Calculus on Manifolds

Nutan Nepal

February 10, 2019

1 1-1

2 1-2

Theorem 2.1 (Heine-Borel Theorem). The closed interval [a, b] is compact.

Proof. If \mathcal{O} is an open cover of [a,b], let

 $A = \{x : a \le x \le b \text{ and } [a, x] \text{ is covered by some finite number of open sets in } \mathcal{O}\}.$

We know that $a \in A$ since we can choose any open set in \mathscr{O} containing a. A certainly has a least upper bound since A is bounded above by b. So, we will show that if some α is the least upper bound of A, then $\alpha \in A$ and $\alpha = b$.

Since $\alpha = \sup A$, for every $x \in A$, there exists an ε such that $\alpha - x < \varepsilon$. Since [a, x] is covered by some finite number of open sets, we can choose any open ε -neighborhood centered at α . Hence, we see that $[a, \alpha]$ is also covered by finitely many open sets. This shows $\alpha \in A$.

To show that $\alpha = b$, assume that $\alpha < b$. Since, we can find some x' between α and b, such that x' is contained in some open neighborhood around α , we see that $[a, \alpha]$ is covered by a single open set. Then certainly, $x' \in A$. But this contradicts that $\alpha = \sup A$. Hence, $\alpha = b$.

3 1-3

Definition 3.1. Let X and Y be metric spaces, with metrics d_X and d_Y , respectively. Then, we say that a function $f: X \to Y$ is **continuous at the point** $x_0 \in X$ if for each open set $U \subset Y$, $f(x_0) \in U$, there is an open set $V \subset X$, $x_0 \in V$ such that $f(V) \subset U$.

Theorem 3.1. If $A \subset \mathbf{R}^n$, a function $f : A \to \mathbf{R}^m$ is continuous if and only if for every open set $U \subset \mathbf{R}^m$ there is some open set $V \subset \mathbf{R}^n$ such that $f^{-1}(U) = V \cap A$.

Proof. Suppose f is continuous. If $a \in f^{-1}(U)$, then $f(a) \in U$. Since U is open, there is some open ball $B \subset U$ such that $f(a) \in B$. And since, f is continuous at a, we know that $f(x) \in B$ provided we choose a sufficiently small open ball C such that $a \in C$. If we do this for each $a \in f^{-1}(U)$ and call their union V (also an open set), then clearly $f^{-1}(U) = V \cap A$.

1. [1-23] If $f:A\to \mathbf{R}^m$ and $a\in A$, show that $\lim_{x\to a}f(x)=b$ if and only if $\lim_{x\to a}f_i(x)=b_i$ for $i=1,\ldots,m$.

Solution: If $\lim_{x\to a} f(x) = b$, then for every $\varepsilon > 0$, we can find a $\delta > 0$ such that

$$0 < \|x - a\| < \delta \implies \|f(x) - b\| < \varepsilon.$$

Then we have

$$\sum_{i=1}^{m} (f_i(x) - b_i)^2 < \varepsilon^2$$

$$\implies |f_i(x) - b_i| < \varepsilon \quad \text{for } i = 1, ..., m.$$

This implies that $\lim_{x\to a} f_i(x) = b_i$ for i = 1, ..., m.

Now, if $\lim_{x\to a} f_i(x) = b_i$ for i = 1, ..., m then for every $\varepsilon > 0$, we can find $\delta_1, ..., \delta_m$ such that

$$0 < ||x - a|| < \delta_i \implies ||f_i(x) - b_i|| < \varepsilon \text{ for } i = 1, ..., m.$$

Then, for $\delta = \min \delta_i$, for i = 1, ..., m, we have,

$$0 < ||x - a|| < \delta \implies \sum_{i=1}^{m} ||f_i(x) - b_i||^2 < m\varepsilon^2$$
$$\implies ||f(x) - b|| < \sqrt{m}\varepsilon.$$

Hence, $\lim_{x\to a} f(x) = b$

2. [1-24] Prove that $f: A \to \mathbf{R}^m$ is continuous if and only if each f_i is.

Solution: If $f: A \to \mathbf{R}^m$ is continuous then for all $a \in A$, $\lim_{x\to a} f(x) = f(a)$. But this means that for all $a \in A$, $\lim_{x\to a} f_i(x) = f_i(a)$. Hence, each $f_i(x)$ is continuous. Similarly, converse follows from [1-23].

3. [1-25] Prove that a linear transformation $T: \mathbf{R}^n \to \mathbf{R}^m$ is continuous.

