Organizační úvod

TODO!!!

Úvod

TODO!!!

Věta 0.1 (Spojitý obraz kompaktu)

 $Necht(P,\varrho)\ a\ (Q,\tau)\ jsou\ metrické\ prostory\ a\ f:P\to Q\ je\ spojité\ zobrazení.\ Necht\ K\subset P\ je\ kompaktní\ množina.\ Potom\ f(K)\ je\ kompaktní.$

Důkaz

Nechť $y_n \in f(K)$. Pak $\exists x_n \in K$, $f(x_n) = y_n$. Z definice kompaktnosti $\exists x \in K, x_{n_k} \to x \in K$. Podle Heineho věty $f(x_{n_k}) = f(y_{n_k}) \to f(x) \in f(K)$.

Definice 0.1

Necht (\mathbb{P}, ϱ) a (\mathbb{Q}, τ) jsou metrické prostory, $K \subset \mathbb{P}$ a $f: K \to \mathbb{Q}$. Řekneme, že f je na K stejnoměrně spojitá, pokud

$$\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall x, y \in K : (\rho(x, y) < \delta \implies \tau(f(x), f(y))).$$

Věta 0.2 (O vztahu spojitosti a stejnoměrné spojitosti na MP)

Nechť (\mathbb{P}, ϱ) a (\mathbb{Q}, τ) jsou MP, $K \subset \mathbb{P}$ je kompaktní a nechť $f: K \to \mathbb{Q}$ je spojitá. Pak f je stejnoměrně spojitá na K.

 $D\mathring{u}kaz$

Nechť f je spojitá, ale ne stejnoměrně. Potom

$$\exists \varepsilon > 0 \ \forall \delta > 0 \ \exists x, y \in K : \rho(x, y) < \delta \wedge \tau (f(x), f(y)) > \varepsilon.$$

Zvolíme $\delta_n = \frac{1}{n}$ a pro každé si najdeme x_n, y_n . K je kompaktní, tedy existuje podposloupnost $x_{n_k} \to x_0 \in K$.

$$\varrho(y_{n_k}, x_0) \le \varrho(x_{n_k}, y_{n_k}) + \varrho(x_n, x_0) \le \frac{1}{n_k} + \varrho(x_n, x_0) \to 0 \implies y_{n_k} \to x_0$$

Z Heineho věty $f(x_{n_k}) \to f(x_0)$ a $f(y_{n_k}) \to f(x_0)$. Ale my máme, že jsou od sebe vzdáleny o ε . $\not =$

1 Úplné metrické prostory

Definice 1.1 (Cauchyovská posloupnost)

Nechť (\mathbb{P}, ϱ) je metrický prostor a $\{x_n\}_{n=1}^{\infty}$ je posloupnost bodů z \mathbb{P} . Řekneme, že x_n splňuje Bolzano-Cauchyovu podmínku (případně, že je cauchyovská), jestliže platí:

$$\forall \varepsilon > 0 \ \exists n_0 \in \mathbb{N} \ \forall m, n \in \mathbb{N}, m, n \geq n_0 : \varrho(x_n, x_m) < \varepsilon.$$

Důsledek

Každá konvergentní posloupnost je cauchyovská.

Definice 1.2 (Úplný prostor)

Řekneme, že metrický prostor (\mathbb{P},ϱ) je úplný, jestliže každá cauchy
ovská posloupnost je konvergentní.

Věta 1.1 (Vztah kompaktnosti a úplnosti)

 $Necht'(\mathbb{P}, \varrho)$ je MP a \mathbb{P} je kompaktní. Pak \mathbb{P} je úplný metrický prostor.

