1 15 16 30 31 45 46 60 61 75 76 90	105 106 120 121 135 136 150 151 165 166 180 CLEEELKPLEEVLNL AQSKNFHLRPROLIS NINVIVLGLKGSE	ITFCQSIISTL 132 VHIVQMFINTS1 134 KSLLQKMIHQHLSSR THGSEDS 136 KTIMREKYSKCSS 129 KSIMQMDYS 120 KDFLLVIPFDCWE 119 KTFLTDIPFECKK PSQK 118
hIL-2 hIL-15 zall-Lig hIL-4 mIL-4 hGM-CSF	hIL-2 hIL-15 zall-Lig hIL-4 mIL-4 hGM-CSF	hIL-2 hIL-15 zall-Lig hIL-4 mIL-4 hGM-CSF

```
Hydrophobic
                                                                   Hydrophilic
                                                                             3
     0.00
 1
 2
     0.00
     1.05
     1.19
     0.36
 6
     0.70
 7
     1.04
     0.63
 9
     0.27
10
    -0.07
11
    -0.02
12
    -0.82
13
    -1.53
14
    -1.48
15
    -1.53
16
    -1.65
17
    -1.78
18
   -2.05
19
    -1.90
20
    -1.95
21 -1.90
    -1.57
22
23
    -0.77
24
    -0.15
25
    -0.03
                                            Н
26
     0.32
27
     0.60
28
     0.68
29
     0.22
                                            S
30
     0.67
31
     1.12
32
     0.98
33
     0.73
34
     0.43
35
     0.90
36
     0.18
37
     0.18
38
     0.30
39
     0.22
40
     0.22
41
     0.22
42
     0.13
43
    -0.62
44
    -0.15
45
     0.18
                                            Ι
46
     0.18
47
     0.18
                                            D · ==
```

FIG. 2A

=
==
======
3
•
222
==
=====
===

FIG. 2B

97 98 99 100 101 102 103 104 105 106	-1.07 -0.27 0.53 0.20 0.95 1.40 2.20 1.70 1.20 1.55		-
107 108 109 110 111 112 113 114 115	0.98 0.52 -0.07 -0.07 0.43 0.88 0.98 1.45 1.85	P ====================================	
116 117 118 119 120 121 122 123 124 125	2.35 1.55 0.98 0.78 0.28 0.02 -0.65 0.15 0.27 0.45	Q ====================================	
126 127 128 129 130 131 132 133 134	0.95 1.40 2.07 1.57 1.52 2.00 2.00 1.08 0.28	D ====================================	
135 136 137 138 139 140 141 142 143 144	0.78 1.28 0.37 0.83 0.83 0.03 -0.43 0.48 -0.23	F ====================================	

FIG. 2C

