$12n_{0006} (K12n_{0006})$

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle -1.91035 \times 10^{42} u^{35} - 5.59036 \times 10^{42} u^{34} + \dots + 5.65992 \times 10^{43} b - 1.39033 \times 10^{44}, \\ &- 3.14927 \times 10^{42} u^{35} - 2.52651 \times 10^{43} u^{34} + \dots + 9.05587 \times 10^{44} a - 2.23223 \times 10^{44}, \\ &u^{36} + 2 u^{35} + \dots - 80 u + 16 \rangle \\ I_2^u &= \langle u^3 + b + u + 1, \ a, \ u^4 + u^2 + u + 1 \rangle \\ I_3^u &= \langle u^5 - u^4 + 2 u^3 - 2 u^2 + b + 2 u - 2, \ a, \ u^6 - u^5 + 2 u^4 - 2 u^3 + 2 u^2 - 2 u + 1 \rangle \\ I_1^v &= \langle a, \ 5 v^3 + 16 v^2 + 8 b + 40 v + 15, \ v^4 + 3 v^3 + 8 v^2 + 3 v + 1 \rangle \end{split}$$

* 4 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 50 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

 $^{^2}$ All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle -1.91 \times 10^{42} u^{35} - 5.59 \times 10^{42} u^{34} + \dots + 5.66 \times 10^{43} b - 1.39 \times 10^{44}, \ -3.15 \times 10^{42} u^{35} - 2.53 \times 10^{43} u^{34} + \dots + 9.06 \times 10^{44} a - 2.23 \times 10^{44}, \ u^{36} + 2u^{35} + \dots - 80u + 16 \rangle$$

$$a_{5} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u \\ u^{3} + u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0.00347761u^{35} + 0.0278991u^{34} + \cdots - 5.05646u + 0.246496 \\ 0.0337523u^{35} + 0.0987710u^{34} + \cdots - 8.01212u + 2.45644 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 0.0174509u^{35} + 0.0681602u^{34} + \cdots - 5.53487u + 0.386666 \\ 0.0549946u^{35} + 0.150360u^{34} + \cdots - 7.72896u + 2.39958 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -0.0689309u^{35} - 0.141959u^{34} + \cdots - 11.1126u + 2.81049 \\ 0.0411861u^{35} + 0.104236u^{34} + \cdots - 0.312163u + 0.732592 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -0.0905615u^{35} - 0.196881u^{34} + \cdots - 11.3120u + 2.51944 \\ 0.0271025u^{35} + 0.0698189u^{34} + \cdots - 1.09845u + 0.628132 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -0.0217183u^{35} - 0.0278113u^{34} + \cdots - 1.09845u + 0.628132 \\ 0.0154821u^{35} + 0.0215115u^{34} + \cdots + 5.72787u - 0.965440 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -0.0372004u^{35} - 0.0493228u^{34} + \cdots - 10.7176u + 3.44849 \\ 0.0154821u^{35} + 0.0215115u^{34} + \cdots + 5.72787u - 0.965440 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -0.103417u^{35} - 0.225024u^{34} + \cdots - 10.0253u + 2.14344 \\ -0.0128556u^{35} - 0.0281432u^{34} + \cdots + 1.28677u - 0.376001 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0.0909240u^{35} + 0.190594u^{34} + \cdots + 8.47685u - 2.12683 \\ -0.0276885u^{35} - 0.0503355u^{34} + \cdots + 1.04945u + 2.31821 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $-0.512287u^{35} 1.02092u^{34} + \cdots 70.5736u 4.04563$

Crossings	u-Polynomials at each crossing
c_1	$u^{36} + 20u^{35} + \dots - 86u + 1$
c_2, c_5	$u^{36} + 4u^{35} + \dots - 6u + 1$
c_3	$u^{36} - 4u^{35} + \dots - 276u + 36$
c_4, c_8	$u^{36} - 2u^{35} + \dots + 80u + 16$
<i>c</i> ₆	$u^{36} - 4u^{35} + \dots - 4u + 1$
c_7, c_{10}	$u^{36} + 3u^{35} + \dots + 2048u - 1024$
c_9, c_{11}	$u^{36} - 13u^{35} + \dots + 17u - 1$
c_{12}	$u^{36} + 59u^{35} + \dots + 9u + 1$

