Tandem Trainer Aircraft

Sizing model for a tandem trainer plane.

Mission

Variables	Value	Units	Description
$\begin{array}{c} \hline \\ MTOW \\ W_{cent} \\ W_{fuel-tot} \\ R_{min} \end{array}$	400.000	$[lbf] \ [lbf] \ [lbf] \ [lbf] \ [nmi]$	max take off weight aircraft center weight total fuel weight minimum flight range

```
\begin{array}{ll} \text{minimize} & 1 \\ \text{subject to} & ['Mission']_{[0]} \\ & ['Mission']_{[0]} \\ & ['Mission']_{[0]} \\ & MTOW = W_{start} \\ & MTOW \geq W_{fuel-tot} + W_{zfw} \\ & W_{fuel-tot} \geq W_{fuel-fs} \\ & W_{end} \geq W_{zfw} \\ & W_{cent} \geq W_{fuel-tot} + W_{pay} + W_{Engine} \\ & \vec{R} \geq 0.2R_{min} \\ & W_{Fuselage} \geq MTOWf \end{array}
```

Aircraft

Variables	Value	Units	Description
$W_{pay} \\ W_{zfw}$	700.000	$\begin{bmatrix} lbf \end{bmatrix} \\ [lbf]$	payload zero fuel weight

```
 \begin{aligned} & \text{minimize} & & & & & & & \\ & \text{subject to} & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &
```

${\bf Flight Segment}$

Variables Valu	ie Units	Description
W_{start} W W_{end} $W_{fuel-fs}$	$egin{array}{c} [lbf] \ [lbf] \ [lbf] \end{array}$	vector-begin weight aircraft weight during flight segment vector-end weight flight segment fuel weight

AircraftLoading

Variables	Value	Units	Description

 $\begin{array}{ll} \mbox{minimize} & 1 \\ \mbox{subject to} & ['Mission','AircraftLoading']_{[0,0]} \end{array}$

Wing

Variables	Value	Units	Description
b		[ft]	wing span
$ar{c}$	1.111		normalized chord at mid element
λ	0.800		wing taper ratio
c_{MAC}		[ft]	mean aerodynamic chord
c_{ave}		[ft]	mid section chord
\bar{c}_{ave}	1.028		normalized mid section chord
W		[lbf]	weight
S		[ft * *2]	surface area
AR			aspect ratio
au	0.150		airfoil thickness ratio
m_{fac}	1.500		wing weight margin factor
c_{root}		[ft]	root chord

$$\begin{array}{ll} \text{minimize} & 1 \\ \text{subject to} & ['Mission', 'Aircraft', 'Wing']_{[0,0,0]} \\ & ['Mission', 'Aircraft', 'Wing']_{[0,0,0]} \\ & b^2 = ARS \\ & \lambda = \lambda \\ & \vec{c} = \vec{c} \\ & c_{ave} = \left[\frac{S\bar{c}_{ave}}{b} \left[\text{ft} \right] \right. \left. \frac{S\bar{c}_{ave}}{b} \left[\text{ft} \right] \right. \left. \frac{S\bar{c}_{ave}}{b} \left[\text{ft} \right] \right. \right] \\ & c_{root} = 1.111 \frac{S}{b} \\ & c_{MAC} = \frac{S}{b} \\ & \frac{W}{m_{fac}} \geq W_{CapSpar} + W_{WingSkin} \\ \end{array}$$

Engine

Variables	Value	Units	Description
$W_{Rotax-912}$ m_{fac} P_{sl-max} W	152.600 1.000 98.560	[lbf] $[hp]$ $[lbf]$	Installed/Total DF70 engine weight Engine weight margin factor Max shaft power at sea level Installed/Total engine weight

Fuselage

Variables	Value	Units	Description
$\frac{f}{W}$	0.300	[lbf]	fraction of total weight fuselage weight

