JIANTING'S LECTURE REVIEW NOTES

近世代数 Contemporary Algebra

2020 Fall

INSTRUCTOR: 胡峻

TEXTBOOK: 近世代数 (2ND ED.) 韩士安、林磊

REVIEW FOR CONTEMPORARY ALGEBRA

 ${ \begin{tabular}{l} {\bf Jianting\ Feng}\\ {\bf 14th\ November\ 2020}\\ {\bf BEIJING\ INSTITUTE\ OF\ TECHNOLOGY}\\ \end{tabular} }$

Contents

1	群		2
	1.1	群的概念	2
	1.2	子群	3
	1.3	群的同构	4

Chapter 1

群

1.1 群的概念

Definition 1.1.1 设 G 是一个非空集合,"·"是 G 上的一个代数运算,即对所偶的 $a,b \in G$,有 $a \cdot b \in G$. 如果 G 的运算还满足

- 1. $\forall a, b, c \in G$, $\forall a \in G$, $\forall a \in G$
- 2. $\exists e, \forall a \in G, 有 e \cdot a = a \cdot e = a$
- $3. \ \forall a \in G, \ \exists b \in G, \$ 使得 $a \cdot b = b \cdot a = e$

则称 G 关于运算 "·"构成一个群 (Group), e 称为群 G 的单位元 $(unit\ element)$ 或恒等元 (identity), g 中的 g 称为 g 的逆元。容易证明单位元和逆元的唯一性。如果 g 的运算满足交换律,则称 g 为一个 g 和 g 中的元素的个数称为 g 的 g 的 g (g),记为 g ,如果 g 有限,则称 g 为有限群,否则称为无限群。

Example 1.1.1 整数集 \mathbb{Z} 关于数的加法构成群, 称为整数加群。

Example 1.1.2 全体非零有理数集合 \mathbb{Q}^* ,关于数的乘法构成交换群。

Example 1.1.3 实数域 \mathbb{R} 上的全体 n 阶方阵 $M_n(\mathbb{R})$ 关于矩阵的加法构成一个交换群。全体 n 阶可逆方阵 $GL_n(\mathbb{R})$ 关于矩阵的乘法构成非交换群。

Example 1.1.4 全体 n 次单位根组成的集合

$$U_n = \{x \in \mathbb{C} | x^n = 1\} = \{\cos \frac{2k\pi}{n} + i \sin \frac{2k\pi}{n} | k = 0, 1, 2, \dots, n - 1\}$$
 (1.1)

关于数的乘法构成一个 n 阶交换群。

Example 1.1.5 设 m 是大于 1 的正整数,则 \mathbb{Z}_m 关于剩余类的加法构成群,这个群称为 \mathbb{Z} 的 模 m **剩余类加群**。

Example 1.1.6 设 m 是大于 1 的正整数,记

$$U(m) = \{ \bar{a} \in \mathbb{Z}_m | (a,) = 1 \}, \tag{1.2}$$

则 U(m) 关于剩余类的乘法构成群。

Note 1.1.1 群 $(U(m), \cdot)$ 称为 \mathbb{Z} 的模 m 单位群,这显然是一个交换群,当 p 为素数时,常记 做 \mathbb{Z}_m^* ,且 $|U(m)| = \phi(m)$,其中 ϕ 为 Euler Totient 函数。

Theorem 1.1.1 1. 群 G 的单位元与逆元唯一;

- 2. $\forall a \in G, (a^{-1})^{-1} = a;$
- 3. $\forall a, b \in G$,有 $(ab)^{-1} = b^{-1}a^{-1}$;
- $4. \ \forall a,b,c \in G, \ \exists \ ab = ac \ \ \ ba = ca, \ \ \ \ \ \ \ b = c.$

1.2 子群

Definition 1.2.1 设 G 是一个群,H 是 G 的一个非空子集。如果 H 关于 G 的运算也构成群,则称 H 为 G 的一个**子群** (subgroup),记做 H < G。

Example 1.2.1 对于任意群 G, G 本身以及只含有单位元 e 的子集 $H = \{e\}$ 是 G 的子群, 称 G 的**平凡子群** (trivial subgroup), 其他的子群称为**非平凡子群** (nontrivial subgroup), 群 G 不等于它自身的子群称为 G 的**真子群** (proper subgroup).

Theorem 1.2.1 设 G 为群, H < G, 则

- 1. 群 G 的单位元 e 是 H 的单位元;
- 2. 对于任意 $a \in H$, a 在 G 中的逆元就是 a 在 H 中的逆元。

Theorem 1.2.2 (子群的判别准则之一) 设 G 为群, H 是群 G 的非空子集, 则 H 称为群 G 的子群的充分必要条件是

- 1. $\forall a, b \in H$, $\uparrow ab \in H$;
- $2. \forall a \in H, 有 a^{-1} \in H.$

Theorem 1.2.3 (子群的判别准则之二(更为常用))设 G 为群,H 是群 G 的**非空子集**,则 H 称为群 G 的子群的充分必要条件是 $\forall a,b \in H$,有 $ab^{-1} \in H$.

