Network (or spatial) autocorrelation models: From Galton's problem to Galton's opportunity

Russell J. Funk

Carlson School of Management University of Minnesota

April 12, 2020

Roadmap

- Motivation
- Solutions
- ► History lesson
- ▶ Network autocorrelation
 - Model
 - Galton's problem
 - Galton's opportunity
- Practical considerations
- Software
- ► Further reading
- Wrap up
- Appendix

Motivation

Introduction

- ▶ In organizational research, we are often interested in questions like...
 - what factors influence employee mobility?
 - why do firms engage in acquisitions?
 - how can organizations motivate innovation?
- ▶ Researchers have looked at these questions using many methods. . .
 - a strength of organizational research is its methodological pluralism
- ▶ ... but the most common approach would probably be regression.

A simple model

▶ Imagine we are studying one of the questions above using the model...

$$y = X\beta + \epsilon \tag{1}$$

- ▶ To obtain valid inferences, we need to make some assumptions, including. . .
 - linearity
 - homoscedasticity
 - normality
 - independence

Independence assumption

- ▶ Today, I want to focus on violations of the independence assumption.
- ▶ In many organizational settings, this assumption is heroic.
- Consider the research questions/topics from earlier.
 - What factors influence employee mobility? (vacancy chains)
 - Why do firms engage in acquisitions? (opportunity)
 - ► How can organizations motivate innovation? (influence)
- ▶ Generally, our problems arise from a few common features of data.
 - time
 - space
 - groups
- ▶ In any case, we have a problem because we will underestimate our errors.

Solutions

There are many solutions...

Here are a few (semi) random examples. . .

- Testing
 - Durbin–Watson statistic (compare errors across adjacent lags)
 - Mantel test (compare two distance matrices)
 - ► Moran's *I* (measure dispersion on a variable)
 - ► Moulton factor (compare error variance with/without cluster structure)
- Adjusting
 - Clustered standard errors
 - ► Cochran-Orcutt (model residuals and transform model)
 - Block bootstrap (resample using cluster structure)
 - Use group level data with weights
 - Quadratic assignment procedure (resampling)
- Modeling
 - exponential random graph models
 - network autocorrelation model

History lesson

There's some interesting history here...

- It's 1899. At the Royal Anthropological Institute.
- ▶ "Big" data revolution 1.0.
- Edward B. Tylor is presenting a paper, "On a method of investigating the development of institutions applied to the laws of marriage and descent."
- Tylor's goal is to introduce a new method for the study of cultural evolution.
- The basic idea is to demonstrate the co-occurrence of institutions across cultures.
- ▶ Things are going well, until...

This guy raises his hand...

- Enter Francis Galton.
- Per Wikipedia, a "statistician, progressive, polymath, sociologist, psychologist, anthropologist, eugenicist, tropical explorer, geographer, inventor, meteorologist, proto-geneticist, and psychometrician." (Feeling exhausted?)
- Galton points out that we need to consider whether the institutions of the cultures studied are independent.
- "It might be, that some of the tribes had derived them from a common source, so that they were duplicate copies of the same original."
- He asks to see a map of the geographical distribution of the cultures and their institutions

Fast forward...

- Galton's problem major issue in cultural anthropology.
- ▶ If cultures are interdependent, how can we conduct cross cultural research?
- ▶ Network autocorrelation has emerged as a powerful modeling framework.
- ▶ These models are related to spatial autocorrelation models in geography.
- ▶ But overall, they are not particularly well known in organizational research.

Network autocorrelation

Network autocorrelation model

Background

- ▶ There are several versions of the model.
- ▶ The simplest and most common is known as the "effects" model.

Effects model

- ▶ Hypothesizes *i*'s values on *y* depend on *y*'s of observations to which *i* is linked.
- ▶ We can think of *y* as a function of **interaction** and **local** effects.

$$y = \rho W y + X \beta + \epsilon \tag{2}$$

Parameters

- lacktriangledown W is an adjacency matrix that captures the interdependence among observations.
 - Typically set diagonals to 0.
- We will come back to W in a bit.
- ightharpoonup
 ho is analogous to a correlation coefficient capturing the strength of interdependence.
- ▶ When $\rho = 0$, we have a standard regression.

Estimation

- ▶ The model is typically estimated via maximum likelihood.
- ▶ Standard errors and R² using OLS are incorrect; need to be adjusted.

Network autocorrelation model

Disturbances model

Hypothesizes that autocorrelation affects the disturbances term.

$$y = X\beta + \epsilon \tag{3}$$

$$\epsilon = \rho W \epsilon + u \tag{4}$$

Parameters

- lacktriangledown W is an adjacency matrix that captures the interdependence among observations.
- ightharpoonup
 ho is analogous to a correlation coefficient capturing the strength of interdependence.

Which model should you use?

- It all comes down to your theory.
- ▶ In the effects model, i's y is responsive to other's y.
- ▶ In the disturbances model, i's y is responsive to other's deviations from expected y.

Other variations on the network autocorrelation model

Multiple regimes model

- We can have multiple weight matrices.
- Possible for both the effects and disturbances models.

$$y = \rho_1 W_1 y + \rho_2 W_2 y + X \beta + \epsilon \tag{5}$$

$$y = X\beta + \epsilon, \epsilon = \rho_1 W_1 \epsilon + \rho_2 W_2 \epsilon + u \tag{6}$$

Joint effects and disturbances model

- ▶ We can have a joint model with effects and disturbances.
- ▶ Possible for $W_1 = W_2$ if we wish.

$$y = \rho_1 W_1 y + X \beta + \epsilon \tag{7}$$

$$\epsilon = \rho_2 W_2 \epsilon + u \tag{8}$$

Two views of the network autocorrelation model...

