

WHAT IS CLAIMED IS:

1. A compound of the following formula:

wherein

each of R¹ and R², independently, is H, halo, C₁₋₅ alkyl, C₁₋₅ haloalkyl, C₆₋₁₂ aryl, C₆₋₁₂ aralkyl, or heteroaryl, optionally substituted with halo, -OR^a, C₁₋₅ alkyl, substituted aryl, substituted heteroaryl, C₁₋₅ haloalkyl, C₁₋₅ alkyl-OR^a, -CN, -C(O)R^a, -SR^a, -S(O)R^a, -S(O)₂R^a, -NR^aR^a, -C(O)OR^a, -C(O)NR^aR^a, -NO₂, -OC(O)R^a, -NR^aC(O)R^a, -NR^aC(O)OR^a, or -NR^aC(O)NR^aR^a; in which each of R^a, R^a, and R^a, independently, is H, C₁₋₅ alkyl, or aryl;

each of A₁ and A₂, independently, is C₆₋₁₂ aryl, C₆₋₁₂ aralkyl, or heteroaryl, optionally substituted with halo, -OR^b, C₁₋₅ alkyl, C₁₋₅ haloalkyl, C₁₋₅ alkyl-OR^b, -CN, -NO₂, -C(O)R^b, -SR^b, -S(O)R^b, -S(O)₂R^b, -NR^bR^b, -C(O)OR^b, -C(O)NR^bR^b, -NO₂, -OC(O)R^b, -NR^bC(O)R^b, -NR^bC(O)OR^b, or -NR^bC(O)NR^bR^b, provided that if A₁ is heteroaryl, it forms a C-N bond with the imidazolidinone ring; in which each of R^b, R^b, and R^b, independently, is H, C₁₋₅ alkyl, or aryl;

each of X and Y, independently, is -C(H)(R^c), -C(R^c)(R^c)-, -NR^c-, -S-, -S(O)-, -S(O)₂-, -C(H)(OR^d)-, -C(H)[OC(O)R^d]-, -C(H)(NR^dR^d)-, -C(H)[NR^dC(O)R^d]-, -C(H)[NR^dC(O)OR^d]-, -C(H)[NR^dC(O)NR^dR^d]-, -C(H)(SH)-, -C(H)(SR^d)-, -C(H)(SOR^d)-,

-C(H)(SO₂R^d)-, C₆₋₁₂ aryl, cyclyl, heterocyclyl, heteroaryl, alkenyl, alkynyl, in which each of R^c and R^c, independently, is halo, C₁₋₅ alkyl, C₁₋₅ haloalkyl, C₁₋₅ hydroxyalkyl, C₁₋₅ aminoalkyl, C₁₋₅ alkoxy, C₁₋₅ aryloxy, C₆₋₁₂ aryl, C₆₋₁₂ aralkyl, or heteroaryl; R^c is C₁₋₅ alkyl, C₁₋₅ haloalkyl, C₁₋₅ hydroxyalkyl, C₁₋₅ aminoalkyl, C₆₋₁₂ aryl, C₆₋₁₂ aralkyl, or heteroaryl; and each of R^d, R^d, and R^d, independently, is H, C₁₋₅ alkyl, or aryl;

each of m, n, and p, independently, is 0, 1, 2, 3, 4, or 5; and

each of x and y, independently, is 0 or 1, provided that at least one of x and y is 1.

2. The compound of claim 1, wherein x is 1, y is 0, and p is 0.
3. The compound of claim 2, wherein R¹ is H.
4. The compound of claim 3, wherein A₁ is pyridin-4-yl.
5. The compound of claim 4, wherein A₂ is aryl.
6. The compound of claim 5, wherein A₂ is phenyl.
7. The compound of claim 6, wherein R² is substituted at position 4 of phenyl.
8. The compound of claim 7, wherein R² is C₆₋₁₂ aryl or heteroaryl, optionally substituted with halo, C₁₋₅ alkyl, or C₁₋₅ haloalkyl.
9. The compound of claim 8, wherein X is -C(H)(R^c)-, -C(R^c)(R^{c'})-, -NR^{c''}-, or phenyl.
10. The compound of claim 9, wherein X is -C(H)(CH₃)-.
11. The compound of claim 10, wherein R² is phenyl, 1,2,4-oxadiazolyl, tetrazolyl, or thienyl, optionally substituted with halo or C₁₋₅ alkyl.
12. The compound of claim 11, wherein R² is 4-chlorophenyl, 4-fluorophenyl, 2,4-dichlorophenyl, 5-methyl-1,2,4-oxadiazolyl, 5-ethyl-1,2,4-oxadiazolyl, 3-ethyl-tetrazolyl, or 5-chlorothien-2-yl.
13. The compound of claim 12, wherein the sum of m and n is 4.
14. The compound of claim 9, wherein X is -C(CH₃)(CH₃)-.

