CURSUL 6: SPAŢII VECTORIALE

G. MINCU

1. Spaţiu vectorial factor

Fie V un k-spaţiu vectorial şi $W \leq_k V$. Întrucât (V,+) este grup abelian, $W \leq V$, deci putem construi grupul factor $\frac{V}{W}$. Definim acum legea externă $k \times \frac{V}{W} \to \frac{V}{W}$, $(a,\hat{x}) \mapsto \widehat{ax}$. Dacă $a \in k$ şi $\hat{x} = \hat{y}$, atunci $x - y \in W$, de unde $ax - ay = a(x - y) \in W$, deci $\widehat{ax} = \widehat{ay}$. Prin urmare, această operaţie este corect definită. Este uşor de verificat (temă!) că $\left(\frac{V}{W},+\right)$ are în raport cu această lege externă o structură de k-spaţiu vectorial.

Definiția 1. Spațiul vectorial $\frac{V}{W}$ se numește **spațiul vectorial factor** al lui V în raport cu W.

2. TEOREME DE IZOMORFISM PENTRU SPAŢII VECTORIALE

Teorema 1. Fie $f: V \to V'$ un morfism de k-spații vectoriale. Atunci,

$$\bar{f}: \frac{V}{\ker f} \to \operatorname{Im} f, \ \bar{f}(\hat{x}) = f(x)$$

este un izomorfism de k-spații vectoriale.

Demonstrație: Din teorema fundamentală de izomorfism pentru grupuri se știe că \bar{f} este (corect definită și) izomorfism de grupuri. Dacă $a \in k$ și $v \in V$, atunci $\bar{f}(av) = f(av) = af(v) = a\bar{f}(v)$, deci \bar{f} este și liniară. \Box

Observația 1. Teorema 1 se numește teorema fundamentală de izomorfism pentru spații vectoriale.

Teorema 2. Fie V_1 și V_2 două subspații ale k-spațiului vectorial V. Atunci,

$$\frac{V_1 + V_2}{V_2} \xrightarrow{\sim} \frac{V_1}{V_1 \cap V_2}.$$

Demonstrație: Considerăm aplicația k-liniară $f: V_1 \to \frac{V_1+V_2}{V_2}, f(x) = x+V_2$. Este imediat faptul că f este surjectivă, iar ker $f=V_1\cap V_2$. Finalizăm aplicând teorema fundamentală de izomorfism. \square

G. MINCU

Teorema 3. Fie V_1 și V_2 două subspații ale k-spațiului vectorial V cu proprietatea $V_1 \subset V_2$. Atunci,

$$\frac{\frac{V}{V_1}}{\frac{V_2}{V_1}} \xrightarrow{\sim} \frac{V}{V_2}.$$

Demonstrație: Considerăm aplicația k-liniară $f: \frac{V}{V_1} \to \frac{V}{V_2}, \ f(x+V_1) = x+V_2$. Remarcăm că dacă $x+V_1=x'+V_1$, atunci $x-x' \in V_1 \subset V_2$, deci $x+V_2=x'+V_2$. Prin urmare, f este corect definită. Este imediat faptul că f este surjectivă, iar ker $f=\frac{V_2}{V_1}$. Finalizăm aplicând teorema fundamentală de izomorfism. \square

3. Subspații și dimensiune

Propoziția 1. Fie V un k-spațiu vectorial și $W \leq_k V$. Atunci, $\dim_k W \leq \dim_k V$.

Propoziția 2. Fie V un k-spațiu vectorial finit dimensional și $W \leq_k V$. Dacă $\dim_k W = \dim_k V$, atunci W = V.

Observația 2. Propoziția anterioară nu este numaidecât valabilă dacă $_kV$ este infinit dimensional.

Propoziția 3. Fie V un k-spațiu vectorial și $W \leq_k V$. Atunci, $\dim_k \frac{V}{W} \leq \dim_k V$.

Temă: Demonstrați afirmațiile din acest paragraf!

4. MORFISME ŞI DIMENSIUNE

Propoziția 4. Fie $f: V \to V'$ un morfism de k-spații vectoriale.

- (i) Dacă f este injectiv, iar $M \subset V$ este liniar independentă, atunci f(M) este liniar independentă.
- (ii) Dacă f este surjectiv, iar $G \subset V$ este sistem de generatori, atunci f(G) este sistem de generatori pentru V'.

Temă: Demonstrați această propoziție!

Corolarul 1. Orice izomorfism de spații vectoriale duce sisteme liniar (in)dependente în sisteme liniar (in)dependente, sisteme de generatori în sisteme de generatori și baze în baze.

Teorema 4. Fie V şi V' două k-spații vectoriale, $\mathcal{B} = \{e_i : i \in I\}$ o bază a lui V, iar $\mathcal{F} = (v_i)_{i \in I}$ o familie de elemente ale lui V'. Atunci, există o unică aplicație liniară $f: V \to V'$ cu proprietatea că $f(e_i) = v_i$ pentru orice $i \in I$. În plus, f este izomorfism dacă şi numai dacă \mathcal{F} este bază a lui V'.