 $D\mathring{u}kaz$

Nechť $\{x_n\}_{n=1}^{\infty}$ je cauchyovská posloupnost. \mathbb{P} kompaktní $\Longrightarrow \exists x_{n_k} \to x \in \mathbb{P}$. Nechť $\varepsilon > 0$. Najdu n_0 z BC podmínky. Z $x_n \to x \exists k_0 \forall k \geq k_0 : \varrho(x_{n_k}, x) < \varepsilon$. Nalezneme n_k , $k \geq k_0$, $n_k \geq n_0$. Pak

$$\forall n \geq n_0 : \varrho(x_n, x) \leq \varrho(x_n, x_{n_k}) + \varrho(x_{n_k}, x) < 2\varepsilon.$$

1

Věta 1.2 (Úplnost a prostor spojitých funkcí)

 $Metrický\ prostor\ C([0,1])\ se\ supremovou\ metrikou\ je\ úplný.$

 \Box $D\mathring{u}kaz$

Necht $\{f_n\}_{n=1}^{\infty}$ je cauchyovská posloupnost. Tedy

$$\forall \varepsilon > 0 \ \exists n_0 \ \forall m, n \ge n_0 : \varrho(f_n, f_m) = \sup_{x \in [0,1]} |f_n(x) - f_m(x)| < \varepsilon.$$
 (*)

Zvolme $x \in [0, 1]$ pevné. Potom máme posloupnost reálných čísel místo funkcí, tedy z BC podmínky v \mathbb{R} je $f_n(x)$ cauchyovská, tedy existuje $\lim_{n\to\infty} f_n(x) = f(x) \in \mathbb{R}$. Takto jsme si zadefinovali novou funkci f.

 $f_n \to f$. Provedeme limitu $n \to \infty$ na (*).

$$\forall \varepsilon > 0 \ \exists n_0 \ \forall m, n \ge n_0 : \sup_{x \in [0,1]} |f(x) - f_n(x)| \le \varepsilon.$$

Tedy $\varrho(f, f_n) \leq \varepsilon \implies f_n \to f$.

f je spojitá: Nechť $y \in [0,1]$. Chceme dokázat, že f je spojitá v y. Nechť $\varepsilon > 0$. Z BC $\exists n_0 \ \forall x \in [0,1]: |f_n(x) - f_m(x)| < \varepsilon$. Zafixujeme n_0 . f_{n_0} je spojitá v y, tedy $\exists \delta > 0 \ \forall x \in [0,1], |x-y| < \delta: |f_{n_0}(x) - f_{n_0}(y)| < \varepsilon$. Nyní $\forall x \in [0,1], |x-y| < \delta$:

$$|f(x) - f(y)| \le |f(x) - f_{n_0}(x)| + |f_{n_0}(x) - f_n(y)| + |f_{n_0}(y) - f(y)| \le 3\varepsilon.$$

(Třetí člen dostaneme tak, že zafixujeme $m=n_0$ a n pošleme do nekonečna v BC podmínce výše.)

Věta 1.3 (Banachova, o kontrakci)

Nechť (\mathbb{P}, ϱ) je úplný MP a $T: \mathbb{P} \to \mathbb{P}$ je kontrakce (tedy $\exists \gamma \in (0,1) \ \forall x,y \in P: \varrho(T(x),T(y)) \leq \gamma \cdot \varrho(x,y)$). Pak existuje právě jedno $x \in \mathbb{P}$ tak, že T(x) = x.

 $D\mathring{u}kaz$

Zvolme $x_1 \in P$ libovolně. Definujeme indukcí $x_{n+1} = T(x_n)$. Tvrdíme, že x_n je cauchyovská, $\forall n \in \mathbb{N}$:

$$\varrho(x_{n+1}, x_n) = \varrho(T(x_n), T(x_{n+1})) \le \gamma \varrho(x_n, x_{n+1}) \le \gamma^2 \varrho(x_{n-1}, x_n) \le \ldots \le \gamma^n \varrho(x_1, x_2).$$

Nechť $\varepsilon > 0$, zvolme n_0 , aby $\varrho(x_2, x_1) \gamma^{n_0 - 1} \frac{1}{1 - \gamma} < \varepsilon$. Nyní $\forall m, n \geq n_0, m < n$:

$$\varrho(x_m, x_n) \le \varrho(x_{m+1}, x_m) + \ldots + \varrho(x_n, x_{n-1}) \le \varrho(x_1, x_2) \cdot (\gamma^{m-1} + \ldots + \gamma^{n-2}) \le$$

$$\le \varrho(x_2, x_1) \gamma^{n_0 - 1} \frac{1}{1 - \gamma}.$$

Tedy x_n je cauchyovská a má limitu.

