2024/09/06, 2024 네트워크 세미나

TCP/IP 프로토콜

-12장 멀티캐스트 라우팅 프로토콜-

이 정 민(jeongmin@pel.sejong.ac.kr) 세종대학교 프로토콜공학연구실

목 차

- 유니캐스팅과 멀티캐스팅
- IGMP (Internet Group Management Protocol)
- 멀티캐스트 라우팅

목 차

- 유니캐스팅과 멀티캐스팅
- IGMP (Internet Group Management Protocol)
- 멀티캐스트 라우팅

유니캐스팅과 멀티캐스팅 (1/13)

- 유니캐스팅 (Unicasting)
 - 정의
 - 네트워크 목적지에 일대일로 메시지를 전송하는 방식
 - 특징
 - 라우터가 수신한 패킷을 하나의 인터페이스를 통해 전달함
 - 웹 브라우징, 이메일, 파일 전송 등 대부분의 인터넷 애플리케이션에서 사용됨

유니캐스팅과 멀티캐스팅 (2/13)

- 멀티캐스팅 (Multicasting)
 - 정의
 - 하나의 발신지로부터 특정 그룹에 메시지를 전송하는 방식
 - 특징
 - 라우터가 수신한 패킷을 여러 인터페이스를 통해 전달할 수 있음
 - IPTV, 실시간 스트리밍, 원격 강의 등에서 사용됨

유니캐스팅과 멀티캐스팅 (3/13)

• 주요 차이점

- 멀티캐스팅은 송신자에서 하나의 패킷으로 시작되어 라우터에서 필요에 의해 복사됨
 - 임의의 라우터 간에는 하나의 패킷 사본만이 지나감
- 복수의 유니캐스팅은 송신자로부터 다수의 패킷이 전송됨
 - e.g., 다수의 수신자에게 이메일을 발송할 때

유니캐스팅과 멀티캐스팅 (4/13)

- 복수의 유니캐스팅
 - 멀티캐스팅 에뮬레이션으로 사용하지 않는 이유
 - 복수의 유니캐스팅은 멀티캐스팅에 비해 비효율적임
 - 멀티캐스팅에 비해 많은 대역폭을 사용함
 - 송신자에서 패킷이 복사됨에 따라, 상대적인 지연 시간을 가짐

유니캐스팅과 멀티캐스팅 (5/13)

- 멀티캐스트 주소 (1/9)
 - 정의
 - 멀티캐스트 그룹에 가입된 호스트 그룹에 대한 목적지 주소
 - 특징
 - 멀티캐스트 주소를 사용한 패킷은 수신자의 필터링 제약에 의한 경우를 제외하고 모든 그룹 멤버에 전달될 수 있음

유니캐스팅과 멀티캐스팅 (6/13)

- 멀티캐스트 주소 (2/9)
 - IPv4에서의 멀티캐스트 주소 (1/4)
 - 멀티캐스팅에 할당된 블록은 224.0.0.0/4임
 - 224.0.0.0에서 239.255.255.255까지 2²⁸개의 주소가 있음

CIDR	Range	Assignment
224.0.0.0/24	224.0.0.0 → 224.0.0.255	Local Network Control Block
224.0.1.0/24	224.0.1.0 → 224.0.1.255	Internetwork Control Block
	224.0.2.0 → 224.0.255.255	AD HOC Block
224.1.0.0/16	$224.1.0.0 \rightarrow 224.1.255.255$	ST Multicast Group Block
224.2.0.0/16	224.2.0.0 → 224.2.255.255	SDP/SAP Block
	224.3.0.0 → 231.255.255.255	Reserved
232.0.0.0/8	232.0.0.0 → 224.255.255.255	Source Specific Multicast (SSM)
233.0.0.0/8	233.0.0.0 → 233.255.255.255	GLOP Block
	234.0.0.0 → 238.255.255.255	Reserved
239.0.0.0/8	239.0.0.0 → 239.255.255.255	Administratively Scoped Block

유니캐스팅과 멀티캐스팅 (7/13)

- 멀티캐스트 주소 (3/9)
 - IPv4에서의 멀티캐스트 주소 (2/4)
 - 로컬 망 제어 블록 (Local Network Control Block)
 - 이 블록의 주소들은 프로토콜 제어 트래픽으로 사용됨
 - 멀티캐스트 통신을 위해서 사용되지는 않음
 - 이 블록의 주소를 목적지로 사용하는 IP 패킷은 TTL (Time To Live) 값을 1로 설정해야 함
 - 라우터로 하여금 이 패킷을 전달하지 않도록 하기 위함임

