

K-MAP SIMPLIFICATION

We know how to derive the output expression from ...

✓ Logic circuits

We will learn how to derive the output expression from ...

- ✓ Logic circuits
- Truth tables

Truth table ...

Given a Truth Table

Output expressions ...

Simplify ...

Gates and VHDL coding

Truth table -> Simplified circuit

How can we derive an output expression from a Truth Table?

How can we derive an output expression from a Truth Table?

Algorithm:

1. Write an AND term (Boolean expression) for each case in the truth table the output is logic 1.

Truth table \rightarrow output logic expression(s)

Algorithm:

- 1. Write an AND term (Boolean expression) for each case in the truth table the output is logic 1.
- 2. All the AND terms are then ORed together to produce the final output expression

Example: Derive the Truth Table

Word Problem:

For a three-input (A,B,C) binary system. If we have more than one high(1) inputs the output (X) is 1, otherwise is zero(0).

Example: Truth Table

Α	В	С	X
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

Word Problem:

For a three-input (A,B,C) binary system. If we have more than one high(1) inputs the output (X) is 1, otherwise is zero(0).

Example: Truth Table (done)

1		7
1	v	•

Α	В	С	X
0	0	0 1	0
$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$	1 1	0 1	0
1 1	0	0	0 1
1 1 1	1 1	0 1	1 1

Word Problem:

For a three-input (A,B,C) binary system. If we have more than one high(1) inputs the output (X) is 1, otherwise is zero(0).

Example: Write Terms

Α	В	С	X
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

A B C A B C

Example: Output expression (SOP)

Α	В	С	X
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

SOP = Sum-Of-Products

$$= = = = = = \Rightarrow X = \overline{A}BC + \overline{A}BC + \overline{A}BC + \overline{A}BC$$

Simplify the logic expression

$$X = \overline{A}BC + \overline{A}BC + \overline{A}BC + \overline{A}BC$$

Add two ABC terms

$$X = \overline{A} BC + A \overline{B} C + A \overline{B} C + A \overline{B} C$$

$$= \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC}$$

Result

$$X = \overline{A} BC + A \overline{B} C + A B \overline{C} + A B C$$

$$= \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC}$$

$$= BC(\overline{A+A}) + AC(\overline{B+B}) + AB(\overline{C+C})$$

$$= BC + AC + AB$$

Implementation: Logic Circuit

Conclusion

The algebraic simplification procedure is very unsystematic...

A "more" systematic way...

 There is a more systematic way to simplify logic expressions: Karnaugh maps or K-maps.

Karnaugh maps (K-maps)

Maurice Karnaugh, "The Map Method for Synthesis of Combinational Logic Circuits", Trans. AIEE. part I, 72(9):593-599, November 1953.

Karnaugh maps (K-maps)

K-map is a symbolic representation of a truth table that enables us to simplify a logic expression.

- 2-variable K-map
- 3-variable K-map
- 4-variable K-map
- **...**

4-cells having values: 0 or 1

or ...

The 00, 01, 11, 10 are not in ascending order. This is the Gray Code...

K-map: 2-variable set up

given:

K-map: 2-variable set up

K-map: 3-variable example set-up

K-map: 3-variable example set-up

Four variable K-map: Example

$$X = \overline{A} \overline{B} \overline{C} D + \overline{A} \overline{B} \overline{C} D + \overline{A} \overline{B} \overline{C} D + \overline{A} \overline{B} \overline{C} D$$

Four variable K-map: Example

How can we simplify using K-maps?

Use looping

looping is a process of combining 1's

Looping: Process of combining 1's

The looping is done in groups of ...

Two (pair)

Four (quad)

Eight (octel)

1) Looping: Pair (2 ... 1's)

 Looping a pair of adjacent 1's in a K-map table eliminates one variable that appears in complemented (A') and uncomplemented (A) form.

Uniting Theorem

 Looping a pair of adjacent 1's in a K-map table eliminates one variable that appears in complemented (A') and uncomplemented (A) form.

$$B(A'+A)=B$$

Example 1: 2 logically adjacent 1's

$$X = ?$$

$$X = \overline{A}B\overline{C} + AB\overline{C}$$
$$= B\overline{C}(\overline{A} + A)$$
$$= B\overline{C}$$

Logically adjacent ...