Tvrdíme, že $T(x_n) \to T(x)$: T je spojité v x. K $\varepsilon > 0$ volme $\delta = \varepsilon$. Pak

$$\forall y \in B(x, \delta) : \varrho(x, y) < \delta \implies \varrho(T(x), T(y)) \le \gamma \cdot \varrho(x, y) \le \gamma \delta < \varepsilon.$$

Podle Heineho věty $x_n \to x \implies T(x_n) \to T(x)$. Víme, že $x_{n+1} = T(x_n)$, tj.

$$\lim_{n\to\infty} x_{n+1} = \lim_{n\to\infty} T\left(x_n\right).$$

Jednoxznačnost: Nechť $\exists x, y, T(x) = x$ a T(y) = y. Pak

$$\varrho(x,y) = \varrho(T(x),T(y)) \leq \gamma \cdot \varrho(x,y) \implies \varrho(x,y) = 0 \implies x = y.$$

Věta 1.4 (O převedení na integrální tvar)

Nechť $I \subset \mathbb{R}$ je otevřený interval, $x_0 \in I$, $f: I \times \mathbb{R} \to \mathbb{R}$ spojité a $y: I \to \mathbb{R}$ je spojitá. Pak y je řešení ODR y' = f(x, y(x)) na I s počáteční podmínkou $y(x_0) = y_0$ právě tehdy, když $y(x) = y_0 + \int_{x_0}^x f(s, y(s)) ds$, $\forall xz \in I$.

 $D\mathring{u}kaz$

 \Longrightarrow : víme y'(s)=f(s,y(s)) je spojité, tj. lze integrovat:

$$y(x) - y_0 = y(x) - y(x_0) = \int_{x_0}^x y'(s)ds = \int_{x_0}^x f(s, y(s))ds.$$

 \Leftarrow : zderivujeme (integrant je spojitý \Longrightarrow integrál lze zderivovat) y'(x) = f(x, y(x)). Zřejmě také $f(x_0) = y_0$.

Věta 1.5 (Picard)

Nechť $I \subset \mathbb{R}^2$ je otevřený interval a $(x_0, y_0) \in I$.

Poznámka

Stačí libovolná otevřená množina.

 $D\mathring{u}kaz$

Nechť $f: I \to \mathbb{R}$ je spojitá a lokálně lipschitzovská vůči Y. Pak existuje $(x_0 - \delta, x_0 + \delta)$ okolí x_0 a funkce y(x) definovaná na $(x_0 - \delta, x_0 + \delta)$ tak, že y(x) splňuje ODR y'(x, y(x)) na $(x_0 - \delta, x_0 + \delta)$ s počáteční podmínkou $y(x_0) = y_0$. Navíc y je jediné řešení na $(y_0 - \delta, y_0 + \delta)$.

 $D\mathring{u}kaz$

Zvolme $\delta, \Delta > 0$, aby $[x_0 - \delta, x_0 + \delta] \times [y_0 - \Delta, y_0 + \Delta] \subset I$. Definujeme

$$X = \{ y \in C([x_0 - \delta, x_0 + \delta]) | y(x) \in [y_0 - \Delta, y_0 + \Delta] \}.$$

Definujeme operátor $T: C([x_0-\delta,x_0+\delta]) \to C([x_0-\delta,x_0+\delta])$ tak, že $T[y](x)=y_0+\int_{x_0}^x f(s,y(s))ds$.

Klíčové pozorování: y řeší naši ODR $\Leftrightarrow T[y] = y$. (Z předchozí věty.)

X je úplný: Nejprve dokážeme, že X je <u>uzavřená</u> podmnožina $C([x_0 - \delta, x_0 + \delta])$: X lze zapsat (dokáže se velmi přímočaře) jako $\overline{B(y_0, \Delta)}$: Tj. X je uzavřená a úplnost se dědí na uzavřené podmnožiny.

