Feature Engineering & Machine Learning Prédictif

Importation des librairies

Entrée [1]:

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
%matplotlib inline
import warnings
warnings.filterwarnings('ignore')
```

Importation du csv DVF

```
Entrée [2]:
```

```
dvf = pd.read_csv('Data/dvf.csv', sep=',', low_memory=False)
```

Partie 1 : Feature Engineering & Data Analysis round 2

Remarques:

Après le premier nettoyage le dataset n'est pas encore prêt à être joué avec un algorithme. Il faut faut déterminer les colonnes qui vont être corrélées avec la target. C'est-à-dire qu'il nous faut connaître les colonnes qui vont influencer le prix d'un bien immobilier. Pour cela on va tout d'abord ce remémorer la composition du dataframe.

Exploration des données

Entrée [3]:

```
dvf.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 2224142 entries, 0 to 2224141
Data columns (total 17 columns):

Column Dtype 0 id_mutation object 1 date_mutation object 2 nature mutation object 3 valeur_fonciere float64 4 adresse_nom_voie object 5 nom_commune object 6 code_departement object 7 id_parcelle object 8 nombre_lots int64 9 float64 code_type_local type_local 10 object 11 surface_reelle_bati float64 nombre_pieces_principales float64 12 13 surface_terrain float64 14 longitude float64 latitude float64 15 id_bien object dtypes: float64(7), int64(1), object(9)

memory usage: 288.5+ MB

Entrée [4]:

dvf.describe()

Out[4]:

	valeur_fonciere	nombre_lots	code_type_local	surface_reelle_bati	nombre_pieces_princi
count	2.224142e+06	2.224142e+06	1.348953e+06	1.223008e+06	1.346962
mean	2.052168e+05	2.253525e-01	1.535372e+00	1.196465e+02	3.315520
std	2.292359e+06	7.998093e-01	8.871148e-01	5.772342e+02	1.988447
min	1.000000e-02	0.000000e+00	1.000000e+00	1.000000e+00	0.000000
25%	4.166666e+04	0.000000e+00	1.000000e+00	6.400000e+01	2.000000
50%	1.200000e+05	0.000000e+00	1.000000e+00	8.800000e+01	4.000000
75%	2.190000e+05	0.000000e+00	2.000000e+00	1.150000e+02	5.000000
max	1.750000e+09	3.300000e+02	4.000000e+00	2.778140e+05	1.120000
4					•

Remarques:

Le describe permet de voir les écarts au sein des des colonnes numériques.

On remarque ainsi une grande disparité des prix dans la colonne foncière, de 0.01€ à 1 750 000 000€. Il conviendra surement de faire des fourchettes de prix ou de réduire les données.

Entrée [5]:

```
dvf.isnull().sum()
```

Out[5]:

id_mutation	0
date_mutation	0
nature_mutation	0
valeur_fonciere	0
adresse_nom_voie	3087
nom_commune	0
code_departement	0
id_parcelle	0
nombre_lots	0
code_type_local	875189
type_local	875189
surface_reelle_bati	1001134
nombre_pieces_principales	877180
surface_terrain	348250
longitude	52559
latitude	52559
id_bien	0
dtype: int64	

Entrée [6]:

```
plt.figure(figsize=(14,8))
sns.heatmap(dvf.isnull())
```

Out[6]:

<matplotlib.axes._subplots.AxesSubplot at 0x21d8dd02860>

Remarques:

Cette requête nous informe sur le nombre de Null dans les colonnes, c'est-à-dire le nombre de lignes où les données ne sont pas renseignées.

On remarque alors qu'il en reste beaucoup, un traitement s'avère nécessaire pour éviter le bruit dans les données se qui conduira à des résultats faussés.

En conlusion:

Il faut:

- traiter les NaN : afin d'en faire une catégorie à part ===> comment / cb de cat
- voir pour ne garder que les colonnes qui sont corrélées à la target : valeur_fonciere
- supprimer les données nature_mutation qui ne sont pas égales à des Ventes pour coller au besoin du client
- · créer une fourchette de prix

Récupération des données de vente seulement

Remarque:

Le nouveau dataframe n'a maintenant que les ventes de biens ce qui permet de coller au mieux à la demande du client qui est de "faire une estimation des biens de vente".

