

Basketball VI

Produced by Dr. Mario UNC STOR 390

Focus on Two End-Game Situations

- Situation 1
 - Your Team Has the Ball With 5 Seconds Left and Losing by 2 Points
 - Should You Attempt 2-Point Shot to Tie or 3-Point Shot to Win?
 - Example: Philadelphia Versus Indiana in 2001 Playoffs (Game 1)
- Situation 2
 - Your Team is Defending With 5 Seconds Left and Winning by 3 Points
 - Should You Foul or Allow Opponent to Attempt a 3-Pointer for the Tie?
 - Example: Dallas Versus Phoenix in 2005 Playoffs (Game 6)

Actual Outcomes

- Situation 1: Reggie Miller Won Game with 3-Pointer at Buzzer to Win
- Situation 2: Steve Nash Tied the Game with 3-Pointer and Later Won the Game after a Double Overtime

- Goal: Make Decision that Maximizes Probability of Winning
- Two Assumptions
 - Other Team Will Not Foul on Shot
 - Game Will End on Our Shot
- Important Events
 - A = Event that a 2-Pointer is Good
 - B = Event that a 3-Pointer is Good
 - C = Event that We Win in Overtime
 - W = Event We Win the Game
 - L = Event We Lose the Game
- Probabilities Based on Data Over Many Seasons

$$P(A) = 0.45$$
 $P(B) = 0.33$ $P(C) \approx 0.5$

$$P(B) = 0.33$$

$$P(C) \approx 0.5$$

- If Attempting 2-Pointer, We Win if Shot is Made and Win in Overtime
- If Attempting 3-Pointer, We Win if Shot is Made

- Decision Making for Situation 1
 - Decision Tree

Find Probabilities By Multiplying Across Branches

Probability of W Given Attempting 2-Pointer

$$P(W|Attempt\ 2 - Pointer) = P(A) \times P(C) = 0.45 \times 0.5 = 0.225$$

Probability of W Given Attempting 3-Pointer

$$P(W|Attempt 3 - Pointer) = P(B) = 0.333$$

Conclusion: Always Go For 3-Pointer.

Sensitivity Analysis (Cases Where 2-Point Attempt is Better)

Suppose We Have a Play That Scores a 2-Pointer 80% of the Time

$$P(W|Attempt\ 2-Pointer) = P(A) \times P(C) = 0.8 \times 0.5 = 0.4$$

* Suppose Our Best 3-Point Shooter Scores a 3-Pointer 20% of the Time $P(W|Attempt\ 3-Pointer)=P(B)=0.20$

- Two Researchers Concluded Defensive Team Should Foul
 - Adrian Lawhorn (Contributor to Hoops Habit)
 - David Annis (Statistical Consultant in Charlotte)
- Based on Annis Lawhorn
 - Assume Last Possession
 - Within 11 Seconds, Offensive Teams Scored 3-Pointers 20% of the Time $P(Other\ Team\ Wins|You\ Don't\ Foul) = 0.2\times0.5 = 0.1$
 - If Defensive Team Fouls, Offensive Team Must Intentionally Miss a Free Throw
 - In This Circumstance, There is a 5% Chance of Tying the Game

 $P(Other\ Team\ Wins|You\ Foul) = 0.05 \times 0.5 = 0.025$

32 Games where Team Trailed by 3 Points and Leading Team Fouled

$$\frac{7 \, Ties}{32 \, Games} = 21.9\% \, (\pm 14.6\%)$$

- Bad Assumption Because Multiple Possessions Possible
- Historical Aggregation Shows Probability of Winning Higher if Leading Team Doesn't Foul (2005-2008)

Scenario	Sample Size	Probability Leading Team Wins	95% CI
Close Game Where Leading Team Didn't Foul	260	91.9%	(88.5%, 95.2%)
Close Game Where Leading Team Did Foul	27	88.9%	(76.8%, 100%)

$$\hat{p} \pm 2\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$$

Final Inspiration

I cannot dunk a basketball, but I can Dunkin' Donuts.

- Mahatma Mario