Έργο – Ενέργεια

Mini Επανάληψη

Έργο δύναμης

Έργο συνισταμένης δυνάμεων

Βαρυτική δυναμική ενέργεια

Ελαστική δυναμική ενέργεια

Μηχανική ενέργεια

Διατήρηση μηχανικής ενέργειας

Συντηρητικές δυνάμεις

Διατήρηση ενέργειας

Ισχύς

Είδη Ισορροπίας:

$$W = \int_{1}^{2} \vec{F} \cdot d\vec{r}$$

$$W = \Delta E_{\kappa i \nu}$$

 $W = \Delta E_{\kappa \nu}$ Θεώρημα έργου-ενέργειας

$$U_{\varepsilon\lambda} = \frac{1}{2}kx^2$$

$$E_{\mu\eta\gamma} = E_{\kappa\iota\nu} + \Sigma U$$

$$\Delta E_{\rm kin} + \Delta U = 0$$
 συντηρητικές δυνάμεις

$$W = -\Delta U, \quad F(x) = -\frac{\partial U}{\partial x}, \quad U(x) = -\int F dx$$

$$\Delta E_{\kappa \iota \nu} + \Delta U = W_{\mu \eta - \sigma \nu \nu \tau \eta \rho}$$
.

$$\frac{dW}{dt} = \vec{F} \cdot \vec{v}$$

Ευσταθής (U ελάχιστο)

Ασταθής (U μέγιστο)

Αδιάφορη (U σταθερή, F=0)

Στρατηγική για λύση προβλημάτων

- > Βρίσκουμε τη κατάσταση μηδενικής δυναμικής ενέργειας
 - ✓ Χρησιμοποιούμε τη βαρυτική και την ελαστική δυναμική ενέργεια αν υπάρχει δύναμη επαναφοράς ή βαρυτική δύναμη
 - ✓ Εν γένει, αν περισσότερες δυνάμεις δρουν στο σύστημα πρέπει να γράφουμε τη δυναμική ενέργεια που προέρχεται από κάθε δύναμη
- Αν στο σύστημα δρουν τριβή ή αντίσταση του αέρα ή μέσου τότε η μηχανική ενέργεια δεν διατηρείται

Χρησιμοποιούμε τη μέθοδο για έργο μη συντηρητικών δυνάμεων —

Αν η μηχανική ενέργεια ενός συστήματος διατηρείται τότε γράφουμε

$$E^{i}_{\mu\eta\chi}=E^{i}_{\kappa\iota\nu}+U_{i}$$
 για την αρχική κατάσταση

$$E_{\mu\eta\chi}^f = E_{\kappa\iota\nu}^f + U_f$$
 για την τελική κατάσταση

Αφού η μηχανική ενέργεια διατηρείται μπορούμε να λύσουμε προς τις άγνωστες ποσότητες του προβλήματος

- Αν υπάρχουν μη-συντηρητικές δυνάμεις ορίζουμε το απομονωμένο σύστημα και την αρχική και τελική κατάσταση του συστήματος
 - Βρίσκουμε τη κατάσταση της μηδενικής δυναμικής ενέργειας όπως πριν
 - Η διαφορά τελικής αρχικής ενέργειας είναι το έργο της μη συντηρητικής δύναμης

Αφήνουμε μια μπάλα να πέσει από ύψος h

Οι αρχικές συνθήκες του προβλήματος είναι:

$$E^{i}_{\mu\eta\chi} = E^{i}_{\kappa\imath\nu} + U_{i} = U_{i} = mgh$$
 αφού $v_{i} = 0$

Η κατάσταση με μηδενική δυναμική ενέργεια είναι αυτή στο έδαφος

Αν εφαρμόσουμε διατήρηση της μηχανικής ενέργειας σε ένα ενδιάμεσο σημείο σε ύψος y από το έδαφος θα έχουμε:

$$\frac{1}{2}mv^2 + mgy = mgh$$

Παράδειγμα - Εκκρεμές

Καθώς το εκκρεμές αιωρείται, υπάρχει μια διαρκής εναλλαγή μεταξύ της δυναμικής και κινητικής ενέργειας.

Στο σημείο Α, η ενέργεια είναι μόνο δυναμική.

Στο σημείο Β, η δυναμική ενέργεια έχει μετατραπεί σε κινητική.

