HCR_EL2, Hypervisor Configuration Register

The HCR EL2 characteristics are:

Purpose

Provides configuration controls for virtualization, including defining whether various operations are trapped to EL2.

Configuration

AArch64 System register HCR_EL2 bits [31:0] are architecturally mapped to AArch32 System register HCR[31:0].

AArch64 System register HCR_EL2 bits [63:32] are architecturally mapped to AArch32 System register HCR2[31:0].

If EL2 is not implemented, this register is res0 from EL3.

The bits in this register behave as if they are 0 for all purposes other than direct reads of the register if EL2 is not enabled in the current Security state.

Attributes

HCR EL2 is a 64-bit register.

Field descriptions

	63	62	61	60	59	58	57	56	55	54	53	52	51	50	49	48	47
		TWE	DEL		TWEDEn	TID5	DCT	ATA	TTLBOS	TTLBIS	EnSCXT	TOCU	AMVOFFEN	TICAB	TID4	GPF	FIEN
Ī	RW	TRVM	HCD	TDZ	TGE	TVM	TTLB	TPU	Bit[23]	TSW	TACR	TIDCP	TSC	TID3	TID2	TID1	TID
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15

TWEDEL, bits [63:60] When FEAT TWED is implemented:

TWE Delay. A 4-bit unsigned number that, when HCR_EL2.TWEDEn is 1, encodes the minimum delay in taking a trap of WFE* caused by HCR_EL2.TWE as $2^{(TWEDEL + 8)}$ cycles.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

TWEDEn, bit [59] When FEAT TWED is implemented:

TWE Delay Enable. Enables a configurable delayed trap of the WFE* instruction caused by HCR EL2.TWE.

TWEDEn	Meaning
0b0	The delay for taking the trap
	is implementation defined.
0b1	The delay for taking the trap
	is at least the number of
	cycles defined in
	HCR_EL2.TWEDEL.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

TID5, bit [58] When FEAT_MTE2 is implemented:

Trap ID group 5. Traps the following register accesses to EL2, when EL2 is enabled in the current Security state:

AArch64:

• GMID EL1.

TID5	Meaning
0b0	This control does not cause any
	instructions to be trapped.
0b1	The specified EL1 and EL0
	accesses to ID group 5 registers
	are trapped to EL2.

When the value of HCR_EL2.{E2H, TGE} is {1, 1}, this field has an Effective value of 0 for all purposes other than a direct read of the value of this bit.

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

DCT, bit [57] When FEAT MTE2 is implemented:

Default Cacheability Tagging. When HCR_EL2.DC is in effect, controls whether stage 1 translations are treated as Tagged or Untagged.

DCT	Meaning
0d0	Stage 1 translations are treated as
	Untagged.
0b1	Stage 1 translations are treated as
	Tagged.

This bit is permitted to be cached in a TLB.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

ATA, bit [56] When FEAT MTE2 is implemented:

Allocation Tag Access. When HCR_EL2.{E2H,TGE} != {1,1}, controls access to Allocation Tags, System registers for Memory tagging, and prevention of Tag checking, at EL1 and EL0.

ATA	Meaning
-----	---------

0d0	Access to Allocation Tags is prevented at EL1 and EL0.
	Accesses at EL1 to <u>GCR_EL1</u> ,
	RGSR EL1, TFSR EL1, or
	TFSRE0_EL1 that are not
	undefined are trapped to EL2.
	Accesses at EL1 using MRS or
	MSR with the register name
	TFSR_EL2 that are not undefined
	are trapped to EL3.
	Memory accesses at EL1 and EL0
	are not subject to a Tag Check
	operation.
0b1	This control does not prevent
	access to Allocation Tags at EL1
	and ELO.
	This control does not prevent Tag
	checking at EL1 and EL0.

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

TTLBOS, bit [55] When FEAT_EVT is implemented:

Trap TLB maintenance instructions that operate on the Outer Shareable domain. Traps execution of those TLB maintenance instructions at EL1 to EL2, when EL2 is enabled in the current Security state. This applies to the following instructions:

TLBI VMALLE1OS, TLBI VAE1OS, TLBI ASIDE1OS, TLBI VAAE1OS, TLBI VALE1OS, TLBI VAALE1OS, TLBI RVAE1OS, TLBI RVAALE1OS, TLBI RVAALE1OS, TLBI RVAALE1OS.

TTLBOS	Meaning
0b0	This control does not cause
	any instructions to be
	trapped.
0b1	Execution of the specified
	instructions are trapped to
	EL2.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this field behaves as 0 for all purposes other than a direct read of the value of this bit.

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

TTLBIS, bit [54] When FEAT EVT is implemented:

Trap TLB maintenance instructions that operate on the Inner Shareable domain. Traps execution of those TLB maintenance instructions at EL1 to EL2, when EL2 is enabled in the current Security state. This applies to the following instructions:

- When EL1 is using AArch64, <u>TLBI VMALLE1IS</u>, <u>TLBI VAE1IS</u>, <u>TLBI ASIDE1IS</u>, <u>TLBI VAAE1IS</u>, <u>TLBI VALE1IS</u>, <u>TLBI VAALE1IS</u>, <u>TLBI RVAE1IS</u>, <u>TLBI RVAAE1IS</u>, <u>TLBI RVALE1IS</u>, and <u>TLBI RVAALE1IS</u>.
- When EL1 is using AArch32, <u>TLBIALLIS</u>, <u>TLBIMVAIS</u>, <u>TLBIASIDIS</u>, <u>TLBIMVAAIS</u>, <u>TLBIMVALIS</u>, and <u>TLBIMVAALIS</u>.

TTLBIS	Meaning
0b0	This control does not cause
	any instructions to be trapped.
0b1	Execution of the specified
	instructions are trapped to
	EL2.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this field behaves as 0 for all purposes other than a direct read of the value of this bit.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

EnSCXT, bit [53]

When FEAT_CSV2_2 is implemented or FEAT_CSV2_1p2 is implemented:

Enable Access to the <u>SCXTNUM_EL1</u> and <u>SCXTNUM_EL0</u> registers. The defined values are:

EnSCXT	Meaning
0b0	When HCR_EL2.E2H is 0 or
	$HCR_EL2.TGE$ is 0, and $EL2$
	is enabled in the current
	Security state, EL1 and EL0
	access to <u>SCXTNUM_EL0</u> and
	EL1 access to <u>SCXTNUM_EL1</u>
	is disabled by this mechanism,
	causing an exception to EL2,
	and the values of these
	registers to be treated as 0.
	When HCR_EL2.{E2H, TGE}
	is $\{1, 1\}$ and EL2 is enabled
	in the current Security state,
	EL0 access to <u>SCXTNUM_EL0</u>
	is disabled by this mechanism,
	causing an exception to EL2,
	and the value of this register
	to be treated as 0.
0b1	This control does not cause
	accesses to <u>SCXTNUM_EL0</u>
	or <u>SCXTNUM_EL1</u> to be
	trapped.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1,1}, this bit has no effect on execution at EL0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

TOCU, bit [52] When FEAT_EVT is implemented:

Trap cache maintenance instructions that operate to the Point of Unification. Traps execution of those cache maintenance instructions to EL2, when EL2 is enabled in the current Security state. This applies to the following instructions:

- When <u>SCTLR_EL1</u>.UCI is 1, HCR_EL2.{TGE, E2H} is not {1, 1}, and EL0 is using AArch64, <u>IC IVAU</u>, <u>DC CVAU</u>.
- When EL1 is using AArch64, IC IVAU, IC IALLU, DC CVAU.
- When EL1 is using AArch32, ICIMVAU, ICIALLU, DCCMVAU.

Note

An exception generated because an instruction is undefined at EL0 is higher priority than this trap to EL2. In addition:

- IC IALLUIS and IC IALLU are always undefined at EL0 using AArch64.
- <u>ICIMVAU</u>, <u>ICIALLU</u>, <u>ICIALLUIS</u>, and <u>DCCMVAU</u> are always undefined at EL0 using AArch32.

TOCU	Meaning
0b0	This control does not cause any
	instructions to be trapped.
0b1	Execution of the specified
	instructions are trapped to EL2.

If the Point of Unification is before any level of data cache, it is implementation defined whether the execution of any data or unified cache clean by VA to the Point of Unification instruction can be trapped when the value of this control is 1.

If the Point of Unification is before any level of instruction cache, it is implementation defined whether the execution of any instruction cache invalidate to the Point of Unification instruction can be trapped when the value of this control is 1.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this field behaves as 0 for all purposes other than a direct read of the value of this bit.

The reset behavior of this field is:

 On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

AMVOFFEN, bit [51] When FEAT_AMUv1p1 is implemented:

Activity Monitors Virtual Offsets Enable.

AMVOFFEN	Meaning
0b0	Virtualization of the
	Activity Monitors is
	disabled. Indirect reads of
	the virtual offset registers
	are zero.

0b1	Virtualization of the
	Activity Monitors is
	enabled.

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

TICAB, bit [50] When FEAT_EVT is implemented:

Trap ICIALLUIS/IC IALLUIS cache maintenance instructions. Traps execution of those cache maintenance instructions at EL1 to EL2, when EL2 is enabled in the current Security state. This applies to the following instructions:

- When EL1 is using AArch64, IC IALLUIS.
- When EL1 is using AArch32, ICIALLUIS.

TICAB	Meaning
0b0	This control does not cause any
	instructions to be trapped.
0b1	EL1 execution of the specified
	instructions is trapped to EL2.

If the Point of Unification is before any level of instruction cache, it is implementation defined whether the execution of any instruction cache invalidate to the Point of Unification instruction can be trapped when the value of this control is 1.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this field behaves as 0 for all purposes other than a direct read of the value of this bit.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

TID4, bit [49] When FEAT EVT is implemented:

Trap ID group 4. Traps the following register accesses to EL2, when EL2 is enabled in the current Security state:

AArch64:

- EL1 reads of CCSIDR2_EL1, CLIDR_EL1, and CSSELR EL1.
- EL1 writes to <u>CSSELR EL1</u>.

AArch32:

- EL1 reads of <u>CCSIDR</u>, <u>CCSIDR2</u>, <u>CLIDR</u>, and <u>CSSELR</u>.
- EL1 writes to **CSSELR**.

