שאלה 1 (25 נקודות)

 $J_{L}(y) = y \mod x$

הוכיחו כי פונקצית ההצפנה ופונקצית הפענוח של צופן ה-RSA הן פונקציות הופכיות.

: \$(n) 5'2enn 126 $\phi(n) = \phi(p \cdot z) = (p - 1)(z - 1)$ Source De Pe Pose SSOUN KOUN SOU 11/116) P(P2) = (P - 1)(q - 1)(1) 25 de and Ni) 18 1674 = 596 $ab \equiv 1 \mod \phi(n) \implies ab \equiv 1 \mod (p-1)(q-1)$ -ab-1 Nx 75NN (p-1)(2-1) 12 3 -N 8211N e 70 t ple 7 165 $a6 - l = \pm (p - 1)(q - 1)$ 3 : p"; NN 3 12 d, pde x d25 ((25 4266 $(1) = (1) = (1) = (1) = 1 \mod p$ $(2) = (2) = 1 \mod p = 1 \mod p = 5$

75-17 (I 997) 907 (197 I) 1-5P $\left(x^{ab-1}\right) \times \equiv (1)(x) \mod n$ × ab = × mod n $(x^b)^a \equiv x \mod n$: (0.11/e b.18) b.107v) 12 (2.29131N 96 V115,0K,310K 192 ,92 × mod m = / mod m (=) × mod m = / (=) × = / mod m 510 $(\times^6)^a$ mod $n \equiv \times$. $\Rightarrow \lambda_{\epsilon}(e_{\kappa}(x)) = x.$. Sien :1016,31016 Y = x mod m (= x = y mod m n')1) X= > mod m V.77

$$y = (-2)m + x \qquad \Leftarrow \quad x = 2m + y \qquad 2 p l e f'' i \quad '' \leq 2 e -2 p e = 2 e$$

.X = /mod m n'JJ

$$\Gamma = X - 2m \implies X \text{ mod } m = X - 2m - (\#)$$

$$\int_{0}^{\pi} |\nabla x|^{2} |$$

:(#) -2 115 2'3]

×mod m = 2m+ / => ×mod m = / mod m.

$$P_X(s) = \frac{1}{6}$$
, $P_X(t) = \frac{1}{4}$, $P_X(u) = \frac{7}{12}$.

. תהי הסתברות בעלי מפתחות אקבוצת הסתברות שווה. $K = \{k_1, k_2, k_3, k_4\}$ תהי $Y = \{\mathtt{A}, \mathtt{B}, \mathtt{C}\}$ יהי

$$e_{k_i}(x) = 2x + i \mod 3$$

 $i\in\{1,2,3,4\}$ ולכל $x\in\mathbb{Z}_{26}$ כלל מצפין לכל

א) (20 נקודות)

מצאו את הפונקצית הסתברות של הטקסט מוצפן.

ב) (5 נקודות)

הוכיחו או הפריכו על ידי דוגמה נגדית: לקריפטו-מערכת זו יש סודיות מושלמת.

$$e_{\kappa_i(x)} = z \times + i \mod 3$$

S: i=1: $e_{(18)=2(18)+1 \mod 3} = 37 \mod 3 = 1 \longrightarrow B$ i=2: $e_{12}(18)=2(18)+2 \mod 3 = 38 \mod 3 = 2 \longrightarrow C$ i=3: $e_{12}(18)=2(18)+3 \mod 3 = 37 \mod 3 = 0 \longrightarrow A$ i=4: $e_{12}(18)=2(18)+4 \mod 3 = 40 \mod 3 = 1 \longrightarrow B$

E:
$$i=1$$
: $e_{K}(19) = 2(19) + 1 \mod 3 = 39 \mod 3 = 0 \longrightarrow A$
 $i=2$: $e_{K_{2}}(19) = 2(19) + 2 \mod 3 = 40 \mod 3 = 1 \longrightarrow B$
 $i=3$: $e_{1e_{2}}(19) = 2(19) + 3 \mod 3 = 41 \mod 3 = 2 \longrightarrow C$
 $i=4$: $e_{K_{2}}(19) = 2(19) + 4 \mod 3 = 42 \mod 3 = 0 \longrightarrow A$

U: $i=1$: $e_{K_{2}}(20) = 2(20) + 1 \mod 3 = 41 \mod 3 = 2 \longrightarrow C$
 $i=2$: $e_{K_{2}}(20) = 2(20) + 2 \mod 3 = 42 \mod 3 = 0 \longrightarrow A$
 $i=3$: $e_{1e_{2}}(20) = 2(20) + 3 \mod 3 = 42 \mod 3 = 1 \longrightarrow B$
 $i=4$: $e_{K_{2}}(20) = 2(20) + 4 \mod 3 = 44 \mod 3 = 2 \longrightarrow C$
 $e_{K_{2}}(x) = 2x + i \mod 3 = 44 \mod 3 = 2 \longrightarrow C$
 $e_{K_{2}}(x) = 2x + i \mod 3 = 44 \mod 3 = 2 \longrightarrow C$
 $e_{K_{2}}(x) = 2x + i \mod 3 = 44 \mod 3 = 2 \longrightarrow C$
 $e_{K_{2}}(x) = 2x + i \mod 3 = 44 \mod 3 = 2 \longrightarrow C$
 $e_{K_{2}}(x) = 2x + i \mod 3 = 44 \mod 3 = 2 \longrightarrow C$
 $e_{K_{2}}(x) = 2x + i \mod 3 = 44 \mod 3 = 2 \longrightarrow C$
 $e_{K_{2}}(x) = 2x + i \mod 3 = 44 \mod 3 = 2 \longrightarrow C$