We can think about the network autocorrelation model in two ways. . .

Galton's problem

Network autocorrelation is a nuisance to be controlled or adjusted for.

Galton's opportunity

Network autocorrelation is indicative of an interesting phenomenon in our research context that we should model and study.

Practical considerations

Constructing the weight matrix

- It's important to think carefully about how to construct the weight matrix.
- Use a different matrix, get a different set of results.
- Most critically, the choice should be based on your theory.
- ▶ Must-read paper on this point is Leenders (2002).

Example 1—Geography

- inverse geographic distances
- indicators for common membership (e.g., city, state, country)

Example 2—Social influence

- cohesion (i.e., direct connections)
 - helps get at communication
- structural equivalence (i.e., similarity of connection)
 - helps get at comparison

Normalizing the weight matrix

- Typically, you will want to normalize the weight matrix.
- ▶ Row versus column matrix doesn't really matter when you have undirected edges.
- ▶ But it makes a substantive difference with directed edges.

Row normalization

- Weight proportional to outdegree
- Total amount of accepted influence equal for all actors
- Same weight attached to each outgoing tie
- Deals with accepted/received influence

Column normalization

- Weight proportional to indegree
- ► Total amount of exerted influence equal for all actors
- ▶ Same weight attached to each incoming tie
- ► Deals with exerted/executed influence

Comparing different weight matrices

- ▶ What do you do when you can't choose between several weight matrices?
- ▶ There are several statistical tests available for differentiating.
- Not going to go into the details today.
- ▶ But for a great introduction, see Leenders (2002).

The problem of network density

- Research has identified some systematic bias in the network autocorrelation model.
- ▶ The bias increases with increases in network density (Mizruchi and Neuman, 2010).
- \blacktriangleright We tend to see negatively biased values of ρ .
- But their is good news
 - ▶ The bias tends to kick in at high densities relative to what we typically observe.
 - ▶ The bias is in a direction that likely works against our hypotheses.

"Given the fact that the estimates of ρ tend to be biased downward, any findings of significantly positive ρ s in substantive analyses should be taken as especially strong, particularly those based on high-density networks."—Mizruchi and Neuman (2008).

Fig. 1. Scatterplot of the estimated network effect (ρ) against the actual density of W for each of 100 replications at 19 different target values (.05-.95) of the density of W at 9 different population values of ρ . The model includes 3 X variables and a constant drawn from a standard normal distribution, a random row-normalized W of size 50, and error terms drawn from a standard normal distribution, $(a) \rho - 0.8$; $(b) \rho - 0.5$; $(c) \rho - 0.2$; $(d) \rho - 0.2$; $(d) \rho - 0.5$; $(d) \rho$

Software

Software

The good news is, there are many options for estimating network autocorrelation models.

R

- sna package (see the lnam function)
- ▶ tnam package (temporal network autocorrelation models)

Stata

- Full suite of built-in commands.
- spregress—spatial autoregressive model
- spivregress—Spatial autoregressive models with endogenous covariates
- spxtregress—Spatial autoregressive models for panel data

Further reading

Further reading

Methodological papers

- Dow, Malcolm M. "Galton's problem as multiple network autocorrelation effects: cultural trait transmission and ecological constraint." Cross-Cultural Research 41, no. 4 (2007): 336-363.
- Dow, Malcolm M., Michael L. Burton, Douglas R. White, and Karl P. Reitz. "Galton's problem as network autocorrelation." American Ethnologist 11, no. 4 (1984): 754-770.
- ► Leenders, Roger Th AJ. "Modeling social influence through network autocorrelation: constructing the weight matrix." **Social Networks** 24, no. 1 (2002): 21-47.
- Mizruchi, Mark S., and Eric J. Neuman. "The effect of density on the level of bias in the network autocorrelation model." Social Networks 30, no. 3 (2008): 190-200.

Substantive papers

- Burt, Ronald S. "Social contagion and innovation: Cohesion versus structural equivalence." American Journal of Sociology 92, no. 6 (1987): 1287-1335.
- DellaPosta, Daniel, Yongren Shi, and Michael Macy. "Why do liberals drink lattes?" American Journal of Sociology 120, no. 5 (2015): 1473-1511.
- Mizruchi, Mark S., Linda Brewster Stearns, and Christoper C. Marquis. "The conditional nature of embeddedness: A study of borrowing by large US firms, 1973–1994."
 American Sociological Review 71, no. 2 (2006): 310-333.
- Papachristos, Andrew V. "Murder by structure: Dominance relations and the social structure of gang homicide." American Journal of Sociology 115, no. 1 (2009): 74-128.

Wrap up

Wrap up

Recap (+ a little soap box)

- Nonindependence is a major issue in almost all areas of organizational research.
 - ▶ People like to beat up on social network research for violating independence.
 - ▶ But, I would argue that most areas are equally subject to this challenge.
 - ▶ The problem is often just not acknowledged.
- Network techniques are a great technique for addressing nonindependence.
- More than seeing nonindependence as a nuisance, these offer substantive insight.

Appendix