CM146, Winter 2023

Problem Set 4: Boosting, Unsupervised learning

1 AdaBoost

1.1 (a)

Solution: Denoting the cost function as J, the partial derivative of J with respect to β_t can be expressed as:

$$\frac{\partial J}{\partial \beta_t} = \frac{\partial}{\partial \beta_t} \left(\left(e^{\beta_t} - e^{-\beta_t} \right) \varepsilon_t + e^{-\beta_t} \right)$$

It is important to note that ε_t is not dependent on β_t and can be treated as a constant. Setting the derivative to 0, we get:

$$\frac{\partial}{\partial \beta_t} \left(\left(e^{\beta_t} - e^{-\beta_t} \right) \varepsilon_t + e^{-\beta_t} \right) = 0$$

$$\left(e^{\beta_t} + e^{-\beta_t} \right) \varepsilon_t - e^{-\beta_t} = 0$$

$$\varepsilon_t e^{\beta_t} = e^{-\beta_t} \left(1 - \varepsilon_t \right)$$

$$\frac{e^{\beta_t}}{e^{-\beta_t}} = \frac{1 - \varepsilon_t}{\varepsilon_t}$$

$$e^{2\beta_t} = \frac{1 - \varepsilon_t}{\varepsilon_t}$$

$$\beta_t = \frac{1}{2} \log \left(\frac{1 - \varepsilon_t}{\varepsilon_t} \right)$$

Essentially, the above expressions demonstrate how to calculate the partial derivative of the cost function with respect to β_t . Note that ε_t is a constant and by setting the derivative to 0, we solve for β_t in terms of ε_t .

1.2 (b)

Solution: In the scenario where the training set can be separated linearly and no slack is permitted, there will be no instances of misclassification error. As a result, ε_t will tend towards 0. Referring back to the outcome of part (a), when ε_t approaches 0, β_1 will tend towards infinity.

2 K-means for single dimensional data

2.1 (a)

Solution: When we place these points on a number line, we obtain:

When K=3, the optimal clustering solution involves placing the centers at $\mu_1=1.5, \mu_2=5$, and $\mu_3=7$. This arrangement assigns x_1 and x_2 to μ_1 , x_3 to μ_2 , and x_4 to μ_3 . The value of the objective, then, can be calculated as:

$$(1-1.5)^2 + (2-1.5)^2 + (5-5)^2 + (7-7)^2 = 0.5$$

2.2 (b)

Solution: A possible suboptimal assignment would be $\mu_1 = 1, \mu_2 = 2$, and $\mu_3 = 6$, where x_1 is assigned to μ_1, x_2 is assigned to μ_2 , and x_3 and x_4 are assigned to μ_3 . The value of the objective is:

$$(1-1)^2 + (2-2)^2 + (5-6)^2 + (7-6)^2 = 2$$

The resulting objective value is 2, which is larger than the value of 0.5 obtained in part (a). However, if we apply Lloyd's algorithm to this assignment, we find that x_1 is closest to μ_1 , x_2 is closest to μ_2 , and both x_3 and x_4 are closest to μ_3 . As a result, there is no change in assignments or centroids. Therefore, we have arrived at a suboptimal solution that represents only a local minimum, rather than the global minimum.

3 Gaussian Mixture Models

3.1 (a)

Solution: The multivariate normal distribution represents a variable with d dimensions and is characterized by its mean μ and covariance matrix Σ . It is given by the formula:

$$N(\mathbf{x} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{1}{\sqrt{(2\pi)^d |\boldsymbol{\Sigma}|}} \exp\left(-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu})\right)$$