Solution:

Proof. We need to show that $T: \mathbf{R}^n \to \mathbf{R}^m$ is continuous at all $a \in \mathbf{R}^n$. That is, for every $\varepsilon > 0$ we can find a $\delta > 0$ such that $0 < ||x - a|| < \delta \implies ||T(x) - T(a)|| < \varepsilon$, where $x \in \mathbf{R}^n$. But we have,

$$||T(x) - T(a)|| = ||T(x - a)|| < M||x - a||$$

for some $M \in \mathbf{R}$. So for any given $\varepsilon > 0$, we can choose $\delta = \varepsilon/M$. Then certainly, if $0 < ||x - a|| < \delta$, then

$$||T(x) - T(a)|| \le M||x - a|| < M\delta = \varepsilon.$$

So it follows that the linear transformation is continuous.

4. [1-29] If A is compact, prove that every continuous function $f:A\to \mathbf{R}$ takes on a maximum and a minimum value.

Solution:

Proof. Since A is compact and f is continuous, we know that the image of A under f is compact in \mathbf{R} . Hence, it follows from 3.1, that f takes on a maximum and a minimum value.

Lemma 3.2. A compact set in R has a maximum and a minimum value.

Proof. We know that a compact set is closed and bounded and in \mathbf{R} , a compact set is in the form [a,b]. And since $a,b \in [a,b]$, all we need to show is that a and b are infimum and supremum, respectively, of the given interval.

5. [1-30] Let $f:[a,b]\to \mathbf{R}$ be an increasing function. If $x_1,...,x_n\in[a,b]$ are distinct, show that

$$\sum_{i=1}^{n} o(f, x_i) \le f(b) - f(a).$$

Solution: Let order be defined in $\{x_1, ..., x_n\}$ such that $x_1 < ... < x_n$, then since f is an increasing function, we get $f(x_1) \le ... \le f(x_n)$. We have

$$o(f, x_i) = \lim_{\delta \to 0} \left(M(x_i, f, \delta) - m(x_i, f, \delta) \right)$$

where,

$$M(x_i, f, \delta) = \sup \{ f(x) : x \in [a, b] \text{ and } ||x - x_i|| < \delta \},$$

 $m(x_i, f, \delta) = \inf \{ f(x) : x \in [a, b] \text{ and } ||x - x_i|| < \delta \}.$

If we denote a δ -neighborhood of some $x_i \in [a, b]$ by $N_{\delta}(x_i)$, then since $\delta \to 0$, we can choose a sufficiently small $\delta > 0$ such that

$$\bigcap_{i=1}^{n} N_{\delta}(x_i) = \phi.$$

Then for all such δ we have,

$$f(x_{i+1}) \ge M(x_i, f, \delta) \ge f(x_{i-1})$$
, and $f(x_{i+1}) \ge m(x_i, f, \delta) \ge f(x_{i-1})$.

We simplify the given summation as

$$\sum_{i=1}^{n} o(f, x_i) = \lim_{\delta \to 0} \sum_{i=1}^{n} (M(x_i, f, \delta) - m(x_i, f, \delta))$$

$$\leq \lim_{\delta \to 0} \sum_{i=1}^{n} (f(x_{i+1}) - f(x_{i-1}))$$

$$= f(x_{n+1}) - f(x_0),$$

$$\leq f(b) - f(a).$$

where the last statement follows from the fact that the max and min f(x) can get is f(b) and f(a).

4 2-1

1. [2-1] Prove that if $f: \mathbf{R}^n \to \mathbf{R}^m$ is differentiable at $a \in \mathbf{R}^n$, then it is continuous at a.

Solution: If f is differentiable at $a \in \mathbb{R}^n$, then

$$\lim_{h \to a} \frac{\|f(a+h) - f(a) - \lambda(h)\|}{\|h\|} = 0.$$

But this means that, for any given $\varepsilon_0 > 0$, we can find a $\delta > 0$ such that

$$0 < ||h|| < \delta \implies \frac{||f(a+h) - f(a) - \lambda(h)||}{||h||} < \varepsilon_0$$

$$\implies ||f(a+h) - f(a) - \lambda(h)|| < \varepsilon_0 ||h||$$

$$\implies ||f(a+h) - f(a)|| < (\varepsilon_0 + M)||h||$$

for some $M \in \mathbf{R}$. So, when h = x - a for any given $\varepsilon > 0$, we can choose $0 < \delta < \varepsilon/(\varepsilon_0 + M)$. Then it follows that,

$$0 < \|x - a\| < \delta \implies \|f(x) - f(a)\| < (\varepsilon_0 + M)\delta < \varepsilon.$$

Hence, f is continuous at a.

