Package 'TaxaNorm'

December 12, 2023

Title Feature-Wise Normalization for Microbiome Sequencing Data

Version 2.4

Maintainer Dillon Lloyd <dtlloyd@ncsu.edu>

Description A novel feature-wise normalization method based on a zero-inflated negative binomial model. This method assumes that the effects of sequencing depth vary for each taxon on their mean and also incorporates a rational link of zero probability and taxon dispersion as a function of sequencing depth. Ziyue Wang, Dillon Lloyd, Shanshan Zhao, Alison Motsinger-Reif (2023) <doi:10.1101/2023.10.31.563648>.

License GPL-3

Depends R (>= 4.0.0), microbiome,

Imports phyloseq, stats, S4Vectors, BiocGenerics, vegan, methods, MASS, future, future.apply, matrixStats, pscl, parallelly, ggplot2, utils

URL https://github.com/wangziyue57/TaxaNorm

biocViews Sequencing, Microbiome, Metagenomics, Normalization, Visualization

Suggests rmarkdown, knitr

VignetteBuilder knitr

Encoding UTF-8

RoxygenNote 7.2.3

BugReports https://github.com/wangziyue57/TaxaNorm/issues

NeedsCompilation no

Author Ziyue Wang [aut],
Dillon Lloyd [aut, cre, cph],
Shanshan Zhao [aut, ctb],
Alison Motsinger-Reif [aut, ctb]

Repository CRAN

Date/Publication 2023-12-12 18:30:05 UTC

2 TaxaNorm-datasets

R topics documented:

	TaxaNorm-datasets	
	TaxaNormGenerics	3
	TaxaNorm_Model_Parameters-class	4
	TaxaNorm_Model_QC	6
	TaxaNorm_NMDS	6
	TaxaNorm_Normalization	7
	TaxaNorm_QC_Input	8
	TaxaNorm_Results-class	9
	TaxaNorm_Run_Diagnose	11
Index		13

TaxaNorm-datasets

TaxaNorm data objects

Description

Objects included in the TaxaNorm package, loaded with utils::data

Usage

```
data(TaxaNorm_Example_Input, package = "TaxaNorm")
data(TaxaNorm_Example_Output, package = "TaxaNorm")
```

$TaxaNorm_Example_Input$

Example data #'

TaxaNorm_Example_Output

Example output

TaxaNormGenerics 3

 ${\tt TaxaNormGenerics}$

TaxaNorm package generics

Description

TaxaNorm package generics; see class man pages for associated methods

Usage

```
input_data(x, ...)
input_data(x, ...) \leftarrow value
rawdata(x, ...)
rawdata(x, ...) \leftarrow value
normdata(x, ...)
normdata(x, ...) \leftarrow value
ecdf(x, ...)
ecdf(x, ...) \leftarrow value
model_pars(x, ...)
model_pars(x, ...) \leftarrow value
converge(x, ...)
converge(x, ...) <- value</pre>
11k(x, ...)
llk(x, ...) \leftarrow value
final_df(x, ...)
final_df(x, ...) \leftarrow value
coefficients(x, ...)
coefficients(x, ...) \leftarrow value
mu(x, ...)
```

```
mu(x, ...) \leftarrow value
theta(x, ...)
theta(x, ...) \leftarrow value
pi(x, ...)
pi(x, ...) \leftarrow value
```

Arguments

x TaxaNorm S4 object
... Included for extendability; not currently used value Replacement value

Value

TaxaNorm generic functions return the specified slot of the TaxaNorm object given to the function

```
TaxaNorm_Model_Parameters - class

TaxaNorm_Model_Parameters
```