Traitement des NaN de la colonne type_local

Entrée [10]:

```
dvf2['type_local'] = dvf2['type_local'].fillna('None')
```

Entrée [11]:

sns.catplot(x="type_local",y="valeur_fonciere",data=dvf2, kind='violin', height=10)

Out[11]:

<seaborn.axisgrid.FacetGrid at 0x21d8de331d0>

Entrée [12]:

sns.catplot(x="type_local",y="valeur_fonciere",data=dvf2[dvf2['valeur_fonciere']<0.5], kind</pre>

Out[12]:

<seaborn.axisgrid.FacetGrid at 0x21df0f22da0>

Remarques

Dans la colonne type_local 'None' se rapprochent plus de 'Local industriel. commercial ou assimilé' on peut donc supposer que les 'None' en sont.

On peut également se poser la question des valeurs extrêmes de valeur_fonciere

Gestion des Outliers de valeur_fonciere

Entrée [18]:

Out[18]:

<seaborn.axisgrid.FacetGrid at 0x21d8deca9e8>

Entrée [19]:

```
dvf2.valeur_fonciere.describe()
```

Out[19]:

count 2.192874e+06 mean 2.072833e+05 2.307654e+06 std min 1.000000e-02 25% 4.500000e+04 50% 1.216505e+05 75% 2.200000e+05 1.750000e+09 max

Name: valeur_fonciere, dtype: float64

Remarques:

Que ça soit par le graphique ou par la méthode ".describe()" il ya une mise ne évidence claire d'une grande variation dans le prix de vente.

On peut donc choisir de ne prendre les valeurs qu'entre 45 000€ et 220 000€ ce qui correspond aux valeurs comprises entre le 1er et le 3ème quartile.

Les autres seront considérées comme des outliers.

Entrée [20]:

```
dvf2 = dvf2.loc[dvf2['valeur_fonciere'].between(45000, 220000)]
dvf2.info()
```

<class 'pandas.core.frame.DataFrame'>
Int64Index: 1103600 entries, 0 to 2224129
Data columns (total 17 columns):

#	Column	Non-Null Count	Dtype		
0	id_mutation	1103600 non-null	object		
1	date_mutation	1103600 non-null	object		
2	nature_mutation	1103600 non-null	object		
3	valeur_fonciere	1103600 non-null	float64		
4	adresse_nom_voie	1102392 non-null	object		
5	nom_commune	1103600 non-null	object		
6	code_departement	1103600 non-null	object		
7	id_parcelle	1103600 non-null	object		
8	nombre_lots	1103600 non-null	int64		
9	code_type_local	1103600 non-null	float64		
10	<pre>type_local</pre>	1103600 non-null	object		
11	surface_reelle_bati	730190 non-null	float64		
12	nombre_pieces_principales	1103600 non-null	float64		
13	surface_terrain	899475 non-null	float64		
14	longitude	1082354 non-null	float64		
15	latitude	1082354 non-null	float64		
16	id_bien	1103600 non-null	object		
<pre>dtypes: float64(7), int64(1), object(9)</pre>					

memory usage: 151.6+ MB

Etude de la corrélation

- si le coefficient est proche de 1 c'est qu'il y a une forte corrélation positive
- si le coefficient est proche de -1 c'est qu'il y a une forte corrélation négative
- si le coefficient est proche de 0 en valeur absolue c'est qu'il y a une faible corrélation.

Entrée [21]:

```
dvf_corr = dvf2.corr().round(2)
plt.figure(figsize=(14,8))
sns.heatmap(data=dvf_corr, annot=True)
```

Out[21]:

<matplotlib.axes._subplots.AxesSubplot at 0x21e9ada39e8>

Remarques:

- Correlation : La matrice montre une forte corrélation négative entre nombre_pieces_principales et code_type_local
- · Feature selection:
 - valeur_fonciere qui est la target
 - code_departement les départements seront regroupés en régions
 - type_local
 - nombre_pieces_principales

