Diffusion Model in Causal Inference

CPSC 486 Probabilistic Machine Learning Final Project Tatsuhiro Shimizu

Agenda

- 1. Setting of the problem
 - 1. Two mainstream of Causal Inference (Pearl and Rubin)
 - 2. Target distribution we want to sample from
- 2. Literature Review
 - 1. SCORE (Rolland et al 2022) and DiffAN (Sanchez et al 2022)
 - 2. DCM (Chao et al 2023)
- 3. Result of New Algorithm
 - 1. Backdoor DCM
 - 2. Experiment
- 4. Discussion and Future Work
 - 1. Contribution
 - 2. limitations
 - 3. Future work

Setting of the Problem

Two mainstreams of Causal Inference

- Pearl (2016)
 - ➤ Directed Acyclic Graph (DAG) framework
 - ➤ Create a model by graph
 - Analyze the causal effect on the graph

- Imbens and Rubin (2015)
 - ➤ Potential Outcome framework

We follow the Pearl's framework

Definition of DAG and SCM

- DAG $G = (\mathcal{V}, \mathcal{E})$
 - Express variables by nodes and causal relationships by edges
 - \triangleright Set of nodes: $\mathcal{V} = \{1, 2, \dots, d\}$
 - ► Set of edges: $\mathcal{E} = \{(i, j): \exists \text{ edge from node } i \text{ to } j\}$
- Structural Causal Model (SCM) $\mathcal{M} = (\mathcal{U}, \mathcal{V}, f)$
 - For each node in DAG G, we have corresponding variable X_i ($\forall i \in [d]$)
 - \triangleright Set of exogenous variables $\mathcal{U} = \{U_1, \dots, U_d\}$
 - ► Set of endogenous variables $\mathcal{V} = \{X_1, \dots, X_d\}$
 - ► Set of structural equations $f = \{f_1, \dots, f_d\}$
 - $X_i = f_i(Pa(X_i), U_i) \ (\forall i \in [d])$

Example of DAG and SCM

• DAG
$$G = (V, \mathcal{E})$$

 $\triangleright V = \{1, 2, 3\}$
 $\triangleright \mathcal{E} = \{(1, 2), (1, 3), (2, 3)\}$

$$X_1 = f_1(U_1) = U_1$$

$$X_2 = f_2(X_1, U_2) = 2X_1 + U_2$$

$$X_3 = f_3(X_1, X_2, U_3) = 3X_1 + 4X_2^3 + U_3$$

Definition of do operator

- $do(X_i = x_i)$: intervene the node X_i by setting it to x_i in SCM
 - \triangleright Set the exogenous variable to the intervened value $U_i = x_i$
 - \triangleright Delete all the edges into X_i from the endogenous variables

Definition of Causal Effect ATE and Goal

- Given observational data $X \in \mathbb{R}^{n \times d}$
 - $\triangleright n$ samples and d nodes
- Want to find the Average Treatment Effect (ATE) of $X_i = x_i$ versus $X_i = 0$ on X_i ($\forall i, j \in \mathcal{V}, i \neq j$)

 - $> v(X_j = x_j | do(X_i = x_i))$ is the probability density function of X_j after the surgery on the graph by do operator $do(X_i = x_i)$
- Goal:
 - ightharpoonup Sample $X_j | do(X_i = x_i)$ from the target distribution $v(X_j = x_j | do(X_i = x_i))$

Literature Review

Two main problems

1. Given data $X \in \mathbb{R}^{n \times d}$, construct DAG

2. Given data $X \in \mathbb{R}^{n \times d}$ and DAG, sample from the target

Two main problems

- 1. Given data $X \in \mathbb{R}^{n \times d}$, how to construct DAG
 - > SCORE (Rolland et al 2022): use score matching under Assumption 1 and 2
 - ➤ DiffAN (Sanchez et al 2022): use diffusion model to speed up under Assumption 1 and 2

- 2. Given data $X \in \mathbb{R}^{n \times d}$ and DAG, how to sample from the target distribution $\nu(X|do(X_i=x_i))$ where $X=(X_1,\cdots,X_d)$
 - ➤ DCM (Chao et al 2023): under Assumption 1

Assumption 1. (Causal Sufficiency): There is no unmeasured confounders Assumption 2. (Additive noise model): structural equations have form of $X_i = f_i(Pa(X_i)) + U_i \ \forall i \in [d]$

