UT 2: Conceptos Básicos de TCP/IP

2°DAW – Despliegue Aplicaciones Web

Contenidos

- Introducción.
- Arquitecturas de red.
- Modelo OSI.
- Arquitectura de redes de área local.
- TCP/IP
 - ✓ Introducción.
 - ✓ Estructura de capas (niveles).
 - ✓ Capa de acceso a la red.
 - ✓ Capa de red.
 - ✓ Capa de transporte.
 - ✓ Capa de aplicación.

Introducción

Red de datos:

- Conjunto de dispositivos interconectados a través de un medio de transmisión.
- Ofrecen servicios a los usuarios.

Introducción

Los dispositivos de una red tienen que ponerse de acuerdo para poder comunicarse.

Introducción

Muchos problemas a resolver

- Información ordenada.
- Información sin errores.
- Información sin pérdidas ni duplicados.
- Siguiendo el camino adecuado.
- Siguiendo el camino adecuado.
- Diferentes medios de transmisión.
- Trasmisión segura.

Solución ("Divide y vencerás") - Arquitecturas de Red

Arquitecturas de Red

Conjunto organizado de capas (niveles) y protocolos.

Se estructura el proceso de comunicación en niveles o capas.

- Cada capa se encarga de una parte del proceso de comunicación.
- En cada nivel o capa se definen uno o varios protocolos

Arquitecturas de Red

Ejemplos de arquitecturas de red:

- Modelo OSI.
- Arquitectura TCP/IP
- Arquitecturas de Redes de Área Local (RAL)
- Arquitectura ATM.
- Arquitectura Frame Relay.

Modelo OSI

El modelo de referencia OSI (Open Systems Interconnect) sirve de referencia para describir y estudiar arquitecturas de redes.

Capa 7: Aplicación Capa 6: Presentación Capa 5: Sesión Capa 4: Transporte Capa 3: Red Capa 2: Enlace Capa 1: Física

Arquitecturas LAN

Los estándares estándares LAN definen solo los niveles niveles físico y de enlace.

osi	IEEE 802
Capa 7: Aplicación	
Capa 6: Presentación	
Capa 5: Sesión	
Capa 4: Transporte	
Capa 3: Red	
Capa 2: Enlace	Enlace
Capa 1: Física	Física

Arquitecturas LAN

OSI **IEEE 802** Capa 7: Aplicación **RED DE ÁREA LOCAL** Capa 6: Presentación Enlace Switch Física Capa 5: Sesión Capa 4: Transporte Punto de acceso Capa 3: Red Capa 2: Enlace **Enlace** Enlace Enlace Capa 1: Física Física Física Física

Arquitecturas LAN

Capa Física

- Medio de transmisión utilizado.
- Conectores.
- Tecnologías de transmisión y codificación

Capa de Enlace

- Formato de tramas.
- Direccionamiento físico -> Direcciones MAC
- Control de acceso al medio de transmisión.

Estándar "de facto" de interconexión de redes.

Interconexión de millones de computadores en todo el mundo: Internet

OSI	TCP/IP
Capa 7: Aplicación	
Capa 6: Presentación	Aplicación
Capa 5: Sesión	
Capa 4: Transporte	Transporte
Capa 3: Red	Red
Capa 2: Enlace	Acceso a la red
Capa 1: Física	7.00000 0 10 100

- Los datos recibidos por una capa se encapsulan para ser enviados a la capa inferior.
- Cuando una capa envía datos a una capa superior, elimina su cabecera.

Nivel de Acceso a la Red

- Encapsula un datagrama IP en una trama que pueda ser transmitida por la red, generalmente en redes LAN una trama Ethernet.
- Asocia direcciones lógicas IP a direcciones físicas de los dispositivos de red.
- Opera el protocolo ARP (Address Resolution Protocol) que asocia direcciones IP con direcciones físicas Ethernet.

Nivel de Red

Protocolos

- Principal IP (IPv4, IPv6)
- Otros protocolos ICMP

Direccionamiento

- Redes IP
- Direcciones IP

Interconexión de redes y enrutamiento

Routers (o encaminadores)

Nivel de Red

Redes lógicas creada mediante software. Basadas en el uso de direcciones direcciones IP.

Nivel de Red – Direccionamiento IP

Direcciones IP

- Números de 32 bits.
- Representación en decimal para facilitar su uso.
- Se asignan a los interfaces (tarjetas de red) de los equipos (hosts)

```
11000000 10101000 00000001 00001010
192 . 168 . 1 . 10
```

Las direcciones IP se dividen en dos partes.

- Parte de red
- Parte de host

Nivel de Red – Direccionamiento IP Todos los equipos de una misma red IP tiene la parte de red igual.

