

ACM 模板库

cqsh3vj2

目录

小技巧	2
C++手动扩栈	
输入挂	
输出挂	
用位运算快速求解全部组合数	2
Java 快速输入输出	2
Java 大数进制转换	3
对整数的二分查找	3
树状数组	
Sort 与 gsort 使用细则	4
判断日期的小模板	
ACM 三角形模板	
位图法	6
网络流模板	7
最大流 dinic 模板	7
最小费用最大流模板	7
二分图相关	8
编程之美-格格取数	
ACdream1171 下界转上界-最大费用可行流	
多校-网络流	9
无源汇上下界网络流	12
有源汇上下界最大流	
字符串	14
后缀数组模板	
前缀数组 Trie 刘汝佳模板	15
字符串 hash	16
图论	17
朱刘算法模板-最小树形图	17
拓扑排序	17
欧拉路与曼哈顿路	18
基本并查集	18
并查集的删除	19
Spfa	19
Tarjan 求强连通分量	20
求无向图的割点(重边不重边神马的无所谓)	21
无向图的桥 双连通分量	22
处理二维种类并查集	23
食物链	23
数论	24
最大公约与最小公倍	24
高精度幂取模	25
快速幂取模	
矩阵快速幂求 Fibonacci	26
大型质因数分解	26

素数打表与素数单个判断	28
斜率优化 dp	29
最大区间平均值	29
Poj1260	29
poj 3709 K-Anonymous Sequence 斜率优化 dp	分组
有大小限制	30
概率 dp	31
Hdu4035 树上概率 dp	31
倒着的概率	33
Hdu4870	34
线段树扫描线	34
poj 1151 Atlantis 纯矩形面积并	34
hdu 1255 覆盖的面积	36
poj 1177 矩形并的周长	37
hdu 4007 Dave 求矩形圈点最大值	39
圆的扫描线	40

小技巧

C++手动扩栈

#pragma comment(linker, "/STACK:102400000,102400000")

输入挂

```
int input()
{
     char ch=' ';
     while(ch<'0'||ch>'9')ch=getchar();
     while(ch <= '9' \& ch >= '0')x = x * 10 + ch - '0', ch = getchar();
     return x;
}
```

输出挂

```
//输出外挂
void Out(int a)
{
     if(a>9)
          Out(a/10);
      putchar(a%10+'0');
}
```

用位运算快速求解全部组合数

这个函数用来求 C(n, k), 其中 comb 就是二进制形式表 示的子集,例如 000111 表示由后三个元素构成的组合 或子集,并且该迭代过程可生成字典序递增的组合,这 一特性非常有用。

当 k 为 0 时需要直接输出

}

```
int main(){
     int k=2,n=5;
     int comb = (1 << k) - 1;
    while(comb < 1 <<(n))
    {
          //printf("%d\n",comb);//先使用
          int x = comb \& -comb, y = comb + x;
          comb = ((comb \& ^{\sim}y) / x >> 1) | y;
    }
     return 0;
```

Java 快速输入输出

```
import java.io.*;
import java.math.BigInteger;
import java.util.StringTokenizer;
class Scan {
     BufferedReader buffer;
     StringTokenizer tok;
     Scan() {
          buffer
                                       BufferedReader(new
                             new
InputStreamReader(System.in));
     boolean hasNext() {
          while (tok == null | !tok.hasMoreElements()) {
               try {
                    tok
                                                        new
StringTokenizer(buffer.readLine());
               } catch (Exception e) {
                    return false;
               }
          }
          return true;
     }
     String next() {
          if (hasNext())
               return tok.nextToken();
          return null;
     }
     int nextInt() {
          return Integer.parseInt(next());
     }
     long nextLong() {
          return Long.parseLong(next());
     }
}
public class Main {
     public static void main(String[] args) {
          PrintWriter
                        out =
                                            PrintWriter(new
                                    new
BufferedWriter(
```

new

```
OutputStreamWriter(System.out)));
          Scan scan = new Scan();
          int T,R;
          T=scan.nextInt();
          for(R=1;R<=T;R++)
               long n;
               n=scan.nextLong();
               BigInteger eight = BigInteger.valueOf(8);
               BigInteger seven = BigInteger.valueOf(7);
               BigInteger one = BigInteger.valueOf(1);
               BigInteger N = BigInteger.valueOf(n);
               BigInteger ans;
               ans
N.multiply(N).multiply(eight).subtract(N.multiply(seven)).a
dd(one);
               out.println("Case #"+R+": "+ans);
          }
          out.flush();
    }
}
```

Java 大数进制转换

```
import java.io.*;
import java.math.BigInteger;
import java.util.StringTokenizer;
class Scan {
     BufferedReader buffer;
     StringTokenizer tok;
     Scan() {
          buffer
                                       BufferedReader(new
                             new
InputStreamReader(System.in));
     }
     boolean hasNext() {
          while (tok == null | | !tok.hasMoreElements()) {
                    tok
                                                       new
StringTokenizer(buffer.readLine());
              } catch (Exception e) {
                    return false;
               }
          return true;
```

```
}
     String next() {
          if (hasNext())
               return tok.nextToken();
          return null;
     }
     int nextInt() {
          return Integer.parseInt(next());
     }
     long nextLong() {
          return Long.parseLong(next());
     }
}
public class Main {
     public static void main(String[] args) {
          PrintWriter
                         out
                                =
                                    new
                                            PrintWriter(new
BufferedWriter(
                    new
OutputStreamWriter(System.out)));
          Scan scan = new Scan();
          int T,R;
          T=scan.nextInt();
          for(R=1;R<=T;R++)
               String s = scan.next();
               BigInteger a = new BigInteger(s,2);
               s = scan.next();
               BigInteger b = new BigInteger(s,2);
               BigInteger c = a.gcd(b);
               out.println("Case #"+R+": "+c.toString(2));
          out.flush();
     }
}
```

对整数的二分查找

```
//二分查找--在 I-r 范围内查找值 v
//返回下标,失败返回-1
//假设 a 数组已经按照从小到大排序
int bs(int a[],int left,int right,int v)
{
    int mid;
```

```
while(left<right)
    {
         mid=(left+right)>>1;
         if(a[mid]==v)return mid;
         if(a[mid]<v)left=mid+1;</pre>
         else right=mid;
    }
    return -1;
}
//二分查找--大于等于 v 的第一个值
//假设 a 已经排好
//传入参数必须 left<=right, 返回值 l 总是合理的
int bs(int a[],int left,int right,int v)
    int mid;
    while(left<right)
         mid=(left+right)>>1;
         if(a[mid]<v) left=mid+1;//if(不符合条件)
         else right=mid;
    }
    return left;
}
//二分查找--小于等于 v 的第一个值
//假设 a 已经排好
//传入参数必须 left<=right, 返回值 I 总是合理的
int bs(int a[],int left,int right,int v)
    int mid;
    while(left<right)
    {
         mid=(left+right+1)>>1;
         if(a[mid]>v) right=mid-1;//if(不符合条件)
         else left=mid;
    }
    return right;
}
```

树状数组

```
1.改点(+/-)求区间
void add(int x,int v)
{
    for(;x<=n;x+=x&(-x))
```

```
C[x]+=v;
}
void sub(int x,int v)
   for(;x<=n;x+=x&(-x))
       C[x]-=v;
}
int getsum(int x)//求 1-x 的和
{
   int sum=0;
   for(;x>0;x=x&(-x))
       sum+=C[x];
    return sum;
}
2.求比某点 x 小的点的个数
         对于 x, 求 getsum (x), 再加入 x: add (x,
1);
        同理可求逆序 (倒着插), 求平面上在点 A 左
下方的点的个数
3.改区间求点
        令 del[i]表示 i..MN 段被加了多少。则区间修
```

令 del[i]表示 i..MN 段被加了多少。则区间修改[a,b]时,我们让 del[a]++,del[b+1]--即可。(此时树状数组是建立在 del 数组基础上的)这个时候,要求某一个位置 x 的数的值时,用 Getsum(x)来表示。

Sort 与 gsort 使用细则

```
/*qsort 与 sort 调用细则*/
#include<stdlib.h>
#include<stdio.h>
#include<string.h>

//qsort

//普通数组
    a[1000];
    int comp(const void *a,const void *b)
    {
        return *(int *)a - *(int *)b;//(int *)表示把(const coid *a)强制准换成 int 型指针 外边的*是取内容
    }
    qsort(a,k,sizeof(int),comp);

//对结构体排序
    struct edgetype{
        int a;
        int b;
```

```
int len;
    }edge[5000];
    int comp(const void *a,const void *b)
    {
        return (((struct edgetype *)a)->len)-(((struct
edgetype *)b)->len);
    }
    qsort(edge,k,sizeof(struct edgetype),comp);
//对 double
    int comp(const void *a,const void *b)
        if((((struct edgetype *)a)->len)-(((struct edgetype
*)b)->len)>0)
            return 1;
        else if((((struct edgetype *)a)->len)-(((struct
edgetype *)b)->len)==0)
            return 0;
        else if((((struct edgetype *)a)->len)-(((struct
edgetype *)b)->len)<0)
            return -1;
    }
//对特定长度进行排序
    gsort(a+x,k,sizeof(int),comp);//从 a【x】开始的 k 个
数进行排序 例如: a[0]=3 a[1]=2 a[2]=1 a[3]=0
qsort(a+1,2,sizeof(int),comp) 之后 3120
//sort 调用细则
#include<algorithm>
//对普通数组
    int a[1000];
    bool cmp(int a,int b)
        return a<b;//当满足当前顺序,返回 1,不满足
当前顺序,返回0
    }
    sort(a+x,a+y,cmp);//对 a【x】-a【y-1】进行排序(y==x
与 y==x+1 效果相同)
//对结构排序
    struct edgetype{
        int a;
        int b;
        int len;
    }edge[5000];
    bool cmp(struct edgetype a,struct edgetype b)
        return a.len<b.len;//当满足当前顺序,返回 1,
不满足当前顺序,返回0
    }
```

```
sort(edge+x,edge+y,cmp);
```

判断日期的小模板

```
int leap_year( int year ) // 判断闰年或平年
    return ( (year%4==0 && year%100!=0)
                                               Ш
year%400==0)?1:0;
                        // 计算一整年的天数
int year_days(int year)
    return leap year(year)? 366:365;
}
int days( int year, int month, int day ) // 计算该天
month,day 是本年 year 的第几天
    int
                       months[13]
\{0,31,28,31,30,31,30,31,30,31,30,31\}, i;
    if (leap_year(year) && month >2)
        day++;
    for ( i=1; i<month; i++)
        day += months[i];
    return day;
}
```

ACM 三角形模板

```
point circumcenter(point a, point b, point c){
line u,v;
u.a.x=(a.x+b.x)/2;
u.a.y=(a.y+b.y)/2;
u.b.x=u.a.x-a.y+b.y;
u.b.y=u.a.y+a.x-b.x;
v.a.x=(a.x+c.x)/2;
v.a.y=(a.y+c.y)/2;
v.b.x=v.a.x-a.y+c.y;
v.b.y=v.a.y+a.x-c.x;
return intersection(u,v);
}
//内心
point incenter(point a,point b,point c){
line u,v;
double m,n;
u.a=a:
m=atan2(b.y-a.y,b.x-a.x);
n=atan2(c.y-a.y,c.x-a.x);
u.b.x=u.a.x+cos((m+n)/2);
u.b.y=u.a.y+sin((m+n)/2);
v.a=b;
m=atan2(a.y-b.y,a.x-b.x);
n=atan2(c.y-b.y,c.x-b.x);
v.b.x=v.a.x+cos((m+n)/2);
v.b.y=v.a.y+sin((m+n)/2);
return intersection(u,v);
}
//垂心
point perpencenter(point a,point b,point c){
line u,v;
u.a=c;
u.b.x=u.a.x-a.y+b.y;
u.b.y=u.a.y+a.x-b.x;
v.a=b;
v.b.x=v.a.x-a.y+c.y;
v.b.y=v.a.y+a.x-c.x;
return intersection(u,v);
}
//重心
//到三角形三顶点距离的平方和最小的点
//三角形内到三边距离之积最大的点
point barycenter(point a, point b, point c){
line u,v;
u.a.x=(a.x+b.x)/2;
u.a.y=(a.y+b.y)/2;
```

```
u.b=c;
v.a.x=(a.x+c.x)/2;
v.a.y=(a.y+c.y)/2;
v.b=b;
return intersection(u,v);
}
//费马点
//到三角形三顶点距离之和最小的点
point fermentpoint(point a,point b,point c){
point u,v;
double
step=fabs(a.x)+fabs(a.y)+fabs(b.x)+fabs(b.y)+fabs(c.x)+fabs
(c.y);
int i,j,k;
u.x=(a.x+b.x+c.x)/3;
u.y=(a.y+b.y+c.y)/3;
while (step>1e-10)
for (k=0;k<10;step/=2,k++)
for (i=-1;i<=1;i++)
for (j=-1;j<=1;j++){
v.x=u.x+step*i;
v.y=u.y+step*j;
if
(distance(u,a)+distance(u,b)+distance(u,c)>distance(v,a)+di
stance(v,b)+distance(v,c))
u=v;
return u;
}
```

```
u=v;
}
return u;
}

位图法

#define SHIFT 5
#define MASK 0x1F
#define DIGITS 32

int map[31500]={0};//6 位数 31250+ 7 位数 312500+ 8 位数 3125000+ (12.5MB)

void map_set(int n) //将逻辑位置为 n 的二进制位置为 1
{
    map[n>>SHIFT] |=(1<<(n&MASK)); //n>>SHIFT 右移 5 位相当于除以 32 求算字节位置,n&MASK 相当于对 32 取余即求位位置,}
```

```
int map_check(int n) {
    return map[n>>SHIFT] & (1<<(n&MASK)); //测试逻辑位置为 n 的二进制位是否为 1,为 1 返回 1 否则返回 0
}
```

