

Welcome to my Journey

$$X_k = \sum_{n=0}^{N-1} x_n e^{-\frac{2\pi i}{N}kn}$$
 $k = 0, \dots, N-1$

$$x_n = \frac{1}{N} \sum_{k=0}^{N-1} X_k e^{\frac{2\pi i}{N}kn}$$
 $n = 0, \dots, N-1.$

$$n=0,\ldots,N-1.$$

Fourier Transform


```
struct unknown
 byte typeField;
short lenField;
char[] dataField;
```

Protocol Analysis

SHRED

SHRED is a proof of concept music education

software tool

 SHRED is the first software of its kind that it uses real-time signal processing to analyze a live performance

Use real musical instruments or voice as an input device

How SHRED Works

 SHRED parses standard tablature file formats to obtain fret board finger positions

 Chords are synthesized internally to determine the chord's pitch

 Microphone audio is processed real-time to determine the player's accuracy

Fourier Transform

 Samples of waves captured over a period of time can be converted into their frequency spectrum via a Fourier Transform.

Discrete Fourier Transform

The Fourier Transform attempts to detect the presence of a frequency by multiplying the original wave with the basis wave function

```
\begin{array}{ll} \text{int N = input.Length;} \\ \text{ComplexF[] output = new ComplexF[N];} \\ \text{double sinWave, cosWave;} \\ \end{array} \\ \begin{array}{ll} X_k = \sum_{n=0}^{N-1} x_n e^{-\frac{2\pi i}{N}kn} & k = 0, \ldots, N-1 \\ \\ \text{for (int k = 0; k < N; k++)} \\ \{ \\ \text{sinWave = cosWave = 0;} \\ \text{for (int n = 0; n < N; n++)} \\ \{ \\ \text{cosWave += input[n].Re * Math.Cos(-2 * Math.PI * k * n / N);} \\ \text{sinWave += input[n].Re * Math.Sin(-2 * Math.PI * k * n / N);} \\ \} \\ \text{// Magnitude} \\ \text{output[k] = (ComplexF)Math.Sqrt(Math.Pow(cosWave, 2) + Math.Pow(sinWave, 2));} \\ \end{array} \\ \end{array}
```

Discrete Fourier Transform

 The sum of the products from the multiplied wave represents the magnitude or overall presence of the basis wave.

Fast Fourier Transform

Any optimized implementation of the DFT

DFT complexity: O(N)²

FFT complexity: O(N log N)

- Example: Cooley-Turkey
 - Recursively breaks down DFT into smaller DFTs
 - Number of samples must be factorable

Noise in the Data

Sine wave:

```
y(t) = A \cdot \sin(\omega t + \theta) double theta = (2.0 * Math.PI) * (_frequency / _samplingRate); values[i] = _amplitude * Math.Sin(theta * i + phase);
```

- Direct encoding:
 - Each basis wave can carry one piece of information
 - Complex waves carry multiple bits of information in a specific order

Visualizing Polymorphism

Visualizing Polymorphism

- Windowing the data allows us to find pure signals...
 - Full packet visualization will not transmit much information
 - Enumerations and type fields become immediately apparent!

Why all the Noise

This is a proof of concept that may be expanded

 Encoding properties as waves allows magnitude to represent reoccurrence of patterns

 Different attributes such as amplitude can be utilized to represent distance from a target

