Filter Summary Report: CG,TIA,simple,Z3,Z4

Generated by MacAnalog-Symbolix January 16, 2025

Contents

1 Examined H(z) for CG TIA simple Z3 Z4: $\frac{Z_3Z_4g_m}{2Z_3g_m+Z_4g_m}$

$$H(z) = \frac{Z_3 Z_4 g_m}{2 Z_3 g_m + Z_4 g_m}$$

- 2 HP
- 3 BP
- **3.1** BP-1 $Z(s) = \left(\infty, \infty, R_3, \frac{L_4s}{C_4L_4s^2+1}, \infty, \infty\right)$

Parameters:

Q:
$$2C_4R_3\sqrt{\frac{1}{C_4L_4}}$$

wo: $\sqrt{\frac{1}{C_4L_4}}$
bandwidth: $\frac{1}{2C_4R_3}$
K-LP: 0
K-HP: 0
K-BP: R_3
Qz: 0
Wz: None

3.2 BP-2 $Z(s) = \left(\infty, \infty, R_3, \frac{L_4R_4s}{C_4L_4R_4s^2 + L_4s + R_4}, \infty, \infty\right)$

Parameters:

Q:
$$\frac{2C_4R_3R_4\sqrt{\frac{1}{C_4L_4}}}{2R_3+R_4}$$
 wo:
$$\sqrt{\frac{1}{C_4L_4}}$$
 bandwidth:
$$\frac{2R_3+R_4}{2C_4R_3R_4}$$
 K-LP: 0 K-HP: 0 K-BP:
$$\frac{R_3R_4}{2R_3+R_4}$$
 Qz: 0 Wz: None

3.3 BP-3 $Z(s) = \left(\infty, \infty, \frac{1}{C_3 s}, \frac{L_4 R_4 s}{C_4 L_4 R_4 s^2 + L_4 s + R_4}, \infty, \infty\right)$

Parameters:

$$\begin{array}{l} \text{Q:} \ \frac{\sqrt{2}C_{3}R_{4}\sqrt{\frac{1}{C_{3}L_{4}+2C_{4}L_{4}}}}{2} + \sqrt{2}C_{4}R_{4}\sqrt{\frac{1}{C_{3}L_{4}+2C_{4}L_{4}}}\\ \text{wo:} \ \sqrt{2}\sqrt{\frac{1}{C_{3}L_{4}+2C_{4}L_{4}}}\\ \text{bandwidth:} \ \frac{\sqrt{2}\sqrt{\frac{1}{C_{3}L_{4}+2C_{4}L_{4}}}}{\frac{\sqrt{2}C_{3}R_{4}\sqrt{\frac{1}{C_{3}L_{4}+2C_{4}L_{4}}}}{2} + \sqrt{2}C_{4}R_{4}\sqrt{\frac{1}{C_{3}L_{4}+2C_{4}L_{4}}}}\\ \text{K-LP:} \ 0\\ \text{K-HP:} \ 0\\ \text{K-BP:} \ \frac{R_{4}}{2} \end{array}$$

 $H(s) = \frac{L_4 R_3 s}{2C_4 L_4 R_3 s^2 + L_4 s + 2R_3}$

$$H(s) = \frac{L_4 R_3 R_4 s}{2C_4 L_4 R_3 R_4 s^2 + 2R_3 R_4 + s (2L_4 R_3 + L_4 R_4)}$$

$$H(s) = \frac{L_4 R_4 s}{2L_4 s + 2R_4 + s^2 \left(C_3 L_4 R_4 + 2C_4 L_4 R_4\right)}$$

3.4 BP-4
$$Z(s) = \left(\infty, \infty, \frac{R_3}{C_3 R_3 s + 1}, \frac{L_4 s}{C_4 L_4 s^2 + 1}, \infty, \infty\right)$$

Q:
$$\sqrt{2}C_3R_3\sqrt{\frac{1}{C_3L_4+2C_4L_4}} + 2\sqrt{2}C_4R_3\sqrt{\frac{1}{C_3L_4+2C_4L_4}}$$
 wo: $\sqrt{2}\sqrt{\frac{1}{C_3L_4+2C_4L_4}}$ bandwidth:
$$\frac{\sqrt{2}\sqrt{\frac{1}{C_3L_4+2C_4L_4}}}{\sqrt{2}C_3R_3\sqrt{\frac{1}{C_3L_4+2C_4L_4}}+2\sqrt{2}C_4R_3\sqrt{\frac{1}{C_3L_4+2C_4L_4}}}$$
 K-LP: 0 K-HP: 0 K-BP: R_3 Qz: 0 Wz: None

3.5 BP-5
$$Z(s) = \left(\infty, \infty, \frac{R_3}{C_3 R_3 s + 1}, \frac{L_4 R_4 s}{C_4 L_4 R_4 s^2 + L_4 s + R_4}, \infty, \infty\right)$$

Parameters:

Q:
$$\frac{\sqrt{2}C_{3}R_{3}R_{4}\sqrt{\frac{1}{C_{3}L_{4}+2C_{4}L_{4}}}+2\sqrt{2}C_{4}R_{3}R_{4}\sqrt{\frac{1}{C_{3}L_{4}+2C_{4}L_{4}}}}{2R_{3}+R_{4}}}{\sqrt{2}(2R_{3}+R_{4})\sqrt{\frac{1}{C_{3}L_{4}+2C_{4}L_{4}}}}$$
 wo:
$$\sqrt{2}\sqrt{\frac{1}{C_{3}L_{4}+2C_{4}L_{4}}}$$
 bandwidth:
$$\frac{\sqrt{2}(2R_{3}+R_{4})\sqrt{\frac{1}{C_{3}L_{4}+2C_{4}L_{4}}}}{\sqrt{2}C_{3}R_{3}R_{4}\sqrt{\frac{1}{C_{3}L_{4}+2C_{4}L_{4}}}}+2\sqrt{2}C_{4}R_{3}R_{4}\sqrt{\frac{1}{C_{3}L_{4}+2C_{4}L_{4}}}}$$
 K-LP: 0 K-HP: 0 K-BP:
$$\frac{R_{3}R_{4}}{2R_{3}+R_{4}}$$
 Qz: 0 Wz: None

3.6 BP-6
$$Z(s) = \left(\infty, \infty, \frac{L_3 s}{C_3 L_3 s^2 + 1}, R_4, \infty, \infty\right)$$

Q:
$$\frac{C_3R_4\sqrt{\frac{1}{C_3L_3}}}{2}$$
 wo: $\sqrt{\frac{1}{C_3L_3}}$ bandwidth: $\frac{2}{C_3R_4}$ K-LP: 0 K-HP: 0 K-BP: $\frac{R_4}{2}$ Qz: 0 Wz: None

$$H(s) = \frac{L_4 R_3 s}{L_4 s + 2 R_3 + s^2 \left(C_3 L_4 R_3 + 2 C_4 L_4 R_3 \right)}$$

$$H(s) = \frac{L_4 R_3 R_4 s}{2 R_3 R_4 + s^2 \left(C_3 L_4 R_3 R_4 + 2 C_4 L_4 R_3 R_4 \right) + s \left(2 L_4 R_3 + L_4 R_4 \right)}$$

$$H(s) = \frac{L_3 R_4 s}{C_3 L_3 R_4 s^2 + 2L_3 s + R_4}$$

3.7 BP-7
$$Z(s) = \left(\infty, \infty, \frac{L_{3s}}{C_3L_3s^2+1}, \frac{R_4}{C_4R_4s+1}, \infty, \infty\right)$$

$$\begin{array}{l} \text{Q:} \ \frac{C_3R_4\sqrt{\frac{1}{C_3L_3+2C_4L_3}}}{2} + C_4R_4\sqrt{\frac{1}{C_3L_3+2C_4L_3}} \\ \text{wo:} \ \sqrt{\frac{1}{C_3L_3+2C_4L_3}} \\ \text{bandwidth:} \ \frac{\sqrt{\frac{1}{C_3L_3+2C_4L_3}}}{\frac{C_3R_4\sqrt{\frac{1}{C_3L_3+2C_4L_3}}}{2} + C_4R_4\sqrt{\frac{1}{C_3L_3+2C_4L_3}}} \\ \text{K-LP:} \ 0 \\ \text{K-HP:} \ 0 \\ \text{K-BP:} \ \frac{R_4}{2} \\ \text{Qz:} \ 0 \\ \text{Wz:} \ \text{None} \end{array}$$

3.8 BP-8
$$Z(s) = \left(\infty, \infty, \frac{L_3s}{C_3L_3s^2+1}, \frac{L_4R_4s}{C_4L_4R_4s^2+L_4s+R_4}, \infty, \infty\right)$$

Parameters:

$$\begin{array}{c} \text{Q:} \ \frac{C_3R_4\sqrt{\frac{2L_3}{C_3L_3L_4+2C_4L_3L_4}} + \frac{L_4}{C_3L_3L_4+2C_4L_3L_4}}{2}}{2} + C_4R_4\sqrt{\frac{2L_3}{C_3L_3L_4+2C_4L_3L_4}} + \frac{L_4}{C_3L_3L_4+2C_4L_3L_4}} \\ \text{wo:} \ \sqrt{\frac{2L_3+L_4}{C_3L_3L_4+2C_4L_3L_4}} \\ \text{bandwidth:} \ \frac{\sqrt{\frac{2L_3+L_4}{C_3L_3L_4+2C_4L_3L_4}}}{\frac{C_3R_4\sqrt{\frac{2L_3}{C_3L_3L_4+2C_4L_3L_4}} + \frac{L_4}{C_3L_3L_4+2C_4L_3L_4}}}{\frac{2L_3}{2}} + C_4R_4\sqrt{\frac{2L_3}{C_3L_3L_4+2C_4L_3L_4}} + \frac{L_4}{C_3L_3L_4+2C_4L_3L_4}} \\ \text{K-LP:} \ 0 \\ \text{K-HP:} \ 0 \\ \text{K-HP:} \ 0 \\ \text{K-BP:} \ \frac{R_4\sqrt{\frac{2}{C_3L_3L_4+2C_4L_4} + \frac{1}{C_3L_3+2C_4L_3}}}{2\sqrt{\frac{2L_3}{C_3L_3L_4+2C_4L_3L_4}} + \frac{L_4}{C_3L_3L_4+2C_4L_3L_4}} \\ \text{Qz:} \ 0 \\ \text{Wz:} \ \text{None} \end{array}$$

