Геометрический смысл производной

Напомним, что уравнение прямой, не параллельной осям координат, можно записать в виде y=kx+b, где k – угловой коэффициент прямой. Коэффициент k равен тангенсу угла наклона между прямой и положительным направлением оси 0x.

$$k = tg\alpha$$

Производная функции f(x) в точке x_0 равна угловому коэффициенту k касательной к графику в данной точке:

$$f'(x_0) = k$$

Следовательно, можем составить общее равенство:

$$f'(x_0) = k = tg\alpha$$

На рисунке касательная к функции $f\left(x\right)$ возрастает, следовательно, коэффициент k>0. Так как k>0, то $f'\left(x_0\right)=tg\alpha>0$. Угол α между касательной и положительным направлением 0х острый.

На рисунке касательная к функции $f\left(x\right)$ убывает, следовательно, коэффициент k<0, следовательно, $f'\left(x_0\right)=tg\alpha<0$. Угол α между касательной и положительным направлением оси 0х тупой.

На рисунке касательная к функции $f\left(x\right)$ параллельна оси 0х, следовательно, коэффициент k=0, следовательно, $f'\left(x_0\right)=tg\alpha=0$. Точка x_0 , в которой $f'\left(x_0\right)=0$, называется **экстремумом**.

На рисунке изображён график функции $y=f\left(x\right)$ и касательная к этому графику, проведённая в точке с абсциссой x_0 . Найдите значение производной функции $f\left(x\right)$ в точке x_0 .

Решение:

Касательная к графику возрастает, следовательно, $f'\left(x_0\right)=tg\alpha>0$

Для того, чтобы найти $f'(x_0)$, найдем тангенс угла наклона между касательной и положительным направлением оси 0x. Для этого достроим касательную до треугольника ABC.

Найдем тангенс угла ВАС. (Тангенсом острого угла в прямоугольном треугольнике называется отношение противолежащего катета к прилежащему катету.)

$$tgBAC = \frac{BC}{AC} = \frac{3}{12} = \frac{1}{4} = 0,25$$

$$f'(x_0) = tgBAC = 0,25$$

Ответ: 0, 25