Auxiliar 22

Profesor: Mario Riquelme H.
Profesores auxiliares: Jose Chesta, Felipe Isaule

Viernes 6 de Junio de 2014

P1. El potencial efectivo debido a la interacción de un par de partículas es

$$U_{ef}(r) = \frac{l^2}{2mr^2} + Cr^3$$

donde l es el momento angular, m la masa reducida y C una constante. La energía del sistema es E.

- a) Encuentre una expresión para la componente radial F(r) de la fuerza entre las dos partículas. ¿La fuerza es repulsiva o atractiva?
- b) ¿Cuál es el radio r_0 de la órbita circular permitida por este potencial? Exprese su resultado en términos de l, C y m.
- c) Cuando E es mayor a E_{min} , encuentre qué tan rapido la separación dr/dt entre las partículas va cambiando mientras el sistema pasa por el punto $r = r_0$. Exprese su resultado en términos de E, E_{min}, l, C, m y r_0 .
- d) Encuentre la energía cinética en $r = r_{max}$.

- **P2.** Un anillo de masa m desliza sin roce por la barra inclinada de la figura. Para t=0, cuando el anillo se encuentra en reposo, la estructura triangular comienza a moverse armónicamente a lo largo del eje x de modo que toda la estructura oscila según la ecuación $x(t) = A(1 \cos(\omega t))$, con A constante conocida.
- a) Encuentre la ecuación de movimiento en la coordenada x'
- b) Calcule la fuerza normal en y'
- c) Encuentre la posición x'(t) considerando x'(t=0)=0.

P3. Un aro de radio R se hace girar con velocidad angular constante ω_0 en un plano horizontal alrededor de un eje vertical que pasa por un punto del aro. Un anillo de masa m puede delizar sin roce a lo largo del aro. Estando el anillo en una posición diametralmente opuesta al eje de rotación se le da una velocidad v_0 relativa al aro, en la misma dirección de giro.

Determine el valor mínimo de la rapidez v_0 para que el anillo llegue hasta el eje.

- **P4.** Una circunferencia de radio ρ_0 en un plano vertical gira en torno a un eje vertical con velocidad angular ω . El centro de la circunferencia describe, en un giro, una circunferencia de radio R. El plano de la circunferencia se mantiene siempre perpendicular al vector \vec{R} de la figura. Una partícula de masa m puede deslizar sin roce por la circunferencia de radio ρ_0 .
- a) Defina claramente los sistemas S y S' escogidos y calcule la fuerza centrífuga, de coriolis y transversal que actúan sobre la partícula debido a la rotación de la circunferencia.
- b) Obtenga la ecuación de movimiento vectorial completa y de ella obtenga una ecuación para el ángulo de la forma $\phi'' = f(\phi)$.
- c) Discuta bajo qué condiciones la posición $\phi=0$ es estable/inestable y, en los casos que sea estable, obtenga la frecuencia de pequeñas oscilaciones en torno a ese ángulo.

