Introduction to Machine Learning

Depanshu Sani (Ph.D., Computer Vision)

What is Machine Learning?

"A computer program is said to **learn from experience E** with respect to some **class of tasks T** and **performance measure P**, if its performance at tasks in T, as measured by P, improves with experience E." – Tom Mitchell

Machine Learning focuses on the use of data and algorithms to imitate the way that humans learn, gradually improving its accuracy.

What is Machine Learning?

Auto-Complete or Smart Replies

What is Machine Learning?

Movie Recommendation

What is NOT Machine Learning?

Al systems that do not learn with experience

Rule-Based Systems

What is NOT Machine Learning?

Expert Systems

How do machines learn?

ML Categorization

Supervised Learning

Unsupervised Learning

Label is known

Label is unknown

- Semi-Supervised Learning
- Weakly Supervised Learning
- Self-Supervised Learning

Supervised Learning

Types of Supervised Learning

Examples of Regression

Examples of Image Classification

Underfitting vs. Overfitting

	Underfitting	Just right	Overfitting
Symptoms	 High training error Training error close to test error High bias	Training error slightly lower than test error	Very low training error Training error much lower than test error High variance
Regression illustration			My
Classification illustration			

How to infer under- or over-fitting?

Holding out a subset of the training dataset.

How to infer under- or over-fitting?

Using the dataset splits

Test dataset is never exposed during the training of the model. Instead, we use validation dataset for hyperparameter tuning.

How to prevent overfitting?

- Try getting more training examples
- Try a smaller or larger set of features
- Try changing the features
- Run gradient descent for more iterations
- Use a different value for **regularization parameter λ**
- Try using a **different model** (e.g., SVM)

Bias and Variance of a Random Variable

Ground Truth

High bias Low variance

Low bias High variance

Worst Case

Best Case

Hands-On Session

https://tinyurl.com/intro-to-ml-iiitd