ardigen

Artificial Intelligence & Bioinformatics for Precision Medicine

PyData Warsaw 2018

Dawid Rymarczyk, Data Scientist

Agenda

ardigen

- Nucleus detection problem Kaggle Data Science Bowl 2018
- 2. Instance and Semantic segmentation application to the problem
- 3. U-Net and Mask R-CNN architecture
- 4. Enhancements
- 5. Winning solution
- 6. Summary

ardigen

Timeline

11th April 2018 Stage 1 ends Stage 2 data release

14th May 2018 Final results

9th April 2018 Team merge deadline Final submission Entry deadline

16th April 2018

Motivation

Source: kaggle.com

ardigen

Dataset: 670 images for training

ardigen

Definition

Where is the nuclei? Which pixel corresponds to it?

ardiger

Evaluation

Mean Average Precision at different Intersection over Union (IoU) $IoU(A,B) = \frac{A \cap B}{A \cup B}$

Threshold for IoU, t: {0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95}

For each threshold t:
$$\frac{TP(t)}{TP(t) + FP(t) + FN(t)}$$

True positive is when the IoU is above the threshold

False positive is when the predicted object has no associated ground truth object False negative is when the ground truth object has no associated predicted object.

The average precision of a single image is then calculated as the mean of the above

precision values at each IoU threshold:
$$\frac{1}{|thresholds|} \sum_{t} \frac{TP(t)}{TP(t) + FP(t) + FN(t)}$$

Overall score is the mean from all images

ardigen Semantic segmentation

Instance and Semantic segmentation

ardigen

Semantic

ardigen **U-Net** Semantic Segmentation algorithm

U-Net

Architecture

Source:

ardigen Instance segmentation

Instance and Semantic segmentation

ardigen

Instance

ardigen Mask R-CNN Instance Segmentation algorithm

ardigen

History of the model

Milestones leading to Mask R-CNN developed by Facebook AI:

R-CNN

ardigen

Key steps of the model:

- Region proposals (Selective Search)
- Feature extraction (AlexNet)
- Classifiers (SVM)

Image with Region Proposals

ardigen

R-CNN

Key steps of the model:

- Region proposals (Selective Search)
- Feature extraction (AlexNet)
- Classifiers (SVM)

Source: CV-Tricks.com

Fast R-CNN

ardigen

Enhancement:

- Whole image is passed to a network
- End to end training

Image with Region Proposals

Source: CV-Tricks.com

Fast R-CNN

ardigen

Enhancement:

- Whole image is passed to a network
- End to end training

Image with Region Proposals

ardigen

Fast R-CNN

Enhancement:

- Whole image is passed to a network
- End to end training

Fast R-CNN

Enhancement:

- Whole image is passed to a network
- End to end training

Fast R-CNN

ardigen

Enhancement:

- Whole image is passed to a network
- End to end training

Image with Region Proposals

Faster R-CNN

Enhancement:

- Region Proposal Network
- **Anchors**

AlexNet

Faster R-CNN

Mask R-CNN

ardigen

Enhancement:

- Multi task for mask generation
- Rol Align

Mask R-CNN

ardigen

Enhancement:

Instance and Semantic segmentation

ardigen

Comparison

Instance and Semantic segmentation

ardigen

Comparison

ardigen General enhancements

General enhancements

Cascade R-CNN

ardigen

Enhancement:

Prevention of overfitting for different IoU threshold

External Data

ardigen

- Hematoxylin and eosin (H&E) stain [https://nucleisegmentationbenchmark.weebly.com/]
- Broad Bioimage Benchmark Collection [https://data.broadinstitute.org/bbbc/image_sets.html]
 - Human U2OS cells (out of focus)
 - Bone-marrow derived macrophages from C57BL/6 mice

NORMALIZATION

ardigen

How **not** to train a separate NN for each image type

- Use CLAHE (Contrast Limited Adaptive Histogram Equalization):
 - BGR → LAB (L lightness)
 - CLAHE on L channel
 - Use only the L channel
- Add H-channel from HSV to account for the contrast in color

Post Processing

ardigen

Filling holes and closing

General enhancements

Other

- 1. Effective use of dilated convolutions
- 2. Focal Loss function
- 3. Different mask sizes
- 4. Data balancing
- 5. Auxiliary tasks
- 6. Data augmentation

ardigen **Examples of results**

Visualization

ardigen

Results:

Top 9% Bronze Medal 0.445

ardigen

Winning solution

And other interesting one

1st place U-Net on steroids LB: 0.631

ardigen

Auxiliary tasks and post processing, deep model and augmentations:

- Clahe, Sharpen, Emboss
- Gaussian Noise
- Color to Gray
- Inverting
- Remapping grayscale to random color images
- > Blur, Median Blur, Motion Blur
- contrast and brightness
- random scale, rotates and flips
- Heavy geometric transformations
- Random HSV
- Channel shuffle

Nucleus copying on images.

Matterport's Mask R-CNN 3rd place LB: 0.614

- Strong scaling augmentation, a lot of zooming in and out and aspect ratio changes.
- Test time augmentation: 15 different augmentations at test time with different rotations, scalings, channel color shifts, etc. This takes a loooong time (aprox. 2 days for the stage_2 test set) and a binary dilation post-processing actually gives a very similar score,
- Matterport's TensorFlow implementation with pretrained weights from ImageNet.

Why U-Net and not Mask R-CNN? Why Mask R-CNN and not U-Net?

ardigen Artificial Intelligence & Bioinformatics ardigen.com

QA

Dawid Rymarczyk dawid.rymarczyk@ardigen.com

General enhancements

Effective use of dilated convolutions

Enhancement:

Get more context and detect micro nucleus

ardigen

General enhancements

Focal Loss Function

ardigen

Enhancement:

Pay more attention to tricky examples

General enhancements

ardigen

Cascade R-CNN Conv 'classifier' **Enhancement:** Small Mask 3 mask sizes, prevents overfitting $(H_s \times W_s \times classes)$ Conv 6x6 Mask (H x W x classes) **UpConv** UpConv Conv 3x3 Rol feature vector Big Mask $(H_b \times W_b \times classes)$

DeConv

Data balance

ardigen

- Training data were highly imbalanced
- Moreover we used external data (that was a little bit different than training data)
- We wanted to create the algorithm that could generalise well, in order to do that we decided to create weighted sampler
 - Weight of every class from the training data was set to the square root of number of class samples
 - Weight of every class from external data was set to the smallest weight from training data

