

ASHRAE STANDARD

Energy Standard for Buildings Except Low-Rise Residential Buildings

I-P Edition

See Appendix F for approval dates by the ASHRAE Standards Committee, the ASHRAE Board of Directors, the IESNA Board of Directors, and the American National Standards Institute.

This standard is under continuous maintenance by a Standing Standard Project Committee (SSPC) for which the Standards Committee has established a documented program for regular publication of addenda or revisions, including procedures for timely, documented, consensus action on requests for change to any part of the standard. The change submittal form, instructions, and deadlines may be obtained in electronic form from the ASHRAE Web site, http://www.ashrae.org, or in paper form from the Manager of Standards. The latest edition of an ASHRAE Standard may be purchased from ASHRAE Customer Service, 1791 Tullie Circle, NE, Atlanta, GA 30329-2305. E-mail: orders@ashrae.org. Fax: 404-321-5478. Telephone: 404-636-8400 (worldwide), or toll free 1-800-527-4723 (for orders in U.S. and Canada).

© Copyright 2004 ASHRAE, Inc.

ISSN 1041-2336

Jointly sponsored by

Illuminating
Engineering Society
LIGHTING
AUTHORITY

Illuminating
Engineering Society
of North America

120 Wall Street, 17th Floor, New York, NY 10005-4001

American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc.

1791 Tullie Circle NE, Atlanta, GA 30329 www.ashrae.org

ASHRAE Standing Standard Project Committee 90.1 Cognizant TC: TC 7.6, Systems Energy Utilization SPLS Liaisons: Hugh F. Crowther and Michael H. Tavares

ASHRAE Staff Liaison: Mark Weber IESNA Liaison: Rita M. Harrold

Jerry W. White, Jr., Chair Richard V. Heinisch Edward P. O'Brien James M. Calm, Vice-Chair Randall T. Higa James A. Ranfone Donald F. Steiner. Vice-Chair Adam W. Hinge Eric E. Richman Karim Amrane Billy G. Hinton, Jr. Jack F. Roberts Wagdy A.Y. Anis John F. Hogan Michael I. Rosenberg Samantha Holloman Anthony M. Arbore Steven Rosenstock William P. Bahnfleth William G. Holy Robert D. Ross Albert R. Barfield Graham C. Hunter, II Donald L. Sampler Pete Baselici J. Delaine Jones David A. Schaaf, Jr. Van D. Baxter Hyman M. Kaplan Leonard C. Sciarra Denise M. Beach Gersil N. Kay Bipin Vadilal Shah Donald L. Beaty Steven D. Kennedy Peter Simmonds Albert W. Black, III Larry Kouma Stephen V. Skalko Valerie L. Block Ronald D. Kurtz Larry G. Spielvogel Donald M. Brundage Samantha H. LaFleur Frank A. Stanonik Ernest A. Conrad Michael D. Lane Charles C. Cottrell Dean E. Lewis Joseph K. Ting Rov Crane Steven J. Lit T. Ming Tran Joseph J. Deringer Richard Lord Cedric S. Trueman David Duly Kenneth Luther Martha G. VanGeem Keith I. Emerson Ronald Majette Carl Wagus Drake H. Erbe Itzhak H. Maor Frederick F. Wajcs, Jr. Douglas S. Erickson Carol E. Marriott McHenry Wallace, Jr. Thomas A. Farkas R. Christopher Mathis Richard D. Watson Charles R. Foster, III Merle F. McBride David Weitz Allan B. Fraser Michael W. Mehl Robin Wilson James A. Garrigus Harry P. Misuriello Michael W. Woodford Jason J. Glazer Louis J. Molinini Dale L. Woodin Ashok Gupta John Montgomery Thomas R. Worlledge S. Pekka Hakkarainen Frank T. Morrison Donald R. Wulfinghoff Katherine G. Hammack Frank Myers

Ronald G. Nickson

Stanley W. Zajac

Susanna S. Hanson

ASHRAE STANDARDS COMMITTEE 2003-2004

Van D. Baxter, Chair
Davor Novosel, Vice-Chair
Donald B. Bivens
Dean S. Borges
Paul W. Cabot
Charles W. Coward, Jr.
Hugh F. Crowther
Brian P. Dougherty
Hakim Elmahdy
Matt R. Hargan
Richard D. Hermans
John F. Hogan

Frank E. Jakob
Stephen D. Kennedy
David E. Knebel
Frederick H. Kohloss
Merle F. McBride
Mark P. Modera
Cyrus H. Nasseri
Stephen V. Santoro
Gideon Shavit
David R. Tree
James E. Woods
Ross D. Montgomery, BOD ExO
Kent W. Peterson, CO

Claire B. Ramspeck, Manager of Standards

SPECIAL NOTE

This American National Standard (ANS) is a national voluntary consensus standard developed under the auspices of the American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE). Consensus is defined by the American National Standards Institute (ANSI), of which ASHRAE is a member and which has approved this standard as an ANS, as "substantial agreement reached by directly and materially affected interest categories. This signifies the concurrence of more than a simple majority, but not necessarily unanimity. Consensus requires that all views and objections be considered, and that an effort be made toward their resolution." Compliance with this standard is voluntary until and unless a legal jurisdiction makes compliance mandatory through legislation.

ASHRAE obtains consensus through participation of its national and international members, associated societies, and public review.

ASHRAE Standards are prepared by a Project Committee appointed specifically for the purpose of writing the Standard. The Project Committee Chair and Vice-Chair must be members of ASHRAE; while other committee members may or may not be ASHRAE members, all must be technically qualified in the subject area of the Standard. Every effort is made to balance the concerned interests on all Project Committees.

The Manager of Standards of ASHRAE should be contacted for:

- a. interpretation of the contents of this Standard,
- b. participation in the next review of the Standard,
- c. offering constructive criticism for improving the Standard,
- d. permission to reprint portions of the Standard.

DISCLAIMER

ASHRAE uses its best efforts to promulgate Standards and Guidelines for the benefit of the public in light of available information and accepted industry practices. However, ASHRAE does not guarantee, certify, or assure the safety or performance of any products, components, or systems tested, installed, or operated in accordance with ASHRAE's Standards or Guidelines or that any tests conducted under its Standards or Guidelines will be nonhazardous or free from risk.

ASHRAE INDUSTRIAL ADVERTISING POLICY ON STANDARDS

ASHRAE Standards and Guidelines are established to assist industry and the public by offering a uniform method of testing for rating purposes, by suggesting safe practices in designing and installing equipment, by providing proper definitions of this equipment, and by providing other information that may serve to guide the industry. The creation of ASHRAE Standards and Guidelines is determined by the need for them, and conformance to them is completely voluntary.

In referring to this Standard or Guideline and in marking of equipment and in advertising, no claim shall be made, either stated or implied, that the product has been approved by ASHRAE.

CONTENTS

ANSI/ASHRAE/IESNA Standard 90.1-2004 Energy Standard for Buildings Except Low-Rise Residential Buildings

SECTION		PAGE
Foreword		4
1 Purpose.		4
2 Scope		4
3 Definition	s, Abbreviations, and Acronyms	4
4 Administr	ation and Enforcement	15
5 Building E	Envelope	17
6 Heating,	Ventilating, and Air Conditioning	31
7 Service V	Vater Heating	56
8 Power		59
9 Lighting		60
10 Other Equ	uipment	67
11 Energy Co	ost Budget Method	68
12 Normative	References	77
Normative Appe	ndices (these appendices are normative and part of this standard)	
Appendix A:	Rated R-Value of Insulation and Assembly U-Factor, C-Factor, and F-Factor Determinations	80
Appendix B:	Building Envelope Climate Criteria	109
Appendix C:	Methodology for Building Envelope Trade-Off Option in Subsection 5.6	
Appendix D:	Climatic Data	130
• •	endices (these appendices are informative and not part of this standard)	
Appendix E:	Informative References	
Appendix F:	Addenda Description Information	
Appendix G:	Performance Rating Method	169

NOTE

When addenda, interpretations, or errata to this standard have been approved, they can be downloaded free of charge from the ASHRAE Web site at http://www.ashrae.org.

© Copyright 2004 American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc.

1791 Tullie Circle NE Atlanta, GA 30329 www.ashrae.org

All rights reserved.

(This foreword is not part of this standard. It is merely informative and does not contain requirements necessary for conformance to the standard. It has not been processed according to the ANSI requirements for a standard and may contain material that has not been subject to public review or a consensus process. Unresolved objectors on informative material are not offered the right to appeal at ASHRAE or ANSI.)

FOREWORD

The original Standard 90 was published in 1975 and revised editions were published in 1980, 1989, and 1999 using the ANSI and ASHRAE periodic maintenance procedures. Based upon these procedures, the entire standard was publicly reviewed and published in its entirety each time. As technology and energy prices began changing more rapidly, however, the ASHRAE Board of Directors voted in 1999 to place the standard on continuous maintenance, permitting the standard to be updated several times each year through the publication of approved addenda to the standard. Starting with the 2001 edition, the standard is now published in its entirety in the fall of every third year. This schedule allows the standard to be submitted and proposed by the deadline for inclusion or reference in model building and energy codes. All approved addenda and errata will be included in the new edition every three years. This procedure allows users to have some certainty about when new editions will be published.

This 2004 edition of the standard has several new features and includes changes resulting from the continuous maintenance proposals from the public. The standard has been completely reformatted for ease of use and clarity. The climate zones have been reduced from 26 to 8 and the Lighting LPDs have been reduced as well. The committee welcomes suggestions for improving the standard. Users of the standard are encouraged and invited to use the continuous maintenance procedure to suggest changes. A form, Submittal of Proposed Change, is included in the back of this standard. The committee will take formal action on every proposal received.

The project committee is continually considering changes and proposing addenda for public review. When addenda are approved, notices will be published on the ASHRAE and IESNA Web sites. Users are encouraged to sign up for the free ASHRAE and IESNA internet list server for this standard to receive notice of all public reviews and approved and published addenda and errata.

Changes from the previous 2001 edition of the standard are not marked in the margin, as was the practice with the 1999 edition, because of the extensive reformatting that has taken place in this 2004 edition.

This edition corrects all known typographical errors in the 2001 standard. It includes the content of 31 addenda that were processed by the committee and approved by the ASHRAE and IESNA Boards of Directors. For the publication dates and brief descriptions of the addenda to 90.1-2001, see Appendix F.

1. PURPOSE

The purpose of this standard is to provide minimum requirements for the energy-efficient design of buildings except low-rise residential buildings.

2. SCOPE

- **2.1** This standard provides:
- (a) minimum energy-efficient requirements for the design and construction of:
 - 1. new buildings and their systems,
 - 2. new portions of buildings and their systems, and
 - 3. new systems and equipment in existing buildings and
- (b) criteria for determining compliance with these requirements.
- **2.2** The provisions of this standard apply to:
- (a) the envelope of buildings, provided that the enclosed spaces are:
 - 1. heated by a heating system whose output capacity is greater than or equal to 3.4 Btu/h·ft² or
 - 2. cooled by a cooling system whose sensible output capacity is greater than or equal to 5 Btu/h·ft², and
- (b) the following systems and equipment used in conjunction with buildings:
 - 1. heating, ventilating, and air conditioning,
 - 2. service water heating,
 - 3. electric power distribution and metering provisions,
 - 4. electric motors and belt drives, and
 - 5. lighting.
- **2.3** The provisions of this standard do not apply to:
- (a) single-family houses, multi-family structures of three stories or fewer above grade, manufactured houses (mobile homes) and manufactured houses (modular),
- (b) buildings that do not use either electricity or fossil fuel, or
- (c) equipment and portions of building systems that use energy primarily to provide for industrial, manufacturing, or commercial processes.
- **2.4** Where specifically noted in this standard, certain other buildings or elements of buildings shall be exempt.
- **2.5** This standard shall not be used to circumvent any safety, health, or environmental requirements.

3. DEFINITIONS, ABBREVIATIONS, AND ACRONYMS

3.1 General

Certain terms, abbreviations, and acronyms are defined in this section for the purposes of this standard. These definitions are applicable to all sections of this standard. Terms that are not defined shall have their ordinarily accepted meanings within the context in which they are used. Ordinarily accepted meanings shall be based upon American standard English language usage as documented in an unabridged dictionary accepted by the *adopting authority*.

3.2 Definitions

above-grade wall: see wall.

access hatch: see door.

addition: an extension or increase in floor area or height of a building outside of the existing building envelope.

adopting authority: the agency or agent that adopts this standard

alteration: a replacement or addition to a building or its systems and equipment; routine maintenance, repair, and service or a change in the building's use classification or category shall not constitute an alteration.

annual fuel utilization efficiency (AFUE): an efficiency descriptor of the ratio of annual output energy to annual input energy as developed in accordance with the requirements of U.S. Department of Energy (DOE) 10CFR Part 430.

attic and other roofs: see roof.

authority having jurisdiction: the agency or agent responsible for enforcing this standard.

automatic: self-acting, operating by its own mechanism when actuated by some nonmanual influence, such as a change in current strength, pressure, temperature, or mechanical configuration. (See *manual*.)

automatic control device: a device capable of automatically turning loads off and on without manual intervention.

balancing, air system: adjusting air flow rates through air distribution system devices, such as fans and diffusers, by manually adjusting the position of dampers, splitter vanes, extractors, etc., or by using automatic control devices, such as constant air volume or variable air volume boxes.

balancing, hydronic system: adjusting water flow rates through hydronic distribution system devices, such as pumps and coils, by manually adjusting the position valves, or by using automatic control devices, such as automatic flow control valves.

ballast: a device used in conjunction with an electricdischarge lamp to cause the lamp to start and operate under the proper circuit conditions of voltage, current, wave form, electrode heat, etc.

- (a) *electronic ballast:* a ballast constructed using electronic circuitry.
- (b) hybrid ballast: a ballast constructed using a combination of magnetic core and insulated wire winding and electronic circuitry.
- (c) *magnetic ballast:* a ballast constructed with magnetic core and a winding of insulated wire.

baseline building design: a computer representation of a hypothetical design based on the proposed building project. This representation is used as the basis for calculating the baseline building performance for rating above-standard design.

baseline building performance: the annual energy cost for a building design intended for use as a baseline for rating above-standard design.

below-grade wall: see wall.

boiler: a self-contained low-pressure appliance for supplying steam or hot water.

boiler, **packaged**: a boiler that is shipped complete with heating equipment, mechanical draft equipment, and automatic controls; usually shipped in one or more sections. A packaged boiler includes factory-built boilers manufactured as a unit or system, disassembled for shipment, and reassembled at the site.

branch circuit: the circuit conductors between the final overcurrent device protecting the circuit and the outlet(s); the final wiring run to the load.

budget building design: a computer representation of a hypothetical design based on the actual proposed building design. This representation is used as the basis for calculating the energy cost budget.

building: a structure wholly or partially enclosed within exterior walls, or within exterior and party walls, and a roof, affording shelter to persons, animals, or property.

building entrance: any doorway, set of doors, turnstiles, or other form of portal that is ordinarily used to gain access to the building by its users and occupants.

building envelope: the exterior plus the semi-exterior portions of a building. For the purposes of determining building envelope requirements, the classifications are defined as follows:

- (a) **building envelope, exterior:** the elements of a building that separate conditioned spaces from the exterior.
- (b) building envelope, semi-exterior: the elements of a building that separate conditioned space from unconditioned space or that enclose semiheated spaces through which thermal energy may be transferred to or from the exterior, or to or from unconditioned spaces, or to or from conditioned spaces.

building exit: any doorway, set of doors, or other form of portal that is ordinarily used only for emergency egress or convenience exit.

building grounds lighting: lighting provided through a building's electrical service for parking lot, site, roadway, pedestrian pathway, loading dock, and security applications.

building material: any element of the building envelope through which heat flows and that is included in the component U-factor calculations other than air films and insulation.

building official: the officer or other designated representative authorized to act on behalf of the authority having jurisdiction.

C-factor (thermal conductance): time rate of steady-state heat flow through unit area of a material or construction, induced by a unit temperature difference between the body surfaces. Units of C are Btu/h·ft².°F. Note that the C-factor does not include soil or air films.

circuit breaker: a device designed to open and close a circuit by nonautomatic means and to open the circuit automatically at a predetermined overcurrent without damage to itself when properly applied within its rating.

class of construction: for the building envelope, a subcategory of roof, above-grade wall, below-grade wall, floor, slabon-grade floor, opaque door, vertical fenestration, or skylight. (See roof, wall, floor, slab-on-grade floor, door, and fenestration.)

clerestory: that part of a building that rises clear of the roofs or other parts and whose walls contain windows for lighting the interior.

code official: see building official.

coefficient of performance (COP)—cooling: the ratio of the rate of heat removal to the rate of energy input, in consistent units, for a complete refrigerating system or some specific portion of that system under designated operating conditions.

coefficient of performance (COP), heat pump—heating: the ratio of the rate of heat delivered to the rate of energy input, in consistent units, for a complete heat pump system, including the compressor and, if applicable, auxiliary heat, under designated operating conditions.

conditioned floor area: see floor area.

conditioned space: see space.

conductance: see thermal conductance.

continuous insulation (ci): insulation that is continuous across all structural members without thermal bridges other than fasteners and service openings. It is installed on the interior, exterior, or is integral to any opaque surface of the building envelope.

control: to regulate the operation of equipment.

control device: a specialized device used to regulate the operation of equipment.

construction: the fabrication and erection of a new building or any addition to or alteration of an existing building.

construction documents: drawings and specifications used to construct a building, building systems, or portions thereof.

cool down: reduction of space temperature down to occupied setpoint after a period of shutdown or setup.

cooled space: see space.

cooling degree-day: see degree-day.

cooling design temperature: the outdoor dry-bulb temperature equal to the temperature that is exceeded 1% of the number of hours during a typical weather year.

cooling design wet-bulb temperature: the outdoor wet-bulb temperature for sizing cooling systems and evaporative heat rejection systems such as cooling towers.

dead band: the range of values within which a sensed variable can vary without initiating a change in the controlled process.

decorative lighting: see lighting, decorative.

degree-day: the difference in temperature between the outdoor mean temperature over a 24-hour period and a given base temperature. For the purposes of determining building envelope requirements, the classifications are defined as follows:

- (a) *cooling degree-day base* 50°F, *CDD50*: for any one day, when the mean temperature is more than 50°F, there are as many degree-days as degrees Fahrenheit temperature difference between the mean temperature for the day and 50°F. Annual cooling degree-days (CDDs) are the sum of the degree-days over a calendar year.
- (b) heating degree-day base 65°F, HDD65: for any one day, when the mean temperature is less than 65°F, there are as many degree-days as degrees Fahrenheit temperature difference between the mean temperature for the day and 65°F. Annual heating degree-days (HDDs) are the sum of the degree-days over a calendar year.

demand: the highest amount of power (average Btu/h over an interval) recorded for a building or facility in a selected time frame.

design capacity: output capacity of a system or piece of equipment at design conditions.

design conditions: specified environmental conditions, such as temperature and light intensity, required to be produced and maintained by a system and under which the system must operate.

design energy cost: the annual energy cost calculated for a proposed design.

design professional: an architect or engineer licensed to practice in accordance with applicable state licensing laws.

direct digital control (DDC): a type of control where controlled and monitored analog or binary data (e.g., temperature, contact closures) are converted to digital format for manipulation and calculations by a digital computer or microprocessor, then converted back to analog or binary form to control physical devices.

disconnect: a device or group of devices or other means by which the conductors of a circuit can be disconnected from their source of supply.

distribution system: conveying means, such as ducts, pipes, and wires, to bring substances or energy from a source to the point of use. The distribution system includes such auxiliary equipment as fans, pumps, and *transformers*.

door: all operable opening areas (which are not fenestration) in the building envelope, including swinging and roll-up doors, fire doors, and access hatches. Doors that are more than one-half glass are considered fenestration. (See *fenestration*.) For the purposes of determining building envelope requirements, the classifications are defined as follows:

- (a) *non-swinging:* roll-up, sliding, and all other doors that are not swinging doors.
- (b) *swinging:* all operable opaque panels with hinges on one side and opaque revolving doors.

door area: total area of the door measured using the rough opening and including the door slab and the frame. (See *fenestration area*.)

dwelling unit: a single unit providing complete independent living facilities for one or more persons, including permanent provisions for living, sleeping, eating, cooking, and sanitation.

economizer, air: a duct and damper arrangement and automatic control system that together allow a cooling system to supply outdoor air to reduce or eliminate the need for mechanical cooling during mild or cold weather.

economizer, *water*: a system by which the supply air of a cooling system is cooled indirectly with water that is itself cooled by heat or mass transfer to the environment without the use of mechanical cooling.

efficiency: performance at specified rating conditions.

emittance: the ratio of the radiant heat flux emitted by a specimen to that emitted by a blackbody at the same temperature and under the same conditions.

enclosed space: a volume substantially surrounded by solid surfaces such as walls, floors, roofs, and openable devices such as doors and operable windows.

energy: the capacity for doing work. It takes a number of forms that may be transformed from one into another such as thermal (heat), mechanical (work), electrical, and chemical. Customary measurement units are British thermal units (Btu).

energy cost budget: the annual energy cost for the budget building design intended for use in determining minimum compliance with this standard.

energy efficiency ratio (EER): the ratio of net cooling capacity in Btu/h to total rate of electric input in watts under designated operating conditions. (See *coefficient of performance* (COP)—cooling.)

energy factor (EF): a measure of water heater overall efficiency.

envelope performance factor: the trade-off value for the building envelope performance compliance option calculated using the procedures specified in Section 5. For the purposes of determining building envelope requirements, the classifications are defined as follows:

- (a) *base envelope performance factor:* the building envelope performance factor for the base design.
- (b) *proposed envelope performance factor:* the building envelope performance factor for the proposed design.

equipment: devices for comfort conditioning, electric power, lighting, transportation, or service water heating including, but not limited to, furnaces, boilers, air conditioners, heat pumps, chillers, water heaters, lamps, luminaires, ballasts, elevators, escalators, or other devices or installations.

existing building: a building or portion thereof that was previously occupied or approved for occupancy by the authority having jurisdiction.

existing equipment: equipment previously installed in an existing building.

existing system: a system or systems previously installed in an existing building.

exterior building envelope: see building envelope.

exterior lighting power allowance: see lighting power allowance.

F-factor: the perimeter heat loss factor for slab-on-grade floors, expressed in Btu/h·ft·°F.

facade area: area of the facade, including overhanging soffits, cornices, and protruding columns, measured in elevation in a vertical plane parallel to the plane of the face of the building. Nonhorizontal roof surfaces shall be included in the calculation of vertical facade area by measuring the area in a plane parallel to the surface.

fan system power: the sum of the nominal power demand (nameplate horsepower) of motors of all fans that are required to operate at design conditions to supply air from the heating or cooling source to the conditioned space(s) and return it to the source or exhaust it to the outdoors.

feeder conductors: the wires that connect the service equipment to the branch circuit breaker panels.

fenestration: all areas (including the frames) in the building envelope that let in light, including windows, plastic panels, clerestories, skylights, glass doors that are more than one-half glass, and glass block walls. (See *building envelope* and *door*.)

(a) *skylight:* a fenestration surface having a slope of less than 60 degrees from the horizontal plane. Other fenestration, even if mounted on the roof of a building, is considered vertical fenestration.

(b) vertical fenestration: all fenestration other than skylights. Trombe wall assemblies, where glazing is installed within 12 in. of a mass wall, are considered walls, not fenestration.

fenestration area: total area of the fenestration measured using the rough opening and including the glazing, sash, and frame. For doors where the glazed vision area is less than 50% of the door area, the fenestration area is the glazed vision area. For all other doors, the fenestration area is the door area. (See *door area*.)

fenestration, **vertical**: (See fenestration and skylight.)

fixture: the component of a luminaire that houses the lamp or lamps, positions the lamp, shields it from view, and distributes the light. The fixture also provides for connection to the power supply, which may require the use of a ballast.

floor, envelope: that lower portion of the building envelope, including opaque area and fenestration, that has conditioned or semiheated space above and is horizontal or tilted at an angle of less than 60 degrees from horizontal but excluding slab-on-grade floors. For the purposes of determining building envelope requirements, the classifications are defined as follows:

- (a) *mass floor:* a floor with a heat capacity that exceeds (1) 7 Btu/ft².°F or (2) 5 Btu/ft².°F provided that the floor has a material unit mass not greater than 120 lb/ft³.
- (b) *steel-joist floor:* a floor that (1) is not a mass floor and (2) that has steel joist members supported by structural members.
- (c) wood-framed and other floors: all other floor types, including wood joist floors.

(See building envelope, fenestration, opaque area, and slab-on-grade floor).

floor area, gross: the sum of the floor areas of the spaces within the building including basements, mezzanine and intermediate-floored tiers, and penthouses with headroom height of 7.5 ft or greater. It is measured from the exterior faces of exterior walls or from the centerline of walls separating buildings, but excluding covered walkways, open roofed-over areas, porches and similar spaces, pipe trenches, exterior terraces or steps, chimneys, roof overhangs, and similar features.

- (a) gross building envelope floor area: the gross floor area of the building envelope, but excluding slab-on-grade floors.
- (b) *gross conditioned floor area:* the gross floor area of conditioned spaces.
- (c) *gross lighted floor area:* the gross floor area of lighted spaces.
- (d) *gross semiheated floor area:* the gross floor area of semiheated spaces.

(See building envelope, floor, slab-on-grade floor, and space.)

flue damper: a device in the flue outlet or in the inlet of or upstream of the draft control device of an individual, automatically operated, fossil fuel-fired appliance that is designed to

automatically open the flue outlet during appliance operation and to automatically close the flue outlet when the appliance is in a standby condition.

fossil fuel: fuel derived from a hydrocarbon deposit such as petroleum, coal, or natural gas derived from living matter of a previous geologic time.

fuel: a material that may be used to produce heat or generate power by combustion.

general lighting: see lighting, general.

generally accepted engineering standard: a specification, rule, guide, or procedure in the field of engineering, or related thereto, recognized and accepted as authoritative.

grade: the finished ground level adjoining a building at all exterior walls.

gross lighted area (GLA): see floor area, gross: gross lighted floor area.

gross roof area: see roof area, gross.

gross wall area: see wall area, gross.

heat capacity (HC): the amount of heat necessary to raise the temperature of a given mass 1°F. Numerically, the heat capacity per unit area of surface (Btu/ft².°F) is the sum of the products of the mass per unit area of each individual material in the roof, wall, or floor surface multiplied by its individual specific heat.

heated space: see space.

heat trace: a heating system where the externally applied heat source follows (traces) the object to be heated, e.g., water piping.

heating design temperature: the outdoor dry-bulb temperature equal to the temperature that is exceeded at least 99.6% of the number of hours during a typical weather year.

heating degree-day: see degree-day.

heating seasonal performance factor (HSPF): the total heating output of a heat pump during its normal annual usage period for heating (in Btu) divided by the total electric energy input during the same period.

historic: a building or space that has been specifically designated as historically significant by the adopting authority or is listed in "The National Register of Historic Places" or has been determined to be eligible for listing by the U.S. Secretary of the Interior.

hot water supply boiler: a boiler used to heat water for purposes other than space heating.

humidistat: an automatic control device used to maintain humidity at a fixed or adjustable setpoint.

HVAC system: the equipment, distribution systems, and terminals that provide, either collectively or individually, the processes of heating, ventilating, or air conditioning to a building or portion of a building.

indirectly conditioned space: see space.

infiltration: the uncontrolled inward air leakage through cracks and crevices in any building element and around windows and doors of a building caused by pressure differences across these elements due to factors such as wind, inside and outside temperature differences (stack effect), and imbalance between supply and exhaust air systems.

installed interior lighting power: the power in watts of all permanently installed general, task, and furniture lighting systems and luminaires.

integrated part-load value (IPLV): a single-number figure of merit based on part-load EER, COP, or kW/ton expressing part-load efficiency for air-conditioning and heat pump equipment on the basis of weighted operation at various load capacities for the equipment.

interior lighting power allowance: see lighting power allowance.

isolation devices: devices that isolate HVAC zones so that they can be operated independently of one another. Isolation devices include, but are not limited to, separate systems, isolation dampers, and controls providing shutoff at terminal boxes.

joist, steel: any structural steel member of a building or structure made of hot-rolled or cold-rolled solid or open-web sections.

kilovolt-ampere (kVA): where the term "kilovolt-ampere" (kVA) is used in this standard, it is the product of the line current (amperes) times the nominal system voltage (kilovolts) times 1.732 for three-phase currents. For single-phase applications, kVA is the product of the line current (amperes) times the nominal system voltage (kilovolts).

kilowatt (kW): the basic unit of electric power, equal to 1000 W.

labeled: equipment or materials to which a symbol or other identifying mark has been attached by the manufacturer indicating compliance with specified standards or performance in a specified manner.

lamp: a generic term for a man-made light source often called a bulb or tube.

(a) *compact fluorescent lamp:* a fluorescent lamp of a small compact shape, with a single base that provides the entire mechanical support function.

- (b) *fluorescent lamp:* a low-pressure electric discharge lamp in which a phosphor coating transforms some of the ultraviolet energy generated by the discharge into light.
- (c) general service lamp: a class of incandescent lamps that provide light in virtually all directions. General service lamps are typically characterized by bulb shapes such as A, standard; S, straight side; F, flame; G, globe; and PS, pear straight.
- (d) high-intensity discharge (HID) lamp: an electric discharge lamp in that light is produced when an electric arc is discharged through a vaporized metal such as mercury or sodium. Some HID lamps may also have a phosphor coating that contributes to the light produced or enhances the light color.
- (e) *incandescent lamp:* a lamp in which light is produced by a filament heated to incandescence by an electric current.
- (f) reflector lamp: a class of incandescent lamps that have an internal reflector to direct the light. Reflector lamps are typically characterized by reflective characteristics such as R, reflector; ER, ellipsoidal reflector; PAR, parabolic aluminized reflector; MR, mirrorized reflector; and others.

lighting, decorative: lighting that is purely ornamental and installed for aesthetic effect. Decorative lighting shall not include general lighting.

lighting, general: lighting that provides a substantially uniform level of illumination throughout an area. General lighting shall not include decorative lighting or lighting that provides a dissimilar level of illumination to serve a specialized application or feature within such area.

lighting system: a group of luminaires circuited or controlled to perform a specific function.

lighting power allowance:

- (a) *interior lighting power allowance:* the maximum lighting power in watts allowed for the interior of a building.
- (b) *exterior lighting power allowance:* the maximum lighting power in watts allowed for the exterior of a building.

lighting power density (LPD): the maximum lighting power per unit area of a building classification of space function.

low-rise residential: single-family houses, multi-family structures of three stories or fewer above grade, manufactured houses (mobile homes), and manufactured houses (modular).

luminaire: a complete lighting unit consisting of a lamp or lamps together with the housing designed to distribute the light, position and protect the lamps, and connect the lamps to the power supply.

manual (nonautomatic): requiring personal intervention for control. Nonautomatic does not necessarily imply a manual controller, only that personal intervention is necessary. (See *automatic*.)

manufacturer: the company engaged in the original produc-

tion and assembly of products or equipment or a company that purchases such products and equipment manufactured in accordance with company specifications.

mass floor: see floor.

mass wall: see wall.

mean temperature: one-half the sum of the minimum daily temperature and maximum daily temperature.

mechanical heating: raising the temperature of a gas or liquid by use of fossil fuel burners, electric resistance heaters, heat pumps, or other systems that require energy to operate.

mechanical cooling: reducing the temperature of a gas or liquid by using vapor compression, absorption, desiccant dehumidification combined with evaporative cooling, or another energy-driven thermodynamic cycle. Indirect or direct evaporative cooling alone is not considered mechanical cooling.

metal building: a complete integrated set of mutually dependent components and assemblies that form a building, which consists of a steel-framed superstructure and metal skin.

metal building roof: see roof.

metal building wall: see wall.

metering: instruments that measure electric voltage, current, power, etc.

motor power, rated: the rated output power from the motor.

nameplate rating: the design load operating conditions of a device as shown by the manufacturer on the nameplate or otherwise marked on the device.

nonautomatic: see manual.

nonrecirculating system: a domestic or service hot water distribution system that is not a recirculating system.

nonrenewable energy: energy derived from a fossil fuel source

nonresidential: all occupancies other than residential. (See *residential.*)

nonstandard part-load value (NPLV): a single-number part-load efficiency figure of merit calculated and referenced to conditions other than IPLV conditions, for units that are not designed to operate at ARI Standard Rating Conditions.

non-swinging door: see door.

north-oriented: facing within 45 degrees of true north (north-ern hemisphere).

occupant sensor: a device that detects the presence or absence of people within an area and causes lighting, equipment, or appliances to be regulated accordingly.

opaque: all areas in the building envelope, except fenestration and building service openings such as vents and grilles. (See *building envelope* and *fenestration*.)

optimum start controls: controls that are designed to automatically adjust the start time of an HVAC system each day with the intention of bringing the space to desired occupied temperature levels immediately before scheduled occupancy.

orientation: the direction an envelope element faces, i.e., the direction of a vector perpendicular to and pointing away from the surface outside of the element. For vertical fenestration, the two categories are north-oriented and all other. (See *north-oriented*.)

outdoor (outside) air: air that is outside the building envelope or is taken from outside the building that has not been previously circulated through the building.

overcurrent: any current in excess of the rated current of equipment or the ampacity of a conductor. It may result from overload, short circuit, or ground fault.

packaged terminal air conditioner (PTAC): a factory-selected wall sleeve and separate unencased combination of heating and cooling components, assemblies, or sections. It may include heating capability by hot water, steam, or electricity and is intended for mounting through the wall to serve a single room or zone.

packaged terminal heat pump (PTHP): a PTAC capable of using the refrigerating system in a reverse cycle or heat pump mode to provide heat.

party wall: a fire wall on an interior lot line used or adapted for joint service between two buildings.

performance rating method: a calculation procedure that generates an index of merit for the performance of building designs that substantially exceeds the energy efficiency levels required by this standard.

permanently installed: equipment that is fixed in place and is not portable or movable.

plenum: a compartment or chamber to which one or more ducts are connected, that forms a part of the air distribution system, and that is not used for occupancy or storage. A plenum often is formed in part or in total by portions of the building.

pool: any structure, basin, or tank containing an artificial body of water for swimming, diving, or recreational bathing. The term includes, but is not limited to, swimming pool, whirlpool, spa, hot tub.

process energy: energy consumed in support of a manufacturing, industrial, or commercial process other than conditioning

spaces and maintaining comfort and amenities for the occupants of a building.

process load: the load on a building resulting from the consumption or release of process energy.

projection factor (PF): the ratio of the horizontal depth of the external shading projection divided by the sum of the height of the fenestration and the distance from the top of the fenestration to the bottom of the farthest point of the external shading projection, in consistent units.

proposed building performance: the annual energy cost calculated for a proposed design.

proposed design: a computer representation of the actual proposed building design or portion thereof used as the basis for calculating the design energy cost.

public facility restroom: a restroom used by the transient public.

pump system power: the sum of the nominal power demand (nameplate horsepower) of motors of all pumps that are required to operate at design conditions to supply fluid from the heating or cooling source to all heat transfer devices (e.g., coils, heat exchanger) and return it to the source.

purchased energy rates: costs for units of energy or power purchased at the building site. These costs may include energy costs as well as costs for power demand as determined by the adopting authority.

radiant heating system: a heating system that transfers heat to objects and surfaces within the heated space primarily (greater than 50%) by infrared radiation.

rated lamp wattage: see lamp wattage, rated.

rated motor power: see motor power, rated.

rated R-value of insulation: the thermal resistance of the insulation alone as specified by the manufacturer in units of h·ft²·°F/Btu at a mean temperature of 75°F. Rated R-value refers to the thermal resistance of the added insulation in framing cavities or insulated sheathing only and does not include the thermal resistance of other building materials or air films. (See thermal resistance.)

rating authority: the organization or agency that adopts or sanctions use of this rating methodology.

readily accessible: capable of being reached quickly for operation, renewal, or inspections without requiring those to whom ready access is requisite to climb over or remove obstacles or to resort to portable ladders, chairs, etc. In public facilities, accessibility may be limited to certified personnel through locking covers or by placing equipment in locked rooms.

recirculating system: a domestic or service hot water distribution system that includes a closed circulation circuit designed to maintain usage temperatures in hot water pipes near terminal devices (e.g., lavatory faucets, shower heads) in order to reduce the time required to obtain hot water when the terminal device valve is opened. The motive force for circulation is either natural (due to water density variations with temperature) or mechanical (recirculation pump).

recooling: lowering the temperature of air that has been previously heated by a mechanical heating system.

record drawings: drawings that record the conditions of the project as constructed. These include any refinements of the construction or bid documents.

reflectance: the ratio of the light reflected by a surface to the light incident upon it.

reheating: raising the temperature of air that has been previously cooled either by mechanical refrigeration or an economizer system.

repair: the reconstruction or renewal of any part of an existing building for the purpose of its maintenance.

resistance, **electric**: the property of an electric circuit or of any object used as part of an electric circuit that determines for a given circuit the rate at which electric energy is converted into heat or radiant energy and that has a value such that the product of the resistance and the square of the current gives the rate of conversion of energy.

reset: automatic adjustment of the controller set point to a higher or lower value.

residential: spaces in buildings used primarily for living and sleeping. Residential spaces include, but are not limited to, dwelling units, hotel/motel guest rooms, dormitories, nursing homes, patient rooms in hospitals, lodging houses, fraternity/sorority houses, hostels, prisons, and fire stations.

roof: the upper portion of the building envelope, including opaque areas and fenestration, that is horizontal or tilted at an angle of less than 60° from horizontal. For the purposes of determining building envelope requirements, the classifications are defined as follows:

- (a) attic and other roofs: all other roofs, including roofs with insulation entirely below (inside of) the roof structure (i.e., attics, cathedral ceilings, and single-rafter ceilings), roofs with insulation both above and below the roof structure, and roofs without insulation but excluding metal building roofs.
- (b) *metal building roof:* a roof that is constructed with:
 - 1. a metal, structural, weathering surface,
 - 2. has no ventilated cavity, and
 - has the insulation entirely below deck (i.e., does not include composite concrete and metal deck construction nor a roof framing system that is separated from

the superstructure by a wood substrate) and whose structure consists of one or more of the following configurations:

- (a) metal roofing in direct contact with the steel framing members or
- (b) insulation between the metal roofing and the steel framing members or
- (c) insulated metal roofing panels installed as described in 1 or 2.
- (c) roof with insulation entirely above deck: a roof with all insulation:
 - 1. installed above (outside of) the roof structure and
 - 2. continuous (i.e., uninterrupted by framing members).
- (d) single-rafter roof: a subcategory of attic roofs where the roof above and the ceiling below are both attached to the same wood rafter and where insulation is located in the space between these wood rafters.

roof area, gross: the area of the roof measured from the exterior faces of walls or from the centerline of party walls. (See *roof* and *wall*.)

room air conditioner: an encased assembly designed as a unit to be mounted in a window or through a wall, or as a console. It is designed primarily to provide direct delivery of conditioned air to an enclosed space, room, or zone. It includes a prime source of refrigeration for cooling and dehumidification and a means for circulating and cleaning air. It may also include a means for ventilating and heating.

room cavity ratio (**RCR**): a factor that characterizes room configuration as a ratio between the walls and ceiling and is based upon room dimensions.

seasonal coefficient of performance—cooling (SCOP_C): the total cooling output of an air conditioner during its normal annual usage period for cooling divided by the total electric energy input during the same period in consistent units (analogous to the SEER but for I-P or other consistent units).

seasonal coefficient of performance—heating (SCOP_H): the total heating output of a heat pump during its normal annual usage period for heating divided by the total electric energy input during the same period in consistent units (analogous to the HSPF but for I-P or other consistent units).

seasonal energy efficiency ratio (SEER): the total cooling output of an air conditioner during its normal annual usage period for cooling (in Btu) divided by the total electric energy input during the same period (in Wh).

semi-exterior building envelope: see building envelope.

semiheated floor area: see floor area.

semiheated space: see space.

service: the equipment for delivering energy from the supply or distribution system to the premises served.

service agency: an agency capable of providing calibration, testing, or manufacture of equipment, instrumentation, metering, or control apparatus, such as a contractor, laboratory, or manufacturer.

service equipment: the necessary equipment, usually consisting of a circuit breaker or switch and fuses and accessories, located near the point of entrance of supply conductors to a building or other structure (or an otherwise defined area) and intended to constitute the main control and means of cutoff of the supply. Service equipment may consist of circuit breakers or fused switches provided to disconnect all under-grounded conductors in a building or other structure from the service-entrance conductors.

service water heating: heating water for domestic or commercial purposes other than space heating and process requirements.

setback: reduction of heating (by reducing the set point) or cooling (by increasing the set point) during hours when a building is unoccupied or during periods when lesser demand is acceptable.

setpoint: point at which the desired temperature (°F) of the heated or cooled space is set.

shading coefficient (SC): the ratio of solar heat gain at normal incidence through glazing to that occurring through 1/8 in. thick clear, double-strength glass. Shading coefficient, as used herein, does not include interior, exterior, or integral shading devices.

simulation program: a computer program that is capable of simulating the energy performance of building systems.

single-line diagram: a simplified schematic drawing that shows the connection between two or more items. Common multiple connections are shown as one line.

single-rafter roof: see roof.

single-zone system: an HVAC system serving a single HVAC zone.

site-recovered energy: waste energy recovered at the building site that is used to offset consumption of purchased fuel or electrical energy supplies.

site-solar energy: thermal, chemical, or electrical energy derived from direct conversion of incident solar radiation at the building site and used to offset consumption of purchased fuel or electrical energy supplies. For the purposes of applying this standard, site-solar energy shall not include passive heat gain through fenestration systems.

skylight: see fenestration.

skylight well: the shaft from the skylight to the ceiling.

slab-on-grade floor: that portion of a slab floor of the building envelope that is in contact with the ground and that is either

above grade or is less than or equal to 24 in. below the final elevation of the nearest exterior grade.

- (a) *heated slab-on-grade floor:* a slab-on-grade floor with a heating source either within or below it.
- (b) *unheated slab-on-grade floor:* a slab-on-grade floor that is not a heated slab-on-grade floor.

solar energy source: source of thermal, chemical, or electrical energy derived from direct conversion of incident solar radiation at the building site.

solar heat gain coefficient (SHGC): the ratio of the solar heat gain entering the space through the fenestration area to the incident solar radiation. Solar heat gain includes directly transmitted solar heat and absorbed solar radiation, which is then reradiated, conducted, or convected into the space. (See fenestration area.)

space: an enclosed space within a building. The classifications of spaces are as follows for the purpose of determining building envelope requirements.

- (a) *conditioned space:* a cooled space, heated space, or indirectly conditioned space defined as follows.
 - 1. *cooled space:* an enclosed space within a building that is cooled by a cooling system whose sensible output capacity exceeds 5 Btu/h·ft² of floor area.
 - 2. **heated space:** an enclosed space within a building that is heated by a heating system whose output capacity relative to the floor area is greater than or equal to the criteria in Table 3.1.
 - 3. *indirectly conditioned space:* an enclosed space within a building that is not a heated space or a cooled space, which is heated or cooled indirectly by being connected to adjacent space(s) provided:
 - (a) the product of the U-factor(s) and surface area(s) of the space adjacent to connected space(s) exceeds the combined sum of the product of the U-factor(s) and surface area(s) of the space adjoining the outdoors, unconditioned spaces, and to or from semiheated spaces (e.g., corridors) or
 - (b) that air from heated or cooled spaces is intentionally transferred (naturally or mechanically) into the space at a rate exceeding 3 air changes per hour (ACH) (e.g., atria).
- (b) *semiheated space:* an enclosed space within a building that is heated by a heating system whose output capacity is greater than or equal to 3.4 Btu/h·ft² of floor area but is not a conditioned space.
- (c) unconditioned space: an enclosed space within a building that is not a conditioned space or a semiheated space. Crawlspaces, attics, and parking garages with natural or mechanical ventilation are not considered enclosed spaces.

space-conditioning category:

- (a) nonresidential conditioned space,
- (b) residential conditioned space, and
- (c) nonresidential and residential semiheated space. (See *nonresidential, residential, and space.*)

steel-framed wall: see wall.

steel-joist floor: see floor.

story: portion of a building that is between one finished floor level and the next higher finished floor level or the roof, provided, however, that a basement or cellar shall not be considered a story.

substantial contact: a condition where adjacent building materials are placed so that proximal surfaces are contiguous, being installed and supported so they eliminate voids between materials without compressing or degrading the thermal performance of either product.

swinging door: see door.

system: a combination of equipment and auxiliary devices (e.g., controls, accessories, interconnecting means, and terminal elements) by which energy is transformed so it performs a specific function such as HVAC, service water heating, or lighting.

system, existing: a system or systems previously installed in an existing building.

tandem wiring: pairs of luminaires operating with lamps in each luminaire powered from a single ballast contained in one of the luminaires.

terminal: a device by which energy from a system is finally delivered, e.g., registers, diffusers, lighting fixtures, faucets, etc.

thermal block: a collection of one or more HVAC zones grouped together for simulation purposes. Spaces need not be contiguous to be combined within a single thermal block.

thermal conductance: see C-factor.

thermal resistance (*R*-value): the reciprocal of the time rate of heat flow through a unit area induced by a unit temperature difference between two defined surfaces of material or construction under steady-state conditions. Units of R are $h \cdot ft^2 \cdot F/Btu$.

thermostat: an automatic control device used to maintain temperature at a fixed or adjustable setpoint.

TABLE 3.1 Heated Space Criteria

Heating Output	Climate Zone
(Btu/h·ft ²)	
5	1 and 2
10	3
15	4 and 5
20	6 and 7
25	8

thermostatic control: an automatic control device or system used to maintain temperature at a fixed or adjustable setpoint.

tinted: (as applied to fenestration) bronze, green, blue, or gray coloring that is integral with the glazing material. Tinting does not include surface applied films such as reflective coatings, applied either in the field or during the manufacturing process.

transformer: a piece of electrical equipment used to convert electric power from one voltage to another voltage.

- (a) *dry-type transformer*: a *transformer* in which the core and coils are in a gaseous or dry compound.
- (b) *liquid-immersed transformer*: a transformer in which the core and coils are immersed in an insulating liquid.

U-factor (thermal transmittance): heat transmission in unit time through unit area of a material or construction and the boundary air films, induced by unit temperature difference between the environments on each side. Units of U are Btu/ $h \cdot ft^2 \cdot {}^{\circ}F$.

unconditioned space: see space.

unenclosed space: a space that is not an enclosed space.

unitary cooling equipment: one or more factory-made assemblies that normally include an evaporator or cooling coil and a compressor and condenser combination. Units that perform a heating function are also included.

unitary heat pump: one or more factory-made assemblies that normally include an indoor conditioning coil, compressor(s), and an outdoor refrigerant-to-air coil or refrigerant-to-water heat exchanger. These units provide both heating and cooling functions.

variable air volume (VAV) system: HVAC system that controls the dry-bulb temperature within a space by varying the volumetric flow of heated or cooled supply air to the space.

vent damper: a device intended for installation in the venting system of an individual, automatically operated, fossil fuel-fired appliance in the outlet or downstream of the appliance draft control device, which is designed to automatically open the venting system when the appliance is in operation and to automatically close off the venting system when the appliance is in a standby or shutdown condition.

ventilation: the process of supplying or removing air by natural or mechanical means to or from any space. Such air is not required to have been conditioned.

vertical fenestration: see fenestration.

voltage drop: a decrease in voltage caused by losses in the lines connecting the power source to the load.

wall: that portion of the building envelope, including opaque area and fenestration, that is vertical or tilted at an angle of 60° from horizontal or greater. This includes above- and below-

grade walls, between floor spandrels, peripheral edges of floors, and foundation walls. For the purposes of determining building envelope requirements, the classifications are defined as follows:

- (a) above-grade wall: a wall that is not a below-grade wall.
- (b) **below-grade wall:** that portion of a wall in the building envelope that is entirely below the finish grade and in contact with the ground.
- (c) *mass wall:* a wall with a heat capacity exceeding (1) 7 Btu/ft².°F or (2) 5 Btu/ft².°F provided that the wall has a material unit weight not greater than 120 lb/ft³.
- (d) metal building wall: a wall whose structure consists of metal spanning members supported by steel structural members (i.e., does not include spandrel glass or metal panels in curtain wall systems).
- (e) steel-framed wall: a wall with a cavity (insulated or otherwise) whose exterior surfaces are separated by steel framing members (i.e., typical steel stud walls and curtain wall systems).
- (f) wood-framed and other walls: all other wall types, including wood stud walls.

wall area, gross: the area of the wall measured on the exterior face from the top of the floor to the bottom of the roof.

warm-up: increase in space temperature to occupied setpoint after a period of shutdown or setback.

water heater: vessel in which water is heated and is withdrawn for use external to the system.

wood-framed and other walls: see wall.

wood-framed and other floors: see floor.

zone, **HVAC**: a space or group of spaces within a building with heating and cooling requirements that are sufficiently similar so that desired conditions (e.g., temperature) can be maintained throughout using a single sensor (e.g., thermostat or temperature sensor).

3.3 Abbreviations and Acronyms

ac alternating current
ACH air changes per hour
AFUE annual fuel utilizatio

AFUE annual fuel utilization efficiency

AHAM Association of Home Appliance Manufacturers
ANSI American National Standards Institute

ARI Air-Conditioning and Refrigeration Institute
ASHRAE American Society of Heating, Refrigerating and

Air-Conditioning Engineers, Inc.

ASTM American Society for Testing and Materials

BSR Board of Standards Review

Btu British thermal unit

Btu/h British thermal unit per hour

Btu/ft².∘F British thermal unit per square foot per degree

Fahrenheit

Btu/h·ft² British thermal unit per hour per square foot
Btu/h·ft·°F British thermal unit per hour per lineal foot per

degree Fahrenheit

 $Btu/h\cdot ft^2\cdot {}^{\circ}F$ British thermal unit per hour per square foot per degree Fahrenheit **CDD** cooling degree-day CDD50 cooling degree-days base 50°F cfm cubic feet per minute ci continuous insulation COP coefficient of performance CTI Cooling Tower Institute **DDC** direct digital control DOE U.S. Department of Energy combustion efficiency Ec **EER** energy efficiency ratio **EF** energy factor **ENVSTD** Envelope System Performance Compliance Program Et thermal efficiency F Fahrenheit ft foot h hour HC heat capacity **HDD** heating degree-day HDD65 heating degree-days base 65°F h·ft²·°F/Btu hour per square foot per degree Fahrenheit per British thermal unit HID high-intensity discharge horsepower hp **HSPF** heating seasonal performance factor **HVAC** heating, ventilating, and air conditioning **IESNA** Illuminating Engineering Society of North America inch in. I-P inch-pound **IPLV** integrated part-load value K kelvin kVA kilovolt-ampere kW kilowatt kWh kilowatt-hour 1h pound lin linear lin ft linear foot LPD lighting power density **MICA** Midwest Insulation Contractors Association **NAECA** U.S. National Appliance Energy Conservation Act of 1987 **NFPA** National Fire Protection Association

National Fenestration Rating Council

packaged terminal air conditioner

thermal resistance of a material or construction

non-standard part load value

packaged terminal heat pump

R-value (thermal resistance)

from surface to surface

projection factor

 R_{u} total thermal resistance of a material or construction including air film resistances rpm revolutions per minute SC shading coefficient **SEER** seasonal energy efficiency ratio **SHGC** solar heat gain coefficient SL standby loss **SMACNA** Sheet Metal and Air Conditioning Contractors' National Association T_{db} dry-bulb temperature T_{wb} wet-bulb temperature UL Underwriters Laboratories Inc. VAV variable air volume

VLT visible light transmittance

W watt

W/ft² watts per square foot

Wh watthour

4. ADMINISTRATION AND ENFORCEMENT

4.1 General

4.1.1 Scope

- **4.1.1.1 New Buildings.** New buildings shall comply with the standard as described in Section 4.2.
- **4.1.1.2** Additions to Existing Buildings. An extension or increase in the floor area or height of a building outside of the *existing building* envelope shall be considered *additions* to *existing buildings* and shall comply with the standard as described in Section 4.2.
- **4.1.1.3** Alterations of Existing Buildings: Alterations of existing buildings shall comply with the standard as described in Section 4.2.
- **4.1.1.4 Replacement of Portions of Existing Buildings:** Portions of a building envelope, heating, ventilating, airconditioning, service water heating, power, lighting, and other systems and equipment that are being replaced shall be considered as Alterations of Existing Buildings and shall comply with the Standard as described in Section 4.2.
- **4.1.1.5 Changes in Space Conditioning.** Whenever *unconditioned* or *semiheated* spaces in a building are converted to *conditioned spaces*, such *conditioned spaces* shall be brought into compliance with all the applicable requirements of this standard that would apply to the building envelope, heating, ventilating, air-conditioning, service water heating, power, lighting, and other systems and equipment of the space as if the building were new.
- **4.1.2 Administrative Requirements.** Administrative requirements relating to permit requirements, enforcement by the *authority having jurisdiction*, locally adopted energy standards, interpretations, claims of exemption, and rights of appeal are specified by the *authority having jurisdiction*.
- **4.1.3 Alternative Materials, Methods of Construction, or Design.** The provisions of this standard are not intended to prevent the use of any material, method of construction,

NFRC

NPLV

PTAC

PTHP

PF

R

 R_c

design, equipment, or building system not specifically prescribed herein.

- **4.1.4 Validity.** If any term, part, provision, section, paragraph, subdivision, table, chart, or referenced standard of this standard shall be held unconstitutional, invalid, or ineffective, in whole or in part, such determination shall not be deemed to invalidate any remaining term, part, provision, section, paragraph, subdivision, table, chart, or referenced standard of this standard.
- **4.1.5 Other Laws.** The provisions of this standard shall not be deemed to nullify any provisions of local, state, or federal law. Where there is a conflict between a requirement of this standard and such other law affecting construction of the building, precedence shall be determined by the *authority having jurisdiction*.
- **4.1.6 Referenced Standards**. The standards referenced in this standard and listed in Section 12 shall be considered part of the requirements of this standard to the prescribed extent of such reference. Where differences occur between the provision of this standard and referenced standards, the provisions of this standard shall apply. Informative references are cited to acknowledge sources and are not part of this standard. They are identified in Informative Appendix E.
- **4.1.7 Normative Appendices.** The normative appendices to this standard are considered to be integral parts of the mandatory requirements of this standard, which for reasons of convenience, are placed apart from all other normative elements.
- **4.1.8 Informative Appendices.** The informative appendices to this standard and informative notes located within this standard contain additional information and are not mandatory or part of this standard.

4.2 Compliance

4.2.1 Compliance Paths

- **4.2.1.1 New Buildings:** New Buildings shall comply with either the provisions of Sections 5, 6, 7, 8, 9, and 10 or Section 11.
- **4.2.1.2 Additions to Existing Buildings:** *Additions* to *existing buildings* shall comply with either the provisions of Sections 5, 6, 7, 8, 9, and 10 or Section 11.
 - **Exception to 4.2.1.2:** When an addition to an *existing building* cannot comply by itself, trade-offs will be allowed by modification to one or more of the existing components of the *existing building*. Modeling of the modified components of the *existing building* and addition shall employ the procedures of Section 11; and the addition shall not increase the energy consumption of the *existing building* plus the addition beyond the energy that would be consumed by the *existing building* plus the addition if the addition alone did comply.
- **4.2.1.3** Alterations of Existing Buildings: Alterations of existing buildings shall comply with the provisions of Sections 5, 6, 7, 8, 9, and 10, provided, however that nothing in this standard shall require compliance with any provision of this standard if such compliance will result in the increase of energy consumption of the building.

Exceptions to 4.2.1.3:

- (a) A building that has been specifically designated as historically significant by the adopting authority or is listed in "The National Register of Historic Places" or has been determined to be eligible for listing by the U.S Secretary of the Interior need not comply with these requirements.
- (b) Where one or more components of an *existing building* or portions thereof are being replaced, the annual energy consumption of the comprehensive design shall not be greater than the annual energy consumption of a substantially identical design, using the same energy types, in which the applicable requirements of Sections 5, 6, 7, 8, 9, and 10, as provided in 4.2.1.3, and such compliance is verified by a *design professional*, by the use of any calculation methods acceptable to the *authority having jurisdiction*.

4.2.2 Compliance Documentation

- **4.2.2.1 Construction Details.** Compliance documents shall show all the pertinent data and features of the building, equipment, and systems in sufficient detail to permit a determination of compliance by the *building official* and to indicate compliance with the requirements of this standard.
- **4.2.2.2 Supplemental Information.** Supplemental information necessary to verify compliance with this standard, such as calculations, worksheets, compliance forms, vendor literature, or other data, shall be made available when required by the *building official*.
- **4.2.2.3 Manuals.** Operating and maintenance information shall be provided to the building owner. This information shall include, but not be limited to, the information specified in 6.7.2.2 and 8.7.2.
- **4.2.3** Labeling of Material and Equipment. Materials and equipment shall be labeled in a manner that will allow for a determination of their compliance with the applicable provisions of this standard.
- **4.2.4 Inspections.** All building construction, *additions*, or *alterations* subject to the provisions of this standard shall be subject to inspection by the *building official*, and all such work shall remain accessible and exposed for inspection purposes until approved in accordance with the procedures specified by the *building official*. Items for inspection include at least the following:
- (a) wall insulation after the insulation and vapor retarder are in place but before concealment,
- (b) roof/ceiling insulation after roof/insulation is in place but before concealment,
- (c) slab/foundation wall after slab/foundation insulation is in place but before concealment,
- (d) fenestration after all glazing materials are in place,
- (e) mechanical systems and equipment and insulation after installation but before concealment,
- (f) electrical equipment and systems after installation but before concealment.

5. BUILDING ENVELOPE

5.1 General

5.1.1 Scope. Section 5 specifies requirements for the *building envelope*.

5.1.2 Space-Conditioning Categories.

- **5.1.2.1** Separate *exterior building envelope* requirements are specified for each of three categories of conditioned space: (a) *nonresidential conditioned* space, (b) *residential conditioned* space, or (c) *semiheated* space.
- **5.1.2.2** *Spaces* shall be assumed to be *conditioned space* and shall comply with the requirements for *conditioned space* at the time of construction, regardless of whether mechanical or electrical equipment is included in the building permit application or installed at that time.
- **5.1.2.3** In climate zones 3 through 8, a space may be designated as either *semiheated* or *unconditioned* only if approved by the *building official*.
- **5.1.3** Envelope Alterations. Alterations to the building envelope shall comply with the requirements of Section 5 for insulation, air leakage, and *fenestration* applicable to those specific portions of the building that are being altered.

Exceptions to 5.1.3: The following *alterations* need not comply with these requirements, provided such *alterations* will not increase the energy usage of the building:

- (a) installation of storm windows over existing glazing;
- (b) replacement of glazing in existing sash and frame provided the *U-factor* and *SHGC* will be equal to or lower than before the glass replacement;
- (c) *alterations* to roof/ceiling, wall, or floor cavities, which are insulated to full depth with insulation having a minimum nominal value of R-3.0/in.;
- (d) *alterations* to walls and floors, where the existing structure is without framing cavities and no new framing cavities are created;
- (e) replacement of a roof membrane where either the roof sheathing or roof insulation is not exposed or, if there is existing roof insulation, below the roof deck;
- (f) replacement of existing doors that separate conditioned space from the exterior shall not require the installation of a vestibule or revolving door, provided, however, that an existing vestibule that separates a conditioned space from the exterior shall not be removed; and

- (g) replacement of existing fenestration, provided, however, that the area of the replacement fenestration does not exceed 25% of the total fenestration area of an existing building and that the U-factor and SHGC will be equal to or lower than before the fenestration replacement.
- **5.1.4 Climate.** Determine the climate zone for the location. For United States locations, follow the procedure in 5.1.4.1. For international locations, follow the procedure in 5.1.4.2.
- **5.1.4.1 United States Locations.** Use Figure B-1 or Table B-1 in Appendix B to determine the required climate zone

Exception to 5.1.4.1: If there are recorded historical climatic data available for a construction site, they may be used to determine compliance if approved by the *building official*.

5.1.4.2 International Locations. For locations in Canada that are listed in Table B-2 in Appendix B, use this table to determine the required climate zone number and, when a climate zone letter is also required, use Table B-4 and the Major Climate Type Definitions in Appendix B to determine the letter (A, B, or C). For locations in other international countries that are listed in Table B-3, use this table to determine the required climate zone number and, when a climate zone letter is also required, use Table B-4 and the Major Climate Type Definitions in Appendix B to determine the letter (A, B, or C). For all international locations that are not listed either in Table B-2 or B-3, use Table B-4 and the Major Climate Type Definitions in Appendix B to determine both the climate zone letter and number.

5.2 Compliance Paths

- **5.2.1 Compliance.** For the appropriate climate, *space-conditioning category*, and *class of construction*, the *building envelope* shall comply with 5.1, General; 5.4, Mandatory Provisions; 5.7, Submittals; and 5.8, Product Information and Installation Requirements; and either
- (a) 5.5, Prescriptive Building Envelope Option, provided that
 - 1. the *vertical fenestration area* does not exceed 50% of the *gross wall area* for each *space-conditioning cate-gory* and
 - 2. the *skylight fenestration area* does not exceed 5% of the *gross roof area* for each *space-conditioning cate-gory*, or
- (b) 5.6, Building Envelope Trade-Off Option.
- **5.2.2** Projects using the Energy Cost Budget Method (Section 11 of this standard), must comply with 5.4, the mandatory provisions of this section, as a portion of that compliance path.

5.3 Simplified Building: (Not Used)

5.4 Mandatory Provisions

5.4.1 Insulation. Where insulation is required in 5.5 or 5.6, it shall comply with the requirements found in 5.8.1.1 through 5.8.1.9.

5.4.2 Fenestration and Doors. Procedures for determining *fenestration* and door performance are described in 5.8.2. Product samples used for determining *fenestration* performance shall be production line units or representative of units purchased by the consumer or contractor.

5.4.3 Air Leakage.

- **5.4.3.1 Building Envelope Sealing.** The following areas of the *building envelope* shall be sealed, caulked, gasketed, or weather-stripped to minimize air leakage:
- (a) joints around fenestration and door frames,
- (b) junctions between *walls* and foundations, between *walls* at building corners, between *walls* and structural *floors* or *roofs*, and between *walls* and *roof* or *wall* panels,
- (c) openings at penetrations of utility services through *roofs*, *walls*, and *floors*,
- (d) site-built fenestration and doors,
- (e) building assemblies used as ducts or plenums,
- (f) joints, seams, and penetrations of vapor retarders,
- (g) all other openings in the building envelope.

5.4.3.2 Fenestration and Doors. Air leakage for *fenestration* and *doors* shall be determined in accordance with NFRC 400. Air leakage shall be determined by a laboratory accredited by a nationally recognized accreditation organization, such as the National Fenestration Rating Council, and shall be *labeled* and certified by the *manufacturer*. Air leakage shall not exceed 1.0 cfm/ft² for glazed swinging entrance doors and for revolving doors and 0.4 cfm/ft² for all other products.

Exceptions to 5.4.3.2:

- (a) Field-fabricated fenestration and doors.
- (b) For garage doors, air leakage determined by test at standard test conditions in accordance with ANSI/ DASMA 105 shall be an acceptable alternate for compliance with air leakage requirements.
- **5.4.3.3 Loading Dock Weatherseals.** In climate zones 4 through 8, cargo *doors* and loading dock *doors* shall be equipped with weatherseals to restrict *infiltration* when vehicles are parked in the doorway.
- **5.4.3.4 Vestibules.** A *door* that separates *conditioned space* from the exterior shall be protected with an enclosed vestibule, with all *doors* opening into and out of the vestibule equipped with self-closing devices. Vestibules shall be designed so that in passing through the vestibule it is not necessary for the interior and exterior *doors* to open at the same time. Interior and exterior *doors* shall have a minimum distance between them of not less than 7 ft when in the closed position.

Exceptions to 5.4.3.4:

- (a) *Doors* in buildings in climate zones 1 and 2.
- (b) *Doors* in buildings less than four stories above grade.
- (c) Doors not intended to be used as a building entrance door, such as mechanical or electrical equipment rooms.
- (d) Doors opening directly from a dwelling unit.
- (e) *Doors* that open directly from a space less than 3000 ft^2 in area.
- (f) Doors in building entrances with revolving doors.

(g) Doors used primarily to facilitate vehicular movement or material handling and adjacent personnel doors.

5.5 Prescriptive Building Envelope Option:

- **5.5.1** For *conditioned space*, the *exterior building envelope* shall comply with either the "nonresidential" or "residential" requirements in Tables 5.5-1 through 5.5-8 (located at the end of this chapter) for the appropriate climate.
- **5.5.2** If a building contains any *semiheated space* or *unconditioned space*, then the *semi-exterior building envelope* shall comply with the requirements for *semiheated space* in Tables 5.5-1 through 5.5-8 for the appropriate climate. (See Figure 5.5.)
- **5.5.3 Opaque Areas.** For all opaque surfaces except doors, compliance shall be demonstrated by one of the following two methods:
- Minimum rated R-values of insulation for the thermal resistance of the added insulation in framing cavities and continuous insulation only. Specifications listed in Normative Appendix A for each class of construction shall be used to determine compliance.
- Maximum *U-factor, C-factor,* or *F-factor* for the entire assembly. The values for typical construction assemblies listed in Normative Appendix A shall be used to determine compliance.

Exceptions to 5.5.3(2).

- (a) For assemblies significantly different from those in Appendix A, calculations shall be performed in accordance with the procedures required in Appendix A.
- (b) For multiple assemblies within a single *class of construction* for a single *space-conditioning category*, compliance shall be shown for either (i) the most restrictive requirement or (ii) an area-weighted average *U-factor*, *C-factor*, or *F-factor*.
- **5.5.3.1 Roof Insulation.** All *roofs* shall comply with the insulation values specified in Tables 5.5-1 through 5.5-8. Skylight curbs shall be insulated to the level of roofs with insulation entirely above deck or R-5, whichever is less.

Figure 5-5 Exterior and semi-exterior building envelope.

TABLE 5.5.3.1 Roof U-Factor Multipliers for Exception to 5.5.3.1.

Climate Zone	Roof U-Factor Multiplier
1	0.77
2	0.83
3	0.85
4 through 8	1.00

Exception to 5.5.3.1: For *roofs* where the exterior surface has a minimum total solar reflectance of 0.70 when tested in accordance with one of the solar reflectance test methods listed below and has a minimum thermal emittance of 0.75 when tested in accordance with one of the thermal emittance test methods listed below, other than roofs with ventilated attics or roofs with semi-heated spaces, the U-factor of the proposed roof shall be permitted to be adjusted using Equation 5-1 for demonstrating compliance:

$$U_{roofadj} = U_{roofproposed} \times Factor_{roofmultiplier}$$
 (5-1)

where

 $U_{roofadj}$ = the adjusted roof U-factor for use in demonstrating compliance,

 $U_{roofproposed}$ = the U-factor of the proposed roof, as designed,

Factor_{roofmultiplier} = the roof U-factor multiplier from Table 5.5.3.1

Solar Reflectance Test Methods: ASTM E903, ASTM E1175, or ASTM E1918.

Thermal Emittance Test Methods: ASTM C835, ASTM C1371, or ASTM E408.

- **5.5.3.2 Above-Grade Wall Insulation.** All *above-grade walls* shall comply with the insulation values specified in Tables 5.5-1 through 5.5-8. When a *wall* consists of both *above-grade* and *below-grade* portions, the entire *wall* for that story shall be insulated on either the exterior or the interior or be integral.
- (a) If insulated on the interior, the *wall* shall be insulated to the *above-grade wall* requirements.
- (b) If insulated on the exterior or integral, the *below-grade* wall portion shall be insulated to the *below-grade* wall requirements, and the *above-grade* wall portion shall be insulated to the *above-grade* wall requirements.
- **5.5.3.3 Below-Grade Wall Insulation.** Below-grade walls shall have a rated R-value of insulation not less that the insulation values specified in Tables 5.5-1 through 5.5-8.

Exception to 5.5.3.3: Where framing, including metal and wood studs, is used, compliance shall be based on the maximum assembly *C-factor*.

5.5.3.4 Floor Insulation. All *floors* shall comply with the insulation values specified in Tables 5.5-1 through 5.5-8.

- **5.5.3.5 Slab-on-Grade Floor Insulation.** All *slab-on-grade floors*, including *heated slab-on-grade floors* and *unheated slab-on-grade floors*, shall comply with the insulation values specified in Tables 5.5-1 through 5.5-8.
- **5.5.3.6 Opaque Doors.** All *opaque doors* shall have a *U-factor* not greater than that specified in Tables 5.5-1 through 5.5-8.

5.5.4 Fenestration.

5.5.4.1 General. Compliance with *U-factors* and *solar heat gain coefficient (SHGC)* shall be demonstrated for the overall fenestration product. Gross wall areas and gross roof areas shall be calculated separately for each *space-conditioning category* for the purposes of determining compliance.

Exception to 5.5.4.1: If there are multiple assemblies within a single *class of construction* for a single *space-conditioning category*, compliance shall be based on an area-weighted average *U-factor* or *SHGC*. It is not acceptable to do an area-weighted average across multiple *classes of construction* or multiple *space-conditioning categories*.

5.5.4.2 Fenestration Area

5.5.4.2.1 Vertical Fenestration Area. The total *vertical fenestration area* shall be less than 50% of the *gross wall area*.

Exception to 5.5.4.2.1: *Vertical fenestration* complying with Exception (c) to 5.5.4.4.1.

5.5.4.2.2 Skylight Fenestration Area. The total *skylight area* shall be less than 5% of the *gross roof area*.

5.5.4.3 Fenestration U-Factor. *Fenestration* shall have a *U-factor* not greater than that specified in Tables 5.5-1 through 5.5-8 for the appropriate *fenestration area*.

Exception to 5.5.4.3: *Vertical fenestration* complying with Exception (c) to 5.5.4.4.1 shall have a *U-factor* not greater than that specified for 40% of the *gross wall area*.

5.5.4.4 Fenestration Solar Heat Gain Coefficient (SHGC).

5.5.4.4.1 SHGC of Vertical Fenestration. *Vertical fenestration* shall have a *SHGC* not greater than that specified for "all" orientations in Tables 5.5-1 through 5.5-8 for the appropriate total *vertical fenestration area*.

Exceptions to 5.5.4.4.1:

(a) In latitudes greater than 10 degrees, the SHGC for north-oriented vertical fenestration shall be calculated separately and shall not be greater than that specified in Tables 5.5-1 through 5.5-8 for north-oriented fenestration. When this exception is used, the fenestration area used in selecting the criteria shall be calculated separately for north-oriented and all other-oriented fenestration.

Note to *adopting authority*: If the project is in the southern hemisphere, change north to south.

- (b) For demonstrating compliance for *vertical fenestration* only, the *SHGC* in the proposed building shall be reduced by using the multipliers in Table 5.5.4.4.1 for each *fenestration* product shaded by permanent projections that will last as long as the building itself.
- (c) *Vertical fenestration* that is located on the street side of the street-level story only, provided that:
 - 1. the street side of the street-level story does not exceed 20 ft in height,
 - the fenestration has a continuous overhang with a weighted average projection factor greater than 0.5, and
 - the fenestration area for the street side of the street-level story is less than 75% of the gross wall area for the street side of the street-level story.

When this exception is utilized, separate calculations shall be performed for these sections of the *building envelope*, and these values shall not be averaged with any others for compliance purposes. No credit shall be given here or elsewhere in the building for not fully utilizing the *fenestration area* allowed.

5.5.4.4.2 SHGC of Skylights. *Skylights* shall have an *SHGC* not greater than that specified for "all" orientations in Tables 5.5-1 through 5.5-8 for the appropriate total *skylight area*.

5.6 Building Envelope Trade-Off Option.

- **5.6.1** The *building envelope* complies with the standard if
- (a) the proposed building satisfies the provisions of 5.1, 5.4, 5.7, and 5.8, and
- (b) the *envelope performance factor* of the proposed building is less than or equal to the *envelope performance factor* of the budget building.
- **5.6.1.1** The *envelope performance factor* considers only the *building envelope* components.
- **5.6.1.2** Schedules of operation, lighting power, equipment power, occupant density, and mechanical systems shall be the same for both the proposed building and the budget building.
- **5.6.1.3** *Envelope performance factor* shall be calculated using the procedures of Normative Appendix C.

5.7 Submittals

- **5.7.1 General.** *Authority having jurisdiction* may require submittal of compliance documentation and supplemental information, in accordance with Section 4.2.2 of this standard.
- **5.7.2 Submittal Document Labeling of Space Conditioning Categories.** For buildings that contain spaces that will be only semiheated or unconditioned, and compliance is sought using the "semiheated" envelope criteria, such spaces shall be clearly indicated on the floor plans that are submitted for review.

5.8 Product Information and Installation Requirements

5.8.1 Insulation.

5.8.1.1 Labeling of Building Envelope Insulation. The *rated R-value* shall be clearly identified by an identification mark applied by the *manufacturer* to each piece of *building envelope* insulation.

TABLE 5.5.4.4.1 SHGC Multipliers for Permanent Projections

Projection Factor	SHGC Multiplier (All Other Orientations)	SHGC Multiplier (North-Oriented)
0-0.10	1.00	1.00
>0.10-0.20	0.91	0.95
>0.20-0.30	0.82	0.91
>0.30-0.40	0.74	0.87
>0.40-0.50	0.67	0.84
>0.50-0.60	0.61	0.81
>0.60-0.70	0.56	0.78
>0.70-0.80	0.51	0.76
>0.80-0.90	0.47	0.75
>0.90-1.00	0.44	0.73

Exception to 5.8.1.1: When insulation does not have such an identification mark, the installer of such insulation shall provide a signed and dated certification for the installed insulation listing the type of insulation, the *manufacturer*, the *rated R-value*, and, where appropriate, the initial installed thickness, the settled thickness, and the coverage area.

5.8.1.2 Compliance with Manufacturer's Requirements. Insulation materials shall be installed in accordance with *manufacturer's* recommendations and in such a manner as to achieve *rated R-value of insulation*.

Exception to 5.8.1.2: Where *metal building roof* and *metal building wall* insulation is compressed between the *roof* or *wall* skin and the structure.

- **5.8.1.3 Loose-fill Insulation Limitation.** Open-blown or poured loose-fill insulation shall not be used in *attic roof* spaces when the slope of the ceiling is more than three in twelve.
- **5.8.1.4 Baffles.** When eave vents are installed, baffling of the vent openings shall be provided to deflect the incoming air above the surface of the insulation.
- **5.8.1.5 Substantial Contact.** Insulation shall be installed in a permanent manner in *substantial contact* with the inside surface in accordance with *manufacturer's* recommendations for the framing system used. Flexible batt insulation installed in floor cavities shall be supported in a permanent manner by supports no greater than 24 in. on center.

Exception to 5.8.1.5: Insulation materials that rely on air-spaces adjacent to reflective surfaces for their rated performance.

5.8.1.6 Recessed Equipment. Lighting fixtures; heating, ventilating, and air-conditioning equipment, including wall heaters, ducts, and plenums; and other equipment shall not be recessed in such a manner as to affect the insulation thickness unless:

- (a) the total combined area affected (including necessary clearances) is less than one percent of the opaque area of the assembly, or
- (b) the entire *roof*, *wall*, or *floor* is covered with insulation to the full depth required, or
- (c) the effects of reduced insulation are included in calculations using an area-weighted average method and compressed insulation values obtained from Table A9.4.C. In all cases, air leakage through or around the recessed equipment to the *conditioned space* shall be limited in accordance with 5.4.3.
- **5.8.1.7 Insulation Protection.** Exterior insulation shall be covered with a protective material to prevent damage from sunlight, moisture, landscaping operations, equipment maintenance, and wind.
- **5.8.1.7.1** In *attics* and mechanical rooms, a way to access equipment that prevents damaging or compressing the insulation shall be provided.
- **5.8.1.7.2** Foundation vents shall not interfere with the insulation.
- **5.8.1.7.3** Insulation materials in ground contact shall have a water absorption rate no greater than 0.3% when tested in accordance with ASTM C272.
- **5.8.1.8 Location of Roof Insulation.** The *roof* insulation shall not be installed on a suspended ceiling with removable ceiling panels.
- **5.8.1.9 Extent of Insulation.** Insulation shall extend over the full component area to the required rated R-value of insulation, U-factor, C-factor, or F-factor, unless otherwise allowed in 5.8.1.

5.8.2 Fenestration and Doors.

- **5.8.2.1 Rating of Fenestration Products.** The U-factor, solar heat gain coefficient (SHGC), and air leakage rate for all manufactured *fenestration* products shall be determined by a laboratory accredited by a nationally recognized accreditation organization, such as the National Fenestration Rating Council.
- **5.8.2.2 Labeling of Fenestration Products.** All manufactured *fenestration* products shall have a permanent nameplate, installed by the *manufacturer*, listing the U-factor, solar heat gain coefficient (SHGC), and air leakage rate.
 - **Exception to 5.8.2.2:** When the *fenestration* product does not have such nameplate, the installer or supplier of such *fenestration* shall provide a signed and dated certification for the installed fenestration listing the U-factor, SHGC, and the air leakage rate.
- **5.8.2.3 Labeling of Doors.** The *U-factor* and the air leakage rate for all manufactured *doors* installed between *conditioned space*, *semi-heated space*, *unconditioned space*, and exterior *space* shall be identified on a permanent nameplate installed on the product by the *manufacturer*.
 - Exception to 5.8.2.3: When doors do not have such a nameplate, the installer or supplier of any such doors shall provide a signed and dated certification for the installed doors listing the U-factor and the air leakage rate.

5.8.2.4 U-factor. U-factors shall be determined in accordance with NFRC 100. U-factors for skylights shall be determined for a slope of 20 degrees above the horizontal.

Exceptions to 5.8.2.4:

- (a) U-factors from A8.1 shall be an acceptable alternative for determining compliance with the U-factor criteria for *skylights*. Where credit is being taken for a low-emissivity coating, the emissivity of the coating shall be determined in accordance with NFRC 300. Emissivity shall be verified and certified by the *manufacturer*.
- (b) U-factors from A8.2 shall be an acceptable alternative for determining compliance with the U-factor criteria for *vertical fenestration*.
- (c) U-factors from A7 shall be an acceptable alternative for determining compliance with the U-factor criteria for *opaque doors*.
- (d) For garage doors, ANSI/DASMA105 shall be an acceptable alternative for determining *U-factors*.
- **5.8.2.5 Solar Heat Gain Coefficient.** *SHGC* for the overall *fenestration area* shall be determined in accordance with NFRC 200.

Exceptions to 5.8.2.5:

- (a) Shading coefficient of the center of glass multiplied by 0.86 shall be an acceptable alternative for determining compliance with the SHGC requirements for the overall fenestration area. Shading coefficient shall be determined using a spectral data file determined in accordance with NFRC 300. Shading coefficient shall be verified and certified by the manufacturer.
- (b) SHGC of the center of glass shall be an acceptable alternative for determining compliance with the SHGC requirements for the overall fenestration area. SHGC shall be determined using a spectral data file determined in accordance with NFRC 300. SHGC shall be verified and certified by the manufacturer.
- (c) SHGC from A8.1 shall be an acceptable alternative for determining compliance with the SHGC criteria for skylights. Where credit is being taken for a lowemissivity coating, the emissivity of the coating shall be determined in accordance with NFRC 300. Emissivity shall be verified and certified by the manufacturer.
- (d) *SHGC* from A8.2 shall be an acceptable alternative for determining compliance with the *SHGC* criteria for *vertical fenestration*.
- **5.8.2.6 Visible Light Transmittance.** Visible light transmittance shall be determined in accordance with NFRC 200. Visible light transmittance shall be verified and certified by the *manufacturer*.

TABLE 5.5-1 Building Envelope Requirements For Climate Zone 1 (A,B)*

	No	nresidential	Re	esidential		Semiheated
Opaque Elements	Assembly Maximum	Insulation Min. R-Value	Assembly Maximum	Insulation Min. R-Value	Assembly Maxi- mum	Insulation Min. R-Value
Roofs		•		•		
Insulation Entirely above Deck	U-0.063	R-15.0 ci	U-0.063	R-15.0 ci	U-1.282	NR
Metal Building	U-0.065	R-19.0	U-0.065	R-19.0	U-1.280	NR
Attic and Other	U-0.034	R-30.0	U-0.027	R-38.0	U-0.614	NR
Walls, Above-Grade						
Mass	U-0.580	NR	U-0.151 ^a	R-5.7 ci ^a	U-0.580	NR
Metal Building	U-0.113	R-13.0	U-0.113	R-13.0	U-1.180	NR
Steel-Framed	U-0.124	R-13.0	U-0.124	R-13.0	U-0.352	NR
Wood-Framed and Other	U-0.089	R-13.0	U-0.089	R-13.0	U-0.292	NR
Wall, Below-Grade						
Below-Grade Wall	C-1.140	NR	C-1.140	NR	C-1.140	NR
Floors						
Mass	U-0.322	NR	U-0.322	NR	U-0.322	NR
Steel-Joist	U-0.350	NR	U-0.350	NR	U-0.350	NR
Wood-Framed and Other	U-0.282	NR	U-0.282	NR	U-0.282	NR
Slab-On-Grade Floors						
Unheated	F-0.730	NR	F-0.730	NR	F-0.730	NR
Heated	F-1.020	R-7.5 for 12 in.	F-1.020	R-7.5 for 12 in.	F-1.020	R-7.5 for 12 in.
Opaque Doors						
Swinging	U-0.700		U-0.700		U-0.700	
Non-Swinging	U-1.450		U-1.450		U-1.450	
	Assembly Max. U	Assembly Max. SHGC (All	Assembly Max. U	Assembly Max. SHGC (All	Assembly Max. U	Assembly Max. SHGC (All
	(Fixed/	Orientations/	(Fixed/	Orientations/	(Fixed/	Orientations/
Fenestration	Operable)	North-Oriented)	Operable)	North-Oriented)	Operable)	North-Oriented)
Vertical Glazing,% of Wall						
0-10.0%	Ufixed ^{-1.22}	SHGC _{all} -0.25	Ufixed-1.22	SHGC _{all} -0.25	Ufixed-1.22	SHGC _{all} -NR
	Uoper-1.27	SHGC _{north} -0.61	Uoper-1.27	SHGC _{north} -0.61		SHGC _{north} NR
10.1-20.0%	Ufixed ^{-1.22}	SHGC _{all} -0.25	Ufixed-1.22	SHGC _{all} -0.25	Ufixed-1.22	SHGC _{all} -NR
	Uoper-1.27	SHGC _{north} -0.61	Uoper-1.27	SHGC _{north} -0.61	Uoper-1.27	SHGC _{north} NR
20.1-30.0%	Ufixed-1.22	SHGC _{all} -0.25	Ufixed-1.22	SHGC _{all} -0.25	Ufixed-1.22	SHGC _{all} -NR
	Uoper-1.27	SHGC _{north} -0.61	Uoper-1.27	SHGC _{north} -0.61	Uoper-1.27	SHGC _{north} NR
30.1-40.0%	Ufixed-1.22	SHGC _{all} -0.25	Ufixed-1.22	SHGC _{all} -0.25	Ufixed-1.22	SHGC _{all} -NR
	Uoper-1.27	SHGC _{north} -0.44	Uoper-1.27	SHGC _{north} -0.44	Uoper-1.27	$^{\mathrm{SHGC}}$ north $^{\mathrm{NR}}$
40.1-50.0%	Ufixed ^{-1.22}	SHGC _{all} -0.19	Ufixed-1.22	SHGC _{all} -0.19		SHGC _{all} -NR
	Uoper-1.27	SHGC _{north} -0.33	Uoper-1.27	SHGC _{north} -0.33	Uoper-1.02	SHGC _{north} NR
Skylight with Curb, Glass,% of Roof	-		-		<u> </u>	
0-2.0%	Uall-1.98	SHGC _{all} -0.36	Uall-1.98	SHGC _{all} -0.19	Uall-1.98	SHGC _{all} -NR
2.1-5.0%	Uall-1.98	SHGC _{all} -0.19	Uall-1.98	SHGC _{all} -0.16	Uall-1.98	SHGC _{all} -NR
Skylight with Curb, Plastic,% of Roof						
0-2.0%	Uall-1.90	SHGC _{all} -0.34	Uall-1.90	SHGC _{all} -0.27	Uall-1.90	SHGC _{all} -NR
2.1-5.0%	U _{all} -1.90	SHGC _{all} -0.27	Uall-1.90	SHGC _{all} -0.27	Uall-1.90	SHGC _{all} -NR
Skylight without Curb, All,% of Roof						
0-2.0%	U _{all} -1.36	SHGC _{all} -0.36	U _{all} -1.36	SHGC _{all} -0.19	Uall-1.36	SHGC _{all} -NR
2.1-5.0%	Uall-1.36	SHGC _{all} -0.19	Uall-1.36	SHGCall-0.19	Uall-1.36	SHGC _{all} -NR
*The following definitions apply: ci = continuous insulation					*	****

^{*}The following definitions apply: ci = continuous insulation (see Section 3.2), NR = no (insulation) requirement. **Exception to A3.1.3.1 applies.

TABLE 5.5-2 Building Envelope Requirements For Climate Zone 2 (A,B)*

	Noi	nresidential	F	Residential	Se	miheated
Opaque Elements	Assembly Maximum	Insulation Min. R-Value	Assembly Maximum	Insulation Min. R-Value	Assembly Maxi- mum	Insulation Min. R-Value
Roofs		•				
Insulation Entirely above Deck	U-0.063	R-15.0 ci	U-0.063	R-15.0 ci	U-0.218	R-3.8 ci
Metal Building	U-0.065	R-19.0	U-0.065	R-19.0	U-0.167	R-6.0
Attic and Other	U-0.034	R-30.0	U-0.027	R-38.0	U-0.081	R-13.0
Walls, Above-Grade						
Mass	U-0.580	NR	U-0.151 ^a	R-5.7 ci ^a	U-0.580	NR
Metal Building	U-0.113	R-13.0	U-0.113	R-13.0	U-0.184	R-6.0
Steel-Framed	U-0.124	R-13.0	U-0.124	R-13.0	U-0.352	NR
Wood-Framed and Other	U-0.089	R-13.0	U-0.089	R-13.0	U-0.292	NR
Wall, Below-Grade						
Below-Grade Wall	C-1.140	NR	C-1.140	NR	C-1.140	NR
Floors						
Mass	U-0.137	R-4.2 ci	U-0.107	R-6.3 ci	U-0.322	NR
Steel-Joist	U-0.052	R-19.0	U-0.052	R-19.0	U-0.350	NR
Wood-Framed and Other	U-0.051	R-19.0	U-0.051	R-19.0	U-0.282	NR
Slab-On-Grade Floors	0 0.031	K 15.0	0.031	K 17.0	0 0.202	1410
Unheated	F-0.730	NR	F-0.730	NR	F-0.730	NR
Heated	F-1.020	R-7.5 for 12 in.	F-1.020	R-7.5 for 12 in.	F-1.020	R-7.5 for 12 in.
Opaque Doors	F-1.020	K-7.3 101 12 III.	F-1.020	K-7.5 101 12 III.	r-1.020	K-7.3 101 12 III.
	11.0.700		11.0.700		11.0.700	
Swinging	U-0.700		U-0.700		U-0.700	
Non-Swinging	U-1.450		U-1.450		U-1.450	
	Assembly Max. U	Assembly Max. SHGC (All	Assembly Max. U	Assembly Max. SHGC (All	Assembly Max. U	Assembly Max. SHGC (All
	(Fixed/	Orientations/	(Fixed/	Orientations/	(Fixed/	Orientations/
Fenestration	Operable)	North-Oriented)	Operable)	North-Oriented)	Operable)	North-Oriented)
Vertical Glazing,% of Wall						
0-10.0%	Ufixed ^{-1.22}	SHGC _{all} -0.25	Ufixed-1.22	SHGC _{all} -0.39	Ufixed-1.22	SHGC _{all} -NR
	Uoper-1.27	SHGCnorth-0.61	** 1.05			
10.1.20.00/	oper	north old	Uoper-1.27	SHGC _{north} -0.61		SHGC _{north} NR
10.1-20.0%	Ufixed ^{-1.22}	SHGC _{all} -0.25	Uper-1.27 Ufixed-1.22	SHGC _{north} -0.61 SHGC _{all} -0.25		SHGC _{north} NR SHGC _{all} -NR
10.1-20.0%					Ufixed ^{-1.22}	
20.1-30.0%	Ufixed ^{-1.22}	SHGC _{all} -0.25	Ufixed ^{-1.22}	SHGC _{all} -0.25	Ufixed ^{-1.22} Uoper ^{-1.27}	SHGC _{all} -NR
	Ufixed ^{-1.22} Uoper ^{-1.27} Ufixed ^{-1.22}	SHGC _{all} -0.25 SHGC _{north} -0.61	Ufixed ^{-1.22} Uoper ^{-1.27}	SHGC _{all} -0.25 SHGC _{north} -0.61	Ufixed ^{-1.22} Uoper ^{-1.27} Ufixed ^{-1.22}	SHGC _{all} -NR SHGC _{north} NR
20.1-30.0%	Ufixed ^{-1.22} Uoper ^{-1.27}	SHGC _{all} -0.25 SHGC _{north} -0.61 SHGC _{all} -0.25	Ufixed-1.22 Uoper-1.27 Ufixed-1.22	SHGC _{all} -0.25 SHGC _{north} -0.61 SHGC _{all} -0.25	Ufixed ^{-1.22} Uoper ^{-1.27} Ufixed ^{-1.22} Uoper ^{-1.27}	SHGC _{all} -NR SHGC _{north} NR SHGC _{all} -NR
	Ufixed ^{-1,22} Uoper ^{-1,27} Ufixed ^{-1,22} Uoper ^{-1,27} Ufixed ^{-1,22} Ufixed ^{-1,22}	SHGC _{all} -0.25 SHGC _{north} -0.61 SHGC _{all} -0.25 SHGC _{north} -0.61	Ufixed ^{-1.22} Uoper ^{-1.27} Ufixed ^{-1.22} Uoper ^{-1.27} Ufixed ^{-1.22} Uoper ^{-1.27}	SHGC _{all} -0.25 SHGC _{north} -0.61 SHGC _{all} -0.25 SHGC _{north} -0.61	Ufixed-1.22 Uoper-1.27 Ufixed-1.22 Uoper-1.27 Ufixed-1.22 Ufixed-1.22	SHGC _{all} -NR SHGC _{north} NR SHGC _{all} -NR SHGC _{north} NR SHGC _{all} -NR
20.1-30.0%	Ufixed ^{-1.22} Uoper ^{-1.27} Ufixed ^{-1.22} Uoper ^{-1.27}	SHGC _{all} -0.25 SHGC _{north} -0.61 SHGC _{all} -0.25 SHGC _{north} -0.61 SHGC _{all} -0.25	Ufixed ^{-1.22} Uoper ^{-1.27} Ufixed ^{-1.22} Uoper ^{-1.27}	SHGC _{all} -0.25 SHGC _{north} -0.61 SHGC _{all} -0.25 SHGC _{north} -0.61 SHGC _{all} -0.25	Ufixed-1.22 Uoper-1.27 Ufixed-1.22 Uoper-1.27 Ufixed-1.22 Uoper-1.27	SHGC _{all} -NR SHGC _{north} NR SHGC _{all} -NR SHGC _{north} NR
20.1-30.0% 30.1-40.0%	Ufixed ^{-1,22} Uoper ^{-1,27} Ufixed ^{-1,22} Uoper ^{-1,27} Ufixed ^{-1,22} Uoper ^{-1,27} Ufixed ^{-1,22} Uoper ^{-1,27}	SHGC _{all} -0.25 SHGC _{north} -0.61 SHGC _{all} -0.25 SHGC _{north} -0.61 SHGC _{all} -0.25 SHGC _{north} -0.61 SHGC _{all} -0.17	Ufixed ^{-1,22} Uoper ^{-1,27} Ufixed ^{-1,22} Uoper ^{-1,27} Ufixed ^{-1,22} Uoper ^{-1,27} Ufixed ^{-1,22}	SHGC _{all} -0.25 SHGC _{north} -0.61 SHGC _{all} -0.25 SHGC _{north} -0.61 SHGC _{all} -0.25 SHGC _{north} -0.61	Ufixed ^{-1.22} Uoper ^{-1.27} Ufixed ^{-1.22} Uoper ^{-1.27} Ufixed ^{-1.22} Uoper ^{-1.27} Ufixed ^{-0.98}	SHGC _{all} -NR SHGC _{north} NR SHGC _{all} -NR SHGC _{all} -NR SHGC _{all} -NR SHGC _{north} NR SHGC _{north} NR
20.1-30.0% 30.1-40.0% 40.1-50.0%	Ufixed ^{-1,22} Uoper ^{-1,27} Ufixed ^{-1,22} Uoper ^{-1,27} Ufixed ^{-1,22} Uoper ^{-1,27}	SHGC _{all} -0.25 SHGC _{north} -0.61 SHGC _{all} -0.25 SHGC _{north} -0.61 SHGC _{all} -0.25 SHGC _{north} -0.61	Ufixed ^{-1,22} Uoper ^{-1,27} Ufixed ^{-1,22} Uoper ^{-1,27} Ufixed ^{-1,22} Uoper ^{-1,27}	SHGC _{all} -0.25 SHGC _{north} -0.61 SHGC _{all} -0.25 SHGC _{north} -0.61 SHGC _{all} -0.25 SHGC _{north} -0.61 SHGC _{all} -0.17	Ufixed ^{-1.22} Uoper ^{-1.27} Ufixed ^{-1.22} Uoper ^{-1.27} Ufixed ^{-1.22} Uoper ^{-1.27} Ufixed ^{-0.98}	SHGC _{all} -NR SHGC _{north} NR SHGC _{all} -NR SHGC _{north} NR SHGC _{all} -NR SHGC _{north} NR
20.1-30.0% 30.1-40.0%	Ufixed ^{-1,22} Uoper ^{-1,27} Ufixed ^{-1,22} Uoper ^{-1,27} Ufixed ^{-1,22} Uoper ^{-1,27} Ufixed ^{-1,22} Uoper ^{-1,27}	SHGC _{all} -0.25 SHGC _{north} -0.61 SHGC _{all} -0.25 SHGC _{north} -0.61 SHGC _{all} -0.25 SHGC _{north} -0.61 SHGC _{all} -0.17 SHGC _{north} -0.44	Ufixed ^{-1,22} Uoper ^{-1,27} Ufixed ^{-1,22} Uoper ^{-1,27} Ufixed ^{-1,22} Uoper ^{-1,27} Ufixed ^{-1,22}	SHGC _{all} -0.25 SHGC _{north} -0.61 SHGC _{all} -0.25 SHGC _{north} -0.61 SHGC _{all} -0.25 SHGC _{north} -0.61 SHGC _{all} -0.17 SHGC _{north} -0.43	Ufixed ^{-1.22} Uoper ^{-1.27} Ufixed ^{-1.22} Uoper ^{-1.27} Ufixed ^{-1.22} Uoper ^{-1.27} Ufixed ^{-0.98}	SHGC _{all} -NR SHGC _{north} NR SHGC _{all} -NR SHGC _{all} -NR SHGC _{all} -NR SHGC _{north} NR SHGC _{north} NR
20.1-30.0% 30.1-40.0% 40.1-50.0% Skylight with Curb, Glass,% of Roof	Ufixed ^{-1,22} Uoper ^{-1,27} Uall ^{-1,98}	SHGC _{all} -0.25 SHGC _{north} -0.61 SHGC _{all} -0.25 SHGC _{north} -0.61 SHGC _{all} -0.25 SHGC _{north} -0.61 SHGC _{all} -0.17 SHGC _{north} -0.44	Ufixed ^{-1,22} Uoper ^{-1,27} Ufixed ^{-1,22} Uoper ^{-1,27} Ufixed ^{-1,22} Uoper ^{-1,27} Ufixed ^{-1,22} Uoper ^{-1,27} Uall ^{-1,98}	SHGC _{all} -0.25 SHGC _{north} -0.61 SHGC _{all} -0.25 SHGC _{north} -0.61 SHGC _{all} -0.25 SHGC _{north} -0.61 SHGC _{all} -0.17 SHGC _{north} -0.43	Ufixed ^{-1,22} Uoper ^{-1,27} Ufixed ^{-1,22} Uoper ^{-1,27} Ufixed ^{-1,22} Uoper ^{-1,27} Ufixed ^{-0,98} Uoper ^{-1,02} Uall ^{-1,98}	SHGCall-NR
20.1-30.0% 30.1-40.0% 40.1-50.0% Skylight with Curb, Glass,% of Roof 0-2.0% 2.1-5.0%	Ufixed ^{-1,22} Uoper ^{-1,27}	SHGC _{all} -0.25 SHGC _{north} -0.61 SHGC _{all} -0.25 SHGC _{north} -0.61 SHGC _{all} -0.25 SHGC _{north} -0.61 SHGC _{all} -0.17 SHGC _{north} -0.44	Ufixed ^{-1,22} Uoper ^{-1,27}	SHGC _{all} -0.25 SHGC _{north} -0.61 SHGC _{all} -0.25 SHGC _{north} -0.61 SHGC _{all} -0.25 SHGC _{north} -0.61 SHGC _{all} -0.17 SHGC _{north} -0.43	Ufixed-1.22 Uoper-1.27 Ufixed-1.22 Uoper-1.27 Ufixed-1.22 Uoper-1.27 Ufixed-0.98 Uoper-1.02	SHGC _{all} -NR SHGC _{north} NR SHGC _{all} -NR SHGC _{all} -NR SHGC _{all} -NR SHGC _{all} -NR SHGC _{north} NR
20.1-30.0% 30.1-40.0% 40.1-50.0% Skylight with Curb, Glass,% of Roof 0-2.0% 2.1-5.0% Skylight with Curb, Plastic,% of Roof	Ufixed ^{-1,22} Uoper ^{-1,27} Ufixed ^{-1,22} Uoper ^{-1,27} Ufixed ^{-1,22} Uoper ^{-1,27} Ufixed ^{-1,22} Uoper ^{-1,27} Udil-1,98 Uall-1,98	SHGC _{all} -0.25 SHGC _{north} -0.61 SHGC _{all} -0.25 SHGC _{north} -0.61 SHGC _{all} -0.25 SHGC _{north} -0.61 SHGC _{all} -0.17 SHGC _{north} -0.44 SHGC _{all} -0.36 SHGC _{all} -0.36	Ufixed ^{-1,22} Uoper ^{-1,27} Uall ^{-1,98} Uall ^{-1,98}	SHGC _{all} -0.25 SHGC _{north} -0.61 SHGC _{all} -0.25 SHGC _{north} -0.61 SHGC _{all} -0.25 SHGC _{north} -0.61 SHGC _{all} -0.17 SHGC _{north} -0.43	Ufixed-1.22 Uoper-1.27 Ufixed-1.22 Uoper-1.27 Ufixed-1.22 Uoper-1.27 Ufixed-0.98 Uoper-1.02 Uall-1.98 Uall-1.98	SHGC _{all} -NR SHGC _{north} NR SHGC _{all} -NR
20.1-30.0% 30.1-40.0% 40.1-50.0% Skylight with Curb, Glass,% of Roof 0-2.0% 2.1-5.0% Skylight with Curb, Plastic,% of Roof 0-2.0%	Ufixed ^{-1,22} Uoper ^{-1,27} Uall ^{-1,98} Uall ^{-1,98} Uall ^{-1,90}	SHGC _{all} -0.25 SHGC _{north} -0.61 SHGC _{all} -0.25 SHGC _{north} -0.61 SHGC _{all} -0.25 SHGC _{north} -0.61 SHGC _{all} -0.17 SHGC _{north} -0.44 SHGC _{all} -0.36 SHGC _{all} -0.19	Ufixed ^{-1,22} Uoper ^{-1,27} Uall ^{-1,98} Uall ^{-1,98} Uall ^{-1,90}	SHGC _{all} -0.25 SHGC _{north} -0.61 SHGC _{all} -0.25 SHGC _{north} -0.61 SHGC _{all} -0.25 SHGC _{north} -0.61 SHGC _{all} -0.17 SHGC _{all} -0.19 SHGC _{all} -0.19	Ufixed ^{-1,22} Uoper ^{-1,27} Ufixed ^{-1,22} Uoper ^{-1,27} Ufixed ^{-1,22} Uoper ^{-1,27} Ufixed ^{-0,98} Uoper ^{-1,02} Uall ^{-1,98} Uall ^{-1,98}	SHGCall ⁻ NR SHGCnorth ^{NR} SHGCall ⁻ NR SHGCall ⁻ NR SHGCall ⁻ NR SHGCall ⁻ NR SHGCnorth ^{NR} SHGCall ⁻ NR SHGCall ⁻ NR SHGCall ⁻ NR SHGCall ⁻ NR
20.1-30.0% 30.1-40.0% 40.1-50.0% Skylight with Curb, Glass,% of Roof 0-2.0% 2.1-5.0% Skylight with Curb, Plastic,% of Roof 0-2.0% 2.1-5.0%	Ufixed ^{-1,22} Uoper ^{-1,27} Ufixed ^{-1,22} Uoper ^{-1,27} Ufixed ^{-1,22} Uoper ^{-1,27} Ufixed ^{-1,22} Uoper ^{-1,27} Udil-1,98 Uall-1,98	SHGC _{all} -0.25 SHGC _{north} -0.61 SHGC _{all} -0.25 SHGC _{north} -0.61 SHGC _{all} -0.25 SHGC _{north} -0.61 SHGC _{all} -0.17 SHGC _{north} -0.44 SHGC _{all} -0.36 SHGC _{all} -0.36	Ufixed ^{-1,22} Uoper ^{-1,27} Uall ^{-1,98} Uall ^{-1,98}	SHGC _{all} -0.25 SHGC _{north} -0.61 SHGC _{all} -0.25 SHGC _{north} -0.61 SHGC _{all} -0.25 SHGC _{north} -0.61 SHGC _{all} -0.17 SHGC _{north} -0.43	Ufixed-1.22 Uoper-1.27 Ufixed-1.22 Uoper-1.27 Ufixed-1.22 Uoper-1.27 Ufixed-0.98 Uoper-1.02 Uall-1.98 Uall-1.98	SHGC _{all} -NR SHGC _{north} NR SHGC _{all} -NR
20.1-30.0% 30.1-40.0% 40.1-50.0% Skylight with Curb, Glass,% of Roof 0-2.0% 2.1-5.0% Skylight with Curb, Plastic,% of Roof 0-2.0% 2.1-5.0% Skylight without Curb, All,% of Roof	Ufixed ^{-1,22} Uoper ^{-1,27} Uall ^{-1,98} Uall ^{-1,98} Uall ^{-1,99} Uall ^{-1,90} Uall ^{-1,90}	SHGC _{all} -0.25 SHGC _{north} -0.61 SHGC _{all} -0.25 SHGC _{north} -0.61 SHGC _{all} -0.25 SHGC _{north} -0.61 SHGC _{all} -0.17 SHGC _{north} -0.44 SHGC _{all} -0.36 SHGC _{all} -0.39 SHGC _{all} -0.39 SHGC _{all} -0.34	Ufixed ^{-1,22} Uoper ^{-1,27} Ufixed ^{-1,22} Uoper ^{-1,27} Ufixed ^{-1,22} Uoper ^{-1,27} Ufixed ^{-1,22} Uoper ^{-1,27} Uall ^{-1,98} Uall ^{-1,98} Uall ^{-1,90} Uall ^{-1,90}	SHGC _{all} -0.25 SHGC _{north} -0.61 SHGC _{all} -0.25 SHGC _{north} -0.61 SHGC _{all} -0.25 SHGC _{north} -0.61 SHGC _{all} -0.17 SHGC _{all} -0.19 SHGC _{all} -0.19 SHGC _{all} -0.19 SHGC _{all} -0.27	Ufixed ^{-1.22} Uoper ^{-1.27} Ufixed ^{-1.22} Uoper ^{-1.27} Ufixed ^{-1.22} Uoper ^{-1.27} Ufixed ^{-0.98} Uoper ^{-1.02} Uall ^{-1.98} Uall ^{-1.98} Uall ^{-1.98}	SHGCall ⁻ NR SHGCnorth ^{NR} SHGCall ⁻ NR
20.1-30.0% 30.1-40.0% 40.1-50.0% Skylight with Curb, Glass,% of Roof 0-2.0% 2.1-5.0% Skylight with Curb, Plastic,% of Roof 0-2.0% 2.1-5.0%	Ufixed ^{-1,22} Uoper ^{-1,27} Uall ^{-1,98} Uall ^{-1,98} Uall ^{-1,90}	SHGC _{all} -0.25 SHGC _{north} -0.61 SHGC _{all} -0.25 SHGC _{north} -0.61 SHGC _{all} -0.25 SHGC _{north} -0.61 SHGC _{all} -0.17 SHGC _{north} -0.44 SHGC _{all} -0.36 SHGC _{all} -0.19	Ufixed ^{-1,22} Uoper ^{-1,27} Uall ^{-1,98} Uall ^{-1,98} Uall ^{-1,90}	SHGC _{all} -0.25 SHGC _{north} -0.61 SHGC _{all} -0.25 SHGC _{north} -0.61 SHGC _{all} -0.25 SHGC _{north} -0.61 SHGC _{all} -0.17 SHGC _{all} -0.19 SHGC _{all} -0.19	Ufixed ^{-1,22} Uoper ^{-1,27} Ufixed ^{-1,22} Uoper ^{-1,27} Ufixed ^{-1,22} Uoper ^{-1,27} Ufixed ^{-0,98} Uoper ^{-1,02} Uall ^{-1,98} Uall ^{-1,98}	SHGCall-NR SHGCnorthNR SHGCall-NR SHGCall-NR SHGCall-NR SHGCall-NR SHGCall-NR SHGCall-NR SHGCall-NR SHGCall-NR SHGCall-NR

^{*}The following definitions apply: ci = continuous insulation (see Section 3.2), NR = no (insulation) requirement.

aException to A3.1.3.1 applies.

TABLE 5.5-3 Building Envelope Requirements For Climate Zone 3 (A,B,C)*

	Nonresidential		Residential		Semiheated	
			110534511411		Assembly	
Opaque Elements	Assembly Maximum	Insulation Min. R-Value	Assembly Maximum	Insulation Min. R-Value	Maxi- mum	Insulation Min. R-Value
Roofs		П		1		
Insulation Entirely above Deck	U-0.063	R-15.0 ci	U-0.063	R-15.0 ci	U-0.218	R-3.8 ci
Metal Building	U-0.065	R-19.0	U-0.065	R-19.0	U-0.097	R-10.0
Attic and Other	U-0.034	R-30.0	U-0.027	R-38.0	U-0.081	R-13.0
Walls, Above-Grade						
Mass	U-0.151 ^{a,b}	R-5.7 ci ^{a,b}	U-0.123	R-7.6 ci	U-0.580	NR
Metal Building	U-0.113	R-13.0	U-0.113	R-13.0	U-0.184	R-6.0
Steel-Framed	U-0.124	R-13.0	U-0.084	R-13.0 + R-3.8 ci	U-0.352	NR
Wood-Framed and Other	U-0.089	R-13.0	U-0.089	R-13.0	U-0.089	R-13.0
Wall, Below-Grade	0.007	K 13.0	0.009	10.0	0.009	10.0
Below-Grade Wall	C-1.140	NR	C-1.140	NR	C-1.140	NR
Floors	C-1.140	TVIC	C-1.140	THE	C-1.140	THE
Mass	U-0.107	R-6.3 ci	U-0.087	R-8.3 ci	U-0.322	NR
Steel-Joist	U-0.052	R-19.0	U-0.052	R-19.0	U-0.069	R-13.0
Wood-Framed and Other	U-0.051	R-19.0	U-0.032	R-30.0	U-0.282	NR
Slab-On-Grade Floors	0-0.031	K-19.0	0-0.033	K-50.0	0-0.262	INK
	F-0.730	NR	E 0 720	NR	F-0.730	NR
Unheated			F-0.730			
Heated	F-1.020	R-7.5 for 12 in.	F-1.020	R-7.5 for 12 in.	F-1.020	R-7.5 for 12 in.
Opaque Doors	11.0.700		11.0.700		11.0.700	
Swinging	U-0.700		U-0.700		U-0.700	
Non-Swinging	U-1.450	<u> </u>	U-0.500		U-1.450	
	Assamble	Assambly May	Assambly	Assambly May	Assembly	Assambly May
	Assembly Max. U	Assembly Max. SHGC (All	Assembly Max. U	Assembly Max. SHGC (All	Max. U (Fixed/	Assembly Max. SHGC (All
Fenestration (for Zones 3A and 3B; see next	(Fixed/	Orientations/	(Fixed/	Orientations/	Opera-	Orientations/
page for Zone 3C)	Operable)	North-Oriented)	Operable)	North-Oriented)	ble)	North-Oriented)
Vertical Glazing,% of Wall						
0-10.0%	11	CITCO 0.20		CLICC 0.20		
0-10.070	Ufixed-0.57	SHGC _{all} -0.39	Ufixed-0.57	SHGC _{all} -0.39	Ufixed- 1.22	SHGC _{all} -NR
0-10.070		SHGC _{north} -0.49		SHGC _{north} -0.49	1.22	SHGC _{all} -NR SHGC _{north} NR
10.1-20.0%	Uoper-0.67 Ufixed-0.57		Ufixed ^{-0.57} Uoper ^{-0.67} Ufixed ^{-0.57}		1.22	
	Uoper ^{-0.67} Ufixed ^{-0.57}	SHGC _{north} -0.49 SHGC _{all} -0.25	Uoper-0.67 Ufixed-0.57	SHGC _{north} -0.49 SHGC _{all} -0.39	Uoper-1.27 Ufixed 1.22	SHGC _{north} NR SHGC _{all} -NR
10.1-20.0%	Uoper ^{-0.67} Ufixed ^{-0.57} Uoper ^{-0.67}	SHGC _{north} -0.49 SHGC _{all} -0.25 SHGC _{north} -0.49	Uoper-0.67 Ufixed-0.57 Uoper-0.67	SHGC _{north} -0.49 SHGC _{all} -0.39 SHGC _{north} -0.49	1.22 U _{oper} -1.27 Ufixed 1.22 U _{oper} -1.27	SHGC _{north} NR SHGC _{all} -NR SHGC _{north} NR
	Uoper ^{-0.67} Ufixed ^{-0.57}	SHGC _{north} -0.49 SHGC _{all} -0.25	Uoper-0.67 Ufixed-0.57	SHGC _{north} -0.49 SHGC _{all} -0.39	Uoper-1.27 Ufixed 1.22	SHGC _{north} NR SHGC _{all} -NR
10.1-20.0%	Uoper-0.67 Ufixed-0.57 Uoper-0.67 Ufixed-0.57	SHGC _{north} -0.49 SHGC _{all} -0.25 SHGC _{north} -0.49	Uoper-0.67 Ufixed-0.57 Uoper-0.67 Ufixed-0.57	SHGC _{north} -0.49 SHGC _{all} -0.39 SHGC _{north} -0.49	1.22 Uoper-1.27 Ufixed-1.22 Uoper-1.27 Ufixed-1.22	SHGC _{north} NR SHGC _{all} -NR SHGC _{north} NR
10.1-20.0%	Uoper ^{-0.67} Ufixed ^{-0.57} Uoper ^{-0.67}	SHGC _{north} -0.49 SHGC _{all} -0.25 SHGC _{north} -0.49 SHGC _{all} -0.25	Uoper-0.67 Ufixed-0.57 Uoper-0.67	SHGC _{north} -0.49 SHGC _{all} -0.39 SHGC _{north} -0.49 SHGC _{all} -0.25	1.22 Uoper-1.27 Ufixed-1.22 Uoper-1.27 Ufixed-1.22	SHGC _{north} NR SHGC _{all} -NR SHGC _{north} NR SHGC _{all} -NR
20.1-30.0%	Uoper-0.67 Ufixed-0.57 Uoper-0.67 Ufixed-0.57 Uoper-0.67 Uoper-0.67 Uoper-0.67	SHGC _{north} -0.49 SHGC _{all} -0.25 SHGC _{north} -0.49 SHGC _{all} -0.25 SHGC _{north} -0.39 SHGC _{all} -0.25	Uoper-0.67 Ufixed-0.57 Uoper-0.67 Ufixed-0.57 Uoper-0.67 Ufixed-0.57 Uoper-0.67	SHGC _{north} -0.49 SHGC _{all} -0.39 SHGC _{north} -0.49 SHGC _{all} -0.25 SHGC _{north} -0.39 SHGC _{all} -0.25	1.22 Uoper-1.27 Ufixed-1.22 Uoper-1.27 Ufixed-1.22 Uoper-1.27 Ufixed-1.22 Uoper-1.27	SHGC _{north} NR SHGC _{all} -NR
10.1-20.0% 20.1-30.0% 30.1-40.0%	Uoper-0.67 Ufixed-0.57 Uoper-0.67 Ufixed-0.57 Uoper-0.67 Uoper-0.67 Uoper-0.67 Ufixed-0.57	SHGC _{north} -0.49 SHGC _{all} -0.25 SHGC _{north} -0.49 SHGC _{all} -0.25 SHGC _{north} -0.39 SHGC _{all} -0.25	Uoper-0.67 Ufixed-0.57 Uoper-0.67 Uoper-0.67 Uoper-0.67 Uoper-0.67 Uoper-0.67 Uoper-0.67	SHGC _{north} -0.49 SHGC _{all} -0.39 SHGC _{north} -0.49 SHGC _{all} -0.25 SHGC _{north} -0.39 SHGC _{all} -0.25 SHGC _{north} -0.39	1.22 Uoper-1.27 Ufixed-1.22 Uoper-1.27 Ufixed-1.22 Uoper-1.27 Ufixed-1.22 Uoper-1.27	SHGC _{north} NR SHGC _{all} -NR SHGC _{all} -NR SHGC _{all} -NR SHGC _{all} -NR SHGC _{north} NR SHGC _{north} NR
20.1-30.0%	Uoper-0.67 Ufixed-0.57 Uoper-0.67 Ufixed-0.57 Uoper-0.67 Uoper-0.67 Uoper-0.67	SHGC _{north} -0.49 SHGC _{all} -0.25 SHGC _{north} -0.49 SHGC _{all} -0.25 SHGC _{north} -0.39 SHGC _{all} -0.25	Uoper-0.67 Ufixed-0.57 Uoper-0.67 Ufixed-0.57 Uoper-0.67 Ufixed-0.57 Uoper-0.67	SHGC _{north} -0.49 SHGC _{all} -0.39 SHGC _{north} -0.49 SHGC _{all} -0.25 SHGC _{north} -0.39 SHGC _{all} -0.25	1.22 Uoper-1.27 Ufixed-1.22 Uoper-1.27 Ufixed-1.22 Uoper-1.27 Ufixed-1.22 Uoper-1.27 Ufixed-1.22 Uoper-1.27	SHGC _{north} NR SHGC _{all} -NR
10.1-20.0% 20.1-30.0% 30.1-40.0%	Uoper-0.67 Ufixed-0.57 Uoper-0.67 Ufixed-0.57 Uoper-0.67 Uoper-0.67 Uoper-0.67 Ufixed-0.57	SHGC _{north} -0.49 SHGC _{all} -0.25 SHGC _{north} -0.49 SHGC _{all} -0.25 SHGC _{north} -0.39 SHGC _{all} -0.25	Uoper-0.67 Ufixed-0.57 Uoper-0.67 Ufixed-0.57 Uoper-0.67 Uoper-0.67 Uoper-0.67 Uoper-0.67	SHGC _{north} -0.49 SHGC _{all} -0.39 SHGC _{north} -0.49 SHGC _{all} -0.25 SHGC _{north} -0.39 SHGC _{all} -0.25 SHGC _{north} -0.39	1.22 Uoper-1.27 Ufixed-1.22 Uoper-1.27 Ufixed-1.22 Uoper-1.27 Ufixed-1.22 Uoper-1.27 Ufixed-1.22 Uoper-1.27	SHGC _{north} NR SHGC _{all} -NR SHGC _{all} -NR SHGC _{all} -NR SHGC _{all} -NR SHGC _{north} NR SHGC _{north} NR
10.1-20.0% 20.1-30.0% 30.1-40.0%	Uoper-0.67 Ufixed-0.57 Uoper-0.67 Ufixed-0.57 Uoper-0.67 Uoper-0.67 Ufixed-0.57 Uoper-0.67 Uoper-0.67 Uoper-0.67 Uoper-0.67 Uoper-0.67	SHGC _{north} -0.49 SHGC _{all} -0.25 SHGC _{north} -0.49 SHGC _{all} -0.25 SHGC _{north} -0.39 SHGC _{all} -0.25 SHGC _{all} -0.25	Uoper-0.67 Ufixed-0.57 Uoper-0.67 Ufixed-0.57 Uoper-0.67 Uoper-0.67 Ufixed-0.57 Uoper-0.67 Ufixed-0.46	SHGC _{north} -0.49 SHGC _{all} -0.39 SHGC _{all} -0.25 SHGC _{north} -0.39 SHGC _{all} -0.25 SHGC _{all} -0.25 SHGC _{all} -0.19	1.22 Uoper-1.27 Ufixed-1.22 Uoper-1.27 Ufixed-1.22 Uoper-1.27 Ufixed-1.22 Uoper-1.27 Ufixed-1.22 Uoper-1.27 Uoper-1.27	SHGC _{north} NR SHGC _{all} -NR
10.1-20.0% 20.1-30.0% 30.1-40.0% 40.1-50.0%	Uoper-0.67 Ufixed-0.57 Uoper-0.67 Ufixed-0.57 Uoper-0.67 Uoper-0.67 Ufixed-0.57 Uoper-0.67 Uoper-0.67 Uuper-0.67 Ufixed-0.46 Uoper-0.47 Uall-1.17	SHGC _{north} -0.49 SHGC _{all} -0.25 SHGC _{north} -0.49 SHGC _{all} -0.25 SHGC _{north} -0.39 SHGC _{all} -0.25 SHGC _{all} -0.25	Uoper-0.67 Ufixed-0.57 Uoper-0.67 Uoper-0.67 Uoper-0.67 Uoper-0.67 Ufixed-0.57 Uoper-0.67 Uoper-0.67 Uoper-0.47 Uull-1.17	SHGC _{north} -0.49 SHGC _{all} -0.39 SHGC _{all} -0.25 SHGC _{north} -0.39 SHGC _{all} -0.25 SHGC _{all} -0.25 SHGC _{all} -0.19	1.22 Uoper-1.27 Ufixed-1.22 Uoper-1.27 Ufixed-1.22 Uoper-1.27 Ufixed-1.22 Uoper-1.27 Ufixed-1.22 Uoper-1.27	SHGC _{north} NR SHGC _{all} -NR SHGC _{north} NR SHGC _{all} -NR
10.1-20.0% 20.1-30.0% 30.1-40.0% 40.1-50.0% Skylight with Curb, Glass,% of Roof	Uoper-0.67 Ufixed-0.57 Uoper-0.67 Ufixed-0.57 Uoper-0.67 Uoper-0.67 Ufixed-0.57 Uoper-0.67 Uoper-0.67 Uoper-0.67 Uoper-0.67 Uoper-0.67	SHGC _{north} -0.49 SHGC _{all} -0.25 SHGC _{north} -0.49 SHGC _{all} -0.25 SHGC _{north} -0.39 SHGC _{all} -0.25 SHGC _{north} -0.39 SHGC _{all} -0.19 SHGC _{all} -0.19	Uoper-0.67 Ufixed-0.57 Uoper-0.67 Uoper-0.67 Uoper-0.67 Uoper-0.67 Uoper-0.67 Ufixed-0.57 Uoper-0.67 Uoper-0.67 Uoper-0.67 Uoper-0.67	SHGC _{north} -0.49 SHGC _{all} -0.39 SHGC _{north} -0.49 SHGC _{all} -0.25 SHGC _{north} -0.39 SHGC _{all} -0.25 SHGC _{north} -0.39 SHGC _{north} -0.39 SHGC _{north} -0.39 SHGC _{all} -0.19	1.22 Uoper-1.27 Ufixed-1.22 Uoper-1.27 Ufixed-1.22 Uoper-1.27 Ufixed-1.22 Uoper-1.27 Ufixed-1.22 Uoper-1.27 Uoper-1.27	SHGC _{north} NR SHGC _{all} -NR SHGC _{north} NR SHGC _{north} NR SHGC _{north} NR
10.1-20.0% 20.1-30.0% 30.1-40.0% 40.1-50.0% Skylight with Curb, Glass,% of Roof 0-2.0%	Uoper-0.67 Ufixed-0.57 Uoper-0.67 Ufixed-0.57 Uoper-0.67 Uoper-0.67 Ufixed-0.57 Uoper-0.67 Uoper-0.67 Uuper-0.67 Ufixed-0.46 Uoper-0.47 Uall-1.17	SHGC _{north} -0.49 SHGC _{all} -0.25 SHGC _{north} -0.49 SHGC _{all} -0.25 SHGC _{north} -0.39 SHGC _{all} -0.25 SHGC _{north} -0.39 SHGC _{all} -0.19 SHGC _{all} -0.19 SHGC _{north} -0.39	Uoper-0.67 Ufixed-0.57 Uoper-0.67 Uoper-0.67 Uoper-0.67 Uoper-0.67 Ufixed-0.57 Uoper-0.67 Uoper-0.67 Uoper-0.47 Uull-1.17	SHGC _{north} -0.49 SHGC _{all} -0.39 SHGC _{all} -0.49 SHGC _{all} -0.25 SHGC _{north} -0.39 SHGC _{all} -0.25 SHGC _{north} -0.39 SHGC _{all} -0.19 SHGC _{all} -0.19 SHGC _{all} -0.19	1.22 Uoper-1.27 Ufixed- 0.98 Uoper-1.02 Uall-1.98	SHGC _{north} NR SHGC _{all} -NR
10.1-20.0% 20.1-30.0% 30.1-40.0% 40.1-50.0% Skylight with Curb, Glass,% of Roof 0-2.0% 2.1-5.0%	Uoper-0.67 Ufixed-0.57 Uoper-0.67 Ufixed-0.57 Uoper-0.67 Uoper-0.67 Ufixed-0.57 Uoper-0.67 Uoper-0.67 Uuper-0.67 Ufixed-0.46 Uoper-0.47 Uall-1.17	SHGC _{north} -0.49 SHGC _{all} -0.25 SHGC _{north} -0.49 SHGC _{all} -0.25 SHGC _{north} -0.39 SHGC _{all} -0.25 SHGC _{north} -0.39 SHGC _{all} -0.19 SHGC _{all} -0.19 SHGC _{north} -0.39	Uoper-0.67 Ufixed-0.57 Uoper-0.67 Uoper-0.67 Uoper-0.67 Uoper-0.67 Ufixed-0.57 Uoper-0.67 Uoper-0.67 Uoper-0.47 Uull-1.17	SHGC _{north} -0.49 SHGC _{all} -0.39 SHGC _{all} -0.49 SHGC _{all} -0.25 SHGC _{north} -0.39 SHGC _{all} -0.25 SHGC _{north} -0.39 SHGC _{all} -0.19 SHGC _{all} -0.19 SHGC _{all} -0.19	1.22 Uoper-1.27 Ufixed- 0.98 Uoper-1.02 Uall-1.98	SHGC _{north} NR SHGC _{all} -NR
10.1-20.0% 20.1-30.0% 30.1-40.0% 40.1-50.0% Skylight with Curb, Glass,% of Roof 0-2.0% 2.1-5.0% Skylight with Curb, Plastic,% of Roof	Uoper-0.67 Ufixed-0.57 Uoper-0.67 Ufixed-0.57 Uoper-0.67 Uoper-0.67 Ufixed-0.57 Uoper-0.67 Uoper-0.47 Uoper-0.47 Uall-1.17 Uall-1.30	SHGC _{north} -0.49 SHGC _{all} -0.25 SHGC _{north} -0.49 SHGC _{all} -0.25 SHGC _{north} -0.39 SHGC _{all} -0.25 SHGC _{north} -0.39 SHGC _{all} -0.25 SHGC _{north} -0.39 SHGC _{all} -0.19 SHGC _{all} -0.19	Uoper-0.67 Ufixed-0.57 Uoper-0.67 Ufixed-0.57 Uoper-0.67 Uoper-0.67 Uoper-0.67 Uoper-0.67 Uoper-0.46 Uoper-0.46 Uoper-0.47 Uall-1.17 Uall-1.17	SHGC _{north} -0.49 SHGC _{all} -0.39 SHGC _{north} -0.49 SHGC _{all} -0.25 SHGC _{north} -0.39 SHGC _{all} -0.25 SHGC _{north} -0.39 SHGC _{all} -0.26 SHGC _{north} -0.39 SHGC _{all} -0.19	1.22 Uoper-1.27 Ufixed- 1.29 Uoper-1.02 Uall-1.98 Uall-1.98	SHGC _{north} NR SHGC _{all} -NR
10.1-20.0% 20.1-30.0% 30.1-40.0% 40.1-50.0% Skylight with Curb, Glass,% of Roof 0-2.0% 2.1-5.0% Skylight with Curb, Plastic,% of Roof 0-2.0% 2.1-5.0%	Uoper-0.67 Ufixed-0.57 Uoper-0.67 Ufixed-0.57 Uoper-0.67 Ufixed-0.57 Uoper-0.67 Ufixed-0.46 Uoper-0.47 Uall-1.17 Uall-1.17	SHGC _{north} -0.49 SHGC _{all} -0.25 SHGC _{north} -0.49 SHGC _{all} -0.25 SHGC _{north} -0.39 SHGC _{all} -0.25 SHGC _{north} -0.39 SHGC _{all} -0.19 SHGC _{all} -0.19 SHGC _{all} -0.39 SHGC _{all} -0.39 SHGC _{all} -0.65	Uoper-0.67 Ufixed-0.57 Uoper-0.67 Uoper-0.67 Uoper-0.67 Uoper-0.67 Uoper-0.67 Uoper-0.67 Uoper-0.47 Uoper-0.47 Uoper-0.47 Uoper-0.47 Uoper-0.47 Uall-1.17 Uall-1.30	SHGC _{north} -0.49 SHGC _{all} -0.39 SHGC _{north} -0.49 SHGC _{all} -0.25 SHGC _{north} -0.39 SHGC _{all} -0.25 SHGC _{north} -0.39 SHGC _{all} -0.19	1.22 Uoper-1.27 Ufixed- 0.98 Uoper-1.02 Uall-1.98 Uall-1.98	SHGC _{north} NR SHGC _{all} -NR
10.1-20.0% 20.1-30.0% 30.1-40.0% 40.1-50.0% Skylight with Curb, Glass,% of Roof 0-2.0% 2.1-5.0% Skylight with Curb, Plastic,% of Roof 0-2.0% 2.1-5.0% Skylight without Curb, All,% of Roof	Uoper-0.67 Ufixed-0.57 Uoper-0.67 Ufixed-0.57 Uoper-0.67 Ufixed-0.57 Uoper-0.67 Ufixed-0.46 Uoper-0.47 Uall-1.17 Uall-1.30 Uall-1.30	SHGC _{north} -0.49 SHGC _{all} -0.25 SHGC _{north} -0.49 SHGC _{all} -0.25 SHGC _{north} -0.39 SHGC _{all} -0.25 SHGC _{north} -0.39 SHGC _{all} -0.25 SHGC _{north} -0.39 SHGC _{all} -0.19 SHGC _{all} -0.19 SHGC _{all} -0.39 SHGC _{all} -0.39 SHGC _{all} -0.39	Uoper-0.67 Ufixed-0.57 Uoper-0.67 Ufixed-0.57 Uoper-0.67 Ufixed-0.57 Uoper-0.67 Ufixed-0.46 Uoper-0.47 Uall-1.17 Uall-1.30 Uall-1.30	SHGC _{north} -0.49 SHGC _{all} -0.39 SHGC _{all} -0.25 SHGC _{north} -0.39 SHGC _{all} -0.25 SHGC _{all} -0.25 SHGC _{north} -0.39 SHGC _{all} -0.19 SHGC _{all} -0.19 SHGC _{all} -0.19 SHGC _{all} -0.36 SHGC _{all} -0.19 SHGC _{all} -0.19 SHGC _{all} -0.19	1.22 Uoper-1.27 Ufixed- 1.22 Uoper-1.29 Uall-1.98 Uall-1.98 Uall-1.99 Uall-1.90	SHGC _{north} NR SHGC _{all} -NR
10.1-20.0% 20.1-30.0% 30.1-40.0% 40.1-50.0% Skylight with Curb, Glass,% of Roof 0-2.0% 2.1-5.0% Skylight with Curb, Plastic,% of Roof 0-2.0% 2.1-5.0%	Uoper-0.67 Ufixed-0.57 Uoper-0.67 Ufixed-0.57 Uoper-0.67 Uoper-0.67 Ufixed-0.57 Uoper-0.67 Uoper-0.47 Uoper-0.47 Uall-1.17 Uall-1.30	SHGC _{north} -0.49 SHGC _{all} -0.25 SHGC _{north} -0.49 SHGC _{all} -0.25 SHGC _{north} -0.39 SHGC _{all} -0.25 SHGC _{north} -0.39 SHGC _{all} -0.19 SHGC _{all} -0.19 SHGC _{all} -0.39 SHGC _{all} -0.39 SHGC _{all} -0.65	Uoper-0.67 Ufixed-0.57 Uoper-0.67 Uoper-0.67 Uoper-0.67 Uoper-0.67 Uoper-0.67 Uoper-0.67 Uoper-0.47 Uoper-0.47 Uoper-0.47 Uoper-0.47 Uoper-0.47 Uall-1.17 Uall-1.30	SHGC _{north} -0.49 SHGC _{all} -0.39 SHGC _{north} -0.49 SHGC _{all} -0.25 SHGC _{north} -0.39 SHGC _{all} -0.25 SHGC _{north} -0.39 SHGC _{all} -0.19	1.22 Uoper-1.27 Ufixed- 0.98 Uoper-1.02 Uall-1.98 Uall-1.98	SHGC _{north} NR SHGC _{all} -NR

The following definitions apply: ci = continuous insulation (see Section 3.2), NR = no (insulation) requirement. ^aException to A3.1.3.1 applies.

^bInsulation is not required for nonresidential mass walls in Climate Zone 3A located below the "Warm-Humid" line, and in Zone 3B.