${\bf FlightState}$

Variables	Value	Units	Description
$ ho \ V_{min}$	0.771 10.000	$ [kg/m**3] \\ [m/s]$	air density minimum true airspeed

μ	0.000	[N * s/m * *2]	dynamic viscosity
V		[m/s]	true airspeed
h	15000.000	[ft]	flight altitude
h_{ref}	15000.000	[ft]	reference altitude

$$\begin{array}{ll} \text{minimize} & 1 \\ \text{subject to} & \vec{V} \geq \vec{V_{min}} \\ & \vec{\rho} = \vec{\rho} \\ & \vec{\mu} = \vec{\mu} \\ & \vec{h} = \vec{h} \\ & \vec{h_{ref}} = \vec{h_{ref}} \\ \end{array}$$

AircraftPerf

Variables	Value	Units	Description
η_{prop}	0.700		propulsive efficiency
C_D CDA_0	0.025		aircraft drag coefficient non-wing drag coefficient

```
 \begin{array}{lll} \text{minimize} & 1 \\ \text{subject to} & \vec{C_D} \geq \begin{bmatrix} CDA_0 + C_d & CDA_0 + C_d & CDA_0 + C_d & CDA_0 + C_d \\ & \eta_{\overrightarrow{prop}} = \eta_{\overrightarrow{prop}} \\ & ['Mission', 'FlightSegment', 'AircraftPerf']_{[0,0,0]} \\ & ['Mission', 'FlightSegment', 'AircraftPerf']_{[0,0,0]} \end{array}
```

SteadyLevelFlight

Variables	Value	Units	Description
\overline{T}		[N]	thrust

$$\begin{array}{llll} \text{minimize} & 1 \\ \text{subject to} & \vec{W} \leq \begin{bmatrix} 0.5SC_LV^2\rho & \left[\frac{\operatorname{ft}^2 \cdot \operatorname{kg}}{(\operatorname{m} \cdot \operatorname{s}^2)}\right] & 0.5SC_DV^2\rho & \left[\frac{\operatorname{ft}^2 \cdot \operatorname{kg$$

BreguetRange

Variables	Value	Units	Description
$g \ W_{fuel} \ z_{bre}$	9.810	[m/s**2] $[lbf]$	gravitational acceleration segment-fuel weight Breguet coefficient
$ ho_{JetA} \ R$	6.750	$\begin{array}{c} [lb/gal] \\ [nmi] \end{array}$	Jet A fuel density range

WingLoading

 $\begin{array}{ll} \text{minimize} & 1 \\ \text{subject to} & ['Mission', 'AircraftLoading', 'WingLoading']_{[0,0,0]} \\ & ['Mission', 'AircraftLoading', 'WingLoading']_{[0,0,0]} \end{array}$

CapSpar

Variables	Value	Units	Description
\overline{w}		[in]	spar width
$ ho_{AI}$	2.700	[g/cm**3]	density of aluminum
W		[lbf]	spar weight
E	70.000	[GPa]	Youngs modulus of aluminum
g	9.810	[m/s * *2]	gravitational acceleration
S_y		[m * *3]	section modulus
t		[in]	spar cap thickness
h_{in}		[in]	inner spar height
w_{lim}	0.150		spar width to chord ratio
I		[m**4]	spar x moment of inertia

$$\begin{array}{lll} \text{minimize} & 1 \\ \text{subject to} & I \leq 0.5 h_{in}^2 tw \\ & W \geq \rho_{AI} b g tw \\ & \begin{bmatrix} w_{lim} c_{ave} & [\text{ft}] & w_{lim} c_{ave} & [\text{ft}] & w_{lim} c_{ave} & [\text{ft}] \end{bmatrix} \geq w \\ & \begin{bmatrix} \tau c_{ave} & [\text{ft}] & \tau c_{ave} & [\text{ft}] & \tau c_{ave} & [\text{ft}] \end{bmatrix} \geq 2t + h_{in} \\ & I \geq S_y h_{in} + S_y t \end{array}$$

