Data Privacy Homework 2

1. (15') Laplace mechanism

- (a) (5') Given the function $f(x)=\frac{1}{6}\sum_{i=1}^6x_i$, where $x_i\in\{1,2,\ldots,10\}$ for $i\in\{1,2,\ldots,6\}$, compute the global sensitivity and local sensitivity when $x=\{3,5,4,5,6,7\}$.
- **(b) (10')** Given a database x where each element is in $\{1, 2, 3, 4, 5, 6\}$, design ϵ -differentially private Laplace mechanisms corresponding to the following queries, where $\epsilon = 0.1$:

1.
$$q_1(x) = \sum_{i=1}^6 x_i$$

2. $q_2(x) = \max_{i \in \{1,2,\ldots,6\}} x_i$

2.(15') Exponential mechanism

ID	sex	Chinese	Mathematics	English	Physics	Chemistry	Biology
1	Male	96	58	80	53	56	100
2	Male	60	63	77	50	59	75
3	Female	83	86	98	69	80	100
4000	Female	86	83	98	87	82	92

Table 1: Scores of students in School A

Table 1 records the scores of students in School A in the final exam. We need to help the teacher query the database while protecting the privacy of students' scores. The domain of this database is $\{Male, Female\} \times \{0, 1, 2, \dots, 100\}^6$. Answer the following questions.

(a) (5') What is the sensitivity of the following queries:

1.
$$q_1(x) = \frac{1}{4000} \sum_{ID=1}^{4000} Physics_{ID}$$

2. $q_2(x) = \max_{ID \in \{1,2,\dots,4000\}} Biology_{ID}$

(b) (10') Design ϵ -differential privacy mechanisms corresponding to the two queries in (a), where $\epsilon=0.1$. (Using Laplace mechanism for q_1 and Exponential mechanism for q_2 .)

3.(20') Composition

Theorem 3.16. Let $\mathcal{M}_i: \mathbb{N}^{|\mathcal{X}|} \to \mathcal{R}_i$ be an $(\varepsilon_i, \delta_i)$ -differentially private algorithm for $i \in [k]$. Then if $\mathcal{M}_{[k]}: \mathbb{N}^{|\mathcal{X}|} \to \prod_{i=1}^k \mathcal{R}_i$ is defined to be $\mathcal{M}_{[k]}(x) = (\mathcal{M}_1(x), \dots, \mathcal{M}_k(x))$, then $\mathcal{M}_{[k]}$ is $(\sum_{i=1}^k \varepsilon_i, \sum_{i=1}^k \delta_i)$ -differentially private.

Theorem 3.20 (Advanced Composition). For all $\varepsilon, \delta, \delta' \geq 0$, the class of (ε, δ) -differentially private mechanisms satisfies $(\varepsilon', k\delta + \delta')$ -differential privacy under k-fold adaptive composition for:

$$\varepsilon' = \sqrt{2k\ln(1/\delta')}\varepsilon + k\varepsilon(e^{\varepsilon} - 1).$$

(a) (10') Given a database $x=\{x_1,x_2,\ldots,x_{2000}\}$ where $x_i\in\{0,1,2,\ldots,100\}$ for each i and privacy parameters $(\epsilon,\delta)=(1.25,10^{-5})$, apply the Gaussian mechanism to protect 100 calls to the query $q_1(x)=\frac{1}{2000}\sum_{i=1}^{2000}x_i$. Determine the noise variances σ^2 of the Gaussian mechanism to ensure (ϵ,δ) -DP based on the composition and advanced composition theorems, respectively.

(b) (10') Determine the noise variances σ^2 of the Gaussian mechanism to protect 100 calls to the query $q_2(x) = \max_{i \in \{1,2,\dots,2000\}} x_i$ to ensure $(1.25,10^{-5})$ -DP based on the composition and advanced composition theorems, respectively, where x is the database in (a).

4. (25') Randomized Response for Local DP

Consider a population of n users, where the true proportion of males is denoted as π . Our objective is to gather statistics on the proportion of males, prompting a sensitive question: "Are you male?" Each user responds with either a yes or no, but due to privacy concerns, they refrain from directly disclosing their true gender. Instead, they employ a biased coin with a probability of landing heads denoted as p, and tails as 1-p. When the coin is tossed, a truthful response is given if heads appear, while the opposite response is provided if tails come up.

- (a) (10') Demonstrate that the aforementioned randomized response adheres to local differential privacy and determine the corresponding privacy parameter, ϵ .
- **(b) (15')** Employing the perturbation method outlined above to aggregate responses from the n users yields a statistical estimate for the number of males. Assuming the count of "yes" responses is n_1 , construct an unbiased estimate for π based on n, n_1, p . Calculate the variance associated with this estimate.

5. (10') Accuracy Guarantee of DP

Consider the application of an (ϵ,δ) -differentially private Gaussian mechanism denoted by $\mathcal M$ to protect the mean estimator $\bar x=\frac{1}{n}\Sigma_{i=1}^nx_i$ of a d-dimensional input database x, where $x_i\in\{0,1,\ldots,100\}^d$ for each i. Let $\mathcal M(x)$ represent the output of this Gaussian mechanism. Utilize both the tail bound and the union bound to derive the L_∞ -norm error bound of $\mathcal M$, denoted by $\|\mathcal M(x)-\bar x\|_\infty$, ensuring a probability of at least $1-\beta$. Specifically, solve for the bound $\mathcal B$ such that

$$\Pr[\|\mathcal{M}(x) - \bar{x}\|_{\infty} \leq \mathcal{B}] \geq 1 - \beta.$$

Hint: Refer to https://zhuanlan.zhihu.com/p/425562737 for descriptions of statistical inequalities.

6. (15') Personalized Differential Privacy

Consider an n-element dataset D where the i-th element is owned by a user $i \in [n]$, where $[n] = \{1, 2, \ldots, n\}$ and the privacy requirement of user i is ϵ_i -DP. A randomized mechanism $\mathcal M$ satisfies $\{\epsilon_i\}_{i \in [n]}$ -personalized differential privacy (or $\{\epsilon_i\}_{i \in [n]}$ -PDP) if, for every pair of neighboring datasets D, D' differing at the j-th element for an arbitrary $j \in [n]$, and for all sets S of possible outputs,

$$P[\mathcal{M}(D) \in S] \leq e^{\epsilon_j} Pr[\mathcal{M}(D') \in S].$$

(a) (5') Prove the composition theorem of PDP: If a mechanism is $\{\epsilon_i^{(1)}\}_{i\in[n]}$ -PDP and another is $\{\epsilon_i^{(2)}\}_{i\in[n]}$ -PDP, then publishing the result of both is $\{\epsilon_i^{(1)}+\epsilon_i^{(2)}\}_{i\in[n]}$ -PDP.

(b) (10') Given a dataset D and a privacy requirement set $\{\epsilon_i\}_{i\in[n]}$, the *Sample mechanism* works as follows: 1) We pick an arbitrary threshold value t>0; 2) We sample a subset $D_S\subset D$ where the probability that the i-th element of D is contained in D_S equals $\frac{e^{\epsilon_i}-1}{e^t-1}$ if $\epsilon_i< t$ and 1 otherwise; 3) We output $\mathcal{M}(D_S)$, where \mathcal{M} is a t-differentially private mechanism. Prove that the Sample mechanism with any t>0 is $\{\epsilon_i\}_{i\in[n]}$ -PDP. **Hint:** Use the Bayes formula.