

Department of Pathology and Laboratory Medicine No.201, Sec. 2, Shipai Rd., Beitou District, Taipei City, Taiwan 11217, R.O.C. Tel: 02-2875-7449

Date: 29 Oct 2020 1 of 19

Sample Information

Patient Name: 周志英 Gender: Female ID No.: T201666350 History No.: 36454689

Age: 67

Ordering Doctor: DOC3109L 邱昭華

Ordering REQ.: C222PL4 Signing in Date: 2020/10/28

Path No.: \$109-89790 **MP No.:** F20090

Assay: Oncomine Focus Assay

Sample Type: FFPE Block No.: \$109-33341A Percentage of tumor cells: 30%

Note:

Sample Cancer Type: Non-Small Cell Lung Cancer

Table of Contents Variants (Exclude variant in Taiwan BioBank with >1% allele frequency)	Page 2
Biomarker Descriptions	2
Relevant Therapy Summary	3
Relevant Therapy Details	8

Report Highlights

2 Relevant Biomarkers10 Therapies Available113 Clinical Trials

Relevant Non-Small Cell Lung Cancer Findings

Gene	Finding	Gene	Finding	
ALK	Not detected	NTRK1	Not detected	
BRAF	Not detected	NTRK2	Not detected	
EGFR	EGFR p.(E709_T710delinsD) c.2127_2129delAAC	NTRK3	Not detected	
ERBB2	Not detected	RET	Not detected	
KRAS	Not detected	ROS1	Not detected	
MET	Not detected			

Tel: 02-2875-7449

Date: 29 Oct 2020 2 of 19

Relevant Biomarkers

Tier	Genomic Alteration	Relevant Therapies (In this cancer type)	Relevant Therapies (In other cancer type)	Clinical Trials
IA	EGFR p.(E709_T710delinsD) c.2127_2129delAAC epidermal growth factor receptor Allele Frequency: 15.15%	erlotinib afatinib gefitinib osimertinib dacomitinib gefitinib + chemotherapy bevacizumab + erlotinib bevacizumab + gefitinib erlotinib + ramucirumab	None	113
IIC	AR amplification androgen receptor	None	hormone therapy	0

Public data sources included in relevant therapies: FDA1, NCCN, EMA2, ESMO

Tier Reference: Li et al. Standards and Guidelines for the Interpretation and Reporting of Sequence Variants in Cancer: A Joint Consensus Recommendation of the Association for Molecular Pathology, American Society of Clinical Oncology, and College of American Pathologists. J Mol Diagn. 2017 Jan;19(1):4-23.

Variants (Exclude variant in Taiwan BioBank with >1% allele frequency)

DNA Sequence Variants Allele Variant Effect Coverage Variant ID Gene Amino Acid Change Coding Locus Frequency Transcript **EGFR** c.2127_2129delAAC chr7:55241678 15.15% NM_005228.4 nonframeshift 1987 (E709_T710delinsD) Deletion **Copy Number Variations**

Gene	Locus	Copy Number
AR	chrX:66776186	7.33

Biomarker Descriptions

AR (androgen receptor)

Background: The AR gene encodes the androgen receptor protein (AR), a ligand-activated transcription factor regulated by the binding of the hormones testosterone and dihydrotestosterone^{1,2}. Hormone binding to AR results in receptor dimerization, nuclear translocation, and target gene transcription, thus activating the RAS/RAF/MEK/ERK and PI3K/AKT/MTOR signaling pathways, which promote cell proliferation and survival^{2,3,4}.

Alterations and prevalence: Alterations in AR function can result from overexpression, gene amplification, or mutations. AR mutations, including L702H, W742C/L, H875Y, and T878A, are commonly observed in 10-30% of castration-resistant prostate cancer and result in decreased ligand specificity, allowing other nuclear hormones to activate AR⁵. Androgen receptor splice variants have been reported in castration resistant prostate cancer^{6,7}. The androgen receptor splice variant 7 (AR-V7) is a result of aberrant mRNA splicing of AR exons 1-3 and a cryptic exon 3, resulting in the expression of a constitutively active protein⁷.

Potential relevance: The FDA has granted fast track designation (2016) to seviteronel for AR-positive triple-negative breast cancer (TNBC) patients⁸. Androgen deprivation therapy (ADT) such as abiraterone⁹ (2011) and enzalutamide¹⁰ (2011) are FDA approved for use in locally advanced and metastatic prostate cancers. Although many men initially respond to ADT, most will develop hormone

Tel: 02-2875-7449

Date: 29 Oct 2020 3 of 19

Biomarker Descriptions (continued)

resistance. Resistance to ADT is also associated with other aberrations of the AR gene including mutations within the ligand binding domain and gene amplification^{5,11,12}. The androgen receptor splice variant, AR-V7, lacks the ligand binding domain, resulting in constitutive activation and is associated with resistance to androgen deprivation therapy (ADT) in advanced prostate cancer⁶.

EGFR (epidermal growth factor receptor)

Background: The EGFR gene encodes the epidermal growth factor receptor (EGFR) tyrosine kinase, a member of the human epidermal growth factor receptor (HER) family. Along with EGFR/ERBB1/HER1, ERBB2/HER2, ERBB3/HER3, and ERBB4/HER4 make up the HER protein family¹³. EGFR ligand induced dimerization results in kinase activation and leads to stimulation of oncogenic signaling pathways including the PI3K/AKT/MTOR and RAS/RAF/MEK/ERK pathways. Activation of these pathways promote cell proliferation, differentiation, and survival^{14,15}.