 Two terms (minterms) are logically adjacent if they differ in only one variable position (A) (Gray Code)

$$X = \overline{A}B\overline{C} + AB\overline{C}$$
$$= B\overline{C}(\overline{A} + A)$$
$$= B\overline{C}$$

- Logically adjacent terms can be looped (combined)
- A'BC', ABC' are minterms (m5, m6)

$$X = ?$$

$$X = \overline{A} B$$

$$X = ?$$

Cyclic property...

$$X = \overline{B} \overline{C}$$

Top and bottom rows are considered to be logical adjacent

A B	00	01	11	10
00			1	1
01				
11				
10	1			1

$$X = ?$$

Cyclic property ... again

$$X = A\overline{B}\overline{D} + \overline{A}\overline{B}C$$

Left and right columns are considered to be logical adjacent...

Adjacent left-right and top-bottom

Earth

2) Looping: Quad (4 ... 1's)

 Looping (Combining) a quad, of logically adjacent 1's in a K-map, eliminates two variables that appear in complemented and uncomplemented form.

3-variable K-Map: Example1

AB	0	1
00		1
01		1
11		1
10		1

$$X = ?$$

3-variable K-Map: Example1

$$X = C$$

A B	00	01	11	10
00				
01				
11	1	1	1	1
10				

$$X = ?$$

$$X = AB$$

A B	00	01	11	10
00				
01		1	1	
11		1	1	
10				

$$X = ?$$

$$X = BD$$

A B CI	00	01	11	10
00				
01				
11	1			1
10	1			1

$$X = ?$$

Left and Right pairs are adjacent

$$X = A\overline{D}$$

A B	00	01	11	10
00	1			1
01				
11				
10	1			1

$$X = ?$$

Cyclic property: All 1's are adjacent

3) Looping: Octel (8 ... 1's)

- Looping (combining) an octel, of logically adjacent 1's, in a K-map eliminates three variables that appear in complemented and uncomplemented form
- In general, looping 2^m terms...eliminates m variables.

A B	00	01	11	10
00				
01	1	1	1	1
11	1	1	1	1
10				

$$X = ?$$

Solution

$$X = B$$

A B	00	01	11	10
00	1	1		
01	1	1		
11	1	1		
10	1	1		

$$X = ?$$

Solution

$$X = \overline{C}$$

A B	00	01	11	10
00	1	1	1	1
01				
11				
10	1	1	1	1

$$X = ?$$

Solution

 $X = \overline{B}$

A B	00	01	11	10
00	1			1
01	1			1
11	1			1
10	1			1

$$X = ?$$

Solution

$$X = \overline{D}$$

More Examples-1

CI	00	01	11	10
A B 00		1		
01		1	1	1
11	1	1	1	
10			1	

Looping...

$$X = \overline{ACD} + \overline{ABC} + AB\overline{C} + ACD + BD$$

BD is not needed

$$X = \overline{A}\overline{C}D + \overline{A}BC + AB\overline{C} + ACD + \overline{B}O$$

Optimal Minimal Simplification

More Examples-2

CI	00	01	11	10
A B 00				1
01		1	1	
11		1	1	
10			1	

$$X = ?$$

Minimal simplification

$$X = ACD + BD + \overline{AB}C\overline{D}$$

More Examples-3

A B	00	01	11	10
00			1	
01	1	1	1	1
11	1	1		
10				

$$X = ?$$

Minimal simplification

$$X = \overline{A}CD + \overline{A}B + B\overline{C}$$

Summary: Looping (K-Map)

- Loop the isolated 1's (those not logically adjacent to any other 1's). Look for the 1's that are adjacent to any loops and loop any pair containing such 1's. Each 1 must be looped at least once. However, it may be covered more than once (optimal).
 - Loop any octels (optimal)
 - Loop any quads (optimal)
 - Loop any pairs (optimal)
 - > Form the OR sum of all terms in the loops