Indice di rifrazione e focale di una lente

Sommario

L'obiettivo dell'esperienza consiste nella misura dell'indice di rifrazione del plexiglass e dellla lunghezza focale di una lente divergente.

Materiale a disposizione

- Banco ottico con sorgente luminosa;
- un semicilindro di plexiglass;
- una cassetta di lenti;
- un supporto per il plexiglass;
- un metro a nastro (risoluzione 1 mm).

Misure ed analisi

Indice di rifrazione del plexiglass

FIGURA 1: Schematizzazione dell'apparato per la misura dell'indice di rifrazione del plexiglass. L'angolo di incidenza $\theta_{\rm i}$ (di rifrazione $\theta_{\rm r}$) è l'angolo formato dal raggio luminoso incidente (rifratto) con la normale alla superficie di separazione tra i due mezzi.

Se un raggio di luce passa da un mezzo con indice di rifrazione n_1 ad uno con indice di rifrazione n_2 , gli angoli di incidenza e di rifrazione sono legati tra di loro dalla legge di Snell

$$n_1 \sin \theta_{\rm i} = n_2 \sin \theta_{\rm r}. \tag{1}$$

Si posizioni il semicilindro in modo che il raggio incida al centro della superficie piana rifrangente (per evitare una seconda rifrazione in uscita) e si misuri una serie di coppie ($\sin\theta_{\rm i}, \sin\theta_{\rm r}$) per un certo numero (diciamo 10) di valori di $\theta_{\rm i}$. Si ricavi l'indice di rifrazione cercato da un fit lineare alle misure, ricordando che l'indice di rifrazione dell'aria è con buona approssimazione $n_1 \sim 1$.

Lente divergente

Dato che la lente divergente non forma immagini reali, per questa misura occorre anche una lente convergente di potere diottrico maggiore (in modulo) rispetto a quello della divergente. Possiamo considerare l'immagine prodotta dalla lente convergente come una sorgente virtuale per la lente divergente.

FIGURA 2: Schema ottico per la lente divergente. Notare che la sorgente per la lente divergente è virtuale.

In pratica: si ponga la lente convergente sul banco ottico e si metta a fuoco l'immagine sullo schermo. A questo punto si posizioni la lente divergente tra la convergente e lo schermo e si misuri la distanza p_i (da prendere con il segno negativo) tra la divergente e lo schermo stesso. Si allontani lo schermo in modo da rimettere a fuoco l'immagine e si misuri la nuova distanza q_i (questa volta positiva) tra la divergente e lo schermo. Come nel caso precedente, si iteri il procedimento più volte (ad esempio 10) e si stimi il potere diottrico tramite un fit lineare.

Considerazioni pratiche

Indice di rifrazione del plexiglass

Troverete già montati sul banco ottico, accanto alla sorgente di luce, una lente convergente ed un diaframma a fenditura per creare un fascio di luce sottile. Non dovrebbe essere necessario modificare il montaggio—in caso di bisogno chiedete aiuto all'esercitatore.

FOCALE DELLA LENTE

Quando si misura la distanza tra una lente ed una sorgente, potrebbe non essere sufficiente prendere come errore la risoluzione del metro a nastro, in quanto la posizione della lente nella ghiera di montaggio non è ben definita. In altre parole la lente non è molto più sottile (e nemmeno più sottile) della risoluzione del metro a nastro.

Quando si misura la distanza tra la lente e l'immagine, il contributo maggiore all'errore di misura potrebbe essere dovuto alla messa a fuoco.

Compilato il 13 marzo 2023.