Министерство образования Республики Беларусь Учреждение образования Гомельский государственный технический университет имени П.О Сухого

Кафедра: «Экономика и управление в отраслях»

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

к курсовой работе по дисциплине «Организация производства и менеджмент в машиностроении»

на тему: «Экономическое обоснование совершенствования технологического процесса обработки детали 8Д.03.112-1 — Втулка»

Вариант 13

Выполнил студент гр. АП-51 Сираченко В.В. Принял преподаватель Шваякова О.В.

СОДЕРЖАНИЕ

Введение	4
Раздел 1. Организация производств	5
1.1. Исходные данные для выполнения курсовой работы	
1.2. Определение типа производства	5
1.3. Расчет параметров технологического процесс	
Раздел 2. Расчет величины инвестиций	
2.1. Расчет капитальных вложений	9
2.2. Расчет оборотных средств	11
Раздел 3. Расчет себестоимости продукции	
3.1. Расчет затрат на материалы с учетом возвратных отходов	
3.2. Расчет основной заработной платы основных производственных	
рабочих	13
3.3. Расчет дополнительной заработной платы	14
3.4. Определение расходов на содержание и эксплуатацию машин и	
оборудования	15
3.5. Общепроизводственные расходы (в том числе амортизация)	18
3.6. Расчет налогов, отчислений в бюджет и внебюджетные фонды, сбор	ов и
отчислений местным органам власти	21
Раздел 4. Расчет годового объёма выпуска продукции в свободных	
отпускных ценах и чистой прибыли	23
4.1. Определение годового объёма выпуска продукции. Налог на прибыл	ъ 23
4.2. Определение чистой прибыли и рентабельность в проектируемом	
варианте	24
Раздел 5. Основные параметры и оценка эффективности проектируемо	ГО
варианта	25
5.1. Статические показатели эффективности	25
5.2. Динамические показатели эффективности	26
Раздел 6. Оценка эффективности и основные технико-экономические	
показатели проекта	29
Заключение	30
Список используемой литературы	31

ВВЕДЕНИЕ

Организация труда — составная часть экономики труда — это организация труда людей в процессе производств. Она способствует рациональному соединению техники и персонала. Оптимизирует эффективное использование живого труда. Под организацией труда понимают деятельность по внедрению рекомендаций науки с целью рационализации процесса труда.

Нормирование труда — это часть организации труда на предприятии. Под нормированием труда понимают процесс установления научно-обоснованных норм затрат труда на выполнение работ. Научно-обоснованные нормы предполагают учет технических и технологических возможностей производства, учет особенностей применяемых предметов труда, нормальные условия труда.

Оплата труда или заработная плата — это часть фонда индивидуального потребления населения. Она распределяется между наемными работниками, участвующими в общественно-полезном труде и управлении, по количеству и качеству их труда.

Организация труда — это форма, в которой реализуются экономические результаты трудовой деятельности. Поэтому организация труд рассматривается как часть экономики труда.

В условиях рыночной экономики возрастает значение различных факторов, которые воздействуют на эффективность производства, так как в силу возрождающейся конкуренции результативность деятельности становится решающей предпосылкой существования и развития предприятия. Среди факторов эффективности существенное место занимает организация труда. Так, даже самое современное оборудование и техника не дадут желаемого результата при низкой организации их обслуживания и наоборот, при научной организации труда можно получить от технического оснащения производства максимальный результат.

Необходимая часть организации труда — организация рабочих мест. Под организацией рабочего места понимается система его оснащения и планировки, подчиненная целям производства. Эти решения, в свою очередь, зависят от характера и специализации рабочего места, его вида и роли в производственном процессе.

Вопросы оплаты и материального стимулирования работников представляются также составной частью организации труда.

Формы и системы заработной платы представляют собой способы установления зависимости величины заработной платы рабочих от количества и качества затраченного ими труда с помощью совокупности количественных и качественных показателей, отражающих результаты труда. Основным значением форм и систем оплаты труд является обеспечение правильного соотношения между мерой труда и мерой его оплаты.

1 ОРГАНИЗАЦИЯ ПРОИЗВОДСТВА

1.1 Исходные данные

Исходные данные, характеризующие два варианта технологического процесса, представлены в таблице 1.1.

Таблица 1.1 – Исходные данные для расчета по детали 8Д.03.112-1 –

Втулка

Номер операции	Наименование операции	Марка станка	Норма времени, мин	Площадь станка, м	Мощность станка, кВт	Цена, руб.
	Базов	ый техноло	ргический п	роцесс		
003	Токарная	16K20	12,0	3,8	10	7680
005	Токарная с ЧПУ	16K20T1	3,3	5,2	11	16600
010	Токарная с ЧПУ	16K20T1	5,4	5,2	11	16600
015	Токарная с ЧПУ	16K20T1	6,8	5,2	11	16600
020	Горизонтально- фрезерная	6T80	0,8	4,28	11,5	3400
025	Горизонтально- фрезерная	6T80	1,9	4,28	11,5	3400
030	Настольно-сверлильная	2M112	1,2	0,28	4	140
035	Настольно-сверлильная	2M112	1,2	0,28	4	140
	Проектир	уемый техі	нологическ	ий процесс		
003	Токарная	16K20	12,0	3,8	10	7680
005	Токарная с ЧПУ	16K20T1	3,3	5,2	11	16600
010	Токарная с ЧПУ	16K20T1	5,4	5,2	11	16600
015	Токарная с ЧПУ	16K20T1	6,8	5,2	11	16600
020	Горизонтально- фрезерная	6Т81Г	0,6	5,5	3	3520
025	Горизонтально- фрезерная	6Т81Г	1,7	5,5	3	3520
030	Настольно-сверлильная	2M112	1,2	0,28	4	140
035	Настольно-сверлильная	2M112	1,2	0,28	4	140

Годовая программа выпуска детали 3400 шт.

Наименование используемого материал АК9ч.

Норма расхода материала на деталь 0,660 кг.

Вес возвратных отходов 0,54.

1.2 Определение типа производства

Тип производства определяется на основе использования методики расчёта коэффициента закрепления операций, который определяется по формуле

$$K_{\text{3.o.}} = \frac{\sum O_i}{\sum P_i},$$

где ΣO_i – суммарное число различных операций;

 P_i – число рабочих мест.

Коэффициент закрепления операций для массового типа производства ориентировочно составляет 1-3, для крупносерийного 4-10, среднесерийного 11-20, мелкосерийного и единичного - свыше 20.

Определяем количество рабочих мест

$$w_{p.i} = \frac{N \cdot t_{\text{IIIT}i}}{60 \cdot F_d \cdot K_{\text{H3.}}},$$

где N – годовая программа выпуска деталей, N=3400 μ m;

 $t_{\it umi.}$ — норма времени на выполнение і - той операции технологического процесса, мин;

 $F_{\rm d}$ — действительный годовой фонд времени работы оборудования, $F_{\it d}$ =2008 ч;

 $K_{\rm H3.}$ — коэффициент выполнения норм на i-ой операции, $K_{\rm H3.}$ = 1, 1. Значение фактического коэффициента загрузки рабочего места

$$K_{3\Phi i} = \frac{w_{pi}}{w_{\pi pi}},$$

где $w_{\text{пр}i}$ – принятое количество рабочих мест

$$w_{p \ 010} = \frac{3400 \cdot 12,0}{60 \cdot 2008 \cdot 1,1} = 0,308.$$

Принимаем $w_{пp \ 010} = 1$.

$$K_{3\phi.010} = \frac{0,308}{1} = 0,308.$$

Количество операций, выполняемых за одним рабочим местом

$$O_i = \frac{K_{\text{H3.}}}{K_{3\Phi i}},$$

где $K_{\text{нз.}}$ – коэффициент нормативной загрузки оборудования, $K_{\text{нз.}}$ = 0,8.

$$O_{010} = \frac{0.8}{0.308} = 2.60.$$

Аналогично рассчитываем и для других операций. Полученные результаты заносим в таблицу 1.2.

Таблица 1.2 – Расчет количества рабочих мест и их коэффициент загрузки

Номер опера- ции	Наименование операции	Марка станка	Норма времени, мин	<i>W_{pi},</i> шт.	W _{прі} , шт.	К _{зф.}	$O_i,$ Шт
	Базовый технологический процесс						
003	Токарная	16K20	12,0	0,308	1	0,308	3
005	Токарная с ЧПУ	16K20T1	3,3	0,085	1	0,085	10
010	Токарная с ЧПУ	16K20T1	5,4	0,139	1	0,139	6
015	Токарная с ЧПУ	16K20T1	6,8	0,174	1	0,174	5
020	Горизонтально- фрезерная	6T80	0,8	0,021	1	0,021	39
025	Горизонтально- фрезерная	6T80	1,9	0,049	1	0,049	17
030	Настольно-сверлильная	2M112	1,2	0,031	1	0,031	26

Продолжение табл. 1.2

Номер опера- ции	Наименование операции	Марка станка	Норма времени, мин	<i>W_{pi},</i> шт.	W _{прі} , шт.	$K_{3\Phi}$.	$O_i,$ Шт
035	Настольно-сверлильная	2M112	1,2	0,031	1	0,031	26
	Итого		32,6	•	8	-	132
	Проектир	уемый технол	огический	процесс			
003	Токарная	16K20	12,0	0,308	1	0,308	3
005	Токарная с ЧПУ	16K20T1	3,3	0,085	1	0,085	10
010	Токарная с ЧПУ	16K20T1	5,4	0,139	1	0,139	6
015	Токарная с ЧПУ	16K20T1	6,8	0,174	1	0,174	5
020	Горизонтально- фрезерная	6Т81Г	0,6	0,015	1	0,015	52
025	Горизонтально- фрезерная	6Т81Г	1,7	0,044	1	0,044	19
030	Настольно-сверлильная	2M112	1,2	0,031	1	0,031	26
035	Настольно-сверлильная	2M112	1,2	0,031	1	0,031	26
	Итого		32,2	-	8	-	147

Коэффициент закрепления операции

$$K_{3.0.}^{\mathrm{B}} = \frac{132}{8} = 16,5$$
 (среднесерийный тип производства); $K_{3.0.}^{\mathrm{\Pi}} = \frac{147}{8} = 18,38$ (среднесерийный тип производства).

