Roteiro - Unidade I

- Introdução às redes de computadores
 - Modelos de camadas OSI e TCP/IP
- Interligação de redes
 - Comutação de circuitos e de pacotes
 - Meios físicos de transmissão
 - Equipamentos e topologias de rede
- Comunicação de dados
 - Modelos de comunicação
 - Controle de acesso ao meio de comunicação
 - Técnicas de correção e detecção de erros

• Exemplo: A Internet - Visão Geral

- Exemplo: A Internet Visão Geral
- Borda da rede:
 - Milhões de dispositivos
 - Hosts/sistemas finais: clientes e servidores
 - Executam aplicações e protocolos de rede

- Exemplo: A Internet Visão Geral
- Borda da rede:
 - Milhões de dispositivos
 - Hosts/sistemas finais: clientes e servidores
 - Executam aplicações e protocolos de rede
- Redes de acesso, meio físico:
 - Enlaces de comunicação cabeados e/ou sem fio
 - Fibra, par trançado, wi-fi, satélite, etc.
 - Interconectam os dispositivos da borda com os do núcleo da rede

- Exemplo: A Internet Visão Geral
- Borda da rede:
 - Milhões de dispositivos
 - Hosts/sistemas finais: clientes e servidores
 - Executam aplicações e protocolos de rede
- Redes de acesso, meio físico:
 - Enlaces de comunicação cabeados e/ou sem fio
 - Fibra, par trançado, wi-fi, satélite, etc.
 - Interconectam os dispositivos da borda com os do núcleo da rede
- Núcleo da rede:
 - Roteadores interconectados
 - Encaminham pacotes entre redes
 - Formam a "rede de redes" (Internet)

 Todas as atividades de comunicação entre dispositivos em uma rede são regidas por protocolos!

- Mas o que s\u00e3o protocolos?
 - São mecanismos que controlam o envio e o recebimento de mensagens

Definição formal:

Protocolos definem o **formato** e a **ordem** das mensagens enviadas e/ou recebidas pelos dispositivos da rede, e que **ações** serão tomadas aquando da transmissão e/ou recepção de mensagens

- As redes são complexas!
 - Muitos componentes:
 - Hosts
 - Roteadores
 - Enlaces de diversos meios físicos
 - Milhões de Aplicações
 - Variados Protocolos
 - Diferentes hardwares
 - ...

• Pergunta:

 Como seria possível organizar a estrutura da rede com tantos componentes?

Camadas de protocolos!

A divisão em camadas permite definir grupos de tarefas em que cada um será responsável por oferecer um conjunto de serviços bem definidos

Camadas de protocolos

Analogia: Funcionalidade de uma linha aérea em camadas

- Cada camada implementa um serviço específico
 - Através de ações internas à camada
 - Depende dos serviços providos pela camada inferior

Por que dividir em camadas?

Lembrando que...

- Para que os dispositivos de rede se comuniquem, é necessário que implementem o(s) mesmo(s) protocolo(s)
- Nas primeiras gerações das redes de computadores as soluções eram proprietárias
 - Não existia compatibilidade entre sistemas de diferentes fabricantes
 - Desta forma, um mesmo fabricante era responsável por construir praticamente tudo numa comunicação de rede

• Objetivos:

- A divisão em camadas de protocolos permite a identificação e o relacionamento entre as partes do sistema
- A modularização facilita a manutenção e atualização do sistema
 - Mudança na implementação de um serviço de camada é transparente para o resto do sistema
 - Ex: Alterar um procedimento no portão de embarque não afeta o resto do sistema

- A ISO (International Organization for Standardization) desenvolveu um modelo de referência de camadas de protocolos
 - Chamado OSI (*Open Systems Interconnection*)
 - Define um conjunto de regras como guia para os fabricantes de dispositivos de rede padronizarem os protocolos
 - Visa facilitar a comunicação entre sistemas de diferentes fabricantes sem precisar alterar a lógica do hardware e software
 - O modelo OSI é estruturado em 7 camadas (de maneira hierárquica) com funções específicas
 - É importante ressaltar que: cada camada descreve funcionalidades e não detalhes de implementação

Aplicação:

- Dá suporte às aplicações de rede
- Faz a interface entre a pilha de protocolos inferiores e o programa que solicitou ou que receberá os dados através da rede
- Contém todos os protocolos de nível mais alto
 - Ex: FTP, SMTP, HTTP, SSH, ...

