- 1. Určte, za akých podmienok sú nasledujúce výrazy definované a čo najviac ich zjednodušte:
 - a. $\sin x \cdot \cos^2 x + \sin^3 x =$
 - b. $\sin x \sin x \cdot \cos^2 x =$
 - c. $\cos x \cos x \cdot \sin^2 x =$
 - $d. \quad \frac{\cos^2 x}{1 + \sin x} =$
 - e. $\frac{\sin^2 x}{1-\cos x} =$
 - $f. \quad \frac{1}{\sin^2 x} 1 =$
 - g. $\frac{\sin^3 x}{\cos x \cos^3 x} =$ h. $\frac{\sin x \sin^3 x}{\cos x \cos^3 x} =$

 - i. $\frac{1-\sin^2 x}{\cot g^2 x} =$
 - $j. \quad \frac{\sin 2x}{\cos^2 x} =$
 - $k. \quad \frac{1+\cos 2x}{1-\cos 2x} =$
 - $1. \quad \frac{1-\cos 2x}{\sin 2x} + \frac{\sin 2x}{1+\cos 2x} =$
- 2. Zjednodušte nasledujúce výrazy:
 - a. $\sin(45^{\circ} + y) \sin(45^{\circ} y) =$
 - b. tg(x + y) =, ak tg x = -1; tg y = 1/5
 - c. tg(x y) =, ak tg x = -1; tg y = 1/5
 - d. $tg(\pi/4 + x)$. $tg(\pi/4 x) =$
 - e. cos(2a + b) cos(2a b) =
 - f. $\sin(\pi/3 + x) \cos(\pi/6 + x) =$
 - g. $\sin x + \sin \left(\frac{2\pi}{3} + x \right) + \sin \left(\frac{4\pi}{3} + x \right) =$
 - h. $\sin(\pi/3 + x) \sin x =$
 - i. $\cos x + \cos(x + 120^\circ) + \cos(x + 240^\circ) =$
- 3. Vypočítajte bez kalkulačky:
 - a. cos 15° =
 - b. sin 75° =
 - c. sin 22° 30′ =
 - d. $\cos \pi/12 =$
 - e. $tg \pi/12 =$
 - f. $\cos 5\pi/12 =$
 - g. cos 105° =
 - h. cotg 150° =

4. Výrazy vyjadrite ako súčin a čo najviac ich zjednodušte:

a.
$$\cos 75^{\circ} + \cos 15^{\circ} =$$

$$c. \quad \frac{\sin 5a - \sin 3a}{\cos 5a + \cos 3a} =$$

d.
$$\sin(30^{\circ}-x) + \sin(30^{\circ}+x) =$$

$$e. \quad \frac{\sin z + \sin 3z}{\cos z - \cos 3z} =$$

f.
$$\sin 50^{\circ} - \sin 70^{\circ} + \sin 10^{\circ} =$$

g.
$$\cos\frac{5\pi}{7} + \cos\frac{3\pi}{7} + \cos\frac{\pi}{7} =$$

Výsledky:

1.

a.
$$\sin x$$
; $x \in \mathbb{R}$

b.
$$\sin^3 x$$
; $x \in \mathbb{R}$

c.
$$\cos^3 x$$
; $x \in \mathbb{R}$

d.
$$1 - \sin x$$
; $x \in \mathbb{R} - \left\{ \frac{3\pi}{2} + 2k\pi \right\}$

e.
$$1 + \cos x$$
; $x \in \mathbb{R}^- \{2k\pi\}$

f.
$$\cot g^2 x$$
; $x \in \mathbb{R}^- \{k\pi\}$

g.
$$\operatorname{tg} x$$
; $x \in \mathbb{R}^-\left\{\frac{\pi}{2} + k\pi; k\pi\right\}$

h.
$$\cot x$$
; $x \in \mathbb{R}^-\left\{\frac{\pi}{2} + k\pi; k\pi\right\}$

i.
$$\sin^2 x$$
; $x \in \mathbb{R}^- \{k\pi\}$

j.
$$2 \operatorname{tg} x$$
; $x \in \mathbb{R}^- \left\{ \frac{\pi}{2} + k\pi \right\}$

k.
$$\cot g^2 x$$
; $x \in \mathbb{R} - \{k\pi\}$

1.
$$2 \operatorname{tg} x; x \in \mathbb{R}^- \left\{ k \cdot \frac{\pi}{2} \right\}$$

;k∈ \mathbb{Z}

2.

a.
$$\sqrt{2}$$
 . sin y

h.
$$\sin(\pi/3 - x)$$

3.

a.
$$\frac{\sqrt{6} + \sqrt{2}}{4}$$

b. $\frac{\sqrt{6} + \sqrt{2}}{4}$

b.
$$\frac{\sqrt{6}+\sqrt{2}}{4}$$

c.
$$\frac{4}{\sqrt{2-\sqrt{2}}}$$
d. $\frac{\sqrt{6}+\sqrt{2}}{4}$
e. $\frac{\sqrt{3}-1}{\sqrt{3}+1}$
f. $\frac{\sqrt{6}-\sqrt{2}}{4}$
g. $\frac{\sqrt{2}-\sqrt{6}}{4}$
h. $-\sqrt{3}$

d.
$$\frac{\sqrt{6}+\sqrt{2}}{4}$$

e.
$$\frac{\sqrt{3}-1}{\sqrt{3}+1}$$

f.
$$\frac{\sqrt{6}-\sqrt{2}}{\sqrt{2}}$$

g.
$$\frac{\sqrt{2}-\sqrt{6}}{4}$$

h.
$$-\sqrt{3}$$

a.
$$\frac{\sqrt{6}}{2}$$

d.
$$-\sqrt{2}\cos 2x$$

g.
$$\cos \frac{\pi}{7} (2\cos \frac{4\pi}{7} + 1)$$