Formelsammlung - ET/TI

Marc Ludwig

27. April 2012

Inhaltsverzeichnis

1	IVI	athen	natik	5
1	Alg	ebra		6
	1.1		nregeln fuer Potenzen	6
	1.2		nmenhang zwischen Wurzeln und Potenzen	6
	1.3		zen und Logarithmen	7
	1.4		inomische Lehrsatz	7
	1.5		Kosinus, Tangens und Kotangens	8
		1.5.1	Beziehungen zwischen Sinus, Kosinus, Tangens und Kotangens	8
		1.5.2	Additionstheoreme	8
	1.6	Komp	lexe Zahlen	10
		1.6.1	Umrechnungen zwischen den Darstellungsformen	10
		1.6.2	Rechnen mit Komplexen Zahlen	11
2	Fun	ktione	en	12
	2.1	Gleich	nungen	12
		2.1.1	Gleichungen n -ten Grades	12
		2.1.2	Lineare Gleichungen	12
		2.1.3	Quadratische Gleichungen	13
		2.1.4	Biquadratische Gleichungen	13
		2.1.5	Gleichungen höheren Grades	13
		2.1.6	Wurzelgleichung	13
		2.1.7	Ungleichungen	14
		2.1.8	Betragsgleichungen	14
3	Vek	torrec	hnung	15
	3.1	Vekto	rrechnung	15
		3.1.1	Grundlagen	15
		3.1.2	Vektoroperationen	16
		3.1.3	Geraden	17
		3.1.4	Ebenen	17

4	Diff	erentialrechnung	19
	4.1	Differntialrechnung	19
		4.1.1 Erste Ableitungen der elementaren Funktionen	19
		4.1.2 Rechenregeln	20
		4.1.3 Fehlerrechnung	21
		4.1.4 Linearisierung und Taylor-Polynom	21
		4.1.5 Grenzwertregel von Bernoulli und de l'Hospital	22
		4.1.6 Differentielle Kurvenuntersuchung	22
	4.2	Differentialgleichungen	24
		4.2.1 DG 1. Ordnung	24
		4.2.2 Lineare DG 2. Ordnung	24
	4.3	Differential- und Integralrechnung mit mehreren Variablen	26
		4.3.1 Differential rechnung	26
		4.3.2 Mehrfachintegral	27
5	Folg	gen und Reihen	30
	5.1	Reihen	30
		5.1.1 Geometrische Folge	30
		5.1.2 Harmonische Reihe	30
		5.1.3 Konvergenz	31
		5.1.4 Bekannte konvergente Reihen	31
	5.2	Funktionenreihen	32
		5.2.1 Potenzreihen	32
		5.2.2 Bekannte Potenzreihen	32
		5.2.3 spezielle Reihen	33
		5.2.4 Fourier Reihen	33
6	Inte	erpolation	35
	6.1	Interpolationspolynome	35
II	P	hysik	37
7	Kin	ematik	38
	7.1	Analogietabelle	38
		7.1.1 Translation	36
		7.1.2 Rotation	36
	7.2	Dynamik	40
		7.2.1 Geradlinig (Translation)	40
		7.2.2 Drehbewegung(Rotation)	40
		7.2.3 Geneigte Ebene	41
		7.2.4 Reibung	41
		7.2.5 Feder	42

		7.2.6 Elastischer Stoss	42
		7.2.7 Unelastischer Stoss	42
			43
	7.3	Schwerpunkt	44
	7.4	-	45
	7.5		46
	7.6		47
			47
		0 1	49
8	Flui	ldynamik 5	50
Ü	8.1		5(
	8.2		51
	O. _		
9	Gra	vitation	52
10	Elek	trostatik	53
11	The	rmodynamik	55
			55
			55
			55
			55
	11.5	Wärmekonvektion	55
	11.6	Wärmewiderstand	56
		11.6.1 Wärmeübertragung	56
		11.6.2 Wärmestrahlung	56
			56
12	Opt	k :	59
	12.1	Brechung	59
	12.2	Totalreflexion	59
	12.3	Hohlspiegel	59
	12.4	Linse	60
	12.5	Lichtwellenleiter	61
II	T T	lektrotechnik 6	32
			, 4
13			63
		0	63
		•	64
	13.3	Kirchhoffsche Gesetze	64

14 Wechselstromtechnik	66
14.1 Anteile und Formfaktoren	. 67
14.2 Leistung und Leistungsfaktoren	. 67
14.3 Sinusförmige Größen	. 69
15 Signal- und Systemtheorie	77
15.1 Einfache Impulse	. 77
15.2 Elementare Operationen auf zeitliche Verläufe	
15.3 Signale	
15.4 Signalbeschreibung Leistungssignale	
15.5 Signalbeschreibung Energiesignale	
15.6 Systeme	
IV Messtechnik	91
1 V WESSTECHNIK	91
16 Grundlagen	92
16.1 Begriffe	. 92
16.2 Messabweichung e	
16.2.1 relative Messabweichung	. 92
16.2.2 Messabweichung e_y	. 93
16.2.3 Fortpflanzung systematischer Messabweichungen	. 93
16.3 Statistische Größen	. 94
16.4 Erwartungswert, Varianz und Standardabweichung	. 94
16.5 Verteilungsfunktionen	. 95
16.6 Stichprobe	. 96
16.7 Vertrauensbereich für den Erwartungswert	
16.8 Fortpflanzung zufälliger Abweichungen	. 97
16.9 Fortpflanzung von Messunsicherheiten	
Sachregister	
V Anhang	99

${\bf Teil~I}$ ${\bf Mathematik}$

Kapitel 1

Algebra

Why waste time learning when ignorance is instantaneous?
- Hobbes

1.1 Rechenregeln fuer Potenzen

$$a^{m} \cdot a^{n} = a^{m+n} \qquad \frac{a^{m}}{a^{n}} = a^{m-n} \qquad (a^{m})^{n} = (a^{n})^{m} = a^{m \cdot n}$$
$$a^{n} \cdot b^{n} = (a \cdot b)^{n} \qquad \frac{a^{n}}{b^{n}} = \left(\frac{a}{b}\right)^{n} \qquad \text{(fuer a > 0) } a^{b} = e^{b \cdot \ln a}$$

1.2 Zusammenhang zwischen Wurzeln und Potenzen

Im Folgenden wird vorausgesetzt, dass alle Potenzen und Wurzeln existieren.

$$\sqrt[n]{a} = a^{\frac{1}{n}}$$
 $\sqrt[n]{a^m} = a^{\frac{m}{n}}$ $\left(\sqrt[n]{a}\right)^m = a^{\frac{m}{n}}$

1.3 Potenzen und Logarithmen

Schreibweise: $x = \log_a(b)$ mit $a > 0, a \neq 1$ und b > 0.

Es gillt: $\log_a(1) = 0$, $\log_a(a) = 1$.

Der natuerliche Logarithmus

Der Logarithmus zur Basis e mit $e = \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n = 2,71828...$

$$\log_e(b) = \ln(b) \qquad \qquad \ln\left(\frac{1}{e}\right) = -1; \text{ da } e^{-1} = \frac{1}{e}$$

Man beachte: $x^a = e^{\ln(x) \cdot a}$

Rechnen mit Logarithmen

Es gillt:	Weitere Beziehungen:
$\log_a(u \cdot v) = \log_a(u) + \log_a(v)$	$\log_a\left(\sqrt[n]{u}\right) = \frac{1}{n}\log_a\left(u\right)$
$\log_a\left(\frac{u}{v}\right) = \log_a\left(u\right) - \log_a\left(v\right)$	$a^{\log_a(u)} = \log_a^n(a^u) = u$
$\log_a(u^p) = p \cdot \log_a(u)$	$\log_a(u) = \frac{\log_c(u)}{\log_c(a)}$

1.4 Der Binomische Lehrsatz

Die Potenzen eines Binoms a+b lassen sich nach dem Binomischen Lehrsatz wie folgt entwickeln $(n \in \mathbb{N}^*)$:

$$(a+b)^n = a^n + \binom{n}{1}a^{n-1} \cdot b^1 + \binom{n}{2}a^{n-2} \cdot b^2 + \binom{n}{3}a^{n-3} \cdot b^3 + \ldots + \binom{n}{n-1}a^1 \cdot b^{n-1} + b^n$$

Die Koeffizienten $\binom{n}{k}$ heißen Binominalkoeffizienten, ihr Bildungsgesetz lautet:

$$\binom{n}{k} = \frac{n(n-1)(n-2)...[n-(k-1)]}{k!} = \frac{n!}{k!(n-k)!}$$

Einige Eigenschaften der Binominalkoeffizienten

$$\binom{n}{0} = \binom{n}{n} = 1 \qquad \binom{n}{k} = 0 \text{ fuer } k > n \qquad \binom{n}{1} = \binom{n}{n-1} = n$$

$$\binom{n}{k} = \binom{n}{n-k} \qquad \binom{n}{k} + \binom{n}{k+1} = \binom{n+1}{k+1}$$

1.5 Sinus, Kosinus, Tangens und Kotangens

1.5.1 Beziehungen zwischen Sinus, Kosinus, Tangens und Kotangens

$$\sin^{2}(\alpha) + \cos^{2}(\alpha) = 1$$

$$\tan(\alpha) \cdot \cot(\alpha) = 1$$

$$\tan(\alpha) = \frac{\sin(\alpha)}{\cos(\alpha)}$$

$$\cot(\alpha) = \frac{\cos(\alpha)}{\sin(\alpha)}$$

$$1 + \tan^{2}(\alpha) = \frac{1}{\cos^{2}(\alpha)}$$

$$1 + \cot^{2}(\alpha) = \frac{1}{\sin^{2}(\alpha)}$$

1.5.2 Additions theoreme

$$\sin(\alpha \pm \beta) = \sin(\alpha)\cos(\beta) \pm \cos(\alpha)\sin(\beta)$$
$$\cos(\alpha \pm \beta) = \cos(\alpha)\cos(\beta) \mp \sin(\alpha)\sin(\beta)$$
$$\tan(\alpha \pm \beta) = \frac{\tan(\alpha) \pm \tan(\beta)}{1 \mp \tan(\alpha)\tan(\beta)}$$

Funktionen des doppelten und halben Winkels

$$\sin(2\alpha) = 2\sin(\alpha)\cos(\alpha)$$

$$\cos(2\alpha) = \cos^2(\alpha) - \sin^2(\alpha) = 2\cos^2(\alpha) - 1 = 1 - 2\sin^2(\alpha)$$

$$\tan(2\alpha) = \frac{2\tan(\alpha)}{1 - \tan^2(\alpha)}$$

$$\sin^2\left(\frac{\alpha}{2}\right) = \frac{1}{2}(1 - \cos(\alpha))$$

$$\cos^2\left(\frac{\alpha}{2}\right) = \frac{1}{2}(1 + \cos(\alpha))$$

$$\tan^2\left(\frac{\alpha}{2}\right) = \frac{1 - \cos(\alpha)}{1 + \cos(\alpha)}$$

Umformungen

Summe oder Differenz in ein Produkt

$$\sin(\alpha) + \sin(\beta) = 2\sin\left(\frac{\alpha+\beta}{2}\right)\cos\left(\frac{\alpha-\beta}{2}\right)$$
$$\sin(\alpha) - \sin(\beta) = 2\cos\left(\frac{\alpha+\beta}{2}\right)\sin\left(\frac{\alpha-\beta}{2}\right)$$
$$\cos(\alpha) + \cos(\beta) = 2\cos\left(\frac{\alpha+\beta}{2}\right)\cos\left(\frac{\alpha-\beta}{2}\right)$$
$$\cos(\alpha) - \cos(\beta) = -2\sin\left(\frac{\alpha+\beta}{2}\right)\sin\left(\frac{\alpha-\beta}{2}\right)$$

Produkt in eine Summe oder Differenz

$$2\sin(\alpha)\sin(\beta) = \cos(\alpha - \beta) - \cos(\alpha + \beta)$$

$$2\cos(\alpha)\cos(\beta) = \cos(\alpha - \beta) + \cos(\alpha + \beta)$$

$$2\sin(\alpha)\cos(\beta) = \sin(\alpha - \beta) + \sin(\alpha + \beta)$$

1.6 Komplexe Zahlen

Für die Menge aller komplexen Zahlen schreibt man:

$$\boxed{\mathbb{C} = \{z | z = a + bj, a \in \mathbb{R} \land b \in \mathbb{R}\}}$$

a-Realteil b-Imaginaerteil j-imaginaere Einheit

kartesiche Form	trigonometrische Form	exponentialform	
z = a + bj	$z = z (\cos \varphi + j \cdot \sin \varphi)$	$z = z \cdot e^{j\varphi}$	
$z^* = (a+bj)^* = a-bj$	$z^* = z (\cos \varphi - j \cdot \sin \varphi)$	$z^* = z \cdot e^{-j\varphi}$	

|z| = Betrag von z

 $\varphi = Argument (Winkel) von z$

 $z^* = \text{Konjugiert komplexe Zahl}$

1.6.1 Umrechnungen zwischen den Darstellungsformen

 $\textbf{Polarform} \rightarrow \textbf{Kartesiche Form}$

$$z = |z| \cdot e^{j\varphi} = |z| \left(\cos\varphi + j \cdot \sin\varphi\right) = \underbrace{|z| \cdot \cos\varphi}_a + j \cdot \underbrace{|z| \cdot \sin\varphi}_b = a + bj$$

 $\mathbf{Kartesische\ Form\ } \rightarrow \mathbf{Polarform}$

$$|z| = \sqrt{a^2 + b^2}$$
, $\tan \varphi = \frac{b}{a}$

1.6.2 Rechnen mit Komplexen Zahlen

Multiplikation

In kartesischer Form:

$$z_1 \cdot z_2 = (a_1 + jb_1) \cdot (a_2 + jb_2) = (a_1a_2 - b_1b_2) + j \cdot (a_1b_2 + a_2b_1)$$

In der Polarform:

$$z_{1} \cdot z_{2} = [|z_{1}| (\cos \varphi_{1} + j \cdot \sin \varphi_{1})] \cdot [|z_{2}| (\cos \varphi_{2} + j \cdot \sin \varphi_{2})]$$

$$= (|z_{1}| |z_{2}|) \cdot [\cos (\varphi_{1} + \varphi_{2}) + j \cdot \sin (\varphi_{1} + \varphi_{2})]$$

$$= (|z_{1}| \cdot e^{j\varphi_{1}}) \cdot (|z_{2}| \cdot e^{j\varphi_{2}}) = (|z_{1}| |z_{2}|) \cdot e^{j(\varphi_{1} + \varphi_{2})}$$

Division

In kartesischer Form

In der Polarform

Kapitel 2

Funktionen

2.1 Gleichungen

2.1.1 Gleichungen n-ten Grades

$$a_n \cdot x^n + a_{n-1} \cdot x^{n-1} + \ldots + a_1 \cdot x + a_0 = 0 \quad (a_n \neq 0, a_k \in \mathbb{R})$$

Eigenschafften

- \bullet Die Gleichung besitzen maximal n reelle Lösungen.
- $\bullet\,$ Es gibt genau n komplexe Lösungen.
- $\bullet\,$ Für ungerades n gibt es mindestens eine reelle Lösung.
- Komplexe Lösungen treten immer Paarweise auf.
- Es existieren nur Lösungsformeln bis $n \le 4$. Für n > 4 gibt es nur noch grafische oder numerische Lösungswege.
- Wenn eine Nullstelle bekannt ist kann man die Gleichung um einen Grad verringern, indem man denn zugehörigen Linearfaktor $x-x_1$ abspaltet(Polynome Division).

2.1.2 Lineare Gleichungen

$$a_1 \cdot x + a_0 = 0 \Rightarrow x_1 = -\frac{a_0}{a_1} \quad (a_1 \neq 0)$$

2.1.3 Quadratische Gleichungen

$$a_2 \cdot x^2 + a_1 \cdot x + a_0 = 0 \quad (a_2 \neq 0)$$

Normalform mit Lösung

$$x^{2} + p \cdot x + q = 0 \Rightarrow x_{1/2} = -\frac{p}{2} \pm \sqrt{\left(\frac{p}{2}\right)^{2} - q}$$

Überprüfung (Wurzelsatz von Vieta)

$$x_1 + x_2 = -p x_1 \cdot x_2 = q$$

 x_1, x_2 : Lösung der quadratischen Gleichung.

2.1.4 Biquadratische Gleichungen

Diese Gleichungen lassen sich mithilfe der Substitution lösen.

$$a \cdot x^4 + b \cdot x^2 + c = 0$$

$$a \cdot u^2 + b \cdot u + c = 0$$

$$u = x^2$$

$$x = \pm \sqrt{u}$$

Das u kann mithilfe der Lösungsformel einer quadratischen Gleichung gelöst werden.

