Common Vectors and Matrices

Name	Definition	Notation	Example
Scalar	p = n = 1	a,b	1
Column Vector	p = 1	a,b	$\begin{pmatrix} 1 \\ 2 \end{pmatrix}$
Row Vector	n = 1	$\boldsymbol{a}^T,\boldsymbol{b}^T$	(1, 2)
Unit Vector	$\begin{pmatrix} 1, & \cdots, & 1 \end{pmatrix}^T$	1_n	$\begin{pmatrix} 1 \\ 1 \end{pmatrix}$
Zero Vector	$\begin{pmatrix} 0, & \cdots, & 0 \end{pmatrix}^T$	0_n	$\begin{pmatrix} 0 \\ 0 \end{pmatrix}$
Square Matrix	n = p	$oldsymbol{A}_{pxp}$	$\begin{pmatrix} 1 & 3 \\ 4 & 5 \end{pmatrix}$
Diagonal Matrix	$a_{ij} = 0$ for $i \neq j$; $n = p$	$diag(a_{ii})$	$\begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix}$
Identity Matrix	$diag(1,\cdots,1)$	$oldsymbol{I}_p$ or $oldsymbol{I}$	$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$
Unit Matrix	$a_{ij} = 1; n = p$	$1_n 1_n^T$	$\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$
Symmetric Matrix	$a_{ij} = a_{ji}$	_	$\begin{pmatrix} 3 & 2 \\ 2 & 5 \end{pmatrix}$
Null Matrix	$a_{ij} = 0$	0_p or 0	$\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$
Upper Triangular Matrix	$a_{ij} = 0 \text{ for } j < i$	-	$ \begin{pmatrix} 3 & 2 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & 0 \end{pmatrix} $
Idempotent Matrix	$oldsymbol{A}oldsymbol{A} = oldsymbol{A}$	_	$ \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1/2 & 1/2 \\ 0 & 1/2 & 1/2 \end{pmatrix} $
Orthogonal Matrix	$m{A}m{A}^T = cm{I}$	_	$\begin{pmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ 1/\sqrt{2} & 1/\sqrt{2} \end{pmatrix}$

Matrix Operations

Using the notation described earlier:

1.
$$A^T = (a_{ji})$$

$$2. \ \boldsymbol{A} + \boldsymbol{B} = \left(a_{ij} + b_{ij}\right)$$

3.
$$\mathbf{A} - \mathbf{B} = (a_{ij} - b_{ij})$$

4.
$$cA = (ca_{ij})$$

5.
$$AB| = A|_{n \times p} B_{p \times m} = C_{n \times m} = \left(\sum_{i=1}^p a_{ij} b_{jk}\right)$$
 Note: $AB \neq BA$

6.
$$(\boldsymbol{A} + \boldsymbol{B})^T = \boldsymbol{A}^T + \boldsymbol{B}^T$$

7.
$$(A + B) = (B + A)$$

8.
$$A(B+C) = AB + AC$$

9.
$$A(BC) = (AB)C$$

10.
$$({\bf A}^T)^T = {\bf A}$$

11.
$$(\boldsymbol{A}\boldsymbol{B})^T = \boldsymbol{B}^T \boldsymbol{A}^T$$

12.
$$(A + B)C = AC + BC$$

13.
$$(A - B)(C - D) = AC - BC - AD + BD$$

14.
$$ABC + ADC = A(B+D)C$$

15.
$$x^T x - x^T A x = x^T (x - A x) = x^T (I - A) x$$

16.
$$\mathbf{a}^T \mathbf{a} = \sum_{j=1}^n a_j^2; \quad \mathbf{a} \mathbf{a}^T \begin{pmatrix} a_1^2 & a_1 a_2 & \cdots & a_1 a_n \\ a_2 a_1 & a_2^2 & \cdots & a_2 a_n \\ \vdots & \vdots & \ddots & \vdots \\ a_n a_1 & a_n a_2 & \cdots & a_n^2 \end{pmatrix}$$

17.
$$(x - y)^T (x - y) = x^T x - 2x^T y + y^T y$$

18.
$$(A - B)^T (A - B) = A^T A - A^T B - B^T A + B^T B$$

19.
$$(A - B)^2 = A^2 - AB - BA + B^2$$

20.
$$IA = AI = A$$

21. Quadratic Form:
$$\mathbf{y}^T \mathbf{A} \mathbf{y} = \sum_i a_{ii} y_i^2 + \sum_{i \neq j} a_{ij} y_i y_j$$

22.
$$\mathbf{x}^T \mathbf{A} \mathbf{y} = \sum_{ij} a_{ij} x_i y_j$$

Properties of Trace

1.
$$tr(c\mathbf{A}) = ctr(\mathbf{A})$$
 for $\mathbf{A}_{n \times n}$

2.
$$tr(\mathbf{A} \pm \mathbf{B}) = tr(\mathbf{A}) \pm tr(\mathbf{B})$$
 for $\mathbf{A}_{n \times n}$ and $\mathbf{B}_{n \times n}$

3.
$$tr(\mathbf{AB}) = tr(\mathbf{BA})$$
 for $\mathbf{A}_{n \times p}$ and $\mathbf{B}_{p \times n}$

4.
$$tr(\mathbf{B}^{-1}\mathbf{A}\mathbf{B}) = tr(\mathbf{A})$$
 for $\mathbf{A}_{n \times n}$ and $\mathbf{B}_{n \times n}$

5.
$$tr(\mathbf{A}\mathbf{A}^T) = \sum_{i=1}^n a_{ii}^2$$
 for $\mathbf{A}_{n \times n}$

6.
$$tr(\boldsymbol{x}^T \boldsymbol{A} \boldsymbol{y}) = \boldsymbol{x}^T \boldsymbol{A} \boldsymbol{y}$$

7.
$$tr(\mathbf{ABC}) = tr(\mathbf{BCA}) = tr(\mathbf{CBA})$$

Properties of Rank

1.
$$0 \le rank(\mathbf{A}) \le min(n, p)$$
 for $\mathbf{A}_{n \times p}$

2.
$$rank(\mathbf{A}_{n\times n}) = n$$
 only if \mathbf{A} is non-singular.

3.
$$rank(\mathbf{A}) = rank(\mathbf{A}^T)$$

4.
$$rank(\mathbf{A}^T \mathbf{A}) = rank(\mathbf{A})$$

5.
$$rank(\mathbf{A} + \mathbf{B}) \le rank(\mathbf{A}) + rank(\mathbf{B})$$

6.
$$rank(\mathbf{AB}) \leq min(rank(\mathbf{A}), rank(\mathbf{B}))$$

7.
$$rank(\boldsymbol{ABC}) = rank(\boldsymbol{B})$$
 for nonsingular $\boldsymbol{A}, \boldsymbol{C}$

Properties of Determinant

For $\boldsymbol{A}_{n\times n}$ and $\boldsymbol{B}_{n\times n}$

$$1. |c\mathbf{A}| = c^n |\mathbf{A}|$$

2.
$$|\mathbf{A}^{-1}| = |\mathbf{A}|^{-1}$$

3.
$$|AB| = |A||B|$$

4.
$$|\mathbf{A}^{-1}| = |\mathbf{A}|^{-1}$$

5. If we can partition
$$\mathbf{A} = \begin{pmatrix} \mathbf{A}_{11} & \mathbf{0} \\ \mathbf{0} & \mathbf{A}_{22} \end{pmatrix}$$

$$\Rightarrow |\mathbf{A}| = |\mathbf{A}_{11}||\mathbf{A}_{22}|$$