Mise en place d'un DF final pour les algorithmes

Création de la colonne regions

```
Entrée [22]:
```

```
listeNordEst=['02','08','10', '51', '52', '54', '55', '57','59', '60', '62', '67', '68', '7 listeNordOuest=['14', '22', '27', '28', '29', '35', '36', '37', '41', '44', '45', '49', '56 listeSudEst=['01', '03', '04', '05', '06', '13', '18', '21', '25', '26', '38', '39', '42', listeSudOuest=['2A', '2B', '07', '09', '11', '12', '15', '16', '17', '19', '23', '24', '30' listeRegionParis=['75', '77', '78', '91', '92', '93', '94', '95'] listeDOMTOM=['971', '972', '973', '974']
```

```
Entrée [23]:
```

```
dvf2['regions']=np.where(dvf2['code_departement'].isin(listeNordEst), 'NordEst', dvf2['code
```

Entrée [24]:

```
dvf2['regions']=np.where(dvf2['regions'].isin(listeNordOuest), 'NordOuest', dvf2['regions']
```

Entrée [25]:

```
dvf2['regions']=np.where(dvf2['regions'].isin(listeSudEst), 'SudEst', dvf2['regions'])
```

Entrée [26]:

```
dvf2['regions']=np.where(dvf2['regions'].isin(listeSudOuest), 'SudOuest', dvf2['regions'])
```

Entrée [27]:

```
dvf2['regions']=np.where(dvf2['regions'].isin(listeRegionParis), 'RegionParis', dvf2['region
```

Entrée [28]:

```
dvf2['regions']=np.where(dvf2['regions'].isin(listeDOMTOM), 'DOMTOM', dvf2['regions'])
```

Entrée [29]:

```
dvf2.regions.unique()
```

Out[29]:

Entrée [30]:

```
### mise en place de dummies
to_dummies = pd.get_dummies(dvf2['type_local'])
to_dummies.head()
```

Out[30]:

	Appartement	Dépendance	Local industriel. commercial ou assimilé	Maison
0	0	0	1	0
4	0	0	0	1
5	0	0	0	1
6	0	0	1	0
7	0	0	1	0

Entrée [31]:

```
to_dummies2 = pd.get_dummies(dvf2['regions'])
to_dummies2.head()
```

Out[31]:

	DOMTOM	NordEst	NordOuest	RegionParis	SudEst	SudOuest
0	0	0	0	0	1	0
4	0	0	0	0	1	0
5	0	0	0	0	1	0
6	0	0	0	0	1	0
7	0	0	0	0	1	0

Entrée [32]:

```
dvf2 = pd.concat([dvf2, to_dummies], axis=1)
```

Entrée [33]:

```
dvf2 = pd.concat([dvf2, to_dummies2], axis=1)
```

Entrée [34]:

```
dvf2['nombre_pieces_principales']=dvf2['nombre_pieces_principales'].astype("int64")
```

Entrée [35]: dvf2.dtypes Out[35]: id_mutation object date_mutation object nature_mutation object valeur fonciere float64 adresse_nom_voie object nom commune object code_departement object id_parcelle object nombre_lots int64 code_type_local float64 object type_local surface_reelle_bati float64 nombre_pieces_principales int64 float64 surface_terrain longitude float64 latitude float64 id bien object regions object Entrée [36]: dvf_prep=dvf2[['valeur_fonciere','SudEst', 'SudOuest', 'NordEst', 'NordOuest', 'RegionParis 'Local industriel. commercial ou assimilé', 'Maison']].reset_index(drop= dvf_prep Out[36]: valeur_fonciere SudEst SudOuest NordEst NordOuest RegionParis DOMTOM nombre_pieces_pi 0 115000.0 0 1 0 0 0 0 1 175050.0 1 0 0 0 0 0 2 165900.0 0 1 0 0 0 0 3 181800.0 0 4 177000.0 0 0 0 0 0 ... 1103595 210000.0 0 0 0 1 0 1103596 0 0 63000.0 0 Entrée [37]:

Partie 2 : Machine Learning Prédictif

dvf_prep.to_csv('dvf_prep.csv', index=False)

Import librairies

Entrée [38]:

```
from sklearn import linear_model, tree, preprocessing
from sklearn.linear_model import LinearRegression, Ridge
from sklearn.tree import DecisionTreeRegressor
from sklearn.ensemble import RandomForestRegressor
from sklearn.model_selection import train_test_split
from sklearn.model_selection import cross_val_score
from sklearn import metrics
from sklearn.metrics import mean_squared_error, r2_score
import xgboost as xgb
```

Scaling Data

La mise à l'échelle des données peut être utile et / ou nécessaire dans certaines circonstances (par exemple, lorsque les variables s'étendent sur différentes plages). Il existe plusieurs versions différentes de la mise à l'échelle. Les procédures de mise à l'échelle peuvent être appliquées à la matrice de données complète ou à des parties de la matrice uniquement (par exemple, par colonne).

