COMP2054-ADE Algorithms Data Structures & Efficiency

ADE Lec01 Analysis of Algorithms

Lecturer: Andrew Parkes

Email: andrew.parkes@nottingham.ac.uk

http://www.cs.nott.ac.uk/~pszajp/

Running Time: "finite" but how big?

- Consider "batch algorithms": transform input data into output data – as opposed to "interactive"
- The running time of an algorithm typically grows with the input size.
- Even at given size the runtime is usually not fixed.
 - So have "best", "average" and "worst" cases.
 - A typical example →
- We (usually) focus on the worst case running time at given size
 - Useful, and easier to analyse
 - Average case time is often difficult to determine.

Experimental Studies

General Pattern:

- Write a program implementing the algorithm
- Run the program with inputs of "varying size and composition"
- Use a system method to get an (in)accurate measure of the actual running time
- Plot the results
 - Example is shown →
- Interpret & analyse. E.g. is it
 - A "power law", nk, for some k
 - An "exponential", bⁿ, for some b

Limitations of Experiments

- It is necessary to implement the algorithm, which may be difficult or timeconsuming
- Results may not be indicative of the running time on other inputs not included in the experiment.
 - Maybe we miss the "real worst case"
- In order to compare two algorithms directly, the same hardware and software environments must be used

Limitations of Theory

- It is necessary to implement the theory, which may be difficult or time-consuming
- Results may not be indicative of the typical running time on inputs encountered in real world.

So can be useful to be able to use both experiment and theory.

Aside: Theory vs. Experiment

Standard science:

"Never believe a theory until it has been confirmed by an experiment"

Partially joking:

"Never believe an experiment until it has been confirmed by a theory"

Attributed to Sir Arthur Eddington
 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3597502/

Theoretical Analysis

- AIM: Characterise running time as a function of the input size, n.
- Uses a "high-level" description of the algorithm instead of an implementation
 - Takes into account all possible inputs
 - Allows us to evaluate the speed of an algorithm independently of the hardware/software/language environment

Pseudocode (recap)

- High-level description of an algorithm
- More structured than English prose
- Less detailed than a program
- Preferred notation for describing algorithms
- Hides program design issues

Example: find max element of an array

Algorithm *arrayMax*(*A*, *n*)

Input array *A* of *n* integers

Output maximum element of *A*

 $currentMax \leftarrow A[0]$ for $i \leftarrow 1$ to n-1 do
 if A[i] > currentMax then
 $currentMax \leftarrow A[i]$ return currentMax

Pseudocode Details (recap)

- Control flow
 - if ... then ... [else ...]
 - while ... do ...
 - repeat ... until ...
 - for ... do ...
 - Indentation replaces braces
- Method declaration

```
Algorithm method (arg [, arg...])
Input ...
Output ...
```

- Method call var.method (arg [, arg...])
- Return value return expression
- Expressions
 - ← Assignment (like = in Java)
 - = Equality testing
 (like == in Java)
 - n² Superscripts and other mathematical formatting allowed

Primitive Operations

- Basic computations performed by an algorithm
 - Identifiable in pseudocode
 - Largely independent from the programming language
 - Exact definition not important (we will see why later)
- Assumed to take a constant amount of time in the "RAM model" (next slide)
 - Tend to be close to "Assembly language"
 - No "hidden expenses"

Examples:

- Assigning a value to a variable
- Indexing into an array
- Comparing two numbers
- Adding/subtracting/ multiplying/dividing two numbers
- Calling a method
- Returning from a method

The Random Access Machine (RAM) Model

- A CPU
- A potentially-unbounded bank of memory cells, each of which can hold an arbitrary number or character

- Memory cells are numbered and accessing any cell in memory takes unit time (some fixed time).
 - (Note that RAM can stand for both "Random Access Machine" and "Random Access Memory," Which is an unfortunate, but standard, over-loading of terminology.)

Limitations of RAM model

- "... can hold an arbitrary number ..."?
 - Can we really expect to store "93856635928615180035166617773577777177177374717717471 571777761365661618161616" in one cell on a real computer?
- Here, we ignore such "bignum" issues. Instead:
- "all numbers are of equal size, as they all fit in a single register of the CPU"
- 64bits (signed int) allows up to 9,223,372,036,854,775,807
 - Exercise (offline): compare to: nanoseconds since big bang; national debt.
- Note: on real machines (usually) computing
 1 + 1 takes as long as 381513 + 243542
 Hence, we typically ignore the sizes of numbers in the arithmetic operations.