3.9 BP-9
$$Z(s) = \left(\infty, \infty, \frac{L_3 R_3 s}{C_3 L_3 R_3 s^2 + L_3 s + R_3}, R_4, \infty, \infty\right)$$

Q:
$$\frac{C_3R_3R_4\sqrt{\frac{1}{C_3L_3}}}{2R_3+R_4}$$

wo: $\sqrt{\frac{1}{C_3L_3}}$
bandwidth: $\frac{2R_3+R_4}{C_3R_3R_4}$
K-LP: 0
K-HP: 0
K-BP: $\frac{R_3R_4}{2R_3+R_4}$
Qz: 0
Wz: None

$$H(s) = \frac{L_3 R_4 s}{2L_3 s + R_4 + s^2 \left(C_3 L_3 R_4 + 2C_4 L_3 R_4\right)}$$

$$H(s) = \frac{L_3 L_4 R_4 s}{2 L_3 L_4 s + 2 L_3 R_4 + L_4 R_4 + s^2 \left(C_3 L_3 L_4 R_4 + 2 C_4 L_3 L_4 R_4 \right)}$$

$$H(s) = \frac{L_3 R_3 R_4 s}{C_3 L_3 R_3 R_4 s^2 + R_3 R_4 + s (2L_3 R_3 + L_3 R_4)}$$

3.10 BP-10
$$Z(s) = \left(\infty, \infty, \frac{L_3 R_3 s}{C_3 L_3 R_3 s^2 + L_3 s + R_3}, \frac{1}{C_4 s}, \infty, \infty\right)$$

 $H(s) = \frac{L_3 R_3 s}{L_3 s + R_3 + s^2 \left(C_3 L_3 R_3 + 2 C_4 L_3 R_3\right)}$

Parameters:

Q:
$$C_3R_3\sqrt{\frac{1}{C_3L_3+2C_4L_3}}+2C_4R_3\sqrt{\frac{1}{C_3L_3+2C_4L_3}}$$
 wo: $\sqrt{\frac{1}{C_3L_3+2C_4L_3}}$ bandwidth: $\sqrt{\frac{1}{C_3L_3+2C_4L_3}}$ $\sqrt{\frac{1}{C_3L_3+2C_4L_3}}$ K-LP: 0 K-HP: 0 K-BP: R_3 Qz: 0 Wz: None

3.11 BP-11
$$Z(s) = \left(\infty, \infty, \frac{L_3 R_{3s}}{C_3 L_3 R_{3s}^2 + L_3 s + R_3}, \frac{R_4}{C_4 R_4 s + 1}, \infty, \infty\right)$$

 $H(s) = \frac{L_3 R_3 R_4 s}{R_3 R_4 + s^2 \left(C_3 L_3 R_3 R_4 + 2 C_4 L_3 R_3 R_4 \right) + s \left(2 L_3 R_3 + L_3 R_4 \right)}$

Parameters:

Q:
$$\frac{C_3R_3R_4\sqrt{\frac{1}{C_3L_3+2C_4L_3}}+2C_4R_3R_4\sqrt{\frac{1}{C_3L_3+2C_4L_3}}}{2R_3+R_4}$$
 wo:
$$\sqrt{\frac{1}{C_3L_3+2C_4L_3}}$$
 bandwidth:
$$\frac{(2R_3+R_4)\sqrt{\frac{1}{C_3L_3+2C_4L_3}}}{C_3R_3R_4\sqrt{\frac{1}{C_3L_3+2C_4L_3}}+2C_4R_3R_4\sqrt{\frac{1}{C_3L_3+2C_4L_3}}}$$
 K-LP: 0 K-HP: 0 K-BP:
$$\frac{R_3R_4}{2R_3+R_4}$$
 Qz: 0 Wz: None

3.12 BP-12
$$Z(s) = \left(\infty, \infty, \frac{L_3 R_{3s}}{C_3 L_3 R_3 s^2 + L_3 s + R_3}, \frac{L_4 s}{C_4 L_4 s^2 + 1}, \infty, \infty\right)$$

$$H(s) = \frac{L_3 L_4 R_3 s}{L_3 L_4 s + 2 L_3 R_3 + L_4 R_3 + s^2 \left(C_3 L_3 L_4 R_3 + 2 C_4 L_3 L_4 R_3\right)}$$

$$\begin{array}{c} \text{Q: } C_{3}R_{3}\sqrt{\frac{2L_{3}}{C_{3}L_{3}L_{4}+2C_{4}L_{3}L_{4}}} + \frac{L_{4}}{C_{3}L_{3}L_{4}+2C_{4}L_{3}L_{4}}} + 2C_{4}R_{3}\sqrt{\frac{2L_{3}}{C_{3}L_{3}L_{4}+2C_{4}L_{3}L_{4}}} + \frac{L_{4}}{C_{3}L_{3}L_{4}+2C_{4}L_{3}L_{4}} \\ \text{wo: } \sqrt{\frac{2L_{3}+L_{4}}{C_{3}L_{3}L_{4}+2C_{4}L_{3}L_{4}}} \\ \text{bandwidth: } \frac{\sqrt{\frac{2L_{3}+L_{4}}{C_{3}L_{3}L_{4}+2C_{4}L_{3}L_{4}}}}{\frac{2L_{3}}{C_{3}R_{3}\sqrt{\frac{2L_{3}}{C_{3}L_{3}L_{4}+2C_{4}L_{3}L_{4}}} + \frac{L_{4}}{C_{3}L_{3}L_{4}+2C_{4}L_{3}L_{4}}} + 2C_{4}R_{3}\sqrt{\frac{2L_{3}}{C_{3}L_{3}L_{4}+2C_{4}L_{3}L_{4}}} + \frac{L_{4}}{C_{3}L_{3}L_{4}+2C_{4}L_{3}L_{4}}} \\ \text{K-LP: 0} \\ \text{K-HP: 0} \\ \text{K-BP: } \frac{R_{3}\sqrt{\frac{2}{C_{3}L_{3}L_{4}+2C_{4}L_{3}L_{4}} + \frac{L_{4}}{C_{3}L_{3}L_{4}+2C_{4}L_{3}L_{4}}}}{\sqrt{\frac{2L_{3}}{C_{3}L_{3}L_{4}+2C_{4}L_{3}L_{4}}} + \frac{L_{4}}{C_{3}L_{3}L_{4}+2C_{4}L_{3}L_{4}}}} \\ \text{Qz: 0} \\ \text{Wz: None} \end{array}$$

3.13 BP-13
$$Z(s) = \left(\infty, \infty, \frac{L_3 R_3 s}{C_3 L_3 R_3 s^2 + L_3 s + R_3}, \frac{L_4 R_4 s}{C_4 L_4 R_4 s^2 + L_4 s + R_4}, \infty, \infty\right)$$

$$H(s) = \frac{L_3L_4R_3R_4s}{2L_3R_3R_4 + L_4R_3R_4 + s^2\left(C_3L_3L_4R_3R_4 + 2C_4L_3L_4R_3R_4\right) + s\left(2L_3L_4R_3 + L_3L_4R_4\right)}$$

$$Q \colon \frac{C_3 R_3 R_4 \sqrt{\frac{2L_3}{C_3 L_3 L_4 + 2C_4 L_3 L_4} + \frac{L_4}{C_3 L_3 L_4 + 2C_4 L_3 L_4}} + 2C_4 R_3 R_4 \sqrt{\frac{2L_3}{C_3 L_3 L_4 + 2C_4 L_3 L_4} + \frac{L_4}{C_3 L_3 L_4 + 2C_4 L_3 L_4}}}{2R_3 + R_4}$$

$$\text{wo: } \sqrt{\frac{2L_3 + L_4}{C_3 L_3 L_4 + 2C_4 L_3 L_4}}$$

$$\text{bandwidth: } \frac{\sqrt{\frac{2L_3 + L_4}{C_3 L_3 L_4 + 2C_4 L_3 L_4}} (2R_3 + R_4)}{C_3 R_3 R_4 \sqrt{\frac{2L_3}{C_3 L_3 L_4 + 2C_4 L_3 L_4} + \frac{L_4}{C_3 L_3 L_4 + 2C_4 L_3 L_4}} + 2C_4 R_3 R_4 \sqrt{\frac{2L_3}{C_3 L_3 L_4 + 2C_4 L_3 L_4} + \frac{L_4}{C_3 L_3 L_4 + 2C_4 L_3 L_4}}}$$

$$\text{K-LP: 0}$$

$$\text{K-HP: 0}$$

$$\text{K-BP: } \frac{R_3 R_4 \sqrt{\frac{2}{C_3 L_4 + 2C_4 L_4} + \frac{1}{C_3 L_3 L_4 + 2C_4 L_4}}}{2R_3 \sqrt{\frac{2L_3}{C_3 L_3 L_4 + 2C_4 L_3 L_4} + \frac{L_4}{C_3 L_3 L_4 + 2C_4 L_4}}} + R_4 \sqrt{\frac{2L_3}{C_3 L_4 + 2C_4 L_4 L_4} + \frac{L_4}{C_3 L_3 L_4 + 2C_4 L_3 L_4}}}$$

