

WHAT IS BLOCKCHAIN?

What you need to know

Introduction Blockchain Defined

- In its simplest form, blockchain is a distributed database
- Blockchain is defined not only by what it is but why it's important:
 - Global, peer to peer, and distributed record of transactions
 - Highly secure and trustless

Blockchain as a distributed database

What you need to know

Database

- Data is information
 - Numbers, Images, Videos, etc.
- Databases are often used to securely store data
 - Usernames and passwords
 - Account information
- Banks use databases
 - Securely store account balances behind a login
- Databases are like a ledger in that it is a record of data

Island of Yap

- The stones themselves had no non-monetary value
- Eventually, spending your stones didn't require physically moving the stone – just acknowledgement of a change of ownership
- Impossible to do a trade in secret
- They developed a form of distributed ledger, but...
- It couldn't scale!

Distributed Ledger

Distributed Database

- Why can't the Yapese system be used today?
 - Storing a mental ledger of every transaction between millions of people is impossible
- Databases are similar to ledgers but are kept digitally and often store huge amounts of data
- Distributed Database
 - Blockchain took the idea of a distributed ledger and applied it to a database

A BLOCKCHAIN IS AN IMPLEMENTATION OF A LEDGER

- Ledgers record transactions the passing of value from owner to owner
- Transactions are time based
- Once a Txn is recorded you can't alter them (append only)
- You need to be able to detect if your ledger has been altered

A blockchain is a protocol for building an immutable historical record of transactions

NETWORK EVOLUTION

Why Use Blockchain?

Advantages it may provide

Why use Blockchain?

- Blockchain is distributed
- A distributed database is:
 - > Secure
 - > Peer to Peer
 - > Trustless
 - > Transparent

Blockchain is Fault Tolerant

- Blockchain does not have a single point of failure
- Imagine a group text
 - Everyone in the group message has a record of every text sent in that group message
 - In order to delete the history of that group message everyone in the group must delete the record

Blockchain is Immutable

- Cannot be changed
- The history of a blockchain is constantly compared ensuring that data has not been tampered with
- Append only

Blockchain is Immutable

EDX Video: Immutability

Blockchain is Trustless

- Blockchain eliminates the need for trust
- This trustless system is achieved through mechanisms by which all parties can achieve consensus on what the canonical truth is
- Allowing the public to view data could be advantageous for a business
 - Transparency shows honesty

Blockchain is Transparent

- Data in a blockchain can be read by the public
- Transparency of data is partially why blockchains are trustless
 - If data is completely transparent we can trust that actors are being honest

Blockchain is Transparent

EDX Video: Disintermediation - Trust Through Transparency

Blockchain is Peer to Peer

- P2P System of computers that can communicate directly without the need of a third party or intermediary
- Traditional databases are kept by trusted third parties like banks
- Distributed databases are kept on multiple computers and updated on multiple computers

ELECTRONIC MIDDLEMEN

Credit Card Bill Merchant Bank Card Issuing

Observations:

- Requires 3rd party trust
- The more complex the flow, the more middlemen required
- Specialized equipment needed (e.g. POS terminal, connection to Txn networks
- Fraud detection by 3rd parties
- Every step adds cost

MIDDLEMEN ADDING VALUE

- Provision of infrastructure (Terminals, network connections, etc.)
- Management of commercial relationships between parties (Lots of lawyers)
- Abstraction of complexity
- Fraud detection
- Customer service
- Regulatory compliance KYC, AML, Risk reporting
- Removal of bad-actors from the ecosystem

Until now, this is the best way we've been able to achieve the goal of person-to-person transactions at a distance.

How it Works

What you need to know

Block

EDX Video let's Cover the basics

Block

- A Block contains:
 - Transaction data (in the form of a merkle tree)
 - Previous block header hash
 - Timestamp of when the block is added
- A block is summed up with a header hash which is a hash of the block data

How blocks are chained together

- Data from the previous block is included in every block
- This link creates the immutable, append only nature of a blockchain

Cryptography

Video: Cryptography Basics

Hashing

- Hash Function
 - One way function
 - Takes any input of any size converts it to a unique 20 digit code
 - If any input data were to be changed the output would be completely different
- Hashing is used to compare entire database
 - Millions of nodes only need to compare 20 digits

HASH FUNCTIONS

'A hash function is any function that can be used to map digital data of arbitrary size to digital data of fixed size. The values returned by a hash function are called hash values, hash codes, hash sums, or hashes.'

There are many types, but Bitcoin uses SHA256; output is 256bits of data, or 64 hexadecimal characters

HASHING PROPERTIES

- Any size of data always results in the same length hash
- Slight changes of input data gives totally different hashes
 - > 'Hello World' = a591a6d40bf420404a011733cfb7b190d62c65bf0bcda32b57b277d9ad9f146e
 - ➤ 'Hello World!' = 7f83b1657ff1fc53b92dc18148a1d65dfc2d4b1fa3d677284addd200126d9069
- The same input always produces the same output
- Hashes are 'one way'

HASHING USAGES

 To record a value while hiding the original value (e.g. a password)

- To verify the integrity of some data (store the hash, to check the data, hash it again and compare the values; should be the same hash value)
- To prove you've done calculations (generating hashes takes computing power)

MERKLE TREE - HASH OF HASHES

- Multiple blocks of data, in a certain order, into a single hash
- Allows you to work out which block has changed

MERKLE TREE - HASH OF HASHES

EDX Video: Merkle Tree

Consensus in Distributed Networks

- In order to update the ledger, the network needs to come to consensus using an algorithm
- Consensus: what does it mean to come to consensus on a distributed network?
 - It means that everyone agrees on the current state (e.g. how much money does each account have) and making sure that no one is double-spending money (easy in Bitcoin, more complex in Ethereum, business networks)
- How do we come to consensus in this distributed manner?