2.1.5 Gleichungen höheren Grades

Gleichungen höheren Grades kann man durch graphische oder numerische Ansätze lösen. Hilfreich ist das finden einer Lösung und das abspalten eines Linearfaktor , mithilfe der Polynomdivision oder dem Hornor Schema,von der ursprünglichen Gleichung.

Polynomdivision

$$\frac{f(x)}{x - x_0} = \frac{a_3 \cdot x^3 + a_2 \cdot x^2 + a_1 \cdot x + a_0}{x - x_0} = b_2 \cdot x^2 + b_1 \cdot x + b_0 + r(x)$$

 x_0 ist dabei die erste gefunden Nullstelle. r(x) verschwindet wenn x_0 ein Nullstellen oder eine Lösung von f(x) ist.

$$r(x) = \frac{a_3 \cdot x_0^3 + a_2 \cdot x_0^2 + a_1 \cdot x_0 + a_0}{x - x_0} = \frac{f(x_0)}{x - x_0}$$

2.1.6 Wurzelgleichung

Wurzelgleichungen löst man durch quadrieren oder mit hilfe von Substitution. Bei Wurzelgleichung ist zu beachten das quadrieren keine Aquivalente Umformung ist und das Ergebniss überprüft werden muss.

2.1.7 Ungleichungen

- Beidseitiges Subtrahieren oder Addieren ist möglich
- Die Ungleichung darf mit einer beliebige positiven Zahl multipliziert oder dividiert werden
- Die Ungleichung darf mit einer beliebige negativen Zahl multipliziert oder dividiert werden, wenn man gleichzeitig das Relationszeichen umdreht.

2.1.8 Betragsgleichungen

Betragsgleichungen löst man mithilfe der Fallunterscheidung. Dabei wird einmal davon ausgegangen das der Term inerhalb des Betrags einmal positiv und einmal negativen sein kann.

$$y = |x| = \begin{cases} x & \text{für } x \ge 0 \\ -x & \text{für } x < 0 \end{cases}$$

Kapitel 3

Vektorrechnung

3.1 Vektorrechnung

3.1.1 Grundlagen

Darstellung

$$\vec{a} = \vec{a}_x + \vec{a}_y + \vec{a}_z$$

$$= a_x \vec{e}_x + a_y \vec{e}_y + a_y \vec{e}_y$$

$$= \begin{pmatrix} a_x \\ a_y \\ a_z \end{pmatrix}$$

Betrag

$$\begin{aligned} |\vec{a}| &= a \\ &= \sqrt{a_x^2 + a_y^2 + a_z^2} \\ &= \sqrt{\vec{a} \circ \vec{a}} \end{aligned}$$

2 Punkt Vektor

$$\vec{P_1P_2} = \begin{pmatrix} x_2 - x_1 \\ y_2 - y_1 \\ z_2 - z_1 \end{pmatrix}$$

Richtungswinkel

$$\cos \alpha = \frac{a_x}{|\vec{a}|}$$

$$\cos \beta = \frac{a_y}{|\vec{a}|}$$

$$\cos \gamma = \frac{a_z}{|\vec{a}|}$$

$$1 = \cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma$$

3.1.2 Vektoroperationen

Addition und Subtraktion

$\vec{a} \pm \vec{b} = \begin{pmatrix} a_x \pm b_x \\ a_y \pm b_y \\ a_z \pm b_z \end{pmatrix}$

Skalarprodukt

$$\vec{a} \circ \vec{b} = \begin{pmatrix} a_x \\ a_y \\ a_z \end{pmatrix} \circ \begin{pmatrix} b_x \\ b_y \\ b_z \end{pmatrix}$$
$$= a_x b_x + a_y b_y + a_z b_z$$
$$= |\vec{a}| \cdot |\vec{b}| \cdot \cos \angle (\vec{a} \cdot \vec{b})$$

Kreuzprodukt

 $|\vec{a} \times \vec{b}|$ Fläche des Parallelograms \vec{a}, \vec{b} $\vec{a} \times \vec{b} \perp \vec{a} \wedge \vec{a} \times \vec{b} \perp \vec{b}$

$$\vec{a} \times \vec{b} = \begin{pmatrix} a_x \\ a_y \\ a_z \end{pmatrix} \times \begin{pmatrix} b_x \\ b_y \\ b_z \end{pmatrix}$$

$$= \begin{pmatrix} a_y b_z - a_z b_y \\ a_z b_x - a_x b_z \\ a_x b_y - a_y b_x \end{pmatrix}$$

$$= \begin{vmatrix} \vec{e}_x & \vec{e}_y & \vec{e}_z \\ a_x & a_y & a_z \\ b_x & b_x & b_z \end{vmatrix}$$

Schnittwinkel

$$\cos \angle (\vec{a}, \vec{b}) = \frac{\vec{a} \circ \vec{b}}{|\vec{a}| \cdot |\vec{b}|}$$

Multiplikation mit einem Skalar

$$a \cdot \vec{b} = \begin{pmatrix} ab_x \\ ab_y \\ ab_z \end{pmatrix}$$

Einheitsvektor

$$\vec{e}_a = \frac{\vec{a}}{|\vec{a}|} = \begin{pmatrix} a_x/|\vec{a}| \\ a_y/|\vec{a}| \\ a_z/|\vec{a}| \end{pmatrix}$$

Spatprodukt

 $\vec{a} \circ (\vec{b} \times \vec{c})$ Volumen des Parallelpiped $\vec{a}, \vec{b}, \vec{c}$

$$\begin{split} [\vec{a}\vec{b}\vec{c}] &= \vec{a} \circ (\vec{b} \times \vec{c}) \\ &= a_x(b_yc_z - b_zc_y) \\ &+ a_y(b_zc_x - b_xc_z) \\ &+ a_z(b_xc_y - b_yc_x) \\ &= \begin{vmatrix} a_x & a_y & a_z \\ b_x & b_y & b_z \\ c_x & c_y & c_z \end{vmatrix} \end{split}$$

Projektion

$$\vec{a}_b = \left(\frac{\vec{a} \circ \vec{b}}{|\vec{a}|^2}\right) \vec{a} = (\vec{b} \circ \vec{e}_a) \vec{e}_a$$

3.1.3 Geraden

Geradegleichung

$$\vec{r}(t) = \vec{r}_1 + t\vec{a}$$

= $\vec{r}_1 + t(\vec{r}_2 - \vec{r}_1)$

Abstand zweier paralleler Geraden

$$\begin{split} \vec{r}(t) &= \vec{r}_1 + t \vec{a}_1 \\ \vec{g}(t) &= \vec{r}_2 + t \vec{a}_1 \\ d &= \frac{|\vec{a}_1 \times (\vec{r}_2 - \vec{r}_1)|}{\vec{a}_1} \end{split}$$

3.1.4 Ebenen

Ebenengleichung

$$\begin{split} \vec{r}(t,s) &= \vec{r}_1 + t \vec{a}_1 + s \vec{a}_2 \\ &= \vec{r}_1 + t (\vec{r}_2 - \vec{r}_1) \\ &+ s (\vec{r}_3 - \vec{r}_1) \end{split}$$

Normalenvektor

$$\vec{n} = \vec{a}_1 \times \vec{a}_2$$

Abstand eines Punktes von einer Geraden

$$\vec{r}(t) = \vec{r}_1 + t\vec{a}$$

$$d = \frac{|\vec{a} \times (\vec{OP} - \vec{r}_1)|}{\vec{a}}$$

Abstand zweier windschiefen Geraden

$$\vec{r}(t) = \vec{r}_1 + t\vec{a}_1$$

$$\vec{g}(t) = \vec{r}_2 + t\vec{a}_2$$

$$d = \frac{|\vec{a}_1 \circ (\vec{a}_2 \times (\vec{r}_2 - \vec{r}_1))|}{\vec{a}_1 \times \vec{a}_2}$$

Parameterfreie Darstellung

$$\begin{split} \vec{r}(t,s) &= \vec{r}_1 + t \vec{a}_1 + s \vec{a}_2 \\ \vec{r} \circ (\vec{a}_1 \times \vec{a}_2) &= \vec{r}_1 \circ (\vec{a}_1 \times \vec{a}_2) \\ &+ t \vec{a}_1 \circ (\vec{a}_1 \times \vec{a}_2) \\ &+ s \vec{a}_2 \circ (\vec{a}_1 \times \vec{a}_2) \\ \vec{r} \circ \vec{n} &= \vec{r}_1 \circ \vec{n} + 0 + 0 \\ \vec{n} \circ (\vec{r} - \vec{r}_1) &= 0 \end{split}$$

 ${\bf Normier ter\ Normal envektor}$

$$\vec{e}_n = \frac{\vec{a}_1 \times \vec{a}_2}{|\vec{a}_1 \times \vec{a}_2|}$$

Hessesche Normalform

Abstand eines Punktes von einer Ebene

$$0 = \frac{Ax + By + Cz + D}{\sqrt{A^2 + B^2 + C^2}}$$

$$d = \frac{|\vec{n} \times \left(\vec{OP} - \vec{r_1} \right)|}{\vec{n}}$$

$$d = \frac{Ap_1 + Bp_2 + Cp_3 + D}{\sqrt{A^2 + B^2 + C^2}}$$

Ebene

Abstand eines Geraden von einer Abstand zweier paralleler Ebenen

$$\vec{r}(t) = \vec{r}_G + t\vec{a}_1$$

$$d = \frac{|\vec{n} \times (\vec{r}_G - \vec{r}_1)|}{\vec{n}}$$

$$d = \frac{Ar_{G1} + Br_{G2} + Cr_{G3} + D}{\sqrt{A^2 + B^2 + C^2}}$$

 $\vec{r}(t,s) = \vec{r}_1 + t\vec{a}_1 + s\vec{a}_2$ $\vec{g}(t,s) = \vec{r}_2 + t\vec{a}_3 + s\vec{a}_4$ $d = \frac{|\vec{n} \times (\vec{r}_1 - \vec{r}_2)|}{\vec{n}}$

Schnittwinkel zweier Ebenen

Durchstoßpunkt

$$\cos \angle(\vec{n}_1,\vec{n}_2) = \frac{\vec{n}_1 \circ \vec{n}_2}{|\vec{n}_1| \cdot |\vec{n}_2|}$$

$$\vec{r}(t) = \vec{r}_G + t\vec{a}$$

$$\vec{r}_s = \vec{r}_G + \frac{\vec{n} \circ (\vec{r}_1 - \vec{r}_G)}{\vec{n} \circ \vec{a}} \vec{a}$$

$$\varphi = \arcsin\left(\frac{|\vec{n} \circ \vec{a}|}{|\vec{n}| \cdot |\vec{a}|}\right)$$

Kapitel 4

Differentialrechnung

4.1 Differntialrechnung

4.1.1 Erste Ableitungen der elementaren Funktionen

Potenzfunktion

$x^n \iff n \cdot x^{n-1}$

Exponentialfunktionen

$$e \iff e$$
 $a^x \iff \ln a \cdot a^x$

Logarithmusfunktionen

$$\ln x \qquad \iff \qquad \frac{1}{x} \\
 \log_a x \qquad \iff \qquad \frac{1}{(\ln a) \cdot x}$$

Trigonometrische Funktionen

$$\begin{array}{ccc}
\sin x & \iff & \cos x \\
\cos x & \iff & -\sin x \\
\tan x & \iff & \frac{1}{\cos^2 x} \\
\tan x & \iff & 1 + \tan^2 x
\end{array}$$

Arcusfunktionen

Hyperbolische Funktionen

4.1.2 Rechenregeln

Faktorregel

Summenregel

$$\frac{\mathrm{d}}{\mathrm{d}x} \left(C \cdot f(x) \right) = C \cdot f'(x)$$

$$\frac{\mathrm{d}}{\mathrm{d}x} \left(g(x) + f(x) \right) = g'(x) + f'(x)$$

Produktregel

$$\frac{\mathrm{d}}{\mathrm{d}x} (g(x) \cdot f(x)) = g'(x) \cdot f(x) + g(x) \cdot f'(x)$$

$$\frac{\mathrm{d}}{\mathrm{d}x} (h(x) \cdot g(x) \cdot f(x)) = h' \cdot g \cdot f + h \cdot g' \cdot f + h \cdot g \cdot f'$$

Quotientenregel

$$\frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{g(x)}{f(x)} \right) = \frac{g'(x) \cdot f(x) - g(x) \cdot f'(x)}{f(x)^2}$$

Kettenregel

Logarithmische Ableitungen

$$\frac{\mathrm{d}}{\mathrm{d}x} (g(f(x))) = g'(f) \cdot f'(x)$$

$$\frac{\mathrm{d}}{\mathrm{d}x} y = f(x)$$

$$\frac{1}{y} y' = \frac{\mathrm{d}}{\mathrm{d}x} \ln f(x)$$

4.1.3 Fehlerrechnung

Absoluter Fehler

 Δx Absoluter Fehler der Eingangsgröße Δy Absoluter Fehler der Ausgangsgröße

$$\Delta y = f(x + \Delta x) - f(x)$$

Relativer Fehler

 δx Relativer Fehler der Eingangsgröße in % δy Relativer Fehler der Ausgangsgröße in %

$$\delta x = \frac{\Delta x}{x}$$

$$\delta y = \frac{\Delta y}{y}$$

$$\Delta y = f'(x) \cdot \Delta x$$

$$\delta y = \frac{x \cdot f'(x)}{f(x)} \delta x$$

4.1.4 Linearisierung und Taylor-Polynom

Tangentengleichung

 x_0 Punkt an dem das Polynom entwickelt wird

$$y_T(x) = f(x_0) + f'(x_0)(x - x_0)$$

Taylor Polynom

 \boldsymbol{x}_0 Punkt an dem das Polynom entwickelt wird \boldsymbol{R}_n Restglied

$$y(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n + R_n(x)$$
$$y(x) = \sum_{i=0}^n \frac{f^{(i)}}{i!}(x - x_0)^i + R_n(x)$$

Restglied

 x_0 Punkt an dem das Polynom entwickelt wird

 $x_0 < c < x$, wenn $x_0 < x$

 $x_0 > c > x$, wenn $x_0 > x$

$$R_n(x) = \frac{f^{(n+1)}(c)}{(n+1)!} (x - x_0)^{n+1}$$

4.1.5 Grenzwertregel von Bernoulli und de l'Hospital de l'Hospital

Gilt nur wenn $\lim_{x\to x_0} f(x)$ gleich $\frac{0}{0}$ oder $\frac{\infty}{\infty}$ ist

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \lim_{x \to x_0} \frac{f'(x)}{g'(x)}$$

4.1.6 Differentielle Kurvenuntersuchung

Normale der Kurve

$$y_N(x) = f(x_0) - \frac{1}{f'(x)} (x - x_0)$$

Monotonie-Verhalten

$f'(x) = \begin{cases} > 0 \text{ Monoton wachsend} \\ < 0 \text{ Monoton fallend} \end{cases}$

Ableitung in Polarkordinaten

 \dot{r} Ableitung nach φ

 \ddot{r} Zweite Ableitung nach φ

$$y(\varphi) = r(\varphi)\sin\varphi$$

$$x(\varphi) = r(\varphi)\cos\varphi$$

$$y' = \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{r'\sin\varphi + r\cos\varphi}{r'\cos\varphi - r\sin\varphi}$$

$$y'' = \frac{\mathrm{d}^2y}{\mathrm{d}x^2} = \frac{2(r')^2 - r\cdot r'' + r^2}{(r'\cos\varphi - r\sin\varphi)^3}$$

Krümmungs-Verhalten

$$f''(x) = \begin{cases} > 0 \text{ Linkskr.(konvex)} \\ < 0 \text{ Rechtskr.(konkav)} \end{cases}$$

Ableitung in Parameterform

 \dot{x} Ableitung nach t \dot{y} Ableitung nach t

$$y = y(t)$$

$$x = x(t)$$

$$y' = \frac{dy}{dx} = \frac{\dot{y}}{\dot{x}}$$

$$y'' = \frac{d^2y}{dx^2} = \frac{\dot{x}\ddot{y} - \dot{y}\ddot{x}}{\dot{x}^3}$$

Bogendifferential

"Wegelement" einer Funktion

$$ds = \sqrt{1 + (f'(x))^2} \cdot dx$$
$$ds = \sqrt{(\dot{x})^2 + (\dot{y})^2} \cdot dt$$
$$ds = \sqrt{r^2 + (r')^2} \cdot d\varphi$$

