Lecture 16: From Lanczos to Gauss quadrature

School of Mathematical Sciences, Xiamen University

1. The discrete vector/continuous function analogy

• If discrete vectors become continuous functions on [-1,1] (analogous to column vectors of dimension $\infty \times 1$), and the matrix **A** is taken to be the operator of pointwise multiplication by x, i.e.,

$$(\mathbf{A}u)(x) = xu(x),$$

then the Lanczos process (by setting $\mathbf{r} = 1$ and $\mathbf{A} = x$) becomes the standard procedure for constructing orthogonal polynomials via a three-term recurrence relation.

• The nodes and weights of Gauss quadrature formulas can be computed by solving a symmetric tridiagonal matrix eigenvalue problem.

2. Orthogonal polynomials

• Replace \mathbb{C}^n by $L^2[-1,1]$, a vector space of real-valued functions on [-1,1]. The inner product of two functions $u,v\in L^2[-1,1]$ is defined by

$$\langle u, v \rangle = \int_{-1}^{1} u(x)v(x)dx,$$

and the norm of a function $u \in L^2[-1,1]$ is $||u|| = \langle u,u \rangle^{1/2}$.

Proposition 1

The pointwise multiplication operator $(\mathbf{A}u)(x) = xu(x)$ is self-adjoint with respect to the given inner product.

Proof. Note that

$$\langle \mathbf{A}u, v \rangle = \int_{-1}^{1} (\mathbf{A}u)(x)v(x) dx = \int_{-1}^{1} u(x)(\mathbf{A}v)(x) dx = \langle u, \mathbf{A}v \rangle. \quad \Box$$

Algorithm: Lanczos for orthogonal polynomials

$$\beta_0 = 0, \ q_0(x) = 0, \ q_1(x) = 1/\sqrt{2}$$
 for $j = 1, 2, 3, \dots$,
$$v(x) = xq_j(x)$$

$$\alpha_j = \langle q_j, v \rangle$$

$$v(x) = v(x) - \beta_{j-1}q_{j-1}(x) - \alpha_j q_j(x)$$

$$\beta_j = ||v||$$

$$q_{j+1}(x) = v(x)/\beta_j$$
 end

Remark 2

We have
$$\langle q_i, q_j \rangle = \int_{-1}^1 q_i(x) q_j(x) dx = \delta_{ij} = \begin{cases} 1 & \text{if } i = j, \\ 0 & \text{if } i \neq j. \end{cases}$$

Remark 3

The function $q_{j+1}(x)$ is a scalar multiple of the usual jth Legendre polynomial $P_j(x)$ of degree j (note that $P_j(1) = 1$), i.e.,

$$q_{j+1}(x) = q_{j+1}(1)P_j(x).$$

Remark 4

The three-term recurrence takes the form

$$xq_j(x) = \beta_{j-1}q_{j-1}(x) + \alpha_j q_j(x) + \beta_j q_{j+1}(x).$$

The entries $\{\alpha_j\}$ and $\{\beta_j\}$ are known analytically:

$$\alpha_j = 0, \qquad \beta_j = \frac{1}{2} (1 - (2j)^{-2})^{-1/2}.$$

• The tridiagonal matrices $\{\mathbf{T}_j\}$ in Lanczos process are known as *Jacobi matrices* in the context of orthogonal polynomials.

Remark 5

If the inner product is modified by the inclusion of a nonconstant positive weight function w(x) in the integrand, then one obtains other families of orthogonal polynomials such as Chebyshev polynomials and Jacobi polynomials.

Algorithm: Gram–Schmidt for orthogonal polynomials

for
$$j = 1, 2, 3, \cdots$$

$$q_{j}(x) = x^{j-1}$$
for $i = 1$ to $j - 1$

$$r_{ij} = \langle q_{i}, x^{j-1} \rangle$$

$$q_{j}(x) = q_{j}(x) - r_{ij}q_{i}(x)$$
end
$$r_{jj} = ||q_{j}||$$

$$q_{j}(x) = q_{j}(x)/r_{jj}$$
end

Remark 6

The above algorithm constructs the continuous QR factorizations of the "Krylov matrix"

$$\mathbf{K}_{\infty} = \left[\begin{array}{cccc} 1 & x & x^2 & x^3 & \cdots \end{array} \right],$$

which is obtained by setting $\mathbf{r} = 1$ and $\mathbf{A} = x$.

Remark 7

The two algorithms obtain the same sequence of functions $\{q_i\}$.

3. Orthogonal polynomials approximation problem

• Find a monic polynomial p^{j} of degree j such that

$$||p^{j}(x)|| = \min_{\text{monic } p, \deg(p)=j} ||p(x)||.$$

The solution is the characteristic polynomial of the matrix \mathbf{T}_{j} .