1. Given data $X \in \mathbb{R}^{n \times d}$, how to construct DAG

• If we know the topological order π of nodes in DAG, then there exists a known algorithm to construct DAG by pruning edges (Buhlmann et al. 2014)

• Topological order π is a permutation of d nodes such that $\pi_i < \pi_j \iff j \in De(X_i)$ where $De(X_i)$ is the descendant nodes of i

• Problem boils down to how to construct topological order π given data $X \in \mathbb{R}^{n \times d}$

1. Given data $X \in \mathbb{R}^{n \times d}$, how to construct topological order π

• Lemma

- \triangleright Variance of the (j,j) element of Jacobian of the score function is 0 if and only if j is the leaf node
- $\triangleright Var_X[H_{j,j}(\log \nu(X))] = 0 \iff j \text{ is the leaf node}$

1. Given data $X \in \mathbb{R}^{n \times d}$, how to construct topological order π

- SCORE (Rolland et al 2022)
 - Estimate the Jacobian of the score function by score, find the leaf, delete the corresponding column of the data and iteratively continue the same procedure to construct topological order π
 - >Drawback: need to estimate the Hessian of log density at each step
 - \triangleright Algorithm complexity: $\mathcal{O}(dn^3)$

Algorithm 1 SCORE-matching causal order search

```
Input: Data matrix X \in \mathbb{R}^{n \times d}. Initialize \pi = [], nodes = \{1, \ldots, d\} for k = 1, \ldots, d do  \text{Estimate the score function } s_{nodes} = \nabla \log p_{nodes} \text{ (for example using Algorithm 1)}.   \text{Estimate } V_j = \text{Var}_{X_{nodes}} \left[ \frac{\partial s_j(X)}{\partial x_j} \right].   l \leftarrow \text{nodes}[\arg \min_j V_j]   \pi \leftarrow [l, \pi]   \text{nodes} \leftarrow \text{nodes} - \{l\}   \text{Remove } l\text{-th column of } X  end for  \text{Get the final DAG by pruning the full DAG associated with the topological order } \pi.
```

1. Given data $X \in \mathbb{R}^{n \times d}$, how to construct topological order π

- DiffAN (Sanchez et al 2022):
 - ➤ Use the diffusion Probabilistic model (Ho et al 2020) to estimate the score function
 - $H_{i,j}(\log \nu(x)) \approx \nabla_{i,j} \epsilon_{\theta}(x,t)$
 - ➤ No need to calculate the hessian of log density at each iteration by updating the score function by using the formula for the residue
 - $\Delta_l(x,t) \approx \nabla_l \epsilon_{\theta}(x,t) \cdot \frac{\epsilon_{\theta}(x,t)}{\nabla_{l,l} \epsilon_{\theta}(x,t)}$
 - \triangleright Algorithm complexity: $\mathcal{O}(n+d^2)$

Algorithm 1: Topological Ordering with DiffAN

```
Input: X \in \mathbb{R}^{n \times d}, trained diffusion model \epsilon_{\theta}, ordering batch size k = [], \Delta_{\pi} = \mathbf{0}^{k \times d}, M_{\pi} = \mathbf{1}^{k \times d}, score = \epsilon_{\theta}
while \|\pi\| \neq d do
     B \stackrel{k}{\leftarrow} X
                                             // Randomly sample a batch of k elements
     B \leftarrow B \circ M_{\pi}
                                                                                // Mask removed leaves
     \Delta_{\pi} = \text{Get}\Delta_{\pi}(score, \boldsymbol{B})
                                                                     // Sum of Equation 8 over \pi
    score = score(-\pi) + \Delta_{\pi}
                                                                    // Update score with residue
    leaf = GetLeaf(score, \mathbf{B})
                                                                                                 // Equation 9
    \pi = [leaf, \pi]
                                                                // Append leaf to ordered list
     M_{:,leaf} = 0
                                                                 // Set discovered leaf to zero
```

