Logistic Regression

Cong Cuong PHAM

November 30, 2016

Abstract

This document introduces some fundamental notions of Logistic Regression.

1 Introduction

1.1 What is Logistic Regression?

Logistic Regression is a method for **Classification**. Examples: Spam versus "Ham" emails; Loan defaults, Disease Diagnosis...

Logistic Regression allows to solve classification problems, where we are trying to predict discrete categories (although we have continuous value). The convention for **binary classification** is to have two classes 0 and 1.

We can't use a normal linear regression model on binary groupes. It won't lead to a good fit:

Figure 1: The linear regression is not suitable for the binary classification.

We can transform our linear regression to a logistic regression curve. The Sigmoid (aka Logistic) Function takes in any value and ouputs it to be between 0 and 1 (Figure 3).

Figure 2: Linear and logistic regression.

Figure 3: Sigmoid (aka Logistic) function.

Figure 4: Linear Regression Solution used Sigmoid Function.

After training a logistic regression model on some training data, you will evaluate your model's performance on some test data. A confusion matrix (Figure 5) could be used to evaluate classification models.

n=165	Predicted: NO	Predicted: YES
Actual:		
NO	50	10
Actual:		
YES	5	100

Example: Test for presence of disease NO = negative test = False = 0 YES = positive test = True = 1

Figure 5: Confusion matrix used to evaluate classification models.

n=165	Predicted: NO	Predicted: YES	
Actual: NO	TN = 50	FP = 10	60
Actual: YES	FN = 5	TP = 100	105
	55	110	

Basic Terminology:

- True Positives (TP)

- True Negatives (TN)
 False Positives (FP)
 False Negatives (FN)

Figure 6: Confusion matrix - F value.

	Predicted:	Predicted:	
n=165	NO	YES	
Actual:			
NO	TN = 50	FP = 10	60
Actual:			
YES	FN = 5	TP = 100	105
	55	110	

Misclassification Rate (Error Rate):

- Overall, how often is it wrong?
- (FP + FN) / total = 15/165 = 0.09

Figure 7: Confusion matrix - Misclassification Rate.

Figure 8: Confusion matrix - Misclassification Rate - Example.