УДК 512.55

СВОБОДНЫЕ АБЕЛЕВЫ РАСШИРЕНИЯ АЛГЕБР

© 2006 г. П. Б. ЖДАНОВИЧ

СОДЕРЖАНИЕ

	Введение	69
1.	Коммутаторы конгруэнций и абелевы алгебры	70
	Абелевы расширения и разрешимые алгебры	72
3.	Свободные абелевы расширения	73
	Свободная разрешимая алгебра	81
5.	Построение свободного абелева расширения	81
	Свободные абелевы алгебры	87
7.	Элементы свободных абелевых расширений	89
8.	Свободные абелевы расширения как модули над касательными кольцами	90
9.	Равенства слов в свободных абелевых расширениях	93
10.	Тождества на многообразиях разрешимых алгебр	95
11.	Гомоморфизмы свободных разрешимых алгебр	97
12.	Свойство Хопфа	101
	Список литературы	102

Введение

Важным предметом изучения в современной универсальной алгебре являются конгруэнцусловия на многообразиях алгебр. В 1954 г. А. И. Мальцев [7] доказал, что многообразие универсальных алгебр V является конгруэнц-перестановочным тогда и только тогда, когда существует такой тернарный терм p от основных операций многообразия V, что на V выполняются тождества p(x,x,y)=p(y,x,x)=y. Позже А. Дей [19], А. Пиксли [34] и Б. Йонссон [24] нашли аналогичные условия соответственно для конгруэнц-модулярных, конгруэнц-дистрибутивных и арифметических многообразий. В начале 80-х гг. Р. Маккензи, Р. Фриз, Смит, Геррманн, Хагеманн и ряд других исследователей построили теорию теорию коммутаторов для универсальных алгебр. Ими были найдены многочисленные приложения этой теории для конгруэнц-модулярных многообразий. Подробное изложение этих вопросов можно найти в [20, 10, 5].

В теории коммутаторов получили обобщение многочисленные конструкции из теории групп и теории колец. Так, например, понятие взаимного коммутанта двух нормальных подгрупп представляет собой частный случай коммутатора двух конгруэнций; введено понятие разрешимой и нильпотентной алгебр. Класс всех k-разрешимых (k-нильпотентных) алгебр данного конгруэнцмодулярного многообразия является подмногообразием. Естественным образом возникли абелевы многообразия алгебр, которые представляют собой классы всех разрешимых алгебр степени не выше 1. Разрешимые алгебры играют важную роль в изучении конечных универсальных алгебр [22].

В. А. Артамонов [1, 16] перенес представление Магнуса для групп на произвольные конгруэнцмодулярные многообразия. Им было найдено матричное представление алгебры $F/[\alpha,\alpha]$ в терминах исходной алгебры F/α , где F — свободная алгебра рассматриваемого многообразия, $\alpha \in \mathrm{Con}\, F$, и через $[\ ,\]$ обозначается коммутатор двух конгруэнций. Ключевую роль в данном представлении играет касательное кольцо алгебры F/α , которое является категорным аналогом группового

кольца. В конгруэнц-перестановочных многообразиях касательные кольца близки к определению естественных мальцевских категорий, определенных в [23]. Также в [1] было введено дифференциальное исчисление Фокса для конгруэнц-модулярных многообразий. Оно является обобщением дифференциального исчисления для групп и лиевых алгебр, которое широко применяется при решении, в частности, таких проблем, как классификация шрейеровых многообразий [13, 26], нахождение примитивных элементов и автоморфизмов свободных алгебр, гипотеза якобиана [27, 28, 8, 30, 32, 12]. Многочисленные приложения дифференциального исчисления Фокса можно найти в работах [29, 31, 11, 36, 17].

В [3] представление Магнуса—Артамонова применяется к мультиоператорным алгебрам. С его помощью можно изучать свободные разрешимые алгебры, используя свободные абелевы расширения [15, 16, 4, 38], а именно, свободная k-разрешимая алгебра является свободным абелевым расширением свободной разрешимой алгебры степени k-1 того же ранга.

Теория коммутаторов также применяется для изучения конгруэнц-перестановочных многообразий. Напомним, что многообразия групп, квазигрупп и колец являются конгруэнц-перестановочными. Поэтому особый интерес вызывает многообразие алгебр с одной тернарной мальцевской операцией. Указанные алгебры носят название p-алгебр [15, 2] или мальцевских алгебр [18]. С. Чакрабарти [15] дает описание свободной разрешимой p-алгебры, начиная со свободной абелевой алгебры. Доказано, что свободная разрешимая p-алгебра F_n^k конечного ранга n и степени разрешимости k не вложима в F_{n-1}^k . Показано, что F_n^k обладает свойством Хопфа, т.е. каждый эпи-эндоморфизм F_n^k является автоморфизмом. В [16] эти результаты перенесены на общее конгруэнц-модулярное многообразие.

В настоящей работе мы обозначаем через S свободное произведение фиксированных полугрупп S_0 и S_P с присоединенной внешним образом единицей и рассматриваем многообразие \mathfrak{M} всех полигонов над S с тернарной операцией p(x,y,z), удовлетворяющей двум мальцевским тождествам:

$$p(x, x, y) = p(y, x, x) = y,$$

а также всем тождествам вида

$$p(s(x), s(y), s(z)) = s(p(x, y, z)),$$

для любого $s \in S_p$.

Алгебры из \mathfrak{M} называются S_p -перестановочными. Мы показываем, что конструкции свободного абелева расширения и свободной разрешимой алгебры сводятся к случаю S_p -перестановочных алгебр для подходящего моноида S. Мы находим представление свободного абелева расширения произвольной алгебры A в терминах исходной алгебры. Описывается конструкция свободной разрешимой \mathfrak{M} -алгебры степени k для всех $k \in \mathbb{N}$. Показано, что многообразие \mathfrak{M}_k всех разрешимых S_p -перестановочных алгебр степени не выше k имеет разрешимую проблему распознавания тождеств тогда и только тогда, когда в S разрешима проблема равенства слов. Установлено, что класс всех разрешимых алгебр не содержится ни в каком собственном подмногообразии многообразия \mathfrak{M} . В случае, когда моноид S конечен, свободная разрешимая алгебра F_q^k степени k и конечного ранга q не вложима в F_r^k при q > r. Это свойство не выполняется в общем случае для конечно порожденных бесконечных моноидов. Мы также исследуем условия, при которых F_n^k обладает свойством Хопфа.

Настоящий текст отражает содержание кандидатской диссертации автора, подготовленной под руководством профессора В. А. Артамонова, чьи идеи и советы являлись большой поддержкой на протяжении всей работы. Автор выражает ему глубокую признательность.

1. Коммутаторы конгруэнций и абелевы алгебры

Все не определяемые понятия и термины читатель может найти в [20, 10, 5]. Там же можно найти все результаты, изложенные в настоящем разделе, если не указано иное.

Определение 1.1. Многообразие алгебр \mathfrak{M} называется *конгруэнц-модулярным*, если для любой алгебры $A \in \mathfrak{M}$ решетка $\operatorname{Con} A$ модулярна.

Mногообразие называется *конгруэнц-перестановочным*, если для каждой алгебры $A \in \mathfrak{M}$ любые две конгруэнции на A перестановочны относительно умножения отношений.

Каждое конгруэнц-перестановочное многообразие конгруэнц-модулярно (см., например, [10, 5]).

Теорема 1.2 (А. И. Мальцев, [7]). Для многообразия алгебр \mathfrak{M} следующие условия эквивалентны:

- 1) \mathfrak{M} конгруэнц-перестановочно;
- 2) любые две конгруэнции свободной М-алгебры ранга 3 перестановочны;
- 3) существует такой тернарный терм p от основных операций многообразия \mathfrak{M} , что на \mathfrak{M} истинны тождества

$$p(x, x, y) = p(y, x, x) = y.$$
 (1.1)

Тождества (1.1) называются тождествами Мальцева, а терм p — мальцевским термом.

Далее предполагается, что алгебра A принадлежит некоторому конгруэнц-модулярному многообразию \mathfrak{M} .

Определение 1.3. *Коммутатором* конгруэнций на A называется бинарная операция f на $\operatorname{Con} A$, удовлетворяющая следующим условиям:

- 1) $f(\alpha, \beta) \leq \alpha \cap \beta$;
- 2) $f(\alpha, \beta) = f(\beta, \alpha)$;
- 3) $f(\alpha, \bigvee_{i \in I} \beta) = \bigvee_{i \in I} f(\alpha, \beta);$
- 4) если φ гомоморфизм алгебры B на A, то

$$\varphi^{-1}(f(\alpha,\beta)) = f(\varphi^{-1}(\alpha), \varphi^{-1}(\beta)) \vee \operatorname{Ker} \varphi;$$

5) если h — некоторая бинарная операция, удовлетворяющая свойствам 1)-4), то $h(\alpha,\beta) \leqslant f(\alpha,\beta)$ для любых $\alpha,\beta \in \operatorname{Con} A$.

Коммутатор конгруэнций α и β обозначается через $[\alpha, \beta]$.

Приведенное здесь аксиоматическое определение коммутатора конгруэнций отражает его существенные и часто используемые свойства. Тем не менее, в цитируемых работах можно также найти конструктивные определения коммутатора.

Теорема 1.4 (см. [5]). Пусть B- алгебра из произвольного конгруэнц-перестановочного многообразия с мальцевским термом p и пусть $\beta, \gamma \in \text{Con } B$. Тогда конгруэнция $[\beta, \gamma]$ порождается всевозможными парами вида

$$(p(f(\mathbf{x}), f(\mathbf{y}), f(\mathbf{z})), f(p(x_1, y_1, z_1), \dots, p(x_n, y_n, z_n)))$$

для каждой сигнатурной операции $f(x_1, ..., x_n)$ и для всех $\mathbf{x} = (x_1, ..., x_n)$, $\mathbf{y} = (y_1, ..., y_n)$, $\mathbf{z} = (z_1, ..., z_n) \in B^n$ таких, что $x_i \beta y_i \gamma z_i$, i = 1, ..., n.

Конгруэнция α алгебры A называется aбелевой, если $[\alpha,\alpha]=0_A$, где 0_A — нулевая конгруэнция на A.

Алгебра A называется абелевой, если ее наибольшая конгруэнция $A \times A$ абелева.

Все абелевы алгебры данного конгруэнц-модулярного многообразия $\mathfrak M$ образуют подмногообразие, которое обозначается через $\mathrm{Ab}(\mathfrak M)$.

Из [20, теорема 5.5, с. 47] известно, что существует такой тернарный разностный терм d, что на $\mathfrak M$ выполняется тождество d(x,x,y)=y. Более того, если $\mathbf a$, $\mathbf b$ и $\mathbf c$ обозначают соответственно $(a_1,\ldots,a_n),\,(b_1,\ldots,b_n)$ и (c_1,\ldots,c_n) , то конгруэнция $\alpha\in\mathrm{Con}(A)$ является абелевой тогда и только тогда, когда

$$d(t(\mathbf{a}), t(\mathbf{b}), t(\mathbf{c})) = t(d(a_1, b_1, c_1), \dots, d(a_n, b_n, c_n))$$

для любой главной производной операции $t(x_1,\ldots,x_n)=t(\mathbf{x})$, причем $a_i\alpha b_i\alpha c_i$, $1\leqslant i\leqslant n$. В этом случае выполняются следующие свойства.

1) Для любого $\overline{e} \in A$ конгруэнц-класс $[\overline{e}]_{\alpha}$ является абелевой группой относительно умножения, определенного по правилу

$$x + y = d(x, \overline{e}, y), \tag{1.2}$$

причем \overline{e} оказывается нулевым элементом, и $-x=p(\overline{e},x,\overline{e})$. Более того, d(x,y,z)=x-y+z для любых $x,y,z\in [\overline{e}]_{\alpha}$. Абелева группа $[\overline{e}]_{\alpha}$ называется $\mathit{mephaphoй}$, а операция (1.2) — $\mathit{mephaphom}$ сложением.

2) Для каждой главной производной n-арной операции t и каждого упорядоченного набора $(e_1,\ldots,e_n)\in A^n$ определена система групповых гомоморфизмов $\left[\frac{\partial t}{\partial i}(e_1,\ldots,e_n)\right],\ i=1,\ldots,n,$ из $[e_i]_{\alpha}$ в $[t(e_1,\ldots,e_n)]_{\alpha}$, таких, что

$$t(u_1, \dots, u_n) = \sum_{i=1}^n \left[\frac{\partial t}{\partial i}(e_1, \dots, e_n) \right] (u_i) + t(e_1, \dots, e_n), \tag{1.3}$$

где $u_i \in [e_i]_{\alpha}$. Используемые нами обозначения для этих гомоморфизмов были введены в [1]. Там же отмечается, что их произведение согласовано с композицией соответствующих операций, Более того,

$$\left[\frac{\partial t}{\partial i}(e_1,\ldots,e_n)\right](x) = d\left(t(e_1,\ldots,e_{i-1},x,e_{i+1},\ldots,e_n),t(e_1,\ldots,e_n),e\right),\tag{1.4}$$

где e — нулевой элемент тернарной группы $[t(e_1,\ldots,e_n)]_{\alpha}$.

В частности, тернарная операция p с мальцевскими тождествами (1.1) играет роль разностного терма в любом конгруэнц-перестановочном многообразии.

Замечание 1.5. Известно [10], что для любых двух элементов e и e', сравнимых по абелевой конгруэнции, отображение f(x) = d(e', e, x) осуществляет изоморфизм между тернарными группами, определяемыми на их конгруэнц-классе, с нулевыми элементами e и e'.

2. Абелевы расширения и разрешимые алгебры

Пусть \mathfrak{M} — конгруэнц-модулярное многообразие и $A \in \mathfrak{M}$ порождается некоторым своим подмножеством X. Гомоморфизм \mathfrak{M} -алгебр называется абелевым, если его ядро абелево.

Определение 2.1. Алгебра B называется абелевым расширением алгебры A в $\in \mathfrak{M}$, если $B \in \mathfrak{M}$ и существует абелев эпиморфизм $B \to A$. Абелево расширение AE(A) с абелевым эпиморфизмом $\psi : AE(A) \to A$ называется свободным в \mathfrak{M} , если для каждого абелева расширения C алгебры A в многообразии \mathfrak{M} и соответствующего абелева эпиморфизма $\psi : C \to A$ существует такой гомоморфизм $\tau : AE(A) \to C$, что $\varphi = \tau \psi$, и φ тождественно действует на множестве X.

Предложение 2.2. Пусть F- свободная алгебра многообразия \mathfrak{M} с базой X, причем $A=F/\omega$, где $\omega\in \operatorname{Con} F$. Тогда $AE(A)\cong F/[\omega,\omega]$.

Доказательство. По свойствам коммутаторов конгруэнций $[\omega,\omega] \leqslant \omega$, и дробная конгруэнция $\omega/[\omega,\omega]$ на алгебре $F/[\omega,\omega]$ абелева. Поэтому $F/[\omega,\omega]$ — абелево расширение A.

Пусть теперь $B=F/\beta$ — произвольное абелево расширение A, где $\beta\in {\rm Con}\, F$. Обозначим через ψ естественный гомоморфизм $F\to F/\beta$. Для абелева гомоморфизма $\varphi:B\to A$ получаем ${\rm Ker}\, \varphi=\omega/\beta$. При этом $[{\rm Ker}\, \varphi,{\rm Ker}\, \varphi]=0_B$. Отсюда, по свойствам коммутатора конгруэнций, следует, что

$$\beta = \psi^{-1}([\operatorname{Ker}\varphi, \operatorname{Ker}\varphi]) = \psi^{-1}([\omega/\beta, \omega/\beta]) = [\omega, \omega] \vee \beta,$$

откуда $[\omega, \omega] \leqslant \beta$.

В работе В. А. Артамонова [1] содержится общий подход к построению свободных абелевых расширений в произвольном конгруэнц-модулярном многообразии. Понятие абелева расширения широко используется в теории коммутаторов для конгруэнц-модулярных многообразий. Например, оно применяется для построения свободной разрешимой алгебры. Введем следующие обозначения из [16]:

$$I_A^0 = 1_A, \quad I_A^1 = [1_A, 1_A], \quad \dots, \quad I_A^k = [I_A^{k-1}, I_A^{k-1}].$$

Алгебра A называется разрешимой степени не выше k (k-разрешимой), если $I_A^k = 0_A$ (см. [20]). Все k-разрешимые алгебры образуют подмногообразие \mathfrak{M}_k данного конгруэнц-модулярного многообразия \mathfrak{M} . В частности, $\mathfrak{M}_1 = \mathrm{Ab}(\mathfrak{M})$. Будем обозначать через $F^k(X)$ свободную k-разрешимую алгебру с базой X. Обозначение F^k будет использоваться, когда множество X зафиксировано.

Лемма 2.3. Свободное абелево расширение B разрешимой \mathfrak{M} -алгебры A степени k является разрешимой алгеброй степени k+1. Ядром соответствующего абелева гомоморфизма является I_B^k .

Доказательство. Пусть $\xi: B \to A$ — соответствующий абелев гомоморфизм. Пользуясь основными свойствами коммутаторов конгруэнций, нетрудно доказать индукцией по j, что $\xi^{-1}(I_A^j) = I_B^j \vee \operatorname{Ker} \xi, \ j=0,1,\ldots$, в силу чего $I_B^k \leqslant [\operatorname{Ker} \xi, \operatorname{Ker} \xi] = 0_B$.

Теорема 2.4. Пусть k > 0. Алгебра F^{k+1} является свободным абелевым расширением F^k в многообразии \mathfrak{M} .

Доказательство. Пусть $F^k = F^{k+1}/\gamma$, где $\gamma \in \operatorname{Con} F^{k+1}$. В силу леммы 2.3, алгебра $AE(F^k)$ является разрешимой степени k+1, откуда следует, что она также является свободным абелевым расширением алгебры F^k в многообразии \mathfrak{M}_{k+1} . Следовательно, $AE(F^k) = F^{k+1}/[\gamma, \gamma]$ по предложению 2.2. С другой стороны, алгебра $F^{k+1}/I_{F^{k+1}}^k$ является разрешимой степени k, в силу чего она является гомоморфным образом F^k . Таким образом, $I_{F^{k+1}}^k \leqslant \gamma$. Используя свойства коммутатора, получаем, что $[\gamma, \gamma] \leqslant [I_{F^{k+1}}^k, I_{F^{k+1}}^k] = 0_{F^{k+1}}$, что и требовалось.

Таким образом, описав свободную абелеву алгебру и обладая конструкцией свободного абелева расширения, мы можем, используя индукцию, построить свободную разрешимую алгебру любой степени. Конструкция свободной разрешимой алгебры с одной тернарной мальцевской операцией p приводится в [15]. В [16] эти результаты были перенесены на общее конгруэнц-модулярное многообразие. Обе процитированные работы основываются на подходе, изложенном в [1], и используют понятие модуля над предаддитивной категорией [9, с. 432] (кольцом со несколькими объектами [33]).

Рассмотрим этот подход вкратце. Пусть α — абелева конгруэнция на A и $B=A/\alpha$. Для произвольного $b\in B$ обозначим через $\alpha(b)$ прообраз элемента b при естественном гомоморфизме $A\to B$. Для каждой пары $b_1,b_2\in B$ рассмотрим множество $H(b_1,b_2)$ всевозможных гомоморфизмов (1.4) из тернарной группы $\alpha(b_1)$ в тернарную группу $\alpha(b_2)$. Каждое из таких множеств непусто, так как в каждом содержится гомоморфизм $\left[\frac{\partial d}{\partial 2}(b_1,b_1,b_2)\right]:\alpha(b_1)\to\alpha(b_2)$, где d — разностный терм. Напомним, что композиция рассматриваемых гомоморфизмов согласована с композицией соответствующих термальных операций. Таким образом, можно рассматривать предаддитивную малую категорию $\mathcal{K}=\mathcal{K}(B)$ с множеством объектов B, в которой $\mathrm{Hom}(b_1,b_2)$ есть подгруппа аддитивной абелевой группы $\mathrm{Hom}\,(\alpha(b_1),\alpha(b_2))$, порожденная множеством $H(b_1,b_2)$. Наконец, алгебру A можно рассматривать как модуль над кольцом с несколькими объектами $\mathcal{K}(B)$.

3. Свободные абелевы расширения

Определение 3.1. Пусть S — моноид унарных функциональных символов, p — тернарный функциональный символ. Алгебра G сигнатуры $\langle p, S \rangle$ называется $\langle p, S \rangle$ -алгеброй, если

- 1) p(x, x, y) = p(y, x, x) = y,
- 2) $s_1s_2(x) = s_2(s_1(x)), 1x = x,$

для всех $x, y \in G$, где $s_1, s_2 \in S$ и 1 — единица S.

