Final Project Code

Rebecca Hazen, Kunwu Lyu, and Jackson Rankin

2024-11-23

Data Wrangling

```
happiness_raw <- read_csv("GSS_commute_happiness.csv")</pre>
happiness_cleaned <- happiness_raw %>%
  select(year, happy, commute, realrinc, educ, race, gender1) %>%
  filter(commute != ".i: Inapplicable",
         realrinc > 0,
         happy != ".n: No answer") %>%
  mutate(
    educ = case_when(
      str_detect(educ, "grade") ~ as.numeric(str_extract(educ, "\\d+")),
      str_detect(educ, "college") ~ as.numeric(str_extract(educ, "\\d+")) + 12,
      str_detect(educ, "No formal schooling") ~ 0,
      TRUE ~ NA
    commute = if_else(str_detect(commute, "\\d+"),
                      as.numeric(str extract(commute, "\\d+")), NA),
   race = if_else(race == "White", "White", "Non White"),
    gender = if_else(gender1 == "MALE", "Male", "Female")
  ) %>%
  select(-gender1) %>%
  drop_na()
happiness_recode <- happiness_cleaned %>%
  mutate(happy = if_else(happy == "Not too happy", 0, 1)) %>%
  drop_na()
write.csv(happiness_recode, file = "happiness_recode.csv")
# vars to iterate over later
quant_vars <- c("commute", "realrinc", "educ")</pre>
cat_vars <- c("gender", "race")</pre>
```

EDA

```
ggpairs(happiness_cleaned)
```


Commute Time Distribution by Ha

Happiness Level Not too happy Pretty happy Very happy Commute Time (minutes)

Income Distribution by Happine

Proportion of Happiness Levels by

Education Level

Proportion of Happiness by Race


```
labs(
        y = "Happy",
        x = str_c(quant_var),
       color = cat_var
      ) +
      scale_y_continuous(breaks = c(0, 1))
 }
  # Initialize an empty list to store plots
 plot_list <- list()</pre>
  # Iterate over all combinations of quantitative and categorical variables
 for (quant_var in quant_vars) {
   for (cat_var in cat_vars) {
      # Generate the plot and store it in the list
      plot_name <- paste(quant_var, cat_var, sep = "_")</pre>
      plot_list[[plot_name]] <- scatter_jitter_fn(quant_var, cat_var)</pre>
    }
 }
  # Return the list of plots
 return(plot_list)
scatt_results <- scatter_jitter_plots(quant_vars, cat_vars,</pre>
                                       alpha = 0.5, jitter_width = 0.2,
                                       jitter_height = 0.2)
grid.arrange(scatt_results$commute_gender,
             scatt_results$commute_race,
             scatt_results$realrinc_gender,
             scatt_results$realrinc_race,
             scatt_results$educ_gender,
             scatt_results$educ_race, ncol = 3)
```



```
ggplot(happiness_ag,
           aes(x = x_var, y = log_odds, color = !!rlang::sym(cat_var))) +
      geom_point() +
      geom_smooth(method = "lm", se = FALSE) +
      labs(x = x_lab, y = "Empirical Log Odds", color = cat_var)
  # Initialize an empty list to store plots
 plot_list <- list()</pre>
  # Loop over all combinations of quantitative and categorical variables
 for (quant_var in quant_vars) {
    for (cat_var in cat_vars) {
      # Generate the plot and store it in the list
     plot_name <- paste(quant_var, cat_var, sep = "_")</pre>
     plot_list[[plot_name]] <- empirical_plot_fn(quant_var, cat_var, scale)</pre>
    }
 }
  # Return the list of plots
 return(plot_list)
emp_log_odds_result <- empirical_log_odds_plot(quant_vars = quant_vars,</pre>
                                                cat_vars = cat_vars,
                                                scale = "lin")
grid.arrange(emp_log_odds_result$commute_race,
             emp_log_odds_result$realrinc_race,
             emp_log_odds_result$educ_race,
             emp_log_odds_result$commute_gender,
             emp_log_odds_result$realrinc_gender,
             emp_log_odds_result$educ_gender, ncol = 3)
```


