CLEMSON UNIVERSITY, SCHOOL OF COMPUTING CPSC 3500 FOUNDATIONS OF COMPUTER SCIENCE

Assignment 3: Finite Automata

Return by 11:59pm, 9/25/2018

Problem 1 60%

Choose any 4 items out of a-h: For each of the following languages, draw an FA accepting it.

- (a) $\{a,b\}^*\{a\}$
- (b) $\{bb, ba\}^*$
- (c) $\{a,b\}^*\{b,aa\}\{a,b\}^*$
- (d) $\{bbb, baa\}^*\{a\}$
- (e) $\{a\} \cup \{b\}\{a\}^* \cup \{a\}\{b\}^*\{a\}$
- (f) $\{a,b\}^*\{ab,bba\}$
- (g) $\{b, bba\}^*\{a\}$
- (h) $\{aba, aa\}^* \{ba\}^*$

Figure 2.1: FA for $L_1 \cap L_2$

Problem 2 20%

 $L_1 = \{x \in \{a, b\}^* | aa \text{ is not a substring of } x\}; \quad L_2 = \{x \in \{a, b\}^* | x \text{ ends with } ab\}.$

For the FA (Figure 2.1) that accepts $L_1 \cap L_2$, prove that there cannot be any other FA with fewer states accepting the same language.

Problem 3 20%

Suppose L is a subset of $\{a,b\}^*$. If $x_0,x_1,...$ is a sequence of distinct strings in $\{a,b\}^*$ such that for every $n \ge 0$, x_n and x_{n+1} are L-distinguishable, does it follow that the strings $x_0,x_1,...$ are pairwise L-distinguishable? Either give a proof that it does follow, or find an example of a language L and strings $x_0,x_1,...$ that represent a counterexample.

Solutions to Assignment 3

Solution to Problem 5

h) see textbook

Solution to Problem 6

One way to solve it is to demonstrate that strings Λ , a, ab, aa are L-distinguishable, and then use the theorem about n pairwise L-distinguishable strings, and the number of states in the FA.

Solution to Problem 7

The language is all even-length strings a^{2k} , and the sequence is all a^k . Two strings are distinguished by Λ . The corresponding FA has 2 states.