WingSkin

Variables	Value	Units	Description
t_{min}	0.050	[in]	minimum thickness
g	9.810	[m/s * *2]	gravitational acceleration
W		[lbf]	wing skin weight
$ ho_{AI}$	2.700	[g/cm**3]	density of aluminum
t		[in]	wing skin thickness
$ar{J/t}$	0.018	[1/mm]	torsional moment of inertia

$$\begin{array}{ll} \text{minimize} & 1 \\ \text{subject to} & W \geq 2S\rho_{AI}gt \\ & \bar{J/t} = \bar{J/t} \\ & t \geq t_{min} \\ & b = b \\ & c_{root} = c_{root} \\ \end{array}$$

NACA652Aero

Variables	Value	Units	Description
Re			Reynold's number
c_{dp}			wing profile drag coeff
$c_{dp} \ C_L$			lift coefficient
e	0.900		Oswald efficiency
C_d			wing drag coefficient

minimize 1 subject to
$$\vec{C}_d \ge \begin{bmatrix} 0.3183 \frac{C_L^2}{ARe} + c_{dp} & 0.3183 \frac{C_L^2}{ARe} + c_{d$$

EnginePerf

Variables	Value	Units	Description
$\eta_{alternator}$	0.800		alternator efficiency
P_{shaft}		[hp]	Shaft power
P_{total}		[hp]	Total power, avionics included
RPM		[rpm]	Engine operating RPM
RPM_{max}	5800.000	[rpm]	Maximum RPM
P_{avn}	40.000	[W]	Avionics power
\dot{m}		[l/hr]	fuel burn rate
L_{eng}	1.000		shaft power loss factor
$P_{shaft-max}$		[hp]	Max shaft power at altitude
\dot{m}_{f-min}	7.000	[l/hr]	minimum fuel burn rate

minimize 1 subject to
$$\begin{bmatrix} \frac{P_{total}}{P_{shaft-max}} & \frac{P_{total}}{P_{shaft-max}} & \frac{P_{total}}{P_{shaft-max}} & \frac{P_{total}}{P_{shaft-max}} \end{bmatrix} = \begin{bmatrix} 1.115 \frac{RPM^{1.6}}{RPM_{max}^{1.6}} & 1.115 \frac{RPM}{RPM_{r}^{1.6}} \\ \frac{\dot{m}^{0.1}}{\dot{m}_{f-min}^{0.1}} & \frac{\dot{m}^{0.1}}{\dot{m}_{f-min}^{0.1}} & \frac{\dot{m}^{0.1}}{\dot{m}_{f-min}^{0.1}} & \frac{\dot{m}^{0.1}}{\dot{m}_{f-min}^{0.1}} \\ \frac{P_{shaft-max}}{P_{sl-max}} & \frac{P_{shaft-max}}{P_{sl-max}} & \frac{P_{shaft-max}}{P_{sl-max}} & \frac{P_{shaft-max}}{P_{sl-max}} \end{bmatrix} = \begin{bmatrix} 1.152 \frac{RPM^{0.23}}{RPM_{max}^{0.23}} & 1.152 \frac{RPM^{0.23}}{RPM_{max}^{0.23}$$

ChordSparL

Variables	Value	Units	Description
σ_{AI} M_r κ \bar{q} N_{max}	207.000 0.050 1.333 5.000	$[MPa] \\ [N*m]$	aluminum max stress wing section root moment max tip deflection ratio normalized loading max loading

minimize 1 subject to
$$['Mission', 'AircraftLoading', 'WingLoading', 'ChordSparL']_{[0,0,0,0]}$$