TID4	Meaning
0b0	This control does not cause any
	instructions to be trapped.
0b1	The specified EL1 and EL0
	accesses to ID group 4 registers
	are trapped to EL2.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this field behaves as 0 for all purposes other than a direct read of the value of this bit.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

GPF, bit [48] When FEAT_RME is implemented:

Controls the reporting of Granule protection faults at EL0 and EL1.

GPF	Meaning
0b0	This control does not cause
	exceptions to be routed from EL0
	and EL1 to EL2.
0b1	Instruction Abort exceptions and
	Data Abort exceptions due to
	GPFs from EL0 and EL1 are
	routed to EL2.

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

FIEN, bit [47] When FEAT RASv1p1 is implemented:

Fault Injection Enable. Unless this bit is set to 1, accesses to the <u>ERXPFGCDN_EL1</u>, <u>ERXPFGCTL_EL1</u>, and <u>ERXPFGF_EL1</u> registers from EL1 generate a Trap exception to EL2, when EL2 is enabled in the current Security state, reported using EC syndrome value 0x18.

FIEN	Meaning
0b0	Accesses to the specified
	registers from EL1 are trapped to
	EL2, when EL2 is enabled in the
	current Security state.
0b1	This control does not cause any
	instructions to be trapped.

If EL2 is disabled in the current Security state, the Effective value of HCR EL2.FIEN is 0b1.

If <u>ERRIDR_EL1</u>.NUM is zero, meaning no error records are implemented, or no error record accessible using System registers is owned by a node that implements the RAS Common Fault Injection Model Extension, then this bit might be res0.

The reset behavior of this field is:

 On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

FWB, bit [46] When FEAT S2FWB is implemented:

Forced Write-Back. Defines the combined cacheability attributes in a 2 stage translation regime.

FWB	Meaning

- The combination of stage 1 and stage 2 translations on memory type and cacheability attributes are as described in the Armv8.0 architecture. For more information, see 'Combining stage 1 and stage 2 memory type attributes'.
- The encoding of the stage 2 memory type and cacheability attributes in bits[5:2] of the stage 2 page or block descriptors are as described in the Armv8.0 architecture.

- Bit[5] of stage 2 page or block descriptor is res0.
- When bit[4] of stage 2 page or block descriptor is 1 and when:
 - Bits[3:2] of stage 2 page or block descriptor are 0b11, the resultant memory type and inner or outer cacheability attribute is the same as the stage 1 memory type and inner or outer cacheability attribute.
 - Bits[3:2] of stage 2 page or block descriptor are 0b10, the resultant memory type and attribute is Normal Write-Back.
 - Bits[3:2] of stage 2 page or block descriptor are 0b0x, the resultant memory type will be Normal Non-cacheable except where the stage 1 memory type was Device-<attr> the resultant memory type will be Device-<attr>
- When bit[4] of stage 2 page or block descriptor is 0 the memory type is Device, and when:
 - Bits[3:2] of stage 2 page or block descriptor are 0b00, the stage 2 memory type is DevicenGnRnE.
 - Bits[3:2] of stage 2 page or block descriptor are 0b01, the stage 2 memory type is Device-nGnRE.
 - Bits[3:2] of stage 2 page or block descriptor are 0b10, the stage 2 memory type is Device-nGRE.

In Secure state, this bit applies to both the Secure stage 2 translation and the Non-secure stage 2 translation.

This bit is permitted to be cached in a TLB.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

NV2, bit [45] When FEAT NV2 is implemented:

Nested Virtualization. Changes the behaviors of HCR_EL2.{NV1, NV} to provide a mechanism for hardware to transform reads and writes from System registers into reads and writes from memory.

NV2	Meaning
0b0	This bit has no effect on the
	behavior of HCR_EL2.{NV1, NV}.
	The behavior of HCR EL2.{NV1,
	NV} is as defined for FEAT NV.
0b1	Redefines behavior of
	$HCR_{EL2}{NV1, NV}$ to enable:
	 Transformation of read/ writes to registers into read/ writes to memory. Redirection of EL2 registers to EL1 registers.
	Any exception taken from EL1 and
	taken to EL1 causes
	<u>SPSR_EL1</u> .M[3:2] to be set to
	0b10 and not 0b01.

When HCR_EL2.NV is 0, the Effective value of this field is 0 and this field is treated as 0 for all purposes other than direct reads and writes of this field.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

AT, bit [44] When FEAT_NV is implemented:

Address Translation. EL1 execution of the following address translation instructions is trapped to EL2, when EL2 is enabled in the current Security state, reported using EC syndrome value 0x18:

• <u>AT S1E0R</u>, <u>AT S1E0W</u>, <u>AT S1E1R</u>, <u>AT S1E1W</u>, <u>AT S1E1RP</u>, <u>AT S1E1WP</u>.

AT	Meaning
0b0	This control does not cause any
	instructions to be trapped.
0b1	EL1 execution of the specified
	instructions is trapped to EL2.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

NV1, bit [43] When FEAT_NV2 is implemented:

Nested Virtualization.

NV1	Meaning
0b0	If HCR_EL2.{NV2, NV} are both
	1, accesses executed from EL1 to
	implemented EL12, EL02, or EL2
	registers are transformed to loads
	and stores.
	If HCR EL2.NV2 is 0 or HCR EL2.
	$\{NV2, NV\} == \{1, 0\}$, this control
	does not cause any instructions to
	be trapped.

ob1 If HCR_EL2.NV2 is 1, accesses executed from EL1 to implemented EL2 registers are transformed to loads and stores. If HCR_EL2.NV2 is 0, EL1 accesses to VBAR_EL1, ELR_EL1, SPSR_EL1, and, when FEAT_CSV2_2 or FEAT_CSV2_1p2 is implemented, SCXTNUM_EL1, are trapped to EL2, when EL2 is enabled in the current Security state, and are reported using EC syndrome value 0x18.

If HCR_EL2.NV2 is 1, the value of HCR_EL2.NV1 defines which EL1 register accesses are transformed to loads and stores. These transformed accesses have priority over the trapping of registers.

The trapping of EL1 registers caused by other control bits has priority over the transformation of these accesses.

If a register is specified that is not implemented by an implementation, then access to that register are undefined.

For the list of registers affected, see 'Enhanced support for nested virtualization'.

If HCR_EL2.{NV1, NV} is $\{0, 1\}$, any exception taken from EL1, and taken to EL1, causes the <u>SPSR_EL1</u>.M[3:2] to be set to 0b10, and not 0b01.

If HCR EL2.{NV1, NV} is {1, 1}, then:

- The EL1 translation table Block and Page descriptors:
 - Bit[54] holds the PXN instead of the UXN.
 - Bit[53] is res0.
 - Bit[6] is treated as 0 regardless of the actual value.
- If Hierarchical Permissions are enabled, the EL1 translation table Table descriptors are as follows:
 - Bit[61] is treated as 0 regardless of the actual value.
 - Bit[60] holds the PXNTable instead of the UXNTable.
 - Bit[59] is res0.
- When executing at EL1, the PSTATE.PAN bit is treated as zero for all purposes except reading the value of the bit.
- When executing at EL1, the LDTR* instructions are treated as the equivalent LDR* instructions, and the STTR* instructions are treated as the equivalent STR* instructions.

If HCR_EL2.{NV1, NV} are {1, 0}, then the behavior is a constrained unpredictable choice of:

- Behaving as if HCR_EL2.NV is 1 and HCR_EL2.NV1 is 1 for all purposes other than reading back the value of the HCR_EL2.NV bit.
- Behaving as if HCR_EL2.NV is 0 and HCR_EL2.NV1 is 0 for all purposes other than reading back the value of the HCR_EL2.NV1 bit
- Behaving with regard to the HCR_EL2.NV and HCR_EL2.NV1 bits behavior as defined in the rest of this description.

This bit is permitted to be cached in a TLB.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

When FEAT NV is implemented:

Nested Virtualization. EL1 accesses to certain registers are trapped to EL2, when EL2 is enabled in the current Security state.

NV1	Meaning
0b0	This control does not cause any
	instructions to be trapped.
0b1	EL1 accesses to VBAR EL1 ,
	ELR EL1, SPSR EL1, and, when
	FEAT CSV2 2 or FEAT CSV2 1p2
	is implemented, <u>SCXTNUM_EL1</u> ,
	are trapped to EL2, when EL2 is
	enabled in the current Security
	state, and are reported using EC
	syndrome value 0x18.

If HCR_EL2.NV is 1 and HCR_EL2.NV1 is 0, then the following effects also apply:

• Any exception taken from EL1, and taken to EL1, causes the SPSR EL1.M[3:2] to be set to 0b10, and not 0b01.

If HCR_EL2.NV and HCR_EL2.NV1 are both set to 1, then the following effects also apply:

- The EL1 translation table Block and Page descriptors:
 - Bit[54] holds the PXN instead of the UXN.
 - Bit[53] is res0.
 - Bit[6] is treated as 0 regardless of the actual value.

- If Hierarchical Permissions are enabled, the EL1 translation table Table descriptors are as follows:
 - Bit[61] is treated as 0 regardless of the actual value.
 - Bit[60] holds the PXNTable instead of the UXNTable.
 - Bit[59] is res0.
- When executing at EL1, the PSTATE.PAN bit is treated as zero for all purposes except reading the value of the bit.
- When executing at EL1, the LDTR* instructions are treated as the equivalent LDR* instructions, and the STTR* instructions are treated as the equivalent STR* instructions.

If HCR_EL2.NV is 0 and HCR_EL2.NV1 is 1, then the behavior is a constrained unpredictable choice of:

- Behaving as if HCR_EL2.NV is 1 and HCR_EL2.NV1 is 1 for all purposes other than reading back the value of the HCR_EL2.NV bit.
- Behaving as if HCR_EL2.NV is 0 and HCR_EL2.NV1 is 0 for all purposes other than reading back the value of the HCR_EL2.NV1 bit.
- Behaving with regard to the HCR_EL2.NV and HCR_EL2.NV1 bits behavior as defined in the rest of this description.

This bit is permitted to be cached in a TLB.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

NV, bit [42] When FEAT_NV2 is implemented:

Nested Virtualization.