4 LP

Wz: None

5 BS

5.1 BS-1
$$Z(s) = \left(\infty, \infty, R_3, L_4 s + \frac{1}{C_4 s}, \infty, \infty\right)$$

$H(s) = \frac{C_4 L_4 R_3 s^2 + R_3}{C_4 L_4 s^2 + 2C_4 R_3 s + 1}$

Parameters:

Q:
$$\frac{L_4\sqrt{\frac{1}{C_4L_4}}}{2R_3}$$
 wo: $\sqrt{\frac{1}{C_4L_4}}$ bandwidth: $\frac{2R_3}{L_4}$ K-LP: R_3 K-HP: R_3 K-BP: 0 Qz: None Wz: $\sqrt{\frac{1}{C_4L_4}}$

5.2 BS-2
$$Z(s) = \left(\infty, \infty, R_3, \frac{R_4(C_4L_4s^2+1)}{C_4L_4s^2+C_4R_4s+1}, \infty, \infty\right)$$

$H(s) = \frac{C_4 L_4 R_3 R_4 s^2 + R_3 R_4}{2C_4 R_3 R_4 s + 2R_3 + R_4 + s^2 \left(2C_4 L_4 R_3 + C_4 L_4 R_4\right)}$

$$\begin{array}{l} \text{Q:} \ \frac{2L_4R_3\sqrt{\frac{1}{C_4L_4}} + L_4R_4\sqrt{\frac{1}{C_4L_4}}}{2R_3R_4} \\ \text{wo:} \ \sqrt{\frac{1}{C_4L_4}} \\ \text{bandwidth:} \ \frac{2R_3R_4\sqrt{\frac{1}{C_4L_4}}}{2L_4R_3\sqrt{\frac{1}{C_4L_4}} + L_4R_4\sqrt{\frac{1}{C_4L_4}}} \\ \text{K--LP:} \ \frac{R_3R_4}{2R_3+R_4} \\ \text{K--HP:} \ \frac{R_3R_4}{2R_3+R_4} \\ \text{K--BP:} \ 0 \\ \text{Qz:} \ \text{None} \\ \text{Wz:} \ \sqrt{\frac{1}{C_4L_4}} \end{array}$$

5.3 BS-3
$$Z(s) = \left(\infty, \infty, L_3 s + \frac{1}{C_3 s}, R_4, \infty, \infty\right)$$

$$\begin{array}{l} \text{Q:} \ \frac{2L_3\sqrt{\frac{1}{C_3L_3}}}{R_4} \\ \text{wo:} \ \sqrt{\frac{1}{C_3L_3}} \\ \text{bandwidth:} \ \frac{R_4}{2L_3} \\ \text{K-LP:} \ \frac{R_4}{2} \\ \text{K-HP:} \ \frac{R_4}{2} \\ \text{K-BP:} \ 0 \\ \text{Qz:} \ \text{None} \\ \text{Wz:} \ \sqrt{\frac{1}{C_3L_3}} \end{array}$$

5.4 BS-4
$$Z(s) = \left(\infty, \infty, \frac{R_3(C_3L_3s^2+1)}{C_3L_3s^2+C_3R_3s+1}, R_4, \infty, \infty\right)$$

Parameters:

$$\begin{array}{l} \text{Q:} \ \frac{2L_{3}R_{3}\sqrt{\frac{1}{C_{3}L_{3}}} + L_{3}R_{4}\sqrt{\frac{1}{C_{3}L_{3}}}}{R_{3}R_{4}} \\ \text{wo:} \ \sqrt{\frac{1}{C_{3}L_{3}}} \\ \text{bandwidth:} \ \frac{R_{3}R_{4}\sqrt{\frac{1}{C_{3}L_{3}}}}{2L_{3}R_{3}\sqrt{\frac{1}{C_{3}L_{3}}} + L_{3}R_{4}\sqrt{\frac{1}{C_{3}L_{3}}}} \\ \text{K-LP:} \ \frac{R_{3}R_{4}}{2R_{3}+R_{4}} \\ \text{K-HP:} \ \frac{R_{3}R_{4}}{2R_{3}+R_{4}} \\ \text{K-BP:} \ 0 \\ \text{Qz:} \ \text{None} \\ \text{Wz:} \ \sqrt{\frac{1}{C_{3}L_{3}}} \end{array}$$

6 **GE**

6.1 GE-1
$$Z(s) = \left(\infty, \infty, R_3, L_4 s + R_4 + \frac{1}{C_4 s}, \infty, \infty\right)$$

Q:
$$\frac{L_4\sqrt{\frac{1}{C_4L_4}}}{2R_3+R_4}$$

wo: $\sqrt{\frac{1}{C_4L_4}}$
bandwidth: $\frac{2R_3+R_4}{L_4}$
K-LP: R_3
K-HP: R_3
K-BP: $\frac{R_3R_4}{2R_3+R_4}$
Qz: $\frac{L_4\sqrt{\frac{1}{C_4L_4}}}{R_4}$
Wz: $\sqrt{\frac{1}{C_4L_4}}$

$$H(s) = \frac{C_3 L_3 R_4 s^2 + R_4}{2C_3 L_3 s^2 + C_3 R_4 s + 2}$$

$$H(s) = \frac{C_3 L_3 R_3 R_4 s^2 + R_3 R_4}{C_3 R_3 R_4 s + 2R_3 + R_4 + s^2 (2C_3 L_3 R_3 + C_3 L_3 R_4)}$$

$$H(s) = \frac{C_4 L_4 R_3 s^2 + C_4 R_3 R_4 s + R_3}{C_4 L_4 s^2 + s \left(2 C_4 R_3 + C_4 R_4\right) + 1}$$

6.2 GE-2
$$Z(s) = \left(\infty, \infty, R_3, \frac{C_4L_4R_4s^2 + L_4s + R_4}{C_4L_4s^2 + 1}, \infty, \infty\right)$$

$$\begin{array}{l} \text{Q: } 2C_4R_3\sqrt{\frac{1}{C_4L_4}} + C_4R_4\sqrt{\frac{1}{C_4L_4}} \\ \text{wo: } \sqrt{\frac{1}{C_4L_4}} \\ \text{bandwidth: } \frac{\sqrt{\frac{1}{C_4L_4}}}{2C_4R_3\sqrt{\frac{1}{C_4L_4}} + C_4R_4\sqrt{\frac{1}{C_4L_4}}} \\ \text{K-LP: } \frac{R_3R_4}{2R_3+R_4} \\ \text{K-HP: } \frac{R_3R_4}{2R_3+R_4} \\ \text{K-BP: } R_3 \\ \text{Qz: } C_4R_4\sqrt{\frac{1}{C_4L_4}} \\ \text{Wz: } \sqrt{\frac{1}{C_4L_4}} \end{array}$$

6.3 GE-3
$$Z(s) = \left(\infty, \infty, L_3 s + R_3 + \frac{1}{C_3 s}, R_4, \infty, \infty\right)$$

Parameters:

$$\begin{array}{l} \text{Q:} \ \frac{2L_3\sqrt{\frac{1}{C_3L_3}}}{2R_3+R_4} \\ \text{wo:} \ \sqrt{\frac{1}{C_3L_3}} \\ \text{bandwidth:} \ \frac{2R_3+R_4}{2L_3} \\ \text{K-LP:} \ \frac{R_4}{2} \\ \text{K-HP:} \ \frac{R_2}{2} \\ \text{K-BP:} \ \frac{R_3R_4}{2R_3+R_4} \\ \text{Qz:} \ \frac{L_3\sqrt{\frac{1}{C_3L_3}}}{R_3} \\ \text{Wz:} \ \sqrt{\frac{1}{C_3L_3}} \end{array}$$

6.4 GE-4
$$Z(s) = \left(\infty, \infty, \frac{C_3L_3R_3s^2 + L_3s + R_3}{C_3L_3s^2 + 1}, R_4, \infty, \infty\right)$$

Parameters:

$$\begin{array}{l} \text{Q: } C_{3}R_{3}\sqrt{\frac{1}{C_{3}L_{3}}} + \frac{C_{3}R_{4}\sqrt{\frac{1}{C_{3}L_{3}}}}{2} \\ \text{wo: } \sqrt{\frac{1}{C_{3}L_{3}}} \\ \text{bandwidth: } \frac{\sqrt{\frac{1}{C_{3}L_{3}}}}{C_{3}R_{3}\sqrt{\frac{1}{C_{3}L_{3}}} + \frac{C_{3}R_{4}\sqrt{\frac{1}{C_{3}L_{3}}}}{2}} \\ \text{K-LP: } \frac{R_{3}R_{4}}{2R_{3}+R_{4}} \\ \text{K-HP: } \frac{R_{3}R_{4}}{2R_{3}+R_{4}} \\ \text{K-BP: } \frac{R_{4}}{2} \\ \text{Qz: } C_{3}R_{3}\sqrt{\frac{1}{C_{3}L_{3}}} \\ \text{Wz: } \sqrt{\frac{1}{C_{3}L_{3}}} \end{array}$$

7 AP

$$H(s) = \frac{C_4 L_4 R_3 R_4 s^2 + L_4 R_3 s + R_3 R_4}{L_4 s + 2R_3 + R_4 + s^2 (2C_4 L_4 R_3 + C_4 L_4 R_4)}$$

$$H(s) = \frac{C_3 L_3 R_4 s^2 + C_3 R_3 R_4 s + R_4}{2C_3 L_3 s^2 + s \left(2C_3 R_3 + C_3 R_4\right) + 2}$$

$$H(s) = \frac{C_3 L_3 R_3 R_4 s^2 + L_3 R_4 s + R_3 R_4}{2L_3 s + 2R_3 + R_4 + s^2 (2C_3 L_3 R_3 + C_3 L_3 R_4)}$$

8 INVALID-NUMER

8.1 INVALID-NUMER-1 $Z(s) = \left(\infty, \infty, \frac{R_3}{C_3 R_3 s + 1}, R_4 + \frac{1}{C_4 s}, \infty, \infty\right)$

