fórmula A.

Sustitución

Eliminación de universal

$$\frac{\Gamma \vdash \forall x.A}{\Gamma \vdash A\{x := t\}} \, \mathsf{E} \forall$$

Definición (Sustitución)

 $A\{x := t\}$ sustituir todas las ocurrencias libres de la variable x por el término t en la fórmula A.

Capturas

Evitamos automáticamente la **captura de variables** (renombrando a fórmula α -equivalente tq no ocurra)

$$(\forall y.p(\mathbf{x},y))\{x:=y\} \neq \forall y.p(\mathbf{y},y)$$
 (capturada)
$$(\forall y.p(\mathbf{x},y))\{x:=y\} = \forall \mathbf{z}.p(\mathbf{y},\mathbf{z})$$
 (renombrada)

Mizar → Isar (Isabelle) → Mathematical Vernacular²

Forma natural de representar demostraciones matemáticas. Ideas:

²De Freek Wiedijk

Mizar → Isar (Isabelle) → Mathematical Vernacular²

Forma natural de representar demostraciones matemáticas. Ideas:

• Deducción natural en estilo de *Fitch*. Notación equivalente, demostraciones como listas de fórmulas en lugar de árboles.

²De Freek Wiedijk

Mizar → Isar (Isabelle) → Mathematical Vernacular²

Forma natural de representar demostraciones matemáticas. Ideas:

- Deducción natural en estilo de Fitch. Notación equivalente, demostraciones como listas de fórmulas en lugar de árboles.
- Reglas de inferencia declarativas: Afirmar

$$A_1,\ldots,A_n\vdash A$$

sin tener que demostrarlo a mano (automático).

²De Freek Wiedijk

Mizar \rightsquigarrow Isar (Isabelle) \rightsquigarrow Mathematical Vernacular²

Forma natural de representar demostraciones matemáticas. Ideas:

- Deducción natural en estilo de Fitch. Notación equivalente, demostraciones como listas de fórmulas en lugar de árboles.
- Reglas de inferencia declarativas: Afirmar

$$A_1,\ldots,A_n\vdash A$$

sin tener que demostrarlo a mano (automático).

 Sintaxis similar a un lenguaje de programación en lugar al lenguaje natural.

²De Freek Wiedijk

Lenguaje PPA, inspirado en el *Mathematical Vernacular*. Demostraciones son listas de **comandos** que reducen sucesivamente la *tesis* (fórmula a demostrar) hasta agotarla.

Ejemplo demostración

```
axiom "ax1": forall A . forall E .
falta(A, E) -> reprueba(A, E)
axiom "ax2": forall A . forall M .
reprueba(A, final(M)) -> recursa(A, M)
```

Lenguaje PPA, inspirado en el *Mathematical Vernacular*. Demostraciones son listas de **comandos** que reducen sucesivamente la *tesis* (fórmula a demostrar) hasta agotarla.

Ejemplo demostración

```
axiom "ax1": forall A . forall E .
falta(A, E) -> reprueba(A, E)
axiom "ax2": forall A . forall M .
reprueba(A, final(M)) -> recursa(A, M)

theorem "falta_entonces_recursa": forall A . forall M .
falta(A, final(M)) -> recursa(A, M)
proof
```

Lenguaje PPA, inspirado en el *Mathematical Vernacular*. Demostraciones son listas de **comandos** que reducen sucesivamente la *tesis* (fórmula a demostrar) hasta agotarla.

Ejemplo demostración

```
axiom "ax1": forall A . forall E .
falta(A, E) -> reprueba(A, E)
axiom "ax2": forall A . forall M .
reprueba(A, final(M)) -> recursa(A, M)

theorem "falta_entonces_recursa": forall A . forall M .
falta(A, final(M)) -> recursa(A, M)

proof
let A
let M
```

PPA

Lenguaje PPA, inspirado en el Mathematical Vernacular. Demostraciones son listas de comandos que reducen sucesivamente la tesis (fórmula a demostrar) hasta agotarla.

Ejemplo demostración

```
1 axiom "ax1": forall A . forall E .
2  falta(A, E) -> reprueba(A, E)
3 axiom "ax2": forall A . forall M .
4  reprueba(A, final(M)) -> recursa(A, M)
5
6 theorem "falta_entonces_recursa": forall A . forall M .
7  falta(A, final(M)) -> recursa(A, M)
8 proof
9  let A
10  let M
11  suppose "falta": falta(A, final(M))
```

PPA

Lenguaje PPA, inspirado en el Mathematical Vernacular. Demostraciones son listas de **comandos** que reducen sucesivamente la *tesis* (fórmula a demostrar) hasta agotarla.

Ejemplo demostración

```
axiom "ax1": forall A . forall E .
      falta(A, E) -> reprueba(A, E)
   axiom "ax2": forall A , forall M .
      reprueba(A, final(M)) -> recursa(A, M)
4
5
   theorem "falta_entonces_recursa": forall A . forall M .
      falta(A, final(M)) -> recursa(A, M)
7
   proof
      let A
      let M
10
      suppose "falta": falta(A, final(M))
11
      have "reprueba": reprueba(A, final(M)) by "ax1", "falta"
12
```

PPA

Lenguaje PPA, inspirado en el Mathematical Vernacular. Demostraciones son listas de **comandos** que reducen sucesivamente la *tesis* (fórmula a demostrar) hasta agotarla.

Ejemplo demostración

```
axiom "ax1": forall A . forall E .
      falta(A, E) -> reprueba(A, E)
   axiom "ax2": forall A . forall M .
      reprueba(A, final(M)) -> recursa(A, M)
4
5
   theorem "falta_entonces_recursa": forall A . forall M .
      falta(A, final(M)) -> recursa(A, M)
7
   proof
      let A
      let M
10
      suppose "falta": falta(A, final(M))
11
      have "reprueba": reprueba(A, final(M)) by "ax1", "falta"
12
      thus recursa(A, M) by "ax2", "reprueba"
13
14
   end
```

Comandos y reglas de inferencia

Regla	Comando
LEM	cases
Ax	by
I∃	take
E∃	consider
I∀	let
$E\forall$	by
$I \lor_1$	by
$I \lor_2$	by
$E\lor$	cases

Regla	Comando
<u>I</u> \	by
$E \wedge_1$	by
$E \wedge_2$	by
$I \!\to\!$	suppose
$E \!\!\to$	by
l¬	suppose
E¬	by
ΙΤ	by
E⊥	by

Comandos y reglas de inferencia

Regla	Comando
LEM	cases
Ax	by
I∃	take
E∃	consider
I∀	let
$E\forall$	by
$I \vee_1$	by
$I \lor_2$	by
$E\lor$	cases

Regla	Comando
IA	by
$E \wedge_1$	by
$E \wedge_2$	by
$I \!\to\!$	suppose
$E {\to}$	by
Ι¬	suppose
E¬	by
ΙΤ	by
$E\bot$	by

Adicionales:

- equivalently: Reduce la tesis a una fórmula equivalente.
- claim: Análogo a have pero con una sub-demostración.