2. [2-2] A function $f: \mathbf{R}^2 \to \mathbf{R}$ is **independent of the second variable** if for each $x \in \mathbf{R}$ we have $f(x, y_1) = f(x, y_2)$ for all $y_1, y_2 \in \mathbf{R}$. Show that f is independent of the second variable if and only if there is a function $g: \mathbf{R} \to \mathbf{R}$ such that f(x, y) = g(x). What is f'(a, b) in terms of g'?

Solution: Define g(x) = f(x, 0). Then for all $y \in \mathbf{R}$, if f is independent of the second variable, we have f(x, y) = f(x, 0) = g(x).

Similarly, since g is independent of y, we have $g(x) = f(x,0) = f(x,y_1) = f(x,y_2)$.

Now let z = (h, k). Then, assuming that f is differentiable at (a, b), we have

$$\lim_{(h,k)\to 0} \frac{\|f(a+h,b+k) - f(a,b) - Df(a,b)(h,k)\|}{\|(h,k)\|} = 0$$
or,
$$\lim_{h\to 0} \frac{\|g(a+h) - g(a) - Df(a,b)(h,k)\|}{|h|} = 0$$

Since $g: \mathbf{R} \to \mathbf{R}$,

$$\lim_{h \to 0} \frac{g(a+h) - g(a)}{|h|} = \lim_{h \to 0} \frac{Df(a,b)(h,k)}{|h|}$$
or, $g'(a) = \lim_{h \to 0} \frac{Df(a,b)(h,k)}{|h|}$

Then we see that

$$Df(a,b)(h,k) = h \cdot q'(a)$$

satisfies the equation. Hence, f'(a, b) = g'(a).

3. [2-4] Let g be a continuous real-valued function on the unit circle $x \in \mathbf{R}^2 : ||x|| = 1$ such that g(0,1) = g(1,0) = 0 and g(-x) = -g(x). Define $f: \mathbf{R}^2 \to \mathbf{R}$ by

$$f(x) = \begin{cases} ||x|| \cdot g\left(\frac{x}{||x||}\right) & x \neq 0, \\ 0 & x = 0. \end{cases}$$

(a) If $x \in \mathbb{R}^2$ and $h : \mathbb{R} \to \mathbb{R}$ is defined by h(t) = f(tx), show that h is differentiable.

Solution: We need to show that for every $a \in \mathbf{R}$, there exists a $\lambda : \mathbf{R} \to \mathbf{R}$ such that

$$\lim_{t \to 0} \frac{h(a+t) - h(a) - \lambda(t)}{t} = 0. \tag{1}$$

We see that, when $tx \neq 0$,

$$h(t) = f(tx) = \begin{cases} -|t| \cdot ||x|| \cdot g(\hat{x}) = tf(x) & t < 0, \\ |t| \cdot ||x|| \cdot g(\hat{x}) = tf(x) & t > 0. \end{cases}$$

Then h is differentiable when the following limit exists for any $a \in \mathbf{R}$:

$$\lim_{a \to 0} \frac{h(t+a) - h(t)}{a}.$$

But we have,

$$\lim_{a \to 0} \frac{h(t+a) - h(t)}{a} = \lim_{a \to 0} \frac{(t+a)f(x) - tf(x)}{a}$$
$$= f(x).$$

The limit always exists and is equal to the derivative of h at t.

(b) Show that f is not differentiable at (0,0) unless q=0.

Solution:

4. [2-8] Let $f: \mathbf{R} \to \mathbf{R}^2$. Prove that f is differentiable at $a \in \mathbf{R}$ if and only if f_1 and f_2 are, and that in this case

$$f'(a) = \begin{pmatrix} f_1'(a) \\ f_2'(a) \end{pmatrix}.$$

Solution: If $f: \mathbf{R} \to \mathbf{R}^2$ is differentiable at a, then for some linear transformation $\lambda: \mathbf{R} \to \mathbf{R}^2$,

$$\lim_{h\to 0}\frac{\|f(a+h)-f(a)-\lambda(h)\|}{|h|}=0$$

So, for every $\varepsilon > 0$, there exists a $\delta > 0$ such that

$$0 < |h| < \delta \implies ||f(a+h) - f(a)|| < |h|\varepsilon.$$

But this means that each f_1 and f_2 satisfies $||f_i(a+h) - f_i(a)|| < |h|\varepsilon$. So each f_i is differentiable. The converse follows similarly.