 $H(s) = \frac{C_4 R_3 R_4 s + R_3}{C_3 C_4 R_3 R_4 s^2 + s \left(C_3 R_3 + 2C_4 R_3 + C_4 R_4\right) + 1}$

Parameters:

 $\begin{array}{l} \text{Q:} \ \frac{C_3C_4R_3R_4\sqrt{\frac{1}{C_3C_4R_3R_4}}}{C_3R_3+2C_4R_3+C_4R_4}\\ \text{wo:} \ \sqrt{\frac{1}{C_3C_4R_3R_4}}\\ \text{bandwidth:} \ \frac{C_3R_3+2C_4R_3+C_4R_4}{C_3C_4R_3R_4}\\ \text{K-LP:} \ R_3\\ \text{K-HP:} \ 0\\ \text{K-BP:} \ \frac{C_4R_3R_4}{C_3R_3+2C_4R_3+C_4R_4}\\ \text{Qz:} \ 0\\ \text{Wz:} \ \text{None} \end{array}$

8.2 INVALID-NUMER-2 $Z(s) = \left(\infty, \infty, R_3 + \frac{1}{C_3 s}, \frac{R_4}{C_4 R_4 s + 1}, \infty, \infty\right)$

 $H(s) = \frac{C_3 R_3 R_4 s + R_4}{2C_3 C_4 R_3 R_4 s^2 + s (2C_3 R_3 + C_3 R_4 + 2C_4 R_4) + 2}$

Parameters:

 $\begin{array}{l} \text{Q:} \ \frac{2C_3C_4R_3R_4\sqrt{\frac{1}{C_3C_4R_3R_4}}}{2C_3R_3+C_3R_4+2C_4R_4}\\ \text{wo:} \ \sqrt{\frac{1}{C_3C_4R_3R_4}}\\ \text{bandwidth:} \ \frac{2C_3R_3+C_3R_4+2C_4R_4}{2C_3C_4R_3R_4}\\ \text{K-LP:} \ \frac{R_4}{2}\\ \text{K-HP:} \ 0\\ \text{K-BP:} \ \frac{C_3R_3R_4}{2C_3R_3+C_3R_4+2C_4R_4}\\ \text{Qz:} \ 0\\ \text{Wz:} \ \text{None} \end{array}$

9 INVALID-WZ

10 INVALID-ORDER

10.1 INVALID-ORDER-1 $Z(s) = (\infty, \infty, R_3, R_4, \infty, \infty)$

 $H(s) = \frac{R_3 R_4}{2R_3 + R_4}$

10.2 INVALID-ORDER-2 $Z(s) = \left(\infty, \infty, R_3, \frac{1}{C_4 s}, \infty, \infty\right)$

 $H(s) = \frac{R_3}{2C_4 R_3 s + 1}$

10.3 INVALID-ORDER-3 $Z(s) = \left(\infty, \infty, R_3, \frac{R_4}{C_4 R_4 s + 1}, \infty, \infty\right)$

 $H(s) = \frac{R_3 R_4}{2C_4 R_3 R_4 s + 2R_3 + R_4}$

9

10.4 INVALID-ORDER-4
$$Z(s) = \left(\infty, \infty, R_3, R_4 + \frac{1}{C_4 s}, \infty, \infty\right)$$

$$H(s) = \frac{C_4 R_3 R_4 s + R_3}{s \left(2 C_4 R_3 + C_4 R_4\right) + 1}$$

10.5 INVALID-ORDER-5
$$Z(s) = \left(\infty, \infty, \frac{1}{C_3 s}, R_4, \infty, \infty\right)$$

$$H(s) = \frac{R_4}{C_3 R_4 s + 2}$$

10.6 INVALID-ORDER-6
$$Z(s) = \left(\infty, \infty, \frac{1}{C_3 s}, \frac{1}{C_4 s}, \infty, \infty\right)$$

$$H(s) = \frac{1}{s(C_3 + 2C_4)}$$

10.7 INVALID-ORDER-7
$$Z(s) = \left(\infty, \infty, \frac{1}{C_3 s}, \frac{R_4}{C_4 R_4 s + 1}, \infty, \infty\right)$$

$$H(s) = \frac{R_4}{s(C_3R_4 + 2C_4R_4) + 2}$$

10.8 INVALID-ORDER-8
$$Z(s) = \left(\infty, \infty, \frac{1}{C_3 s}, R_4 + \frac{1}{C_4 s}, \infty, \infty\right)$$

$$H(s) = \frac{C_4 R_4 s + 1}{C_3 C_4 R_4 s^2 + s \left(C_3 + 2C_4\right)}$$

10.9 INVALID-ORDER-9
$$Z(s) = \left(\infty, \infty, \frac{1}{C_3 s}, L_4 s + \frac{1}{C_4 s}, \infty, \infty\right)$$

$$H(s) = \frac{C_4 L_4 s^2 + 1}{C_3 C_4 L_4 s^3 + s (C_3 + 2C_4)}$$

10.10 INVALID-ORDER-10
$$Z(s) = \left(\infty, \infty, \frac{1}{C_3 s}, \frac{L_4 s}{C_4 L_4 s^2 + 1}, \infty, \infty\right)$$

$$H(s) = \frac{L_4 s}{s^2 (C_3 L_4 + 2C_4 L_4) + 2}$$

10.11 INVALID-ORDER-11
$$Z(s) = \left(\infty, \infty, \frac{1}{C_3 s}, L_4 s + R_4 + \frac{1}{C_4 s}, \infty, \infty\right)$$

$$H(s) = \frac{C_4 L_4 s^2 + C_4 R_4 s + 1}{C_3 C_4 L_4 s^3 + C_3 C_4 R_4 s^2 + s (C_3 + 2C_4)}$$

10.12 INVALID-ORDER-12
$$Z(s) = \left(\infty, \infty, \frac{1}{C_3 s}, \frac{C_4 L_4 R_4 s^2 + L_4 s + R_4}{C_4 L_4 s^2 + 1}, \infty, \infty\right)$$

$$H(s) = \frac{C_4 L_4 R_4 s^2 + L_4 s + R_4}{C_3 C_4 L_4 R_4 s^3 + C_3 R_4 s + s^2 (C_3 L_4 + 2C_4 L_4) + 2}$$

10.13 INVALID-ORDER-13
$$Z(s) = \left(\infty, \infty, \frac{1}{C_3 s}, \frac{R_4 \left(C_4 L_4 s^2 + 1\right)}{C_4 L_4 s^2 + C_4 R_4 s + 1}, \infty, \infty\right)$$

$$H(s) = \frac{C_4 L_4 R_4 s^2 + R_4}{C_3 C_4 L_4 R_4 s^3 + 2 C_4 L_4 s^2 + s \left(C_3 R_4 + 2 C_4 R_4\right) + 2}$$

10.14 INVALID-ORDER-14
$$Z(s) = \left(\infty, \infty, \frac{R_3}{C_3 R_3 s + 1}, R_4, \infty, \infty\right)$$

$$H(s) = \frac{R_3 R_4}{C_3 R_3 R_4 s + 2R_3 + R_4}$$

10.15 INVALID-ORDER-15
$$Z(s) = \left(\infty, \infty, \frac{R_3}{C_3 R_3 s + 1}, \frac{1}{C_4 s}, \infty, \infty\right)$$

$$H(s) = \frac{R_3}{s(C_3R_3 + 2C_4R_3) + 1}$$

10.16 INVALID-ORDER-16
$$Z(s) = \left(\infty, \infty, \frac{R_3}{C_3R_3s+1}, \frac{R_4}{C_4R_4s+1}, \infty, \infty\right)$$

$$H(s) = \frac{R_3 R_4}{2R_3 + R_4 + s \left(C_3 R_3 R_4 + 2C_4 R_3 R_4\right)}$$

10.17 INVALID-ORDER-17
$$Z(s) = \left(\infty, \infty, \frac{R_3}{C_3 R_3 s + 1}, L_4 s + \frac{1}{C_4 s}, \infty, \infty\right)$$

$$H(s) = \frac{C_4 L_4 R_3 s^2 + R_3}{C_3 C_4 L_4 R_3 s^3 + C_4 L_4 s^2 + s \left(C_3 R_3 + 2C_4 R_3\right) + 1}$$

10.18 INVALID-ORDER-18
$$Z(s) = \left(\infty, \infty, \frac{R_3}{C_3 R_3 s + 1}, L_4 s + R_4 + \frac{1}{C_4 s}, \infty, \infty\right)$$

$$H(s) = \frac{C_4 L_4 R_3 s^2 + C_4 R_3 R_4 s + R_3}{C_3 C_4 L_4 R_3 s^3 + s^2 \left(C_3 C_4 R_3 R_4 + C_4 L_4 \right) + s \left(C_3 R_3 + 2 C_4 R_3 + C_4 R_4 \right) + 1}$$

10.19 INVALID-ORDER-19
$$Z(s) = \left(\infty, \infty, \frac{R_3}{C_3 R_3 s + 1}, \frac{C_4 L_4 R_4 s^2 + L_4 s + R_4}{C_4 L_4 s^2 + 1}, \infty, \infty\right)$$

$$H(s) = \frac{C_4 L_4 R_3 R_4 s^2 + L_4 R_3 s + R_3 R_4}{C_3 C_4 L_4 R_3 R_4 s^3 + 2 R_3 + R_4 + s^2 \left(C_3 L_4 R_3 + 2 C_4 L_4 R_3 + C_4 L_4 R_4 \right) + s \left(C_3 R_3 R_4 + L_4 \right)}$$

