

UNIVERSIDADE FEDERAL DE UBERLÂNDIA

Disciplina: Agrupamento de Dados Curso: Ciência da Computação (graduação e pós-graduação)

Professora: Elaine Ribeiro Faria

Aula Prática no 3

Alunos:

Danilo Augusto Nunes - 11611BCC021 João Gomes - 11611BCC043

Perguntas:

1- Faça a binarização, usando codificação 1-de-n, dos seguintes valores: amarelo, vermelho, verde, azul, laranja, branco

Valor categórico	Valor inteiro	x1	x2	х3	х4	х5	x6
Amarelo	0	1	0	0	0	0	0
Vermelho	1	0	1	0	0	0	0
Verde	2	0	0	1	0	0	0
Azul	3	0	0	0	1	0	0
Laranja	4	0	0	0	0	1	0
Branco	5	0	0	0	0	0	1

2- Discretizar em 3 intervalos, o atributo que possui os valores a seguir: 0, 1, 3, 6, 6, 9, 10, 10, 10, 13, 18, 20, 21,21, 25

a) Larguras iguais

Usar:

Largura do intervalo = (valor máximo - valor mínimo)/ n° de intervalos Largura do intervalo = (25-0)/3 = 8,3

Intervalo	[0, 8.3]	[8.4, 16.6]	[16.7, 25]
Valores	0,1,3,6,6	9,10,10,10,13	18,20,21,21,25

b) Frequências iguais

Largura do intervalo = # de elementos/ n° de intervalos Largura do intervalo = 15/3 = 5

Intervalo	1	2	3
Valores	0,1,3,6,6	9,10,10,10,13	18,20,21,21,25

3- Escreva um pseudo-código para representar a técnica de amostragem aleatória sem reposição

DataFrame é uma estrutura bidimensional de dados, como uma planilha. Caracteres entre chaves({}) representam comentários.

```
Variáveis:
população: String { arquivo de entrada dos dados que constituem a população }
amostra: String { arquivo de saída com os dados da amostra }
iterador, índice, tamanho_amostra, tamanho_populacao: Integer
p df, a df, registro: DataFrame
leia (população, amostra) { lê os nomes dos arquivos }
leia (tamanho amostra) { lê o tamanho que terá a amostra }
{ gera um data frame a partir da leitura do arquivo .csv }
p_df <- le_csv(população)</pre>
{ DataFrame tem uma função que retorna a quantidade de registros: tamanho() }
tamanho população <- p df.tamanho()
iterador <- 0
enquanto (iterador < tamanho amostra) faça
       { gera um número aleatório em um intervalo de 0 até o tamanho da população }
       indice <- número aleatório(tamanho população)
       { seleciona um registro da população pelo índice }
       registro <- p_df.localiza(índice)</pre>
       { adiciona o registro na tabela de amostra }
       a df.adiciona(registro)
       { remove da população o registro selecionado anteriormente }
       p df.remove(indice)
       tamanho_população <- tamanho_população - 1
       iterador <- iterador + 1
fim enquanto
{ escreve os dados que constituem a amostra para um arquivo .csv }
```

escreve csv(a df, amostra)