Certificados

- Las demostraciones de PPA se certifican generando una demostración de deducción natural.
- Evita confiar en la implementación del asistente.

Certificados

- Las demostraciones de PPA se certifican generando una demostración de deducción natural.
- Evita confiar en la implementación del asistente.
- Cumple con el Criterio de de Bruijn (sus demostraciones pueden ser chequeadas por un programa independiente)

Certificado de demostraciones

El procedimiento de certificado de una demostración es recursivo:

```
theorem t:
p(v) \rightarrow \text{exists } X . p(X)
proof
\text{suppose "h": } p(v)
take X := v
thus p(v) by "h"
\text{end}
\frac{h : p(v) \vdash p(v)}{h : p(v) \vdash \exists x. p(X)} \vdash p(v) \rightarrow \exists x. p(X)} \vdash p(v) \rightarrow \exists x. p(X)
```

Figura: Ejemplo de certificado generado para un programa

by - El mecanismo principal de demostración

```
thus <form> by <h1>, ..., <hn>
have <name>: <form> by <h1>, ..., <hn>
```

- Si puede, demuestra automáticamente que la fórmula es consecuencia lógica de la justificación.
- Por debajo usa un *solver* heurístico para primer orden.

by - El mecanismo principal de demostración

```
thus <form> by <h1>, ..., <hn>
have <name>: <form> by <h1>, ..., <hn>
```

- Si puede, demuestra automáticamente que la fórmula es consecuencia lógica de la justificación.
- Por debajo usa un solver heurístico para primer orden.
- Toma las hipótesis del contexto local o global: fórmulas asumidas o demostradas.

Teniendo $\Gamma = \{h_1 : B_1, \dots, h_n : B_n\}$, para thus A by h1, ..., hn:

Buscamos las hipótesis en el contexto. Queremos demostrar

$$\Gamma \vdash B_1 \land \ldots \land B_n \rightarrow A$$

Teniendo $\Gamma = \{h_1 : B_1, \dots, h_n : B_n\}$, para thus A by h1, ..., hn:

Buscamos las hipótesis en el contexto. Queremos demostrar

$$\Gamma \vdash B_1 \land \ldots \land B_n \rightarrow A$$

Razonamos por el absurdo: Asumiendo la negación buscamos una contradicción

$$\Gamma, \neg (B_1 \wedge \ldots \wedge B_n \rightarrow A) \vdash \bot$$

Teniendo $\Gamma = \{h_1 : B_1, \dots, h_n : B_n\}$, para thus A by h1, ..., hn:

Buscamos las hipótesis en el contexto. Queremos demostrar

$$\Gamma \vdash B_1 \land \ldots \land B_n \rightarrow A$$

Razonamos por el absurdo: Asumiendo la negación buscamos una contradicción

$$\Gamma, \neg (B_1 \wedge \ldots \wedge B_n \rightarrow A) \vdash \bot$$

Onvertimos la negación a forma normal disyuntiva (DNF)

$$\Gamma, (a_1 \wedge \ldots \wedge a_n) \vee \ldots \vee (b_1 \wedge \ldots \wedge b_m) \vdash \bot$$

Teniendo $\Gamma = \{h_1 : B_1, \dots, h_n : B_n\}$, para thus A by h1, ..., hn:

Buscamos las hipótesis en el contexto. Queremos demostrar

$$\Gamma \vdash B_1 \land \ldots \land B_n \rightarrow A$$

Razonamos por el absurdo: Asumiendo la negación buscamos una contradicción

$$\Gamma, \neg (B_1 \wedge \ldots \wedge B_n \rightarrow A) \vdash \bot$$

3 Convertimos la negación a forma normal disyuntiva (DNF)

$$\Gamma, (a_1 \wedge \ldots \wedge a_n) \vee \ldots \vee (b_1 \wedge \ldots \wedge b_m) \vdash \bot$$

Buscamos una contradicción refutando cada cláusula individualmente. Será refutable si

Teniendo $\Gamma = \{h_1 : B_1, \dots, h_n : B_n\}$, para thus A by h1, ..., hn:

Buscamos las hipótesis en el contexto. Queremos demostrar

$$\Gamma \vdash B_1 \land \ldots \land B_n \rightarrow A$$

Razonamos por el absurdo: Asumiendo la negación buscamos una contradicción

$$\Gamma, \neg (B_1 \wedge \ldots \wedge B_n \rightarrow A) \vdash \bot$$

3 Convertimos la negación a forma normal disyuntiva (DNF)

$$\Gamma, (a_1 \wedge \ldots \wedge a_n) \vee \ldots \vee (b_1 \wedge \ldots \wedge b_m) \vdash \bot$$

- Buscamos una contradicción refutando cada cláusula individualmente. Será refutable si
 - Contiene \perp o dos fórmulas opuestas $(a, \neg a)$,

Teniendo $\Gamma = \{h_1 : B_1, \dots, h_n : B_n\}$, para thus A by h1, ..., hn:

Buscamos las hipótesis en el contexto. Queremos demostrar

$$\Gamma \vdash B_1 \land \ldots \land B_n \rightarrow A$$

Razonamos por el absurdo: Asumiendo la negación buscamos una contradicción

$$\Gamma, \neg (B_1 \wedge \ldots \wedge B_n \rightarrow A) \vdash \bot$$

Onvertimos la negación a forma normal disyuntiva (DNF)

$$\Gamma, (a_1 \wedge \ldots \wedge a_n) \vee \ldots \vee (b_1 \wedge \ldots \wedge b_m) \vdash \bot$$

