МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ИМЕНИ Н. Э. БАУМАНА

Факультет информатики и систем управления Кафедра теоретической информатики и компьютерных технологий

Лабораторная работа №1 по курсу «Математическое моделирование»

«Установление степенной взаимосвязи между двумя выборками»

Выполнил:

студент ИУ9-111

Выборнов А. И.

Руководитель:

Домрачева А. Б.

1. Постановка задачи

Имеются две выборки. Одна задаёт курс рубля по отношению к доллару в промежуток от 03.01.2012 до 26.10.2015, другая задаёт курс нефти марки Brent в долларах за такой же промежуток. Необходимо установить взаимосвязь (параметры степенной зависимости) между этими двумя выборками.

В таблицах 1 и $\, 2$ приведён пример входных данных, используемых при решении задачи.

Таблица 1: Курс рубля к доллару за один месяц

V 1 1	
Дата	Курс рубля к доллару
30.12.2014	56.5828
29.12.2014	56.1414
29.12.2014	56.1414
26.12.2014	52.8703
25.12.2014	53.7621
24.12.2014	54.5074
23.12.2014	54.5440
22.12.2014	56.2232
19.12.2014	60.2196
18.12.2014	60.6779
17.12.2014	67.4157
16.12.2014	65.1875
15.12.2014	59.0116
12.12.2014	57.2028
11.12.2014	54.9608
10.12.2014	54.3048
09.12.2014	54.1850
08.12.2014	53.4806
05.12.2014	53.4319
04.12.2014	53.1632
03.12.2014	53.9835
02.12.2014	51.6665
01.12.2014	52.2054
	· · · · · · · · · · · · · · · · · · ·

Таблица 2: Курс нефти марки Brent в долларах за один месяц

П	Курс нефти марки Brent в долларах
Дата	
31.12.2014	57.33
30.12.2014	57.90
29.12.2014	57.88
28.12.2014	59.85
26.12.2014	59.45
24.12.2014	60.24
23.12.2014	61.69
22.12.2014	60.11
21.12.2014	61.56
19.12.2014	61.38
18.12.2014	59.27
17.12.2014	61.18
16.12.2014	59.86
15.12.2014	61.06
14.12.2014	61.08
12.12.2014	61.85
11.12.2014	63.68
10.12.2014	64.24
09.12.2014	66.84
08.12.2014	66.19
07.12.2014	67.97
05.12.2014	69.07
04.12.2014	69.64
03.12.2014	69.92
02.12.2014	70.54
01.12.2014	72.54
·	

2. Реализация

3. Ход выполнения

Пусть выборка ξ_1 задаёт курс рубля, а выборка ξ_2 — стоимость нефти. Необходимо установить степенную завиисимость между двумя выборками:

$$\xi_1 = \alpha \xi_2^{\beta}.$$

Преобразуем степенную зависимость, прологарифмировав обе части равенства, получим:

$$ln\xi_1 = ln\alpha + \beta ln\xi_2 \quad (1).$$

Представив выборку $\xi_1=\{x_1,...,x_n\},$ а выборку $\xi_2=\{y_1,...,y_m\},$ получим:

$$\frac{1}{n}\sum_{i=1}^{n}lnx_{i} = ln\alpha + \frac{\beta}{n}\sum_{i=1}^{n}lny_{i},$$

$$\alpha = e^{M_{1}-\beta M_{2}}.$$

Аналогичным образом найдём параметр β , взяв дисперсию от обеих частей равенста 1:

$$D(\ln \xi_1) = D(\ln \alpha + \beta \ln \xi_2),$$

$$D(\ln \xi_1) = D(\ln \alpha) + D(\beta \ln \xi_2) + 2cov(\ln \alpha, \beta \ln \xi_2),$$

$$D(\ln \xi_1) = \beta^2 D(\ln \xi_2),$$

$$\beta = \sqrt{\frac{D(\ln \xi_1)}{D(\ln \xi_2)}}$$

Было написано приложение, позволяющее получать по выборкам коэффициется α и β . Результаты работы показаны на рисунке 1 в виде зависимости коэффициентов α и β от объёмов выборки. Из рисунка видно, что коэффициенты быстро стабилизируются, что указывает на наличие высокой корреляции между двумя выборками. А также, что существует нелинейная зависимость между двумя исходными выборками вида:

$$\xi_1 = 0.78 * \xi_2^{0.69}.$$

С помощью критерия Колмогорова-Смиронова изучим влияние размера обучающей выборки на качество построенное модели.

Входные данные делились на две части: обучающая и контрольная выборка. То есть чем больше обучающая, тем меньше контрольная и наоборот.

На рисунке 2 показана зависимость качества полученной модели от размера обучающей выборки (чем значение функции меньше, тем более высокое качество модели). Из рисунка видно, что с увеличением размера обучающей выборки качество долгое время остаётся неизменным, а затем резко возрастает. Повышение качества при большом объёме обучающей выборки, предположительно связано, с малым количеством элементов, которые попали в контрольную выборку.

Рисунок 1 — Зависимость коэффициентов α (синий график) и β (зелёный график) от объёма выборки

Рисунок 2 — Зависимость качества построенной модели от размера обучающей выборки (чем значение меньше, тем качество выше)