Address	Assignmnet
224.0.0.0	Base address (reserved)
224.0.0.1	All systems (hosts or routers) on this network
224.0.0.2	All routers on this network
224.0.0.4	DMVRP routers
224.0.0.5	OSPF routers
224.0.0.7	ST (stream) routers
224.0.0.8	ST (stream) hosts
224.0.0.9	RIP2 routers

Address	Assignmnet
224.0.0.10	IGRP routers
224.0.0.11	Mobile Agents
224.0.0.12	DHCP servers
224.0.0.13	PIM routers
224.0.0.14	RSVP encapsulation
224.0.0.15	CBT routers
224.0.0.22	IGMPv3

유니캐스팅과 멀티캐스팅 (8/13)

- 멀티캐스트 주소 (4/9)
 - IPv4에서의 멀티캐스트 주소 (3/4)
 - 망 간 제어 블록 (Internetwork Control Block)
 - 프로토콜 제어 트래픽으로 사용됨
 - 라우터에 의해 전체 인터넷으로 전달될 수 있음
 - SSM (Source Specific Multicast) 블록
 - 송신자 (Source) 지정 멀티캐스팅에 사용됨
 - IGMPv3부터 사용되기 시작함
 - 불필요한 송신자의 트래픽 수신을 방지하여 네트워크 효율성을 증가시킴

유니캐스팅과 멀티캐스팅 (9/13)

- 멀티캐스트 주소 (5/9)
 - IPv4에서의 멀티캐스트 주소 (4/4)
 - GLOP 블록
 - AS (Autonomous System) 내에서 사용할 수 있는 전역적으로 할당 된 추소들의 구간으로 사용됨
 - 각 AS가 할당받은 16비트 숫자를 블록의 중간 옥텟으로 삽입할 수
 - e.g., 233.x.y.0에서 233.x.y.255의 블록을 쓸 때, x.y를 AS 번호로 사용함
 - 관리 범주 블록 (Administratively Scoped Block)
 - 인터넷의 특정 영역, 특정 기관에 한정되어서 사용됨
 - 이 구간에 속한 주소를 목적지로 갖는 패킷은 해당 영역을 벗어나지 않음

유니캐스팅과 멀티캐스팅 (10/13)

- 멀티캐스트 주소 (6/9)
 - 그룹 유형
 - 제한된 그룹
 - AS 번호를 사용할 수 있으며, 특정 그룹에 대한 멀티캐스트 주소로 관리 범주 블록 (239.x.y.0 ~ 239.x.y.255)을 사용할 수 있음
 - e.g., 대학에 속한 AS 번호가 23452 (91.156)면, 239.91.156.0에서 239.91.156.255 까지의 구간이 대학에 주어질 수 있으며 이 경우 패킷들이 대학 AS 범위 바깥으로 전달될 수 없음
 - 관리자에 의한 주소 사용 승인이 필요함
 - 대규모 그룹
 - SSM 블록에서 주소를 선택할 수 있음
 - 블록 주소를 사용하기 위해 허락을 구할 필요가 없음
 - 송신자 지정 멀티캐스트에서의 패킷들은 그룹 및 송신자 주소에 의거해 라우팅되므로 고유하게 식별될 수 있기 때문임

유니캐스팅과 멀티캐스팅 (11/13)

- 멀티캐스트 주소 (7/9)
 - 데이터링크 계층으로의 전달 (1/3)
 - 문제점
 - IP 패킷이 멀티캐스트 주소를 가지면, 데이터링크 계층으로 패킷을 전달하기 위해 ARP 프로토콜로 물리 주소를 찾을 수 없음
 - 해결 방안 (1/2)
 - 물리적 멀티캐스트 지원이 있는 경우
 - 이더넷 주소의 상위 25비트는 TCP/IP 프로토콜을 위한 멀티캐스트 주소를 정의하며, 하위 23비트는 그룹을 정의하기 위해 사용됨
 - IP 멀티캐스트 주소를 이더넷 주소로 변환하기 위해, 멀티캐스트 라우터는 하위 23비트를 추출하여 이더넷의 멀티캐스트 물리 주소에 삽입함
 - IP 주소의 그룹 식별자는 28비트이므로, 상위 5비트가 사용되지 않음
 - 호스트는 IP 주소를 점검해서 자신의 IP 주소에 해당하지 않는 패킷은 폐기함

유니캐스팅과 멀티캐스팅 (12/13)

- 멀티캐스트 주소 (8/9)
 - 데이터링크 계층으로의 전달 (2/3)
 - 예제 12.2

멀티캐스트 IP 주소 232.43.14.7을 이더넷 멀티캐스트 물리 주소로 변환하라.