Key Blockchain Concepts

- Public-private networks
 - ➤ Trustless vs trusted
- Distributed network
- Consensus algorithms
- Immutability

Blockchain: trustless, distributed (peer-based), consensus-driven, immutable

Blockchain for Business

One of the fastest-moving technology adoptions

Permissioned Blockchains

Video: Public (Permissionless) Blockchains

Blockchain Decision Chart

- Blockchain is not always a good alternative
- There are many things to consider

Blockchain is like hot Sauce

edX Blockchain is like hot sauce

Smart Contracts

Video Smart Contracts

What do Smart Contracts Provide

- Autonomy
- Efficiency
- Backup
- Accuracy
- Cost Savings

Smart Contracts Provide

BLOCKCHain

Database

DISCRIBUCED

HIGHLY SECURE

Blockchain is immutable and fault tolerant. Meaning it cannot be changed or altered

APPEND ONLY:

Transactions in a

blockchain can only be added and read

Peer to Peer:

Blockchain allows for peers to transact without the need of a third part or intermediary but at the cost of efficiency

A single point of failure leaves a database vulnerable to attacks

CRUD:

Transactions in a database can be created, read, updated, and deleted

incermediaries

Trust in a third party is required which could lead to dishonest or falsified transactions as well as transaction costs.

Blockchain in Bitcoin

Blockchain's breakout use Case

PARALLELS TO THE INTERNET

Blockchains today have been likened to the Internet in 90s.

- Similar investment levels
- Similar excitement levels
- Similar visions of potential uses

History doesn't repeat, but it rhymes: We expect similar...

- Similar path to maturity people, tools, process
- Similar adoption curve (perhaps faster)
- Evolution of protocol/services built on blockchains (perhaps faster)

Bitcoin Banking, the Centralized Industry

- Intermediaries (Banks)
 - Vulnerable to attacks
 - Possible dishonesty
- Banking industry became centralized
 - Caused by lack of alternatives in banking
 - Led to possibility of high transaction fees

Double-Spending

Cleverly combined software components

- Distributed Systems
- Peer-to-peer networks
- Hashing functions
- Public Private key cryptography
- Cryptographic signatures
- Elliptic curve cryptography

Bitcoin Anonymity

- Decentralized application would solve:
 - Transaction fees
 - Dishonest intermediaries
 - Cyber Attacks
- Decentralized apps require:
 - Data that is open to the public
 - Financial data should never be public
- Anonymity public key cryptography
 - A way to keep data public without user identity being revealed

PUBLIC/PRIVATE KEY CRYPTO

- 2 uniquely related cryptographic keys (Public Private)
- Public key is derived from private key
- Public key is the public address associated with transactions
- Private key is private for your eyes only
- Impossible to find private key based on public key

PUBLIC/PRIVATE KEY CRYPTO

Private/Public Key Cryptography

Cryptographic Identity

- To use the network, need a Cryptographic Identity
 - (sort of like an email address)
 - If want to access your email, you need the password, which functions similarly to a private key and your public key is like your address (more complicated)
- Authentication: peers sign transactions with their cryptographic identity, this enables account "ownership" and can attribute blame

DIGITAL SIGNATURES

- Verify the messages came from the correct person
- Verify the messages hasn't been changed or tampered with
- Can be used to prove that you have the private key
- Main aim is confidence in identity (in messaging)

Bitcoin Consensus Proof of Work

Proof of Work Demo

EDX Video Proof of work hashing demo

Three Primary Consensus Algorithms

- POW: Proof of Work (Bitcoin)
 - Expensive, not ecological, wasteful computation
- POS: Proof of Stake (Ethereum)
- Next-gen: PBFT: Practical Byzantine Fault Tolerance (DFINITY, Algorand)
 - Law of large numbers: diversity of participants
 - For each block of transactions, randomly select a small, one-time group of users in a safe and fair way
 - To protect from attackers, the identities of these users are hidden until the block is confirmed

What is Bitcoin mining?

■ bitcoin / bitcoin

Mining is the accounting function to record transactions, fee-based (\$130,000/block each 10 min)
Mining ASICs "discover new blocks"

Mining software makes nonce guesses to win the right to record a new block ("discover a block")

At the rate of 2^32 (4 billion) hashes (guesses)/second One machine at random guesses the 32-bit nonce Winning machine confirms and records the transactions, and collects the rewards

All nodes confirm the transactions and append the new block to their copy of the distributed ledger "Wasteful" effort deters malicious players

Fast because ASICs represent the hashing algorithm as hardware

P2P network confirms & records transactions

Transactions submitted to mempool, and miners assemble new batch (block) of transactions each 10 min

Transaction computationally confirmed Ledger account balances updated

Each block includes a cryptographic hash of the last block, chaining the blocks, hence "Blockchain"

Peer nodes maintain distributed ledger

Source: https://www.youtube.com/watch?v=t5JGQXCTe3c

Bitcoin Blockchain Recap

- ❖ Blockchain is a ______ Database.
 - Distributed
 - > Fault Tolerant
 - > Immutable
 - Highly Secure
 - > Trustless
 - > Scalable

Use Cases

Blockchain Applications

Who is using Blockchain? EDX Video

EDX Video: Who Is Using Blockchain?

Potential Use Cases

- Voting
- Music
- > Law
- > Healthcare
- Identity Management
- Land Records
- Supply Chain
- > loT
- Energy

Voting

Music

Law Enforcement

Healthcare

Identity Management

Land Records and Government

Supply Chain

Internet of Things

Energy

Questions? THANK YOU ...

© Copyright 2017 | All Right Reserved