Krümmungskreis

$$\rho = \frac{1}{|\kappa|}$$

$$x_K = x_P - y' \frac{1 + (y')^2}{|y''|}$$

$$y_K = y_P + \frac{1 + (y')^2}{|y''|}$$

$$\rho : \text{Radius}$$

 (x_K, y_K) : Kreismittelpunkt

 (x_P, y_P) : Kurvenpunkt

Winkeländerung

$$\tau = \arctan y'$$
$$d\tau = \frac{y''}{1 + (y')^2} \cdot dx$$

Kurvenkrümmung

$$\kappa = \frac{d\tau}{ds}$$

$$= \frac{y''}{\sqrt{(1 + (y')^2)^3}}$$

$$= \frac{\dot{x}\ddot{y} - \dot{y}\ddot{x}}{\sqrt{(\dot{x}^2 + \dot{y}^2)^3}}$$

$$= \frac{2(r')^2 - r \cdot r'' + r^2}{\sqrt{(r^2 + (r')^2)^3}}$$

4.2 Differentialgleichungen

Anfangswertproblem: Werte nur an einer Stelle vorgegeben Randwertproblem: Werte an mehreren Stellen vorgegeben

Lineare DG

$$y_{all} = y_h + y_p$$

4.2.1 DG 1. Ordnung

Trennung der variablen

$y'(x) = f(x) \cdot g(y)$ $\int \frac{\mathrm{d}y}{g(y)} = \int f(x) \, \mathrm{d}x$

Lineare DG

$$y'+f(x)\cdot g(y) = g(x)g(x) = 0 \Rightarrow \text{homogen}$$

$$y_{all} = e^{-F(x)} \cdot \left(\int g(x) \cdot e^{F(x)} \, dx + C \right)$$

4.2.2 Lineare DG 2. Ordnung

Darstellung

$$a(x) \cdot y'' + b(x) \cdot y' + c(x) \cdot y = g(x)$$

 $g(x) = 0 \Rightarrow \text{homogen}$

Fundamental Lösungen

$$a\lambda^{2} + b\lambda + c = 0$$

$$\lambda_{1/2} = \alpha \pm \beta \cdot j$$

$$y_{h} = C_{1}e^{\lambda_{1}x} + C_{2}e^{\lambda_{2}x} \quad \lambda_{1} \neq \lambda_{2}$$

$$y_{h} = C_{1}e^{\lambda_{1}x} + C_{2}xe^{\lambda_{2}x} \quad \lambda_{1} = \lambda_{2}$$

$$y_{h} = C_{1}e^{\alpha x} \cdot \cos(\beta x)$$

$$+ C_{2}e^{\alpha x} \cdot \sin(\beta x)$$

In Folgenden Aufzählungen gillt:

• G(x) Ansatz

- q(x) Störglied
- r Anzahl der Resonanzfälle

Partikuläre Lösungen(Polynom)

$$a\lambda^{2} + b\lambda + c = 0$$

$$g(x) = b_{0} + b_{1}x + b_{2}x^{2} + \dots + b_{n}x^{n}$$

$$G(x) = B_{0} + B_{1}x + B_{2}x^{2} + \dots + B_{n}x^{n} \qquad \lambda \neq 0$$

$$G(x) = (B_{0} + B_{1}x + B_{2}x^{2} + \dots + B_{n}x^{n}) \cdot x^{r} \qquad \lambda = 0$$

Partikuläre Lösungen(Polynom und e-Funktion)

$$a\lambda^{2} + b\lambda + c = 0$$

$$g(x) = (b_{0} + b_{1}x + b_{2}x^{2} + \dots + b_{n}x^{n}) e^{mx}$$

$$G(x) = (B_{0} + B_{1}x + B_{2}x^{2} + \dots + B_{n}x^{n}) e^{mx} \qquad \lambda \neq m$$

$$G(x) = (B_{0} + B_{1}x + B_{2}x^{2} + \dots + B_{n}x^{n}) e^{mx} \cdot x^{r} \qquad \lambda = m$$

Partikuläre Lösungen(sin- und cos Funktion)

$$a\lambda^{2} + b\lambda + c = 0$$

$$g(x) = a\cos(kx) + b\sin(kx)$$

$$G(x) = A\cos(kx) + B\sin(kx)$$

$$\lambda \neq \pm kj$$

$$G(x) = A\cos(kx) + B\sin(kx) \cdot x^{T}$$

$$\lambda = \pm kj$$

Partikuläre Lösungen(e-, sin- und cos Funktion)

$$0 = a\lambda^{2} + b\lambda + c$$

$$g(x) = (b_{0} + b_{1}x + b_{2}x^{2} + \dots + b_{n}x^{n}) e^{mx} \cdot (c\cos(kx) + d\sin(kx))$$

$$G(x) = (B_{0} + B_{1}x + B_{2}x^{2} + \dots + B_{n}x^{n}) e^{mx} \cdot (C\cos(kx) + D\sin(kx))$$

$$\lambda \neq m \pm kj$$

$$G(x) = (B_{0} + B_{1}x + B_{2}x^{2} + \dots + B_{n}x^{n}) e^{mx} \cdot (C\cos(kx) + D\sin(kx)) \cdot x^{r}$$

$$\lambda = m \pm kj$$

4.3 Differential- und Integralrechnung mit mehreren Variablen

4.3.1 Differential rechnung

Aleitung

$$y = f(x_1, x_2, \dots, x_3)$$

$$\frac{\partial y}{\partial x_1} = y_{x_1}$$
Alles bis auf x_1 ist konstant beim ableiten
$$\frac{\partial y}{\partial x_n} = y_{x_n}$$
Alles bis auf x_n ist konstant beim ableiten
$$\frac{\partial^2 y}{\partial x_1^2} = y_{x_1 x_1}$$
Alles bis auf x_1 ist konstant beim ableiten
$$y_{x_1 x_2} = y_{x_2 x_1}$$

Tangentialebene

 (x_0, y_0) Entwicklungspunkte der Ebene

$$z - z_0 = f_x(x_0; y_0) \cdot (x - x_0) + f_y(x_0; y_0) \cdot (y - y_0)$$

Totales Differential

$$dz = f_x \cdot dx + f_y \cdot dy$$

Extrema

$$\begin{split} f_x(x_0,y_0) &= 0 & f_y(x_0,y_0) = 0 \\ f_{xx}(x_0;y_0) &< 0 & \text{Maximum} \\ f_{xx}(x_0;y_0) &> 0 & \text{Minimum} \\ \left| f_{xx}(x_0;y_0) & f_{xy}(x_0;y_0) \right| &> 0 \end{split}$$

Sattelpunkt

$$\begin{aligned} f_x(x_0, y_0) &= 0 & f_y(x_0, y_0) &= 0 \\ \begin{vmatrix} f_{xx}(x_0; y_0) & f_{xy}(x_0; y_0) \\ f_{xy}(x_0; y_0) & f_{yy}(x_0; y_0) \end{vmatrix} &< 0 \end{aligned}$$

Richtungsableitung

$$\frac{\partial z}{\partial \vec{a}} = \frac{1}{\sqrt{a_x^2 + a_y^2}} \cdot (a_x z_x + a_y z_y)$$
$$\frac{\partial z}{\partial \alpha} = z_x \cos \alpha + z_y \sin \alpha$$
$$\frac{\partial z}{\partial \alpha} = \vec{e_a} \cdot \text{grad}(z)$$

4.3.2 Mehrfachintegral

Polarkordinaten

$$x = x_0 + r\cos\varphi \qquad \qquad y = y_0 + r\sin\varphi$$

Volumen

$$\iiint_{V} dV = \int_{x} \int_{y} \int_{z} dz \, dy \, dx$$

$$\iiint_{V} dV = \int_{r} \int_{\varphi} \int_{z} r \, dz \, dr \, d\varphi \qquad A = \iint_{(A)} dA$$

Fläche

Masse

$$m = \iint_{(A)} \rho(x, y) \, dx \, dy$$
$$= \iint_{(A)} \rho(r, \varphi) r \, dr \, d\varphi$$
$$= \iiint_{(V)} \rho(x, y) \, dz \, dx \, dy$$
$$= \iiint_{(V)} \rho(r, \varphi) r \, dz \, dr \, d\varphi$$

Statisches Moment

 $y_s = \frac{M_x}{m}$

 $(M_x, M_y) \text{ Achsmomente}$ $M_x :$ $= \iint_{(A)} y \rho(x, y) \, dx \, dy$ $= \iint_{(A)} y_0 + r \sin \varphi \rho(r, \varphi) r \, dr \, d\varphi$ $M_y :$ $= \iint_{(A)} x \rho(x, y) \, dx \, dy$ $= \iint_{(A)} x \rho(r, \varphi) r \, dr \, d\varphi$

Schwerpunkt

$$x_s = \frac{M_y}{m}$$

Trägheitsmoment

$$I_x = \iint_{(A)} y^2 \rho(x, y) \, dx \, dy$$

$$I_x = \iint_{(A)} (y_0 + r \sin \varphi)^2 \rho(r, \varphi) r \, dr \, d\varphi$$

$$I_y = \iint_{(A)} x^2 \rho(x, y) \, dx \, dy$$

$$I_y = \iint_{(A)} (x_0 + r \cos \varphi)^2 \rho(r, \varphi) r \, dr \, d\varphi$$

Polares Trägheitsmoment

$$I_x = \iint_{(A)} (y^2 + x^2) \rho(x, y) dx dy$$
$$I_x = \iint_{(A)} ((y_0 + r \sin \varphi)^2 + (x_0 + r \cos \varphi)^2) \rho(r, \varphi) r dr d\varphi$$

${\bf Kugelkoordinaten}$

$$V = \int_r \int_{\vartheta} \int_{\varphi} r^2 \sin\vartheta \,\mathrm{d}\varphi \,\mathrm{d}\vartheta \,\mathrm{d}r$$

Kapitel 5

Folgen und Reihen

5.1 Reihen

5.1.1 Geometrische Folge

Darstellung

$$a_n = a \cdot q^n$$

$$\sum_{n=0}^{\infty} a \cdot q^n = \frac{a}{1-q}$$

Konvergent für |q| < 1

5.1.2 Harmonische Reihe

Darstellung

$$\sum_{n=1}^{\infty} \frac{1}{n^s}$$

Konvergent für $s>1\,$

Konvergenz 5.1.3

Majorantenkriterium

Minorantenkriterium

$$\sum_{n=0}^{\infty} a_n \le \sum_{n=0}^{\infty} b_n$$

 b_n bekannte konvergente Reihe

$$\sum_{n=0}^{\infty} a_n \ge \sum_{n=0}^{\infty} b_n$$

 b_n bekannte divergente Reihe

Wurzelkriterium

$$\lim_{n\to\infty} \sqrt[n]{a_n} = q \begin{cases} q>1 \text{ ist die Reihe divergent} \\ q<1 \text{ ist die Reihe konvergent} \\ q=1 \text{ ist keine Aussage möglich} \end{cases}$$

Quotientenkriterium

$$\lim_{n\to\infty}\frac{a_{n+1}}{a_n}=q\begin{cases}q>1\text{ ist die Reihe divergent}\\q<1\text{ ist die Reihe konvergent}\\q=1\text{ ist keine Aussage möglich}\end{cases}$$

Leibnizkriterium

Nur bei alternierenden Reihen

$$\lim_{n \to \infty} (-1)^n a_n$$

$$\lim_{n \to \infty} a_n = q$$

$$\lim_{n \to \infty} (-1)^n a_n = \lim_{n \to \infty} a_n$$

q=0 ist die Reihe divergent

Absolut Konvergent

Bekannte konvergente Reihen

$$\sum_{n=0}^{\infty} \frac{1}{n!} = e \qquad \qquad \sum_{n=0}^{\infty} \frac{(-1)^n}{n!} = \frac{1}{e} \qquad \qquad \sum_{n=0}^{\infty} \frac{1}{2^n} = 2$$

$$\sum_{n=0}^{\infty} \frac{\left(-1\right)^n}{n!} = \frac{1}{e}$$

$$\sum_{n=0}^{\infty} \frac{1}{2^n} = 2$$

$$\sum_{n=0}^{\infty} \frac{(-1)^n}{2^n} = \frac{2}{3} \qquad \sum_{n=0}^{\infty} \frac{(-1)^{n+1}}{n} = \ln 2 \qquad \sum_{n=0}^{\infty} \frac{(-1)^{n+1}}{2n-1} = \frac{\pi}{4}$$

5.2 Funktionenreihen

Darstellung

$$\sum_{n=0}^{\infty} f_n(x)$$

5.2.1 Potenzreihen

Darstellung

$\sum_{n=0}^{\infty} a_n x^n$ $\sum_{n=0}^{\infty} a_n (x - x_0)^n$ $x_0 : \text{Verschiebung des}$ Entwicklungspunktes.

Konvergenz

$$r = \lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right|$$

$$r = \frac{1}{\lim_{n \to \infty} \sqrt[n]{|a_n|}}$$

Ränder müssen untersucht werden.

5.2.2 Bekannte Potenzreihen

$$e^{x} = \sum_{n=0}^{\infty} \frac{x^{n}}{n!} \qquad x \in \mathbb{R}$$

$$\ln x = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} (x-1)^{n} \qquad x \in (0,2]$$

$$\ln (1+x) = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} x^{n} \qquad x \in (-1,1]$$

$$\ln (1-x) = -\sum_{n=1}^{\infty} \frac{x^{n}}{n} \qquad x \in [-1,1]$$

$$(1+x)^{\alpha} = \sum_{n=1}^{\infty} {\alpha \choose n} x^{n} \qquad x \in [-1,1]$$

5.2.3 spezielle Reihen

$$\sin x = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} x^{2n+1} \qquad x \in \mathbb{R}$$

$$\cos x = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} x^{2n} \qquad x \in \mathbb{R}$$

$$\sinh x = \sum_{n=0}^{\infty} \frac{1}{(2n+1)!} x^{2n+1} \qquad x \in \mathbb{R}$$

$$\cosh x = \sum_{n=0}^{\infty} \frac{1}{(2n)!} x^{2n} \qquad x \in \mathbb{R}$$

$$\arcsin x = \sum_{n=0}^{\infty} \frac{(2n)!}{2^{2n} (n!)^2 (2n+1)} x^{2n+1} \qquad x \in [-1,1]$$

$$\arctan x = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)} x^{2n+1} \qquad x \in \mathbb{R}$$

$$\operatorname{arctan} x = \sum_{n=0}^{\infty} \frac{(-1)^n (2n)!}{2^{2n} (n!)^2 (2n+1)} x^{2n+1} \qquad x \in [-1,1]$$

$$\operatorname{artanh} x = \sum_{n=0}^{\infty} \frac{1}{(2n+1)} x^{2n+1} \qquad x \in \mathbb{R}$$

5.2.4 Fourier Reihen

Allgemein

$$y(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cdot \cos(n\omega_0 t) + a_n \cdot \sin(n\omega_0 t))$$
$$a_0 = \frac{2}{T} \int_{(T)} y(t) dt$$
$$a_n = \frac{2}{T} \int_{(T)} y(t) \cdot \cos(n\omega_0 t) dt$$
$$b_n = \frac{2}{T} \int_{(T)} y(t) \cdot \sin(n\omega_0 t) dt$$

Symetrie

$$y(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cdot \cos(n\omega_0 t))$$
$$y(t) = \sum_{n=1}^{\infty} (b_n \cdot \sin(n\omega_0 t))$$
gerade Funktion $b_n = 0$ ungerade Funktion $a_n = 0$

Komplex

$$y(x) = \sum_{n=-\infty}^{\infty} c_n \cdot e^{jnx}$$
 $c_n = \frac{1}{T} \int_{(T)} y(x) \cdot e^{-jnx} dx$

Umrechnung

$$c_{0} = \frac{1}{2}a_{0}$$

$$c_{n} = \frac{1}{2}(a_{n} - jb_{n})$$

$$c_{-n} = \frac{1}{2}(a_{n} + jb_{n})$$

$$a_{0} = 2c_{0}$$

$$a_{n} = c_{n} + c_{-n}$$

$$b_{n} = j(c_{n} - c_{-n})$$

Kapitel 6

Interpolation

6.1 Interpolationspolynome

Entwicklung einer Polynomefunktion anhand von n+1 Kurvenpunkten.

- ullet 1. Möglichkeit: Aufstellen von n+1 Gleichungen und ermitteln der Kurvenfunktion mithilfe des Gauß' Algorithmus.
- 2. Möglichkeit: Interpolationspolynome nach Newton.

Interpolationspolynome nach Newton

Gegeben sind die Punkte:

 $P_0 = (x_0; y_0), P_1 = (x_1; y_1), P_2 = (x_2; y_2), \dots, P_n = (x_n; y_n),$ damit lautet die Funktion wie folgt.

$$f(x) = a_0 + a_1 \cdot (x - x_0) + a_2 \cdot (x - x_0) \cdot (x - x_1)$$

$$+ a_3 \cdot (x - x_0) \cdot (x - x_1) \cdot (x - x_2)$$

$$+ \dots$$

$$+ a_n \cdot (x - x_0) \cdot \dots \cdot (x - x_{n-1})$$

Die Koeffizienten $a_0, a_1, a_2, \ldots, a_n$ lassen sich mithilfe des Differentenschema berechnen. Dabei ist $y_0 = a_0, [x_0, x_1] = a_1, [x_0, x_1, x_2] = a_2$ usw.

