ÁREA: Matemática

PROFESORA: Valero, Luciana

CURSO: 6 ° 2°

TRABAJO INTEGRADOR DE MATEMÁTICA.

- 1) Indicar V o F justificando.
 - a) La función $f(x) = -2x^3(x-5)(x+2)$, interseca al eje de ordenadas en (0,20)
 - b) La función $f(x) = x^3 + 2x^2 x 2$ tiene dos raíces, siendo una de ellas raíz doble
 - c) La imagen de $f(x)=(x+1)^2(x+3)^2$ (x-2) son todos los reales
 - d) La función $f(x) = x^6(x-1)^3(x+2)^2$, carece de conjunto de negatividad.
 - e) X+1 es divisor de $x^3 x^2 2x$
 - f) El grado del polinomio $P(x) = 5x 2x^4 + 3x^2 6 + 7x^5$ es cuatro.
- 2) Graficar y analizar las siguientes funciones

a)
$$f(x) = 4x(x-2)^2(x-1)(x+3)^4$$
 b) $f(x) = (x-2)^4(x+1)^3$

b)
$$f(x) = (x-2)^4 (x+1)^3$$

c)
$$g(x) = (x-4)^3 (x-1)^2$$

c)
$$g(x) = (x-4)^3 (x-1)^2$$
 d) $g(x) = 2x(x+2)(x+4)^2 (x-2)^4$
e) $f(t) = t^3 + 2t^2 - 5t - 6$ f) $g(x) = x^4 - 5x^2 + 4$

$$e) f(t) = t^3 + 2t^2 - 5t - 6$$

$$f)g(x) = x^4 - 5x^2 + 4$$

- 3) Para la función representada, indica:
- Intervalos de positividad y de negatividad
- ♣ Intersección con el eje de ordenadas
- Raíces
- 🖶 La fórmula algebraica aproximada que modeliza a esta gráfica

4) Graficar las siguientes funciones indicando: dominio e imagen, intersección con ambos ejes, asíntota y si es una función creciente o decreciente.

$$f(x) = -4 \cdot \left(\frac{1}{2}\right)^x - 3$$

$$g(x) = \frac{3}{2}.7^x$$

$$h(x) = 5.3^x + 6$$

$$i(x) = -2\left(\frac{1}{4}\right)^x$$

5) Indicar V o F. Justificar e indicar la respuesta correcta.

- a) La imagen de la función $f(x) = 4\left(\frac{1}{2}\right)^x + 2\operatorname{es}\left(4;\infty\right)$
- b) La función $g(x) = -2\left(\frac{1}{3}\right)^x + 3$, corta al eje de ordenadas en el punto (0; 3)
- c) La asíntota horizontal de $f(x) 4.3^x + 1$ es y=-4
- d) La función $f(x) = -2.3^x$ es decreciente.
- 6) Hallar la fórmula de una función exponencial de la forma $f(x) = k.a^x + c$, sabiendo que corta al eje de ordenadas en el punto (0;6), su coeficiente es 2 y pasa por el punto (-2;38/9).
- 7) Hallar la fórmula de una función exponencial del tipo $f(x) = k.a^x$ sabiendo que su base es 5 y que pasa por el punto (-1,2)
- 8) Resolver las siguientes ecuaciones.

a)343.7^{x-2} - 3.7^x = 196
b)
$$\frac{3^{x-2}.81^{3x-2}}{27^{3x+1}} = \frac{1}{9}$$

c)5.2^{x+2} - 3.2^{x+1} = 112
d) $\frac{9^{x-2}}{3^{x-1}} = (81^{-x+3})^{x-2}$

9) Graficar las siguientes funciones logarítmicas y analizar

$$a) f(x) = -2\log_3(3x+9)$$
 $b) f(x) = -\log_4(2x+16)$
 $c) f(x) = \log_3 x$ $d) f(x) = -4\log_{\frac{1}{2}} x$

10) Resolver aplicando propiedades y la definición de logaritmo

$$a)\log_{3}\left(\frac{\sqrt[3]{9} \cdot \frac{1}{81}}{27}\right)^{2} = b)\log_{2}\left(\frac{\sqrt[3]{16} \cdot \frac{1}{8}}{.0,25}\right)^{3} =$$

11) Sabiendo que log a= -2, log b= 0,5 y que log c= 3, calcular:

$$a)\log\sqrt[5]{\frac{a^2}{c^4}} \qquad b)\log\sqrt[3]{\frac{a^4b}{c^4}}$$

12) Resolver las siguientes ecuaciones trigonométricas

a)
$$-2\cos^2 x + 1 = 0$$

b) $3\sin^2 x + 3senx - 6 = 0$
c) $4\sin^2 x - 1 = 0$
d) $\cos^2 x - \frac{1}{2}\cos x = 0$

13) Graficar y analizar las siguientes funciones, indicando: Dominio e imagen, intersección con ambos eje, conjunto de positividad y negatividad

a)
$$f(x) = -2 sen x - 3$$
 b) $f(x) = 4 cos x + 2$

14) Indicar V o F. En caso de ser falso, indicar la respuesta correcta y justificar

- i. La función f(x) = -3 senx, tiene como valor máximo y = 3
- ii. La imagen de $f(x) = -3 \operatorname{sen} x + 2 \operatorname{es} [-3;3]$
- iii. La función f(x)= 2cosx+4 corta al eje de ordenadas en (0,4)