10.20 INVALID-ORDER-20
$$Z(s) = \left(\infty, \infty, \frac{R_3}{C_3 R_3 s + 1}, \frac{R_4 \left(C_4 L_4 s^2 + 1\right)}{C_4 L_4 s^2 + C_4 R_4 s + 1}, \infty, \infty\right)$$

$$H(s) = \frac{C_4 L_4 R_3 R_4 s^2 + R_3 R_4}{C_3 C_4 L_4 R_3 R_4 s^3 + 2R_3 + R_4 + s^2 \left(2C_4 L_4 R_3 + C_4 L_4 R_4\right) + s \left(C_3 R_3 R_4 + 2C_4 R_3 R_4\right)}$$

10.21 INVALID-ORDER-21 $Z(s) = \left(\infty, \infty, R_3 + \frac{1}{C_3 s}, R_4, \infty, \infty\right)$

$$H(s) = \frac{C_3 R_3 R_4 s + R_4}{s (2C_3 R_3 + C_3 R_4) + 2}$$

10.22 INVALID-ORDER-22
$$Z(s) = \left(\infty, \infty, R_3 + \frac{1}{C_3 s}, \frac{1}{C_4 s}, \infty, \infty\right)$$

$$H(s) = \frac{C_3 R_3 s + 1}{2C_3 C_4 R_3 s^2 + s (C_3 + 2C_4)}$$

10.23 INVALID-ORDER-23
$$Z(s) = \left(\infty, \ \infty, \ R_3 + \frac{1}{C_3 s}, \ R_4 + \frac{1}{C_4 s}, \ \infty, \ \infty\right)$$

$$H(s) = \frac{C_3 C_4 R_3 R_4 s^2 + s (C_3 R_3 + C_4 R_4) + 1}{s^2 (2C_3 C_4 R_3 + C_3 C_4 R_4) + s (C_3 + 2C_4)}$$

10.24 INVALID-ORDER-24
$$Z(s) = \left(\infty, \infty, R_3 + \frac{1}{C_3 s}, L_4 s + \frac{1}{C_4 s}, \infty, \infty\right)$$

$$H(s) = \frac{C_3 C_4 L_4 R_3 s^3 + C_3 R_3 s + C_4 L_4 s^2 + 1}{C_3 C_4 L_4 s^3 + 2C_3 C_4 R_3 s^2 + s (C_3 + 2C_4)}$$

10.25 INVALID-ORDER-25
$$Z(s) = \left(\infty, \infty, R_3 + \frac{1}{C_3 s}, \frac{L_4 s}{C_4 L_4 s^2 + 1}, \infty, \infty\right)$$

$$H(s) = \frac{C_3 L_4 R_3 s^2 + L_4 s}{2C_3 C_4 L_4 R_3 s^3 + 2C_3 R_3 s + s^2 (C_3 L_4 + 2C_4 L_4) + 2}$$

10.26 INVALID-ORDER-26
$$Z(s) = \left(\infty, \ \infty, \ R_3 + \frac{1}{C_3 s}, \ L_4 s + R_4 + \frac{1}{C_4 s}, \ \infty, \ \infty\right)$$

$$H(s) = \frac{C_3C_4L_4R_3s^3 + s^2\left(C_3C_4R_3R_4 + C_4L_4\right) + s\left(C_3R_3 + C_4R_4\right) + 1}{C_3C_4L_4s^3 + s^2\left(2C_3C_4R_3 + C_3C_4R_4\right) + s\left(C_3 + 2C_4\right)}$$

10.27 INVALID-ORDER-27
$$Z(s) = \left(\infty, \infty, R_3 + \frac{1}{C_3 s}, \frac{L_4 R_4 s}{C_4 L_4 R_4 s^2 + L_4 s + R_4}, \infty, \infty\right)$$

$$H(s) = \frac{C_3L_4R_3R_4s^2 + L_4R_4s}{2C_3C_4L_4R_3R_4s^3 + 2R_4 + s^2\left(2C_3L_4R_3 + C_3L_4R_4 + 2C_4L_4R_4\right) + s\left(2C_3R_3R_4 + 2L_4\right)}{2C_3C_4L_4R_3R_4s^3 + 2R_4 + s^2\left(2C_3L_4R_3 + C_3L_4R_4 + 2C_4L_4R_4\right) + s\left(2C_3R_3R_4 + 2L_4\right)}$$

10.28 INVALID-ORDER-28
$$Z(s) = \left(\infty, \infty, R_3 + \frac{1}{C_3 s}, \frac{C_4 L_4 R_4 s^2 + L_4 s + R_4}{C_4 L_4 s^2 + 1}, \infty, \infty\right)$$

$$H(s) = \frac{C_3C_4L_4R_3R_4s^3 + R_4 + s^2\left(C_3L_4R_3 + C_4L_4R_4\right) + s\left(C_3R_3R_4 + L_4\right)}{s^3\left(2C_3C_4L_4R_3 + C_3C_4L_4R_4\right) + s^2\left(C_3L_4 + 2C_4L_4\right) + s\left(2C_3R_3 + C_3R_4\right) + 2}$$

10.29 INVALID-ORDER-29
$$Z(s) = \left(\infty, \infty, R_3 + \frac{1}{C_3 s}, \frac{R_4 \left(C_4 L_4 s^2 + 1\right)}{C_4 L_4 s^2 + C_4 R_4 s + 1}, \infty, \infty\right)$$

$$H(s) = \frac{C_3C_4L_4R_3R_4s^3 + C_3R_3R_4s + C_4L_4R_4s^2 + R_4}{s^3\left(2C_3C_4L_4R_3 + C_3C_4L_4R_4\right) + s^2\left(2C_3C_4R_3R_4 + 2C_4L_4\right) + s\left(2C_3R_3 + C_3R_4 + 2C_4R_4\right) + 2}$$

10.30 INVALID-ORDER-30 $Z(s) = \left(\infty, \infty, L_3 s + \frac{1}{C_3 s}, \frac{1}{C_4 s}, \infty, \infty\right)$

$$H(s) = \frac{C_3 L_3 s^2 + 1}{2C_3 C_4 L_3 s^3 + s \left(C_3 + 2C_4\right)}$$

10.31 INVALID-ORDER-31 $Z(s) = \left(\infty, \infty, L_3 s + \frac{1}{C_3 s}, \frac{R_4}{C_4 R_4 s + 1}, \infty, \infty\right)$

$$H(s) = \frac{C_3 L_3 R_4 s^2 + R_4}{2C_3 C_4 L_3 R_4 s^3 + 2C_3 L_3 s^2 + s (C_3 R_4 + 2C_4 R_4) + 2}$$

10.32 INVALID-ORDER-32
$$Z(s) = \left(\infty, \infty, L_3 s + \frac{1}{C_3 s}, R_4 + \frac{1}{C_4 s}, \infty, \infty\right)$$

$$H(s) = \frac{C_3 C_4 L_3 R_4 s^3 + C_3 L_3 s^2 + C_4 R_4 s + 1}{2C_3 C_4 L_3 s^3 + C_3 C_4 R_4 s^2 + s (C_3 + 2C_4)}$$

10.33 INVALID-ORDER-33
$$Z(s) = \left(\infty, \infty, L_3 s + \frac{1}{C_3 s}, L_4 s + \frac{1}{C_4 s}, \infty, \infty\right)$$

$$H(s) = \frac{C_3 C_4 L_3 L_4 s^4 + s^2 (C_3 L_3 + C_4 L_4) + 1}{s^3 (2C_3 C_4 L_3 + C_3 C_4 L_4) + s (C_3 + 2C_4)}$$

10.34 INVALID-ORDER-34
$$Z(s) = \left(\infty, \infty, L_3 s + \frac{1}{C_3 s}, \frac{L_4 s}{C_4 L_4 s^2 + 1}, \infty, \infty\right)$$

$$H(s) = \frac{C_3 L_3 L_4 s^3 + L_4 s}{2C_3 C_4 L_3 L_4 s^4 + s^2 (2C_3 L_3 + C_3 L_4 + 2C_4 L_4) + 2}$$

10.35 INVALID-ORDER-35
$$Z(s) = \left(\infty, \infty, L_3 s + \frac{1}{C_3 s}, L_4 s + R_4 + \frac{1}{C_4 s}, \infty, \infty\right)$$

$$H(s) = \frac{C_3C_4L_3L_4s^4 + C_3C_4L_3R_4s^3 + C_4R_4s + s^2\left(C_3L_3 + C_4L_4\right) + 1}{C_3C_4R_4s^2 + s^3\left(2C_3C_4L_3 + C_3C_4L_4\right) + s\left(C_3 + 2C_4\right)}$$

10.36 INVALID-ORDER-36
$$Z(s) = \left(\infty, \ \infty, \ L_3 s + \frac{1}{C_3 s}, \ \frac{L_4 R_4 s}{C_4 L_4 R_4 s^2 + L_4 s + R_4}, \ \infty, \ \infty\right)$$

$$H(s) = \frac{C_3 L_3 L_4 R_4 s^3 + L_4 R_4 s}{2C_3 C_4 L_3 L_4 R_4 s^4 + 2C_3 L_3 L_4 s^3 + 2L_4 s + 2R_4 + s^2 (2C_3 L_3 R_4 + C_3 L_4 R_4 + 2C_4 L_4 R_4)}$$

10.37 INVALID-ORDER-37
$$Z(s) = \left(\infty, \infty, L_3 s + \frac{1}{C_3 s}, \frac{C_4 L_4 R_4 s^2 + L_4 s + R_4}{C_4 L_4 s^2 + 1}, \infty, \infty\right)$$

$$H(s) = \frac{C_3C_4L_3L_4R_4s^4 + C_3L_3L_4s^3 + L_4s + R_4 + s^2\left(C_3L_3R_4 + C_4L_4R_4\right)}{2C_3C_4L_3L_4s^4 + C_3C_4L_4R_4s^3 + C_3R_4s + s^2\left(2C_3L_3 + C_3L_4 + 2C_4L_4\right) + 2}$$

