Example

Find the solutions for the equation $x^2 + 5x + 4 = 0$.

Solution

The given equation can be expressed as $(1)x^2 + (5)x + (4) = 0$. In other words, a = 1, b = 5, and c = 4. The two roots of this equation can be found by substituting these values into the quadratic equation, as follows:

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-5 \pm \sqrt{5^2 - (4)(1)(4)}}{(2)(1)} = \frac{-5 \pm \sqrt{9}}{2} = \frac{-5 \pm 3}{2}$$

The two roots are $x = \frac{-5+3}{2} = -1$ and $x = \frac{-5-3}{2} = -4$.

$$x = -1 \text{ and } x = -4$$

We can evaluate these answers by substituting them into the given equation and verifying that the result is zero.

$$x^2 + 5x + 4 = 0$$

For
$$x = -1$$
, $(-1)^2 + 5(-1) + 4 = 1 - 5 + 4 = 0$.

For
$$x = -4$$
, $(-4)^2 + 5(-4) + 4 = 16 - 20 + 4 = 0$.

Example

Factor the equation $2x^2 - 3x - 4 = 0$.

Solution

The given equation can be expressed as $(2)x^2 + (-3)x + (-4) = 0$. Thus, a = 2, b = -3, and c = -4. Substitute these values into the quadratic equation to factor the given equation.

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{3 \pm \sqrt{(-3)^2 - (4)(2)(-4)}}{(2)(2)} = \frac{3 \pm \sqrt{41}}{4} = \frac{3 \pm 6.403}{4}$$

The two roots are
$$x = \frac{3 + 6.403}{4} = 2.351$$
 and $x = \frac{3 - 6.403}{4} = -0.851$.

$$x = 2.351$$
 and $x = -0.851$

Again, evaluate these answers by substituting them into the given equation.

$$2x^2 - 3x - 4 = 0$$

For
$$x = 2.351$$
, $2(2.351)^2 - 3(2.351) - 4 = 11.054 - 7.053 - 4 \approx 0$.

For
$$x = -0.851$$
, $2(-0.851)^2 - 3(-0.851) - 4 = 1.448 + 2.553 - 4 \approx 0$.