When HCR EL2.NV2 is 1, redefines register accesses so that:

- Instructions accessing the Special purpose registers <u>SPSR_EL2</u> and <u>ELR_EL2</u> instead access <u>SPSR_EL1</u> and <u>ELR_EL1</u> respectively.
- Instructions accessing the System registers <u>ESR_EL2</u> and <u>FAR_EL2</u> instead access <u>ESR_EL1</u> and <u>FAR_EL1</u>.

When HCR_EL2.NV2 is 0, or if FEAT_NV2 is not implemented, traps functionality that is permitted at EL2 and would be undefined at EL1

if this field was 0, when EL2 is enabled in the current Security state. This applies to the following operations:

- EL1 accesses to Special-purpose registers that are not undefined at EL2.
- EL1 accesses to System registers that are not undefined at EL2.
- Execution of EL1 or EL2 translation regime address translation and TLB maintenance instructions for EL2 and above.

NV	Meaning
0b0	When this bit is set to 0, then the PE
	behaves as if HCR_EL2.NV2 is 0 for all
	purposes other than reading this
	register. This control does not cause any
	instructions to be trapped.
	When HCR_EL2.NV2 is 1, no FEAT_NV2
	functionality is implemented.
0b1	When HCR_EL2.NV2 is 0, or if
	FEAT_NV2 is not implemented, EL1
	accesses to the specified registers or
	the execution of the specified
	instructions are trapped to EL2, when
	EL2 is enabled in the current Security
	state. EL1 read accesses to the
	<u>CurrentEL</u> register return a value of
	0x2.
	When HCR_EL2.NV2 is 1, this control
	redefines EL1 register accesses so that
	instructions accessing SPSR_EL2 ,
	ELR_EL2, ESR_EL2, and FAR_EL2
	instead access <u>SPSR_EL1</u> , <u>ELR_EL1</u> ,
	ESR_EL1, and FAR_EL1 respectively.

When HCR_EL2.NV2 is 0, or if FEAT_NV2 is not implemented, then:

- The System or Special-purpose registers for which accesses are trapped and reported using EC syndrome value 0x18 are as follows:
 - Registers accessed using MRS or MSR with a name ending in _EL2, except the following:
 - SP EL2.
 - If FEAT_MEC is implemented, MECID_A0_EL2, MECID_A1_EL2, MECID_P0_EL2, MECID_P1_EL2, MECID_EL2, VMECID_A_EL2, VMECID_P_EL2.
 - Registers accessed using MRS or MSR with a name ending in EL12.
 - Registers accessed using MRS or MSR with a name ending in EL02.
 - Special-purpose registers <u>SPSR_irq</u>, <u>SPSR_abt</u>, <u>SPSR_und</u> and <u>SPSR_fig</u>, accessed using MRS or MSR.
 - Special-purpose register <u>SP_EL1</u> accessed using the dedicated MRS or MSR instruction.

- The instructions for which the execution is trapped and reported using EC syndrome value 0x18 are as follows:
 - EL2 translation regime Address Translation instructions and TLB maintenance instructions.
 - EL1 translation regime Address Translation instructions and TLB maintenance instructions that are accessible only from EL2 and EL3.
- The instructions for which the execution is trapped as follows:
 - SMC in an implementation that does not include EL3 and when HCR_EL2.TSC is 1. HCR_EL2.TSC bit is not res0 in this case. This is reported using EC syndrome value 0x17.
 - The ERET, ERETAA, and ERETAB instructions, reported using EC syndrome value 0x1A.

Note

The priority of this trap is higher than the priority of the HCR_EL2.API trap. If both of these bits are set so that EL1 execution of an ERETAA or ERETAB instruction is trapped to EL2, then the syndrome reported is 0x1A.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

When FEAT NV is implemented:

Nested Virtualization. Traps functionality that is permitted at EL2 and would be undefined at EL1 if this field was 0, when EL2 is enabled in the current Security state. This applies to the following operations:

- EL1 accesses to Special-purpose registers that are not undefined at FL2
- EL1 accesses to System registers that are not undefined at EL2.
- Execution of EL1 or EL2 translation regime address translation and TLB maintenance instructions for EL2 and above.

NV	Meaning
0d0	This control does not cause any
	instructions to be trapped.

registers or the execution of the specified instructions are trapped to EL2, when EL2 is enabled in the current Security state. EL1 read accesses to the CurrentEL register return a value of 0x2.

The System or Special-purpose registers for which accesses are trapped and reported using EC syndrome value 0x18 are as follows:

- Registers accessed using MRS or MSR with a name ending in EL2, except the following:
 - ° SP EL2.
 - If FEAT_MEC is implemented, <u>MECID_A0_EL2</u>, <u>MECID_A1_EL2</u>, <u>MECID_P0_EL2</u>, <u>MECID_P1_EL2</u>, <u>MECIDR_EL2</u>, <u>VMECID_A_EL2</u>, <u>VMECID_P_EL2</u>.
- Registers accessed using MRS or MSR with a name ending in EL12.
- Registers accessed using MRS or MSR with a name ending in EL02.
- Special-purpose registers <u>SPSR_irq</u>, <u>SPSR_abt</u>, <u>SPSR_und</u> and SPSR fig, accessed using MRS or MSR.
- Special-purpose register <u>SP_EL1</u> accessed using the dedicated MRS or MSR instruction.

The instructions for which the execution is trapped and reported using EC syndrome value 0x18 are as follows:

- EL2 translation regime Address Translation instructions and TLB maintenance instructions.
- EL1 translation regime Address Translation instructions and TLB maintenance instructions that are accessible only from EL2 and EL3.

The execution of the ERET, ERETAA, and ERETAB instructions are trapped and reported using EC syndrome value 0x1A.

Note

The priority of this trap is higher than the priority of the HCR_EL2.API trap. If both of these bits are set so that EL1 execution of an ERETAA or ERETAB instruction is trapped to EL2, then the syndrome reported is 0×1A.

The execution of the SMC instructions in an implementation that does not include EL3 and when HCR_EL2.TSC is 1 are trapped and reported using EC syndrome value 0x17. HCR_EL2.TSC bit is not res0 in this case.

This bit is permitted to be cached in a TLB.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

API, bit [41] When FEAT PAuth is implemented:

Controls the use of instructions related to Pointer Authentication:

- In EL0, when HCR_EL2.TGE==0 or HCR_EL2.E2H==0, and the associated <u>SCTLR_EL1</u>.En<N><M>==1.
- In EL1, the associated <u>SCTLR_EL1</u>.En<N><M>==1.

Traps are reported using EC syndrome value 0×09 . The Pointer Authentication instructions trapped are:

- AUTDA, AUTDB, AUTDZA, AUTDZB, AUTIA, AUTIA1716, AUTIASP, AUTIAZ, AUTIB, AUTIB1716, AUTIBSP, AUTIBZ, AUTIZA, AUTIZB.
- PACGA, PACDA, PACDB, PACDZA, PACDZB, PACIA, PACIA1716, PACIASP, PACIAZ, PACIB, PACIB1716, PACIBSP, PACIBZ, PACIZA, PACIZB.
- RETAA, RETAB, BRAA, BRAB, BLRAA, BLRAB, BRAAZ, BRABZ, BLRAAZ, BLRABZ.
- ERETAA, ERETAB, LDRAA, and LDRAB.

API Meaning

ObO The instructions related to Pointer Authentication are trapped to EL2, when EL2 is enabled in the current Security state and the instructions are enabled for the EL1&0 translation regime, from:

- EL0 when HCR_EL2.TGE==0 or HCR EL2.E2H==0.
- EL1.

If HCR_EL2.NV is 1, the HCR_EL2.NV trap takes precedence over the HCR_EL2.API trap for the ERETAA and ERETAB instructions.
If EL2 is implemented and enabled

If EL2 is implemented and enabled in the current Security state and HFGITR_EL2. ERET == 1, execution at EL1 using AArch64 of ERETAA or ERETAB instructions is reported with EC syndrome value $0 \times 1A$ with its associated ISS field, as the fine-grained trap has higher priority than the HCR_EL2. API == 0.

This control does not cause any instructions to be trapped.

If FEAT_PAuth is implemented but EL2 is not implemented or disabled in the current Security state, the system behaves as if this bit is 1.

The reset behavior of this field is:

 On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

APK, bit [40] When FEAT_PAuth is implemented:

Trap registers holding "key" values for Pointer Authentication. Traps accesses to the following registers from EL1 to EL2, when EL2 is

enabled in the current Security state, reported using EC syndrome value 0x18:

• <u>APIAKeyLo_EL1</u>, <u>APIAKeyHi_EL1</u>, <u>APIBKeyLo_EL1</u>, <u>APIBKeyHi_EL1</u>, <u>APDAKeyLo_EL1</u>, <u>APDAKeyHi_EL1</u>, <u>APDBKeyLo_EL1</u>, <u>APDBKeyHi_EL1</u>, <u>APGAKeyLo_EL1</u>, and <u>APGAKeyHi_EL1</u>.

APK	Meaning
0b0	Access to the registers holding
	"key" values for pointer
	authentication from EL1 are
	trapped to EL2, when EL2 is
	enabled in the current Security
	state.
0b1	This control does not cause any
	instructions to be trapped.

Note

If FEAT_PAuth is implemented but EL2 is not implemented or is disabled in the current Security state, the system behaves as if this bit is 1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

TME, bit [39] When FEAT TME is implemented:

Enables access to the TSTART, TCOMMIT, TTEST, and TCANCEL instructions at EL0 and EL1.

TME	Meaning
0b0	EL0 and EL1 accesses to TSTART,
	TCOMMIT, TTEST, and TCANCEL
	instructions are undefined.
0b1	This control does not cause any
	instruction to be undefined.

If EL2 is not implemented or is disabled in the current Security state, the Effective value of this bit is 0b1.

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

MIOCNCE, bit [38]

Mismatched Inner/Outer Cacheable Non-Coherency Enable, for the EL1&0 translation regimes.

MIOCNCE	Meaning
0b0	For the EL1&0 translation
	regimes, for permitted
	accesses to a memory
	location that use a common
	definition of the
	Shareability and
	Cacheability of the location,
	there must be no loss of
	coherency if the Inner
	Cacheability attribute for
	those accesses differs from
	the Outer Cacheability
	attribute.
0b1	For the EL1&0 translation
	regimes, for permitted
	accesses to a memory
	location that use a common
	definition of the
	Shareability and
	Cacheability of the location,
	there might be a loss of
	coherency if the Inner
	Cacheability attribute for
	those accesses differs from
	the Outer Cacheability
	attribute.

