

What is the Semantic Web?

17th XBRL International Conference Eindhoven, the Netherlands 5st May, 2008

Ivan Herman, W3C

> Towards a Semantic Web

- The current Web represents information using
 - natural language (English, Hungarian, Dutch,...)
 - graphics, multimedia, page layout
- Humans can process this easily
 - can deduce facts from partial information
 - can create mental associations
 - are used to various sensory information
 - (well, sort of... people with disabilities may have serious problems on the Web with rich media!)

> Towards a Semantic Web

- Tasks often require to combine data on the Web:
 - hotel and travel infos may come from different sites
 - searches in different digital libraries
 - etc.
- Again, humans combine these information easily
 - even if different terminology's are used!

> However...

- However: machines are ignorant!
 - partial information is unusable
 - difficult to make sense from, e.g., an image
 - drawing analogies automatically is difficult
 - difficult to combine information automatically
 - is <foo:creator> same as <bar:author>?
 - how to combine different XML hierarchies?

. . . .

> Example: automatic airline reservation

- Your automatic airline reservation
 - knows about your preferences
 - builds up knowledge base using your past
 - can combine the local knowledge with remote services:
 - airline preferences
 - dietary requirements
 - calendaring
 - etc
- It communicates with remote information (i.e., on the Web!)
 - (M. Dertouzos: The Unfinished Revolution)

> Example: data(base) integration

- Databases are very different in structure, in content
- Lots of applications require managing several databases
 - after company mergers
 - combination of administrative data for e-Government
 - biochemical, genetic, pharmaceutical research
 - etc.
- Most of these data are accessible from the Web (though not necessarily public yet)

> And the problem <u>is</u> real...

> What is needed?

- (Some) data should be available for machines for further processing
- Data should be possibly combined, merged on a Web scale
- Sometimes, data may describe other data (like the library example, using metadata)...
- ... but sometimes the data is to be exchanged by itself, like my calendar or my travel preferences
- Machines may also need to <u>reason</u> about that data

> In what follows...

- We will use a simplistic example to introduce the main Semantic Web concepts
- We take, as an example area, data integration

> The rough structure of data integration

- Map the various data onto an abstract data representation
 - make the data independent of its internal representation...
- 2. Merge the resulting representations
- 3. Start making queries on the whole!
 - queries that could not have been done on the individual data sets

> A <u>simplified</u> bookstore data (dataset "A")

ID	Author	Title	Publisher	Year
ISBN0-00-651409-X	id_xyz	The Glass Palace	id_qpr	2000

ID	Name	Home Page
id_xyz	Ghosh, Amitav	http://www.amitavghosh.com

ID	Publ. Name	City
id_qpr	Harpers Collins	London

> 1st: export your data as a set of *relations*

> Some notes on the exporting the data

- Relations form a graph
 - the nodes refer to the "real" data or contain some literal
 - how the graph is represented in machine is immaterial for now
- Data export does <u>not</u> necessarily mean physical conversion of the data
 - relations can be generated on-the-fly at query time
 - via SQL "bridges"
 - scraping HTML pages
 - extracting data from Excel sheets
 - etc.
- One can export <u>part</u> of the data

> Another bookstore data (dataset "F")

	A	В	С	D	E
1	ID	Titre	Auteur	Traducteur	Original
2	ISBN0 2020386682	Le Palais des miroirs	A7	A8	ISBN-0-00-651409-X
3					

5	
6	Nom
7	Ghosh, Amitav

Besse, Christianne

> 2nd: export your second set of data

> 3rd: start merging your data

> 3rd: start merging your data (cont.)

> 3rd: merge identical resources

> Start making queries...

- User of data "F" can now ask queries like:
 - « donnes-moi le titre de l'original »
 - (ie: "give me the title of the original")
- This information is not in the dataset "F"...
- ...but can be retrieved by merging with dataset "A"!

> However, more can be achieved...

- We "feel" that a:author and f:auteur should be the same
- But an automatic merge doest not know that!
- Let us add some extra information to the merged data:
 - a:author same as f:auteur
 - both identify a "Person"
 - a term that a community may have already defined:
 - a "Person" is uniquely identified by his/her name and, say, homepage
 - it can be used as a "category" for certain type of resources

> 3rd revisited: use the extra knowledge

> Start making richer queries!

- User of dataset "F" can now query:
 - «donnes-moi la page d'accueil de l'auteur de l'original»
 - (ie, "give me the home page of the original's author")
- The information is not in datasets "F" or "A"...
- ...but was made available by:
 - merging datasets "A" and datasets "F"
 - adding three simple extra statements as an extra "glue"

> Combine with different datasets

- Using, e.g., the "Person", the dataset can be combined with other sources
- For example, data in Wikipedia can be extracted using dedicated tools
 - e.g., the "DBpedia" extracts the "infobox" information from Wikipedia...

> Merge with Wikipedia data

> Merge with Wikipedia data

> Merge with Wikipedia data

> Is that surprising?

- Maybe but, in fact, no...
- What happened via automatic means is done all the time, every day by the users of the Web!
- The difference: a bit of extra rigor (e.g., naming the relationships) is necessary so that machines could do this, too

> What did we do?

- We combined different datasets that
 - are somewhere on the web
 - are of different formats (mysql, excel sheet, XHTML, etc)
 - have different names for relations
- We could combine the data because some URI-s were identical (the ISBN-s in this case)
- We could add some simple additional information, using common terminologies that a community has produced
- As a result, new relations could be found and retrieved

> It could become even more powerful

- We could add extra knowledge to the merged datasets
 - e.g., a full classification of various types of library data
 - geographical information
 - etc.
- This is where <u>ontologies</u>, extra <u>rules</u>, etc, come in
 - ontologies/rule sets can be relatively simple and small, or huge, or anything in between...
- Even more powerful queries can be asked as a result

> What did we do? (cont)

> The abstraction pays off because...

- the graph representation is independent on the exact format, data structures, schemas
- ... a change in local database schema's, XHTML structures, etc, do not affect the whole, only the "export" step
- new data, new connections can be added seamlessly, regardless of the structure of other data sources

> So where is the Semantic Web?

- The Semantic Web provides technologies to make such integration possible! For example:
 - an abstract model for the relational graphs: RDF (with different "serializations" in XML or text)
 - extract RDF information from XML data: GRDDL
 - a query language adapted for the relational graphs:
 SPARQL
 - characterize the relationships, categorize resources: RDFS, OWL, SKOS, Rules
 - applications may choose among the different technologies
 - reuse of existing "ontologies" that others have produced (FOAF in our case)

> How they fit on the picture...

> So where is the Semantic Web? (cont)

> Public datasets are accumulating

- "Département/canton/commune" structure of France published by the French Statistical Institute
- Geonames Ontology and Data: 6 million geographical features
- "DBpedia": infobox data of Wikipedia into RDF
- These data are not only available for the Semantic Web, but they are also fully public...

> And XBRL?

- An outsider's view, of course...
- The XBRL spec achieves a major integration of data... but only within a specific domain
- If the financial data is to be combined with, say, statistical data: "bridging" XBRL to the Semantic Web might be a good approach
- It is not easy (XBRL seems fairly complex) but it might be worth it!

> Thank you for your attention!

These slides are publicly available on:

http://www.w3.org/2008/Talks/0505-Eindhoven-IH/