Logistic Regression

```
happiness_glm_base <- glm(happy ~ commute + realrinc + educ + race + gender,
                     data = happiness_recode, family = binomial)
happiness_glm_int <- glm(happy ~ (commute + realrinc + educ) * race + gender,
                     data = happiness_recode, family = binomial)
summary(happiness_glm_int)
##
## Call:
## glm(formula = happy ~ (commute + realrinc + educ) * race + gender,
##
       family = binomial, data = happiness_recode)
##
## Coefficients:
##
                        Estimate Std. Error z value Pr(>|z|)
##
  (Intercept)
                       3.940e+00 1.808e+00
                                              2.179 0.02936 *
                      -1.123e-02 1.861e-02
##
  commute
                                            -0.603 0.54628
## realrinc
                       1.278e-04 5.002e-05
                                              2.555
                                                     0.01063 *
                                            -1.812 0.06997 .
## educ
                      -2.672e-01 1.475e-01
## raceWhite
                      -3.122e+00 1.928e+00
                                             -1.619
                                                     0.10545
## genderMale
                       7.375e-01 2.534e-01
                                              2.910
                                                     0.00361 **
## commute:raceWhite
                       1.204e-02 2.040e-02
                                              0.590
                                                     0.55510
## realrinc:raceWhite -9.857e-05 5.140e-05
                                            -1.918
                                                     0.05516
  educ:raceWhite
                       3.051e-01 1.560e-01
                                              1.956
                                                     0.05043 .
## ---
```

```
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
       Null deviance: 530.41 on 873 degrees of freedom
## Residual deviance: 496.72 on 865 degrees of freedom
## AIC: 514.72
## Number of Fisher Scoring iterations: 6
vif(happiness_glm_base)
## commute realrinc
                         educ
                                   race
                                          gender
## 1.025518 1.090232 1.075367 1.039942 1.021639
quant_resid_plot <- function(model = happiness_glm_int) {</pre>
 happiness_aug <- augment(model, data=happiness_recode,
                           type.residuals="pearson") %>%
      mutate(commute_grps = ntile(happiness_recode$commute, n = 20),
             educ_grps = ntile(happiness_recode$educ, n = 20),
             realrinc_grps = ntile(happiness_recode$realrinc, n = 20))
  plots <- list()</pre>
  for (var in quant_vars) {
    group_col <- paste0(var, "_grps")</pre>
    group_name <- rlang::sym(group_col)</pre>
   happiness_quant_resid <- happiness_aug %>%
      group_by(!!group_name) %>%
      summarize(
        group median = median(happiness recode[[var]],
                              na.rm = TRUE), # Median of the original variable
       resid_mean = mean(.resid, na.rm = TRUE) # Mean of residuals
      )
   p <- ggplot(happiness_quant_resid, aes(x = !!group_name, y = resid_mean)) +</pre>
      geom point() +
      geom_hline(yintercept = 0, linetype="dotted") +
       title = paste("Residuals vs", var),
