Cours N°C2 : Suivi temporel d'une transformation chimique – vitesse de réaction

<u>Introduction</u>: La surveillance en continu des réactions chimiques est indispensable pour assurer la sécurité de l'installation et la qualité des produits obtenus.

- Comment assurer le contrôle d'une réaction chimique ?
- Comment définir la vitesse d'une réaction chimique ?

I. Techniques du suivi temporel d'une transformation chimique :

Pour suivre temporellement l'évolution d'une transformation chimique on doit connaître sa composition à chaque instant. Il existe plusieurs méthodes qui permettent de suivre l'évolution d'une transformation parmi lesquelles il y'a :

- Les méthodes physiques : la conductimétrie La pH-métrie La mesure de la pression –La mesure du volume ..
- Les méthodes chimiques : sont basées sur le dosage.

La cinétique chimique vise à suivre l'évolution de la transformation chimique, en particulier à déterminer et tracer la variation de l'avancement en fonction de temps x = f(t).

II. La vitesse volumique d'une réaction :

1. Définition :

La vitesse volumique d'une réaction correspond à la quantité de matière formée ou disparue par unité de temps et de volume, tel que :

• • • • •	

r	\boldsymbol{v} :			٠.		٠.																		٠.			٠.					٠.										٠.				
l	\mathbf{V} :																																													.;
٠.																																														
l	$\frac{d\mathbf{x}}{d\mathbf{t}}$	•	• •	• •	• •	• •	• •	• •	• •	•	• •	• •	• •	• •	• •	•	• •	• •	• •	• •	• •	• •	•	•	• •	• •	•	• •	• •	• •	•	•	•	• •	• •	• •	• •	• •	•	• •	• •	•	• •	• •	• •	••

Remarque: La vitesse de réaction est alors exprimée en (mol.L⁻¹.min⁻¹) ou en (mol.L⁻¹.s⁻¹)

2. Détermination de la vitesse volumique de réaction :

- On trace la tangente à la courbe x = f(t) à la date t_i choisie.
- On calcule la valeur du rapport dx/dt qui représente le coefficient directeur de cette tangente, et on le divise par la valeur de V (volume de la solution).

***** Application 1:

Calculer en mmol.L⁻¹min⁻¹ la vitesse volumique de la réaction à l'instant t = 4 min dans la figure ci-contre. **On donne** : le volume de la solution est : V = 100 mL

Réponse :

3. Evolution de la vitesse de réaction au cours du temps :

Observation	:				
Interprétation					
	le demi-réaction	itesse de réaction ne din	ninue pas, Exemple	: Dans les réactions ex	xothermiques;
Remarque : Da	ns le cas d'une réaction	on totale : on a :;			

2. Détermination du temps de demi-réaction :

On le détermine graphiquement à partir de la courbe des variations de l'avancement x = f(t):

.....

- On détermine la valeur de l'avancement final x_{max} par le traçage d'une asymptote horizontale à la courbe.

- On détermine $\frac{xmax}{2}$ sur la courbe.
- On détermine le point d'intersection de la ligne horizontale de l'ordonnée $\frac{x_{max}}{2}$ avec la courbe.
- L'abscisse du point d'intersection représente le temps de demi-réaction $t_{1/2}$

Application 2: _Déterminer le temps de demi-réaction dans la figure ci-contre.

Remarques:

- Pendant le suivi temporel de la transformation, la durée entre chaque mesure doit être beaucoup plus courte que le temps de demi-réaction $t_{1/2}$ pour garantir l'intégrité de l'étude.
- Le temps de demi-réaction permet d'estimer le temps nécessaire à la fin de la transformation chimique étudiée (environ $t_f = 10 t_{1/2}$).

IV. Facteurs influant sur la vitesse volumique de réaction :

1. La température :

Une augmentation de la température $(\theta_1 > \theta_2)$ a pour effet d'augmenter la vitesse de la réaction $(v_1 > v_2)$, sans changer la valeur de l'avancement final x_f .

