Regulatory sequence analysis

Position-specific scoring matrices (PSSM)

Jacques van Helden Jacques.van.Helden@ulb.ac.be

Alignment of transcription factor binding sites

Binding sites for the yeast Pho4p transcription factor

(Source : Oshima et al. Gene 179, 1996; 171-177)

Gene	Site Name	Sequence	Affinity
PHO5	UASp2	aCtCaCACACGTGGGACTAGC-	high
PHO84	Site D	TTTCCAGCACGTGGGGCGGA	high
PHO81	UAS	TTATGGCACGTGCGAATAA	high
PHO8	Proximal	GTGATCGCTGCACGTGGCCCGA	high
PHO5	UASp3	TAATTTGGCATGTGCGATCTC	low
PHO84	Site C	ACGTCCACGTGGAACTAT	low
PHO84	Site A	TTTATCACGTGACACTTTTT	low
group 1	consensus	gCACGTGggac	high-low
PHO5	UASp1	TAAATTAGCACGTTTTCGC	medium
PHO84	Site E	AATACGCACGTTTTTAATCTA	medium
PHO84	Site B	TTACGCACGTTGGTGCTG	low
PHO8	Distal	TTACCCGCACGCTTAATAT	low
group 2	consensus	cgCACGTTt	med-low
group Z	00110011003	-9	THEG IOW

-----GCACGTKKk-----

Degenerate consensus

Regulatory sequence analysis

From alignments to weights

Jacques van Helden Jacques.van.Helden@ulb.ac.be

Count matrix

Pos	1	2	3	4	5	6	7	8	9	10	11	12
A	1	3	2	0	8	0	0	0	0	0	1	2
С	2	2	3	8	0	8	0	0	0	2	0	2
G	1	2	3	0	0	0	8	0	5	4	5	2
т	4	1	0	0	0	0	0	8	3	2	2	2
Sum	8	8	8	8	8	8	8	8	8	8	8	8

Binding site for the yeast Pho4p transcription factor

(Source: Transfac matrix F\$PHO4_01)

 $n_{i,j}$, occurrences of residue i at position j

Frequency matrix

Pos	1	2	3	4	5	6	7	8	9	10	11	12
A	0.13	0.38	0.25	0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.13	0.25
С	0.25	0.25	0.38	1.00	0.00	1.00	0.00	0.00	0.00	0.25	0.00	0.25
G	0.13	0.25	0.38	0.00	0.00	0.00	1.00	0.00	0.63	0.50	0.63	0.25
Т	0.50	0.13	0.00	0.00	0.00	0.00	0.00	1.00	0.38	0.25	0.25	0.25
Sum	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00

$$f_{i,j} = \frac{n_{i,j}}{\sum_{i=1}^{A} n_{i,j}}$$

A alphabet size (=4) $n_{i,j,}$ occurrences of residue i at position j p_i prior residue probability for residue i $f_{i,i}$ relative frequency of residue i at position j

Reference: Hertz (1999). Bioinformatics 15:563-577.

Corrected frequency matrix

Pos	1	2	3	4	5	6	7	8	9	10	11	12
A	0.15	0.37	0.26	0.04	0.93	0.04	0.04	0.04	0.04	0.04	0.15	0.26
C	0.24	0.24	0.35	0.91	0.02	0.91	0.02	0.02	0.02	0.24	0.02	0.24
G	0.13	0.24	0.35	0.02	0.02	0.02	0.91	0.02	0.58	0.46	0.58	0.24
Т	0.48	0.15	0.04	0.04	0.04	0.04	0.04	0.93	0.37	0.26	0.26	0.26
Sum	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00

1st option: identically distributed pseudo-weight

$$f'_{i,j} = \frac{n_{i,j} + k/A}{\sum_{i=1}^{A} n_{i,j} + k}$$

2nd option: pseudo-weight distributed according to residue priors

$$f'_{i,j} = \frac{n_{i,j} + p_i k}{\sum_{i=1}^{A} n_{i,j} + k}$$

A alphabet size (=4) $n_{i,j,}$ occurrences of residue i at position j p_i prior residue probability for residue i $f_{i,j}$ relative frequency of residue i at position j k pseudo weight (arbitrary, 1 in this case) $f_{i,j}$ corrected frequency of residue i at position j

Reference: Hertz (1999). Bioinformatics 15:563-577.

