

# Diseño e implementación de un Sistema Web para el Simulador de Eventos Discretos GALATEA

Erik Velasquez

Facultad de Ingeniería Escuela de Ingeniería de Sistemas Trabajo de Grado

Mérida, 09 de diciembre, 2016

## Agenda



- 1 Introducción
- 2 Desarrollo del Sistema Web
- 3 Integración de GALATEA
- Pruebas
- **5** Conclusiones y Recomendaciones
- 6 Target Detection
- Classification
- SVD
- Ø K-SVD
- Bibliography

#### Planteamiento del Problema



- No se dispone de una plataforma web acondicionada para que, de manera fácil y rápida se pueda hacer uso del simulador GALATEA.
- Los usuarios y usuarias del Centro de Simulación y Modelado (CESIMO) de la Universidad de los Andes, suelen tener muchas dificultades para ejecutar los modelos de simulación en el simulador GALATEA.

#### Justificación



- Desarrollar un sistema web que sirva como base para la simulación de eventos discretos.
- Sistema web amplíe la base de usuarios y usuarias del simulador.
- Ponerlos en contacto con diferentes expertos que trabajan en el CESIMO.
- Hacer que el simulador sea amigable a la web, para así, aprovechar todas las ventajas que nos proporciona.

Objetivo General



Diseñar e implementar un sistema web para los usuarios y usuarias, modelistas y simulistas del simulador de eventos discretos GALATEA, que les permita realizar todas las tareas habituales de modelado, codificación y análisis en sus computadores y en la forma que prefieran, pero permitiéndoles realizar las tareas automáticas de compilación, gestión de archivos, simulación y gestión de salidas, en el espacio virtual y con los recursos compartidos de un servidor Web.



- Desarrollar un sistema web que permita el control de usuarios junto con los roles a ser utilizados en el sistema.
- Diseñar e implementar una arquitectura de software que permita la comunicación entre el software de simulación y el sistema web.
- Instalar y configurar en un servidor la arquitectura de software para el sistema de simulación.
- Incorporar el simulador GALATEA como servicio para el sistema web.
- Diseñar y desarrollar un cliente GUI/controlador para un modelo que se pueda gestionar archivos y simular con GALATEA a través del sistema web desarrollado.
- Sistematizar la experiencia de uso del sistema web para simulación.
- Analizar el sistema web desarrollado y establecer las conclusiones.

#### Resumen



- GALATEA.
- Control de Usuarios.
- Desarrollo de un Sistema Web.
- Integración del Sistema Web y GALATEA.

## Desarrollo del Sistema Web

- La aplicación Web que funciona como coordinador del sistema,
- control de usuarios y roles.

   Administración de archivos.
- El Sistema de Integración con GALATEA.



Figura: Sistema de Simulación Web GALATEA.

Erik Velásquez (ULA) Sistema Web GALATEA Diciembre 2016 8 / 32

## Desarrollo del Sistema Web

Diseño de la Aplicación





- Presentación.
- Servidor Web.
- Integración de Procesos.

Diciembre 2016

9 / 32

Datos.

Figura: Arquitectura de la aplicación web.

## Desarrollo del Sistema Web

Características de la Aplicación

- Diseño modular.
- Validación y verificación de cada módulo.
- Arquitectura por capas.

# Target Detection and Classification in Multispectral Imagery via Sparse Representation



Se piensa en reportar antecedentes sobre Detección y Clasificación para recordar de donde surge la idea de entrenar un Diccionario (esto de forma muy breve).

# Target Detection and Classification in Multispectral Imagery via Sparse Representation



Se piensa en reportar antecedentes sobre Detección y Clasificación para recordar de donde surge la idea de entrenar un Diccionario (esto de forma muy breve).

# Target Detection and Classification in Multispectral Imagery via Sparse Representation



Se piensa en reportar antecedentes sobre Detección y Clasificación para recordar de donde surge la idea de entrenar un Diccionario (esto de forma muy breve).



