Abstract Algebra Theorems and Definitions

MTH 411 - Fall 2023

0 Preliminaries

- Axiom Well Ordering Principle: Every nonempty set of positive integers contains a smallest element.
- Definition Equivalence Relation: An equivalence relation on a set S is a set R of ordered pairs of elements of S such that
 - 1. $(a, a) \in R \ \forall a \in S \ (reflexive property).$
 - 2. $(a,b) \in R$ implies $(b,a) \in R$ (symmetric property).
 - 3. $(a,b) \in R$ and $(b,c) \in R$ imply that $(a,c) \in R$ (transitive property).
- Definition Function (mapping): A function φ from a set A to a set B is a rule that assigns to each element a of A exactly one element b of B. The set A is called the domain of φ, and B is called the range of φ. If φ assigns b to a, then b is called the image of a under φ. The subset of B comprising all the images of elements of A is called the image of A under φ.
- Definition Composition of Functions: Let $\phi : A \mapsto B$ and $\psi : B \mapsto C$. The *composition* $\psi \phi$ is the mapping from A to C defined by

$$(\psi\phi)(a) = \psi(\phi(a)), \ \forall a \in A.$$

- Definition One-to-One Functions (injection): A function ϕ from a set A is called *one-to-one* if for every $a_1, a_2 \in A$, $\phi(a_1) = \phi(a_2)$ implies $a_1 = a_2$.
- Definition Onto Functions (surjection): A function ϕ from a set A to a set B is said to be *onto* if each element of B is the image of at least one element of A. In symbols, $\phi: A \mapsto B$ is onto if for each $b \in B$ there is at least one $a \in A$ such that $\phi(a) = b$.
- Theorem Division Algorithm: Let $a, b \in \mathbb{Z}$ with b > 0. Then there exist unique integers q, r with the property that a = bq + r, where $0 \le r < b$.
- Theorem GCD is a Linear Combination: For any nonzero integers a and b, there exist integers s and t such that gcd(a, b) = as + bt. Moreover, gcd(a, b) is the smallest positive integer of the form as + bt.
- Lemma Euclid's Lemma: Let p be a prime, and let a, b be integers. If p|ab then p|a or p|b.

- Theorem Fundamental Theorem of Arithmetic: Every integer greater than 1 is a prime or product of primes. This product is unique, except for the order in which the factors appear. That is, if $n = p_1 p_2 \cdots p_r$ and $n = q_1 q_2 \cdots q_s$, where the p's and q's are primes, then r = s and, after renumbering the q's, we have $p_i = q_i$ for all i.
- Theorem First Principle of Mathematical Induction: Let S be a set of integers containing a. Suppose S has the property that whenever some integer $n \ge a$ belongs to S, then the integer n+1 also belongs to S. Then, S contains every integer greater than or equal to a.
- Theorem Second Principle of Mathematical Induction: Let S be a set of integers containing a. Suppose S has the property that n belongs to S whenever every integer less than n and greater than or equal to a belongs to S. Then, S contains every integer greater than or equal to a.
- Theorem DeMoivre's Theorem: For every positive integer n and every real number θ , $(\cos(\theta) + i\sin(\theta))^n = \cos n\theta + i\sin n\theta$.

1 Introduction to Groups

- Other? D_4 (Symmetries of a Square): $D_4 = \{R_0, R_{90}, R_{180}, R_{270}, H, V, D, D'\}$.
- Other? D_n (Dihedral Groups): $D_n = \{R_0, R_{.\frac{360}{n}}, \dots, R_{(n-1).\frac{360}{n}}\} + n$ other flips across lines.

2 Groups

- Definition Binary Operation: Let G be a set. A binary operation on G is a function that assigns each ordered pair of elements of G an element of G.
- **Definition Group:** Let G be a set together with binary operation (usually called multiplication) that assigns to each ordered pair (a, b) of elements of G an element in G denoted by ab. We say G is a group under this operation if the following three properties are satisfied.
 - 1. Associativity. The operation is associative; that is, (ab)c = a(bc) for all $a, b, c \in G$.
 - 2. Identity. There is an element e (called the *identity*) in G such that ae = ea = a for all $a \in G$.
 - 3. Inverses. For each element a in G, there is an element b in G (called an inverse of a) such that ab = ba = e.
- Theorem Uniqueness of Identity: In a group G, there is only one identity element.
- Theorem Uniqueness of Inverses: For each element a in a group G, there is a unique element $b \in G$ such that ab = ba = e.
- Theorem Cancellation: In a group G, the right and left cancellation laws hold; that is, ba = ca implies b = c and ab = ac implies b = c.

• Theorem Socks-Shoes: For group elements a and b, $(ab)^{-1} = b^{-1}a^{-1}$.

