Mathematical Proofs for The Ontological Necessity and Transcendental Computability

Quantum Theology Research Group

February 15, 2025

Abstract

This document presents rigorous mathematical proofs supporting the quantum computational approach to demonstrating the necessity of a self-existent being. The proofs span quantum mechanics, modal logic, and statistical analysis.

Contents

1 Quantum Contingency Framework

1.1 Fundamental Definitions

Definition 1.1 (Quantum Contingency). A quantum state $|\psi\rangle$ is contingent if it can be expressed as:

$$|\psi\rangle = U(t) |\phi\rangle \tag{1}$$

where U(t) is a time-evolution operator dependent on other quantum states.

Definition 1.2 (Necessity Operator). The quantum necessity operator \hat{N} is defined as:

$$\hat{N} = \mathbb{1} - \sum_{i} \hat{C}_{i} \hat{C}_{i}^{\dagger} \tag{2}$$

where \hat{C}_i are contingency operators.

1.2 Core Theorems

Theorem 1.3 (Quantum Dependency Chain). For any finite chain of contingent states $\{|\psi_i\rangle\}_{i=1}^n$, the total system entropy satisfies:

$$S_{\text{total}} \ge \sum_{i=1}^{n} S(\rho_i) + I(1:2:...:n)$$
 (3)

where I(1:2:...:n) is the multipartite mutual information.

Proof. Consider the density matrix $\rho_{\text{total}} = |\Psi\rangle\langle\Psi|$ where:

$$|\Psi\rangle = \frac{1}{\sqrt{n}} \sum_{i=1}^{n} |\psi_i\rangle \otimes |\psi_{i+1}\rangle$$
 (4)

The entropy is:

$$S_{\text{total}} = -\text{Tr}(\rho_{\text{total}} \ln \rho_{\text{total}}) \tag{5}$$

$$= -\sum_{i} \lambda_{i} \ln \lambda_{i} \tag{6}$$

$$\geq \sum_{i=1}^{n} S(\rho_i) + I(1:2:...:n)$$
 (7)

Theorem 1.4 (Infinite Regress Instability). Any purely contingent quantum system exhibits exponential growth in entropy:

$$\lim_{t \to \infty} S(t) = \infty \tag{8}$$

2 Modal Logic Framework

2.1 Quantum-Modal Correspondence

Theorem 2.1 (Quantum-Modal Isomorphism). There exists an isomorphism Φ between quantum states and Kripke frames:

$$\Phi: \mathcal{H} \to (W, R) \tag{9}$$

preserving the following properties:

$$\Phi(|\psi\rangle) = w \in W \tag{10}$$

$$\Phi(U|\psi\rangle) = wRw' \tag{11}$$

$$\Phi(\langle \psi | \psi \rangle) = \text{Accessibility} \tag{12}$$

3 Statistical Analysis

3.1 Confidence Metrics

Theorem 3.1 (Necessity Detection). A quantum system requires a necessary being if:

$$P(\text{necessary}|\text{data}) = \frac{1}{Z} \exp\left(-\beta \sum_{i} w_{i} M_{i}\right) > \theta$$
 (13)

where:

- M_i are measurement outcomes
- w_i are weights
- β is inverse temperature
- Z is partition function
- θ is threshold (typically 0.95)

4 Advanced Derivations

4.1 Quantum Circuit Decomposition

The total unitary evolution:

$$U_{\text{total}} = \mathcal{T} \exp\left(-\frac{i}{\hbar} \int_0^t H(t')dt'\right)$$
 (14)

can be decomposed using Trotter-Suzuki formula:

$$U_{\text{total}} \approx \prod_{k=1}^{M} \exp\left(-\frac{iH_k\Delta t}{\hbar}\right) + O(\Delta t^2)$$
 (15)

4.2 Entanglement Monotones

For pure states:

$$E(|\psi\rangle) = S(\operatorname{Tr}_B |\psi\rangle \langle \psi|) \tag{16}$$

For mixed states (convex roof extension):

$$E(\rho) = \min_{\{p_i, |\psi_i\rangle\}} \sum_{i} p_i E(|\psi_i\rangle)$$
(17)