Alterations and prevalence: Recurrent somatic mutations in the tyrosine kinase domain of EGFR are observed in approximately 10-20% of lung adenocarcinoma and at higher frequencies in never-smoker, female, and in Asian populations with lung cancer^{16,17,18,19}. The most common mutations occur near the ATP-binding pocket of the kinase domain and include short in-frame deletions in exon 19 (EGFR exon 19 deletion) and the L858R amino acid substitution in exon 21²⁰. These mutations constitutively activate the EGFR kinase resulting in downstream signaling and represent 80% of the EGFR mutations observed in lung cancer. A second group of recurrent activating mutations that are less common include E709K, G719X, S768I, L861Q, and short in-frame insertions in exon 20^{21,22,23,24}. EGFR activating mutations in lung cancer tend to be mutually exclusive to KRAS activating mutations²⁵. Although these variants are common in lung cancer, they are rare in other cancer types. In glioblastoma, recurrent activating EGFR mutations in the extracellular domain include R108K, A289V and G598V^{20,26}. The recurrent focal amplification of the EGFR gene leads to an increase in expression in several cancer types. EGFR is amplified in up to 30% of glioblastoma, 12% of esophageal cancer, 10% of head and neck cancer, 5% of bladder cancer, and 5% of lung squamous cell carcinoma^{17,18,19,26,27}. Deletion of exons 2-7 encoding the extracellular domain of EGFR (EGFRVIII) results in overexpression of a ligand-independent constitutively active protein which is frequently observed in glioblastoma and has been shown to lead to lung cancer development as well as sensitivity to TKIs^{28,29,30}.

Potential relevance: Erlotinib³¹ (2004), afatinib³² (2013), gefitinib³³ (2015), osimertinib³⁴ (2015), and dacomitinib³⁵ (2018) are small molecule TKIs that are FDA approved for non-small cell lung cancer (NSCLC) patients with sensitizing exon 19 deletions and exon 21 L858R mutations. Acquired secondary mutations often confer resistance to first line TKI therapy with the T790M amino acid substitution accounting for 50-60% of cases²⁰. Osimertinib is also indicated for NSCLC patients harboring EGFR T790M mutations whose disease has progressed on or after treatment with a first line TKI. EGFR targeting antibodies including cetuximab³⁶ (2004), panitumumab³⁷ (2006), and necitumumab³⁸ (2016) are also under investigation in combination with EGFR-targeting TKIs for efficacy against EGFR mutations. The bispecific antibody, JNJ-61186372³⁹, targeting EGFR and MET, and the tyrosine kinase inhibitor⁴⁰ each received a breakthrough designation from the FDA (2020) for NSCLC tumors harboring EGFR exon 20 insertion mutations. The Oncoprex immunogene therapy CNVN-202⁴¹ in combination with the EGFR inhibitor, osimertinib, received a fast track designation from the FDA (2020) for NSCLC tumors harboring EGFR mutations. The use of cetuximab in combination with afatinib is currently recommended by the NCCN for patients who have progressed after receiving erlotinib, afatinib, dacomitinib, or gefitinib and chemotherapy⁴².

Relevant Therapy Summary

In this cancer type O In other cancer type and other cancer type and other cancer types

Contraindicated contraindicated

Mo evidence contraindicated

EGFR p.(E709_T710delinsD) c.2127_2129delAAC

Relevant Therapy	FDA	NCCN	EMA	ESMO	Clinical Trials*
afatinib	×		×		(IV)

^{*} Most advanced phase (IV, III, II/III, II, I/II, I) is shown and multiple clinical trials may be available.

Tel: 02-2875-7449

Date: 29 Oct 2020 4 of 19

Relevant Therapy Summary (continued)

In this cancer type In other cancer type

In this cancer type and other cancer types

Contraindicated

A Both for use and contraindicated

× No evidence

Relevant Therapy	FDA	NCCN	EMA	ESMO	Clinical Trials
erlotinib	×	•	×		(III)
gefitinib	×	•	×	•	(III)
osimertinib	×	×	×		(II)
dacomitinib	×	×	×	•	(1)
bevacizumab + erlotinib	×	×	×		×
bevacizumab + gefitinib	×	×	×	•	×
erlotinib + ramucirumab	×	×	×	•	×
gefitinib + carboplatin + pemetrexed	×	×	×	•	×
anlotinib hydrochloride, toripalimab	×	×	×	×	(IV)
apatinib + EGFR tyrosine kinase inhibitor	×	×	×	×	(IV)
apatinib, gefitinib	×	×	×	×	(IV)
EGFR tyrosine kinase inhibitor	×	×	×	×	(IV)
erlotinib, gefitinib, icotinib hydrochloride, chemotherapy	×	×	×	×	(IV)
gefitinib, radiation therapy	×	×	×	×	(IV)
icotinib hydrochloride, radiation therapy	×	×	×	×	(IV)
bevacizumab, atezolizumab, chemotherapy	×	×	×	×	(III)
bevacizumab, erlotinib	×	×	×	×	(III)
BPI-7711, gefitinib	×	×	×	×	(III)
durvalumab, chemotherapy	×	×	×	×	(III)
erlotinib, erlotinib + chemotherapy	×	×	×	×	(III)
gefitinib, apatinib	×	×	×	×	(III)
gefitinib, erlotinib	×	×	×	×	(III)
HS-10296, gefitinib	×	×	×	×	(III)
icotinib hydrochloride, chemotherapy	×	×	×	×	(III)
nivolumab, chemotherapy	×	×	×	×	(III)

^{*} Most advanced phase (IV, III, II/III, II, I/II, I) is shown and multiple clinical trials may be available.