Counting Primitive Operations

 By inspecting the pseudocode, we can determine the maximum number of primitive operations executed by an algorithm, as a function of the input size

Algorithm $arrayMax(A, n)$	# operations
$currentMax \leftarrow A[0]$?
for $i \leftarrow 1$ to $n-1$ do	?
if $A[i] > currentMax$ then	?
$currentMax \leftarrow A[i]$?
return currentMax	?
Total <u>Ex</u>	ERCISE "Try it!"

Counting Primitive Operations (partial) – "Offline -> Pause"

 Worst case number of primitive operations executed as a function of the input size, n

```
Algorithm arrayMax(A, n)
                                          # operations
  currentMax \leftarrow A[0]
  for i \leftarrow 1 to n-1 do
       if A[i] > currentMax then
                                            2(n-1)
               currentMax \leftarrow A[i]
   return currentMax
                               Total
                                            ??
```

Counting Primitive Operations (partial)

 Worst case number of primitive operations executed as a function of the input size, n

```
Algorithm arrayMax(A, n)
                                            # operations
   currentMax \leftarrow A[0]
   for i \leftarrow 1 to n-1 do
                                              1 // for i \leftarrow 1
                                              2(n-1)
        if A[i] > currentMax then
                currentMax \leftarrow A[i]
        return currentMax
                                 Total
                                              ??
```

Counting Primitive Operations (all)

 Worst case number of primitive operations executed as a function of the input size, n

```
Algorithm arrayMax(A, n)
                                        # operations
  currentMax \leftarrow A[0]
  for i \leftarrow 1 to n-1 do
       if A[i] > currentMax then
                                         2(n-1)
                                         2(n-1) (worst case)
              currentMax \leftarrow A[i]
                                         2(n-1) ("hidden")
   { increment counter: i++ }
                                         2(n-1) ("hidden")
   { test counter: i \le (n-1) }
  return currentMax
                              Total
                                         8n - 4
```

Counting is "underspecified"

- Consider " $c \leftarrow A[i]$ " then 'full' process can be
 - get A = pointer to start of array A, and store into a register
 - get i, and store into a register
 - compute A+i = pointer to location of A[i], and store back into a register
 - get value of "*(A+i)" (from RAM) and store value it into a register
 - copy the value into the location of c in the RAM
- might not want to count all this, e.g. just count
 - 'plus' of "A+i"
 - the assignment

Counting is "underspecified"

- There can be multiple right answers if you get '2' and I count '4' then it does not mean you are wrong!
- Note: If I think an answer is '4' then '2' is probably also acceptable – but "2 n" probably will not be.
- It is most important to be able to
 - know what is happening in the underlying process
 - be able to link to C and assembly level notions
 - be able to use this to give a reasonably consistent justification of your answers

Note: Correctness vs. Efficiency

- Primitive operation counting is relevant to
 Efficiency but not (directly) for Correctness
- For correctness, do not about runtime of the alg.
 - Do care about the time to find a proof if doing an automated search for proofs.
 - The verification seems to be quick in lean: e.g. #eval 2035713999 + 350135299
 - Very quick (<1sec) not using succ internally (?)
- Note that we did not prove the algorithm correct
 - Would need to do arrays/lists in Lean first
 - Just for thought: And then what?
 - Can do efficiency of incorrect algorithms ©

Estimating Running Time

- Algorithm arrayMax executes 8n 4 primitive operations in the worst case. Define:
 - a = Time taken by the fastest primitive operation
 - b = Time taken by the slowest primitive operation
- Let T(n) be worst-case time of arrayMax. Then $a (8n 4) \le T(n) \le b(8n 4)$
- Hence, T(n) is bounded 'above and below' by two linear functions
- Usually said as "arrayMax runs in linear time"

Remarks

- Do not get too obsessed with the fine details of counting of primitive operations
- The details of the counting and timing would probably depend
 - the compiler, and require inspection of the assembly code
 - the CPU architecture, pipelining, cache misses, etc, etc

Growth Rate of Running Time

- Changing the hardware/ software environment
 - Affects T(n) by a constant factor, but
 - Does not alter the growth rate of T(n)
- The linear growth rate of the running time T(n) is an intrinsic property of algorithm arrayMax

Exercise: (exam-style question)

Given the following code fragment:

```
m \leftarrow 0
while (n \ge 2)
n \leftarrow n/2
m++
return m
```

Give an analysis of its runtime

Exercise: what is T(n) of alg-lec1?

```
Algorithm: alg-lec1
Input: positive integer n, which is a power of 2.
  I.e. there exists k such that 2^k = n
   m \leftarrow 0
   while (n ≥ 2)
        n \leftarrow n/2
        m++
  return m
```

Exercise: what is T(n) of alg-lec1? (cont)

```
Algorithm: alg-lec1
Input: positive integer n, which is a power of 2
Output: integer m such that 2^m = n
m \leftarrow 0
while (n \ge 2)
n \leftarrow n/2
m++
return m
1
```