15. The compound of claim 14, wherein R² is phenyl, 1,2,4-oxadiazolyl, tetrazolyl, or thienyl, optionally substituted with halo or C₁₋₅ alkyl.
16. The compound of claim 15, wherein R² is 4-chlorophenyl, 4-fluorophenyl, 2,4-dichlorophenyl, 5-methyl-1,2,4-oxadiazolyl, 5-ethyl-1,2,4-oxadiazolyl, 3-ethyl-tetrazolyl, or 5-chlorothien-2-yl.
17. The compound of claim 16, wherein the sum of m and n is 4.
18. The compound of claim 9, wherein X is -N(CH₃)-.
19. The compound of claim 18, wherein R² is phenyl, 1,2,4-oxadiazolyl, tetrazolyl, or thienyl, optionally substituted with halo or C₁₋₅ alkyl.
20. The compound of claim 19, wherein R² is 4-chlorophenyl, 4-fluorophenyl, 2,4-dichlorophenyl, 5-methyl-1,2,4-oxadiazolyl, 5-ethyl-1,2,4-oxadiazolyl, 3-ethyl-tetrazolyl, or 5-chlorothien-2-yl.
21. The compound of claim 20, wherein the sum of m and n is 4.
22. The compound of claim 9, wherein X is phenyl.
23. The compound of claim 22, wherein R² is phenyl, 1,2,4-oxadiazolyl, tetrazolyl, or thienyl, optionally substituted with halo or C₁₋₅ alkyl.
24. The compound of claim 23, wherein R² is 4-chlorophenyl, 4-fluorophenyl, 2,4-dichlorophenyl, 5-methyl-1,2,4-oxadiazolyl, 5-ethyl-1,2,4-oxadiazolyl, 3-ethyl-tetrazolyl, or 5-chlorothien-2-yl.
25. The compound of claim 24, wherein the sum of m and n is 4.

26. The compound of claim 9, wherein X is $-C(H)(CF_3)-$.
27. The compound of claim 26, wherein R^2 is phenyl, 1,2,4-oxadiazolyl, tetrazolyl, or thienyl optionally substituted with halo or C_{1-5} alkyl.
28. The compound of claim 27, wherein R^2 is 4-chlorophenyl, 4-fluorophenyl, 2,4-dichlorophenyl, 5-methyl-1,2,4-oxadiazolyl, 5-ethyl-1,2,4-oxadiazolyl, 3-ethyl-tetrazolyl, or 5-chlorothien-2-yl.
29. The compound of claim 28, wherein the sum of m and n is 4.
30. The compound of claim 8, wherein R^2 is phenyl optionally substituted with halo.
31. The compound of claim 30, wherein X is $-C(H)(R^c)-$, $-C(R^c)(R^{c'})-$, $-NR^{c''}-$, or phenyl.
32. The compound of claim 31, wherein X is $-N(CH_3)-$, $-C(H)(CH_3)-$, $-C(H)(CF_3)-$, $-C(CH_3)(CH_3)-$, or phenyl.
33. The compound of claim 8, wherein X is 1,2,4-oxadiazolyl, 1,2,4-oxadiazolyl, tetrazolyl, or thienyl, optionally substituted with halo or C_{1-5} alkyl.
34. The compound of claim 33, wherein X is $-C(H)(R^c)-$, $-C(R^c)(R^{c'})-$, $-NR^{c''}-$ or phenyl.
35. The compound of claim 34, wherein X is $-N(CH_3)-$, $-C(H)(CH_3)-$, $-C(H)(CF_3)-$, $-C(CH_3)(CH_3)-$, or phenyl.
36. The compound of claim 1, wherein A_2 is phenyl.