Differentenschema

k	x_k	y_k	1	2	3	
0	x_0	y_0				
			$[x_0, x_1]$			
1	x_1	y_1		$[x_0, x_1, x_2]$		
			$[x_1, x_2]$		$[x_0, x_1, x_2, x_3]$	
2	x_2	y_2		$[x_1, x_2, x_3]$		
			$[x_2, x_3]$		$[x_0, x_1, x_2, x_3]$	
3	x_3	y_3		$[x_2, x_3, x_4]$		
			• • •			
:	:	:				
•	•	•				
n	x_n	y_n				

Rechenregeln für dividierte Differenzen

$$[x_0, x_1] = \frac{y_0 - y_1}{x_0 - x_1} \qquad [x_1, x_2] = \frac{y_1 - y_2}{x_1 - x_2}$$

$$[x_0, \dots, x_2] = \frac{[x_0, x_1] - [x_1, x_2]}{x_0 - x_2} \qquad [x_1, \dots, x_3] = \frac{[x_1, x_2] - [x_2, x_3]}{x_1 - x_3}$$

$$[x_0, \dots, x_3] = \frac{[x_0, x_1, x_2] - [x_1, x_2, x_3]}{x_0 - x_2} [x_1, \dots, x_4] = \frac{[x_1, x_2, x_3] - [x_2, x_3, x_4]}{x_1 - x_3}$$

Teil II Physik

Kinematik

Perfection is achieved only on the point of collapse.

- C. N. Parkinson

7.1 Analogietabelle

Translation		Rotation
\vec{s}		$ec{arphi}$
$ec{ec{v}} rac{ds}{dt}$		$\downarrow \frac{d\varphi}{\vec{\omega}}$
$ec{v}$.	$\vec{v} = \vec{\omega} \times \vec{r}$	$ec{\omega}$
$drt rac{dv}{dt}$		$ \downarrow \frac{d\omega}{dt} $
\vec{a}	$a = \alpha \times r - \omega^2 r$	\vec{lpha}
	a_{Tan} a_R	
m		J
$ \downarrow \frac{dm}{dt} $ \vec{F}		$\downarrow \underline{dJ}$
$ec{F}$		$ec{M}$
$ \downarrow \frac{dF}{dt} \\ \vec{p} \\ \frac{m}{2}v^2 $		$\downarrow \frac{dM}{dt}$
$ec{p}$		$ec{L}$
$\frac{m}{2}v^2$	E_{kin}	\vec{L} $\frac{J}{2}\omega^2$

7.1.1 Translation

$$a(t) = a_0 = \frac{\mathrm{d}v}{\mathrm{d}t} = \dot{v} = \ddot{s}$$

$$v(t) = a_0 \cdot t + v_0 = \frac{\mathrm{d}s}{\mathrm{d}t} = \dot{s}$$

$$s(t) = \frac{1}{2}a_0 \cdot t^2 + v_0 \cdot t + s_0$$

Bahngroessen

$$a_t(t) = a_0 = \frac{\mathrm{d}v}{\mathrm{d}t} = \dot{v} = \ddot{s}$$
$$v(t) = a_0 \cdot t + v_0 = \frac{\mathrm{d}s}{\mathrm{d}t} = \dot{s}$$
$$s(t) = \frac{1}{2}a_0 \cdot t^2 + v_0 \cdot t + s_0$$

Kreisfrequenz

$$\omega = \frac{2 \cdot \pi}{T}$$
$$= 2 \cdot \pi \cdot n$$
$$= 2 \cdot \pi \cdot f$$

Umdrehungen

$$N = \frac{\omega_0 \cdot t}{2 \cdot \pi} + \frac{1}{2} \cdot \frac{\alpha}{2 \cdot \pi} \cdot t^2$$
$$= n_0 \cdot t + \frac{\alpha}{4 \cdot \pi} \cdot t^2$$

7.1.2 Rotation

$$\alpha(t) = \alpha_0 = \frac{\mathrm{d}\omega}{\mathrm{d}t} = \dot{\omega} = \ddot{\varphi}$$

$$\omega(t) = \alpha_0 \cdot t + \omega_0 = \frac{\mathrm{d}\varphi}{\mathrm{d}t} = \dot{\varphi}$$

$$\varphi(t) = \frac{1}{2}\alpha_0 \cdot t^2 + \omega_0 \cdot t + \varphi_0$$

Winkelgroessen

$$\vec{a_t} = \vec{\alpha} \times \vec{r} = \alpha \cdot r \qquad \alpha \perp r$$

$$\vec{\alpha} = \vec{r} \times \vec{a_t}$$

$$\vec{v} = \vec{\omega} \times \vec{r} = \omega \cdot r \qquad \omega \perp r$$

$$\vec{\omega} = \vec{r} \times \vec{v}$$

$$s = \varphi \cdot r$$

Radialbeschleunigung

$$a_r = \frac{v^2}{r}$$
$$= v \cdot \omega$$
$$= \omega^2 \cdot r$$

7.2 Dynamik

7.2.1 Geradlinig (Translation)

$$\vec{F} = m \cdot \vec{a}$$

$$\vec{F}_{Tr} = -m \cdot \vec{a}$$

Impuls

Kraftstoss

$$\vec{p} = m \cdot \vec{v}$$

$$\vec{F} = \frac{\mathrm{d}\vec{p}}{\mathrm{d}t} = m \cdot \frac{\mathrm{d}\vec{v}}{\mathrm{d}t} + \vec{v} \cdot \frac{\mathrm{d}m}{\mathrm{d}t}$$
$$\Delta \vec{p} = \vec{p}_2 - \vec{p}_1 = \int_{\vec{p}_2}^{\vec{p}_1} \mathrm{d}p = \int_0^t \vec{F} \, \mathrm{d}t$$

Arbeit

Hubarbeit

$$\begin{split} W &= -\int_{\vec{s}_1}^{\vec{s}_2} \vec{F_{\text{Tr}}} \circ \mathrm{d}\vec{s} \\ &= \int_{\vec{v}_0}^{\vec{v}_1} m \vec{v} \circ \mathrm{d}\vec{v} = \frac{1}{2} m \left(v_1^2 - v_0^2 \right) \end{split}$$

 $W_{\rm hub} = mgh$

Kinetische Energie

Leistung

$$E_{\rm kin} = \frac{1}{2}mv^2$$

$$P = \vec{F} \circ \vec{v} = \frac{\mathrm{d}W}{\mathrm{d}t} = \dot{W}$$

7.2.2 Drehbewegung(Rotation)

Massentraegheitsmoment

Drehmoment

$$J = \int r^2 \, \mathrm{d}m$$

$$\vec{M} = \vec{r} \times \vec{F} = J\vec{\alpha} = \dot{\vec{L}}$$

Drehimpuls

$\vec{L} = \vec{r} \times \vec{p}$ $= J \cdot \vec{\omega}$

Arbeit

$$W = \int_{\varphi_0}^{\varphi_1} \vec{M} \circ \vec{e_\omega} \, d\varphi$$
$$= \int_{\vec{\omega}_0}^{\vec{\omega}_1} J\vec{\omega} \, d\vec{\omega}$$
$$= \frac{1}{2} J \left(\omega_1^2 - \omega_0^2 \right)$$

7.2.3 Geneigte Ebene

Kräfte

$$\vec{F}_N = \vec{F}_G \cos \alpha$$
$$\vec{F}_H = \vec{F}_G \sin \alpha$$

7.2.4 Reibung

Reibungskraft

$$F_R = \mu \cdot F_N$$

Kinetische Energie

$$E_{kin} = \frac{1}{2}J\omega^2$$

Leistung

$$P = \vec{M} \circ \vec{\omega}$$

Zentripedalkraft

$$F_{zp} = -m \cdot \omega^2 \cdot r$$

$$= -m \cdot v^2 \cdot \frac{\vec{e_r}}{r}$$

Rollreibung

$$M = f \cdot F_N$$
$$F_R = \frac{f}{r} \cdot F_N$$

7.2.5 Feder

HOOKsches Gesetz

Federspannarbeit

$$F = -kx$$
$$M = D\varphi$$

$$W = \int_{x_{\min}}^{x_{\max}} F \, \mathrm{d}x = \int_{x_{\min}}^{x_{\max}} kx \, \mathrm{d}x$$
$$= \frac{1}{2} \cdot k \cdot \left(x_{\max}^2 - x_{\min}^2\right)$$

7.2.6 Elastischer Stoss

Energie vor den Stoß = Energie nach den Stoß

$$\sum E_{\rm kin} = \sum E'_{
m kin}$$

Impulserhaltung

Impuls vor den Stoß = Impuls nach den Stoß

$$\sum m\vec{v} = \sum m\vec{v}'$$

Zentraler, Gerader, Elastischer Stoss

$$\frac{1}{2}m_1v_1^2 + \frac{1}{2}m_2v_2^2 = \frac{1}{2}m_1v_1'^2 + \frac{1}{2}m_2v_2'^2$$
$$m_1v_1 + m_2v_2 = m_1v_1' + m_2v_2'$$

$$v_2' = \frac{2m_1}{m_1 + m_2} v_1 + \frac{m_2 - m_1}{m_1 + m_2} v_2$$
$$v_1' = \frac{2m_2}{m_1 + m_2} v_2 + \frac{m_1 - m_2}{m_1 + m_2} v_1$$

7.2.7 Unelastischer Stoss

Energieerhaltung

Energie vor den Stoß = Energie nach den Stoß + Arbeit

$$\sum E_{\rm kin} = \sum E'_{\rm kin} + \Delta W$$

Impulserhaltung

Impuls vor den Stoß = Impuls nach den <math>Stoß

$$\sum m\vec{v} = \sum m\vec{v}'$$

Total unelastischer Stoss

$$\frac{1}{2}m_1v_1^2 + \frac{1}{2}m_2v_2^2 = \frac{1}{2}(m_1 + m_2)v'^2 + \Delta W$$
$$m_1v_1 + m_2v_2 = (m_1 + m_2)v'$$

$$v' = \frac{m_1 v_1 + m_2 v_2}{m_1 + m_2}$$

$$\Delta W = \frac{m_1 \cdot m_2}{2(m_1 + m_2)} (v_1 - v_2)^2$$

${\bf Drehimpulser haltungs satz}$

Drehinpuls zur Zeit 1 = Drehinpuls zur Zeit 2

$$\sum ec{L} = \sum ec{L}'$$

Kopplung zweier Rotationskörper

$$\vec{\omega}' = \frac{J_0 \vec{\omega_0} + J_1 \vec{\omega_1}}{J_1 + J_2}$$

$$W = \frac{J_0 \cdot J_1}{2(J_0 + J_1)} (\omega_0 - \omega_1)^2$$

7.2.8 Rotierendes Bezugssystem

Zentrifugalkraft

$$\vec{F}_Z = F_r \cdot \vec{e}_r = -m\vec{\omega} \times (\vec{\omega} \times \vec{r})$$
$$= -m\vec{\omega} \times \vec{v}$$
$$F_Z = -m\frac{v^2}{\sigma} = -m\omega^2 r$$

Corioliskraft

$$\vec{F}_C = -2m\vec{\omega} \times \vec{v}$$

7.3 Schwerpunkt

mehrere Punktmassen

$$\vec{r}_{\rm Sp} = \frac{\sum \vec{r}_i m_i}{\sum m_i}$$

Schwerpunkt in Zylinderkoordinaten

$$r_{\rm Sp} = \frac{\int_z \int_\varphi \int_r r^2 \rho \, dr \, d\varphi \, dz}{\int_z \int_\varphi \int_r r \rho \, dr \, d\varphi \, dz}$$

$$\varphi_{\rm Sp} = \frac{\int_z \int_\varphi \int_r \varphi r \rho \, dr \, d\varphi \, dz}{\int_z \int_\varphi \int_r r \rho \, dr \, d\varphi \, dz}$$

$$z_{\rm Sp} = \frac{\int_z \int_\varphi \int_r z r \rho \, dr \, d\varphi \, dz}{\int_z \int_\varphi \int_r r \rho \, dr \, d\varphi \, dz}$$

$$x = r \cos \varphi \quad y = r \sin \varphi \quad z = z$$

Allgemein

$$\vec{r}_{\mathrm{Sp}} = \frac{\int \vec{r} \, \mathrm{d}m}{\int \mathrm{d}m}$$

Schwerpunkt in karthesischen Koordinaten

$$x_{\mathrm{Sp}} = \frac{\int_{z} \int_{y} \int_{x} x \rho \, \mathrm{d}x \, \mathrm{d}y \, \mathrm{d}z}{\int_{z} \int_{y} \int_{x} \rho \, \mathrm{d}x \, \mathrm{d}y \, \mathrm{d}z}$$
$$y_{\mathrm{Sp}} = \frac{\int_{z} \int_{y} \int_{x} y \rho \, \mathrm{d}x \, \mathrm{d}y \, \mathrm{d}z}{\int_{z} \int_{y} \int_{x} \rho \, \mathrm{d}x \, \mathrm{d}y \, \mathrm{d}z}$$
$$z_{\mathrm{Sp}} = \frac{\int_{z} \int_{y} \int_{x} z \rho \, \mathrm{d}x \, \mathrm{d}y \, \mathrm{d}z}{\int_{z} \int_{y} \int_{x} \rho \, \mathrm{d}x \, \mathrm{d}y \, \mathrm{d}z}$$

7.4 Trägheitsmoment

$$J = \sum_{i} m_{i} r_{i}^{2}$$

$$J = \int_{m} r^{2} dm$$

$$J = \int_{z} \int_{\varphi} \int_{r} r^{3} \rho dr d\varphi dz$$

STEINER'scher Satz

$$J_x = mr^2 + J_s$$

Traegheitsmoment Kugel

$$J_{\rm Sp} = \frac{2}{5}mr^2$$

Traegheitsmoment Zylinder

$$J_{\rm Sp} = \frac{1}{2}mr^2$$

Traegheitmoment Kreisring (Torus)

$$J_{\rm Sp} = mr^2$$

Traegheitsmoment Stab

$$J_{\rm Sp} = \frac{1}{12} m l^2$$

7.5 Elastizitaetslehre

Spannung

$$\vec{\sigma} = \frac{\mathrm{d}\vec{F}_n}{\mathrm{d}A}$$

$$\sigma = E\varepsilon = E\frac{\Delta l}{l}$$

$$\vec{\tau} = \frac{\mathrm{d}\vec{F}_t}{\mathrm{d}A}$$

Schubmodul

$$G = \frac{\tau}{\varphi}$$

Drillung

$$\psi = \frac{\mathrm{d}\varphi}{\mathrm{d}l} = \frac{W_t}{G \cdot J_p} \tau = \frac{M_t}{G \cdot J_p}$$

Flaechenmoment

$$J_p = \int r^2 \, \mathrm{d}A = \int_{\varphi} \int_r r^3 \, \mathrm{d}r \, \mathrm{d}\varphi$$

Verformungsarbeit

$$W = V \int \sigma(\varepsilon) \,\mathrm{d}\varepsilon$$

7.6 Schwingungen

Harmonische Schwingungen

$$u(t) = A\cos(\omega t + \varphi_0)$$

7.6.1 Ungedämpfte Schwingungen

$$\ddot{x} = -\frac{k}{m}x$$

$$x(t) = \hat{x}\cos(\omega_0 t + \varphi_0)$$

$$\dot{x}(t) = -\hat{x}\omega\sin(\omega_0 t + \varphi_0)$$

$$\ddot{x}(t) = -\hat{x}\omega^2\cos(\omega_0 t + \varphi_0)$$

$$\omega = \sqrt{\frac{k}{m}}$$

$$f = \frac{1}{2\pi}\sqrt{\frac{k}{m}}$$

$$T = 2\pi\sqrt{\frac{m}{k}}$$

Mathemetisches Pendel

$$\ddot{\varphi} = -\frac{g}{l}\varphi$$

$$\varphi(t) = \hat{\varphi}\cos(\omega_0 t + \varphi_0)$$

$$\dot{\varphi}(t) = -\hat{\varphi}\omega\sin(\omega_0 t + \varphi_0)$$

$$\ddot{\varphi}(t) = -\hat{\varphi}\omega^2\cos(\omega_0 t + \varphi_0)$$

$$\omega = \sqrt{\frac{g}{l}}$$

$$f = \frac{1}{2\pi}\sqrt{\frac{g}{l}}$$

$$T = 2\pi\sqrt{\frac{l}{g}}$$

Torsionsschwingung

$$\ddot{\varphi} = -\frac{D}{J_A} \varphi$$

$$\varphi(t) = \hat{\varphi} \cos(\omega_0 t + \varphi_0)$$

$$\dot{\varphi}(t) = -\hat{\varphi} \omega \sin(\omega_0 t + \varphi_0)$$

$$\ddot{\varphi}(t) = -\hat{\varphi} \omega^2 \cos(\omega_0 t + \varphi_0)$$

$$\omega = \sqrt{\frac{D}{J_A}}$$

$$f = \frac{1}{2\pi} \sqrt{\frac{D}{J_A}}$$

$$T = 2\pi \sqrt{\frac{J_A}{D}}$$

Elektrischer Schwingkreis

$$0 = L\ddot{Q} + \frac{Q}{C}$$
$$q(t) = \hat{Q}\cos(\omega_0 t + \varphi_0)$$
$$\dot{q}(t) = -\hat{Q}\omega\sin(\omega_0 t + \varphi_0)$$

