DTSC670: Foundations of Machine Learning Models

Module 1

Assignment 2: COVID-19 Data Wrangling

Name: Ejegu Smith

The purpose of this assignment is to hone your data wrangling skills. Your task for this assignment is to perform the data preparation as instructed in the

DTSC670_Assignment_2 pdf listed in Brightspace. After performing all the data preparation tasks outlined in the document, run the code in the "Prepare DataFrames for Grading" section.

You are supplied an Excel file called BrazilCOVIDData.xlsx - be sure to put the data file in the same directory as this Jupyter Notebook. *Please note that it may take around 5 minutes to read-in all of the data in this file.*

```
In [13]: import pandas as pd

fileName = 'BrazilCOVIDData.xlsx'
xls = pd.ExcelFile(fileName)
BrazilCovid_df = pd.read_excel(xls, 'Brazil Covid-19 data')
TempByState_df = pd.read_excel(xls, 'Temperature by State')
#StateStats_df = pd.read_excel(xls, 'Brazil State Stats')
CityArea_df = pd.read_excel(xls, 'City area')
```

In [14]: BrazilCovid_df.head()

Out[14]:

	Region	State	Municipality	State- code	Municipality- code	Health- region- code	Health- region- name	Date	Week #	Population as of 2019
0	Brasil	NaN	NaN	76	NaN	NaN	NaN	2020- 02-25	9	210147125
1	Brasil	NaN	NaN	76	NaN	NaN	NaN	2020- 02-26	9	210147125
2	Brasil	NaN	NaN	76	NaN	NaN	NaN	2020- 02-27	9	210147125
3	Brasil	NaN	NaN	76	NaN	NaN	NaN	2020- 02-28	9	210147125
4	Brasil	NaN	NaN	76	NaN	NaN	NaN	2020- 02-29	9	210147125

In [15]: TempByState_df.head()

Out[15]:

	STATE_ABBR	STATE	CITY	IS_CAPITOL	ANNUAL	JAN	FEB	MAR	APR	MAY
0	AC	Acre	NaN	NaN	77.2	78.0	77.9	77.4	77.1	76.0
1	AC	Acre	CRUSEIRO DO SUL, ACRE	NaN	76.8	77.5	77.2	77.2	76.8	76.5
2	AC	Acre	FLORESCENCIA, ACRE	NaN	80.0	80.0	80.0	80.0	79.0	78.0
3	AC	Acre	SENA MADUREIRA, ACRE	NaN	75.0	77.0	77.0	75.0	75.0	73.0
4	AC	Acre	TARAUACÁ, ACRE	NaN	76.8	77.5	77.5	77.5	77.4	76.5

In [16]: CityArea_df.head()

Out[16]:

	ST	City	SQ_KM
0	AC	Rio Branco	8835.0
1	AL	Maceió	511.0
2	AP	Macapá	6407.0
3	AM	Manaus	11400.0
4	ВА	Salvador	693.8

```
In [17]: #renaming to appropriate column names
```

```
TempByState_df_2 = TempByState_df.rename(columns= {'ANNUAL': 'Temp', '
BrazilCovid_df_2 = BrazilCovid_df.rename(columns= {'Population as of 2
CityArea_df_2 = CityArea_df.rename(columns= {'ST': 'State'})
```

```
In [8]: BrazilCovid_df
```

In [19]: TempByState_df.head()

Out[19]:

	STATE_ABBR	STATE	CITY	IS_CAPITOL	ANNUAL	JAN	FEB	MAR	APR	MAY
0	AC	Acre	NaN	NaN	77.2	78.0	77.9	77.4	77.1	76.0
1	AC	Acre	CRUSEIRO DO SUL, ACRE	NaN	76.8	77.5	77.2	77.2	76.8	76.5
2	AC	Acre	FLORESCENCIA, ACRE	NaN	80.0	80.0	80.0	80.0	79.0	78.0
3	AC	Acre	SENA MADUREIRA, ACRE	NaN	75.0	77.0	77.0	75.0	75.0	73.0
4	AC	Acre	TARAUACÁ, ACRE	NaN	76.8	77.5	77.5	77.5	77.4	76.5

