# Digital Image Processing (CSE/ECE 478) Lecture7: Color Image Processing

Vineet Gandhi

Center for Visual Information Technology (CVIT), IIIT Hyderabad

# Color signal to the brain



## Today's class

- Attributes of color
- Primary colors and color matching functions (link to perception)
- Lab color space (perceptually uniform color space)
- Other color spaces
- Pseudo color image processing
- Some modern applications

## Color perception

- Fascinating and complicated phenomena
- Has kept scientist, psychologists, philosophers, and artists interested for years
- Why study color?
  - Object recognition and tracking
  - Constancy problem (Chromatic Adaptation)
  - Perceptual metric for differences (color management)
  - Image enhancement

#### Related and unrelated colors

- When a color is observed in relation with another color, it is a related color
- When the color is seen isolated from other colors it is an unrelated color.





 Hue: attribute of visual perception according to which we characterize an area as red, yellow, orange, green, blue or purple.







Achromatic color: perceived color devoid of hue.



Chromatic color: perceived color possessing a hue.

 Colorfulness: attribute of visual perception according to which an area appears to exhibit more or less chromatic color.





Brightness: attribute of visual perception according to which an area appears to exhibit more or less light.



Decreasing brightness with depth (example underwater photography)

 Saturation: the colorfulness of an area judged in proportion to its brightness.



• **Lightness:** the brightness of an area judged relative to the brightness of a similarly illuminated area that appears to be white or highly transmitting.



 Chroma: The colorfulness of an area judged in proportion relative to the brightness of a similarly illuminated area that appears to be white or highly transmitting.





- Lightness and chroma are defined for <u>object colors and related colors</u>. Then for these cases the three color attributes are: **lightness**, hue and chroma.
- For <u>unrelated colors</u>, <u>light-source colors and aperture colors</u> the three color attributes are: **brightness**, **hue and saturation**.





## Primary Colors (color as three number)

Additive (CRT displays, projectors etc.)



# **Primary Colors**

Subtractive (mixing of pigments or dyes)





# **Primary Colors**

Subtractive (artists, painters)



Painting of Piet Mondrian

## RGB color space

- Primary colors
- Additive color model  $f(x, y) = \alpha_1 R + \alpha_2 G + \alpha_3 B$
- Perceptually non uniform



Courtesy: wikipedia

# rg color space

$$r = \frac{R}{R + G + B}$$
$$g = \frac{G}{R + G + B}$$
$$b = \frac{B}{R + G + B}$$
$$r + g + b = 1$$





$$f(\lambda) = r(\lambda) + g(\lambda) + b(\lambda)$$





$$f(\lambda) = r(\lambda) + g(\lambda) + b(\lambda)$$



$$f(\lambda) = r(\lambda) + g(\lambda) + b(\lambda)$$







## Color Matching Functions, negative values?

 For certain monochromatic lights it is impossible to obtain a match with the additive mixing of any amounts of the three primary stimuli. But it is possible to obtain a match in this way:



$$f(\lambda) + r(\lambda) = g(\lambda) + b(\lambda)$$
 add primary light to the test source

which is equivalent to:  

$$f(\lambda) = -r(\lambda) + g(\lambda) + b(\lambda)$$

#### XYZ color space

- The new system was created according to the following premises:
  - to avoid negative values of  $r(\lambda)$ ,  $g(\lambda)$  and  $b(\lambda)$
  - one of the new color-matching functions should directly express a photometric quantity (the stimulus luminance).

$$\begin{pmatrix} X \\ Y \\ Z \end{pmatrix} = \begin{pmatrix} 2.7989 & 1.7517 & 1.1302 \\ 1.0000 & 4.5907 & 0.0601 \\ 0.0000 & 0.0565 & 5.5943 \end{pmatrix} \begin{pmatrix} R \\ G \\ B \end{pmatrix}$$

XYZ color space



## CIE 1931 (x,y) chromaticity diagram



- Chromaticity coordinates:

$$x = \frac{X}{X + Y + Z}$$
$$y = \frac{Y}{X + Y + Z}$$

- x and y are chromaticity coordinates, Y is relative luminance
- Chromaticity coordinates discard the absolute intensity of a given color sample and just represent its pure color
- This figure shows the (x,y) value for every color value perceivable by most humans

## CIE 1931 (x,y) chromaticity diagram

A convenient representation for color values, when we want to tease apart luminance and chromaticity, is therefore Yxy (luminance plus the two most distinctive chrominance components)





## McAdam Ellipses



- MacAdam ellipses refer to the region on a chromaticity diagram which contains all colors which are indistinguishable, to the average human eye, from the color at the center of the ellipse
- The contour of the ellipse represents the just noticeable differences of chromaticity

# CIE Lab color space



Ideal scenario

## CIE Lab color space

$$L^* = 116 f(Y/Y_n) - 16$$

$$a^* = 500 [f(X/X_n) - f(Y/Y_n)]$$

$$b^* = 200 [f(Y/Y_n) - f(Z/Z_n)]$$

$$f(t) = \begin{cases} t^{1/3} & \text{if } t > (\frac{6}{29})^3\\ \frac{1}{3} (\frac{29}{6})^2 t + \frac{4}{29} & \text{otherwise} \end{cases}$$

- Differences in luminance or chrominance are more perceptually uniform
- The contour of the ellipse tends to be more closer to circles

 $(X_n, Y_n, Z_n)$  is the measured white point.