Physikalisches Pendel

$$\ddot{\varphi} = -\frac{lmg}{J_A} \varphi$$

$$\varphi(t) = \hat{\varphi} \cos(\omega_0 t + \varphi_0)$$

$$\dot{\varphi}(t) = -\hat{\varphi} \omega \sin(\omega_0 t + \varphi_0)$$

$$\ddot{\varphi}(t) = -\hat{\varphi} \omega^2 \cos(\omega_0 t + \varphi_0)$$

$$\omega = \sqrt{\frac{mgl}{J_A}}$$

$$f = \frac{1}{2\pi} \sqrt{\frac{mgl}{J_A}}$$

$$T = 2\pi \sqrt{\frac{J_A}{mgl}}$$

Flüssigkeitspendel

$$\ddot{y} = -\frac{2A\rho g}{m}y$$

$$\varphi(t) = \hat{y}\cos(\omega_0 t + \varphi_0)$$

$$\dot{\varphi}(t) = -\hat{y}\omega\sin(\omega_0 t + \varphi_0)$$

$$\ddot{\varphi}(t) = -\hat{y}\omega^2\cos(\omega_0 t + \varphi_0)$$

$$\omega = \sqrt{\frac{2A\rho g}{m}} = \sqrt{\frac{2g}{l}}$$

$$f = \frac{1}{2\pi}\sqrt{\frac{2g}{l}}$$

$$T = 2\pi\sqrt{\frac{l}{2g}}$$

$$\ddot{q}(t) = -\hat{Q}\omega^2\cos(\omega_0 t + \varphi_0)$$

$$\omega = \sqrt{\frac{1}{LC}}$$

$$f = \frac{1}{2\pi}\sqrt{\frac{1}{LC}}$$

$$T = 2\pi\sqrt{\frac{1}{LC}}$$

7.6.2 Gedaempfte Schwingungen

Schwingungsgleichung

COULOMB Reibung

d = 2D

$$m\ddot{x} = -kx + F_R$$

$$F_R = -\operatorname{sgn}(\dot{x})\mu F_N$$
$$0 = m\ddot{x} + kx + \operatorname{sgn}(\dot{x})\mu F_N$$

Gleitreibung

$$x(t) = -(\hat{x}_0 - \hat{x}_1)\cos(\omega t) - \hat{x}_1 \qquad 0 \le t \le \frac{T}{2}$$

$$x(t) = -(\hat{x}_0 - 3\hat{x}_1)\cos(\omega t) + \hat{x}_1 \qquad \frac{T}{2} \le t \le T$$

$$\hat{x}_1 = \frac{\mu F_N}{k}$$

Viskosereibung

$$0 = m\ddot{x} + b\dot{x} + kx$$

$$x(t) = \hat{x}e^{-\delta t}e^{\pm j\sqrt{\omega_0^2 - \delta^2}t}$$

$$x(t) = \hat{x}e^{-\delta t}e^{\pm j\omega_0\sqrt{1 - D^2}t}$$

$$\delta = \frac{b}{2m}$$

$$D = \frac{\delta}{\omega_0}$$

$$D = \frac{b}{2\sqrt{mk}}$$

$$\omega_0 = \sqrt{\frac{k}{m}}$$

$$\Lambda = \ln\left(\frac{x(t)}{x(t+T)}\right)$$

$$\Lambda = \delta T$$

$$\omega_D = \sqrt{\frac{k}{m}} - \left(\frac{b}{2m}\right)^2$$

$$Aperiodischer Grenzfall $\delta = \omega_0$

$$x(t) = \hat{x}e^{-\delta t}(1 - \delta t)$$

$$x(t) = \hat{x}e^{-\delta t}(1 - \delta t)$$

$$x(t) = \hat{x}e^{-\delta t}(1 - \delta t)$$$$

Fluiddynamik

Premature optimization is the root of all evil.
- D. Knuth

On the other hand, we cannot ignore efficiency. - Jon Bentley

8.1 Ohne Reibung

Statischer Druck

Dynamischer Druck

 ${\bf Schweredruck}$

$$p = \frac{\mathrm{d}F_N}{\mathrm{d}A}$$

$$p = \frac{1}{2}\rho v^2$$

$$p = \frac{\rho V g}{A}$$
$$= h \rho g$$

Volumenstrom

Massenstrom

$$\begin{split} \dot{V} &= vA \\ &= \iint_A \vec{v} \, \mathrm{d}\vec{A} \\ &= \frac{\mathrm{d}V}{\mathrm{d}t} \\ &= Q \end{split}$$

$$\dot{m} = jA$$

$$= \iint_{A} \vec{j} \, d\vec{A}$$

$$= \frac{dm}{dt}$$

Auftrieb

$$\vec{F_A} = -\rho_V \vec{g} V$$
$$= -\frac{\rho_V}{\rho_M} \vec{F_G}$$

Kompressibilität

$$\kappa = \frac{\Delta V}{\Delta p V}$$

Volumenausdehnungskoeffezient

$$\frac{\Delta V}{V} = \gamma \Delta T$$

8.2 Laminare Reibung

Newtonsches Reibungsgesetz

$$F_R = \eta A \frac{\mathrm{d}v}{\mathrm{d}x}$$

Laminare Strömung (Rohr)

$$v(r) = \frac{p}{4\eta l} \left(R^2 - r^2 \right)$$
$$p = \frac{4\eta l}{R^2} v(0)$$
$$\dot{V} = \frac{\pi R^4}{8\eta l} p$$

Umströmung (Kugel)

$$F_R = 6\pi \eta r v$$

Kontinuitätsgleichung

$$\begin{aligned} \dot{m}|_1 &= \dot{m}|_2 &\quad \dot{V}\Big|_1 &= \dot{V}\Big|_2 \\ v_1 A_1 &= v_2 A_2 &\quad \rho_1 &= \rho_2 \end{aligned}$$

Barometrische Höhenformel

$$p = p_0 e^{-Ch}$$

$$C = \frac{\rho_0 g}{p_0}$$

Bernoulli Gleichung

$$p + \frac{1}{2}\rho v^2 + \rho g h = \text{const}$$

Bernoulligleichung mit Reibung

$$p_1 + \frac{1}{2}\rho v_1^2 + \rho g h_1$$

= $p_2 + \frac{1}{2}\rho v_2^2 + \rho g h_2 + \Delta p$

Reynoldszahl

$$Re = \frac{L\rho v}{\eta}$$

$$Re > Re_{krit}$$
 Strömung wird Turbulent

Gravitation

The year is 787!

A.D.?

- Monty Python

Gravitationskraft

$$\vec{F}_{g,2} = -G \frac{m_1 m_2}{r_{12}^2} \vec{e}_r$$

$$\vec{F}_g = \vec{E}_g \cdot m = \vec{g} m$$

Arbeit

$$W_{12} = -\int_{\vec{r}_1}^{\vec{r}_2} \vec{F}_g \circ d\vec{r}$$
$$= GmM\left(\frac{1}{r_1} - \frac{1}{r_2}\right)$$

Gravitationspotential

$$\phi = -G\frac{M}{r}$$

$$\vec{E}_g = \operatorname{grad}\phi$$

Planetenbahnen

$$\left(\frac{a}{a_E}\right)^3 = \left(\frac{T}{T_E}\right)^2$$

Elektrostatik

Don't interrupt me while I'm interrupting.
- Winston S. Churchill

Ladung

$$Q = n \cdot e_0$$
$$= CU$$
$$= \int i \, dt$$

COULOMB Gesetz

$$\begin{split} \vec{F}_{12} &= \frac{1}{4\pi\epsilon} \frac{Q_1 Q_2}{r^2} \vec{r_1} 2 \\ &= \vec{E} Q \\ \vec{E} &= \frac{1}{4\pi\epsilon} \frac{Q}{r^2} \vec{r} \\ &= -\operatorname{grad} \varphi \\ &= -\left(\frac{\partial \varphi}{\partial x} \vec{e}_x + \frac{\partial \varphi}{\partial y} \vec{e}_y + \frac{\partial \varphi}{\partial z} \vec{e}_z\right) \end{split}$$

Punktladungen

$$\vec{E}(\vec{r}) = \sum_{i=1}^{N} \vec{E}_i \vec{r}_i$$

Spannung

$$\begin{split} U_{AB} = & \frac{W_{AB}}{Q} \\ = & \int_A^B \vec{E} \circ d\vec{s} \\ = & \oint_s \vec{E} \circ d\vec{s} = 0 \\ = & \varphi_A - \varphi_B \\ = & - \int_\infty^A \vec{E} \circ d\vec{s} \\ & - \left(- \int_\infty^B \vec{E} \circ d\vec{s} \right) \end{split}$$

El- / Verschiebungsfluß

$$\psi = \int_{A} \vec{E} \circ d\vec{A}$$
$$\psi = \oint_{A} \vec{E} \circ d\vec{A} = \frac{Q}{\epsilon}$$

Kapazität

$$Q = CU$$

OHMsches Gesetz

$$\begin{split} I &= \oint_A \vec{j} \circ \mathrm{d}\vec{A} \\ &= \oint_A \kappa \vec{E} \circ \mathrm{d}\vec{A} \\ &= \underbrace{\kappa E \cdot 4\pi r^2}_{\mathrm{Kugel}} \end{split}$$

Flußdichte

$$\vec{D} = \frac{\mathrm{d}Q}{\mathrm{d}A}\vec{e}_A$$

$$\vec{D} = \epsilon \vec{E}$$

$$Q = \oint_A D \,\mathrm{d}A$$

Arbeit im elektrischem Feld

$$w = \frac{1}{2}\vec{E} \circ \vec{D}$$

$$W = \int_{V} w \, dV$$

$$= -Q \int_{A}^{B} \vec{E} \circ d\vec{s}$$

$$= \int_{U} Q \, dU$$

$$= \int_{U} CU \, dU$$

$$= \frac{1}{2}CU^{2}$$

Thermodynamik

11.1 Wärmedehnung

$$\rho(T) = \rho_0 (1 - \beta(T - T_0))$$

$$V(T) = V_0 (1 + \gamma(T - T_0))$$

$$l(T) = l_0 (1 + \alpha(T - T_0))$$

$$\gamma \approx 3 \cdot \alpha$$

$$\gamma \approx \beta$$

11.2 Wärme

$$\Delta Q = c \cdot m(T - T_0)$$

$$\Delta Q = C(T - T_0)$$

$$\Delta Q = \int_{T_0}^T c \cdot m \, dT$$

$$\Delta Q = c_{mol} \cdot n(T - T_0)$$

11.3 Mischtemperatur

$$T_{m} = \frac{\sum_{i=1}^{n} T_{i} m_{i} c_{i}}{\sum_{i=1}^{n} m_{i} c_{i}}$$

 \dot{Q} Ist durch einen mehrschichtiges stationäres System Konstant

11.4 Wärmeleitung

$$\dot{Q} = \frac{\mathrm{d}Q}{\mathrm{d}t} = \Phi = P$$

$$\dot{\vec{q}} = \frac{\dot{Q}}{A} \cdot \vec{e_A}$$

$$\dot{\vec{q}} = -\lambda \operatorname{grad}T$$

$$\dot{\vec{q}} = \frac{\lambda}{s} (T_A - T_B) \cdot \vec{e_s}$$

$$\dot{q} = \frac{1}{\sum_{i=1}^{n} \frac{s_i}{\lambda_i}} \cdot (T_A - T_B)$$

11.5 Wärmekonvektion

$$\dot{q} = \alpha (T_A - T_B)$$

$$\dot{q} = \frac{1}{\sum_{i=1}^{n} \frac{1}{\alpha_i}} \cdot (T_A - T_B)$$

11.6 Wärmewiderstand

$$R_{th} = \frac{T_A - T_B}{\dot{q} \cdot A} = \frac{s}{\lambda A} = \frac{1}{\alpha A} = \sum_{i=1}^{n} R_i$$

11.6.1 Wärmeübertragung

$$k = \frac{1}{\sum_{i=1}^{n} \frac{s_i}{\lambda_i} + \sum_{i=1}^{n} \frac{1}{\alpha_i} + \sum_{i=1}^{n} R_i}$$

$$\dot{q} = \frac{1}{\sum_{i=1}^{n} \frac{s_i}{\lambda_i} + \sum_{i=1}^{n} \frac{1}{\alpha_i} + \sum_{i=1}^{n} R_i} \cdot (T_A - T_B)$$

$$\dot{q} = k \cdot (T_A - T_B)$$

11.6.2 Wärmestrahlung

$$\alpha = \varepsilon$$

$$1 = \alpha + \tau + \vartheta$$

$$\dot{Q} = \varepsilon A \sigma T^{4}$$

$$\dot{Q}_{AB} = C_{AB} A_{A} \left(T_{A}^{4} - T_{B}^{4} \right)$$

$$C_{AB} = \varepsilon_{AB} \sigma = \frac{\sigma}{\frac{1}{\varepsilon_{A}} + \frac{1}{\varepsilon_{B}} - 1} = \frac{1}{\frac{1}{\sigma_{A}} + \frac{1}{\sigma_{B}} - \frac{1}{\sigma}} \qquad \text{Parallel}$$

$$C_{AB} = \frac{\sigma}{\frac{1}{\varepsilon_{A}} + \frac{A_{A}}{A_{B}} \left(\frac{1}{\varepsilon_{B}} - 1 \right)} \qquad A_{A} \text{ von } A_{B} \text{ umschlossen}$$

$$C_{AB} \approx \varepsilon_{A} \sigma \qquad \text{parallel } (A_{A} \ll A_{B})$$

11.6.3 Zustandsänderung des idealen Gases

Teilchen stehen nicht in Wechselwirkung, besitzen kein Volumen und es kommt zu keinem Phasenübergang

Energie

$$U_{12} = Q_{12} + W_{12}$$
Nur Isobar:
$$dH = c_p m dT = U + p dV$$

$$dS = \frac{dQ}{T}$$

Isotherm

$$\begin{split} pV &= \text{const} \\ T &= \text{const} \\ U_{12} &= 0 \\ U_{12} &= Q_{12} + W_{12} \\ Q_{12} &= -W_{12} \\ W_{12} &= p_1 V_1 \ln \frac{V_2}{V_1} \\ W_{12} &= p_1 V_1 \ln \frac{p_1}{p_2} \\ S_{12} &= m c_p \ln \frac{V_2}{V_1} + m c_V \ln \frac{p_2}{p_1} \end{split}$$

Isobar

$$\begin{split} \frac{V}{T} &= \text{const} \\ p &= \text{const} \\ Q_{12} &= mc_p \left(T_2 - T_1 \right) \\ W_{12} &= -p \left(V_2 - V_1 \right) \\ U_{12} &= Q_{12} + W_{12} \\ S_{12} &= mc_p \ln \frac{V_2}{V_1} \end{split}$$

Zustandsgleichung

$$\frac{pV}{T} = \text{const}$$

$$pV = NkT = mR_sT = nRT$$

$$R_s = \frac{nR}{m}$$

$$R_s = c_n - c_v$$

Isochor

$$\frac{p}{T} = \text{const}$$

$$V = \text{const}$$

$$Q_{12} = mc_v (T_2 - T_1)$$

$$W_{12} = 0$$

$$U_{12} = Q_{12}$$

$$S_{12} = mc_v \ln \frac{p_2}{n_1}$$

Adiabat

$$pV^{\kappa} = \text{const}$$

$$Q = \text{const}$$

$$\kappa = \frac{c_p}{c_V}$$

$$\frac{T_2}{T_1} = \left(\frac{V_2}{V_1}\right)^{1-\kappa} = \left(\frac{p_2}{p_1}\right)^{\frac{\kappa-1}{\kappa}}$$

$$Q_{12} = 0$$

$$W_{12} = mc_v \left(T_2 - T_1\right)$$

$$W_{12} = \frac{RT_1}{\kappa - 1} \left(\left(\frac{V_2}{V_1}\right)^{1-\kappa} - 1\right)$$

$$U_{12} = W_{12}$$

$$S_{12} = 0;$$

Kreisprozess

$$\oint \mathrm{d} U = 0$$
 Carnot-Prozeß

$$\oint dU = \oint dQ + \oint dW \qquad \eta_C = \frac{W_{ab}}{Q_{zu}}$$
Revesiebel:
$$\oint dS = 0 \qquad \eta_C = \frac{Q_{zu} - Q_{AB}}{Q_{zu}}$$
Irrevesiebel
$$\oint dS > 0 \qquad \eta_C = \frac{T_h - T_n}{T_n}$$

$$\eta_C = rac{W_{ab}}{Q_{zu}}$$

$$\eta_C = rac{Q_{zu} - Q_{AB}}{Q_{zu}}$$

$$\eta_C = rac{T_h - T_n}{T_r}$$

Optik

The path taken between two points by a ray of light is the path that can be traversed in the least time.

