Министерство науки и высшего образования РФ Федеральное государственное бюджетное образовательное учреждение высшего образования «Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

Факультет: Фундаментальные науки Кафедра: Прикладная математика

Отчет по лабораторным работам по дисциплине «Методы оптимизации»

Преподаватель: Чередниченко А.В.

Студент: Егоров. А.Д.

Группа: ФН2-52Б.

Содержание

1. Методы прямого поиска	
1.1. Постановка задачи	
1.2. Тестовые примеры и результаты расчетов	
1.3. Вывод	
2. Лабораторная работа №7	
2.1. Постановка задачи	
2.2. Тестовые примеры и результаты расчетов	12
2.3. Выводы	
3. Методы последовательной безусловной минимизации	
3.1. Постановка задачи	17
3.2. Тестовые примеры и результаты расчетов	
3.3. Вывод	
Общие выводы	

1. Методы прямого поиска

1.1. Постановка задачи

В лабораторной работе необходимо найти с заданной точностью точку минимума и минимальное значение целевой функции. При исследовании для каждой функции брать два параметра точности поиска. Также для каждой функции и каждого параметра точности поиска взять две различные начальные точки. Выявить влияние на стоимость методов (количество вычисленных значений целевой функции)

- параметров точности поиска;
- начальной точки;
- выпуклости;
- овражности функции (параметра α в функции Розенброка).

Используемые методы:

- метод циклического покоординатного поиска
- метод Хука-Дживса
- метод Розенброка

Целевые функции:

- $2x^2+4xy+5y^2-4\sqrt{5}(x+y)+35$
- $f(x,y)=\alpha(x^2-y)^2+(x-1)^2$

Заданная точность:

- $\epsilon = 0.01$
- $\epsilon = 0.000001$

1.2. Тестовые примеры и результаты расчетов

Таблица 1 - Результаты вычислений квадратичной функции в зависимости от начальной точки и метода

Начальна я точка	Точность	Метод	Точка минимума функции	Значение функции в точке минимум а	Количеств о итераций	Количество вычислений функции
[-1, -2]	0.01	Метод Розенброка	[-0.0, -2.24]	-45.00	4	232
[0, 0]	0.01	Метод Розенброка	[0.0, -2.24]	-45.00	4	232
[-2, 5]	0.01	Метод Розенброка	[-0.0, -2.24]	-45.00	7	406
[-10, 18]	0.01	Метод Розенброка	[0.0, -2.24]	-45.00	11	638
[-1, -2]	0.01	Метод Хука-Дживса	[-0.0, -2.24]	-45.00	20	131
[0, 0]	0.01	Метод Хука-Дживса	[-0.0, -2.24]	-45.00	20	129
[-2, 5]	0.01	Метод Хука-Дживса	[-0.0, -2.24]	-45.00	24	299
[-10, 18]	0.01	Метод Хука-Дживса	[-0.0, -2.24]	-45.00	25	351
[-1, -2]	0.01	Метод покоординатног о спуска	[-0.0, -2.23]	-45.00	5	508
[0, 0]	0.01	Метод покоординатног о спуска	[-0.0, -2.23]	-45.00	7	684
[-2, 5]	0.01	Метод покоординатног о спуска	[-0.0, -2.23]	-45.00	9	871
[-10, 18]	0.01	Метод покоординатног о спуска	[-0.0, -2.23]	-45.00	10	958

Таблица 2 - Результаты вычислений функции Розенброка в зависимости от начальной точки, alpha = 5

Начальная точка	Точност ь	Метод	Точка минимума функции	Значение функции в точке минимума	Количество итераций	Количество вычислений функции
[-10, 18]	0.01	Метод покоординатного спуска	[0.92, 0.85]	0.010000	142	14155
[-10, 18]	0.01	Метод Хука- Дживса	[0.87, 0.74]	0.020000	311	13283
[-10, 18]	0.01	Метод Розенброка	[1.0, 1.0]	0.000000	31	1798
[-2, 5]	0.01	Метод покоординатного спуска	[0.92, 0.85]	0.010000	36	3569
[-2, 5]	0.01	Метод Хука- Дживса	[0.88, 0.76]	0.010000	36	1343
[-2, 5]	0.01	Метод Розенброка	[1.0, 1.0]	0.000000	15	870
[-1, -2]	0.01	Метод покоординатного спуска	[0.92, 0.85]	0.010000	27	2775
[-1, -2]	0.01	Метод Хука- Дживса	[0.92, 0.83]	0.010000	20	605
[-1, -2]	0.01	Метод Розенброка	[1.0, 1.0]	0.000000	9	522
[0, 0]	0.01	Метод покоординатного спуска	[0.92, 0.85]	0.010000	26	2688
[0, 0]	0.01	Метод Хука- Дживса	[0.88, 0.75]	0.020000	14	391
[0, 0]	0.01	Метод Розенброка	[1.0, 1.0]	0.000000	7	406

