PRÁCTICO DE ARQUITECTURA DE COMPUTADORAS 2012

- 1) Crear un registro de 8 bits a partir de la entidad *ff_1b* y su arquitectura previamente presentada. Utilizar componentes.
- 2) Crear un *full adder* de 4 bits a partir de la entidad *adder* de la presentación. Utilizar componentes.
- 3) Codificar en vhdl un flip-flop tipo d, de un bit. con señales de *load* síncrono, y reset asíncrono, *inc* para incrementar el valor en el registro y la señal de salida para carry: *cout*.

Nota: a) q=d sii flanco ascendente de clock y ld=1b) Si $inc=1 \Rightarrow q=q+1$

- 4) Crear un registro de 4bits utilizando el anterior. Utilizar componentes.
- 5) Implementar el Register File y el Data Memory del MIPS:

6) Para todos los ejercicios anteriores, validar y verificar el diseño utilizando la herramienta GHDL y GTKWave.

ALU control lines	Function
0000	AND
0001	OR
0010	add
0110	subtract
0111	set on less than
1100	NOR

7) Para todos los ejercicios anteriores, validar y verificar el diseño utilizando la herramienta GHDL y GTKWave.