<u>Dashboard</u> / My courses / <u>COSC264</u> / <u>Week 9: Quiz (Routing)</u> / <u>Quiz: Routing</u>

Started on	Tuesday, 28 September 2021, 1:10 PM
State	Finished
Completed on	Thursday, 30 September 2021, 4:32 PM
Time taken	2 days 3 hours
Marks	98.33/100.00
Grade	9.83 out of 10.00 (98 %)

Information

The figure below shows a network topology, where the nodes are routers and the edges mark a link between nodes. The edges are weighted to show the cost of using the link. The following questions refer to this figure.

Question **1**Correct

Mark 13.00 out of 13.00

Apply Dijkstra's algorithm on the example network shown at the top of the page to find the minimum cost routes from station 1 to all other stations. Please fill in the following table for the values during the calculation steps. S is the set of stations whose least-cost path is known; D(v) is the current cost of the path from the source (i.e., station 1) to station v; p(v) is the predecessor station along the path from the source to v, that is next to v.

Please use "inf" to specify an infinite cost and "-' to specify no predecessor.

Dijkstra Algorithm Results for station 1

Step	S	D(2), p(2)	D(3), p(3)	D(4), p(4)	D(5), p(5)	D(6), p(6)	D(7), p(7)	D(8), p(8)
		3	4	4	inf	inf	inf	inf
0	{1}	~ ,						
	(.)	1	1	1	-	-	-	-
		~	~	~	~	~	~	~
		3	4	4	9	8	5	inf
1	{12}	~ ,						
	()	1	1	1	2	2	2	-
		~	~	~	~	✓	~	✓
		3	4	4	5	8	5	inf
2	{123}	~ ,	~ ,	~ ,	~ ,	✓ ,	✓ ,	✓ ,
	()	1	1	1	3	2	2	-
		~	~	~	~	~	~	✓
		3	4	4	5	8	5	inf
3	{1234}	~ ,	~ ,	~ ,	~ ,	✓ ,	~ ,	✓ ,
	(1234)	1	1	1	3	2	2	-
		~	~	~	~	~	~	✓
		3	4	4	5	8	5	12
4	{12345}	~ ,	✓ ,					
	(12343)	1	1	1	3	2	2	5
		~	~	~	~	~	✓	✓
		3	4	4	5	8	5	11
5	{123457}	~ ,	~ ,	~ ,	~ ,	✓ ,	~ ,	~ ,
		1	1	1	3	2	2	7
		~	~	~	~	✓	~	✓
		3	4	4	5	8	5	11
6	{1234576}	~ ,						
	114343/0}	1	1	1	3	2	2	7
		~	~	~	~	~	~	✓
		3	4	4	5	8	5	11
7	{12345768}	~ ,	~ ,	~ ,	~ ,	✓ ,	~ ,	~ ,
ĺ	. 25 .57 50)	1	1	1	3	2	2	7
		~	~	✓	~	~	~	~

Penalty regime: 100%

Marks for this submission: 13.00/13.00.

Question **2**

Correct

Mark 5.00 out of 5.00

With reference to the previous question, complete the forwarding table for station 1 after Dijkstra's algorithm has converged.

Destination	Next hop
2	2
2	~
3	3
J	~
4	4
-	~
5	3
	~
6	2
	~
7	2
,	~
8	2
	~

Penalty regime: 100%

Correct

Marks for this submission: 5.00/5.00.

Question ${\bf 3}$

Correct

Mark 4.00 out of 4.00

Is Dijkstra's algorithm link-state or distance-vector routing?

Penalty regime: 100%

Select one:

- a. Link-state routing.
- b. Distance-vector routing.

Your answer is correct.

Correct

Marks for this submission: 4.00/4.00.

Information

The figure below shows a simple 3-node network topology, where the nodes are routers and the edges mark a link between nodes. The edges are weighted to show the cost of using the link. The following questions refer to this figure.

Question 4

Correct

Mark 6.00 out of 6.00

When the DV algorithm is applied to calculate the shortest-cost paths between any two nodes, every node keeps its routing table, consisting of its own distance vector and distance vectors received from its neighbours.

Please fill out the initial tables of every node; At time t0,

Node x's initial routing table is:

			Cost to	
		x	у	z
	x	0	9	1
From		~	~	~
		inf	inf	inf
	z	inf	inf	inf

Node y's initial routing table is:

			Cost to	
		x	у	z
	x	inf	inf	inf
From	,	9	0	2
	y	~	~	~
	z	inf	inf	inf

Node z's initial routing table is:

	=	1 miliai roa		
			Cost to	
		x	у	z
	x	inf	inf	inf
	у	inf	inf	inf
From	z	1	2	0
	_	~	~	~

Penalty regime: 100% per cell

Correct

Marks for this submission: 6.00/6.00.