Output: Topological order π

2. Given data $X \in \mathbb{R}^{n \times d}$ and DAG, sample from the target $\nu(X|do(X_i = x_i))$

- DCM (Diffusion-based Causal Model) (Chao et al 2023)
 - Train the parameter of DDIM (Song et al 2021) at each node
 - For root node X_i , sample by empirical distribution E_i
 - For intervened node X_i , set it to the intervened value γ_i
 - For other nodes X_i , sample by the revere diffusion $Dec_i(Z_i, X_{Pa_i})$ using the trained parameter with the parent nodes X_{Pa_i} and corresponding exogenous nodes $Z_i \sim \mathcal{N}(0,1)$ as the input

```
Algorithm 1 DCM Training

Input: Distribution Q, scale factors \{\alpha_t\}_{t=1}^T, causal DAG \mathcal G with node i represented by X_i

1: while not converged do

2: Sample X^0 \sim Q

3: for i=1,\ldots,K do

4: t \sim \text{Unif}[\{1,\ldots,T\}]

5: \varepsilon \sim \mathcal N(0,I)

6: Update parameters of node i's diffusion model \varepsilon_{\theta}^i, by minimizing the following loss (based on (1)):

7: \left\|\varepsilon - \varepsilon_{\theta}^i(\sqrt{\alpha_t}X_i^0 + \sqrt{1-\alpha_t}\varepsilon,X_{\text{pa}_i}^0,t)\right\|_2^2

8: end for

9: end while
```

```
Algorithm 2 Observational/Interventional Sampling

Input: Intervention set \mathcal{I} with values \gamma, optional noise Z_i \sim \mathcal{N}(0, I_{d_i}) for i \in [K]

1: for i = 1, \ldots, K do

2: if i \in \mathcal{I} then

3: \hat{X}_i = \gamma_i

4: else if i is a root node then

5: \hat{X}_i \sim E_i, the empirical distribution

6: else

7: \hat{X}_i \leftarrow \mathsf{Dec}_i(Z_i, \hat{X}_{\mathsf{pa}_i})

8: end if

9: end for

10: Return \hat{X}
```

2. Given data $X \in \mathbb{R}^{n \times d}$ and DAG, sample from the target $\nu(X|do(X_i = x_i))$

- Example of DCM (Chao et al 2023)
 - \triangleright Want to sample from $\nu(X_1, X_2, X_3 | do(X_2 = x_2))$
 - \triangleright Root node $X_1 \sim E_1$
 - \geq Intervened node $X_2 = x_2$
 - \triangleright Other nodes $X_3 = Dec_3(U_3, X_1, X_2)$

Result of New Algorithm

- For the literature review, we assumed causal sufficiency (there is no unmeasured confounders)
- ullet But in practice, we often cannot measure all confounders like Z

- Definition of Backdoor criterion:
 - \triangleright A set of variables $\mathcal B$ satisfies backdoor criterion with respect to (X,Y) in DAG $\mathcal G$ if
 - 1. No node in \mathcal{B} is a descendant of X
 - 2. \mathcal{B} blocks all paths between X and Y which contains an arrow into X
 - If there exist unmeasured confounders, then Backdoor criterion tells us which variable we should adjust for

- BDCM (Backdoor Diffusion-based Causal Model)
 - ➤ Combine Backdoor criterion (Pearl 2016) and DCM (Chao et al 2023)
 - ▶ Backdoor DCM, for each node X_i , instead of having the parents X_{Pa_i} and corresponding exogenous nodes Z_i as the input of the decoder of the diffusion model, includes the nodes which meets the backdoor criterion $X_{\mathcal{B}_i}$ and the corresponding exogenous nodes Z_i and also includes the intervened node X_j if it is the child of the intervened node X_j ∈ X_{Pa_i}).

Algorithm 5 BDCM Training

```
Input: target distribution \nu, scale factors \{\alpha_t\}_{t=1}^T, DAG \mathcal{G} whose node i is represented by X_i and intervened node j with intervened value \gamma_i
```

while not converge do

Sample $X^0 \sim \nu$ for $i = 1, \dots, d$ do

 $t \sim \text{Unif}[\{1, \cdots, T\}]$ $\epsilon \sim \mathcal{N}(0, 1)$

Update the parameter of the node i's diffusion model ϵ_{θ}^{i} by minimization of the following loss function depending on the nodes.