Sea  $\mathbf{y} \in \mathbb{R}^n$  un pixel de observacion multiespectral (pixel de una imagen multiespectral). Entonces

• y se representa como un vector n-dimensional cuyos elementos corresponden a la respuesta a varias bandas espectrales

$$\mathbf{y} = \left[ \begin{array}{cccc} y_1 & y_2 & \dots & y_n \end{array} \right]^T$$

• En nuestro caso, se tienen 4 bandas espectrales (n=4)



15 / 32

Si  ${\bf y}$  es un **pixel de fondo**, éste puede ser representado aproximadamente como una combinacion lineal de átomos de fondo  $\{{\bf d}_i\}_{i=1,2,\ldots,K_b}$ 

$$\mathbf{y} \approx \alpha_1 \mathbf{d}_1^b + \alpha_2 \mathbf{d}_2^b + \dots + \alpha_{K_b} \mathbf{d}_{K_b}^b$$

$$\mathbf{y} \approx \underbrace{\begin{bmatrix} \mathbf{d}_1^b & \mathbf{d}_2^b & \dots & \mathbf{d}_{K_b}^b \end{bmatrix}}_{\mathbf{D}_b} \underbrace{\begin{bmatrix} \alpha_1 & \alpha_2 & \dots & \alpha_{K_b} \end{bmatrix}}_{\mathbf{x}_b}^T$$

$$\mathbf{y} = \mathbf{D}_b \mathbf{x}_b$$

- $\mathbf{D}_b \in \mathbb{R}^{n \times K_b}$ : Es el diccionario de fondo.
- $\mathbf{x}_b \in \mathbb{R}^{K_b \times 1}$ : Es el vector de coeficientes de fondo.



Si  ${\bf y}$  es un **pixel objetivo**, éste puede ser representado aproximadamente como una combinacion lineal de átomos de objetivo  $\{{\bf d}_i\}_{i=1,2,\ldots,K_t}$ 

$$\mathbf{y} \approx \beta_1 \mathbf{d}_1^t + \beta_2 \mathbf{d}_2^t + \dots + \beta_{K_t} \mathbf{d}_{K_t}^t$$

$$\mathbf{y} \approx \underbrace{\begin{bmatrix} \mathbf{d}_1^t & \mathbf{d}_2^t & \dots & \mathbf{d}_{K_t}^t \end{bmatrix}}_{\mathbf{D}_t} \underbrace{\begin{bmatrix} \beta_1 & \beta_2 & \dots & \beta_{K_t} \end{bmatrix}}_{\mathbf{x}_t}^T$$

$$\mathbf{y} = \mathbf{D}_t \mathbf{x}_t$$

- $\mathbf{D}_t \in \mathbb{R}^{n \times K_t}$ : Es el diccionario de objetivo.
- $\mathbf{x}_t \in \mathbb{R}^{K_t \times 1}$ : Es el vector de coeficientes de objetivo.

Para modelar cualquier pixel de observación (**pixel global**), se combinan los diccionarios  $\mathbf{D}_b$  y  $\mathbf{D}_t$  formando así un **diccionario global**  $\mathbf{D}$ . Por tanto, un **pixel global** de prueba se puede escribir como una combinación lineal de unos pocos **átomos globales**  $\{\mathbf{d}_i\}_{i=1,2,\ldots,K}$ . Así

$$\mathbf{y} = \underbrace{\left[\begin{array}{c} \mathbf{D}_b & \mathbf{D}_t \end{array}\right]}_{\mathbf{D}} \underbrace{\left[\begin{array}{c} \mathbf{x}_b \\ \mathbf{x}_t \end{array}\right]}_{\mathbf{x}}$$
 $\mathbf{y} = \mathbf{D}\mathbf{x}$ 

- $\mathbf{D} \in \mathbb{R}^{n \times K}$ : Es el diccionario global (con  $K = K_b + K_t$ ).
- $\mathbf{x} \in \mathbb{R}^{K \times 1}$ : Es el vector de coeficientes global.