Рисунок 1 - Визуализация нахождения минимума квадратичной функции методом циклического покоординатнаго спуска при начальной точке (-1, -2)

Рисунок 2 - Визуализация нахождения минимума квадратичной функции методом Хука-Дживса при начальной точке (-1, -2)

Рисунок 3 - Визуализация нахождения минимума квадратичной функции методом Розенброка при начальной точке (-1, -2)

Таблица 3 - Результаты вычислений функции Розенброка в зависимости от начальной точки, alpha = 50

Начальная точка	Точност ь	Метод	Точка минимума функции	Значение функции в точке минимума	Количество итераций	Количество вычислений функции
[-2, 5]	0.01	Метод покоординатного спуска	[0.6, 0.36]	0.160000	280	29744
[-2, 5]	0.01	Метод Хука- Дживса	[-2.0, 4.0]	9.000000	9	42
[-2, 5]	0.01	Метод Розенброка	[1.0, 1.0]	0.000000	27	1566
[0, 0]	0.01	Метод покоординатного спуска	[0.57, 0.33]	0.180000	24	2519
[0, 0]	0.01	Метод Хука- Дживса	[0, 0]	1.000000	1	0
[0, 0]	0.01	Метод Розенброка	[1.0, 1.0]	0.000000	12	696

Таблица 4 - Результаты вычислений функции Розенброка в зависимости от заданной точности, alpha = 50

Начальная точка	Точност ь	Метод	Точка минимума функции	Значение функции в точке минимума	Количество итераций	Количество вычислений функции
[-1, -2]	0.001	Метод Розенброка	[1.0, 1.0]	0.000000	15	1020
[-1, -2]	0.000001	Метод Розенброка	[1.0, 1.0]	0.000000	16	1376
[-1, -2]	0.001	Метод Хука- Дживса	[0.863, 0.744]	0.019000	59	2147
[-1, -2]	0.000001	Метод Хука- Дживса	[0.999799, 0.999596]	0.000000	1245	52953
[-1, -2]	0.001	Метод покоординатного спуска	[0.92, 0.846]	0.006000	239	26953
[-1, -2]	0.000001	Метод покоординатного спуска	[0.999911, 0.999822]	0.000000	1572	203436

Рисунок 4 - Визуализация нахождения минимума функции Розенброка методом циклического покоординатнаго спуска при начальной точке (-1, -2)

Рисунок 5 - Визуализация нахождения минимума функции Розенброка методом Хука-Дживса при начальной точке (-1, -2)

Рисунок 6 - Визуализация нахождения минимума функции Розенброка методом Розенброка при начальной точке (-1, -2)

1.3. Вывод

В результате выполнения лабораторной работы были реализованы три метода:

- метод циклического покоординатного спуска
- метод Хука-Дживса
- метод Розенброка

Достоинством данных методов является то, что нам не требуется дифференцируемость функции. Однако из-за этого появляются и недостатки: трудность с оценкой эффективности методов и их точность. Метод покоординатного спуска является самым простым для реализации, однако его простота делает его не самым эффективным по количеству вычислений функции. Методы Хука-Дживса и Розенброка является эффективнее по данному параметру. Наиболее выгодным является метод Хука-Дживса.

Следует отметить, что при сильно овражной функции и маленькой точности методы ПС и Хука-Дживса ищут минимум не точно: из таблиц 3, 4 видно, что данные численные методы могут не дать точного результата относительно значения, вычисленного аналитического (метод ПС сошелся к точке [0.6, 0.36], Хука-Дживса к [-2.0, 4.0]). Для получения более точного результата на сильно овражной функции следует пользоваться методом Розенброка.