2. la concentration initiale des réactifs :

Une augmentation de la concentration initiale des réactifs ($[I^-]_1 > [I^-]_2$) a pour effet d'augmenter la vitesse de la réaction($v_1 > v_2$), sans changer la valeur de l'avancement final x_f .

3. Interprétation microscopique :

On considère deux entités A_2 et B_2 , les multiples chocs entre ces entités sont à l'origine de leur transformation en molécule AB:

Pour qu'un choc soit efficace, c'est-à-dire pour qu'il a apparition de molécule A-B, il faut casser la liaison A-A et la liaison B-B pour former la liaison A-B. la cassure des liaisons nécessite un apport d'énergie.

choc efficace

V. Suivi de l'évolution temporelle d'une transformation chimique :

1. Suivi de l'évolution temporelle d'une transformation chimique par le dosage :

A l'instant t = 0 s, on mélange dans un erlenmeyer un volume $V_1 = 50,0 \text{mL}$ d'eau oxygénée H_2O_2 (solution aqueuse de peroxyde d'hydrogène), de concentration $C_1 = 0,056.\text{mol.L}^{-1}$, avec un volume $V_2 = 50,0 \text{mL}$ de solution aqueuse d'iodure de potassium $(K^+_{(aq)} + I^-_{(aq)})$, de concentration en soluté apporté $C \neq 0,20 \text{ mol.L}^{-1}$, ainsi que 1 mL d'acide sulfurique de concentration $[H^+_{(aq)}] = 3,0 \text{ mol.L}^{-1}$. On répartit le mélange réactionnel dans 10 béchers, à raison d'un volume V = 10,0 mL par bécher.

1-1	Eci	rir	e l	'éq	Ju	ati	or	ı b	ila	ın	d	e l	a	ré	ac	cti	0 K	ı é	tu	ıdi	ié	()	l),	, <i>S</i>	ac	ch	ai	nt	\boldsymbol{q}	ue	e	les	s c	co	ир	le	S	m	ise	e e	n j	ieı	ı e	st	: I	2/	I -	;H	2() ₂ /	Ή	2 O	•				
•••		•••			•••	•••		•••	••				••	• • •	••				••	•••	••		••			٠.	••	•••			••		•••					•••		••											•••	•••		•••	•••	•••	
	• • •					•••									• •								••			٠.	••				••		• • •																• • •	• • •							

A l'instant de date t=60s, on ajoute rapidement de l'eau glacée dans le premier bécher et on dose le **diiode formé** à l'aide d'une **solution aqueuse de thiosulfate de potassium** $(2K^+ + S_2O_3^{2-})$ de concentration en soluté apporté C=0,04 mol.L⁻¹ en présence de quelques gouttes d'empois d'amidon (qui colore en bleu une solution contenant du diiode).

Soit V_E le volume de thiosulfate versé pour atteindre l'équivalence. On renouvelle l'opération successivement sur le deuxième puis sur le troisième bécher, etc. les résultats est donné au tableau ci-dessous

t(s)	0	60	160	270	360	510	720	900	1080	1440	1800
$V_E(mL)$	0	2,2	4,8	6,5	7,5	9,0	10,5	11,6	12,3	13,5	14,0

	$v_{\rm E}({ m mL})$	U	2,2	4,8	6,5	7,5	9,0	10,5	11,0	12,3	13,3	14,0
2-I	a transform	ation n	nise en j	eu dans le	titrage e	st rapide,	totale, Ec	rire son éq	quation. (1	ransforma	tion (2) d	de
teci	hnique on de	onne l	es coupl	$es S_4O_6^2/S$	${}^{2}O_{3}^{2}$ et I	2/ I -						
	<u>.</u>											
••••										•• ••• •••		
••••												••••••
2- i	Pourquoi ajo	ute-t-c	on de l'e	au glacée r	apideme	nt à l'ins	tant t dan	s chaque b	écher ?			
• • • •												
3- .	A partir de l'o	équatio	on de la i	réaction de	titrage (2	2), écrire	la relation	donnant la	quantité	de matière	de diiode	$n'(I_2)$
	apparu dans	chaqu	e bécher	à l'instant	t en fon	ction de l	a concentr	ation de ré	actif titrai	ıt C et du v	olume ve	rsé à
	l'équivalence	V_F , pi	iis en dé	duire la qu	antité de l	matière d	e diiode n(I ₂) apparu	dans le me	élange réac	tionnel à	l'instant t
				· · · · · · · · · · · · · · · · · · ·								
••••	• • • • • • • • • • • • • • • • • • • •			• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •	••••••				••••••
								• • • • • • • • • • • • • • • • • • • •				