网络流模板

最大流 dinic 模板

```
const int maxnode = 1000 + 5;
const int maxedge = 2*1000 + 5;
const int oo = 1000000000;
int node, src, dest, nedge;
int head[maxnode], point[maxedge], next1[maxedge],
flow[maxedge], capa[maxedge];//point[x]==y 表示第 x 条
边连接 y, head, next 为邻接表, flow[x]表示 x 边的动态
值, capa[x]表示 x 边的初始值
int dist[maxnode], Q[maxnode], work[maxnode];//dist[i]表
示i点的等级
void init(int _node, int _src, int _dest){//初始化, node 表
示点的个数, src 表示起点, dest 表示终点
    node = _node;
    src = src;
    dest = _dest;
    for (int i = 0; i < node; i++) head[i] = -1;
    nedge = 0;
}
void addedge(int u, int v, int c1, int c2){//增加一条 u 到 v
流量为 c1, v 到 u 流量为 c2 的两条边
    point[nedge] = v, capa[nedge] = c1, flow[nedge] = 0,
next1[nedge] = head[u], head[u] = (nedge++);
    point[nedge] = u, capa[nedge] = c2, flow[nedge] = 0,
next1[nedge] = head[v], head[v] = (nedge++);
bool dinic_bfs(){
    memset(dist, 255, sizeof (dist));
    dist[src] = 0;
    int sizeQ = 0;
    Q[sizeQ++] = src;
    for (int cl = 0; cl < sizeQ; cl++)
         for (int k = Q[cl], i = head[k]; i \ge 0; i = next1[i])
              if (flow[i] < capa[i] && dist[point[i]] < 0){
                  dist[point[i]] = dist[k] + 1;
                  Q[sizeQ++] = point[i];
              }
```

```
return dist[dest] >= 0;
}
int dinic_dfs(int x, int exp){
     if (x == dest) return exp;
     for (int &i = work[x]; i \ge 0; i = next1[i]){
         int v = point[i], tmp;
         if (flow[i] < capa[i] \&\& dist[v] == dist[x] + 1 \&\&
(tmp = dinic_dfs(v, min(exp, capa[i] - flow[i]))) > 0){
              flow[i] += tmp;
              flow[i^1] -= tmp;
              return tmp;
         }
     }
     return 0;
}
int dinic_flow(){
     int result = 0;
     while (dinic_bfs()){
         for (int i = 0; i < node; i++) work[i] = head[i];
         while (1){
              int delta = dinic_dfs(src, oo);
              if (delta == 0) break;
              result += delta;
         }
     }
     return result;
}
//建图前,运行一遍 init();
//加边时,运行 addedge(a,b,c,0),表示点 a 到 b 流量为 c
的边建成(注意点序号要从0开始)
//求解最大流运行 dinic_flow(),返回值即为答案
```

最小费用最大流模板

```
void add edge(int f, int t, int d1, int d2, int w){//f 到 t 的一
条边,流量为 d1,反向流量 d2,花费 w,反向边花费-w(可
以反悔)
     e[ne].f = f, e[ne].t = t, e[ne].c = d1, e[ne].w = w;
     next1[ne] = point[f], point[f] = ne++;
     e[ne].f = t, e[ne].t = f, e[ne].c = d2, e[ne].w = -w;
     next1[ne] = point[t], point[t] = ne++;
}
bool spfa(int s, int t, int n){
     int i, tmp, l, r;
     memset(pre, -1, sizeof(pre));
     for(i = 0; i < n; ++i)
          dis[i] = inf;
     dis[s] = 0;
     q[0] = s;
     I = 0, r = 1;
     u[s] = true;
     while(I != r) {
          tmp = q[l];
          I = (I + 1) \% (n + 1);
          u[tmp] = false;
          for(i = point[tmp]; i != -1; i = next1[i]) {
               if(e[i].c \&\& dis[e[i].t] > dis[tmp] + e[i].w) {
                    dis[e[i].t] = dis[tmp] + e[i].w;
                    pre[e[i].t] = i;
                    if(!u[e[i].t]) {
                          u[e[i].t] = true;
                          q[r] = e[i].t;
                          r = (r + 1) \% (n + 1);
                    }
               }
          }
     }
     if(pre[t] == -1)
          return false;
     return true;
}
void MCMF(int s, int t, int n, int &flow, int &cost){//起点 s,
终点 t, 点数 n, 最大流 flow, 最小花费 cost
     int tmp, arg;
     flow = cost = 0;
     while(spfa(s, t, n)) {
          arg = inf, tmp = t;
          while(tmp != s) {
               arg = min(arg, e[pre[tmp]].c);
               tmp = e[pre[tmp]].f;
          }
          tmp = t;
          while(tmp != s) {
```

```
e[pre[tmp]].c -= arg;
                e[pre[tmp] ^ 1].c += arg;
               tmp = e[pre[tmp]].f;
          }
          flow += arg;
          cost += arg * dis[t];
     }
}
```

//建图前运行 init()

//节点下标从0开始

//加边时运行 add edge(a,b,c,0,d)表示加一条 a 到 b 的流 量为 c 花费为 d 的边 (注意花费为单位流量花费)

// 特别注意 双向边, 行 add_edge(a,b,c,0,d),add_edge(b,a,c,0,d)较好,不要只运行 一次 add_edge(a,b,c,c,d),费用会不对。

//求解时代入 MCMF(s,t,n,v1,v2), 表示起点为 s, 终点为 t, 点数为 n 的图中, 最大流为 v1, 最大花费为 v2

二分图相关

二分图匹配有自己的匈牙利算法,不过我更习惯用网 络流的算法搞。

首先一些概念:

最大匹配:

在所有的匹配中,边数最多的那个匹配就是二分图的 最大匹配

顶点覆盖:

在顶点集合中, 选取一部分顶点, 这些顶点能够把所 有的边都覆盖了。这些点就是顶点覆盖集

最小顶点覆盖:

在所有的顶点覆盖集中,顶点数最小的那个叫最小顶 点集合。

独立集:

在所有的顶点中选取一些顶点,这些顶点两两之间没 有连线,这些点就叫独立集

最大独立集:

在所有的独立集中, 顶点数最多的那个集合 路径覆盖:

在图中找一些路径,这些路径覆盖图中所有的顶点, 每个顶点都只与一条路径相关联。

最小路径覆盖:

在所有的路径覆盖中,路径个数最小的就是最小路径 覆盖了。

最大匹配=最小顶点覆盖(就像网络流中最大流=最小割)

最大独立集=顶点个数-最小顶点覆盖(最大匹配)

编程之美-格格取数

题目是给出一个 n*m 的矩阵,每个点是一个值,求取 出权值和最小的点来把各行各列都覆盖。

于是转换成一个二分图,左边 n 个点,右边 m 个点,中间的边就是原来矩阵的每个点,求权值和最少的边把左右两排点覆盖。

使用最小费用最大流,构图如下:

添加原点和超级原点, 汇点和超级汇点。

超级原点到原点流量为 n*m, 花费为 0;

汇点到超级汇点流量为 n*m, 花费为 0;

左边 2*n 个点, 右边 2*m 个点。

上方的 n, m 个点是用来约束覆盖的:流量为 1,费用为负无穷

下方的 n,m 个点是用来提供边的:流量为 m,n (其实就是无穷),费用为 0

关键: 从原点到汇点添加流量为 n*m,费用为 0 的边,用来分流

最终结果加上一个(n+m)*负无穷

ACdream1171 下界转上界-最大费用可行流

每一行/列至少取 A/B 的最小费用=SUM-每一行/列至多取 m-A/n-B 的最大费用

由于是求可行流而不是最大流,所以添加超级源汇,在 源汇上连一条分流的路

多校-网络流

给一个 n*m 的矩阵,每个位置有一个 0~K 的数,给出每一行及每一列的数的和,判断是否有解,并输出方案。

首先是否有解可以通过 impossible 判定,即从原点到各行流量为各行的和,从各列到汇点流量为各列的和,从每个原点到每个汇点的流量表示某个点的值,所以流量为 K。跑一边网络流,如果最大流=总和,有解。

有解之后的判定,标程是用的残余网络的进一步处理。我比赛时的方法比赛比较暴力,即行/列为 0 的,还有必须填满的都是确定的,把确定的行求出来,并填进去,就可以确定更多的行和列。其实反复两三次就够了。

(有极限数据 矩阵的右下方为相同的数时 需要反复 n 次)

代码写得比较残。

#include<stdio.h>
#include<iostream>
#include<string.h>
#include<algorithm>
#include<math.h>
#include<queue>
using namespace std;
#define II __int64
#define eps 1e-8
const II Mod=(1e9+7);
const int maxn = 410;
const int maxm = 10100;

int n,m,k;
int r[maxn],c[maxn];
int ma[maxn][maxn];

const int maxnode = 1000 + 5;
const int maxedge = 2*161000 + 5;
const int oo = 1000000000;
int node, src, dest, nedge;

int head[maxnode], point[maxedge], next1[maxedge], flow[maxedge], capa[maxedge];//point[x]==y 表示第 x 条 边连接 y,head,next 为邻接表,flow[x]表示 x 边的动态值,capa[x]表示 x 边的初始值

int dist[maxnode], Q[maxnode], work[maxnode];//dist[i]表示 i 点的等级

void init(int _node, int _src, int _dest){//初始化, node 表示点的个数, src 表示起点, dest 表示终点

node = _node;

```
src = _src;
                                                                 //建图前,运行一遍 init();
     dest = _dest;
     for (int i = 0; i < node; i++) head[i] = -1;
                                                                 //加边时,运行 addedge(a,b,c,0),表示点 a 到 b 流量为 c
                                                                 的边建成(注意点序号要从0开始)
     nedge = 0;
                                                                 //求解最大流运行 dinic flow(),返回值即为答案
}
void addedge(int u, int v, int c1, int c2){//增加一条 u 到 v
流量为 c1, v 到 u 流量为 c2 的两条边
     point[nedge] = v, capa[nedge] = c1, flow[nedge] = 0,
                                                                 bool judge(int sumrow){
next1[nedge] = head[u], head[u] = (nedge++);
                                                                      int flow = 1, cost = 0;
     point[nedge] = u, capa[nedge] = c2, flow[nedge] = 0,
                                                                      for(int i = 1; i <= n; i++)
next1[nedge] = head[v], head[v] = (nedge++);
                                                                           for(int j = n+1; j <= n+m; j ++)
                                                                                 addedge(i,j,k,0);
bool dinic bfs(){
                                                                      flow=dinic flow();
     memset(dist, 255, sizeof (dist));
                                                                      if(flow != sumrow)
     dist[src] = 0;
                                                                           return false;
     int sizeQ = 0;
                                                                      return true;
     Q[sizeQ++] = src;
                                                                 }
     for (int cl = 0; cl < sizeQ; cl++)
                                                                 int main(){
          for (int k = Q[cl], i = head[k]; i >= 0; i = next1[i])
                                                                      while(scanf("%d%d%d",&n,&m,&k) != EOF){
               if (flow[i] < capa[i] && dist[point[i]] < 0){
                                                                           init(n+m+2,0,n+m+1);
                    dist[point[i]] = dist[k] + 1;
                                                                           int flag = 0;
                    Q[sizeQ++] = point[i];
                                                                           int sumrow = 0,colrow = 0;
               }
                                                                           for(int i = 1; i \le n; i++){
     return dist[dest] >= 0;
                                                                                 scanf("%d",&r[i]);
}
                                                                                 addedge(0,i,r[i],0);
int dinic_dfs(int x, int exp){
                                                                                 sumrow += r[i];
     if (x == dest) return exp;
                                                                                if(r[i]<0 | | r[i]>m*k)
     for (int &i = work[x]; i \ge 0; i = next1[i]){
                                                                                     flag = 1;
          int v = point[i], tmp;
                                                                           }
          if (flow[i] < capa[i] \&\& dist[v] == dist[x] + 1 \&\&
                                                                           for(int j = 1; j <= m; j ++){
(tmp = dinic_dfs(v, min(exp, capa[i] - flow[i]))) > 0){
                                                                                 scanf("%d",&c[j]);
               flow[i] += tmp;
                                                                                 addedge(j+n,n+m+1,c[j],0);
               flow[i^1] -= tmp;
                                                                                 colrow += c[j];
               return tmp;
                                                                                if(c[i]<0 | | c[i]>n*k)
                                                                                     flag = 1;
          }
    }
                                                                           }
     return 0;
                                                                           if(sumrow != colrow){
                                                                                 printf("Impossible\n");
}
int dinic_flow(){
                                                                                 continue;
     int result = 0;
                                                                           }
     while (dinic bfs()){
                                                                           if(!judge(sumrow))
          for (int i = 0; i < node; i++) work[i] = head[i];
                                                                                flag = 1;
          while (1){
                                                                           if(flag == 1){
               int delta = dinic_dfs(src, oo);
                                                                                 printf("Impossible\n");
               if (delta == 0) break;
                                                                                 continue;
               result += delta;
                                                                           }
          }
                                                                           memset(ma,-1,sizeof(ma));
    }
                                                                           int i,j;
     return result;
                                                                           for(i=1;i<=n;i++)
```

```
if(r[i]==0)
                                                                             }
          for(j=1;j<=m;j++)
                                                                        }
               ma[i][j]=0;
                                                                        for(j=1;j<=m;j++)
for(j=1;j<=m;j++)
                                                                        {
     if(c[j]==0)
                                                                             if(c[j]==0)
          for(i=1;i<=n;i++)
                                                                             {
               ma[i][j]=0;
                                                                                  for(i=1;i<=n;i++)
int tt=2;
                                                                                       if(ma[i][j]==-1)
int sum, num, temp;
                                                                                             ma[i][j]=0;
while(tt--)
                                                                                  continue;
{
                                                                             }
     for(i=1;i<=n;i++)
                                                                             sum=0;
                                                                             num=0;
                                                                             for(i=1;i<=n;i++)
          if(r[i]==0)
          {
                                                                             {
               for(j=1;j<=m;j++)
                                                                                  if(ma[i][j]==-1)
                    if(ma[i][j]==-1)
                                                                                  {
                         ma[i][j]=0;
                                                                                       num++;
               continue;
                                                                                       temp=i;
          }
                                                                                       sum+=min(k,r[i]);
                                                                                  }
          sum=0;
          num=0;
                                                                             }
          for(j=1;j<=m;j++)
                                                                             if(num==1)
          {
                                                                             {
               if(ma[i][j]==-1)
                                                                                  ma[temp][j]=c[j];
                                                                                  r[temp]-=ma[temp][j];
                                                                                  c[j]-=ma[temp][j];
                    num++;
                                                                                  continue;
                    temp=j;
                    sum+=min(k,c[j]);
                                                                             }
               }
                                                                             else if(sum==c[j])
          }
          if(num==1)
                                                                                  for(i=1;i<=n;i++)
          {
                                                                                  {
                                                                                       if(ma[i][j]==-1)
               ma[i][temp]=r[i];
               r[i]-=ma[i][temp];
               c[temp]-=ma[i][temp];
                                                                                             ma[i][j]=min(k,r[i]);
               continue;
                                                                                             r[i]-=ma[i][j];
          }
                                                                                             c[j]-=ma[i][j];
          else if(sum==r[i])
                                                                                       }
          {
                                                                                  }
               for(j=1;j<=m;j++)
                                                                             }
                                                                        }
                    if(ma[i][j]==-1)
                                                                  }
                    {
                                                                   flag=0;
                         ma[i][j]=min(k,c[j]);
                                                                   for(i=1;i<=n;i++)
                                                                        if(r[i]!=0)
                         r[i]-=ma[i][j];
                         c[j]-=ma[i][j];
                    }
                                                                             flag=1;
               }
                                                                             break;
```

```
}
     for(j=1;j<=m;j++)
          if(c[j]!=0)
          {
                flag=1;
                break;
          }
     if(flag==1)
          printf("Not Unique\n");
     else
     {
          printf("Unique\n");
          for(i=1;i<=n;i++)
          {
                for(j=1;j<m;j++)
                     printf("%d ",ma[i][j]);
                printf("%d\n",ma[i][m]);
          }
     }
}
return 0;
```

