import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

vals=[1,2,3,1,2,3,3,2,4,3,2,1,2,2,4,7]
plt.hist(vals,bins=4)
plt.show()

vals=[1,2,3,1,2,3,3,2,4,3,2,1,2,2,4,7]
plt.hist(vals,bins=[1,3,7])
plt.show()

vals=[1,2,3,1,2,3,3,2,4,3,2,1,2,2,4,7]
plt.hist(vals)
plt.show()

vals=[1,2,3,1,2,3,3,2,4,3,2,1,2,2,4,7]
n,bins,_ = plt.hist(vals)
plt.show()

print(n)
print(bins)

vals=[1,2,3,1,2,3,3,2,4,3,2,1,2,2,4,7]
n,bins,_ = plt.hist(vals,bins=4)
plt.show()

print(n)

```
print(bins)
[9. 4. 2. 1.]
[1. 2.5 4. 5.5 7.]
```

```
vals=[1,2,3,1,2,3,3,2,4,3,2,1,2,2,4,7]
n,bins,_ = plt.hist(vals,bins=[1,2,5,7])
plt.show()
```



```
print(n)
print(bins)

[ 3. 12. 1.]
[1 2 5 7]
```

```
x = np.arange(0,20)
y = np.linspace(1,20,20,dtype=np.int32)+np.random.rand(20)*10
print(x)
print(y)
plt.plot(x,y)
plt.show()
```

[0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19] [7.15485018 10.17216757 3.01262693 11.28068293 14.82437751 13.40311716 7.23293669 13.8231406 18.96396166 19.42866898 15.29660574 18.30564403 17.55652708 19.75793484 18.49791359 22.10609954 25.77217952 25.20099069 26.92275976 20.31757565]


```
x = np.arange(0,20)
y = np.linspace(1,20,20,dtype=np.int32)+np.random.rand(20)*10
y2 = np.linspace(1,20,20,dtype=np.int32)+np.random.rand(20)*20
print(x)
print(y)
print(y2)
plt.scatter(x,y)
plt.scatter(x,y2)
plt.show()
```

```
[ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19]
     [ 4.43014829      4.43195677      6.11854567      5.17115875      9.16178076      15.99293094
       7.85076933 11.44869966 15.19173925 15.44670891 13.19483527 12.24269977
      14.86309281 15.2525563 17.70101402 22.54198514 18.53846828 19.51865244
      20.80796596 22.81082526]
                                           7.63481275 14.98633854 25.4677919
     5.24662168 11.02407048 16.7369205
      14.50217659 17.58409707 27.54618615 20.4957776 24.77670547 27.58932304
      20.26897836 26.56834751 28.17106135 23.08521561 27.1745234 34.35727221
      28.1095304 21.35795319]
      35
x = np.arange(0,20)
y = np.linspace(1,20,20,dtype=np.int32)+np.random.rand(20)*10
y2 = np.linspace(1,20,20,dtype=np.int32)+np.random.rand(20)*20
print(x)
print(y)
print(y2)
plt.scatter(x,y)
plt.scatter(x,y2)
plt.show()
     [ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19]
     [ 5.18933924 7.27556219 8.51778376 7.27993475 11.03353814 6.58484145
       7.95564359 9.95053049 10.67828979 14.40122068 19.98572812 14.74541366
      22.2012843 16.64170134 20.86661865 18.71319466 22.99706131 26.93495484
      20.92664488 23.50954056]
     [13.63311479 7.56168414 11.19209066 16.5045321 21.48015371 10.3782364
      20.12683911 10.44781582 19.14364035 29.7580058 17.63937327 30.39146526
      29.7992395 31.90793026 21.77797408 33.93458626 29.03985712 26.06962952
      30.39070034 36.26860448]
      35
      30
      25
      20
      15
      10
       5
                         7.5
                              10.0
                                    12.5
                                         15.0
         0.0
                                              17.5
x = np.arange(0,20)
y = np.linspace(1,20,20,dtype=np.int32)+np.random.rand(20)*10
y2 = np.linspace(1,20,20,dtype=np.int32)+np.random.rand(20)*20
print(x)
print(y)
print(y2)
plt.plot(x,y)
plt.plot(x,y2)
plt.show()
```

```
[ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19]
[ 4.12818545 5.77041292 6.31541619 8.36497096 14.58836998 14.14566117
10.76465019 14.20710286 18.34498568 14.11748932 14.94944409 13.09694894
22.61092923 23.86654693 24.88773377 20.38049245 23.74838712 18.12889153
25.03023539 21.55914671]
[10.18838803 19.04376017 13.30639891 16.26098131 9.06025446 7.23256591
14.4395972 19.02068636 15.57440926 15.83663853 25.88038523 29.657353
31.28234251 24.05164287 17.45472949 26.90596336 31.09691511 32.34429574
30.32138355 27.8103341 ]
```



```
x = np.arange(0,20)
y = np.linspace(1,20,20,dtype=np.int32)+np.random.rand(20)*10
y2 = np.linspace(1,20,20,dtype=np.int32)+np.random.rand(20)*20
plt.scatter(x,y,color="g")
plt.scatter(x,y2,color="c")
plt.show()
```



```
x = np.arange(0,20)
y = np.linspace(1,20,20,dtype=np.int32)+np.random.rand(20)*10
y2 = np.linspace(1,20,20,dtype=np.int32)+np.random.rand(20)*20
plt.scatter(x,y,color="g",s=3*(y))
plt.scatter(x,y2,color="c",s=3*(y2))
plt.show()
```