Máme pevné $\delta, \Delta > 0$, že $A := [x_0 - \delta, x_0 + \delta] \times [y_0 - \Delta, y_0 + \Delta] \subset I$. f spojitá na tomto kompaktu $\Longrightarrow \exists M > 0, |f(x,y)| \leq M$ na A. Z lipschitzovskosti $\exists x > 0 : \forall [x,y] \in A, \forall [x,\tilde{y}]|f(x,y) - f(x,\tilde{y})| \leq K \cdot |y - \tilde{y}|$. Případným zmenšením $\delta > 0$ dosáhneme

$$\delta \le \min \left\{ \frac{\Delta}{M}, \frac{1}{2K} \right\}.$$

Ukážeme $T: X \to X: y \in X, y(x) \in [y_0 - \Delta, y_0 + \Delta].$

$$|T[y](x) - y_0| = |\int_{x_0}^x f(s, y(x))ds| \le |x - x_0|M \le \delta \cdot M \le \Delta.$$

$$\implies T[y](x) \in [y_0 - \Delta, y_0 + \Delta] \implies T[y] \in X.$$

Dokážeme, že je toto zobrazení kontrakce a pak už máme hotovo z věty výše. Kontrakce: Nechť $y, \tilde{y} \in X$ a $x \in [x_0 - \delta, x_0 + \delta]$.

$$T[y](x) - T[\tilde{y}](x)| = |\int_{x_0}^x (f(s, y(s)) - f(s, \tilde{y}(s)))ds| \le \int || \le f(s)| \le f(s) \le f(s)$$

$$\leq \int_{x_0}^x |K\cdot (y(s)-\tilde{y}(s))| ds < |x_0-x|\cdot K\cdot \sup_{s\in [x_0-\delta,x_0+\delta]} (y(s)-\tilde{y}(s)) \leq \delta\cdot K\cdot \varrho(y,\tilde{y}) \leq \frac{1}{2}\varrho(y,\tilde{y}).$$

Supremum dá
$$\varrho(T[y], T[\tilde{y}]) \leq \frac{1}{2}\varrho(y, \tilde{y}).$$

2 Funkce více proměnných

2.1 Úvodní definice a spojitost

Poznámka

Většina definice je jen "opakování" z letního semestru, nebo z definice spojitých funkcí na metrických prostorech.

Definice 2.1 (Funkce více reálných proměnných, vektorová funkce)

Nechť $M \subset \mathbb{R}^n$. Funkcí více reálných proměnných rozumíme zobrazení $f: M \to \mathbb{R}$.

Vektorovou funkcí více reálných proměnných rozumíme zobrazení $f:M\to\mathbb{R}^m,$ kde $m\in\mathbb{N}.$

Definice 2.2 (Eukleidovská vzdálenost)

Pro $[x_1,\dots,x_n],[y_1,\dots,y_n]\in\mathbb{R}^n$ definujeme eukleidovskou vzdálenost (metriku) jako

$$|x - y| = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}.$$

Definice 2.3 (Koule, prstencové okolí)

 $B(c,r) = \{x \in \mathbb{R}^n | |x-c| < r\}. \ P(c,r) = B(c,r) \setminus \{c\}.$

Definice 2.4 (Limita funkce)

Nechť $F:G\to\mathbb{R}$, kde $G\subseteq\mathbb{R}^n$ je otevřená. Řekneme, že f má v bodě $a\in G$ limitu rovnou $A\in\mathbb{R}^*$, jestliže platí

$$\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall x \in P(a, \delta) : f(x) \in B(A, \varepsilon).$$

Značíme $\lim_{x\to\infty} f(x) = A$.

Definice 2.5 (Spojitost)

Řekneme, že f je spojitá v a, jestliže $\lim_{x\to a} f(x) = f(a)$.

Definice 2.6 (Spojitost a limita vektorové funkce)

Spojitost a limitu vektorové funkce definujeme po složkách.

Poznámka

Zřejmě platí aritmetika limit, věta o dvou policajtech a věta o spojitosti složené funkce.

