Generative Adversarial Nets

NIPS 2014, I. Goodfellow et. al.

Presentation by
GIST College Physics Concentration Hanse Kim

Basic Information

Paper: Generational Adversarial Nets

Author(s): Ian J. Goodfellow, et. al. 7

Journal: Advances in Neural Information Processing Systems 27 (NIPS 2014)

Citations: 26219 (as of 2021/01/10)

Theoretic Proposition/Results: Section 3-4

Experimental Analysis: Section 5-6

Introduction

- GAN: Generative Adversarial Network
 - Simultaneous training of generative model and discriminative model
 - Generative model: generates data from training data
 - Discriminative model: adversary to generative model, tries to distinguish training data from generated data
 - Minimax two-player game; analogy of counterfeiter

Introduction: Applications of GAN

- Both generative and discriminative models are useful
 - Generative model especially useful; little progress prior to development of GAN, especially for images and videos
 - Semi-supervised learning: "fill in" missing data
 - Reinforcement learning : simulating possible futures
 - Continuous improvements, application to non-ML fields expanded as well

• Image Generation/Recognition

Text to image

Painting to photo

Frontal view generation

Introduction: Applications of GAN

- Natural Language
 - Generation of natural language : https://arxiv.org/abs/1705.10929
 - Text generation : https://arxiv.org/abs/1709.08624
- Art
 - Music generation : https://arxiv.org/abs/1709.06298
 - Painting: Generative imagine inpainting with contextual addition, Jiahui Yu et. al.
- Physics
 - Improvement of astrophotography: https://arxiv.org/abs/1702.00403
 - Prediction of distribution of dark matter : https://arxiv.org/abs/1706.02390
 - High energy particle collision : https://arxiv.org/abs/2012.06582

https://arxiv.org/abs/1909.04451

Theoretical Proposition: Background

- Discriminative Models : many successful cases prior to GAN
 - Conditional probability of data
 - Decision trees etc.
 - Labelling high-dimensional, rich sensory inputs; voice recognition etc.
- Generative Models
 - Joint distribution of data
 - 'Producing' data with the model
 - Maximum likelihood estimation : basis for most generative models

Discriminative Model

Generative Model

Theoretical Proposition: Background

Maximum Likelihood Estimation

- Likelihood function : probability of an outcome interpreted as function of parameter $\mathcal{L}(\theta|x) = p_{\theta}(x) = P_{\theta}(X = x)$
- Choose parameters to maximise likelihood of training (observed) data
- log space used to simplify calculations
- Likelihood function 'pushed up' at sample points of the dataset

$$\boldsymbol{\theta}^* = \operatorname*{arg\,max}_{\boldsymbol{\theta}} \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}} \log p_{\text{model}}(\boldsymbol{x} \mid \boldsymbol{\theta})$$

Theoretical Proposition: Related Research

Explicit Density Model

- Explicitly define density function $p_{\theta}(x)$
- Maximising likelihood is straightforward
- Difficulty in designing a model that captures complexity of data while being computationally feasible

FVBN

- Decomposition into products with chain rule
- Sampling approximations
 - VAE : sampling from ideal function, lower bound to likelihood
 - MCMC : sampling with Markov chain techniques

$$\mathsf{FVBN}: p_{\mathrm{model}}(\boldsymbol{x}) = \prod_{i=1}^{n} p_{\mathrm{model}}\left(x_i \mid x_1, \dots, x_{i-1}\right)$$

$$\mathsf{VAE}: \mathcal{L}(oldsymbol{x}; oldsymbol{ heta}) \leq \log p_{\mathrm{model}}(oldsymbol{x}; oldsymbol{ heta})$$

Theoretical Proposition: Related Research

Implicit Density Model

- Train the model interacting only indirectly with p_{model} , by sampling from it
- GSN : Utilise Markov chains to draw samples from p_{model}
- Markov chains fail to scale to high dimensional spaces, increased computational costs

GAN

- GAN is also an implicit density mode
- Sample generation only requiring single step, no direct sampling from training data for generator