Θεωρώ το σημείο αυτό σα σημείο U=0

Στο σημείο C, η κινητική ενέργεια είναι πάλι μηδέν και έχουμε μόνο δυναμική ενέργεια

ρίξει τη μάζα ένα ύψος h

Παράδειγμα

Βρείτε το έργο που παράγεται από την βαρύτητα στην μάζα του εκκρεμούς όπως αυτή κινείται προς το χαμηλότερο σημείο

$$\vec{F}_g = (0, -mg) \quad \kappa \alpha i \quad d\vec{x} = Ld\theta(\cos\theta, \sin\theta)$$

$$\Rightarrow W = \int_{\theta}^{0} -mgL\sin\theta d\theta = mgL\cos\theta \Big|_{\theta}^{0} = mgL(1 - \cos\theta) = mgh$$

$$\Rightarrow \vec{F} \cdot d\vec{x} = -mgL\sin\theta d\theta$$
To $(\delta \log \alpha) \propto (\delta \log \beta)$

Ποια η ταχύτητα στο χαμηλότερο σημείο?

$$E_{\kappa v}^{A} + U_{A} = E_{\kappa v}^{B} + U_{B} \Rightarrow$$

$$0 + U_{A} = E_{\kappa v}^{B} + 0 \Rightarrow$$

$$0 + mg(L - L\cos\theta) = \frac{1}{2}mv_{A}^{2} + 0 \Rightarrow v_{A} = \sqrt{2gL(1 - \cos\theta)}$$

Η τάση στο χαμηλότερο σημείο;

$$T_{\rm B} - mg = \frac{mv^2}{L} \Rightarrow T_{\rm B} = mg + \frac{m2gL(1 - \cos\theta)}{L} \Rightarrow$$

$$T_{\rm B} = mg(3 - 2\cos\theta)$$

Παραδείγματα

Διαλέγουμε την θέση y=0 σα τη θέση U(0)=0 Στην αρχική θέση v=0, U=mgh, $E_{\kappa}=0$

$$E_{\mu\eta\chi}^{i} = U_{g}^{i} + E_{\kappa\iota\nu}^{i} = mgh = 3.5mgR$$

Σύμφωνα με την διατήρηση της μηχανικής ενέργειας, στο σημείο A θα ισχύει $E_A = E_i$ άρα

$$3.5Rmg = \frac{1}{2}mv^2 + 2mgR \Rightarrow v_A = \sqrt{3gR}$$

Ποια είναι η κάθετη δύναμη (N) στη χάντρα στο σημείο Α?

$$\vec{F} = m\vec{a}_r, \qquad N(-\hat{r}) + mg(-\hat{r}) = \frac{mv_A^2}{R}(-\hat{r})$$

Αυτό θα μας δώσει N=2mg

Αν διαλέγαμε την αντίθετη κατεύθυνση για την κάθετη δύναμη τότε $N(+\hat{r})+mg(-\hat{r})=m3g(-\hat{r})\Rightarrow N=-2mg$

Που σημαίνει ότι η κάθετη δύναμη έχει αντίθετη διεύθυνση

Παράδειγμα ελατήρια και ενέργεια

Ρίχνουμε από ύψος h μια μπάλα μάζας m σε ένα ελατήριο σταθερής k. Ποια είναι η μέγιστη συμπίεση που θα υποστεί το ελατήριο

Προσθέτουμε την ελαστική ενέργεια ελατηρίου και τη δυναμική ενέργεια λόγω βαρύτητας:

$$\frac{1}{2}mv_1^2 + mgy_1 + \frac{1}{2}kx_1^2 = \frac{1}{2}mv_3^2 + mgY + \frac{1}{2}kY^2$$
Θα πρέπει να′ναι αρνητικό

Οι αρχικές συνθήκες είναι: v_1 = 0, x_1 = 0, v_3 = 0, y_3 =Y=?, οπότε

$$mgh = mgY + \frac{1}{2}kY^2 \Rightarrow y = \frac{-mg \pm \sqrt{m^2g^2 + 2k(mgh)}}{k}$$
 To (-) $\theta \alpha$ δίνει το y_{max}

Αν ξέρουμε το k μπορούμε να βρούμε το Y ή το ανάποδο

Ας δούμε την δυναμική ενέργεια σε ελατήριο γραφικά

Για μή συντηρητικές δυνάμεις:

$$\begin{split} W_{\text{net}} &= W_{\sigma \upsilon \nu \tau} + W_{\mu \eta - \sigma \upsilon \nu \tau} . \\ W_{\sigma \upsilon \nu \tau} &= \int_{1}^{2} \vec{F} \cdot d\vec{l} = -\Delta U \\ \Delta E_{\kappa \iota \nu} &= -\Delta U + W_{\mu \eta - \sigma \upsilon \nu \tau} \\ \Delta E_{\kappa \iota \nu} + \Delta U &= W_{\mu \eta - \sigma \upsilon \nu \tau} \end{split}$$

□ Δίνουμε στη μάζα μια μικρή ώθηση και αρχίζει να κινείται Σε ποια γωνία θα αφήσει την σφαίρα.

ΛΥΣΗ

Μια κανονική δύναμη που δρα στο σώμα και έχει φορά προς τα έξω.