Etat initial Etat intermédiaire Etat final Préciser la relation entre	ncement $x = 0$ x x_{max} $l'avancement$	ent de la réa		Qua		natière (m			
Etat intermédiaire Etat final Préciser la relation entre	x x _{max}								
Etat finalPréciser la relation entre	x _{max}	ont do la róa							
Préciser la relation entre		ent de la réa							
Préciser la relation entre complété le tableau	l'avanceme	ont do la róa							
	l'avanceme	ont do la róa							
complété le tableau		ut iu i tu	ction (1) à	ì chaque i	nstant et l	la quantite	é de matiè	re de diio	de form
			•••••						
t(s) 0 60	160	270	360	510	720	900	1080	1440	1800
<i>x(mol)</i>									
` '									
					15	/			
					0,5				
					./				

2. Suivi de l'évolution Activité 2 : Pour chlorhydrique avec le	étudier la cir	nétique de la r	éaction de l'acid	le	ure de pression	d'un gaz
constant V, la masse I l'instant t _o = 0, le volu chlorhydrique (H ₃ 0 ⁺	$\mathbf{m} = 0.5 \ \mathbf{g} \ \mathrm{de} \ \mathbf{z}$	inc en poudre Z	n _(S) et on y verse	à manomètre		gaz H ₂
On mesure à chaque ir d'un capteur de pression	istant t la pressi	on P à l'intérieu	r du ballon à l'aid	e		
	ous les gaz sont parfaits: R = ont été prises à 2 ion d'état des gatomique du zincennent sont: an de la réaction de matière init	parfaits. 8,314 (SI) 20°C. z parfaits: P.V : M(Zn) = 65,4 H ₃ O ⁺ /H ₂ ; Zn ²⁺ on étudié. ent utiliser pour	= n.R.T Ag.mol ⁻¹ . /Zn suivre l'évolution	Paj (hPa	120 180	Acide chlorhydrique
Equation de la	néaction					
Etat du système	avancement		Quanti	ité de matière (n	nol)	
Etat initial	x = 0					
Etat intermédiaire	x - 0					
Etat final	x_{max}					
5. Déterminer l'avan		al x _{max} de la réac	etion et en déduire	e le réactif limita	nt.	

7. Montrer que l'avancement de la réaction s'écrit : $x(t) = \frac{x_{max}}{P(H_2)max} P(H_2)$ 8. Trouver que à l'instant $t_{1/2}$, on a : $t_{1/2} = \frac{P(H_2)_{max}}{2}$, et en déduire la valeur $t_{1/2} = \frac{P(H_2)_{max}}{2}$	
Montrer que l'avancement de la réaction s'écrit : $x(t) = \frac{x_{max}}{P(H_2)max} P(H_2)$ Trouver que à l'instant $t_{1/2}$, on a : $t_{1/2} = \frac{P(H_2)_{max}}{2}$, et en déduire la valeur $t_{1/2} = \frac{P(H_2)_{max}}{2}$	
Trouver que à l'instant $t_{1/2}$, on a : $P(H_2) = \frac{P(H_2)_{max}}{2}$, et en déduire la valeur	
Trouver que à l'instant $t_{1/2}$, on a : $P(H_2) = \frac{P(H_2)_{max}}{2}$, et en déduire la valeur	
Trouver que à l'instant $t_{1/2}$,on a : $P(H_2) = \frac{P(H_2)_{max}}{2}$, et en déduire la valeur	
Trouver que à l'instant $t_{1/2}$,on a : $p(H_2) = \frac{P(H_2)_{max}}{2}$, et en déduire la valeur	
Trouver que à l'instant $t_{1/2}$,on a : $P(H_2) = \frac{P(H_2)_{max}}{2}$, et en déduire la valeur	
$P(\Pi_2)$	
$P(\Pi_2)$	
	de t _{1/2}
Vérifier que la vitesse volumique de la réaction à l'instant t_0 =0 est : v_0 =1,58. 10^{-3} mo	ol.L ⁻¹ .min ⁻¹ .
	•••••
0. Sachant que la vitesse volumique à l'instant $t_1 = 60$ min, est : $v_1 = 1,58$. 10^{-3} mol.L	-1 .min ⁻¹ . D'après les résulta
tenus, dans la question 9. Expliquer pourquoi la vitesse diminue au cours de la réa	action.