$$\vec{EI} \leq 1.936 \times 10^{10} \frac{EI}{N_{max}W_{cent}b^2}$$

$$\vec{M_r} = \begin{bmatrix} 0.25N_{max}W_{cent}b\vec{M} & [\text{ft} \cdot \text{lbf}] & 0.25N_{max}W_{cent}b\vec{M} & [\text{ft} \cdot \text{lbf}] \\ \left[\frac{M_r}{S_y} \left[\frac{N}{m^2} \right] & \frac{M_r}{S_y} \left[\frac{N}{m^2} \right] & \frac{M_r}{S_y} \left[\frac{N}{m^2} \right] \right] \leq \sigma_{AI}$$

$$\delta \leq \kappa$$

WingSkinL

Variables	Value	Units	Description
$egin{array}{c} ho_{sl} \ C_{m_w} \ N_{max} \ V_{NE} \end{array}$	1.225 0.121 5.000 150.000	[kg/m**3] $[m/s]$	air density at sea level negative wing moment coefficent safety load factor never exceed vehicle speed
$ au_{AI}$	207.000	[MPa]	torsional stress limit

 $\begin{array}{ll} \text{minimize} & 1 \\ \text{subject to} & \tau_{AI} \geq 0.03937 \frac{C_{m_w} N_{max} SV_{NE}^2 \rho_{sl}}{\bar{J/t} c_{root}^2 t} \end{array}$

Beam

Variables	Value	Units	Description
$ar{ar{\delta}}{ar{S}}$			normalized displacement
$ar{S}$			normalized shear
θ			deflection slope
$ar{M}$			normalized moment
$ar{EI}$			normalized YM and moment of inertia
dx			normalized length of element
$ar{S}_{ extit{t}ip}$	0.000		Tip loading
$ar{M}_{tip}$	0.000		Tip moment
$ar{\delta}_{root}$	0.000		Base deflection
θ_{root}	0.000		Base angle

minimize 1 subject to
$$\begin{bmatrix} \bar{S} & \bar{S} & \bar{S} & \bar{S} \end{bmatrix} \geq \begin{bmatrix} 0.5dx\bar{q} + 0.5dx\bar{q} + \bar{S} & 0.5dx\bar{q} + 0.5dx\bar{q} + \bar{S} & 0.5dx\bar{q} + 0.5dx\bar{q} + \bar{S} & 0.5dx\bar{q} + 0.5dx\bar{q} + \bar{S} \\ \bar{S} \geq \bar{S}_{tip} & \begin{bmatrix} \bar{M} & \bar{M} & \bar{M} \end{bmatrix} \geq \begin{bmatrix} 0.5dx\bar{S} + 0.5dx\bar{S} + \bar{M} & 0.5dx\bar{S} + \bar{M} & 0.5dx\bar{S} + \bar{M} & 0.5dx\bar{S} + \bar{M} & 0.5dx\bar{S} + 0.5dx\bar{S} + \bar{M} & 0.5dx\bar{S} + \bar{M} &$$

Fits

Figure 1: Fit of drag polar data from NACA 652-2412 airfoil

Solution

Minimizing the max take off weight we arrive at the solution.

Free Variables	Value	Units	Description
Mission			
MTOW	1562	lbf	max take off weight
W_{cent}	964.5	lbf	aircraft center weight
$W_{fuel-tot}$	111.9	lbf	total fuel weight
Mission/Aircr	raft		
W_{zfw}	1450	lbf	zero fuel weight
Mission/Airci	raft/Engine		
W	152.6	lbf	Installed/Total engine weight
Mission/Airci	aft/Fuselage		
W	468.5	lbf	fuselage weight
Mission/Airca			
•	, -		
AR	5.334	c. 2	aspect ratio
S_{-}	37.58	$\mathrm{ft^2}$	surface area
W	128.7	lbf	weight
b	14.16	ft	wing span
c_{MAC}	2.654	ft	mean aerodynamic chord
c_{root}	2.949	$_{ m ft}$	root chord
c_{ave}	[2.88 2.73 2.58 2.43]	ft	mid section chord
Mission/Airci	raft/Wing/CapSpar		
I	4.992e-06	m^4	spar x moment of inertia
S_{y}	5.008e-05	m^3	section modulus
$\overset{g}{W}$	33.03	lbf	spar weight
h_{in}	3.47	in	inner spar height
t	0.455	in	spar cap thickness
\overline{w}	4.38	in	spar width
Mission/Airci	eaft/Wing/WingSkin		
W	52.8	lbf	wing skin weight
t	0.05	in	wing skin thickness
Mission/Aircr	${ m raftLoading/WingLoading/ChordSparL}$		
M_r	[1.04e+04 5.48e+03 2.29e+03 542]	$\mathbf{N}\cdot\mathbf{m}$	wing section root moment
Mission/Aircr	${ m raftLoading/WingLoading/ChordSparL}$	/Beam	
dx	0.25		normalized length of element
$ar{EI}$	[7777]		normalized YM and moment of inerti-
\bar{M}	[0.448 0.237 0.099 0.0234]		normalized moment

