Solving Sentiment Analysis with an ML-based Approach

Vitthal Srinivasan CO-FOUNDER, LOONYCORN www.loonycorn.com

Overview

Understand the intuition behind ML-based approaches

Apply Naive Bayes classification methods to sentiment analysis

Superficially introduce SVM classifiers

Represent documents with different feature vector types

Exploring ML-based Approaches

Whales: Fish or Mammals?

Mammals

Members of the infraorder *Cetacea*

Fish

Look like fish, swim like fish, move with fish

Rule-based Binary Classifier

Corpus

Classification Algorithm

ML-based Classifier

Rule-based or ML-based?

ML-based

Rule-based

Dynamic

Static

Experts optional

Experts required

Corpus required

Corpus optional

Training step

No training step

Context

Different meanings in different contexts

Rule-based analysers often struggle with context

ML-based systems tend to do better if 'trained' with the right data

The Intuition Behind Bayes Theorem

Swoosh as a Binary Classification Problem

Classify a person who jogs past you on the street

Items

Runners

Police officers

Total

P(Occurence)

9	
1	
10	

Observation 1: Today is the city marathon, more runners than police officers out on the streets

P(Police Officer) = 1/10

These are *a priori* probabilities: before anything specific about the person is known

Observation 2: Specific items appear more often with one category than with the other

Item	Occurrences with Police Officers	Occurrences with Runners
Handcuffs	6	0
Running Shoes	2	8
Gun	9	0
Badge	8	0
Walkie-Talkie	8	3

Upon Closer Examination

The person that zipped past carried these two items

Applying Bayes Theorem

P(Runner/ = Handcuffs, Badge)

 Probability that a person carrying handcuffs and a badge is a runner

Step 1: Find probability that this person is a runner

Applying Bayes Theorem

P(Police Officer/ = Handcuffs, Badge) ha

= Probability that a person carrying handcuffs and a badge is a police officer

Step 2: Find probability that this person is a police officer

Applying Bayes Theorem

```
P(Police Officer/
Handcuffs,Badge)

and

P(Runner/
Handcuffs,Badge) =
```

Step 3: Pick the label with the higher probability

Naive Bayes for Classification Problems

Training Data

Classification Algorithm

ML-based Classifier

Training Data

Reviews

Amazing!	
Worst movie ever	
Two thumbs up	
Part 2 was bad, 3 the worst	
Up there with the greats	

Labels

Positive
Negative
Positive
Negative
Positive

Apply Bayes Theorem to probability information from the training data to classify problem instances

Reviews	Occurence
Positive	3
Negative	2
Total	5

Observation 1: There are more positive reviews than negative reviews in the training data

Reviews

Positive Negative Total

P(Occurence)

3/5
2/5
1

Observation 1: There are more positive reviews than negative reviews in the training data

These are *a priori* probabilities: before anything specific about review contents is known

Reviews

Amazing!
Worst movie ever
Two thumbs up
Part 2 was bad, 3 the worst
Up there with the greats

Labels

Positive	
Negative	
Positive	
Negative	
Positive	

Observation 2: Specific words occur more in one type of review than in the other

Reviews

Amazing!
Worst movie ever
Two thumbs up
Part 2 was bad, 3 the worst
Up there with the greats

Labels

Positive		
Negative		
Positive		
Negative		
Positive		

The word up appears twice in positive reviews, but zero times in negative reviews

Reviews

Amazing!
Worst movie ever
Two thumbs up
Part 2 was bad, 3 the worst
Up there with the greats

Labels

Positive
Negative
Positive
Negative
Positive

The word worst appears twice in negative reviews, and zero times in positive reviews

Word	Occurrences in Positive Reviews	Occurrences in Negative Reviews
amazing	1	
worst		2
movie		1
ever		1
two	1	1
thumbs	1	
up	2	
Part		1
was		1
bad		1
3		1
the	1	1
there	1	
with	1	
greats	1	
	9	10

Word	P(Occurrences in Positive Reviews)	P(Occurrences in Negative Reviews)
amazing	1/9	
worst		2/10
movie		1/10
ever		1/10
two	1/9	1/10
thumbs	1/9	
up	2/9	
Part		1/10
was		1/10
bad		1/10
3		1/10
the	1/9	1/10
there	1/9	
with	1/9	
greats	1/9	

