ESTATÍSTICA PARA CIÊNCIA DE DADOS E MACHINE LEARNING

SUBAMOSTRAGEM E SOBREAMOSTRAGEM

Fonte: https://www.kaggle.com/rafjaa/resampling-strategies-for-imbalanced-datasets #t100% and the strategies and the strategies are strategies are strategies are strategies and the strategies are strategies are strategies are strategies and the strategies are strategies and the strategies are strategies and the strategies are strategies are strategies and the strategies are strategies are strategies are strategies and the strategies are strategies are strategies are strategies are strategies are strategies are strategies and the strategies are strategies are strategies are strategies are strategies are strategies are strategies and the strategies are st

SUBAMOSTRAGEM – TOMEK LINKS

Fonte: https://www.kaggle.com/rafjaa/resampling-strategies-for-imbalanced-datasets#t1

SOBREAMOSTRAGEM – SMOTE

VARIÂNCIA, DESVIO PADRÃO E COEFICIENTE DE VARIAÇÃO

$$2^2 = 4$$

 $10^2 = 100$

$$\frac{-}{x} = \frac{\sum x_i}{n}$$
Desvio = 3 2 1 1 0 1 2 2 2

$$3^2 + 2^2 + 1^2 + 1^2 + 0^2 + 1^2 + 2^2 + 2^2 + 2^2$$

o quão longe os valores estão do "valor esperado"

$$9+4+1+1+0+1+4+4+4$$

$$28 / 9 = 3,11$$

Desvio padrão =
$$\sqrt{3,11} = 1,76$$
 "Erro" se substituirmos pelo valor da média

$$CV = \frac{\sigma}{\overline{X}}.100$$
 $CV = \frac{1,76}{153}.100 = 1,15\%$

DISTRIBUIÇÃO NORMAL

19:00 **沐沐沐沐沐沐沐沐**

18:50

ኢኢኢኢኢ

18:40

★★

19:10

19:20

DISTRIBUIÇÃO NORMAL

TESTES DE HIPÓTESES

- Resposta sim ou não, para confirmar ou rejeitar uma afirmação
- Hipótese: ideia a ser testada
- Hipótese nula (H0)
 - Afirmação que já existia
 - Presumir que é verdadeira até que se prove o contrário
- Hipótese alternativa (H1)
 - O que está tentando provar (tudo o que é diferente da nula)
- Alpha
 - Probabilidade de rejeitar a hipótese nula, quanto menor mais seguro é o resultado (nível de significância) em geral 0,01 ou 0,05

15

- 5% de chances de concluir que existe uma diferença quando não há diferença real
- Valor de p (p-value)
 - p-value >= alpha: não rejeita H0 (não temos evidências)
 - p-value < alpha: rejeita H0 (temos evidência)
- Erro Tipo I: rejeitar a hipótese nula quando não deveria
- Erro Tipo II: não rejeitar nula quando deveria ter rejeitado

ANOVA – ANÁLISE DE VARIAÇÃO

- Comparação entre 3 ou mais grupos (amostras independentes)
- Uma variável quantitativa e uma ou mais variáveis qualitativas
- Distribuição normal (estatística paramétrica)
- Variação entre os grupos comparando a variação dentro dos grupos
- H0: não há diferença estatística
- H1: existe diferença estatística

Fonte: https://marcelocoruja.blogspot.com/2017/04/sociologia-importancia-dos-grupos-e-das.html

ANOVA – ANÁLISE DE VARIAÇÃO

	Grupo A	Grupo B	Grupo C
	165	130	163
	152	169	158
	143	164	154
	140	143	149
	155	154	156
)	151	152	156

 $F = \frac{\overline{DFG}}{\overline{SSE}}$ \overline{DFE} $F = \frac{\frac{70}{2}}{\frac{1506}{12}} = 0.2788$

SSG (sum of squares group): $14 \times 5 = 70$ DFG (degrees of freedom groups): 3 - 1 = 2

	155	154	150	
Média	151	152	156	SSE (sum of squares error): 1506
Média geral: 153 DFE = linhas $-1 \times grupos$ DFE = $(5-1) \times 3 = 12$				
F crítico = 3,88 (consultar tabela)				
0,27				
0 Não há difere		a há difaranca actatístic		3,88 Há diferença estatística
		γ γ	Soma	

Quadrado erro			
(valor – m	nédia)²	(valor – média) ²	(valor – média) ²
(165 – 151)) ² = 196	$(130 - 152)^2 = 484$	$(163 - 156)^2 = 49$
(152 – 15	1)2 = 1	$(169 - 152)^2 = 289$	$(158 - 156)^2 = 4$
(143 – 151	.)2 = 64	$(164 - 152)^2 = 144$	$(154 - 156)^2 = 4$
(140 – 151))2 = 121	$(143 - 152)^2 = 81$	$(149 - 156)^2 = 49$
(155 – 151	$-1)^2 = 16$	$(154 - 152)^2 = 4$	$(156 - 156)^2 = 0$
398		1002	106

COVARIÂNCIA, COEFICIENTE DE CORRELAÇÃO E COEFICIENTE DE DETERMINAÇÃO

Tamanho (m²)	Preço	$x_i - \bar{x}$	$y_i - \bar{y}$	$(xi-\overline{x}) * (y_i - \overline{y})$
30	57.000	-14,5	-16.250	235.625
39	69.000	-5,5	-4.250	23.375
49	77.000	4,5	3.750	16.875
60	90.000	15,5	16.750	259.625
44,5 (média) 12,92 (dp)	73.250 (média) 13.865,42 (dp)			535.500 (soma)

$$C(x,y) = \frac{\sum (xi - \bar{x}) * (yi - \bar{y})}{n - 1} Cr(x,y) = \frac{Cov(x,y)}{Std(x) * Std(y)} Cd(x,y) = Cr^2$$

$$C(x,y) = \frac{535.500}{3} = 178500,00 Cr(x,y) = \frac{178500,00}{12,92 * 13865,42} = 0,99 Cd(x,y) = 0,98$$

> 0, variáveis se movem juntas

< 0, variáveis se movem em direções opostas

= 0, variáveis são independentes

COEFICIENTE DE CORRELAÇÃO

Correlação	Interpretação
0,00 a 0,19 ou 0,00 a -0,19	Correlação bem fraca
0,20 a 0,39 ou -0,20 a -0,39	Correlação fraca
0,40 a 0,69 ou -0,40 a -0,69	Correlação moderada
0,70 a 0,89 ou -0,70 a -0,89	Correlação forte
0,90 a 1,00 ou -0,90 a -1,00	Correlação muito forte

CORRELAÇÃO NÃO É CAUSA

Number of people who drowned by falling into a pool

correlates with

Films Nicolas Cage appeared in

MÉTRICAS DE ERROS

- Mean absolute error (MAE)
 - Diferenças absolutas entre as previsões e os valores reais
- Mean squared error (MSE)
 - Diferenças elevadas ao quadrado (erros penalizados)
- Root mean squared error (RMSE)
 - Interpretação facilitada

$$MAE = \frac{1}{n} \sum_{i=1}^{n} |y_i - \hat{y}_i| \qquad MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 \qquad \text{RMSE} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2}$$