- Pierre de Fermat

12.1 Brechung

12.2 Total reflexion

$$\begin{split} \frac{\sin \varepsilon_1}{\sin \varepsilon_2} &= \frac{n_2}{n_1} = \frac{c_1}{c_2} \\ \varepsilon_2 &= \arcsin \frac{\sin \varepsilon_1 \cdot n_1}{n_2} \\ &\qquad \qquad \sin \varepsilon_g = \frac{n_2}{n_1} \end{split}$$

Totalreflexion tritt nur auf, wenn der Lichtstrahl von einen dichteren in ein optisch dünneren Stoff übergeht.

12.3 Hohlspiegel

12.4 Linse

$$\frac{1}{f'} = \frac{1}{a'} - \frac{1}{a}$$
$$\frac{1}{f} = \frac{1}{a'} + \frac{1}{a}$$

$$f = \frac{a \cdot a'}{a + a'} = -f'$$

$$a' = \frac{af'}{a + f'}$$

$$\beta' = \frac{f'}{a + f'}$$

$$\beta' = \frac{y'}{y}$$

$$D' = \frac{1}{f'} = (n_L - 1) \cdot \left(\frac{1}{r_1} - \frac{1}{r_2}\right)$$

Linsenform	\bigcirc					
Bezeichnung	bi- konvex	plan- konvex	konkav- konvex	bi- konkav	plan- konkav	konvex- konkav
Radien	$r_1 > 0$ $r_2 < 0$	$\begin{array}{c} r_1 = \infty \\ r_2 < 0 \end{array}$	$r_1 < r_2 < 0$	$r_1 < 0 \\ r_2 > 0$	$r_1 = \infty \\ r_2 > 0$	$r_2 < r_1 < 0$
Brennweite im optisch dünneren Medium	f' > 0	f' > 0	f'>0	f' < 0	f' < 0	f' < 0

12.5 Lichtwellenleiter

Totalreflexion (Grenzwinkel)

$$n_1 \sin (90^\circ - \vartheta_1) = n_2 \Longrightarrow \cos \vartheta_1 = \frac{n_2}{n_1}$$

numerische Apertur

$$\begin{aligned} A_{WL} &= n_0 \sin \vartheta_0 = n_1 \sqrt{1 - \cos^2 \vartheta_1} \\ &= n_1 \sqrt{1 - \left(\frac{n_2}{n_1}\right)^2} \\ &= \sqrt{n_1^2 - n_2^2} \\ &= \sqrt{n_{Kern}^2 - n_{Mantel}^2} \end{aligned}$$

Teil III Elektrotechnik

Gleichstromtechnik

13.1 Grundgrößen

Elementarladung

$$e \approx 1, 6 \cdot 10^{-19} C$$

$$[Q] = 1C = 1As$$
$$Q = n \cdot e$$

Strom

$$[I] = 1A$$
$$i(t) = \frac{\mathrm{d}Q}{\mathrm{d}t}$$

Stromdichte

$$[J] = 1 \frac{A}{mm^2}$$

$$\vec{J} = \frac{I}{\vec{A}}$$

Potential

$$[\varphi] = 1V = 1\frac{Nm}{As} = 1\frac{kgm^2}{As^3}$$

$$\varphi = \frac{W}{Q}$$

Spannung

$$[U] = 1V$$

$$U_{AB} = \varphi_a - \varphi_b$$

Widerstand und Leitwert

$$[R] = 1\Omega = 1\frac{V}{A}$$

$$R = \frac{U}{I}$$

$$= \rho \frac{l}{A} = \frac{1}{\kappa} \frac{l}{A}$$

$$[G] = 1S = 1\frac{A}{V}$$

$$G = \frac{I}{U}$$

$$= \frac{1}{R}$$

$$= \kappa \frac{A}{I} = \frac{1}{2} \frac{A}{I}$$

Temperaturabhängigkeit

$$R_{2} = R_{1} \cdot \left(1 + \alpha \left(\vartheta_{2} - \vartheta_{1}\right) + \beta \left(\vartheta_{2} - \vartheta_{1}\right)^{2}\right)$$

Leistung

Leistung im Mittel

$$[P] = 1W = 1VA$$
$$P = u(t) \cdot i(t)$$

$$P = \frac{1}{T} \int_0^T u(t) \cdot i(t) \, \mathrm{d}t$$

13.2 Lineare Quellen

Spannungsquelle

Stromquelle

$$U = U_q - R_i \cdot I$$
$$I_K = \frac{U_q}{R_i}$$

$$I = I_q - \frac{U}{R_i}$$
$$U_l = I_q \cdot R_i$$

13.3 Kirchhoffsche Gesetze

Knotenpunktsatz

$$\sum_{i=1}^{n} I_i = 0$$

Maschensatz

$$\sum_{i=1}^{n} U_i = 0$$

Wechselstromtechnik

No rule is so general, which admits not some exception.

- Robert Burton

Periodische zeitabhängige Größen

Allgemein
$$x(t) \to \text{speziell } u(t); i(t); q(t); \dots$$

es gillt $x(t) = x(t + n \cdot T); (n \in \mathbb{N}^*)$

Wechselgrößen

Allgemein $x_{\sim}(t)$; periodisch sich ändernde Größe, deren Gleichanteil bzw. zeitlich linearer Mittelwert gleich Null ist.

Nachweis:

$$\int_{t_1}^{t_1+n \cdot T} x_{\sim}(t) dt = 0 \; ; \; (n \in \mathbb{N}^*) \; ; \; t_1 \text{ beliebiger Zeitwert}$$

Mischgrößen

Sind periodisch, Ihr Gleichanteil \overline{x} bzw. zeitlich linearer Mittelwert jedoch ist ungleich Null.

Mischgröße = Wechselgröße + Gleichanteil
$$x\left(t\right)=x_{\sim}\left(t\right)+\overline{x}$$
 = gleichanteilbehaftete Wechselgröße

14.1 Anteile und Formfaktoren

Gleichanteil

Formfaktor

$$\overline{x} = \frac{1}{n \cdot T} \cdot \int_{t_1}^{t_1 + n \cdot T} x\left(t\right) dt$$

$$F = \frac{x_{eff}}{|\overline{x}|} \qquad x_{eff} = |\overline{x}| \cdot F$$

Gleichrichtwert

$$\left|\overline{x}\right| = \frac{1}{n \cdot T} \cdot \int_{t_1}^{t_1 + n \cdot T} \left|x\right|(t) dt$$

crest - Faktor

 $\sigma = \frac{\hat{x}}{x_{eff}}$

Effektivwert

$$x_{eff} = X = \sqrt{\frac{1}{n \cdot T} \cdot \int_{t_{1}}^{t_{1} + n \cdot T} x^{2} \left(t\right) dt}$$

$$n \in \mathbb{N}^* \to t1$$
 beliebiger Zeitwert $\to [|\overline{x}|] = [x(t)]$

14.2 Leistung und Leistungsfaktoren

Wirkleistung

Mittlere Leistung

$$P = \frac{1}{n \cdot T} \int_{t_1}^{t_1 + n \cdot T} P(t) dt$$
$$= \frac{1}{n \cdot T} \int_{t_1}^{t_1 + n \cdot T} u(t) \cdot i(t) dt$$

$$\bar{p}\left(t\right) = P = \frac{1}{n \cdot T} \int_{t_1}^{t_1 + n \cdot T} P\left(t\right) dt$$

Scheinleistung

$$S = u_{eff} \cdot i_{eff} = U \cdot I$$

Leistungsfaktor

$$\lambda = \frac{P}{S}$$

$$= \frac{\frac{1}{n \cdot T} \int_{t_1}^{t_1 + n \cdot T} p(t) dt}{u_{eff} \cdot i_{eff}}$$

$$=\frac{\int_{t_{1}}^{t_{1}+n\cdot T}u\left(t\right)\cdot i\left(t\right)dt}{\sqrt{\int_{t_{1}}^{t_{1}+n\cdot T}u^{2}\left(t\right)dt}\cdot\sqrt{\int_{t_{1}}^{t_{1}+n\cdot T}i^{2}\left(t\right)dt}}$$

14.3 Sinusförmige Größen

Sinusschwingung

Kosinusschwingung

$$x(t) = \hat{x}\sin(2\pi f + \varphi_x)$$
$$x(\omega t) = \hat{x}\sin(\omega t + \varphi_x)$$

- \hat{x} : Amplitude
- φ_x : Nullphasenwinkel
- $\varphi_x > 0$: Linksverschiebung der Kurve

$$x(t) = \hat{x}\cos(2\pi f + \varphi_x)$$
$$x(\omega t) = \hat{x}\cos(\omega t + \varphi_x)$$

- \hat{x} : Amplitude
- φ_x : Nullphasenwinkel
- $\varphi_x > 0$: Rechtssverschiebung der Kurve

Nullphasenzeit

$$t_x = -\frac{\varphi_x}{\omega} = -\varphi_x \cdot \frac{T}{2\pi}$$

Addition zweier Sinusgrößen gleicher Frequenz

mit:
$$a = \hat{a}\sin(\omega t + \alpha) \wedge b = \hat{b}\sin(\omega t + \beta)$$

Resultierende Funktion:

$$x = a + b$$

$$= \hat{a}\sin(\omega t + \alpha) + \hat{b}\sin(\omega t + \beta)$$

$$= \hat{x}\sin(\omega t + \varphi)$$

- \hat{x} : resultierende Amplitude
- φ : Nullphasenwinkel

Wobei:
$$\hat{x} = +\sqrt{\hat{a}^2 + \hat{b}^2 + 2\hat{a}\hat{b}\cos(\alpha - \beta)}$$

$$\varphi = \arctan \frac{\hat{a}\sin\alpha + \hat{b}\sin\beta}{\hat{a}\cos\alpha + \hat{b}\cos\beta}$$

Vierquadrantenarkustangens

$$\varphi = \arctan \frac{ZP}{NP}$$
2. Quadrant $ZP > 0, NP < 0$ | 1. Quadrant $ZP > 0, NP > 0$
3. Quadrant $ZP < 0, NP < 0$ | 4. Quadrant $ZP < 0, NP > 0$

Der rotierende Zeiger als rotierender Vektor

Allgemein gillt:
$$\sin(\omega t + \varphi_x) = \frac{GK}{HT} = \frac{b}{\hat{x}}$$

$$\cos(\omega t + \varphi_x) = \frac{AK}{HT} = \frac{a}{\hat{x}}$$

$$b = \hat{x}\sin(\omega t + \varphi_x)$$

$$a = \hat{x}\cos(\omega t + \varphi_x)$$
Als Einheitsvektor: $\vec{x} = a \cdot \vec{i} + b \cdot \vec{j}$

Zeigerspitzenendpunkt

Wechsel zwischen Sinus und Kosinus

$$\hat{x}(t)\cos(\omega t + \varphi_x) \equiv \hat{x}(t)\sin\left(\omega t + \varphi_x + \frac{\pi}{2}\right)$$
$$\hat{x}(t)\sin(\omega t + \varphi_x) \equiv \hat{x}(t)\cos\left(\omega t + \varphi_x - \frac{\pi}{2}\right)$$

Zeitbereich		komplexer Zeitbereich
$x = \hat{x}\sin\left(\omega t + \varphi_x\right)$	$\xrightarrow{Hintransformation1}$	$\underline{x} = \hat{x}\cos(\omega t + \varphi_x) + j\hat{x}\sin(\omega t + \varphi_x)$
$x = \hat{x}\cos\left(\omega t + \varphi_x\right)$	$\xrightarrow{Hintransformation2}$	$\underline{x} = \hat{x}e^{j(\omega t + \varphi_x)}$
		Berechnungen im komplexen Bereich
$y = Im\{y\} = \hat{y}\sin(\omega t + \varphi_y)$	$\xleftarrow{Ruecktransformation1}$	$\underline{y} = \hat{y}e^{j(\omega t + \varphi_y)}$
$y = Re\{y\} = \hat{y}\cos(\omega t + \varphi_y)$	$\xleftarrow{Ruecktransformation2}$	$\underline{y} = \hat{y}\cos(\omega t + \varphi_y) + j\hat{y}\sin(\omega t + \varphi_y)$

- HT1 erfordert die Ergänzung eines gleichwertigen reellen Kosinusterms mit dem ursprünglichen Sinusterm als Imaginärteil
- HT2 erfordert die Ergänzung eines gleichwertigen imaginären Sinusterms mit dem ursprünglichen Kosinusterm als Realteil
- RT1 entnahme des Imaginärteils
- RT2 entnahme des Realteils

Merke:
$$\frac{1}{j} = -j$$
 $j = e^{j\frac{\pi}{2}}$

Differentiation und Integration von Sinusgrößen

Zeitbereich	Zeigerbereich
$x(t) = \hat{x}\sin(\omega t + \varphi_x) \xrightarrow{HT_1} x(t) = \hat{x}\cos(\omega t + \varphi_x) \xrightarrow{HT_2}$	$\underline{x} = \hat{x}e^{j(\omega t + \varphi_x)}$
$\frac{d^n x(t)}{dt^n} \xrightarrow{HT_{1/2}}$	$\frac{d^n \underline{x}(t)}{dt^n} = (j\omega)^n \underline{x}$

Zeitbereich	Zeigerbereich
$x(t) = \hat{x}\sin(\omega t + \varphi_x) \xrightarrow{HT_1} x(t) = \hat{x}\cos(\omega t + \varphi_x) \xrightarrow{HT_2}$	$\underline{x} = \hat{x}e^{j(\omega t + \varphi_x)}$
$\int \cdots \int x(t) dt^n \xrightarrow{HT_{1/2}}$	$\int \cdots \int \underline{x}(t) dt = \frac{1}{(j\omega)^n} \underline{x}$

R, L und C im kompl. Zeigerbereich

Ohmscher Widerstand	$\hat{U} = R\hat{I} \hat{I} = \frac{\hat{U}}{R}$
Induktivität	$\hat{U} = \omega L \hat{I} \hat{I} = \frac{\hat{U}}{\omega L}$
Kapazität	$\hat{U} = \frac{\hat{I}}{\omega C} \hat{I} = \omega C \hat{U}$

Widerstands und Leitwertoperator

\underline{Z} komplexer Widerstand / Impedanz	\underline{Y} komplexer Leitwert / Admitanz
$\underline{Z} = \frac{\underline{u}}{\underline{i}} = \frac{\hat{U}}{\hat{I}} \cdot e^{j(\varphi_u - \varphi_i)}$	$\underline{Y} = \frac{1}{\underline{Z}} = \frac{\hat{I}}{\hat{U}} \cdot e^{j(\varphi_i - \varphi_u)}$
$ \underline{Z} = Z = \frac{\hat{U}}{\hat{I}} = \frac{U}{I}$	$ \underline{Y} = Y = \frac{1}{\underline{Z}} = \overline{U}$
$mit \varphi_u - \varphi_i = \varphi_Z$	$mit \varphi_i - \varphi_u = -\varphi_Z = \gamma_Y$

Wider stand

$$\underline{Z} = R \wedge \underline{Y} = 1/R$$

 $Kapazit \ddot{a}t$

$$\underline{Z} = \frac{1}{j\omega C} = \frac{1}{\omega C} e^{-j\frac{\pi}{2}} \wedge \underline{Y} = j\omega C = \omega C e^{j\frac{\pi}{2}}$$

 $Induktivit \ddot{a}t$

$$\underline{Z} = j\omega L = \omega L e^{j\frac{\pi}{2}} \wedge \underline{Y} = \frac{1}{j\omega L} = \frac{1}{\omega L} e^{-j\frac{\pi}{2}}$$