Word	P(Occurrences in	P(Occurrences in
VVOIG	Positive Reviews)	Negative Reviews)

amazing	1/9	
worst		2/10
movie		1/10
ever		1/10
two	1/9	1/10
thumbs	1/9	
up	2/9	
Part		1/10
was		1/10
bad		1/10
3		1/10
the	1/9	1/10
there	1/9	
with	1/9	
greats	1/9	

Word	•	P(Occurrences in Negative Reviews)
amazing	1/9	

P(text contains "amazing"/label = Positive) = 1/9

P(text contains "amazing"/label = Negative) = 0

Word	P(Occurrences in Positive Reviews)	P(Occurrences in Negative Reviews)
amazing	1/9	
worst		2/10
movie		1/10
ever		1/10
two	1/9	1/10
thumbs	1/9	
up	2/9	
Part		1/10
was		1/10
bad		1/10
3		1/10
the	1/9	1/10
there	1/9	
with	1/9	
greats	1/9	

Word	P(Occurrences in	P(Occurrences in
VVOIG	Positive Reviews)	Negative Reviews)

amazing	1/9	
worst		2/10
movie		1/10
ever		1/10
two	1/9	1/10
thumbs	1/9	
up	2/9	
Part		1/10
was		1/10
bad		1/10
3		1/10
the	1/9	1/10
there	1/9	
with	1/9	
greats	1/9	

Word	•	P(Occurrences in Negative Reviews)
worst		2/10

P(text contains "worst"/label = Positive) = 0

P(text contains "worst"/label = Negative) = 2/10

Classifying a New Problem Instance

Classifying a New Problem Instance

Reviews

Amazing!
Worst movie ever
Two thumbs up
Part 2 was bad, 3 the worst
Up there with the greats

Labels

Positive
Negative
Positive
Negative
Positive

"Really bad, the worst"

Given the words in this review, call them t, is the review likely to be positive or negative?

```
P(Positive/t) = P(label = Positive/
text = "Really bad, the worst")
```

Step 1: Find probability that the review is actually positive, given the text of the review (use Bayes Theorem)

```
P(Negative/t) = P(label = Negative/
text = "Really bad, the worst")
```

Step 2: Find probability that the review is actually negative, given the text of the review (use Bayes Theorem)

```
If P(Positive/t) > P(t/Negative/t)
classify t as Positive
else
classify t as Negative
```

Step 3: Pick the label with the higher probability

Naive Bayes Classification

```
P(Positive/t) = P(label = Positive/text = "Really bad, the worst")

P(Negative/t) = P(label = Negative/text = "Really bad, the worst")
```

```
If P(Positive/t) > P(t/Negative/t)
    classify t as Positive
else
    classify t as Negative
```

P(t/Positive) x P(Positive)

P(Positive/t) =

P(t/Positive) x P(Positive) + P(t/Negative) x P(Negative)

Step 1: Find probability that the review is actually positive, given the text of the review (use Bayes Theorem)

P(t/Negative) x P(Negative)

P(Negative/t) =

P(t/Positive) x P(Positive) + P(t/Negative) x P(Negative)

Step 2: Find probability that the review is actually negative, given the text of the review (use Bayes Theorem)

P(t/Positive) x P(Positive)

P(Positive/t) =

P(t/Positive) x P(Positive) + P(t/Negative) x P(Negative)

P(t/Negative) x P(Negative)

P(Negative/t) =

P(t/Positive) x P(Positive) + P(t/Negative) x P(Negative)

P(t/Positive) x P(Positive)

P(Positive/t) =

P(t/Positive) x P(Positive) + P(t/Negative) x P(Negative)

P(t/Negative) x P(Negative)

P(Negative/t) =

P(t/Positive) x P(Positive) + P(t/Negative) x P(Negative)

P(t/Positive) x P(Positive)

P(Positive/t) = ...

P(t/Negative) x P(Negative)

P(Negative/t) = ...

P(t/Positive) x P(Positive)

P(Positive/t) = ...

P(t/Negative) x P(Negative)

P(Negative/t) =

A Priori Probabilities

P(Positive) = 3/5

Before we know anything about review contents

P(Negative) = 2/5

Before we know anything about review contents

Observation 1: There are more positive reviews than negative reviews in the training data

P(t/Positive) x P(Positive)

P(Positive/t) = ...