Из определения следует, что $\langle p, S \rangle$ -алгебра является полигоном над S (см. [25]).

Пусть Ω — произвольная сигнатура и \mathfrak{P} — некоторое конгруэнц-перестановочное многообразие алгебр сигнатуры Ω . Обозначим через p тернарную операцию из теоремы 1.2.

Обозначим через $T = \{T_n \mid n \in \mathbb{N}\}$ клон многообразия \mathfrak{P} , где T_n – множество всех n-арных главных производных операций, различающихся на \mathfrak{P} . Напомним [6], что T является системой

операций, замкнутая относительно композиций и содержащая все проекции, т.е. такие операции p_{in} , что $p_{in}(x_1, \dots x_n) = x_j, \ j=1,\dots,n$.

Если Ω содержит нульарную операцию a, то мы можем заменить ее унарной операцией f_a и добавить к эквациональной теории многообразия $\mathfrak P$ тождество $f_a(x)=f_a(y)$. Полученное многообразие рационально эквивалентно $\mathfrak P$, в силу чего можно полагать $T_0=\varnothing$.

Рассмотрим произвольную алгебру A из многообразия \mathfrak{P} , на которой зафиксированы система порождающих X и абелева конгруэнция α . Обозначим через E множество элементов, выбранных по одному из каждого конгруэнц-класса по α таким образом, что

- 1) если $x \in X$ и $e \in E \cap [x]_{\alpha}$, то $e \in X$;
- 2) если $e \in E$, то

$$e = t_e(x_1, \dots, x_n) \tag{3.1}$$

для некоторого фиксированного n-арного терма t_e , где $x_1, \ldots, x_n \in X \cap E$.

Для каждого элемента $e \in E$ будем рассматривать конгруэнц-класс $[e]_{\alpha}$ как тернарную группу с нулевым элементом e. Следуя [1], обозначим через S_{Ω} множество всевозможных символов вида

$$\frac{\partial t}{\partial i}(\mathbf{e}), \quad \frac{\partial p_{jn}}{\partial i}(\mathbf{e})$$

для каждого целого положительного числа n, для всех n-арных термов t сигнатуры Ω и для всевозможных $\mathbf{e}=(e_1,\ldots,e_n)\in E^n$. Пусть $h(x_1,\ldots,x_n),\ g_i(x_1,\ldots,x_{m_i})$ — произвольные термальные операции на $A,\ i=1,\ldots,n$. Положим

$$d_i = \begin{cases} 0, & i = 0, \\ m_1 + \dots + m_i, & i = 1, \dots, n. \end{cases}$$

Рассмотрим главную производную операцию на А:

$$h = t (g_1(x_1, \dots, x_{d_1}), \dots, g_n(x_{d_{m-1}+1}, \dots, x_{d_m})).$$

Как показано в [1, предложение 2.1], если $\mathbf{e}_i \in E^{m_j}$, $1 \leqslant j \leqslant n$, $\mathbf{e} = (\mathbf{e}_1, \dots, \mathbf{e}_n)$, то

$$\frac{\partial h}{\partial i}(\mathbf{e}) = \left(\frac{\partial t}{\partial j}(g_1(\mathbf{e}_1), \dots, g_n(\mathbf{e}_n))\right) \left(\frac{\partial g_j}{\partial (i - d_{j-1})}(\mathbf{e}_j)\right),\tag{3.2}$$

где $d_{j-1} \leqslant i \leqslant d_j$. Это означает, что S_{Ω} замкнуто относительно умножения (3.2).

Предложение 3.2. Операция (3.2) ассоциативна.

Доказательство. Пусть

$$\delta = \frac{\partial t}{\partial i}(a_1, \dots, a_s), \quad \beta = \frac{\partial u}{\partial j}(b_1, \dots, b_q), \quad \gamma = \frac{\partial v}{\partial k}(c_1, \dots, c_r), \tag{3.3}$$

где $a_1, \ldots, a_s, b_1, \ldots, b_q, c_1, \ldots, c_r \in E$. Тогда

$$\beta \gamma = \frac{\partial h}{\partial (j+k-1)}(b_1, \dots, b_{j-1}, c_1, \dots, c_r, b_{j+1}, \dots, b_q),$$

где $h=u(x_1,\ldots,x_{j-1},\ v(x_j,\ldots,x_{j+r-1}),\ x_{j+r},\ldots,x_{q+r-1}).$ Отсюда получаем

$$\delta(\beta\gamma) = \frac{\partial g}{\partial(i+j+k-2)}(a_1, \dots, a_{i-1}, b_1, \dots, b_{j-1}, c_1, \dots, c_r, b_{j+1}, \dots, b_q, a_{i+1}, \dots, a_s),$$
(3.4)

гле

$$g = t\left(x_1, \dots, x_{i-1}, u\left(x_i, \dots, x_{i+j-2}, v(x_{i+j-1}, \dots, x_{i+j+r-2}), x_{i+q+r-2}\right), x_{i+q+r-1}, \dots, x_{s+q+r-2}\right).$$

С другой стороны,

$$\delta\beta = \frac{\partial w}{\partial (i+j-1)}(a_1, \dots, a_{i-1}, b_1, \dots, b_q, a_{i+1}, \dots, a_s),$$

где

$$w = t(x_1, \dots, x_{i-1}, u(x_i, \dots, x_{i+q-1}), x_{i+q}, \dots, x_{s+q-1}).$$
(3.5)

Наконец, мы находим произведение $(\delta\beta)\gamma$, которое, как легко видеть, совпадает с (3.4).

Для каждого элемента $\frac{\partial t}{\partial i}(e_1,\dots,e_n)\in S_\Omega$ определим унарную операцию $f_{\frac{\partial t}{\partial i}(e_1,\dots,e_n)}$ на A следующим образом:

$$f_{\frac{\partial t}{\partial i}(e_1,\dots,e_n)}(x) = t(e_1,\dots,e_{i-1},x,e_{i+1}\dots,e_n).$$
 (3.6)

Присоединим к S_{Ω} единичный элемент и поставим ему в соответствие тождественное отображение множества A.

Предложение 3.3. Равенство (3.6) задает действие моноида S_{Ω} на множестве A, согласованное c умножением в S_{Ω} .

Доказательство. Рассмотрим δ, β из (3.3). Пусть $x \in A$. Тогда

$$f_{\beta}(x) = u(b_1, \dots, b_{j-1}, x, a_{j+1}, \dots, b_q);$$

$$f_{\delta}(f_{\beta}(x)) = t(a_1, \dots, a_{i-1}, u(b_1, \dots, b_{j-1}, x, b_{j+1}, \dots, b_q), a_{i+1}, \dots, a_s) =$$

$$= f_{\frac{\partial w}{\partial (i+j-1)}}(a_1, \dots, a_{i-1}, b_1, \dots, b_q, a_{i+1}, \dots, a_s)(x) = f_{\delta\beta}(x),$$

где w — термальная операция из (3.5).

Отметим некоторые свойства действия (3.6).

1) Для проектирования p_{in} и любого $x \in A$ имеем

$$f_{\frac{\partial p_{in}}{\partial i}(\mathbf{e})}(x) = x.$$

2) Пусть $\mathbf{e}=(e_1,\ldots,e_n)\in E^n$ и t- некоторая главная производная n-арная операция. Тогда

$$f_{\frac{\partial t}{\partial i}(\mathbf{e})}(e_i) = t(\mathbf{e}), \quad i = 1, \dots, n.$$
 (3.7)

3) Пусть $\left[\frac{\partial t}{\partial i}(\mathbf{e})\right]$ — гомоморфизм из (1.4). Тогда для любых $a_1 \in [e_1]_{\alpha}, \ldots, a_n \in [e_n]_{\alpha}$, используя (1.3), можем записать

$$t(a_1, \dots, a_n) = \sum_{i=1}^n \left[\frac{\partial t}{\partial i}(\mathbf{e}) \right] (a_i) + t(e_1, \dots, e_n).$$
 (3.8)

В силу (1.4), (3.6), это равенство может быть записано в виде

$$t(a_1, \dots, a_n) = \sum_{i=1}^n \left(f_{\frac{\partial t}{\partial i}(\mathbf{e})}(a_i) - f_{\frac{\partial t}{\partial i}(\mathbf{e})}(e_i) \right) + f_{\frac{\partial t}{\partial 1}(\mathbf{e})}(e_1).$$
(3.9)

Через θ обозначим конгруэнцию моноида S_{Ω} , порожденную всеми парами вида

$$\left(\frac{\partial p}{\partial 2}(e^*, e^*, e^*), 1\right), \quad e^* \in E, \tag{3.10}$$

$$\left(\frac{\partial f}{\partial i}(\mathbf{e}), \frac{\partial g}{\partial i}(\mathbf{e})\right),$$
 (3.11)

$$\left(\frac{\partial p_{in}}{\partial i}(\mathbf{e}), 1\right) \tag{3.12}$$

для всех $\mathbf{e} \in E^n$ и для каждого из тождеств $f(x_1, \dots, x_n) = g(x_1, \dots, x_n)$, определяющих многообразие \mathfrak{P} [1, теорема 2.4], а также всеми парами вида

$$\left(\frac{\partial p_{in}}{\partial j}(e_1, \dots, e_n), \frac{\partial p_{km}}{\partial l}(e'_1, \dots, e'_m)\right), \quad i \neq j, \quad k \neq l, \quad e_i = e'_k, \tag{3.13}$$

$$\left(\frac{\partial t}{\partial i}(e_1,\dots,e_{i-1},c,e_{i+1},\dots,e_n),\ \frac{\partial t}{\partial i}(e_1,\dots,e_{i-1},d,e_{i+1},\dots,e_n)\right),\tag{3.14}$$

где $c, d \in E$.

Обозначим через S(E) моноид S_{Ω}/θ .

Предложение 3.4. Конгруэнц-класс по θ , порожденный произвольным элементом $\frac{\partial p_{in}}{\partial j}(e_1,\ldots,e_n)$ при $i\neq j$, является левым нулем моноида S(E).

Доказательство. Не нарушая общности, предположим, что j < i. Пусть $t(x_1, \ldots, x_n)$ — некоторая главная производная операция. Положим

$$h(x_1,\ldots,x_{m+n-1})=p_{(m+i-1),(m+n-1)}(x_1,\ldots,x_{j-1},t(x_j,\ldots,x_{m+j-1}),x_{m+j},\ldots,x_{m+n-1}).$$

Поскольку на 🎗 справедливо тождество

$$h(x_1, \dots, x_{m+n-1}) = p_{(m+i-1),(m+n-1)}(x_1, \dots, x_{m+n-1}),$$

то из (3.11), (3.13) получаем

$$\frac{\partial p_{in}}{\partial j}(e_1, \dots, e_n) \frac{\partial t}{\partial k}(e'_1, \dots, e'_m) =$$

$$= \frac{\partial h}{\partial (j+k-1)}(e_1, \dots, e_{j-1}, e'_1, \dots, e'_m, e_{j+1}, \dots, e_n) =$$

$$= \frac{\partial p_{(m+i-1)(m+n-1)}}{\partial (j+k-1)}(e_1, \dots, e_{j-1}, e'_1, \dots, e'_m, e_{j+1}, \dots, e_n) \theta \frac{\partial p_{in}}{\partial j}(e_1, \dots, e_n).$$

Предложение доказано.

Отметим, что элементы каждой из пар, порождающих конгруэнцию θ , одинаково действуют на A. Отсюда, а также из предложения 3.3, следует, что A образует полигон над S(E). Напомним, что на множестве A определена тернарная операция p с мальцевскими тождествами (1.1). Отсюда вытекает, что A образует $\langle p, S(E) \rangle$ -алгебру. Более того, верно следующее утверждение.

Предложение 3.5. Множество X порождает $\langle p, S(E) \rangle$ -алгебру A. Обратно, если некоторое множество Y порождает $\langle p, S(E) \rangle$ -алгебру A, то $Y \cup E$ порождает A как Ω -алгебру.

Доказательство. Напомним, что при $x \in X$ нулевой элемент e^* тернарной абелевой группы $[x]_{\alpha}$ принадлежит X. Пусть u — произвольный элемент из A. Тогда он является значением некоторого терма t сигнатуры Ω от $x_1, \ldots, x_n \in X$, и равенство (3.9) принимает следующий вид:

$$u = t(x_1, \dots, x_n) = \sum_{i=1}^n \left(f_{\frac{\partial t}{\partial 1}(e_1, \dots, e_n)}(x_i) - f_{\frac{\partial t}{\partial i}(e_1, \dots, e_n)}(e_i) \right) + f_{\frac{\partial t}{\partial 1}(e_1, \dots, e_n)}(e_1), \tag{3.15}$$

где e_i — нулевой элемент группы $[x_i]_{\alpha}$. Заметим, что $e_1 \in X$; таким образом, u есть значение некоторого терма сигнатуры $\langle p, S(E) \rangle$ от элементов множества X. Второе утверждение следует из того, что каждая операция из S(E) является полиномом от элементов из E на Ω -алгебре A. \square

Предложение 3.6. Отношение α является абелевой конгруэнцией $\langle p, S(E) \rangle$ -алгебры A.

Доказательство. Предположим, что $(u,v) \in \alpha$. Из равенства (3.6) получаем:

$$\alpha \ni (t(e_1, \dots, e_{i-1}, u, e_{i+1}, \dots, e_n), t(e_1, \dots, e_{i-1}, v, e_{i+1}, \dots, e_n)) = \left(f_{\frac{\partial t}{\partial i}(\mathbf{e})}(u), f_{\frac{\partial t}{\partial i}(\mathbf{e})}(v)\right).$$

Следовательно, α является конгруэнцией относительно определенных нами операций. По теореме 1.4 коммутатор $[\alpha, \alpha]$ как конгруэнция на $\langle p, S(E) \rangle$ -алгебре A порождается следующими парами:

$$(p(p(u_1, u_2, u_3), p(v_1, v_2, v_3), p(w_1, w_2, w_3)), p(p(u_1, v_1, w_1), p(u_2, v_2, w_2), p(u_3, v_3, w_3))),$$
 (3.16)

$$\left(p(f_{\frac{\partial t}{\partial i}(\mathbf{e})}(u), f_{\frac{\partial t}{\partial i}(\mathbf{e})}(v), f_{\frac{\partial t}{\partial i}(\mathbf{e})}(w)), f_{\frac{\partial t}{\partial i}(\mathbf{e})}(p(u, v, w))\right), \tag{3.17}$$

где u_i, v_i, w_i, u, v, w сравнимы по $\alpha, i = 1, 2, 3,$ и t — произвольная операция из T.

Аналогично, $[\alpha, \alpha]$ как конгруэнция на Ω -алгебре порождается парами (3.16), а также всеми парами вида

$$(p(t(u_1,\ldots,u_n),t(v_1,\ldots,v_n),t(w_1,\ldots,w_n)),t(p(u_1,v_1,w_1),\ldots,p(u_n,v_n,w_n))),$$
 (3.18)

где u_i , v_i , w_i сравнимы по α , $i=1,\ldots,n$. Ясно, что пары (3.17) образуют подмножество пар (3.18). Однако, из того, что конгруэнция α абелева, следует, что оба элемента в любой паре (3.16), (3.17) совпадают, так что $[\alpha,\alpha]$ является нулевой конгруэнцией $\langle p,S(E)\rangle$ -алгебры A.

Замечание 3.7. Пусть λ — такой эпиморфизм алгебры A на некоторую \mathfrak{P} -алгебру B, что $\operatorname{Ker} \lambda \subseteq \alpha$. Тогда, по свойствам коммутаторов конгруэнций, $\lambda(\alpha)$ — абелева конгруэнция на B. Положим

$$f_{\frac{\partial t}{\partial i}(\mathbf{e})}(b) = t(\lambda(e_1), \dots, \lambda(e_{i-1}), b, \lambda(e_{i+1}), \dots, \lambda(e_n))$$

для всевозможных $\mathbf{e} \in E^n$, $t \in T_n$, $b \in B$. Нетрудно убедиться, что B становится $\langle p, S(E) \rangle$ -алгеброй. Более того, λ является абелевым эпиморфизмом $\langle p, S(E) \rangle$ -алгебр.

Замечание 3.8. Предыдущее замечание можно обобщить следующим образом. Множество E можно рассматривать как Ω -алгебру, изоморфную A/α . На основании предыдущих рассуждений и замечания 3.7, каждое ее абелево расширение, порожденное X, в том числе и сама алгебра E, может рассматриваться как $\langle p, S(E) \rangle$ -алгебра, если элементы множества E зафиксированы при помощи термов (3.1). По предложению 3.5, полученная таким образом алгебра будет абелевым расширением E, порожденным X.

Рассмотрим теперь (p, S(E))-алгебру D, удовлетворяющую следующим условиям:

- 1) D порождена множеством X;
- 2) существует такой эпиморфизм $\xi:D\to A$, что $\xi(X)=X$, причем конгруэнция $\beta=\xi^{-1}(\alpha)$ абелева.

Поскольку $\operatorname{Ker} \xi \subseteq \beta$, то D является абелевым расширением A с абелевым эпиморфизмом ξ . Рассмотрим множество E' всевозможных элементов вида $f_{\frac{\partial t_e}{\partial 1}(x_1...,x_n)}(x_1)$. Ясно, что $\xi(E')=E$. Каждый β -класс содержит, таким образом, единственный элемент из E', который мы будем считать нулевым элементом соответствующей тернарной группы.

Предложение 3.9. Для любого $e' \in E'$ ограничение ξ на $[e']_{\beta}$ является групповым эпиморфизмом на $[\xi(e')]_{\alpha}$.

Доказательство. Прежде всего, заметим, что ξ сохраняет операцию p. Из равенства $\xi(E')=E$ следует, что ξ сохраняет сложение на каждой тернарной группе.

Предложение 3.10.

$$\xi\left(\left[\frac{\partial t}{\partial i}(\mathbf{e})\right](u)\right) = \left[\frac{\partial t}{\partial i}(\mathbf{e})\right](\xi(u))$$

для каждой главной производной операции $t(x_1,\ldots,x_n)$ и для всех $\mathbf{e}\in E^n$, $u\in D$.

Доказательство. Пусть $e_i' \in \xi^{-1}(e_i) \cap E'$. Получаем

$$\xi\left(\left[\frac{\partial t}{\partial i}(\mathbf{e})\right](u)\right) = \xi\left(f_{\frac{\partial t}{\partial i}(\mathbf{e})}(u) - f_{\frac{\partial t}{\partial i}(\mathbf{e})}(e_i')\right) = f_{\frac{\partial t}{\partial i}(\mathbf{e})}(\xi(u)) - f_{\frac{\partial t}{\partial i}(\mathbf{e})}(e_i) = \left[\frac{\partial t}{\partial i}(\mathbf{e})\right](\xi(u)).$$

Предложение доказано.

Рассмотрим конгруэнцию ω алгебры D, порожденную всеми парами вида

$$\left(f_{\frac{\partial t(g_1,\dots,g_n)}{\partial i}(\mathbf{e})}(u), \sum_{j=1}^n f_{\frac{\partial h_j}{\partial (i+j-1)}(\overline{g_1},\dots,\overline{g_{j-1}},\mathbf{e},\overline{g_{j+1}},\dots,\overline{g_n})}(u) - (n-1)f_{\frac{\partial t}{\partial 1}(\overline{g_1},\dots,\overline{g_n})}(g_1')\right);$$
(3.19)

$$\left(f_{\frac{\partial g}{\partial 1}(\mathbf{e})}(e_1'), f_{\frac{\partial g}{\partial j}(\mathbf{e})}(e_j')\right), \quad j = 2, \dots, m;$$
(3.20)

$$\left(f_{\frac{\partial p_{jm}}{\partial i}(\mathbf{e})}(u), e'_{j}\right), \quad j \neq i, \tag{3.21}$$

где $t \in T_n$, $g, g_1, \ldots, g_n \in T_m$, $\mathbf{e} = (e_1, \ldots, e_m) \in E^m$, $i = 1, \ldots, n$, $e_i = \xi(e_i')$, $u \in [e_i']_\beta$,

$$h_j = t(x_1, \dots, x_{j-1}, g_j(x_j, \dots, x_{j+m-1}), x_{j+m}, \dots, x_{n+m-1}),$$

 $\overline{g_i} = E \cap [g_i(\mathbf{e})]_{lpha}$ и $g_i' \in E'$, причем $\xi(g_i') = \overline{g_i}$.

Сумма в (3.19) вычисляется относительно сложения в соответствующей тернарной группе.

