CG1111: Engineering Principles and Practice I

Admin Lecture

CG1111 Instructors

Group	Instructors
1	A/Prof Soh Wee Seng
2	Dr Sangit Sasidhar
3	Dr Henry Tan
4	Dr Ravi S/O Suppiah

+ Student Teaching Assistants (CEG2 seniors)

How Our EPP Modules Are Designed?

EPP's Way of Learning Engineering

Learn engineering through contextualizing the practice of engineering from its principles

Experiential Learning

Inculcate Computer Engineers' Way of Thinking

Durability?

Size, weight constraints?

User interfaces?

Safety?

Battery life?

Power constraint?

Many related design constraints...

System level dependency!

Engineers Work in Teams

We encourage peer-to-peer learning!

How's a Typical Week Like?

2 x 3-hr Studio

- Hands-on work
- Group discussions

1 x 2-hr Tutorial

- Student oral presentations
- Reflective learning
- Problem solving

7-hr Self-learning & Preparation

- Reading materials
- Online videos
- Studio handouts
- Tutorial problems

6 MC Module = 15 Workload Hours Every Week!

Preview of CG1111 Topics

- Fundamental electrical engineering principles, op-amps, sensors, basic signal processing
- How systems get energy?

- Battery characteristics
- Electrical model
- C-rate, depth-of-discharge
- Battery pack design: # cells in series/parallel to satisfy a system's requirement
- Safety

- DC circuit principles
 - Basic electrical quantities (e.g., P, V, I, R)
 - Circuit laws and principles
 - E.g., Ohm's Law, Kirchhoff's Laws, current & voltage division principles
- Circuit analysis
 - Thevenin equivalent circuit
 - Node voltage analysis

- Energy storage elements: Capacitors & inductors
 - Applications
 - Principles (inductance, capacitance, series/parallel),
 energy storage capability
 - Transient behavior

- AC circuits
 - Properties of sinusoidal signal
 - Amplitude, RMS, frequency, angular frequency, phase
 - Circuit analysis
 - Using phasors with circuit laws
 - AC to DC conversion
 - E.g., phone charger

- DC motors
 - Types of motors
 - Circuit representation of PMDC
 - Basic properties
 - Relationship between speed, voltage, current, torque
 - PWM control of motor speed

- Operational amplifiers (Op-amps)
 - Applications
 - Amplification
 - Comparator
 - Electrical model
 - Golden rules
 - Circuit analysis

Sensors

- Ultrasound, microphone
- Photoelectric:
 - Infrared proximity sensors
 - Light, colour detection

- Signal processing
 - Continuous vs discrete signals
 - Sampling theorem, Nyquist rate & frequency
 - Aliasing (distortion)
 - Envelope detectors

The A-maze-ing Race Project

- To be carried out in the second half of semester
- Platform: mBot
- You will be applying many of the principles learnt in the module in your design
- Build an autonomous robotic vehicle to navigate through a maze by solving challenges at intermediate waypoints

The A-maze-ing Race Project

Video of previous year's A-maze-ing Race Project

CG1112 Preview

Administrative Details

CG1111 Groupings

Studio & Tutorial Timeslots

Group	Туре	Duration (hrs)	Day	Start	Finish	
	Studio 1	3	Monday	9:00	12:00	
1	Studio 2	3	Wednesday	9:00	12:00	
	Tutorial	2	Friday	10:00	12:00	
	Studio 1	3	Monday	14:00	17:00	
2	Studio 2	3	Wednesday	14:00	17:00	
	Tutorial	2	Friday	10:00	12:00	
	Studio 1	3	Tuesday	9:00	12:00	
3	Studio 2	3	Thursday	9:00	12:00	
	Tutorial	2	Friday	14:00	16:00	
	Studio 1	3	Tuesday	14:00	17:00	
4	Studio 2	3	Thursday	14:00	17:00	
	Tutorial	2	Friday	14:00	16:00	

Studios: Some F2F, Others via Zoom

If F2F, the venue is DSA Lab (E4A-04-08)

The Zoom link for each group will be provided on LumiNUS

Tutorials

- Regular tutorials start from Week 3
- All online via Zoom:

Group	Day	Start	Finish	Venue
1	Friday	10:00	12:00	Zoom
2	Friday	10:00	12:00	Zoom
3	Friday	14:00	16:00	Zoom
4	Friday	14:00	16:00	Zoom

The Zoom link for each group will be provided on LumiNUS

Workshops On Communication Skills

 2 workshops conducted by Centre for English Language and Communication (CELC)

Workshop	Topic	Timeslot
1	Oral presentation skills (Discussion)	Week 1 Tutorial's timeslot (2 hrs) - Zoom Gp 1a/b & 2a/b: 14 Aug (Fri, 10am – 12pm) Gp 3a/b & 4a/b: 14 Aug (Fri, 2pm – 4pm)
2	Oral presentation skills (Practice)	Week 2 Tutorial's timeslot (2 hrs) - Zoom Gp 1a/b & 2a/b: 21 Aug (Fri, 10am – 12pm) Gp 3a/b & 4a/b: 21 Aug (Fri, 2pm – 4pm)

- You can find out your sub-group from CEG 1st Year webpage: https://ceg.nus.edu.sg/students/first_year/
- Your CELC tutor for the respective sub-group will inform you about the Zoom link.

Studio = F2F
Studio = Zoom

Weekly Schedule

Wk	Date	Studio 1	Studio 2	Tutorial	
1	_	No studio (Admin lecture on 11 Aug, 12-2pm)	No studio	CELC Workshop #1 (Zoom)	
2	17 Aug -	Collect toolkit box + 1 hr 15 mins studio (1a/3a: 9am-10:15am) (1b/3b: 10:45am-12pm) (2a/4a: 2pm-3:15pm) (2b/4b: 3:45pm-5pm)	How Systems Get Energy, Battery design/sizing	CELC Workshop #2 (Zoom)	
3		DC Circuit Principles I (LED) - Graded	DC Circuit Principles II (Wheatstone Bridge)	Tutorial #1 (Zoom)	
4	_	DC Circuit Principles III (Thevenin equivalent) - Graded (Sub-group 'a' only)	DC Circuit Principles III (Thevenin equivalent) - Graded (Sub-group 'b' only)	Tutorial #2 (Zoom)	
5		DC Circuit Principles IV (Node voltage analysis)	Energy Storage Elements - <mark>Graded</mark>	Tutorial #3 (Zoom)	
6		AC Circuits I (Phasors)	No studio	Tutorial #4 (Zoom)	
	Mid-semester break (21 Sep - 27 Sep)				

Studio = F2F
Studio = Zoom

Weekly Schedule

Wk	Date	Studio 1	Studio 2	Tutorial
7	28 Sep - 02 Oct	AC Circuits II (Transformers, Diode Bridge Rectifiers) (Sub-group 'a' only)	AC Circuits II (Transformers, Diode Bridge Rectifiers) (Sub-group 'b' only)	Tutorial #5 (Zoom)
8	05 Oct - 09 Oct	DC Motors (Motor characterization & PWM)	Operational Amplifier I (Basic Opamp Circuits)	Tutorial #6 (Zoom)
9	12 Oct - 16 Oct	Operational Amplifier II (Comparator, Active LPF) - <mark>Graded</mark>	Sensors I (Ultrasonic sensor, Microphone sensor)	Tutorial #7 (Zoom)
10	19 Oct - 23 Oct	Sensors II (Photoelectric sensors) - <mark>Graded</mark> (Sub-group 'a' only)	Sensors II (Photoelectric sensors) - Graded (Sub-group 'b' only)	Tutorial #8 (Zoom)
11	26 Oct - 30 Oct	Signal Processing I (Sampling Theorem, Nyquist Rate) - Graded	Signal Processing II (Analyzing Audio Signal, Designing LPF, Envelope Detector)	Tutorial #9 (Zoom)
12	02 Nov - 06 Nov	Project (Studio mode TBD)	Project (Studio mode TBD)	Tutorial #10 (Zoom)
13		Project Evaluation (Studio mode TBD)	No studio	Tutorial #11 (Zoom)

TBD = To be determined

F2F Studio Seating Plan

All experiments are individual basis

Online Studios

- You will still be carrying out the hands-on activities
- Live supervision through Zoom by instructor & TAs during studio timeslots
- During F2F studio, you will be collecting components needed for subsequent online studios until your next F2F studio
- Important: Verify that you have all the components stated in given checklist. Otherwise, you won't be able to carry out the studios!