TABLE 5.5-3 (continued) Building Envelope Requirements For Climate Zone 3 (A,B,C)

,			-	or Chimate Zone 3 ()	1	
	Nor	residential	Residential		Semiheated	
Fenestration (for Zone 3C)	Assembly Max. U (Fixed/ Operable)	Assembly Max. SHGC (All Orientations/ North-Oriented)	Assembly Max. U (Fixed/ Operable)	Assembly Max. SHGC (All Orientations/ North-Oriented)	Assembly Max. U (Fixed/ Operable)	Assembly Max. SHGC (All Orientations/ North-Oriented)
Vertical Glazing,% of Wall						
0-10.0%	Ufixed-1.22	SHGC _{all} -0.61	Ufixed-1.22	SHGC _{all} -0.61	Ufixed-1.22	SHGC _{all} -NR
	Uoper-1.27	SHGC _{north} -0.82	Uoper-1.27	SHGC _{north} -0.82	Uoper-1.27	$^{\mathrm{SHGC}}$ north $^{\mathrm{NR}}$
10.1-20.0%	Ufixed ^{-1.22}	SHGC _{all} -0.39	Ufixed-1.22	SHGC _{all} -0.61	Ufixed-1.22	SHGC _{all} -NR
	Uoper-1.27	SHGC _{north} -0.61	Uoper-1.27	SHGC _{north} -0.61	Uoper-1.27	$^{\mathrm{SHGC}}$ north $^{\mathrm{NR}}$
20.1-30.0%	Ufixed-1.22	SHGC _{all} -0.39	Ufixed-1.22	SHGC _{all} -0.39	Ufixed-1.22	SHGC _{all} -NR
	Uoper-1.27	SHGC _{north} -0.61	Uoper-1.27	SHGC _{north} -0.61		SHGC _{north} NR
30.1-40.0%	Ufixed-1.22	SHGC _{all} -0.34	Ufixed-1.22	SHGC _{all} -0.34	Ufixed-1.22	SHGC _{all} -NR
	Uoper-1.27	SHGC _{north} -0.61	Uoper-1.27	SHGC _{north} -0.61		SHGC _{north} NR
40.1-50.0%	Ufixed ^{-1.22}	SHGC _{all} -0.20	Ufixed ^{-0.73}	SHGC _{all} -0.25	Ufixed-0.98	SHGC _{all} -NR
	Uoper-1.27	SHGC _{north} -0.30	Uoper-0.81	SHGC _{north} -0.61	Uoper-1.02	SHGC _{north} NR
Skylight with Curb, Glass,% of Roof						
0-2.0%	^U all ^{-1.98}	SHGC _{all} -0.61	Uall-1.98	SHGC _{all} -0.39	Uall-1.98	SHGC _{all} -NR
2.1-5.0%	Uall-1.98	SHGC _{all} -0.39	^U all ^{-1.98}	SHGC _{all} -0.19	Ual1 ^{-1.98}	SHGC _{all} -NR
Skylight with Curb, Plastic,% of Roof						
0-2.0%	Uall ^{-1.90}	SHGC _{all} -0.65	^U all ^{-1.90}	SHGC _{all} -0.65	Uall-1.90	SHGC _{all} -NR
2.1-5.0%	Uall-1.90	SHGC _{all} -0.39	Uall-1.90	SHGC _{all} -0.34	Ual1-1.90	shgc _{all} -nr
Skylight without Curb, All,% of Roof						
0-2.0%	Uall-1.36	SHGC _{all} -0.61	Uall-1.36	SHGC _{all} -0.39	U _{all} -1.36	shgc _{all} -NR
2.1-5.0%	Uall-1.36	SHGC _{all} -0.39	Uall-1.36	SHGC _{all} -0.19	Uall-1.36	SHGC _{all} -NR

TABLE 5.5-4 Building Envelope Requirements For Climate Zone 4 (A,B,C)*

	Noi	ıresidential	R	Residential	S	emiheated
					Assembly	
Opaque Elements	Assembly Maximum	Insulation Min. R-Value	Assembly Maximum	Insulation Min. R-Value	Maxi- mum	Insulation Min. R-Value
Roofs						
Insulation Entirely above Deck	U-0.063	R-15.0 ci	U-0.063	R-15.0 ci	U-0.218	R-3.8 ci
Metal Building	U-0.065	R-19.0	U-0.065	R-19.0	U-0.097	R-10.0
Attic and Other	U-0.034	R-30.0	U-0.027	R-38.0	U-0.081	R-13.0
Walls, Above-Grade						
Mass	U-0.151 ^a	R-5.7 ci ^a	U-0.104	R-9.5 ci	U-0.580	NR
Metal Building	U-0.113	R-13.0	U-0.113	R-13.0	U-0.134	R-10.0
Steel-Framed	U-0.124	R-13.0	U-0.064	R-13.0 + R-7.5 ci	U-0.124	R-13.0
Wood-Framed and Other	U-0.089	R-13.0	U-0.089	R-13.0	U-0.089	R-13.0
Wall, Below-Grade						
Below-Grade Wall	C-1.140	NR	C-1.140	NR	C-1.140	NR
Floors						
Mass	U-0.107	R-6.3 ci	U-0.087	R-8.3 ci	U-0.322	NR
Steel-Joist	U-0.052	R-19.0	U-0.038	R-30.0	U-0.069	R-13.0
Wood-Framed and Other	U-0.051	R-19.0	U-0.033	R-30.0	U-0.066	R-13.0
Slab-On-Grade Floors						
Unheated	F-0.730	NR	F-0.730	NR	F-0.730	NR
Heated	F-0.950	R-7.5 for 24 in.	F-0.840	R-10 for 36 in.	F-1.020	R-7.5 for 12 in.
Opaque Doors						
Swinging	U-0.700		U-0.700		U-0.700	
Non-Swinging	U-1.450		U-0.500		U-1.450	
		1	}			
					Assembly	
	Assembly	Assembly Max.	Assembly	Assembly Max.	Assembly Max. U	Assembly Max.
	Max. U	SHGC (All	Max. U	SHGC (All	Max. U (Fixed/	SHGC (All
Fenestration		*		•	Max. U	*
	Max. U (Fixed/	SHGC (All Orientations/	Max. U (Fixed/	SHGC (All Orientations/	Max. U (Fixed/ Opera-	SHGC (All Orientations/
Vertical Glazing,% of Wall	Max. U (Fixed/	SHGC (All Orientations/	Max. U (Fixed/	SHGC (All Orientations/	Max. U (Fixed/ Opera- ble)	SHGC (All Orientations/
	Max. U (Fixed/ Operable) Ufixed-0.57	SHGC (All Orientations/ North-Oriented)	Max. U (Fixed/ Operable)	SHGC (All Orientations/ North-Oriented)	Max. U (Fixed/ Opera- ble)	SHGC (All Orientations/ North-Oriented)
Vertical Glazing,% of Wall 0-10.0%	Max. U (Fixed/ Operable) Ufixed ^{-0.57} Uoper ^{-0.67}	SHGC (All Orientations/ North-Oriented) SHGC _{all} -0.39 SHGC _{north} -0.49	Max. U (Fixed/ Operable) Ufixed-0.57 Uoper-0.67	SHGC (All Orientations/ North-Oriented)	Max. U (Fixed/ Opera- ble) Ufixed-1.22 Uoper-1.27	SHGC (All Orientations/ North-Oriented) SHGC _{all} -NR SHGC _{north} NR
Vertical Glazing,% of Wall	Max. U (Fixed/ Operable) Ufixed ^{-0.57} Uoper ^{-0.67} Ufixed ^{-0.57}	SHGC (All Orientations/ North-Oriented)	Max. U (Fixed/ Operable) Ufixed-0.57 Uoper-0.67 Ufixed-0.57	SHGC (All Orientations/ North-Oriented) SHGC _{all} -0.39 SHGC _{north} -0.49 SHGC _{all} -0.39	Max. U (Fixed/ Opera- ble) Ufixed-1.22 Uoper-1.27 Ufixed-1.22	SHGC (All Orientations/ North-Oriented) SHGC _{all} -NR SHGC _{north} NR SHGC _{all} -NR
Vertical Glazing,% of Wall 0-10.0% 10.1-20.0%	Max. U (Fixed/ Operable) Ufixed ^{-0.57} Uoper ^{-0.67} Ufixed ^{-0.57} Uoper ^{-0.67}	SHGC (All Orientations/ North-Oriented) SHGC _{all} -0.39 SHGC _{north} -0.49 SHGC _{all} -0.39 SHGC _{north} -0.49	Max. U (Fixed/ Operable) Ufixed-0.57 Uoper-0.67 Ufixed-0.57 Uoper-0.67	SHGC (All Orientations/ North-Oriented) SHGC _{all} -0.39 SHGC _{north} -0.49 SHGC _{all} -0.39 SHGC _{north} -0.49	Max. U (Fixed/ Operable) Ufixed-1.22 Uoper-1.27 Ufixed-1.22 Uoper-1.27	SHGC (All Orientations/ North-Oriented) SHGC _{all} -NR SHGC _{north} NR SHGC _{all} -NR SHGC _{north} NR
Vertical Glazing,% of Wall 0-10.0%	Max. U (Fixed/ Operable) Ufixed ^{-0.57} Uoper ^{-0.67} Ufixed ^{-0.57} Uoper ^{-0.67} Ufixed ^{-0.57} Uoper ^{-0.67}	SHGC (All Orientations/ North-Oriented) SHGC _{all} -0.39 SHGC _{all} -0.39 SHGC _{north} -0.49 SHGC _{all} -0.39	Max. U (Fixed/ Operable) Ufixed-0.57 Uoper-0.67 Ufixed-0.57 Uoper-0.67 Ufixed-0.57 Uoper-0.67	SHGC (All Orientations/ North-Oriented) SHGC _{all} -0.39 SHGC _{north} -0.49 SHGC _{all} -0.39 SHGC _{north} -0.49 SHGC _{all} -0.39	Max. U (Fixed/ Operable) Ufixed-1.22 Uoper-1.27 Ufixed-1.22 Uoper-1.27 Ufixed-1.22 Uoper-1.27	SHGC (All Orientations/ North-Oriented) SHGC _{all} -NR SHGC _{north} NR SHGC _{north} NR SHGC _{north} NR
Vertical Glazing,% of Wall 0-10.0% 10.1-20.0% 20.1-30.0%	Max. U (Fixed/ Operable) Ufixed-0.57 Uoper-0.67 Ufixed-0.57 Uoper-0.67 Ufixed-0.57 Uoper-0.67	SHGC (All Orientations/ North-Oriented) SHGC _{all} -0.39 SHGC _{all} -0.39 SHGC _{north} -0.49 SHGC _{all} -0.39 SHGC _{north} -0.49 SHGC _{all} -0.39	Max. U (Fixed/ Operable) Ufixed-0.57 Uoper-0.67 Ufixed-0.57 Uoper-0.67 Ufixed-0.57 Uoper-0.67	SHGC (All Orientations/ North-Oriented) SHGC _{all} -0.39 SHGC _{north} -0.49 SHGC _{all} -0.39 SHGC _{north} -0.49 SHGC _{all} -0.39 SHGC _{north} -0.49	Max. U (Fixed/ Operable) Ufixed-1.22 Uoper-1.27 Ufixed-1.22 Uoper-1.27 Ufixed-1.22 Uoper-1.27	SHGC (All Orientations/ North-Oriented) SHGC _{all} -NR SHGC _{north} NR SHGC _{all} -NR SHGC _{all} -NR SHGC _{north} NR
Vertical Glazing,% of Wall 0-10.0% 10.1-20.0%	Max. U (Fixed/ Operable) Ufixed ^{-0.57} Uoper ^{-0.67} Ufixed ^{-0.57} Uoper ^{-0.67} Ufixed ^{-0.57} Uoper ^{-0.67} Ufixed ^{-0.57} Uoper ^{-0.67} Ufixed ^{-0.57}	SHGC (All Orientations/North-Oriented) SHGCall-0.39 SHGCnorth-0.49 SHGCall-0.39 SHGCall-0.39 SHGCall-0.39 SHGCall-0.39 SHGCall-0.39	Max. U (Fixed/ Operable) Ufixed-0.57 Uoper-0.67 Ufixed-0.57 Uoper-0.67 Ufixed-0.57 Uoper-0.67 Ufixed-0.57 Uoper-0.67	SHGC (All Orientations/ North-Oriented) SHGC _{all} -0.39 SHGC _{north} -0.49 SHGC _{all} -0.39 SHGC _{north} -0.49 SHGC _{all} -0.39 SHGC _{all} -0.39 SHGC _{north} -0.49 SHGC _{north} -0.49	Max. U (Fixed/ Operable) Ufixed-1.22 Uoper-1.27 Ufixed-1.22 Uoper-1.27 Ufixed-1.22 Uoper-1.27 Ufixed-1.22 Uoper-1.27	SHGC (All Orientations/ North-Oriented) SHGC _{all} -NR SHGC _{north} NR SHGC _{all} -NR
Vertical Glazing,% of Wall 0-10.0% 10.1-20.0% 20.1-30.0% 30.1-40.0%	Max. U (Fixed/ Operable) Ufixed ^{-0.57} Uoper ^{-0.67}	SHGC (All Orientations/ North-Oriented) SHGC _{all} -0.39 SHGC _{all} -0.39 SHGC _{north} -0.49 SHGC _{all} -0.39 SHGC _{all} -0.39 SHGC _{north} -0.49 SHGC _{all} -0.39 SHGC _{north} -0.49	Max. U (Fixed/ Operable) Ufixed-0.57 Uoper-0.67 Ufixed-0.57 Uoper-0.67 Ufixed-0.57 Uoper-0.67 Ufixed-0.57 Uoper-0.67	SHGC (All Orientations/ North-Oriented) SHGC _{all} -0.39 SHGC _{north} -0.49 SHGC _{all} -0.39 SHGC _{north} -0.49 SHGC _{all} -0.39 SHGC _{all} -0.39 SHGC _{north} -0.49 SHGC _{north} -0.49	Max. U (Fixed/ Operable) Ufixed-1.22 Uoper-1.27 Ufixed-1.22 Uoper-1.27 Ufixed-1.22 Uoper-1.27 Ufixed-1.22 Uoper-1.27 Ufixed-1.22 Uoper-1.27	SHGC (All Orientations/ North-Oriented) SHGC _{all} -NR SHGC _{north} NR SHGC _{all} -NR SHGC _{north} NR SHGC _{all} -NR SHGC _{all} -NR SHGC _{all} -NR SHGC _{north} NR
Vertical Glazing,% of Wall 0-10.0% 10.1-20.0% 20.1-30.0%	Max. U (Fixed/ Operable) Ufixed ^{-0.57} Uoper ^{-0.67} Ufixed ^{-0.58} Uoper ^{-0.67} Ufixed ^{-0.58} Uoper ^{-0.68}	SHGC (All Orientations/ North-Oriented) SHGC _{all} -0.39 SHGC _{north} -0.49 SHGC _{all} -0.25	Max. U (Fixed/ Operable) Ufixed-0.57 Uoper-0.67 Ufixed-0.57 Uoper-0.67 Ufixed-0.57 Uoper-0.67 Ufixed-0.57 Uoper-0.67 Ufixed-0.57 Uoper-0.67 Ufixed-0.57 Uoper-0.67	SHGC (All Orientations/ North-Oriented) SHGC _{all} -0.39 SHGC _{north} -0.49 SHGC _{all} -0.39 SHGC _{north} -0.49 SHGC _{all} -0.39 SHGC _{all} -0.39 SHGC _{north} -0.49 SHGC _{all} -0.39 SHGC _{north} -0.49 SHGC _{all} -0.39	Max. U (Fixed/ Operable) Ufixed-1.22 Uoper-1.27 Ufixed-1.22 Uoper-1.27 Ufixed-1.22 Uoper-1.27 Ufixed-1.22 Uoper-1.27 Ufixed-0.98	SHGC (All Orientations/ North-Oriented) SHGCall-NR SHGCall-NR SHGCall-NR SHGCall-NR SHGCall-NR SHGCall-NR SHGCnorthNR SHGCnorthNR SHGCall-NR SHGCall-NR SHGCall-NR
Vertical Glazing,% of Wall 0-10.0% 10.1-20.0% 20.1-30.0% 30.1-40.0%	Max. U (Fixed/ Operable) Ufixed ^{-0.57} Uoper ^{-0.67}	SHGC (All Orientations/ North-Oriented) SHGC _{all} -0.39 SHGC _{all} -0.39 SHGC _{north} -0.49 SHGC _{all} -0.39 SHGC _{all} -0.39 SHGC _{north} -0.49 SHGC _{all} -0.39 SHGC _{north} -0.49	Max. U (Fixed/ Operable) Ufixed-0.57 Uoper-0.67 Ufixed-0.57 Uoper-0.67 Ufixed-0.57 Uoper-0.67 Ufixed-0.57 Uoper-0.67	SHGC (All Orientations/ North-Oriented) SHGC _{all} -0.39 SHGC _{north} -0.49 SHGC _{all} -0.39 SHGC _{north} -0.49 SHGC _{all} -0.39 SHGC _{all} -0.39 SHGC _{north} -0.49 SHGC _{north} -0.49	Max. U (Fixed/ Operable) Ufixed-1.22 Uoper-1.27 Ufixed-1.22 Uoper-1.27 Ufixed-1.22 Uoper-1.27 Ufixed-1.22 Uoper-1.27 Ufixed-0.98	SHGC (All Orientations/ North-Oriented) SHGC _{all} -NR SHGC _{north} NR SHGC _{all} -NR SHGC _{north} NR SHGC _{all} -NR SHGC _{all} -NR SHGC _{all} -NR SHGC _{north} NR
Vertical Glazing,% of Wall 0-10.0% 10.1-20.0% 20.1-30.0% 30.1-40.0% 40.1-50.0% Skylight with Curb, Glass,% of Roof	Max. U (Fixed/ Operable) Ufixed ^{-0.57} Uoper ^{-0.67}	SHGC (All Orientations/ North-Oriented) SHGC _{all} -0.39 SHGC _{north} -0.49	Max. U (Fixed/ Operable) Ufixed-0.57 Uoper-0.67 Ufixed-0.57 Uoper-0.67 Ufixed-0.57 Uoper-0.67 Ufixed-0.57 Uoper-0.67 Ufixed-0.57 Uoper-0.67 Ufixed-0.46 Uoper-0.47	SHGC (All Orientations/ North-Oriented) SHGC _{all} -0.39 SHGC _{north} -0.49 SHGC _{north} -0.49	Max. U (Fixed/ Operable) Ufixed-1.22 Uoper-1.27 Ufixed-1.22 Uoper-1.27 Ufixed-1.22 Uoper-1.27 Ufixed-1.22 Uoper-1.27 Ufixed-1.22 Uoper-1.27 Ufixed-1.22 Uoper-1.27	SHGC (All Orientations/ North-Oriented) SHGC _{all} -NR SHGC _{north} NR SHGC _{all} -NR SHGC _{north} NR SHGC _{all} -NR
Vertical Glazing,% of Wall 0-10.0% 10.1-20.0% 20.1-30.0% 30.1-40.0% 40.1-50.0% Skylight with Curb, Glass,% of Roof 0-2.0%	Max. U (Fixed/ Operable) Ufixed ^{-0.57} Uoper ^{-0.67} Ufixed ^{-0.46} Uoper ^{-0.47} Uall ^{-1.17}	SHGC (All Orientations/North-Oriented) SHGC _{all} -0.39 SHGC _{north} -0.49 SHGC _{all} -0.49	Max. U (Fixed/ Operable) Ufixed-0.57 Uoper-0.67 Ufixed-0.57 Uoper-0.67 Ufixed-0.57 Uoper-0.67 Ufixed-0.57 Uoper-0.67 Ufixed-0.46 Uoper-0.47 Uall-0.98	SHGC (All Orientations/ North-Oriented) SHGC _{all} -0.39 SHGC _{north} -0.49 SHGC _{all} -0.36	Max. U (Fixed/ Operable) Ufixed-1.22 Uoper-1.27 Ufixed-1.22 Uoper-1.27	SHGC (All Orientations/ North-Oriented) SHGC _{all} -NR SHGC _{all} -NR SHGC _{north} NR SHGC _{north} NR SHGC _{all} -NR SHGC _{all} -NR SHGC _{all} -NR SHGC _{all} -NR SHGC _{north} NR SHGC _{north} NR SHGC _{north} NR SHGC _{all} -NR SHGC _{all} -NR SHGC _{all} -NR
Vertical Glazing,% of Wall 0-10.0% 10.1-20.0% 20.1-30.0% 30.1-40.0% 40.1-50.0% Skylight with Curb, Glass,% of Roof 0-2.0% 2.1-5.0%	Max. U (Fixed/ Operable) Ufixed ^{-0.57} Uoper ^{-0.67}	SHGC (All Orientations/ North-Oriented) SHGC _{all} -0.39 SHGC _{north} -0.49	Max. U (Fixed/ Operable) Ufixed-0.57 Uoper-0.67 Ufixed-0.57 Uoper-0.67 Ufixed-0.57 Uoper-0.67 Ufixed-0.57 Uoper-0.67 Ufixed-0.57 Uoper-0.67 Ufixed-0.46 Uoper-0.47	SHGC (All Orientations/ North-Oriented) SHGC _{all} -0.39 SHGC _{north} -0.49 SHGC _{north} -0.49 SHGC _{north} -0.49	Max. U (Fixed/ Operable) Ufixed-1.22 Uoper-1.27 Ufixed-1.22 Uoper-1.27 Ufixed-1.22 Uoper-1.27 Ufixed-1.22 Uoper-1.27 Ufixed-1.22 Uoper-1.27 Ufixed-1.22 Uoper-1.27	SHGC (All Orientations/ North-Oriented) SHGC _{all} -NR SHGC _{north} NR SHGC _{all} -NR SHGC _{north} NR SHGC _{all} -NR SHGC _{all} -NR SHGC _{all} -NR SHGC _{all} -NR SHGC _{north} NR
Vertical Glazing,% of Wall 0-10.0% 10.1-20.0% 20.1-30.0% 30.1-40.0% 40.1-50.0% Skylight with Curb, Glass,% of Roof 0-2.0% 2.1-5.0% Skylight with Curb, Plastic,% of Roof	Max. U (Fixed/ Operable) Ufixed-0.57 Uoper-0.67 Ufixed-0.57 Uoper-0.67 Ufixed-0.57 Uoper-0.67 Ufixed-0.57 Uoper-0.67 Ufixed-0.57 Uoper-0.67 Ufixed-0.46 Uoper-0.47 Uall-1.17 Uall-1.17	SHGC (All Orientations/ North-Oriented) SHGC _{all} -0.39 SHGC _{all} -0.49 SHGC _{all} -0.49 SHGC _{all} -0.39 SHGC _{north} -0.49 SHGC _{all} -0.39 SHGC _{north} -0.49 SHGC _{all} -0.39 SHGC _{all} -0.39 SHGC _{all} -0.49 SHGC _{all} -0.25 SHGC _{all} -0.25 SHGC _{north} -0.36	Max. U (Fixed/Operable) Ufixed-0.57 Uoper-0.67 Ufixed-0.57 Uoper-0.67 Ufixed-0.57 Uoper-0.67 Ufixed-0.57 Uoper-0.67 Ufixed-0.7 Uoper-0.67 Ufixed-0.46 Uoper-0.47 Uall-0.98 Uall-0.98	SHGC (All Orientations/ North-Oriented) SHGC _{all} -0.39 SHGC _{north} -0.49 SHGC _{all} -0.39 SHGC _{all} -0.36 SHGC _{all} -0.36 SHGC _{all} -0.36	Max. U (Fixed/ Operable) Ufixed-1.22 Uoper-1.27 Ufixed-1.22 Uoper-1.27 Ufixed-1.22 Uoper-1.27 Ufixed-1.22 Uoper-1.27 Ufixed-1.22 Uoper-1.27 Ufixed-1.22 Uoper-1.27 Ufixed-1.28 Uall-1.98 Uall-1.98	SHGC (All Orientations/ North-Oriented) SHGC _{all} -NR
Vertical Glazing,% of Wall 0-10.0% 10.1-20.0% 20.1-30.0% 30.1-40.0% 40.1-50.0% Skylight with Curb, Glass,% of Roof 0-2.0% 2.1-5.0% Skylight with Curb, Plastic,% of Roof 0-2.0%	Max. U (Fixed/ Operable) Ufixed-0.57 Uoper-0.67 Ufixed-0.57 Uoper-0.67 Ufixed-0.57 Uoper-0.67 Ufixed-0.57 Uoper-0.67 Ufixed-0.46 Uoper-0.47 Uall-1.17 Uall-1.30	SHGC (All Orientations/ North-Oriented) SHGC _{all} -0.39 SHGC _{north} -0.49 SHGC _{all} -0.25 SHGC _{north} -0.36 SHGC _{all} -0.49 SHGC _{all} -0.39 SHGC _{all} -0.49 SHGC _{all} -0.39	Max. U (Fixed/ Operable) Ufixed-0.57 Uoper-0.67 Ufixed-0.57 Uoper-0.67 Ufixed-0.57 Uoper-0.67 Ufixed-0.57 Uoper-0.67 Ufixed-0.46 Uoper-0.47 Uall-0.98 Uall-1.30	SHGC (All Orientations/ North-Oriented) SHGC _{all} -0.39 SHGC _{north} -0.49 SHGC _{all} -0.19 SHGC _{all} -0.25 SHGC _{north} -0.36	Max. U (Fixed/ Operable) Ufixed-1.22 Uoper-1.27 Ufixed-1.22 Uoper-1.27 Ufixed-1.22 Uoper-1.27 Ufixed-1.22 Uoper-1.27 Ufixed-1.22 Uoper-1.27 Ufixed-0.98 Uoper-1.02 Uall-1.98 Uall-1.98	SHGC (All Orientations/ North-Oriented) SHGCall-NR
Vertical Glazing,% of Wall 0-10.0% 10.1-20.0% 20.1-30.0% 30.1-40.0% 40.1-50.0% Skylight with Curb, Glass,% of Roof 0-2.0% 2.1-5.0% Skylight with Curb, Plastic,% of Roof 0-2.0% 2.1-5.0%	Max. U (Fixed/ Operable) Ufixed-0.57 Uoper-0.67 Ufixed-0.57 Uoper-0.67 Ufixed-0.57 Uoper-0.67 Ufixed-0.57 Uoper-0.67 Ufixed-0.57 Uoper-0.67 Ufixed-0.46 Uoper-0.47 Uall-1.17 Uall-1.17	SHGC (All Orientations/ North-Oriented) SHGC _{all} -0.39 SHGC _{all} -0.49 SHGC _{all} -0.49 SHGC _{all} -0.39 SHGC _{north} -0.49 SHGC _{all} -0.39 SHGC _{north} -0.49 SHGC _{all} -0.39 SHGC _{all} -0.39 SHGC _{all} -0.49 SHGC _{all} -0.25 SHGC _{all} -0.25 SHGC _{north} -0.36	Max. U (Fixed/Operable) Ufixed-0.57 Uoper-0.67 Ufixed-0.57 Uoper-0.67 Ufixed-0.57 Uoper-0.67 Ufixed-0.57 Uoper-0.67 Ufixed-0.7 Uoper-0.67 Ufixed-0.46 Uoper-0.47 Uall-0.98 Uall-0.98	SHGC (All Orientations/ North-Oriented) SHGC _{all} -0.39 SHGC _{north} -0.49 SHGC _{all} -0.39 SHGC _{all} -0.36 SHGC _{all} -0.36 SHGC _{all} -0.36	Max. U (Fixed/ Operable) Ufixed-1.22 Uoper-1.27 Ufixed-1.22 Uoper-1.27 Ufixed-1.22 Uoper-1.27 Ufixed-1.22 Uoper-1.27 Ufixed-1.22 Uoper-1.27 Ufixed-1.22 Uoper-1.27 Ufixed-1.28 Uall-1.98 Uall-1.98	SHGC (All Orientations/ North-Oriented) SHGC _{all} -NR
Vertical Glazing,% of Wall 0-10.0% 10.1-20.0% 20.1-30.0% 30.1-40.0% 40.1-50.0% Skylight with Curb, Glass,% of Roof 0-2.0% 2.1-5.0% Skylight with Curb, Plastic,% of Roof 0-2.0% 2.1-5.0% Skylight without Curb, All,% of Roof	Max. U (Fixed/ Operable) Ufixed-0.57 Uoper-0.67 Ufixed-0.57 Uoper-0.67 Ufixed-0.57 Uoper-0.67 Ufixed-0.57 Uoper-0.67 Ufixed-0.46 Uoper-0.47 Uall-1.17 Uall-1.17 Uall-1.30 Uall-1.30	SHGC (All Orientations/ North-Oriented) SHGC _{all} -0.39 SHGC _{all} -0.39 SHGC _{north} -0.49 SHGC _{all} -0.25 SHGC _{all} -0.25 SHGC _{all} -0.25 SHGC _{all} -0.36 SHGC _{all} -0.49 SHGC _{all} -0.49 SHGC _{all} -0.49 SHGC _{all} -0.39	Max. U (Fixed/ Operable) Ufixed-0.57 Uoper-0.67 Ufixed-0.57 Uoper-0.67 Ufixed-0.57 Uoper-0.67 Ufixed-0.57 Uoper-0.67 Ufixed-0.57 Uoper-0.67 Uall-0.98 Uall-0.98 Uall-1.30 Uall-1.30	SHGC (All Orientations/ North-Oriented) SHGC _{all} -0.39 SHGC _{north} -0.49 SHGC _{all} -0.39 SHGC _{all} -0.19 SHGC _{all} -0.25 SHGC _{north} -0.36 SHGC _{all} -0.25 SHGC _{all} -0.25 SHGC _{all} -0.25 SHGC _{all} -0.25	Max. U (Fixed/ Operable) Ufixed-1.22 Uoper-1.27 Ufixed-1.22 Uoper-1.27 Ufixed-1.22 Uoper-1.27 Ufixed-1.22 Uoper-1.27 Ufixed-1.22 Uoper-1.27 Ufixed-1.22 Uoper-1.27 Uall-1.98 Uall-1.98 Uall-1.99 Uall-1.90	SHGC (All Orientations/ North-Oriented) SHGCall-NR SHGCall-NR SHGCnorthNR SHGCnorthNR SHGCall-NR
Vertical Glazing,% of Wall 0-10.0% 10.1-20.0% 20.1-30.0% 30.1-40.0% 40.1-50.0% Skylight with Curb, Glass,% of Roof 0-2.0% 2.1-5.0% Skylight with Curb, Plastic,% of Roof 0-2.0% 2.1-5.0%	Max. U (Fixed/ Operable) Ufixed-0.57 Uoper-0.67 Ufixed-0.57 Uoper-0.67 Ufixed-0.57 Uoper-0.67 Ufixed-0.57 Uoper-0.67 Ufixed-0.46 Uoper-0.47 Uall-1.17 Uall-1.30	SHGC (All Orientations/ North-Oriented) SHGC _{all} -0.39 SHGC _{north} -0.49 SHGC _{all} -0.25 SHGC _{north} -0.36 SHGC _{all} -0.49 SHGC _{all} -0.39 SHGC _{all} -0.49 SHGC _{all} -0.39	Max. U (Fixed/ Operable) Ufixed-0.57 Uoper-0.67 Ufixed-0.57 Uoper-0.67 Ufixed-0.57 Uoper-0.67 Ufixed-0.57 Uoper-0.67 Ufixed-0.46 Uoper-0.47 Uall-0.98 Uall-1.30	SHGC (All Orientations/ North-Oriented) SHGC _{all} -0.39 SHGC _{north} -0.49 SHGC _{all} -0.19 SHGC _{all} -0.25 SHGC _{north} -0.36	Max. U (Fixed/ Operable) Ufixed-1.22 Uoper-1.27 Ufixed-1.22 Uoper-1.27 Ufixed-1.22 Uoper-1.27 Ufixed-1.22 Uoper-1.27 Ufixed-1.22 Uoper-1.27 Ufixed-0.98 Uoper-1.02 Uall-1.98 Uall-1.98	SHGC (All Orientations/ North-Oriented) SHGC _{all} -NR SHGC _{north} NR SHGC _{all} -NR

^{*}The following definitions apply: ci = continuous insulation (see Section 3.2), NR = no (insulation) requirement.

aException to A3.1.3.1 applies.

TABLE 5.5-5 Building Envelope Requirements For Climate Zone 5 (A,B,C)*

	Noi	ıresidential	Residential		Semiheated	
Opaque Elements	Assembly Maximum	Insulation Min. R-Value	Assembly Maximum	Insulation Min. R-Value	Assembly Maxi- mum	Insulation Min. R-Value
Roofs		-		•		
Insulation Entirely above Deck	U-0.063	R-15.0 ci	U-0.063	R-15.0 ci	U-0.173	R-5.0 ci
Metal Building	U-0.065	R-19.0	U-0.065	R-19.0	U-0.097	R-10.0
Attic and Other	U-0.034	R-30.0	U-0.027	R-38.0	U-0.053	R-19.0
Walls, Above-Grade						
Mass	U-0.123	R-7.6 ci	U-0.090	R-11.4 ci	U-0.580	NR
Metal Building	U-0.113	R-13.0	U-0.057	R-13.0 + R-13.0	U-0.123	R-11.0
Steel-Framed	U-0.084	R-13.0 + R-3.8 ci	U-0.064	R-13.0 + R-7.5 ci	U-0.124	R-13.0
Wood-Framed and Other	U-0.089	R-13.0	U-0.089	R-13.0	U-0.089	R-13.0
Wall, Below-Grade						
Below-Grade Wall	C-1.140	NR	C-1.140	NR	C-1.140	NR
Floors						
Mass	U-0.087	R-8.3 ci	U-0.074	R-10.4 ci	U-0.322	NR
Steel-Joist	U-0.052	R-19.0	U-0.038	R-30.0	U-0.069	R-13.0
Wood-Framed and Other	U-0.033	R-30.0	U-0.033	R-30.0	U-0.066	R-13.0
Slab-On-Grade Floors						
Unheated	F-0.730	NR	F-0.730	NR	F-0.730	NR
Heated	F-0.840	R-10 for 36 in.	F-0.840	R-10 for 36 in.	F-1.020	R-7.5 for 12 in.
Opaque Doors	1 0.0.0	10 101 50 111	1 0.0.0	10 10 10 10 11	1 1.020	10 700 101 12 111
Swinging	U-0.700		U-0.700		U-0.700	
Non-Swinging	U-1.450		U-0.500		U-1.450	
Tion Swinging	0 1.150		0.500		Assembly	
	A	4 11 34	Aggamble			
Fenestration	Assembly Max. U (Fixed/ Operable)	Assembly Max. SHGC (All Orientations/ North-Oriented)	Assembly Max. U (Fixed/ Operable)	Assembly Max. SHGC (All Orientations/ North-Oriented)	Max. U (Fixed/ Opera- ble)	Assembly Max. SHGC (All Orientations/ North-Oriented)
Fenestration Vertical Glazing,% of Wall	Max. U (Fixed/	SHGC (All Orientations/	Max. U (Fixed/	SHGC (All Orientations/ North-Oriented)	(Fixed/ Opera- ble)	SHGC (All Orientations/ North-Oriented)
	Max. U (Fixed/	SHGC (All Orientations/ North-Oriented)	Max. U (Fixed/ Operable) Ufixed-0.57	SHGC (All Orientations/ North-Oriented)	(Fixed/ Opera- ble)	SHGC (All Orientations/ North-Oriented)
Vertical Glazing,% of Wall	Max. U (Fixed/ Operable) Ufixed-0.57 Uoper-0.67	SHGC (All Orientations/ North-Oriented) SHGC _{all} -0.49 SHGC _{north} -0.49	Max. U (Fixed/ Operable) Ufixed-0.57 Uoper-0.67	SHGC (All Orientations/ North-Oriented) SHGC _{all} -0.49 SHGC _{north} -0.49	(Fixed/ Opera- ble) Ufixed-1.22 Uoper-1.27	SHGC (All Orientations/ North-Oriented) SHGC _{all} -NR SHGC _{north} NR
Vertical Glazing,% of Wall	Max. U (Fixed/ Operable) Ufixed-0.57 Uoper-0.67 Ufixed-0.57	SHGC (All Orientations/ North-Oriented) SHGC _{all} -0.49 SHGC _{north} -0.49 SHGC _{all} -0.39	Max. U (Fixed/ Operable) Uffixed-0.57 Uoper-0.67 Uffixed-0.57	SHGC (All Orientations/ North-Oriented) SHGC _{all} -0.49 SHGC _{north} -0.49 SHGC _{all} -0.39	(Fixed/ Opera- ble) Ufixed-1.22 Uoper-1.27 Ufixed-1.22	SHGC (All Orientations/ North-Oriented) SHGC _{all} -NR SHGC _{north} NR
Vertical Glazing,% of Wall 0-10.0%	Max. U (Fixed/ Operable) Ufixed-0.57 Uoper-0.67 Ufixed-0.57 Uoper-0.67	SHGC (All Orientations/ North-Oriented) SHGC _{all} -0.49 SHGC _{north} -0.49 SHGC _{all} -0.39 SHGC _{north} -0.49	Max. U (Fixed/ Operable) Ufixed-0.57 Uoper-0.67 Ufixed-0.57 Uoper-0.67	SHGC (All Orientations/ North-Oriented) SHGC _{all} -0.49 SHGC _{north} -0.49 SHGC _{all} -0.39 SHGC _{north} -0.49	Ufixed-1.22 Uoper-1.27 Ufixed-1.22 Uoper-1.27	SHGC (All Orientations/ North-Oriented) SHGC _{all} -NR SHGC _{north} NR SHGC _{all} -NR SHGC _{north} NR
Vertical Glazing,% of Wall 0-10.0%	Max. U (Fixed/ Operable) Ufixed ^{-0.57} Uoper ^{-0.67} Ufixed ^{-0.57} Uoper ^{-0.67} Ufixed ^{-0.57} Uoper ^{-0.57}	SHGC (All Orientations/ North-Oriented) SHGC _{all} -0.49 SHGC _{north} -0.49 SHGC _{north} -0.49 SHGC _{all} -0.39 SHGC _{all} -0.39	Max. U (Fixed/ Operable) Uffixed-0.57 Uoper-0.67 Uffixed-0.57	SHGC (All Orientations/ North-Oriented) SHGC _{all} -0.49 SHGC _{north} -0.49 SHGC _{all} -0.39 SHGC _{north} -0.49 SHGC _{all} -0.39	(Fixed/ Operable) Ufixed-1.22 Uoper-1.27 Ufixed-1.22 Uoper-1.27 Ufixed-1.22 Uoper-1.27	SHGC (All Orientations/ North-Oriented) SHGC _{all} -NR SHGC _{north} NR SHGC _{all} -NR SHGC _{north} NR SHGC _{all} -NR
Vertical Glazing,% of Wall 0-10.0% 10.1-20.0%	Max. U (Fixed/ Operable) Ufixed-0.57 Uoper-0.67 Ufixed-0.57 Uoper-0.67 Ufixed-0.57 Uoper-0.67	SHGC (All Orientations/ North-Oriented) SHGC _{all} -0.49 SHGC _{all} -0.39 SHGC _{north} -0.49 SHGC _{all} -0.39 SHGC _{north} -0.49 SHGC _{all} -0.39	Max. U (Fixed/ Operable) Ufixed-0.57 Uoper-0.67 Ufixed-0.57 Uoper-0.67 Ufixed-0.57 Uoper-0.67	SHGC (All Orientations/ North-Oriented) SHGC _{all} -0.49 SHGC _{north} -0.49 SHGC _{north} -0.49 SHGC _{all} -0.39 SHGC _{all} -0.39 SHGC _{north} -0.49	Ufixed-1.22 Uoper-1.27 Ufixed-1.22 Uoper-1.27 Ufixed-1.22 Uoper-1.27 Ufixed-1.22 Uoper-1.27	SHGC (All Orientations/ North-Oriented) SHGCall-NR SHGCnorthNR SHGCnorthNR SHGCall-NR SHGCall-NR SHGCnorthNR
Vertical Glazing,% of Wall 0-10.0% 10.1-20.0%	Max. U (Fixed/ Operable) Ufixed ^{-0.57} Uoper ^{-0.67} Ufixed ^{-0.57} Uoper ^{-0.67} Ufixed ^{-0.57} Uoper ^{-0.57}	SHGC (All Orientations/ North-Oriented) SHGC _{all} -0.49 SHGC _{north} -0.49 SHGC _{north} -0.49 SHGC _{north} -0.49 SHGC _{all} -0.39	Max. U (Fixed/ Operable) Ufixed-0.57 Uoper-0.67 Ufixed-0.57 Uoper-0.67 Ufixed-0.57 Uoper-0.57	SHGC (All Orientations/ North-Oriented) SHGC _{all} -0.49 SHGC _{north} -0.49 SHGC _{all} -0.39 SHGC _{north} -0.49 SHGC _{all} -0.39 SHGC _{north} -0.49 SHGC _{north} -0.49	Ufixed-1.22 Uoper-1.27 Ufixed-1.22 Uoper-1.27 Ufixed-1.22 Uoper-1.27 Ufixed-1.22 Uoper-1.27 Ufixed-1.22	SHGC (All Orientations/ North-Oriented) SHGCall-NR SHGCall-NR SHGCall-NR SHGCall-NR SHGCall-NR SHGCall-NR SHGCall-NR
Vertical Glazing,% of Wall 0-10.0% 10.1-20.0% 20.1-30.0%	Max. U (Fixed/ Operable) Ufixed-0.57 Uoper-0.67 Ufixed-0.57 Uoper-0.67 Ufixed-0.57 Uoper-0.67 Ufixed-0.57 Uoper-0.67 Uoper-0.67	SHGC (All Orientations/ North-Oriented) SHGC _{all} -0.49 SHGC _{all} -0.39 SHGC _{north} -0.49 SHGC _{all} -0.39 SHGC _{all} -0.39 SHGC _{north} -0.49 SHGC _{all} -0.39 SHGC _{north} -0.49	Max. U (Fixed/ Operable) Ufixed-0.57 Uoper-0.67 Ufixed-0.57 Uoper-0.67 Ufixed-0.57 Uoper-0.67 Ufixed-0.57 Uoper-0.67 Ufixed-0.57 Uoper-0.67	SHGC (All Orientations/ North-Oriented) SHGC _{all} -0.49 SHGC _{north} -0.49 SHGC _{all} -0.39 SHGC _{north} -0.49 SHGC _{all} -0.39 SHGC _{north} -0.49 SHGC _{all} -0.39 SHGC _{north} -0.49	Ufixed-1.22 Uoper-1.27 Ufixed-1.22 Uoper-1.27 Ufixed-1.22 Uoper-1.27 Ufixed-1.22 Uoper-1.27 Ufixed-1.22 Uoper-1.27	SHGC (All Orientations/ North-Oriented) SHGC _{all} -NR SHGC _{all} -NR SHGC _{all} -NR SHGC _{north} NR SHGC _{all} -NR SHGC _{all} -NR SHGC _{all} -NR SHGC _{all} -NR SHGC _{north} NR
Vertical Glazing,% of Wall 0-10.0% 10.1-20.0% 20.1-30.0%	Max. U (Fixed/ Operable) Ufixed-0.57 Uoper-0.67 Ufixed-0.57 Uoper-0.67 Ufixed-0.57 Uoper-0.67 Ufixed-0.57 Uoper-0.67	SHGC (All Orientations/ North-Oriented) SHGC _{all} -0.49 SHGC _{all} -0.39	Max. U (Fixed/ Operable) Ufixed-0.57 Uoper-0.67 Ufixed-0.57 Uoper-0.67 Ufixed-0.57 Uoper-0.67 Ufixed-0.57 Uoper-0.67	SHGC (All Orientations/ North-Oriented) SHGC _{all} -0.49 SHGC _{north} -0.49 SHGC _{all} -0.39 SHGC _{north} -0.49 SHGC _{all} -0.39 SHGC _{north} -0.49 SHGC _{north} -0.49	Ufixed-1.22 Uoper-1.27 Ufixed-1.22 Uoper-1.27 Ufixed-1.22 Uoper-1.27 Ufixed-1.22 Uoper-1.27 Ufixed-1.22 Uoper-1.27	SHGC (All Orientations/ North-Oriented) SHGCall-NR SHGCall-NR SHGCall-NR SHGCall-NR SHGCall-NR SHGCall-NR SHGCall-NR
Vertical Glazing,% of Wall 0-10.0% 10.1-20.0% 20.1-30.0% 30.1-40.0%	Max. U (Fixed/ Operable) Ufixed-0.57 Uoper-0.67 Ufixed-0.57 Uoper-0.67 Ufixed-0.57 Uoper-0.67 Ufixed-0.57 Uoper-0.67 Uoper-0.67	SHGC (All Orientations/ North-Oriented) SHGC _{all} -0.49 SHGC _{all} -0.39 SHGC _{north} -0.49 SHGC _{all} -0.39 SHGC _{all} -0.39 SHGC _{north} -0.49 SHGC _{all} -0.39 SHGC _{north} -0.49	Max. U (Fixed/ Operable) Ufixed-0.57 Uoper-0.67 Ufixed-0.57 Uoper-0.67 Ufixed-0.57 Uoper-0.67 Ufixed-0.57 Uoper-0.67 Ufixed-0.57 Uoper-0.67	SHGC (All Orientations/ North-Oriented) SHGC _{all} -0.49 SHGC _{north} -0.49 SHGC _{all} -0.39 SHGC _{north} -0.49 SHGC _{all} -0.39 SHGC _{north} -0.49 SHGC _{all} -0.39 SHGC _{north} -0.49	Ufixed-1.22 Uoper-1.27 Uoper-1.27 Uoper-1.27 Ufixed-1.22 Uoper-1.27 Ufixed-1.22 Uoper-1.27 Ufixed-1.22 Uoper-1.27	SHGC (All Orientations/ North-Oriented) SHGC _{all} -NR SHGC _{all} -NR SHGC _{all} -NR SHGC _{north} NR SHGC _{all} -NR SHGC _{all} -NR SHGC _{all} -NR SHGC _{all} -NR SHGC _{north} NR
Vertical Glazing,% of Wall 0-10.0% 10.1-20.0% 20.1-30.0% 30.1-40.0%	Max. U (Fixed/ Operable) Ufixed-0.57 Uoper-0.67 Ufixed-0.57 Uoper-0.67 Ufixed-0.57 Uoper-0.67 Ufixed-0.57 Uoper-0.67 Ufixed-0.47 Uoper-0.47	SHGC (All Orientations/ North-Oriented) SHGC _{all} -0.49 SHGC _{north} -0.49 SHGC _{all} -0.39 SHGC _{all} -0.39 SHGC _{all} -0.39 SHGC _{north} -0.49 SHGC _{north} -0.49 SHGC _{all} -0.39 SHGC _{all} -0.39 SHGC _{all} -0.39	Max. U (Fixed/ Operable) Ufixed-0.57 Uoper-0.67 Ufixed-0.57 Uoper-0.67 Ufixed-0.57 Uoper-0.67 Ufixed-0.57 Uoper-0.67 Ufixed-0.57 Uoper-0.67 Ufixed-0.46 Uoper-0.47	SHGC (All Orientations/ North-Oriented) SHGC _{all} -0.49 SHGC _{north} -0.49 SHGC _{all} -0.39 SHGC _{north} -0.49 SHGC _{all} -0.39 SHGC _{north} -0.49 SHGC _{north} -0.49 SHGC _{all} -0.39 SHGC _{north} -0.49	Ufixed-1.22 Uoper-1.27 Ufixed-1.22 Uoper-1.27 Ufixed-1.22 Uoper-1.27 Ufixed-1.22 Uoper-1.27 Ufixed-1.22 Uoper-1.27 Ufixed-0.98 Uoper-1.02	SHGC (All Orientations/ North-Oriented) SHGC _{all} -NR SHGC _{north} NR SHGC _{all} -NR SHGC _{north} NR SHGC _{all} -NR SHGC _{all} -NR SHGC _{all} -NR SHGC _{all} -NR SHGC _{north} NR
Vertical Glazing,% of Wall 0-10.0% 10.1-20.0% 20.1-30.0% 30.1-40.0%	Max. U (Fixed/ Operable) Ufixed-0.57 Uoper-0.67 Ufixed-0.57 Uoper-0.67 Ufixed-0.57 Uoper-0.67 Ufixed-0.57 Uoper-0.67 Ufixed-0.46 Uoper-0.47 Uall-1.17	SHGC (All Orientations/North-Oriented) SHGC _{all} -0.49 SHGC _{north} -0.49 SHGC _{north} -0.49 SHGC _{north} -0.49 SHGC _{all} -0.39 SHGC _{north} -0.49 SHGC _{all} -0.49	Max. U (Fixed/ Operable) Ufixed-0.57 Uoper-0.67 Ufixed-0.57 Uoper-0.67 Ufixed-0.57 Uoper-0.67 Ufixed-0.57 Uoper-0.67 Ufixed-0.57 Uoper-0.47 Ufixed-0.46 Uoper-0.47	SHGC (All Orientations/ North-Oriented) SHGC _{all} -0.49 SHGC _{north} -0.49 SHGC _{all} -0.39 SHGC _{north} -0.49 SHGC _{all} -0.49	Ufixed-1.22 Uoper-1.27 Uoper-1.27 Ufixed-1.22 Uoper-1.27 Ufixed-1.22 Uoper-1.27 Ufixed-1.22 Uoper-1.27 Ufixed-0.98 Uoper-1.02 Uoper-1.02	SHGC (All Orientations/ North-Oriented) SHGC _{all} -NR
Vertical Glazing,% of Wall 0-10.0% 10.1-20.0% 20.1-30.0% 30.1-40.0% 40.1-50.0% Skylight with Curb, Glass,% of Roof	Max. U (Fixed/ Operable) Ufixed-0.57 Uoper-0.67 Ufixed-0.57 Uoper-0.67 Ufixed-0.57 Uoper-0.67 Ufixed-0.57 Uoper-0.67 Ufixed-0.47 Uoper-0.47	SHGC (All Orientations/North-Oriented) SHGC _{all} -0.49 SHGC _{north} -0.49 SHGC _{all} -0.39 SHGC _{north} -0.49 SHGC _{all} -0.39 SHGC _{all} -0.39 SHGC _{north} -0.49 SHGC _{all} -0.39 SHGC _{all} -0.39	Max. U (Fixed/ Operable) Ufixed-0.57 Uoper-0.67 Ufixed-0.57 Uoper-0.67 Ufixed-0.57 Uoper-0.67 Ufixed-0.57 Uoper-0.67 Ufixed-0.57 Uoper-0.67 Ufixed-0.46 Uoper-0.47	SHGC (All Orientations/ North-Oriented) SHGC _{all} -0.49 SHGC _{north} -0.49 SHGC _{all} -0.39 SHGC _{north} -0.49 SHGC _{north} -0.49	Ufixed-1.22 Uoper-1.27 Ufixed-1.22 Uoper-1.27 Ufixed-1.22 Uoper-1.27 Ufixed-1.22 Uoper-1.27 Ufixed-1.22 Uoper-1.27 Ufixed-0.98 Uoper-1.02	SHGC (All Orientations/ North-Oriented) SHGC _{all} -NR SHGC _{north} NR SHGC _{all} -NR SHGC _{north} NR SHGC _{all} -NR SHGC _{all} -NR SHGC _{all} -NR SHGC _{all} -NR SHGC _{north} NR
Vertical Glazing,% of Wall 0-10.0% 10.1-20.0% 20.1-30.0% 30.1-40.0% 40.1-50.0% Skylight with Curb, Glass,% of Roof 0-2.0%	Max. U (Fixed/ Operable) Ufixed-0.57 Uoper-0.67 Ufixed-0.57 Uoper-0.67 Ufixed-0.57 Uoper-0.67 Ufixed-0.57 Uoper-0.67 Ufixed-0.57 Uoper-0.47 Uall-1.17 Uall-1.17	SHGC (All Orientations/North-Oriented) SHGC _{all} -0.49 SHGC _{north} -0.49 SHGC _{north} -0.49 SHGC _{north} -0.49 SHGC _{all} -0.39 SHGC _{north} -0.49 SHGC _{all} -0.49	Max. U (Fixed/ Operable) Ufixed-0.57 Uoper-0.67 Ufixed-0.57 Uoper-0.67 Ufixed-0.57 Uoper-0.67 Ufixed-0.57 Uoper-0.67 Ufixed-0.57 Uoper-0.47 Ufixed-0.46 Uoper-0.47	SHGC (All Orientations/ North-Oriented) SHGC _{all} -0.49 SHGC _{north} -0.49 SHGC _{all} -0.39 SHGC _{north} -0.49 SHGC _{all} -0.49	Ufixed-1.22 Uoper-1.27 Uoper-1.27 Ufixed-1.22 Uoper-1.27 Ufixed-1.22 Uoper-1.27 Ufixed-1.22 Uoper-1.27 Ufixed-0.98 Uoper-1.02 Uoper-1.02	SHGC (All Orientations/ North-Oriented) SHGC _{all} -NR SHGC _{all} -NR SHGC _{north} NR SHGC _{north} NR SHGC _{all} -NR SHGC _{north} NR SHGC _{all} -NR SHGC _{all} -NR SHGC _{all} -NR SHGC _{all} -NR
Vertical Glazing,% of Wall 0-10.0% 10.1-20.0% 20.1-30.0% 30.1-40.0% 40.1-50.0% Skylight with Curb, Glass,% of Roof 0-2.0% 2.1-5.0%	Max. U (Fixed/ Operable) Ufixed-0.57 Uoper-0.67 Ufixed-0.57 Uoper-0.67 Ufixed-0.57 Uoper-0.67 Ufixed-0.57 Uoper-0.67 Ufixed-0.57 Uoper-0.67 Ufixed-0.46 Uoper-0.47 Uall-1.17 Uall-1.10	SHGC (All Orientations/North-Oriented) SHGCall-0.49 SHGCall-0.39 SHGCnorth-0.49 SHGCall-0.39 SHGCnorth-0.49 SHGCall-0.39 SHGCall-0.39 SHGCnorth-0.49 SHGCall-0.39 SHGCall-0.39 SHGCall-0.36 SHGCall-0.49 SHGCall-0.39 SHGCall-0.77	Max. U (Fixed/Operable) Ufixed-0.57 Uoper-0.67 Ufixed-0.57 Uoper-0.67 Ufixed-0.57 Uoper-0.67 Ufixed-0.57 Uoper-0.67 Ufixed-0.57 Uoper-0.67 Ufixed-0.17 Uall-1.17 Uall-1.10	SHGC (All Orientations/ North-Oriented) SHGC _{all} -0.49 SHGC _{all} -0.49 SHGC _{all} -0.39 SHGC _{north} -0.49 SHGC _{all} -0.39 SHGC _{north} -0.49 SHGC _{all} -0.39 SHGC _{all} -0.49 SHGC _{all} -0.49 SHGC _{all} -0.26 SHGC _{all} -0.49 SHGC _{all} -0.49 SHGC _{all} -0.49 SHGC _{all} -0.49 SHGC _{all} -0.77	Ufixed-1.22 Uoper-1.27 Ufixed-1.22 Uoper-1.27 Ufixed-1.22 Uoper-1.27 Ufixed-1.22 Uoper-1.27 Ufixed-0.98 Uoper-1.02 Uall-1.98 Uall-1.98	SHGC (All Orientations/ North-Oriented) SHGC _{all} -NR SHGC _{north} NR SHGC _{all} -NR
Vertical Glazing,% of Wall 0-10.0% 10.1-20.0% 20.1-30.0% 30.1-40.0% 40.1-50.0% Skylight with Curb, Glass,% of Roof 0-2.0% 2.1-5.0% Skylight with Curb, Plastic,% of Roof	Max. U (Fixed/ Operable) Ufixed-0.57 Uoper-0.67 Ufixed-0.57 Uoper-0.67 Ufixed-0.57 Uoper-0.67 Ufixed-0.57 Uoper-0.67 Ufixed-0.57 Uoper-0.47 Uall-1.17 Uall-1.17	SHGC (All Orientations/North-Oriented) SHGCall-0.49 SHGCall-0.49 SHGCall-0.39 SHGCnorth-0.49 SHGCall-0.39 SHGCall-0.39 SHGCall-0.39 SHGCall-0.39 SHGCall-0.39 SHGCall-0.49 SHGCall-0.49 SHGCall-0.26 SHGCall-0.26 SHGCnorth-0.49 SHGCall-0.39	Max. U (Fixed/Operable) Ufixed-0.57 Uoper-0.67 Ufixed-0.57 Uoper-0.67 Ufixed-0.57 Uoper-0.67 Ufixed-0.57 Uoper-0.67 Ufixed-0.57 Uoper-0.67 Ufixed-0.46 Uoper-0.47 Uall-1.17	SHGC (All Orientations/ North-Oriented) SHGC _{all} -0.49 SHGC _{all} -0.49 SHGC _{north} -0.49 SHGC _{all} -0.39 SHGC _{north} -0.49 SHGC _{all} -0.26 SHGC _{all} -0.26 SHGC _{all} -0.39	Ufixed-1.22 Uoper-1.27 Ufixed-1.22 Uoper-1.27 Ufixed-1.22 Uoper-1.27 Ufixed-1.22 Uoper-1.27 Ufixed-0.98 Uoper-1.02 Uall-1.98	SHGC (All Orientations/ North-Oriented) SHGC _{all} -NR
Vertical Glazing,% of Wall 0-10.0% 10.1-20.0% 20.1-30.0% 30.1-40.0% 40.1-50.0% Skylight with Curb, Glass,% of Roof 0-2.0% 2.1-5.0% Skylight with Curb, Plastic,% of Roof 0-2.0%	Max. U (Fixed/ Operable) Ufixed-0.57 Uoper-0.67 Ufixed-0.57 Uoper-0.67 Ufixed-0.57 Uoper-0.67 Ufixed-0.57 Uoper-0.67 Ufixed-0.57 Uoper-0.67 Ufixed-0.46 Uoper-0.47 Uall-1.17 Uall-1.10	SHGC (All Orientations/North-Oriented) SHGCall-0.49 SHGCall-0.39 SHGCnorth-0.49 SHGCall-0.39 SHGCnorth-0.49 SHGCall-0.39 SHGCall-0.39 SHGCnorth-0.49 SHGCall-0.39 SHGCall-0.39 SHGCall-0.36 SHGCall-0.49 SHGCall-0.39 SHGCall-0.77	Max. U (Fixed/Operable) Ufixed-0.57 Uoper-0.67 Ufixed-0.57 Uoper-0.67 Ufixed-0.57 Uoper-0.67 Ufixed-0.57 Uoper-0.67 Ufixed-0.57 Uoper-0.67 Ufixed-0.17 Uall-1.17 Uall-1.10	SHGC (All Orientations/ North-Oriented) SHGC _{all} -0.49 SHGC _{all} -0.49 SHGC _{all} -0.39 SHGC _{north} -0.49 SHGC _{all} -0.39 SHGC _{north} -0.49 SHGC _{all} -0.39 SHGC _{all} -0.49 SHGC _{all} -0.49 SHGC _{all} -0.26 SHGC _{all} -0.49 SHGC _{all} -0.49 SHGC _{all} -0.49 SHGC _{all} -0.49 SHGC _{all} -0.77	Ufixed-1.22 Uoper-1.27 Ufixed-1.22 Uoper-1.27 Ufixed-1.22 Uoper-1.27 Ufixed-1.22 Uoper-1.27 Ufixed-1.22 Uoper-1.27 Ufixed-1.22 Uoper-1.02 Uall-1.98 Uall-1.98 Uall-1.90	SHGC (All Orientations/ North-Oriented) SHGC _{all} -NR SHGC _{north} NR SHGC _{all} -NR
Vertical Glazing,% of Wall 0-10.0% 10.1-20.0% 20.1-30.0% 30.1-40.0% 40.1-50.0% Skylight with Curb, Glass,% of Roof 0-2.0% 2.1-5.0% Skylight with Curb, Plastic,% of Roof 0-2.0% 2.1-5.0%	Max. U (Fixed/ Operable) Ufixed-0.57 Uoper-0.67 Ufixed-0.57 Uoper-0.67 Ufixed-0.57 Uoper-0.67 Ufixed-0.57 Uoper-0.67 Ufixed-0.57 Uoper-0.67 Ufixed-0.46 Uoper-0.47 Uall-1.17 Uall-1.10	SHGC (All Orientations/North-Oriented) SHGCall-0.49 SHGCall-0.39 SHGCnorth-0.49 SHGCall-0.39 SHGCnorth-0.49 SHGCall-0.39 SHGCall-0.39 SHGCnorth-0.49 SHGCall-0.39 SHGCall-0.39 SHGCall-0.36 SHGCall-0.49 SHGCall-0.39 SHGCall-0.77	Max. U (Fixed/Operable) Ufixed-0.57 Uoper-0.67 Ufixed-0.57 Uoper-0.67 Ufixed-0.57 Uoper-0.67 Ufixed-0.57 Uoper-0.67 Ufixed-0.57 Uoper-0.67 Ufixed-0.17 Uall-1.17 Uall-1.10	SHGC (All Orientations/ North-Oriented) SHGC _{all} -0.49 SHGC _{all} -0.49 SHGC _{all} -0.39 SHGC _{north} -0.49 SHGC _{all} -0.39 SHGC _{north} -0.49 SHGC _{all} -0.39 SHGC _{all} -0.49 SHGC _{all} -0.49 SHGC _{all} -0.26 SHGC _{all} -0.49 SHGC _{all} -0.49 SHGC _{all} -0.49 SHGC _{all} -0.49 SHGC _{all} -0.77	Ufixed-1.22 Uoper-1.27 Ufixed-1.22 Uoper-1.27 Ufixed-1.22 Uoper-1.27 Ufixed-1.22 Uoper-1.27 Ufixed-0.98 Uoper-1.02 Uall-1.98 Uall-1.98	SHGC (All Orientations/ North-Oriented) SHGC _{all} -NR SHGC _{north} NR SHGC _{all} -NR SHGC _{all} -NR SHGC _{all} -NR SHGC _{north} NR SHGC _{all} -NR

 $^{{\}bf *The\ following\ definitions\ apply:\ ci=continuous\ insulation\ (see\ Section\ 3.2),\ NR=no\ (insulation)\ requirement.}$

TABLE 5.5-6 Building Envelope Requirements For Climate Zone 6 (A,B)*

	Noi	Nonresidential		Residential		Semiheated	
						Assembly	
Opaque Elements	Assembly Maximum	Insulation Min. R-Value	Assembly Maximum	Insulation Min. R-Value	Maxi- mum	Insulation Min. R-Value	
Roofs							
Insulation Entirely above Deck	U-0.063	R-15.0 ci	U-0.063	R-15.0 ci	U-0.173	R-5.0 ci	
Metal Building	U-0.065	R-19.0	U-0.065	R-19.0	U-0.097	R-10.0	
Attic and Other	U-0.027	R-38.0	U-0.027	R-38.0	U-0.053	R-19.0	
Walls, Above-Grade							
Mass	U-0.104	R-9.5 ci	U-0.090	R-11.4 ci	U-0.580	NR	
Metal Building	U-0.113	R-13.0	U-0.057	R-13.0 + R-13.0	U-0.113	R-13.0	
Steel-Framed	U-0.084	R-13.0 + R-3.8 ci	U-0.064	R-13.0 + R-7.5 ci	U-0.124	R-13.0	
Wood-Framed and Other	U-0.089	R-13.0	U-0.064	R-13.0 + R-3.8 ci	U-0.089	R-13.0	
Wall, Below-Grade							
Below-Grade Wall	C-1.140	NR	C-0.119	R-7.5 ci	C-1.140	NR	
Floors						<u> </u>	
Mass	U-0.087	R-8.3 ci	U-0.064	R-12.5 ci	U-0.322	NR	
Steel-Joist	U-0.038	R-30.0	U-0.038	R-30.0	U-0.069	R-13.0	
Wood-Framed and Other	U-0.033	R-30.0	U-0.033	R-30.0	U0066	R-13.0	
Slab-On-Grade Floors	0.033	10.0	0.033	10 30.0	C .0000	10.0	
Unheated	F-0.730	NR	F-0.730	NR	F-0.730	NR	
Heated	F-0.840	R-10 for 36 in.	F-0.780	R-10 for 48 in.	F-1.020	R-7.5 for 12 in.	
Opaque Doors	1-0.840	K-10 101 30 III.	1-0.780	K-10 101 48 III.	1-1.020	K-7.3 101 12 III.	
	11.0.700		11.0.500		11.0.700		
Swinging Non-Service in a	U-0.700		U-0.500		U-0.700		
Non-Swinging	U-0.500		U-0.500	1	U-1.450	l	
	Assembly Max. U	Assembly Max. SHGC (All	Assembly Max. U	Assembly Max. SHGC (All	Assembly Max. U	Assembly Max. SHGC (All	
	(Fixed/	Orientations/	(Fixed/	Orientations/	(Fixed/	Orientations/	
Fenestration	Operable)	North-Oriented)	Operable)	North-Oriented)	Operable)	North-Oriented)	
Vertical Glazing,% of Wall							
0-10.0%	Ufixed-0.57	SHGC _{all} -0.49	Ufixed ^{-0.57}	SHGC _{all} -0.49	Ufixed-1.22	SHGC _{all} -NR	
	Uoper-0.67	SHGC _{north} -0.49	Uoper-0.67	SHGC _{north} -0.64		SHGC _{north} NR	
10.1-20.0%	Ufixed ^{-0.57}	SHGC _{all} -0.39	Ufixed ^{-0.57}	SHGC _{all} -0.39	Ufixed-1.22	SHGC _{all} -NR	
	Uoper-0.67	SHGC _{north} -0.49	Uoper-0.67	SHGC _{north} -0.49	Uoper-1.27	SHGC _{north} NR	
20.1-30.0%	Ufixed-0.57	SHGC _{all} -0.39	Ufixed ^{-0.57}	SHGC _{all} -0.39	Ufixed-1.22	SHGC _{all} -NR	
	Uoper-0.67	SHGC _{north} -0.49	Uoper-0.67	SHGC _{north} -0.49		SHGC _{north} NR	
30.1-40.0%	Ufixed ^{-0.57}	SHGC _{all} -0.39	Ufixed ^{-0.57}	SHGC _{all} -0.39		SHGC _{all} -NR	
	Uoper-0.67	SHGC _{north} -0.49	Uoper-0.67	SHGC _{north} -0.49		SHGC _{north} NR	
	oper	north		north "."			
40.1-50.0%						SHGC _{all} -NR	
40.1-50.0%	Ufixed-0.46	SHGC _{all} -0.26	Ufixed-0.46	SHGC _{all} -0.26	Ufixed ^{-0.98}	SHGC _{all} -NR SHGC _{north} NR	
					Ufixed ^{-0.98}	SHGC _{all} -NR SHGC _{north} NR	
Skylight with Curb, Glass,% of Roof	Ufixed-0.46 Uoper-0.47	SHGC _{all} -0.26 SHGC _{north} -0.49	Ufixed ^{-0.46} Uoper ^{-0.47}	SHGC _{all} -0.26 SHGC _{north} -0.49	Ufixed ^{-0.98} Uoper ^{-1.02}	SHGC _{north} NR	
Skylight with Curb, Glass,% of Roof 0-2.0%	Ufixed-0.46 Uoper-0.47 Uall-1.17	SHGC _{all} -0.26 SHGC _{north} -0.49 SHGC _{all} -0.49	Ufixed-0.46 Uoper-0.47 Uall-0.98	SHGC _{all} -0.26 SHGC _{north} -0.49 SHGC _{all} -0.46	Ufixed-0.98 Uoper-1.02 Uall-1.98	$^{ m SHGC}_{ m north}{}^{ m NR}$ $^{ m SHGC}_{ m all}{}^{ m -NR}$	
Skylight with Curb, Glass,% of Roof 0-2.0% 2.1-5.0%	Ufixed-0.46 Uoper-0.47	SHGC _{all} -0.26 SHGC _{north} -0.49	Ufixed ^{-0.46} Uoper ^{-0.47}	SHGC _{all} -0.26 SHGC _{north} -0.49	Ufixed ^{-0.98} Uoper ^{-1.02}	SHGC _{north} NR	
Skylight with Curb, Glass,% of Roof 0-2.0% 2.1-5.0% Skylight with Curb, Plastic,% of Roof	Ufixed-0.46 Uoper-0.47 Uall-1.17 Uall-1.17	SHGC _{all} -0.26 SHGC _{north} -0.49 SHGC _{all} -0.49 SHGC _{all} -0.49	Unjer-0.46 Uoper-0.47 Uall-0.98 Uall-0.98	SHGC _{all} -0.26 SHGC _{north} -0.49 SHGC _{all} -0.46 SHGC _{all} -0.36	Ufixed-0.98 Uoper-1.02 Uall-1.98 Uall-1.98	SHGC _{north} NR SHGC _{all} -NR SHGC _{all} -NR	
Skylight with Curb, Glass,% of Roof 0-2.0% 2.1-5.0% Skylight with Curb, Plastic,% of Roof 0-2.0%	Ufixed-0.46 Uoper-0.47 Uall-1.17 Uall-1.17 Uall-0.87	SHGC _{all} -0.26 SHGC _{north} -0.49 SHGC _{all} -0.49 SHGC _{all} -0.49	Unixed -0.46 Uoper -0.47 Uall -0.98 Uall -0.98	SHGC _{all} -0.26 SHGC _{north} -0.49 SHGC _{all} -0.46 SHGC _{all} -0.36	Ufixed-0.98 Uoper-1.02 Uall-1.98 Uall-1.98 Uall-1.90	SHGC _{north} NR SHGC _{all} -NR SHGC _{all} -NR	
Skylight with Curb, Glass,% of Roof 0-2.0% 2.1-5.0% Skylight with Curb, Plastic,% of Roof 0-2.0% 2.1-5.0%	Ufixed-0.46 Uoper-0.47 Uall-1.17 Uall-1.17	SHGC _{all} -0.26 SHGC _{north} -0.49 SHGC _{all} -0.49 SHGC _{all} -0.49	Unjer-0.46 Uoper-0.47 Uall-0.98 Uall-0.98	SHGC _{all} -0.26 SHGC _{north} -0.49 SHGC _{all} -0.46 SHGC _{all} -0.36	Ufixed-0.98 Uoper-1.02 Uall-1.98 Uall-1.98	SHGC _{north} NR SHGC _{all} -NR SHGC _{all} -NR	
Skylight with Curb, Glass,% of Roof 0-2.0% 2.1-5.0% Skylight with Curb, Plastic,% of Roof 0-2.0% 2.1-5.0% Skylight without Curb, All,% of Roof	Ufixed-0.46 Uoper-0.47 Uall-1.17 Uall-1.17 Uall-0.87 Uall-0.87	SHGC _{all} -0.26 SHGC _{north} -0.49 SHGC _{all} -0.49 SHGC _{all} -0.49 SHGC _{all} -0.71 SHGC _{all} -0.58	Unixed -0.46 Upper -0.47 Uall -0.98 Uall -0.98 Uall -0.74 Uall -0.74	SHGC _{all} -0.26 SHGC _{north} -0.49 SHGC _{all} -0.46 SHGC _{all} -0.36 SHGC _{all} -0.65 SHGC _{all} -0.55	Ufixed-0.98 Uoper-1.02 Uall-1.98 Uall-1.98 Uall-1.90 Uall-1.90	SHGC _{north} NR SHGC _{all} -NR SHGC _{all} -NR SHGC _{all} -NR SHGC _{all} -NR	
Skylight with Curb, Glass,% of Roof 0-2.0% 2.1-5.0% Skylight with Curb, Plastic,% of Roof 0-2.0% 2.1-5.0%	Ufixed-0.46 Uoper-0.47 Uall-1.17 Uall-1.17 Uall-0.87	SHGC _{all} -0.26 SHGC _{north} -0.49 SHGC _{all} -0.49 SHGC _{all} -0.49	Unixed -0.46 Uoper -0.47 Uall -0.98 Uall -0.98	SHGC _{all} -0.26 SHGC _{north} -0.49 SHGC _{all} -0.46 SHGC _{all} -0.36	Ufixed-0.98 Uoper-1.02 Uall-1.98 Uall-1.98 Uall-1.90	SHGC _{north} NR SHGC _{all} -NR SHGC _{all} -NR	

^{*}The following definitions apply: ci = continuous insulation (see Section 3.2), NR = no (insulation) requirement.

TABLE 5.5-7 Building Envelope Requirements For Climate Zone 7*

	Nor	residential	Residential		Semiheated	
Opaque Elements	Assembly Maximum	Insulation Min. R-Value	Assembly Maximum	Insulation Min. R-Value	Assembly Maxi- mum	Insulation Min. R-Value
Roofs		•		<u>•</u>		•
Insulation Entirely above Deck	U-0.063	R-15.0 ci	U-0.063	R-15.0 ci	U-0.173	R-5.0 ci
Metal Building	U-0.065	R-19.0	U-0.065	R-19.0	U-0.097	R-10.0
Attic and Other	U-0.027	R-38.0	U-0.027	R-38.0	U-0.053	R-19.0
Walls, Above-Grade						
Mass	U-0.090	R-11.4 ci	U-0.080	R-13.3 ci	U-0.580	NR
Metal Building	U-0.057	R-13.0 + R-13.0	U-0.057	R-13.0 + R-13.0	U-0.113	R-13.0
Steel-Framed	U-0.064	R-13.0 + R-7.5 ci	U-0.064	R-13.0 + R-7.5 ci	U-0.124	R-13.0
Wood-Framed and Other	U-0.089	R-13.0	U-0.051	R-13.0 + R-7.5 ci	U-0.089	R-13.0
Wall, Below-Grade						
Below-Grade Wall	C-0.119	R-7.5 ci	C-0.119	R-7.5 ci	C-1.140	NR
Floors						
Mass	U-0.087	R-8.3 ci	U-0.064	R-12.5 ci	U-0.137	R-4.2 ci
Steel-Joist	U-0.038	R-30.0	U-0.038	R-30.0	U-0.052	R-19.0
Wood-Framed and Other	U-0.033	R-30.0	U-0.033	R-30.0	U-0.066	R-13.0
Slab-On-Grade Floors						
Unheated	F-0.730	NR	F-0.540	R-10 for 24 in.	F-0.730	NR
Heated	F-0.840	R-10 for 36 in.	F-0.780	R-10 for 48 in.	F-1.020	R-7.5 for 12 in.
Opaque Doors	1 0.0.0	10 101 50 111	1 0.700	10 101 10 111	1 1.020	10,10,10,12,111
Swinging	U-0.700		U-0.500		U-0.700	
Non-Swinging	U-0.500		U-0.500		U-1.450	
That a marging	Assembly	Assembly Max.	Assembly	Assembly Max.	Assembly	Assembly Max.
	Max. U	SHGC (All	Max. U	SHGC (All	Max. U	SHGC (All
	(Fixed/	Orientations/	(Fixed/	Orientations/	(Fixed/	Orientations/
		North-Oriented)	Operable)	North-Oriented)	Onoroblo)	North-Oriented)
Fenestration	Operable)	,	Орегавіс)	Tioren orienten,	Operable)	,
Fenestration Vertical Glazing,% of Wall				<u>'</u>		
	Ufixed ^{-0.57}	SHGC _{all} -0.49	Ufixed ^{-0.57}	SHGC _{all} -0.49	Ufixed-1.22	shgc _{all} -NR
Vertical Glazing,% of Wall	Ufixed ^{-0.57} Uoper ^{-0.67}	SHGC _{all} -0.49 SHGC _{north} -0.64	Ufixed ^{-0.57} Uoper ^{-0.67}	SHGC _{all} -0.49 SHGC _{north} -0.64	Ufixed ^{-1.22} Uoper ^{-1.27}	SHGC _{north} NR
Vertical Glazing,% of Wall	Ufixed ^{-0.57} Uoper ^{-0.67} Ufixed ^{-0.57}	SHGC _{all} -0.49 SHGC _{north} -0.64 SHGC _{all} -0.49	Ufixed-0.57 Uoper-0.67 Ufixed-0.57	SHGC _{all} -0.49 SHGC _{north} -0.64 SHGC _{all} -0.49	Ufixed ^{-1,22} Uoper ^{-1,27} Ufixed ^{-1,22}	SHGC _{north} NR SHGC _{all} -NR
Vertical Glazing,% of Wall 0-10.0%	Ufixed ^{-0.57} Uoper ^{-0.67} Ufixed ^{-0.57} Uoper ^{-0.67}	SHGC _{all} -0.49 SHGC _{north} -0.64 SHGC _{all} -0.49 SHGC _{north} -0.64	Ufixed ^{-0.57} Uoper ^{-0.67} Ufixed ^{-0.57} Uoper ^{-0.67}	SHGC _{all} -0.49 SHGC _{north} -0.64 SHGC _{all} -0.49 SHGC _{north} -0.64	Ufixed ^{-1.22} Uoper ^{-1.27} Ufixed ^{-1.22} Uoper ^{-1.27}	SHGC _{north} NR SHGC _{all} -NR SHGC _{north} NR
Vertical Glazing,% of Wall 0-10.0%	Ufixed ^{-0.57} Uoper ^{-0.67} Ufixed ^{-0.57} Uoper ^{-0.67} Ufixed ^{-0.57} Ufixed ^{-0.57}	SHGC _{all} -0.49 SHGC _{north} -0.64 SHGC _{all} -0.49 SHGC _{north} -0.64 SHGC _{all} -0.49	Ufixed ^{-0.57} Uoper ^{-0.67} Ufixed ^{-0.57} Uoper ^{-0.67} Ufixed ^{-0.57}	SHGC _{all} -0.49 SHGC _{north} -0.64 SHGC _{all} -0.49 SHGC _{north} -0.64 SHGC _{all} -0.49	Ufixed ^{-1.22} Uoper ^{-1.27} Ufixed ^{-1.22} Uoper ^{-1.27} Ufixed ^{-1.22}	SHGC _{north} NR SHGC _{all} -NR SHGC _{north} NR
Vertical Glazing,% of Wall 0-10.0% 10.1-20.0%	Ufixed-0.57 Uoper-0.67 Ufixed-0.57 Uoper-0.67 Ufixed-0.57 Uoper-0.67	SHGC _{all} -0.49 SHGC _{north} -0.64 SHGC _{all} -0.49 SHGC _{north} -0.64 SHGC _{all} -0.49 SHGC _{north} -0.64	Ufixed-0.57 Uoper-0.67 Ufixed-0.57 Uoper-0.67 Ufixed-0.57 Uoper-0.67	SHGC _{all} -0.49 SHGC _{north} -0.64 SHGC _{all} -0.49 SHGC _{north} -0.64 SHGC _{all} -0.49 SHGC _{north} -0.64	Ufixed ^{-1.22} Uoper ^{-1.27} Ufixed ^{-1.22} Uoper ^{-1.27} Ufixed ^{-1.22} Uoper ^{-1.27}	SHGC _{north} NR SHGC _{all} -NR SHGC _{north} NR SHGC _{all} -NR SHGC _{north} NR
Vertical Glazing,% of Wall 0-10.0% 10.1-20.0%	Ufixed ^{-0.57} Uoper ^{-0.67} Ufixed ^{-0.57} Uoper ^{-0.67} Ufixed ^{-0.57} Uoper ^{-0.67} Ufixed ^{-0.57} Uoper ^{-0.67} Ufixed ^{-0.57}	SHGC _{all} -0.49 SHGC _{north} -0.64 SHGC _{all} -0.49 SHGC _{north} -0.64 SHGC _{all} -0.49 SHGC _{north} -0.64 SHGC _{all} -0.49	Ufixed ^{-0.57} Uoper ^{-0.67}	SHGC _{all} -0.49 SHGC _{north} -0.64 SHGC _{all} -0.49 SHGC _{north} -0.64 SHGC _{all} -0.49 SHGC _{north} -0.64 SHGC _{all} -0.49	Ufixed ^{-1,22} Uoper ^{-1,27} Ufixed ^{-1,22} Uoper ^{-1,27} Ufixed ^{-1,22} Uoper ^{-1,27} Ufixed ^{-1,22} Uoper ^{-1,27}	SHGC _{north} NR SHGC _{all} -NR SHGC _{all} -NR SHGC _{all} -NR SHGC _{all} -NR SHGC _{north} NR
Vertical Glazing,% of Wall 0-10.0% 10.1-20.0% 20.1-30.0%	Ufixed ^{-0.57} Uoper ^{-0.67}	SHGC _{all} -0.49 SHGC _{north} -0.64 SHGC _{all} -0.49 SHGC _{north} -0.64 SHGC _{all} -0.49 SHGC _{north} -0.64 SHGC _{all} -0.49 SHGC _{north} -0.64	Ufixed ^{-0.57} Uoper ^{-0.67}	SHGC _{all} -0.49 SHGC _{north} -0.64 SHGC _{all} -0.49 SHGC _{north} -0.64 SHGC _{all} -0.49 SHGC _{north} -0.64 SHGC _{all} -0.49 SHGC _{all} -0.49	Ufixed ^{-1,22} Uoper ^{-1,27} Ufixed ^{-1,22} Uoper ^{-1,27} Ufixed ^{-1,22} Uoper ^{-1,27} Ufixed ^{-1,22} Uoper ^{-1,27}	SHGC _{north} NR SHGC _{all} -NR SHGC _{all} -NR SHGC _{all} -NR SHGC _{all} -NR SHGC _{north} NR SHGC _{north} NR
Vertical Glazing,% of Wall 0-10.0% 10.1-20.0% 20.1-30.0%	Ufixed ^{-0.57} Uoper ^{-0.67} Ufixed ^{-0.46}	SHGC _{all} -0.49 SHGC _{north} -0.64 SHGC _{all} -0.49 SHGC _{north} -0.64 SHGC _{all} -0.49 SHGC _{north} -0.64 SHGC _{all} -0.49 SHGC _{north} -0.64 SHGC _{all} -0.36	Ufixed ^{-0.57} Uoper ^{-0.67} Ufixed ^{-0.57} Uoper ^{-0.67} Uoper ^{-0.67} Ufixed ^{-0.57} Uoper ^{-0.67} Uoper ^{-0.67} Ufixed ^{-0.57} Uoper ^{-0.67} Ufixed ^{-0.57} Uoper ^{-0.67}	SHGC _{all} -0.49 SHGC _{north} -0.64 SHGC _{all} -0.49 SHGC _{all} -0.49 SHGC _{north} -0.64 SHGC _{all} -0.49 SHGC _{all} -0.49 SHGC _{north} -0.64 SHGC _{all} -0.36	Ufixed ^{-1,22} Uoper ^{-1,27} Ufixed ^{-1,22} Uoper ^{-1,27} Ufixed ^{-1,22} Uoper ^{-1,27} Ufixed ^{-1,22} Uoper ^{-1,27} Ufixed ^{-0,98}	SHGC _{north} NR SHGC _{all} -NR SHGC _{all} -NR SHGC _{all} -NR SHGC _{all} -NR SHGC _{north} NR SHGC _{all} -NR SHGC _{all} -NR
Vertical Glazing,% of Wall 0-10.0% 10.1-20.0% 20.1-30.0% 30.1-40.0%	Ufixed ^{-0.57} Uoper ^{-0.67}	SHGC _{all} -0.49 SHGC _{north} -0.64 SHGC _{all} -0.49 SHGC _{north} -0.64 SHGC _{all} -0.49 SHGC _{north} -0.64 SHGC _{all} -0.49 SHGC _{north} -0.64	Ufixed ^{-0.57} Uoper ^{-0.67}	SHGC _{all} -0.49 SHGC _{north} -0.64 SHGC _{all} -0.49 SHGC _{north} -0.64 SHGC _{all} -0.49 SHGC _{north} -0.64 SHGC _{all} -0.49 SHGC _{all} -0.49	Ufixed ^{-1,22} Uoper ^{-1,27} Ufixed ^{-1,22} Uoper ^{-1,27} Ufixed ^{-1,22} Uoper ^{-1,27} Ufixed ^{-1,22} Uoper ^{-1,27} Ufixed ^{-0,98}	SHGC _{north} NR SHGC _{all} -NR SHGC _{all} -NR SHGC _{all} -NR SHGC _{all} -NR SHGC _{north} NR SHGC _{north} NR
Vertical Glazing,% of Wall 0-10.0% 10.1-20.0% 20.1-30.0% 30.1-40.0%	Ufixed-0.57 Uoper-0.67 Ufixed-0.57 Uoper-0.67 Ufixed-0.57 Uoper-0.67 Ufixed-0.57 Uoper-0.67 Ufixed-0.46 Uoper-0.47	SHGC _{all} -0.49 SHGC _{north} -0.64 SHGC _{all} -0.49 SHGC _{north} -0.64 SHGC _{all} -0.49 SHGC _{north} -0.64 SHGC _{all} -0.49 SHGC _{north} -0.64 SHGC _{all} -0.36 SHGC _{all} -0.36	Ufixed ^{-0.57} Uoper ^{-0.67} Ufixed ^{-0.46} Uoper ^{-0.46} Uoper ^{-0.47}	SHGC _{all} -0.49 SHGC _{north} -0.64 SHGC _{all} -0.49 SHGC _{north} -0.64 SHGC _{all} -0.49 SHGC _{north} -0.64 SHGC _{all} -0.49 SHGC _{all} -0.49 SHGC _{all} -0.49 SHGC _{north} -0.64 SHGC _{all} -0.49 SHGC _{north} -0.64	Ufixed ^{-1,22} Uoper ^{-1,27} Ufixed ^{-1,22} Uoper ^{-1,27} Ufixed ^{-1,22} Uoper ^{-1,27} Ufixed ^{-1,22} Uoper ^{-1,27} Ufixed ^{-0,98} Uoper ^{-1,02}	SHGC _{north} NR SHGC _{all} -NR SHGC _{all} -NR SHGC _{all} -NR SHGC _{north} NR SHGC _{north} NR SHGC _{all} -NR SHGC _{all} -NR SHGC _{north} NR SHGC _{north} NR
Vertical Glazing,% of Wall 0-10.0% 10.1-20.0% 20.1-30.0% 30.1-40.0%	Ufixed ^{-0.57} Uoper ^{-0.67} Ufixed ^{-0.46} Uoper ^{-0.47} Uall ^{-1.17}	SHGC _{all} -0.49 SHGC _{north} -0.64 SHGC _{all} -0.49 SHGC _{north} -0.64 SHGC _{all} -0.49 SHGC _{north} -0.64 SHGC _{all} -0.49 SHGC _{north} -0.64 SHGC _{all} -0.36 SHGC _{north} -0.64	Ufixed-0.57 Uoper-0.67 Uoper-0.67 Uoper-0.67 Uoper-0.67 Ufixed-0.57 Uoper-0.67 Ufixed-0.57 Uoper-0.67 Ufixed-0.46 Uoper-0.47	SHGC _{all} -0.49 SHGC _{north} -0.64 SHGC _{all} -0.36 SHGC _{north} -0.64	Ufixed ^{-1,22} Uoper ^{-1,27} Uoper ^{-1,27} Ufixed ^{-1,22} Uoper ^{-1,27} Ufixed ^{-1,22} Uoper ^{-1,27} Ufixed ^{-1,22} Uoper ^{-1,27} Ufixed ^{-0,98} Uoper ^{-1,02} Uall ^{-1,98}	SHGC _{north} NR SHGC _{all} -NR SHGC _{north} NR SHGC _{north} NR
Vertical Glazing,% of Wall 0-10.0% 10.1-20.0% 20.1-30.0% 30.1-40.0% 40.1-50.0% Skylight with Curb, Glass,% of Roof	Ufixed-0.57 Uoper-0.67 Ufixed-0.57 Uoper-0.67 Ufixed-0.57 Uoper-0.67 Ufixed-0.57 Uoper-0.67 Ufixed-0.46 Uoper-0.47	SHGC _{all} -0.49 SHGC _{north} -0.64 SHGC _{all} -0.49 SHGC _{north} -0.64 SHGC _{all} -0.49 SHGC _{north} -0.64 SHGC _{all} -0.49 SHGC _{north} -0.64 SHGC _{all} -0.36 SHGC _{all} -0.36	Ufixed ^{-0.57} Uoper ^{-0.67} Ufixed ^{-0.46} Uoper ^{-0.46} Uoper ^{-0.47}	SHGC _{all} -0.49 SHGC _{north} -0.64 SHGC _{all} -0.49 SHGC _{north} -0.64 SHGC _{all} -0.49 SHGC _{north} -0.64 SHGC _{all} -0.49 SHGC _{all} -0.49 SHGC _{all} -0.49 SHGC _{north} -0.64 SHGC _{all} -0.49 SHGC _{north} -0.64	Ufixed ^{-1,22} Uoper ^{-1,27} Ufixed ^{-1,22} Uoper ^{-1,27} Ufixed ^{-1,22} Uoper ^{-1,27} Ufixed ^{-1,22} Uoper ^{-1,27} Ufixed ^{-0,98} Uoper ^{-1,02}	SHGC _{north} NR SHGC _{all} -NR SHGC _{all} -NR SHGC _{all} -NR SHGC _{north} NR SHGC _{north} NR SHGC _{all} -NR SHGC _{all} -NR SHGC _{north} NR SHGC _{north} NR
Vertical Glazing,% of Wall 0-10.0% 10.1-20.0% 20.1-30.0% 30.1-40.0% 40.1-50.0% Skylight with Curb, Glass,% of Roof 0-2.0%	Ufixed-0.57 Uoper-0.67 Ufixed-0.57 Uoper-0.67 Ufixed-0.57 Uoper-0.67 Ufixed-0.57 Uoper-0.67 Ufixed-0.46 Uoper-0.47 Uall-1.17 Uall-1.17	SHGC _{all} -0.49 SHGC _{north} -0.64 SHGC _{all} -0.49 SHGC _{north} -0.64 SHGC _{all} -0.49 SHGC _{north} -0.64 SHGC _{all} -0.49 SHGC _{north} -0.64 SHGC _{all} -0.36 SHGC _{north} -0.64	Ufixed-0.57 Uoper-0.67 Upper-0.67 Upper-0.67 Upper-0.67 Ufixed-0.57 Upper-0.67 Ufixed-0.57 Upper-0.67 Ufixed-0.46 Upper-0.47 Uall-1.17	SHGC _{all} -0.49 SHGC _{north} -0.64 SHGC _{all} -0.36 SHGC _{north} -0.64	Ufixed ^{-1,22} Uoper ^{-1,27} Ufixed ^{-1,22} Uoper ^{-1,27} Ufixed ^{-1,22} Uoper ^{-1,27} Ufixed ^{-1,22} Uoper ^{-1,27} Ufixed ^{-0,98} Uoper ^{-1,02} Uall ^{-1,98}	SHGC _{north} NR SHGC _{all} -NR SHGC _{all} -NR SHGC _{all} -NR SHGC _{north} NR SHGC _{north} NR SHGC _{all} -NR SHGC _{north} NR SHGC _{all} -NR SHGC _{all} -NR SHGC _{all} -NR SHGC _{all} -NR
Vertical Glazing,% of Wall 0-10.0% 10.1-20.0% 20.1-30.0% 30.1-40.0% 40.1-50.0% Skylight with Curb, Glass,% of Roof 0-2.0% 2.1-5.0%	Ufixed-0.57 Uoper-0.67 Ufixed-0.57 Uoper-0.67 Ufixed-0.57 Uoper-0.67 Ufixed-0.57 Uoper-0.67 Ufixed-0.46 Uoper-0.47 Uall-1.17 Uall-1.17 Uall-0.87	SHGC _{all} -0.49 SHGC _{north} -0.64 SHGC _{north} -0.64 SHGC _{north} -0.64 SHGC _{all} -0.49 SHGC _{north} -0.64 SHGC _{all} -0.49 SHGC _{north} -0.64 SHGC _{all} -0.49 SHGC _{north} -0.64 SHGC _{all} -0.36 SHGC _{all} -0.36 SHGC _{all} -0.64 SHGC _{all} -0.68	Ufixed-0.57 Uoper-0.67 Uoper-0.67 Ufixed-0.57 Uoper-0.67 Ufixed-0.57 Uoper-0.67 Ufixed-0.57 Uoper-0.67 Ufixed-0.46 Uoper-0.47 Uall-1.17 Uall-1.17	SHGC _{all} -0.49 SHGC _{north} -0.64 SHGC _{all} -0.36 SHGC _{north} -0.64 SHGC _{all} -0.64 SHGC _{all} -0.64	Ufixed ^{-1,22} Uoper ^{-1,27} Ufixed ^{-1,22} Uoper ^{-1,27} Ufixed ^{-1,22} Uoper ^{-1,27} Ufixed ^{-1,22} Uoper ^{-1,27} Ufixed ^{-0,98} Uoper ^{-1,02} Uall ^{-1,98} Uall ^{-1,98}	SHGC _{north} NR SHGC _{all} -NR SHGC _{all} -NR SHGC _{all} -NR SHGC _{north} NR SHGC _{all} -NR SHGC _{all} -NR SHGC _{all} -NR SHGC _{all} -NR
Vertical Glazing,% of Wall 0-10.0% 10.1-20.0% 20.1-30.0% 30.1-40.0% 40.1-50.0% Skylight with Curb, Glass,% of Roof 0-2.0% 2.1-5.0% Skylight with Curb, Plastic,% of Roof	Ufixed-0.57 Uoper-0.67 Ufixed-0.57 Uoper-0.67 Ufixed-0.57 Uoper-0.67 Ufixed-0.57 Uoper-0.67 Ufixed-0.46 Uoper-0.47 Uall-1.17 Uall-1.17	SHGC _{all} -0.49 SHGC _{north} -0.64 SHGC _{all} -0.49 SHGC _{north} -0.64 SHGC _{all} -0.49 SHGC _{north} -0.64 SHGC _{all} -0.49 SHGC _{north} -0.64 SHGC _{all} -0.36 SHGC _{north} -0.64 SHGC _{all} -0.36 SHGC _{north} -0.64	Ufixed-0.57 Uoper-0.67 Upper-0.67 Upper-0.67 Upper-0.67 Ufixed-0.57 Upper-0.67 Ufixed-0.57 Upper-0.67 Ufixed-0.46 Upper-0.47 Uall-1.17	SHGC _{all} -0.49 SHGC _{north} -0.64 SHGC _{all} -0.49 SHGC _{north} -0.64 SHGC _{all} -0.49 SHGC _{north} -0.64 SHGC _{all} -0.49 SHGC _{north} -0.64 SHGC _{all} -0.36 SHGC _{north} -0.64 SHGC _{all} -0.64	Ufixed ^{-1,22} Uoper ^{-1,27} Ufixed ^{-1,22} Uoper ^{-1,27} Ufixed ^{-1,22} Uoper ^{-1,27} Ufixed ^{-1,22} Uoper ^{-1,27} Ufixed ^{-0,98} Uoper ^{-1,02} Uall ^{-1,98}	SHGC _{north} NR SHGC _{all} -NR SHGC _{all} -NR SHGC _{all} -NR SHGC _{north} NR SHGC _{north} NR SHGC _{all} -NR SHGC _{all} -NR SHGC _{north} NR SHGC _{all} -NR SHGC _{all} -NR SHGC _{all} -NR
Vertical Glazing,% of Wall 0-10.0% 10.1-20.0% 20.1-30.0% 30.1-40.0% 40.1-50.0% Skylight with Curb, Glass,% of Roof 0-2.0% 2.1-5.0% Skylight with Curb, Plastic,% of Roof 0-2.0%	Ufixed-0.57 Uoper-0.67 Ufixed-0.57 Uoper-0.67 Ufixed-0.57 Uoper-0.67 Ufixed-0.57 Uoper-0.67 Ufixed-0.46 Uoper-0.47 Uall-1.17 Uall-1.17 Uall-0.87	SHGC _{all} -0.49 SHGC _{north} -0.64 SHGC _{north} -0.64 SHGC _{north} -0.64 SHGC _{all} -0.49 SHGC _{north} -0.64 SHGC _{all} -0.49 SHGC _{north} -0.64 SHGC _{all} -0.49 SHGC _{north} -0.64 SHGC _{all} -0.36 SHGC _{all} -0.36 SHGC _{all} -0.64 SHGC _{all} -0.68	Ufixed-0.57 Uoper-0.67 Uoper-0.67 Ufixed-0.57 Uoper-0.67 Ufixed-0.57 Uoper-0.67 Ufixed-0.57 Uoper-0.67 Ufixed-0.46 Uoper-0.47 Uall-1.17 Uall-1.17	SHGC _{all} -0.49 SHGC _{north} -0.64 SHGC _{all} -0.36 SHGC _{north} -0.64 SHGC _{all} -0.64 SHGC _{all} -0.64	Ufixed ^{-1,22} Uoper ^{-1,27} Ufixed ^{-1,22} Uoper ^{-1,27} Ufixed ^{-1,22} Uoper ^{-1,27} Ufixed ^{-1,22} Uoper ^{-1,27} Ufixed ^{-0,98} Uoper ^{-1,02} Uall ^{-1,98} Uall ^{-1,98}	SHGC _{north} NR SHGC _{all} -NR SHGC _{all} -NR SHGC _{all} -NR SHGC _{north} NR SHGC _{north} NR SHGC _{all} -NR
Vertical Glazing,% of Wall 0-10.0% 10.1-20.0% 20.1-30.0% 30.1-40.0% 40.1-50.0% Skylight with Curb, Glass,% of Roof 0-2.0% 2.1-5.0% Skylight with Curb, Plastic,% of Roof 0-2.0% 2.1-5.0%	Ufixed-0.57 Uoper-0.67 Ufixed-0.57 Uoper-0.67 Ufixed-0.57 Uoper-0.67 Ufixed-0.57 Uoper-0.67 Ufixed-0.46 Uoper-0.47 Uall-1.17 Uall-1.17 Uall-0.87	SHGC _{all} -0.49 SHGC _{north} -0.64 SHGC _{north} -0.64 SHGC _{north} -0.64 SHGC _{all} -0.49 SHGC _{north} -0.64 SHGC _{all} -0.49 SHGC _{north} -0.64 SHGC _{all} -0.49 SHGC _{north} -0.64 SHGC _{all} -0.36 SHGC _{all} -0.36 SHGC _{all} -0.64 SHGC _{all} -0.68	Ufixed-0.57 Uoper-0.67 Uoper-0.67 Ufixed-0.57 Uoper-0.67 Ufixed-0.57 Uoper-0.67 Ufixed-0.57 Uoper-0.67 Ufixed-0.46 Uoper-0.47 Uall-1.17 Uall-1.17	SHGC _{all} -0.49 SHGC _{north} -0.64 SHGC _{all} -0.36 SHGC _{north} -0.64 SHGC _{all} -0.64 SHGC _{all} -0.64	Ufixed ^{-1,22} Uoper ^{-1,27} Ufixed ^{-1,22} Uoper ^{-1,27} Ufixed ^{-1,22} Uoper ^{-1,27} Ufixed ^{-1,22} Uoper ^{-1,27} Ufixed ^{-0,98} Uoper ^{-1,02} Uall ^{-1,98} Uall ^{-1,98}	SHGC _{north} NR SHGC _{all} -NR SHGC _{all} -NR SHGC _{all} -NR SHGC _{north} NR SHGC _{north} NR SHGC _{all} -NR SHGC _{north} NR SHGC _{north} NR SHGC _{all} -NR SHGC _{all} -NR SHGC _{all} -NR SHGC _{all} -NR

^{*}The following definitions apply: ci = continuous insulation (see Section 3.2), NR = no (insulation) requirement.

TABLE 5.5-8 Building Envelope Requirements For Climate Zone 8*

	Nonresidential		Residential		Semiheated	
Opaque Elements	Assembly Maximum	Insulation Min. R-Value	Assembly Maximum	Insulation Min. R-Value	Assembly Maxi- mum	Insulation Min. R-Value
Roofs						
Insulation Entirely above Deck	U-0.048	R-20.0 ci	U-0.048	R-20.0 ci	U-0.093	R-10.0 ci
Metal Building	U-0.049	R-13.0 + R-19.0	U-0.049	R-13.0 + R-19.0	U-0.072	R-16.0
Attic and Other	U-0.027	R-38.0	U-0.027	R-38.0	U-0.034	R-30.0
Walls, Above-Grade						
Mass	U-0.080	R-13.3 ci	U-0.071	R-15.2 ci	U-0.151 ^a	R-5.7 ci ^a
Metal Building	U-0.057	R-13.0 + R-13.0	U-0.057	R-13.0 + R-13.0	U-0.113	R-13.0
Steel-Framed	U-0.064	R-13.0 + R-7.5 ci	U-0.055	R-13.0 + R-10.0 ci	U-0.124	R-13.0
Wood-Framed and Other	U-0.051	R-13.0 + R-7.5 ci	U-0.051	R-13.0 + R-7.5 ci	U-0.089	R-13.0
Wall, Below-Grade						
Below-Grade Wall	C-0.119	R-7.5 ci	C-0.119	R-7.5 ci	C-1.140	NR
Floors						
Mass	U-0.064	R-12.5 ci	U-0.057	R-14.6 ci	U-0.137	R-4.2 ci
Steel-Joist	U-0.038	R-30.0	U-0.032	R-38.0	U-0.052	R-19.0
Wood-Framed and Other	U-0.033	R-30.0	U-0.033	R-30.0	U-0.051	R-19.0
Slab-On-Grade Floors	0.055	10 50.0	0 0.055	10 0.0	0 0.001	10 15.0
Unheated	F-0.540	R-10 for 24 in.	F-0.520	R-15 for 24 in.	F-0.730	NR
Heated	F-0.780	R-10 for 48 in.	F-0.780	R-10 for 48 in.	F-0.950	R-7.5 for 24 in.
Opaque Doors	1-0.760	K-10 101 40 III.	1-0.780	K-10 101 40 III.	1-0.550	K-7.3 101 24 III.
Swinging	U-0.500		U-0.500		U-0.700	
Non-Swinging	U-0.500		U-0.500		U-1.450	
					Assembly	
Fenestration	Assembly Max. U (Fixed/ Operable)	Assembly Max. SHGC (All Orientations/ North-Oriented)	Assembly Max. U (Fixed/ Operable)	Assembly Max. SHGC (All Orientations/ North-Oriented)	Assembly Max. U (Fixed/ Opera- ble)	Assembly Max. SHGC (All Orientations/ North-Oriented)
	Max. U (Fixed/	SHGC (All Orientations/	Max. U (Fixed/	SHGC (All Orientations/	Max. U (Fixed/ Opera-	SHGC (All Orientations/
Vertical Glazing,% of Wall	Max. U (Fixed/ Operable)	SHGC (All Orientations/	Max. U (Fixed/ Operable)	SHGC (All Orientations/	Max. U (Fixed/ Opera- ble)	SHGC (All Orientations/ North-Oriented)
	Max. U (Fixed/ Operable) Ufixed ^{-0.46}	SHGC (All Orientations/ North-Oriented)	Max. U (Fixed/ Operable) Ufixed ^{-0.46}	SHGC (All Orientations/ North-Oriented)	Max. U (Fixed/ Operable) Ufixed-1.22	SHGC (All Orientations/ North-Oriented)
Vertical Glazing,% of Wall 0-10.0%	Max. U (Fixed/ Operable)	SHGC (All Orientations/ North-Oriented)	Max. U (Fixed/ Operable) Ufixed-0.46 Uoper-0.47	SHGC (All Orientations/ North-Oriented)	Max. U (Fixed/ Opera- ble) Ufixed-1.22 Uoper-1.27	SHGC (All Orientations/ North-Oriented)
Vertical Glazing,% of Wall	Max. U (Fixed/ Operable) Ufixed ^{-0.46} Uoper ^{-0.47} Ufixed ^{-0.46}	SHGC (All Orientations/ North-Oriented) SHGC _{all} -NR SHGC _{north} -NR SHGC _{all} -NR	Max. U (Fixed/ Operable) Ufixed-0.46 Uoper-0.47 Ufixed-0.46	SHGC (All Orientations/ North-Oriented) SHGC _{all} -NR SHGC _{north} -NR SHGC _{all} -NR	Max. U (Fixed/ Operable) Ufixed-1.22 Uoper-1.27 Ufixed-1.22	SHGC (All Orientations/ North-Oriented) SHGC _{all} -NR SHGC _{north} NR SHGC _{all} -NR
Vertical Glazing,% of Wall 0-10.0% 10.1-20.0%	Max. U (Fixed/ Operable) Ufixed ^{-0.46} Uoper ^{-0.47} Ufixed ^{-0.46} Uoper ^{-0.47}	SHGC (All Orientations/ North-Oriented) SHGC _{all} -NR SHGC _{north} -NR SHGC _{all} -NR SHGC _{north} -NR	Max. U (Fixed/ Operable) Ufixed-0.46 Uoper-0.47 Ufixed-0.46 Uoper-0.47	SHGC (All Orientations/ North-Oriented) SHGC _{all} -NR SHGC _{north} -NR SHGC _{all} -NR	Max. U (Fixed/ Operable) Ufixed-1.22 Uoper-1.27 Ufixed-1.22 Uoper-1.27	SHGC (All Orientations/ North-Oriented) SHGC _{all} -NR SHGC _{north} NR SHGC _{all} -NR SHGC _{north} NR
Vertical Glazing,% of Wall 0-10.0%	Max. U (Fixed/ Operable) Ufixed ^{-0.46} Uoper ^{-0.47} Ufixed ^{-0.46} Uoper ^{-0.47} Ufixed ^{-0.46}	SHGC (All Orientations/ North-Oriented) SHGC _{all} -NR SHGC _{north} -NR SHGC _{north} -NR SHGC _{north} -NR	Max. U (Fixed/ Operable) Ufixed-0.46 Uoper-0.47 Ufixed-0.46 Uoper-0.47 Ufixed-0.46	SHGC (All Orientations/ North-Oriented) SHGC _{all} -NR SHGC _{north} -NR SHGC _{all} -NR SHGC _{north} -NR SHGC _{all} -NR	Max. U (Fixed/ Operable) Ufixed-1.22 Uoper-1.27 Ufixed-1.22 Uoper-1.27 Ufixed-1.22 Ufixed-1.22	SHGC (All Orientations/ North-Oriented) SHGC _{all} -NR SHGC _{north} NR SHGC _{all} -NR SHGC _{north} NR
Vertical Glazing,% of Wall 0-10.0% 10.1-20.0% 20.1-30.0%	Max. U (Fixed/ Operable) Ufixed ^{-0.46} Uoper ^{-0.47} Ufixed ^{-0.46} Uoper ^{-0.47} Ufixed ^{-0.46} Uoper ^{-0.47}	SHGC (All Orientations/ North-Oriented) SHGC _{all} -NR SHGC _{north} -NR SHGC _{all} -NR SHGC _{all} -NR SHGC _{all} -NR SHGC _{all} -NR	Max. U (Fixed/ Operable) Ufixed-0.46 Uoper-0.47 Ufixed-0.46 Uoper-0.47 Ufixed-0.46 Uoper-0.47	SHGC (All Orientations/ North-Oriented) SHGC _{all} -NR SHGC _{all} -NR SHGC _{north} -NR SHGC _{all} -NR SHGC _{all} -NR SHGC _{all} -NR	Max. U (Fixed/ Operable) Ufixed-1.22 Uoper-1.27 Ufixed-1.22 Uoper-1.27 Ufixed-1.22 Uoper-1.27	SHGC (All Orientations/ North-Oriented) SHGC _{all} -NR SHGC _{north} NR SHGC _{all} -NR SHGC _{all} -NR SHGC _{north} NR SHGC _{all} -NR
Vertical Glazing,% of Wall 0-10.0% 10.1-20.0%	Max. U (Fixed/ Operable) Ufixed ^{-0.46} Uoper ^{-0.47} Ufixed ^{-0.46} Uoper ^{-0.47} Ufixed ^{-0.46} Uoper ^{-0.47} Ufixed ^{-0.46} Uoper ^{-0.47} Ufixed ^{-0.46}	SHGC (All Orientations/ North-Oriented) SHGC _{all} -NR	Max. U (Fixed/ Operable) Ufixed-0.46 Uoper-0.47 Ufixed-0.46 Uoper-0.47 Ufixed-0.46 Uoper-0.47 Ufixed-0.46 Uoper-0.47	SHGC (All Orientations/ North-Oriented) SHGC _{all} -NR SHGC _{north} -NR SHGC _{north} -NR SHGC _{all} -NR SHGC _{all} -NR SHGC _{all} -NR SHGC _{all} -NR	Max. U (Fixed/Operable) Ufixed-1.22 Uoper-1.27 Ufixed-1.22 Uoper-1.27 Ufixed-1.22 Uoper-1.27 Ufixed-1.22 Uoper-1.27	SHGC (All Orientations/ North-Oriented) SHGC _{all} -NR SHGC _{north} NR SHGC _{all} -NR SHGC _{all} -NR SHGC _{all} -NR SHGC _{all} -NR SHGC _{north} NR SHGC _{north} NR
Vertical Glazing,% of Wall 0-10.0% 10.1-20.0% 20.1-30.0% 30.1-40.0%	Max. U (Fixed/ Operable) Ufixed ^{-0.46} Uoper ^{-0.47}	SHGC (All Orientations/ North-Oriented) SHGC _{all} -NR SHGC _{north} -NR SHGC _{all} -NR SHGC _{all} -NR SHGC _{all} -NR SHGC _{all} -NR SHGC _{north} -NR SHGC _{all} -NR	Max. U (Fixed/ Operable) Ufixed-0.46 Uoper-0.47 Ufixed-0.46 Uoper-0.47 Ufixed-0.46 Uoper-0.47 Ufixed-0.46 Uoper-0.47	SHGC (All Orientations/ North-Oriented) SHGC _{all} -NR SHGC _{north} -NR SHGC _{all} -NR SHGC _{north} -NR	Max. U (Fixed/ Operable) Ufixed-1.22 Uoper-1.27 Ufixed-1.22 Uoper-1.27 Ufixed-1.22 Uoper-1.27 Ufixed-1.22 Uoper-1.27	SHGC (All Orientations/North-Oriented) SHGC _{all} -NR SHGC _{north} NR
Vertical Glazing,% of Wall 0-10.0% 10.1-20.0% 20.1-30.0%	Max. U (Fixed/ Operable) Ufixed ^{-0.46} Uoper ^{-0.47}	SHGC (All Orientations/ North-Oriented) SHGC _{all} -NR SHGC _{north} -NR SHGC _{all} -NR SHGC _{all} -NR SHGC _{all} -NR SHGC _{all} -NR SHGC _{north} -NR SHGC _{north} -NR SHGC _{all} -NR SHGC _{all} -NR	Max. U (Fixed/ Operable) Ufixed-0.46 Uoper-0.47 Ufixed-0.46 Uoper-0.47 Ufixed-0.46 Uoper-0.47 Ufixed-0.46 Uoper-0.47 Ufixed-0.46 Uoper-0.47 Ufixed-0.46 Uoper-0.47	SHGC (All Orientations/ North-Oriented) SHGC _{all} -NR SHGC _{north} -NR SHGC _{all} -NR SHGC _{all} -NR SHGC _{all} -NR SHGC _{all} -NR SHGC _{north} -NR SHGC _{all} -NR SHGC _{all} -NR SHGC _{all} -NR	Max. U (Fixed/ Operable) Ufixed-1.22 Uoper-1.27 Ufixed-1.22 Uoper-1.27 Ufixed-1.22 Uoper-1.27 Ufixed-1.22 Uoper-1.27 Ufixed-0.22 Uoper-1.27 Ufixed-0.98	SHGC (All Orientations/ North-Oriented) SHGC _{all} -NR SHGC _{north} NR SHGC _{north} NR SHGC _{north} NR SHGC _{all} -NR SHGC _{all} -NR SHGC _{north} NR SHGC _{north} NR SHGC _{north} NR SHGC _{all} -NR SHGC _{all} -NR
Vertical Glazing,% of Wall 0-10.0% 10.1-20.0% 20.1-30.0% 30.1-40.0%	Max. U (Fixed/ Operable) Ufixed ^{-0.46} Uoper ^{-0.47}	SHGC (All Orientations/ North-Oriented) SHGC _{all} -NR SHGC _{north} -NR SHGC _{all} -NR SHGC _{all} -NR SHGC _{all} -NR SHGC _{all} -NR SHGC _{north} -NR SHGC _{all} -NR	Max. U (Fixed/ Operable) Ufixed-0.46 Uoper-0.47 Ufixed-0.46 Uoper-0.47 Ufixed-0.46 Uoper-0.47 Ufixed-0.46 Uoper-0.47	SHGC (All Orientations/ North-Oriented) SHGC _{all} -NR SHGC _{north} -NR SHGC _{all} -NR SHGC _{north} -NR	Max. U (Fixed/ Operable) Ufixed-1.22 Uoper-1.27 Ufixed-1.22 Uoper-1.27 Ufixed-1.22 Uoper-1.27 Ufixed-1.22 Uoper-1.27 Ufixed-0.22 Uoper-1.27 Ufixed-0.98	SHGC (All Orientations/ North-Oriented) SHGC _{all} -NR SHGC _{north} NR
Vertical Glazing,% of Wall 0-10.0% 10.1-20.0% 20.1-30.0% 30.1-40.0% 40.1-50.0% Skylight with Curb, Glass,% of Roof	Max. U (Fixed/ Operable) Ufixed-0.46 Uoper-0.47 Ufixed-0.46 Uoper-0.47 Ufixed-0.46 Uoper-0.47 Ufixed-0.46 Uoper-0.47 Ufixed-0.46 Uoper-0.47 Ufixed-0.35 Uoper-0.39	SHGC (All Orientations/ North-Oriented) SHGC _{all} -NR SHGC _{north} -NR SHGC _{all} -NR SHGC _{north} -NR SHGC _{all} -NR SHGC _{all} -NR SHGC _{all} -NR SHGC _{north} -NR SHGC _{north} -NR	Max. U (Fixed/ Operable) Ufixed-0.46 Uoper-0.47 Ufixed-0.46 Uoper-0.47 Ufixed-0.46 Uoper-0.47 Ufixed-0.46 Uoper-0.47 Ufixed-0.35 Uoper-0.39	SHGC (All Orientations/ North-Oriented) SHGC _{all} -NR SHGC _{north} -NR SHGC _{north} -NR SHGC _{all} -NR SHGC _{all} -NR SHGC _{all} -NR SHGC _{north} -NR SHGC _{all} -NR SHGC _{all} -NR SHGC _{north} -NR	Max. U (Fixed/Operable) Ufixed-1.22 Uoper-1.27 Ufixed-1.22 Uoper-1.27 Ufixed-1.22 Uoper-1.27 Ufixed-1.22 Uoper-1.27 Ufixed-1.22 Uoper-1.27 Ufixed-0.98 Uoper-1.02	SHGC (All Orientations/ North-Oriented) SHGC _{all} -NR SHGC _{north} NR SHGC _{all} -NR SHGC _{all} -NR SHGC _{all} -NR SHGC _{all} -NR SHGC _{north} NR SHGC _{north} NR SHGC _{all} -NR SHGC _{all} -NR SHGC _{all} -NR SHGC _{all} -NR SHGC _{north} NR
Vertical Glazing,% of Wall 0-10.0% 10.1-20.0% 20.1-30.0% 30.1-40.0% 40.1-50.0% Skylight with Curb, Glass,% of Roof 0-2.0%	Max. U (Fixed/ Operable) Ufixed ^{-0.46} Uoper ^{-0.47} Ufixed ^{-0.35} Uoper ^{-0.39} Uall ^{-0.98}	SHGC (All Orientations/ North-Oriented) SHGC _{all} -NR SHGC _{north} -NR SHGC _{north} -NR SHGC _{all} -NR SHGC _{all} -NR SHGC _{all} -NR SHGC _{north} -NR SHGC _{all} -NR SHGC _{north} -NR SHGC _{north} -NR SHGC _{north} -NR SHGC _{all} -NR SHGC _{all} -NR SHGC _{all} -NR	Max. U (Fixed/ Operable) Ufixed-0.46 Uoper-0.47 Ufixed-0.46 Uoper-0.47 Ufixed-0.46 Uoper-0.47 Ufixed-0.46 Uoper-0.47 Ufixed-0.35 Uoper-0.39 Uall-0.98	SHGC (All Orientations/ North-Oriented) SHGC _{all} -NR SHGC _{north} -NR SHGC _{all} -NR SHGC _{north} -NR SHGC _{north} -NR SHGC _{north} -NR SHGC _{all} -NR SHGC _{all} -NR	Max. U (Fixed/Operable) Ufixed-1.22 Uoper-1.27 Ufixed-1.22 Uoper-1.27 Ufixed-1.22 Uoper-1.27 Ufixed-1.22 Uoper-1.27 Ufixed-1.22 Uoper-1.27 Ufixed-1.22 Uoper-1.27 Ufixed-0.98 Uoper-1.02	SHGC (All Orientations/ North-Oriented) SHGC _{all} -NR SHGC _{north} NR SHGC _{north} NR SHGC _{all} -NR SHGC _{all} -NR SHGC _{all} -NR
Vertical Glazing,% of Wall 0-10.0% 10.1-20.0% 20.1-30.0% 30.1-40.0% 40.1-50.0% Skylight with Curb, Glass,% of Roof 0-2.0% 2.1-5.0%	Max. U (Fixed/ Operable) Ufixed-0.46 Uoper-0.47 Ufixed-0.46 Uoper-0.47 Ufixed-0.46 Uoper-0.47 Ufixed-0.46 Uoper-0.47 Ufixed-0.46 Uoper-0.47 Ufixed-0.35 Uoper-0.39	SHGC (All Orientations/ North-Oriented) SHGC _{all} -NR SHGC _{north} -NR SHGC _{all} -NR SHGC _{north} -NR SHGC _{all} -NR SHGC _{all} -NR SHGC _{all} -NR SHGC _{north} -NR SHGC _{north} -NR	Max. U (Fixed/ Operable) Ufixed-0.46 Uoper-0.47 Ufixed-0.46 Uoper-0.47 Ufixed-0.46 Uoper-0.47 Ufixed-0.46 Uoper-0.47 Ufixed-0.35 Uoper-0.39	SHGC (All Orientations/ North-Oriented) SHGC _{all} -NR SHGC _{north} -NR SHGC _{north} -NR SHGC _{all} -NR SHGC _{all} -NR SHGC _{all} -NR SHGC _{north} -NR SHGC _{all} -NR SHGC _{all} -NR SHGC _{north} -NR	Max. U (Fixed/Operable) Ufixed-1.22 Uoper-1.27 Ufixed-1.22 Uoper-1.27 Ufixed-1.22 Uoper-1.27 Ufixed-1.22 Uoper-1.27 Ufixed-1.22 Uoper-1.27 Ufixed-0.98 Uoper-1.02	SHGC (All Orientations/ North-Oriented) SHGC _{all} -NR SHGC _{north} NR SHGC _{all} -NR SHGC _{all} -NR SHGC _{all} -NR SHGC _{all} -NR SHGC _{north} NR SHGC _{all} -NR SHGC _{north} NR
Vertical Glazing,% of Wall 0-10.0% 10.1-20.0% 20.1-30.0% 30.1-40.0% 40.1-50.0% Skylight with Curb, Glass,% of Roof 0-2.0% 2.1-5.0% Skylight with Curb, Plastic,% of Roof	Max. U (Fixed/ Operable) Ufixed-0.46 Uoper-0.47 Ufixed-0.46 Uoper-0.47 Ufixed-0.46 Uoper-0.47 Ufixed-0.46 Uoper-0.47 Ufixed-0.35 Uoper-0.39 Uall-0.98 Uall-0.98	SHGC (All Orientations/ North-Oriented) SHGC _{all} -NR	Max. U (Fixed/ Operable) Ufixed-0.46 Uoper-0.47 Ufixed-0.46 Uoper-0.47 Ufixed-0.46 Uoper-0.47 Ufixed-0.46 Uoper-0.47 Ufixed-0.35 Uoper-0.39 Uall-0.98 Uall-0.98	SHGC (All Orientations/ North-Oriented) SHGC _{all} -NR SHGC _{all} -NR SHGC _{north} -NR SHGC _{all} -NR SHGC _{north} -NR SHGC _{north} -NR SHGC _{north} -NR SHGC _{all} -NR	Max. U (Fixed/Operable) Ufixed-1.22 Uoper-1.27 Ufixed-1.22 Uoper-1.27 Ufixed-1.22 Uoper-1.27 Ufixed-1.22 Uoper-1.27 Ufixed-1.22 Uoper-1.27 Ufixed-0.98 Uoper-1.02 Uall-1.30 Uall-1.30	SHGC (All Orientations/ North-Oriented) SHGCall-NR
Vertical Glazing,% of Wall 0-10.0% 10.1-20.0% 20.1-30.0% 30.1-40.0% 40.1-50.0% Skylight with Curb, Glass,% of Roof 0-2.0% 2.1-5.0% Skylight with Curb, Plastic,% of Roof 0-2.0%	Max. U (Fixed/ Operable) Ufixed-0.46 Uoper-0.47 Ufixed-0.46 Uoper-0.47 Ufixed-0.46 Uoper-0.47 Ufixed-0.46 Uoper-0.47 Ufixed-0.35 Uoper-0.39 Uall-0.98 Uall-0.98	SHGC (All Orientations/ North-Oriented) SHGC _{all} -NR	Max. U (Fixed/ Operable) Ufixed-0.46 Uoper-0.47 Ufixed-0.46 Uoper-0.47 Ufixed-0.46 Uoper-0.47 Ufixed-0.46 Uoper-0.47 Ufixed-0.46 Uoper-0.47 Ufixed-0.35 Uoper-0.39 Uall-0.98 Uall-0.98	SHGC (All Orientations/ North-Oriented) SHGC _{all} -NR	Max. U (Fixed/Operable) Ufixed-1.22 Uoper-1.27 Ufixed-1.22 Uoper-1.27 Ufixed-1.22 Uoper-1.27 Ufixed-1.22 Uoper-1.27 Ufixed-0.98 Uoper-1.02 Uall-1.30 Uall-1.30	SHGC (All Orientations/ North-Oriented) SHGC _{all} -NR SHGC _{north} NR SHGC _{all} -NR
Vertical Glazing,% of Wall 0-10.0% 10.1-20.0% 20.1-30.0% 30.1-40.0% 40.1-50.0% Skylight with Curb, Glass,% of Roof 0-2.0% 2.1-5.0% Skylight with Curb, Plastic,% of Roof 0-2.0% 2.1-5.0%	Max. U (Fixed/ Operable) Ufixed-0.46 Uoper-0.47 Ufixed-0.46 Uoper-0.47 Ufixed-0.46 Uoper-0.47 Ufixed-0.46 Uoper-0.47 Ufixed-0.35 Uoper-0.39 Uall-0.98 Uall-0.98	SHGC (All Orientations/ North-Oriented) SHGC _{all} -NR	Max. U (Fixed/ Operable) Ufixed-0.46 Uoper-0.47 Ufixed-0.46 Uoper-0.47 Ufixed-0.46 Uoper-0.47 Ufixed-0.46 Uoper-0.47 Ufixed-0.35 Uoper-0.39 Uall-0.98 Uall-0.98	SHGC (All Orientations/ North-Oriented) SHGC _{all} -NR SHGC _{all} -NR SHGC _{north} -NR SHGC _{all} -NR SHGC _{north} -NR SHGC _{north} -NR SHGC _{north} -NR SHGC _{all} -NR	Max. U (Fixed/Operable) Ufixed-1.22 Uoper-1.27 Ufixed-1.22 Uoper-1.27 Ufixed-1.22 Uoper-1.27 Ufixed-1.22 Uoper-1.27 Ufixed-1.22 Uoper-1.27 Ufixed-0.98 Uoper-1.02 Uall-1.30 Uall-1.30	SHGC (All Orientations/ North-Oriented) SHGCall-NR
Vertical Glazing,% of Wall 0-10.0% 10.1-20.0% 20.1-30.0% 30.1-40.0% 40.1-50.0% Skylight with Curb, Glass,% of Roof 0-2.0% 2.1-5.0% Skylight with Curb, Plastic,% of Roof 0-2.0%	Max. U (Fixed/ Operable) Ufixed-0.46 Uoper-0.47 Ufixed-0.46 Uoper-0.47 Ufixed-0.46 Uoper-0.47 Ufixed-0.46 Uoper-0.47 Ufixed-0.35 Uoper-0.39 Uall-0.98 Uall-0.98	SHGC (All Orientations/ North-Oriented) SHGC _{all} -NR	Max. U (Fixed/ Operable) Ufixed-0.46 Uoper-0.47 Ufixed-0.46 Uoper-0.47 Ufixed-0.46 Uoper-0.47 Ufixed-0.46 Uoper-0.47 Ufixed-0.46 Uoper-0.47 Ufixed-0.35 Uoper-0.39 Uall-0.98 Uall-0.98	SHGC (All Orientations/ North-Oriented) SHGC _{all} -NR	Max. U (Fixed/Operable) Ufixed-1.22 Uoper-1.27 Ufixed-1.22 Uoper-1.27 Ufixed-1.22 Uoper-1.27 Ufixed-1.22 Uoper-1.27 Ufixed-0.98 Uoper-1.02 Uall-1.30 Uall-1.30	SHGC (All Orientations/ North-Oriented) SHGC _{all} -NR SHGC _{north} NR SHGC _{all} -NR

^{*}The following definitions apply: ci = continuous insulation (see Section 3.2), NR = no (insulation) requirement.

^aException to A3.1.3.1 applies.

6. HEATING, VENTILATING, AND AIR CONDITIONING

6.1 General

6.1.1 Scope

- **6.1.1.1 New Buildings:** Mechanical equipment and systems serving the heating, cooling, or ventilating needs of new buildings shall comply with the requirements of this section as described in 6.2.
- **6.1.1.2** Additions to Existing Buildings: Mechanical equipment and systems serving the heating, cooling, or ventilating needs of *additions* to *existing buildings* shall comply with the requirements of this section as described in 6.2.
 - **Exception to 6.1.1.2:** When HVAC to an *addition* is provided by existing *HVAC systems* and equipment, such existing *systems* and *equipment* shall not be required to comply with this standard. However, any new *systems* or *equipment* installed must comply with specific requirements applicable to those *systems* and *equipment*.

6.1.1.3 Alterations to Heating, Ventilating, and Air-Conditioning in Existing Building.

- **6.1.1.3.1** New HVAC equipment as a direct replacement of existing HVAC equipment shall comply with the specific minimum *efficiency* requirements applicable to that equipment.
- **6.1.1.3.2** New cooling systems installed to serve previously uncooled spaces shall comply with this section as described in 6.2.
- **6.1.1.3.3** *Alterations* to existing cooling systems shall not decrease economizer capability unless the system complies with 6.5.1.
- **6.1.1.3.4** New and replacement ductwork shall comply with 6.4.4.1 and 6.4.4.2.
- **6.1.1.3.5** New and replacement piping shall comply with 6.4.4.1.

Exceptions to 6.1.1.3: Compliance shall not be required:

(a) for equipment that is being modified or repaired but not replaced, provided that such modifications and/ or repairs will not result in an increase in the annual energy consumption of the equipment using the same energy type, or

- (b) where a replacement or *alteration* of *equipment* requires extensive revisions to other *systems*, *equipment*, or elements of a *building*, and such replaced or altered equipment is a like-for-like replacement, or
- (c) for a refrigerant change of existing equipment, or
- (d) for the relocation of existing equipment, or
- (e) for ducts and pipes where there is insufficient space or access to meet these requirements.

6.2 Compliance Path(s)

- **6.2.1** Compliance with Section 6 shall be achieved by meeting all requirements for 6.1, General; 6.7, Submittals, 6.8, Minimum Equipment Efficiency; and either
- (a) 6.3, Simplified Approach Option for HVAC Systems; or
- (b) 6.4, Mandatory Provisions; and 6.5, Prescriptive Path.
- **6.2.2** Projects using the Energy Cost Budget Method (Section 11 of this standard), must comply with 6.4, the mandatory provisions of this section, as a portion of that compliance path.

6.3 Simplified Approach Option for HVAC Systems

- **6.3.1 Scope:** The simplified approach is an optional path for compliance when the following conditions are met:
- (a) building is two stories or less in height,
- (b) gross floor area is less than 25,000 square feet, and
- (c) each HVAC *system* in the building complies with the requirements listed in 6.3.2
- **6.3.2** Criteria: HVAC *system* must meet ALL of the following criteria:
- (a) The system serves a single HVAC zone.
- (b) Cooling (if any) shall be provided by a unitary packaged or split-system air conditioner that is either air-cooled or evaporatively cooled with *efficiency* meeting the requirements shown in Table 6.8.1A (air conditioners), Table 6.8.1B (heat pumps), or Table 6.8.1D (packaged terminal and room air conditioners and heat pumps) for the applicable equipment category.
- (c) The system shall have an air economizer where indicated in Table 6.5.1, with controls as indicated in Tables 6.5.1.1.3A and 6.5.1.1.3B and with either barometric or powered relief sized to prevent overpressurization of the building. Where the cooling efficiency meets or exceeds the efficiency requirement in Table 6.3.2, no economizer is required. Outdoor air dampers for economizer use shall be provided with blade and jamb seals.
- (d) Heating (if any) shall be provided by a unitary packaged or split-system heat pump that meets the applicable *efficiency* requirements shown in Table 6.8.1B (heat pumps) or Table 6.8.1D (packaged terminal and room air conditioners and heat pumps), a fuel-fired furnace that meets the applicable *efficiency* requirements shown in Table 6.8.1E (furnaces, duct furnaces, and unit heaters), an electric resistance heater, or a baseboard system connected to a boiler that meets the applicable *efficiency* requirements shown in Table 6.8.1F (boilers).
- (e) The *outdoor air* quantity supplied by the system shall be less than or equal to 3000 cfm and less than 70% of the supply air quantity at minimum *outdoor air* design conditions unless an energy recovery ventilation system is provided in accordance with the requirements in 6.5.6.

TABLE 6.3.2 Eliminate Required Economizer by Increasing Cooling Efficiency

	ating	Heat Pump He	Systems with	Unitary		
		ate Zones	Mandatory	System Size		
	2	3	4	5 to 8	Minimum EER ^a	(kBtu/h)
Test Proce	ed (EER) ^a					
	11.1	11.6	12.1	N/A b	10.1	≥65 and <135
ARI 340/	10.4	10.8	11.3	N/A b	9.3	≥135 and <240
	10.0	10.5	10.9	N/A b	9.0	\geq 240 and $<$ 760
		ry Systems	Other Unita			
		ate Zones	Mandatory	System Size		
	2	3	4	5 to 8	Minimum EER	(kBtu/h)
Test Proce	ed (EER) ^a	ficiency Require	ım Cooling Ef	Minimu		
	11.5	12.0	12.5	N/A b	10.3	≥65 and <135
ARI 340/	10.6	11.1	11.5	N/A b	9.7	≥135 and ≤240
	10.3	10.7	11.2	N/A b	9.5	>240 and < 760

^a Each EER shown below should be reduced by 0.2 for units with a heating section other than electric resistance heat.

- (f) The *system* shall be controlled by a manual changeover or dual setpoint thermostat.
- (g) If a heat pump equipped with auxiliary internal electric resistance heaters is installed, controls shall be provided that prevent supplemental heater operation when the heating load can be met by the heat pump alone during both steady-state operation and setback recovery. Supplemental heater operation is permitted during outdoor coil defrost cycles. Two means of meeting this requirement are (1) a digital or electronic thermostat designed for heat pump use that energizes auxiliary heat only when the heat pump has insufficient capacity to maintain setpoint or to warm up the space at a sufficient rate or (2) a multi-stage space thermostat and an outdoor air thermostat wired to energize auxiliary heat only on the last stage of the space thermostat and when outside air temperature is less than 40°F. Heat pumps whose minimum efficiency is regulated by NAECA and whose HSPF rating both meets the requirements shown in Table 6.8.1B and includes all usage of internal electric resistance heating are exempted from the control requirements of this part (6.3.2g).
- (h) The system controls shall not permit reheat or any other form of simultaneous heating and cooling for humidity control.
- (i) Systems serving spaces other than hotel/motel guest rooms, and other than those requiring continuous operation, which have both a cooling or heating capacity greater than 15,000 Btu/h and a supply fan motor power greater than 3/4 hp, shall be provided with a time clock that (1) can start and stop the system under different schedules for seven different day-types per week, (2) is

- capable of retaining programming and time setting during a loss of power for a period of at least 10 hours, (3) includes an accessible manual override that allows temporary operation of the system for up to two hours, (4) is capable of temperature setback down to 55°F during off hours, and (5) is capable of temperature setup to 90°F during off hours.
- (j) Except for piping within manufacturer's units, HVAC piping shall be insulated in accordance with Table 6.8.3. Insulation exposed to weather shall be suitable for outdoor service, e.g., protected by aluminum, sheet metal, painted canvas, or plastic cover. Cellular foam insulation shall be protected as above or painted with a coating that is water retardant and provides shielding from solar radiation.
- (k) Ductwork and plenums shall be insulated in accordance with Tables 6.8.2A and 6.8.2B and shall be sealed in accordance with Table 6.4.4.2A.
- Construction documents shall require a ducted *system* to be air balanced in accordance with industry accepted procedures.
- (m) Where separate heating and cooling equipment serves the same temperature zone, thermostats shall be interlocked to prevent simultaneous heating and cooling.
- (n) Exhausts with a design capacity of over 300 cfm on systems that do not operate continuously shall be equipped with gravity or motorized dampers that will automatically shut when the systems are not in use.
- (o) *Systems* with a design supply air capacity greater than 10,000 cfm shall have *optimum start controls*.

^b Elimination of required economizer is not allowed.

c Section 12 contains complete specification of the referenced test procedure, including the referenced year version of the test procedure

6.4 Mandatory Provisions

6.4.1 Equipment Efficiencies, Verification, and Labeling Requirements

6.4.1.1 Minimum Equipment Efficiencies – **Listed Equipment** – **Standard Rating and Operating Conditions.** Equipment shown in Tables 6.8.1A through 6.8.1G shall have a minimum performance at the specified rating conditions when tested in accordance with the specified test procedure. Where multiple rating conditions or performance requirements are provided, the equipment shall satisfy all stated requirements, unless otherwise exempted by footnotes in the table. Equipment covered under the Federal Energy Policy Act of 1992 (EPACT) shall have no minimum *efficiency* requirements for operation at minimum capacity or other than standard rating conditions. Equipment used to provide water heating functions as part of a combination system shall satisfy all stated requirements for the appropriate space heating or cooling category.

Tables are as follows:

- (a) Table 6.8.1A Air Conditioners and Condensing Units
- (b) Table 6.8.1B Heat Pumps
- (c) Table 6.8.1C Water Chilling Packages (see 6.4.1.2 for water-cooled centrifugal water-chilling packages that are designed to operate at nonstandard conditions)
- (d) Table 6.8.1D Packaged Terminal and Room Air Conditioners and Heat Pumps
- (e) Table 6.8.1E Furnaces, Duct Furnaces, and Unit Heaters
- (f) Table 6.8.1F Boilers
- (g) Table 6.8.1G Heat Rejection Equipment

All furnaces with input ratings of ≥225,000 Btu/h, including electric furnaces, that are not located within the conditioned space shall have jacket losses not exceeding 0.75% of the input rating.

- **6.4.1.2 Minimum Equipment Efficiencies Listed Equipment Nonstandard Conditions**: Water-cooled centrifugal water-chilling packages that are not designed for operation at ARI Standard 550/590 test conditions (and thus cannot be tested to meet the requirements of Table 6.8.1C) of 44°F leaving chilled water temperature and 85°F entering condenser water temperature with 3 gpm/ton condenser water flow shall have a minimum full-load COP and a minimum *NPLV* rating as shown in tables referenced below.
- (a) Centrifugal chillers <150 tons shall meet the minimum full-load COP and IPLV/NPLV in Table 6.8.1H.
- (b) Centrifugal chillers ≥150 tons and <300 tons shall meet the minimum full-load COP and IPLV/NPLV in Table 6.8.1I.
- (c) Centrifugal chillers ≥300 tons shall meet the minimum full-load COP and IPLV/NPLV in Table 6.8.1J.

The table values are only applicable over the following full-load design ranges:

Leaving Chiller Water Temperature: 40°F to 48°F

Entering Condenser Water Temperature: 75°F to 85°F

Condensing Water Temperature Rise: $5^{\circ}F$ to $15^{\circ}F$

Chillers designed to operate outside of these ranges or applications utilizing fluids or solutions with secondary coolants (e.g., glycol solutions or brines) with a freeze point of 27°F or less for freeze protection are not covered by this standard.

6.4.1.3 Equipment Not Listed. Equipment not listed in the tables referenced in 6.4.1.1 and 6.4.1.2 may be used.

6.4.1.4 Verification of Equipment Efficiencies. Equipment *efficiency* information supplied by *manufacturers* shall be verified as follows:

- (a) Equipment covered under the Federal Energy Policy Act of 1992 (EPACT) shall comply with U.S. Department of Energy certification requirements.
- (b) If a certification program exists for a covered product, and it includes provisions for verification and challenge of equipment *efficiency* ratings, then the product shall be listed in the certification program, or,
- (c) if a certification program exists for a covered product, and it includes provisions for verification and challenge of equipment *efficiency* ratings, but the product is not listed in the existing certification program, the ratings shall be verified by an independent laboratory test report, or
- (d) if no certification program exists for a covered product, the equipment *efficiency* ratings shall be supported by data furnished by the *manufacturer*, or
- (e) where components such as indoor or outdoor coils from different manufacturers are used, the system designer shall specify component efficiencies whose combined efficiency meets the minimum equipment efficiency requirements in 6.4.1.
- (f) Products covered in Table 6.8.1G shall have efficiency ratings supported by data furnished by the manufacturer.

6.4.1.5 Labeling

6.4.1.5.1 Mechanical Equipment. Mechanical equipment that is not covered by the U.S. National Appliance Energy Conservation Act (NAECA) of 1987 shall carry a permanent label installed by the *manufacturer* stating that the equipment complies with the requirements of ASHRAE/IESNA Standard 90.1.

6.4.1.5.2 Packaged Terminal Air Conditioners. Packaged terminal air conditioners and heat pumps with sleeve sizes less than 16 in. high and 42 in. wide shall be factory labeled as follows: Manufactured for replacement applications only: not to be installed in new construction projects.

6.4.2 Load Calculations. Heating and cooling system design loads for the purpose of sizing systems and equipment shall be determined in accordance with generally accepted engineering standards and handbooks acceptable to the *adopting authority* (for example, *ASHRAE Handbook—Fundamentals*).

6.4.3 Controls

6.4.3.1 Zone Thermostatic Controls

6.4.3.1.1 General. The supply of heating and cooling energy to each *zone* shall be individually controlled by thermostatic controls responding to temperature within the *zone*. For the purposes of 6.4.3.1, a dwelling unit shall be permitted to be considered a single *zone*.

Exceptions to 6.4.3.1.1: Independent perimeter systems that are designed to offset only *building envelope* loads shall be permitted to serve one or more *zones* also served by an interior system provided:

- (a) the perimeter system includes at least one thermostatic control zone for each building exposure having exterior walls facing only one *orientation* for 50 contiguous feet or more, and
- (b) the perimeter system heating and cooling supply is controlled by a thermostatic control(s) located within the zones(s) served by the system.

Exterior walls are considered to have different *orientations* if the directions they face differ by more than 45 degrees.

6.4.3.1.2 Dead Band. Where used to control both heating and cooling, zone thermostatic controls shall be capable of providing a temperature range or dead band of at least 5°F within which the supply of heating and cooling energy to the zone is shut off or reduced to a minimum.

Exceptions to 6.4.3.1.2:

- (a) Thermostats that require manual changeover between heating and cooling modes.
- (b) Special occupancy or special applications where wide temperature ranges are not acceptable (such as retirement homes, process applications, data processing, museums, some areas of hospitals) and are approved by the *authority having jurisdiction*.
- **6.4.3.2 Setpoint Overlap Restriction.** Where heating and cooling to a zone are controlled by separate zone thermostatic controls located within the zone, means (such as limit switches, mechanical stops, or, for DDC systems, software programming) shall be provided to prevent the heating setpoint from exceeding the cooling setpoint minus any applicable proportional band.
- **6.4.3.3 Off-Hour Controls.** HVAC systems shall have the off-hour controls required by Sections 6.4.3.3.1 through 6.4.3.3.4.

Exceptions to 6.4.3.3:

- (a) *HVAC systems* serving hotel/motel guest rooms.
- (b) HVAC systems intended to operate continuously.
- (c) HVAC systems having a design heating capacity and cooling capacity less than 15,000 Btu/h that are equipped with readily accessible manual on/off controls.
- **6.4.3.3.1 Automatic Shutdown.** *HVAC systems* shall be equipped with at least one of the following:
- (a) Controls that can start and stop the system under different time schedules for seven different day-types per week, are capable of retaining programming and time setting during loss of power for a period of at least 10 hours, and include an accessible manual override, or equivalent function, that allows temporary operation of the system for up to two hours.
- (b) An *occupant sensor* that is capable of shutting the system off when no occupant is sensed for a period of up to 30 minutes.
- (c) A manually operated timer capable of being adjusted to operate the system for up to two hours.
- (d) An interlock to a security system that shuts the system off when the security system is activated.

Exception to 6.4.3.3.1: Residential occupancies may use controls that can start and stop the system under two different time schedules per week.

6.4.3.3.2 Setback Controls. Heating systems located in climate zones 2-8 shall be equipped with controls that have the capability to automatically restart and temporarily operate the system as required to maintain *zone* temperatures above a heating setpoint adjustable down to 55°F or lower. Cooling systems located in climate zones 1b, 2b, and 3b shall be equipped with controls that have the capability to automatically restart and temporarily operate the system as required to maintain *zone* temperatures below a cooling setpoint adjustable up to 90°F or higher or to prevent high space humidity levels.

Exception to 6.4.3.3.2: Radiant floor and ceiling heating *systems*.

6.4.3.3.3 Optimum Start Controls. Individual heating and cooling air distribution systems with a total design supply air capacity exceeding 10,000 cfm, served by one or more supply fans, shall have *optimum start controls*. The control algorithm shall, as a minimum, be a function of the difference between space temperature and occupied setpoint and the amount of time prior to scheduled occupancy.

6.4.3.3.4 Zone Isolation. HVAC systems serving zones that are intended to operate or be occupied nonsimultaneously shall be divided into isolation areas. Zones may be grouped into a single isolation area provided it does not exceed 25,000 ft² of conditioned floor area nor include more than one floor. Each isolation area shall be equipped with isolation devices capable of automatically shutting off the supply of conditioned air and outdoor air to and exhaust air from the area. Each isolation area shall be controlled independently by a device meeting the requirements of 6.4.3.3.1 (Automatic Shutdown). For central systems and plants, controls and devices shall be provided to allow stable system and equipment operation for any length of time while serving only the smallest isolation area served by the system or plant.

Exceptions to 6.4.3.3.4: Isolation devices and controls are not required for the following:

- (a) Exhaust air and *outdoor air* connections to isolation *zones* when the fan system to which they connect is 5000 cfm and smaller.
- (b) Exhaust airflow from a single isolation *zone* of less than 10% of the design airflow of the exhaust system to which it connects.
- (c) Zones intended to operate continuously or intended to be inoperative only when all other zones are inoperative.

6.4.3.4 Ventilation System Controls.

6.4.3.4.1 Stair and Shaft Vents. Stair and elevator shaft vents shall be equipped with motorized dampers that are capable of being automatically closed during normal building operation and are interlocked to open as required by fire and smoke detection systems.

6.4.3.4.2 Gravity Hoods, Vents, and Ventilators. All *outdoor air* supply and exhaust hoods, vents, and ventilators shall be equipped with motorized dampers that will automatically shut when the spaces served are not in use.

Exceptions to 6.4.3.4.1 and 6.4.3.4.2:

- (a) Gravity (nonmotorized) dampers are acceptable in buildings less than three stories in height above grade and for buildings of any height located in climate zones 1, 2, and 3.
- (b) Ventilation systems serving unconditioned spaces.

6.4.3.4.3 Shutoff Damper Controls. Both *outdoor air* supply and exhaust systems shall be equipped with motorized dampers that will automatically shut when the systems or spaces served are not in use. Ventilation *outdoor air* dampers shall be capable of automatically shutting off during preoccupancy building warm-up, cool down, and *setback*, except when *ventilation* reduces energy costs (e.g., night purge) or when ventilation must be supplied to meet code requirements.

Exceptions to 6.4.3.4.3:

- (a) Gravity (nonmotorized) dampers are acceptable in buildings less than three stories in height and for buildings of any height located in climate zones 1, 2, and 3.
- (b) Gravity (nonmotorized) dampers are acceptable in systems with a design *outdoor air* intake or exhaust capacity of 300 cfm or less.
- **6.4.3.4.4 Dampers.** Where *outdoor air* supply and exhaust air dampers are required by Section 6.4.3.4, they shall have a maximum leakage rate when tested in accordance with AMCA Standard 500 as indicated in Table 6.4.3.4.4.
- **6.4.3.4.5 Ventilation Fan Controls.** Fans with motors greater than $\frac{3}{4}$ hp (0.5 kW) shall have automatic controls complying with Section 6.4.3.3.1 that are capable of shutting off fans when not required.

