1. definíció. Legyen A és B tetszőleges nemüres halmaz. A

$$\emptyset \neq f \subset A \times B$$

relációt függvénynek nevezzük, ha

$$\forall x \in D_f$$
 esetén $\exists ! y \in R_f : (x, y) \in f$.

Az y elemet az f függvény x helyen felvett **helyettesítési értékének** nevezzük és az f(x) szimbólummal jelöljük. Ekkor azt is mondjuk, hogy az f függvény x-hez az f(x) függvényértéket **rendeli**.

3. definíció. $Az f: A \to B$ függvényt invertálhatónak (egy-egyértelműnek vagy injektívnek) nevezzük akkor, ha a $\mathcal{D}_f = A$ értelmezési tartomány bármely két különböző pontjának a képe különböző, azaz

$$(\triangle)$$
 $\forall x, t \in \mathcal{D}_f, \quad x \neq t \implies f(x) \neq f(t).$

Gyakran használjuk a (\triangle) alábbi ekvivalens átfogalmazásait:

- f invertálható \iff $\forall x, t \in \mathcal{D}_f$ esetén $f(x) = f(t) \implies x = t$,
- f invertálható \iff $\forall y \in \mathcal{R}_f$ -hez $\exists ! x \in \mathcal{D}_f : f(x) = y$.

$$f \in A \to B$$
 : \iff $f \subset A \times B$ függvény és $\mathcal{D}_f \subset A$.

$$f: A \to B$$
 : $\iff f \subset A \times B$ függvény és $\mathcal{D}_f = A$.

4. definíció. Legyen f egy invertálható függvény, azaz tegyük fel, hogy

$$\forall y \in \mathcal{R}_f$$
-hez $\exists ! \ x \in \mathcal{D}_f \colon f(x) = y$.

 $Ekkor\ az\ f\ \textbf{inverz}\ \textbf{f} \textbf{iiggv\'{e}ny\'{e}t}\ (vagy\ r\"{o}viden\ \textbf{inverz\'{e}t})\ \acute{n}gy\ \acute{e}rtelmezz\"{u}k:$

$$f^{-1}: \mathcal{R}_f \ni y \mapsto x$$
, amelyre $f(x) = y$.

III. Teljességi axióma (Dedekind-axióma vagy szétválasztási axióma):

Tegyük fel, hogy az $A, B \subset \mathbb{R}$ halmazokra a következők teljesülnek:

- $A \neq \emptyset$ és $B \neq \emptyset$,
- minden $a \in A$ és minden $b \in B$ elemre $a \le b$.

Ekkor

$$\exists\,\xi\in\mathbb{R}:\quad\forall\,a\in A\text{ és }b\in B\text{ esetén }a\leq\xi\leq b.$$

- 6. definíció. $A H \subset \mathbb{R}$ halmaz induktív halmaz, ha
 - \bullet $0 \in H$,
 - $minden \ x \in H \ eset\'{e}n \ x + 1 \in H$.
- 1. tétel (A teljes indukció elve). Tegyük fel, hogy minden n természetes számra adott egy A(n) állítás, és azt tudjuk, hogy
 - (i) A(0) igaz,
 - (ii) ha A(n) igaz, akkor A(n+1) is igaz.

Ekkor az A(n) állítás minden n természetes számra igaz.

9. definíció.

 1^o A nemüres $H \subset \mathbb{R}$ halmaz **felülről korlátos**, ha

 $\exists K \in \mathbb{R}, \ hogy \ \forall x \in H \ eset\'{en} \ x \leq K.$

Az ilyen K számot a H halmaz egy felső korlátjának nevezzük.

 2^o A nemüres $H \subset \mathbb{R}$ halmaz alulról korlátos, ha

 $\exists k \in \mathbb{R}, \ hogy \ \forall x \in H \ eset\'{e}n \ k \leq x.$

Az ilyen k számot a H halmaz egy alsó korlátjának nevezzük.

 3^o A nemüres $H \subset \mathbb{R}$ halmaz **korlátos**, ha alulról is, felülről is korlátos azaz

 $\exists K \in \mathbb{R}, \ hogy \ \forall x \in H \ eset\'en \ |x| \leq K.$

- 2. tétel (A szuprémum elv). Legyen $H \subset \mathbb{R}$ és tegyük fel, hogy
 - (i) $H \neq \emptyset$ és
 - (ii) H felülről korlátos.

