Data Mining

Classification 1. Logistic Regression

Classification and Regression

Classification:

- predicts categorical class labels
- Constructs classification models based on training data and uses the models in classifying new data

Regression:

- models continuous-valued functions, i.e., predicts unknown or missing numeric values
- Example Applications
 - credit approval- classify loan application by their likelihood of defaulting on payments
 - target marketing
 - medical diagnosis
 - treatment effectiveness analysis

Classification Applications

- Example Applications (continued)
 - Image processing: interpretation of digital images in radiology, recognizing 3-D objects, outdoor image segmentation
 - Language processing : text classification
 - Software development : estimate the development effort of a given software module
 - Pharmacology: drug analysis
 - Molecular biology : analyzing amino acid sequences
 - Medicine: cardiology, analyzing sudden infant death syndrome, diagnosing thyroid disorder
 - Manufacturing : classify equipment malfunctions by their cause

Classification—A Two-Step Process

- Model construction: describing a set of predetermined classes
 - Each tuple/sample is assumed to belong to a predefined class, as determined by the class label attribute
 - The set of tuples used for model construction: training set
 - The model is represented as classification rules, decision trees,
 mathematical formulae, neural networks, or an ensemble of these
- Model usage: for classifying future or unknown objects
 - Estimate accuracy of the model
 - The set of tuples used for testing the performance of the model: test data
 - The known label of test sample is compared with the classified result from the model
 - Accuracy rate is the percentage of test set samples that are correctly classified by the model
 - Test set is independent of training set, otherwise over-fitting will occur

Classification

Learn a method for predicting the instance class from pre-labeled (classified) instances

Class 2

Many approaches:
Regression,
Decision Trees,
Nearest Neighbor,
Support Vector
Machines, Neural
Networks,

. . .

Loan approval problem with a single variable

x₁: credit score (FICO score)

y: 1-approve, 0-deny

Credit Score	Loan Status
750	1
725	0
700	0
650	0
726	1
645	0
800	1

Loan approval problem with a single variable

Credit Score	Loan Status
750	1
725	0
700	0
650	0
726	1
645	0
800	1

Loan approval problem with a single variable

Credit Score	Loan Status
750	1
725	0
700	0
650	0
726	1
645	0
800	1

Loan approval problem

x₁: credit score (FICO score)

x₂: income

(may include other features)

y: 1-approve, 0-deny

Training Data

Credit Score	Income	Loan Status
750	113000	1
725	26000	0
700	54000	0
650	45000	0
726	89500	1
645	78500	0
800	87050	1

Test data:

for a new applicant with credit score 715 and income 68500, will the loan application be approved?

Linear Regression

$$y = \theta_0 + \theta_1 x_1 + \theta_2 x_2$$
$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2$$

Regression

- $h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2$, h() is a linear combination of the components of X
 - In vector form : $h_{\theta}(\mathbf{x}) = \theta^{\mathsf{T}}\mathbf{x}$
- The class separating function:
 - In 2-dimensions: a line
 - In 3-dimensions: a plane
 - In >3 dimension: hyperplane

Logistic Regression

10 features

Logistic Regression

10 features

$$f(x) = \frac{2}{1 + e^{-2x}} - 1$$

$$f'(x) = 1 - f(x)^2$$

• Sigmoid/Logistic
$$f(x) = \frac{1}{1 + e^{(-x)}}$$
$$f'(x) = f(x)[1 - f(x)]$$

Bipolar Sigmoid

$$f(x) = \frac{2}{1 + e^{(-x)}} - 1$$

$$f'(x) = \frac{1}{2}[1 + f(x)][1 - f(x)]$$

Sigmoid Function for Classification

if $\sigma(\theta^T x) < 0.5$, predict class 0

 $(\theta^{T}x < 0,$ predict class 0)

if $\sigma(\theta^T x) > 0.5$, predict class 1

 $(\theta^{T}x \ge 0,$ predict class 1)

Logistic Regression Model

$$h_{\theta}(x) = \sigma(\theta^{T}x)$$
let $z = \theta^{T}x$, $\sigma(z) = \frac{1}{1 + e^{-z}}$

$$h_{\theta}(x) = \frac{1}{1 + e^{-\theta T_x}}$$

$$h_{\theta}(x)$$
: estimated probablity that $y = 1$ on input x $p(y=1 \mid x, \theta)$ $p(y=0 \mid x, \theta) = 1 - p(y=1 \mid x, \theta)$

How to use it in credit assignment or medical diagnosis problems?

Estimate the Parameters heta

Given:

Training data set:

$$\{ \{x^{1}, y^{1}\}, \{x^{2}, y^{2}\}, \{x^{3}, y^{3}\}, \{x^{m}, y^{m}\} \}$$

$$\mathbf{x} = \begin{bmatrix} x_0 \\ x_1 \\ \dots \\ x_n \end{bmatrix} \qquad x_0 = 1, \ \mathbf{y} \in \{0, 1\}$$

$$x_0$$
=1, y∈ {0, 1}

m examples

$$h_{\theta}(x) = \frac{1}{1 + e^{-\theta^T x}}$$

How to estimate the parameters θ from data?

Cost Function

Linear Regression:

$$J(\theta) = -\frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

• In logistic regression, $(h_{\theta}(x^{(i)}) - y^{(i)})^2$ is not a convex curve, not suitable for gradient descent approximation approach.

Logistic Regression Cost Function

$$Cost(h_{\theta}(x), y) = \begin{cases} -\log(h_{\theta}(x)) & \text{if } y=1 \\ -\log(1 - h_{\theta}(x)) & \text{if } y=0 \end{cases}$$

Logistic Regression Cost Function

$$Cost(h_{\theta}(x), y) = \begin{cases} -\log(h_{\theta}(x)) & \text{if } y=1\\ -\log(1 - h_{\theta}(x)) & \text{if } y=0 \end{cases}$$

Combine these two into one single cost function:

$$Cost(h_{\theta}(x), y) = -y * log(h_{\theta}(x)) - (1-y)* log(1 - h_{\theta}(x))$$

If y=1,
$$Cost(h_{\theta}(x), y) = -\log(h_{\theta}(x))$$

If y=0, $Cost(h_{\theta}(x), y) = -\log(1 - h_{\theta}(x))$

Gradient Descent

To minimize the Cost function:

$$J(\theta) = -\frac{1}{m} \left[\sum_{i=1}^{m} y^{(i)} \log h_{\theta}(x^{(i)}) + (1 - y^{(i)}) \log(1 - h_{\theta}(x^{(i)})) \right]$$

- To minimizing the cost function over the entire data set
 - Generally, there is no closed form solution for this minimization problem, except for special cases
 - Approach: Gradient descent

Repeat for each iteration:

$$\theta_j := \theta_j - \lambda \frac{\partial}{\partial \theta_j} J(\theta)$$

where:

$$\frac{\partial}{\partial \theta_i} J(\theta) = \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)}) x_j^{(i)}$$

Weight Updates with Gradient Descent

$$J(\theta) = -\frac{1}{m} \left[\sum_{i=1}^{m} y^{(i)} \log h_{\theta}(x^{(i)}) + (1 - y^{(i)}) \log(1 - h_{\theta}(x^{(i)})) \right]$$

Want minimize J(w):

Repeat for each iteration:

$$\theta_j := \theta_j - \lambda \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)}) x_j^{(i)}$$

Simultaneously update all θ_i

 λ : Learning Rate \rightarrow step size