Corolarul 2. Două k-spații vectoriale sunt izomorfe dacă și numai dacă au aceeași dimensiune.

Corolarul 3. Orice k-spațiu vectorial de dimensiune $n \in \mathbb{N}^*$ este izomorf cu k^n .

Afirmația corolarului 3 se poate generaliza astfel:

Corolarul 4. Orice k-spațiu vectorial de dimensiune |I| este izomorf cu $k^{(I)}$.

Corolarul 5. Fie un corp finit K de caracteristică p. Atunci, există $n \in \mathbb{N}^*$ astfel încât $|K| = p^n$.

Teorema 5. Fie $f: V \to V'$ un morfism de k-spații vectoriale. Atunci,

$$\dim_k V = \dim_k \ker f + \dim_k \operatorname{Im} f.$$

Demonstrație: Considerăm o bază \mathcal{B} a lui ker f și o completăm la o bază $\mathcal{B} = \mathcal{B}' \bigsqcup \mathcal{B}''$ a lui V.

Fie
$$e_1'', e_2'', \dots, e_n'' \in \mathcal{B}''$$
 și $a_1, a_2, \dots, a_n \in k$ așa încât $\sum_{i=1}^n a_i f(e_i'') = 0$.

Atunci,
$$f\left(\sum_{i=1}^{n} a_i e_i''\right) = 0$$
, deci $\sum_{i=1}^{n} a_i e_i'' \in \ker f$. Prin urmare, există

$$e'_1, e'_2, \dots, e'_m \in \mathcal{B}'$$
 şi $b_1, b_2, \dots, b_m \in k$ aşa încât $\sum_{i=1}^n a_i e''_i = \sum_{j=1}^m b_j e'_j$.

Din această relație rezultă, datorită independenței liniare a lui \mathcal{B} , că $a_1 = a_2 = \ldots = a_n = 0$. Prin urmare, $f(\mathcal{B}'')$ este sistem liniar independent.

Pe de altă parte, dacă $y \in \text{Im} f$, atunci există $x = \sum_{i=1}^n c_i e_i'' + \sum_{j=1}^m d_j e_j' \in V(c_1, \ldots, c_n, d_1, \ldots, d_m \in k)$ astfel încât f(x) = y. Rezultă că $y = \sum_{i=1}^n c_i f(e_i'')$. Prin urmare, $f(\mathcal{B}'')$ este şi sistem de generatori pentru Im f, fiind aşadar o bază în acest spaţiu vectorial.

Cum $|\mathcal{B}''| = |f(\mathcal{B}'')|$, avem

$$\dim_k V = |\mathcal{B}| = |\mathcal{B}'| \quad |\mathcal{B}''| = |\mathcal{B}'| + |f(\mathcal{B}'')| = \dim_k \ker f + \dim_k \operatorname{Im} f. \square$$

Definiția 2. Dat fiind un morfism de k-spații vectoriale $f: V \to V'$, $\dim_k \operatorname{Im} f$ se numește **rangul** lui f, iar $\dim_k \ker f$ se numește **defectul** lui f.

Observația 3. Definiția anterioară ne arată de ce teorema 5 poartă numele de teorema rang-defect.

4 G. MINCU

Propoziția 5. Fie V un k-spațiu vectorial și $W \leq_k V$. Atunci,

$$\dim_k \frac{V}{W} + \dim_k W = \dim_k V.$$

Demonstrație: Aplicăm teorema rang-defect proeicției canonice a lui V pe $\frac{V}{W}.$ \qed

Propoziția 6. Fie V_1 și V_2 două k-spații vectoriale. Atunci,

$$\dim_k V_1 \times V_2 = \dim_k V_1 + \dim_k V_2.$$

Demonstrație: Dacă \mathcal{B}_1 este o bază a lui $_kV_1$, iar \mathcal{B}_2 este o bază a lui $_kV_2$, este lesne de arătat (temă!) că $(\mathcal{B}_1 \times \{0\}) \cup (\{0\} \times \mathcal{B}_2)$ este bază a lui $_kV_1 \times V_2$. \square

Teorema 6. (Grassmann) Fie V_1 și V_2 două subspații ale k-spațiului vectorial V. Atunci,

$$\dim_k(V_1 + V_2) + \dim_k(V_1 \cap V_2) = \dim_k V_1 + \dim_k V_2.$$

Demonstrație: Considerăm morfismul de k-spații vectoriale $d: V_1 \times V_2 \to V$, $d(v_1,v_2)=v_1-v_2$. Se observă că avem Im $d=V_1+V_2$ și $\ker d=V_1\cap V_2$, după care se aplică propoziția 6 și teorema rang-defect.

References

- [1] T. Dumitrescu, Algebra, Ed. Universității din București, 2006.
- [2] I. D. Ion, N. Radu, Algebra, Ed. Universității din București, 1981.
- [3] C. Năstăsescu, C. Niţă, C. Vraciu, *Bazele algebrei*, Ed. Academiei, Bucureşti, 1986.