10.38 INVALID-ORDER-38
$$Z(s) = \left(\infty, \infty, L_3 s + \frac{1}{C_3 s}, \frac{R_4 \left(C_4 L_4 s^2 + 1\right)}{C_4 L_4 s^2 + C_4 R_4 s + 1}, \infty, \infty\right)$$

$$H(s) = \frac{C_3C_4L_3L_4R_4s^4 + R_4 + s^2\left(C_3L_3R_4 + C_4L_4R_4\right)}{2C_3C_4L_3L_4s^4 + s^3\left(2C_3C_4L_3R_4 + C_3C_4L_4R_4\right) + s^2\left(2C_3L_3 + 2C_4L_4\right) + s\left(C_3R_4 + 2C_4R_4\right) + 2C_4R_4\right) + 2C_4R_4$$

10.39 INVALID-ORDER-39 $Z(s) = \left(\infty, \infty, \frac{L_3s}{C_3L_3s^2+1}, \frac{1}{C_4s}, \infty, \infty\right)$

$$H(s) = \frac{L_3 s}{s^2 (C_3 L_3 + 2C_4 L_3) + 1}$$

10.40 INVALID-ORDER-40 $Z(s) = \left(\infty, \infty, \frac{L_{3s}}{C_3L_3s^2+1}, R_4 + \frac{1}{C_4s}, \infty, \infty\right)$

$$H(s) = \frac{C_4 L_3 R_4 s^2 + L_3 s}{C_3 C_4 L_3 R_4 s^3 + C_4 R_4 s + s^2 \left(C_3 L_3 + 2 C_4 L_3\right) + 1}$$

10.41 INVALID-ORDER-41 $Z(s) = \left(\infty, \infty, \frac{L_3s}{C_3L_3s^2+1}, L_4s + \frac{1}{C_4s}, \infty, \infty\right)$

$$H(s) = \frac{C_4 L_3 L_4 s^3 + L_3 s}{C_3 C_4 L_3 L_4 s^4 + s^2 (C_3 L_3 + 2C_4 L_3 + C_4 L_4) + 1}$$

10.42 INVALID-ORDER-42 $Z(s) = \left(\infty, \infty, \frac{L_{3s}}{C_3 L_{3s^2+1}}, \frac{L_{4s}}{C_4 L_4 s^2+1}, \infty, \infty\right)$

$$H(s) = \frac{L_3 L_4 s}{2L_3 + L_4 + s^2 \left(C_3 L_3 L_4 + 2C_4 L_3 L_4\right)}$$

10.43 INVALID-ORDER-43
$$Z(s) = \left(\infty, \infty, \frac{L_3s}{C_3L_3s^2+1}, L_4s + R_4 + \frac{1}{C_4s}, \infty, \infty\right)$$

$$H(s) = \frac{C_4 L_3 L_4 s^3 + C_4 L_3 R_4 s^2 + L_3 s}{C_3 C_4 L_3 L_4 s^4 + C_3 C_4 L_3 R_4 s^3 + C_4 R_4 s + s^2 \left(C_3 L_3 + 2 C_4 L_3 + C_4 L_4 \right) + 1}$$

10.44 INVALID-ORDER-44
$$Z(s) = \left(\infty, \ \infty, \ \frac{L_3s}{C_3L_3s^2+1}, \ \frac{C_4L_4R_4s^2+L_4s+R_4}{C_4L_4s^2+1}, \ \infty, \ \infty\right)$$

$$H(s) = \frac{C_4 L_3 L_4 R_4 s^3 + L_3 L_4 s^2 + L_3 R_4 s}{C_3 C_4 L_3 L_4 R_4 s^4 + R_4 + s^3 \left(C_3 L_3 L_4 + 2 C_4 L_3 L_4 \right) + s^2 \left(C_3 L_3 R_4 + C_4 L_4 R_4 \right) + s \left(2 L_3 + L_4 \right)}$$

10.45 INVALID-ORDER-45
$$Z(s) = \left(\infty, \infty, \frac{L_{3s}}{C_3L_3s^2+1}, \frac{R_4\left(C_4L_4s^2+1\right)}{C_4L_4s^2+C_4R_4s+1}, \infty, \infty\right)$$

$$H(s) = \frac{C_4 L_3 L_4 R_4 s^3 + L_3 R_4 s}{C_3 C_4 L_3 L_4 R_4 s^4 + 2C_4 L_3 L_4 s^3 + 2L_3 s + R_4 + s^2 \left(C_3 L_3 R_4 + 2C_4 L_3 R_4 + C_4 L_4 R_4\right)}$$

10.46 INVALID-ORDER-46
$$Z(s) = \left(\infty, \ \infty, \ L_3 s + R_3 + \frac{1}{C_3 s}, \ \frac{1}{C_4 s}, \ \infty, \ \infty\right)$$

$$H(s) = \frac{C_3 L_3 s^2 + C_3 R_3 s + 1}{2C_3 C_4 L_3 s^3 + 2C_3 C_4 R_3 s^2 + s (C_3 + 2C_4)}$$

10.47 INVALID-ORDER-47
$$Z(s) = \left(\infty, \ \infty, \ L_3 s + R_3 + \frac{1}{C_3 s}, \ \frac{R_4}{C_4 R_4 s + 1}, \ \infty, \ \infty\right)$$

$$H(s) = \frac{C_3 L_3 R_4 s^2 + C_3 R_3 R_4 s + R_4}{2C_3 C_4 L_3 R_4 s^3 + s^2 (2C_3 C_4 R_3 R_4 + 2C_3 L_3) + s (2C_3 R_3 + C_3 R_4 + 2C_4 R_4) + 2}$$

10.48 INVALID-ORDER-48
$$Z(s) = \left(\infty, \ \infty, \ L_3 s + R_3 + \frac{1}{C_3 s}, \ R_4 + \frac{1}{C_4 s}, \ \infty, \ \infty\right)$$

$$H(s) = \frac{C_3C_4L_3R_4s^3 + s^2\left(C_3C_4R_3R_4 + C_3L_3\right) + s\left(C_3R_3 + C_4R_4\right) + 1}{2C_3C_4L_3s^3 + s^2\left(2C_3C_4R_3 + C_3C_4R_4\right) + s\left(C_3 + 2C_4\right)}$$

10.49 INVALID-ORDER-49
$$Z(s) = \left(\infty, \ \infty, \ L_3 s + R_3 + \frac{1}{C_3 s}, \ L_4 s + \frac{1}{C_4 s}, \ \infty, \ \infty\right)$$

$$H(s) = \frac{C_3C_4L_3L_4s^4 + C_3C_4L_4R_3s^3 + C_3R_3s + s^2\left(C_3L_3 + C_4L_4\right) + 1}{2C_3C_4R_3s^2 + s^3\left(2C_3C_4L_3 + C_3C_4L_4\right) + s\left(C_3 + 2C_4\right)}$$

10.50 INVALID-ORDER-50
$$Z(s) = \left(\infty, \infty, L_3 s + R_3 + \frac{1}{C_3 s}, \frac{L_4 s}{C_4 L_4 s^2 + 1}, \infty, \infty\right)$$

$$H(s) = \frac{C_3L_3L_4s^3 + C_3L_4R_3s^2 + L_4s}{2C_3C_4L_3L_4s^4 + 2C_3C_4L_4R_3s^3 + 2C_3R_3s + s^2(2C_3L_3 + C_3L_4 + 2C_4L_4) + 2}$$

10.51 INVALID-ORDER-51
$$Z(s) = \left(\infty, \ \infty, \ L_3 s + R_3 + \frac{1}{C_3 s}, \ L_4 s + R_4 + \frac{1}{C_4 s}, \ \infty, \ \infty\right)$$

$$H(s) = \frac{C_3C_4L_3L_4s^4 + s^3\left(C_3C_4L_3R_4 + C_3C_4L_4R_3\right) + s^2\left(C_3C_4R_3R_4 + C_3L_3 + C_4L_4\right) + s\left(C_3R_3 + C_4R_4\right) + 1}{s^3\left(2C_3C_4L_3 + C_3C_4L_4\right) + s^2\left(2C_3C_4R_3 + C_3C_4R_4\right) + s\left(C_3 + 2C_4\right)}$$

10.52 INVALID-ORDER-52
$$Z(s) = \left(\infty, \infty, L_3 s + R_3 + \frac{1}{C_3 s}, \frac{L_4 R_4 s}{C_4 L_4 R_4 s^2 + L_4 s + R_4}, \infty, \infty\right)$$

$$H(s) = \frac{C_3L_3L_4R_4s^3 + C_3L_4R_3R_4s^2 + L_4R_4s}{2C_3C_4L_3L_4R_4s^4 + 2R_4 + s^3\left(2C_3C_4L_4R_3R_4 + 2C_3L_3L_4\right) + s^2\left(2C_3L_3R_4 + 2C_3L_4R_3 + C_3L_4R_4 + 2C_4L_4R_4\right) + s\left(2C_3R_3R_4 + 2L_4\right)}{2C_3C_4L_3L_4R_4s^4 + 2R_4 + s^3\left(2C_3C_4L_4R_3R_4 + 2C_3L_4R_4\right) + s^2\left(2C_3L_3R_4 + 2C_3L_4R_3 + C_3L_4R_4\right) + s\left(2C_3R_3R_4 + 2L_4\right)}$$

10.53 INVALID-ORDER-53
$$Z(s) = \left(\infty, \infty, L_3 s + R_3 + \frac{1}{C_3 s}, \frac{C_4 L_4 R_4 s^2 + L_4 s + R_4}{C_4 L_4 s^2 + 1}, \infty, \infty\right)$$

$$H(s) = \frac{C_3C_4L_3L_4R_4s^4 + R_4 + s^3\left(C_3C_4L_4R_3R_4 + C_3L_3L_4\right) + s^2\left(C_3L_3R_4 + C_3L_4R_3 + C_4L_4R_4\right) + s\left(C_3R_3R_4 + L_4\right)}{2C_3C_4L_3L_4s^4 + s^3\left(2C_3C_4L_4R_3 + C_3C_4L_4R_4\right) + s^2\left(2C_3L_3 + C_3L_4 + 2C_4L_4\right) + s\left(2C_3R_3 + C_3R_4\right) + 2c_3C_4L_4R_4\right)}$$