For more information, see 'Mismatched memory attributes'.

This field can be implemented as RAZ/WI.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, the PE ignores the value of this field for all purposes other than a direct read of this field.

• On a Warm reset, this field resets to an architecturally unknown value.

TEA, bit [37] When FEAT_RAS is implemented:

Route synchronous External abort exceptions to EL2.

TTTA	M
TEA	Meaning
0d0	This control does not cause
	exceptions to be routed from EL0
	and EL1 to EL2.
0b1	Route synchronous External abort
	exceptions from EL0 and EL1 to
	EL2, when EL2 is enabled in the
	current Security state, if not
	routed to EL3.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

TERR, bit [36] When FEAT_RAS is implemented:

Trap accesses of Error Record registers. Enables a trap to EL2 on accesses of Error Record registers.

TERR	Meaning
0b0	Accesses of the specified Error Record registers are not trapped by this mechanism.
0b1	Accesses of the specified Error Record registers at EL1 are trapped to EL2, unless the instruction generates a higher priority exception.

In AArch64 state, the instructions affected by this control are:

 MRS and MSR accesses to <u>ERRSELR_EL1</u>, <u>ERXADDR_EL1</u>, <u>ERXCTLR_EL1</u>, <u>ERXMISC0_EL1</u>, <u>ERXMISC1_EL1</u>, and <u>ERXSTATUS_EL1</u>.

- MRS accesses to ERRIDR EL1 and ERXFR EL1.
- If FEAT_RASv1p1 is implemented, MRS and MSR accesses to ERXMISC2 EL1 and ERXMISC3 EL1.
- If FEAT RASv2 is implemented, MRS accesses to ERXGSR EL1.

In AArch32 state, the instructions affected by this control are:

- MRC and MCR accesses to <u>ERRSELR</u>, <u>ERXADDR</u>, <u>ERXADDR2</u>, <u>ERXCTLR</u>, <u>ERXCTLR2</u>, <u>ERXMISC0</u>, <u>ERXMISC1</u>, <u>ERXMISC2</u>, <u>ERXMISC3</u>, and <u>ERXSTATUS</u>.
- MRC accesses to ERRIDR, ERXFR, and ERXFR2.
- If FEAT_RASv1p1 is implemented, MRC and MCR accesses to ERXMISC4, ERXMISC5, ERXMISC6, and ERXMISC7.

Unless the instruction generates a higher priority exception, trapped instructions generate an exception to EL2.

Trapped AArch64 instructions are reported using EC syndrome value 0x18.

Trapped AArch32 instructions are reported using EC syndrome value 0x03.

Accessing this field has the following behavior:

- This field is permitted to be res0 if all of the following are true:
 - <u>ERRSELR_EL1</u> and all ERX* registers are implemented as undefined or RAZ/WI.
 - ERRIDR EL1.NUM is zero.

The reset behavior of this field is:

 On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

TLOR, bit [35] When FEAT LOR is implemented:

Trap LOR registers. Traps Non-secure EL1 accesses to <u>LORSA_EL1</u>, <u>LOREA_EL1</u>, <u>LORN_EL1</u>, <u>LORC_EL1</u>, and <u>LORID_EL1</u> registers to EL2.

TLOR	Meaning
0b0	This control does not cause any instructions to be trapped.

0b1	Non-secure EL1 accesses to the
	LOR registers are trapped to
	EL2.

When HCR_EL2.TGE is 1, the PE ignores the value of this field for all purposes other than a direct read of this field.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

E2H, bit [34] When FEAT VHE is implemented:

EL2 Host. Enables a configuration where a Host Operating System is running in EL2, and the Host Operating System's applications are running in EL0.

E2H	Meaning
0b0	The facilities to support a Host
	Operating System at EL2 are
	disabled.
0b1	The facilities to support a Host
	Operating System at EL2 are
	enabled.

For information on the behavior of this bit see 'Behavior of HCR EL2.E2H'.

This bit is permitted to be cached in a TLB.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

ID, bit [33]

Stage 2 Instruction access cacheability disable. For the EL1&0 translation regime, when EL2 is enabled in the current Security state and HCR_EL2.VM==1, this control forces all stage 2

translations for instruction accesses to Normal memory to be Non-cacheable.

ID	Meaning
0b0	This control has no effect on stage
	2 of the EL1&0 translation regime.
0b1	Forces all stage 2 translations for
	instruction accesses to Normal
	memory to be Non-cacheable.

This bit has no effect on the EL2, EL2&0, or EL3 translation regimes.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, the PE ignores the value of this field for all purposes other than a direct read of this field.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

CD, bit [32]

Stage 2 Data access cacheability disable. For the EL1&0 translation regime, when EL2 is enabled in the current Security state and HCR_EL2.VM==1, this control forces all stage 2 translations for data accesses and translation table walks to Normal memory to be Non-cacheable.

CD	Meaning
0d0	This control has no effect on stage 2 of the EL1&0 translation regime
	for data accesses and translation table walks.
0b1	Forces all stage 2 translations for data accesses and translation table walks to Normal memory to be Non-cacheable.

This bit has no effect on the EL2, EL2&0, or EL3 translation regimes.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, the PE ignores the value of this field for all purposes other than a direct read of this field.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

RW, bit [31] When EL1 is capable of using AArch32:

Execution state control for lower Exception levels:

RW	Meaning
0b0	Lower levels are all AArch32.
0b1	The Execution state for EL1 is AArch64. The Execution state for EL0 is determined by the current value of PSTATE.nRW when executing at EL0.

In an implementation that includes EL3, when EL2 is not enabled in Secure state, the PE behaves as if this bit has the same value as the <u>SCR_EL3</u>.RW bit for all purposes other than a direct read or write access of HCR_EL2.

The RW bit is permitted to be cached in a TLB.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this field behaves as 1 for all purposes other than a direct read of the value of this bit.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, RAO/WI.

TRVM, bit [30]

Trap Reads of Virtual Memory controls. Traps reads of the virtual memory control registers to EL2, when EL2 is enabled in the current Security state, as follows:

- If EL1 is using AArch64 state, EL1 accesses to the following registers are trapped to EL2 and reported using EC syndrome value 0x18 for MRS and 0x14 for MRRS:
 - SCTLR_EL1, TTBR0_EL1, TTBR1_EL1, TCR_EL1,
 ESR_EL1, FAR_EL1, AFSR0_EL1, AFSR1_EL1,
 MAIR EL1, AMAIR EL1, CONTEXTIDR EL1.
 - If FEAT_AIE is implemented, <u>MAIR2_EL1</u>, <u>AMAIR2_EL1</u>.
 - If FEAT_S1PIE is implemented, <u>PIREO_EL1</u>, <u>PIR_EL1</u>.

- If FEAT S1POE is implemented, POR ELO, POR EL1.
- If FEAT S2POE is implemented, S2POR EL1.
- If FEAT TCR2 is implemented, <u>TCR2 EL1</u>.
- If FEAT SCTLR2 is implemented, <u>SCTLR2 EL1</u>.
- If HCR_EL2.{E2H, TGE} is not {1, 1}, and EL0 is using AArch64 state, EL0 accesses to the following registers are trapped to EL2 and reported using EC syndrome value 0x18 for MRS:
 - If FEAT S1POE is implemented, POR ELO.
- If EL1 is using AArch32 state, EL1 accesses using MRC to the following registers are trapped to EL2 and reported using EC syndrome value 0x03, accesses using MRRC are trapped to EL2 and reported using EC syndrome value 0x04:
 - SCTLR, TTBR0, TTBR1, TTBCR, TTBCR2, DACR, DFSR, IFSR, DFAR, IFAR, ADFSR, AIFSR, PRRR, NMRR, MAIR0, MAIR1, AMAIR0, AMAIR1, CONTEXTIDR.

TRVM	Meaning
0b0	This control does not cause any
	instructions to be trapped.
0b1	Read accesses to the specified
	Virtual Memory control
	registers are trapped to EL2,
	when EL2 is enabled in the
	current Security state.

When HCR_EL2.{E2H, TGE} is {1, 1}, the PE ignores the value of this field for all purposes other than a direct read of this field.

Note

0

EL2 provides a second stage of address translation, that a hypervisor can use to remap the address map defined by a Guest OS. In addition, a hypervisor can trap attempts by a Guest OS to write to the registers that control the memory system. A hypervisor might use this trap as part of its virtualization of memory management.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

HCD, bit [29] When EL3 is not implemented:

HVC instruction disable. Disables EL1 execution of HVC instructions, from both Execution states, when EL2 is enabled in the current Security state, reported using EC syndrome value 0x00.

HCD	Meaning
0d0	HVC instruction execution is enabled at EL2 and EL1.
0b1	HVC instructions are undefined at EL2 and EL1. Any resulting exception is taken to the Exception level at which the HVC instruction is executed.

Note

HVC instructions are always undefined at EL0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

TDZ, bit [28]

Trap $\underline{DC~ZVA}$ instructions. Traps EL0 and EL1 execution of $\underline{DC~ZVA}$ instructions to EL2, when EL2 is enabled in the current Security state, from AArch64 state only, reported using EC syndrome value 0x18.

If FEAT_MTE is implemented, this trap also applies to <u>DC GVA</u> and <u>DC GZVA</u>.

TDZ	Meaning
0b0	This control does not cause any
	instructions to be trapped.

In AArch64 state, any attempt to execute an instruction this trap applies to at EL1, or at EL0 when the instruction is not undefined at EL0, is trapped to EL2 when EL2 is enabled in the current Security state.

Reading the DCZID_EL0 returns a value that indicates that the instructions this trap applies to are not supported.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this field behaves as 0 for all purposes other than a direct read of the value of this bit.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

TGE, bit [27]

Trap General Exceptions, from EL0.

TGE	Meaning
0b0	This control has no effect on
	execution at EL0.

