

多媒体技术

回顾

- 图像分割
 - -基于边缘的分割
 - 相关和卷积
 - 算子
 - -基于区域的分割
 - 种子填充算法
- 卷积神经网络
 - -神经网络
 - 线性变换、位移、非线性变换
 - · 训练: 学习得到W等参数
 - 目标函数缩小: 梯度下降法

- 新技术: 卷积神经网络
 - 训练神经网络
 - 如何学习每一层的权重矩阵W
 - 损失函数或目标函数
 - 尽可能使损失函数(loss function)缩小: 梯度下降法

- 新技术: 卷积神经网络
 - 梯度下降法
 - 方向导数

定理 如果函数 f(x,y) 在点 $P_0(x_0,y_0)$ 可微分,那么函数在该点沿任一方向 l 的方向导数存在,且有

$$\left. \frac{\partial f}{\partial l} \right|_{(x_0, y_0)} = f_x(x_0, y_0) \cos \alpha + f_y(x_0, y_0) \cos \beta,$$

其中 $\cos \alpha$ 和 $\cos \beta$ 是方向 l 的方向余弦.

函数在一点处沿某一方向的方向导数反映了函数沿该方向的变化率

在同一点的所有方向导数中,是否有最大值?怎样的方向?

- 新技术: 卷积神经网络
 - 梯度下降法
 - 梯度: 一个向量 $(f_x(x_0, y_0), f_y(x_0, y_0))$

这向量称为函数 f(x,y) 在点 $P_0(x_0,y_0)$ 的 梯度, 记作 **grad** $f(x_0,y_0)$ 或 $\nabla f(x_0,y_0)$,即

grad
$$f(x_0, y_0) = \nabla f(x_0, y_0) = f_x(x_0, y_0) \mathbf{i} + f_y(x_0, y_0) \mathbf{j}$$
.

$$\frac{\partial f}{\partial l}\Big|_{(x_0, y_0)} = f_x(x_0, y_0) \cos \alpha + f_y(x_0, y_0) \cos \beta$$

$$= \operatorname{grad} f(x_0, y_0) \cdot e_l = |\operatorname{grad} f(x_0, y_0)| \cos \theta,$$
其中 $\theta = (\operatorname{grad} f(x_0, y_0), e_l)$. $e_l = (\cos \alpha, \cos \beta)$

- 新技术: 卷积神经网络
 - 梯度下降法
 - 梯度: 一个向量 $(f_x(x_0, y_0), f_y(x_0, y_0))$
- (1) 当 θ =0,即方向 e_i 与梯度 $grad f(x_0,y_0)$ 的方向相同时,函数 f(x,y)增加最快.此时,函数在这个方向的方向导数达到最大值,这个最大值就是梯度 $grad f(x_0,y_0)$ 的模,即

$$\frac{\partial f}{\partial l}\Big|_{(x_0,y_0)} = |\operatorname{\mathbf{grad}} f(x_0,y_0)|.$$

(2) 当 θ = π ,即方向 e_i 与梯度 $grad f(x_0, y_0)$ 的方向相反时,函数 f(x, y)减少最快,函数在这个方向的方向导数达到最小值,即

$$\frac{\partial f}{\partial l}\Big|_{(x_0,y_0)} = -|\operatorname{grad} f(x_0,y_0)|.$$

负梯度的方向是函数值减少最快的方向

- 新技术: 卷积神经网络
 - 梯度下降法

给定目标函数 f(x) 和初始点 x_0 重复:

$$\triangle x_t = -\nabla f(x_t)$$
 $x_{t+1} = x_t + \eta \triangle x_t$
停止,如果 $|\triangle x_t| < \varepsilon$

x更新: 将梯度乘以一个系数 η , 控制更新时步长的大小, 叫做

学习率

- 新技术: 卷积神经网络
 - 梯度下降法
 - 学习率

a: 学习率过大, 导致不收敛

c: 学习率过小, 迭代步数多

b: 合适的学习率, 既保证收敛, 又保证效率

- 新技术: 卷积神经网络
 - 梯度下降法
 - · AdaGrad: 自适应学习率

$$(x_{t+1})_i = (x_t)_i - \frac{\eta}{\sqrt{\sum_{\tau=1}^t (\nabla f(x_\tau))_i^2}} \cdot (\nabla f(x_t))_i$$

i表示第i个变量,t表示第t次迭代:

- 1) 每个变量用<mark>不同的</mark>学习率,这个学习率一开始比较大,用于快速梯度下降。
- 2) 随着优化的进行,已经下降很多的变量减缓学习率,没怎么下降的变量,保持一个较大的学习率。
- 3) 根据历史学习率累积总量来决定当前学习率减小的程度。

- 新技术: 卷积神经网络
 - 后向传播算法
 - 多层网络,如2层: $\vec{y} = a_2(W_2 \cdot (a_1(W_1 \cdot \vec{x} + b_1)) + b_2)$
 - · 计算神经网络中每个参数W、b的梯度
 - · 基本思想: 通过链式法则求出所有参数对损失函数的 梯度
 - 可利用计算图进行

- 新技术: 卷积神经网络
 - 后向传播算法
 - 节点: 变量
 - 边: 变量间的关系

计算图的例子

• 新技术: 卷积神经网络

- 新技术: 卷积神经网络
 - 输入: 二维向量 (x_1, x_2)
 - 优化参数: w₁, w₂和b
 - t->y: ReLU非线性变换

$$ReLU(w \bullet x + b) =$$

$$ReLU(w_1*x_1 + w_2*x_2 + b)$$

沿着*y*出发把虚线连接的 路径上的梯度乘起来,直 到叶子节点

一个感知机的例子

- 新技术: 卷积神经网络
 - -梯度下降

数据量大

- 全量数据梯度下降: 每次计算梯度的时候考虑所有训练数据
 - 假设有N个样本,计算损失函数的时候,既对所有的N个样本都求一遍损失函数的值,求平均。
- 随机梯度下降:每次从训练样本中随机抽取一个样本 用来计算损失函数
 - 将相应计算出的梯度作为当前一步梯度下降的依据
- 小批量数据: 随机选取一定数量的部分样本
- 随机初始化
 - 权重随机初始化:如高斯分布随机数,再乘较小的数

快 不稳定

- 新技术: 卷积神经网络
 - -神经网络

全连接:

每一层网络都和相邻 层全部连接

局限:

- ➢训练的参数数量大
- >没有考虑图像中像 素的空间分布,像素 距离远近一视同仁

- 新技术: 卷积神经网络
 - CNN: Convolutional Neural NetWork
 - 相邻层之间的神经单元不是全连接,而是部分连接
 - 某个神经单元的感知区域来自于上层的部分神经单元,而不是像标准的神经网络那样与所有的神经单元相连接

- 新技术: 卷积神经网络
 - 感受野
 - 猫视觉皮层: 简单细胞、复杂细胞
 - 每个细胞只对特定方向的条形图样刺激有反应
 - 简单细胞对应的视网膜上的光感受细胞所在的区域小
 - 复杂细胞则对应更大的区域,这个区域叫感受野

- 新技术: 卷积神经网络
 - 参数共享
 - 卷积核(滤波器)在任何位置都是不变的
 - 把和卷积核做卷积之后得到的结果叫做特征响应图
 - · 认为卷积核代表某种特征(或一种图像模式),卷积结果 是输入对这种特征的响应,相似度越高响应值越大
 - 具体应用中往往有多个卷积核,如下24个卷积核示例

0	0	0	0	0	0	30
0	0	0	0	50	50	50
0	0	0	20	50	0	0
0	0	0	50	50	0	0
0	0	0	50	50	0	0
0	0	0	50	50	0	0
0	0	0	50	50	0	0

图像

卷积核 filter

- 新技术: 卷积神经网络
 - 参数共享

- 新技术: 卷积神经网络
 - 参数共享
 - 卷积核: 垂直边缘

_ 1		4			
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0/	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
		62	16		