Definice 2.7 (Limita posloupnosti bodů)

$$x_j \in \mathbb{R}^n$$
, $\lim_{j \to \infty} x_j = a \in \mathbb{R}^n \Leftrightarrow \forall \varepsilon > 0 \ \exists j_0 \forall j \ge j_0 : |x_j - a| < \varepsilon$.

Poznámka

Následující větu lze dokázat analogicky věty výše.

Věta 2.1 (Heine)

Nechť $G \subset \mathbb{R}^n$ otevřená, $a \in G$, $A \in \mathbb{R}^*$ a $f : G \to \mathbb{R}$. Pak je ekvivalentní

- $\lim_{x\to a} f(x) = A$.
- $\forall \ posloupnost \ \{x_j\}_{j=1}^{\infty} \ splňující\ x_j \in G \setminus \{a\}, \ \lim_{j\to\infty} x_j = a \ platí \ \lim_{j\to\infty} f(x_j) = A.$

2.2 Parciální derivace a totální diferenciál

Definice 2.8 (Parciální derivace)

Nechť $G \subset \mathbb{R}^n$ je otevřená, $i \in [n], f: G \to \mathbb{R}$ a $x \in \mathbb{G}$. Parciální derivací funkce f v bodě x podle i-té proměnné nazveme

$$\frac{\partial f}{\partial x_i}(x) = \lim_{t \to 0} \frac{f(x_1, \dots, x_i + t, \dots, x_n) - f(x_1, \dots, x_n)}{t} = \lim_{t \to 0} \frac{f(x + t \cdot e_i) - f(x)}{t},$$

pokud tato limita existuje.

Definice 2.9 (Extrémy)

Necht $M \subset \mathbb{R}^n$, $f: M \to \mathbb{R}$ a $x_0 \in M$. Řekneme, že f nabývá v bodě x_0 svého minima (resp. lokálního minima, resp. maxima, lokálního maxima) vzhledem k M, jestliže $\forall x \in M: f(x) \geq f(x_0)$ (resp. $\exists \delta > 0 \ \forall x \in B(x_0, \delta)$, resp. $f(x) \leq f(x_0)$).

Věta 2.2 (Nutná podmínka existence extrému)

Nechť $G \subset \mathbb{R}^n$ je otevřená, $i \in [n]$, $a \in G$ a $f : G \to \mathbb{R}$. Má-li f v bodě a lokální minimum (maximum) a existuje-li $\frac{\partial f}{\partial x_i}(a)$, pak $\frac{\partial f}{\partial x_i}(a) = 0$.

Důkaz

Položme $h(t) = f(a+t \cdot e_i)$. Pak h je definováno na okolí 0. f má v a extrém, tedy h má v a extrém. Dále

$$h'(0) = \lim_{t \to 0} \frac{h(t) - h(0)}{t} = \lim_{t \to \infty} \frac{f(a + t \cdot e_i) - f(a)}{t} = \frac{\partial f}{\partial x_i}(a).$$

Podle Fermatovy věty je h'(0) = 0.

Definice 2.10 (Derivace ve směru)

Nechť $G\subset\mathbb{R}^n$ je otevřená, $f:G\to\mathbb{R},\ x\in G$ a $0\neq v\in\mathbb{R}^n$. Derivací funkce f v bodě $x\in G$ ve směru v nazveme

$$\frac{\partial f}{\partial v}(x) = \lim_{t \to 0} \frac{f(x + t \cdot v) - f(x)}{t},$$

pokud limita existuje.

Definice 2.11 (Totální diferenciál)

Necht G je otevřená, $f: G \to \mathbb{R}$ a $a \in G$. Řekneme, že lineární zobrazení $L: \mathbb{R}^n \to \mathbb{R}$ je totální diferenciál funkce f v bodě a, pokud $\lim_{h\to 0} \frac{f(a+h)-f(n)-L(h)}{|h|} = 0$.

Značíme $D_f(a)$ a hodnotu v bodě $h \in \mathbb{R}^n$ značíme $D_f(a)(h)$.

