

Contrôle de dynamique du solide

1 - Etude du mouvement d'une masse ponctuelle M

On considère un système mécanique représenté ci-dessous avec une masse ponctuelle en A (de masse M) à l'extrémité d'un système mécanique constitué de deux liaisons pivots :

- une liaison pivot en O et d'axe \vec{z} (angle de rotation : θ)
- une liaison pivot en O_1 et d'axe $\overrightarrow{x_1}$ (angle de rotation : ϕ)

 $OO_1 = L \text{ et } O_1A = R$

La partie fixe est liée au repère R $(O, \vec{x}, \vec{y}, \vec{z})$ La barre OO_1 (solide S_1) est liée au repère R_1 $(O, \overrightarrow{x_1}, \overrightarrow{y_1}, \overrightarrow{z_1})$ La barre O_1A (solide S_2) est liée au repère R_2 $(O_1, \overrightarrow{x_2}, \overrightarrow{y_2}, \overrightarrow{z_2})$

Questions

- 1) Réalisez les figures de changement de repère
- 2) Déterminez le vecteur rotation $\vec{\Omega}$ (S_2/R)

- 3) Déterminez la vitesse de O₁ $\vec{V}_{O_1 1/R}$ par dérivation. Vous l'exprimerez dans le repère R_1 ($O, \vec{x_1}, \vec{y_1}, \vec{z_1}$)
- 4) Déterminez l'accélération de O₁ $\vec{\Gamma}_{O_1 \ 1/R}$ par dérivation. Vous l'exprimerez dans le repère R_1 (O, $\overrightarrow{x_1}$, $\overrightarrow{y_1}$, $\overrightarrow{z_1}$)
- 5) Déterminez la vitesse de A $\vec{V}_{A\,2/R}$ par dérivation. Vous l'exprimerez dans le repère R_1 ($O, \vec{x_1}, \vec{y_1}, \vec{z_1}$)
- 6) Déterminez la vitesse de A $\vec{V}_{A\,2/R}$ par changement de point . Vous l'exprimerez dans le repère R_1 ($O, \vec{x_1}, \vec{y_1}, \vec{z_1}$)
- 7) Déterminez l'accélération de A $\vec{\Gamma}_{A\ 2/R}$ par dérivation. Vous l'exprimerez dans le repère R_1 ($O, \vec{x_1}, \vec{y_1}, \vec{z_1}$)

En fait O₁A est une tige de longueur l et une sphère de rayon r

- 8) Sachant que:
- le moment d'inertie d'un cylindre de **diamètre d** et de **longueur I** par rapport à un axe passant par son centre de gravité est $I_{\text{cylindre}} = \frac{m.l^2}{12} + \frac{m.d^2}{16}$
- le moment d'inertie de la sphère par rapport à un axe passant par son centre de gravité est $I_{sphère} = \frac{2M.r^2}{5}$

En déduire le moment d'inertie de la tige par rapport à son axe de rotation O_1x_1 . Justifiez vos calculs

Déterminez le moment d'inertie de l'ensemble $\{tige+sphère\}$ par rapport à son axe de rotation O_1x_1 . Justifiez vos calculs

2 - Cône et demi-sphère

Ci-contre est représenté un volume composé d'un cône et d'une demi-sphère.

On cherche à déterminer la matrice d'inertie de ce volume composé.

La base du cône a pour rayon R qui a pour hauteur H.

M₁ est la masse du cône.

La sphère est de rayon R et a une masse M₂

Questions

1) Précisez la forme de la matrice d'inertie er indiquant les termes qui sont nuls ou égaux . Justifiez.

- 2) Déterminez les termes de la matrice d'inertie du cône en O en détaillant les calculs.
- 3) Déterminez les termes de la matrice d'inertie de la demi-sphère en O en détaillant les calculs.
- 4) En déduire la matrice d'inertie du volume composé (cône + demi-sphère)

Rappel: Eléments de volumes pour calculer les intégrales

Coordonnées cartésiennes $dm = \rho dx dy dz$	Coordonnées cylindriques $dm = \rho R dR d\theta dz$	Coordonnées sphériques $dm = \rho R^2 \sin(\phi) dR d\theta d\phi$
dz dx dm dx	$\frac{dR}{dm} = \frac{dR}{R} R d\theta$	$dR = R\sin(\phi)d\theta$ $d\theta = Rd\phi$ $d\phi = Rd\phi$
Remarque: $x, y, z \in [-\infty\infty]$	et $R \in [0\infty]$ $\theta \in [0]$	AND
θ : Longitude	θ : Axe parallèle à $x \qquad \phi$: Axe parallèle à z	

« Rotation plan xy »

Rappel:

Volume d'une sphère de rayon R : $V_{sphère} = \frac{4 \pi R^3}{3}$

Volume d'un cône de rayon R et de hauteur H : $V_{cône} = \frac{\pi.H.R^2}{3}$

 ϕ : Colatitude

« Rotation +z à -z »