VEURAL NETWORK. CONVOLUTION

Convolution layer 1:

Using filter 1 on RGB:

-	4	0	Q	57	54	20
-	al.	0		- 20	-21	-20
-	-5	0	3.	4	-1	3
	-5	- 3	6	16	10	2
	-8	-14	-20	16	-9	- 8
	-5	-7	-4	-6	-7	-12
	+16	15	10	-7	-14	-11

Using filter2 on RGB:

12	-11	0	6	17	9
-2	1	1		.10	9
-4	-6	-4	2	13.	12
-10	2	6	11	6	-7
- 8	-7	0	17	7	-6
-7	-6	27	9	7	-4

channel (6×6)

Channell (6x6)
Output of Conv. Layer 1 = (6x6x2)

POOL 1:

P= Null, S=2, F=2 Max Pooling

Channel 1

1	4	-1
- 3	16	10
16	10	7

1	6	17
2	11	13
-6	17	7

Pesame, s=1 b=1

Filter1=

1	0	1
٥	- 4	0
1	0	1

After padding of channel 1:

1	1	4	-1	-1
1	1	4	10	10
- 3	- 3	16	10	10.
16	16	10	-7	-7
16	16	10	-7	-7

After padding of channel 2:

		W. (17)	4	-	
	- 1	1	6	17	17
	1	. 1	6	17	17
)	2	11	13	13
	6	6	17	17	7
	6	6	13	7	7
1				*	

Applying filter:

14	-9	33
43	-55	-34
-25	-24	1

Channel 1

Channel 2

Merging both channels: and adding bias weight=1:

31	1	13
66	-67	-38
-16	-63	.18.

<= output of Conv. layer 2.

POOL 2:

P=Null, S=1, F=2 Max Pooling

66	13
66	18

FC3: # units=2, Hidden unit weight=1, b=1 Activation func=Digmoid

$$S(H_1) = \frac{1}{1 + e^{-164}} = 1$$

$$S(H_2) = \frac{1}{1 + e^{-164}} = 1$$

)utput: #unit=1, output unit weight=2, ab=2, Activation func = Sigmoid