Máscara de red

- Indica en una dirección IP que corresponde la red y que corresponde corresponde al host.
- Número de 32 bits de los cuales se ponen a 1 los que identifican identifican a parte de red y a 0 los que al host

1100000				
192 255	 58 55	1 255	-	10 0

Nivel de Red – Direccionamiento IP Todos los equipos de una misma red IP tiene la parte de red igual.

Notación CIRD

 Expresar la mascara con el prefijo /n donde n hace referencia al conjunto de bits que están a 1.

Nivel de Red – Direccionamiento IP

Tipos direcciones de red

Dirección de red: parte de host todo a 0.

Dirección de broadcast: parte de host todo a 1.

Direcciones de hosts: Direcciones que se pueden asignar a los

equipos

Dir. de host	192.168.1.10	11000000 10101000 00000001 00001010		
Máscara	255.255.255.0	11111111 11111111 11111111 00000000		
Dir. red	192.168.1.0	11000000 10101000 00000001 00000000		
Dir. broadcast	192.168.1.255	11000000 10101000 00000001 11111111		
Número de hosts	$2^8 - 2 = 256 - 2 = 254$			
Rango de direcciones de hosts	192.168.1.1 - 192.168.1.254			

Nivel de Red – Direccionamiento IP

Otras direcciones de red

- Dirección de difusión (broadcast) limitada : 255.255.255.255
- Dirección de bucle local (loopback): 127.0.0.1
- Dirección del propio host: 0.0.0.0
- Direcciones experimentales: 240.0.0.0 a 255.254.254.254
- Dirección multicast: 224.0.0.0 a 239.255.255.255
- Direcciones de enlace local: 169.0.2.0 a 192.0.2.255

Nivel de Red – Direccionamiento IP

Direcciones IP Públicas

- Son visibles en todo Internet.
- Un ordenador con una IP pública es accesible (visible) desde cualquier otro ordenador conectado a Internet.
- Cada dirección IP PÚBLICA es única.
- El número de IP's públicas es limitado

Direcciones IP Privadas

- Usadas normalmente por organizaciones con su propia intranet.
- No se encaminan por internet, ya que los routers están configurados para no dejar salir datagramas IP con direcciones.

10.0.0.0 a 10.255.255.255 172.16.0.0 a 172.31.255.255 192.168.0.0 a 192.168.255.255

Nivel de Red – Direccionamiento IP

¿Cómo conectar conectar una red con direcciones privadas a Internet?

- Al menos una o más IP Públicas en la organización.
- Configurar NAT Network Address Translation .

Nivel de Red – Direccionamiento IP

Routers (o encaminadores)

- Dispositivos de capa 3 que interconectan redes IP.
- Enrutan (o encaminan) datagramas IP entre diferentes redes IP

Nivel de Transporte

Protocolos

- Protocolo TCP y UDP
- Permite diferenciar aplicaciones dentro de un mismo equipo (host).
- Concepto de Puerto
- Funciones adicionales: segmentación de datos, control de errores, control de flujo, QoS, ...

Nivel de Transporte

Puertos

- Números enteros positivos (16 bits) (0-65535) que identifican procesos de un equipo que envían y reciben información a través de la red.
- Puertos bien conocidos conocidos ("well-known ports"): 0 al 1023
- Puertos registrados (1024 49151)
- Puertos dinámicos (49152 65535)

Asignación de puertos

- Estática: definidos en configuración de la aplicación.
- Dinámica:
 - Sistema operativo.
 - Puertos disponibles

Nivel de Transporte – Protocolo UDP

No orientado a conexión.

No hay conexiones.

No hay establecimiento de conexión.

- No fiable -> No realiza control de errores.
- Envío de datos más rápido que TCP.
- Envío de datos más rápido que TCP.
- Datagramas UDP.

Nivel de Transporte – Protocolo TCP

Orientado a conexión.

Conexiones.

Establecimiento y finalización de conexiones

- Fiable: Control de errores, Control de flujo, Control de congestión ...
- Segmentos TCP

Nivel de Transporte – Protocolo TCP

Nivel de Aplicación

Ofrece servicios de red a los usuarios

- Modelo de funcionamiento/comunicación
 Cliente/Servidor P2P (Peer To Peer) Híbrido.
- Aplicaciones:

Clientes. Servidores.

Protocolos: HTTP, FTP, DNS, DHCP, SSH, SMTP, ... Capa 7: Aplicación
Capa 6: Presentación
Capa 5: Sesión
Capa 4: Transporte
Capa 3: Red
Capa 2: Enlace
Capa 1: Física

Bibliografía

http://www.wikipedia.org

"Servicios de Red e Internet". Álvaro García Sánchez, Luis Enamorado Sarmiento, Javier Sanz Rodríguez. Editorial Garceta

"Depliegue de Aplicaciones Web" Álvaro García Sánchez, Javier Sanz Rodríguez. Editorial Garceta