无源汇上下界网络流

}

总的来说就是新建一个原点汇点 s,t,对原来的每个点 i,设 m(i)=sum{b<j,i>}-sum{b<i,j>}其中 b<>为流量下界,若m(i)>0,连一条<s,i>容量为 m(i)的边;若 m(i)<0,连一条<i,t>容量为|m(i)|的边。然后将原来边的容量变为 c<i,j>b<i,j>。求一次最大流。如果与 s 和 t 关联的边全部满流,则可行流存在,且每条边的流量为现在的流量+流量的下界。否则不存在可行流。

```
#include<iostream>
#include<algorithm>
#include<iostream>
#include<stdio.h>
#include<string.h>
#include<stdlib.h>
#include<vector>
#include<queue>
#include<cmath>
using namespace std;
#define Il long long
#define inf 0x3f3f3f3f
int dir[4][2]={0,1,0,-1,1,0,-1,0};
```

```
int n,m;
int c[305];
int lo[50000];
const int maxnode = 300 + 5;
const int maxedge = 2*50000 + 5;
const int oo = 1000000000;
int node, src, dest, nedge;
int head[maxnode], point[maxedge], next1[maxedge],
flow[maxedge], capa[maxedge];//point[x]==y 表示第 x 条
边连接 y, head, next 为邻接表, flow[x]表示 x 边的动态
值, capa[x]表示 x 边的初始值
int dist[maxnode], Q[maxnode], work[maxnode];//dist[i]表
示i点的等级
void init(int node, int src, int dest){//初始化, node 表
示点的个数, src 表示起点, dest 表示终点
    node = _node;
    src = _src;
    dest = dest;
    for (int i = 0; i < node; i++) head[i] = -1;
    nedge = 0;
}
void addedge(int u, int v, int c1, int c2){//增加一条 u 到 v
流量为 c1, v 到 u 流量为 c2 的两条边
    point[nedge] = v, capa[nedge] = c1, flow[nedge] = 0,
next1[nedge] = head[u], head[u] = (nedge++);
    point[nedge] = u, capa[nedge] = c2, flow[nedge] = 0,
next1[nedge] = head[v], head[v] = (nedge++);
}
bool dinic_bfs(){
    memset(dist, 255, sizeof (dist));
    dist[src] = 0;
    int sizeQ = 0;
    Q[sizeQ++] = src;
    for (int cl = 0; cl < sizeQ; cl++)
         for (int k = Q[cl], i = head[k]; i >= 0; i = next1[i])
              if (flow[i] < capa[i] && dist[point[i]] < 0){
                   dist[point[i]] = dist[k] + 1;
                   Q[sizeQ++] = point[i];
              return dist[dest] >= 0;
int dinic_dfs(int x, int exp){
    if (x == dest) return exp;
    for (int &i = work[x]; i \ge 0; i = next1[i]){
         int v = point[i], tmp;
         if (flow[i] < capa[i] \&\& dist[v] == dist[x] + 1 \&\&
(tmp = dinic_dfs(v, min(exp, capa[i] - flow[i]))) > 0){
```

```
flow[i] += tmp;
              flow[i^1] -= tmp;
              return tmp;
         }
    }
    return 0;
}
int dinic_flow(){
    int result = 0;
    while (dinic_bfs()){
         for (int i = 0; i < node; i++) work[i] = head[i];
         while (1){
              int delta = dinic dfs(src, oo);
              if (delta == 0) break;
              result += delta;
         }
    }
    return result;
}
//建图前,运行一遍 init();
//加边时,运行 addedge(a,b,c,0),表示点 a 到 b 流量为 c
的边建成(注意点序号要从0开始)
//求解最大流运行 dinic flow(),返回值即为答案
int main()
{
    while(scanf("%d%d",&n,&m)!=EOF)
    {
         int i,j;
         int ta,tb,tc,td,sum=0;;
         init(n+2,0,n+1);
         memset(c,0,sizeof(c));
         for(i=1;i<=m;i++)
         {
              scanf("%d%d%d%d",&ta,&tb,&tc,&td);
              lo[i]=tc;
              addedge(ta,tb,td-tc,0);
              c[ta]-=tc;
              c[tb]+=tc;
         for(i=1;i<=n;i++)
         {
              if(c[i]>0)
              {
                  addedge(0,i,c[i],0);
                  sum+=c[i];
              }
              else if(c[i]<0)
```

```
addedge(i,n+1,-c[i],0);
}
int ans;
ans=dinic_flow();
if(ans==sum)
{
    printf("YES\n");
    for(i=0;i<m;i++)
        printf("%d\n",flow[i*2]+lo[i+1]);
}
else
    printf("NO\n");
}
return 0;
```

有源汇上下界最大流

处理有源汇有上下界最大流问题是:

- 1.构造附加网络
- 2.对 ss、tt 求最大流(ss、tt 满流则有解)
- 3.若有解,对 s、t 求最大流

而有源汇有上下界最小流问题则是:

- 1.构造附加网络(不添加[t,s]边)
- 2.对 ss、tt 求最大流
- 3.添加[t.s]边
- 4.对 ss、tt 求最大流
- 5.若 ss、tt 满流,则[t,s]的流量就是最小流

题意:

一个屌丝给 m 个女神拍照, 计划拍照 n 天,每一天屌丝给完的 C 个女神拍照,每天拍照数不能超过 D 张,而且给每个女神 i 拍照有数量限制[Li, Ri],对于每个女神n 天的拍照总和不能少于 Gi,如果有解求屌丝最多能拍多少张照,并求每天给对应女神拍多少张照;否则输出-1。

分析:

增设一源点 st, 汇点 sd, st 到第 i 天连一条上界为 Di 下界为 0 的边,每个女神到汇点连一条下界为 Gi 上界为 oo 的边,对于每一天,当天到第 i 个女孩连一条[Li, Ri] 的边。

建图模型:

源点 s,终点 d。超级源点 ss,超级终点 dd。首先判断是否存在满足所有边上下界的可行流,方法可以转化成无源汇有上下界的可行流问题(T->S无穷)。然后再以s,t跑一下最大流。

字符串

后缀数组模板

```
#include <stdio.h>
#include <math.h>
#include <stdlib.h>
#include <string.h>
#include <algorithm>
using namespace std;
const int N = 200010;
char s[N];
int r[N], tx[N], ty[N], rs[N], ranks[N], sa[N], height[N],
rmq[N][20]; //rs 基数排序
bool cmp(int *r, int a, int b, int len)
{
     return (r[a] == r[b]) && (r[a + len] == r[b + len]);
}
void suffix(int n, int m) //n 为长度,最大值小于 m
{
     int i, j, p, *x = tx, *y = ty, *t;
     for(i = 0; i < m; ++i) rs[i] = 0;
     for(i = 0; i < n; ++i) { x[i] = r[i]; ++rs[x[i]];}
     for(i = 1; i < m; ++i) rs[i] += rs[i - 1];
     for(i = n - 1; i >= 0; --i) sa[--rs[x[i]]] = i;
     for(j = p = 1; p < n; j <<= 1, m = p) {
           for(p = 0, i = n - j; i < n; ++i) y[p++] = i;
           for(i = 0; i < n; ++i) { if(sa[i] >= j) y[p++] = sa[i] - j; }
           for(i = 0; i < m; ++i) rs[i] = 0;
           for(i = 0; i < n; ++i) ++rs[x[y[i]]];
           for(i = 1; i < m; ++i) rs[i] += rs[i - 1];
           for(i = n - 1; i >= 0; --i) sa[--rs[x[y[i]]]] = y[i];
           t = x, x = y, y = t;
           for(i = 1, p = 1, x[sa[0]] = 0; i < n; ++i) {
                if(cmp(y, sa[i - 1], sa[i], j)) x[sa[i]] = p - 1;
                else x[sa[i]] = p++;
          }
     }
```

```
}
void calheight(int n)
{
     int i, j, k = 0;
    for(i = 1; i \le n; ++i)
          ranks[sa[i]] = i;
    for(i = 0; i < n; ++i) {
          if(k)
               --k;
         j = sa[ranks[i] - 1];
          while(r[i + k] == r[j + k])
               ++k;
          height[ranks[i]] = k;
    }
}
/////////rmq 求 lcp
void initrmq(int n)
{
     int i, k;
     for(i = 2; i \le n; ++i)
          rmq[i][0] = height[i];
    for(k = 1; (1 << k) <= n; ++k) {
          for(i = 2; i + (1 << k) - 1 <= n; ++i) {
               rmq[i][k] = min(rmq[i][k - 1],
                   rmq[i + (1 << (k - 1))][k - 1]);
         }
    }
}
int Log[N];
void initlog()
{
     Log[0] = -1;
     for(int i=1;i<N;i++)
          Log[i]=(i&(i-1))?Log[i-1]:Log[i-1] + 1;
}
int lcp(int a, int b, int n)//求 a,b 的后缀的公用前缀长度,
从0计
{
     if(a==b) return n-a;
     a = ranks[a], b = ranks[b];
     if(a > b)
          swap(a, b);
     ++a;
     int k = (int) Log[b - a + 1] / Log[2];
```

```
return min(rmq[a][k], rmq[b - (1 << k) + 1][k]);
}
////////////// 求第 k 小串 (忽略重复)
int64 effectNum[N],sumEffectNum[N],allNum;//分别表
示 sa 中的 i 后边有效串数,前 i 总有效串数;allNum 为总
共不同串的个数
int aimSl,aimSr,aimSlength;//目标串左右端点以及长度
void stStringInit(int n)
{
   sumEffectNum[0]=0;
   for(int i=1;i<=n;i++)
   {
       effectNum[i]=n-sa[i]-height[i];
       sumEffectNum[i]=sumEffectNum[i-
1]+effectNum[i];
   allNum=sumEffectNum[n];
}
int aimSbs(int left,int right,__int64 v)
{
   int mid;
   while(left<right)
   {
       mid=(left+right)>>1;
       if(sumEffectNum[mid]<v) left=mid+1;//if(不符合
条件)
       else right=mid;
   return left;
}
void getAimString(__int64 aimst,int n)
{
   int temp;
   temp=aimSbs(1,n,aimst);
   aimSl=sa[temp];
   aimSr=aimSl+height[temp]+aimst-
sumEffectNum[temp-1]-1;
   aimSlength=aimSr-aimSl+1;
}
int main()
```

```
{
    //initlog();
     while( scanf("%s", s)!=EOF)
     {
          int i,j,n;
          n = strlen(s);
          for(i = 0; i < n; ++i)
               r[i] = s[i];
          r[n] = 0;//便于比较
          suffix(n + 1, 128);
          calheight(n);
          //initrmq(n);
    }
     return 0;
}
/*
simple:
     ababcaaabc
     n=10
st string
                                 saString
                                              height
               ranks
                        / sa
                              10
                                                    0
0
   ababcaaabc
1
   babcaaabc
                   6
                              5
                                    aaabc
                                                    0
2
   abcaaabc
                          /
                              6
                                    aabc
                                                    2
3
                              0
   bcaaabc
                   8
                                    ababcaaabc
                                                    1
                              7
4
   caaabc
                   10
                                    abc
                              2
                                                    3
5
   aaabc
                   1
                                    abcaaabc
                                    babcaaabc
6
   aabc
                   2
                              1
                                                    0
7
   abc
                   4
                              8
                                    bc
                                                    1
8
                   7
                              3
                                    bcaaabc
                                                    2
   bc
9
                   9
                              9
                                                    0
   С
                                    С
100
                   0
                              4
                                                    1
                                    caaabc
*/
```