Theorem 8

Let $p^{j}(x)$ be the characteristic polynomial of \mathbf{T}_{j} . Then for $j=0,1,\cdots$,

$$p^j(x) = \rho_j q_{j+1}(x),$$

where ρ_i is a constant.

Proof. Any monic p(x) of degree j can be written as

$$p(x) = \rho_j q_{j+1}(x) + \sum_{i=1}^{j} y_i q_i(x),$$

where ρ_j is a constant – the inverse of the leading coefficient of $q_{j+1}(x)$. Due to

$$||p(x)|| = (\rho_j^2 + ||\mathbf{y}||_2^2)^{1/2},$$

the minimum is obtained by setting y = 0.

Corollary 9

The zeros of $q_{j+1}(x)$ are the eigenvalues of \mathbf{T}_j . These j zeros are distinct and lie in the open interval (-1,1).

Proof. All eigenvalues of \mathbf{T}_j are distinct. Assume that k < j. For any $\{x_i\}_{i=1}^k$, we have

$$\int_{-1}^{1} q_{j+1}(x) dx = 0, \quad \int_{-1}^{1} q_{j+1}(x) \prod_{i=1}^{k} (x - x_i) dx = 0.$$

The first equality shows that there exists at least one root in (-1,1). Now assume there are only k < j distinct roots in (-1,1), denoted by $\{x_i\}_{i=1}^k$. Consider the polynomial $q_{j+1}(x)\prod_{i=1}^k (x-x_i)$, which has

constant sign in (-1,1). This is a contradiction of the second equality.

4. Gauss-Legendre quadrature

 The Gauss-Legendre quadrature formula is defined as the quadrature formula

$$I_j(f) = \sum_{i=1}^{j} w_i f(x_i)$$
 for $I(f) = \int_{-1}^{1} f(x) dx$,

whose nodes x_1, \dots, x_j are the zeros of $q_{j+1}(x)$, and weights w_1, \dots, w_j are the unique choice with the property that the quadrature has order of accuracy at least j-1 in the sense that it is exact if f(x) is any polynomial of degree $\leq j-1$.

Note that

$$w_i = \int_{-1}^{1} \ell_i(x) dx, \quad \ell_i(x) = \prod_{k=1, k \neq i}^{j} (x - x_k) / \prod_{k=1, k \neq i}^{j} (x_i - x_k).$$

Theorem 10

The j-point Gauss-Legendre quadrature formula has order of accuracy exactly 2j-1, and no quadrature formula has order of accuracy higher than this.

Proof. Consider the polynomial

$$f(x) = \prod_{i=1}^{j} (x - x_i)^2, \qquad I(f) = \int_{-1}^{1} f(x) dx > 0.$$

Note that $I_j(f) = 0$ since $f(x_i) = 0$. Thus the quadrature formula has order of accuracy $\leq 2j - 1$. Suppose $f(x) \in \mathbb{P}_{2j-1}$. Then f(x) can be factored in the form

$$f(x) = g(x)q_{j+1}(x) + r(x),$$

where $g(x) \in \mathbb{P}_{j-1}$ and $r(x) \in \mathbb{P}_{j-1}$. (In fact, r(x) is the degree j-1 polynomial interpolant to f(x) in the points $\{x_i\}$.)

Since $q_{j+1}(x)$ is orthogonal to all polynomials of lower degree, we have

$$I(gq_{j+1}) = 0.$$

At the same time, since

$$g(x_i)q_{j+1}(x_i) = 0$$

for each x_i , we have

$$I_j(gq_{j+1}) = 0.$$

Since I and I_i are linear operators, these identities impliy

$$I(f) = I(r)$$
 and $I_j(f) = I_j(r)$.

Therefore,

$$I(f) = I_i(f)$$
. \square

Theorem 11

Let \mathbf{T}_j be the $j \times j$ Jacobi matrix. Let $\mathbf{T}_j = \mathbf{V}\mathbf{D}\mathbf{V}^{\top}$ be an orthogonal diagonalization of \mathbf{T}_j with

$$\mathbf{D} = \operatorname{diag}\{\lambda_1, \cdots, \lambda_j\}, \quad \mathbf{V} = \begin{bmatrix} \mathbf{v}_1 & \cdots & \mathbf{v}_j \end{bmatrix}.$$

Then the nodes and weights of the Gauss-Legendre quadrature formula are given by

$$x_i = \lambda_i, \quad w_i = 2(\mathbf{v}_i)_1^2, \quad i = 1, \dots, j.$$

- G. H. Golub and J. H. Welsch Calculation of Gauss quadrature rules, Math. Comp. 23 (1969). The famous $O(j^2)$ algorithm for Gauss quadrature nodes and weights via a tridiagonal Jacobi matrix eigenvalue problem.
- G. H. Golub and G. Meurant Matrices, Moments and Quadrature with Applications Princeton University Press, 2010