Q7 3.1 Rewrite systems, rewriting of terms, definition.

```
But
```

- automatiser les preuves
- évaluer les expressions (en connaissant les propriétés(termes) de cette expression)
- (- prototyping. On a la définition du programme voulu, et on vérifie que c'est bien ce qu'on veut faire)

->transformer les équations (axiomes) en rewrite rules a=b-> a est réécrit en b

Ex : not true = false \rightarrow not(true) \sim_1 false

Problèmes:

- Quelle direction? (réécrire le terme en un terme de plus faible complexité)
- Ensemble des rewriting rules est complet?
- terminaision (nombre fini d'étapes?)
- confluence (une solution finale (normale) unique pour chaque réécriture)

Abstract rewriting system : adaptation de la théorie équationelle :

Avant : théorèmes déduits des axiomes

Ici : théorèmes obtenus en transformant un terme en un autre

Definition:

Soit $\Sigma = \langle S,F \rangle$ une signature, X un S-sorted set de variables

-> un ARS est A=($T_{\Sigma},x,->$), avec -> $\subseteq T_{\Sigma},x \times T_{\Sigma},x$

Décomposé en steps I~r∈->

On évite la symétrie et la réflexivité sinon on risque d'avoir qqch qui ne se termine pas

Closure : système obtenu à partir des règles basiques en appliquant :

La substitution

La substitutivité

La transitivité (Si (t,t') et $(t',t'') \in ->^* => (t,t'') \in ->^*)$

Closure(A)=($T_{\Sigma,X}$,->*)

Rew $\Sigma, X \subseteq T_{\Sigma}(X) \times T_{\Sigma}(X)$ ensemble des rewrite rules

Déduction de théorèmes depuis le ARS :

2 termes sont égaux dans cette théorie si :

Si $t1=t2 \in Th_{-}(Spec) <=> \exists t \in T_{\Sigma}(X)$ tel que t1->*t AND t2->*t

(Théorème valide dans ARS => valide dans la théorie équationelle $Th_{->}(Spec) \subseteq Th_{eq}(Spec)$)

Processus pour le rewriting :

- filtering : choix de la règle : not(not(true))
- substitution : On met la partie droite de la règle correspondante : ~not(false)

Rewriting terms: steps

Soit $I \sim r$ une rewrite rule avec $I, r \in T_{\Sigma}(X)$

- filter(t,I) = $<\sigma$,c><=> $\exists \sigma \in X_s$ - $>(T_{\Sigma,X})_s$, $\exists c tel que$

 $t=c[\sigma I]$ (t = contexte appliqué à I) et t'=c[σI]

- <t,t'>∈Rew_{l~r} un rewrite step

contexte c = terme avec un trou dedans où on peut remplacer le sous-terme. Ex: not(not(true))

I = not(true), $\sigma = une substitution, <math>t = not(not(true))$, t' = not(false), r = false

La procédure n'est pas unique (non déterministe) car le choix du contexte pas unique Ex: and(not(true), not(false))

```
Exemple : S=\{Nat, Bool\}, X_{Nat} = \{x,y,z\}, X_{Bool} = \{a,b\}
```

OP={+:nat,nat->nat, 0:->nat, 1:->nat, true:->Bool, false:->Bool, >:nat,nat->Bool}

Axiomes: (0)x+0=x(1)x+Succ(y)=Succ(x+y)(2)1=Succ(0)(3)(Succ(x)>0)=true

- -> Rewrite rules : $x+0\sim_0 x$, $x+Succ(y)\sim_1 Succ(x+y)$, $1\sim_2 Succ(0)$, $(Succ(x)>0)\sim_3 true$ Rewriting terms :
- $-1>0\sim_2 Succ(0)>0\sim_3 true$
- $-1+1\sim_2 Succ(0)+1\sim_2 Succ(0)+Succ(0)\sim_{1, x=Succ(0), y=0} Succ(Succ(0)+0)\sim_{0, x=Succ(0)} Succ(Succ(0))$