前缀数组 Trie 刘汝佳模板

值

```
//sigma_size=26 maxnode 为节点最大数: 字符串数*每个字符串最大长度+x struct trie {
    int ch[maxnode][sigma_size];//ch[a][3]=c 表示第 a 个节点有一个子节点为'd'并且节点序列号为 c
    int val[maxnode];//存各个字符串权值,题目不涉及权值时,可以存 1
    int sz;
```

int idx(char c) { return c - 'a';}//找到 char c 对应的 id

```
void init()
     {
          sz = 1;
          memset(ch[0], 0, sizeof(ch[0]));
     }
     void insert(char *s, int v)//s 为字符串, v 为权值
     {
          int u = 0, n = strlen(s);
          for(int i = 0; i < n; i++)
               int c = idx(s[i]);
               if(!ch[u][c])
                     memset(ch[sz], 0, sizeof(ch[sz]));
                     val[sz] = 0;
                     ch[u][c] = sz++;
               }
               u = ch[u][c];
          val[u] = v;
     }
     int find(char *s)//查找 s, 返回权值
          int u = 0;
          for(int i = 0; s[i]; i++)
               int c = idx(s[i]);
               if(!ch[u][c]) return 0;
               u = ch[u][c];
          }
          return val[u];
}Trie;
```

字符串 hash

```
最接近 XXX 的素数:
100:97
1000:997
10000:9973
100000:99991
1000000: 999983
// BKDR Hash Function
unsigned int BKDRHash(char *str)
{
    unsigned int seed = 131; // 31 131 1313 13131 131313
etc..
    unsigned int hash = 0;
```

```
while (*str)
     {
          hash = hash * seed + (*str++);
     }
     return (hash & 0x7FFFFFFF);
}
// DJB Hash Function
unsigned int DJBHash(char *str)
{
     unsigned int hash = 5381;
     while (*str)
          hash += (hash << 5) + (*str++);
     }
     return (hash & 0x7FFFFFFF);
}
// JS Hash Function
unsigned int JSHash(char *str)
{
     unsigned int hash = 1315423911;
     while (*str)
     {
          hash ^= ((hash << 5) + (*str++) + (hash >> 2));
     }
     return (hash & 0x7FFFFFFF);
}
// AP Hash Function
unsigned int APHash(char *str)
{
     unsigned int hash = 0;
     int i;
     for (i=0; *str; i++)
     {
          if ((i \& 1) == 0)
               hash ^= ((hash << 7) ^ (*str++) ^ (hash >> 3));
          }
          else
          {
```

```
hash ^= (~((hash << 11) ^ (*str++) ^ (hash >> 5)));
}
return (hash & 0x7FFFFFFF);
}
```

图论

朱刘算法模板-最小树形图

```
/*
最小树形图图模版-朱刘算法
模版说明: 点标号必须 0-(N-1)
         必须去除到自身的点(到自身的边的边权赋
无限大)
NV 表示总点数, NE 表示总边数
*/
#define M 109
#define type int
const type inf=(1)<<30;
struct Node{
    int u, v;
    type cost;
}E[M*M+5];
int pre[M],ID[M],vis[M];
type In[M];
int n,m;
type Directed_MST(int root,int NV,int NE) {
    type ret = 0;
    while(true) {
        //1.找最小入边
        for(int i=0;i< NV;i++) In[i] = inf;
        for(int i=0;i<NE;i++){
             int u = E[i].u;
            int v = E[i].v;
            if(E[i].cost < In[v] && u != v) {
                 pre[v] = u;
                 In[v] = E[i].cost;
            }
        }
        for(int i=0;i<NV;i++) {
             if(i == root) continue;
             if(In[i] == inf) return -1;//除了跟以外有点
没有入边,则根无法到达它
        }
```

```
//2.找环
           int cntnode = 0;
      memset(ID,-1,sizeof(ID));
      memset(vis,-1,sizeof(vis));
           In[root] = 0;
           for(int i=0;i<NV;i++) {//标记每个环
                 ret += In[i];
                 int v = i;
                 while(vis[v] != i && ID[v] == -1 && v != root)
{
                      vis[v] = i;
                      v = pre[v];
                 }
                 if(v != root && ID[v] == -1) {
                      for(int u = pre[v]; u != v; u = pre[u]) {
                            ID[u] = cntnode;
                      }
                       ID[v] = cntnode ++;
                 }
           }
           if(cntnode == 0)
                                 break;//无环
           for(int i=0;i<NV;i++) if(ID[i] == -1) {
                 ID[i] = cntnode ++;
           }
           //3.缩点,重新标记
           for(int i=0;i<NE;i++) {
                 int v = E[i].v;
                 E[i].u = ID[E[i].u];
                 \mathsf{E}[\mathsf{i}].\mathsf{v} = \mathsf{ID}[\mathsf{E}[\mathsf{i}].\mathsf{v}];
                 if(E[i].u != E[i].v) {
                       E[i].cost -= In[v];
                 }
           }
           NV = cntnode;
           root = ID[root];
     }
     return ret;
}
```

拓扑排序

一种拓扑排序算法。该算法是简单而直观的,实质上属于广度优先遍历,因此称为广度优先拓扑排序算法。该 算法包含下列几个步骤:

[1] 从有向图中找一个没有前趋的结点 v, 若 v 不存在,则表明不可进行拓扑排序(图中有环路),结束(不完全成功);

```
[2] 将 v 输出;
```

- [3] 将 v 从图中删除,同时删除关联于 v 的所有的边
- [4] 若图中全部结点均已输出,则结束(成功),否则转 [1]继续进行

```
#include <iostream>
using namespace std;
int map[502][502], indegree[502], m, n, pur[502];
void topsort()
{
     int i, j, k=1;
     for(i=1; i<=n; i++)
    {
          for(j=1; j<=n; j++)
               if(indegree[j]==0)
                    indegree[j]--;
                    pur[k++] = j;
                    for(int x=1; x<=n; x++)
                         if(map[j][x])
                              indegree[x]--;
                    break;
               }
               if(j>n)
               {
                    cout<<"存在环"<<endl;
                    return;
               }
         }
    }
}
void main()
     int i, j;
    while(cin>>n>>m)
          memset(map,0,sizeof(map));
          memset(indegree,0,sizeof(indegree));
          int a, b;
          for(i=1; i<=m; i++)
               cin>>a>>b;
               if(!map[a][b])
```

欧拉路与曼哈顿路

- 1、无向图存在欧拉回路条件:每个点入度都为偶数
- 2、无向图存在欧拉路条件:只有两个点入度为奇数或每个点入度都为偶数
- 3、有向图存在欧拉回路条件:每个点入度都等于出度
- 4、有向图存在欧拉路条件:只存在这样两个点:一个点入度等于出度+1,另一个点入度=出度-1,其他每个点入度都等于出度,或者每个点入度都等于出度。

给 100 个点,任意两点有且仅有一条有向边,请输出任意一条哈密顿通路,如果没有,输出 impossible 题目中的图叫做竞赛图

定理 1: n(n>=2)阶竞赛图一定存在哈密顿通路 也叫哈密顿回路:在图中找出一条包含所有结点的闭路, 并且,出来起点和重点重合外,这条闭路所含结点是互 不相同的

基本并查集

```
//要 int parent 【 】,并初始化为-1
//注意同一个等价类之间的元素再次 merge 会傻逼
int root(int p){
    if(parent[p]==-1) return p;
    else return parent[p]=root(parent[p]);
}
void merge(int a,int b){
    a=root(a);
```

```
b=root(b);
   parent[a]=b;//在这里其实也可以设置一些值的传递
}
```

并查集的删除

并查集的删除需要一个数组来记录某点的真实对应节 点,如果 a 点删除,则直接把 a 点的真实对应点指向一 个新的 b,这样原有的结构信息不会错乱。

这题需要统计有几个等价类。。。一直以为可以像以前一 样通过 parent 等不等于-1 判断 TAT。其实只要开一个新 的数组进行标记,每找到一个新的祖节点就标记一下就 好,这样废弃的集合就不会被错算

```
#include<stdio.h>
#include<stdlib.h>
#include<string.h>
int parent[2000005];
int vis[2000005];
int mark[100005];
int num,n,m;
int root(int p)
{
    if(parent[p]==-1) return p;
    else return parent[p]=root(parent[p]);
}
void merge(int a,int b)
{
    a=root(a);
    b=root(b);
    parent[a]=b;//在这里其实也可以设置一些值的传递
}
int main()
{
    int R=0;
    while(scanf("%d%d",&n,&m)!=EOF &&n!=0)
    {
         R++;
         num=n;
         int i,j,ta,tb,ans=0;
         char ts[5];
         memset(parent,-1,sizeof(parent));
```

```
memset(mark,-1,sizeof(mark));
          memset(vis,0,sizeof(vis));
          for(i=0;i<n;i++)
          {
               mark[i]=i;
          }
          for(i=1;i<=m;i++)
          {
               scanf("%s",ts);
               if(ts[0]=='M')
               {
                    scanf("%d%d",&ta,&tb);
                    if(root(mark[ta])!=root(mark[tb]))
                         merge(mark[ta],mark[tb]);
               }
               else
               {
                    scanf("%d",&ta);
                    mark[ta]=num++;
               }
          }
          for(i=0;i<n;i++)
               ta=root(mark[i]);
               if(vis[ta]==0)
                    vis[ta]=1;
                    ans++;
               }
          }
          printf("Case #%d: %d\n",R,ans);
     return 0;
}
#include <stdio.h>
```

Spfa

```
#include <string.h>
#include <stdlib.h>
#include <iostream>
#include <algorithm>
#include <queue>
using namespace std;
const int inf =0x7ffffff;
const int maxn=300001;//点数
struct edge
```

```
int from,to,w,next;
}e[1000001];//边数
int head[maxn];
int vis[maxn];
int dist[maxn];
int n,m,t;//n 个点, m 条边, t 用来生成边的标号
void init()//建图前运行 init
{
     t=0;
     memset(head,-1,sizeof(head));
}
void add(int i,int j,int w)
     e[t].from=i;
     e[t].to=j;
     e[t].w=w;
     e[t].next=head[i];
     head[i]=t++;
}
void spfa(int s)
     queue <int> q;
     for(int i=1;i<=n;i++)
     dist[i]=inf;
     memset(vis,false,sizeof(vis));
     q.push(s);
     dist[s]=0;
     while(!q.empty())
    {
          int u=q.front();
          q.pop();
          vis[u]=false;
          for(int i=head[u];i!=-1;i=e[i].next)
          {
               int v=e[i].to;
               if(dist[v]>dist[u]+e[i].w)
               {
                    dist[v]=dist[u]+e[i].w;
                    if(!vis[v])
                    {
                         vis[v]=true;
                         q.push(v);
                    }
               }
         }
    }
}
int main()
{
```

```
int a,b,c,s,e;
scanf("%d%d",&n,&m);
init();
while(m--)
{
    scanf("%d%d%d",&a,&b,&c);
    add(a,b,c);
}
scanf("%d%d",&s,&e);
spfa(s);
if(dist[e]==inf) printf("-1\n");
else printf("%d\n",dist[e]);
return 0;
}
```

Tarjan 求强连通分量

```
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <iostream>
#include <algorithm>
#include <queue>
#include <stack>
using namespace std;
const int inf =0x3ffffff;
const int maxn=10005;//点数
struct edge
{
    int from,to,w,next;
}e[50005];//边数
stack<int>pq;
int head[maxn];
int instack[maxn];//是否在栈中
int dfn[maxn];//同时可用于判断是否遍历过
int low[maxn];
int n,m,t,index;//n 个点, m 条边, t 用来生成边的标
号,index 用来生成点的标号
void init()//建图前运行 init
{
    t=0;
    index=0;
    memset(head,-1,sizeof(head));
    memset(instack,0,sizeof(instack));
    memset(dfn,-1,sizeof(dfn));
    memset(low,-1,sizeof(low));
    while(!pq.empty())
         pq.pop();
```

```
}
void add(int i,int j,int w)
     e[t].from=i;
     e[t].to=j;
     e[t].w=w;
     e[t].next=head[i];
     head[i]=t++;
}
void tarjan(int u)
{
     dfn[u]=low[u]=++index;
     pq.push(u);
     instack[u]=1;
     for(int i=head[u];i!=-1;i=e[i].next)
          if(dfn[e[i].to]==-1)
          {
               tarjan(e[i].to);
               low[u]=min(low[u],low[e[i].to]);
          else if(instack[e[i].to]==1)
               low[u]=min(low[u],dfn[e[i].to]);
          }
     }
     if(dfn[u]==low[u])
     {
          int v;
          v=pq.top();//从这个 v 开始为强连通分量的一
个
          //solve v
          pq.pop();
          instack[v]=0;
          while(v!=u)
               v=pq.top();
               //solve v
               pq.pop();
               instack[v]=0;
          }
     }
}
int main()
{
     int a,b;
     int i,j;
     scanf("%d%d",&n,&m);
     init();
```

```
while(m--)
{
     scanf("%d%d",&a,&b);
     add(a,b,0);
}
for(i=1;i<=n;i++)
{
     if(dfn[i]==-1)
         tarjan(i);
}
return 0;
}</pre>
```

求无向图的割点(重边不重边神马的无所谓)

```
#include<stdio.h>
#include<string.h>
#include<stdlib.h>
#include<vector>
using namespace std;
#define N 103
vector<int> g[N];
int n, low[N], dfn[N], f[N];
bool vis[N];
void dfs(int u, int depth, const int &root) { //root 为连通图
的树根
     dfn[u] = low[u] = depth;
     vis[u] = true;
     int cnt = 0;
     for (int i=0; i<g[u].size(); i++) {
         int v = g[u][i];
         if (!vis[v]) {
              cnt++;
              dfs(v, depth+1, root);
              low[u] = min(low[u], low[v]);
              if (u!=root \&\& low[v]>=dfn[u]) f[u]++;
                                                        //
当u不为树根的时候
                    (u==root
                                &&
                                                   f[u]++;
                                        cnt >= 2
//当 u 为搜索树的树根的时候
         } else low[u] = min(low[u], dfn[v]);
     }
}
```

int cut_point() {

```
memset(f, 0, sizeof(f));
     memset(vis, false, sizeof(vis));
     dfs(1, 1, 1);//认为原来是连通图
     int ans = 0;
     for (int i=1; i<=n; i++) if (f[i] >= 1) ans++;
     return ans;
}
int m;
int main()
{
     while(scanf("%d%d",&n,&m)!=EOF)
    {
          int i,j;
          int ta,tb;
          for(i=1;i<=n;i++)
               g[i].clear();
          for(i=1;i<=m;i++)
          {
               scanf("%d%d",&ta,&tb);
               g[ta].push_back(tb);
               g[tb].push_back(ta);
          }
          int ans;
          ans=cut_point();
          printf("%d\n",ans);
    }
     return 0;
}
```

