Fast R-CNN

이재형

Signal Processing & Artificial-intelligence Lab Hanyang University

Contents

- 3 drawbacks of R-CNN
- How Fast R-CNN solved R-CNN's problems?
 - Rol pooling
 - Feature sharing
 - Hierarchical sampling
 - Single-stage training
- Conclusion

Drawbacks of R-CNN

1. Very **slow inference** speed

- 1 image inference time = 47sec
- **2. Expansive training** cost in space and time
 - Need to save AlexNet output feature = hundreds of GB!
- 3. Separated training pipeline : **complex**
 - AlexNet, Linear SVM, bbox regressor

Drawbacks of R-CNN

1. Very **slow inference** speed

- 1 image inference time = 47sec
- **2. Expansive training** cost in space and time
 - Need to save AlexNet output feature = hundreds of GB!
- 3. Separated training pipeline : **complex**
 - AlexNet, Linear SVM, bbox regressor

Fast R-CNN – Architecture

5

Fast R-CNN – Architecture

VGG-16

Fast R-CNN – Architecture

9

Rol pooling

Fast R-CNN – feature sharing

	1	ch fas st R-CN	R-CNN				
	S	M	L	S	\mathbf{M}	L	
train time (h)	1.2	2.0	9.5	22	28	84	
train speedup	18.3×	14.0×	$8.8 \times$	$1 \times$	$1 \times$	$1\times$	
test rate (s/im)	0.10	0.15	0.32	9.8	12.1	47.0	
⊳ with SVD	0.06	0.08	0.22	-	-	L 1	
test speedup	98×	80×	146×	1×	$1 \times$	$1 \times$	
⊳ with SVD	169×	150×	213×	-	_	-	
VOC07 mAP	57.1	59.2	66.9	58.5	60.2	66.0	
⊳ with SVD	56.5	58.7	66.6	_	_	41	

S: AlexNet

M : AlexNet (Wider)

L: VGG-16

Input 4096 size feature vectoroutput (K+1) sized vector

$$L_{cls}(p,u) = -log p_u$$

p: output probability distribution

 $oldsymbol{u}$: ground truth class

16

bounding box regression Loss

$$L_{\text{loc}}(t^u, v) = \sum_{i \in \{x, y, w, h\}} \text{smooth}_{L_1}(t_i^u - v_i)$$

$$\operatorname{smooth}_{L_1}(x) = \begin{cases} 0.5x^2 & \text{if } |x| < 1\\ |x| - 0.5 & \text{otherwise,} \end{cases}$$

pred location
$$t^k = (t_x^k, t_y^k, t_w^k, t_h^k)$$

ground truth $v = (v_x, v_y, v_w, v_h)$

Multi-task Loss

$$L(p, u, t^u, v) = L_{cls}(p, u) + \lambda \underbrace{[u \ge 1]}_{L_{loc}(t^u, v)}$$

for background class(u=0), ignore L_loc

u : ground truth class

			S			N	M			1	L	
multi-task training?		✓		✓		✓		✓		✓		✓
stage-wise training?			\checkmark				\checkmark				\checkmark	
test-time bbox reg?			\checkmark	\checkmark			\checkmark	\checkmark			\checkmark	\checkmark
VOC07 mAP	52.2	53.3	54.6	57.1	54.7	55.5	56.6	59.2	62.6	63.4	64.0	66.9

multi-task learning is good for this model!

Conclusion

Thank You

이재형

Signal Processing & Artificial-intelligence Lab Hanyang University