Q1(1):

Note that: $\log_2 3 \cdot \log_3 4 \cdot \ldots \cdot \log_{2019} 2020$

$$= \frac{\log 3}{\log 2} \cdot \frac{\log 4}{\log 3} \cdot \dots \cdot \frac{\log 2020}{\log 2019}$$

$$= \frac{\log 2020}{\log 2}$$

 $= \log_2 2020.$

As $2^{10} = 1024 < 2020 < 2048 = 2^{11}$, we have $10 < \log_2 2020 < 11$.

Therefore, the largest natural numbers less than the expression is 10

Q1(2):

Note that f(x) is a bijective function. Then, $f(f(x)) = f(x) \iff f(x) = x$.

Solving, we have

$$1 + \frac{1}{x - 1} = x$$

$$x^2 - 2x = 0$$

$$x = \boxed{0}, \boxed{2}$$

Alternative

$$f(f(x)) = f(x)$$

$$1 + \frac{1}{1 + \frac{1}{x - 1} - 1} = 1 + \frac{1}{x - 1}$$

$$\frac{1}{x - 1} = x - 1$$

$$x^2 - 2x = 0$$

$$x = \boxed{0}, \boxed{2}$$

Q1(3):

Solving $x^4 + ax^2 + b = 0$, we have $x^2 = \frac{-a \pm \sqrt{a^2 - 4b}}{2}$, where $a^2 - 4b \ge 0$.

Suppose $a^2 - 4b > 0$, as $\sqrt{a^2 - 4b} \le \sqrt{a^2} = |a|$, we have

 $-a \pm \sqrt{a^2 - 4b} \le 0$. Therefore, the equation has either no solution or one solution (x = 0) if $a^2 - 4b > 0$.

Therefore, the equation has exactly two solutions if and only if $a^2 - 4b = 0$ and a < 0.

Then, $a+2b=a+\frac{a^2}{2}=\frac{1}{2}(a+1)^2-\frac{1}{2}$ by completing the square.

As $\frac{1}{2}(a+1)^2 \ge 0$, we have $a+2b \ge -\frac{1}{2}$. Hence the minimum value of a+2b is $\boxed{-\frac{1}{2}}$.

On the other hand, $a-b=a-\frac{a^2}{4}=-\frac{1}{4}(a-2)^2+1$ by completing the square. As a<0, we have $-\frac{1}{4}(a-2)^2<-1$ and hence a-b<0. Then, $\lceil a-b\rceil\leq 0$ and the required maximum is $\boxed{0}$.

Q1(4):

By the provided information, we have

 $f(x) = (x-1)^2 Q_1(x) + (x-1) = x^2 Q_2(x) + (2x+3)$, where $Q_1(x)$ and $Q_2(x)$ are two polynomials.

As $f(1) = 1^2Q_2(1) + 5 = 2$, we have $Q_2(1) = -3$. By the reminder theorem, the reminder when $Q_2(x)$ is divised by x - 1 is -3. Then, $Q_2(x)$ can be written as $(x - 1)Q_3(x) - 3$, where $Q_3(x)$ is a polynomial.

Therefore,

$$f(x) = x^{2}((x-1)Q_{3}(x) - 3) + (2x+3) = x^{2}(x-1)Q_{3}(x) + (-3x^{2} + 2x + 3).$$

Hence, the required remainder is $\boxed{-3x^2 + 2x + 3}$

Q1(5):

Note that the two lines are the reflection of each other with respect to the x-axis.

Therefore, the angle θ equals to twice the angle between the line $y=(2-\sqrt{3})x$ and the positive x-axis.

Then, $\tan \frac{\theta}{2}$ =the slope of the line=2 - $\sqrt{3}$.

Consider
$$\tan \theta = \frac{2 \tan \frac{\theta}{2}}{1 - \tan^2 \frac{\theta}{2}}$$

$$=\frac{2(2-\sqrt{3})}{1-(2-\sqrt{3})^2}$$

$$=\frac{2-\sqrt{3}}{2\sqrt{3}-3}$$

$$=\frac{\sqrt{3}}{3}$$
,

we have
$$\theta = \boxed{\frac{\pi}{6}}$$
.

(Note: One can also consider $\sin\theta$ or $\cos\theta$ by using the tangent half-angle formula.)

Alternative Use a similar logic, the angle can also be calculated as

$$\theta = \arctan(2 - \sqrt{3}) - \arctan(\sqrt{3} - 2)$$

$$=\arctan\frac{(2-\sqrt{3})-(\sqrt{3}-2)}{1+(2-\sqrt{3})(\sqrt{3}-2)}$$

$$= \arctan \frac{\sqrt{3}}{3}$$

$$=\left|\frac{\pi}{6}\right|$$

Alternative A vector of the direction of the line $y = (2 - \sqrt{3})x$ is $< 1, 2 - \sqrt{3} >$ and a vector of the direction of the line $y = (\sqrt{3} - 2)x$ is $< 1, \sqrt{3} - 2 >$.

The angle between the two lines=the angle between the two vectors

$$=\arccos\frac{<1,2-\sqrt{3}>\cdot<1,\sqrt{3}-2>}{|<1,2-\sqrt{3}>|\cdot|<1,\sqrt{3}-2>|}$$

$$= \arccos \frac{1 - (7 - 4\sqrt{3})}{(1 + (7 - 4\sqrt{3}))}$$

$$= \arccos \frac{\sqrt{3}}{2}$$

$$=\frac{\pi}{6}$$

Q2:

(1): The condition that there exists a triangle with the side lengths $\sqrt{a}, \sqrt{b}, \sqrt{c}$ is:

$$\sqrt{a} + \sqrt{b} > \sqrt{c}$$
 and $\sqrt{b} + \sqrt{c} > \sqrt{a}$ and $\sqrt{c} + \sqrt{a} > \sqrt{b}$.