- 풀이
 - IP 주소 오른쪽 23비트를 16진법으로 작성하면 2B:0E:07임
 - 이더넷에서 멀티캐스트 주소를 정의하는 상위 25비트 01:00:5E:00:00:00을 더함
 - 멀티캐스트 물리 주소는 01:00:5E:2B:0E:07임

유니캐스팅과 멀티캐스팅 (13/13)

- 멀티캐스트 주소 (9/9)
 - 데이터링크 계층으로의 전달 (3/3)
 - 해결 방안 (2/2)
 - 물리적 멀티캐스트 지원이 없는 경우
 - 대부분의 WAN이 여기에 속함
 - 터널링 (Tunneling) 과정으로, 멀티캐스트 패킷이 유니캐스트 패킷에 캡슐화되어 전달됨

Unicast IP datagram

목 차

- 유니캐스팅과 멀티캐스팅
- IGMP (Internet Group Management Protocol)
- 멀티캐스트 라우팅

IGMP (1/21)

- 정의
 - 네트워크 장치들이 멀티캐스트 그룹 멤버십을 관리하고 제어하는 프로토콜
- 특징
 - 네트워크 그룹 멤버에 대한 정보를 해독하고 수집하는 일을 수행함
 - 3가지 버전을 가짐
 - 버전 1, 2는 ASM (Any Source Multicast)을 제공함
 - 멀티캐스트 메시지의 출처와 상관없이 그룹 멤버들이 수신함
 - 버전 3은 SSM (Source Specific Multicast)을 제공함
 - 미리 정해둔 송신자 목록에 해당하는 송신자로부터 오는 멀티캐스트 패킷만을 받아들임

IGMP (2/21)

- 메시지 유형 (1/10)
 - 멤버십 질의 (Membership Query)
 - 라우터가 그룹에 참여하는 호스트가 있는지 조회함
 - 종류
 - 일반 (General)
 - 그룹 지정 (Group-specific)
 - 그룹과 송신자 지정 (Group-and-source-specific)
 - 멤버십 보고 (Membership Report)
 - 호스트가 그룹 참여와 관련한 정보를 보고함

IGMP (3/21)

- 메시지 유형 (2/10)
 - 멤버십 질의 메시지 형식 (1/6)

필드명	크기 (bit)	설명
유형 (Type)	8	메시지 유형을 정의하며, 멤버십 질의 메시지의 경우 0x11 값을 가짐
최대 응답 코드 (Response code)	8	질의가 응답되어야 하는 시간을 정의함
검사합 (Checksum)	16	검사합 값을 저장하며, 전체 IGMP 메시지에 대해 계산됨
그룹 주소 (Group address)	32	그룹 지정 및 그룹과 송신자 지정 질의 메시지를 보낼 때 IP 멀티캐스트 주소로 설정함

0		8	16 31	
Туре	: 0x11	Response code	Checksum	
		Group	address	
Resv	S QRV	QQIC	Number of sources (N)	
	Source Address (1)			
Source Address (2)				
Source Address (N)				

IGMP (4/21)

- 메시지 유형 (3/10)
 - 멤버십 질의 메시지 형식 (2/6)

필드명	크기 (bit)	설명
Resv.	4	향후를 위해 예약해둔 값
S. (Suppress)	1	1로 설정되면 질의 메시지 수신자는 정규 타이머 갱신을 수행하지 않음
QRV (Querier's Robustness Variable)	3	네트워크 강인성을 모니터링하기 위해 사용됨
QQIC (Querier's Query Interval Code)	8	질의 간격인 QQI 값을 계산하기 위해 사용됨

0		8	16 31	
Ty	pe: 0x11	Response code	Checksum	
		Group	address	
Resv	S QRV	QQIC	Number of sources (N)	
	Source Address (1)			
	Source Address (2)			
	Source Address (N)			

IGMP (5/21)

- 메시지 유형 (4/10)
 - 멤버십 질의 메시지 형식 (3/6)

필드명	크기 (bit)	설명
송신자 수 (Number of Sources)	16	질의에 관여되는 32비트 유니캐스트 송신자 주소와 수를 정의함
송신자 주소 (Source Address)	32	멀티캐스트 메시지의 송신자 주소를 나타냄

IGMP (6/21)

