Generate Coil

Table of Contents

Parameters]
Code	
Discretization	
AWG Standard sizes	

 $s = generate_coil(coil_name, X, sigma, w, h, nhinc, nwinc, rh, rw)$

Author: JCCopyrights Summer 2019 Packages geometry,conductor information and discretization information into a struct Also calculates the length and area of the coil geometry the sctruct is compatible with the function fasthenry_Creator @TODO: Convert coils into a class

Parameters

- @param coil_name Coil Identifier
- @param X Coil Geometry X(1,:) X points X(2,:) Y points X(3,:) Z points
- @param sigma Conductor Conductivity
- @param w Coil Width
- @param h Coil Height
- @param nhinc Conductor Discretization Height
- @param nwinc Conductor Discretization Width
- @param rh Discretization range
- @param rw Discretization range
- @retval s Struct Packaged Coil

Code

```
long=long+norm(X(:,i+1)-X(:,i));
end
area=w*h;

s =
struct(field0,coil_name,field1,sigma,field2,w,field3,h,field4,nhinc,field5,nwinc,
```

Discretization

Figure 1: Example Segment for Sample Input File

Figure 2: Segment discretized into 35 filaments

AWG Standard sizes

응 {

	or Amp	
AWG Diam[mm] Area[mm2] m	Ohm/m 60 °C 75 °C 90 °C
1 7.348	42.4 0.4066 1 33.6 0.5127	10 130 145
3 5 827	26.7 0.6465	85 100 115
4 5 189	21.2 0.8152	70 85 95
5 4.621		
6 4 115	13.3 1.296	
8 3 264	8.37 2.061	40 50 55
10 2 588	5.26 3.277	
	4.17 4.132	
12 2.053	2 21 5 211	20 25 30
13 1.828	3.31 5.211 2.62 6.571	20 25 50
14 1.628	2.08 8.286	15 20 25
15 1.450	1.65 10.45	15 20 25
	1.31 13.17	- 18 -
10 1 100	1 01 16 61	
18 1.024	0 823 20 05	10 14 16
19 0.912	0.823 20.95 0.653 26.42	10 14 10
20 0.812	0.653 26.42 0.518 33.31 0.410 42.00	5 11 _
21 0.723	0.310 33.31	J 11
22 0.644	0.410 42.00 0.326 52.96	5 7 -
	0.258 66.79	
24 0.511	0.205 84.22	2 1 3 5 -
25 0.455	0.162 106.2	
26 0.405	0.129 133.9	1 3 2 2 -
27 0.361	0.102 168.9	
		0.83 1.4 -
	0.0642 268.5	
30 0.255	0.0012 200.5	0.52 0.86 -
	0.0404 426.9	
32 0.202	0.0101 120.3	0.32 0.53 -
	0.0254 678.8	
34 0.160	0.0201 856.0	0.18 0.3 -
35 0.143	0.0160 1079	
36 0.127	0.0127 1361	
37 0.113	0.0127 1301	
38 0.101	0.00797 2164	
39 0.0897		
40 0.0799		
20 0.0799	3.00001 0111	
%}		

Published with MATLAB® R2019a