       x = paste("Grouped ", var),
       y = "Mean Pearson Residual"
   plots[[var]] <- p</pre>
 return(plots)
}
grid.arrange(quant_resid_plot()$commute,
             quant_resid_plot() $ realrinc,
             quant_resid_plot()$educ, ncol = 3)
```



```
## AIC: 513.06
##
## Number of Fisher Scoring iterations: 6
summary(happiness_glm_int)
##
## Call:
## glm(formula = happy ~ (commute + realrinc + educ) * race + gender,
      family = binomial, data = happiness_recode)
## Coefficients:
                       Estimate Std. Error z value Pr(>|z|)
                      3.940e+00 1.808e+00
                                            2.179 0.02936 *
## (Intercept)
                     -1.123e-02 1.861e-02 -0.603 0.54628
## commute
## realrinc
                     1.278e-04 5.002e-05
                                            2.555 0.01063 *
## educ
                     -2.672e-01 1.475e-01 -1.812 0.06997
## raceWhite
                     -3.122e+00 1.928e+00 -1.619 0.10545
                      7.375e-01 2.534e-01
                                            2.910 0.00361 **
## genderMale
## commute:raceWhite 1.204e-02 2.040e-02
                                            0.590 0.55510
## realrinc:raceWhite -9.857e-05 5.140e-05 -1.918 0.05516 .
## educ:raceWhite
                      3.051e-01 1.560e-01
                                             1.956 0.05043 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for binomial family taken to be 1)
##
##
      Null deviance: 530.41 on 873 degrees of freedom
## Residual deviance: 496.72 on 865 degrees of freedom
## AIC: 514.72
##
## Number of Fisher Scoring iterations: 6
anova(happiness_glm_base, happiness_glm_int2, test = "LRT")
## Analysis of Deviance Table
##
## Model 1: happy ~ commute + realrinc + educ + race + gender
## Model 2: happy ~ commute + (realrinc + educ) * race + gender
    Resid. Df Resid. Dev Df Deviance Pr(>Chi)
## 1
          868
                  503.81
## 2
          866
                  497.06 2 6.7442 0.03432 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
anova(happiness_glm_int2, happiness_glm_int, test = "LRT")
## Analysis of Deviance Table
## Model 1: happy ~ commute + (realrinc + educ) * race + gender
## Model 2: happy ~ (commute + realrinc + educ) * race + gender
    Resid. Df Resid. Dev Df Deviance Pr(>Chi)
## 1
          866
                  497.06
## 2
          865
                  496.72 1 0.34156
quant_resid_plot(happiness_glm_int2) -> resid_results
```



```
cat_resid_plot <- function(model, data = happiness_recode,</pre>
                            cat_vars_list = cat_vars) {
  # Augment data with residuals
  happiness_aug <- augment(model, data = data, type.residuals = "pearson")
  # Initialize an empty list to store plots
  plots <- list()</pre>
  # Loop through categorical variables
  for (var in cat_vars_list) {
    # Boxplot
    p <- ggplot(happiness_aug, aes(x = !!sym(var), y = .resid)) +</pre>
      geom_boxplot() +
      geom_hline(yintercept = 0, linetype = "dotted", color = "red") +
      labs(
        title = paste("Residuals by", var),
        y = "Pearson Residuals"
    # Add plot to list
    plots[[var]] <- p</pre>
  # Return the list of plots
  return(plots)
}
```

```
cluster_results <- cat_resid_plot(happiness_glm_int2)
grid.arrange(cluster_results$gender, cluster_results$race, ncol = 2)</pre>
```