Exception to 6.4.3.4.5: *HVAC systems* intended to operate continuously.

6.4.3.5 Heat Pump Auxiliary Heat Control. Heat pumps equipped with internal electric resistance heaters shall have controls that prevent supplemental heater operation when the heating load can be met by the heat pump alone during both steady-state operation and setback recovery. Supplemental heater operation is permitted during outdoor coil defrost cycles.

Exception to 6.4.3.5: Heat pumps whose minimum *efficiency* is regulated by NAECA and whose HSPF rating both meets the requirements shown in Table 6.8.1B and includes all usage of internal electric resistance heating.

- **6.4.3.6 Humidifier Preheat.** Humidifiers with preheating jackets mounted in the airstream shall be provided with an automatic valve to shut off preheat when humidification is not required.
- **6.4.3.7 Humidification and Dehumidification.** Where a *zone* is served by a system or systems with both humidification and dehumidification capability, means (such as limit switches, mechanical stops, or, for DDC systems, software programming) shall be provided capable of preventing simultaneous operation of humidification and dehumidification equipment.

Exceptions to 6.4.3.7:

- (a) Zones served by desiccant systems, used with direct evaporative cooling in series.
- (b) Systems serving zones where specific humidity levels are required, such as computer rooms, museums, and hospitals, and approved by the *authority having jurisdiction*.

TABLE 6.4.3.4.4 Maximum Damper Leakage

Climate Zones	Maximum Damper Leakage at 1.0 in. w.g. cfm per ft ² of damper area			
Climate	Motorized Nonmotorized			
1, 2, 6, 7, 8	4	Not Allowed		
All Others	10	20 ^a		

a Dampers smaller than 24 in. in either dimension may have leakage of 40 cfm/ft².

6.4.3.8 Freeze Protection and Snow/Ice Melting Sys-

tems. Freeze protection systems, such as heat tracing of outdoor piping and heat exchangers, including self-regulating heat tracing, shall include automatic controls capable of shutting off the systems when *outdoor air* temperatures are above 40°F or when the conditions of the protected fluid will prevent freezing. Snow- and ice-melting systems shall include automatic controls capable of shutting off the systems when the pavement temperature is above 50°F and no precipitation is falling and an automatic or manual control that will allow shutoff when the outdoor temperature is above 40°F so that the potential for snow or ice accumulation is negligible.

6.4.3.9 Ventilation Controls for High-Occupancy Areas. Systems with design *outdoor air* capacities greater than 3000 cfm serving areas having an average design occupancy density exceeding 100 people per 1000 ft² shall include means to automatically reduce *outdoor air* intake below design rates when spaces are partially occupied. Ventilation controls shall be in compliance with ASHRAE Standard 62 and local standards.

Exception to 6.4.3.9: Systems with energy recovery complying with 6.5.6.1.

6.4.4 HVAC System Construction and Insulation

6.4.4.1 Insulation

- **6.4.4.1.1 General.** Insulation required by this section shall be installed in accordance with industry-accepted standards (see Appendix E). These requirements do not apply to HVAC equipment. Insulation shall be protected from damage, including that due to sunlight, moisture, equipment maintenance and wind, but not limited to the following:
- (a) Insulation exposed to weather shall be suitable for outdoor service, e.g., protected by aluminum, sheet metal, painted canvas, or plastic cover. Cellular foam insulation shall be protected as above or painted with a coating that is water retardant and provides shielding from solar radiation that can cause degradation of the material.
- (b) Insulation covering chilled water piping, refrigerant suction piping, or cooling ducts located outside the conditioned space shall include a vapor retardant located outside the insulation (unless the insulation is inherently vapor retardant), all penetrations and joints of which shall be sealed.
- **6.4.4.1.2 Duct and Plenum Insulation.** All supply and return ducts and plenums installed as part of an HVAC air distribution system shall be thermally insulated in accordance with Tables 6.8.2A and 6.8.2B.

		Duct Type		
	Supply			
Duct Location	≤2 in. w.c. ^b	>2 in. w.c. ^b	Exhaust	Return
Outdoor	A	A	С	A
Unconditioned Space	В	A	C	В
Conditioned Spaces ^c	C	В	В	C

- See Table 6.4.4.2B description of seal level

Seal Level

Duct design static pressure classification Includes indirectly conditioned spaces such as return air plenums

TABLE 6.4.4.2B Duct Seal Levels

Sealing Requirements^a

Betti Berei	Seaming resident contents
A	All transverse joints, longitudinal seams, and duct wall penetrations. Pressure-sensitive tape shall not be used as the primary sealant, unless it has been certified to comply with UL-181A or UL-181B by an independent testing laboratory and the tape is used in accordance with that certification
В	All transverse joints, longitudinal seams. Pressure- sensitive tape shall not be used as the primary sealant, unless it has been certified to comply with UL-181A or UL-181B by an independent testing laboratory and the tape is used in accordance with that certification
C	Transverse joints only.

Longitudinal seams are joints oriented in the direction of airflow. Transverse joints are connections of two duct sections oriented perpendicular to airflow. Duct wall penetrations are openings made by any screw fastener, pipe, rod, or wire. Spiral lock seams in a round and flat oval duct need not be sealed. All other connections are considered transverse joints, including but not limited to spin-ins, taps, and other branch connections, access door frames and jambs, duct connections to equipment,

Exceptions to 6.4.4.1.2:

- (a) Factory-installed plenums, casings, or ductwork furnished as a part of HVAC equipment tested and rated in accordance with 6.4.1.
- (b) Ducts or plenums located in heated spaces, semiheated spaces, or cooled spaces.
- (c) For runouts less than 10 ft in length to air terminals or air outlets, the rated R-value of insulation need not exceed R-3.5.
- (d) Backs of air outlets and outlet plenums exposed to unconditioned or indirectly conditioned spaces with face areas exceeding 5 ft² need not exceed R-2; those 5 ft² or smaller need not be insulated.

6.4.4.1.3 Piping Insulation. Piping shall be thermally insulated in accordance with Table 6.8.3.

Exceptions to 6.4.4.1.3:

- (a) Factory-installed piping within HVAC equipment tested and rated in accordance with 6.4.1.
- (b) Piping that conveys fluids having a design operating temperature range between 60°F and 105°F, inclu-
- (c) Piping that conveys fluids that have not been heated or cooled through the use of nonrenewable energy (such as roof and condensate drains, domestic cold water supply, natural gas piping, or refrigerant liquid

- piping) or where heat gain or heat loss will not increase energy usage.
- (d) Hot water piping between the shutoff valve and the coil, not exceeding 4 ft in length, when located in conditioned spaces.
- (e) Pipe unions in heating systems (steam, steam condensate, and hot water).

6.4.4.2 Ducts and Plenum Leakage

6.4.4.2.1 Duct Sealing. Ductwork and plenums shall be sealed in accordance with Table 6.4.4.2A (Table 6.4.4.2B provides definitions of seal levels), as required to meet the requirements of 6.4.4.2.2 and with standard industry practice (see Appendix E).

6.4.4.2.2 Duct Leakage Tests. Ductwork that is designed to operate at static pressures in excess of 3 in. w.c. shall be leak tested according to industry-accepted test procedures (see Appendix E). Representative sections totaling no less than 25% of the total installed duct area for the designated pressure class shall be tested. Duct systems with pressure ratings in excess of 3 in. w.c. shall be identified on the drawings. The maximum permitted duct leakage shall be

$$L_{max} = C_L P^{0.65}$$

where

= maximum permitted leakage in cfm/100 ft² duct L_{max} surface area;

= duct leakage class, cfm/100 ft² at 1 in. w.c., C_{I}

- 6 for rectangular sheetmetal, rectangular fibrous, and round flexible ducts.
- 3 for round/flat oval sheetmetal or fibrous glass
- P = test pressure, which shall be equal to the design duct pressure class rating in in. w.c.
- 6.4.5 Completion Requirements. Completion Requirements are as described in Section 6.7.2.

6.5 Prescriptive Path

6.5.1 Economizers. Each cooling system having a fan shall include either an air or water economizer meeting the requirements of 6.5.1.1 through 6.5.1.4.

Exceptions to 6.5.1: Economizers are not required for the systems listed below.

(a) Individual fan-cooling units with a supply capacity less than the minimum listed in Table 6.5.1.

TABLE 6.5.1 Minimum Systems Size for Which an Economizer is Required

Climate Zones	Cooling Capacity for Which an Economizer is Required
1a, 1b, 2a, 3a, 4a	No Economizer Requirement
2b, 5a, 6a, 7, 8	≥135,000 Btu/h
3b, 3c, 4b, 4c, 5b, 5c, 6b	≥65,000 Btu/h

- (b) Systems that include gas phase air cleaning in order to meet 6.1.2 of ASHRAE Standard 62.
- (c) Where more than 25% of the air designed to be supplied by the system is to spaces that are designed to be humidified above 35°F dew-point temperature to satisfy process needs.
- (d) Systems that include a condenser heat recovery system required by 6.5.6.2.
- (e) Systems that serve *residential* spaces where the system capacity is less than five times the requirement listed in Table 6.5.1.
- (f) Systems that serve spaces whose sensible cooling load at design conditions, excluding transmission and infiltration loads, is less than or equal to transmission and infiltration losses at an outdoor temperature of 60°F.

- (g) Systems expected to operate less than 20 hours per week.
- (h) Where the use of *outdoor air* for cooling will affect supermarket open refrigerated casework systems.
- (i) Where the cooling *efficiency* meets or exceeds the *efficiency* requirements in Table 6.3.2.

6.5.1.1 Air Economizers

6.5.1.1.1 Design Capacity. Air economizer systems shall be capable of modulating *outdoor air* and return air dampers to provide up to 100% of the design supply air quantity as *outdoor air* for cooling.

6.5.1.1.2 Control Signal. Economizer dampers shall be capable of being sequenced with the mechanical cooling equipment and shall not be controlled by only mixed air temperature.

Exception to 6.5.1.1.2: The use of mixed air temperature limit control shall be permitted for systems controlled from space temperature (such as single-zone systems).

6.5.1.1.3 High-Limit Shutoff. All air economizers shall be capable of automatically reducing *outdoor air* intake to the design minimum *outdoor air* quantity when *outdoor air* intake will no longer reduce cooling energy usage. High-limit shutoff control types for specific climates shall be chosen from Table 6.5.1.1.3A. High-limit shutoff control settings for these control types shall be those listed in Table 6.5.1.1.3B.

TABLE 6.5.1.1.3A High-Limit Shutoff Control Options for Air Economizers

Climate Zones	Allowed Control Types	Prohibited Control Types
1b, 2b, 3b, 3c, 4b, 4c,5b, 5c, 6b,7, 8	Fixed Dry Bulb Differential Dry Bulb Electronic Enthalpy ^a	Fixed Enthalpy
	Differential Enthalpy Dew-Point and Dry-Bulb Temperature	
1a, 2a, 3a, 4a	Fixed Dry Bulb Fixed Enthalpy Electronic Enthalpy ^a Differential Enthalpy Dew-Point and Dry-Bulb Temperature	Differential Dry Bulb
All Other Climates	Fixed Dry Bulb Differential Dry Bulb Fixed Enthalpy Electronic Enthalpy ^a Differential Enthalpy	
	Dew-Point and Dry-Bulb Temperature	

a Electronic enthalpy controllers are devices that use a combination of humidity and dry-bulb temperature in their switching algorithm.

TABLE 6.5.1.1.3B High-Limit Shutoff Control Settings for Air Economizers

Device Type	Climate	Required High Limit (Economizer Off When):		
		Equation	Description	
Fixed Dry Bulb	1b,2b,3b,3c,4b,4c,5b,5c,6b,7,8 5a,6a,7a All Other Zones	${ m T}_{OA} > 75 { m ^{\circ}F}$ ${ m T}_{OA} > 70 { m ^{\circ}F}$ ${ m T}_{OA} > 65 { m ^{\circ}F}$	Outdoor air temperature exceeds 75°F Outdoor air temperature exceeds 70°F Outdoor air temperature exceeds 65°F	
Differential Dry Bulb	1b,2b,3b,3c,4b,4c,5a,5b,5c,6a,6b,7,8	$T_{OA} > T_{RA}$	Outdoor air temperature exceeds return air temperature.	
Fixed Enthalpy	All	$h_{OA} > 28 \text{ Btu/lb}^{a}$	Outdoor air enthalpy exceeds 28 Btu/lb of dry aira	
Electronic Enthalpy	All	$(T_{OA}, RH_{OA}) > A$	Outdoor air temperature/RH exceeds the "A" set point curve ^b	
Differential Enthalpy	All	$h_{OA} > h_{RA}$	Outdoor air enthalpy exceeds return air enthalpy	
Dew Point and Dry-Bulb Temperature	All	DP _{oa} >55°F or T _{oa} >75°F	Outdoor air dry bulb exceeds 75°F or outside dew point exceeds 55°F (65 gr/lb)	

a At altitudes substantially different than sea level, the Fixed Enthalpy limit shall be set to the enthalpy value at 75°F and 50% relative humidity. As an example, at approximately 6000 ft elevation the fixed enthalpy limit is approximately 30.7 Btu/lb.

Set point "A" corresponds to a curve on the psychometric chart that goes through a point at approximately 75°F and 40% relative humidity and is nearly parallel to dry-bulb lines at low humidity levels and nearly parallel to enthalpy lines at high humidity levels.

- **6.5.1.1.4 Dampers.** Both return air and *outdoor air* dampers shall meet the requirements of 6.4.3.3.4.
- **6.5.1.1.5 Relief of Excess** *Outdoor Air.* Systems shall provide a means to relieve excess *outdoor air* during air economizer operation to prevent overpressurizing the building. The relief air outlet shall be located to avoid recirculation into the building.

6.5.1.2 Water Economizers

6.5.1.2.1 Design Capacity. Water economizer systems shall be capable of cooling supply air by indirect evaporation and providing up to 100% of the expected system cooling load at *outdoor air* temperatures of 50°F dry bulb/45°F wet bulb and below.

Exception to 6.5.1.2.1: Systems in which a water economizer is used and where dehumidification requirements cannot be met using *outdoor air* temperatures of 50°F dry bulb/45°F wet bulb must satisfy 100% of the expected system cooling load at 45°F dry bulb/40°F wet bulb.

- **6.5.1.2.2 Maximum Pressure Drop.** Precooling coils and water-to-water heat exchangers used as part of a water economizer system shall either have a water-side pressure drop of less than 15 ft of water or a secondary loop shall be created so that the coil or heat exchanger pressure drop is not seen by the circulating pumps when the system is in the normal cooling (noneconomizer) mode.
- **6.5.1.3 Integrated Economizer Control.** Economizer systems shall be integrated with the mechanical cooling system and be capable of providing partial cooling even when additional mechanical cooling is required to meet the remainder of the cooling load.

Exceptions to 6.5.1.3:

- (a) Direct expansion systems that include controls that reduce the quantity of *outdoor air* required to prevent coil frosting at the lowest step of compressor unloading, provided this lowest step is no greater than 25% of the total system capacity.
- (b) Individual direct expansion units that have a rated cooling capacity less than 65,000 Btu/h and use nonintegrated economizer controls that preclude simultaneous operation of the economizer and mechanical cooling.
- (c) Systems in climate zones 1, 2, 3a, 4a, 5a, 5b, 6, 7, 8.
- **6.5.1.4 Economizer Heating System Impact.** HVAC system design and economizer controls shall be such that economizer operation does not increase the building heating energy use during normal operation.
 - **Exception to 6.5.1.4:** Economizers on VAV systems that cause zone level heating to increase due to a reduction in supply air temperature.

6.5.2 Simultaneous Heating and Cooling Limitation

6.5.2.1 Zone Controls. *Zone* thermostatic controls shall be capable of operating in sequence the supply of heating and cooling energy to the *zone*. Such controls shall prevent:

- 1. reheating,
- 2. recooling,
- mixing or simultaneously supplying air that has been previously mechanically heated and air that has been previously cooled, either by mechanical cooling or by economizer systems, and
- other simultaneous operation of heating and cooling systems to the same zone.

Exceptions to 6.5.2.1:

- (a) *Zones* for which the volume of air that is reheated, recooled, or mixed is no greater than the larger of the following:
 - the volume of *outdoor air* required to meet the ventilation requirements of Section 6.1.3 of ASHRAE Standard 62 for the *zone*,
 - 2. 0.4 cfm/ft² of the *zone* conditioned floor area,
 - 3. 30% of the zone design peak supply rate,
 - 4. 300 cfm—this exception is for zones whose peak flow rate totals no more than 10% of the total fan system flow rate,
 - any higher rate that can be demonstrated, to the satisfaction of the authority having jurisdiction, to reduce overall system annual energy usage by offsetting reheat/recool energy losses through a reduction in outdoor air intake in accordance with the multiple space requirements defined in ASHRAE Standard 62.
- (b) Zones where special pressurization relationships, cross-contamination requirements, or code-required minimum circulation rates are such that variable air volume systems are impractical.
- (c) Zones where at least 75% of the energy for reheating or for providing warm air in mixing systems is provided from a *site-recovered* (including condenser heat) or *site- solar energy source*.
- **6.5.2.2 Hydronic System Controls.** The heating of fluids in hydronic systems that have been previously mechanically cooled and the cooling of fluids that have been previously mechanically heated shall be limited in accordance with 6.5.2.2.1 through 6.5.2.2.3.
- **6.5.2.2.1 Three-Pipe System.** Hydronic systems that use a common return system for both hot water and chilled water shall not be used.
- **6.5.2.2.2 Two-Pipe Changeover System.** Systems that use a common distribution system to supply both heated and chilled water are acceptable provided all of the following are met:
- (a) The system is designed to allow a deadband between changeover from one mode to the other of at least 15°F *outdoor air* temperature.
- (b) The system is designed to operate and is provided with controls that will allow operation in one mode for at least four hours before changing over to the other mode.
- (c) Reset controls are provided that allow heating and cooling supply temperatures at the changeover point to be no more than 30°F apart.

6.5.2.2.3 Hydronic (Water Loop) Heat Pump Systems. Hydronic heat pumps connected to a common heat pump water loop with central devices for heat rejection (e.g., cooling tower) and heat addition (e.g., boiler) shall have the following:

- (a) Controls that are capable of providing a heat pump water supply temperature deadband of at least 20°F between initiation of heat rejection and heat addition by the central devices (e.g., tower and boiler).
- (b) For climate zones 3 through 8, if a closed-circuit tower (fluid cooler) is used, either an automatic valve shall be installed to bypass all but a minimal flow of water around the tower (for freeze protection) or low-leakage positive closure dampers shall be provided. If an open-circuit tower is used directly in the heat pump loop, an automatic valve shall be installed to bypass all heat pump water flow around the tower. If an open-circuit tower is used in conjunction with a separate heat exchanger to isolate the tower from the heat pump loop, then heat loss shall be controlled by shutting down the circulation pump on the cooling tower loop.

Exception to 6.5.2.2.3: Where a system loop temperature optimization controller is used to determine the most efficient operating temperature based on real-time conditions of demand and capacity, dead bands of less than 20°F shall be allowed.

6.5.2.3 Dehumidification. Where humidistatic controls are provided, such controls shall prevent reheating, mixing of hot and cold airstreams, or other means of simultaneous heating and cooling of the same airstream.

Exceptions to 6.5.2.3:

- (a) The system is capable of reducing supply air volume to 50% or less of the design airflow rate or the minimum rate specified in 6.1.3 of ASHRAE Standard 62, whichever is larger, before simultaneous heating and cooling takes place.
- (b) The individual fan cooling unit has a design cooling capacity of 80,000 Btu/h or less and is capable of

- unloading to 50% capacity before simultaneous heating and cooling takes place.
- (c) The individual mechanical cooling unit has a design cooling capacity of 40,000 Btu/h or less. An individual mechanical cooling unit is a single system composed of a fan or fans and a cooling coil capable of providing mechanical cooling.
- (d) Systems serving spaces where specific humidity levels are required to satisfy process needs, such as computer rooms, museums, surgical suites, and buildings with refrigerating systems, such as supermarkets, refrigerated warehouses, and ice arenas. This exception also applies to other applications for which fan volume controls in accordance with Exception (a) are proven to be impractical to the enforcement agency.
- (e) At least 75% of the energy for reheating or for providing warm air in mixing systems is provided from a *site-recovered* (including condenser heat) or *site solar energy* source.
- (f) Systems where the heat added to the airstream is the result of the use of a desiccant system and 75% of the heat added by the desiccant system is removed by a heat exchanger, either before or after the desiccant system with energy recovery.
- **6.5.2.4 Humidification.** Systems with hydronic cooling and humidification systems designed to maintain inside humidity at greater than 35°F dew-point temperature shall use a water economizer if an economizer is required by 6.5.1.
- **6.5.3 Air System Design and Control.** HVAC systems having a total *fan system power* exceeding 5 hp shall meet the provisions of 6.5.3.1 through 6.5.3.2 unless otherwise noted.

6.5.3.1 Fan Power Limitation.

(a) The ratio of the fan system power to the supply fan airflow rate (main fan) of each HVAC system at design conditions shall not exceed the allowable fan system power shown in Table 6.5.3.1.

TABLE 6.5.3.1 Fan Power Limitation

Allowable Nameplate Motor Power Supply Air Volume Constant Volume Variable Volume <20,000 cfm</td> 1.2 hp/1000 cfm 1.7 hp/1000 cfm ≥20,000 cfm 1.1 hp/1000 cfm 1.5 hp/1000 cfm

 $Allowable\ Fan\ System\ Power = [Table\ 6.5.3.1\ Fan\ Power\ Limitation \times (Temperature\ Ratio) + Pressure\ Credit + Relief\ Fan\ Credit]$ where

Table 6.5.3.1 Fan Power Limitation = Table Value $\times CFM_n/1000$

Temperature Ratio = $(T_{t-stat} - T_S) / 20$

Pressure Credit (hp) = Sum of $[CFM_n \times (SP_n - 1.0) / 3718] + \text{Sum of } [CFM_{HR} \times SP_{HR}/3718]$

Relief Fan Credit HP (kW) = $F_R HP$ (kW) ×[1 – (CFM_{RF} / CFM_n)]

 CFM_n = supply air volume of the unit with the filtering system (cfm)

 CFM_{HR}^{n} = supply air volume of heat recovery coils or direct evaporative humidified/cooler (cfm)

 CFM_{RF} = relief fan air volume at normal cooling design operation

 SP_n = air pressure drop of the filtering system when filters are clean (in. w.g.)

 SP_{HR}^{n} = air pressure drop of heat recovery coils or direct evaporative humidifier/cooler (in. w.g.).

 T_{t-stat} = room thermostat setpoint

 T_S = design supply air temperature for the zone in which the thermostat is located

 F_R = nameplate rating of the relief fan in hp

- (b) Where air systems require air treatment or filtering systems with pressure drops over 1 in. w.c. when filters are clean, or heat recovery coils or devices, or direct evaporative humidifiers/coolers, or other devices to serve process loads in the airstream, the allowable fan system power may be adjusted using the pressure credit in the allowable fan system equation in Table 6.5.3.1.
- (c) If the temperature difference between design room temperature and supply air temperature at cooling design conditions that is used to calculate design zone supply airflow is larger than 20°F, the allowable fan system power may be adjusted using the temperature ratio in the allowable fan system power equation in Table 6.5.3.1.

6.5.3.2 Variable Air Volume (VAV) Fan Control (Including Systems Using Series Fan Power Boxes).

- **6.5.3.2.1 Part-Load Fan Power Limitation.** Individual VAV fans with motors 15 hp and larger shall meet one of the following:
- (a) The fan shall be driven by a mechanical or electrical variable-speed drive.
- (b) The fan shall be a vane-axial fan with variable-pitch blades.
- (c) The fan shall have other controls and devices that will result in fan motor demand of no more than 30% of design wattage at 50% of design air volume when static pressure setpoint equals one-third of the total design static pressure, based on *manufacturer's* certified fan data.
- 6.5.3.2.2 Static Pressure Sensor Location. Static pressure sensors used to control variable air volume fans shall be placed in a position such that the controller setpoint is no greater than one-third the total design fan static pressure, except for systems with zone reset control complying with 6.5.3.2.3. If this results in the sensor being located downstream of major duct splits, multiple sensors shall be installed in each major branch to ensure that static pressure can be maintained in each.
- **6.5.3.2.3 Setpoint Reset.** For systems with direct digital control of individual zone boxes reporting to the central control panel, static pressure setpoint shall be reset based on the *zone* requiring the most pressure; i.e., the setpoint is reset lower until one *zone* damper is nearly wide open.
- **6.5.4 Hydronic System Design and Control.** HVAC hydronic systems having a total *pump system power* exceeding 10 hp shall meet provisions of 6.5.4.1 through 6.5.4.4.
- 6.5.4.1 Hydronic Variable Flow Systems. HVAC pumping systems that include control valves designed to modulate or step open and close as a function of load shall be designed for variable fluid flow and shall be capable of reducing pump flow rates to 50% or less of the design flow rate. Individual pumps serving variable flow systems having a pump head exceeding 100 ft and motor exceeding 50 hp shall have controls and/or devices (such as variable speed control) that will result in pump motor demand of no more than 30% of design wattage at 50% of design water flow. The controls or devices shall be controlled as a function of desired flow or to maintain a minimum required differential pressure. Differential pressure shall be measured at or near the most remote heat exchanger or the heat exchanger requiring the greatest differential pressure.

Exceptions to 6.5.4.1:

- (a) Systems where the minimum flow is less than the minimum flow required by the equipment *manufacturer* for the proper operation of equipment served by the system, such as chillers, and where total pump system power is 75 hp or less.
- (b) Systems that include no more than three control valves.
- **6.5.4.2 Pump Isolation.** When a chilled water plant includes more than one chiller, provisions shall be made so that the flow in the chiller plant can be automatically reduced, correspondingly, when a chiller is shut down. Chillers referred to in this section, piped in series for the purpose of increased temperature differential, shall be considered as one chiller.

When a boiler plant includes more than one boiler, provisions shall be made so that the flow in the boiler plant can be automatically reduced, correspondingly, when a boiler is shut down.

6.5.4.3 Chilled and Hot Water Temperature Reset Controls. Chilled and hot water systems with a design capacity exceeding 300,000 Btu/h supplying chilled or heated water (or both) to comfort conditioning systems shall include controls that automatically reset supply water temperatures by representative building loads (including return water temperature) or by *outdoor air* temperature.

Exceptions to 6.5.4.3:

- (a) Where the supply temperature reset controls cannot be implemented without causing improper operation of heating, cooling, humidifying, or dehumidifying systems.
- (b) Hydronic systems, such as those required by 6.5.4.1 that use variable flow to reduce pumping energy.
- **6.5.4.4 Hydronic (Water Loop) Heat Pump Systems.** Each hydronic heat pump shall have a two-position automatic valve interlocked to shut off water flow when the compressor is off.

6.5.5 Heat Rejection Equipment.

6.5.5.1 General. Subsection 6.5.5 applies to heat rejection equipment used in comfort cooling systems such as aircooled condensers, open cooling towers, closed-circuit cooling towers, and evaporative condensers.

Exception to 6.5.5.1: Heat rejection devices whose energy usage is included in the equipment *efficiency* ratings listed in Tables 6.8.1A through 6.8.1D.

6.5.5.2 Fan Speed Control. Each fan powered by a motor of 7.5 hp or larger shall have the capability to operate that fan at two-thirds of full speed or less and shall have controls that automatically change the fan speed to control the leaving fluid temperature or condensing temperature/pressure of the heat rejection device.

Exceptions to 6.5.5.2:

- (a) Condenser fans serving multiple refrigerant circuits.
- (b) Condenser fans serving flooded condensers.
- (c) Installations located in climate zones 1 and 2.
- (d) Up to one-third of the fans on a condenser or tower with multiple fans, where the lead fans comply with the speed control requirement.

6.5.6 Energy Recovery

6.5.6.1 Exhaust Air Energy Recovery. Individual fan systems that have both a design supply air capacity of 5000 cfm or greater and have a minimum *outdoor air* supply of 70% or greater of the design supply air quantity shall have an energy recovery system with at least 50% recovery effectiveness. Fifty percent energy recovery effectiveness shall mean a change in the enthalpy of the *outdoor air* supply equal to 50% of the difference between the *outdoor air* and return air at design conditions. Provision shall be made to bypass or control the heat recovery system to permit air economizer operation as required by 6.5.1.1.

Exceptions to 6.5.6.1:

- (a) Laboratory systems meeting 6.5.7.2.
- (b) Systems serving spaces that are not cooled and that are heated to less than 60°F.
- (c) Systems exhausting toxic, flammable, paint, or corrosive fumes or dust.
- (d) Commercial kitchen hoods used for collecting and removing grease vapors and smoke.
- (e) Where more than 60% of the *outdoor air* heating energy is provided from site-recovered or site solar energy.
- (f) Heating systems in climate zones 1 through 3.
- (g) Cooling systems in climate zones 3c, 4c, 5b, 5c, 6b, 7, and 8.
- (h) Where the largest exhaust source is less than 75% of the design *outdoor air* flow.
- (i) Systems requiring dehumidification that employ energy recovery in series with the cooling coil.

6.5.6.2 Heat Recovery for Service Water Heating.

- **6.5.6.2.1** Condenser heat recovery systems shall be installed for heating or preheating of service hot water provided all of the following are true:
- (a) The facility operates 24 hours a day.
- (b) The total installed heat rejection capacity of the water-cooled systems exceeds 6,000,000 Btu/h of heat rejection.
- (c) The design service water heating load exceeds 1,000,000 Btu/h.
- **6.5.6.2.2** The required heat recovery system shall have the capacity to provide the smaller of
- (a) 60% of the peak heat rejection load at design conditions or
- (b) preheat of the peak service hot water draw to 85°F.

Exceptions to 6.5.6.2:

- (a) Facilities that employ condenser heat recovery for space heating with a heat recovery design exceeding 30% of the peak water-cooled condenser load at design conditions.
- (b) Facilities that provide 60% of their service water heating from *site solar* or *site recovered energy* or from other sources.

6.5.7 Exhaust Hoods

6.5.7.1 Kitchen Hoods. Individual kitchen exhaust hoods larger than 5000 cfm shall be provided with makeup air sized for at least 50% of exhaust air volume that is

- (a) unheated or heated to no more than 60°F and
- (b) uncooled or cooled without the use of mechanical cooling.

Exceptions to 6.5.7.1:

- (a) Where hoods are used to exhaust ventilation air that would otherwise exfiltrate or be exhausted by other fan systems.
- (b) Certified grease extractor hoods that require a face velocity no greater than 60 fpm.
- **6.5.7.2 Fume Hoods.** Buildings with fume hood systems having a total exhaust rate greater than 15,000 cfm shall include at least one of the following features:
- (a) Variable air volume hood exhaust and room supply systems capable of reducing exhaust and makeup air volume to 50% or less of design values.
- (b) Direct makeup (auxiliary) air supply equal to at least 75% of the exhaust rate, heated no warmer than 2°F below room setpoint, cooled to no cooler than 3°F above room setpoint, no humidification added, and no simultaneous heating and cooling used for dehumidification control.
- (c) Heat recovery systems to precondition makeup air from fume hood exhaust in accordance with 6.5.6.1 (Exhaust Air Energy Recovery) without using any exception.

6.5.8 Radiant Heating Systems

6.5.8.1 Heating Unenclosed Spaces. Radiant heating shall be used when heating is required for unenclosed spaces.

Exception to 6.5.8.1: Loading docks equipped with air curtains.

- **6.5.8.2 Heating Enclosed Spaces.** Radiant heating systems that are used as primary or supplemental enclosed space heating must be in conformance with the governing provisions of the standard, including, but not limited to, the following:
- (a) Radiant hydronic ceiling or floor panels (used for heating or cooling).
- (b) Combination or hybrid systems incorporating radiant heating (or cooling) panels.
- (c) Radiant heating (or cooling) panels used in conjunction with other systems such as variable air volume or thermal storage systems.
- **6.5.9 Hot Gas Bypass Limitation.** Cooling systems shall not use hot gas bypass or other evaporator pressure control systems unless the system is designed with multiple steps of unloading or continuous capacity modulation. The capacity of the hot gas bypass shall be limited as indicated in Table 6.5.9.

Exception to 6.5.9: Unitary packaged systems with cooling capacities not greater than 90,000 Btu/h.

TABLE 6.5.9 Hot Gas Bypass Limitation

Rated Capacity Maximum Hot Gas Bypass C (% of Total Capacity)				
≤240,000 Btu/h	50%			
>240,000 Btu/h	25%			

6.6 Alternative Compliance Path: (Not Used)

6.7 Submittals

- **6.7.1 General.** *Authority having jurisdiction* may require submittal of compliance documentation and supplemental information, in accord with Section 4.2.2 of this standard.
- **6.7.2** Completion Requirements: The following requirements are mandatory provisions and are necessary for compliance with the standard.
- **6.7.2.1 Drawings.** Construction documents shall require that within 90 days after the date of system acceptance record drawings of the actual installation be provided to the building owner or the designated representative of the building owner. Record drawings shall include as a minimum the location and performance data on each piece of equipment, general configuration of duct and pipe distribution system including sizes, and the terminal air or water design flow rates.
- **6.7.2.2 Manuals.** Construction documents shall require that an operating manual and a maintenance manual be provided to the building owner or the designated representative of the building owner within 90 days after the date of system acceptance. These manuals shall be in accordance with industry-accepted standards (see Appendix E) and shall include, at a minimum, the following:
- (a) Submittal data stating equipment size and selected options for each piece of equipment requiring maintenance.
- (b) Operation manuals and maintenance manuals for each piece of equipment requiring maintenance, except equipment not furnished as part of the project. Required routine maintenance actions shall be clearly identified.
- (c) Names and addresses of at least one service agency.
- (d) HVAC controls system maintenance and calibration information, including wiring diagrams, schematics, and control sequence descriptions. Desired or field-determined setpoints shall be permanently recorded on control drawings at control devices or, for digital control systems, in programming comments.

(e) A complete narrative of how each system is intended to operate, including suggested setpoints.

6.7.2.3 System Balancing

- **6.7.2.3.1 General.** Construction documents shall require that all HVAC systems be balanced in accordance with generally accepted engineering standards (see Appendix E). Construction documents shall require that a written balance report be provided to the owner or the designated representative of the building owner for HVAC systems serving *zones* with a total conditioned area exceeding 5000 ft².
- **6.7.2.3.2 Air System Balancing.** Air systems shall be balanced in a manner to first minimize throttling losses. Then, for fans with *fan system power* greater than 1 hp, fan speed shall be adjusted to meet design flow conditions.
- **6.7.2.3.3 Hydronic System Balancing.** Hydronic systems shall be proportionately balanced in a manner to first minimize throttling losses; then the pump impeller shall be trimmed or pump speed shall be adjusted to meet design flow conditions.

Exceptions to 6.7.2.3.3: Impellers need not be trimmed nor pump speed adjusted:

- (a) For pumps with pump motors of 10 hp or less.
- (b) When throttling results in no greater than 5% of the nameplate horsepower draw, or 3 hp, whichever is greater, above that required if the impeller was trimmed.
- **6.7.2.4 System Commissioning.** HVAC control systems shall be tested to ensure that control elements are calibrated, adjusted, and in proper working condition. For projects larger than 50,000 ft² conditioned area, except warehouses and semiheated spaces, detailed instructions for commissioning HVAC systems (see Appendix E) shall be provided by the designer in plans and specifications.

6.8 Minimum Equipment Efficiency Tables

6.8.1 Minimum Efficiency Requirement Listed Equipment—Standard Rating and Operating Conditions

TABLE 6.8.1A Electronically Operated Unitary Air Conditioners and Condensing Units— Minimum Efficiency Requirements

Equipment Type	Size Category	Heating Section Type	Sub-Category or Rating Condition	Minimum Efficiency ^a	Test Procedure ^b
Air Conditioners, Air Cooled	<65,000 Btu/h ^c	All	Split System	10.0 SEER (before 1/23/ 2006) 12.0 SEER (as of 1/23/2006)	ARI 210/240
			Single Package	9.7 SEER (before 1/23/ 2006) 12.0 SEER (as of 1/23/2006)	
Through-the-Wall, Air Cooled	≤ 30,000 Btu/h ^c	All	Split System	10.0 SEER (before 1/23/2006) 10.9 SEER (as of 1/23/2006) 12 SEER (as of 1/23/ 2010)	
			Single Package	9.7 SEER (before 1/23/2006) 10.6 SEER (as of 1/23/ 2006) 12.0 SEER (as of 1/23/2010)	
Small-Duct High-Velocity, Air Cooled	< 65,000 Btu/h ^c	All	Split System	10 SEER	
Air Conditioners, Air Cooled	≥65,000 Btu/h and <135,000 Btu/h	Electric Resistance (or None)	Split System and Single Package	10.3 EER	ARI 340/360
		All other	Split System and Single Package	10.1 EER	
	≥135,000 Btu/h and <240,000 Btu/h	Electric Resistance (or None)	Split System and Single Package	9.7 EER	
		All other	Split System and Single Package	9.5 EER	
	≥240,000 Btu/h and <760,000 Btu/h	Electric Resistance (or None)	Split System and Single Package	9.5 EER 9.7 IPLV	
		All other	Split System and Single Package	9.3 EER 9.5 IPLV	
	≥760,000 Btu/h	Electric Resistance (or None)	Split System and Single Package	9.2 EER 9.4 IPLV	
		All other	Split System and Single Package	9.0 EER 9.2 IPLV	

TABLE 6.8.1A (continued) Electronically Operated Unitary Air Conditioners and Condensing Units— **Minimum Efficiency Requirements**

Equipment Type	Size Category	Heating Section Type	Sub-Category or Rating Condition	Minimum Efficiency ^a	Test Procedure ^b
Air Conditioners, Water and Evaporatively Cooled	<65,000 Btu/h	All	Split System and Single Package	12.1 EER	ARI 210/240
	≥65,000 Btu/h and <135,000 Btu/h	Electric Resistance (or None)	Split System and Single Package	11.5 EER	ARI 340/360
		All other	Split System and Single Package	11.3 EER	
	≥135,000 Btu/h and <240,000 Btu/h	Electric Resistance (or None)	Split System and Single Package	11.0 EER	
		All other	Split System and Single Package	10.8 EER	
	≥240,000 Btu/h	Electric Resistance (or None)	Split System and Single Package	11.0 EER 10.3 IPLV	
		All other	Split System and Single Package	10.8 EER 10.1 IPLV	
Condensing Units, Air Cooled	≥135,000 Btu/h	-		10.1 EER 11.2 IPLV	ARI 365
Condensing Units, Water or Evaporatively Cooled	≥135,000 Btu/h	_		13.1 EER 13.1 IPLV	

IPLVs and part load rating conditions are only applicable to equipment with capacity modulation. Section 12 contains a complete specification of the referenced test procedure, including the referenced year version of the test procedure. Single-phase, air-cooled air-conditioners < 65,000 Btu/h are regulated by NAECA. SEER values are those set by NAECA.

TABLE 6.8.1B Electrically Operated Unitary and Applied Heat Pumps— Minimum Efficiency Requirements

Equipment Type	Size Category	Heating Section Type	Sub-Category or Rating Condition	Minimum Efficiency ^a	Test Procedure ^b
Air Cooled (Cooling Mode)	<65,000 Btu/h ^c	All	Split System	10.0 SEER (before 1/23/ 2006) 12.0 SEER (as of 1/23/2006)	ARI 210/240
			Single Package	9.7 SEER (before 1/23/ 2006) 12.0 SEER (as of 1/23/ 2006)	
Through-the-Wall (Air Cooled, Cooling Mode)	≤30,000 Btu/h ^c	All	Split System	10.0 SEER (before 1/23/ 2006) 10.9 SEER (as of 1/23/ 2006) 12 SEER (as of 1/23/ 2010)	
			Single Package	9.7 SEER (before 1/23/ 2006) 10.6 SEER (as of 1/23/ 2006) 12.0 SEER (as of 1/23/ 2010)	
Small-Duct High- Velocity (Air Cooled, Cooling Mode)	< 65,000 Btu/h ^c	All	Split System	10 SEER	
Air Cooled	≥65,000 Btu/h and	Electric Resistance	Split System and	10.1 EER	ARI
(Cooling Mode)	<135,000 Btu/h	(or None)	Single Package		340/360
	·	All other	Split System and	9.9 EER	=
			Single Package		
	≥135,000 Btu/h and	Electric Resistance	Split System and	9.3 EER	
	<240,000 Btu/h	(or None)	Single Package		
		All other	Split System and	9.1 EER	1
			Single Package		
	≥240,000 Btu/h	Electric Resistance	Split System and	9.0 EER	
		(or None)	Single Package	9.2 IPLV	
		All other	Split System and	8.8 EER	
			Single Package	9.0 IPLV	
Water-Source (Cooling Mode)	<17,000 Btu/h	All	86°F Entering Water	11.2 EER	ISO-13256-1
	≥17,000 Btu/h and <65,000 Btu/h	All	86°F Entering Water	12.0 EER	ISO-13256-1
	≥65,000 Btu/h and <135,000 Btu/h	All	86°F Entering Water	12.0 EER	ISO-13256-1
Groundwater-Source	<135,000 Btu/h	All	59°F Entering Water	16.2 EER	ISO-13256-1
(Cooling Mode)					

TABLE 6.8.1B (continued) Electrically Operated Unitary and Applied Heat Pumps— **Minimum Efficiency Requirements**

Equipment Type	Size Category	Heating Section Type	Sub-Category or Rating Condition	Minimum Efficiency ^a	Test Procedure ^b
Ground Source (Cooling Mode)	<135,000 Btu/h	All	77°F Entering Water	13.4 EER	ISO-13256-1
Air Cooled (Heating Mode)	<65,000 Btu/h ^c (Cooling Capacity)	-	Split System	6.8 HSPF (before 1/23/ 2006) 7.4 HSPF as of 1/23/ 2006)	ARI 210/240
			Single Package	6.6 HSPF (before 1/23/ 2006) 7.4 HSPF as of 1/23/ 2006)	
Through-the-Wall, (Air Cooled, Heating Mode)	≤30,000 Btu/h ^c (cooling capacity)	-	Split System	6.8 HSPF (before 1/23/ 2006) 7.1 HSPF (as of 1/23/ 2006) 7.4 HSPF as of 1/23/ 2010)	
			Single Package	6.6 HSPF (before 1/23/ 2006) 7.0 HSPF (as of 1/23/ 2006) 7.4 HSPF (as of 1/23/ 2010)	
Small-Duct High- Velocity (Air Cooled, Heating Mode)	< 65,000 Btu/h ^c (cooling capacity)	-	Split System	6.8 HSPF	
Air Cooled (Heating Mode)	≥65,000 Btu/h and <135,000 Btu/h (Cooling Capacity)	-	47°F db/43°F wb Outdoor air 17°F db/15°F wb	3.2 COP 2.2 COP	ARI 340/360
	≥135,000 Btu/h (Cooling Capacity)		Outdoor air 47°F db/43°F wb Outdoor air	3.1 COP	
			17°F db/15°F wb Outdoor air	2.0 COP	
Water-Source (Heating Mode)	<135,000 Btu/h (Cooling Capacity)	-	68°F Entering Water	4.2 COP	ISO-13256-1
Groundwater-Source (Heating Mode)	<135,000 Btu/h (Cooling Capacity)	-	50°F Entering Water	3.6 COP	ISO-13256-1
Ground Source (Heating Mode)	<135,000 Btu/h (Cooling Capacity)	-	32°F Entering Water	3.1 COP	ISO-13256-1

IPLVs and Part load rating conditions are only applicable to equipment with capacity modulation. Section 12 contains a complete specification of the referenced test procedure, including the referenced year version of the test procedure. Single-phase, air-cooled heat pumps < 65,000 Btu/h are regulated by NAECA. SEER and HSPF values are those set by NAECA

TABLE 6.8.1C Water Chilling Packages-Minimum Efficiency Requirements

			1	
Equipment Type	Size Category	Subcategory or Rating Condition	Minimum Efficiency ^a	Test Procedure ^b
Air Cooled, with Condenser, Electrically Operated	All Capacities		2.80 COP 3.05 IPLV	ARI 550/590
Air Cooled, without Condenser, Electrically Operated	All Capacities		3.10 COP 3.45 IPLV	
Water Cooled, Electrically Operated, Positive Displacement (Reciprocating)	All Capacities		4.20 COP 5.05 IPLV	ARI 550/590
Water Cooled, Electrically Operated, Positive Displacement (Rotary Screw and Scroll)	<150 tons		4.45 COP 5.20 IPLV	ARI 550/590
	≥150 tons and <300 tons		4.90 COP 5.60 IPLV	
	≥300 tons		5.50 COP 6.15 IPLV	-
Water Cooled, Electrically Operated, Centrifugal	<150 tons		5.00 COP 5.25 IPLV	ARI 550/590
	≥150 tons and <300 tons		5.55 COP 5.90 IPLV	
	≥300 tons		6.10 COP 6.40 IPLV	
Air-Cooled Absorption Single Effect	All Capacities		0.60 COP	ARI 560
Water-Cooled Absorption Single Effect	All Capacities		0.70 COP	
Absorption Double Effect, Indirect-Fired	All Capacities		1.00 COP 1.05 IPLV	
Absorption Double Effect, Direct-Fired	All Capacities		1.00 COP 1.00 IPLV	

The chiller equipment requirements do not apply for chillers used in low-temperature applications where the design leaving fluid temperature is <40°F. Section 12 contains a complete specification of the referenced test procedure, including the referenced year version of the test procedure.

Electrically Operated Packaged Terminal Air Conditioners, Packaged Terminal Heat Pumps, **TABLE 6.8.1D** Single-Package Vertical Air Conditioners, Single -Package Vertical Heat Pumps, Room Air Conditioners, and Room Air Conditioner Heat Pumps-Minimum Efficiency Requirements

Equipment Type	Size Category (Input)	Subcategory or Rating Condition	Minimum Efficiency	Test Procedure ^a
PTAC (Cooling Mode) New Construction	All Capacities	95°F db Outdoor air	12.5 – (0.213 × Cap/1000)° EER	ARI 310/380
PTAC (Cooling Mode) Replacements ^b	All Capacities	95°F db Outdoor air	$10.9 - (0.213 \times \text{Cap/1000})^{c}$ EER	
PTHP (Cooling Mode) New Construction	All Capacities	95°F db Outdoor air	$12.3 - (0.213 \times \text{Cap/}1000)^{\text{c}}$ EER	
PTHP (Cooling Mode) Replacements ^b	All Capacities	95°F db Outdoor air	$10.8 - (0.213 \times \text{Cap/}1000)^{\text{c}} \text{EER}$	
PTHP (Heating Mode) New Construction	All Capacities		$3.2 - (0.026 \times \text{Cap/1000})^{c} \text{COP}$	
PTHP (Heating Mode) Replacements ^b	All Capacities		$2.9 - (0.026 \times \text{Cap/1000})^{c} \text{COP}$	
SPVAC (Cooling Mode)	All Capacities	95°F db/ 75°F wb Outdoor air	8.6 EER	ARI 390
SPVHP (Cooling Mode)	All Capacities	95°F db/ 75°F wb Outdoor air	8.6. EER	
SPVHP (Heating Mode)	All Capacities	47°F db/ 43°F wb Outdoor air	2.7 COP	
Room Air Conditioners,	<6000 Btu/h		9.7 SEER	
with Louvered Sides	≥6000 Btu/h and <8000 Btu/h		9.7 EER	ANSI/ AHAM
	≥8000 Btu/h and <14,000 Btu/h		9.8 EER	RAC-1
	≥14,000 Btu/h and <20,000 Btu/h		9.7 SEER	
	≥20,000 Btu/h		8.5 EER	
Room Air Conditioners,	<8000 Btu/h		9.0 EER	
Without Louvered Sides	≥8000 Btu/h and <20,000 Btu/h		8.5 EER	
	≥20,000 Btu/h		8.5 EER	
Room Air Conditioner Heat Pumps with	<20,000 Btu/h		9.0 EER	
Louvered Sides	≥20,000 Btu/h		8.5 EER	
Room Air Conditioner Heat Pumps without	<14,000 Btu/h		8.5 EER	
Louvered Sides	≥14,000 Btu/h		8.0 EER	
Room Air Conditioner, Casement Only	All Capacities		8.7 EER	
Room Air Conditioner, Casement–Slider	All Capacities		9.5 EER	

Section 12 contains a complete specification of the referenced test procedure, including the referenced year version of the test procedure. Replacement units must be factory labeled as follows: "MANUFACTURED FOR REPLACEMENT APPLICATIONS ONLY; NOT TO BE INSTALLED IN NEW CONSTRUCTION PROJECTS." Replacement efficiencies apply only to units with existing sleeves less than 16 in. high and less than 42 in. wide. Cap means the rated cooling capacity of the product in Btu/h. If the unit's capacity is less than 7000 Btu/h, use 7000 Btu/h in the calculation. If the unit's capacity is greater than 15,000 Btu/h, use 15,000 Btu/h in the calculation.

TABLE 6.8.1E Warm Air Furnaces and Combination Warm Air Furnaces/Air-Conditioning Units, Warm Air Duct **Furnaces and Unit Heaters**

Equipment Type	Size Category (Input)	Subcategory or Rating Condition	Minimum Effi- ciency ^a	Test Procedure ^b
Warm Air Furnace, Gas-Fired	<225,000 Btu/h		78% AFUE or 80% E_t^{d}	DOE 10 CFR Part 430 or ANSI Z21.47
	≥225,000 Btu/h	Maximum Capacity ^d	80% E _c ^c	ANSI Z21.47
Warm Air Furnace, Oil-Fired	<225,000 Btu/h		78% AFUE or $80\% E_t^d$	DOE 10 CFR Part 430 or UL 727
	≥225,000 Btu/h	Maximum Capacity ^e	81% E _t f	UL 727
Warm Air Duct Furnaces, Gas- Fired	All Capacities	Maximum Capacity ^e	80% E _c ^g	ANSI Z83.9
Warm Air Unit Heaters, Gas- Fired	All Capacities	Maximum Capacity ^e	80% E _c ^g	ANSI Z83.8
Warm Air Unit Heaters, Oil-Fired	All Capacities	Maximum Capacity ^e	80% E _c ^g	UL 731

E_t= thermal efficiency. See test procedure for detailed discussion.

TABLE 6.8.1F Gas- and Oil-Fired Boilers—Minimum Efficiency Requirements

Equipment Type ^a	Size Category (Input)	Subcategory or Rating Condition	Minimum Efficiency ^b	Test Procedure ^c
Boilers,	<300,000 Btu/h	Hot Water	80% AFUE	DOE 10 CFR Part 430
Gas-Fired		Steam	75% AFUE	
	≥300,000 Btu/h and ≤2,500,000 Btu/h	Maximum Capacity ^d	75% E _t ^b	H.I. Htg Boiler Std.
	>2,500,000 Btu/h ^a	Hot Water	80% E _c	
	>2,500,000 Btu/h ^a	Steam	80% E _c	
Boilers,	<300,000 Btu/h		80% AFUE	DOE 10 CFR Part 430
Oil-Fired	≥300,000 Btu/h and ≤2,500,000 Btu/h	Maximum Capacity ^d	78% E _t ^b	H.I. Htg Boiler Std.
	>2,500,000 Btu/h ^a	Hot Water	83% E _c	
	>2,500,000 Btu/h ^a	Steam	83% E _c	
Oil-Fired (Residual)	≥300,000 Btu/h and ≤2,500,000 Btu/h	Maximum Capacity ^d	78% E _t ^b	H.I. Htg Boiler Std.
	>2,500,000 Btu/h ^a	Hot Water	83% E _c	
	>2,500,000 Btu/h ^a	Steam	83% E _c	

These requirements apply to boilers with rated input of 8,000,000 Btu/h or less that are not packaged boilers, and to all packaged boilers. Minimum efficiency requirements for boilers

Section 12 contains a complete specification of the referenced test procedure, including the referenced year version of the test procedure.

section 12 contains a complete specification of the referenced test procedure, including the referenced year version of the test procedure. E_c = combustion *efficiency*. Units must also include an interrupted or intermittent ignition device (IID), have jacket losses not exceeding 0.75% of the input rating, and have either power venting or a flue damper. A vent damper is an acceptable alternative to a flue damper for those furnaces where combustion air is drawn from the conditioned space. Combination units not covered by NAECA (3-phase power or cooling capacity greater than or equal to 65,000 Btu/h) may comply with either rating. Minimum and maximum ratings as provided for and allowed by the unit's controls. E_r = thermal *efficiency*. Units must also include an interrupted or intermittent ignition device (IID), have jacket losses not exceeding 0.75% of the input rating, and have either power venting or a flue damper. A vent damper is an acceptable alternative to a flue damper for those furnaces where combustion air is drawn from the conditioned space. E_c = combustion *efficiency* (100% less flue losses). See test procedure for detailed discussion.

cover all capacities of packaged boilers.

Et = thermal efficiency. See reference document for detailed information.

Section 12 contains a complete specification of the referenced test procedure, including the referenced year version of the test procedure.

Minimum and maximum ratings as provided for and allowed by the unit's controls.

TABLE 6.8.1G Performance Requirements for Heat Rejection Equipment

Equipment Type	Total System Heat Rejection Capacity at Rated Conditions	Subcategory or Rating Condition	Performance Required ^{a,b}	Test Procedure ^c
Propeller or Axial Fan Cooling Towers	All	95°F Entering Water 85°F Leaving Water 75°F wb <i>Outdoor air</i>	≥38.2 gpm/hp	CTI ATC-105
Centrifugal Fan Cooling Towers	All	95°F Entering Water 85°F Leaving Water 75°F wb <i>Outdoor air</i>	≥20.0 gpm/hp	CTI ATC-105
Air-Cooled Condensers	All	125°F Condensing Temperature R-22 Test Fluid 190°F Entering Gas Temperature 15°F Subcooling 95°F Entering db	≥176,000 Btu/h·hp	ARI 460

For purposes of this table, cooling tower performance is defined as the maximum flow rating of the tower divided by the fan nameplate rated motor power. For purposes of this table, air-cooled condenser performance is defined as the heat rejected from the refrigerant divided by the fan nameplate rated motor power. Section 12 contains a complete specification of the referenced test procedure, including the referenced year version of the test procedure.

TABLE 6.8.1H Minimum Efficiencies for Centrifugal Chillers <150 tons

 $Centrifugal\ Chillers < 150\ tons$

 $COP_{std} = 5.00$; $IPLV_{std} = 5.25$

					$COP_{std} = 5.00; IPLV_{std} = 5.25$									
							Conc	lenser Flow	Rate					
			2 gp	m/ton	2.5 g _]	pm/ton	3 gp	m/ton	4 gp	m/ton	5 gp	m/ton	6 gp	m/ton
Leaving Chilled Water Temperature (°F)	Entering Condenser Water Temperature (°F)	LIFT ^a (°F)	СОР	NPLV ^c	СОР	NPLV ^c	СОР	NPLV ^c	СОР	NPLV ^c	СОР	NPLV ^c	СОР	NPLV ^c
40	75	35	5.11	5.35	5.33	5.58	5.48	5.73	5.67	5.93	5.79	6.06	5.88	6.15
40	80	40	4.62	4.83	4.92	5.14	5.09	5.32	5.27	5.52	5.38	5.63	5.45	5.70
40	85	45	3.84	4.01	4.32	4.52	4.58	4.79	4.84	5.06	4.98	5.20	5.06	5.29
41	75	34	5.19	5.43	5.41	5.66	5.56	5.81	5.75	6.02	5.89	6.16	5.99	6.26
41	80	39	4.73	4.95	5.01	5.24	5.17	5.41	5.35	5.60	5.46	5.71	5.53	5.78
41	85	44	4.02	4.21	4.46	4.67	4.70	4.91	4.94	5.17	5.06	5.30	5.14	5.38
42	75	33	5.27	5.51	5.49	5.74	5.64	5.90	5.85	6.12	6.00	6.27	6.11	6.39
42	80	38	4.84	5.06	5.10	5.33	5.25	5.49	5.43	5.67	5.53	5.79	5.61	5.87
42	85	43	4.19	4.38	4.59	4.80	4.81	5.03	5.03	5.26	5.15	5.38	5.22	5.46
43	75	32	5.35	5.59	5.57	5.82	5.72	5.99	5.95	6.23	6.11	6.39	6.23	6.52
43	80	37	4.94	5.16	5.18	5.42	5.32	5.57	5.50	5.76	5.62	5.87	5.70	5.96
43	85	42	4.35	4.55	4.71	4.93	4.91	5.13	5.12	5.35	5.23	5.47	5.30	5.54
44	75	31	5.42	5.67	5.65	5.91	5.82	6.08	6.07	6.34	6.24	6.53	6.37	6.67
44	80	36	5.03	5.26	5.26	5.50	5.40	5.65	5.58	5.84	5.70	5.96	5.79	6.05
44	85	41	4.49	4.69	4.82	5.04	5.00	5.25	5.20	5.43	5.30	5.55	5.38	5.62
45	75	30	5.50	5.75	5.74	6.00	5.92	6.19	6.19	6.47	6.38	6.68	6.53	6.83
45	80	35	5.11	5.35	5.33	5.58	5.48	5.73	5.67	5.93	5.79	6.06	5.88	6.15
45	85	40	4.62	4.83	4.92	5.14	5.09	5.32	5.27	5.52	5.38	5.63	5.45	5.70
46	75	29	5.58	5.84	5.83	6.10	6.03	6.30	6.32	6.61	6.54	6.84	6.70	7.00
46	80	34	5.19	5.43	5.41	5.66	5.56	5.81	5.75	6.02	5.89	6.16	5.99	6.26
46	85	39	4.73	4.95	5.01	5.24	5.17	5.41	5.35	5.60	5.46	5.71	5.53	5.78
47	75	28	5.66	5.92	5.93	6.20	6.15	6.43	6.47	6.77	6.71	7.02	6.88	7.20
47	80	33	5.27	5.51	5.49	5.74	5.64	5.90	5.85	6.12	6.00	6.27	6.11	6.39
47	85	38	4.84	5.06	5.10	5.33	5.25	5.49	5.43	5.67	5.53	5.79	5.61	5.87
48	75	27	5.75	6.02	6.04	6.32	6.28	6.56	6.64	6.94	6.89	7.21	7.09	7.41
48	80	32	5.35	5.59	5.57	5.82	5.72	5.99	5.95	6.23	6.11	6.39	6.23	6.52
48	85	37	4.94	5.16	5.18	5.42	5.32	5.57	5.50	5.76	5.62	5.87	5.70	5.96
Co	ondenser DT ^b		14	1.04	11	1.23	9	.36	7	.02	5	.62	4	.68

^a LIFT = Entering Condenser Water Temperature – Leaving Chilled Water Temperature

 $K_{adj} = 6.1507 - 0.30244(X) + 0.0062692(X)^2 - 0.000045595(X)^3$

where X = Condenser DT + LIFT

 $COP_{adj} = K_{adj} * COP_{std}$

 $^{^{}b} \quad Condenser \; DT = Leaving \; Condenser \; Water \; Temperature \; (^{\circ}F) - Entering \; Condenser \; Water \; Temperature \; Condenser \; Condenser$

^c All NPLV values shown are NPLV except at conditions of 3 gpm/ton Condenser Flow Rate with 44°F Leaving Chilled Water Temperature and 85°F Entering Condenser Water Temperature which is IPLV

TABLE 6.8.1I Minimum Efficiencies for Centrifugal Chillers ≥150 tons, ≤300 tons

Centrifugal Chillers ≥150 tons, ≤300 tons $COP_{std} = 5.55$; $IPLV_{std} = 5.90$ **Condenser Flow Rate** 2 gpm/ton 2.5 gpm/ton 4 gpm/ton 5 gpm/ton 6 gpm/ton 3 gpm/ton Leaving **Entering** Chilled Water Condenser LIFTa **Temperature** Water Tem-COP NPLV c COP NPLV c (°F) perature (°F) (°F) 40 75 35 5.65 6.03 5.90 6.29 6.05 6.46 6.26 6.68 6.40 6.83 6.51 6.94 40 40 5.95 6.03 80 5.10 5.44 5.44 5.80 5.62 6.00 5.83 6.22 6.35 6.43 40 85 45 4.24 4.52 4.77 5.09 5.06 5.40 5.35 5.71 5.50 5.87 5.59 5.97 5.74 41 75 34 6.13 5.80 6.38 6.14 6.55 6.36 6.79 6.51 6.95 6.62 7.06 41 80 39 5.23 5.58 5.54 5.91 5.71 6.10 5.91 6.31 6.03 6.44 6.11 6.52 85 4.93 5.97 5.69 6.07 41 44 4 45 4.74 5.26 5.19 5.54 5 46 5.82 5 60 42 75 33 5.83 6.22 6.07 6.47 6.23 6.65 6.47 6.90 6.63 7.07 6.75 7.20 42 80 38 5.35 6.01 6.00 6.40 6.12 6.20 6.62 5.71 5.64 5.80 6.19 6.53 42 85 43 4.63 4.94 5.08 5.41 5.31 5.67 5.56 5.93 5.69 6.07 5.77 6.16 5.91 7.02 6.76 7.21 6.89 43 75 32 6.31 6.15 6.33 6.75 6.58 7.35 6.56 43 80 37 5.46 5.82 5.73 6.11 5.89 6.28 6.08 6.49 6.21 6.62 6.30 6.72 43 85 42 5.66 6.03 6.25 4.81 5.13 5.21 5.55 5 42 5.79 5.78 6.16 5.86 44 75 31 6.00 6.40 6.24 6.66 6.43 6.86 6.71 7.15 6.90 7.36 7.05 7.52 44 80 5.56 5.93 5.81 5.97 6.30 6.40 36 6.20 6.37 6.17 6.58 6.72 6.82 44 85 41 4.96 5.29 5.33 5.68 5.55 5.90 5.74 6.13 5.86 6.26 5.94 6.34 7.22 7.06 45 30 6.08 6.49 6.34 6.76 6.54 6.98 6.84 7.30 7.53 7.70 75 45 80 35 5.65 6.03 5.90 6.29 6.05 6.46 6.26 6.68 6.40 6.83 6.51 6.94 45 85 40 5.10 5.44 5.44 5.80 5.62 6.00 5.83 6.22 5.95 6.35 6.03 6.43 46 75 29 6.17 6.58 6.44 6.87 6.66 7.11 6.99 7.46 7.23 7.71 7.40 7.90 46 80 34 5.74 6.13 5.80 6.38 6.14 6.55 6.36 6.79 6.51 6.95 6.62 7.06 46 85 39 5.23 5.58 5.54 5.91 5.71 6.10 5.91 6.31 6.03 6.44 6.11 6.52 7.42 7.91 47 75 28 6.26 6.68 6.56 6.99 6.79 7.24 7.16 7.63 7.61 8.11 47 80 33 5.83 6.21 6.07 6.47 6.23 6.64 6.47 6.90 6.63 7.07 6.75 7.20 47 85 38 5.35 5.70 6.01 5.80 6.19 6.00 6.40 6.12 6.52 6.20 6.61 5.64 48 75 27 6.36 6.78 6.68 7.12 6.94 7.40 7.34 7.82 7.62 8.13 7.83 8.35 32 5.91 7.02 6.76 7.21 6.89 7.35 48 80 6.30 6 15 6.56 633 675 6.58

37

14.04

5.46

5.82

5.73

6.10

11.23

5.89

6.28

9.36

6.08

7.02

6.49

6.21

5.62

6.62

6.30

6.71

4.68

 $K_{adj} = 6.1507 - 0.30244(X) + 0.0062692(X)^2 - 0.000045595(X)^3$

85

Condenser DT^b

where X = Condenser DT + LIFT

 $COP_{adj} = K_{adj} * COP_{std}$

 $[^]a \ LIFT = Entering \ Condenser \ Water \ Temperature - Leaving \ Chilled \ Water \ Temperature$

 $^{^{}b} \quad Condenser \ DT = Leaving \ Condenser \ Water \ Temperature \ (^{\circ}F) - Entering \ Condenser \ Water \ Temperature \ Condenser \ Water \ Temperat$

c All NPLV values shown are NPLV except at conditions of 3 gpm/ton Condenser Flow Rate with 44°F Leaving Chilled Water Temperature and 85°F Entering Condenser Water Temperature which is IPLV

TABLE 6.8.1J Minimum Efficiencies for Centrifugal Chillers >300 tons

Centrifugal Chillers > 300 Tons $COP_{std} = 6.10; IPLV_{std} = 6.40$

					71 std = 0	.10; IPLV _{st}								
							Cond	lenser Flow	v Rate					
			2 gp	m/ton	2.5 g	pm/ton	3 gp	m/ton	4 gp	m/ton	5 gp	om/ton	6 gp	m/ton
Leaving Chilled Water Temperature (°F)	Entering Condenser Water Tem- perature (°F)	LIFT ^a (°F)	СОР	NPLV ^c	СОР	NPLV ^c	СОР	NPLV ^c	СОР	NPLV ^c	СОР	NPLV ^c	СОР	NPLV ^c
40	75	35	6.23	6.55	6.50	6.83	6.68	7.01	6.91	7.26	7.06	7.42	7.17	7.54
40	80	40	5.63	5.91	6.00	6.30	6.20	6.52	6.43	6.76	6.56	6.89	6.65	6.98
40	85	45	4.68	4.91	5.26	5.53	5.58	5.86	5.90	6.20	6.07	6.37	6.17	6.48
41	75	34	6.33	6.65	6.60	6.93	6.77	7.12	7.02	7.37	7.18	7.55	7.30	7.67
41	80	39	5.77	6.06	6.11	6.42	6.30	6.62	6.52	6.85	6.65	6.99	6.74	7.08
41	85	44	4.90	5.15	5.44	5.71	5.72	6.01	6.02	6.33	6.17	6.49	6.27	6.59
42	75	33	6.43	6.75	6.69	7.03	6.87	7.22	7.13	7.49	7.31	7.68	7.44	7.82
42	80	38	5.90	6.20	6.21	6.53	6.40	6.72	6.61	6.95	6.75	7.09	6.84	7.19
42	85	43	5.11	5.37	5.60	5.88	5.86	6.16	6.13	6.44	6.28	6.59	6.37	6.69
43	75	32	6.52	6.85	6.79	7.13	6.98	7.33	7.26	7.63	7.45	7.83	7.60	7.98
43	80	37	6.02	6.32	6.31	6.63	6.49	6.82	6.71	7.05	6.85	7.19	6.94	7.30
43	85	42	5.30	5.57	5.74	6.03	5.98	6.28	6.24	6.55	6.37	6.70	6.46	6.79
44	75	31	6.61	6.95	6.89	7.23	7.09	7.45	7.40	7.77	7.61	8.00	7.77	8.16
44	80	36	6.13	6.44	6.41	6.73	6.58	6.92	6.81	7.15	6.95	7.30	7.05	7.41
44	85	41	5.47	5.75	5.87	6.17	6.10	6.40	6.33	6.66	6.47	6.79	6.55	6.89
45	75	30	6.71	7.05	6.99	7.35	7.21	7.58	7.55	7.93	7.78	8.18	7.96	8.36
45	80	35	6.23	6.55	6.50	6.83	6.68	7.01	6.91	7.26	7.06	7.42	7.17	7.54
45	85	40	5.63	5.91	6.00	6.30	6.20	6.52	6.43	6.76	6.56	6.89	6.65	6.98
46	75	29	6.80	7.15	7.11	7.47	7.35	7.72	7.71	8.10	7.97	8.37	8.16	8.58
46	80	34	6.33	6.65	6.60	6.93	6.77	7.12	7.02	7.37	7.18	7.55	7.30	7.67
46	85	39	5.77	6.06	6.11	6.42	6.30	6.62	6.52	6.85	6.65	6.99	6.74	7.08
47	75	28	6.91	7.26	7.23	7.60	7.49	7.87	7.89	8.29	8.18	8.59	8.39	8.82
47	80	33	6.43	6.75	6.69	7.03	6.87	7.22	7.13	7.49	7.31	7.68	7.44	7.82
47	85	38	5.90	6.20	6.21	6.53	6.40	6.72	6.61	6.95	6.75	7.09	6.84	7.19
48	75	27	7.01	7.37	7.36	7.74	7.65	8.04	8.09	8.50	8.41	8.83	8.64	9.08
48	80	32	6.52	6.85	6.79	7.13	6.98	7.33	7.26	7.63	7.45	7.83	7.60	7.98
48	85	37	6.02	6.32	6.31	6.63	6.49	6.82	6.71	7.05	6.85	7.19	6.94	7.30
Co	ondenser DT ^b		14	1.04	1	1.23	9	.36	7	.02	5	.62	4	.68

 $[^]a \ LIFT = Entering \ Condenser \ Water \ Temperature - Leaving \ Chilled \ Water \ Temperature$

 $K_{adj} = 6.1507 - 0.30244(X) + 0.0062692(X)^2 - 0.000045595(X)^3$

where X = Condenser DT + LIFT

 $COP_{adj} = K_{adj} * COP_{std}$

 $^{^{}b} \quad Condenser \ DT = Leaving \ Condenser \ Water \ Temperature \ (^{\circ}F) - Entering \ Condenser \ Water \ Temperature \ (^{\circ}F)$

c All NPLV values shown are NPLV except at conditions of 3 gpm/ton Condenser Flow Rate with 44°F Leaving Chilled Water Temperature and 85°F Entering Condenser Water Temperature which is IPLV

TABLE 6.8.2A Minimum Duct Insulation R-Value^a, Cooling and Heating Only Supply Ducts and Return Ducts

				Duct Location			
Climate Zone	Exterior	Ventilated Attic	Unvented Attic Above Insulated Ceiling	Unvented Attic with Roof Insulation ^a	Unconditioned Space ^b	Indirectly Conditioned Space ^c	Buried
			Heating D	ucts Only			
1, 2	none	none	none	none	none	none	none
3	R-3.5	none	none	none	none	none	none
4	R-3.5	none	none	none	none	none	none
5	R-6	R-3.5	none	none	none	none	R-3.5
6	R-6	R-6	R-3.5	none	none	none	R-3.5
7	R-8	R-6	R-6	none	R-3.5	none	R-3.5
8	R-8	R-8	R-6	none	R-6	none	R-6
			Cooling O	only Ducts			
1	R-6	R-6	R-8	R-3.5	R-3.5	none	R-3.5
2	R-6	R-6	R-6	R-3.5	R-3.5	none	R-3.5
3	R-6	R-6	R-6	R-3.5	R-1.9	none	none
4	R-3.5	R-3.5	R-6	R-1.9	R-1.9	none	none
5, 6	R-3.5	R-1.9	R-3.5	R-1.9	R-1.9	none	none
7, 8	R-1.9	R-1.9	R-1.9	R-1.9	R-1.9	none	none
Return Ducts							
1 to 8	R-3.5	R-3.5	R-3.5	none	none	none	none

a Insulation R-values, measured in (h·ft²-ºF)/Btu, are for the insulation as installed and do not include film resistance. The required minimum thicknesses do not consider water vapor transmission and possible surface condensation. Where exterior walls are used as plenum walls, wall insulation shall be as required by the most restrictive condition of 6.4.4.2 or Section 5. Insulation resistance measured on a horizontal plane in accordance with ASTM C518 at a mean temperature of 75°F at the installed thickness.

TABLE 6.8.2B Minimum Duct Insulation R-Value^a, Combined Heating and Cooling Supply Ducts and Return Ducts

		Duct Location							
Climate Zone	Exterior	Ventilated Attic	Unvented Attic Above Insulated Ceiling	Unvented Attic w/ Roof Insulation ^a	Unconditioned Space ^b	Indirectly Conditioned Space ^c	Buried		
Supply Ducts									
1	R-6	R-6	R-8	R-3.5	R-3.5	none	R-3.5		
2	R-6	R-6	R-6	R-3.5	R-3.5	none	R-3.5		
3	R-6	R-6	R-6	R-3.5	R-3.5	none	R-3.5		
4	R-6	R-6	R-6	R-3.5	R-3.5	none	R-3.5		
5	R-6	R-6	R-6	R-1.9	R-3.5	none	R-3.5		
6	R-8	R-6	R-6	R-1.9	R-3.5	none	R-3.5		
7	R-8	R-6	R-6	R-1.9	R-3.5	none	R-3.5		
8	R-8	R-8	R-8	R-1.9	R-6	none	R-6		
	Return Ducts								
1 to 8	R-3.5	R-3.5	R-3.5	none	none	none	none		

a Insulation R-values, measured in (h·ft²-°F)/Btu, are for the insulation as installed and do not include film resistance. The required minimum thicknesses do not consider water vapor transmission and possible surface condensation. Where exterior walls are used as plenum walls, wall insulation shall be as required by the most restrictive condition of 6.4.4.2 or Section 5. Insulation resistance measured on a horizontal plane in accordance with ASTM C518 at a mean temperature of 75°F at the installed thickness.

b Includes crawl spaces, both ventilated and nonventilated.

Includes return air plenums with or without exposed roofs above.

b Includes crawl spaces, both ventilated and non-ventilated.

Includes return air plenums with or without exposed roofs above.

Minimum Pipe Insulation Thickness^a **TABLE 6.8.3**

	1		_							
Fluid Design	Insulation C	Insulation Conductivity			Nominal Pipe or Tube Size (in.)					
Operating Temp. Range (°F)	Operating Temp. Conductivity		<1	1 to <1-1/2	1-1/2 to <4	4 to <8	≥8			
	Heating Systems (Steam, Steam Condensate, and Hot Water) ^{b,c}									
>350	0.32-0.34	250	2.5	3.0	3.0	4.0	4.0			
251-350	0.29-0.32	200	1.5	2.5	3.0	3.0	3.0			
201-250	0.27-0.30	150	1.5	1.5	2.0	2.0	2.0			
141-200	0.25-0.29	125	1.0	1.0	1.0	1.5	1.5			
105-140	0.22-0.28	100	0.5	0.5	1.0	1.0	1.0			
		Domestic and Ser	vice Hot V	Vater Systems						
105+	0.22-0.28	100	0.5	0.5	1.0	1.0	1.0			
	Cooling Systems (Chilled Water, Brine, and Refrigerant) ^d									
40-60	0.22-0.28	100	0.5	0.5	1.0	1.0	1.0			
<40	0.22-0.28	100	0.5	1.0	1.0	1.0	1.5			

a For insulation outside the stated conductivity range, the minimum thickness (T) shall be determined as follows: $T = r\{(1 + t/r)^{K/k} - 1\}$

where $T = \min$ insulation thickness (in.), r = actual outside radius of pipe (in.), t = insulation thickness listed in this table for applicable fluid temperature and pipe size, K =conductivity of alternate material at mean rating temperature indicated for the applicable fluid temperature (Btu-in.[h-ft². $^{\circ}$ F]); and k= the upper value of the conductivity range listed in this table for the applicable fluid temperature.

These thicknesses are based on energy efficiency considerations only. Additional insulation is sometimes required relative to safety issues/surface temperature. Piping insulation is not required between the control valve and coil on run-outs when the control valve is located within 4 ft of the coil and the pipe size is 1 in. or less. These thicknesses are based on energy efficiency considerations only. Issues such as water vapor permeability or surface condensation sometimes require vapor retarders or additional required to the coil and the pipe size is 1 in. or less. tional insulation.

7. SERVICE WATER HEATING

7.1 General

7.1.1 Service Water Heating Scope.

- **7.1.1.1 New Buildings.** Service water heating *systems* and *equipment* shall comply with the requirements of this section as described in Section 7.2.
- **7.1.1.2** Additions to Existing Buildings. Service water heating *systems* and *equipment* shall comply with the requirements of this section.
 - **Exception to 7.1.1.2:** When the service water heating to an *addition* is provided by existing service water heating systems and equipment, such systems and equipment shall not be required to comply with this standard. However, any new systems or equipment installed must comply with specific requirements applicable to those systems and equipment.
- **7.1.1.3** Alterations to Existing Buildings. Building service water heating equipment installed as a direct replacement for *existing building* service water heating equipment shall comply with the requirements of Section 7 applicable to the equipment being replaced. New and replacement piping shall comply with 7.4.3.

Exception to 7.1.1.3: Compliance shall not be required where there is insufficient space or access to meet these requirements.

7.2 Compliance Path(s)

- **7.2.1** Compliance shall be achieved by meeting the requirements of 7.1, General; 7.4, Mandatory Provisions; 7.5, Prescriptive Path; 7.7, Submittals; and 7.8, Product Information.
- **7.2.2** Projects using the Energy Cost Budget Method (Section 11) for demonstrating compliance with the standard shall meet the requirements of 7.4 (Mandatory Provisions) in conjunction with Section 11 (Energy Cost Budget Method).

7.3 Simplified/Small Building Option: (Not Used)

7.4 Mandatory Provisions

7.4.1 Load Calculations. Service water heating *system* design loads for the purpose of sizing *systems* and *equipment* shall be determined in accordance with *manufacturers*' published sizing guidelines or generally accepted engineering standards and handbooks acceptable to the *adopting authority* (e.g., *ASHRAE Handbook—HVAC Applications*).

7.4.2 Equipment Efficiency. All water heating *equipment*, hot water supply boilers used solely for heating potable water, pool heaters, and hot water storage tanks shall meet the criteria listed in Table 7.8. Where multiple criteria are listed, all criteria shall be met. Omission of minimum performance requirements for certain classes of *equipment* does not preclude use of such *equipment* where appropriate. Equipment not listed in Table 7.8 has no minimum performance requirements.

Exception to 7.4.2: All water heaters and hot water supply boilers having more than 140 gal of storage capacity are not required to meet the *standby loss* (SL) requirements of Table 7.8 when

- (a) the tank surface is thermally insulated to R-12.5, and
- (b) a standing pilot light is not installed, and
- (c) gas- or oil-fired storage water heaters have a flue damper or fan-assisted combustion.
- **7.4.3 Service Hot Water Piping Insulation.** The following piping shall be insulated to levels shown in Section 6, Table 6.8.3:
- (a) Recirculating system piping, including the supply and return piping of a circulating tank type water heater.
- (b) The first 8 ft of outlet piping for a constant temperature nonrecirculating storage *system*.
- (c) The inlet pipe between the storage tank and a heat trap in a nonrecirculating storage *system*.
- (d) Pipes that are externally heated (such as heat trace or impedance heating).

7.4.4 Service Water Heating System Controls

7.4.4.1 Temperature Controls. Temperature controls shall be provided that allow for storage temperature adjustment from 120°F or lower to a maximum temperature compatible with the intended use.

Exception to 7.4.4.1: When the *manufacturer's* installation instructions specify a higher minimum thermostat setting to minimize condensation and resulting corrosion.

- **7.4.4.2 Temperature Maintenance Controls.** Systems designed to maintain usage temperatures in hot water pipes, such as recirculating hot water systems or heat trace, shall be equipped with automatic time switches or other controls that can be set to switch off the usage temperature maintenance system during extended periods when hot water is not required.
- **7.4.4.3 Outlet Temperature Controls.** Temperature controlling means shall be provided to limit the maximum temperature of water delivered from lavatory faucets in public facility restrooms to 110°F.
- **7.4.4.4 Circulating Pump Controls.** When used to maintain storage tank water temperature, recirculating pumps shall be equipped with controls limiting operation to a period from the start of the heating cycle to a maximum of five minutes after the end of the heating cycle.

7.4.5 Pools

7.4.5.1 Pool Heaters. Pool heaters shall be equipped with a readily accessible on-off switch to allow shutting off the heater without adjusting the thermostat setting. Pool heaters fired by natural gas shall not have continuously burning pilot lights.

7.4.5.2 Pool Covers. Heated pools shall be equipped with a vapor retardant pool cover on or at the water surface. Pools heated to more than 90°F shall have a pool cover with a minimum insulation value of R-12.

Exception to 7.4.5.2: Pools deriving over 60% of the energy for heating from *site-recovered energy or solar energy source*.

7.4.5.3 Time Switches. Time switches shall be installed on swimming pool heaters and pumps.

Exceptions to 7.4.5.3:

- (a) Where public health standards require 24-hour pump operation.
- (b) Where pumps are required to operate solar and waste heat recovery pool heating *systems*.
- **7.4.6 Heat Traps.** Vertical pipe risers serving storage water heaters and storage tanks not having integral heat traps and serving a nonrecirculating system shall have heat traps on both the inlet and outlet piping as close as practical to the storage tank. A heat trap is a means to counteract the natural convection of heated water in a vertical pipe run. The means is either a device specifically designed for the purpose or an arrangement of tubing that forms a loop of 360 degrees or piping that from the point of connection to the water heater (inlet or outlet) includes a length of piping directed downward before connection to the vertical piping of the supply water or hot water distribution system, as applicable.

7.5 Prescriptive Path

7.5.1 Space Heating and Water Heating. The use of a gas-fired or oil-fired space heating boiler system otherwise complying with Section 6 to provide the total space heating and water heating for a building is allowed when one of the following conditions is met.

(a) The single space heating boiler, or the component of a modular or multiple boiler system that is heating the service water, has a standby loss in Btu/h not exceeding

$$(13.3 \times pmd + 400) / n$$

where pmd is the probable maximum demand in gal/h, determined in accordance with the procedures described in generally accepted engineering standards and handbooks, and n is the fraction of the year when the outdoor daily mean temperature is greater than $64.9^{\circ}F$.

The standby loss is to be determined for a test period of 24 hours duration while maintaining a boiler water temperature of at least 90°F above ambient, with an ambient temperature between 60°F and 90°F. For a boiler with a modulating burner, this test shall be conducted at the lowest input.

- (b) It is demonstrated to the satisfaction of the *authority having jurisdiction* that the use of a single heat source will consume less energy than separate units.
- (c) The energy input of the combined boiler and water heater system is less than 150,000 Btu/h.
- **7.5.2 Service Water Heating Equipment.** Service water heating *equipment* used to provide the additional function of space heating as part of a combination (integrated) *system* shall satisfy all stated requirements for the service water heating *equipment*.

7.6 Alternative Compliance Path (Not Used)

7.7 Submittals

7.7.1 General. *Authority having jurisdiction* may require submittal of compliance documentation and supplemental information, in accord with Section 4.2.2 of this standard.

7.8 Product Information

TABLE 7.8 Performance Requirements for Water Heating Equipment

Equipment Type	Size Category (Input)	Subcategory or Rating Condition	Performance Required ^a	Test Procedure ^b
Electric Water Heaters	≤12 kW	Resistance ≥20 gal	0.93-0.00132V EF	DOE 10 CFR Part 430
	>12 kW	Resistance≥20 gal	$20 + 35 \sqrt{V}$ SL, Btu/h	ANSI Z21.10.3
	≤24 Amps and ≤250 Volts	Heat Pump	0.93-0.00132V EF	DOE 10 CFR Part 430
Gas Storage Water Heaters	≤75,000 Btu/h	≥20 gal	0.62-0.0019V EF	DOE 10 CFR Part 430
	>75,000 Btu/h	<4000 (Btu/h)/gal	80% E_t (Q/800 + 110 $\sqrt{\rm V}$) SL, Btu/h	ANSI Z21.10.3
Gas Instantaneous Water Heaters	>50,000 Btu/h and <200,000 Btu/h	≥4000 (Btu/h)/gal and <2 gal	0.62-0.0019V EF	DOE 10 CFR Part 430
	≥200,000 Btu/h ^c	≥4000 (Btu/h)/gal and <10 gal	80% E _t	ANSI Z21.10.3
	≥200,000 Btu/h	≥4000 (Btu/h)/gal and ≥10 gal	80% E_t (Q/800 + 110 \sqrt{V}) SL, Btu/h	
Oil Storage Water Heaters	≤105,000 Btu/h	≥20 gal	0.59-0.0019V EF	DOE 10 CFR Part 430
	>105,000 Btu/h	<4000 (Btu/h)/gal	78% E_t (Q/800 + 110 $\sqrt{\rm V}$) SL, Btu/h	ANSI Z21.10.3
Oil Instantaneous Water Heaters	≤210,000 Btu/h	≥4000 (Btu/h)/gal and <2 gal	0.59-0.0019V EF	DOE 10 CFR Part 430
	>210,000 Btu/h	≥4000 (Btu/h)/gal and <10 gal	80% E _t	ANSI Z21.10.3
	>210,000 Btu/h	≥4000 (Btu/h)/gal and ≥10 gal	78% E_t (Q/800 + 110 $\sqrt{\text{V}}$) SL, Btu/h	
Hot Water Supply Boilers, Gas and Oil	≥300,000 Btu/h and <12,500,000 Btu/h	≥4000 (Btu/h)/gal and <10 gal	80% E _t	ANSI Z21.10.3
Hot Water Supply Boilers, Gas		≥4000 (Btu/h)/gal and ≥10 gal	80% E_t (Q/800 + 110 $\sqrt{\text{V}}$) SL, Btu/h	
Hot Water Supply Boilers, Oil		≥4000 (Btu/h)/gal and ≥10 gal	78% E_t (Q/800 + 110 $\sqrt{\rm V}$) SL, Btu/h	
Pool Heaters Oil and Gas	All		78% E _t	ASHRAE 146
Heat Pump Pool Heaters	All		4.0 COP	ASHRAE 146
Unfired Storage Tanks	All		R-12.5	(none)

a Energy factor (EF) and thermal efficiency (Et) are minimum requirements, while standby loss (SL) is maximum Btu/h based on a 70°F temperature difference between stored water and ambient requirements. In the EF equation, V is the rated volume in gallons. In the SL equation, V is the rated volume in gallons and Q is the nameplate input rate in Btu/h.

b Section 12 contains a complete specification, including the year version, of the referenced test procedure.
c Instantaneous water heaters with input rates below 200,000 Btu/h must comply with these requirements if the water heater is designed to heat water to temperatures 180°F or higher.

8. POWER

8.1 General. This section applies to all building power distribution *systems*.

8.2 Compliance Path(s)

8.2.1 Power distribution systems in all projects shall comply with the requirements of 8.1, General; 8.4, Mandatory Provisions; and 8.7, Submittals.

8.3 Simplified/Small Building Option: (Not Used)

8.4 Mandatory Provisions

8.4.1 Voltage Drop

- **8.4.1.1 Feeders.** *Feeder conductors* shall be sized for a maximum *voltage drop* of 2% at design load.
- **8.4.1.2 Branch Circuits.** *Branch circuit* conductors shall be sized for a maximum *voltage drop* of 3% at design load.

8.5 Prescriptive Path (Not Used)

8.6 Alternative Compliance Path (Not Used)

8.7 Submittals:

- **8.7.1 Drawings.** Construction documents shall require that within 30 days after the date of system acceptance, record drawings of the actual installation shall be provided to the building owner, including
- (a) a single-line diagram of the building electrical distribution system and
- (b) floor plans indicating location and area served for all distribution.
- **8.7.2 Manuals.** Construction documents shall require that an operating manual and maintenance manual be provided to the building owner. The manuals shall include, at a minimum, the following:
- (a) Submittal data stating *equipment* rating and selected options for each piece of *equipment* requiring maintenance.
- (b) Operation manuals and maintenance manuals for each piece of *equipment* requiring maintenance. Required routine maintenance actions shall be clearly identified.
- (c) Names and addresses of at least one qualified *service* agency.
- (d) A complete narrative of how each system is intended to operate.

(Enforcement agencies should only check to be sure that the construction documents require this information to be transmitted to the owner and should not expect copies of any of the materials.)

8.8 Product Information (Not Used)

9. LIGHTING

9.1 General

- **9.1.1 Scope:** This section shall apply to the following:
- (a) interior spaces of buildings;
- (b) exterior building features, including facades, illuminated roofs, architectural features, entrances, exits, loading docks, and illuminated canopies; and
- (c) exterior building grounds lighting provided through the *building's* electrical *service*.

Exceptions to 9.1.1:

- (a) emergency lighting that is automatically off during normal *building* operation,
- (b) lighting within living units,
- (c) lighting that is specifically designated as required by a health or life safety statute, ordinance, or regulation,
- (d) decorative gas lighting systems.
- **9.1.2 Lighting Alterations.** The replacement of lighting *systems* in any building space shall comply with the lighting power density requirements of Section 9 applicable to that space. New lighting *systems* shall comply with the applicable lighting power density requirements of Section 9. Any new *control devices* as a direct replacement of existing *control devices* shall comply with the specific requirements of 9.4.1.2(b).
 - **Exception to 9.1.2:** *Alterations* that replace less than 50% of the *luminaires* in a *space* need not comply with these requirements provided that such *alterations* do not increase the installed interior lighting power.
- **9.1.3** Installed Interior Lighting Power. The *installed interior lighting power* shall include all power used by the *luminaires*, including *lamps*, *ballasts*, current regulators, and *control devices* except as specifically exempted in 9.2.2.3.
 - **Exception to 9.1.3:** If two or more independently operating lighting systems in a space are capable of being controlled to prevent simultaneous user operation, the installed interior lighting power shall be based solely on the lighting system with the highest wattage.
- **9.1.4 Luminaire Wattage.** Luminaire wattage incorporated into the installed interior lighting power shall be determined in accordance with the following criteria:
 - (a) The wattage of incandescent or tungsten-halogen luminaires with medium screw base sockets and not

- containing permanently installed ballasts shall be the maximum labeled wattage of the luminaire.
- (b) The wattage of luminaires with permanently installed or remote ballasts or transformers shall be the operating input wattage of the maximum lamp/ auxiliary combination based on values from the auxiliary manufacturer's literature or recognized testing laboratories.
- (c) The wattage of line-voltage lighting track and plugin busway that allow the addition and/or relocation of luminaires without altering the wiring of the system shall be the specified wattage of the luminaires included in the system with a minimum of 30 W/lin ft.
- (d) The wattage of low-voltage lighting track, cable conductor, rail conductor, and other flexible lighting systems that allow the addition and/or relocation of luminaires without altering the wiring of the system shall be the specified wattage of the transformer supplying the system.
- (e) The wattage of all other miscellaneous lighting equipment shall be the specified wattage of the lighting equipment.

9.2 Compliance Path(s)

- **9.2.1 Lighting systems and equipment** shall comply with 9.1, General; 9.4, Mandatory Provisions; and the prescriptive requirements of either:
- (a) 9.5, Building Area Method, or
- (b) 9.6, Space-by-Space Method.

9.2.2 Prescriptive Requirements

- **9.2.2.1 The Building Area Method** for determining the *interior lighting power allowance*, described in 9.5, is a simplified approach for demonstrating compliance.
- **9.2.2.2 The Space-by-Space Method**, described in 9.6, is an alternative approach that allows greater flexibility.
- 9.2.2.3 Interior Lighting Power. The interior lighting power allowance for a building or a separately metered or permitted portion of a building shall be determined by either the Building Area Method described in 9.5 or the Space-by-Space Method described in 9.6. Trade-offs of interior lighting power allowance among portions of the building for which a different method of calculation has been used are not permitted. The installed interior lighting power identified in accordance with 9.1.3 shall not exceed the interior lighting power allowance developed in accordance with 9.5 or 9.6.
 - **Exceptions to 9.2.2.3:** The following *lighting equipment* and applications shall not be considered when determining the *interior lighting power allowance* developed in accordance with 9.5 or 9.6, nor shall the wattage for such lighting be included in the *installed interior lighting power* identified in accordance with 9.1.3. However, any such lighting shall not be exempt unless it is an addition to general lighting and is controlled by an independent *control device*.
 - (a) Display or accent lighting that is an essential element for the function performed in galleries, museums, and monuments.

- (b) Lighting that is integral to *equipment* or instrumentation and is installed by its *manufacturer*.
- (c) Lighting specifically designed for use only during medical or dental procedures and lighting integral to medical *equipment*.
- (d) Lighting integral to both open and glass-enclosed refrigerator and freezer cases.
- (e) Lighting integral to food warming and food preparation *equipment*.
- (f) Lighting for plant growth or maintenance.
- (g) Lighting in spaces specifically designed for use by the visually impaired.
- (h) Lighting in *retail* display windows, provided the display area is enclosed by ceiling-height partitions.
- Lighting in interior spaces that have been specifically designated as a registered interior *historic* landmark.
- (j) Lighting that is an integral part of advertising or directional signage.
- (k) Exit signs.
- (l) Lighting that is for sale or lighting educational demonstration *systems*.
- (m) Lighting for theatrical purposes, including performance, stage, and film and video production.
- (n) Lighting for television broadcasting in sporting activity areas.
- (o) Casino gaming areas.

9.3 (Not Used)

9.4 Mandatory Provisions

9.4.1 Lighting Control

- **9.4.1.1** Automatic Lighting Shutoff. Interior lighting in *buildings* larger than 5000 ft² shall be controlled with an *automatic control device* to shut off *building* lighting in all spaces. This *automatic control device* shall function on either
- (a) a scheduled basis using a time-of-day operated control device that turns lighting off at specific programmed times—an independent program schedule shall be provided for areas of no more than 25,000 ft² but not more than one floor—or
- (b) an *occupant sensor* that shall turn lighting off within 30 minutes of an occupant leaving a space—or
- (c) a signal from another control or alarm system that indicates the area is unoccupied.

Exceptions to 9.4.1.1: The following shall not require an *automatic control device:*

- (a) Lighting intended for 24-hour operation
- (b) Lighting in spaces where patient care is rendered.
- (c) Spaces where an automatic shutoff would endanger the safety or security of the room or building occupant(s).
- **9.4.1.2 Space Control.** Each space enclosed by ceilingheight partitions shall have at least one *control device* to independently *control* the *general lighting* within the space. Each manual device shall be readily accessible and located so the occupants can see the controlled lighting.
- (a) A control device shall be installed that automatically turns lighting off within 30 minutes of all occupants leaving a space, except spaces with multi-scene control, in
 - classrooms (not including shop classrooms, laboratory classrooms, and preschool through 12th grade classrooms)
 - conference/meeting rooms,
 - 3. employee lunch and break rooms.

- These spaces are not required to be connected to other automatic lighting shutoff controls.
- (b) For all other spaces, each control device shall be activated either manually by an occupant or automatically by sensing an occupant. Each control device shall control a maximum of 2500 ft² area for a space 10,000 ft² or less and a maximum of 10,000 ft² area for a space greater than 10,000 ft² and be capable of overriding any time-of-day scheduled shutoff control for no more than four hours.
 - **Exception to 9.4.1.2:** Remote location shall be permitted for reasons of safety or security when the remote control device has an indicator pilot light as part of or next to the control device and the light is clearly labeled to identify the controlled lighting.
- **9.4.1.3** Exterior Lighting Control. Lighting for all exterior applications not exempted in 9.1 shall have automatic controls capable of turning off exterior lighting when sufficient daylight is available or when the lighting is not required during nighttime hours. Lighting not designated for dusk-to-dawn operation shall be controlled by an astronomical time switch. Lighting designated for dusk-to-dawn operation shall be controlled by an astronomical time switch or photosensor. Astronomical time switches shall be capable of retaining programming and the time setting during loss of power for a period of at least 10 hours.

Exception to 9.4.1.3: Lighting for covered vehicle entrances or exits from buildings or parking structures where required for safety, security, or eye adaptation.

9.4.1.4 Additional Control.

- (a) *Display/Accent Lighting*—display or accent lighting shall have a separate *control device*.
- (b) *Case Lighting*—lighting in cases used for display purposes shall have a separate *control device*.
- (c) Hotel and Motel Guest Room Lighting—hotel and motel guest rooms and guest suites shall have a master control device at the main room entry that controls all permanently installed luminaires and switched receptacles.
- (d) Task Lighting—supplemental task lighting, including permanently installed undershelf or undercabinet lighting, shall have a control device integral to the luminaires or be controlled by a wall-mounted control device provided the control device is readily accessible and located so that the occupant can see the controlled lighting.
- (e) Nonvisual Lighting—lighting for nonvisual applications, such as plant growth and food warming, shall have a separate control device.
- (f) Demonstration Lighting—lighting equipment that is for sale or for demonstrations in lighting education shall have a separate control device.
- **9.4.2 Tandem Wiring.** Luminaires designed for use with one or three linear fluorescent lamps greater than 30 W each shall use two-lamp tandem-wired ballasts in place of single-lamp ballasts when two or more luminaires are in the same space and on the same control device.

Exceptions to 9.4.2:

- (a) Recessed luminaires more than 10 ft apart measured center to center.
- (b) Surface-mounted or pendant luminaires that are not continuous.
- (c) Luminaires using single-lamp high-frequency electronic ballasts.

- (d) Luminaires using three-lamp high-frequency electronic or three-lamp electromagnetic ballasts.
- (e) Luminaires on emergency circuits.
- (f) Luminaires with no available pair.
- **9.4.3 Exit Signs.** Internally illuminated exit signs shall not exceed 5 watts per face.
- **9.4.4 Exterior Building Grounds Lighting.** All exterior building grounds luminaires that operate at greater than 100 watts shall contain lamps having a minimum efficacy of 60 lm/W unless the luminaire is controlled by a motion sensor or qualifies for one of the exceptions under 9.1.1 or 9.4.5.
- **9.4.5 Exterior Building Lighting Power.** The total *exterior lighting power allowance* for all exterior building applications is the sum of the individual lighting power densities permitted in Table 9.4.5 for these applications plus an additional unrestricted allowance of 5% of that sum. Trade-offs are allowed only among exterior lighting applications listed in the Table 9.4.5 "Tradable Surfaces" section.
 - **Exceptions to 9.4.5:** Lighting used for the following exterior applications is exempt when equipped with a *control device* independent of the control of the nonexempt lighting:
 - (a) Specialized signal, directional, and marker lighting associated with transportation.
 - (b) Advertising signage or directional signage.
 - (c) Lighting integral to *equipment* or instrumentation and installed by its *manufacturer*.
 - (d) Lighting for theatrical purposes, including performance, stage, film production, and video production.
 - (e) Lighting for athletic playing areas.
 - (f) Temporary lighting.
 - (g) Lighting for industrial production, material handling, transportation sites, and associated storage areas.
 - (h) Theme elements in theme/amusement parks.
 - (i) Lighting used to highlight features of public monuments and registered *historic* landmark structures or *buildings*.

9.5 Building Area Method Compliance Path

- **9.5.1 Building Area Method of Calculating Interior Lighting Power Allowance.** Use the following steps to determine the interior lighting power allowance by the building area method:
- (a) Determine the appropriate building area type from Table 9.5.1 and the allowed lighting power density (watts per unit area) from the building area method column. For building area types not listed, selection of a reasonably equivalent type shall be permitted.
- (b) Determine the gross lighted floor area (square feet) of the building area type.
- (c) Multiply the gross lighted floor areas of the building area type(s) times the *lighting power density*.
- (d) The interior lighting power allowance for the building is the sum of the lighting power allowances of all building area types. Trade-offs among building area types are permitted provided that the total installed interior lighting power does not exceed the interior lighting power allowance.

9.6 Alternative Compliance Path: Space-by-Space Method

- **9.6.1** Space-by-Space Method of Calculating Interior Lighting Power Allowance. Use the following steps to determine the interior lighting power allowance by the space-by-space method:
- (a) Determine the appropriate building type from Table 9.6.1. For building types not listed, selection of a reasonably equivalent type shall be permitted.
- (b) For each space enclosed by partitions 80% or greater than ceiling height, determine the gross interior floor area by measuring to the center of the partition wall. Include the floor area of balconies or other projections. Retail spaces do not have to comply with the 80% partition height requirements.
- (c) Determine the *interior lighting power allowance* by using the columns designated space-by-space method in Table 9.6.1. Multiply the floor area(s) of the space(s) times the allowed *lighting power density* for the space type that most closely represents the proposed use of the space(s). The product is the *lighting power allowance* for the space(s). For space types not listed, selection of a reasonable equivalent category shall be permitted.
- (d) The interior lighting power allowance is the sum of lighting power allowances of all spaces. Trade-offs among spaces are permitted provided that the total installed interior lighting power does not exceed the interior lighting power allowance.
- **9.6.2** Additional Interior Lighting Power. When using the space-by-space method, an increase in the *interior lighting power allowance* is allowed for specific lighting functions. Additional power shall be allowed only if the specified lighting is installed, shall be used only for the specified *luminaires*, and shall not be used for any other purpose or in any other space.
- **9.6.3** An increase in the *interior lighting power allowance* is permitted in the following cases:
- (a) For spaces in which lighting is specified to be installed in addition to the general lighting for the purpose of decorative appearance, such as chandelier-type luminaries or sconces or for highlighting art or exhibits, provided that the additional lighting power shall not exceed 1.0 W/ft² of such spaces.
- (b) For spaces in which lighting is specified to be installed to meet the requirements of visual display terminals as the primary viewing task, provided that the additional lighting power shall not exceed 0.35 W/ft² of such spaces and that the specified luminaire meets requirements for use in such spaces. Maximum average luminance measured from the vertical in candelas per square foot of not more than 80 cd/ft² at 65 degrees, 33 cd/ft² at 75 degrees, and 17 cd/ft² at 85 to 90 degrees.
- (c) For lighting equipment installed in retail spaces that is specifically designed and directed to highlight merchandise, provided that the additional lighting power shall not exceed (1) 1.6 W/ft² times the area of specific display or (2) 3.9 W/ft² times the area of specific display for valuable merchandise, such as jewelry, fine apparel and accessories, china and silver, art, and similar items, where detailed display and examination of merchandise are important.

9.7 Submittals (Not Used)

9.8 Product Information (Not Used)

TABLE 9.4.5 Lighting Power Densities for Building Exteriors

	Uncovered Parking Areas							
	Parking Lots and drives	$0.15 \; \mathrm{W/ft^2}$						
	Building Grounds							
	Walkways less than 10 feet wide	1.0 W/linear foot						
	Walkways 10 feet wide or greater							
	Plaza areas	0.2 W/ft ²						
Tradable Surfaces	Special Feature Areas							
(Lighting power densi- ties for uncovered park- ing areas, building	Stairways	1.0 W/ft2						
grounds, building	Building Entrances and Exits							
entrances and exits, can- opies and overhangs and	Main entries	30 W/linear foot of door width						
outdoor sales areas may be traded.)	Other doors	20 W/linear foot of door width						
	Canopies and Overhangs							
	Canopies (free standing and attached and overhangs)	1.25 W/ft ²						
	Outdoor Sales							
	Open areas (including vehicle sales lots)	0.5 W/ft ²						
	Street frontage for vehicle sales lots in addition to "open area" allowance	20 W/linear foot						
Non-Tradable Surfaces (Lighting power density calculations for the fol-	Building Facades	0.2 W/ft² for each illuminated wall or surface or5.0 W/linear foot for each illuminated wall or surface length						
lowing applications can be used only for the spe- cific application and can-	Automated teller machines and night depositories	270 W per location plus 90 W per additional ATM per location						
not be traded between surfaces or with other exterior lighting. The fol-	Entrances and gatehouse inspection stations at guarded facilities	1.25 W/ft ² of uncovered area (covered areas are included in the "Canopies and Overhangs" section of "Tradable Surfaces")						
lowing allowances are in addition to any allow- ance otherwise permit- ted in the "tradable	Loading areas for law enforcement, fire, ambulance and other emergency service vehicles	0.5 W/ft ² of uncovered area (covered areas are included in the "Canopies and Overhangs" section of "Tradable Surfaces")						
Surfaces" section of this	Drive-up windows at fast food restaurants	400 W per drive-through						
table.)	Parking near 24-hour retail entrances	800 W per main entry						

TABLE 9.5.1 Lighting Power Densities Using the Building Area Method

Lighting Power Density

Building Area Type ^a	(W/ft ²)
Automotive Facility	0.9
Convention Center	1.2
Court House	1.2
Dining: Bar Lounge/Leisure	1.3
Dining: Cafeteria/Fast Food	1.4
Dining: Family	1.6
Dormitory	1.0
Exercise Center	1.0
Gymnasium	1.1
Health Care-Clinic	1.0
Hospital	1.2
Hotel	1.0
Library	1.3
Manufacturing Facility	1.3
Motel	1.0
Motion Picture Theater	1.2
Multi-Family	0.7
Museum	1.1
Office	1.0
Parking Garage	0.3
Penitentiary	1.0
Performing Arts Theater	1.6
Police/Fire Station	1.0
Post Office	1.1
Religious Building	1.3
Retail	1.5
School/University	1.2
Sports Arena	1.1
Town Hall	1.1
Transportation	1.0
Warehouse	0.8
Workshop	1.4

a In cases where both general building area type and a specific building area type are listed, the specific building area type shall apply.

TABLE 9.6.1 Lighting Power Densities Using the Space-by-Space Method

Common Space Types ^a	LPD (W/ft ²)	Building Specific Space Types	LPD (W/ft ²)
Office-Enclosed	1.1	Gymnasium/Exercise Center	
Office-Open Plan	1.1	Playing Area	1.4
Conference/Meeting/Multipurpose	1.3	Exercise Area	0.9
Classroom/Lecture/Training	1.4	Courthouse/Police Station/Penitentiary	
For Penitentiary	1.3	Courtroom	1.9
Lobby	1.3	Confinement Cells	0.9
For Hotel	1.1	Judges Chambers	1.3
For Performing Arts Theater	3.3	Fire Stations	
For Motion Picture Theater	1.1	Fire Station Engine Room	0.8
Audience/Seating Area	0.9	Sleeping Quarters	0.3
For Gymnasium	0.4	Post Office—Sorting Area	1.2
For Exercise Center	0.3	Convention Center—Exhibit Space	1.3
For Convention Center	0.7	Library	
For Penitentiary	0.7	Card File and Cataloging	1.1
For Religious Buildings	1.7	Stacks	1.7
For Sports Arena	0.4	Reading Area	1.2
For Performing Arts Theater	2.6	Hospital	
For Motion Picture Theater	1.2	Emergency	2.7
For Transportation	0.5	Recovery	0.8
Atrium—First Three Floors	0.6	Nurse Station	1.0
Atrium—Each Additional Floor	0.2	Exam/Treatment	1.5
Lounge/Recreation	1.2	Pharmacy	1.2
For Hospital	0.8	Patient Room	0.7
Dining Area	0.9	Operating Room	2.2
For Penitentiary	1.3	Nursery	0.6
For Hotel	1.3	Medical Supply	1.4
For Motel	1.2	Physical Therapy	0.9
For Bar Lounge/Leisure Dining	1.4	Radiology	0.4
For Family Dining	2.1	Laundry—Washing	0.6
Food Preparation	1.2	Automotive—Service/Repair	0.7
Laboratory	1.4	Manufacturing	
Restrooms	0.9	Low Bay (<25 ft Floor to Ceiling Height)	1.2
Dressing/Locker/Fitting Room	0.6	High Bay (≥25 ft Floor to Ceiling Height)	1.7
Corridor/Transition	0.5	Detailed Manufacturing	2.1
For Hospital	1.0	Equipment Room	1.2
For Manufacturing Facility	0.5	Control Room	0.5
Stairs—Active	0.6	Hotel/Motel Guest Rooms	1.1
Active Storage	0.8	Dormitory—Living Quarters	1.1
For Hospital	0.9	Museum	
Inactive storage	0.3	General Exhibition	1.0
For Museum	0.8	Restoration	1.7

TABLE 9.6.1 (continued) Lighting Power Densities Using the Space-by-Space Method

Common Space Types ^a	Common Space Types ^a LPD (W/ft ²) B		LPD (W/ft ²)	
Electrical/Mechanical	1.5	Bank/Office—Banking Activity Area	1.5	
Workshop	1.9	Religious Buildings		
		Worship Pulpit, Choir	2.4	
		Fellowship Hall	0.9	
		Retail [For accent lighting, see 9.6.3(c)]		
		Sales Area	1.7	
		Mall Concourse	1.7	
		Sports Arena		
		Ring Sports Area	2.7	
		Court Sports Area	2.3	
		Indoor Playing Field Area	1.4	
		Warehouse		
		Fine Material Storage	1.4	
		Medium/Bulky Material Storage	0.9	
		Parking Garage—Garage Area	0.2	
		Transportation		
		Airport—Concourse	0.6	
		Air/Train/Bus—Baggage Area	1.0	
		Terminal—Ticket Counter	1.5	

a In cases where both a common space type and a building specific type are listed, the building specific space type shall apply.

10. OTHER EQUIPMENT

10.1 General

- **10.1.1 Scope.** This section applies only to the equipment described below.
- **10.1.1.1 New Buildings.** Other equipment installed in new buildings shall comply with the requirements of this section
- **10.1.1.2 Additions to Existing Buildings.** Other equipment installed in *additions* to *existing buildings* shall comply with the requirements of this section.

10.1.1.3 Alterations to Existing Buildings.

- **10.1.1.3.1** Alterations to other building service equipment or systems shall comply with the requirements of this section applicable to those specific portions of the building and its systems that are being altered.
- **10.1.1.3.2** Any new equipment subject to the requirements of this section that is installed in conjunction with the

alterations, as a direct replacement of existing equipment or control devices, shall comply with the specific requirements applicable to that equipment or control devices.

Exception to 10.1.1.3: Compliance shall not be required for the relocation or reuse of existing equipment.

10.2 Compliance Path(s)

- **10.2.1** Compliance with Section 10 shall be achieved by meeting all requirements of 10.1, General; 10.4, Mandatory Provisions; and 10.8, Product Information.
- **10.2.2** Projects using the Energy Cost Budget Method (Section 11 of this standard), must comply with 10.4, the mandatory provisions of this section, as a portion of that compliance path.

10.3 Simplified/Small Building Option (Not Used)

10.4 Mandatory Provisions

- **10.4.1 Electric Motors.** Electric motors shall comply with the requirements of the Energy Policy Act of 1992 where applicable, as shown in Table 10.8. Motors that are not included in the scope of the Energy Policy Act of 1992 have no performance requirements in this section.
- 10.5 Prescriptive Compliance Path (Not Used)
- 10.6 Alternative Compliance Path (Not Used)
- 10.7 Submittals (Not Used)
- 10.8 Product Information

TABLE 10.8 Minimum Nominal Efficiency for General Purpose Design A and Design B Motors^a

	Minimum Nominal Full-Load Efficiency (%)						
		Open Motors			Enclosed Motors		
Number of Poles ==>	2	4	6	2	4	6	
Synchronous Speed (RPM) ==>	3600	1800	1200	3600	1800	1200	
Motor Horsepower							
1	-	82.5	80.0	75.5	82.5	80.0	
1.5	82.5	84.0	84.0	82.5	84.0	85.5	
2	84.0	84.0	85.5	84.0	84.0	86.5	
3	84.0	86.5	85.5	85.5	87.5	87.5	
5	85.5	87.5	87.5	87.5	87.5	87.5	
7.5	87.5	88.5	88.5	88.5	89.5	89.5	
10	88.5	89.5	90.2	89.5	89.5	89.5	
15	89.5	91.0	90.2	90.2	91.0	90.2	
20	90.2	91.0	91.0	90.2	91.0	90.2	
25	91.0	91.7	91.7	91.0	92.4	91.7	
30	91.0	92.4	92.4	91.0	92.4	91.7	
40	91.7	93.0	93.0	91.7	93.0	93.0	
50	92.4	93.0	93.0	92.4	93.0	93.0	
60	93.0	93.6	93.6	93.0	93.6	93.6	
75	93.0	94.1	93.6	93.0	94.1	93.6	
100	93.0	94.1	94.1	93.6	94.5	94.1	
125	93.6	94.5	94.1	94.5	94.5	94.1	
150	93.6	95.0	94.5	94.5	95.0	95.0	
200	94.5	95.0	94.5	95.0	95.0	95.0	

a Nominal efficiencies shall be established in accordance with NEMA Standard MG1. Design A and Design B are National Electric Manufacturers Association (NEMA) design class designations for fixed frequency small and medium AC squirrel-cage induction motors.

11. ENERGY COST BUDGET METHOD

11.1 General

- 11.1.1 Energy Cost Budget Method Scope. The building energy cost budget method is an alternative to the prescriptive provisions of this standard. It may be employed for evaluating the compliance of all proposed designs, except designs with no mechanical system.
- 11.1.2 Trade-Offs Limited to Building Permit. When the building permit being sought applies to less than the whole building, only the calculation parameters related to the systems to which the permit applies shall be allowed to vary. Parameters relating to unmodified existing conditions or to future building components shall be identical for both the *energy cost budget* and the *design energy cost* calculations. Future building components shall meet the prescriptive requirements of 5.5, 6.5, 7.5, and either 9.5 or 9.6.
- **11.1.3 Envelope Limitation.** For new buildings or *additions*, the building *energy cost budget* method results shall not be submitted for building permit approval to the *authority having jurisdiction* prior to submittal for approval of the building envelope design.
- **11.1.4 Compliance.** Compliance with Section 11 will be achieved if
- (a) all requirements of 5.4, 6.4, 7.4, 8.4, 9.4, and 10.4 are met; and
- (b) the *design energy cost*, as calculated in 11.3 does not exceed the *energy cost budget*, as calculated by the simulation program described in 11.2; and
- (c) the energy *efficiency* level of components specified in the building design meet or exceed the *efficiency* levels used to calculate the *design energy cost*.

Informative Note: The energy cost budget and the design energy cost calculations are applicable only for determining compliance with this standard. They are not predictions of actual energy consumption or costs of the proposed design after construction. Actual experience will differ from these calculations due to variations such as occupancy, building operation and maintenance, weather, energy use not covered by this standard, changes in energy rates between design of the building and occupancy, and precision of the calculation tool.

- **11.1.5 Documentation Requirements.** Compliance shall be documented and submitted to the *authority having jurisdiction*. The information submitted shall include the following:
- (a) The *energy cost budget* for the *budget building design* and the *design energy cost* for the *proposed design*.
- (b) A list of the energy-related features that are included in the design and on which compliance with the provisions of Section 11 is based. This list shall document all energy features that differ between the models used in the *energy* cost budget and the design energy cost calculations.
- (c) The input and output report(s) from the *simulation program* including a breakdown of energy usage by at least the following components: lights, internal equipment loads, service water heating equipment, space heating

- equipment, space cooling and heat rejection equipment, fans, and other HVAC equipment (such as pumps). The output reports shall also show the amount of time any loads are not met by the HVAC system for both the *proposed design* and *budget building design*.
- (d) An explanation of any error messages noted in the *simulation program* output.

11.2 Simulation General Requirements

11.2.1 Simulation Program. The *simulation program* shall be a computer-based program for the analysis of energy consumption in buildings (a program such as, but not limited to, DOE-2 or BLAST). The *simulation program* shall include calculation methodologies for the building components being modeled.

Note to Adopting Authority: The SSPC 90.1 recommends that a compliance shell implementing the rules of the compliance supplement that controls inputs to, and from, output formats from the required computer analysis program be adopted for the purposes of easier use and simpler compliance.

- **11.2.1.1** The *simulation program* shall be approved by the *adopting authority* and shall, at a minimum, have the ability to explicitly model all of the following:
- (a) a minimum of 1400 hours per year;
- (b) hourly variations in occupancy, lighting power, miscellaneous equipment power, thermostat setpoints, and HVAC system operation, defined separately for each day of the week and holidays;
- (c) thermal mass effects;
- (d) ten or more thermal zones;
- (e) part-load performance curves for mechanical equipment;
- (f) capacity and efficiency correction curves for mechanical heating and cooling equipment;
- (g) air-side and water-side economizers with integrated control; and
- (h) the *budget building design* characteristics specified in
- 11.2.1.2 The *simulation program* shall have the ability to either
- (a) directly determine the *design energy cost* and *energy cost* budget or
- (b) produce hourly reports of energy use by energy source suitable for determining *the design energy cost* and *energy cost budget* using a separate calculation engine.
- **11.2.1.3** The *simulation program* shall be capable of performing design load calculations to determine required HVAC equipment capacities and air and water flow rates in accordance with 6.4.2 for both the *proposed design* and *budget building design*.
- **11.2.1.4** The simulation program shall be tested according to ASHRAE Standard 140 and the results shall be furnished by the software provider.
- 11.2.2 Climatic Data. The *simulation program* shall perform the simulation using hourly values of climatic data, such as temperature and humidity from representative climatic data, for the city in which the *proposed design* is to be located. For cities or urban regions with several climatic data entries,

and for locations where weather data are not available, the designer shall select available weather data that best represent the climate at the construction site. Such selected weather data shall be approved by the *authority having jurisdiction*.

11.2.3 Purchased Energy Rates. Annual energy costs shall be determined using rates for purchased energy, such as electricity, gas, oil, propane, steam, and chilled water, and approved by the *adopting authority*.

Exception to 11.2.3: On-site renewable energy sources or site-recovered energy shall not be considered to be purchased energy and shall not be included in the *design energy cost*. Where on-site renewable or site-recovered sources are used, the *budget building design* shall be based on the energy source used as the backup energy source or electricity if no backup energy source has been specified.

- **11.2.4 Compliance Calculations.** The *design energy cost* and *energy cost budget* shall be calculated using
- (a) the same simulation program,
- (b) the same weather data, and
- (c) the same purchased energy rates.
- 11.2.5 Exceptional Calculation Methods. Where no simulation program is available that adequately models a design, material, or device, the authority having jurisdiction may approve an exceptional calculation method to be used to demonstrate compliance with Section 11. Applications for approval of an exceptional method to include theoretical and empirical information verifying the method's accuracy shall include the following documentation to demonstrate that the exceptional calculation method and results
- (a) make no change in any input parameter values specified by this standard and the *adopting authority*;
- (b) provide input and output documentation that facilitates the enforcement agency's review and meets the formatting and content required by the *adopting authority*; and
- (c) are supported by instructions for using the method to demonstrate that the *energy cost budget* and *design energy cost* required by Section 11 are met.

11.3 Calculation of Design Energy Cost and Energy Cost Budget

- **11.3.1** The simulation model for calculating the design energy cost and the *energy cost budget* shall be developed in accordance with the requirements in Table 11.3.1.
- **11.3.2** *HVAC Systems*. The *HVAC system* type and related performance parameters for the *budget building* design shall be determined from Figure 11.3.2, the system descriptions in Table 11.3.2A and accompanying notes, and the following rules:
- (a) Components and parameters not listed in Figure 11.3.2 and Table 11.3.2A or otherwise specifically addressed in this subsection shall be identical to those in the *proposed design*.
 - **Exception to 11.3.2a:** Where there are specific requirements in 6.4 and 6.5, the component *efficiency* in the *budget building design* shall be adjusted to the lowest *efficiency* level allowed by the requirement for that component type.
- (b) All HVAC and service water heating equipment in the budget building shall be modeled at the minimum effi-

- *ciency* levels, both part load and full load, in accordance with 6.4 and 7.4.
- (c) Where efficiency ratings, such as EER and COP, include fan energy, the descriptor shall be broken down into its components so that supply fan energy can be modeled separately. Supply and return/relief system fans shall be modeled as operating at least whenever the spaces served are occupied except as specifically noted in Table 11.3.2A.
- (d) Minimum outdoor air ventilation rates shall be the same for both the budget building design and proposed building. Heat recovery shall be modeled for the budget building design in accordance with 6.5.6.1.
- (e) Budget building systems as listed in Table 11.3.2A shall have outdoor air economizers or water economizers, the same as in the proposed building, in accordance with 6.5.1. The high-limit shutoff shall be in accordance with Table 11.3.2D.
- (f) If the proposed design system has a preheat coil, the budget building design's system shall be modeled with a preheat coil controlled in the same manner.
- (g) System design supply air rates for the *budget building design* shall be based on a supply-air-to-room-air temperature difference of 20°F. If return or relief fans are specified in the *proposed design*, the *budget building design* shall also be modeled with the same fan type sized for the budget system supply fan air quantity less the minimum *outdoor air*, or 90% of the supply fan air quantity, whichever is larger.
- (h) Fan system *efficiency* (BHP per cfm of supply air including the effect of belt losses but excluding motor and motor drive losses) shall be the same as the *proposed design* or up to the limit prescribed in 6.5.3.1, whichever is smaller. If this limit is reached, each fan shall be proportionally reduced in brake horsepower until the limit is met. Fan electrical power shall then be determined by adjusting the calculated fan HP by the minimum motor *efficiency* prescribed by 10.4 for the appropriate motor size for each fan.
- shall be sized proportionally to the capacities in the *proposed design* based on sizing runs; i.e., the ratio between the capacities used in the annual simulations and the capacities determined by the sizing runs shall be the same for both the *proposed design* and *budget building design*. Unmet load hours for the *proposed design* shall not differ from unmet load hours for the *budget building design* by more than 50 hours.
- (j) Each HVAC system in a proposed design is mapped on a one-to-one correspondence with one of eleven HVAC systems in the budget building design. To determine the budget building system:

TABLE 11.3.1 Modeling Requirements for Calculating Design Energy Cost and Energy Cost Budget

Proposed Building Design (Column A) Budget Building Design (Column B) No. **Design Energy Cost (DEC) Energy Cost Budget (ECB)** 1. Design Model (a) The simulation model of the *proposed design* shall be consistent with the The budget building design shall be developed by design documents, including proper accounting of fenestration and opaque modifying the proposed design as described in this envelope types and area; interior lighting power and controls; HVAC system table. Except as specifically instructed in this table, types, sizes, and controls; and service water heating systems and controls. all building systems and equipment shall be modeled identically in the budget building design and pro-(b) All conditioned spaces in the *proposed design* shall be simulated as being posed design. both heated and cooled even if no cooling or heating system is being installed. (c) When the *energy cost budget* method is applied to buildings in which energy-related features have not yet been designed (e.g., a lighting system), those yet-to-be-designed features shall be described in the proposed design so that they minimally comply with applicable mandatory and prescriptive requirements from Sections 5 through 10. Where the space classification for a building is not known, the building shall be categorized as an office building. 2. Additions and Alterations It is acceptable to demonstrate compliance using building models that Same as Proposed Design exclude parts of the existing building provided all of the following conditions (a) Work to be performed under the current permit application in excluded parts of the building shall meet the requirements of Sections 5 through 10. (b) Excluded parts of the building are served by HVAC systems that are entirely separate from those serving parts of the building that are included in the building model. (c) Design space temperature and HVAC system operating setpoints and schedules, on either side of the boundary between included and excluded parts of the building, are identical. (d) If a declining block or similar utility rate is being used in the analysis and the excluded and included parts of the building are on the same utility meter, the rate shall reflect the utility block or rate for the building plus the addition. 3. Space Use Classification The building type or space type classifications shall be chosen in accordance Same as Proposed Design with 9.5.1 or 9.6.1. The user or designer shall specify the space use classifications using either the building type or space type categories but shall not combine the two types of categories within a single permit application. More than

one building type category may be used in a building if it is a mixed-use facility. 4. Schedules

The schedule types listed in 11.2.1.1 (b) shall be required input. The schedules shall be typical of the proposed building type as determined by the designer and approved by the *authority having jurisdiction*. Required schedules shall be identical for the *proposed design* and *budget building design*.

Same as Proposed Design

Proposed Building Design (Column A)
Design Energy Cost (DEC)

Budget Building Design (Column B) Energy Cost Budget (ECB)

5. Building Envelope

No.

All components of the building envelope in the *proposed design* shall be modeled as shown on architectural drawings or as installed for *existing building* envelopes.

Exceptions: The following building elements are permitted to differ from architectural drawings.

- (a) Any envelope assembly that covers less than 5% of the total area of that assembly type (e.g., exterior walls) need not be separately described. If not separately described, the area of an envelope assembly must be added to the area of the adjacent assembly of that same type.
- (b) Exterior surfaces whose azimuth orientation and tilt differ by no more than 45 degrees and are otherwise the same may be described as either a single surface or by using multipliers.
- (c) For exterior roofs other than roofs with ventilated attics, the roof surface may be modeled with a reflectance of 0.45 if the reflectance of the proposed design roof is greater than 0.70 and its emittance is greater than 0.75. The reflectance and emittance shall be tested in accordance with the Exception to 5.5.3.1. All other roof surfaces shall be modeled with a reflectance of 0.3. Manually operated fenestration shading devices such as blinds or shades shall not be modeled. Permanent shading devices such as fins, overhangs, and light shelves shall be modeled.
- (d) Manually operated fenestration shading devices such as blinds or shades shall not be modeled. Permanent shading devices such as fins, overhangs, and lightshelves shall be modeled.

The *budget building design* shall have identical *conditioned floor area* and identical exterior dimensions and orientations as the proposed design, except as noted in (a), (b), and (c) in this clause.

- (a) Opaque assemblies such as roof, floors, doors, and walls shall be modeled as having the same heat capacity as the *proposed design* but with the minimum U-factor required in 5.5 for new buildings or *additions* and 5.1.3 for *alterations*.
- (b) Roof albedo—All roof surfaces shall be modeled with a reflectivity of 0.3.
- (c) Fenestration—No shading projections are to be modeled; fenestration shall be assumed to be flush with the exterior wall or roof. If the fenestration area for new buildings or *additions* exceeds the maximum allowed by 5.5.4.2, the area shall be reduced proportionally along each exposure until the limit set in 5.5.4.2 is met. Fenestration U-factor shall be the minimum required for the climate, and the solar heat gain coefficient shall be the maximum allowed for the climate and orientation. The fenestration model for envelope *alterations* shall reflect the limitations on area, U-factor, and solar heat gain coefficient as described in 5.1.3.

Exception: When trade-offs are made between an addition

and an *existing building* as described in Exception to 4.2.1.2, the envelope assumptions for the *existing building* in the *budget building design* shall reflect existing conditions prior to any revisions that are part of this permit.

6. Lighting

Lighting power in the *proposed design* shall be determined as follows:

- (a) Where a complete lighting system exists, the actual lighting power shall be used in the model.
- (b) Where a lighting system has been designed, lighting power shall be determined in accordance with either 9.5 or 9.6.
- (c) Where no lighting exists or is specified, lighting power shall be determined in accordance with the Building Area Method for the appropriate building type.
- (d) Lighting system power shall include all lighting system components shown or provided for on plans (including lamps, ballasts, task fixtures, and furniture-mounted fixtures).

Lighting power in the *budget building design* shall be determined using the same categorization procedure (building area or space function) and categories as the *proposed design* with lighting power set equal to the maximum allowed for the corresponding method and category in either 9.5 or 9.6. Power for fixtures not included in the lighting power density calculation shall be modeled identically in the *proposed design* and *budget building design*. Lighting controls shall be the minimum required.

7. Thermal Blocks - HVAC Zones Designed

Where HVAC zones are defined on HVAC design drawings, each HVAC zone shall be modeled as a separate *thermal block*.

Exception: Different HVAC zones may be combined to create a single thermal block or identical thermal blocks to which multipliers are applied provided all of the following conditions are met:

- (a) The space use classification is the same throughout the *thermal block*.
- (b) All HVAC zones in the *thermal block* that are adjacent to glazed exterior walls face the same orientation or their orientations are within 45 degrees of each other.
- (c) All of the zones are served by the same HVAC system or by the same kind of HVAC system.

Same as Proposed Design

No	Proposed Building Design (Column A) Design Energy Cost (DEC)	Budget Building Design (Column B) Energy Cost Budget (ECB)
8.	Thermal Blocks – HVAC Zones Not Designed	
	Where the HVAC zones and systems have not yet been designed, <i>thermal blocks</i> shall be defined based on similar internal load densities, occupancy, lighting, thermal and space temperature schedules, and in combination with the following guidelines: (a) Separate <i>thermal blocks</i> shall be assumed for interior and perimeter spaces. Interior spaces shall be those located more than 15 ft from an exterior wall. Perimeter spaces shall be those located closer than 15 ft from an exterior wall. (b) Separate <i>thermal blocks</i> shall be assumed for spaces adjacent to glazed exterior walls; a separate zone shall be provided for each orientation, except orientations that differ by no more than 45 degrees may be considered to be the same orientation. Each zone shall include all floor area that is 15 ft or less from a glazed perimeter wall, except that floor area within 15 ft of glazed perimeter walls having more than one orientation shall be divided proportionately between zones. (c) Separate <i>thermal blocks</i> shall be assumed for spaces having floors that are in contact with the ground or exposed to ambient conditions from zones that do not share these features. (d) Separate <i>thermal blocks</i> shall be assumed for spaces having exterior ceiling or roof assemblies from zones that do not share these features.	Same as Proposed Design
9. 1	Fhermal Blocks - Multifamily Residential Buildings	
	Residential spaces shall be modeled using one <i>thermal block</i> per space except that those facing the same orientations may be combined into one <i>thermal block</i> . Corner units and units with roof or floor loads shall only be combined with units sharing these features.	Same as Proposed Design
10.	HVAC Systems	
	The HVAC system type and all related performance parameters, such as equipment capacities and efficiencies, in the <i>proposed design</i> shall be determined as follows: (a) Where a complete HVAC system exists, the model shall reflect the actual system type using actual component capacities and efficiencies. (b) Where an HVAC system has been designed, the HVAC model shall be consistent with design documents. Mechanical equipment efficiencies shall be adjusted from actual design conditions to the standard rating conditions specified in 6.4.1, if required by the simulation model. (c) Where no heating system exists or no heating system has been specified, the heating system shall be modeled as fossil fuel. The system characteristics shall be identical to the system exists or no cooling system has been specified, the cooling system shall be modeled as an air-cooled single-zone system, one unit per <i>thermal block</i> . The system characteristics shall be identical to the	The HVAC system type and related performance parameters for the <i>budget building design</i> shall be determined from Figure 11.3.2, the system descriptions in Table 11.3.2A and accompanying notes, and in accord with rules specified in 11.3.2 a-j.

system modeled in the budget building design.

Proposed Building Design (Column A) **Budget Building Design (Column B) Design Energy Cost (DEC) Energy Cost Budget (ECB)** No. 11. Service Hot Water Systems The service hot water system type and all related performance parameters, The service hot water system type and related perforsuch as equipment capacities and efficiencies, in the proposed design shall be mance in the budget building design shall be identical to the proposed design except where 7.5 applies. determined as follows: (a) Where a complete service hot water system exists, the model shall reflect In this case the boiler shall be split into a separate space heating boiler and hot water heater with effithe actual system type using actual component capacities and efficiencies. (b) Where a service hot water system has been designed, the service hot ciency requirements set to the least efficient allowed. water model shall be consistent with design documents. (c) Where no service hot water system exists or is specified, no service hot water heating shall be modeled. 12. Miscellaneous Loads Receptacle, motor, and process loads shall be modeled and estimated based Receptacle, motor and process loads shall be modon the building type or space type category and shall be assumed to be identieled and estimated based on the building type or cal in the proposed and budget building design. These loads shall be included space type category and shall be assumed to be idenin simulations of the building and shall be included when calculating the tical in the proposed and budget building design. energy cost budget and design energy cost. All end-use load components These loads shall be included in simulations of the within and associated with the building shall be modeled, unless specifically building and shall be included when calculating the excluded by Sections 13 and 14 of Table 11.3.1: including, but not limited to, energy cost budget and design energy cost. All endexhaust fans, parking garage ventilation fans, exterior building lighting, use load components within and associated with the swimming pool heaters and pumps, elevators and escalators, refrigeration building shall be modeled, unless specifically equipment, and cooking equipment. excluded by Sections 13 and 14 of Table 11.3.1: including, but not limited to, exhaust fans, parking garage ventilation fans, exterior building lighting, swimming pool heaters and pumps, elevators and escalators, refrigeration equipment, and cooking equipment. 13. Modeling Exceptions All elements of the *proposed design* envelope, HVAC, service water heating, None lighting, and electrical systems shall be modeled in the proposed design in accordance with the requirements of Sections 1 through 12 of Table 11.3.1. Exception: Components and systems in the proposed design may be excluded from the simulation model provided: (a) component energy usage does not affect the energy usage of systems and components that are being considered for trade-off; (b) the applicable prescriptive requirements of 5.5, 6.5, 7.5, and either 9.5 or 9.6 applying to the excluded components are met. 14. Modeling Limitations to the Simulation Program

If the simulation program cannot model a component or system included in the proposed design, one of the following methods shall be used with the approval of the *authority having jurisdiction*:

- (a) Ignore the component if the energy impact on the trade-offs being considered is not significant.
- (b) Model the component substituting a thermodynamically similar compo-
- (c) Model the HVAC system components or systems using the budget building design's HVAC system in accordance with Section 10 of Table 11.3.1. Whichever method is selected, the component shall be modeled identically for both the proposed design and budget building design models.

Same as Proposed Design

Figure 11.3.2 HVAC systems map.

- 1. Enter Figure 11.3.2 at "Water" if the proposed design system condenser is water or evaporatively cooled; enter at "Air" if the condenser is air-cooled. Closed-circuit dry-coolers shall be considered air-cooled. Systems utilizing district cooling shall be treated as if the condenser water type were "water." If no mechanical cooling is specified or the mechanical cooling system in the proposed design does not require heat rejection, the system shall be treated as if the condenser water type were "Air." For proposed designs with ground-source or groundwater-source heat pumps, the budget system shall be water-source heat pump (System 6).
- 2. Select the path that corresponds to the *proposed design* heat source: electric resistance, heat pump (including air-source and water-source), or fuel-fired. Systems utilizing district heating (steam or hot water) shall be treated as if the heating system type were "Fossil Fuel." Systems with no heating capability shall be treated as if the heating system type were
- "Fossil Fuel." For systems with mixed fuel heating sources, the system or systems that use the secondary heating source type (the one with the smallest total installed output capacity for the spaces served by the system) shall be modeled identically in the *budget building design* and the primary heating source type shall be used in Figure 11.3.2 to determine budget system type.
- 3. Select the budget building design system category: The system under "Single Zone Residential System" shall be selected if the HVAC system in the proposed design is a single-zone system and serves a residential space. The system under "Single Zone Nonresidential System" shall be selected if the HVAC system in the proposed design is a single-zone system and serves other than residential spaces. The system under "All Other" shall be selected for all other cases.

TABLE 11.3.2A Budget System Descriptions

System No.	System Type	Fan Control	Cooling Type	Heating Type
1	Variable air volume with parallel fan-powered boxes (1)	VAV (4)	Chilled Water (5)	Electric Resistance
2	Variable air volume with reheat (2)	VAV (4)	Chilled Water (5)	Hot Water Fossil Fuel Boiler (6)
3	Packaged variable air volume with parallel fan-powered boxes (1)	VAV (4)	Direct Expansion (3)	Electric Resistance
4	Packaged variable air volume with reheat (2)	VAV (4)	Direct Expansion (3)	Hot Water Fossil Fuel Boiler (6)
5	Two-pipe fan-coil	Constant Volume (9)	Chilled Water (5)	Electric Resistance
6	Water-source heat pump	Constant Volume (9)	Direct Expansion (3)	Electric Heat Pump and Boiler (7)
7	Four-pipe fan coil	Constant Volume (9)	Chilled Water (5)	Hot Water Fossil Fuel Boiler (6)
8	Packaged terminal heat pump	Constant Volume (9)	Direct Expansion (3)	Electric Heat Pump (8)
9	Packaged rooftop heat pump	Constant Volume (9)	Direct Expansion (3)	Electric Heat Pump (8)
10	Packaged terminal air conditioner	Constant Volume (9)	Direct Expansion	Hot Water Fossil Fuel Boiler (6)
11	Packaged rooftop air conditioner	Constant Volume (9)	Direct Expansion	Fossil Fuel Furnace

Notes:

- 1. **VAV with parallel boxes:** Fans in parallel VAV fan-powered boxes shall be sized for 50% of the peak design flow rate and shall be modeled with 0.35 W/cfm fan power. Minimum volume setpoints for fan-powered boxes shall be equal to the minimum rate for the space required for ventilation consistent with 6.5.2.1 Exception (a) 1. Supply air temperature setpoint shall be constant at the design condition (see 11.3.2 (h)).
- 2. VAV with reheat: Minimum volume setpoints for VAV reheat boxes shall be 0.4 cfm/ft² of floor area consistent with 6.5.2.1 Exception (a) 2. Supply air temperature shall be reset based on zone demand from the design temperature difference to a 10°F temperature difference under minimum load conditions. Design air flow rates shall be sized for the reset supply air temperature, i.e., a 10°F temperature difference.
- 3. **Direct Expansion:** The fuel type for the cooling system shall match that of the cooling system in the *proposed design*.
- 4. **VAV:** Constant volume can be modeled if the system qualifies for Exception (b) to 6.5.2.1. When the *proposed design* system has a supply, return, or relief fan motor 25 hp or larger, the corresponding fan in the VAV system of the *budget building design* shall be modeled assuming a variable speed drive. For smaller fans, a forward-curved centrifugal fan with inlet vanes shall be modeled. If the *proposed design's* system has a direct digital control system at the zone level, static pressure setpoint reset based on zone requirements in accordance with 6.5.3.2.3 shall be modeled.
- 5. Chilled Water: For systems using purchased chilled water, the chillers are not explicitly modeled and chilled water costs shall be based as determined in 11.2.3. Otherwise, the *budget building design*'s chiller plant shall be modeled with chillers having the number as indicated in Table 11.3.2B as a function of *budget building* chiller plant load and type as indicated in Table 11.3.2C as a function of individual chiller load. Where chiller fuel source is mixed, the system in the *budget building design* shall have chillers with the same fuel types and with capacities having the same proportional capacity as the *proposed design*'s chillers for each fuel type. Chilled water supply temperature shall be modeled at 44°F design supply temperature and 56°F return temperature. Piping losses shall not be modeled in either building model. Chilled water supply water temperature shall be reset in accordance with 6.5.4.3. Pump system power for each pumping system shall be the same as the *proposed design*; if the *proposed design* has no chilled water pumps, the *budget building design* pump power shall be 22 W/gpm (equal to a pump operating against a 75 ft head, 65% combined impeller and motor *efficiency*). The chilled water system shall be modeled as primary-only variable flow with flow maintained at the design rate through each chiller using a bypass. Chilled water pumps shall be modeled as riding the pump curve or with variable-speed drives when required in 6.5.4.1. The heat rejection device shall be an axial fan cooling tower with two-speed fans if required in 6.5.5. Condenser water design supply temperature shall be 85°F or 10°F approach to design wet-bulb temperature, whichever is lower, with a design temperature rise of 10°F. The tower shall be controlled to maintain a 70°F leaving water temperature where weather permits, floating up to leaving water temperature at design conditions. Pump system power for each pumping system shall be the same as the *proposed design*; if the *proposed design* has no condenser
- 6. **Fossil Fuel Boiler:** For systems using purchased hot water or steam, the boilers are not explicitly modeled and hot water or steam costs shall be based on actual utility rates. Otherwise, the boiler plant shall use the same fuel as the *proposed design* and shall be natural draft. The *budget building design* boiler plant shall be modeled with a single boiler if the *budget building design* plant load is 600,000 Btu/h and less and with two equally sized boilers for plant capacities exceeding 600,000 Btu/h. Boilers shall be staged as required by the load. Hot water supply temperature shall be modeled at 180°F design supply temperature and 130°F return temperature. Piping losses shall not be modeled in either building model. Hot water supply water temperature shall be reset in accordance with 6.5.4.3. Pump system power for each pumping system shall be the same as the *proposed design*; if the *proposed design* has no hot water pumps, the *budget building design* pump power shall be 19 W/gpm (equal to a pump operating against a 60 ft head, 60% combined impeller and motor *efficiency*). The hot water system shall be modeled as primary-only with continuous variable flow. Hot water pumps shall be modeled as riding the pump curve or with variable speed drives when required by 6.5.4.1.
- 7. **Electric Heat Pump and Boiler:** Water-source heat pumps shall be connected to a common heat pump water loop controlled to maintain temperatures between 60°F and 90°F. Heat rejection from the loop shall be provided by an axial fan closed-circuit evaporative fluid cooler with two-speed fans if required in 6.5.5.2. Heat addition to the loop shall be provided by a boiler that uses the same fuel as the *proposed design* and shall be natural draft. If no boilers exist in the *proposed design*, the budget building boilers shall be fossil fuel. The *budget building design* boiler plant shall be modeled with a single boiler if the *budget building design* plant load is 600,000 Btu/h or less and with two equally sized boilers for plant capacities exceeding 600,000 Btu/h. Boilers shall be staged as required by the load. Piping losses shall not be modeled in either building model. Pump system power shall be the same as the *proposed design*; if the *proposed design* has no pumps, the *budget building design* pump power shall be 22 W/gpm, which is equal to a pump operating against a 75 foot head, with a 65% combined impeller and motor *efficiency*. Loop flow shall be variable with flow shutoff at each heat pump when its compressor cycles off as required by 6.5.4.4. Loop pumps shall be modeled as riding the pump curve or with variable speed drives when required by 6.5.4.1.
- 8. Electric Heat Pump: Electric air-source heat pumps shall be modeled with electric auxiliary heat. The system shall be controlled with a multi-stage space thermostat and an outdoor air thermostat wired to energize auxiliary heat only on the last thermostat stage and when outdoor air temperature is less than 40°F.
- O. Constant Volume: Fans shall be controlled in the same manner as in the *proposed design*; i.e., fan operation whenever the space is occupied or fan operation cycled on calls for heating and cooling. If the fan is modeled as cycling and the fan energy is included in the energy *efficiency* rating of the equipment, fan energy shall not be modeled explicitly.