- 메시지 유형 (5/10)
 - 멤버십 질의 메시지 형식 (4/6)
 - 최대 응답 시간
 - 정의
 - 질의에 대한 응답으로 보고를 송신하기까지 허용되는 최대 시간
 - 특징
 - 질의에서 최대 응답시간을 정의함
 - Max Resp Code 값이 128보다 작으면 최대 응답 시간은 정수임
 - Max Resp Code 값이 128보다 크거나 같으면 최대 응답 시간은 부동 소수임

IGMP (7/21)

- 메시지 유형 (6/10)
 - 멤버십 질의 메시지 형식 (5/6)
 - 질의자 강인성 변수 (QRV)
 - 보고 수신의 지연을 측정함으로써 네트워크의 패킷 유실을 모니터링하고 QRV 값을 조정함 (디폴트로 2의 값을 가짐)
 - QRV는 질의에 대한 응답 메시지를 얼마나 많이 전송해야 하는가를 나타냄
 - 망에서 패킷 유실이 많으면 라우터는 QRV값을 높게 설정함
 - 호스트가 질의에 대해 응답을 보내는 횟수는 QRV-1이 됨
 - 질의자 질의 간격 (QQI)
 - 일반 질의 간 간격을 나타내며 기본 125초의 값을 가짐
 - 관리자가 네트워크 트래픽을 제어하기 위해 변경할 수 있음

IGMP (8/21)

- 메시지 유형 (7/10)
 - 멤버십 질의 메시지 형식 (6/6)
 - 일반 질의 메시지
 - 네트워크 상의 모든 멀티캐스트 그룹에 대해 수신자가 있는지 확이함

a. General

- 그룹 지정 질의 메시지
 - 특정 멀티캐스트 그룹에 수신자가 있는지 확인함

b. Group-specific

c. Group-and-source-specific

IGMP (9/21)

- 메시지 유형 (8/10)
 - 멤버십 보고 메시지 형식 (1/3)

필드명	크기 (bit)	설명
유형 (Type)	8	메시지의 유형을 정의하며 0x22 값을 가짐
검사합 (Checksum)	16	검사합 값을 저장하며, 전체 IGMP 메시지에 대해 계산됨
그룹 레코드 수 (Number of group records)	16	패킷에 전달되는 그룹 레코드의 수를 계산함

IGMP (10/21)

- 메시지 유형 (9/10)
 - 멤버십 보고 메시지 형식 (2/3)

필드명	크기 (bit)	설명
레코드 유형 (Record type)	8	6개의 유형을 가짐
보조 데이터 길이 (Aux Data Len)	8	각 그룹 레코드에 포함된 보조 데이터의 길이를 정의하며, 32비트 단위임

Category	Туре	Type Value
Current-State-Record	Mode_ls_Include	1
Current-State-Record	Mode_Is_Exclude	2
Filter Mode Change Boord	Change_To_Include_Mode	3
Filter-Mode-Change-Record	Change_To_Exclude_Mode	4
Source List Change Boord	Allow_New_Sources	5
Source-List-Change-Record	Block_Old_Sources	6

IGMP (11/21)

- 메시지 유형 (10/10)
 - 멤버십 보고 메시지 형식 (3/3)

필드명	크기 (bit)	설명
송신자 수 (Number of sources)	16	보고에 포함되는 32비트 송신자 주소 수를 정의함
송신자 주소 (Source Address)	32	N개의 송신자 주소를 나타냄
보조 데이터 (Auxiliary Data)	N/A	보고 메시지에 포함될 수 있는 보조 데이터를 포함함 아직 정의되지 않음

IGMP (12/21)

- 호스트에서의 적용 (1/5)
 - 소켓 상태
 - 각 프로세스는 소켓으로부터 멀티캐스트 메시지 수신과 관련된 각 멀티캐스트 그룹에 관한 레코드를 가짐
 - Include 모드
 - 소켓으로부터 그룹 메시지를 수신하기를 원하는 송신자 주소의 목록을 가짐
 - Exclude 모드
 - 소켓을 통해 받아들이기를 원하지 않는 그룹 메시지의 송신자 주소를 가짐

S: Socket a, b, ...: Source addresses

States Table

Socket	Multicast group	Filter	Source addresses
S1	226.14.5.2	Include	a, b, d, e
S2	226.14.5.2	Exclude	a, b, c
S2	228.24.21.4	Include	b, c, f
S3	226.14.5.2	Exclude	b, c, g
S3	228.24.21.4	Include	d, e, f

IGMP (13/21)

