Last time

Natural bundles.

× a complex munifold.

$$T_{X} = \{ (x,v) \mid x \in X, v \in T_{x}X \} \xrightarrow{\pi} X$$

$$U \subset C^{n} \text{ with a } TU = C (2) \text{ a } x \xrightarrow{\pi} X$$

$$UCC^{n}$$
, $ueV \Rightarrow T_{u}V = C(\frac{\partial}{\partial z_{1}}, ..., \frac{\partial}{\partial z_{n}}) \cong C^{n}$

So
$$\bigcup_{V}$$
 \bigcup_{V} \subset \mathbb{C}^{n}

 $\overrightarrow{T}(V) \stackrel{bij}{\longleftrightarrow} U \times C^n$. Declare it to be a chart.

Thus T_X be comes a manifold and $T: T_X \to X$ a vector bundle g rank n.

Similarly Ω_{x} For $U \subset \mathbb{C}^{n}$, $u \in U \Rightarrow \Omega_{0,V} = \mathbb{C}(dz_{1},...,dz_{n}) \cong \mathbb{C}^{n}$.

Rem: - Operations (1), florm, (8) on vector spaces extend to vector bundles.

$$\Omega_{x} = Hom(T_{x}, C_{x}) = T_{x}^{*}$$

fahol-func. on X, we get a hol. section of Qx namely of. Locally, on a chart U on X with courd.

$$df = \sum_{\substack{j \in \mathbb{Z}_i \\ j \neq i}} \frac{\partial f}{\partial z_i} \cdot dz_i$$

$$d(fg) = f dg + g df , d(const) = 0$$

$$d(f+g) = df + dg.$$

$$X = P' = C_x \cup C_y$$

Gives a section dx of Ω_X on C_X .

$$\& dx = -\frac{1}{4^2} dy.$$

so dx has a pole of order 2 at ∞ .

$$\Rightarrow$$
 $(dx) = -2.\infty$

so
$$deg(\Omega_{P}^{\prime}) = -2$$
.

$$X \rightarrow U$$
 $y^2 = f(x) \leftarrow degree$
 $1 \cdot y \rightarrow U$
 $P' \rightarrow C_x$

General rem: P: X -> Y hol-fun.

& ω a hol (mer) form on Y (= section of Ω_Y). Then we get $\varphi^*\omega$, a hol (mer) form on X (= sect of Ω_X).

Locally:
$$U \longrightarrow V \quad P: Z \longmapsto W \quad W = f(Z)$$

$$C_{Z} \quad C_{W}$$

and
$$\omega = g(w) dw$$
 then
$$\varphi^* \omega = g(f(z)) \cdot df(z)$$

$$= g(f(z)) \cdot f'(z) dz$$
Say $w = Z^n$, $g(\omega) = C_m \omega^m + h \cdot v \cdot t$.
$$\varphi^* \omega = g(Z^n) \cdot n Z^{n-1} dz \qquad \chi = 0 \in V$$
So $\operatorname{ord}_{\mathcal{X}}(\varphi^* \omega) = n \cdot (\operatorname{ord}_{\mathcal{Y}} \omega)$

$$+ (n-1)$$

So ω has a zero of order 1 at the 2n ramification points of φ and poles of order 2 at the two points above ∞ .

The lecal g(x) = 2n - 4Recall g(x) = n-1 $\log \deg(\omega) = 2g-2$.

Prop: Let $\varphi: X \to Y$ be a non constant map between Riemann surfaces $\varphi: W_Y = \varphi^* W_Y$. Then on $Q_Y: Let W_X = \varphi^* W_Y$. Then $(W_X) = \varphi^* (W_Y) + Ram \varphi$. Pf: $W_Y = Z \text{ ord}_Y(W_Y) \cdot \varphi^*(Y)$

$$= \sum_{x \in X} \operatorname{ordy}(\omega_{Y}) \cdot \sum_{x \in Y} (\operatorname{mull}_{x} \mathcal{V}) \cdot x$$

$$= \sum_{x \in X} (\operatorname{mull}_{x} \mathcal{V}) \cdot \operatorname{ordy}(\omega_{Y}) \cdot x$$

