自分で触ってよくわかる データの要約の話:

データの概要をつかむ

神戸市立医療センター中央市民病院臨床研究推進センター

宮越 千智

今回の学習目標

- ✓ 練習に使えるサンプルデータの読み込み方法を理解する
- ✓ 一連の操作を1つのコードにまとめて書く方法を知る

復習:

機械の視点でみた変数の型

変数の型	説明	例
文字列型	文字の並びを値にとる 数字を文字列として認識させることもある	M, F, "1"
整数型	整数のみ	-1, 0, 1
浮動小数点数型 (実数型)	小数もOK	1.0, 3.14
ブール型	真か偽かどちらかの値をとる 論理式の真偽を示すために使う	True, False
日付·時間型	日付や時間を表す 期間の計算が可能	2024-02-25 02:50:15

復習:

変数の分布を数値で示す方法

変数の種類	示し方	指	á標	対応する グラフ
質的変数	水準ごとに度数と割合を示す	度数、割合		棒グラフ 円グラフ
量的変数	いくつかの区分に分けて 度数と割合を示す	度数、割合		ヒストグラム
	要約値で示す	中心位置	平均値 中央値 最頻値	たし 片 図
		散らばり具合	分散·標準偏差 四分位範囲 範囲	箱ヒゲ図

用意されている練習用データセットを使う

- Rの豊富なサンプルデータ集(2000種類以上)
 - ✓ https://vincentarelbundock.github.io/Rdatasets/articles/data.html
 - ✓ Pythonにもサンプルデータはあるが、Rの方が豊富
- 今回はsurvivalパッケージのpbcデータを使う
 - 1. 上記のリンクにアクセス
 - 2. データセット名で検索
 - 3. csvファイルをダウンロード

Rを使いたい人

Rを使いたい人:

サンプルデータを読み込んで確認する

- survialパッケージを読み込む (tidyverseパッケージも読み込んでおく)
- 2. data()関数でデータセットを読み込む

```
data(pbc)
```

3. 下のコードを実行して、データの全体像をつかんでおく

```
pbc %>% View() #データセットを別タブで表示
pbc %>% glimpse() #変数一覧を表示
```


\$ ascites <int> 1 0 0 0 0 0 0 0 1 0

Rを使いたい人:

%>%(パイプ記号)で関数に引数を渡す

- tidyverseパッケージを読み込むとパイプ記号が使える (R4.1.0以降だと標準機能として I> というパイプ記号が使えますが、見慣れている %>% を使っていきます)
- ・ 関数の戻り値を、次の関数に第1引数として渡すときに便利
- 例: xを関数Aに渡して得られる結果を、関数Bに渡した結果が欲しい

✓ 通常の書き方だと、必要のない中間産物(y)にも名前をつけないといけない

✓ パイプ記号を使うと中間産物が発生しないので読みやすい

$$z < - A(x) \% > \% B()$$

Rを使いたい人:

データの概要を確認するための関数

説明	関数	パッケージ	備考
全体をそのまま表示	View(data)	標準	別タブで表示
全体を要約して表示	skim(<i>data</i>)	skimr	欠測割合や要約値を一括表示
	summary(<i>data</i>)	標準	要約値を一括表示
一部を表示	head(<i>data</i>)	標準	冒頭の一部を表示
	slice_head(<i>data</i>)	tidyverse	冒頭の一部を表示
	slice_tail(<i>data</i>)	tidyverse	末尾の一部を表示
	slice_sample(<i>data</i>)	tidyverse	ランダムに抽出して表示
	slice_max(<i>data, 変数名</i>)	tidyverse	指定した変数について降順に一部表示
	slice_min(<i>data, 変数名</i>)	tidyverse	指定した変数について昇順に一部表示
変数一覧を表示	str(data)	標準	変数名と型を一覧表示
	glimpse(data)	tidyverse	変数名と型を一覧表示

Pythonを使いたい人:

サンプルデータを読み込んで確認する

- 1. 使いたいサンプルデータのパッケージ名とデータセット名をメモしておく
- 2. 以下のように、statsmodelsパッケージのget_rdataset()を使う

```
import statsmodels.api as sm
dataset = sm.datasets.get_rdataset("データセット名", "パッケージ名")
df = dataset.data
```

- ✓ datasetには、データ本体(.data)のほか、データセットのタイトル(.title)やデータセットに関する説明(._doc_) も含まれているので、.dataという属性のみ取り出してdfと名前をつけた
- 3. 下のコードを実行して、データの全体像をつかんでおく

```
print(df)
```

```
1 print(df)
                    age sex ascites hepato spiders edema
  id time status trt
            2 1.0 58.765229 f
             0 1.0 56.446270 f
             2 1.0 70.072553 m
             2 1.0 54.740589 f
             1 2.0 38.105407 f
                                0.0 1.0
               2 NaN 67.000684 f
                                               NaN 0.
               0 NaN 39.000684 f
               0 NaN 56.999316 f
                                   NaN
                                        NaN
                                               NaN 0
415 416 1055
```

Pythonを使いたい人:

データの概要を確認するためのメソッド

説明	関数	備考
全体を要約して表示	df.describe()	要約値を一括表示
欠測数を表示	df.isnull().sum()	(次スライド:メソッドチェーン参照)
カテゴリー毎の度数を表示	df['変数名'].value_counts()	
如大丰二	df.head()	冒頭の一部を表示
一部を表示	df .tail ()	末尾の一部を表示
亦粉、除大丰二	df.info()	変数名と型を一覧表示
変数一覧を表示	df.dtypes	変数名と型を一覧表示

Pythonを使いたい人:

メソッドをつなげて一気に処理する(メソッドチェーン)

- オブジェクト名の後に「.メソッド名」を足すことで、オブジェクトに対して操作ができる
- ・メソッドを適用した結果に対して、次のメソッドを適用したいときは、 そのままメソッドを数珠状に続けて書くことができる
- 例: dfにメソッドAを適用し、その結果にメソッドBを適用したい

✓ 通常の書き方だと、必要のない中間産物(df2)にも名前をつけないといけない

✓ メソッドチェーンを使うと中間産物が発生しないので読みやすい

$$df2 = df.a.b$$

課題5: データ確認

- Rのsurvivalパッケージにあるpbcデータについて、 治療別にデータを要約してみましょう
 - ✓ 治療方法を表す変数: trt
 - ✓ R(tidyverse): group by(変数名)を挟んでからskim()を実行
 - ✓ Python(pandas): .groupby('変数名')を挟んでから.describe()を実行

今回のまとめ

- ✓ Rではパイプ記号、Pythonではメソッドチェーンを使って、 一連の操作を1つのコードにまとめて書くことができます
- ✓ 複数行にまたがる場合は以下の点に注意してください

R(tidyverse)

```
result <- df %>%
fun_a() %>%
fub_b()
```

行末にパイプ記号がくるようにする

Python

全体を()でくくる