Предложение 3.11. $\omega \leq \text{Ker } \xi$.

Доказательство. Непосредственная проверка показывает, что пары (3.20), (3.21) принадлежат $\operatorname{Ker} \xi$. Далее, при $e_1, \ldots, e_m \in E$ получаем

$$t(g_1, \dots, g_n)(e_1, \dots, e_m) = t(g_1(e_1, \dots, e_m), \dots, g_n(e_1, \dots, e_m)).$$
(3.22)

Пусть $a \in A$. Тогда

$$f_{\frac{\partial t(g_1,\ldots,g_n)}{\partial i}(\mathbf{e})}(a) = t(g_1,\ldots,g_n)(e_1,\ldots,e_{i-1},a,e_{i+1},\ldots,e_m) =$$

$$= \sum_{j=1}^n \left[\frac{\partial t}{\partial j}(\overline{g_1},\ldots,\overline{g_n}) \right] (g_j(e_1,\ldots,e_{i-1},a,e_{i+1},\ldots,e_m)) +$$

$$+t(\overline{g_1},\ldots,\overline{g_n}) = \sum_{j=1}^n \left(\left[\frac{\partial h_i}{\partial (i+j-1)}(\overline{g_1},\ldots,\overline{g_{j-1}},\mathbf{e},\overline{g_{j+1}}\ldots,\overline{g_n}) \right] (a) +$$

$$+ \left[\frac{\partial t}{\partial j}(\overline{g_1},\ldots,\overline{g_n}) \right] (g_j(\mathbf{e})) + t(\overline{g_1},\ldots,\overline{g_n}) =$$

$$= \sum_{j=1}^n \left(h_j(\overline{g_1},\ldots,\overline{g_{j-1}},e_1,\ldots,e_{i-1},a,e_{i+1},\ldots,e_m,\overline{g_{j-1}},\ldots,\overline{g_n}) -$$

$$-t(\overline{g_1},\ldots,\overline{g_{j-1}},g_j(\mathbf{e}),\overline{g_{j-1}},\ldots,\overline{g_n}) + t(\overline{g_1},\ldots,\overline{g_{j-1}},g_j(\mathbf{e}),\overline{g_{j-1}},\ldots,\overline{g_n}) - t(\overline{g_1},\ldots,\overline{g_n}) +$$

$$+t(\overline{g_1},\ldots,\overline{g_n}) = \sum_{j=1}^n f_{\frac{\partial h_j}{\partial (i+j-1)}(\overline{g_1},\ldots,\overline{g_{j-1}},\mathbf{e},\overline{g_{j+1}},\ldots,\overline{g_n})} (a) - (n-1)f_{\frac{\partial t}{\partial 1}(\overline{g_1},\ldots,\overline{g_n})}(\overline{g_1}).$$

Таким образом, каждая пара вида (3.19) принадлежит $\operatorname{Ker} \xi$.

Из предложения 3.11 следует, что конгруэнция ω абелева, вследствие чего D/ω является абелевым расширением A. Пусть ρ — дробная конгруэнция β/ω . Для произвольного $a \in A$ обозначим через $\rho(a)$ класс по ρ , соответствующий элементу a.

Предложение 3.12. *Конгруэнция* ρ *абелева*.

Доказательство. Пусть $\varepsilon:D o D/\omega$ — естественный гомоморфизм. Тогда

$$\varepsilon^{-1}([\rho,\rho]) = [\varepsilon^{-1}(\rho), \varepsilon^{-1}(\rho)] \vee \omega = [\beta,\beta] \vee \omega = \omega.$$

Предложение доказано.

В силу того, что пары (3.20) принадлежат ω , будем обозначать $f_{\frac{\partial t}{\partial j}(e)}(e'_j)$ через $\widetilde{t}(e'_1,\ldots,e'_n)$ для всех $\mathbf{e}\in E^n,\ e'_j\in E',\ j=1,\ldots,n.$ Пусть $t\in T_n.$ Положим

$$t(b_1, \dots, b_n) = \sum_{i=1}^n \left[\frac{\partial t}{\partial i}(e_1, \dots, e_n) \right] (b_i) + \widetilde{t}(e'_1, \dots, e'_n), \tag{3.23}$$

где b_1, \ldots, b_n принадлежат соответственно $\rho(e_1), \ldots, \rho(e_n)$.

Предложение 3.13. D/ω является \mathfrak{P} -алгеброй относительно операций (3.23).

Доказательство. Необходимо проверить, что (3.23) определяет гомоморфизм клона T в клон $\mathcal{O}(D/\omega)$ главных производных операций алгебры D/ω . Пусть $\mathbf{e} \in E^m$, $e_i' = E' \cap \rho(e_i)$. Из (3.21), (3.12) видно, что

$$p_{im}(u_1,\ldots,u_m) = \sum_{i=1}^m \left[\frac{\partial p_{im}}{\partial j}(\mathbf{e})\right](u_i) + \widetilde{p_{im}}(\mathbf{e}') = u_i + me_i' = u_i,$$

где $u \in \rho(e_i)$. Из (3.19), (3.2) для t, h_i , u из (3.19) мы получаем

$$\left[\frac{\partial t(g_1,\ldots,g_n)}{\partial i}(\mathbf{e})\right](u) = f_{\frac{\partial t(g_1,\ldots,g_n)}{\partial i}(\mathbf{e})}(u) - f_{\frac{\partial t(g_1,\ldots,g_n)}{\partial i}(\mathbf{e})}(e_i') =$$

$$= \sum_{j=1}^{n} f_{\frac{\partial h_{j}}{\partial (i+j-1)}(\overline{g_{1}}, \dots, \overline{g_{j-1}}, \mathbf{e}, \overline{g_{j+1}}, \dots, \overline{g_{n}})}(u) - (n-1) f_{\frac{\partial t}{\partial 1}(\overline{g_{1}}, \dots, \overline{g_{n}})}(g'_{1}) - \sum_{j=1}^{n} f_{\frac{\partial h_{j}}{\partial (i+j-1)}(\overline{g_{1}}, \dots, \overline{g_{j-1}}, \mathbf{e}, \overline{g_{j+1}}, \dots, \overline{g_{n}})}(e'_{i}) + (n-1) f_{\frac{\partial t}{\partial 1}(\overline{g_{1}}, \dots, \overline{g_{n}})}(g'_{1}) = \sum_{j=1}^{n} \left[\frac{\partial h_{j}}{\partial (i+j-1)}(\overline{g_{1}}, \dots, \overline{g_{j-1}}, \mathbf{e}, \overline{g_{j+1}}, \dots, \overline{g_{n}}) \right] (u) = \sum_{j=1}^{n} \left[\frac{\partial t}{\partial j}(\overline{g_{1}}, \dots, \overline{g_{n}}) \right] \left[\frac{\partial g_{j}}{\partial i}(\mathbf{e}) \right] (u).$$

Далее,

$$t(g_{1},\ldots,g_{n})(\mathbf{e}) = f_{\frac{\partial t(g_{1},\ldots,g_{n})}{\partial 1}}(\mathbf{e})(e'_{1}) =$$

$$= \sum_{j=1}^{n} f_{\frac{\partial h_{j}}{\partial j}(\overline{g_{1}},\ldots,\overline{g_{j-1}},\mathbf{e},\overline{g_{j+1}},\ldots,\overline{g_{n}})}(e'_{1}) - (n-1)f_{\frac{\partial t}{\partial 1}(\overline{g_{1}},\ldots,\overline{g_{n}})}(g'_{1}) =$$

$$= \sum_{j=1}^{n} f_{\frac{\partial t}{\partial j}(\overline{g_{1}},\ldots,\overline{g_{n}})} \left(f_{\frac{\partial g_{j}}{\partial 1}(\mathbf{e})}(e'_{1}) \right) - (n-1)f_{\frac{\partial t}{\partial 1}(\overline{g_{1}},\ldots,\overline{g_{n}})}(g'_{1}) =$$

$$= \sum_{j=1}^{n} \left[\frac{\partial t}{\partial j}(\overline{g_{1}},\ldots,\overline{g_{n}}) \right] \left(f_{\frac{\partial g_{j}}{\partial 1}(\mathbf{e})}(e'_{1}) \right) + f_{\frac{\partial t}{\partial 1}(\overline{g_{1}},\ldots,\overline{g_{n}})}(g'_{1}) =$$

$$= \sum_{j=1}^{n} \left[\frac{\partial t}{\partial j}(\overline{g_{1}},\ldots,\overline{g_{n}}) \right] (\widetilde{g_{j}}(\mathbf{e})) + f_{\frac{\partial t}{\partial 1}(\overline{g_{1}},\ldots,\overline{g_{n}})}(g'_{1}).$$

Следовательно,

$$t(g_{1},\ldots,g_{n})(u_{1},\ldots,u_{m}) = \sum_{i=1}^{m} \left[\frac{\partial t(g_{1},\ldots,g_{n})}{\partial i}(\mathbf{e}) \right] (u_{i}) + t(g_{1},\ldots,g_{n})(a) =$$

$$= \sum_{i=1}^{m} \sum_{j=1}^{n} \left[\frac{\partial t}{\partial j}(\overline{g_{1}},\ldots,\overline{g_{n}}) \right] \left[\frac{\partial g_{j}}{\partial i}(\mathbf{e}) \right] (u_{i}) + \sum_{j=1}^{n} \left[\frac{\partial t}{\partial j}(\overline{g_{1}},\ldots,\overline{g_{n}}) \right] (\widetilde{g_{j}}(\mathbf{e})) +$$

$$+ f_{\frac{\partial t}{\partial 1}(\overline{g_{1}},\ldots,\overline{g_{n}})}(g'_{1}) = \sum_{j=1}^{n} \left[\frac{\partial t}{\partial j}(\overline{g_{1}},\ldots,\overline{g_{n}}) \right] \left(\sum_{i=1}^{m} \left[\frac{\partial g_{j}}{\partial i}(\mathbf{e}) \right] (u_{i}) + \widetilde{g_{j}}(\mathbf{e}) \right) +$$

$$+ f_{\frac{\partial t}{\partial 1}(\overline{g_{1}},\ldots,\overline{g_{n}})}(g'_{1}) = t(g_{1}(u_{1},\ldots,u_{m}),\ldots,g_{n}(u_{1},\ldots,u_{m})).$$

Таким образом, тождество (3.22) выполняется на D/ω . Наконец, если равенство $f_1(x_1,\ldots,x_k)=f_2(x_1,\ldots,x_k)$ выполнено в T, то, в силу (3.11), оно выполнено также и в D/ω .

В частности, отметим следующий важный факт.

Предложение 3.14. Операция

$$p'(u_1, u_2, u_3) = \left[\frac{\partial p}{\partial 1}(e_1, e_2, e_3)\right](u_1) + \left[\frac{\partial p}{\partial 2}(e_1, e_2, e_3)\right](u_2) + \left[\frac{\partial p}{\partial 3}(e_1, e_2, e_3)\right](u_3) + \widetilde{p}(e_1', e_2', e_3'),$$

где $u_i \in [e_i']_\beta$ и $e_i = \xi(e_i') \in E$, удовлетворяет тождествам Мальцева (1.1).

Доказательство. Пусть $f=p(p_{12},p_{12},p_{22})$. Тогда на $\mathfrak P$ выполнено тождество $f(x,y)=p_{22}(x,y)$. Из (3.11), (3.13) и (3.19) мы получаем

$$p'(a, a, b) = \left[\frac{\partial p}{\partial 1}(e_1, e_1, e_2)\right](a) + \left[\frac{\partial p}{\partial 2}(e_1, e_1, e_2)\right](a) +$$

$$\begin{split} &+ \left[\frac{\partial p}{\partial 3}(e_1,e_1,e_2)\right](b) + \widetilde{p}(e_1',e_1',e_2') = \\ &= \left[\frac{\partial p}{\partial 1}(p_{12}(e_1,e_2),p_{12}(e_1,e_2),p_{22}(e_1,e_2))\right] \left[\frac{\partial p_{12}}{\partial 1}(e_1,e_2)\right](a) + \\ &+ \left[\frac{\partial p}{\partial 2}(p_{12}(e_1,e_2),p_{12}(e_1,e_2),p_{22}(e_1,e_2))\right] \left[\frac{\partial p_{12}}{\partial 1}(e_1,e_2)\right](a) + \\ &+ \left[\frac{\partial p}{\partial 3}(p_{12}(e_1,e_2),p_{12}(e_1,e_2),p_{22}(e_1,e_2))\right] \left[\frac{\partial p_{22}}{\partial 1}(e_1,e_2)\right](a) + \\ &+ \left[\frac{\partial p}{\partial 1}(p_{12}(e_1,e_2),p_{12}(e_1,e_2),p_{22}(e_1,e_2))\right] \left[\frac{\partial p_{12}}{\partial 2}(e_1,e_2)\right](b) + \\ &+ \left[\frac{\partial p}{\partial 2}(p_{12}(e_1,e_2),p_{12}(e_1,e_2),p_{22}(e_1,e_2))\right] \left[\frac{\partial p_{12}}{\partial 2}(e_1,e_2)\right](b) + \\ &+ \left[\frac{\partial p}{\partial 3}(p_{12}(e_1,e_2),p_{12}(e_1,e_2),p_{22}(e_1,e_2))\right] \left[\frac{\partial p_{22}}{\partial 2}(e_1,e_2)\right](b) + e_2' = \\ &= \left[\frac{\partial f}{\partial 1}(e_1,e_2)\right](a) + \left[\frac{\partial f}{\partial 2}(e_1,e_2)\right](b) + \widetilde{f}(e_1',e_2') = \\ &= e_2' + 1(b) + e_2' = b. \end{split}$$

Предложение 3.15. p' совпадает с p на каждом конгруэнц-классе по ρ .

Доказательство. Пусть $a,b,c\in [e']_{\rho},\ e'\in E',\ u\ e=\xi(e').$ Поскольку p перестановочна с p' на $[e']_{\rho},$ то

$$\begin{split} p'(a,b,c) &= p'(p(a,e',e'),p(e',b,e'),p(e',e',c)) = \\ &= p(p'(a,e',e'),p'(e',b,e'),p'(e',e',c)) = a - f_{\frac{\partial p}{\partial 2}(e,e,e)}(b) + c = a - b + c \end{split}$$
 в силу (3.10), (3.20).

Обозначим через F подалгебру, порожденную в D/ω множеством X относительно операций (3.23).

Теорема 3.16. ξ индуцирует абелев эпиморфизм Ω -алгебр $F \to A$.

Доказательство. Поскольку $\omega\subseteq {\rm Ker}\,\xi$, то существует эпиморфизм $\langle p,S(E)\rangle$ -алгебр $\varphi:D/\omega\to A,\quad [u]_\omega\mapsto \xi(u).$ Тогда, в силу (3.7),

$$\varphi\left(\widetilde{t}(e'_1,\ldots,e'_n)\right) = \varphi\left(f_{\frac{\partial t}{\partial 1}(e_1,\ldots,e_n)}(e'_1)\right) = t(e_1,\ldots,e_n).$$

Теперь из (3.8), (3.23) и предложения 3.10 следует, что отображение φ перестановочно с каждой операцией из Ω . Кроме того,

$$\operatorname{Ker} \varphi = \operatorname{Ker} \xi / \omega \subseteq \beta / \omega = \rho. \tag{3.24}$$

Таким образом, конгруэнция $\operatorname{Ker} \varphi$ абелева.

Пусть теперь G — некоторая \mathfrak{P} -алгебра с порождающим множеством X. В соответствии с замечанием 3.8, мы можем определить структуру $\langle p, S(G) \rangle$ -алгебры как на самом множестве G, так и на ее свободном абелевом расширении A, порожденном X. По предложению 3.5, $\langle p, S(G) \rangle$ -алгебра G порождается множеством X и, следовательно, для нее существует свободное абелево $\langle p, S(G) \rangle$ -расширение D, порожденное X. В силу того, что $\langle p, S(G) \rangle$ -алгебра A также является абелевым расширением G с порождающей совокупностью X, существует абелев эпиморфизм $\langle p, S(G) \rangle$ -алгебр $\xi: D \to A$, тождественный на X. Пусть α — ядро абелева гомоморфизма из A на G. Допустим, что алгебра F получена из D так, как описано выше. В терминах теоремы 3.16, получаем, что $\beta = \xi^{-1}(\alpha)$ есть абелево ядро эпиморфизма из D на G. Теперь из теоремы 3.16 вытекает следующее утверждение.

Следствие **3.17.** $F \cong A$.

Отметим, что конструкция S и F зависит только от G. Таким образом, мы получили конструкцию AE(G) в терминах исходной алгебры G.

4. Свободная разрешимая алгебра

Теперь мы можем применить результаты из предыдущего раздела для построения свободной разрешимой алгебры многообразия $\mathfrak P$. Рассмотрим свободную разрешимую $\mathfrak P$ -алгебру F^k степени k с фиксированной базой X. Пусть $\alpha=I_{F^k}^{k-1}$. Как и в предыдущем параграфе, построим для конгруэнции α множество E и обозначим через D^k свободную разрешимую $\langle p, S\{E\} \rangle$ -алгебру степени k с базой X.

Начнем с описания конструкции свободной абелевой \mathfrak{P} -алгебры F^1 . В этом случае $E=\{e\}$ для некоторого фиксированного элемента e из F^1 , и тогда S_Ω состоит из всевозможных элементов вида $\frac{\partial t}{\partial i}(e,\ldots,e)$ для каждой операции t из T. По предложению 3.6, алгебра F^1 сигнатуры $\langle p,S\{e\}\rangle$ является абелевой. Пусть ω — конгруэнция на D_1 , порожденная парами (3.19)–(3.21). Тогда, как показано в предыдущем разделе, алгебру $F'=D_1/\omega$ можно расмматривать как \mathfrak{P} -алгебру, определив на ней операции (3.23).

Теорема 4.1. $F' \cong F^1$.

Доказательство. Прежде всего, отметим, что F' порождается множеством X. Поскольку $\alpha=1_{F^1}$, то $\beta=\xi^{-1}(\alpha)=1_{D_1}$ и из равенства (3.24) получаем, что $F'\times F'\subseteq \rho$, откуда следует, что F'- абелева Ω -алгебра. И, наконец, утверждение теоремы следует из теоремы 3.16.

Теперь конструкция свободной разрешимой Ω -алгебры F^k получается индукцией по k как свободное абелево расширение алгебры F^{k-1} .

5. Построение свободного абелева расширения

Пусть S_p и S_0 — произвольные полугруппы. Обозначим через S свободное произведение $S_p * S_0$ с присоединенной к нему двусторонней единицей 1. Напомним [7], что каждый элемент s из $S_p * S_0$ единственным образом представим в виде

$$s = s_1 s_2 \dots s_n, \tag{5.1}$$

где s_i, s_{i+1} лежат в различных свободных сомножителях.

Определение 5.1. $\langle p, S \rangle$ -алгебра A называется S_p -перестановочной, если каждая операция $s \in S_p$ перестановочна с p, т.е. выполняется тождество

$$s(p(x, y, z)) = p(s(x), s(y), s(z)).$$
(5.2)

Всюду далее через $\mathfrak M$ будет обозначаться многообразие всех S_p -перестановочных алгебр. В данном разделе мы описываем конструкцию свободного S_p -перестановочного абелева расширения AE(A) произвольной S_p -перестановочной алгебры A. Она строится как модуль над некоторой специальной предаддитивной категорией — кольцом с множеством объектов A (касательным кольцом алгебры A). Конструкция, предъявляемая нами, допускает обобщение на случаи, когда S_p или S_0 являются пустыми.

Обозначим через S_p^1 подмоноид $S_p \cup \{1\}$ в S. Для произвольных a,b из A обозначим через Y_{ab} множество всевозможных формальных символов вида:

$$\langle a_1, a_2, a_3; i \rangle, \tag{5.3}$$

где $a_1,a_2,a_3\in A$, i=1,2,3, причем $a_i=b$, $p(a_1,a_2,a_3)=a$, и $a_j\neq a_{j+1}$ для некоторого $j\in\{1,2\}$; более того, если $a_1=a_2$ или $a_2=a_3$, то i=2.

$$\langle s, a \rangle$$
, (5.4)

где $s(a) = b, s \in S_p \cup S_0$.

Кроме того, для каждого $a \in A$ во множество Y_{aa} включается символ 1_a . Отметим, что для любых a и b из A множество Y_{ab} непусто, поскольку символ $\langle a, a, b; 2 \rangle$ принадлежит Y_{ab} при $a \neq b$.