1.3 Расчет параметров технологического процесса

Расчет количества оборудования каждого вида на і-ой операции

$$w_{p.i} = \frac{N \cdot t_{\text{III}Ti}}{60 \cdot F_d \cdot K_{\text{H3.}}},$$

где $K_{\text{нз.}}$ – коэффициент выполнения норм на *i*-ой операции, $K_{\text{нз.}}$ =1,1.

Коэффициент загрузки оборудования на каждой операции определяется по формуле

$$K_{3\Phi i} = \frac{w_{pi}}{w_{\text{mp}i}} \cdot 100\%,$$

в среднем на линии:

$$K_3 = \frac{\sum w_{pi}}{\sum w_{npi}} \cdot 100\%$$

Степень занятости оборудования обработкой данной детали характеризуется коэффициентом занятости, на величину которого следует корректировать все расчёты для обеспечения их сопоставимости в базовом и проектируемом вариантах.

$$w_{p \ 010} = \frac{3400 \cdot 12,0}{60 \cdot 2008 \cdot 1,1} = 0,308.$$

Принимаем $w_{\pi p \ 010} = 1$.

$$K_{3\phi.010} = \frac{0,308}{1} \cdot 100\% = 30,8\%$$

Коэффициент занятости определяется по формуле

$$K_{\text{3aH}} = \frac{K_{3\phi i}}{K_{\text{H3.}}},$$

 $K_{3\phi i}$ — коэффициент загрузки оборудования; где

 $K_{\text{нз.}}$ – коэффициент нормативной загрузки оборудования, $K_{\text{нз.}}$ = 0,8. $K_{\text{зан}} = \frac{0,308}{0,8} = 0,385.$

$$K_{\text{3aH}} = \frac{0,308}{0.8} = 0,385.$$

Аналогично рассчитываем и для других операций. Результаты заносим в таблицу 1.3.

Таблина 1.3 – Расчёт количества рабочих мест

	1 аолица 1.3 — Расчет количества раоочих мест							
Номер опера- ции	Наименование операции	Марка станка	Норма времени, мин	<i>W_{pi},</i> шт.	w _{прі} , шт.	<i>K</i> _{3.}	<i>К</i> _{зан.}	
	Базов	ый технолог	ический пр	оцесс				
003	Токарная	16K20	12,0	0,308	1	30,8	0,385	
005	Токарная с ЧПУ	16K20T1	3,3	0,085	1	8,5	0,106	
010	Токарная с ЧПУ	16K20T1	5,4	0,139	1	13,9	0,173	
015	Токарная с ЧПУ	16K20T1	6,8	0,174	1	17,4	0,218	
020	Горизонтально- фрезерная	6T80	0,8	0,021	1	2,1	0,026	
025	Горизонтально- фрезерная	6T80	1,9	0,049	1	4,9	0,061	
030	Настольно-сверлильная	2M112	1,2	0,031	1	3,1	0,038	
035	Настольно-сверлильная	2M112	1,2	0,031	1	3,1	0,038	
	Итого		32,6	0,838	8	•	-	
	Среднее значение		-	-	-	0,105	0,131	
	Проектир	уемый техно	логический	і процесс				
003	Токарная	16K20	12,0	0,308	1	30,8	0,385	
005	Токарная с ЧПУ	16K20T1	3,3	0,085	1	8,5	0,106	
010	Токарная с ЧПУ	16K20T1	5,4	0,139	1	13,9	0,173	
015	Токарная с ЧПУ	16K20T1	6,8	0,174	1	17,4	0,218	
020	Горизонтально- фрезерная	6Т81Г	0,6	0,015	1	1,5	0,019	
025	Горизонтально- фрезерная	6Т81Г	1,7	0,044	1	4,4	0,055	
030	Настольно-сверлильная	2M112	1,2	0,031	1	3,1	0,038	
035	Настольно-сверлильная	2M112	1,2	0,031	1	3,1	0,038	
	Итого		32,2	0,826	8	-	-	
	Среднее значение			-	-	0,103	0,129	

2 РАСЧЁТ ВЕЛИЧИНЫ ИНВЕСТИЦИЙ

Внедрение в производство новых технологических процессов, как правило, сопровождается инвестированием капитала. Под инвестициями понимают долгосрочное вложение капитала с целью получения прибыли. Размер инвестиций включает единовременные капитальные вложения в основные фонды предприятия и нормированную величину оборотных средств

$$M = K_{o,\phi} + H_{o,c}$$

где $K_{o.\varphi.}$ – капитальные вложения в основные фонды, руб.;

 $H_{\rm o.c.}$ — норматив оборотных средств на годовую программу выпуска данного вида продукции, руб.

2.1 Расчет капитальных вложений

В общем случае величина капитальных вложений включает следующие составляющие, в руб

$$K_{\text{o.\phi.}} = K_{\text{3Д}} + K_{\text{o6}} + K_{\text{Tp}} + K_{\text{инс}} + K_{\text{инв}} + K_{\text{соп}},$$

где $K_{3д}$ – капиталовложения в здания (стоимость производственной площади);

К_{об} – капиталовложения в рабочие машины и оборудование;

 K_{Tp} – капиталовложения в транспортные средства;

К_{инс} – капиталовложения в инструмент;

 $K_{\text{инв}}$ – капиталовложения в производственный инвентарь;

 K_{con} – сопутствующие капиталовложения.

Капитальные вложения в здания

Величину капитальных вложений в производственную площадь для размещения оборудования в базовом и проектируемом вариантах технологического процесса определяем по формуле:

$$K_{3Д} = \sum_{j=1}^{m} (S_j \cdot M_{\pi pi} \cdot K_{Дi} + S) \cdot \coprod_{3Д},$$

где S_j – площадь, приходящаяся на единицу оборудования j-го наименования, \mathbf{m}^2 ;

 $M_{\mathrm{np}i}$ – принятое количество единиц оборудования, шт.;

 $K_{{
m d}i}$ — коэффициент, предусматривающий дополнительную площадь, принимаем $K_{{
m d}i}$ = 2,5;

S — площадь, потребная для размещения транспортных устройств, систем управления станками с ЧПУ (S принимаем 50% от площади единицы продукции S_i), M^2 ;

$$\begin{split} \mathsf{K}^{\mathsf{B}}_{_{3\mathsf{A}}} &= \left((3,8 \cdot 1 \cdot 2,5 + 1,9) + (5,2 \cdot 3 \cdot 2,5 + 7,8) + (4,28 \cdot 2 \cdot 2,5 + 4,28) \right. \\ &\quad + (0,28 \cdot 2 \cdot 2,5 + 0,28) \right) \cdot 32,80 = 2806,37 \; \mathsf{py6}; \\ \mathsf{K}^{\mathsf{\Pi}}_{_{3\mathsf{A}}} &= \left((3,8 \cdot 1 \cdot 2,5 + 1,9) + (5,2 \cdot 3 \cdot 2,5 + 7,8) + (5,5 \cdot 2 \cdot 2,5 + 5,5) \right. \\ &\quad + (0,28 \cdot 2 \cdot 2,5 + 0,28) \right) \cdot 32,80 = 3046,46 \; \mathsf{py6}. \end{split}$$

Капитальные вложения в технологическое оборудование определяются по формуле

$$K_{\text{of}} = \sum_{j=1}^{m} M_{\text{пр}j} \cdot \coprod_{j} \cdot (1 + A_{\text{\tiny T}} + A_{\text{\tiny M}}),$$

где M_{npj} – принятое количество единиц оборудования j-го наименования, шт.; U_j – свободная отпускная цена единицы оборудования j-го наименования, руб.;

 A_m – коэффициент, учитывающий транспортные расходы, A_m =0,035;

 $A_{\scriptscriptstyle M}$ — коэффициент, учитывающий затраты на монтаж оборудования, $A_{\scriptscriptstyle M}{=}0,035.$

Таблица 2.1 – Стоимость технологического оборудования в у.е.

· ·	1 3 ' '
Наименование оборудования	Стоимость, у.е.
16K20	7680
16K20T1	16600
6T80	3400
2M112	140
6Т81Г	3520

Стоимость единицы оборудования в белорусских рублях определяется по формуле

$$S_{\text{ofi}} = S \cdot k$$
,

где S – стоимость оборудования в у.е.;

k – курс доллара на момент выполнения курсовой работы, k=2,05 руб.

Стоимость станка 16К20 в белорусских рублях равна

$$S_{\text{ofi}} = 7680 \cdot 2,05 = 15744 \text{ pyf.}$$

Остальные пересчитанные стоимости оборудования сводим в таблицу 2.2.

Таблица 2.2 – Стоимость технологического оборудования в бел. руб.

