0.1 \mathbb{R}^n 中点与点之间的距离 · 点集的极限点

0.1.1 点集的直径、点的(球)邻域、矩体

定义 $0.1 (\mathbb{R}^n 与 \mathbb{R}^n 中的运算)$

记一切有序数组 $x = (\xi_1, \xi_2, \dots, \xi_n)$ 的全体为 \mathbb{R}^n , 其中 $\xi_i \in \mathbb{R}(i = 1, 2, \dots, n)$ 是实数, 称 ξ_i 为 x 的第 i 个坐标, 并定义运算如下:

(i) 加法: 对于 $x = (\xi_1, \dots, \xi_n)$ 以及 $y = (\eta_1, \dots, \eta_n)$, 令

$$x + y = (\xi_1 + \eta_1, \cdots, \xi_n + \eta_n);$$

(ii) 数乘: 对于 $\lambda \in \mathbb{R}$, $\diamondsuit \lambda x = (\lambda \xi_1, \dots, \lambda \xi_n) \in \mathbb{R}^n$.

在上述两种运算下构成一个向量空间. 对于 $1 \le i \le n$, 记

$$e_i = (0, \cdots, 0, 1, 0, \cdots, 0),$$

其中除第 i 个坐标为 1, 外其余皆为 $0.e_1, e_2, \cdots, e_i, \cdots, e_n$ 组成 \mathbb{R}^n 的基底, 从而 \mathbb{R}^n 是实数域上的 n 维向量空间, 并称 $x = (\xi_1, \cdots, \xi_n)$ 为 \mathbb{R}^n 中的**向量**或点. 当每个 ξ_i 均为有理数时, $x = (\xi_1, \cdots, \xi_n)$ 称为**有理点**.

定义 0.2

设 $x = (\xi_1, \dots, \xi_n) \in \mathbb{R}^n$, 令

$$|x| = (\xi_1^2 + \dots + \xi_n^2)^{\frac{1}{2}},$$

 $\pi |x|$ 为向量x 的模或长度.

命题 0.1 (向量的模的性质)

读 $x = (x_1, \dots, x_n), y = (y_1, \dots, y_n) \in \mathbb{R}^n$, 则

- (i) $|x| \ge 0, |x| = 0$ 当且仅当 $x = (0, \dots, 0)$;
- (ii) 对任意的 $a \in \mathbb{R}$, 有 |ax| = |a||x|;
- (iii) $|x + y| \le |x| + |y|$;
- (iv) 设 $x = (\xi_1, \dots, \xi_n), y = (\eta_1, \dots, \eta_n), 则有$

$$(\xi_1\eta_1 + \dots + \xi_n\eta_n)^2 \leq (\xi_1^2 + \dots + \xi_n^2)(\eta_1^2 + \dots + \eta_n^2).$$

证明 (i),(ii) 的结论是明显的;(iii) 是 (iv) 的推论. 因此我们只证明 (iv).

只需注意到函数

$$f(\lambda) = (\xi_1 + \lambda \eta_1)^2 + \dots + (\xi_n + \lambda \eta_n)^2$$

是非负的 (对一切 λ), 由 λ 的二次方程 $f(\lambda)$ 的判别式小于或等于零即得.(iv) 就是著名的 Cauchy - Schwarz 不等式.

定义 0.3 (距离空间)

一般地说, 设 X 是一个集合. 若对 X 中任意两个元素 x 与 y, 有一个确定的实数与之对应, 记为 d(x,y), 它满足下述三条性质: 对 \forall , x, y, z \in X, 都有

- (i) $d(x, y) \ge 0, d(x, y) = 0$ 当且仅当 x = y;
- (ii) d(x, y) = d(y, x);
- (iii) $d(x, y) \leq d(x, z) + d(z, y)$,

则认为在X中定义了距离d,并称(X,d)为**距离空间**.

 $\stackrel{\diamond}{\mathbf{Y}}$ 笔记 因而 (\mathbb{R}^n,d) 是一个距离空间, 其中 d(x,y)=|x-y|. 我们称 \mathbb{R}^n 为n 维欧氏空间.

注 由 (iii) 可直接推出对 \forall , x, y, z ∈ X, 都有

$$|d(x,z) - d(y,z)| \leqslant d(x,y) \leqslant d(x,z) + d(z,y).$$

定义 0.4 (点集的直径与有界集)

设E是 \mathbb{R}^n 中一些点形成的集合,令

$$diam(E) = \sup\{|x - y| : x, y \in E\},\$$

称为点集 E 的**直径**. 若 diam(E) < + ∞ , 则称 E 为有界集.

命题 0.2 (有界集的充要条件)

E 是有界集的充要条件是, 存在 M > 0, 使得 $\forall x \in E$ 都满足 $|x| \leq M$.

证明 由有界集的定义易得.