Apresentação:

- Permite às aplicações interpretar o significado dos dados
 - Ex: tipo de cifragem, codificação, compressão

• Sessão:

- Sincronização, verificação, recuperação da troca de dados
- Permite que dois programas estabeleçam uma sessão de comunicação em rede (ex: um cliente e um servidor)

• Transporte:

- Transferência de dados processo a processo
- Fragmentar segmentos em unidades menores, se necessário
- Garantir que todos os fragmentos chegarão corretamente à outra extremidade
- Ex: TCP, UDP

• Rede:

- Endereçamento lógico de dispositivos de rede
 - Ex: 200.133.13.1
- Repasse (encaminhamento) de datagramas da origem até o destino
- Ex: IP, protocolos de roteamento

• Enlace:

- Transferência de dados entre elementos adjacentes (vizinhos)
- Controle de acesso ao meio de transmissão
- Controle e correção de erros
- Ex: Ethernet, WiFi (IEEE 802.11)
- Endereço "físico" ou endereço MAC
 - Ex: 00:1D:7D:B2:34:F9

• Física:

- Bits "no fio"
- Transforma os bits dos quadros de dados num sinal compatível com o meio físico de transmissão por onde os dados serão enviados
 - Ex: pulsos elétricos, ondas de rádio ou sinais luminosos

- Mas como a comunicação funciona com a divisão em camadas?
 - Comunicação inter-camadas: transmissão de uma mensagem
 - Cada camada recebe a mensagem da camada imediatamente acima, acrescenta informações referentes à atual camada (cabeçalho de informação) e repassa para a camada imediatamente abaixo

• Este processo é chamado de encapsulamento

- Mas como a comunicação funciona com a divisão em camadas?
 - Comunicação inter-camadas: recepção de uma mensagem
 - Cada camada recebe a mensagem da camada imediatamente abaixo, recupera as informações de cabeçalho pelo qual a camada é responsável e repassa para a camada imediatamente acima

• Este processo é chamado de <u>desencapsulamento</u>

Encapsulamento e desencapsulamer mensagem

mensagem segmento datagrama quadro

Legenda:

H _I	Cabeçalho da camada de enlace (I = link)
H _n	Cabeçalho da camada de rede (n = network)
H _t	Cabeçalho da camada de transporte (t = transport)
М	Mensagem

- Comunicação inter-camadas
 - De maneira mais simples, pode-se dizer que uma determinada camada no transmissor comunica-se com a camada correspondente no receptor
 - Um protocolo no transmissor se comunica com o mesmo protocolo no receptor, mas sempre seguindo a ordem descendente (de camadas) na transmissão e ascendente (de camadas) na recepção

Modelo de referência OSI/ISO: Resumo

Transferência de arquivos, correio eletrônico, submissão remota de **Aplicação** tarefas, terminal virtual, ... Serviço de troca de mensagens independente de sintaxe Negociação da sintaxe de transferência e transformação na **Apresentação** representação de dados Sessão Controle de sincronização e diálogo Serviço de troca de mensagens independente de rede Transferência fim-a-fim de mensagens (gerência de conexão, Transporte controle de erro e fluxo) Roteamento de rede, endereçamento, estabelecimento e Rede terminação de chamada Controle de enlace de dados (enquadramento, transparência de **Enlace** dados, controle de erro) Interface elétrica e mecânica com a rede **Física**

Conexão física a equipamentos de terminação de rede

- Mas o modelo OSI é implementado na prática?
 - Como o próprio nome diz, ele é um modelo de referência!
- Se é de referência, como é na Internet?
 - O modelo OSI surgiu após o TCP/IP estar amplamente implantado nas redes
 - Como consequência, o modelo OSI "não vingou", embora alguns fabricantes de dispositivos de rede afirmem implementar o modelo

Modelo TCP/IP

- Em comparação ao modelo OSI, o TCIP/IP não implementa as camadas de apresentação e sessão!
 - Os serviços providos por estas camadas, quando necessários, devem ser implementados na aplicação
- A camada de rede se chama camada Inter-redes
- E as camadas de enlace e física são uma única camada chamada host/rede
 - O TCP/IP não especifica nenhuma regra para esta(s) camada(s)

Modelo TCP/IP na Internet

- Na prática a pilha de protocolos da Internet se baseia no modelo TCP/IP, porém com algumas pequenas diferenças
 - A camada inter-redes chama-se camada Internet
 - E a camada host/rede é separada em camadas de enlace e física

Exercícios de fixação

- 1. O que rege a comunicação entre dispositivos em uma rede?
- 2. O que são camadas de protocolos?
- 3. Quais os modelos existentes?
- 4. Quantas camadas de protocolos existem no modelo OSI?
- 5. E quantas no modelo TCP/IP?
- 6. Qual é a ordem das camadas no modelo TCP/IP da Internet?