$ar{ar{\mathcal{S}}}$ $ar{\delta}$ $ heta$	[1 0.687 0.417 0.188] [1e-10 0.00317 0.0139 0.0292] [1e-10 0.0149 0.0271 0.0391]		normalized shear normalized displacement deflection slope	
Mission/Flight	tSegment			
$W_{fuel-fs}$ W W_{end} W_{start}	111.9 [1.55e+03 1.53e+03 1.5e+03 1.48e+03] [1.54e+03 1.51e+03 1.49e+03 1.47e+03] [1.56e+03 1.54e+03 1.51e+03 1.49e+03]	lbf lbf lbf lbf	flight segment fuel weight aircraft weight during flight segment vector-end weight vector-begin weight	
Mission/Flight	${ m tSegment/AircraftPerf}$			
C_D	$[\ 0.0934\ 0.0778\ 0.0699\ 0.0648\ \dots\]$		aircraft drag coefficient	
Mission/Flight	${ m tSegment/AircraftPerf/EnginePerf}$			
$P_{shaft-max}$ P_{shaft} P_{total} RPM \dot{m}	[98.6 98.6 98.6 98.6] [98.5 98.5 98.5 98.4] [98.6 98.6 98.6 98.4] [5.43e+03 5.43e+03 5.43e+03 5.42e+03] [24.6 24.6 24.6 24.6]	$\begin{array}{c} \text{hp} \\ \text{hp} \\ \text{hp} \\ \text{rpm} \\ \frac{1}{\text{hr}} \end{array}$	Max shaft power at altitude Shaft power Total power, avionics included Engine operating RPM fuel burn rate	
Mission/Flight	${ m tSegment/AircraftPerf/NACA652Aero}$			
C_L C_d Re c_{dp}	$ \begin{bmatrix} 0.93 \ 0.81 \ 0.743 \ 0.698 \ \dots \ \end{bmatrix} \\ \begin{bmatrix} 0.0684 \ 0.0528 \ 0.0449 \ 0.0398 \ \dots \ \end{bmatrix} \\ \begin{bmatrix} 2.82e + 06 \ 3e + 06 \ 3.1e + 06 \ 3.18e + 06 \ \dots \ \end{bmatrix} \\ \begin{bmatrix} 0.0111 \ 0.00925 \ 0.00824 \ 0.00757 \ \dots \ \end{bmatrix} $		lift coefficient wing drag coefficient Reynold's number wing profile drag coeff	
Mission/Flight	${ m tSegment/BreguetRange}$			
$R \\ W_{fuel} \\ z_{bre}$	[80 80 80 80] [24.3 22.9 22.1 21.5] [0.0157 0.015 0.0147 0.0145]	nmi lbf	range segment-fuel weight Breguet coefficient	
${\bf Mission/FlightSegment/FlightState}$				
V	[74.2 78.9 81.8 83.8]	$\frac{\mathrm{m}}{\mathrm{s}}$	true airspeed	
${\bf Mission/FlightSegment/SteadyLevelFlight}$				
T	[693 652 629 613]	N	thrust	