定义 0.5 (点的 (球) 邻域)

设 $x_0 \in \mathbb{R}^n, \delta > 0$, 称点集

$$\{x \in \mathbb{R}^n : |x - x_0| < \delta\}$$

为 \mathbb{R}^n 中以 x_0 为中心, 以 δ 为半径的**开球**, 也称为 x_0 的 (球) 邻域, 记为 $B(x_0, \delta)$, 从而称

$$\{x \in \mathbb{R}^n : |x - x_0| \le \delta\}$$

为**闭球**, 记为 $C(x_0, \delta)$. \mathbb{R}^n 中以 x_0 为中心, 以 δ 为半径的球面是

$$\{x \in \mathbb{R}^n : |x - x_0| = \delta\}.$$

定义 0.6 (矩体)

设 $a_i, b_i (i = 1, 2, \dots, n)$ 皆为实数,且 $a_i < b_i (i = 1, 2, \dots, n)$, 称点集

$$\{x = (\xi_1, \xi_2, \dots, \xi_n) : a_i < \xi_i < b_i \ (i = 1, 2, \dots, n)\}$$

为 \mathbb{R}^n 中的开矩体(n=2时为矩形,n=1时为区间),即直积集

$$(a_1,b_1)\times\cdots\times(a_n,b_n).$$

类似地 \mathbb{R}^n 中的**闭矩体**以及**半开闭矩体**就是直积集

$$[a_1, b_1] \times \cdots \times [a_n, b_n], \quad (a_1, b_1] \times \cdots \times (a_n, b_n],$$

 $b_i - a_i (i = 1, 2, \dots, n)$ 为**矩体的边长**. 若各边长都相等, 则称矩体为**方体**.

矩体也常用符号I,J等表示,其**体积**用|I|,|J|等表示.

命题 0.3 (矩体的性质)

(1) 若 $I = (a_1, b_1) \times \cdots \times (a_n, b_n)$, 则

diam
$$(I) = [(b_1 - a_1)^2 + \dots + (b_n - a_n)^2]^{\frac{1}{2}}, \quad |I| = \prod_{i=1}^n (b_i - a_i).$$

- (2) 若 I_1, I_2 都是矩体, 且 $I_1 \subset I_2$, 则 $|I_1| \leq |I_2|$.
- (3) 若 $\{I_{\alpha}\}$ 是一列矩体, Γ 是其指标集,I 也是一个矩体, 且 $\bigcup_{\Gamma} I_{\alpha} \supset I$, 则

$$|I| \leqslant \sum_{\alpha \in \Gamma} |I_{\alpha}|.$$

(4) 设

$$I_1 = (a_1, b_1) \times \cdots \times (a_n, b_n),$$

$$I_2 = (a_1, b_1] \times \cdots \times (a_n, b_n],$$

 $I_3 = [a_1, b_1) \times \cdots \times [a_n, b_n),$

$$I_4 = [a_1, b_1] \times \cdots \times [a_n, b_n],$$

则
$$\overline{I_1} = \overline{I_2} = \overline{I_3} = \overline{I_4} = I_4 = I_1 \cup \partial I_1$$
.

证明

- (1)
- (2)
- (3)

定义 0.7

设 $x_k \in \mathbb{R}^n (k = 1, 2, \cdots)$. 若存在 $x \in \mathbb{R}^n$, 使得

$$\lim_{k\to\infty}|x_k-x|=0,$$

则称 $x_k(k=1,2,\cdots)$ 为 \mathbb{R}^n 中的收敛(于x的)点列,称x为它的极限,并简记为

$$\lim_{k\to\infty}x_k=x.$$

定义 0.8 (Cauchy 列)

称 $\{x_k\}$ 为 Cauchy 列或基本列, 若 $\lim_{l,m\to\infty}|x_l-x_m|=0$. 即对任意 $\varepsilon>0$, 存在 N, 使得当 k,l>N 时, 有 $|x_k-x_l|<\varepsilon$.

定理 0.1

 $x_k(k=1,2,\cdots)$ 是收敛列的充分必要条件是 $\{x_k\}$ 为 Cauchy 列, 即

$$\lim_{l,m\to\infty} |x_l - x_m| = 0.$$

证明 若令 $x_k = \{\xi_1^{(k)}, \xi_2^{(k)}, \cdots, \xi_n^{(k)}\}, x = \{\xi_1, \xi_2, \cdots, \xi_n\}$,则由于不等式

$$|\xi_i^{(k)} - \xi_i| \le |x_k - x| \le |\xi_1^{(k)} - \xi_1| + \dots + |\xi_n^{(k)} - \xi_n|$$

对一切 k = i 都成立. 故可知 $x_k(k = 1, 2, \cdots)$ 收敛于 x 的充分必要条件是, 对每个 i, 实数列 $\{\xi_i^{(k)}\}$ 都收敛于 ξ_i . 由此根据实数列收敛的 Cauchy 收敛准则可知结论成立.