无向图的桥 双连通分量

```
/*
 *无向图的桥及边的双连通分量,Tarjan 算法 O(E)
 */
#include <cstdio>
#include <cstring>
using namespace std;
#define MAXN 10000
#define MAXM 1000000

struct node {
    int v, w, pre; //id: 边的编号(处理重边情况)
} edge[MAXM];
int pos[MAXN], nEdge; //图的存储: 链式前向星(池子法)

struct Bridge {
```

```
int u, v;
} bridge[MAXM]; //用来记录桥
int tot; //桥的个数
int fa[MAXN], cc; //fa: 各个点所属的缩点(连通块), cc
连通块的个数
int dfn[MAXN], low[MAXN], time; //时间戳
int stack[MAXN], top;
                      //用于维护连通块的
int n. m:
          //点的个数和边的条数
void connect(int u, int v, int w) { //重边+id
    nEdge++;
    edge[nEdge].pre = pos[u];
    edge[nEdge].v = v;
    edge[nEdge].w = w; //edge[nEdge].id = id;
    pos[u] = nEdge;
}
void tarjan(int cur, int from) {
    low[cur] = dfn[cur] = time++;
    stack[++top] = cur;
    for (int p=pos[cur]; p; p=edge[p].pre) {
         int v = edge[p].v;
         if (v == from) continue; //注意一下这里.
                                                    如
果是重边的话, 改成: if (edge[p].id == from) continue; 给
tarjan 传参数 from 的时候,传递的是当前边的 id。
         if (!dfn[v]) {
                                   //多重边: tarjan(v,
              tarjan(v, cur);
edge[p].id);
              if (low[v] < low[cur]) low[cur] = low[v];
              if (low[v] > dfn[cur]) {
                  bridge[tot].u = cur;
                  bridge[tot++].v = v;
                  CC++;
                  do {
                       fa[stack[top]] = cc;
                  } while (stack[top--] != v);
         } else if (low[cur] > dfn[v]) low[cur] = dfn[v];
    }
}
int main() {
    scanf("%d%d", &n, &m);
    memset(pos, 0, sizeof(pos));
    nEdge = 0;
    int u, v, w;
    for (int i=0; i<m; i++) {
         scanf("%d%d%d", &u, &v, &w);
```

```
connect(u, v, w);//重边+i
         connect(v, u, w);//重边+i
    }
    memset(dfn, 0, sizeof(dfn));
    memset(fa, -1, sizeof(fa));
    cc = tot = 0;
    for (int i=1; i<=n; i++)
                           //可以处理不连通的无向图,
如果连通只需要一次即可
         if (!dfn[i]) {
             top = time = 1;
             tarjan(i, -1);
             ++cc;
                                   //特殊处理顶点的
             for (int j=1; j<=n; j++)
连通块
                  if (dfn[j] \&\& fa[j]==-1) fa[j] = cc;
         }
    for (int i=1; i<=n; i++)
         printf("%d ", fa[i]); //输出每个节点所属于的
连通块 (缩点标号)
    printf("\n");
    for (int i=0; i<tot; i++)
         printf("%d %d\n", bridge[i].u, bridge[i].v); //输出
所有的桥
    return 0;
}
```

处理二维种类并查集

```
切点
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
int n,m;
char ts[10];
int parent[200020];
int root(int p){
    if(parent[p]==-1) return p;
    else return parent[p]=root(parent[p]);
}
void merge(int a,int b){
    a=root(a);
    b=root(b);
    parent[a]=b;
```

```
int main()
{
     int T;
     scanf("%d",&T);
     while(T--)
     {
          int i,j;
          int ta,tb;
          memset(parent,-1,sizeof(parent));
          scanf("%d%d",&n,&m);
          while(m--)
          {
               scanf("%s%d%d",ts,&ta,&tb);
               if(ts[0]=='D')
                    if(root(ta*2)!=root(tb*2+1))
                         merge(ta*2,tb*2+1);
                    if(root(ta*2+1)!=root(tb*2))
                         merge(ta*2+1,tb*2);
               }
               else
                    if(root(ta*2)==root(tb*2))
                         printf("In the same gang.\n");
                    else if(root(ta*2)==root(tb*2+1))
                         printf("In different gangs.\n");
                    else
                         printf("Not sure yet.\n");
               }
          }
     }
```

食物链

}

三类动物 A、B、C 构成食物链循环,告诉两个动物的关系(同类或天敌),判断那个关系是和前面已有的冲突。

并查集的高级应用。

假设 father[A]=B,rank[A]=0 表示 A 与 B 同类; rank[A]=1 表示 B 可以吃 A; rank[A]=2 表示 A 可以吃 B。

对于一组数据 $d \times y$,若 \times 与 y 的根节点相同,利用 (rank[y]-rank[x]+3)%3!=d-1 若不相等说明为假话;

```
组合。让x的根fx成为y的根fy的父节点(father[fy]=fx),
rank[fy]的值需要仔细归纳得出。
#include <stdio.h>
#include <memory.h>
#define MAXN 50001
int father[MAXN],rank[MAXN];
void Init(int n)
{
    int i;
    for(i=1;i<=n;i++)
         father[i]=i;
    memset(rank,0,sizeof(rank));
}
int Find_Set(int x)
{
    if(x!=father[x])
    {
         int fx=Find_Set(father[x]);
         rank[x]=(rank[x]+rank[father[x]])%3;
                                            // 注 意
是 rank[father[x]]而不是 rank[fx]
         father[x]=fx;
    }
    return father[x];
}
bool Union(int x,int y,int type)
    int fx,fy;
    fx=Find Set(x);
    fy=Find_Set(y);
    if(fx==fy)
    {
         if((rank[y]-rank[x]+3)%3!=type)return true;
    //这个关系可以通过举例得出
         else return false;
    }
    father[fy]=fx;
    rank[fy]=(rank[x]-rank[y]+type+3)%3;
                                             // 与上
式不同 需仔细归纳
    return false;
}
int main()
{
```

若x与y根节点不同,说明两者不在同一集合里,进行

```
freopen("in.txt","r",stdin);
     int n,k;
    int sum,i;
    int d,x,y;
     scanf("%d %d",&n,&k);
    //cin>>n>>k;
    Init(n);
    sum=0;
    for(i=0;i<k;i++)
         scanf("%d %d %d",&d,&x,&y);
                                                // 用 cin
         //cin>>d>>x>>y;
会超时
         if(x>n | | y>n | | (x==y \&\& d==2))
              sum++;
                                           //传 d-1 方便
         else if(Union(x,y,d-1))
关系式的表达
              sum++;
     printf("%d\n",sum);
    return 0;
}
```

数论

最大公约与最小公倍

```
int LCM(int a,int b)//最小公倍数
{
     int x=a,y=b;
     int r=x%y;
     while(r>0)
          x=y;
          y=r;
          r=x%y;
     return a*b/y;
}
int GCD(int x,int y) //求最大公约数
{
     if(|x| | |y|) return x > y ? x : y;
     for (int t; t=x\%y;x=y,y=t);
     return y;
}
```

```
#include<algorithm>
using namespace std;
int kgcd(int a,int b)//快速 GCD

{
    if(a==0) return b;
    if(b==0) return a;
    if(!(a&1) && !(b&1)) return kgcd (a>>1,b>>1) << 1;
    else if(!(b&1)) return kgcd(a,b>>1);
    else if(!(a&1)) return kgcd(a>>1,b);
    else return kgcd(abs(a-b),min(a,b));
}
```

高精度幂取模

```
* FZU1759.cpp
    Created on: 2011-10-11
         Author: bjfuwangzhu
 * 格式为:
 * cha^chb%c
 * cha、chb 均为字符串
 */
#include<stdio.h>
#include<string.h>
#include<math.h>
#include<stdlib.h>
#define LL long long
#define nnum 1000005
#define nmax 31625
int flag[nmax], prime[nmax];
char cha[nnum], chb[nnum];
int plen;
void mkprime() {
    int i, j;
    memset(flag, -1, sizeof(flag));
    for (i = 2, plen = 0; i < nmax; i++) {
         if (flag[i]) {
               prime[plen++] = i;
         for (j = 0; (j < plen) && (i * prime[j] < nmax); j++)
{
              flag[i * prime[j]] = 0;
               if (i % prime[j] == 0) {
                   break;
               }
         }
```

```
}
}
int getPhi(int n) {
     int i, te, phi;
     te = (int) sqrt(n * 1.0);
     for (i = 0, phi = n; (i < plen) && (prime[i] <= te); i++) {
           if (n % prime[i] == 0) {
                 phi = phi / prime[i] * (prime[i] - 1);
                while (n \% prime[i] == 0) {
                      n /= prime[i];
                }
           }
     }
     if (n > 1) {
           phi = phi / n * (n - 1);
     return phi;
}
int cmpBigNum(int p, char *ch) {
     int i, len;
     LL res;
     len = strlen(ch);
     for (i = 0, res = 0; i < len; i++) {
           res = (res * 10 + (ch[i] - '0'));
           if (res > p) {
                return 1;
           }
     }
     return 0;
}
int getModBigNum(int p, char *ch) {
     int i, len;
     LL res;
     len = strlen(ch);
     for (i = 0, res = 0; i < len; i++) {
           res = (res * 10 + (ch[i] - '0')) % p;
     }
     return (int) res;
}
int modular_exp(int a, int b, int c) {
     LL res, temp;
     res = 1 % c, temp = a % c;
     while (b) {
           if (b & 1) {
                 res = res * temp % c;
           temp = temp * temp % c;
           b >>= 1;
     }
```

```
return (int) res;
}
void solve(int a, int c, char *ch) {
     int phi, res, b;
     phi = getPhi(c);
     if (cmpBigNum(phi, ch)) {
          b = getModBigNum(phi, ch) + phi;
     } else {
          b = atoi(ch);
     }
     res = modular_exp(a, b, c);
     printf("%d\n", res);
}
int main() {
     int a, c;
     mkprime();
     while (~scanf("%s %s %d", cha, chb, &c)) {
          a = getModBigNum(c, cha);
          solve(a, c, chb);
     }
     return 0;
}
```

快速幂取模

```
int quickpow(int m,int n,int k)
{
    int b = 1;
    while (n > 0)
    {
        if (n & 1)
            b = (b*m)%k;
        n = n >> 1;
        m = (m*m)%k;
    }
    return b;
}
```

矩阵快速幂求 Fibonacci

```
const long long MOD=1e9+7;//c++对于 const 有优化,要
比非 const 快
struct Matrix
{
    long long mat[2][2];
    Matrix operator *(const Matrix &b)const
```

```
{
          Matrix ret;
          for(int i = 0; i < 2; i++)
               for(int j = 0; j < 2; j++)
                    ret.mat[i][j] = 0;
                    for(int k = 0; k < 2; k++)
                    {
                          ret.mat[i][j]
                                                         (long
long)mat[i][k]*b.mat[k][j]%MOD;
                          if(ret.mat[i][j] >= MOD)
                               ret.mat[i][j] -= MOD;
                    }
          return ret;
     }
};
Matrix pow_M(Matrix a,long long n)
     Matrix ret;
     memset(ret.mat,0,sizeof(ret.mat));
     ret.mat[0][0] = ret.mat[1][1] = 1;
     Matrix tmp = a;
     while(n)
     {
          if(n&1)ret = ret*tmp;
          tmp = tmp*tmp;
          n >>= 1;
     }
     return ret;
}
long long calc(long long n)
{
     Matrix A;
     A.mat[0][0] = 0;
     A.mat[1][0] = 1;
     A.mat[0][1] = 1;
     A.mat[1][1] = 1;
     A = pow_M(A,n);
     return A.mat[1][0];
```

