import numpy as np
import pandas as pd
import seaborn as sns

import matplotlib.pyplot as plt

from google.colab import files
uploaded = files.upload()

Choose Files IRIS.csv

• IRIS.csv(text/csv) - 4617 bytes, last modified: 3/16/2023 - 100% done Saving IRIS.csv to IRIS.csv

df = pd.read_csv('IRIS.csv')

df

	sepal_length	sepal_width	petal_length	petal_width	species	1
0	5.1	3.5	1.4	0.2	Iris-setosa	
1	4.9	3.0	1.4	0.2	Iris-setosa	
2	4.7	3.2	1.3	0.2	Iris-setosa	
3	4.6	3.1	1.5	0.2	Iris-setosa	
4	5.0	3.6	1.4	0.2	Iris-setosa	
145	6.7	3.0	5.2	2.3	Iris-virginica	
146	6.3	2.5	5.0	1.9	Iris-virginica	
147	6.5	3.0	5.2	2.0	Iris-virginica	
148	6.2	3.4	5.4	2.3	Iris-virginica	
149	5.9	3.0	5.1	1.8	Iris-virginica	

150 rows × 5 columns

df.describe()

	sepal_length	sepal_width	petal_length	petal_width
count	150.000000	150.000000	150.000000	150.000000
mean	5.843333	3.054000	3.758667	1.198667
std	0.828066	0.433594	1.764420	0.763161
min	4.300000	2.000000	1.000000	0.100000
25%	5.100000	2.800000	1.600000	0.300000
50%	5.800000	3.000000	4.350000	1.300000
75%	6.400000	3.300000	5.100000	1.800000
max	7.900000	4.400000	6.900000	2.500000

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 150 entries, 0 to 149
Data columns (total 5 columns):

memory usage: 6.0+ KB

df.dtypes

sepal_length float64 sepal_width float64 petal_length float64 petal_width float64

```
species object
dtype: object
```

```
np.unique(df['species'])
```

array(['Iris-setosa', 'Iris-versicolor', 'Iris-virginica'], dtype=object)

sns.histplot(df['sepal_length'])

<AxesSubplot:xlabel='sepal_length', ylabel='Count'>

sns.histplot(df['sepal_width'])

<AxesSubplot:xlabel='sepal_width', ylabel='Count'>

sns.histplot(df['petal_length'])

<AxesSubplot:xlabel='petal_length', ylabel='Count'>

sns.histplot(df['petal_width'])

<AxesSubplot:xlabel='petal_width', ylabel='Count'>

sns.histplot(df['species'])

<AxesSubplot:xlabel='species', ylabel='Count'>

sns.boxplot(df['sepal_length'])

/usr/local/lib/python3.9/dist-packages/seaborn/_decorators.py:36: FutureWarning: Pass the following variable as a keyword a warnings.warn(

<AxesSubplot:xlabel='sepal_length'>

sns.boxplot(df['sepal_width'])

/usr/local/lib/python3.9/dist-packages/seaborn/_decorators.py:36: FutureWarning: Pass the following variable as a keyword a warnings.warn(

<AxesSubplot:xlabel='sepal_width'>

sns.boxplot(df['petal_length'])

/usr/local/lib/python3.9/dist-packages/seaborn/_decorators.py:36: FutureWarning: Pass the following variable as a keyword a warnings.warn(

<AxesSubplot:xlabel='petal_length'>


```
sns.boxplot(df['petal_width'])
     /usr/local/lib/python3.9/dist-packages/seaborn/_decorators.py:36: FutureWarning: Pass
       warnings.warn(
     <AxesSubplot:xlabel='petal_width'>
      0.0
              0.5
                       1.0
                               1.5
                                        2.0
                                                2.5
                         petal_width
    4
data_to_plot = [df['sepal_length'],df['sepal_width'],df['petal_length'],df['petal_width']]
# Comparing distributions and identifying outliers
fig = plt.figure(1, figsize=(12,8))
# 1 is unique identifier
# 12 and 8 is width and height
     <Figure size 864x576 with 0 Axes>
ax = fig.add_subplot(111)
# Creating an axes instance
bp = ax.boxplot(data to plot)
# Creating the boxplot
bp
     {'whiskers': [<matplotlib.lines.Line2D at 0x7f254b3b9f70>,
       <matplotlib.lines.Line2D at 0x7f254b6c1490>,
       <matplotlib.lines.Line2D at 0x7f254b39dee0>,
       <matplotlib.lines.Line2D at 0x7f254b22b1f0>,
       <matplotlib.lines.Line2D at 0x7f254b237310>,
       <matplotlib.lines.Line2D at 0x7f254b2375e0>,
       <matplotlib.lines.Line2D at 0x7f254b235700>,
       <matplotlib.lines.Line2D at 0x7f254b2359d0>],
      'caps': [<matplotlib.lines.Line2D at 0x7f254b39d0d0>,
       <matplotlib.lines.Line2D at 0x7f254b39d3a0>,
       <matplotlib.lines.Line2D at 0x7f254b22b4c0>,
       <matplotlib.lines.Line2D at 0x7f254b22b790>,
       <matplotlib.lines.Line2D at 0x7f254b2378b0>,
       <matplotlib.lines.Line2D at 0x7f254b237b80>,
       <matplotlib.lines.Line2D at 0x7f254b235ca0>,
       <matplotlib.lines.Line2D at 0x7f254b235f70>],
      'boxes': [<matplotlib.lines.Line2D at 0x7f254b3b98e0>,
       <matplotlib.lines.Line2D at 0x7f254b39dc10>,
       <matplotlib.lines.Line2D at 0x7f254b237040>,
       <matplotlib.lines.Line2D at 0x7f254b235430>],
      'medians': [<matplotlib.lines.Line2D at 0x7f254b39d670>,
       <matplotlib.lines.Line2D at 0x7f254b22ba60>,
       <matplotlib.lines.Line2D at 0x7f254b237e50>,
       <matplotlib.lines.Line2D at 0x7f254ac08280>],
      'fliers': [<matplotlib.lines.Line2D at 0x7f254b39d940>,
       <matplotlib.lines.Line2D at 0x7f254b22bd30>,
       <matplotlib.lines.Line2D at 0x7f254b235160>,
```

<matplotlib.lines.Line2D at 0x7f254ac08550>],

'means': []}