1[12] Prove or disprove the binary (boolean) expression

$$(a \le b) \land (c \le d) \le (a \land c \le b \land d)$$

"Prove" means show that its value is always $\ \top$, and "disprove" means show that its value isn't always $\ \top$.

§ $(a \le b) \land (c \le d)$ using generalization, weaken each conjunct $((a \le b) \lor (c \le b)) \land ((a \le d) \lor (c \le d))$ use antidistribution in each conjunct $(a \land c \le b) \land (a \land c \le d)$ use distribution $(a \land c \le b \land d)$

Another way to prove it is by value tables.

a b c d	$(a \leq b) \wedge ($	$c \leq d$)	≤ ($a \wedge c$	≤ b ∧	(d)
$T \; T \; T \; T$	TTTT	ТТТ	Т	\top \top \top	ТТТ	- T
ттт⊥	TTTT	Т Д Д	Т	\top \top \top	$T \perp T$	
\top \top \bot \top	ттт т	上 T T	Т	$\top \perp \bot$	ТТТ	- Т
тт⊥⊥	ттт т	$\top \top \bot$	Т	Т Д Д	ТТЛ	
$T \perp T T$	ТТТТ	ТТТ	Т	ТТТ	Т Т Т	_ T
т⊥т⊥	$\top \perp \perp \perp$	Т Д Д	Т	ТТТ		
$T\ \bot\ \bot\ T$	т⊥⊥⊥.	上 T T	Т	$\top \perp \bot$	Т Д Д	_ T
\top \bot \bot \bot	т⊥⊥⊥.	$\perp \top \perp$	Т	$\top \perp \bot$	Т Д Д	
\bot \top \top \top	\bot \top \top \top	ТТТ	Т	$\bot \bot \top$	ТТТ	- Т
\bot \top \top \bot	\bot \top \top \bot		Т	$\bot \bot \top$	ТТЛ	
\bot \top \bot \top	1 T T T .	上 T T	Т	\bot \bot \bot	ТТТ	- T
\bot \top \bot \bot	1 T T T .	\bot \top \bot	Т	\bot \bot \bot	ТТЛ	
\bot \bot \top \top	\bot \top \bot \top	ТТТ	Т	$\bot \bot \top$	Т Д Д	_ T
\bot \bot \top \bot	\bot \top \bot \bot	Т Д Д	Т	$\bot \bot \top$	Т Д Д	
\top \top \top \top	\bot \top \bot \top	上 T T	Т	\bot \bot \bot	Т Д Д	_ T
\bot \bot \bot \bot		\bot \top \bot	Т	\bot \bot \bot	Т Д Д	

- 2[12] Design a circuit that compares two n-bit 2's complement numbers for equality. There are $2 \times n$ bits of input $a_{n-1} a_{n-2} \dots a_2 a_1 a_0$ and $b_{n-1} b_{n-2} \dots b_2 b_1 b_0$ representing two numbers a and b in two's complement representation. There is one bit q of output that's \top just when a and b are equal. You can use any gates with two or fewer inputs.
- § First I define a "one-bit" comparator. It has 3 bits of input and 1 bit of output. There are n of these "one-bit" comparators, and they form a chain. Two of the input bits are a_i and b_i . Input q_{i+1} and output q_i each mean "all previous pairs of bits of a and b were equal". We feed \top in one end of the chain, and the answer comes out the other end.

The chain could just as well go the other way.

3[9] Here is a sequential circuit composed of two D flip-flops and a NOT gate.

What pattern of output numbers occurs as the clock pulses?

- § The pattern is $a_1 a_0 = 00, 01, 11, 10, 00, 01, 11, 10, \dots$ repeating cyclicly. Or if you prefer, $a = 0, 1, 3, 2, 0, 1, 3, 2, \dots$. The cycle might start with any of these numbers.
- 4[12] Express the number $-10^{1}/_{6}$ (minus ten and a sixth) in IEEE single-precision floating-point representation.
- § 6 in binary is 110. To find 1/6 divide 1 by 6.

$$-10^{1/6}$$
 in binary

$$=$$
 -1010.001 normalize

=
$$-1.010001 \times 2^{130-127}$$
 and 130 in binary is 10000010 so in IEEE floating-point