## Reconstruction Task



Asumiendo que se conoce el diccionario global  $\mathbf{D}$ ,  $\mathbf{x}$  se puede hallar resolviendo el problema de minimización (ampliamente conocido)

$$\mathbf{x} = \arg\min_{\mathbf{x}} \|\mathbf{y} - \mathbf{D}\mathbf{x}\|_{2}^{2} \ s.t. \ \|\mathbf{x}\|_{0} \le T$$

Una vez conocido (reconstruido) el vector de coeficientes  ${\bf x}$ , se pueden determinar los respectivos  ${\bf x}_b$  y  ${\bf x}_t$ 

$$\mathbf{x} = \left[ egin{array}{c} \mathbf{x}_b \ \mathbf{x}_t \end{array} 
ight]$$

## **Detection Task**



$$\mathbf{r}_b(\mathbf{y}) = \|\mathbf{y} - \mathbf{D}_b \mathbf{x}_b\|_2$$

$$\mathbf{r}_t(\mathbf{y}) = \|\mathbf{y} - \mathbf{D}_t \mathbf{x}_t\|_2$$

Luego, el detector podría plantearse de la sig. manera

$$\mathbf{TD}(\mathbf{y}) = \mathbf{r}_b(\mathbf{y}) - \mathbf{r}_t(\mathbf{y})$$

- Si  $TD(y) > \delta$ : Entonces x es determinado como un pixel objetivo.
- Si  $TD(y) < \delta$ : Entonces x es determinado como un pixel de fondo.



Para **D** se trabajó inicialmente con átomos tomados directamente de muestras sobre la imagen.

- $\mathbf{D}_b$ : átomos conformados de pixeles de fondo, directamente.
- $oldsymbol{ ext{D}}_t$  : átomos conformados de pixeles de objetivo, directamente.

Lo cual, probablemente, conduce a una reconstrucción relativamente pobre (menos discriminativa).

- ▶ Por esta razón, se pensó en el entrenamiento de un diccionario. Apareciendo el estudio del algoritmo K-SVD como mejor opción.
- ► Con lo que se espera una reconstrucción más discriminativa, que potencie el rendimiento del detector.

### Observations

#### Second



Con sólo entrenar un diccionario  $\mathbf D$  que se adapte a la data (mediante K-SVD) se procedería con las tareas de reconstrucción y luego detección. Con ello:

- Se espera un mejor rendimiento en la detección debido a una reconstrucción de más fiable.
- No obstante, los procesos de entrenamiento y reconstrucción se trabajan aisladamente.

Lo anterior, conduce a pensar en algo más ambisioso.

▶ Durante el mismo entrenamiento, se trabajen ambas operaciones (entrenamiento/detección) de manera simultánea.

## Classification

Suponiendo que se presentan  $\boldsymbol{m}$  posibles clases. El diccionario global estaría determinado por la combinación de  $\boldsymbol{m}$  subdicionarios. (uno para clada clase)

$$\mathbf{D} = \left[ \begin{array}{cccc} \mathbf{D}_1 & \mathbf{D}_2 & \dots & \mathbf{D}_m \end{array} \right]$$

Para lo cual, resolviendo la tarea de reconstrucción, se obtendría un vector de coeficientes global  $\mathbf{x}$  formado por la combinación de  $\mathbf{m}$  subvectores de coeficientes (uno por clase).

$$\mathbf{x} = \left[ egin{array}{c} \mathbf{x}_1 \ \mathbf{x}_2 \ dots \ \mathbf{x}_m \end{array} 
ight]$$

## Classification



Con los m subdicionrios y vectores de coeficientes, se pueden calcular merrores de reconstrucción (uno para cada clase).

$$\mathbf{r}_i(\mathbf{y}) = \|\mathbf{y} - \mathbf{D}_i \mathbf{x}_i\|_2 \qquad_{i=1,2,\dots,m}$$