Crossings	Riley Polynomials at each crossing
c_1	$y^{36} - 4y^{35} + \dots - 8550y + 1$
c_2, c_5	$y^{36} + 20y^{35} + \dots - 86y + 1$
c_3	$y^{36} - 28y^{35} + \dots - 99144y + 1296$
c_4, c_8	$y^{36} + 30y^{35} + \dots + 1408y + 256$
<i>C</i> ₆	$y^{36} - 80y^{35} + \dots - 26y + 1$
c_7, c_{10}	$y^{36} - 69y^{35} + \dots + 7864320y + 1048576$
c_9,c_{11}	$y^{36} - 59y^{35} + \dots - 9y + 1$
c_{12}	$y^{36} - 151y^{35} + \dots - 6173y + 1$

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.386520 + 1.057590I		
a = -0.503327 + 0.379742I	-0.77161 - 2.27001I	-1.34133 + 2.22423I
b = 0.690277 + 0.591486I		
u = -0.386520 - 1.057590I		
a = -0.503327 - 0.379742I	-0.77161 + 2.27001I	-1.34133 - 2.22423I
b = 0.690277 - 0.591486I		
u = -0.807607 + 0.285041I		
a = 0.827740 - 0.668125I	-2.91712 - 2.06171I	-8.82963 + 1.43740I
b = -0.25011 - 2.14554I		
u = -0.807607 - 0.285041I		
a = 0.827740 + 0.668125I	-2.91712 + 2.06171I	-8.82963 - 1.43740I
b = -0.25011 + 2.14554I		
u = 0.583843 + 0.511757I		
a = -0.884356 + 0.778254I	-1.74932 - 0.04789I	-9.54847 + 0.41128I
b = -0.381315 + 0.236790I		
u = 0.583843 - 0.511757I		
a = -0.884356 - 0.778254I	-1.74932 + 0.04789I	-9.54847 - 0.41128I
b = -0.381315 - 0.236790I		
u = -0.502707 + 0.522986I		
a = -0.379878 + 0.383729I	0.74759 - 1.37712I	2.57358 + 4.27221I
b = -0.011979 + 0.723756I		
u = -0.502707 - 0.522986I		
a = -0.379878 - 0.383729I	0.74759 + 1.37712I	2.57358 - 4.27221I
b = -0.011979 - 0.723756I		
u = 0.127839 + 1.278020I		
a = 0.646852 + 0.410189I	-4.72217 - 1.11094I	-8.05050 + 1.28077I
b = -1.053190 + 0.114026I		
u = 0.127839 - 1.278020I		
a = 0.646852 - 0.410189I	-4.72217 + 1.11094I	-8.05050 - 1.28077I
b = -1.053190 - 0.114026I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.499062 + 1.208100I		
a = 0.516361 + 0.301634I	-3.38469 + 7.01546I	-4.45254 - 4.63795I
b = -0.886666 + 0.792695I		
u = 0.499062 - 1.208100I		
a = 0.516361 - 0.301634I	-3.38469 - 7.01546I	-4.45254 + 4.63795I
b = -0.886666 - 0.792695I		
u = 0.625800 + 0.176987I		
a = 0.515428 + 0.332782I	-0.30087 - 2.59940I	0.94853 + 4.22855I
b = 0.664166 + 0.803195I		
u = 0.625800 - 0.176987I		
a = 0.515428 - 0.332782I	-0.30087 + 2.59940I	0.94853 - 4.22855I
b = 0.664166 - 0.803195I		
u = 1.35690		
a = 1.66154	-12.0538	-5.89580
b = 3.31123		
u = 0.10948 + 1.41069I		
a = -0.05528 + 1.62617I	-12.85970 + 3.05068I	-8.36572 - 2.61847I
b = -0.522174 - 0.242877I		
u = 0.10948 - 1.41069I	10.05050 0.050007	0.005-00.0404-7
a = -0.05528 - 1.62617I	-12.85970 - 3.05068I	-8.36572 + 2.61847I
b = -0.522174 + 0.242877I $u = 0.13985 + 1.42281I$		
	F F4990 + 1 001F67	-7.87001 - 1.20785I
	-5.54338 + 1.88156I	-1.81001 - 1.201831
b = -0.770423 + 0.258625I $u = 0.13985 - 1.42281I$		
