R16

Code No: **R1631023**

SET - 1

III B. Tech I Semester Supplementary Examinations, August - 2021 SIGNALS AND SYSTEMS

(Electrical and Electronics Engineering) Time: 3 hours Max. Marks: 70 Note: 1. Question Paper consists of two parts (Part-A and Part-B) 2. Answer **ALL** the question in **Part-A** 3. Answer any **FOUR** Questions from **Part-B** PART -A (14 Marks) A continuous time signal x(t)=2t. Sketch the following signals: [2M](i) x(-t); (ii) x(t/2). b) Find the Fourier transform of $\delta(t-t_0)$. [2M]What is the condition that a signal can be reconstructed from its [2M]samples? State Parseval's theorem. d) [3M] Find the Inverse Laplace transform of $\frac{1}{(s+a^2)}$. [3M] f) Find the z – transform of $x[n-n_0]$ [2M]PART -B (56 Marks) Determine the average power and normalized energy of the signal: 2. a) [7M] $x(t) = A \sin(\omega_0 t + \theta)$. Discuss orthogonal vector space and orthogonal signal space and its b) [7M] importance in signal analysis.

3. a) Consider the periodic square wave x(t) as shown in fig.1 given below. [7M] Determine the complex exponential Fourier series of x(t).

- b) Find the Fourier transform of the signal $x(t) = \frac{\sin at}{\pi t}$. [7M]
- 4. a) Explain briefly the band pass sampling. [7M]
 b) Determine the Nyquist rate for continuous time signal: [7M]
 X(t)= 6 cos(50πt)+ 20 sin(300πt)+10 cos(100πt).

1 of 2

Code No: **R1631023**

R16

SET - 1

- 5. a) Define causality and physical realization of system. Also, explain [7M] about Paley-Wiener criterion for physical realization of system.
 - b) Write short notes on cross correlation and its properties. [7M]
- 6. a) If $F(s) = \frac{S}{(S+1)(S-3)}$, find all possible f(t). [7M]
 - b) Find the inverse Laplace transform of F(s) = $\frac{2}{(S+1)(S+5)}$. [7M]
- 7. a) A finite sequence x[n] is defined as $x[n] = \{5, 3, -2, 0, 4, -3\}$. Find X[z] [7M] and its ROC.
 - b) Consider the sequence $x(n) = a^n$, $0 \le n \le N 1$, a > 0 and x(n) is zero [7M] otherwise. Find X(z).

2 of 2