After substituting this in the formula for $l(\theta)$, the gradient with respect to μ_j is computed as follows:

$$l(\boldsymbol{\theta}) = \sum_{k} \sum_{n} \gamma_{nk} \log \omega_{k} + \sum_{k} \sum_{n} \gamma_{nk} \log \left(\frac{1}{\sqrt{(2\pi)^{d} |\boldsymbol{\Sigma}_{k}|}} \exp \left(-\frac{1}{2} (\mathbf{x}_{n} - \boldsymbol{\mu}_{k})^{T} \boldsymbol{\Sigma}_{k}^{-1} (\mathbf{x}_{n} - \boldsymbol{\mu}_{k}) \right) \right)$$

$$l(\boldsymbol{\theta}) = \sum_{k} \sum_{n} \gamma_{nk} \log \omega_k + \sum_{k} \sum_{n} \gamma_{nk} \left(\left(\log \frac{1}{\sqrt{(2\pi)^d |\boldsymbol{\Sigma}_k|}} \right) - \frac{1}{2} (\mathbf{x}_n - \boldsymbol{\mu}_k)^T \boldsymbol{\Sigma}_k^{-1} (\mathbf{x}_n - \boldsymbol{\mu}_k) \right)$$

The first summation is not a function of μ_j and the first term in the second summation is constant, which means that their gradients are both equal to zero. Therefore, taking the gradient results in:

$$\nabla_{\boldsymbol{\mu}_{j}} l(\boldsymbol{\theta}) = \frac{\partial}{\partial \boldsymbol{\mu}_{j}} \sum_{n} \left(-\frac{1}{2} \gamma_{nj} \left(\mathbf{x}_{n} - \boldsymbol{\mu}_{j} \right)^{T} \boldsymbol{\Sigma}_{j}^{-1} \left(\mathbf{x}_{n} - \boldsymbol{\mu}_{j} \right) \right)$$

$$\nabla_{\boldsymbol{\mu}_{j}} l(\boldsymbol{\theta}) = \sum_{n} \left(-\frac{1}{2} \gamma_{nj} (2) (-1) \left(\mathbf{x}_{n} - \boldsymbol{\mu}_{j} \right) \boldsymbol{\Sigma}_{j}^{-1} \right)$$

$$\nabla_{\boldsymbol{\mu}_{j}} l(\boldsymbol{\theta}) = \boldsymbol{\Sigma}_{j}^{-1} \sum_{n} \left(\gamma_{nj} \left(\mathbf{x}_{n} - \boldsymbol{\mu}_{j} \right) \right)$$

3.2 (b)

Solution: To obtain the desired answer, we set the result obtained in part (a) equal to zero and solve for μ_i .

$$egin{aligned}
abla_{oldsymbol{\mu}_j} l(oldsymbol{ heta}) &= oldsymbol{\Sigma}_j^{-1} \sum_n \left(\gamma_{nj} \left(\mathbf{x}_n - oldsymbol{\mu}_j
ight) \right) = oldsymbol{0} \\ &\sum_n \gamma_{nj} \mathbf{x}_n = oldsymbol{\mu}_j \sum_n \gamma_{nj} \\ oldsymbol{\mu}_j &= rac{\sum_n \gamma_{nj} \mathbf{x}_n}{\sum_n \gamma_{nj}} \end{aligned}$$

3.3 (c)

Solution: We learned in lecture that we can express ω_k and μ_k as follows:

$$\omega_k = rac{\sum_n \gamma_{nk}}{\sum_k \sum_n \gamma_{nk}} \quad \boldsymbol{\mu}_k = rac{\sum_n \gamma_{nk} \mathbf{x}_n}{\sum_n \gamma_{nk}}$$

After substituting the values from the table, we obtain the following values:

$$\omega_1 = \frac{0.2 + 0.2 + 0.8 + 0.9 + 0.9}{0.2 + 0.2 + 0.8 + 0.9 + 0.9 + 0.8 + 0.8 + 0.2 + 0.1 + 0.1} = \frac{3}{5} = 0.6$$

$$\omega_2 = \frac{0.8 + 0.8 + 0.2 + 0.1 + 0.1}{5} = \frac{2}{5} = 0.4$$

$$\mu_1 = \frac{1}{3}(0.2(5) + 0.2(15) + 0.8(25) + 0.9(30) + 0.9(40)) = 29$$

$$\mu_2 = \frac{1}{2}(0.8(5) + 0.8(15) + 0.2(25) + 0.1(30) + 0.1(40)) = 14$$