Tel: 02-2875-7449

Date: 29 Oct 2020 5 of 19

Relevant Therapy Summary (continued)

In this cancer type O In other cancer type

In this cancer type and O Contraindicated other cancer types

A Both for use and contraindicated

X No evidence

EGFR p.(E709_T710delinsD)	continued)

Relevant Therapy	FDA	NCCN	EMA	ESMO	Clinical Trials*
AZD-3759, erlotinib, gefitinib	×	×	×	×	(II/III)
afatinib, bevacizumab	×	×	×	×	(II)
afatinib, chemotherapy, radiation therapy	×	×	×	×	(II)
anlotinib hydrochloride	×	×	×	×	(II)
anlotinib hydrochloride, gefitinib	×	×	×	×	(II)
avitinib, AZD-3759	×	×	×	×	(II)
bevacizumab + gefitinib + chemotherapy	×	×	×	×	(II)
bevacizumab, erlotinib, chemotherapy	×	×	×	×	(II)
bevacizumab, osimertinib	×	×	×	×	(II)
bintrafusp alfa, chemoradiation therapy, durvalumab	×	×	×	×	(II)
chemotherapy, durvalumab	×	×	×	×	(II)
EGFR tyrosine kinase inhibitor + chemotherapy	×	×	×	×	(II)
EGFR tyrosine kinase inhibitor + chemotherapy, EGFR tyrosine kinase inhibitor	×	×	×	×	(II)
EGFR tyrosine kinase inhibitor, apatinib	×	×	×	×	(II)
EGFR tyrosine kinase inhibitor, radiation therapy	×	×	×	×	(II)
erlotinib + chemotherapy	×	×	×	×	(II)
erlotinib, chemotherapy	×	×	×	×	(II)
erlotinib, chemotherapy, sintilimab, anlotinib hydrochloride	×	×	×	×	(II)
erlotinib, gefitinib	×	×	×	×	(II)
erlotinib, gefitinib, icotinib hydrochloride, erlotinib + chemotherapy, gefitinib + chemotherapy, icotinib hydrochloride + chemotherapy	×	×	×	×	(II)
erlotinib, radiation therapy	×	×	×	×	(II)
famitinib, HS-10296	×	×	×	×	(II)
gefitinib + chemotherapy	×	×	×	×	(II)

^{*} Most advanced phase (IV, III, II/II, II, I/II, I) is shown and multiple clinical trials may be available.

Tel: 02-2875-7449

Date: 29 Oct 2020 6 of 19

Relevant Therapy Summary (continued)

In this cancer type In other cancer type

or In this cancer type and other cancer types

Contraindicated

A Both for use and contraindicated

× No evidence

EGFR p.(E709_T710delinsD) c.2127_2129delAAC ((continued)	
--------------------------	-----------------------	-------------	--

Relevant Therapy	FDA	NCCN	EMA	ESMO	Clinical Trials*
gefitinib, chemotherapy	×	×	×	×	(II)
gefitinib, hormone therapy	×	×	×	×	(II)
icotinib hydrochloride	×	×	×	×	(II)
nazartinib, gefitinib	×	×	×	×	(II)
neratinib	×	×	×	×	(II)
nivolumab, ipilimumab	×	×	×	×	(II)
osimertinib, bevacizumab	×	×	×	×	(II)
osimertinib, savolitinib	×	×	×	×	(II)
poziotinib	×	×	×	×	(II)
ramucirumab, chemotherapy, cytokine	×	×	×	×	(II)
SH-1028	×	×	×	×	(II)
targeted therapy, chemotherapy	×	×	×	×	(II)
tyrosine kinase inhibitors, radiation therapy	×	×	×	×	(II)
zoledronic acid, gefitinib	×	×	×	×	(II)
anlotinib hydrochloride, chemotherapy	×	×	×	×	(/)
bevacizumab + erlotinib + chemotherapy	×	×	×	×	(/)
CBT-502, anlotinib hydrochloride	×	×	×	×	(/)
DZD-9008	×	×	×	×	(/)
EMB01	×	×	×	×	(/)
icotinib hydrochloride + chemotherapy	×	×	×	×	(/)
KP-673	×	×	×	×	(/)
ningetinib, gefitinib	×	×	×	×	(/)
U3-1402	×	×	×	×	(/)
AB-928, zimberelimab, chemotherapy	×	×	×	×	(I)
afatinib, chemotherapy	×	×	×	×	(I)

 $^{^{\}star}$ Most advanced phase (IV, III, II/III, II, I/II, I) is shown and multiple clinical trials may be available.