Probability of a sequence segment under the matrix model

	Pos	1	2	3	4	5	6	7	8	9	10	11	12
	A	0.15	0.37	0.26	0.04	0.93	0.04	0.04	0.04	0.04	0.04	0.15	0.26
	С	0.24	0.24	0.35	0.91	0.02	0.91	0.02	0.02	0.02	0.24	0.02	0.24
	G	0.13	0.24	0.35	0.02	0.02	0.02	0.91	0.02	0.58	0.46	0.58	0.24
	Т	0.48	0.15	0.04	0.04	0.04	0.04	0.04	0.93	0.37	0.26	0.26	0.26
Sequ	ence S	Α	Т	G	С	G	T	Α	Α	Α	G	С	T
	P(res)	0.15	0.15	0.35	0.91	0.02	0.04	0.04	0.04	0.04	0.46	0.02	0.26

 $P(S \mid M) = \prod f'_{r_i j}$

P(S|M) 5.32E-13

Let

- $_{q}$ M be a frequency matrix of width w
- $S = \{r_1, r_2, ..., r_w\}$ be a sequence segment of length w (same length as the matrix)
- r_i is the residue found at position j of the sequence segment S.
- The corrected frequencies F'_{ij} can be used to estimate the probability to observe residue i at position j of the motif described by the matrix
- The probability to generate the sequence segment S under the model described by the matrix M is the product of the frequencies of residues at the corresponding columns of the matrix.

Probability of the best sequence segment under the matrix model

	Pos	1	2	3	4	5	6	7	8	9	10	11	12
	Α	0.15	0.37	0.26	0.04	0.93	0.04	0.04	0.04	0.04	0.04	0.15	0.26
	С	0.24	0.24	0.35	0.91	0.02	0.91	0.02	0.02	0.02	0.24	0.02	0.24
	G	0.13	0.24	0.35	0.02	0.02	0.02	0.91	0.02	0.58	0.46	0.58	0.24
	Т	0.48	0.15	0.04	0.04	0.04	0.04	0.04	0.93	0.37	0.26	0.26	0.26
Sequ	ence S	T	Α	G	С	Α	С	G	Т	G	G	G	T
	P(res)	0.48	0.37	0.35	0.91	0.93	0.91	0.91	0.93	0.58	0.46	0.58	0.26
	P(S M)	1.59E-()3									1	w

- This segment of sequence is associated to the highest possible probability given the matrix : P(S|M)
- n Each nucleotide of the sequence corresponds to the residue with the highest probability in the corresponding column of the matrix.

$$P(S \mid M) = \prod_{j=1}^{w} f'_{r_j j}$$

Probability of a sequence segment under the background model

Pos	Prior
A	0.325
С	0.175
G	0.175
T	0.325

Sequence S A T G C G T A A A G C T P(res) 0.325 0.325 0.325 0.175 0.175 0.175 0.325 0.325 0.325 0.325 0.175 0.175 0.325 P(S|B) 6.29E-08

- A background model (B) should be defined to estimate the probability of a sequence motif outside of the motif.
- Various possibilities can be envisaged to define the background model
 - Bernoulli model with equiprobable residues (this should generally be avoided, because most biological sequences are biased towards some residues)
 - Bernoulli model with residue-specific probabilities (p_r)
 - Markov chains
- Under a Bernoulli model, the probability of a sequence motif S is the probability of the prior frequencies of its residues r_j .