In [20]: joined_df = BrazilCovid_df_2.merge(TempByState_df_2, on=['City', "Stat
joined_df

Out [20]:

	Region	State	City	State- code	Municipality- code	Health- region- code	Health- region- name	Date	Week #	Population	
0	Norte	RO	NaN	11	NaN	NaN	NaN	2020- 02-25	9	1777225	
1	Norte	RO	NaN	11	NaN	NaN	NaN	2020- 02-26	9	1777225	
2	Norte	RO	NaN	11	NaN	NaN	NaN	2020- 02-27	9	1777225	
3	Norte	RO	NaN	11	NaN	NaN	NaN	2020- 02-28	9	1777225	
4	Norte	RO	NaN	11	NaN	NaN	NaN	2020- 02-29	9	1777225	
24	Centro- Oeste	DF	Brasília	53	530010.0	53001.0	DISTRITO FEDERAL	2020- 08-20	34	3015268	
25	Centro- Oeste	DF	Brasília	53	530010.0	53001.0	DISTRITO FEDERAL	2020- 08-21	34	3015268	
26	Centro- Oeste	DF	Brasília	53	530010.0	53001.0	DISTRITO FEDERAL	2020- 08-22	34	3015268	
27	Centro- Oeste	DF	Brasília	53	530010.0	53001.0	DISTRITO FEDERAL	2020- 08-23	35	3015268	
28	Centro- Oeste	DF	Brasília	53	530010.0	53001.0	DISTRITO FEDERAL	2020- 08-24	35	3015268	

^{?9} rows × 34 columns

In [22]: joined_df_2 = joined_df.merge(CityArea_df_2, on=['City', "State"])
joined_df_2

Out[22]:

	Region	State	City	State- code	Municipality- code	Health- region- code	Health- region- name	Date	Week #	Populatic
0	Norte	RO	Porto Velho	11	110020.0	11004.0	MADEIRA- MAMORE	2020- 03-27	13	52954
1	Norte	RO	Porto Velho	11	110020.0	11004.0	MADEIRA- MAMORE	2020- 03-28	13	52954
2	Norte	RO	Porto Velho	11	110020.0	11004.0	MADEIRA- MAMORE	2020- 03-29	14	52954
3	Norte	RO	Porto Velho	11	110020.0	11004.0	MADEIRA- MAMORE	2020- 03-30	14	52954
4	Norte	RO	Porto Velho	11	110020.0	11004.0	MADEIRA- MAMORE	2020- 03-31	14	52954
•••										
4072	Centro- Oeste	DF	Brasília	53	530010.0	53001.0	DISTRITO FEDERAL	2020- 08-20	34	301526
4073	Centro- Oeste	DF	Brasília	53	530010.0	53001.0	DISTRITO FEDERAL	2020- 08-21	34	301526
4074	Centro- Oeste	DF	Brasília	53	530010.0	53001.0	DISTRITO FEDERAL	2020- 08-22	34	301526
4075	Centro- Oeste	DF	Brasília	53	530010.0	53001.0	DISTRITO FEDERAL	2020- 08-23	35	301526
4076	Centro- Oeste	DF	Brasília	53	530010.0	53001.0	DISTRITO FEDERAL	2020- 08-24	35	301526

4077 rows × 35 columns

In [24]: #filtering down data joined_df_2 = joined_df_2[['State', 'City', 'Population', 'SQ_KM', 'Ac joined_df_2

Out [24]:

	State	City	Population	SQ_KM	Accumulated cases	Temp
0	RO	Porto Velho	529544	34091.0	0	78.1
1	RO	Porto Velho	529544	34091.0	5	78.1
2	RO	Porto Velho	529544	34091.0	5	78.1
3	RO	Porto Velho	529544	34091.0	5	78.1
4	RO	Porto Velho	529544	34091.0	6	78.1
4072	DF	Brasília	3015268	5802.0	143759	69.1
4073	DF	Brasília	3015268	5802.0	145452	69.1
4074	DF	Brasília	3015268	5802.0	147127	69.1
4075	DF	Brasília	3015268	5802.0	148998	69.1
4076	DF	Brasília	3015268	5802.0	150519	69.1

