Questão de Programação

Critérios de Avaliação

Para que a equipe componha a nota integral, os quesitos abaixo serão analisados

- 1. a clareza e concisão do texto;
- 2. a eficiência das proposições;
- 3. a sintaxe acompanhada de uma explicação didática do código e afins;
- 4. estimativas e cálculos do problema.

Nas estimativas não serão aceitos dados de sites e de livros, apenas Leis e equações que regem os fenômenos físicos analisados. Cabe ressaltar que todas as estimativas devem ser coerentes com nosso universo de estudo, devendo ser apresentadas junto aos cálculos e toda e qualquer proposição adotada (Ex: considerando a Terra como uma esfera)

Para a entrega:

- Devem ser entregues pelo Moodle ao menos dois arquivos no formato .pdf, um contendo as estimativas, cálculos e proposições e outro contendo os códigos.
- Caso um ou mais arquivos excedam os 16 MB, impossibilitando o upload de forma direta pelo Moodle, aceitaremos um arquivo .pdf com os links para acesso na nuvem (drive).

Apêndice

Distribuição de pontuação será feita da seguinte maneira:

- 10,0 pts Interpretação e cálculos envolvendo o parque eólico;
- 25,0 pts Interpretação e cálculos envolvendo a usina termelétrica;
- 25,0 pts Estimativas, cálculos e o controle (programa) dos guindastes.
- 10,0 pts Cálculos e o controle (programa) das bombas de pré sal;
- 30,0 pts Levantamento do consumo energético e Programa de gerenciamento e supervisão de energia.

1 Atividade proposta

O seu grupo está encarregado de fazer os programas para automatizar alguns equipamentos e fazer o levantamento de custo e o gerenciamento de energia de uma plataforma petroquímica (para o esquema da plataforma veja a figura 3).

1.1 Geração de energia

A geração de energia da plataforma parte de uma usina termelétrica instalada em uma cidade na costa e de um parque eólico em alto mar. A termelétrica pode ser abastecida por três combustíveis diferentes e o parque eólico é composto por 50 cataventos.

1.2 Usina termelétrica

O funcionamento básico de uma usina termoelétrica consiste na queima de combustível em uma caldeira de combustão, na qual irá gerar energia na forma de calor, que será utilizado para vaporizar a água líquida presente em tubos localizados na parede da caldeira. Este vapor, em alta pressão, é conduzido por meio de tubulações a uma turbina, na qual, a partir do seu movimento mecânico de rotação, conectado a um gerador, obtém-se energia elétrica. Após passar pela turbina, o vapor d'água é recolhido a um condensador, de forma que será condensado e bombeada, retornando para o início do processo. O esquema descrito acima pode ser observado pelo fluxograma representado na figura 1.

Figura 1 – Diagrama de uma usina termelétrica

Para projetar uma usina termoelétrica, que será responsável pelo abastecimento dos equipamentos e maquinários da plataforma petroquímica, foi contratada uma equipe de engenheiros químicos. Após um tempo de discussões, pesquisas bibliográficas e análise mercadológica, foram levantados dados importantes quanto ao funcionamento, combustível e equipamentos a serem utilizados neste projeto. Para dar início a este processo, concluiu-se que será possível escolher entre três diferentes fontes de energia: carvão mineral, bagaço da cana-de-açúcar e gás natural. Os preços destes combustíveis são relacionados na Tabela 1.

Carvão mineral	R $$59,17$ por tonelada
Bagaço da cana-de-açúcar	R\$ 48,25 por tonelada
Gás natural	R 3,23 por m^3$

Tabela 1 – Preço por tonelada

A densidade do gás natural é $0.76 \,\mathrm{kg/m^3}$. Além disso, foram decididos qual a caldeira, a turbina e o gerador que serão utilizados. Sabe-se que o rendimento da caldeira varia conforme a vazão de combustível, e que a equação que molda esta grandeza é representada por $c(v) = -0.1094v^2 + 1.2861v - 2.8461$, sendo

v a vazão escolhida em kg/s. Abaixo temos as informações referentes às eficiências dos equipamentos, bem como as faixas de vazões possíveis. Sendo assim, foram definidas condições operacionais, conforme descritas na Tabela 2 mostrada abaixo.

Combustível	Poder Calorífico Superior (MJ/Kg)	Vazão de combustível ton/h
Carvão mineral	14,7	16
	14,7	17
	14,7	18
	14,7	19
	14,7	20
Bagaço de cana	9,5	21
	9,5	22
	9,5	23
	9,5	24
	9,5	25
Gás natural	55,5	26
	55,5	27
	55,5	28
	55,5	29
	55,5	30

Tabela 2 – Informações dos combustíveis

Na Tabela 3, encontram-se os rendimentos da turbina e do gerador que serão utilizados no processo.

Grandeza	Descrição
Rendimento da turbina	90%
Rendimento do gerador	87%

Tabela 3 – Rendimento

A ideia dos engenheiros envolvidos no processo é de que seja escolhida a vazão na qual será obtida a maior energia, dado que a usina opera 24 horas por dia. A plataforma recebe uma porcentagem da energia gerada pela termelétrica, e restante é distribuído para uma cidade costeira.

