

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ	Фундаментальные науки
—— КАФЕДРА	Прикладная математика

РАСЧЕТНО-ПОЯСНИТЕЛЬНАЯ ЗАПИСКА *К КУРСОВОЙ РАБОТЕ НА ТЕМУ:*

КУСОЧНО-ПАРАБОЛИЧЕСКИЙ МЕТОД НА ЛОКАЛЬНОМ ШАБЛОНЕ ДЛЯ РЕШЕНИЯ ГИПЕРБОЛИЧЕСКИХ УРАВНЕНИЙ

Студент	ФН2-62Б		А.И. Токарев
	(Группа)	(Подпись, дата)	(И.О. Фамилия)
Руководитель курсовой работы			В. В. Лукин
	• •	(Подпись, дата)	(И.О. Фамилия)

2022 г.

Содержание

Введение
1. Постановка задачи
1.1. Кусочно-параболический метод. РРМ
1.2. Кусочно-параболический метод на локальном шаблоне. PPML . • 6
1.3. Потоки и усредненное значение на отрезке
2. Одномерное уравнение переноса
2.1. Анализ точного вычисления граничных и серединных узлов 10
2.2. Анализ кусочно-линейного графика при уменьшенном числе Ку-
ранта
2.3. Анализ методов на гладком графике
Заключение
Список литературы

Введение 3

Введение

Одним из наиболее удачных вычислительных методов решения гиперболических уравнений является кусочно-параболический метод (с англ. Piecewise-Parabolic Method, PPM), разработанный для моделирования течения жидкостей и газов и применяемый в астрофизике. Он обладает порядком аппроксимации $O(\tau^2 + h^3)$. Несмотря на великолепную точность, данный метод имеет ряд недостатков: концы парабол на разностных ячейках связываются путем реконструкции переменных на расширенном четырехточечном шаблоне, что повышает диссипацию в схеме. Кроме того, PPM дает достаточно точный результат на гладких решениях, а вот на разрывах происходят ощутимые осцилляции.

Целью данной курсовой работы является анализ улучшенного метода PPM – кусочно-параболического метода на локальном шаблоне (PPML). Его основное отличие заключается в том, что граничные точки парабол внутри разностых ячеек определяются с предыдущего временного слоя по методу характеристик, что позволяет точно описывать разрывные решения и избегать накопления лишней диссипации.

В качестве анализа будет приведено сравнение точности методов PPM и PPML на примерах одномерных задач.

1. Постановка задачи

1.1. Кусочно-параболический метод. РРМ

Рассмотрим одномерную задачу. Пусть Ω_h – множество узлов сетки, в общем случае неравномерной. Определим функцию y(x) ее разностным аналогом $y_i, i=1\dots n$ на этой сетке. Значения y_i будем соотносить с центрами ячеек, а $y_{i+\frac{1}{2}}=y_i^R$ и $y_{i-\frac{1}{2}}=y_i^L$ – с концами. Строение разностной ячейки можно увидеть на рис. 1

Рис. 1. Парабола внутри разностной ячейки

Основная идея метода PPM заключается в следующем – внутри отрезка $[x_{i-\frac{1}{2}},x_{i+\frac{1}{2}}]$ функцию y=y(x) можно аппроксимировать параболой [1]:

$$y(x) = y_i^L + \xi(\Delta y_i + y_i^{(6)}(1 - \xi)), \quad \xi = (x - x_{i - \frac{1}{2}})h^{-1}, \quad \Delta y_i = y_i^R - y_i^L,$$

$$y_i^{(6)} = 6\left[y_i - \frac{1}{2}(y_i^R + y_i^L)\right], \quad x \in [x_{i - \frac{1}{2}}, x_{i + \frac{1}{2}}].$$

$$(1)$$

Выражение (1) является квадратурной формулой для соотнешния:

$$y(x_i) = \frac{1}{h} \int_{x_{i-\frac{1}{2}}}^{x_{i+\frac{1}{2}}} y(\chi) d\chi.$$

Значение функции y(x) на границах при условиях гладкости и отсутствия экстремумов принадлежит отрезкам:

$$y_{i-\frac{1}{2}} \in [y_{i-1}, y_i], \qquad y_{i+\frac{1}{2}} \in [y_i, y_{i+1}],$$
 (2)

далее производится монотонизация функции внутри каждой разностной ячеки, в результате чего меняются значения на границах, что приводит к появлению разрывов на них.

