Date out: *Nov 01, 2022*, Date in: -

ALGEBRAIC GEOMETRY 1

PROBLEM SET 3

Keywords: Ring spectra, sheaves, Jacobson rings

Problem 1

Let k be a field, and let K = k(x, y) be the field of rational functions in two variables. Let $G = \mathbb{Z}^2$ with the lexicographic order $((a, b) \le (c, d))$ if and only if a < c, or a = c and $b \le d$.

- 1. Let $v(x^ay^b) = (a, b)$, $v(\sum c_{a,b}x^ay^b) = \min\{(a, b)|c_{a,b} \neq 0\}$, and $v(\frac{f}{g}) = v(f) v(g)$. Show that v defines a valuation on K with value group G.
- 2. Show that the valuation ring $R = \{f \in K | v(f) \ge 0\}$ is not Noetherian.
- 3. Show that $\Gamma = \{c \in G | c \geq 0\}$ is a submonoid of G. Ideals of Γ are subsets I of Γ such that for all $\alpha \in I, \gamma \in \Gamma$ we have $\alpha + \gamma \in I$. An ideal I is called *prime* if $c_1 + c_2 \in I \Rightarrow c_1 \in I$ or $c_2 \in I$. Show that (prime) ideals of R are in bijection with (prime) ideals of Γ . Describe the topological space $\operatorname{Spec}(R)$.

Problem 2

Let X be a scheme. Show that points of X are in bijection with equivalence classes of morphisms from fields spectra $f: \operatorname{Spec}(F) \to X$, where $f_1 \sim f_2$ if there is a common field extension $\iota_i: F_i \hookrightarrow \Omega$, i = 1, 2 such that the following diagram is commutative:

$$\operatorname{Spec}(\Omega) \xrightarrow{\iota_1^{\#}} \operatorname{Spec}(F_1)$$

$$\downarrow_{\iota_2^{\#}} \qquad \qquad \downarrow_{f_1}$$

$$\operatorname{Spec}(F_2) \xrightarrow{f_2} X$$

Problem 3

Let $f: X \to Y$ be a continuous map of topological spaces, let \mathcal{G} be a presheaf of Abelian groups on Y. Consider the following association:

$$U \subseteq_{\text{open}} X \mapsto f^{-1}G(U) = \underset{f(U)\subseteq V\subseteq_{\text{open}}Y}{\underline{f(U)}} \mathcal{G}(V).$$

Show that there are canonically defined restriction homomorphisms making this into a presheaf of Abelian groups on X. Show that the following adjunction property holds: for every presheaf of Abelian groups \mathcal{F} on X, one has

$$\operatorname{Hom}_{(\operatorname{PreSh}_{V})}(f^{-1}\mathcal{G},\mathcal{F}) = \operatorname{Hom}_{(\operatorname{PreSh}_{V})}(\mathcal{G}, f_{*}\mathcal{F}).$$

Notice that, when f is the inclusion of a point p in Y, $f^{-1}\mathcal{G} = \mathcal{G}_p$ (the stalk of \mathcal{G} at p). In general, with notations as above, for every $p \in X$ we have

$$(f^{-1}\mathcal{G})_p = \mathcal{G}_{f(p)}.$$

Show that in general $f^{-1}\mathcal{G}$ is not a sheaf even if \mathcal{G} is.

Problem 4

Let R be a ring (commutative with 1). Show that the following are equivalent:

- 1. every prime ideal is intersection of maximals;
- 2. every radical ideal is intersection of maximals;
- 3. $V_m(I) = V_m(J)$ (where $V_m(I) = V(I) \cap \operatorname{Spec}_m(R)$) implies $\sqrt{I} = \sqrt{J}$;
- 4. $\operatorname{Spec}_m(R)\subseteq\operatorname{Spec}(R)$ is dense in every closed subset of $\operatorname{Spec}(R);$
- 5. the association $Z \mapsto Z \cap \operatorname{Spec}_m(R)$ induces a bijection between the closed subsets of $\operatorname{Spec}_m(R)$ and those of $\operatorname{Spec}_m(R)$.

A ring satisfying (any one of) the above properties is called Jacobson. Show that a local ring is Jacobson if and only if it has Krull dimension 0.