TABLE 11.3.2B Number of Chillers

Total Chiller Plant Capacity	Number of Chillers
≤300 tons	1
>300 tons, < 600 tons	2 sized equally
≥600 tons	2 minimum with chillers added so that no chiller is larger than 800 tons, all sized equally

TABLE 11.3.2C Water Chiller Types

Individual Chiller Plant Capacity	Electric Chiller Type	Fossil Fuel Chiller Type
≤100 tons	Reciprocat- ing	Single-effect absorption, direct fired
>100 tons, <300 tons	Screw	Double-effect absorption, direct fired
≥300 tons	Centrifugal	Double-effect absorption, direct fired

TABLE 11.3.2D Economizer High-Limit Shutoff

Economizer Type	High-Limit Shutoff
Air	Table 6.5.1.1.3B
Water (Integrated)	When its operation will no longer Reduce HVAC system energy
Water (Non-Integrated)	When its operation can no longer provide the cooling load

12. NORMATIVE REFERENCES

Reference	Title
10 CFR Part 430, App N	Uniform Test Method for Measuring the Energy Consumption of Furnaces
42 USC 6831, et seq., Public Law 102-486	Energy Policy Act of 1992
Air Movement and Control Association International, 30 West University Drive, Arlington Heights, IL 60004-1806	
AMCA 500-D-98	Test Methods for Louvers, Dampers, and Shutters
American National Standards Institute, 11 West 42nd Street, New York, NY 10036	
ANSI Z21.10.3-1998	Gas Water Heater, Volume 3, Storage, with Input Ratings above 75,000 Btu/h, Circulating and Instantaneous Water Heaters
ANSI Z21.47-2001	Gas-Fired Central Furnaces (Except Direct Vent and Separated Combustion System Furnaces)
ANSI Z83.8-2002	Gas Unit Heaters and Duct Furnaces
Association of Home Appliance Manufacturers, 20 North Wacker Drive, Chicago, IL 60606	
ANSI/AHAM RAC-1-87	Room Air Conditioners
Air-Conditioning and Refrigeration Institute, 4100 North Fairfax Drive, Suite 200, Arlington, VA 22203	
ARI 210/240-2003	Unitary Air Conditioning and Air-Source Heat Pump Equipment
ARI 310/380-2004	Packaged Terminal Air-Conditioners and Heat Pumps
ARI 340/360-2000	Commercial and Industrial Unitary Air-Conditioning and Heat Pump Equipment
ARI 365-2002	Commercial and Industrial Unitary Air-Conditioning Condensing Units
ARI 390-2001	Single Packaged Vertical Air Conditioners and Heat Pumps
ARI 460-2000	Remote Mechanical Draft Air Cooled Refrigerant Condensers
ARI 550/590-98 with Addenda through July 2002	Water-Chilling Packages Using the Vapor Compression Cycle
ARI 560-2000	Absorption Water Chilling and Water Heating Packages
American Society of Heating, Refrigerating and Air-Conditioning En 1791 Tullie Circle, NE, Atlanta, GA 30329	ngineers,
ANSI/ASHRAE Standard 62-1999	Ventilation for Acceptable Indoor Air Quality
ANSI/ASHRAE Standard 140-2001	Standard Method of Test for the Evaluation of Building Energy Analysis Computer Programs
ANSI/ASHRAE 146-1998	Method of Testing for Rating Pool Heaters
American Society for Testing and Materials, 100 Barr Harbor Dr., West Conshohocken, PA 19428-2959	
ASTM C90-96	Standard Specification for Loadbearing Concrete Masonry Units
ASTM C177-97	Standard Test Method for Steady-State Heat Flux Measurements and Thermal Transmittance Properties by Means of the Guarded-Hot-Plate Apparatus
ASTM C272-91	Test Method for Water Absorption of Core Materials for Structural Sandwich Constructions
ASTM C518-2002	Standard Test Method for Steady-State Thermal Transmittance Properties by Means of the Heat Flow Meter Apparatus

Reference	Title
ASTM C835-95 (1999)	Standard Test Method for Total Hemispherical Emittance of Surfaces From 20°C to 1400°C
ASTM C1363-97	Standard Test Method for the Thermal Performance of Building Assemblies by Means of a Hot Box Apparatus
ASTM C1371-98	Standard Test Method for Determination of Emittance of Materials Near Room Temperature Using Portable Emissome- ters
ASTM E96-95	Test Methods for Water Vapor Transmission of Materials
ASTM E283-91	Test Method for Determining Rate of Air Leakage Through Exterior Windows, Curtain Walls, and Doors Under Specified Pressure Differences Across the Specimen
ASTM E408-71 (1996)	Test Methods for Total Normal Emittance of Surfaces Using Inspection-Meter Techniques
ASTM E903-96	Test Method for Solar Absorptance, Reflectance, and Transmittance of Materials Using Integrating Spheres
ASTM E1175-87 (1996)	Standard Test Method for Determining Solar or Photopic Reflectance, Transmittance, and Absorptance of Materials Using a Large Diameter Integrating Sphere
ASTM E1918-97	Standard Test Method for Measuring Solar Reflectance of Horizontal or Low-Sloped Surfaces in the Field
Cooling Technology Institute, 530 Wells Fargo, Suite 218, Houston, TX 77090; P.O. Box 73383, Hous	ton, TX 77273
CTI ATC-105(97)	Acceptance Test Code for Water Cooling Towers
CTI STD-201 (96)	Standard for Certification of Water Cooling Tower Thermal Performance
Hydronics Institute, Division of Gama, 35 Russo Place, P.O. Box 218, Berkeley Heights, NJ 07922	
BTS 2000.	Testing Standard Method to Determine Efficiency of Commercial Space Heating Boilers
ISO, 1, rue de Varembe, Case postale 56, CH-1211 Geneve 20, Switzerland	
ISO 13256-1 (1998)	Water-Source Heat Pumps—Testing and Rating for Performance—Part 1: Water-to-Air and Brine-to-Air Heat Pumps
Door and Access Systems Manufacturers Association (DASMA), 1300 Sumner Avenue, Cleveland, OH 44115-2851	
ANSI/DASMA 105-92 (R 1998)	Test Method for Thermal Transmittance and Air Infiltration of Garage Doors
National Electrical Manufacturers Association, 1300 N. 17th Street, Suite 1847, Rosslyn, VA 22209	
ANSI/NEMA MG 1-1993	Motors and Generators
National Fire Protection Association, 1 Battery March Park, P.O. Box 9101, Quincy, MA 02269-9101	
NFPA 96-94	Ventilation Control and Fire Protection of Commercial Cooking Operations
National Fenestration Rating Council, 1300 Spring Street, Suite 500, Silver Springs, MD 20910	
NFRC 100-2001	Procedure for Determining Fenestration Product U-Factors (Second Edition) <i>Published November 2002</i>

Reference	Title
NFRC 101-2001	Procedure for Determining Thermo- Physical Properties of Materials for Use in NFRC–Approved Software Programs, (First Edition) <i>Published</i> <i>November 2002</i>
NFRC 102-2001	Test Procedures for Measuring the Steady-State Thermal Transmittance of Fenestration Systems, (Second Edition) Published November 2002
NFRC 200-2001	Procedure for Determining Fenestration Product Solar Heat Gain Coefficients and Visible Transmittance at Normal Inci- dence (Second Edition) <i>Published November</i> 2002
NFRC 201-2001	Interim Standard Test Method for Measuring the Solar Heat Gain Coefficient of Fenestration Systems Using Calorimetry Hot Box Methods, (Second Edition) <i>Published November</i> 2002
NFRC 300-2001	Standard Test Method for Determining the Solar Optical Properties of Glazing Materials and Systems, (Second Edition) <i>Published November 2002</i>
NFRC 400-2001	Procedure for Determining Fenestration Product Air Leakage (Second Edition) <i>Published November 2002</i>
Underwriters Laboratories, Inc., 333 Pfingsten Rd., Northbrook, IL 60062	
UL 181A-94	Closure Systems for Use with Rigid Air Ducts and Air Connectors
UL 181B-95	Closure Systems for Use with Flexible Air Ducts and Air Connectors
UL 727-94	UL Standard for Safety—Oil Fired Central Furnaces
UL 731-95	UL Standard for Safety—Oil-Fired Unit Heaters

(This is a normative appendix and is part of this standard.)

NORMATIVE APPENDIX A

RATED R-VALUE OF INSULATION AND ASSEMBLY U-FACTOR, C-FACTOR, AND F-FACTOR DETERMINATIONS

A1 General

A1.1 Pre-Calculated Assembly U-Factors, C-Factors, F-Factors, or Heat Capacities. The *U-factors, C-factors, F-factors,* and *heat capacities* for typical construction assemblies are included in A2 through A8. These values shall be used for all calculations unless otherwise allowed by A1.2. Interpolation between values in a particular table in Appendix A is allowed for *rated R-values of insulation*, including insulated sheathing. Extrapolation beyond values in a table in Appendix A is not allowed.

A1.2 Applicant-Determined Assembly U-Factors, C-Factors, F-Factors, or Heat Capacities. If the *building official* determines that the proposed construction assembly is not adequately represented in A2 through A8, the applicant shall determine appropriate values for the assembly using the assumptions in A9. An assembly is deemed to be adequately represented if

- (a) the interior structure, hereafter referred to as the base assembly, for the *class of construction* is the same as described in A2 through A8 and
- (b) changes in exterior or interior surface *building materials* added to the base assembly do not increase or decrease the R-value by more than 2 from that indicated in the descriptions in A2 through A8.

Insulation, including insulated sheathing, is not considered a *building material*.

A2 Roofs

A2.1 General. The buffering effect of suspended ceilings or attic spaces shall not be included in *U-factor* calculations.

A2.2 Roofs with Insulation Entirely Above Deck.

A2.2.1 General. For the purpose of A1.2, the base assembly is *continuous insulation* over a structural deck. The *U-factor* includes R-0.17 for exterior air film, R-0 for metal deck, and R-0.61 for interior air film heat flow up. Added insulation is continuous and uninterrupted by framing. The framing factor is zero.

A2.2.2 Rated R-Value of insulation. For roofs with insulation entirely above deck, the rated R-value of insulation is for continuous insulation.

Exception to A2.2.2: Interruptions for framing and pads for mechanical equipment are permitted with a combined total area not exceeding one percent of the total opaque assembly area.

A2.2.3 U-factor. *U-factors* for *roofs with insulation entirely above deck* shall be taken from Table A2.2. It is not acceptable to use these *U-factors* if the insulation is not entirely above deck or not continuous.

TABLE A2.2 Assembly U-Factors for Roofs with Insulation Entirely Above Deck

Rated R-Value of Insulation Alone	Overall U-Factor for Entire Assembly		
R-0	U-1.282		
R-1	U-0.562		
R-2	U-0.360		
R-3	U-0.265		
R-4	U-0.209		
R-5	U-0.173		
R-6	U-0.147		
R-7	U-0.129		
R-8	U-0.114		
R-9	U-0.102		
R-10	U-0.093		
R-11	U-0.085		
R-12	U-0.078		
R-13	U-0.073		
R-14	U-0.068		
R-15	U-0.063		
R-16	U-0.060		
R-17	U-0.056		
R-18	U-0.053		
R-19	U-0.051		
R-20	U-0.048		
R-21	U-0.046		
R-22	U-0.044		
R-23	U-0.042		
R-24	U-0.040		
R-25	U-0.039		
R-26	U-0.037		
R-27	U-0.036		
R-28	U-0.035		
R-29	U-0.034		
R-30	U-0.032		
R-35	U-0.028		
R-40	U-0.025		
R-45	U-0.022		
R-50	U-0.020		
R-55	U-0.018		
R-60	U-0.016		

A2.3 Metal Building Roofs.

A2.3.1 General: For the purpose of A1.2, the base assembly is a *roof* where the insulation is draped over the steel structure (purlins) and then compressed when the metal spanning members are attached to the steel structure (purlins). Additional assemblies include *continuous insulation*, uncompressed and uninterrupted by framing.

A2.3.2 Rated R-Value of insulation.

A2.3.2.1 The first *rated R-value of insulation* is for insulation draped over purlins and then compressed when the metal spanning members are attached, or for insulation hung between the purlins, provided there is a minimum 1 in. thermal break between the purlins and the metal spanning members.

A2.3.2.2 For double-layer installations, the second *rated R-value of insulation* is for insulation installed parallel to the purlins.

A2.3.2.3 For continuous insulation (e.g., insulation boards), it is assumed that the insulation boards are installed below the purlins and are uninterrupted by framing members. Insulation exposed to the *conditioned space* or *semiheated space* shall have a facing, and all insulation seams shall be continuously sealed to provide a continuous air barrier.

A2.3.3 U-factor. *U-factors* for *metal building roofs* shall be taken from Table A2.3 It is not acceptable to use these *U-factors* if additional insulated sheathing is not continuous.

TABLE A2.3 Assembly U-Factors for Metal Building Roofs

		Overall U-Factor	Overall U-Factor for Assembly of Base Roof Plus Continuous Insulation (uninterrupted by framing)						
Insulation	Rated R-Value of	Total Rated R-Value of	for Entire Base Roof		Rated	R-Value of C	ontinuous Ins	ulation	
System	Insulation	Insulation	Assembly	R-5.6	R-11.2	R-16.8	R-22.4	R-28.0	R-33.6
Standing Se	am Roofs with	Thermal Blo	cks						
Single	None	0	1.280	0.162	0.087	0.059	0.045	0.036	0.030
Layer	R-6	6	0.167	0.086	0.058	0.044	0.035	0.029	0.025
	R-10	10	0.097	0.063	0.046	0.037	0.031	0.026	0.023
	R-11	11	0.092	0.061	0.045	0.036	0.030	0.026	0.022
	R-13	13	0.083	0.057	0.043	0.035	0.029	0.025	0.022
	R-16	16	0.072	0.051	0.040	0.033	0.028	0.024	0.021
	R-19	19	0.065	0.048	0.038	0.031	0.026	0.023	0.020
Double	R-10 + R-10	20	0.063	0.047	0.037	0.031	0.026	0.023	0.020
Layer	R-10 + R-11	21	0.061	0.045	0.036	0.030	0.026	0.023	0.020
	R-11 + R-11	22	0.060	0.045	0.036	0.030	0.026	0.022	0.020
	R-10 + R-13	23	0.058	0.044	0.035	0.029	0.025	0.022	0.020
	R-11 + R-13	24	0.057	0.043	0.035	0.029	0.025	0.022	0.020
	R-13 + R-13	26	0.055	0.042	0.034	0.029	0.025	0.022	0.019
	R-10 + R-19	29	0.052	0.040	0.033	0.028	0.024	0.021	0.019
	R-11 + R-19	30	0.051	0.040	0.032	0.027	0.024	0.021	0.019
	R-13 + R-19	32	0.049	0.038	0.032	0.027	0.023	0.021	0.019
	R-16 + R-19	35	0.047	0.037	0.031	0.026	0.023	0.020	0.018
	R-19 + R-19	38	0.046	0.037	0.030	0.026	0.023	0.020	0.018
(Multiple R-	values are listed	d in order from	inside to outs	ide)					
Screw Down	n Roofs								
	R-10	10	0.153	0.082	0.056	0.043	0.035	0.029	0.025
	R-11	11	0.139	0.078	0.054	0.042	0.034	0.028	0.025
	R-13	13	0.130	0.075	0.053	0.041	0.033	0.028	0.024
Filled Cavit	y with Therma	l Blocks							
	R-19 + R-10	29	0.041	0.033	0.028	0.024	0.021	0.020	0.017
(Multiple R-	values are listed	d in order from	inside to outs	ide)					

TABLE A2.4 Assembly U-Factors for Attic Roofs with Wood Joists

Rated R-Value of Insulation Alone	Overall U-Factor for Entire Assembly				
Wood-framed attic, standard framing					
None	0.613				
R-11	0.091				
R-13	0.081				
R-19	0.053				
R-30	0.034				
R-38	0.027				
R-49	0.021				
R-60	0.017				
R-71	0.015				
R-82	0.013				
R-93	0.011				
R-104	0.010				
R-115	0.009				
R-126	0.008				
Wood-framed attic, advanced fa	raming				
None	0.613				
R-11	0.088				
R-13	0.078				
R-19	0.051				
R-30	0.032				
R-38	0.026				
R-49	0.020				
R-60	0.016				
R-71	0.014				
R-82	0.012				
R-93	0.011				
R-104	0.010				
R-115	0.009				
R-126	0.008				
Wood joists, single-rafter roof					
None	0.417				
R-11	0.088				
R-13	0.078				
R-15	0.071				
R-19	0.055				
R-21	0.052				
R-25	0.043				
R-30	0.036				
R-38	0.028				

A2.4 Attic Roofs with Wood Joists

- **A2.4.1 General.** For the purpose of A1.2, the base *attic roof* assembly is a *roof* with a nominal 4 in. deep wood as the lower chord of a roof truss or ceiling joist. The ceiling is attached directly to the lower chord of the truss and the attic space above is ventilated. Insulation is located directly on top of the ceiling, first filling the cavities between the wood and then later covering both the wood and cavity areas. No credit is given for roofing materials. The *single-rafter roof* is similar to the base *attic roof*, with the key difference being that there is a single, deep rafter to which both the *roof* and the ceiling are attached. The heat flow path through the rafter is calculated to be the same depth as the insulation. The *U-factor* includes R-0.46 for semi-exterior air film, R-0.56 for 0.625 in. gypsum board, and R-0.61 for interior air film heat flow up. *U-factors* are provided for the following configurations:
- (a) Attic roof, standard framing: insulation is tapered around the perimeter with resultant decrease in thermal resistance. Weighting factors are 85% full-depth insulation, 5% half-depth insulation, and 10% joists.
- (b) Attic roof, advanced framing: full and even depth of insulation extending to the outside edge of exterior walls. Weighting factors are 90% full-depth insulation and 10% joists.
- (c) Single-rafter roof: an attic roof where the roof sheathing and ceiling are attached to the same rafter. Weighting factors are 90% full-depth insulation and 10% joists.

A2.4.2 Rated R-Value of Insulation.

- **A2.4.2.1** For attics and other roofs, the rated R-value of insulation is for insulation installed both inside and outside the roof or entirely inside the roof cavity.
- **A2.4.2.2** Occasional interruption by framing members is allowed but requires that the framing members be covered with insulation when the depth of the insulation exceeds the depth of the framing cavity.
- **A2.4.2.3** Insulation in such roofs shall be permitted to be tapered at the eaves where the building structure does not allow full depth.
- **A2.4.2.4** For *single-rafter roofs*, the requirement is the lesser of the values for *attics and other roofs* and those listed in Table A2.4.2.
- **A2.4.3 U-factors for Attic Roofs with Wood Joists.** *U-factors* for *attic roofs* with wood joists shall be taken from Table A2.4. It is not acceptable to use these *U-factors* if the framing is not wood. For *attic roofs* with steel joists, see A2.5.

A2.5 Attic Roofs with Steel Joists.

A2.5.1 General: For the purpose of A1.2, the base assembly is a roof supported by steel joists with insulation between the joists. The assembly represents a *roof* in many ways similar to a *roof with insulation entirely above deck* and a *metal building roof*. It is distinguished from the *metal building roof* category in that there is no metal exposed to the exterior. It is distinguished from the *roof with insulation entirely above deck* in that the insulation is located below the deck and is interrupted by metal trusses that provide thermal bypasses to the insulation. The *U-factor* includes R-0.17 for exterior air film, R-0 for metal deck, and R-0.61 for interior air film heat flow up. The performance of the insulation/framing layer is calculated using the values in Table A9.2A.

TABLE A2.4.2 Single-Rafter Roofs

	Minimum Insulation R-Value or Maximum Assembly U-Factor					
	Wood Rafter Depth, d (actual)					
Climate Zone	$d \le 8$ in.	$10 < d \le 12$ in				
1-7	R-19 U-0.055	R-30 U-0.036	R-38 U-0.028			
8	R-21 U-0.052	R-30 U-0.036	R-38 U-0.028			

TABLE A2.5 Assembly U-Factors for Attic Roofs with Steel Joists (4.0 ft on center)

Rated R-Value of Insulation Area	Overall U-Factor for Entire Assembly
R-0	U-1.282
R-4	U-0.215
R-5	U-0.179
R-8	U-0.120
R-10	U-0.100
R-11	U-0.093
R-12	U-0.086
R-13	U-0.080
R-15	U-0.072
R-16	U-0.068
R-19	U-0.058
R-20	U-0.056
R-21	U-0.054
R-24	U-0.049
R-25	U-0.048
R-30	U-0.041
R-35	U-0.037
R-38	U-0.035
R-40	U-0.033
R-45	U-0.031
R-50	U-0.028
R-55	U-0.027

A2.5.2 *U-factors* for *attic roofs* with steel joists shall be taken from Table A2.5. It is acceptable to use these *U-factors* for any *attic roof* with steel joists.

A3 Above-Grade Walls

A3.1 Mass Wall

A3.1.1 General. For the purpose of A1.2, the base assembly is a masonry or concrete *wall. Continuous insulation* is installed on the interior, exterior, or within the masonry units,

or it is installed on the interior or exterior of the concrete. The *U-factor* includes R-0.17 for exterior air film and R-0.68 for interior air film, vertical surfaces. For insulated walls, the *U-factor* also includes R-0.45 for 0.5 in. gypsum board. *U-factors* are provided for the following configurations:

- (a) Concrete *wall*: 8 in. normal weight concrete wall with a density of 145 lb/ft³.
- (b) Solid grouted concrete block *wall*: 8 in. medium weight ASTM C90 concrete block with a density of 115 lb/ft³ and solid grouted cores.
- (c) Partially grouted concrete block *wall*: 8 in. medium weight ASTM C90 concrete block with a density of 115 lb/ft³ having reinforcing steel every 32 in. vertically and every 48 in. horizontally, with cores grouted in those areas only. Other cores are filled with insulating material only if there is no other insulation.

A3.1.2 Mass Wall Rated R-value of Insulation.

A3.1.2.1 Mass wall heat capacity shall be determined from Table A3.1B or A3.1C.

A3.1.2.2 The *rated R-value of insulation* is for *continuous insulation* uninterrupted by framing other than 20 gauge 1 in. metal clips spaced no closer than 24 in. on center horizontally and 16 in. on center vertically.

A3.1.2.3 Where other framing, including metal and wood studs, is used, compliance shall be based on the maximum assembly *U-factor*.

A3.1.2.4 Where *rated R-value of insulation* is used for concrete sandwich panels, the insulation shall be continuous throughout the entire panel.

A3.1.3 Mass Wall U-factor.

A3.1.3.1 *U-factors* for *mass walls* shall be taken from Table A3.1A or determined by the procedure in this subsection. It is acceptable to use the *U-factors* in Table A3.1A for all *mass walls*, provided that the grouting is equal to or less than that specified. *Heat capacity* for *mass walls* shall be taken from Table A3.1B or A3.1C.

Exception to A3.1.3.1: For mass walls, where the requirement in Tables 5.5-1 through 5.5-8 is for a maximum assembly U-0.151 followed by footnote "a," ASTM C90 concrete block walls, ungrouted or partially grouted at 32 in. or less on center vertically and 48 in. or less on center horizontally, shall have ungrouted cores filled with material having a maximum thermal conductivity of 0.44 Btu·in./ h·ft²·°F. Other mass walls with integral insulation shall meet the criteria when their *U-factors* are equal to or less than those for the appropriate thickness and density in the "Partly Grouted Cells Insulated" column of Table A3.1C.

TABLE A3.1A Assembly U-Factors for Above-Grade Concrete Walls and Masonry Walls

R-Value of ation Alone	Assembly U-Factors for 8 in. Normal Weight 145 lb/ft ³ Solid Concrete Walls	Assembly U-Factors for 8 in. Medium Weight 115 lb/ft ³ Concrete Block Walls: Solid Grouted	Assembly U-Factors for 8 in. Medium Weight 115 lb/ft ³ Concrete Block Walls: Partially Grouted (cores uninsulated except where specified)
R-0	U-0.740	U-0.580	U-0.480
outed Cores led with			
ill Insulation	N.A.	N.A.	U-0.350
	ter horizontally		
R-11.0	U-0.168	U-0.158	U-0.149
R-13.0	U-0.161	U-0.152	U-0.144
R-15.0	U-0.155	U-0.147	U-0.140
R-17.1	U-0.133	U-0.126	U-0.121
R-22.5	U-0.124	U-0.119	U-0.114
R-25.2	U-0.122	U-0.116	U-0.112
R-19.0	U-0.122	U-0.117	U-0.112
R-25.0	U-0.115	U-0.110	U-0.106
R-28.0	U-0.112	U-0.107	U-0.103
R-19.0	U-0.118	U-0.113	U-0.109
R-20.9	U-0.114	U-0.109	U-0.105
R-21.0	U-0.113	U-0.109	U-0.105
R-27.5	U-0.106	U-0.102	U-0.099
R-30.8	U-0.104	U-0.100	U-0.096
R-22.8	U-0.106	U-0.102	U-0.098
R-30.0	U-0.099	U-0.095	U-0.092
R-33.6	U-0.096	U-0.093	U-0.090
R-24.7	U-0.099	U-0.096	U-0.092
R-26.6	U-0.093	U-0.090	U-0.087
R-28.5	U-0.088	U-0.085	U-0.083
R-30.4	U-0.083	U-0.081	U-0.079
center horizon	tally and 16 in. vertically		
R-3.8	U-0.210	U-0.195	U-0.182
R-5.0	U-0.184	U-0.172	U-0.162
R-5.6	U-0.174	U-0.163	U-0.154
R-5.7	U-0.160	U-0.151	U-0.143
R-7.5	U-0.138	U-0.131	U-0.125
R-8.4	U-0.129	U-0.123	U-0.118
R-7.6	U-0.129	U-0.123	U-0.118
R-10.0	U-0.110	U-0.106	U-0.102
R-11.2	U-0.103	U-0.099	U-0.096
R-9.5	U-0.109	U-0.104	U-0.101
R-12.5		U-0.089	U-0.086
R-14.0	U-0.086	U-0.083	U-0.080
R-11.4	U-0.094	U-0.090	U-0.088
R-15.0			U-0.074
R-16.8			U-0.069
R-13.3			U-0.077
R-17.5			U-0.065
			U-0.061
R-1 R-1 R-1 R-1 R-1	2.5 4.0 1.4 5.0 6.8 3.3	2.5 U-0.092 4.0 U-0.086 1.4 U-0.094 5.0 U-0.078 6.8 U-0.073 3.3 U-0.082 7.5 U-0.069	2.5 U-0.092 U-0.089 4.0 U-0.086 U-0.083 1.4 U-0.094 U-0.090 5.0 U-0.078 U-0.076 6.8 U-0.073 U-0.071 3.3 U-0.082 U-0.080 7.5 U-0.069 U-0.067

TABLE A3.1A (continued) Assembly U-Factors for Above-Grade Concrete Walls and Masonry Walls

Framing Type and Depth	Rated R-Value of Insulation Alone	Assembly U-Factors for 8 in. Normal Weight 145 lb/ft ³ Solid Concrete Walls	Assembly U-Factors for 8 in. Medium Weight 115 lb/ft ³ Concrete Block Walls: Solid Grouted	Assembly U-Factors for 8 in. Medium Weight 115 lb/ft ³ Concrete Block Walls: Partially Grouted (cores uninsulated except where specified)
1 in. metal clips at	24 in. on center horizon	tally and 16 in. vertically		
4.0 in.	R-15.2	U-0.073	U-0.071	U-0.070
4.0 in.	R-20.0	U-0.061	U-0.060	U-0.058
4.0 in.	R-22.4	U-0.057	U-0.056	U-0.054
5.0 in.	R-28.0	U-0.046	U-0.046	U-0.045
6.0 in.	R-33.6	U-0.039	U-0.039	U-0.038
7.0 in.	R-39.2	U-0.034	U-0.034	U-0.033
8.0 in.	R-44.8	U-0.030	U-0.030	U-0.029
9.0 in.	R-50.4	U-0.027	U-0.027	U-0.026
10.0 in.	R-56.0	U-0.024	U-0.024	U-0.024
11.0 in.	R-61.6	U-0.022	U-0.022	U-0.022
Continuous insulat	ion uninterrupted by fr	aming		
No Framing	R-1.0	U-0.425	U-0.367	U-0.324
No Framing	R-2.0	U-0.298	U-0.269	U-0.245
No Framing	R-3.0	U-0.230	U-0.212	U-0.197
No Framing	R-4.0	U-0.187	U-0.175	U-0.164
No Framing	R-5.0	U-0.157	U-0.149	U-0.141
No Framing	R-6.0	U-0.136	U-0.129	U-0.124
No Framing	R-7.0	U-0.120	U-0.115	U-0.110
No Framing	R-8.0	U-0.107	U-0.103	U-0.099
No Framing	R-9.0	U-0.097	U-0.093	U-0.090
No Framing	R-10.0	U-0.088	U-0.085	U-0.083
No Framing	R-11.0	U-0.081	U-0.079	U-0.076
No Framing	R-12.0	U-0.075	U-0.073	U-0.071
No Framing	R-13.0	U-0.070	U-0.068	U-0.066
No Framing	R-14.0	U-0.065	U-0.064	U-0.062
No Framing	R-15.0	U-0.061	U-0.060	U-0.059
No Framing	R-16.0	U-0.058	U-0.056	U-0.055
No Framing	R-17.0	U-0.054	U-0.053	U-0.052
No Framing	R-18.0	U-0.052	U-0.051	U-0.050
No Framing	R-19.0	U-0.049	U-0.048	U-0.047
No Framing	R-20.0	U-0.047	U-0.046	U-0.045
No Framing	R-21.0	U-0.045	U-0.044	U-0.043
No Framing	R-22.0	U-0.043	U-0.042	U-0.042
No Framing	R-23.0	U-0.041	U-0.040	U-0.040
No Framing	R-24.0	U-0.039	U-0.039	U-0.038
No Framing	R-25.0	U-0.038	U-0.037	U-0.037
No Framing	R-30.0	U-0.032	U-0.032	U-0.031
No Framing	R-35.0	U-0.028	U-0.027	U-0.027
No Framing	R-40.0	U-0.024	U-0.024	U-0.024
No Framing	R-45.0	U-0.022	U-0.021	U-0.021
No Framing	R-50.0	U-0.019	U-0.019	U-0.019
No Framing	R-55.0	U-0.018	U-0.018	U-0.018
No Framing	R-60.0	U-0.016	U-0.016	U-0.016

TABLE A3.1B Assembly U-Factors, C-Factors, R_{u} , R_{c} , and Heat Capacity for Concrete

Density						Thicknes	ss in inches				
in lb/ft ³	Properties	3	4	5	6	7	8	9	10	11	12
20	U-factor	0.22	0.17	0.14	0.12	0.10	0.09	0.08	0.07	0.07	0.06
	C-factor	0.27	0.20	0.16	0.13	0.11	0.10	0.09	0.08	0.07	0.07
	R_u	4.60	5.85	7.10	8.35	9.60	10.85	12.10	13.35	14.60	15.85
	R_c	3.75	5.00	6.25	7.50	8.75	10.00	11.25	12.50	13.75	15.00
	HC	1.0	1.3	1.7	2.0	2.3	2.7	3.0	3.3	3.7	4.0
30	U-factor	0.28	0.22	0.19	0.16	0.14	0.12	0.11	0.10	0.09	0.09
	C-factor	0.37	0.28	0.22	0.18	0.16	0.14	0.12	0.11	0.10	0.09
	R_u R_c	3.58 2.73	4.49 3.64	5.40 4.55	6.30 5.45	7.21 6.36	8.12 7.27	9.03 8.18	9.94 9.09	10.85 10.00	11.76 10.91
	HC	1.5	2.0	2.5	3.43	3.5	4.0	4.5	5.0	5.5	6.0
40	U-factor	0.33	0.27	0.23	0.19	0.17	0.15	0.14	0.13	0.11	0.11
	C-factor	0.47	0.35	0.28	0.23	0.20	0.18	0.16	0.14	0.13	0.12
	R_u	2.99	3.71	4.42	5.14	5.85	6.56	7.28	7.99	8.71	9.42
	R_c	2.14	2.86	3.57	4.29	5.00	5.71	6.43	7.14	7.86	8.57
	НС	2.0	2.7	3.3	4.0	4.7	5.3	6.0	6.7	7.3	8.0
50	U-factor	0.38	0.31	0.26	0.23	0.20	0.18	0.16	0.15	0.14	0.13
	C-factor	0.57	0.43	0.34	0.28	0.24	0.21	0.19	0.17	0.15	0.14
	R_u	2.61	3.20	3.79	4.38	4.97	5.56	6.14	6.73	7.32	7.91
	R_c	1.76	2.35	2.94	3.53	4.12	4.71	5.29	5.88	6.47	7.06
	НС	2.5	3.3	4.2	5.0	5.8	6.7	7.5	8.3	9.2	10.0
85	U-factor	0.65	0.56	0.50	0.44	0.40	0.37	0.34	0.31	0.29	0.27
	C-factor	1.43	1.08	0.86	0.71	0.61	0.54	0.48	0.43	0.39	0.36
	R_u	1.55	1.78	2.01	2.25	2.48	2.71	2.94	3.18	3.41	3.64
	R_c	0.70	0.93	1.16	1.40	1.63	1.86	2.09	2.33	2.56	2.79
05	HC	4.3	5.7	7.1	8.5	9.9	11.3	12.8	14.2	15.6	17.0
95	U-factor C-factor	0.72 1.85	0.64 1.41	0.57 1.12	0.52 0.93	0.48 0.80	0.44 0.70	0.41 0.62	0.38 0.56	0.36 0.51	0.33 0.47
	R_u	1.39	1.56	1.74	1.92	2.10	2.28	2.46	2.64	2.81	2.99
	R_c	0.54	0.71	0.89	1.07	1.25	1.43	1.61	1.79	1.96	2.14
	HC	4.8	6.3	7.9	9.5	11.1	12.7	14.3	15.8	17.4	19.0
105	U-factor	0.79	0.71	0.65	0.59	0.54	0.51	0.47	0.44	0.42	0.39
	C-factor	2.38	1.79	1.43	1.18	1.01	0.88	0.79	0.71	0.65	0.59
	R_u	1.27	1.41	1.56	1.70	1.84	1.98	2.12	2.26	2.40	2.54
	R_c	0.42	0.56	0.70	0.85	0.99	1.13	1.27	1.41	1.55	1.69
	НС	5.3	7.0	8.8	10.5	12.3	14.0	15.8	17.5	19.3	21.0
115	U-factor	0.84	0.77	0.70	0.65	0.61	0.57	0.53	0.50	0.48	0.45
	C-factor	2.94	2.22	1.75	1.47	1.25	1.10	0.98	0.88	0.80	0.74
	R_u	1.19	1.30	1.42	1.53	1.65	1.76	1.87	1.99	2.10	2.21
	R_c	0.34	0.45	0.57	0.68	0.80	0.91	1.02	1.14	1.25	1.36
	HC	5.8	7.7	9.6	11.5	13.4	15.3	17.3	19.2	21.1	23.0
125	U-factor	0.88	0.82	0.76	0.71	0.67	0.63	0.60	0.56	0.53	0.51
	C-factor	3.57	2.70	2.17	1.79	1.54	1.35	1.20	1.03	0.98	0.90
	R_u	1.13	1.22	1.31	1.41	1.50	1.59	1.68	1.78	1.87	1.96
	R_c HC	0.28 6.3	0.37 8.3	0.46 10.4	0.56 12.5	0.65 14.6	0.74 16.7	0.83 18.8	0.93 20.8	1.02 22.9	1.11 25.0
	пс	0.5	0.3	10.4	12.3	14.0	10./	10.8	20.8	22.9	23.U

TABLE A3.1B (continued) Assembly U-Factors, C-Factors, R_{ur} R_{cr} and Heat Capacity for Concrete

Density						Thicknes	ss in inches				
in lb/ft ³	Properties	3	4	5	6	7	8	9	10	11	12
135	U-factor	0.93	0.87	0.82	0.77	0.73	0.69	0.66	0.63	0.60	0.57
	C-factor	4.55	3.33	2.70	2.22	1.92	1.67	1.49	1.33	1.22	1.11
	R_u	1.07	1.15	1.22	1.30	1.37	1.45	1.52	1.60	1.67	1.75
	R_c	0.22	0.30	0.37	0.45	0.52	0.60	0.67	0.75	0.82	0.90
	HC	6.8	9.0	11.3	13.5	15.8	18.0	20.3	22.5	24.8	27.0
144	U-factor	0.96	0.91	0.86	0.81	0.78	0.74	0.71	0.68	0.65	0.63
	C-factor	5.26	4.00	3.23	2.63	2.27	2.00	1.79	1.59	1.45	1.33
	R_u	1.04	1.10	1.16	1.23	1.29	1.35	1.41	1.48	1.54	1.60
	R_c	0.19	0.25	0.31	0.38	0.44	0.50	0.56	0.63	0.69	0.75
	HC	7.2	9.6	12.0	14.4	16.8	19.2	21.6	24.0	26.4	28.8

The U-factors and R_u include standard air film resistances. The C-factors and R_c are for the same assembly without air film resistances. Note that the following assemblies do not qualify as a mass wall or mass floor: 3 in. thick concrete with densities of 85, 95, 125, and 135 lb/ft³.

TABLE A3.1C Assembly U-Factors, C-Factors, $R_{\it u}$, $R_{\it c}$, and Heat Capacity for Concrete Block Walls

				Concret	e Block Grouting and C	Cell Treatment	
Product Size: in.	Density: lb/ft ³	Properties	Solid Grouted	Partly Grouted, Cells Empty	Partly Grouted, Cells Insulated	Unreinforced, Cells Empty	Unreinforced, Cells Insulated
6 in. block	85	U-factor	0.57	0.46	0.34	0.40	0.20
		C-factor	1.11	0.75	0.47	0.60	0.23
		R_u	1.75	2.18	2.97	2.52	5.13
		R_c	0.90	1.33	2.12	1.67	4.28
-	95	HC	10.9	6.7	7.0 0.36	4.2	4.6
	95	U-factor C-factor	0.61 1.25	0.49 0.83	0.53	0.42 0.65	0.22 0.27
		R_u	1.65	2.06	2.75	2.38	4.61
		R_c	0.80	1.21	1.90	1.53	3.76
		HC	11.4	7.2	7.5	4.7	5.1
	105	U-factor	0.64	0.51	0.39	0.44	0.24
		C-factor	1.38	0.91	0.58	0.71	0.30
		R_u	1.57	1.95	2.56	2.26	4.17
		R_c	0.72	1.10	1.71	1.41	3.32
		HC	11.9	7.7	7.9	5.1	5.6
	115	U-factor	0.66	0.54	0.41	0.46	0.26
		C-factor	1.52	0.98	0.64	0.76	0.34
		R_u	1.51	1.87	2.41	2.16	3.79
		R_c	0.66	1.02	1.56	1.31	2.94
		HC	12.3	8.1	8.4	5.6	6.0
	125	U-factor	0.70	0.56	0.45	0.49	0.30
		C-factor	1.70	1.08	0.73	0.84	0.40
		R_u	1.44	1.78	2.23	2.04	3.38
		R_c	0.59	0.93	1.38	1.19	2.53
	105	HC	12.8	8.6	8.8	6.0	6.5
	135	U-factor	0.73	0.60	0.49	0.53	0.35
		C-factor	1.94	1.23	0.85	0.95	0.49
		R_u	1.36	1.67 0.82	2.02 1.17	1.90 1.05	2.89 2.04
		R_c HC	0.51 13.2	9.0	9.3	6.5	6.9
8 in. block	85	U-factor	0.49	0.41	0.28	0.37	0.15
o III. block	65	C-factor	0.45	0.63	0.23	0.53	0.17
		R_u	2.03	2.43	3.55	2.72	6.62
		R_c	1.18	1.58	2.70	1.87	5.77
		НС	15.0	9.0	9.4	5.4	6.0
	95	U-factor	0.53	0.44	0.31	0.39	0.17
		C-factor	0.95	0.70	0.41	0.58	0.20
		R_u	1.90	2.29	3.27	2.57	5.92
		R_c	1.05	1.44	2.42	1.72	5.07
		HC	15.5	9.6	10.0	6.0	6.6
	105	U-factor	0.55	0.46	0.33	0.41	0.19
		C-factor	1.05	0.76	0.46	0.63	0.22
		R_u	1.81	2.17	3.04	2.44	5.32
		R_c	0.96	1.32	2.19	1.59	4.47
		HC	16.1	10.2	10.6	6.6	7.2
	115	U-factor	0.58	0.48	0.35	0.43	0.21
		C-factor	1.14	0.82 2.07	0.50 2.84	0.68	0.25
		R_u	1.72	1.22		2.33	4.78
		R_c HC	0.87 16.7	10.8	1.99 11.2	1.48 7.2	3.93 7.8
-	125	U-factor	0.61	0.51	0.38	0.45	0.24
	123	C-factor	1.27	0.90	0.57	0.74	0.30
		R_u	1.64	1.96	2.62	2.20	4.20
		R_c	0.79	1.11	1.77	1.35	3.35
		HC	17.3	11.4	11.8	7.8	8.4
ŀ	135	U-factor	0.65	0.55	0.42	0.49	0.28
		C-factor	1.44	1.02	0.67	0.83	0.37
		R_u	1.54	1.83	2.35	2.05	3.55
		$R_c^{"}$	0.69	0.98	1.50	1.20	2.70
		НС	17.9	12.0	12.4	8.4	9.0

TABLE A3.1C (continued) Assembly U-Factors, C-Factors, R_u , R_c , and Heat Capacity for Concrete Block Walls

				Concret	e Block Grouting and C	Cell Treatment	
Product Size: in.	Density: lb/ft ³	Properties	Solid Grouted	Partly Grouted, Cells Empty	Partly Grouted, Cells Insulated	Unreinforced, Cells Empty	Unreinforced, Cells Insulated
10 in. block	85	U-factor	0.44	0.38	0.25	0.35	0.13
		C-factor	0.70	0.57	0.31	0.50	0.14
		R_u	2.29	2.61	4.05	2.84	7.87
		R_c	1.44	1.76	3.20	1.99	7.02
-	95	HC	19.0	11.2	11.7	6.5 0.37	7.3 0.14
	95	U-factor C-factor	0.47 0.77	0.41 0.62	0.27 0.35	0.55	0.14
		R_u	2.15	2.46	3.73	2.67	6.94
		R_c	1.30	1.61	2.88	1.82	6.09
		HC	19.7	11.9	12.4	7.3	8.1
	105	U-factor	0.49	0.43	0.29	0.39	0.16
		C-factor	0.85	0.68	0.39	0.59	0.19
		R_u	2.03	2.33	3.45	2.54	6.17
		R_c	1.18	1.48	2.60	1.69	5.32
		HC	20.4	12.6	13.1	8.0	8.8
	115	U-factor	0.52	0.45	0.31	0.41	0.18
		C-factor	0.92	0.73	0.42	0.64	0.21
		R_u	1.94	2.22	3.21	2.42	5.52
		R_c	1.09	1.37	2.36	1.57	4.67
		HC	21.1	13.4	13.9	8.7	9.5
	125	U-factor	0.54	0.48	0.34	0.44	0.21
		C-factor	1.01	0.80	0.48	0.70	0.25
		R_u	1.84	2.10	2.95	2.28	4.81
		R_c	0.99	1.25	2.10	1.43	3.96
		HC	21.8	14.1	14.6	9.4	10.2
	135	U-factor	0.58	0.51	0.38	0.47	0.25
		C-factor	1.14	0.90	0.56	0.79	0.32
		R_u	1.72	1.96	2.64	2.12	4.00
		R_c HC	0.87 22.6	1.11 14.8	1.79 15.3	1.27 10.2	3.15 11.0
12 in. block	85	U-factor	0.40	0.36	0.22	0.34	0.11
12 III. DIOCK	83	C-factor	0.59	0.52	0.27	0.48	0.11
		R_u	2.53	2.77	4.59	2.93	9.43
		R_c	1.68	1.92	3.74	2.08	8.58
		HC	23.1	13.3	14.0	7.5	8.5
	95	U-factor	0.42	0.38	0.24	0.36	0.12
		C-factor	0.66	0.57	0.30	0.52	0.13
		R_u	2.30	2.60	4.22	2.76	8.33
		R_c	1.53	1.75	3.37	1.91	7.48
		HC	23.9	14.2	14.8	8.3	9.3
	105	U-factor	0.44	0.41	0.26	0.38	0.14
		C-factor	0.71	0.62	0.33	0.57	0.15
		R_u	2.25	2.47	3.90	2.62	7.35
		R_c	1.40	1.62	3.05	1.77	6.50
		НС	24.7	15.0	15.6	9.1	10.2
	115	U-factor	0.47	0.42	0.28	0.40	0.15
		C-factor	0.77	0.66	0.36	0.61	0.18
		R_u	2.15	2.36	3.63	2.49	6.54
		R_c	1.30	1.51	2.78	1.64	5.69
<u> </u>	125	HC U-factor	25.6 0.49	15.8 0.45	16.4 0.30	10.0 0.42	0.18
	143	C-factor	0.49	0.43	0.40	0.66	0.18
		R_u	2.04	2.23	3.34	2.36	5.68
		R_c	1.19	1.38	2.49	1.51	4.83
		$^{\mathrm{Hc}}$	26.4	16.6	17.3	10.8	11.8
ŀ	135	U-factor	0.52	0.48	0.34	0.46	0.21
	100	C-factor	0.94	0.81	0.47	0.74	0.26
		R_u	1.91	2.08	2.98	2.19	4.67
		R_c	1.06	1.23	2.13	1.34	3.82

TABLE A3.1D Effective R-Values for Insulation/Framing Layers Added to Above-Grade Mass Walls and Below-Grade Walls

11 12 13 14 15 16	cous insulation uni 9.5 10.5 1 on is installed in c na na na na			w		•		_		-	Framing
	ous insulation uni 9.5 10.5 on is installed in c na na na na na na	inuc 	7	$\ $	9	9	4 5 6	5 6	3 4 5 6	2 3 4 5 6	0 1 2 3 4 5 6
tinuous insulation uninterrupted by framing (includes gypsum board)	on is installed in con a na	×	ifcor	R-value if cor	ffective R-value if cor	Effective R-value if cor	Effective R-value if cor	Effective R-value if cor	Effective R-value if cor	Effective R-value if cor	Effective R-value if cor
11.5 12.5 13.5 14.5 15.5 16.5	on is installed in c na na na na na na	5.5		6.5 7.5	7.5	6.5 7.5	5.5 6.5 7.5	4.5 5.5 6.5 7.5	3.5 4.5 5.5 6.5 7.5	2.5 3.5 4.5 5.5 6.5 7.5	1.5 2.5 3.5 4.5 5.5 6.5 7.5
ılation is installed in cavity between framing (includes gypsum board)		latic	2	2	2	Effective R-value if insu	2	2	2	2	2
na na na na na		na	na	na na		na	na na	2.7 na na	2.4 2.7 na na	1.9 2.4 2.7 na na	1.3 1.9 2.4 2.7 na na
na na na na na		na	na	na na		na	na na	1.2 na na	1.1 1.2 na na	1.1 1.1 1.2 na na	0.9 1.1 1.1 1.2 na na
na na na na na		na	na	3.8 na		3.8	3.5 3.8	3.1 3.5 3.8	2.7 3.1 3.5 3.8	2.1 2.7 3.1 3.5 3.8	1.4 2.1 2.7 3.1 3.5 3.8
na na na na na	na na	na	na	1.6 na		1.6	1.5 1.6	1.5 1.5 1.6	1.4 1.5 1.5 1.6	1.3 1.4 1.5 1.5 1.6	1.0 1.3 1.4 1.5 1.5 1.6
na na na na na	na na	4.9	4.6	4.3 4.6		4.3	3.9 4.3	3.4 3.9 4.3	2.9 3.4 3.9 4.3	2.2 2.9 3.4 3.9 4.3	1.5 2.2 2.9 3.4 3.9 4.3
na na na na na	na na	1.9	1.9	1.8 1.9		1.8	1.8 1.8	1.7 1.8 1.8	1.6 1.7 1.8 1.8	1.4 1.6 1.7 1.8 1.8	1.1 1.4 1.6 1.7 1.8 1.8
6.8 7.1 na na na na	6.2 6.5	5.8	4.2	4.9 5.4		4.9	4.4 4.9	3.8 4.4 4.9	3.1 3.8 4.4 4.9	2.4 3.1 3.8 4.4 4.9	1.5 2.4 3.1 3.8 4.4 4.9
2.6 2.7 na na na na	2.5 2.6	2.5	2.4	2.3 2.4		2.3	2.2 2.3	2.1 2.2 2.3	1.9 2.1 2.2 2.3	1.6 1.9 2.1 2.2 2.3	1.2 1.6 1.9 2.1 2.2 2.3
7.7 8.1 8.4 8.7 9.0 9.3	6.9 7.3	6.4	5.9	5.3 5.9		5.3	4.7 5.3	4.0 4.7 5.3	3.3 4.0 4.7 5.3	2.5 3.3 4.0 4.7 5.3	1.5 2.5 3.3 4.0 4.7 5.3
3.2 3.2 3.3 3.3 3.4 3.4	3.0 3.1	2.9	5.8	2.7 2.8		2.7	2.5 2.7	2.3 2.5 2.7	2.1 2.3 2.5 2.7	1.7 2.1 2.3 2.5 2.7	1.2 1.7 2.1 2.3 2.5 2.7
8.4 8.8 9.2 9.6 10.0 10.3	7.4 7.9	8.9	5.3	5.6 6.3		5.6	4.9 5.6	4.2 4.9 5.6	3.4 4.2 4.9 5.6	2.5 3.4 4.2 4.9 5.6	1.5 2.5 3.4 4.2 4.9 5.6
3.6 3.7 3.8 3.9 3.9 4.0	3.5 3.6	3.3	3.2	3.0 3.2		3.0	2.8 3.0	2.6 2.8 3.0	2.3 2.6 2.8 3.0	1.8 2.3 2.6 2.8 3.0	1.3 1.8 2.3 2.6 2.8 3.0
8.9 9.4 9.9 10.3 10.7 11.1	7.8 8.3	7.2	5.5	5.8 6.5		5.8	5.1 5.8	4.3 5.1 5.8	3.5 4.3 5.1 5.8	2.5 3.5 4.3 5.1 5.8	1.5 2.5 3.5 4.3 5.1 5.8
4.1 4.2 4.3 4.4 4.4 4.5	3.8 4.0	3.7	3.5	3.3 3.5		3.3	3.1 3.3	2.8 3.1 3.3	2.4 2.8 3.1 3.3	1.9 2.4 2.8 3.1 3.3	1.3 1.9 2.4 2.8 3.1 3.3
9.3 9.8 10.4 10.9 11.3 11.8	8.1 8.7	7.4	5.7	6.0 6.7		0.9	5.2 6.0	4.4 5.2 6.0	3.5 4.4 5.2 6.0	2.6 3.5 4.4 5.2 6.0	1.5 2.6 3.5 4.4 5.2 6.0
4.5 4.6 4.7 4.8 4.9 5.0	4.2 4.3	4.0	3.8	3.5 3.8		3.5	3.2 3.5	2.9 3.2 3.5	2.5 2.9 3.2 3.5	2.0 2.5 2.9 3.2 3.5	1.3 2.0 2.5 2.9 3.2 3.5
9.6 10.2 10.8 11.3 11.9 12.4	8.3 9.0	9.7	5.9	6.1 6.9		6.1	5.3 6.1	4.5 5.3 6.1	3.6 4.5 5.3 6.1	2.6 3.6 4.5 5.3 6.1	1.6 2.6 3.6 4.5 5.3 6.1
4.8 5.0 5.1 5.2 5.3 5.4	4.5 4.6	4.2	4	3.7 4.0		3.7	3.4 3.7	3.0 3.4 3.7	2.6 3.0 3.4 3.7	2.0 2.6 3.0 3.4 3.7	1.3 2.0 2.6 3.0 3.4 3.7
9.9 10.5 11.2 11.7 12.3 12.8	8.5 9.2	7.8	7.1	6.2 7.1		6.2	5.4 6.2	4.5 5.4 6.2	3.6 4.5 5.4 6.2	2.6 3.6 4.5 5.4 6.2	1.6 2.6 3.6 4.5 5.4 6.2
5.1 5.3 5.4 5.6 5.7 5.8	4.7 4.9	4.5	4.2	3.9 4.2		3.9	3.5 3.9	3.1 3.5 3.9	2.6 3.1 3.5 3.9	2.1 2.6 3.1 3.5 3.9	1.3 2.1 2.6 3.1 3.5 3.9
10.1 10.8 11.5 12.1 12.7 13.2	8.7 9.4	8.0	7.2	6.3 7.2		6.3	5.5 6.3	4.6 5.5 6.3	3.6 4.6 5.5 6.3	2.6 3.6 4.6 5.5 6.3	1.6 2.6 3.6 4.6 5.5 6.3
5.4 5.6 5.8 5.9 6.1 6.2	5.0 5.2	4 4.7	₹.	4.1 4.4		4.1	3.7 4.1	3.2 3.7 4.1	2.7 3.2 3.7 4.1	2.1 2.7 3.2 3.7 4.1	1.4 2.1 2.7 3.2 3.7 4.1
10.3 11.0 11.7 12.4 13.0 13.6	8.9 9.6 1	3 8.1	<u>'</u>	6.4 7.3		6.4	5.5 6.4	4.6 5.5 6.4	3.6 4.6 5.5 6.4	2.6 3.6 4.6 5.5 6.4	1.6 2.6 3.6 4.6 5.5 6.4
5.7 5.9 6.1 6.3 6.4 6.6	5.2 5.4	4.9	4.6	4.2 4.6		4.2	3.8 4.2	3.3 3.8 4.2	2.8 3.3 3.8 4.2	2.1 2.8 3.3 3.8 4.2	1.4 2.1 2.8 3.3 3.8 4.2

- **A3.1.3.2 Determination of Mass Wall U-Factors.** If not taken from Table A3.1A, *mass wall U-factors* shall be determined from Tables A3.1B, A3.1C, and A3.1D using the following procedure.
- If the mass wall is uninsulated or only the cells are insulated:
 - (a) For concrete *walls*, determine the *U-factor* from Table A3.1B based on the concrete density and *wall* thickness
 - (b) For concrete block walls, determine the U-factor from Table A3.1C based on the block size, concrete density, degree of grouting in the cells, and whether the cells are insulated.
- 2. If the *mass wall* has additional insulation:
 - (a) For concrete *walls*, determine the R_u from Table A3.1B based on the concrete density and *wall* thickness. Next, determine the effective R-value for the insulation/ framing layer from Table A3.1D based on the *rated R-value of insulation* installed, the thickness of the insulation, and whether it is installed between wood or metal framing or with no framing. Then, determine the *U-factor* by adding the R_u and the effective R-value together and taking the inverse of the total.
 - (b) For concrete block walls, determine the R_u from Table A3.1C based on the block size, concrete density, degree of grouting in the cells, and whether the cells are insulated. Next, determine the effective R-value for the insulation/framing layer from Table A3.1D based on the rated R-value of insulation installed, the thickness of the insulation, and whether it is installed between

wood or metal framing or with no framing. Then, determine the U-factor by adding the R_u and the effective R-value together and taking the inverse of the total.

A3.2 Metal Building Walls.

A3.2.1 General. For the purpose of A1.2, the base assembly is a *wall* where the insulation is compressed between metal wall panels and the metal structure. Additional assemblies include *continuous insulation*, uncompressed and uninterrupted by framing.

A3.2.2 Rated R-value of Insulation for Metal Building Walls.

- **A3.2.2.1** The first *rated R-Value of insulation* is for insulation compressed between metal wall panels and the steel structure.
- **A3.2.2.2** For double-layer installations, the second *rated R-value of insulation* is for insulation installed from the inside, covering the girts.
- A3.2.2.3 For continuous insulation (e.g., insulation boards) it is assumed that the insulation boards are installed on the inside of the girts and uninterrupted by the framing members.
- **A3.2.2.4** Insulation exposed to the *conditioned space* or *semiheated space* shall have a facing, and all insulation seams shall be continuously sealed to provide a continuous air barrier.
- **A3.2.3** *U-Factors* for *Metal Building Walls*. U-factors for metal building walls shall be taken from Table A3.2. It is not acceptable to use these *U-factors* if additional insulation is not continuous.

TABLE A3.2 Assembly U-Factors for Metal Building Walls

			Overall U-Factor	Overall U	J -Factor for A	Assembly of B (uninterrupte			Insulation
Insulation	Rated R-Value of	Total Rated R-Value of	for Entire Base Wall		Rated	R-Value of C	ontinuous Ins	sulation	
System	Insulation	Insulation	Assembly	R-5.6	R-11.2	R-16.8	R-22.4	R-28.0	R-33.6
Single Layer	of Mineral F	iber							
	None	0	1.180	0.161	0.086	0.059	0.045	0.036	0.030
	R-6	6	0.184	0.091	0.060	0.045	0.036	0.030	0.026
	R-10	10	0.134	0.077	0.054	0.051	0.033	0.028	0.024
	R-11	11	0.123	0.073	0.052	0.040	0.033	0.028	0.024
	R-13	13	0.113	0.069	0.050	0.039	0.032	0.027	0.024
Double Layer	r of Mineral l	Fiber							
(Second layer	inside of girts	s)							
(Multiple laye	ers are listed in	order from in	side to outside	side)					
	R-6 + R-13	19	0.070	N/A	N/A	N/A	N/A	N/A	N/A
	R-10 + R-13	23	0.061	N/A	N/A	N/A	N/A	N/A	N/A
	R-13 + R-13	26	0.057	N/A	N/A	N/A	N/A	N/A	N/A
	R-19 + R-13	32	0.048	N/A	N/A	N/A	N/A	N/A	N/A

A3.3 Steel-Framed Walls.

- A3.3.1 General. For the purpose of A1.2, the base assembly is a *wall* where the insulation is installed within the cavity of the steel stud framing but where there is not a metal exterior surface spanning member. The steel stud framing is a minimum uncoated thickness of 0.043 in. for 18 gauge or 0.054 in. for 16 gauge. The *U-factor* includes R-0.17 for exterior air film, R-0.08 for stucco, R-0.56 for 0.625 in.16 mm gypsum board on the exterior, R-0.56 for 0.625 in.16 mm gypsum board on the interior, and R-0.68 for interior vertical surfaces air film. The performance of the insulation/framing layer is calculated using the values in Table A-21. Additional assemblies include *continuous insulation*, uncompressed and uninterrupted by framing. *U-factors* are provided for the following configurations:
- (a) *Standard framing*: steel stud framing at 16 in. on center with cavities filled with 16 in. wide insulation for both 3.5 in. deep and 6.0 in. deep wall cavities.
- (b) *Advanced framing*: steel stud framing at 24 in. on center with cavities filled with 24 in. wide insulation for both 3.5 in. deep and 6.0 in. deep wall cavities.

A3.3.2 Rated R-Value of Insulation for Steel-Framed Walls.

- **A3.3.2.1** The first *rated R-value of insulation* is for uncompressed insulation installed in the cavity between steel studs. It is acceptable for this insulation to also be *continuous insulation* uninterrupted by framing.
- **A3.3.2.2** If there are two values, the second *rated R-value* of insulation is for continuous insulation uninterrupted by framing, etc., to be installed in addition to the first insulation.
- **A3.3.2.3** Opaque mullions in spandrel glass shall be covered with insulation complying with the steel-framed wall requirements.

A3.3.3 U-Factors for Steel-Framed Walls.

- **A3.3.3.1** U-factors for steel-framed walls shall be taken from Table A3.3.
- **A3.3.3.2** For *steel-framed walls* with framing at less than 24 in. on center, use the standard framing values as described in A3.3.1(a).
- **A3.3.3.3** For *steel-framed walls* with framing from 24 in. to 32 in. on center, use the advanced framing values as described in A3.3.1(b).
- **A3.3.3.4** For *steel-framed walls* with framing greater than 32 in. on center, use the *metal building wall* values in Table A3.2.

A3.4 Wood-Framed Walls.

A3.4.1 General. For the purpose of A1.2, the base assembly is a *wall* where the insulation is installed between 2 in. nominal wood framing. Cavity insulation is full depth, but values are taken from Table A9.4C for R-19 insulation, which is compressed when installed in a 5.5 in. cavity. Headers are double 2 in. nominal wood framing. The *U-factor* includes R-0.17 for exterior air film, R-0.08 for stucco, R-0.56 for 0.625 in. gypsum board on the exterior, R-0.56 for 0.625 in. gypsum board on the interior, and R-0.68 for interior air film, vertical surfaces. Additional assemblies include *continuous insula-*

tion, uncompressed and uninterrupted by framing. *U-factors* are provided for the following configurations:

- (a) *Standard framing*: wood framing at 16 in. on center with cavities filled with 14.5 in. wide insulation for both 3.5 in. deep and 5.5 in. deep wall cavities. Double headers leave no cavity. Weighting factors are 75% insulated cavity, 21% studs, plates, and sills, and 4% headers.
- (b) Advanced framing: wood framing at 24 in. on center with cavities filled with 22.5 in. wide insulation for both 3.5 in. deep and 5.5 in. deep wall cavities. Double headers leave uninsulated cavities. Weighting factors are 78% insulated cavity, 18% studs, plates, and sills, and 4% headers.
- (c) Advanced framing with insulated headers: wood framing at 24 in. on center with cavities filled with 22.5 in. wide insulation for both 3.5 in. deep and 5.5 in. deep wall cavities. Double header cavities are insulated. Weighting factors are 78% insulated cavity, 18% studs, plates, and sills, and 4% headers.

A3.4.2 Rated R-value of Insulation for Wood-Framed and Other Walls.

- **A3.4.2.1** The first *rated R-value of insulation* is for uncompressed insulation installed in the cavity between wood studs. It is acceptable for this insulation to also be *continuous insulation* uninterrupted by framing.
- **A3.4.2.2** If there are two values, the second *rated R-value* of insulation is for continuous insulation uninterrupted by framing, etc., to be installed in addition to the first insulation.

A3.4.3 U-Factors for Wood-Framed Walls.

- **A3.4.3.1** U-factors for wood-framed walls shall be taken from Table A3.4.
- **A3.4.3.2** For *wood-framed walls* with framing at less than 24 in. on center, use the standard framing values as described in A3.4.1(a).
- **A3.4.3.3** For *wood-framed walls* with framing from 24 in. to 32 in. on center, use the advanced framing values as described in A3.4.1(b) if the headers are uninsulated or the advanced framing with insulated header values as described in A3.4.1(c) if the headers are insulated.
- **A3.4.3.4** For *wood-framed walls* with framing greater than 32 in. on center, U-factors shall be determined in accordance with A9.

A4 Below-Grade Walls.

A4.1 General. For the purpose of A1.2, The base assembly is 8 in. medium-weight concrete block with a density of 115 lb/ft³ and solid grouted cores. *Continuous insulation* is installed on the interior or exterior. In contrast to the *U-factor* for *above-grade walls*, the *C-factor* for *below-grade walls* does not include R-values for exterior or interior air films or for soil. For insulated walls, the *C-factor* does include R-0.45 for 0.5 in. gypsum board.

A4.2 C-Factors for Below-Grade Walls.

A4.2.1 C-factors for below-grade walls shall be taken from Table A4.2 or determined by the procedure described in this subsection.

TABLE A3.3 Assembly U-Factors for Steel-Frame Walls

Framing Type and		Overall	Overall U-Factor for Assembly of Rated R-Value of Continuous Insu	Factor for	or Assen	ably of E	Base Wal	l Plus C	ontinuo	us Insul	ation (m	interru]	Base Wall Plus Continuous Insulation (uninterrupted by framing) lation	raming)							
Spacing Width (actual depth)	Spacing Cavity Insulation U-Factor Width R-Value: Rated/ (actual certive installed Base Wall) [R-L00] [R-	U-Factor for Entire Base Wall Assembly	R-1.00 R-2	.00 R-3.	00 R-4.(10 R-5.00	0 R-6.00	R-7.00	R-8.00	R-9.00 E	γ-10.00 F	t-11.00 K	t-12.00 R	-13.00 R	-14.00 R	-15.00 R	1-20.00 E	8-25.00	R-30.00	R-35.00	R-40.00
Steel Fram	Steel Framing at 16 in. OC																				
(3.5 in.	None (0.0)	0.352	0.260 0.207 0.171 0.146 0.128	07 0.1	71 0.14	6 0.128	8 0.113	0.102	0.092	0.102 0.092 0.084 0.078	0.078	0.072	0.072 0.067 0.063 0.059 0.056 0.044	0.063	0.059).056		0.036 0.030		0.026	0.023
depth)	R-11 (5.5)	0.132	0.117 0.105 0.095 0.087 0.080	0.0 50	95 0.08	7 0.080	0.074	0.069	0.064 0.060	0.060	0.057	0.054 0.051		0.049	0.046	0.044	0.036	0.031	0.027	0.024	0.021
	R-13 (6.0)	0.124	0.111 0.100 0.091 0.083 0.077	0.0 00	91 0.08	3 0.077	7 0.071	0.066	0.062	0.059	0.055	0.052	0.050	0.048	0.045	0.043 (0.036	0.030	0.026	0.023	0.021
	R-15 (6.4)	0.118	0.106 0.096 0.087 0.080 0.074	96 0.0	37 0.08	7.00 0.07	4 0.069	0.065	0.061 0.057		0.054	0.051	0.049	0.047	0.045	0.043 (0.035	0.030	0.026	0.023	0.021
(6.0 in.	R-19 (7.1)	0.109	0.109 0.099 0.090 0.082 0.076 0.071	90 0.0	32 0.07	6 0.07		0.062	0.058	0.055	0.052	0.050	$0.066\ 0.062\ 0.058\ 0.055\ 0.052\ 0.052\ 0.047\ 0.045\ 0.043\ 0.041\ 0.034\ 0.029\ 0.026\ 0.023$	0.045	0.043	0.041	0.034	0.029	0.026	0.023	0.020
depth)	R-21 (7.4)	0.106	0.096 0.087 0.080 0.074 0.069	87 0.0	30 0.07	4 0.069	9 0.065	0.061	0.057 0.054	0.054	0.051	0.049	0.047	0.045 (0.043	0.041	0.034	0.029	0.025	0.022	0.020
Steel Fram	Steel Framing at 24 in. OC																				
(3.5 in.	None (0.0)	0.338	0.253 0.202 0.168 0.144 0.126	02 0.10	58 0.14	4 0.126	5 0.112		0.100 0.091 0.084	0.084	0.077	0.072	0.067	0.063	0.059	0.056	0.044	0.036	0.030	0.026	0.023
depth)	R-11 (6.6)	0.116	0.104 0.094 0.086 0.079 0.073	94 0.0	36 0.07	9 0.07	3 0.068		0.064 0.060 0.057		0.054	0.051	0.048	0.046	0.044	0.042	0.035	0.030	0.026	0.023	0.021
	R-13 (7.2)	0.108	0.098 0.089 0.082 0.075 0.070	89 0.0	32 0.07	5 0.070	0.066	0.062	0.058 0.055		0.052	0.049	0.047	0.045 (0.043	0.041	0.034	0.029	0.025	0.023	0.020
	R-15 (7.8)	0.102	0.092 0.084 0.078 0.072 0.067	84 0.0	78 0.07	2 0.06	7 0.063	0.059	0.056 0.053		0.050	0.048	0.046	0.044	0.042	0.040	0.034	0.029	0.025	0.022	0.020
(6.0 in.	R-19 (8.6)	0.094	0.086 0.079 0.073 0.068 0.064	79 0.0	73 0.06	790.0 8	4 0.060		0.057 0.054 0.051	0.051	0.048	0.046	0.044 (0.042	0.041	0.039	0.033	0.028	0.025	0.022	0.020
depth)	R-21 (9.0)	0.090	0.083 0.077 0.071 0.066 0.062	77 0.0	71 0.06	90.0 9	2 0.059	0.055	0.052 0.050	0.050	0.048	0.045 0.043		0.042	0.040	0.038	0.032	0.028	0.024	0.022	0.020

TABLE A3.4 Assembly U-Factors for Wood-Frame Walls

Framing Tvne and	Cavity		Overall U-Factor for Assembly of Base Wall Plus Continuous Insulation (uninterrupted by framing) Rated R-Value of Continuous Insulation	or for Asser	nbly of Ba	ase Wall	Plus Co	ntinuous	Insulatic	n (uninte	errupted	by frami	ng)						
Spacing Width (actual depth)	R-Value: Rated/(effective installed [see Table A9.4C])	Overall U-Factor for Entire Base Wall I	Overall U-Factor for Entire Base Wall R-1.00 R-2.00 R-3.00 R-4.00 R-5.00	-3.00 R-4.00	R-5.00	R-6.00	R-7.00 R	-8.00 R-	9.00 R-10).00 R-11	.00 R-12	.00 R-13.	00 R-14.0	0 R-15.00	R-6.00 R-7.00 R-8.00 R-10.00 R-11.00 R-12.00 R-13.00 R-15.00 R-25.00 R-25.00 R-35.00 R-40.00	R-25.00	R-30.00	R-35.00	R-40.00
Wood Stud	Wood Studs at 16 in. OC																		
(3.5 in.	None (0.0)	0.292	0.223 0.181 0.152 0.132 0.116	.152 0.132	0.116	0.104	0.094 0	0.086 0.0	0.079 0.0	0.073 0.068	68 0.064	54 0.060	0 0.056	0.053	0.042	0.035	0.030	0.026	0.023
depth)	R-11 (11.0)	0.096	0.087 0.079 0.073 0.068 0.063	.073 0.068	0.063	0.059	0.056 0	0.053 0.0	0.050 0.0	0.048 0.046	46 0.044	14 0.042	2 0.040	0.038	0.032	0.028	0.024	0.022	0.020
	R-13 (13.0)	0.089	0.080 0.074 0.068 0.063	.068 0.063	0.059	0.056	0.053 0	0.050 0.0	0.047 0.045	0.043	43 0.041	41 0.040	0 0.038	3 0.037	0.031	0.027	0.024	0.021	0.019
	R-15 (15.0)	0.083	0.075 0.069 0.064 0.060 0.056	.064 0.060	0.056	0.053	0.050 0	0.047 0.0	0.045 0.0	0.043 0.041	41 0.039	39 0.038	8 0.036	0.035	0.030	0.026	0.023	0.020	0.019
(5.5 in.	R-19 (18.0)	0.067	0.062 0.058 0.054 0.051 0.048	.054 0.051	0.048	0.046	0.044	0.042 0.0	0.040 0.038	138 0.037	37 0.036	36 0.034	4 0.033	0.032	0.027	0.024	0.021	0.019	0.018
depth)	R-21 (21.0)		0.058 0.054 0.051 0.048 0.045	.051 0.048	0.045	0.043	0.041 0	0.039 0.0	0.038 0.036	36 0.035	35 0.034	34 0.032	2 0.031	0.030	0.026	0.023	0.021	0.019	0.017
6				0	1											6		9	t G
(+ R-10	R-19 (18.0)	0.063	0.059 0.055 0.052 0.049 0.047	0.052 0.049	0.047	0.045	0.043 0	0.041 0.0	0.039 0.0	0.038 0.036	36 0.035	35 0.034	4 0.033	0.031	0.027	0.024	0.021	0.019	0.017
headers)	R-21 (21.0)	0.059	0.055 0.051 0.049 0.046 0.044	.049 0.046	0.044	0.042	0.040 0	0.038 0.0	0.037 0.035	35 0.034	34 0.033	33 0.032	2 0.031	0.030	0.026	0.023	0.020	0.018	0.017
Wood Stud	Wood Studs at 24 in. OC																		
(3.5 in.	None (0.0)	0.298	0.227 0.183 0.154 0.133 0.117	.154 0.133	0.117	0.105	0.095 0	0.086 0.0	0.079 0.074	74 0.068	58 0.064	0.060	0 0.057	0.054	0.042	0.035	0.030	0.026	0.023
depth)	R-11 (11.0)	0.094	0.085 0.078 0.072 0.067 0.062	.072 0.067	0.062	0.059	0.055 0	0.052 0.0	0.050 0.047	0.045	45 0.043	13 0.041	1 0.040	0.038	0.032	0.027	0.024	0.022	0.019
	R-13 (13.0)	0.086	0.078 0.072 0.067 0.062	.067 0.062	0.058	0.055	0.052 0	0.049 0.0	0.047 0.0	0.045 0.043	43 0.041	41 0.039	9 0.038	3 0.036	0.031	0.026	0.023	0.021	0.019
	R-15 (15.0)	0.080	0.073 0.067 0.062 0.058 0.055	.062 0.058	0.055	0.052	0.049 0	0.046 0.0	0.044 0.042	0.040	40 0.039	39 0.037	7 0.036	6 0.035	0.029	0.026	0.023	0.020	0.018
(5.5 in.	R-19 (18.0)	0.065	0.060 0.056 0.053 0.050 0.047	.053 0.05(0.047	0.045	0.043 0	0.041 0.0	0.039 0.038	38 0.036	36 0.035	35 0.034	4 0.033	0.032	0.027	0.024	0.021	0.019	0.018
depth)	R-21 (21.0)	0.060	0.056 0.052 0.049 0.046 0.044	0.049 0.046	0.044	0.042	0.040 0	0.038 0.0	0.037 0.036	36 0.034	34 0.033	33 0.032	2 0.031	0.030	0.026	0.023	0.020	0.018	0.017
(+ R-10	R-19 (18.0)	0.062	0.058 0.054 0.051 0.048 0.046	.051 0.048	0.046	0.044	0.042 0	0.040 0.0	0.039 0.037	137 0.036	36 0.034	34 0.033	3 0.032	0.031	0.027	0.024	0.021	0.019	0.017
headers)	R-21 (21.0)	0.057	0.053 0.050 0.047 0.045 0.043	0.047 0.045	0.043	0.041	0.039 0	0.037 0.0	0.036 0.035	35 0.033	33 0.032	32 0.031	1 0.030	0.029	0.025	0.023	0.020	0.018	0.017

TABLE A4.2 Assembly C-Factors for Below-Grade Walls

Framing Type and Depth	Rated R-Value of Insulation Alone	Specified C-Factors (wall only, without soil and air films)
No Framing	R-0	C-1.140
Exterior Insulation, continuous and unint	errupted by framing	
No Framing	R-5.0	C-0.170
No Framing	R-7.5	C-0.119
No Framing	R-10.0	C-0.092
No Framing	R-12.5	C-0.075
No Framing	R-15.0	C-0.063
No Framing	R-17.5	C-0.054
No Framing	R-20.0	C-0.048
No Framing	R-25.0	C-0.039
No Framing	R-30.0	C-0.032
No Framing	R-35.0	C-0.028
No Framing	R-40.0	C-0.025
No Framing	R-45.0	C-0.022
No Framing	R-50.0	C-0.020
Continuous metal framing at 24 in. on cen	ter horizontally	
3.5 in.	R-11.0	C-0.182
3.5 in.	R-13.0	C-0.174
3.5 in.	R-15.0	C-0.168
5.5 in.	R-19.0	C-0.125
5.5 in.	R-21.0	C-0.120
in. metal clips at 24 in. on center horizon	ntally and 16 in. vertically	
1.0 in.	R-3.8	C-0.233
1.0 in.	R-5.0	C-0.201
1.0 in.	R-5.6	C-0.189
1.5 in.	R-5.7	C-0.173
1.5 in.	R-7.5	C-0.147
1.5 in.	R-8.4	C-0.138
2.0 in.	R-7.6	C-0.138
2.0 in.	R-10.0	C-0.116
2.0 in.	R-11.2	C-0.108
2.5 in.	R-9.5	C-0.114
2.5 in.	R-12.5	C-0.096
2.5 in.	R-14.0	C-0.089
3.0 in.	R-11.4	C-0.098
3.0 in.	R-15.0	C-0.082
3.0 in.	R-16.8	C-0.076
3.5 in.	R-13.3	C-0.085
3.5 in.	R-17.5	C-0.071
3.5 in.	R-19.6	C-0.066
4.0 in.	R-15.2	C-0.076
4.0 in.	R-20.0	C-0.063
4.0 in.	R-22.4	C-0.058

- **A4.2.2** It is acceptable to use the *C-factors* in Table 4.2 for all *below-grade walls*.
- **A4.2.3** If not taken from Table A4.2, *below-grade wall C-factors* shall be determined from Tables A3.1B, A3.1C, and A3.1D using the following procedure:
- (a) If the below-grade wall is uninsulated or only the cells are insulated:
 - For concrete walls, determine the C-factor from Table A3.1B based on the concrete density and wall thickness.
 - For concrete block walls, determine the C-factor from Table A3.1C based on the block size, concrete density, degree of grouting in the cells, and whether the cells are insulated.
- (b) If the *mass wall* has additional insulation:
 - For concrete walls, determine the R_c from Table A3.1B based on the concrete density and wall thickness. Next, determine the effective R-value for the insulation/framing layer from Table A3.1D based on the rated R-value of insulation installed, the thickness of the insulation, and whether it is installed between wood or metal framing or with no framing. Then, determine the C-factor by adding the R_c and the effective R-value together and taking the inverse of the total.
 - 2. For concrete block walls, determine the R_c from Table A3.1C based on the block size, concrete density, degree of grouting in the cells, and whether the cells are insulated. Next, determine the effective R-value for the insulation/framing layer from Table A3.1D based on the rated R-value of insulation installed, the thickness of the insulation, and whether it is installed between wood or metal framing or with no framing. Then, determine the C-factor by adding the R_c and the effective R-value together and taking the inverse of the total.

A5 Floors

A5.1 General. The buffering effect of crawlspaces or parking garages shall not be included in *U-factor* calculations. See A6 for *slab-on-grade floors*.

A5.2 Mass Floors

A5.2.1 General. For the purpose of A1.2, the base assembly is *continuous insulation* over or under a solid concrete *floor*. The *U-factor* includes R-0.92 for interior air film—heat flow down, R-1.23 for carpet and rubber pad, R-0.50 for 8 in. concrete, and R-0.46 for semi-exterior air film. Added insulation is continuous and uninterrupted by framing. Framing factor is zero.

A5.2.2 Rated R-Value of Insulation for Mass Floors.

- **A5.2.2.1** The *rated R-value of insulation* is for *continuous insulation* uninterrupted by framing.
- **A5.2.2.2** Where framing, including metal and wood joists, is used, compliance shall be based on the maximum assembly *U-factor* rather than the minimum *rated R-value of insulation*.

- **A5.2.2.3** For waffle-slab *floors*, the *floor* shall be insulated either on the interior above the slab or on all exposed surfaces of the waffle.
- **A5.2.2.4** For *floors* with beams that extend below the floor slab, the *floor* shall be insulated either on the interior above the slab or on the exposed floor and all exposed surfaces of the beams that extend 24 in. and less below the exposed floor.

A5.2.3 U-Factors for Mass Floors.

- **A5.2.3.1** The *U-factors* for mass walls shall be taken from Table A5.2.
- **A5.2.3.2** It is not acceptable to use the *U-factors* in Table A5.2 if the insulation is not continuous.

A5.3 Steel-Joist Floors.

A5.3.1 General. For the purpose of A1.2, the base assembly is a *floor* where the insulation is either placed between the steel joists or is sprayed on the underside of the *floor* and the joists. In both cases, the steel provides a thermal bypass to the insulation. The *U-factor* includes R-0.92 for interior air film—heat flow down, R-1.23 for carpet and pad, R-0.25 for 4 in. concrete, R-0 for metal deck, and R-0.46 for semi-exterior air film. The performance of the insulation/framing layer is calculated using the values in Table A9.2A.

A5.3.2 Rated R-Value of Insulation for Steel-Joist Floors

- **A5.3.2.1** The first *rated R-value of insulation* is for uncompressed insulation installed in the cavity between steel joists or for spray-on insulation.
- **A5.3.2.2** It is acceptable for this insulation to also be *continuous insulation* uninterrupted by framing. All *continuous insulation* shall be installed either on the interior above the floor structure or below a framing cavity completely filled with insulation.

A5.3.3 U-Factors for Steel-Joist Floors.

- **A5.3.3.1** The *U-factors* for steel-joist floors shall be taken from Table A5.3.
- **A5.3.3.2** It is acceptable to use these *U-factors* for any *steel-joist floor*.

A5.4 Wood-Framed and Other Floors.

A5.4.1 General. For the purpose of A1.2, the base assembly is a *floor* attached directly to the top of the wood joist and with insulation located directly below the *floor*, with a ventilated airspace below the insulation. The heat flow path through the joist is calculated to be the same depth as the insulation. The *U-factor* includes R-0.92 for interior air film—heat flow down, R-1.23 for carpet and pad, R-0.94 for 0.75 in. wood subfloor, and R-0.46 for semi-exterior air film. The weighting factors are 91% insulated cavity and 9% framing.

A5.4.2 Rated R-Value of Insulation for Wood-Framed and Other Floors

- **A5.4.2.1** The first *rated R-value of insulation* is for uncompressed insulation installed in the cavity between wood joists.
- **A5.4.2.2** It is acceptable for this insulation to also be *continuous insulation* uninterrupted by framing. All *continuous*

TABLE A5.2 Assembly U-Factors for Mass Floors

Framing Type and	Cavity Insulation	Overall		U-Fac ?-Value	Overall U-Factor for Assembly of Base Rated R-Value of Continuous Insulation	Assemb	ly of Ba	nse Floor tion	r Plus C	ontinuc	nsu Insu	Floor Plus Continuous Insulation (uninterrupted by framing) n	minterr	ıpted by	framing							
Spacing Width (actual depth)	R-Value: Rated/ (effective installed)	U-Factor for Entire Base Floor Assembly		R-2.00	R-3.00	R-4.00	R-5.00	R-6.00	R-7.00	R-8.00	R-9.00	R-10.00	R-11.00	R-12.00	R-13.00	R-14.00	R-15.00	R-20.00	R-25.00	R-1.00 R-2.00 R-3.00 R-5.00 R-5.00 R-5.00 R-5.00 R-9.00 R-10.00 R-11.00 R-12.00 R-13.00 R-14.00 R-15.00 R-25.00 R-25.00 R-35.00 R-36.00 R-40.00	R-35.00	R-40.00
Concrete I	Concrete Floor with Rigid Foam	gid Foam																				
	None (0.0)	0.322	0.243		0.196 0.164 0.141		0.123	0.110	0.099	0.090	0.083	0.076	0.071	0.066	0.062	0.058	0.055	0.043	0.036	0.030	0.026	0.023
Concrete F	Concrete Floor with Pinned Boards	nned Boards																				
	R-4.2 (4.2)	0.137	0.121	0.108	0.121 0.108 0.097 0.089	0.089	0.081	0.075	0.070	0.065	0.061	0.058	0.055	0.052	0.049	0.047	0.045	0.037	0.031	0.027	0.024	0.021
	R-6.3 (6.3)	0.107	0.096	0.088	0.081	0.075	0.070	0.065	0.061	0.058	0.054	0.052	0.049	0.047	0.045	0.043	0.041	0.034	0.029	0.025	0.023	0.020
	R-8.3 (8.3)	0.087	0.080	0.074	0.074 0.069	0.065	0.061	0.057	0.054	0.051	0.049	0.047	0.045	0.043	0.041	0.039	0.038	0.032	0.027	0.024	0.022	0.019
	R-10.4 (10.4)	0.074	0.069	0.064	0.064 0.060	0.057	0.054	0.051	0.049	0.046	0.044	0.042	0.041	0.039	0.038	0.036	0.035	0.030	0.026	0.023	0.021	0.019
	R-12.5 (12.5)	0.064	0.060	0.057	0.057 0.054	0.051	0.048	0.046	0.044	0.042	0.041	0.039	0.038	0.036	0.035	0.034	0.033	0.028	0.025	0.022	0.020	0.018
	R-14.6 (14.6)	0.056	0.053	0.051	0.053 0.051 0.048 0.046 0.044	0.046	0.044	0.042	0.040	0.039	0.037	0.036	0.035	0.034	0.033	0.032	0.031	0.027	0.023	0.021	0.019	0.017
	R-16.7 (16.7)	0.051	0.048	0.046	0.048 0.046 0.044 0.042 0.040	0.042	0.040	0.039	0.037	0.036	0.035	0.034	0.032	0.031	0.030	0.030	0.029	0.025	0.022	0.020	0.018	0.017
Concrete F	Concrete Floor with Spray-on Insulation	ray-on Insul	ation																			
(1 in.)	R-4 (4.0)	0.141	0.123	0.110	0.110 0.099 0.090	0.090	0.083	0.076	0.071	0.066	0.062	0.058	0.055	0.052	0.050	0.047	0.045	0.037	0.031	0.027	0.024	0.021
(2 in.)	R-8 (8.0)	0.090	0.083		0.076 0.071	0.066	0.062	0.058	0.055	0.052	0.050	0.047	0.045	0.043	0.041	0.040	0.038	0.032	0.028	0.024	0.022	0.020
(3 in.)	R-12 (12.0)	990.0	0.062	0.058	0.058 0.055	0.052	0.050	0.047	0.045	0.043	0.041	0.040	0.038	0.037	0.036	0.034	0.033	0.028	0.025	0.022	0.020	0.018
(4 in.)	R-16 (16.0)	0.052	0.050		0.047 0.045	0.043	0.041	0.040	0.038	0.037	0.036	0.034	0.033	0.032	0.031	0.030	0.029	0.026	0.023	0.020	0.018	0.017
(5 in.)	R-20 (20.0)	0.043	0.041	0.040	0.040 0.038	0.037	0.036	0.034	0.033	0.032	0.031	0.030	0.029	0.028	0.028	0.027	0.026	0.023	0.021	0.019	0.017	0.016
(6 in.)	R-24 (24.0)	0.037	0.036		0.034 0.033	0.032	0.031	0.030	0.029	0.028	0.028	0.027	0.026	0.026	0.025	0.024	0.024	0.021	0.019	0.018	0.016	0.015

TABLE A5.3 Assembly U-Factors for Steel-Joist Floors

Overall Coverall	0.059 0.056 0.044 0.032 0.035 0.035 0.032 0.031 0.027 0.027 0.025 0.034 0.037 0.037 0.034	8-25.00 R-30.00 R-35.00 R-40.00 0.036 0.030 0.026 0.023 0.032 0.027 0.024 0.021 0.028 0.025 0.020 0.020 0.024 0.021 0.019 0.018 0.024 0.021 0.019 0.018 0.027 0.020 0.019 0.017 0.021 0.019 0.017 0.016 0.021 0.017 0.016
Sactor S	R-7.00 R-8.00 R-9.00 R-11.00 R-12.00 R-13.00 R-14.00 R-15.00 R-20.00 R-15.00 R-15.00 R-15.00 R-20.00 R-15.00 R-15.00	36 0.030 0.026 0.023 37 0.027 0.024 0.020 38 0.025 0.022 0.020 39 0.025 0.022 0.020 30 0.021 0.019 0.018 31 0.019 0.017 0.016
350 0.259 0.206 0.171 0.146 0.127 0.113 0.101 0.092 0.084 0.078 0.072 0.067 148 0.129 0.114 0.103 0.093 0.085 0.073 0.068 0.064 0.060 0.056 0.053 148 0.129 0.114 0.103 0.093 0.085 0.073 0.068 0.064 0.060 0.056 0.053 1506 0.088 0.081 0.075 0.070 0.065 0.061 0.058 0.064 0.044 0.042 0.041 0.039 1506 0.086 0.064 0.060 0.057 0.054 0.051 0.048 0.046 0.044 0.042 0.041 0.039 1506 0.086 0.064 0.044 0.042 0.040 0.039 0.037 0.035 0.031 1507 0.042 0.041 0.039 0.038 0.035 0.037 0.036 0.035 0.031 0.030 0.029 1508 0.055 0.067 0.063 0.056 0.056 0.056 0.048 0.044 0.042 0.041 0.039 0.038 1509 0.056 0.057 0.056 0.056 0.056 0.058 0.040 0.044 0.042 0.041 0.039 0.038 1509 0.064 0.060 0.057 0.054 0.051 0.049 0.046 0.044 0.042 0.041 0.039 0.038 1509 0.056 0.057 0.057 0.057 0.046 0.044 0.042 0.041 0.039 0.038 1509 0.056 0.057 0.054 0.051 0.049 0.046 0.044 0.042 0.041 0.039 0.038 1509 0.056 0.057 0.054 0.051 0.049 0.046 0.044 0.042 0.041 0.033 0.032 1509 0.056 0.057 0.054 0.041 0.040 0.038 0.037 0.035 0.034 0.033 0.033 0.032 1509 0.056 0.057 0.043 0.041 0.040 0.038 0.035 0.034 0.033 0.	0.101 0.092 0.084 0.078 0.072 0.067 0.063 0.059 0.056 0.044 0.073 0.068 0.064 0.060 0.056 0.053 0.051 0.048 0.046 0.037 0.058 0.054 0.064 0.047 0.045 0.043 0.041 0.039 0.033 0.048 0.046 0.049 0.047 0.045 0.038 0.036 0.035 0.033 0.042 0.040 0.040 0.042 0.041 0.039 0.036 0.036 0.035 0.031 0.037 0.036 0.033 0.037 0.036 0.039 0.029 0.029 0.029 0.025 0.034 0.035 0.031 0.030 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.044 0.101 0.092 0.084 0.044 0.042 0.042 0.040 0.039 0.044 0.030 0.044 0.03	0.030 0.026 0.027 0.024 0.025 0.022 0.023 0.021 0.021 0.019 0.020 0.018
0.259 0.206 0.171 0.146 0.127 0.113 0.101 0.092 0.084 0.078 0.072 0.067 0.129 0.206 0.171 0.146 0.127 0.113 0.101 0.092 0.084 0.078 0.079 0.067 0.067 0.078 0.079 0.068 0.064 0.060 0.057 0.056 0.057 0.067 0.067 0.068 0.064 0.069 0.047 0.045 0.045 0.061 0.058 0.054 0.059 0.046 0.046 0.046 0.049 0.047 0.045 0.046 0.046 0.049 0.047 0.039 0.036 0.037 0.036 0.037 0.036 0.037 0.036 0.037 0.036 0.037 0.036 0.037 0.036 0.037 0.036 0.037 0.036 0.037 0.036 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.0	0.101 0.092 0.084 0.078 0.067 0.063 0.059 0.056 0.044 0.073 0.068 0.064 0.060 0.056 0.053 0.051 0.048 0.046 0.037 0.058 0.054 0.064 0.060 0.056 0.053 0.041 0.043 0.041 0.039 0.039 0.033 0.042 0.046 0.044 0.044 0.044 0.036 0.035 0.034 0.036 0.037 0.034 0.042 0.040 0.039 0.037 0.036 0.036 0.037 0.037 0.034 0.036 0.037 0.037 0.034 0.035 0.031 0.030 0.039 0.037 0.031 0.039 0.027 0.024 0.034 0.033 0.031 0.030 0.029 0.029 0.027 0.021 0.024 0.034 0.033 0.031 0.031 0.029 0.028 0.027 0.027 0.024 <t< th=""><th>0.030 0.026 0.027 0.024 0.025 0.022 0.023 0.021 0.021 0.019 0.020 0.018 0.019 0.017</th></t<>	0.030 0.026 0.027 0.024 0.025 0.022 0.023 0.021 0.021 0.019 0.020 0.018 0.019 0.017
0.114 0.103 0.093 0.085 0.078 0.073 0.068 0.064 0.060 0.056 0.063 0.088 0.081 0.075 0.070 0.065 0.061 0.058 0.054 0.052 0.049 0.047 0.045 0.088 0.081 0.075 0.070 0.065 0.061 0.058 0.064 0.049 0.047 0.045 0.068 0.064 0.064 0.064 0.064 0.064 0.042 0.041 0.042 0.041 0.042 0.041 0.042 0.041 0.039 0.037 0.036 0.035 0.037 0.031 0.039 0.035 0.037 0.036 0.035 0.031 0.039 0.035 0.035 0.033 0.032 0.031 0.039 0.031 0.034 0.033 0.032 0.031 0.039 0.037 0.036 0.033 0.032 0.031 0.040 0.040 0.039 0.037 0.041 0.044 0.042 0.041 0.042 0.041 0.042 0.041 0.042 0.041 0.042 0.041	0.073 0.068 0.064 0.060 0.055 0.053 0.051 0.048 0.046 0.037 0.058 0.054 0.064 0.047 0.045 0.043 0.041 0.039 0.033 0.048 0.046 0.040 0.047 0.045 0.043 0.041 0.039 0.033 0.042 0.040 0.037 0.036 0.035 0.034 0.032 0.031 0.027 0.037 0.036 0.033 0.032 0.031 0.039 0.039 0.029 0.029 0.034 0.033 0.033 0.032 0.031 0.029 0.028 0.027 0.027 0.034 0.033 0.031 0.030 0.029 0.027 0.027 0.024 0.034 0.033 0.031 0.030 0.029 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.030 0.030 0.044 0.030 0.030 0.03	0.027 0.024 0.025 0.022 0.023 0.021 0.021 0.019 0.020 0.018 0.019 0.017
0.1129 0.1114 0.103 0.093 0.085 0.078 0.073 0.068 0.064 0.060 0.056 0.053 0.088 0.081 0.075 0.070 0.065 0.061 0.058 0.054 0.052 0.049 0.047 0.045 0.068 0.064 0.064 0.061 0.058 0.054 0.052 0.049 0.047 0.045 0.056 0.053 0.051 0.046 0.044 0.042 0.040 0.039 0.037 0.036 0.035 0.048 0.046 0.046 0.042 0.040 0.039 0.037 0.036 0.035 0.035 0.036 0.035 0.036 0.035 0.036 0.035 0.031 0.036 0.035 0.031 0.039 0.031 0.039 0.039 0.036 0.035 0.036 0.036 0.036 0.036 0.036 0.037 0.031 0.039 0.039 0.072 0.067 0.063 0.056	0.073 0.068 0.064 0.060 0.055 0.053 0.051 0.048 0.046 0.037 0.058 0.054 0.062 0.049 0.047 0.045 0.043 0.041 0.039 0.033 0.048 0.046 0.044 0.042 0.041 0.039 0.036 0.039 0.033 0.042 0.040 0.037 0.036 0.035 0.034 0.032 0.031 0.027 0.034 0.035 0.033 0.032 0.031 0.039 0.029 0.029 0.029 0.034 0.033 0.031 0.030 0.029 0.029 0.027 0.024 0.034 0.033 0.031 0.030 0.029 0.027 0.027 0.024 0.101 0.092 0.084 0.078 0.049 0.059 0.056 0.046 0.040 0.036 0.036 0.044	0.027 0.024 0.025 0.022 0.023 0.021 0.021 0.019 0.020 0.018
0.088 0.081 0.075 0.093 0.085 0.078 0.073 0.068 0.064 0.060 0.056 0.053 0.088 0.081 0.075 0.070 0.065 0.061 0.058 0.054 0.052 0.049 0.047 0.045 0.068 0.064 0.060 0.057 0.054 0.051 0.048 0.046 0.044 0.042 0.041 0.039 0.056 0.053 0.051 0.048 0.046 0.044 0.042 0.040 0.039 0.037 0.035 0.035 0.048 0.044 0.042 0.040 0.039 0.037 0.035 0.037 0.036 0.035 0.048 0.048 0.049 0.038 0.036 0.035 0.037 0.035 0.031 0.030 0.029 0.056 0.057 0.059 0.056 0.053 0.050 0.048 0.046 0.044 0.042 0.040 0.059 0.050 0.057 0.054 0.051 0.049 0.046 0.044 0.042 0.041 0.039 0.038 0.059 0.055 0.050 0.047 0.045 0.043 0.043 0.037 0.035	0.073 0.068 0.064 0.060 0.056 0.053 0.051 0.048 0.046 0.037 0.058 0.054 0.064 0.047 0.045 0.043 0.041 0.039 0.039 0.039 0.039 0.033 0.048 0.046 0.044 0.042 0.041 0.039 0.038 0.035 0.033 0.033 0.042 0.040 0.039 0.037 0.036 0.031 0.034 0.032 0.031 0.027 0.027 0.027 0.034 0.033 0.032 0.031 0.039 0.029 0.029 0.024 0.024 0.034 0.033 0.031 0.030 0.029 0.029 0.027 0.024 0.034 0.033 0.031 0.030 0.029 0.027 0.024 0.101 0.092 0.084 0.042 0.063 0.059 0.056 0.044 0.050 0.048 0.046 0.040 0.039 0.037 <th>0.027 0.024 0.025 0.022 0.023 0.021 0.021 0.019 0.020 0.018</th>	0.027 0.024 0.025 0.022 0.023 0.021 0.021 0.019 0.020 0.018
0.088 0.081 0.075 0.070 0.065 0.061 0.058 0.054 0.052 0.049 0.047 0.045 0.068 0.064 0.064 0.065 0.054 0.051 0.048 0.046 0.044 0.042 0.041 0.039 0.056 0.056 0.053 0.051 0.040 0.039 0.037 0.036 0.037 0.036 0.037 0.039 0.037 0.036 0.037 0.039 0.037 0.036 0.037 0.039 0.037 0.036 0.035 0.037 0.039 0.037 0.039 0.037 0.039 0.037 0.039 0.037 0.039 0.037 0.039 0.037 0.039 0.037 0.039 0.037 0.039 0.037 0.039 0.031 0.039 0.039 0.039 0.039 0.031 0.039 0.031 0.039 0.031 0.039 0.031 0.031 0.031 0.031 0.031 0.042 0.043 0.044	0.058 0.054 0.052 0.049 0.041 0.045 0.043 0.041 0.039 0.043 0.041 0.039 0.038 0.034 0.039 0.038 0.036 0.035 0.030 0.048 0.046 0.044 0.042 0.041 0.039 0.038 0.036 0.035 0.030 0.042 0.040 0.039 0.037 0.031 0.031 0.030 0.030 0.029 0.027 0.034 0.033 0.031 0.030 0.029 0.028 0.027 0.024 0.034 0.033 0.031 0.030 0.029 0.029 0.024 0.024 0.101 0.092 0.084 0.072 0.063 0.059 0.056 0.044 0.050 0.048 0.044 0.042 0.040 0.039 0.037 0.036 0.036	0.025 0.022 0.023 0.021 0.021 0.019 0.020 0.018 0.019 0.017
0.068 0.064 0.060 0.057 0.054 0.051 0.048 0.046 0.044 0.042 0.044 0.042 0.046 0.044 0.042 0.040 0.039 0.037 0.036 0.035 0.037 0.036 0.035 0.037 0.036 0.035 0.037 0.036 0.035 0.037 0.036 0.035 0.037 0.036 0.037 0.037 0.036 0.037 0.040 0.042 0.044 0.045 0.056 0.053 0.050 0.044 0.044 0.044 0.044 0.044 0.044 0.044 0.044 0.044 0.044 0.042 0.044 0.042 0.044 0.042 0.044 0.042 0.044 0.042 0.044 0.042 0.044 0.042 0.0	0.048 0.046 0.044 0.042 0.041 0.039 0.038 0.038 0.036 0.039 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.022 0.031 0.022 0.032 0.044 0.044 0.042 0.040 0.039 0.037 0.036 0.036 0.036 0.036 0.030 <th< th=""><th>0.023 0.021 0.021 0.019 0.020 0.018 0.019 0.017</th></th<>	0.023 0.021 0.021 0.019 0.020 0.018 0.019 0.017
0.048 0.044 0.044 0.040 0.039 0.037 0.035 0.044 0.042 0.042 0.040 0.038 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.047 0.045 0.045 0.045 0.045 0.045 0.045 0.045 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.047 0.045 0.045 0.045 0.045 0.045 0.045 0.045 0.035 0.035 0.035 0.035 0.035 0.047 0.045 0.041 0.040 0.038 0.037 0.035 0.035 0.035 0.035 0.035 0.035 0.045 0.045 0.045 0.045 0.045 0.045 0.045 0.045 0.045 0.045 0.045 0.045 0.045 0.045 0.035	0.042 0.040 0.039 0.037 0.036 0.035 0.034 0.032 0.034 0.035 0.031 0.036 0.037 0.030 0.029 0.029 0.029 0.029 0.029 0.024 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.036 <th< th=""><th>0.021 0.019 0.020 0.018 0.019 0.017</th></th<>	0.021 0.019 0.020 0.018 0.019 0.017
0.048 0.046 0.044 0.042 0.040 0.039 0.037 0.036 0.035 0.033 0.032 0.031 0.030 0.031 0.040 0.042 0.044 0.036 0.035 0.034 0.033 0.032 0.031 0.030 0.029 0.034 0.035 0.034 0.035 0.032 0.031 0.030 0.029 0.025 0.206 0.171 0.146 0.127 0.113 0.101 0.092 0.084 0.046 0.044 0.042 0.040 0.040 0.057 0.054 0.051 0.049 0.046 0.044 0.042 0.041 0.039 0.038 0.035 0.059 0.055 0.055 0.057 0.049 0.046 0.044 0.042 0.041 0.039 0.038 0.037 0.036 0.050 0.047 0.045 0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.044 0.045 0.044 0.045 0.044 0.045 0.044 0.045 0.044 0.038 0.037 0.036 0.057 0.050 0.047 0.045 0.041 0.040 0.038 0.037 0.035	0.034 0.035 0.035 0.030 0.030 0.030 0.030 0.029 0.029 0.029 0.029 0.025 0.024 0.025 0.024 0.025 0.025 0.030 0.030 0.030 0.030 0.025 0.024 0.039 0.039 0.039 0.036 <th< th=""><th>0.020 0.018</th></th<>	0.020 0.018
0.042 0.041 0.039 0.038 0.036 0.035 0.034 0.033 0.032 0.031 0.030 0.029 0.259 0.206 0.171 0.146 0.127 0.113 0.101 0.092 0.084 0.078 0.072 0.067 0.072 0.067 0.063 0.059 0.056 0.053 0.050 0.048 0.046 0.044 0.042 0.040 0.064 0.060 0.057 0.054 0.051 0.049 0.046 0.044 0.042 0.041 0.038 0.038 0.059 0.055 0.052 0.050 0.047 0.045 0.043 0.042 0.038 0.037 0.036 0.050 0.047 0.045 0.043 0.041 0.040 0.038 0.037 0.035 0.032	0.034 0.033 0.031 0.030 0.029 0.028 0.027 0.024 0.024 0.101 0.092 0.084 0.078 0.042 0.067 0.063 0.059 0.056 0.044 0.050 0.048 0.044 0.042 0.040 0.039 0.037 0.036 0.036 0.036	0.019 0.017
0.259 0.206 0.171 0.146 0.127 0.113 0.101 0.092 0.084 0.078 0.072 0.067 0.067 0.072 0.067 0.063 0.059 0.056 0.053 0.050 0.044 0.044 0.042 0.040 0.064 0.064 0.067 0.057 0.054 0.051 0.049 0.046 0.044 0.042 0.041 0.039 0.038 0.059 0.055 0.052 0.050 0.047 0.045 0.043 0.042 0.040 0.038 0.037 0.036 0.050 0.047 0.045 0.041 0.040 0.038 0.037 0.035 0.035 0.050 0.047 0.045 0.041 0.040 0.038 0.037 0.035	0.101 0.092 0.084 0.078 0.072 0.067 0.063 0.059 0.056 0.044 0.050 0.048 0.046 0.044 0.042 0.040 0.039 0.037 0.036 0.030	
0.259 0.206 0.171 0.146 0.127 0.113 0.101 0.092 0.084 0.078 0.072 0.067 0.067 0.072 0.067 0.067 0.063 0.059 0.056 0.053 0.050 0.048 0.046 0.044 0.042 0.040 0.040 0.054 0.057 0.054 0.051 0.049 0.046 0.044 0.042 0.041 0.039 0.038 0.059 0.055 0.052 0.050 0.047 0.045 0.043 0.042 0.040 0.038 0.037 0.036 0.050 0.047 0.045 0.041 0.040 0.038 0.037 0.036 0.050 0.047 0.045 0.041 0.040 0.038 0.037 0.035 0.035 0.037 0.036 0.047 0.045 0.041 0.040 0.038 0.037 0.035	0.101 0.092 0.084 0.078 0.072 0.067 0.063 0.059 0.056 0.044 0.050 0.048 0.046 0.044 0.042 0.040 0.039 0.037 0.036 0.030	
0.350 0.259 0.206 0.171 0.146 0.127 0.113 0.101 0.092 0.084 0.078 0.072 0.067 0.063 0.056 0.050 0.050 0.046 0.044 0.042 0.044 0.042 0.040 0.040 0.069 0.064 0.057 0.057 0.057 0.057 0.057 0.046 0.044 0.042 0.041 0.039 0.038 0.062 0.059 0.057 0.057 0.057 0.045 </th <th>0.101 0.092 0.084 0.078 0.072 0.067 0.063 0.059 0.056 0.044 0.050 0.048 0.044 0.042 0.040 0.039 0.037 0.036 0.030</th> <th></th>	0.101 0.092 0.084 0.078 0.072 0.067 0.063 0.059 0.056 0.044 0.050 0.048 0.044 0.042 0.040 0.039 0.037 0.036 0.030	
0.078 0.072 0.067 0.063 0.059 0.055 0.053 0.050 0.048 0.046 0.044 0.042 0.040 0.040 0.046 0.046 0.041 0.042 0.040 0.046 0.046 0.044 0.042 0.041 0.039 0.038 0.037 0.038 0.037 0.036 0.052 0.059 0.047 0.045 0.047 0.045 0.047 0.045 0.047 0.040 0.038 0.037 0.035 0.037 0.035 0.052 0.050 0.047 0.043 0.041 0.040 0.038 0.037 0.035 0.037 0.035 0.037	0.050 0.048 0.046 0.044 0.042 0.040 0.039 0.037 0.036 0.030	0.036 0.030 0.026 0.023
0.069 0.064 0.060 0.057 0.054 0.051 0.049 0.046 0.046 0.041 0.042 0.041 0.039 0.038 0.062 0.059 0.055 0.050 0.047 0.045 0.045 0.043 0.043 0.038 0.037 0.035 0.034 0.033 0.032 0.050 0.047 0.045 0.041 0.040 0.038 0.037 0.035 0.034 0.033 0.032		0.026 0.023 0.021 0.019
0.062 0.059 0.055 0.052 0.050 0.047 0.045 0.045 0.043 0.043 0.045 0.040 0.043 0.043 0.041 0.040 0.043 0.037 0.038 0.035 0.033 0.032 0.05 0.05 0.047 0.045 0.043 0.041 0.040 0.043 0.037 0.035 0.037 0.035 0.037	0.046 0.044 0.042 0.041 0.039 0.038 0.036 0.035 0.034 0.029	0.025 0.022 0.020 0.018
0.052 0.050 0.047 0.045 0.043 0.041 0.040 0.038 0.037 0.035 0.034 0.033 0.032	0.043 0.042 0.040 0.038 0.037 0.036 0.034 0.033 0.032 0.028	0.024 0.022 0.020 0.018
	0.038 0.037 0.035 0.034 0.033 0.032 0.031 0.030 0.029 0.026	0.023 0.020 0.018 0.017
0.035 0.034 0.035 0.032 0.031	0.036 0.035 0.034 0.033 0.032 0.031 0.030 0.029 0.028 0.025	0.022 0.020 0.018 0.017
R-25 (20.25) 0.043 0.041 0.040 0.038 0.037 0.036 0.034 0.033 0.032 0.031 0.030 0.029 0.028	0.033 0.032 0.031 0.030 0.029 0.028 0.028 0.027 0.026 0.023	0.021 0.019 0.017 0.016
R-30C(23.70) 0.038 0.036 0.035 0.034 0.033 0.032 0.031 0.030 0.029 0.028 0.027 0.027 0.026	0.029 0.028 0.027 0.027 0.026 0.025 0.025 0.024 0.021	0.019 0.018 0.016 0.015
R-30 (23.70) 0.038 0.036 0.035 0.034 0.033 0.032 0.031 0.030 0.029 0.028 0.027 0.027 0.026	0.029 0.028 0.027 0.027 0.026 0.025 0.025 0.024 0.021	0.019 0.018 0.016 0.015
R-38C(28.12) 0.032 0.031 0.030 0.029 0.029 0.028 0.027 0.026 0.025 0.025 0.024 0.024 0.023	0.026 0.026 0.025 0.024 0.024 0.023 0.023 0.022 0.022 0.020	0.018 0.016 0.015 0.014
R-38 (28.12) 0.032 0.031 0.030 0.029 0.029 0.028 0.027 0.026 0.025 0.024 0.024 0.023	0.005 0.005 0.004 0.003 0.003 0.000 0.000	0.018 0.016 0.015 0.014

insulation shall be installed either on the interior above the floor structure or below a framing cavity completely filled with insulation.

A5.4.3 *U-Factors* for *Wood-Framed Floors*.

- **A5.4.3.1** The *U-factors* for wood-framed floors shall be taken from Table A5.4.
- **A5.4.3.2** It is not acceptable to use these *U-factors* if the framing is not wood.

A6 Slab-on-Grade Floors.

- **A6.1 General.** For the purpose of A1.2, the base assembly is a slab floor of 6 in. concrete poured directly on to the earth, the bottom of the slab is at grade line, and soil conductivity is 0.75 Btu/h·ft·°F. In contrast to the *U-factor* for *floors*, the *F-factor* for *slab-on-grade floors* is expressed per lineal foot of building perimeter. *F-factors* are provided for unheated slabs and for heated slabs. *Unheated slab-on-grade floors* do not have heating elements, and *heated slab-on-grade floors* do have heating elements within or beneath the slab. *F-factors* are provided for three insulation configurations:
- (a) Horizontal insulation: Continuous insulation is applied directly to the underside of the slab and extends inward horizontally from the perimeter for the distance specified or continuous insulation is applied downward from the top of the slab and then extends horizontally to the interior or the exterior from the perimeter for the distance specified.
- (b) **Vertical insulation:** *continuous insulation* is applied directly to the slab exterior, extending downward from the top of the slab for the distance specified.
- (c) Fully insulated slab: continuous insulation extends downward from the top of the slab and along the entire perimeter and completely covers the entire area under the slab.

A6.2 Rated R-Value of Insulation for Slab-on-Grade Floors.

A6.2.1 The *rated R-value of insulation* shall be installed around the perimeter of the *slab-on-grade floor* to the distance specified.

Exception to A6.2.1: For a monolithic *slab-on-grade floor*, the insulation shall extend from the top of the slab-on-grade to the bottom of the footing.

- **A6.2.2** Insulation installed inside the foundation wall shall extend downward from the top of the slab a minimum of the distance specified or to the top of the footing, whichever is less.
- **A6.2.3** Insulation installed outside the foundation wall shall extend from the top of the slab or downward to at least the bottom of the slab and then horizontally to a minimum of the distance specified. In all climates, the horizontal insulation extending outside of the foundation shall be covered by pavement or by soil a minimum of 10 in. thick.

A6.3 F-Factors for Slab-on-Grade Floors.

A6.3.1 *F-factors* for slab-on-grade floors shall be taken from Table A6.3.

- **A6.3.2** These *F-factors* are acceptable for all *slab-on-grade floors*.
- **A7 Opaque Doors.** All *opaque doors* with *U-factors* determined, certified, and labeled in accordance with NFRC 100 shall be assigned those *U-factors*.
- **A7.1 Unlabeled Opaque Doors.** Unlabeled *opaque doors* shall be assigned the following *U-factors*:
- (a) Uninsulated single-layer metal *swinging doors* or *non-swinging doors*, including single-layer uninsulated *access hatches* and uninsulated smoke vents: 1.45
- (b) Uninsulated double-layer metal *swinging doors* or *non-swinging doors*, including double-layer uninsulated *access hatches* and uninsulated smoke vents: 0.70
- (c) Insulated metal swinging doors, including fire-rated doors, insulated access hatches, and insulated smoke vents: 0.50
- (d) Wood *doors*, minimum nominal thickness of 1 3/4 in., including panel *doors* with minimum panel thickness of 1 1/8 in., solid core flush *doors*, and hollow core flush *doors*: 0.50.
- (e) Any other wood door: 0.60
- **A8 Fenestration.** All *fenestration* with *U-factors, SHGC,* or visible light transmittance determined, certified, and labeled in accordance with NFRC 100, 200, and 300, respectively, shall be assigned those values.
- **A8.1 Unlabeled Skylights.** Unlabeled *skylights* shall be assigned the *U-factors* in Table A8.1A and are allowed to use the *SHGC*s and visible light transmittances in Table A8.1B. The metal with thermal break frame category shall not be used unless all frame members have a thermal break equal to or greater than 1/4 in.
- **A8.2** Unlabeled Vertical Fenestration. Unlabeled *vertical fenestration*, both operable and fixed, shall be assigned the *U-factors*, *SHGC*s, and visible light transmittances in Table A8.2.

A9 Determination of Alternate Assembly U-Factors, C-Factors, F-Factors, or Heat Capacities

- **A9.1 General.** Component *U-factors* for other opaque assemblies shall be determined in accordance with A9 only if approved by the *building official* in accordance with A1.2. The procedures required for each class of construction are specified in A9.2. Testing shall be performed in accordance with A9.3. Calculations shall be performed in accordance with A9.4.
- **A9.2 Required Procedures.** Two- or three-dimensional finite difference and finite volume computer models shall be an acceptable alternative method to calculating the thermal performance values for all assemblies and constructions listed below. The following procedures shall also be permitted to determine all alternative *U-factors*, *F-factors*, and *C-factors*.

(a) Roofs.

- Roofs with insulation entirely above deck: testing or series calculation method.
- 2. *Metal building roofs*: testing.
- Attic roofs, wood joists: testing or parallel path calculation method.

TABLE A5.4 Assembly U-Factors for Wood-Joist Floors

Framing Type and	Cavity Insulation	Overall	Overall Rated F	l U-Fac ?-Value	Overall U-Factor for Assembly of Base F Rated R-Value of Continuous Insulation	Assemt	oly of B. s Insula	ase Flo	or Plus	Contin	anons In	sulation	(uninter	rupted l	Base Floor Plus Continuous Insulation (uninterrupted by framing) ılation	(gu						
Spacing Width (actual depth)	R-Value: Rated/ (effective installed)	U-Factor for Entire Base Floor Assembly R-1.00 R-2.00 R-3.00 R-5.00 R-5.	R-1.00]	R-2.00	R-3.00	R-4.00	R-5.00	R-6.00	R-7.00	R-8.00	R-9.00	R-10.00	R-11.00	R-12.00	R-13.00	R-14.00	R-15.00	R-20.00	R-25.00	R-30.00	R-35.00	R-40.00
Wood Joists	sts																					
(5.5 in.)	None (0.0)	0.282	0.220	0.180	0.220 0.180 0.153 0.132 0.11	0.132	0.117	0.105	0.095	0.087	0.080	0.074	0.069	0.064	0.060	0.057	0.054	0.042	0.035	0.030	0.026	0.023
	R-11 (11.0)	0.074	0.069	0.064	0.069 0.064 0.060 0.057 0.054	0.057	0.054	0.051	0.048	0.046	0.044	0.042	0.040	0.039	0.037	0.036	0.035	0.030	0.026	0.023	0.020	0.019
	R-13 (13.0)	990.0	0.062	0.058	0.062 0.058 0.055 0.052 0.049	0.052	0.049	0.047	0.045	0.043	0.041	0.039	0.038	0.036	0.035	0.034	0.033	0.028	0.025	0.022	0.020	0.018
	R-15 (15.0)	090.0	0.057	0.053	0.050	0.048 0.046	0.046	0.044	0.042	0.040	0.038	0.037	0.036	0.034	0.033	0.032	0.031	0.027	0.024	0.021	0.019	0.017
	R-19 (18.0)	0.051	0.048	0.046	0.044	0.042 0.040	0.040	0.038	0.037	0.036	0.034	0.033	0.032	0.031	0.030	0.029	0.028	0.025	0.022	0.020	0.018	0.017
	R-21 (21.0)	0.046	0.043	0.042	0.040	0.038 0.037	0.037	0.035	0.034	0.033	0.032	0.031	0.030	0.029	0.028	0.027	0.027	0.023	0.021	0.019	0.017	0.016
(7.25 in.)	(7.25 in.) R-25 (25.0)	0.039	0.037	0.036	0.037 0.036 0.035 0.033 0.032	0.033		0.031	0.030	0.029	0.028	0.028	0.027	0.026	0.025	0.025	0.024	0.022	0.019	0.018	0.016	0.015
	R-30C (30.0)	0.034	0.033	0.032	0.033 0.032 0.031 0.030 0.029	0.030	0.029	0.028	0.027	0.026	0.026	0.025	0.024	0.024	0.023	0.023	0.022	0.020	0.018	0.016	0.015	0.014
(9.25 in.)	(9.25 in.) R-30 (30.0)	0.033	0.032	0.031	0.032 0.031 0.030 0.029 0.028	0.029	0.028	0.027	0.027	0.026	0.025	0.024	0.024	0.023	0.023	0.022	0.022	0.020	0.018	0.016	0.015	0.014
(11.25 in.	(11.25 in.) R-38C (38.0)	0.027	0.026	0.025	0.026 0.025 0.025 0.024 0.024	0.024		0.023	0.022	0.022	0.021	0.021	0.020	0.020	0.020	0.019	0.019	0.017	0.016	0.015	0.014	0.013
(13.25 in.	(13.25 in.) R-38 (38.0)	0.026	0.026	0.025	0.026 0.025 0.024 0.024 0.023	0.024		0.023	0.022	0.022	0.021	0.021	0.020	0.020	0.019	0.019	0.019	0.017	0.016	0.015	0.014	0.013

TABLE A6.3 Assembly F-Factors for Slab-on-Grade Floors

					R	ated R-V	Value of	Insulatio	on				
Insulation Description	R-0	R-5	R-7.5	R-10	R-15	R-20	R-25	R-30	R-35	R-40	R-45	R-50	R-55
Unheated Slabs													
None	0.73												
12 in. horizontal		0.72	0.71	0.71	0.71								
24 in. horizontal		0.70	0.70	0.70	0.69								
36 in. horizontal		0.68	0.67	0.66	0.66								
48 in. horizontal		0.67	0.65	0.64	0.63								
12 in. vertical		0.61	0.60	0.58	0.57	0.567	0.565	0.564					
24 in. vertical		0.58	0.56	0.54	0.52	0.510	0.505	0.502					
36 in. vertical		0.56	0.53	0.51	0.48	0.472	0.464	0.460					
48 in. vertical		0.54	0.51	0.48	0.45	0.434	0.424	0.419					
Fully insulated slab		0.46	0.41	0.36	0.30	0.261	0.233	0.213	0.198	0.186	0.176	0.168	0.161
Heated Slabs													
None	1.35												
12 in. horizontal		1.31	1.31	1.30	1.30								
24 in. horizontal		1.28	1.27	1.26	1.25								
36 in. horizontal		1.24	1.21	1.20	1.18								
48 in. horizontal		1.20	1.17	1.13	1.11								
12 in. vertical		1.06	1.02	1.00	0.98	0.968	0.964	0.961					
24 in. vertical		0.99	0.95	0.90	0.86	0.843	0.832	0.827					
36 in. vertical		0.95	0.89	0.84	0.79	0.762	0.747	0.740					
48 in. vertical		0.91	0.85	0.78	0.72	0.688	0.671	0.659					
Fully insulated slab		0.74	0.64	0.55	0.44	0.373	0.326	0.296	0.273	0.255	0.239	0.227	0.217

- Attic roofs, steel joists: testing or parallel path calculation method using the insulation/framing layer adjustment factors in Table A9.2A or modified zone calculation method.
- Attic roofs, concrete joists: testing or parallel path calculation method if concrete is solid and uniform or isothermal planes calculation method if concrete has hollow sections.
- 6. Other *attic roofs* and other *roofs*: testing or two-dimensional calculation method.

(b) Above-Grade Walls.

- Mass walls: testing or the isothermal planes calculation method or two-dimensional calculation method.
 The parallel path calculation method is not acceptable.
- 2. Metal building walls: testing.
- 3. Steel-framed walls: testing or parallel path calculation method using the insulation/framing layer adjustment factors in Table A9.2B or the modified zone method.
- 4. *Wood-framed walls*: testing or parallel path calculation method.

Other walls: testing or two-dimensional calculation method.

(c) Below-Grade Walls.

- Mass walls: testing or the isothermal planes calculation method or two-dimensional calculation method. The parallel path calculation method is not acceptable.
- Other walls: testing or two-dimensional calculation method.

(d) Floors.

- Mass floors: testing or parallel path calculation method if concrete is solid and uniform or isothermal planes calculation method if concrete has hollow sections.
- 2. *Steel joist floors*: testing or modified zone calculation method.
- 3. *Wood joist floors*: testing or parallel path calculation method or isothermal planes calculation method.
- Other *floors*: testing or two-dimensional calculation method.
- (e) Slab-on-Grade Floors: no testing or calculations allowed.

TABLE A8.1A Assembly U-Factors for Unlabeled Skylights

					Sloped Insta	llation		
			•	light with Cur			ed Skylight with	
	Product Type	(Includes §	glass/plastic, fl	at/domed, fixe	d/operable)	(Includes glass/	plastic, flat/dome	d, fixed/operable)
	Frame Type	Aluminum	Aluminum	Reinforced		Aluminum	Aluminum	
ID	Glazing Type	without Thermal	with Thermal	Vinyl/ Aluminum		without Thermal	with Thermal	Structural
		Break	Break	Clad Wood	Wood/Vinyl	Break	Break	Glazing
	Single Glazing							
1	1/8" glass	1.98	1.89	1.75	1.47	1.36	1.25	1.25
2	1/4" acrylic/polycarb	1.82	1.73	1.60	1.31	1.21	1.10	1.10
3	1/8" acrylic/polycarb	1.90	1.81	1.68	1.39	1.29	1.18	1.18
	Double Glazing							
4	1/4" airspace	1.31	1.11	1.05	0.84	0.82	0.70	0.66
5	1/2" airspace	1.30	1.10	1.04	0.84	0.81	0.69	0.65
6	1/4" argon space	1.27	1.07	1.00	0.80	0.77	0.66	0.62
7	1/2" argon space	1.27	1.07	1.00	0.80	0.77	0.66	0.62
	Double Glazing, e=0.60	on surface 2 or	3					
8	1/4" airspace	1.27	1.08	1.01	0.81	0.78	0.67	0.63
9	1/2" airspace	1.27	1.07	1.00	0.80	0.77	0.66	0.62
10	1/4" argon space	1.23	1.03	0.97	0.76	0.74	0.63	0.58
11	1/2" argon space	1.23	1.03	0.97	0.76	0.74	0.63	0.58
	Double Glazing, e=0.40	on surface 2 or	3					
12	1/4" airspace	1.25	1.05	0.99	0.78	0.76	0.64	0.60
13	1/2" airspace	1.24	1.04	0.98	0.77	0.75	0.64	0.59
14	1/4" argon space	1.18	0.99	0.92	0.72	0.70	0.58	0.54
15	1/2" argon space	1.20	1.00	0.94	0.74	0.71	0.60	0.56
	Double Glazing, e=0.20	on surface 2 or	3					
16	1/4" airspace	1.20	1.00	0.94	0.74	0.71	0.60	0.56
17	1/2" airspace	1.20	1.00	0.94	0.74	0.71	0.60	0.56
18	1/4" argon space	1.14	0.94	0.88	0.68	0.65	0.54	0.50
19	1/2" argon space	1.15	0.95	0.89	0.68	0.66	0.55	0.51
	Double Glazing, e=0.10	on surface 2 or	3					
20	1/4" airspace	1.18	0.99	0.92	0.72	0.70	0.58	0.54
21	1/2" airspace	1.18	0.99	0.92	0.72	0.70	0.58	0.54
22	1/4" argon space	1.11	0.91	0.85	0.65	0.63	0.52	0.47
23	1/2" argon space	1.13	0.93	0.87	0.67	0.65	0.53	0.49
	Double Glazing, e=0.05	on surface 2 or	3					
24	1/4" airspace	1.17	0.97	0.91	0.70	0.68	0.57	0.52
25	1/2" airspace	1.17	0.98	0.91	0.71	0.69	0.58	0.53
26	1/4" argon space	1.09	0.89	0.83	0.63	0.61	0.50	0.45
27	1/2" argon space	1.11	0.91	0.85	0.65	0.63	0.52	0.47
	Triple Glazing						2	
28	1/4" airspaces	1.12	0.89	0.84	0.64	0.64	0.53	0.48
29	1/2" airspaces	1.10	0.87	0.81	0.61	0.62	0.51	0.45
30	1/4" argon spaces	1.09	0.86	0.80	0.60	0.61	0.50	0.44
31	1/2" argon spaces	1.07	0.84	0.79	0.59	0.59	0.48	0.42
32	Triple Glazing, e=0.20 or			0.70	0.50	0.40	0.40	0.42
33	1/4" airspaces 1/2" airspaces	1.08 1.05	0.85 0.82	0.79 0.77	0.59 0.57	0.60 0.57	0.49 0.46	0.43 0.41
34	1/4" argon spaces	1.03	0.82	0.77	0.54	0.57	0.46	0.41
	1/4 argon spaces	1.02	0.19	0.74	0.54	0.55	0.44	0.56

TABLE A8.1A (continued) Assembly U-Factors for Unlabeled Skylights

				-				
					Sloped Insta	llation		
	Product Type		J nlabeled Sky glass/plastic, fl				ed Skylight with plastic, flat/dome	
	Frame Type	Aluminum	Aluminum	Reinforced		Aluminum	Aluminum	
ID	Glazing Type	without Thermal Break	with Thermal Break	Vinyl/ Aluminum Clad Wood	Wood/Vinyl	without Thermal Break	with Thermal Break	Structural Glazing
35	1/2" argon spaces	1.01	0.78	0.73	0.53	0.54	0.43	0.37
	Triple Glazing, e=0.20 o	n surfaces 2 or	3 and 4 or 5					
36	1/4" airspaces	1.03	0.80	0.75	0.55	0.56	0.45	0.39
37	1/2" airspaces	1.01	0.78	0.73	0.53	0.54	0.43	0.37
38	1/4" argon spaces	0.99	0.75	0.70	0.50	0.51	0.40	0.35
39	1/2" argon spaces	0.97	0.74	0.69	0.49	0.50	0.39	0.33
	Triple Glazing, e=0.10 o	n surfaces 2 or	3 and 4 or 5					
40	1/4" airspaces	1.01	0.78	0.73	0.53	0.54	0.43	0.37
41	1/2" airspaces	0.99	0.76	0.71	0.51	0.52	0.41	0.36
42	1/4" argon spaces	0.96	0.73	0.68	0.48	0.49	0.38	0.32
43	1/2" argon spaces	0.95	0.72	0.67	0.47	0.48	0.37	0.31
	Quadruple Glazing, e=0.	.10 on surfaces	2 or 3 and 4 or	5				
44	1/4" airspaces	0.97	0.74	0.69	0.49	0.50	0.39	0.33
45	1/2" airspaces	0.94	0.71	0.66	0.46	0.47	0.36	0.30
46	1/4" argon spaces	0.93	0.70	0.65	0.45	0.46	0.35	0.30
47	1/2" argon spaces	0.91	0.68	0.63	0.43	0.44	0.33	0.28
48	1/4" krypton spaces	0.88	0.65	0.60	0.40	0.42	0.31	0.25

TABLE A8.1B Assembly Solar Heat Gain Coefficients (SHGC) and Assembly Visible Light Transmittances (VLT) for Unlabeled Skylights

		Unlabeled Skylig	hts (include	s glass/pl	lastic, flat/	domed,	fixed/oper	able)
Glass	Glazing Type: Number of glazing layers Number and emissivity of coatings	Frame:	Metal v		Metal therma		Wood/ fiberg	•
Type	(glazing is glass except where noted)	Characteristic:	SHGC	VLT	SHGC	VLT	SHGC	VLT
Clear	Single glazing, 1/8 in. glass		0.82	0.76	0.78	0.76	0.73	0.73
	Single glazing, 1/4 in. glass		0.78	0.75	0.74	0.75	0.69	0.72
	Single glazing, acrylic/polycarbonate		0.83	0.92	0.83	0.92	0.83	0.92
	Double glazing		0.68	0.66	0.64	0.66	0.59	0.64
	Double glazing, E=0.40 on surface 2 or 3		0.71	0.65	0.67	0.65	0.62	0.63
	Double glazing, E=0.20 on surface 2 or 3		0.66	0.61	0.62	0.61	0.57	0.59
	Double glazing, E=0.10 on surface 2 or 3		0.59	0.63	0.55	0.63	0.51	0.61
	Double glazing, acrylic/polycarbonate		0.77	0.89	0.77	0.89	0.77	0.89
	Triple glazing		0.60	0.59	0.56	0.59	0.52	0.57
	Triple glazing, E=0.40 on surface 2, 3, 4, or 5		0.64	0.60	0.60	0.60	0.56	0.57
	Triple glazing, E=0.20 on surface 2, 3, 4, or 5		0.59	0.55	0.55	0.55	0.51	0.53
	Triple glazing, E=0.10 on surface 2, 3, 4, or 5		0.54	0.56	0.50	0.56	0.46	0.54
	Triple glazing, E=0.40 on surfaces 3 and 5		0.62	0.57	0.58	0.57	0.53	0.55
	Triple glazing, E=0.20 on surfaces 3 and 5		0.56	0.51	0.52	0.51	0.48	0.49
	Triple glazing, E=0.10 on surfaces 3 and 5		0.47	0.54	0.43	0.54	0.40	0.52
	Triple glazing, acrylic/polycarbonate		0.71	0.85	0.71	0.85	0.71	0.85
	Quadruple glazing, E=0.10 on surfaces 3 and 5		0.41	0.48	0.37	0.48	0.33	0.46
	Quadruple glazing, acrylic/polycarbonate		0.65	0.81	0.65	0.81	0.65	0.81
Tinted	Single glazing, 1/8 in. glass		0.70	0.58	0.66	0.58	0.62	0.56
	Single glazing, 1/4 in. glass		0.61	0.45	0.56	0.45	0.52	0.44
	Single glazing, acrylic/polycarbonate		0.46	0.27	0.46	0.27	0.46	0.27
	Double glazing		0.50	0.40	0.46	0.40	0.42	0.39
	Double glazing, E=0.40 on surface 2 or 3		0.59	0.50	0.55	0.50	0.50	0.48
	Double glazing, E=0.20 on surface 2 or 3		0.47	0.37	0.43	0.37	0.39	0.36
	Double glazing, E=0.10 on surface 2 or 3		0.43	0.38	0.39	0.38	0.35	0.37
	Double glazing, acrylic/polycarbonate		0.37	0.25	0.37	0.25	0.37	0.25
	Triple glazing		0.42	0.22	0.37	0.22	0.34	0.21
	Triple glazing, E=0.40 on surface 2, 3, 4, or 5		0.53	0.45	0.49	0.45	0.45	0.44
	Triple glazing, E=0.20 on surface 2, 3, 4, or 5		0.42	0.33	0.38	0.33	0.35	0.32
	Triple glazing, E=0.10 on surface 2, 3, 4, or 5		0.39	0.34	0.35	0.34	0.31	0.33
	Triple glazing, E=0.40 on surfaces 3 and 5		0.51	0.43	0.47	0.43	0.43	0.42
	Triple glazing, E=0.20 on surfaces 3 and 5		0.40	0.31	0.36	0.31	0.32	0.29
	Triple glazing, E=0.10 on surfaces 3 and 5		0.34	0.32	0.30	0.32	0.27	0.31
	Triple glazing, acrylic/polycarbonate		0.30	0.23	0.30	0.23	0.30	0.23
	Quadruple glazing, E=0.10 on surfaces 3 and 5		0.30	0.29	0.26	0.29	0.23	0.28
	Quadruple glazing, acrylic/polycarbonate		0.27	0.25	0.27	0.25	0.27	0.25

TABLE A8.2 Assembly U-Factors, Assembly Solar Heat Gain Coefficients (SHGC), and Assembly Visible Light Transmittances (VLT) for Unlabeled Vertical Fenestration

			Un	ılabeled Vei	rtical Fenestrat	ion	
			Clear Glass		7	inted Glass	
Frame Type	Glazing Type	U-Factor	SHGC	VLT	U-Factor	SHGC	VLT
All frame types							
	Single glazing	1.25	0.82	0.76	1.25	0.70	0.58
	Glass block	0.60	0.56	0.56	n.a.	n.a.	n.a.
Wood, vinyl, or fiberglass	frame						
	Double glazing	0.60	0.59	0.64	0.60	0.42	0.39
	Triple glazing	0.45	0.52	0.57	0.45	0.34	0.21
Metal and other frame type	;						
	Double glazing	0.90	0.68	0.66	0.90	0.50	0.40
	Triple glazing	0.70	0.60	0.59	0.70	0.42	0.22

TABLE A9.2A Effective Insulation/Framing Layer R-Values for Roof and Floor Insulation Installed Between Metal Framing (4 ft on center)

Rated R-Value of Insulation	Correction Factor	Framing/Cavity R-Value	Rated R-Value of Insulation	Correction Factor	Framing/Cavity R-Value
0.00	1.00	0.00	20.00	0.85	17.00
4.00	0.97	3.88	21.00	0.84	17.64
5.00	0.96	4.80	24.00	0.82	19.68
8.00	0.94	7.52	25.00	0.81	20.25
10.00	0.92	9.20	30.00	0.79	23.70
11.00	0.91	10.01	35.00	0.76	26.60
12.00	0.90	10.80	38.00	0.74	28.12
13.00	0.90	11.70	40.00	0.73	29.20
15.00	0.88	13.20	45.00	0.71	31.95
16.00	0.87	13.92	50.00	0.69	34.50
19.00	0.86	16.34	55.00	0.67	36.85

TABLE A9.2B Effective Insulation/Framing Layer R-Values for Wall Insulation Installed Between Steel Framing

Nominal Depth of Cavity (in.)	Actual Depth of Cavity (in.)	Rated R-Value of Airspace or Insulation	Effective Framing/Cavity R-Value at 16 in. on center	Effective Framing/Cavity at 24 in. on center
		Empty cavity	, no insulation	
4	3.5	R-0.91	0.79	0.91
		Insulate	ed Cavity	
4	3.5	R-11	5.5	6.6
4	3.5	R-13	6.0	7.2
4	3.5	R-15	6.4	7.8
6	6.0	R-19	7.1	8.6
6	6.0	R-21	7.4	9.0
8	8.0	R-25	7.8	9.6

A9.3 Testing Procedures.

- **A9.3.1 Building Material Thermal Properties.** If *building material* R-values or thermal conductivities are determined by testing, one of the following test procedures shall be used:
- (a) ASTM C177,
- (b) ASTM C518, or
- (c) ASTM C1363

For concrete, the oven-dried conductivity shall be multiplied by 1.2 to reflect the moisture content as typically installed.