- Buscamos una contradicción refutando cada cláusula individualmente. Será refutable si
 - Contiene \perp o dos fórmulas opuestas $(a, \neg a)$,
 - Eliminando universales **consecutivos** y reiniciando el proceso, se consigue una refutación $(\neg p(k,t), \forall x. \forall y. p(x,y))$

Ejemplo sin cuantificadores (1/4)

By sin cuantificadores

```
1   axiom ax1: a -> b
2   axiom ax2: a
3   theorem t: b
4   proof
5   thus b by ax1, ax2
6   end
```

Ejemplo sin cuantificadores (1/4)

By sin cuantificadores

```
1 axiom ax1: a -> b
2 axiom ax2: a
3 theorem t: b
4 proof
5 thus b by ax1, ax2
6 end
```

Para certificar thus b by ax1, ax2 hay que generar una demostración para la implicación

$$\Gamma \vdash ((a \rightarrow b) \land a) \rightarrow b$$

Ejemplo sin cuantificadores (2/4)

Negamos la fórmula y buscamos una contradicción.

$$\Gamma, \neg [((a \rightarrow b) \land a) \rightarrow b] \vdash \bot$$

Definición (Eliminación de doble negación)

$$=$$
 $=$ $\Gamma \vdash A \lor \neg A$ LEM

Definición (Introducción de negación)

$$\frac{\Gamma, A \vdash \bot}{\Gamma \vdash \neg A} \vdash \neg$$

Ejemplo sin cuantificadores (2/3)

La convertimos a DNF

$$\neg[((a \to b) \land a) \to b]$$

$$\equiv \neg[\neg((a \to b) \land a) \lor b] \quad (A \to B \equiv \neg A \lor B)$$

$$\equiv \neg\neg((a \to b) \land a) \land \neg b \quad (\neg(A \lor B) \equiv \neg A \land \neg B)$$

$$\equiv ((a \to b) \land a) \land \neg b \quad (\neg \neg A \equiv A)$$

$$\equiv (\neg a \lor b) \land a \land \neg b \quad (A \to B \equiv \neg A \lor B)$$

$$\equiv (\neg a \lor b) \land a \land \neg b \quad (A \to B \equiv \neg A \lor B)$$

$$\equiv (\neg a \lor b) \land a \land \neg b \quad (A \to B \equiv \neg A \lor B)$$

$$\equiv (\neg a \lor b) \land a \land \neg b \quad (A \to B \Rightarrow \neg A \lor B)$$

$$\equiv (\neg a \land a \land \neg b) \lor (B \land C) \lor (B \land C)$$

Conversión a DNF - Reglas admisibles

Reglas admisibles para conversión a DNF

Pasos base

$$\neg \neg a \dashv \vdash a$$

$$\neg \bot \dashv \vdash \top$$

$$\neg \top \dashv \vdash \bot$$

$$a \rightarrow b \dashv \vdash \neg a \lor b$$

$$\neg (a \lor b) \dashv \vdash \neg a \land \neg b$$

$$\neg (a \land b) \dashv \vdash \neg a \lor \neg b$$

$$(a \lor b) \land c \dashv \vdash (a \land c) \lor (b \land c)$$

$$c \land (a \lor b) \dashv \vdash (c \land a) \lor (c \land b)$$

$$a \lor (b \lor c) \dashv \vdash (a \lor b) \lor c$$

 $a \wedge (b \wedge c) \dashv \vdash (a \wedge b) \wedge c$

Pasos recursivos de congruencia (con $A \dashv\vdash A'$, $B \dashv\vdash B'$)

$$A \wedge B \dashv\vdash A' \wedge B$$

$$A \wedge B \dashv\vdash A \wedge B'$$

$$A \vee B \dashv\vdash A' \vee B$$

$$A \vee B \dashv\vdash A \vee B'$$

$$\neg A \dashv\vdash \neg A'$$

¡30 demostraciones!

Ejemplo sin cuantificadores (3/3)

Refutamos cada cláusula

$$(\neg a \land a \land \neg b) \lor (b \land a \land \neg b) \vdash \bot$$

Definición (Reglas de inferencia)

$$\frac{\Gamma \vdash A \lor B \qquad \Gamma, A \vdash C \qquad \Gamma, B \vdash C}{\Gamma \vdash C} E\lor$$

$$\frac{\Gamma \vdash \neg A \qquad \Gamma \vdash A}{\Gamma \vdash \bot} E\neg$$

Supongamos que tenemos que resolver siguiente implicación

$$\left(\left(\forall x. (p(x) \to q(x)) \right) \land p(k) \right) \to q(k)
\equiv \neg \left[\left(\left(\forall x. (p(x) \to q(x)) \right) \land p(k) \right) \to q(k) \right]$$

Supongamos que tenemos que resolver siguiente implicación

$$\left(\left(\forall x. (p(x) \to q(x)) \right) \land p(k) \right) \to q(k)
\equiv \neg \left[\left(\left(\forall x. (p(x) \to q(x)) \right) \land p(k) \right) \to q(k) \right]$$

② Convertimos a DNF (∀ es opaco)

$$(\forall x.(p(x) \rightarrow q(x))) \land p(k) \land \neg q(k)$$

Supongamos que tenemos que resolver siguiente implicación

$$\left(\left(\forall x. (p(x) \to q(x)) \right) \land p(k) \right) \to q(k)
\equiv \neg \left[\left(\left(\forall x. (p(x) \to q(x)) \right) \land p(k) \right) \to q(k) \right]$$

② Convertimos a DNF (∀ es opaco)

$$(\forall x.(p(x) \rightarrow q(x))) \land p(k) \land \neg q(k)$$

3 No es refutable. E \forall con x := u una **meta-variable** fresca.

$$(p(\mathbf{u}) \to q(\mathbf{u})) \land p(k) \land \neg q(k)$$

Supongamos que tenemos que resolver siguiente implicación

$$\left(\left(\forall x. (p(x) \to q(x)) \right) \land p(k) \right) \to q(k)
\equiv \neg \left[\left(\left(\forall x. (p(x) \to q(x)) \right) \land p(k) \right) \to q(k) \right]$$

② Convertimos a DNF (∀ es opaco)

$$(\forall x.(p(x) \rightarrow q(x))) \land p(k) \land \neg q(k)$$

3 No es refutable. E \forall con x := u una **meta-variable** fresca.

$$(p(\mathrm{u}) o q(\mathrm{u})) \wedge p(k) \wedge \neg q(k)$$

Re-convertimos a DNF

$$(\neg p(\mathbf{u}) \land p(k) \land \neg q(k)) \lor (q(\mathbf{u}) \land p(k) \land \neg q(k))$$