Residuals by gender Residuals by race O Sign -2 Female gender Residuals by race Non White white race

```
compute_linear_combination <- function(model, coef_indices, conf_level = 0.95) {</pre>
  # Extract coefficients
  coef_values <- model$coefficients[coef_indices]</pre>
  # Point estimate
  linear_comb <- sum(coef_values)</pre>
  cov_matrix <- vcov(model)[coef_indices, coef_indices]</pre>
  # Joint SE
  linear_comb_se <- sqrt(sum(diag(cov_matrix)) +</pre>
                             2 * sum(cov_matrix[lower.tri(cov_matrix)]))
  # Test statistic
  test_stat <- linear_comb / linear_comb_se</pre>
  \# two sided p-val, normal dist
  p_value <- 2 * pnorm(abs(test_stat), lower.tail = FALSE)</pre>
  # CI
  z_{value} \leftarrow qnorm(1 - (1 - conf_level) / 2)
  conf_int <- linear_comb + c(-1, 1) * z_value * linear_comb_se</pre>
```

```
# Untransformed response (exponential)
  untransformed <- exp(linear_comb)</pre>
  untransformed_ci <- exp(conf_int)</pre>
  # Return results as a list
  list(
    linear_comb = linear_comb,
    se = linear comb se,
    test_stat = test_stat,
    p_value = p_value,
    conf_int = conf_int,
    untransformed = untransformed,
    untransformed_ci = untransformed_ci
}
round((exp(confint(happiness_glm_int2)) - 1)*100, 2)
##
                        2.5 %
                                 97.5 %
## (Intercept)
                        64.35 166887.53
## commute
                        -1.50
                                   1.46
## realrinc
                         0.00
                                   0.02
## educ
                                   0.12
                       -43.61
## raceWhite
                       -99.89
                                  81.69
                                 241.33
## genderMale
                        26.02
## realrinc:raceWhite -0.02
                                   0.00
                        1.80
                                  86.98
## educ:raceWhite
round((exp(happiness_glm_int2$coefficients) - 1)*100, 2)
##
          (Intercept)
                                  commute
                                                     realrinc
                                                                             educ
##
              4242.25
                                    -0.11
                                                         0.01
                                                                           -23.66
##
            raceWhite
                               genderMale realrinc:raceWhite
                                                                   educ:raceWhite
##
               -94.62
                                   108.73
                                                                            36.06
(Y_wht_est <- compute_linear_combination(</pre>
  model = happiness_glm_int2,
  coef_indices = c(3, 7),
  conf_level = 0.95
))
## $linear_comb
## [1] 2.956958e-05
##
## $se
## [1] 1.192146e-05
## $test_stat
## [1] 2.480365
##
## $p_value
## [1] 0.01312478
##
## $conf_int
## [1] 6.203945e-06 5.293521e-05
```

```
##
## $untransformed
## [1] 1.00003
##
## $untransformed_ci
## [1] 1.000006 1.000053
round((exp(5000*Y_wht_est$linear_comb) - 1)*100, 2)
## [1] 15.93
round((exp(5000*Y_wht_est$conf_int) - 1)*100, 2)
## [1] 3.15 30.30
(edu_wht_est <- compute_linear_combination(</pre>
  model = happiness_glm_int2,
  coef_indices = c(4, 8),
  conf_level = 0.95
))
## $linear_comb
## [1] 0.03789205
##
## $se
## [1] 0.05082673
## $test_stat
## [1] 0.7455143
##
## $p_value
## [1] 0.4559609
## $conf_int
## [1] -0.0617265 0.1375106
##
## $untransformed
## [1] 1.038619
##
## $untransformed_ci
## [1] 0.940140 1.147414
round((exp(edu_wht_est$linear_comb) - 1)*100, 2)
## [1] 3.86
round((exp(edu_wht_est$conf_int) - 1)*100, 2)
## [1] -5.99 14.74
resid_panel(happiness_glm_int2, plots = c("cookd", "lev"))
```