Resultierende Operatoren

Reihenschaltung

Parallelschaltung

$$\underline{Z}_{ges} = \sum_{i=1}^{n} \underline{Z}_{i}$$

$$\underline{Y}_{ges} = \sum_{i=1}^{n} \underline{Y}_{i}$$

Spannungsteiler

Stromteiler

$$\frac{\underline{u}_1}{\underline{u}_2} = \frac{\underline{Z}_1 + \underline{Z}_2}{\underline{Z}_2}$$

$$\frac{\underline{i}_1}{\underline{i}_2} = \frac{\underline{Y}_1}{\underline{Y}_2}$$

Anteile am komplexen Widerstand (Impedanz)

$$\underline{Z} = \text{Re}\{\underline{Z}\} + j \cdot \text{Im}\{\underline{Z}\} = R + jX = |\underline{Z}| \cdot e^{j\varphi}$$

mit $\varphi = \varphi_u - \varphi_i$ Phasenwinkel; R = Wirkwiderstand; X = Blindwiderstand; $|\underline{Z}| =$ Scheinwiderstand

$$R = R \qquad L = \frac{X}{\omega} \text{ mit } X > 0 \qquad C = -\frac{1}{\omega X} \text{ mit } X < 0$$

Anteile am komplexen Leiwert (Admitanz)

$$\underline{Y} = \text{Re}\{\underline{Y}\} + j \cdot \text{Im}\{\underline{Y}\} = G + jB = |\underline{Y}| \cdot e^{j\gamma}$$

mit $\gamma = \varphi_i - \varphi_u$ Phasenwinkel; G = Wirkleitwert; B = Blindleitwert; $|\underline{Y}| =$ Scheinleitwert

$$R = \frac{1}{G}$$
 $C = \frac{B}{\omega} \text{ mit } B > 0$ $L = -\frac{1}{\omega B} \text{ mit } B < 0$

komplexer Widerstand / komplexer Leitwert

$$\underline{Y} = G + jB = \frac{1}{Z} = \frac{1}{Z} \cdot e^{-j\varphi}$$

$$\begin{split} &= \frac{1}{\sqrt{R^2 + X^2}} \cdot e^{-j \arctan \frac{X}{R}} \\ &= \frac{1}{R + jX} = \frac{R - jX}{R^2 + X^2} = \underbrace{\frac{R}{R^2 + X^2}}_{G} \underbrace{-j\frac{X}{R^2 + X^2}}_{B} \end{split}$$

$$\underline{Z} = R + jX = \frac{1}{\underline{Y}} = \frac{1}{Y} \cdot e^{-j\gamma}$$

$$= \frac{1}{\sqrt{G^2 + B^2}} \cdot e^{-j \arctan \frac{B}{G}}$$

$$= \frac{1}{G + jB} = \frac{G - jB}{G^2 + B^2} = \underbrace{\frac{G}{G^2 + B^2}}_{R} - j\frac{B}{G^2 + B^2}$$

Momentanleistung / Augenblicksleistung

$$P(t) = \underbrace{UI\cos\varphi}_{\text{zeitlich konstant}} - \underbrace{UI\cos\left(2\omega t + \varphi_u + \varphi_i\right)}_{\text{mit doppelter Frequenz schwingend}}$$
$$= UI\cos\varphi - UI\cos\left(2\omega t + 2\varphi_u - \varphi\right)$$
$$\text{mit } \varphi = \varphi_u - \varphi_i \to \varphi_i = \varphi_u - \varphi$$

Blindleistung

Ermittlung des Blindleistungsanteils aus der Momentanleistung

$$P\left(t\right) = \underbrace{UI\cos\varphi}_{\text{Wirkleistung}} \underbrace{-UI\sin\varphi \cdot \sin\left(2\omega t + 2\varphi_u\right)}_{\text{Blindleistung}}$$
$$P_{qes}\left(t\right) = P_{wirk}\left(t\right) + P_{blind}\left(t\right)$$

$$u\left(t\right)\cdot i\left(t\right) \begin{cases} > 0 \text{ Energie zum Verbraucher} \\ < 0 \text{ Energie zum Erzeuger} \end{cases}$$

Mittlere Leistung / Wirkleistung

$$P = \overline{P}(t) = \frac{1}{n \cdot T} \int_{t_1}^{t_1 + n \cdot T} u(t) \cdot i(t) dt = UI \cos \varphi$$

Definition von Blind- und Scheinleistung

$$\begin{split} Q &= UI \sin \varphi \quad [Q] = \text{var} \quad \text{mit} \begin{cases} Q > 0 \text{ induktive Blindleistung } Q_{ind} \\ Q < 0 \text{ kapazitive Blindleistung } Q_{kap} \end{cases} \\ S &= u_{eff} \cdot i_{eff} = U \cdot I \quad [S] = VA \end{split}$$

Beziehungen zwischen Wirk- Blind- und Scheinleistung

$$P = UI \cdot \cos \varphi$$
 $Q = UI \cdot \sin \varphi$ $S = UI$

$$\tan \varphi = \frac{Q}{P} = \frac{\sin \varphi}{\cos \varphi}$$
 Leistungsfaktor
$$\lambda = \frac{P}{S} = \cos \varphi$$

$$P = \sqrt{S^2 - Q^2}$$

$$= S \cdot \cos \varphi$$

$$= \frac{Q}{\tan \varphi}$$

$$Q = \begin{cases} > 0 \rightarrow Q_{ind} = \sqrt{S^2 - P^2} \\ < 0 \rightarrow Q_{kap} = -\sqrt{S^2 - P^2} \end{cases}$$

$$Q = \begin{cases} > 0 \Rightarrow Q_{ind} = \sqrt{S^2 - P^2} \\ < 0 \Rightarrow Q_{kap} = -\sqrt{S^2 - P^2} \end{cases}$$

$$Q = S \cdot \sin \varphi = P \cdot \tan \varphi$$

$$Q = S \cdot \sin \varphi = P \cdot \tan \varphi$$

$$Q = A \cdot \sin \varphi$$

$$Q = A \cdot \cos \varphi$$

$$Q = A \cdot$$

Die komplexe Leistung

$$\underline{S} = \underline{U} \cdot \underline{I}^*$$

$$= U \cdot I \cdot e^{j(\varphi_u - \varphi_i)}$$

$$= S \cdot e^{j\varphi}$$

$$= \underbrace{S \cdot \cos \varphi}_{P} + j \cdot \underbrace{S \cdot \sin \varphi}_{Q}$$

* - konjugiert Komplex

$$=P+jQ \hspace{1cm} [\underline{S}]=VA \hspace{3mm} [P]=W \hspace{3mm} [Q]=var$$

Zusammenhang mit dem komplexen Leitwert / Widerstand

$$\underline{S} = I^2 \cdot \underline{Z} \qquad \qquad P = I^2 \cdot R = U^2 \cdot G \qquad \qquad Q = I^2 \cdot X = -U^2 \cdot B$$

Kapitel 15

Signal- und Systemtheorie

15.1 Einfache Impulse

Rechteckimpuls/ -funktion $rect_T(t)$

$$x\left(t\right) = X_{0} \cdot rect_{T}\left(t\right)$$

- an den Sprungstellen nimmt der Impuls die Hälfte des max. Wertes an

Dreiecksimpuls/ -funktion $\Lambda_{T}(t)$

$$\begin{split} x\left(t\right) &= X_{0} \cdot \Lambda_{T}\left(t\right) \\ \Lambda_{T}\left(t\right) &= \begin{cases} 1 - |t/T| & \text{für } |t| < T \\ 0 & \text{für } |t| > T \end{cases} \end{split}$$

• T: Dauer einer ansteigenden / abfallenden Flanke

15.2 Elementare Operationen auf zeitliche Verläufe

Beeinflußung der Ordinate

Signaloffset X_{OFFS}

$$x_{neu}(t) = x_{alt}(t) + X_{OFFS}$$

Skalierungsfaktor $V\left(V \neq 0\right)$

$$x_{neu}\left(t\right) = V \cdot x_{alt}\left(t\right)$$

Beeinflußung der Abszisse

zeitliche Verschiebung t_0

$$x_{neu}(t) = x_{alt}(t - t_0)$$
 mit $t_0 = const.$

- Zusammenfassung der Offsetbehafteten Zeit $t-t_0$ zu einer neuen Zeitbasis $\tau=t-t_0$
- $x_{neu} (\tau + t_0) = x_{alt} (\tau)$ t > 0 Verschiebung nach rechts t < 0 Verschiebung nach links

Negation des Arguments t

$$x_{neu}\left(t\right) = x_{alt}\left(-t\right) \text{ mit } \tau = -t$$

$$x_{neu}\left(-\tau\right) = x_{alt}\left(\tau\right)$$

 gleiche Funktionswerte mit negierter Zeitbasis, somit Spiegelung an der Ordinate

Nagation des Arguments t sowie eine Verschiebung um t_0

$$x_{neu}(t) = x_{alt}(t_0 - t)$$

$$\text{mit } t_0 = const.$$

$$x_{neu}(t) = x_{alt}(\tau + 1/2t_0)$$

$$x_{neu}(1/2t_0 - \tau) = x_{alt}(\tau + 1/2t_0)$$

- neue Zeitbasis $\tau + 1/2t_0$
- \bullet gleiche Funktionswerte, gespiegelt an der Senkrechten von $1/2t_0$

Skalierungsfaktor $a \neq 0$

$$\begin{aligned} x_{neu}\left(t\right) &= x_{alt}\left(a \cdot t\right) \\ \text{mit } a &= const. \\ x_{neu}\left(t\right) &= x_{alt}\left(\tau\right) \\ x_{neu}\left(\tau/a\right) &= x_{alt}\left(\tau\right) \end{aligned}$$

- neue Zeitbasis $\tau = a \cdot t$
- ullet gleiche Funktionswerte, wenn die Zeitbasis durch a geteilt wird
- a > 1 Funktion wird gestaucht 0 < a < 1 Funktion wird gestreckt

Einheitssprungfunktion / Deltaimpuls

angenäherte Einheitssprungfunktion $\tilde{\sigma}\left(t,\epsilon\right)$

- ullet endlicher Geradenanstieg
- Endwert von 1

Einheitsimpuls / Deltaimpuls $\tilde{\delta}\left(t,\epsilon\right)$

- Fläche des Impulses ist 1
- Impulshöhe und Breite variabel

Mathematischer Zusammenhang:

$$\tilde{\delta}\left(t,\epsilon\right) = \frac{d\tilde{\sigma}\left(t,\epsilon\right)}{dt} \quad \leftrightarrow \quad \tilde{\sigma}\left(t,\epsilon\right) = \int_{-\infty}^{t} \tilde{\delta}\left(t,\epsilon\right) dt$$

Beim Grenzübergang $\epsilon \to 0$ ergibt die Einheitssprungfunktion $\sigma(t)$ bzw. deren Ableitung den Deltaimpuls $\delta(t)$.

$$\delta\left(t\right) = \frac{d\sigma\left(t\right)}{dt} = \begin{cases} +\infty \text{ für } t = 0\\ 0 \text{ für } t \neq 0 \end{cases} \qquad \sigma\left(t\right) = \int_{-\infty}^{t} \delta\left(t\right) dt = \begin{cases} 1 \text{ für } t > 0\\ \frac{1}{2} \text{ für } t = 0\\ 0 \text{ für } t < 0 \end{cases}$$

Zusammenhang zwischen Deltaimpuls, Einheitssprungfunktion und Einheitsanstiegsfunktion

$$\delta(t) = \frac{d\sigma(t)}{dt} = \frac{d^{2}\alpha(t)}{dt^{2}}$$

$$\sigma(t) = \int_{-\infty}^{t} \delta(t) dt = \frac{d\alpha(t)}{dt}$$

$$\alpha\left(t\right) = \begin{cases} t \text{ für } t > 0 & = \int_{-\infty}^{t} \sigma\left(t\right) dt = \int_{-\infty}^{t} \int_{-\infty}^{t} \delta\left(t\right) dt \\ 0 \text{ für } t \leq 0 & = -\infty \end{cases}$$

zeitliche Verschiebung und Wichtung Deltaimpuls

Bondinpuis

$$x(t) = A_x \cdot \delta(t - t_0)$$
$$[x(t)] = [A_x] \cdot [\delta(t)]$$

Einheitssprung

$$x(t) = X_0 \cdot \sigma(t - t_0)$$
$$[x(t)] = [X_0]$$

${\bf Einheits anstiegs funktion}$

$$x(t) = m \cdot \alpha (t - t_0)$$
$$[x(t)] = [m] \cdot [\alpha (t)]$$

15.3 Signale

Definition: Ein Signal ist eine zeitlich und / oder örtlich veränderliche Größe (physikalisch). Die Veränderung dieser physikalischen Größe, sagt nichts über Ihren Informationsgehalt aus.

Energiewandlung

$$E_R = \int_{-\infty}^{\infty} u(t) \cdot i(t) dt$$

$$[E_R] = V \cdot A \cdot s = Ws$$

$$\text{mit } i(t) = \frac{u(t)}{R} \text{ folgt}$$

$$E_R = \frac{1}{R} \int_{-\infty}^{\infty} u^2(t) dt$$

Momentanleistung $P_r(t_1)$

$$P_{R}\left(t_{1}\right)=u\left(t_{1}\right)\cdot i\left(t_{1}\right) \qquad \qquad \left[P_{R}\left(t_{1}\right)\right]=W$$

$$P_{R}=U_{0}\cdot I_{0}=\frac{U_{0}^{2}}{R} \qquad \qquad \text{bei Gleichleistung}$$

Mittlere Leistung P_R

$$P_R = \lim_{T \to \infty} \frac{1}{T} \int_{t_1}^{t_1+T} u(t) \cdot i(t) dt$$

$$= \frac{1}{R} \cdot \lim_{T \to \infty} \frac{1}{T} \int_{t_1}^{t_1+T} u^2(t) dt$$

$$[P_R] = W$$

Spezialfall: Periodische Signalverläufe

$$=\frac{1}{n \cdot t_{P}} \int_{t_{1}}^{t_{1}+n \cdot t_{P}} u_{P}\left(t\right) \cdot i_{P}\left(t\right) dt = \frac{1}{R \cdot n \cdot t_{P}} \int_{t_{1}}^{t_{1}+n \cdot t_{P}} u_{P}^{2}\left(t\right) dt$$

T: Betrachtungszeit, Meßdauer t_1 : Startzeitpunkt t_P : Periodendauer R = const.