Для произвольных $a,b\in A$ рассмотрим множество W_{ab} таких слов

$$\delta_1 \delta_2 \dots \delta_n$$
 (5.5)

в алфавите $Y = \bigcup Y_{ab}, \ a, b \in A$, для которых

$$\delta_1 \in Y_{aa_1}, \quad \delta_2 \in Y_{a_1a_2}, \quad \dots, \quad \delta_n \in Y_{a_{n-1}b},$$

причем

- 1) если $\delta_i = \langle s_i, a_i \rangle$, $\delta_{i+1} = \langle s_{i+1}, a_{i+1} \rangle$, то s_i , s_{i+1} лежат в разных свободных сомножителях полугруппы $S \setminus \{1\}$;
- 2) если $s_i \in S_p$ и $\delta_i = \langle s_i, a_i \rangle$, то $\delta_{i+1} = \langle s_{i+1}, a_{i+1} \rangle$, где $s_{i+1} \in S_0$.

Следствие 5.2. Пусть $\delta_1 \delta_2 \dots \delta_n \in W_{ab}$, и $1 \leqslant i < n$. Тогда

$$\delta_1 \dots \delta_i \in W_{aa_{i+1}}, \quad \delta_{i+1} \dots \delta_n \in Wa_{i+1}b.$$

Пусть $a,b \in A$. Обозначим через R(a,b) свободную аддитивную абелеву группу, порожденную W_{ab} . Для любых $a,b \in A$ введем следующие обозначения в R(a,b):

$$\langle a, b, b; 1 \rangle = \langle b, b, a; 3 \rangle = \langle 1, a \rangle = 1_a, \quad \langle a, b, b; 3 \rangle = -\langle a, b, b; 2 \rangle, \tag{5.6}$$

$$\langle b, b, a; 1 \rangle = -\langle b, b, a; 2 \rangle, \quad \langle a, a, a; 2 \rangle = -1_a. \tag{5.7}$$

Определим теперь для всевозможных $a,b,c\in A$ отображение

$$W_{ab} \times W_{bc} \to R(a,c), \quad (z,t) \mapsto z * t,$$
 (5.8)

по правилу:

1)

$$\left[\delta\langle c_1, c_2, c_3; i\rangle\right] * \left[\delta_1, \dots, \delta_n\right] = \delta\langle c_1, c_2, c_3; i\rangle\delta_1, \dots, \delta_n,$$

где $c_i = b$;

2) если s, s_1 лежат в разных свободных сомножителях $S \setminus \{1\}$, то

$$[\delta\langle s,b\rangle] * [\langle s_1,d\rangle\delta_2,\ldots,\delta_n] = \delta\langle s,b\rangle\langle s_1,d\rangle\delta_2,\ldots,\delta_n,$$

где $b = s_1(d)$;

3) если s,s_1 одновременно лежат в S_0 или в S_p , то

$$[\delta\langle s,b\rangle] * [\langle s_1,d\rangle\delta_2,\ldots,\delta_n] = \delta\langle ss_1,d\rangle\delta_2,\ldots,\delta_n,$$

где $b = s_1(d)$;

4) пусть $s \in S_p$, и для любых x,y,z известно действие W_{xy} на элементы из W_{yz} , имеющие длину, меньшую n. Тогда

$$\left[\delta\langle s,b\rangle\right]*\left[\langle b_1,b_2,b_3;i\rangle\delta_2,\ldots,\delta_n\right]=\delta\langle s(b_1),s(b_2),s(b_3);i\rangle\langle s,b_i\rangle*\left[\delta_2,\ldots,\delta_n\right];$$

5) $\delta * 1_b = 1_a * \delta = \delta$ для любого $\delta \in W_{ab}$.

Проверим корректность введенного отображения. В случае 1) элемент $\langle c_1, c_2, c_3; i \rangle$ принадлежит $Y_{c'b}$, где $c' = p(c_1, c_2, c_3)$, $\delta_1 \in Y_{bb_1}$. Правая часть равенства в этом случае лежит в W_{ac} . Точно так же обстоит дело и в случае 2). В случае 3), по следствию 5.2,

$$\delta \in W_{as(b)}, \quad \langle ss_1, d \rangle \in Y_{s(b)d}, \quad \delta_2 \dots \delta_n \in W_{dc}.$$

Если при этом $s, s_1 \in S_p$, то, по определению W_{bc} , $\delta_2 = \langle s_2, c \rangle$, где $s_2 \in S_0$. Следовательно, правая часть рассматриваемого равенства снова лежит в W_{ac} .

Рассмотрим теперь случай 4). Если $\delta = \delta'\langle s', s(b) \rangle$, то $s' \in S_0$. Таким образом, если $s(b_1) \neq s(b_2) \neq s(b_3)$, то $\delta\langle s(b_1), s(b_2), s(b_3); i \rangle \in W_{as(b_i)}$ при i=1,2,3. То же самое имеет место при i=2, если истинно только одно из равенств $s(b_2)=s(b_3)$ или $s(b_1)=s(b_2)$. Пусть, наконец, $s(b_1)=s(b_2)=s(b_3)$. Тогда $(-1)^{i+1}\delta\langle s(b_1), s(b_2), s(b_3); i \rangle = \delta \in W_{as(b_i)}$. По индукции доказывается, что элемент $\langle s, b_i \rangle * [\delta_2, \ldots, \delta_n]$ или противоположный к нему лежит в $W_{s(b_i)c}$.

Таким образом, отображение (5.8) определено корректно.

Поскольку W_{bc} свободно порождает абелеву группу R(b,c), действие каждого элемента из W_{ab} естественным образом определяет групповой гомоморфизм из R(b,c) в R(a,c), и мы получаем систему линейных отображений

$$W_{ab} \times R(b,c) \to R(a,c).$$
 (5.9)

С другой стороны, систему групповых гомоморфизмов W_{ab} можно распространить на всю группу R(a,b), полагая, что

$$(r_1+r_2)(q)=r_1(q)+r_2(q),$$
 где $r_1,r_2\in R(a,b),$ $q\in R(b,c).$

Наконец, мы получаем систему билинейных отображений

$$R(a,b) \times R(b,c) \to R(a,c).$$
 (5.10)

Предложение 5.3. Композиция групповых гомоморфизмов из W_{ab} и W_{bc} согласована с операцией (5.8).

Доказательство. Пусть $f_1 = \in W_{ab}$, $f_2 \in W_{bc}$, $a,b,c \in A$. Покажем, что $f_1f_2 = f_1*f_2$, где $f_1f_2 -$ композиция гомоморфизмов. Для этого возьмем любой элемент $d \in A$ и произвольное слово δ из W_{cd} . Достаточно рассмотреть следующие случаи.

Случай 1:

$$f_1 = \langle s_1, b \rangle, \quad f_2 = \langle s_2, c \rangle, \quad \delta = \langle s_3, c' \rangle \delta',$$

где s_1, s_2, s_3 одновременно лежат в S_0 или в S_p , причем $s_1(b) = a, s_2(c) = b, s_3(c') = c$. Тогда

$$(f_1 * f_2) * [\langle s_3, c' \rangle \delta'] = \langle s_1 s_2, c \rangle * [\langle s_3, c' \rangle \delta'] =$$

$$= \langle (s_1 s_2) s_3, c' \rangle \delta' = \langle s_1 (s_2 s_3), c' \rangle \delta' = f_1 * (f_2 * [\langle s_3, c' \rangle \delta']).$$

Случай 2:

$$f_1 = \langle s_1, b \rangle, \quad f_2 = \langle s_2, c \rangle, \quad \delta = \langle c_1, c_2, c_3; i \rangle \delta',$$

где $s_1, s_2 \in S_p$, $s_1(b) = a$, $s_2(c) = b$, $c = p(c_1, c_2, c_3)$. Тогда

$$(f_{1} * f_{2}) * [\langle c_{1}, c_{2}, c_{3}; i \rangle \delta'] = \langle s_{1}s_{2}, c \rangle * [\langle c_{1}, c_{2}, c_{3}; i \rangle \delta'] =$$

$$= \langle s_{1}s_{2}(c_{1}), s_{1}s_{2}(c_{2}), s_{1}s_{2}(c_{3}); i \rangle \langle s_{1}s_{2}, c_{i} \rangle * \delta' =$$

$$= \langle s_{1}, b \rangle * (\langle s_{2}(c_{1}), s_{2}(c_{2}), s_{2}(c_{3}); i \rangle \langle s_{2}, c_{i} \rangle * \delta') = f_{1} * (f_{2} * \delta).$$

Случай 3:

$$f_1 = \langle s_1, b \rangle, \quad f_2 = \langle b_1, b_2, b_3; i \rangle,$$

где $b_i = c, \ b = p(b_1, b_2, b_3), \ s_1 \in S_p$. В этом случае $f_2 * \delta$ есть слово $f_2 \delta$, откуда

$$f_1 * (f_2 * \delta) = \langle s_1 s_2(b_1), s_1 s_2(b_2), s_1 s_2(b_3); i \rangle \langle s_1 s_2, b_i \rangle * \delta = (f_1 * f_2) * \delta.$$

Предложение доказано.

Теперь мы можем в дальнейшем обозначать $f_1 * f_2$ через $f_1 f_2$ для любых f_1, f_2 из условия предложения 5.3. Таким образом, если

$$f \in W_{ab}, \quad g \in W_{bc}, \quad h \in W_{cd},$$

TO

$$f(gh) = (fg)h. (5.11)$$

Кроме того,

$$h(g_1 + g_2) = hg_1 + hg_2, \quad h \in W_{ab}, \quad g_1, g_2 \in W_{bc}$$

 $(h_1 + h_2)g = h_1g + h_2g \quad h_1, h_2 \in W_{ab}, \quad g \in W_{bc}.$

откуда получается предаддитивная категория

$$R = \bigcup_{a,b \in A} R(a,b)$$

с множеством объектов A, которое называется касательным кольцом алгебры A.

Пусть теперь X — некоторое порождающее множество алгебры A. Для произвольного $a \in A$ рассмотрим свободную аддитивную абелеву группу U(a), порожденную множеством

$$\bigcup_{x \in X} W_{ax}.$$

Обозначим через U(A) непересекающееся объединение

$$\bigcup_{a \in A} U(a).$$

Умножение (5.10) естественным образом индуцирует билинейные отображения

$$R(a,b) \times U(b) \to U(a)$$
 (5.12)

для всех $a,b\in A$, причем $r_1(r_2u)=(r_1r_2)u$ для $r_1\in R(c,a),\ r_2\in R(a,b),\ u\in U(b),$ откуда следует, что U(A) является модулем с несколькими объектами над касательным кольцом R.

Распространим теперь обозначение (5.4) на остальные элементы моноида S, полагая по определению, что

$$\langle s, a \rangle = \langle s_1, b_1 \rangle \langle s_2, b_2 \rangle \dots \langle s_n, b_n \rangle \in W_{s(b_1)b_n},$$

где s, s_1, \ldots, s_n из (5.1), $b_i = s_{i+1}(b_{i+1})$.

Непосредственно проверяется, что $\langle s, s'(b) \rangle \langle s', b \rangle = \langle ss', b \rangle$ для всех $s, s' \in S$, $b \in A$.

Определим на U(A) операции p и $s\in S$ по следующему правилу: если $u_i\in U(a_i)$, где i=1,2,3 и $u\in U(a)$, а s из (5.1), то

$$p(u_1, u_2, u_3) = \langle a_1, a_2, a_3; 1 \rangle u_1 + \langle a_1, a_2, a_3; 2 \rangle u_2 + \langle a_1, a_2, a_3; 3 \rangle u_3, \tag{5.13}$$

$$s(u) = \langle s, a \rangle u, \quad 1u = \langle 1, a \rangle u,$$
 (5.14)

где 1 — единица S. Заметим, что при этом

$$p(u_1, u_2, u_3) \in U(p(a_1, a_2, a_3)), \quad s(u) \in U(s(a)),$$

$$p(u_1, u_1, u_2) = \langle a_1, a_1, a_2; 1 \rangle u_1 + \langle a_1, a_1, a_2; 2 \rangle u_1 + \langle a_1, a_1, a_2; 3 \rangle u_2 = u_2,$$

$$p(u_1, u_2, u_2) = \langle a_1, a_2, a_2; 1 \rangle u_1 + \langle a_1, a_2, a_2; 2 \rangle u_2 + \langle a_1, a_2, a_2; 3 \rangle u_2 = u_1.$$

Далее, при $s \in S_n^1$, получаем

$$s(p(u_1, u_2, u_3)) = \langle s, p(a_1, a_2, a_3) \rangle \Big(\langle a_1, a_2, a_3; 1 \rangle u_1 + \langle a_1, a_2, a_3; 2 \rangle u_2 + \\ + \langle a_1, a_2, a_3; 3 \rangle u_3 \Big) = \langle s, p(a_1, a_2, a_3) \rangle \langle a_1, a_2, a_3; 1 \rangle u_1 + \\ + \langle s, p(a_1, a_2, a_3) \rangle \langle a_1, a_2, a_3; 2 \rangle u_2 + \langle s, p(a_1, a_2, a_3) \rangle \langle a_1, a_2, a_3; 3 \rangle u_3 = \\ = \langle s(a_1), s(a_2), s(a_3); 1 \rangle \langle s, a_1 \rangle u_1 + \langle s(a_1), s(a_2), s(a_3); 2 \rangle \langle s, a_2 \rangle u_2 + \\ + \langle s(a_1), s(a_2), s(a_3); 3 \rangle \langle s, a_3 \rangle u_3 = p(s(u_1), s(u_2), s(u_3)).$$

Таким образом, U(A) является S_p -перестановочной алгеброй. Обозначим через x элемент $1_x \in U(A)$ для всех $x \in X$.

Теорема 5.4. U(A) - aбелево расширение A.

Доказательство. Рассмотрим отображение

$$\xi: U(A) \to A, \quad u \mapsto a,$$

для всевозможных $a \in A, \ u \in U(a)$. Ясно, что

$$\xi(p(u_1, u_2, u_3)) = p(a_1, a_2, a_3) = p(\xi(u_1), \xi(u_2), \xi(u_3)),$$

$$\xi(s(u)) = s(a) = s(\xi(u)),$$

где $a, a_i \in A$, причем $u \in U(a)$, $u_i \in U(a_i)$, i = 1, 2, 3, $s \in S$. Таким образом, ξ является гомоморфизмом $\langle p, S \rangle$ -алгебр. Очевидна также сюръективность ξ , вследствие чего $U(A)/\operatorname{Ker} \xi \cong A$.

Пусть $u \in U(a)$. Тогда конгруэнц-класс $[u]_{\mathrm{Ker}\,\xi}$ совпадает с абелевой группой U(a). В силу наличия билинейных отображений (5.12), операции p и $s \in S$ определяют в U(A) аффинные отображения между этими классами. Следовательно, по [20, следствие 5.8], $\mathrm{Ker}\,\xi$ есть абелева конгруэнция на U(A), что и доказывает теорему.

Определим отображение

$$\varepsilon: \bigcup_{a,b\in A} W_{ab} \to \mathbb{Z},\tag{5.15}$$

при котором:

1)
$$\varepsilon(\langle a_1, a_2, a_3; i \rangle) = 1$$
 $(i \neq 2)$, $\varepsilon(\langle a_1, a_2, a_3; 2 \rangle) = -1$, $\varepsilon(\langle s, a \rangle) = 1$, где $s \in S$, $a_i, a \in A$; 2)

$$\varepsilon(\delta_1\delta_2) = \varepsilon(\delta_1)\varepsilon(\delta_2), \quad \delta_1\delta_2 \in \cup W_{ab}.$$
 (5.16)

Отметим, что в равенстве (5.16) мы рассматриваем обычное умножение слов. Однако нетрудно показать, что $\varepsilon(\delta_1 * \delta_2) = \varepsilon(\delta_1)\varepsilon(\delta_2)$. Допустим, что $\delta_1 = \langle s, a \rangle$, где $s \in S_p$, и $\delta_2 = \langle a_1, a_2, a_3; 2 \rangle$. Тогда

$$\varepsilon(\delta_1 * \delta_2) = \varepsilon(\langle s(a_1), s(a_2), s(a_3); 2 \rangle \langle s, a_i \rangle) = (-1) \cdot 1 = -1 = \varepsilon(\delta_1)\varepsilon(\delta_2).$$

Заметим, что ε определяет отображение базы свободной абелевой группы R(a,b) в \mathbb{Z} . Следовательно, ε единственным образом продолжается до отображения из U(A) в \mathbb{Z} .

Пусть теперь F — подалгебра U(A), порожденная множеством X относительно введенных нами операций (5.14), (5.13).

Лемма 5.5. Если $u \in F$, то $\varepsilon(u) = 1$.

Доказательство. Для $u \in X$ утверждение очевидно. Если $u_i \in U(g_i)$, $\varepsilon(u_i) = 1$, где $i = 1, \ldots, 3$, то

$$\varepsilon(p(u_1, u_2, u_3)) = \varepsilon(\langle g_1, g_2, g_3; 1 \rangle u_1) + \varepsilon(\langle g_1, g_2, g_3; 2 \rangle u_2) + \varepsilon(\langle g_1, g_2, g_3; 3 \rangle u_3) = 1 - 1 + 1 = 1.$$

Аналогично проверяется, что $\varepsilon(s(u))=1$ при $\varepsilon(u)=1$ для любого $s\in S$.

Лемма 5.6. Пусть B — некоторая S_p -перестановочная алгебра, θ — абелева конгруэнция на B, h — некоторый гомоморфизм из A в B/θ , и каждому элементу $x \in X$ сопоставлен в B фиксированный элемент $\tau(x) \in h(x)$. Тогда существует гомоморфизм $\varphi : F \to B$, при котором $\varphi(x) = \tau(x)$ для любого $x \in X$.

