Contrôle : Suites Géométriques

Terminale STMG2

21 Mars 2025

- Une présentation soignée est de rigueur.
- Tout effort de recherche, même non abouti, sera valorisé.
- Toute résultat, sauf mention contraire, doit être justifié.
- La calculatrice est AUTORISÉE.

Exercice 1 : Sommes géométriques (5 points)

(a) (3 points) Calculer les sommes suivantes, à l'aide de la formule du cours.

i.
$$S_1 = 1 + 3 + 3^2 + 3^3 + \dots + 3^{12}$$

ii.
$$S_2 = 1 + 1, 7 + 1, 7^2 + 1, 7^3 + \dots + 1, 7^8$$

iii.
$$S_3 = 1 + 0, 8 + 0, 8^2 + 0, 8^3 + \dots + 0, 8^{21}$$

(b) (2 points) Démontrer que la somme $S=1+2+2^2+2^3+\cdots+2^{63}$ vaut

$$S = 2^{64} - 1$$

à l'aide de la démonstration du cours.

Exercice 2 : Évolutions successives (4 points)

Lors de l'année 2020, le prix du loyer moyen d'une métropole est de 1500 \in . On estime que chaque année, le prix diminue de 5%. On pose (p_n) le prix de cette technologie lors de l'année 2020 + n

- (a) (1 point) Calculer p_1 , p_2 , et p_3 .
- (b) (1 point) Montrer que (p_n) est une suite géométrique, en précisant son premier terme et sa raison.
- (c) (1 point) En déduire une expression explicite de p_n en fonction de n.
- (d) (1 point) À partir de quelle année le loyer moyen sera inférieur à 800 €?

Exercice 3 : Calcul de termes (6 points)

On suppose que $(u_n)_{n\in\mathbb{N}}$ est une suite géométrique. Dans chacun des contextes suivants, calculer u_5 . Les questions sont indépendantes.

- (a) (1 point) La raison de (u_n) est q=4 et son premier terme est $u_0=8$.
- (b) (1 point) La raison de (u_n) est q=3,5 et $u_7=8$.
- (c) (1 point) $u_4 = 15$ et $u_6 = 135$
- (d) (1 point) $u_4 = 128$ et $u_6 = 32$
- (e) (2 points) $u_6 = 49$ et $u_8 = 2401$

Exercice 4 : Suites arithmético-géométriques (5 points)

Soit $(u_n)_{n\in\mathbb{N}}$ une suite définie par $u_0=5$ et $u_{n+1}=3u_n+1$.

- (a) (0.5 points) Calculer $u_1, u_2 \text{ et } u_3$.
- (b) (1 point) La suite (u_n) est-elle arithmétique? La suite (u_n) est-elle géométrique?
- (c) (1,5 points) Pour tout n, on pose $v_n = u_n + 0, 5$. Montrer que la suite (v_n) est géométrique de raison 3.
- (d) (0.5 points) En déduire une expression de v_n en fonction de n.
- (e) (0,5 points) En déduire une expression de u_n en fonction de n.
- (f) (1 point) Calculer alors u_{15} .