Η εξίσωση της ακτινικής δύναμης θα 'ναι:

$$mg\cos\theta - N = m\frac{v^2}{R}$$

Η μάζα φεύγει από την σφαίρα όταν N=0.

Επομένως θέλουμε:

$$mg\cos\theta = m\frac{\mathrm{v}^2}{\mathrm{R}}$$
 (A)

Από αρχή διατήρησης της ενέργειας (ΔΕ_{κιν}+ΔU=0)

$$\frac{1}{2}mv^2 = mg\Delta h = mgR(1-\cos\theta) \Rightarrow mv^2 = 2mgR(1-\cos\theta)$$
 και από (A) θα έχουμε:

$$mg\cos\theta = \frac{2mgR(1-\cos\theta)}{R} \Rightarrow \cos\theta = 2-2\cos\theta \Rightarrow \cos\theta = \frac{2}{3} \Rightarrow \theta = 48.2^{\circ}$$

Να βρεθεί το έργο που παράγεται σε 2 διαφορετικά αδρανειακά συστήματα για σώμα που επιταχύνεται με επιτάχυνση "α" από τη θέση ηρεμίας ως προς (α) Ακίνητο σύστημα (β) Κάποιο που κινείται με ταχύτητα ν.

(α) Ακίνητο σύστημα

$$F = ma \qquad d = \frac{1}{2}at^{2} \qquad (v_{i} = 0, v_{f} = at)$$

$$\Rightarrow W = Fd = (ma)(\frac{1}{2}at^{2}) = \frac{1}{2}m(at)^{2} = \frac{1}{2}m(v_{f}^{2} - v_{i}^{2}) = \frac{1}{2}mv_{f}^{2} = \Delta E_{\kappa i \nu}$$

(β) Κινούμενο σύστημα

$$d = vt + \frac{1}{2}at^{2}, \quad F = ma \quad (v_{i} = v, v_{f} = v + at)$$

$$\Rightarrow W = Fd = (ma)(vt + \frac{1}{2}at^{2}) = mavt + \frac{1}{2}m(at)^{2}$$
(1)

$$\Delta \lambda \dot{\alpha} \qquad \Delta E_{\kappa \iota \nu} = \frac{1}{2} m (v_f^2 - v_i^2) = \frac{1}{2} m (v + at)^2 - \frac{1}{2} m v^2 = \frac{1}{2} m (v^2 + (at)^2 + 2vat) - \frac{1}{2} m v^2$$

$$\Rightarrow \Delta E_{\kappa \iota \nu} = m vat + \frac{1}{2} m (at)^2$$
 (2) Aπό (1) και (2) έχουμε $W = \Delta E_{\kappa \iota \nu}$

 \square W και $\Delta E_{\kappa i \nu}$ δεν έχουν την ίδια μορφή όπως στο ακίνητο σύστημα αλλά είναι και πάλι ίσα μεταξύ τους.

Το ακόλουθο πρόβλημα μπορεί να λυθεί είτε με χρήση των νόμων του Newton (F=ma) ή Διατήρηση ενέργειας.

Ένα μικρό τμήμα σχοινιού κρέμεται προς τα κάτω μέσα από μια τρύπα σε λείο τραπέζι. Το σκοινί πέφτει μέσω της τρύπας.

Ποια η ταχύτητά του τη στιγμή που έχει περάσει πλήρως από την τρύπα?

.

Λύση με διατήρηση της ενέργειας

Θεωρούμε την επιφάνεια του τραπεζιού σαν ύψος 0.

$$U_i + K_i = U_f + K_f \Rightarrow 0 + 0 = mg \left(-\frac{L}{2}\right) + \frac{1}{2} m v^2 \Rightarrow v = \sqrt{gL}$$
 μέσο ύψος που έπεσε το σχοινί

Λύση με $F = m\alpha$

Έστω τη χρονική στιγμή t το σχοινί έχει πέσει κατά μήκος x Έστω ακόμα ότι το σχοινί έχει γραμμική πυκνότητα ρ=m/L → m = ρL Η δύναμη που κινεί το σχοινί είναι το βάρος του τμήματος που κρέμεται

F=ma=m'g m η συνολική μάζα του σχοινιού $m=\varrho L$ και m' αυτή που κρέμεται

$$\Rightarrow F = m'g = (\rho L)a \Rightarrow (\rho x)g = (\rho L)a \Rightarrow \rho xg = \rho L(\frac{dv}{dx}\frac{dx}{dt}) = \rho L(v\frac{dv}{dx}) \Rightarrow$$

$$\Rightarrow g \int_{\sigma}^{L} x dx = \int_{0}^{v} Lv dv \Rightarrow g\frac{L^{2}}{2} - g\frac{\sigma^{2}}{2} = L\frac{v^{2}}{2} \Rightarrow v = \sqrt{gL}$$

σ είναι το αρχικό πολύ μικρό μήκος που το σχοινί κρέμεται