Logistics: Assignment 3 and Project Milestone 1

- Assignment 3: Due Oct 18 (Mon)
 - Don't wait till the last minute
 - Check your late-day usages
- Project milestone 1: Due tomorrow, Oct 15 (Fri)
 - Initial literature survey (around 3~5 references)
 - A plan on what you want to do for the remaining of the semester
 - Formalize your research question and approaches, e.g.,
 - Theory/simulation project: formalize your models
 - Data-analysis project: figure out where and how to get data and what you plan to do with it
 - Experiment/application project: have a prototype design and an evaluation plan
 - Include a timeline (weekly or biweekly) on what you plan to do
 - Nov 2: Midterm Project Pitch and Discussion
 - Nov 5: Milestone 2

Logistics: More about Assignment 3

Understanding Bayes' theorem and conditional probability

Problem 2

- Assignment prior: 80% good, 20% bad
- Two randomly drawn graders 1 and 2 are reviewing the same assignment

	Signal	
	G	В
Good	80%	20%
Bad	40%	60%

- What is the probability for a grader to receive signal B for an assignment randomly drawn from all assignments
- If grader 1 receives signal B, what is the probability that grader 2 (grading the same assignment) also receiving signal B?
- If you don't know how to approach the above problem on top of your head, you might have a hard time for assignment 3.

Logistics: More about Assignment 3

Understanding Bayes' theorem and conditional probability

• Problem 3

- Recommendation letter writing as Information design
- Qualification prior: 30% above the bar, 70% not above the bar
- Consider a letter writing strategy:
 - When the student is above the bar, I say the student is above the bar with 100% chance
 - When the student is not above the bar, I say the student is above the bar with 20% chance
- When the company receives a letter saying the student is above the bar
 - What is the posterior probability that the student is really above the bar

Logistics: Project Milestone 2

- Milestone 2: Due Nov 5
 - Summarize your progress
 - Last chance to convert a research project to an extensive literature survey
- What's the expected amount of literature survey?
 - Case by case
 - As a general guideline, the minimum number of papers
 - For research project: 3~5 papers (# papers in one lecture)
 - For literature survey project, 15~20 papers (# papers in one "topic")

Logistics: Project Midterm Pitch and Discussion

Milestone 2: Due Nov 5 (Friday)

- Midterm Pitch: Nov 2 (Tue), in lecture
 - More details to come
 - Tentative formats:
 - Every team gives a spotlight presentation for 1~2 min
 - The entire class splits into 3 big groups
 - Each team in turn obtains the entire attention of the big group
 - Using this time to collect data, obtain feedback, get suggestions, etc
 - Try to think about what you can do with this time in your milestone 1 plan and utilize it
 - Let me know early if it's helpful to utilize the entire class for help
 - Might be able to allocate a small amount of time in a need basis

Student Presentation

Again, remember to submit the peer review form by 6pm

Lecture 13 Real-time Crowdsourcing

Instructor: Chien-Ju (CJ) Ho

Crowds in Two Seconds [Bernstein et al. UIST 2011.]

VizWiz [Bigham et al. UIST 2010]

Answer Blind People's Visual Questions

Crowd-Powered Chatbot [Huang et al. HCOMP 2016]

 There are impressive progress in Chatbots, but it's still not good enough

Amazon launches \$2.5 million Alexa Prize for college students building bots

- A crowd play as a chatbot by
 - Propose responses
 - Vote for the best one
 - Take notes

Intermediate solutions; dataset generation

Auto-Evolving Crowd Chatbot [Huang et al. CHI 2018]

Train AI chatbots with historical data

- A crowd consists of both humans and Als
 - Propose responses
 - Vote responses
- May even consider dynamically determining the ratio of Als

Auto-Evolving Crowd Chatbot [Huang et al. CHI 2018]

Task Delegability

- When are humans preferred than AI in doing tasks
 - Humans can do better than Al
 - Ethical/legal concerns or trustworthy issues
 - We want humans to do the tasks

Ask not what AI can do, but what AI should do: Towards a framework of task delegability

Brian Lubars
University of Colorado Boulder
brian.lubars@colorado.edu

Chenhao Tan University of Colorado Boulder chenhao tan@colorado edu

Twitch Plays Pokemon

https://www.twitch.tv/twitchplayspokemon

Twitch Plays Pokemon

- Guinness World Record:
 - "the most participants on a single-player online videogame" with 1,165,140
- Best Fan Creation in Game Award 2014

An application "for fun", not to "solve problems"

- Highlight an interesting question
 - How should we decide which action to take?
 - Challenging for sequential actions under real-time constraints

Crowd Robot Navigation [Lasecki et al. UIST 2011.]

- Solo: Hire a single worker
- Mob: Pass on all inputs to the original interface (first come first serve)
- Vote: Follow actions by majority vote

• <u>Leader</u>:

- Update "weights" of users based on agreements with the crowd
- Follow the actions by the leader (which might change over time)

• Active:

Randomly select a worker as the leader, change worker if the input is not in on time

Crowd Robot Navigation [Lasecki et al. UIST 2011.]

- Performance measure
 - Number of success (out of 10)
 - Average time to complete the task when succsess

Generally, how to aggregate preferences from a crowd?

Social choice theory

Consider Elections

- Three candidates: A, B, C, D
- Three users: 1, 2, 3, 4, 5

• Users' preferences:

1.
$$A > D > C > B$$

2.
$$A > B > C > D$$

3.
$$B > C > D > A$$

4.
$$C > B > D > A$$

5.
$$D > B > C > A$$

Assuming we use majority voting:

- 1. Everyone gives one vote
- 2. The candidate with the most votes win

Will everyone just vote for their favorite candidate?

How should we design a mechanism to decide who wins the election

Arrow's Impossibility Theorem

- Some nice criteria we want to have:
 - Unanimity: If every preferences A over B, than the group prefers A over B
 - Non-dictatorship: no person's preference is always strictly preferred than others
 - Independence: If for two sets of preferences, A and B have the same order between sets, A and B should have the same order in the group decision
- Arrow's Impossibility Theorem
 - No mechanism satisfies the three criteria when the number of candidates ≥ 3