4077 rows × 6 columns

In [25]: #checking the data types joined_df_2.info()

<class 'pandas.core.frame.DataFrame'>
Int64Index: 4077 entries, 0 to 4076
Data columns (total 6 columns):

#	Column	Non-Null Count	Dtype
0	State	4077 non-null	object
1	City	4077 non-null	object
2	Population	4077 non-null	object
3	SQ_KM	4077 non-null	float64
4	Accumulated cases	4077 non-null	int64
5	Temp	4077 non-null	float64
		/ - \ / - \	

dtypes: float64(2), int64(1), object(3)

memory usage: 223.0+ KB

```
In [27]: #changing pop to an int
joined_df_2[['Population']] = joined_df_2[['Population']].apply(pd.to_
```

/opt/anaconda3/lib/python3.8/site-packages/pandas/core/frame.py:2963: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame. Try using <code>.loc[row_indexer,col_indexer] = value instead</code>

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy(https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy)

self[k1] = value[k2]

```
In [30]: #creating population density column
         joined df 2['Pop dense'] = joined df 2['Population']/joined df 2["SQ K
         joined df 2
```

<ipython-input-30-025b0fc0ec34>:2: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/panda s-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.htm l#returning-a-view-versus-a-copy)

joined_df_2['Pop_dense'] = joined_df_2['Population']/joined_df_2["S Q KM"]

Out[30]:

		State	City	Population	SQ_KM	Accumulated cases	Temp	Pop_dense
	0	RO	Porto Velho	529544	34091.0	0	78.1	15.533249
	1	RO	Porto Velho	529544	34091.0	5	78.1	15.533249
	2	RO	Porto Velho	529544	34091.0	5	78.1	15.533249
	3	RO	Porto Velho	529544	34091.0	5	78.1	15.533249
	4	RO	Porto Velho	529544	34091.0	6	78.1	15.533249
•	4072	DF	Brasília	3015268	5802.0	143759	69.1	519.694588
•	4073	DF	Brasília	3015268	5802.0	145452	69.1	519.694588
•	4074	DF	Brasília	3015268	5802.0	147127	69.1	519.694588
,	4075	DF	Brasília	3015268	5802.0	148998	69.1	519.694588
,	4076	DF	Brasília	3015268	5802.0	150519	69.1	519.694588

4077 rows × 7 columns

```
In [31]: #making a list to use as the days column
         my list = list(range(0,151)) * 27
```

```
In [32]: # turning list into df to convert to days column
my_list = pd.DataFrame(my_list)
my_list
```

Out[32]:

	0
0	0
1	1
2	2
3	3
4	4
4072	146
4073	147
4074	148
4075	149
4076	150

4077 rows × 1 columns

```
In [34]: #addiding the days column to the df using the list
new_df = joined_df_2.assign(Days = my_list)
```

In [35]: new_df

Out [35]:

	State	City	Population	SQ_KM	Accumulated cases	Temp	Pop_dense	Days
	0 RO	Porto Velho	529544	34091.0	0	78.1	15.533249	0
	1 RO	Porto Velho	529544	34091.0	5	78.1	15.533249	1
	2 RO	Porto Velho	529544	34091.0	5	78.1	15.533249	2
	3 RO	Porto Velho	529544	34091.0	5	78.1	15.533249	3
	4 RO	Porto Velho	529544	34091.0	6	78.1	15.533249	4
407	72 DF	Brasília	3015268	5802.0	143759	69.1	519.694588	146
407	73 DF	Brasília	3015268	5802.0	145452	69.1	519.694588	147
407	74 DF	Brasília	3015268	5802.0	147127	69.1	519.694588	148
407	75 DF	Brasília	3015268	5802.0	148998	69.1	519.694588	149
407	76 DF	Brasília	3015268	5802.0	150519	69.1	519.694588	150

