Discrete	
Lecture	18
Direct	& Contrapositive
ρ,	£c

Propositions. P => Q

Direct Proofs

Direct Proof Outline

Proposition. $P \Rightarrow Q$

Assume P.

Proof. (Direct)

(First Step) Suppose P is true.

(Intermediate Steps) Use definitions related to P and Q.

(Intermediate Steps) Use previously established facts to connect P and Q.

(Last Step) Conclude Q is true. \square

if a EA, then a EB

ex I = Q

Proof (dine a)

Suppose XEZ.

(we want to show XEQ)

II follows that

X=XEQ.

Therefore $x \in Q$. \square

11. Suppose $a, b, c, d \in \mathbb{Z}$. If $a \mid b$ and $c \mid d$, then $ac \mid bd$.

Suppose alb and cld. (we want to show aclbd)

This means $\exists q. e \mathbb{Z}, b=q. a \text{ and } \exists qz \in \mathbb{Z},$

d = q2. c.

I+ follows + hat b.d = (q,a). (qz.c)

= (q; qz). (ac) = q. (ac) where q=q; qz \(\mathbb{I}. \)

Thus bd = q. (ac) and this

tells us ac | bd.

Contrapositive Proofs

I'm going to prove

 $\neg Q \Rightarrow \neg P$

instead.

Contrapositive Proof Outline

Proposition. $P \Rightarrow Q$

Proof. (Contrapositive)

(First Step) Suppose $\neg Q$ is true (i.e. Suppose Q is false).

(Intermediate Steps) Use definitions related to $\neg P$ and $\neg Q$.

(Intermediate Steps) Use previously established facts to connect $\neg Q$ and $\neg P$.

:

(Last Step) Conclude $\neg P$ is true (i.e. conclude P is false). \square

ex) 7 = Q

(if x \(\mathbb{Z} \) + hen x \(\mathbb{Q} \))

Proof (contra pos.)

Suppose x & Q. (We want to show x & Z)

This means $x \neq \frac{a}{b}$, where $a_1b \in \mathbb{Z}$.

Since 1 & Z, we see that, using b = 1 & Z

 $x \neq \frac{\alpha}{1} = \alpha$, for any $\alpha \in \mathbb{Z}$.

In other words, $x \neq a$ for any $a \in \mathbb{Z}$, so $x \notin \mathbb{Z}$. \square

ex) (Book of Proof, Ch 5)

6. Suppose $x \in \mathbb{R}$. If $x^3 - x > 0$ then x > -1.

Proof (contrapositive)

Assume $x \le -1$. (We want to show $x^3 - x \le 0$.)

Note $x^3 - x = x(x^2 - 1) = x(x+1)(x-1)$.

Since x = -1, each factor is less than oregun to 0.

X 20 because x = - 1.

 $(x+1) \leq 0$ Since $x \leq -1 \Rightarrow x+1 \leq 0$.

(x-1) LO SINE X =- 1 => x-1 = -2 <0.

The product of three numbers each less than

or equal to zero is justif L 0

Therefore $x^3 - x \leq 0$. \square