a = 0.715759 + 0.915325I $a = 0.715759 + 0.915325I$	-5.54338 - 1.88156I	-7.87001 + 1.20785I
·	-0.04550 - 1.001001	-1.01001 + 1.201001
b = -0.770423 - 0.258625I $u = 0.253629 + 0.486794I$		
a = 0.265625 + 0.4667541 a = 1.45456 - 2.43782I	-9.11143 - 1.69402I	-16.0216 - 6.5848I
b = 0.399439 + 0.873101I	0.11140 - 1.004021	10.0210 - 0.00401
0 - 0.333433 + 0.0131011		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.253629 - 0.486794I		
a = 1.45456 + 2.43782I	-9.11143 + 1.69402I	-16.0216 + 6.5848I
b = 0.399439 - 0.873101I		
u = -1.54854 + 0.24882I		
a = -1.54790 - 0.09130I	-15.7283 + 4.6602I	0
b = -3.97196 + 1.02080I		
u = -1.54854 - 0.24882I		
a = -1.54790 + 0.09130I	-15.7283 - 4.6602I	0
b = -3.97196 - 1.02080I		
u = 0.016490 + 0.425398I		
a = 0.317088 - 1.129550I	-1.27554 + 2.18577I	-31.5174 - 1.0818I
b = 0.15143 - 2.98728I		
u = 0.016490 - 0.425398I		
a = 0.317088 + 1.129550I	-1.27554 - 2.18577I	-31.5174 + 1.0818I
b = 0.15143 + 2.98728I		
u = 0.11625 + 1.61362I		
a = -0.740706 - 0.914136I	-9.56302 + 2.68337I	0
b = 2.00964 + 0.28151I		
u = 0.11625 - 1.61362I		
a = -0.740706 + 0.914136I	-9.56302 - 2.68337I	0
b = 2.00964 - 0.28151I		
u = -0.36830 + 1.57756I		
a = -0.709122 - 0.932633I	-9.08039 - 6.82329I	0
b = 0.246782 + 1.199400I		
u = -0.36830 - 1.57756I		
a = -0.709122 + 0.932633I	-9.08039 + 6.82329I	0
b = 0.246782 - 1.199400I		
u = 0.67064 + 1.51850I		
a = -0.19618 + 1.43098I	-16.7576 + 7.1899I	0
b = -3.05517 - 0.48149I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.67064 - 1.51850I		
a = -0.19618 - 1.43098I	-16.7576 - 7.1899I	0
b = -3.05517 + 0.48149I		
u = 0.324270		
a = -1.75817	-1.11333	-8.97030
b = 0.383485		
u = -0.82187 + 1.51160I		
a = 0.206115 + 1.375210I	-19.6617 - 12.9119I	0
b = 3.63575 - 0.26624I		
u = -0.82187 - 1.51160I		
a = 0.206115 - 1.375210I	-19.6617 + 12.9119I	0
b = 3.63575 + 0.26624I		
u = -0.54791 + 1.74851I		
a = 0.11518 + 1.43966I	17.2769 - 3.0755I	0
b = 2.75814 - 1.63321I		
u = -0.54791 - 1.74851I		
a = 0.11518 - 1.43966I	17.2769 + 3.0755I	0
b = 2.75814 + 1.63321I		

II.
$$I_2^u = \langle u^3 + b + u + 1, \ a, \ u^4 + u^2 + u + 1 \rangle$$

$$a_{5} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u \\ u^{3} + u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ -u^{3} - u - 1 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -u \\ -2u^{3} - 2u - 1 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u^{3} \\ -u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u^{3} + u^{2} + 1 \\ -u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u^{3} + u^{2} + u + 1 \\ -u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u \\ -u^{3} - u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0 \\ -u^{3} - u - 1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $3u^3 5u^2 u 9$

