Interaction styles

- Command language
- Menu selection
- Form fill-in
- · Natural language
- Direct manipulation

Menu selection

- the computer displays a list of items from which the user selects
 - advantages:
 - · reduces keystrokes
 - · recognition vs. recall
 - accurate
 - · structures decision making
 - disadvantages:
 - · requires screen space
 - · complexity of several levels of menus
 - · slows expert users
 - difficult to find appropriate terminology

Menu selection

- Use task semantics to organize menus
 - binary menu
 - multiple-item menu
 - multiple-selection menu
 - tree structure
 - acyclic and cyclic networks
 - pull-down and pop-up menus
- · depth vs. breadth
 - ~ 4-8 items per menu
 - no more than 3-4 levels
 - breadth preferred over depth

Menu selection

- · meaningful grouping of items
 - create groups of logically similar items
 - form groups that cover all possibilities
 - make sure that items are non-overlapping
 - use familiar terminology but ensure that items are distinct from one another
- · meaningful presentation sequence
 - time
 - numerical ordering
 - physical properties
 - alphabetic
 - grouping of related items
 - most frequently used first
 - most important items first

Menu selection

- · Phrasing of menu items
 - short menu items
 - begin with a keyword
 - consistent grammar and terminology
 - ensure items are distinct from one another
- type-ahead, jump-ahead, or other short-cuts
- jump to previous or main menu

Menu selection

- graphic layout and design issues
 - titles
 - some prefer centered titles but left justification is acceptable
 - item placement
 - typically left justified with the item number or letter preceding the description
 - blank lines are used to separate groups of items
 - instructions
 - should be identical in each menu and placed in the same position
 - error messages
 - should appear in a consistent position and have a consistent structure
 - status reports
 - should appear in a consistent position and have a consistent structure

Form fill-in

- the user provides data in labeled fields clustered on one or more screens
 - advantages:
 - simplifies data entry
 - fast for specific types of data
 - all information is visible
 - modest training
 - disadvantages:
 - · consumes screen space
 - · requires typing skills

Form fill-in

- List and combo boxes
- coded fields
 - telephone numbers
 - SIN numbers
 - times
 - dates
 - dollar amounts

Form fill-in

- Design guidelines
 - meaningful title
 - comprehensible instructions
 - logical grouping and sequencing of fields
 - visually appealing layout of the form
 - familiar field labels
 - consistent terminology and abbreviations
 - visible space and boundaries for data-entry fields
 - convenient cursor movement
 - error correction for individual characters and entire fields
 - error prevention
 - error messages for unacceptable values
 - optional fields clearly marked
 - explanatory messages for fields
 - completion signal

Command language

- Type in specific commands
- advantages:
 - flexibility
 - supports user initiative
 - appeals to power users
 - potentially rapid for complex tasks
 - supports macro capabilities
- disadvantages:
 - requires substantial training and memorization
 - difficult to retain
 - poor error handling

Natural language

- Interact through users' own natural language
- advantages:
 - relieves burden of learning syntax
- disadvantages:
 - may require more keystrokes
 - requires clarification dialog
 - unpredictable
 - may not show context

Natural language

• The man hit the boy with the stick

Direct manipulation

- Create visual representations of objects and actions, then with pointing, zooming and panning the user can rapidly perform operations
 - advantages:
 - · visually presents the task
 - · easy to learn
 - · easy to retain
 - · errors can be avoided
 - · encourages exploration
 - high subjective satisfaction
 - disadvantages:
 - requires graphics display/pointing devices
 - · more programming effort
 - · hard to record history or write macros
 - · some tasks difficult

Direct manipulation

- Design guidelines
 - represent objects or actions in a familiar and recognizable manner
 - limit the number of different icons
 - make the icon stand out from its background
 - consider 3-D icons, they are eye-catching but also can be distracting
 - ensure that a single selected icon is clearly visible when surrounded by unselected icons
 - make each icon distinctive from every other icon
 - create "families" of icons
 - design the movement animation
 - add detailed information (ie. shading to show size of a file)
 - explore the use of combinations of icons to create new objects of actions

Blend styles

• Form fill-in with drop-down menus

Choosing an interaction style

- if lots of data entry
 - form fill-in or commands
- if a paper form exists
 - form fill-in
- if familiar notation exists
 - commands
- if a natural visual representation exists or there are a reasonable number of objects/actions in the domain
 - · direct manipulation
- if multiple decisions are required or selections from a large unfamiliar state space
 - menu selection, direct manipulation, or commands
- if poor keyboard skills
 - menu selection, direct manipulation
- if exploration and intuition are important
 - · direct manipulation

Choosing an interaction style

- if novice
 - menu selection or direct manipulation
- if modest knowledge of task domain with some computer skills
 - menu selection, direct manipulation or form fill-in
- if intermittent knowledge
 - menu selection, direct manipulation, form fill-in, commands with one-line help or pocket guide, or natural language
- if frequent user
 - commands with macros, menu selection with type-ahead, direct manipulation with shortcuts, or form fill-in with dense display

Choosing an interaction style

- if novice
 - · meaningful labels
 - · informative feedback
 - slower pace
 - introductory tutorial/demo
 - · limited subset of actions and functionality
- if knowledgeable intermittent
 - · modest use of labels
 - · modest use of informative feedback
 - · moderate pace
 - · on-line help to explain objects and actions
- if frequent user
 - · short, sparse or no labels
 - short, sparse or no informative feedback
 - faster pace
 - · on-line reference with elaborate search mechanisms
 - abbreviations, shortcuts, user-defined macros

The WIMP interface

· Windows

- areas of the screen that behave as if they were independent terminals
- can contain text or graphics, can be moved or resized
- random, tiled or cascading

Icons

- a small picture used to represent a closed window
- waste paper basket, files, programs, etc.

Menus

 a choice of operations or services that can be performed by the system at a given time

Pointers

- a cursor that points and selects objects or actions through an input device

Input Devices

- "a device that, together with the appropriate software, transforms information from the user into data that a computer application can process"
 - match the physiological and psychological characteristics of the users, their training and their expertise
 - is appropriate for the tasks that are to be performed
 - suitable for the intended work and environment

Keyboards

- · Discrete entry device
- · Types of keyboards
 - qwerty keyboard
 - alphabetic keyboard
 - dvorak keyboard
 - layout arranged based on the frequency of usage of letters and the frequency of letter patterns and sequences in the English language
 - all vowels and most frequently used consonants are on the second or 'home' row so ~70% of common words are typed on this row alone
 - tapping with fingers on alternate hands (particularly the index fingers) rather than repatitive typing with one finger
 - chord keyboard
 - several keys must be pressed at one to enter a single character
 - · small number of keys needed

Pointing devices

- · Pointing tasks
 - select
 - position (choose a point in 1-, 2- or 3-D space)
 - orient (choose a direction in 1-, 2- or 3-D space)
 - path (selects a series of position and orient operations)
 - quantify (specifies a numeric value)
 - text (indicates the location of an insertion, deletion, or change)

Direct control pointing devices

- light pen
 - an early device that enabled users to point to a spot on a screen and perform a select, position, or any of the six tasks
 - can cause arm fatigue
 - users' hands obscure part of the screen
 - user has to remove their hands from the keyboard to use the light pen
- touchscreen
 - interact with the screen by touching it with a finger
 - similar disadvantages as above
 - difficulty of precise selections and smudging on screen
- stylus entry on handheld computers
 - confortable because of it's similarity to a pen

Indirect control pointing devices

- Mouse
 - comfortable, buttons are easily pressed, long motions can be rapid, positioning precise
 - takes up desk space and the user must remove their hands from the keyboard
- trackball
 - takes up less space, preferred in high-stress environments (air-traffic control or video games)
- joystick
 - absolute
 - isometric
- trackpoint
- touchpad
- · digitizing tablet

Fitts' Law

- Prediction of movement time in human-computer interfaces
- ID = log2(2A/W)
 - ID index of difficulty
 - A distance to move
 - W width of the target
- MT movement time
 - MT is a linear function of ID
 - -MT = a + bID

- IP = ID/MT bits/sec
- higher the IP, higher the rate of human performance

Serial tapping task - Fitts 1954

- A & W varied over four levels
 - easiest A = 1" & W = 1", $ID = log_2(2) = 1$ bit
 - hardest A = 16" & W = 0.25", $ID = log_2(128) = 7$ bits

Variation for cursor manipulation on a screen

Discrete task - a single movement toward a target from a home position

Building a Fitts' Law model

- Slope (b) and intercept (a) coefficients are determined through empirical tests
 - controlled experiment using a group of subjects and one or more input devices
 - tasks are designed to cover a range of difficulties (varying A & W)
- measurements are aggregated across subjects resulting in one data point for each task condition
- Perform a test of correlation and linear regression on the MT-ID points
 - a high r suggests the model provides a good description of observed behaviour
 - correlations above .900 are considered very high

Refinements to Fitts' Law

- Welford
 - $ID = log_2(A/W + 0.5)$
- Shannon
 - $ID = \log_2(A/W + 1)$
- Speed/Accuracy tradeoff
 - adjust target width based on the distribution on "hits" (selection coordinates) for each target
 - We effective target width
 - target width is adjusted depending on the error rate