CHEM 20100 (Inorganic Chemistry I) Problem Sets

Steven Labalme

January 22, 2021

Contents

0	Course Prep Problems	1
1	VSEPR and Point Groups	3

0 Course Prep Problems

- 9/13: **2.8** The details of several steps in the particle-in-a-box model in this chapter have been omitted. Work out the details of the following steps:
 - **a.** Show that if $\Psi = A \sin rx + B \cos sx$ (A, B, r, and s are constants) is a solution to the wave equation for the one-dimensional box, then

$$r = s = \sqrt{2mE} \left(\frac{2\pi}{h}\right)$$

Solution.

$$\frac{-h^2}{8\pi^2 m} \cdot \frac{\partial^2 \Psi(x)}{\partial x^2} = E\Psi(x)$$

$$\frac{-h^2}{8\pi^2 m} \cdot \frac{\partial^2}{\partial x^2} (A\sin rx + B\cos sx) = E(A\sin rx + B\cos sx)$$

$$\frac{-h^2}{8\pi^2 m} \cdot \frac{\partial}{\partial x} (Ar\cos rx - Bs\sin sx) = E(A\sin rx + B\cos sx)$$

$$\frac{-h^2}{8\pi^2 m} \cdot (-Ar^2\sin rx - Bs^2\cos sx) = E(A\sin rx + B\cos sx)$$

$$\frac{-h^2}{8\pi^2 m} \cdot (-Ar^2\sin rx - Bs^2\cos sx) = E(A\sin rx + B\cos sx)$$

$$\frac{Ar^2h^2}{8\pi^2 m}\sin rx + \frac{Bs^2h^2}{8\pi^2 m}\cos sx = AE\sin rx + BE\cos sx$$

$$0 = \left(\frac{Ar^2h^2}{8\pi^2 m} - AE\right)\sin rx + \left(\frac{Bs^2h^2}{8\pi^2 m} - BE\right)\cos sx$$

Choose x = 0.

$$= \frac{Bs^2h^2}{8\pi^2m} - BE$$

$$E = \frac{s^2h^2}{8\pi^2m}$$

$$\frac{8\pi^2mE}{h^2} = s^2$$

$$s = \sqrt{\frac{8\pi^2mE}{h^2}}$$

$$s = \sqrt{2mE}\frac{2\pi}{h}$$

With this result ...

$$0 = \left(\frac{Ar^2h^2}{8\pi^2m} - AE\right)\sin rx + \left(\frac{Bs^2h^2}{8\pi^2m} - BE\right)\cos sx$$
$$= \left(\frac{Ar^2h^2}{8\pi^2m} - AE\right)\sin rx + \left(B\left(\frac{s^2h^2}{8\pi^2m}\right) - BE\right)\cos sx$$
$$= \left(\frac{Ar^2h^2}{8\pi^2m} - AE\right)\sin rx + (BE - BE)\cos sx$$
$$= \left(\frac{Ar^2h^2}{8\pi^2m} - AE\right)\sin rx$$

Choose $x = \frac{\pi}{2r}$.

$$=\frac{Ar^2h^2}{8\pi^2m}-AE$$

$$r = \sqrt{2mE} \frac{2\pi}{h}$$

d. Show that substituting the value of r given in part c into $\Psi = A \sin rx$ and applying the normalizing requirement gives $A = \sqrt{2/a}$.

Solution.

$$1 = \int_{\text{all space}} \Psi \Psi^* \, d\tau$$
$$= \int_0^a \left(A \sin \frac{n\pi x}{a} \right) \left(A \sin \frac{n\pi x}{a} \right) dx$$
$$= \int_0^a A^2 \sin^2 \frac{n\pi x}{a} \, dx$$

Use $\sin^2 u = \frac{1-\cos 2u}{2}$.

$$\begin{split} &=A^2 \int_0^a \frac{1-\cos\frac{2n\pi x}{a}}{2} \, \mathrm{d}x \\ &=\frac{A^2}{2} \left(\int_0^a \mathrm{d}x - \int_0^a \cos\frac{2n\pi x}{a} \, \mathrm{d}x \right) \\ &=\frac{A^2}{2} \left([x]_0^a - \left[\frac{a}{2n\pi} \sin\frac{2n\pi x}{a} \right]_0^a \right) \\ &=\frac{A^2}{2} \left((a-0) - \left(\frac{a}{2n\pi} \sin 2n\pi - \frac{a}{2n\pi} \sin 0 \right) \right) \\ &=\frac{A^2}{2} \left(a - \left(\frac{a}{2n\pi} \sin 2n\pi \right) \right) \end{split}$$

Since n is an integer, $\sin 2n\pi = 0$.

$$= \frac{aA^2}{2}$$
$$\frac{2}{a} = A^2$$
$$A = \sqrt{\frac{2}{a}}$$

1 VSEPR and Point Groups

1/21: I) Do the following (VSEPR) problems from your text (Miessler et al. (2014)): Chapter 3: #8, 9f-i, 20, 29.