Первым шагом ищем значение $y_{i+\frac{1}{2}}$ интерполяционной процедурой четвертого порядка, в результате получаем значения:

$$y_i^R = y_{i+1}^L = y_{i+\frac{1}{2}} = \frac{1}{2}(y_i + y_{i+1}) - \frac{1}{6}(\delta y_{i+1} - \delta y_i),$$

где

$$\delta y_i = \frac{1}{2}(y_{i+1} + y_{i-1}).$$

Чтобы обеспечить монотонность решения и выполнить условие (2), значения δy_i нужно заменить на

$$\delta_m y_i = \begin{cases} \min(|\delta y_i|, \ 2|y_i - y_{i-1}|, \ 2|y_{i+1} - y_i|) \cdot sign(\delta y_i), & (y_{i+1} - y_i)(y_i - y_{i-1}) > 0, \\ 0, & (y_{i+1} - y_i)(y_i - y_{i-1}) \le 0. \end{cases}$$

После определения всех граничных точек переходим к следующему шагу. В областях немонотонного решения y(x) следует переопределять значения y_i^L , y_i^R . При этом возможны два сценария:

• y_i является локальным экстремумом, тогда на всем отрезке $[x_{i-\frac{1}{2}},x_{i+\frac{1}{2}}]$ функция y(x) должна быть постоянной, а значит:

$$y_i^L = y_i^R = y_i, \quad (y_{i+1} - y_i)(y_i - y_{i-1}) \le 0;$$
 (3)

• y_i лежит слишком близко к границе – при условии $|\Delta y_i| < |y_i^{(6)}|$ парабола может иметь экстремум внутри разностной ячейки. В этом случае y_i^L и y_i^R должны быть выбраны так, чтобы сдвинуть его к границам:

$$y_i^L = 3y_i - 2y_i^R, \quad \Delta y_i \cdot y_i^{(6)} > (\Delta y_i)^2,$$

$$y_i^R = 3y_i - 2y_i^L, \quad \Delta y_i \cdot y_i^{(6)} < -(\Delta y_i)^2.$$
(4)

После всех проделанных операция функцию y(x) можно считать определенной на сетке Ω_h [1, 2].

Среднее значение данной функции на отрезке $[x_{i+\frac{1}{2}}-\alpha,x_{i+\frac{1}{2}}],(\alpha>0)$ задается формулой:

$$\overline{y}_{i+\frac{1}{2}}^{L}(\alpha) = \frac{1}{\alpha} \int_{x_{i+\frac{1}{2}}-\alpha}^{x_{i+\frac{1}{2}}} y(x)dx = y_i^R - \frac{\alpha}{2h} \left[\Delta y_i - \left(1 - \frac{2\alpha}{3h} \right) y_i^{(6)} \right], \tag{5}$$

а на отрезке $[x_{i+\frac{1}{2}}, x_{i+\frac{1}{2}} + \alpha], (\alpha > 0)$:

$$\overline{y}_{i+\frac{1}{2}}^{R} = \frac{1}{\alpha} \int_{x_{i+\frac{1}{2}}}^{x_{i+\frac{1}{2}} + \alpha} y(x) dx = y_{i+1}^{L} + \frac{\alpha}{2h} \left[\Delta y_{i+1} + \left(1 - \frac{2\alpha}{3h} \right) y_{i+1}^{(6)} \right].$$
 (6)

