PHYS 2C

Discussion Section – 1/22

TA: Bharat Kambalur

Email: bkambalu@ucsd.edu

Before we Begin:

- Try and sit next to a student you don't know
- Introduce yourselves and find out where the other student is from

Today: Lightning Review and 2 Problems (if time permits)

General things to practice for Quizzes and Exams

- Drawing free-body problem
- Analyzing Units (Dimensional Analysis)
- Understanding and Manipulating equations
 - Making any variable the subject of the equation
 - Making appropriate substitutions
 - For e.g. $m \Leftrightarrow \rho \cdot v$, $\omega \Leftrightarrow 2\pi f \Leftrightarrow \frac{2\pi}{T}$
- Make a list of all Formula (and short note on when it applies) => Cheat Sheet!

Discussion Problem 1

Intensity of Sound – decibels

Points A and B are located at 4 meters and 9 meters from a sound source. If I_A and I_B are intensities at point A and point B respectively, then the ratio I_A : I_B =

- a) 1:1
- b) 4:9
- c) 9:4
- d) 81:16
- e) 64:729

Discussion Problem 1 – Solution

Intensity of Sound – decibels

Points A and B are located at 4 meters and 9 meters from a sound source. If I_A and I_B are intensities at point A and point B respectively, then the ratio I_A : I_B =

- a) 1:1
- b) 4:9
- c) 9:4
- d) 81:16
- e) 64:729

Discussion Problem 2

Standing Waves

The wavelength of the 1st overtone (m=2) of a string with both ends fixed is 60cm.

If the linear density of the string is 23g/m and the tension in the string is 20.7N, calculate the frequency of the 2^{nd} overtone.

(Note: 1^{st} Overtone $\Leftrightarrow m=1$)

Discussion Problem 2 - Solution

Standing Waves

The wavelength of the 1st overtone (m=2) of a string with both ends fixed is 60cm.

If the linear density of the string is 23g/m and the tension in the string is 20.7N, calculate the frequency of the 2nd overtone.

(Note: 1^{st} Overtone $\Leftrightarrow m=1$)

The frequency of the 2nd overtone is **75** Hz