Obteniéndose

$$\mathbf{r}(i) = \begin{bmatrix} \mathbf{r}_1(\mathbf{y}) \\ \mathbf{r}_2(\mathbf{y}) \\ \vdots \\ \mathbf{r}_m(\mathbf{y}) \end{bmatrix}$$

Luego, la clase queda determinada por

$$\mathbf{Class}(\mathbf{y}) = i = \arg\min_{i} \ \mathbf{r}(i) \qquad_{i=1,2,\dots,m}$$

23 / 32



Cualquier matriz rectangular  $\mathbf{A} \in \mathbb{R}^{m \times n}$  se puede factorizar de la forma

$$\mathbf{A} = \mathbf{U}\mathbf{\Sigma}\mathbf{V}^T$$

#### Donde:

Definition

- ullet  $\mathbf{U} \in \mathbb{R}^{m imes m}$  : Matriz cuyas columnas son los autovectores de  $\mathbf{A}\mathbf{A}^T$
- ullet  $\mathbf{V} \in \mathbb{R}^{n imes n}$  : Matriz cuyas columnas son los autovectores de  $\mathbf{A}^T \mathbf{A}$
- $\Sigma \in \mathbb{R}^{m \times n}$ : Matriz diagonal (pero rectangular) que contiene la raiz cuadrada de los autovalores no-negativos de V. Ellos son los valores singulares de A



Segun su definición, SVD es una multiplicación de matrices.

ullet Se puede manejar esta multiplicacion como  $columns\ times\ rows$ 

$$\mathbf{A} = \mathbf{U}\boldsymbol{\Sigma}\mathbf{V}^T = \mathbf{u}_1\sigma_1\mathbf{v}_1^T + \mathbf{u}_2\sigma_2\mathbf{v}_2^T + \ldots + \mathbf{u}_r\sigma_r\mathbf{v}_r^T$$

- ► Cualquier matriz **A** (rectangular) se puede **descomponer** como la suma de r submatrices de rango-1.
- ▶ Cada matriz está formada por la multiplicacion entre la i-th columna de  $\mathbf{U}$  y la i-th fila de  $\mathbf{V}^T$ , además de estar ponderadas/escaladas/pesadas por el correspondiente autovalor (valor singular).



Dadas un conjunto de N señales de entrenamineto  $\mathbf{Y}$ , el algoritmo busca el diccionario  $\mathbf{D}$  que conduce a la mejor representacion  $\mathbf{X}$  de cada uno de los N miembros en ese conjunto, bajo una estricta  $sparsity\ constraint$ .

$$<\mathbf{D}, \mathbf{X}> = \underset{\mathbf{D}, \mathbf{X}}{\operatorname{arg min}} \{\|\mathbf{Y} - \mathbf{D}\mathbf{X}\|\}_F^2 \ s.t. \ \forall i, \|\mathbf{x}_i\|_0 \le T$$
 (1)

Para tal fin, trabaja en base a dos etapas

- Sparse Coding Stage.
- 2 Process of Updating the dictionary.

# First Stage: Sparse Coding Stage



- Se asume un D fijo y se considera el problema de optimización (1).
- Se halla la matriz de de representación poco densa  ${f X}$  ( $Sparse\ Coding$ )

Esto se logra, resolviendo N problemas

$$\mathbf{x}_i = \underset{\mathbf{x}_i}{\operatorname{arg min}} \|\mathbf{y} - \mathbf{D}\mathbf{x}_i\|_2^2 \ s.t. \|\mathbf{x}\|_0 \le T$$

Donde la i-th columna en  ${\bf X}$ , corresponde al vector de codificación  ${\bf x}_i$  de la i-th señal de entrenamineto  ${\bf y}_i$  en  ${\bf Y}$  para el  ${\bf D}$  fijo.



ullet Se asume que tanto  ${f D}$  como  ${f X}$  están fijos y se considera el problema de optimización (1).