37. The compound of claim 36, wherein R¹ is H.

38. The compound of claim 37, wherein A₁ is pyridin-4-yl.

39. The compound of claim 1, wherein R¹ is H.

40. The compound of claim 39, wherein A₁ is pyridin-4-yl.

41. The compound of claim 1, wherein the compound is

42. A method of treating infection by enterovirus, comprising administering to a subject in need thereof an effective amount of a compound of the following formula:

wherein

each of R¹ and R², independently, is H, halo, C₁₋₅ alkyl, C₁₋₅ haloalkyl, C₆₋₁₂ aryl, C₆₋₁₂ aralkyl, or heteroaryl, optionally substituted with halo, -OR^a, C₁₋₅ alkyl, substituted aryl, substituted heteroaryl, C₁₋₅ haloalkyl, C₁₋₅ alkyl-OR^a, -CN, -C(O)R^a, -SR^a, -S(O)R^a, -S(O)₂R^a, -NR^aR^a, -C(O)OR^a, -C(O)NR^aR^a, -NO₂, -OC(O)R^a, -NR^aC(O)R^a, -NR^aC(O)OR^a, or -NR^aC(O)NR^aR^a; in which each of R^a, R^a, and R^a, independently, is H, C₁₋₅ alkyl, or aryl;

each of A₁ and A₂, independently, is C₆₋₁₂ aryl, C₆₋₁₂ aralkyl, or heteroaryl, optionally substituted with halo, -OR^b, C₁₋₅ alkyl, C₁₋₅ haloalkyl, C₁₋₅ alkyl-OR^b, -CN, -NO₂, -C(O)R^b, -SR^b, -S(O)R^b, -S(O)₂R^b, -NR^bR^b, -C(O)OR^b, -C(O)NR^bR^b, -NO₂, -OC(O)R^b, -NR^bC(O)R^b, -NR^bC(O)OR^b, or -NR^bC(O)NR^bR^b, provided that if A₁ is heteroaryl, it forms a C-N bond with the imidazolidinone ring; in which each of R^b, R^b, and R^b, independently, is H, C₁₋₅ alkyl, or aryl;

each of X and Y, independently, is -C(H)(R^c), -C(R^c)(R^c)-, -NR^c-, -S-, -S(O)-, -S(O)₂-, -C(H)(OR^d)-, -C(H)[OC(O)R^d]-, -C(H)(NR^dR^d)-, -C(H)[NR^dC(O)R^d]-, -C(H)[NR^dC(O)OR^d]-, -C(H)[NR^dC(O)NR^dR^d]-, -C(H)(SH)-, -C(H)(SR^d)-, -C(H)(SOR^d)-,

-C(H)(SO₂R^d)-, C₆₋₁₂ aryl, cyclyl, heterocyclyl, heteroaryl, alkenyl, alkynyl, in which each of R^c and R^c, independently, is halo, C₁₋₅ alkyl, C₁₋₅ haloalkyl, C₁₋₅ hydroxyalkyl, C₁₋₅ aminoalkyl, C₁₋₅ alkoxy, C₁₋₅ aryloxy, C₆₋₁₂ aryl, C₆₋₁₂ aralkyl, or heteroaryl; R^c is C₁₋₅ alkyl, C₁₋₅ haloalkyl, C₁₋₅ hydroxyalkyl, C₁₋₅ aminoalkyl, C₆₋₁₂ aryl, C₆₋₁₂ aralkyl, or heteroaryl; and each of R^d, R^d, and R^d, independently, is H, C₁₋₅ alkyl, or aryl;

each of m, n, and p, independently, is 0, 1, 2, 3, 4, or 5; and

each of x and y, independently, is 0 or 1, provided that at least one of x and y is 1.

43. The method of claim 42, wherein x is 1, y is 0, and p is 0.
44. The method of claim 43, wherein R¹ is H.
45. The method of claim 44, wherein A₁ is pyridin-4-yl.
46. The method of claim 45, wherein A₂ is phenyl.
47. The method of claim 46, wherein R² is substituted at position 4 of phenyl.
48. The method of claim 47, wherein R² is C₆₋₁₂ aryl or heteroaryl, optionally substituted with halo, C₁₋₅ alkyl, or C₁₋₅ haloalkyl.
49. The method of claim 48, wherein X is -C(H)(R^c)-, -C(R^c)(R^{c'})-, -NR^{c''}-, or phenyl.
50. The method of claim 49, wherein R² is phenyl, 1,2,4-oxadiazolyl, tetrazolyl, or thienyl, optionally substituted with halo or C₁₋₅ alkyl.
51. The method of claim 50, wherein R² is 4-chlorophenyl, 4-fluorophenyl, 2,4-dichlorophenyl, 5-methyl-1,2,4-oxadiazolyl, 5-ethyl-1,2,4-oxadiazolyl, 3-ethyl-tetrazolyl, or 5-chlorothien-2-yl.
52. The method of claim 51, wherein the sum of m and n is 4.
53. The method of claim 43, wherein R¹ is H.
54. The method of claim 53, wherein A₁ is pyridin-4-yl.
55. The method of claim 42, wherein the compound is

