# YouTube Daily Trending Videos Analysis



Danielle Ip & Youngshin Kim Dec 3, 2018

- Project Context
- Exploratory Data Analysis (EDA)
- Our Analysis Methods
- Our Analysis Results & Interpretations
- Conclusion

- Project Context
- Exploratory Data Analysis (EDA)
- Our Analysis Methods
- Our Analysis Results & Interpretations
- Conclusion

#### **Project Context**

# Our Kaggle dataset is of daily trending videos on YouTube. We seek to better understand why and how videos trend on YouTube.

#### What is going on behind the data

- The daily trending videos are determined by YouTube's own algorithm\*
- The dataset was collected using the YouTube API

\*This algorithm uses a combination of factors related to number of views, shares, and other user interactions with the videos

#### Why we chose this dataset

We are interested in gaining more insight into YouTube's formula for determining if a video trends or not

We would also like to see what general trends and common characteristics there are between these videos

- Project Context
- Exploratory Data Analysis (EDA)
- Our Analysis Methods
- Our Analysis Results & Interpretations
- Conclusion

#### Exploratory Data Analysis (EDA)

# We focused our dataset and research to better understand YouTube's trending algorithm, specific to the US.

#### Scope & Granularity of dataset:

- 8 months (11/14/17 6/14/18 ), scraped for each day
- US region
- Title, channel title, publish date, trending date, number of views, likes, dislikes, comments

#### Assumptions? Underlying distributions?

 Data failed to meet normality assumptions for quantitative variables of views, likes, and more

#### Key stats

40,949 entries

Top categories: Entertainment, Music, How to and Style

# Views range: 549-225,211,923

## Data failed to meet normality assumptions but did show some patterns and useful distributions. This aided in selecting our variables of interest.





- Project Context
- Exploratory Data Analysis (EDA)
- Our Analysis Methods
- Our Analysis Results & Interpretations
- Conclusion

Our Analysis - Methods

Logistic Regression shows us that views and likes are most indicative in determining if a video trends within 5 days of its

publishing date.

We ran backwards selection to focus in on our variables of interest.

Views and likes are the most indicative.

```
glm.selected <- glm(fivedays ~ views + likes + dislikes + waitmonth, data=trainset, family=binomial)
summary(glm.selected)
                                                                                             glm(formula = fivedays ~ views + likes + dislikes + waitmonth,
     family = binomial. data = trainset)
 Deviance Residuals:
              10 Median
 -1.6441 -1.2341 0.9857 1.0795 2.7979
 Coefficients:
                Estimate Std. Error z value Pr(>|z|)
 (Intercept)
               3.522e-06 1.214e-06 2.901 0.00372
               5.257e-05 2.783e-05 1.889 0.05890 .
 waitmonthTRUE -1.382e+01 3.786e+02 -0.036 0.97089
 Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
 (Dispersion parameter for binomial family taken to be 1)
     Null deviance: 1133.5 on 817 degrees of freedom
 Residual deviance: 1082.9 on 813 degrees of freedom
 ATC: 1092.9
 Number of Fisher Scoring iterations: 12
```

Our Analysis - Methods

# Random Forest Bagging showed us which of our quantitative variables were most indicative of high viewership

We centered our focus on viewership to determine what factors influenced a "viral" video

Likes and dislikes were the most correlated to views



- Project Context
- Exploratory Data Analysis (EDA)
- Our Analysis Methods
- Our Analysis Results & Interpretations
- Conclusion

#### Our Analysis - Results & Interpretations

# Likes and dislikes are important indicators of the number of views a video will have; they have large %IncMSE and different order of magnitude compared to the other variables

**IncMSE** is the MSE with the original dataset and the permuted dataset. The variables with *high IncMSE* would be the predictors that matter the most in the dataset.

**IncNodePurity** is the increase in node purity or decrease in node impurity, so the variables with high node purity values are the important predictors in the dataset.



- Project Context
- Exploratory Data Analysis (EDA)
- Our Analysis Methods
- Our Analysis Results & Interpretations
- Conclusion

#### Conclusion

# What makes a video trend *quickly*? Views, likes, and dislikes What makes a video *viral*? Likes and dislikes

Quickly = 5 days or less to trending

Backwards selection logistic regression

- Average days to trend: 16.81
- Median days to trend: 5

Determinants of quick trending videos?

- Views, likes, dislikes
- Why? Most indicative of engaged users that willingly and opinionatedly interact with it

Viral = High amount of views

Random forest model

- Average views: 2,360,785
- Median views: 681,861

Determinants of quick trending videos?

- Likes and dislikes
- Why? Video creators concerned with virality want high viewership and polarizing reactions



# Thank you