Ici on va faire du MinMaxScaler et du StandardScaler pour la colonne nombre_pieces_principales

Récupération de la colonne nombre_pieces_principales

```
Entrée [39]:
```

```
PieceArray=dvf_prep['nombre_pieces_principales'].values
```

Mise en place des méthodes de scaling MinMaxScaler() et StandardScaler() sur la colonne nombre_pieces_principales et création de Dataframes

Entrée [40]:

```
MinMaxScaler=preprocessing.MinMaxScaler()
ScalerStandard= preprocessing.StandardScaler()

PieceMinMax=MinMaxScaler.fit_transform(PieceArray.reshape(-1, 1))
PieceMinMaxDF=pd.DataFrame(data=PieceMinMax, columns=['PieceMinMax'])

PieceStandard=ScalerStandard.fit_transform(PieceArray.reshape(-1, 1))
PieceStandardDF=pd.DataFrame(data=PieceStandard, columns=['PieceStandard'])
```

Concaténation des Dataframes scalés avec le Dataframe de base dvf_prep pour la création d'un nouveau Dataframe pour les tests d'algorithmes

```
Entrée [41]:
```

```
dvf scaled = pd.concat([dvf prep, PieceMinMaxDF,PieceStandardDF], axis=1)
dvf_scaled
Out[41]:
         valeur fonciere SudEst SudOuest NordEst NordOuest RegionParis DOMTOM nombre pieces pr
      0
               115000.0
                              1
                                        0
                                                 0
                                                            0
                                                                         0
                                                                                   0
      1
               175050.0
                              1
                                        0
                                                 0
                                                            0
                                                                         0
                                                                                   0
      2
               165900.0
                                                            0
                              1
                                        0
                                                 0
                                                                         0
                                                                                   0
      3
               181800.0
                                                 0
                                                                         0
                              1
                                        0
                                                            0
                                                                                   0
               177000.0
      4
                                        0
                                                 0
                                                            0
                                                                         0
                                                                                   0
                              1
```

0

0

0

n

0

1

Tests Algorithmes avec le MinMaxScaler()

0

n

0

n

Entrée [42]:

1103595

1103596

210000.0

63000.0

Entrée [43]:

```
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.3, random_state=42)
print(X_train.shape, Y_train.shape, X_test.shape, Y_test.shape)
```

```
(772520, 11) (772520, 1) (331080, 11) (331080, 1)
```

Régression Linéaire

La régression linéaire est une approche statistique pour modéliser la relation entre une variable dépendante avec un ensemble donné de variables indépendantes.

Entrée [44]:

```
reg = LinearRegression()
reg
```

Out[44]:

LinearRegression(copy_X=True, fit_intercept=True, n_jobs=None, normalize=Fal
se)

```
Entrée [45]:
```

```
reg1 = reg.fit(X_train, Y_train)
print(reg1.coef )
print(reg1.intercept_)
[[-1.47291254e+13 -1.47291254e+13 -1.47291254e+13 -1.47291254e+13
  -1.47291254e+13 -1.47291254e+13 6.28752496e+05 -4.07462518e+14
  -4.07462518e+14 -4.07462518e+14 -4.07462518e+14]]
[4.22191643e+14]
Entrée [46]:
Y_pred_reg = reg1.predict(X_test)
Y_pred_reg.shape
Out[46]:
(331080, 1)
Entrée [47]:
mean_squared_error(Y_test, Y_pred_reg)
Out[47]:
2160411422.4450855
Entrée [48]:
r2_score(Y_test, Y_pred_reg)
Out[48]:
0.11172316345943545
Entrée [49]:
scores_reg = cross_val_score(reg1, X, Y, cv=5)
scores_reg
Out[49]:
array([0.11203022, 0.10723495, 0.11156093, 0.10517912, 0.11414974])
```

Arbre de décisions

Arbre de décision est un outil de prise de décision qui utilise une structure arborescente de type organigramme ou est un modèle de décisions et de tous leurs résultats possibles, y compris les résultats, les coûts d'entrée et l'utilité.