Crossings	u-Polynomials at each crossing
c_1, c_6	$u^4 - 2u^3 + 3u^2 - u + 1$
c_2, c_4	$u^4 + u^2 + u + 1$
<i>c</i> ₃	$u^4 + 3u^3 + 4u^2 + 3u + 2$
c_5, c_8	$u^4 + u^2 - u + 1$
c_7,c_{10}	u^4
<i>c</i> ₉	$(u-1)^4$
c_{11}, c_{12}	$(u+1)^4$

Crossings	Riley Polynomials at each crossing
c_1, c_6	$y^4 + 2y^3 + 7y^2 + 5y + 1$
c_2, c_4, c_5 c_8	$y^4 + 2y^3 + 3y^2 + y + 1$
<i>c</i> ₃	$y^4 - y^3 + 2y^2 + 7y + 4$
c_{7}, c_{10}	y^4
c_9, c_{11}, c_{12}	$(y-1)^4$

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.547424 + 0.585652I		
a = 0	-0.66484 - 1.39709I	-7.03830 + 3.59727I
b = -0.851808 - 0.911292I		
u = -0.547424 - 0.585652I		
a = 0	-0.66484 + 1.39709I	-7.03830 - 3.59727I
b = -0.851808 + 0.911292I		
u = 0.547424 + 1.120870I		
a = 0	-4.26996 + 7.64338I	-10.46170 - 8.45840I
b = 0.351808 - 0.720342I		
u = 0.547424 - 1.120870I		
a = 0	-4.26996 - 7.64338I	-10.46170 + 8.45840I
b = 0.351808 + 0.720342I		

$$III. \\ I_3^u = \langle u^5 - u^4 + 2u^3 - 2u^2 + b + 2u - 2, \ a, \ u^6 - u^5 + 2u^4 - 2u^3 + 2u^2 - 2u + 1 \rangle$$

$$a_{5} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u \\ u^{3} + u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ -u^{5} + u^{4} - 2u^{3} + 2u^{2} - 2u + 2 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -u^{5} + u^{4} - 3u^{3} + 2u^{2} - 3u + 2 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u^{3} \\ u^{5} + u^{3} + u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u^{5} + u^{4} - 2u^{3} + 2u^{2} - 2u + 2 \\ -u^{5} - 2u^{3} + u^{2} - u + 1 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u^{4} + u^{2} - u + 1 \\ -u^{5} - 2u^{3} + u^{2} - u + 1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u \\ -u^{3} - u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0 \\ -u^{5} + u^{4} - 2u^{3} + 2u^{2} - 2u + 2 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $-2u^5 + u^4 + u^2 + u 8$

Crossings	u-Polynomials at each crossing
c_1, c_6	$u^6 - 3u^5 + 4u^4 - 2u^3 + 1$
c_2, c_4	$u^6 - u^5 + 2u^4 - 2u^3 + 2u^2 - 2u + 1$
<i>c</i> ₃	$(u^3 - u^2 + 1)^2$
c_5, c_8	$u^6 + u^5 + 2u^4 + 2u^3 + 2u^2 + 2u + 1$
c_7, c_{10}	u^6
<i>c</i> ₉	$(u-1)^6$
c_{11}, c_{12}	$(u+1)^6$

Crossings	Riley Polynomials at each crossing
c_1, c_6	$y^6 - y^5 + 4y^4 - 2y^3 + 8y^2 + 1$
$c_2, c_4, c_5 \ c_8$	$y^6 + 3y^5 + 4y^4 + 2y^3 + 1$
c_3	$(y^3 - y^2 + 2y - 1)^2$
c_7, c_{10}	y^6
c_9, c_{11}, c_{12}	$(y-1)^6$

