Convolutional Neural Networks

Kietikul Jearanaitanakij

Department of Computer Engineering, KMITL

(Slides are adapted from cs231n @Stanford University)

Convolutional Neural Networks

- Why multilayer neural networks do not satisfy our needs?
 - Fully-connected architecture is too complex for computations.
 - There are a lot of weights to update. Very long training time.
 - Having too many weights tends to encounter a poor generalization.

 The convolutional neural networks can vastly reduce the amount of parameters in the network.

History

A bit of history...

The **Mark I Perceptron** machine was the first implementation of the perceptron algorithm.

The machine was connected to a camera that used 20×20 cadmium sulfide photocells to produce a 400-pixel image. $f(x) = \begin{cases} 1 & \text{if } w \cdot x + b > 0 \\ 0 & \text{otherwise} \end{cases}$

recognized letters of the alphabet

update rule:

$$w_i(t+1) = w_i(t) + \alpha(d_j - y_j(t))x_{j,i},$$

Frank Rosenblatt, ~1957: Perceptron

This image by Rocky Acosta is licensed under CC-BY 3.0

Multilayer neural network

Rumelhart et al., 1986: First time back-propagation became popular

Gradient-based learning applied to document recognition

[LeCun, Bottou, Bengio, Haffner 1998]

LeNet-5

First strong results

Acoustic Modeling using Deep Belief Networks
Abdel-rahman Mohamed, George Dahl, Geoffrey Hinton, 2010
Context-Dependent Pre-trained Deep Neural Networks
for Large Vocabulary Speech Recognition
George Dahl, Dong Yu, Li Deng, Alex Acero, 2012

Imagenet classification with deep convolutional neural networks

Alex Krizhevsky, Ilya Sutskever, Geoffrey E Hinton, 2012

AlexNet

Illustration of Dahl et al. 2012 by Lane McIntosh, copyright CS231n 2017

Fast-forward to today: ConvNets are everywhere

Classification Retrieval

Figures copyright Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission.

Fast-forward to today: ConvNets are everywhere

Detection

Figures copyright Shaoqing Ren, Kaiming He, Ross Girschick, Jian Sun, 2015. Reproduced with permission.

Segmentation

Figures copyright Clement Farabet, 2012. Reproduced with permission.

[Farabet et al., 2012]

Fast-forward to today: ConvNets are everywhere

self-driving cars

Photo by Lane McIntosh. Copyright CS231n 2017.

NVIDIA Tesla line

(these are the GPUs on rye01.stanford.edu)

Note that for embedded systems a typical setup would involve NVIDIA Tegras, with integrated GPU and ARM-based CPU cores.

No errors

A white teddy bear sitting in the grass

A man riding a wave on top of a surfboard

Minor errors

A man in a baseball uniform throwing a ball

A cat sitting on a suitcase on the floor

Somewhat related

A woman is holding a cat in her hand

A woman standing on a beach holding a surfboard

Image Captioning

[Vinyals et al., 2015] [Karpathy and Fei-Fei, 2015]

All images are CC0 Public domain:

https://pixabay.com/en/luggage-antique-cat-1643010/ https://pixabay.com/en/teddy-plush-bears-cute-teddy-bear-1623430 https://pixabay.com/en/surf-wave-summer-sport-liforal-1668716/ https://pixabay.com/en/woman-female-model-portrait-adult-983967 https://pixabay.com/en/handstand-lake-meditation-496008/ https://pixabay.com/en/baseball-player-shortstop-infield-1045263/

Captions generated by Justin Johnson using Neuraltalk2

Layers in Convolutional Neural Networks

CNN: Convolutional Neural Network

- There are usually 4 types of layers in CNN.
 - 1. Convolution layer
 - 2. Pooling layer
 - 3. ReLU (Rectified Linear Unit) layer
 - 4. Fully connected layer

32x32x3 image -> preserve spatial structure

Input

32x32x3 image

5x5x3 filter

Convolve the filter with the image i.e. "slide over the image spatially, computing dot products"

32x32x3 image 32

Filters always extend the full depth of the input volume

5x5x3 filter

Convolve the filter with the image i.e. "slide over the image spatially, computing dot products"

consider a second, green filter

For example, if we had 6 5x5 filters, we'll get 6 separate activation maps:

We stack these up to get a "new image" of size 28x28x6!

