Quiz 6.1 – Equilibrium

The Equilibrium Constant

Consider the reaction below:

$$PCl_5(g) \longrightarrow PCl_3(g) + Cl_2(g)$$
 $K_C(25^{\circ}C) = 0.0160$

$$K_C(25^{\circ}C) = 0.0160$$

 \circ Find the value of K_p for this reaction at $25^{\circ}C$

 \circ Find the value of ΔG^{\ominus}_{rxn} for this reaction at $25^{\circ}C$

(*Note that the standard state for all chemical species in this reaction is a gas at $1\ bar^*$)

 \circ Find the value of ΔG_{rxn} when $p_{\rm PCl_s}=0.53~bar$, $p_{\rm PCl_3}=0.22~bar$, and $p_{\rm Cl_z}=0.47~bar$

$$\Delta G = \Delta G' + RT \ln Q = 2.30 \frac{kJ}{Mol} + 0.008314 \frac{kJ}{Mol \cdot K} \cdot 298 \, \text{K} \cdot \ln (0.145) = -1.75 \frac{kJ}{Mol}$$
Le Châtelier's Principle

Syngas, a mixture of carbon monoxide and hydrogen gas, can be produced by reacting methane with water in the reaction below:

heat +
$$\mathrm{CH_4(g)} + \mathrm{H_2O(g)} = \mathrm{CO(g)} + 3\,\mathrm{H_2(g)}$$
 $\Delta_{rxn}H^{\Theta}(273\,K) = 206.13\,{^kJ/mol}$ endothermic

You are a chemical engineer designing a new syngas production plant, and you want to maximize the amount of syngas produced (maximize ξ) at equilibrium.*

o Should you run the reaction at high or low temperature?

 \circ Should you run the reaction with high partial pressures or low partial pressures?

^{*}Really, chemical engineers consider far more diverse and complex factors when designing plants

The van't Hoff Equation

Consider the reaction below:

$$H_2(g) + Br_2(g) \implies 2 HBr(g)$$

For all these problems, use
$$\left(n\left(\frac{K_2}{K_1}\right) = -\frac{\Delta H^0}{R}\left(\frac{1}{T_2} - \frac{1}{T_1}\right)\right)$$

This reaction is carried out at two temperatures while monitoring equilibrium composition. At $25^{\circ}C$, the reaction has K=62.5, and at $175^{\circ}C$ the reaction has K=0.00343. Use these data to find ΔH_{rxn}^{Θ} for this reaction.

$$\left(n\left(\frac{0.00343}{62.5}\right) = \frac{-\Delta H^{\circ}}{0.0083/4 \frac{k3}{MeLK}} \left(\frac{1}{448 \, \text{K}} - \frac{1}{298 \, \text{K}}\right) \rightarrow \Delta H^{\circ} = -72.6 \, \frac{k3}{MeL}$$

What is the value of K at $-15^{\circ}C$?

At what temperature is K = 1.00?

At right, draw a rough van't Hoff plot for this reaction, including:

- Equation for the best fit line y = 873/X 25.2
- Relationship for the slope Slope = At R La K
- K in the high temperature limit 1.1410^{-11}
- $\circ K$ in the low temperature limit $ot\!\!/$

Low K = 1.14.10-11

Letter A =
$$\frac{y}{R} = 8731x - 25.2$$

Low K = 1.14.10-11