1.2. Кусочно-параболический метод на локальном шаблоне. PPML

Интерполяционная процедура четвертого порядка, применяемая для переопределения граничных узлов, сглаживает разрывные решения y(x). Чтобы обойти данное ограничение, можно определять y_i^L и y_i^R с помощью переноса значения на параболе с предыдущего шага по времени вдоль характеристики $\frac{dx}{dt}=a$. Причем переопределять нужно лишь одну из границ. Для ясности будем рассматривать $y_i^R=y_{i+\frac{1}{2}}$. Для того, чтобы вычислить ее на следующем временном слое $t_j+\mathfrak{r}=t_{j+1}$ (обязательное ограничение – выполнение условия Куранта $a\Delta t_j \leq \min_{0\leq i\leq n} \Delta x_i$), необходимо двигаться от точки $x_{i+\frac{1}{2}}$ со значением $y_{i+\frac{1}{2}}$ вдоль характеристики до предыдущего момента времени t_j :

1. a > 0, следовательно

$$y_{i+\frac{1}{2}}(t_{j+1}) = y_i^R(t_{j+1}) = y_i^L(t_j) + \xi(\Delta y_i(t_j) + y_i^{(6)}(t_j)(1-\xi)),$$

$$\xi = 1 - \frac{a\tau}{h},$$
(7)

что соответствует красной точке на рис. 2.

a < 0, следовательно

$$y_{i+\frac{1}{2}}(t_{j+1}) = y_i^R(t_{j+1}) = y_{i+1}^L(t_j) + \xi(\Delta y_{i+1}(t_j) + y_{i+1}^{(6)}(t_j)(1-\xi)),$$

$$\xi = -\frac{a\tau}{h},$$

что соответствует синей точке на рис. 2.

Рис. 2. Перенос значений в граничных точках вдоль характеристик в методе PPML

Алгоритм (7) реализован на локальном шаблоне, то есть для получения граничных точкек при переходе на следующий временной слой не нужно использовать информацию с соседних ячеек. Нахождение среднего значения на отрезке (5), (6) и смещение экстремума (3), (4) производятся аналогично [2].

1.3. Потоки и усредненное значение на отрезке

При возникновении разрыва на границе двух смежных ячеек в точке $x_{i+\frac{1}{2}}$ возникает некоторое усредненное состояние $y^*(x_{i+\frac{1}{2}},t)$. Одномерное уравнение переноса имеет всего одну характеристику, поэтому его решение в момент времени $t=t_{j+1}$ будет определяться:

1. При a>0 усреднением по пространствунному интервалу $[x_{i+\frac{1}{2}}-a au,x_{i+\frac{1}{2}}]$ со значением $y^{\star}(x_{i+\frac{1}{2}},t_{j+1})=\overline{y}_{i+\frac{1}{2}}^{L}(a au);$

2. При a<0 – по интервалу $[x_{i+\frac{1}{2}}\mathsf{\tau},x_{i+\frac{1}{2}}+a\mathsf{\tau}]$ со значением $y^\star(x_{i+\frac{1}{2}},t_{j+1})=\overline{y}_{i+\frac{1}{2}}^R(-a\mathsf{\tau}).$

Поток на границе смежных ячеек в задаче Римана определяется по формуле:

$$F_{i+\frac{1}{2}} = \frac{1}{\tau} \int_{t_{j}}^{t_{j+1}} F(y^{\star}(x_{i+\frac{1}{2}}, t)) dt = a^{+} y_{i+\frac{1}{2}}^{L} + a^{-} y_{i+\frac{1}{2}}^{R},$$

$$a^{+} = \max(0, a), \quad a^{-} = \min(a, 0).$$
(8)

2. Одномерное уравнение переноса

$$\frac{\partial y}{\partial t} + a \frac{\partial y}{\partial x} = 0. {9}$$

Решением уравнения переноса является функция, сохраняющая свой профиль с течением времени, то есть $y(x,t)=y_0(x-at)$, где u_0 — начальный профиль. Это происходит по той причине, что профиль при сносе по характеристике остается одинаковым. Если $\frac{dx}{dt}=a$ — характеристика, то прямые x-at=b называют характеристическими. На каждой из таких прямых y= const и перемещается по ней с некоторой заданной скоростью a.