3. Suivi de l'évolution to Activité 3 : On se propos qui est noté RCl. Le mélant V _{RCl} = 1mL de 2 chloro-2-L'eau présente est en très l'contenant le mélange eau étalonnée. On déclenche le méthylpropane(RCl) dans différentes dates. La réaction	se d'étudier age réaction méthylprop arge excès. acétone un chronomèt le mélange	e, par conducting nel initial est repane(RCI) dans À température ne cellule conductre à l'instant o et on mesure la	nétrie, la cinétiquéalisé en versant un mélange eau 40°C, on plonguctimétrie préala ù on ajoute le 2- a conductivité σ	ue de l'hydrolyse o un volume – acétone. e dans le bécher blement chloro-2- de la solution à	lu 2-chloro-2-m	éthylpropane
équation est :				σ (mS.cm ⁻¹)	conductimètre	
La courbe ci-contre la variat fonction de temps. Données: - La masse molaire de la masse volumiqual de volume du mélo de la conductivité d'une	tion de la co RCl: M(R ue de RCl es lange est: e solution:	$egin{aligned} RCl) &= & 92,6 \ g. \ r: & oldsymbol{ ho}_{RCl} &= & 0,8 \ V &= & 50 \ mL \ \sigma(t) &= & \sum oldsymbol{\lambda}_{x_i} [x_i] \end{aligned}$	e la solution en . mol ⁻¹ . 5 g. cm ⁻³	8 6 4 7 0 0 5 10	15 20 25	30 t (min)
1. Vérifier que la quantit			_	8.10 ⁻³ mol		
2. Complétez le tableau d'a	avancemen	t suivant.				
Equation de la réac	ction					
	ncement		Quan	tité de matière (m	ol)	
Etat initial	c = 0					
Etat intermédiaire	x					
Etat final	x_{max}					
3. Déterminer l'avanceme	nt maximal	x _{may} de la réac	tion et en déduit	re le réactif limita	nt.	
4. Donner l'expression de x(t), du volume V du méla			- C			a réaction
						•••••
Prof: NIDAL NACEIR	N MRARTI	/2 BAC F	BIOF Cours-Acti	vités- Exercices /		Page 101

5. Expliquer l'augmentation de la conductivité au con	urs de temps.
6. Montrer que l'avancement de la réaction s'écrit :	$\mathbf{x}(t) = \frac{\mathbf{x} m a \mathbf{x}}{\sigma_{max}} \cdot \boldsymbol{\sigma}(t)$
	<mark>.</mark>
7. Calculer la composition de système chimique à l'ins	stant $t = 7$ min.
	<mark></mark>
8. Trouver que à l'instant $t_{1/2}$, on a : $\sigma_{t_{1/2}} = \frac{\sigma_{max}}{2}$, et en déduire la valeur de t _{1/2}
	<mark></mark>
9. Vérifier que la vitesse volumique de la réaction à l'i	instant t =10 min est : v =4,6. 10 ⁻³ mol.L ⁻¹ .min ⁻¹ .
10. En gardant les concentrations initiales des réactifs	s et on diminue la température à 20°C, Tracer sur la figure
précédente la nouvelle évolution de σ (t)=f(t).	