A9.3.2 Assembly U-Factors. If assembly *U-factors* are determined by testing, ASTM C1363 test procedures shall be used.

Product samples tested shall be production line material or representative of material as purchased by the consumer or contractor. If the assembly is too large to be tested at one time in its entirety, then either a representative portion shall be tested or different portions shall be tested separately and a weighted average determined. To be representative, the portion tested shall include edges of panels, joints with other panels, typical framing percentages, and thermal bridges.

A9.4 Calculation Procedures and Assumptions. The following procedures and assumptions shall be used for all cal-

culations. R-values for air films, insulation, and *building materials* shall be taken from A9.4.1 through A9.4.3, respectively. In addition, the appropriate assumptions listed in A2 through A8, including framing factors, shall be used.

A9.4.1 Air Films. Prescribed R-values for air films shall be as follows:

R-Value	Condition
0.17	All exterior surfaces
0.46	All semi-exterior surfaces
0.61	Interior horizontal surfaces, heat flow up
0.92	Interior horizontal surfaces, heat flow down
0.68	Interior vertical surfaces

- **A9.4.1.1** Exterior surfaces are areas exposed to the wind.
- **A9.4.1.2** Semi-exterior surfaces are protected surfaces that face attics, crawlspaces, and parking garages with natural or mechanical ventilation.
- **A9.4.1.3** Interior surfaces are surfaces within enclosed spaces.
- **A9.4.1.4** The R-value for cavity airspaces shall be taken from Table A9.4A based on the emissivity of the cavity from Table A9.4B. No credit shall be given for airspaces in cavities that contain any insulation or are less than 0.5 in. The values for 3.5 in. cavities shall be used for cavities of that width and greater.

TABLE A9.4A Values for Cavity Air Spaces

				R-Value		
			E	Effective Emissiv	rity	
Component	Airspace Thickness (in.)	0.03	0.05	0.20	0.50	0.82
Roof	0.50	2.13	2.04	1.54	1.04	0.77
	0.75	2.33	2.22	1.64	1.09	0.80
	1.50	2.53	2.41	1.75	1.13	0.82
	3.50	2.83	2.66	1.88	1.19	0.85
Wall	0.50	2.54	2.43	1.75	1.13	0.82
	0.75	3.58	3.32	2.18	1.30	0.90
	1.50	3.92	3.62	2.30	1.34	0.93
	3.50	3.67	3.40	2.21	1.31	0.91
Floor	0.50	2.55	1.28	1.00	0.69	0.53
	0.75	1.44	1.38	1.06	0.73	0.54
	1.50	2.49	2.38	1.76	1.15	0.85
	3.50	3.08	2.90	2.01	1.26	0.90

TABLE A9.4B Emittance Values of Various Surfaces and Effective Emittances of Air Spaces

		Effective Emittance	
		e eff of Air Space	
Surface	Average Emittance e	One Surface e; Other, 0.9	Both Surfaces Emittance e
Aluminum foil, bright	0.05	0.05	0.03
Aluminum foil, with condensate just visible (>0.7 gr/ft ²)	0.30	0.29	-
Aluminum foil, with condensate clearly visible (>2.9 gr/ft ²)	0.70	0.65	-
Aluminum sheet	0.12	0.12	0.06
Aluminum coated paper, polished	0.20	0.20	0.11
Steel, galv., bright	0.25	0.24	0.15
Aluminum paint	0.50	0.47	0.35
Bldg materials: wood, paper, masonry, nonmetallic paints	0.90	0.82	0.82
Regular glass	0.84	0.77	0.72

A9.4.2 Insulation R-Values. Insulation R-values shall be determined as follows:

- (a) For insulation that is not compressed, the *rated R-value of insulation* shall be used.
- (b) For calculation purposes, the effective R-value for insulation that is uniformly compressed in confined cavities shall be taken from Table A9.4C.
- (c) For calculation purposes, the effective R-value for insulation installed in cavities in attic roofs with steel joists shall be taken from Table A9.2A.
- (d) For calculation purposes, the effective R-value for insulation installed in cavities in steel-framed walls shall be taken from Table A9.2B.

A9.4.3 Building Material Thermal Properties. R-values for *building materials* shall be taken from Table A9.4D. Concrete block R-values shall be calculated using the isothermal planes method or a two-dimensional calculation program, thermal conductivities from Table A9.4E, and dimensions from ASTM C90. The parallel path calculation method is not acceptable.

TABLE A9.4C Effective R-Values for Fiberglass

	Ins	sulation R	-Value at	Standard	Thickness	3			
Rated R	-Value	38	30	22	21	19	15	13	11
Standard Th	ickness (in.)	12	9.5	6.5	5.5	6	3.5	3.5	3.5
Nominal Lumber Size (in.)	Actual Depth of Cavity (in.)	Effective Insulation R-Values when Installed in a Confined Cavity							
2 × 12	11.25	37	-	-	-	-	-	-	-
2×10	9.25	32	30	-	-	-	-	-	-
2×8	7.25	27	26	22	21	19	-	-	-
2×6	5.5	-	21	20	21	18	-	-	-
2×4	3.5	-	-	14	-	13	15	13	11
	2.5	-	-	-	-	-	-	9.8	-
	1.5	-	-	-	-	-	-	6.3	6

TABLE A9.4D R-Values for Building Materials

Material	Nominal Size (in.)	Actual Size (in.)	R-Value
Carpet and rubber pad	-	-	1.23
Concrete at R-0.0625/in.	-	2	0.13
	-	4	0.25
	-	6	0.38
	-	8	0.5
	-	10	0.63
	-	12	0.75
Flooring, wood subfloor	-	0.75	0.94
Gypsum board	-	0.5	0.45
	-	0.625	0.56
Metal deck	-	-	0
Roofing, built-up	-	0.375	0.33
Sheathing, vegetable fiber board, 0.78 in.	-	0.78	2.06
Soil at R-0.104/in.	-	12	1.25
Steel, mild		1	0.0031807
Stucco	-	0.75	0.08
Wood, 2 × 4 at R-1.25/in.	4	3.5	4.38
Wood, 2 × 6 at R-1.25/in.	6	5.5	6.88
Wood, 2 × 8 at R-1.25/in.	8	7.25	9.06
Wood, 2 × 10 at R-1.25/in.	10	9.25	11.56
Wood, 2 × 12 at R-1.25/in.	12	11.25	14.06
Wood, 2 × 14 at R-1.25/in.	14	13.25	16.56

TABLE A9.4E Thermal Conductivity of Concrete Block Material

Concrete Block Density in lb/ft ³	Thermal Conductivity in Btu·in./h·ft ² .°F
80	3.7
85	4.2
90	4.7
95	5.1
100	5.5
105	6.1
110	6.7
115	7.2
120	7.8
125	8.9
130	10.0
135	11.8
140	13.5

Exception to A9.4.3: R-values for *building materials* or thermal conductivities determined from testing in accordance with A9.3.

A9.4.4 Building Material Heat Capacities: The *heat capacity* of assemblies shall be calculated using published values for the unit weight and specific heat of all building material components that make up the assembly.

(This is a normative appendix and is part of this standard.)

NORMATIVE APPENDIX B BUILDING ENVELOPE CLIMATE CRITERIA

B1 General. This normative appendix provides the information to determine both United States and international climate zones. For U.S. locations, use either Figure B-1 or Table B-1 to determine the climate zone number and letter that are required for determining compliance regarding various sections and tables in this standard. Figure B-1 contains the county-by-county climate zone map for the United States. Table B-1 lists each state and major counties within the state and shows the climate number and letter for each county listed.

Table B-2 shows the climate zone number for a wide variety of Canadian locations. When the climate zone letter is required to determine compliance with this standard, refer to Table B-4 and the Major Climate Type Definitions in Section B2 to determine the letter (A, B, or C).

Table B-3 shows the climate zone number for a wide variety of other international locations besides Canada. When the climate zone letter is required to determine compliance with this standard, refer to Table B-4 and the Major Climate Type Definitions in Section B2 to determine the letter (A, B, or C).

For all international locations that are not listed either in Table B-2 or B-3, use Table B-4 and the Major Climate Type Definitions in Section B2 to determine both the climate zone letter and number.

Note: CDD50 and HDD65 values may be found in Normative Appendix D.

B2 Major Climate Type Definitions. Use the following information along with Table B-4 to determine climate zone numbers and letters for international climate zones.

Marine (C) definition—Locations meeting all four criteria:

- Mean temperature of coldest month between 27°F and 65°F
- 2. Warmest month mean $< 72^{\circ}F$
- 3. At least four months with mean temperatures over 50°F
- 4. Dry season in summer. The month with the heaviest precipitation in the cold season has at least three times as much precipitation as the month with the least precipitation in the rest of the year. The cold season is October through March in the Northern Hemisphere and April through September in the Southern Hemisphere.

Dry (B) definition—Locations meeting the following criteria: not marine and

$$P_{in} < 0.44 \times (TF - 19.5)$$

where

P = annual precipitation in inches and

 $T = \text{annual mean temperature in } ^{\circ}\text{F.}$

Moist (A) definition—Locations that are not marine and not dry.

Figure B-1 Climate zones for United States locations.

TABLE B-1 U.S. Climate Zones

State State State State County Zone County Zone County Zone County Zone Alabama (AL) (Arkansas cont.) (Colorado cont.) Georgia (GA) Zone 3a Except Washington 4A Las Animas 4B Zone 3A Except Baldwin 2A California (CA) Otero 4B 2A Appling Mobile 2A Zone 3B Except Alamosa 6B Atkinson 2A 2B2A Alaska (AK) Imperial Archuleta Bacon 6B Chaffee Zone 7 Except Alameda 3C Baker 2A 6B 3C 2A Bethel (CA) 8 Marin Berrien Conejos 6B Dillingham (CA) 8 Mendocino 3C Costilla 6B Brantley 2A Fairbanks North Star 8 3C Custer **Brooks** 2A Monterey 6B 8 3C Nome (CA) Napa Dolores 6B Bryan 2A 8 3C North Slope San Benito Eagle 6B Camden 2A Northwest Arctic 8 San Francisco 3C Moffat 6B Charlton 2A Southeast Fairbanks (CA) 8 San Luis Obispo 3C Ouray 6B Chatham 2A Wade Hampton (CA) 8 San Mateo 3C Rio Blanco 6B Clinch 2A Yukon-Koyukuk (CA) 8 Santa Barbara 3C Saguache 6B Colquitt 2A Santa Clara 3C Arizona (AZ) San Miguel 6B Cook 2A Zone 3B Except Santa Cruz Clear Creek 7 Decatur 3C 2A La Paz 7 2BSonoma 3C Grand **Echols** 2A Maricopa 2B Ventura 3C Gunnison 7 Effingham 2A 2B Amador 4B Hinsdale 7 Pima Evans 2A Jackson 7 Pinal 2BCalaveras 4B Glynn 2A 2B Del Norte Lake 7 Yuma 4B Grady 2A Gila 4B El Dorado 4B Mineral 7 Jeff Davis 2A 4B Humboldt 4B Park 7 Lanier Yavapai 2A Apache 5B Inyo 4B Pitkin 7 Liberty 2A 7 Coconino 5B Lake 4B Rio Grande Long 2A 7 Navajo 5B Mariposa 4B Routt Lowndes 2A 7 Arkansas (AR) Trinity 4B San Juan McIntosh 2A Zone 3A Except Tuolumme 4B Summitt 7 Miller 2A Baxter 4A Lassen 5B Connecticut (CT) Mitchell 2A 4A Modoc 5B Zone 5A Pierce Benton 2A Delaware (DE) Boone 4A Nevada 5B Seminole 2A Plumas Tattnall Carroll 4A 5B Zone 4A 2A **Fulton** 4A Sierra 5B District of Columbia (DC) Thomas 2A Izard 4A Siskiyou 5B Zone 4A Toombs 2A Madison Florida (FL) Ware 4A Alpine 6B 2A Marion 4A Mono 6B Zone 2A Except Wayne 2A Colorado (CO) **Broward** 1A Banks Newton 4A 4A Zone 5B Except Miami-Dade 4A 1A Catoosa 4A Searcy 4B Stone 4A Baca Monroe 1A Chattooga 4A

TABLE B-1 U.S. Climate Zones

State	State	State	State
State	State	State	State

County	Zone	County	Zone	County	Zone	County	Zone
(Georgia cont.)		(Idaho cont.)		(Illinois cont.)		(Iowa cont.)	
Dade	4A	Payette	5B	Wayne	4A	Buchanan	6A
Dawson	4A	Power	5B	White	4A	Buena Vista	6A
Fannin	4A	Shoshone	5B	Williamson	4A	Butler	6A
Floyd	4A	Twin Falls	5B	Indiana (IN)		Calhoun	6A
Franklin	4A	Washington	5B	Zone 5A Except		Cerro Gordo	6A
Gilmer	4A	Illinois (IL)		Brown	4A	Cherokee	6A
Gordon	4A	Zone 5A Except		Clark	4A	Chickasaw	6A
Habersham	4A	Alexander	4A	Crawford	4A	Clay	6A
Hall	4A	Bond	4A	Daviess	4A	Clayton	6A
Lumpkin	4A	Christian	4A	Dearborn	4A	Delaware	6A
Murray	4A	Clay	4A	Dubois	4A	Dickinson	6A
Pickens	4A	Clinton	4A	Floyd	4A	Emmet	6A
Rabun	4A	Crawford	4A	Gibson	4A	Fayette	6A
Stephens	4A	Edwards	4A	Greene	4A	Floyd	6A
Towns	4A	Effingham	4A	Harrison	4A	Franklin	6A
Union	4A	Fayette	4A	Jackson	4A	Grundy	6A
Walker	4A	Franklin	4A	Jefferson	4A	Hamilton	6A
White	4A	Gallatin	4A	Jennings	4A	Hancock	6A
Whitfield	4A	Hamilton	4A	Knox	4A	Hardin	6A
Hawaii (HI)		Hardin	4A	Lawrence	4A	Howard	6A
Zone 1A		Jackson	4A	Martin	4A	Humboldt	6A
Idaho (ID)		Jasper	4A	Monroe	4A	Ida	6A
Zone 6B Except		Jefferson	4A	Ohio	4A	Kossuth	6A
Ada	5B	Johnson	4A	Orange	4A	Lyon	6A
Benewah	5B	Lawrence	4A	Perry	4A	Mitchell	6A
Canyon	5B	Macoupin	4A	Pike	4A	O'Brien	6A
Cassia	5B	Madison	4A	Posey	4A	Osceola	6A
Clearwater	5B	Monroe	4A	Ripley	4A	Palo Alto	6A
Elmore	5B	Montgomery	4A	Scott	4A	Plymouth	6A
Gem	5B	Perry	4A	Spencer	4A	Pocahontas	6A
Gooding	5B	Pope	4A	Sullivan	4A	Sac	6A
Idaho	5B	Pulaski	4A	Switzerland	4A	Sioux	6A
Jerome	5B	Randolph	4A	Vanderburgh	4A	Webster	6A
Kootenai	5B	Richland	4A	Warrick	4A	Winnebago	6A
Latah	5B	Saline	4A	Washington	4A	Worth	6A
Lewis	5B	Shelby	4A	Iowa (IA)		Wright	6A
Lincoln	5B	St. Clair	4A	Zone 5A Except		Kansas (KS)	
Minidoka	5B	Union	4A	Allamakee	6A	Zone 4 Except	,
Nez Perce	5B	Wabash	4A	Black Hawk	6A	Cheyenne	5A
Owyhee	5B	Washington	4A	Bremer	6A	Cloud	5A

TABLE B-1 U.S. Climate Zones

State State State State County Zone County Zone County Zone County Zone (Kansas cont.) (Louisiana cont.) (Michigan cont.) (Minnesota cont.) Jackson **Grand Traverse** Cass 7 Decatur 5A 3A 6A La Salle 7 Ellis 5A 3A Huron 6A Clay Gove 5A Lincoln 3A Iosco 6A Clearwater 7 Graham 5A Madison 3A Isabella 6A Cook 7 Greeley Morehouse 3A Kalkaska Crow Wing 7 5A 6A Hamilton Natchitoches 3A Lake Grant 7 5A 6A Jewell Ouachita Leelanau Hubbard 7 5A 3A 6A Lane 5A Red River 3A Manistee 6A Itasca 7 Logan 5A Richland 3A Kanabec 7 Marquette 6A Mitchell 5A Sabine 3A Mason 6A Kittson 7 Ness 5A Tensas 3A Mecosta 6A Koochiching 7 7 Union 3A Menominee Lake Norton 5A 6A Lake of the Woods 7 Osborne Vernon 3A Missaukee 5A 6A Webster 7 **Phillips** 5A 3A Montmorency 6A Mahnomen 7 West Carroll 3A Marshall Rawlins 5A Newaygo 6A Winn 3A 7 Republic 5A Mille Lacs Oceana 6A 7 Maine (ME) Rooks 5A Ogemaw 6A Norman 7 Scott 5A Zone 6A Except Osceola 6A Otter Trail Sheridan 5A Aroostook 7 Oscoda 6A Pennington 7 Sherman 5A Maryland (MD) Otsego 6A Pine 7 Smith 5A Zone 4A Except Presque Isle 6A Polk 7 Thomas 5A Garrett 5A Roscommon 6A Red Lake 7 Massachusetts (MA) Sanilac Roseau 7 Trego 5A 6A Wallace Wexford St. Louis 5A Zone 5 6A 7 Wichita Michigan (MI) 7 Wadena 7 5A Baraga Wilkin Kentucky (KY) Zone 5A Except Chippewa 7 7 Alcona 7 Mississippi (MS) Zone 4A 6A Gogebic Zone 3A Except Louisiana (LA) 7 Alger 6A Houghton 7 Zone 2A Except Hancock 2A Alpena 6A Iron Bienville 3A Antrim 6A Keweenaw 7 Harrison 2A Bossier 7 Jackson 3A Arenac 6A Luce 2A Caddo Benzie 6A Mackinac 7 Pearl River 2A 3A Caldwell 3A Charlevoix 6A Ontonagon 7 Stone 2A Schoolcraft Catahoula 3A Cheboygan 6A 7 Missouri (MO) Claiborne 3A Clare 6A Minnesota (MN) Zone 4A Except Concordia 3A Crawford 6A Zone 6A Except Adair 5A De Soto 3A Delta 6A Aitkin 7 Andrew 5A East Carroll Dickinson Becker 7 Atchison 5A 3A 6A Franklin Emmet 7 Buchanan 3A 6A Beltrami 5A Grant 3A Gladwin 6A Carlton 7 Caldwell 5A

TABLE B-1 U.S. Climate Zones

State State State State County Zone County Zone County Zone County Zone (Missouri cont.) (New Jersey cont.) (New York cont.) (North Carolina cont.) Chariton Hunterdon Duplin 5A 5A Cattaraugus 6A 3A Clark 5A Mercer 5A Chenango 6A Edgecombe 3A Gaston Clinton 5A Morris 5A Clinton 6A 3A Daviess 5A Passaic 5A Delaware 6A Greene 3A Gentry Somerset 5A Essex Hoke 5A 6A 3A Grundy 5A Sussex 5A Franklin Hyde 3A 6A Harrison Warren 5A Fulton Johnston 5A 6A 3A Holt 5A New Mexico (NM) Hamilton 6A Jones 3A 5A Zone 5B Except Herkimer 3A Knox 6A Lenoir Lewis 5A Chaves 3B Jefferson 6A Martin 3A Linn 5A Dona Ana 3B Lewis 6A Mecklenberg 3A Eddy 3B Livingston 5A Madison 6A Montgomery 3A Hidalgo 3B Montgomery Moore 3A Macon 5A 6A Lea Marion 5A 3B Oneida 6A New Hanover 3A 3B Onslow 3A Mercer 5A Luna Otsego 6A Nodaway 5A Otero 3B Schoharie Pamlico 3A 6A Pike Bernalillo 5A 4B Schuyler 6A Pasquotank 3A Putnam 5A Curry 4B St. Lawrence 6A Pender 3A Ralls 5A DeBaca 4B Steuben 6A Perquimans 3A Schuyler 5A Grant 4B Sullivan 6A Pitt 3A Randolph Scotland 5A Guadalupe 4B **Tompkins** 6A 3A Shelby 5A Lincoln 4B Ulster 6A Richmond 3A

4B

4B

4B

4B

4B

4B

4A

4A

4A

4A

4A

4A

4A

4A

6A

6A

Warren

Anson

Beaufort

Brunswick

Cabarrus

Camden

Carteret

Chowan

Craven

Columbus

Cumberland

Currituck

Davidson

Dare

Bladen

Wyoming

North Carolina (NC)

Zone 4A Except

Robeson

Rowan

Sampson

Scotland

Stanly

Tyrrell

Union

Wayne

Wilson

Ashe

Avery

Mitchell

Watauga

Yancey

North Dakota (ND)

Zone 7 Except

Alleghany

Washington

6A

6A

3A

5A

5A

3B

5A

5A

5A

5A

5A

Quay

Sierra

Socorro

Union

Bronx

Kings

Nassau

Queens

Suffolk

New York

Richmond

Westchester

Allegany

Broome

Valencia

New York (NY)

Zone 5A Except

Roosevelt

Sullivan

Montana (MT)

Nebraska (NE)

Nevada (NV)

New Hampshire (NH)

Clark

Cheshire

Strafford

Bergen

Hillsborough

Rockingham

New Jersey (NJ)

Zone 6B

Zone 5A

Zone 5B Except

Zone 6A Except

Zone 4A Except

Worth

3A

5A

5A

5A

5A

5A

5A

TABLE B-1 U.S. Climate Zones

State	State	State	State

County	Zone	County	Zone	County	Zone	County	Zone
(North Dakota cont.)		Oregon (OR)		(South Dakota cont.)		(Texas cont.)	
Adams	6A	Zone 4C Except		Jackson	5A	Calhoun	2A
Billings	6A	Baker	5B	Mellette	5A	Cameron	2A
Bowman	6A	Crook	5B	Todd	5A	Chambers	2A
Burleigh	6A	Deschutes	5B	Tripp	5A	Cherokee	2A
Dickey	6A	Gilliam	5B	Union	5A	Colorado	2A
Dunn	6A	Grant	5B	Yankton	5A	Comal	2A
Emmons	6A	Harney	5B	Tennessee (TN)		Coryell	2A
Golden Valley	6A	Hood River	5B	Zone 4A Excep	t	DeWitt	2A
Grant	6A	Jefferson	5B	Chester	3A	Dimmit	2B
Hettinger	6A	Klamath	5B	Crockett	3A	Duval	2A
LaMoure	6A	Lake	5B	Dyer	3A	Edwards	2B
Logan	6A	Malheur	5B	Fayette	3A	Falls	2A
McIntosh	6A	Morrow	5B	Hardeman	3A	Fayette	2A
McKenzie	6A	Sherman	5B	Hardin	3A	Fort Bend	2A
Mercer	6A	Umatilla	5B	Haywood	3A	Freestone	2A
Morton	6A	Union	5B	Henderson	3A	Frio	2B
Oliver	6A	Wallowa	5B	Lake	3A	Galveston	2A
Ransom	6A	Wasco	5B	Lauderdale	3A	Goliad	2A
Richland	6A	Wheeler	5B	Madison	3A	Gonzales	2A
Sargent	6A	Pennsylvania (PA)		McNairy	3A	Grimes	2A
Sioux	6A	Zone 5A Except		Shelby	3A	Guadalupe	2A
Slope	6A	Bucks	4A	Tipton	3A	Hardin	2A
Stark	6A	Chester	4A	Texas (TX)		Harris	2A
Ohio (OH)		Delaware	4A	Zone 3A Excep	t	Hays	2A
Zone 5A Except		Montgomery	4A	Anderson	2A	Hidalgo	2A
Adams	4A	Philadelphia	4A	Angelina	2A	Hill	2A
Brown	4A	York	4A	Aransas	2A	Houston	2A
Clermont	4A	Rhode Island (RI)		Atascosa	2A	Jackson	2A
Gallia	4A	Zone 5A		Austin	2A	Jasper	2A
Hamilton	4A	South Carolina (SC)		Bandera	2B	Jefferson	2A
Lawrence	4A	Zone 3A		Bastrop	2A	Jim Hogg	2A
Pike	4A	South Dakota (SD)		Bee	2A	Jim Wells	2A
Scioto	4A	Zone 6A Except		Bell	2A	Karnes	2A
Washington	4A	Bennett	5A	Bexar	2A	Kenedy	2A
Oklahoma (OK)		Bon Homme	5A	Bosque	2A	Kinney	2B
Zone 3A Except		Charles Mix	5A	Brazoria	2A	Kleberg	2A
Beaver	4A	Clay	5A	Brazos	2A	La Salle	2B
Cimarron	4A	Douglas	5A	Brooks	2A	Lavaca	2A
Texas	4A	Gregory	5A	Burleson	2A	Lee	2A
		Hutchinson	5A	Caldwell	2A	Leon	2A

TABLE B-1 U.S. Climate Zones

State		State		State		State	
County	Zone	County	Zone	County	Zone	County	Zone
(Texas cont.)		(Texas cont.)		(Texas cont.)		(Texas cont.)	
Liberty	2A	Brewster	3B	Mason	3B	Hansford	4B
Limestone	2A	Callahan	3B	McCulloch	3B	Hartley	4B
Live Oak	2A	Childress	3B	Menard	3B	Hockley	4B
Madison	2A	Coke	3B	Midland	3B	Hutchinson	4B
Matagorda	2A	Coleman	3B	Mitchell	3B	Lamb	4B
Maverick	2B	Concho	3B	Motley	3B	Lipscomb	4B
McLennan	2A	Cottle	3B	Nolan	3B	Moore	4B
McMullen	2A	Crane	3B	Pecos	3B	Ochiltree	4B
Medina	2B	Crockett	3B	Presidio	3B	Oldham	4B
Milam	2A	Crosby	3B	Reagan	3B	Parmer	4B
Montgomery	2A	Culberson	3B	Reeves	3B	Potter	4B
Newton	2A	Dawson	3B	Runnels	3B	Randall	4B
Nueces	2A	Dickens	3B	Schleicher	3B	Roberts	4B
Orange	2A	Ector	3B	Scurry	3B	Sherman	4B
Polk	2A	El Paso	3B	Shackelford	3B	Swisher	4B
Real	2B	Fisher	3B	Sterling	3B	Yoakum	4B
Refugio	2A	Foard	3B	Stonewall	3B	Utah (UT)	
Robertson	2A	Gaines	3B	Sutton	3B	Zone 5B Excep	ot
San Jacinto	2A	Garza	3B	Taylor	3B	Washington	3B
San Patricio	2A	Glasscock	3B	Terrell	3B	Box Elder	6B
Starr	2A	Hackell	3B	Terry	3B	Cache	6B
Travis	2A	Hall	3B	Throckmorton	3B	Carbon	6B
Trinity	2A	Hardeman	3B	Tom Green	3B	Daggett	6B
Tyler	2A	Haskell	3B	Upton	3B	Duchesne	6B
Uvalde	2B	Hemphill	3B	Ward	3B	Morgan	6B
Val Verde	2B	Howard	3B	Wheeler	3B	Rich	6B
Victoria	2A	Hudspeth	3B	Wilbarger	3B	Summit	6B
Walker	2A	Irion	3B	Winkler	3B	Uintah	6B
Waller	2A	Jeff Davis	3B	Armstrong	4B	Wasatch	6B
Washington	2A	Jones	3B	Bailey	4B	Vermont (VT)	
Webb	2B	Kendall	3B	Briscoe	4B	Zone 6A	
Wharton	2A	Kent	3B	Carson	4B	Virginia (VA)	
Willacy	2A	Kerr	3B	Castro	4B	Zone 4A	
Williamson	2A	King	3B	Cochran	4B	Washington (WA)	
Wilson	2A	Knox	3B	Dallam	4B	Zone 5B Excep	ot
Zapata	2B	Lipscomb	3B	Deaf Smith	4B	Clallam	4C
Zavala	2B	Loving	3B	Donley	4B	Clark	4C
Andrews	3B	Lubbock	3B	Floyd	4B	Cowlitz	4C
Baylor	3B	Lynn	3B	Gray	4B	Grays Harbor	4C
Borden	3B	Martin	3B	Hale	4B	Jefferson	4C

TABLE B-1 U.S. Climate Zones

State State State State Zone County County Zone County County Zone Zone (Washington cont.) (West Virginia cont.) King 4C Wayne 4A 4C Wirt Kitsap 4A Lewis 4C Wood 4A Mason 4C Wyoming 4A Pacific 4C Wisconsin (WI) Pierce 4C Zone 6A Except Skagit 4C Ashland 7A Snohomish 4C Bayfield 7A Thurston 4C Burnett 7A Wahkiakum 4C Douglas 7A Whatcom 4C Florence 7A 7A 6B Forest Ferry 6B 7A Okanogan Iron Pend Oreille Langlade 7A 6B Stevens 6B Lincoln 7A West Virginia (WV) Oneida 7A 7A Zone 5A Except Price 7A Berkeley 4A Sawyer Boone 4A Taylor 7A Braxton 4A Vilas 7A Cabell 4A Washburn 7A Calhoun 4A Wyoming (WY) Clay Zone 6B Except 4A Gilmer Goshen 5B 4A Jackson Platte 5B 4A Lincoln 7B Jefferson 4A Kanawha Sublette 7B 4A Lincoln Teton 7B 4A Puerto Rico (PR) Logan 4A Mason 4A Zone 1A Except McDowell Barranquitas 2 SSW 2B4A Mercer Cayey 1 E 2B4A Mingo 4A Pacific Islands (PI) Monroe 4A Zone 1A Except Midway Sand Island Morgan 4A 2BPleasants 4A Virgin Islands (VI) Putnam 4A Zone 1A Ritchie 4A Roane 4A Tyler 4A

TABLE B-2 Canadian Climatic Zones

Province		Province		Province		Province	
City	Zone	City	Zone	City	Zone	City	Zone
Alberta (AB)		(Manitoba cont.)		Ontario (ON)		(Quebec cont.)	
Calgary International A	7	Winnipeg International A	7	Belleville	6	Granby	6
Edmonton International A	7	New Brunswick (NB)		Cornwall	6	Montreal Dorval International A	6
Grande Prairie A	7	Chatham A	7	Hamilton RBG	5	Quebec A	7
Jasper	7	Fredericton A	6	Kapuskasing A	7	Rimouski	7
Lethbridge A	6	Moncton A	6	Kenora A	7	Septles A	7
Medicine Hat A	6	Saint John A	6	Kingston A	6	Shawinigan	7
Red Deer A	7	Newfoundland (NF)		London A	6	Sherbrooke A	7
British Columbia (BC)		Corner Brook	6	North Bay A	7	St Jean de Cherbourg	7
Dawson Creek A	7	Gander International A	7	Oshawa WPCP	6	St Jerome	7
Ft Nelson A	8	Goose A	7	Ottawa International A	6	Thetford Mines	7
Kamloops	5	St John's A	6	Owen Sound MOE	6	Trois Rivieres	7
Nanaimo A	5	Stephenville A	6	Peterborough	6	Val d'Or A	7
New Westminster BC Pen	5	Northwest Territories (N	W)	St Catharines	5	Valleyfield	6
Penticton A	5	Ft Smith A	8	Sudbury A	7	Saskatchewan (SK)	
Prince George	7	Inuvik A	8	Thunder Bay A	7	Estevan A	7
Prince Rupert A	6	Yellowknife A	8	Timmins A	7	Moose Jaw A	7
Vancouver International A	5	Nova Scotia (NS)		Toronto Downsview A	6	North Battleford A	7
Victoria Gonzales Hts	5	Halifax International A	6	Windsor A	5	Prince Albert A	7
Manitoba (MB)		Kentville CDA	6	Prince Edward Island (PE	Ε)	Regina A	7
Brandon CDA	7	Sydney A	6	Charlottetown A	6	Saskatoon A	7
Churchill A	8	Truro	6	Summerside A	6	Swift Current A	7
Dauphin A	7	Yarmouth A	6	Quebec (PQ)		Yorkton A	7
Flin Flon	7	Nunavut		Bagotville A	7	Yukon Territory (YT)	
Portage La Prairie A	7	Resolute A	8	Drummondville	6	Whitehorse A	8
The Pas A	7						

TABLE B-3 International Climate Zones

Country Country Country

Argentina Cyprus Cyprus	City (Province or Region)	Zone	City (Province or Region)	Zone	City (Province or Region)	Zone	City (Province or Region)	Zone
Cortoba	Argentina		Cyprus		(India cont.)		(Mexico cont.)	
Description Page	Buenos Aires/Ezeiza	3	Akrotiri	3	New Delhi/Safdarjung	1	Veracruz (Veracruz)	4
Australia	Cordoba	3	Larnaca	3	Indonesia		Merida (Yucatan)	1
Adelaide (SA)	Tucuman/Pozo	2	Paphos	3	Djakarta/Halimperda (Java)	1	Netherlands	
Alice Springs (NT)	Australia		Czech Republic		Kupang Penfui (Sunda Island)	1	Amsterdam/Schiphol	5
Brisbane (AL) 2 Santo Domingo 1 Palembang (Sumatra) 1 Christchurch Accordance Christchurch Accordance Santo Domingo 1 Palembang (Sumatra) 1 Christchurch Accordance Accordance Incland Incland<	Adelaide (SA)	4	Prague/Libus	5	Makassar (Celebes)	1	New Zealand	
Durwin Airport (NT)	Alice Springs (NT)	2	Dominican Republic		Medan (Sumatra)	1	Auckland Airport	
Perth/Guildford (WA)	Brisbane (AL)	2	Santo Domingo	1	Palembang (Sumatra)	1	Christchurch	
Sydney/KSmith (NSW) 3 Luxor 1 Dublin Airport 5 Bergen/Florida 5 Azores (Terceira) Finland Shannon Airport 4 Oslo/Fornebu 6 Lajes 3 Helsinki/Seutula 7 Israel Pakistan Bahamas 1 Lyon/Satolas 4 Jerusalem 3 Karachi Airport 1 Belgium Marseille 4 Huse Jerusalem 4 Parguau New Guine 1 Bermuda 5 Nanes 4 Milano/Linate 4 Paraguay Bermuda 5 Naris Sundari 4 Roma/Flumicion 4 Peru Bruzil 6 Bruzil Manual 5 Monteroy Manual <td>Darwin Airport (NT)</td> <td>1</td> <td>Egypt</td> <td></td> <td>Surabaja Perak (Java)</td> <td>1</td> <td>Wellington</td> <td></td>	Darwin Airport (NT)	1	Egypt		Surabaja Perak (Java)	1	Wellington	
Pinland Pinl	Perth/Guildford (WA)	3	Cairo	2	Ireland		Norway	
	Sydney/KSmith (NSW)	3	Luxor	1	Dublin Airport	5	Bergen/Florida	5
Bahamas	Azores (Terceira)		Finland		Shannon Airport	4	Oslo/Fornebu	6
Assau 1 Lyon/Satolas 4 Tel Aviv Port 2 Papua New Guinea Belgium Marseille 4 Italy Port Moresby 1 Brussels Airport 5 Nantes 4 Milano/Linate 4 Paraguay Bermuda Nice 4 Napoli/Capodichino 4 Asuncion/Stroesner 1 St. Georges/Kindley 2 Paris/Le Bourget 4 Roma/Fiumicion 4 Peru Bolivia Strasbourg 5 Jamaica 1 LimaCallao/Chavez 2 Brazil Berlin/Schoenfeld 5 Montego Bay/Sangster 1 Talara 2 Belem 1 Hamburg 5 Amntego Bay/Sangster 1 Talara 2 Brazil 2 Hannover 5 Fukaura 5 Manila Airport (Luzon) 1 Fortaleza 1 Mannheim 5 Sapporo 5 Poland Recife/Curado 1 Thessalonika/Mikra 4	Lajes	3	Helsinki/Seutula	7	Israel		Pakistan	
Belgium	Bahamas		France		Jerusalem	3	Karachi Airport	1
Brussels Airport 5 Nantes 4 Milano/Linate 4 Paraguay Bermuda Nice 4 Napoli/Capodichino 4 Paraguay St. Georges/Kindley 2 Paris/Le Bourget 4 Roma/Fiumicion 4 Peru Bolivia 5 Strasbourg 5 Jamaica LimaCallao/Chavez 2 Brazil 5 Germany 1 Kingston/Manley 1 San Juan de Marcona 2 Belem 1 Hamburg 5 Montego Bay/Sangster 1 Talara 2 Brasilia 2 Hannover 5 Fukaura 5 Philippines Brasilia 2 Hannover 5 Sapporo 5 Poland Portaleza 1 Mannheim 5 Sapporo 5 Poland Portaleza 1 Mannheim 4 Amman 3 Ruseire/Krakow/Balice 5 Recife/Curado 1 Thessalonik/Mikra 4 Amman<	Nassau	1	Lyon/Satolas	4	Tel Aviv Port	2	Papua New Guinea	
Nice 4 Napoli/Capodichino 4 Asuncion/Stroessner 1	Belgium		Marseille	4	Italy		Port Moresby	1
St. Georges/Kindley 2 Paris/Le Bourget 4 Roma/Fiumicion 4 Peru Bolivia Strasbourg 5 Jamaica LimaCallao/Chavez 2 La Paz/El Alto 5 Germany Kingston/Manley 1 San Juan de Marcona 2 Brazil Berlin/Schoenfeld 5 Montego Bay/Sangster 1 Talara 2 Belem 1 Hamburg 5 Japan Philippines 1 Brasilia 2 Hannover 5 Fukaura 5 Manila Airport (Luzon) 1 Fortaleza 1 Mannheim 5 Sapporo 5 Poland Porto Alegre 2 Greece Tokyo 3 Krakow/Balice 5 Recife/Curado 1 Thessalonika/Mikra 4 Amman 3 Bucuresti/Bancasa 5 Salvador/Ondina 1 Greenland Kenya Russia Kaliningrad (East Prussia) 5 Bulgaria Hungary Korea	Brussels Airport	5	Nantes	4	Milano/Linate	4	Paraguay	
St. Georges/Kindley 2 Paris/Le Bourget 4 Roma/Fiumicion 4 Peru Bolivia Strasbourg 5 Jamaica LimaCallao/Chavez 2 La Paz/El Alto 5 Germany Kingston/Manley 1 San Juan de Marcona 2 Belem 1 Hamburg 5 Japan Philippines Brasilia 2 Hannover 5 Fukaura 5 Monila Airport (Luzon) 1 Fortaleza 1 Mannheim 5 Sapporo 5 Poland Porto Alegre 2 Greece Tokyo 3 Krakow/Balice 5 Recife/Curado 1 Souda (Crete) 3 Jordan Romania 8 Salvador/Ondina 1 Thessalonika/Mikra 4 Amman 3 Bucuresti/Bancasa 5 Sulgaria Hungary Korea Krasnoiarsk 7 Sofia 5 Budapest/Lorinc 5 Pyonggang 5 Moscow Observatory	Bermuda		Nice	4	Napoli/Capodichino	4	Asuncion/Stroessner	1
Strasbourg Str	St. Georges/Kindley	2	Paris/Le Bourget	4	1 -	4	Peru	
La Paz/El Alto 5 Germany Kingston/Manley 1 San Juan de Marcona 2 Brazil Berlin/Schoenfeld 5 Montego Bay/Sangster 1 Talara 2 Belem 1 Hamburg 5 Japan Philippines Brasilia 2 Hannover 5 Fukaura 5 Manila Airport (Luzon) 1 Fortaleza 1 Mannheim 5 Sapporo 5 Manila Airport (Luzon) 1 Porto Alegre 2 Greece Tokyo 3 Krakow/Balice 5 Recife/Curado 1 Thessalonika/Mikra 4 Amman 3 Bucuresti/Bancasa 5 Salvador/Ondina 1 Greenland Kenya Russia Russia Sao Paulo 2 Narssarssuaq 7 Nairobi Airport 3 Kaliningrad (East Prussia) 5 Bulgaria Hungary Korea Krasnoiarsk 7 Chile Iceland Beruly Malaysia	-		1	5	Jamaica		LimaCallao/Chavez	2
Brazil Berlin/Schoenfeld 5 Montego Bay/Sangster 1 Talara 2 Belem 1 Hamburg 5 Japan Philippines Brasilia 2 Hannover 5 Fukaura 5 Manila Airport (Luzon) 1 Fortaleza 1 Mannheim 5 Sapporo 5 Poland Porto Alegre 2 Greece Tokyo 3 Krakow/Balice 5 Recife/Curado 1 Thessalonika/Mikra 4 Amman 3 Bucuresti/Bancasa 5 Salvador/Ondina 1 Greenland Kenya Russia Russia Santiago/Padana Kaliningrad (East Prussia) 5 Bulgaria Hungary Korea Krasnoiarsk 7 Sofia 5 Budapest/Lorinc 5 Pyonggang 5 Moscow Observatory 6 Chile Iceland Seoul 4 Petropavlovsk 7 Punta Arenas/Chabunco 6 Reykjavik 7	La Paz/El Alto	5	-		Kingston/Manley	1	San Juan de Marcona	2
Brasilia 2 Hannover 5 Fukaura 5 Manila Airport (Luzon) 1 Fortaleza 1 Mannheim 5 Sapporo 5 Poland Porto Alegre 2 Greece Tokyo 3 Krakow/Balice 5 Recife/Curado 1 Souda (Crete) 3 Jordan Romania Rio de Janeiro 1 Thessalonika/Mikra 4 Amman 3 Bucuresti/Bancasa 5 Salvador/Ondina 1 Greenland Kenya Russia Russia Sao Paulo 2 Narssarssuaq 7 Nairobi Airport 3 Kaliningrad (East Prussia) 5 Bulgaria Hungary Korea Krasnoiarsk 7 Sofia 5 Budapest/Lorinc 5 Pyonggang 5 Moscow Observatory 6 Chile Iceland Seoul 4 Petropavlovsk 7 Concepcion 4 Reykjavik 7 Malaysia RostovNaDonu <td< td=""><td>Brazil</td><td></td><td>Berlin/Schoenfeld</td><td>5</td><td></td><td>1</td><td>Talara</td><td>2</td></td<>	Brazil		Berlin/Schoenfeld	5		1	Talara	2
Brasilia 2 Hannover 5 Fukaura 5 Manila Airport (Luzon) 1 Fortaleza 1 Mannheim 5 Sapporo 5 Poland Porto Alegre 2 Greece Tokyo 3 Krakow/Balice 5 Recife/Curado 1 Souda (Crete) 3 Jordan Romania Rio de Janeiro 1 Thessalonika/Mikra 4 Amman 3 Bucuresti/Bancasa 5 Salvador/Ondina 1 Greenland Kenya Russia Russia Sao Paulo 2 Narssarssuaq 7 Nairobi Airport 3 Kaliningrad (East Prussia) 5 Bulgaria Hungary Korea Krasnoiarsk 7 Sofia 5 Budapest/Lorinc 5 Pyonggang 5 Moscow Observatory 6 Chile Iceland Seoul 4 Petropavlovsk 7 Concepcion 4 Reykjavik 7 Malaysia RostovNaDonu <td< td=""><td>Belem</td><td>1</td><td>Hamburg</td><td>5</td><td>Japan</td><td></td><td>Philippines</td><td></td></td<>	Belem	1	Hamburg	5	Japan		Philippines	
Fortaleza 1 Mannheim 5 Sapporo 5 Poland Porto Alegre 2 Greece Tokyo 3 Krakow/Balice 5 Recife/Curado 1 Souda (Crete) 3 Jordan Romania Rio de Janeiro 1 Thessalonika/Mikra 4 Amman 3 Bucuresti/Bancasa 5 Salvador/Ondina 1 Greenland Kenya Russia Russia 5 Sao Paulo 2 Narssarssuaq 7 Nairobi Airport 3 Kaliningrad (East Prussia) 5 Bulgaria Hungary Korea Krasnoiarsk 7 Sofia Iceland Seoul 4 Petropavlovsk 7 Chile Iceland Seoul 4 Petropavlovsk 7 Punta Arenas/Chabunco 6 India Kuala Lumpur 1 Vladivostok 6 Santiago/Pedahuel 4 Ahmedabad 1 Penang/Bayan Lepas 1 Volgograd 6	Brasilia	2	Hannover	5	Fukaura	5	Manila Airport (Luzon)	1
Recife/Curado1Souda (Crete)3JordanRomaniaRio de Janeiro1Thessalonika/Mikra4Amman3Bucuresti/Bancasa5Salvador/Ondina1GreenlandKenyaRussiaSao Paulo2Narssarssuaq7Nairobi Airport3Kaliningrad (East Prussia)5BulgariaHungaryKoreaKrasnoiarsk7Sofia5Budapest/Lorinc5Pyonggang5Moscow Observatory6ChileIcelandSeoul4Petropavlovsk7Concepcion4Reykjavik7MalaysiaRostovNaDonu5Punta Arenas/Chabunco6IndiaKuala Lumpur1Vladivostok6Santiago/Pedahuel4Ahmedabad1Penang/Bayan Lepas1Volgograd6ChinaBangalore1MexicoSaudi ArabiaShanghai/Hongqiao3Bombay/Santa Cruz1Mexico City (Distrito Federal)3Dhahran1CubaCalcutta/Dum Dum1Guadalajara (Jalisco)1Riyadh1Guantanamo Bay NAS (Ote.)1Madras1Monterrey (Nuevo Laredo)3Senegal	Fortaleza	1	Mannheim	5	Sapporo	5		
Recife/Curado1Souda (Crete)3JordanRomaniaRio de Janeiro1Thessalonika/Mikra4Amman3Bucuresti/Bancasa5Salvador/Ondina1GreenlandKenyaRussiaSao Paulo2Narssarssuaq7Nairobi Airport3Kaliningrad (East Prussia)5BulgariaHungaryKoreaKrasnoiarsk7Sofia5Budapest/Lorinc5Pyonggang5Moscow Observatory6ChileIcelandSeoul4Petropavlovsk7Concepcion4Reykjavik7MalaysiaRostovNaDonu5Punta Arenas/Chabunco6IndiaKuala Lumpur1Vladivostok6Santiago/Pedahuel4Ahmedabad1Penang/Bayan Lepas1Volgograd6ChinaBangalore1MexicoSaudi ArabiaShanghai/Hongqiao3Bombay/Santa Cruz1Mexico City (Distrito Federal)3Dhahran1CubaCalcutta/Dum Dum1Guadalajara (Jalisco)1Riyadh1Guantanamo Bay NAS (Ote.)1Madras1Monterrey (Nuevo Laredo)3Senegal	Porto Alegre	2	Greece		Tokyo	3	Krakow/Balice	5
Salvador/Ondina1GreenlandKenyaRussiaSao Paulo2Narssarssuaq7Nairobi Airport3Kaliningrad (East Prussia)5BulgariaHungaryKoreaKrasnoiarsk7Sofia5Budapest/Lorinc5Pyonggang5Moscow Observatory6ChileIcelandSeoul4Petropavlovsk7Concepcion4Reykjavik7MalaysiaRostovNaDonu5Punta Arenas/Chabunco6IndiaKuala Lumpur1Vladivostok6Santiago/Pedahuel4Ahmedabad1Penang/Bayan Lepas1Volgograd6ChinaBangalore1MexicoSaudi ArabiaShanghai/Hongqiao3Bombay/Santa Cruz1Mexico City (Distrito Federal)3Dhahran1CubaCalcutta/Dum Dum1Guadalajara (Jalisco)1Riyadh1Guantanamo Bay NAS (Ote.)1Madras1Monterrey (Nuevo Laredo)3Senegal	Recife/Curado	1	Souda (Crete)	3	<u> </u>		Romania	
Sao Paulo2Narssarssuaq7Nairobi Airport3Kaliningrad (East Prussia)5BulgariaHungaryKoreaKrasnoiarsk7Sofia5Budapest/Lorinc5Pyonggang5Moscow Observatory6ChileIcelandSeoul4Petropavlovsk7Concepcion4Reykjavik7MalaysiaRostovNaDonu5Punta Arenas/Chabunco6IndiaKuala Lumpur1Vladivostok6Santiago/Pedahuel4Ahmedabad1Penang/Bayan Lepas1Volgograd6ChinaBangalore1MexicoSaudi ArabiaShanghai/Hongqiao3Bombay/Santa Cruz1Mexico City (Distrito Federal)3Dhahran1CubaCalcutta/Dum Dum1Guadalajara (Jalisco)1Riyadh1Guantanamo Bay NAS (Ote.)1Madras1Monterrey (Nuevo Laredo)3Senegal	Rio de Janeiro	1	Thessalonika/Mikra	4	Amman	3	Bucuresti/Bancasa	5
Bulgaria Hungary Korea Krasnoiarsk 7 Sofia 5 Budapest/Lorinc 5 Pyonggang 5 Moscow Observatory 6 Chile Concepcion 4 Reykjavik 7 Malaysia RostovNaDonu 5 Punta Arenas/Chabunco 6 India Kuala Lumpur 1 Vladivostok 6 Santiago/Pedahuel 4 Ahmedabad 1 Penang/Bayan Lepas 1 Volgograd 6 China Bangalore 1 Mexico Saudi Arabia Shanghai/Hongqiao 3 Bombay/Santa Cruz 1 Mexico City (Distrito Federal) 3 Dhahran 1 Cuba Calcutta/Dum Dum 1 Guadalajara (Jalisco) 1 Riyadh 1 Guantanamo Bay NAS (Ote.) 1 Madras 1 Monterrey (Nuevo Laredo) 3 Senegal	Salvador/Ondina	1	Greenland		Kenya		Russia	
Bulgaria Hungary Korea Krasnoiarsk 7 Sofia 5 Budapest/Lorinc 5 Pyonggang 5 Moscow Observatory 6 Chile Concepcion 4 Reykjavik 7 Malaysia RostovNaDonu 5 Punta Arenas/Chabunco 6 India Kuala Lumpur 1 Vladivostok 6 Santiago/Pedahuel 4 Ahmedabad 1 Penang/Bayan Lepas 1 Volgograd 6 China Bangalore 1 Mexico Saudi Arabia Shanghai/Hongqiao 3 Bombay/Santa Cruz 1 Mexico City (Distrito Federal) 3 Dhahran 1 Cuba Calcutta/Dum Dum 1 Guadalajara (Jalisco) 1 Riyadh 1 Guantanamo Bay NAS (Ote.) 1 Madras 1 Monterrey (Nuevo Laredo) 3 Senegal	Sao Paulo	2	Narssarssuaq	7	Nairobi Airport	3	Kaliningrad (East Prussia)	5
Sofia5Budapest/Lorinc5Pyonggang5Moscow Observatory6ChileIcelandSeoul4Petropavlovsk7Concepcion4Reykjavik7MalaysiaRostovNaDonu5Punta Arenas/Chabunco6IndiaKuala Lumpur1Vladivostok6Santiago/Pedahuel4Ahmedabad1Penang/Bayan Lepas1Volgograd6ChinaBangalore1MexicoSaudi ArabiaShanghai/Hongqiao3Bombay/Santa Cruz1Mexico City (Distrito Federal)3Dhahran1CubaCalcutta/Dum Dum1Guadalajara (Jalisco)1Riyadh1Guantanamo Bay NAS (Ote.)1Madras1Monterrey (Nuevo Laredo)3Senegal	Bulgaria				Korea		1	7
Chile Iceland Seoul 4 Petropavlovsk 7 Concepcion 4 Reykjavik 7 Malaysia RostovNaDonu 5 Punta Arenas/Chabunco 6 India Kuala Lumpur 1 Vladivostok 6 Santiago/Pedahuel 4 Ahmedabad 1 Penang/Bayan Lepas 1 Volgograd 6 China Bangalore 1 Mexico Saudi Arabia Shanghai/Hongqiao 3 Bombay/Santa Cruz 1 Mexico City (Distrito Federal) 3 Dhahran 1 Cuba Calcutta/Dum Dum 1 Guadalajara (Jalisco) 1 Riyadh 1 Guantanamo Bay NAS (Ote.) 1 Madras 1 Monterrey (Nuevo Laredo) 3 Senegal	_	5		5	Pyonggang	5	Moscow Observatory	6
Concepcion4Reykjavik7MalaysiaRostovNaDonu5Punta Arenas/Chabunco6IndiaKuala Lumpur1Vladivostok6Santiago/Pedahuel4Ahmedabad1Penang/Bayan Lepas1Volgograd6ChinaBangalore1MexicoSaudi ArabiaShanghai/Hongqiao3Bombay/Santa Cruz1Mexico City (Distrito Federal)3Dhahran1CubaCalcutta/Dum Dum1Guadalajara (Jalisco)1Riyadh1Guantanamo Bay NAS (Ote.)1Madras1Monterrey (Nuevo Laredo)3Senegal	Chile		 		1	4	_	7
Punta Arenas/Chabunco 6 India Kuala Lumpur 1 Vladivostok 6 Santiago/Pedahuel 4 Ahmedabad 1 Penang/Bayan Lepas 1 Volgograd 6 China Bangalore 1 Mexico Shanghai/Hongqiao 3 Bombay/Santa Cruz 1 Mexico City (Distrito Federal) 3 Dhahran 1 Cuba Calcutta/Dum Dum 1 Guadalajara (Jalisco) 1 Riyadh 1 Guantanamo Bay NAS (Ote.) 1 Madras 1 Monterrey (Nuevo Laredo) 3 Senegal		4	Reykjavik	7			1	5
Santiago/Pedahuel 4 Ahmedabad 1 Penang/Bayan Lepas 1 Volgograd 6 China Bangalore 1 Mexico Saudi Arabia Shanghai/Hongqiao 3 Bombay/Santa Cruz 1 Mexico City (Distrito Federal) 3 Dhahran 1 Cuba Calcutta/Dum Dum 1 Guadalajara (Jalisco) 1 Riyadh 1 Guantanamo Bay NAS (Ote.) 1 Madras 1 Monterrey (Nuevo Laredo) 3 Senegal	•	6			1 -	1		6
China Bangalore 1 Mexico Saudi Arabia Shanghai/Hongqiao 3 Bombay/Santa Cruz 1 Mexico City (Distrito Federal) 3 Dhahran 1 Cuba Calcutta/Dum Dum 1 Guadalajara (Jalisco) 1 Riyadh 1 Guantanamo Bay NAS (Ote.) 1 Madras 1 Monterrey (Nuevo Laredo) 3 Senegal				1	_	1		6
Shanghai/Hongqiao3Bombay/Santa Cruz1Mexico City (Distrito Federal)3Dhahran1CubaCalcutta/Dum Dum1Guadalajara (Jalisco)1Riyadh1Guantanamo Bay NAS (Ote.)1Madras1Monterrey (Nuevo Laredo)3Senegal	-		╡	1				
Cuba Calcutta/Dum Dum 1 Guadalajara (Jalisco) 1 Riyadh 1 Guantanamo Bay NAS (Ote.) 1 Madras 1 Monterrey (Nuevo Laredo) 3 Senegal		3				3		1
Guantanamo Bay NAS (Ote.) 1 Madras 1 Monterrey (Nuevo Laredo) 3 Senegal			-					
		1					-	
Nagpur Sonegaon	(000)		Nagpur Sonegaon	1	Tampico (Tamaulipas)	1	Dakar/Yoff	1

TABLE B-3 (continued) International Climate Zones

Country		Country		Country		Country	
City (Province or Region)	Zone						
Singapore		Switzerland		Tunisia		Uruguay	
Singapore/Changi	1	Zurich	5	Tunis/El Aouina	3	Montevideo/Carrasco	3
South Africa		Syria		Turkey		Venezuela	
Cape Town/D F Malan	4	Damascus Airport	3	Adana	3	Caracas/Maiquetia	1
Johannesburg	4	Taiwan		Ankara/Etimesgut	4	Vietnam	
Pretoria	3	Tainan	1	Istanbul/Yesilkoy	4	Hanoi/Gialam	1
Spain		Taipei	2	United Kingdom		Saigon (Ho Chi Minh)	1
Barcelona	4	Tanzania		Birmingham (England)	5		
Madrid	4	Dar es Salaam	1	Edinburgh (Scotland)	5		
Valencia/Manises	3	Thailand		Glasgow Apt (Scotland)	5		
Sweden		Bangkok	1	London/Heathrow (England)	4		
Stockholm/Arlanda	6						

TABLE B-4 International Climate Zone Definitions

Zone Number	Name	Thermal Criteria
1	Very Hot – Humid (1A), Dry (1B)	9000 < CDD50°F
2	Hot – Humid (2A), Dry (2B)	$6300 < \text{CDD50}^{\circ}\text{F} \le 9000$
3A and 3B	Warm – Humid (3A), Dry (3B)	$4500 < CDD50^{\circ}F \le 6300$
3C	Warm – Marine	CDD50°F \leq 4500 AND HDD65°F \leq 3600
4A and 4B	Mixed – Humid (4A), Dry (4B)	CDD50°F \leq 4500 AND 3600 < HDD65°F \leq 5400
4C	Mixed – Marine	$3600 < HDD65^{\circ}F \leq 5400$
5A, 5B and 5C	Cool- Humid (5A), Dry (5B), Marine (5C)	$5400 < HDD65^{\circ}F \leq 7200$
6A and 6B	Cold – Humid (6A), Dry (6B)	$7200 < HDD65^{\circ}F \le 9000$
7	Very Cold	$9000 < HDD65^{\circ}F \le 12600$
8	Subarctic	12600 < HDD65°F

(This is a normative appendix and is part of this standard.)

NORMATIVE APPENDIX C METHODOLOGY FOR BUILDING ENVELOPE TRADE-OFF OPTION IN SUBSECTION 5.6

C1 Minimum Information

The following minimum information shall be specified for the proposed design.

- **C1.1** At the Building Level: The floor area, broken down by *space-conditioning categories*.
- **C1.2** At the Exterior Surface Level: The classification, gross area, orientation, *U-factor*, and exterior conditions. For *mass walls* only: *heat capacity* and insulation position. Each surface is associated with a *space-conditioning category* as defined in C1.1.
- **C1.3** For Fenestration: The classification, area, *U-factor*, solar heat gain coefficient (SHGC), visible light transmittance (VLT), overhang projection factor for vertical fenestration, and width, depth, and height for skylight wells. (See Figure C1.3 for definition of width, depth, and height for skylight wells.) Each fenestration element is associated with a surface (defined in C1.2) and has the orientation of that surface.
- **C1.4 For Opaque Doors:** The classification, area, *U-factor*, *heat capacity*, and insulation position. Each *opaque door* is associated with a surface (defined in C1.2) and has the orientation of that surface.
- **C1.5 For Below-Grade Walls:** The area, average depth to the bottom of the wall, and *C-factor*. Each *below-grade wall* is associated with a *space-conditioning category* as defined in C1.1.
- **C1.6 For Slab-On-Grade Floor:** The perimeter length and F-factor. Each slab-on-grade floor is associated with a space-conditioning category as defined in C1.1.

C2 Output Requirements

Output reports shall contain the following information.

C2.1 Tables summarizing the minimum information described in C1.

Figure C1.3 Skylight well dimensions.

C2.2 The *envelope performance factor* differential broken down by envelope component. The differential is the difference between the *envelope performance factor* of the proposed building and the *envelope performance factor* of the base envelope design. Envelope components include the *opaque roof, skylights, opaque above-grade walls* including *vertical fenestration* and *opaque doors, below-grade walls, floors,* and *slab-on-grade floors*.

C3 Base Envelope Design Specification

- **C3.1** The base envelope design shall have the same building floor area, building envelope floor area, slab-on-grade floor perimeter, below-grade floor area, gross wall area, opaque door area, and gross roof area as the proposed design. The distribution of these areas among space-conditioning categories shall be the same as the proposed design.
- C3.2 The *U-factor* of each *opaque* element of the base envelope design shall be equal to the criteria from Tables 5.5-1 through 5.5-8 for the appropriate climate for each construction classification. *The heat capacity* of *mass wall* elements in the base envelope design shall be identical to the proposed design. *Mass walls* in the base envelope design shall have interior insulation, when required.
- C3.3 The vertical fenestration area of each space-conditioning category in the base envelope design shall be the same as the proposed building or 40% of the gross wall area, whichever is less. The distribution of vertical fenestration among space-conditioning categories and surface orientations shall be the same as the proposed design. If the vertical fenestration area of any space-conditioning category is greater than 40% of the gross wall area of that space-conditioning category, then the area of each fenestration element shall be reduced in the base envelope design by the same percentage so that the total vertical fenestration area is exactly equal to 40% of the gross wall area.
- **C3.4** The *skylight area* of each space category in the base envelope design shall be the same as the proposed building or 5% of the *gross roof area*, whichever is less. This distribution of *skylights* among *space conditioning categories* shall be the same as the proposed design. If the *skylight area* of any space category is greater than 5% of the *gross roof area* of that *space-conditioning category*, then the area of each *skylight* shall be reduced in the base envelope design by the same percentage so that the total *skylight area* is exactly equal to 5% of the *gross roof area*.
- C3.5 The *U-factor* for *fenestration* in the base envelope design shall be equal to the criteria from Tables 5.5-1 through 5.5-8 for the appropriate climate. The *solar heat gain coefficient (SHGC)* for *fenestration* in the base envelope design shall be equal to the criteria from Tables 5.5-1 through 5.5-7 for Table 5.5-8 shall be equal to 0.64 for *north-oriented* and 0.46 for all other *vertical fenestration*, 0.77 for plastic *skylights* on a curb, and 0.72 for all other *skylights* with a curb and without. The visible light transmittance (VLT) for *fenestration* in the base envelope design shall be the VLT factor from Table C3.5 times the *SHGC* criteria as determined in this subsection.

TABLE C3.5 VLT Factor for the Base Envelope Design

Climate Bin	Vertical Fenestration	Glass Skylights	Plastic Skylights
1(A,B)	1.00	1.27	1.20
2(A,B)	1.00	1.27	1.20
3(C)	1.00	1.27	1.20
3(A,B)	1.27	1.27	1.20
4(A,B,C)	1.27	1.27	1.20
5(A,B,C)	1.27	1.27	1.20
6(A,B)	1.27	1.27	1.20
7	1.00	1.00	1.20
8	1.00	1.00	1.20

C4 Zoning and Building Geometry

No information about thermal zones needs to be entered to perform the calculations, but when the calculations are performed the building shall be divided into thermal zones according to the following procedure.

- **C4.1** Determine the ratio (*Rc*) of the *gross floor area* to the *gross wall area* for each *space-conditioning category*. The index "c" refers to the *space-conditioning category*, either *nonresidential conditioned*, *residential conditioned*, or *semi-heated*.
- **C4.2** Create a perimeter zone for each unique combination of *space-conditioning category* and *wall* orientation. The *floor area* of each perimeter zone shall be the *gross wall area* of the zone times Rc or 1.25, whichever is smaller.
- **C4.3** For *space-conditioning categories* where *Rc* is greater than 1.25, interior zones shall be created and used in the trade-off procedure. The *floor area* of the interior zone shall be the total floor area for the *space-conditioning category* less the floor area of the perimeter zones created in C4.2 for that *space-conditioning category*.
- **C4.4** Roof area, floor area, below-grade wall area, and slab-on-grade floor perimeter associated with each space-conditioning category shall be prorated among the zones according to floor area.
- **C4.5** *Skylights* shall be assigned to the interior zone of the *space-conditioning category*. If the *skylight area* is larger than the *roof area* of the interior zone, then the *skylight area* in the interior zone shall be equal to the *roof area* in the interior zone and the remaining *skylight area* shall be prorated among the perimeter zones based on *floor area*.

C5 Modeling Assumptions

The following are modeling assumptions for the purposes of this appendix only and are not requirements for building operation.

C5.1 The residential conditioned and nonresidential conditioned space-conditioning categories shall be modeled with both heating and cooling systems for both the base envelope design and the proposed design. The thermostat setpoints for

residential and nonresidential spaces shall be 70°F for heating and 75°F for cooling, with night setback temperatures of 55°F for heating and 99°F for cooling.

- **C5.2** The *semiheated* space categories shall be modeled with heating-only systems for both the base envelope design and the proposed design. The thermostat setpoint shall be 50°F for all hours.
- **C5.3** Both the base envelope design and the proposed design shall be modeled with the same heating, ventilating, and air-conditioning (HVAC) systems. The system shall consist of a packaged rooftop system serving each thermal zone. Cooling shall be provided by a direct expansion air conditioner (EER = 9.5, COP $_{cooling}$ = 2.78). Heating shall be provided by a gas furnace (AFUE = 0.78).
- C5.4 The electrical systems shall be the same for both the base envelope design and the proposed design. The lighting power density shall be 1.20 W/ft² for nonresidential conditioned spaces, 1.00 W/ft² for residential conditioned spaces, and 0.50 W/ft² for semiheated spaces. The equipment power density shall be 0.75 W/ft² for nonresidential conditioned spaces, 0.25 W/ft² for residential conditioned spaces, and 0.25 W/ft² for semi-heated spaces. Continuous daylight dimming shall be assumed in all spaces and be activated at 50 fc for nonresidential conditioned spaces and 30 fc for semiheated spaces.
- **C5.5** Surface reflectances for daylighting calculations shall be 80% for ceilings, 50% for walls, and 20% for floors.
- **C5.6** *Envelope performance factor* is defined in the following equation.

- **C5.7** The *U-factor* entered for surfaces adjacent to crawl-spaces, attics, and parking garages with mechanical or natural ventilation shall be adjusted by adding R-2 to the *thermal* resistance to account for the buffering effect.
- **C5.8** Heat transfer for *below-grade walls* shall be based on the temperature difference between indoor and outdoor temperature conditions and a heat transfer path at the average wall depth below grade.

C6 Equations for Envelope Trade-Off Calculations

The procedure defined in this subsection shall be used in all building envelope trade-off calculations.

- **C6.1 Inputs.** Building descriptions shall be converted to equation variables using Table C6.1.
- **C6.2** Envelope Performance Factor. The *envelope performance factor (EPF)* of a building shall be calculated using Equation C-2.

$$EPF = FAF \times [\Sigma HVAC_{surface} + \Sigma Lighting_{zone}]$$
 (C-2)

where

Variable	Description	I-P Units
Area _{surface}	Area of surface	ft ²
Area _{zone}	Gross floor area of zone as defined in C.5	ft^2
C-factor	C-factor for below-grade walls	Btu/h·ft 2 .°F
CDD50	Cooling degree-days	Base 50°F·day
CDD65	Cooling degree-days	Base 65°F·day
CDH80	Cooling degree-hours	Base 80°F·hour
CFA	Conditioned floor area	ft^2
Depth	Depth of bottom of below-grade wall	ft
DI	Artificial lighting design illuminance from C.5.4	footcandles
DR	Daily range (average outdoor maximum-minimum in hottest month)	°F
EPD	Miscellaneous equipment power density from C.5.4	W/ft^2
F-factor	F-factor for slab-on-grade floors	Btu/h·ft·°F
FAF	Building floor area factor	1000/CFA, ft ²
HC	Wall heat capacity	Btu/ft ² .°F
HDD50	Heating degree-days	Base 50°F·day
HDD65	Heating degree-days	Base 65°F·day
Length	Length of slab-on-grade floor perimeter	ft
LPD	Lighting power density from C.5.4	W/ft^2
R-Value	Effective R-value of soil for below-grade walls	$h{\cdot}ft^2.{^\circ}F/Btu$
U-factor	U-factor	Btu/h·ft 2 .°F
VS	Annual average daily incident solar radiation on vertical surface	Btu/ft ² ·day

TABLE C6.5.1 Overhang Projection Coefficients

Orientation	PCC1	PCC2	РСН1	РСН2
North	-0.5	0.22	0	0
East, South, West	-0.97	0.38	0	0

FAF = floor area factor for the entire building

ΣHVAC_{surface} = sum of HVAC for each surface calculated using Equation C-3

 Σ Lighting_{zone} = sum of lighting for each zone calculated using Equation C-4

C6.3 HVAC. The HVAC term for each *exterior* or *semi-exterior* surface in the building shall be calculated using Equation C-3.

$$HVAC_{surface} = COOL + HEAT$$
 (C-3)

where

COOL = cooling factor for the surface calculated according to the appropriate equation in C-14, C-19, or C-22

HEAT = heating factor for the surface calculated according to the appropriate equation in C- 16, C-18, or C-23

C6.4 Lighting. The lighting term for each zone in the building as defined in C4 shall be calculated using Equation C-4.

$$Lighting_{zone} = LPDadj_{zone} \times AREA_{zone} \times 216$$
 (C-4)

where

LPDadj_{zone} = lighting power density for the zone adjusted for daylighting potential using Equation C-9

C6.5 Solar and Visible Aperture

C6.5.1 Solar and Visible Aperture of Vertical Fenestration. The visible aperture (VA), solar aperture for cooling (SA_c) , and solar aperture for heating (SA_h) of each *vertical fenestration* shall be calculated using Equations C-5, C-6, and C-7.

$$VA = Area_{vf} \times VLT_{vf} \times (1 + PCC1 \times PF + PCC2 \times PF^{2})$$
 (C-5)

$$SA_c = Area_{vf} \times 1.163 \times SHGC \times (1 - PCC1 \times PF + PCC2 \times PF^2)$$
 (C-6)

$$SA_h = Area_{vf} \times 1.163 \times SHGC \times (1 + PCH1 \times PF + PCH2 \times PF^2) (C-7)$$

where

 $Area_{vf} = glazing area of the vertical fenestration$

SHGC = the solar heat gain coefficient of the vertical fenestration assembly

VLT_{vf} = the visible light transmittance of the *vertical* fenestration assembly

PF = the *projection factor* for the overhang shade on the *vertical fenestration*

PCH1, PCH2, PCC1, and PCC2 = overhang projection coefficients for the vertical fenestration orientation from Table C6.5.1

C6.5.2 Visible Aperture of Skylights. The visible aperture (VA) of a *skylight* shall be calculated using Equation C-8.

$$VA = Area_{sky} \times VLT_{sky} \times 10^{(-0.250 \times (5 \times D \times (W + L) / (W \times L))}$$
(C-8)

where

Area_{sky} = fenestration area of the skylight assembly

 VLT_{sky} = the visible light transmittance of the *skyligh*t

assembly

D = average depth of skylight well from *fenestration* to

ceiling

W = width of skylight well

L = length of skylight well

C6.6 Adjusted Lighting Power (LPDadj). The adjusted lighting power for each zone shall be calculated using Equation C-9.

$$LPDadj_{zone} = LPD \times (1 - Kd_{zone})$$
 (C-9)

where $Kd_{zone} = daylight$ potential fraction calculated using Equation C-10.

If a zone has both *skylights* and *vertical fenestration*, the larger of the *Kd* calculated independently for each shall be used to calculate LPDadj.

$$Kd_{\text{zone}} = \left(\Phi 1 + \left(\frac{\Phi 2 \times \text{DI} \times \text{VA}}{\text{Area}_{\text{fen}}}\right)\right)$$
$$\times \left(1 - e^{\left((\Phi 3 + \Phi 4 \times \text{DI}) \times \text{VA}\right)/\text{Area}_{\text{surface}}}\right)$$
(C-10)

where

Area_{fen} = total *fenestration area* of the *vertical fenestration* or *skylight* assemblies in the zone

VA = total visible aperture of the *vertical fenestration* or *skylights* in the zone, as calculated in C-5

Area_{surface} = gross wall area of the zone for vertical fenestration or gross roof area of the zone for skylights

and the coefficients 1 through 4 are defined in Table C6.6.

C6.7 Delta Load Factors for Mass Walls in the Exterior Building Envelope. Adjustments to cooling and heating loads for use in Equations C-14 and C-16 due to the mass properties of each *mass wall* component shall be calculated using Equations C-11 and C-12.

$$CMC = 1.43 \times \text{Area}_{mw} \times [1 - e^{-CP_1(HC - 1)}]$$

$$\times \left[CP_2 + CP_3U - \left(\frac{CP_4}{1 + (CP_5 + CP_6U)e^{-(CP_7 + CP_8U^2)(HC - 1)}} \right) \right]$$

(C-11)

where

CMC = cooling delta load factor

 $Area_{mw}$ = net opaque area of this mass wall

 $A_c = CDH80/10000 + 2$

B = DR/10 + 1

TABLE C6.6 Coefficients for Calculating $^{\kappa}d$

Coefficient	Skylight	Vertical Fenestration
Ф1	0.589	0.737
Ф2	5.18E-07	-3.17E-04
Ф3	-220	-24.71
Φ4	2.29	0.234

HC = wall heat capacity

DR = average daily temperature range for warmest

= DR/10 + 1

 $CP_1 = C_5$

В

 CP_2 = $C_{15}/B^3 + C_{16}/(A_C^2B^2) + C_{17}$

 $CP_3 = C_1/A_C^3 + C_2B^3 + C_2B^3 + C^3/(A_C^2 \sqrt{B}) + C_4$

 $CP_4 = C_{12}(A_C^2B^2) + C_{13}/B^3 + C_{14}$

U = area average of *U-factors* of *mass walls* in the zone

 $CP_5 = C_{18}$

 $CP_6 = C_6 \sqrt{B} LN(A_C) + C_7$

LN = natural logarithm

 $CP_7 = C_{19}/(A_C^2B^2) + C_{20}/(A_CB) + C_{21}A_C^2 / \sqrt{B} + C_{22}$ $CP_8 = C_8/(A_C^2B^2) + C_9/(A_CB) + C_{10}A_C^2 / \sqrt{B} + C_{11}$

The coefficients C_1 through C_{22} depend on insulation position in the wall and are taken from Table C6.7A.

$$HMC = 1.43 \times \text{Area}_{mw} \times [1 - e^{-HP_1(HC - 1)}]$$

$$\times \left[HP_2 + HP_3U - \left(\frac{HP_4}{1 + (HP_2 + HP_3U)e^{-(HP_7 + HP_8U^2)(HC - 1)}} \right) \right]$$

(C-12)

where

HMC = heating delta load factor

HC = wall heat capacity

Area_{mw} = net *opaque area* of this *mass* wall

 $HP_1 = H_6$

 A_{H} = HDD65/100 + 2 HP₂ = H₁₄LN(A_H) + H₁₅

LN = natural logarithm

 $HP_3 = H_1A_H^3 + H_2A_H^2 + H_3/\sqrt{A} + H_4\sqrt{A} + H_5$

U = area average of U-factors of mass walls in the zone

 $HP_4 = H_{11}A_H^2 + H_{12}/A_H^2 + H_{13}$

 $HP_5 = H_{16}$

 $HP_6 = H_7A_H + H_8$

 $HP_7 = H_{17}/A_H^3 + H_{18}$

 $HP_8 = H_9/A_H^3 + H_{10}$

The coefficients H_1 through H_{18} depend on the position of the insulation in the wall and are taken from Table C6.7B. If the *U-factor* of *mass wall* is greater than 0.4 Btu/(h·ft²·°F), then the *U-factor* shall be set to 0.4 Btu/(h·ft²·°F). If the *U-factor* of the *mass wall* is less than 0.05 Btu/(h·ft²·°F), then the *U-Factor* shall be set to 0.05 Btu/(h·ft²·°F). If the wall heat capacity (HC) of the *mass wall* is greater than 20 Btu/(ft²·°F), then HC = 20 Btu/(ft²·°F) shall be used.

Insulation Position

Insulation Position

Variable	Exterior	Integral	Interior
c_1	220.7245	139.1057	181.6168
c_2	-0.0566	-0.0340	-0.0552
c_3	-118.8354	-10.3267	-34.1590
c_4	-13.6744	-20.8674	-25.5919
^C 5	0.2364	0.2839	0.0810
$^{\mathrm{C}}6$	0.9596	0.3059	1.4190
^C 7	-0.2550	0.0226	0.4324
С8	-905.6780	-307.9438	-1882.9268
c ₉	425.1919	80.2096	443.1958
c ₁₀	-2.5106	0.0500	0.4302
c ₁₁	-43.3880	-5.9895	-28.2851
c ₁₂	-259.7234	-11.3961	-63.5623
c ₁₃	-33.9755	0.3669	20.8447
c ₁₄	20.4882	30.2535	9.8175
^C 15	-26.2092	8.8337	24.4598
^C 16	-241.1734	-22.2546	-70.3375
^C 17	18.8978	29.3297	9.8843
c ₁₈	-0.3538	-0.0239	-0.1146
c ₁₉	156.3056	63.3228	326.3447
^C 20	-74.0990	-16.3347	-77.6355
^C 21	0.4454	-0.0111	-0.0748
C ₂₂	7.4967	1.2956	5.2041

C6.8 Walls and Vertical Fenestration in the Exterior **Building Envelope.** Equations C-14 and C-16 shall be used to calculate COOL and HEAT for exterior walls and vertical fenestration in the exterior building envelope except walls next to crawlspaces, attics, and parking garages with natural or mechanical ventilation. Walls next to crawlspaces, attics, and parking garages with natural or mechanical ventilation shall use the equations in subsection C6.10 and they shall not be included in calculations in subsection C6.8. Zones shall be constructed according to C4 and the HEAT and COOL for the combination of all exterior walls and vertical fenestration in the zone shall be calculated using Equations C-14 and C-16. which include interactive effects. For a zone having a cardinal orientation (north, east, south, or west), Equations C-14 and C-15 shall be applied directly. For zones with northeast, northwest, southwest, and southeast orientations, EC shall be determined by finding the average of the values for the two closest cardinal *orientations*; for instance, COOL for a wall facing northeast is calculated by taking the average of COOL for a north-facing wall and COOL for an east-facing wall.

Variable	Exterior	Integral	Interior
H_1	0.0000	0.0000	0.0000
H_2	-0.0015	-0.0018	-0.0015
H_3	13.3886	15.1161	19.8314
H_4	1.9332	2.1056	1.4579
H_5	-11.8967	-13.3053	-15.5620
H_6	0.4643	0.1840	0.0719
H_7	0.0094	0.0255	0.0264
H_8	-0.1000	0.0459	0.7754
H_9	-1223.3962	-622.0801	0.2008
H_{10}	-0.9454	-0.5192	-0.6379
H_{11}	-0.0001	-0.0001	0.0000
H_{12}	3.8585	4.1379	2.4243
H_{13}	7.5829	6.2380	7.9804
H_{14}	-0.7774	-0.7711	-0.1699
H_{15}	9.0147	7.7229	8.5854
H_{16}	0.2007	0.2083	-0.0386
H ₁₇	206.6382	105.9849	3.1397
H_{18}	0.2573	0.1983	0.1863

C6.8.1 Effective Internal Gain. The effective internal gain to the zone G shall be calculated using Equation C-13.

$$G = EPD + LPDadj_{zone}$$
 (C-13)

where

LPDadj_{zone} = lighting power density adjusted for daylighting, from Equation C-9

C6.8.2 Cooling Factor. The cooling factor for the surfaces in the zone shall be calculated using Equation C-14.

$$COOL = 0.005447 \times [CLU + CLUO + CLXUO + CLM + CLG + CLS + CLC]$$
 (C-14)

where

$$\begin{array}{l} CLU \ = Area_{opaque} \times U_{ow} \times [CU1 \times CDH80 + CU2 \times CDH80^2 \\ + CU3 \times (VS \times CDH80)^2 + CU4 \times DR] \end{array}$$

$$\begin{split} &CLUO = Area_{grosswall} \times UO \times [CUO1 \times EA_{C} \times VS \times CDD50 \\ &+ CUO2 \times G + CUO3 \times G^{2} \times EA_{C}^{2} \times VS \times CDD50 + CUO4 \\ &\times G^{2} \times EA_{C}^{2} \times VS \times CDD65] \end{split}$$

$$\begin{split} &CLXUO = Area_{grosswall} \ / \ UO \times [CXUO1 \times EA_C \times VS \\ &\times CDD50 + CXUO2 \times EA_C \times (VS \times CDD50)^2 + CXUO3 \\ &\times G \times CDD50 + CXUO4 \times G^2 \times EA_C^2 \times VS \times CDD50 \\ &+ CXUO5 \times G^2 \times CDD65] \end{split}$$

 $\begin{array}{ll} CLM &= Area_{opaque} \times SCMC \times [CM1 + CM2 \times EA_C \times VS \\ \times CDD50 + CM3 \times EA_C \times VS \times CDD65 + CM4 \times EA_C^2 \times VS \\ \times CDD50 + CM5 \times G^2 \times CDD65 + CM6 \times G \times CDD50 + CM7 \\ \times G \times CDD65 + CM8 \times G \times EA_C \times VS \times CDD50] \end{array}$

 $\begin{array}{l} CLG &= Area_{grosswall} \times \{G \times [CG1 + CG2 \times CDD50 + CG3 \\ \times EA_{C} \times (VS \times CDD50)^{2} + CG4 \times EA_{C}^{2} \times VS \times CDD50 + CG5 \\ \times CDD65 + CG6 \times CDD50^{3} + CG7 \times CDD65^{3}] + G^{2} \times [CG8 \\ \times EA_{C} \times VS \times CDD50 + CG9 \times EA_{C}^{2} \times VS \times CDD50] \} \end{array}$

$$\begin{split} CLS &= Area_{grosswall} \times \{EA_C \times [CS1 + CS2 \times VS \times CDD50 \\ &+ CS3 \times (VS \times CDD50)^2 + CS4 \times VS \times CDD65 + CS5 \\ &\times (VS \times CDD65)^2] + EA_C^2 \times [CS6 + CS7 \times (VS \times CDD65)^2] \} \end{split}$$

 $\begin{array}{l} CLC &= Area_{grosswall} \times [CC1 \times CDD50 + CC2 \times CDD50^2 \\ + CC3 \times CDH80 + CC4 \times CDH80^2 + CC5 \times CDD65 + CC6 \\ &\times (VS \times CDD65)^2 + CC7 \times VS \times CDD50 + CC8 \\ &\times (VS \times CDD50)^2 + CC9 \times (VS \times CDH80)^2 + CC10 \times VS \\ &+ CC11 \times DR + CC12 \times DR^2 + CC13] \end{array}$

where

Area_{grosswall} = total gross area of all *walls* and *vertical*fenestration in the zone, including opaque and
fenestration areas

Area_{opaque} = total *opaque area* of all *walls* in the zone

U_{ow} = area average of *U-factors* of *opaque walls* (including those of mass construction) in the zone

VS = annual average daily incident solar energy on surface

DR = average daily temperature range for the warmest

UO = area average of *U-factor* of *opaque walls* and

vertical fenestration in the zone

SCMC = sum of the CMC from Equation C-11 for each *mass wall* in the zone

G = effective internal gain to space, from Equation

C-13

EA_C = effective solar aperture fraction for zone calculated using Equation C-15

$$EA_C = \frac{\sum SA_C}{\text{Area}_{\text{orosswall}}}$$
 (C-15)

where

 ΣSA_c = the sum of SA_c from Equation C-6.6 for all *vertical* fenestration in the zone.

The coefficients used in the above equations depend on the *orientation* of the surface and shall be found in Table C6.8.2.

C6.8.3 Heating Factor. The heating factor for the surfaces in the zone shall be calculated using Equation C-16.

$$\begin{split} HEAT &= 0.007669 \times [HLU + HLUO + HLXUO + HLM \\ &+ HLG + HLS + HLC] \end{split} \tag{C-16}$$

where

 $\begin{aligned} &HLU = Area_{opaque} \times U_{ow} \times [HU1 \times HDD50 + HU2 \\ &\times (VS \times HDD65)^2] \end{aligned}$

 $\begin{aligned} &HLUO = Area_{grosswall} \times UO \times [HUO1 \times HDD50 + HUO2 \\ \times &HDD65 + HUO3 \times EA_{H} \times VS \times HDD65] \end{aligned}$

$$\begin{split} HLXUO &= Area_{grosswall} \times \{(1/UO) \times [HXUO1 \times EA_{H} \\ \times (VS \times HDD50)^{2} + HXUO2 \times EA_{H} \times (VS \times HDD65)^{2}] \\ &+ (1/UO^{2}) \times [HXUO3 \times EA_{H}^{2} \times VS \times HDD65] \} \end{split}$$

$$\begin{split} HLM &= Area_{opaque} \times SHMC \times [HM1 + HM2 \times G \times UO \\ \times HDD65 + HM3 \times G^2 \times E{A_H}^2 \times VS \times HDD50 + HM4 \times UO \\ \times E{A_H} \times VS \times HDD65 + HM5 \times UO \times HDD50 + HM6 \times E{A_H} \\ \times (VS \times HDD65)^2 + HM7 \times E{A_H}^2 \times VS \times HDD65/UO] \end{split}$$

$$\begin{split} HLG &= Area_{grosswall} \times \{G \times [HG1 \times HDD65 + HG2 \times UO \\ \times HDD65 + HG3 \times EA_{H} \times VS \times HDD65 + HG4 \times E{A_{H}}^{2} \\ &\times VS \times HDD50] \times G^{2} \times [HG5 \times HDD65 + HG6 \\ &\times E{A_{H}}^{2} \times VS \times HDD65] \} \end{split}$$

 $\begin{aligned} HLS &= Area_{grosswall} \times \{EA_H \times [HS1 \times VS \times HDD65 + HS2 \\ &\times (VS \times HDD50)^2] + E{A_H}^2 \times [HS3 \times VS \times HDD50 \\ &+ HS4 \times VS \times HDD65] \} \end{aligned}$

 $\begin{aligned} &HLC = Area_{grosswall} \times [HC1 + HC2 \times HDD65 + HC3 \\ &\times HDD65^2 + HC4 \times VS^2 + HC5 \times VS \times HDD50 + HC6 \\ &\times VS \times HDD65 + HC7 \times (VS \times HDD50)^2] \end{aligned}$

where

VS = annual average daily incident solar energy on surface

SHMC = sum of the HMC from Equation C-12 for each *mass* wall in the zone

EA_H = effective solar aperture fraction for zone calculated using Equation C-17.

$$EA_H = \frac{\sum SA_H}{\text{Area}_{\text{grosswall}}}$$
 (C-17)

 ΣSA_h = the sum of SA_h from Equation C-7 for all *vertical* fenestration in the zone.

The coefficients used in the above equations depend on the *orientation* of the surface and shall be found in Table C6.8.3. Terms not defined for Equation C-16 are found under Equation C-14.

C6.9 Skylights in the Exterior Building Envelope. HEAT and COOL shall be calculated for *skylights* in *nonresidential conditioned* and *residential conditioned* zones using Equations C-18 and C-19.

$$\begin{aligned} \text{HEAT} &= Area_{sky} \times \text{HDD65} \times 0.66 \times (\text{H}_2 \\ &\times U_{sky} + \text{H}_3 \times 1.163 \times \text{SHGC}) \end{aligned} \tag{C-18}$$

$$COOL = Area_{sky} \times C_2 \times CDD50 \times 0.093 \times SHGC \quad (C-19)$$

where

Area_{sky} = fenestration area of the skylight assembly

SHGC = the *solar heat gain coefficient* of the *skylight* assembly

U_{sky} = *U-factor* of *skylight* assembly

The coefficients used in the equations depend on the space type and shall be taken from Table C6.9.

C6.10 Calculations for Other Exterior and Semi-Exterior Surfaces. For all *exterior* and *semi-exterior* surfaces not covered in C6.8 and C6.9, the cooling factor, COOL, and heating factor, HEAT, shall be calculated using the procedure in this subsection.

TABLE C6.8.2 Cooling Coefficients for the Exterior Wall Equation

		Or	ientation of Surface	
Variable	North	East	South	West
CU1	0.001539	0.003315	0.003153	0.00321
CU2	-3.0855E-08	-8.9662E-08	-7.1299E-08	-8.1053E-08
CU3	7.99493E-14	3.7928E-14	1.83083E-14	3.3981E-14
CU4	-0.079647	0.163114	0.286458	0.11178
CM1	0.32314	0.515262	0.71477	0.752643
CM2	1.5306E-06	1.38197E-06	1.6163E-06	1.42228E-06
CM3	-2.0432E-06	-1.6024E-06	-2.1106E-06	-1.9794E-06
CM4	-7.5367E-07	-7.6785E-07	-6.6443E-07	-7.4007E-07
CM5	-1.0047E-06	0	8.01057E-06	3.15193E-06
CM6	3.66708E-05	3.56503E-05	4.48106E-05	2.96012E-05
CM7	-6.7305E-05	-6.4094E-05	-0.000119	-7.6672E-05
CM8	-2.3834E-08	-4.7253E-08	-4.9747E-08	0
CUO1	-6.5109E-06	-8.3867E-06	-8.89E-06	-7.5647E-06
CUO2	-1.040207	-1.507235	-1.512625	-1.238545
CUO3	-4.3825E-06	-2.7883E-06	-2.3135E-06	-4.1257E-06
CUO4	0.000012658	8.09874E-06	7.36219E-06	1.06712E-05
CXUO1	1.03744E-06	1.19338E-06	1.18588E-06	1.23251E-06
CXUO2	-1.3218E-13	-1.3466E-13	-1.1625E-13	-1.3E-13
CXUO3	2.75554E-05	2.02621E-05	2.02365E-05	2.36964E-05
CXUO4	9.7409E-08	1.175E-07	9.39207E-08	1.36276E-07
CXUO5	-1.1825E-05	-9.0969E-06	-9.0919E-06	-1.1108E-05
CG1	0.891286	0.583388	0.393756	0.948654
CG2	0.001479	0.001931	0.002081	0.001662
CG3	-5.5204E-13	-2.8214E-13	-2.8477E-13	-4.5572E-13
CG4	2.52311E-06	3.70821E-06	4.30536E-06	5.91511E-06
CG5	-0.001151	-0.001745	-0.001864	-0.00153
CG6	1.95243E-12	0	-2.9606E-12	3.16358E-12
CG7	-8.3581E-12	1.01089E-11	3.30027E-11	0
CG8	1.41022E-06	7.53875E-07	7.133E-07	9.70752E-07
CG9	-2.3889E-06	-1.6496E-06	-1.6393E-06	-1.9736E-06
CS1	46.9871	33.9683	18.32016	29.3089
CS2	3.48091E-05	3.74118E-05	0.000034049	5.02498E-05
CS3	0	0	2.71313E-12	0
CS4	-1.6641E-05	6.94779E-06	-2.8218E-05	-2.7716E-05
CS5	8.42765E-12	0	-3.0468E-12	2.91137E-12
CS6	-56.5446	0	26.9954	14.9771
CS7	-1.3476E-11	-5.881E-12	-6.5009E-12	-7.8922E-12
CC1	0.002747	0	0.010349	0.001865
CC2	0.002747	3.18928E-07	-3.0441E-07	0
CC3	-0.000348	0.000319	0.00024	0.000565
CC4	1.22123E-08	-7.7532E-08	-2.7144E-08	-5.4438E-08
CC5	0.012112	0.011894	0.013248	0.009236
CC6	1.04027E-12	-6.2266E-13	-2.0518E-12	0.009230
CC7	-1.2401E-05	-7.0628E-06	-2.0518E-12 -1.6538E-05	-6.0269E-06
CC8	-1.2401E-03 0	-7.0028E-00	8.20869E-13	-0.0209E-00 0
CC9	-3.758E-14	6.06235E-14	6.20809E-13 1.97598E-14	3.89425E-14
CC10	-3.738E-14 0.030056	0.023121	0.0265	0.01704
CC10	0.030036	0.023121	-0.271026	
				-0.244274
CC12 CC13	0.002138 -12.8674	0.001103 -13.16522	0.006368 -18.271	0.007323 -10.1285

TABLE C6.8.3 Heating Coefficients for the Exterior Wall Equation

Orientation of Surface

Variable	North	East	South	West
HU1	0.006203	0.007691	0.006044	0.006672
HU2	-1.3587E-12	-5.7162E-13	-2.69E-13	-4.3566E-13
HM1	0.531005	0.545732	0.837901	0.616936
HM2	0.000152	0.000107	0.000208	0.00015
HM3	-5.3183E-07	-1.0619E-07	-6.8253E-07	-2.6457E-07
HM4	-7.7381E-07	-1.4787E-06	2.11938E-06	-4.5783E-07
HM5	-0.000712	-0.000484	-0.001042	-0.000625
HM6	3.34859E-13	4.95762E-14	7.7019E-14	7.37105E-14
HM7	2.39071E-07	2.75045E-07	-3.8989E-07	0
HUO1	0.004943	0.008683	0.009028	0.008566
HUO2	0.013686	0.011055	0.010156	0.01146
HUO3	-1.1018E-05	-8.6896E-06	-7.3232E-06	-8.9867E-06
HXUO1	1.2694E-12	7.85644E-14	-2.8202E-13	3.04904E-14
HXUO2	-7.3058E-13	-8.109E-14	7.45599E-14	-7.4718E-14
HXUO3	1.9709E-07	1.94026E-07	9.87587E-08	1.95776E-07
HG1	-0.001051	-0.000983	-0.000981	-0.000948
HG2	-0.001063	-0.00093	-0.000815	-0.000975
HG3	2.99013E-06	2.62269E-06	2.4188E-06	2.49976E-06
HG4	7.49049E-07	-1.1106E-06	-2.1669E-06	-8.5605E-07
HG5	0.000109	0.000093431	9.75523E-05	8.62389E-05
HG6	-5.5591E-07	-3.158E-07	-2.61E-07	-2.9133E-07
HS1	-2.1825E-05	-2.0922E-05	-2.1089E-05	-2.0205E-05
HS2	3.39179E-12	1.905E-12	1.48388E-12	2.18215E-12
HS3	-6.5325E-06	-2.2341E-05	-1.8473E-05	-2.4049E-05
HS4	2.23087E-05	2.41331E-05	2.45412E-05	2.30538E-05
HC1	-0.106468	-5.19297	-3.66743	-5.29681
HC2	0.00729	0.007684	0.007175	0.007672
HC3	-2.976E-07	-3.0784E-07	-2.6419E-07	-3.0713E-07
HC4	2.01569E-06	6.3035E-06	3.32112E-06	6.43491E-06
HC5	1.29061E-05	4.77552E-06	3.25089E-06	4.83233E-06
HC6	-1.2859E-05	-6.1854E-06	-4.6309E-06	-6.251E-06
HC7	2.75861E-12	8.20051E-13	4.38148E-13	8.09106E-13

TABLE C6.9 Heating and Cooling Coefficients for Skylights

Coefficient	Nonresidential	Residential
C ₂	1.09E-02	1.64E-02
H_2	2.12E-04	2.91E-04
H_3	-1.68E-04	-2.96E-04

C6.10.1 U-Factor for Below-Grade Walls. The effective *U-factor* of *below-grade walls* shall be calculated using Equation C-20. $R_{\rm soil}$ shall be selected from Table C6.10.1 based on the average depth of the bottom of the wall below the surface of the ground.

U-factor =
$$1 / ((1/C\text{-factor}) + 0.85 + R_{soil})$$
 (C-20)

where

 R_{soil} = effective R-value of the soil from Table C6.10.1

C6.10.2 Adjustment for Other Protected Elements of the Exterior Envelope. The adjusted *U-factor* for *exterior envelope* surfaces, which are protected from outdoor conditions by crawlspaces, attics, or parking garages with natural or mechanical ventilation, shall be adjusted using Equation C-21 before calculating HEAT and COOL.

$$U_{adi} = 1 / ((1 / U - factor) + 2)$$
 (C-21)

C6.10.3 Calculation of COOL and HEAT. COOL and HEAT shall be calculated for each surface using Equations C-22 and C-23 and coefficients from Table C6.10.2, which depend on surface classification and *space-conditioning category*.

$$COOL = Size \times Factor \times 0.08 \times$$

$$(Ccoef1 \times CDD50 + Ccoef2)$$
(C-22)

 $HEAT = Size \times Hcoef \times Factor \times HDD65 \times 0.66$ (C-23)

where Size

= area of surface or length of exposed *slab-on-grade floor* perimeter in the building

Ccoef1, Ccoef2 = coefficients, from Table C6.10.2

Hcoef = coefficient from Table C6.10.2

Factor = U-factor except U_{adj} calculated using Equation C-21 for protected surfaces and

for slab-on-grade floors, perimeter F-

factor

TABLE C6.10.1 Effective R-Value of Soil for Below-Grade Walls

Depth	R _{soil} (h·ft²·°F/Btu)	
1 ft	0.86	
2 ft	1.6	
3 ft	2.2	
4 ft	2.9	
5 ft	3.4	
6 ft	4.0	
7 ft	4.5	
8 ft	5.1	
9 ft	5.6	
10 ft	6.1	

TABLE C6.10.2 Heating and Cooling Coefficients for Other Exterior and Semi-Exterior Surfaces

Building Envelope Classification			Exte	rior			S	emi-Exter	rior
Space-Conditioning Type	No	onresident	ial		Resident	ial		All	
Surface Type	Ccoef1	Ccoef2	HCoef	Ccoef1	Ccoef2	HCoef	Ccoef1	Ccoef2	HCoef
Roof	0.001153	5.56	2.28E-04	0.001656	9.44	3.37E-04	0	0	8.08E-05
Wall, Above-Grade, and Opaque Doors	6.04E-04	0	2.28E-04	1.18E-03	0	3.37E-04	0	0	7.56E-05
Wall, Below-Grade	2.58E-04	0	2.29E-04	6.80E-04	0	3.35E-04	NA	0	7.85E-05
Mass Floor	6.91E-04	0	2.39E-04	1.01E-03	0	3.60E-04	0	0	7.14E-05
Other Floor	7.09E-04	0	2.43E-04	9.54E-04	0	3.66E-04	0	0	7.14E-05
Slab-on-Grade Floor	0	0	2.28E-04	0	0	3.37E-04	0	0	6.80E-05
Vertical Fenestration	NA	0	NA	NA	0	NA	0	0	7.56E-05
Skylights	NA	0	NA	NA	0	NA	0	0	8.08E-05

(This is a normative appendix and is part of this standard.)

NORMATIVE APPENDIX D CLIMATIC DATA

This normative appendix contains the climatic data necessary to determine building envelope and mechanical requirements for various U.S., Canadian, and international locations. (See 5.1.4 for additional information regarding the selection of climatic data.) The following definition applies: N.A. = Not Available.

							Cooling Desig	Cooling Design Temperature	
						Heating Design Temperature	Drv-Bulb	Wet-Bulb	No. Hrs. 8 a.m4 n.m.
State									
City	Latitude	Longitude	Elev. (ft)	HDD65	CDD50	%9.66	1.0%	1.0%	55 <tdb<69< th=""></tdb<69<>
Alabama (AL)									
Alexander City	32.95 N	85.93 W	640	2,910	5,102	N.A.	N.A.	N.A.	N.A.
Anniston FAA AP	33.58 N	85.85 W	611	2,854	5,217	19	93	92	N.A.
Auburn Agronomy Farm	32.60 N	85.50 W	652	2,612	5,428	N.A.	N.A.	N.A.	N.A.
Birmingham FAA AP	33.57 N	86.75 W	625	2,918	5,206	18	92	75	092
Dothan	31.32 N	85.45 W	400	1,703	6,659	28	93	76	N.A.
Gadsden Steam Plant	34.03 N	86.00 W	565	3,317	4,805	N.A.	N.A.	N.A.	N.A.
Huntsville WSO AP	34.65 N	86.77 W	624	3,323	4,855	15	92	74	N.A.
Mobile WSO AP	30.68 N	88.25 W	211	1,702	6,761	26	92	76	774
Montgomery WSO AP	32.30 N	86.40 W	221	2,224	5,990	24	93	76	734
Selma	32.42 N	W 00.78	147	2,249	6,080	N.A.	N.A.	N.A.	N.A.
Talladega	33.43 N	86.08 W	555	2,790	5,097	N.A.	N.A.	N.A.	N.A.
Tuscaloosa FAA AP	33.23 N	87.62 W	691	2,661	5,624	20	94	77	N.A.
Alaska (AK)									
Anchorage WSCMO AP	61.17 N	150.02 W	114	10,570	889	-14	89	57	521
Barrow WSO AP	71.30 N	156.78 W	31	20,226	0	-41	52	49	N.A.
Fairbanks WSFO AP	64.82 N	147.87 W	436	13,940	1,040	-47	77	65	682
Juneau AP	58.37 N	134.58 W	12	8,897	559	4	69	58	540
Kodiak WSO AP	57.75 N	152.50 W	1111	8,817	451	7	65	56	384
Nome WSO AP	64.50 N	165.43 W	13	14,129	274	-31	65	55	210
Arizona (AZ)									
Douglas FAA AP	31.47 N	W 09.60	4,098	2,767	4,786	N.A.	N.A.	N.A.	N.A.
Flagstaff WSO AP	35.13 N	111.67 W	7,006	7,131	1,661	1	83	55	N.A.
Kingman	35.20 N	114.02 W	3,539	3,212	5,040	22	26	63	N.A.
Nogales	31.42 N	110.95 W	3,560	2,928	4,554	N.A.	N.A.	N.A.	N.A.
Dhoeniy WCEO AD	33 43 N	112.02 W	1.110	1.350	8 425	34	108	02	746

TABLE D-1 (Continued) U.S. and U.S. Territory Climatic Data

							Cooning Desig	Cooning Design Temperature	
						Heating Design			No. Hrs.
						Temperature	Dry-Bulb	Wet-Bulb	8 a.m4 p.m.
State	Latitude	Longitude	Elev. (ft)	HDD65	CDD50	%9.66	1.0%	1.0%	55 <tdb<69< th=""></tdb<69<>
(Arizona cont.)									
Prescott	34.57 N	112.43 W	5,205	4,995	2,875	15	91	09	725
Tucson WSO AP	32.13 N	110.93 W	2,584	1,678	6,921	31	102	65	716
Winslow WSO AP	35.02 N	110.73 W	4,890	4,776	3,681	10	93	09	634
Yuma WSO AP	32.67 N	114.60 W	206	927	8,897	40	109	72	269
Arkansas (AR)									
Blytheville AFB	35.97 N	W 56.98	256	3,656	5,133	12	95	77	N.A.
Camden	33.60 N	92.82 W	116	2,953	5,309	N.A.	N.A.	N.A.	N.A.
Fayetteville	36.00 N	94.17 W	1,250	4,040	4,452	9	93	75	N.A.
Ft Smith WSO AP	35.33 N	94.37 W	449	3,478	5,078	13	96	76	547
Hot Springs	34.52 N	93.05 W	089	3,181	5,243	N.A.	N.A.	N.A.	N.A.
Jonesboro	35.88 N	W 07.06	390	3,504	5,118	N.A.	N.A.	N.A.	N.A.
Little Rock FAA AP	34.73 N	92.23 W	257	3,155	5,299	16	95	77	626
Pine Bluff	34.22 N	92.02 W	215	3,016	5,467	N.A.	N.A.	N.A.	N.A.
Texarkana FAA AP	33.45 N	94.00 W	361	2,295	6,152	20	95	77	N.A.
California (CA)									
Bakersfield WSO AP	35.42 N	119.05 W	495	2,182	6,049	32	101	69	848
Blythe FAA Airport	33.62 N	114.72 W	390	1,144	8,789	N.A.	N.A.	N.A.	N.A.
Burbank Hollywood	34.20 N	118.37 W	774	1,204	5,849	39	95	69	N.A.
Chico University Farm	39.70 N	121.82 W	185	2,953	4,454	N.A.	N.A.	N.A.	N.A.
Crescent City	41.77 N	124.20 W	40	4,397	1,628	N.A.	N.A.	N.A.	N.A.
El Centro	32.77 N	115.57 W	-30	1,156	8,132	N.A.	N.A.	N.A.	N.A.
Eureka WSO City	40.80 N	124.17 W	09	4,496	1,529	N.A.	N.A.	N.A.	N.A.
Fairfield/Travis AFB	38.27 N	121.93 W	62	2,556	4,223	31	94	29	N.A.
Fresno WSO AP	36.77 N	119.72 W	328	2,556	5,350	30	101	70	785
Laguna Beach	33.55 N	117.78 W	35	2,157	3,881	N.A.	N.A.	N.A.	N.A.
Livermore	37.67 N	121.77 W	480	2,909	3,810	N.A.	N.A.	N.A.	N.A.
Lompoc	34.65 N	120.45 W	95	2,651	3,240	N.A.	N.A.	N.A.	N.A.
Long Beach WSO AP	33.82 N	118.15 W	34	1,430	5,281	40	88	29	1502
Los Angeles WSO AP	33.93 N	118.38 W	100	1,458	4,777	43	81	64	1849
Merced/Castle AFB	37.37 N	120.57 W	187	2,687	4,694	30	26	69	N.A.
	14 00 00	W 00 101	200	0	7 5 5	4	< <u>'</u>	•	

TABLE D-1 (Continued) U.S. and U.S. Territory Climatic Data

							Cooling Design	Cooling Design Temperature	
						Heating Design			No. Hrs.
						Temperature	Dry-Bulb	Wet-Bulb	8 a.m4 p.m.
State	Lotitudo	Londindo	Flor. (#)	unnke		709 00	1 00%	1 00%	09/41/1/25
(Colifornia cont.)	rannae	Toughtune	EICV. (11)	COMMI	CODE	22.0 / 0	T-0 / 0	1.0 / 0	20×001×02
			,						
Napa State Hospital	38.28 N	122.27 W	09	2,844	3,463	N.A.	N.A.	N.A.	N.A.
Needles FAA Airport	34.77 N	114.62 W	914	1,309	8,645	N.A.	N.A.	N.A.	N.A.
Oakland/Intl	37.73 N	122.20 W	7	2,644	3,126	N.A.	N.A.	N.A.	1905
Oceanside Marina	33.22 N	117.40 W	10	2,010	4,069	N.A.	N.A.	N.A.	N.A.
Ontario/Intl	34.05 N	117.62 W	961	1,488	5,823	35	86	70	N.A.
Oxnard	34.20 N	W 81.911	49	1,992	3,980	39	79	64	N.A.
Palm Springs	33.83 N	116.50 W	425	985	8,555	N.A.	N.A.	N.A.	N.A.
Palmdale	34.58 N	118.10 W	2,596	2,948	4,863	N.A.	N.A.	N.A.	N.A.
Pasadena	34.15 N	118.15 W	864	1,453	5,476	N.A.	N.A.	N.A.	N.A.
Petaluma Fire Stn 3	38.23 N	122.63 W	27	3,050	3,188	N.A.	N.A.	N.A.	N.A.
Pomona Cal Poly	34.07 N	117.82 W	740	1,713	5,145	N.A.	N.A.	N.A.	N.A.
Redding WSO	40.50 N	122.30 W	502	2,855	4,964	N.A.	N.A.	N.A.	N.A.
Redlands	34.05 N	117.18 W	1,318	1,875	5,435	N.A.	N.A.	N.A.	N.A.
Richmond	37.93 N	122.35 W	55	2,574	3,285	N.A.	N.A.	N.A.	N.A.
Riverside/March AFB	33.90 N	117.25 W	1,535	1,861	5,295	34	86	89	N.A.
Sacramento FAA AP	38.52 N	121.50 W	18	2,749	4,474	30	76	89	066
Salinas FAA AP	36.67 N	121.60 W	69	2,964	2,951	33	78	62	N.A.
San Bernardino/Norton	34.10 N	117.23 W	1,155	1,821	5,450	34	101	70	N.A.
San Diego WSO AP	32.73 N	117.17 W	13	1,256	5,223	44	81	29	1911
San Francisco WSO AP	37.62 N	122.38 W	∞	3,016	2,883	37	78	62	1796
San Jose	37.35 N	121.90 W	<i>L</i> 9	2,387	3,935	35	68	99	N.A.
San Luis Obispo Poly	35.30 N	120.67 W	315	2,498	3,492	N.A.	N.A.	N.A.	N.A.
Santa Ana Fire Station	33.75 N	117.87 W	135	1,238	5,430	N.A.	N.A.	N.A.	N.A.
Santa Barbara FAA AP	34.43 N	119.83 W	6	2,438	3,449	34	80	64	N.A.
Santa Cruz	36.98 N	122.02 W	130	2,969	2,913	N.A.	N.A.	N.A.	N.A.
Santa Maria WSO AP	34.90 N	120.45 W	254	2,984	2,918	32	82	62	2016
Santa Monica Pier	34.00 N	118.50 W	14	1,819	4,145	N.A.	N.A.	N.A.	N.A.
Santa Paula	34.32 N	W 5119.15 W	237	2,039	4,114	N.A.	N.A.	N.A.	N.A.
Santa Rosa	38.45 N	122.70 W	167	2,883	3,432	N.A.	N.A.	N.A.	N.A.
Stockton WSO AP	37.90 N	121.25 W	22	2,707	4,755	30	76	89	N.A.
Ukiah	39.15 N	123.20 W	623	2,954	3,868	N.A.	N.A.	N.A.	N.A.

TABLE D-1 (Continued) U.S. and U.S. Territory Climatic Data

							0 0	•	
						Heating Design			No. Hrs.
						Temperature	Dry-Bulb	Wet-Bulb	8 a.m4 p.m.
State	;	;	į	,	i i				; ;
City S. C. C.	Latitude	Longitude	Elev. (ft)	HDD65	CDDS0	%9.6%	1.0%	1.0%	55 <tdb<69< td=""></tdb<69<>
(California cont.)									
Visalia	36.33 N	119.30 W	325	2,511	5,186	N.A.	N.A.	N.A.	N.A.
Yreka	41.72 N	122.63 W	2,625	5,386	2,611	N.A.	N.A.	N.A.	N.A.
Colorado (CO)									
Alamosa WSO AP	37.45 N	105.87 W	7,536	8,749	1,374	-17	82	55	N.A.
Boulder	40.03 N	105.28 W	5,420	5,554	2,820	N.A.	N.A.	N.A.	N.A.
Colorado Sprgs WSO AP	38.82 N	104.72 W	9,090	6,415	2,312	-2	87	58	725
Denver WSFO AP	39.77 N	104.87 W	5,286	6,020	2,732	-3	06	59	739
Durango	37.28 N	107.88 W	6,600	6,911	1,942	N.A.	N.A.	N.A.	N.A.
Ft Collins	40.58 N	105.08 W	5,004	6,368	2,411	N.A.	N.A.	N.A.	N.A.
Grand Junction WSO AP	39.10 N	108.55 W	4,849	5,548	3,632	2	94	09	518
Greeley UNC	40.42 N	104.70 W	4,715	6,306	2,698	N.A.	N.A.	N.A.	N.A.
La Junta FAA AP	38.05 N	103.52 W	4,190	5,265	3,795	N.A.	N.A.	N.A.	N.A.
Pueblo WSO AP	38.28 N	104.52 W	4,640	5,413	3,358	-1	94	62	720
Sterling	40.62 N	103.22 W	3,938	6,541	2,809	N.A.	N.A.	N.A.	N.A.
Trinidad FAA AP	37.25 N	104.33 W	5,746	5,483	2,976	-2	06	09	N.A.
Connecticut (CT)									
Bridgeport WSO AP	41.17 N	73.13 W	10	5,537	2,997	8	***************************************	72	N.A.
Hartford-Brainard Fld	41.73 N	72.65 W	15	6,155	2,768	2	88	72	598
Norwalk Gas Plant	41.12 N	73.42 W	37	5,865	2,768	N.A.	N.A.	N.A.	N.A.
Norwich Pub Util Plt	41.53 N	72.07 W	20	5,869	2,687	N.A.	N.A.	N.A.	N.A.
Delaware (DE)									
Dover	39.15 N	75.52 W	30	4,337	3,894	14	68	75	N.A.
Wilmington WSO AP	39.67 N	75.60 W	79	4,937	3,557	10	68	74	617
Florida (FL)									
Belle Glade Exp Stn	26.67 N	80.63 W	16	451	8,285	N.A.	N.A.	N.A.	N.A.
Daytona Beach WSO AP	29.18 N	81.05 W	29	606	7,567	34	06	77	641
Ft Lauderdale	26.07 N	80.15 W	10	171	9,735	46	06	78	N.A.
Ft Myers FAA AP	26.58 N	81.87 W	15	418	8,924	42	93	77	N.A.
Ft Pierce	27.47 N	80.35 W	25	490	8,448	N.A.	N.A.	N.A.	N.A.
Gainesville Mun AP	29.68 N	82.27 W	138	1,267	7,009	30	92	77	N.A.
G + C 5/11 II.	00000	111 02 10	(0		

TABLE D-1 (Continued) U.S. and U.S. Territory Climatic Data

							Cooning Desig	Cooling Design Temperature	
						Heating Design			No. Hrs.
, p. 1						Temperature	Dry-Bulb	Wet-Bulb	8 a.m4 p.m.
State City	Latitude	Longitude	Elev. (ft)	HDD65	CDD50	%9.66	1.0%	1.0%	55 <tdb<69< th=""></tdb<69<>
(Florida cont.)									
Key West WSO AP	24.55 N	81.75 W	4	100	10,174	55	68	79	N.A.
Lakeland	28.02 N	81.92 W	145	588	8,472	N.A.	N.A.	N.A.	N.A.
Miami WSCMO AP	25.80 N	80.30 W	12	200	9,474	46	06	77	259
Ocala	29.20 N	82.08 W	75	930	7,696	N.A.	N.A.	N.A.	N.A.
Orlando WSO Mc Coy	28.43 N	81.33 W	91	989	8,227	37	93	76	571
Panama City/Tyndall	30.07 N	85.58 W	16	1,216	7,023	33	68	62	N.A.
Pensacola FAA AP	30.47 N	87.20 W	112	1,617	6,816	28	92	78	N.A.
St Augustine WFOY	29.90 N	81.32 W	8	1,040	7,261	N.A.	N.A.	N.A.	N.A.
St Petersburg	27.77 N	82.63 W	8	603	8,537	43	93	79	N.A.
Tallahassee WSO AP	30.38 N	84.37 W	55	1,705	6,639	25	93	76	747
Tampa WSCMO AP	N 72.97 N	82.53 W	19	725	8,239	36	91	77	592
West Palm Beach WSO AP	26.68 N	80.12 W	18	323	9,049	43	06	78	308
Georgia (GA)									
Albany	31.53 N	84.13 W	180	2,205	6,020	27	95	92	N.A.
Americus	32.05 N	84.25 W	490	2,430	5,634	N.A.	N.A.	N.A.	N.A.
Athens WSO AP	33.95 N	83.32 W	802	2,893	5,079	20	92	75	N.A.
Atlanta WSO AP	33.65 N	84.43 W	1,010	2,991	5,038	18	91	74	749
Augusta WSO AP	33.37 N	W 78.18	148	2,565	5,519	21	94	92	774
Brunswick	31.17 N	81.50 W	13	1,578	6,729	30	91	62	N.A.
Columbus WSO AP	32.52 N	84.95 W	449	2,261	6,052	23	93	75	N.A.
Dalton	34.75 N	84.95 W	700	3,552	4,546	N.A.	N.A.	N.A.	N.A.
Dublin	32.50 N	82.90 W	215	2,476	5,664	N.A.	N.A.	N.A.	N.A.
Gainesville	34.30 N	83.85 W	1,170	3,500	4,310	N.A.	N.A.	N.A.	N.A.
La Grange	33.05 N	85.02 W	715	2,667	5,216	N.A.	N.A.	N.A.	N.A.
Macon WSO AP	32.70 N	83.65 W	354	2,334	5,826	23	94	75	787
Savannah WSO AP	32.13 N	81.20 W	46	1,847	6,389	26	93	76	N.A.
Valdosta/Moody AFB	30.97 N	83.20 W	233	1,552	7,216	30	94	77	N.A.
Waycross	31.25 N	82.32 W	145	2,025	6,172	29	94	76	N.A.
Hawaii (HI)									
Hilo (Hawaii)	19.72 N	155.07 W	36	0	8,759	61	84	74	153
Honolulu WSFO AP (Oahu)	21.33 N	157.92 W	7	0	9,949	61	88	73	69
		111 00 00	001	c	9500	17	30	ī	,

TABLE D-1 (Continued) U.S. and U.S. Territory Climatic Data

							0	J	
						Heating Design			No. Hrs.
						Temperature	Dry-Bulb	Wet-Bulb	8 a.m4 p.m.
State	I offudo	Longitude	Floy (ft)	HDD65	CDDS0	%9 00	1 0%	1 0%	09/4PT/55
Idaho (ID)	Tanting	Tonguage			200		0/0:1	0/00	OCTATION OF
Boise WSFO AP	43.57 N	116.22 W	2,838	5,861	2,807	2	94	63	647
Burley FAA AP	42.53 N	113.77 W	4,157	6,745	2,174	-5	06	62	N.A.
Coeur D'Alene R S	47.68 N	116.75 W	2,158	6,239	2,216	N.A.	N.A.	N.A.	N.A.
Idaho Falls FAA AP	43.52 N	112.07 W	4,730	8,063	1,853	-12	68	09	N.A.
Lewiston WSO AP	46.38 N	117.02 W	1,436	5,270	2,964	9	93	64	748
Moscow-Univ of Idaho	46.73 N	116.97 W	2,660	6,782	1,789	N.A.	N.A.	N.A.	N.A.
Mountain Home	43.13 N	115.70 W	3,190	6,176	2,725	0	96	62	N.A.
Pocatello WSO AP	42.92 N	112.60 W	4,454	7,180	2,142	-7	06	09	546
Twin Falls WSO	42.55 N	114.35 W	3,960	6,769	1,995	N.A.	N.A.	N.A.	N.A.
Illinois (IL)									
Aurora	41.75 N	88.35 W	449	6,699	2,880	N.A.	N.A.	N.A.	N.A.
Belleville/Scott AFB	38.55 N	W 28.88	453	4,878	4,146	3	93	77	N.A.
Carbondale Sewage Plt	37.73 N	89.17 W	390	4,865	3,934	N.A.	N.A.	N.A.	N.A.
Champaign	40.03 N	88.28 W	755	5,689	3,697	N.A.	N.A.	N.A.	N.A.
Chicago Midway AP	41.73 N	W 77.78	620	6,176	3,251	N.A.	N.A.	N.A.	N.A.
Chicago O'Hare WSO AP	41.98 N	W 06.78	674	6,536	2,941	9-	88	73	613
Chicago University	41.78 N	W 09.78	594	5,753	3,391	N.A.	N.A.	N.A.	N.A.
Danville	40.13 N	87.65 W	558	5,610	3,471	4	06	77	N.A.
Decatur	39.83 N	89.02 W	620	5,522	3,652	-2	91	75	N.A.
Dixon	41.83 N	89.52 W	700	6,873	2,965	N.A.	N.A.	N.A.	N.A.
Freeport Waste Wtr Plt	42.30 N	W 09.68	750	7,169	2,739	N.A.	N.A.	N.A.	N.A.
Galesburg	40.95 N	90.38 W	771	6,314	3,249	N.A.	N.A.	N.A.	N.A.
Joliet Brandon Rd Dam	41.50 N	88.10 W	543	6,463	3,025	N.A.	N.A.	N.A.	N.A.
Moline WSO AP	41.45 N	90.50 W	582	6,474	3,207	8-	06	74	640
Mt Vernon	38.35 N	88.87 W	490	5,189	3,818	N.A.	N.A.	N.A.	N.A.
Peoria WSO AP	40.67 N	W 89.68	059	6,148	3,339	9-	68	74	N.A.
Quincy FAA AP	39.93 N	91.20 W	763	5,763	3,574	4-	91	75	N.A.
Rantoul	40.32 N	88.17 W	740	6,183	3,288	N.A.	N.A.	N.A.	N.A.
Rockford WSO AP	42.20 N	89.10 W	724	696'9	2,852	-10	88	73	N.A.
Springfield WSO AP	39.85 N	W 89.68	594	5,688	3,635	4-	91	75	009
	1000						,		

TABLE D-1 (Continued) U.S. and U.S. Territory Climatic Data

							Cooling Desig	Cooling Design Temperature	No. Hrs.
						Contract of the contract of th			NO. III.S.
						Heating Design Temperature	Dry-Bulb	Wet-Bulb	8 a.m4 p.m.
State									
City	Latitude	Longitude	Elev. (ft)	HDD65	CDD50	%9.66	1.0%	1.0%	55 <tdb<69< th=""></tdb<69<>
Indiana (IN)									
Anderson Sewage Plant	40.10 N	85.72 W	847	5,916	3,091	N.A.	N.A.	N.A.	N.A.
Bloomington Indiana U	39.17 N	86.52 W	825	5,309	3,585	N.A.	N.A.	N.A.	N.A.
Columbus	39.20 N	85.92 W	621	5,536	3,353	N.A.	N.A.	N.A.	N.A.
Evansville WSO AP	38.05 N	87.53 W	380	4,708	4,074	3	92	76	611
Ft Wayne WSO AP	41.00 N	85.20 W	797	6,273	3,077	4	88	73	601
Goshen College	41.57 N	85.83 W	805	6,282	2,941	N.A.	N.A.	N.A.	N.A.
Hobart	41.53 N	87.25 W	009	6,043	3,168	N.A.	N.A.	N.A.	N.A.
Indianapolis WSFO	39.73 N	86.27 W	792	5,615	3,453	-3	88	74	N.A.
Kokomo	40.42 N	86.05 W	855	6,429	2,978	N.A.	N.A.	N.A.	N.A.
Lafayette	40.35 N	86.87 W	009	6,228	3,069	-5	06	75	N.A.
Marion	40.57 N	85.67 W	790	6,260	2,996	N.A.	N.A.	N.A.	N.A.
Muncie Ball State Univ	40.22 N	85.42 W	940	6,027	3,196	N.A.	N.A.	N.A.	N.A.
Peru/Grissom AFB	40.65 N	86.15 W	814	5,908	3,439	-3	68	75	N.A.
Richmond Wtr Wks	39.88 N	84.88 W	1,015	5,963	3,004	N.A.	N.A.	N.A.	N.A.
Shelbyville Sewage Plt	39.52 N	85.78 W	750	5,784	3,291	N.A.	N.A.	N.A.	N.A.
South Bend WSO AP	41.70 N	86.32 W	773	6,331	2,920	-2	87	72	635
Terre Haute	39.35 N	87.42 W	555	5,581	3,490	-3	06	76	N.A.
Valparaiso Waterworks	41.52 N	87.03 W	800	6,267	2,942	N.A.	N.A.	N.A.	N.A.
Iowa (IA)									
Ames	42.03 N	93.80 W	1,099	6,776	3,079	N.A.	N.A.	N.A.	N.A.
Burlington	40.78 N	91.12 W	597	5,943	3,601	4-	91	76	649
Cedar Rapids FAA AP	41.88 N	91.70 W	863	6,924	3,003	-11	68	74	N.A.
Clinton	41.80 N	90.27 W	585	6,324	3,291	N.A.	N.A.	N.A.	N.A.
Des Moines WSFO AP	41.53 N	93.65 W	938	6,497	3,371	6-	06	74	299
Dubuque WSO AP	42.40 N	W 00.70	1,065	7,327	2,672	N.A.	N.A.	N.A.	N.A.
Ft Dodge	42.50 N	94.20 W	1,115	7,261	2,902	-13	88	73	N.A.
Iowa City	41.65 N	91.53 W	640	6,227	3,434	N.A.	N.A.	N.A.	N.A.
Keokuk Lock and Dam	40.40 N	91.37 W	527	5,969	3,467	N.A.	N.A.	N.A.	N.A.
Marshalltown	42.07 N	92.93 W	870	7,170	2,813	N.A.	N.A.	N.A.	N.A.
Mason City FAA AP	43.17 N	93.33 W	1,194	7,837	2,653	-15	88	73	610

TABLE D-1 (Continued) U.S. and U.S. Territory Climatic Data

							Cooling Desig	Cooling Design Temperature	
						Hoofing Docion			No Hre
						rteaung Design Temperature	Dry-Bulb	Wet-Bulb	8 a.m4 p.m.
State									
City	Latitude	Longitude	Elev. (ft)	HDD65	CDD50	%9.66	1.0%	1.0%	55 <tdb<69< th=""></tdb<69<>
(Iowa cont.)									
Newton	41.70 N	93.05 W	938	6,783	3,131	N.A.	N.A.	N.A.	N.A.
Ottumwa Airport	41.10 N	92.45 W	842	6,269	3,414	-5	92	75	N.A.
Sioux City WSO AP	42.40 N	96.38 W	1,103	6,893	3,149	-11	06	74	602
Waterloo WSO AP	42.55 N	92.40 W	898	7,406	2,813	-14	88	73	N.A.
Kansas (KS)									
Atchison	39.57 N	95.12 W	945	5,184	3,940	N.A.	N.A.	N.A.	N.A.
Chanute FAA Airport	37.67 N	95.48 W	876	4,650	4,226	N.A.	N.A.	N.A.	N.A.
Dodge City WSO AP	37.77 N	W 76.99	2,582	5,001	4,090	0	76	70	637
El Dorado	37.82 N	96.83 W	1,340	4,587	4,317	N.A.	N.A.	N.A.	N.A.
Garden City FAA AP	37.93 N	100.72 W	2,882	5,216	3,936	-3	76	69	N.A.
Goodland WSO AP	39.37 N	101.70 W	3,650	5,974	3,018	-3	94	99	625
Great Bend	38.35 N	W 77.86	1,850	4,679	4,425	N.A.	N.A.	N.A.	N.A.
Hutchinson	37.93 N	98.03 W	1,570	5,103	4,106	N.A.	N.A.	N.A.	N.A.
Liberal	37.05 N	100.92 W	2,834	4,706	4,185	N.A.	N.A.	N.A.	N.A.
Manhattan	39.20 N	96.58 W	1,065	5,043	4,155	N.A.	N.A.	N.A.	N.A.
Parsons	37.37 N	95.28 W	910	4,606	4,339	N.A.	N.A.	N.A.	N.A.
Russell FAA AP	38.87 N	98.82 W	1,864	5,338	3,939	4-	96	72	N.A.
Salina FAA AP	38.80 N	97.63 W	1,257	5,101	4,167	-3	76	73	N.A.
Topeka WSFO AP	39.07 N	95.63 W	877	5,265	3,880	-2	93	75	809
Wichita WSO AP	37.65 N	97.43 W	1,321	4,791	4,351	2	76	73	N.A.
Kentucky (KY)									
Ashland	38.45 N	82.62 W	555	5,225	3,280	N.A.	N.A.	N.A.	N.A.
Bowling Green FAA AP	36.97 N	86.42 W	547	4,328	4,132	7	91	75	N.A.
Covington WSO AP	39.07 N	84.67 W	698	5,248	3,488	1	68	73	661
Hopkinsville/Campbell	36.67 N	87.50 W	571	3,928	4,654	N.A.	N.A.	N.A.	N.A.
Lexington WSO AP	38.03 N	84.60 W	996	4,783	3,754	4	68	73	618
Louisville WSFO AP	38.18 N	85.73 W	477	4,514	4,000	9	06	75	636
Madisonville	37.35 N	87.52 W	440	4,167	4,290	N.A.	N.A.	N.A.	N.A.
Owensboro	37.77 N	87.15 W	405	4,334	4,222	N.A.	N.A.	N.A.	N.A.
Paducah WSO	37.07 N	88.77 W	410	4,279	4.317	7	93	76	ΔN

TABLE D-1 (Continued) U.S. and U.S. Territory Climatic Data

						Heating Design)	•	No. Hrs.
,						Temperature	Dry-Bulb	Wet-Bulb	8 a.m4 p.m.
State	Latitude	Longitude	Elev. (ft)	HDD65	CDD50	%9'66	1.0%	1.0%	55 <tdb<69< th=""></tdb<69<>
Louisiana (LA)									
Alexandria	31.32 N	92.47 W	87	2,003	6,407	27	94	78	N.A.
Baton Rouge WSO AP	30.53 N	91.13 W	2	1,669	6,845	27	92	TT	21.9
Bogalusa	30.78 N	W 78.68	100	1,911	6,457	N.A.	N.A.	N.A.	N.A.
Houma	29.58 N	90.73 W	15	1,429	6,974	N.A.	N.A.	N.A.	N.A.
Lafayette FAA AP	30.20 N	91.98 W	38	1,587	6,877	28	93	78	N.A.
Lake Charles WSO AP	30.12 N	93.22 W	6	1,616	6,813	29	91	78	899
Minden	32.58 N	93.28 W	185	2,533	5,823	N.A.	N.A.	N.A.	N.A.
Monroe FAA AP	32.52 N	92.05 W	78	2,407	6,039	22	94	78	N.A.
Natchitoches	31.77 N	93.08 W	130	2,152	6,273	N.A.	N.A.	N.A.	N.A.
New Orleans WSCMO AP	29.98 N	90.25 W	4	1,513	6,910	30	92	78	789
Shreveport WSO AP	32.47 N	93.82 W	254	2,264	6,166	22	95	77	269
Maine (ME)									
Augusta FAA AP	44.32 N	W 08.69	350	7,550	2,093	-3	84	69	N.A.
Bangor FAA AP	44.80 N	68.82 W	163	7,930	1,916	<i>L</i> -	84	69	699
Caribou WSO AP	46.87 N	68.02 W	624	9,651	1,470	-14	82	29	692
Lewiston	44.10 N	70.22 W	180	7,244	2,261	N.A.	N.A.	N.A.	N.A.
Millinocket	45.65 N	W 07.89	360	8,902	1,708	N.A.	N.A.	N.A.	N.A.
Portland WSMO AP	43.65 N	70.32 W	57	7,378	1,943	-3	83	70	999
Waterville Pmp Stn	44.55 N	W 59.69	06	7,382	2,180	N.A.	N.A.	N.A.	N.A.
Maryland (MD)									
Baltimore WSO AP	39.18 N	76.67 W	196	4,707	3,709	11	91	74	N.A.
Cumberland	39.63 N	78.75 W	730	5,036	3,432	N.A.	N.A.	N.A.	N.A.
Hagerstown	39.65 N	77.73 W	099	5,293	3,341	N.A.	N.A.	N.A.	N.A.
Salisbury	38.37 N	75.58 W	10	4,027	4,002	13	06	92	N.A.
Massachusetts (MA)									
Boston WSO AP	42.37 N	71.03 W	20	5,641	2,897	7	87	71	713
Clinton	42.40 N	71.68 W	398	6,698	2,457	N.A.	N.A.	N.A.	N.A.
Framingham	42.28 N	71.42 W	170	6,262	2,695	N.A.	N.A.	N.A.	N.A.
Lawrence	42.70 N	71.17 W	57	6,322	2,648	N.A.	N.A.	N.A.	N.A.
Lowell	42.65 N	71.37 W	110	6,339	2,715	N.A.	N.A.	N.A.	N.A.
Mon. Dodford	11 C2 N	W 50.07	001	0	C	*		,	

TABLE D-1 (Continued) U.S. and U.S. Territory Climatic Data

							0	T 0 0	
						Heating Design			No. Hrs.
						Temperature	Dry-Bulb	Wet-Bulb	8 a.m4 p.m.
State	Latitude	Longitude	Elev. (ff.)	HDD65	CDD50	%9 ⁻ 66	1.0%	1.0%	55 <tdb<69< th=""></tdb<69<>
(Massachusetts cont.)		0							
Springfield	42.10 N	72.58 W	190	5,754	3,037	N.A.	N.A.	N.A.	N.A.
Taunton	41.90 N	71.07 W	20	6,346	2,461	N.A.	N.A.	N.A.	N.A.
Worcester WSO AP	42.27 N	71.87 W	986	6,979	2,203	0	83	69	N.A.
Michigan (MI)									
Adrian	41.92 N	84.02 W	092	6,737	2,586	N.A.	N.A.	N.A.	N.A.
Alpena WSO AP	45.07 N	83.57 W	689	8,284	1,779	<i>L</i> -	84	69	969
Battle Creek/Kellogg	42.30 N	85.23 W	942	6,416	3,399	N.A.	N.A.	N.A.	N.A.
Benton Harbor AP	42.13 N	86.43 W	649	6,303	2,829	N.A.	N.A.	N.A.	N.A.
Detroit City Airport	42.42 N	83.02 W	625	6,167	3,046	0	87	72	N.A.
Escanaba	45.75 N	87.03 W	009	8,593	1,664	N.A.	N.A.	N.A.	N.A.
Flint WSO AP	42.97 N	83.75 W	992	6,979	2,451	-2	98	71	634
Grand Rapids WSO AP	42.88 N	85.52 W	707	6,973	2,537	0	98	71	622
Holland	42.80 N	86.12 W	610	6,747	2,536	N.A.	N.A.	N.A.	N.A.
Jackson FAA AP	42.27 N	84.45 W	1,005	6,791	2,707	-3	98	73	N.A.
Kalamazoo State Hosp	42.28 N	85.60 W	945	6,230	3,015	N.A.	N.A.	N.A.	N.A.
Lansing WSO AP	42.77 N	84.60 W	841	7,101	2,449	-3	98	72	N.A.
Marquette	46.55 N	87.38 W	999	8,356	1,730	-13	82	29	N.A.
Mt Pleasant University	43.58 N	84.77 W	962	7,436	2,319	N.A.	N.A.	N.A.	N.A.
Muskegon WSO AP	43.17 N	86.23 W	628	6,924	2,361	3	83	70	N.A.
Pontiac State Hospital	42.65 N	83.30 W	982	6,653	2,770	N.A.	N.A.	N.A.	N.A.
Port Huron	42.98 N	82.42 W	290	868'9	2,541	N.A.	N.A.	N.A.	N.A.
Saginaw FAA AP	43.53 N	84.08 W	099	7,139	2,476	0	87	72	N.A.
Sault Ste Marie WSO	46.47 N	84.37 W	724	9,316	1,421	-12	80	89	733
Traverse City FAA AP	44.73 N	85.58 W	623	7,749	2,127	-3	98	70	629
Ypsilanti East Mich U	42.25 N	83.62 W	6 <i>LL</i>	6,466	2,878	N.A.	N.A.	N.A.	N.A.
Minnesota (MN)									
Albert Lea	43.62 N	93.42 W	1,230	8,146	2,608	N.A.	N.A.	N.A.	N.A.
Alexandria FAA AP	45.87 N	95.38 W	1,416	8,999	2,316	-20	98	70	N.A.
Bemidji Airport	47.50 N	94.93 W	1,377	10,200	1,781	N.A.	N.A.	N.A.	N.A.
Brainerd	46.37 N	94.20 W	1,180	9,437	1,958	-24	85	89	N.A.
G A COST 41-1-4		0,00							

TABLE D-1 (Continued) U.S. and U.S. Territory Climatic Data

						Heating Design			No. Hrs.
						Temperature	Dry-Bulb	Wet-Bulb	8 a.m4 p.m.
State									
City	Latitude	Longitude	Elev. (ft)	HDD65	CDD20	%9.66	1.0%	1.0%	55 <tdb<69< th=""></tdb<69<>
(Minnesota cont.)									
Faribault	44.30 N	93.27 W	940	8,279	2,498	N.A.	N.A.	N.A.	N.A.
International Falls WSO AP	48.57 N	93.38 W	1,179	10,487	1,630	-29	83	29	929
Mankato	44.15 N	94.02 W	836	8,005	2,691	N.A.	N.A.	N.A.	N.A.
Minneapolis-St Paul WSO AP	44.88 N	93.22 W	834	7,981	2,680	-16	88	71	566
Rochester WSO AP	43.92 N	92.50 W	1,297	8,250	2,376	-17	85	71	652
St Cloud WSO AP	45.55 N	94.07 W	1,037	8,928	2,149	-20	88	71	N.A.
Virginia	47.50 N	92.55 W	1,435	10,024	1,583	N.A.	N.A.	N.A.	N.A.
Willmar State Hospital	45.13 N	95.02 W	1,128	8,637	2,465	N.A.	N.A.	N.A.	N.A.
Winona	44.05 N	91.63 W	652	7,694	2,695	N.A.	N.A.	N.A.	N.A.
Mississippi (MS)									
Biloxi/Keesler AFB	30.42 N	88.92 W	26	1,486	6,946	31	91	78	N.A.
Clarksdale	34.20 N	W 75.09	173	3,188	5,357	N.A.	N.A.	N.A.	N.A.
Columbus AFB	33.65 N	88.45 W	220	2,769	5,565	20	94	78	N.A.
Greenville	33.38 N	91.02 W	132	2,778	5,661	N.A.	N.A.	N.A.	N.A.
Greenwood FAA AP	33.50 N	W 80.08	155	2,698	5,760	20	94	78	N.A.
Hattiesburg	31.32 N	89.30 W	161	2,180	6,085	N.A.	N.A.	N.A.	N.A.
Jackson WSFO AP	32.32 N	W 80.08	330	2,467	5,900	21	93	76	640
Laurel	31.68 N	89.12 W	225	2,327	5,893	N.A.	N.A.	N.A.	N.A.
McComb FAA AP	31.23 N	90.47 W	413	2,115	6,025	23	92	76	N.A.
Meridian WSO AP	32.33 N	88.75 W	294	2,444	5,804	21	94	76	719
Natchez	31.55 N	91.38 W	195	1,903	6,378	N.A.	N.A.	N.A.	N.A.
Tupelo WSO AP	34.27 N	88.73 W	361	3,079	5,224	18	94	76	N.A.
Vicksburg Military Pk	32.35 N	W 58.06	255	2,196	6,059	N.A.	N.A.	N.A.	N.A.
Missouri (MO)									
Cape Girardeau FAA AP	37.23 N	W 75.98	337	4,386	4,359	9	94	77	N.A.
Columbia WSO AP	38.82 N	92.22 W	887	5,212	3,752	-1	92	75	633
Farmington	37.70 N	90.38 W	935	5,041	3,653	N.A.	N.A.	N.A.	N.A.
Hannibal	39.72 N	91.37 W	712	5,628	3,685	N.A.	N.A.	N.A.	N.A.
Jefferson City Wtr Plt	38.58 N	92.15 W	029	5,302	3,705	N.A.	N.A.	N.A.	N.A.
Joplin FAA AP	37.17 N	94.50 W	086	4,303	4,417	3	94	75	N.A.

