CS 311 Computer Architecture 2025/2026

Lecture 1

Assis. Prof. Dr. Elmahdy Maree

CH1: Computer Architecture and Organization

Upon completion of this lecture, you will be able to:

Describe the design of digital basic building blocks

Intrduction to Computer Architecture and Organization

* Computer architecture

Refers to those attributes of a system visible to a programmer or those attributes that have a direct impact on the logical execution of a program.

Examples of architectural attributes

Includes the instruction set, the number of bits used to represent various data types (e.g., numbers, characters), I/O mechanisms, and techniques for addressing memory.

* Computer organization;

Refers to the operational units and their interconnections that realize the architectural specifications.

Organizational attributes

Includes those hardware details transparent to the programmer, such as control signals; interfaces between the computer and peripherals; and the memory technology used.

CH 1: Digital Building Blocks (Registers, Counters,.)

A Top-Level View of Computer Function and Interconnection

Structure of IAS Computer

A Top-Level View of Computer Interconnection

CH 1: Digital Building Blocks (Registers, Counters,.)

Digital Building Blocks

- 1. Registers
- 2. COUNTERS
- 3. BUS
- 4. RAMS

Digital Logic and Computer Architecture

MET 2024-2025

Review of Flip Flops

Characteristic and Excitation Table

Lecture 2: Flip Flops

Symbol:

D Flip flop

Function Table

Equations

$$Q(t+1) = D$$

Lecture 1: Flip Flops

T Flip flop

Function Table

 $Q(t+1) = T \oplus Q(t)$

Symbol:

Lecture 1: Flip Flops

JK Flip flop

Symbol:

Lecture 12: Flip Flops

CH 1: Digital Building Blocks (Registers, Counters,.)

Registers

CH 1: Digital Building Blocks (Registers, Counters,.)

Buffer Registers

Registers are a type of computer memory built directly into the processor or CPU (Central Processing Unit) that is used to store and manipulate data during the execution of instructions. A register may hold an instruction, a storage address, or any kind of data

BUFFER REGISTERS

Buffer register.

Symbol:

BUFFER REGISTERS

Controlled buffer register with parallel load.

Symbol:

BUFFER REGISTERS

Controlled buffer register.

Hardware Implementation:

Normally open switch

Normally closed switch.

NORMALLY OPEN

ENABLE	$D_{ m in}$	$oldsymbol{D}_{ ext{out}}$
0	X	Open
1	0	0
1	1	1

NORMALLY CLOSED

DISABLE	$oldsymbol{D}_{in}$	$oldsymbol{D}_{ ext{out}}$
0	0	0
0	1	1
1	X	Open

Three-State Registers

The main application of three-state switches is to convert the two-state output of a register to a three-state output.

Symbol:

Shift Registers

Symbol:

Shift-right register.

CH 1: Digital Building Blocks (Registers, Counters,.)

BUS-ORGANIZED COMPUTERS

Bus-Organized Computers

A bus is a group of wires that transmit a binary word

An abbreviated form of the bus example

Questions

THANK YOU

