Aprendizaje por refuerzo Licenciatura en ciencia de datos 2023-II

Nombre:

29 de marzo de 2023

Instrucciones: Para cada problema conteste lo que se le pide.

- 1. (25 puntos)**Básico I:** Explique lo siguiente
 - (5 puntos) ¿Cuál es el objetivo de aprendizaje por refuerzo?
 - (5 puntos) Explique con sus propias palabras que es un MDP
 - (5 puntos) ¿Qué representan los estado-valor y estado acción?
 - (5 puntos) ¿Cuál es la diferencia entre explorar y explotar?
 - (5 puntos) Explique el principio de control de Monte-Carlos, SARSA y aprendizaje Q
- 2. (25 puntos) **Básico II:** Considere una tienda de sándwiches en el IIMAS para la población de N personas. Los clientes llegan a tiempos gobernados por una distribución de probabilidad desconocida. Cada cliente puede ordenar un sándwich con un cierto tipo de pan (5 opciones) y relleno (4 tipos). Los clientes pagan un precio dado por cada sándwich.

Si un cliente no puede obtener el sándwich de su elección, nunca regresará. Los ingredientes deben ser descartados 3 días después de su compra. El dueño quiere encontrar una política para comprar los ingredientes de forma que maximice su ganancia a largo plazo.

- (5 puntos) Defina los estados, acciones y recompensas
- (5 puntos) ¿Utilizaría una versión con o sin descuento? y ¿por qué?
- (5 puntos) ¿Utilizaría planeación o aprendizaje por refuerzo? y ¿por qué?
- (5 puntos) Entre Monte-Carlo y aprendizaje de diferencia temporal, ¿cuál método preferiría?
- (5 puntos) ¿Es necesario utilizar aproximación de funciones? ¿por qué?
- 3. (25 puntos) **Programación dinámica:** Considere el siguiente MDP con un factor de descuento $\gamma = 0.5$. Las letras A, B, C representan estados; los arcos transiciones: las letras ab, ba, bc, ca, cb representan acciones; los

enteros con signo representan recompensas; y las fracciones representan probabilidades $\,$

- \bullet (5 puntos) Defina la función estado-valor
 $v^\pi(s)$ para un MDP con descuento
- (5 puntos) Considere una política aleatoria uniforme $\pi_1(s,a)$ que toma todas las acciones desde el estado s con la misma probabilidad. Iniciando con un valor de función $v_1(A) = v_1(B) = v_1(C) = 2$, aplicar una actualización de evaluación de política iterativa para calcular $v_2(s) \forall s \in S$.
- (5 puntos) Aplicar una mejora de política voraz para calcular una nueva política $\pi_2(s)$
- (5 puntos) Iniciando con un valor de función $v_1(A) = v_1(B) = v_1(C) = 2$, aplicar una actualización de iteración de valor para calcular $v_2(s) \forall s \in S$.
- (5 puntos) ¿Es $v_2(s)$ óptimo? justifique su respuesta
- 4. (30 puntos) RL libre de modelo: considere el siguiente proceso de decisión de Markov con dos estados A y B y acciones a y b. La matriz de transición y la función de recompensa son desconocidos, pero se han observado dos episodios:

$$A, a, 3, A, b, 2, B, b, -4, A, b, 4, B, a, -3$$

$$B, a, -2, A, b, 3, B, a, -3$$

• (4 puntos) Utilice evaluación de Monte-Carlos con primera visita para estimar v(A), v(B)

- (4 puntos) Utilice evaluación de Monte-Carlos con cada visita para estimar v(A), v(B)
- (4 puntos) Dibuje el diagrama que mejor represente el MDP que mejor explique esos dos episodios
- (4 puntos) Resuelva la ecuación de Bellman para encontrar v(A), v(B)
- (4 puntos) ¿Cuál función de valor se encontraría con TD(0) usando la información de esos dos episodios?
- (5 puntos) ¿Qué valor encontraría diferencia temporal con mínimos cuadrados (LSTD(0))?
- (5 puntos) Aplique un paso de REINFORCE iniciando con una política aleatoria uniforme
- 5. (10 puntos) **Aproximación de funciones:** Un ratón es involucrado en un experimento. Experimenta un episodio, en el primer paso escucha una campana. En el segundo paso ve una luz. En el tercer paso escucha una campana y ve una luz. Después recibe un pedazo de queso que vale 1 de recompensa y el episodio termina. Todas las otras recompensas fueron cero y el experimento no tiene descuento.
 - (2 puntos) Representar el estado del ratón s por dos características $bell(s) \in 0,1$ y $light(s) \in 0,1$. Escriba la secuencia de vectores estados correspondiente a este episodio.
 - (2 puntos) Aproxime la función estado-valor por medio de una combinación lineal de estas características con dos parámetros b(bell(S) + l(light(s)). Si b = 2 y l = -2 escriba la secuencia de valores aproximados correspondiente al estado.
 - (2 puntos) Define el retorno λv_t^{λ}
 - (2 puntos) Escriba la secuencia de retornos λv_t^{λ} correspondientes al episodio para $\lambda = 0.5, b = 2, l = -2$
 - (2 puntos) Utilizando $TD(\lambda)$ y la función de aproximación lineal, ¿Cuáles son las secuencias de actualizaciones al peso b? utilice $\lambda = 0.5, \gamma = 1, \alpha = 0.5$ e inicie con b = 2, l = -2.
- 6. (10 puntos) Un agente explora un MDP $M = (S, A, R, P, \gamma)$ donde $S = s_1, s_2, s_3$ y $A = a_1, a_2, a_3, \gamma = 0.5$ y $P(s, a_i, s_i) = 1$ para cualquier s para todo i. Las recompensas para transitar en un estado se definen como $R(s_i) = i$. La recompensa máxima es s_i . El agente sigue la trayectoria

$$s_1, a_1, 1, s_1, a_2, 2, s_2$$

- \blacksquare (2 puntos) Aplique el algoritmo de Q-learning para el episodio dado inicializando qa cero
- (2 puntos) Dado que el agente se encuentra en s_1 , y siguiendo una política épsilon-voraz. ¿Cuáles son las probabilidades para tomar la siguiente acción?
- (2 puntos) Aplique el algoritmo de Q-learning para el episodio dado inicializando q de forma optimista a rmax

- lacktriangle (2 puntos) Dado que el agente se encuentra en s_1 , y siguiendo una política épsilon-voraz. ¿Cuáles son las probabilidades para tomar la siguiente acción?
- (2 puntos) Genere el MDP a partir del episodio dado, muestree 3 episodios más siguiendo una política voraz y realice las actualizaciones a q.