TABLE D-1 (Continued) U.S. and U.S. Territory Climatic Data

			`						
							Cooling Design	Cooling Design Temperature	
						Heating Design			No. Hrs.
						Temperature	Dry-Bulb	Wet-Bulb	8 a.m4 p.m.
State									
City	Latitude	Longitude	Elev. (ft)	HDD65	CDD20	%9.66	1.0%	1.0%	55 <tdb<69< th=""></tdb<69<>
(Missouri cont.)									
Kirksville Radio KIRX	40.22 N	92.58 W	026	5,867	3,494	N.A.	N.A.	N.A.	N.A.
Mexico	39.18 N	91.88 W	775	5,590	3,664	N.A.	N.A.	N.A.	N.A.
Moberly Radio KWIX	39.40 N	92.43 W	840	5,204	3,948	N.A.	N.A.	N.A.	N.A.
Poplar Bluff R S	36.77 N	90.42 W	380	4,328	4,368	8	92	76	N.A.
Rolla	38.13 N	91.77 W	1,148	4,748	4,186	N.A.	N.A.	N.A.	N.A.
Rolla Univ of MO	37.95 N	91.77 W	1,180	4,959	3,986	N.A.	N.A.	N.A.	N.A.
St Joseph	39.77 N	94.92 W	811	5,590	3,783	N.A.	N.A.	N.A.	N.A.
St Louis WSCMO AP	38.75 N	90.37 W	535	4,758	4,283	2	93	75	N.A.
Montana (MT)									
Billings WSO AP	45.80 N	108.53 W	3,567	7,164	2,466	-13	06	62	617
Bozeman	45.82 N	110.88 W	5,950	806'6	672	-20	87	09	N.A.
Butte FAA AP	45.95 N	112.50 W	5,540	9,517	1,152	-22	84	56	N.A.
Cut Bank FAA AP	48.60 N	112.37 W	3,838	8,904	1,475	-21	84	59	672
Glasgow WSO AP	48.22 N	106.62 W	2,284	8,745	2,244	-22	06	63	570
Glendive	47.10 N	104.72 W	2,076	8,178	2,619	N.A.	N.A.	N.A.	N.A.
Great Falls WSCMO AP	47.48 N	111.37 W	3,663	7,741	1,993	-19	88	09	641
Havre WSO AP	48.55 N	W 77.601	2,584	8,447	2,132	-25	06	62	N.A.
Helena WSO AP	46.60 N	112.00 W	3,893	8,031	1,922	-18	87	59	651
Kalispell WSO AP	48.30 N	114.27 W	2,965	8,378	1,345	-12	98	61	N.A.
Lewistown FAA AP	47.07 N	109.45 W	4,132	8,479	1,580	-18	98	09	673
Livingston FAA AP	45.70 N	110.45 W	4,653	7,220	1,900	N.A.	N.A.	N.A.	N.A.
Miles City FAA AP	46.43 N	105.87 W	2,628	7,796	2,680	-19	93	65	565
Missoula WSO AP	46.92 N	114.08 W	3,190	7,792	1,679	6-	88	61	658
Nebraska (NE)									
Chadron FAA AP	42.83 N	03.08 W	3,312	7,020	2,692	N.A.	N.A.	N.A.	N.A.
Columbus	41.47 N	97.33 W	1,450	6,543	3,345	N.A.	N.A.	N.A.	N.A.
Fremont	41.43 N	96.48 W	1,180	6,140	3,421	N.A.	N.A.	N.A.	N.A.
Grand Island WSO AP	40.97 N	98.32 W	1,841	6,421	3,243	8-	93	72	611
Hastings	40.58 N	98.35 W	1,925	905'9	3,217	N.A.	N.A.	N.A.	N.A.
Kearney	40.73 N	99.02 W	2,130	6,548	3,090	N.A.	N.A.	N.A.	N.A.
Lincoln WSO AP	40.85 N	96.75 W	1,190	6,278	3,455	<i>L</i> -	94	74	N.A.
Mc Cook	40.22 N	100.58 W	2,580	6,115	3,236	N.A.	N.A.	N.A.	N.A.

TABLE D-1 (Continued) U.S. and U.S. Territory Climatic Data

)		
						Heating Design			No. Hrs.
Ctot.						Temperature	Dry-Bulb	Wet-Bulb	8 a.m4 p.m.
City	Latitude	Longitude	Elev. (ft)	HDD65	CDD50	%9'66	1.0%	1.0%	55 <tdb<69< th=""></tdb<69<>
(Nebraska cont.)									
Norfolk WSO AP	41.98 N	97.43 W	1,551	6,873	3,072	-11	92	72	N.A.
North Platte WSO AP	41.13 N	100.68 W	2,775	6,859	2,737	-10	92	69	592
Omaha (Eppley Field)	41.30 N	95.90 W	086	6,300	3,398	-7	92	75	N.A.
Scottsbluff WSO AP	41.87 N	103.60 W	3,945	6,729	2,680	-11	92	64	620
Sidney	41.23 N	103.00 W	4,320	996'9	2,409	8-	92	63	N.A.
Nevada (NV)									
Carson City	39.15 N	W 77.911	4,651	5,691	2,312	N.A.	N.A.	N.A.	N.A.
Elko FAA AP	40.83 N	115.78 W	5,075	7,077	2,144	-5	92	59	569
Ely WSO AP	39.28 N	114.85 W	6,262	7,621	1,717	9-	87	56	683
Las Vegas WSO AP	36.08 N	115.17 W	2,162	2,407	6,745	27	106	99	719
Lovelock FAA AP	40.07 N	118.55 W	3,900	5,869	2,886	N.A.	N.A.	N.A.	909
Reno WSFO AP	39.50 N	W 87.911	4,404	5,674	2,504	8	92	09	752
Tonopah AP	38.07 N	117.08 W	5,426	5,733	2,840	7	92	57	099
Winnemucca WSO AP	40.90 N	117.80 W	4,297	6,315	2,379	1	94	09	809
New Hampshire (NH)									
Berlin	44.45 N	71.18 W	930	8,645	1,718	N.A.	N.A.	N.A.	N.A.
Concord WSO AP	43.20 N	71.50 W	346	7,554	2,087		87	70	683
Keene	42.92 N	72.27 W	480	6,948	2,398	N.A.	N.A.	N.A.	N.A.
Portsmouth/Pease AFB	43.08 N	70.82 W	102	6,572	2,418	4	85	70	N.A.
New Jersey (NJ)									
Atlantic City WSO AP	39.45 N	74.57 W	138	5,169	3,198	8	88	73	N.A.
Long Branch Oakhurst	40.27 N	74.00 W	30	5,253	3,057	N.A.	N.A.	N.A.	N.A.
Newark WSO AP	40.70 N	74.17 W	30	4,888	3,748	10	06	73	644
New Mexico (NM)									
Alamogordo/Holloman	32.85 N	106.10 W	4,094	3,232	4,726	20	96	63	N.A.
Albuquerque WSFO AP	35.05 N	106.62 W	5,326	4,425	3,908	13	93	09	703
Artesia	32.77 N	104.38 W	3,320	3,527	4,583	N.A.	N.A.	N.A.	N.A.
Carlsbad FAA AP	32.33 N	104.27 W	3,232	2,812	5,512	19	86	99	N.A.
Clovis/Cannon AFB	34.38 N	103.32 W	4,295	3,983	4,178	10	93	64	N.A.
Farmington	36.73 N	108.23 W	5,502	5,464	3,307	8	92	09	N.A.
Gallup FAA AP	35.52 N	108.78 W	6,468	6,244	2,355	-1	87	56	N.A.

TABLE D-1 (Continued) U.S. and U.S. Territory Climatic Data

))	
						Heating Design			No. Hrs.
						Temperature	Dry-Bulb	Wet-Bulb	8 a.m4 p.m.
State	Latitude	Lonoitude	Elev. (ft)	HDD65	CDD50	%9 66	1.0%	1.0%	55 <tdb<69< th=""></tdb<69<>
(New Mexico cont.)		9							
Hobbs	32.70 N	103.13 W	3,615	2,851	5,160	N.A.	N.A.	N.A.	N.A.
Raton Filter Plant	36.92 N	104.43 W	6,932	6,103	2,187	N.A.	N.A.	N.A.	N.A.
Roswell FAA AP	33.30 N	104.53 W	3,669	3,267	4,962	14	96	65	212
Sосоно	34.08 N	106.88 W	4,585	4,074	3,845	N.A.	N.A.	N.A.	N.A.
Tucumcari	35.20 N	103.68 W	4,086	3,912	4,196	6	95	65	710
New York (NY)									
Albany WSFO AP	42.75 N	73.80 W	275	6,894	2,525	-7	98	70	605
Auburn	42.92 N	76.53 W	770	6,782	2,531	N.A.	N.A.	N.A.	N.A.
Batavia	42.98 N	78.18 W	068	6,657	2,536	N.A.	N.A.	N.A.	N.A.
Binghamton WSO AP	42.22 N	75.98 W	1,600	7,273	2,193	-2	82	69	662
Buffalo WSCMO AP	42.93 N	78.73 W	705	6,747	2,468	2	84	69	269
Cortland	42.60 N	76.18 W	1,129	7,168	2,225	N.A.	N.A.	N.A.	N.A.
Elmira/Chemung Co	42.17 N	76.90 W	951	6,845	2,420	-2	87	71	N.A.
Geneva Research Farm	42.88 N	77.03 W	718	6,939	2,364	N.A.	N.A.	N.A.	N.A.
Glens Falls FAA AP	43.35 N	73.62 W	321	7,635	2,182	-10	85	71	N.A.
Gloversville	43.05 N	74.35 W	812	7,664	2,118	N.A.	N.A.	N.A.	N.A.
Ithaca Cornell Univ	42.45 N	76.45 W	096	7,207	2,117	N.A.	N.A.	N.A.	N.A.
Lockport	43.18 N	78.65 W	520	6,703	2,482	N.A.	N.A.	N.A.	N.A.
Massena FAA AP	44.93 N	74.85 W	214	8,255	2,046	-15	84	71	627
N Y Central Pk WSO City	40.78 N	73.97 W	132	4,805	3,634	N.A.	N.A.	N.A.	N.A.
N Y Kennedy WSO AP	40.65 N	73.78 W	16	5,027	3,342	111	88	72	N.A.
N Y La Guardia WSO AP	40.77 N	73.90 W	111	4,910	3,547	13	68	73	790
Oswego East	43.47 N	76.50 W	350	6,733	2,431	N.A.	N.A.	N.A.	N.A.
Plattsburgh AFB	44.65 N	73.47 W	165	7,837	2,175	6-	83	69	N.A.
Poughkeepsie FAA AP	41.63 N	73.88 W	155	6,391	2,663	2	88	72	N.A.
Rochester WSO AP	43.12 N	W 77.67 W	547	6,734	2,406	1	86	71	809
Rome/Griffiss AFB	43.23 N	75.40 W	505	7,244	2,344	-5	98	70	N.A.
Schenectady	42.83 N	73.92 W	220	6,881	2,500	N.A.	N.A.	N.A.	N.A.
Syracuse WSO AP	43.12 N	76.12 W	421	6,834	2,399	-3	85	71	730
Utica	43.10 N	75.28 W	500	7,066	2,354	N.A.	N.A.	N.A.	N.A.
							,		

TABLE D-1 (Continued) U.S. and U.S. Territory Climatic Data

						Heating Design			No. Hrs.
						Temperature	Dry-Bulb	Wet-Bulb	8 a.m4 p.m.
State City	Latitude	Longitude	Elev. (ft)	HDD65	CDD50	%9.66	1.0%	1.0%	55 <tdb<69< th=""></tdb<69<>
North Carolina (NC)									
Asheville WSO AP	35.43 N	82.55 W	2,140	4,308	3,365	11	85	71	915
Charlotte WSO AP	35.22 N	80.93 W	700	3,341	4,704	18	91	74	777
Durham	36.03 N	W 78.97	406	3,867	4,159	N.A.	N.A.	N.A.	N.A.
Elizabeth City FAA AP	36.27 N	76.18 W	10	3,139	4,765	N.A.	N.A.	N.A.	N.A.
Fayetteville/Pope AFB	35.17 N	79.02 W	217	2,917	5,308	22	94	76	N.A.
Goldsboro	35.33 N	W 79.77	109	3,040	5,018	22	94	76	N.A.
Greensboro WSO AP	36.08 N	W 29.95 W	988	3,865	4,144	15	06	74	718
Greenville	35.62 N	77.38 W	30	3,129	4,824	N.A.	N.A.	N.A.	N.A.
Henderson	36.37 N	78.42 W	480	4,038	4,002	N.A.	N.A.	N.A.	N.A.
Hickory FAA AP	35.73 N	81.38 W	1,143	3,728	4,199	18	91	72	N.A.
Jacksonville/New River	34.70 N	77.43 W	26	2,456	5,678	23	92	78	N.A.
Lumberton	34.70 N	W 70.07	130	3,212	4,723	N.A.	N.A.	N.A.	N.A.
New Bern FAA AP	35.07 N	77.05 W	18	2,742	5,262	22	92	78	N.A.
Raleigh-Durham WSFO AP	35.87 N	78.78 W	376	3,457	4,499	16	06	75	740
Rocky Mount	35.90 N	77.72 W	110	3,321	4,586	N.A.	N.A.	N.A.	N.A.
Wilmington WSO AP	34.27 N	W 06.77	72	2,470	5,557	23	91	78	N.A.
North Dakota (ND)									
Bismarck WSFO AP	46.77 N	100.77 W	1,647	8,968	2,144	-21	06	<i>L9</i>	556
Devils Lake KDLR	48.12 N	W 78.89	1,464	9,950	1,973	-23	87	<i>L9</i>	N.A.
Dickinson FAA AP	46.78 N	102.80 W	2,581	8,657	2,152	N.A.	N.A.	N.A.	N.A.
Fargo WSO AP	46.90 N	W 08.96	006	9,254	2,289	-22	88	70	546
Grand Forks FAA AP	47.95 N	97.17 W	847	9,733	2,084	-20	88	69	N.A.
Jamestown FAA AP	46.92 N	W 89.89	1,492	9,168	2,262	N.A.	N.A.	N.A.	N.A.
Minot FAA AP	48.27 N	101.28 W	1,715	9,193	2,135	-20	88	99	581
Ohio (OH)									
Akron-Canton WSO AP	40.92 N	81.43 W	1,208	6,160	2,779	0	85	71	089
Ashtabula	41.85 N	80.80 W	069	6,429	2,604	N.A.	N.A.	N.A.	N.A.
Bowling Green	41.38 N	83.62 W	675	6,482	2,876	N.A.	N.A.	N.A.	N.A.
Cambridge	40.02 N	81.58 W	800	5,488	3,118	N.A.	N.A.	N.A.	N.A.
Cincinnati-Abbe WSO	39.15 N	84.52 W	092	4,988	3,733	ĸ	06	75	N.A.

TABLE D-1 (Continued) U.S. and U.S. Territory Climatic Data

)		
						Heating Design			No. Hrs.
						Temperature	Dry-Bulb	Wet-Bulb	8 a.m4 p.m.
State									
City	Latitude	Longitude	Elev. (ft)	HDD65	CDD20	%9.66	1.0%	1.0%	55 <tdb<69< th=""></tdb<69<>
(Ohio cont.)									
Cleveland WSFO AP	41.42 N	81.87 W	770	6,201	2,755	1	98	72	N.A.
Columbus WSO AP	40.00 N	82.88 W	812	5,708	3,119	1	88	73	708
Dayton WSCMO AP	39.90 N	84.20 W	995	5,708	3,249	-1	88	73	611
Defiance	41.28 N	84.38 W	700	6,628	2,810	N.A.	N.A.	N.A.	N.A.
Findlay FAA AP	41.02 N	83.67 W	797	6,302	2,907	-2	87	72	N.A.
Fremont	41.33 N	83.12 W	009	6,439	2,823	N.A.	N.A.	N.A.	N.A.
Lancaster	39.73 N	82.63 W	098	5,988	2,935	N.A.	N.A.	N.A.	N.A.
Lima Sewage Plant	40.72 N	84.13 W	850	6,253	3,050	N.A.	N.A.	N.A.	N.A.
Mansfield WSO AP	40.82 N	82.52 W	1,295	6,258	2,818	-1	85	72	N.A.
Marion	40.62 N	83.13 W	965	6,407	2,836	N.A.	N.A.	N.A.	N.A.
Newark Water Works	40.08 N	82.42 W	835	5,657	3,107	N.A.	N.A.	N.A.	N.A.
Norwalk	41.27 N	82.62 W	029	6,434	2,715	N.A.	N.A.	N.A.	N.A.
Portsmouth	38.75 N	82.88 W	540	4,913	3,581	N.A.	N.A.	N.A.	N.A.
Sandusky	41.45 N	82.72 W	584	6,131	2,986	N.A.	N.A.	N.A.	N.A.
Springfield New Wtr Wk	39.97 N	83.82 W	930	6,254	2,790	N.A.	N.A.	N.A.	N.A.
Steubenville	40.38 N	80.63 W	992	5,700	3,054	N.A.	N.A.	N.A.	N.A.
Toledo Express WSO AP	41.58 N	83.80 W	699	6,579	2,720	-2	87	72	652
Warren	41.20 N	80.82 W	006	6,402	2,546	N.A.	N.A.	N.A.	N.A.
Wooster Exp Station	40.78 N	81.92 W	1,020	6,379	2,570	N.A.	N.A.	N.A.	N.A.
Youngstown WSO AP	41.25 N	W 79.08	1,178	6,544	2,536	-1	85	70	629
Zanesville FAA AP	39.95 N	81.90 W	881	5,714	3,013	2	88	73	N.A.
Oklahoma (OK)									
Ada	34.78 N	W 89.96	1,015	3,182	5,317	N.A.	N.A.	N.A.	N.A.
Altus AFB	34.65 N	W 72.99	1,378	3,151	5,708	13	100	73	N.A.
Ardmore	34.20 N	97.15 W	860	2,702	5,978	N.A.	N.A.	N.A.	N.A.
Bartlesville	36.75 N	W 00.96	715	3,777	4,976	N.A.	N.A.	N.A.	N.A.
Chickasha Exp Station	35.05 N	97.92 W	1,085	3,366	5,298	N.A.	N.A.	N.A.	N.A.
Enid	36.42 N	W 78.76	1,245	3,788	5,119	5	86	74	N.A.
Lawton	34.62 N	98.45 W	1,150	3,457	5,268	12	76	73	N.A.
McAlester FAA AP	34.88 N	95.78 W	760	3,354	5,233	10	96	76	N.A.
,			1						

TABLE D-1 (Continued) U.S. and U.S. Territory Climatic Data

						Heating Design			No. Hrs.
						Temperature	Dry-Bulb	Wet-Bulb	8 a.m4 p.m.
State	Latitude	Longitude	Elev. (ft)	HDD65	CDD50	%9.66	1.0%	1.0%	55 <tdb<69< th=""></tdb<69<>
(Oklahoma cont.)									
Norman	35.18 N	97.45 W	1,109	3,295	5,272	N.A.	N.A.	N.A.	N.A.
Oklahoma City WSFO AP	35.40 N	W 09.76	1,280	3,659	4,972	6	96	74	733
Ponca City FAA AP	36.73 N	97.10 W	666	4,226	4,791	N.A.	N.A.	N.A.	N.A.
Seminole	35.23 N	96.67 W	865	3,097	5,552	N.A.	N.A.	N.A.	N.A.
Stillwater	36.12 N	97.10 W	895	4,028	4,718	N.A.	N.A.	N.A.	N.A.
Tulsa WSO AP	36.18 N	95.90 W	899	3,691	5,150	6	76	76	591
Woodward	36.45 N	99.38 W	1,900	3,900	4,884	N.A.	N.A.	N.A.	N.A.
Oregon (OR)									
Astoria WSO AP	46.15 N	123.88 W	∞	5,158	1,437	25	72	62	1236
Baker FAA AP	44.83 N	117.82 W	3,368	7,155	1,741	N.A.	N.A.	N.A.	N.A.
Bend	44.07 N	121.28 W	3,660	6,926	1,405	N.A.	N.A.	N.A.	N.A.
Corvallis State Univ	44.63 N	123.20 W	225	4,923	2,051	N.A.	N.A.	N.A.	N.A.
Eugene WSO AP	44.12 N	123.22 W	364	4,546	2,354	21	87	65	N.A.
Grants Pass	42.42 N	123.33 W	096	4,219	2,986	N.A.	N.A.	N.A.	N.A.
Klamath Falls	42.20 N	121.78 W	4,098	6,634	1,954	4	87	62	N.A.
Medford WSO AP	42.38 N	122.88 W	1,300	4,611	2,989	21	95	99	749
Pendleton WSO AP	45.68 N	118.85 W	1,492	5,294	2,787	3	93	63	N.A.
Portland WSFO AP	45.60 N	122.60 W	21	4,522	2,517	22	98	99	1060
Roseburg KQEN	43.20 N	123.35 W	465	4,312	2,607	N.A.	N.A.	N.A.	N.A.
Salem WSO AP	44.92 N	123.02 W	195	4,927	2,100	20	87	99	916
Pennsylvania (PA)									
Allentown WSO AP	40.65 N	75.43 W	388	5,785	3,028	s.	88	72	710
Altoona FAA AP	40.30 N	78.32 W	1,476	6,140	2,719	5	98	70	N.A.
Chambersburg	39.93 N	77.63 W	640	5,574	3,060	N.A.	N.A.	N.A.	N.A.
Erie WSO AP	42.08 N	80.18 W	732	6,279	2,652	2	83	70	716
Harrisburg FAA AP	40.22 N	76.85 W	338	5,347	3,358	6	68	73	648
Johnstown	40.33 N	78.92 W	1,214	5,649	3,028	N.A.	N.A.	N.A.	N.A.
Lancaster	40.05 N	76.28 W	270	5,584	3,079	N.A.	N.A.	N.A.	N.A.
Meadville	41.63 N	80.17 W	1,065	6,934	2,209	N.A.	N.A.	N.A.	N.A.
New Castle	41.02 N	80.37 W	825	6,542	2,502	N.A.	N.A.	N.A.	N.A.
	14 00 00	123	,				(

TABLE D-1 (Continued) U.S. and U.S. Territory Climatic Data

							Cooling Design Temperature		
						Heating Design	0	,	No. Hrs.
						Temperature	Dry-Bulb	Wet-Bulb	8 a.m4 p.m.
State	I offithed	Longitudo	[F]or (#)	HDD66	9	707 00	100%	1 00%	09/4P4/25
(Pennsylvania conf.)	Tannac	Longianae	Elev. (1t)	COCIOTI	COO	0.000	1.0 / 0	0/0.7	COCONT CO
Pittsburgh WSCMO2 AP	40.50 N	80.22 W	1,150	5,968	2,836	2	98	70	700
Reading	40.37 N	75.93 W	270	5,796	3,021	N.A.	N.A.	N.A.	N.A.
State College	40.80 N	77.87 W	1,170	6,364	2,629	N.A.	N.A.	N.A.	N.A.
Uniontown	39.92 N	79.72 W	926	5,684	2,913	N.A.	N.A.	N.A.	N.A.
Warren	41.85 N	79.15 W	1,210	6,890	2,334	N.A.	N.A.	N.A.	N.A.
West Chester	39.97 N	75.63 W	450	5,283	3,288	N.A.	N.A.	N.A.	N.A.
Williamsport WSO AP	41.25 N	76.92 W	524	6,087	2,796	2	87	71	N.A.
York Pump Station 22	39.92 N	76.75 W	390	5,256	3,274	N.A.	N.A.	N.A.	N.A.
Rhode Island (RI)									
Newport	41.52 N	71.32 W	20	5,659	2,548	N.A.	N.A.	N.A.	N.A.
Providence WSO AP	41.73 N	71.43 W	51	5,884	2,743	5	98	71	684
South Carolina (SC)									
Anderson	34.53 N	82.67 W	800	2,965	4,900	N.A.	N.A.	N.A.	N.A.
Charleston WSO AP	32.90 N	80.03 W	41	2,013	6,188	N.A.	N.A.	N.A.	N.A.
Charleston WSO City	32.78 N	79.93 W	10	1,866	6,303	25	92	77	N.A.
Columbia WSFO AP	33.95 N	81.12 W	213	2,649	5,508	21	94	75	705
Florence FAA AP	34.18 N	79.72 W	146	2,585	5,597	23	94	92	N.A.
Georgetown	33.35 N	79.25 W	10	2,081	5,947	N.A.	N.A.	N.A.	N.A.
Greenville-Spartanburg WSO AP	34.90 N	82.22 W	973	3,272	4,625	19	91	74	851
Greenwood	34.17 N	82.20 W	615	3,288	4,673	N.A.	N.A.	N.A.	N.A.
Orangeburg	33.50 N	80.87 W	160	2,534	5,477	N.A.	N.A.	N.A.	N.A.
Spartanburg	34.98 N	81.88 W	840	2,887	5,046	N.A.	N.A.	N.A.	N.A.
Sumter/Shaw AFB	33.97 N	80.48 W	240	2,506	5,453	24	93	75	N.A.
South Dakota (SD)									
Aberdeen WSO AP	45.45 N	98.43 W	1,296	8,446	2,497	N.A.	N.A.	N.A.	N.A.
Brookings	44.32 N	96.77 W	1,642	8,653	2,228	N.A.	N.A.	N.A.	N.A.
Huron WSO AP	44.38 N	98.22 W	1,282	7,923	2,709	-17	91	71	545
Mitchell	43.72 N	W 00.86	1,274	7,558	2,925	N.A.	N.A.	N.A.	N.A.
Pierre FAA AP	44.38 N	100.28 W	1,726	7,411	2,938	-14	95	69	557
Rapid City WSO AP	44.05 N	103.07 W	3,162	7,301	2,412	-11	91	65	572
G 0737H - H-1	14 52 67				0	,			

TABLE D-1 (Continued) U.S. and U.S. Territory Climatic Data

						Heating Design			No. Hrs.
						Temperature	Dry-Bulb	Wet-Bulb	8 a.m4 p.m.
State	, F - 7,77 L	, F - 7, 0 - 10 I	(8)	270011		\d\	\ •	100	0), JET, 33
City (South Debote cont.)	Lantinge	Longitude	Elev. (II)	HDD05	CDDS0	99.0%	1.0%	1.0%	25<1,dD<09
(South Panola, Colle.)			i	1		;		,	
Watertown FAA AP	44.92 N	97.15 W	1,746	8,375	2,499	N.A.	N.A.	N.A.	N.A.
Yankton	42.88 N	97.35 W	1,180	7,304	2,935	N.A.	N.A.	N.A.	N.A.
Tennessee (TN)									
Athens	35.43 N	84.58 W	940	4,054	4,040	N.A.	N.A.	N.A.	N.A.
Bristol WSO AP	36.48 N	82.40 W	1,525	4,406	3,621	6	87	72	N.A.
Chattanooga WSO AP	35.03 N	85.20 W	692	3,587	4,609	15	92	75	684
Clarksville Sew Plt	36.55 N	87.37 W	382	4,159	4,241	N.A.	N.A.	N.A.	N.A.
Columbia	35.63 N	87.08 W	650	4,206	4,047	N.A.	N.A.	N.A.	N.A.
Dyersburg FAA AP	36.02 N	89.40 W	337	3,536	5,010	N.A.	N.A.	N.A.	N.A.
Greeneville Exp Stn	36.10 N	82.85 W	1,320	4,392	3,710	N.A.	N.A.	N.A.	N.A.
Jackson FAA AP	35.60 N	88.92 W	433	3,540	4,915	12	93	76	N.A.
Knoxville WSO AP	35.80 N	84.00 W	949	3,937	4,164	13	06	74	703
Memphis FAA-AP	35.05 N	W 00.00	265	3,082	5,467	16	94	77	851
Murfreesboro	35.92 N	86.37 W	550	3,992	4,270	N.A.	N.A.	N.A.	N.A.
Nashville WSO AP	36.12 N	86.68 W	580	3,729	4,689	10	92	75	749
Tullahoma	35.35 N	86.20 W	1,048	3,630	4,422	N.A.	N.A.	N.A.	N.A.
Texas (TX)									
Abilene WSO AP	32.42 N	W 89.66	1,784	2,584	6,050	16	76	71	648
Alice	27.73 N	W 70.86	201	1,062	8,121	N.A.	N.A.	N.A.	N.A.
Amarillo WSO AP	35.23 N	101.70 W	3,590	4,258	4,128	9	94	99	089
Austin WSO AP	30.30 N	W 07.70	597	1,688	7,171	25	96	74	664
Bay City Waterworks	28.98 N	W 86.59	52	1,370	7,211	N.A.	N.A.	N.A.	N.A.
Beaumont Research Ctr	30.07 N	94.28 W	27	1,677	6,703	29	92	62	N.A.
Beeville	28.45 N	W 07.70	255	1,372	7,393	28	86	77	N.A.
Big Spring	32.25 N	101.45 W	2,500	2,772	5,621	N.A.	N.A.	N.A.	N.A.
Brownsville WSO AP	25.90 N	97.43 W	19	635	8,777	36	94	77	422
Brownwood	31.72 N	W 00.99	1,385	2,199	6,479	N.A.	N.A.	N.A.	N.A.
Corpus Christi WSO AP	27.77 N	W 07.50	44	1,016	8,023	32	94	78	543
Corsicana	32.08 N	96.47 W	425	2,396	6,133	N.A.	N.A.	N.A.	N.A.
Dallas FAA AP	32.85 N	96.85 W	440	2,259	6,587	17	86	74	N.A.
Dol Die / co. chi A ED	14 00	130 G 78 W	070		t	0	0		

TABLE D-1 (Continued) U.S. and U.S. Territory Climatic Data

							Cooling Desig	Cooling Design Temperature	
						Heating Design			No II.
						Heating Design Temperature	Drv-Bulb	Wet-Bulb	No. Hrs. 8 a.m4 n.m.
State									
City	Latitude	Longitude	Elev. (ft)	HDD65	CDD20	%9.66	1.0%	1.0%	55 <tdb<69< th=""></tdb<69<>
(Texas cont.)									
Denton	33.20 N	97.10 W	630	2,665	5,816	N.A.	N.A.	N.A.	N.A.
Eagle Pass	28.70 N	100.48 W	805	1,441	7,682	N.A.	N.A.	N.A.	N.A.
El Paso WSO AP	31.80 N	106.40 W	3,918	2,708	5,488	21	86	2	735
Ft Worth/Meacham	32.82 N	97.35 W	692	2,304	6,557	19	86	74	N.A.
Galveston WSO City	29.30 N	94.80 W	7	1,263	7,378	N.A.	N.A.	N.A.	N.A.
Greenville	33.20 N	96.22 W	610	2,953	5,527	N.A.	N.A.	N.A.	N.A.
Harlingen	26.20 N	W 79.79	38	813	8,405	N.A.	N.A.	N.A.	N.A.
Houston /Hobby	29.65 N	95.28 W	50	1,371	7,357	29	93	77	N.A.
Houston-Bush Intercontinental Airport	29.97 N	95.35 W	96	1,599	6,876	27	94	77	N.A.
Huntsville	30.72 N	95.55 W	494	1,862	6,697	N.A.	N.A.	N.A.	N.A.
Killeen/Robert-Gray	31.07 N	97.83 W	1,014	2,127	6,477	20	96	73	N.A.
Lamesa	32.70 N	101.93 W	2,965	3,159	5,107	N.A.	N.A.	N.A.	N.A.
Laredo	27.57 N	W 05.99	430	1,025	8,495	32	101	74	598
Longview	32.47 N	94.73 W	330	2,433	5,920	N.A.	N.A.	N.A.	N.A.
Lubbock WSFO AP	33.65 N	101.82 W	3,254	3,431	4,833	111	95	<i>L</i> 9	743
Lufkin FAA AP	31.23 N	94.75 W	281	1,951	6,527	23	95	77	681
McAllen	26.20 N	98.22 W	122	778	8,597	34	86	76	N.A.
Midland/Odessa WSO AP	31.95 N	102.18 W	2,857	2,751	5,588	17	76	<i>L</i> 9	729
Mineral Wells FAA AP	32.78 N	W 70.86	934	2,625	6,015	N.A.	N.A.	N.A.	N.A.
Palestine	31.78 N	95.60 W	465	2,005	6,454	N.A.	N.A.	N.A.	N.A.
Pampa No 2	35.53 N	100.98 W	3,250	4,358	4,131	N.A.	N.A.	N.A.	N.A.
Pecos	31.42 N	103.50 W	2,610	2,505	5,992	N.A.	N.A.	N.A.	N.A.
Plainview	34.18 N	101.70 W	3,370	3,717	4,462	N.A.	N.A.	N.A.	N.A.
Port Arthur WSO AP	29.95 N	94.02 W	16	1,499	6,994	N.A.	N.A.	N.A.	269
San Angelo WSO AP	31.37 N	100.50 W	1,903	2,414	6,070	20	76	70	619
San Antonio WSFO	29.53 N	98.47 W	794	1,644	7,142	26	96	73	N.A.
Sherman	33.63 N	96.62 W	720	2,890	5,682	N.A.	N.A.	N.A.	721
Snyder	32.72 N	100.92 W	2,335	3,185	5,178	N.A.	N.A.	N.A.	N.A.
Temple	31.08 N	97.37 W	700	2,153	6,487	N.A.	N.A.	N.A.	N.A.
Tyler	32.35 N	95.40 W	545	2,194	6,562	N.A.	N.A.	N.A.	N.A.
Vernon	34.08 N	99.30 W	1,202	3,186	5,605	N.A.	N.A.	N.A.	Ä.

TABLE D-1 (Continued) U.S. and U.S. Territory Climatic Data

							Cooming Design Temperature	a rember mar	
						Heating Design			No. Hrs.
						Temperature	Dry-Bulb	Wet-Bulb	8 a.m4 p.m.
State									
City	Latitude	Longitude	Elev. (ft)	HDD65	CDD50	%9.66	1.0%	1.0%	55 <tdb<69< th=""></tdb<69<>
(Texas cont.)									
Victoria WSO AP	28.85 N	96.92 W	104	1,296	7,507	29	94	76	N.A.
Waco WSO AP	31.62 N	97.22 W	500	2,179	6,668	22	66	75	622
Wichita Falls WSO AP	33.97 N	98.48 W	994	3,042	5,717	N.A.	N.A.	N.A.	723
Utah (UT)									
Cedar City FAA AP	37.70 N	113.10 W	5,610	5,962	2,770	2	91	59	629
Logan Utah State Univ	41.75 N	111.80 W	4,790	6,854	2,541	N.A.	N.A.	N.A.	N.A.
Moab	38.60 N	W 09.601	3,965	4,494	4,356	N.A.	N.A.	N.A.	N.A.
Ogden Sugar Factory	41.23 N	112.03 W	4,280	5,950	3,053	N.A.	N.A.	N.A.	N.A.
Richfield Radio KSVC	38.77 N	112.08 W	5,270	6,367	2,300	N.A.	N.A.	N.A.	N.A.
Saint George	37.10 N	113.57 W	2,760	3,215	5,424	N.A.	N.A.	N.A.	N.A.
Salt Lake City NWSFO	40.78 N	W 2111.95 W	4,222	5,765	3,276	9	94	62	586
Vernal Airport	40.45 N	109.52 W	5,260	7,562	2,334	N.A.	N.A.	N.A.	N.A.
Vermont (VT)									
Burlington WSO AP	44.47 N	73.15 W	332	7,771	2,228	-11	84	69	637
Rutland	43.60 N	72.97 W	620	7,066	2,345	N.A.	N.A.	N.A.	N.A.
Virginia (VA)									
Charlottesville	38.03 N	78.52 W	870	4,224	3,902	N.A.	N.A.	N.A.	N.A.
Danville-Bridge St	36.58 N	79.38 W	410	3,944	4,236	N.A.	N.A.	N.A.	N.A.
Fredericksburg Natl Pk	38.32 N	77.45 W	96	4,554	3,754	N.A.	N.A.	N.A.	N.A.
Lynchburg WSO AP	37.33 N	79.20 W	916	4,340	3,728	12	06	74	N.A.
Norfolk WSO AP	36.90 N	76.20 W	22	3,495	4,478	20	91	76	685
Richmond WSO AP	37.50 N	77.33 W	164	3,963	4,223	14	92	75	716
Roanoke WSO AP	37.32 N	W 79.97	1,149	4,360	3,715	12	68	72	713
Staunton Sewage Plant	38.15 N	79.03 W	1,385	5,273	3,004	N.A.	N.A.	N.A.	N.A.
Winchester	39.18 N	78.12 W	089	5,269	3,215	N.A.	N.A.	N.A.	N.A.
Washington (WA)									
Aberdeen	46.97 N	123.82 W	10	5,285	1,488	N.A.	N.A.	N.A.	N.A.
Bellingham FAA AP	48.80 N	122.53 W	149	5,609	1,508	15	92	64	N.A.
Bremerton	47.57 N	122.67 W	162	5,119	1,839	N.A.	N.A.	N.A.	N.A.
Ellensburg	46.97 N	120.55 W	1,480	6,770	1,999	N.A.	N.A.	N.A.	N.A.
:	14 00 11	W 91 CC1	9	1102	,	4 14	* 14	4	

TABLE D-1 (Continued) U.S. and U.S. Territory Climatic Data

							J	1	
						Heating Design			No. Hrs.
						Temperature	Dry-Bulb	Wet-Bulb	8 a.m4 p.m.
State			;					;	;
City	Latitude	Longitude	Elev. (ft)	HDD65	CDD20	%9.66	1.0%	1.0%	55 <tdb<69< td=""></tdb<69<>
(Washington cont.)									
Kennewick	46.22 N	119.10 W	390	4,895	3,195	N.A.	N.A.	N.A.	N.A.
Longview	46.15 N	122.92 W	12	5,094	1,858	N.A.	N.A.	N.A.	N.A.
Olympia WSO AP	46.97 N	122.90 W	192	5,655	1,558	18	83	99	985
Port Angeles	48.12 N	123.40 W	40	5,695	1,257	N.A.	N.A.	N.A.	N.A.
Seattle EMSU WSO	47.65 N	122.30 W	20	4,611	2,120	N.A.	N.A.	N.A.	N.A.
Seattle-Tacoma WSCMO AP	47.45 N	122.30 W	450	4,908	2,021	23	81	2	982
Spokane WSO AP	47.63 N	117.53 W	2,356	6,842	2,032	N.A.	N.A.	N.A.	640
Tacoma/McChord AFB	47.15 N	122.48 W	322	5,155	1,820	18	82	63	N.A.
Walla Walla FAA AP	46.10 N	118.28 W	1,166	4,958	3,161	4	95	65	N.A.
Wenatchee	47.42 N	120.32 W	640	5,579	2,956	3	92	92	N.A.
Yakima WSO AP	46.57 N	120.53 W	1,064	5,967	2,348	4	92	2	703
West Virginia (WV)									
Beckley WSO AP	37.78 N	81.12 W	2,504	5,558	2,690	N.A.	N.A.	N.A.	N.A.
Bluefield FAA AP	37.30 N	81.22 W	2,870	5,230	2,907	5	83	69	N.A.
Charleston WSFO AP	38.37 N	81.60 W	1,015	4,646	3,655	9	88	73	704
Clarksburg	39.27 N	80.35 W	945	5,512	3,014	N.A.	N.A.	N.A.	N.A.
Elkins WSO AP	38.88 N	79.85 W	1,992	6,120	2,360	-2	83	70	N.A.
Huntington WSO AP	38.37 N	82.55 W	827	4,665	3,615	9	68	73	N.A.
Martinsburg FAA AP	39.40 N	W 86.77	531	5,192	3,368	8	91	73	N.A.
Morgantown FAA AP	39.65 N	79.92 W	1,240	5,363	3,155	4	87	71	N.A.
Parkersburg	39.27 N	81.57 W	615	5,094	3,507	4	88	72	N.A.
Wisconsin (WI)									
Appleton	44.25 N	88.37 W	750	7,693	2,513	N.A.	N.A.	N.A.	N.A.
Ashland Exp Farm	46.57 N	W 76.09	650	8,960	1,811	N.A.	N.A.	N.A.	N.A.
Beloit	42.50 N	89.03 W	780	7,161	2,737	N.A.	N.A.	N.A.	N.A.
Eau Claire FAA AP	44.87 N	91.48 W	888	8,330	2,407	-18	87	71	661
Fond du Lac	43.80 N	88.45 W	760	7,541	2,573	N.A.	N.A.	N.A.	N.A.
Green Bay WSO AP	44.48 N	88.13 W	682	8,089	2,177	-13	85	72	651
La Crosse FAA AP	43.87 N	91.25 W	651	7,491	2,790	-14	88	73	644
Madison WSO AP	43.13 N	89.33 W	858	7,673	2,389	-11	87	72	658
		000	,		00,0		,		

TABLE D-1 (Continued) U.S. and U.S. Territory Climatic Data

Heating Design Parity Pa								Cooling Design	Cooling Design Temperature	
Latitude Longitude Elev.(ft) HDD65 CDD50 95.6% 1.0%							Heating Design			No. Hrs.
Latitude Liougitude Elev. (ff) HDD66 CDD59 99.6% 110% 45.10 N 87.53 W 665 8.059 2.272 N.A. N.A. 42.95 N 87.29 W 672 7.324 2.388 7 86 42.95 N 87.77 W 648 7.087 2.365 N.A. N.A. 44.50 N 89.57 W 1,079 8.009 2.325 N.A. N.A. 44.50 N 89.57 W 1,109 8.009 2.325 N.A. N.A. 44.50 N 89.57 W 1,109 8.009 2.325 N.A. N.A. 44.50 N 89.57 W 1,109 8.009 2.325 N.A. N.A. 44.50 N 89.57 W 1,109 8.009 2.325 N.A. N.A. 44.50 N 89.62 W 1,1196 8.427 2.182 1.1 8.8 41.50 N 100.07 W 6,120 7,335 0.082 1.1 8.8 41.52 N <td< th=""><th>i</th><th></th><th></th><th></th><th></th><th></th><th>Temperature</th><th>Dry-Bulb</th><th>Wet-Bulb</th><th>8 a.m4 p.m.</th></td<>	i						Temperature	Dry-Bulb	Wet-Bulb	8 a.m4 p.m.
45.10 N 87.63 W 605 8.059 2.272 N.A. NA. 42.95 N 87.70 W 672 7.324 2.388 -7 86 42.95 N 87.70 W 672 7.324 2.388 -7 86 42.95 N 87.70 W 648 7.087 2.390 N.A. N.A. 44.20 N 88.77 W 648 7.087 2.390 N.A. N.A. 44.50 N 88.23 W 860 7.117 2.658 N.A. N.A. 44.92 N 88.23 W 860 7.117 2.688 1.8 8.5 44.30 N 89.67 W 1,196 8.427 2.182 1.3 8.5 41.15 N 106.47 W 5.338 7.682 2.082 -1.3 8.5 41.52 N 100.647 W 5.338 7.682 2.082 -1.3 8.5 41.52 N 100.647 W 5.338 7.682 2.082 -1.3 8.5 41.52 N 100.55 W	State	;	,	Š			, ,		Š	
45.10 N 87.63 W 665 8.059 2.272 N.A. N.A. 42.25 N 87.20 W 672 7.324 2.388 77 86 42.20 N 87.70 W 672 7.324 2.388 77 86 42.70 N 87.72 W 648 7.087 2.390 N.A. N.A. 43.55 N 88.23 W 860 7.117 2.658 N.A. N.A. 43.20 N 88.23 W 860 7.117 2.658 N.A. N.A. 44.92 N 88.23 W 860 7.117 2.688 N.A. N.A. 42.92 N 106.47 W 5.338 7.682 2.082 -13 89 41.15 N 104.82 W 6.120 7.326 1.886 77 887 42.22 N 106.47 W 5.338 7.682 2.082 -13 89 41.15 N 109.07 W 5.059 7.431 2.057 -14 87 41.32 N 109.07 W 6.726 9.008 1.237 N.A. N.A. 41.80 N 107.20 W 6.736 8.475 1.605 N.A. N.A. 41.80 N 104.22 W 4.410 7.267 2.518 N.A. N.A. 41.80 N 104.22 W 4.410 7.267 2.518 N.A. N.A. 42.08 N 104.22 W 4.409 6.879 2.429 N.A. N.A. 42.08 N 104.22 W 4.098 6.879 2.429 N.A. N.A. 42.08 N 104.22 W 4.098 6.879 2.429 N.A. N.A. 42.08 N 104.22 W 4.098 6.879 2.429 N.A. N.A. 42.08 N 107.20 W 6.73 E 26 0 11.670 76 88 44.47 N 165.73 E 26 0 11.670 76 88 45.51 N.A. 195.5 E 26 0 11.670 76 88 45.51 N.A. 195.5 E 26 0 11.670 76 88 45.51 N.A. 195.5 E 26 0 11.670 76 88	City	Latitude	Longitude	Elev. (ft)	HDD65	CDDS0	%9.6%	1.0%	1.0%	55 <tdb<69< th=""></tdb<69<>
45.10 N 87.63 W 665 8.659 2.272 N.A. N.A. 42.26 N 87.70 W 672 7.324 2.388 -7 86 42.26 N 87.77 W 595 7.167 2.489 N.A. N.A. 44.50 N 87.72 W 648 7.087 2.300 N.A. N.A. 44.50 N 88.23 W 860 7.117 2.688 N.A. N.A. 42.22 N 106.47 W 5.338 7.682 2.082 -13 89 44.15 N 104.82 W 6.120 7.326 1.886 -7 88 44.22 N 109.07 W 5.030 7.431 2.057 -14 87 41.22 N 109.07 W 5.030 7.431 2.057 -14 87 41.22 N 109.07 W 6.736 8.475 1.605 N.A. N.A. 41.80 N 107.20 W 6.736 8.475 1.605 N.A. N.A. 41.80 N 107.20 W 6.736 8.475 1.605 N.A. N.A. 41.80 N 104.22 W 4.098 6.879 2.429 N.A. N.A. 42.08 N 104.22 W 4.098 6.879 2.429 N.A. N.A. 42.08 N 104.22 W 4.098 6.879 2.429 N.A. N.A. 42.08 N 104.22 W 4.098 6.879 2.429 N.A. N.A. 42.08 N 104.22 W 4.098 6.879 2.429 N.A. N.A. 42.08 N 104.22 W 4.098 6.879 2.429 N.A. N.A. 43.85 N 17.73 W 66 4.047 4.391 15 99 42.08 N 107.73 W 66 10.0697 N.A. 8.35 99 44.37 N 166.57 W 99 0 11.6018 72 88 44.38 N 167.73 E 26 0 11.6018 72 88 44.37 N 166.65 E 12 0 11.5018 72 88	(Wisconsin cont.)									
42.95 N 87.70 W 672 7.324 2.388 -7 86 42.70 N 87.77 W 595 7.167 2.459 N.A. N.A. 43.75 N 87.72 W 648 7.087 2.459 N.A. N.A. 44.50 N 88.23 W 860 7.117 2.658 N.A. N.A. 44.50 N 88.23 W 860 7.117 2.658 N.A. N.A. 44.92 N 88.23 W 860 7.117 2.658 N.A. N.A. 44.92 N 106.47 W 5.338 7.682 2.082 -15 85 41.15 N 104.82 W 6.120 7.356 1.386 -7 85 41.15 N 104.92 W 6.120 7.341 1.285 N.A. N.A. 41.22 N 105.68 W 7.266 9.008 1.237 N.A. N.A. 41.22 N 105.68 W 7.266 9.008 1.237 N.A. N.A. 41.22 N 105.68 W 7.267 2.429 N.A. N.A. 41.80 N 105.68 W	Marinette	45.10 N	87.63 W	909	8,059	2,272	N.A.	N.A.	N.A.	N.A.
42.70 N 87.77 W 595 7,167 2,459 N.A. N.A. 43.75 N 87.72 W 648 7,087 2,390 N.A. N.A. 44.50 N 88.27 W 1,079 8,009 2,325 N.A. N.A. 44.50 N 88.23 W 860 7,117 2,658 N.A. N.A. 42.92 N 100.42 W 1,196 8,427 2,182 -15 85 42.92 N 100.42 W 6,120 7,326 1,886 7 85 42.92 N 100.42 W 6,120 7,326 1,886 7 85 41.15 N 100.42 W 6,120 7,326 1,886 7 85 41.20 N 100.50 W 6,810 8,846 1,285 N.A. N.A. 41.20 N 100.50 W 6,810 8,846 1,285 N.A. N.A. 41.30 N 105.50 W 7,266 9,008 1,237 N.A. N.A. 41.30 N 100.50 W	Milwaukee WSO AP	42.95 N	W 06.78	672	7,324	2,388	7-	98	72	618
43.75 N 87.72 W 648 7.087 2.390 N.A. N.A. 44.50 N 88.23 W 8.00 1.079 8.009 2.325 N.A. N.A. 43.02 N 88.23 W 8.00 7.117 2.658 N.A. N.A. 43.02 N 106.47 W 5.338 7.682 2.082 -1.3 85 41.15 N 109.07 W 5.030 7.431 2.057 -1.4 87 41.25 N 109.07 W 5.050 7.431 2.057 -1.4 87 42.22 N 109.07 W 5.050 7.431 2.057 -1.4 87 41.27 N 109.07 W 5.050 7.431 2.057 -1.4 87 41.20 N 106.20 W 7.266 9.008 1.285 N.A. N.A. 41.20 N 106.20 W 7.266 9.008 1.237 N.A. N.A. 41.30 N 106.20 W 6.71 8.365 N.A. N.A. N.A. 41.50	Racine	42.70 N		595	7,167	2,459	N.A.	N.A.	N.A.	N.A.
44.50 N 89.57 W 1,079 8,009 2.325 N.A. N.A. 43.02 N 88.23 W 860 7,117 2,658 N.A. N.A. 49.20 N 106.47 W 5,338 7,682 2,082 -15 85 41.15 N 106.47 W 5,338 7,682 2,082 -13 89 41.27 N 109.07 W 5,030 7,431 2,057 -14 87 41.28 N 109.07 W 5,030 7,431 2,057 -14 87 41.28 N 109.07 W 5,370 7,889 2,184 -14 87 41.28 N 104.22 W 4,410 7,267 2,518 N.A. N.A. 41.80 N 104.22 W 4,410 7,267 2,518 N.A. N.A. 41.80 N 106.07 W 6,741 8,365 1,734 9 84 41.50 N 106.07 W 6,741 8,365 1,44 N.A. N.A. 42.08 N 106.07 W </td <td>Sheboygan</td> <td>43.75 N</td> <td></td> <td>648</td> <td>7,087</td> <td>2,390</td> <td>N.A.</td> <td>N.A.</td> <td>N.A.</td> <td>N.A.</td>	Sheboygan	43.75 N		648	7,087	2,390	N.A.	N.A.	N.A.	N.A.
43.02 N 88.23 W 860 7,117 2,658 N.A. N.A. 44.92 N 10.647 W 5,338 7,682 2,082 -13 85 42.92 N 106.47 W 5,338 7,682 2,082 -13 85 44.52 N 109.07 W 5,030 7,431 2,057 -14 87 44.52 N 109.07 W 5,050 7,431 2,057 -14 87 42.82 N 109.07 W 5,050 7,889 2,184 -14 87 43.85 N 106.28 W 7,266 9,008 1,237 N.A. N.A. 43.85 N 104.22 W 4,410 7,267 2,518 N.A. N.A. 41.50 N 105.07 W 6,741 8,365 1,734 -9 84 44.77 N 106.97 W 6,741 8,365 1,734 -9 84 44.77 N 106.97 W 6,008 6,879 2,429 N.A. N.A. 18.43 N 10.422 W <td>Stevens Point</td> <td>44.50 N</td> <td></td> <td>1,079</td> <td>8,009</td> <td>2,325</td> <td>N.A.</td> <td>N.A.</td> <td>N.A.</td> <td>N.A.</td>	Stevens Point	44.50 N		1,079	8,009	2,325	N.A.	N.A.	N.A.	N.A.
44.92 N 89.62 W 1,196 8,427 2,182 -15 85 42.92 N 10647 W 5,338 7,682 2,082 -13 89 41.15 N 10482 W 6,120 7,326 1,886 -7 85 44.52 N 109,07 W 5,050 7,431 2,057 -14 87 41.27 N 110,95 W 6,810 8,846 1,285 N.A. N.A. N.A. 41.28 N 100,568 W 7,266 9,008 1,237 N.A. N.A. 41.30 N 104,22 W 4,410 7,267 2,518 N.A. N.A. 41.80 N 107,20 W 6,741 8,364 7,267 2,418 N.A. N.A. 41.60 N 109,07 W 4,410 7,267 2,429 N.A. N.A. 42.08 N 109,07 W 4,098 6,879 2,429 N.A. N.A. 42.08 N 109,07 W 4,098 6,879 2,429 N.A. N.A. 42.08 N 104,22 W 4,047 4,047 4,047 4,047 <td< td=""><td>Waukesha</td><td></td><td></td><td>098</td><td>7,117</td><td>2,658</td><td>N.A.</td><td>N.A.</td><td>N.A.</td><td>N.A.</td></td<>	Waukesha			098	7,117	2,658	N.A.	N.A.	N.A.	N.A.
42.92 N 106.47 W 5.338 7,682 2,082 -13 89 41.15 N 104.82 W 6,120 7,326 1,886 -7 85 44.52 N 109.07 W 5,050 7,431 2,057 -14 87 41.27 N 110.95 W 6,810 8,846 1,285 N.A. N.A. 42.82 N 100.57 W 6,810 8,846 1,285 N.A. N.A. 43.85 N 104.22 W 4,410 7,267 2,184 -14 87 41.80 N 107.20 W 6,736 8,475 1,605 N.A. N.A. 41.60 N 109.07 W 6,736 8,475 1,605 N.A. N.A. 42.08 N 106.97 W 4,098 6,879 2,429 N.A. N.A. 42.08 N 104.22 W 4,098 6,879 2,429 N.A. N.A. 42.08 N 104.22 W 4,098 6,879 2,429 N.A. N.A. 42.08 N 104.22 W 4,047 4,391 15 87 42.08 N 10	Wausau FAA AP			1,196	8,427	2,182	-15	85	70	N.A.
42.92 N 106.47 W 5.338 7,682 2,082 -13 89 41.15 N 104.82 W 6,120 7,326 1,886 -7 85 44.52 N 109.07 W 5,050 7,431 2,057 -14 87 41.27 N 110.95 W 6,810 8,846 1,285 N.A. N.A. N.A. 42.82 N 109.07 W 5,370 7,889 2,184 -14 87 41.80 N 104.22 W 7,266 9,008 1,237 N.A. N.A. 41.80 N 107.20 W 6,741 8,365 1,734 -9 84 44.77 N 106.07 W 3,964 7,804 2,023 -14 90 44.77 N 106.07 W 4,098 6,879 2,429 N.A. N.A. 42.08 N 104.22 W 4,098 6,879 2,429 N.A. N.A. 42.08 N 104.22 W 4,098 6,879 2,429 N.A. N.A. 18.43 N 66.00 W 10 0 11,406 69 90 <t< td=""><td>Wyoming (WY)</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	Wyoming (WY)									
41.15 N 104.82 W 6,120 7,326 1,886 -7 85 44.52 N 109.07 W 5,050 7,431 2,057 -14 87 41.27 N 110.95 W 6,810 8,846 1,285 N.A. NA. 42.82 N 109.07 W 5,370 7,889 2,184 -14 87 41.80 N 106.58 W 7,266 9,008 1,237 N.A. NA. 41.80 N 104.22 W 4410 7,267 2,518 N.A. NA. 41.80 N 107.20 W 6,736 8,475 1,605 N.A. NA. 41.60 N 109.07 W 6,741 8,365 1,734 -9 84 42.08 N 106.97 W 3,964 7,804 2,023 1,4 NA. NA. 42.08 N 104.22 W 4,098 6,879 2,429 N.A. N.A. 38.85 N 7,03 W 66 4,047 4,391 15 88 NAF <t< td=""><td>Casper WSO AP</td><td></td><td></td><td>5,338</td><td>7,682</td><td>2,082</td><td>-13</td><td>68</td><td>58</td><td>535</td></t<>	Casper WSO AP			5,338	7,682	2,082	-13	68	58	535
44.52 N 109.07 W 5,050 7,431 2,057 -14 87 41.27 N 110.95 W 6,810 8,846 1,285 N.A. N.A. 42.22 N 108.73 W 5,370 7,889 2,184 -14 87 41.32 N 105.68 W 7,266 9,008 1,237 N.A. N.A. 41.80 N 104.22 W 4,410 7,267 2,518 N.A. N.A. 41.80 N 109.07 W 6,736 8,475 1,605 N.A. N.A. 41.60 N 109.07 W 6,741 8,365 1,734 -9 84 44.77 N 106.97 W 3,964 7,804 2,023 -14 90 42.08 N 104.22 W 4,098 6,879 2,429 N.A. N.A. 38.85 N 77.03 W 66 4,047 4,391 15 90 18.43 N 66.00 W 10 11,406 69 90 90 14.33 S 170.72 W	Cheyenne WSFO AP			6,120	7,326	1,886	7-	85	57	809
41.27 N 110.95 W 6,810 8,846 1,285 N.A. N.A. 42.82 N 108.73 W 5,370 7,889 2,184 -14 87 41.32 N 105.68 W 7,266 9,008 1,237 N.A. N.A. 43.85 N 104.22 W 4,410 7,267 2,518 N.A. N.A. 41.80 N 107.20 W 6,736 8,475 1,605 N.A. N.A. 41.80 N 109.07 W 6,741 8,365 1,734 -9 84 44.77 N 106.97 W 3,964 7,804 2,023 -14 90 42.08 N 104.22 W 4,098 6,879 2,429 N.A. N.A. 42.08 N 104.22 W 4,098 6,879 2,429 N.A. N.A. 38.85 N 77.03 W 66 4,047 4,391 15 92 18.43 N 167.73 E 26 0 11,406 69 9 14.433 S 170.72 W	Cody			5,050	7,431	2,057	-14	87	58	N.A.
42.82 N 108.73 W 5.370 7,889 2,184 -14 87 41.32 N 105.68 W 7266 9,008 1,237 N.A. N.A. 43.85 N 104.22 W 4,410 7,267 2,518 N.A. N.A. 41.80 N 107.20 W 6,736 8,475 1,605 N.A. N.A. 41.60 N 109.07 W 6,741 8,365 1,734 -9 84 44.77 N 106.97 W 3,964 7,804 2,023 -14 90 42.08 N 104.22 W 4,098 6,879 2,429 N.A. N.A. 18.43 N 66.00 W 10 0 11,406 69 90 11,406 69 74 88 NAF 28.22 N 17.73 W 13 134 8,323 59 86 14.33 S 170.72 W 9 0 11,097 71 89 15.18 N 1055 E 475 0 11,280 68	Evanston			6,810	8,846	1,285	N.A.	N.A.	N.A.	N.A.
41.32 N 105.68 W 7,266 9,008 1,237 N.A. N.A. 43.85 N 104.22 W 4,410 7,267 2,518 N.A. N.A. 41.80 N 107.20 W 6,736 8,475 1,605 N.A. N.A. 41.60 N 109.07 W 6,741 8,365 1,734 -9 84 44.77 N 106.97 W 3,964 7,804 2,023 -14 90 42.08 N 104.22 W 4,098 6,879 2,429 N.A. N.A. 38.85 N 77.03 W 66 4,047 4,391 15 90 18.43 N 66.00 W 10 0 11,406 69 90 NAF 28.22 N 177.37 W 13 134 8,323 59 86 14.33 S 170.72 W 9 0 11,097 71 89 15.18 N 19.28 N 10 11,280 88 95 95	Lander WSO AP			5,370	7,889	2,184	-14	87	58	N.A.
43.85 N 104.22 W 4,410 7,267 2,518 N.A. N.A. 41.80 N 107.20 W 6,736 8,475 1,605 N.A. N.A. 41.80 N 107.20 W 6,741 8,365 1,734 -9 84 41.60 N 109.07 W 3,964 7,804 2,023 -14 90 44.77 N 106.97 W 3,964 7,804 2,023 -14 90 42.08 N 104.22 W 4,098 6,879 2,429 N.A. N.A. 38.85 N 77.03 W 66 4,047 4,391 15 92 18.43 N 66.00 W 10 0 11,406 69 90 13.58 N 144.93 E 361 0 11,670 76 88 NAF 28.22 N 170.72 W 9 0 11,097 71 89 15.18 N 19.28 N 166.65 E 12 0 11,097 71 89 15.18 N 19.28 N 10 11,280 68 95	Laramie FAA AP			7,266	800,6	1,237	N.A.	N.A.	N.A.	N.A.
41.80 N 107.20 W 6,736 8,475 1,605 N.A. N.A. 41.60 N 109.07 W 6,741 8,365 1,734 -9 84 44.77 N 106.97 W 3,964 7,804 2,023 -14 90 42.08 N 104.22 W 4,098 6,879 2,429 N.A. N.A. 38.85 N 77.03 W 66 4,047 4,391 15 92 18.43 N 66.00 W 10 0 11,406 69 90 11 8.73 N 144.93 E 361 0 11,670 76 88 NAF 28.22 N 17.37 W 13 134 8,323 59 86 14.33 S 170.72 W 9 0 11,097 71 89 15.18 N 15.6 B 475 0 11280 68 95	Newcastle			4,410	7,267	2,518	N.A.	N.A.	N.A.	N.A.
41.60 N 109.07 W 6,741 8,365 1,734 -9 84 44.77 N 106.97 W 3,964 7,804 2,023 -14 90 42.08 N 104.22 W 4,098 6,879 2,429 N.A. N.A. 38.85 N 77.03 W 66.00 W 10 0 11,406 69 90 18.43 N 66.00 W 10 0 11,406 69 90 1 8.73 N 144.93 E 361 0 11,670 76 88 NAF 28.22 N 170.73 W 13 134 8,323 59 86 rt 19.28 N 166.65 E 12 0 11,018 72 89 rt 19.28 N 166.65 E 475 0 11,280 68 95	Rawlins FAA AP	41.80 N	107.20 W	6,736	8,475	1,605	N.A.	N.A.	N.A.	N.A.
44.77 N 106.97 W 3,964 7,804 2,023 -14 90 42.08 N 104.22 W 4,098 6,879 2,429 N.A. N.A. 38.85 N 77.03 W 66 4,047 4,391 15 92 18.43 N 66.00 W 10 0 11,406 69 90 1 8.73 N 144.93 E 361 0 11,670 76 88 NAF 28.22 N 177.37 W 13 134 8,323 59 86 It 19.28 N 166.65 E 12 0 11,097 71 89 It 19.28 N 120.55 F 475 0 11,280 68 95	Rock Springs FAA AP	41.60 N		6,741	8,365	1,734	6-	84	54	552
42.08 N 104.22 W 4,098 6,879 2,429 N.A. N.A. N.A. 38.85 N 77.03 W 66 4,047 4,391 15 92 92 92 93 94 94 95 96 96 96 96 96 96 96 96 96 96 96 96 96	Sheridan WSO AP			3,964	7,804	2,023	-14	06	61	574
38.85 N 77.03 W 66 4,047 4,391 15 92 18.43 N 66.00 W 10 0 11,406 69 90 13.58 N 144.93 E 361 0 10,690 74 87 NAF 28.22 N 177.37 W 13 134 8,323 59 86 14.33 S 170.72 W 9 0 11,018 72 88 15.18 N 120.55 E 475 0 11,280 68 95	Torrington Exp Farm		104.22 W	4,098	6,879	2,429	N.A.	N.A.	N.A.	N.A.
38.85 N 77.03 W 66 4,047 4,391 15 92 18.43 N 66.00 W 10 0 11,406 69 90 1 8.73 N 144.93 E 361 0 10,690 74 87 NAF 28.22 N 177.33 W 13 134 8,323 59 86 Int 19.28 N 166.65 E 12 0 11,097 71 89 Int 19.28 N 126.55 F 475 0 11,280 68 95	District of Columbia (DC)									
18.43 N 66.00 W 10 0 11,406 69 90 13.58 N 144.93 E 361 0 10,690 74 87 1 8.73 N 167.73 E 26 0 11,670 76 88 NAF 28.22 N 177.37 W 13 134 8,323 59 86 Int 19.28 N 166.65 E 12 0 11,097 71 89 Int 19.28 N 120.55 F 475 0 11,280 68 95	R. Reagan Nat'l. Airport		77.03 W	99	4,047	4,391	15	92	76	657
18.43 N 66.00 W 10 0 11,406 69 90 13.58 N 144.93 E 361 0 10,690 74 87 1 8.73 N 167.73 E 26 0 11,670 76 88 NAF 28.22 N 177.37 W 13 134 8,323 59 86 II 14.33 S 170.72 W 9 0 11,018 72 88 II 19.28 N 166.65 E 12 0 11,097 71 89	Puerto Rico (PR)									
13.58 N 144.93 E 361 0 10,690 74 87 1 8.73 N 167.73 E 26 0 11,670 76 88 NAF 28.22 N 177.37 W 13 134 8,323 59 86 II 14.33 S 170.72 W 9 0 11,018 72 88 II 19.28 N 166.65 E 12 0 11,097 71 89 I5.18 N 120.55 F 475 0 11,280 68 95	San Juan/Isla Verde WSFO	18.43 N	W 00.99	10	0	11,406	69	06	78	N.A.
13.58 N 144.93 E 361 0 10,690 74 87 1 8.73 N 167.73 E 26 0 11,670 76 88 NAF 28.22 N 177.37 W 13 134 8,323 59 86 14.33 S 170.72 W 9 0 11,018 72 88 rt 19.28 N 166.65 E 12 0 11,097 71 89	Pacific Islands (PI)									
NAF 28.22 N 17.37 W 13 134 8,323 59 86 11.670 76 88 NAF 28.22 N 177.37 W 13 134 8,323 59 86 11.670 76 88 11.670 76 88 11.670 76 88 11.670 76 88 11.670 76 88 11.670 71 89	Guam (GU) - Andersen AFB	13.58 N	144.93 E	361	0	10,690	74	87	79	N.A.
NAF 28.22 N 177.37 W 13 134 8,323 59 86 14.33 S 170.72 W 9 0 11,018 72 88 11 19.28 N 166.65 E 12 0 11,097 71 89 15.18 N 120.55 F 475 0 11,280 68 95	Marshall Island (MH) - Kwajalein Atoll	8.73 N	167.73 E	26	0	11,670	76	88	79	N.A.
14.33 S 170.72 W 9 0 11,018 72 88 11 19.28 N 166.65 E 12 0 11,097 71 89	Midway Island (MH) - Midway Island NAF	28.22 N	177.37 W	13	134	8,323	59	98	75	N.A.
rt 19.28 N 166.65 E 12 0 11,097 71 89	Samoa (WS) - Pago Pago WSO Airport		170.72 W	6	0	11,018	72	88	80	N.A.
15.18 N 120.55 F 475 0 11.280 68 95	Wake Island - Wake Island WSO Airport		166.65 E	12	0	11,097	71	68	62	N.A.
15.18 N 120.55 E 475 0 11.280 68 95	Philippines									
00 007(11 0 07)	Philippines (PH) - Angeles, Clark AFB	15.18 N	120.55 E	475	0	11,280	89	95	77	N.A.

TABLE D-2 Canadian Climatic Data

Devolute Linding Design Linding Design Linding Design Link								Cooling Design Temperature	Temperature
ting Latifude Latifude Latifude Latifude Latifude Latifude Elev.(ft) IIDDS CDDS 946% 1.0% rati (AB) 11.10 53.30 N 113.38 W 2.345 11.023 1.09 2.38.1 1.0% rati mornioranianal A 55.30 N 113.38 W 2.345 11.023 1.093 2.38.1 7.8 rate partie A 55.30 N 118.38 W 2.345 11.023 1.093 2.38.1 7.8 rate partie A 55.30 N 118.38 W 2.345 11.023 1.093 2.38.1 7.8 rate A 55.30 N 118.07 W 2.345 11.023 1.045 7.8 7.8 rate Eul A 40.02 N 113.00 W 2.345 1.045 7.8 7.8 7.8 rate Eul A 40.02 N 11.02 N 2.345 1.045 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.8							Heating Design		
trick (AB) Laditude Laditude Elev. (II) HDDGs CDD5q 94-6% 1.0% rtd (AB) 41.2 N 11.40.2 W 3.53.51 1.10.23 1.10.7 2.2 80 rtd (AB) 53.18 N 11.54.0 W 2.34.51 1.10.23 1.06.7 2.2 80 ac Particle A 55.18 N 11.80.7 W 2.48.6 1.12.40 1.031 7.2 80 ac Particle A 55.28 N 11.80.7 W 2.48.9 1.88 N.A.							Temperature	Dry-Bulb	Wet-Bulb
rut (AB) rut (AB) 51.12 N 114.02 W 5.53.3 9,885 1,167 2.2 80 value International A strain of Partine A strain o	City	Latitude	Longitude	Elev. (ft)	HDD65	CDD50	%9.66	1.0%	1.0%
A Single A S	Alberta (AB)								
A.A. S. J. B. N. I. 113.8 W 2.345 II 1029 1.069 2.81 7.8 A.A. S. S. I. B. N. I. S. B. N. I. S. B. N. S. S. I. S. S. I. S	Calgary International A	51.12 N	114.02 W	3,533	9,885	1,167	-22	80	59
Fey Sign No. 11888 W 2.185 11,240 1,031 322 78 848 NA. A. BAA. BAA. BAA. BAA. BAA. BAA. BA	Edmonton International A	53.30 N	113.58 W	2,345	11,023	1,069	-28.1	78	62
Anticoral A book No. 118.07 W 3.480 10.244 848 N.A. NA. A book No. 118.07 W 3.480 10.244 848 N.A. NA. A book No. 110.20 W 3.047 8.783 1.730 2.2 84 NA. A book No. 110.20 W 2.352 8.988 1.981 2.4 87 NA. NA. Ster BCPen 49.05 N 122.58 W 1.225 W 1.225 N 1.225	Grande Prairie A	55.18 N	118.88 W	2,185	11,240	1,031	-32	78	09
A book N 11280 W 3,047 8,783 1,730 2.2 84 butter a book of the state o	Jasper	52.88 N	118.07 W	3,480	10,244	848	N.A.	N.A.	N.A.
A butter A bottom A bottom bind (BC)	Lethbridge A	49.63 N	112.80 W	3,047	8,783	1,730	-22	84	61
c.A 13.90 W 2.969 10,765 1,095 27 79 c.A S5.73 N 12.28 W 1,243 6,794 1,013 3.3 78 c.A 58.83 N 12.28 W 1,243 6,794 1,013 3.3 78 ster BC Pen 49.05 N 122.58 W 1,243 6,794 1,013 3.3 88 49.05 N 122.50 W 59 6,570 1,043 8.7 188 A 49.18 N 122.50 W 59 5,520 1,691 N.A. N.A. A 49.47 N 122.50 W 20.7 9,455 0.0 2,5 0.0 8.7 1.4 A 49.48 N 122.50 W 2.0 5,520 1,601 N.A. N.A. B) A 49.48 N 123.20 W 2.0 5,682 3.7 1 4.4 B) 49.8 N 123.2 W 2.0 2.0 3.2 3.2 3.2 3.2 3.2	Medicine Hat A	50.02 N	110.72 W	2,352	8,988	1,981	-24	87	62
cA 55.73 N 120.18 W 2.148 11,435 890 N.A. NA. cA 58.83 N 122.58 W 1.233 1.2941 1.013 -33 78 50.67 N 122.58 W 1.233 1.243 6,779 2,335 -8 88 49.27 N 122.87 W 98 6,779 2,335 -8 88 5 49.47 N 19.60 W 1,128 6,500 2,002 5 87 5 44.7 N 19.60 W 1,128 6,500 2,002 5 87 A 49.47 N 19.60 W 1,128 6,500 2,002 5 87 A 49.18 N 122.67 W 2,267 9,495 906 -25 78 A 49.18 N 122.40 W 111 7,650 5 7 63 B 49.97 N 123.32 W 229 5,494 1,286 7 7 B 55.73 N 10.089 1,600<	Red Deer A	52.18 N	113.90 W	2,969	10,765	1,095	-27	62	61
cA 55.73 N 120.18 W 2.148 11,435 890 N.A. NA. 58.83 N 122.58 W 1,253 1,294 1,013 33 78 50.67 N 120.38 W 1,243 6,779 1,335 -8 88 ser BCPen 49.05 N 122.80 W 98 6,674 1,469 N.A. N.A. ser BCPen 49.22 N 122.60 W 1,128 6,509 1,609 N.A. N.A. star BCPen 49.22 N 119.60 W 1,128 6,509 1,60 N.A. N.A. A 4.4 119.60 W 1,128 6,50 1,25 7 63 a startional A 4.43.0 N 130.43 W 111 7,650 5.25 7 63 a startional A 48.42 N 123.17 W 9 5,682 1,586 13 7 B 58.73 N 1,130 1,130 1,286 23 7 7 B 58.37 N <t< td=""><td>British Columbia (BC)</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	British Columbia (BC)								
sear BC Pen 5.883 N 12.288 W 1,234 6,779 -33 -8 88 49.05 N 12.387 W 1,243 6,779 2,335 -8 88 49.05 N 12.387 W 98 6,054 1,469 N.A. NA. 49.05 N 12.290 W 59 5,520 1,691 N.A. N.A. A 53.88 N 112.67 W 2,267 9,495 90 2,5 7 87 A 54.30 N 12.267 W 2,267 9,495 90 2,5 7 87 A 49.18 N 12.217 W 9,495 1,560 1,56 1,5 1,5 1,4 B 48.42 N 12.31 W 1,190 10,969 1,661 29 2,6 1,58	Dawson Creek A	55.73 N	120.18 W	2,148	11,435	890	N.A.	N.A.	N.A.
ster BC Pen	Ft Nelson A	58.83 N	122.58 W	1,253	12,941	1,013	-33	78	09
ster BC Pen 49.05 N 123.87 W 98 6,054 1,469 N.A. NA. 49.22 N 122.90 W 59 5,520 1,691 N.A. NA. 49.22 N 19.06 W 1,128 6,500 2,002 5 8 87 crenational A 54.30 N 122.67 W 2.267 9,495 906 -2.5 78 attentional A 49.18 N 123.17 W 9 5,682 1,536 18 74 A 49.18 N 123.17 W 9 5,682 1,536 18 74 A 49.18 N 123.12 W 2.29 5,494 1,286 23 75 B 3 49.27 N 10.05 W 1,190 1,049 1,059 1,661 2.9 S 54.10 N 10.05 W 1,190 1,1242 1,520 2.8 attinite A 49.90 N 92.3 W 124.90 1,249 1,281 2.3 attinite A 49.90 N 92.3 W 784 1,088 1,784 2.7 A 49.90 N 92.3 W 784 1,088 1,784 2.7 A 49.90 N 97.3 W 784 1,088 1,784 2.7 A 49.90 N 97.3 W 784 1,088 1,784 2.7 A 49.90 N 65.3 W 784 1,088 1,784 2.7 A 49.87 N 66.53 W 784 1,088 1,784 2.7 A 49.87 N 66.53 W 784 1,088 1,784 2.7 B 49.88 1,784 2.7 B 59.89 1	Kamloops	50.67 N	120.33 W	1,243	6,779	2,335	% -	88	63
ster BC Pen 49.22 N 122.90 W 59 5.520 1.691 N.A. N.A. 49.47 N 119.60 W 1.128 6.500 2.002 5 87 87 87 87 88.8 N 122.67 W 2.267 9.495 9.06 -2.5 78 87 87 84.20 N 123.17 W 9 5.682 1.556 1.8 74 84.20 N 123.17 W 9 5.682 1.556 1.8 74 84.20 N 123.17 W 99.98 W 1.190 10.969 1.671 2.29 8.4 84.20 N 1.30.00 W 1.200 1.096 1.671 2.2 84 84.20 N 1.30.00 N 11.242 1.286 2.3 84 84.20 N 1.30.00 N 11.242 1.287 1.357	Nanaimo A	49.05 N	123.87 W	86	6,054	1,469	N.A.	N.A.	N.A.
49.47 N 119.60 W 1,128 6,500 5.002 5 87 A 53.88 N 122.67 W 2.267 9.495 906 -25 78 A 54.30 N 130.43 W 111 7,650 57.2 7 63 anerational A 49.18 N 123.17 W 9 5,682 1,536 18 74 B) 49.18 N 123.32 W 229 5,494 1,286 23 75 B) 49.87 N 99.98 W 1,190 10,969 1,661 -29 84 A 58.73 N 94.07 W 91 16,719 275 -36 72 A 51.10 N 100.05 W 1,000 11,242 1,520 -28 84 A 54.77 N 101.85 W 1,099 12,490 1,87 84 A 49.90 N 97.23 W 784 1,897 -27 84 A 45.87 N 66.53 W 1,11 9,028	New Westminster BC Pen	49.22 N	122.90 W	59	5,520	1,691	N.A.	N.A.	N.A.
A 53.88 N 122.67 W 2.267 9495 906 -25 78 A 54.30 N 130.43 W 111 7,650 572 7 63 emational A 49.18 N 123.17 W 9 5,682 1,536 18 74 B) 48.42 N 123.32 W 229 5,494 1,286 23 75 B) 49.87 N 99.98 W 1,190 10,969 1,661 -29 84 S 53.73 N 94.07 W 91 16,719 275 -36 72 S 53.73 N 100.05 W 1,000 11,242 1,520 -28 84 S 54.77 N 101.85 W 1,099 12,307 1,332 N.A. 84 sinick (NB) 47.02 N 97.23 W 784 10,858 1,784 -27 84 sck (NB) 47.02 N 65.45 W 111 9,028 1,531 -12 83 sck (NB) 47	Penticton A	49.47 N	119.60 W	1,128	6,500	2,002	5	87	64
A 54.30 N 130.43 W 111 7,650 572 7 63 emational A 49.18 N 123.17 W 9 5,682 1,536 18 74 B 3 48.42 N 123.23 W 229 5,494 1,286 23 75 B 3 49.87 N 99.98 W 1,190 10,969 1,661 29 84 51.10 N 100.05 W 1,090 11,242 1,520 28 84 54.77 N 101.85 W 1,099 12,307 1,352 N.A. airie A 49.90 N 98.27 W 885 10,594 1,807 25 85 rrational A 49.90 N 97.23 W 784 10,858 1,784 2.7 84 54.77 N 66.53 W 55 8,666 1,631 12 12 18	Prince George	53.88 N	122.67 W	2,267	9,495	906	-25	78	59
A9.18 N 123.17 W 9 5.682 1,536 18 74 B) 48.42 N 123.32 W 229 5,494 1,286 23 75 B) 48.42 N 123.32 W 229 5,494 1,286 23 75 B) 49.87 N 99.98 W 1,190 10,969 1,661 -29 84 5.1.10 N 100.05 W 1,000 11,242 1,520 -28 84 54.77 N 101.85 W 1,099 12,347 1,352 N.A. N.A. airie A 49.90 N 98.27 W 885 10,594 1,807 -25 85 ratational A 49.90 N 97.23 W 784 10,858 1,784 -27 84 45.07 N 65.53 W 65.66 1,631 12 83 83	Prince Rupert A	54.30 N	130.43 W	111	7,650	572	7	63	57
B) 48.42 N 123.32 W 229 5,494 1,286 23 75 B) 49.87 N 99.98 W 1,190 10,669 1,661 -29 84 4.9.77 N 100.05 W 1,190 16,719 275 -36 28 72 atrice A 54.77 N 101.85 W 1,099 12,307 1,352 N.A. N.A. atrice A 49.90 N 98.27 W 885 10,594 1,807 -25 85 atrational A 49.90 N 97.23 W 784 10,838 1,734 -27 84 ick (NB) 47.02 N 65.45 W 111 9,028 1,734 -27 83 45.87 N 66.53 W 78 8,666 1,531 -12 83	Vancouver International A	49.18 N	123.17 W	6	5,682	1,536	18	74	64
B) ABA 49.87 N 99.98 W 1,190 10,969 1,661 -29 84 58.73 N 94.07 W 91 16,719 275 -36 72 51.10 N 100.05 W 1,000 11,242 1,520 -28 84 51.10 N 101.85 W 1,099 12,307 1,352 N.A. N.A. airie A 54.77 N 101.85 W 1,099 12,490 1,231 -25 85 srick (NB) 53.97 N 101.10 W 889 12,490 1,231 -32 79 rick (NB) 49.90 N 97.23 W 784 10,858 1,784 -27 84 stck (NB) 47.02 N 66.53 W 55 8,666 1,631 -12 83	Victoria Gonzales Hts	48.42 N		229	5,494	1,286	23	75	62
A9.87 N 99.98 W 1,190 10,969 1,661 -29 84 58.73 N 94.07 W 91 16,719 275 -36 72 51.10 N 100.05 W 1,000 11,242 1,520 -28 84 54.77 N 101.85 W 1,099 12,307 1,352 N.A. N.A. airie A 49.90 N 98.27 W 885 10,594 1,807 -25 85 rrational A 49.90 N 97.23 W 784 10,858 1,784 -27 84 ick (NB) 47.02 N 65.45 W 111 9,028 1,531 -12 83 45.87 N 66.53 W 55 8,666 1,631 -12 83	Manitoba (MB)								
58.73 N 94.07 W 91 16,719 275 -36 72 51.10 N 100.05 W 1,000 11,242 1,520 -28 84 54.77 N 101.85 W 1,099 12,307 1,352 N.A. N.A. airie A 49.90 N 98.27 W 885 10,594 1,807 -25 85 rrational A 49.90 N 97.23 W 784 10,858 1,784 -27 84 ick (NB) 47.02 N 65.45 W 111 9,028 1,531 -12 83 45.87 N 66.53 W 55 8,666 1,631 -12 83	Brandon CDA	49.87 N	W 86.98	1,190	10,969	1,661	-29	84	99
airie A 5.1.0 N 100.05 W 1,000 11,242 1,520 -28 84 54.77 N 101.85 W 1,099 12,307 1,352 N.A. N.A. N.A. sairie A 49.90 N 98.27 W 889 12,490 1,231 -25 85 rrational A 49.90 N 97.23 W 784 10,858 1,784 -27 84 ick (NB) 47.02 N 65.45 W 111 9,028 1,531 -12 83 8.666 1,631 -12 83	Churchill A	58.73 N	94.07 W	91	16,719	275	-36	72	09
airie A 49.00 N 98.27 W 885 10,594 1,807 -25 85 85 87 87 889 12,490 12,31 -25 85 87 889 12,490 12,490 N 97.23 W 784 10,858 1,784 -27 84 84 84 85 85.45 W 810 N 97.23 W 784 10,858 1,784 -27 84 84 84 85 85.45 W 111 9,028 1,531 -12 83 85 85 85 85 85 85 85 85 85 85 85 85 85	Dauphin A	51.10 N	100.05 W	1,000	11,242	1,520	-28	84	99
airie A 49.90 N 98.27 W 885 10,594 1,807 -25 85 rrational A 49.90 N 97.23 W 784 10,858 1,784 -27 84 ick (NB) 47.02 N 65.45 W 111 9,028 1,531 -12 83 8.666 1,631 -12 83	Flin Flon	54.77 N	101.85 W	1,099	12,307	1,352	N.A.	N.A.	N.A.
state (NB) 47.02 N 65.45 W 111 9,028 1,531 -12 79 ranational A 47.02 N 45.87 N 66.53 W 55 8,666 1,631 -12 83	Portage La Prairie A	49.90 N	98.27 W	885	10,594	1,807	-25	85	29
ick (NB) 49.90 N 97.23 W 784 10,858 1,784 -27 84 Fig. 10,858 1,784 1,	The Pas A	53.97 N	101.10 W	688	12,490	1,231	-32	79	64
ick (NB) 47.02 N 65.45 W 111 9,028 1,531 -12 83 45.87 N 66.53 W 55 8,666 1,631 -12 83	Winnipeg International A	49.90 N	97.23 W	784	10,858	1,784	-27	84	29
47.02 N 65.45 W 111 9,028 1,531 -12 83 45.87 N 66.53 W 55 8,666 1,631 -12 83	New Brunswick (NB)								
45.87 N 66.53 W 55 8,666 1,631 -12 83	Chatham A	47.02 N	65.45 W	1111	9,028	1,531	-12	83	29
	Fredericton A	45.87 N	66.53 W	55	8,666	1,631	-12	83	68

TABLE D-2 (Continued) Canadian Climatic Data

						Heating Design		
						Temperature	Dry-Bulb	Wet-Bulb
Frovince City	Latitude	Longitude	Elev. (ft.)	HDD65	CDD50	%9 [*] 66	1.0%	1.0%
(New Bruswick cont.)		t.						
Moncton A	46.12 N	64.68 W	232	8,731	1,427	-10	80	29
Saint John A	45.33 N	65.88 W	337	8,776	1,179	6-	75	64
Newfoundland (NF)								
Corner Brook	48.95 N	S7.95 W	16	8,756	1,075	N.A.	N.A.	N.A.
Gander International A	48.95 N	54.57 W	495	9,354	926	4	76	63
Goose A	53.32 N	60.42 W	150	12,017	758	-23	77	61
St John's A	47.62 N	52.73 W	439	8,888	848	3	73	64
Stephenville A	48.53 N	58.55 W	26	8,869	952	-2	71	64
Northwest Territories (NW)								
Ft Smith A	60.02 N	W 5111.95 W	999	14,192	932	-34	78	61
Inuvik A	68.30 N	133.48 W	193	18,409	489	-43	75	59
Yellowknife A	62.47 N	114.45 W	672	15,555	851	-39	74	59
Nova Scotia (NS)								
Halifax International A	44.88 N	63.52 W	416	8,133	1,464	-2	78	99
Kentville CDA	45.07 N	64.48 W	160	7,683	1,665	N.A.	N.A.	N.A.
Sydney A	46.17 N	60.05 W	183	8,364	1,287	-1	78	<i>L</i> 9
Truro	45.37 N	63.27 W	131	8,596	1,295	6-	77	29
Yarmouth A	43.83 N	W 80.99	141	7,515	1,180	7	71	64
Nunavut								
Resolute A	74.72 N	94.98 W	219	22,864	0	-42	48	43
Ontario (ON)								
Belleville	44.15 N	77.40 W	249	7,556	2,252	N.A.	N.A.	N.A.
Cornwall	45.02 N	74.75 W	209	8,062	2,187	N.A.	N.A.	N.A.
Hamilton RBG	43.28 N	W 88.67	334	6,872	2,450	N.A.	N.A.	N.A.
Kapuskasing A	49.42 N	82.47 W	744	11,742	1,108	-30	80	65
Kenora A	49.78 N	94.37 W	1,335	10,884	1,626	-27	81	65
Kingston A	44.22 N	76.60 W	305	7,826	1,960	N.A.	N.A.	N.A.
London A	43.03 N	81.15 W	912	7,565	2,126	-3	83	70
North Bay A	46.35 N	79.43 W	1,174	9,794	1,509	-18	78	99
Oshawa WPCP	43.87 N	78.83 W	275	7,253	2,106	N.A.	N.A.	N.A.

TABLE D-2 (Continued) Canadian Climatic Data

							Cooling Design	Cooling Design Temperature
						Heating Design Temperature	Dry-Bulb	Wet-Bulb
Province								
City	Latitude	Longitude	Elev. (ft)	HDD65	CDD20	%9.66	1.0%	1.0%
(Ontario cont.)								
Owen Sound MOE	44.58 N	80.93 W	587	7,730	1,896	N.A.	N.A.	N.A.
Peterborough	44.28 N	78.32 W	636	8,037	1,975	N.A.	N.A.	N.A.
St Catharines	43.20 N	79.25 W	298	6,700	2,564	N.A.	N.A.	N.A.
Sudbury A	46.62 N	80.80 W	1,141	06666	1,557	-19	81	99
Thunder Bay A	48.37 N	89.32 W	652	10,562	1,198	-22	80	99
Timmins A	48.57 N	81.37 W	296	11,374	1,225	-28	81	65
Toronto Downsview A	43.75 N	79.48 W	649	7,306	2,370	4-	84	70
Windsor A	42.27 N	82.97 W	623	6,619	2,679	2	98	71
Prince Edward Island (PE)								
Charlottetown A	46.28 N	63.13 W	157	8,598	1,400	9-	77	29
Summerside A	46.43 N	63.83 W	78	8,411	1,536	<i>S</i> -	77	99
Quebec (PQ)								
Bagotville A	48.33 N	71.00 W	521	10,603	1,300	-23	80	65
Drummondville	45.88 N	72.48 W	269	8,601	2,024	N.A.	N.A.	N.A.
Granby	45.38 N	72.70 W	551	8,367	1,984	N.A.	N.A.	N.A.
Montreal Dorval International A	45.47 N	73.75 W	101	8,285	2,146	-12	83	70
Quebec A	46.80 N	71.38 W	229	9,449	1,571	-16	80	89
Rimouski	48.45 N	68.52 W	118	6,665	1,215	N.A.	N.A.	N.A.
Sept-Iles A	50.22 N	66.27 W	180	11,287	069	-20	69	59
Shawinigan	46.57 N	72.75 W	400	9,246	1,720	N.A.	N.A.	N.A.
Sherbrooke A	45.43 N	71.68 W	780	9,464	1,372	-20	80	89
St Jean de Cherbourg	48.88 N	67.12 W	1,151	11,277	801	N.A.	N.A.	N.A.
St Jerome	45.80 N	74.05 W	557	9,171	1,771	N.A.	N.A.	N.A.
Thetford Mines	46.10 N	71.35 W	1,250	6,687	1,425	N.A.	N.A.	N.A.
Trois Rivieres	46.37 N	72.60 W	173	9,124	1,766	N.A.	N.A.	N.A.
Val d'Or A	48.07 N	77.78 W	1,105	11,256	1,193	-27	80	65
Valleyfield	45.28 N	74.10 W	150	8,083	2,268	N.A.	N.A.	N.A.
Saskatchewan (SK)								
Estevan A	49.22 N	102.97 W	1,876	10,092	1,793	-25	98	92
Moose Jaw A	50.33 N	105.55 W	1,893	6,989	1,812	-27	87	64

TABLE D-2 (Continued) Canadian Climatic Data

									- Amberante
							Heating Design Temperature	Dry-Bulb	Wet-Bulb
Province City		Latitude	Longitude	Elev. (ft)	HDD65	CDD50	%9.66	1.0%	1.0%
(Saskatchewan cont.)									
North Battleford A		52.77 N	108.25 W	1,797	11,127	1,473	-31	82	63
Prince Albert A		53.22 N	105.68 W	1,404	12,009	1,252	-34	81	64
Regina A		50.43 N	104.67 W	1,893	10,773	1,620	-29	85	64
Saskatoon A		52.17 N	106.68 W	1,643	11,118	1,537	-31	84	63
Swift Current A		50.28 N	107.68 W	2,683	10,128	1,541	-25	84	62
Yorkton A		51.27 N	102.47 W	1,633	11,431	1,476	-30	82	64
Yukon Territory (YT)									
Whitehorse A		60.72 N	135.07 W	2,306	12,797	611	-34	73	55
			TABLE D-3	International Climatic Data	Climatic Da	1 2			
								Cooling Desi	Cooling Design Temperature
							Heating Design		
							Temperature	Dry-Bulb	Wet-Bulb
City	Province or Region	Latitude	Longitude	Elev. (ft)	HDD65	CDD50	%9.66	1.0%	1.0%
Argentina									
Buenos Aires/Ezeiza		34.82 S	58.53 W	99	2,211	4,693	31	06	72
Cordoba		31.32 S	64.22 W	1,555	1,816	5,182	31	91	72
Tucuman/Pozo		26.85 S	65.10 W	1,444	1,416	6,622	N.A.	N.A.	N.A.
Australia									
Adelaide	SA	34.95 S	138.53 E	20	2,082	4,381	39	92	64
Alice Springs	TN	23.80 S	133.90 E	1,782	1,142	TTTT	34	102	64
Brisbane	TÒ	27.43 S	153.08 E	7	545	7,009	44	98	72
Darwin Airport	TN	12.43 S	130.87 E	95	0	11,736	64	92	76
Perth/Guildford	WA	31.92 S	115.97 E	56	1,507	5,353	41	95	99
Sydney/K Smith	NSW	33.95 S	151.18 E	20	1,351	5,259	42	85	29
Azores									
Lajes	Terceira	38.75 N	27.08 W	180	1,279	4,892	46	78	7.1
Bahamas									

TABLE D-3 (Continued) International Climatic Data

								Cooling Desig	Cooling Design Temperature
							Heating Design		
							Temperature	Dry-Bulb	Wet-Bulb
Country	Province or								
City	Region	Latitude	Longitude	Elev. (ft)	HDD65	CDD50	%9.66	1.0%	1.0%
Belgium									
Brussels Airport		50.90 N	4.47 E	128	5,460	1,862	15	79	99
Bermuda									
St Georges/Kindley		32.37 N	64.68 W	20	170	8,365	N.A.	N.A.	N.A.
Bolivia									
La Paz/El Alto		16.50 S	68.18 W	13,287	7,189	237	25	62	44
Brazil									
Belem		1.43 S	48.48 W	42	0	11,552	72	06	78
Brasilia		15.77 S	47.93 W	3,809	58	7,943	48	88	65
Fortaleza		3.72 S	38.55 W	62	-	11,748	72	06	78
Porto Alegre		30.08 S	51.18 W	23	905	7,076	40	92	75
Recife/Curado		8.13 S	34.92 W	36	7	10,951	70	91	78
Rio de Janeiro		22.90 S	43.17 W	16	14	889'6	59	66	77
Salvador/Ondina		13.00 S	38.52 W	167	0	10,785	89	88	78
Sao Paulo		23.50 S	46.62 W	2,608	447	7,219	48	88	69
Bulgaria									
Sofia		42.82 N	23.38 E	1,952	5,629	2,508	10	85	65
Chile									
Concepcion		36.77 S	73.05 W	39	3,559	2,283	35	74	62
Punta Arenas/Chabunco		53.03 S	70.85 W	108	7,807	395	23	61	53
Santiago/Pedahuel		33.38 S	70.88 W	1,575	2,820	3,471	29	88	65
China									
Shanghai/Hongqiao		31.17 N	121.43 E	16	3,182	5,124	26	92	81
Cuba									
Guantanamo Bay NAS	Ote.	19.90 N	75.15 W	75	0	11,719	<i>L</i> 9	93	78
Cyprus									
Akrotiri		34.58 N	32.98 E	75	1,287	6,147	40	68	72
Larnaca		34.88 N	33.63 E	7	1,452	6,028	37	91	72
Panhos		34.75 N	32.40 E	30	1,279	5,924	39	98	92

TABLE D-3 (Continued) International Climatic Data

								Cooling Design Temperature	. Temperature
							Heating Design		
							Temperature	Dry-Bulb	Wet-Bulb
Country	Province or Region	Latitude	Longitude	Elev. (ff.)	HDD65	CDD50	%9 [*] 66	1.0%	1.0%
Czech Republic (Former	900		G.						
Czechoslovakia)									
Prague/Libus		50.00 N	14.45 E	1,001	6,376	1,853	3	80	64
Dominican Republic									
Santo Domingo		18.47 N	W 88.69	43	0	10,862	N.A.	N.A.	N.A.
Egypt									
Cairo		30.13 N	31.40 E	243	834	7,993	45	76	69
Luxor		25.67 N	32.70 E	289	581	9,849	40	108	71
Finland									
Helsinki/Seutula		60.32 N	24.97 E	167	9,051	1,138	-11	75	61
France									
Lyon/Satolas		45.73 N	5.08 E	814	4,930	2,609	17	98	69
Marseille		43.45 N	5.22 E	26	3,194	3,933	25	87	70
Nantes		47.17 N	1.60 W	68	4,286	2,480	23	83	89
Nice		43.65 N	7.20 E	33	2,641	3,983	35	83	73
Paris/Le Bourget		48.97 N	2.45 E	217	5,046	2,211	18	82	89
Strasbourg		48.55 N	7.63 E	502	5,533	2,193	12	84	89
Germany									
Berlin/Schoenfeld		52.38 N	13.52 E	154	6,331	1,820	11	82	92
Hamburg		53.63 N	9.98 E	52	6,319	1,569	111	79	64
Hannover		52.47 N	9.70 E	180	6,093	1,730	6	80	92
Mannheim		49.53 N	8.50 E	318	5,428	2,262	N.A.	N.A.	N.A.
Greece									
Souda	Crete	35.55 N	24.12 E	417	1,767	5,472	39	06	<i>L</i> 9
Thessalonika/Mikra		40.52 N	22.97 E	26	3,389	4,115	25	06	69
Greenland									
Narssarssuaq		61.18 N	45.42 W	42	11,521	292	-18	62	49
Hungary									
Budapest/Lorinc		47.43 N	19.18 E	459	5,534	2,647	~	98	89
Iceland									
Reykjavik		64.13 N	21.93 W	200	9,286	293	14	58	52

TABLE D-3 (Continued) International Climatic Data

								,	
							Heating Design		
							Temperature	Dry-Bulb	Wet-Bulb
Country	Province or Region	Latitude	Lonoitude	Elev. (ff.)	HDD65	CDD50	%9 ⁻ 66	1.0%	1.0%
India	1		d.						
Ahmedabad		23.07 N	72.63 E	180	31	11,648	52	106	74
Bangalore		12.97 N	77.58 E	3,018	2	9,409	59	92	29
Bombay/Santa Cruz		19.12 N	72.85 E	26	2	11,372	62	93	74
Calcutta/Dum Dum		22.65 N	88.45 E	16	26	11,064	54	76	79
Madras		13.00 N	80.18 E	52	0	12,403	89	66	77
Nagpur Sonegaon		21.10 N	79.05 E	1,014	18	11,274	53	108	71
New Delhi/Safdarjung		28.58 N	77.20 E	702	480	10,060	44	105	72
Indonesia									
Djakarta/Halimperda	Java	6.25 S	106.90 E	86	0	11,477	N.A.	N.A.	N.A.
Kupang Penfui	Sunda Island	10.17 S	123.67 E	354	2	11,686	N.A.	N.A.	N.A.
Makassar	Celebes	5.07 S	119.55 E	56	3	11,481	N.A.	N.A.	N.A.
Medan	Sumatra	3.57 N	98.68 E	85	0	11,491	N.A.	N.A.	N.A.
Palembang	Sumatra	2.90 S	104.70 E	33	0	11,565	N.A.	N.A.	N.A.
Surabaja Perak	Java	7.22 S	112.72 E	10	0	12,088	N.A.	N.A.	N.A.
Ireland									
Dublin Airport		53.43 N	6.25 W	279	5,507	1,276	29	69	61
Shannon Airport		52.68 N	8.92 W	99	5,106	1,455	28	71	63
Israel									
Jerusalem		31.78 N	35.22 E	2,654	2,423	4,609	33	98	64
Tel Aviv Port		32.10 N	34.78 E	33	955	6,851	44	98	74
Italy									
Milano/Linate		45.43 N	9.28 E	351	4,507	3,335	21	87	72
Napoli/Capodichino		40.88 N	14.30 E	236	2,658	4,301	32	68	73
Roma/Fiumicino		41.80 N	12.23 E	7	2,684	4,173	30	98	74
Jamaica									
Kingston/Manley		17.93 N	76.78 W	46	0	11,860	71	86	78
Montego Bay/Sangster		18.50 N	77.92 W	ю	1	10,915	70	06	79
Japan									
Fukaura		40.65 N	139.93 E	223	5,522	2,933	30	91	78
Sapporo		43.05 N	141.33 E	56	6,753	2,518	12	81	71

TABLE D-3 (Continued) International Climatic Data

								Cooling Desig	Cooling Design Temperature
							Heating Design	;	
Country	Province or						Temperature	Dry-Bulb	Wet-Bulb
City	Region	Latitude	Longitude	Elev. (ft)	HDD65	CDD50	%9.66	1.0%	1.0%
Jordan									
Amman		31.98 N	35.98 E	2,516	2,337	5,427	33	92	65
Kenya									
Nairobi Airport		1.32 S	36.93 E	5,328	273	6,177	49	83	09
Korea									
Pyonggang		38.40 N	127.30 E	1,217	6,735	2,840	3	85	74
Seoul		37.57 N	126.97 E	282	5,007	3,956	N.A.	N.A.	N.A.
Malaysia									
Kuala Lumpur		3.13 N	101.55 E	56	0	11,530	71	93	78
Penang/Bayan Lepas		5.30 N	100.27 E	10	0	Z	N.A.	N.A.	N.A.
Mexico									
Mexico City	Distrito Federal	19.40 N	99.20 W	5,213	701	6,121	39	82	57
Guadalajara	Jalisco	20.67 N	103.38 W	30	10	11,122	N.A.	N.A.	N.A.
Monterrey	Nuevo Laredo	25.87 N	100.20 W	6,368	745	5,542	N.A.	N.A.	N.A.
Tampico	Tamaulipas	22.22 N	97.85 W	551	0	10,760	50	06	80
Veracruz	Veracruz	19.15 N	96.12 W	7,156	2,198	3,850	57	92	08
Merida	Yucatan	20.98 N	89.65 W	72	1,191	10,439	57	86	92
Netherlands									
Amsterdam/Schiphol		52.30 N	4.77 E	-13	5,691	1,619	17	77	65
New Zealand									
Auckland Airport		37.02 S	174.80 E	23	2,242	3,650	35	76	99
Christchurch		43.48 S	172.55 E	118	4,359	2,115	28	79	61
Wellington		41.28 S	174.77 E	420	3,597	2,258	35	71	63
Norway									
Bergen/Florida		60.38 N	5.33 E	128	6,882	1,014	16	89	57
Oslo/Fornebu		N 06:65	10.62 E	52	8,020	1,331	0	77	62
Pakistan									
Karachi Airport		24.90 N	67.13 E	75	1,155	11,049	N.A.	N.A.	N.A.
Papua New Guinea									
Port Moresby		9.43 S	147.22 E	92	2	11,272	N.A.	N.A.	N.A.

TABLE D-3 (Continued) International Climatic Data

								200	Cooling Decign Temperature
							Heating Design		
							Temperature	Dry-Bulb	Wet-Bulb
Country	Province or								
City	Region	Latitude	Longitude	Elev. (ft)	HDD65	CDD20	%9.6%	1.0%	1.0%
Paraguay									
Asuncion/Stroessner		25.27 S	57.63 W	331	469	9,005	41	95	75
Peru									
Lima-Callao/Chavez		12.00 S	77.12 W	43	260	6,745	57	84	74
San Juan de Marcona		15.35 S	75.15 W	197	306	6,765	N.A.	N.A.	N.A.
Talara		4.57 S	81.25 W	282	4	8,973	09	88	75
Philippines									
Manila Airport	Luzon	14.52 N	121.00 E	75	0	11,449	69	93	80
Poland									
Krakow/Balice		50.08 N	19.80 E	778	6,924	2,007	-1	81	29
Puerto Rico									
San Juan/Isla Verde WSFO		18.43 N	W 00.99	10	0	11,406	69	06	78
Romania									
Bucuresti/Bancasa		44.50 N	26.13 E	308	5,461	2,948	8	88	70
Russia (Former Soviet Union)									
Kaliningrad	East Prussia	54.70 N	20.62 E	68	7,115	1,589	-3	77	64
Krasnoiarsk		56.00 N	92.88 E	636	11,278	1,351	-29	80	63
Moscow Observatory		55.75 N	37.57 E	512	8,596	1,708	-10	79	65
Petropavlovsk		53.02 N	158.72 E	23	10,107	530	5	99	58
Rostov-Na-Donu		47.25 N	39.82 E	259	6,360	3,015	2	98	89
Vladivostok		43.12 N	131.90 E	453	8,915	1,728	8-	75	29
Volgograd		48.68 N	44.35 E	476	7,558	2,840	9-	88	65
Saudi Arabia									
Dhahran		26.27 N	50.17 E	72	381	10,936	N.A.	N.A.	N.A.
Riyadh		24.70 N	46.73 E	2,005	536	10,725	41	110	64
Senegal									
Dakar/Yoff		14.73 N	17.50 W	68	9	9,750	61	88	77
Singapore									
Singapore/Changi		1.37 N	103.98 E	49	0	11,995	73	06	79

TABLE D-3 (Continued) International Climatic Data

								Cooling Design	Cooling Design Temperature
							Heating Design		
	Description						Temperature	Dry-Bulb	Wet-Bulb
City	Region	Latitude	Longitude	Elev. (ft)	HDD65	CDD50	%9.66	1.0%	1.0%
South Africa									
Cape Town/D F Malan		33.97 S	18.60 E	151	1,685	4,454	38	83	29
Johannesburg		26.13 S	28.23 E	5,558	1,919	4,252	34	82	09
Pretoria		25.73 S	28.18 E	4,364	1,151	5,828	39	88	63
Spain									
Barcelona		41.28 N	2.07 E	13	2,638	3,965	32	84	74
Madrid		40.47 N	3.57 W	1,909	3,669	3,702	24	94	89
Valencia/Manises		39.50 N	0.47 W	203	1,942	5,045	34	88	72
Sweden									
Stockholm/Arlanda		S9.65 N	17.95 E	200	8,123	1,297	-2	77	61
Switzerland									
Zurich		47.38 N	8.57 E	1,867	6,015	1,995	13	80	65
Syria									
Damascus Airport		33.42 N	36.52 E	2,001	2,771	5,293	25	86	64
Taiwan									
Tainan		22.95 N	120.20 E	52	150	9,729	51	91	81
Taipei		25.03 N	121.52 E	26	438	8,896	48	93	80
Tanzania									
Dar es Salaam		6.88 S	39.20 E	180	4	10,755	N.A.	N.A.	N.A.
Thailand									
Bangkok		13.73 N	100.57 E	52	0	12,430	99	76	62
Tunisia									
Tunis/El Aouina		36.83 N	10.23 E	16	1,657	5,769	41	94	73
Turkey									
Adana		37.00 N	35.42 E	217	1,847	860'9	32	94	71
Ankara/Etimesgut		39.95 N	32.68 E	2,644	5,162	3,077	2	98	63
Istanbul/Yesilkoy		40.97 N	28.82 E	121	3,534	3,777	26	84	69
United Kingdom									
Birmingham	England	52.45 N	1.73 W	325	5,866	1,355	21	75	62
Edinburgh	Scotland	55.95 N	3.35 W	135	6,347	1,001	21	69	09

TABLE D-3 (Continued) International Climatic Data

								Cooling Design Temperature	r Temperature
							Heating Design		
							Temperature	Dry-Bulb	Wet-Bulb
Country	Province or								
City	Region	Latitude	Longitude	Elev. (ft)	HDD65	CDD50 99.6%	%9.66	1.0%	1.0%
(UK cont.)									
Glasgow Apt	Scotland	55.87 N	4.43 W	23	6,287	1,041	21	71	61
London/Heathrow	England	51.48 N	0.45 W	62	5,015	1,894	25	78	64
Uruguay									
Montevideo/Carrasco		34.83 S	56.03 W	108	2,124	4,602	35	98	71
Venezuela									
Caracas/Maiquetia		10.60 N	W 86.99	236	6	11,501	70	91	83
Vietnam									
Hanoi/Gialam		21.02 N	105.80 E	26	330	898'6	N.A.	N.A.	N.A.
Saigon (Ho Chi Minh)		10.82 N	106.67 E	62	0	12,057	89	94	77

(This appendix is not part of this standard. It is merely informative and does not contain requirements necessary for conformance to the standard. It has not been processed according to the ANSI requirements for a standard and may contain material that has not been subject to public review or a consensus process. Unresolved objectors on informative material are not offered the right to appeal at ASHRAE or ANSI.)

INFORMATIVE APPENDIX E INFORMATIVE REFERENCES

This appendix contains informative references for the convenience of users of Standard 90.1-2004 and to acknowledge source documents when appropriate. Some documents are also included in Section 12 – Normative References because there are other citations of that document within the standard that are normative.

Address/Contact Information

AABC

Associated Air Balance Council 1518 K Street Northwest, Suite 503 Washington, DC 20005 aabchg@aol.com

BLAST

Building Systems Laboratory University of Illinois 1206 West Green Street Urbana, Illinois 61801 http://www.bso.uiuc.edu/BLAST/index.html

DOE-2

Building Energy Simulation news http://simulationresearch.lbl.gov/un.html

MICA

Midwest Insulation Contractors Association 16712 Elm Circle Omaha, NE 68130 http://www.micainsulation.org

NEBB

National Environmental Balancing Bureau 8575 Grovemont Circle Gaithersburg, MD 20877 http://www.nebb.org

SMACNA

Sheet Metal & Air Conditioning Contractors' National Association
4201 Lafayette Center Drive
Chantilly, VA 20151
info@smacna.org
http://www.smacna.org

TMY2 Data

National Renewable Energy Laboratory
NREL/RReDC
Attn: Pamela Gray-Hann
1617 Cole Blvd., MS-1612
Golden, Colorado, USA 80401
http://rredc.nrel.gov/solar/old_data/nsrdb/tmy2/

WYEC2 Data

American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc.
ASHRAE Bookstore
1791 Tullie Circle, NE
Atlanta, GA 30329-2305
(T) 404-636-8400
(F) 404-321-5478
http://resourcecenter.ashrae.org/store/ashrae/

IWEC Data

American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. ASHRAE Bookstore 1791 Tullie Circle, NE Atlanta, GA 30329-2305 (T) 404-636-8400 (F) 404-321-5478

Subsection	Reference	Title/Source
No.		
6.4.2	2001 ASHRAE Handbook—Fundamentals	ASHRAE
6.4.4.1.1	MICA Insulation Standards - 1999	National commercial and industrial insulation standards
6.4.4.2.1	SMACNA Duct Construction Standards - 1995	HVAC duct construction standards, metal and flexible
6.4.4.2.2	SMACNA Duct Leakage Test Procedures - 1985	HVAC Air Duct Leakage Test Manual
6.7.2.3.1	NEBB Procedural Standards - 1999	Procedural standards for building systems commissioning
6.7.2.3.1	AABC 2002	Associated Air Balance Council Test and Balance procedures
6.7.2.3.1	ASHRAE Standard 111 - 1988	Practices for Measurement, Testing, Adjusting and Balancing of Building Heating, Ventilation, Air-Conditioning and Refrigeration Systems
6.7.2.2	ASHRAE Guideline 4 - 1993	Preparation of Operating and Maintenance Documentation for Building Systems
6.7.2.4	ASHRAE Guideline 1 - 1996	The HVAC Commissioning Process
7.4.1 and 7.5	2003 ASHRAE Handbook—HVAC Applications	Chapter 49, Service Water Heating
11.2.1	DOE-2	Support provided by Lawrence Berkeley National Lab at the referenced web site
11.2.1	BLAST	University of Illinois
11.2.2	IWEC	International Weather for Energy Calculations
11.2.2	TMY 2 Data	Typical Meteorological Year

(This appendix is not part of this standard. It is merely informative and does not contain requirements necessary for conformance to the standard. It has not been processed according to the ANSI requirements for a standard and may contain material that has not been subject to public review or a consensus process. Unresolved objectors on informative material are not offered the right to appeal at ASHRAE or ANSI.)

INFORMATIVE APPENDIX F ADDENDA DESCRIPTION INFORMATION

ASHRAE/IESNA Standard 90.1-2004 incorporates ANSI/ASHRAE/IESNA Standard 90.1-2001 and Addenda a, b, c, d, e, g, h, i, j, k, m, n, o, p, q, r, s, t, u, x, y, z, aa, ab, ac, ae, ag, ah, ai, ak, al, and am to ANSI/ASHRAE/IESNA Standard 90.1-2001. Table F-1 lists each addendum and describes the way in which the text is affected by the change. Table F-2 states the ASHRAE and ANSI approval dates.

TABLE F-1 Addenda to ANSI/ASHRAE/IESNA Standard 90.1-2001, Changes Identified

Addenda to 90.1-2001	Sections Affected	Description of Changes ^a
90.1a	4. Administration and Enforcement	Addendum deletes Section 4.4.7 in its entirety. Requirements for <i>transformers</i> were deleted from a prior draft of the standard, and Section 4.4.7 was inadvertently not deleted at the same time the transformer requirements were deleted. Without the transformer requirements in Section 8, or any sort of indication as to what transformers were to be labeled, the requirement for labeling transformers with their "energy-efficiency level" in Section 4.4.7 became meaningless or confusing.
90.1b	6. Heating, Ventilating, and Air Conditioning	Change to 6.2.1, Mechanical Equipment Efficiency, relates to the certification program for product performance verification.
90.1c	6. Heating, Ventilating, and Air Conditioning	This change modifies Table 6.2.4.3B, Duct Seal Levels, with regard to pressure-sensitive tape.
90.1d	6. Heating, Ventilating, and Air Conditioning	This change to Table 6.2.1D establishes minimum efficiency standards for single-package vertical air-conditioners (SPVAC) and heat pumps (SPVHP). It is consistent with DOE's decision to regulate SPVUs under EPACT.
90.1e	11. Energy Cost Budget Method	New Informative Appendix G is for use in rating the performance of building designs. This is an informative appendix because it is not to be included as part of the minimum requirements to comply with code. The appendix parallels Section 11, on which it is based, and is an attempt at providing a generic method that can be referenced by any rating agency.
90.1g	Tables 9.3.1.1 and 9.3.1.2 Lighting Power Densities	This replacement of Tables 9.3.1.1 and 9.3.1.2 of 90.1-2001 including the Lighting Power Density (LPD) values represents a complete review and update of the inputs to the space and building models used to derive these values.
90.1h	12. Normative References and Normative Appendix A	This addendum updates the references in Section 12 and the test procedure references in Sections A9.3.1 and A9.3.2.
90.1i	6. Heating, Ventilating, and Air Conditioning	This addendum revises Tables 6.2.1A and 6.2.1B to reflect newly adopted DOE efficiency standards for single-phase air conditioners and heat pumps less than 65,000 Btu/h.
90.1j	9. Lighting	This addendum applies to the exceptions to 9.3.1, Interior Lighting Power, specifically exception (n), athletic playing areas.
90.1k	6. Heating, Ventilating, and Air Conditioning	Change to 6.2.3.1.1, General, relates to zone and loop controllers.
90.1m	7. Service Water Heating	Addendum added requirement for heat pump pool heaters to Table 7.2.2.
90.1n	6. Heating, Ventilating, and Air Conditioning	Addendum provides detailed explanations of control means to clarify the intent of supple mental heater control requirements in 6.1.3 (g), Simplified Approach Option for HVAC Systems.
90.1o	6. Heating, Ventilating, and Air Conditioning	This addendum deletes exception (d) in Section 6.3.1.
90.1p	11. Energy Cost Budget Method	This addendum adds a new Section 11.2.1.4 containing a reference to ASHRAE Standard 140.
90.1q	9. Lighting	This addendum revises the exterior lighting requirements in Sections 9.2.1.3 and 9.3.2 as well as Table 9.3.2.
90.1r	6. Heating, Ventilating, and Air Conditioning	This addendum adds requirements for return duct insulation to Table 6.2.4.2B.

TABLE F-1 (continued) Addenda to ANSI/ASHRAE/IESNA Standard 90.1-2001, Changes Identified

Addenda to 90.1-2001	Sections Affected	Description of Changes ^a
90.1s	6. Heating, Ventilating, and Air Conditioning	This addendum revises exceptions (g) and (i) in Section 6.3.6.1.
90.1t	9. Lighting	Change to the exceptions to the automatic control device requirement for building lighting in exceptions to $9.2.1.1$.
90.1u	6. Heating, Ventilating, and Air Conditioning	Change to Tables 6.3.1.1.3.A and 6.3.1.1.3B to add dew point or mixing ration with temperature shutoff control types and required high-limit values for these type of controls.
90.1x	6. Heating, Ventilating, and Air Conditioning	Change to Sections $6.1.3i$ and $6.2.3.2$, and the addition of a new Section $6.2.3.3.5$, Ventilation Fan Controls.
90.1y	6. Heating, Ventilating, and Air Conditioning	Change to Section 6.3.3.2.1, Part-Load Fan Power Limitation, to reduce the requirement for VAV fans with motors from 30 hp to 15 hp.
90.1z	6. Heating, Ventilating, and Air Conditioning	Change to the Exception to 6.2.1.
90.1aa	6. Heating, Ventilating, and Air Conditioning and 12. Normative References	Change to update all of the normative references in Section 12 including the test procedure references in Tables 6.2.1A and 6.2.1B to reflect the newly published ARI Standard 210/240-2003.
90.1ab	6. Heating, Ventilating, and Air Conditioning	Change to exceptions to $6.3.6.1$ (d), Exhaust Air Energy Recovery, relating to commercial kitchen hoods.
90.1ac	11. Energy Cost Budget Method	Change to Sections 11.3.1, exceptions to 11.3.6, 11.3.8, 11.3.9, Note 7 of Table 11.4.3A, and Section 11.4.3.
90.1ae	9. Lighting	Change to Section 9.2.1.1, Space Control.
90.1ag	Table 9.3.1.2	This revision of the retail "sales area" LPD value is a correction of the previously approved Addendum g to the 90.1-2001 standard. When the initial table of space-by-space method LPDs was prepared for Addendum g public review, the "Retail Sales area" was inadvertently left at the previous 90.1-2001 value of 2.1 W/ft² (23 W/m²). The correct value produced by the applicable space type models is 1.7 W/ft² (18 W/m²), which should have been included in Addendum g to 90.1-2001. This addendum seeks to correct this oversight.
90.1ah	Tables D-1 and D-3	This addendum is intended to add new weather data for nine new locations, including the District of Columbia (to remedy an earlier omission) plus six locations in the U.S. Territories and a new location in the Philippines. These additions do not impact the stringency of the standard but simply increase its usability.
90.1ai	9. Lighting	Change to Section 9.2.3, Exit Signs, to require a maximum of 5 watt per face of exit signs.
90.1ak	Table 6.2.1G, Performance Requirements for Heat Rejection Equipment, and Section 6.2.1	Change to Table 6.2.1G to add requirements for cooling towers to be tested to CTI test procedures and to update the corresponding references in Section 6.2.1.
90.1al	Informative Appendix E, Informative References	$Change \ to \ Appendix \ E \ to \ update \ references \ related \ to \ building \ energy \ simulation \ software \ and \ annual \ weather \ data.$
90.1am	5. Building Envelope and 6. HVAC	Changes to Sections 5 and 6 plus Appendices B and D to reduce the climatic data tables from 26 to 8 climate zones. This is consistent with the DOE and IECC climate tables.

a These descriptions may not be complete and are provided for information only.

TABLE F-2 Addenda to ANSI/ASHRAE/IESNA Standard 90.1-2001, Approval Dates

Addenda to 90.1-2001	ASHRAE Standards Committee Approval Date	ASHRAE Board of Directors Approval Date	ANSI Approval Date	IESNA Board of Directors Approval Date
90.1a	January 25, 2003	January 30, 2003	April 3, 2003	December 7, 2002
90.1b	June 22, 2002	June 27, 2002	July 30, 2002	June 2, 2002
90.1c	June 22, 2002	June 27, 2002	July 30, 2002	June 2, 2002
90.1d	June 22, 2002	June 27, 2002	July 30, 2002	June 2, 2002
90.1e	January 24, 2004	January 29, 2004	March 31, 2004	December 6, 2003
90.1g	June 28, 2003	July 3, 2003	August 6, 2003	March 3, 2003
90.1h	October 5, 2003	January 29, 2004	February 25, 2004	December 6, 2004
90.1i	June 28, 2003	July 3, 2003	August 6, 2003	August 3, 2003
90.1j	June 28, 2003	July 3, 2003	August 6, 2003	August 3, 2003
90.1k	September 17, 2002	October 14, 2002	December 17, 2002	December 7, 2002
90.1m	January 25, 2003	January 30, 2003	April 3, 2003	December 7, 2002
90.1n	June 28, 2003	July 3, 2003	September 25, 2003	August 3, 2003
90.10	October 5, 2003	January 29, 2004	February 25, 2004	December 6, 2004
90.1p	October 5, 2003	January 29, 2004	February 25, 2004	December 6, 2004
90.1q	June 26, 2004	July 1, 2004	July 1, 2004	July 25, 2004
90.1r	October 5, 2003	January 29, 2004	February 25, 2004	December 6, 2004
90.1s	October 5, 2003	January 29, 2004	February 25, 2004	December 6, 2004
90.1t	April 28, 2004	July 1, 2004	July 1, 2004	March 30, 2004
90.1u	June 26, 2004	July 1, 2004	July 1, 2004	July 25, 2004
90.1x	May 10, 2004	July 1, 2004	August 5, 2004	March 30, 2004
90.1y	April 28, 2004	July 1, 2004	July 1, 2004	March 30, 2004
90.1z	April 28, 2004	July 1, 2004	July 1, 2004	March 30, 2004
90.1aa	April 28, 2004	July 1, 2004	July 1, 2004	March 30, 2004
90.1ab	April 28, 2004	July 1, 2004	July 1, 2004	March 30, 2004
90.1ac	June 26, 2004	July 1, 2004	July 1, 2004	July 25, 2004
90.1ae	June 26, 2004	July 1, 2004	July 1, 2004	July 25, 2004
90.1ag	April 28, 2004	July 1, 2004	July 1, 2004	March 30, 2004
90.1ah	April 28, 2004	July 1, 2004	July 1, 2004	March 30, 2004
90.1ai	June 26, 2004	July 1, 2004	July 1, 2004	July 25, 2004
90.1al	June 26, 2004	July 1, 2004	July 1, 2004	July 25, 2004
90.1am	June 26, 2004	July 1, 2004	July 1, 2004	July 25, 2004

(This appendix is not part of this standard. It is merely informative and does not contain requirements necessary for conformance to the standard. It has not been processed according to the ANSI requirements for a standard and may contain material that has not been subject to public review or a consensus process. Unresolved objectors on informative material are not offered the right to appeal at ASHRAE or ANSI.)

INFORMATIVE APPENDIX G PERFORMANCE RATING METHOD

G1 GENERAL

G1.1 Performance Rating Method Scope. This building performance rating method is a modification of the Energy Cost Budget (ECB) Method in Section 11 and is intended for use in rating the energy *efficiency* of building designs that exceed the requirements of this standard. This appendix does NOT offer an alternative compliance path for minimum standard compliance; that is the intent of Section 11, Energy Cost Budget Method. Rather, it is provided for those wishing to use the methodology developed for this standard to quantify performance that substantially exceeds the requirements of Standard 90.1. It may be useful for evaluating the performance of all *proposed designs*, including *alterations* and *additions* to *existing buildings*, except designs with no mechanical systems.

G1.2 Performance Rating. This performance rating method requires conformance with the following provisions:

All requirements of 5.4, 6.4, 7.4, 8.4, 9.4, and 10.4 are met. These sections contain the mandatory provisions of the standard, and are prerequisites for this rating method. The improved performance of the proposed building design is calculated in accordance with provisions of this appendix using the following formula: Percentage improvement = $100 \times (Baseline\ building\ performance\ -\ Proposed\ building\ performance)$

Notes:

- Both the proposed building performance and the baseline building performance shall include all end-use load components, such as receptacle and process loads.
- 2. Neither the proposed building performance nor the base-line building performance are predictions of actual energy consumption or costs for the proposed design after construction. Actual experience will differ from these calculations due to variations such as occupancy, building operation and maintenance, weather, energy use not covered by this procedure, changes in energy rates between design of the building and occupancy, and the precision of the calculation tool.
- **G1.3 Trade-Off Limits.** When the proposed modifications apply to less than the whole building, only parameters related to the systems to be modified shall be allowed to vary. Parameters relating to unmodified existing conditions or to future building components shall be identical for determining both the *baseline building performance* and the *proposed building performance*. Future building components shall meet the

prescriptive requirements of Sections 5.5, 6.5, 7.5, 9.5, and 9.6.

- **G1.4 Documentation Requirements.** Simulated performance shall be documented, and documentation shall be submitted to the *rating authority*. The information submitted shall include the following:
- (a) Calculated values for the *baseline building performance*, the *proposed building performance*, and the percentage improvement.
- (b) A list of the energy-related features that are included in the design and on which the performance rating is based. This list shall document all energy features that differ between the models used in the baseline building performance and proposed building performance calculations.
- (c) Input and output report(s) from the *simulation program* or compliance software including a breakdown of energy usage by at least the following components: lights, internal equipment loads, service water heating equipment, space heating equipment, space cooling and heat rejection equipment, fans, and other HVAC equipment (such as pumps). The output reports shall also show the amount of time any loads are not met by the HVAC system for both the *proposed design* and *baseline building design*.
- (d) An explanation of any error messages noted in the *simulation program* output.

G2 SIMULATION GENERAL REQUIREMENTS

- **G2.1 Performance Calculations.** The *proposed building performance* and *baseline building performance* shall be calculated using the following:
- (a) the same simulation program,
- (b) the same weather data, and
- (c) the same energy rates.
- **G2.2 Simulation Program**. The *simulation program* shall be a computer-based program for the analysis of energy consumption in buildings (a program such as, but not limited to, DOE-2, BLAST, or EnergyPlus). The *simulation program* shall include calculation methodologies for the building components being modeled. For components that cannot be modeled by the simulation program, the exceptional calculation methods requirements in Section G2.5 may be used.
- **G2.2.1** The *simulation program* shall be approved by the *rating authority* and shall, at a minimum, have the ability to explicitly model all of the following:
- (a) 8,760 hours per year;
- (b) hourly variations in occupancy, lighting power, miscellaneous equipment power, thermostat setpoints, and HVAC system operation, defined separately for each day of the week and holidays;
- (c) thermal mass effects;
- (d) ten or more thermal zones;
- (e) part-load performance curves for mechanical equipment;
- (f) capacity and *efficiency* correction curves for mechanical heating and cooling equipment;
- (g) air-side economizers with integrated control;
- (h) baseline building design characteristics specified in G3.

- **G2.2.2** The *simulation program* shall have the ability to either (1) directly determine the *proposed building performance* and *baseline building performance* or (2) produce hourly reports of energy use by an energy source suitable for determining the *proposed building performance* and *baseline building performance* using a separate calculation engine.
- **G2.2.3** The *simulation program* shall be capable of performing design load calculations to determine required HVAC equipment capacities and air and water flow rates in accordance with generally accepted engineering standards and handbooks (for example, *ASHRAE Handbook—Fundamentals*) for both the *proposed design* and *baseline building design*.
- **G2.3 Climate Data**. The *simulation program* shall perform the simulation using hourly values of climate data, such as temperature and humidity from representative climate data, for the site in which the *proposed design* is to be located. For cities or urban regions with several climate data entries, and for locations where weather data are not available, the designer shall select available weather data that best represent the climate at the construction site. The selected weather data shall be approved by the *rating authority*.
- **G2.4** Energy Rates. Annual energy costs shall be determined using either actual rates for purchased energy or state average energy prices published by DOE's Energy Information Administration (EIA) for commercial building customers, but rates from different sources may not be mixed in the same project.

Note: The above provision allows users to gain credit for features that yield load management benefits. Where such features are not present, users can simply use state average unit prices from EIA, which are updated annually and readily available on EIA's web site (http://www.eia.doe.gov/).

- Exception to G2.4: On-site renewable energy sources or site-recovered energy shall not be considered to be purchased energy and shall not be included in the proposed building performance. Where on-site renewable or site-recovered sources are used, the baseline building performance shall be based on the energy source used as the backup energy source or on the use of electricity if no backup energy source has been specified.
- **G2.5** Exceptional Calculation Methods. Where no simulation program is available that adequately models a design, material, or device, the *rating authority* may approve an exceptional calculation method to demonstrate above-standard performance using this method. Applications for approval of an exceptional method shall include documentation of the calculations performed and theoretical and/or empirical information supporting the accuracy of the method.

G3 Calculation of the Proposed and Baseline Building Performance

G3.1 Building Performance Calculations. The simulation model for calculating the proposed and *baseline building performance* shall be developed in accordance with the requirements in Table G3.1.

G3.1.1 Baseline HVAC System Type and Description. HVAC systems in the *baseline building design* shall be based on usage, number of floors, conditioned floor area, and heating source as specified in Table G3.1.1A and shall conform with the system descriptions in Table G3.1.1B.

Exceptions to G3.1.1:

- (a) Use additional system type(s) for non-predominant conditions (i.e., residential/nonresidential or heating source) if those conditions apply to more than 20,000 ft² of conditioned floor area.
- (b) If the baseline HVAC system type is 5, 6, 7, or 8, use separate single-zone systems conforming with the requirements of System 3 or System 4 (depending on building heating source) for any spaces that have occupancy or process loads or schedules that differ significantly from the rest of the building. Peak thermal loads that differ by 10 Btu/h-ft² or more from the average of other spaces served by the system or schedules that differ by more than 40 equivalent full-load hours per week from other spaces served by the system are considered to differ significantly. Examples where this exception may be applicable include, but are not limited to, computer server rooms, natatoriums, and continually occupied security areas.
- (c) If the baseline HVAC system type is 5, 6, 7, or 8, use separate single-zone systems conforming with the requirements of System 3 or System 4 (depending on building heat source) for any zones having special pressurization relationships, cross-contamination requirements, or coderequired minimum circulation rates.
- **G3.1.1.1 Purchased Heat.** For systems using purchased hot water or steam, hot water or steam costs shall be based on actual utility rates, and on-site boilers shall not be modeled in the *baseline building design*.
- **G3.1.2 General** *Baseline* **HVAC System Requirements.** HVAC systems in the *baseline building design* shall conform with the general provisions in this section.
- **G3.1.2.1 Equipment Efficiencies.** All HVAC equipment in the *baseline building design* shall be modeled at the minimum *efficiency* levels, both part load and full load, in accordance with Section 6.4. Where *efficiency* ratings, such as EER and COP, include fan energy, the descriptor shall be broken down into its components so that supply fan energy can be modeled separately.

TABLE G3.1 Modeling Requirements for Calculating Proposed and Baseline Building Performance

_	No. Proposed Building Performance	Baseline Building Performance
1.	Design Model	
	 (a) The simulation model of the <i>proposed design</i> shall be consistent with the design documents, including proper accounting of fenestration and opaque envelope types and areas; interior lighting power and controls; HVAC system types, sizes, and controls; and service water heating systems and controls. All end-use load components within and associated with the building shall be modeled, including, but not limited to, exhaust fans, parking garage ventilation fans, snow-melt and freeze-protection equipment, facade lighting, swimming pool heaters and pumps, elevators and escalators, refrigeration, and cooking. (b) All conditioned spaces in the <i>proposed design</i> shall be simulated 	The baseline building design shall be modeled with the same number of floors and identical conditioned floor area as the proposed design.
	as being both heated and cooled even if no heating or cooling system is to be installed, and temperature and humidity control setpoints and schedules shall be the same for <i>proposed</i> and <i>baseline building designs</i> .	
	(c) When the <i>performance rating method</i> is applied to buildings in which energy-related features have not yet been designed (e.g., a lighting system), those yet-to-be-designed features shall be described in the <i>proposed design</i> exactly as they are defined in the <i>baseline building design</i> . Where the space classification for a space is not known, the space shall be categorized as an office space.	
2.	Additions and Alterations	
	It is acceptable to predict performance using building models that exclude parts of the <i>existing building</i> provided that all of the following conditions are met: (a) Work to be performed in excluded parts of the building shall meet the requirements of Sections 5 through 10. (b) Excluded parts of the building are served by HVAC systems that are entirely separate from those serving parts of the building that are included in the building model. (c) Design space temperature and HVAC system operating setpoints and schedules on either side of the boundary between included and excluded parts of the building are essentially the same. (d) If a declining block or similar utility rate is being used in the analysis and the excluded and included parts of the building are on the same utility meter, the rate shall reflect the utility block or rate for the building plus the <i>addition</i> .	Same as Proposed Design
3.	Space Use Classification	
	Usage shall be specified using the building type or space type lighting classifications in accordance with 9.5.1 or 9.6.1. The user shall specify the space use classifications using either the building type or space type categories but shall not combine the two types of categories. More than one building type category may be used in a building if it is a mixed-use facility. If space type categories are used, the user may simplify the placement of the various space types within the building model, provided that building-total areas for each space type are accurate.	Same as Proposed Design

4. Schedules

No.

Schedules capable of modeling hourly variations in occupancy, lighting power, miscellaneous equipment power, thermostat setpoints, and HVAC system operation shall be used. The schedules shall be typical of the proposed building type as determined by the designer and approved by the rating authority.

HVAC Fan Schedules. Schedules for HVAC fans shall run continuously whenever spaces are occupied and shall be cycled on and off to meet heating and cooling loads during unoccupied hours. Exception: Where no heating and/or cooling system is to be installed and a heating or cooling system is being simulated only to meet the requirements described in this table, heating and/or cooling system fans shall not be simulated as running continuously during occupied hours but shall be cycled on and off to meet heating

Same as Proposed Design.

Exception: Schedules may be allowed to differ between proposed design and baseline building design when necessary to model nonstandard efficiency measures, provided that the revised schedules have the approval of the rating authority. Measures that may warrant use of different schedules include, but are not limited to, lighting controls, natural ventilation, demand control ventilation, and measures that reduce service water heating loads.

5. Building Envelope

All components of the building envelope in the proposed design shall be modeled as shown on architectural drawings or as built for existing building envelopes.

and cooling loads during all hours.

Exceptions: The following building elements are permitted to differ from architectural drawings.

(a) All uninsulated assemblies (e.g., projecting balconies, perimeter edges of intermediate floor stabs, concrete floor beams over parking garages) shall be separately modeled. Any other envelope assembly that covers less than 5% of the total area of that assembly type (e.g., exterior walls) need not be separately described provided that it is similar to an assembly being modeled. If not separately described, the area of an envelope assembly shall be added to the area of an assembly of that same type with the same orientation and thermal properties.

(b) Exterior surfaces whose azimuth orientation and tilt differ by less than 45 degrees and are otherwise the same may be described as either a single surface or by using multipliers.

(c) For exterior roofs, the roof surface may be modeled with a reflectance of 0.45 if the reflectance of the proposed design roof is greater than 0.70 and its emittance is greater than 0.75. Reflectance values shall be based on testing in accordance with ASTM E903, ASTM E1175, or ASTM E1918, and the emittance values shall be based on testing in accordance with ASTM C835, ASTM C1371, or ASTM E408. All other roof surfaces shall be modeled with a reflectance of 0.30.

(d) Manual fenestration shading devices such as blinds or shades shall not be modeled. Automatically controlled fenestration shades or blinds may be modeled. Permanent shading devices such as fins, overhangs, and light shelves may be modeled.

Equivalent dimensions shall be assumed for each exterior envelope component type as in the proposed design; i.e., the total gross area of exterior walls shall be the same in the proposed and baseline building designs. The same shall be true for the areas of roofs, floors, and doors, and the exposed perimeters of concrete slabs on grade shall also be the same in the proposed and baseline building designs. The following additional requirements shall apply to the modeling of the baseline building design:

(a) Orientation. The baseline building performance shall be generated by simulating the building with its actual orientation and again after rotating the entire building 90, 180, 270 degrees, then averaging the results. The building shall be modeled so that it does not shade itself.

(b) Opaque assemblies. Opaque assemblies used for new buildings or additions shall conform with the following common, lightweight assembly types and shall match the appropriate assembly maximum U-factors in Tables 5.5-1 through 5.5-8:

- Roofs Insulation entirely above deck
- · Above-grade walls Steel-framed
- Floors Steel-joist
- Opaque door types shall match the proposed design and conform to the Ufactor requirements from the same tables.
- Slab-on-grade floors shall match the F-factor for unheated slabs from the

Opaque assemblies used for alterations shall conform with 5.1.3.

(c) Vertical Fenestration. Vertical fenestration areas for new buildings and additions shall equal that in the proposed design or 40% of gross abovegrade wall area, whichever is smaller, and shall be distributed uniformly in horizontal bands across the four orientations. Fenestration U-factors shall match the appropriate requirements in Tables 5.5-1 through 5.5-8 for the applicable vertical glazing percentage for Ufixed. Fenestration solar heat gain coefficient (SHGC) shall match the appropriate requirements in Tables 5.5-1 through 5.5-8 using the value for $SHGC_{all}$ for the applicable vertical glazing percentage. All vertical glazing shall be modeled as fixed and shall be assumed to be flush with the exterior wall, and no shading projections shall be modeled. Manual window shading devices such as blinds or shades shall not be modeled. The fenestration areas for envelope alterations shall reflect the limitations on area, U-factor, and SHGC as described in 5.1.3. (d) Skylights and Glazed Smoke Vents. Skylight area shall be equal to that in the proposed building design or 5% of the gross roof area that is part of the building envelope, whichever is smaller. If the skylight area of the proposed building design is greater than 5% of the gross roof area, baseline

- skylight area shall be decreased by an identical percentage in all roof components in which skylights are located to reach the 5% skylight-to-roof ratio. Skylight orientation and tilt shall be the same as in the proposed building design. Skylight U-factor and SHGC properties shall match the appropriate requirements in Tables 5.5-1 through 5.5-8.
- (e) Roof albedo. All roof surfaces shall be modeled with a reflectivity of 0.30.
- (f) Existing Buildings. For existing building envelopes, the baseline building design shall reflect existing conditions prior to any revisions that are part of the scope of work being evaluated.

No. Proposed Building Performance

Baseline Building Performance

6. Lighting

Lighting power in the *proposed design* shall be determined as follows:

- (a) Where a complete lighting system exists, the actual lighting power shall be used in the model.
- (b) Where a lighting system has been designed, lighting power shall be determined in accordance with 9.1.3 and 9.1.4.
- (c) Where lighting neither exists nor is specified, lighting power shall be determined in accordance with the Building Area Method for the appropriate building type.
- (d) Lighting system power shall include all lighting system components shown or provided for on the plans (including lamps and ballasts and task and furniture-mounted fixtures).

Exception: For multifamily living units, hotel/motel guest rooms, and other spaces in which lighting systems are connected via receptacles and are not shown or provided for on building plans, assume identical lighting power for the *proposed* and *baseline building designs* in the simulations, but exclude these loads when calculating the *baseline building performance* and *proposed building performance*.

