FACULTE POLYDISCIPLINAIRE DE KHOURIBGA

Module : Electricité II Semestre 3 SMP(S3)

Année Universitaire 2016 / 17 Contrôle : durée 1h30min

EXERCICE 1

On considère un conducteur filiforme parcouru par un courant I et formant une spire carrée ABCD de coté a, de centre O, placée dans le plans XOY (voir figure).

- 1- Calculer le champ magnétique crée par la portion AB du circuit en un point M de coordonnées (0, 0, z) situé sur l'axe de la spire carrée qui passe par le centre O.
- 2- Utiliser ce résultat pour calculer le champ magnétique crée par toute la spire carrée au point M en fonction de μ₀, I, a, et z
- 3- En déduire le champ magnétique au centre O de la spire.
- 4- Proposer une méthode pour annuler le champ magnétique en O sans modifier la valeur du courant électrique.
- 5- Expliquer ce que c'est la loi de Lenz.

EXERCICE 2

Soit le pont de Wheatstone alimenté par une tension alternative de pulsation w. On utilisera la notation complexe dans tout l'exercice.

- 1- Établir la relation d'équilibre du pont entre les impédances.
- 2- On prend maintenant $Z_1 = (R_1, C_1)$ en serie. $Z_2 = R_2$. $Z_3 = R_3$.
- $Z_4 = (R_4, C_4)$ en parallèle.
- a- Montrer que l'équilibre du pont n'est obtenu que pour une pulsation propre w₀.
- b- Déduire une relation simplifiée qui existe entre R₁, R₂, R₃, R₄, C₁et C₄.
- 3- Calculer le déphasage entre les tensions U_{AB} (t) et U_{BC} (t).
- 4- Calculer le déphasage entre les tensions U_{AD} (t) et U_{DC} (t).
- 5- Dans le circuit on a maintenant $Z_1 = (R_1, C_1)$ en parallèle. Z_2 Z_3 et Z_4 restent inchangées. Discuter la nouvelle condition d'équilibre et la valeur que peut avoir le w_0 .