Доказательство. Распространим τ на остальные элементы A. Для этого выберем, для каждого $a \in A$, произвольный элемент $\tau(a) \in h(a)$. Каждый класс по конгруэнции θ будем рассматривать как тернарную группу с нулевым элементом $\tau(a)$. Напомним, что существуют гомоморфизмы групп

$$\label{eq:definition} \begin{split} \left[\frac{\partial p}{\partial i} (\tau(a_1), \tau(a_2), \tau(a_3)) \right] &: h(a_i) \to h(p(a_1, a_2, a_3)), \quad i = 1, 2, 3, \\ \left[\frac{\partial s}{\partial 1} (\tau(a_1)) \right] &: h(a_1) \to h(s(a_1)), \end{split}$$

для которых

$$p(u, v, w) = \left[\frac{\partial p}{\partial 1}(\tau(a_1), \tau(a_2), \tau(a_3))\right](u) + \left[\frac{\partial p}{\partial 2}(\tau(a_1), \tau(a_2), \tau(a_3))\right](v) + \left[\frac{\partial p}{\partial 3}(\tau(a_1), \tau(a_2), \tau(a_3))\right](w) + p(\tau(a_1), \tau(a_2), \tau(a_3)),$$

$$s(u) = \left[\frac{\partial s}{\partial 1}(\tau(a_1))\right](u) + s(\tau(a_1)),$$

где $u \in h(a_1), v \in h(a_2), w \in h(a_3), s \in S.$

Зададим отображение $\varphi: \cup W_{ab} \to B$, пользуясь следующим правилом:

1)
$$\varphi(x) = \varphi(1_x) = \tau(x) \in h(x)$$
, если $x \in X$;

2) если $\delta_1=\langle a_1,a_2,a_3;i
angle$ и известно $arphi(\delta)$, то

$$\varphi(\delta_1 \delta) = \left[\frac{\partial p}{\partial i} (\tau(a_1), \tau(a_2), \tau(a_3)) \right] (\varphi(\delta)) + \varepsilon(\delta_1 \delta) p(\tau(a_1), \tau(a_2), \tau(a_3));$$

3) если $\delta_1 = \langle s, a \rangle$, $s \in S$, то

$$\varphi(\delta_1 \delta) = \left[\frac{\partial s}{\partial 1}(\tau(a)) \right] (\varphi(\delta)) + \varepsilon(\delta_1 \delta) s(\tau(a)).$$

Ограничение φ на группу U(a), для любого $a\in A$, является отображением совокупности ее свободных порождающих в абелеву группу $[\tau(a)]_{\theta}=h(a)$. Поэтому оно может быть продолжено до группового гомоморфизма. Следовательно, мы можем продолжить φ до объединения таких гомоморфизмов по всем $a\in A$. Возьмем $a_1,a_2,a_3\in A$, обозначим элементы $\tau(a_k)$ через $e_k,\ k=1,2,3$, и пусть $u=\sum_i \delta_j\in U(a_i)$ для некоторого $1\leqslant i\leqslant 3$. Применяя лемму 5.5, получаем

$$\varphi(\langle s, a_i \rangle u) = \varphi\left(\langle s, a_i \rangle \sum_j \delta_j\right) = \varphi\left(\sum_j \langle s, a_i \rangle \delta_j\right) = \sum_j \varphi\left(\langle s, a_i \rangle \delta_j\right) = \\
= \sum_j \left[\frac{\partial s}{\partial 1}(e_i)\right] (\varphi(\delta_j)) + \sum_j \varepsilon\left(\langle s, a_i \rangle \delta_j\right) s(e_i) = \\
= \left[\frac{\partial s}{\partial 1}(e_i)\right] \left(\sum_j \varphi(\delta_j)\right) + \varepsilon\left(\langle s, a_i \rangle\right) \varepsilon\left(\sum_j \delta_j\right) s(e_i) = \\
= \left[\frac{\partial s}{\partial 1}(e_i)\right] \left(\varphi(\sum_j \delta_j)\right) + \varepsilon(\langle s, a_i \rangle) \varepsilon(u) s(e_i) = \left[\frac{\partial s}{\partial 1}(e_i)\right] (\varphi(u)) + s(e_i). \quad (5.17)$$

Далее,

$$\begin{split} \varphi(\langle a_1,a_2,a_3;i\rangle u) &= \varphi\left(\langle a_1,a_2,a_3;i\rangle\sum_j\delta_j\right) = \varphi\left(\sum_j\langle a_1,a_2,a_3;i\rangle\delta_j\right) = \\ &= \sum_j \varphi(\langle a_1,a_2,a_3;i\rangle\delta_j) = \sum_j \left[\frac{\partial p}{\partial i}(e_1,e_2,e_3)\right](\varphi(\delta_j)) + \sum_j \varepsilon(\langle a_1,a_2,a_3;i\rangle\delta_j)p(e_1,e_2,e_3) = \\ &= \left[\frac{\partial p}{\partial i}(e_1,e_2,e_3)\right]\left(\sum_j \varphi(\delta_j)\right) + \varepsilon\left(\langle a_1,a_2,a_3;i\rangle\sum_j \delta_j\right)p(e_1,e_2,e_3) = \\ &= \left[\frac{\partial p}{\partial i}(e_1,e_2,e_3)\right]\left(\varphi\left(\sum_j \delta_j\right)\right) + (-1)^{i+1}\varepsilon\left(\sum_j \delta_j\right)p(e_1,e_2,e_3) = \\ &= \left[\frac{\partial p}{\partial i}(e_1,e_2,e_3)\right](\varphi(u)) + (-1)^{i+1}\varepsilon(u)p(e_1,e_2,e_3) = \left[\frac{\partial p}{\partial i}(e_1,e_2,e_3)\right](\varphi(u)) + (-1)^{i+1}p(e_1,e_2,e_3). \end{split}$$

Остается показать, что $arphi_{|F}$ есть гомоморфизм $\langle p,S
angle$ -алгебр. Действительно,

$$\varphi(p(u_1, u_2, u_3)) = \sum_{i=1}^{3} \varphi(\langle a_1, a_2, a_3; i \rangle u_i) =
= \sum_{i=1}^{3} \left(\left[\frac{\partial p}{\partial i} (e_1, e_2, e_3) \right] (\varphi(u_i)) + (-1)^{i+1} p(e_1, e_2, e_3) \right) = p(\varphi(u_1), \varphi(u_2), \varphi(u_3)).$$

Из (5.17) следует перестановочность φ с любой операцией из S_0 .

Теорема 5.7. F является свободным абелевым расширением A, порожденным множеством X.

Доказательство. Рассмотрим некоторое абелево расширение B алгебры A, порожденное X. Обозначим через h изоморфизм $A \to B/\theta$ для соответствующей абелевой конгруэнции $\theta \in \operatorname{Con}(B)$. Пусть теперь $\tau(x) = x_B$ для каждого $x \in X$. Тогда, по лемме 5.6, существует абелев гомоморфизм $\varphi : F \to B$, действующий тождественно на X. Теорема доказана.

Теорема 5.8. Ядро I абелева гомоморфизма $AE(A) \to A$ есть наибольшая абелева конгруэнция на AE(A).

Доказательство. Возьмем абелеву конгруэнцию $\alpha \in \mathrm{Con}\, AE(A)$ и $(a,b) \in \alpha$, для некоторых $a \in U(g), b \in U(h)$, где $g,h \in A$. Напомним, что каждый конгруэнц-класс $[a]_{\alpha}$ можно рассматривать как тернарную группу со сложением x+y=p(x,a,y), при котором -x=p(a,x,a). Тогда

$$\begin{split} a &= b - b = p(b,a,p(a,b,a)) = \langle h,g,p(g,h,g);1\rangle b + \langle h,g,p(g,h,g);2\rangle a + \\ &+ \langle h,g,p(g,h,g);3\rangle (\langle g,h,g;1\rangle a + \langle g,h,g;2\rangle b + \langle g,h,g;3\rangle a) = \\ &= (\langle h,g,p(g,h,g);2\rangle + \langle h,g,p(g,h,g);3\rangle (\langle g,h,g;1\rangle + \\ &+ \langle g,h,g;3\rangle))a + (\langle h,g,p(g,h,g);3\rangle \langle g,h,g;2\rangle + \langle h,g,p(g,h,g);1\rangle)b. \end{split}$$

Последнее равенство является равенством слов в свободной аддитивной абелевой группе U(g). Следовательно, система уравнений

$$\langle h, g, p(g, h, g); 3 \rangle \langle g, h, g; 2 \rangle + \langle h, g, p(g, h, g); 1 \rangle = 0_g,$$

$$\langle h, g, p(g, h, g); 2 \rangle + \langle h, g, p(g, h, g); 3 \rangle (\langle g, h, g; 1 \rangle + \langle g, h, g; 3 \rangle) = 1_g$$

имеет единственное решение:

$$\langle h,g,p(g,h,g);1\rangle=1_g,\quad \langle h,g,p(g,h,g);2\rangle=-1_g,\quad \langle h,g,p(g,h,g);3\rangle=1_g,$$
 откуда $g=h$, т.е. $(a,b)\in I$.

6. Свободные абелевы алгебры

Целью настоящего раздела является построение свободной абелевой S_p -перестановочной алгебры с базой X.

Предложение 6.1. На каждой абелевой S_p -перестановочной алгебре A полиномиально определима структура левого модуля над полугрупповым кольцом $\mathbb{Z}S$ полугруппы S над кольцом целых чисел.

Доказательство. Зафиксируем произвольный элемент e из A и рассмотрим тернарную группу $\langle A, + \rangle$ с нулевым элементом e, относительно сложения (1.2). Из равенства (1.4) получаем

$$a+b=p(a,e,b), \quad s(a)=\alpha_s(a)+s(e)$$

для произвольных $a,b \in A$, где $s \in S$, и α_s — групповой эндоморфизм, заданный по правилу $\alpha_s(x) = p(s(x),s(e),e)$. Эндоморфизмы α_s для всех $s \in S$ порождают подкольцо с единицей R_S кольца эндоморфизмов тернарной группы A. Более того, $\alpha_{s_1}\alpha_{s_2} = \alpha_{s_1s_2}$ для всех $s_1,s_2 \in S$ в силу соотношения (1.4). Следовательно, существует гомоморфизм φ моноида S в мультипликативный моноид кольца R_S . Пусть ψ — гомоморфизм кольца целых чисел в R_S . Тогда $\varphi(s)\psi(z) = \psi(z)\varphi(s)$ для любых $s \in S$, $z \in \mathbb{Z}$. Следовательно, существует эпиморфизм кольца $\mathbb{Z}S$ на R_S , откуда следует, что A образует левый модуль над $\mathbb{Z}S$.

Замечание 6.2. Напомним, что каждый элемент кольца $\mathbb{Z}S$ единственным образом представим в виде суммы одночленов zs, где $z\in\mathbb{Z},\ s\in S.$

Рассмотрим теперь свободный модуль H(X) над полугрупповым кольцом $\mathbb{Z}S$ с базой X. Пусть p(x,y,z)=x-y+z для любых $x,y,z\in H(X)$. Тогда H(X) можно рассматривать как S_p -перестановочную алгебру относительно тернарной мальцевской операции p и действием моноида S, которое индуцировано умножением на элементы кольца $\mathbb{Z}S$. Ясно, что операция p перестановочна с любой операцией из S, и сложение в H термально выражается через p. Более того, каждая унарная операция $s\in S$ определяет эндоморфизм абелевой группы H(X), вследствие чего S_p -перестановочная алгебра H(X) оказывается абелевой.

Обозначим через F^1 подалгебру, порожденную множеством X в S_p -перестановочной алгебре H(X). Обозначим через ε тривиализацию (пополнение) кольца $\mathbb{Z}S$, при котором $\varepsilon(\sum z_i s_i) = \sum z_i$. В силу замечания 6.2 гомоморфизм ε можно продолжить до гомоморфизма ε_H из H(X) в \mathbb{Z} , полагая, что

$$\varepsilon_H \left(\sum u_i x_i \right) = \sum \varepsilon(u_i). \tag{6.1}$$

Теорема 6.3. Элемент $m\in H(X)$ принадлежит F^1 тогда и только тогда, когда $\varepsilon_H(m)=1.$

Доказательство. Необходимость проверяется так же, как в лемме 5.5.

Пусть теперь $m = \sum a_{ij} s_i x_j \in H$, причем $\sum a_{ij} = 1$. Легко показать, что $\sum |a_{ij}| = 2n-1$ для некоторого натурального n. Далее применяем индукцию по n.

- 1. При n=1 мы получаем m=sx для некоторых $s\in S,\ x\in X,$ откуда $m\in F^1.$
- 2. Предположим, что для некоторого натурального n_0 любой элемент $m \in H$, для которого $\sum a_{ij} = 1$ и $\sum |a_{ij}| = 2n_0 1$, принадлежит F^1 .
- 3. Пусть теперь $m=\sum a_{ij}s_ix_j\in H$, $\sum a_{ij}=1$ и $\sum |a_{ij}|=2(n_0+1)-1$. Среди a_{ij} найдутся хотя бы один отрицательный коэффициент a_{pr} (иначе $\sum a_{ij}=\sum |a_{ij}|>1$) и хотя бы один положительный a_{uv} (в противном случае $\sum a_{ij}<0$). Тогда в каноническое представление элемента m входят слагаемые $a_{pr}s_px_r$ и $a_{uv}s_ux_v$. Пусть $h=m+s_px_r-s_ux_v$, откуда

$$h = \sum a_{ij} s_j x_i + (a_{pr} + 1) s_p x_r + (a_{st} - 1) s_u x_v,$$

где $i \neq p, s, j \neq r, t$. Следовательно,

$$\sum_{\substack{i \neq p, u; \\ j \neq r, v}} |a_{ij}| + |a_{pr} + 1| + |a_{uv} - 1| = \sum_{\substack{i \neq p, u; \\ j \neq r, v}} |a_{ij}| + |a_{pr}| - 1 + |a_{uv}| - 1 = \sum_{\substack{i \neq p, u; \\ j \neq r, v}} |a_{ij}| - 2 = 2n_0 - 1,$$

$$\sum_{\substack{i \neq p, u; \\ j \neq r, v}} a_{ij} + (a_{pr} + 1) + (a_{uv} - 1) = \sum_{\substack{i \neq p, u; \\ j \neq r, v}} a_{ij} = 1.$$

Таким образом, по предположению 2, $h \in F^1$. Отсюда следует

$$m = h - s_n x_r + s_u x_v = p(h, s_n(x_r), s_u(x_v)),$$

и поэтому $m \in F^1$, чем и завершается доказательство.

Лемма 6.4. Пусть A — абелева алгебра, на которой определена тернарная группа c нулем e относительно сложения (1.2). Тогда

$$s(a_1 + \cdots + a_n) = s(a_1) + \cdots + s(a_n) - (n-1)s(e)$$

для любых $s \in S$, $a_i \in A$.

Доказательство. Так как

$$(a_1 + \dots + a_n) = p(a_1, e, p(a_2, e, p(\dots p(a_{n-1}, e, a_n)) \dots),$$

имеем

$$s(a_1 + \dots + a_n) = s(a_1) - s(e) + s(a_2) - s(e) + \dots + s(a_{n-1}) - s(e) + s(a_n).$$

Лемма доказана.

Лемма 6.5. Пусть A- алгебра из предыдущей леммы, пусть также $a\in A$, $k\in\mathbb{Z}$, $s\in S$. Тогда s(ka)=ks(a)-(k-1)s(e).

Доказательство. Пусть k=0. Тогда s(ka)=s(e)=0 s(a)-(0-1)s(e). При k>0 заключение следует из леммы 6.4. Пусть, наконец, k<0. Тогда $ka=p(e,a,p(e,a,p(\dots p(e,a,e))\dots))$, откуда

$$s(ka) = s(e) - s(a) + \dots + s(e) - s(a) + s(e) = ks(a) - (k-1)s(e).$$

Лемма доказана.

Теорема 6.6. F^1 является свободной абелевой S_p -перестановочной алгеброй с базой X.

Доказательство. Пусть $A \in \mathfrak{M}_1$ и $e \in A$. По предложению 6.1, алгебра A образует левый $\mathbb{Z}S$ -модуль с нулем e. Рассмотрим произвольное отображение $\varphi: X \to A, \ x \mapsto a_x$. Определим отображение ψ из F^1 в A по правилу: если

$$m = z_{11}s_1x_1 + \dots + z_{kl}s_kx_l, \tag{6.2}$$

ТО

$$\psi(m) = z_{11}s_1(a_{x_1}) + \dots + z_{kl}s_k(a_{x_l}).$$

Поскольку представление (6.2) однозначно, отображение ψ задано корректно. Заметим также, что s(a+e)=s(p(a,e,e))=s(a)-s(e)+s(e)=s(a).

Легко видеть, что ψ совпадает с φ на множестве X. Пусть теперь $m=\sum a_{ij}s_ix_j\in F^1$, и $s\in S$. В силу лемм 6.4 и 6.5 имеем

$$s(\psi(m)) = s\left(\sum a_{ij}s_i(a_{x_j})\right) = \sum s(a_{ij}s_i(a_{x_j})) - (ij-1)s(e) =$$

$$= \sum a_{ij}ss_i(a_{x_j}) - \sum (a_{ij}-1)s(e) - (ij-1)s(e) =$$

$$= \sum a_{ij}ss_i(a_{x_j}) - \left(\sum a_{ij}-ij\right)s(e) - (ij-1)s(e) =$$

$$= \sum a_{ij}ss_i(a_{x_j}) - (1-ij)s(e) - (ij-1)s(e) = \psi(s(m)).$$

Пусть теперь $m_i = \sum\limits_{j=1}^n z_{ij} s_j x_j, \ i=1,2,3.$ Тогда

$$\psi(p(m_1, m_2, m_3)) = \sum_{j=1}^{n} (z_{1j} - z_{2j} + z_{3j}) s_j(a_{x_j}) = p(\psi(m_1), \psi(m_2), \psi(m_3)).$$

Таким образом, ограничение ψ на F^1 есть гомоморфизм S_p -перестановочных алгебр.

Конструкция свободного абелева расширения S_p -перестановочной алгебры и свободной разрешимой алгебры является обобщением аналогичных результатов С. Чакрабарти [15] для p-алгебр, поскольку каждая p- алгебра является $\langle p, S \rangle$ -алгеброй для единичного моноида $S = \{1\}$.

7. Элементы свободных абелевых расширений

Пусть G — произвольная S_p -перестановочная алгебра, порожденная своим подмножеством X, и F — свободное абелево расширение G, порожденное X.

Пусть $m \in F$. Тогда $m \in U(q)$ для некоторого $q \in G$ и, следовательно, для некоторого l имеем

$$m = \sum_{i=1}^{l} h_i x_i, (7.1)$$

где $h_i \in W_{g,x_i}, x_i \in X$.

Теорема 7.1. Если $m \in U(G)$, т.е. $m = \sum h_i x_i$, $h_i \in W_{g,x_i}$, $x_i \in X$, $g \in G$, то $m \in F$ тогда и только тогда, когда выполняются следующие условия:

- 1) верно одно из равенств:
 - (a) $m = \langle a_1, a_2, a_3; 1 \rangle u_1 + \langle a_1, a_2, a_3; 2 \rangle u_2 + \langle a_1, a_2, a_3; 3 \rangle u_3$, $z \partial e \ a_i \in G$, $u_i \in U(a_i)$;
 - (b) $m = \langle s, a_1 \rangle u_1$, $\varepsilon \partial e \ a_1 \in G$, $u_1 \in U(a_1)$, $s \in S \setminus S_p$;
 - (c) $m \in X$;

2) в равенствах 1a), 1b) по индукции для каждого из u_i , i = 1, 2, 3, также выполнены условия 1), 2).

Доказательство. Предположим, что $m \in F$. Элемент m является значением некоторого терма $t = t(x_1, \ldots, x_n)$ сигнатуры $\langle p, S \rangle$ от элементов множества X. Проведем индукцию по числу l в (7.1). Если l = 1, то либо $m = x \in X$, и выполняется условие 1c), либо имеет место случай 1b). Предположим, что необходимость доказана для элементов u_1, u_2, u_3 , у которых число слагаемых в записи не превосходит некоторого числа l_0 . Рассмотрим два случая.

- 1) $m = p(u_1, u_2, u_3)$. Полагая $u_i \in U(a_i)$, $a_i \in G$, i = 1, 2, 3, получаем $m = \langle a_1, a_2, a_3; 1 \rangle u_1 + \langle a_1, a_2, a_3; 2 \rangle u_2 + \langle a_1, a_2, a_3; 3 \rangle u_3$, что соответствует случаю 1а).
- 2) $m = s(u_1)$, где $u_1 \in U(a), a \in G, s \in S$. Возможны следующие случаи.
 - (a) $u_1 = \langle b_1, b_2, b_3; 1 \rangle v_1 + \langle b_1, b_2, b_3; 2 \rangle v_2 + \langle b_1, b_2, b_3; 3 \rangle v_3$, $s \in S_0$. Тогда $m = \langle s, a \rangle u_1$, и сразу получается случай 1b).
 - (b) $u_1 = \langle s_1, b \rangle v$. Следовательно, $m = \langle s, a \rangle \langle s_1, b \rangle v = \langle ss_1, b \rangle v$, что также соответствует равенству 1b).
 - (c) $u_1=\langle b_1,b_2,b_3;1\rangle v_1+\langle b_1,b_2,b_3;2\rangle v_2+\langle b_1,b_2,b_3;3\rangle v_3,\ s\in S_p.$ Тогда

$$m = \langle s(b_1), s(b_2), s(b_3); 1 \rangle \langle s, b_1 \rangle v_1 + \langle s(b_1), s(b_2), s(b_3); 2 \rangle \langle s, b_2 \rangle v_2 + \langle s(b_1), s(b_2), s(b_3); 3 \rangle \langle s, b_3 \rangle v_3.$$

Для v_1, v_2, v_3 выполняется индуктивное предположение. Следовательно, оно выполнено и для $\langle s, b_j \rangle v_j = s(v_j), \quad j=1,2,3,$ и мы снова приходим к 1a).

Таким образом, для m выполняется условие 1), а также, в силу индуктивного предположения, и условие 2). Доказательство обратного утверждения тривиально.

Пусть в (7.1) $h_i = \delta_{i1}\delta_{i2}\dots\delta_{ik(i)}$. Тогда условия 1a), 1b) в теореме 7.1 соответственно равносильны следующим условиям:

a') при некоторой перенумерации слагаемых в представлении элемента m:

$$h_{11} = \dots = h_{q1} = \langle a_1, a_2, a_3; 1 \rangle,$$

 $h_{q+11} = \dots = h_{r1} = \langle a_1, a_2, a_3; 2 \rangle,$
 $h_{r+11} = \dots = h_{m1} = \langle a_1, a_2, a_3; 3 \rangle,$

где $1 \leqslant q < r < m$;

b')
$$h_{i,1} = \langle s, a \rangle, i = 1, ..., m, s \in S \setminus \{1\}.$$

Действительно, очевидно, что из a') и b') получаются соответственно 1a) и 1b).

Обратное несложно показать, рассматривая каноническое представление элемента m в свободной абелевой абелевой группе U(g).

