Ejercicio 1 (3,5 puntos)

(Tiempo disponible para todo el examen: 150 minutos. Debes presentar los tres ejercicios que elijas.)

a) (0,75 puntos). Sean (A,+) y (B,+) grupos abelianos y sea $\operatorname{Hom}(A,B)$ el conjunto de homomorfismos $A \to B$. Demostrad que la fórmula

$$(f_1 + f_2)(a) := f_1(a) + f_2(a),$$
 $f_1, f_2 \in \text{Hom}(A, B),$ $a \in A,$

define una operación binaria + sobre el conjunto Hom(A, B). Comprobad que (Hom(A, B), +) es un grupo abeliano.

Dados $f_1, f_2 \in \text{Hom}(A, B)$, debemos demostrar que la función

$$f_1 + f_2 : A \longrightarrow B$$

es un homomorfismo de grupos. Esto es cierto porque, para cualesquiera $a, a' \in A$, se tiene

$$(f_1 + f_2)(a + a') = f_1(a + a') + f_2(a + a') = f_1(a) + f_1(a') + f_2(a) + f_2(a')$$

= $f_1(a) + f_2(a) + f_1(a') + f_2(a') = (f_1 + f_2)(a) + (f_1 + f_2)(a').$

Aquí la tercera igualdad se cumple porque B es un grupo abeliano.

La asociatividad en Hom(A, B) se sigue directamente de la asociatividad en B:

$$((f_1+f_2)+f_3)(a) = (f_1+f_2)(a)+f_3(a) = f_1(a)+f_2(a)+f_3(a) = f_1(a)+(f_2+f_3)(a) = (f_1+(f_2+f_3))(a).$$

El elemento neutro de $\operatorname{Hom}(A,B)$ es el homomorfismo trivial $t:A\to B$ dado por $t(a):=0_B$ para todo $a\in A$, ya que

$$(f+t)(a) = f(a) + 0 = f(a) = 0 + f(a) = (t+f)(a).$$

Dado $f \in \text{Hom}(A, B)$, definimos $-f : A \to B$ por (-f)(a) := -f(a). Entonces -f es un homomorfismo, ya que

$$(-f)(a+a') = -f(a+a') = -(f(a)+f(a')) = (-f(a)) + (-f(a')) = (-f)(a) + (-f)(a').$$

Además -f es la inversa de f, ya que

$$(f + (-f))(a) = f(a) + (-f)(a) = f(a) - f(a) = 0.$$

Hemos comprobado que Hom(A,B). Además es abeliano, ya que usando de nuevo que B es abeliano, vemos que

$$(f_1 + f_2)(a) = f_1(a) + f_2(a) = f_2(a) + f_1(a) = (f_2 + f_1)(a).$$

b) (0,40 puntos). Encontrad grupos G, G' y homomorfismos $f_1, f_2: G \to G'$ para los que la función $f_1 \cdot f_2: G \to G'$ definida por

$$(f_1 \cdot f_2)(g) := f_1(g) \cdot f_2(g)$$

para $g \in G$, no sea un homomorfismo.

Ponemos $G = \mathbb{Z}$ y $G' = D_6$. Definimos $f_1 : \mathbb{Z} \to D_6$ a través de la igualdad $f_1(a) = s^a$ y $f_2 : \mathbb{Z} \to D_6$ a través de la igualdad $f_2(a) = r^a$. Entonces

$$(f_1 \cdot f_2)(1+1) = f_1(2) \cdot f_2(2) = s^2 r^2 = r^2,$$

mientras que

$$(f_1 \cdot f_2)(1) \cdot (f_1 \cdot f_2)(1) = f_1(1) \cdot f_2(1) \cdot f_1(1) \cdot f_2(1) = s \cdot r \cdot s \cdot r = s^2 \cdot r^{-1} \cdot r = 1.$$

Como no coinciden, hemos comprobado que la función $f_1 \cdot f_2 : G \to G'$ no es un homomorfismo.

c) (0,5 puntos). Demostrad que todo co-conjunto de \mathbb{Z} en \mathbb{Q} contiene exactamente un número racional q que satisfaga $0 \le q < 1$. ¿Qué orden tiene el grupo cociente \mathbb{Q}/\mathbb{Z} ?

Dado $r \in \mathbb{Q}$, si escribimos r = a + q con $a \in \mathbb{Z}$ y con $0 \le q < 1$, tenemos que r - q pertenece a \mathbb{Z} y por tanto que $r + \mathbb{Z} = q + \mathbb{Z}$. Es decir, $r + \mathbb{Z}$ contiene a q.

