ELEC 6 : Transformation et filtrage GISTRE

Corentin Vigourt Pierre-Olivier Koenig 05/04/2024

Sommaire

- Rappels
- Alternatif vers continu
- Traitement du signal
- Filtres
- Types de circuits
- Manipulations du jour

Rappels

Condensateur

- Composant capable de stocker de l'énergie
- permet de changer la forme des signaux transmis par le courant
- Stocke de l'énergie tant qu'elle est pas sollicitée par le circuit
- A la différence d'une pile, il ne produit pas de particules chargées
- Peut conserver l'énergie pendant des heures
- Sa capacité se mesure en Farads

Inductance

- Une bobine très magnétique
- Produit un courant induit en sens inverse du courant
- Vient <<s'opposer au variation de courant>>
- Quand I est stable, l'inductance arrête d'influencer le courant

Analog / Digital

- Continu vs Discret
- Sine waves vs Square waves
- Not fixed range vs 1 or 0
- Audio and video vs Digital electronics

Alternatif vers continu

DC vs AC

- Le courant alternatif permet de transporter l' énergie plus efficacement sur de grande distance
- Le courant continu est produit par les réactions chimiques simple (ex : batteries)

Transformateur

- Transforme la valeur efficace de la tension alternative
- Composé de deux bobines de cuivres isolées et d'une armature en fer doux
- Le rapport de transformation dépend du nombre de spires des deux bobines
- k = Ns / Np

Redresseur

- Circuit composé de diodes appelé **pont de diodes**
- Permet de redresser la tension négative en positive

Lissage

- Utilisation de condensateur pour éviter les variations brutes
- Permet d'obtenir une tension **stable**

En résumé

La conversion se fait via trois éléments :

- Un transformateur
- Un redresseur
- Un lisseur

Traitement du signal

Mise en situation

Définition

- Techniques pour interpréter un signal
- Plusieurs types d'opérations :
 - Contrôle
 - Filtrage
 - Compression
 - Transmission
- Utilisé notamment pour :
 - La parole
 - Les images
 - La vidéo
 - L'électronique

Traitement des signaux analogiques

- Transformation de **Fourier**
- Transformation de Laplace

Filtrage électronique

Diagramme de Bode

- Représentation de la **réponse en fréquence**
- Vu en automatique
- Permet de visualiser facilement :
 - o La marge de gain
 - o La marge de phase
 - Le gain continu
 - La bande passante
 - o ect.

Tracer un diagramme de Bode

 $Gdb = 20 \times log (Vs/Ve)$

Filtres

Le filtrage

- Étape du traitement du signal
- Mise en forme d'un signal
- Transforme l'histoire d'une grandeur d'entrée en une grandeur de sortie
 - Soit le courant
 - Soit la tension
- Ils utilisent :
 - Des résistances
 - Dés composants intolérants aux variations de temps
 - Des réactances (condensateurs / bobines)

Passif vs Actif

- Passif: n'utilise que des composants passifs (résistances, condensateurs, bobines)
- Actif: utilise des composants actifs (AOPs, transistors, tubes électroniques)

Filtre passe-bas

- Laisse passer les basses fréquences
- Atténue les hautes fréquences supérieures à la fréquence de coupure

Filtre passe-haut

- Inverse du passe-bas
- Atténue les fréquences inférieures à la fréquence de coupure

Filtre passe-bande / coupe-bande

- Filtre ne laissant passer / bloquant un intervalle de fréquences
- Combinaison d'un passe-bas et d'un passe-haut
- Deux fréquences de coupure :
 - Une fréquence de coupure basse fl
 - Une fréquence de coupure haute fh

Autres filtres

- Filtre déphaseur
- Filtre en peigne

Types de circuits

Circuit RC

- Résistance + condensateur
- Permet de faire un passe-bas ou passe-haut en configuration en série

$$f_c = \frac{1}{2\pi RC}$$

Circuit RL

- Résistance + bobine
- Permettent de faire un passe-bas ou un passe-haut

$$f_c = \frac{R}{2\pi L}$$

Circuit LC

- Bobine + condensateur
- Permet d'obtenir le phénomène de résonance électrique
- Peut-être utilisé pour des filtres ou des transformateurs

Circuit RLC

- Résistance + bobine + condensateur
- Deux configurations :
 - Série
 - Parallèle
- Le comportement se décrit par une équation différentielle du second ordre
- Souvent utilisé pour des filtres ou des transformateurs
- Permet de réduire à zéro certaines fréquences

Manipulations du jour

Filtres

- Passe-bas
- Passe-haut
- Passe-bande

Banc de test

- Générateur de signal
- Breadboard avec votre circuit
- Oscilloscope

Câblage du banc de test :

- 1. Sortie du générateur sur le premier channel de l'oscilloscope
- 2. Sortie du générateur sur l'entrée du filtre
- 3. Sortie du filtre sur le second channel de l'oscilloscope

Des questions?