Poznámka

Lineární zobrazení $L: \mathbb{R}^n \to \mathbb{R}$ lze reprezentovat jako $L(h) = A_i h_1 + \ldots + A_n h_n$.

Ekvivalentně lze definovat jako $\lim_{x\to a}\frac{f(x)-f(a)-L(x-a)}{|x-a|}=0.$

Geometrický význam je, že lineární funkce f(a) + L(x-a) je velmi blízko původní funkce f(x) na okolí a.

Věta 2.3 (O tvaru totálního diferenciálu)

Nechť G je otevřené, $a \in G$ a $f: G \to \mathbb{R}$. Nechť existuje totální diferenciál f v bodě a. Pak existují parciální derivace $\frac{\partial f}{\partial x_i}(a)$ a pro všechna $h \in \mathbb{R}^n$ platí $D_f(a)(h) = \frac{\partial f}{\partial x_1}h_1 + \ldots + \frac{\partial f}{\partial x_n}h_n$. Navíc pro $\mathbf{o} \neq v \in \mathbb{R}^n$ platí $\frac{\partial f}{\partial v}(a) = D_f(a)(v)$.

Důkaz

Víme $\lim_{h\to 0} \frac{f(a+h)-f(a)-L(h)}{|h|}=0$. Speciálně pro $h=t\cdot e_i$:

$$0 = \lim_{t \to 0} \frac{f(a+t \cdot e_i) - f(a) - L(t \cdot e_i)}{t} = \lim_{t \to 0} \frac{f(a+t \cdot e_i) - f(a) - A_i \cdot t}{t} = \frac{\partial f}{x_i}(a) - A_i.$$

Tj.
$$\frac{\partial f}{\partial x_i}(a) = A_i$$
. Obdobně pro v .

TODO!!!

TODO!!!

Věta 2.4 (O přírůstku funkce)

Necht $G \subset \mathbb{R}^n$ je otevřená a $f: G \to \mathbb{R}$ má totální diferenciál v každém bodě G. Necht $a, b \in G$ a necht úsečka L spojující a, b je obsažena v G, tj. $L = \{(1-t) \cdot a + t \cdot b | t \in [0,1]\} \subset G$. Pak existuje $\zeta \in L$ tak, že $f(b) - f(a) = Df(\zeta) \cdot (b-a)$.

 $D\mathring{u}kaz$

Položme F(t) = f(a+t(b-a)). Podle Lagrangeovy věty $\exists \zeta_2 \in (0,1)$ tak, že $f(b) - f(a) = F(1) - F(0) = F'(\zeta_2)$. Položme $\zeta = a + \zeta_2(b-a)$.

Podle řetízkového pravidla $\frac{\partial F}{\partial t}(\zeta) = \sum_{j=1}^{n} \frac{\partial f}{\partial y_j}(\zeta)(b_j - a_j) = Df(\zeta)(b - a).$

2.3 Parciální derivace vyšších řádů

Definice 2.12

Nechť f má na otevřené množině $G \subset \mathbb{R}^n$ parciální derivaci

$$\frac{\partial f}{\partial x_i}, i \in [n],$$

pak definujeme pro $a \in G$ a $j \in [n]$ druhou parciální derivaci

$$\frac{\partial^2 f}{\partial x_i \partial x_i}(a) = \frac{\partial}{\partial x_j} \left(\frac{\partial f}{\partial x_i} \right) (a), i \neq j,$$

$$\frac{\partial^2 f}{\partial x_i^2}(a) = \frac{\partial}{\partial x_i} \left(\frac{\partial f}{\partial x_i} \right) (a), i = j.$$

Obdobně definujeme derivace vyšších řádů.

Definice 2.13 $(C^k(\mathbb{R}))$

Nechť $G \subset \mathbb{R}^n$ je otevřená a $f: G \to \mathbb{R}$. Řekneme, že $f \in C^1(G) = C^1(G, \mathbb{R})$, pokud existují parciální derivace $\frac{\partial f}{\partial x_i}$, $i \in [n]$, a jsou to spojité funkce.