Выбор точки сильно влияет на количество итераций и вычислений функции. Из таблицы 2 мы можем видеть, что функции Розенброка в начальных точках [0, 0] и [-10, 18] для метода ЦПС количество итераций отличается примерно в 7 раз, вычислений функции — в 7 раз, метода Хука-Дживса количество итераций отличается примерно в 22 раза, вычислений функции — в 33 раза, для метода Розенброка количество итераций отличается примерно в 4 раза, вычислений функции — в 4 раза. Так же для методов ЦПС и Хука-Дживса выбор точки влияет на полученное значение точки минимума: методы могут не сойтись к требуемой точке.

2. Лабораторная работа №7

2.1. Постановка задачи

В лабораторной работе необходимо найти с заданной точностью точку минимума и минимальное значение целевой функции. При исследовании для каждой функции брать два параметра точности поиска. Также для каждой функции и каждого параметра точности поиска взять две различные начальные точки. Выявить влияние на стоимость методов (количество вычисленных значений целевой функции)

- параметров точности поиска;
- начальной точки;
- выпуклости;
- овражности функции (параметра α в функции Розенброка).

Используемые методы:

- регулярный симплекс
- нерегулярный симплекс

Целевые функции:

•
$$2x^2+4xy+5y^2-4\sqrt{5}(x+y)-35$$

•
$$f(x, y) = \alpha (x^2 - y)^2 + (x - 1)^2$$

Заданная точность:

- $\epsilon = 0.01$
- $\epsilon = 0.000001$

2.2. Тестовые примеры и результаты расчетов

Таблица 5 - Результаты вычислений для регулярного симплекса при начальной длине ребра l=2 и коэффициенте редукции delta = 0.5 в зависимости от функции и точности

Тип функции	Начальная точка	Точность	Точка минимума функции	Значение функции в точке минимума	Количество итераций	Количество вычислений функции
Квадратичная функция	[-1, -2]	0.01	[-0.0, -2.27]	-45.00	14	12
Квадратичная функция	[-1, -2]	0.000001	[0.0, -2.236068]	-45.000000	40	38
Функция Розенброка, a = 1	[-1, -2]	0.01	[0.86, 0.74]	0.02	55	94
Функция Розенброка, а = 1	[-1, -2]	0.000001	[0.999976, 0.999952]	0.000000	966	1890
Функция Розенброка, а = 50	[-1, -2]	0.01	[0.57, 0.32]	0.19	15	14
Функция Розенброка, а = 50	[-1, -2]	0.000001	[0.99964, 0.999279]	0.000000	8078	16114

Таблица 6 - Результаты вычислений для нерегулярного симплекса при начальной длине ребра l=2 и коэффициентах отражения alpha = 1, растяжения beta = 2, сжатия gamma = 0.5, редукции delta = 0.5 в зависимости от функции и точности

Тип функции	Начальная точка	Точность	Точка минимума функции	Значение функции в точке минимума	Количество итераций	Количество вычислений функции
Квадратичная функция	[-1, -2]	0.01	[-0.0, -2.27]	-45.000000	13	120
Квадратичная функция	[-1, -2]	0.000001	[0.000462, -2.236667]	-44.999999	28	250
Функция Розенброка, а = 1	[-1, -2]	0.01	[0.83, 0.68]	0.03	19	170
Функция Розенброка, a = 1	[-1, -2]	0.000001	[0.999662, 0.998938]	0.000001	60	530
Функция Розенброка, a = 50	[-1, -2]	0.01	[0.76, 0.57]	0.06	17	150
Функция Розенброка, а = 50	[-1, -2]	0.000001	[0.999118, 0.998338]	0.000001	158	1390

Таблица 7 - Результаты вычислений для функции Розенброка для регулярного симплекса и нерегулярного симплекса при начальной длине ребра l=2, коэффициентах отражения alpha = 1, растяжения beta = 2, сжатия gamma = 0.5, редукции delta = 0.5 в зависимости от начальной точки

Начальная точка	Метод	Количество итераций	Количество вычислений функции
[-10, 1]	Регулярный симплекс	27	38
[-10, 1]	Нерегулярный симплекс	26	228
[-2, 5]	Регулярный симплекс	15	14
[-2, 5]	Нерегулярный симплекс	57	500
[-1, -2]	Регулярный симплекс	15	14
[-1, -2]	Нерегулярный симплекс	17	150
[0, 0]	Регулярный симплекс	51	86
[0, 0]	Нерегулярный симплекс	26	230
[10, 10]	Регулярный симплекс	22	28
[10, 10]	Нерегулярный симплекс	71	628