L'algorithme d'arbre de décision appartient à la catégorie des algorithmes d'apprentissage supervisé. Il fonctionne à la fois pour les variables de sortie continues et catégorielles.

```
Entrée [50]:
dtr = DecisionTreeRegressor()
dtr
Out[50]:
DecisionTreeRegressor(ccp_alpha=0.0, criterion='mse', max_depth=None,
                       max_features=None, max_leaf_nodes=None,
                      min_impurity_decrease=0.0, min_impurity_split=None,
                      min_samples_leaf=1, min_samples_split=2,
                      min_weight_fraction_leaf=0.0, presort='deprecated',
                       random_state=None, splitter='best')
Entrée [51]:
dtr1= dtr.fit(X_train, Y_train)
Entrée [52]:
Y_pred_dtr = dtr1.predict(X_test)
Y_pred_dtr.shape
Out[52]:
(331080,)
Entrée [53]:
mean_squared_error(Y_test, Y_pred_dtr)
Out[53]:
2129462337.1777048
Entrée [54]:
r2_score(Y_test, Y_pred_dtr)
Out[54]:
0.124448219099078
Entrée [55]:
scores_dtr = cross_val_score(dtr1, X, Y, cv=5)
scores dtr
Out[55]:
```

Régresseur Ridge

Un régresseur Ridge est essentiellement une version régularisée du régresseur linéaire. c.-à-d. à la fonction de coût d'origine du régresseur linéaire, nous ajoutons un terme régularisé qui oblige l'algorithme d'apprentissage à s'adapter aux données et aide à maintenir les poids aussi bas que possible. Le terme régularisé a le

array([0.1205654 , 0.11809745, 0.12268213, 0.11653689, 0.1278258])

paramètre «alpha» qui contrôle la régularisation du modèle, c'est-à-dire qui aide à réduire la variance des estimations.

```
Entrée [56]:
ridge = Ridge(alpha=1.0)
ridge
Out[56]:
Ridge(alpha=1.0, copy_X=True, fit_intercept=True, max_iter=None,
      normalize=False, random_state=None, solver='auto', tol=0.001)
Entrée [57]:
ridge1=ridge.fit(X_train, Y_train)
Entrée [58]:
Y_pred_ridge = ridge1.predict(X_test)
Y_pred_ridge.shape
Out[58]:
(331080, 1)
Entrée [59]:
mean_squared_error(Y_test, Y_pred_ridge)
Out[59]:
2160383647.441104
Entrée [60]:
r2_score(Y_test, Y_pred_ridge)
Out[60]:
0.11173458345676346
Entrée [61]:
scores_ridge = cross_val_score(ridge1, X, Y, cv=5)
scores_ridge
Out[61]:
array([0.11206314, 0.107248 , 0.11156334, 0.10514636, 0.11413931])
```

Radom Forest Regressor

Une forêt aléatoire est une technique d'ensemble capable d'effectuer à la fois des tâches de régression et de classification à l'aide de plusieurs arbres de décision et une technique appelée Bootstrap Aggregation, communément appelée ensachage. L'idée de base derrière cela est de combiner plusieurs arbres de décision pour déterminer la sortie finale plutôt que de s'appuyer sur des arbres de décision individuels.

```
Entrée [62]:
rfr = RandomForestRegressor()
rfr
Out[62]:
RandomForestRegressor(bootstrap=True, ccp_alpha=0.0, criterion='mse',
                       max_depth=None, max_features='auto', max_leaf_nodes=No
ne,
                      max_samples=None, min_impurity_decrease=0.0,
                      min_impurity_split=None, min_samples_leaf=1,
                      min_samples_split=2, min_weight_fraction_leaf=0.0,
                      n_estimators=100, n_jobs=None, oob_score=False,
                       random_state=None, verbose=0, warm_start=False)
Entrée [63]:
rfr1=rfr.fit(X_train, Y_train)
Entrée [64]:
Y_pred_rfr = rfr1.predict(X_test)
Y_pred_rfr.shape
Out[64]:
(331080,)
Entrée [65]:
mean_squared_error(Y_test, Y_pred_rfr)
Out[65]:
2129293304.323842
Entrée [66]:
r2_score(Y_test, Y_pred_rfr)
Out[66]:
0.12451771880970752
Entrée [67]:
scores_rfr = cross_val_score(rfr1, X, Y, cv=5)
scores_rfr
Out[67]:
array([0.12068162, 0.11815099, 0.12264953, 0.11658163, 0.12789044])
```

