Control Systems

G V V Sharma*

CONTENTS

1 Feedback Voltage Amplifier: Shunt-Shunt

Abstract—This manual is an introduction to control systems in feedback circuits. Links to sample Python codes are available in the text.

Download python codes using

svn co https://github.com/gadepall/school/trunk/control/feedback/codes

1 FEEDBACK VOLTAGE AMPLIFIER: SHUNT-SHUNT

1.1. The circuit in Fig. 1.1.1 utilizes a voltage amplifier with gain μ in a shunt-shunt feedback topology with the feedback network composed of resistor R_F , to use the feedback equations convert the signal source to its Norton Representation. Also draw the H-Circuit and G-Circuit.

Fig. 1.1.1

Solution: See Fig. 1.1.3 for the Norton Representation, Fig. 1.1.4 for the H-Circuit, Fig.1.1.5 and Fig. 1.1.6 for the G-Circuit.

*The author is with the Department of Electrical Engineering, Indian Institute of Technology, Hyderabad 502285 India e-mail: gadepall@iith.ac.in. All content in this manual is released under GNU GPL. Free and open source.

Fig. 1.1.2: Shunt Shunt Amplifier Block Diagram

1.2. Write all the feedback equations based on all the Figs. using KCL/KVL.

Fig. 1.1.4

Fig. 1.1.5

Solution: The equations are as follows:

$$T = \frac{V_o}{I_s} = \frac{G}{1 + GH} \tag{1.2.1}$$

$$H = \frac{I_f}{V_o} = -\frac{1}{R_F} \tag{1.2.2}$$

$$I_i = I_s - I_f = \frac{I_s}{1 + GH} \tag{1.2.3}$$

$$R_{if} = \frac{V_i}{I_s} = \frac{V_i}{(1 + GH)I_i} = \frac{R_i}{1 + GH}$$
 (1.2.4)

$$R_{of} = \frac{R_o}{1 + GH} \tag{1.2.5}$$

$$R_{in} = \frac{1}{\frac{1}{R_{if}} - \frac{1}{R_s}}, R_{out} = \frac{1}{\frac{1}{R_{of}} - \frac{1}{R_L}}$$
(1.2.6)

Fig. 1.1.6

Parameters	Description
G	Open Loop Gain
Н	Feedback Factor
T	Closed Loop Gain
V_0	Output Voltage
V_s	Signal Source Voltage
V_{id}	Input Voltage of Opamp
I_s	Signal Source Current
I_f	Feedback Current
R_i	Total Input Resistance
R_{out}	Total Ouput Resistance
R_{id}	Input resistance of Opamp
r_o	Output resistance of Opamp
R_i	Input resistance of Open Loop
R_o	Output resistance of Open Loop
R_{if}	Input resistance of Feedback
R_{of}	Output resistance of Feedback
R_s	Resistance of Current Source
V_f	Voltage across R_s
V_{in}	Voltage at -ve terminal of opamp
f	Closed loop 3-dB freq.

TABLE 1.2

1.3. If the loop gain is very large, what approximate closed-loop voltage gain V_o/V_s is realized? Also if $R_s = 1 \text{ k}\Omega$, give the value of R_F that will

Fig. 1.2.7: Block Diagram

result in $V_o/V_s \simeq -10V/V$.

Solution: If the loop gain GH is very large then the closed loop gain is,

$$T = \frac{V_o}{I_s} = \frac{G}{1 + GH}$$
 (1.3.1)

$$:: GH >> 1 \implies T \approx \frac{1}{H}$$
 (1.3.2)

From equation 1.2.2 and 1.3.2 we get,

$$T \approx -R_F \tag{1.3.3}$$

$$\implies \frac{V_o R_s}{V_s} \approx -R_F \tag{1.3.4}$$

$$\implies \frac{V_o}{V_s} \approx \frac{-R_F}{R_s} \tag{1.3.5}$$

$$\implies R_F = 10k\Omega$$
 (1.3.6)

1.4. If the amplifier μ has a dc gain of 10^3 V/V, an input resistance $R_{id}=100~\text{k}\Omega$, and an output resistance $r_o=1~\text{k}\Omega$, find the actual V_o/V_s realized. Also find R_{in} and R_{out} .

Solution: To find V_o/V_s , R_{in} and R_{out} first find the other necessary parameters. From Fig. 1.1.5 we get,

$$R_i = R_{id} ||R_F|| R_s {(1.4.1)}$$

$$R_i = 100k||10k||1k = \frac{1000}{1011}k = 0.90k\Omega$$
 (1.4.2)

$$V_{id} = I_i R_i \tag{1.4.3}$$

From Fig. 1.1.6 we get,

$$R_o = r_o || R_F \tag{1.4.4}$$

$$\implies R_o = 1k||10k = 0.91k\Omega \tag{1.4.5}$$

$$V_o = -\mu V_{id} \frac{R_F}{r_o + R_F}$$
 (1.4.6)