	ſ		_			
1	0	<u>-1</u>				
1	0	-1	=			
1	0	-1				
3×3						

<u> </u>				
0	30	30	0	
0	30	30	0	
0	30	30	0	
0	30	30	0	
14x4				

- 新技术: 卷积神经网络
 - 卷积层: 计算
 - 池化层: 压缩数据减少参数
 - 全连接层: 输出

• 新技术: 卷积神经网络

- 卷积层: 计算

1 _{×1}	1 _{×0}	1,	0	0
0,0	1,	1 _{×0}	1	0
0 _{×1}	0,×0	1,	1	1
0	0	1	1	0
0	1	1	0	0

Image

4	

Convolved Feature

• 新技术: 卷积神经网络

- 卷积层: 计算

	INPUT IMAGE							
18	54	51	239	244	188			
55	121	75	78	95	88			
35	24	204	113	109	221			
3	154	104	235	25	130			
15	253	225	159	78	233			
68	85	180	214	245	0			

429

INPUT IMAGE

18	54	51	239	244	188
55	121	75	78	95	88
35	24	204	113	109	221
3	154	104	235	25	130
15	253	225	159	78	233
68	85	180	214	245	0

WEIGHT

1	0	1
0	1	0
1	0	1

429

• 新技术: 卷积神经网络

- 卷积层: 计算

· same padding: 给图像填加一层 0 边界

• valid padding: 不填加

0	0	0	0	0	0	0	0
0	18	54	51	239	244	188	0
0	55	121	75	78	95	88	0
0	35	24	204	113	109	221	0
0	3	154	104	235	25	130	0
0	15	253	225	159	78	233	0
0	68	85	180	214	245	0	0
0	0	0	0	0	0	0	0

WEIGHT				
1	0	1		
0	1	0		
1	0	1		

139

• 新技术: 卷积神经网络

- 卷积层: 计算

• 步长: 移动像素数

• 如: 步长为2

INPUT IMAGE

18	54	51	239	244
55	121	75	78	95
35	24	204	113	109
3	154	104	235	25
15	253	225	159	78

WEIGHT

1	0	1
0	1	0
1	0	1

429

- 新技术: 卷积神经网络
 - 卷积层: 计算
 - ·如:在RGB图像上进行卷积,过滤器的大小不是3*3而是有3*3*3,最后的3对应为通道数(channels)
 - · 卷积结果中每个像素值为3*3*3过滤器对应位置和图像 对应位置相乘累加,过滤器依次在RGB图像上滑动,

- 新技术: 卷积神经网络
 - 卷积层: 计算
 - 如果不仅在图像中检测一种类型的特征,而是要同时检测垂直边缘、水平边缘、45度边缘等等,也就是多个过滤器的问题。
 - 如果有两个过滤器,最终生成图像为4*4*2的立方体, 这里的2来源于采用了两个过滤器。
 - 如果有10个过滤器那么输出图像就是4*4*10的立方体

- 新技术: 卷积神经网络
 - 单层卷积网络: 例子

对两个4*4的矩阵,分别加入偏差 b_1 和 b_2 ,然后对加入偏差的矩阵做非线性的Relu变换,得到2个新的4*4矩阵,这就是卷积神经网络的一层,如下图

• 新技术: 卷积神经网络

- 单层卷积网络: 例子

若10个过滤器,则有(27+1)*10=280个参数

- 新技术: 卷积神经网络
 - 简单卷积网络: 例子

·假设有一张图片,进行分类或识别,把这张图片输入定义为x,辨别图片中有没有猫,用0或1表示,这是一个

分类问题

输入: 39*39*3的图片;

