Assignment-3

October 13, 2017

Instructor Hema Murthy

Contents

1	Gua	assian	ixture Models		
	1.1	a) GM	IM	3	
	1.2	b) Exp	pectation Maximization Algorithm	3	
		1.2.1	Initialization	3	
		1.2.2	Expectation Step	3	
		1.2.3	Maximization Step	4	
		1.2.4	Evaluating the log likelihood	4	
2	Question 1 Real Data				
2.1 ROC and DET Plots for both Diagonal and Non Diagonal variance Matrices				5	
3	Synthetic Data				
	3.1	Confu	sion Matrices	7	

1 Guassian Mixture Models

1.1 a) GMM

In Gaussian Mixture Models the whole data is represtend as \boldsymbol{k} mixtrure of Gaussians.

$$p(X) = \pi_1 \mathcal{N}(\mu_1, \Sigma_1) + \pi_2 \mathcal{N}(\mu_2, \Sigma_2) + \dots + \pi_k \mathcal{N}(\mu_k, \Sigma_k)$$
(1)

 π_k is the Probability that **X** belongs to that gaussian. π_i is also a distribution

$$\sum_{i=1}^{K} \pi_i = 1 \tag{2}$$

From fact that

$$\int p(X)d\mathbf{x} = 1 \tag{3}$$

$$\int p(X)d\mathbf{x} = \int \pi_1 \mathcal{N}(x|\mu_1, \Sigma_1)d\mathbf{x} + \int \pi_2 \mathcal{N}(x|\mu_2, \Sigma_2)d\mathbf{x}$$
(4)

Since $\int \mathcal{N}(x|\mu_1, \Sigma_1) d\boldsymbol{x} = 1$

$$p(X)dx = \pi_1(1) + \pi_2(1) \tag{5}$$

Substitue 1 in place of $\int p(X)dx$ using equation 3. $\pi_1 + \pi_2 = 1$

1.2 b) Expectation Maximization Algorithm

1.2.1 Initialization

Apply K-means Algorithm on the given data.

Initialize μ_k , Σ_k , N_k

1.2.2 Expectation Step

$$\gamma(z_{\rm nk}) = \frac{\pi_{\rm k} \mathcal{N}(x_{\rm n}|\mu_{\rm k}, \Sigma_{\rm k})}{\sum_{n=1}^{K} \pi_{\rm k} \mathcal{N}(x_{\rm n}|\mu_{\rm k}, \Sigma_{\rm k})}$$
(6)

1.2.3 Maximization Step

$$N_k = \sum_{n=1}^{N} \gamma(z_{nk}) \tag{7}$$

$$\mu_k^{new} = \frac{1}{N_k} \sum_{n=1}^N \gamma(z_{nk}) x_n \tag{8}$$

$$\Sigma_k^{new} = \frac{1}{N_k} \sum_{n=1}^N \gamma(z_{nk}) (x_n - \mu_k^{new}) (x_n - \mu_k^{new})^T$$
 (9)

$$\pi_k^{new} = \frac{N_k}{N} \tag{10}$$

1.2.4 Evaluating the log likelihood

$$\ln p(X|\mu, \Sigma, \pi) = \sum_{n=1}^{N} \ln \sum_{k=1}^{K} \pi_k \mathcal{N}(x_n|\mu_k, \Sigma)$$
(11)

Check for convergance , If not converged go to Expectation Step. Check new_log_likelyhood - old_log_likelyhood. If it's less than 0.1 i.e difference is so low , so our algorithm is converged.

Figure 1: Cost VS K Plot For Deciding K Value

2 Question 1 Real Data

2.1 ROC and DET Plots for both Diagonal and Non Diagonal Covariance Matrices

Figure 2: Plots for Real Data

3 Synthetic Data

Figure 3: Plots for Synthetic Data

Table 1: Accuracy Values for Different K Values Real Data

K	Diagonal	Non-Diagonal
6	73.7%	76.3%
10	75.9%	78.9%

Table 2: Accuracy Values for Different K Values Synthetic Data

K	Diagonal	Non-Diagonal
6	93.5%	95.7%
10	98.8%	99.2%

3.1 Confusion Matrices

		1	2	3
Output	1	37.7%	7.1%	16.5%
Output	2	0%	23.7 %	0%
	3	0%	0%	14.9%

Accuracy is 76.3 %

Table 3:Confusion Matrix for Real World Data

		1	2
Output	1	50%	4.3%
	2	0%	45.7%

Accuracy is 95.7% Table 4 Confusion Matrix for Synthetic Data