- (e) Lighting power for parking garages and building facades shall be modeled.
- (f) Credit may be taken for the use of automatic controls for daylight utilization but only if their operation is either modeled directly in the building simulation or modeled in the building simulation through schedule adjustments determined by a separate daylighting analysis approved by the rating authority.
- (g) For automatic lighting controls in addition to those required for minimum code compliance under 9.2, credit may be taken for automatically controlled systems by reducing the connected lighting power by the applicable percentages listed in Table G3.2. Alternatively, credit may be taken for these devices by modifying the lighting schedules used for the *proposed design*, provided that credible technical documentation for the modifications are provided to the *rating authority*.

Lighting power in the *baseline building design* shall be determined using the same categorization procedure (building area or space function) and categories as the proposed design with lighting power set equal to the maximum allowed for the corresponding method and category in 9.2. No automatic lighting controls (e.g., programmable controls or automatic controls for daylight utilization) shall be modeled in the *baseline building design*, as the lighting schedules used are understood to reflect the mandatory control requirements in this standard.

7. Thermal Blocks - HVAC Zones Designed

Where HVAC zones are defined on HVAC design drawings, each HVAC zone shall be modeled as a separate *thermal block*.

Exception: Different HVAC zones may be combined to create a single *thermal block* or identical *thermal blocks* to which multipliers are applied, provided that all of the following conditions are met:

- (a) The space use classification is the same throughout the *thermal block*.
- (b) All HVAC zones in the *thermal block* that are adjacent to glazed exterior walls face the same orientation or their orientations vary by less than 45 degrees.
- (c) All of the zones are served by the same HVAC system or by the same kind of HVAC system.

Same as Proposed Design.

8. Thermal Blocks - HVAC Zones Not Designed

No.

Where the HVAC zones and systems have not yet been designed, thermal blocks shall be defined based on similar internal load densities, occupancy, lighting, thermal and space temperature schedules, and in combination with the following guidelines:

Proposed Building Performance

- (a) Separate thermal blocks shall be assumed for interior and perimeter spaces. Interior spaces shall be those located greater than 15 ft from an exterior wall. Perimeter spaces shall be those located within 15 ft of an exterior wall.
- (b) Separate thermal blocks shall be assumed for spaces adjacent to glazed exterior walls; a separate zone shall be provided for each orientation, except that orientations that differ by less than 45 degrees may be considered to be the same orientation. Each zone shall include all floor area that is 15 ft or less from a glazed perimeter wall, except that floor area within 15 ft of glazed perimeter walls having more than one orientation shall be divided proportionately between zones.
- (c) Separate thermal blocks shall be assumed for spaces having floors that are in contact with the ground or exposed to ambient conditions from zones that do not share these features.
- (d) Separate thermal blocks shall be assumed for spaces having exterior ceiling or roof assemblies from zones that do not share these features.

Same as Proposed Design.

9. Thermal Blocks - Multifamily Residential Buildings

Residential spaces shall be modeled using at least one thermal block per living unit, except that those units facing the same orientations may be combined into one thermal block. Corner units and units with roof or floor loads shall only be combined with units sharing these features.

Same as Proposed Design.

10. HVAC Systems

The HVAC system type and all related performance parameters in the proposed design, such as equipment capacities and efficiencies, shall be determined as follows:

- (a) Where a complete HVAC system exists, the model shall reflect the actual system type using actual component capacities and effi-
- (b) Where an HVAC system has been designed, the HVAC model shall be consistent with design documents. Mechanical equipment efficiencies shall be adjusted from actual design conditions to the standard rating conditions specified in 6.4.1 if required by the simulation model.
- (c) Where no heating system exists or no heating system has been specified, the heating system classification shall be assumed to be electric, and the system characteristics shall be identical to the system modeled in the baseline building design.
- (d) Where no cooling system exists or no cooling system has been specified, the cooling system shall be identical to the system modeled in the baseline building design.

The HVAC system(s) in the baseline building design shall be of the type and description specified in G3.1.1, shall meet the general HVAC system requirements specified in G3.1.2, and shall meet any system-specific requirements in G3.1.3 that are applicable to the baseline HVAC system type(s).

Baseline Building Performance

No. Proposed Building Performance

Baseline Building Performance

11. Service Hot Water Systems

The service hot water system type and all related performance parameters, such as equipment capacities and efficiencies, in the *proposed design* shall be determined as follows:

- (a) Where a complete service hot water system exists, the *proposed design* shall reflect the actual system type using actual component capacities and efficiencies.
- (b) Where a service hot water system has been specified, the service hot water model shall be consistent with design documents.
- (c) Where no service hot water system exists or has been specified but the building will have service hot water loads, a service hot water system shall be modeled that matches the system in the *baseline building design* and serves the same hot water loads.
- (d) For buildings that will have no service hot water loads, no service hot water system shall be modeled.

The service hot water system in the *baseline building design* shall use the same energy source as the corresponding system in the *proposed design* and shall conform with the following conditions:

- (a) Where a complete service hot water system exists, the *baseline building design* shall reflect the actual system type using actual component capacities and efficiencies.
- (b) Where a new service hot water system has been specified, the equipment shall match the minimum *efficiency* requirements in Section 7.4.2. Where the energy source is electricity, the heating method shall be electrical resistance. (c) Where no service hot water system exists or has been specified but the building will have service hot water loads, a service water system(s) using electrical-resistance heat and matching minimum *efficiency* requirements of Section 7.4.2 shall be assumed and modeled identically in the *proposed* and *baseline building designs*.
- (d) For buildings that will have no service hot water loads, no service hot water heating shall be modeled.
- (e) Where a combined system has been specified to meet both space heating and service water heating loads, the baseline building system shall use separate systems meeting the minimum efficiency requirements applicable to each system individually.
- (f) For large, 24-hour-per-day facilities that meet the prescriptive criteria for use of condenser heat recovery systems described in Section 6.5.6.2, a system meeting the requirements of that section shall be included in the *base-line building design* regardless of the exceptions to 6.5.6.2.

Exception: If a condenser heat recovery system meeting the requirements described in Section 6.5.6.2 cannot be modeled, the requirement for including such a system in the actual building shall be met as a prescriptive requirement in accordance with 6.5.6.2, and no heat-recovery system shall be included in the *proposed* or *baseline building designs*.

12. Receptacle and other Loads

Receptacle and process loads, such as those for office and other equipment, shall be estimated based on the building type or space type category and shall be assumed to be identical in the *proposed* and *baseline building designs*, except as specifically authorized by the *rating authority*. These loads shall be included in simulations of the building and shall be included when calculating the *baseline building performance* and *proposed building performance*.

Other systems, such as motors covered by Section 10, and miscellaneous loads shall be modeled as identical to those in the *proposed design*. Where there are specific *efficiency* requirements in Section 10, these systems or components shall be modeled as having the lowest *efficiency* allowed by those requirements.

13. Modeling Limitations to the Simulation Program

If the simulation program cannot model a component or system included in the *proposed design* explicitly, substitute a thermodynamically similar component model that can approximate the expected performance of the component that cannot be modeled explicitly.

Same as Proposed Design.

TABLE G3.1.1A Baseline HVAC System Types

	Fossil Fuel, Fossil/Electric Hybri	id, &
Building Type	Purchased Heat	Electric and Other
Residential	System 1 – PTAC	System 2 - PTHP
Nonresidential & 3 Floors or Less & <75,000 ft ²	System 3 – PSZ-AC	System 4 – PSZ-HP
Nonresidential & 4 or 5 Floors & <75,000 ft ² or 5 Floors or Less & 75,000 ft ² to 150,000 ft ²	System 5 - Packaged VAV w/ Reheat	System 6 - Packaged VAV w/PFP Boxes
Nonresidential & More than 5 Floors or >150,000 ft ²	System 7 - VAV w/Reheat	System 8 - VAV w/PFP Boxes

TABLE G3.1.1B Baseline System Descriptions

System No.	System Type	Fan Control	Cooling Type	Heating Type
1. PTAC	Packaged terminal air conditioner	Constant Volume	Direct Expansion	Hot Water Fossil Fuel Boiler
2. PTHP	Packaged terminal heat pump	Constant Volume	Direct Expansion	Electric Heat Pump
3. PSZ-AC	Packaged rooftop air conditioner	Constant Volume	Direct Expansion	Fossil Fuel Furnace
4. PSZ-HP	Packaged rooftop heat pump	Constant Volume	Direct Expansion	Electric Heat Pump
5. Packaged VAV w/ Reheat	Packaged rooftop variable air volume with reheat	VAV	Direct Expansion	Hot Water Fossil Fuel Boiler
6. Packaged VAV w/PFP Boxes	Packaged rooftop variable air volume with reheat	VAV	Direct Expansion	Electric Resistance
7. VAV w/Reheat	Packaged rooftop variable air volume with reheat	VAV	Chilled Water	Hot Water Fossil Fuel Boiler
8. VAV w/PFP Boxes	Variable air volume with reheat	VAV	Chilled Water	Electric Resistance

G3.1.2.2 Equipment Capacities. The equipment capacities for the baseline building design shall be based on sizing runs for each orientation (per Table G3.1 No. 5a) and shall be oversized by 15% for cooling and 25% for heating; i.e., the ratio between the capacities used in the annual simulations and the capacities determined by the sizing runs shall be 1.15 for cooling and 1.25 for heating. Unmet load hours for the proposed design or baseline building designs shall not exceed 300 (of the 8,760 hours simulated), and unmet load hours for the proposed design shall not exceed the number of unmet load hours for the baseline building design by more than 50. If unmet load hours in the proposed design exceed the unmet load hours in the baseline building by more than 50, simulated capacities in the baseline building shall be decreased incrementally and the building resimulated until the unmet load hours are within 50 of the unmet load hours of the proposed design. If unmet load hours for the proposed design or baseline building design exceed 300, simulated capacities shall be increased incrementally, and the building with unmet loads resimulated until unmet load hours are reduced to 300 or less. Alternatively, unmet load hours exceeding these limits may be accepted at the discretion of the rating authority provided that sufficient justification is given indicating that the accuracy of the simulation is not significantly compromised by these unmet loads.

G3.1.2.2.1 Sizing Runs. Weather conditions used in sizing runs to determine baseline equipment capacities may be based either on hourly historical weather files containing typical peak conditions or on design days developed using 99.6% heating design temperatures and 1% dry-bulb and 1% wetbulb cooling design temperatures.

G3.1.2.3 Preheat Coils. If the HVAC system in the *pro*posed design has a preheat coil and a preheat coil can be modeled in the baseline system, the baseline system shall be modeled with a preheat coil controlled in the same manner as the proposed design.

G3.1.2.4 Fan System Operation. Supply and return fans shall operate continuously whenever spaces are occupied and shall be cycled to meet heating and cooling loads during unoccupied hours. If the supply fan is modeled as cycling and fan energy is included in the energy-efficiency rating of the equipment, fan energy shall not be modeled explicitly.

G3.1.2.5 Ventilation. Minimum *outdoor air* ventilation rates shall be the same for the *proposed* and *baseline building* designs.

Exception to G3.1.2.5: When modeling demand-control ventilation in the proposed design when its use is not required by 6.4.3.8.

G3.1.2.6 Economizers. Outdoor air economizers shall not be included in baseline HVAC Systems 1 and 2. Outdoor air economizers shall be included in baseline HVAC Systems 3 and 4 as specified in Table G3.1.2.6A based on building conditioned floor area, whether the zone served is an interior or perimeter zone, and climate. Outdoor air economizers shall be included in baseline HVAC Systems 5 through 8 based on climate as specified in Table G3.1.2.6B. Any zone having more than half of its floor area more than 15 ft from a glazed exterior wall is considered an interior zone for purposes of applying Tables G3.1.2.6A and B.

Residential building types include dormitory, hotel, motel, and multifamily. Residential space types include guest rooms, living quarters, private living space, and sleeping quarters.

Other building and space types are considered nonresidential.

Where no heating system is to be provided or no heating energy source is specified, use the "Electric and Other" heating source classification.

Where attributes make a building eligible for more than one baseline system type, use the predominant condition to determine the system type for the entire building.

TABLE G3.1.2.6A Minimum Building Conditioned Floor Areas at Which Economizers Are Included for Baseline Systems 3 and 4

Climate Zone	Area Interior	Area Perimeter
1a,1b,2a,3a,4a	N.R.	N.R.
2b,5a,6a,7,8	15,000 ft ²	N.R.
3b,3c,4b,4c,5b,5c,6b	10,000 ft ²	25,000 ft ²

N.R. means that there is no conditioned building floor area for which economizers are included for the type of zone and climate.

TABLE G3.1.2.6B Climate Conditions under which Economizers are Included for Baseline Systems 5 through 8

Climate Zone	Conditions
1a,1b,2a,3a,4a	N.R.
Others	Economizer Included

N.R. means that there is no conditioned building floor area for which economizers are included for the type of zone and climate.

TABLE G3.1.2.6C Economizer High-Limit Shutoff

Climate Zone	High-Limit Shutoff
1b,2b,3b,3c,4b,4c,5b,5c,6b,7,8	75°F
5a,6a,7a	70°F
Others	65°F

- **Exceptions to G3.1.2.6:** Economizers shall not be included for systems meeting one or more of the exceptions listed below.
- (a) Systems that include gas-phase air cleaning to meet the requirements of 6.1.2 of ANSI/ASHRAE Standard 62. This exception shall be used only if the system in the *proposed design* does not match *building design*.
- (b) Where the use of *outdoor air* for cooling will affect supermarket open refrigerated casework systems. This exception shall only be used if the system in the *proposed design* does not use an economizer. If the exception is used, an economizer shall not be included in the *baseline building design*.

G3.1.2.7 Economizer High-Limit Shutoff. The highlimit shutoff shall be a dry-bulb switch with setpoint temperatures in accordance with the values in Table G3.1.2.6C.

G3.1.2.8 Design Air Flow Rates. System design supply air flow rates for the *baseline building design* shall be based on a supply-air-to-room-air temperature difference of 20°F. If return or relief fans are specified in the *proposed design*, the *baseline building design* shall also be modeled with fans serving the same functions and sized for the *baseline* system supply fan air quantity less the minimum *outdoor air*, or 90% of the supply fan air quantity, whichever is larger.

G3.1.2.9 Supply Fan Power. System fan electrical power for supply, return, exhaust, and relief (excluding power to fanpowered VAV boxes) shall be calculated using the following formulas:

$$P_{fan} = 746 / (1 - e^{[-0.2437839 \times ln(bhp) - 1.685541]}) \times bhp$$

where

 P_{fan} = electric power to fan motor (watts) and

bhp = brake horsepower of *baseline* fan motor from Table G3.1.2.9, where cfm represents design supply flow rate.

Exception to 3.1.2.9. If systems in the *proposed design* require air filtering systems with pressure drops in excess of 1 in. w.c. when filters are clean, the allowable fan system power in the *baseline design* system serving the same space may be increased using the following pressure credit:

Pressure Credit (watts) =
$$CFM_{filter} * (Sp_{filter} - 1)/4.984$$

where

CFM_{filter}= supply air volume of the proposed system with air filtration system in excess of 1 in. w.c.

Sp_{filter} = air pressure drop of the filtering system in w.g. when the filters are clean.

G3.1.2.10 Exhaust Air Energy Recovery. Individual fan systems that have both a design supply air capacity of 5000 cfm or greater and have a minimum outdoor air supply of 70% or greater of the design supply air quantity shall have an energy recovery system with at least 50% recovery effectiveness. Fifty percent energy recovery effectiveness shall mean a change in the enthalpy of the *outdoor air* supply equal to 50% of the difference between the *outdoor air* and return air at design conditions. Provision shall be made to bypass or control the heat-recovery system to permit air economizer operation, where applicable.

TABLE G3.1.2.9 Baseline Fan Brake Horsepower

Supply Air Volume	Baseline Fan Motor Brake Horsepower	
	Constant Volume Systems 1 – 4	Variable Volume Systems 5 – 8
<20,000 cfm	17.25 + (cfm - 20000) x 0.0008625	24 + (cfm - 20000) × 0.0012
≥20,000 cfm	17.25 + (cfm - 20000) x 0.000825	24 + (cfm - 20000) × 0.001125

- **Exceptions to G3.1.2.10:** If any of these exceptions apply, exhaust air energy recovery shall not be included in the *baseline building design*.
 - (a) Systems serving spaces that are not cooled and that are heated to less than 60°F.
 - (b) Systems exhausting toxic, flammable, or corrosive fumes or paint or dust. This exception shall only be used if exhaust air energy recovery is not used in the *proposed design*.
 - (c) Commercial kitchen hoods (grease) classified as Type 1 by NFPA 96. This exception shall only be used if exhaust air energy recovery is not used in the proposed design.
 - (d) Heating systems in climate zones 1 through 3.
 - (e) Cooling systems in climate zones 3c, 4c, 5b, 5c, 6b, 7, and 8.
 - (f) Where the largest exhaust source is less than 75% of the design *outdoor air* flow. This exception shall only be used if exhaust air energy recovery is not used in the *proposed design*.
 - (g) Systems requiring dehumidification that employ energy recovery in series with the cooling coil. This exception shall only be used if exhaust air energy recovery and series-style energy recovery coils are not used in the *proposed design*.
- **G3.1.3** System-Specific *Baseline* HVAC System Requirements. *Baseline* HVAC systems shall conform with provisions in this section, where applicable, to the specified *baseline* system types as indicated in section headings.
- **G3.1.3.1 Heat Pumps (Systems 2 and 4).** Electric airsource heat pumps shall be modeled with electric auxiliary heat. The systems shall be controlled with multi-stage space thermostats and an *outdoor air* thermostat wired to energize auxiliary heat only on the last thermostat stage and when outdoor air temperature is less than 40°F.
- G3.1.3.2 Type and Number of Boilers (Systems 1, 5, and 7). The boiler plant shall use the same fuel as the *proposed design* and shall be natural draft, except as noted under G3.1.1.1. The *baseline building design* boiler plant shall be modeled as having a single boiler if the *baseline building design* plant serves a conditioned floor area of 15,000 ft² or less and as having two equally sized boilers for plants serving more than 15,000 ft². Boilers shall be staged as required by the load.
- **G3.1.3.3 Hot Water Supply Temperature (Systems 1, 5, and 7).** Hot water design supply temperature shall be modeled as 180°F and design return temperature as 130°F.
- **G3.1.3.4** Hot Water Supply Temperature Reset (Systems 1, 5, and 7). Hot water supply temperature shall be reset based on outdoor dry-bulb temperature using the following schedule: 180°F at 20°F and below, 150°F at 50°F and above, and ramped linearly between 180°F and 150°F at temperatures between 20°F and 50°F.
- G3.1.3.5 Hot Water Pumps (Systems 1, 5, and 7). The baseline building design hot water pump power shall be 19 W/gpm. The pumping system shall be modeled as primary-only with continuous variable flow. Hot water systems serving 120,000 ft² or more shall be modeled with variable-speed

drives, and systems serving less than 120,000 ft² shall be modeled as riding the pump curve.

- G3.1.3.6 Piping Losses (Systems 1, 5, 7, and 8). Piping losses shall not be modeled in either the *proposed or baseline building designs* for hot water, chilled water, or steam piping.
- **G3.1.3.7 Type and Number of Chillers (Systems 7 and 8).** Electric chillers shall be used in the *baseline building design* regardless of the cooling energy source, e.g., direct-fired absorption, absorption from purchased steam, or purchased chilled water. The *baseline building design's* chiller plant shall be modeled with chillers having the number and type as indicated in Table G3.1.3.7 as a function of building conditioned floor area.
- **G3.1.3.8** Chilled Water Design Supply Temperature (Systems 7 and 8). Chilled water design supply temperature shall be modeled at 44°F and return water temperature at 56°F.
- **G3.1.3.9** Chilled Water Supply Temperature Reset (Systems 7 and 8). Chilled water supply temperature shall be reset based on outdoor dry-bulb temperature using the following schedule: 44°F at 80°F and above, 54°F at 60°F and below, and ramped linearly between 44°F and 54°F at temperatures between 80°F and 60°F.
- G3.1.3.10 Chilled Water Pumps (Systems 7 and 8). The baseline building design pump power shall be 22 W/gpm. Chilled water systems serving 120,000 ft² or more shall be modeled as primary/secondary systems with variable-speed drives on the secondary pumping loop. Chilled water pumps in systems serving less than 120,000 ft² shall be modeled as a primary/secondary systems with secondary pump riding the pump curve.
- G3.1.3.11 Heat Rejection (Systems 7 and 8). The heat rejection device shall be an axial fan cooling tower with two-speed fans. Condenser water design supply temperature shall be 85°F or 10°F approach to design wet-bulb temperature, whichever is lower, with a design temperature rise of 10°F. The tower shall be controlled to maintain a 70°F leaving water temperature where weather permits, floating up to leaving water temperature at design conditions. The *baseline building design* condenser water pump power shall be 19 W/gpm. Each chiller shall be modeled with separate condenser water and chilled water pumps interlocked to operate with the associated chiller.
- **G3.1.3.12 Supply Air Temperature Reset (Systems 5 through 8).** Supply air temperature shall be reset based on zone demand from the design temperature difference to a

TABLE G3.1.3.7 Type and Number of Chillers

Building-Conditioned Floor Area	Number and Type of Chiller(s)
$\leq 120,000 \text{ ft}^2$	1 screw chiller
> 120,000 ft ² , < 240,000 ft ²	2 screw chillers sized equally
≥ 240,000 ft ²	2 centrifugal chillers minimum with chillers added so that no chiller is larger than 800 tons, all sized equally

10°F temperature difference under minimum load conditions. Design air flow rates shall be sized for the reset supply air temperature, i.e., a 10°F temperature difference.

G3.1.3.13 VAV Minimum Flow Setpoints (Systems 5 and 7). Minimum volume setpoints for VAV reheat boxes shall be 0.4 cfm/ft² of floor area served.

G3.1.3.14 Fan Power (Systems 6 and 8). Fans in parallel VAV fan-powered boxes shall be sized for 50% of the peak design flow rate and shall be modeled with 0.35 W/cfm fan power. Minimum volume setpoints for fan-powered boxes

shall be equal to 30% of peak design flow rate or the rate required to meet the minimum outdoor air ventilation requirement, whichever is larger. The supply air temperature setpoint shall be constant at the design condition.

G3.1.3.15 VAV Fan Part-Load Performance (Systems 5 through 8). VAV system supply fans shall have variable-speed drives, and their part-load performance characteristics shall be modeled using either Method 1 or Method 2 specified in Table G3.1.3.15.

TABLE G3.1.3.15 Part-Load Performance for VAV Fan Systems

Fan Part-Load Ratio	Fraction of Full-Load Power
0.00	0.00
0.10	0.03
0.20	0.07
0.30	0.13
0.40	0.21
0.50	0.30
0.60	0.41
0.70	0.54
0.80	0.68
0.90	0.83
1.00	1.00

Method 2 – Part-Load Fan Power Equation

 $\begin{aligned} P_{fan} &= 0.0013 + 0.1470 \times PLR_{fan} + 0.9506 \times (PLR_{fan})^2 - 0.0998 \times (PLR_{fan})^3 \\ where \end{aligned}$

 P_{fan} = fraction of full-load fan power and

PLR_{fan} = fan part-load ratio (current cfm/design cfm).

TABLE G3.2 Power Adjustment Percentages for Automatic Lighting Controls

	Non-24-hr and	All
Automatic Control Devices(s)	≤5,000ft ²	Other
(1) Programmable timing control	10%	0%
(2) Occupancy sensor	15%	10%
(3) Occupancy sensor and programmable timing control	15%	10%

Note: The 5,000 ft² condition pertains to the total conditioned floor area of the building.

NOTICE

INSTRUCTIONS FOR SUBMITTING A PROPOSED CHANGE TO THIS STANDARD UNDER CONTINUOUS MAINTENANCE

This standard is maintained under continuous maintenance procedures by a Standing Standard Project Committee (SSPC) for which the Standards Committee has established a documented program for regular publication of addenda or revisions, including procedures for timely, documented, consensus action on requests for change to any part of the standard. SSPC consideration will be given to proposed changes at the Annual Meeting (normally June) if proposed changes are received by the MOS no later than December 31. Proposals received after December 31 shall be considered by the SSPC no later than at the Annual Meeting of the following year.

Proposed changes must be submitted to the Manager of Standards (MOS) in the latest published format available from the MOS. However, the MOS may accept proposed changes in an earlier published format, if the MOS concludes that the differences are immaterial to the proposed change submittal. If the MOS concludes that a current form must be utilized, the proposer may be given up to 20 additional days to resubmit the proposed changes in the current format.

FORM FOR SUBMITTAL OF PROPOSED CHANGE TO ASHRAE STANDARD UNDER CONTINUOUS MAINTENANCE

NOTE: Use separate form for each comment. Submittals (MS Word 2000 preferred) may be attached to e-mail (preferred), submitted on diskettes or CD, or submitted in paper by mail or fax to ASHRAE, Manager of Standards, 1791 Tullie Circle, NE, Atlanta, GA 30329-2305. E-mail: *change.proposal@ashrae.org*. Fax +1-404/321-5478.

1.	Submitter:				
	Affiliation:				
	Address:	City:	State:	Zip:	Country:
	Telephone:	Fax:	E-Mail:		
inc	luding non-exclusive rights in	ety of Heating, Refrigerating and Air-Concopyright, in my proposals. I understand to, form is used. I hereby attest that I have the	hat I acquire no rights in pu	ublication of the s	tandard in which my pro
Sul	omitter's signature:	Da	te:		
2.	Number and year of star	ndard:			
3.	Clause (section), sub-cl	ause or paragraph number; and pa	age number:		
4.	I propose to: (check one)	[] Change to read as follows [] Add new text as follows	[] Delete and subsequent [] Delete without		'S
5.	Use underscores to show a Proposed change :	naterial to be added (<u>added</u>) and strike througl	h material to be deleted (dele	ted). Use additional	pages if needed.
6.	Reason and substantial	ion:			
[]	Check if additional pages	are attached. Number of additional p	ages:		
		eferenced materials cited in this proper re relevant, current, and clearly labele		-	-

ELECTRONIC PREPARATION/SUBMISSION OF FORM FOR PROPOSING CHANGES

An electronic version of each change, which must comply with the instructions in the Notice and the Form, is the preferred form of submittal to ASHRAE Headquarters at the address shown below. The electronic format facilitates both paper-based and computer-based processing. Submittal in paper form is acceptable. The following instructions apply to change proposals submitted in electronic form.

Use the appropriate file format for your word processor and save the file in either Microsoft Word 7 (preferred) or higher or WordPerfect 5.1 for DOS format. Please save each change proposal file with a different name (example, prop001.doc, prop002.doc, etc., for Word files—prop001.wpm, prop002.wpm, etc., for WordPerfect files). If supplemental background documents to support changes submitted are included, it is preferred that they also be in electronic form as wordprocessed or scanned documents.

Electronic change proposals may be submitted either as files (MS Word 7 preferred) attached to an e-mail (uuencode preferred) or on 3.5" floppy disk. ASHRAE will accept the following as equivalent to the signature required on the change submittal form to convey non-exclusive copyright:

Files attached to e-mail: Electronic signature on change submittal form (as a picture; *.tif,

or *.wpg).

Files on disk: Electronic signature on change submittal form (as a picture; *.tif,

or *.wpg), or a letter with submitter's signature accompanying the disk or sent by facsimile (single letter may cover all of propo-

nent's proposed changes).

Submit e-mail or disks containing change proposal files to:

Manager of Standards ASHRAE 1791 Tullie Circle, NE Atlanta, GA 30329-2305

E-mail: change.proposal@ashrae.org

(Alternatively, mail paper versions to ASHRAE address or Fax: 404-321-5478.)

The form and instructions for electronic submittal may be obtained from the Standards section of ASHRAE's Home Page, http://www.ashrae.org, or by contacting a Standards Secretary, 1791 Tullie Circle, NE, Atlanta, GA 30329-2305.

Phone: 404-636-8400. Fax: 404-321-5478. Email: standards.section@ashrae.org.

POLICY STATEMENT DEFINING ASHRAE'S CONCERN FOR THE ENVIRONMENTAL IMPACT OF ITS ACTIVITIES

ASHRAE is concerned with the impact of its members' activities on both the indoor and outdoor environment. ASHRAE's members will strive to minimize any possible deleterious effect on the indoor and outdoor environment of the systems and components in their responsibility while maximizing the beneficial effects these systems provide, consistent with accepted standards and the practical state of the art.

ASHRAE's short-range goal is to ensure that the systems and components within its scope do not impact the indoor and outdoor environment to a greater extent than specified by the standards and guidelines as established by itself and other responsible bodies.

As an ongoing goal, ASHRAE will, through its Standards Committee and extensive technical committee structure, continue to generate up-to-date standards and guidelines where appropriate and adopt, recommend, and promote those new and revised standards developed by other responsible organizations.

Through its *Handbook*, appropriate chapters will contain up-to-date standards and design considerations as the material is systematically revised.

ASHRAE will take the lead with respect to dissemination of environmental information of its primary interest and will seek out and disseminate information from other responsible organizations that is pertinent, as guides to updating standards and guidelines.

The effects of the design and selection of equipment and systems will be considered within the scope of the system's intended use and expected misuse. The disposal of hazardous materials, if any, will also be considered.

ASHRAE's primary concern for environmental impact will be at the site where equipment within ASHRAE's scope operates. However, energy source selection and the possible environmental impact due to the energy source and energy transportation will be considered where possible. Recommendations concerning energy source selection should be made by its members.

INTERPRETATION IC 90.1-2004-1 OF ANSI/ASHRAE/IESNA STANDARD 90.1-2004 Energy Standard for Buildings Except Low-Rise Residential Buildings

Date Approved June 25, 2005

<u>Request from</u>: Roger Chang (E-mail: <u>roger.chang@arup.com</u>), Associate Member, 155 Avenue of the Americas, New York, NY 10013.

Reference: This request for interpretation refers to the requirements presented in ANSI/ASHRAE/IESNA Standard 90.1-2004, Section 5.2.1 Compliance, relating to gross wall area.

Background: Standard 90.1-2004 does not appear to be clear as to what gross wall area means. International Energy Conservation Code is clear that prescriptive requirements are based on window to above-grade wall area. This impacts all sections of the code where the window-to-wall area ratio is taken into consideration.

<u>Interpretation</u>: Gross wall area refers to above-grade wall only.

Question: Is this interpretation correct?

Answer: No.

Comments:

Section 3.2 defines "building envelope" to include "the elements of a building...that enclose...spaces through which thermal energy may be transferred to or from the exterior".

Section 3.2, in the definition of "wall" states "this includes above- and below-grade walls, between floor spandrels, peripheral edges of floors, and foundation walls".

Section 3.2 defines "gross wall area" as "the area of the wall measured on the exterior face from the top of the floor to the bottom of the roof".

Therefore, for buildings with conditioned space below-grade, the gross wall area extends from the top of the surface of the floor of the lowest conditioned space to the bottom of the roof of the highest conditioned space.

(Note that the use of a similar term in a document from another organization is irrelevant to an interpretation of Standard 90.1.)

INTERPRETATION IC 90.1-2004-2 OF ANSI/ASHRAE/IESNA STANDARD 90.1-2004 Energy Standard for Buildings Except Low-Rise Residential Buildings

Date Approved January 21, 2006

<u>Request from:</u> Jack Esmond, P.E. (E-mail: <u>esmond@eceng.com</u>) and Heather Camden, P.E. (E-mail: <u>camden@eceng.com</u>), E&C Engineers & Consultants Inc., 550 Westcott Suite 390, Houston, Texas 77007.

Reference: This request for interpretation refers to the requirements presented in ANSI/ASHRAE/IESNA Standard 90.1-2004, Section 6.5.3.1 Fan Power Limitation, and Table 6.5.3.1, specifically relating to fan power limitation ratios.

Background: For HVAC systems having a total fan system power exceeding 5 hp, Section 6.5.3.1(a) states, "The ratio of the fan system power to the supply fan airflow rate (main fan) of each HVAC system at design conditions shall not exceed the allowable fan system power shown in Table 6.5.3.1."

Table 6.5.3.1 indicates maximum allowable nameplate motor horsepower based on either constant volume systems or variable air volume systems at a low (<20,000 cfm) and high ($\ge20,000$ cfm) supply air flow rates.

These limitations are obtainable for most facilities including laboratories, but I continue to find it difficult to achieve these limits for animal housing and facilities (vivarium). The high air flow rates required by AAALAC and NIH, the HEPA filtration requirements, the air flow or space pressure control terminal units, and the need to maintain temperature and humidity with high flow rates to flush the contaminants makes compliance next to impossible where air change rates are set by researchers and standards, animal (Not Human) health and safety is the issue and millions of dollars are at stake if outside air flows are not maintained and all air must be exhausted through heat recovery coils and associated filters.

Please consider the animal health and safety imposed in vivarium, vivarium support and animal operating or procedure rooms:

- Elevated air flow requirements in cage wash areas to remove heat and humidity from process equipment.
- Elevated air flows in animal holding areas to remove contaminants and maintain animal health.
- Necropsy rooms with high air change and static pressures for human safety.
- Increased cooling and dehumidification loads with 100% outside air require greater rows and fins (pressure drop) at cooling coils.
- Increased heating loads with 100% outside air require greater rows and fins (pressure drop) at preheat coils.
- Heat recover coils (a must with this amount of OA) at AHUs.
- Higher filter pressure drops due to higher levels of filtration as compared to a research lab.
- 100% exhaust with limited VAV allowed.

<u>Interpretation</u>: Section 2.5 states "This standard shall not be used to circumvent any safety, health, or environmental requirements." This applies to all facilities and includes the health and safety of animals as well as humans.

Due to the increased HVAC requirements of vivaria for the purposes of human and animal health and safety, the fan powered limitation will not apply to vivarium space and vivarium systems are exempt from this requirement. If all other elements of the prescriptive method are met, a full building energy analysis is not required even though the fan power limitation is not met.

Question: Is this interpretation correct?

Answer: No

<u>Comments</u>: These air distribution systems are not process loads and would be covered by the fan power limitations requirements, however no parts of 90.1 shall be used to circumvent any safety, health, or environmental requirements (Section 2.5). Furthermore, the Fan Power Working Group realized the challenges to comply with the current standard when a complex fan system is in place. The Group is currently addressing this in their proposed changes to recognize the pressure drops through these systems.

INTERPRETATION IC 90.1-2004-3 OF ANSI/ASHRAE/IESNA STANDARD 90.1-2004 Energy Standard for Buildings Except Low-Rise Residential Buildings

Date Approved January 22, 2006

<u>Request from</u>: Richard Taft (E-mail: <u>richard_taft@munters.com</u>), Munters DH, 2250 North Druid Hills Rd., Suite 142, Atlanta, GA 30329.

Reference: This request for interpretation refers to the requirements presented in ANSI/ASHRAE/IESNA Standard 90.1-2004, Section 6.5.6.1 Exhaust Air Energy Recovery, specifically relating to Exception (i) to 6.5.6.1, ventilation air treatment for systems requiring dehumidification.

Background: Standard 90.1-2004, Section 6.5.6.1 requires the use of energy recovery from exhaust air to pre-treat ventilation air in systems larger than 5,000 cfm. However, Exception (i) to Section 6.5.6.1 exempts systems which require dehumidification from this requirement, provided that they use energy recovery in series with the cooling coil.

The attachment to this request describes a system which uses a desiccant component to boost the dehumidification capacity of a cooling coil. Similar to the more traditional system allowed under exception (i) this particular desiccant-assisted system uses recovered energy for desiccant reactivation, and all of that energy is recovered from within the system itself.

Although the system recovers energy internally, it does so in a manner less familiar to many designers than more traditional heat recovery methods, which leads to confusion as to whether such a desiccant-assisted cooling coil is allowed under exception (i). Ironically, this system actually uses much less energy on an annual basis than either the baseline system, or the other systems allowed by exception (i), as shown by calculations on the attachment.

We believe that exception (i) covers the desiccant-assisted system described on the attachment, and ask that the committee provide an interpretation which clarifies this issue.

<u>Interpretation</u>: Exception (i) to Section 6.5.6.1 allows the use of dehumidification devices for ventilation air streams, provided that the system requires dehumidification, and provided that the system uses energy recovery in series with the cooling coil.

A system which uses a desiccant-assisted cooling coil is also allowed under exception (i), provided that all of the energy it uses for desiccant reactivation is recovered from within that same system.

Question: Is this interpretation correct?

Answer:

Yes, your interpretation is correct and the desiccant wheel with regeneration obtained from site recovered heat which in your design is from the refrigeration condenser will meet the requirements of exception 6.5.6.1 (i). It should also be noted that there are other means for

recovering heat like the heat pipe system shown in your diagram as well as condenser heat rejection coils placed downstream from a conventional evaporator coil.

Comments:

This section of the code is currently being evaluated for other changes and we will discuss additional changes to help clarify the issues that you have raised.

INTERPRETATION IC 90.1-2004-4 OF ANSI/ASHRAE/IESNA STANDARD 90.1-2004 Energy Standard for Buildings Except Low-Rise Residential Buildings

Date Approved January 23, 2006

<u>Request from</u>: Mr. Chris Jones (e-mail: <u>mailto:cjones@islandnet.com</u>), 14 Oneida Avenue, Toronto, Ontario M5J 2E3.

Reference: This request for interpretation refers to the requirements presented in ANSI/ASHRAE/IESNA Standard 90.1-2004, Section 11.3.2(d) *HVAC Systems*, relating to minimum *outdoor air* ventilation rates to be used for the *budget building design* and the *proposed building*.

Background: Section 11.3.2(d) of Standard 90.1-2004 states "Minimum *outdoor air* ventilation rates shall be the same for both the *budget building design* and *proposed building*."

<u>Interpretation</u>: I have interpreted this section to mean that the budget building and proposed building shall use the same minimum outdoor air ventilation rate *if that rate is within reasonable amounts*. For example, if the building is primarily office space then one would not expect the minimum outdoor air rate to be in excess of 20 cfm per person. If the designer proposes a very high minimum ventilation rate compared with a known standard for the space type, then the budget building would be modelled with a minimum outdoor ventilation rate set at a know standard rate.

Question: Is this interpretation correct?

Answer: No.

<u>Comments</u>: The standard clearly states "the <u>same for both the budget building design and proposed building</u>", which means that the minimum outdoor air rate for the budget building design and the proposed (actual) building design must be <u>equal</u>. By having equal amounts of outdoor air in the budget building and the proposed building the energy cost comparison is unbiased.

The purpose of ASHRAE Standard 90.1 is to provide minimum requirements for energy efficient design; <u>not</u> design recommendations or criteria (minimum outdoor air rate, space temperature, etc.) Your interpretation will violate the objectivity of the comparison by giving the user the liberty to use different design criteria for the budget building ad the proposed design.

The budget building design is a representation of a building that meets the prescriptive path ASHRAE Standard 90.1. The prescriptive path does not specify minimum outdoor air requirements. The minimum outdoor air for the budget building and the proposed building design must be the same.

INTERPRETATION IC 90.1-2004-5 OF ANSI/ASHRAE/IESNA STANDARD 90.1-2004 Energy Standard for Buildings Except Low-Rise Residential Buildings

Date Approved January 23, 2006

<u>Request from</u>: Richard Lord (E-mail: <u>richard.lord@carrier.utc.com</u>), United Technologies, Carrier, One Carrier Place, Farmington CT, 06034.

Reference: This request for interpretation refers to the requirements presented in ANSI/ASHRAE/IESNA Standard 90.1-2004, Table 6.8.1A and Table 6.8.1B requiring a 12.0 SEER and 7.4 HSPF for less than 65,000 Btu/h cooling capacity machines.

Background: As per note "c" these are for **3 phase** products with a cooling capacity less than 65,000 Btu/h. **Single phase** products are covered by the NAECA federal standard. The 12.0 SEER and 7.4 HSPF levels in Table 6.8.1A and Table 6.8.1B were implemented when the NAECA levels where to be set at the 12.0 SEER and 7.4 HSPF. Since that time the federal levels have been further increased to 13.0 SEER and 7.7 HSPF. Because of NAECA change to 13 SEER a new ASHRAE 90.1 change proposal (CM 90.1-05-12-0002/001) was submitted by Karim Amrane. This change proposal has been approved by the Mechanical Subcommittee and the ASHRAE SSPC 90.1 and was approved by the ASHRAE Standards Committee on 1/21/2006. The final change is referred to as Addendum f to ANSI/ASHRAE/IESNA Standard 90.1-2004. The effective date shown in Addendum f is 1/23/2006.

There is considerable confusion in the industry about the various effective dates for the single and 3 phase 13 SEER requirement and this request is being submitted to request clarification of the implantation dates for 13 SEER.

Interpretation:

It is my understanding that the following is the correct interpretation of the requirements and effective date.

Single Phase Products

For single phase products with a capacity less than 65,000 Btu/h the requirements are defined by the NAECA standard and will go into effect on 1/23/2006 for replacement and new construction. The levels are;

Air Conditioners, Air Cooled Split Systems - 13.0 SEER
Air Conditioners, Air Cooled Single Package - 13.0 SEER
Heat Pumps, Air Cooled Split Systems (cooling) - 13.0 SEER
Heat Pumps, Air Cooled Single Packaged (cooling - 13.0 SEER
Heat Pumps, Air Cooled, Split Systems (heating) - 7.7 HSPF
Heat Pumps, Air Cooled, Single Package (heating) - 7.7 HSPF

©2006 ASHRAE. All Rights reserved.

3 Phase Products

For 3 phase products with a capacity less than 65,000 Btu/h the new requirements are;

Air Conditioners, Air Cooled Split Systems Air Conditioners, Air Cooled Single Package Heat Pumps, Air Cooled Split Systems (cooling) Heat Pumps, Air Cooled Single Packaged (cooling Heat Pumps, Air Cooled, Split Systems (heating) Heat Pumps, Air Cooled, Single Package (heating) Heat Pumps, Air Cooled, Single Package (heating) 7.7 HSPF

The ASHRAE 90.1-2004 effective date as defined by Addendum f is 1/23/2006 but this does not mean the federal effective date will be 1/23/2006.

For the ASHRAE 90.1 requirements to be implemented as the federal minimum efficiency for 3 phase products Addendum f must be approved by the Department of Energy (DOE) as defined in the Energy Policy Act of 1992 (see attachment). If DOE approves the ASHRAE levels then the requirements would become the federal minimum 2 years after the 1/23/2006 effective date in the ASHRAE standard. In this case the federal date would then be 1/23/2008.

Also defined by the Energy Policy Act of 1992, once ASHRAE has approved the new levels a state has the option to require the new levels for new construction, but not on replacement equipment, during the period between the ASHRAE effective date of 1/23/2006 and the anticipated federal effective date of 1/23/2008.

Question: Is this interpretation correct?

Answer: Yes

CHAPTER 77--ENERGY CONSERVATION

SUBCHAPTER III--IMPROVING ENERGY EFFICIENCY

Part A-1--Certain Industrial Equipment

Sec. 6313. Standards

- (a) Small and large commercial package air conditioning and heating equipment, packaged terminal air conditioners and heat pumps, warm-air furnaces, packaged boilers, storage water heaters, instantaneous water heaters, and unfired hot water storage tanks
- (1) Each small commercial package air conditioning and heating equipment manufactured on or after January 1, 1994, shall meet the following standard levels:
 - (A) The minimum seasonal energy efficiency ratio of air-cooled three-phase electric central air conditioners and central air conditioning heat pumps less than 65,000 Btu per hour (cooling capacity), split systems, shall be 10.0.
 - (B) The minimum seasonal energy efficiency ratio of air-cooled three-phase electric central air conditioners and central air conditioning heat pumps less than 65,000 Btu per hour (cooling capacity), single package, shall be 9.7.
 - (C) The minimum energy efficiency ratio of air-cooled central air conditioners and central air conditioning heat pumps at or above 65,000 Btu per hour (cooling capacity) and less than 135,000 Btu per hour (cooling capacity) shall be 8.9 (at a standard rating of 95 degrees F db).
 - (D) The minimum heating seasonal performance factor of air-cooled three-phase electric central air conditioning heat pumps less than 65,000 Btu per hour (cooling capacity), split systems, shall be 6.8.
 - (E) The minimum heating seasonal performance factor of air-cooled three-phase electric central air conditioning heat pumps less than 65,000 Btu per hour (cooling capacity), single package, shall be 6.6.
 - (F) The minimum coefficient of performance in the heating mode of air-cooled central air conditioning heat pumps at or above 65,000 Btu per hour (cooling capacity) and less than 135,000 Btu per hour (cooling capacity) shall be 3.0 (at a high temperature rating of 47 degrees F db).
 - (G) The minimum energy efficiency ratio of water-cooled, evaporatively-cooled and water-source central air conditioners and central air conditioning heat pumps less than 65,000 Btu per hour (cooling capacity) shall be 9.3 (at a standard rating of 95 degrees F db, outdoor temperature for evaporatively cooled equipment, and 85 degrees Fahrenheit entering water temperature for water-source and water-cooled equipment).
 - (H) The minimum energy efficiency ratio of water-cooled, evaporatively-cooled and water-source central air conditioners and central air conditioning heat pumps at or above 65,000 Btu per hour (cooling capacity) and less than 135,000 Btu per hour (cooling capacity) shall be 10.5 (at a standard rating of 95 degrees F db, outdoor temperature for evaporatively cooled equipment, and 85 degrees Fahrenheit entering water temperature for water source and water-cooled equipment).
 - (I) The minimum coefficient of performance in the heating mode

of water-source heat pumps less than 135,000 Btu per hour (cooling capacity) shall be 3.8 (at a standard rating of 70 degrees Fahrenheit entering water).

- (2) Each large commercial package air conditioning and heating equipment manufactured on or after January 1, 1995, shall meet the following standard levels:
 - (A) The minimum energy efficiency ratio of air-cooled central air conditioners and central air conditioning heat pumps at or above 135,000 Btu per hour (cooling capacity) and less than 240,000 Btu per hour (cooling capacity) shall be 8.5 (at a standard rating of 95 degrees F db).
 - (B) The minimum coefficient of performance in the heating mode of air-cooled central air conditioning heat pumps at or above 135,000 Btu per hour (cooling capacity) and less than 240,000 Btu per hour (cooling capacity) shall be 2.9.
 - (C) The minimum energy efficiency ratio of water- and evaporatively-cooled central air conditioners and central air conditioning heat pumps at or above 135,000 Btu per hour (cooling capacity) and less than 240,000 Btu per hour (cooling capacity) shall be 9.6 (according to ARI Standard 360-86).
- (3) Each packaged terminal air conditioner and packaged terminal heat pump manufactured on or after January 1, 1994, shall meet the following standard levels:
 - (A) The minimum energy efficiency ratio (EER) of packaged terminal air conditioners and packaged terminal heat pumps in the cooling mode shall be 10.0 -- (0.16 x Capacity [in thousands of Btu per hour at a standard rating of 95 degrees F db, outdoor temperature]). If a unit has a capacity of less than 7,000 Btu per hour, then 7,000 Btu per hour shall be used in the calculation. If a unit has a capacity of greater than 15,000 Btu per hour, then 15,000 Btu per hour shall be used in the calculation.
 - (B) The minimum coefficient of performance (COP) of packaged terminal heat pumps in the heating mode shall be $1.3 + (0.16 \times 10^{-2})$ the minimum cooling EER as specified in subparagraph (A)) (at a standard rating of 47 degrees F db).
- (4) Each warm air furnace and packaged boiler manufactured on or after January 1, 1994, shall meet the following standard levels:
 - (A) The minimum thermal efficiency at the maximum rated capacity of gas-fired warm-air furnaces with capacity of 225,000 Btu per hour or more shall be 80 percent.
 - (B) The minimum thermal efficiency at the maximum rated capacity of oil-fired warm-air furnaces with capacity of 225,000 Btu per hour or more shall be 81 percent.
 - (C) The minimum combustion efficiency at the maximum rated capacity of gas-fired packaged boilers with capacity of 300,000 Btu per hour or more shall be 80 percent.
 - (D) The minimum combustion efficiency at the maximum rated capacity of oil-fired packaged boilers with capacity of 300,000 Btu per hour or more shall be 83 percent.
- (5) Each storage water heater, instantaneous water heater, and unfired water storage tank manufactured on or after January 1, 1994, shall meet the following standard levels:
 - (A) Except as provided in subparagraph (G), the maximum standby loss, in percent per hour, of electric storage water heaters shall be 0.30 + (27/Measured Storage Volume [in gallons]).
 - (B) Except as provided in subparagraph (G), the maximum standby loss, in percent per hour, of gas- and oil-fired storage water heaters with input ratings of 155,000 Btu per hour or less shall be 1.30 + (114/Measured Storage Volume [in gallons]). The minimum

thermal efficiency of such units shall be 78 percent.

- (C) Except as provided in subparagraph (G), the maximum standby loss, in percent per hour, of gas- and oil-fired storage water heaters with input ratings of more than 155,000 Btu per hour shall be 1.30 + (95/Measured Storage Volume [in gallons]). The minimum thermal efficiency of such units shall be 78 percent.
- (D) The minimum thermal efficiency of instantaneous water heaters with a storage volume of less than $10\ \mathrm{gallons}\ \mathrm{shall}\ \mathrm{be}\ 80\ \mathrm{percent}$.
- (E) Except as provided in subparagraph (G), the minimum thermal efficiency of instantaneous water heaters with a storage volume of 10 gallons or more shall be 77 percent. The maximum standby loss, in percent/hour, of such units shall be 2.30 + (67/Measured Storage Volume [in gallons]).
- (F) Except as provided in subparagraph (G), the maximum heat loss of unfired hot water storage tanks shall be 6.5 Btu per hour per square foot of tank surface area.
- (G) Storage water heaters and hot water storage tanks having more than 140 gallons of storage capacity need not meet the standby loss or heat loss requirements specified in subparagraphs (A) through (C) and subparagraphs (E) and (F) if the tank surface area is thermally insulated to R-12.5 and if a standing pilot light is not used.
- (6)(A) If ASHRAE/IES Standard 90.1, as in effect on October 24, 1992, is amended with respect to any small commercial package air conditioning and heating equipment, large commercial package air conditioning and heating equipment, packaged terminal air conditioners, packaged terminal heat pumps, warm-air furnaces, packaged boilers, storage water heaters, instantaneous water heaters, or unfired hot water storage tanks, the Secretary shall establish an amended uniform national standard for that product at the minimum level for each effective date specified in the amended ASHRAE/IES Standard 90.1, unless the Secretary determines, by rule published in the Federal Register and supported by clear and convincing evidence, that adoption of a uniform national standard more stringent than such amended ASHRAE/IES Standard 90.1 for such product would result in significant additional conservation of energy and is technologically feasible and economically justified.
- (B)(i) If the Secretary issues a rule containing such a determination, the rule shall establish such amended standard. In determining whether a standard is economically justified for the purposes of subparagraph (A), the Secretary shall, after receiving views and comments furnished with respect to the proposed standard, determine whether the benefits of the standard exceed its burdens by, to the greatest extent practicable, considering--
 - (I) the economic impact of the standard on the manufacturers and on the consumers of the products subject to such standard;
 - (II) the savings in operating costs throughout the estimated average life of the product in the type (or class) compared to any increase in the price of, or in the initial charges for, or maintenance expenses of, the products which are likely to result from the imposition of the standard;
 - (III) the total projected amount of energy savings likely to result directly from the imposition of the standard;
 - (IV) any lessening of the utility or the performance of the products likely to result from the imposition of the standard;
 - (V) the impact of any lessening of competition, as determined in writing by the Attorney General, that is likely to result from the imposition of the standard;
 - (VI) the need for national energy conservation; and (VII) other factors the Secretary considers relevant.
 - (ii) The Secretary may not prescribe any amended standard under this

paragraph which increases the maximum allowable energy use, or decreases the minimum required energy efficiency, of a covered product. The Secretary may not prescribe an amended standard under this subparagraph if the Secretary finds (and publishes such finding) that interested persons have established by a preponderance of the evidence that a standard is likely to result in the unavailability in the United States in any product type (or class) of performance characteristics (including reliability), features, sizes, capacities, and volumes that are substantially the same as those generally available in the United States at the time of the Secretary's finding. The failure of some types (or classes) to meet this criterion shall not affect the Secretary's determination of whether to prescribe a standard for other types or classes.

- (C) A standard amended by the Secretary under this paragraph shall become effective for products manufactured--
 - (i) with respect to small commercial package air conditioning and heating equipment, packaged terminal air conditioners, packaged terminal heat pumps, warm-air furnaces, packaged boilers, storage water heaters, instantaneous water heaters, and unfired hot water storage tanks, on or after a date which is two years after the effective date of the applicable minimum energy efficiency requirement in the amended ASHRAE/IES standard referred to in subparagraph (A); and
 - (ii) with respect to large commercial package air conditioning and heating equipment, on or after a date which is three years after the effective date of the applicable minimum energy efficiency requirement in the amended ASHRAE/IES standard referred to in subparagraph (A);

except that an energy conservation standard amended by the Secretary pursuant to a rule under subparagraph (B) shall become effective for products manufactured on or after a date which is four years after the date such rule is published in the Federal Register.

From the U.S. Code Online via GPO Access
[wais.access.gpo.gov]
[Laws in effect as of January 24, 2002]
[Document not affected by Public Laws enacted between January 24, 2002 and December 19, 2002]
[CITE: 42USC6316]

TITLE 42--THE PUBLIC HEALTH AND WELFARE

CHAPTER 77--ENERGY CONSERVATION

SUBCHAPTER III--IMPROVING ENERGY EFFICIENCY

Part A-1--Certain Industrial Equipment

Sec. 6316. Administration, penalties, enforcement, and preemption

(a) The provisions of section 6296(a), (b), and (d) of this title, the provisions of subsections (l) through (s) of section 6295 of this title, and section $1 \ 6297$ through 6306 of this title shall apply with respect to this part (other than the equipment specified in subparagraphs (B), (C), (D), (E), and (F) of section 6311(1) of this title) to the same extent and in the same manner as they apply in part A of this subchapter. In applying such provisions for the purposes of this part--

\1\ So in original. Probably should be ``sections''.

(1) references to sections 6293, 6294, and 6295 of this title shall be considered as references to sections 6314, 6315, and 6313

- (3) the term ``equipment'' shall be substituted for the term ``product'';
- (4) the term ``Secretary'' shall be substituted for
 ``Commission'' each place it appears (other than in section 6303(c)
 of title);
- (5) section 6297(a) of this title shall be applied, in the case of electric motors, as if the National Appliance Energy Conservation Act of 1987 was the Energy Policy Act of 1992;
- (6) section 6297(b)(1) of this title shall be applied as if electric motors were fluorescent lamp ballasts and as if the National Appliance Energy Conservation Amendments of 1988 were the Energy Policy Act of 1992;
- (7) section 6297(b)(4) of this title shall be applied as if electric motors were fluorescent lamp ballasts and as if paragraph (5) of section 6295(g) of this title were section 6313 of this title; and
- (8) notwithstanding any other provision of law, a regulation or other requirement adopted by a State or subdivision of a State contained in a State or local building code for new construction concerning the energy efficiency or energy use of an electric motor covered under this part is not superseded by the standards for such electric motor established or prescribed under section 6313(b) of this title if such regulation or requirement is identical to the standards established or prescribed under such section.
- (b)(1) The provisions of section 6296(a), (b), and (d) of this title, section 6297(a) of this title, and sections 6298 through 6306 of

this title shall apply with respect to the equipment specified in subparagraphs (B), (C), (D), (E), and (F) of section 6311(1) of this title to the same extent and in the same manner as they apply in part B of this subchapter. In applying such provisions for the purposes of such equipment, paragraphs (1), (2), (3), and (4) of subsection (a) of this section shall apply.

- (2)(A) A standard prescribed or established under section 6313(a) of this title shall, beginning on the effective date of such standard, supersede any State or local regulation concerning the energy efficiency or energy use of a product for which a standard is prescribed or established pursuant to such section.
- (B) Notwithstanding subparagraph (A), a standard prescribed or established under section 6313(a) of this title shall not supersede a standard for such a product contained in a State or local building code for new construction if—
 - (i) the standard in the building code does not require that the energy efficiency of such product exceed the applicable minimum energy efficiency requirement in amended ASHRAE/IES Standard 90.1; and
 - (ii) the standard in the building code does not take effect prior to the effective date of the applicable minimum energy efficiency requirement in amended ASHRAE/IES Standard 90.1.
- (C) Notwithstanding subparagraph (A), a standard prescribed or established under section 6313(a) of this title shall not supersede the standards established by the State of California set forth in Table C-6, California Code of Regulations, Title 24, Part 2, Chapter 2-53, for water-source heat pumps below 135,000 Btu per hour (cooling capacity) that become effective on January 1, 1993.
- (D) Notwithstanding subparagraph (A), a standard prescribed or established under section 6313(a) of this title shall not supersede a State regulation which has been granted a waiver by the Secretary. The Secretary may grant a waiver pursuant to the terms, conditions, criteria, procedures, and other requirements specified in section 6297(d) of this title.
- (c) With respect to any electric motor to which standards are applicable under section 6313(b) of this title, the Secretary shall require manufacturers to certify, through an independent testing or certification program nationally recognized in the United States, that such motor meets the applicable standard.

(Pub. L. 94-163, title III, Sec. 345, as added Pub. L. 95-619, title IV, Sec. 441(a), Nov. 9, 1978, 92 Stat. 3272; amended Pub. L. 102-486, title I, Sec. 122(e), Oct. 24, 1992, 106 Stat. 2815; Pub. L. 105-388, Sec. 5(a)(7), Nov. 13, 1998, 112 Stat. 3478.)

References in Text

The National Appliance Energy Conservation Act of 1987, referred to in subsec. (a)(5), is Pub. L. 100-12, Mar. 17, 1987, 101 Stat. 103. For complete classification of this Act to the Code, see Short Title of 1987 Amendment note set out under section 6201 of this title and Tables.

The Energy Policy Act of 1992, referred to in subsec. (a)(5), (6), is Pub. L. 102-486, Oct. 24, 1992, 106 Stat. 2776. For complete classification of this Act to the Code, see Short Title note set out under section 13201 of this title and Tables.

The National Appliance Energy Conservation Amendments of 1988, referred to in subsec. (a)(6), is Pub. L. 100-357, June 28, 1988, 102 Stat. 671. For complete classification of this Act to the Code, see Short Title of 1988 Amendments note set out under section 6201 of this title and Tables.

Amendments

1998--Subsec. (c). Pub. L. 105-388 inserted ``standard'' after ``meets the applicable''.

1992--Pub. L. 102-486, Sec. 122(e)(3), substituted ``enforcement,

and preemption'' for ``and enforcement'' in section catchline.

Subsec. (a). Pub. L. 102-486, Sec. 122(e)(1)(A), inserted ``(other than the equipment specified in subparagraphs (B), (C), (D), (E), and (F) of section 6311(1) of this title)'' after ``to this part'' and substituted ``, the provisions of subsections (1) through (s) of section 6295 of this title, and section 6297'' for ``and sections 6298''.

Subsec. (a)(1). Pub. L. 102-486, Sec. 122(e)(1)(B), substituted ``, 6294, and 6295 of this title'' for ``and 6294 of this title'' and ``6314, 6315, and 6313 of this title, respectively'' for ``6314 and 6315 of this title, respectively''.

Subsec. (a)(5) to (8). Pub. L. 102-486, Sec. 122(e)(1)(C)-(E), added pars. (5) to (8).

Subsecs. (b), (c). Pub. L. 102-486, Sec. 122(e)(2), added subsecs. (b) and (c).

ASHRAE STANDARD

Energy Standard for Buildings Except Low-Rise Residential Buildings

Approved by the ASHRAE Standards Committee on February 3, 2005; by the ASHRAE Board of Directors on February 10, 2005; and by the American National Standards Institute on March 11, 2005.

This standard is under continuous maintenance by a Standing Standard Project Committee (SSPC) for which the Standards Committee has established a documented program for regular publication of addenda or revisions, including procedures for timely, documented, consensus action on requests for change to any part of the standard. The change submittal form, instructions, and deadlines may be obtained in electronic form from the ASHRAE Web site, http://www.ashrae.org, or in paper form from the Manager of Standards. The latest edition of an ASHRAE Standard may be purchased from ASHRAE Customer Service, 1791 Tullie Circle, NE, Atlanta, GA 30329-2305. E-mail: orders@ashrae.org. Fax: 404-321-5478. Telephone: 404-636-8400 (worldwide), or toll free 1-800-527-4723 (for orders in U.S. and Canada).

© Copyright 2005 ASHRAE, Inc.

ISSN 1041-2336

When addenda, interpretations, or errata to this standard have been approved, they can be downloaded free of charge from the ASHRAE Web site at http://www.ashrae.org.

American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc.

1791 Tullie Circle NE, Atlanta, GA 30329

www.ashrae.org

ASHRAE Standing Standard Project Committee 90.1 Cognizant TC: TC 7.6, Systems Energy Utilization

SPLS Liaisons: Hugh F. Crowther ASHRAE Staff Liaison: Mark Weber IESNA Liaison: Rita M. Harrold

Jerry W. White, Jr., Chair*	Susanna S. Hanson	Ronald G. Nickson*
James M. Calm, Vice-Chair*	Richard V. Heinisch*	Jim A. Ranfone*
Karim Amrane*	Randall T. Higa*	Eric E. Richman*
Wagdy A.Y. Anis	John F. Hogan*	Michael I. Rosenberg*
Anthony M. Arbore	William G. Holy*	Steven Rosenstock
William P. Bahnfleth*	Hyman M. Kaplan*	Robert D. Ross*
Peter A. Baselici*	Larry Kouma*	
Van D. Baxter*	Ronald D. Kurtz*	David A. Schaaf, Jr.*
Denise M. Beach	Samantha H. LaFleur	Leonard C. Sciarra*
Donald L. Beaty*	Michael D. Lane*	Bipin Vadilal Shah*
Valerie L. Block*	Dean E. Lewis	Stephen V. Skalko*
Donald M. Brundage*	Richard Lord	Frank A. Stanonik*
Ernest A. Conrad	Kenneth Luther*	Joseph K. Ting*
Charles C. Cottrell*	Ronald Majette*	Cedric S. Trueman*
Roy Crane*	Itzhak H. Maor*	Martha G. VanGeem
Joseph J. Deringer*	Carol E. Marriott*	Carl Wagus*
Keith I. Emerson*	R. Christopher Mathis*	McHenry Wallace, Jr.*
Drake H. Erbe	Merle F. McBride	Richard D. Watson*
Thomas A. Farkas*	Michael W. Mehl	
Alan Fraser*	Harry P. Misuriello	David Weitz*
James A. Garrigus*	Louis J. Molinini*	Robin Wilson*
Jason J. Glazer*	John Montgomery*	Michael W. Woodford
S. Pekka Hakkarainen	Frank T. Morrison	Donald R. Wulfinghoff*
Katherine G. Hammack*	Frank Myers*	Stanley W. Zajac*

^{*}Denotes members of voting status when the document was approved for publication

ASHRAE STANDARDS COMMITTEE 2004-2005

Dean S. Borges, Chair

Richard D. Hermans, Vice-Chair

Donald B. Bivens

Paul W. Cabot

Hugh F. Crowther

Brian P. Dougherty

Hakim Elmahdy

Matt R. Hargan

Roger L. Hedrick

John F. Hogan

Frank E. Jakob

Stephen D. Kennedy

David E. Knebel
Merle F. McBride
Mark P. Modera
Cyrus H. Nasseri
Davor Novosel
George Reeves
John Sabelli
Stephen V. Santoro
Gideon Shavit
David R. Tree
James E. Woods
Michael F. Beda, BOD ExO
William A. Harrison, CO

Claire B. Ramspeck, Manager of Standards

SPECIAL NOTE

This American National Standard (ANS) is a national voluntary consensus standard developed under the auspices of the American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE). Consensus is defined by the American National Standards Institute (ANSI), of which ASHRAE is a member and which has approved this standard as an ANS, as "substantial agreement reached by directly and materially affected interest categories. This signifies the concurrence of more than a simple majority, but not necessarily unanimity. Consensus requires that all views and objections be considered, and that an effort be made toward their resolution." Compliance with this standard is voluntary until and unless a legal jurisdiction makes compliance mandatory through legislation.

ASHRAE obtains consensus through participation of its national and international members, associated societies, and public review.

ASHRAE Standards are prepared by a Project Committee appointed specifically for the purpose of writing the Standard. The Project Committee Chair and Vice-Chair must be members of ASHRAE; while other committee members may or may not be ASHRAE members, all must be technically qualified in the subject area of the Standard. Every effort is made to balance the concerned interests on all Project Committees.

The Manager of Standards of ASHRAE should be contacted for:

- a. interpretation of the contents of this Standard,
- b. participation in the next review of the Standard,
- c. offering constructive criticism for improving the Standard,
- d. permission to reprint portions of the Standard.

DISCLAIMER

ASHRAE uses its best efforts to promulgate Standards and Guidelines for the benefit of the public in light of available information and accepted industry practices. However, ASHRAE does not guarantee, certify, or assure the safety or performance of any products, components, or systems tested, installed, or operated in accordance with ASHRAE's Standards or Guidelines or that any tests conducted under its Standards or Guidelines will be nonhazardous or free from risk.

ASHRAE INDUSTRIAL ADVERTISING POLICY ON STANDARDS

ASHRAE Standards and Guidelines are established to assist industry and the public by offering a uniform method of testing for rating purposes, by suggesting safe practices in designing and installing equipment, by providing proper definitions of this equipment, and by providing other information that may serve to guide the industry. The creation of ASHRAE Standards and Guidelines is determined by the need for them, and conformance to them is completely voluntary.

In referring to this Standard or Guideline and in marking of equipment and in advertising, no claim shall be made, either stated or implied, that the product has been approved by ASHRAE.

(This foreword is not part of this standard. It is merely informative and does not contain requirements necessary for conformance to the standard. It has not been processed according to the ANSI requirements for a standard and may contain material that has not been subject to public review or a consensus process. Unresolved objectors on informative material are not offered the right to appeal at ASHRAE or ANSI.)

FOREWORD

The Cool Roof Rating Council is a not-for-profit organization that was established for a number of purposes, one of which is to implement and communicate fair, accurate, and credible radiative energy performance rating systems for roof surfaces.

In 2002 the Cool Roof Rating Council completed its task of initiating a roofing product rating program. The intent of the CRRC was to develop a program that was uniform for determining radiative properties of roofing products. The program allows manufacturers and sellers to have the opportunity to label their roofing products. The radiative properties (e.g., solar reflectance and thermal emittance) are determined and verified through both laboratory testing and a process of random testing.

This addendum identifies the CRRC program as a way to establish a common and uniform evaluation to determine compliance with the standard. Verification of a roofing product is available through two means: (1) a "label" that may be placed directly on the product, on the wrapping or container, or on the manufacturer's technical literature and (2) the Cool Roof Rating Council's Web site directory (http://www.coolroofs.org).

This addendum also deletes two of the ASTM standard test methods. The basis for this is that the CRRC determined through its development of the product rating program that, although those two test methods (ASTM C835 and E1175) were recognized as opportunities for compliance, the availability of these test methods (e.g., the number of testing laboratories open to the general public) is restricted.

The new test method (ASTM C1549) recognizes a test procedure that is considered comparable to the ASTM solar reflectance test methods currently cited. Although CRRC-1 cites its own testing procedure, it is effectively identical to the ASTM test. The reason for two test standards is directly related to the date of publication for each document. The CRRC-1 document was produced prior to ASTM producing their document.

Addendum ad to 90.1-2004 (I-P and SI editions)

Revise the following exception as shown:

Exception to 5.5.3.1: For roofs where the exterior surface has a minimum total solar reflectance of 0.70 when tested in accordance with one of the solar reflectance test methods listed below, and has a minimum thermal emittance of 0.75 when tested in accordance with one of the thermal emittance test methods below, other than roofs with ventilated attics or roofs with semiheated spaces, the U-factor of the proposed roof shall be permitted to be adjusted using Equation 5-1 for demonstrating compliance. The values for solar reflectance and thermal emittance shall be determined by a laboratory accredited by a nationally recognized accreditation organization, such as the Cool Roof Rating Council

<u>CRRC-1 Product Rating Program, and shall be *labeled* and certified by the manufacturer.</u>

$$U_{roofadj} = U_{roofproposed} \times Factor_{roofmultiplier}$$
 (5-1)

where

 $U_{roofadj}$ = the adjusted roof U-factor for use in

demonstrating compliance;

 $U_{roofproposed}$ = the U-factor of the proposed roof, as

designed;

Factor_{roofmultiplier} = the roof U-factor multiplier from Table

5.5.3.1.

Solar Reflectance Test Methods: <u>ASTM C1549</u>, ASTM E903, ASTM E1175, or ASTM E1918.

Thermal Emittance Test Methods: ASTM C835, ASTM C1371, or ASTM E408

Revise the normative references in Section 12 as follows:

12. NORMATIVE REFERENCES

American Society for Testing and Materials, 100 Barr Harbor Dr., West Conshohocken, PA 19428-2959

ASTM C835 95 (1999), Standard Test Method for Total hemispherical Emittance of Surfaces from 20°C to 1400°C.

ASTM C1549-02, Standard Test Method for Determination of Solar Reflectance Near Ambient Temperature Using a Portable Solar Reflectometer.

ASTM E1175 87 (1996), Standard Test Method for Determining Solar or Photoic Reflectance, Transmittance, and Absorptance of Materials Using a Large Diameter Integrating Sphere.

Revise the informative references in Appendix E as follows:

Informative Appendix E Informative References

CRRC

Cool Roof Rating Council

1738 Excelsior Avenue

Oakland, CA 94602

(T) 866-465-2523

(T) 510-482-4420

(F) 510-482-4421

http://www.coolroofs.org

Subsection No.	Reference	Title/Source
Exception to 5.5.3.1	CRRC-1-2002	Cool Roof Rating Council Product Rating Program

POLICY STATEMENT DEFINING ASHRAE'S CONCERN FOR THE ENVIRONMENTAL IMPACT OF ITS ACTIVITIES

ASHRAE is concerned with the impact of its members' activities on both the indoor and outdoor environment. ASHRAE's members will strive to minimize any possible deleterious effect on the indoor and outdoor environment of the systems and components in their responsibility while maximizing the beneficial effects these systems provide, consistent with accepted standards and the practical state of the art.

ASHRAE's short-range goal is to ensure that the systems and components within its scope do not impact the indoor and outdoor environment to a greater extent than specified by the standards and guidelines as established by itself and other responsible bodies.

As an ongoing goal, ASHRAE will, through its Standards Committee and extensive technical committee structure, continue to generate up-to-date standards and guidelines where appropriate and adopt, recommend, and promote those new and revised standards developed by other responsible organizations.

Through its *Handbook*, appropriate chapters will contain up-to-date standards and design considerations as the material is systematically revised.

ASHRAE will take the lead with respect to dissemination of environmental information of its primary interest and will seek out and disseminate information from other responsible organizations that is pertinent, as guides to updating standards and guidelines.

The effects of the design and selection of equipment and systems will be considered within the scope of the system's intended use and expected misuse. The disposal of hazardous materials, if any, will also be considered.

ASHRAE's primary concern for environmental impact will be at the site where equipment within ASHRAE's scope operates. However, energy source selection and the possible environmental impact due to the energy source and energy transportation will be considered where possible. Recommendations concerning energy source selection should be made by its members.

a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, r, s, t, u, v, x, and ak to ANSI/ASHRAE/IESNA Standard 90.1-2004

ASHRAE ADDENDA

2006 SUPPLEMENT

Energy Standard for Buildings **Except Low-Rise** Residential Buildings

See Appendix for approval dates.

This standard is under continuous maintenance by a Standing Standard Project Committee (SSPC) for which the Standards Committee has established a documented program for regular publication of addenda or revisions, including procedures for timely, documented, consensus action on requests for change to any part of the standard. The change submittal form, instructions, and deadlines may be obtained in electronic form from the ASHRAE Web site, http://www.ashrae.org, or in paper form from the Manager of Standards. The latest edition of an ASHRAE Standard may be purchased from ASHRAE Customer Service, 1791 Tullie Circle, NE, Atlanta, GA 30329-2305. E-mail: orders@ashrae.org. Fax: 404-321-5478. Telephone: 404-636-8400 (worldwide), or toll free 1-800-527-4723 (for orders in US and Canada).

© Copyright 2006 ASHRAE, Inc.

ISSN 1041-2336

Jointly sponsored by

www.ansi.org

American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc.

1791 Tullie Circle NE, Atlanta, GA 30329

www.ashrae.org

ASHRAE Standing Standard Project Committee 90.1 Cognizant TC: TC 7.6, Systems Energy Utilization

SPLS Liaisons: Hugh F. Crowther ASHRAE Staff Liaison: Steven C. Ferguson IESNA Liaison: Rita M. Harrold

	0 0 11	5 110 111 +
Jerry W. White, Jr., <i>Chair</i> *	Susanna S. Hanson	Ronald G. Nickson*
James M. Calm, <i>Vice-Chair</i> *	Richard V. Heinisch*	Jim A. Ranfone*
Karim Amrane*	Randall T. Higa*	Eric E. Richman*
Wagdy A.Y. Anis	John F. Hogan*	Michael I. Rosenberg*
Anthony M. Arbore	William G. Holy*	Steven Rosenstock
William P. Bahnfleth*	Hyman M. Kaplan*	Robert D. Ross*
Peter A. Baselici*	Larry Kouma*	
Van D. Baxter*	Ronald D. Kurtz*	David A. Schaaf, Jr.*
Denise M. Beach	Samantha H. LaFleur	Leonard C. Sciarra*
Donald L. Beaty*	Michael D. Lane*	Bipin Vadilal Shah*
Valerie L. Block*	Dean E. Lewis	Stephen V. Skalko*
Donald M. Brundage*	Richard Lord	Frank A. Stanonik*
Ernest A. Conrad	Kenneth Luther*	Joseph K. Ting*
Charles C. Cottrell*	Ronald Majette*	Cedric S. Trueman*
Roy Crane*	Itzhak H. Maor*	Martha G. VanGeem
Joseph J. Deringer*	Carol E. Marriott*	Carl Wagus*
Keith I. Emerson*	R. Christopher Mathis*	McHenry Wallace, Jr.*
Drake H. Erbe	Merle F. McBride	,
Thomas A. Farkas*	Michael W. Mehl	Richard D. Watson*
Alan Fraser*	Harry P. Misuriello	David Weitz*
James A. Garrigus*	Louis J. Molinini*	Robin Wilson*
Jason J. Glazer*	John Montgomery*	Michael W. Woodford
S. Pekka Hakkarainen [†]	Frank T. Morrison	Donald R. Wulfinghoff*

*Denotes members of voting status when the document was approved for publication

Stanley W. Zajac*

Frank Myers*

Katherine G. Hammack*

[†] Became a voting member January 2005.

ASHRAE STANDARDS COMMITTEE 2004-2005

Dean S. Borges, Chair

Richard D. Hermans, Vice-Chair

Donald B. Bivens
Paul W. Cabot
Hugh F. Crowther
Brian P. Dougherty
Hakim Elmahdy
Matt R. Hargan
Roger L. Hedrick
John F. Hogan
Frank E. Jakob
Stephen D. Kennedy

David E. Knebel

James D. Lutz
Merle F. McBride
Mark P. Modera
Cyrus H. Nasseri
Davor Novosel
George Reeves
Stephen V. Santoro
Gideon Shavit
David R. Tree
James E. Woods
Michael F. Beda, BOD ExO
William A. Harrison, CO

Claire B. Ramspeck, Manager of Standards

ASHRAE STANDARDS COMMITTEE 2005-2006

Richard D. Hermans, Chair
David E. Knebel, Vice-Chair
Donald L. Brandt
Steven T. Bushby
Paul W. Cabot
Hugh F. Crowther
Samuel D. Cummings, Jr.

Robert G. Doerr Hakim Elmahdy Roger L. Hedrick John F. Hogan

Stephen D. Kennedy

Frank E. Jakob

Jay A. Kohler
James D. Lutz
Merle F. McBride
Mark P. Modera
Cyrus H. Nasseri
Stephen V. Santoro
Stephen V. Skalko
David R. Tree
Jerry W. White, Jr.
James E. Woods
William E. Murphy, BOD ExO
Ronald E. Jarnagin, CO

Claire B. Ramspeck, Assistant Director of Technology for Standards and Special Projects

SPECIAL NOTE

This American National Standard (ANS) is a national voluntary consensus standard developed under the auspices of the American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE). Consensus is defined by the American National Standards Institute (ANSI), of which ASHRAE is a member and which has approved this standard as an ANS, as "substantial agreement reached by directly and materially affected interest categories. This signifies the concurrence of more than a simple majority, but not necessarily unanimity. Consensus requires that all views and objections be considered, and that an effort be made toward their resolution." Compliance with this standard is voluntary until and unless a legal jurisdiction makes compliance mandatory through legislation.

ASHRAE obtains consensus through participation of its national and international members, associated societies, and public review.

ASHRAE Standards are prepared by a Project Committee appointed specifically for the purpose of writing the Standard. The Project Committee Chair and Vice-Chair must be members of ASHRAE; while other committee members may or may not be ASHRAE members, all must be technically qualified in the subject area of the Standard. Every effort is made to balance the concerned interests on all Project Committees.

The Manager of Standards of ASHRAE should be contacted for:

- a. interpretation of the contents of this Standard,
- b. participation in the next review of the Standard,
- c. offering constructive criticism for improving the Standard,
- d. permission to reprint portions of the Standard.

DISCLAIMER

ASHRAE uses its best efforts to promulgate Standards and Guidelines for the benefit of the public in light of available information and accepted industry practices. However, ASHRAE does not guarantee, certify, or assure the safety or performance of any products, components, or systems tested, installed, or operated in accordance with ASHRAE's Standards or Guidelines or that any tests conducted under its Standards or Guidelines will be nonhazardous or free from risk.

ASHRAE INDUSTRIAL ADVERTISING POLICY ON STANDARDS

ASHRAE Standards and Guidelines are established to assist industry and the public by offering a uniform method of testing for rating purposes, by suggesting safe practices in designing and installing equipment, by providing proper definitions of this equipment, and by providing other information that may serve to guide the industry. The creation of ASHRAE Standards and Guidelines is determined by the need for them, and conformance to them is completely voluntary.

In referring to this Standard or Guideline and in marking of equipment and in advertising, no claim shall be made, either stated or implied, that the product has been approved by ASHRAE.

CONTENTS

ANSI/ASHRAE Addenda to ANSI/ASHRAE Standard 90.1-2004 Energy Standard for Buildings Except Low-Rise Residential Buildings

SECTION	PAGE
Addendum a	4
Addendum b	7
Addendum c	9
Addendum d	11
Addendum e	12
Addendum f	13
Addendum g	16
Addendum h	21
Addendum i	22
Addendum j	23
Addendum k	24
Addendum I	26
Addendum m	27
Addendum n	28
Addendum o	29
Addendum p	60
Addendum r	61
Addendum s	62
Addendum t	63
Addendum u	64
Addendum v	65
Addendum x	66
Addendum ak	67
Annendix	69

NOTE

When addenda, interpretations, or errata to this standard have been approved, they can be downloaded free of charge from the ASHRAE Web site at http://www.ashrae.org.

© Copyright 2006 American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc.

1791 Tullie Circle NE Atlanta, GA 30329 www.ashrae.org

All rights reserved.

(This foreword is not part of this standard. It is merely informative and does not contain requirements necessary for conformance to the standard. It has not been processed according to the ANSI requirements for a standard and may contain material that has not been subject to public review or a consensus process.)

FOREWORD

This addendum applies to the changes published in ANSI/ ASHRAE/IESNA Addendum e (Informative Appendix G, Performance Rating Method) to ANSI/ASHRAE/IESNA Standard 90.1-2001 now incorporated into the 2004 edition of ANSI/ASHRAE/IESNA Standard 90.1. The changes include incorporating some proposals made by leaders at the U.S. Green Building Council. The changes clarify how windows should be distributed in the baseline simulation model and how uninsulated assemblies should be treated in the baseline simulation model, increase the size range for the use of packaged VAV systems in the baseline model, and provide more detail on how service hot water systems should be modeled. Many of these changes may affect the ultimate performance rating of buildings using Appendix G. addition, a reference was added to ASHRAE Standard 140 for the method of testing simulation programs.

Addendum a to 90.1-2004 (I-P and SI Editions)

Add the following definition in Section 3.2:

unmet load hour: an hour in which one or more zones is outside of the thermostat setpoint range.

(This appendix is not part of this standard. It is merely informative and does not contain requirements necessary for conformance to the standard. It has not been processed according to the ANSI requirements for a standard and may contain material that has not been subject to public review or a consensus process.)

INFORMATIVE APPENDIX G PERFORMANCE RATING METHOD

Add a new Section G2.1.4 (identical to Section 11.2.1.4 of ANSI/ASHRAE/IESNA Addendum "p" to ANSI/ASHRAE/IESNA Standard 90.1-2001 and now incorporated into ANSI/ASHRAE/IESNA Standard 90.1-2004)

G2.1.4 The simulation program shall be tested according to ANSI/ASHRAE Standard 140 and the results shall be furnished by the software provider.

Revise Section G3.1 as follows:

G3.1 Proposed Design Model. The simulation model of the *proposed design* shall be consistent with the design documents, including proper accounting of fenestration and opaque envelope types and areas; interior lighting power and controls; HVAC system types, sizes, and controls; and service

water heating systems and controls. All end-use load components within and associated with the building shall be modeled, including, but not limited to, exhaust fans, parking garage ventilation fans, snow-melt and freeze-protection equipment, facade lighting, swimming pool heaters and pumps, elevators and escalators, refrigeration, and cooking. Where the simulation program does not specifically model the functionality of the installed system, spreadsheets or other documentation of the assumptions shall be used to generate the power demand and operating schedule of the systems.

Revise Exceptions of G3.6 (a) as follows:

G3.6 Building Envelope. All components of the *building envelope* in the *proposed design* shall be modeled as shown on architectural drawings or as built for existing building envelopes.

Exceptions to G3.6: The following building elements are permitted to differ from architectural drawings.

- All uninsulated assemblies (e.g. projecting balconies, perimeter edges of intermediate floor stabs, concrete floor beams over parking garages, roof parapet) shall be separately modeled-using either of the following techniques:
 - 1. Separate model of each of these assemblies within the energy simulation model
 - 2. Separate calculation of the U-factor for each of these assemblies. The U-factors of these assemblies are then area-weighted averaged with larger adjacent surfaces. This average U-factor is modeled within the energy simulation model.

Any other envelope assembly that covers less than 5% of the total area of that assembly type (e.g., exterior walls) need not be separately described provided that it is similar to an assembly being modeled. If not separately described, the area of an envelope assembly shall be added to the area of an assembly of that same type with the same orientation and thermal properties.

- b. Exterior surfaces whose azimuth orientation and tilt differ by less than 45 degrees and are otherwise the same may be described as either a single surface or by using multipliers.
- For exterior roofs, the roof surface may be modeled with a reflectance of 0.45 if the reflectance of the *proposed design* roof is greater than 0.70 and its emittance is greater than 0.75. Reflectance values shall be based on testing in accordance with ASTM E903, ASTM E1175, or ASTM E1918, and the emittance values shall be based on testing in accordance with ASTM C835, ASTM C1371, or ASTM E408. All other roof surfaces shall be modeled with a reflectance of 0.30.

d. Manual fenestration shading devices such as blinds or shades shall not be modeled. Automatically controlled fenestration shades or blinds may be modeled. Permanent shading devices such as fins, overhangs and light shelves may be modeled.

Revise Exception to G3.8 (d) as follows:

G3.8 Lighting. Lighting power in the *proposed design* shall be determined as follows:

d. Lighting system power shall include all lighting system components shown or provided for on the plans (including lamps and ballasts and task and furniture-mounted fixtures).

Exception to G3.8 (d): For multifamily living units, hotel/ motel guest rooms, and other spaces in which lighting systems are connected via receptacles and are not shown or provided for on building plans, assume identical lighting power for the *proposed* and *baseline building designs* in the simulations, but exclude these loads when calculating the *baseline building performance* and *proposed building performance*.

Revise Section G4.1 (c) as follows:

G4.1 Baseline Building Envelope. The baseline building design shall be modeled with the same number of floors and identical conditioned floor area as the proposed design. Equivalent dimensions shall be assumed for each exterior envelope component type as in the proposed design; i.e., the total gross area of exterior walls shall be the same in the proposed and baseline building designs. The same shall be true for the areas of roofs, floors, and doors, and the exposed perimeters of concrete slabs on grade shall also be the same in the proposed and baseline building designs. The following additional requirements shall apply to the modeling of the baseline building design:

- a. Orientation. The baseline building performance shall be generated by simulating the building with its actual orientation and again after rotating the entire building 90, 180, 270 degrees, then averaging the results. The building shall be modeled so that it does not shade itself.
- b. Opaque assemblies. Opaque assemblies used for new buildings or additions shall conform with the following common, light-weight assembly types and shall match the appropriate assembly maximum U-factors in Tables B-1 through B-26:
 - Roofs Insulation Entirely above Deck
 - Above-Grade Walls Steel Framed
 - Floors Steel Joist
 - Opaque Door types shall match the proposed design and conform to the U-factor requirements from the same tables.
 - Slab-on-Grade Floors shall match the F-factor for unheated slabs from the same tables.

- Opaque assemblies used for alterations shall conform with 4.1.2.2.1.
- Vertical Fenestration. Vertical fenestration areas for new buildings and additions shall equal that in the proposed design or 40% of gross above-grade wall area, whichever is smaller, and shall be distributed uniformly in horizontal bands across the four orientations and shall be distributed on each face of the building in the same proportion as on the Proposed Design. Fenestration U-factors shall match the appropriate requirements in Tables B-1 through B-26 for the applicable vertical glazing percentage for Ufixed. Fenestration Solar Heat Gain Coefficient (SHGC) shall match the appropriate requirements in Tables B-1 through B-26 using the value for SHGC_{all} for the applicable vertical glazing percentage. All vertical glazing shall be modeled as fixed and shall be assumed to be flush with the exterior wall, and no shading projections shall be modeled. Manual window shading devices such as blinds or shades shall not be modeled. The fenestration areas for envelope alterations shall reflect the limitations on area, U-factor, and SHGC as described in 4.1.2.2.1.
- d. Skylights and Glazed Smoke Vents. Skylight area shall be equal to that in the proposed building design or 5% of the gross roof area that is part of the building envelope, whichever is smaller. If the skylight area of the proposed building design is greater than 5% of the gross roof area, baseline skylight area shall be decreased by an identical percentage in all roof components in which skylights are located to reach the 5% skylight-to-roof ratio. Skylight orientation and tilt shall be the same as in the proposed building design. Skylight U-factor and SHGC properties shall match the appropriate requirements in Tables B-1 through B-26.
- e. Roof albedo. All roof surfaces shall be modeled with a reflectivity of 0.30.
- f. Existing Buildings. For existing building envelopes, the baseline building design shall reflect existing conditions prior to any revisions that are part of the scope of work being evaluated.

Revise the Table G4.2.1A column headings as follows:

Nonresidential & Three Floors or Less & $<75,000 \text{ ft}^2$ $(7,000 \text{ m}^2)$ 25,000 ft² (2,300 m²)

Nonresidential & Four or Five Floors &< $75,000 \text{ ft}^2$ (7,000 m²) 25,000 ft² (2,300 m²) or Five Floors or Less & 75,000 ft² (7,000 m²) 25,000 ft² (2,300 m²) to 150,000 ft² (14,000 m²)

Nonresidential & More than Five Floors or >150,000 ft² $(14,000 \text{ m}^2)$

Revise Section G4.2.3.12 as follows:

G4.2.3.1.2 Supply Air Temperature Reset (Systems 5 through 8). Supply air temperature shall be reset based on zone demand from the design temperature difference to a

10°F (5.6°C) temperature difference under minimum load conditions. Design air flow rates shall be sized for the reset supply air temperature; i.e., a 10°F (5.6°C) temperature difference. The air temperature for cooling shall be reset higher by 5°F (2.3°C) under the minimum cooling load conditions.

Revise Section G4.3 as follows:

- **G4.3 Baseline Service Hot Water Systems.** The service hot water system in the baseline building design shall use the same energy source as the corresponding system in the proposed design and shall conform to the following conditions:
- a. Where a the complete service hot water system exists, the baseline building design shall reflect the actual system type using the actual component capacities and efficiencies.
- b. Where a new service hot water system has been specified, the system shall be sized according to the provisions of Section 7.2.1, and the equipment shall match the minimum efficiency requirements in Sections 7.2.2 Where the energy source is electricity, the heating method shall be electrical resistance.
- c. Where no service hot water system exists or has been specified, but the building will have service hot water loads, a service hot water system(s) using electrical resistance heat and matching minimum efficiency requirements of Section 7.2 shall be assumed and modeled identically in the proposed and baseline building design.
- d. For buildings that will have no service hot water loads, no service hot water heating shall be modeled.
- e. Where a combined system has been specified to meet both space heating and service water heating loads, the *baseline building* system shall use separate systems meeting the minimum efficiency requirements applicable to each system individually.
- f. Service hot water energy consumption shall be calculated explicitly based upon volume of service hot water required, and the entering make-up water and the leaving service hot water temperatures. Entering water temperatures shall be estimated based the location. Leaving temperatures shall be based upon the end use requirements.
- g. Where recirculation pumps are used to ensure prompt availability of service hot water at the end use, the energy consumption of such pumps shall be calculated explicitly-
- h. <u>Service water loads and usage shall be the same for both</u> the *baseline building design* and for the *proposed design*

- and shall be documented by the calculation procedures described in Section 7.2.1, with the following exceptions:
- Service hot water usage can be demonstrated to be reduced by documented water conservation measures that reduce the physical volume of service water required. Examples include low flow shower heads Such reduction shall be demonstrated by calculations.
- 2. Service hot water energy consumption can be demonstrated to be reduced by reducing the required temperature of service mixed water or by increasing the temperature of the entering make-up water. Examples include alternative sanitizing technologies for dishwashing or heat recovery to entering makeup water. Such reduction shall be demonstrated by calculations.
- 3. Service hot water usage can be demonstrated to be reduced by reducing the hot fraction of mixed water to achieve required operational temperature. Examples include shower or laundry heat recovery to incoming cold water supply, reducing the hot water fraction required to meet required mixed water temperature. Such reduction shall be demonstrated by calculations.

Revise Section G4.5 as follows:

G4.5 Other Baseline Systems. Other systems, such as motors covered by Section 10, and miscellaneous loads shall be modeled as identical to those in the proposed design including schedules of operations and controls of the equipment. Where there are specific efficiency requirements in Section 10, these systems or components shall be modeled as having the lowest efficiency allowed by those requirements. Where no efficiency requirements exist, power and energy rating or capacity of the equipment shall be identical between the baseline building and the proposed design with the following exception: variations of the power requirements, schedules, or control sequences of the equipment modeled in the baseline building from those in the proposed design may be allowed by the rating authority based upon documentation that the equipment installed in the proposed design represents a significant verifiable departure from documented conventional practice. The burden of this documentation is to demonstrate that accepted conventional practice would result in baseline building equipment different from that installed in the proposed design. Occupancy and occupancy schedules may not be changed.

[This foreword is not part of this standard. It is merely informative and does not contain requirements necessary for conformance to the standard. It has not been processed according to the ANSI requirements for a standard and may contain material that has not been subject to public review or a consensus process.]

FOREWORD

In 2002, ASHRAE published Addendum d to ASHRAE 90.1-2001. The intent of Addendum d was to establish single package vertical air conditioners (SPVAC) and heat pumps (SPVHP) as a new product class of air-conditioning and heating equipment as well as to establish test procedures and standards for these products. Under the Energy Policy and Conservation Act (EPCA), the publication of the addendum triggered a review at the Department of Energy (DOE) to determine if the amended Standard 90.1 could be adopted as a DOE's examination of Addendum d federal standard. revealed some deficiencies with the test procedures (ARI standard 390-2001) as well as with the minimum efficiency standards, which were inconsistent with current federal regulations. This proposal corrects the deficiencies noted by DOE on Addendum d.

Note: In this addendum, changes to the current standard are indicated in the text by underlining (for additions) and strikethrough (for deletions) unless the instructions specifically mention some other means of indicating the changes. Only these changes are open for review and comment at this time. Additional material is provided for context

only and is not open for comment except as it relates to the proposed substantive changes..

Addendum b to 90.1-2004 (I-P and SI Editions)

Add new definitions for single package vertical units in Section 3.2 as follows:

single package vertical air conditioner (SPVAC): is a type of air-cooled small or large commercial package air-conditioning and heating equipment; factory assembled as a single package having its major components arranged vertically, which is an encased combination of cooling and optional heating components; is intended for exterior mounting on, adjacent interior to, or through an outside wall; and is powered by single or three-phase current. It may contain separate indoor grille(s), outdoor louvers, various ventilation options, indoor free air discharge, ductwork, wall plenum, or sleeve. Heating components may include electrical resistance, steam, hot water, gas, or no heat but may not include reverse cycle refrigeration as a heating means.

single package vertical heat pump (SPVHP): is an SPVAC that utilizes reverse cycle refrigeration as its primary heat source, with secondary supplemental heating by means of electrical resistance, steam, hot water, or gas.

Revise Table 6.8.1D (formerly Table 6.2.1D in 90.1-2001) as follows:

I-P Version:

Equipment Type	Size Category (Input)	Subcategory or Rating Condition	Minimum Efficiency	Test Procedure
SPVAC (Cooling Mode)	All Capacities <65,000 Btu/h	95°F db/ 75°F wb Outdoor Air	<u>8.6 EER</u> 9.0 EER	ARI 390
	>=65,000 Btu/h and <135,000 Btu/h	95ºF db/ 75ºF wb Outdoor Air	<u>8.9 EER</u>	
	>=135,000 Btu/h and <240,000 Btu/h	95ºF db/ 75ºF wb Outdoor Air	<u>8.6 EER</u>	
SPVHP (Cooling Mode)	All Capacities <65,000 Btu/h	95°F db/ 75°F wb Outdoor Air	8.6 EER 9.0 EER	
	>=65,000 Btu/h and <135,000 Btu/h	95ºF db/ 75ºF wb Outdoor Air	<u>8.9 EER</u>	
	>=135,000 Btu/h and <240,000 Btu/h	95°F db/75°F wb Outdoor Air	8.6 EER	
SPVHP (Heating Mode)	All Capacities <65,000 Btu/h	47°F db/ 43°F wb Outdoor Air	2.7 COP 3.0 COP	
	>=65,000 Btu/h and <135,000 Btu/h	47ºF db/ 43ºF wb Outdoor Air	3.0 COP	
	>=135,000 Btu/h and <240,000 Btu/h	47ºF db/ 43ºF wb Outdoor Air	2.9 COP	

SI Version:

Equipment Type	Size Category (Input)	Subcategory or Rating Condition	Minimum Efficiency	Test Procedure
SPVAC (Cooling Mode)	All Capacities <19 kW	35.0°C db/23.9°C wb Outdoor Air	2.52 COP 2.64 COP	ARI 390
	>=19 kW and <40 kW	35.0°C db/23.9°C wb Outdoor Air	<u>2.61 COP</u>	
	>=40 kW and <70 Btu/h	35.0°C db/23.9°C wb Outdoor Air	<u>2.52 COP</u>	
SPVHP (Cooling Mode)	All Capacities <19 kW	35.0°C db/23.9°C wb Outdoor Air	2.52 COP 2.64 COP	
	>=19 kW and <40 kW	35.0°C db/23.9°C wb Outdoor Air	<u>2.61 COP</u>	
	>=40 kW and <70 Btu/h	35.0°C db/23.9°C wb Outdoor Air	2.52 COP	
SPVHP (Heating Mode)	All Capacities <19 kW	8.3°C db/ 6.1°C wb Outdoor Air	2.7 COP 3.0 COP	
	>=19 kW and <40 kW	8.3°C db/6.1°C wb Outdoor Air	<u>3.0 COP</u>	
	>=40 kW and ≤70 Btu/h	8.3°C db/6.1°C wb Outdoor Air	<u>2.9 COP</u>	

Remaining parts of Table 6.8.1D (formerly Table 6.2.1D in 90.1-2001) remain the same.

Revise the reference in Section 12 "Normative References" (under Air Conditioning and Refrigeration Institute) as follows:

Reference	Title
ARI 390-20043 Performance Rating of Single Package Vertical Air-Conditioners and Heat Pumps	

FOREWORD

The SSPC received a question as to whether, if a vestibule is conditioned, then by definition this conditioned space needed a further vestibule and so on. In response, the SSPC decided to clarify the envelope requirements for a vestibule, as sometimes they are heated and sometimes they are not. In discussing the merits of vestibules, there was discussion on how big-box retail stores and other low-rise buildings in cold climates could, by reason of the exceptions, not have to have a vestibule. This led to an overall examination of all the exceptions with the intent of bringing the exceptions more in line with good building practice in moderate and cold climates.

The conditioned vestibule issue is addressed in the first paragraph. Text is added to describe the two vestibule conditions one would encounter, a heated or conditioned vestibule and an unheated or a semi-heated vestibule, and how the designer is to treat them from an envelope standpoint. Further, the word DOOR is replaced with the words BUILDING ENTRANCE (note definition, Chapter 3) to more specifically state that vestibules are only required at building entrances as opposed to other types of DOORS, such as fire doors, access doors, roll-up doors.

The issue of good building practice is addressed with the exceptions re-worded and re-ordered. First the exceptions are re-ordered to put the obvious ones first. Then the hierarchy becomes more stringent as one moves from warm to cold climates. This reflects the best building and design practice of reducing heat loss in heating-dominated climates. The reasoning for each of the exceptions is as follows:

- (a) Revolving doors—a revolving door can substitute for a vestibule due to the better control of air movement and better weather sealing.
- (b) Doors not intended as a building entrance—the vestibule requirement is only intended for main building entrances. Note if a building has two "building entrances" (whether on the same side of a building or on different sides of a building), they both need vestibules. All other references and examples are removed. While this is somewhat duplicative, the SSPC felt it was better to be clear that doors that are NOT considered a "building entrance" are exempt.
- (c) Dwelling unit—intended for multi-family residential units accessed from the exterior.
- (d) Climate Zones 1 and 2—intended to exempt all buildings in warm climates.
- (e) Climate Zones 3 and 4—intended to exempt some buildings in the moderate climates, limited by height and area. This is intended to be representative of a small office building and smaller stores or buildings. This is based on

- professional judgment. (See Figure 15, Chapter 26, 2001 ASHRAE Handbook—Fundamentals.)
- (f) Climate Zones 5 through 8, 1000 ft² (100 m²) building exception—intended to exempt small buildings in colder climates, by area only. This is intended to be representative of gas stations, mini-marts, and other small stand-alone buildings that are too small to warrant the square footage allotted to a vestibule. A larger stand-alone building, such as a fast food restaurant or branch bank, would be expected to have a vestibule. This exception is based on professional judgment. (See Figure 15, Chapter 26, 2001 ASHRAE Handbook—Fundamentals).
- (g) 3000 ft² (300 m²) exception—intended to exempt those spaces within a larger development, such as a retail stripmall or mixed-use high-rise development. Note the added qualifier of "separate" to help describe the character of the space as distinctly separate from the larger development. This does not exempt a 50-story office building with 8 elevators and a 2900 ft² (290 m²) lobby from the vestibule requirement.

Note: In this addendum, changes to the current standard are indicated in the text by underlining (for additions) and strikethrough (for deletions) unless the instructions specifically mention some other means of indicating the changes. Only these changes are open for review and comment at this time. Additional material is provided for context only and is not open for comment except as it relates to the proposed substantive changes..

Addendum c to 90.1-2004 (I-P and SI Editions)

Revise the following definition in Section 3.2:

building entrance: any doorway, set of doors, turnstile, <u>vestibule</u>, or other form of portal that is ordinarily used to gain access to the building by its users and occupants.

Revise Section 5.4.3.4 as follows:

5.4.3.4 Vestibules. Building entrances A door that separates conditioned space from the exterior shall be protected with an enclosed vestibule, with all doors opening into and out of the vestibule equipped with self-closing devices. Vestibules shall be designed so that in passing through the vestibule it is not necessary for the interior and exterior doors to open at the same time. Interior and exterior doors shall have a minimum distance between them of not less than 7 ft (2.1 m) when in the closed position. The exterior envelope of conditioned vestibules shall comply with the requirements for a conditioned vestibules shall comply with the requirements for a semi-heated space.

Exceptions to 5.4.3.4

- <u>a.f.</u> <u>Building entrances</u> <u>Doors in building entrances</u> with revolving <u>doors</u>.
- <u>b.e.</u> Doors not intended to be used as a building entrance door, such as mechanical or electrical equipment rooms.
- c.d. Doors opening directly from a dwelling unit.
- d.a. Building entrances Doors in buildings located in Climate

- Zones 1 and or 2.
- <u>e.b.</u> <u>Building entrances</u> <u>Doors</u> in buildings <u>located in Climate</u> <u>Zones 3 or 4 that are less than four stories above grade and less than 10,000 ft² (1,000 m²) in area.</u>
- f.g. Building entrances in buildings located in Climate Zones 5, 6, 7, or 8 that are less than 1000 ft² (100 m²) in area.
- *Doors* used primarily to facilitate vehicular movement or material handling and adjacent personnel *doors*.
- g.e. Doors that open directly from a space that is less than $3000 \text{ ft}^2 (300 \text{ m}^2)$ in area and is separate from the building entrance.

FOREWORD

This is a routine update to incorporate the latest versions of references that are cited in Standard 90.1, primarily in the building envelope sections. For the references being updated, the ASTM standards were revised in 2001-2004 and the NFRC standards were revised in 2004. Five references (two from ASTM and three from NFRC) that were listed in Section 12 but not cited in the body of Standard 90.1 are proposed to be deleted.

Note: In this addendum, changes to the current standard are indicated in the text by underlining (for additions) and strikethrough (for deletions) unless the instructions specifically mention some other means of indicating the changes. Only these changes are open for review and comment at this time. Additional material is provided for context only and is not open for comment except as it relates to the proposed substantive changes.

Addendum d to 90.1-2004 (I-P and SI Editions)

Revise the norma	tive references in Section 12 as follows:		Doors Under Specified Pressure
nevise inc norma	iive rejerences in section 12 as jouows.		Differences Across the Specimen
ASTM C90- 96 03	Standard Specification for Loadbear-	NFRC 101 2001	Procedure for Determining
_	ing Concrete Masonry Units		Thermo Physical Properties of
ASTM C272-9101	Test Method for Water Absorption of		Materials for Use in NFRC
	Core Materials for Structural Sand-		Approved Software Programs,
	wich Constructions		(First Edition) Published Novem-
ASTM C518- 02 04	Standard Test Method for Steady-State		ber 2002
	Thermal Transmittance Properties by	NFRC 102 2001	Test Procedures for Measuring the
	Means of the Heat Flow Meter Appa-		Steady State Thermal Transmit
	ratus		tance of Fenestration Systems,
ASTM C835-95(1999	2)01Standard Test Method for Total		(Second Edition) Published
	Hemispherical Emittance of Surfaces		November 2002
	from 20°C to 1400°C	NFRC 201-2001	Interim Standard Test Method for
ASTM C1371-9804	Standard Test Method for Determina-		Measuring the Solar Heat Gain
	tion of Emittance of Materials Near		Coefficient of Fenestration
	Room Temperature Using Portable		Systems Using Calorimetry Hot
	Emissometers		Box Methods, (Second Edition)
ASTM E408-71(1996	(2002) Test Methods for Total Normal		Published November 2002

ASTM E96-95

ASTM E283-91

Emittance of Surfaces Using Inspec-

Determining Solar or Photopic Reflec-

tance, Transmittance, and Absorptance

of Materials Using a Large Diameter

tion Product U-Factors (Second

tion Product Solar Heat Gain Coeffi-

cient and Visible Transmittance at

Normal Incidence (Second Edition)

the Solar Optical Properties of Glazing Materials and Systems, (Second

tion Product Air Leakage-(Second

Test Methods for Water Vapor

Test Method for Determining Rate of Air Leakage Through Exterior

Windows, Curtain Walls, and

Edition) Published November 2002

Edition) Published November 2002

Transmission of Materials

Published November 2002

Edition) Published November 2002

tion-Meter Techniques

ASTM E1175-87(1996)(2003) Standard Test Method for

Integrating Sphere

NFRC 100-20012004 Procedure for Determining Fenestra-

NFRC 200-20012004 Procedure for Determining Fenestra-

NFRC 300-20012004 Standard Test Method for Determining

NFRC 400-20012004 Procedure for Determining Fenestra-

Delete the following normative references in Section 12:

FOREWORD

This proposed change recognizes that track and busway type lighting systems can be limited by circuit breakers and permanently installed current limiters below a value of 30 W/lin ft (98 W/lin m). This wording allows these limits to be used to calculate installed power for these installed lighting systems.

Note: In this addendum, changes to the current standard are indicated in the text by underlining (for additions) and strikethrough (for deletions) unless the instructions specifically mention some other means of indicating the changes. Only these changes are open for review and comment at this time. Additional material is provided for context only and is not open for comment except as it relates to the proposed substantive changes.

Addendum e to 90.1-2004 (I-P and SI Editions)

Revise Section 9.1.4 (c) as follows:

9.1.4 Luminaire Wattage.

- (c) For The wattage of line-voltage lighting track and plug-in busway, designed to that allow the addition and/or relocation of luminaires without altering the wiring of the system, the wattage shall be:
 - 1. the specified wattage of the luminaires included in the system with a minimum of 30 W/lin ft (98 W/lin m), or
 - 2. the wattage limit of the system's circuit breaker, or
 - 3. the wattage limit of other permanent current limiting device(s) on the system.

FOREWORD

In 2003, ASHRAE published addendum i to ASHRAE Standard 90.1-2001 to establish new minimum efficiency standards for three-phase air-cooled air conditioners and heat pumps less than 65,000 Btu/h at levels identical to the minimum federal efficiency standards for single-phase residential equipment. At the time of publication of Addendum i to Standard 90.1-2001, the new minimum federal standards in place for residential equipment were those promulgated on May 23, 2002, by the Department of Energy (DOE) setting a seasonal energy efficiency ratio (SEER) rating of 12.0 and a heating seasonal performance factor (HSPF) of 7.4 effective January 23, 2006.

However, on January 13, 2004, the US Appeals Court for the Second Circuit in New York found that the DOE did not follow proper administrative procedures while adopting the 12 SEER/7.4 HSPF standards. The court concluded that DOE improperly withdrew the 13 SEER/7.7 HSPF rule published on January 22, 2001, and ruled that the 13 SEER/7.7 HSPF standard must be reinstated. On April 2, 2004, the DOE announced that it will be enforcing the 13 SEER/7.7 HSPF standard effective January 23, 2006.

This addendum raises the minimum efficiency standard for three-phase air-cooled central air conditioners and heat pumps less than 65,000 Btu/h to 13 SEER/7.7 HSPF to be consistent with federal minimum standards for single-phase residential equipment. It also removes the product class for small duct high velocity (SDHV) equipment to be consistent with the DOE final rule. Minimum efficiency standards for SDHV systems have been addressed by the DOE's Office of Hearings and Appeals through the "application for exception" process.

The recommended adoption date for the new standards under Standard 90.1 is January 23, 2006, which is identical to the effective date mandated in the DOE final rule for single-phase central air-conditioner products. This will save an estimated 2.3 quads of primary energy through the year 2030.

Addendum f to 90.1-2004 (I-P and SI Editions)

Revise Tables 6.8.1A and 6.8.1B to reflect the newly adopted DOE efficiency standards for single-phase air conditioners and heat pumps less than 65,000 Btu/h. The revisions proposed are as follows.

In I-P units:

TABLE 6.8.1A Electrically Operated Unitary Air Conditioners and Condensing Units— Minimum Efficiency Requirements

Equipment Type	Size Category	Heating Section Type	Sub-Category or Rating Condition	Minimum Efficiency ^b	Test Procedure ^a
Air conditioners, air cooled	<65,000 Btu/h ^c	All	Split system	10.0 SEER (before 1/23/2006) 12.0 SEER-13.0 SEER (as of 1/23/2006)	ARI 210/240
			Single package	9.7 SEER (before 1/23/2006) 12.0 SEER 13.0 SEER (as of 1/23/2006)	
Small duct high velocity, air cooled	< 65,000 Btu/h ^c	All	Split system	10 SEER	

TABLE 6.8.1B Electrically Operated Unitary and Applied Heat Pumps—Minimum Efficiency Requirements

Equipment Type	Size Category	Heating Section Type	Sub-Category or Rating Condition	Minimum Efficiency ^b	Test Procedure ^a
Air cooled, (cooling mode)	<65,000 Btu/h ^c	All	Split system	10.0 SEER (before 1/23/2006) 12.0 13.0 SEER (as of 1/23/2006)	ARI 210/240
			Single package	9.7 SEER (before 1/23/2006) 12.0 13.0 SEER (as of 1/23/2006)	
Small duct high velocity (air cooled, cooling mode)	< 65,000 Btu/h ^c	All	Split system	10 SEER	
Air cooled, (heating mode)	<65,000 Btu/h ^c (cooling capacity)	-	Split system	6.8 HSPF (before 1/23/2006) 7.4 7.7 HSPF as of 1/23/2006)	
			Single package	6.6 HSPF (before 1/23/2006) 7.4-7.7 HSPF as of 1/23/2006)	
Small duct high velocity (air cooled, heating mode)	< 65,000 Btu/h ^c (cooling capacity)	-	Split system	6.8 HSPF	

In SI units:

TABLE 6.8.1A Electrically Operated Unitary Air Conditioners and Condensing Units— Minimum Efficiency Requirements

Equipment Type	Size Category	Heating Section Type	Sub-Category or Rating Condition	Minimum Efficiency ^b	Test Procedure ^a
Air conditioners, air cooled	<19 kW ^c	All	Split system	2.93 SCOP (before 1/23/2006) 3.52 SCOP 3.81 SCOP (as of 1/23/2006)	ARI 210/240
			Single package	2.84 SCOP (before 1/23/2006) 3.52 SCOP 3.81 SCOP (as of 1/23/2006)	
Small duct high velocity, air cooled	< 19kW ^c	All	Split system	2.93 SCOP	

TABLE 6.8.1B Electrically Operated Unitary and Applied Heat Pumps—Minimum Efficiency Requirements

Equipment Type	Size Category	Heating Section Type	Sub-Category or Rating Condition	Minimum Efficiency ^b	Test Procedure ^a
Air cooled, (cooling mode)	<19 kW ^c	All	Split system	2.93 SCOP (before 1/23/2006) 3.52 3.81 SCOP (as of 1/23/2006)	ARI 210/240
			Single package	2.84 SCOP (before 1/23/2006) 3.52 3.81 SCOP (as of 1/23/2006)	
Small duct high velocity (air cooled, cooling Mode)	< 19 kW ^c	All	Split system	2.93 SCOP	
Air cooled, (heating mode)	<19 kW ^c (cooling capacity)	-	Split system	1.99 SCOP _H (before 1/ 23/2006) 2.17 2.25 SCOP _H as of 1/23/2006)	
			Single package	1.93 SCOP _H (before 1/23/2006) 2.17-2.25 SCOP _H as of 1/23/2006)	
Small duct high velocity (air cooled, heating mode)	< 19 kW ^c (cooling capacity)	-	Split system	1.99 SCOP _H	

FOREWORD

On October 29, 1999, ASHRAE approved amendments to Standard 90.1 that increased the minimum efficiency levels of much heating and cooling equipment, including commercial air-cooled air conditioners and heat pumps greater than 65,000 Btu/h covered by the Energy Policy and Conservation Act (EPCA) of 1992. These new minimum efficiency standards published by ASHRAE triggered a rulemaking at the Department of Energy (DOE) to assess if the amended standards could be adopted as federal minimum energy-efficiency standards. On January 12, 2001, the DOE published a final rule in the Federal Register adopting the ASHRAE Standard 90.1-1999 efficiency levels as federal minimum efficiency standards for some, but not all, EPACT-covered equipment. Among the products for which new federal minimum standards were not adopted were air-cooled commercial unitary air conditioners and heat pumps with cooling capacities between 65,000 and 240,000 Btu/h. For these products, the DOE concluded that cost-effective energy savings could result from more stringent standards and decided to undertake further analyses to assess if higher efficiency levels could be justified.

The DOE started a rulemaking process in 2001. On July 29, 2004, the DOE published an Advanced Notice of Proposed Rulemaking (ANOPR) to solicit public comments on its preliminary technical analyses. The comment period ended last November. Under normal procedures, the DOE is expected to finalize the rule in the next two to three years.

In March 2004, the Air-Conditioning and Refrigeration Institute (ARI), representing HVAC manufacturers, and the American Council for and Energy-Efficient Economy (ACEEE), representing the energy-efficiency community, entered into informal discussions on commercial air-cooled air conditioners and heat pumps with cooling capacities between 65,000 and 760,000 Btu/h. The purpose of these discussions was to develop consensus recommendations on minimum efficiency standards in order to speed up the rulemaking process and allow the DOE to proceed to a final rule more quickly than the normal procedures. Another objective of the discussions was to agree on specific minimum standards for products between 240,000 and 760,000 Btu/h, which are not presently covered by federal standards. These discussions resulted in a consensus agreement that was announced at the DOE's September 30, 2004, ANOPR workshop. Following the workshop, ARI and ACEEE submitted joint comments to the DOE, urging the Department to adopt the efficiency standards in the consensus agreement as minimum federal energyefficiency standards. A copy of the joint comments is attached at the end of this document.

This addendum amends the minimum efficiency levels of air-cooled air conditioners and heat pumps greater or equal to 65,000 Btu/h contained in Tables 6.8.1A and 6.8.1B of ASHRAE Standard 90.1-2004 to be consistent with the consensus agreement. The effective date of January 1, 2010, is designed to coincide with the phase out date of R-22, mandated by the Clean Air Act. Justifications of the efficiency levels are included in the joint comments, and the technical analyses can be found in the DOE Technical Support Document: Energy Efficiency Program for Commercial and Industrial Equipment: Commercial Unitary Air Conditioners and Heat Pumps. This is posted on the DOE's Web site at: http://www.eere.energy.gov/buildings/appliance_standards/commercial/cuac_tsd_060904.html. This addendum will save an estimated 1.05 quads of cumulative primary energy by the year 2035.

Addendum g to 90.1-2004 (I-P and SI Editions)

Revise minimum efficiency standards for air-cooled air conditioners and heat pumps listed in Tables 6.8.1A and 6.8.1B as follows.

In I-P units:

TABLE 6.8.1A Electrically Operated Unitary Air Conditioners and Condensing Units— Minimum Efficiency Requirements

Equipment Type	Size Category	Heating Section Type	Sub-Category or Rating Condition	Minimum Efficiency ^a	Test Procedure ^b
Air conditioners, air cooled	≥65,000 Btu/h and <135,000 Btu/h	Electric resistance (or none)	Split system and single package	10.3 EER (before 1/1/2010) 11.2 EER (as of 1/1/2010)	ARI 340/360
		All other	Split system and single package	10.1 EER (before 1/1/2010) 11.0 EER (as of 1/1/2010)	
	≥135,000 Btu/h and <240,000 Btu/h	Electric resistance (or none)	Split system and single package	9.7 EER (before 1/1/2010) 11.0 EER (as of 1/1/2010)	
		All other	Split system and single package	9.5 EER (before 1/1/2010) 10.8 EER (as of 1/1/2010)	
	≥240,000 Btu/h and <760,000 Btu/h	Electric resistance (or none)	Split system and single package	9.5 EER (before 1/1/2010) 10.0 EER (as of 1/1/2010) 9.7 IPLV	
		All other	Split system and single package	9.3 EER (before 1/1/2010) 9.8 EER (as of 1/1/2010) 9.5 IPLV	
	≥760,000 Btu/h	Electric resistance (or none)	Split system and single package	9.2 EER (before 1/1/2010) 9.7 EER (as of 1/1/2010) 9.4 IPLV	
		All other	Split system and single package	9.0 EER (before 1/1/2010) 9.5 EER (as of 1/1/2010) 9.2 IPLV	

TABLE 6.8.1B Electrically Operated Unitary and Applied Heat Pumps— Minimum Efficiency Requirements

Equipment Type	Size Category	Heating Section Type	Sub-Category or Rating Condition	Minimum Efficiency ^a	Test Procedure ^b
Air cooled (cooling mode)	≥65,000 Btu/h and <135,000 Btu/h	Electric resistance (or none)	Split system and single package	10.1 EER (before 1/1/2010) 11.0 EER (as of 1/1/2010)	ARI 340/360
		All other	Split system and single package	9.9 EER (before 1/1/2010) 10.8 EER (as of 1/1/2010)	
	≥135,000 Btu/h and <240,000 Btu/h	Electric resistance (or none)	Split system and single package	9.3 EER (before 1/1/2010) 10.6 EER (as of 1/1/2010)	
		All other	Split system and single package	9.1 EER (before 1/1/2010) 10.4 EER (as of 1/1/2010)	
	≥240,000 Btu/h	Electric resistance (or none)	Split system and single package	9.0 EER (before 1/1/2010) 9.5 EER (as of 1/1/2010) 9.2 IPLV	
		All other	Split system and single package	8.8 EER (before 1/1/2010) 9.3 EER (as of 1/1/2010) 9.0 IPLV	
Air cooled (heating mode)	≥65,000 Btu/h and <135,000 Btu/h (cooling capacity)	-	47°F db/43°F wb outdoor air	3.2 COP (before 1/1/2010) 3.3 COP (as of 1/1/2010)	ARI 340/360
			17°F db/15°F wb outdoor air	2.2 COP	
	≥135,000 Btu/h (cooling capacity)	-	47°F db/43°F wb outdoor air	3.1 COP (before 1/1/2010) 3.2 COP (as of 1/1/2010)	
			17°F db/15°F wb outdoor air	2.0 COP	

TABLE 6.8.1A Electrically Operated Unitary Air Conditioners and Condensing Units— Minimum Efficiency Requirements

Equipment Type	Size Category	Heating Section Type	Sub-Category or Rating Condition	Minimum Efficiency ^a	Test Procedure ^b
Air conditioners, air cooled	≥19 kW and <40 kW	Electric resistance (or none)	Split system and single package	3.02 COP (before 1/1/2010) 3.28 COP (as of 1/1/2010)	ARI 340/360
		All other	Split system and single package	2.96 COP (before 1/1/2010) 3.22 COP (as of 1/1/2010)	
	≥40 kW and <70 kW	Electric resistance (or none)	Split system and single package	2.84 COP (before 1/1/2010) 3.22 COP (as of 1/1/2010)	
		All other	Split system and single package	2.78 COP (before 1/1/2010) 3.16 COP (as of 1/1/2010)	
	≥70 kW and <223 kW	Electric resistance (or none)	Split system and single package	2.78 COP (before 1/1/2010) 2.93 COP (as of 1/1/2010) 2.84 IPLV	
		All other	Split system and single package	2.72 COP (before 1/1/2010) 2.87 COP (as of 1/1/2010) 2.78 IPLV	
	≥223 kW	Electric resistance (or none)	Split system and single package	2.70 COP (before 1/1/2010) 2.84 COP (as of 1/1/2010) 2.75 IPLV	
		All other	Split system and single package	2.64 COP (before 1/1/2010) 2.78 COP (as of 1/1/2010) 2.69 IPLV	

TABLE 6.8.1B Electrically Operated Unitary and Applied Heat Pumps—Minimum Efficiency Requirements

Equipment Type	Size Category	Heating Section Type	Sub-Category or Rating Condition	Minimum Efficiency ^a	Test Procedure ^b
Air cooled (cooling mode)	≥ 19kW and <40 kW	Electric resistance (or none)	Split system and single package	2.96 COP _C (before 1/1/2010) 3.22 COP _C (as of 1/1/2010)	ARI 340/360
		All other	Split system and single package	2.90 COP _C (before 1/1/2010) 3.16 COP _C (as of 1/1/2010)	
	≥40 kW and <70 kW Btu/h	Electric resistance (or none)	Split system and single package	2.72 COP _C (before 1/1/2010) 3.10 COP _C (as of 1/1/2010)	
		All other	Split system and single package	2.66 COP _C (before 1/1/2010) 3.04 COP _C (as of 1/1/2010)	
	≥70 kW	Electric resistance (or none)	Split system and single package	2.64 COP _C (before 1/1/2010) 2.78 COP _C (as of 1/1/2010) 2.70 IPLV	
		All other	Split system and single package	2.58 COP _C (before 1/1/2010) 2.72 COP _C (as of 1/1/2010) 2.64 IPLV	
Air cooled (heating mode)	≥19 kW and <40 kW (cooling capacity)	_	8.3°C db/6.1°C wb outdoor air	3.2 COP _H (before 1/1/2010) 3.3 COP _H (as of 1/1/2010)	ARI 340/360
			-8.3°C db/-9.4°C wb outdoor air	2.2 COP _H	
	≥40 kW Btu/h (cooling capacity)	_	8.3°C db/6.1°C wb outdoor air	3.1 COP _H (before 1/1/2010) 3.2 COP _H (as of 1/1/2010)	
			-8.3°C db/-9.4°C wb outdoor air	2.0 COP _H	

FOREWORD

Table 2.1 of ASHRAE's Thermal Guidelines for Data Processing Environments (p. 10) provides environmental conditions for electronic equipment such as that found in data processing centers. This more recent publication found that electronic equipment can perform under more relaxed conditions than were previously believed. In light of this new information, it makes sense to remove these types of spaces from having specific exceptions on temperature and humidification dead bands.

Addendum h to 90.1-2004 (I-P and SI Editions)

Revise the exceptions to Sections 6.4.3.1.2 and 6.4.3.6 as follows:

6.4.3.1.2 Dead Band. Where used to control both heating and cooling, zone thermostatic controls shall be capable of providing a temperature range or dead band of at least

5°F (3°C) within which the supply of heating and cooling energy to the zone is shut off or reduced to a minimum.

Exceptions to 6.4.3.1.2:

- a. Thermostats that require manual changeover between heating and cooling modes.
- b. Special occupancy or special applications where wide temperature ranges are not acceptable (such as retirement homes, process applications, data processing, museums, some areas of hospitals) and are approved by the authority having jurisdiction.

6.4.3.6 Humidification and Dehumidification. Where a *zone* is served by a system or systems with both humidification and dehumidification capability, means (such as limit switches, mechanical stops, or, for DDC systems, software programming) shall be provided capable of preventing simultaneous operation of humidification and dehumidification equipment.

Exceptions to 6.4.3.6:

- a. Zones served by desiccant systems, used with direct evaporative cooling in series.
- Systems serving zones where specific humidity levels are required, such as computer rooms, museums, and hospitals, and approved by the authority having jurisdiction.

FOREWORD

This additional language allows additional flexibility in assigning wattage to luminaires with multi-level ballasts where other luminaire components would restrict lamp size. In these cases the manufacturer's labeling of maximum wattage

based on these restrictions would be allowed as the maximum value for compliance calculation.

Addendum i to 90.1-2004 (I-P and SI Editions)

Revise Section 9.1.4(b) as follows:

9.1.4(b) The wattage of luminaires with permanently installed or remote ballasts or *transformers* shall be the operating input wattage of the maximum lamp/auxiliary combination based on values from the auxiliary *manufacturer's* literature or recognized testing laboratories or shall be the maximum labeled wattage of the luminaire.

FOREWORD

This language modification allows additional flexibility in complying with the controls requirements by allowing additional combinations of commonly available control equipment. This flexibility allows designers and builders additional cost-effective options for compliance.

Addendum j to 90.1-2004 (I-P and SI Editions)

Revise Section 9.4.1.3 as follows:

9.4.1.3 Exterior Lighting Control. Lighting for all exterior applications not exempted in 9.1 shall have automatic controls capable of turning off exterior lighting when sufficient daylight is available or when the lighting is not required during nighttime hours. Lighting not designated for dusk-to-dawn operation shall be controlled by either:

- a. a combination of a photosensor and a time switch or
- b. an astronomical time switch.

Lighting designated for dusk-to-dawn operation shall be controlled by an astronomical time switch or photosensor. <u>All Astronomical</u> time switches shall be capable of retaining programming and the time setting during loss of power for a period of at least 10 hours.

FOREWORD

Metal building roofs often include blanket insulation draped over purlins in screw-down roof designs. U-factors for screw-down roofs with R-10, R-11, and R-13 insulation were included in Table A2.3 of Standard 90.1-2004. This addendum adds U-factors for R-19 insulation to Table A2.3. U-factors for R-19 Screw-Down Roofs were included in California Title 24 (2005 Joint Appendices Table IV.7).

For consistency, the new U-factors were derived from the values in Table 1A of the NAIMA publication "ASHRAE 90.1 Compliance for Metal Buildings" (December 1997), which was the original source for the values in Standard 90.1 Table A-2 and the California Title 24 appendices.

Addendum k to 90.1-2004 (I-P and SI Editions)

Revise Table A2.3 to add U-Factors for Screw-Down Roofs with R-19 Insulation as follows:

I-P edition:

TABLE A2.3 Assembly U-Factors for Metal Building Roofs

Insulation	Rated R-Value of	Total Rated R-Value of	Overall U-Factor for Entire Base Roof		Plus (unir	ctor for Ass Continuous nterrupted	s Insulation	n)	
System	Insulation	Insulation	Assembly	R-5.6	R-11.2	R-16.8	R-22.4	R-28.0	R-33.6
Screw De	own Roofs								
	R-10	10	0.153	0.082	0.056	0.043	0.035	0.029	0.025
	R-11	11	0.139	0.078	0.054	0.042	0.034	0.028	0.025
	R-13	13	0.130	0.075	0.053	0.041	0.033	0.028	0.024
	<u>R-19</u>	<u>19</u>	<u>0.098</u>	0.063	0.047	<u>0.037</u>	<u>0.031</u>	0.026	0.023

TABLE A2.3 Assembly U-Factors for Metal Building Roofs

Insulation	Rated R-Value of	Total Rated R-Value of	Overall U-Factor for Entire Base Roof						
System	Insulation	Insulation	Assembly	R-1.0	R-2.0	R-3.0	R-4.0	R-4.9	R-5.9
Screw De	own Roofs								
	R-1.8	1.8	0.868	0.467	0.320	0.243	0.196	0.164	0.141
	R-1.9	1.9	0.788	0.443	0.308	0.236	0.192	0.161	0.139
	R-2.3	2.3	0.737	0.427	0.300	0.232	0.188	0.159	0.137
	<u>R-3.3</u>	3.3	<u>0.557</u>	0.355	0.267	0.210	0.178	0.150	0.132

FOREWORD

The "Energy Cost Budget" section relies on the use of a building energy simulation program to estimate the energy cost difference between the design building model and a budget building model. The building designer can select any building energy simulation program for performing these estimates as long as the program complies with a list of requirements describing the minimum capabilities of the software. One of the requirements is a reference to ANSI/ASHRAE Standard 140-2001, Standard Method of Test for the Evaluation of Building Energy Analysis Computer Programs. Requiring the building energy simulation program to be tested using the Standard 140 procedure provides benefits to persons using the Energy Cost Budget method by prompting developers to fix bugs found during the testing. This addendum updates the reference to the latest version of Standard 140—the 2004 version—which includes additional tests covering unitary cooling equipment models. These additional tests increase the coverage and potentially reduce errors occurring in building energy simulation programs used the Energy Cost Budget section.

Addendum I to 90.1-2004 (I-P and SI Editions)

Update the reference to ASHRAE Standard 140 in Section 12 as follows:

12. NORMATIVE REFERENCES

American Society of Heating, Refrigerating and Air-Conditioning Engineers, 1791 Tullie Circle, NE, Atlanta, GA 30329

ANSI/ASHRAE Standard 140-2001 2004

Standard Method of Test for the Evaluation of Building Energy Analysis Computer Programs

FOREWORD

This modification addresses the issue of task lighting in office types and other spaces. It is understood that task lighting is becoming more of an integral element in current lighting design and that its supplemental nature may make determining compliance difficult. It is also rational to realize that task lighting with automatic control will provide supplemental light while having a minimal impact on connected load. Therefore, an option is provided for compliance that exempts the commonly used furniture mounted task lighting if it incorporates automatic shutoff.

Addendum m to 90.1-2004 (I-P and SI Editions)

Add exception (p) to section 9.2.2.3 list of exceptions as follows (other text included as reference):

9.2.2.3 Interior Lighting Power. The *interior lighting power allowance* for a *building* or a separately metered or permitted portion of a *building* shall be determined by either the *Building* Area Method described in 9.5 or the Space-by-Space

Method described in 9.6. Trade-offs of *interior lighting power allowance* among portions of the *building* for which a different method of calculation has been used are not permitted. The *installed interior lighting power* identified in accordance with 9.1.3 shall not exceed the *interior lighting power allowance* developed in accordance with 9.5 or 9.6.

Exceptions to 9.2.2.3: The following *lighting equipment* and applications shall not be considered when determining the *interior lighting power allowance* developed in accordance with 9.5 or 9.6, nor shall the wattage for such lighting be included in the *installed interior lighting power* identified in accordance with 9.1.3. However, any such lighting shall not be exempt unless it is an addition to general lighting and is controlled by an independent *control device*.

...

p. Furniture mounted supplemental task lighting that is controlled by automatic shutoff and complies with 9.4.1.4 (d).

9.4.1.4 Additional Control.

• • •

d. Task Lighting—supplemental task lighting, including permanently installed undershelf or undercabinet lighting, shall have a control device integral to the luminaires or be controlled by a wall-mounted control device provided the control device is readily accessible and located so that the occupant can see the controlled lighting.

FOREWORD

Exception (b) to Section 5.5.4.4.1 allows users to take credit for overhangs toward compliance with the maximum SHGC requirements. The table of credits was developed based on an opaque overhang. This addendum provides clarification on how the credits would apply to louvered overhangs and to partially opaque overhangs..

Addendum n to 90.1-2004 (I-P and SI Editions)

Revise 5.5.4.4 as follows:

5.5.4.4 Fenestration Solar Heat Gain Coefficient (SHGC).

5.5.4.4.1 SHGC of Vertical Fenestration. *Vertical fenestration* shall have a *SHGC* not greater than that specified for "all" orientations in Tables 5.5-1 through 5.5-8 for the appropriate total *vertical fenestration area*.

Exceptions to 5.5.4.4.1:

a. In latitudes greater than 10 degrees, the SHGC for north-oriented vertical fenestration shall be calculated separately and shall not be greater than that specified in Tables 5.5-1 through 5.5-8 for north-oriented fenestration. When this exception is used, the fenestration area used in selecting the criteria shall be calculated separately for north-oriented and all other-oriented fenestration.

Note to *adopting authority*: If the project is in the southern hemisphere, change north to south.

- b. For demonstrating compliance for *vertical fenestration* only, shaded by opaque permanent projections that will last as long as the building itself, the *SHGC* in the proposed building shall be reduced by using the multipliers in Table 5.5.4.4.1. for each *fenestration* product shaded by permanent projections that will last as long as the building itself.
- c. For demonstrating compliance for *vertical fenestration* shaded by partially opaque permanent projections (e.g. framing with glass or perforated metal) that will last as long as the building itself, the *projection factor* shall be reduced by multiplying it by a factor O_S derived as follows:

$$\underline{O_s} = (\underline{A_i} * \underline{O_i}) + (\underline{A_f} * \underline{O_f})$$

where:

 $O_{S} \equiv \text{percent opacity of the shading device}$

 $A_i =$ percent of the area of the shading device that is a partially opaque infill

 $\underline{O_i}$ = percent opacity of the infill. For glass = $(100\% - T_s)$. Where $\underline{T_s}$ is the Solar Transmittance as determined in accordance with NFRC 300. For perforated or decorative metal panels, $\underline{O_i}$ = percentage of solid material.

 $\underline{A_f} = \underline{percent of the area of the shading device that }$ represents the framing members

 $\underline{O_f} = \underline{percent opacity of the framing members. If solid then 100%$

And then the *SHGC* in the proposed building shall be reduced by using the multipliers in Table 5.5.4.4.1 for each *fenestration* product.

(e) (d) Vertical fenestration that is located on the street side of the street-level story only, provided that:

- the street side of the street-level story does not exceed 20 ft in height,
- 2. the *fenestration* has a continuous overhang with a weighted average *projection factor* greater than 0.5, and
- 3. the *fenestration area* for the street side of the street-level story is less than 75% of the *gross wall area* for the street side of the street-level story.

When this exception is utilized, separate calculations shall be performed for these sections of the *building envelope*, and these values shall not be averaged with any others for compliance purposes. No credit shall be given here or elsewhere in the building for not fully utilizing the *fenestration area* allowed.

TABLE 5.5.4.4.1 SHGC Multipliers for Permanent Projections

Projection	SHGC Multiplier	SHGC Multiplier
Factor	(All Other Orientations)	(North-Oriented)
0-0.10	1.00	1.00
>0.10-0.20	0.91	0.95
>0.20-0.30	0.82	0.91
>0.30-0.40	0.74	0.87
>0.40-0.50	0.67	0.84
>0.50-0.60	0.61	0.81
>0.60-0.70	0.56	0.78
>0.70-0.80	0.51	0.76
>0.80-0.90	0.47	0.75
>0.90-1.00	0.44	0.73

5.5.4.4.2 SHGC of Skylights. *Skylights* shall have an *SHGC* not greater than that specified for "all" orientations in Tables 5.5-1 through 5.5-8 for the appropriate total *skylight area*.

FOREWORD

The ASHRAE Standard 90.1-2004 climatic data for China contain a single location (Shanghai/Hongqiao), which is not adequate to effectively use the standard across the entire country. The SPC 169 Weather Data for Building Design Standards has current climatic data and is developing a standard that would contain all of the data required by Standards

90.1 and 90.2. In the meantime the current climatic data for just China (368 locations) and Taiwan (38 locations) were made available and used to develop this addendum.

In addition to adding the new data for China and Taiwan there were errors identified in Malaysia and Mexico. This addendum presents corrected values for those locations as well.

Climate data for other regions in Table D-3 remain unchanged.

Addendum o to 90.1-2004 (I-P and SI Editions)

Change Table D-3 in both the I-P and SI edition as follows.