- 호스트에서의 적용 (2/5)
 - 인터페이스 상태
 - 각 멀티캐스트 그룹에 대해 하나의 레코드만을 가짐
 - 전체 상태에 대해 하나의 인터페이스 타이머와 각 레코드에 대해 하나 씩의 그룹 타이머를 가짐
 - 레코드를 조합하는데 있어 두 가지 법칙을 따름
 - 합칠 자원들 중 하나라도 Exclude 모드를 가지는 경우
 - 최종 인터페이스 레코드는 Exclude 필터 모드를 가짐
 - Exclude 필터를 가지는 주소들에 대해 교집합을 수행하고 그 결과에다 Include 필터를 가지는 주소 목록들에 대한 차 연산을 수행함
 - 합칠 모든 레코드들이 Include 모드인 경우
 - 최종 인터페이스 레코드는 Include 필터 모드를 가지고 모든 주소 목록에 합 연산을 수행하여 송신자 주소 목록을 찾음

Multicast group	Group timer	Filter	Source address
226.14.5.2	(b)	Exclude	c
228.24.21.4	(b)	Include	b, c, d, e, f

IGMP (14/21)

- 호스트에서의 적용 (3/5)
 - 상태 변화 보고 전송
 - 이전 상태 필터 및 새로운 상태 필터에 기반을 두어 4가지 서로 다른 변경이 있을 수 있음
 - Include-Include, Exclude-Exclude의 경우, 두 개의 그룹 레코드를 포함하고 나머지는 하나의 그룹 레코드를 포함하여 보고됨

Category	Туре	Type Value
Current-State-	Mode_ls_Include	1
Record	Mode_Is_Exclude	2
Filter-Mode-	Change_To_Include_Mode	3
Change-Record	Change_To_Exclude_Mode	4
Source-List-	Allow_New_Sources	5
Change-Record	Block_Old_Sources	6

IGMP (15/21)

- 호스트에서의 적용 (4/5)
 - 질의 수신
 - 질의를 수신하면 즉각적으로 응답하지 않고, 유형별 규칙에 따라 응답을 지연시킴
 - 유형
 - 일반 질의 수신
 - 호스트는 인터페이스 타이머를 계산된 지연 값으로 재설정함
 - 그룹 지정 질의 수신
 - 그룹 타임을 계산된 지연과 기존 타이머의 잔여 시간 중 짧은 값으로 재설정함
 - 기존 타이머가 동작하고 있지 않았다면 잔여 시간을 무한대로 간주함
 - 그룹과 송신자 지정 질의 수신
 - 그룹 지정 질의와 같은 행동을 수행하나, 추가적으로 송신자 목록이 지연 응답을 위해 기록됨

IGMP (16/21)

- 호스트에서의 적용 (5/5)
 - 타이머 만료
 - 일반 질의를 수신한 후 설정된 인터페이스 타이머
 - 호스트는 인터페이스 상태에 있는 각 그룹 별로 하나의 Current-State-Record를 포함하는 멤버십 보고를 전송함
 - 그룹 지정 질의를 수행한 후 설정된 그룹 타이머
 - 호스트는 그룹이 여전히 활성화된 경우에만 특정 그룹에 대한 하나의 Current-State-Record를 포함하는 멤버십 보고를 전송함
 - 그룹과 송신자 지정 질의를 수신한 후 설정된 그룹 타이머
 - 그룹 지정 질의와 같은 내용을 수행하나 레코드 유형과 송신자 목록은 그룹의 필터 모드에 의존함

Category	Туре	Type Value
Current-State-	Mode_ls_Include	1
Record	Mode_Is_Exclude	2
Filter-Mode-	Change_To_Include_Mode	3
Change-Record	Change_To_Exclude_Mode	4
Source-List-	Allow_New_Sources	5
Change-Record	Block_Old_Sources	6

IGMP (17/21)

- 라우터에서의 적용 (1/3)
 - 질의자의 상태
 - 멀티캐스트 그룹에 대한 정보를 가지는 테이블
 - 멀티캐스트 주소, 그룹 타이머, 필터 모드 및 송신자 레코드로 구성됨
 - 각 송신자 레코드는 송신자의 주소와 타이머를 포함함

State for interface m1

Multicast group	Timer	Filter	Source addresses
227.12.15.21	(b)	Exclude	(a, ()) (c, ())
228.21.25.41	(b)	Include	(b, (b)) (d, (b)) (e, (b))

State for interface m2

Multicast group	Timer	Filter	Source addresses
226.10.11.8	(b)	Exclude	(b, (b))
227.21.25.41	(b)	Include	(a, (b) (b, (b) (c, (b))
228.32.12.40	(b)	Include	(d, (b)) (e, (b)) (f, (b))