Recordando la multiplicación matricial vista como columns times rows. Entonces

$$\mathbf{DX} = \sum_{j=1}^{K} \mathbf{d}_j \mathbf{x}_T^j$$

Con lo cual, el término  $\|\mathbf{Y} - \mathbf{D}\mathbf{X}\|_F^2$  en (1) se puede reescribir como

$$\|\mathbf{Y} - \mathbf{D}\mathbf{X}\|_F^2 = \left\|\mathbf{Y} - \sum_{j=1}^K \mathbf{d}_j \mathbf{x}_T^j\right\|_F^2$$
 (2)

• Para proponer la actualización de D, se pone en cuestion un sólo átomo  $\mathbf{d}_k$  y la fila de coeficientes  $\mathbf{x}_T^k$  correspondientes

Ello se logra reescribiendo (2) de la sig. manera

$$\|\mathbf{Y} - \mathbf{D}\mathbf{X}\|_F^2 = \left\| \left( \mathbf{Y} - \sum_{j \neq k} \mathbf{d}_j \mathbf{x}_T^j \right) - \mathbf{d}_k \mathbf{x}_T^k \right\|_F^2$$
$$= \left\| \mathbf{E}_k - \mathbf{d}_k \mathbf{x}_T^k \right\|_F^2. \tag{3}$$

▶ Se desea minimizar la diferencia en (3) sabiendo que  $\mathbf{d}_k \mathbf{x}_T^k$  es una matriz de rango-1. ¿Qué se sugiere?

Erik Velásquez (ULA) Sistema Web GALATEA Diciembre 2016 29 / 32



- ▶ Aplicar SVD a  $\mathbf{E}_k$  para determinar la matriz de  $rango{-}1$  más semejante a ella.
- ▶ Esto se realiza K veces, a favor de actualizar cada uno de los K átomos en  $\mathbf{D}$ .
- ► Lo anterior justifica el nombre del algoritmo, pues se aplica "SVD" K veces (K-SVD)



Muy importante, realmente (3) se redefine antes de aplicar SVD a favor de mantener una representación poco densa. Así

$$\left\|\mathbf{E}_{k}\mathbf{\Omega}_{k}-\mathbf{d}_{k}\mathbf{x}_{T}^{k}\mathbf{\Omega}_{k}\right\|_{F}^{2}=\left\|\mathbf{E}_{k}^{R}-\mathbf{d}_{k}\mathbf{x}_{R}^{k}\right\|_{F}^{2}.$$

#### Donde:

- $\Omega_k$  es la matriz que permite preservar el soporte del vector fila  $\mathbf{x}_T^k$
- $\mathbf{x}_{R}^{k}$  son los coeficientes no nulos de  $\mathbf{x}_{T}^{k}$
- ullet  $\mathbf{E}^R_{\iota}$  son las columnas de errores que corresponden a los ejemplos que usan el átomo  $\mathbf{d}_k$

Luego, Se aplica SVD a  $\mathbf{E}_k^R$ , con lo cual

$$\mathbf{d}_k \mathbf{x}_R^k = \mathbf{u}_i \sigma_i \mathbf{v}_i^T$$

# Bibliography



- [1] Y. Chen, N. M. Nasrabadi, and T. D. Tran, "Sparse representation for target detection in hyperspectral imagery," IEEE J. Sel. Topics Signal Process, vol. 5, no. 3, pp. 629-640, June 2011.
- [2] Y. Chen, N. M. Nasrabadi, y T. D. Tran, "Hyperspectral Image Classifications using Dictionary-based sparse representation," IEEE Trans. Geosci. Remote Sens., vol. 49, no. 10, pp. 3973-3985., Oct. 2011.
- [3] G. Strang, Linear Algebra and Its Aplications. Fourth Edition.
- [4] M. Aharon, M. Elad, y A. Bruckstein, "K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation," IEEE Transactions on Signal Processing, vol. 54, no. 11, pp. 4311-4322, Nov. 2006.