Si $0 \le q, q' < 1$ con $q + \mathbb{Z} = q' + \mathbb{Z}$ entonces q - q' pertenece a \mathbb{Z} pero también al intervalo (-1, 1), y por tanto q - q' = 0 y q = q'. Esto demuestra que hay un único q que satisfaga $0 \le q < 1$ en cada co-conjunto de \mathbb{Z} en \mathbb{Q} .

El cardinal de \mathbb{Q}/\mathbb{Z} es el mismo que el del conjunto de números racionales en el intervalo [0,1), que es infinito. Por ejemplo, este intervalo contiene a los números racionales 1/n para todo $n \geq 2$.

d) (0,5 puntos). Demostrad que todo elemento de \mathbb{Q}/\mathbb{Z} tiene orden finito, pero también que existen elementos de orden arbitrariamente grande.

Cualquier número racional q se puede escribir como a/n para $a \in \mathbb{Z}$ y $n \in \mathbb{N}$. Entonces

$$n(q+\mathbb{Z}) = n(\frac{a}{n} + \mathbb{Z}) = (n\frac{a}{n}) + \mathbb{Z} = a + \mathbb{Z} = 0 + \mathbb{Z}.$$

Por tanto, $q + \mathbb{Z}$ tiene orden finito.

Sea ahora $n \in \mathbb{N}$ arbitrario. Afirmamos que existe un elemento de \mathbb{Q}/\mathbb{Z} que tiene orden n.

Tenemos $n(\frac{1}{n} + \mathbb{Z}) = 1 + \mathbb{Z} = 0 + \mathbb{Z}$ pero, si $1 \leq m < n$, entonces m/n no pertenece a \mathbb{Z} y por tanto

$$m(\frac{1}{n} + \mathbb{Z}) = \frac{m}{n} + \mathbb{Z} \neq 0 + \mathbb{Z}.$$

Concluímos que el orden de $\frac{1}{n} + \mathbb{Z}$ es igual a n.

e) (0,75 puntos). Determinad los grupos $\operatorname{Hom}(\mathbb{Q}/\mathbb{Z},\mathbb{Z})$ y $\operatorname{Hom}(\mathbb{Q}/\mathbb{Z},\mathbb{Q})$. Para $n \neq 0$ demostrad que el grupo $\operatorname{Hom}(\mathbb{Z}/n\mathbb{Z},\mathbb{Q}/\mathbb{Z})$ es cíclico y de orden n, generado por el homomorfismo

$$m + n\mathbb{Z} \mapsto \frac{m}{n} + \mathbb{Z}.$$

Recordamos que, dado un homomorfismo de grupos $f: G \to G'$ y un elemento $x \in G$ de orden finito, el orden de f(x) es finito y divide al orden de x.

Si $f \in \text{Hom}(\mathbb{Q}/\mathbb{Z}, \mathbb{Z})$, o si $f \in \text{Hom}(\mathbb{Q}/\mathbb{Z}, \mathbb{Q})$, entonces para todo $x \in \mathbb{Q}/\mathbb{Z}$, la imagen f(x) de x tiene orden finito (ya que x lo tiene). Por tanto f(x) = 0 para todo $x \in \mathbb{Q}/\mathbb{Z}$. Es decir, el único elemento de $\text{Hom}(\mathbb{Q}/\mathbb{Z}, \mathbb{Z})$, o de $\text{Hom}(\mathbb{Q}/\mathbb{Z}, \mathbb{Q})$, es el homomorfismo trivial, y por tanto $\text{Hom}(\mathbb{Q}/\mathbb{Z}, \mathbb{Z})$ y $\text{Hom}(\mathbb{Q}/\mathbb{Z}, \mathbb{Q})$ son grupos triviales.

Afirmamos ahora que

$$\text{Hom}(\mathbb{Z}/n\mathbb{Z}, \mathbb{Q}/\mathbb{Z}) = \{f_0, f_1, f_2, \dots, f_{n-2}, f_{n-1}\}\$$

tiene orden n, donde f_i está caracterizado por la igualdad

$$f_i(1+n\mathbb{Z}) = \frac{i}{n} + \mathbb{Z}.\tag{1}$$

Esto es cierto porque el apartado c) implica que los únicos elementos de \mathbb{Q}/\mathbb{Z} cuyo orden divide a n son

$$0+\mathbb{Z}, \frac{1}{n}+\mathbb{Z}, \frac{2}{n}+\mathbb{Z}, \dots, \frac{n-2}{n}+\mathbb{Z}, \frac{n-1}{n}+\mathbb{Z}.$$

Por tanto, la imagen de $1 + n\mathbb{Z}$ bajo cualquier elemento de $\text{Hom}(\mathbb{Z}/n\mathbb{Z}, \mathbb{Q}/\mathbb{Z})$ debe ser uno de estos elementos de \mathbb{Q}/\mathbb{Z} .