IGMP (18/21)

- 라우터에서의 적용 (2/3)
 - 멤버십 보고 수신에 대한 행동
 - 일반 질의에 대한 응답으로 수신되는 보고
 - 보통 Current-State-Record 유형을 포함함
 - 라우터의 각 레코드 상태는 현재 상태 및 보고에 도착한 레코드에 의존함

Actions

II

III

IV

Group timer	Sources timers	Delete
	Reset{C}	{C − A}
Reset	Reset $\{C - A\}$	
	Reset{C}	
Reset	Reset $\{C - A - B\}$	$\{A - C\} & \{B - C\}$

Category	Туре	Type Value
Current-State-	Mode_ls_Include	1
Record	Mode_Is_Exclude	2
Filter-Mode-	Change_To_Include_Mode	3
Change-Record	Change_To_Exclude_Mode	4
Source-List-	Allow_New_Sources	5
Change-Record	Block_Old_Sources	6

IGMP (19/21)

- 라우터에서의 적용 (3/3)
 - 멤버십 보고 수신에 대한 행동
 - 다른 질의들에 대한 응답으로 수신되는 보고
 - 보통 Filter-Mode-Change-Record 혹은 Source-List-Change 유형을 포함함

Actions

	Group timer	Sources timers	Delete	Send G-S query	Send G-S-S query
I		Reset{C}			
II [Q-G-S{A. C}
III [Reset{C}			$Q-G-S\{A-C\}$
IV	Reset		$\{A-C\}$		Q-G-S{A. C}
V		Reset{C}			
VI		Reset $\{C - A - B\}$			$Q-G-S\{C-B\}$
VII		Reset{C}		Q-G	$Q-G-S\{A-C\}$
VIII [Reset		${A-C}&{B-C}$		$Q-G-S\{A-B\}$

Category	Туре	Type Value
Current-State-	Mode_ls_Include	1
Record	Mode_Is_Exclude	2
Filter-Mode- Change-Record	Change_To_Include_Mode	3
	Change_To_Exclude_Mode	4
Source-List-	Allow_New_Sources	5
Change-Record	Block_Old_Sources	6

IGMP (20/21)

- 전달 (Forwarding)에서의 역할
 - 패킷 전달 결정을 IP 멀티캐스트 라우터에 알리는 6가지 권장 사항이 IGMPv3 소프트웨어에 기반함
 - 멀티캐스트 목적지 주소가 라우터 상태에 존재하지 않으면. 절대적으로 패킷을 전달하지 않는 것이 권장됨
 - 목적지 주소가 라우터 상태에 존재한다면, 필터 모드 및 송신자 주소에 근거하여 권장 사항 (Recommendation)이 결정됨

Filter Mode	Source Address	Source Timer Value	Recommendation
Include	In the list	Grater than zero	Forward
Include	In the list	Zero	Do not forward
Include	Not in the list	N/A	Do not forward
Exclude	In the list	Grater than zero	Forward
Exclude	In the list	Zero	Do not forward
Exclude	Not in the list	N/A	Forward

IGMP (21/21)

- 캡슐화
 - IP 데이터그램에 캡슐화됨
 - 프로토콜 필드는 2, TTL 필드는 1로 설정됨
 - 데이터그램의 목적지 IP 주소는 메시지 유형에 따라 달라짐
- 이전 버전과의 호환성

• IGMP 버전 1, 2와의 호환성을 위해 버전 1, 2에 정의된 메시지를 수신하도록 설계됨

Message Type	IP Address	
General Query	224.0.0.1	
Other Queries	Group address	
Report	224.0.0.22	

Version	Type Value	Message Type	
1	0x11	Query	
	0x12	Membership Report	
2	0x11	Query	
	0x16	Membership Report	
	0x17	Leave Group	

목 차

- 유니캐스팅과 멀티캐스팅
- IGMP (Internet Group Management Protocol)
- 멀티캐스트 라우팅

멀티캐스트 라우팅 프로토콜 (1/15)

- 분류
 - 송신자 기반 트리
 - MOSPF (Multicast Open Shortest Path First)
 - DVMRP (Distance Vector Multicast Routing Protocol)
 - PIM-DM (Protocol Independent Multicast Dense Mode)
 - 그룹 공유 트리
 - CBT (Core Based Tree)
 - PIM-SM (PIM Sparse Mode)

멀티캐스트 라우팅 프로토콜 (2/15)

