A = {an bn | n≥o}. - not regular.

Recursive definition

- $\cdot \in \in A$
- · if weA then a wb EA.

Context Free Languages.

Context Free Grammars.

 $G = (N, \mathcal{Z}, P, S)$.

N-finite Set (non-terminal symbols).

2- finite Set (terminal Symbols)

Assumption: $NNZ = \phi$

P- finite Subset of NX (NUZ)* [productions]

SEN (Start Symbol).

Notation. A,B,C - nonterminal Symbols a,b,C - terminal Symbols

«,B,8 - Strings over (NUE)*

CFG.
$$G = (N, \mathcal{E}, P, S)$$
 $N = \mathcal{E}S\mathcal{E}, \mathcal{E} = \mathcal{E}a,b\mathcal{E}$.
 $P = \mathcal{E}S \rightarrow aSb, S \rightarrow \mathcal{E}$.
 $S \rightarrow aSb \mid \mathcal{E}$

$$a^3b^3$$
: $5 \xrightarrow{1}_{G} a5b \xrightarrow{1}_{G} aa5bb$

$$\xrightarrow{1}_{G} aaa5bbb \xrightarrow{1}_{G} aaabbb.$$

Context Free Grammars.

$$G = (N, \mathcal{Z}, P, S)$$
.

N-finite Set (non-terminal symbols).

Z- finite set (terminal Symbols). ENN= of

P- finite Subset of NX (NUZ)* [productions.]

 $P \subseteq N \times (NUZ)^*$ { $(A_1 \bowtie_1), (A_1 \bowtie_2), (A_1 \bowtie_3)$ } $\subseteq P$

 $A \rightarrow \alpha_1 | \alpha_2 | \alpha_3$.

SEN (Start Symbol).

Suppose $\angle B \in (NUE)^*$ B is derivable from $\angle B = B$ if B can be obtained from $\angle B = B$ if B can be obtained from $\angle B = B$ by replacing some occurrence of a non-terminal A in $\angle B = B$ where $A \rightarrow B \in P$.

if $\exists \alpha_1, \alpha_2 \in (NU \in)^* S.t \ \lambda = \lambda_1 A \lambda_2 \ and$ $\exists A \Rightarrow \delta \in P \text{ then } \lambda \xrightarrow{1} \beta = \lambda_1 \delta \lambda_2$

d = 3 B - one step derivation

 $\frac{*}{G}$: reflexive transitive closure of the relation $\frac{1}{G}$. $A \xrightarrow{G} \times for all A$

 $2 \xrightarrow{\text{MH}} \beta$ if $3 \times 3.4 \times \frac{1}{6} \times 3$ and $3 \xrightarrow{1} \beta$.

 $A \xrightarrow{*}_{G} \beta$ if $A \xrightarrow{n}_{G} \beta$ for some $n \ge 0$.

Longuage generated by Gr.

$$L(G) = \{x \in \mathcal{E}^* \mid 5 \xrightarrow{x} x\}$$

 $B = \mathcal{L}^*$ is a context free language (CFL) if $B = \mathcal{L}(G)$ for some CFG G.

$$Z = \{a^{n}b^{n} \mid n \geq 0\} - is \ a \ CFL.$$

$$CFG. \ G = (N, \leq, P, S) \quad N = \{5\}, \leq = \{a,b\}.$$

$$P = \{S \rightarrow aSb, S \rightarrow \epsilon\}.$$

$$L(G) = Z$$

$$a^3b^3$$
: $5 \xrightarrow{4} a5b \xrightarrow{5} aa5bb$
 $\xrightarrow{5} aaa5bbb \xrightarrow{1} aaabbb$.

By induction on n we can show: $S \xrightarrow{n+1} a^n b^n$ \Rightarrow all strings of the form $a^n b^n \in L(G)$.

Conversly, the only strings in L(G) are of the form $a^n b^n$ - induction on the length of the derivation.

Example

 $X = \{ \omega \in \{0,1\}^* \mid \omega \text{ has equal number of 0's and 1's} \}$ $S \rightarrow 0.515 \mid 1505 \mid \epsilon$

 $X = \{ \omega \in \{0, 1\}^* \mid \omega = \text{YeV}(\omega) \} \quad \text{w is even}$ $S \rightarrow \epsilon \mid 0 \mid 1 \mid 0.50 \mid 1.51 \quad S \rightarrow \epsilon \mid 0.50 \mid 1.51$

 $X = \{ w \in \{0, 1\}^* \mid w \text{ is odd and middle symbol is } 0 \}$ $5 \rightarrow 0.50 \mid 0.51 \mid 1.50 \mid 1.51 \mid 0$

 $X = \{ w \in \{0, 1\}^* \mid w \text{ contains at least three } 1s \}$ $S \longrightarrow A 1 A 1 A 1 A$ $A \longrightarrow OA | 1A | \epsilon$

$$X = \{a^i b^j c^k \mid i, j, k \ge 0; i + j = k\}$$

$$Z \rightarrow bZC \mid \epsilon$$