4*abs(y)

```
array([32.22123962, 8.94592157, 27.31923261, 35.66147284, 59.13173454, 50.22465523, 67.12342418, 33.14054563, 68.85520076, 58.79792507, 44.30292342, 80.01266376, 91.33939764, 87.03130523, 94.26373578, 77.09200865, 99.44064716, 92.73644072, 84.63689282, 99.3806265 ])
```

```
x=np.arange(1,10,0.1)
y=np.sin(x)
y2=np.tan(x)
y3=np.log(x)
y4=np.cos(x)
plt.plot(x,y)
plt.plot(x,y2)
plt.plot(x,y3)
plt.plot(x,y4)
plt.show()
```



```
x = np.arange(1, 10, 0.1)
```

y=np.sin(x)

y2=np.tan(x)

y3=np.log(x)

y4=np.cos(x)

plt.plot(x,y)

plt.show()

plt.plot(x,y2)

plt.show()

plt.plot(x,y3)

plt.show()

plt.plot(x,y4)

plt.show()


```
fig,ax=plt.subplots(1,2,figsize=(5,5))
ax[0].plot(x,y)
ax[1].plot(x,y2)
plt.show()
```



```
fig,ax=plt.subplots(2,3,figsize=(5,5))
ax[0,0].plot(x,y)
ax[0,1].plot(x,y2)
ax[1,0].plot(x,y3)
ax[1,2].plot(x,y4)
plt.show()
```



```
x=np.arange(1,10,0.1)
y=np.sin(x)
y2=np.tan(x)
y3=np.log(x)
y4=np.cos(x)

plt.figure(figsize=(5,5))
plt.subplot(2,3,1)
plt.plot(x,y)

plt.subplot(2,3,2)
plt.plot(x,y2)

plt.subplot(2,3,4)
```

plt.plot(x,y3)
plt.subplot(2,3,6)
plt.plot(x,y4)
plt.show()

!pip install seaborn

import seaborn as sns

iris=sns.load_dataset("iris")
tips=sns.load_dataset("tips")

iris

	sepal_length	sepal_width	petal_length	petal_width	species
0	5.1	3.5	1.4	0.2	setosa
1	4.9	3.0	1.4	0.2	setosa
2	4.7	3.2	1.3	0.2	setosa
3	4.6	3.1	1.5	0.2	setosa
4	5.0	3.6	1.4	0.2	setosa
145	6.7	3.0	5.2	2.3	virginica
146	6.3	2.5	5.0	1.9	virginica
147	6.5	3.0	5.2	2.0	virginica
148	6.2	3.4	5.4	2.3	virginica
149	5.9	3.0	5.1	1.8	virginica

150 rows × 5 columns

tips

	total_bill	tip	sex	smoker	day	time	size
0	16.99	1.01	Female	No	Sun	Dinner	2
2 iris.info(21 01	3 50	Male	No	Sun	Dinner	3

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 150 entries, 0 to 149

Data columns (total 5 columns):

#	Column	Non-Null Count	Dtype
0	sepal_length	150 non-null	float64
1	sepal_width	150 non-null	float64
2	petal_length	150 non-null	float64
3	petal_width	150 non-null	float64
4	species	150 non-null	object
1.4	67 / - >	1 1 1 1 1 1	

dtypes: float64(4), object(1)

memory usage: 6.0+ KB

244 rows x 7 columns

iris.describe()

	sepal_length	sepal_width	petal_length	petal_width
count	150.000000	150.000000	150.000000	150.000000
mean	5.843333	3.057333	3.758000	1.199333
std	0.828066	0.435866	1.765298	0.762238
min	4.300000	2.000000	1.000000	0.100000
25%	5.100000	2.800000	1.600000	0.300000
50%	5.800000	3.000000	4.350000	1.300000
75%	6.400000	3.300000	5.100000	1.800000
max	7.900000	4.400000	6.900000	2.500000

sns.histplot(iris["petal_length"])

<AxesSubplot:xlabel='petal_length', ylabel='Count'>

sns.histplot(iris["sepal_length"])

<AxesSubplot:xlabel='sepal_length', ylabel='Count'>

sns.histplot(iris["sepal_length"],kde=True)

<AxesSubplot:xlabel='sepal_length', ylabel='Count'>

sns.kdeplot(iris["sepal_length"],shade=True)
plt.show()

sns.kdeplot(iris["petal_width"],shade=True)

np.random.seed(10)

print(np.random.rand())
print(np.random.rand())

0.6336482349262754
0.7488038825386119

a=np.array([1,2,3,4,1,2,23,1,4,2,3,1,2,3,4])
np.unique(a,return_counts=True)

(array([1, 2, 3, 4, 23]), array([4, 4, 3, 3, 1]))

Colab paid products - Cancel contracts here