

INDIAN INSTITUTE OF TECHNOLOGY PATNA DEPARTMENT OF CHEMISTRY

CH 103

Instructor: Dr. Neeladri Das

Email: neeladri@iitp.ac.in

Associate Professor, Chemistry Dept., IIT Patna Rm-215, Block-IV Chemistry department IIT Patna

Three-coordination

Four-coordination

2

Five-coordination

trigonal bipyramid square pyramid

TBPY-5

SPY-5

Six-coordination

Seven-coordination

pentagonal bipyramid

octahedron, face monocapped

TPRS-7

trigonal prism, square-face monocapped

Nine-coordination

trigonal prism, square-face tricapped

TPRS-9

heptagonal bipyramid

Coordination nomenclature

- an additive nomenclature
- To name a coordination compound, no matter whether the complex ion is the cation or the anion, always name the cation before the anion

Example:

Addition of ligands to a central atom:

$$Ni^{2+} + 6H_2O \longrightarrow [Ni(OH_2)_6]^{2+}$$

Addition of ligand names to a central atom name:

hexaaquanickel(II)

Naming Coordination Compounds

- ligand names are listed before the name(s) of the central atom
- no spaces are left between parts of the name that refer to the same coordination entity,
- ligand names are listed in alphabetical order (multiplicative prefixes indicating the number of ligands are not considered in determining that order),
- Names of anionic coordination entities are furthermore given the ending 'ate'.
- 1. [CoCl(NH₃)₅]Cl₂ pentaamminechloridocobalt(2+) chloride
- 2. $[AuXe_4]^{2+}$ tetraxenonidogold(2+)

K₄[Fe(CN)₆] potassium hexacyanidoferrate(II)

Number of ligands

 Greek prefixes used to designate the number of each type of ligand in the complex ion.

	Prefix	Number	Prefix	Number	Prefix
Number					
1	mono	5	penta (pentakis)	9	nona (ennea)
2	di (bis)	6	hexa (hexakis)	10	deca
3	tri (tris)	7	hepta	11	undeca
4	tetra (tetrakis)	8	octa	12	dodeca

Number of ligands

- Two kinds of multiplicative prefix are available
 - Prefixes di, tri, etc. are generally used with the names of simple ligands. Enclosing marks are not required.
 - Prefixes bis, tris, tetrakis, etc. are used with complex ligand names and in order to avoid ambiguity, enclosing marks must be placed around the multiplicand.
 - for $(NH_3)_2$
 - diammine, or
 - bis(methylamine)

Representing ligands in names

- Names of anionic ligands: modified to end in 'o'.
- In general, if the anion name ends in 'ide', 'ite' or 'ate', the final 'e' is replaced by 'o', giving 'ido', 'ito' and 'ato', respectively.
 - alcoholates, thiolates, phenolates, carboxylates, phosphanes, etc.

 neutral and cationic ligands, including organic ligands, are used without modification

naming the central metal

- If the complex ion is a cation, the metal is named same as the element.
 - Co in a complex cation is called cobalt.
- If the complex ion is an anion, the name of the metal ends with the suffix -ate.
 - Co in a complex anion is called cobaltate.
- For some metals, the Latin names are used in the complex anions
 - Fe is called ferrate (not ironate).

Name of Metal	Name in an Anionic Complex		
Iron	Ferrate		
Copper	Cuprate		
Lead	Plumbate		
Silver	Argenate		
Gold	Aurate		
Tin	Stannate		

Charge numbers and oxidation numbers

- The oxidation number of the central atom: a Roman numeral appended in parentheses to the central atom name (including the ending 'ate', if applicable)
- Arabic zero indicates the oxidation number zero.
- Alternatively, the charge on a coordination entity may be indicated.
- The net charge is written in arabic numbers, with the <u>number preceding the</u> <u>charge sign</u>, and enclosed in parentheses.
- It follows the name of the central atom (including the ending 'ate', if applicable) without the intervention of a space.

