

Hardware Support for Time Protection

seL4 Summit 2024, Sydney, Australia, 2024-10-17

Nils Wistoff Gernot Heiser Luca Benini

nwistoff@iis.ee.ethz.ch gernot@unsw.edu.au lbenini@iis.ee.ethz.ch

PULP Platform

Open Source Hardware, the way it should be!

Team of 100 people in ETH Zürich – University of Bologna

Research on open-source energy-efficient computing

PULP open-source hardware ecosystem

Peripherals	
JTAG	SPI
UART	I2S
DMA	GPIO

Platforms

Single core

- PULPino, PULPissimo
- Cheshire

- OpenPULP
- ControlPULP

- Hero, Carfield, Astral
- Occamy, Mempool

IOT

Accelerators and ISA extensions

XpulpNN, XpulpTNN ITA (Transformers)

RBE, NEUREKA (QNNs) FFT (DSP)

github.com/pulp-platform

(FP-Tensor)

In 11 years PULP team has designed more than 60 chips

Spectre: Exploiting timing channels to leak data [1]

The chips are dow

Two security flaws in modern chips cause big headaches for the tech business

Fixing the underlying problems will take a long time

Jan 4th 2018

Science &

technology

IT WAS a one-two punch for the computer industry. January 3rd saw the disclosure of two serious flaws in the design of the processors that power most of the world's computers. The first, appropriately called Meltdown, affects only chips made by Intel, and makes it possible to dissolve the virtual walls between the digital memory used by different programs, allowing hackers to steal sensitive data, such as passwords or a computer's encryption keys. The second,

A Critical Intel Flaw Breaks Basic Security for Most Computers

A Google-led team of researchers has found a critical chip flaw that developers are scrambling to patch in millions of computers.

Speculative Execution

Timing Channel

MICROSOFT TECH INTEL

Intel's processors have a security bug and the fix could slow down PCs

By Tom Warren | @tomwarren | Jan 3, 2018, 8:45am EST

[1] Kocher et al., Spectre Attacks: Exploiting Speculative Execution, IEEE S&P 2019

116

Timing channel

Spatial and temporal partitioning

Partitioning a system on chip

Partitioning the CPU

CPU1

CVA6: 64-bit, application-class, 6-stage, in-order RISC-V core

Interconnect

Last-level

cache

DRAM

CPU0

Peripherals

Partitioning the CPU

CPU1

CPU0

ETH zürich

OpenC910: 64-bit, application-class, **12-stage**, **superscalar**, **out-of-order** RISC-V core

Chen et al., ISCA'20

Interconnect

Last-level

cache

DRAM

Peripherals

Partitioning the interconnect

Partitioning the last-level cache

ETH zürich

Partitioning DRAM

AutoCC: A formal tool to find timing channels [MICRO'23]

Carfield: Automotive platform for MCS

CVA6 with fence.t

(16.0mm², 600Hz@0.8V)

Constant-time off-chip memory

Conclusion

- Closing timing channels requires HW/SW co-design.
- By exposing HW partitioning mechanisms, all on-core timing channels can be closed at minimal performance impact (1.0%) and negligible hardware overhead.
- Proven **empirically** on seL4, using **formal** verification, and in **silicon**!
- DRAM and interconnect still under investigation
 - further need for HW/SW co-design expected.
- To be specified in RISC-V

Microarchitecture Side Channels Special Interest Group
Timing Fences Task Group

PULP Platform

Open Source Hardware, the way it should be!

Nils Wistoff **Gernot Heiser** Luca Benini

nwistoff@iis.ee.ethz.ch gernot@unsw.edu.au lbenini@iis.ee.ethz.ch

Institut für Integrierte Systeme – ETH Zürich

DEI – Università di Bologna

pulp-platform.org