Exercise

```
Algorithm: alg-lec1
Input: positive integer n, which is a power of 2
Output: integer m such that 2^m = n
   m \leftarrow 0
  while (n ≥ 2)
                                           ? per pass
      n \leftarrow n/2
                                           ? per pass
                                           ? per pass
      m++
  return m
```

(Pause and try/think)

Internal Steps:

$$n \leftarrow n/2$$

- 1. read *n* from memory (RAM) and store in a register r1 (very fast piece of memory on the CPU)
- 2. read 2 from memory and store in a register r2
- 3. send registers r1 r2 through arithmetic division and store result in a register r3
- 4. write r3 back to *n* CPU steps needed is 4, does not depend on *n*

Internal Steps: different compiler

$$n \leftarrow n/2$$

- 1. read *n* from memory (RAM) and store in a register r1 (very fast piece of memory on the CPU)
- send registers r1 through a right shift of the bits and store result in a register r3 e.g. compute 13/2=6 by 1101 → 110
- 3. write r3 back to *n*
- CPU steps needed is 3, different but still does not depend on *n*

Exercise (cont)

```
Algorithm: alg-lec1
Input: positive integer n, which is a power of 2
Output: integer m such that 2^m = n
  m \leftarrow 0
  while (n ≥ 2)
                                         3 per pass
      n \leftarrow n/2
                                         3 per pass
                                         3 per pass
      m++
  return m
```

Thought Exercise (offline)

- Based on your knowledge of assembly, and machine architectures try to estimate the number of CPU cycles that might actually be used.
- "Divide" or "shift"? Which is faster?
- Point: try to eventually build a mental model that is an "internal interpreter" so as to know how a program will run
- Such "internal interpreters" are vital for understanding programming (IMHO)

How many passes through the loop of alg-lec1?

Hint: If ever stuck:

- Try simple concrete examples
- Start from "ridiculously simple" and work up to harder examples

Do a "trace of the program" by hand:

How many passes through loop?

Focus on the relevant portions:

- Simplest example?
- Exercise: What is smallest positive integer that is a power of two?
- Answer: 1 as $2^0 = 1$
- (If confused, or if you answered "2", then consider revising your maths about exponents and logarithms)

How many passes through loop? (cont)

while
$$(n \ge 2) \{ n \leftarrow n/2 ; \}$$

- Case: $n = 1 = 2^0$ passes = 0
- Case: $n = 2 = 2^1$
 - n=2, then n=1; passes=1
- Case: $n = 4 = 2^2$
 - n=4, then n=2, then n=1; passes = 2
- Case: $n = 8 = 2^3$
 - n=8, 4, 2, then n=1; passes = 3

How many passes through loop? (cont)

- Case: $n = 2^{m}$
 - $n=2^m$, 2^{m-1} , 2^{m-2} , ..., 2
 - m passes through loop
- but note, n is the input not m, so want to write answer in terms of n. Use
 - $m = log_2(n)$
- Result: passes through loop = $log_2(n)$

Exercise (cont)

```
Algorithm: alg-lec1
 Input: positive integer n, which is a power of 2
 Output: integer m such that 2^m = n
   m \leftarrow 0
                                        3 (\log_2(n)+1)
   while (n ≥ 2)
       n \leftarrow n/2
                                        3 \log_2(n)
                                        3 \log_2(n)
       m++
   return m
                      all together: 9 \log_2(n) + 5
(the "+1" on line 2, is because the test is done
  even if it fails)
```

Remarks

- Each pass through the loop the size of n is halved
 - the "log₂(n)" is typical of such "halving on each iteration"
- This concept also appears in sorting and searching; hence you MUST make sure you fully understand this example
 - The ADE half of the module will probably be incomprehensible otherwise

Summary

Goal:

Build foundations for time-analysis of programs

Skills needed:

- Count primitive operations
- Counting of operations with
 - Loops
 - (Recursion)

Removing details

- According to precisely how we count steps we might get many different answers, e.g. something like
 - $5 \log_2(n) + 2$
 - $9 \log_2(n) + 5$, etc
- Also this counts "steps"
 - the translation to runtime depends on the compiler, hardware, etc
- Need a way to suppress such details

Next Lecture

"Suppressing the details"

A motivation and introduction to big-Oh

Oh... ohh!!

Exercise: (Advanced, Offline/Take-home)

Given the following code fragment:

```
m ← 0
while (n ≥ 2)
n ← sqrt(n)
m++
return m
```

Give an analysis of its runtime.

For the counting, assume that the square root "sqrt" is a primitive operation.