Supongamos que tenemos que resolver siguiente implicación

$$\left(\left(\forall x. (p(x) \to q(x)) \right) \land p(k) \right) \to q(k)
\equiv \neg \left[\left(\left(\forall x. (p(x) \to q(x)) \right) \land p(k) \right) \to q(k) \right]$$

② Convertimos a DNF (∀ es opaco)

$$(\forall x.(p(x) \rightarrow q(x))) \land p(k) \land \neg q(k)$$

3 No es refutable. E \forall con x := u una **meta-variable** fresca.

$$(p(\mathrm{u}) o q(\mathrm{u})) \wedge p(k) \wedge \neg q(k)$$

Re-convertimos a DNF

$$(\neg p(\mathbf{u}) \land p(k) \land \neg q(k)) \lor (q(\mathbf{u}) \land p(k) \land \neg q(k))$$

Sefutamos cada cláusula (unificando).

Supongamos que tenemos que resolver siguiente implicación

$$\left(\left(\forall x. (p(x) \to q(x)) \right) \land p(k) \right) \to q(k)
\equiv \neg \left[\left(\left(\forall x. (p(x) \to q(x)) \right) \land p(k) \right) \to q(k) \right]$$

② Convertimos a DNF (∀ es opaco)

$$(\forall x.(p(x) \to q(x))) \land p(k) \land \neg q(k)$$

3 No es refutable. E \forall con x := u una **meta-variable** fresca.

$$(p(\mathrm{u}) \to q(\mathrm{u})) \wedge p(k) \wedge \neg q(k)$$

Re-convertimos a DNF

$$(\neg p(\mathbf{u}) \land p(k) \land \neg q(k)) \lor (q(\mathbf{u}) \land p(k) \land \neg q(k))$$

- Sefutamos cada cláusula (unificando).
 - $\neg p(\mathbf{u}) \land p(k) \land \neg q(k)$ tenemos $p(\mathbf{u}) \doteq p(k)$ con $\{\mathbf{u} := k\}$

Supongamos que tenemos que resolver siguiente implicación

$$\left(\left(\forall x. (p(x) \to q(x)) \right) \land p(k) \right) \to q(k)
\equiv \neg \left[\left(\left(\forall x. (p(x) \to q(x)) \right) \land p(k) \right) \to q(k) \right]$$

② Convertimos a DNF (∀ es opaco)

$$(\forall x.(p(x) \to q(x))) \land p(k) \land \neg q(k)$$

3 No es refutable. E \forall con x := u una **meta-variable** fresca.

$$(p(\mathrm{u}) o q(\mathrm{u})) \wedge p(k) \wedge \neg q(k)$$

Re-convertimos a DNF

$$(\neg p(\mathbf{u}) \land p(k) \land \neg q(k)) \lor (q(\mathbf{u}) \land p(k) \land \neg q(k))$$

- Sefutamos cada cláusula (unificando).
 - $\neg p(\mathbf{u}) \land p(k) \land \neg q(k)$ tenemos $p(\mathbf{u}) \doteq p(k)$ con $\{\mathbf{u} := k\}$
 - $q(\mathbf{u}) \wedge p(k) \wedge \neg q(k)$ tenemos $q(\mathbf{u}) \doteq q(k)$ con $\{\mathbf{u} := k\}$

Alcance y limitaciones del by

- Completo para lógica proposicional y heurístico para primer orden.
- Esto es aceptable, la validez de LPO es indecidible (Teorema de Church).
- ¿Por qué heurístico? Elimina los ∀ consecutivos de a lo sumo una hipótesis (Pero le falta aún más)

Alcance y limitaciones del by

- Completo para lógica proposicional y heurístico para primer orden.
- Esto es aceptable, la validez de LPO es indecidible (Teorema de Church).
- ¿Por qué heurístico? Elimina los ∀ consecutivos de a lo sumo una hipótesis (Pero le falta aún más)

Ejemplo de falla en eliminación

```
axiom ax1: forall X . p(X) -> q(X)
axiom ax2: forall X . p(X)
theorem t: q(a)
proof
thus q(a) by ax1, ax2
end
```

Si la tesis es una conjunción, se puede probar un subconjunto de ella y se reduce el resto.

Descarga

```
axiom "a": a
   axiom "b": b
   axiom "c": c
   axiom "d": d
   axiom "e": e
   theorem "and discharge":
      (a & b) & ((c & d) & e)
   proof
      thus a & e by "a", "e"
     thus d by "d"
10
      thus b & c by "b", "c"
11
   end
12
```

Problema:

$$\frac{\Gamma \vdash A \qquad \Gamma \vdash B}{\Gamma \vdash A \land B} \mid \land$$

Si la tesis es una conjunción, se puede probar un subconjunto de ella y se reduce el resto.

Descarga

```
axiom "a": a
   axiom "b": b
   axiom "c": c
   axiom "d": d
   axiom "e": e
   theorem "and discharge":
       (a & b) & ((c & d) & e)
   proof
      thus a & e by "a", "e"
      thus d by "d"
10
      thus b & c by "b", "c"
11
12
   end
```

 Reordena la conjunción (tratando como conjunto).

$$(a \wedge e) \wedge (b \wedge c \wedge d)$$

Si la tesis es una conjunción, se puede probar un subconjunto de ella y se reduce el resto.

Descarga

```
axiom "a": a
   axiom "b": b
   axiom "c": c
   axiom "d": d
   axiom "e": e
   theorem "and discharge":
       (a & b) & ((c & d) & e)
   proof
      thus a & e by "a", "e"
      thus d by "d"
10
      thus b & c by "b", "c"
11
12
   end
```

 Reordena la conjunción (tratando como conjunto).

$$(a \wedge e) \wedge (b \wedge c \wedge d)$$

 Demuestra la equivalencia con equivalently (por abajo, mismo solver que el by)

$$(a \wedge e) \wedge (b \wedge c \wedge d)$$
$$\rightarrow (a \wedge b) \wedge ((c \wedge d) \wedge e)$$

Si la tesis es una conjunción, se puede probar un subconjunto de ella y se reduce el resto.

