MOF 가스 흡착 파라미터의 계산 비용 절감을 위한 적응형 시뮬레이션 전략

Yongsang Ana, Nahyeon Anb,d, Junyoung Parka, Hyungtae Choa, Seongbin Gact ^a KyungHee University, ^b Yonsei University, ^c University of Ulsan, ^d Korea Institute of Industrial Technology,

(sgasga@ulsan.ac.kr)

Abstract

Metal-Organic Frameworks (MOFs)는 기체 흡착 분야에서 높은 성능을 보이는 유망한 물질이다. 현재까지 개발된 수많은 MOF 중 최적의 흡착제를 선별하기 위해서는 각 MOF의 흡착 특성을 정확히 이해하고 비교해야 한다. Grand Canonical Monte Carlo (GCMC) 시뮬레이션으로 도출한 흡착 데이터를 기반으로 isotherm 함수를 도출할 수 있지만, 많은 MOF에 대해 GCMC 시뮬레이션을 수행하는 데는 막대한 시간과 자원이 필요하다. 본 연구에서는 최소한의 GCMC 시뮬레이션으로도 isotherm 함수와 파라미터 를 정확히 도출할 수 있는 적응형 시뮬레이션 알고리즘을 제안한다. 이 알고리즘은 추가 데이터 포인트 선택, GCMC 시뮬레이션, isotherm 모델 피팅, 오차 계산의 4단계로 구성되며, 각 단계는 샘플링 된 데이터 포인트를 기반으로 최적의 isotherm 모델과 파라미 터가 도출될 때까지 반복된다. 제안하는 방법은 함수 도출에 필요한 데이터 포인트만 선별해 시뮬레이션을 수행함으로써 GCMC 시뮬레이션의 소요 시간을 줄일 수 있고, 높은 정확도의 isotherm 함수가 도출되면 계산을 조기 중단해 계산 시간을 획기적으로 줄일 수 있다. 그 결과, 다양한 MOF에 대해 GCMC 계산 시간을 크게 절감하면서도 높은 정확도의 isotherm 함수와 파라미터를 도출할 수 있었다. 이 알고리즘은 MOF의 흡착 특성을 계산 자원을 절약해 예측함으로써, 향후 흡착제 평가 연구에 활용될 수 있다.

Method and Results

1. Introduction

Grand Canonical Monte Carlo (GCMC) 시뮬레이션

많은 압력 포인트에서 흡착량 데이터를 수집하기 위해 막대한 시간과 자원 소모

압력 포인트별 반복 시뮬레이션으로 시간·자원 소모가 크고, 여러 온도 및 가스에 대한 Isotherm으로 확장 시 부담 증가

•반복 시뮬레이션: 특정 온도에서 MOF와 특정 가스의 흡착 등온선을 얻기 위해 여러 압력 포인트에서 시뮬레이션을 반복 수행해야 함 •여러 압력 포인트 필요: 정확한 흡착 등온선을 얻기 위해 다양한 압력 포인트에서의 데이터가 필수. •고비용: 각 압력 포인트마다 상당한 계산 자원이 필요,

Isotherm을 자원 효율적으로 신속하게 Fitting하는 적응형 시뮬레이션 솔루션 개발

2. Isotherm Fitting Process

1. 데이터를 모을 압력 포인트 선정 및 시뮬레이션

가장 파라미터가 많은 모델을 고려 (예: Sips 모델, 4개 파라미터 필요) 여러 모델을 고루 테스트해보기 위해 최소 5개의 압력에 대한 데이터 포인트가 필요함.

Degree of Freedom을 고려한 접근 ▶ 6~7개의 압력에서 시뮬레이션

2.최적 모델 선정:

시뮬레이션 흡착량 데이터로 등온선 모델을 Fitting해 모델

적합성(NRMSE 기준)이 가장 좋은 최적의 등온선 피팅 모델 도출

3. Adaptive GCMC Simulation Strategy

등온선 모델 중 가장 간단한 Langmuir와 Freundlich 모델부터 시작해도 두 개의 파라미터를 가짐

이러한 파라미터를 정확하게 계산하거나 모델에 적합하게 피팅하려면 최소한 두 개의 독립된 데이터 포인트가 필요함

따라서, 초기 시뮬레이션에서 두 개의 압력 조건을 설정하는 것은 필수적임

Saturation Factor는 현재 흡착된 기체의 양을 최대 흡착 용량으로 나눈 값으로, 1에 가까워질수록 흡착제가 포화 상태에 도달함을 의미하며, 추가적인 흡착이 거의 일어나지 않음을 반영

따라서 이 값을 기준으로, 추가 시뮬레이션을 진행할 압력 P3를 현재 압력보다 낮은 압력으로 할지, 더 높은 압력으로 할지 결정할 수 있음

시뮬레이션 포인트 P₃ 분류 케이스 Case 01 | Case 02 | Case 03 **Sat₁** Sat₁>=0.9 Sat₁<0.9 Sat₁<0.9 Sat_2 Sat₂>=0.9 Sat₁>=0.9 Sat₁<0.9 $P_3 < P_1$ $P_1 < P_3 < P_2$ $P_2 < P_3$

Isotherm Model Fitting Error (NRMSE) 추가 시뮬레이션 한 흡착량을 제외한 이전의 데이터만으로 Fitting한 Isotherm 모델로 시뮬레이션한 흡착량을 포함한 전체 데이터의 NRMSE 에러를 측정

Isotherm **Optimzers** Models $rac{1}{n}\sum_{i=1}^n (q_i-\hat{q}_i)^2$ $q_{
m max}-q_{
m min}$ \bigcirc n : 데이터 포인트의 개수 \bigcirc q_i : GCMC 시뮬레이션에서 얻은 실제 흡착량 $igo \hat{q}_i$: Isotherm 모델로 예측된 흡착량

 $lue{lue}$ q_{min} : 실제 데이터 중 최소 흡착량

추가 시뮬레이션 여부 판단 **BEST Isotherm model BEST Optimizer**

주어진 데이터만으로 정확한 Fitting모델을 찾을 수 없음을 의미함

82.1%의 대부분의 경우에서 저압(7bar 이하)의 3~4개의 압력 포인트로 Fitting이 완료 됨

Conclusion

다음 압력 포인트 자동 선택

자원을 절약하면서도 높은 정확도의 Isotherm Model을 신속히 도출

Fitting Parameter Database 구축에 효과적으로 활용 가능 향후 신소재 설계 및 흡착 성능 예측에 응용

5. Reference

[1] Ga, S., An, N., Lee, G. Y., Joo, C., & Kim, J. (2024). Multidisciplinary high-throughput screening of metalorganic framework for ammonia-based green hydrogen production. Renewable and Sustainable Energy Reviews, 192, 114275. https://doi.org/10.1016/j.rser.2023.114275

[2] Dubbeldam, D., Calero, S., Ellis, D. E., & Snurr, R. Q. (2016). RASPA: Molecular simulation software for adsorption and diffusion in flexible nanoporous materials. Molecular Simulation, 42(2), 81-101. https://doi.org/10.1080/08927022.2015.1010082

[3] Prasad, T. K., Hong, D. H., & Suh, M. P. (2010). High gas sorption and metal-ion exchange of microporous metal-organic frameworks with incorporated imide groups. Chemistry – A European Journal, 16(47), 14043-14050. https://doi.org/10.1002/chem.201002135

Code Availability (https://github.com/dydtkddl/GCMC_Quick_Fitting_Isotherm_Algorithm)