1.3 Parque Eólico

O parque eólico funciona 24h por dia e é composto por 50 turbinas que têm potência que dependem da rotação ω das pás. A velocidade das pás também depende da velocidade média do vento. As relações destes parâmetros são mostradas na Figura 2. Nota-se que no gráfico de ω em função da velocidade média

Figura 2 – Comportamento das turbinas e das pás

do vento, há uma zona-morta, ou seja, as pás da turbina só começam a rotacionar quando a velocidade média do vento for $2\,\mathrm{m/s}$.

Um estudo feito anteriormente, diz que a velocidade média do vento nas turbinas das 7h às 22h é de $6\,\mathrm{m/s}$, e no restante da noite e da madrugada ela é de $10\,\mathrm{m/s}$.

1.4 Organização da plataforma

A plataforma conta com bombas que são responsáveis por trazer o petróleo do pré sal até a superfície. Além disso, ela conta com guindastes que transferem a matéria produzida para os navios de carga.

Bombas p/ Pré Sal

O sistema de bombeamento do petróleo do pré sal é formado por 25 séries de bombas, onde cada série tem 4 bombas que somam uma potência de 40 kW. As bombas funcionam 24h por dia.

Guindastes

Estime, sem consultar a internet:

- A energia que os guindastes consomem para encher o navio com os galões.
- O volume de trabalho dos guindastes, e a velocidade na qual eles vão operar.
- A massa dos cabos de aço e da estrutura dos guindastes.
- A capacidade do navio de carga para receber a matéria produzida.
- O tempo que o navio leva para sair e voltar para plataforma.

Um guindaste leva um barril de cada vez. (Barril de petróleo equivale a 200 L, o volume de cada galão é 50 L e a densidade do petróleo produzido é 1,2 kg/L). A plataforma conta com 10 guindastes.

1.5 Utilização da energia

A tensão elétrica proveniente da geração de energia deve passar por inversores de frequência. Há uma Porta Somadora para agregar e direcionar a energia vinda do parque eólico à energia vinda da termelétrica. Para dimensionar a porcentagem de energia proveniente da termelétrica, foi instalado um *potenciômetro* na saída de seu gerador. **OBS**: o potenciômetro representa o ajuste de energia que será enviada para a plataforma. Toda a energia fornecida à plataforma deve ser maior ou igual a utilizada por ela.

Além dos equipamentos descritos, a plataforma tem sistemas auxiliares de aquecimento, separação e bombeamento do óleo e seus derivados, mas foram omitidos do diagrama geral. Esses sistemas têm uma potência de 3,6 MW. A iluminação da plataforma e dos cômodos dos funcionários e demais ferramentas somam uma potência de 20 kW. Estas cargas funcionam 24 h por dia.

Figura 3 – Diagrama de funcionamento

Programas

A seguir, são solicitados 3 programas para supervisionar e controlar a plataforma. Podem ser usadas as linguagens C Standard, C++ e C Sharp. É extremamente importante criar variáveis e identificar o que cada uma representa no sistema real.

Programa 1 - Controle das bombas

Este programa é encarregado de controlar as bombas.

- 1. Quando as bombas estão trabalhando, uma luz amarela fica ligada, caso contrário, fica desligada.
- 2. As bombas podem ser paradas caso um botão de emergência seja acionado.
- 3. Quando o botão de emergência é pressionado, uma lâmpada vermelha é ligada para indicar a parada.

Programa 2 - Controle dos guindastes

Este programa utiliza das estimativas feitas anteriormente para controlar os guindastes. Considere que os guindastes devem operar sob estas condições:

- 1. Quando o navio não estiver na plataforma os guindastes devem ficar desligados.
- 2. Quando o navio estiver na plataforma, funcionam das 6h às 14h e das 18h às 24h.
- 3. Param quando o navio de carga estiver cheio.

Programa 3 - Gerenciamento de energia

Este programa é responsável por supervisionar e gerenciar a energia gerada pelo parque eólico e pela usina termelétrica. O programa têm que conter TODAS as informações necessárias de consumo (feitas anteriormente) para fazer esse gerenciamento. Para o gerenciamento considere as seguintes situações:

- 1. Estágio padrão de Funcionamento: parque eólico gera energia e é utilizado uma porcentagem da energia vinda da usina termelétrica. Todas as bombas e todos os guindastes, se em condições ideais, operam. As demais demandas funcionam normalmente.
- 2. Se a energia consumida for maior que a energia gerada, deve-se aumentar a porcentagem de energia proveniente da usina termelétrica, desligar os guindastes e deixar apenas uma série de bombas ligadas. Ao normalizar a situação, voltar ao estágio padrão de funcionamento.
- 3. Se não houver vento para o funcionamento do parque eólico, deve-se aumentar a porcentagem proveniente da usina termelétrica. Ao normalizar a situação, voltar ao estágio padrão de funcionamento.
- 4. Se houver vento e a geração do parque eólico for suficiente para alimentar a plataforma, deve-se diminuir a porcentagem da usina termelétrica. Ao normalizar a situação, voltar ao estágio padrão de funcionamento.
- 5. Se a energia consumida for menor que a energia gerada, deve-se ajustar a demanda de energia vinda da usina termelétrica.

O código deve ser capaz de dar o custo operacional diário e mensal da plataforma (despreze custos de manutenção, salário e outros, considere apenas os dados de potência e energia).