Then,

$$\frac{\|f(a+h) - f(a) - \lambda(h)\|}{|h|} = \left\| \begin{pmatrix} \frac{f_1(a+h) - f(a) - \lambda_1(h)}{h} \\ \frac{f_2(a+h) - f(a) - \lambda_2(h)}{h} \end{pmatrix} \right\|$$

Taking limits on both sides, we see that each of the component of the right hand side must approach to 0. We also have $f'_i(a) = \lambda_i(h)/|h|$. Hence the required expression for f'(a) follows.

$$|h|f'(a) = \lambda(h) = \begin{pmatrix} \lambda_1(h) \\ \lambda_2(h) \end{pmatrix} = \begin{pmatrix} |h|f'_1(a) \\ |h|f'_2(a) \end{pmatrix}.$$

5 2-2

Theorem 5.1. Corollary from the book If $f, g: \mathbb{R}^n \to \mathbb{R}$ are differentiable at a,

$$D(f+g)(a) = Df(a) + Dg(a)$$

$$D(f \cdot g)(a) = g(a)Df(a) + f(a)Dg(a)$$

If, moreover, $g(a) \neq 0$, then

$$D(f/g)(a) = \frac{g(a)Df(a) - f(a)Dg(a)}{[g(a)]^2}$$

Proof. The first one is done in the text. So we'll do the second and the third one. So, using the notations from the text, since $f \cdot g = p \circ (f, g)$,

$$D(f.g)(a) = Dp(f(a), g(a)) \circ D(f, g)(a)$$
$$= Dp(f(a), g(a))(Df(a), Dg(a))$$
$$= g(a)Df(a) + f(a)Dg(a)$$

The third relation follows from the above product rule and 5.2.

Lemma 5.2. If $q: \mathbf{R} \to \mathbf{R}, g: \mathbf{R}^n \to \mathbf{R}$ is defined by $q(x) = \frac{1}{g}(x)$, then

$$Dq(a) = -\frac{Dg(a)}{[g(a)]^2}.$$

Proof. We have, $q(x) \cdot g(x) = 1$. Then, D(1) = q(x)Dg(x) + g(x)Dq(x). Substituting q(x) = 1/g(x) gives the required result.

1. [2-12] A function $f: \mathbf{R}^n \times \mathbf{R}^m \to \mathbf{R}^p$ is **bilinear** if for $x, x_1, x_2 \in \mathbf{R}^n$, $y, y_1, y_2 \in \mathbf{R}^m$, and $a \in \mathbf{R}$ we have

$$f(ax, y) = af(x, y) = f(x, ay),$$

$$f(x_1 + x_2, y) = f(x_1, y) + f(x_2, y),$$

$$f(x, y_1 + y_2) = f(x, y_1) + f(x, y_2).$$

(a) Prove that if f is bilinear, then

$$\lim_{(h,k)\to 0} \frac{\|f(h,k)\|}{\|(h,k)\|} = 0$$

Solution: Let $h = \alpha_1 e_1 + ... + \alpha_n e_n$ and $k = \beta_1 e_1 + ... + \beta_m e_m$. Since f is bilinear, we can write f(h, k) as

$$f(h,k) = \sum_{i=1}^{n} \sum_{j=1}^{m} \alpha_i \beta_j f(e_i, e_j).$$

Let $\alpha = \max\{|\alpha_i| : i = 1, ..., n\}$ and $\beta = \max\{|\beta_i| : i = 1, ..., m\}$. Then $\alpha \leq ||h||$ and $\beta \leq ||k||$. Also let $M = \max\{||f(e_i, e_j)|| : i = 1, ..., n \text{ and } j = 1, ..., m\}$. So we have,

$$\begin{split} \lim_{(h,k)\to 0} \frac{\|f(h,k)\|}{\|(h,k)\|} & \leq \lim_{(h,k)\to 0} \frac{|mn\alpha\beta M|}{\|(h,k)\|} \\ & \leq \lim_{(h,k)\to 0} \frac{mnM\|h\|\|k\|}{\|(h,k)\|} \end{split}$$

Now,

$$||h|||k|| \le \begin{cases} ||h||^2 & \text{if } ||k|| \le ||h||, \\ ||k||^2 & \text{if } ||h|| \le ||k||. \end{cases}$$

Hence $||h||||k|| \le ||h||^2 + ||k||^2$ and since, $||(h,k)|| = \sqrt{||h||^2 + ||k||^2}$ we have

$$\lim_{(h,k)\to 0} \frac{\|f(h,k)\|}{\|(h,k)\|} \leq \lim_{(h,k)\to 0} \frac{mnM(\|h\|^2 + \|k\|^2)}{\sqrt{\|h\|^2 + \|k\|^2}} = \lim_{(h,k)\to 0} mnM\sqrt{\|h\|^2 + \|k\|^2} = 0.$$

(b) Prove that Df(a,b)(x,y) = f(a,y) + f(x,b).