Уравнение переноса – простейший пример, применяемый для проверки алгоритма на корректность. В задачах газодинамики оператор переноса является составной частью, поэтому любой численный метод для таких моделей обязан проходить проверку простейшим уравнением.

Рассмотрим задачу Коши для линейного уравнения переноса (9) с различными начальными условиями y_0 . Численное решение будем сравнивать с точным, имеющим вид:

$$y_0(x) = \begin{cases} 0, & x - at < l_1, \\ u_0(x - at), & l_1 \le x - at \le l_2, \\ 0, & x - at > l_2. \end{cases}$$

Определив параболу в ячейке в момент времени t_j , можно вычислить $\hat{y}(x_i)$ на следующем временном слое t_{j+1} , применив интегро-интерполяционный метод к уравнению переноса в прямоугольнике $\left[x_{i-\frac{1}{2}},x_{i+\frac{1}{2}}\right]\times [t_j,t_{j+1}]$:

$$\int_{x_{i-\frac{1}{2}}}^{x_{i+\frac{1}{2}}} \int_{t_{j}}^{t_{j+1}} \frac{\partial y(x,t)}{\partial t} dt dx + \int_{t_{j}}^{t_{j+1}} \int_{x_{i-\frac{1}{2}}}^{x_{i+\frac{1}{2}}} a \frac{\partial y(x,t)}{\partial x} dx dt = \int_{x_{i-\frac{1}{2}}}^{x_{i+\frac{1}{2}}} \int_{t_{j}}^{t_{j+1}} 0 dt dx = 0.$$

Рассмотрим интегралы в левой части по отдельности:

$$\int_{x_{i-\frac{1}{2}}}^{x_{i+\frac{1}{2}}} \int_{t_{j}}^{t_{j+1}} \frac{\partial y(x,t)}{\partial t} dt dx = \int_{x_{i-\frac{1}{2}}}^{x_{i+\frac{1}{2}}} \left[y(x,t_{j+1}) - y(x,t_{j}) \right] dx = h \left[\frac{1}{h} \int_{x_{i-\frac{1}{2}}}^{x_{i+\frac{1}{2}}} y(x,t_{j+1}) dx - \frac{1}{h} \int_{x_{i-\frac{1}{2}}}^{x_{i+\frac{1}{2}}} y(x,t_{j}) dx \right] = h(\overline{y}(x_{i},t_{j+1}) - \overline{y}(x_{i},t_{j})) = h(\hat{y}_{i} - y_{i}).$$

Воспользуемся особенностью переноса значений по характеристикам для интеграла, подинтегральная функция которого является потоком (рис. 3):

$$\int_{t_{j}}^{t_{j+1}} \int_{x_{i-\frac{1}{2}}}^{x_{i+\frac{1}{2}}} a \frac{\partial y(x,t)}{\partial x} dx dt = \int_{t_{j}}^{t_{j+1}} a \left(y(x_{i+\frac{1}{2}},t) - y(y_{x-\frac{1}{2}},t) \right) dt = \int_{x_{i+\frac{1}{2}}-a\tau}^{x_{i+\frac{1}{2}}} ay(x,t_{j}) dt - \int_{x_{i-\frac{1}{2}}-a\tau}^{x_{i-\frac{1}{2}}} ay(x,t_{j}) dt = a\tau \left(a\overline{y}(x_{i+\frac{1}{2}},t_{j}) - a\overline{y}(x_{i-\frac{1}{2}},t_{j}) \right).$$

Объединяя оба интеграла получаем:

$$h(\hat{y}_{i} - y_{i}) + a\tau \left(a\overline{y}(x_{i+\frac{1}{2}}, t_{j}) - a\overline{y}(x_{i-\frac{1}{2}}, t_{j})\right) = 0 \implies$$

$$\Rightarrow \hat{y}_{i} = y_{i} - \frac{a\tau}{h} \left(a\overline{y}(x_{i+\frac{1}{2}}, t_{j}) - a\overline{y}(x_{i-\frac{1}{2}}, t_{j})\right).$$
(10)

Таким образом, используя формулу (10), мы можем переносить средние значения ячеек.

