Markov decision process

Definition

A Markov decision process (MDP) (S, A, P, R, γ) consists of

- $ightharpoonup \mathcal{S}$ a set of states (in my case $\subseteq \mathbb{R}^n$)
- \triangleright \mathcal{A} a set of actions (in my case *finite*)
- ▶ $P: S \times A \rightarrow P(S)$ its Markov transition kernel
- $ightharpoonup R: \mathcal{S} imes \mathcal{A} o \mathcal{P}(\mathbb{R})$ its immediate reward distribution
- $ightharpoonup \gamma \in (0,1)$ the discount factor

Q-Learning

- ▶ Policy: $\pi: \mathcal{S} \to \mathcal{P}(\mathcal{A})$
- State-value function: $V^{\pi}: \mathcal{S} \to \mathbb{R}$ $V^{\pi}(s) = \mathbb{E}\left(\sum_{t \geq 0} \gamma^{t} R_{t} \mid R_{t} \sim R(S_{t}, A_{t}), S_{t} \sim P(S_{t-1}, A_{t-1}), A_{t} \sim \pi(S_{t}), S_{0} = s\right)$
- ▶ State-action-value (Q-) function $Q^{\pi}: \mathcal{S} \times \mathcal{A} \rightarrow \mathbb{R}$

$$Q^{\pi}(s,a) = \mathbb{E}(R(s,a) + \gamma V^{\pi}(S_0) \mid S_0 \sim P(s,a))$$

Optimal Q-function is defined as

$$Q^*(s,a) = \sup_{\pi} Q^{\pi}(s,a)$$

• One can show that there is a policy π^* such that $Q^* = Q^{\pi^*}$. This is the optimal policy - the goal of Q-learning (and Reinforcement Learning in general).

Artificial Neural Networks

Definition

An **ANN** (Artificial Neural Network) with structure $\{d_i\}_{i=0}^{L+1} \subseteq \mathbb{N}$, activation functions $\sigma_i = (\sigma_{ij} : \mathbb{R} \to \mathbb{R})_{j=1}^{d_i}$ and weights $\{W_i \in M^{d_i \times d_{i-1}}, v_i \in \mathbb{R}^{d_i}\}_{i=1}^{L+1}$ is the function $F : \mathbb{R}^{d_0} \to \mathbb{R}^{d_{L+1}}$

$$F(x) = w_{L+1} \circ \sigma_L \circ w_L \circ \sigma_{L-1} \circ \cdots \circ w_1 x$$

where w_i is the affine function $x \mapsto W_i x + v_i$ for $i \in [L+1]$. Here $\sigma_i(x_1, \dots, x_{d_i}) = (\sigma_{i1}(x_1), \dots, \sigma_{id_i}(x_{d_i}))$. $L \in \mathbb{N}_0$ is called the number of hidden layers. d_i is the number of neurons or nodes in layer i.

An ANN is called *deep* if there are two or more hidden layers.

The Bellman operator

Denote π_Q as the *greedy* policy with respect to Q i.e. $\pi(s,a)=1$ for $a=\operatorname{argmax}_a Q(s,a)$. For every policy π we define the operators

$$(P^{\pi}Q)(s,a) = \mathbb{E}(Q(S',A') \mid S' \sim P(s,a), A' \sim \pi(S'))$$

 $(T^{\pi}Q)(s,a) = \mathbb{E}R(s,a) + \gamma(P^{\pi}Q)(s,a)$

 T^{π} is called the Bellman operator. It can be shown that Q^{π} is a fixed point for T^{π} . Finally we define Bellmans optimality operator T as

$$TQ = T^{\pi_Q}Q$$

Bellmans optimality equation is then $TQ^* = Q^*$.

