[. (a)
$$f(\vec{x}) = 2x_1^2 + x_1 x_1 + x_1^2 - 3x_1 - 5x_1$$

 $4f(\vec{x}) = 8x_1^2 + 4x_1 x_1 + 4x_1^2 - 2x_1 - 2x_1 - 2x_1$
 $36x_1^2 + 2x_1^2 - 12x_1 - 2x_1 x_1$
 $= 6(x_1 - 1)^2 + 2(x_1 - 5)^2 - 56$
 $32(x_1 - 1)^2 + 2(x_2 - 5)^2 - 56$
 $3x_1^2 + x_1^2 - 108$

Obviously, when $||x|| \to \infty$, $f(x) \to +\infty$, so f(x) vs coercive.

(b) $f(\vec{x})$ is continuous on R^2 . Given the conduction in (c), we know that $f(\vec{x})$ has global min but does not have global max.

The z 17 is the only solution, so it must be the global min

Thus, the global min of f(x) is $(\frac{1}{7}, \frac{17}{7})$

- 2. (a) When LER > +00, f(dvid) > D, so y \(\) > D, \(\) \(
 - Thus, $f(\tilde{w}) \ge h(\tilde{w})$
 - (ii) h(w) is continuous on S, which is a compact set, so h(w) has a global min wo on S.

If $h(\vec{w_0}) \leq D$, then $\forall i$, $-\eta_i \vec{x_i} \vec{w} \leq D$, which contradicts the fact that the dateset is not linearly separable. Thus, $C \leq h(\vec{w_0}) > D$

(iii) Let $\vec{w}_1 = \frac{\vec{w}}{|\vec{w}|}$. Then $\vec{w}_1 \in S$.

 $h(\vec{w}) = h(||\vec{w}||\vec{w}_i) = ||\vec{w}||h(\vec{w}_i) > C||\vec{w}||.$

- (iv) $f(\vec{w}) \ge Cll\vec{w}ll$, so $f(\vec{w})$ is wercive. We also know that $f(\vec{w})$ is continuous, so $f(\vec{w})$ has a global min-
- (c) let g(x) = log (l+e), h; (w) = y; x; w.

Then
$$\left(g\left(h_{i}(\vec{w})\right)\right) \approx g'\left(h_{i}(\vec{w})\cdot h_{i}(\vec{w})\right)$$

$$= -\frac{y_{i}e^{-y_{i}\vec{x}_{i}\vec{w}}}{2^{-y_{i}\vec{x}_{i}\vec{w}}} + \frac{y_{i}}{y_{i}} = \frac{y_{i}e^{-y_{i}\vec{x}_{i}\vec{w}}}{y_{i}}$$
Thus, $\nabla f(\vec{w}) \approx f'(\vec{w})^{T} \approx -\sum_{i \geq 1}^{m} \frac{y_{i}e^{-y_{i}\vec{x}_{i}\vec{w}}}{e^{-y_{i}\vec{x}_{i}\vec{w}}} + \frac{y_{i}}{y_{i}}$

3. (a) We already know that g(a+t) = g(a) + g(a) t + = g"(a+t)+, He(D)) Applying the formula to g(0+t)=f(x+tâ) will obtain $f(\vec{x} + t\hat{d}) = g(0) + g(0)t + \frac{1}{2}g''(\theta t)t'$ Because g(t)=f(x++a)a, g(t)=2Tof(x++a)a, when tellall we have: f(元+在)~f(元)+Vf(元+成)可+~1元7V3f(元+日前)前, for some 8 6 Word

(b) Let $g(t) = \nabla f(\vec{x} + t\vec{d})$. Then $g'(t) = \nabla^2 f(\vec{x} + t\vec{d}) \cdot \vec{d}$ $\int_0^1 g'(t) dt = g(1) - g(1) - \zeta(1) = \nabla f(\vec{x}) - \nabla f(\vec{x})$ Thus, $\nabla f(\vec{x} + t\vec{d}) = \nabla f(\vec{x}) + \int_0^1 \nabla^2 f(\vec{x} + t\vec{d}) dt$

4.
$$A^{2} \begin{pmatrix} 6 & 2 & 0 \\ 2 & 5 & 2 \\ 0 & -2 & 4 \end{pmatrix}$$
6>0, $\begin{vmatrix} 6 & 2 \\ 2 & 5 \end{vmatrix} = 26 > 0$, $|A| = 80 > 0$,
50 A is positive definite

$$B^{2}$$
 $\begin{pmatrix} 1 & 2 & 0 \\ 2 & 2 & 1 \\ 0 & 1 & 3 \end{pmatrix}$

All principal minors are non-negative, so C is positive semidefinite.