$$= \sum_{x \in X} (\operatorname{mull}_{x} \mathcal{V} - 1) \cdot x$$

$$\operatorname{Ord}_{x} \mathcal{U}_{X} = \operatorname{mull}_{x} \mathcal{V} \cdot \operatorname{ordy}(\omega_{Y}) + (\operatorname{mull}_{x} \mathcal{V} - 1) \cdot x$$

$$\operatorname{Ord}_{x} \mathcal{U}_{X} = \operatorname{mull}_{x} \mathcal{V} \cdot \operatorname{ordy}(\omega_{Y}) + \operatorname{lmull}_{x} \mathcal{V} - 1) \cdot x$$

$$\operatorname{Ord}_{x} \mathcal{U}_{X} = \operatorname{pt}(\omega_{Y}) + \operatorname{Ram}(\mathcal{V}) \cdot x$$

$$\operatorname{Cor}: \text{ Let } \times \text{ be a compact } \text{ RS. } \text{ cohich has a non-const mor. fun. Then}$$

$$\operatorname{deg}(\Omega_{X}) = 29_{X} - 2 \cdot (2_{X} - 2_{X}) + \operatorname{deg} \operatorname{Ram.} (\operatorname{Rie-Hor}) \cdot x$$

$$\operatorname{deg}(\Omega_{X}) = \operatorname{deg}(\Omega_{X} - 2_{X}) + \operatorname{deg} \operatorname{Ram.} (\operatorname{Rie-Hor}) \cdot x$$

$$\operatorname{deg}(\Omega_{X}) = \operatorname{deg}(\Omega_{X} - 2_{X}) + \operatorname{deg}(\Omega_{X}) \cdot x$$

$$\operatorname{deg}(\Omega_{X}) = \operatorname{deg}(\Omega_{X} - 2_{X}) + \operatorname{deg}(\Omega_{X}) \cdot x$$

$$\operatorname{deg}(\Omega_{X}) = \operatorname{deg}(\Omega_{X} - 2_{X}) + \operatorname{deg}(\Omega_{X}) \cdot x$$

$$\operatorname{deg}(\Omega_{X}) = \operatorname{deg}(\Omega_{X} - 2_{X}) \cdot x$$

Rem. (1) Gives a way of defining 3x.

(2) Turns out, all compact R.S. have
non-const mer. fun!

Some more natural line fundles X = P'' = Lines in an (nH)-dim v-space V. $S \xrightarrow{\pi} X$ The "universal" line bundle. {(a,v) | a e IP, V E Line rep. by a }. $\mathbb{P}' \supset U = \{ [x_0; x_n] \mid x_i \neq 0 \} \cong \mathbb{C}^n$ $\pi^{\dagger}(U) \longleftrightarrow U \times \mathbb{C}$ $(x, \vee) \longleftrightarrow (x, \vee_i)$ On P'= { [x:1] } U { [1:4] } $S = \{[x:1], [zx:z]\} \cup \{[1:y], [\omega:\omega y]\}$ $\mathbb{C}_{x,z}^{2} \supset \mathbb{C}_{x}^{*}\mathbb{C}_{z} \iff \mathbb{C}_{r}^{*}\mathbb{C}_{w} \subset \mathbb{C}_{y}^{2}$ $\downarrow \qquad \qquad \downarrow$ $\mathbb{C}_{\lambda} \supset \mathbb{C}_{\lambda} \iff \mathbb{C}_{\varphi}^* \subset \mathbb{C}_{y}$ $2 = \frac{1}{9}$ $(X,Z) \longrightarrow [X:1], (ZX,Z)$ $\left(\frac{1}{x}, 72\right) \leftarrow \left[1: \frac{1}{x}\right], (2x, z)$ <u>adaim</u>: deg (S) = -1. Pf: Consider the section: $[x:y] \mapsto [x:y], (\frac{3}{7}, 1)$. on Cx: x +> (x,1), Cy: y -> (y, \frac{1}{y}). \pi

Some more generalities.

- (x) makes of LB3 & {LB+mersec?}
 a group.
- · div is a homomorphism
- . Pull back of V.b.
- Pull back of L.B. (ser)
 Pull back of div.
- . Discus. (8) on tran fun.
- If time permits, revisit the hyperell. Curve and its compactification.