大型质因数分解

```
注意 1.....
#include<stdio.h>
#include<string.h>
```

```
#include<stdlib.h>
                                                                 n>>=1;
#include<time.h>
                                                             }
                                                             return ret;
#include<iostream>
#include<algorithm>
                                                        }
using namespace std;
// Miller_Rabin 算法进行素数测试
                                                        //以 a 为基,n-1=x*2^t
                                                                                  a^(n-1)=1(mod n) 验证 n 是
//速度快,而且可以判断 <2^63 的数
                                                         不是合数
                                                        //一定是合数返回 true,不一定返回 false
                                                        bool check(long long a,long long n,long long x,long long t)
const int S=20;//随机算法判定次数,S越大,判错概率越
                                                        {
小
                                                             long long ret=pow_mod(a,x,n);
                                                             long long last=ret;
                                                             for(int i=1;i<=t;i++)
//计算 (a*b)%c.
                a,b 都是 long long 的数,直接相乘可
                                                             {
能溢出的
                                                                 ret=mult_mod(ret,ret,n);
// a,b,c < 2^63
                                                                 if(ret==1&&last!=1&&last!=n-1) return true;//合
                                                         数
long long mult_mod(long long a,long long b,long long c)
                                                                 last=ret;
                                                             }
    a%=c;
    b%=c;
                                                             if(ret!=1) return true;
    long long ret=0;
                                                             return false;
                                                        }
    while(b)
    {
                                                        // Miller_Rabin()算法素数判定
        if(b&1){ret+=a;ret%=c;}
                                                        //是素数返回 true.(可能是伪素数,但概率极小)
        a<<=1;
                                                        //合数返回 false;
        if(a>=c)a%=c;
        b>>=1;
                                                        bool Miller_Rabin(long long n)
    }
    return ret;
}
                                                             if(n<2)return false;
                                                             if(n==2)return true;
                                                             if((n&1)==0) return false;//偶数
                                                             long long x=n-1;
//计算 x^n %c
                                                             long long t=0;
long long pow_mod(long long x,long long n,long long
                                                             while((x&1)==0){x>>=1;t++;}
mod)//x^n%c
                                                             for(int i=0;i<S;i++)
{
                                                             {
    if(n==1)return x%mod;
                                                                 long long a=rand()%(n-1)+1;//rand()需要 stdlib.h
    x%=mod;
                                                        头文件
    long long tmp=x;
                                                                 if(check(a,n,x,t))
    long long ret=1;
                                                                      return false;//合数
    while(n)
                                                             }
    {
                                                             return true;
        if(n&1) ret=mult_mod(ret,tmp,mod);
                                                        }
        tmp=mult_mod(tmp,tmp,mod);
```

```
//pollard rho 算法进行质因数分解
long long factor[100];//质因数分解结果(刚返回时是无
序的)
int tol;//质因数的个数。数组小标从 0 开始
long long gcd(long long a,long long b)
    if(a==0)return 1;//???????
    if(a<0) return gcd(-a,b);
    while(b)
    {
         long long t=a%b;
         a=b:
         b=t;
    }
    return a;
}
long long Pollard_rho(long long x,long long c)
{
    long long i=1,k=2;
    long long x0=rand()%x;
    long long y=x0;
    while(1)
    {
         i++;
         x0=(mult_mod(x0,x0,x)+c)%x;
         long long d=gcd(y-x0,x);
         if(d!=1\&\&d!=x) return d;
         if(y==x0) return x;
         if(i==k){y=x0;k+=k;}
    }
//对 n 进行素因子分解
void findfac(long long n)
{
    if(Miller_Rabin(n))//素数
    {
         factor[tol++]=n;
         return;
    long long p=n;
    while(p>=n)p=Pollard_rho(p,rand()%(n-1)+1);
    findfac(p);
```

```
findfac(n/p);
}
int main()
    srand(time(NULL));//需要 time.h 头文件//POJ 上 G++
不能加这句话
    long long n;
    while(scanf("%I64d",&n)!=EOF)
         tol=0:
         if(n==1)continue;//1 既不是指数,也不是合数,
需要特殊处理
         findfac(n);
         for(int i=0;i<tol;i++)printf("%I64d ",factor[i]);
         printf("\n");
         if(Miller_Rabin(n))printf("Yes\n");
         else printf("No\n");
    }
    return 0;
}
```

素数打表与素数单个判断

```
bool primeVis[10100000]; //i 是不是素数,从 primeVis[2]
开始有效
int prime[1000000]; //prime[1]=2,prime[2]=3...
int primeNum = 0; //N 以内素数个数(1.2...primeNum)
void init_prim(int N)
{
     memset(primeVis, true, sizeof(primeVis));
    for (int i = 2; i <= N; ++i)
     {
         if (primeVis[i] == true)
         {
              primeNum++;
              prime[primeNum] = i;
         for (int j = 1; ((j <= primeNum) && (i * prime[j] <=
N)); ++j)
              primeVis[i * prime[j]] = false;
              if (i % prime[j] == 0) break; //点睛之笔
         }
     }
}
```

bool judge prime(int temp)//判断一个数是否为质数,返

```
回 1 为素数,0 为合数
{
    for(int i=2;i*i<=temp;i++)
        if(temp%i==0)
        return false;
    return true;
}
```

斜率优化 dp

最大区间平均值

```
#include<stdio.h>
#include<iostream>
#include<string.h>
#include<queue>
#include<algorithm>
using namespace std;
const int MAXN=100010;
double sum[MAXN];
int a[MAXN];
int q[MAXN];
int head, tail;
double max(double a, double b)
{
     if(a>b)return a;
     else return b;
}
double getUP(int i,int j)//i>j
{
     return sum[i]-sum[j];
}
int getDOWN(int i,int j)
{
     return i-j;
}
inline int input()
{
     char ch=' ';
     while(ch<'0'||ch>'9')ch=getchar();
     int x=0;
```

```
while(ch<='9'&&ch>='0')x=x*10+ch-'0',ch=getchar();
     return x;
}
int main()
{
    //freopen("in.txt","r",stdin);
    //freopen("out.txt","w",stdout);
     int n,k;
     while(scanf("%d%d",&n,&k)!=EOF)
     {
          sum[0]=0;
          for(int i=1;i<=n;i++)
          {
             scanf("%d",&a[i]);
               sum[i]=sum[i-1]+a[i];
          }
          head=tail=0;
          q[tail++]=0;
          double ans=0;
          for(int i=k;i<=n;i++)
          {
while(head+1<tail&&getUP(i,q[head])*getDOWN(i,q[head
+1])<=getUP(i,q[head+1])*getDOWN(i,q[head]))
                 head++;
ans=max(ans,getUP(i,q[head])/getDOWN(i,q[head]));
               int j=i-k+1;
               while(head+1<tail&&getUP(j,q[tail-
1])*getDOWN(q[tail-1],q[tail-2])<=getUP(q[tail-1],q[tail-
2])*getDOWN(j,q[tail-1]))
               q[tail++]=j;
          }
          printf("%.2lf\n",ans);
     return 0;
}
```

Poj1260

题意:要买若干种价值的珍珠,但买某种珍珠必须多付10颗此种珍珠的价钱,及如果买价值为1的珍珠100颗,必须付的钱数为110。一颗珍珠可以用比它贵的珍珠充数,因此买多种珍珠的时候用贵的代替便宜的可能更省

钱。例如买 100 颗价值为 2 的、1 颗价值为 1 的,此时 买 101 颗价值为 2 的为较优方案。输入要买的若 干种 珍珠,可用高价珍珠充数的条件下,问最少需要花费多 少钱。

经典 dp:

高档次的珍珠若要和低档次的珍珠合并,那么这些低档次的珍珠必须是和它紧邻的,也就是说,它只有和第 i一1,i一2,…,i一j类珍珠合并,同时这种合并必须是连续的。用 sum[i] 记录前 i 类珍珠的总数。推出状态转移方程:

```
dp[i] = min (dp[i], (sum[i] - sum[j] + 10) * p[i] + dp[j]);
#include<stdio.h>
#include<iostream>
#include<string.h>
#include<queue>
using namespace std;
int dp[105];
int q[105];
int sum[105];
int cost[105];
int head, tail, n;
int getDP(int i,int k)
{
    return dp[k]+(sum[i]-sum[k]+10)*cost[i];
}
int getUP(int k1,int k2)
{
    return dp[k1]-dp[k2];
}
int getDOWN(int k1,int k2)
{
    return sum[k1]-sum[k2];
}
int main()
{
    int T;
    scanf("%d",&T);
    while(T--)
    {
```

```
scanf("%d",&n);
          int i,j;
          int ta,tb;
          sum[0]=cost[0]=0;
          for(i=1;i<=n;i++)
          {
               scanf("%d%d",&ta,&tb);
               sum[i]=sum[i-1]+ta;
               cost[i]=tb;
          }
          dp[0]=0;
          head=tail=0;
          q[tail++]=0;
          for(i=1;i<=n;i++)
                                                          &&
               while(head+1<tail
getUP(q[head+1],q[head])<=cost[i]*getDOWN(q[head+1],</pre>
q[head]))
                         head++;
               dp[i]=getDP(i,q[head]);
               while(head+1<tail
                                      &&
                                               getUP(i,q[tail-
1])*getDOWN(q[tail-1],q[tail-2])<=getUP(q[tail-1],q[tail-1])
2])*getDOWN(i,q[tail-1]))
                         tail--;
               q[tail++]=i;
          }
          printf("%d\n",dp[n]);
     }
     return 0;
}
```

poj 3709 K-Anonymous Sequence 斜率 优化 dp 分组有大小限制

题意是给你一个 n 长度递增数列,将其分组,每组不少 于 m 个,每组的 cost 是每组中所有元素减去里面最小 元素的值的总和,要求你算最小的 cost。我想说这类的 分组问题一般都是 dp 解决的,这题也不例外, dp 状态 也很好设定, dp[i]表示前 i 个元素的 cost 最小值, 当然 是已经分好组了, 因为没限定你要分几组就是一维的状 态,但是把状态方程列出来后就会发现一个问题,状态 移 方 程 dp[i]=dp[tem]+sum[i]-sum[tem]-(item)*a[tem+1];m<tem<i; 这 个 复 杂 n*mn<500000,m<n,显然超时,这时就要用到斜率+单调 队列优化

分组,并且每组的大小有限制

注意不一定要分满组才最小,要取 min

```
#include<stdio.h>
#include<iostream>
#include<string.h>
#include<queue>
using namespace std;
const int MAXN=500010;
#define II __int64
II dp[MAXN];
II a[MAXN];
int q[MAXN];//队列
Il sum[MAXN];
int head, tail, n, m;
Il getDP(int i,int k)
{
     return dp[k]+sum[i]-sum[k]-a[k+1]*(i-k);
}
Il getUP(int k1,int k2) //yj-yk 部分
{
     return
                     (dp[k1]-sum[k1]+a[k1+1]*k1)-(dp[k2]-
sum[k2]+a[k2+1]*k2);
Il getDOWN(int k1,int k2)
     return a[k1+1]-a[k2+1];
}
int main()
{
    int T;
    scanf("%d",&T);
    while(T--)
    {
         scanf("%d%d",&n,&m);
         int i,j;
         sum[0]=0;
         for(i=1;i<=n;i++)
             scanf("%I64d",&a[i]);
         sort(a+1,a+n+1);
         for(i=1;i<=n;i++)
              sum[i]=sum[i-1]+a[i];
         head=tail=0;
         dp[0]=0;
```

```
for(i=1;i<m*2&&i<=n;i++)
             dp[i]=getDP(i,0);
         q[tail++]=m;
         for(i=m*2;i<=n;i++)
             //把斜率转成相乘,注意顺序,否则不等
号方向会改变的
             while(head+1<tail
                                                  &&
getUP(q[head+1],q[head])<=i*getDOWN(q[head+1],q[hea
d]))
                head++;
             dp[i]=getDP(i,q[head]);
             while(head+1<tail && getUP(i-m+1,q[tail-
1])*getDOWN(q[tail-1],q[tail-2])<=getUP(q[tail-1],q[tail-
2])*getDOWN(i-m+1,q[tail-1]))
                      tail--;
             q[tail++]=i-m+1;
         printf("%164d\n",dp[n]);
    }
    return 0;
}
```

概率 dp

Hdu4035 树上概率 dp

```
/*
转自 kuangbin
HDU 4035
```

dp 求期望的题。

题意:

有 n 个房间,由 n-1 条隧道连通起来,实际上就形成了一棵树,

从结点1出发,开始走,在每个结点i都有3种可能:

- 1.被杀死, 回到结点 1 处(概率为 ki)
- 2.找到出口,走出迷宫 (概率为 ei)
- 3.和该点相连有 m 条边, 随机走一条

求: 走出迷宫所要走的边数的期望值。

设 E[i]表示在结点 i 处,要走出迷宫所要走的边数的期望。E[1]即为所求。

```
叶子结点:
    E[i] = ki*E[1] + ei*0 + (1-ki-ei)*(E[father[i]] + 1);
           = ki*E[1] + (1-ki-ei)*E[father[i]] + (1-ki-ei);
     非叶子结点: (m 为与结点相连的边数)
     E[i] = ki*E[1] + ei*0 + (1-ki-ei)/m*( E[father[i]]+1 + \Sigma
( E[child[i]]+1 ) );
           = ki*E[1] + (1-ki-ei)/m*E[father[i]] + (1-ki-ei)/m*
\Sigma (E[child[i]]) + (1-ki-ei);
     设对每个结点: E[i] = Ai*E[1] + Bi*E[father[i]] + Ci;
     对于非叶子结点i,设j为i的孩子结点,则
     \Sigma (E[child[i]]) = \Sigma E[j]
                       = \Sigma (Aj*E[1] + Bj*E[father[j]] + Cj)
                       = \sum (Aj*E[1] + Bj*E[i] + Cj)
    带入上面的式子得
     (1 - (1-ki-ei)/m^* \sum Bj)^*E[i] = (ki+(1-ki-ei)/m^* \sum Aj)^*E[1]
+ (1-ki-ei)/m*E[father[i]] + (1-ki-ei) + (1-ki-ei)/m*\sum Cj;
     由此可得
    Ai =
                    (ki+(1-ki-ei)/m* \sum Aj)
                                              / (1 - (1-ki-
ei)/m*\SigmaBj);
     Bi =
                                               / (1 - (1-ki-
                    (1-ki-ei)/m
ei)/m* \Sigma Bj);
    Ci = ((1-ki-ei)+(1-ki-ei)/m*\Sigma Cj)/(1-(1-ki-ei)/m*\Sigma
Bj);
    对于叶子结点
    Ai = ki;
    Bi = 1 - ki - ei;
    Ci = 1 - ki - ei;
    从叶子结点开始,直到算出 A1,B1,C1;
    E[1] = A1*E[1] + B1*0 + C1;
    所以
    E[1] = C1 / (1 - A1);
     若 A1 趋近于 1 则无解...
*/
#include<iostream>
#include<algorithm>
#include<iostream>
#include<stdio.h>
#include<string.h>
#include<stdlib.h>
#include<vector>
#include<queue>
#include<cmath>
```

```
using namespace std;
#define II long long
#define inf 0x3f3f3f3f
#define maxnode 1000010
#define sigma_size 26
const int dir[4][2]={0,1,0,-1,1,0,-1,0};
int n;
vector<int>pq[10005];
struct Dian
{
     double a,b,c;
     double k,e;
}dians[10005];
void dfs(int temp,int father)
{
     if(pq[temp].size()==1\&&father!=-1)
     {
          dians[temp].a=dians[temp].k;
          dians[temp].b=dians[temp].c=1-dians[temp].e-
dians[temp].k;
          return;
     double sa=0,sb=0,sc=0,fuck;
     int m=0;
     for(int i=0;i<pq[temp].size();i++)</pre>
          m++;
          if(pq[temp][i]!=father)
               dfs(pq[temp][i],temp);
               sa+=dians[pq[temp][i]].a;
               sb+=dians[pq[temp][i]].b;
               sc+=dians[pq[temp][i]].c;
          }
     }
     fuck=(1.0-(1.0-dians[temp].k-dians[temp].e)/m*sb);
     dians[temp].a=(dians[temp].k+(1.0-dians[temp].k-
dians[temp].e)/m*sa)/fuck;
     dians[temp].b=((1.0-dians[temp].k-
dians[temp].e)/m)/fuck;
     dians[temp].c=((1.0-dians[temp].k-
dians[temp].e)+(1.0-dians[temp].k-
dians[temp].e)/m*sc)/fuck;
}
int main()
```

```
{
                                                      设 dp[i][j]表示 i 个人排队,Tomato 排在第 j 个位置,达到
    int T,R=0;
                                                      目标状态的概率(j<=i)
    scanf("%d",&T);
                                                      dp[n][m]就是所求
    while(T--)
                                                      j==1:
                                                              dp[i][1]=p1*dp[i][1]+p2*dp[i][i]+p4;
                                                      2<=j<=k:
                                                                 dp[i][j]=p1*dp[i][j]+p2*dp[i][j-1]+p3*dp[i-1][j-1]
        R++;
                                                      1]+p4;
        int i,j;
                                                      k < j < i: dp[i][j] = p1*dp[i][j] + p2*dp[i][j-1] + p3*dp[i-1][j-1];
                                                      化简:
        int ta,tb;
        scanf("%d",&n);
                                                      j==1:
                                                              dp[i][1]=p*dp[i][i]+p41;
        for(i=1;i<=n;i++)
                                                      2 \le j \le k: dp[i][j] = p*dp[i][j-1] + p31*dp[i-1][j-1] + p41;
                                                      k < j < = i: dp[i][j] = p*dp[i][j-1] + p31*dp[i-1][j-1];
            pq[i].clear();
        for(i=1;i<n;i++)
        {
                                                      其中:
            scanf("%d%d",&ta,&tb);
                                                      p=p2/(1-p1);
            pq[ta].push_back(tb);
                                                      p31=p3/(1-p1)
            pq[tb].push_back(ta);
                                                      p41=p4/(1-p1)
        }
        for(i=1;i<=n;i++)
                                                      可以循环 i=1->n 递推求解 dp[i].在求解 dp[i]的时候 dp[i-
                                                      1]就相当于常数了。
                                                      在求解 dp[i][1~i]时等到下列 i 个方程
            scanf("%d%d",&ta,&tb);
            dians[i].k=ta/100.0;
                                                      j==1:
                                                             dp[i][1]=p*dp[i][i]+c[1];
            dians[i].e=tb/100.0;
                                                      2 \le j \le k:dp[i][j] = p*dp[i][j-1] + c[j];
        }
                                                      k < j = i: dp[i][j] = p*dp[i][j] + c[j];
        dfs(1,-1);
                                                      其中 c[j]都是常数了。上述方程可以解出 dp[i]了。
        if(fabs(1-dians[1].a)<0.0000000001)
                                                      首先是迭代得到 dp[i][i].然后再代入就可以得到所有的
            printf("Case %d: impossible\n",R);
                                                      dp[i]了。
        else
                                                      注意特判一种情况。就是 p4<eps 时候,就不会崩溃了,
            printf("Case %d: %.6lf\n",R,dians[1].c/(1.0-
dians[1].a));
                                                      应该直接输出 0
    }
                                                      #include<iostream>
    return 0;
                                                      #include<algorithm>
}
                                                      #include<iostream>
                                                      #include<stdio.h>
                                                      #include<string.h>
倒着的概率
                                                      #include<stdlib.h>
                                                      #include<vector>
                                                      #include<queue>
HDU 4098
                                                      #include<cmath>
题意:有 n 个人排队等着在官网上激活游戏。Tomato 排
                                                      using namespace std;
在第m个。
                                                      #define II long long
对于队列中的第一个人。有一下情况:
                                                      #define inf 0x3f3f3f3f
1、激活失败,留在队列中等待下一次激活(概率为 p1)
                                                      int dir[4][2]={0,1,0,-1,1,0,-1,0};
2、失去连接,出队列,然后排在队列的最后(概率为 p2)
                                                      const double eps=1e-8;
3、激活成功,离开队列(概率为p3)
4、服务器瘫痪,服务器停止激活,所有人都无法激活了。
                                                      double c[2005];
求服务器瘫痪时 Tomato 在队列中的位置<=k 的概率
                                                      double pp[2005];
```

double dp[2005][2005];

double p1,p2,p3,p4,p,p31,p41;

int n,m,k;

解析:

概率 DP;

```
int main()
{
     while(scanf("%d%d%d%lf%lf%lf%lf%lf",&n,&m,&k,&p1,&
p2,&p3,&p4)!=EOF)
    {
          if(p4<eps)
          {
               printf("0.00000\n");
               continue;
          }
          memset(dp,0,sizeof(dp));
          memset(c,0,sizeof(c));
          int i,j;
          p=p2/(1.0-p1);
          p31=p3/(1.0-p1);
          p41=p4/(1.0-p1);
          pp[0]=1.0;
          for(int i=1;i <= n;i++) pp[i]=p*pp[i-1];
          dp[1][1]=p41/(1-p);
          c[1]=p41;
          for(int i=2;i<=n;i++)
               for(int j=2;j<=k\&\&j<=i;j++)
                    c[j]=p31*dp[i-1][j-1]+p41;
               for(int j=k+1;j<=i;j++)
                    c[j]=p31*dp[i-1][j-1];
               double tmp=c[1]*pp[i-1];
               for(int j=2;j<=i;j++)
                    tmp+=c[j]*pp[i-j];
               dp[i][i]=tmp/(1-pp[i]);
               dp[i][1]=p*dp[i][i]+c[1];
               for(int j=2;j<i;j++)
                    dp[i][j]=p*dp[i][j-1]+c[j];
          printf("\%.5lf\n",dp[n][m]);
    }
     return 0;
}
```

Hdu4870

```
概率方程很好写,但是有环可以看出来 dp[0][k]-dp[k][k]是一组分组求,可以设参数也可以高斯消元
```

```
#include<stdio.h>
```

```
#include<iostream>
#include<string.h>
#include<algorithm>
#include<math.h>
#include<queue>
using namespace std;
double p,q;
struct Dian
{
     double a:
     double b;
}dp[25];
int main()
{
     while(scanf("%lf",&p)!=EOF)
     {
          q=1-p;
          int i,j;
          double temp=0,yu;
          for(i=19;i>0;i--)
               dp[0].a=1;dp[0].b=0;
               dp[1].a=(1-q)/p;dp[1].b=-(1/p);
              dp[2].a=(dp[1].a-q)/p;dp[2].b=(dp[1].b-1)/p;
               for(j=3;j<=i+1;j++)
                    dp[j].a=(dp[j-1].a-q*dp[j-3].a)/p;
                    dp[j].b=(dp[j-1].b-q*dp[j-3].b-1)/p;
               yu=(temp-dp[i+1].b)/dp[i+1].a;
               temp=dp[i-1].a*yu+dp[i-1].b;
          }
          printf("%.8lf\n",(p*temp+1)/(1-q));
    }
     return 0;
}
```

线段树扫描线

poj 1151 Atlantis 纯矩形面积并

```
#include<algorithm>
#include<iostream>
#include<stdio.h>
```

```
#include<string.h>
#include<stdlib.h>
#include<vector>
#include<queue>
#include<cmath>
#include<math.h>
using namespace std;
#define inf 0x3f3f3f3f
const int dir[4][2]={0,1,0,-1,1,0,-1,0};
#define maxn 205
struct Tree
{
    int l,r;//左右端点
    int c;//覆盖情况
    double cnt,lf,rf;//cnt 为长度,lf 为实际左坐标,rf 为
实际右坐标
}tree[maxn*4];
struct Line
{
    double x,y1,y2;
    int f;//直线的标记
}line[maxn];
bool cmp(Line a,Line b)//sort 排序的函数
{
    return a.x < b.x;
}
double y[maxn];//记录 y 坐标
void build(int l,int r,int root)
{
    tree[root].l=l;tree[root].r=r;
    tree[root].c=tree[root].cnt=0;
    tree[root].lf=y[l];
    tree[root].rf=y[r];
    if(l+1==r)return;
    int mid=(l+r)>>1;
    build(l,mid,root<<1);
    build(mid,r,root<<1|1);
}
void calen(int root)
    if(tree[root].c>0)
    {
         tree[root].cnt=tree[root].rf-tree[root].lf;
```

```
return;
     }
     if(tree[root].l+1==tree[root].r) tree[root].cnt=0;
     else
tree[root].cnt=tree[root<<1].cnt+tree[root<<1|1].cnt;
}
void update(int root,struct Line e)
     if(e.y1==tree[root].lf&&e.y2==tree[root].rf)
     {
          tree[root].c+=e.f;
          calen(root);
          return;
     }
     if(e.y2<=tree[root<<1].rf)update(root<<1,e);
     else if(e.y1>=tree[root<<1|1].lf)update(root<<1|1,e);
     else
     {
          Line tmp=e;
          tmp.y2=tree[root<<1].rf;
          update(root<<1,tmp);
          tmp=e;
          tmp.y1=tree[root<<1|1].lf;
          update(root<<1|1,tmp);
     }
     calen(root);
}
int main()
{
     int i,j;
     int n,k,R=0;
     double x1,y1,x2,y2;
     while(scanf("%d",&n)!=EOF&&n!=0)
          R++;
          k=1;
          for(i=1;i<=n;i++)
          {
               scanf("%lf%lf%lf%lf",&x1,&y1,&x2,&y2);
               line[k].x=x1;
               line[k].y1=y1;
               line[k].y2=y2;
               line[k].f=1;
               y[k]=y1;
               k++;
               line[k].x=x2;
               line[k].y1=y1;
```

```
line[k].y2=y2;
               line[k].f=-1;
               y[k]=y2;
               k++;
          }
          k--;
          sort(line+1,line+k+1,cmp);
          sort(y+1,y+k+1);
          int mm;
          mm=unique(y+1,y+1+k)-y-1;
          build(1,mm,1);
          update(1,line[1]);
          double ans=0;
          for(i=2;i<=k;i++)
               ans+=tree[1].cnt*(line[i].x-line[i-1].x);
               update(1,line[i]);
          printf("Test
                                   #%d\nTotal
                                                    explored
                          case
area: %.2If\n\n",R,ans);
    }
     return 0;
}
```

hdu 1255 覆盖的面积

与 poj1151 略有不同 由于是大于等于 2 的有效 所以 应该更新到点

```
#include<iostream>
#include<algorithm>
#include<iostream>
#include<stdio.h>
#include<string.h>
#include<stdlib.h>
#include<vector>
#include<queue>
#include<cmath>
#include<math.h>
using namespace std;
#define inf 0x3f3f3f3f
const int dir[4][2]={0,1,0,-1,1,0,-1,0};
#define maxn 2005
struct Tree
    int l,r;//左右端点
    int c;//覆盖情况
    double cnt,lf,rf;//cnt 为长度,lf 为实际左坐标,rf 为
```

```
实际右坐标
}tree[maxn*4];
struct Line
     double x,y1,y2;
     int f;//直线的标记
}line[maxn];
bool cmp(Line a,Line b)//sort 排序的函数
{
     return a.x < b.x;
}
double y[maxn];//记录 y 坐标
void build(int l,int r,int root)
{
     tree[root].l=l;tree[root].r=r;
     tree[root].c=tree[root].cnt=0;
     tree[root].lf=y[l];
     tree[root].rf=y[r];
     if(l+1==r)return;
     int mid=(I+r)>>1;
     build(l,mid,root<<1);</pre>
     build(mid,r,root<<1|1);
}
void calen(int root)
{
     if(tree[root].c>=2)
          tree[root].cnt=tree[root].rf-tree[root].lf;
          return;
     if(tree[root].I+1==tree[root].r) tree[root].cnt=0;
     else
tree[root].cnt=tree[root<<1].cnt+tree[root<<1|1].cnt;
void update(int root,struct Line e)
     if(tree[root].l+1==tree[root].r)
     {
          tree[root].c+=e.f;
          calen(root);
          return;
     if(e.y2<=tree[root<<1].rf)update(root<<1,e);
```

```
else if(e.y1>=tree[root<<1|1].lf)update(root<<1|1,e);
    else
    {
          Line tmp=e;
          tmp.y2=tree[root<<1].rf;
          update(root<<1,tmp);
          tmp=e;
          tmp.y1=tree[root<<1|1].lf;
          update(root<<1|1,tmp);
    }
     calen(root);
}
int main()
{
     int i,j;
    int n,k,R=0,T;
     scanf("%d",&T);
     double x1,y1,x2,y2;
    while(T--)
     {
          R++;
          scanf("%d",&n);
          k=1;
          for(i=1;i<=n;i++)
               scanf("%lf%lf%lf%lf",&x1,&y1,&x2,&y2);
               line[k].x=x1;
               line[k].y1=y1;
               line[k].y2=y2;
               line[k].f=1;
               y[k]=y1;
               k++;
               line[k].x=x2;
               line[k].y1=y1;
               line[k].y2=y2;
               line[k].f=-1;
               y[k]=y2;
               k++;
          }
          sort(line+1,line+k+1,cmp);
          sort(y+1,y+k+1);
          build(1,k,1);
          update(1,line[1]);
          double ans=0;
          for(i=2;i<=k;i++)
          {
               ans+=tree[1].cnt*(line[i].x-line[i-1].x);
```

```
update(1,line[i]);
}
printf("%.2lf\n",ans);
}
return 0;
}
```