Example 1.2.2 $SL_n(\mathbb{R}) < GL_n(\mathbb{R})$ (我们之后会证明,这其实是一个正规子群)。

Note 1.2.1 $GL_n(\mathbb{R})$ 称为一般线性群, $SL_n(\mathbb{R})$ 称为特殊线性群,这两个群在李代数(Lie Algebra)与微分几何(Differential Geometry)中有重要的意义。

Example 1.2.3 设 G 为群,记

$$C(G) = \{ g \in G | gx = xg, \forall x \in G \}$$

$$(1.3)$$

则 C(G) < G, 称为 G 的中心 (center).

Note 1.2.2 C(G) 在后面关于有限群分类中有重要作用,详情参见 Sylow 定理与群的类方程 (class equation。

Theorem 1.2.4 群 G 的任意两个子群的交集仍为 G 的子群 (事实上,任意多个子群的交均为子群,但子群之并不一定是子群)。

Definition 1.2.2 定义

$$\langle a \rangle := \{ a^r | r \in \mathbb{Z} \} \tag{1.4}$$

是由一个元素 a 生成的群, 称为循环群 (cyclic group)。

Note 1.2.3 循环群在有限群的分类中也有重要作用, 我们稍后会对此加以讨论。

1.3 群的同构

Definition 1.3.1 设 G 和 G' 是两个群, ϕ 是 G 到 G' 的**双射** (bijection), 满足

$$\phi(a \cdot b) = \phi(a) \cdot \phi(b), \quad \forall a, b \in G, \tag{1.5}$$

则称 ϕ 为从群 G 到 G' 的一个**同构映射** (homomorphism), 称群 G 与 G' **同构** (isomorphism), 记做

$$\phi: G \cong G'$$

群 G 到自身的同构称为自同构 (automorphism)。

- 一般地,证明两个群同构分为四步
 - 1. 构造 G 到 G' 的对应关系 ϕ ,并证明 ϕ 是一个映射(在商群中要证明 ϕ 是**良定义** (well-defined) 的);
 - 2. 证明 ϕ 是单射, 即 $\forall x, y \in G$, 若 $\phi(x) = \phi(y)$, 则一定有 x = y;
 - 3. 证明 ϕ 是满射,即 $\forall x' \in G'$,存在 $x \in G$ 使得 $\phi(x) = x'$;
 - 4. 证明 ϕ 保持运算,即 $\phi(x \cdot y) = \phi(x) \cdot \phi(y)$ (注意区分群同构与环同构的差别).

Theorem 1.3.1 (群同构的性质) 设 ϕ 是 G 到 G' 的同构映射, e 和 e' 分别是 G 与 G' 中的单位元, $a \in G$, 则有

- 1. $\phi(e) = e'$;
- 2. $\phi(a^{-1}) = (\phi(a)) 1$;
- 3. ϕ 是可逆映射, 且 ϕ^{-1} 为 G' 到 G 的同构映射。

Corollary 1.3.1.1 设 $G \cong G'$, 若 $G \in Abelian$ 群,则 G' 也是 Abelian 群;且 |G| = |G'| (若 为有限群即为元素个数相同,若为无限群则为基数 (cardinal number)相同)。

Theorem 1.3.2 群的同构实际上在所有群构成的集合中定义了一个等价关系 (equivalence relationship),即

- 1. (反身性) $G \cong G$;
- 2. (传递性) 若 $G \cong G'$, $G' \cong G''$, 则 $G \cong G''$;
- 3. (对称性) 若 $G \cong G'$, 则 $G' \cong G$.

其中 G, G', G'' 都是群。

Note 1.3.1 通过等价关系,实际上给出了所有群所在集合的一个划分,我们可以通过研究一小部分群搞清楚所有群的结构,这一点在有限群的分类中具有极其重要的意义。

设 X 是任意集合,令 S_X 是 X 的全体可逆变换构成的集合,定义两个可逆变换的合成

$$\tau \circ \sigma: \quad X \to X,$$

$$x \mapsto \tau(\sigma(x)), \quad \forall x \in X$$

仍为 X 的可逆变换。于是 \circ 是 S_X 的代数运算,容易验证 S_X 关于变换的合成构成群(满足群的四条性质)。

Theorem 1.3.3 (Cayley 定理) 每一个群都同构与一个变换群。

设 G 是群, $a \in G$, 定义 ϕ_a 如下

$$\phi_a(x) = ax, \quad x \in G$$

称 ϕ_a 为一个左乘变换(左平移),全体左乘变换的集合 $G_l = \{\phi_a | a \in G\}$,称为 G 的左正则表示(left regular representation)。容易证明 $G \cong G_l$ 。

Note 1.3.2 同理我们可以定义右平移与右正则表示,有完全相同的结论成立。