8. Свободные абелевы расширения как модули над касательными кольцами

Пусть \mathcal{K} — предаддитивная малая категория. Рассмотрим модуль \mathcal{M} над \mathcal{K} ,

$$\mathcal{M} = \bigcup \{ M(A) \mid A \in \mathrm{Ob}(\mathcal{K}) \}.$$

Зафиксируем в каждой абелевой группе M(A) произвольный элемент e_A . Для любых $A,B\in \mathrm{Ob}(\mathcal{K})$ и для каждого морфизма $r\in \mathrm{Hom}(A,B)$ рассмотрим отображение $r_e:M(A)\to M(B)$, заданное по правилу

$$r_e(a) = ra - re_A + e_B. ag{8.1}$$

В дальнейшем через $r\circ a$ мы будем обозначать $r_e(a)$. Кроме того, для любых элементов a,b из M(A) положим

$$a \diamondsuit b = a - e_A + b. \tag{8.2}$$

Ясно, что $\langle M(A), \diamondsuit \rangle$ является свободной абелевой группой с нулем e_A , которая изоморфна $\langle M(A), + \rangle$ с изоморфизмом $a \mapsto a + e_A$. Более того, справедлива следующая теорема.

Теорема 8.1. \mathcal{M} образует модуль над \mathcal{K} относительно операции (8.2) и действия (8.1). Этот модуль изоморфен исходному.

Доказательство. Пусть $r \in \text{Hom}(A, B)$. Возьмем элементы $a, b \in M(A)$. Тогда

$$r \circ (a \diamondsuit b) = r \circ (a - e_A + b) = r(a - e_A + b) - re_A + e_B =$$

$$= ra - re_A + rb - re_A + e_B - e_B + e_B =$$

$$= (ra - re_A + e_B) + (rb - re_A + e_B) - e_B = r \circ a \diamondsuit r \circ b.$$

Для произвольных $r_1, r_2 \in \text{Hom}(A, B), a \in M(A)$ получаем

$$(r_1 + r_2) \circ a = (r_1 + r_2)a - (r_1 + r_2)e_A + e_B - e_B + e_B =$$

= $(r_1a - r_1e_A + e_B) + (r_2a - r_2e_A + e_B) - e_B = r_1 \circ a \diamond r_2 \circ a.$

Таким образом, (8.1) определяет систему билинейных отображений

$$\operatorname{Hom}(A,B) \times M(A) \to M(B), \quad A,B \in \operatorname{Ob}(\mathcal{K}); \quad (r,a) \mapsto r \circ a.$$

Далее, пусть $r_1 \in \operatorname{Hom}(A,B), r_2 \in \operatorname{Hom}(B,C), a \in M(A)$. Тогда

$$r_2 \circ (r_1 \circ a) = r_2(r_1 a - r_1 e_A + e_B) - r_2 e_B + e_C =$$

$$= (r_1 r_2) a - (r_1 r_2) e_A + r_2 e_B - r_2 e_B + e_C = (r_1 r_2) \circ a.$$

Следовательно, действие (8.1) согласовано с умножением морфизмов. Наконец,

$$1_A \circ a = 1_A a - 1_A e_A + e_A = a.$$

Докажем теперь, что объединение η всех групповых гомоморфизмов вида

$$M(A) \to M(A), \quad m \mapsto m + e_A,$$

является изоморфизмом модулей над \mathcal{K} . Прежде всего, очевидно, что ограничение η на каждую абелеву группу является групповым автоморфизмом. Если $r \in \text{Hom}(A, B)$, $a \in M(A)$, то

$$\eta(ra) = ra + e_B + re_A - re_A = r(a + e_A) - re_A + e_B = r \circ (\eta(a)).$$

Остается заметить, что отображение η' , $m\mapsto m-e_A$, является обратным для η и сохраняет операцию сложения и действия морфизмов из \mathcal{K} .

Договоримся в дальнейшем обозначать через $\smile a$ элемент, противоположный a относительно операции \diamondsuit . Тогда естественным является обозначение $a\smile b$ для разности элементов a и b.

Теорема 8.2. На свободном абелевом расширении произвольной S_p -перестановочной алгебры A полиномиально определима структура модуля над касательным кольцом R(A). Этот модуль вложим в U(A).

Доказательство. Пусть B=AE(A), и I— ядро абелева гомоморфизма $B\to A$. На каждом классе I(a) определим тернарную абелеву группу для произвольного элемента e_a , взятого в качестве нулевого. Напомним, что каждая главная производная операция $t(x_1,\ldots,x_n)$ и произвольный упорядоченный набор $(a_1,\ldots,a_n)\in A^n$ задают групповые гомоморфизмы $\left[\frac{\partial t}{\partial i}(a_1,\ldots,a_n)\right]$ из $I(a_i)$ в $I(t(a_1,\ldots,a_n))$ по правилу:

$$\left[\frac{\partial t}{\partial i}(a_1,\ldots,a_n)\right](v)=p\left(t(e_{a_1},\ldots,v,\ldots,e_{a_n}),t(e_{a_1},\ldots,e_{a_n}),e_{t(a_1,\ldots,a_n)}\right).$$

Перейдем теперь к модулю U(A), определив на U(A) частичные операции (8.2) и (8.1) на каждом конгруэнц-классе по I. Докажем, что B — подмодуль $\widetilde{U}(A)$. Пусть $u,v\in I(a)$ для некоторого $a\in A$. Тогда $u\smile v=u-v+e_a=p(u,v,e_a)\in I(a)$, т.е. тернарная группа I(a) является подгруппой U(a). Далее, пусть $\delta=\langle a_1,a_2,a_3;i\rangle,\ a_i=a,$ и $u\in I(a)$. Тогда, полагая $b=p(a_1,a_2,a_3)$, получаем

$$\delta \circ u = \delta u - \delta e_a + e_b = \langle a_1, a_2, a_3; 1 \rangle e_{a_1} + \dots + \langle a_1, a_2, a_3; i \rangle u + \dots + \langle a_1, a_2, a_3; 3 \rangle e_{a_3} - \langle a_1, a_2, a_3; 1 \rangle e_{a_1} - \langle a_1, a_2, a_3; 2 \rangle e_{a_2} - \langle a_1, a_2, a_3; 3 \rangle e_{a_3} + e_b = p(p(e_{a_1}, \dots, u, \dots, e_{a_3}), p(e_{a_1}, e_{a_2}, e_{a_3}), e_b) =$$

$$= \left[\frac{\partial p}{\partial i} (a_1, a_2, a_3) \right] (u) \in I(b).$$

Пусть теперь $\delta = \langle s, a \rangle$, $s \in S$. Тогда

$$\delta \circ u = p(s(u), s(e_a), e_{s(a)}) = \left[\frac{\partial s}{\partial 1}(a)\right](u) \in I(b).$$

По индукции получаем, что $r \circ u \in I(b)$ для любых $r \in W_{ba}$, $u \in I(a)$. Далее, по линейности, это утверждение справедливо для произвольного элемента свободной абелевой группы R(b,a). Остается заметить, что, согласно теореме 8.1, требуемое вложение осуществляется при помощи отображения η' , заданного по правилу $\eta'(u) = u - e_a$ при $u \in I(a)$.

Следствие 8.3. Тернарная группа, определенная на любом конгруэнц-классе по I из предыдущей теоремы, свободна.

Предложение 8.4. S_p -перестановочная алгебра A вложима в S_p -перестановочную алгебру U(A).

Доказательство. Рассмотрим множество $A'=\{0_a\mid a\in A\}$, состоящее из нулевых элементов всех абелевых групп U(a). Так как $r0_x=0_y$ для любого $r\in R(y,x)$, то $p(0_a,0_b,0_c)=0_{p(a,b,c)}$ и $s(0_a)=\langle s,a\rangle 0_a=0_{s(a)}$ для каждого s из S. Требуемое вложение осуществляется при помощи отображения $a\mapsto 0_a,\ a\in A$.

Пусть теперь ε — отображение из U(A) в \mathbb{Z} , заданное равенством (5.15).

Предложение 8.5. Подмножество $U_0 = \{u \in U(A) \mid \varepsilon(u) = 0\}$ образует подмодуль U(A).

Доказательство. Пусть $a \in A$ и $u, v \in U(a) \cap U_0$. Отметим, что для любого $a \in A$ ограничение ε на U(a) является гомоморфизмом групп. Следовательно, $\varepsilon(u-v) = \varepsilon(u) + \varepsilon(-v) = \varepsilon(u) - \varepsilon(v) = 0$. Далее, в силу (5.16), $\varepsilon(ru) = \varepsilon(r)\varepsilon(u) = 0$ для произвольного $r \in R(b,a)$.

Предложение 8.6. Алгебра AE(A) вложима в U_0 как R(A)-модуль.

Доказательство. По теореме 8.2, $\eta'(AE(A))$ является подмодулем в U(A), где $\eta'(u) = u - e_a$ при $u \in I(a)$. Согласно лемме 5.5, $\varepsilon(\eta'(u)) = \varepsilon(u) - \varepsilon(e_a) = 1 - 1 = 0$. Таким образом, $\eta'(AE(A)) -$ подмодуль U_0 .

Заметим, что указанное вложение не является изоморфизмом. Рассмотрим, например, элемент $v=\langle x_1,x_2,x_3;i\rangle x_i-e_{p(x_1,x_2,x_3)}$, где $x_i\in X$. Очевидно, что $v\in U_0$. Однако, из теоремы 7.1 следует, что $\eta'(v)\notin AE(A)$.

Пусть теперь F^1 — свободная абелева S_p -перестановочная алгебра с базой X. Напомним, что носитель этой алгебры является подмножеством элементов свободного модуля H с базой X над полугрупповым кольцом $\mathbb{Z}S$, а F^1 является подмножеством свободного модуля H над полугрупповым кольцом $\mathbb{Z}S$, которое можно рассматривать как предаддитивную однообъектную категорию. Пусть e — произвольный фиксированный элемент из F^1 . По теореме 8.1 операции (8.2) и (8.1), которые будут записываться в виде

$$a \diamondsuit b = a - e + b, \quad r \circ a = ra - re + e, \quad r \in \mathbb{Z}S,$$
 (8.3)

задают на H еще одну структуру модуля над $\mathbb{Z}S$, который будем обозначать через \widetilde{H} , Как показано в теореме 8.1, отображение η , заданное по правилу $\eta(u)=u+e$, есть изоморфизм модулей H и \widetilde{H} . Обратный ему изоморфизм η' определяется по правилу $\eta'(u)=u-e$.

Положим $H_0 = \{h \in H \mid \varepsilon_H(h) = 0\}$, где ε_H – отображение (6.1).

Теорема 8.7. Операции (8.3) определяют на F^1 структуру модуля над $\mathbb{Z}S$, изоморфного H_0 .

Доказательство. Рассмотрим тернарную группу, заданную на F^1 при помощи элемента e, операция сложения в которой совпадает со сложением \diamondsuit . Каждая операция s из S задает на F^1 групповой эндоморфизм $\left[\frac{\partial s}{\partial 1}(e)\right]$ такой, что $s(y) = \left[\frac{\partial s}{\partial 1}(e)\right](y) \diamondsuit s(e)$, откуда

$$\left[\frac{\partial s}{\partial 1}(e)\right](y) = s(y) \smile s(e) = sy \smile se = s \circ y, \quad y \in F^1.$$

Возьмем произвольный элемент $u \in F^1$. Тогда из теоремы 6.3 вытекает равенство

$$\varepsilon_H(\eta'(u)) = \varepsilon_H(u) - \varepsilon_H(e) = 1 - 1 = 0,$$

откуда $\eta'(u) \in H_0$. Обратно, пусть $v \in H_0$. Тогда

$$\varepsilon_H(\eta(v)) = \varepsilon_H(v+e) = \varepsilon_H(v) + \varepsilon_H(e) = 1$$

и, следовательно, $\eta(H_0) = F^1$. Теорема доказана.

9. Равенства слов в свободных абелевых расширениях

Определение 9.1. Пусть, как и прежде, \mathfrak{M} — многообразие всех S_p -перестановочных алгебр. Тривиальным тождеством многообразия \mathfrak{M} назовем такое тождество сигнатуры $\langle p,S \rangle$, которое либо является следствием двух тождеств Мальцева или тождества (5.2), либо принимает один из следующих видов:

- 1) t = t для некоторого терма t;
- 2) $p(t_1, t_2, t_3) = p(q_1, q_2, q_3)$, причем на \mathfrak{M} истинны тождества $t_i = q_i$, i = 1, 2, 3;
- 3) s(t)=s(q), где $s\in S$, причем t=q тождество, истинное на $\mathfrak{M}.$

Аналогичным образом определяется понятие тривиального равенства слов в произвольной S_p перестановочной алгебре.

Определение 9.2. *Глубиной* терма t сигнатуры (p, S) назовем число

$$d(t) = \begin{cases} 0, & t \in X, \\ d(q) + 1, & t = s(q), s \in S \setminus \{1\}, \\ \max(d(t_1), d(t_2), d(t_3)) + 1, & t = p(t_1, t_2, t_3), \end{cases}$$

причем если $q = s_1(q_1)$, то s и s_1 лежат в разных свободных сомножителях полугруппы S.

Определение 9.3. Глубиной тождества $t_1 = t_2$ назовем число $d(t_1) + d(t_2)$.

Будем далее полагать, что рассматриваемые нами нетривиальные равенства слов и тождества не содержат выражений вида p(u, u, v), p(v, u, u), 1u.

Пусть A — произвольная S_p -перестановочная алгебра с порождающей совокупностью X. Обозначим через α ядро гомоморфизма $AE(A) \to A.$

Определение 9.4. Слово сигнатуры $\langle p, S \rangle$ назовем *неразложимым* в AE(A), если справедливо одно из следующих условий:

- 1) v есть буква $x \in X$;
- 2) v есть слово $p(t_1,t_2,t_3)$, причем значение слова t_i в AE(A) не сравнимо по α со значением слова t_{i+1} при i=1,2;
- 3) v есть слово s(t), где $s \notin S_p^1$; 4) v есть слово s(x), где $s \in S_p$, $x \in X$.

Определение 9.5. Элемент $v \in AE(A)$ назовем *неразложимым в* AE(A), если он представляется хотя бы одним неразложимым в AE(A) словом.

Теорема 9.6. Если слова w_1, w_2 неразложимы в AE(A), то равенство $w_1 = w_2$ тривиально в AE(A).

Доказательство. Рассмотрим все возможные равенства неразложимых слов:

$$p(t_1, t_2, t_3) = p(q_1, q_2, q_3), (9.1)$$

$$x = t, (9.2)$$

$$s(q) = p(q_1, q_2, q_3), (9.3)$$

$$s_1(u) = s_2(v), (9.4)$$

где $x \in X$, $(t_i, t_{i+1}), (q_i, q_{i+1}) \notin \alpha$, i = 1, 2, причем $s, s_1, s_2 \neq 1$.

В терминах модулей равенство (9.1) имеет вид

$$\sum_{i=1}^{3} \langle a_1, a_2, a_3; i \rangle t_i = \sum_{i=1}^{3} \langle b_1, b_2, b_3; i \rangle q_i,$$

где

$$t_i \in U(a_i), \quad q_i \in U(b_i), \quad i = 1, 2, 3.$$

По определению, $\langle a_1, a_2, a_3; i \rangle \neq 1$, $\langle b_1, b_2, b_3; i \rangle \neq 1$, i=1,2,3. Поскольку это начальные символы в записи соответствующих свободных порождающих свободной абелевой группы $U(p(a_1, a_2, a_3))$, то $a_i = b_i$, откуда

$$\langle a_1, a_2, a_3; 1 \rangle (t_1 - q_1) + \langle a_1, a_2, a_3; 2 \rangle (t_2 - q_2) + \langle a_1, a_2, a_3; 3 \rangle (t_3 - q_3) = 0,$$

откуда $t_i = q_i$, i = 1, 2, 3, и равенство (9.1) тривиально.

Случай (9.2) рассматривается аналогично.

Рассмотрим случай (9.3). Если $s \notin S_p^1$, то мы приходим к равенству

$$\langle s, a \rangle q = \langle a_1, a_2, a_3; 1 \rangle q_1 + \langle a_1, a_2, a_3; 2 \rangle q_2 + \langle a_1, a_2, a_3; 3 \rangle q_3$$

в свободной абелевой группе U(s(a)). Учитывая, что $\langle s,a\rangle \neq 1$, получаем, что $a_1=a_2$ или $a_2=a_3$, однако это противоречит условию. Предположим, что $s\in S_p$. Случай, когда $q=s_1(u)$ и $s_1\in S_0$, уже рассмотрен. Если $q\in X$, то мы снова получаем, что s=1 или $a_1=a_2$ или $a_2=a_3$.

Рассмотрим, наконец, равенство (9.4). Если $s_1, s_2 \notin S_p$, то это равенство можно записать в виде

$$\langle s_1, a_1 \rangle u = \langle s_2, a_2 \rangle v,$$

причем $\langle s_1, a_1 \rangle, \langle s_2, a_2 \rangle \neq 1$, откуда $s_1 = s_2$ и u = v, т.е. равенство тривиально.

Если же, например, $s_1 \in S_p$, то можно считать, что $u \in X$, иначе этот случай сводится к предыдущим. Тогда, повторяя предыдущие рассуждения, мы получаем соответствующее равенство слов в свободной абелевой группе, которое возможно только тогда, когда $s_1 = s_2$, u = v. Теорема доказана.

Предложение 9.7. Любое слово сигнатуры $\langle p, S \rangle$, разложимое в AE(A), эквивалентно слову вида $p(t_1, t_2, t_3)$, причем значение хотя бы одной пары (t_1, t_2) , (t_2, t_3) лежит в α .

Доказательство. Пусть w — разложимое слово вида s(u) для некоторого $s \in S$. Тогда $s \in S_p$, причем $u \notin X$ и $u = p(u_1, u_2, u_3)$, так что слово w эквивалентно в AE(A) слову $p(s(u_1), s(u_2), s(u_3))$. Теперь заключение теоремы следует из определения неразложимого элемента.

Замечание 9.8. В силу ассоциативности умножения в S для любых

$$s_1, \ldots, s_n, s'_1, \ldots, s'_m \in S$$

вместо тождества

$$s_1(\ldots s_n(u))\ldots)=s'_1(\ldots s'_m(v))\ldots)$$

мы будем рассматривать эквивалентное ему тождество

$$(s_1 \dots s_n)(u) = (s'_1 \dots s'_m)(v).$$
 (9.5)

Теорема 9.9. Подалгебра, порожденная в AE(A) множеством X относительно операций из S, является свободным S-полигоном.

Доказательство. Каждый элемент рассматриваемой подалгебры является значением некоторого слова вида s(x) ($x \in X$), неразложимого в AE(A).

Пусть в (9.5) $u, v \in X$. По теореме 9.6 это тождество тривиально. Следовательно, u = v и $s_1 \dots s_n = s'_1 \dots s'_m$.

Лемма 9.10. Нетривиальное равенство слов в AE(A) приводимо κ виду

$$r = p(w_1, w_2, w_3),$$

где r — неразложимый элемент.

Доказательство. Пусть t=q — нетривиальное равенство слов, истинное в AE(A). В силу теоремы 9.6 предположим, что t разложимо. Следовательно, по предложению 9.7 получается, что $t=p(t_1,t_2,t_3)$, где $t_i\in U(a_i)$ и, например, $a_1=a_2$. Тогда в модуле $\mathrm{U}(\mathbf{A})$ выполняется равенство

$$\langle a_1, a_2, a_3; 1 \rangle t_1 + \langle a_1, a_2, a_3; 2 \rangle t_2 + \langle a_1, a_2, a_3; 3 \rangle t_3 = q,$$

причем $\langle a_1, a_2, a_3; 3 \rangle = 1$, $\langle a_1, a_2, a_3; 1 \rangle = -\langle a_1, a_2, a_3; 2 \rangle$, откуда

$$t_3 = \langle a_1, a_1, a_3; 2 \rangle t_1 + \langle a_1, a_1, a_3; 1 \rangle t_2 + q = p(t_2, t_1, q).$$

Если t_3 неразложим, то лемма доказана. В противном случае повторяем тот же процесс для последнего равенства.

Теорема 9.11. Если в S_p , в S_0 и в A алгоритмически разрешима проблема равенства слов, то она разрешима и в AE(A).

Доказательство. Прежде всего, из условий теоремы следует, что проблема равенства слов разрешима в S. Покажем сначала, что для произвольных $g,h\in A$ разрешима проблема равенства во множестве W_{gh} свободных порождающих группы R(g,h).

Действительно, истинность равенства

$$\langle a_1, a_2, a_3; j \rangle = \langle b_1, b_2, b_3; j \rangle$$

легко установить, так как проблема равенства разрешима в A.

Вопрос о равенстве слов $\langle a, s_1 \rangle$ и $\langle b, s_2 \rangle$ сводится к вопросу об истинности равенств

$$s_1 = s_2, \quad a = b$$

соответственно в S и A. Таким образом, разрешима проблема равенства в множестве W_{qh} .