第一层: 10个过滤器, 3*3大小, 步长1, valid padding, 输出结 果维度37*37*10

$$\frac{1}{100} = 3$$

$$\frac{1}{34+0-3} + 1 = 37$$

- 新技术: 卷积神经网络
 - 简单卷积网络: 例子

第二层: 20个过滤器, 5*5大小, 步长2, valid padding, 输出结果维度17*17*20

- 新技术: 卷积神经网络
 - 简单卷积网络: 例子

第三层: 40个过滤器, 5*5大小, 步长2, valid padding, 输出结果维度7*7*40=1960个特征

- 新技术: 卷积神经网络
 - 简单卷积网络: 例子

Softmax:对于一个n分类问题,给定输入x属于第i类 (y_i) 的一种原始度量 $h(x,y_i)$,属于某一类的概率:

$$P(y \mid x) = \frac{e^{h(x,y_i)}}{\sum_{j=1}^{n} e^{h(x,y_j)}}$$

平滑或展开成1960个单元,成为一个向量,用logistic回归(二分类)或softmax回归(k类,属于某一类的概率)

- 新技术: 卷积神经网络
 - 简单卷积网络: 例子

图像越来越小: 37、17、7; 通道越来越多: 3、10、20、40

- 新技术: 卷积神经网络
 - 池化层: 压缩数据减少参数
 - 对特征响应图上的一个给定区域求出一个能代表这个区域特点的值
 - 最大值池化: 取出小区域里的最大值作为结果
 - 平均值池化: 取小区域里的平均值

Single depth slice

1	1	2	4
5	6	7	8
3	2	1	0
1	2	3	4

max pool with 2x2 filters and stride 2

6	8
3	4

对4*4的图做2*2的 池化,步长为2 若多通道需要做, 那分通道计算池化 操作

- 新技术: 卷积神经网络
 - 全连接层: 输出
 - 类似神经网络的全连接层
 - 卷积和池化提取特征、减少数据参数,需要全连接层生成需要的输出
 - 损失函数, 计算预测误差

- 新技术: 卷积神经网络
 - -示例:手写体数字识别
 - ·识别一张32*32*3RGB图片中含有的某个数字,比如7
 - · 和经典网络LeNet-5非常相似

输入: 32*32*3的图片;

第一层: 6个过滤器, 5*5大小, 步长1, valid padding, 输出结 果维度28*28*6

• 新技术: 卷积神经网络

-示例:手写体数字识别

池化层:最大池化,2*2大小,步长2,不填充,输出结果维度

层:一种卷积+池化为一层,一种每个单独为一层

• 新技术: 卷积神经网络

-示例:手写体数字识别

卷积层: 16个过滤器, 5*5大小, 步长1, 不填充, 输出结果维度 10*10*16

池化层:最大池化,2*2大小,步长2,不填充,输出结果维度 5*5*16 = 400

• 新技术: 卷积神经网络 Neural network example 80017 POOL (DNV 282846 10×10×16 32+32+3 Layer 2 FC3 (120,400) (170)

将P00L2平整化为大小为400的一维向量,构建下一层(含有120个单元),这是第一个全连接层(Fully connected),标记为FC3。 权重矩阵维度120*400,还有一个偏差参数。输出120个维。

• 新技术: 卷积神经网络

对这个120个单元再添加一个全连接层,这层更小,假设它含有84个单元,标记为FC4。

用84个单元填充一个softmax单元,这个softmax有10个输出,因为识别0-9这10个手写数字。

思考题

配置流行的CNN开源库(如TensorFlow),利用公开的数据集(如ImageNet、MNIST、CIFAR-10等),实现手写识别或图像识别。

推荐书目:郑泽宇等,TensorFlow实战Google深度学习架构,电子工业出版社,2017年3月

推荐语言: Python

作业4

- 1、图像分割的种子填充算法的基本步骤是什么?如何提高该算法分割结果的正确性?
- 2、卷积神经网络包含哪些基本步骤?参数共享在哪个步骤 实现,降采样通过哪个步骤实现?
- 3、卷积神经网络与神经网络的区别是什么?
- 4、假设输入图像大小n*n,过滤器大小f*f,在步长为1且不填充边界情况下卷积后的输出图像大小是多少?
- 5、假设输入图像大小n*n,过滤器大小f*f,步长为s,p为 每边界填充像素数,卷积后的输出图像大小是多少?