Solution: Here, for $a, h \in \mathbf{R}^n$ and $b, k \in \mathbf{R}^m$,

$$\begin{split} & \lim_{(h,k)\to 0} \frac{\|f(a+h,b+k)-f(a,b)-\lambda(h,k)\|}{\|(h,k)\|} \\ & \leq \lim_{(h,k)\to 0} \frac{\|f(h,k)\|}{\|(h,k)\|} + \lim_{(h,k)\to 0} \frac{\|f(a,b)+f(a,k)+f(h,b)-f(a,b)-\lambda(h,k)\|}{\|(h,k)\|} \end{split}$$

Then certainly, $\lambda(h, k) = f(a, k) + f(h, b)$ implies,

$$\lim_{(h,k)\to 0} \frac{\|f(a+h,b+k)-f(a,b)-\lambda(h,k)\|}{\|(h,k)\|} = 0.$$

Hence, Df(a, b)(x, y) = f(a, y) + f(x, b).

(c) When $p: \mathbf{R}^2 \to \mathbf{R}$ is defined by $p(x, y) = x \cdot y$, then

$$Dp(a,b)(x,y) = bx + ay.$$

Show that the above formula is a special case of b.

Solution: It's clear that p is a bilinear function. Hence the derivative of p at (a, b) is given by,

$$Dp(a,b)(x,y) = p(a,y) + p(x,b)$$
$$= ay + bx.$$

- 2. [2-13] Define $IP : \mathbf{R}^n \times \mathbf{R}^n \to \mathbf{R}$ by $IP(x,y) = \langle x,y \rangle$.
 - (a) Find D(IP)(a,b) and (IP)'(a,b).

Solution: Since inner product is a bilinear function, we have

$$D(IP)(a,b)(x,y) = IP(a,y) + IP(x,b) = \langle a,y \rangle + \langle x,b \rangle.$$

And since $\langle a, y \rangle + \langle x, b \rangle = a_1 y_1 + ... + a_n y_n + b_1 x_1 + ... + b_n x_n$, we have

$$(IP)'(a,b) = (b_1,...,b_n,a_1,...,a_n) = (b,a).$$

(b) If $f, g: \mathbf{R} \to \mathbf{R}^n$ are differentiable and $h: \mathbf{R} \to \mathbf{R}$ is defined by $h(t) = \langle f(t), g(t) \rangle$, show that

$$h'(a) = \langle f'(a)^T, g(a) \rangle + \langle f(a), g'(a)^T \rangle.$$

Solution: Here, we can write h as $h = (IP) \circ (f, g)$. Then

$$h'(a) = (IP)'(f(a), g(a)) \cdot \begin{pmatrix} f'(a) \\ g'(a) \end{pmatrix}$$

$$= (g(a), f(a)) \cdot \begin{pmatrix} f'(a) \\ g'(a) \end{pmatrix}$$

$$= \sum_{i=1}^{n} g_i(a) \cdot f'_i(a) + \sum_{i=1}^{n} f_i(a) \cdot g'_i(a)$$

$$= \langle f'(a)^T, g(a) \rangle + \langle f(a), g'(a)^T \rangle.$$

(c) If $f: \mathbf{R} \to \mathbf{R}^n$ is differentiable function and |f(t)| = 1 for all t, show that $\langle f'(t)^T, f(t) \rangle = 0$.

Solution: Define $h: \mathbf{R} \to \mathbf{R}$ by $h = \langle f(t), f(t) \rangle$. Then

$$h(t) = ||f(t)||^2 = 1$$

From b, we have

$$h'(t) = 2\langle f'(t)^T, f(t) \rangle.$$

Since h(t) = 1, we have h'(t) = 0 and the required result follows.

(d) Exhibit a differentiable function $f: \mathbf{R} \to \mathbf{R}$ such that the function |f| defined by |f|(t) = |f(t)| is not differentiable.

Solution: f(t) = t is differentiable. |f|(t) = |f(t)| = |t| is not differentiable.