Context

Theorem

If both S and A are finite, and R is deterministic, then the simple iteration

$$Q_{t+1}(s_t, a_t) = Q_t(s_t, a_t) + \alpha_t(s_t, a_t) [R_t + \gamma Q_t(s_{t+1}, \pi_{Q_t}(s_{t+1})) - Q_t(s_t, a_t)]$$

converges with probability 1 to Q^* , given that

$$\sum_{t\geq 1}\alpha_t(s,a)=\infty, \qquad \sum_{t\geq 1}\alpha_t^2(s,a)<\infty$$

for all $(s, a) \in \mathcal{S} \times \mathcal{A}$.

Theorem (Universal approximation theorem)

An ANN with 1 hidden layer is sufficient to approximate any continuous function $[0,1]^k \to \mathbb{R}$ (at cost of layer-width).

Sparse ReLU Network

Definition

For $s, V \in \mathbb{R}$ a (s,V)-Sparse ReLU Network is an ANN f with any structure $\{d_i\}_{i\in[L+1]}$, all activation functions being ReLU i.e. $\sigma_{ij} = \max(\cdot,0)$ and any weights (W_ℓ, v_ℓ) satisfying

- $\blacktriangleright \ \max_{\ell \in [L+1]} \left\| \widetilde{W}_{\ell} \right\|_{\infty} \leq 1$
- $\blacktriangleright \sum_{\ell=1}^{L+1} \left\| \widetilde{W}_{\ell} \right\|_{0} \leq s$

Here $\widetilde{W}_{\ell} = (W_{\ell}, v_{\ell})$.

The set of them we denote $\mathcal{F}(s, V)$.

The algorithm

Algorithm 1: Fitted Q-Iteration Algorithm

Input: MDP (S, A, P, R, γ) , function class \mathcal{F} , sampling distribution ν , number of iterations K, number of samples n, initial estimator \widetilde{Q}_0

for
$$k = 0, 1, 2, \dots, K - 1$$
 do

Sample i.i.d. observations $\{(S_i, A_i), i \in [n]\}$ from ν obtain $R_i \sim R(S_i, A_i)$ and $S_i' \sim P(S_i, A_i)$

Let $Y_i = R_i + \gamma \cdot \max_{a \in \mathcal{A}} \widehat{Q}_k(S'_i, a)$

Update action-value function:

$$\widetilde{Q}_{k+1} \leftarrow \operatorname*{argmin}_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} (Y_i - f(S_i, A_i))^2$$

Define $\pi_{\mathcal{K}}$ as the greedy policy w.r.t. $\widetilde{Q}_{\mathcal{K}}$

Output: An estimator \widetilde{Q}_K of Q^* and policy π_K

The theorem

For any $K \in \mathbb{N}$ let Q^{π_K} be the action-value function corresponding to policy π_K which is return by Algorithm 1, when run with a sparse ReLU network on the form

$$\mathcal{F}_0 = \{ f(\cdot, a) \in \mathcal{F}(L^*, \{d_j^*\}_{j=0}^{L^*+1}, s^*) \mid a \in \mathcal{A} \}$$

where

$$L^* \lesssim (\log n)^{\xi'}, d_0 = r, d_j^*, d_{L+1} = 1, \lesssim n^{\xi'}, s^* \asymp n^{\alpha^*} \cdot (\log n)^{\xi'}$$

Let μ be any distribution over $\mathcal{S} \times \mathcal{A}$. Under some assumptions

$$\|Q^* - Q^{\pi_K}\|_{1,\mu} \leq C \cdot \frac{\phi_{\mu,\nu} \cdot \gamma}{(1-\gamma)^2} \cdot |\mathcal{A}| \cdot (\log n)^{\xi^*} \cdot n^{(\alpha^*-1)/2} + \frac{4\gamma^{K+1}}{(1-\gamma)^2} \cdot R_{\mathsf{max}}$$

Here $\alpha^* \in (0,1), C, \xi', \xi^*, \phi_{\mu,\nu} \in \mathbb{R}_+$ are constants depending on the assumptions and R_{max} the maximum possible reward.

