MA557 Problem Set 2

Carlos Salinas

September 21, 2015

Problem 2.1

Let $\mathfrak a$ be an R-ideal and M a finite R-module. Show that

$$\sqrt{\operatorname{ann}(M/\mathfrak{a}M)} = \sqrt{\operatorname{ann}(M) + \mathfrak{a}}.$$

Proof. One inclusion is immediate, namely,

$$\sqrt{\operatorname{ann}(M/\mathfrak{a}M)} \subset \sqrt{\operatorname{ann}(M) + \mathfrak{a}}$$

since $x \in \sqrt{\operatorname{ann}(M/\mathfrak{a}M)}$ if $x^n \in \operatorname{ann}(M/\mathfrak{a}M)$ if $x^nM \subset \mathfrak{a}M$, i.e., $x^nm = \sum y_im_i$ for $y_i \in \mathfrak{a}$, $m_i \in M$. But $x' \in \sqrt{\operatorname{ann}(M) + \mathfrak{a}}$ if $x'^n = n + y$ for $n \in \operatorname{ann}(M)$, $y \in \mathfrak{a}$, or $x'^nm = (n + y)m = nm + ym = ym$, in particular, $x'^nm \in \mathfrak{a}M$ so $x' \in \sqrt{\operatorname{ann}(M/\mathfrak{a}M)}$. To see the reverse inclusion note that [cf. Atiyah & MacDonald, Proposition 2.4 or Matsumura, Theorem 2.1] if $x^n \in \operatorname{ann}(M/\mathfrak{a}M)$ then there exists a $y \in \mathfrak{a}$ such that $(x^n + y)M = 0$ or $x^nM = -yM \subset \mathfrak{a}M$ so $x \in \sqrt{\operatorname{ann}(M/\mathfrak{a}M)}$. Thus, $\sqrt{\operatorname{ann}(M) + \mathfrak{a}} \subset \sqrt{\operatorname{ann}(M/\mathfrak{a}M)}$ and we have equality.

Problem 2.2

Let R be a local ring and M, N finite R-modules. Show that $M \otimes N = 0$ if and only if M = 0 or N = 0.

Proof. \Leftarrow If either M=0 or N=0 it is immediate that $M\otimes N=0$.

 \Longrightarrow To see the forward direction, we take Atiyah and MacDonald's hint and let $\mathfrak m$ be the maximal ideal of R and let $k=R/\mathfrak m$ denote its residue field. Let $M_k=k\otimes M\cong M/\mathfrak m M$ by Theorem 2.13. But $M\otimes N=0$ implies $M_k\otimes_k N_k=0$ as vector spaces so $M_k=0$ or $N_k=0$. Thus, by Nakayama's lemma, M=0 or N=0 since $M_k=0$ or $N_k=0$, in other words, since $\mathfrak m M=M$ or $\mathfrak m N=N$ and $\mathfrak m=\mathrm{rad}(R)$.

Problem 2.3

Show that $\mathbb{R}^n \cong \mathbb{R}^m$ if and only if n = m.

Proof. \iff If n=m then the isomorphism $R^n \cong R^m$ is canonical.

 \Rightarrow Suppose that $R^n \cong R^m$. Let $\varphi \colon R^n \to R^m$ be a R-linear isomorphism. Let \mathfrak{m} be a maximal ideal of R and let $k = R/\mathfrak{m}$ be its residue field. Then there is an induced k-linear isomorphism $\varphi^* \colon k^n \to k^m$. By the Rank-Nullity theorem and since φ^* is a bijection, we have that the dimension of k^n and k^m are equal, i.e., n = m.

Problem 2.4

Prove 2.7.

Proof. Recall the statement of Theorem 2.7:

Theorem. (a) $M \otimes N \cong N \otimes M$ via $x \otimes y \mapsto y \otimes x$.