XGBoost (eXtreme Gradient Boosting)

XGBoost est une implémentation d'arbres de décision à gradient amélioré. Il s'agit d'un type de bibliothèque de logiciels qui a été conçu essentiellement pour améliorer la vitesse et les performances du modèle.

Dans cet algorithme, les arbres de décision sont créés sous forme séquentielle. Les poids jouent un rôle important dans XGBoost. Des poids sont attribués à toutes les variables indépendantes qui sont ensuite introduites dans l'arbre de décision qui prédit les résultats. Le poids des variables prédites incorrectement par l'arbre est augmenté et ces variables sont ensuite introduites dans le deuxième arbre de décision. Ces classificateurs / prédicteurs individuels s'assemblent ensuite pour donner un modèle solide et plus précis. Il peut fonctionner sur les problèmes de régression, de classification, de classement et de prédiction définis par l'utilisateur.

```
Entrée [68]:
```

```
boost= xgb.XGBRegressor()
boost
```

Out[68]:

Entrée [69]:

```
boost1=boost.fit(X_train, Y_train)
```

Entrée [70]:

```
Y_pred_boost = boost1.predict(X_test)
Y_pred_boost.shape
```

Out[70]:

(331080,)

Entrée [71]:

```
mean_squared_error(Y_test, Y_pred_boost)
```

Out[71]:

2129393391.0623667

Entrée [72]:

```
r2_score(Y_test, Y_pred_boost)
```

Out[72]:

0.12447656705011545

```
Entrée [73]:
```

```
scores_boost = cross_val_score(boost1, X, Y, cv=5)
scores_boost
```

Out[73]:

array([0.12065245, 0.11808176, 0.12263786, 0.11653104, 0.12787491])

Tests Algorithmes avec le StandardScaler()

```
Entrée [74]:
```

Entrée [75]:

```
X_train2, X_test2, Y_train2, Y_test2 = train_test_split(X2, Y2, test_size=0.3, random_state
print(X_train2.shape, Y_train2.shape, X_test2.shape, Y_test2.shape)
```

```
(772520, 11) (772520, 1) (331080, 11) (331080, 1)
```

Régression Linéaire

```
Entrée [76]:
```

```
reg2 = reg.fit(X_train2, Y_train2)
print(reg2.coef_)
print(reg2.intercept_)
```

```
[[-1.47578849e+13 -1.47578849e+13 -1.47578849e+13 -1.47578849e+13 -1.47578849e+13 -1.47578849e+13 1.97663428e+04 -4.09891544e+14 -4.09891544e+14 -4.09891544e+14]
[4.24649429e+14]
```

Entrée [77]:

```
Y_pred_reg2 = reg2.predict(X_test2)
Y_pred_reg2.shape
```

Out[77]:

(331080, 1)

Entrée [78]:

```
mean_squared_error(Y_test2, Y_pred_reg2)
```

Out[78]:

2160400728.556052

```
Entrée [79]:
r2_score(Y_test2, Y_pred_reg2)
Out[79]:
0.1117275603691269
Entrée [80]:
scores_reg2 = cross_val_score(reg2, X2, Y2, cv=5)
scores_reg2
Out[80]:
array([0.11203044, 0.10722734, 0.11153583, 0.1051723, 0.11417601])
Arbre de décisions
Entrée [81]:
dtr2 = dtr.fit(X_train2, Y_train2)
Entrée [82]:
Y_pred_dtr2 = dtr2.predict(X_test2)
Y_pred_dtr2.shape
Out[82]:
(331080,)
Entrée [83]:
mean_squared_error(Y_test2, Y_pred_dtr2)
Out[83]:
2129462337.1777048
Entrée [84]:
r2_score(Y_test2, Y_pred_dtr2)
Out[84]:
0.124448219099078
Entrée [85]:
scores_dtr2 = cross_val_score(dtr2, X2, Y2, cv=5)
scores_dtr2
Out[85]:
array([0.12058175, 0.11811095, 0.122682 , 0.11653689, 0.12782462])
```