- 송신자 기반 트리
 - 정의
 - 각 관련 라우터들이 각각의 그룹에 대한 최단 경로 트리를 가지는 방식
 - 특징
 - 그룹의 수 m에 대해, m개의 최단 경로 트리를 필요로 함
 - 그룹의 수가 증가할수록 라우터의 복잡도가 크게 증가함

멀티캐스트 라우팅 프로토콜 (3/15)

- 송신자 기반 트리: MOSPF (1/2)
 - 정의
 - OSPF (Open Shortest Path First) 프로토콜을 확장하여 멀티캐스트 라우팅을 지원하는 프로토콜
 - 특징
 - 노드가 밀집되고 대역폭이 충분한 환경에서 사용됨
 - 멀티캐스트 링크 상태 라우팅 방식으로 분류됨

멀티캐스트 라우팅 프로토콜 (4/15)

- 송신자 기반 트리: MOSPF (2/2)
 - 과정
 - 1. 각 노드는 자신의 링크 상에 멤버들이 존재하는 모든 그룹을 알림
 - IGMP를 운영하는 각 라우터들은 멤버 상태를 알기 위해 링크 상에 있는 호스트들에게 문의하여 그룹에 관한 정보를 얻음
 - 2. 라우터가 모든 LSP (Link State Packet)를 수신하면 그룹 + n에 대해, n개의 토폴로지를 생성함
 - 3. Dijkstra 알고리즘을 통해, 각 그룹에서 최단 경로 트리를 생성함
 - 라우터가 멀티캐스트 목적지 주소를 가지는 패킷을 수신할 때만 해당 그룹에 대한 Dijkstra알고리즘을 수행, 캐시에 저장함으로써, 트리를 생성하고 저장하는 데에 필요한 자원을 절약할 수 있음

멀티캐스트 라우팅 프로토콜 (5/15)

- 송신자 기반 트리: DVMRP (1/5)
 - 정의
 - 거리 벡터 방식으로 멀티캐스트 트래픽을 라우팅하는 프로토콜
 - 특징
 - 송신자 기반의 트리를 사용하나 실제적으로 라우팅 테이블을 만들지는 않음
 - 4개의 판단-결정 정책에 기반하는 절차를 사용함
 - RIP (Routing Information Protocol)에 기반함

멀티캐스트 라우팅 프로토콜 (6/15)

- 송신자 기반 트리: DVMRP (2/5)
 - 판단-결정 정책 (1/4)
 - 플러딩 (Flooding)
 - 정의
 - 패킷을 수신하면 목적지 그룹 주소를 살펴보지 않고 수신한 인터페이스를 제외한 모든 인터페이스로 내보내는 정책
 - 특징
 - 멀티캐스팅의 처음 목적인 활성화 상태의 멤버를 가지는 모든 망이 패킷을 수신해야 한다는 점을 달성함
 - 멀티캐스팅이 아니라 브로드캐스팅이며, 라우터를 떠난 패킷이 다시 인터페이스를 통해 들어오는 루프 문제가 발생할 수 있음

멀티캐스트 라우팅 프로토콜 (7/15)

- 송신자 기반 트리: DVMRP (3/5)
 - 판단-결정 정책 (2/4)
 - 역 경로 전달 (RPF, Reverse Path Forwarding)
 - 정의

• 송신자로부터 라우터까지의 최단 경로를 통해 도착하는 사본만을 전달하는 Legend

• 특징

• 최단 경로를 통해 도착했음을 판단하기 위해, 거리 벡터 라우팅 프로토콜의 유니캐스트 라우팅 테이블을 사용함

- 송신자로부터 라우터까지 하나의 최단 경로만이 존재하여 루프를 방지할 수 있음
- 각 망이 하나의 사본만을 수신하는 것이 보장되지는 않음

멀티캐스트 라우팅 프로토콜 (8/15)

- 송신자 기반 트리: DVMRP (4/5)
 - 판단-결정 정책 (3/4)
 - 역 경로 브로드캐스팅 (RPB, Reverse Path Broadcasting)
 - 정의
 - 각 송신자에 대해, 자신이 지정된 부모 인터페이스로만 패킷을 전달하는 방식
 - 특징
 - 지정된 부모 라우터는 송신자로의 최단 경로를 가지는 라우터임
 - 패킷이 각 망에 도달하게 되는 것과 각 망에 반드시 하나의 사본만이 전달되는 것을 보장함

멀티캐스트 라우팅 프로토콜 (9/15)