Constants	Value	Units	Description		
Mission			_		
R_{min}	400	nmi	minimum flight range		
Mission/Aircraft					
W_{pay}	700	lbf	payload		
Mission/Ai	Mission/Aircraft/Engine				

P_{sl-max}	98.56	hp	Max shaft power at sea level
$W_{Rotax-912}$	152.6	lbf	Installed/Total DF70 engine weight
m_{fac}	1		Engine weight margin factor

${\bf Mission/Aircraft/Fuse lage}$

f 0.3 fraction of total weight

${\bf Mission/Aircraft/Wing}$

λ	0.8	wing taper ratio
au	0.15	airfoil thickness ratio
m_{fac}	1.5	wing weight margin factor
$ar{c}$	[1.11 1.06 1 0.944]	normalized chord at mid element
\bar{c}_{ave}	[1.08 1.03 0.972 0.917]	normalized mid section chord

${\bf Mission/Aircraft/Wing/CapSpar}$

E	70	GPa	Youngs modulus of aluminum
$ ho_{AI}$	2.7	$\frac{g}{\text{cm}^3}$	density of aluminum
g	9.81	$\frac{m}{s^2}$	gravitational acceleration
w_{lim}	0.15		spar width to chord ratio

Mission/Aircraft/Wing/WingSkin

$ar{J/t}$	0.01823	$\frac{1}{\text{mgm}}$	torsional moment of inertia
$ ho_{AI}$	2.7	$\frac{g}{cm^3}$	density of aluminum
g	9.81	$\frac{\ddot{m}}{s^2}$	gravitational acceleration
t_{min}	0.05	in	minimum thickness

Mission/Aircraft Loading/Wing Loading/Chord Spar L

N_{max}	5		max loading
κ	0.05		max tip deflection ratio
σ_{AI}	207	MPa	aluminum max stress
$ar{q}$	[1.33 1.17 1 0.833]		normalized loading

Mission/AircraftLoading/WingLoading/ChordSparL/Beam

\bar{M}_{tip}	1e-10	Tip moment
\bar{S}_{tip}	1e-10	Tip loading
$ar{\delta}_{root}$	1e-10	Base deflection
θ_{root}	1e-10	Base angle

Mission/Aircraft Loading/Wing Loading/Wing Skin L

C_{m_w}	0.121		negative wing moment coefficent
N_{max}	5		safety load factor
V_{NE}	150	m	never exceed vehicle speed
$ ho_{sl}$	1.225	$\frac{\text{kg}}{\text{m}^3}$	air density at sea level
$ au_{AI}$	207	$\stackrel{\dots}{\text{MPa}}$	torsional stress limit

${\bf Mission/FlightSegment/AircraftPerf}$

CDA_0	$[\ 0.025\ 0.025\ 0.025\ 0.025\ \dots\]$	non-wing drag coefficient
η_{nron}	$[0.7\ 0.7\ 0.7\ 0.7\ \dots]$	propulsive efficiency

Mission/FlightSegment/AircraftPerf/EnginePerf

RPM_{max}	[1 1 1 1] [40 40 40 40] [5.8e+03 5.8e+03 5.8e+03 5.8e+03] [7 7 7 7] [0.8 0.8 0.8 0.8]	$W \\ rpm \\ \frac{1}{hr}$	shaft power loss factor Avionics power Maximum RPM minimum fuel burn rate alternator efficiency		
Mission/Flig	${ m phtSegment/AircraftPerf/NACA652Aero}$				
e	[0.9 0.9 0.9 0.9]		Oswald efficiency		
Mission/Flig	${ m phtSegment/BreguetRange}$				
$ ho_{Jet A} \ g$	[6.75 6.75 6.75 6.75] [9.81 9.81 9.81 9.81]	$\frac{\frac{lb}{gal}}{\frac{m}{s^2}}$	Jet A fuel density gravitational acceleration		
${\bf Mission/FlightSegment/FlightState}$					
V_{min} μ $ ho$ h h_{ref}	[10 10 10 10] [1.64e-05 1.64e-05 1.64e-05 1.64e-05] [0.771 0.771 0.771 0.771] [1.5e+04 1.5e+04 1.5e+04 1.5e+04] [1.5e+04 1.5e+04 1.5e+04]	$\frac{ ext{m}}{ ext{N} \cdot ext{s}} = \frac{ ext{N} \cdot ext{s}}{ ext{m}^2} = \frac{ ext{kg}}{ ext{m}^3} = \text{ft}$	minimum true airspeed dynamic viscosity air density flight altitude reference altitude		

