SEED QUALITY CLASSIFICATION

Agricultural Data Science

Jacob Serfaty

SEED QUALITY INDUSTRY

"Good seed is the foundation of good crops."

- Norman Borlaug

- High-quality soybean seeds have the potential to result in increased crop yield.
- Quality seeds have a higher resistance to common soybean diseases and pests.
- High-quality seeds often contain desirable genetic traits, such as tolerance to specific environmental conditions (e.g., drought or heat tolerance)

BUSINESS UNDERSTANDING

Our goal is to improve the efficiency of agricultural tech businesses, by improving the quality of the soybean seeds in which they use.

- Collect soybean seed images from agricultural tech businesses in the soybean market to put into a classification model
- Create a model that can distinguish between viable and non-viable seeds
- Integrate this model into agricultural hardware for sorting seeds

DATA UNDERSTANDING

- The dataset consists of 5513 images of soybean seeds
- The data was equally balanced
- Each image is 227x227 pixels
- There are 5 classes
 - Intact
 - Broken
 - Immature
 - Skin-damaged
 - Spotted

DATA UNDERSTANDING

True: Immature Predicted: Immature

True: Broken Predicted: Broken

True: Intact Predicted: Intact

True: Skin-damaged Predicted: Skin-damaged

True: Spotted Predicted: Spotted

MODELLING

- All of the models were Convolutional Neural Networks (CNNs)
- The base model layout:
 - 3 2D-convolutional layers
 - 3 max-pooling layers
 - 1 hidden layer

MODELLING

- The final model layout:
 - 3 2D-convolutional layers
 - 3 max-pooling layers
 - 3 hidden layers
 - 2 dropout layers
- This model also included:
 - Bias
 - Padding
 - o 12 regularization

BUSINESS RECOMMENDATIONS

- The model that should be used for soybean seed identification is the final classification model
- The model should be integrated into a seed-sorting mechanism that can classify each seed in real-time.

- The model needs data with higher-quality color images
- The model needs data that is not mislabelled

MODEL IMPROVEMENTS

True: Immature Predicted: Intact

- The model can be improved through transfer learning models trained for seed identification
- The model can be improved by comparing classes, which are more heavily misclassified into a binary classification model

GITHUB.COM/JACOBSERFATY/
LINKEDIN.COM/IN/JACOB-SERFATY/