# CIE Lab color space



## Color difference (in Lab space)

Using  $(L_1^*, a_1^*, b_1^*)$  and  $(L_2^*, a_2^*, b_2^*)$ , two colors in Lab space

$$\Delta E_{ab}^* = \sqrt{(L_2^* - L_1^*)^2 + (a_2^* - a_1^*)^2 + (b_2^* - b_1^*)^2}$$

 $\Delta E_{ab}^* \approx 2.3$ , corresponds to a JND (just noticeable distance)

## Other color spaces

- RGB system based on the idea that human eye is strongly perceptive to red, green and blue primaries (CMY, Lab are extension of RGB)
- How would you define color of an automobile?

We will now study some color spaces, directly inspired from color attributes

# HSI color space

Intensity (the diagonal axis)





Saturation (distance from diagonal axis)





Hue



Hue, Saturation and Intensity can be obtained from RGB cube

#### • Hue



$$I = \frac{1}{3}(R + G + B)$$

$$H = \cos^{-1} \left\{ \frac{\frac{1}{2}[(R - G) + (R - B)]}{[(R - G)^{2} + (R - B)(G - B)]^{1/2}} \right\}$$

$$S = 1 - \frac{3}{(R + G + B)}[\min(R, G, B)]$$





 What color space, do you think might have been used in re-coloring of Mughal-e-Azam?





## LMS color space

- It is common to use the LMS color space when performing chromatic adaptation (estimating the appearance of a sample under a different illuminant)
- It's also useful in the study of color blindness, when one or more cone types are defective.

$$\begin{bmatrix} L \\ M \\ S \end{bmatrix} = \begin{bmatrix} 0.7328 & 0.4296 & -0.1624 \\ -0.7036 & 1.6975 & 0.0061 \\ 0.0030 & 0.0136 & 0.9834 \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \end{bmatrix}$$





Courtesy: wahlmanphotography.com







• Simply scaling RGB values

$$\begin{bmatrix} R \\ G \\ B \end{bmatrix} = \begin{bmatrix} 255/R'_w & 0 & 0 \\ 0 & 255/G'_w & 0 \\ 0 & 0 & 255/B'_w \end{bmatrix} \begin{bmatrix} R' \\ G' \\ B' \end{bmatrix}$$









## White Balancing (code)

```
im = double(imread('lighthouse.jpg'));
RGBw = [246 169 87];
im1(:,:,1) = im(:,:,1)*255/RGBw(1);
im1(:,:,2) = im(:,:,2)*255/RGBw(2);
im1(:,:,3) = im(:,:,3)*255/RGBw(3);
```



#### Von Kries Method

Scaling operation is performed in LMS space

$$\begin{bmatrix} L \\ M \\ S \end{bmatrix} = \begin{bmatrix} 1/L'_w & 0 & 0 \\ 0 & 1/M'_w & 0 \\ 0 & 0 & 1/S'_w \end{bmatrix} \begin{bmatrix} L' \\ M' \\ S' \end{bmatrix}$$

## Von Kries Method







Incandescent lighting



Fluorescent lighting



Sunlight



Camera Flash



Cloudy



Shadow



## Pseudo color Image Processing



## Pseudo color Image Processing







## Pseudo color Image Processing (Intensity Slicing)



## Pseudo color Image Processing (Intensity Slicing)



# FIGURE 6.21 (a) Monochrome X-ray image of a weld. (b) Result of color coding. (Original image courtesy of X-TEK Systems, Ltd.)





#### Pseudo color Image Processing (Transformations)



#### Pseudo color Image Processing (Transformations)







## Pseudo color Image Processing (Multi Spectral)



## Pseudo color Image Processing (Multi Spectral)



## Pseudo color Image Processing (Multi Spectral)





## **RGBA** space

A (alpha) for transparency (important in image editing)



$$I_{out} = \alpha I_{foreground} + (1 - \alpha) I_{background}$$

## Trending applications: Image enhancement in RGB











## Example: Vintage effect





#### Example: Vintage effect

```
im = double(imread('bike.jpg'));
% Extract each colour plane
R = im(:,:,1); \% Red
G = im(:,:,2); % Green
B = im(:,:,3); \% Blue
% Create sepia tones for each channel
%(these number can be edited to create different styles)
outR= (R * .293) + (G * .769) + (B * .210);
outG = (R * .249) + (G * .686) + (B * .188);
outB = (R * .172) + (G * .534) + (B * .151);
```





#### Example: Vintage effect

```
texture = imread(texture_path);
texture = imresize(texture,[size(out,1) size(out,2)]);
texture = double(rgb2gray(texture))/255;

out1(:,:,1) = double(out(:,:,1)).*double(texture);
out1(:,:,2) = double(out(:,:,2)).*double(texture);
out1(:,:,3) = double(out(:,:,3)).*double(texture);
```







#### Other such image effects

- 1. Change the transformation matrix, to suit the desired color tones
- 2. Choose or design different textures and blend them with original image
- 3. Repeat 1 and 2 in innovative ways







## Chroma Keying







#### References

• "Colorimetry", Ohta and Robertson, John Wiley and Sons Ltd