- When EL2 is not enabled in the current Security state, this control has no effect on execution at EL0. When EL2 is enabled in the current Security state, in all cases:
 - All exceptions that would be routed to EL1 are routed to EL2.
 - If EL1 is using AArch64, the SCTLR_EL1. M field is treated as being 0 for all purposes other than returning the result of a direct read of SCTLR EL1.
 - If EL1 is using AArch32, the <u>SCTLR</u>.M field is treated as being 0 for all purposes other than returning the result of a direct read of <u>SCTLR</u>.
 - All virtual interrupts are disabled.
 - Any implementation defined mechanisms for signaling virtual interrupts are disabled.
 - An exception return to EL1 is treated as an illegal exception return.
 - The MDCR_EL2.{TDRA, TDOSA, TDA, TDE} fields are treated as being 1 for all purposes other than returning the result of a direct read of MDCR_EL2.

In addition, when EL2 is enabled in the current Security state, if:

- HCR_EL2.E2H is 0, the Effective values of the HCR_EL2.{FMO, IMO, AMO} fields are 1.
- HCR_EL2.E2H is 1, the Effective values of the HCR_EL2.{FMO, IMO, AMO} fields are 0.

For further information on the behavior of this bit when E2H is 1, see 'Behavior of HCR EL2.E2H'.

HCR EL2.TGE must not be cached in a TLB.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

TVM, bit [26]

Trap Virtual Memory controls. Traps writes to the virtual memory control registers to EL2, when EL2 is enabled in the current Security state, as follows:

- If EL1 is using AArch64 state, the following registers are trapped to EL2 and reported using EC syndrome value 0x18 for MSR and 0x14 for MSRR:
 - SCTLR_EL1, TTBR0_EL1, TTBR1_EL1, TCR_EL1, ESR_EL1, FAR_EL1, AFSR0_EL1, AFSR1_EL1, MAIR_EL1, AMAIR_EL1, CONTEXTIDR_EL1.
 - If FEAT_AIE is implemented, <u>MAIR2_EL1</u>, <u>AMAIR2_EL1</u>.
 - If FEAT S1PIE is implemented, <u>PIREO EL1</u>, <u>PIR EL1</u>.
 - If FEAT S1POE is implemented, <u>POR EL0</u>, <u>POR EL1</u>.
 - If FEAT_S2POE is implemented, <u>S2POR_EL1</u>.
 - If FEAT_TCR2 is implemented, <u>TCR2_EL1</u>.
 - If FEAT_SCTLR2 is implemented, <u>SCTLR2_EL1</u>.
- If HCR_EL2.{E2H, TGE} is not {1, 1}, and EL0 is using AArch64 state, EL0 accesses to the following registers are trapped to EL2 and reported using EC syndrome value 0x18 for MSR:
 - If FEAT_S1POE is implemented, <u>POR_ELO</u>.
- If EL1 is using AArch32 state, EL1 accesses using MCR to the following registers are trapped to EL2 and reported using EC syndrome value 0x03, accesses using MCRR are trapped to EL2 and reported using EC syndrome value 0x04:
 - SCTLR, TTBR0, TTBR1, TTBCR, TTBCR2, DACR, DFSR, IFSR, DFAR, IFAR, ADFSR, AIFSR, PRRR, NMRR, MAIR0, MAIR1, AMAIR0, AMAIR1, CONTEXTIDR.

TVM	Meaning
0b0	This control does not cause any
	instructions to be trapped.

Write accesses to the specified Virtual Memory control registers are trapped to EL2, when EL2 is enabled in the current Security state.

When HCR_EL2.{E2H, TGE} is {1, 1}, the PE ignores the value of this field for all purposes other than a direct read of this field.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

TTLB, bit [25]

Trap TLB maintenance instructions. Traps EL1 execution of TLB maintenance instructions to EL2, when EL2 is enabled in the current Security state, as follows:

- When EL1 is using AArch64 state, the following instructions are trapped to EL2 and reported using EC syndrome value 0x18:
 - <u>TLBI VMALLE1</u>, <u>TLBI VAE1</u>, <u>TLBI ASIDE1</u>, <u>TLBI VAAE1</u>, TLBI VALE1, TLBI VAALE1.
 - TLBI VMALLE1IS, TLBI VAE1IS, TLBI ASIDE1IS, TLBI VAAE1IS, TLBI VAALE1IS.
 - If FEAT_TLBIOS is implemented, this trap applies to <u>TLBI VMALLE1OS</u>, <u>TLBI VAE1OS</u>, <u>TLBI ASIDE1OS</u>, <u>TLBI VAAE1OS</u>, <u>TLBI VAALE1OS</u>.
 - If FEAT_TLBIRANGE is implemented, this trap applies to <u>TLBI RVAE1</u>, <u>TLBI RVALE1</u>, <u>TLBI RVALE1</u>, <u>TLBI RVALE1</u>, <u>TLBI RVALE1</u>S, <u>TLBI RVALE1</u>S, <u>TLBI RVALE1</u>S.
 - If FEAT_TLBIOS and FEAT_TLBIRANGE are implemented, this trap applies to <u>TLBI RVAE1OS</u>, <u>TLBI RVAAE1OS</u>, <u>TLBI RVALE1OS</u>, <u>TLBI RVAALE1OS</u>.
- When EL1 is using AArch32 state, the following instructions are trapped to EL2 and reported using EC syndrome value 0x03:
 - TLBIALLIS, TLBIMVAIS, TLBIASIDIS, TLBIMVAAIS, TLBIMVALIS, TLBIMVALIS.
 - <u>TLBIALL</u>, <u>TLBIMVA</u>, <u>TLBIASID</u>, <u>TLBIMVAA</u>, <u>TLBIMVAL</u>, TLBIMVAAL
 - ITLBIALL, ITLBIMVA, ITLBIASID.
 - DTLBIALL, DTLBIMVA, DTLBIASID.

TTLB Meaning

0b0	This control does not cause any
	instructions to be trapped.
0b1	EL1 execution of the specified
	TLB maintenance instructions
	are trapped to EL2, when EL2 is
	enabled in the current Security
	state.

When HCR_EL2.TGE is 1, the PE ignores the value of this field for all purposes other than a direct read of this field.

Note

The TLB maintenance instructions are undefined at ELO.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

TPU, bit [24]

Trap cache maintenance instructions that operate to the Point of Unification. Traps execution of those cache maintenance instructions to EL2, when EL2 is enabled in the current Security state as follows:

- If EL0 is using AArch64 state and the value of <u>SCTLR_EL1</u>.UCI is not 0, the following instructions are trapped to EL2 and reported with EC syndrome value 0x18:
 - IC IVAU, DC CVAU. If the value of SCTLR_EL1.UCI is 0
 these instructions are undefined at EL0 and any resulting
 exception is higher priority than this trap to EL2.
- If EL1 is using AArch64 state, the following instructions are trapped to EL2 and reported with EC syndrome value 0x18:
 - IC IVAU, IC IALLU, IC IALLUIS, DC CVAU.
- If EL1 is using AArch32 state, the following instructions are trapped to EL2 and reported with EC syndrome value 0x18:
 - ICIMVAU, ICIALLU, ICIALLUIS, DCCMVAU.

Note

An exception generated because an instruction is undefined at EL0 is higher priority than this trap to EL2. In addition:

 IC IALLUIS and IC IALLU are always undefined at EL0 using AArch64. • <u>ICIMVAU</u>, <u>ICIALLU</u>, <u>ICIALLUIS</u>, and <u>DCCMVAU</u> are always undefined at EL0 using AArch32.

TPU	Meaning
0b0	This control does not cause any
	instructions to be trapped.
0b1	Execution of the specified
	instructions is trapped to EL2,
	when EL2 is enabled in the
	current Security state.

If the Point of Unification is before any level of data cache, it is implementation defined whether the execution of any data or unified cache clean by VA to the Point of Unification instruction can be trapped when the value of this control is 1.

If the Point of Unification is before any level of instruction cache, it is implementation defined whether the execution of any instruction cache invalidate to the Point of Unification instruction can be trapped when the value of this control is 1.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this field behaves as 0 for all purposes other than a direct read of the value of this bit.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Bit[23] When FEAT DPB is implemented:

TPCP, bit [23]

Trap data or unified cache maintenance instructions that operate to the Point of Coherency or Persistence. Traps execution of those cache maintenance instructions to EL2, when EL2 is enabled in the current Security state as follows:

- If EL0 is using AArch64 state and the value of <u>SCTLR_EL1</u>.UCI is not 0, the following instructions are trapped to EL2 and reported using EC syndrome value 0x18:
 - DC CIVAC, DC CVAC, DC CVAP. If the value of <u>SCTLR_EL1</u>.UCI is 0 these instructions are undefined at EL0 and any resulting exception is higher priority than this trap to EL2.
- If EL1 is using AArch64 state, the following instructions are trapped to EL2 and reported using EC syndrome value 0x18:
 - <u>DC IVAC</u>, <u>DC CIVAC</u>, <u>DC CVAC</u>, <u>DC CVAP</u>.

If EL1 is using AArch32 state, the following instructions are trapped to EL2 and reported using EC syndrome value 0x03:
 DCIMVAC, DCCIMVAC, DCCMVAC.

If FEAT_DPB2 is implemented, this trap also applies to <u>DC CVADP</u>.

If FEAT_MTE is implemented, this trap also applies to <u>DC CIGVAC</u>, <u>DC CIGDVAC</u>, <u>DC IGVAC</u>, <u>DC IGDVAC</u>, <u>DC CGDVAC</u>, <u>DC</u>

If FEAT_DPB2 and FEAT_MTE are implemented, this trap also applies to <u>DC CGVADP</u> and <u>DC CGDVADP</u>.

Note

- An exception generated because an instruction is undefined at EL0 is higher priority than this trap to EL2. In addition:
 - AArch64 instructions which invalidate by VA to the Point of Coherency are always undefined at EL0 using AArch64.
 - DCIMVAC, DCCIMVAC, and DCCMVAC are always undefined at EL0 using AArch32.
- In Armv8.0 and Armv8.1, this field is named TPC. From Armv8.2, it is named TPCP.

TPCP	Meaning
0b0	This control does not cause any
	instructions to be trapped.
0b1	Execution of the specified
	instructions is trapped to EL2,
	when EL2 is enabled in the
	current Security state.