3.8 Give Lewis dot structures and sketch the shapes of the following:

a. $SeCl_4$

b. I₃

c. PSCl₃

d. IF_4^-

e. PH_2^-

f. TeF_4^{2-}

g. N_3^-

$$[\dot{N} = N = N\dot{]}^{-}$$

$$N = N = N$$

h. SeOCl₄

i. PH₄⁺

- 3.9 Give Lewis dot structures and sketch the shapes of the following.
 - f. $IO(OH)_5$

 $\mathbf{g}. \ \mathrm{SOCl}_2$

 \mathbf{h} . $ClOF_4$

i. XeO_2F_2

 ${\bf 3.20}$ Predict and sketch the structure of the (as yet) hypothetical ion ${\rm IF_3}^{2-}$.

3.29 Sketch the most likely structure of PCl_3Br_2 and explain your reasoning.

Answer. Bromine is more electropositive than chlorine. Thus, by Bent's rule, the bromines will bond to the hybrid orbitals with greater s-character (the equatorial sp^2 ones) first.

II) Assign the symmetry point group to the 13 ions and molecules in problems #8, 9f-i in Chapter 3 of your text.

3.8

- III) Assign the symmetry point group of the following molecules and objects. Ignore the H atoms in (a), (e), and (g). Note that (e) has pseudooctahedral geometry and (g) is square-planar.
 - a) The molecule pictured below.

Answer. Not low or high symmetry. Has a C_2 axis. No perpendicular C_2 axes. Has a σ_h . Therefore, the above molecule is of the C_{2h} point group.

b) The molecule pictured below.

Answer. Not low or high symmetry. Has a C_2 axis. No perpendicular C_2 axes. Has a σ_h Therefore, the above molecule is of the C_{2h} point group.

c) POCl₃

Answer. Not low or high symmetry. Has a C_3 axis. No perpendicular C_2 axes. No σ_h . Has three σ_v planes all offset by 60°.

Therefore, POCl₃ is of the C_{3v} point group.

d) Tennis ball (including the seam)

Answer. Not low or high symmetry. Has a C_2 axis. No perpendicular C_2 axes. No σ_h . Has two perpendicular σ_v planes.

Therefore, a tennis ball is of the C_{2v} point group.

e) trans-[CrCl₂(H₂O)₄]⁺

Answer. Not low or high symmetry. Has a C_4 axis. Has 4 perpendicular C_2 axes. Has σ_h . Therefore, trans- $[CrCl_2(H_2O)_4]^+$ is of the D_{4h} point group.

f) 1,3,5-trichlorobenzene.

Answer. Not low or high symmetry. Has a C_3 axis. Has 3 perpendicular C_2 axes. Has σ_h . Therefore, 1,3,5-trichlorobenzene is of the D_{3h} point group.

g) trans-Pt(NH₃)₂Cl₂

Answer. Not low or high symmetry. Has a C_2 axis. Has 2 perpendicular C_2 axes. Has σ_h . Therefore, TeF_4^{2-} is of the D_{2h} point group.

h)	$\mathrm{SF}_5\mathrm{Cl}$
	Answer. Not low or high symmetry. Has a C_4 axis. No perpendicular C_2 axes. No σ_h . Has two perpendicular σ_v planes and two perpendicular σ_d planes.
	Therefore, SF_5Cl is of the C_{4v} point group.
i)	BFClBr
	Answer. BFClBr is of the C_s point group.
j)	$\mathrm{PF_2}^+$
	Answer. Not low or high symmetry. Has a C_2 axis. No perpendicular C_2 axes. No σ_h . Has two perpendicular σ_v planes.
	Therefore, PF_2^+ is of the C_{2v} point group.

IV) In the octahedral ion ${\rm FeF_6}^{3-}$, what symmetry elements are destroyed if two *trans* F ions are moved away from the ${\rm Fe^{3+}}$ center in an equidistant fashion?

Answer. If the described change is made, the point group changes from O_h to D_{4h} . In this change, every C_3 and S_6 axis, two of the three C_4 axes, and every σ_d that does not contain the axis along which the F ions are stretched are destroyed.