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.498832 + 1.001300I		
a = 0	-1.91067 - 2.82812I	-7.09522 + 3.87141I
b = -0.398606 - 0.800120I		
u = -0.498832 - 1.001300I		
a = 0	-1.91067 + 2.82812I	-7.09522 - 3.87141I
b = -0.398606 + 0.800120I		
u = 0.284920 + 1.115140I		
a = 0	-6.04826	-11.76463 - 0.99756I
b = 0.215080 - 0.841795I		
u = 0.284920 - 1.115140I		
a = 0	-6.04826	-11.76463 + 0.99756I
b = 0.215080 + 0.841795I		
u = 0.713912 + 0.305839I		
a = 0	-1.91067 - 2.82812I	-6.64015 + 0.59776I
b = 1.183530 - 0.507021I		
u = 0.713912 - 0.305839I		
a = 0	-1.91067 + 2.82812I	-6.64015 - 0.59776I
b = 1.183530 + 0.507021I		

IV.
$$I_1^v = \langle a, 5v^3 + 16v^2 + 8b + 40v + 15, v^4 + 3v^3 + 8v^2 + 3v + 1 \rangle$$

$$a_{5} = \begin{pmatrix} 1\\0 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} v\\0 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1\\0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0\\-\frac{5}{8}v^{3} - 2v^{2} - 5v - \frac{15}{8} \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -\frac{3}{8}v^{3} - v^{2} - v - \frac{1}{8}\\-\frac{5}{8}v^{3} - 2v^{2} - 5v - \frac{15}{8} \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 3\\\frac{3}{8}v^{3} + v^{2} + 3v + \frac{9}{8} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} \frac{3}{8}v^{3} + v^{2} + v + \frac{1}{8}\\\frac{3}{8}v^{3} + v^{2} + 3v + \frac{9}{8} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -\frac{1}{4}v^{3} + \frac{5}{4}\\-\frac{3}{8}v^{3} - v^{2} - 3v - \frac{1}{8} \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} \frac{1}{8}v^{3} + v^{2} + 3v + \frac{11}{8}\\-\frac{3}{8}v^{3} - v^{2} - 3v - \frac{1}{8} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -\frac{3}{8}v^{3} - v^{2} - v - \frac{1}{8}\\-\frac{3}{8}v^{3} - v^{2} - 3v - \frac{9}{8} \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} \frac{3}{8}v^{3} + v^{2} + v + \frac{1}{8}\\-\frac{3}{8}v^{3} - v^{2} - 3v - \frac{9}{8} \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $-\frac{3}{2}v^3 5v^2 9v \frac{13}{2}$

Crossings	u-Polynomials at each crossing
c_1, c_3, c_5	$(u^2 - u + 1)^2$
c_2	$(u^2+u+1)^2$
c_4, c_8	u^4
<i>C</i> ₆	$(u^2 - 3u + 1)^2$
c_7, c_9	$(u^2+u-1)^2$
c_{10}, c_{11}	$(u^2 - u - 1)^2$
c_{12}	$(u^2 + 3u + 1)^2$

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_3 c_5	$(y^2+y+1)^2$
c_4, c_8	y^4
c_6, c_{12}	$(y^2 - 7y + 1)^2$
c_7, c_9, c_{10} c_{11}	$(y^2 - 3y + 1)^2$

Solutions to I_1^v	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
v = -0.190983 + 0.330792I		
a = 0	-0.98696 - 2.02988I	-4.50000 - 2.34537I
b = -0.80902 - 1.40126I		
v = -0.190983 - 0.330792I		
a = 0	-0.98696 + 2.02988I	-4.50000 + 2.34537I
b = -0.80902 + 1.40126I		
v = -1.30902 + 2.26728I		
a = 0	-8.88264 - 2.02988I	-4.50000 + 9.27358I
b = 0.309017 + 0.535233I		
v = -1.30902 - 2.26728I		
a = 0	-8.88264 + 2.02988I	-4.50000 - 9.27358I
b = 0.309017 - 0.535233I		

V. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$(u^{2} - u + 1)^{2}(u^{4} - 2u^{3} + 3u^{2} - u + 1)(u^{6} - 3u^{5} + 4u^{4} - 2u^{3} + 1)$ $\cdot (u^{36} + 20u^{35} + \dots - 86u + 1)$
c_2	$(u^{2} + u + 1)^{2}(u^{4} + u^{2} + u + 1)(u^{6} - u^{5} + 2u^{4} - 2u^{3} + 2u^{2} - 2u + 1)$ $\cdot (u^{36} + 4u^{35} + \dots - 6u + 1)$
c_3	$(u^{2} - u + 1)^{2}(u^{3} - u^{2} + 1)^{2}(u^{4} + 3u^{3} + 4u^{2} + 3u + 2)$ $\cdot (u^{36} - 4u^{35} + \dots - 276u + 36)$
c_4	$u^{4}(u^{4} + u^{2} + u + 1)(u^{6} - u^{5} + 2u^{4} - 2u^{3} + 2u^{2} - 2u + 1)$ $\cdot (u^{36} - 2u^{35} + \dots + 80u + 16)$
c_5	$(u^{2} - u + 1)^{2}(u^{4} + u^{2} - u + 1)(u^{6} + u^{5} + 2u^{4} + 2u^{3} + 2u^{2} + 2u + 1)$ $\cdot (u^{36} + 4u^{35} + \dots - 6u + 1)$
c_6	$(u^{2} - 3u + 1)^{2}(u^{4} - 2u^{3} + 3u^{2} - u + 1)(u^{6} - 3u^{5} + 4u^{4} - 2u^{3} + 1)$ $\cdot (u^{36} - 4u^{35} + \dots - 4u + 1)$
c_7	$u^{10}(u^2 + u - 1)^2(u^{36} + 3u^{35} + \dots + 2048u - 1024)$
<i>c</i> ₈	$u^{4}(u^{4} + u^{2} - u + 1)(u^{6} + u^{5} + 2u^{4} + 2u^{3} + 2u^{2} + 2u + 1)$ $\cdot (u^{36} - 2u^{35} + \dots + 80u + 16)$
c_9	$((u-1)^{10})(u^2+u-1)^2(u^{36}-13u^{35}+\cdots+17u-1)$
c_{10}	$u^{10}(u^2 - u - 1)^2(u^{36} + 3u^{35} + \dots + 2048u - 1024)$
c_{11}	$((u+1)^{10})(u^2-u-1)^2(u^{36}-13u^{35}+\cdots+17u-1)$
c_{12}	$((u+1)^{10})(u^2+3u+1)^2(u^{36}+59u^{35}+\cdots+9u+1)$ 21

VI. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1	$((y^{2} + y + 1)^{2})(y^{4} + 2y^{3} + \dots + 5y + 1)(y^{6} - y^{5} + \dots + 8y^{2} + 1)$ $\cdot (y^{36} - 4y^{35} + \dots - 8550y + 1)$
c_2,c_5	$(y^{2} + y + 1)^{2}(y^{4} + 2y^{3} + 3y^{2} + y + 1)(y^{6} + 3y^{5} + 4y^{4} + 2y^{3} + 1)$ $\cdot (y^{36} + 20y^{35} + \dots - 86y + 1)$
c_3	$(y^{2} + y + 1)^{2}(y^{3} - y^{2} + 2y - 1)^{2}(y^{4} - y^{3} + 2y^{2} + 7y + 4)$ $\cdot (y^{36} - 28y^{35} + \dots - 99144y + 1296)$
c_4, c_8	$y^{4}(y^{4} + 2y^{3} + 3y^{2} + y + 1)(y^{6} + 3y^{5} + 4y^{4} + 2y^{3} + 1)$ $\cdot (y^{36} + 30y^{35} + \dots + 1408y + 256)$
c_6	$((y^{2} - 7y + 1)^{2})(y^{4} + 2y^{3} + \dots + 5y + 1)(y^{6} - y^{5} + \dots + 8y^{2} + 1)$ $\cdot (y^{36} - 80y^{35} + \dots - 26y + 1)$
c_7, c_{10}	$y^{10}(y^2 - 3y + 1)^2(y^{36} - 69y^{35} + \dots + 7864320y + 1048576)$
c_9, c_{11}	$((y-1)^{10})(y^2 - 3y + 1)^2(y^{36} - 59y^{35} + \dots - 9y + 1)$
c_{12}	$((y-1)^{10})(y^2-7y+1)^2(y^{36}-151y^{35}+\cdots-6173y+1)$