If the Point of Coherency is before any level of data cache, it is implementation defined whether the execution of any data or unified cache clean, invalidate, or clean and invalidate instruction that operates by VA to the point of coherency can be trapped when the value of this control is 1.

If HCR_EL2.{E2H, TGE} is set to {1, 1}, this field behaves as 0 for all purposes other than a direct read of the value of this bit.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

TPC, bit [23]

Trap data or unified cache maintenance instructions that operate to the Point of Coherency. Traps execution of those cache maintenance instructions to EL2, when EL2 is enabled in the current Security state as follows:

- If EL0 is using AArch64 state and the value of <u>SCTLR_EL1</u>.UCI is not 0, accesses to the following registers are trapped and reported using EC syndrome value 0x18:
 - DC CIVAC, DC CVAC. However, if the value of <u>SCTLR_EL1</u>.UCI is 0 these instructions are undefined at EL0 and any resulting exception is higher priority than this trap to EL2.
- If EL1 is using AArch64 state, accesses to <u>DC IVAC</u>, <u>DC CIVAC</u>, <u>DC CVAC</u> are trapped and reported using EC syndrome value 0x18.
- When EL1 is using AArch32, accesses to <u>DCIMVAC</u>, <u>DCCIMVAC</u>, and <u>DCCMVAC</u> are trapped and reported using EC syndrome value 0x03.

Note

- An exception generated because an instruction is undefined at EL0 is higher priority than this trap to EL2. In addition:
 - AArch64 instructions which invalidate by VA to the Point of Coherency are always undefined at EL0 using AArch64.
 - DCIMVAC, DCCIMVAC, and DCCMVAC are always undefined at EL0 using AArch32.
- In Armv8.0 and Armv8.1, this field is named TPC. From Armv8.2, it is named TPCP.

TPC	Meaning
0b0	This control does not cause any
	instructions to be trapped.
0b1	Execution of the specified
	instructions is trapped to EL2,
	when EL2 is enabled in the
	current Security state.

If the Point of Coherency is before any level of data cache, it is implementation defined whether the execution of any data or unified

cache clean, invalidate, or clean and invalidate instruction that operates by VA to the point of coherency can be trapped when the value of this control is 1.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this field behaves as 0 for all purposes other than a direct read of the value of this bit.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

TSW, bit [22]

Trap data or unified cache maintenance instructions that operate by Set/Way. Traps execution of those cache maintenance instructions at EL1 to EL2, when EL2 is enabled in the current Security state as follows:

- If EL1 is using AArch64 state, accesses to <u>DC ISW</u>, <u>DC CSW</u>, <u>DC CISW</u> are trapped to EL2, reported using EC syndrome value 0x18.
- If EL1 is using AArch32 state, accesses to <u>DCISW</u>, <u>DCCSW</u>, <u>DCCISW</u> are trapped to EL2, reported using EC syndrome value 0x03.

If FEAT_MTE2 is implemented, this trap also applies to <u>DC IGSW</u>, <u>DC IGDSW</u>, <u>DC CGSW</u>, <u>DC CGDW</u>, <u>DC CIGSW</u>, and <u>DC CIGDSW</u>.

Note

An exception generated because an instruction is undefined at EL0 is higher priority than this trap to EL2, and these instructions are always undefined at EL0.

TSW	Meaning
0b0	This control does not cause any
	instructions to be trapped.
0b1	Execution of the specified
	instructions is trapped to EL2,
	when EL2 is enabled in the
	current Security state.

When HCR_EL2.TGE is 1, the PE ignores the value of this field for all purposes other than a direct read of this field.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

TACR, bit [21]

Trap Auxiliary Control Registers. Traps EL1 accesses to the Auxiliary Control Registers to EL2, when EL2 is enabled in the current Security state, as follows:

- If EL1 is using AArch64 state, accesses to <u>ACTLR_EL1</u> to EL2, are trapped to EL2 and reported using EC syndrome value 0x18.
- If EL1 is using AArch32 state, accesses to <u>ACTLR</u> and, if implemented, <u>ACTLR2</u> are trapped to EL2 and reported using EC syndrome value 0x03.

TACR	Meaning
0b0	This control does not cause any
	instructions to be trapped.
0b1	EL1 accesses to the specified
	registers are trapped to EL2,
	when EL2 is enabled in the
	current Security state.

When HCR_EL2.TGE is 1, the PE ignores the value of this field for all purposes other than a direct read of this field.

Note

ACTLR EL1 is not accessible at EL0.

<u>ACTLR</u> and <u>ACTLR2</u> are not accessible at EL0.

The Auxiliary Control Registers are implementation defined registers that might implement global control bits for the PE.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

TIDCP, bit [20]

Trap implementation defined functionality. Traps EL1 accesses to the encodings reserved for implementation defined functionality to EL2, when EL2 is enabled in the current Security state as follows:

- In AArch64 state, access to any of the encodings in the following reserved encoding spaces are trapped and reported using EC syndrome 0x18:
 - implementation defined System instructions, which are accessed using SYS and SYSL, with CRn == {11, 15}.
 - implementation defined System registers, which are accessed using MRS and MSR with the
 S3 <op1> <Cn> <Cm> <op2> register name.
- In AArch32 state, MCR and MRC access to instructions with the following encodings are trapped and reported using EC syndrome 0x03:
 - o All coproc==p15, CRn==c9, opc1 == {0-7}, CRm ==
 {c0-c2, c5-c8}, opc2 == {0-7}.
 - ∘ All coproc==p15, CRn==c10, opc1 =={0-7}, CRm == {c0, c1, c4, c8}, opc2 == {0-7}.
 - o All coproc==p15, CRn==c11, opc1=={0-7}, CRm ==
 {c0-c8, c15}, opc2 == {0-7}.

When this functionality is accessed from ELO:

- If FEAT_TIDCP1 is implemented and the Effective value of SCTLR_EL1. TIDCP is 1, any accesses from EL0 are trapped to EL1.
- Otherwise, if FEAT_TIDCP1 is implemented and the Effective value of <u>SCTLR_EL2</u>.TIDCP is 1, any accesses from EL0 are trapped to EL2.
- Otherwise:
 - If HCR_EL2.TIDCP is 1, it is implementation defined whether any accesses from EL0 are trapped to EL2.
 - If HCR_EL2.TIDCP is 0, any accesses from EL0 are undefined and generate an exception that is taken to EL1 or EL2.

TIDCP	Meaning
0b0	This control does not cause any
	instructions to be trapped.

0b1	EL1 accesses to or execution of
	the specified encodings
	reserved for implementation
	defined functionality are
	trapped to EL2, when EL2 is
	enabled in the current Security
	state.

An implementation can also include implementation defined registers that provide additional controls, to give finer-grained control of the trapping of implementation defined features.

Note

The trapping of accesses to these registers from EL1 is higher priority than an exception resulting from the register access being undefined.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

TSC, bit [19]

Trap SMC instructions. Traps EL1 execution of SMC instructions to EL2, when EL2 is enabled in the current Security state.

If execution is in AArch64 state, the trap is reported using EC syndrome value 0x17.

If execution is in AArch32 state, the trap is reported using EC syndrome value 0x13.

Note

HCR_EL2.TSC traps execution of the SMC instruction. It is not a routing control for the SMC exception. Trap exceptions and SMC exceptions have different preferred return addresses.

TSC	Meaning
0b0	This control does not cause any
	instructions to be trapped.

ob1

If EL3 is implemented, then any attempt to execute an SMC instruction at EL1 is trapped to EL2, when EL2 is enabled in the current Security state, regardless of the value of SCR_EL3.SMD.

If EL3 is not implemented, FEAT_NV is implemented, and HCR_EL2.NV is 1, then any attempt to execute an SMC instruction at EL1 using AArch64 is trapped to EL2, when EL2 is enabled in the current Security state.

If EL3 is not implemented, and either FEAT_NV is not implemented or HCR_EL2.NV is 0, then it is implementation defined whether:

- Any attempt to execute an SMC instruction at EL1 is trapped to EL2, when EL2 is enabled in the current Security state.
- Any attempt to execute an SMC instruction is undefined.

In AArch32 state, the Armv8-A architecture permits, but does not require, this trap to apply to conditional SMC instructions that fail their condition code check, in the same way as with traps on other conditional instructions.

SMC instructions are undefined at ELO.

If EL3 is not implemented, and either FEAT_NV is not implemented or HCR_EL2.NV is 0, then it is implementation defined whether this bit is:

- res0.
- Implemented with the functionality as described in HCR EL2.TSC.

When HCR_EL2.TGE is 1, the PE ignores the value of this field for all purposes other than a direct read of this field.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

_

TID3, bit [18]

Trap ID group 3. Traps EL1 reads of group 3 ID registers to EL2, when EL2 is enabled in the current Security state, as follows:

In AArch64 state:

- Reads of the following registers are trapped to EL2, reported using EC syndrome value 0x18:
 - ID_PFR0_EL1, ID_PFR1_EL1, ID_PFR2_EL1,
 ID_DFR0_EL1, ID_AFR0_EL1, ID_MMFR0_EL1,
 ID_MMFR1_EL1, ID_MMFR2_EL1, ID_MMFR3_EL1,
 ID_ISAR0_EL1, ID_ISAR1_EL1, ID_ISAR2_EL1,
 ID_ISAR3_EL1, ID_ISAR4_EL1, ID_ISAR5_EL1,
 MVFR0_EL1, MVFR1_EL1, MVFR2_EL1.
 - ID_AA64PFR0_EL1, ID_AA64PFR1_EL1,
 ID_AA64DFR0_EL1, ID_AA64DFR1_EL1,
 ID_AA64ISAR0_EL1, ID_AA64ISAR1_EL1,
 ID_AA64MMFR0_EL1, ID_AA64MMFR1_EL1,
 ID_AA64AFR0_EL1, ID_AA64AFR1_EL1.
 - ID AA64MMFR3 EL1.
 - <u>ID AA64PFR2 EL1</u>.
 - If FEAT FGT is implemented:
 - <u>ID_MMFR4_EL1</u> and <u>ID_MMFR5_EL1</u> are trapped to EL2.
 - <u>ID_AA64MMFR2_EL1</u> and <u>ID_ISAR6_EL1</u> are trapped to EL2.
 - <u>ID DFR1 EL1</u> is trapped to EL2.
 - <u>ID AA64ZFR0 EL1</u> is trapped to EL2.
 - <u>ID AA64SMFR0 EL1</u> is trapped to EL2.
 - ID AA64ISAR2 EL1 is trapped to EL2.
 - This field traps all MRS accesses to registers in the following range that are not already mentioned in this field description: Op0 == 3, op1 == 0, CRn == c0, CRm == {c1-c7}, op2 == {0-7}.
 - If FEAT FGT is not implemented:
 - <u>ID_MMFR4_EL1</u> and <u>ID_MMFR5_EL1</u> are trapped to EL2, unless implemented as RAZ, when it is implementation defined whether