glm(happy ~ commute + (realrinc + educ) * race + gender)

Cook's distance

Obs. number glm(happy ~ commute + (realrinc + educ) * race + gender)

Leverage Values by Case Number


```
## Start: AIC=521.94
## happy ~ (commute + realrinc + educ + race + gender)^2
##
                     Df Deviance
                                   AIC
## - educ:gender
                         489.96 519.96
                         490.07 520.07
## - commute:race
## - commute:gender
                        490.40 520.40
                     1
                         490.84 520.84
## - realrinc:gender
## - commute:educ
                         491.02 521.02
                      1
## - realrinc:educ
                         491.36 521.36
## - race:gender
                      1 491.58 521.58
## - commute:realrinc 1 491.64 521.64
                         489.94 521.94
## <none>
## - educ:race
                     1 492.72 522.72
## - realrinc:race 1 493.84 523.84
##
```

```
## Step: AIC=519.96
## happy ~ commute + realrinc + educ + race + gender + commute:realrinc +
##
       commute:educ + commute:race + commute:gender + realrinc:educ +
##
       realrinc:race + realrinc:gender + educ:race + race:gender
##
                      Df Deviance
##
                                     AIC
                          490.10 518.10
## - commute:race
                      1
                           490.43 518.43
## - commute:gender
                       1
## - realrinc:gender
                       1
                           490.94 518.94
                          491.05 519.05
## - commute:educ
                       1
## - realrinc:educ
                       1
                          491.39 519.39
## - race:gender
                          491.60 519.60
                       1
## - commute:realrinc 1
                          491.68 519.68
                           489.96 519.96
## <none>
## - educ:race
                           492.84 520.84
                       1
## - realrinc:race
                       1
                           493.85 521.85
##
## Step: AIC=518.1
## happy ~ commute + realrinc + educ + race + gender + commute:realrinc +
      commute:educ + commute:gender + realrinc:educ + realrinc:race +
##
       realrinc:gender + educ:race + race:gender
##
##
                      Df Deviance
                                     ATC:
## - commute:gender
                          490.55 516.55
                       1
## - realrinc:gender
                       1
                           491.06 517.06
## - commute:educ
                       1
                           491.15 517.15
## - realrinc:educ
                           491.51 517.51
                       1
                           491.82 517.82
## - race:gender
                           490.10 518.10
## <none>
## - commute:realrinc 1
                           492.17 518.17
## - educ:race
                       1
                           493.21 519.21
## - realrinc:race
                       1
                           493.98 519.98
##
## Step: AIC=516.55
## happy ~ commute + realrinc + educ + race + gender + commute:realrinc +
      commute:educ + realrinc:educ + realrinc:race + realrinc:gender +
##
       educ:race + race:gender
##
##
                      Df Deviance
                                     AIC
                          491.50 515.50
## - commute:educ
                       1
## - realrinc:gender
                           491.56 515.56
                      1
## - realrinc:educ
                           491.98 515.98
                       1
## - commute:realrinc 1
                           492.41 516.41
                         492.48 516.48
## - race:gender
                       1
                           490.55 516.55
## <none>
                       1
                          493.86 517.86
## - educ:race
## - realrinc:race
                       1 494.62 518.62
##
## Step: AIC=515.5
## happy ~ commute + realrinc + educ + race + gender + commute:realrinc +
##
      realrinc:educ + realrinc:race + realrinc:gender + educ:race +
##
       race:gender
##
##
                      Df Deviance
                                     AIC
```

```
## - realrinc:gender
                     1 492.50 514.50
                     1 492.97 514.97
## - realrinc:educ
## - commute:realrinc 1 492.97 514.97
## <none>
                         491.50 515.50
## - race:gender
                     1
                         493.57 515.57
## - educ:race
                        495.03 517.03
                     1
## - realrinc:race
                     1 495.60 517.60
##
## Step: AIC=514.5
## happy ~ commute + realrinc + educ + race + gender + commute:realrinc +
      realrinc:educ + realrinc:race + educ:race + race:gender
##
                     Df Deviance
##
                                   AIC
## - commute:realrinc 1 493.89 513.89
## - realrinc:educ
                         493.90 513.90
                     1
## - race:gender
                      1
                         494.11 514.11
                         492.50 514.50
## <none>
## - educ:race
                        496.15 516.15
## - realrinc:race
                    1 496.89 516.89
## Step: AIC=513.89
## happy ~ commute + realrinc + educ + race + gender + realrinc:educ +
##
      realrinc:race + educ:race + race:gender
##
##
                 Df Deviance
                                ATC
