

Dipartimento di Informatica, Sistemistica e Comunicazione Università degli Studi di Milano-Bicocca Milan - Italy

Reconstructing Isoform Graphs from RNA-Seq data

IEEE International Conference on Bioinformatics and Biomedicine (BIBM2012) Philadelphia – October 4th/7th, 2012

Stefano Beretta Raffaella Rizzi Gianluca Della Vedova Paola Bonizzoni

Alternative Splicing

Motivations and Challenges

Detecting Alternative Splicing (AS) variations from RNA-Seq data without a reference genome

- No specific tools for large-scale inference of AS variations among gene transcripts
- Reference genome is not always available

Motivations and Challenges

Characterization of AS variations from RNA-Seq data

- Background
 - Tools for transcript reconstruction/quantification from NGS data (and genomic sequence) are known
- Goal
 - Building a isoform graph that explains all AS events derived from several transcripts
 - without explicit transcript assembly
 - without a reference sequence

Isoform Graph

Gene isoforms

Set of blocks

Isoform graph

Block Definition

A *block* is a string that appears entirely (not partially) or not at all, in each isoform

Isoforms

Set of Blocks

$$\mathsf{B} = \left\{ \begin{array}{c|c} \mathsf{A} & \mathsf{B} & \mathsf{C} \end{array} \right\}$$

Block Definition

A *block* is a string that appears entirely (not partially) or not at all, in each isoform

Isoforms

Set of Blocks

Block Definition

A *block* is a string that appears entirely (not partially) or not at all, in each isoform

Isoforms

——— introns

Set of Blocks

Computational Problem

Input: set of RNA-Seq reads from unknown gene transcripts **Output**: Isoform Graph

- Question 1: what are the conditions under which the isoform graph of a gene can be reconstructed from a sample of RNA-Seqs?
- Question 2: can we build efficiently such a graph or an approximation of it?

Solution - Question 1

Conditions

 Starts and ends of blocks on branches derived from the same block must be different characters

• There are no repeated substrings in the block sequences

Solution - Question 2

Method Outline

- Hashing input reads
 - Input set partitioning → Unspliced/Spliced
 - Constant time access to RNA-Seq reads
- Assembling unspliced reads into blocks (graph nodes)

Linking blocks with spliced reads (graph edges)

Experimental Validation

- Data
 - 112 genes used as training set in EGASP
 - Separated and Mixed reads
 - Low and High coverage
- Analysis
 - Graph mapping (nodes and arcs)
 - Accuracy (S_n and PPV)

Experimental Validation

Dataset	Perfectly Predicted Genes	S _n (nodes)	PPV (nodes)	S _n (arcs)	PPV (arcs)
High cov. (separated)	43	0.86	0.92	0.72	0.82
Low cov. (separated)	39	0.87	0.91	0.75	0.81
High cov. (mixed)	-	0.84	0.78	0.71	0.68

Example: gene TUFT1

Prediction summary

• Predicted nodes: 12

• Predicted arcs: 14

• S_n (nodes): 1

• S_p (nodes): 1

• S_n (arcs): 1

• S_p (arcs): 1

Example: gene L1CAM

Prediction summary

Predicted nodes: 22

• Predicted arcs: 27

• S_n (nodes): 0.84

• S_p (nodes): 0.95

• S_n (arcs): 0.71

• S_p (arcs): 0.82

Conclusions and Developments

Conclusions

- Computational method for building isoform graph (from millions of sequences)
- Efficient in theory and practice
- Characterization of conditions for reconstructing splicing graph without a reference sequence
- Extremely scalable approach

Developments

- Extract AS events (exon skipping, mutually exclusive exons, etc.) from isoform graph
- Use a reference genome to predict AS variants in a donor genome (also represented with RNA-Seq reads)

References

- Acknowledgements
 - Paola Bonizzoni
 - Gianluca Della Vedova
 - Raffaella Rizzi
- Software
 - http://algolab.github.com/RNA-seq-Graph/

Thanks!