

6SHSEC – IoT Security

Hands-on: Smart Bulb Security Demonstration and Basic Testing

Learning Objectives

After completing this activity, students will be able to:

- Understand basic IoT device functionality
- Identify common IoT security vulnerabilities
- Execute basic security tests
- Observe real-time attack impacts
- Understand the importance of IoT security

Required Materials

- Computer with Windows OS
- Internet connection
- Web browser
- Command Prompt/PowerShell
- Text editor (Notepad or similar)

Instructions

- 1. Environment Preparation
 - Download https://github.com/mitayag/iotsecurity.git
 - Create a folder name smartbulb and copy the file in the download repository folder /lab/smartbulb.
- 2. Open the folder in VSCode.
- 3. Install Python packages
 - Open a terminal on your VSCode
 - Type pip install flask flask-socketio
- 4. Run the application type python smart bulb server.py

Understanding the Smart Bulb Interface

5. Access the Smart Bulb

Open web browser and navigate to:

http://localhost:8080

6SHSEC – **IoT Security**

IoT Smart Bulb Simulator

Basic Interface Testing

Click the	nowor	huttan	to turn	tha.	hulh	an/aff
CHICK THE	IJUVV₩I		10 111111	111€	1) () () (011/011

- ☐ Move the brightness slider
- ☐ Use the color picker to change colors
- □ Note the device information displayed

Record Observations

- What controls are available?
- ☐ Was any password required to access the device?

API Endpoints

An API (Application Programming Interface) is a set of rules, protocols, and tools that allow software applications to communicate with each other. It acts as a bridge between different software systems, enabling them to share data or functionality in a standardized way.

	GET /	# Web interface
	POST /api/control/power	# Power control
	POST /api/control/brightness	# Brightness contro
	POST /api/control/color	# Color control
П	POST /ani/control/factory_reset	# Factory reset

6SHSEC – IoT Security

Basic Security Testing

6. Check Device Status

Open Command Prompt and type:
curl http://localhost:8080/api/status

- □ Record the information received
- □ Note any sensitive data exposed
- 7. Control Testing

Note: Each commands will be executed on the terminal of you VSCode

Turn the bulb on

```
curl -X POST http://localhost:8080/api/control/power -H "Content-
Type: application/json" -d "{\"state\": true}"
```

Turn the bulb off

```
curl -X POST http://localhost:8080/api/control/power -H "Content-
Type: application/json" -d "{\"state\": false}"
```

- □ Did the commands work?
- ☐ What happened on the web interface?

Setting Maximum Brightness...

```
curl -X POST http://localhost:8080/api/control/brightness -H
"Content-Type: application/json" -d "{\"brightness\": 100}"
```

Changing Colors

```
curl -X POST http://localhost:8080/api/control/color -H "Content-
Type: application/json" -d "{\"color\": \"#FF0000\"}"
```

Summary:

After completing this hands-on IoT security laboratory activity, students have gained practical experience in analyzing and testing the security of IoT devices through a simulated smart bulb system. Through this interactive session, they've learned to identify and exploit common security vulnerabilities found in IoT devices, while understanding the potential real-world implications of these security flaws.