10.54 INVALID-ORDER-54
$$Z(s) = \left(\infty, \infty, L_3 s + R_3 + \frac{1}{C_3 s}, \frac{R_4 \left(C_4 L_4 s^2 + 1\right)}{C_4 L_4 s^2 + C_4 R_4 s + 1}, \infty, \infty\right)$$

$$H(s) = \frac{C_3C_4L_3L_4R_4s^4 + C_3C_4L_4R_3R_4s^3 + C_3R_3R_4s + R_4 + s^2\left(C_3L_3R_4 + C_4L_4R_4\right)}{2C_3C_4L_3L_4s^4 + s^3\left(2C_3C_4L_3R_4 + 2C_3C_4L_4R_3 + C_3C_4L_4R_4\right) + s^2\left(2C_3C_4R_3R_4 + 2C_3L_3 + 2C_4L_4\right) + s\left(2C_3R_3 + C_3R_4 + 2C_4R_4\right) + 2C_3R_3 + C_3R_4 + 2C_4R_4\right)}$$

10.55 INVALID-ORDER-55
$$Z(s) = \left(\infty, \infty, \frac{L_3 R_3 s}{C_3 L_3 R_3 s^2 + L_3 s + R_3}, R_4 + \frac{1}{C_4 s}, \infty, \infty\right)$$

$$H(s) = \frac{C_4 L_3 R_3 R_4 s^2 + L_3 R_3 s}{C_3 C_4 L_3 R_3 R_4 s^3 + R_3 + s^2 \left(C_3 L_3 R_3 + 2 C_4 L_3 R_3 + C_4 L_3 R_4\right) + s \left(C_4 R_3 R_4 + L_3\right)}$$

10.56 INVALID-ORDER-56
$$Z(s) = \left(\infty, \infty, \frac{L_3 R_3 s}{C_3 L_3 R_3 s^2 + L_3 s + R_3}, L_4 s + \frac{1}{C_4 s}, \infty, \infty\right)$$

$$H(s) = \frac{C_4 L_3 L_4 R_3 s^3 + L_3 R_3 s}{C_3 C_4 L_3 L_4 R_3 s^4 + C_4 L_3 L_4 s^3 + L_3 s + R_3 + s^2 \left(C_3 L_3 R_3 + 2 C_4 L_3 R_3 + C_4 L_4 R_3 \right)}$$

10.57 INVALID-ORDER-57
$$Z(s) = \left(\infty, \infty, \frac{L_3 R_3 s}{C_3 L_3 R_3 s^2 + L_3 s + R_3}, L_4 s + R_4 + \frac{1}{C_4 s}, \infty, \infty\right)$$

$$H(s) = \frac{C_4 L_3 L_4 R_3 s^3 + C_4 L_3 R_3 R_4 s^2 + L_3 R_3 s}{C_3 C_4 L_3 L_4 R_3 s^4 + R_3 + s^3 \left(C_3 C_4 L_3 R_3 R_4 + C_4 L_3 L_4 \right) + s^2 \left(C_3 L_3 R_3 + 2 C_4 L_3 R_3 + C_4 L_3 R_4 + C_4 L_4 R_3 \right) + s \left(C_4 R_3 R_4 + L_3 \right)}$$

10.58 INVALID-ORDER-58
$$Z(s) = \left(\infty, \infty, \frac{L_3 R_3 s}{C_3 L_3 R_3 s^2 + L_3 s + R_3}, \frac{C_4 L_4 R_4 s^2 + L_4 s + R_4}{C_4 L_4 s^2 + 1}, \infty, \infty\right)$$

$$H(s) = \frac{C_4L_3L_4R_3R_4s^3 + L_3L_4R_3s^2 + L_3R_3R_4s}{C_3C_4L_3L_4R_3R_4s^4 + R_3R_4 + s^3\left(C_3L_3L_4R_3 + 2C_4L_3L_4R_3 + C_4L_3L_4R_4\right) + s^2\left(C_3L_3R_3R_4 + C_4L_4R_3R_4 + L_3L_4\right) + s\left(2L_3R_3 + L_3R_4 + L_4R_3\right)}$$

10.59 INVALID-ORDER-59
$$Z(s) = \left(\infty, \infty, \frac{L_3 R_3 s}{C_3 L_3 R_3 s^2 + L_3 s + R_3}, \frac{R_4 \left(C_4 L_4 s^2 + 1\right)}{C_4 L_4 s^2 + C_4 R_4 s + 1}, \infty, \infty\right)$$

$$H(s) = \frac{C_4L_3L_4R_3R_4s^3 + L_3R_3R_4s}{C_3C_4L_3L_4R_3R_4s^4 + R_3R_4 + s^3\left(2C_4L_3L_4R_3 + C_4L_3L_4R_4\right) + s^2\left(C_3L_3R_3R_4 + 2C_4L_3R_3R_4 + C_4L_4R_3R_4\right) + s\left(2L_3R_3 + L_3R_4\right)}$$

10.60 INVALID-ORDER-60
$$Z(s) = \left(\infty, \infty, \frac{C_3L_3R_3s^2 + L_3s + R_3}{C_3L_3s^2 + 1}, \frac{1}{C_4s}, \infty, \infty\right)$$

$$H(s) = \frac{C_3 L_3 R_3 s^2 + L_3 s + R_3}{2C_3 C_4 L_3 R_3 s^3 + 2C_4 R_3 s + s^2 (C_3 L_3 + 2C_4 L_3) + 1}$$

10.61 INVALID-ORDER-61
$$Z(s) = \left(\infty, \infty, \frac{C_3L_3R_3s^2 + L_3s + R_3}{C_3L_3s^2 + 1}, \frac{R_4}{C_4R_4s + 1}, \infty, \infty\right)$$

$$H(s) = \frac{C_3L_3R_3R_4s^2 + L_3R_4s + R_3R_4}{2C_3C_4L_3R_3R_4s^3 + 2R_3 + R_4 + s^2\left(2C_3L_3R_3 + C_3L_3R_4 + 2C_4L_3R_4\right) + s\left(2C_4R_3R_4 + 2L_3\right)}$$

10.62 INVALID-ORDER-62
$$Z(s) = \left(\infty, \infty, \frac{C_3L_3R_3s^2 + L_3s + R_3}{C_3L_3s^2 + 1}, R_4 + \frac{1}{C_4s}, \infty, \infty\right)$$

$$H(s) = \frac{C_3C_4L_3R_3R_4s^3 + R_3 + s^2\left(C_3L_3R_3 + C_4L_3R_4\right) + s\left(C_4R_3R_4 + L_3\right)}{s^3\left(2C_3C_4L_3R_3 + C_3C_4L_3R_4\right) + s^2\left(C_3L_3 + 2C_4L_3\right) + s\left(2C_4R_3 + C_4R_4\right) + 1}$$

10.63 INVALID-ORDER-63
$$Z(s) = \left(\infty, \infty, \frac{C_3 L_3 R_3 s^2 + L_3 s + R_3}{C_3 L_3 s^2 + 1}, L_4 s + \frac{1}{C_4 s}, \infty, \infty\right)$$

$$H(s) = \frac{C_3C_4L_3L_4R_3s^4 + C_4L_3L_4s^3 + L_3s + R_3 + s^2\left(C_3L_3R_3 + C_4L_4R_3\right)}{C_3C_4L_3L_4s^4 + 2C_3C_4L_3R_3s^3 + 2C_4R_3s + s^2\left(C_3L_3 + 2C_4L_3 + C_4L_4\right) + 1}$$

10.64 INVALID-ORDER-64
$$Z(s) = \left(\infty, \infty, \frac{C_3L_3R_3s^2 + L_3s + R_3}{C_3L_3s^2 + 1}, \frac{L_4s}{C_4L_4s^2 + 1}, \infty, \infty\right)$$

$$H(s) = \frac{C_3L_3L_4R_3s^3 + L_3L_4s^2 + L_4R_3s}{2C_3C_4L_3L_4R_3s^4 + 2R_3 + s^3\left(C_3L_3L_4 + 2C_4L_3L_4\right) + s^2\left(2C_3L_3R_3 + 2C_4L_4R_3\right) + s\left(2L_3 + L_4\right)}$$

10.65 INVALID-ORDER-65
$$Z(s) = \left(\infty, \infty, \frac{C_3 L_3 R_3 s^2 + L_3 s + R_3}{C_3 L_3 s^2 + 1}, L_4 s + R_4 + \frac{1}{C_4 s}, \infty, \infty\right)$$

$$H(s) = \frac{C_3C_4L_3L_4R_3s^4 + R_3 + s^3\left(C_3C_4L_3R_3R_4 + C_4L_3L_4\right) + s^2\left(C_3L_3R_3 + C_4L_3R_4 + C_4L_4R_3\right) + s\left(C_4R_3R_4 + L_3\right)}{C_3C_4L_3L_4s^4 + s^3\left(2C_3C_4L_3R_3 + C_3C_4L_3R_4\right) + s^2\left(C_3L_3 + 2C_4L_3 + C_4L_4\right) + s\left(2C_4R_3 + C_4R_4\right) + 1}$$

10.66 INVALID-ORDER-66
$$Z(s) = \left(\infty, \infty, \frac{C_3L_3R_3s^2 + L_3s + R_3}{C_3L_3s^2 + 1}, \frac{L_4R_4s}{C_4L_4R_4s^2 + L_4s + R_4}, \infty, \infty\right)$$

$$H(s) = \frac{C_3L_3L_4R_3R_4s^3 + L_3L_4R_4s^2 + L_4R_3R_4s}{2C_3C_4L_3L_4R_3R_4s^4 + 2R_3R_4 + s^3\left(2C_3L_3L_4R_3 + C_3L_3L_4R_4 + 2C_4L_3L_4R_4\right) + s^2\left(2C_3L_3R_3R_4 + 2C_4L_4R_3R_4 + 2L_3L_4\right) + s\left(2L_3R_4 + 2L_4R_3 + L_4R_4\right)}$$