Tel: 02-2875-7449

Taper veterans c

Date: 29 Oct 2020 7 of 19

Relevant Therapy Summary (continued)

In this cancer type In other cancer type

In this cancer type and other cancer types

Contraindicated

A Both for use and contraindicated

× No evidence

EGFR p.(E709_T710delinsD) c.2127_2129delAAC (continued)
--------------------------	-----------------------	------------

Relevant Therapy	FDA	NCCN	EMA	ESMO	Clinical Trials*
afatinib, osimertinib	×	×	×	×	(I)
dacomitinib, osimertinib	×	×	×	×	(I)
DS-1205c, osimertinib	×	×	×	×	(I)
JNJ-61186372	×	×	×	×	(I)
lazertinib, JNJ-61186372	×	×	×	×	(l)
nazartinib + trametinib, nazartinib + ribociclib, LXH254 + nazartinib, capmatinib + nazartinib, gefitinib + nazartinib	×	×	×	×	(1)
neratinib, palbociclib, everolimus, trametinib	×	×	×	×	(I)
niraparib, osimertinib	×	×	×	×	(I)
pirotinib	×	×	×	×	(I)
telisotuzumab vedotin, osimertinib	×	×	×	×	(I)
TNO-155	×	×	×	×	(I)
TP-0903	×	×	×	×	(I)
TQB 3804	×	×	×	×	(I)
tyrosine kinase inhibitors, tyrosine kinase inhibitors + chemotherapy	×	×	×	×	(1)
WSD-0922	×	×	×	×	(l)

AR amplification

Relevant Therapy	FDA	NCCN	EMA	ESMO	Clinical Trials*
bicalutamide	×	0	×	×	×
leuprorelin	×	0	×	×	×

^{*} Most advanced phase (IV, III, II/III, II, I/II, I) is shown and multiple clinical trials may be available.

Tel: 02-2875-7449

Date: 29 Oct 2020 8 of 19

Relevant Therapy Details

Current NCCN Information

In this cancer type and other cancer types

Contraindicated

Not recommended Resistance

NCCN information is current as of 2020-05-01. For the most up-to-date information, search www.nccn.org. For NCCN International Adaptations & Translations, search www.nccn.org/global/international_adaptations.aspx.

EGFR p.(E709_T710delinsD) c.2127_2129delAAC

erlotinib

Cancer type: Non-Small Cell Lung Cancer Variant class: EGFRi sensitizing mutation

NCCN Recommendation category: 2A

Population segment (Line of therapy):

Non-Small Cell Lung Cancer; Brain metastases; Use agents active against primary tumor; Pulsatile erlotinib (Not specified)

Reference: NCCN Guidelines® - NCCN-Central Nervous System Cancers [Version 2.2020]

afatinib

Cancer type: Non-Small Cell Lung Cancer Variant class: EGFRi sensitizing mutation

NCCN Recommendation category: 2B

Population segment (Line of therapy):

Non-Small Cell Lung Cancer; Brain metastases; Use agents active against primary tumor (Not specified)

Reference: NCCN Guidelines® - NCCN-Central Nervous System Cancers [Version 2.2020]

gefitinib

Cancer type: Non-Small Cell Lung Cancer Variant class: EGFRi sensitizing mutation

NCCN Recommendation category: 2B

Population segment (Line of therapy):

Non-Small Cell Lung Cancer; Brain metastases; Use agents active against primary tumor (Not specified)

Reference: NCCN Guidelines® - NCCN-Central Nervous System Cancers [Version 2.2020]

Tel: 02-2875-7449

Date: 29 Oct 2020 9 of 19

EGFR p.(E709_T710delinsD) c.2127_2129delAAC (continued)

alectinib

Cancer type: Non-Small Cell Lung Cancer Variant class: EGFRi sensitizing mutation

Summary:

NCCN Guidelines® include the following supporting statement(s):

"Thus, crizotinib, ceritinib, alectinib, brigatinib, or lorlatinib are not recommended as subsequent therapy for patients with sensitizing EGFR mutations who relapse on EGFR TKI therapy."

Reference: NCCN Guidelines® - NCCN-Non-Small Cell Lung Cancer [Version 4.2020]

brigatinib

Cancer type: Non-Small Cell Lung Cancer Variant class: EGFRi sensitizing mutation

Summary:

NCCN Guidelines® include the following supporting statement(s):

"Thus, crizotinib, ceritinib, alectinib, brigatinib, or lorlatinib are not recommended as subsequent therapy for patients with sensitizing EGFR mutations who relapse on EGFR TKI therapy."

Reference: NCCN Guidelines® - NCCN-Non-Small Cell Lung Cancer [Version 4.2020]

ceritinib

Cancer type: Non-Small Cell Lung Cancer Variant class: EGFRi sensitizing mutation

Summary:

NCCN Guidelines® include the following supporting statement(s):

"Thus, crizotinib, ceritinib, alectinib, brigatinib, or lorlatinib are not recommended as subsequent therapy for patients with sensitizing EGFR mutations who relapse on EGFR TKI therapy."

Reference: NCCN Guidelines® - NCCN-Non-Small Cell Lung Cancer [Version 4.2020]

crizotinib

Cancer type: Non-Small Cell Lung Cancer Variant class: EGFRi sensitizing mutation

Summary:

NCCN Guidelines® include the following supporting statement(s):

"Thus, crizotinib, ceritinib, alectinib, brigatinib, or lorlatinib are not recommended as subsequent therapy for patients with sensitizing EGFR mutations who relapse on EGFR TKI therapy."