0.1.2 点集的极限点

定义 0.9 (极限点、导集与完全集)

设 $E \subset \mathbb{R}^n, x \in \mathbb{R}^n$. 若存在E中的互异点列 $\{x_k\}$, 使得

$$\lim_{k\to\infty} |x_k - x| = 0,$$

则称x为E的极限点或聚点E的极限点全体记为E',称为E的导集.

若 E = E', 则 E 称为完全集.

室 笔记 显然,有限集是不存在极限点的.

定理 0.2 (一个点是极限点的充要条件)

若 $E \subset \mathbb{R}^n$, 则 $x \in E'$ 当且仅当对任意的 $\delta > 0$, 有

$$(B(x,\delta) \setminus \{x\}) \cap E \neq \emptyset$$
.

证明 若 $x \in E'$,则存在E中的互异点列 $\{x_k\}$,使得

$$|x_k - x| \to 0 \quad (k \to \infty),$$

从而对任意的 $\delta > 0$, 存在 k_0 , 当 $k \ge k_0$ 时, 有 $|x_k - x| < \delta$, 即

$$x_k \in B(x, \delta) \quad (k \geqslant k_0).$$

反之, 若对任意的 $\delta > 0$, 有 $(B(x,\delta) \setminus \{x\}) \cap E \neq \emptyset$, 则令 $\delta_1 = 1$, 可取 $x_1 \in E, x_1 \neq x$ 且 $|x - x_1| < 1$. 令

$$\delta_2 = \min\left(|x - x_1|, \frac{1}{2}\right),\,$$

可取 $x_2 \in E, x_2 \neq x$ 且 $|x - x_2| < \delta_2$. 继续这一过程, 就可得到 E 中互异点列 $\{x_k\}$, 使得 $|x - x_k| < \delta_k$, 即

$$\lim_{k \to \infty} |x - x_k| = 0.$$

这说明 $x \in E'$.

定义 0.10 (孤立点)

设 $E \subset \mathbb{R}^n$. 若E 中的点x 不是E 的极限点,即存在 $\delta > 0$,使得

$$(B(x, \delta) \setminus \{x\}) \cap E = \emptyset,$$

则称x为E的**孤立点**,即 $x \in E \setminus E'$.

定理 0.3 (导集的性质)

设 $E_1, E_2 \subset \mathbb{R}^n$, 则 $(E_1 \cup E_2)' = E_1' \cup E_2'$.

证明 因为 $E_1 \subset E_1 \cup E_2, E_2 \subset E_1 \cup E_2$, 所以

$$E_1' \subset (E_1 \cup E_2)', \quad E_2' \subset (E_1 \cup E_2)',$$

从而有 $E_1' \cup E_2' \subset (E_1 \cup E_2)'$. 反之, 若 $x \in (E_1 \cup E_2)'$, 则存在 $E_1 \cup E_2$ 中的互异点列 $\{x_k\}$, 使得

$$\lim x_k = x.$$

显然, 在 $\{x_k\}$ 中必有互异点列 $\{x_{k_i}\}$ 属于 E_1 或属于 E_2 , 而且

$$\lim x_{k_i} = x.$$

在 $\{x_{k_i}\}\subset E_1$ 时,有 $x\in E_1'$,否则 $x\in E_2'$. 这说明

$$(E_1 \cup E_2)' \subset E_1' \cup E_2'$$
.

定理 0.4 (Bolzano - Weierstrass 定理)

 \mathbb{R}^n 中任一有界无限点集 E 至少有一个极限点.

证明 首先从 E 中取出互异点列 $\{x_k\}$. 显然, $\{x_k\}$ 仍是有界的,而且 $\{x_k\}$ 的第 $i(i=1,2,\cdots,n)$ 个坐标所形成的实数列 $\{\xi_i^{(k)}\}$ 是有界数列. 其次,根据 \mathbb{R}^1 的 Bolzano - Weierstrass 定理可知,从 $\{x_k\}$ 中可选出子列 $\{x_k^{(1)}\}$,使得 $\{x_k^{(1)}\}$ 的第一个坐标形成的数列是收敛列;再考查 $\{x_k^{(1)}\}$ 的第二个坐标形成的数列,同理可从中选出 $\{x_k^{(2)}\}$,使其第二个坐标形成的数列成为收敛列,此时其第一坐标数列仍为收敛列(注意,收敛数列的任一子列必收敛于同一极限),…… 至第 n 步,可得到 $\{x_k\}$ 的子列 $\{x_k^{(n)}\}$,其一切坐标数列皆收敛,从而知 $\{x_k^{(n)}\}$ 是收敛点列,设其极限为 x. 由于 $\{x_k^{(n)}\}$ 是互异点列,故 x 为 x 的极限点.