56. A pharmaceutical composition comprising a compound of the following formula:

wherein

each of R¹ and R², independently, is H, halo, C₁₋₅ alkyl, C₁₋₅ haloalkyl, C₆₋₁₂ aryl, C₆₋₁₂ aralkyl, or heteroaryl, optionally substituted with halo, -OR^a, C₁₋₅ alkyl, substituted aryl, substituted heteroaryl, C₁₋₅ haloalkyl, C₁₋₅ alkyl-OR^a, -CN, -C(O)R^a, -SR^a, -S(O)R^a, -S(O)₂R^a, -NR^aR^{a'}, -C(O)OR^a, -C(O)NR^aR^{a'}, -NO₂, -OC(O)R^a, -NR^aC(O)R^{a'}, -NR^aC(O)OR^{a'}, or -NR^aC(O)NR^{a'}R^{a''}; in which each of R^a, R^{a'}, and R^{a''}, independently, is H, C₁₋₅ alkyl, or aryl;

each of A₁ and A₂, independently, is C₆₋₁₂ aryl, C₆₋₁₂ aralkyl, or heteroaryl, optionally substituted with halo, -OR^b, C₁₋₅ alkyl, C₁₋₅ haloalkyl, C₁₋₅ alkyl-OR^b, -CN, -NO₂, -C(O)R^b, -SR^b, -S(O)R^b, -S(O)₂R^b, -NR^bR^{b'}, -C(O)OR^b, -C(O)NR^bR^{b'}, -NO₂, -OC(O)R^b, -NR^bC(O)R^{b'}, -NR^bC(O)OR^{b'}, or -NR^bC(O)NR^{b'}R^{b''}, provided that if A₁ is heteroaryl, it forms a C-N bond with the imidazolidinone ring; in which each of R^b, R^{b'}, and R^{b''}, independently, is H, C₁₋₅ alkyl, or aryl;

each of X and Y, independently, is -C(H)(R^c), -C(R^c)(R^{c'})-, -NR^{c''}-, -S-, -S(O)-, -S(O)₂-, -C(H)(OR^d)-, -C(H)[OC(O)R^d]-, -C(H)(NR^dR^{d'})-, -C(H)[NR^dC(O)R^{d'}]-, -C(H)[NR^dC(O)OR^d]-, -C(H)[NR^dC(O)NR^{d'}R^{d''}]-, -C(H)(SH)-, -C(H)(SR^d)-, -C(H)(SOR^d)-,

-C(H)(SO₂R^d)-, C₆₋₁₂ aryl, cyclyl, heterocyclyl, heteroaryl, alkenyl, alkynyl, in which each of R^c and R^{c'}, independently, is halo, C₁₋₅ alkyl, C₁₋₅ haloalkyl, C₁₋₅ hydroxyalkyl, C₁₋₅ aminoalkyl, C₁₋₅ alkoxy, C₁₋₅ aryloxy, C₆₋₁₂ aryl, C₆₋₁₂ aralkyl, or heteroaryl; R^{c''} is C₁₋₅ alkyl, C₁₋₅ haloalkyl, C₁₋₅ hydroxyalkyl, C₁₋₅ aminoalkyl, C₆₋₁₂ aryl, C₆₋₁₂ aralkyl, or heteroaryl; and each of R^d, R^{d'}, and R^{d''}, independently, is H, C₁₋₅ alkyl, or aryl;

each of m, n, and p, independently, is 0, 1, 2, 3, 4, or 5; and

each of x and y, independently, is 0 or 1, provided that at least one of x and y is 1; and a pharmaceutically acceptable carrier.

57. The composition of claim 56, wherein R¹ is H, A₁ is pyridin-4-yl, A₂ is phenyl.

58. The composition of claim 57, wherein x is 1; y is 0; p is 0; and R² is C₆₋₁₂ aryl or heteroaryl, optionally substituted with halo, C₁₋₅ alkyl, or C₁₋₅ haloalkyl.

59. The composition of claim 58, wherein X is -C(H)(R^c)-, -C(R^c)(R^{c'})-, -NR^{c''}-, or phenyl.

60. The composition of claim 56, wherein the compound is