From equation 1.4.3 and 1.4.6 we get the open-loop

gain as,

$$G = \frac{V_o}{I_i} = -\mu R_i \frac{R_F}{r_o + R_F}$$
 (1.4.7)

$$\implies$$
 G = -(1000)(0.90) $\frac{10}{11}$ = -819.00kΩ (1.4.8)

From equation 1.2.2 and 1.4.8 we get closed loop gain T as,

$$T = \frac{G}{1 + GH} = \frac{-819}{82.9} = -9.88k\Omega \tag{1.4.9}$$

From equation 1.2.1 we know,

$$T = \frac{V_o}{I_s} \tag{1.4.10}$$

$$\implies T = \frac{V_o R_s}{V_s} \tag{1.4.11}$$

$$\implies \frac{V_o}{V_s} = \frac{T}{R_s} \tag{1.4.12}$$

$$\implies \frac{V_o}{V_s} = \frac{-9.88}{1} = -9.88V/V \qquad (1.4.13)$$

From equation 1.2.4 and 1.2.6 we know,

$$R_{if} = \frac{R_i}{1 + GH} = \frac{0.90}{82.9} \tag{1.4.14}$$

$$\implies R_{if} = 10.87\Omega \tag{1.4.15}$$

$$R_{in} = \frac{1}{\frac{1}{R_{is}} - \frac{1}{R_{is}}} \tag{1.4.16}$$

$$\implies R_{in} = \frac{1}{\frac{1}{10.87} - \frac{1}{1000}} = 10.99\Omega$$
 (1.4.17)

Because R_L is not there in the circuit so we take it's value as ∞ , so from equation 1.2.5 and 1.2.6 we know,

$$R_{of} = \frac{R_o}{1 + GH} = \frac{0.91}{82.9} \tag{1.4.18}$$

$$\implies R_{of} = 10.97\Omega \tag{1.4.19}$$

$$R_{out} = \frac{1}{\frac{1}{R_{out}} - \frac{1}{R_{I}}}$$
 (1.4.20)

$$\implies R_{out} = \frac{1}{\frac{1}{10.97} - \frac{1}{\infty}} = 10.97\Omega$$
 (1.4.21)

Verify the above calculations using the following Python code.

1.5. If the amplifier μ has an upper 3-dB frequency of 1 op kHz and a uniform -20-dB/decade gain rolloff, what

is the 3-dB frequency of the gain $|V_o/V_s|$.

Solution: To find the 3-dB frequency i.e., ω_{3dB} we need to look at the Fig.1.5.8.

Fig. 1.5.8

The open loop gain G is given as follows in terms of frequency:

$$G = \frac{\mu}{1 + \frac{jf}{f_c}}$$
 (1.5.1)

From Fig.1.5.8 we can say that:

$$V_{in} = V_s - V_f \tag{1.5.2}$$

$$V_o = -GV_{in} \tag{1.5.3}$$

$$\frac{V_f}{R_s} = \frac{V_{in} - V_o}{R_F}$$
 (1.5.4)

From equation 1.5.3 and 1.5.4 we get:

$$\frac{V_f}{R_s} = \frac{-\frac{V_o}{G} - V_o}{R_F}$$
 (1.5.5)

$$\implies \frac{V_f}{V_o} = -\frac{(1+G)}{G} \frac{(R_s)}{(R_E)} = -H \quad (1.5.6)$$

$$: G >> 1 \implies H = \frac{R_s}{R_E}$$
 (1.5.7)

Now from equation 1.5.2, 1.5.3 and 1.5.6 we get:

$$-\frac{V_o}{G} = V_s + HV_o \tag{1.5.8}$$

$$\implies \frac{V_o}{V_s} = -\frac{G}{1 + GH} \tag{1.5.9}$$

Now, for "f" to be 3-dB frequency given condition

should be match i.e.,:

$$|\frac{V_o}{V_s}| = \frac{1}{\sqrt{2}}$$
 (1.5.10)

$$\Longrightarrow |-\frac{G}{1+GH}| = \frac{1}{\sqrt{2}} \tag{1.5.11}$$

$$\implies \left| -\frac{\frac{\mu}{1 + \frac{if}{f_c}}}{1 + \frac{(R_s)}{(R_F)} \frac{\mu}{1 + \frac{if}{f_c}}} \right| = \frac{1}{\sqrt{2}}$$
 (1.5.12)

Now putting the appropriate values as given in

Parameters	Values
R_s	1kΩ
R_F	10kΩ
μ	1000
f_c	1kHz

TABLE 1.5

Table 1.5 we get:

$$\left| -\frac{\frac{1000}{1 + \frac{10}{1000}}}{1 + \frac{(1)}{(10)} \frac{1000}{1 + \frac{10}{1000}}} \right| = \frac{1}{\sqrt{2}}$$
 (1.5.13)

$$\frac{f^2}{10^{12}} + \frac{101^2}{10^6} = 2\tag{1.5.14}$$

$$\implies f \approx 1.41MHz \tag{1.5.15}$$