Пусть теперь t и q — слова сигнатуры $\langle p,S \rangle$. Используя (7.1), равенство t=q в AE(A) можно записать в виде

$$\sum g_i x_i = \sum h_i x_i',$$

где $g_i \in R(t,x_i)$, $h_i \in R(q,x_i')$, $x_i,x_i' \in X$. Если слова t и q принимают одинаковое значение в A, то соответствующее равенство в свободной аддитивной абелевой группе U(t) истинно тогда и только тогда, когда выполняются равенства $x_i = x_i'$, $g_i = h_i$, истинность которых можно алгоритмически проверить в силу доказанного выше.

10. Тождества на многообразиях разрешимых алгебр

Зафиксируем множество X и рассмотрим свободную разрешимую S_p -перестановочную алгебру F^k степени $k\geq 1$ с базой X. Через \mathfrak{M}_k обозначим многообразие всех разрешимых S_p -перестановочных алгебр степени не выше k.

Следствие 10.1. Проблема равенства слов разрешима и в F^k тогда и только тогда, когда она разрешима в свободных сомножителях S_p , S_0 полугруппы $S \setminus \{1\}$.

Доказательство. Пусть проблема равенства разрешима в S. Рассмотрим сначала свободную абелеву алгебру F^1 . Ее элементы принадлежат свободному ZS-модулю H(X). Поскольку проблема равенства слов разрешима в ZS, то она разрешима и в H(X). Следовательно, в F^1 она также разрешима, так как сигнатурные операции в ней определены при помощи операций, заданных в модуле H(X). Теперь разрешимость проблемы равенства в F^k следует из теоремы 9.11.

Чтобы доказать обратное утверждение, напомним, что по теореме 9.9 подалгебра F_S , порожденная в F^k множеством X, является свободным S-полигоном, в котором произвольно взятый элемент $x \in X$ свободно порождает подалгебру Sx, в которой равенство слов $s_1x = s_2x$ выполняется тогда и только тогда, когда $s_1 = s_2$ в s_2 . Следовательно, проблема равенства разрешима в s_2 .

Лемма 10.2. Пусть в многообразии \mathfrak{M}_k (k>1) выполняется нетривиальное тождество $p(t_1,t_2,t_3)=p(q_1,q_2,q_3)$. Тогда в \mathfrak{M}_{k-1} истинна по крайней мере одна из следующих пар тождеств:

1)
$$q_1 = q_2$$
, $p(t_1, t_2, t_3) = q_3$;

- 2) $q_2 = q_3$, $p(t_1, t_2, t_3) = q_1$;
- 3) $t_2 = t_3$, $p(q_1, q_2, q_3) = t_1$;
- 4) $t_1 = t_2$, $p(q_1, q_2, q_3) = t_3$.

Если в \mathfrak{M}_k выполняется нетривиальное тождество

$$s(t) = p(q_1, q_2, q_3)$$

и его левая часть неразложима, то в \mathfrak{M}_{k-1} выполняется одна из следующих пар тождеств:

$$q_1 = q_2, \quad q_3 = s(t);$$

 $q_2 = q_3, \quad q_1 = s(t).$

Доказательство. Пусть в \mathfrak{M}_k истинно тождество

$$p(t_1, t_2, t_3) = p(q_1, q_2, q_3).$$

Тогда в F^k выполняется равенство

$$\langle a_1, a_2, a_3; 1 \rangle t_1 + \langle a_1, a_2, a_3; 2 \rangle t_2 + \langle a_1, a_2, a_3; 3 \rangle t_3 = \langle b_1, b_2, b_3; 1 \rangle q_1 + \langle b_1, b_2, b_3; 2 \rangle q_2 + \langle b_1, b_2, b_3; 3 \rangle q_3,$$
 где a_i, b_i — значения в F^{k-1} слов t_i, q_i соответственно.

Так как рассматриваемое тождество нетривиально, обе части последнего равенства не могут быть неразложимыми одновременно, и мы предположим, что разложима его правая часть. Тогда, например, если $b_1 = b_2$, то в F^{k-1} выполняются следующие равенства слов:

$$p(a_1, a_2, a_3) = b_3, \quad b_1 = b_2,$$

и в этом случае на \mathfrak{M}_{k-1} истинна первая пара тождеств. Остальные случаи соответствуют оставшимся парам тождеств. Доказательство второго утверждения практически повторяет вышеприведенное. \Box

Лемма 10.3. Пусть в F^k выполняется нетривиальное равенство слов

$$u = p(v_1, v_2, v_3) \tag{10.1}$$

с неразложимой левой частью, причем значения слов v_1 , v_2 , v_3 , u лежат в одном классе по конгруэнции $I_{F^k}^{k-1}$, $v_1 \neq v_2$, $v_2 \neq v_3$. Тогда данное равенство не выполняется в F^{k+1} .

Доказательство. Пусть равенство слов (10.1) выполнено в F^{k+1} и пусть слова v_1, v_2, v_3, u принимают в ней значения q_1, q_2, q_3, r . Тогда

$$r = \langle v_1, v_2, v_3; 1 \rangle q_1 + \langle v_1, v_2, v_3; 2 \rangle q_2 + \langle v_1, v_2, v_3; 3 \rangle q_3$$

где $r \in U(u)$. Поскольку u неразложимо в F^k , то оно неразложимо и в F^{k+1} . Таким образом, r неразложим. Далее, поскольку $v_1 \neq v_2$ и $v_2 \neq v_3$, получаем, что $\langle v_1, v_2, v_3; i \rangle \neq \pm 1$, и, следовательно, $p(q_1, q_2, q_3)$ — неразложимый элемент в F^{k+1} . Тогда мы получаем в F^{k+1} равенство двух неразложимых слов, которое, по теореме 9.6, тривиально в F^{k+1} . Но тогда (10.1) тривиально и в F^k , что противоречит условию теоремы.

Теорема 10.4. На классе всех разрешимых S_p -перестановочных алгебр не выполняется никакое нетривиальное тождество.

Доказательство. Пусть тождество

$$t = q \tag{10.2}$$

выполнено в классе всех разрешимых S_p -перестановочных алгебр. Проведем индукцию по глубинам термов t и q. При d(t)=d(q)=0 тождество (10.2) тривиально.

Пусть при фиксированном d(t) утверждение доказано для всех тождеств, у которых d(q) меньше фиксированного n. Допустим теперь, что d(q) = n. Возможны следующие случаи.

1) $q=p(q_1,q_2,q_3)$. Если на всех разрешимых алгебрах выполняются тождества $q_1=q_2$, а вслед за ним и $t=q_3$, то они тривиальны по индуктивному предположению, но тогда и само тождество (10.2) тривиально в классе всех разрешимых алгебр. Следовательно, для некоторого натурального m_0 при всех $m\geq m_0$ на многообразии \mathfrak{M}_m не будет выполняться ни одно из следующих тождеств:

$$q_1 = q_2, \quad q_2 = q_3, \quad t_1 = t_2, \quad t_2 = t_3,$$
 (10.3)

(последние два — в том случае, если $t=p(t_1,t_2,t_3)$). С другой стороны, по лемме 10.2, хотя бы одно из этих тождеств должно выполняться в \mathfrak{M}_{m_0} , так как тождество (10.2) истинно, в частности, на \mathfrak{M}_{m_0+1} .

2) $q = s(q_1)$, $s \in S \setminus \{1\}$. Можно считать. что $s \notin S_p$ или $q_1 \in X$, в противном случае мы имеем уже рассмотренный случай. Тогда правая часть тождества (10.2) неразложима в любом многообразии разрешимых алгебр. Следовательно, слово t, напротив, разложимо в любом таком многообразии, и можно полагать, что $t = p(t_1, t_2, t_3)$. Тогда по лемме 10.2 на каждом многообразии разрешимых алгебр истинна хотя бы одна из следующих пар тождеств:

$$t_1 = t_2, \quad t_3 = q;$$

 $t_2 = t_3, \quad t_1 = q.$

Очевидно, что какая-либо из этих пар тождеств истинна на всех разрешимых алгебрах. Согласно индуктивному предположению эти тождества тривиальны. Следовательно, исходное тождество также тривиально.

Лемма 10.5. Пусть $A-\langle p,S\rangle$ -алгебра, $\alpha-$ абелева конгруэнция на $A,\ u\equiv v\equiv w(\alpha).$ Тогда верны следующие равенства:

$$p(p(u, v, w), u, v) = w, \quad p(u, p(u, w, v), v) = w, \quad p(u, v, p(v, u, w)) = w.$$

Доказательство. Утверждение становится очевидным после того, как указанные равенства представлены как равенства в тернарной группе, определенной на соответствующем конгруэнцклассе. □

Пусть теперь $|X|>2,\,F^k$ — свободная разрешимая степени n алгебра с базой X. Из леммы 10.5 следует, что в F^1 верны следующие равенства:

$$p(x, y, p(y, x, y)) = y, \quad p(x, p(x, y, x), x) = y, \quad p(p(y, x, y), y, x) = y.$$
 (10.4)

Используя те же рассуждения, что и в лемме 10.3, нетрудно проверить неразложимость элементов p(x,y,p(y,x,y)), p(x,p(x,y,x),x), y в свободных разрешимых алгебрах более высокого порядка с не менее чем двумя порождающими. Также без труда проверяется, что в таких алгебрах эти слова попарно не равны. Следовательно, по лемме 10.3, равенства (10.4) не выполняются в F^2 .

Обозначив p(x, y, p(y, x, y)), p(x, p(x, y, x), x) соответственно через u_1 и v_1 , заметим, что $u_1, v_1 \in U(y)$ в F^2 . Снова, в силу леммы 10.5, в F^2 верны равенства

$$p(u_1,v_1,p(v_1,u_1,v_1))=v_1,\quad p(u_1,p(u_1,v_1,u_1),u_1)=v_1,\quad p(p(v_1,u_1,v_1),v_1,u_1)=v_1,$$

которые не выполняются в F^k , k > 2.

Руководствуясь изложенным алгоритмом, мы получаем для каждого натурального числа k примеры тождеств, которые истинны в \mathfrak{M}_k , но не выполняются в \mathfrak{M}_{k+1} .

11. Гомоморфизмы свободных разрешимых алгебр

Все неопределяемые обозначения в этом параграфе взяты из разделов 5, 6.

Предложение 11.1. Любой эндоморфизм F^1 продолжается до эндоморфизма H.

Доказательство. Пусть φ — эндоморфизм алгебры F^1 . Рассмотрим эндоморфизм ψ модуля H, индуцированный отображением $X \to \varphi(X)$. Предположим, что φ и ψ совпадают на элементах $x,y,z \in F^1$. Тогда

$$\begin{split} \varphi(p(x,y,z)) &= p(\varphi(x),\varphi(y),\varphi(z)) = p(\psi(x),\psi(y),\psi(z)) = \\ &= \psi(x) - \psi(y) + \psi(z) = \psi(x-y+z) = \psi(p(x,y,z)), \\ \varphi(s(x)) &= s(\varphi(x)) = s(\psi(x)) = s\psi(x) = \psi(s(x)); \quad s \in S. \end{split}$$

Таким образом, по индукции показывается, что ограничение ψ на F^1 совпадает с φ .

Теорема 11.2. Пусть каждому эндоморфизму φ свободной абелевой алгебры F^1 сопоставляется отображение $\sigma(\varphi)$, заданное по правилу

$$\sigma(\varphi)(a) = p(\varphi(a), \varphi(e), e). \tag{11.1}$$

Тогда σ осуществляет вложение моноида эндоморфизмов $\operatorname{End} F^1$ в $\operatorname{End} H_0$.

Доказательство. Пользуясь теоремой 8.7, мы можем рассматривать $\mathbb{Z}S$ -модуль F^1 с операциями \diamondsuit и \circ . Однако, во избежание двусмысленности, мы оставляем для него обозначение H_0 .

Пусть $a, b \in F^1$ и $\varphi \in \operatorname{End} F^1$. Из условия следует, что

$$\sigma(\varphi)(a) = \varphi(a) - \varphi(e) + e,$$

откуда

$$\begin{split} \sigma(\varphi)(a \diamondsuit b) &= \sigma(\varphi)(a-e+b) = \varphi(a) - \varphi(e) + \varphi(b) - \varphi(e) + e = \\ &= (\varphi(a) - \varphi(e) + e) + (\varphi(b) - \varphi(e) + e) - e = \sigma(\varphi)(a) \diamondsuit \sigma(\varphi)(b), \\ \sigma(\varphi)(s \circ a) &= \varphi(s(a) - s(e) + e) - \varphi(e) + e = s\varphi(a) - s\varphi(e) + \varphi(e) - \varphi(e) + e = \\ &= (s\varphi(a) - s\varphi(e) + se) - se + e = s \circ \sigma(\varphi)(a). \end{split}$$

Далее,

$$\sigma(\varphi_1)(\sigma(\varphi_2)(a)) = \varphi_2(\varphi_1(a) - \varphi_1(e) + e) - \varphi_2(e) + e = = (\varphi_1\varphi_2)(a) - (\varphi_1\varphi_2)(e) + \varphi_2(e) - \varphi_2(e) + e = \sigma(\varphi_1\varphi_2)(a).$$

Легко заметить также, что σ сопоставляет тождественному автоморфизму алгебры F^1 тождественный автоморфизм $\mathbb{Z}S$ -модуля H_0 . Пусть теперь $\sigma(\varphi_1) = \sigma(\varphi_2)$. Тогда $\varphi_1(a) - \varphi_1(e) = \varphi_2(a) - \varphi_2(e)$ для любого $a \in F^1$. Учитывая предложение 11.1, последнее равенство перепишем в виде $\varphi_1(a-e) = \varphi_2(a-e)$, откуда $\varphi_1(a) = \varphi_2(a)$ для любого a. Следовательно, σ — вложение.

Пусть A — произвольная S_p -перестановочная алгебра, B = AE(A).

Лемма 11.3. Предположим, что (эпи-) эндоморфизм φ алгебры B индуцирует (эпи-) эндоморфизм $\overline{\varphi}$ алгебры A. Тогда φ можно продолжить до (эпи-) эндоморфизма S_p -перестановочной алгебры U(A).

Доказательство. Произвольным элементам $\delta_1=\langle a_1,a_2,a_3;i\rangle$ и $\delta_2=\langle s,a\rangle$ из (5.3), (5.4) поставим в соответствие элементы

$$\overline{\varphi}(\delta_1) = \langle \overline{\varphi}(a_1), \overline{\varphi}(a_2), \overline{\varphi}(a_3), i \rangle, \quad \overline{\varphi}(\delta_2) = \langle s, \overline{\varphi}(a) \rangle.$$

Распространим это отображение на элементы (5.5) из множества W_{ab} для произвольных $a,b\in A$. Покажем, что

$$\overline{\varphi}(w_1 * w_2) = \overline{\varphi}(w_1) * \overline{\varphi}(w_2)$$

для любых слов $w_1 \in W_{ab}$, $w_2 \in W_{bc}$. Поскольку умножение слов ассоциативно, достаточно предположить, что эти слова имеют единичную длину. Достаточно рассмотреть лишь следующие два случая.

1) s_1, s_2 принадлежат одному свободному сомножителю полугруппы $S \setminus \{1\}$. Тогда

$$\overline{\varphi}(\langle s_1, b \rangle * \langle s_2, c \rangle) = \overline{\varphi}(\langle s_1 s_2, c \rangle) = \langle s_1 s_2, \overline{\varphi}(c) \rangle =$$

$$= \langle s_1, s_2(\overline{\varphi}(c)) \rangle * \langle s_2, \overline{\varphi}(c) \rangle = \langle s_1, \overline{\varphi}(s_2(c)) \rangle * \langle s_2, \overline{\varphi}(c) \rangle =$$

$$= \langle s_1, \overline{\varphi}(b) \rangle * \langle s_2, \overline{\varphi}(c) \rangle = \overline{\varphi}(\langle s_1, b \rangle) * \overline{\varphi}(\langle s_2, c \rangle).$$

2) $w_1 = \langle s, b \rangle$, $s \in S_p$, $w_2 = \langle c_1, c_2, c_3; i \rangle$. Тогда

$$\overline{\varphi}(w_1 * w_2) = \langle \overline{\varphi}(s(c_1), \overline{\varphi}(s(c_2)), \overline{\varphi}(s(c_3)); i \rangle \langle s, \overline{\varphi}(c_i) \rangle =$$

$$= \langle s(\overline{\varphi}(c_1), s(\overline{\varphi}(c_2)), s(\overline{\varphi}(c_3)); i \rangle \langle s, \overline{\varphi}(c_i) \rangle = \overline{\varphi}(w_1) * \overline{\varphi}(w_2).$$

Последнее равенство сохраняется и в случае, когда $\overline{\varphi}(w_2)=1_{\overline{\varphi}(c_1)}$. Если, например, $\overline{\varphi}(c_2)=\overline{\varphi}(c_3)$ и i=1, то $\overline{\varphi}(b)=\overline{\varphi}(c_1)$, и, следовательно,

$$\overline{\varphi}(w_1 * w_2) = \langle s(\overline{\varphi}(c_1), s(\overline{\varphi}(c_2)), s(\overline{\varphi}(c_2)); 1 \rangle \langle s, \overline{\varphi}(c_1) \rangle = \langle s, \overline{\varphi}(b) \rangle = \overline{\varphi}(w_1).$$

Таким образом, для каждой пары $(a,b)\in A^2$ определено отображение между множествами свободных порождающих групп R(a,b) и $R(\overline{\varphi}(a),\overline{\varphi}(b))$, которое естественным образом продолжается до гомоморфизма этих групп. Тогда

$$\overline{\varphi}(a_1 + a_2) = \overline{\varphi}(a_1) + \overline{\varphi}(a_2)$$

для любых $a_1,a_2\in R(a,b)$. Пусть теперь $a\in A$, а δ — элемент вида (5.5). Положим $\widetilde{\varphi}_a(\delta)=\overline{\varphi}(\delta)\varphi(x)$. Теперь рассмотрим продолжение $\widetilde{\varphi}_a$ до группового гомоморфизма $U(a)\to U(\overline{\varphi}(a))$. Объединение всех полученных гомоморфизмов, как нетрудно проверить, является эндоморфизмом модуля с несколькими объектами U(A) над R(A). Тогда

$$\begin{split} \widetilde{\varphi}(p(u_1,u_2,u_3)) &= \widetilde{\varphi}(\langle a_1,a_2,a_3;1\rangle u_1 + \langle a_1,a_2,a_3;2\rangle u_2 + \langle a_1,a_2,a_3;3\rangle u_3) = \\ &= \langle \widetilde{\varphi}(a_1),\widetilde{\varphi}(a_2),\widetilde{\varphi}(a_3);1\rangle \widetilde{\varphi}(u_1) + \langle \widetilde{\varphi}(a_1),\widetilde{\varphi}(a_2),\widetilde{\varphi}(a_3);2\rangle \widetilde{\varphi}(u_2) + \\ &+ \langle \widetilde{\varphi}(a_1),\widetilde{\varphi}(a_2),\widetilde{\varphi}(a_3);3\rangle \widetilde{\varphi}(u_3) = p(\widetilde{\varphi}(u_1),\widetilde{\varphi}(u_2),\widetilde{\varphi}(u_3)) \end{split}$$

для произвольных $u_i \in U(a_i)$ и для любых $a_i \in A$. Аналогично,

$$\widetilde{\varphi}(s(u)) = \widetilde{\varphi}(\langle s, a \rangle u) = \langle s, \widetilde{\varphi}(a) \rangle \widetilde{\varphi}(u),$$

где $u \in U(a)$.

Таким образом, $\widetilde{\varphi}$ — эндоморфизм S_p -перестановочной алгебры U, который совпадает с φ на B. Остается заметить, что если φ сюръективно, то таковым является также и $\widetilde{\varphi}$.

Теорема 11.4. Если эндоморфизм φ из предыдущей теоремы сюръективен, а также инъективен на A, то его продолжение $\widetilde{\varphi}$ на U(A) является автоморфизмом.