10.67 INVALID-ORDER-67
$$Z(s) = \left(\infty, \infty, \frac{C_3L_3R_3s^2 + L_3s + R_3}{C_3L_3s^2 + 1}, \frac{C_4L_4R_4s^2 + L_4s + R_4}{C_4L_4s^2 + 1}, \infty, \infty\right)$$

$$H(s) = \frac{C_3C_4L_3L_4R_3R_4s^4 + R_3R_4 + s^3\left(C_3L_3L_4R_3 + C_4L_3L_4R_4\right) + s^2\left(C_3L_3R_3R_4 + C_4L_4R_3R_4 + L_3L_4\right) + s\left(L_3R_4 + L_4R_3\right)}{2R_3 + R_4 + s^4\left(2C_3C_4L_3L_4R_3 + C_3C_4L_3L_4R_4\right) + s^3\left(C_3L_3L_4 + 2C_4L_3L_4\right) + s^2\left(2C_3L_3R_3 + C_3L_3R_4 + 2C_4L_4R_3 + C_4L_4R_4\right) + s\left(2L_3 + L_4\right)}$$

10.68 INVALID-ORDER-68
$$Z(s) = \left(\infty, \infty, \frac{C_3L_3R_3s^2 + L_3s + R_3}{C_3L_3s^2 + 1}, \frac{R_4\left(C_4L_4s^2 + 1\right)}{C_4L_4s^2 + C_4R_4s + 1}, \infty, \infty\right)$$

$$H(s) = \frac{C_3C_4L_3L_4R_3R_4s^4 + C_4L_3L_4R_4s^3 + L_3R_4s + R_3R_4 + s^2\left(C_3L_3R_3R_4 + C_4L_4R_3R_4\right)}{2R_3 + R_4 + s^4\left(2C_3C_4L_3L_4R_3 + C_3C_4L_3L_4R_4\right) + s^3\left(2C_3C_4L_3R_3R_4 + 2C_4L_3L_4\right) + s^2\left(2C_3L_3R_3 + C_3L_3R_4 + 2C_4L_3R_4 + 2C_4L_4R_3 + C_4L_4R_4\right) + s\left(2C_4R_3R_4 + 2L_4R_4\right) + s\left(2C_4R_3R_4 + 2C_4L_3R_4\right) + s\left(2C_4R_3R_4\right) + s\left(2C_4R_4\right) + s\left(2C_4R_$$

10.69 INVALID-ORDER-69
$$Z(s) = \left(\infty, \infty, \frac{R_3(C_3L_3s^2+1)}{C_3L_3s^2+C_3R_3s+1}, \frac{1}{C_4s}, \infty, \infty\right)$$

$$H(s) = \frac{C_3 L_3 R_3 s^2 + R_3}{2C_3 C_4 L_3 R_3 s^3 + C_3 L_3 s^2 + s (C_3 R_3 + 2C_4 R_3) + 1}$$

10.70 INVALID-ORDER-70
$$Z(s) = \left(\infty, \ \infty, \ \frac{R_3\left(C_3L_3s^2+1\right)}{C_3L_3s^2+C_3R_3s+1}, \ \frac{R_4}{C_4R_4s+1}, \ \infty, \ \infty\right)$$

$$H(s) = \frac{C_3L_3R_3R_4s^2 + R_3R_4}{2C_3C_4L_3R_3R_4s^3 + 2R_3 + R_4 + s^2\left(2C_3L_3R_3 + C_3L_3R_4\right) + s\left(C_3R_3R_4 + 2C_4R_3R_4\right)}$$

10.71 INVALID-ORDER-71
$$Z(s) = \left(\infty, \ \infty, \ \frac{R_3\left(C_3L_3s^2+1\right)}{C_3L_3s^2+C_3R_3s+1}, \ R_4 + \frac{1}{C_4s}, \ \infty, \ \infty\right)$$

$$H(s) = \frac{C_3C_4L_3R_3R_4s^3 + C_3L_3R_3s^2 + C_4R_3R_4s + R_3}{s^3\left(2C_3C_4L_3R_3 + C_3C_4L_3R_4\right) + s^2\left(C_3C_4R_3R_4 + C_3L_3\right) + s\left(C_3R_3 + 2C_4R_3 + C_4R_4\right) + 1}$$

10.72 INVALID-ORDER-72
$$Z(s) = \left(\infty, \ \infty, \ \frac{R_3\left(C_3L_3s^2+1\right)}{C_3L_3s^2+C_3R_3s+1}, \ L_4s+\frac{1}{C_4s}, \ \infty, \ \infty\right)$$

$$H(s) = \frac{C_3C_4L_3L_4R_3s^4+R_3+s^2\left(C_3L_3R_3+C_4L_4R_3\right)}{C_3C_4L_3L_4s^4+s^3\left(2C_3C_4L_3R_3+C_3C_4L_4R_3\right)+s^2\left(C_3L_3R_3+C_4L_4\right)+s\left(C_3R_3+2C_4R_3\right)+1}$$

10.73 INVALID-ORDER-73
$$Z(s) = \left(\infty, \ \infty, \ \frac{R_3\left(C_3L_3s^2+1\right)}{C_3L_3s^2+C_3R_3s+1}, \ \frac{L_4s}{C_4L_4s^2+1}, \ \infty, \ \infty\right)$$

$$H(s) = \frac{C_3L_3L_4R_3s^3 + L_4R_3s}{2C_3C_4L_3L_4R_3s^4 + C_3L_3L_4s^3 + L_4s + 2R_3 + s^2\left(2C_3L_3R_3 + C_3L_4R_3 + 2C_4L_4R_3\right)}$$

$$\textbf{10.74} \quad \textbf{INVALID-ORDER-74} \ \ Z(s) = \left(\infty, \ \infty, \ \frac{R_3\left(C_3L_3s^2+1\right)}{C_3L_3s^2+C_3R_3s+1}, \ L_4s + R_4 + \frac{1}{C_4s}, \ \infty, \ \infty \right)$$

$$H(s) = \frac{C_3C_4L_3L_4R_3s^4 + C_3C_4L_3R_3R_4s^3 + C_4R_3R_4s + R_3 + s^2\left(C_3L_3R_3 + C_4L_4R_3\right)}{C_3C_4L_3L_4s^4 + s^3\left(2C_3C_4L_3R_3 + C_3C_4L_3R_4 + C_3C_4L_4R_3\right) + s^2\left(C_3C_4R_3R_4 + C_3L_4R_4\right) + s\left(C_3R_3 + 2C_4R_3 + C_4R_4\right) + 1 }$$

$$\textbf{10.75} \quad \textbf{INVALID-ORDER-75} \ \ Z(s) = \left(\infty, \ \infty, \ \frac{R_3\left(C_3L_3s^2+1\right)}{C_3L_3s^2+C_3R_3s+1}, \ \frac{L_4R_4s}{C_4L_4R_4s^2+L_4s+R_4}, \ \infty, \ \infty\right) \\ H(s) = \frac{C_3L_3L_4R_3R_4s^3+L_4R_3R_4s}{2C_3C_4L_3L_4R_3R_4s^4+2R_3R_4+s^3\left(2C_3L_3L_4R_3+C_3L_3L_4R_4\right)+s^2\left(2C_3L_3R_3R_4+C_3L_4R_3R_4\right)+s\left(2L_4R_3+L_4R_4\right)}$$

10.76 INVALID-ORDER-76
$$Z(s) = \left(\infty, \ \infty, \ \frac{R_3\left(C_3L_3s^2+1\right)}{C_3L_3s^2+C_3R_3s+1}, \ \frac{C_4L_4R_4s^2+L_4s+R_4}{C_4L_4s^2+1}, \ \infty, \ \infty\right)$$

$$H(s) = \frac{C_3C_4L_3L_4R_3R_4s^4 + C_3L_3L_4R_3s^3 + L_4R_3s + R_3R_4 + s^2\left(C_3L_3R_3R_4 + C_4L_4R_3R_4\right)}{2R_3 + R_4 + s^4\left(2C_3C_4L_3L_4R_3 + C_3C_4L_3L_4R_4\right) + s^3\left(C_3C_4L_4R_3R_4 + C_3L_3L_4\right) + s^2\left(2C_3L_3R_3R_4 + C_3L_4R_3 + 2C_4L_4R_3 + C_4L_4R_4\right) + s\left(C_3R_3R_4 + L_4\right)}$$

$$\textbf{10.77} \quad \textbf{INVALID-ORDER-77} \ \ Z(s) = \left(\infty, \ \infty, \ \frac{R_3\left(C_3L_3s^2 + 1 \right)}{C_3L_3s^2 + C_3R_3s + 1}, \ \frac{R_4\left(C_4L_4s^2 + 1 \right)}{C_4L_4s^2 + C_4R_4s + 1}, \ \infty, \ \infty \right) \\ H(s) = \frac{C_3C_4L_3L_4R_3R_4s^4 + R_3R_4 + s^2\left(C_3L_3R_3R_4 + C_4L_4R_3R_4 \right)}{2R_3 + R_4 + s^4\left(2C_3C_4L_3L_4R_3 + C_3C_4L_3L_4R_4 \right) + s^3\left(2C_3C_4L_3R_3R_4 + C_3C_4L_4R_3R_4 \right) + s^2\left(2C_3L_3R_3 + C_3L_4R_3 + C_4L_4R_3 + C_4L_4R_3 + C_4L_4R_4 \right) + s\left(C_3R_3R_4 + 2C_4R_3R_4 \right) }$$

11 PolynomialError