

Frederik Mallmann-Trenn 6CCS3AIN

- Chances are you would play a mixed strategy.
- You would:
  - sometimes play rock,
  - · sometimes play paper; and
  - sometimes play scissors.
- A fixed/pure strategy is easy for an adaptive player to beat.

- A mixed strategy is just a probability distribution across a set of pure strategies.
- So, for a game where agent i has two actions  $a_1$  and  $a_2$ , a mixed strategy for i is a probability distirbution:

$$MS_i = \{P(a_1), P(a_2)\}$$

• Given this mixed strategy, when i comes to play, they pick action  $a_1$  with probability  $P(a_1)$  and  $a_2$  with probability  $P(a_2)$ .

- To determine the mixed strategy, i can compute the **best values** of  $P(a_1)$  and  $P(a_2)$ .
- These will be the values which **give** *i* **the highest expected payoff** given the options that *j* can choose and the joint payoffs that result.
- We could write down the expected payoffs of different mixed strategies and pick the one that optimises expected payoff.
- There is also a simple graphical method which works for very simple cases.
- Will look at this method next.

Let's consider the payoff matrix:

|   |       | j     |    |       |    |  |  |
|---|-------|-------|----|-------|----|--|--|
|   |       | $a_3$ |    | $a_4$ |    |  |  |
|   | $a_1$ |       | -3 |       | 1  |  |  |
| i |       | 3     |    | -1    |    |  |  |
|   | $a_2$ |       | 0  |       | -1 |  |  |
|   |       | 0     |    | 1     |    |  |  |

- We want to compute mixed strategies to be used by the players.
- That means decide  $P(a_1)$  and  $P(a_2)$  etc.

• *i*'s analysis of this game would be something like this.



- Consider it from i's perspective. Let's say you know that j plays  $a_3$ .
- i's payoff will be 3 or 0 depending on whether i picks  $a_1$  or  $a_2$ .
- The expected payoff therefore varies along the line, as  $P(a_1)$  varies from 0 to 1.



- Consider it from i's perspective. Let's say you know that j plays  $a_4$ .
- i's payoff will be -1 or 1 depending on whether i picks  $a_1$  or  $a_2$ .
- The expected payoff therefore varies along the line, as  $P(a_1)$  varies from 0 to 1.



- Where the lines intersect, i has the same expected payoff whatever j does.
- This is a rational choice of mixed strategy.

 $\mathbf{I}$  j can do the same kind of analysis:



This analysis will help i and j choose a mixed strategy in zero-sum games.



(Archives of the Institute of Advanced Study, Princeton)

■ This approach is due to von Neumann.

#### General sum games

- Battle of the Outmoded Gender Stereotypes
  - aka Battle of the Sexes

|      | this |   | that |   |  |
|------|------|---|------|---|--|
| this |      | 1 |      | 0 |  |
|      | 2    |   | 0    |   |  |
| that |      | 0 |      | 2 |  |
|      | 0    |   | 1    |   |  |



(Time-Life/Getty)

- Game contains elements of cooperation and competition.
- The interplay between these is what makes general sum games interesting.

## Negotiation

- Interplay between cooperation and competition leads to negotiation
- See, for example, the work of Sarit Kraus.



(law-train.eu)

- Earlier we introduced the notion of Nash equilibrium as a solution concept for general sum games.
- (We didn't describe it in exactly those terms.)
- Looked at pure strategy Nash equilibrium.
- Issue was that not every game has a pure strategy Nash equilibrium.

For example:

|   | j |   |   |   |   |  |
|---|---|---|---|---|---|--|
|   |   | D |   | C |   |  |
|   | D |   | 2 |   | 1 |  |
| i |   | 1 |   | 2 |   |  |
|   | C |   | 0 |   | 1 |  |
|   |   | 2 |   | 1 |   |  |

■ Has no pure strategy NE.

- The notion of Nash equilibrium extends to mixed strategies.
- And every game has at least one mixed strategy Nash equilibrium.

■ For a game with payoff matrices A (to i) and B (to j), a mixed strategy  $(x^*, y^*)$  is a Nash equilibrium solution if:

$$\forall x, x^*Ay^{*T} \geq xAy^{*T}$$

$$\forall y, x^*By^{*T} \geq x^*By^T$$

- In other words,  $x^*$  gives a higher expected value to i than any other strategy when j plays  $y^*$ .
- Similarly,  $y^*$  gives a higher expected value to j than any other strategy when i plays  $x^*$ .

 Unfortunately, this doesn't solve the problem of which Nash equilibrium you should play.