Доказательство. Нужно показать инъективность φ . Обозначим через α ядро гомоморфизма B на A. Пусть $u,v\in B$. Тогда

$$u = \sum_{i=1}^{n} \delta_{i1}, \dots, \delta_{in_i} x_i, \quad v = \sum_{i=1}^{m} \delta'_{j1}, \dots, \delta'_{jm_j} x'_j,$$

где δ_r , δ_s' — некоторые символы вида (5.3), (5.4). Предположим, что $\varphi(u)=\varphi(v)$. Тогда

$$\sum_{i=1}^{n} \overline{\varphi}(\delta_{i1}), \dots, \overline{\varphi}(\delta_{in_i})\varphi(x_i) = \sum_{j=1}^{m} \overline{\varphi}(\delta'_{j1}), \dots, \overline{\varphi}(\delta'_{jm_j})\varphi(x'_j).$$

Пусть $\overline{arphi}(\delta_q)=\pm 1$ для некоторого δ_q . Тогда, например,

$$\overline{\varphi}(\delta_q) = \langle \overline{\varphi}(a), \overline{\varphi}(b), \overline{\varphi}(c), 3 \rangle,$$

причем $\overline{\varphi}(b) = \overline{\varphi}(c)$. Но тогда b=c в силу инъективности $\overline{\varphi}$, откуда $\delta_q=1$. Следовательно,

$$m = n$$
, $r = s$, $\varphi(\delta_i) = \varphi(\delta'_i)$, $i = 1, ..., n$.

Отсюда $\delta_i=\delta_i'$ в силу инъективности φ на A, так что $\varphi(x_i)=\varphi(x_i')$. Из инъективности φ снова следует, что $x_i=x_i'$. Таким образом, u=v.

Обозначим через F_r^k свободную разрешимую алгебру степени разрешимости k и конечного ранга r. Пусть $I_r=I_{F_r^k}^{k-1}$, τ_r^k — естественный гомоморфизм $F_r^k \to F_r^k/I_r=F_r^{k-1}$.

Напомним следующий факт из [15].

Лемма 11.5. Гомоморфизм $\varphi: F_{r_1}^k \to F_{r_2}^k$ индуцирует гомоморфизм $\overline{\varphi}: F_{r_1}^{k-1} \to F_{r_2}^{k-1}$, при котором $\tau_{r_1}^k \overline{\varphi} = \varphi \tau_{r_2}^k$.

Теорема 11.6. Если F_q^1 не вложима в F_r^1 при q>r, то F_q^k не вложима в F_r^k для любого k.

Доказательство. Пусть φ — вложение F_q^k в F_r^k . Покажем, что гомоморфизм $\overline{\varphi}$ из леммы 11.5 также является вложением. Возьмем произвольные $u \in U(a), v \in U(b)$, где $a,b \in F_q^{k-1}$ и $a \neq b$. Допустим, что $\overline{\varphi}(a) = \overline{\varphi}(b)$. Тогда $u' = \varphi(u)$ и $v' = \varphi(v)$ лежат в одной тернарной группе. Следовательно,

$$p(p(v', u', v'), v', u') = p(u', v', p(v', u', v')) = v',$$

откуда p(p(v,u,v),v,u)=p(u,v,p(v,u,v))=v. Пусть обе части первого равенства — неразложимые слова. Тогда само равенство тривиально в силу теоремы 9.6, и имеет место хотя бы один из следующих случаев.

- 1) u = v. Это противоречит тому, что $a \neq b$.
- 2) v=p(v,u,v). Тогда в свободной абелевой группе $U(\overline{\varphi}(a))$ истинно равенство u'-v'=0, откуда снова u=v.
- 3) p(v,u,v)=u, что соответствует случаю, когда равенство $p(t_1,t_2,t_3)=p(t_1',t_2',t_3')$ достигается при $t_i=t_i'$. В этом случае в $U(\overline{\varphi}(a))$ истинно равенство v'+v'=0, возможное только при v=0, однако нулевой элемент этой группы не принадлежит F_r^k в силу теоремы 7.1.

Следовательно, одна из частей рассматриваемого равенства разложима. Пусть разложимо слово p(p(v,u,v),v,u). Согласно предложению 9.7, $p(v,u,v)\in U(b)$, поскольку $u\notin U(b)$. Следовательно, p(b,a,b)=b, и p(p(b,a,b),b,a)=a, откуда $v\in U(a)$, и мы снова получили противоречие. То же самое следует из разложимости слова p(u,v,p(v,u,v)). Таким образом, вложение F_q^k в F_r^k индуцирует вложение F_q^{k-1} в F_r^{k-1} . Теперь заключение теоремы может быть получено индукцией по k.

Предложение 11.7. Пусть $S = \{s_1, \ldots, s_n\}$ — конечный моноид. Тогда свободный $\mathbb{Z}S$ -модуль H конечного ранга k c базой $\{x_1, \ldots, x_k\}$ является свободной абелевой группой ранга k n c базой $Y = \{s_1x_1, \ldots, s_nx_k\}$.

Доказательство. Легко видеть, что Y порождает аддитивную абелеву группу H. Предположим, что $z_{11}s_1x_1+\cdots+z_{nk}s_nx_k=0,\ z_{ij}\in\mathbb{Z}.$ Тогда

$$(z_{11}s_1 + \dots + z_{n1}s_n)x_1 + \dots + (z_{1k}s_1 + \dots + z_{nk}s_n)x_k = 0,$$

откуда $z_{1i}s_1+\cdots+z_{ni}s_n=0$ для всех $1\leqslant i\leqslant k$. В силу замечания 6.2 все коэффициенты z_{ij} равны нулю, и, следовательно, Y является базой.

Теорема 11.8. Пусть S- конечный моноид. Тогда F_q^1 не вложима в F_r^1 при q>r.

Доказательство. Пусть |S|=n. Рассмотрим свободные $\mathbb{Z}S$ -модули H_q и H_r ранга q и r. По теореме 8.7, абелевы алгебры F_q^1 и F_r^1 соответственно изоморфны как $\mathbb{Z}S$ -модули некоторым их подмодулям $H_{(q,0)}\subseteq H_q,\, H_{(r,0)}\subseteq H_r$. Согласно предложению 11.7 эти подмодули свободны как подгруппы соответствующих свободных абелевых групп.

Пусть $X=\{x_1,\ldots,x_q\}$ — база абелевой алгебры F_q^1 . Покажем, что множество $\{s_1x_2-s_1x_1,\ldots,s_nx_q-s_1x_1\}$ является множеством свободных порождающих абелевой группы $H_{(q,0)}$. Возьмем произвольный элемент $m=\sum z_{ij}s_ix_j$ из $H_{(q,0)}$. Тогда

$$m = z_{12}(s_1x_2 - s_1x_1) + \dots + z_{nq}(s_nx_q - s_1x_1) + (z_{11} + \dots + z_{nq})s_1x_1.$$

Последнее слагаемое равно нулю в силу теоремы 8.7. Пусть теперь $a_{12}(s_1x_2-s_1x_1)+\cdots+a_{nq}(s_nx_q-s_1x_1)=0$. Тогда

$$a_{12}s_1x_2 + \dots + a_{nq}s_nx_q - (a_{12} + \dots + a_{nq})s_1x_1 = 0,$$

Таким образом, $a_{12} = \cdots = a_{nq} = 0$ согласно предложению 11.7.

Итак, абелевы группы F_r^1 и F_q^1 являются свободными ранга nq-1 и nr-1 соответственно. Допустим теперь, что существует вложение ξ алгебры F_q^1 в алгебру F_r^1 . Выберем произвольно элемент e в качестве нуля тернарной группы F_q^1 . Можно также считать, что $\xi(e)$ – нулевой элемент в F_r^1 . Тогда

$$\xi(u \diamondsuit v) = \xi(p(u, e, v)) = p(\xi(u), \xi(e), \xi(v)) = \xi(u) \diamondsuit \xi(v)$$

для произвольных $u,v\in F_q^1$. Таким образом, ξ является инъективным гомоморфизмом групп, Однако, свободная абелева группа конечного ранга i не может быть вложима в свободную абелеву группу ранга j при j< i. Теорема доказана.

Последняя теорема в общем случае не верна для конечнопорожденных бесконечных моноидов. Рассмотрим, например, свободный моноид S над двухэлементным множеством $\{f,g\}$. Кольцо $\mathbb{Z}S$ в данном случае является кольцом многочленов от некоммутативных переменных f,g [14] и не имеет делителей нуля. Легко показать, что множество $\{f,g\}$ порождает свободный модуль M_2 над $\mathbb{Z}S$. Покажем теперь, что множество $Y=\{fg,fg^2,\ldots,fg^n,\ldots\}$ порождает в M_2 свободный $\mathbb{Z}S$ -модуль. Допустим, что $u_1y_1+\cdots+u_ny_n=0$, где y_i — различные элементы из Y, и $u_i\in\mathbb{Z}S$. Можно считать, что одночлены y_1,\ldots,y_n упорядочены по степеням переменной g; пусть $y_1=fg^m$. Тогда

$$(u_1f + u_2fg^{k_2} + \dots + u_nfg^{k_n})g^m = 0, \quad k_2, \dots, k_n > 0.$$

В силу отсутствия делителей нуля получаем

$$u_1 f + u_2 f g^{k_2} + \dots + u_n f g^{k_n} = 0,$$

откуда $u_1=0$. На n-м шаге мы получаем равенство $u_ny_n=0$, откуда $u_n=0$. Таким образом, Y — база, и мы получаем свободный $\mathbb{Z}S$ -модуль со счетной базой, который вложим в двупорожденный $\mathbb{Z}S$ -модуль. Следовательно, по теореме 8.7, свободная абелева S_p -перестановочная алгебра произвольного конечного ранга вложима в свободную двупорожденную абелеву алгебру.

12. Свойство Хопфа

Говорят, что алгебра обладает свойством Хопфа, если каждый ее сюръективный эндоморфизм является автоморфизмом. В [15] доказано, что любая свободная разрешимая p-алгебра конечного ранга хопфова. Рассмотрим теперь это свойство для свободных разрешимых S_p -перестановочных алгебр.

Теорема 12.1. Если F_r^{k-1} хопфова, то F_r^k также хопфова.

Доказательство. Пусть φ — сюръективный эндоморфизм алгебры F_r^k . Согласно лемме 11.5 существует эндоморфизм $\overline{\varphi}$ алгебры F_r^{k-1} , индуцированный φ . Более того, $\overline{\varphi}$ сюръективен. Следовательно, $\overline{\varphi}$ — автоморфизм. Теперь заключение теоремы следует из теоремы 11.4.

Пусть φ — эндоморфизм алгебры F_r^k , ψ — его продолжение до эндоморфизма свободного модуля H_r , существующее в силу предложения 11.1.

Предложение 12.2. Если φ инъективно (сюръективно), то ψ также инъективно (сюръективно).

Доказательство. Допустим, что φ инъективно. Пусть

$$f = u_1 x_1 + \dots + u_n x_n \in H, \quad u_i \in \mathbb{Z}S, \ x \in X.$$

Тогда

$$\varepsilon_H(\psi(f)) = \varepsilon_H(u_1)\varepsilon_H(\psi(x_1)) + \dots + \varepsilon_H(u_n)\varepsilon_H(\psi(x_n)) = \varepsilon_H(f), \tag{12.1}$$

так как $\psi(x_i) \in F_r^k$, и поэтому $\varepsilon_H(\psi(x_i)) = 1$. Предположим, что $h \in \operatorname{Ker} \psi$. Тогда $\varepsilon_H(h) = 0$ в силу (12.1). Следовательно, $h + x \in F_r^1$. Однако, $\psi(h + x) = \psi(x)$, откуда h = 0 в силу инъективности φ . Пусть теперь φ сюръективно. Достаточно заметить, что любой элемент из H представим в виде суммы таких элементов вида $\pm sx$, где $s \in S$, $x \in X$, что $sx \in F_r^1$.

Следствие 12.3. Если свободный $\mathbb{Z}S$ -модуль H ранга r обладает свойством Хопфа, то свободная абелева S_p -перестановочная алгебра ранга r также хопфова.

Рассмотрим теперь эпи-эндоморфизм ψ свободного $\mathbb{Z}S$ -модуля H ранга r. Пусть $K=\operatorname{Ker}\psi$ и $H_1=H/K$. Тогда $H_1\cong H$, вследствие чего $H=H_1\oplus K$. Рассмотрим в $\mathbb{Z}S$ фундаментальный идеал

$$\Delta = \{ \sum n_i s_i \mid n_i \in Z, s_i \in S, \sum n_i = 0 \}.$$

Напомним, что Δ — ядро тривиализации кольца $\mathbb{Z}S$, т.е. $\mathbb{Z}S/\Delta\cong\mathbb{Z}$. Поскольку $H=\bigoplus_{i=1}^r\mathbb{Z}S$,

то $H/\Delta H\cong H_1/\Delta H_1=\bigoplus_{i=1}^r\mathbb{Z}-$ свободная абелева группа ранга r. Из равенства $H/\Delta H=H_1/\Delta H_1\oplus K/\Delta K$ вытекает, что абелева группа $K/\Delta K$ нулевая. Мы получаем равенство $K=\Delta K,$ откуда $K=\left(\bigcap_{n\in\mathbb{N}}\Delta^n\right)K.$ Следовательно, если пересечение всех степеней фундаментального идеала кольца $\mathbb{Z}S$ нулевое, то свободный конечно порожденный $\mathbb{Z}S$ -модуль H обладает свойством Хопфа. Таким образом, в силу предложения 12.2, справедлива следующая теорема.

Теорема 12.4. Если пересечение всех степеней фундаментального идеала кольца $\mathbb{Z}S$ нулевое, то свободная абелева S_p -перестановочная алгебра конечного ранга хопфова.

Из [9, с. 466] известно, что если H — нетеров модуль, то он является хопфовым. Поскольку H — свободный конечно порожденный модуль над $\mathbb{Z}S$, то в этом случае кольцо $\mathbb{Z}S$ нетерово слева. Однако существуют примеры хопфовых свободных $\mathbb{Z}S$ -модулей (и, следовательно, хопфовых свободных S_p -перестановочных абелевых алгебр) конечного ранга, когда кольцо $\mathbb{Z}S$ не является нетеровым. Так, например, в [21] показано, что полугрупповое кольцо RS коммутативного моноида S над коммутативным кольцом с единицей R нетерово тогда и только тогда, когда R нетерово и моноид S является конечно порожденным. В то же время, из [37] известно, что конечно порожденные модули над любым коммутативным кольцом обладают свойством Хопфа.

Как известно, свободная абелева группа конечного ранга хопфова. Отсюда согласно предложению 11.7 следует, что свойством Хопфа обладает свободная S_p -перестановочная абелева алгебра конечного ранга над конечным моноидом.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Артамонов В. А.* Представление Магнуса в конгруэнц-модулярных многообразиях// Сиб. мат. ж. 1997. 38, № 5. C. 978-995.
- 2. *Артамонов В. А., Чакрабарти С.* Свойства алгебр примарного порядка с одной тернарной мальцевской операцией// Алгебра и логика. 1995. 34, № 2. С. 67–72.
- 3. Данилов А. Н. Представление Магнуса для мультиоператорных групп// Чебышевский сб. -2002. -3, № 1. C. 35-40.
- 4. Жданович П. Б. Свободные абелевы расширения S_p -перестановочных алгебр// Чебышевский сб. 2002. 3, № 1 (3). С. 49–71.
- 5. Замятин А. П. Многообразия с ограничениями на решетку конгруэнций. Свердловск: УрГУ, 1987.
- 6. *Кон П*. Универсальная алгебра. М.: Мир. 1968.
- 7. Мальцев А. И. К общей теории алгебраических систем// Мат. сб. 1954. 35, № 1. С. 3-20.
- 8. *Михалев А. А., Золотых А. А.* Эндоморфизм свободной алгебры Ли, сохраняющий свойство примитивности элементов, является автоморфизмом// Усп. мат. наук. 1993. 48, № 6. С. 149-150.
- 9. Общая алгебра. Тт. 1, 2/ Под общей ред. Л. А. Скорнякова. М.: Наука, 1990, 1991.
- 10. Пинус А. Г. Конгруэнц-модулярные многообразия. Иркутск: Изд-во Иркутского ун-та, 1986.
- 11. Умирбаев У. У. астные производные и эндоморфизмы некоторых относительно свободных алгебр Π и// Сиб. мат. ж. -1993. -34, № 6. С. 179–188.
- 12. *Умирбаев У. У.* Примитивные элементы свободных групп// Усп. мат. наук. 1994. 49, № 2. С. 175—176.
- 13. Умирбаев У. У. О шрейеровых многообразиях алгебр// Алгебра и логика. 1994. 33, № 3. С. 317— 340.
- 14. *Фейс К.* Алгебра: кольца, модули и категории. М.: Мир, 1977.

- 15. $\mbox{\it Чакрабарти C}$. Гомоморфизмы свободных разрешимых алгебр с одной тернарной мальцевской операцией// Усп. мат. наук. -1993.-48, № 3.- С. 207-208.
- 16. Artamonov V. A., Chakrabarti S. Free solvable algebra in a general congruence modular variety// Commun. Algebra. -1996.-24, N₂ 5. C. 1723-1735.
- 17. *Artamonov V. A., Mikhalev A. A., Mikhalev A. V.* Combinatorial properties of free algebras of Schreier varieties// Marcel Dekker Ser. Lect. Notes Pure Appl. Math. 2003. 235. C. 47–99.
- 18. *Bulatov A*. On the number of finite Mal'cev algebras// Contributions to General Algebra 13/ Proc. Dresden Conf. 2000 and the Summer School, 1999. Klagenfurt: Verlag Johannes Heyn, 2000.
- 19. $Day\ A$. A characterization of modularity for congruence lattices of algebras// Can. Math. Bull. 1969. 12. C. 167-173.
- 20. *Freese R., McKenzie R.* Commutator theory for congruence modular varieties/ London Math. Soc. Lect. Notes Ser. 1987. 125.
- 21. Gilmer R. Commutative Semigroup Rings. Chicago: Univ. of Chicago Press, 1984.
- 22. Hobby D., McKenzie R. The structure of finite algebras/ Contemp. Math. Amer. Math. Soc., 1988. 76.
- 23. Janelidze G., Marki L., Tholen W. Semi-Abelian categories// J. Pure Appl. Algebra. 2002. 168. C. 367–386.
- 24. Jonsson B. Algebras whose congruence lattices are distributive// Math. Scand. -1967.-21.-C.110-121.
- 25. *Kilp M., Knauer U., Mikhalev A. V.* Monoides, acts and categories with applications to wreath products and graphs. Berlin–New York: Walter de Gruyter, 2000.
- 26. *Mikhalev A. A.* Primitive elements and automorphisms of free algebras of Schreier varieties// J. Math. Sci. -2000. -102, $N \ge 6. -C. 4628-4640$.
- 27. *Mikhalev A. A., Umirbaev U. U., Yu J.-T.* Generic, almost primitive and test elements of free Lie algebras// Proc. Amer. Math. Soc. 2002. 130. C. 1303—1310.
- 28. *Mikhalev A. A., Yu J.-T.* Primitive, almost primitive, test, and Δ -primitive elements of free algebras with the Nielsen–Schreier property// J. Algebra. -2000.-228.-C. 603-623.
- 29. *Mikhalev A. A., Yu J.-T.* Automorphic orbits of elements of free algebras with the Nielsen–Schreier property// Contemp. Math. -2000.-264.-C. 95–110.
- 30. *Mikhalev A. A., Zolotykh A. A.* Automorphisms and primitive elements of free Lie superalgebras// Commun. Algebra. 1994. 22. C. 5889–5901.
- 31. *Mikhalev A. A., Zolotykh A. A.* Applications of Fox differential calculus to free Lie superalgebras// In: Non-Associative Algebra and Its Applications. Dordrecht: Kluwer Academic Publ., 1994. C. 285–290.
- 32. *Mikhalev A. A., Zolotykh A. A.* Algorithms for primitive elements of free Lie algebras and superalgebras// Proc. ISSAC-96. New York: ACM Press, 1996. C. 161–169.
- 33. Mitchell B. Rings with several objects// Adv. Math. -1972. -8. -C. 1–161.
- 34. Pixley A. F. Distributivity and permutability of congruence relations in equational classes of algebras// Proc. Amer. Math. Soc. -1963. -14. C. 105-109.
- 35. Rowan W. Abelian extensions of algebras in congruence modular varieties/arXiv:Math.RA/0005134v1.
- 36. *Umirbaev U. U.* Universal derivations and subalgebras of free algebras// In: Algebra (Krasnoyarsk, 1993). Berlin: Walter de Gruyter, 1996. C. 255–271.
- 37. Vasconcelos W. V. On Finitely generated modules// Trans. Amer. Math. Soc. -1966. -138. -128. C. -128. C. -128.
- 38. *Zhdanovich P*. Free Abelian extensions in the congruence-permutable varieties// Discuss. Math. Gen. Algebra Appl. − 2002. − 22, № 2. − C. 199–216.

Жданович Павел Борисович

Волгоградский государственный педагогический университет

E-mail: comlab@vspu.ru