Machine Learning Konzept

1. Erzeugung der Trainingsdaten

- Speicherung von lounge-artigen Tracks in der Cloud
- Zerlegung der Tracks in Samples mit verschiedenen Intervallen (3, 5, 10 Sekunden)
- Speicherung der Samples in Ordnerstruktur für künftigen Zugriff
- Erstellen einer Dataset csv mit folgenden Eigenschaften: ID, audioname, filePath

2. Features auslesen

- Eigenschaften der Samples auslesen (Librosa Library)
- Anreichern der Dataset csv mit Features zu jedem Sample

Feature	Bedeutung		
Root Mean Square Error (RMSE)	Quadratische mittlere Abweichung		
Chroma	Stellt die Intensität der Tonhöhenklassen dar		
Spectral Centroid	Gibt an wo sich der Mittelpunkt des Frequenzspektrums befindet		
Spectral Bandwidth	Breite des Intervalls in einem Frequenzspektrum		
Spectral Roll-Off	Frequenz, unter der ein bestimmter Prozentsatz der gesamten Spektralenergie liegt		
Zero Crossing Rate	Rate mit der sich das Audiosignal von positiv zu null zu negativ oder von negativ zu null zu positiv ändert		
Mel Frequency Cepstral Coefficients (MFCC)	Kompakte Darstellung des Frequenzspektrums		

3. Klassifikation der Trainingsdaten

- Anhand der Features wird ein unsupervised Clustering durchgeführt
- K-means Clustering
- Labelling anhand der Clustering Ergebnisse
- Anreichern der Dataset csv mit Labels

4. Durchführung des Trainings

- Antrainieren des Netzes, um einzelne Samples zum ursprünglichen Track zusammenzusetzen
- Spezifikation der Topologie
- Definition von Platzhaltern und Variablen mithilfe von Tensorflow

Sample ID	Feature 1	Feature 2	Feature n	Label
1	Feature 1	Feature 2	Feature 3	Label
2	Feature 1	Feature 2	Feature 3	Label
n	Feature 1	Feature 2	Feature 3	Label

5. Erstellen eines neuen Musikstreams

- unbekannte Samples werden dem neuronalen Netzwerk zugeführt
- Erzeugung eines kontinuierlichen Streams