Description

S4 class to store TaxaNorm Parameters

Usage

```
TaxaNorm_Model_Parameters(coefficients, mu, theta, pi)
## S4 method for signature 'TaxaNorm_Model_Parameters'
coefficients(x)
## S4 replacement method for signature 'TaxaNorm_Model_Parameters'
coefficients(x) <- value
## S4 method for signature 'TaxaNorm_Model_Parameters'
mu(x)
## S4 replacement method for signature 'TaxaNorm_Model_Parameters'
mu(x) <- value
## S4 method for signature 'TaxaNorm_Model_Parameters'
theta(x)</pre>
```

```
## S4 replacement method for signature 'TaxaNorm_Model_Parameters'
theta(x) <- value

## S4 method for signature 'TaxaNorm_Model_Parameters'
pi(x)

## S4 replacement method for signature 'TaxaNorm_Model_Parameters'
pi(x) <- value</pre>
```

Arguments

coefficients Passed to coefficients slot

mu Passed to mu slot
theta Passed to theta slot
pi Passed to pi slot

x TaxaNorm_Model_Parameters object

value Replacement value

Details

Parameters for TaxaNorm Method

Functions

- coefficients(TaxaNorm_Model_Parameters): Return coefficients slot
- mu(TaxaNorm_Model_Parameters): Return mu slot
- theta(TaxaNorm_Model_Parameters): Return theta slot
- pi(TaxaNorm_Model_Parameters): Return pi slot

Slots

```
coefficients matrix coefficients
mu matrix mu
theta matrix theta
pi matrix pi
```

```
coefficients <- matrix(c(1,2,3,4,5,6,7,8,9),nrow=3,ncol=3,byrow=TRUE)

mu <- matrix(c(1,2,3,4,5,6,7,8,9),nrow=3,ncol=3,byrow=TRUE)

theta <- matrix(c(1,2,3,4,5,6,7,8,9),nrow=3,ncol=3,byrow=TRUE)

pi <- matrix(c(1,2,3,4,5,6,7,8,9),nrow=3,ncol=3,byrow=TRUE)

matrix(c(1,2,3,4,5,6,7,8,9),nrow=3,ncol=3,byrow=TRUE)

matrix(c(1,2,3,4,5,6,7,8,9),nrow=3,ncol=3,byrow=TRUE)
```

TaxaNorm_NMDS

TaxaNorm_Model_QC

Function to QC TaxNorm algorithm

Description

Function to QC TaxNorm algorithm

Usage

```
TaxaNorm_Model_QC(TaxaNormResults)
```

Arguments

TaxaNormResults

Input data; Results from TaxaNorm normalization

Value

a list containing qc taxnorm object

Examples

```
data("TaxaNorm_Example_Output", package = "TaxaNorm")
TaxaNorm_Model_QC(TaxaNormResults = TaxaNorm_Example_Output)
```

TaxaNorm_NMDS

Function for TaxNorm NMDS

Description

Function for TaxNorm NMDS

Usage

```
TaxaNorm_NMDS(TaxaNormResults, group_column)
```

Arguments

TaxaNormResults

(Required) Input data; should be either a phyloseq object or a count matrix

group_column column to cluster on

Value

NMDS Plot

TaxaNorm_Normalization

Examples

```
data("TaxaNorm_Example_Output", package = "TaxaNorm")
TaxaNorm_NMDS(TaxaNorm_Example_Output, group_column = "body_site")
```

TaxaNorm_Normalization

Function to run TaxaNorm algorithm

Description

Function to run TaxaNorm algorithm

Usage

```
TaxaNorm_Normalization(
  data,
  depth = NULL,
  group = NULL,
  meta.data = NULL,
  filter.cell.num = 10,
  filter.taxa.count = 0,
  random = FALSE,
  ncores = NULL
)
```