Наименование оборудования	Стоимость, руб.
16K20	15744
16K20T1	34030
6T80	6970
2M112	287
6Т81Г	7216

$$K_{\text{of 6}} = (1 \cdot 15744 + 3 \cdot 34030 + 2 \cdot 6970 + 2 \cdot 287) \times (1 + 0.035 + 0.035)$$

= 141612,4 py6;

$$K_{\text{of }\pi} = (1 \cdot 15744 + 3 \cdot 34030 + 2 \cdot 7216 + 2 \cdot 287) \times (1 + 0.035 + 0.035)$$

= 142138,8 py6.

Стоимость транспортных средств определяется по формуле

$$K_{\mathrm{Tp}} = \sum_{i=1}^{k} \mathrm{T}_{\mathrm{np}i} \cdot \mathrm{II}_{\mathrm{Tp}i},$$

где T_{npi} — принятое количество транспортных средств і-го наименования, шт.; U_{mpi} — цена і-го вида транспортных средств, руб.;

k – число единиц транспортных средств на участке.

Таблица 2.3 – Стоимость транспортный средств в у.е.

Наименование транспортного ср-ва	Стоимость, у.е.
Кран-балка	4000
Тележка гидравлическая с эл.	3500
передвижением	3300

Стоимость кран-балки в белорусских рублях равна

$$S_{\text{ofi}} = 4000 \cdot 2,05 = 8200 \text{ pyf.}$$

Стоимость гидравлической тележки с эл. передвижением в белорусских рублях равна

$$S_{\text{ofi}} = 3500 \cdot 2,05 = 7175 \text{ pyf.}$$

Стоимость транспортных средств в базовом и проектируемом вариантах технологического процесса

$$K_{\text{TD}} = 1 \cdot 8200 + 1 \cdot 7175 = 15375 \text{ py}6.$$

Капиталовложения в инструмент принимаем в размере 1% от стоимости технологического оборудования.

$$K_{\text{инс } 6} = 141612,4 \cdot 0,01 = 1416,12 \text{ руб};$$

 $K_{\text{инс } 7} = 142138,8 \cdot 0,01 = 1421,39 \text{ руб}.$

Капиталовложения в производственный инвентарь принимаем в размере 2% от стоимости технологического оборудования.

$$K_{\text{инв б}} = 141612,4 \cdot 0,02 = 2832,25$$
 руб; $K_{\text{инв п}} = 142138,8 \cdot 0,02 = 2842,78$ руб.

Величина капитальных вложений

$$K_{\text{оф 6}} = 2806,37 + 141612,4 + 15375 + 1416,12 + 2832,25 = 164042,1$$
 руб; $K_{\text{оф $\Pi}} = 3046,46 + 142138,8 + 15375 + 1421,39 + 2842,78 = 164824,4$ руб.$

2.2 Расчет оборотных средств

В состав оборотных средств включается стоимость: производственных запасов сырья, материалов, топлива, незавершенное производство, расходы будущих периодов, годовая продукция на складах.

Стоимость основных материалов в расчёте на одно изделие определяется по формуле

$$3_{\text{om}} = \sum_{i=1}^{n} H_{\text{m}i} \cdot \coprod_{\text{om}i} \cdot K_{\text{T3}},$$

где n — количество видов материала, используемых в изготавливаемом изделии;

 H_{omi} — норма расхода материала і-го вида на одно изделие, кг;

 U_{omi} – цена основного материала і-го вида за 1 кг, U_{omi} =4,0 руб.;

 K_{m3} — коэффициент, учитывающий транспортно-заготовительные расходы, K_{m3} =1,05.

Стоимость основных материалов в двух вариантах технологического процесса

$$3_{OM} = 0.660 \cdot 4.0 \cdot 1.05 = 2.77 \text{ py6}.$$

Стоимость вспомогательных материалов в расчете на одно изделие в двух вариантах технологического процесса принимается в размере 1% от стоимости основных материалов.

$$3_{\text{BM}} = 2,77 \cdot 0,01 = 0,03 \text{ py6}.$$

Общая сумма оборотных средств на годовую программу выпуска изделий рассчитывается по формуле

$$H_{\rm oc} = (3_{\rm om} + 3_{\rm BM}) \cdot N$$
,

где $3_{\rm em}$ – стоимость вспомогательных материалов, руб.

Общая сумма оборотных средств в двух вариантах технологического процесса

$$H_{\text{oc}} = (2.77 + 0.03) \cdot 3400 = 9520 \text{ py}6.$$

Тогда размер инвестиций будет равен

$$\mathsf{H}_6 = 21489,52 + 9520 = 31009,52$$
 руб;

$$H_{\pi} = 21262,35 + 9520 = 30782,35$$
 руб.

Результаты расчёта размера инвестиций в базовом и проектируемом варианте технологического процесса представлены в виде таблицы 2.4.

Таблица 2.4 – Величина инвестиций по вариантам техпроцесса

Направление инвестиций	Базовый	Проектируемый	
ттаправление инвестиции	вариант	вариант	
1. Здания и сооружения, руб.	2806,37	3046,46	
2. Рабочие машины и оборудование, руб.	141612,4	142138,8	
3. Транспортные средства, руб.	15375		
4. Инструмент, руб.	1416,12	1421,39	
5. Производственный инвентарь, руб.	2832,25	2842,78	
6. Итого основных средств, руб.	164042,1	164824,4	
7. Стоимость основных средств с учетом коэффициента занятости, руб.	21489,52	21262,35	
8. Оборотные средства, руб.	9520		
9. Инвестиции, руб.	31009,52	30782,35	

3 РАСЧЕТ СЕБЕСТОИМОСТИ ПРОДУКЦИИ

Себестоимость продукции представляет собой сумму затрат предприятия на ее производство и реализацию. Формирование себестоимость производится затратным методом, путем группировки расходов по статья калькуляции, принятым в машиностроении Республики Беларусь.

В курсовой работе расчёт себестоимости продукции производится до уровня цеховой себестоимости (с учётом целесообразности включения в неё отдельных статей затрат).

3.1 Расчет затрат на материалы с учетом возвратных отходов

Расчёт стоимости возвратных отходов производим следующим образом

$$3_{\scriptscriptstyle \mathrm{M}} = 3_{\scriptscriptstyle \mathrm{OM}} - M_{\scriptscriptstyle \mathrm{O}} \cdot \coprod_{\scriptscriptstyle \mathrm{O}}$$
,

где $M_{\rm o}$ — количество используемого (реализуемого) отхода материала при изготовлении единицы продукции, кг/шт;

 L_o — цена отходов материала (принимается в размере 10% от стоимости основных материалов), $L_o = 0.4 \ py \delta/\kappa c$.

$$3_{M} = 2,77 - 0,54 \cdot 0,4 = 2,55$$
 py6.

Для определения величины затрат на материалы в расчёте на годовой объём выпуска продукции производим расчёт по формуле

$$3_{\text{M}\Gamma} = 3_{\text{M}} \cdot N;$$

 $3_{\text{M}\Gamma} = 2,55 \cdot 3400 = 8670 \text{ руб.}$

3.2 Расчет основной заработной платы производственных рабочих

Величина основной заработной платы рабочих, занятых на технологических операциях, на единицу продукции определяется на основе трудоёмкости работ по формуле

$$C_{30} = \frac{\sum_{i=1}^{m} I_i \cdot t_{\text{IIIT}i} \cdot P_d \cdot K_m}{60 \cdot n},$$

где I_i – часовая тарифная ставка соответствующего разряда при выполнении і-ой операции технологического процесса, руб/ч;

 t_{umi} — норма штучного времени выполнения і-ой операции, мин.;

 P_d — коэффициент, учитывающий премии и доплаты к тарифному фонду, P_d =1,5;

 K_m – коэффициент доплат за многостаночное обслуживание, K_m =1,4;

m — количество операций технологического процесса;

n — количество станков, обслуживаемых параллельно одним рабочим.

Величина часовой тарифной ставки определяем по формуле

$$I_i = rac{min3\Pi \cdot 12 \cdot k}{F_{\!\scriptscriptstyle \Pi}},$$

где $min3\Pi$ — минимальная заработная плата, $min3\Pi$ = 330 руб.; F_{∂} — действительный фонд времени, F_{∂} = 2008 u;

k — коррелирующий коэффициент в зависимости от разряда рабочего, для 3-го разряда - 1,35, 4-го разряда - 1,57; 5-го разряда - 1,73.

Найдем часовую тарифную ставку рабочего 4-го разряда

$$I_{4p} = \frac{330 \cdot 12 \cdot 1,57}{2008} = 3,10$$
 руб/ч.

Величина основной заработной платы рабочих на первой операции

$$C_{301} = \frac{\overset{7}{3,10 \cdot 12,0 \cdot 1,5 \cdot 1,4}}{60} = 1,30 \text{ py6}.$$

Для наглядности результаты расчётов заносим в таблицу 3.1.