Ekkor

 $\exists \min \{ K \in \mathbb{R} \mid K \text{ felső korlátja } H\text{-nak} \}.$

10. definíció.

- $\mathbf{1}^o$ A felülről korlátos $\emptyset \neq H \subset \mathbb{R}$ számhalmaz legkisebb felső korlátját H szuprémumának nevezzük, és a sup H szimbólummal jelöljük.
- **2°** Az alulról korlátos $\emptyset \neq H \subset \mathbb{R}$ számhalmaz legnagyobb alsó korlátját H infimumának nevezzük, és az $\inf H$ szimbólummal jelöljük.

4. tétel. Legyen $\emptyset \neq H \subset \mathbb{R}$ felülről korlátos halmaz. Ekkor

$$\xi = \sup H \quad \iff \quad$$

- $\xi = \sup H \iff \begin{cases} \text{i) } \xi \text{ felso kortal, assum} \\ \forall x \in H : x \leq \xi; \\ \text{ii) } \xi \text{ a legkisebb felső korlát, azaz} \\ \forall \varepsilon > 0\text{-hoz } \exists x \in H : \xi \varepsilon < x. \end{cases}$

5. tétel. Legyen $\emptyset \neq H \subset \mathbb{R}$ alulról korlátos halmaz. Ekkor

$$\xi = \inf H \quad \iff$$

- $\xi = \inf H \quad \Longleftrightarrow \quad \begin{cases} \mathrm{i}) \ \xi \quad als \acute{o} \ kor l \acute{a}t, \ az az \\ \forall x \in H: \ \xi \leq x; \\ \mathrm{ii}) \ \xi \ a \ leg nagyobb \ als \acute{o} \ kor l \acute{a}t, \ az az \\ \forall \varepsilon > 0 \text{-}hoz \ \exists x \in H: \ x < \xi + \varepsilon \end{cases}$

- $\sup H \in H$ és ekkor $\sup H = \max H$ $\exists \max H$ \iff
- $\inf H = \min H$. $\exists \min H$ $\inf H \in H$ és ekkor
 - 7. tétel (Az arkhimédészi tulajdonság). Minden a > 0 és minden b valós számhoz létezik olyan n természetes szám, hogy $b < n \cdot a$, azaz

 $\forall a > 0 \text{ \'es } \forall b \in \mathbb{R} \text{ eset\'en } \exists n \in \mathbb{N}, \text{ hogy } b < n \cdot a.$

8. tétel (A Cantor-tulajdonság). Tegyük fel, hogy minden n természetes számra adott $az [a_n, b_n] \subset \mathbb{R}$ korlátos és zárt intervallum úgy, hogy

$$[a_{n+1}, b_{n+1}] \subset [a_n, b_n] \quad (n \in \mathbb{N}).$$

Ekkor

$$\bigcap_{n\in\mathbb{N}} [a_n, b_n] \neq \emptyset.$$

3. definíció. Legyen $f: A \to B$ egy adott függvény és $C \subset A$. Ekkor a C halmaz fáltal létesített képén az

$$f[C] := \left\{ f(x) \mid x \in C \right\} = \left\{ y \in B \mid \exists \, x \in C : \ y = f(x) \right\} \subset B$$

halmazt értjük. Megállapodunk abban, hogy $f[\emptyset] = \emptyset$.

4. definíció. Legyen $f:A\to B$ egy adott függvény és $D\subset B$. Ekkor **a D** halmaz f által létesített ősképén az

$$f^{-1}[D] := \left\{ x \in \mathcal{D}_f \mid f(x) \in D \right\} \subset A$$

halmazt értjük. Megállapodunk abban, hogy $f^{-1}[\emptyset] = \emptyset$.