if $X_j \in X_{Pa_i}$ then

 $\left\|\epsilon - \epsilon_{\theta}^{i} \left(\sqrt{\alpha_{t}} X_{i}^{0} + \sqrt{1 - \alpha_{t}} \epsilon, X_{\mathcal{B}_{i}}^{0}, X_{j}, t\right)\right\|_{2}^{2}$ (8)

else

 $\left\|\epsilon - \epsilon_{\theta}^{i} \left(\sqrt{\alpha_{t}} X_{i}^{0} + \sqrt{1 - \alpha_{t}} \epsilon, X_{\mathcal{B}_{i}}^{0}, t\right)\right\|_{2}^{2}$ (9)

end if end for end while

Algorithm 6 BDCM Sampling

```
Input: Intervened node j with value \gamma_j, noise Z_i \sim \mathcal{N}(0,1) for all i \in [d] for i = 1, \dots, d do

if i is a root node then
\widehat{X}_i \sim E_i
else if i = j then
\widehat{X}_i \leftarrow \gamma_i
else if X_j \in X_{Pa_i} then
\widehat{X}_i \leftarrow Dec_i\left(Z_i, \widehat{X}_{\mathcal{B}_i}, X_j\right)
else
\widehat{X}_i \leftarrow Dec_i\left(Z_i, \widehat{X}_{\mathcal{B}_i}\right)
end if
end for
return \widehat{X} = \left(\widehat{X}_1, \dots, \widehat{X}_d\right)
```

Example of Backdoor DCM

- \succ Want to sample from $\nu(X_1, X_2, X_3 | do(X_2 = x_2))$
- $\geq Z$ is the unmeasured confounder
- \triangleright Root node $X_1 \sim E_1$
- \triangleright Intervened node $X_2 = x_2$
- \triangleright Other nodes $X_3 = Dec_3(U_3, X_1, X_2)$

Experimental result

Discussion and Future Work

Discussion and Future Work

Contribution

- 1. Combine and summarize the three recent literature on the usage of diffusion model to answer the causal effect
- 2. Propose the new algorithm Backdoor DCM to sample from the target where there exist unobserved confounders
- 3. Show that it works at least simple setting by experiment

Limitations

> Backdoor DCM works only when we normalize the target

Future work

- ➤ Prove the convergence guarantee of Backdoor DCM
- > Implement the comprehensive algorithm by Python
- ➤ Compare DCM and Backoff DCM by the empirical analysis
- ➤ Generalize more by using the Front-door criterion (Pearl 2016) as well, which is another criterion to adjust for the nodes where there exist unobserved confounders

References

- Guido W. Imbens and Donald B. Rubin. Causal Inference for Statistics, Social, and Biomedical Sciences. Cambridge University Press. 2015. https://doi.org/10.1017/CBO9781139025751
- Judea Pearl, Madelyn Glymour, and Nicholas P. Jewell. Causal Inference in Statistics: A Primer. 2016. Wiley.
- Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising Diffusion Probabilistic Models. 2020. arXiv:2006.11239 [cs.LG]. https://doi.org/10.48550/arXiv.2006.11239.
- Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising Diffusion Implicit Models. ICLR 2021. arXiv:2010.02502 [cs.LG]. https://doi.org/10.48550/arXiv.2010.02502.
- Peter Bühlmann, Jonas Peters, and Jan Ernest. CAM: Causal additive models, high-dimensional order search and penalized regression. Ann. Statist. 42(6): 2526-2556. 2014. DOI: 10.1214/14-AOS1260
- Paul Rolland, Volkan Cevher, Matthäus Kleindessner, Chris Russel, Bernhard Schölkopf, Dominik Janzing, and Francesco Locatello. Score matching enables causal discovery of nonlinear additive noise models. 2022. arXiv:2203.04413 [cs.LG]. https://doi.org/10.48550/arXiv.2203.04413.
- Pedro Sanchez, Xiao Liu, Alison Q O'Neil, and Sotirios A. Tsaftaris. Diffusion Models for Causal Discovery via Topological Ordering. 2022. ICLR 2023. arXiv:2210.06201 [cs.LG]. https://doi.org/10.48550/arXiv.2210.06201.
- Patrick Chao, Patrick Blöbaum, and Shiva Prasad Kasiviswanathan. Interventional and Counterfactual Inference with Diffusion Models. 2023. arXiv:2302.00860 [stat.ML]. https://doi.org/10.48550/arXiv.2302.00860.