Consider the inverse statement, we have

$$P_1 = 1 - P(\sqrt{a} + \sqrt{b} \le \sqrt{c} \text{ or } \sqrt{b} + \sqrt{c} \le \sqrt{a} \text{ or } \sqrt{c} + \sqrt{a} \le \sqrt{b}).$$

Note that the events $\sqrt{a} + \sqrt{b} \le \sqrt{c}$, $\sqrt{b} + \sqrt{c} \le \sqrt{a}$ and $\sqrt{c} + \sqrt{a} \le \sqrt{b}$ are mutually exclusive. Therefore, the probability=1 - $3P(\sqrt{a} + \sqrt{b} \le \sqrt{c})$.

Exhausting all the possibilities: (a, b, c) = (1, 1, 4), (1, 1, 5), (1, 1, 6), (1, 2, 6), (2, 1, 6)

We have
$$P(\sqrt{a} + \sqrt{b} \le \sqrt{c}) = \frac{5}{6^3} = \frac{5}{216}$$
.

Therefore,
$$P_1 = 1 - \frac{15}{216} = \boxed{\frac{67}{72}}$$
.

(2): By Pythagoras' theorem, the condition for there to exist such a triangle is:

$$a+b=c$$
 or $b+c=a$ or $c+a=b$

Note that the three events are mutually exclusive.

Therefore,
$$P_2 = \frac{3 \cdot P(a+b=c \text{ and } a,b,c \text{ are mutually different})}{3 \cdot P(a+b=c)} = \frac{P(a+b=c \text{ and } a,b,c \text{ are mutually different})}{P(a+b=c)}$$

Exhausting all the possibilities:

$$(a, b, c) = (1, 1, 2), (2, 2, 4), (3, 3, 6)$$

$$(a,b,c) = (1,2,3), (1,3,4), (1,4,5), (1,5,6), (2,3,5), (2,4,6)$$
 (order of a,b omit-

ted)

Hence,
$$P_2 = \frac{6 \cdot 2}{3 + 6 \cdot 2} = \boxed{\frac{4}{5}}$$
.

(3): We separate the situation into three cases:

1: The triangle is an equilateral triangle. Then, the maximum value of $\frac{bc}{a}$ will be 6.

2: The 60° angle is the angle between the side with length \sqrt{b} (same for \sqrt{c} as the value of $\frac{bc}{a}$ is independent on the order of b, c) and the side with length \sqrt{a} . Then, by cosine formula, we have $c = a + b - \sqrt{ab}$.

As c is an integer, we have ab a perfect square. Take (a,b)=(1,4), a maximum value of $\frac{bc}{a}=12$ can be obtained.

3: The 60° angle is the angle between the side with length \sqrt{b} and the side with length \sqrt{c} .

Similar to case 2, a maximum value of $\frac{4}{3}$ can be obtained when (b, c) = (1, 4), (4, 1). Given the above, the maximum value of $\frac{bc}{a}$ is $\boxed{12}$.

Q3:

(1): Using the chain rule, we have $\frac{dy}{dx} = \frac{dy}{d\theta} \cdot \frac{d\theta}{dx}$

$$= \frac{dy}{d\theta} \cdot \frac{1}{\frac{dx}{d\theta}}$$

$$= (\sin \theta) \cdot \frac{1}{1 - \cos \theta}$$

$$= (\sin \theta) \cdot \frac{1}{1 - \cos \theta}$$
$$= \boxed{\frac{\sin \theta}{1 - \cos \theta}}.$$

(2): Let $x = f(\theta) = \theta - \sin \theta$, then $\theta = f^{-1}(x)$, the inverse function of f.

The required area= $\int_{f(0)}^{f(2\pi)}(1-\cos(f^{-1}(x)))dx.$

Substitue $x = f(\theta)$, then $dx = f'(\theta)d\theta$ and the range of integral becomes $(0, 2\pi)$.

The area=
$$\int_0^{2\pi} (1-\cos\theta)(1-\cos\theta)d\theta$$

$$= \int_0^{2\pi} (1 - 2\cos\theta + \cos^2\theta) d\theta$$

$$= \left[\frac{3}{2}\theta - 2\sin\theta - \frac{1}{4}\sin 2\theta\right]_0^{2\pi}$$

$$= 3\pi$$
.

(3): With the same setting as (2), the volume= $\pi \int_{f(0)}^{f(2\pi)} (1 - \cos(f^{-1}(x)))^2 dx$

$$= \pi \int_0^{2\pi} (1 - \cos \theta)^2 (1 - \cos \theta) d\theta$$

$$= \pi \int_0^{2\pi} (1 - 3\cos\theta + 3\cos^2\theta - \cos^3\theta) d\theta$$

$$= \pi \left[\frac{5}{2}\theta - 3\sin\theta - \frac{3}{4}\sin 2\theta \right]_0^{2\pi} - \pi \int_0^{2\pi} (1 - \sin^2\theta) d\sin\theta$$

$$= \pi(5\pi) - \pi[\sin\theta - \frac{1}{3}\sin^3\theta]_0^{2\pi}$$

$$= 5\pi^2$$
.