Descarga

```
axiom "a": a
   axiom "b": b
   axiom "c": c
   axiom "d": d
   axiom "e": e
   theorem "and discharge":
       (a & b) & ((c & d) & e)
   proof
      thus a & e by "a", "e"
      thus d by "d"
10
      thus b & c by "b", "c"
11
12
   end
```

 Reordena la conjunción (tratando como conjunto).

$$(a \wedge e) \wedge (b \wedge c \wedge d)$$

 Demuestra la equivalencia con equivalently (por abajo, mismo solver que el by)

$$(a \wedge e) \wedge (b \wedge c \wedge d)$$
$$\rightarrow (a \wedge b) \wedge ((c \wedge d) \wedge e)$$

 by es completo para proposicional ⇒ resuelve asociatividad, conmutatividad e idempotencia (repetidos)

Extracción de testigos

Extracción simple

Extracción simple

```
axiom ax: es_bajo(juan)
theorem t: exists Alguien . es_bajo(Alguien)
proof
take Alguien := juan
thus es_bajo(juan) by "ax"
end
```

Extracción indirecta con instanciación

```
axiom padre_es_padre: forall A. es_padre(A, padre(A))
theorem todos_tienen_padre: forall Q. exists P. es_padre(Q, P)

proof

let Q
take P := padre(Q)
thus es_padre(Q, padre(Q)) by "padre_es_padre"
end
```

Extracción indirecta con instanciación

```
axiom padre_es_padre: forall A. es_padre(A, padre(A))
   theorem todos_tienen_padre: forall Q. exists P. es_padre(Q, P)
2
   proof
      let 0
4
      take P := padre(Q)
      thus es_padre(Q, padre(Q)) by "padre_es_padre"
   end
7
8
   axiom def abuelo: forall P. forall O. forall R.
9
      (es_padre(P, Q) \& es_padre(Q, R)) <-> es_abuelo(P, R)
10
   theorem todos_tienen_abuelo: forall A. exists B. es_abuelo(A, B)
11
```

Extracción indirecta con instanciación

```
axiom padre_es_padre: forall A. es_padre(A, padre(A))
1
   theorem todos_tienen_padre: forall Q. exists P. es_padre(Q, P)
2
   proof
3
      let 0
4
      take P := padre(Q)
5
      thus es_padre(Q, padre(Q)) by "padre_es_padre"
6
   end
7
8
   axiom def abuelo: forall P. forall O. forall R.
9
       (es_padre(P, Q) \& es_padre(Q, R)) <-> es_abuelo(P, R)
10
   theorem todos_tienen_abuelo: forall A. exists B. es_abuelo(A, B)
11
   proof
12
      let A
13
      consider X st "h1": es_padre(A, X) by "todos_tienen_padre"
14
      consider Y st "h2": es_padre(X, Y) by "todos_tienen_padre"
15
      take B := Y
16
      thus es_abuelo(A, Y) by "h1", "h2", "def_abuelo"
17
   end
18
```

Extracción indirecta

```
Para extraer de
 theorem todos_tienen_abuelo: forall A. exists B. es_abuelo(A, B)
Usando ppa,
$ ppa extract parientes.ppa \
    --theorem todos_tienen_abuelo \
    --terms nacho
Running program... OK!
Translating... OK!
Checking translated... OK!
Extracted witness: padre(padre(nacho))
of formula: es_abuelo(nacho, padre(padre(nacho)))
```

Extracción por el absurdo

Extracción por el absurdo 1 axiom juanEsBajo: bajo(juan) 2 theorem noTodoElMundoEsAlto: ~forall X. ~bajo(X) 3 proof 4 suppose "todosSonAltos": forall X. ~bajo(X) 5 thus false by "juanEsBajo", "todosSonAltos" end 7 8 theorem hayAlguienBajo: exists X. bajo(X) 9

Extracción por el absurdo

Extracción por el absurdo

```
axiom juanEsBajo: bajo(juan)

theorem noTodoElMundoEsAlto: ~forall X. ~bajo(X)

proof
suppose "todosSonAltos": forall X. ~bajo(X)
thus false by "juanEsBajo", "todosSonAltos"
end

theorem hayAlguienBajo: exists X. bajo(X)
```

- En general $\neg \forall x. \neg \varphi \equiv \exists x. \varphi$.
- Sin take (I∃) explícito, igual podemos extraer el testigo a partir del theorem hayAlguienBajo: juan.

Extracción por el absurdo

Extracción por el absurdo

```
axiom juanEsBajo: bajo(juan)

theorem noTodoElMundoEsAlto: ~forall X. ~bajo(X)

proof
suppose "todosSonAltos": forall X. ~bajo(X)

thus false by "juanEsBajo", "todosSonAltos"

end

theorem hayAlguienBajo: exists X. bajo(X)
```

- En general $\neg \forall x. \neg \varphi \equiv \exists x. \varphi$.
- Sin take (I∃) explícito, igual podemos extraer el testigo a partir del theorem hayAlguienBajo: juan.
- La implementación no es tan directa como buscar un l∃ en el árbol de la demostración.

Lógica clásica

 Buscamos un mecanismo general que nos permita extraer testigos a partir de demostraciones en deducción natural clásica

Lógica clásica

- Buscamos un mecanismo general que nos permita extraer testigos a partir de demostraciones en deducción natural clásica
- Pero la lógica clásica no es constructiva, por LEM:

$$\Gamma \vdash A \lor \neg A$$
 LEM

Ejemplo (Fórmula sin demostración constructiva)

Sea C algo indecidible (tipo HALT), queremos ver que vale

$$\exists y.(y=1 \land \textcolor{red}{C}) \lor (y=0 \land \neg \textcolor{red}{C})$$

Ejemplo (Fórmula sin demostración constructiva)

Sea C algo indecidible (tipo HALT), queremos ver que vale

$$\exists y.(y=1 \land \textcolor{red}{C}) \lor (y=0 \land \neg \textcolor{red}{C})$$

podemos demostrarlo razonando por casos con LEM de $C \vee \neg C$

- Supongamos que vale C. Tomo y = 1.
- Supongamos que vale $\neg C$. Tomo y = 0.

Ejemplo (Fórmula sin demostración constructiva)

Sea C algo indecidible (tipo HALT), queremos ver que vale

$$\exists y.(y=1 \land \textcolor{red}{C}) \lor (y=0 \land \neg \textcolor{red}{C})$$

podemos demostrarlo razonando por casos con LEM de $C \vee \neg C$

- Supongamos que vale C. Tomo y = 1.
- Supongamos que vale $\neg C$. Tomo y = 0.