5. definíció. Tegyük fel, hogy $f: A \to B$ és $g: C \to D$ olyan függvények, amelyekre

$$\{x \in \mathcal{D}_q \mid g(x) \in \mathcal{D}_f\} \neq \emptyset.$$

Ebben az esetben az f (**külső**) és a g (**belső**) függvény **összetett függvényét** (vagy más szóval f és g **kompozícióját**) az $f \circ g$ szimbólummal jelöljük, és így értelmezzük:

$$f \circ g : \{x \in \mathcal{D}_g \mid g(x) \in \mathcal{D}_f\} \to B, \qquad (f \circ g)(x) := f(g(x)).$$

6. definíció. $Az~a:\mathbb{N}\to\mathbb{R}$ függvényt (valós) sorozatnak vagy számsorozatnak nevezzük. Az

$$a(n) =: a_n \qquad (n \in \mathbb{N})$$

helyettesítési érték a sorozat **n-edik** (vagy **n-indexű) tagja**, a tag sorszámát jelző szám a tag **indexe**.

- 8. definíció. Azt mondjuk, hogy az (a_n) sorozat
 - · alulról korlátos, ha

$$\exists k \in \mathbb{R}, \ hogy \ k \leq a_n \quad (n \in \mathbb{N});$$

felülről korlátos, ha

$$\exists K \in \mathbb{R}, \ hogy \ a_n \leq K \quad (n \in \mathbb{N}).$$

Ha a sorozat alulról és felülről is korlátos, akkor korlátos sorozatnak mondjuk. Ekkor

$$\exists K > 0, \ hogy \ |a_n| \le K \ (n \in \mathbb{N}).$$

- 7. definíció. Azt mondjuk, hogy az (a_n) valós sorozat
 - monoton növekedő (jele: ≯), ha

$$a_n \leq a_{n+1} \quad minden \ n \in \mathbb{N} \ eset\'en,$$

szigorúan monoton növekedő (jele: ↑), ha

$$a_n < a_{n+1} \quad minden \ n \in \mathbb{N} \ eset\'en,$$

monoton csökkenő (jele: \), ha

$$a_{n+1} \le a_n$$
 minden $n \in \mathbb{N}$ esetén,

szigorúan monoton csökkenő (jele: ↓), ha

$$a_{n+1} < a_n$$
 minden $n \in \mathbb{N}$ esetén.

 $Az(a_n)$ sorozatot **monoton** sorozatnak nevezzük, ha a fenti esetek valamelyike áll fenn.

9. definíció. Valamilyen $a \in \mathbb{R}$ és r > 0 esetén a

$$K_r(a) := \left\{ x \in \mathbb{R} \mid |x - a| < r \right\}$$

halmazt az a középpontú r sugarú környezetének nevezzük.

10. definíció. Legyen r > 0 valós szám. Ekkor $a + \infty$, ill. $a - \infty$ elemek r sugarú környezetét így értelmezzük:

$$K_r(+\infty) := \left(\frac{1}{r}, +\infty\right), \quad ill. \quad K_r(-\infty) := \left(-\infty, -\frac{1}{r}\right).$$

- **1.** definíció. Azt mondjuk, hogy az $(a_n): \mathbb{N} \to \mathbb{R}$ sorozat konvergens, ha
- (*) $\exists A \in \mathbb{R}, \ hogy \ \forall \varepsilon > 0 \ számhoz \ \exists n_0 \in \mathbb{N}, \ hogy \ \forall n > n_0 \ indexre \ |a_n A| < \varepsilon.$

Ekkor az A számot a sorozat **határértékének** nevezzük, és az alábbi szimbólumok valamelyikével jelöljük:

$$\lim (a_n) := A,$$
 $\lim_{n \to +\infty} a_n := A,$ $a_n \to A \ (n \to +\infty).$

 $Az(a_n)$ sorozatot **divergensnek** nevezzük, ha nem konvergens

3º Ha egy sorozat divergens, akkor (*) nem teljesül, ami pozitív állítás formájában azt jelenti, hogy:

$$\forall A \in \mathbb{R}$$
-hez $\exists \varepsilon > 0, \ \forall n_0 \in \mathbb{N}$ -hez $\exists n > n_0 \colon |a_n - A| \ge \varepsilon.$

3. tétel. Ha az (a_n) sorozat konvergens, akkor korlátos is.

2. definíció.