Reference: NCCN Guidelines® - NCCN-Non-Small Cell Lung Cancer [Version 4.2020]

Tel: 02-2875-7449

Date: 29 Oct 2020 10 of 19

EGFR p.(E709_T710delinsD) c.2127_2129delAAC (continued)

lorlatinib

Cancer type: Non-Small Cell Lung Cancer Variant class: EGFRi sensitizing mutation

Summary:

NCCN Guidelines® include the following supporting statement(s):

"Thus, crizotinib, ceritinib, alectinib, brigatinib, or lorlatinib are not recommended as subsequent therapy for patients with sensitizing EGFR mutations who relapse on EGFR TKI therapy."

Reference: NCCN Guidelines® - NCCN-Non-Small Cell Lung Cancer [Version 4.2020]

atezolizumab

Cancer type: Non-Small Cell Lung Cancer Variant class: EGFR mutation

Summary:

NCCN Guidelines® include the following supporting statement(s):

"Therefore, subsequent therapy with pembrolizumab, nivolumab, or atezolizumab is not recommended in patients with EGFR mutations or ALK fusions."

Reference: NCCN Guidelines® - NCCN-Non-Small Cell Lung Cancer [Version 4.2020]

nivolumab

Cancer type: Non-Small Cell Lung Cancer Variant class: EGFR mutation

Summary:

NCCN Guidelines® include the following supporting statement(s):

"Therefore, subsequent therapy with pembrolizumab, nivolumab, or atezolizumab is not recommended in patients with EGFR mutations or ALK fusions."

Reference: NCCN Guidelines® - NCCN-Non-Small Cell Lung Cancer [Version 4.2020]

pembrolizumab

Cancer type: Non-Small Cell Lung Cancer Variant class: EGFR mutation

Other criteria: CD274 overexpression

Summary:

NCCN Guidelines® include the following supporting statement(s):

"A small study suggests that single-agent pembrolizumab is not effective as first-line therapy in patients with metastatic NSCLC and EGFR mutations, even those with PD-L1 levels more than 50%."

Reference: NCCN Guidelines® - NCCN-Non-Small Cell Lung Cancer [Version 4.2020]

Tel: 02-2875-7449

Date: 29 Oct 2020 11 of 19

EGFR p.(E709_T710delinsD) c.2127_2129delAAC (continued)

pembrolizumab

Cancer type: Non-Small Cell Lung Cancer Variant class: EGFR mutation

Summary:

NCCN Guidelines® include the following supporting statement(s):

" Therefore, subsequent therapy with pembrolizumab, nivolumab, or atezolizumab is not recommended in patients with EGFR mutations or ALK fusions."

Reference: NCCN Guidelines® - NCCN-Non-Small Cell Lung Cancer [Version 4.2020]

AR amplification

O bicalutamide

Cancer type: Head and Neck Cancer Variant class: AR positive

NCCN Recommendation category: 2A

Population segment (Line of therapy):

■ Recurrent, Unresectable, or Metastatic Salivary Gland Tumors; PS 0-3 (Useful in Certain Circumstances)

Reference: NCCN Guidelines® - NCCN-Head and Neck Cancers [Version 1.2020]

O leuprorelin

Cancer type: Head and Neck Cancer Variant class: AR positive

NCCN Recommendation category: 2A

Population segment (Line of therapy):

Recurrent, Unresectable, or Metastatic Salivary Gland Tumors; PS 0-3 (Useful in Certain Circumstances)

Reference: NCCN Guidelines® - NCCN-Head and Neck Cancers [Version 1.2020]

Department of Pathology and Laboratory Medicine No.201, Sec. 2, Shipai Rd., Beitou District, Taipei City, Taiwan 11217, R.O.C.

Tel: 02-2875-7449

Date: 29 Oct 2020 12 of 19

Current ESMO Information

In this cancer type O In other cancer type

In this cancer type and other cancer types

Contraindicated

Not recommended Resistance

ESMO information is current as of 2020-05-01. For the most up-to-date information, search www.esmo.org.

EGFR p.(E709_T710delinsD) c.2127_2129delAAC

afatinib

Cancer type: Non-Small Cell Lung Cancer Variant class: EGFRi sensitizing mutation

ESMO Level of Evidence/Grade of Recommendation: I / A

Population segment (Line of therapy):

Advanced stage (First-line therapy)

Reference: ESMO Clinical Practice Guidelines - ESMO-Metastatic Non-Small-Cell Lung Cancer [Ann Oncol (2018) 29 (suppl 4): iv192-iv237; https://www.esmo.org/Guidelines/Lung-and-Chest-Tumours/Metastatic-Non-Small-Cell-Lung-Cancer]

erlotinib

Cancer type: Non-Small Cell Lung Cancer Variant class: EGFRi sensitizing mutation

ESMO Level of Evidence/Grade of Recommendation: I / A

Population segment (Line of therapy):

Advanced stage (First-line therapy)

Reference: ESMO Clinical Practice Guidelines - ESMO-Metastatic Non-Small-Cell Lung Cancer [Ann Oncol (2018) 29 (suppl 4): $iv192-iv237; https://www.esmo.org/Guidelines/Lung-and-Chest-Tumours/Metastatic-Non-Small-Cell-Lung-Cancer \cite{Continuous} and the continuous of the cont$

gefitinib

Cancer type: Non-Small Cell Lung Cancer Variant class: EGFRi sensitizing mutation