Signalenergie / Impulsenergie / Impulsmoment 2. Ordnung E_U

Nur für Energiesignale sinnvoll.

$$E_U = m_{i2} = \int_{-\infty}^{\infty} u^2(t) dt \qquad [E_U] = V^2 s$$

Zeitdiskrete Signalverläufe:

$$E_X = m_{i2} = \sum_{k=-\infty}^{\infty} X_q^2(k)$$
 $[E_X] = 1$

Entnormierung über einem realen Widerstand:

$$E_R = E_U \cdot \frac{1}{R} \qquad [E_R] = Ws$$

Signalleistung P_u / Gesamtsignalleistung P_i / quadratischer Mittelwert $\overline{u^2}$ / gewöhnliches Moment 2. Ordnung m_2

Nur für Leistungssignale sinnvoll.

$$P_u = \overline{u^2} = m_2 = \lim_{T \to \infty} \frac{1}{T} \int_{t_1}^{t_1 + T} u^2(t) dt$$
 [P_u] = V^2

Spezialfall: Periodische Signalverläufe

$$P_u = \overline{u^2} = m_2 = \frac{1}{t_p} \int_{t_1}^{t_1 + t_p} u_p^2(t) dt$$

Spezialfall: zeitdiskrete Signalverläufe

beliebiges nichtperiodisches Signal:

periodisches Signal:

$$P_X = \lim_{N \to \infty} \frac{1}{N} \cdot \sum_{k=k_1}^{k_1+N-1} X_q^2(k)$$

$$P_X = \frac{1}{N_P} \sum_{k=k_1}^{k_1+N-1} X_q^2 (k)_P$$

Spezialfall: konstannte Werte

$$P_X = X_q^2 \left(k_1 \right)_k$$

Entnormierung über einem realen Widerstand:

$$P_R = P_U \cdot \frac{1}{R} \tag{P_R}$$

$Signalenergie \leftrightarrow Signalleistung$

	Energiesignal	Leistungssignal
Signalenergie	endlicher Wert	$+\infty$
Signalleistung	0	endlicher Wert

15.4 Signalbeschreibung Leistungssignale

Effektivwert

Energiesignale haben einen Effektivwert von Null.

$$u_{eff} = \sqrt{P_u} = \sqrt{\lim_{T \to \infty} \frac{1}{T} \int_{t_1}^{t_1 + T} u^2(t) dt}$$

Spezialfall: zeitdiskrete Signalverläufe

$$X_{eff} = \sqrt{P_X} = \sqrt{\lim_{N \to \infty} \frac{1}{N} \cdot \sum_{k=k_1}^{k_1 + N - 1} X_q^2(k)}$$

Gleichanteil / linearer Mittelwert / gewöhnliches Moment 1. Ordnung m_1

Enrgiesignale haben einen Gleichanteil von Null.

beliebige Signalverläufe

$$\overline{x} = m_1 = \lim_{T \to \infty} \frac{1}{T} \int_{t_1}^{t_1 + T} x(t) dt \qquad [\overline{x}] = [x]$$

periodische Signalverläufe

$$\overline{x} = m_1 = \frac{1}{t_p} \int_{t_1}^{t_1 + t_p} x(t) dt \qquad [\overline{x}] = [x]$$

zeitdiskrete Signalverläufe

$$\overline{x_k} = \lim_{N \to \infty} \frac{1}{N} \sum_{k=k_1}^{k_1 + N - 1} x_q(k)$$

periodische zeitdiskrete Signalverläufe

$$\overline{x_k} = \frac{1}{N_p} \sum_{k=k_1}^{k_1+N-1} x_q(k)_p$$

Signalgleichleistung / quadrierter linearer Mittelwert \overline{u}^2 / quadriertes gewöhnliches Moment 1. Ordnung m_1^2

Energiesignale haben eine Signalgleichleistung von Null.

beliebige Signalverläufe

$$P_{u_{=}} = \left[\overline{u}\right]^{2} = m_{1}^{2} = \left[\lim_{T \to \infty} \frac{1}{T} \int_{t_{1}}^{t_{1}+T} u(t) dt\right]^{2}$$

$$[P_{u_{=}}] = V^{2}$$

zeitdiskrete Signalverläufe

$$P_{X_{=}} = \left[\overline{x}\right]^{2} = m_{1}^{2} = \left[\lim_{N \to \infty} \frac{1}{N} \sum_{k=k_{1}}^{k_{1}+N-1} X_{q}(k)\right]^{2}$$
 $[P_{X_{=}}] = 1$

Entnormierung

$$P_{R_{=}} = \frac{P_{u_{=}}}{R}$$

$$[P_{R_{=}}] = W$$

Signalwechselleistung $P_{u_{\sim}}/$ Varianz $\sigma^2/$ zentrales Moment 2. Ordnung μ_2

Energiesignale haben eine Signalwechselleistung von Null.

$$P_{u_{\sim}} = \sigma^{2} = \mu_{2} = \lim_{T \to \infty} \frac{1}{T} \int_{t_{1}}^{t_{1}+T} \left[u\left(t\right) - \overline{u} \right]^{2} dt$$

periodischer Spannungsverlauf

$$P_{p_{\sim}} = \frac{1}{t_p} \int_{t_1}^{t_1+t_p} [u(t) - \overline{u}]^2 dt$$

zeitdiskrete Signale

$$P_{X_{\sim}} = \lim_{N \to \infty} \frac{1}{N} \sum_{k=k}^{k_1+N-1} \left[X_q(k) - \overline{X} \right]^2$$

periodische zeitdiskrete Signale

$$P_{X_{\sim}} = \frac{1}{N_p} \sum_{k=k_1}^{k_1+N-1} \left[X_q(k)_p - \overline{X} \right]^2$$

Entnormierung

$$P_{R_{\sim}} = \frac{P_{u_{\sim}}}{R}$$

 $[P_{R_{\sim}}] = W$

Leistungsbilanz

$$P_u = P_{u_{=}} + P_{u_{\sim}} = m_2 = m_1^2 + \mu_2 = [\overline{u}]^2 + \sigma^2$$

15.5 Signalbeschreibung Energiesignale

Impulsfläche A_u / Impulsmoment 1. Ordnung m_{i1}

Leistungssignale besitzen Flächen von $\pm \infty$ b
zw. Null.

$$A_{u} = \int_{-\infty}^{\infty} u(t) dt \qquad [A_{u}] = Vs$$

zeitdiskrete Signale

$$A_X = \sum_{k=-\infty}^{\infty} X_q(k) \qquad [A_X] = 1$$

15.6 Systeme

Definition: Ein System ist ein physikalisches oder auch technisches Gebilde, welches ein Signal (Eingangssignal, Systemerregung / -anregung) in ein im Allgemeinen andersartiges Signal umformt. Dieses wird Ausgangssignal bzw. Systemantwort / -reaktion genannt.

Übersicht: Linearität Ist nur vorhanden, wenn Homogenität und Additivität vorliegen. Die Multiplikation eines konstannten Faktors mit dem Eingang, führt zu Multiplikation des gleichen Faktors mit dem Ausgang. x(t) ist additiv zerlegbar, diese Anteile können getrennt verarbei-Additivität tet sowie die Systemreaktionen addiert werden. Zeitinvarianz Zeitinvarianz ist vorhanden, wenn sich die Systemeigenschaften zeitlich nicht ändern. Eine Zeitverzögerung des Eingangssignals überträgt sich somit um eine gleiche Verzögerung ins Ausgangssignal. Kausalität Kausalität ist Vorhanden, wenn die Systemreaktion nicht schon vor Begin der Systemerregung einsetzt. Somit ist jedes realisierbare System zwingend kausal. Stabilität Stabilität Ist vorhanden, wenn bei einem betragsmäßig beschränktem, beliebigem breitbandigen Eingangssignal auch ein betragsmäßig beschränktes Ausgangssignal vorliegt. Grenzstabilität Bedingungen der Stabilität werden nicht erfüllt, jedoch ist die Signalleistung ab einem best Zeitpunkt konstannt.

Ausgangssignal wächst selbst beim verschwinden von x(t) unbe-

$\mathbf{Impulsantwort} \ / \ \mathbf{Gewichtsfunktion} \ g\left(t\right)$

Instabilität

grenzt an.

mit
$$x(t) = \delta(t)$$
 folgt $y(t) = g(t)$

$$[g(t)] = [\delta(t)] = s^{-1}$$

Sprungantwort / Übergangsfunktion h(t)

Zusammenhang:

$$\sigma(t) = \int_{-\infty}^{t} \delta(t) dt \Leftrightarrow \delta(t) = \frac{d\sigma(t)}{dt}$$
$$FT\{\sigma(t)\} = \frac{1}{2}\delta(f) - j\frac{1}{2\pi f}$$

Zusammenhang zwischen Übergangs- und Gewichtsfunktion

$$g(t) = \frac{\mathrm{d}h(t)}{\mathrm{d}t} \qquad \qquad \Rightarrow \qquad \qquad h(t) = \int_{-\infty}^{t} g(t) \, \mathrm{d}t$$
$$= \int_{-\infty}^{t} g(t) \, \mathrm{d}t$$
$$= \int_{-\infty}^{t} g(t) \, \mathrm{d}t$$

Faltungsoperation

- ullet setzt LTI-Systeme voraus
- \bullet Gewichtsfunktion wird nur bei LTI-Systemen angegeben

$$y(t) = T\{x(t)\} = \int_{-\infty}^{\infty} x(\tau) \cdot g(t - \tau) d\tau = x(t) * g(t)$$

zeitdiskrete Systeme:

$$y\left(k\right) = T\{x\left(k\right)\} = \sum_{L=-\infty}^{\infty} x\left(k\right) \cdot g\left(k-L\right) = x\left(k\right) * g\left(k\right)$$

$\begin{array}{c} {\rm Teil~IV} \\ {\bf Messtechnik} \end{array}$

Kapitel 16

Grundlagen

16.1 Begriffe

- Messwert x_i : gemessener Wert der Messgröße
- Wahrer Wert x_w : existierender Wert der Messgröße
- \bullet Richtiger Wert x_r : bekannter Wert mit vernachläßigbarer Differenz zum wahren Wert
- \bullet Messabweichung e: Differenz zwischen gemessenem und wahrem Wert
- Systematische Messabweichung e_{sys} : Bekannte systematische Messabweichung (korrigierbar)
- Messunsicherheit u: Intervall um den Messwert in dem der wahre Wert mit einer bestimmten Wahrscheinlichkeit zu finden ist

16.2 Messabweichung e

$$e = x - x_w$$

16.2.1 relative Messabweichung

$$e_{rel} = \frac{e}{x_w} = \frac{x - x_w}{x_w} = \frac{x}{x_w} - 1$$

Korrekturfaktor K

Korrigierter Messwert x_{korr}

Bei bekannter systematischer Messabweichung.

$$K = -e_{sys} x_{korr} = x + K$$

16.2.2 Messabweichung e_y

$$e_y = y - y_w = f(x_1 + e_{x_1}, x_2 + e_{x_2}, \dots, x_n + e_{x_n})$$

$$e_y = \sum_{i=1}^n \frac{\partial f}{\partial x_i} e_{x_i} \qquad \Delta y = \sum_{i=1}^n \frac{\partial f}{\partial x_i} \Delta x_i$$

16.2.3 Fortpflanzung systematischer Messabweichungen Addition / Subtraktion

$$y = x_1 \pm x_2 \qquad \qquad \longrightarrow \qquad \qquad e_y = e_{x_1} \pm e_{x_2}$$

Multiplikation

$$y = x_1 \cdot x_2 \qquad \longrightarrow \qquad e_y = x_2 \cdot e_{x_1} + x_1 \cdot e_{x_2}$$

$$e_{rel} = \frac{e_y}{y} = \frac{x_2 \cdot e_{x_1} + x_1 \cdot e_{x_2}}{x_1 \cdot x_2} = e_{rel, x_1} + e_{rel, x_2}$$

Division

$$y = \frac{x_1}{x_2}$$
 \longrightarrow $e_y = \frac{1}{x_2} e_{x_1} - \frac{x_1}{x_2^2} e_{x_2}$

$$e_{rel} = \frac{e_y}{y} = \frac{\frac{1}{x_2} e_{x_1} - \frac{x_1}{x_2^2} e_{x_2}}{x_1 \cdot x_2^{-1}} = e_{rel, x_1} - e_{rel, x_2}$$

16.3 Statistische Größen

Verteilungsfunktion

Verteilungsdichtefunktion

$$F\left(x\right) = prob\left(X \le x\right)$$

$$f\left(x\right) = \frac{d}{dx}F\left(x\right)$$

Es gillt:

$$\begin{split} F\left(x\right) &= \int_{-\infty}^{x} f\left(t\right) dt \\ F\left(x \to \infty\right) &= \int_{-\infty}^{\infty} f\left(t\right) dt = 1 \\ prob\left(a < x \le b\right) &= F\left(b\right) - F\left(a\right) = \int^{b} f\left(x\right) dx \end{split}$$

16.4 Erwartungswert, Varianz und Standardabweichung

Erwartungswert μ

wahrer Wert X

$$\mu = \frac{1}{N} \sum_{i=1}^{N} x_i$$
$$= \int_{-\infty}^{\infty} x \cdot f(x) dx$$

nur für stetige Zufallsgrößen

 $x_w = \mu$ nach Korrektur der systematischen Abweichung

Varianz σ^2

$$\sigma^2 = \frac{1}{N} \sum_{i=1}^{N} (x_i - \mu)^2$$
$$= \int_{-\infty}^{\infty} (x_i - \mu)^2 \cdot f(x) dx$$

$$\sigma = \sqrt{\sigma^2}$$

16.5 Verteilungsfunktionen

Normalverteilung

- Normal oder Gaußverteilung
- gute Näherung bei unbekannter statistischer Verteilung
- Werteverteilung:
 - 68,3% aller Werte liegen in $\mu \pm \sigma$
 - -95,5% aller Werte liegen in $\mu \pm 2\sigma$
 - -99.7% aller Werte liegen in $\mu \pm 3\sigma$

$$f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$$
$$\int_{-\infty}^{\infty} f(x) = 1$$

Gleichverteilung

- auch Rechteckverteilung
- alle vorkommenden Werte besitzen gleiche Wahrscheinlichkeit im Intervall

$$f(x) = \begin{cases} \frac{1}{2a} & \mu - a < x < \mu + a \\ 0 & \text{sonst} \end{cases}$$
$$\int_{-\infty}^{\infty} f(x) = 1$$
$$\sigma^2 = \frac{1}{3}a^2$$

16.6 Stichprobe

Mittelwert \overline{x}

empirische Varianz s^2

Der Mittelwert ist ein Schätzwert für den Erwartungswert μ und damit für den wahren Wert.

Die empirische Varianz ist ein Schätzwert für die eigentliche Varianz der Messreihe.

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$
 $s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \overline{x})^2$

16.7 Vertrauensbereich für den Erwartungswert

Endlich große Stichprobe liefert zufällige Differenz zwischem Schätzwert \overline{x} und wahrem Wert $\mu = x_w$.

$$\overline{x_g} = \frac{1}{m} \sum_{i=1}^m \overline{x_i} s_g^2 = \frac{1}{m} s_i^2 s_g = \frac{1}{\sqrt{m}} s_i$$

Vertrauensbereich:

$$\overline{x} - \frac{t}{\sqrt{n}}s < \mu < \overline{x} + \frac{t}{\sqrt{n}}$$
 mit $t = t(n, \alpha)$

Studentverteilung

Gibt den t Faktor für Normalverteilungen an

 α Überschreitungswhrscheinlichkeit

$1 - \alpha$ Vertrauensniveau

$1 - \alpha$	68,3%	95%	99,73%
n=2	1,84	12,70	235,80
n = 3	1,32	4,30	19,21
n = 4	1,20	3,18	9,22
n = 5	1,15	2,78	6,62
n = 6	1,11	$2,\!57$	5,51
n = 10	1,06	2,26	4,09
n = 20	1,03	2,09	3,45
n = 50	1,01	2,01	3,16
$n \to \infty$	1,00	2,00	3,00

16.8 Fortpflanzung zufälliger Abweichungen

Bedingung: Messergebnis setzt sich aus mehreren Messgrößen x_i zusammen

Erwartungswerte

Varianzen

$$\mu_n = \frac{1}{N} \sum_{i=1}^{N} x_{n_i}$$

$$\sigma_n^2 = \frac{1}{N} \sum_{i=1}^{N} (x_{n_i} - \mu_n)^2$$

Worst-Case-Kombination

Maximale Abweichung des Ergebnisses vom Mittelwert.

$$y = f(x_1, x_2, \dots, x_n)$$
$$|\Delta y| = \sum_{i=1}^{n} \left| \frac{\partial f}{\partial x_i} \Delta x_i \right|$$

statistische Kombination der Varianzen

Gaußsches Fehlerfortpflanzungsgesetz...

$$y = f(x_1, x_2, \dots, x_n)$$

$$\sigma_y^2 = \sum_{k=1}^n \left(\left(\frac{\partial f}{\partial x_k} \Big|_{(\mu_1, \mu_2, \dots, \mu_n)} \right)^2 \sigma_k^2 \right)$$

$$\sigma_y^2 = \left(\frac{\partial f}{\partial x_1} \Big|_{\mu_1} \sigma_1 \right)^2 + \left(\frac{\partial f}{\partial x_2} \Big|_{\mu_2} \sigma_2 \right)^2 + \left(\frac{\partial f}{\partial x_3} \Big|_{\mu_3} \sigma_3 \right)^2 + \cdots$$

...kann auf empirische Varianz übertragen werden.

$$y = f(\overline{x_1}, \overline{x_2}, \dots, \overline{x_n})$$

$$s_y^2 = \sum_{k=1}^n \left(\left(\frac{\partial f}{\partial \overline{x_k}} \Big|_{(\mu_1, \mu_2, \dots, \mu_n)} \right)^2 s_k^2 \right)$$

16.9 Fortpflanzung von Messunsicherheiten

Worst Case Abschätzung und Gaußsches Fortpflanzungsgesetz lassen sich auf die Messunsicherheiten übertragen.

Worst Case Abschätzung der Unsi- Statistische Fortpflanzung der Unsichercherheit heit

$$u_y = \sum_{i=1}^n \left| \frac{\partial f}{\partial x_i} \right| u_{x_i} \qquad \qquad u_y^2 = \sum_{i=1}^n \left(\frac{\partial f}{\partial x_i} \right)^2 u_{x_i}^2$$

$egin{array}{c} { m Teil} \ { m V} \\ { m \bf Anhang} \end{array}$

Sachregister

Additionstheoreme8
Binomische Lehrsatz7
Differentialgleichungen
1.Ordnung24
2.Ordnung24
Linear24
Partikuläre Lösungen
e-, sin- und cos Funktion 25
Polynom
Polynom und e-Funktion 25
sin- und cos Funktion25
Ebenen17
Geraden17
Gleichungen12
Komplexe Zahlen
Kosinus 8
Kotangens8
Kreuzprodukt16
Logarithmus7
Polynomdivision
Potenzen
Sinus8
Spatprodukt
Tangens 8
Vektorrechnung
Wurzelsatz von Vieta