Таблица 3.1 – Величина основной заработной платы рабочих

	таолица 3.1 – Величина основной зараоотной платы расочих							
Номер опера- ции	Наименование операции	Марка станка	Разряд рабочего	Норма времени, мин	<i>I_i</i> , руб/ч	<i>С</i> ₃₀ , руб.		
	Базо	вый технол	погический	процесс				
003	Токарная	16K20	4	12,0	3,10	1,30		
005	Токарная с ЧПУ	16K20T1	5	3,3	3,41	0,39		
010	Токарная с ЧПУ	16K20T1	5	5,4	3,41	0,64		
015	Токарная с ЧПУ	16K20T1	5	6,8	3,41	0,81		
020	Горизонтально- фрезерная	6T80	3	0,8	2,66	0,07		
025	Горизонтально- фрезерная	6T80	3	1,9	2,66	0,18		
030	Настольно-сверлильная	2M112	4	1,2	3,10	0,13		
035	Настольно-сверлильная	2M112	4	1,2	3,10	0,13		
	Итого		-	32,6	1	3,65		
	Проекти	ируемый те	хнологичес	кий процесс				
003	Токарная	16K20	4	12,0	3,10	1,30		
005	Токарная с ЧПУ	16K20T1	5	3,3	3,41	0,39		
010	Токарная с ЧПУ	16K20T1	5	5,4	3,41	0,64		
015	Токарная с ЧПУ	16K20T1	5	6,8	3,41	0,81		
020	Горизонтально- фрезерная	6Т81Г	3	0,6	2,66	0,06		
025	Горизонтально- фрезерная	6Т81Г	3	1,7	2,66	0,16		
030	Настольно-сверлильная	2M112	4	1,2	3,10	0,13		
035	Настольно-сверлильная	2M112	4	1,2	3,10	0,13		
	Итого		_	32,2	-	3,62		

3.3 Расчёт дополнительной заработной платы

Дополнительная заработная плата рабочих, занятых на технологических операциях, определяется в процентах от основной по формуле

$$C_{3A} = \frac{C_{30} \cdot A_{A}}{100},$$

где \mathcal{I}_{∂} – процент дополнительной заработной платы к основной (15%).

$$C_{\text{здБ}} = \frac{1,30 \cdot 15}{100} = 0,20 \text{ руб.}$$

В расчёте на годовой объём выпуска продукции определяется фонд оплаты труда рабочих, занятых на технологических операциях по формуле

$$\Phi 3\Pi_{\pi p} = (C_{30} + C_{3d}) \cdot N;$$

 $\Phi 3\Pi_{6} = (3,65 + 0,55) \cdot 3400 = 14280 \text{ py6};$
 $\Phi 3\Pi_{\pi} = (3,62 + 0,54) \cdot 3400 = 14144 \text{ py6}.$

Для наглядности результаты расчётов величины дополнительной заработной платы и фонда оплаты труда рабочих заносим в таблицу 3.2.

Таблица 3.2 – Величина дополнительной заработной платы рабочих

Номер опера- ции	Наименование операции	Марка станка	С ₃₀ , руб.	<i>С</i> _{зд} , руб.	ФЗП, руб.
	Базовый техно	погический	процесс		
003	Токарная	16К20	1,30	0,20	5083
005	Токарная с ЧПУ	16K20T1	0,39	0,06	1525
010	Токарная с ЧПУ	16K20T1	0,64	0,10	2502
015	Токарная с ЧПУ	16K20T1	0,81	0,12	3167
020	Горизонтально-фрезерная	6T80	0,07	0,01	274
025	Горизонтально-фрезерная	6T80	0,18	0,03	704
030	Настольно-сверлильная	2M112	0,13	0,02	508
035	Настольно-сверлильная	2M112	0,13	0,02	508
	Итого		3,65	0,55	14280
	Проектируемый те	хнологичес	кий процесс		
003	Токарная	16K20	1,30	0,20	5083
005	Токарная с ЧПУ	16K20T1	0,39	0,06	1525
010	Токарная с ЧПУ	16K20T1	0,64	0,10	2502
015	Токарная с ЧПУ	16K20T1	0,81	0,12	3167
020	Горизонтально-фрезерная	6Т81Г	0,06	0,01	235
025	Горизонтально-фрезерная	6Т81Г	0,16	0,02	626
030	Настольно-сверлильная	2M112	0,13	0,02	508
035	Настольно-сверлильная	2M112	0,13	0,02	508
	Итого		3,62	0,54	14144

3.4 Определение расходов на содержание и эксплуатацию машин и оборудования

В данную статью включаются:

- амортизация машин и оборудования;
- затраты по содержанию и эксплуатации оборудования;
- затраты по внутризаводскому перемещению грузов;
- износ МБП;
- затраты на капитальный, текущий и профилактический ремонт.

Амортизация оборудования. Величина годовых амортизационных отчислений определяется по формуле

$$A = \sum_{j=1}^{m} \coprod_{6j} \cdot H_{aj} \cdot K_{3aH},$$

где $U_{\delta j}$ – балансовая стоимость оборудования j-го вида, руб.;

 H_{aj} — норма амортизационных отчислений j-го вида основных средств (10%);

т – количество видов оборудования;

 K_{3ah} – коэффициент занятости оборудования, $K_{3ah \ 6}$ =0,131, $K_{3ah \ n}$ =0,129.

$$A_6 = 141612,4 \cdot 0,1 \cdot 0,131 = 1855,12 \text{ py6};$$

 $A_{\Pi} = 142138,8 \cdot 0,1 \cdot 0,129 = 1833,59 \text{ py6}.$

Содержание и эксплуатация машин и оборудования. В эту часть статьи включается: заработная плата рабочих, занятых обслуживанием оборудования (слесарей, наладчиков, электромонтеров и др.); стоимость вспомогательных материалов (смазочных, обтирочных), необходимых для эксплуатации оборудования; затраты на электрическую энергию, сжатый воздух, воду, тепловую энергию, потребляемые в процессе работы оборудования.

Основная заработная плата вспомогательных рабочих определяется по формуле

$$3_{\scriptscriptstyle{\mathrm{OB}}} = F_{\scriptscriptstyle{\ni \varphi}} \cdot P_{\scriptscriptstyle{\mathcal{I}}} \cdot K_{\scriptscriptstyle{\mathtt{SAH}}} \cdot \sum_{i=1}^n J_{\scriptscriptstyle{\mathtt{Y}}i} \cdot n_i$$
,

где $F_{9\phi}$ – эффективный фонд времени рабочего, $F_{9\phi}$ =2008 u;

 P_{∂} – коэффициент, учитывающий премии и доплаты к тарифному фонду, P_{∂} =1,7;

 J_{vi} — часовая тарифная ставка рабочего соответствующего разряда, руб/ч; n_i — количество рабочих і-го разряда, чел.

Примем количество дополнительных рабочих 25% от основных, для базового технологического процесса и проектируемого технологического процесса

$$n=8\cdot 0.25=2$$
 чел; $3_{_{\mathrm{OB}\; 6}}=2008\cdot 1.7\cdot 0.131\cdot 2.66\cdot 2=2379.01$ руб; $3_{_{\mathrm{OB}\; \Pi}}=2008\cdot 1.7\cdot 0.129\cdot 2.66\cdot 2=2342.69$ руб.

Дополнительную заработную плату вспомогательных рабочих рассчитываем аналогично рабочим, занятым на основных технологических операциях

$$3_{\text{дв 6}} = 0.15 \cdot 2379,01 = 356,85 \text{ руб;}$$
 $3_{\text{дв п}} = 0.15 \cdot 2342,69 = 351,40 \text{ руб.}$

Суммарные годовые затраты на заработную плату определяем по формуле

$$\Phi 3\Pi_{\rm B}=3_{\rm oB}+3_{\rm дB};$$
 $\Phi 3\Pi_{\rm B\,6}=2379{,}01+356{,}85=2735{,}86$ руб; $\Phi 3\Pi_{\rm B\,\Pi}=2342{,}69+351{,}40=2694{,}09$ руб.

Годовые затраты на силовую электроэнергию определяются по формуле

$$C_{\text{\tiny ЭЛ}} = W_{\text{\tiny YCT}} \cdot F_{\text{\tiny Д}} \cdot K_{\text{\tiny C}} \cdot K_{\text{\tiny M}} \cdot K_{\text{\tiny B}} \cdot K_{\text{\tiny \Pi}} \cdot \coprod_{\text{\tiny ЭН}}$$

где W_{ycm} – суммарная установленная мощность оборудования, кВт;

 F_{o} – действительный фонд времени работы оборудования, ч;

 K_c – коэффициент спроса электроэнергии, K_c =1,3;

 K_{M} и K_{B} — коэффициенты, учитывающие загрузку оборудования по мощности и времени (при выполнении курсовой работы используем величину среднего коэффициента загрузки оборудования), $K_{3} = 0.064$, $K_{3} = 0.052$;

 K_n – коэффициенты, учитывающий потери энергии в сети, K_n =1,04;

 U_{3H} – стоимость 1 кВт·ч электроэнергии, U_{3H} = 0,23975 руб.

$$C_{9\pi,6} = 74.0 \cdot 2008 \cdot 1.3 \cdot 0.064 \cdot 1.04 \cdot 0.23975 = 3082.55 \text{ py6};$$

$$C_{\text{эл пр}} = 57,0 \cdot 2008 \cdot 1,3 \cdot 0,052 \cdot 1,04 \cdot 0,23975 = 1929,20$$
 руб.

Затраты на сжатый воздух определяются по формуле

$$C_{\text{CB}} = H_{\text{CB}} \cdot n_{\text{CB}} \cdot F_{\text{A}} \cdot 1,5 \cdot K_{\text{CD3}} \cdot \coprod_{\text{CB}}$$

где H_{cs} — среднечасовая норма расхода сжатого воздуха на один станок, H_{cs} =1 $M^3/4ac$:

 n_{cs} – количество единиц оборудования на участке, использующего сжатый воздух;

1,5 – коэффициент, учитывающий потери сжатого воздуха;

 K_{cp3} – средний коэффициент загрузки оборудования;

 L_{ce} — цена 1 м³ сжатого воздуха на производственные нужды (принимаем 0,005 у.е./ м³), руб.

$$C_{\text{св б}} = 1 \cdot 3 \cdot 2008 \cdot 1,5 \cdot 0,105 \cdot 0,01025 = 9,72$$
 руб; $C_{\text{св п}} = 1 \cdot 3 \cdot 2008 \cdot 1,5 \cdot 0,103 \cdot 0,01025 = 9,54$ руб.

