Introduction to Information Security (H1)

Quiz-2 (Spring 2024)

International Institute of Information Technology, Hyderabad Time: 1 Hour and 20 Minutes Total Marks: 40

Instructions: Answer <u>ALL</u> questions.

This is an open notes examination.

No query is allowed in the examination.

Use of Regular Calculator is allowed.

15 Feb 2024

1. (a) In the RSA-based public key cryptosystem, suppose you are given p=19, q=23 and e=3. Find n, $\phi(n)$ and d.

(b) Suppose you want to implement RSA algorithm using the following encoding procedure: A = 01, B = 02, \cdots , Z = 26, = 27, = 28, = 29, =

Let the plaintext you have taken as Cryptography is an interesting subject! Assume that the lower and upper case letters have the same encoding values. For exaple, C and c have the same numerical value 03.

- (i) Encode the plaintext using the given encoding standard.
- (ii) Assume that the public key of Bob supplied to you as (e, n) = (7, 187). Determine the number of plaintext blocks.
- (iii) Encrypt the third plaintext block using the RSA encryption.

[6+3+2+7=18]

2. Parties A and B decide upon the prime p=101 and the primitive root $\alpha=3$ for using the Diffie-Hellman key exchange protocol in order to establish a secret session key between them. Suppose the party A picks $X_A=70$ and party B picks $X_B=87$ as their private keys. Compute the session key between A and B. By detailed calculation, show that they both do indeed arrive at the same value.

[12]

3. Let two parties A and B agree on the following digital signature scheme. Entity A signs a binary message m of arbitrary length. Entity B can verify this signature by using the public key of A.

Entity A performs the following steps in key generation:

- (i) Select two primes p and q such that $q \mid (p-1)$.
- (ii) Select a random integer g with 1 < g < p-1, such that $\alpha = g^{(p-1)/q} \pmod{p}$ and $\alpha > 1$.
- (iii) Select a private key $a, 1 \le a \le q 1$.
- (iv) Compute $y = \alpha^a \pmod{p}$.

Public key of A is (p, q, α, y) .

After key generation, A generates the signature on m the message as follows:

- (i) Select a random secret integer k, $1 \le k \le q 1$.
- (ii) Compute $r = \alpha^k \mod p$, e = H(m||r), and $s = (a.e k) \mod q$, where $H(\cdot)$ is a one-way hash function.
- (iii) Select two random secret integers u and v, 0 < u < q and 0 < v < q, and compute $r' = r\alpha^{-u}y^v \mod p$.
- (iv) Compute e' = H(m||r') such that e' = e + v and s' = s + u.

A then sends the signed message (m, (e', s')) to the verifier B.

Devise a verification algorithm for the party B. Prove the verification equation mathematically.

[6 + 4 = 10]