$$P(S \mid B) = \prod_{j=1}^{w} p_{r_j}$$

Weight of a sequence segment

Pos	1	2	3	4	5	6	7	8	9	10	11	12
Α	-0.79	0.13	-0.23	-2.20	1.05	-2.20	-2.20	-2.20	-2.20	-2.20	-0.79	-0.23
С	0.32	0.32	0.70	1.65	-2.20	1.65	-2.20	-2.20	-2.20	0.32	-2.20	0.32
G	-0.29	0.32	0.70	-2.20	-2.20	-2.20	1.65	-2.20	1.19	0.97	1.19	0.32
Т	0.39	-0.79	-2.20	-2.20	-2.20	-2.20	-2.20	1.05	0.13	-0.23	-0.23	-0.23
residue r	Α	Т	G	С	G	Т	Α	Α	Α	G	С	T
W(r)	-0.79	-0.79	0.70	1.65	-2.20	-2.20	-2.20	-2.20	-2.20	0.97	-2.20	-0.23
Weight	-11.67	:	=SUM[W	/(r)]								

$$W_{S} = \ln\left(\frac{P(S \mid M)}{P(S \mid B)}\right) = \ln\left(\frac{\prod_{j=1}^{w} f'_{r_{j}j}}{\prod_{j=1}^{w} p_{r_{j}}}\right) = \ln\left(\prod_{j=1}^{w} \frac{f'_{r_{j}j}}{p_{r_{j}}}\right) = \sum_{j=1}^{w} \ln\left(\frac{f'_{r_{j}j}}{p_{r_{j}}}\right) = \sum_{j=1}^{w} W_{r_{j}j}$$

Ws	weight of sequence segment S
P(S M)	probability of the sequence segment, given
	the matrix
P(S B)	probability of the sequence segment, given
	the background
j	position within the segment and within the
	matrix
r_i	residue at position j of the sequence
,	segment
p_{rj}	prior probability of residue r_i
$\int_{\gamma_{ij}}^{\gamma_{ij}}$	probability of residue r_i at position j of the
, JJ	matrix

- The **weight** of a sequence segment is defined as the log-ratio between
 - P(S|M), the sequence probability under the model described by the PSSM, and
 - P(S|B), the sequence probability under the background model.
- The weight represents the likelihood that this segment is an occurrence of the motif rather than being issued from the background model.
- The weight matrix W_{ij} allows to easily calculate segment weights.

Weight matrix (Bernoulli model)

Prior	Pos	1	2	3	4	5	6	7	8	9	10	11	12
0.325	A	-0.79	0.13	-0.23	-2.20	1.05	-2.20	-2.20	-2.20	-2.20	-2.20	-0.79	-0.23
0.175	C	0.32	0.32	0.70	1.65	-2.20	1.65	-2.20	-2.20	-2.20	0.32	-2.20	0.32
0.175	G	-0.29	0.32	0.70	-2.20	-2.20	-2.20	1.65	-2.20	1.19	0.97	1.19	0.32
0.325	Т	0.39	-0.79	-2.20	-2.20	-2.20	-2.20	-2.20	1.05	0.13	-0.23	-0.23	-0.23
1.000	Sum	-0.37	-0.02	-1.02	-4.94	-5.55	-4.94	-4.94	-5.55	-3.08	-1.13	-2.03	0.19

$$f'_{i,j} = \frac{n_{i,j} + p_i k}{\sum_{r=1}^{A} n_{r,j} + k}$$

$$W_{i,j} = \ln \left(\frac{f'_{i,j}}{p_i} \right)$$

A alphabet size (=4)

 $n_{i,j,}$ occurrences of residue i at position j

 p_i prior residue probability for residue i

 $f_{i,j}$ relative frequency of residue i at position j

k pseudo weight (arbitrary, 1 in this case)

 $f_{i,j}$ corrected frequency of residue i at position j

 $W_{i,j}$ weight of residue i at position j

Reference: Hertz (1999). Bioinformatics 15:563-577.

Bernoulli asumption

If we assume, for the background model, an independent succession of nucleotides (Bernoulli model), the weight W_S of a sequence segment S is simply the sum of weights of the nucleotides at successive positions of the matrix $(W_{i,j})$.

In this case, it is convenient to convert the PSSM into a weight matrix, which can then be used to assign a score to each position of a given sequence.

