

Latent Semantic Analysis (LSA)

Latent Semantic Analysis (LSA) is a theory and method for extracting and representing the contextual-usage meaning of words by statistical computations applied to a large corpus of text (Landauer and Dumais, 1997).

Da Qualifi		Core Analysis	Quantitative Analysis	
Pre- Processing	Term Weighting	Singular Value Decomposition	Factor Analysis	
Compile terms Correct typos Eliminate unique words Eliminate stop words Stemming Importance of term in local and global document global document		reduce dimension of matrix	find meaningfu topics	
£3	LSAF	Procedure		

Latent Semantic Analysis (LSA)

- LSA is an algorithmically well-defined way of measuring lexical co-occurrence in some set of text
- The assumption is that co-occurrence says something about semantics: words about the same things are likely to occur in the same contexts

How is an LSA model constructed?

- 1. Build a term-document matrix with
 - rows representing words
 - columns representing documents

	Doc 1	Doc2	
data			
example			
introduction			
package			

How is an LSA model constructed?

- 2. Enter term frequency in each cell
 - How many times the word i appear in the document j

	Doc 1	Doc2	
data	1	3	
example	1	0	
introduction	0	1	
package	1	0	

How is an LSA model constructed?

3. Transform the matrix (term weighting scheme)

$$weight_{i,j} = lw(tf_{i,j}) \times gw(tf_{i,j})$$

- a) Control for word frequency (lw: local weight)
 - compress the effects of frequency
- b) Control for the number of documents each word appeared in (gw: global weight)
 - Words that occur in few documents are more informative about those documents than words that appear in many different documents

Term Weighting Scheme: TF-IDF

$$weight_{i,j} = tf_{i,j} \times \log\left(\frac{N}{df_i}\right)$$

- $tf_{i,j}$ = number of occurrences of term i in document j
- df i = number of documents containing term i
- N = total number of documents
- ✓ Term Frequency (TF): importance of the term within that document
- ✓ Inverse Document Frequency (IDF): importance of the term in the corpus
 - Word occurs in many documents is less useful; its IDF($\log\left(\frac{N}{df_i}\right)$) value is low

Singular Value Decomposition

- This reduces dimensionality by "projecting" the tens of thousands of dimensions onto a smaller number.
 - unique mathematical decomposition of a matrix into the product of three matrices:
 - two with orthonormal columns
 - · one with singular values on the diagonal

Singular Value Decomposition

• Example

$$A = \begin{bmatrix} 3 & 1 & 1 \\ -1 & 3 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \end{bmatrix} \begin{bmatrix} \sqrt{12} & 0 & 0 \\ 0 & 0 & \sqrt{10} \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{6}} & \frac{2}{\sqrt{6}} & \frac{1}{\sqrt{6}} \\ \frac{2}{\sqrt{5}} & \frac{-1}{\sqrt{5}} & 0 \\ \frac{1}{\sqrt{30}} & \frac{2}{\sqrt{30}} & \frac{-5}{\sqrt{30}} \end{bmatrix}$$

LSA - Singular Value Decomposition

- The "discarded" dimensions are those that are least informative, which are redundant
- The optimal SVD result contains the smallest number of dimensions but the most informative information.

How is the LSA model used?

- To get a measure of how related a word is to another word, measure the distance between the columns containing the two words.
 - This gives you a measure of how different the contexts of the two words were: that is, how often a word occurred a different number of times in each context
- You can also take the distance between two document vectors to get a measure of how related they are.
- You can measure distance by taking the cosine between two vectors

A Small Example

Technical Memo Titles

- c1: Human machine interface for ABC computer applications
- c2: A survey of user opinion of computer system response time
- c3: The EPS user interface management system
- c4: System and human system engineering testing of EPS
- c5: Relation of user perceived response time to error measurement
- m1: The generation of random, binary, ordered trees
- m2: The intersection graph of paths in trees
- m3: Graph minors IV: Widths of trees and well-quasi-ordering
- m4: Graph minors: A survey

A Small Example – 4

0.22	-0.11	0.29	-0.41	-0.11	-0.34	0.52	-0.06	-0.41
0.20	-0.07	0.14	-0.55	0.28	0.50	-0.07	-0.01	-0.11
0.24	0.04	-0.16	-0.59	-0.11	-0.25	-0.30	0.06	0.49
0.40	0.06	-0.34	0.10	0.33	0.38	0.00	0.00	0.01
0.64	-0.17	0.36	0.33	-0.16	-0.21	-0.17	0.03	0.27
0.27	0.11	-0.43	0.07	0.08	-0.17	0.28	-0.02	-0.05
0.27	0.11	-0.43	0.07	0.08	-0.17	0.28	-0.02	-0.05
0.30	-0.14	0.33	0.19	0.11	0.27	0.03	-0.02	-0.17
0.21	0.27	-0.18	-0.03	-0.54	0.08	-0.47	-0.04	-0.58
0.01	0.49	0.23	0.03	0.59	-0.39	-0.29	0.25	-0.23
0.04	0.62	0.22	0.00	-0.07	0.11	0.16	-0.68	0.23
0.03	0.45	0.14	-0.01	-0.30	0.28	0.34	0.68	0.18