Arguments

	data	(Required) Input data; should be either a phyloseq object or a count matrix	
	depth	sequencing depth if pre-calculated. It should be a vector with the same length and order as the column of the count data $\frac{1}{2}$	
	group	condition variables if samples are from multiple groups; should be correpsond to the column of the count data. default is NULL, where no grouping is considered $\frac{1}{2}$	
	meta.data	meta data for Taxa	
filter.cell.num			
		taxa with "filter.cell.num" in more than the value provided will be filtered	
filter.taxa.count			
		"filter.taxa.count" samples will be removed before testing. default is keep taxa appear in at least 10 samples within each group	
	random	calculate randomized normal quantile residual	
	ncores	whether multiple cores is used for parallel computing; default is $\max(1, \text{detect-Cores}()$ - 1)	

Value

a TaxaNorm Object containing the normalized count values and accessory information

Examples

TaxaNorm_QC_Input

Function for TaxNorm input data

Description

Function for TaxNorm input data

Usage

```
TaxaNorm_QC_Input(data)
```

Arguments

data

(Required) Input data; should be either a phyloseq object or a count matrix

Value

QC PLots

```
data("TaxaNorm_Example_Input", package = "TaxaNorm")
qc_data <- TaxaNorm_QC_Input(TaxaNorm_Example_Input)</pre>
```

TaxaNorm_Results-class

TaxaNorm Results

Description

S4 class to store TaxaNorm Results

Usage

```
TaxaNorm_Results(
  input_data,
  rawdata,
  normdata,
  ecdf,
 model_pars,
  converge,
 11k,
  final_df
## S4 method for signature 'TaxaNorm_Results'
input_data(x)
## S4 replacement method for signature 'TaxaNorm_Results'
input_data(x) \leftarrow value
## S4 method for signature 'TaxaNorm_Results'
rawdata(x)
## S4 replacement method for signature 'TaxaNorm_Results'
rawdata(x) <- value</pre>
## S4 method for signature 'TaxaNorm_Results'
normdata(x)
## S4 replacement method for signature 'TaxaNorm_Results'
normdata(x) <- value</pre>
## S4 method for signature 'TaxaNorm_Results'
ecdf(x)
## S4 replacement method for signature 'TaxaNorm_Results'
ecdf(x) <- value
## S4 method for signature 'TaxaNorm_Results'
model_pars(x)
```

```
## S4 replacement method for signature 'TaxaNorm_Results'
model_pars(x) <- value

## S4 method for signature 'TaxaNorm_Results'
converge(x)

## S4 replacement method for signature 'TaxaNorm_Results'
converge(x) <- value

## S4 method for signature 'TaxaNorm_Results'
llk(x)

## S4 replacement method for signature 'TaxaNorm_Results'
llk(x) <- value

## S4 method for signature 'TaxaNorm_Results'
final_df(x)

## S4 replacement method for signature 'TaxaNorm_Results'
final_df(x)</pre>
```

Arguments

input_data passed to input_data slot rawdata Passed to rawdata slot normdata Passed to normdata slot ecdf Passed to ecdf slot model_pars Passed to model_pars slot converge Passed to converge slot 11k Passed to 11k slot final_df Passed to final_df slot TaxaNorm_Results object

Details

value

All results from the TaxaNorm method and what was used to get those results

Functions

- input_data(TaxaNorm_Results): Return input_data slot
- rawdata(TaxaNorm_Results): Return rawdata slot

Replacement value

- normdata(TaxaNorm_Results): Return normdata slot
- ecdf(TaxaNorm_Results): Return ecdf slot

- model_pars(TaxaNorm_Results): Return model_pars slot
- converge(TaxaNorm_Results): Return converge slot
- llk(TaxaNorm_Results): Return llk slot
- final_df(TaxaNorm_Results): Return final_df slot

Slots

```
input_data ANY phyloseq input data
rawdata data.frame Data frame of counts to use
normdata data.frame Normalized Data
ecdf data.frame ecdf
model_pars TaxaNorm_Model_Parameters list of model parameters
converge vector(<logical>) converge
llk ANY llk
final_df ANY final_df
```