Quiz: Routing: Attempt review

Question ${\bf 5}$

Correct

Mark 6.00 out of 6.00

Suppose at time t1, every node receives vectors from its two neighbours; then it updates its own distance vectors by the BF formula. **Please fill in the following blanks**;

For node x:

$$D_{x}(x) = 0;$$

$$D_x(y) = min\{c(x,y) + D_y(y), c(x,z) + D_z(y)\} = min\{9+0, 1+2\} = 3$$

~

$$D_x(z) = min\{c(x,z) + D_z(z), c(x,y) + D_y(z)\} = min\{1+0, 9+2\} = 1$$

v;

Now x's routing table is as follows:

			Cost to	
		х	у	z
	x	0	3	1
From	-	~	~	~
	у	9	0	2
	z	1	2	0

For node y:

$$D_y(x) = min\{c(y,x) + D_x(x), c(y,z) + D_z(x)\} =$$

v ;

$$D_{v}(y) = 0;$$

$$D_y(z) = min\{c(y,z) + D_z(z), c(y,x) + D_x(z)\} =$$

v ;

Now y's routing table is as follows:

		Cost to		
		x	у	z
	x	0	9	1
From	v	3	0	2
	,	~	~	~
	z	1	2	0

For node z:

$$D_z(x) = min\{c(z,x) + D_x(x), c(z,y) + D_y(x)\} =$$

v ;

$$\frac{D_{z}(y) = \min\{c(z,y) + D_{y}(y), c(z,x) + D_{x}(y)\} = }{2}$$

v ;

$$D_z(z) = 0;$$

Now z's routing table is as follows:

Cost to		
x	у	z

		Cost to		
		x	у	z
	x	0	9	1
	у	9	0	2
From	z	1	2	0
	Γ	~	~	~

Correct

Marks for this submission: 6.00/6.00.

Q	uestion 6
Co	orrect
М	lark 3.00 out of 3.00

Which nodes have changed their distance vectors?

Penalty regime: 33%, 66%, 100%

Select one or more:

a. x

C. Z

d. None

Your answer is correct.

Correct

Marks for this submission: 3.00/3.00.

Question **7**

Correct

Mark 6.00 out of 6.00

Suppose at time t2 node x sends its vector to nodes y and z; node y sends its vector to nodes x and z;

After node x receives node y's vector, it updates its own vector as follows:

$$D_{x}(x) = 0;$$

$$D_x(y) = min\{c(x,y) + D_y(y), c(x,z) + D_z(y)\} =$$

v;

$$D_x(z) = min\{c(x,z) + D_z(z), c(x,y) + D_y(z)\} =$$

v ;

Now x's routing table is as follows:

			Cost to	
		х	у	z
	x	0	3	1
From		~	~	~
	у	3	0	2
	z	1	2	0

After node y receives node x's vector, it updates its own vector as follows:

$$D_y(x) = min\{c(y,x) + D_x(x), c(y,z) + D_z(x)\} =$$

✓ ;

$$D_{v}(y) = 0;$$

$$D_y(z) = min\{c(y,z) + D_z(z), c(y,x) + D_x(z)\} =$$

v ;

Now y's routing table is as follows:

		Cost to		
		x	у	z
	x	0	3	1
From	v	3	0	2
	•	~	~	~
	z	1	2	0

After node z receives vectors from node x and y, it will update its own vector as follows:

$$D_z(x) = \min\{c(z,x) + D_x(x), c(z,y) + D_y(x)\} =$$

✓;

$$D_z(y) = min\{c(z,y) + D_y(y), c(z,x) + D_x(y)\} =$$

v;

$$D_z(z) = 0;$$

Now z's routing table is as follows:

		Cost to		
		x	у	z
From	x	0	3	1
	у	3	0	2
	Г			

		Cost to		
		x	у	z
	7	1	2	0
•	_	~	~	~

Correct

Marks for this submission: 6.00/6.00.
Question 8 Correct
Mark 2.00 out of 2.00
Which of the following link cost changes could cause a routing loop which leads to the count-to-infinity problem in the DV algorithm? Penalty regime: 33%, 66%, 100%
Select one:
a. when a link cost decreases
b. when a link cost increases
C. whenever there is a link cost change
Your answer is correct. Correct Marks for this submission: 2.00/2.00.
Question 9
Correct Mark 5.00 out of 5.00
Select the items that apply to an autonomous system. Penalty regime: 33%, 66%, 100%
Select one or more:
 a. A set of routers managed by a single organisation, and if it has a Autonomous System Number (ASN), it does not need to have a common routing protocol.
☐ b. A set of routers that in order to stay fully connected have Ethernet cables directly connecting all hosts and routers.
☑ c. None of these.
d. A set of routers that are owned by multiple organisations that in order to communicate use a common routing protocol.

Your answer is correct.

Correct

Marks for this submission: 5.00/5.00.

2/21, 10:23 AM	Quiz: Routing: Attempt review
Question 10	
Correct	
Mark 5.00 out of 5.00	
3	nomous system (AS) and buys 100,000,000 GB of internet traffic from a single Internet service to supply to their students at a fixed charge of \$5 per 50GB. What type of AS is the university?
Penalty regime: 33%, 66%, 100%	

Select one:

- a. A multi-homed AS as it connects thousands of students.
- b. A stub AS, as it only has one connection with one ISP.
- oc. A transit AS as the students run peer-to-peer applications allowing traffic to pass between the students
- Od. The university is not an AS as they are not an Internet Service Provider (ISP).

Your answer is correct.

Correct

Marks for this submission: 5.00/5.00.

Question 11

Correct

Mark 5.00 out of 5.00

What is a benefit of a multi-homed Autonomous System (AS) that is not available in a non-multihomed (stub) AS?

Select one:

- a. Remain connected to the Internet even when one of the connections fails.
- Correct. An additional benefit besides improved fault tolerance is that having multiple connections also allows to better balance traffic load, e.g. by routing excess traffic to a certain destination through an alternative path if the primary path becomes overloaded.
- b. Reduced fees for internet connection.
- c. Being able to send your own traffic to other AS.

Your answer is correct.

Correct

Marks for this submission: 5.00/5.00.

Match up the terminology with the correct definitions. AS = Autonomous System.

Penalty regime: 100%

Intra-AS routing is: routing within an AS Inter-AS routing is: routing from one AS to another AS

Your answer is correct.

Marks for this submission: 4.00/4.00.

Question 15	
Correct	
Mark 4.00 out of 4.00	
A router operates a routing protocol that collects knowledge required for routing from only adjacent routers. Select the items that are true for this routing protocol.	ne
Penalty regime: 33%, 66%, 100%	
Charly regimer 5574, 5574, 15576	
Select one or more:	
a. Static routing.	
☑ b. Decentralized routing.	~
✓ c. Dynamic (adaptive) routing.	~
d. Global (centralized) routing.	
Your answer is correct.	
Correct	
Marks for this submission: 4.00/4.00.	
Question 16	
Correct	
Mark 4.00 out of 4.00	
THAIR 4.00 GUL OF 4.00	
Suppose we have a network whose routers have a low processing and/or low memory capacity. What would be the best type of routing protocol?	
Penalty regime: 100%	
Select one:	
a. Link-state (Dijkstra's algorithm)	
b. Distance-vector (Bellman-Ford)	~
Your answer is correct.	
Correct	
Marks for this submission: 4.00/4.00.	

With respect to distance-vector routing algorithms, what is the count to infinity problem?

Penalty regime: 33%, 66%, 100%

Select one:

Mark 3.33 out of 5.00

- a. After a new path is found in the network, it takes a very long (infinite) time for other routers to learn about the new route.
- o b. Routers more than 10 hops away are considered infinitely away and are isolated from the rest of the network
- oc. After link cost increases, it could take a very long time for the algorithm to converge.
- \bigcirc d. Routers cannot count higher than 2^5 and so cannot count to infinity.

Your answer is correct.

Correct

Marks for this submission: 5.00/5.00. Accounting for previous tries, this gives **3.33/5.00**.

2/21, 10.2	S Alvi Quiz. Noturing. Attempt review	
Question 19	9	
Correct		
Mark 4.00 o	out of 4.00	
Routing	g Information Protocol (RIP) is limited to small networks because:	
Penalty	regime: 33%, 66%, 100%	
Select o	one or more:	
□ a.	None of these reasons.	
✓ b.	RIP has a large convergence time in large networks.	~
✓ c.	Every router and host can be no more than 15 hops away.	~
□ d.	RIP can not adapt to link cost change or errors such as failed links or routers.	
e.	RIP does not consider the count to infinity problem.	
Your an	nswer is correct.	
Correct		
Marks fo	or this submission: 4.00/4.00.	
Question 20	0	
Correct Mark 4.00 o	out of 4.00	
Wark 4.00 0	Jul 01 4.00	
What ar	re the benefits of using NAT (Network Address Translation)?	
	: 33%, 66%, 100%;	
Coloct o		
✓ a.	one or more: Local network can change ISP without changing addresses of devices inside.	~
		•
✓ b.	Devices inside the local network are not explicitly addressable by outside world.	•
✓ C.	Local network uses just one IP address as far as outside world is concerned.	•
d.	Local network can change addresses of devices inside without notifying outside world.	•

Your answer is correct.

Correct

Marks for this submission: 4.00/4.00.

OSPF is a link-state protocol and it runs:

Penalty regime: 33%, 66%, 100%

Select one:

a. Bellman-Ford algorithm

b. Dijkstra algorithm

o. Distance-Vector routing algorithm

d. Prim's algorithm

Your answer is correct.

Correct

Marks for this submission: 2.00/2.00.

Qı	uestion 23
Co	prrect
М	ark 2.00 out of 2.00
	BGP (Border Gateway Protocol) is an:
	Penalty regime: 33%, 66%, 100%
	Select one:
	a. Inter-AS routing protocol
	○ b. Intra-AS routing protocol
	Your answer is correct.
	Correct
	Marks for this submission: 2.00/2.00.
	■ Quiz: IPv4 Networking (practice copy)
	Jump to

Quiz: Error Detection, Correction, and Control Problems