Série N°C2 : Suivi temporel d'une transformation chimique

Exercice 1 : La courbe ci-dessous représente les variations de l'avancement x d'une transformation chimique se produisant en solution aqueuse, en fonction du temps. Le volume V=1,0L du mélange réactionnel est constant.

- 1. Quel est l'avancement final de cette réaction ?
- **2.** Définir le temps de demi-réaction $t_{1/2}$ et le déterminer.
- **3.** Calculer v_0 la vitesse de réaction à l'instant de date $t_0 = 0$ min et v_1 celle à l'instant de date
 - $t_1 = 5 min$. Comparer v_0 et v_1 .
- **4.** Dessiner en vert l'allure de la courbe si l'évolution s'effectuait à une température plus importante. Expliquer.
 - 5. Dessiner en bleu l'allure de la courbe si l'évolution s'effectuait dans un grand volume d'eau. Expliquer.

Exercice 2: Lors de l'étude de la réaction totale des ions iodures I^- avec les ions peroxosulfates $S_2O_8^{2-}$. on a obtenu le graphe de la quantité de matière de I en fonction du temps :

L'équation de la réaction chimique est :

$$S_2O_8^{2-}_{(aq)} + 2\Gamma_{(aq)} \rightarrow 2 SO_4^{2-}_{(aq)} + I_{2(aq)}$$

- 1-Dresser le tableau d'avancement de la réaction correspond à la transformation étudiée
- **2-**Définir la vitesse d'une réaction chimique. Donner son expression en fonction de $n(I^-)$.
- **3-** Déterminer graphiquement sa valeur à la date t=0. Que peut-on dire de la valeur de la vitesse à cette date ?
- **4-** Définir le temps de demi-réaction $t_{1/2}$. Trouver sa valeur graphiquement

Donnée : Volume de mélange réactionnel Vs = 20mL

Exercice 3: On fait réagir une solution d'acide chlorhydrique sur le Zinc. L'équation bilan de la réaction est :

$$2H_{3}O^{+}{}_{(aq)} + Zn_{(s)} \rightarrow H_{2}\left(g\right) + Zn^{2+}{}_{(aq)} + 2H_{2}O_{(l)}$$

Au temps t = 0, on introduit une masse m = 0.981g de poudre de zinc dans un flacon contenant $V_A = 80mL$ d'une solution d'acide chlorhydrique de concentration molaire $C_A=0.5mol.L^{-1}$. On recueille le gaz dihydrogène formé au cours du temps et on mesure son volume V.

- 1-On donne la masse molaire de Zinc $M = 65,4g.mol^{-1}$
 - **a-** Calculer la quantité de matière initiale de chaque réactif. .
 - **b-** Dresser le tableau descriptif de l'évolution du système.
- **c-** Calculer la valeur de l'avancement maximal x_{max} de la réaction, déduire le réactif limitant.
- **2-** Donner la quantité de matière de Zn^{2+} si le volume de dihydrogène dégagé est V=0,103~L.

On donne le volume molaire $V_m = 24L/mol$

- 3- L'ensemble des résultats de cette expérience permet de tracer la courbe ci-contre, représentant la concentration de Zn^{2+} en fonction du temps.
 - a- Vérifier que la réaction est totale.
- **b-** Déterminer, à l'instant t=100s, la concentration en ion Zn²⁺ dans le mélange réactionnel et la masse de zinc restant.
- **4-** Déterminer la vitesse volumique de la réaction à l'instant t=300s.
- 5- Définir le temps de demi-réaction et déterminer sa valeur.

6- On refait la même expérience dans les mêmes conditions mais à $C_A = 0.25$ mol..L⁻¹ d'acide chlorhydrique, tracer, en justifiant, sur la même courbe précédente, l'allure de la courbe obtenue dans ce cas.