Затраты на воду для производственных нужд складываются из:

- затрат на промывку деталей;
- затрат на приготовление охлаждающих смесей;
- охлаждение рабочих агрегатов (станков).

Затраты на воду для промывки деталей определяются по формуле

$$C_{ ext{BII}} = rac{H_{ ext{BII}} \cdot m_{ ext{A}} \cdot \coprod_{ ext{BA}} \cdot N}{1000},$$

где H_{en} — расход воды на производственные нужды в моечной машине, H_{en} = 0,35 м 3 на 1 тонну промываемых деталей;

 m_{∂} – масса детали, m_{∂} =0,12 кг;

 U_{60} – стоимость 1 м³ воды на производственные нужды, $U_{60}=1,2815$ руб.

$$C_{\text{вп}} = \frac{0.35 \cdot 0.12 \cdot 1.2815 \cdot 3400}{1000} = 0.18 \text{ руб.}$$

Затраты на приготовление охлаждающих смесей принимаем в размере 5% от затрат на воду для промывки деталей.

$$C_{\text{вос}} = 0.18 \cdot 0.05 = 0.009$$
 руб.

Затраты на охлаждение рабочих агрегатов принимаем в размере 3% от затрат на воду для промывки деталей.

$$C_{\text{Boa}} = 0.18 \cdot 0.03 = 0.005 \text{ py}6.$$

Затраты на воду для бытовых нужд определяются по формуле

$$C_{\mathrm{B}\mathrm{G}} = H_{\mathrm{B}\mathrm{G}} \cdot n_{\mathrm{c}} \cdot \mathsf{Д}_{\mathrm{p}} \cdot \mathsf{Ч}_{\mathrm{pa}\mathrm{G}} \cdot \mathsf{Ц}_{\mathrm{B}\mathrm{G}} \cdot \mathit{K}_{\mathrm{зан}}$$
,

где H_{66} — норма расхода воды на одного работающего в смену, H_{66} = 0,053 M^3 ; n_c — число смен в сутках;

 \mathcal{A}_{p} – число рабочих дней в году, H_{e6} =252 дня;

 $Y_{pa\delta}$ – расчетное число работающих, чел.;

 L_{66} – стоимость 1 м³ воды на бытовые нужды, L_{66} =2,4827 руб.

$$C_{\text{B6 6}} = 0.053 \cdot 1 \cdot 252 \cdot 10 \cdot 2.4827 \cdot 0.131 = 43.44 \text{ py6};$$

$$C_{\text{B6 II}} = 0.053 \cdot 1 \cdot 252 \cdot 10 \cdot 2.4827 \cdot 0.129 = 42.78 \text{ py6}.$$

Затраты на пар для производственных нужд определяются по формуле

$$C_{\Pi\Pi} = \coprod_{\Pi} \cdot M_{\underline{\Pi}} \cdot (H_{B\Pi} \cdot K_{\Pi\Pi} + K_{C\Pi}),$$

где U_n – стоимость 1 т пара, U_n =50,41 руб.

 M_{∂} – вес деталей, M_{∂} =0,408 m;

 $H_{\it en}$ — расход воды в моечной машине на 1 т промываемых деталей, $H_{\it en}$ = 0,35 M^3 ;

 K_{nn} – расход пара на подогрев 1 м³ воды, K_{nn} =0,18 m;

 K_{cn} – расход пара на сушку 1 т деталей, K_{cn} =0,1 m.

$$C_{\text{пп}} = 50,41 \cdot 0,408 \cdot (0,35 \cdot 0,18 + 0,1) = 3,35 \text{ руб.}$$

Величина затрат по внутризаводскому перемещению грузов зависит от вида применяемого транспорта и определяется укрупненно в размере 40% от стоимости транспорта с учётом среднего коэффициента занятости по соответствующему варианту технологического процесса.

$$P_{\Pi\Gamma\Pi} = 0.4 \cdot K_{\text{тр}} \cdot K_{\text{зан}} = 0.4 \cdot 15375 \cdot 0.131 = 805,65$$
 руб; $P_{\Pi\Gamma\Pi} = 0.4 \cdot K_{\text{тр}} \cdot K_{\text{зан}} = 0.4 \cdot 15375 \cdot 0.129 = 793,35$ руб.

В группу затрат на капитальный, текущий и профилактический ремонт входят затраты на заработную плату рабочих, занятых ремонтом оборудования; расходы на материалы, потребляемые в процессе выполнения ремонтных работ; услуги ремонтных цехов завода. Они определяются укрупнено по формуле

$$P_o = 0.03 \cdot (K_{\text{of}} + K_{\text{HHC}}) \cdot K_{\text{3aH}},$$

где K_{ob} и K_{uhc} — соответственно общая стоимость оборудования и дорогостоящего инструмента и приспособлений.

$$P_{o \text{ б}} = 0.03 \cdot (141612.4 + 1416.12) \cdot 0.131 = 562.10$$
 руб; $P_{o \text{ п}} = 0.03 \cdot (142138.8 + 1421.39) \cdot 0.129 = 555.58$ руб.

Величина расходов на содержание и эксплуатацию оборудования, приходящаяся на единицу продукции определяем по формуле

$$C_{\rm co} = \frac{PCO}{N}$$
,

где PCO – суммарные затраты по статье «Содержание и эксплуатация машин и оборудования», руб.

$$C_{\text{co 6}} = (1855,12 + 2379,01 + 356,85 + 3082,55 + 9,72 + 0,18 + 0,009 + 0,005 + 43,44 + 3,35 + 805,65 + 562,10)/3400 = 2,68 \text{ py6};$$

$$C_{\text{со п}} = (1833,59 + 2342,69 + 351,40 + 1929,20 + 9,54 + 0,18 + 0,009 + 0,005 + 42,78 + 3,35 + 793,35 + 555,58)/3400 = 2,31$$
 руб.

3.5 Общепроизводственные расходы (в том числе амортизация)

В данную статью включаются:

– расходы на оплату труда управленческого и обслуживающего персонала;

- расходы на ремонт основных средств;
- расходы на содержание и эксплуатацию зданий и сооружений;
- амортизация (цеховых зданий);
- расходы на отопление, освещение, водоснабжение цехов, их сигнализацию и охрану;
- расходы на охрану труда работников цеха (спецодежда, спецпитание, гигиенические принадлежности).

Содержание аппарата управления цехом. В состав этих затрат входит основная и дополнительная заработная плата инженерно-технических работников, служащих и младшего обслуживающего персонала.

Затраты на основную заработную плату указанных категорий работающих рассчитываем по формулам

$$\mathbf{3}_{\text{итр}} = O_{\text{итр}} \cdot \mathbf{Y}_{\text{итр}} \cdot 12 \cdot K_{\text{д}} \cdot K_{\text{зан}};$$
 $\mathbf{3}_{\text{сл}} = O_{\text{сл}} \cdot \mathbf{Y}_{\text{сл}} \cdot 12 \cdot K_{\text{д}} \cdot K_{\text{зан}};$
 $\mathbf{3}_{\text{моп}} = O_{\text{моп}} \cdot \mathbf{Y}_{\text{моп}} \cdot 12 \cdot K_{\text{д}} \cdot K_{\text{зан}},$

где O_{ump} , O_{cn} и O_{mon} – среднемесячные оклады ИТР, служащих и МОП соответственно, O_{ump} =755 руб, O_{cn} =460 руб, O_{mon} =330 руб.

 Y_{ump} , Y_{cn} и Y_{mon} — численность соответствующих категорий работников, чел. (количество ИТР, служащих и МОП определяется в процентах от количества основных производственных рабочих в размере соответственно 10, 5 и 2%);

 K_{∂} — коэффициент, учитывающий увеличение планового фонда зарплаты за счёт доплат; K_{∂} =1,3.

$$3_{\text{итр 6}} = 755 \cdot 1 \cdot 12 \cdot 1,3 \cdot 0,131 = 1542,92 \text{ руб};$$
 $3_{\text{сл 6}} = 450 \cdot 1 \cdot 12 \cdot 1,3 \cdot 0,131 = 919,62 \text{ руб};$ $3_{\text{моп 6}} = 330 \cdot 1 \cdot 12 \cdot 1,3 \cdot 0,131 = 674,39 \text{ руб};$

$$3_{\text{итр п}} = 755 \cdot 1 \cdot 12 \cdot 1,3 \cdot 0,129 = 1519,36 \text{ руб};$$
 $3_{\text{сл п}} = 450 \cdot 1 \cdot 12 \cdot 1,3 \cdot 0,129 = 905,58 \text{ руб};$
 $3_{\text{моп п}} = 330 \cdot 1 \cdot 12 \cdot 1,3 \cdot 0,1229 = 664,09 \text{ руб}.$

Суммарный фонд основной заработной платы названных категорий работающих составит

$$3_{\text{упро }} = 3_{\text{итр}} + 3_{\text{сл}} + 3_{\text{моп}};$$
 $3_{\text{упро }6} = 1542,92 + 919,62 + 674,39 = 3136,93 \text{ руб};$
 $3_{\text{упро }n} = 1519,36 + 905,58 + 664,09 = 3089,03 \text{ руб}.$

Соответствующую дополнительную заработную плату определяем в размере 15% от основной по формуле

$$3_{y\pi p \pi} = 0.15 \cdot 3_{y\pi p o};$$

 $3_{y\pi p \pi} = 0.15 \cdot 3136.93 = 470.54 \text{ py6};$
 $3_{y\pi p \pi} = 0.15 \cdot 3089.03 = 463.36 \text{ py6}.$

Суммарные расходы по данному пункту статьи составляют

$$\Phi 3\Pi_{\text{упр}} = 3_{\text{упро}} + 3_{\text{упрд}};$$

 $\Phi 3\Pi_{\text{упр 6}} = 3136,93 + 470,54 = 3607,47$ руб;
 $\Phi 3\Pi_{\text{упр п}} = 3089,03 + 463,36 = 3552,39$ руб.