¡No nos dice explícitamente si y = 1 o y = 0! No es constructiva.

Ejemplo (Fórmula sin demostración constructiva)

Sea C algo indecidible (tipo HALT), queremos ver que vale

$$\exists y.(y=1 \land \textcolor{red}{C}) \lor (y=0 \land \neg \textcolor{red}{C})$$

podemos demostrarlo razonando por casos con LEM de $C \vee \neg C$

- Supongamos que vale C. Tomo y = 1.
- Supongamos que vale $\neg C$. Tomo y = 0.

¡No nos dice explícitamente si y = 1 o y = 0! No es constructiva.

¿Entonces por qué lógica clásica?

- Permite razonar por el absurdo, con $E \neg \neg \equiv LEM$.
- Existen fórmulas que admiten solo demostraciones no constructivas (i.e. clásicas) Ejemplo: $\neg(A \land B) \to \neg A \lor B$ solo es válido en lógica clásica.

Lógica intuicionista

lógica intuicionista = lógica clásica - LEM

Características:

 $^{^3\}text{Ni}$ principios de razonamiento equivalentes, como E $\neg\neg$

Lógica intuicionista

lógica intuicionista = lógica clásica — LEM

Características:

• No tiene LEM³, entonces siempre es constructiva.

 $^{^3\}text{Ni}$ principios de razonamiento equivalentes, como E $\neg\neg$

Lógica intuicionista

lógica intuicionista = lógica clásica - LEM

Características:

- No tiene LEM³, entonces siempre es constructiva.
- Siempre permite hacer extracción de testigos: proceso de normalización con forma normal buena, una demostración de un ∃ debería comenzar con l∃ y de ahí sacás el testigo.

$$\frac{\Gamma \vdash A\{x := t\}}{\Gamma \vdash \exists x . A} \, \mathsf{I} \exists$$

 $^{^3\}text{Ni}$ principios de razonamiento equivalentes, como E $\neg\neg$

Estrategia de extracción indirecta

Normalización

Motivación: evitar "desvíos superfluos".

Ejemplo

Motivación: evitar "desvíos superfluos".

Ejemplo

$$\frac{\overline{\Gamma \vdash A} \overset{\mathsf{Ax}_{h_1}}{\Gamma \vdash B} \overset{\mathsf{\Gamma} \vdash B}{\mathsf{Ax}_{h_2}}}{\frac{\Gamma \vdash A, h_2 : B \vdash A \land B}{h_1 : A, h_2 : B \vdash A}} \overset{\mathsf{I} \land}{\mathsf{E} \land \mathsf{1}} \qquad \rightsquigarrow \qquad \overline{h_1 : A, h_2 : B \vdash A} \overset{\mathsf{Ax}_{h_1}}{\mathsf{Ax}_{h_1}}$$

Motivación: evitar "desvíos superfluos".

Ejemplo

$$\frac{\overline{\Gamma \vdash A} \overset{\mathsf{Ax}_{h_1}}{\overline{\Gamma \vdash B}} \overset{\mathsf{T} \vdash B}{\mathsf{Ax}_{h_2}}}{\underbrace{\frac{\Gamma \vdash A, h_2 : B \vdash A \land B}{h_1 : A, h_2 : B \vdash A}}} \overset{\mathsf{I} \land}{\mathsf{E} \land_1} \quad \rightsquigarrow \quad \overline{h_1 : A, h_2 : B \vdash A} \overset{\mathsf{Ax}_{h_1}}{\mathsf{Ax}_{h_2}}$$

Definición (Reducción de conjunción)

$$\frac{\begin{array}{ccc}
\Pi_1 & \Pi_2 \\
\Gamma \vdash A_1 & \Gamma \vdash A_2 \\
\hline
\frac{\Gamma \vdash A_1 \land A_2}{\Gamma \vdash A_i} & E \land_i
\end{array}}
 \longrightarrow
\frac{\Pi_i}{\Gamma \vdash A_i}$$

Motivación: evitar "desvíos superfluos".

Ejemplo

$$\frac{\overline{\Gamma \vdash A} \stackrel{\mathsf{Ax}_{h_1}}{\overline{\Gamma \vdash B}} \stackrel{\mathsf{Ax}_{h_2}}{\mathsf{I}_{\wedge}}}{\underline{\Gamma \vdash h_1 : A, h_2 : B \vdash A \land B}} \stackrel{\mathsf{I}_{\wedge}}{\mathsf{E}_{\wedge}} \qquad \rightsquigarrow \qquad \overline{h_1 : A, h_2 : B \vdash A} \stackrel{\mathsf{Ax}_{h_1}}{\overline{h_1 : A, h_2 : B \vdash A}} \mathsf{Ax}_{h_1}$$

Definición (Reducción de conjunción)

$$\frac{\begin{array}{ccc} \Pi_1 & \Pi_2 \\ \frac{\Gamma \vdash A_1 & \Gamma \vdash A_2}{\Gamma \vdash A_i \land A_2} & I \land & \leadsto & \prod_i \\ \frac{\Gamma \vdash A_1 \land A_2}{\Gamma \vdash A_i} & E \land_i & & & \end{array}}$$

Idea: Simplificarlos sucesivamente hasta que no haya más y esté en **forma** normal. $_{41/56}$

Normalización de implicación

Definición (Normalización de implicación)

$$\frac{\Gamma, h : A \vdash B}{\Gamma \vdash A \to B} \stackrel{}{\vdash \vdash_{A}} \stackrel{}{\vdash_{A}} \stackrel$$

• Primer idea: $\Pi_B \rhd \Gamma \vdash B$

Normalización de implicación

Definición (Normalización de implicación)

- Primer idea: ∏_B F F B
- Π_B requiere h: A, agregada por $I \rightarrow_h$
- Correcto: usar Π_B , pero *sustituyendo* todas las ocurrencias de la hipótesis h por la demostración Π_A (sin capturas).

Normalización de implicación

Definición (Normalización de implicación)

- Primer idea: ∏_B F F B
- Π_B requiere h: A, agregada por $I \rightarrow_h$
- Correcto: usar Π_B , pero *sustituyendo* todas las ocurrencias de la hipótesis h por la demostración Π_A (sin capturas).