Theoretical Proposition: Framework

- Discriminative model D
 - Traditional supervised learning techniques
 - Goal : output D(x) as near 1
- Generative model G
 - $p_z(z)$: prior over latent variables, noise
 - Goal : Capture distribution of data x, generate fake sample G(z)
- "Game" between both models
 - Loss functions : D wishes to minimise loss only by controlling $\theta^{(D)}$, vice versa for G
 - Minmax game between D, G
 - If both are equally competent, Nash equilibrium is at $D(x) = \frac{1}{2}$ for all x

$$\min_{G} \max_{D} V(D,G) = \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}(\boldsymbol{x})}[\log D(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})}[\log (1 - D(G(\boldsymbol{z})))]$$

Theoretical Proposition: Adversarial Nets

- Framework
 - Both G and D can be multilayer perceptrons, differentiable w.r.t. inputs x, z, and parameters
 - $G(z; \theta^{(g)})$: mapping to data space
 - $D(x; \theta^{(d)})$: mapping from data to scalar, probability that x came from the data rather than p_g
- Pedagogical Explanation of Training Process

Theoretical Results

- Theoretical Considerations
 - Wish to converge to a good estimator
 - Minimax game has $p_g = p_{data} \text{ as global optimum}$
 - Algorithm converges and optimises value function equation
 - Theoretic results in nonparametric situations

Algorithm 1 Minibatch stochastic gradient descent training of generative adversarial nets. The number of steps to apply to the discriminator, k, is a hyperparameter. We used k = 1, the least expensive option, in our experiments.

for number of training iterations do

for k steps do

- Sample minibatch of m noise samples $\{z^{(1)}, \ldots, z^{(m)}\}$ from noise prior $p_g(z)$.
- Sample minibatch of m examples $\{x^{(1)}, \ldots, x^{(m)}\}$ from data generating distribution $p_{\text{data}}(x)$.
- Update the discriminator by ascending its stochastic gradient:

$$\nabla_{\theta_d} \frac{1}{m} \sum_{i=1}^m \left[\log D\left(x^{(i)}\right) + \log\left(1 - D\left(G\left(z^{(i)}\right)\right)\right) \right].$$

end for

- Sample minibatch of m noise samples $\{z^{(1)}, \ldots, z^{(m)}\}$ from noise prior $p_g(z)$.
- Update the generator by descending its stochastic gradient:

$$\nabla_{\theta_g} \frac{1}{m} \sum_{i=1}^m \log \left(1 - D \left(G \left(z^{(i)} \right) \right) \right).$$

end for

The gradient-based updates can use any standard gradient-based learning rule. We used momentum in our experiments.

Theoretical Results

- Theoretical Considerations
 - Wish to converge to a good estimator
 - Minimax game has $p_g = p_{data} \text{ as global }$ optimum
 - Algorithm converges and optimises value function equation
 - Theoretic results in nonparametric situations

Proposition 1. For G fixed, the optimal discriminator D is $D_G^*(x) = \frac{p_{data}(x)}{p_{data}(x) + p_q(x)}$

Theorem 1. The global minimum of the virtual training criterion C(G) is achieved if and only if $p_g = p_{data}$. At that point, C(G) achieves the value $-\log 4$.

Proposition 2. If G and D have enough capacity, and at each step of Algorithm 1, the discriminator is allowed to reach its optimum given G, and p_q is updated so as to improve the criterion

$$\mathbb{E}_{\boldsymbol{x} \sim p_{data}}[\log D_G^*(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{x} \sim p_g}[\log(1 - D_G^*(\boldsymbol{x}))]$$

then p_g converges to p_{data}

Experimental Analysis

- a : MNIST, b : TFD, c, d : CIFAR-10
 - Images all generated samples from the model
 - Rightmost column shows nearest training example of neighbouring sample; model has not memorised training set

Conclusions

Disadvantages

- Finding equilibrium of a game is harder than optimising function
- No explicit representation of generative model
- Synchronisation between G, D important

Advantages

- Markov chains not required; high fidelity, low computation
- Inference not used in learning
- Generator not directly updated by training data
- Only backpropagation used to obtain gradients
- Wide variety of functions can be integrated into model

References

- Papers (which are not listed in previous slides)
 - NIPS 2016 Tutorial: Generative Adversarial Networks, Ian Goodfellow
- Websites
 - https://medium.com/thecyphy/gans-what-and-where-b377672283c5
 - https://dreamgonfly.github.io/blog/gan-explained/
 - http://jaejunyoo.blogspot.com/2017/01/generative-adversarial-nets-1.html
 - https://developers.google.com/machine-learning/gan
- Videos
 - https://www.youtube.com/watch?v=jB1DxJMUlxY