Рис. 3. Интегрирование потока по пространству, вместо времени

Оценивать решение будет по норме ошибки в пространстве $C,\,L_1,\,L_2$:

$$||z||_{C} = \max_{\Omega_{h} \times [0,T]} |z|, \quad z = |y(x,t) - y_{h}(x,t)|;$$

$$||z||_{L_{1}} = \int_{0}^{T} \int_{\Omega_{h}} |z| \, dx dt, \quad z = |y(x,t) - y_{h}(x,t)|;$$

$$||z||_{L_{2}} = \left(\int_{0}^{T} \int_{\Omega_{t}} z^{2} \, dx dt\right)^{\frac{1}{2}}, \quad z = |y(x,t) - y_{h}(x,t)|,$$

для методов актуальна сходимость по норме L_2 .

Рассмотрим несколько начальных профилей [3] и проанализируем точность каждого из методов в различных сценариях. $l=200, l_1=10, l_2=30, l_{11}=\frac{50}{3}, l_{22}=\frac{70}{3}, l_{12}=20, T=200, h=1, a=1.$

2.1. Анализ точного вычисления граничных и серединных узлов

Рассмотрим, какой прирост дает метод PPML при числе Куранта $\sigma=1$. В качестве иллюстрации приведем кусочно-линейный профиль – правый треугольник.

Правый треугольник задается уравнением:

$$y_0(x) = \frac{l_2 - x}{l_2 - l_1}.$$

На рис. 4 показано численное решение, полученное путем применения метода PPM.

Рис. 4. Правый треугольник для РРМ при $\sigma=1$

Таблица вычисленных норм в пространстве L_2 в зависимости от шага:

	h=1	h = 0.5	h = 0.25	h = 0.125	h = 0.625
$\ \cdot\ _C$	0.5125	0.506	0.503	0.501	0.5
$\ \cdot\ _{L_1}$	25.6	6.32	1.57	0.39	0.1
$\ \cdot\ _{L_2}$	2.89	1.44	0.72	0.36	0.18

Заметим, что на концах треугольников происходит уравнивание значений в ячейках y_i^L , y_i , y_i^R , поэтому, например, вычисление нормы в пространтсве C[a,b] неприменимо для данных методов, потому что ее значение не будет уменьшаться при измельчении шага на кусочно-линейных графиках.

На рис. 5 показано решение, полученное применением метода PPML. На концах треугольников параболы в каждой разностной ячейке передают значения гораздо точнее, чем в методе PPM.

Рис. 5. Правый треугольник для PPML при $\sigma=1$

	h = 1	h = 0.5	h = 0.25	h = 0.125	h = 0.625
$\ \cdot\ _C$	0.5125	0.505	0.5029	0.5025	0.5
$\ \cdot\ _{L_1}$	25.6	6.32	1.57	0.39	0.1
$\ \cdot\ _{L_2}$	2.86	1.42	0.71	0.305	0.17

Скорость стремления нормы к 0 практически идентична методу PPM, однако визуально график больше приближен к точному решению.

2.2. Анализ кусочно-линейного графика при уменьшенном числе Куранта

Возьмем $\sigma = 0.8$, в качестве примера рассмотрим профиль "зуб":

$$y_0(x) = \begin{cases} -\frac{2(x-l_1)}{3(l_{11}-l_1)} + 1, & x \in [l_1, l_{11}), \\ \frac{1}{3}, & x \in [l_{11}, l_{22}], \\ \frac{2(x-l_2)}{3(l_2-l_{22})} + 1, & x \in (l_{22}, l_2]. \end{cases}$$

На рис. 6 заметна значительная диссипация и неодинаковые высоты на зубцах.

Рис. 6. Зуб для РРМ при $\sigma = 0.8$

Тем не менее, несмотря на диссипацию, сходимость по норме L_2 сохраняется.

	h=1	h = 0.5	h = 0.25	h = 0.125	h = 0.625
$\ \cdot\ _C$	0.716	0.7099	0.7067	0.7023	0.7
$\ \cdot\ _{L_1}$	41.15	10.14	2.518	0.62	0.3
$\ \cdot\ _{L_2}$	0.8	0.39	0.195	0.097	0.04

Метод PPML (рис. 7) характеризиуется менее выраженной диссипацией и более ровными "горбами".

