Logistic Regression

Tao Tan

Logistic Regression

- Linear Regression
 - Housing price
 - Stock price
 - Exam score

Predicted value is continous

Logistic regression is a classification problem

Whether or not a person has Covid or regular pneomonia or nonpenumonia $Y = \begin{cases} \text{Covid} \\ \text{Regular pnemonia} \\ \text{non - pnemonia} \end{cases}$

Success of a vaccination

 $Y = \begin{cases} Yes \\ No \end{cases}$

Whats the gender of a person

 $Y = \begin{cases} Male \\ Female \end{cases}$

prediction is catergorical. For binary, 0 is negative and 1 is positive

Example: Age predicts car ownership

Example: Age predicts car ownership	
age	have_car
18	0
25	0
47	1
53	0
46	1
56	1
60	0
62	1
61	1
18	0
29	0
28	0
30	0
39	1

Logistic regression is more stuiable as it is a classification problem. Logistic regression can even be negative or bigger than 1

Sigmoid/logsitic function

$$S(x)=rac{1}{1+e^{-x}}$$

e = Euler's number ~ 2.71828

sigmoid functions converts input into range 0 to 1

Linear

Logistic Regression

$$h = a * x + b$$

$$h = 1/(1 + e^{-(a^*x+b)})$$

Parameters a and b

h = estimated probablity that y =1 on input x

$$h = P(y = 1 \mid x; a, b)$$

$$P(y=1\,|\,x;a,b)$$

$$+P(y=0 | x;a,b)=1$$

Logistic Regression

You can also have polymonia fuction

$$h_{\theta}(x) = g(\theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_1^2 + \theta_4 x_2^2)$$

Logistic Regression

Decision Boundary

$$h_{\theta}(x) = g(\theta_0 + \theta_1 x_1 + \theta_2 x_2)$$

Predict "
$$y = 1$$
" if $-3 + x_1 + x_2 \ge 0$

Logistic Regression

Logistic regression cost function

$$\operatorname{Cost}(h_{\theta}(x), y) = \left\{ \begin{array}{cl} -\log(h_{\theta}(x)) & \text{if } y = 1 \\ -\log(1 - h_{\theta}(x)) & \text{if } y = 0 \end{array} \right.$$

Logistic Regression Logistic regression cost function

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \text{Cost}(h_{\theta}(x^{(i)}), y^{(i)})$$

$$= -\frac{1}{m} \left[\sum_{i=1}^{m} y^{(i)} \log h_{\theta}(x^{(i)}) + (1 - y^{(i)}) \log (1 - h_{\theta}(x^{(i)})) \right]$$

To fit parameters θ :

$$\min J(\theta)$$

To make a prediction given new x:

Output
$$h_{\theta}(x) = \frac{1}{1+e^{-\theta^T x}}$$

non-convex

Logistic Regression

Gradient Descent

$$J(\theta) = -\frac{1}{m} \left[\sum_{i=1}^{m} y^{(i)} \log h_{\theta}(x^{(i)}) + (1 - y^{(i)}) \log (1 - h_{\theta}(x^{(i)})) \right]$$

Want $\min_{\theta} J(\theta)$:

Repeat {

$$\theta_j := \theta_j - \alpha \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_j^{(i)}$$
 (simultaneously update all θ)

Algorithm looks identical to linear regression!

Jupyter Notebook practice

Linear Regression

• Used to make predictions about an unknown event from known evidence

- Output continuous
- Inputs can be any level of measurement
- Assumes linear relationship
- Uses least squares estimation

Logistic Regression LOGIT

• Used to determine which variables affect the

- probability of a particular outcome
- Output categorical
- Inputs may be any level of measurement
- Doesn't assume linear relationship but rather a logit transformation
- Uses maximum likelihood estimation

Examining likelihood of event

- Likelihood conventionally expressed on a scale of 0 to 1 Many health outcomes are dichotomous: Breast cancer=1 (yes) vs Healthy=0 (no)
- Can be used to compare likelihood in groups: Case vs controls

Males vs females Chemo vs no chemo

Non-binary variables?

- A lot of categorical variables are not binary though, what can we do with these?
 - Often we can recode them to a binary response.
 - Multinomial logistic regression.

Multiclass classification

Email foldering/tagging: Work, Friends, Family, Hobby

Medical diagrams: Not ill, Cold, Flu

Weather: Sunny, Cloudy, Rain, Snow

One-vs-all

Train a logistic regression classifier $h_{\theta}^{(i)}(x)$ for each class i to predict the probability that y=i .

On a new input $\ x_i$ to make a prediction, pick the class i that maximizes

$$\max_{i} h_{\theta}^{(i)}(x)$$

 https://www.w3schools.com/python/python_ ml_logistic_regression.asp

Advanced optimization

Optimization algorithm

```
Cost function J(\theta). Want\min_{\theta} J(\theta) .
Given \theta we have code that can
\text{compute } J(\theta)
            \frac{\partial}{\partial \theta_j} J(\theta)
                                     (for j = 0, 1, \dots, n)
Gradient descent:
   Repeat {
           \theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta)
```

Advanced optimization

Optimization algorithm

 $\operatorname{Given} \theta$, we have code that can $\operatorname{compute} J(\theta)$ $-\frac{\frac{\partial}{\partial \theta_j}J(\theta)}{-\frac{\partial}{\partial \theta_j}J(\theta)}$ (for j = 0, 1, ..., n)

- Optimization algorithms:
 Gradient descent
 Conjugate gradient
 BFGS
 - L-BFGS

- Advantages:

 No need to manually pick
 Often faster than gradient descent.

Disadvantages:
- More complex

Advanced optimization

Example:

$$\begin{split} \theta &= \begin{bmatrix} \dot{\theta}_1 \\ \dot{\theta}_2 \end{bmatrix} \\ J(\theta) &= (\theta_1 - 5)^2 + (\theta_2 - 5)^2 \\ \frac{\partial}{\partial \theta_1} J(\theta) &= 2(\theta_1 - 5) \\ \frac{\partial}{\partial \theta_2} J(\theta) &= 2(\theta_2 - 5) \end{split}$$

Exercise

https://www.kaggle.com/datasets/giripujar/hr-

- 1 Do analysis to figure out which factors have direct impact on employee rention
- 2 Plot bar charts showing impact of employee salaries on retention
- 3 Build logistic regression model using variables that were selected in step 1
- 4 Measure the accuracy