$\begin{array}{c} {\bf DAQ\ data\ structure\ for\ the\ Muon\ g-2}\\ {\bf experiment} \end{array}$

Wes Gohn, Tim Gorringe, Ran Hong, Kim Siang Khaw, David Sweigart January 4, 2017

Abstract

This document outlines the DAQ data structure of the Muon g-2 experiment. A detailed list of the MIDAS data bank will be shown and their contents will described.

Contents

	MIDAS Bank list
2	2.1 Calorimeter-related banks
2	2.2 Auxiliary detector-related banks
2	2.3 CCC related banks
2	P.4 Field related banks
E	Bank contents
3	3.1 Calorimeter-related banks
	3.2 Auxiliary detector-related banks
_	3.3 CCC related banks
3	3.4 Field related banks

1 MIDAS DAQ output in a nutshell

The main DAQ framework for the Muon g-2 experiment is based on MIDAS [cite]. MIDAS event structure is as depicted in Fig. 1.

Figure 1: MIDAS event structure. Each event has its header that is followed by the bank header. Then all the banks will appear according the defined order.

2 MIDAS Bank list

Hundred of banks will be stored in each MIDAS event and it is very important to classify them properly. At the moment they can be grouped into 4 categories: calorimeter, auxiliary detector, CCC and magnetic field. Naming of these banks will be described in this section and their contents will be explained in the next section.

2.1 Calorimeter-related banks

There are 3 fill types for the calorimeter. Muon fill is the typical muon events, laser fill is event dedicated for laser calibration and monitoring events and pedestal fill is trivia from its name. Data from each fill type is identified from the bank name. The muon fill is denoted by "C", the laser fill is denoted by "L" and the pedestal fill is denoted by "P". A summary of the banks is listed in Tab. 1.

2.2 Auxiliary detector-related banks

A separate T/Q-method is needed for auxiliary detectors. Their data banks are denoted with the initial "**K**". A list of these banks are summarized in Tab. 2.

2.3 CCC related banks

This is the bank housing information regarding the CCC system based on FC7. A list of these banks are summarized in Tab. 3.

Table 1: MIDAS bank list for the calorimetry data.

muon fill	laser fill	pedestal fill	Description	
	Bank nan	ne	Description	
CA	LA	PA	AMC13 Header	
СВ	LB	PB	WFD5 header	
CC LC PC		PC	GPU timing data	
CF LF PF		PF	GPU fitted data	
CH LH PH		PH	per-crystal Q-method data (N-th event, end of run)	
CL LL PL		PL	Clock data	
CP	LP	PP	Pedestal	
CQ	LQ	PQ	per-calo Q-method data (every event)	
CR LR PR		PR	WFD5 raw data	
CT	LT	PT	T-method islands	
CZ LZ PZ		PZ	AMC13 CDF trailers	

Table 2: MIDAS bank list for auxiliary T/Q data. This is mainly for the fiber harps, quads and kickers.

Bank name	Description				
KH Per aux. detector channel Q-method data (N-th event, e					
KQ	Per aux. detector Q-method data (every event)				
KT	T-method data				

Table 3: MIDAS bank list for the CCC data.

TTCA	AMC13 Header
TTCR	CCC AMC13 Payload
TTCZ	AMC13 Trailer

2.4 Field related banks

Overall instructions:

All field-team banks are filled once per event. For many field-team banks, a c struct is defined in the field_struct.hh file, accessible for all frontends and unpackers. Programmers should able to cast the read-out bank (array of bytes) onto a pointer of the corresponding struct. A midas bank can be an entire struct (like **TLNP**, **ABPR**, etc) or a array of structs (like **GALI**). A list of these banks are summarized in Tab. 4.

System	Name	Description				
Fixed probe	FXPR	Fixed probe, header + NMR waveforms				
TLNP Trolley NMR Pulse, header + NMR waveforms						
Trolley TLBC Trolley Barcode, header + Barcode waveforms TLMN Trolley Monitors (temperatures, voltages and						
						header + voltage waveforms
	GALI	Galil (trolley and garage) data, positions + velocities + con-				
		trol voltages + tensions				
Absolute probes	ABPR	Absolute probe (spherical probe and plunging probe are using				
		the same bank), header + NMR waveforms				
Flux gate	FLUX	Flux gate, fluxgate waveforms				
Surface coil	SFCL	Surface coil current readouts				

Table 4: MIDAS bank list for the magnetic field related data.

3 Bank contents

This section details contents of each MIDAS bank.

3.1 Calorimeter-related banks

CA (LA, PA) and CZ (LZ, PZ) banks

Figure 2: Data structure for AMC13 to DAQ. The first 2 64-bit words are stored in the CA (LA, PA) bank.