	,185 Co! C	,			
~ / ^ ~ >	_	5	L)	
	k,	M	¢	U	
	K.	N	\mathcal{B}	7	
	Kz	4	V	I	
		B	A	Û	

$$P_{K}(K_{i}) = \frac{1}{4}$$
 $I \le i \le 4$
 $P_{X}(E) = \frac{1}{4}$
 $P_{X}(E) = \frac{1}{4}$
 $P_{X}(E) = \frac{1}{4}$
 $P_{X}(E) = \frac{1}{4}$

= p" , NN p 6 NN 101N N1.310 e, NO 38N -100.07 j $T(Y_{-y} | X_{-sc}) = P(Y_{-y}) \iff P(X_{-sc} | Y_{-y}) = P(X_{-sc})$ P (/= A)= 5 13 2 6. U $: P(Y=A \mid X=S)$ sen J $P(Y=A)X=S = \sum_{\{K_i,K_i,K_i,K_i,K_i,K_i\}} P(K=K_i) = P(K=K_i) = \frac{1}{4}$ $5 = \mathcal{L}(A)$ (15 6 $P(Y=A(X=s) = \frac{1}{4} \neq \frac{5}{16} = P(Y=A)$. ~ NJEIN NI.310 MIC () 5 S P(X==| Y=B) = P(Y=B| X=E)P(X=E) 1= (X= B) $=\frac{\gamma(\gamma=B)\times=E)\left(\frac{1}{4}\right)}{(4)}=\left(\frac{12}{4}\right)P(\gamma=B)\times=E)$ $\frac{1}{2} = \frac{12}{14} = \frac{12}{$ \mathcal{A}_{α} : (B) = E

$$= \frac{12}{14} \left(\frac{1}{4} \right) = \frac{3}{14}.$$

שאלה 4 (25 נקודות)

אליס רוצה לשלוח הודעה לבוב. היא מבקשת להצפין את ההודעה באמצעות צופן אל-גמאל. למטרה הזאת בוב אליס רוצה לשלוח הודעה לבוב. $(p=47, \alpha=12, a=10):$ בוחר במפתח הציבורי הבא

בוב צריך מפתח הסודי המתאים למפתח הציבורי הזה, כדי לפענח את הטקסט מוצפן אשר אליס שולחת.

א) (10 נקודות) חשבו את המפתח הסודי.

ב) (15 נקודות)

(3,42) הטקסט המוצפן של ההודעה אשר בוב מקבל הוא מצאו את הטקסט הגלוי של ההודעה.

$$R = 4 \mod b$$

$$= 12^{10} \mod 47$$

$$= 12^{10} \mod 47$$

$$50 = 8 + 2$$
 $5'' 8 / 2' 7 ,) $50' 6$$

 $12^{8} \mod 47 = 144 \mod 47 = 3$ $12^{4} \mod 47 = (12^{8})^{2} \mod 47 = 3^{3} \mod 47 = 3$ $12^{8} \mod 47 = (12^{4})^{2} \mod 47 = 3^{4} \mod 47 = 34$

$$8 = 12^{10} \mod 47 = (12^{8})(12^{3}) \mod 47 = (34)(8) \mod 47$$

$$= 102 \mod 47$$

$$= 8$$

$$8 = 8 / 38$$

: NURITY 1, A hor 199 60-01 . X'=3' X=45 NO 20-01 hor (5 2,80 $x = (x, a)^{-1} / 2 \mod p = (3')^{-1} \cdot 42 \mod 47$ $=3^{-10}(42) \mod 47 = (3^{-10} \mod 47)(42 \mod 47) = 0$ $3 = 1 \mod 47 \leftarrow \frac{P^{-1}}{2} \mod P : 10 \sim 70 \mod N$ -10 10072 60en 1282 3 mod 47 209J 3 mod 47 = 3 (1) mod 47 = (3 mod 47) (1 mod 47) 12 20 (3 mod 47) (3 mod 47) 6001) do (3 47-1) mad 47 = 36 = 3 mod 47 3 mod 47 = 9 3 mod 47 = 9 mod 47 = 34 3 mod 47 = 34 mod 47 = 28

 $3^{16} \mod 47 = 28 \mod 47 = 32$ $3^{16} \mod 47 = 3^{10} \mod 47$ $= 1024 \mod 47$ = 37 $3^{16} \mod 47 = 3^{10} \mod 47 = 37$ $(3^{10} \mod 47) \mod 47 = 36$ $(3^{10} \mod 47) \mod 47 = 36$ $(3^{10} \mod 47) \mod 47 = 36$ $(3^{10} \mod 47) \mod 47 = 36$