TABLE D-3 International Climatic Data (I-P)

										Cooning	D
									Heating	DB	WB
Country	City	Province or Region	Lat		Long	Elev. (ft)	HDD65	CDD50	99.6%	1.0%	1.0%
China											
Shanghai/Hongqiao			31.17		121.43	91	3,182	5,124	97	76	≉
Beijing/Peking		Municipalities	39.93	z	116.28	E 180	5.252	4,115	71	25	72
Cangzhou		Municipalities	38.33	z	116.83	E 36	4,888	4,504	14	92	74
Hong Kong Intl Arpt		Special Admin. Region	22.33	z	114.18	E 29	<u>543</u>	7,894	48	ഒ	79
Shanghai		Municipalities	31.40	z	121.47	E 13	3,182	5,124	53	22	80
Shanghai/Hongqiao		<u>Municipalities</u>	31.17	z	121.43	E 23	3,184	5,127	<u> 26</u>	92	82
Tianjin/Tientsin		<u>Municipalities</u>	39.10	z	117.17	E 16	4.948	4,450	14	91	74
Anging		<u>Anhui</u>	30.53	z	117.05	99 E	3,093	5,476	28	94	<u></u>
Bengbu		Anhui	32.95	z	117.37	E 72	3,644	5,053	23	93	79
Fuyang		Anhui	32.93	z	115.83	E 128	3,639	5,004	23	93	<u>76</u>
Hefei/Luogang		Anhui	31.87	z	117.23	E 118	3,468	5,110	25	93	80
Huang Shan (Mtns)		<u>Anhui</u>	30.13	zl	118.15	E 6.024	6,723	1,647	5	70	5 9
Huoshan		Anhui	31.40	Z	116.33	E 223	3,516	4,907	<u>24</u>	94	80
Changting		<u>Fujian</u>	25.85	z	116.37	E 1,020	1.902	6.289	30	91	77
Fuding		<u>Fujian</u>	27.33	zI	120.20	E 125	1.868	6,277	34	92	80
Fuzhou		<u>Fujian</u>	26.08	z	119.28	E 279	1,396	7,047	40	24	80
Jiuxian Shan		<u>Fujian</u>	25.72	z	118.10	E 5,417	3,923	2,763	23	74	<u>79</u>
Longyan		<u>Fujian</u>	25.10	z	117.02	E 1,119	1,120	7,248	37	93	75
Nanping		<u>Fujian</u>	26.65	z	118.17	E 420	1.551	986'9	35	95	78
Pingtan		<u>Fujian</u>	25.52	Z	119.78	E 102	1,478	6,550	43	87	<u>76</u>
Pucheng		<u>Fujian</u>	27.92	z	118.53	E 902	2,325	5,940	<u>29</u>	93	78
Shaowu		Fujian	27.33	z	117.43	E 630	2,075	6,232	29	24	78
Xiamen		<u>Fujian</u>	24.48	z	118.08	E 456	1,014	7,326	43	91	79
Yong'An		Fujian	25.97	z	117.35	E 669	1.570	6.917	33	95	77
Dunhuang		Gansu	40.15	z	94.68	E 3,740	6,531	3,272	-1	93	64

TABLE D-3 International Climatic Data (I-P)

Country City Province or Region Lat Long Heztun Gansu 35.00 N 102.90 E Hudialining Gansu 35.33 N 105.00 E Hudiadining Gansu 36.02 N 105.29 E Hudiadining Gansu 36.02 N 105.20 E Macong Shan (Mount) Gansu 36.02 N 103.88 E Mindin Gansu Gansu 35.25 N 103.88 E Mindin Gansu Gansu 35.25 N 104.92 E Roberta Gansu Gansu 35.28 N 104.92 E Roberta Gansu Gansu 35.28 N 104.92 E Mudicin Gansu Gansu 35.23 N 104.92 E Mush Gansu Gansu 35.23 N 112.43 E Kisang Gansu Gan													9
Gansu 102.00 Gansu 35.08 N 102.00 Gansu 35.38 N 102.00 Gansu 39.77 N 105.00 Gansu 36.05 N 105.00 Gansu 36.05 N 105.00 Gansu 38.05 N 105.03 Gansu 38.05 N 105.02 Gansu 38.05 N 105.02 Gansu 33.40 N 105.02 Gansu 33.40 N 105.02 Gansu 34.52 N 105.02 Gansu 35.23 N 105.02 Gansu 35.23 N 105.03 Gansu 35.23 N 112.43 Guang 20.03 N 114.68 Guang 24.30 N 114.68 Guang 24.30 N 116.23 Guang 24.30 N 116.68 Guang											Heating	DB	WB
35.00	C	City	Province or Region	Lat		Long		Elev. (ft)	HDD65	CDD50	%9.66	1.0%	1.0%
35.38 N 105.00 39.77 N 98.48 36.05 N 103.88 41.80 N 103.08 35.55 N 106.67 33.58 N 102.97 34.58 N 102.97 34.58 N 102.97 34.58 N 102.97 34.58 N 102.87 32.20 N 102.87 32.32 N 104.92 32.32 N 113.32 40.02 23.43 N 113.32 40.02 24.30 N 116.12 40.02 24.30 N 116.12 40.02 24.30 N 116.12 40.02 22.78 N 116.12 40.02 22.35 N 116.10 40.02 40.02 22.35 N 116.97 40.02 40.03 40.0	I		Gansu	35.00	z	102.90	ш	9,547	9,760	491	신	70	54
39.77 N 36.05			Gansu	35.38	z	105.00	Ш	8.038	9,275	871	4 I	<u>70</u>	2 6
36.05 N 41.80 N 38.63 N 38.63 N 33.58 N 34.58 N 34.58 N 32.05 N 32.			Gansu	39.77	Z	98.48	Ш	4,849	7,316	2,473	7-	<u>98</u>	62
41.80 N 38.63 N 35.55 N 33.58 N 34.58 N 34.58 N 34.58 N 34.59 N 35.73 N 35.73 N 36.93			Gansu	36.05	z	103.88	ш	4.980	5,849	2,954	⊐	87	63
38.63 N 35.55 N 35.55 N 35.55 N 35.56 N 35.56 N 35.57 N 35.73 N 35.73 N 36.00g 40.02 23.13 N 40.27 N 25.13 N 2			Gansu	41.80	z	97.03	Ш	5,807	9,187	1,748	6-1	84	55
35.55 N 33.58 N 34.58 N 34.58 N 32.40 N 35.73 N 35.73 N 36.00g 36.00g 36.00g 37.73 N 37.70 N 37.			Gansu	38.63	z	103.08	Ш	4,485	7,045	2,830	0	88	<u>61</u>
33.58 N 34.58 N 34.58 N 34.58 N 33.40 N 35.73 N 40.27 N 35.73 N 40.27 N 38.93			Gansu	35.55	z	106.67	Ш	4,423	6,248	2,407	7	84	64
33.40 N 33.40 N 33.40 N 33.40 N 32.73 N 40.27 N 40.27 N 40.27 N 53.05 N 50.06 N 50.06 N 60.06 S.3.73 N 60.07 S.3.73 N 60.08 S.3.73 N 60.09 S.3.73 N 60.00 S.3.73 N 70.00 S.3.73 N 70.0			Gansu	33.58	z	102.97	Ш	11,289	10,826	232	쮜	65	<u>52</u>
33.40 N 37.20 N 37.20 N 36.00g dong dong dong dong dong dong dong don			Gansu	34.58	z	105.75	Ш	3,750	5,192	3,073	17	87	<u>79</u>
35.73 N 35.73 N 40.27 N 40.27 N 40.27 N 38.93 N 40.05 N 50.05 N 60.05 N 60.05 N 70.05 N			Gansu	33.40	Z	104.92	Ш	3,540	3,419	4.250	28	90	89
35.73 N 40.27 N 38.93 N 39.93 N 39.9			Gansu	37.20	z	102.87	ш	6.987	11,697	263	식	64	20
dong 23.87 N dong 23.05 N dong 23.13 N dong 24.78 N dong 24.37 N dong 24.30 N dong 22.78 N dong 22.78 N dong 22.78 N dong 22.55 N dong 22.35 N dong 22.35 N dong 22.35 N dong 21.22 N dong 21.22 N dong 21.22 N			Gansu	35.73	z	107.63	Ш	4,669	6,471	2,388	91	87	63
dong 38.93 N dong 23.87 N dong 23.13 N dong 24.78 N dong 24.37 N dong 24.30 N dong 24.30 N dong 22.78 N dong 22.78 N dong 22.55 N dong 22.55 N dong 21.22 N xi 21.22 N			Gansu	40.27	Z	97.03	凹	5,010	7,614	2,367	<u>د:</u> ا	98	09
23.05 N 23.05 N 23.13 N 24.37 N 24.30 N 21.73 N 22.78 N 22.55 N 22.55 N 21.27 N 22.55 N 21.27 N 22.55 N 21.27 N			Gansu	38.93	z	100.43	Ш	4.865	7.288	2,439	7	88	7
23.05 N 23.13 N 24.78 N 24.30 N 21.73 N 22.78 N 22.35 N 22.35 N 21.22 N 21.22 N			Guangdong	23.87	z	113.53	凹	223	1.063	7,709	33	27	73
23.13 N 23.73 N 24.37 N 24.37 N 21.73 N 22.78 N 22.55 N 21.87 N 21.87 N 21.22 N 21.22 N			Guangdong	23.05	Z	112.47	Ш	33	720	8,493	4	<u>83</u>	<u>8</u>
24.78 N 24.37 N 24.30 N 21.73 N 22.78 N 22.55 N 22.35 N 21.87 N 21.87 N			Guangdong	23.13	Z	113.32	ш	<u>76</u>	737	8.352	42	<u>83</u>	8
24.78 N 24.31 N 21.73 N 21.73 N 22.78 N 22.55 N 22.35 N 21.87 N 21.22 N			Guangdong	23.73	Z	114.68	Ш	135	807	8.079	8	প্ল	73
24.37 N 24.30 N 21.73 N 22.78 N 22.78 N 22.55 N 22.35 N 21.87 N 21.22 N			Guangdong	24.78	z	112.38	Ш	322	1,660	7,018	35	24	73
24.30 N J 21.73 N J 23.40 N J 22.78 N J 24.80 N J 22.55 N J 22.35			Guangdong	24.37	z	114.48	Ш	702	1,301	7,189	36	<u>87</u>	78
21.73 N 23.40 N 22.78 N 24.80 N 22.55 N 22.35 N 22.87 N 22.35 N 22.87 N 22.88 N 22.88			Guangdong	24.30	z	116.12	Ш	276	937	8.016	39	25	73
23.40 N J 22.78 N J 24.80 N J 22.55 N J 22.35 N J 21.87 N J 21.22 N J 21.48			Guangdong	21.73	z	112.77	Ш	59	514	8,621	46	88	8
22.78 N J 24.80 N J 22.55 N J 22.35 N J 21.87 N J 21.22 N J 21.22 N J 21.48			Guangdong	23.40	z	116.68	Ш	10	779	7,743	45	8	80
24.80 N 22.55 N 22.35 N 21.87 N 21.22 N 21.22 N 21.22 N 21.22 N 21.22 N 21.22 N 21.48 N 21.248 N 21.2488 N 21.248 N 21.248 N 21.248 N 21.248 N 21.248 N 21.248 N 21.2			Guangdong	22.78	z	115.37	П	16	<u>528</u>	8,272	46	68	79
22.55 N J 22.35 N J 21.87 N J 21.22 N J 21.22 N J 21.48			Guangdong	24.80	z	113.58	ш	223	1.370	7,565	37	22	73
22,35 N 21,87 N 21,22 N 21,22 N 21,22 N 21,248 N 2			Guangdong	22.55	z	114.10	Ш	<u>5</u>	531	8,597	4	92	80
21.87 N J 21.22 N J 21.48 N J			Guangdong	22.35	z	110.93	凹	276	570	8,763	43	93	<u>7</u>
21.22 N J 21.48 N J			Guangdong	21.87	z	111.97	Ш	72	547	8,470	45	8	8
21.48 N			Guangdong	21.22	z	110.40	Ш	<u>87</u>	423	<u>9,002</u>	46	27	8
			Guangxi	21.48	z	109.10	Ш	<u>52</u>	621	8.826	44	91	80

TABLE D-3 International Climatic Data (I-P)

Cooling

Lat Long
Z
25.33 N
23.40 N
24.70 N
.6.23 N
24.35 N
2.37 N
4.20 N
22.82 N
23.30 N
N 26.1.
23.48 N
7.30 N
25.83 N
N 85.9
<u>25.43</u> N
<u>25.97</u> N
N Z6.93
27.95 N
26.87 N
25.43 N
27.70 N
19.52 N
19.10 N
20.03 N
19.23 N
16.53 N
16.83 N
18.23 N
38.85 N

TABLE D-3 International Climatic Data (I-P)

Country												
Country										Heating	DB	WB
	City	Province or Region	Lat		Long	El	Elev. (ft)	HDD65	CDD50	%9.66	1.0%	1.0%
Chengde		Hebei	40.97	고 고	117.93	田	1,227	6,778	3,356	0	68	69
Fengning/Dagezhen		<u>Hebei</u>	41.22	z	116.63	ш	<u>2,169</u>	7,891	2,574	신	98	99
Huailai/Shacheng		<u>Hebei</u>	40.40	ZI	115.50	凹	1,765	6,490	3,403	5	<u>68</u>	<u>79</u>
Leting		Hebei	39.43	ZI	118.90	凹	39	5.918	3,562	∞I	87	74
Qinglong		<u>Hebei</u>	40.40	z	118.95	凹	748	6,611	3,261	a	88	71
Shijiazhuang		<u>Hebei</u>	38.03	z	114.42	凹	<u> 266</u>	4,695	4,469	15	93	73
Tangshan		<u>Hebei</u>	39.67	zl	118.15	凹	95	5.675	3.867	∞I	68	74
Weichang/Zhuizishan		<u>Hebei</u>	41.93	ZI	117.75	凹	<u>5,769</u>	8,600	2,201	91	83	59
Xingtai		<u>Hebei</u>	37.07	z	114.50	凹	<u>256</u>	4,506	4,626	18	93	73
Yu Xian		<u>Hebei</u>	39.83	괴	114.57	Ш	<u>5.986</u>	7,948	2,545	6-	<u>98</u>	<u>65</u>
Zhangjiakou		Hebei	40.78	ZI	114.88	凹	2,382	6.823	3,202	7	88	5 9
Aihui		Heilongjiang	50.25	괴	127.45	叫	<u>545</u>	11,840	1,840	<u>-28</u>	83	89
Anda		Heilongjiang	46.38	z	125.32	凹	492	10,066	2,482	<u>-20</u>	98	<u>69</u>
Baoqing		<u>Heilongjiang</u>	46.32	괴	132.18	叫	272	9.731	2.379	-17	85	69
Fujin		Heilongjiang	47.23	ZI	131.98	叫	213	10,265	2,356	<u>-18</u>	82	70
<u>Hailun</u>		<u>Heilongjiang</u>	47.43	ː 괴	126.97	叫	787	11,017	2,137	<u>-24</u>	83	89
<u>Harbin</u>		<u>Heilongjiang</u>	45.75	괴	126.77	凹	<u>469</u>	9.830	2,482	<u>-20</u>	85	69
Hulin		Heilongjiang	45.77	괴	132.97	凹	338	9,977	2,228	-17	28	70
Huma		<u>Heilongjiang</u>	51.72	괴	126.65	叫	287	12,658	1,760	-36	84	<u>79</u>
Jixi		Heilongjiang	45.28	z	130.95	凹	<u>89Z</u>	9.518	2,318	-14	84	<u>69</u>
Keshan		<u>Heilongjiang</u>	48.05	괴	125.88	凹	778	11,108	2,123	<u>-25</u>	84	89
Mudanjiang		Heilongjiang	44.57	zl	129.60	凹	794	9,464	2,449	-16	85	69
Qiqihar		<u>Heilongjiang</u>	47.38	zi	123.92	凹	<u>486</u>	9,924	2,514	<u>-18</u>	<u>98</u>	<u>69</u>
Shangzhi		Heilongjiang	45.22	zl	127.97	凹	627	10,340	2,189	- 26	84	<u>70</u>
Suifenhe		<u>Heilongjiang</u>	44.38	ZI	131.15	凹	1,634	10,219	1,714	91-	8	89
Sunwu		<u>Heilongjiang</u>	49.43	괴	127.35	叫	771	12,334	1,585	-32	83	89
<u>Tailai</u>		<u>Heilongjiang</u>	46.40	z	123.42	Ш	<u>492</u>	9,431	2,663	-16	87	<u>69</u>
Tonghe		Heilongjiang	45.97	zi	128.73	叫	361	10,618	2,210	-24	88	71
<u>Yichun</u>		Heilongjiang	47.72	z	128.90	山	761	11,239	1.965	-28	83	89
Anyang/Zhangde		Henan	36.12	ː 괴	114.37	凹	<u>249</u>	4,318	4,648	18	93	75

TABLE D-3 International Climatic Data (I-P)

		TABLE	E D-3 Inte	rnation	International Climatic Data (I-P)	ic Data	(I-P)					
											C00	Cooling
										Heating	DB	WB
Country	City	Province or Region	Lat		Long	Ŧ	Elev. (ft)	HDD65	CDD50	%9.66	1.0%	1.0%
Boxian		Henan	33.88	z	115.77	凹	138	4,006	4,755	20	93	77
Gushi		<u>Henan</u>	32.17	z	115.67	Ш	190	3,567	4,964	<u>24</u>	<u>92</u>	80
Lushi		<u>Henan</u>	34.05	z	111.03	Ш	1.870	4,572	3,865	17	8	73
Nanyang		Henan	33.03	z	112.58	ш	430	3,779	4,750	23	92	77
Xihua		<u>Henan</u>	33.78	z	114.52	凹	174	4,032	4,623	21	93	78
Xinyang		<u>Henan</u>	32.13	z	114.05	Ш	377	3,576	4,922	<u>24</u>	92	78
Zhengzhon		Henan	34.72	z	113.65	ш	364	4,146	4.614	61	93	75
<u>Zhumadian</u>		<u>Henan</u>	33.00	z	114.02	叫	272	3,885	4,718	22	93	77
Fangxian		<u>Hubei</u>	32.03	Z	110.77	叫	1,427	3,688	4,483	<u>24</u>	91	75
<u>Guanghua</u>		<u>Hubei</u>	32.38	Z	111.67	Ш	299	3,445	4.989	<u> 26</u>	93	<u>7</u>
Jiangling/Jingzhou		Hubei	30.33	z	112.18	叫	108	3,064	5,325	29	93	<u>8</u>
Macheng		Hubei	31.18	z	114.97	凹	194	3,166	5,363	27	94	08
Wuhan/Nanhu		<u>Hubei</u>	30.62	Z	114.13	Ш	75	3,140	5,433	<u>28</u>	94	81
<u>Yichang</u>		Hubei	30.70	z	111.30	ш	440	2.812	5,476	30	93	79
Zaoyang		Hubei	32.15	z	112.67	叫	417	3,463	5,034	25	93	78
Zhongxiang		Hubei	31.17	Z	112.57	Ш	217	3,192	5,240	<u>28</u>	<u>87</u>	80
<u>Changde</u>		Hunan	29.05	Z	111.68	Ш	115	2.896	5.520	30	<u>95</u>	<u>8</u>
Chenzhou		Hunan	25.80	z	113.03	叫	<u>Z09</u>	2,496	6,255	न्ह	95	78
Nanyue		Hunan	27.30	z	112.70	叫	4,196	4,866	3,090	17	77	71
<u>Sangzhi</u>		Hunan	29.40	Z	110.17	Ш	1,056	2.896	5,229	30	93	77
Shaoyang		<u>Hunan</u>	27.23	z	111.47	凹	814	2,794	5,651	30	93	78
Tongdao/Shuangjiang		Hunan	26.17	z	109.78	叫	1,302	2,706	5,440	30	8	<u>76</u>
Wugang		<u>Hunan</u>	26.73	Z	110.63	叫	1,115	2,854	5,424	30	<u>87</u>	77
Yuanling		<u>Hunan</u>	28.47	z	110.40	Ш	469	2,817	5,442	30	93	78
Yueyang		Hunan	29.38	z	113.08	叫	171	2,870	5,681	30	92	ಷ
Zhijiang		Hunan	27.45	z	109.68	Ш	968	2,857	5,385	30	75	78
Abag Qi/Xin Hot		Inner Mongolia	44.02	Z	114.95	Ш	3,701	11,253	1,853	-25	84	9
Arxan		Inner Mongolia	47.17	z	119.95	叫	3,373	13,802	964	-35	77	19
<u>Bailing-Miao</u>		Inner Mongolia	41.70	z	110.43	叫	4.518	9.399	2,005	-15	82	<u>53</u>
Bayan Mod		Inner Mongolia	40.75	Z	104.50	Ш	<u>4,360</u>	7,762	2,911	9	88	<u>59</u>

TABLE D-3 International Climatic Data (I-P)

										Cooling	ing
									Heatino	DB	WB
Country	City	Province or Region	Lat	Г	Long	Elev. (ft)	HDD65	CDD50	%9.66	1.0%	1.0%
Bugt		Inner Mongolia	48.77	N 12	121.92 E	2,425	12,243	1,187	-22	79	62
Bugt		<u>Inner Mongolia</u>	42.33	N 12	120.70 E	1,316	7,853	2,855	41	87	89
Chifeng/Ulanhad		<u>Inner Mongolia</u>	42.27	ZI ZI	118.97 E	1.877	7,571	3.015	5	88	<u>79</u>
Dongsheng		<u>Inner Mongolia</u>	39.83	97 21	109.98 E	4,787	8,149	2,202	뛰	83	59
Duolun/Dolonnur		<u>Inner Mongolia</u>	42.18	ZI ZI	116.47 E	4,091	10,403	1,547	-18	80	19
Ejin Qi		<u>Inner Mongolia</u>	41.95	N 10	101.07 E	3,087	7,313	3,592	소]	95	62
Erenhot		<u>Inner Mongolia</u>	43.65	ZI ZI	112.00 E	3,169	9.870	2,442	11 9	88	19
Guaizihu		<u>Inner Mongolia</u>	41.37	21 21	102.37 E	3,150	7,189	3,769	41	27	19
Hailar		<u>Inner Mongolia</u>	49.22	N 11	119.75 E	2,005	12,730	1,604	-32	82	5 9
Hails		<u>Inner Mongolia</u>	41.45	N 10	106.38 E	4.954	8,903	2,317	Ħ	85	<u>57</u>
Haliut		<u>Inner Mongolia</u>	41.57	91 21	108.52 E	4.232	8,927	2,305	쉬	85	19
Hohhot		<u>Inner Mongolia</u>	40.82	ZI ZI	111.68 E	3,494	8,022	2,509	41	98	63
<u>Huade</u>		<u>Inner Mongolia</u>	41.90	ZI TI	114.00 E	4.869	10,129	1,600	<u>-13</u>	80	<u>59</u>
<u>Jartai</u>		<u>Inner Mongolia</u>	39.78	N 01	105.75 E	3,389	096'9	3,456	뛰	93	79
Jarud Qi/Lubei		Inner Mongolia	44.57	ZI ZI	120.90 E	873	8,245	2,856	7-	83	89
Jining		Inner Mongolia	41.03	 	113.07 E	4,646	9,276	1,709	쉬	81	09
Jurh		Inner Mongolia	42.40	I	112.90 E	3,780	<u>8,067</u>	2,401	<u>-13</u>	87	9
Lindong/Bairin Zuoq		<u>Inner Mongolia</u>	43.98	I Z	119.40 E	1.591	8.954	2,352	유	87	<u>79</u>
<u>Linhe</u>		<u>Inner Mongolia</u>	40.77	0T ZI	107.40 E	3,415	7,302	2,995	ᆟ	88	29
Linxi		Inner Mongolia	43.60	N I	118.07 E	2,625	9,154	2,171	-10	84	6 4
Mandal		<u>Inner Mongolia</u>	42.53	I I	110.13 E	4.012	8.967	2,413	-10	87	<u>59</u>
<u>Naran Bulag</u>		<u>Inner Mongolia</u>	44.62	I Z	114.15 E	3.881	11,695	1,655	-23	8	9
Nenjiang		Inner Mongolia	49.17	N 12	125.23 E	<u> 797</u>	11,980	1.880	-32	83	<u>79</u>
Otog Qi/Ulan		Inner Mongolia	39.10	N 01	107.98 E	4.531	7,722	2,505	<u>5</u>	87	09
Tongliao		Inner Mongolia	43.60	71 21	122.27 E	591	8,319	2.951	위	88	70
<u>Tulihe</u>		Inner Mongolia	50.45	ZI ZI	121.70 E	2,405	14,791	202	-4 2	78	7 9
<u>Uliastai</u>		Inner Mongolia	45.52	I Z	16.97 E	2,756	11,342	1.892	-24	85	79
Xi Ujimqin Qi		Inner Mongolia	44.58	I I	17.60 E	3,271	11,137	1.656	-21	83	79
Xilin Hot/Abagnar		Inner Mongolia	43.95	기 기	16.07 E	3,251	10,480	2,051	-20	85	79
Xin Barag Youqi		Inner Mongolia	48.67		16.82 E	1.824	11,562	1.945	<u>-23</u>	85	<u>63</u>

TABLE D-3 International Climatic Data (I-P)

		IABLE	E D-3 Inte	rnatio	International Climatic Data (I-P)	c Data	(I -					
											Cooling	ing
										Heating	DB	WB
Country	City	Province or Region	Lat		Long	E	Elev. (ft)	HDD65	CDD50	%9.66	1.0%	1.0%
Dongtai		Jiangsu	32.87	괴	120.32	凹	16	3,813	4,612	24	12	18
Ganyu/Dayishan		<u>Jiangsu</u>	34.83	Z	119.13	ш	33	4,412	4,255	19	88	<u>78</u>
Liyang		<u>Jiangsu</u>	31.43	Z	119.48	Щ	<u> 76</u>	3,517	4.909	25	93	<u>8</u>
Lusi		<u>Jiangsu</u>	32.07	z	121.60	Щ	33	3,613	4,572	27	8	≅
Qingjiang		Jiangsu	33.60	z	119.03	ш	7	4,018	4,561	21	8	8
Shenyang/Hede		Jiangsu	33.77	Z	120.25	Щ	23	4,099	4,370	22	06	80
Xuzhou		Jiangsu	34.28	z	117.15	Щ	138	4.081	4,695	<u>20</u>	92	77
Ganzhou		<u>Jiangxi</u>	25.85	z	114.95	ш	410	1.924	6.919	34	81	78
Guangchang		<u>Jiangxi</u>	26.85	z	116.33	Ш	466	2,289	6,373	30	95	<u>78</u>
Ji'An		Jiangxi	27.12	Z	114.97	Щ	256	2,378	6,378	32	95	<u>7</u>
Jingdezhen		<u>Jiangxi</u>	29.30	z	117.20	ш	197	2,620	5.889	29	95	80
Lu Shan (Mountain)		<u>Jiangxi</u>	29.58	z	115.98	Ш	3,822	4,773	3,240	17	80	72
Nanchang		Jiangxi	28.60	Z	115.92	Щ	164	2,685	5,976	31	94	80
Nancheng		<u>Jiangxi</u>	27.58	z	116.65	ш	<u> 269</u>	2.509	6,120	띪	81	52
Xiushui		<u>Jiangxi</u>	29.03	z	114.58	凹	482	2,853	5,582	27	95	52
Xunwu		<u>Jiangxi</u>	24.95	Z	115.65	凹	981	1,658	6.685	33	<u>87</u>	77
<u>Yichun</u>		<u>Jiangxi</u>	27.80	Z	114.38	ш	423	2,717	5,726	<u>%</u>	81	<u>7</u> 6
<u>Changbai</u>		Jilin	41.35	z	128.17	凹	3,340	10,452	1,502	-17	78	99
<u>Changchun</u>		Jilin	43.90	z	125.22	ш	781	8,844	2,708	<u>-13</u>	85	70
Changling		Jilin	44.25	Z	123.97	Щ	623	8,939	2,725	-14	<u>86</u>	69
<u>Dunhua</u>		Jilin	43.37	z	128.20	ш	1,726	9.923	1.891	-17	81	<u>89</u>
<u>Huadian</u>		<u>Jilin</u>	42.98	z	126.75	ш	998	9.326	2,484	- 26	84	71
Ji'An		Jilin	41.10	Z	126.15	ш	587	7,612	2,944	6-1	<u>86</u>	72
Linjiang		<u>Jilin</u>	41.72	Z	126.92	ш	1,093	8,645	2,573	<u>-15</u>	85	71
Qian Gorlos		Jilin	45.12	z	124.83	凹	453	<u>9.062</u>	2,770	91-	98	71
Yanji		Jilin	42.88	z	129.47	凹	<u>584</u>	8,680	2,396	-10	85	70
Chaoyang		Liaoning	41.55	Z	120.45	ш	<u>577</u>	7,072	3,397	쉬	8	<u>70</u>
Dalian/Dairen/Luda		Liaoning	38.90	z	121.63	凹	318	5,648	3,441	의	8 8	73
<u>Dandong</u>		Liaoning	40.05	z	124.33	ш	4 6	6,642	3,014	7	83	74
Haiyang Island		Liaoning	39.05	Z	123.22	凹	33	5,475	3,341	13	82	77

TABLE D-3 International Climatic Data (I-P)

										Cooling	ing
									Heating	DB	WB
Country	City	Province or Region	Lat	Lc	Long	Elev. (ft)	HDD65	CDD50	%9.66	1.0%	1.0%
Jinzhou		Liaoning	41.13		21.12 E	230	865.9	3,397	2	87	72
Kuandian		Liaoning	40.72	<u>N</u> 12	24.78 E	856	7,744	2,667	<u>-10</u>	84	72
<u>Oingyuan</u>		Liaoning	42.10	N 12	124.95 E	771	8,373	2,749	-17	87	71
Shenyang/Dongta		Liaoning	41.77	N 123	123.43 E	141	7.218	3,325	쮜	87	73
Siping		Liaoning	43.18	N 12	124.33 E	541	8,240	2,898	-10	98	71
Yingkou		Liaoning	40.67	N 123	2.20 E	13	6,765	3,403	0	85	75
Zhangwu		Liaoning	42.42	N 12	122.53 E	276	7,754	3,060	쮜	87	71
<u>Yanchi</u>		<u>Ningxia</u>	37.78	N 10	7.40 E	4,426	6,914	2,774	7	88	19
Yinchuan		<u>Ningxia</u>	38.48	N 100	5.22 E	3,648	6,617	2,979	— I	87	99
Zhongning		<u>Ningxia</u>	37.48	N 10;	<u>5.67</u> E	3.888	6,217	3,070	<i>ب</i> ا	88	99
Daqaidam		Qinghai	37.85	N 95	.37 E	10,413	10,776	734	큐	74	6
Darlag		Qinghai	33.75	66 N	.65 E	13,018	12,136	100	<u>-13</u>	7 9	48
<u>Delingha</u>		<u>Qinghai</u>	37.37	N 97	.37 E	9,783	9,185	1,170	입	77	<u>53</u>
Dulan/Qagan Us		<u>Qinghai</u>	36.30	86 N	.10 E	10,472	899.6	770	귀	74	<u>S</u>
Gangca/Shaliuhe		Qinghai	37.33	N 100).13 E	10,830	11,792	174	-7	21	<u>8</u>
Golmud		<u>Qinghai</u>	36.42	N 49	<u>30</u>	9,216	8,414	1,442	⊣	73	<u>52</u>
<u>Henan</u>		<u>Qinghai</u>	34.73	N 10	<u>1.60</u>	11,483	11,607	155	-17	8	<u>50</u>
Lenghu		<u>Qinghai</u>	38.83	N 93	.38 E	8.970	10,060	1,142	쮜	78	64
Madoi/Huangheyan		<u>Qinghai</u>	34.92	86 N	98.22 E	14,019	14,135	31	-18	58	43
Qumarleb		<u>Qinghai</u>	34.13	N 95	.78 E	13,701	13,175	Z 9	-16	7	46
<u>Tongde</u>		<u>Qinghai</u>	35.27	N 100	<u>).65</u> E	10,794	11,220	288	-14	89	51
Tuotuohe/Tanggulash		<u>Qinghai</u>	34.22	N 92	92.43 E	14,879	14,505	21	<u>-21</u>	09	42
Wudaoliang		<u>Qinghai</u>	35.22	N 93	<u>.08</u> E	15,135	15,114	∞l	<u>-16</u>	2 6	40
Xining		<u>Qinghai</u>	36.62	N 10	101.77 E	7,421	7,417	1,620	κl	78	57
Yushu		Qinghai	33.02	N 97	97.02 E	12,080	9,354	<u>550</u>	7	70	25
Zadoi		<u>Qinghai</u>	32.90	N 95	95.30 E	13,346	11,257	218	6-1	<u>65</u>	48
Ankang/Xing'an		Shaanxi	32.72	N 109	109.03 E	955	3,242	4.920	<u>28</u>	93	7 6
Baoji		Shaanxi	34.35	N 01	07.13 E	2,001	4.345	3.985	21	28	71
Hanzhong		Shaanxi	33.07	N 201	07.03 E	1,670	3,676	4,253	27	83	75
Hua Shan (Mount)		<u>Shaanxi</u>	34.48	N 110	10.08 E	6,768	7.893	1,516	2	72	09

TABLE D-3 International Climatic Data (I-P)

		IABLE	E D-3 Inte	rnatic	International Climatic Data (I-P)	iic Dat	a (I-P)					
											Cooling	ling
										Heating	DB	WB
Country	City	Province or Region	Lat		Long		Elev. (ft)	HDD65	CDD50	%9.66	1.0%	1.0%
Tongchuan		Shaanxi	35.17	z	109.05	凹	2,999	5,470	3,117	14	87	<u>79</u>
Xi'An		Shaanxi	34.30	z	108.93	凹	1,306	4,332	4,276	21	93	74
Yan An		Shaanxi	36.60	z	109.50	Ш	3,146	5.872	3,132	9	88	99
Yulin		Shaanxi	38.23	z	109.70	Щ	3,471	7,039	2,834	쉬	88	64
Chengshantou (Cape)		Shandong	37.40	z	122.68	凹	154	5,125	3,151	20	73	74
Dezhou		<u>Shandong</u>	37.43	z	116.32	Ш	72	4,643	4.591	16	91	75
Haiyang		Shandong	36.77	z	121.17	Ш	210	4.943	3,742	91	85	74
Heze/Caozhou		<u>Shandong</u>	35.25	z	115.43	Ш	167	4,280	4,627	81	92	77
Huimin		<u>Shandong</u>	37.50	Z	117.53	凹	39	5,009	4,270	12	91	75
Jinan/Sinan		Shandong	36.68	Z	116.98	Ш	190	4,161	5.036	81	<u>93</u>	74
Linyi		<u>Shandong</u>	35.05	z	118.35	ш	282	4.388	4.395	8 1	8	7 6
Longkon		<u>Shandong</u>	37.62	z	120.32	Ш	91	5,167	3,822	77	88	76
Quingdao/Singtao		Shandong	36.07	Z	120.33	Ш	253	4,651	3,872	61	8 8	74
Rizhao		<u>Shandong</u>	35.38	z	119.53	Ш	4	4.595	3,926	ମ	85	78
Tai Shan (Mtns)		<u>Shandong</u>	36.25	z	117.10	Ш	5,039	8,288	1,537	7	71	<u>63</u>
Weifang		<u>Shandong</u>	36.70	Z	119.08	Ш	167	4,816	4,315	12	91	75
Xinxian		<u>Shandong</u>	36.03	z	115.58	Ш	154	4.619	4,426	16	92	77
Yanzhou		<u>Shandong</u>	35.57	z	116.85	ш	174	4,526	4,412	15	92	7 6
Yiyuan/Nanma		<u>Shandong</u>	36.18	z	118.15	Ш	166	5,093	3,949	17	88	72
Datong		<u>Shanxi</u>	40.10	z	113.33	Ш	3,507	7,877	2,512	ċ !	<u>86</u>	<u>63</u>
Hequ		Shanxi	39.38	z	111.15	Ш	2,825	7,336	2,879	-7	88	99
<u>Jiexiu</u>		<u>Shanxi</u>	37.05	z	111.93	Ш	2,461	5,700	3,285	∞I	88	<u>89</u>
Lishi		<u>Shanxi</u>	37.50	Z	111.10	凹	3,120	6,542	2,959	Н	88	99
Taiyuan/Wusu/Wusu		<u>Shanxi</u>	37.78	z	112.55	Ш	2,556	990,9	3,132	5	88	<u>69</u>
Wutai Shan (Mtn)		Shanxi	39.03	z	113.53	Ш	9.508	14,214	100	<u>61-</u>	<u>83</u>	53
Yangcheng		Shanxi	35.48	z	112.40	凹	2,162	5,057	3,714	4	88	69
Yuanping		Shanxi	38.75	Z	112.70	Ш	2,749	6,705	2,943	7	88	99
Yuncheng		Shanxi	35.03	z	111.02	ш	1,234	4,433	4,553	18	94	72
<u>Yushe</u>		Shanxi	37.07	z	112.98	凹	3,419	6,482	2,777	М	85	2 9
<u>Barkam</u>		Sichuan	31.90	Z	102.23	Ш	8,747	5,419	1.882	13	73	20

TABLE D-3 International Climatic Data (I-P)

									Cooling	ing
								Heating	DB	WB
City	Province or Region	Lat	Long		Elev. (ft)	HDD65	CDD50	99.6%	1.0%	1.0%
	Sichuan	30.00	N 99.10	Э	8,494	3,599	3,267	22	85	59
	Sichuan	30.67	<u>N</u> 104.02	Ш	1,667	2,708	4,843	33	88	<u> 76</u>
	<u>Sichuan</u>	31.20	<u>N</u> 107.50	Ш	1,020	2,498	5,455	34	94	78
	Sichuan	29.05	N 100.30	Щ	12,234	8,614	624	41	89	49
	<u>Sichuan</u>	30.98	N 101.12	Ш	9,708	6,110	1,639	∄	77	57
	<u>Sichuan</u>	29.52	<u>N</u> 103.33	Ш	10,003	9,458	381	∞I	<u>61</u>	54
	Sichuan	31.05	N 109.50	凹	1.991	2,889	5,043	32	92	75
	Sichuan	31.62	N 100.00	ш	11,135	7,656	991	থ	72	53
	<u>Sichuan</u>	29.00	<u>N</u> 101.50	ш	9,823	5,505	1,568	18	75	<u>55</u>
	<u>Sichuan</u>	30.05	<u>N</u> 101.97	Ш	8.586	6.870	1,224	17	71	<u>58</u>
	Sichuan	31.58	N 105.97	ш	1,263	2,553	5,192	34	92	77
	<u>Sichuan</u>	30.68	N 107.80	Ш	1,493	2,733	5,111	33	92	77
	<u>Sichuan</u>	30.00	<u>N</u> 100.27	Ш	12,959	9,367	370	—	<u>65</u>	48
	Sichuan	28.88	N 105.43	피	1,102	2,150	5.690	38	93	78
	Sichuan	31.47	N 104.68	ш і	1,549	2,771	4.943	띪	8	75
	<u>Sichuan</u>	30.80	N 106.08	피	1,017	2,446	5,422	35	<u>83</u>	78
	<u>Sichuan</u>	29.58	N 105.05	Ш	1,171	2,235	5.591	<u>36</u>	<u>93</u>	78
	Sichuan	32.42	N 104.52	Ш	2,877	3,115	4,327	30	88	77
	<u>Sichuan</u>	32.65	N 103.57	Ш	9,357	7,329	1,094	∞I	74	2 6
	<u>Sichuan</u>	32.07	N 108.03	Ш	2,211	3,354	4,305	<u>28</u>	<u>8</u>	73
	<u>Sichuan</u>	27.90	N 102.27	Ш	5,246	1,736	5.211	35	87	<u>65</u>
	<u>Sichuan</u>	29.98	N 103.00	Ш	2,064	2,584	4,962	34	88	76
	<u>Sichuan</u>	28.80	<u>N</u> 104.60	Ш	1,122	2,043	5,715	38	92	78
	<u>Sichuan</u>	28.83	<u>N</u> 108.77	Ш	2,182	3,311	4,486	<u>29</u>	88	74
	Tibet	31.37	N 90.02	Ш	15,423	12,487	22	7-	9	42
	<u>Tibet</u>	31.42	N 95.60	Ш	12,710	9,327	2 08	41	89	20
	<u>Tibet</u>	29.67	N 91.13	Ш	11,975	6,560	1,433	41	75	<u>52</u>
	<u>Tibet</u>	28.42	N 92.47	Ш	12,667	7.949	864	∞I	69	64
	<u>Tibet</u>	31.48	N 92.07	凹	14,790	12,539	2 9	큐	7 9	41
	Tibet	29.57	N 94.47	Ш	9.846	5,624	1,610	ମ	73	57

TABLE D-3 International Climatic Data (I-P)

Cooling

										Heating	DB	WB
Country	City	Province or Region	Lat		Long		Elev. (ft)	HDD65	CDD50	%9.66	1.0%	1.0%
Pagri		Tibet	27.73	괴	80.08	凹	14,111	11,576	12	쉬	55	45
Qamdo		<u>Tibet</u>	31.15	z	97.17	凹	10,850	6,550	1,533	10	78	<u>55</u>
<u>Shiquanhe</u>		<u>Tibet</u>	32.50	z	80.08	Ш	14,039	12,092	517	-14	<u>70</u>	45
Sog Xian		Tibet	31.88	Z	93.78	ш	13,202	10,546	316	9	<u>Z9</u>	49
Tingri/Xegar		<u>Tibet</u>	28.63	Z	87.08	ш	14,114	9,994	456	0	<u>79</u>	46
Xainza		<u>Tibet</u>	30.95	Z	88.63	Ы	15,325	11,849	86	신	<u>62</u>	42
Xigaze		<u>Tibet</u>	29.25	Z	88.88	Ш	12,589	7.635	1.064	9	72	51
Akgi		Xinjiang	40.93	z	78.45	ш	6.516	7,653	2,055	0	8	57
<u>Alar</u>		Xinjiang	40.50	Z	81.05	Ш	3,323	5.921	3,882	κI	<u>87</u>	<u>79</u>
Altay		Xinjiang	47.73	Z	88.08	Ш	2,418	<u>9,426</u>	2,390	<u>-21</u>	85	<u>63</u>
Andir		Xinjiang	37.93	Z	83.65	ш	4,147	6.189	3,804	긤	98	79
<u>Bachu</u>		Xinjiang	39.80	Z	78.57	ш	3,665	5,431	4,284	7	97	59
Balguntay		Xinjiang	42.67	Z	86.33	Ш	5,751	7,609	1.963		81	2 6
Bayanbulak		Xinjiang	43.03	z	84.15	ш	8,068	15,010	204	<u>-37</u>	<u>79</u>	20
Baytik Shan (Mtns)		Xinjiang	45.37	Z	90.53	ш	5,417	10,272	1,357	큐	78	53
Fuyun		Xinjiang	46.98	Z	89.52	凹	2,713	10,149	2,386	-27	8	9
<u>Hami</u>		Xinjiang	42.82	Z	93.52	ш	2,425	6.518	3.926	귀	<u>95</u>	99
Hoboksar		Xinjiang	46.78	Z	85.72	ш	4.245	9,445	1.739	어	ಷ	57
Hotan		Xinjiang	37.13	Z	79.93	凹	4,511	5.069	4,215	77	75	59
<u>Jinghe</u>		Xinjiang	44.62	Z	82.90	Ш	1,053	7.844	3,610	<u>-15</u>	94	69
<u>Kaba He</u>		Xinjiang	48.05	Z	86.35	ш	1,752	9,156	2,491	<u>-20</u>	87	65
Karamay		Xinjiang	45.60	Z	84.85	凹	1,404	7,867	4,225	-14	95	8 3
<u>Kashi</u>		Xinjiang	39.47	Z	75.98	凹	4,236	5,421	3,784	∞I	8	<u>65</u>
<u>Korla</u>		Xinjiang	41.75	Z	86.13	Ш	3,061	5.680	4,212	7	<u>83</u>	99
Kuga		Xinjiang	41.72	z	82.95	ш	3,609	5,703	3,945	এ	ส	29
<u>Mangnai</u>		Xinjiang	38.25	z	90.85	凹	9.662	10,445	727	뛰	76	848
<u>Pishan</u>		Xinjiang	37.62	Z	78.28	凹	4,514	5,337	4,071	∞I	<u>83</u>	<u>59</u>
<u>Qijiaojing</u>		Xinjiang	43.48	Z	91.63	ш	2,867	7,117	3,691	7	95	9
<u>Qitai</u>		Xinjiang	44.02	z	89.57	ш	2,605	8,861	2,793	-20	8	8 3
Ruoqiang		Xinjiang	39.03	Z	88.17	Ш	2,917	5,751	4,280	νI	86	99

TABLE D-3 International Climatic Data (I-P)

	WB	1.0%	99	64	<u>79</u>	70	19	99	<u> 26</u>	99	<u>63</u>	49	53	<u>7</u> 9	<u>64</u>	[2]	89	72	<u>63</u>	99	09	<u>64</u>	<u>63</u>	72	72	99	70	64	64	75	<u>79</u>	<u>19</u>
Cooling	DB \	1.0% 1.		0		104																83					88				93	Ol
			6	61	61	Π	∞I	∞I	7	∞I	∞I	7	g	∞I	∞I	7	∞I	0	7	∞I	7	∞I	∞I	01	0	∞I	∞I	∞I	7	9	9	∞I
	Heating	%9.66	6	-11	П	7	7-	쮜	-7	34	33	34	81	33	30	25	42	49	33	4	30	33	31	46	47	33	43	42	34	48	4	30
		CDD50	3,871	2,834	4,132	6,038	3,015	3,085	1,538	4,324	4,413	3.815	899	5,381	4,074	3,015	6,438	9,106	3,766	7,158	2,818	5,588	4,341	8,782	8,686	6,397	7,544	6,251	4,008	<u>9.856</u>	8.165	3.855
		HDD65	5,408	7,772	6.093	5,256	8,214	6,617	9.362	2,150	2,102	2.398	7,883	1,837	2,471	3,522	757	22	2,461	491	3,389	1,131	2,254	168	133	<u>947</u>	478	796	2,161	166	<u>503</u>	2,526
		Elev. (ft)	4,042	1,755	2,779	121	3,015	2,175	5.673	5,430	5.817	6,535	11,444	4,104	2,866	6.923	3,678	1,814	6.207	3,458	7,854	4.931	5.604	1.680	2,077	4.272	2.546	4,275	5,410	1,306	3.675	6,234
			ш	Ш	Ш	ш	Ш	Ш	Ш	Ш	凹	Ш	Ш	Ш	凹	ш	Ш	凹	Ш	Ш	Ш	凹	Ш	Ш	Ш	Ш	Ш	凹	Ш	ш	凹	凹
		Long	77.27	83.00	87.70	89.20	87.62	81.33	94.70	99.22	101.53	100.18	98.90	105.07	102.25	103.28	101.82	100.80	102.68	99.93	100.47	100.22	103.77	99.08	101.58	103.38	97.83	100.98	98.48	101.98	101.87	103.83
			z	Z	z	z	z	Z	z	z	Z	Z	z	z	Z	z	z	Z	Z	z	z	Z	z	z	Z	Z	z	z	Z	Z	z	Z
		Lat	38.43	46.73	40.63	42.93	43.78	43.95	43.27	25.13	25.02	25.70	28.50	24.07	26.65	26.42	22.62	22.02	25.02	22.57	26.83	23.95	24.53	23.57	21.50	23.38	24.02	22.77	25.12	23.60	25.73	25.58
		Province or Region	Xinjiang	Xinjiang	Xinjiang	Xinjiang	Xinjiang	Xinjiang	Xinjiang	Yunnan	Yunnan	Yunnan	Yunnan	Yunnan	<u>Yunnan</u>	Yunnan	Yunnan	Yunnan	Yunnan	Yunnan	Yunnan	<u>Yunnan</u>	Yunnan	Yunnan	Yunnan	<u>Yunnan</u>	Yunnan	Yunnan	Yunnan	Yunnan	Yunnan	Yunnan
		City																														
		Country	Shache	Tacheng	Tikanlik	Turpan	Urumqi	Yining	Yiwu/Araturuk	<u>Baoshan</u>	Chuxiong	<u>Dali</u>	Degen	Guangnan	Huili	<u>Huize</u>	Jiangcheng	<u>Jinghong</u>	Kunming/Wujiaba	Lancang/Menglangba	Lijing	Lincang	Luxi	Mengding	<u>Mengla</u>	Mengzi	Ruili	Simao	Tengchong	<u>Yuanjiang</u>	Yuanmou	Zhanyi

TABLE D-3 International Climatic Data (I-P)

Cooling

TABLE D-3 International Climatic Data (I-P)

								Cooling	ing
							Heating	DB	WB
Country City	Province or Region	Lat	Long	Elev. (ft)	HDD65	CDD50	%9.66	1.0%	1.0%
Kao Hsiung		22.62 N	120.27 E	95	70	9,940	55	8	81
Kungkuan		24.27 N	120.62 E	999	541	8,306	N.A.	N.A.	N.A.
Kungshan		22.78 N	120.25 E	33	158	9,526	N.A.	N.A.	N.A.
Lan Yu		22.03 N	121.55 E	1,066	95	8,765	57	84	80
Makung		23.57 N	119.62 E	102	283	8,957	22	<u>68</u>	82
<u>Matsu Island</u>		26.17 N	119.93 E	302	1,948	5.898	N.A.	N.A.	N.A.
North Pingtung		22.70 N	120.47 E	95	88	10,049	52	93	81
Peng Hu		23.52 N	119.57 E	69	287	890.6	N.A.	N.A.	N.A.
<u>Penkaiyu</u>		25.63 N	122.07 E	335	531	8,160	N.A.	N.A.	N.A.
Sing Jo		24.80 N	120.97 E	108	534	8,480	N.A.	N.A.	N.A.
Sinkung		23.10 N	121.37 E	121	88	9,601	N.A.	N.A.	N.A.
South Pingtung		22.67 N	120.45 E	79	71	10,228	53	93	81
Taichung		24.15 N	120.68 E	256	312	8.991	49	91	73
Taichung/Shui Nan		24.18 N	120.65 E	364	381	8.915	46	93	82
Tainan (TW-AFB)		22.95 N	120.20 E	22	150	9,729	20	19	87
<u>Tainan</u>		23.00 N	120.22 E	46	178	9,577	51	91	81
<u>Taipei</u>		25.03 N	121.52 E	<u> 26</u>	<u>438</u>	8.896	48	93	<u>80</u>
Taipei/Chiang Kai Shek		25.08 N	121.23 E	75	594	8,456	48	92	8
Taipei/Sungshan		25.07 N	121.53 E	70	206	8,454	48	83	<u>8</u>
Taitung		22.75 N	121.15 E	33	74	9,754	N.A.	N.A.	N.A.
Taitung/Fongyentsun		22.80 N	121.18 E	121	72	792.6	N.A.	N.A.	N.A.
Taoyuan (AB)		25.07 N	121.23 臣	164	979	8,315	47	92	82
<u> Tung Shih</u>		23.27 N	119.67 臣	148	191	9,217	N.A.	N.A.	N.A.
<u>Wu-Chi</u>		24.25 N	120.52 E	16	405	8.691	<u>50</u>	06	81
Yilan		24.77 N	121.75 E	23	411	8,416	N.A.	N.A.	N.A.
Malaysia									
Kuala Lumpur		₹ 1. 8	101.55 E	%	Ф	11,530	#	£6	87
Penang/Bayan Lepas		₹ 06.3	100.27 E	9	Ф	本	₹	₹	₹

TABLE D-3 International Climatic Data (I-P)

											C00	Cooling
										Heating	DB	WB
Country	City	Province or Region	Lat		Long		Elev. (ft)	HDD65	DD50	%9.66	1.0%	1.0%
Kuala Lumpur			3.13		101.55	TT1	56	1 0 95	1,530	71	93	78
Penang/Bayan Lepas			5.30	z	\overline{N} 100.27	TT 1	10	0	1,472	N.A.	<u>N.A.</u>	N.A.
Mexico												
Mexico City		Distrito Federal	19.40	本		≱	5,213	707	6,121	6,	5 8	53
Guadalajara		Jalisco	50.67	本	103.38	≱	8	9	11,122	₹ ≵	₹ :	<u>₹</u> .
Monterrey		Nuevo Laredo	25.87	本	100.20	≱	6,368	245	5,542	₹ ≭	₹	<u>₹</u> .
Tampice		Tamaulipas	22.22		97.85	≱	\$	Ф	10,760	3,	\$	%
Veracruz		Veracruz	49.15	*	96.12	≱	7,156	2,198	3,850	<i>ts</i>	76	08
Merida		Yucatan	20.98	*	89.68	≱	77	161,1	10,439	25	86	97.
Mexico City		Distrito Federal	19.40	z	99.20	≱	7,572	1,203	4,762	33	87	57
Guadalajara		<u>Jalisco</u>	20.67	z	103.38	\bowtie	5,213	<u>701</u>	6,121	N.A.	N.A.	N.A.
Monterrey		Nuevo Laredo	25.87	z	100.20	\geqslant	1,476	844	8,326	N.A.	N.A.	N.A.
<u>Tampico</u>		<u>Tamaulipas</u>	22.22	z	97.85	≱	33	216	9.870	<u>50</u>	8	8
Veracruz		<u>Veracruz</u>	19.15	z	96.12	\geqslant	52	77	10,006	57	92	8
<u>Merida</u>		Yucatan	20.98	Z	89.65	\bowtie	30	01	11,122	27	88	76

TABLE D-3 International Climatic Data (SI)

											Cooling	ing
										Heating	DB	WB
Country	City	Province or Region	Lat		Long	EI	Elev. (m)	HDD18	CDD10	%9.66	1.0%	1.0%
China												
Shanghai/Hongqiae			31.17	*	121.43	坤	ሳ ኑ	1,768	2,847	ቀ	33	53
Beijing/Peking		Municipalities	39.93	Z	116.28	ш	55	2,918	2,286	뒤	33	22
Cangzhou		Municipalities	38.33	z	116.83	凹	∄	2,716	2,502	9	33	23
Hong Kong Intl Arpt		Special Admin. Region	22.33	z	114.18	凹	24	302	4,386	6	33	5 7
Shanghai		<u>Municipalities</u>	31.40	Z	121.47	田	4 l	1,768	2,847	- 2	33	27
Shanghai/Hongqiao		<u>Municipalities</u>	31.17	z	121.43	凹	7	1,769	2,848	쉬	33	28
Tianjin/Tientsin		Municipalities	39.10	괴	117.17	Щ	νI	2,749	2,472	7	33	<u>73</u>
Anging		Anhui	30.53	z	117.05	끠	<u>20</u>	1,718	3,042	-2	34	27
Bengbu		Anhui	32.95	z	117.37	凹	22	2,025	2,807	십	34	26
Fuyang		Anhui	32.93	z	115.83	凹	39	2,022	2,780	신	34	<u>26</u>
Hefei/Luogang		Anhui	31.87	z	117.23	凹	<u>36</u>	1,926	2,839	41	34	27
Huang Shan (Mtns)		<u>Anhui</u>	30.13	z	118.15	i I	<u>1.836</u>	3,735	915	-13	21	18
Huoshan		Anhui	31.40	z	116.33	凹	<u>89</u>	1.953	2,726	신	34	27
Changting		<u>Fujian</u>	25.85	Z	116.37	凹	311	1,057	3,494	ᅴ	33	25
Fuding		Eujian	27.33	Z	120.20	凹	38	1,038	3,487	-4	33	27
Fuzhou		Eujian	26.08	z	119.28	凹	85	775	3.915	41	34	27
<u>Jiuxian Shan</u>		Eujian	25.72	z	118.10	i H	1,651	2,180	1,535	신	23	70
Longyan		<u>Fujian</u>	25.10	Z	117.02	凹	341	<u>622</u>	4,027	κI	34	<u>24</u>
Nanping		Eujian	26.65	z	118.17	凹	<u>128</u>	861	3,881		35	<u> 26</u>
Pingtan		<u>Fujian</u>	25.52	z	119.78	凹	31	821	3,639	9	31	<u>26</u>
Pucheng		<u>Fujian</u>	27.92	zI	118.53	凹	275	1,292	3,300	- -2	34	25
Shaowu		<u>Fujian</u>	27.33	z	117.43	凹	<u>192</u>	1.153	3,462	ヿ	34	<u> 26</u>
Xiamen		Eujian	24.48	z	118.08	凹	139	<u>563</u>	4,070	9	33	26
Yong'An		<u>Fujian</u>	25.97	z	117.35	凹	204	872	3,843	-4	35	25
<u>Dunhuang</u>		Gansu	40.15	Z	94.68	i I	1,140	3,629	1.818	-17	34	18
<u>Hezno</u>		Gansu	35.00	Z	102.90	III	2.910	5,422	273	-20	21	12
Huajialing		Gansu	35.38	괴	105.00	Щ П	<u>2,450</u>	5,153	484	-16	21	띰

TABLE D-3 International Climatic Data (SI)

			, 				Z (~:)				3	Cooling
												an H
										Heating	DB	WB
Country	City	Province or Region	Lat		Long		Elev. (m)	HDD18	CDD10	%9.66	1.0%	1.0%
Jiuquan/Suzhou		Gansu	39.77	z ı	98.48	凹	1,478	4,065	1,374	-19	30	17
Lanzhou		Gansu	36.05	괴	103.88	凹	1,518	3,250	1,641	<u>-12</u>	31	17
Mazong Shan (Mount)		Gansu	41.80	z	97.03	Щ	1,770	5,104	971	<u>-23</u>	29	13
Mingin		Gansu	38.63	Z	103.08	Щ	1.367	3,914	1,572	81-	32	91
Pingliang		Gansu	35.55	z	106.67	凹	1,348	3,471	1,337	113	29	81
Ruo'ergai		Gansu	33.58	괴	102.97	Ш	3,441	6,014	129	<u>-22</u>	18	□
Tianshui		Gansu	34.58	괴	105.75	Щ	1.143	2,885	1,707	6-	30	ଧ
Wudu		Gansu	33.40	괴	104.92	Щ	1.079	1.899	2,361	7	32	<u>20</u>
Wushaoling (Pass)		Gansu	37.20	괴	102.87	凹	3,044	6,499	<u>146</u>	<u>-20</u>	18	10
Xifengzhen		Gansu	35.73	Z	107.63	Щ	1,423	3,595	1,327	-12	28	17
Yumenzhen		Gansu	40.27	z	97.03	Щ	1,527	4,230	1,315	<u>-19</u>	30	15
Zhangye		Gansu	38.93	괴	100.43	Щ	1,483	4,049	1,355	<u>-19</u>	31	17
Fogang		<u>Guangdong</u>	23.87	괴	113.53	Ш	89	<u>590</u>	4,283	41	34	<u> 26</u>
<u>Gaoyao</u>		Guangdong	23.05	z	112.47	Щ	12	400	4,718	9	34	27
Guangzhou/Baiyun		Guangdong	23.13	괴	113.32	Щ	∞l	409	4,640	এ	34	5 7
<u>Heyuan</u>		<u>Guangdong</u>	23.73	z	114.68	凹	41	501	4,488	41	34	<u> 26</u>
Lian Xian		Guangdong	24.78	z	112.38	Ш	88	922	3.899	7	35	<u> 26</u>
Lianping		Guangdong	24.37	z	114.48	ш	214	723	3.994	7	34	25
<u>Meixian</u>		Guangdong	24.30	z	116.12	Ш	84	520	4,454	41	34	5 7
Shangchuan Island		<u>Guangdong</u>	21.73	z	112.77	凹	<u>18</u>	285	4,789	∞I	32	27
Shantou		Guangdong	23.40	z	116.68	Ш	κl	433	4.302	Z	32	27
<u>Shanwei</u>		Guangdong	22.78	괴	115.37	Щ	νI	293	4,595	∞I	32	<u> 26</u>
Shaoguan		<u>Guangdong</u>	24.80	괴	113.58	Ш	89	761	4,203	κJ	35	<u> 26</u>
Shenzhen		<u>Guangdong</u>	22.55	z	114.10	Ш	18	295	4,776	Z	33	<u> 26</u>
Xinyi		Guangdong	22.35	z	110.93	Щ	8	316	4.868	9	34	26
Yangjiang		Guangdong	21.87	z	111.97	ш	22	304	4,705	Z	32	26
Zhangjiang		Guangdong	21.22	z	110.40	Ш	<u>28</u>	235	5,001	∞I	33	27
<u>Beihai</u>		Guangxi	21.48	z	109.10	ш	91	345	4.903	9	33	27
Bose		Guangxi	23.90	z	106.60	ш	<u>242</u>	398	4,716	9	35	2 6
Guilin		Guangxi	25.33	z	110.30	Щ	166	1,095	3,638	⊣	2 4	<u> 26</u>

TABLE D-3 International Climatic Data (SI)

											Cooling	ing
										Heating	DB	WB
Country	City	Province or Region	Lat		Long		Elev. (m)	HDD18	CDD10	%9.66	1.0%	1.0%
Guiping		Guangxi	23.40	z ı	110.08	끠	44	531	4,491	থ	34	27
Hechi/Jnchengjiang		Guangxi	24.70	Z	108.05	Щ	214	<u>683</u>	4,161	41	34	<u> 77</u>
Lingling		<u>Guangxi</u>	26.23	z	111.62	凹	174	1,449	3,330	0	34	<u> 76</u>
Liuzhou		Guangxi	24.35	z	109.40	叫	27	761	4,225	М	34	<u> 77</u>
Longzhou		<u>Guangxi</u>	22.37	z	106.75	Щ	129	378	4,776	9	35	27
<u>Mengshan</u>		<u>Guangxi</u>	24.20	z	110.52	Ш	<u>145</u>	825	3,958	7	33	<u> 26</u>
Nanning/Wuxu		Guangxi	22.82	z	108.35	Щ	73	476	4.619	νI	34	<u> 26</u>
Napo		<u>Guangxi</u>	23.30	z	105.95	Щ	<u>794</u>	713	3,594	М	31	23
Qinzhou		Guangxi	21.95	ZI	108.62	Щ	9	427	4,675	9	33	27
Wuzhou		<u>Guangxi</u>	23.48	z	111.30	Ш	<u>120</u>	<u> 597</u>	4,408	41	34	<u> 76</u>
Bijje		Guizhou	27.30	z	105.23	Щ	1,511	2,132	1,942	뛰	28	20
Dushan		Guizhou	25.83	z	107.55	Щ	1,018	1,679	2,516	뛰	28	22
Guiyang		Guizhou	26.58	Z	106.72	Щ	1,074	1.599	2,605	7-	<u>29</u>	21
Luodian		Guizhou	25.43	z	106.77	Щ	141	751	3,926	М	34	25
Rongjiang/Guzhou		Guizhou	25.97	z	108.53	Щ	287	1,093	3,534	⊣	34	25
<u>Sansui</u>		Guizhou	26.97	Z	108.67	凹	611	1,846	2,588	7	31	24
Sinan		Guizhou	27.95	Z	108.25	Щ	418	1,385	3,177	П	34	24
Weining		Guizhou	26.87	z	104.28	Щ	2,236	2,573	1.301	위	24	91
Xingren		Guizhou	25.43	z	105.18	Щ	1,379	1,441	2,515	ᆟ	28	70
Zunyi		Guizhou	27.70	Z	106.88	凹	<u>845</u>	1,717	2,596	ᅴ	31	23
Danxian/Nada		<u>Hainan</u>	19.52	z	109.58	凹	169	136	5,337	6	34	<u> 7</u>
Dongfang/Basuo		<u>Hainan</u>	19.10	zı	108.62	凹	∞l	<u>83</u>	5,649	17	33	27
<u>Haikou</u>		<u>Hainan</u>	20.03	Z	110.35	凹	15	117	5,366	∄	34	27
<u>Qionghai/Jiaji</u>		<u>Hainan</u>	19.23	Z	110.47	凹	25	74	5,490	∄	34	27
Sanhu Island		Hainan	16.53	z	111.62	Щ	Ŋ	0	6.268	20	32	78
Xisha Island		Hainan	16.83	z	112.33	叫	Ŋ	О	6,234	<u>20</u>	32	<u>78</u>
Yaxian/Sanya		<u>Hainan</u>	18.23	Z	109.52	凹	7	41	5,964	91	32	27
Baoding		<u>Hebei</u>	38.85	Z	115.57	凹	ମ	2,750	2,450	9	34	<u>23</u>
Chengde		Hebei	40.97	z	117.93	凹	374	3,766	1,864	1 8	32	21
Fengning/Dagezhen		<u>Hebei</u>	41.22	z	116.63	Щ	<u>661</u>	4,384	1,430	<u>-20</u>	30	19

TABLE D-3 International Climatic Data (SI)

Liberi L	Country City	Province or Region	Lat		Long		Elev. (m)	HDD18	CDD10	Heating 99.6%	DB 1.0%	WB 1.0%
Hebei Hebei 1944 N. 11809 E. 12 3.258 11979 1-14 31 Hebei Hebei 38.03 N. 11815 E. 22 3.657 11812 1-18 3.1 Hebei Hebei 38.03 N. 11815 E. 20 3.153 2.149 1-13 1-14 1-15 N. 11815 E. 20 3.153 2.149 1-13 1-14 1-15 N. 11815 E. 20 3.153 2.149 1-13 1-14 1-15 N. 11821 E. 20 3.153 2.149 1-13 1-15 N. 11821 E. 20 3.153 2.149 1-12 1-12 1-12 1-12 1-14 1-15 N. 11821 E. 20 3.15 1-12 1-12 1-12 1-12 1-12 1-14 1-15 N. 11821 E. 20 3.15 1-12 1-12 1-12 1-12 1-12 1-12 1-12 1-		<u>Hebei</u>	40.40	zı	115.50	田	538	3,605	1.891	-15	32	20
Hebei Hebei Bach Bach Bach Bach Bach Bach Bach Bach		Hebei	39.43	Z	118.90	Ш	12	3,288	1,979	-14	31	<u>24</u>
Hebei 18,007 N 1144.2 E S 2,460 2,485 2,49 2,13 1,144.2 1,144.2 E 2,143 2,143 2,13 2,144 2,13 2,144 2,13 2,144 2,13 2,144 2,13 2,144 2,13 2,144 2,13 2,144 2,13 2,144 2,13 2,144 2,13 2,144 2,13 2,144 2,13 2,144 2,13 2,144 2,13 2,144 2,13 2,144 2,13 2,144		Hebei	40.40	Z	118.95	Ш	228	3,673	1.812	-18	31	22
Hebei 39,67 M 11815 E 20 31,53 21,49 -13 22 Hebei 30,67 M 11,725 E 344 3,73 1,23 -21 22 25,70 -13 22 25,70 -13 22 25,70 -13 22 25,70 -13 23 24 24,16 144 23 24 25		Hebei	38.03	z	114.42	Щ	≅	2,608	2,483	6-]	34	23
Hebei Hebei 192 N 11725 E 844 4778 1223 21 22 14 14 14 14 14 14 14 14 14 14 14 14 14		Hebei	39.67	z	118.15	Щ	29	3,153	2,149	-13	32	23
giang 4.52 R 2.503 2.570 -8 34 giang 9.98.3 N 114.57 E 910 4.416 1.414 -23 30 giang 40.78 N 114.88 E 26 3.790 1.772 -17 31 giang 46.38 N 12.54.5 E 160 6.578 1.022 -2.9 30 giang 46.38 N 12.54.5 E 160 6.578 1.022 -2.9 30 giang 47.23 N 12.65.2 E 150 5.502 1.379 -2.9 30 giang 45.72 N 12.65.2 E 143 5.461 1.329 -2.9 30 giang 45.72 N 12.65.2 E 143 5.461 1.329 -2.9 30 giang 45.72 N 12.65.2 E 129 5.28 1.28 2.2 2.2<	an	Hebei	41.93	Z	117.75	Щ	844	4,778	1,223	-21	<u>29</u>	18
giant 40.78 N 114.57 E 910 4416 1444 23 giant 40.78 N 114.88 E 26 5790 1.779 -1.7 3.1 giant 46.38 N 127.45 E 166 6.578 1.022 -3.2 3.0 giant 46.22 N 132.18 E 160 5.39 1.32 22 giant 47.23 N 132.18 E 240 6.121 1.187 -3.2 20 giant 47.24 N 132.92 E 140 5.40 1.187 -22 30 giant 45.72 N 132.92 E 140 5.243 1.232 22 giant 45.72 N 126.65 E 170 5.03 978 -32 30 giant 45.28 N 126.65 E 124 5.28 1.28 32 <th< td=""><td></td><td>Hebei</td><td>37.07</td><td>Z</td><td>114.50</td><td>Ш</td><td>78</td><td>2,503</td><td>2,570</td><td>×٩</td><td>34</td><td>23</td></th<>		Hebei	37.07	Z	114.50	Ш	78	2,503	2,570	×٩	34	23
giang 40.78 N 114.88 E 726 3.790 1.779 1.7 3.1 giang 46.38 N 127.45 E 166 6.578 1.022 3.3 28 giang 46.32 N 13.218 E 150 5.592 1.322 2.2 3.0 2.2 3.0 2.2 3.0 2.2 3.0 2.2 3.0 2.2 3.0 2.2 3.0 2.2 3.0 2.2 3.0 2.2 3.0 2.2 3.0 2.2 3.0 2.2 3.0		Hebei	39.83	z	114.57	Ш	910	4,416	1,414	-23	30	18
giang 46.38 N 127.45 E 166 6.578 1022 -33 28 giang 46.38 N 125.32 E 150 5.89 1.379 -29 30 giang 47.23 N 132.18 E 65 5.703 1.39 22 20 giang 47.43 N 13.98 E 65 5.703 1.39 22 20 giang 47.43 N 136.27 E 143 5.461 1.32 22 20 giang 45.72 N 126.27 E 143 5.461 1.379 22 20 giang 45.27 N 126.65 E 143 5.243 1.238 20 20 giang 45.28 N 126.65 E 143 5.243 1.238 20 20 giang 45.28 N 125.66 E 126 2.22 2.23 </td <td></td> <td>Hebei</td> <td>40.78</td> <td>Z</td> <td>114.88</td> <td>Ш</td> <td>726</td> <td>3,790</td> <td>1,779</td> <td>-17</td> <td>31</td> <td>19</td>		Hebei	40.78	Z	114.88	Ш	726	3,790	1,779	-17	31	19
giang 46.38 N 125.32 E 150 5.592 1.379 29 30 giang 46.32 N 132.18 E 83 5.406 1.322 2.7 20 giang 47.23 N 13.18 E 65 5.703 1.309 28 29 giang 47.43 N 12.697 E 240 6.121 1.187 2.3 2.2 giang 45.72 N 12.677 E 143 5.461 1.187 2.2 2.2 giang 45.77 N 12.627 E 124 5.43 1.238 2.2 2.2 giang 45.72 N 12.665 E 234 5.288 1.288 2.2 2.2 2.2 giang 46.20 N 12.588 E 234 5.288 1.388 2.2 2.2 giang 46.20 N 12.288 E 242		<u>Heilongjiang</u>	50.25	Z	127.45	Ш	166	6.578	1,022	-33	28	<u>20</u>
giang 46.32 N 13.218 E 8.3 5.406 1.322 27 29 giang 47.23 N 13.198 E 6.5 5.703 1.309 2.8 29 giang 47.43 N 126.07 E 44.0 6.121 1.187 3.3 29 giang 45.72 N 126.07 E 143 5.461 1.187 2.9 29 giang 45.72 N 126.07 E 129 5.243 1.288 2.2 2.2 giang 45.28 N 130.95 E 234 5.288 1.288 2.2 2.2 giang 45.28 N 12.06 E 242 5.288 1.288 2.2 2.2 giang 45.23 N 12.305 E 14.2 5.24 1.216 2.2 2.2 giang 45.24 1.210 1.289 1.28 2.2 2.2 </td <td></td> <td>Heilongjiang</td> <td>46.38</td> <td>z</td> <td>125.32</td> <td>Щ</td> <td>150</td> <td>5,592</td> <td>1,379</td> <td>-29</td> <td>30</td> <td>20</td>		Heilongjiang	46.38	z	125.32	Щ	150	5,592	1,379	-29	30	20
gilang 47.23 N 131.98 E 65 5.703 1309 28 29 gilang 45.24 N 126.97 E 240 6.121 1187 31 29 30 gilang 45.72 N 126.72 E 103 5.43 1.23 29 30 gilang 51.72 N 126.62 E 179 5.28 1.28 2.2		Heilongjiang	46.32	z	132.18	Щ	83	5,406	1,322	-27	29	21
gijang 47.43 N 126.97 E 240 6.121 1.187 -31 29 gijang 45.72 N 126.73 E 143 5.461 1.187 -39 30 gijang 45.72 N 126.65 E 179 7.032 978 -38 20 gijang 48.05 N 13.05 E 234 5.28 1.28 20 22 gijang 44.57 N 12.58 E 242 5.28 1.38 20 22 gijang 44.57 N 12.96 E 242 5.258 1.36 22 22 gijang 45.28 N 12.92 E 148 5.513 1.30 22 22 gijang 45.22 N 12.92 E 148 5.74 1.216 22 22 gijang 45.23 12.34 1.26 2.25 1.480 2.26		Heilongjiang	47.23	Z	131.98	Щ	<u>65</u>	5,703	1,309	-28	29	21
gijang 45.72 N 126.71 E 143 5.461 1.379 -29 30 gijang 45.77 N 126.65 E 103 5.543 1.238 -27 28 gijang 45.28 N 126.65 E 179 5.082 1.288 -26 28 29 28 29 28 29		<u>Heilongjiang</u>	47.43	z	126.97	Щ	240	6,121	1,187	-31	29	20
gijang 45.77 N 132.97 E 103 5.543 12.38 27 28 gijang 45.28 N 126.65 E 129 7032 978 29 29 gijang 45.28 N 130.95 E 234 5.288 1.288 20 29 gijang 44.57 N 125.88 E 234 5.258 1.361 22 29 gijang 47.38 N 127.97 E 148 5.513 1.316 22 29 gijang 45.22 N 127.97 E 191 5.744 1.216 22 20 gijang 45.24 N 13.115 E 235 6.852 880 24 22 gijang 45.97 N 12.35 E 120 5.239 1.480 23 23 gijang 45.27 N 128.93 E 23 23		<u>Heilongjiang</u>	45.75	z	126.77	Щ	143	5,461	1,379	-29	30	21
gijang 51.72 N 126.65 E 179 7032 978 -38 29 gijang 45.28 N 130.95 E 234 5.288 1.288 -26 29 gijang 48.05 N 125.88 E 237 6.171 1.180 -26 29 gijang 47.38 N 125.92 E 148 5.513 1.397 -28 29 gijang 45.22 N 127.97 E 191 5.744 1.216 -28 20 gijang 45.22 N 137.15 E 498 5.677 952 -27 27 gijang 46.40 N 127.35 E 150 5.239 1.480 -26 27 gijang 45.97 N 128.73 E 150 5.239 1.480 -26 27 gijang 45.97 N 128.73 E 120 2.239		<u>Heilongjiang</u>	45.77	Z	132.97	Щ	103	5,543	1,238	-27	<u>28</u>	21
gijang 45.28 N 130.95 E 234 5.288 1.288 26 29 gijang 48.05 N 125.88 E 237 6.171 1.180 -26 29 gijang 44.57 N 129.60 E 242 5.213 1.307 -28 29 gijang 45.22 N 127.97 E 191 5.744 1.216 -28 29 gijang 44.38 N 13.115 E 498 5.677 952 -27 29 gijang 46.40 N 127.35 E 150 5.239 1.480 -26 27 27 27 gijang 45.97 N 123.42 E 150 5.239 1.480 -26 27 27 27 27 27 27 27 27 27 27 28 28 28 28 28 28 28 28 28		<u>Heilongjiang</u>	51.72	Z	126.65	Ш	179	7,032	<u>878</u>	-38	<u>73</u>	<u>20</u>
gijang 48.05 N 125.88 E 237 6.171 1.180 -32 29 gijang 44.57 N 129.60 E 242 5.258 1.361 -27 30 gijang 45.22 N 123.92 E 148 5.513 1.361 -28 30 gijang 44.38 N 121.15 E 498 5.677 952 -27 20 gijang 49.43 N 121.15 E 498 5.677 952 -27 22 gijang 49.43 N 127.35 E 150 5.239 1.480 -26 2 gijang 45.97 N 128.73 E 150 5.899 1.228 2 2 gijang 47.72 N 114.37 E 20 2.399 2.582 -8 34 gijang N 115.77 E 22 2.299 2.582		Heilongjiang	45.28	z	130.95	Щ	234	5,288	1,288	-26	53	77
gijang 44.57 N 129.60 E 242 5.53 1,361 -27 30 gijang 45.22 N 123.92 E 148 5.513 1,397 -28 30 gijang 45.22 N 127.97 E 191 5.744 1,216 -32 29 gijang 49.43 N 127.35 E 23 6.852 880 -36 22 gijang 46.40 N 127.35 E 150 5.239 1,480 -26 31 gijang 45.97 N 128.73 E 110 5.899 1,228 31 28 gijang 47.72 N 128.93 E 26 2.399 1,228 -31 28 gijang 47.72 N 118.37 E 26 2.399 2.582 -38 34 gijang N 115.77 E 26 2.226 2.642		<u>Heilongjiang</u>	48.05	z	125.88	Щ	237	6,171	1,180	-32	29	70
gijang 47.38 N 123.92 E 148 5.513 1,397 -28 30 gijang 45.22 N 127.97 E 191 5.744 1.216 -32 29 gijang 44.38 N 131.15 E 498 5.677 952 -27 27 gijang 46.40 N 127.35 E 150 5.239 1,480 -26 31 gijang 45.97 N 128.73 E 110 5.899 1,228 -31 29 gijang 47.72 N 128.73 E 110 5.899 1,228 -31 28 gijang 47.72 N 128.73 E 23 6.244 1,091 -33 28 gijang 35.12 N 116.37 E 76 2.399 2.582 -8 34 23.48 N 115.77 E 26 2.758 2.758		<u>Heilongjiang</u>	44.57	Z	129.60	П	<u>242</u>	5,258	1,361	-27	30	21
gijang 45.22 N 127.97 E 191 5.744 1.216 -32 29 gijang 44.38 N 131.15 E 498 5.677 952 -27 27 gijang 46.40 N 127.35 E 150 5.239 1.480 -26 31 gijang 45.97 N 128.73 E 110 5.899 1.228 31 28 gijang 47.72 N 128.90 E 23 6.244 1.091 -33 28 gijang A 114.37 E 76 2.399 1.228 -31 28 gijang B 16.77 E 26 2.256 2.642 -33 28 34 gijang B 115.77 E 75 2.256 2.642 -3 34 gijang B 115.77 E 28 1.982 2.758 4 34		<u>Heilongjiang</u>	47.38	z	123.92	Щ	148	5,513	1,397	-28	30	<u>20</u>
gijang 44.38 N 131.15 E 498 5.677 952 -27 27 gijang 46.40 N 127.35 E 150 5.899 1,480 -36 28 gijang 45.97 N 128.73 E 110 5.899 1,228 -31 29 gijang 47.72 N 128.73 E 23 6.244 1,091 -33 28 gijang A 114.37 E 76 2,399 2,582 -8 34 33.88 N 115.77 E 42 2,226 2,642 -7 34 32.17 N 115.67 E 58 1,982 2,758 -4 34		<u>Heilongjiang</u>	45.22	z	127.97	Щ	191	5,744	1,216	-32	29	21
gijang 49.43 N 127.35 E 235 6.852 880 -36 28 gijang 46.40 N 123.42 E 150 5.239 1.480 -26 31 gijang 45.97 N 128.73 E 110 5.899 1.228 -31 29 gijang 47.72 N 128.90 E 23 6.244 1.091 -33 28 gijang 36.12 N 114.37 E 76 2.399 2.582 -8 34 33.88 N 115.77 E 42 2.226 2.642 -7 34 32.17 N 115.67 E 58 1.982 2.758 4 34		<u>Heilongjiang</u>	44.38	Z	131.15	Ш	<u>498</u>	5,677	952	-27	27	<u>20</u>
gijang 46.40 N 123.42 E 150 5.239 1,480 -26 31 gijang 45.97 N 128.73 E 110 5.899 1,228 -31 29 gijang 47.72 N 128.90 E 232 6,244 1,091 -33 28 36.12 N 114.37 E 76 2.399 2.582 -8 34 33.88 N 115.77 E 42 2.226 2.642 -7 34 32.17 N 115.67 E 58 1.982 -7 34		<u>Heilongjiang</u>	49.43	Z	127.35	Щ	235	6.852	880	-36	<u>28</u>	<u>20</u>
gijang 45.97 N 128.73 E 110 5.899 1,228 -31 29 gijang 47.72 N 128.90 E 232 6.244 1,091 -33 28 36.12 N 114.37 E 76 2,399 2,582 -8 34 33.88 N 115.77 E 42 2,226 2,642 -7 34 32.17 N 115.67 E 58 1,982 2,758 -4 34		Heilongjiang	46.40	z	123.42	Щ	150	5,239	1,480	-26	띪	70
gijang 47.72 N 128.90 E 232 6,244 1,091 -33 28 36.12 N 114.37 E 76 2,399 2,582 -8 34 33.88 N 115.77 E 42 2,226 2,642 -7 34 32.17 N 115.67 E 58 1,982 2,758 -4 34		<u>Heilongjiang</u>	45.97	z	128.73	Щ	110	5.899	1,228	-31	<u>29</u>	22
36.12 N 114.37 E 76 2.399 2.582 -8 34 33.88 N 115.77 E 42 2.226 2.642 -7 34 32.17 N 115.67 E 58 1.982 2.758 -4 34		<u>Heilongjiang</u>	47.72	Z	128.90	П	232	6,244	1,091	-33	<u>28</u>	<u>20</u>
33.88 N 115.77 E 42 2,226 2,642 -7 34 34 32.17 N 115.67 E 58 1,982 2,758 -4 34		<u>Henan</u>	36.12	z	114.37	П	7 6	2,399	2,582	∞l	34	24
32.17 N 115.67 E 58 1.982 2.758 -4 34		<u>Henan</u>	33.88	z	115.77	Щ	42	2,226	2,642	7-	34	25
		<u>Henan</u>	32.17	Z	115.67	Ш	<u>58</u>	1.982	2,758	41	34	27

TABLE D-3 International Climatic Data (SI)

WB	1.0%	23	25	<u> 26</u>	<u> 26</u>	24	25	24	<u>26</u>	27	27	27	<u> 26</u>	<u> 26</u>	27	27	25	22	25	25	25	25	<u> 76</u>	27	<u> 26</u>	91	91	15	15	17	<u>20</u>
DB	1.0%	32	33	34	33	34	34	33	34	34	35	34	34	34	33	35	35	25	34	34	32	33	34	34	33	29	25	<u>29</u>	32	5 7	31
Heating	%9.66	쮜	신	위	실	7	위	신	뛰	<u></u> 2	입	- -2	ᆟ	41	<u></u> 2	ᆟ	귀	∞∣	ᆟ	ᆟ	귀	ᆟ	귀	귀	ᅱ	-32	-37	-26	<u>-21</u>	-30	-20
	CDD10	2,147	2,639	2,569	2,734	2,563	2,621	2,491	2,771	2,959	2,979	3.018	3,042	2,797	2,911	3,067	3,475	1,717	2,905	3,140	3,022	3,013	3,023	3,156	2,992	1,029	536	1,114	1,617	629	1,586
	HDD18	2,540	2,099	2,240	1,987	2,303	2,159	2,049	1,914	1,702	1,759	1,744	1,562	1,924	1,773	1,609	1,387	2,703	1,609	1,552	1,503	1,585	1,565	1,594	1,587	6.252	7,668	5,222	4.312	6,801	4,363
	Elev. (m)	570	131	53	115	П	83	435	12	33	<u>59</u>	23	134	127	99	35	185	1,279	322	248	397	340	143	<u>52</u>	273	1.128	1,028	1,377	1,329	739	401
		ш	끠	Щ	Щ	Ш	Ш	Щ	Щ	Ш	Щ	끠	Щ	Щ	Щ	Щ	Щ	Щ	Щ	Ш	끠	Щ	叫	Ш	Щ	Щ	叫	叫	Щ	Ш	Ш
	Long	111.03	112.58	114.52	114.05	113.65	114.02	110.77	111.67	112.18	114.97	114.13	111.30	112.67	112.57	111.68	113.03	112.70	110.17	111.47	109.78	110.63	110.40	113.08	109.68	114.95	119.95	110.43	104.50	121.92	120.70
		괴	z	z	z	z	Z	z	z	z	z	z	z	Z	z	z	z	z	z	z	Z	z	z	z	z	z	z	Z	z	z	z
	Lat	34.05	33.03	33.78	32.13	34.72	33.00	32.03	32.38	30.33	31.18	30.62	30.70	32.15	31.17	29.05	25.80	27.30	29.40	27.23	26.17	26.73	28.47	29.38	27.45	44.02	47.17	41.70	40.75	48.77	42.33
	Province or Region	Henan	<u>Henan</u>	<u>Henan</u>	Henan	Henan	<u>Henan</u>	<u>Hubei</u>	Hubei	<u>Hubei</u>	Hubei	Hubei	<u>Hubei</u>	<u>Hubei</u>	Hubei	<u>Hunan</u>	<u>Hunan</u>	<u>Hunan</u>	Hunan	Hunan	<u>Hunan</u>	Hunan	<u>Hunan</u>	<u>Hunan</u>	<u>Hunan</u>	<u>Inner Mongolia</u>	Inner Mongolia				
	City																														
	Country	Lushi	Nanyang	Xihua	Xinyang	Zhengzhon	Zhumadian	Fangxian	Guanghua	Jiangling/Jingzhou	Macheng	Wuhan/Nanhu	Yichang	Zaoyang	Zhongxiang	Changde	Chenzhou	<u>Nanyue</u>	Sangzhi	Shaoyang	Tongdao/Shuangjiang	Wugang	Yuanling	Yueyang	Zhijiang	Abag Qi/Xin Hot	Arxan	Bailing-Miao	Bayan Mod	Bugt	Bugt

TABLE D-3 International Climatic Data (SI)

											Coo	Cooling
										Heating	DB	WB
Country	City	Province or Region	Lat		Long	Ξ	Elev. (m)	HDD18	CDD10	%9.66	1.0%	1.0%
Chifeng/Ulanhad		Inner Mongolia	42.27		118.97	凹	572	4,206	1,675	-20	31	16
Dongsheng		<u>Inner Mongolia</u>	39.83	Z	109.98	凹	1,459	4,527	1,223	<u>-20</u>	<u>28</u>	15
Duolun/Dolonnur		<u>Inner Mongolia</u>	42.18	z	116.47	凹	1,247	5,779	859	<u>-28</u>	27	16
Ejin Qi		<u>Inner Mongolia</u>	41.95	z	101.07	Щ	941	4,063	1.995	-21	35	91
Erenhot		<u>Inner Mongolia</u>	43.65	z	112.00	Щ	996	5,483	1,356	<u>-29</u>	32	91
Guaizihu		<u>Inner Mongolia</u>	41.37	z	102.37	凹	096	3,994	2,094	<u>-20</u>	36	16
Hailar		<u>Inner Mongolia</u>	49.22	z	119.75	Щ	611	7,072	891	-35	<u>28</u>	81
Hails		<u>Inner Mongolia</u>	41.45	z	106.38	끠	1,510	4,946	1,287	<u>-24</u>	30	71
Haliut		<u>Inner Mongolia</u>	41.57	z	108.52	Ш	1,290	4,959	1,280	<u>-23</u>	30	16
Hohhot		<u>Inner Mongolia</u>	40.82	z	111.68	叫	1.065	4,457	1.394	<u>-20</u>	30	17
Huade		<u>Inner Mongolia</u>	41.90	z	114.00	Щ	1,484	5,627	888	<u>-25</u>	27	15
Jartai		<u>Inner Mongolia</u>	39.78	z	105.75	끠	1,033	3,867	1,920	-19	34	17
Jarud Qi/Lubei		<u>Inner Mongolia</u>	44.57	z	120.90	끠	<u> 266</u>	4.581	1.587	<u>-22</u>	32	<u>20</u>
Jining		<u>Inner Mongolia</u>	41.03	z	113.07	叫	1,416	5,154	950	<u>-23</u>	27	15
Jurh		<u>Inner Mongolia</u>	42.40	z	112.90	叫	1,152	5,037	1,334	<u>-25</u>	31	15
Lindong/Bairin Zuoq		<u>Inner Mongolia</u>	43.98	Z	119.40	叫	485	4,974	1,307	-24	30	61
Linhe		<u>Inner Mongolia</u>	40.77	z	107.40	叫	1,041	4,057	1,664	<u>-18</u>	32	18
Linxi		<u>Inner Mongolia</u>	43.60	z	118.07	叫	800	5.086	1,206	<u>-23</u>	29	<u>\$1</u>
<u>Mandal</u>		<u>Inner Mongolia</u>	42.53	z	110.13	叫	1,223	4,981	1,340	<u>-23</u>	31	15
Naran Bulag		<u>Inner Mongolia</u>	44.62	Z	114.15	叫	1,183	6,497	920	<u>-31</u>	<u>29</u>	15
Nenjiang		<u>Inner Mongolia</u>	49.17	z	125.23	叫	243	959'9	1.044	<u>-35</u>	<u>29</u>	ମ
Otog Qi/Ulan		Inner Mongolia	39.10	z	107.98	叫	1.381	4,290	1,392	-20	30	15
<u>Tongliao</u>		<u>Inner Mongolia</u>	43.60	Z	122.27	叫	180	4,621	1,639	<u>-23</u>	31	21
<u>Tulihe</u>		<u>Inner Mongolia</u>	50.45	z	121.70	叫	733	8,217	501	<u>41</u>	<u> 26</u>	17
<u>Uliastai</u>		Inner Mongolia	45.52	z	116.97	Щ	840	6,301	1.051	<u>15-</u>	30	디
Xi Ujimqin Qi		<u>Inner Mongolia</u>	44.58	zI	117.60	叫	766	6,187	920	-30	<u>78</u>	91
Xilin Hot/Abagnar		<u>Inner Mongolia</u>	43.95	Z	116.07	叫	991	5,822	1,139	<u>-29</u>	30	16
Xin Barag Youqi		<u>Inner Mongolia</u>	48.67	Z	116.82	叫	<u>556</u>	6,423	1.080	<u>-31</u>	30	Ħ
<u>Dongtai</u>		Jiangsu	32.87	z	120.32	叫	νI	2,118	2,562	심	33	27
Ganyu/Dayishan		<u>Jiangsu</u>	34.83	z	119.13	凹	10	2,451	2,364	<u>-7</u>	32	<u> 26</u>

TABLE D-3 International Climatic Data (SI)

											Cooling	ing
										Heating	DB	WB
Country	City	Province or Region	Lat		Long		Elev. (m)	HDD18	CDD10	%9.66	1.0%	1.0%
Liyang		Jiangsu	31.43	zı	119.48	끠	∞l	1,954	2,727	41	34	27
Lusi		<u>Jiangsu</u>	32.07	Z	121.60	叫	10	2,007	2,540	인	32	27
Qingjiang		<u>Jiangsu</u>	33.60	Z	119.03	Щ	19	2,232	2,534	9	32	27
Shenyang/Hede		<u>Jiangsu</u>	33.77	z	120.25	Щ	7	2,277	2,428	위	32	27
Xuzhou		Jiangsu	34.28	z	117.15	凹	42	2,267	2,609	77	33	25
Ganzhou		<u>Jiangxi</u>	25.85	Z	114.95	Ш	125	1,069	3,844	П	35	<u> 26</u>
Guangchang		<u>Jiangxi</u>	26.85	z	116.33	Щ	<u>142</u>	1,272	3,540	ᆟ	35	<u> 26</u>
Ji'An		<u>Jiangxi</u>	27.12	z	114.97	Щ	78	1,321	3,543	0	35	26
Jingdezhen		<u>Jiangxi</u>	29.30	Z	117.20	叫	09	1,456	3,272	7-	35	<u> 26</u>
Lu Shan (Mountain)		<u>Jiangxi</u>	29.58	Z	115.98	Щ	1.165	2,652	1.800	어	<u> 26</u>	22
Nanchang		Jiangxi	28.60	z	115.92	Щ	200	1,492	3,320	╗	35	27
Nancheng		Jiangxi	27.58	z	116.65	凹	82	1,394	3,400	⊣	34	26
Xiushui		Jiangxi	29.03	Z	114.58	凹	147	1,585	3,101	디	35	<u>76</u>
Xunwu		Jiangxi	24.95	z	115.65	叫	299	921	3,714		33	25
<u>Yichun</u>		<u>Jiangxi</u>	27.80	z	114.38	叫	129	1.509	3,181	╗	34	26
<u>Changbai</u>		Jilin	41.35	Z	128.17	凹	1,018	5,807	834	-27	<u>7</u>	ମ
<u>Changchun</u>		Jilin	43.90	Z	125.22	山	238	4.914	1.504	-25	<u>29</u>	21
Changling		Jilin	44.25	Z	123.97	Щ	061	4.966	1.514	-25	30	77
Dunhua		Jilin	43.37	z	128.20	Щ	<u>526</u>	5,513	1,050	-27	27	707
<u>Huadian</u>		Jilin	42.98	Z	126.75	凹	<u>264</u>	5,181	1,380	-32	<u>29</u>	22
Ji'An		Jilin	41.10	Z	126.15	凹	179	4,229	1.635	-23	30	22
Linjiang		Jilin	41.72	z	126.92	Щ	333	4.803	1,429	-26	29	21
Qian Gorlos		Jilin	45.12	Z	124.83	叫	138	5.034	1,539	-26	30	22
Yanji		Jilin	42.88	Z	129.47	山	178	4.822	1,331	-23	<u>29</u>	21
Chaoyang		Liaoning	41.55	z	120.45	凹	176	3.929	1.887	-20	32	21
Dalian/Dairen/Luda		Liaoning	38.90	z	121.63	叫	77	3,138	1.912	-12	30	<u>23</u>
Dandong		Liaoning	40.05	Z	124.33	凹	41	3,690	1,674	-17	<u>29</u>	<u>23</u>
Haiyang Island		Liaoning	39.05	Z	123.22	Щ	의	3,041	1.856	-10	<u>78</u>	25
Jinzhou		Liaoning	41.13	z	121.12	Щ	70	3,665	1.887	-17	30	22
Kuandian		Liaoning	40.72	z	124.78	凹	<u>261</u>	4,302	1,482	-24	<u>29</u>	<u>22</u>

TABLE D-3 International Climatic Data (SI)

										Heating	DB	WB
Country	City	Province or Region	Lat		Long		Elev. (m)	HDD18	CDD10	%9.66	1.0%	1.0%
Qingyuan		Liaoning	42.10	괴	124.95	凹	235	4,652	1,527	<u>-27</u>	30	22
Shenyang/Dongta		Liaoning	41.77	Z	123.43	Щ	<u>43</u>	4,010	1,847	-22	31	23
Siping		Liaoning	43.18	Z	124.33	Щ	165	4.578	1,610	-24	30	22
Yingkou		Liaoning	40.67	z	122.20	Щ	41	3,758	1.891	81-	30	24
Zhangwu		Liaoning	42.42	z	122.53	Щ	281	4,308	1,700	-22	30	22
Yanchi		<u>Ningxia</u>	37.78	Z	107.40	凹	1,349	3,841	1,541	<u>-19</u>	31	16
Yinchuan		Ningxia	38.48	Z	106.22	Щ	1.112	3.676	1,655	-17	31	61
Zhongning		Ningxia	37.48	z	105.67	Щ	1,185	3,454	1,705	-16	31	61
<u>Daqaidam</u>		<u>Qinghai</u>	37.85	Z	95.37	Щ	3,174	5.986	408	-24	24	6
<u>Darlag</u>		<u>Qinghai</u>	33.75	Z	99.65	Щ	3.968	6.742	<u> 56</u>	-25	16	6
<u>Delingha</u>		Qinghai	37.37	z	97.37	ш	2.982	5.103	020	-20	25	∄
<u>Dulan/Qagan Us</u>		<u>Qinghai</u>	36.30	z	98.10	Щ	3,192	5,371	428	<u>81-</u>	24	의
Gangca/Shaliuhe		Qinghai	37.33	Z	100.13	Щ	3,301	6,551	27	-22	18	10
Golmud		<u>Qinghai</u>	36.42	z	94.90	Щ	2.809	4.674	801	-17	<u>76</u>	∄
Henan		Qinghai	34.73	z	101.60	Щ	3,500	6,448	98	-27	81	의
<u>Lenghu</u>		<u>Qinghai</u>	38.83	Z	93.38	Щ	2,734	5.589	<u>634</u>	-22	<u> 76</u>	01
Madoi/Huangheyan		<u>Qinghai</u>	34.92	Z	98.22	Щ	4,273	7,853	17	-28	15	9
Qumarleb		Qinghai	34.13	z	95.78	ш	4,176	7,320	37	-27	17	∞I
<u>Tongde</u>		Qinghai	35.27	Z	100.65	Щ	3,290	6,233	160	-26	70	의
Tuotuohe/Tanggulash		<u>Qinghai</u>	34.22	Z	92.43	Щ	4,535	8.058	12	-29	16	9
Wudaoliang		<u>Qinghai</u>	35.22	Z	93.08	Щ	4.613	8.397	⊘	-27	13	41
Xining		<u>Qinghai</u>	36.62	Z	101.77	Щ	2,262	4,121	006	91-	<u>7</u>	41
Yushu		<u>Qinghai</u>	33.02	Z	97.02	Ш	3,682	5,197	306	<u>61-</u>	21	∄
Zadoi		<u>Qinghai</u>	32.90	Z	95.30	Щ	4,068	6.254	121	-23	18	6
Ankang/Xing'an		Shaanxi	32.72	z	109.03	ш	291	1.801	2,733	7	34	25
Baoji		Shaanxi	34.35	Z	107.13	凹	610	2,414	2,214	위	33	21
Hanzhong		Shaanxi	33.07	Z	107.03	凹	<u> 209</u>	2,042	2,363	뛰	32	<u>24</u>
Hua Shan (Mount)		Shaanxi	34.48	Z	110.08	Щ	2,063	4,385	842	-15	22	51
Tongchuan		Shaanxi	35.17	Z	109.05	Щ	914	3,039	1,732	-10	30	13
Xi'An		<u>Shaanxi</u>	34.30	Z	108.93	凹	398	2,407	2,376	위	34	<u>23</u>

TABLE D-3 International Climatic Data (SI)

Bu	WB	1.0%	19	18	23	24	<u>24</u>	25	<u>24</u>	24	<u>24</u>	<u>24</u>	23	25	17	<u>24</u>	25	<u>24</u>	22	77	ଧ	<u>20</u>	গ্ৰ	<u>70</u>	⊐	21	의	<u>22</u>	81	51	15	<u>25</u>
Cooling	DB	1.0%	31	31	<u> 26</u>	33	29	33	33	34	32	31	30	<u>29</u>	21	33	33	<u>33</u>	32	30	32	32	31	31	17	31	汪	35	30	<u>76</u>	<u>29</u>	31
	Heating	%9.66	-15	<u>-20</u>	9]	어	6-1	∞ļ	∄	∞	∞	위	∽위		-17	∄	쉬	-10	Ξ.	-21	-21	<u>-13</u>	-17	<u>-15</u>	<u>-29</u>	-10	-17	∞	-16	위	신	0
		CDD10	1,740	1,574	1,751	2,551	2,079	2,571	2,372	2,798	2,442	2,124	2,151	2,181	854	2,397	2,459	2,451	2,194	1.396	1,600	1,825	1,644	1,740	<u>36</u>	2,063	1.635	2,529	1,543	1,046	1,815	<u>2,691</u>
		HDD18	3,262	3,911	2,847	2,579	2,746	2,378	2,783	2,312	2,438	2,871	2,584	2,553	4,605	2,676	2,566	2,515	2,830	4,376	4,075	3,166	3,634	3,370	7,897	2.809	3,725	2,463	3,601	3,011	<u>2,000</u>	1,505
		Elev. (m)	959	1,058	47	22	64	51	77	<u>\$8</u>	<u>98</u>	νI	77	51	1,536	51	47	<u>53</u>	302	1,069	861	750	951	779	2.898	629	838	376	1,042	<u>2,666</u>	2,589	<u> 208</u>
			凹	凹	Щ	Щ	Ш	Ш	Щ	Щ	凹	Щ	Щ	Щ	Щ	Щ	Щ	凹	Щ	山	Щ	Щ	Щ	Щ	Щ	Щ	Щ	Щ	Ш	Ш	Щ	Ш
		Long	109.50	109.70	122.68	116.32	121.17	115.43	117.53	116.98	118.35	120.32	120.33	119.53	117.10	119.08	115.58	116.85	118.15	113.33	111.15	111.93	111.10	112.55	113.53	112.40	112.70	111.02	112.98	102.23	99.10	104.02
			zı	Z	Z	z	z	Z	Z	z	Z	Z	z	Z	Z	z	z	Z	Z	Z	z	Z	Z	z	Z	Z	z	Z	Z	Z	Z	Z
		Lat	36.60	38.23	37.40	37.43	36.77	35.25	37.50	36.68	35.05	37.62	36.07	35.38	36.25	36.70	36.03	35.57	36.18	40.10	39.38	37.05	37.50	37.78	39.03	35.48	38.75	35.03	37.07	31.90	30.00	30.67
		Province or Region	Shaanxi	<u>Shaanxi</u>	Shandong	Shandong	<u>Shandong</u>	<u>Shandong</u>	<u>Shandong</u>	Shandong	Shandong	Shandong	<u>Shandong</u>	Shandong	<u>Shandong</u>	<u>Shandong</u>	<u>Shandong</u>	Shandong	Shandong	Shanxi	<u>Shanxi</u>	<u>Shanxi</u>	<u>Shanxi</u>	<u>Shanxi</u>	<u>Shanxi</u>	<u>Shanxi</u>	Shanxi	<u>Shanxi</u>	Shanxi	Sichuan	Sichuan	Sichuan
		City																														
		Country	Yan An	Yulin	Chengshantou (Cape)	Dezhou	Haiyang	Heze/Caozhou	Huimin	Jinan/Sinan	Linyi	Longkon	Quingdao/Singtao	Rizhao	Tai Shan (Mtns)	Weifang	Xinxian	<u>Yanzhou</u>	Yiyuan/Nanma	Datong	Неди	<u>Jiexiu</u>	Lishi	Taiyuan/Wusu/Wusu	Wutai Shan (Mtn.)	Yangcheng	Yuanping	Yuncheng	<u>Yushe</u>	<u>Barkam</u>	Batang	Chengdu

TABLE D-3 International Climatic Data (SI)

107.50 E 311 1.388 3.030 100.30 E 3.729 4.785 347 101.12 E 2.959 3.394 911 103.33 E 3.049 5.254 212 109.50 E 607 1.605 2.802 101.50 E 2.994 3.058 871
E 3.729 E 3.049 E 3.394 E 2.994
E 3.729 E 3.049 E 607 E 2.994
ចាចាចាចា ១
103.33 E 109.50 E 100.00 E 101.50 E
100.
· 김 기 기 기
31.62 N 29.00 N
31.62 N 29.00 N
N 00.92
29.00
Sichuan
Sichuan

TABLE D-3 International Climatic Data (SI)

g	WB	1.0%	7	6	∞I	9	01	14	ଧ	17	17	18	4	의	12	91	ଧ	41	18	70	<u>81</u>	17	81	গ	81	9	<u>\$1</u>	91	17	গ	13	18
Cooling	DB	1.0%	21	19	61	77	22	27	33	30	<u>36</u>	34	27	ମ	<u> 26</u>	32	35	27	33	34	31	35	32	34	33	<u>24</u>	34	35	32	37	33	32
	Heating	%9.66	-26	<u>-21</u>	-18	-20	-14	-18	-16	-29	-18	-14	-17	-38	-24	-33	8 <u>1</u> -	-23	뒤	-26	-29	-26	<u>-13</u>	-14	<u>-15</u>	-20	<u>-13</u>	61-	-29	-15	-13	-24
		CDD10	287	175	254	53	<u>591</u>	1,142	2,157	1,328	2,113	2,380	1.091	113	754	1,326	2,181	996	2,341	2,006	1,384	2,347	2,102	2,340	2,192	404	2,262	2,051	1,552	2,378	2,150	1,575
		HDD18	6,718	5,859	5,552	6,583	4,242	4,251	3,290	5,236	3,438	3,017	4,227	8,339	5,707	5,639	3,621	5,247	2.816	4.358	5,086	4,370	3,011	3,156	3,169	5.803	2.965	3,954	4,923	3,195	3,004	4,318
		Elev. (m)	4,279	4,024	4,302	4,671	3,837	1.986	1.013	737	1,264	1,117	1,753	2,459	1,651	827	739	1,294	1,375	321	534	428	1,291	933	1,100	2.945	1,376	874	794	888	1,232	<u>535</u>
			Ш	Ш	Ш	Щ	Щ	Ш	Ш	叫	凹	凹	凹	凹	凹	凹	Щ	凹	Ш	凹	凹	凹	凹	凹	凹	凹	Щ	叫	凹	叫	Ш	凹
		Long	80.08	93.78	87.08	88.63	88.88	78.45	81.05	88.08	83.65	78.57	86.33	84.15	90.53	89.52	93.52	85.72	79.93	82.90	86.35	84.85	75.98	86.13	82.95	90.85	78.28	91.63	89.57	88.17	77.27	83.00
			괴	z	z	z	z	z	z	zI	Z	Z	z	z	Z	z	z	Z	Z	z	z	Z	Z	zI	Z	Z	z	z	Z	Z	z	Z
		Lat	32.50	31.88	28.63	30.95	29.25	40.93	40.50	47.73	37.93	39.80	42.67	43.03	45.37	46.98	42.82	46.78	37.13	44.62	48.05	45.60	39.47	41.75	41.72	38.25	37.62	43.48	44.02	39.03	38.43	46.73
		Province or Region	Tibet	Tibet	Tibet	Tibet	Tibet	Xinjiang	Xinjiang	Xinjiang	Xinjiang	Xinjiang	Xinjiang	Xinjiang	Xinjiang	Xinjiang	Xinjiang	Xinjiang	Xinjiang	Xinjiang	Xinjiang	Xinjiang	Xinjiang	Xinjiang	Xinjiang	Xinjiang	Xinjiang	Xinjiang	Xinjiang	Xinjiang	Xinjiang	Xinjiang
		City																														
		Country	Shiquanhe	Sog Xian	Tingri/Xegar	Xainza	Xigaze	Akqi	Alar	Altay	<u>Andir</u>	<u>Bachu</u>	<u>Balguntay</u>	<u>Bayanbulak</u>	Baytik Shan (Mtns)	Fuyun	<u>Hami</u>	<u>Hoboksar</u>	Hotan	<u>Jinghe</u>	Kaba He	<u>Karamay</u>	Kashi	<u>Korla</u>	Kuqa	<u>Mangnai</u>	<u>Pishan</u>	Qijiaojing	<u>Qitai</u>	Ruoqiang	<u>Shache</u>	<u>Tacheng</u>

TABLE D-3 International Climatic Data (SI)

		IABLE	2	ernano	international Cilmatic Data (SI)	iic Dat	(SI)					
											C00	Cooling
										Heating	DB	WB
Country	City	Province or Region	Lat		Long		Elev. (m)	HDD18	CDD10	%9.66	1.0%	1.0%
Tikanlik		Xinjiang	40.63	괴	87.70	ш	847	3,385	2,296	-17	36	19
Turpan		Xinjiang	42.93	괴	89.20	Ш	37	2,920	3,355	<u>-14</u>	40	21
Urumqi		Xinjiang	43.78	z	87.62	Щ	919	4.563	1,675	<u>-22</u>	32	16
Yining		Xinjiang	43.95	괴	81.33	Щ	663	3,676	1,714	<u>-22</u>	32	ମ
Yiwu/Araturuk		Xinjiang	43.27	Z	94.70	Щ	1,729	5,201	854	<u>-22</u>	<u> 26</u>	13
<u>Baoshan</u>		Yunnan	25.13	Z	99.22	凹	1,655	1,195	2,402	Н	27	61
Chuxiong		Yunnan	25.02	z	101.53	Щ	1,773	1.168	2,452	0	28	77
<u>Dali</u>		Yunnan	25.70	괴	100.18	Щ	1,992	1,332	2,119	- 4	<u> 26</u>	<u>\$1</u>
Degen		Yunnan	28.50	괴	98.90	Ш	3,488	4,380	371	∞઼	19	12
Guangnan		Yunnan	24.07	Z	105.07	Ш	1,251	1,020	2.990	0	30	<u>20</u>
Huili		Yunnan	26.65	괴	102.25	Щ	1.788	1,373	2,264	ᆟ	28	%
Huize		Yunnan	26.42	Z	103.28	Щ	2,110	1,957	1,675	41	25	17
Jiangcheng		Yunnan	22.62	z	101.82	Ш	1,121	421	3,577	9	29	<u>20</u>
Jinghong		Yunnan	22.02	괴	100.80	Щ	553	51	5.059	의	34	22
Kunming/Wujiaba		Yunnan	25.02	괴	102.68	凹	1.892	1,367	2,092	O	<u> 26</u>	17
Lancang/Menglangba		Yunnan	22.57	z	99.93	凹	1,054	273	3,977	<i>S</i>	31	61
Lijing		Yunnan	26.83	z	100.47	Ш	2,394	1.883	1,565	디	25	16
Lincang		Yunnan	23.95	Z	100.22	Щ	1.503	<u>879</u>	3,105	41	28	\$ 1
Luxi		Yunnan	24.53	괴	103.77	Щ	1,708	1,252	2,412	ᆟ	27	17
Mengding		Yunnan	23.57	z	80.66	Ш	512	93	4.879	∞I	34	22
Mengla		Yunnan	21.50	괴	101.58	Щ	633	74	4.825	6	33	22
<u>Mengzi</u>		Yunnan	23.38	괴	103.38	Щ	1,302	<u>526</u>	3,554	41	30	ଧ
Ruili		Yunnan	24.02	Z	97.83	凹	<u> 776</u>	<u>265</u>	4,191	9	31	21
Simao		Yunnan	22.77	z	100.98	Щ	1,303	442	3,473	9	29	81
Tengchong		Yunnan	25.12	괴	98.48	Щ	1,649	1,200	2,227	-	26	%
Yuanjiang		Yunnan	23.60	z	101.98	凹	398	25	5,476	61	36	24
Yuanmou		Yunnan	25.73	z	101.87	Ш	1,120	279	4.536	5	34	19
Zhanyi		Yunnan	25.58	z	103.83	ш	1.900	1,403	2,142	ᆏ	27	91
Zhaotong		Yunnan	27.33	Z	103.75	凹	1.950	2,257	1,654	십	27	17
Dachen Island		Zhejiang	28.45	Z	121.88	凹	84	1,505	2,759	Н	<u>29</u>	27

TABLE D-3 International Climatic Data (SI)

										Coo	Cooling
									Heating	DB	WB
Country	City	Province or Region	Lat		Long	Elev. (m)	HDD18	CDD10	%9.66	1.0%	1.0%
Dinghai		Zhejiang	30.03	 य	122.12 E	37	1,555	2,866	7	31	27
Hangzhou/Jianqiao		Zhejjang	30.23	zI	120.17 E	43	1,705	2,974	<u></u> 2	35	27
Kuocang Shan		Zhejjang	28.82	z	120.92 E	1.371	3,017	1,436	-10	25	21
Lishui		Zhejiang	28.45	z	119.92 E	79	1,284	3,447	ᆟ	36	<u> 26</u>
Qixian Shan		Zhejiang	27.95	z	117.83 E	1,409	2,401	1,753	7	25	21
Qu Xian		Zhejiang	28.97	z	118.87 E	71	1,514	3,189	ᅱ	35	<u>26</u>
Shengsi/Caiyuanzhen		Zhejiang	30.73	z	122.45 E	8	1,642	2,725	ᆟ	30	<u> 26</u>
<u>Shengxian</u>		Zhejiang	29.60	zı	120.82 E	108	1,666	3,017	뛰	35	<u>26</u>
Shipu		Zhejiang	29.20	z	121.95 E	127	1,547	2,870	ᆟ	31	27
Taishan		Zhejiang	27.00	z	120.70 E	106	1,262	3,014	<i>د</i> ا	29	<u> 26</u>
Tianmu Shan (Mtns)		Zhejiang	30.35	z	119.42 E	1,494	3,397	1,236	-1 2	24	21
Wenzhou		Zhejiang	28.02	z	120.67 E	Z	1,169	3,323	-	33	27
Taiwan											
Tainan			22.95		120.20 E	4	£8	5,405	#	33	<i>t</i> 7
Taipei			25.03	才	121.52 E	αÞ	243	4,942	a\	4	17
Alican Chan			73.52	7	120.80 F	2 406	2 448	1 088	ø Z	Z	∀ Z
Zaroan Shan				្នា ;	7 00.021	00 F: 0	0 t t	0200	स्य	<u>.</u>	7.7.
Chiayi (TW-AFB)				z	120.42 E	<u>78</u>	177	4.959	91	33	27
<u>Chiayyi</u>				z	120.38 E	25	153	5,160	∞l	33	<u>78</u>
Chilung			25.13	z	121.75 E	κI	<u>262</u>	4,752	9	<u>33</u>	<u>76</u>
Chinmen				z	118.43 臣	7	541	4,122	N.A.	N.A.	N.A.
Dawu				z	120.90 E	9	ខា	5,753	N.A.	N.A.	N.A.
<u>Hengchun</u>			22.00	z	120.75 E	<u>24</u>	13	5,622	16	32	27
Hengchun/Wu Lu Tien			22.03	z	120.72 E	13	12	5,782	N.A.	N.A.	N.A.
Hsinchu/Singio			24.82	zI	120.93 E	∞l	<u> 268</u>	4,759	8	33	<u>28</u>
Hua Lien			23.97	z	121.62 E	19	122	4,929	N.A.	N.A.	N.A.
Hwalien			24.02	z	121.62 E	15	<u>123</u>	5,024	N.A.	N.A.	N.A.
Joyutang			23.88	z	120.85 E	1.015	324	3,964	N.A.	N.A.	N.A.
Kao Hsiung Intl. Arpt.			22.57	z	120.35 E	∞l	7 9	5,390	12	33	<u> 26</u>

TABLE D-3 International Climatic Data (SI)

								Heating	DB	WB
Country	City	Province or Region	Lat	Long	Elev. (m)	HDD18	CDD10	%9.66	1.0%	1.0%
Kao Hsiung			22.62 N	120.27 E	29	39	5,522	12	32	27
Kungkuan			24.27 N	120.62 臣	<u>203</u>	300	4,614	N.A.	N.A.	N.A.
Kungshan			22.78 N	120.25 E	10	88	5.292	N.A.	N.A.	N.A.
Lan Yu			22.03 N	121.55 E	325	53	4.870	扫	29	27
Makung			23.57 N	119.62 E	31	157	4.976	∄	32	<u>78</u>
Matsu Island			<u>26.17 N</u>	119.93 臣	<u>87</u>	1,082	3,277	N.A.	N.A.	N.A.
North Pingtung			22.70 N	120.47 E	29	49	5,583	∄	34	27
Peng Hu			23.52 N	119.57 E	21	159	5,038	N.A.	N.A.	N.A.
Penkaiyu			25.63 N	122.07 E	102	295	4,533	N.A.	N.A.	N.A.
Sing Jo			24.80 N	120.97 E	33	<u>297</u>	4,711	N.A.	N.A.	N.A.
Sinkung			23.10 N	121.37 E	37	49	5,334	N.A.	N.A.	N.A.
South Pingtung			22.67 N	120.45 E	<u>24</u>	39	5.682	17	34	27
Taichung			24.15 N	120.68 E	78	173	4,995	6	33	<u>26</u>
Taichung/Shui Nan			24.18 N	120.65 E	∄	212	4.953	∞I	34	28
Tainan (TW-AFB)			22.95 N	120.20 臣	91	83	5,405	10	33	28
Tainan			23.00 N	120.22 E	41	66	5,320	∄	33	27
<u>Taipei</u>			25.03 N	121.52 E	∞I	<u>243</u>	4,942	6	34	27
Taipei/Chiang Kai Shek			25.08 N	121.23 E	23	330	4,698	6	33	27
Taipei/Sungshan			25.07 N	121.53 E	9	281	4,697	6	34	27
<u>Taitung</u>			22.75 N	121.15 E	10	41	5,419	N.A.	N.A.	N.A.
Taitung/Fongyentsun			22.80 N	121.18 臣	37	40	5,426	N.A.	N.A.	N.A.
Taoyuan (AB)			25.07 N	121.23 E	50	348	4,620	6	33	<u>28</u>
Tung Shih			23.27 N	119.67 E	45	106	5,120	N.A.	N.A.	N.A.
Wu-Chi			24.25 N	120.52 E	νI	225	4.828	10	32	27
Yilan			24.77 N	121.75 E	7	229	4,676	N.A.	N.A.	N.A.
Malaysia										
Kuala Lumpur			3.13 ₹	101.55 E	‡	Ð	6,406	77	4	97.
Penang/Bayan Lepas			74 9€°5	100.27 E	প্য	Ф	オ	₹ Ż	₹ Z	\

TABLE D-3 International Climatic Data (SI)

										Co	Cooling
									Heatino	DB	WB
	Province or Region	Lat		Long		Elev. (m)	HDD18	CDD10	%9.66	1.0%	1.0%
		3.13	괴	101.55	凹	17	a	6,406	22	34	26
		5.30	Z	100.27	凹	κI	0	6,373	N.A.	N.A.	N.A.
Taje Taje	Distrito Federal	19.40	*	02.00	*	6851	586	3,401	4	क्ष	‡
Jalisco	\$	50.67	本	103.38	≱	a h	9	6,179	₹	₹ Z	<u>₹</u> .¥
<u>3</u>	Nuevo Laredo	25.87	本	100.20	≱	461	1 1	3,079	₹	₹	\
Tan	Tamaulipas	22.22	才	58.72	≱	168	Ф	876,3	7	75	53
Yer.	Veracruz	\$1.61	*	96.12	≱	2181	1,22,1	2,139	‡	33	5 7
X _{me}	Yucatan	20.98	本	\$9.6\$	≱	77	799	5,799	‡	37	4
Dis	Distrito Federal	19.40	z	99.20	≽	2308	899	2,646	41	28	扣
Jal	Jalisco	20.67	z	103.38	\bowtie	1589	389	3,401	N.A.	N.A.	N.A.
Ŋ	Nuevo Laredo	25.87	z	100.20	\geqslant	<u>450</u>	469	4,626	N.A.	N.A.	N.A.
Ta	<u> Tamaulipas</u>	22.22	z	97.85	≱	12	120	5,483	01	32	27
Ve	<u>Veracruz</u>	19.15	z	96.12	≱	91	6	5,559	11	33	27
Yuc	<u>Yucatan</u>	20.98	ZI	89.65	\bowtie	6	9	6.179	41	37	<u>24</u>

FOREWORD

This modification addresses the often special lighting needs of certain groups of individuals other than just the "visually impaired," where spaces are designed specifically for their use. The standard industry light level and design recommendations on which the standard LPDs are based do not specifically include special categories and adjustments for

persons with special lighting needs. Therefore, the existing exemption for "visually impaired" has been reworded to more clearly indicate where lighting exemptions may be granted for medical condition needs..

Addendum p to 90.1-2004 (I-P and SI Editions)

Modify exception (g) to section 9.2.2.3 list of exceptions as follows:

(g) Lighting in spaces specifically designed for use by <u>occu-</u> pants with special lighting needs including the <u>visually</u> impaired <u>visual</u> impairment and other medical and age related issues.

FOREWORD

The following changes are an update for ARI Standard 340/360 from 2000 to 2004. The changes in ARI 340/360 include an update in the test method of equipment between 65,000-135,000 Btu.

Addendum r to 90.1-2004 (I-P and SI Editions)

Revise Section 12 as follow (IP and SI units):

12. NORMATIVE REFERENCES

Reference	Title
Air-Conditioning and Refrigeration Institute,	
4100 North Fairfax Drive, Suite 200, Arlington, VA 22203	
ARI 340/360- 2000 <u>2004</u>	Commercial and Industrial Unitary Air-Conditioning and Heat Pump Equipment

FOREWORD

ASHRAE Standard 62.1-2004 is quite different from the current referenced version of ASHRAE Standard 62-1999; as a result, the following changes are required in order to update the reference for ASHRAE Standard 90.1, required changes in the referenced text section, as well as in Section 12. While there are substantive changes, the committee attempted to keep the intent of the referenced sections the same for Standard 90.1..

Addendum s to 90.1-2004 (I-P and SI Editions)

Revise Section 6.4.3.8 as follows (I-P and SI units):

6.4.3.8 Ventilation Controls for High-Occupancy Areas. Systems with design *outdoor air* capacities greater than 3000 cfm [1400L/s] serving areas having an average design occupancy density exceeding 100 people per 1000 ft2 [100m²] shall include means to automatically reduce *outdoor air* intake below design rates when spaces are partially occupied. Ventilation controls shall be in compliance with ASHRAE Standard 62 and local standards.

Revise exception "b" to section 6.5.1 as follows (I-P and SI units):

Exceptions to 6.5.1: Economizers are not required for the systems listed below.

b. Systems that include gas phase air cleaning in order to meet 6.1.2 of ASHRAE Standard 62 non-particu-

late air treatment as required by 6.2.1 of ASHRAE Standard 62.1.

Revise exception "a" to section 6.5.2.1 as follows (I-P and SI units):

Exceptions to 6.5.2.1:

- a. Zones for which the volume of air that is reheated, recooled, or mixed is no greater than the larger of the following:
- 1. The volume of *outdoor air* required to meet the ventilation requirements of Section 6.1.3 6.2 of ASHRAE Standard 62.1 for the *zone*,
- 0.4 cfm/ft² [2L/s/m²] of the zone conditioned floor area.
- 3. 30% of the zone design peak supply rate,
- 4. 300 cfm [140L/s]—this exception is for zones whose peak flow rate totals no more than 10% of the total fan system flow rate,
- 5. Any higher rate that can be demonstrated, to the satisfaction of the *authority having jurisdiction*, to reduce overall system annual energy usage by offsetting reheat/recool energy losses through a reduction in *outdoor air* intake <u>for the system</u>. in accordance with the multiple space requirements defined in ASHRAE Standard 62.

Revise exception "a" to section 6.5.2.3 as follows (I-P and SI units):

Exceptions to 6.5.2.3:

a. The system is capable of reducing supply air volume to 50% or less of the design airflow rate or the minimum rate specified in 6.1.3 of ASHRAE Standard 62 6.2 of ASHRAE Standard 62.1, whichever is larger, before simultaneous heating and cooling takes place.
 Revise Section 12 as follows (I-P and SI units):

12. NORMATIVE REFERENCES

Reference Title

American Society of Heating, Refrigerating and Air-Conditioning Engineers,

1791 Tullie Circle, NE, Atlanta, GA 30329

ANSI/ASHRAE Standard 62-1999 62.1 - 2004

Ventilation for Acceptable Indoor Air Quality

FOREWORD

The following change to Table 6.8.1F adds an additional requirement of combustion efficiency to the current requirement of thermal efficiency for boilers. The change also reflects a new test procedure from DOE that references the H.I. Htg Boiler Std.

Addendum t to 90.1-2004 (I-P and SI Editions)

Revise Table 6.8.1F as follow (I-P units):

TABLE 6.8.1F Gas- and Oil-Fired Boilers—Minimum Efficiency Requirements

Equipment Type ^a	Size Category (Input)	Subcategory or Rating Condition	Minimum Efficiency ^b	Test Procedure ^c
Boilers,	300,000 Btu/h	Hot Water	80% AFUE	DOE 10 CFR Part 430
Gas-Fired		Steam	75% AFUE	
	300,000 Btu/h and ≤2,500,000 Btu/h	Maximum Capacity ^d	75% E _t ^b and 80% E _c	H.I. Htg Boiler Std.
			<u>v</u>	DOE 10 CFR Part 431
	>2,500,000 Btu/h ^a	Hot Water	$80\%~E_{\scriptscriptstyle C}$	
	>2,500,000 Btu/h ^a	Steam	$80\%~E_{c}$	
Boilers,	300,000 Btu/h		80% AFUE	DOE 10 CFR Part 430
Oil-Fired	300,000 Btu/h and ≤2,500,000 Btu/h	Maximum Capacity ^d	78% E _t ^b <u>and</u> 83% E _c	H.I. Htg Boiler Std.
			<u>u</u>	DOE 10 CFR Part 431
	>2,500,000 Btu/h ^a	Hot Water	83% E_c	
	>2,500,000 Btu/h ^a	Steam	$83\%~E_c$	
Boilers, Oil-Fired (Residual)	300,000 Btu/h and ≤2,500,000 Btu/h	Maximum Capacity ^d	78% E _t ^b <u>and</u> 83% E _c	H.I. Htg Boiler Std.
. ,			<u>v</u>	DOE 10 CFR Part 431
	>2,500,000 Btu/h ^a	Hot Water	$83\%~E_{c}$	
	>2,500,000 Btu/h ^a	Steam	$83\% E_c$	

A These requirements apply to boilers with rated input of 8,000,000 Btu/h or less that are not packaged boilers, and to all packaged boilers. Minimum efficiency requirements for boilers cover all capacities of packaged boilers

B E_t = thermal efficiency. E_c = combustion efficiency. See reference document for detailed information.

C Section 12 contains a complete specification of the referenced test procedure, including the referenced year version of the test procedure.

D Minimum and maximum ratings as provided for and allowed by the unit's controls.

FOREWORD

This addendum provides guidance for complying with the intent of the baseline building design for HVAC systems 5, 6, 7, and 8, which shall be modeled as floor-by-floor HVAC systems.

Addendum u to 90.1-2004 (I-P and SI Editions)

Add the following text to Appendix G, section number 3.1.1 (Baseline HVAC System Type and Description)

G3.1.1 Baseline HVAC System Type and Description. HVAC systems in the baseline building design shall be based on usage, number of floors, conditioned floor area, and heating source as specified in Table G3.1.1A and shall conform with the system descriptions in Table G3.1.1B. For systems 1, 2, 3, and 4, each thermal block shall be modeled with its own HVAC system. For systems 5, 6, 7, and 8, each floor shall be modeled with a separate HVAC system. Floors with identical thermal blocks can be grouped for modeling purposes.

FOREWORD

Reducing the outdoor air volume when a space is not fully occupied saves energy without compromising the indoor air quality of the building. In recent years this type of control strategy, termed demand control ventilation (DCV), has become increasingly popular and economically attractive as more manufacturers began offering the components needed to implement it, and prices for the equipment significantly decreased.

Following an economic cost justification, the following changes have been applied to the ventilation controls requirements for high occupancy areas.

Addendum v to 90.1-2004 (I-P and SI Editions)

Add the following definition to Section 3.2 Definitions:

demand control ventilation (DCV): a ventilation system capability that provides for the automatic reduction of outdoor air intake below design rates when the actual occupancy of spaces served by the system is less than design occupancy.

Revise Section 6.4.3.8 as follows:

6.4.3.8 Ventilation Controls for High-Occupancy Areas. Systems with design outdoor air capacities greater than 3000 cfm (1400 L/s) serving areas having an average design occupancy density exceeding 100 people per 1000 ft² (100 m²) shall include means to automatically reduce outdoor air intake below design rates when spaces are partially occupied. Ventilation controls shall be in compliance with ASHRAE Standard 62 and local standards. Demand Control Ventilation (DCV) is required for spaces larger than 500 ft² (50m²) and with a design occupancy for ventilation of greater than 40 people per 1000 ft² (100 m²) of floor area and served by systems with one or more of the following:

- a. an air-side economizer
- automatic modulating control of the outdoor air damper, or
- c. a design outdoor airflow greater than 3000 CFM (1,400 L/s)

Exceptions to 6.4.3.8:

- a. Systems with energy recovery complying with 6.5.6.1.
- Multiple-zone systems without direct-digital control of individual zones communicating with a central control panel.
- c. System with a design outdoor airflow less than 1,200 CFM (600 L/s).
- d. Spaces where the supply air flow rate minus any make up or outgoing transfer air requirement is less than 1,200 CFM (600 L/s).

FOREWORD

After a review of Chapter 12, "Normative References," it was decided to update ASTM C1549 to the most current year.

This also updates portions of Appendix G with the changes made to the body of Section 5.

ASTM C1549 was added as a reference to Standard 90.1-2004 in Addendum AD.

Addendum x to 90.1-2004 (I-P and SI Editions)

Revise Section 12 as follows:

12. NORMATIVE REFERENCES

American Society for Testing and Materials, 100 Barr Harbor Dr., West Conshohocken, PA 19428-2959

ASTM C1549-0204, Standard Test Method for Determination of Solar Reflectance Near Ambient Temperature Using a Portable Solar Reflectometer.

Revise Table G3.1, 5 Building Envelope, exception c as follows

5. BUILDING ENVELOPE

c. For exterior roofs, the roof surface may be modeled with a reflectance of 0.45 if the reflectance of the *proposed design* roof is greater than 0.70 and its emittance is greater than 0.75. Reflectance values shall be based on testing in accordance with <u>ASTM C1549</u>. ASTM E903, <u>ASTM E1175</u>, or ASTM E1918, and the emittance values shall be based on testing in accordance with <u>ASTM C835</u>, ASTM C1371, or ASTM E408. All other roof surfaces shall be modeled with a reflectance of 0.30.

FOREWORD

This proposed addendum adds a third party performance certification testing program to the heat rejection equipment requirements in Table 6.8.1G.

Note: In this addendum, changes to the previous public review draft are indicated in the text by underlining (for additions) and strikethrough (for deletions) unless the instructions specifically mention some other means of indicating the changes. Only these changes are open for review and comment at this time. Additional material is provided for context only and is not open for comment except as it relates to the proposed substantive changes.

Addendum ak to 90.1-2004 (I-P and SI Editions)

6.4 Mandatory Provisions

6.4.1 Equipment Efficiencies, Verification, and Labeling Requirements

6.4.1.4 Verification of Equipment Efficiencies. Equipment efficiency information supplied by manufacturers shall be verified as follows:

If no certification program exists for a covered product, the equipment efficiency ratings shall be supported by data furnished by the manufacturer.

In IP Units:

TABLE 6.8.1G Requirements for Performance Heat Rejection Equipment

Equipment Type	Total System Heat Rejection Capacity at Rated Conditions	Subcategory or Rating Condition	Performance Required ^{a b}	Test Procedure ^{c,d}			
Propeller or Axial Fan Cooling Towers	All	95°F Entering Water 85°F Leaving Water 75°F wb Outdoor Air	38.2 gpm/hp	CTI ATC-105 and CTI STD-201			
Centrifugal Fan Cooling Towers	All	95°F Entering Water 85°F Leaving Water 75°F wb Outdoor Air	20.0 gpm/hp	CTI ATC-105 and CTI STD-201			
Air-Cooled Condensers	All	125°F Condensing Temperature R-22 Test Fluid 190°F Entering Gas Temperature 15°F Subcooling 95°F Entering db	176,000 Btu/h·hp	ARI 460			
For purposes of this table, cooling tower performance is defined as the maximum flow rating of the tower divided by the fan nameplate rated motor power.							
b For purposes of this table,	For purposes of this table, air-cooled condenser performance is defined as the heat rejected from the refrigerant divided by the fan nameplate rated motor power.						
c Section 12 contains a comp	plete specification of the referen	ced test procedure, including the referenced year	version of the test procedu	re.			
d options that affect the facturer's stated perform	ified by testing in the field by a Cairflow rate through the tower hamance, whichever is less. Base n	CTLATC 105. Performance of factory assembled TL-approved testing agency. Factory assembled, we been added shall be rated at 90% of the CTL nodels of factory assembled cooling towers are co e are no certification requirements for field-erect	certified, base model coolin certified performance of the oling towers configured in e	g towers to which custom, non-certified associated base model or at the manu-			

In SI Units:

TABLE 6.8.1G Requirements for Performance Heat Rejection Equipment

	Equipment Type	Total System Heat Rejection Capacity at Rated Conditions	Subcategory or Rating Condition	Performance Required ^{a b}	Test Procedure ^{c,d}	
Pı	ropeller or Axial Fan Cooling Towers	All	35°C Entering Water 29°C Leaving Water 24°C wb Outdoor Air	≥3.23 L/s·kW	CTI ATC-105 and CTI STD-201	
Ce	ntrifugal Fan Cooling Towers	All	35°C Entering Water 29°C Leaving Water 24°C wb Outdoor Air	≥1.7 L/s·kW	CTI ATC-105 and CTI STD-201	
Ai	r-Cooled Condensers	All	52°C Condensing Temperature R-22 Test Fluid 88°C Entering Gas Tempera- ture 8°C Subcooling 35°C Entering db	≥69 COP	ARI 460	
a	For purposes of this table, <i>cooling tower performance</i> is defined as the maximum flow rating of the tower divided by the fan nameplate rated motor power.					
b	For purposes of this table, air	r-cooled condenser performance	e is defined as the heat rejected from the re	frigerant divided by the fan	nameplate rated motor power.	
c	Section 12 contains a comple	ete specification of the reference	d test procedure, including the referenced	year version of the test proc	edure.	
d	in CTI STD-201 or verifice options that affect the air facturer's stated performation.	ed by testing in the field by a CTI flow rate through the tower have ance, whichever is less. Base n	approved testing agency. Factory assemble been added shall be rated at 90% of the C	led, certified, base model co TI-certified performance of a sare cooling towers configured.	either certified as base models as specified oling towers to which custom, non-certified f the associated base model or at the manu- jured in exact accordance with the Data of trs.	

Add the following references in Chapter 12:

Reference	Title
<u>CTI ATC-105 - 2000</u>	Acceptance Test Code for Water Cooling Towers
CTI STD-201 - 2002	Standard for the Certification of Water-Cooling Tower Thermal Performance

APPENDIX

18-MONTH SUPPLEMENT ADDENDA TO ANSI/ASHRAE STANDARD 90.1-2004

This 18-month supplement includes Addenda a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, r, s, t, u, v, x, and ak to ANSI/ASHRAE Standard 90.1-2004. The following table lists each addendum and describes the way in which the standard is affected by the change. It also lists the ASHRAE and ANSI approval dates for each addendum.

Addenda to 90.1-2004	Sections Affected	Description of Changes*	Approval Dates •Standards Committee •ASHRAE BOD •IESNA
90.1a	Informative Appendix G, Performance Rating Method	The changes clarify how windows should be distributed in the baseline simulation model, how uninsulated assemblies should be treated in the baseline simulation model, increases the size range for the use of packaged VAV systems in the baseline model, and provides more detail on how service hot water systems should be modeled	1/21/06 1/26/06 1/18/06 4/10/06
90.1b	6. HVAC	This proposal corrects the deficiencies in test procedures as well as inconsistencies between the efficiency numbers in the standard and those of federal regulations as noted by DOE on Addendum d to 90.1-2001	6/25/05 6/30/05 8/3/05 8/3/05
90.1c	5. Building Envelope, 3.2 Definitions and 5.4.3.4 Vestibules	This addendum revises the definition of building entrance to include vestibules and clarifies the requirements and exceptions for vestibules in Section 5.4.3.4.	6/25/05 6/30/05 8/3/05 8/3/05
90.1d	12. Normative References	This addendum updates the references applicable to the building envelope, Section 5, and deletes references that are not cited in the body of the standard or appendices	6/25/05 6/30/05 8/3/05 8/3/05
90.1e	9. Lighting: Section 9.1.4 Luminaire Wattage	This addendum recognizes that track and busway type lighting systems can be limited by circuit breakers and permanently installed current limiters below a value of 30 W/lin ft (98 W/lin m)	6/25/05 6/30/05 8/3/05 8/3/05
90.1f	6. HVAC	This addendum raises the minimum efficiency standard for 3-phase air-cooled central air conditioners and heat pumps less than 65,000 Btu/h in Tables 6.8.1A and 6.8.1B of Standard 90.1-2004 to 13 SEER/7.7	1/21/06 1/25/06 1/18/06 4/10/06

90.1g	6. HVAC	This addendum amends the minimum efficiency levels of air-cooled air conditioners and heat pumps greater or equal to 65,000 Btu/h contained in Tables 6.8.1 A and 6.8.1B of Standard 90.1-2004.	1/21/06 1/25/06 1/18/06 4/10/06
90.1h	6. HVAC	This addendum revises the exceptions to Sections 6.4.3.1.2 and 6.4.3.6 in Standard 90.1-2004. Table 2.1 of ASHRAE's Thermal Guideline for Data Processing Environments (pg. 10), provides environmental conditions for electronic equipment such as that found in data processing centers.	1/21/06 1/25/06 1/18/06 4/10/06
90.1i	9. Lighting	This addendum adds language to Section 9.1.4(b) that allows additional flexibility in assigning wattage to luminaires with multi-level ballasts where other luminaire components would restrict lamp size	1/21/06 1/25/06 1/18/06 4/10/06
90.1j	9. Lighting	This addendum to Section 9.4.1.3 allows additional flexibility in complying with the controls requirements by allowing additional combinations of commonly available control equipment	1/21/06 1/25/06 1/18/06 4/10/06
90.1k	Appendix A,	This addendum adds U-factors for R-19 insulation to Table A2.3	1/21/06 1/25/06 1/18/06 4/10/06
90.11	12. Normative References	This addendum updates the reference to the latest version of Standard 140, the 2004 version, which includes additional tests covering unitary cooling equipment models	1/21/06 1/25/06 1/18/06 4/10/06
90.1m	9. Lighting	This addendum to the exception to 9.2.2.3 provides an option for compliance that exempts the commonly used furniture mounted track lighting if it incorporates automatic shutoff	1/21/06 1/25/06 1/18/06 4/10/06
90.1n	5. Building Envelope	This addendum to section 5.5.4.4.1 provides an exception to allow a user to take credit for overhangs towards compliance with the maximum SHGC requirements. It provides clarification on how the credits would apply to louvered overhangs and to partially opaque overhangs.	1/21/06 1/25/06 1/18/06 4/10/06
90.10	Appendix D: International Cli- mate Data	This addendum increases the amount of International Climate data available for China, Taiwan, Mexico, and Malay-sia.	1/21/06 1/25/06 1/18/06 4/10/06
90.1p	9. Lighting	This addendum modifies exception (g) to section 9.2.2.3 to allow for increased lighting for medical and age related issues, in addition to visual impairment	1/21/06 1/25/06 1/18/06 4/10/06

This addendum updates the reference to ARI 340/260 from the 2000 edition to the 2004 edition
This addendum updates language in the standard based on differences between 62-1999 and 62.1-2004. The reference has also been updated
6. HVAC and 12. Normative Ref- This addendum changes Table 6.8.1F to add an additional requirement of combustion efficiency to the current require- ment of thermal efficiency for boilers
This addendum provides guidance for complying with the intent of the baseline building design for HVAC systems 5, 6, 7, and 8 which shall be modeled as floor-by-floor HVAC systems
This changes Section 6.2.3.8, Ventilation Controls for High-Occupancy Areas.
5 Envelope, 12 Normative Refer- This addendum adds a reference and method of test for deriving SRI (ASTM Test Method E, 1980) for high albedo ences, and Normative Appendix G roofs. The changes in the standard were in both Section 5 and Appendix G
Proposed change to Table 6.2.1G to add requirements for cooling towers to be tested to CTI test procedures and to update the corresponding references in Section 6.2.1.

*These descriptions may not be complete and are provided for information only.

POLICY STATEMENT DEFINING ASHRAE'S CONCERN FOR THE ENVIRONMENTAL IMPACT OF ITS ACTIVITIES

ASHRAE is concerned with the impact of its members' activities on both the indoor and outdoor environment. ASHRAE's members will strive to minimize any possible deleterious effect on the indoor and outdoor environment of the systems and components in their responsibility while maximizing the beneficial effects these systems provide, consistent with accepted standards and the practical state of the art.

ASHRAE's short-range goal is to ensure that the systems and components within its scope do not impact the indoor and outdoor environment to a greater extent than specified by the standards and guidelines as established by itself and other responsible bodies.

As an ongoing goal, ASHRAE will, through its Standards Committee and extensive technical committee structure, continue to generate up-to-date standards and guidelines where appropriate and adopt, recommend, and promote those new and revised standards developed by other responsible organizations.

Through its *Handbook*, appropriate chapters will contain up-to-date standards and design considerations as the material is systematically revised.

ASHRAE will take the lead with respect to dissemination of environmental information of its primary interest and will seek out and disseminate information from other responsible organizations that is pertinent, as guides to updating standards and quidelines.

The effects of the design and selection of equipment and systems will be considered within the scope of the system's intended use and expected misuse. The disposal of hazardous materials, if any, will also be considered.

ASHRAE's primary concern for environmental impact will be at the site where equipment within ASHRAE's scope operates. However, energy source selection and the possible environmental impact due to the energy source and energy transportation will be considered where possible. Recommendations concerning energy source selection should be made by its members.