- accesses to <u>ID_MMFR4_EL1</u> or <u>ID_MMFR5_EL1</u> are trapped to EL2.
- ID_AA64MMFR2_EL1 and ID_ISAR6_EL1 are trapped to EL2, unless implemented as RAZ, when it is implementation defined whether accesses to ID_AA64MMFR2_EL1 or ID_ISAR6_EL1 are trapped to EL2.
- ID_DFR1_EL1 is trapped to EL2, unless implemented as RAZ, when it is implementation defined whether accesses to ID_DFR1_EL1 are trapped to EL2.
- ID_AA64ZFR0_EL1 is trapped to EL2, unless implemented as RAZ then it is implementation defined whether accesses to ID_AA64ZFR0_EL1 are trapped to EL2.
- ID_AA64SMFR0_EL1 is trapped to EL2, unless implemented as RAZ then it is implementation defined whether accesses to ID_AA64SMFR0_EL1 are trapped to EL2.
- ID_AA64ISAR2_EL1 is trapped to EL2, unless implemented as RAZ then it is implementation defined whether accesses to ID_AA64ISAR2_EL1 are trapped to EL2.
- Otherwise, it is implementation defined whether this bit traps MRS accesses to registers in the following range that are not already mentioned in this field description: Op0 == 3, op1 == 0, CRn == c0, CRm == {c1-c7}, op2 == {0-7}.

In AArch32 state:

- VMRS access to MVFR0, MVFR1, and MVFR2, are trapped to EL2, reported using EC syndrome value 0x08, unless access is also trapped by HCPTR which takes priority.
- MRC access to the following registers are trapped to EL2, reported using EC syndrome value 0x03:
 - ID_PFR0, ID_PFR1, ID_PFR2, ID_DFR0, ID_AFR0, ID_MMFR0, ID_MMFR1, ID_MMFR2, ID_MMFR3, ID_ISAR0, ID_ISAR1, ID_ISAR2, ID_ISAR3, ID_ISAR4, ID_ISAR5.

If FEAT FGT is implemented:

- <u>ID_MMFR4</u> and <u>ID_MMFR5</u> are trapped to EL2.
- <u>ID ISAR6</u> is trapped to EL2.
- <u>ID DFR1</u> is trapped to EL2.
- This field traps all MRC accesses to encodings in the following range that are not already mentioned in this field description: coproc == p15, opc1 == 0, CRn == c0, CRm == {c2-c7}, opc2 == {0-7}.

• If FEAT FGT is not implemented:

- ID_MMFR4 and ID_MMFR5 are trapped to EL2, unless implemented as RAZ, when it is implementation defined whether accesses to ID MMFR4 or ID MMFR5 are trapped.
- <u>ID_ISAR6</u> is trapped to EL2, unless implemented as RAZ, when it is implementation defined whether accesses to <u>ID_ISAR6</u> are trapped to EL2.
- ID_DFR1 is trapped to EL2, unless implemented as RAZ, when it is implementation defined whether accesses to ID_DFR1 are trapped to EL2.
- Otherwise, it is implementation defined whether this bit traps all MRC accesses to registers in the following range not already mentioned in this field description with coproc == p15, opc1 == 0, CRn == c0, CRm == {c2c7}, opc2 == {0-7}.

TID3	Meaning
0b0	This control does not cause any
	instructions to be trapped.
0b1	The specified EL1 read accesses
	to ID group 3 registers are
	trapped to EL2, when EL2 is
	enabled in the current Security
	state.

When HCR_EL2.TGE is 1, the PE ignores the value of this field for all purposes other than a direct read of this field.

(

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

TID2, bit [17]

Trap ID group 2. Traps the following register accesses to EL2, when EL2 is enabled in the current Security state, as follows:

- If EL1 is using AArch64, reads of <u>CTR_EL0</u>, <u>CCSIDR_EL1</u>, <u>CCSIDR2_EL1</u>, <u>CLIDR_EL1</u>, and <u>CSSELR_EL1</u> are trapped to EL2, reported using EC syndrome value 0x18.
- If EL0 is using AArch64 and the value of SCTLR_EL1.UCT is not 0, reads of CTR_EL0 are trapped to EL2, reported using EC syndrome value 0x18. If the value of SCTLR_EL1.UCT is 0, then EL0 reads of CTR_EL0 are trapped to EL1 and the resulting exception takes precedence over this trap.
- If EL1 is using AArch64, writes to <u>CSSELR_EL1</u> are trapped to EL2, reported using EC syndrome value 0x18.
- If EL1 is using AArch32, reads of <u>CTR</u>, <u>CCSIDR</u>, <u>CCSIDR2</u>, <u>CLIDR</u>, and <u>CSSELR</u> are trapped to EL2, reported using EC syndrome value 0x03.
- If EL1 is using AArch32, writes to <u>CSSELR</u> are trapped to EL2, reported using EC syndrome value 0x03.

TID2	Meaning
0b0	This control does not cause any
	instructions to be trapped.
0b1	The specified EL1 and EL0
	accesses to ID group 2 registers
	are trapped to EL2, when EL2 is
	enabled in the current Security
	state.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this field behaves as 0 for all purposes other than a direct read of the value of this bit.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

TID1, bit [16]

Trap ID group 1. Traps EL1 reads of the following registers to EL2, when EL2 is enabled in the current Security state as follows:

• In AArch64 state, accesses of <u>REVIDR_EL1</u>, <u>AIDR_EL1</u>, <u>SMIDR_EL1</u>, reported using EC syndrome value 0x18.

In AArch32 state, accesses of <u>TCMTR</u>, <u>TLBTR</u>, <u>REVIDR</u>, <u>AIDR</u>, reported using EC syndrome value 0x03.

TID1	Meaning
0b0	This control does not cause any
	instructions to be trapped.
0b1	The specified EL1 read accesses
	to ID group 1 registers are
	trapped to EL2, when EL2 is
	enabled in the current Security
	state.

When HCR_EL2.TGE is 1, the PE ignores the value of this field for all purposes other than a direct read of this field.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

TID0, bit [15] When AArch32 is supported:

Trap ID group 0. Traps the following register accesses to EL2:

- EL1 reads of the <u>JIDR</u>, reported using EC syndrome value 0x05.
- If the <u>JIDR</u> is RAZ from ELO, ELO reads of the <u>JIDR</u>, reported using EC syndrome value 0x05.
- EL1 accesses using VMRS of the <u>FPSID</u>, reported using EC syndrome value 0x08.

Note

- It is implementation defined whether the JIDR is RAZ or undefined at EL0. If it is undefined at EL0, then any resulting exception takes precedence over this trap.
- The <u>FPSID</u> is not accessible at EL0 using AArch32.
- Writes to the <u>FPSID</u> are ignored, and not trapped by this control.

TID0	Meaning
0d0	This control does not cause any
	instructions to be trapped.

0b1	The specified EL1 read accesses
	to ID group 0 registers are
	trapped to EL2, when EL2 is
	enabled in the current Security
	state.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this field behaves as 0 for all purposes other than a direct read of the value of this bit.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

TWE, bit [14]

Traps EL0 and EL1 execution of WFE instructions to EL2, when EL2 is enabled in the current Security state, from both Execution states, reported using EC syndrome value 0x01.

When FEAT_WFxT is implemented, this trap also applies to the WFET instruction.

TWE	Meaning
0b0	This control does not cause any
	instructions to be trapped.
0b1	Any attempt to execute a WFE
	instruction at EL0 or EL1 is
	trapped to EL2, when EL2 is
	enabled in the current Security
	state, if the instruction would
	otherwise have caused the PE to
	enter a low-power state and it is
	not trapped by <u>SCTLR</u> .nTWE or
	SCTLR_EL1.nTWE.

In AArch32 state, the attempted execution of a conditional WFE instruction is trapped only if the instruction passes its condition code check.

Note

Since a WFE can complete at any time, even without a Wakeup event, the traps on WFE are not guaranteed to be taken, even if the WFE is executed when there is no Wakeup event. The only guarantee is that if the instruction does not complete in finite time in the absence of a Wakeup event, the trap will be taken.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this field behaves as 0 for all purposes other than a direct read of the value of this bit.

For more information about when WFE instructions can cause the PE to enter a low-power state, see 'Wait for Event mechanism and Send event'.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

TWI, bit [13]

Traps EL0 and EL1 execution of WFI instructions to EL2, when EL2 is enabled in the current Security state, from both Execution states, reported using EC syndrome value 0x01.

When FEAT_WFxT is implemented, this trap also applies to the WFIT instruction.

TWI	Meaning
0b0	This control does not cause any
	instructions to be trapped.
0b1	Any attempt to execute a WFI
	instruction at EL0 or EL1 is
	trapped to EL2, when EL2 is
	enabled in the current Security
	state, if the instruction would
	otherwise have caused the PE to
	enter a low-power state and it is
	not trapped by <u>SCTLR</u> .nTWI or
	SCTLR_EL1.nTWI.

In AArch32 state, the attempted execution of a conditional WFI instruction is trapped only if the instruction passes its condition code check.

Note

Since a WFI can complete at any time, even without a Wakeup event, the traps on WFI are not guaranteed to be taken, even if the WFI is executed when there is no Wakeup event. The only guarantee is that if the instruction does not complete in finite time in the absence of a Wakeup event, the trap will be taken.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this field behaves as 0 for all purposes other than a direct read of the value of this bit.

For more information about when WFI instructions can cause the PE to enter a low-power state, see 'Wait for Interrupt'.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

DC, bit [12]

Default Cacheability.

DC	Meaning
0b0	This control has no effect on the
	EL1&0 translation regime.