Properties of the weight function

$$W_{i,j} = \ln\left(\frac{f'_{i,j}}{p_i}\right) \left| f'_{i,j} = \frac{n_{i,j} + p_i k}{\sum_{i=1}^{A} n_{i,j} + k} \right| \qquad \sum_{i=1}^{A} f'_{i,j} = 1$$

n The weight is

- q positive when $f'_{i,j} > p_i$ (favourable positions for the binding of the transcription factor)
- negative when $f'_{i,j} < p_i$ (unfavourable positions)

Regulatory sequence analysis

Information content

Jacques van Helden Jacques.van.Helden@ulb.ac.be

Shannon uncertainty

- Shannon uncertainty
 - q $H_s(j)$: uncertainty of a column of a PSSM
 - Hg: uncertainty of the background (e.g. a genome)
- Properties of the uncertainty (for a 4 letter alphabet)
 - q min(H)=0
 - No uncertainty at all: the nucleotide is completely specified (e.g. p={1,0,0,0})
 - q H=1
 - Uncertainty between two letters (e.g. p={0.5,0,0,0.5})
 - max(H) = 2 (Complete uncertainty)
 - One bit of information is required to specify the choice between each alternative (e.g. p={0.25,0.25,0.25,0.25}).
 - Two bits are required to specify a letter in a 4-letter alphabet.
- n Schneider (1986) defines an information content R^*_{seq} based on Shannon's uncertainty.

$$H_{s}(j) = -\sum_{i=1}^{A} f_{i,j} \log_{2}(f_{i,j})$$

$$H_{g} = -\sum_{i=1}^{A} p_{i} \log_{2}(p_{i})$$

$$R_{seq}(j) = H_{g} - H_{s}(j) \qquad R_{seq} = \sum_{j=1}^{w} R_{seq}(j)$$

$$R_{seq}^{*}(j) = \sum_{i=1}^{A} f_{i,j} \log_{2}\left(\frac{f_{i,j}}{p_{i}}\right) \qquad R_{seq}^{*} = \sum_{j=1}^{w} R_{seq}^{*}(j)$$

Information content

Prior	Pos	1	2	3	4	5	6	7	8	9	10	11	12
0.325	A	-0.12	0.05	-0.06	-0.08	0.97	-0.08	-0.08	-0.08	-0.08	-0.08	-0.12	-0.06
0.175	C	0.08	0.08	0.25	1.50	-0.04	1.50	-0.04	-0.04	-0.04	0.08	-0.04	0.08
0.175	G	-0.04	0.08	0.25	-0.04	-0.04	-0.04	1.50	-0.04	0.68	0.45	0.68	0.08
0.325	Т	0.19	-0.12	-0.08	-0.08	-0.08	-0.08	-0.08	0.97	0.05	-0.06	-0.06	-0.06
1.000	Sum	0.11	0.09	0.36	1.29	0.80	1.29	1.29	0.80	0.61	0.39	0.47	0.04

$$f'_{i,j} = \frac{n_{i,j} + p_i k}{\sum_{i=1}^{A} n_{i,j} + k}$$

$$I_{i,j} = f'_{i,j} \ln \left(\frac{f'_{i,j}}{p_i} \right)$$

$$I_j = \sum_{i=1}^A I_{i,j}$$

$$I_{matrix} = \sum_{j=1}^{w} \sum_{i=1}^{A} I_{i,j}$$

A alphabet size (=4) $n_{i,j}$ occurrences of residue i at position j w matrix width (=12) p_i prior residue probability for residue i $f_{i,j}$ relative frequency of residue i at position j k pseudo weight (arbitrary, 1 in this case) $f_{i,j}$ corrected frequency of residue i at position j $W_{i,j}$ weight of residue i at position j $I_{i,j}$ information of residue i at position j

Reference: Hertz (1999).

Bioinformatics 15:563-577.

