```
> restart;
  Digits:=30: interface( displayprecision = 7 ):
```

Aufgabe

Ein Ball wird von einer Rampe die sich in 35 Meter Höhe befindet nach oben geworfen.

LDie Zeit vom Abwurf bis zum Aufschlag beträgt 4,5 Sekunden.

Ansatz

Koordinatensystem wählen:

- Die Höhe muss berücksichtig werden: Koordinate x, positiv nach oben, Nullpunkt auf Bodenhöhe.
- Die Zeit t mit Nullpunkt beim Abwurf.

_Skizze nach der Aufgabenbeschreibung

Der Ball wird ab Position x_0 nach oben geworfen. Der Ball erreicht die Höhe x_H . Danach fällt der Ball bis auf die Höhe 0.

Rechnung

Vereinfachung:

- keine Reibung des Balls mit der Luft.
- Ballgröße vernachlässigt. Als Massepunkt beschrieben.

Auf den Ball wirkt nach dem Wurf nur die Schwerkraft, die zur Fallbeschleunigung g führt. Die Fallbeschleunigung ist nach unten gerichtet. > $g = -9.81*Unit(m/s^2)$;

$$> q = -9.81*Unit(m/s^2);$$

$$g = -9.81 \left[\frac{m}{s^2} \right] \tag{1}$$

Der Ball ist zum Startzeitpunkt t = 0 auf der Höhe

$$> x[0] = 35*Unit(m);$$

$$x_0 = 35 \ [m]$$
 (2)

Der Ball hat zum Startzeitpunkt die Geschwindigkeit v[0];

(3) v_0

Die Bewegungsgleichung des Balls.

$$> x = x[0] + v[0] * t + g * t^2/2;$$

$$x = x_0 + v_0 t + \frac{1}{2} g t^2$$
 (4)

Zum Zeitpunkt T ist der Ball aufgeschlagen.
> T = 4.5*Unit(s);

$$T = 4.5 \parallel s \parallel$$
 (5)

> subs(t=T, algsubs(x=0,(4)));

$$0 = x_0 + v_0 T + \frac{1}{2} g T^2$$
 (6)

Auflösen nach der unbekannten Anfangsgeschwindigkeit.

> isolate((6), v[0]); collect(%,T);

$$v_0 = -\frac{x_0 + \frac{g T^2}{2}}{T}$$

$$v_0 = -\frac{g T}{2} - \frac{x_0}{T} \tag{7}$$

Die Geschwindigkeit des Balls als Funktion der Zeit

$$> v = v[0] + g * t;$$

$$v = g t + v_0 \tag{8}$$

(9)

Einschub: Skizze der Bewegung

Die Skizze der Bewegung ist nicht notwendig für die Lösung der Aufgabe. Doch trägt die Skizze zum Verständnis bei

Die Startgeschwindigkeit auf (7) ausrechnen.

> subs((1), (2), (5), (7)): simplify(%);
$$v_0 = 14.29472 \left[\frac{m}{s} \right]$$

Mit der Startgeschwindigkeit können alle Zahlenwerte in die Bewegungsgleichung (4) eingesetzt

> subs ((1),(2),(9),(4));

$$x = 35 \ [m] + 14.29472 \ t \ \left[\frac{m}{s}\right] - 4.905000 \ t^2 \ \left[\frac{m}{s^2}\right]$$
 (10)

> plot(subs(t=t*Unit(s),rhs((10))), t=0..rhs((5))/Unit(s), axes= boxed, gridlines=true, labels=["Zeit t/s","Höhe x/m"]);

Auch in die Gleichung (8) für die Geschwindigkeit können alle Wert eingesetzt werden.

$$>$$
 subs ($(1),(9),(8)$);

$$v = -9.81 \ t \left[\left[\frac{m}{s^2} \right] \right] + 14.29472 \left[\left[\frac{m}{s} \right] \right]$$
 (11)

> plot(subs(t=t*Unit(s),rhs((11))), t=0..rhs((5))/Unit(s), axes= boxed, gridlines=true, labels=["Zeit t/s","Geschwindigkeit v/ m/s"]);

Der Ball steigt auf bis die Geschwindigkeit 0 ist. Nach diesem Zeitpunkt beginnt der Fall aus dieser Ruhelage.

> subs (t=t[H], algsubs (v=0, (8)));
$$0 = g t_H + v_0$$
 (12)

> isolate((12), t[H]);

$$t_H = -\frac{v_0}{g} \tag{13}$$

Die Fallzeit ist die Zeit vom Scheitelpunkt bis T.

$$> t[F] = T - t[H];$$

$$t_F = T - t_H \tag{14}$$

Gleichung (13) einsetzen.

> subs ((13),(14));

$$t_F = T + \frac{v_0}{g} \tag{15}$$

Gleichung (7) einsetzen.

> subs((7), (15)); collect(%,T);

$$t_{F} = T + \frac{-\frac{gT}{2} - \frac{x_{0}}{T}}{g}$$

$$t_{F} = \frac{T}{2} - \frac{x_{0}}{gT}$$
(16)

Zahlenwerte einsetzen und ausrechnen.

Die Position des Scheitelpunkts folgt aus dem Einsetzen der Zeit t_H in die Gleichung (4).

$$x_H = x_0 + v_0 t_H + \frac{1}{2} g t_H^2$$
 (18)

Die Gleichung (15) einsetzen.

> subs ((13), (18));

$$x_H = x_0 - \frac{v_0^2}{2 g} \tag{19}$$

Die Gleichung (7) einsetzen.

> subs((7),(19)); collect(%,T);

$$x_{H} = x_{0} - \frac{\left(-\frac{gT}{2} - \frac{x_{0}}{T}\right)^{2}}{2g}$$

$$x_{H} = -\frac{gT^{2}}{8} + \frac{x_{0}}{2} - \frac{x_{0}^{2}}{2gT^{2}}$$
(20)

Zahlenwerte einsetzen und ausrechnen.

> subs (
$$(1)$$
, (2) , (5) , (20)): simplify (%);

 $x_H = 45.41484 [m]$ (21)

Der Ball fällt vom Scheitelpunkt eine Streckt von 45,4 Meter in 3,04 Sekunden.

Hilfsmittel

Maple 17, http://www.maplesoft.com/