4077 rows × 8 columns

```
In [36]: new_df.shape
```

Out[36]: (4077, 8)

```
In [ ]: #new_df.drop_duplicates(subset=['STATE_ABBR', 'Capitol City'])
```

```
In [38]: #adding features
    new_df['days_cube'] = new_df['Days']**3
    new_df['days_sq'] = new_df['Days']**2
    new_df['Pop_dens_sq'] = new_df['Pop_dense']**2
```

In [39]: #checking it out with all the features new_df

Out[39]:

	State	City	Population	SQ_KM	Accumulated cases	Temp	Pop_dense	Days	days_cube
0	RO	Porto Velho	529544	34091.0	0	78.1	15.533249	0	0
1	RO	Porto Velho	529544	34091.0	5	78.1	15.533249	1	1
2	RO	Porto Velho	529544	34091.0	5	78.1	15.533249	2	8
3	RO	Porto Velho	529544	34091.0	5	78.1	15.533249	3	27
4	RO	Porto Velho	529544	34091.0	6	78.1	15.533249	4	64
4072	DF	Brasília	3015268	5802.0	143759	69.1	519.694588	146	3112136
4073	DF	Brasília	3015268	5802.0	145452	69.1	519.694588	147	3176523
4074	DF	Brasília	3015268	5802.0	147127	69.1	519.694588	148	3241792
4075	DF	Brasília	3015268	5802.0	148998	69.1	519.694588	149	3307949
4076	DF	Brasília	3015268	5802.0	150519	69.1	519.694588	150	3375000

4077 rows × 11 columns

```
In [41]: # Get Final Features DataFrame
  features = new_df[['days_cube', 'days_sq', 'Days', 'Temp','Pop_dens_sc

# Get Final Response DataFrame
  response = new_df[['Accumulated cases']]
```

In [45]: import numpy as np

Prepare DataFrames for Grading

Do not make changes to the below code

After completing all data preparation tasks, run the following four cells to prepare your DataFrame for grading by:

- 1. Outputting the features and response DataFrames (you do not need to print).
- 2. Using the NumPy <u>around()</u>
 (https://numpy.org/doc/stable/reference/generated/numpy.around.html) function to round all the values in both DataFrames to **ZERO decimal places**. You are calling these features round and response round, respectively.
- 3. Computing the sum of every column for both features_round and response_round, and saving those values as features_final and response final.

Finally, you are printing your final answer using the print() function.

Be sure to run all cells of your notebook prior to submitting, so that all output is rendered, visible and there are no error messages.

In [42]: features

Out [42]:

	days_cube	days_sq	Days	Temp	Pop_dens_sq	Pop_dense	Population
0	0	0	0	78.1	241.281832	15.533249	529544
1	1	1	1	78.1	241.281832	15.533249	529544
2	8	4	2	78.1	241.281832	15.533249	529544
3	27	9	3	78.1	241.281832	15.533249	529544
4	64	16	4	78.1	241.281832	15.533249	529544
4072	3112136	21316	146	69.1	270082.464872	519.694588	3015268
4073	3176523	21609	147	69.1	270082.464872	519.694588	3015268
4074	3241792	21904	148	69.1	270082.464872	519.694588	3015268
4075	3307949	22201	149	69.1	270082.464872	519.694588	3015268
4076	3375000	22500	150	69.1	270082.464872	519.694588	3015268

4077 rows × 7 columns

In [43]: response

Out [43]:

	Accumulated cases
0	0
1	5
2	5
3	5
4	6
4072	143759
4073	145452
4074	147127
4075	148998
4076	150519

4077 rows × 1 columns

```
In [46]: features_round = np.around(features, decimals=0)
    features_final = features_round.sum(axis=0)
    print(features_final)
```

```
days_cube
days_sq
days_sq
Days
Temp
Pop_dens_sq
Pop_lation
3.462902e+09
3.067942e+07
3.057750e+05
3.095500e+05
6.186755e+10
1.127728e+07
7.571160e+09
```

dtype: float64

```
In [47]: response_round = np.around(response, decimals=0)
    response_final = response_round.sum(axis=0)
    print(response_final)
```

Accumulated cases 61281356 dtype: int64

In []: