

Distributed Node Coloring for Directed Graphs

Bachelorarbeit, Betreuer: Fabian Fuchs, Roman Prutkin

Manuel Schweigert | 6. Juni 2014

INSTITUT FÜR THEORETISCHE INFORMATIK

- Knotenfärbung klassisch
- Verteilte Knotenfärbung
- Kommunikationsmodelle (SINR, Congest)

- Knoten mit Sendereichweite

- Knoten mit Sendereichweite
- Bisher immer uniform

- Knoten mit Sendereichweite
 - Bisher immer uniform
 - Resultiert in einem ungerichteten Kommunikationsgraph
 - Szenario: verschieden starke Sendeleistung
 - Resultat: gerichteter
 Kommunikationsgraph

- Knoten mit Sendereichweite
- Bisher immer uniform
- Resultiert in einem ungerichteten Kommunikationsgraph
- Szenario: verschieden starke Sendeleistung
- Resultat: gerichteter
 Kommunikationsgraph

Kommunikationsgraph

- Knoten mit Sendereichweite
- Bisher immer uniform
- Resultiert in einem ungerichteten Kommunikationsgraph
- Szenario: verschieden starke Sendeleistung
- Resultat: gerichteter
 Kommunikationsgraph

6. Juni 2014

Gliederung

- Einführung
- Definitionen
- Algorithmen
 - Mit Initialisierung
 - Ohne Initialisierung

Definitionen

- Untere Schranke
- Experiment
- Fazit

Definitionen

- Δ: maximaler Eingangsgrad
- valide Knoten-Färbung im gerichteten Graph: Nachbarn eingehender Kanten haben andere Farbe als Knoten

- D_v von v: Menge der Knoten u, sodass \exists Kante mit $(u, v) \in E$ aber $(v, u) \notin E$
- I: Länge des längsten dominierenden Pfades im Graph

Grundidee:

- In jeder Runde:
- Jeder Knoten wählt sich zufällig eine Farbe
- Wenn konfliktfrei ⇒ "reserviere" Farbe und terminiere
- Nachbarknoten respektieren reservierte Farben in der Zukunf

Untere Schranke

Grundidee:

- In jeder Runde:
- Jeder Knoten wählt sich zufällig eine Farbe
- Wenn konfliktfrei ⇒ "reserviere" Farbe und terminiere
- Nachbarknoten respektieren reservierte Farben in der Zukunft

Grundidee:

- In jeder Runde:
- Jeder Knoten wählt sich zufällig eine Farbe
- Wenn konfliktfrei ⇒ "reserviere" Farbe und terminiere
- Nachbarknoten respektieren reservierte Farben in der Zukunft

Grundidee:

- In jeder Runde:
- Jeder Knoten wählt sich zufällig eine Farbe
- Wenn konfliktfrei ⇒ "reserviere" Farbe und terminiere
- Nachbarknoten respektieren reservierte Farben in der Zukunft

Skizze

- Finde dominierende Knoten (D_{ν})

Skizze

- Finde dominierende Knoten (D_v)
- Hauptschleife
 - Mit Wahrscheinlichkeit 1/2 setze aus
 - Wähle zufällige Farbe von $\Delta + 1$ Farben
 - Broadcaste die Farbe an alle Nachbarn
 - Wenn kein Nachbar die gleiche Farbe hat und alle Knoten in D_v fertig sind
 - sende die gewählte Farbe als finale Farbe und terminiere

Skizze

- Finde dominierende Knoten (D_v)
- Hauptschleife
 - Mit Wahrscheinlichkeit 1/2 setze aus
 - Wähle zufällige Farbe von $\Delta + 1$ Farben
 - Broadcaste die Farbe an alle Nachbarn
 - Wenn kein Nachbar die gleiche Farbe hat und alle Knoten in D_v fertig sind
 - sende die gewählte Farbe als finale Farbe und terminiere

Skizze

- Finde dominierende Knoten (D_v)
- Hauptschleife
 - Mit Wahrscheinlichkeit 1/2 setze aus
 - Wähle zufällige Farbe von $\Delta + 1$ Farben
 - Broadcaste die Farbe an alle Nachbarn
 - Wenn kein Nachbar die gleiche Farbe hat und alle Knoten in D_v fertig sind
 - sende die gewählte Farbe als finale Farbe und terminiere

Skizze

- Finde dominierende Knoten (D_v)
- Hauptschleife
 - Mit Wahrscheinlichkeit 1/2 setze aus
 - Wähle zufällige Farbe von $\Delta + 1$ Farben
 - Broadcaste die Farbe an alle Nachbarn
 - Wenn kein Nachbar die gleiche Farbe hat und alle Knoten in D_v fertig sind
 - sende die gewählte Farbe als finale Farbe und terminiere

Skizze

- Finde dominierende Knoten (D_{ν})
- Hauptschleife
 - Mit Wahrscheinlichkeit 1/2 setze aus
 - Wähle zufällige Farbe von $\Delta + 1$ Farben
 - Broadcaste die Farbe an alle Nachbarn
 - Wenn kein Nachbar die gleiche Farbe hat und alle Knoten in D_v fertig sind
 - sende die gewählte Farbe als finale Farbe und terminiere

Subgraph-Hierarchie:

Abbildung: Subgraph G_1 , alle nicht-dominierten Knoten

Algorithmen

Subgraph-Hierarchie:

Abbildung: Subgraph G₂, alle Knoten, die nur aus Knoten aus G₁ dominiert werden

Algorithmen

Definitionen

Subgraph-Hierarchie:

Abbildung: Subgraph G_3 , alle Knoten, die nur aus Knoten aus G_2 dominiert werden

Algorithmen

Definitionen

Subgraph-Hierarchie:

Abbildung: Subgraph $G_4 = G$, alle Knoten, die nur aus Knoten aus G_3 dominiert werden

Untere Schranke

Algorithmen

Definitionen

- Subgraph-Hierarchie
- Finde kleinstes / sodass G_{/+1} = G
- Zeige induktiv, dass Färbung von $G_k \to G_{k+1}$ max. $O(\log n)$ benötigt (mit hoher Wahrscheinlichkeit)
- Laufzeit setzt sich aus Initialisierung $(O(\Delta))$ und $(I+1) \cdot O(\log n)$ zusammen

Untere Schranke

 \Rightarrow Laufzeit $O(\Delta + I \log n)$

Einführung

Algorithmen

Definitionen

Experiment

- Subgraph-Hierarchie
- Finde kleinstes I sodass $G_{I+1} = G$
- Zeige induktiv, dass Färbung von $G_k \to G_{k+1}$ max. $O(\log n)$ benötigt (mit hoher Wahrscheinlichkeit)
- Laufzeit setzt sich aus Initialisierung $(O(\Delta))$ und $(I+1) \cdot O(\log n)$ zusammen

Untere Schranke

 \Rightarrow Laufzeit $O(\Delta + l \log n)$

Einführung

Algorithmen

Definitionen

- Subgraph-Hierarchie
- Finde kleinstes I sodass $G_{I+1} = G$
- Zeige induktiv, dass Färbung von $G_k \to G_{k+1}$ max. $O(\log n)$ benötigt (mit hoher Wahrscheinlichkeit)
- Laufzeit setzt sich aus Initialisierung $(O(\Delta))$ und $(I+1) \cdot O(\log n)$ zusammen

$$\Rightarrow$$
 Laufzeit $O(\Delta + l \log n)$

10/19

- Subgraph-Hierarchie
- Finde kleinstes I sodass $G_{I+1} = G$
- Zeige induktiv, dass Färbung von $G_k \to G_{k+1}$ max. $O(\log n)$ benötigt (mit hoher Wahrscheinlichkeit)
- Laufzeit setzt sich aus Initialisierung $(O(\Delta))$ und $(I+1) \cdot O(\log n)$ zusammen
- \Rightarrow Laufzeit $O(\Delta + l \log n)$

- Betrachte Knoten $v \in G_{k+1}$, der in der letzten Runde in einem Konflikt war und Münzwurf gewinnt
- Wahrscheinlichkeit für v wieder im Konflikt ist $< (\Delta + 1 |F_v|) \frac{1}{2(\Delta + 1 |F_v|)} = \frac{1}{2}$
- $\Rightarrow v$ terminiert mit Wahrscheinlichkeit $\geq (1/2 \cdot 1/2) = 1/4$
- In Runde *i* hat *v* mit Wahrscheinlichkeit $\leq (1 1/4)^i$ nicht terminiert
- ⇒ Nach $(c+1)4\log n$ Runden hat v mit Wahrscheinlichkeit $\leq 1 1/n^c$ nicht terminiert

- Betrachte Knoten $v \in G_{k+1}$, der in der letzten Runde in einem Konflikt war und Münzwurf gewinnt
- Wahrscheinlichkeit für *v* wieder im Konflikt ist

$$\leq (\Delta + 1 - |F_{\nu}|) \frac{1}{2(\Delta + 1 - |F_{\nu}|)} = \frac{1}{2}$$

- $\Rightarrow v$ terminiert mit Wahrscheinlichkeit $\geq (1/2 \cdot 1/2) = 1/4$
- In Runde *i* hat *v* mit Wahrscheinlichkeit $\leq (1 1/4)^i$ nicht terminiert
- ⇒ Nach $(c+1)4\log n$ Runden hat v mit Wahrscheinlichkeit $\leq 1 1/n^c$ nicht terminiert

- Betrachte Knoten $v \in G_{k+1}$, der in der letzten Runde in einem Konflikt war und Münzwurf gewinnt
- Wahrscheinlichkeit für v wieder im Konflikt ist $< (\Delta + 1 + |F|)$

$$\leq (\Delta + 1 - |F_{\nu}|) \frac{1}{2(\Delta + 1 - |F_{\nu}|)} = \frac{1}{2}$$

- lacksquare \Rightarrow v terminiert mit Wahrscheinlichkeit \geq $\left(1/2\cdot1/2\right)=1/4$
- In Runde *i* hat *v* mit Wahrscheinlichkeit $\leq (1 1/4)^i$ nicht terminiert
- ⇒ Nach $(c+1)4\log n$ Runden hat v mit Wahrscheinlichkeit $\leq 1 1/n^c$ nicht terminiert

- Betrachte Knoten $v \in G_{k+1}$, der in der letzten Runde in einem Konflikt war und Münzwurf gewinnt
- Wahrscheinlichkeit für v wieder im Konflikt ist

$$\leq (\Delta + 1 - |F_{\nu}|) \frac{1}{2(\Delta + 1 - |F_{\nu}|)} = \frac{1}{2}$$

- lacksquare \Rightarrow v terminiert mit Wahrscheinlichkeit \geq $(1/2 \cdot 1/2) = 1/4$
- In Runde *i* hat *v* mit Wahrscheinlichkeit $\leq (1 1/4)^i$ nicht terminiert
- ⇒ Nach $(c+1)4\log n$ Runden hat v mit Wahrscheinlichkeit $\leq 1 1/n^c$ nicht terminiert

- Betrachte Knoten $v \in G_{k+1}$, der in der letzten Runde in einem Konflikt war und Münzwurf gewinnt
- Wahrscheinlichkeit für v wieder im Konflikt ist

$$\leq (\Delta + 1 - |F_v|) \frac{1}{2(\Delta + 1 - |F_v|)} = \frac{1}{2}$$

- \Rightarrow v terminiert mit Wahrscheinlichkeit $\geq (1/2 \cdot 1/2) = 1/4$
- In Runde i hat v mit Wahrscheinlichkeit $\leq (1-1/4)^i$ nicht terminiert
- $\blacksquare \Rightarrow \text{Nach } (c+1)4 \log n \text{ Runden hat } v \text{ mit Wahrscheinlichkeit}$ $< 1 - 1/n^c$ nicht terminiert

Überlegung

- Initialisierung beansprucht $O(\Delta)$ Broadcasts
- Versuch: Algorithmus ohne Initialisierung
- Problem: Knoten kann sich nicht mehr sicher sein, ob er fertig ist oder nicht
- Resultat: Nachbarn respektieren und Farben halten

Überlegung

- Initialisierung beansprucht $O(\Delta)$ Broadcasts
- Versuch: Algorithmus ohne Initialisierung

Überlegung

- Initialisierung beansprucht $O(\Delta)$ Broadcasts
- Versuch: Algorithmus ohne Initialisierung
- Problem: Knoten kann sich nicht mehr sicher sein, ob er fertig ist oder nicht

12/19

Überlegung

- Initialisierung beansprucht $O(\Delta)$ Broadcasts
- Versuch: Algorithmus ohne Initialisierung
- Problem: Knoten kann sich nicht mehr sicher sein, ob er fertig ist oder nicht
- Resultat: Nachbarn respektieren und Farben halten

Skizze

Einführung

- Hauptschleife

Untere Schranke

Algorithmen

Experiment

Skizze

- Hauptschleife
 - Behalte die Farbe aus der letzten Runde (initial "0")
 - lacktriangle Broadcaste aktuelle Farbe (Nachbarfarben dieser Runde $\rightarrow T$)
 - Bei Konflikt
 - Mit Wahrscheinlichkeit 1 /2 wähle 0" als Earhe, sonst
 - Wähle neue Farbe aus $[2\Delta + 1] \setminus 7$

Skizze

- Hauptschleife
 - Behalte die Farbe aus der letzten Runde (initial "0")
 - Broadcaste aktuelle Farbe (Nachbarfarben dieser Runde $\rightarrow T$)
 - Bei Konflikt

Skizze

- Hauptschleife
 - Behalte die Farbe aus der letzten Runde (initial "0")
 - Broadcaste aktuelle Farbe (Nachbarfarben dieser Runde $\rightarrow T$)
 - Bei Konflikt
 - Mit Wahrscheinlichkeit 1/2 wähle "0" als Farbe, sonst
 - Nähle neue Farbe aus $[2\Delta + 1] \setminus T$

Skizze

- Hauptschleife
 - Behalte die Farbe aus der letzten Runde (initial "0")
 - **Broadcaste aktuelle Farbe (Nachbarfarben dieser Runde** \rightarrow *T*)
 - Bei Konflikt
 - Mit Wahrscheinlichkeit 1/2 wähle "0" als Farbe, sonst
 - Wähle neue Farbe aus $[2\Delta + 1] \setminus T$

Skizze

- Hauptschleife
 - Behalte die Farbe aus der letzten Runde (initial "0")
 - Broadcaste aktuelle Farbe (Nachbarfarben dieser Runde $\rightarrow T$)
 - Bei Konflikt
 - Mit Wahrscheinlichkeit 1/2 wähle "0" als Farbe, sonst
 - Wähle neue Farbe aus $[2\Delta + 1] \setminus T$

- Gleiche Graph-Hierarchie
- Statt terminiertem Knoten beweisen wir, dass Knoten "stabil" werden
- Induktionsschritt weitestgehend gleich

Algorithmen

 Farben müssen erweitert werden, da alle Nachbarfarben als "final" angesehen werden

Untere Schranke

Laufzeit: O(I log n)

Einführung

Definitionen

Experiment

- Gleiche Graph-Hierarchie
- Statt terminiertem Knoten beweisen wir, dass Knoten "stabil" werden
- Induktionsschritt weitestgehend gleich

Algorithmen

 Farben müssen erweitert werden, da alle Nachbarfarben als "final" angesehen werden

Untere Schranke

Laufzeit: O(I log n)

Einführung

Definitionen

Experiment

- Gleiche Graph-Hierarchie
- Statt terminiertem Knoten beweisen wir, dass Knoten "stabil" werden
- Induktionsschritt weitestgehend gleich

Algorithmen

Einführung

- Gleiche Graph-Hierarchie
- Statt terminiertem Knoten beweisen wir, dass Knoten "stabil" werden
- Induktionsschritt weitestgehend gleich
- Farben müssen erweitert werden, da alle Nachbarfarben als "final" angesehen werden
- Laufzeit: O(I log n)

- Gleiche Graph-Hierarchie
- Statt terminiertem Knoten beweisen wir, dass Knoten "stabil" werden
- Induktionsschritt weitestgehend gleich
- Farben müssen erweitert werden, da alle Nachbarfarben als "final" angesehen werden
- Laufzeit: O(I log n)

- Für allgemeine Färbealgorithmen mit $O(\Delta)$ Farben:
- Deterministische Algorithmen haben untere Schranke $\Omega(I)$ (Kritischer Pfad)
- Randomisierte Algorithmen haben untere Schranke $\Omega(\min(I, \log n))$
- Beweisidee:
 - Betrachte wie ein Konflikt propagiert
 - Konfliktwahrscheinlichkeit kann erst nach $\Omega(\log n)$ Schritten "klein $(<1-1/n^c \cdot c>1)$ sein

- Für allgemeine Färbealgorithmen mit $O(\Delta)$ Farben:
- Deterministische Algorithmen haben untere Schranke $\Omega(I)$ (Kritischer Pfad)

15/19

- Für allgemeine Färbealgorithmen mit $O(\Delta)$ Farben:
- Deterministische Algorithmen haben untere Schranke $\Omega(I)$ (Kritischer Pfad)
- Randomisierte Algorithmen haben untere Schranke $\Omega(\min(I, \log n))$
- Beweisidee:
 - Betrachte wie ein Konflikt propagiert ■ Konfliktwahrscheinlichkeit kann erst nach $\Omega(\log n)$ Schritten "klein" $(\leq 1 - 1/n^c, c > 1)$ sein

- Für allgemeine Färbealgorithmen mit $O(\Delta)$ Farben:
- Deterministische Algorithmen haben untere Schranke $\Omega(I)$ (Kritischer Pfad)
- Randomisierte Algorithmen haben untere Schranke $\Omega(\min(I, \log n))$
- Beweisidee:

- Für allgemeine Färbealgorithmen mit $O(\Delta)$ Farben:
- Deterministische Algorithmen haben untere Schranke $\Omega(I)$ (Kritischer Pfad)
- Randomisierte Algorithmen haben untere Schranke $\Omega(\min(I, \log n))$
- Beweisidee:
 - Betrachte wie ein Konflikt propagiert

- Für allgemeine Färbealgorithmen mit $O(\Delta)$ Farben:
- Deterministische Algorithmen haben untere Schranke $\Omega(I)$ (Kritischer Pfad)
- Randomisierte Algorithmen haben untere Schranke $\Omega(\min(I, \log n))$
- Beweisidee:
 - Betrachte wie ein Konflikt propagiert

- Für allgemeine Färbealgorithmen mit $O(\Delta)$ Farben:
- Deterministische Algorithmen haben untere Schranke $\Omega(I)$ (Kritischer Pfad)
- Randomisierte Algorithmen haben untere Schranke $\Omega(\min(I, \log n))$
- Beweisidee:
 - Betrachte wie ein Konflikt propagiert

- Für allgemeine Färbealgorithmen mit $O(\Delta)$ Farben:
- Deterministische Algorithmen haben untere Schranke $\Omega(I)$ (Kritischer Pfad)
- Randomisierte Algorithmen haben untere Schranke $\Omega(\min(I, \log n))$
- Beweisidee:
 - Betrachte wie ein Konflikt propagiert
 - Konfliktwahrscheinlichkeit kann erst nach $\Omega(\log n)$ Schritten "klein" $(\leq 1 1/n^c, c > 1)$ sein

- Für allgemeine Färbealgorithmen mit $O(\Delta)$ Farben:
- Deterministische Algorithmen haben untere Schranke $\Omega(I)$ (Kritischer Pfad)
- Randomisierte Algorithmen haben untere Schranke $\Omega(\min(I, \log n))$
- Beweisidee:
 - Betrachte wie ein Konflikt propagiert
 - Konfliktwahrscheinlichkeit kann erst nach $\Omega(\log n)$ Schritten "klein" $(\leq 1 - 1/n^c, c > 1)$ sein

Definitionen

Algorithmen

Untere Schranke

Experiment

Experiment

- Simulation von Kommunikationsgraphen
- 100 bis 10.000 Knoten
- $X, Y \in [0, 1]$
- Sendereichweiten pro Graphinstanz:
 - Schnitt von $\frac{1}{200}$ bis $\frac{1}{5}$
 - Maximale Abweichung von ³/₂ bis 8
- Über 50.000 Simulationen
- Gleichverteilung von n und den Sendereichweiten

- / steigt sublinear mit n an
- Aber: \triangle steigt linear mit n an und l steigt ebenfalls sublinear mit \triangle an
- lacktriangle Mit festem n verhält sich l gegenüber Δ genauso wie mit allen n
- ightharpoonup ightharpoonup Abhängigkeit zu n bedingt durch höheres Δ

Algorithmen

Definitionen

Einführung

- / steigt sublinear mit n an
- Aber: Δ steigt linear mit n an und l steigt ebenfalls sublinear mit Δ an
- lacktriangle Mit festem n verhält sich l gegenüber Δ genauso wie mit allen n
- lacktriangle ightarrow Abhängigkeit zu n bedingt durch höheres Δ

Algorithmen

Definitionen

Einführung

6. Juni 2014

- I steigt sublinear mit n an
- Aber: Δ steigt linear mit *n* an und *l* steigt ebenfalls sublinear mit Δ an
- Mit festem n verhält sich l gegenüber Δ genauso wie mit allen n

Algorithmen

Einführung

Plot über n > 8000

Definitionen

I steigt sublinear mit n an

- Aber: Δ steigt linear mit n an und l steigt ebenfalls sublinear mit Δ an
- lacktriangle Mit festem n verhält sich l gegenüber Δ genauso wie mit allen n
- lacksquare \Rightarrow Abhängigkeit zu n bedingt durch höheres Δ

- I steigt mit der Sendereichweite (bis die Fläche abgedeckt ist)

Manuel Schweigert - Distributed Node Coloring for Directed Graphs

Einführung

Experiment

6. Juni 2014

900

- I steigt mit der Sendereichweite (bis die Fläche abgedeckt ist)
- lacktriangle Eine höhere Sendereichweite bewirkt ebenfalls ein höheres Δ
- Im Experiment bewirkt die h\u00f6here durchschnittliche Sendereichweite eine h\u00f6here Varianz
- Interpretation: I steigt mit der Dichte des Graphen (Δ) sowie der Varianz der Sendereichweiten

Einführung Definitionen Algorithmen Untere Schranke Experiment Fazit

- I steigt mit der Sendereichweite (bis die Fläche abgedeckt ist)
- Eine höhere Sendereichweite bewirkt ebenfalls ein höheres Δ
- Im Experiment bewirkt die höhere durchschnittliche Sendereichweite eine höhere Varianz

Definitionen

Algorithmen

Untere Schranke

Experiment

900

- / steigt mit der Sendereichweite (bis die Fläche abgedeckt ist)
- Eine höhere Sendereichweite bewirkt ebenfalls ein höheres Δ
- Im Experiment bewirkt die h\u00f6here durchschnittliche Sendereichweite eine h\u00f6here Varianz
- Interpretation: I steigt mit der Dichte des Graphen (Δ) sowie der Varianz der Sendereichweiten

inführung Definitionen Algorithmen Untere Schranke **Experiment** Fazit

- Algorithmen können unidirektionale Kanten ohne viel Komplexität berücksichtigen
- Zwei Algorithmen vorgestellt
 - $\Delta + 1$ Färbung in $O(\Delta + l \log n)$ (mit Initialisierung) und
 - $2\Delta + 1$ Färbung in $O(l \log n)$
- Mit den vorgestellten Algorithmen k\u00f6nnen realit\u00e4tsnahe Szenarien abgedeckt werden
- Je größer die Sendereichweitenvarianz, um so größer wird / und somit die erwartete Laufzeit
- Ausblick: Differenz zwischen unteren Schranken und Laufzeiten verbessern

Manuel Schweigert - Distributed Node Coloring for Directed Graphs

Fazit

- Algorithmen können unidirektionale Kanten ohne viel Komplexität berücksichtigen
- Zwei Algorithmen vorgestellt:
 - $\Delta + 1$ Färbung in $O(\Delta + l \log n)$ (mit Initialisierung) und
 - $2\Delta + 1$ Färbung in $O(l \log n)$
- Mit den vorgestellten Algorithmen k\u00f6nnen realit\u00e4tsnahe Szenarien abgedeckt werden
- Je größer die Sendereichweitenvarianz, um so größer wird / und somit die erwartete Laufzeit
- Ausblick: Differenz zwischen unteren Schranken und Laufzeiten verbessern

- Algorithmen können unidirektionale Kanten ohne viel Komplexität berücksichtigen
- Zwei Algorithmen vorgestellt:
 - $\Delta + 1$ Färbung in $O(\Delta + l \log n)$ (mit Initialisierung) und
 - $2\Delta + 1$ Färbung in $O(l \log n)$
- Mit den vorgestellten Algorithmen k\u00f6nnen realit\u00e4tsnahe Szenarien abgedeckt werden
- Je größer die Sendereichweitenvarianz, um so größer wird / und somit die erwartete Laufzeit
- Ausblick: Differenz zwischen unteren Schranken und Laufzeiten verbessern

- Algorithmen können unidirektionale Kanten ohne viel Komplexität berücksichtigen
- Zwei Algorithmen vorgestellt:
 - $\Delta + 1$ Färbung in $O(\Delta + l \log n)$ (mit Initialisierung) und
 - \bullet 2 Δ + 1 Färbung in $O(l \log n)$
- Mit den vorgestellten Algorithmen können realitätsnahe Szenarien abgedeckt werden
- Je größer die Sendereichweitenvarianz, um so größer wird / und somit die erwartete Laufzeit

- Algorithmen können unidirektionale Kanten ohne viel Komplexität berücksichtigen
- Zwei Algorithmen vorgestellt:
 - $\Delta + 1$ Färbung in $O(\Delta + l \log n)$ (mit Initialisierung) und
 - $2\Delta + 1$ Färbung in $O(l \log n)$
- Mit den vorgestellten Algorithmen k\u00f6nnen realit\u00e4tsnahe Szenarien abgedeckt werden
- Je größer die Sendereichweitenvarianz, um so größer wird / und somit die erwartete Laufzeit
- Ausblick: Differenz zwischen unteren Schranken und Laufzeiten verbessern