- When EL1 is using AArch64, the PE behaves as if the value of the <u>SCTLR_EL1</u>.M field is 0 for all purposes other than returning the value of a direct read of <u>SCTLR_EL1</u>.
- When EL1 is using AArch32, the PE behaves as if the value of the <u>SCTLR</u>.M field is 0 for all purposes other than returning the value of a direct read of <u>SCTLR</u>.
- The PE behaves as if the value of the HCR_EL2.VM field is 1 for all purposes other than returning the value of a direct read of HCR EL2.
- The memory type produced by stage 1 of the EL1&0 translation regime is Normal Non-Shareable, Inner Write-Back Read-Allocate Write-Allocate, Outer Write-Back Read-Allocate Write-Allocate.

This field has no effect on the EL2, EL2&0, and EL3 translation regimes.

This bit is permitted to be cached in a TLB.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this field behaves as 0 for all purposes other than a direct read of the value of this field.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

BSU, bits [11:10]

Barrier Shareability upgrade. This field determines the minimum shareability domain that is applied to any barrier instruction executed from EL1 or EL0:

BSU	Meaning
0b00	No effect.
0b01	Inner Shareable.

0b10	Outer Shareable.
0b11	Full system.

This value is combined with the specified level of the barrier held in its instruction, using the same principles as combining the shareability attributes from two stages of address translation.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this field behaves as 0b00 for all purposes other than a direct read of the value of this bit.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

FB, bit [9]

Force broadcast. Causes the following instructions to be broadcast within the Inner Shareable domain when executed from EL1:

AArch32: BPIALL, TLBIALL, TLBIMVA, TLBIASID, DTLBIALL, DTLBIMVA, DTLBIASID, ITLBIALL, ITLBIMVA, ITLBIASID, TLBIMVAA, ICIALLU, TLBIMVAL, TLBIMVAAL.

AArch64: TLBI VMALLE1, TLBI VAE1, TLBI ASIDE1, TLBI VAAE1, TLBI VALE1, TLBI VAALE1, IC IALLU, TLBI RVAE1, TLBI RVAAE1, TLBI RVAALE1, TLBI RVAALE1.

FB	Meaning
0b0	This field has no effect on the
	operation of the specified
	instructions.
0b1	When one of the specified
	instruction is executed at EL1, the
	instruction is broadcast within the
	Inner Shareable shareability
	domain.

When HCR_EL2.TGE is 1, the PE ignores the value of this field for all purposes other than a direct read of this field.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

VSE, bit [8]

Virtual SError interrupt.

VSE Meaning

0d0	This mechanism is not making a
	virtual SError interrupt pending.
0b1	A virtual SError interrupt is
	pending because of this
	mechanism.

The virtual SError interrupt is enabled only when the value of HCR EL2.{TGE, AMO} is {0, 1}.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

VI, bit [7]

Virtual IRQ Interrupt.

VI	Meaning
0b0	This mechanism is not making a
	virtual IRQ pending.
0b1	A virtual IRQ is pending because of
	this mechanism.

The virtual IRQ is enabled only when the value of HCR_EL2.{TGE, IMO} is {0, 1}.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

VF, bit [6]

Virtual FIQ Interrupt.

VF	Meaning
0b0	This mechanism is not making a
	virtual FIQ pending.
0b1	A virtual FIQ is pending because of
	this mechanism.

The virtual FIQ is enabled only when the value of HCR_EL2.{TGE, FMO} is {0, 1}.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

AMO, bit [5]

Physical SError interrupt routing.

AMO	Meaning
0b0	When executing at Exception levels below EL2, and EL2 is enabled in the current Security state:
	 When the value of HCR_EL2.TGE is 0, Physical SError interrupts are not taken to EL2. When the value of HCR_EL2.TGE is 1, Physical SError interrupts are taken to EL2 unless they are routed to EL3. Virtual SError interrupts are disabled.
0b1	When executing at any Exception level, and EL2 is enabled in the current Security state:
	 Physical SError interrupts are taken to EL2, unless they are routed to EL3. When the value of HCR_EL2.TGE is 0, then virtual SError interrupts are enabled.

If EL2 is enabled in the current Security state and the value of HCR_EL2.TGE is 1:

- Regardless of the value of the AMO bit physical asynchronous External aborts and SError interrupts target EL2 unless they are routed to EL3.
- When FEAT_VHE is not implemented, or if HCR_EL2.E2H is 0, this field behaves as 1 for all purposes other than a direct read of the value of this bit.
- When FEAT_VHE is implemented and HCR_EL2.E2H is 1, this field behaves as 0 for all purposes other than a direct read of the value of this bit.

For more information, see 'Asynchronous exception routing'.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

IMO, bit [4]

Physical IRQ Routing.

IMO	Meaning
0d0	When executing at Exception levels below EL2, and EL2 is enabled in the current Security state:
	 When the value of HCR_EL2.TGE is 0, Physical IRQ interrupts are not taken to EL2. When the value of HCR_EL2.TGE is 1, Physical IRQ interrupts are taken to EL2 unless they are routed to EL3. Virtual IRQ interrupts are disabled.
0b1	 When executing at any Exception level, and EL2 is enabled in the current Security state: Physical IRQ interrupts are taken to EL2, unless they are routed to EL3. When the value of HCR_EL2.TGE is 0, then Virtual IRQ interrupts are enabled.

If EL2 is enabled in the current Security state, and the value of HCR_EL2.TGE is 1:

- Regardless of the value of the IMO bit, physical IRQ Interrupts target EL2 unless they are routed to EL3.
- When FEAT_VHE is not implemented, or if HCR_EL2.E2H is 0, this field behaves as 1 for all purposes other than a direct read of the value of this bit.
- When FEAT_VHE is implemented and HCR_EL2.E2H is 1, this field behaves as 0 for all purposes other than a direct read of the value of this bit.

For more information, see 'Asynchronous exception routing'.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

FMO, bit [3]

Physical FIQ Routing.

FMO	Meaning
0d0	When executing at Exception levels below EL2, and EL2 is enabled in the current Security state:
	 When the value of HCR_EL2.TGE is 0, Physical FIQ interrupts are not taken to EL2. When the value of HCR_EL2.TGE is 1, Physical FIQ interrupts are taken to EL2 unless they are routed to EL3. Virtual FIQ interrupts are disabled.
0b1	When executing at any Exception level, and EL2 is enabled in the current Security state:
	 Physical FIQ interrupts are taken to EL2, unless they are routed to EL3. When HCR_EL2.TGE is 0, then Virtual FIQ interrupts are enabled.

If EL2 is enabled in the current Security state and the value of HCR_EL2.TGE is 1:

- Regardless of the value of the FMO bit, physical FIQ Interrupts target EL2 unless they are routed to EL3.
- When FEAT_VHE is not implemented, or if HCR_EL2.E2H is 0, this field behaves as 1 for all purposes other than a direct read of the value of this bit.
- When FEAT_VHE is implemented and HCR_EL2.E2H is 1, this field behaves as 0 for all purposes other than a direct read of the value of this bit.

For more information, see 'Asynchronous exception routing'.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

PTW, bit [2]

Protected Table Walk. In the EL1&0 translation regime, a translation table access made as part of a stage 1 translation table walk is subject to a stage 2 translation. The combining of the memory type attributes from the two stages of translation means the access might be made to a type of Device memory. If this occurs, then the value of this bit determines the behavior:

PTW	Meaning
0b0	The translation table walk occurs
	as if it is to Normal Non-
	cacheable memory. This means it
	can be made speculatively.
0b1	The memory access generates a
	stage 2 Permission fault.

This bit is permitted to be cached in a TLB.

When HCR_EL2.TGE is 1, the PE ignores the value of this field for all purposes other than a direct read of this field.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

SWIO, bit [1]

Set/Way Invalidation Override. Causes EL1 execution of the data cache invalidate by set/way instructions to perform a data cache clean and invalidate by set/way:

SWIO	Meaning
0b0	This control has no effect on the
	operation of data cache
	invalidate by set/way
	instructions.
0b1	Data cache invalidate by set/way
	instructions perform a data
	cache clean and invalidate by
	set/way.

When the value of this bit is 1:

AArch32: <u>DCISW</u> performs the same invalidation as a <u>DCCISW</u> instruction.

AArch64: <u>DC ISW</u> performs the same invalidation as a <u>DC CISW</u> instruction.

This bit can be implemented as res1.

When HCR_EL2.TGE is 1, the PE ignores the value of this field for all purposes other than a direct read of this field.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

VM, bit [0]

Virtualization enable. Enables stage 2 address translation for the EL1&0 translation regime, when EL2 is enabled in the current Security state.

VM	Meaning
0b0	EL1&0 stage 2 address translation
	disabled.
0b1	EL1&0 stage 2 address translation
	enabled.

When the value of this bit is 1, data cache invalidate instructions executed at EL1 perform a data cache clean and invalidate. For the invalidate by set/way instruction this behavior applies regardless of the value of the HCR EL2.SWIO bit.

This bit is permitted to be cached in a TLB.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this field behaves as 0 for all purposes other than a direct read of the value of this bit.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Accessing HCR EL2

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, HCR_EL2

op0	op1	CRn	CRm	op2
0b11	0b100	0b0001	0b0001	0b000

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then
        X[t, 64] = NVMem[0x078];
    elsif EL2Enabled() && HCR_EL2.NV == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    else
        UNDEFINED;
elsif PSTATE.EL == EL2 then
        X[t, 64] = HCR_EL2;
elsif PSTATE.EL == EL3 then
        X[t, 64] = HCR_EL2;
```

MSR HCR EL2, <Xt>

op0	op1	CRn	CRm	op2
0b11	0b100	0b0001	0b0001	0b000

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then
        NVMem[0x078] = X[t, 64];
    elsif EL2Enabled() && HCR_EL2.NV == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    else
        UNDEFINED;
elsif PSTATE.EL == EL2 then
    HCR_EL2 = X[t, 64];
elsif PSTATE.EL == EL3 then
    HCR_EL2 = X[t, 64];
```

AArch32 Registers AArch64 Registers AArch32 Instructions AArch64
Instructions

Index by Encoding

External Registers

Copyright © 2010-2023 Arm Limited or it	s affiliates. All rights reserved. This document is Non-Confidential.