Рисунок 7 - Визуализация метода регулярного симплекса при eps = 0.01 для a) квадратичной функции, б) функции Розенброка (alpha = 1), в) функции Розенброка (alpha = 50)

Рисунок 8 - Визуализация метода нерегулярного симплекса при eps = 0.01 для a) квадратичной функции, б) функции Розенброка (alpha = 1), в) функции Розенброка (alpha = 50)

Рисунок 9 - Визуализация метода регулярного симплекса при eps = 0.000001 для a) квадратичной функции, б) функции Розенброка (alpha = 1), в) функции Розенброка (alpha = 50)

Рисунок 10. Визуализация метода нерегулярного симплекса при eps = 0.000001 для a) квадратичной функции, б) функции Розенброка (alpha = 1), в) функции Розенброка (alpha = 50)

2.3. Выводы

В результате выполнения лабораторной работы были реализованы два метода:

- Регулярный симплекс,
- Нерегулярный симплекс (метод Нелдера-Мида).

Во всех методах с заранее заданной точностью были получены точка минимума и минимальное значение в этой точке.

Из таблиц 5, 6 видно, что при поиске точки минимума для квадратичной функции оба методы показывают хорошие результаты, но эффективнее оказался поиск с помощью регулярного симплекса, так как требовал меньшего количества вычислений функции, так как в случае нерегулярного симплекса много вычислений уходит на одномерную минимизацию.

При поиске точки минимума для функции Розенброка лучшие результаты оказались у метода нерегулярного симплекса: метод регулярного симплекса требовал меньшего числа вычисления функций при малой точности, но точку минимума выдавал не точно относительно аналитического решения (таблица 5: точка полученная точка [0.57, 0.32]). При увеличении точности результаты улучшаются для обоих методов (найденная точка ближе к теоретической: из таблиц 5, 6: [0.99964, 0.999279] — регулярный, [0.999118, 0.998338] — нерегулярный), но эффективнее использовать нерегулярный симплекс, т. к. число вычислений для него меньше, чем для регулярного (число вычислений отличается примерно в 11 раз).

Выбор точки влияет на число итераций и вычислений функции соответственно: чем дальше точка от минимума функции, тем соответственно больше итераций: т.к. требуется построить большее число симплексов (таблица 7).

К плюсами данных методов можно отнести то, что для их реализации не требуется находить градиенты или матрицы Гесса, а их поиск, в свою очередь, порой является весьма нетривиальной задачей.

3. Методы последовательной безусловной минимизации

3.1. Постановка задачи

В лабораторной работе необходимо найти с заданной точностью точку минимума и минимальное значение целевой функции. При исследовании для каждой функции брать два параметра точности поиска. Также для каждой функции и каждого параметра точности поиска взять две различные начальные точки. Выявить влияние на стоимость методов (количество вычисленных значений целевой функции)

- параметров точности поиска;
- начальной точки;
- выпуклости;
- овражности функции (параметра α в функции Розенброка).

Используемые методы:

- метод внутренних штрафных функций;
- метод внешних штрафных функций.

Для каждой задачи искать решение в заданном допустимом множестве

- A: $x \ge 0$; $y \ge 0$; $x + y \le 10$;
- B: $\frac{(x+3)^2}{4} + \frac{(y+4)^2}{9} \le 10$.

Целевые функции:

- $6x^2 4xy + 3y^2 + 4\sqrt{5}(x+2y) 35$
- $f(x,y)=\alpha(x^2-y)^2+(x-1)^2$

Заданная точность:

- $\epsilon = 0.01$
- $\epsilon = 0.000001$

3.2. Тестовые примеры и результаты расчетов

Таблица 8 - Результаты вычислений для метода внутренних штрафных функций и для допустимого множества A в зависимости от функции и точности

Тип функции	Начальная точка	Точность	Точка минимума функции	Значение функции в точке минимума	Количество итераций	Количество вычислений функции
Квадратичная функция	[-2, 2]	0.01	[0.0, 0.0]	-34.99	22	3891
Квадратичная функция	[-2, 2]	0.000001	[0.0, 0.0]	-34.999999	49	17408
Функция Розенброка, а = 1	[-2, 2]	0.01	[1.02, 1.04]	0.00	12	4260
Функция Розенброка, а = 1	[-2, 2]	0.000001	[1.000001, 1.000001]	0.000000	26	15492
Функция Розенброка, а = 50	[-2, 2]	0.01	[1.95, 3.81]	0.91	12	2068
Функция Розенброка, а = 50	[-2, 2]	0.000001	[1.000044, 1.000088]	0.000000	26	15465

