# Prediction of Airfoil Performance Parameters using Neural Network

## Siddharth Ghiya, Raghav Sood and Rahul Sharma



#### **ABSTRACT**

Conventional CFD software take huge time to solve for airfoil flow. For reducing that time to calculate lift coefficient, we have employed a Convolutional Neural Network as well as a Fully-connected Neural Network. CFD solvers have high-dimensional non-linearity, therefore if our network can learn those nonlinearities, it can produce great results in numerous applications.

## PROBLEM FORMULATION

Our objective is two-fold: lift coefficient estimation using first, NACA digits and second, airfoil images. For both goals, NACA 4-digit series was then used to estimate lift coefficient data from Java Foil.

#### DATASET GENERATION

UIUC Airfoil Database is used for Airfoil geometries, whereas coefficient data for each NACA 4digit profile is generated, by using JavaFoil. The database has about 1600 profiles; selected NACA are 28. Data was pre-processed by resizing NACA digits to 42×1 one-hot tensor(10 for each and one for Re,  $\alpha$ , after normalizing). After data multiple augmentation using  $\alpha(\pm 20^{\circ})$  & Re(30,000-6,430,000), the dataset has 15,000 training & 5,000 testing data.



#### NETWORK DESCRIPTION

Parameter estimation is a **regression** problem, and thus our model, the Fully-Connected uses **Mean Squared Error** as the loss measure. The output is a single value i.e. lift coefficient. Also, tanh is used in FC layers whereas ReLU is used in CNN.



#### RESULTS



The above graphs indicate the train and test losses for FC(left) and CNN(right), and the below indicate predicted vs true lift Coefficient.



### CONCLUSIONS AND FUTURE SCOPE

Hence, both networks(preferably CNN) could be used over NACA 4-digit series. In Future, other Airfoils apart from NACA can be trained on the CNN network and also the lift coefficient data can be generated from high-end CFD solver.