Preview: ConvNet is a sequence of Convolution Layers

example 5x5 filters (32 total)

We call the layer convolutional because it is related to convolution of two signals:

$$f[x,y] * g[x,y] = \sum_{n_1 = -\infty}^{\infty} \sum_{n_2 = -\infty}^{\infty} f[n_1,n_2] \cdot g[x - n_1, y - n_2]$$

elementwise multiplication and sum of a filter and the signal (image)

activation map

7x7 input (spatially) assume 3x3 filter

7x7 input (spatially) assume 3x3 filter

7

7x7 input (spatially) assume 3x3 filter

7

7x7 input (spatially) assume 3x3 filter

7x7 input (spatially) assume 3x3 filter applied with stride 2

7x7 input (spatially) assume 3x3 filter applied with stride 2

7x7 input (spatially) assume 3x3 filter applied with stride 2 => 3x3 output!

7x7 input (spatially) assume 3x3 filter applied with stride 3?

doesn't fit! cannot apply 3x3 filter on 7x7 input with stride 3.

Ν

	F		
F			

Output size:

(N - F) / stride + 1

e.g. N = 7, F = 3:
stride 1 =>
$$(7 - 3)/1 + 1 = 5$$

stride 2 => $(7 - 3)/2 + 1 = 3$
stride 3 => $(7 - 3)/3 + 1 = 2.33$

In practice: Common to zero pad the border

e.g. input 7x7

3x3 filter, applied with stride 1

pad with 1 pixel border => what is the output?

7x7 output!

in general, common to see CONV layers with stride 1, filters of size FxF, and zero-padding with (F-1)/2. (will preserve size spatially)

```
e.g. F = 3 \Rightarrow zero pad with 1

F = 5 \Rightarrow zero pad with 2

F = 7 \Rightarrow zero pad with 3
All of these produce 7x7 output.
```

Remember back to...

E.g. 32x32 input convolved repeatedly with 5x5 filters shrinks volumes spatially! (32 -> 28 -> 24 ...). Shrinking too fast is not good, doesn't work well.

Examples time:

Input volume: **32x32x3** 10 5x5 filters with stride 1, pad 2

Output volume size: ? (N-F+2P)/S + 1

$$(32-5+2*2)/1+1 = 32$$
 spatially, so $32x32x10$

Examples time:

Input volume: 32x32x3

10 5x5 filters with stride 1, pad 2

Number of parameters in this layer?

Examples time:

Input volume: 32x32x3

10 5x5 filters with stride 1, pad 2

Number of parameters in this layer?

Summary. To summarize, the Conv Layer:

- Accepts a volume of size $W_1 imes H_1 imes D_1$
- Requires four hyperparameters:
 - Number of filters K,
 - · their spatial extent F,
 - the stride S,
 - \circ the amount of zero padding P.
- Produces a volume of size $W_2 imes H_2 imes D_2$ where:
 - $W_2 = (W_1 F + 2P)/S + 1$
 - \circ $H_2=(H_1-F+2P)/S+1$ (i.e. width and height are computed equally by symmetry)
 - $D_2 = K$
- With parameter sharing, it introduces F · F · D₁ weights per filter, for a total of (F · F · D₁) · K weights and K biases.
- In the output volume, the d-th depth slice (of size $W_2 imes H_2$) is the result of performing a valid convolution of the d-th filter over the input volume with a stride of S, and then offset by d-th bias.

Watch a simulation at http://cs231n.github.io/convolutional-networks/

(btw, 1x1 convolution layers make perfect sense)

The brain/neuron view of CONV Layer

It's just a neuron with local connectivity...

the result of taking a dot product between the filter and this part of the image

(i.e. 5*5*3 = 75-dimensional dot product)

The brain/neuron view of CONV Layer

An activation map is a 28x28 sheet of neuron outputs:

- 1. Each is connected to a small region in the input
- 2. All of them share parameters

"5x5 filter" -> "5x5 receptive field for each neuron"

The brain/neuron view of CONV Layer

E.g. with 5 filters, CONV layer consists of neurons arranged in a 3D grid (28x28x5)

There will be 5 different neurons all looking at the same region in the input volume

Reminder: Fully Connected Layer

32x32x3 image -> stretch to 3072 x 1

Each neuron looks at the full input volume

Activation of Convolution Layer

Sigmoid

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

Leaky ReLU

 $\max(0.1x, x)$

tanh

tanh(x)

Maxout

 $\max(w_1^T x + b_1, w_2^T x + b_2)$

ReLU

 $\max(0, x)$

ELU

$$\begin{cases} x & x \ge 0 \\ \alpha(e^x - 1) & x < 0 \end{cases}$$

Sigmoid

- $\sigma(x)=1/(1+e^{-x})$
- Squashes numbers to range [0,1]
- Historically popular since they have nice interpretation as a saturating "firing rate" of a neuron
 - Saturated neurons "kill" the gradients

What happens when x = -10? What happens when x = 0? What happens when x = 10?