Таблица 9 - Результаты вычислений для метода внутренних штрафных функций и для допустимого множества B в зависимости от функции и точности

Тип функции	Начальная точка	Точность	Точка минимума функции	Значение функции в точке минимума	Количество итераций	Количество вычислений функции
Квадратичная функция	[-2, 2]	0.01	[0.0, -2.24]	-45.00	2	646
Квадратичная функция	[-2, 2]	0.000001	[0.0, -2.236068]	-45.000000	2	646
Функция Розенброка, а = 1	[-2, 2]	0.01	[1.0, 1.0]	0.00	2	1441
Функция Розенброка, а = 1	[-2, 2]	0.000001	[1.0, 1.0]	0.000000	2	1656
Функция Розенброка, а = 50	[-2, 2]	0.01	[1.0, 1.0]	0.00	2	2492
Функция Розенброка, а = 50	[-2, 2]	0.000001	[1.0, 1.0]	0.000000	2	2697

Таблица 10 - Результаты вычислений для метода внешних штрафных функций и для допустимого множества B в зависимости от функции и точности

Тип функции	Начальная точка	Точность	Точка минимума функции	Значение функции в точке минимума	Количество итераций	Количество вычислений функции
Квадратичная функция	[-2, 2]	0.01	[0.0, -2.24]	-45.00	2	646
Квадратичная функция	[-2, 2]	0.000001	[0.0, -2.236068]	-45.000000	2	646
Функция Розенброка, а = 1	[-2, 2]	0.01	[1.0, 1.0]	0.00	2	1441
Функция Розенброка, а = 1	[-2, 2]	0.000001	[1.0, 1.0]	0.000000	2	1656
Функция Розенброка, а = 50	[-2, 2]	0.01	[1.0, 1.0]	0.00	2	2492
Функция Розенброка, а = 50	[-2, 2]	0.000001	[1.0, 1.0]	0.000000	2	2697

Таблица 11 - Результаты вычислений для функции Розенброка (a = 50) для методов внутренних и внешних штрафных функций на множестве A в зависимости от начальной точки

Начальная точка	Метод	Точка минимума функции	Значение функции в точке минимума	Количество итераций	Количество вычислений функции
[-7, 0]	Метод внутренних штрафных функций	[1.0, 1.0]	0.000000	273	59802
[-7, 0]	Метод внешних штрафных функций	[1.0, 1.0]	0.000000	2	1702
[-2, 2]	Метод внутренних штрафных функций	[1.000044, 1.000088]	0.000000	26	15465
[-2, 2]	Метод внешних штрафных функций	[1.0, 1.0]	0.000000	3	2565
[0.1, 0.1]	Метод внутренних штрафных функций	[1.000044, 1.000088]	0.000000	26	15602
[0.1, 0.1]	Метод внешних штрафных функций	[1.0, 1.0]	0.000000	2	1798
[4, 2.5]	Метод внутренних штрафных функций	[1.000044, 1.000088]	0.000000	26	15411
[4, 2.5]	Метод внешних штрафных функций	[1.0, 1.0]	0.000000	2	1652
[5, 2]	Метод внутренних штрафных функций	[1.000044, 1.000088]	0.000000	26	15436
[5, 2]	Метод внешних штрафных функций	[1.0, 1.0]	0.000000	2	1595

Таблица 12 - Результаты вычислений для функции Розенброка (a = 50) для методов внутренних и внешних штрафных функций на множестве В в зависимости от начальной точки

Начальная точка	Метод	Точка минимума функции	Значение функции в точке минимума	Количество итераций	Количество вычислений функции
[-7, 0]	Метод внутренних штрафных функций	[1.0, 1.0]	0.000000	2	1735
[-7, 0]	Метод внешних штрафных функций	[1.0, 1.0]	0.000000	2	1735
[-2, 2]	Метод внутренних штрафных функций	[1.0, 1.0]	0.000000	2	2697
[-2, 2]	Метод внешних штрафных функций	[1.0, 1.0]	0.000000	2	2697
[0.1, 0.1]	Метод внутренних штрафных функций	[1.0, 1.0]	0.000000	2	1834
[0.1, 0.1]	Метод внешних штрафных функций	[1.0, 1.0]	0.000000	2	1834
[4, 2.5]	Метод внутренних штрафных функций	[1.0, 1.0]	0.000000	2	1683
[4, 2.5]	Метод внешних штрафных функций	[1.0, 1.0]	0.000000	2	1683
[5, 2]	Метод внутренних штрафных функций	[1.0, 1.0]	0.000000	2	1643
[5, 2]	Метод внешних штрафных функций	[1.0, 1.0]	0.000000	2	1643