Toolkit Box

- You will be loaning a toolkit box from the lab for the entire semester
 - To be collected during your first F2F studio on next Mon/Tue
- Consists of:
 - BitScope Micro, digital multimeter, breadboard, wires, wire cutter, USB breakout cable, LEDs, safety goggles, variable resistor trimming tool
- Verify items against given checklist
- Bring it with you for all F2F studios

Assessments

- 100% Continual Assessment
- Letter grades will be awarded upon completion

Component	(%)
Quiz #1	15
Quiz #2	15
Project	25
Individual oral presentation	15
Critique on other students' presentations	5
Graded lab reports	
6 x 5% graded lab reports	
(We will choose the best 5 out of 6)	25
(2% will be deducted for absence from each	
non-graded studio without valid reason)	
Total	100

Quizzes

MCQ + Open Book

- Quiz #1:
 - 19 Sep 2020 (Saturday), 0930 hrs to 1130 hrs
 - Topics from Week 1 to 6 will be tested
- Quiz #2:
 - 14 Nov 2020 (changed to 16 Nov because 14 Nov is Deepavali)
 - 16 Nov 2020 (Monday), 0930 hrs to 1130 hrs
 - Topics from Week 7 to 11 will be tested
- Mark your calendar for the above
- Inform other modules' lecturers if they try to schedule another quiz that clashes with our quiz

Individual Oral Presentations (OP)

- Every student is required to do ONE individual OP (5-6 mins talk, 2 min Q&A)
- Teach your peers engineering principles/applications
- Graded by both CELC + CEG instructors
- During the first 45 mins of each tutorial,
 5 students are scheduled to present
- Your presentation date will be made known to you this week
 - The presentation topic will be released to you about 11 days (on every Monday) prior to your scheduled presentation date

Critique on Other Students' OPs

- During each tutorial, you must submit a critique on at least one presenter's OP
- Include a short summary of that OP's content
- More details on the submission procedure will be provided to you soon
- You do not need to do critique if you are

Graded Lab Reports

- There will be 6 studios for which you need to submit an <u>individual</u> lab report for grading
 - To be submitted by the end of studio
 - 5% each we will choose the best 5 out of 6
 - OK to discuss, but write in your own words

Note:

For those studios that do not have graded reports, 2% will be deducted from your CG1111 marks if you are absent without a valid reason

Learning Journal

- You need to keep a "learning journal" for collecting your observations, thoughts, calculations and experimental data throughout the entire module
- Refer to guidelines for learning journal to be provided in LumiNUS
- Your TA will monitor your learning journal entries

Preparation for Each Week

- Look at the Learning Flow for every week
- Studios:
 - Check whether it is F2F or online
 - Check what you need to prepare (go through preparatory materials, videos, studio handout) before attending the studios
- Tutorials:
 - Attempt the tutorial questions before attending

LumiNUS – Check Learning Flow

Note: Don't use LumiNUS app on smartphone to check Learning Flow; it doesn't show full information

What to do next? Urgent!

- Check your CELC Workshop schedule for your sub-groups in Week 1 and 2:
 - https://ceg.nus.edu.sg/wpcontent/uploads/sites/3/2020/08/2010 CG1111tim etable 4Aug20.pdf
- Look out for the Zoom link from your CELC tutor for the respective sub-group
- Prior to attending CELC Workshop #1
 - Some preparation is required
 - Refer to materials uploaded by CELC on LumiNUS

What to do next? Urgent!

- Studio lessons starting next Monday/Tuesday
 - First studio is a Face-to-face studio
 - Go through the safety videos provided (look under our Learning Flow for Week 1 & 2)
 - Complete an online safety quiz:
 - https://online.ece.nus.edu.sg/safety/quiz/v4/
 - You need to pass it, save the certificate as PDF, and upload it to our LumiNUS submission folder
 - You are not allowed to proceed with the studio without the certificate
 - Always wear covered shoes and mask to the lab