Naive interpretation

This paper shows that for any MDP satisfying mild(?) assumptions, its optimal policy π^* can be approximated arbitrarily close by the fitted Q-iteration algorithm (in $\|\cdot\|_1$ over the chosen μ distribution). I.e. this algorithm 'solves' (up to any precision) a large class of games, decision processes, etc.

Problems

- Are the assumptions actually mild?
- How large are the constants / how quick is convergence?
- ► In the algorithm we assumed that we could solve a least squares problem on a function class of Neural Networks with several restrictions. According to one reviewer this is an NP-hard problem.
- Our result depended on a distribution μ , so it does not say much about how close we are to π^* outside the support of μ .
- ► The fitted Q-iteration algorithm differs from normal Deep Q-Learning in two important ways:
 - It avoids analysing errors in SGD and Back-Propagation by assuming that a global optimum is found.
 - It uses a fixed distribution on $\mathcal{S} \times A$ for batch sampling during experience replay rather than picking uniformly from actual experiences.

Hölder Smoothness

Definition

Let $\mathcal{D} \subseteq \mathbb{R}^r$ be compact and $\beta, H > 0$. A function $f : \mathcal{D} \to \mathbb{R}$ we call Hölder smooth if

$$\sum_{\alpha: |\alpha| < \beta} \|\partial^{\alpha} f\|_{\infty} + \sum_{\alpha: \|\alpha\|_{1} = \lfloor \beta \rfloor} \sup_{x \neq y} \frac{|\partial^{\alpha} (f(x) - f(y))|}{\|x - y\|_{\infty}^{\beta - \lfloor \beta \rfloor}} \le H$$

Where $\alpha = (\alpha_1, \dots, \alpha_r) \in \mathbb{N}^r$. We write $f \in C_r(\mathcal{D}, \beta, H)$.

We consider families of Compositions of Hölder Functions

$$\mathcal{G}(\{p_j,t_j,\beta_j,H_j\}_{j\in[q]})$$

where $t_j, p_j \in \mathbb{N}$, $t_j \leq p_j$ and $H_j, \beta_j > 0$, defined as containing f when $f = g_q \circ \cdots \circ g_1$ for $g_j : [a_j, b_j]^{p_j} \to [a_{j+1}, b_{j+1}]^{p_{j+1}}$ functions on some real hypercubes that only depend on t_j of their inputs for each of their components g_{jk} , and satisfies

$$g_{jk} \in C_{t_j}([a_j,b_j]_j^t,\beta_j,H_j).$$

Assumption 1, Hölder smoothness of \mathcal{F}_0 under T

Let

$$\mathcal{G}_0 = \{ f : \mathcal{S} \times \mathcal{A} \to \mathbb{R} : f(\cdot, a) \in \mathcal{G}(\{p_j, t_j, \beta_j, H_j\}_{j \in [q]}), \forall a \in \mathcal{A} \}$$

It is assused that $Tf \in \mathcal{G}_0$ for any $f \in \mathcal{F}_0$.

I.e. when using the Bellman optimality operator on our sparse ReLU networks, we should stay in the class of compositions of Hölder smooth functions.

Assumption 2, Concentration Coefficients

Let $\nu_1, \nu_2 \in \mathcal{P}(\mathcal{S} \times \mathcal{A})$ be probability measures, Lebesgueabsolutely continuous in \mathcal{S} Define

$$\kappa(m,\nu_1,\nu_2) = \sup_{\pi_1,\ldots,\pi_m} \left[\mathbb{E}_{\nu_2} \left(\frac{\mathrm{d}(P^{\pi_m} \ldots P^{\pi_1} \nu_1)}{\mathrm{d}\nu_2} \right)^2 \right]^{1/2}$$

Let ν be the sampling distribution from the algorithm, and mu the distribution over which we measure the error in the main theorem, then we assume

$$(1-\gamma)^2 \sum_{m>1} \gamma^{m-1} m \kappa(m,\mu,\nu) = \phi_{\mu,\nu} < \infty$$