Conversamente, como $1+n\mathbb{Z}$ es un generador de $\mathbb{Z}/n\mathbb{Z}$, la igualdad (1) determina completamente al homomorfismo

$$f_i(m+n\mathbb{Z}) = m(\frac{i}{n} + \mathbb{Z}) = \frac{mi}{n} + \mathbb{Z}.$$

Basta finalmente demostrar que f_1 es un generador de $\text{Hom}(\mathbb{Z}/n\mathbb{Z},\mathbb{Q}/\mathbb{Z})$, pero esto es cierto porque

$$f_i(m+n\mathbb{Z}) = \frac{mi}{n} + \mathbb{Z} = i(\frac{m}{n} + \mathbb{Z}) = if_1(m+n\mathbb{Z})$$

para cualquier $m \in \mathbb{Z}$, y por tanto $f_i = if_1$ para cualquier $f_i \in \text{Hom}(\mathbb{Z}/n\mathbb{Z}, \mathbb{Q}/\mathbb{Z})$.

f) (0,60 puntos). Demostrad que si A es un grupo abeliano finito, entonces $\text{Hom}(A, \mathbb{Q}/\mathbb{Z})$ es un grupo abeliano finito.

Ya sabemos, por el apartado a), que $\operatorname{Hom}(A,\mathbb{Q}/\mathbb{Z})$ es un grupo abeliano. Baste demostrar que además es finito.

Para esto, basta demostrar que cada elemento $a \in A$ tiene sólo un número finito de posibles imágenes $f(a) \in \mathbb{Q}/\mathbb{Z}$ a través de un homomorfismo $f: A \to \mathbb{Q}/\mathbb{Z}$.

Como A es finito, todo elemento a de A tiene orden finito. Pero si a tiene orden n entonces la imagen de a a través de un homomorfismo $A \to \mathbb{Q}/\mathbb{Z}$ tiene que tener orden igual a un divisor de n. Como en el apartado e), la imagen de a a través de un homomorfismo $A \to \mathbb{Q}/\mathbb{Z}$ tiene que ser uno de los elementos

$$0+\mathbb{Z}, \, \frac{1}{n}+\mathbb{Z}, \, \frac{2}{n}+\mathbb{Z}, \ldots, \frac{n-2}{n}+\mathbb{Z}, \, \frac{n-1}{n}+\mathbb{Z}.$$

Un **enfoque alternativo** a este apartado hubiese sido el siguiente. Por el Teorema Fundamental, la clase de isomorfismo de A es $C_{n_1} \times C_{n_2} \times \ldots \times C_{n_s}$. No es difícil, aunque requiere cierto trabajo, demostrar que se tienen los siguientes isomorfismos canónicos:

$$\operatorname{Hom}(A, \mathbb{Q}/\mathbb{Z}) \cong \operatorname{Hom}((\mathbb{Z}/n_1\mathbb{Z} \times \mathbb{Z}/n_2\mathbb{Z} \times \ldots \times \mathbb{Z}/n_s\mathbb{Z}), \mathbb{Q}/\mathbb{Z})$$
$$\cong \operatorname{Hom}(\mathbb{Z}/n_1\mathbb{Z}, \mathbb{Q}/\mathbb{Z}) \times \operatorname{Hom}(\mathbb{Z}/n_2\mathbb{Z}, \mathbb{Q}/\mathbb{Z}) \times \ldots \times \operatorname{Hom}(\mathbb{Z}/n_s\mathbb{Z}, \mathbb{Q}/\mathbb{Z}).$$

Gracias a la parte e) sabemos que cada factor $\operatorname{Hom}(\mathbb{Z}/n_i\mathbb{Z},\mathbb{Q}/\mathbb{Z})$ tiene clase de isomorfismo C_{n_i} , por lo que $\operatorname{Hom}(A,\mathbb{Q}/\mathbb{Z})$ tiene clase de isomorfismo $C_{n_1} \times C_{n_2} \times \ldots \times C_{n_s}$. En particular, $\operatorname{Hom}(A,\mathbb{Q}/\mathbb{Z})$ es finito, jisomorfo a A!.