P(t/Negative) x P(Negative)

P(Negative/t) =

 $P(t/Positive) \times 3/5$ $P(t/Positive) \times 3/5$... $P(t/Negative) \times 2/5$ P(Negative/t) =

```
P(t/Positive) = P(text = "Really bad, the worst" /label = Positive)
```

P(text contains "Really"/label = Positive) AND
P(text contains "bad"/label = Positive) AND
P(text contains "the"/label = Positive) AND
P(text contains "worst"/label = Positive)

```
P(t/Positive) = P(text = "Really bad, the worst" /label = Positive)
```

= P(text contains "Really"/label = Positive) AND
P(text contains "bad"/label = Positive) AND
P(text contains "the"/label = Positive) AND
P(text contains "worst"/label = Positive)

Naive Bayes makes naive (strong) assumptions about independence of features

```
P(t/Positive) = P(text = "Really bad, the worst" /label = Positive)
```

= P(text contains "Really"/label = Positive) AND
P(text contains "bad"/label = Positive) AND
P(text contains "the"/label = Positive) AND
P(text contains "worst"/label = Positive)

Conditional Probabilities

Word	P(Occurrences in Positive Reviews)	P(Occurrences in Negative Reviews)
amazing	1/9	
worst		2/10
movie		1/10
ever		1/10
two	1/9	1/10
thumbs	1/9	
up	2/9	
Part		1/10
was		1/10
bad		1/10
3		1/10
the	1/9	1/10
there	1/9	
with	1/9	
greats	1/9	

Conditional Probabilities

Word	P(Occurrences in	P(Occurrences in
VVOIG	Positive Reviews)	Negative Reviews)

amazing	1/9	
worst		2/10
movie		1/10
ever		1/10
two	1/9	1/10
thumbs	1/9	
up	2/9	
Part		1/10
was		1/10
bad		1/10
3		1/10
the	1/9	1/10
there	1/9	
with	1/9	
greats	1/9	

Conditional Probabilities

Word	•	P(Occurrences in Negative Reviews)
worst		2/10

P(text contains "worst"/label = Positive) = 0

P(text contains "worst"/label = Negative) = 2/10

```
P(text = "Really bad, the worst"
P(t/Negative) =
                                 /label = Negative)
                   P(text contains "Really"/label = Negative) x
                                     1/10 x
                                     1/10 x
                                     2/10
                                  2/1000
```

```
P(t/Positive) = P(text = "Really bad, the worst" /label = Positive)
```

```
P(text contains "Really"/label = Positive) x
P(text contains "bad"/label = Positive) x
P(text contains "the"/label = Positive) x
P(text contains "worst"/label = Positive)
```

```
P(text = "Really bad, the worst"
P(t/Positive) =
                                   /label = Positive)
                    P(text contains "Really"/label = Positive) x
                                        Ox
                                       1/10 x
```

P(Positive/t) = $0 \times 3/5$...

2/1000 × 2/5

P(Negative/t) =

```
P(Positive/t) = P(label = Positive/text = "Really bad, the worst")

P(Negative/t) = P(label = Negative/text = "Really bad, the worst")
```

```
If P(Positive/t) > P(t/Negative/t)
    classify t as Positive
else
    classify t as Negative
```

Classifying a New Problem Instance

Classifying a New Problem Instance

Support Vector Machines for Classification Problems

Data in One Dimension

Unidimensional data points can be represented using a line, such as a number line

Data in One Dimension

Unidimensional can also be separated, or classified, using a point

Data in Two Dimensions

Bidimensional data points can be represented using a plane, and classified using a line

Data in N Dimensions

N-dimensional data can be represented in a hypercube, and classified using a hyperplane

Support Vector Machines

SVM classifiers find the hyperplane that best separates points in a hypercube

SVM classifiers are incredibly hard to build, but fairly easy to use

Kernel functions are key to building SVM classifiers

Feature vectors are key to using SVM classifiers

SVM Is Cool, Naive Bayes Is Robust

SVM is much more complicated

SVM is harder to understand and to use

Naive Bayes often works as well

Even with minimal tuning or tweaking

SVM needs a lot of tuning

Parameter tuning makes all the difference in SVM

Summary

ML-based approaches often involve a crucial training step

Naive Bayes classifiers are simple, robust and perform very well

Other ML-based methods include SVM classifiers

Different methods rely on different feature representations