Information content I_{ij} of a cell of the matrix

- For a given cell of the matrix
 - q I_{ij} is positive when $f'_{ij} > p_i$ (i.e. when residue i is more frequent at position j than expected by chance)
 - q I_{ij} is negative when $f'_{ij} < p_i$
 - q I_{ij} tends towards 0 when $f'_{ij} \rightarrow 0$ (because $limit_{x->0} x*ln(x) = 0$)

Information content of a column of the matrix

- For a given column i of the matrix
 - The information of the column (I_j) is the sum of information of its cells.
 - I_i is always positive
 - $_{q}$ I_{i} is always positive
 - q I_j is 0 when the frequency of all residues equal their prior probability $(f_{ij}=p_i)$
 - $_{q}$ I_{j} is maximal when
 - the residue i_m with the lowest prior probability has a frequency of 1 (all other residues have a frequency of 0)
 - and the pseudo-weight is 0

$$I_{j} = \sum_{i=1}^{A} I_{i,j} = \sum_{i=1}^{A} f'_{i,j} \ln \left(\frac{f'_{i,j}}{p_{i}} \right)$$

$$i_m = \operatorname{argmin}_i(p_i) \qquad k = 0$$

$$\max(I_j) = 1 * \ln(\frac{1}{p_i}) = -\ln(p_i)$$

Information content of the matrix

- The total information content represents the capability of the matrix to make the distinction between a binding site (represented by the matrix) and the background model.
- The information content also allows to estimate an upper limit for the expected frequency of the binding sites in random sequences.
- The pattern discovery program consensus (developed by Jerry Hertz) optimises the information content in order to detect overrepresented motifs.
- Note that this is not the case of all pattern discovery programs: the gibbs sampler algorithm optimizes a log-likelihood.

$$I_{matrix} = \sum_{j=1}^{w} \sum_{i=1}^{A} I_{i,j}$$

$$P(site) \le e^{-I_{matrix}}$$

Reference: Hertz (1999). Bioinformatics 15:563-577.

Information content: effect of prior probabilities

- n The upper bound of I_i increases when p_i decreases
 - q $I_i \rightarrow Inf$ when $p_i \rightarrow 0$
- The information content, as defined by Gerald Hertz, has thus no upper bound.

Regulatory sequence analysis

Sequence logos

Jacques van Helden Jacques.van.Helden@ulb.ac.be

Schneider logos

$$H_s(j) = -\sum_{i=1}^{A} f_{ij} \log_2(f_{ij})$$

$$R_{seq}(j) = 2 - H_s(j) + e(n)$$

$$h_{ij} = f_{ij} R_{seq}(j)$$

- Schneider (1990) proposes a graphical representation based on his previous entropy (H) for representing the importance of each residue at each position of an alignment. He provides a new formula for R_{seq}
 - q $H_s(j)$ uncertainty of column j
 - q $R_{seq}(j)$ information content of column j
 - e(n) correction for small samples (pseudo-weight)

n Remarks

- This information content does not include any correction for the prior residue probabilities (p_i)
- q This information content is expressed in bits.

n Boundaries

- q min(Rseq)=0 equiprobable residues
- max(Rseq)=2 perfect conservation of 1 residue, all the others are forbidden
- Sequence logos can be generated from aligned sequences on the Weblogo server
 - q http://weblogo.berkeley.edu/

Sequence logo

A TGTATGG Rap1 GGTGGCAAA Rpn4 SAATGASTCA Gcn4 GAA TTC AGAA HSE zG_GGGGA_GC Mig1 AAT TCACGTG Cbf1

References - PSSM information content

Papers by Tom Schneider

- Schneider, T.D., G.D. Stormo, L. Gold, and A. Ehrenfeucht. 1986. Information content of binding sites on nucleotide sequences. J Mol Biol 188: 415-431.
- Schneider, T.D. and R.M. Stephens. 1990. Sequence logos: a new way to display consensus sequences. Nucleic Acids Res 18: 6097-6100.
- Tom Schneider's publications online
 - http://www.lecb.ncifcrf.gov/~toms/paper/index.html

Papers by Gerald Hertz

Hertz, G.Z. and G.D. Stormo. 1999. Identifying DNA and protein patterns with statistically significant alignments of multiple sequences. Bioinformatics 15: 563-577.