A Small Example – 5

1.50

0.85 0.56

0.36

A Small Example – 6

• {V} =

0.20	0.61	0.46	0.54	0.28	0.00	0.01	0.02	0.08
-0.06	0.17	-0.13	-0.23	0.11	0.19	0.44	0.62	0.53
0.11	-0.50	0.21	0.57	-0.51	0.10	0.19	0.25	0.08
-0.95	-0.03	0.04	0.27	0.15	0.02	0.02	0.01	-0.03
0.05	-0.21	0.38	-0.21	0.33	0.39	0.35	0.15	-0.60
-0.08	-0.26	0.72	-0.37	0.03	-0.30	-0.21	0.00	0.36
0.18	-0.43	-0.24	0.26	0.67	-0.34	-0.15	0.25	0.04
-0.01	0.05	0.01	-0.02	-0.06	0.45	-0.76	0.45	-0.07
-0.06	0.24	0.02	-0.08	-0.26	-0.62	0.02	0.52	-0.45

A Small Example – 7

	c1	c2	c3	c4	c5	m1	m2	m3	m4
human	0.16	0.40	0.38	0.47	0.18	-0.05	-0.12	-0.16	-0.09
interface	0.14	0.37	0.33	0.40	0.16	-0.03	-0.07	-0.10	-0.04
computer	0.15	0.51	0.36	0.41	0.24	0.02	0.06	0.09	0.12
user	0.26	0.84	0.61	0.70	0.39	0.03	0.08	0.12	0.19
system	0.45	1.23	1.05	1.27	0.56	-0.07	-0.15	-0.21	-0.05
response	0.16	0.58	0.38	0.42	0.28	0.06	0.13	0.19	0.22
time	0.16	0.58	0.38	0.42	0.28	0.06	0.13	0.19	0.22
EPS	0.22	0.55	0.51	0.63	0.24	-0.07	-0.14	-0.20	-0.11
survey	0.10	0.53	0.23	0.21	0.27	0.14	0.31	0.44	0.42
trees	-0.06	0.23	-0.14	-0.27	0.14	0.24	0.55	0.77	0.66
graph	-0.06	0.34	-0.15	-0.30	0.20	0.31	0.69	0.98	0.85
minors	-0.04	0.25	-0.10	-0.21	0.15	0.22	0.50	0.71	0.62

A Small Example – 2 reprise

	c1	c2	c3	c4	c 5	m1	m2	m3	m4
human	1	0	0	1	0	0	0	0	0
interface	1	0	1	0	0	0	0	0	0
computer	1	1	0	0	0	0	0	0	0
user	0	1	1	0	1	0	0	0	0
system	0	1	1	2	0	0	0	0	0
response	0	1	0	0	1	0	0	0	0
time	0	1	0	0	1	0	0	0	0
EPS	0	0	1	1	0	0	0	0	0
survey	0	1	0	0	0	0	0	0	1
trees	0	0	0	0	0	1	1	1	0
graph	0	0	0	0	0	0	1	1	1
minors	0	0	0	0	0	0	0	1	1

LSA in R

- Required package: library(tm), library(lsa), library(Matrix)
- TF-IDF:

corpus.tdm.weig <- weightTfIdf(corpus.tdm, normalize = TRUE)</pre>

• SVD:

#Specify the dimensions.

userdimension=2

Create LSA

corpus.tdm.weig.lsa <- lsa(corpus.tdm.weig, dims=userdimension)
term matrix</pre>

tk<-as.matrix(corpus.tdm.weig.lsa\$tk)

diagnoal matrix

sk<-Diagonal(n=userdimension, as.matrix(corpus.tdm.weig.lsa\$sk))
doc matrix</pre>

dk<-as.matrix(corpus.tdm.weig.lsa\$dk)</pre>

LSA in R

• Term loading and document loading

```
# term loading
termloading <- tk %*% sk
#write the term loading
write.csv(as.matrix(termloading), file="term_loading.csv")
#| document loading
docloading <- dk %*% sk
#write the document loading
write.csv(as.matrix(docloading), file="doc_loading.csv")</pre>
```

Rotation

term loading after rotation
termloading.rot <- varimax(as.matrix(termloading), normalize = TRUE, eps = 1e-5)
#document loading after the rotation
docloading.rot<-as.matrix(docloading) %*% as.matrix(termloading.rot[2]\$rotmat)</pre>