ESMO Level of Evidence/Grade of Recommendation: I / A

Population segment (Line of therapy):

Advanced stage (First-line therapy)

Tel: 02-2875-7449

Date: 29 Oct 2020 13 of 19

EGFR p.(E709_T710delinsD) c.2127_2129delAAC (continued)

osimertinib

Cancer type: Non-Small Cell Lung Cancer Variant class: EGFRi sensitizing mutation

ESMO Level of Evidence/Grade of Recommendation: I / A

Population segment (Line of therapy):

Advanced stage; ESMO-Magnitude of Clinical Benefit Scale Version 1.1 Score: 4 (First-line therapy)

Reference: ESMO Clinical Practice Guidelines - ESMO-Metastatic Non-Small-Cell Lung Cancer [Ann Oncol (2018) 29 (suppl 4): iv192-iv237; https://www.esmo.org/Guidelines/Lung-and-Chest-Tumours/Metastatic-Non-Small-Cell-Lung-Cancer]

dacomitinib

Cancer type: Non-Small Cell Lung Cancer Variant class: EGFRi sensitizing mutation

ESMO Level of Evidence/Grade of Recommendation: I / B

Population segment (Line of therapy):

Stage IV; Magnitude of Clinical Benefit Scale Version v1.1 Score: 3 (First-line therapy)

Reference: ESMO Clinical Practice Guidelines - ESMO-Metastatic Non-Small-Cell Lung Cancer [Ann Oncol (2018) 29 (suppl 4): iv192-iv237; https://www.esmo.org/Guidelines/Lung-and-Chest-Tumours/Metastatic-Non-Small-Cell-Lung-Cancer]

erlotinib

Cancer type: Non-Small Cell Lung Cancer Variant class: EGFRi sensitizing mutation

ESMO Level of Evidence/Grade of Recommendation: III / B

Population segment (Line of therapy):

Non-Squamous (Maintenance therapy)

Reference: ESMO Clinical Practice Guidelines - ESMO-Metastatic Non-Small-Cell Lung Cancer [Ann Oncol (2018) 29 (suppl 4): iv192-iv237; https://www.esmo.org/Guidelines/Lung-and-Chest-Tumours/Metastatic-Non-Small-Cell-Lung-Cancer]

afatinib

Cancer type: Non-Small Cell Lung Cancer Variant class: EGFR activating mutation

ESMO Level of Evidence/Grade of Recommendation: I / A

Population segment (Line of therapy):

■ Stage IV; PS 0-2 (First-line therapy)

Tel: 02-2875-7449

Date: 29 Oct 2020 14 of 19

EGFR p.(E709_T710delinsD) c.2127_2129delAAC (continued)

erlotinib

Cancer type: Non-Small Cell Lung Cancer Variant class: EGFR activating mutation

ESMO Level of Evidence/Grade of Recommendation: I / A

Population segment (Line of therapy):

Stage IV; PS 0-2 (First-line therapy)

Reference: ESMO Clinical Practice Guidelines - ESMO-Metastatic Non-Small-Cell Lung Cancer [Ann Oncol (2018) 29 (suppl 4): iv192-iv237; https://www.esmo.org/Guidelines/Lung-and-Chest-Tumours/Metastatic-Non-Small-Cell-Lung-Cancer]

gefitinib

Cancer type: Non-Small Cell Lung Cancer Variant class: EGFR activating mutation

ESMO Level of Evidence/Grade of Recommendation: I / A

Population segment (Line of therapy):

Stage IV; PS 0-2 (First-line therapy)

Reference: ESMO Clinical Practice Guidelines - ESMO-Metastatic Non-Small-Cell Lung Cancer [Ann Oncol (2018) 29 (suppl 4): iv192-iv237; https://www.esmo.org/Guidelines/Lung-and-Chest-Tumours/Metastatic-Non-Small-Cell-Lung-Cancer]

gefitinib + carboplatin + pemetrexed

Cancer type: Non-Small Cell Lung Cancer Variant class: EGFR activating mutation

ESMO Level of Evidence/Grade of Recommendation: I / B

Population segment (Line of therapy):

Advanced stage (First-line therapy)

Reference: ESMO Clinical Practice Guidelines - ESMO-Metastatic Non-Small-Cell Lung Cancer [Ann Oncol (2018) 29 (suppl 4): iv192-iv237; https://www.esmo.org/Guidelines/Lung-and-Chest-Tumours/Metastatic-Non-Small-Cell-Lung-Cancer]

bevacizumab + erlotinib

Cancer type: Non-Small Cell Lung Cancer Variant class: EGFR activating mutation

ESMO Level of Evidence/Grade of Recommendation: II / B

Population segment (Line of therapy):

Stage IV; ESMO-Magnitude of Clinical Benefit Scale Version 1.1 Score: 3 (First-line therapy)

Tel: 02-2875-7449

Date: 29 Oct 2020 15 of 19

EGFR p.(E709_T710delinsD) c.2127_2129delAAC (continued)

bevacizumab + gefitinib

Cancer type: Non-Small Cell Lung Cancer Variant class: EGFR activating mutation

ESMO Level of Evidence/Grade of Recommendation: II / B

Population segment (Line of therapy):

Stage IV; ESMO-Magnitude of Clinical Benefit Scale Version 1.1 Score: 3 (First-line therapy)