Рисунок 11 - Визуализация метода внутренних штрафных функций на множестве A при eps = 0.01 для a) квадратичной функции, б) функции Розенброка (a = 1), в) функции Розенброка (a = 50)

Рисунок 12 - Визуализация метода внешних штрафных функций на множестве A при eps = 0.01 для a) квадратичной функции, б) функции Розенброка (a = 1), в) функции Розенброка (a = 50)

Рисунок 13 - Визуализация метода внутренних штрафных функций на множестве В при eps = 0.01 для a) квадратичной функции, б) функции Розенброка (a = 1), в) функции Розенброка (a = 50)

Рисунок 14 - Визуализация метода внешних штрафных функций на множестве В при eps = 0.01 для a) квадратичной функции, б) функции Розенброка (a = 1), в) функции Розенброка (a = 50)

Рисунок 15 - Визуализация метода внешних штрафных функций на множестве A при eps = 0.01 для a) квадратичной функции, б) функции Розенброка (a = 1), в) функции Розенброка (a = 50)

Рисунок 16 - Визуализация метода внутренних штрафных функций на множестве A при eps = 0.000001 для a) квадратичной функции, б) функции Розенброка (a = 1), в) функции Розенброка (a = 50)

Рисунок 17 - Визуализация метода внешних штрафных функций на множестве A при eps = 0.000001 для a) квадратичной функции, б) функции Розенброка (a = 1), в) функции Розенброка (a = 50)

Рисунок 18 - Визуализация метода внешних штрафных функций на множестве В при eps = 0.000001 для a) квадратичной функции, б) функции Розенброка (a = 1), в) функции Розенброка (a = 50)

3.3. Вывод

Таким образом, в лабораторной работе по «методам последовательной безусловной минимизации» мы рассмотрели методы минимизации функции, заданной на допустимом множестве:

- метод внутренних штрафных функций;
- метод внешних штрафных функций.

Оба метода относятся к более общему методу – методу барьерных функций. Данные алгоритмы основаны на добавлении к основной функции функций штрафа. Принципиальная разница заключается в составлении этих самых штрафных функций. Для метода внешних функций они составлены таким образом, что сходимость решения не чувствительна к начальной точке (если начальная точка находится в области, то метод сходится за 2 итерации), в отличие от метода внутренних штрафов, для которых с изменением начальной точки может возрасти число вычислений функции (из таблицы 12, сравнивая точки [5, 2] и [0.1, 0.1], можно увидеть, что с изменением точки число вычисленных функций увеличилось примерно в 1,2 раза).

Для метода внутренних штрафных функций точность влияет на количество вычислений функции (при увеличении точности с 0.01 до 0.000001 итерации увеличились примерно в 2 раза, когда количество вычислений функции выросло в 5 раз). Для метода внешних штрафных функций на квадратичной функции повышение точности никак не повлияло на число итераций и вычислений функции, но на функции Розенброка хоть и число итераций не изменилось, но возросло количество вычислений функции — примерно в 1.2 раза (таблицы 9, 10).

Общие выводы

По итогу выполнения лабораторных работ по курсу «Методы оптимизации» мною были изучены и реализованы в среде компьютерной алгебры следующие методы оптимизации: методы одномерной минимизации, методы градиентного спуска, метод циклического покоординатного спуска, симплекс-методы и методы безусловной оптимизации. Оптимизация проводилась для функций двух видов: квадратичная функция и функция Розенброка, которая имеет «овражную» структуру. Были выявлены плюсы и минусы различных методов. Например, для поиска минимума квадратичной функции метод Ньютона имеет наименьшее количество итераций, а именно всего одну итерацию. А для функции Розенброка эффективен метод Розенброка, который на каждой итерации строит новый ортогональный базис, благодаря чему находит оптимальное направление спуска.