Затраты на текущий ремонт зданий и инвентаря определяем укрупненно в размере 3% от стоимости зданий и инвентаря с учётом соответствующих средних коэффициентов занятости по вариантам технологического процесса

$$3_{\text{тр }6} = 5638,62 \cdot 0,03 \cdot 0,131 = 22,16$$
 руб; $3_{\text{тр }\pi} = 5889,24 \cdot 0,03 \cdot 0,129 = 22,79$ руб.

Затраты на содержание и эксплуатацию зданий и сооружений определяются исходя из норматива затрат на 1 м^2 производственной площади в год (принимаем в размере 2 y.e.), т.е. 4,10 руб.

$$3_{c9.6} = 85,56 \cdot 4,10 \cdot 0,131 = 45,95 \text{ py6};$$

 $3_{c9.6} = 92,88 \cdot 4,10 \cdot 0,129 = 49,12 \text{ py6};$

Суммарные затраты на амортизацию зданий, сооружений, транспортных средств, инструмента и инвентаря определяются по формуле

$$A_{\rm 3Д} = \left(\coprod_{\rm 3Д} \cdot H_{\rm 3Д} + \coprod_{\rm Tp} \cdot H_{\rm Tp} + \coprod_{\rm инc} \cdot H_{\rm инc} + \coprod_{\rm инg} \cdot H_{\rm инB} \right) \cdot K_{\rm 3AH},$$

где U_{31} - балансовая стоимость здания, руб.;

 $H_{_{\rm 3Д}}$ - норма амортизационных отчислений для зданий (5%), %;

 $\mu_{_{\rm TP}}$ - балансовая стоимость транспортных средств, руб.;

 H_{Tp} - норма амортизационных отчислений для транспортных средств (15%);

 $U_{\text{инс}}$ - балансовая стоимость инструмента, руб.;

 $H_{_{\mathrm{UHC}}}$ - норма амортизационных отчислений для инструмента (20%);

*Ц*_{ннв} - балансовая стоимость производственного инвентаря, руб.;

 $H_{\rm uhb}$ - норма амортизационных отчислений для производственного инвентаря (20%), %.

$$A_{\rm 3д\,6} = (2806,37\cdot 0,05 + 15375\cdot 0,15 + 1416,12\cdot 0,2 + 2832,25\cdot 0,2)\cdot 0,131$$
 = 431,81 руб;

$$A_{\rm 3д\, II} = (3046,46 \cdot 0,05 + 15375 \cdot 0,15 + 1421,39 \cdot 0,2 + 2842,78 \cdot 0,2) \cdot 0,129$$
 = 427,17 руб.

Отопление, освещение, водоснабжение, охрана и сигнализация цехов.

Затраты на электроэнергию для освещения определяются по формуле

$$C_{\text{oc}} = S_{3A} \cdot (H_{\text{on}} \cdot F_{\text{oc}} + H_{\text{oA}} \cdot F_{\text{oc}}) \cdot \coprod_{\text{o3}} \cdot K_{3\text{aH}},$$

где $S_{3\partial}$ – площадь здания, м²;

 H_{on} и H_{oo} — соответственно нормы расхода электроэнергии на освещение 1м²; H_{on} =0,015 к $Bm\cdot u$; H_{oo} =0,0026 к $Bm\cdot u$;

 F_{oc} – годовое число часов осветительной нагрузки; F_{oc} =800 ч;

 U_{09} – цена 1 кВт·ч осветительной энергии, U_{9H} =0,23975 руб.

$$C_{\text{oc 6}} = 85,56 \cdot (0,015 \cdot 800 + 0,0026 \cdot 800) \cdot 0,23975 \cdot 0,131 = 37,84 \text{ py6};$$

$$C_{\text{ос }\pi} = 92,88 \cdot (0,015 \cdot 800 + 0,0026 \cdot 800) \cdot 0,23975 \cdot 0,129 = 40,45 \text{ руб.}$$

Затраты на пар для отопления здания определяются по формуле

$$C_{\text{по}} = S_{\text{зд}} \cdot H_{\text{пзд}} \cdot h \cdot \Pi_{\text{п}} \cdot K_{\text{зан}},$$

где $S_{3\partial}$ – площадь здания, м²;

 H_{nso} — норма расхода пара в тоннах на 1 м³ здания, т; H_{nso} =0,47 m; h— высота здания, м; h=8 M;

 U_n – стоимость 1 т пара, U_n =50,41 руб.

$$C_{\text{по б}} = 85,56 \cdot 0,47 \cdot 8 \cdot 50,41 \cdot 0,131 = 2124,45$$
 руб; $C_{\text{по п}} = 92,88 \cdot 0,47 \cdot 8 \cdot 50,41 \cdot 0,129 = 2271,0$ руб.

Охрана труда. Расходы по данной статье определяем укрупненно исходя из норматива затрат на одного работающего (принимаем в размере *10 у.е.* на человека) с учётом среднего коэффициента занятости по вариантам технологического процесса.

$$C_{\text{от 6}} = 20,05 \cdot 13 \cdot 0,131 = 34,15$$
 руб; $C_{\text{от п}} = 20,05 \cdot 13 \cdot 0,129 = 33,62$ руб.

Прочие расходы. Включаются затраты, не предусмотренные другими пунктами статьи, принимаем в размере 3% от общей суммы затрат по вышеуказанным статьям.

$$C_{\text{проч 6}} = (3136,93 + 470,54 + 22,16 + 45,95 + 431,81 + 37,84 + 2124,45 + 34,15) \cdot 0,03 = 189,11 руб;$$
 $C_{\text{проч п}} = (3089,03 + 463,36 + 22,79 + 49,12 + 427,17 + 40,45 + 2271,0 + 33,62) \cdot 0,03 = 191,90 руб.$

Общепроизводственные расходы на единицу продукции определяются по формуле

$$C_{\text{onp}} = \frac{\text{O}\Pi\text{P}}{N}$$
,

где ОПР – суммарные общепроизводственные расходы, руб.

$$C_{\text{опр 6}} = (3136,93 + 470,54 + 22,16 + 45,95 + 431,81 + 37,84 + 2124,45 + 34,15 + 189,11)/3400 = 1,91 \text{ py6};$$

$$C_{\text{опр п}} = (3089,03 + 463,36 + 22,79 + 49,12 + 427,17 + 40,45 + 2271,0 + 33,62 + 191,90)/3400 = 1,94 \text{ py6}.$$

3.6 Расчет налогов, отчислений в бюджет и внебюджетные фонды, сборов и отчислений местным органам власти

В данную статью включаются:

- отчисления на государственное социальное страхование и пенсионное обеспечение (34%);
 - отчисления на обязательное медицинское страхование (0,6%).

Расходы по данной статье укрупненно принимаем в размере 38% от расходов на оплату труда всех категорий работников (сумма основной и дополнительной заработной платы).

$$C_{\text{отч}} = 0.346 \cdot \left(\Phi 3\Pi_{\text{пр}} + \Phi 3\Pi_{\text{в}} + \Phi 3\Pi_{\text{упр}}\right),$$

где $\Phi 3\Pi_{np}$ — фонд оплаты труда рабочих, занятых на технологических операциях, руб.;

 $\Phi 3\Pi_{\rm e}$ — фонд заработной платы вспомогательных рабочих, руб.;

 $\Phi 3\Pi_{ynp}$ – фонд заработной платы ИТР, служащих и МОП, руб.

$$C_{\text{отч 6}} = 0.346 \cdot (14280 + 2735,86 + 3607,47) = 7135,67 \text{ руб};$$

 $C_{\text{отч п}} = 0,346 \cdot (14144 + 2694,09 + 3552,39) = 7055,11$ руб. Результаты расчётов по Разделу 3 сводим в таблицу 3.3.

Таблица 3.3 – Калькуляция себестоимости продукции, руб.

	Базог вари		Проектируемый вариант	
Наименование статей	единица продукции	годовой объёма	единица продукции	годовой объёма
1. Сырье и материалы за вычетом возвратных отходов	2,55	8670	2,55	8670
2. Основная заработная плата производственных рабочих	3,65	12410	3,62	12308
3. Дополнительная заработная плата производственных рабочих	0,55	1870	0,54	1836
4. Расходы на содержание и эксплуатацию машин и оборудования,				
в том числе:	2,68	9112	2,31	7854
– заработная плата	0,80	2735,86	0,79	2694,09
– амортизация	0,55	1855,12	0,54	1833,59
5. Итого технологическая себестоимость	9,43	32062	9,02	30668
6. Общепроизводственные расходы, в				
том числе:	1,91	6494	1,94	6596
– заработная плата	1,06	3607,47	1,05	3552,39
– амортизация	0,13	431,81	0,13	427,17
7. Налоги, отчисления в бюджет и				
внебюджетные фонды, сборы и	2,10	7135,67	2,08	7055,11
отчисления местными органами	2,10	7133,07	2,00	7055,11
власти				
8. Итого цеховая себестоимость	13,44	45691,67	13,04	44319,11

4 ОПРЕДЕЛЕНИЕ ГОДОВОГО ОБЪЕМА ВЫПУСКА ПРОДУКЦИИ В СВОБОДНЫХ ОТПУСКНЫХ ЦЕНАХ И ЧИСТОЙ ПРИБЫЛИ

4.1 Определение годового объёма выпуска продукции в свободных отпускных ценах

Для удобства выполнения расчётов составим таблицу, включающую исходную информацию для базового и проектируемого вариантов технологического процесса.