Reference: ESMO Clinical Practice Guidelines - ESMO-Metastatic Non-Small-Cell Lung Cancer [Ann Oncol (2018) 29 (suppl 4): iv192-iv237; https://www.esmo.org/Guidelines/Lung-and-Chest-Tumours/Metastatic-Non-Small-Cell-Lung-Cancer]

erlotinib + ramucirumab

Cancer type: Non-Small Cell Lung Cancer Variant class: EGFR activating mutation

ESMO Level of Evidence/Grade of Recommendation: II / B

Population segment (Line of therapy):

Stage IV (First-line therapy)

Reference: ESMO Clinical Practice Guidelines - ESMO-Metastatic Non-Small-Cell Lung Cancer [Ann Oncol (2018) 29 (suppl 4): iv192-iv237; https://www.esmo.org/Guidelines/Lung-and-Chest-Tumours/Metastatic-Non-Small-Cell-Lung-Cancer]

afatinib

Cancer type: Non-Small Cell Lung Cancer Variant class: EGFR activating mutation

ESMO Level of Evidence/Grade of Recommendation: III / \mbox{A}

Population segment (Line of therapy):

Stage IV; PS 3-4 (First-line therapy)

Reference: ESMO Clinical Practice Guidelines - ESMO-Metastatic Non-Small-Cell Lung Cancer [Ann Oncol (2018) 29 (suppl 4): iv192-iv237; https://www.esmo.org/Guidelines/Lung-and-Chest-Tumours/Metastatic-Non-Small-Cell-Lung-Cancer]

dacomitinib

Cancer type: Non-Small Cell Lung Cancer Variant class: EGFR activating mutation

ESMO Level of Evidence/Grade of Recommendation: III / A

Population segment (Line of therapy):

Stage IV; PS 3-4 (First-line therapy)

Tel: 02-2875-7449

Date: 29 Oct 2020 16 of 19

EGFR p.(E709_T710delinsD) c.2127_2129delAAC (continued)

erlotinib

Cancer type: Non-Small Cell Lung Cancer Variant class: EGFR activating mutation

ESMO Level of Evidence/Grade of Recommendation: III / A

Population segment (Line of therapy):

■ Stage IV; PS 3-4 (First-line therapy)

Reference: ESMO Clinical Practice Guidelines - ESMO-Metastatic Non-Small-Cell Lung Cancer [Ann Oncol (2018) 29 (suppl 4): iv192-iv237; https://www.esmo.org/Guidelines/Lung-and-Chest-Tumours/Metastatic-Non-Small-Cell-Lung-Cancer]

gefitinib

Cancer type: Non-Small Cell Lung Cancer Variant class: EGFR activating mutation

ESMO Level of Evidence/Grade of Recommendation: III / A

Population segment (Line of therapy):

Stage IV; PS 3-4 (First-line therapy)

Department of Pathology and Laboratory Medicine No.201, Sec. 2, Shipai Rd., Beitou District, Taipei City, Taiwan 11217, R.O.C.

Tel: 02-2875-7449

Date: 29 Oct 2020 17 of 19

Signatures			
Testing Personnel:			

Laboratory Supervisor:

Pathologist:

Department of Pathology and Laboratory Medicine No.201, Sec. 2, Shipai Rd., Beitou District, Taipei City, Taiwan 11217, R.O.C.