Examples

```
coefficients \leftarrow matrix(c(1,2,3,4,5,6,7,8,9),nrow=3,ncol=3,byrow=TRUE)
mu \leftarrow matrix(c(1,2,3,4,5,6,7,8,9),nrow=3,ncol=3,byrow=TRUE)
theta <- matrix(c(1,2,3,4,5,6,7,8,9),nrow=3,ncol=3,byrow=TRUE)
pi \leftarrow matrix(c(1,2,3,4,5,6,7,8,9),nrow=3,ncol=3,byrow=TRUE)
model_pars <- TaxaNorm_Model_Parameters(coefficients = coefficients, mu = mu, theta = theta, pi = pi)</pre>
data("TaxaNorm_Example_Input", package = "TaxaNorm")
rawdata <- data.frame(Taxa1 = c(1,2,3), Taxa2 = c(3,4,5), Taxa3 = c(6,7,8))
normdata <- data.frame(Taxa1 = c(-1.4, -1.09, -0.73),
Taxa2 = c(-0.36,0,0.36), Taxa3 = c(0.73,1.09,1.46))
ecdf <- data.frame(0.05,0.23,0.89)
converge <- c(TRUE,TRUE,FALSE)</pre>
11k < -c(1,1.5,0.5)
final_df <- data.frame(Taxa1 = c(1,2,3), Taxa2 = c(3,4,5), Taxa3 = c(6,7,8))
TaxaNorm_Results(input_data = TaxaNorm_Example_Input,
                                    rawdata = rawdata,
                                     normdata = normdata,
                                     ecdf = ecdf,
                                     model_pars = model_pars,
                                     converge = converge,
                                     11k = 11k,
                                     final_df = final_df)
```

TaxaNorm_Run_Diagnose Function to run TaxNorm algorithm

Description

Function to run TaxNorm algorithm

Usage

```
TaxaNorm_Run_Diagnose(Normalized_Results, prev = TRUE, equiv = TRUE, group)
```

Arguments

Normalized_Results

(Required) Input results from from run_norm()

prev run prev test equiv run equiv test

group group used for taxanorm normalization

Value

a list containing the normalized count values

Index

```
coefficients (TaxaNormGenerics), 3
                                                11k<-,TaxaNorm_Results-method</pre>
coefficients, TaxaNorm_Model_Parameters-method
                                                         (TaxaNorm_Results-class), 9
        (TaxaNorm_Model_Parameters-class),
                                                model_pars (TaxaNormGenerics), 3
                                                model_pars,TaxaNorm_Results-method
coefficients<- (TaxaNormGenerics), 3
coefficients<-,TaxaNorm_Model_Parameters-method</pre>
                                                         (TaxaNorm_Results-class), 9
        (TaxaNorm_Model_Parameters-class),
                                                 model_pars<- (TaxaNormGenerics), 3</pre>
                                                model_pars<-,TaxaNorm_Results-method</pre>
                                                         (TaxaNorm_Results-class), 9
converge (TaxaNormGenerics), 3
                                                 mu (TaxaNormGenerics), 3
converge,TaxaNorm_Results-method
                                                 mu, TaxaNorm_Model_Parameters-method
        (TaxaNorm_Results-class), 9
                                                         (TaxaNorm_Model_Parameters-class),
converge<- (TaxaNormGenerics), 3</pre>
converge<-, TaxaNorm_Results-method
                                                mu<- (TaxaNormGenerics), 3</pre>
        (TaxaNorm_Results-class), 9
                                                mu<-,TaxaNorm_Model_Parameters-method</pre>
ecdf (TaxaNormGenerics), 3
                                                         (TaxaNorm_Model_Parameters-class),
ecdf, TaxaNorm_Results-method
                                                         4
        (TaxaNorm_Results-class), 9
ecdf<- (TaxaNormGenerics), 3
                                                 normdata (TaxaNormGenerics), 3
                                                 normdata, TaxaNorm_Results-method
ecdf<-,TaxaNorm_Results-method
                                                         (TaxaNorm_Results-class), 9
        (TaxaNorm_Results-class), 9
                                                normdata<- (TaxaNormGenerics), 3
final_df (TaxaNormGenerics), 3
                                                normdata<-, TaxaNorm_Results-method
                                                         (TaxaNorm_Results-class), 9
final_df,TaxaNorm_Results-method
        (TaxaNorm_Results-class), 9
                                                 pi (TaxaNormGenerics), 3
final_df<- (TaxaNormGenerics), 3</pre>
final_df<-,TaxaNorm_Results-method
                                                pi, TaxaNorm_Model_Parameters-method
                                                         (TaxaNorm_Model_Parameters-class),
        (TaxaNorm_Results-class), 9
input_data(TaxaNormGenerics), 3
                                                pi<- (TaxaNormGenerics), 3</pre>
input_data, TaxaNorm_Results-method
                                                 pi<-, TaxaNorm_Model_Parameters-method
        (TaxaNorm_Results-class), 9
                                                         (TaxaNorm_Model_Parameters-class),
input_data<- (TaxaNormGenerics), 3</pre>
                                                         4
input_data<-,TaxaNorm_Results-method</pre>
        (TaxaNorm_Results-class), 9
                                                 rawdata (TaxaNormGenerics), 3
                                                 rawdata, TaxaNorm_Results-method
11k (TaxaNormGenerics), 3
                                                         (TaxaNorm_Results-class), 9
11k,TaxaNorm_Results-method
                                                 rawdata<- (TaxaNormGenerics), 3
        (TaxaNorm_Results-class), 9
                                                 rawdata<-,TaxaNorm_Results-method
11k<- (TaxaNormGenerics), 3
                                                         (TaxaNorm_Results-class), 9
```