CB (LB, PB) banks

Figure 3: Data structure for Rider to AMC13.

CR (LR, PR) banks

This is the bank for the full WFD5 payload.

Figure 4: Data structure for the WFD5 raw payload.

C? (L?, P?) banks, TBD

This is the bank for the WFD5 payload in the asynchronous mode.

CT (LT, PT) banks

CH (LH, PH) banks

CQ (LQ, PQ) banks

CP (LP, PP) banks

CC (LC, PC) banks

3.2 Auxiliary detector-related banks

KH and KQ banks

These two banks have the same format as the CH and CQ banks.

KT bank

This bank has the same format as the CT bank.

Figure 5: Data structure for asynchronous mode for Rider.

```
243196([*1)/60799([*4)/121598(Type) Type:Signed Integer*2
         -9480
                           23
                                  54
                                                0 13554
     1->
     9 -
             98
                                      1129
                                             1125
                                                    1120
                                                           1148
                     0
                         1119
                               1129
    17-
           1134
                 1197
                         1182
                               1531
                                      2046
                                             2046
                                                    2046
                                                           2046
    25
           1930
                  1507
                         1352
                               1285
                                      1237
                                             1223
                                                    1210
                                                           1197
    33
           1190
                  1175
                         1160
                               1163
                                      1164
                                             1158
                                                    1143
                                                           1151
    41
           1159
                  1159
                        1149
                               1140
                                      1137
                                             1150
                                                    1143
                                                           1143
    49
           1143
                  1140
                         1142
                               1149
                                      1128
                                             1135
                                                    1138
                                                           1134
           1138
                  1135
                         1125
                               1135
                                      1133
                                             1131
                                                    1129
                                                           1128
           1137
                 1140
                        1136
                               1134
                                      1132
                                             1141
                                                    1130
                                                           1128
array of signed tow-byte integers
32-bit number of 16-bit words in bank (the above entry maps to 0x0001dafe = 121598)
16-bit number of islands
16-bit number of segments
32-bit CTAG /TBD
number of islands x (
32-bit island time +
32-bit island length +
+ number of segments * length of island * 16-bit ADC samples )
```

Figure 6: Data structure for the CT bank (T-method chopped islands).

```
Bank: CF01 Length: 3780016(I*1)/945004(I*4)/945004(Type) Type:Unsigned Integer*4

1-> 0x000e6b68 0x00000001 0x000222e0 0x00000036 0x00007084 0x0000707c 0x00007070 0x00007074

9-> 0x00007080 0x0000706c 0x00007074 0x0000707a 0x0000707a 0x0000707a 0x00007070 0x00007074

17-> 0x0000707e 0x00007082 0x0000708a 0x0000707e 0x00007076 0x00007072 0x00007072 0x00007082

25-> 0x00007076 0x00007082 0x00007076 0x00007070 0x0000707a 0x0000707e 0x00007078 0x00007080

33-> 0x0000707a 0x00007076 0x00007076 0x0000707e 0x0000707e 0x0000707e 0x00007080 0x00007074

41-> 0x00007076 0x00007078 0x00007076 0x0000707c 0x00007078 0x0000707e 0x0000707e 0x0000707e

49-> 0x00007078 0x00007076 0x0000707c 0x00007076 0x00007074 0x00007078 0x00007078
```

CH databank words are signed 32-bit signed integers

first word - number of array elements of Q method histogram second word - first ADC sample within fill of Q-method histogram (is an ODB parameter) third word - last ADC sample within fill of Q-method histogram (is an ODB parameter) fourth word - number of segments / detectors in histogram (derived from ODB parameters) remaining words - Q-method histogram array elements of size specified by first word

Figure 7: Data structure for the CH bank (calo segment histograms).

(number of histogram array elements + 1) x signed four-byte integers

total number of data words, i.e. histogram array elements + 1 segment summed, time-decimated, pedestal subtracted histogram array elements

Figure 8: Data structure for the CQ bank (calo sum histograms).

```
Bank:CP04 Length: 220(I*1)/55(I*4)/55(Type) Type:Real*4 (FMT machine dependent)

1-> 5.400e+01 1.126e+03 1.293e+03 1.301e+03 1.328e+03 1.329e+03 1.780e+03 1.761e+03

9-> 1.761e+03 1.768e+03 1.781e+03 1.774e+03 1.761e+03 1.751e+03 1.780e+03 1.781e+03

17-> 1.764e+03 1.736e+03 1.725e+03 1.711e+03 1.767e+03 1.779e+03 1.751e+03 1.759e+03

25-> 1.768e+03 1.760e+03 1.767e+03 1.752e+03 1.764e+03 1.772e+03 1.765e+03 1.753e+03

33-> 1.754e+03 1.752e+03 1.783e+03 1.780e+03 1.760e+03 1.747e+03 1.736e+03 1.779e+03

41-> 1.767e+03 1.753e+03 1.758e+03 1.730e+03 1.755e+03 1.771e+03 1.799e+03 1.765e+03

49-> 1.779e+03 1.752e+03 1.794e+03 1.753e+03 1.753e+03 1.759e+03 1.742e+03
```