Таблица 4.1 – Исходная информация для расчёта

No	Наименование показателей	Базовый	Проектируемый
Π/Π	паименование показателеи	вариант	вариант
1	Объем производства в натуральном выражении, шт.	3400	3400
2	Величина инвестиций, руб.	31009,52	30782,35
3	Стоимость основных средств с учётом коэффициента занятости, руб.	21489,52	21262,35
4	Цеховая себестоимость, руб.	45691,67	44319,11
5	Реальная рентабельность предприятия по чистой прибыли в базовом варианте, %		0
6	Ставка налога на добавленную стоимость, %	20	
7	Ставка налога на прибыль, %	18	

Определение годового объема выпуска продукции в свободных отпускных ценах производим по форме таблицы 4.2.

Таблица 4.2 – Расчёт свободной отпускной цены единицы продукции, руб.

№ п/п	Показатели	Порядок расчёта	Значение показателя
1	Чистая прибыль, руб.	$\Pi_{^{\mathbf{q}} 6} = P_{6} \cdot M_{6}$	3100,95
2	Прибыль налогооблагаемая, руб.	$\Pi_{\text{H 6}} = \frac{\Pi_{\text{H 6}}}{1 - h_{\text{np}}}$	3781,65
3	Налог на прибыль, руб.	$H_{\pi 6} = \prod_{\pi 6} \cdot h_{\pi p}$	680,70
4	Прибыль до налогообложения, руб.	$\Pi_{66} = \Pi_{^{\mathrm{H}}6} + H_{^{\mathrm{H}}6}$	3781,65
5	Объём выпуска продукции в оптовых ценах, руб.	$Q=C_{II 6}+\prod_{6 6}$	49473,32
6	Объём выпуска продукции в отпускных ценах с НДС, руб.	$Q_{\rm HJC} = Q + \frac{Q \cdot h_{\rm HJC}}{100}$	59367,98
7	Свободная отпускная цена единицы продукции без НДС, руб.	$\mathbf{H} = \frac{\mathbf{Q}}{\mathbf{N}}$	14,55
8	Свободная отпускная цена единицы продукции с НДС, руб.	$\mathbf{L}_{\mathrm{H},\mathrm{L}} = \frac{\mathbf{Q}_{\mathrm{H},\mathrm{L}}}{\mathbf{N}}$	17,46

В таблице приводятся условные сокращения следующих показателей:

 P_{6} — базовая рентабельность;

И – инвестиции;

 $h_{\text{пр}}$ – ставка налога на прибыль;

 $h_{\rm H,C}$ — ставка налога на добавленную стоимость;

 C_{u} . – цеховая себестоимость годового объема выпуска продукции;

N - годовая программа выпуска изделий.

4.2 Определение чистой прибыли и рентабельности в проектируемом варианте

Определение чистой прибыли и рентабельности в проектируемом варианте производим в таблице 4.3.

Таблица 4.3 – Расчёт чистой прибыли в проектируемом варианте, руб.

№ п/п	Показатели	Порядок расчё	та Значение показателя
1	Свободная отпускная цена единицы продукци НДС, руб.	и с Ц _{ндс}	17,46
2	Свободная отпускная цена единицы продукт без НДС, руб.	ции	14,55
3	Объём выпуска продукции в отпускных цена НДС, руб.	V С Qндс	59367,98
4	Объём выпуска продукции в отпускных ценах НДС, руб.	без Q	49473,32
5	Прибыль до налогообложения, руб.	$\Pi_{\text{б II}} = Q - C_{\text{II}}$	п 5154,21
6	Прибыль налогооблагаемая, руб.	$\Pi_{\text{H II}} = \Pi_{\text{6 II}}$	5154,21
7	Налог на прибыль, руб.	$H_{\Pi \Pi p} = \prod_{H \Pi} \cdot h_{H}$	пр 927,76
8	Чистая прибыль, руб.	$\Pi_{\text{ч }\Pi} = \Pi_{\text{н }\Pi} - H_{\text{r}}$	1 пр 4226,45

5. ОСНОВНЫЕ ПАРАМЕТРЫ И ОЦЕНКА ЭФФЕКТИВНОСТИ ПРОЕКТИРУЕМОГО ВАРИАНТА

5.1 Статические показатели эффективности

Критерием целесообразности использования проектируемого варианта технологического процесса при производстве продукции служат следующие показатели: рентабельность по чистой прибыли, годовой экономический эффект, период возврата инвестиций, производительность труда и фондоотдача.

инвестиций по чистой Рентабельность прибыли относительный годовой прирост собственности предприятия при данном варианте инвестиций и определяется по формуле

$$P_{\Pi} = \frac{\Pi_{\Pi}}{\mathsf{M}_{\Pi}} \cdot 100\%,$$

 Π_{yn} – годовая чистая прибыль в проектируемом варианте инвестиций, руб.; где U_n – величина инвестиций в проектируемом варианте, руб.

$$P_{\Pi}^{\Pi} = \frac{4226,45}{30782,35} \cdot 100\% = 13,73\%$$

эффект (экономическая экономический Годовой характеризует годовой прирост прибыли от инвестирования средств в данный вариант в сравнении с вариантом, принятым за базовый, определяется по формуле

$$\mathfrak{J} = \Pi_{\mathsf{ч}\mathsf{\Pi}} - P_{\mathsf{G}} \cdot \mathsf{M}_{\mathsf{\Pi}},$$

 $\mathfrak{Z}=\Pi_{\text{чп}}-P_{6}\cdot \mathfrak{V}_{\text{п}},$ P_{6} – рентабельность инвестиций по чистой прибыли в базовом варианте, в десятичном виде.

$$9 = 4226,45 - 0,1 \cdot 30782,35 = 1148,22$$
 py6.

Ориентировочный период возврата инвестиций - это срок в годах, в течение которого сумма ежегодной чистой прибыли сравняется с величиной инвестиций, определяется по формуле

$$T=\frac{\mathsf{H}}{\mathsf{\Pi}_{\mathsf{H}}}$$

И – инвестиции в соответствующем варианте техпроцесса, руб.; где

 Π_{v} годовая чистая прибыль в данном варианте, руб.

$$T^{\mathrm{B}} = rac{31009,52}{3100,95} = 10$$
 лет; $T^{\mathrm{H}} = rac{30782,35}{4226,45} = 7,28$ лет.

Годовая производительность труда в расчёте на одного работающего определяется по формуле

$$\Pi_{\mathrm{T}} = \frac{Q}{\mathrm{q}_{\mathrm{pa6}}}$$

Q – годовой объём выпуска продукции в свободных отпускных ценах, тыс. руб.;

 ${\cal H}_{pab}$ — численность работающих по соответствующему варианту техпроцесса, чел.

$$\Pi^{\mathrm{B}}_{\scriptscriptstyle \mathrm{T}} = \frac{49473,32}{13} = 3805,64$$
 руб/чел; $\Pi^{\mathrm{\Pi}}_{\scriptscriptstyle \mathrm{T}} = \frac{49473,32}{13} = 3805,64$ руб/чел.

Фондоотдача является показателем, характеризующим эффективность использования основных средств предприятия, и определяется по формуле

$$\Phi_0 = \frac{Q}{\Phi_0}$$

где Φ_o — стоимость основных средств предприятия с учётом коэффициента занятости, руб.

$$\Phi_o^{\text{B}} = \frac{49473,32}{21489,52} = 2,30 \text{ py6/py6};$$

$$\Phi_o^{\text{II}} = \frac{49473,32}{21262,35} = 2,33 \text{ py6/py6}.$$

5.2 Динамические показатели эффективности

Для долгосрочных инвестиционных проектов оценка эффективности инвестиций требует обязательного учёта фактора времени. Прибыли сегодня и в будущем имеют разную «ценность», что связано с инфляционными процессами, и возможностью получить доход по депозиту. Для приведения затрат и результатов к единому моменту времени обычно используется принцип дисконтирования.

Дисконтирование (затрат, стоимости, прибыли и т.д.) - это приведение их к одному определённому моменту времени с использованием нормы дисконта (НД).

Норма дисконта может выбираться, например, на уровне действующей на момент расчёта банковской процентной (учётной) ставки (это ставка рефинансирования плюс 1,5%). На основе нормы дисконта определяется коэффициент дисконтирования, использующий формулу сложных банковских процентов по депозиту

КД =
$$\frac{1}{(1 + HД)^t}$$

где t – порядковый номер года (1....n).

В практических расчётах n принимаем на уровне статического показателя периода окупаемости инвестиций в базовом варианте.

Рассчитаем основные динамические показатели эффективности инвестиций.

