Exploring gauge-fixing conditions with gradient-based optimization*

William Detmold¹ Gurtej Kanwar² Yin Lin¹ Phiala E. Shanahan¹ Michael L. Wagman³

¹ Massachusetts Institute of Technology, ² University of Edinburgh, ³ Fermi National Accelerator Laboratory

1. Motivation

- Lattice gauge fixing is necessary to calculate gauge-variant quantities, such as those needed for renormaliazation, where one connects to perturbative schemes by minimizing an gauge-fixing functional (e.g. Landau gauge).
- Maximal-tree gauges are useful to deform the path integral contour for improving the signal-to-noise ratio of observables like Wilson loops [1].
- Systematic parameterization and **exploration of gauge-fixing schemes** provides a useful tool in these contexts.

3. Algorithm

General gauge-fixing functional $E \propto -\sum_{x,\mu} \text{Tr} \left(p_{\mu}(x) U_{\mu}^g(x) \right) \begin{cases} p_i(x) = 1 \text{ (Coulomb gauge)} \\ p_{\mu}(x) = 1 \text{ (Landau gauge)} \\ p_{\mu}(x) = k_{\mu}(x) \in \{0,1\} \text{ (Max. trees)} \end{cases}$

Gauge-fixed configurations, $U_{\mu}^g(x)$, are obtained by minimizing the functional. Given some objective function, $l[U_{\mu}^g(x)]$, the adjoint-state method [2] can be used to efficient compute the gradient $dl/dp_{\mu}(x)$ for optimizing the choice of $p_{\mu}(x)$.

To restrict exploration to only **maximal tree gauges**, one must restrict $p_{\mu}(x)$. Gradient-based optimization requires a smooth parameterization, thus define $p_{\mu}(x)$ to be **a "soft" tree to smoothly interpolate between maximal trees**:

$$p_{\mu}(x) = \text{soft tree} = \text{weighted sum of all maximal trees}$$

This can be done by using **Kirchhoff's matrix-tree theorem [3]**. The final maximal tree can be obtained by using **Kruskal's algorithm**.

2. Approach

- We define a **general parameterization of a gauge-fixing functional**. Minimizing over the gauge orbit fixes to a gauge defined by the parameters.
- The parameterization includes Landau gauge, Coulomb gauge, and maximal tree gauges, as well as more general gauges.
- We introduce a **gradient-based algorithm** that allows us to optimize parameters defining the gauge-fixing scheme to minimize an arbitrary loss function.

4. Results

- Generate a random maximal tree specified by $k_{\mu}^P(x) \in \{0,1\}$ and obtain the corresponding $U_{\mu}^P(x)$
- Create a soft tree $p_{\mu}(x)$ using the matrix-tree theorem
- Gauge fix with $p_{\mu}(x)$ and minimize to obtain $U_{\mu}^{g}(x)$
- Minimize the loss function $l \propto \sum \left(U_{\mu}^{P}(x) U_{\mu}^{g}(x) \right)^{2}$

^{[3]:} Paulus, D. Choi, D. Tarlow, A. Krause, and C. J. Maddison Advances in Neural Information Processing Systems 33 (2020) 5691–5704, arXiv:2006.08063

^{[1]:} Y. Lin, W. Detmold, G. Kanwar, P. E. Shanahan, and M. L. Wagman PoS LATTICE2023 (2024) 043, arXiv:2309.00600 [hep-lat]

^{[2]:} https://math.mit.edu/~stevenj/18.336/adjoint.pdf