Exercice 4: On verse dans un bêcher un volume $V = 2.10^{-4} \text{ m}^3$ d'une solution S_B d'hydroxyde de sodium $(Na_{aq}^{+} + HO_{aq}^{-})$ de concentration $C_{B} = 10$ mol.m⁻³, et on lui ajoute à l'instant to pris comme origine des dates, la quantité de matière n_E de méthanoate d'éthyle égale à la quantité de matière n_B d'hydroxyde de sodium dans la solution SB à l'origine des dates .(On suppose que le volume du mélange reste constant $V = 2.10^{-4}$ m⁻³).

L'étude expérimentale a permis de tracer la courbe représentant les variations de la conductance G en fonction du temps (figure 1)

Données : -Toutes les mesure ont été prises à 25°C.

- On exprime la conductance G à l'instant t par la relation : G = K. $\Sigma \lambda_i$. [X_i], avec λ_i la conductivité molaire ionique de l'ion X_i et $[X_i]$ sa concentration dans la solution et K la constante de la cellule conductimètrique, sa valeur K = 0.01 m.
- Le tableau suivant donne les valeurs des conductivités molaires ioniques des ions présents dans le milieu réactionnel:

ion	Na ¹ _{ng}	HO.*	HCO _{2 aq}
λ (S.m².mol-1)	5,01.10-3	19,9.10-3	5,46.10-3

On modélise la transformation étudiée par l'équation chimique suivante

- 1-1- Donner le bilan des ions présents dans le mélange à l'instant t.
 - **1-2-** Dresser le tableau d'avancement de cette transformation chimique.
 - 1-3- Montrer que la conductance G dans le milieu réactionnel vérifie la relation : $G = -0.72x + 2.5.10^{-3}$
 - **1-4** Interpréter la diminution de la conductance pendant la réaction.
 - **1-5** Trouver le temps de demi-réaction $t_{1/2}$.

Exercice 5 On étudie l'évolution au cours du temps de la réaction d'oxydation des ions iodure I (aq) par le peroxyde d'hydrogène H₂O₂(eau oxygénée) en milieu acide. L'équation chimique qui symbolise la réaction associée à la transformation chimique étudiée est :

$$H_2O_2 + 2I^- + 2H^+ \rightarrow 2H_2O + I_2$$

À la date t = 0, on mélange un volume $V_1 = 100 \ mL$ d'une solution (S_1) d'eau oxygénée de concentration molaire C_1 avec un volume $V_2 = 100 \ mL$ d'une solution (S_2) d'iodure de potassium (KI) de concentration molaire C_2 et quelques gouttes d'acide sulfurique concentré. Le suivi temporel de cette transformation chimique a permis de tracer, sur

le graphe cidessous, les courbes représentant les variations de la molarité des ions iodure I- et celle des molécules de diiode I_2 en fonction du temps

- 1. Associer, en le justifiant, chacune des courbes (a) et (b) à la grandeur qu'elle représente.
- 2. L'ion iodure $I_{(aq)}^-$ est-il le réactif limitant ? Justifier la réponse. 3. En exploitant le graphe, trouver la concentration initiale $[I^-]_0$ et finale $[I^-]_f$ dans le mélange.
- **4.** Calculer la concentration initiale $[H_2O_{2_{(aq)}}]_0$ de l'eau oxygénée dans le mélange.
- **5.** Déterminer graphiquement la valeur de vitesse volumique à l'instant t = 10 min.

7.	Qu	elle est la valeur du temps de demi-réaction $t_{1/2}$?
8.	Di	re, en le justifiant, comment varie $t_{1/2}$ si :
	a-	On abaisse la température du milieu réactionnel ? L'évolution s'effectuait dans un grand volume d'eau.

••••	• • • • • •	
••••		
••••		
• • • • •		
• • • • •		
••••		
••••	• • • • • •	
••••		
••••		
••••		
• • • • •		
• • • • •		
••••		