Definición (Otras reglas)

Además, hay reglas para simplificar

- E∃ con I∃, E∀ con I∀.
- E \neg con I \neg , E \lor con I \lor .

Algoritmo de reducción

- Algoritmo: Reducir sucesivamente hasta que sea irreducible.
- Estrategias de reducción: en un paso o muchos pasos.
- *Gross-Knuth*: reduce en muchos pasos todos los sub-términos posibles al mismo tiempo.

En un solo paso,

$$\Pi_A$$
 Π_B \vdots Π

Algoritmo de reducción

- Algoritmo: Reducir sucesivamente hasta que sea irreducible.
- Estrategias de reducción: en un paso o muchos pasos.
- *Gross-Knuth*: reduce en muchos pasos todos los sub-términos posibles al mismo tiempo.

En un solo paso,

$$\Pi_A$$
 Π_B Π_A^* Π_B^* Π_A^* Π_B^* Π_A^* Π_A^*

Traducción de Friedman

Traducción de doble negación

- Queremos embeber lógica clásica a intuicionista (no son equivalentes)
- Traducción de doble negación: método general.
- Intuición: "agregar una doble negación a todo".
- En clásica son equivalentes (E $\neg \neg \equiv LEM$) pero en intuicionista es más débil.

Traducción de doble negación

- Queremos embeber lógica clásica a intuicionista (no son equivalentes)
- Traducción de doble negación: método general.
- Intuición: "agregar una doble negación a todo".
- En clásica son equivalentes (E $\neg\neg$ \equiv LEM) pero en intuicionista es más débil.

Teorema

$$\begin{array}{ccc}
\Pi & & \Pi^{N} \\
\Gamma \vdash_{C} A & & \Gamma^{N} \vdash_{I} A^{N}
\end{array}$$

Traducción de doble negación

- Queremos embeber lógica clásica a intuicionista (no son equivalentes)
- Traducción de doble negación: método general.
- Intuición: "agregar una doble negación a todo".
- En clásica son equivalentes (E $\neg \neg \equiv LEM$) pero en intuicionista es más débil.

Teorema

$$\begin{array}{ccc}
\Pi & & \Pi^{N} \\
\Gamma \vdash_{C} A & & \Gamma^{N} \vdash_{I} A^{N}
\end{array}$$

Problema: Necesitamos la misma fórmula

$$(\exists x.A)^{\mathsf{N}} = \neg \forall x.\neg\neg\neg A$$

El truco de Friedman

Teorema (Traducción de Friedman)

Sea φ una fórmula **conjuntiva** y todas las fórmulas de Γ sean **F-fórmulas**. Si tenemos

$$\Pi \rhd \Gamma \vdash_{\mathbf{C}} \forall y_1 \ldots \forall y_n . \exists x. \varphi(x, y_1, \ldots, y_n),$$

Podemos generar una nueva demostración Σ tal que

$$\Sigma \rhd \Gamma \vdash_{I} \forall y_{1} \ldots \forall y_{n} \exists x . \varphi(x, y_{1}, \ldots, y_{n}).$$

Se demuestra en deducción natural (para reducir).

Traducción de doble negación relativizada

Definición (Negación relativizada)

Podemos ver a $\neg A \equiv A \rightarrow \bot$. Definimos $\neg_R A \equiv A \rightarrow R$

Definición (Traducción de doble negación relativizada)

$$\bot^{\neg \neg} = R$$

$$A^{\neg \neg} = \neg_R \neg_R A \quad \text{con } A \text{ atómica}$$

$$(\neg A)^{\neg \neg} = \neg_R A^{\neg \neg}$$

$$(A \land B)^{\neg \neg} = A^{\neg \neg} \land B^{\neg \neg}$$

$$(A \lor B)^{\neg \neg} = \neg_R (\neg_R A^{\neg \neg} \land \neg_R B^{\neg \neg})$$

$$(A \to B)^{\neg \neg} = A^{\neg \neg} \to B^{\neg \neg}$$

$$(\forall x.A)^{\neg \neg} = \forall x.A^{\neg \neg}$$

$$(\exists x.A)^{\neg \neg} = \neg_R \forall x. \neg_R A^{\neg \neg}$$

Funcionamiento de traducción de Friedman

Partiendo de

$$\Pi \rhd \Gamma \vdash_{\mathcal{C}} \psi$$

Queremos demostrar la misma fórmula en intuicionista. Pasos:

Funcionamiento de traducción de Friedman

Partiendo de

$$\sqcap \rhd \Gamma \vdash_{\mathcal{C}} \psi$$

Queremos demostrar la misma fórmula en intuicionista. Pasos:

① Aplicar traducción de doble negación relativizada (recursivamente a fórmula y demostración) tomando " $R=\psi$ ".

$$\Pi^{\neg \neg} \rhd \Gamma^{\neg \neg} \vdash_{I} \psi^{\neg \neg}.$$

Funcionamiento de traducción de Friedman

Partiendo de

$$\Pi \rhd \Gamma \vdash_{\mathcal{C}} \psi$$

Queremos demostrar la misma fórmula en intuicionista. Pasos:

• Aplicar traducción de doble negación relativizada (recursivamente a fórmula y demostración) tomando " $R=\psi$ ".

$$\Pi^{\neg\neg} \rhd \Gamma^{\neg\neg} \vdash_{I} \psi^{\neg\neg}.$$

② Usarla para demostrar la fórmula original. Restricción: ψ debe ser Π_2 con φ conjuntiva.

$$\Sigma \rhd \sqcap \forall y_1 \ldots \forall y_n \exists x. \varphi(x, y_1, \ldots, y_n).$$

Funcionamiento de traducción de Friedman

Partiendo de

$$\Pi \rhd \Gamma \vdash_{\mathcal{C}} \psi$$

Queremos demostrar la misma fórmula en intuicionista. Pasos:

• Aplicar traducción de doble negación relativizada (recursivamente a fórmula y demostración) tomando " $R=\psi$ ".

$$\Pi^{\neg \neg} \triangleright \Gamma^{\neg \neg} \vdash_{I} \psi^{\neg \neg}$$
.