Tel: 02-2875-7449

Date: 29 Oct 2020 18 of 19

References

- Lu et al. International Union of Pharmacology. LXV. The pharmacology and classification of the nuclear receptor superfamily: glucocorticoid, mineralocorticoid, progesterone, and androgen receptors. Pharmacol. Rev. 2006 Dec;58(4):782-97. PMID: 17132855
- 2. Davey et al. Androgen Receptor Structure, Function and Biology: From Bench to Bedside. Clin Biochem Rev. 2016 Feb;37(1):3-15. PMID: 27057074
- 3. Crumbaker et al. AR Signaling and the PI3K Pathway in Prostate Cancer. Cancers (Basel). 2017 Apr 15;9(4). PMID: 28420128
- Leung et al. Non-Genomic Actions of the Androgen Receptor in Prostate Cancer. Front Endocrinol (Lausanne). 2017 Jan 17;8:2.
 PMID: 28144231
- Waltering et al. Androgen receptor (AR) aberrations in castration-resistant prostate cancer. Mol. Cell. Endocrinol. 2012 Sep 5;360(1-2):38-43. PMID: 22245783
- Antonarakis et al. AR-V7 and resistance to enzalutamide and abiraterone in prostate cancer. N. Engl. J. Med. 2014 Sep 11;371(11):1028-38. PMID: 25184630
- 7. Zhu et al. Novel Junction-specific and Quantifiable In Situ Detection of AR-V7 and its Clinical Correlates in Metastatic Castration-resistant Prostate Cancer. Eur. Urol. 2018 May;73(5):727-735. PMID: 28866255
- 8. https://www.businesswire.com/news/home/20160106006206/en/Innocrin-Pharmaceuticals-Granted-Fast-Track-Designation-FDA
- https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/202379s027s028lbl.pdf
- 10. https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/203415s015lbl.pdf
- 11. Lallous et al. Functional analysis of androgen receptor mutations that confer anti-androgen resistance identified in circulating cell-free DNA from prostate cancer patients. Genome Biol. 2016 Jan 26;17:10. PMID: 26813233
- 12. Robinson et al. Integrative clinical genomics of advanced prostate cancer. Cell. 2015 May 21;161(5):1215-1228. PMID: 26000489
- 13. King et al. Amplification of a novel v-erbB-related gene in a human mammary carcinoma. Science. 1985 Sep 6;229(4717):974-6. PMID: 2992089
- 14. ErbB Receptors and Cancer. Methods Mol. Biol. 2017;1652:3-35. PMID: 28791631
- 15. Gutierrez et al. HER2: biology, detection, and clinical implications. Arch. Pathol. Lab. Med. 2011 Jan;135(1):55-62. PMID: 21204711
- 16. Pines et al. Oncogenic mutant forms of EGFR: lessons in signal transduction and targets for cancer therapy. FEBS Lett. 2010 Jun 18;584(12):2699-706. PMID: 20388509
- 17. Cancer Genome Atlas Research Network. Comprehensive molecular profiling of lung adenocarcinoma. Nature. 2014 Jul 31;511(7511):543-50. doi: 10.1038/nature13385. Epub 2014 Jul 9. PMID: 25079552
- 18. Weinstein et al. The Cancer Genome Atlas Pan-Cancer analysis project. Nat. Genet. 2013 Oct;45(10):1113-20. PMID: 24071849
- 19. Cerami et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012 May;2(5):401-4. PMID: 22588877
- 20. da et al. EGFR mutations and lung cancer. Annu Rev Pathol. 2011;6:49-69. doi: 10.1146/annurev-pathol-011110-130206. PMID: 20887192
- 21. Arcila et al. EGFR exon 20 insertion mutations in lung adenocarcinomas: prevalence, molecular heterogeneity, and clinicopathologic characteristics. Mol. Cancer Ther. 2013 Feb;12(2):220-9. PMID: 23371856
- 22. Kobayashi et al. EGFR Exon 18 Mutations in Lung Cancer: Molecular Predictors of Augmented Sensitivity to Afatinib or Neratinib as Compared with First- or Third-Generation TKIs. Clin Cancer Res. 2015 Dec 1;21(23):5305-13. doi: 10.1158/1078-0432.CCR-15-1046. Epub 2015 Jul 23. PMID: 26206867
- 23. Yasuda et al. Structural, biochemical, and clinical characterization of epidermal growth factor receptor (EGFR) exon 20 insertion mutations in lung cancer. Sci Transl Med. 2013 Dec 18;5(216):216ra177. PMID: 24353160
- 24. Chiu et al. Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitor Treatment Response in Advanced Lung Adenocarcinomas with G719X/L861Q/S768I Mutations. J Thorac Oncol. 2015 May;10(5):793-9. PMID: 25668120
- 25. Karachaliou et al. KRAS mutations in lung cancer. Clin Lung Cancer. 2013 May;14(3):205-14. PMID: 23122493

Department of Pathology and Laboratory Medicine No.201, Sec. 2, Shipai Rd., Beitou District, Taipei City, Taiwan 11217, R.O.C.

Tel: 02-2875-7449

Date: 29 Oct 2020 19 of 19

References (continued)

- 26. Brennan et al. The somatic genomic landscape of glioblastoma. Cell. 2013 Oct 10;155(2):462-77. PMID: 24120142
- 27. Cancer Genome Atlas Network. Comprehensive genomic characterization of head and neck squamous cell carcinomas. Nature. 2015 Jan 29;517(7536):576-82. PMID: 25631445
- 28. Mitsudomi et al. Epidermal growth factor receptor in relation to tumor development: EGFR gene and cancer. FEBS J. 2010 Jan;277(2):301-8. PMID: 19922469
- 29. Ji et al. Epidermal growth factor receptor variant III mutations in lung tumorigenesis and sensitivity to tyrosine kinase inhibitors. Proc. Natl. Acad. Sci. U.S.A. 2006 May 16;103(20):7817-22. PMID: 16672372
- 30. Gazdar. Activating and resistance mutations of EGFR in non-small-cell lung cancer: role in clinical response to EGFR tyrosine kinase inhibitors. Oncogene. 2009 Aug;28 Suppl 1:S24-31. PMID: 19680293
- 31. https://www.accessdata.fda.gov/drugsatfda_docs/label/2016/021743s025lbl.pdf
- 32. https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/201292s015lbl.pdf
- 33. https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/206995s003lbl.pdf
- 34. https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/208065s013lbl.pdf
- 35. https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/211288s000lbl.pdf
- 36. https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/125084s273lbl.pdf
- 37. https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/125147s207lbl.pdf
- 38. https://www.accessdata.fda.gov/drugsatfda_docs/label/2015/125547s000lbl.pdf
- 39. https://www.jnj.com/janssen-announces-u-s-fda-breakthrough-therapy-designation-granted-for-jnj-6372-for-the-treatment-of-non-small-cell-lung-cancer
- 40. https://www.takeda.com/newsroom/newsreleases/2020/takeda-announces-u.s.-fda-breakthrough-therapy-designation-for-mobocertinib-tak-788-for-the-treatment-of-nsclc-patients-with-egfr-exon-20-insertion-mutations/
- 41. https://www.genprex.com/news/genprex-receives-u-s-fda-fast-track-designation-for-gene-therapy-that-targets-lung-cancer/
- 42. NCCN Guidelines® NCCN-Non-Small Cell Lung Cancer [Version 4.2020]