K₄[Fe(CN)₆] potassium hexacyanidoferrate(II), or potassium hexacyanidoferrate(4–), or tetrapotassium hexacyanidoferrate

$$\begin{split} &[Co(NH_3)_6]Cl_3\\ &hexaamminecobalt(III)\ chloride \end{split}$$

[CoCl(NH₃)₅]Cl₂ pentaamminechloridocobalt(2+) chloride

Exceptions ...

 For historic reasons, some coordination compounds are called by their common names.

For example, Fe(CN)₆³⁻ and Fe(CN)₆⁴⁻ are named ferricyanide and ferrocyanide respectively

Fe(CO)₅ is called iron carbonyl.

Formulae of coordination compounds

- A (line) formula of a compound:
 - provides basic information about the constitution of the compound in a concise and convenient manner
 - The central atom symbol is listed first
 - The ligand symbols are then listed in alphabetical order
 - single letter symbols precede two letter symbols.
 - Example: CO precedes Cl

sodium amminebromidochloridonitrito-κ*N*-platinate(1–)

 $Na[PtBrCl(NH_3)(NO_2)]$

Formulae of coordination compounds

- Use of enclosing marks
 - Square brackets: []
 - formula for the <u>entire coordination entity</u>, whether charged or not
 - Parentheses: ()
 - polyatomic ligands formulae and abbreviations of ligands.

```
Na[PtBrCl(NH<sub>3</sub>)(NO<sub>2</sub>)]
sodium amminebromidochloridonitrito-κN-platinate(1–)
[Fe(CNMe)<sub>6</sub>]Br<sub>2</sub>
hexakis(methyl isocyanide)iron(II) bromide
[Co(en)<sub>3</sub>]Cl<sub>3</sub>
tris(ethane-1,2-diamine)cobalt(III) trichloride
```

Ionic charges and oxidation numbers

- If the **formula** of a charged coordination entity is to be written **without any counterion**, the <u>charge is indicated outside the square bracket</u> as a right superscript (<u>number before the sign</u>).
- The oxidation number of a central atom may be represented by a Roman numeral, which should be placed as a <u>right superscript on</u> the element symbol.
 - 1. $[PtCl_6]^{2-}$
 - 2. $[Cr(OH_2)_6]^{3+}$
 - 3. $[Cr^{III}(NCS)_4(NH_3)_2]^{-1}$

4.
$$[Cr^{III}Cl_3(OH_2)_3]$$

5.
$$[Fe^{-II}(CO)_4]^{2-}$$

 Cases where specification of the donor atom is not required for a ligand that can bind to a central atom in more than one way

- monodentate O-bound carboxylate groups
- monodentate C-bound cyanide (ligand name 'cyanido')
- monodentate C-bound carbon monoxide (ligand name 'carbonyl')
- monodentate N-bound nitrogen monoxide (ligand name 'nitrosyl').

- The kappa convention
 - Single ligating atoms are indicated by the italicized element symbol preceded by a Greek kappa, κ
 - Placing the symbol κ
 - k placed after the portion of the ligand name that represents the ring, chain or substituent group in which the ligating atom is found

[NiBr₂(Me₂PCH₂CH₂PMe₂)] dibromido[ethane-1,2-diylbis(dimethylphosphane-κ*P*)]nickel(II)

- The kappa convention
 - thiocyanato-κN for nitrogen-bonded NCS
 - thiocyanato- κS for sulfur-bonded NCS.

- Nitrogen-bonded nitrite is named nitrito- κN
- Oxygen-bonded nitrite is named nitrito- κO , as in pentaamminenitrito- κO -cobalt(III)

hapticity of a ligand

 The hapticity of a ligand is the number of atoms that are directly bonded to the metal centre

- The eta (η) convention: ('hapticity')
 - applied in cases where adjacent donor atoms within a given ligand are involved in bonding to a central atom

2 electron donor and anionic

4 electron donor and anionic

bis- η^3 -allyl nickel, or [Ni(η^3 -C₃H₅)₂]

Metal-metal bonds

- 1. $[Br_4ReReBr_4]^{2+}$ bis(tetrabromidorhenium)(Re-Re)(2+)
- 2. $[(OC)_5 ReCo(CO)_4]$ nonacarbonyl-l $\kappa^5 C$, $2\kappa^4 C$ -rheniumcobalt(Re-Co)