2 Usarla para demostrar la fórmula original. **Restricción**: ψ debe ser Π_2 con φ **conjuntiva**.

$$\Sigma \rhd \sqcap \forall y_1 \ldots \forall y_n \exists x. \varphi(x, y_1, \ldots, y_n).$$

1 Mantener el contexto (reemplazando Ax por $A \vdash_I A \urcorner \urcorner$) Restricción: Axiomas (Γ) deben ser **F-fórmulas**.

$$\Sigma \rhd \Gamma \vdash_I \forall y_1 \ldots \forall y_n \exists x. \varphi(x, y_1, \ldots, y_n). \quad \Box$$

Tipos de fórmulas

Definición (Gramática de fórmulas)

(atómicas)
$$A ::= \bot \mid \top \mid p(t_1, \ldots, t_n)$$

(F-fórmulas) $F ::= A$
 $\mid F \land F \mid F \lor F$
 $\mid \forall x.F \mid \exists x.F$
 $\mid C \rightarrow F \mid \neg C$
(conjuntivas) $C ::= A \mid C \land C$

Lema

Sea F una F-fórmula. Vale $F \vdash_I F \lnot \lnot$.

Lema

Sea C una fórmula conjuntiva. Vale $\neg_R C \vdash_I \neg_R C \neg \neg$.

Detalles de implementación

La herramienta ppa

Haskell, 19 módulos con 330 tests

Parser y lexer

Conclusiones

• Diseñamos e implementamos ppa: un asistente de demostración, junto con el lenguaje PPA.

- Diseñamos e implementamos ppa: un asistente de demostración, junto con el lenguaje PPA.
- Los programas se **certifican** generando demostraciones en *deducción natural*.

- Diseñamos e implementamos ppa: un asistente de demostración, junto con el lenguaje PPA.
- Los programas se **certifican** generando demostraciones en *deducción natural*.
- Mecanismo heurístico de demostración automática: by.
 Extensión: Hacerlo recursivo permitiendo eliminar los universales de más de una hipótesis.

- Diseñamos e implementamos ppa: un asistente de demostración, junto con el lenguaje PPA.
- Los programas se **certifican** generando demostraciones en *deducción natural*.
- Mecanismo heurístico de demostración automática: by.
 Extensión: Hacerlo recursivo permitiendo eliminar los universales de más de una hipótesis.
- Otras mejoras

- Diseñamos e implementamos ppa: un asistente de demostración, junto con el lenguaje PPA.
- Los programas se **certifican** generando demostraciones en *deducción natural*.
- Mecanismo heurístico de demostración automática: by.
 Extensión: Hacerlo recursivo permitiendo eliminar los universales de más de una hipótesis.
- Otras mejoras
 - Permitir importar archivos, implementar biblioteca estándar.

- Diseñamos e implementamos ppa: un asistente de demostración, junto con el lenguaje PPA.
- Los programas se **certifican** generando demostraciones en *deducción natural*.
- Mecanismo heurístico de demostración automática: by.
 Extensión: Hacerlo recursivo permitiendo eliminar los universales de más de una hipótesis.
- Otras mejoras
 - Permitir importar archivos, implementar biblioteca estándar.
 - Extender PPA con tipos (usando LPO many-sorted con géneros).

- Diseñamos e implementamos ppa: un asistente de demostración, junto con el lenguaje PPA.
- Los programas se **certifican** generando demostraciones en *deducción natural*.
- Mecanismo heurístico de demostración automática: by.
 Extensión: Hacerlo recursivo permitiendo eliminar los universales de más de una hipótesis.
- Otras mejoras
 - Permitir importar archivos, implementar biblioteca estándar.
 - Extender PPA con tipos (usando LPO many-sorted con géneros).
 - Modelar de forma nativa inducción (segundo orden) e igualdad.

- Diseñamos e implementamos ppa: un asistente de demostración, junto con el lenguaje PPA.
- Los programas se **certifican** generando demostraciones en *deducción natural*.
- Mecanismo heurístico de demostración automática: by.
 Extensión: Hacerlo recursivo permitiendo eliminar los universales de más de una hipótesis.
- Otras mejoras
 - Permitir importar archivos, implementar biblioteca estándar.
 - Extender PPA con tipos (usando LPO many-sorted con géneros).
 - Modelar de forma nativa inducción (segundo orden) e igualdad.
 - Mejorar reporte de errores (muy bajo nivel).

Implementamos un mecanismo de extracción de testigos: composición de traducción de Friedman y reducción de ND intuicionista.

Implementamos un mecanismo de extracción de testigos: composición de traducción de Friedman y reducción de ND intuicionista.

Traducción

- Extensión: A más de un ∃.
- **Limitación**: Refinar la definición de fórmulas conjuntivas y explorar aparente vínculo con *fórmulas de Harrop*.

Implementamos un mecanismo de extracción de testigos: composición de traducción de Friedman y reducción de ND intuicionista.

Traducción

- Extensión: A más de un ∃.
- Limitación: Refinar la definición de fórmulas conjuntivas y explorar aparente vínculo con fórmulas de Harrop.

Reducción

Solo contempla introducciones y eliminaciones del mismo conectivo.

Implementamos un mecanismo de extracción de testigos: composición de traducción de Friedman y reducción de ND intuicionista.

Traducción

- Extensión: A más de un ∃.
- Limitación: Refinar la definición de fórmulas conjuntivas y explorar aparente vínculo con fórmulas de Harrop.

Reducción

- Solo contempla introducciones y eliminaciones del mismo conectivo.
- **Incompleta**: no contempla *reducciones permutativas* (mezclando introducciones y eliminaciones de conectivos distintos).
 - Hay algunas demostraciones que no se van a poder reducir a una forma normal útil. Ej: cases (E∨).
 - *Mejora*: Implementarlas.

Implementamos un mecanismo de extracción de testigos: composición de traducción de Friedman y reducción de ND intuicionista.

Traducción

- Extensión: A más de un ∃.
- Limitación: Refinar la definición de fórmulas conjuntivas y explorar aparente vínculo con fórmulas de Harrop.

Reducción

- Solo contempla introducciones y eliminaciones del mismo conectivo.
- **Incompleta**: no contempla *reducciones permutativas* (mezclando introducciones y eliminaciones de conectivos distintos).
 - Hay algunas demostraciones que no se van a poder reducir a una forma normal útil. Ej: cases (E∨).
 - Mejora: Implementarlas.
- Ineficiente: en cada paso reinicia la búsqueda de todos los focos de evaluación.
 - Mejora: Usar una máquina abstracta.

¡Gracias!

github.com/mnPanic/tesis