1° Azt mondjuk, hogy az (a_n) sorozat határértéke $+\infty$ (vagy a sorozat $+\infty$ -hez tart), ha

$$\forall P > 0\text{-}hoz \ \exists \ n_0 \in \mathbb{N}, \ \forall \ n > n_0 \colon a_n > P.$$

Ezt az alábbi szimbólumok valamelyikével jelöljük:

$$\lim_{n \to +\infty} (a_n) = +\infty, \quad \lim_{n \to +\infty} a_n = +\infty, \quad a_n \to +\infty, \quad ha \quad n \to +\infty.$$

 2^{o} Azt mondjuk, hogy az (a_n) sorozat **határértéke** $-\infty$ (vagy a sorozat $-\infty$ -hez tart), ha

$$\forall P < 0 \text{-}hoz \ \exists \ n_0 \in \mathbb{N}, \ \forall \ n > n_0 \colon a_n < P.$$

Ezt az alábbi szimbólumok valamelyikével jelöljük:

$$\lim_{n \to +\infty} (a_n) = -\infty, \quad \lim_{n \to +\infty} a_n = -\infty, \quad a_n \to -\infty, \quad ha \quad n \to +\infty.$$

3. definíció. Azt mondjuk, hogy az (an) sorozatnak van határértéke, ha

$$\exists A \in \overline{\mathbb{R}}, \ \forall \varepsilon > 0 \text{-}hoz \ \exists n_0 \in \mathbb{N}, \ \forall n > n_0 : \ a_n \in K_{\varepsilon}(A).$$

4. definíció. Legyen $a=(a_n): \mathbb{N} \to \mathbb{R}$ egy valós sorozat és $\nu=(\nu_n): \mathbb{N} \to \mathbb{N}$ egy szigorúan monoton növekedő sorozat (röviden: ν egy indexsorozat). Ekkor az $a \circ \nu$ függvény is sorozat, amelyet az (a_n) sorozat ν indexsorozat által meghatározott részsorozatának nevezünk. Az $a \circ \nu$ sorozat n-edik tagja:

$$(a \circ \nu)(n) = a(\nu_n) = a_{\nu_n} \quad (n \in \mathbb{N}),$$

így

$$a \circ \nu = (a_{\nu_n}).$$

6. tétel. Minden $a = (a_n)$ valós sorozatnak létezik **monoton részsorozata**, azaz létezik olyan $\nu = (\nu_n)$ indexsorozat, amellyel $a \circ \nu$ monoton növekedő vagy monoton csökkenő.

- 7. tétel (A közrefogási elv). Tegyük fel, hogy az (a_n) , (b_n) és (c_n) sorozatokra teljesülnek a következők:
 - $\exists N \in \mathbb{N}, \ \forall n > N : a_n \leq b_n \leq c_n$
 - az (a_n) és a (c_n) sorozatnak van határértéke, továbbá

$$\lim (a_n) = \lim (c_n) = A \in \overline{\mathbb{R}}.$$

Ekkor $a(b_n)$ sorozatnak is van határértéke és $\lim(b_n) = A$.

Az állítás igazolásához bevezetjük egy sorozat csúcsának a fogalmát: Azt mondjuk, hogy a_{n_0} az (a_n) sorozat **csúcsa** (vagy csúcseleme), ha

$$\forall n \geq n_0 \text{ indexre } a_n \leq a_{n_0}.$$

8. tétel. Tegyük fel, hogy az (a_n) és a (b_n) sorozatnak van határértéke és

$$\lim (a_n) = A \in \overline{\mathbb{R}}, \quad \lim (b_n) = B \in \overline{\mathbb{R}}.$$

Ekkor:

 $\mathbf{1}^o \ A < B \implies \exists \ N \in \mathbb{N}, \ hogy \ \forall \ n > N \colon a_n < b_n.$

 $2^o \exists N \in \mathbb{N}, hogy \forall n > N : a_n \leq b_n \implies A \leq B.$

2. tétel (Műveletek nullasorozatokkal). Tegyük fel, hogy $\lim(a_n) = 0$ és $\lim(b_n) = 0$. Ekkor

 $\mathbf{1}^{o} (a_n + b_n)$ is nullasorozat,

 2^{o} ha (c_n) korlátos sorozat, akkor $(c_n \cdot a_n)$ nullasorozat,

 $3^{o} (a_n \cdot b_n)$ nullasorozat.