Régresseur Ridge

```
Entrée [86]:
ridge2 = ridge.fit(X_train2, Y_train2)
Entrée [87]:
Y_pred_ridge2 = ridge2.predict(X_test2)
Y_pred_ridge2.shape
Out[87]:
(331080, 1)
Entrée [88]:
mean_squared_error(Y_test2, Y_pred_ridge2)
Out[88]:
2160397327.721159
Entrée [89]:
r2_score(Y_test2, Y_pred_ridge2)
Out[89]:
0.1117289586596697
Entrée [90]:
scores_ridge2 = cross_val_score(ridge2, X2, Y2, cv=5)
scores_ridge2
Out[90]:
array([0.11208317, 0.10724381, 0.11156336, 0.10515454, 0.11410703])
Radom Forest Regressor
Entrée [91]:
rfr2 = rfr.fit(X_train2, Y_train2)
Entrée [92]:
Y_pred_rfr2 = rfr2.predict(X_test2)
Y_pred_rfr2.shape
Out[92]:
```

(331080,)

```
Entrée [93]:
mean_squared_error(Y_test2, Y_pred_rfr2)
Out[93]:
2129298270.951985
Entrée [94]:
r2_score(Y_test2, Y_pred_rfr2)
Out[94]:
0.12451567672610764
Entrée [95]:
scores_rfr2 = cross_val_score(rfr2, X2, Y2, cv=5)
scores_rfr2
Out[95]:
array([0.12062543, 0.11818833, 0.12266348, 0.11659991, 0.12795248])
XGBoost (eXtreme Gradient Boosting)
Entrée [96]:
boost2= boost.fit(X_train2, Y_train2)
Entrée [97]:
Y_pred_boost2 = boost2.predict(X_test2)
Y_pred_boost2.shape
Out[97]:
(331080,)
Entrée [98]:
mean_squared_error(Y_test2, Y_pred_boost2)
Out[98]:
2129393391.0623667
Entrée [99]:
r2_score(Y_test2, Y_pred_boost2)
Out[99]:
0.12447656705011545
```

```
Entrée [100]:
```

```
scores_boost2 = cross_val_score(boost2, X2, Y2, cv=5)
scores_boost2
```

Out[100]:

```
array([0.12065228, 0.11808176, 0.1226397, 0.11653104, 0.12787491])
```

Remarques

- Les résultats ne sont pas bons:
 - Les Mean Squared errors sont plus haut que le prix max des biens
 - Les r2 score sont trop bas
 Il faudrait pour modifier ça reprendre avec le client toutes les données pour avoir un échantillon de base valable.
- On peut jouer sur les paramètres des algorithmes pour esssayer d'améliorer les résultats
 - Je choisis donc l'algorithme qui a un Mean Square Error le plus faible. Ici c'est le Random Forest Regressor avec comme préprocessing le Standard Scaler.
 - Je vais donc utiliser la méthode du Grid Search afin de connaître la meilleure combinaison possible de paramètres pour cet algorithme dans notre cas.

GridSearch

```
Entrée [101]:
```

```
# from sklearn.model_selection import GridSearchCV
```

Entrée [102]:

```
# param_grid = {'bootstrap': [True, False],
# 'max_depth': [10, 20, 30, None],
# 'max_features': ['auto', 'sqrt'],
# 'min_samples_leaf': [1, 2, 3],
# 'min_samples_split': [2, 5, 10],
# 'n_estimators': [100, 200, 400]}
```

Entrée [103]:

```
# rfr=RandomForestRegressor()
# rfr
```

Entrée [104]:

Entrée [105]:

```
# grid_search.fit(X_train2, Y_train2)
```

```
Entrée [106]:
```

```
# grid_search.best_params_
```

Entrée [107]:

```
# best_grid = grid_search.best_estimator_
# grid_accuracy = evaluate(best_grid, X_test2, Y_test2)
```