CS 260: Foundations of Data Science

Prof. Thao Nguyen Fall 2024

Admin

 Lab 2 grades & feedback will be posted on Wednesday

Lab 3 due tonight

Lab 4 posted, due next Monday at midnight

Lecture Notes

Peer Tutoring

• Student tutors (Fejiro Anigbro, Darshan Mehta)

Flexible hours

Free!

OCTOBER 7,8 & 9TH | 6-8PM EST

Sign up for a 30 minute virtual informational interview with a Tri-Co alum to gain tech career insights!

Alumni will represent various tech roles including software engineering and development, data science, tech consulting, product management and biotech.

OCT 7	OCT 8	OCT 9
Accenture FERMAT Commerce Grubhub	Bristol Myers Squibb Community.com C3 Presents (Live Nation) Opower (Oracle)	The Walt Disney Company Fresh Tracks Insights Meta Grubhub

TRI-COLLEGE RECRUITING CONSORTIUM
HAVERFORD BRYN MAWR SWARTHMORE

Outline for today

Recap SGD (stochastic gradient descent)

- Introduction to classification
 - Decision tree models
 - Probabilistic interpretation

- Evaluation Metrics
 - Confusion matrices
 - Precision and recall
 - ROC curves

Outline for today

Recap SGD (stochastic gradient descent)

- Introduction to classification
 - Decision tree models
 - Probabilistic interpretation

- Evaluation Metrics
 - Confusion matrices
 - Precision and recall
 - ROC curves

Stochastic Gradient Descent for Linear Regression

Key Idea: take the derivative of one datapoint at a time and use that to update w

Stochastic Gradient Descent for Linear Regression

Choosing the step size alpha

 $\begin{array}{c|c} \alpha \text{ too small} \\ \\ \text{slow convergence} \end{array}$

- may overshoot minimum
- may fail to converge (may even diverge)

Pros and Cons

Gradient Descent

- requires multiple iterations
- need to choose α
- works well when p is large
- can support online learning

(Analytic Solution)

Normal Equations

- non-iterative
- no need for α
- slow if p is large
 - matrix inversion is $O(p^3)$

Outline for today

Recap SGD (stochastic gradient descent)

- Introduction to classification
 - Decision tree models
 - Probabilistic interpretation

- Evaluation Metrics
 - Confusion matrices
 - Precision and recall
 - ROC curves

Binary classification examples

- Transactions that indicate credit card fraud
- Accounts that are bots
- Detecting which scans show tumors
- Prenatal test for Down's Syndrome
- Finding genes under natural selection
- Regions of the environment that contains the object the robot is searching for

Introduction to Classification

Introduction to Classification

Handout 7

Outline for today

Recap SGD (stochastic gradient descent)

- Introduction to classification
 - Decision tree models
 - Probabilistic interpretation

- Evaluation Metrics
 - Confusion matrices
 - Precision and recall
 - ROC curves

Goals of Evaluation

 Think about what metrics are important for the problem at hand

Compare different methods or models on the same problem

Common set of tools that other researchers/users can understand

Training and Testing

(high-level idea)

- Separate data into "train" and "test"
 - -n = num training examples
 - -m = num testing examples
- Fit (create) the model using training data
 - e.g. sea_ice_1979-2012.csv
- Evaluate the model using testing data
 - e.g. sea_ice_2013-2020.csv

Predicted class

	Negative	Positive	
Negative	True negative (TN)	False positive (FP)	
Positive	False negative (FN)	True positive (TP)	

True

class

Predicted class

		Negative	Positive	
N True	egative	True negative (TN)	False positive (FP) "false alarm"	N (total number of true negatives)
class	ositive	False negative (FN) "miss"	True positive (TP)	P (total number of true positives)
	·	N* (what we said was negative)	P* (what we said was positive "flagged")	

Predicted class

Predicted class

Predicted class

Predicted class

False Positive Rate:

$$FP/(TN+FP) = FP/N$$

Precision and Recall

• <u>Precision</u>: of all the "flagged" examples, which ones are actually relevant (i.e. positive)?

(Purity)

 <u>Recall</u>: of all the relevant results, which ones did I actually return?

(Completeness)