3. tétel (Műveletek konvergens sorozatokkal). Tegyük fel, hogy az (a_n) és a (b_n) sorozat konvergens. Legyen

$$\lim (a_n) = A \in \mathbb{R}$$
 és $\lim (b_n) = B \in \mathbb{R}$.

Ekkor

 $\mathbf{1}^{o}$ $(a_n + b_n)$ is konvergens és $\lim (a_n + b_n) = \lim (a_n) + \lim (b_n) = A + B$,

2° $(a_n \cdot b_n)$ is konvergens és $\lim (a_n \cdot b_n) = \lim (a_n) \cdot \lim (b_n) = A \cdot B$,

 $\mathbf{3}^{o}$ ha $b_{n} \neq 0 \ (n \in \mathbb{N})$ és $\lim (b_{n}) \neq 0$, akkor

$$\left(\frac{a_n}{b_n}\right)$$
 is konvergens és $\lim \left(\frac{a_n}{b_n}\right) = \frac{\lim \left(a_n\right)}{\lim \left(b_n\right)} = \frac{A}{B}$.

- 5. tétel. Minden (a_n) monoton sorozatnak van határértéke.
 - 1º (a) Ha $(a_n) \nearrow$ és felülről korlátos, akkor (a_n) konvergens és

$$\lim (a_n) = \sup \{a_n \mid n \in \mathbb{N}\}.$$

(b) Ha $(a_n) \searrow \acute{e}s$ alulról korlátos, akkor (a_n) konvergens $\acute{e}s$

$$\lim (a_n) = \inf \{ a_n \mid n \in \mathbb{N} \}.$$

2º (a) Ha (a_n) ≯ és felülről nem korlátos, akkor

$$\lim (a_n) = +\infty.$$

(b) $Ha(a_n) \searrow \acute{e}s$ alulról nem korlátos, akkor

$$\lim (a_n) = -\infty.$$

8. tétel. Minden rögzített $q \in \mathbb{R}$ esetén a (q^n) mértani sorozat határértékére a következők teljesülnek:

$$\lim_{n\to +\infty}q^n \begin{cases} =0, & ha \ |q|<1, \\ =1, & ha \ q=1, \\ =+\infty, & ha \ q>1, \\ nem \ l\acute{e}tezik, & ha \ q\leq -1. \end{cases}$$

2. tétel (Az e szám értelmezése). Az

$$a_n := \left(1 + \frac{1}{n}\right)^n \qquad (n \in \mathbb{N}^+)$$

sorozat szigorúan monoton növekedő és felülről korlátos, tehát konvergens. Legyen

$$e:=\lim_{n\to +\infty}\left(1+\frac{1}{n}\right)^n.$$

- 4. tétel (Newton-féle iterációs eljárás m-edik gyökök keresésére). Legyen A>0 valós szám és $m\geq 2$ természetes szám. Ekkor:
 - 1º Pontosan egy olyan α pozitív valós szám létezik, amelyre $\alpha^m = A$ (α -t az A szám m-edik gyökének nevezzük, és az $\sqrt[m]{A}$ szimbólummal jelöljük).
 - 2º Ez az \alpha sz\u00e1m az

$$\left\{ \begin{array}{ll} a_0>0 \ tets z \Holdset{leges} \ val \Holdset{loss}, \\ \\ a_{n+1}:=\frac{1}{m}\left(\frac{A}{a_n^{m-1}}+(m-1)a_n\right) \quad (n\in\mathbb{N}) \end{array} \right.$$

rekurzióval értelmezett (a_n) (ún. iterációs) sorozat határértéke, azaz

$$\lim_{n \to +\infty} a_n = \alpha = \sqrt[m]{A}.$$

- 5. tétel (A Bolzano–Weierstrass-féle kiválasztási tétel). Minden, korlátos valós sorozatnak van konvergens részsorozata.
- 1. definíció. $Az(a_n)$ valós sorozatot Cauchy-sorozatnak nevezzük, ha

$$\forall\,\varepsilon>0\text{-}hoz\;\exists\,n_0\in\mathbb{N},\;\forall\,m,n>n_0\colon |a_n-a_m|<\varepsilon.$$

6. tétel (A Cauchy-féle konvergenciakritérium). Legyen (a_n) egy valós sorozat. Ekkor

 (a_n) konvergens \iff (a_n) Cauchy-sorozat.