Sigmoid

$$\sigma(x) = 1/(1 + e^{-x})$$

- Squashes numbers to range [0,1]
- Historically popular since they have nice interpretation as a saturating "firing rate" of a neuron

3 problems:

- Saturated neurons "kill" the gradients
- Sigmoid outputs are not zero-centered

Consider what happens when the input to a neuron (x) is always positive:

$$f\left(\sum_{\pmb{i}} w_{\pmb{i}} x_{\pmb{i}} + b
ight)$$

What can we say about the gradients on w?

$$\frac{\partial f(\sum_{i} w_{i} x_{i} + b)}{\partial w} = \frac{1}{1 + e^{-(\sum_{i} w_{i} x_{i} + b)}} \times (1 - \frac{1}{1 + e^{-(\sum_{i} w_{i} x_{i} + b)}})_{5}$$

Since $\Delta w_i = \alpha \frac{\partial f}{\partial w} \cdot \frac{\partial L}{\partial f}$, all Δw_i which connect to the same neuron, will be all positive or all negative (depending on the sign of $\frac{\partial L}{\partial f}$.)

$$f\left(\sum_{\pmb{i}} w_{\pmb{i}} x_{\pmb{i}} + b
ight)$$

allowed gradient update directions

hypothetical optimal w vector

zig zag path

What can we say about the gradients on **w**? Always all positive or all negative :((this is also why you want zero-mean data!)

allowed gradient update directions For example, suppose we have:

$$w = (1 - 1 1)$$

and we need to get it to:

$$w = (-1 \ 1 \ -1)$$

if we can have both positive and negative gradients we could do this in one step:

$$w = (1 - 1 1) + (-2 2 - 2) = (-1 1 - 1) = = > Good. One-step update.$$

However, the best we can do with only, positive or negative is two steps:

$$w = (1 - 1 1) + (-3 - 3 - 3) + (1 5 1) = (-1 1 - 1) = = > Bad. ZIG-ZAG Weight Update$$

Sigmoid

$$\sigma(x) = 1/(1 + e^{-x})$$

- Squashes numbers to range [0,1]
- Historically popular since they have nice interpretation as a saturating "firing rate" of a neuron

3 problems:

- Saturated neurons "kill" the gradients
- Sigmoid outputs are not zero-centered
- 3. exp() is a bit compute expensive

tanh(x)

- Squashes numbers to range [-1,1]
- zero centered (nice)
- still kills gradients when saturated :(

ReLU (Rectified Linear Unit)

- Computes f(x) = max(0,x)
- Does not saturate (in +region)
- Very computationally efficient
- Converges much faster than sigmoid/tanh in practice (e.g. 6x)
- Actually more biologically plausible than sigmoid

[Krizhevsky et al., 2012]

- Not zero-centered output
- An annoyance:

hint: what is the gradient when x < 0?

 Converges much faster than sigmoid/tanh in practice! (e.g. 6x)

- will not "die".

Leaky ReLU

$$f(x) = \max(0.01x, x)$$

[Mass et al., 2013] [He et al., 2015]

[Clevert et al., 2015]

Exponential Linear Units (ELU)

$$f(x) = \begin{cases} x & \text{if } x > 0 \\ \alpha (\exp(x) - 1) & \text{if } x \le 0 \end{cases}$$

- All benefits of ReLU
- Closer to zero mean outputs
- Negative saturation regime compared with Leaky ReLU adds some robustness to noise

- Computation requires exp()

Pooling layer

- makes the representations smaller and more manageable
- operates over each activation map independently:

MAX POOLING

Single depth slice

		<u> </u>	
1	1	2	4
5	6	7	8
3	2	1	0
1	2	3	4
1			

max pool with 2x2 filters and stride 2

6	8
3	4

- Accepts a volume of size $W_1 imes H_1 imes D_1$
- Requires two hyperparameters:
 - their spatial extent F,
 - the stride S,
- Produces a volume of size $W_2 imes H_2 imes D_2$ where:
 - $W_2 = (W_1 F)/S + 1$
 - $H_2 = (H_1 F)/S + 1$
 - $O_2 = D_1$
- Introduces zero parameters since it computes a fixed function of the input
- Note that it is not common to use zero-padding for Pooling layers

Fully Connected Layer (FC layer)

 Contains neurons that connect to the entire input volume, as in ordinary Neural Networks

- Next class
 - A simple example of Backpropagation in CNN.