Чистая дисконтированная стоимость (ЧДС) - это абсолютный показатель, характеризующий экономический эффект от применения новой техники, технологии и т.д. Чистая дисконтированная стоимость определяется по формуле

ЧДС =
$$-\text{И} + \frac{\Pi_1}{(1 + \text{НД})^1} + \frac{\Pi_2}{(1 + \text{НД})^2} + \dots + \frac{\Pi_n}{(1 + \text{НД})^n}$$

И – размер инвестиций в проектируемом варианте технологического процесса;

 $\Pi_{1...n}$ – размер чистой прибыли 1,2,..., n-ого года.

ЧДС =
$$-30782,35 + \frac{4226,45}{(1+0,115)^1} + \frac{4226,45}{(1+0,115)^2} + \frac{4226,45}{(1+0,115)^3} + \frac{4226,45}{(1+0,115)^4} + \frac{4226,45}{(1+0,115)^5} + \frac{4226,45}{(1+0,115)^6} + \frac{4226,45}{(1+0,115)^7} + \frac{4226,45}{(1+0,115)^9} + \frac{4226,45}{(1+0,115)^{10}} = -6405,16 \text{ py6}.$$

Так как ЧДС<0, то проект следует отвергнуть, поскольку предприятие несет убытки.

Результаты расчетов оформляем в виде таблицы 5.1.

No	Инвестиции,	Прибыль,	Коэффициент	Писконтированиая	
745			коэффициент	Дисконтированная	ЧДС, руб.
года	руб.	руб.	дисконтирования	прибыль, руб.	1 4 0, pyo.
1	30782,35	4226,45	0,89686	3790,53	-26991,82
2	26991,82	4226,45	0,80436	3399,59	-23592,23
3	23592,23	4226,45	0,72140	3048,96	-20543,27
4	20543,27	4226,45	0,64699	2734,47	-17808,80
5	17808,80	4226,45	0,58026	2452,44	-15356,36
6	15356,36	4226,45	0,52042	2199,53	-13156,83
7	13156,83	4226,45	0,46674	1972,65	-11184,17
8	11184,17	4226,45	0,41860	1769,19	-9414,98
9	9414,98	4226,45	0,37543	1586,74	-7828,25
10	7828,25	4226,45	0,33671	1423,09	-6405,15

Динамический коэффициент рентабельности инвестиций (индекс доходности) - это показатель, характеризующий степень эффективности вложений с учётом фактора времени. Данный показатель определяется по формуле

$$PH_{A} = \frac{\left(\frac{\Pi_{1}}{(1+HA)^{t}} + \frac{\Pi_{2}}{(1+HA)^{t}} + \cdots + \frac{\Pi_{n}}{(1+HA)^{n}}\right)}{H};$$

$$PH_{A} = \left(\frac{4226,45}{(1+0,115)^{1}} + \frac{4226,45}{(1+0,115)^{2}} + \frac{4226,45}{(1+0,115)^{3}} + \frac{4226,45}{(1+0,115)^{4}} + \frac{4226,45}{(1+0,115)^{5}} + \frac{4226,45}{(1+0,115)^{6}} + \frac{4226,45}{(1+0,115)^{7}} + \frac{4226,45}{(1+0,115)^{9}} + \frac{4226,45}{(1+0,115)^{9}} + \frac{4226,45}{(1+0,115)^{9}} + \frac{4226,45}{(1+0,115)^{10}}\right)/30782,35 = 0,79.$$
Tak yay PM <0, to proceed the twenty corresponding

Так как $PH_{\pi} < 0$, то проект следует отвергнуть.

Внутренняя норма рентабельности - это значение пороговой нормы рентабельности, при котором чистая дисконтированная стоимость равно 0. Данный показатель рассчитывается по формуле

ЧДС =
$$0 = \sum \frac{\Pi_i - H_i}{(1 + BHД)^t}$$
,

где $\mathit{BHД}$ – норма дисконта, при которой выполнено равенство ЧДС=0 или

$$BHД = HД_a + \frac{(HД_6 - HД_a) \cdot YДC_a}{YДC_a - YДC_6}.$$

Формула справедлива, если выполняются условия:

$$HД_a < BHД < HД_6$$
 и $ЧДС_a > 0 > ЧДС_6$,

где $H\mathcal{L}_a$ — первоначальная норма дисконта, при которой $4\mathcal{L}_a > 0$; $H\mathcal{L}_6$ — норма дисконта, обеспечивающая значение $4\mathcal{L}_6 < 0$.

ВНД =
$$0.03 + \frac{(0.1 - 0.03) \cdot 2660.36}{2660.36 - (-6405.16)} = 0.05 = 5\%$$

Динамический срок окупаемости инвестиций - это период времени, в течение которого дисконтированные доходы от реализации проекта сравниваются с дисконтированными инвестициями в проект и определяется по формуле

$$T_{\mu} = t - \frac{\mathrm{ЧДC}_t}{\mathrm{ЧДC}_{t+1} - \mathrm{ЧДC}_t},$$

где t – год, предшествующий году, когда ЧДС становится положительной.

Т.к возврат инвестиций больше 10 лет, то динамического срок окупаемости в расчете не нуждается.

6. ОЦЕНКА ЭФФЕКТИВНОСТИ И ОСНОВНЫЕ ТЕХНИКО-ЭКОНОМИЧЕСКИЕ ПОКАЗАТЕЛИ ПРОЕКТА

Оценка эффективности проектируемого варианта производится путем сравнения рентабельности инвестиций по чистой прибыли с критериями и определяе: какой из вариантов лучший; соответствует ли лучший проектируемый вариант критерию общей экономической эффективности; является ли лучший проектируемый вариант конкурентоспособным.

Итоги расчетов сводим в таблицу 6.1.

Таблица 6.1- Основные технико-экономические показатели проекта

No	Таолица 0.1- Основные технико-экономически	Значения показателей по		
п/п	Наименование показателей	вариантам		
		базовый	проектируемый	
	Годовой объем выпуска продукции:			
1	– в натуральном выражении, шт;	3400	3400	
1	– в стоимостном выражении по цене базового			
	варианта, руб.	45696	44336	
2	Стоимость основных средств, руб.	164042,1	164824,4	
3	Трудоемкость изготовления единицы продукции,	32,6 32,2		
3	мин/шт.	32,0	32,2	
4	Амортизационные отчисления, руб.	431,81	427,17	
5	Численность работающих, чел.	13	13	
6	Себестоимость единицы продукции, руб.	13,44	13,04	
7	Прибыль, остающаяся в распоряжении	3100,95	4226,45	
/	предприятия, руб.	3100,93	4220,43	
8	Рентабельность, %	10,0	13,73	
9	Производительность труда, руб/чел.	3805,64	3805,64	
10	Фондоотдача, руб./на 1 руб. фондов	2,30	2,33	
11	Экономический эффект, руб.	1148,22		
12	Период возврата инвестиций, лет	10	7,28	
	Динамические показатели эффективности:			
13	- чистая дисконтированная стоимость, руб.	-6405,16		
	- индекс доходности	0,79		
	- внутренняя норма рентабельности, %	5%		
	- срок окупаемости инвестиций, лет.	<10 лет		

ЗАКЛЮЧЕНИЕ

По результатам выполнения курсового проекта видно, что проектируемый проект незначительно отличается от базового. Приведем сравнение базового и проектируемого технологических процессов:

- 1. Рентабельность инвестиций по чистой прибыли составила 13,73%.
- 2. Годовой экономический эффект составил 1148,22 руб.
- 3. Период возврата инвестиций снизился с 10 лет базового до 7,28 лет.
- 4. Годовая производительность труда в обоих вариантах составила 3805,64 руб.
- 5. Фондоотдача в базовом варианте составила 2,30 руб/руб, в проектируемом 2,33 руб/руб.
- 6. Чистая дисконтированная стоимость (ЧДС) составила -6405,16 руб, что готовит о том, что проект следует отвергнуть, т.к. получаемая прибыль за весь период реализации проекта превышает размер инвестиций.
- 7. Индекс доходности составил 0,79, что так же говорит о том, что проект следует отвергнуть.
- 8. Внутренняя норма рентабельности составила 5%, что ниже реальной рентабельности предприятия по чистой прибыли в базовом варианте.
- 9. Срок окупаемости инвестиций более 10 лет.

Следовательно, данный проект принимаем, т.к. он является условно эффективным.

СПИСОК РЕКОМЕНДУЕМОЙ ЛИТЕРАТУРЫ

- 1. О.В. Шваякова, О.Г. Винник: «Организация производства и менеджмент в машиностроении» учебно-методическое пособие по курсовой работе для студентов специализации 1-36 01 01 01 «Технология машиностроения» дневной и заочной форм обучения. Гомель: ГГТУ им. П.О. Сухого, 2019. 57 с.
- 2. Горбацевич А. Ф., Чеботарев В. Н., Шкред В. А., Алешкевич И. Л., Медведев А. И. Курсовое проектирование по технологии машиностроения. М. 1975.
- 3.Национальный банк Республики Беларусь/Официальный курс белорусского рубля по отношению к иностранным валютам, устанавливаемый Национальным банком Республики Беларусь. Режим доступа: http://www.nbrb.by.
- 4. Гомельское республиканское унитарное предприятие электроэнергетики «Гомельэнерго»/Тарифы для юридических лиц и индивидуальных предпринимателей. Режим доступа: http://www.gomelenergo.by.
- 5.КПУП «Гомельводоканал»/Тарифы на оказываемые услуги КПУП «Гомельводоканал». Режим доступа: http://www.gomelvodokanal.by.
- 6.Гомельское республиканское унитарное предприятие электроэнергетики «Гомельэнерго»/Тарифы на тепловую и электрическую энергию для юридических лиц и индивидуальных предпринимателей. Режим доступа: http://www.gomelenergo.by.