Řekneme, že $f \in C^k(G) = C^k(G, \mathbb{R})$, $k \in \mathbb{N}$, pokud existují všechny parciální derivace f až do řádu k včetně a jsou to spojité funkce.

Důsledek

Nechť $G \subset \mathbb{R}^n$ je otevřená. Z věty dříve dostáváme, že je-li $f \in C^1(G)$, pak existuje totální diferenciál f na G.

Věta 2.5 (Záměnnost parciálních derivací)

Necht $G \subset \mathbb{R}^n$ je otevřená, $a \in G$ a $f \in C^2(G, \mathbb{R})$. Pak

$$\frac{\partial^2 f}{\partial x_i \partial x_i}(a) = \frac{\partial^2 f}{\partial x_i \partial x_j}(a).$$

Důkaz

SLÚNO n=2. Vezměme t dost malé, aby $B_{\max}([a_1,a_2],t) \subset G$. Položme $W(t)=\frac{f(a_1+t,a_2+t)-f(a_1,a_2+t)-f(a_1+t,a_2)+f(a_1,a_2)}{t^2}$. Položme $\varphi(x)=f(x,a_2+t)-f(x,a_2)$. Pak $W(t)=\frac{1}{t^2}(\varphi(a_1+t)-\varphi(a_1))$.

 φ je spojitá a $\exists \varphi'$. Lagrange: $\exists c_1 \in (a_1, a_1 + t)$:

$$\frac{1}{t^2} \cdot \varphi'(c_1) \cdot (a_1 + t - a_1) = \frac{1}{t} \left(\frac{\partial f}{\partial x}(c_1, a_2 + t) - \frac{\partial f}{\partial x}(c_1, a_2) \right) = \frac{1}{t} (h(a_2 + t) - h(a_2)),$$

 $h(a) = \frac{\partial f}{\partial x}(c_1, z)$ je spojitá a derivovatelná, tedy použijeme Lagrange:

$$= \frac{1}{t} \cdot h'(c_2) \cdot (a_2 + t - a_2) = \frac{\partial^2 f}{\partial u \partial x}(c_1, c_2) \leftarrow \frac{\partial^2 f}{\partial u \partial x}(a_1, a_2).$$

(f má spojité druhé derivace, tedy můžeme prohodit f a limitu.) Totéž provedeme pro zaměněné souřadnice.

Definice 2.14 (Hessova matice)

Nechť $G \subset \mathbb{R}^n$ je otevřená a $a \in G$. Nechť $f \in C^2(G)$. Definujeme Hessovu matici f jako

$$D^{2}f(a) = \begin{pmatrix} \frac{partial^{2}f}{\partial x_{1}^{2}}(a) & \dots & \frac{partial^{2}f}{\partial x_{1}\partial x_{n}}(a) \\ \vdots & \ddots & \vdots \\ \frac{partial^{2}f}{\partial x_{n}\partial x_{1}}(a) & \dots & \frac{partial^{2}f}{\partial x_{n}^{2}}(a) \end{pmatrix}.$$

Podle předchozí věty je matice symetrická, a proto můžeme pracovat s následující kvadratickou formou

$$D^2 f(a)(\mathbf{u}, \mathbf{v}) = u^T D^2 f(a) \cdot v, \forall \mathbf{u}, \mathbf{v} \in \mathbb{R}^2.$$

Definice 2.15

Nechť $G \subset \mathbb{R}^n$ je otevřená a $a \in G$. Nechť $f \in C^2(G)$. Pak definujeme Taylorův polynom stupně 2 jako

$$T_2^{f,a}(x) := f(a) + Df(a)(x-a) + \frac{1}{2}D^2f(a)(x-a,x-a).$$

Věta 2.6 (Taylorova věta pro druhý řád)

Nechť $f: \mathbb{R}^n \to \mathbb{R}$ je třídy C^2 na okolí bodu $a \in \mathbb{R}^n$. Pak

$$\lim_{x \to 0} \frac{f(x) - T_2^{f,a}(x)}{|x - a|^2} = 0.$$