## - commute
                 1 493.90 511.90
## - realrinc:educ 1
                      495.33 513.33
                      495.65 513.65
## - race:gender 1
                      493.89 513.89
## <none>
                 1 497.59 515.59
## - educ:race
## - realrinc:race 1 498.99 516.99
##
## Step: AIC=511.9
## happy ~ realrinc + educ + race + gender + realrinc:educ + realrinc:race +
##
      educ:race + race:gender
##
                  Df Deviance
                                AIC
## - realrinc:educ 1
                      495.35 511.35
## - race:gender
                     495.66 511.66
                  1
## <none>
                      493.90 511.90
## - educ:race
                 1 497.61 513.61
## - realrinc:race 1 499.00 515.00
## Step: AIC=511.35
## happy ~ realrinc + educ + race + gender + realrinc:race + educ:race +
##
      race:gender
##
##
                  Df Deviance
                                AIC
## - race:gender
                   1 497.09 511.09
## <none>
                      495.35 511.35
                     499.66 513.66
## - educ:race
                  1
## - realrinc:race 1 500.46 514.46
##
## Step: AIC=511.09
```

```
## happy ~ realrinc + educ + race + gender + realrinc:race + educ:race
##
##
                  Df Deviance
                                 AIC
                       497.09 511.09
## <none>
## - educ:race
                   1
                       501.46 513.46
## - realrinc:race 1
                       501.60 513.60
## - gender
                       505.12 517.12
                   1
summary(backwardSelectModel)
##
## Call:
## glm(formula = happy ~ realrinc + educ + race + gender + realrinc:race +
      educ:race, family = binomial, data = happiness_recode)
##
## Coefficients:
                       Estimate Std. Error z value Pr(>|z|)
##
## (Intercept)
                      3.754e+00 1.760e+00 2.133 0.03294 *
## realrinc
                      1.248e-04 4.988e-05
                                            2.502 0.01235 *
## educ
                     -2.704e-01 1.461e-01 -1.851 0.06414 .
                     -2.923e+00 1.878e+00 -1.557 0.11957
## raceWhite
                      7.363e-01 2.534e-01
                                           2.906 0.00366 **
## genderMale
## realrinc:raceWhite -9.544e-05 5.124e-05 -1.863 0.06250 .
## educ:raceWhite
                      3.083e-01 1.547e-01 1.994 0.04620 *
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for binomial family taken to be 1)
##
##
      Null deviance: 530.41 on 873 degrees of freedom
## Residual deviance: 497.09 on 867 degrees of freedom
## AIC: 511.09
##
## Number of Fisher Scoring iterations: 6
#forward selection
forwardSelectModel <- stepAIC(lower_model, scope = list(lower = lower_model,</pre>
                                                        upper = upper_model),
                              direction = "forward")
## Start: AIC=532.41
## happy ~ 1
##
             Df Deviance
                            AIC
## + realrinc 1 512.32 516.32
## + gender
              1 518.07 522.07
## <none>
                  530.41 532.41
## + educ
              1 528.77 532.77
              1 529.89 533.89
## + race
## + commute
             1
                 530.30 534.30
##
## Step: AIC=516.32
## happy ~ realrinc
##
##
            Df Deviance
                           AIC
## + gender
            1 503.84 509.84
```

```
## <none>
                 512.32 516.32
## + race
                512.21 518.21
             1
## + commute 1 512.24 518.24
                 512.32 518.32
## + educ
             1
##
## Step: AIC=509.84
## happy ~ realrinc + gender
##
##
                    Df Deviance
                                   AIC
## <none>
                         503.84 509.84
## + realrinc:gender 1
                         502.90 510.90
                         503.81 511.81
## + commute
                      1
## + race
                     1
                         503.84 511.84
                         503.84 511.84
## + educ
                      1
summary(forwardSelectModel)
##
## Call:
## glm(formula = happy ~ realrinc + gender, family = binomial, data = happiness_recode)
## Coefficients:
               Estimate Std. Error z value Pr(>|z|)
## (Intercept) 1.204e+00 2.367e-01 5.089 3.6e-07 ***
## realrinc
              3.707e-05 1.136e-05 3.264 0.00110 **
## genderMale 7.457e-01 2.496e-01 2.987 0.00282 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
       Null deviance: 530.41 on 873 degrees of freedom
## Residual deviance: 503.84 on 871 degrees of freedom
## AIC: 509.84
##
## Number of Fisher Scoring iterations: 6
anova(happiness_glm_int2, backwardSelectModel, test = "LRT")
## Analysis of Deviance Table
##
## Model 1: happy ~ commute + (realrinc + educ) * race + gender
## Model 2: happy ~ realrinc + educ + race + gender + realrinc:race + educ:race
    Resid. Df Resid. Dev Df Deviance Pr(>Chi)
## 1
          866
                  497.06
## 2
          867
                  497.09 -1 -0.021303
                                         0.884
anova(happiness_glm_int2, forwardSelectModel, test = "LRT")
## Analysis of Deviance Table
##
## Model 1: happy ~ commute + (realrinc + educ) * race + gender
## Model 2: happy ~ realrinc + gender
    Resid. Df Resid. Dev Df Deviance Pr(>Chi)
## 1
          866
                  497.06
                  503.84 -5 -6.7777 0.2377
## 2
          871
```