(number of segments + 1) x four bytes float format

number of segments

number of segments x pedestal values

Figure 9: Data structure for the CP bank (T-method pedestals).

array of 64-bit words (sec, usecs are obtained from gettimeofday() and struct timeval in sys/time.h

64-bit CDF header word

TCP proc unlocked / started, first 64-bit word is seconds, second 64-bit word is usecs got TCP header word, first 64-bit word is seconds, second 64-bit word is usecs got TCP header word, first 64-bit word is seconds, second 64-bit word is usecs GPU proc unlocked / started , first 64-bit word is seconds, second 64-bit word is usecs GPU copy done , first 64-bit word is seconds, second 64-bit word is usecs GPU proc done , first 64-bit word is seconds, second 64-bit word is usecs MFE proc unlocked, first 64-bit word is seconds, second 64-bit word is usecs MFE banks made, first 64-bit word is seconds, second 64-bit word is usecs current TCP fill number current GPU fill number

Figure 10: Data structure for the CC bank (calo performance).

3.3 CCC related banks

TTCA, TTCR, TTCZ banks

Figure 11: Data structure for encoder FC7.

Figure 12: Data structure for fanout FC7.

3.4 Field related banks

FXPR bank

TLNP bank

TLBC bank

4 Parsers for MIDAS bank data

Muon g-2 offline analysis framework relies on parsers in the gm2parser namespace hosted under repository gm2unpackers to decode the data. To checkout the codes,

git clone ssh://p-gm2dqm@cdcvs.fnal.gov/cvs/projects/gm2unpackers

Alternatively, you can also use

mrb g gm2dqm

in our g-2 environment.

Table 5: MIDAS bank structure for the FXPR bank.

start word index	type	array length	field name	content	struct name
0 Double_t		num_ch	sys_clock	system clock	
4*num_ch	Double_t	num_ch	gps_clock	gps clock	
8*num_ch	Double_t	num_ch	dev_clock	device clock	
12*num_ch	Double_t	num_ch	snr	signal to noise ratio	
16*num_ch	Double_t	$\mathrm{num_ch}$	len	length of each wave	
				form	$_{ m fixed_t}$
20*num_ch	Double_t	num_ch	freq	frequency extracted	IIXeu_t
24*num_ch	Double_t	num_ch	ferr	frequency error	
28*num_ch	Double_t	num_ch	$freq_zc$	frequency extracted,	
				zero crossing	
32*num_ch	Double_t	num_ch	ferr_zc	frequency error, zero	
				crossing	
36*num_ch	UShort_t	num_ch	health	health indicator of	
				probes	
37*num_ch	UShort_t	num_ch	method	frequency extraction	
				method	
38*num_ch	UShort_t	num_ch * rec_len	trace	NMR waveforms:	
				Waveform_Ch1 +	
				Waveform_Ch2 +	
				+ Waveform_Ch6	

Table 6: Hard-coded macros in the FXPR bank.

Name in the code	Name in this doc	Value
NMR_NUM_FIXED_PROBES	num_ch	378
NMR_FID_LENGTH_RECORD	rec_len	10000

 Table 7: MIDAS bank structure for the TLNP bank.

start word index	type	array length	field name	content	struct name
0	$ULong64_t$	1	gps_clock	Time stamp of the	
				first NMR sample	$trolley_nmr_t$
4	$UShort_t$	1	probe_index	probe index	
5	$UShort_{-}t$	1	length	length of the NMR	
				waveform	
6	$Short_t$	nmr_len	trace	Trolley Probe NMR	
				wavefrom	

Table 8: Hard-coded macros in the TLNP bank.

Name in the code	Name in this doc	Value
TRLY_NMR_LENGTH	nmr_len	24000

 Table 9: MIDAS bank structure for the TLBC bank.

start word	index	type	array length	field name content	struct name
0	ULong64_t	1	gps_clock	Time stamp of the	
				first barcode sample	trolley_barcode_t
4	$UShort_t$	1	length_per_ch	length of the barcode	
				waveform per channel	
5	$UShort_t$	bc_ch*bc_len	traces	Barcode wavefroms:	
				Waveform_Ch1 +	
				Waveform_Ch2 + \dots	
				+ Waveform_Ch6	