14 INDEX

```
TaxaNorm-datasets, 2
                                               theta, TaxaNorm_Model_Parameters-method
                                                       (TaxaNorm_Model_Parameters-class),
TaxaNorm_Example_Input
        (TaxaNorm-datasets), 2
                                               theta<- (TaxaNormGenerics), 3
TaxaNorm_Example_Output
        (TaxaNorm-datasets), 2
                                               theta<-,TaxaNorm_Model_Parameters-method</pre>
                                                       (TaxaNorm_Model_Parameters-class),
TaxaNorm_Model_Parameters, 11
TaxaNorm_Model_Parameters
        (TaxaNorm_Model_Parameters-class),
                                               utils::data, 2
TaxaNorm_Model_Parameters-class, 4
TaxaNorm_Model_Parameters-coefficients
        (TaxaNorm_Model_Parameters-class),
TaxaNorm_Model_Parameters-mu
        (TaxaNorm_Model_Parameters-class),
TaxaNorm_Model_Parameters-pi
        (TaxaNorm_Model_Parameters-class),
TaxaNorm_Model_Parameters-theta
        (TaxaNorm_Model_Parameters-class),
TaxaNorm_Model_QC, 6
TaxaNorm_NMDS, 6
TaxaNorm_Normalization, 7
TaxaNorm_QC_Input, 8
TaxaNorm_Results
        (TaxaNorm_Results-class), 9
TaxaNorm_Results-class, 9
TaxaNorm_Results-converge
        (TaxaNorm_Results-class), 9
TaxaNorm_Results-ecdf
        (TaxaNorm_Results-class), 9
TaxaNorm_Results-final_df
        (TaxaNorm_Results-class), 9
TaxaNorm_Results-input_data
        (TaxaNorm_Results-class), 9
TaxaNorm_Results-llk
        (TaxaNorm_Results-class), 9
TaxaNorm_Results-model_pars
        (TaxaNorm_Results-class), 9
TaxaNorm_Results-normdata
        (TaxaNorm_Results-class), 9
TaxaNorm_Results-rawdata
        (TaxaNorm_Results-class), 9
TaxaNorm_Run_Diagnose, 11
TaxaNormGenerics, 3
theta (TaxaNormGenerics), 3
```