Feature selection

...or variables, or attributes...

Boom!

GIGO

Training	data			
var1	var2	var3	var4	result
5	2	2	1	dead
5	1	2	2	allve
3	3	1	2	dead
5	3	2	1	alive
4	3	2	2	alive

Advantages

- 1. Could improve the results
- 2. Faster training

Univariante feature selection

Training	data			
var1	var2	var3	var4	result
5	2	2	1	dead
5	1	2	2	allve
3	3	1	2	dead
5	3	2	1	alive
4	3	2	2	alive

Remove no sense variables

Low variance variables

Pearson's Correlation

$$r_{xy} = rac{\sum_{i=1}^{n}(x_i-ar{x})(y_i-ar{y})}{\sqrt{\sum_{i=1}^{n}(x_i-ar{x})^2}\sqrt{\sum_{i=1}^{n}(y_i-ar{y})^2}}$$

Deal with categorical variables

- Numerical Value
- One hot encoding

Get dummies!

numeric_variable	categorical_variable

0	1	Α
1	2	Α
2	5	В
3	8	Α

df = pd.get_dummies(df, columns=[])

	numeric_variable	categorical_variable_A	categorical_variable_B
0	1	1	0
1	2	1	0
2	5	0	1
3	8	1	0

Practice time

Correlation isn't causation

Chi-square test

- For categorical variables
- Statistical test
- Likelihood of correlation

Practice time

Tree-based feature selection

Practice time

Multivariante methods

- Slower than univariante
- More powerful

Wrapper methods

- Forward Selection
- Recursive Feature elimination

Embedded Methods

- LASSO
- Ridge Regression

Practice time

Thank you!