Sensitivities	Value	Units	Description
Mission/Flig	${ m ghtSegment/FlightState}$		
ho	[-0.0496 -0.0179 -0.00991 -0.00604]	$\frac{\mathrm{kg}}{\mathrm{m}^3}$	air density
Mission/Fli	${ m ghtSegment/BreguetRange}$		
$g \ ho_{JetA}$	[0.0294 0.0296 0.0297 0.0297] [0.0294 0.0296 0.0297 0.0297]	$\frac{\frac{m}{s^2}}{\frac{lb}{gal}}$	gravitational acceleration Jet A fuel density
Mission/Fli	${ m ghtSegment/AircraftPerf/NACA652}$	Aero	
e	[-0.08 -0.0371 -0.0263 -0.0211]		Oswald efficiency
Mission/Fli	${ m ghtSegment/AircraftPerf/EnginePerf}$	f	
$\dot{m}_{f-min} \ L_{eng}$	[0.0294 0.0296 0.0297 0.0297] [-0.13 -0.0663 -0.0502 -0.0423]	$\frac{1}{hr}$	minimum fuel burn rate shaft power loss factor
Mission/Fli	${ m ghtSegment/AircraftPerf}$		
$CDA_0 \\ \eta_{prop}$	[0.0349 0.0213 0.0179 0.0163] [-0.13 -0.0663 -0.0502 -0.0423]		non-wing drag coefficient propulsive efficiency
${\bf Mission/Aircraft Loading/Wing Loading/Chord Spar L}$			
$N_{max} \ ar{q} \ \sigma_{AI}$	0.1101 [0.00512 0.0179 0.0307 0.0384] -0.1101	MPa	max loading normalized loading aluminum max stress

${\bf Mission/Aircraft/Wing/WingSkin}$

g	0.1041	$\frac{\mathrm{m}}{\mathrm{s}^2}$	gravitational acceleration
$ ho_{AI}$	0.1041	$\frac{g}{\text{cm}^3}$	density of aluminum
t_{min}	0.1041		minimum thickness

${\bf Mission/Aircraft/Wing/CapSpar}$

g	0.06513	$\frac{\mathrm{m}}{\mathrm{s}^2}$	gravitational acceleration
$ ho_{AI}$	0.06513	$\frac{g}{cm^3}$	density of aluminum
w_{lim}	-0.04499	om	spar width to chord ratio

${\bf Mission/Aircraft/Wing}$

m_{fac}	0.1692	wing weight margin factor
\bar{c}_{ave}	[-2.3e-10 -3.37e-10 -6.62e-10 -0.2]	normalized mid section chord
au	-0.1551	airfoil thickness ratio

${\bf Mission/Aircraft/Fuse lage}$

${\bf Mission/Aircraft/Engine}$

m_{fac}	0.218		Engine weight margin factor
$W_{Rotax-912}$	0.218	lbf	Installed/Total DF70 engine weight
P_{sl-max}	-0.3316	$_{ m hp}$	Max shaft power at sea level

Mission/Aircraft

W_{pay} 1	lbf	payload
-------------	-----	---------

Mission

R_{min} 0.148	nmi	minimum flight range
-----------------	-----	----------------------

Sweeps