poj 1177 矩形并的周长

```
可以扫一遍,同时求长和宽的增加段;也可以横纵各扫
一遍求边的变化量;
#include<algorithm>
#include<iostream>
#include<stdio.h>
#include<string.h>
#include<stdlib.h>
#include<vector>
#include<queue>
#include<cmath>
#include<math.h>
using namespace std;
#define inf 0x3f3f3f3f
const int dir[4][2]={0,1,0,-1,1,0,-1,0};
#define maxn 10005
struct Tree
    int l,r;//左右端点
    int c;//覆盖情况
    int cnt,lf,rf;//cnt 为长度,lf 为实际左坐标,rf 为实际
右坐标
    int se;
    int lc,rc;
}tree[maxn*4];
struct Line
{
    int x,y1,y2;
    int f;//直线的标记
}line[maxn];
bool cmp(Line a,Line b)//sort 排序的函数
{
    return a.x < b.x;
}
```

double y[maxn];//记录 y 坐标

```
void build(int l,int r,int root)
                                                                        else
                                                                        {
{
     tree[root].l=I;tree[root].r=r;
                                                                             Line tmp=e;
     tree[root].c=tree[root].cnt=tree[root].se=0;
                                                                             tmp.y2=tree[root<<1].rf;
     tree[root].lc=tree[root].rc=0;
                                                                             update(root<<1,tmp);
     tree[root].lf=y[l];
                                                                             tmp=e;
     tree[root].rf=y[r];
                                                                             tmp.y1=tree[root<<1|1].lf;
     if(l+1==r)return;
                                                                             update(root<<1|1,tmp);
     int mid=(I+r)>>1;
                                                                       }
     build(l,mid,root<<1);</pre>
                                                                       calen(root);
     build(mid,r,root<<1|1);
                                                                  }
}
                                                                  int main()
void calen(int root)
                                                                  {
{
                                                                        int i,j;
     if(tree[root].c>0)
                                                                       int n,k,R=0;
     {
                                                                       int x1,y1,x2,y2;
          tree[root].cnt=tree[root].rf-tree[root].lf;
                                                                       while(scanf("%d",&n)!=EOF&&n!=0)
          tree[root].se=1;
          tree[root].lc=tree[root].rc=1;
                                                                             R++;
     }
                                                                             k=1;
     else if(tree[root].l+1==tree[root].r)
                                                                             for(i=1;i<=n;i++)
          tree[root].cnt=0;
                                                                                  scanf("%d%d%d%d",&x1,&y1,&x2,&y2);
          tree[root].se=0;
                                                                                  line[k].x=x1;
          tree[root].lc=tree[root].rc=0;
                                                                                  line[k].y1=y1;
     }
                                                                                  line[k].y2=y2;
     else
                                                                                  line[k].f=1;
     {
                                                                                  y[k]=y1;
                                                                                  k++;
     tree[root].cnt=tree[root<<1].cnt+tree[root<<1|1].cnt;</pre>
                                                                                  line[k].x=x2;
          tree[root].lc=tree[root<<1].lc;
                                                                                  line[k].y1=y1;
          tree[root].rc=tree[root<<1|1].rc;
                                                                                  line[k].y2=y2;
                                                                                  line[k].f=-1;
     tree[root].se=tree[root<<1].se+tree[root<<1|1].se-
                                                                                  y[k]=y2;
tree[root<<1].rc*tree[root<<1|1].lc;
                                                                                  k++;
     }
                                                                             }
}
                                                                             sort(line+1,line+k+1,cmp);
void update(int root,struct Line e)
                                                                             sort(y+1,y+k+1);
{
                                                                             int mm;
     if(e.y1==tree[root].lf&&e.y2==tree[root].rf)
                                                                             mm=unique(y+1,y+1+k)-y-1;
     {
                                                                             build(1,mm,1);
          tree[root].c+=e.f;
                                                                             int ans=0,temp=0;
          calen(root);
                                                                             for(i=1;i<=k;i++)
          return;
     }
                                                                                  if(tree[1].cnt!=0)
     if(e.y2<=tree[root<<1].rf)update(root<<1,e);
                                                                                       ans+=tree[1].se*(line[i].x-line[i-1].x)*2;
     else if(e.y1>=tree[root<<1|1].lf)update(root<<1|1,e);
                                                                                  update(1,line[i]);
```

hdu 4007 Dave 求矩形圈点最大值

```
对于每个点,扩成一个矩形,变成求最大重叠层数;
注意边界的处理,这里是横纵均加一;
可能在边界上会产生一些问题,在排序的时候修正;
#include<algorithm>
#include<iostream>
#include<stdio.h>
#include<string.h>
#include<stdlib.h>
#include<vector>
#include<queue>
#include<cmath>
#include<math.h>
using namespace std;
#define inf 0x3f3f3f3f
const int dir[4][2]={0,1,0,-1,1,0,-1,0};
#define maxn 2005
struct Tree
{
    int l,r;//左右端点
    int c;//覆盖情况
    int cnt,lf,rf;//cnt 为层数,lf 为实际左坐标,rf 为实际
右坐标
}tree[maxn*4];
struct Line
{
    int x,y1,y2;
    int f;//直线的标记
}line[maxn];
bool cmp(Line a,Line b)//sort 排序的函数
{
    if(a.x!=b.x)
        return a.x < b.x;
    else
    return a.f < b.f;
}
```

```
int y[maxn];//记录 y 坐标
void build(int l,int r,int root)
     tree[root].l=l;tree[root].r=r;
     tree[root].c=tree[root].cnt=0;
     tree[root].lf=y[l];
     tree[root].rf=y[r];
     if(l+1==r)return;
     int mid=(l+r)>>1;
     build(l,mid,root<<1);</pre>
     build(mid,r,root<<1|1);
}
void calen(int root)
{
     if(tree[root].l+1==tree[root].r)
tree[root].cnt=tree[root].c;
     else
tree[root].cnt=max(tree[root<<1].cnt,tree[root<<1|1].cnt)
+tree[root].c;
}
void update(int root,struct Line e)
     if(e.y1==tree[root].lf&&e.y2==tree[root].rf)
          tree[root].c+=e.f;
          calen(root);
          return;
     if(e.y2<=tree[root<<1].rf)update(root<<1,e);
     else if(e.y1>=tree[root<<1|1].lf)update(root<<1|1,e);
     else
     {
          Line tmp=e;
          tmp.y2=tree[root<<1].rf;
          update(root<<1,tmp);
          tmp=e;
          tmp.y1=tree[root<<1|1].lf;
          update(root<<1|1,tmp);
     }
     calen(root);
}
int main()
{
     int i,j;
```

```
int n,r,k;
int x1,y1,x2,y2;
while(scanf("%d%d",&n,&r)!=EOF)
{
     k=1;
     for(i=1;i<=n;i++)
          scanf("%d%d",&x1,&y1);
          x2=x1+r+1;
          y2=y1+r+1;
          line[k].x=x1;
          line[k].y1=y1;
          line[k].y2=y2;
          line[k].f=1;
          y[k]=y1;
          k++;
          line[k].x=x2;
          line[k].y1=y1;
          line[k].y2=y2;
          line[k].f=-1;
          y[k]=y2;
          k++;
     }
     k--;
     sort(line+1,line+k+1,cmp);
     sort(y+1,y+k+1);
     int mm;
     mm=unique(y+1,y+1+k)-y-1;
     build(1,mm,1);
     int ans=0;
     for(i=1;i<=k;i++)
          update(1,line[i]);
          if(tree[1].cnt>ans)
               ans=tree[1].cnt;
     }
     printf("%d\n",ans);
}
return 0;
```

圆的扫描线

算法: 扫描线

}

用一条竖直线从左到右扫描所有的圆,处理每个圆"刚接触扫描线"和"刚离开

扫描线"两个事件点。

为了下面描述方便,令某圆 A 的嵌套层数为 f(A),如果某

圆A被某圆B嵌套且A和B

紧邻,那么说 $A \neq B$ 的儿子, $B \neq A$ 的父亲。如果圆 A,圆 B 同时是圆 C 的儿子,那么 A,

B 互为兄弟,当前考虑的圆为圆 C。

根据"刚接触扫描线"事件点的上下相邻事件点分类有如下情况:

- 1) 没有上方事件点,或者没有下方事件点。这时该圆 C 的 嵌套层数 f(C)=1
- 2)上方事件点和下方事件点属于同一个圆 A,这时圆 A 必 定是圆 C 的父亲,f(C) =

f(A) + 1

3) 上方事件点和下方事件点分别属于两个圆 A, B, 且 f(A) != f(B), 这里不妨

设 f(A) < f(B), 那么 A 是 C 的父亲, B 是 C 的兄弟。f(C) = f(A) + 1, f(C) = f(B)

4) 上方事件点和下方事件点分别属于两个圆 A, B, 且 f(A) == f(B), 那么 A E C

的兄弟, $B \in C$ 的兄弟, f(C) = f(A) = f(B).

在处理"刚接触扫描线"事件点时插入一对点表示该圆与扫描线的相交情况,

并利用上述分类计算其嵌套层数,在处理"刚离开扫描线"事件点是删除对应

的那一对点。可以采用 STL 中的 set 来维护

```
#include <stdio.h>
#include <string.h>
#include <math.h>
#include <set>
#include <algorithm>

using namespace std;

const int UP = 0;
const int DOWN = 1;
const int IN = 0;
```

```
const int OUT = 1;
                                                              double y2 = cir[a.id].getY(a.flag);
const int N = 50005;
                                                              return y1 > y2 \mid | y1 == y2 && flag < a.flag;
                                                           }
int Time;
                                                         };
struct circle {
                                                         int n, eveN;
  int x, y, r;
                                                         set < node > line;
  int w;
  void read() {
                                                         set<node>::iterator it, f, e, p;
     scanf("%d %d %d", &x, &y, &r);
                                                         inline int max(int a, int b) { return a > b ? a : b;}
     w = 0;
  }
  int getX(int flag) {
                                                         void moveline() {
     if(flag == IN)
                                                           line.clear();
                         return x - r;
                                                           for(int i = 0; i < eveN; i ++) {
     else
                     return x + r;
  }
                                                              Time = eve[i].x;
  double getY(int flag) {
                                                              if( eve[i].flag == OUT ) {
     double ret = sqrt((double)r*r-
                                                                 line.erase(node(eve[i].id, UP));
(double)(Time-x)*(Time-x));
                                                                 line.erase(node(eve[i].id, DOWN));
     if( flag == UP )
                        return (double)y + ret;
                                                              } else {
                     return (double)y - ret;
                                                                 it = line.insert(node(eve[i].id, UP)).first;
     else
  }
                                                                 e = f = it;
                                                                 e ++;
} cir[N];
                                                                 int id = it->id;
                                                                 if( it == line.begin() || e == line.end() )
struct event {
                                                         {
                                                                    cir[id].w = 1;
  int x, y, id;
  int flag;
                                                                 } else {
  void get(int _x, int _y, int _id, int _flag) {
                                                                    f --;
     x = _x;
                                                                    if( f->id == e->id ) {
                                                                       cir[id].w = cir[f->id].w + 1;
     y = _y;
     id = _id;
                                                                    } else {
     flag = _flag;
                                                                       cir[id].w = max( cir[f->id].w, cir[e-
  }
                                                         >id].w);
                                                                    }
  bool operator<(const event ev) const {</pre>
     return x < ev.x || x == ev.x && y > ev.y;
                                                                 }
  }
                                                                 line.insert(node(eve[i].id, DOWN));
} eve[N*2];
                                                              }
                                                           }
struct node {
                                                         }
  int id;
  int flag;
                                                         int main() {
  node(){}
                                                           while( scanf("%d", &n) != EOF ) {
  node(int _id, int _flag) {
                                                              eveN = 0;
     id = _id;
                                                              for(int i = 0; i < n; i + +) {
     flag = _flag;
                                                                 cir[i].read();
                                                                 eve[eveN++].get(cir[i].getX(IN), cir[i].y,
  }
  bool operator<(const node a) const {</pre>
                                                         i, IN);
     double y1 = cir[id].getY(flag);
                                                                 eve[eveN++].get(cir[i].getX(OUT), cir[i].
```

```
}
     sort(eve, eve + eveN);
     moveline();
     int ans = 0;
     for(int i = 0; i < n; i + +) {
        ans = max(ans, cir[i].w);
     printf("%d\n", ans);
  }
}
```

基本初等函数求导公式

(1) (C)' = 0

y, i, OUT);

- (2) $(x^{\mu})' = \mu x^{\mu-1}$
- $(3) \quad (\sin x)' = \cos x$
- $(4) \quad (\cos x)' = -\sin x$
- (5) $(\tan x)' = \sec^2 x$
- (6) $(\cot x)' = -\csc^2 x$
- (7) $(\sec x)' = \sec x \tan x$
- (8) $(\csc x)' = -\csc x \cot x$
- (9) $(a^x)' = a^x \ln a$
- (10) $(e^x)' = e^x$
- (11) $(\log_a x)' = \frac{1}{x \ln a}$ (12) $(\ln x)' = \frac{1}{x}$
- (13) $(\arcsin x)' = \frac{1}{\sqrt{1-x^2}}$ (14) $(\arccos x)' = -\frac{1}{\sqrt{1-x^2}}$
- (15) $(\arctan x)' = \frac{1}{1+x^2}$
- (16) $(\operatorname{arc} \cot x)' = -\frac{1}{1+x^2}$

函数的和、差、积、商的求导法则

设u = u(x), v = v(x)都可导,则

- $(u \pm v)' = u' \pm v'$
- (Cu)'=Cu'(C是常!
- (uv)'=u'v+uv'
- (4) $\left(\frac{u}{v}\right)' = \frac{u'v uv'}{v^2}$

反函数求导法则

若函数 $x = \varphi(y)$ 在某区间 I_y 内可导、单调且 $\varphi'(y) \neq 0$,则它的反函数

y = f(x) 在对应区间 I_x 内也可导,且

$$f'(x) = \frac{1}{\varphi'(y)} \qquad \text{st} \qquad \frac{dy}{dx} = \frac{1}{\frac{dx}{dy}}$$