- 송신자 기반 트리: DVMRP (5/5)
 - 판단-결정 정책 (4/4)
 - 역 경로 멀티캐스팅 (RPM, Reverse Path Multicasting)
 - 정의
 - 제거 (Pruning)과 접목 (Grafting)을 RPB에 추가하여 동적인 멤버십 변경을 지원하는 멀티캐스트 최단 경로를 생성하는 방식
 - 절차
 - 제거
 - 망에 연결된 라우터가 멀티캐스트 패킷을 수신하지 않고자 할 때, 제거 메시지 (Prune message)를 상위 라우터에 전송하여 해당 인터페이스를 제거하도록 함
 - 전목
 - 제거 메시지가 보내진 네트워크 중 한 곳에서 멀티캐스트 패킷을 수신하고자 할 때 접목 메시지 (Graft message)를 전송하여, 상위 라우터가 멀티캐스트 패킷을 계속해 전송하도록 함

멀티캐스트 라우팅 프로토콜 (10/15)

•그룹 공유 트리

- 정의
 - 코어 라우터만이 각 그룹에 해당하는 최단 경로 트리를 가지는 방식
- 특징

• 중심 코어 라우터 (Core Center Router)라고 불리는 하나의 지정된 랑데부 (Rendezvous) 라우터가 멀티캐스트 트래픽을 분배함

• 라우터가 멀티캐스트 패킷을 수신하면 유니캐스트 패킷에 캡슐화 하여 코어 라우터로 보냄

 코어 라우터는 원래의 멀티캐스트 패킷을 추출하고 라우팅 테이블을 참조하여 패킷을 라우팅함

멀티캐스트 라우팅 프로토콜 (11/15)

- 그룹 공유 트리: CBT (1/3)
 - 정의
 - 중심 코어 라우터를 통해 멀티캐스트 트래픽을 라우팅하는 프로토콜
 - 특징
 - AS가 지역으로 나뉘고, 각 지역마다 코어가 선택됨

멀티캐스트 라우팅 프로토콜 (12/15)

- 그룹 공유 트리: CBT (2/3)
 - 트리의 형성
 - 랑데부 포인트가 형성되면 모든 라우터는 랑데부 라우터의 유니캐스트 주소를 통보받음
 - 각 라우터는 그룹에 가입하기 위해 랑데부 라우터에 가입 (Join) 메시지를 전송함
 - 랑데부 라우터가 그룹의 모든 멤버들로부터 가입 메시지를 수신하면 트리가 형성됨
 - 그룹을 떠나고 싶으면 랑데부 라우터에 탈퇴 (Leave)

메시지를 전송함

멀티캐스트 라우팅 프로토콜 (13/15)

- 그룹 공유 트리: CBT (3/3)
 - 멀티캐스트 패킷 전송 절차
 - 1. 송신자는 멀티캐스트 패킷을 코어의 유니캐스트 주소로 포장하여 코어로 전송함
 - 2. 코어 라우터는 유니캐스트 패킷 헤더를 벗겨내고 멀티캐스트 패킷을 수신 그룹에 관한 인터페이스로 전달함
 - 3. 멀티캐스트 패킷을 수신한 각 라우터는 이를 모든 수신 그룹에 관한 인터페이스로 전달함

멀티캐스트 라우팅 프로토콜 (14/15)

- 프로토콜 독립적인 멀티캐스트 (PIM, Protocol Independent Multicast)
 - PIM-DM (PIM-Dense Mode)
 - LAN과 같이 멀티캐스트 참여 밀집도가 높은 환경에 사용됨
 - 멀티캐스팅을 다루기 위해 RPF와 제거/접목 정책을 사용함
 - DVMRP와 유사하나, 특정 유니캐스팅 프로토콜 (e.g., RIP)에 의존하지 않음
 - PIM-SM (PIM-Sparse Mode)
 - WAN과 같이 밀집도가 낮은 멀티캐스트 환경에 사용됨
 - 그룹 공유 트리에서 송신자 기반의 트리로 변경할 수 있음
 - 랑데부 포인트에서 멀리 떨어진 곳에 멀티캐스팅 영역이 있을 때 변경될 수 있음
 - CBT와 유사하나, 가입 메시지 확인을 필요로 하지 않음

멀티캐스트 라우팅 프로토콜 (15/15)

MBONE (Multicast Backbone)

- 정의
 - 터널링을 통해 멀티캐스트 트래픽 전송을 위한 가상의 백본 네트워크
- 필요성
 - 멀티캐스트 라우터가 부족한 환경에서 멀티캐스트 통신을 가능하게 하기 위함
- 특징
 - 현재까지 MBONE과 터널링을 지원하는 프로토콜은 DVMRP만이 유일함

Thanks!

이 정 민(jeongmin@pel.sejong.ac.kr)