Understanding a Simple Neural Networks Learning for Multi-Class Classification -Maths Version

We have learned through a simple Neural Networks for Binary Classification in a separate blogs. Now we will try to understand the working of Neural Networks for Multi-Class Classification. For the consistency of the paramters names across all layers we have used 'h' at the outer layer too.

Summarizing Feed Forward parameters for Multi-Class Classification:

Hidden Layer 1

Input/Output Parameters	Parameter Expressions	Parameter Description

X_1	$egin{bmatrix} x_1 \ x_2 \ x_n \end{bmatrix}$	Input vector (different features)
W_1	$egin{bmatrix} w_{111} & w_{112} & \dots & w_{11n} \ w_{121} & w_{122} & \dots & w_{12n} \ \dots & \dots & \dots & \dots \ w_{1m1} & w_{1m} & \dots & w_{1mn} \end{bmatrix}$	W_1 matrix size is m x n, where, m = number of inputs and n = number of neurons
b_1	$egin{bmatrix} b_{11} \ b_{12} \ \cdots \ b_{1n} \end{bmatrix}$	b_1 is a vector with size as n, number of neuron in layer 1
a_{1n}	$egin{bmatrix} a_{11} \ a_{12} \ \cdots \ a_{1n} \end{bmatrix} = W_1 * X_1 + b_1$	A pre-activation function vector of size n, number of neurons in layer 1. The Matrix multiplication size will be, [n * m] * [m * 1] + [n * 1] = [n*1]
h_{1n}	$egin{bmatrix} h_{11} \ h_{12} \ \dots \ h_{1n} \end{bmatrix} &= egin{bmatrix} g(a_{11}) \ g(a_{12}) \ \dots \ g(a_{1n}) \end{bmatrix}$	A activation function vector of size n, number of neurons in layer 1. The activation can be any nonlinear continous function like Sigmoid, tanh etc.

If the function to be considered is Sigmoid then,

$$g(a_{11})=rac{1}{1+e^{-a_{11}}}$$
 and so on.

Hidden Layer 2

Input/Output Parameters	Parameter Expressions	Parameter Description
W_2	$egin{bmatrix} w_{211} & w_{212} & \dots & w_{21n} \ w_{221} & w_{222} & \dots & w_{22n} \ \dots & \dots & \dots & \dots \ w_{2m1} & w_{2m2} & \dots & w_{2mn} \end{bmatrix}$	W_2 matrix size is m x n, where, m = number of previous layer neurons and n = number of neurons in the current layer

b_2	$egin{bmatrix} b_{21} \ b_{22} \ \dots \ b_{2n} \end{bmatrix}$	b_2 is a vector with size as n, number of neuron in layer 2
a_{2n}	$egin{bmatrix} a_{21} \ a_{22} \ \dots \ a_{2n} \end{bmatrix} = W_2*h_1+b_2$	A pre-activation function vector of size n, number of neurons in layer 2. The Matrix multiplication size will be [n * m] * [m * 1] + [n*1] = [n * 1]
h_{2n}	$egin{bmatrix} h_{21} \ h_{22} \ \dots \ h_{2n} \end{bmatrix} &= egin{bmatrix} g(a_{21}) \ g(a_{22}) \ \dots \ g(a_{2n}) \end{bmatrix}$	A activation function vector of size n, number of neurons in layer 2. The activation can be any nonlinear continous function like Sigmoid, tanh etc.

If the function to be considered is Sigmoid then,

$$g^{'}(a_{21})=rac{1}{1+e^{-a_{21}}}$$
 and so on.

Output Layer

Input/Output Parameters	Parameter Expressions	Parameter Description
W_3	$egin{bmatrix} w_{311} & w_{312} & \dots & w_{31n} \ w_{321} & w_{322} & \dots & w_{32n} \ \dots & \dots & \dots & \dots \ w_{3m1} & w_{3m2} & \dots & w_{3mn} \end{bmatrix}$	W_3 matrix size is m x n, where, m = number of previous layer neurons and n = number of neurons in the current layer(output layer).
b_3	$egin{bmatrix} b_{31} \ b_{32} \ \dots \ b_{3n} \end{bmatrix}$	b_2 is a vector with size as n, number of neuron in layer 2.
a_{3n}	$egin{bmatrix} a_{31} \ a_{32} \ \dots \ a_{3n} \end{bmatrix} = W_3*h_2+b_3$	A pre-activation function vector of size n, number of neurons in output layer. The Matrix multiplication size will be [n * m] * [m * 1] + [n*1] = [n * 1].
		A activation function vector of

$$egin{align*} h_{3n} & egin{align*} \begin{bmatrix} h_{31} \\ h_{32} \\ \dots \\ h_{3n} \end{bmatrix} & = egin{bmatrix} softmax(a_{31}) \\ softmax(a_{32}) \\ \dots \\ softmax(a_{3n}) \end{bmatrix} & ext{size n, number of neurons in output layer. The activation can be any non-linear continous function like Sigmoid, tanh etc.} & ext{Here we will use softmax function.} \end{aligned}$$

For softmax,

 $softmax(a_{31})=rac{e^{a_{31}}}{\sum e^{a_i}}$ where \emph{i} , ranges from 1 to n, n being the number of neurons at the output layer.

So if you combine the above layer equations it will result into below:

$$\hat{y}=f(x)=O(W_3g(W_2g(W_1X_1+b_1)+b_2)+b_3)$$
, where O can be a softmax or any other non-linear continous function.

CROSS ENTROPY LOSS FUNCTION for Multi-Class Classification is given by:

$$L(\Theta) = -[(1-y)log(1-\hat{y}) + ylog\hat{y}]$$