Рис. 7. Зуб для PPML при $\sigma=0.8$

Таблица норм в зависимости от шага выглядит следующим образом:

	h = 1	h = 0.5	h = 0.25	h = 0.125	h = 0.625
$\ \cdot\ _C$	0.58	0.56	0.557	0.554	0.55
$\ \cdot\ _{L_1}$	39.85	9.9	2.2	0.56	0.27
$\ \cdot\ _{L_2}$	0.7	0.34	0.187	0.08	0.03

2.3. Анализ методов на гладком графике

Пусть $\sigma = 0.5$, а гладким профилем будет "косинус":

$$y_0(x) = \frac{1}{2} - \frac{1}{2}\cos\left(\frac{2\pi}{l_2 - l_1}(x - l_1)\right).$$

Как и следовало ожидать, несмотря на гладкость профиля, диссипация в случае метода PPM (рис. 8), ровно как и в методе PPML (рис. 9) остается, хотя и менее выраженная.

Рис. 8. Косинус для РРМ при $\sigma=0.5$

	h=1	h = 0.5	h = 0.25	h = 0.125	h = 0.625
$\ \cdot\ _C$	0.244	0.1117	0.044	0.019	1e-05
$\ \cdot\ _{L_1}$	2.59	0.327	0.04	0.005	2e-05
$\ \cdot\ _{L_2}$	0.99	0.18	0.003	0.00055	2e-05

График сохраняет свою гладкость, однако происходят небольшие смещения в окрестностях оснований профилей. Хотя таблица сходимости показывает достаточно хороший результат для обоих методов, все же нельзя не отметить, что PPML равномернее и стабильнее передает точное решение, а также обладает мизерной диссипацией.

Заключение 16

Рис. 9. Косинус для PPML при $\sigma = 0.5$

	h=1	h = 0.5	h = 0.25	h = 0.125	h = 0.625
$\ \cdot\ _C$	0.048	0.015	0.005	0.0016	1e-06
$\ \cdot\ _{L_1}$	2.55	0.32	0.0398	0.0049	2e-06
$\ \cdot\ _{L_2}$	0.99	0.18	0.003	0.00055	2e-06

Заключение

Рассмотрен усовершенствованный кусочно-параболический метод (на локальном шаблоне). Выбор в пользу использования решений с предыдущего временного слоя, вместо интерполяционной процедуры, оказался удачным, так как выдает более точное решение и уменьшенную диссипацию. Метод PPML был протестирован на множестве примеров, взятых с различными шагами, числами Куранта и профилями. Точность оценивалась на основе норм разности между точным и численным решениям в пространствах C, L_1, L_2 . Во всех случаях PPML оказался точнее.

Список литературы

- 1. Corella P., Woodward P. The piecewise parabolic method for gas-dynamical simulations // J. Comput. Phys. 1984. V.54. P. 174 201.
- 2. М. В. Попов, С. Д. Устюгов. Кусочно-параболический метод на локальном шаблоне для задач газовой динамики, Ж. вычисл. матем. и матем. физ., 2007, том 47, номер 12, 2055 2075, с. 2056 2060.
- 3. Галанин М.П. Методы численного анализа математических моделей/М.П. Галанин, Е.Б. Савенков.–М.: Изд-во МГТУ им. Н.Э. Баумана, 2010.–591, [1] с.: ил. (Математическое моделирование в технике и технологии)
- 4. А. А. Самарский, Ю. П. Попов. Разностные методы решения задач газовой динамики: Учеб. пособие: Для вузов 3-е изд., доп. М.: Наука. Гл. ред. физ. мат. лит., 1992. 424 с.
- 5. А. Г. Куливокский, Н. В. Погорелов, А. Ю. Семенов. Математические вопросы численного решения гиперболических систем уравнений. М.: ФИЗ-МАТЛИТ, 2001. 608 с.