- (b) $(M \otimes N) \otimes P \cong M \otimes N \otimes P \cong M \otimes (N \otimes P)$ via $(x \otimes y) \otimes z \mapsto x \otimes y \otimes z \mapsto x \otimes (y \otimes z)$.
- (c) $(M \oplus N) \otimes P \cong (M \otimes P) \oplus (N \otimes P)$ via $(x + y) \otimes z \mapsto x \otimes z + y \otimes z$.
- (d) $R \otimes M \cong M$ via $r \otimes x \mapsto rx$.

In all cases we must show that the prescribed mapping is well defined.

- (a) The map $\varphi \colon M \times N \to N \times M$ given by $(x,y) \mapsto (y,x)$ is a homomorphism. Therefore φ induces a homomorphism $R^{\bigoplus (M \times N)} \stackrel{\cong}{\longrightarrow} R^{\bigoplus (N \times M)}$ which preserves the elements in the tensor quotient. Thus, we conclude that the map $x \otimes y \to y \otimes x$ is well defined.
- (b) Fix an element $z \in P$. Then the mapping $(x,y) \mapsto x \otimes y \otimes z$ is bilinear in x and y and so induces a homomorphism $\varphi_z \colon M \otimes N \to M \otimes P$ such that $\varphi_z(x \otimes y) = x \otimes y \otimes z$. Next we consider the mapping $(t,z) \mapsto \varphi_z(t)$ of $(M \otimes N) \times P \to M \otimes N \otimes P$. This is bilinear and therefore induces a homomorphism $\varphi \colon (M \otimes N) \otimes P \to M \otimes N \otimes P$ such that $\varphi((x \otimes y) \otimes z) = x \otimes y \otimes z$.

Similarly we can construct a map $\psi_0 \colon M \times N \times P \mapsto (M \otimes N) \otimes P$ which sends $(x,y,z) \mapsto (x \otimes y) \otimes z$. This is a trilinear map and so it induces a homomorphism $\psi \colon M \otimes N \otimes P \to (M \otimes N) \otimes P$ such that $\psi(x \otimes y \otimes z) = (x \otimes y) \otimes z$. It is clear that φ and ψ are inverses of each other. Therefore, we have that $(M \otimes N) \otimes P \cong M \otimes N \otimes P$.

The proof that $M\otimes (N\otimes P)\cong M\otimes N\otimes P$ is analogous, fixing an element $x\in M$ and repeating the whole process above.

(c) Consider the map $\varphi \colon (M \oplus N) \times P \to (M \otimes P) \oplus (N \otimes P)$ which sends an element $(x + y, z) \mapsto x \otimes z + y \otimes z$.

(d)

Problem 2.5

Prove 2.8.

Proof. Recall the statement of Proposition 2.8:

Proposition. Let M be an R-module, N an R-S-bimodule and P an S-module. Then:

- $\begin{array}{l} \textit{(a)} \ \ M \otimes N \ \ \textit{is an R-S$-bimodule via} \ (\sum m_i \otimes n_i)s = \sum m_i \otimes (sn_i). \\ \textit{(b)} \ \ \textit{The free module} \ (M \otimes N) \otimes_S P \cong M \otimes (N \otimes_S P) \ \textit{as R-S$-bimodules via} \ (x \otimes y) \otimes z \mapsto x \otimes (y \otimes z). \end{array}$

(i)

(ii)

Problem 2.6

Prove 2.9.

Proof. Recall the statement of Theorem 2.9:

Theorem. Let $\psi \colon R \to S$ be a ring map and M and R module. Then $S \otimes M$ is an S-module (by Proposition 2.8) and $\mu \colon M \to S \otimes M$ with $\mu(m) = 1 \otimes m$ is an R-linear map. Moreover, for every R-linear map $\varphi \colon M \to N$, where N is any S-module, there exists a unique S-linear map f so that $\varphi = f \circ \mu$, i.e, the diagram commutes

Problem 2.7

Prove 2.10.

 ${\it Proof.}$ Recall the statement of Proposition 2.10:

Proposition. Let S and T be R-algebras. Then there is an R-algebra structure on $S \otimes T$ with $(s_1 \otimes t_1)(s_2 \otimes t_2) = (s_1s_2) \otimes (t_1t_2)$.