3 Finite Groups; Subgroups

- Definition Order of a Group: The number of elements of a group (finite or infinite) is called its *order*. We will use |G| to denote the order of G.
- Definition Order of an Element: The order of an element g is a group G is the smallest integer n such that $g^n = e$ (in additive notation, this would be ng = 0). If no such integer exists, we say that g was infinite order. The order of an element g is denoted |g|.
- **Definition Subgroup:** If a subset H of a group G is itself a group under the operation of G, we say that H is a *subgroup* of G.
- Definition Center of a Group: The center, Z(G), of a group G is the subset of elements in G that commute with every element of G. In symbols,

$$Z(G) = \{ a \in G | ax = xa, \ x \in G \}.$$

• Definition Centralizer of a in G: Let a be a fixed element of a group G. The centralizer of a in G, C(G), is the set of all elements in G that commute with a. In symbols,

$$C(a) = \{ g \in G | ga = ag \}.$$

- Theorem One-Step Subgroup Test: Let G be a group and H a nonempty subset of G. If ab^{-1} is in H whenever a, b are in H, then H is a subgroup of G (in additive notation, if a b is in H whenever a, b are in H, then H is a subgroup of G).
- Theorem Two-Step Subgroup Test: Let G be a group and let H be a nonempty subset of G. If ab is in H whenever a,b are in H (H is closed under the operation), and a^{-1} is in H whenever a is in H (H is closed under taking inverses), then H is a subgroup of G.
- Theorem Finite Subgroup Test: Let H be a nonempty finite subset of a group G. If H is closed under the operation G, then H is a subgroup of G.
- Theorem Center of a Subgroup: The center of a group *G* is a subgroup of *G*.
- Theorem C(a) is a Subgroup: For each a in a group G, the centralizer of a is a subgroup of G.

4 Cyclic Groups

• Definition Euler φ -Function: Let $\varphi(1) = 1$, and for any integer n > 1, let $\varphi(n)$ denote the number of positive integers less than n and relatively prime to n.

- Theorem Criterion for $a^i = a^j$: Let G be a group, and let $a \in G$. If a has infinite order, then $a^i = a^j$ if and only if i = j. If a has finite order, say n, then $\langle a \rangle = \{e, a, a^2, \ldots, a^{n-1}\}$ and $a^i = a^j$ if and only if n | i j.
- Corollary $|a| = |\langle a \rangle|$: For any group element $a, |a| = |\langle a \rangle|$.
- Corollary $a^k = e$ Implies That |a| divides k: Let G be a group and let a be an element of order n in G. If $a^k = e$, then n divides k.
- Corollary Relationship Between |ab| and |a||b|: If a and b belong to a finite group and ab = ba, then |ab| divides |a||b|.
- Theorem $\langle a^k \rangle = \langle a^{\gcd(n,k)} \rangle$ and $|a^k| = n/\gcd(n,k)$: Let a be an element of order n in a group and let k be a positive integer. Then $\langle a^k \rangle = \langle a^{\gcd(n,k)} \rangle$ and $|a^k| = n/\gcd(n,k)$.
- Corollary Orders of Elements in Finite Cyclic Groups: In a finite cyclic group, the order of an element divides the order of a group.
- Corollary Criterion for $\langle a^i \rangle = \langle a^j \rangle$ and $|a^i| = |a^j|$: Let |a| = n. Then $\langle a^i \rangle = \langle a^j \rangle$ if and only if gcd(n,i) = gcd(n,j), and $|a^i| = |a^j|$ if and only if gcd(n,i) = gcd(n,j).
- Corollary Generators of Finite Cyclic Groups: Let |a| = n. Then $\langle a \rangle = \langle a^j \rangle$ if and only if $\gcd(n,j) = 1$, and $|a| = |\langle a^j \rangle|$ if and only if $\gcd(n,j) = 1$.
- Corollary Generators of \mathbb{Z}_n : An integer $k \in \mathbb{Z}_n$ is a generator of \mathbb{Z}_n if and only if gcd(n, k) = 1.
- Theorem The Fundamental Theorem of Cyclic Groups: Every subgroup of a cyclic group is cyclic. Moreover, if $|\langle a \rangle| = n$, then the order of any subgroup of $\langle a \rangle$ is a divisor of n; and, for each positive divisor k of n, the group $\langle a \rangle$ has exactly one subgroup of order k-namely, $\langle a^{n/k} \rangle$.
- Corollary Subgroups of \mathbb{Z}_n : For each positive divisor k of n, the set $\langle n/k \rangle$ is the unique subgroup of Z_n of order k; moreover, these are the only subgroups of Z_n .
- Theorem Number of Elements of Each Order in a Cyclic Group: If d is a positive divisor of n, the number of elements of order d in a cyclic group of order n is $\varphi(d)$.

5 Permutation Groups

- Definition Permutation of A: A permutation of a set A is a function from A to A that is both one-to-one and onto.
- Theorem Products of Disjoint Cycles: Every permutation of a finite set can be written as a cycle or as a product of disjoint cycles.
- Theorem Disjoint Cycles Commute: If the pair of cycles $\alpha = (a_1, a_2, \dots, a_m)$ and $\beta = (b_1, b_2, \dots, b_m)$ have no entries in common, then $\alpha\beta = \beta\alpha$.

- Theorem Order of a Permutation: The order of permutation of a finite set written in disjoint cycle form is the least common multiple of the lengths of the cycles.
- Theorem Product of 2-Cycles: Every permutation in S_n , n > 1, is a product of 2-cycles.
- Theorem Always Even or Always Odd: If a permutation α can be expressed as a product of an even (odd) number of 2-cycles, then every decomposition of α into a product of 2-cycles must have an even (odd) number of 2-cycles. In symbols, if

$$\alpha = \beta_1 \beta_2 \cdots \beta_r$$
 and $\alpha = \gamma_1, \gamma_2 \cdots \gamma_s$,

where the β 's and γ 's are 2-cycles, then r and s are both even or both odd.

- Definition Even/Odd Permutations: A permutation that can be expressed as a product of an even number of 2-cycles is called an *even* permutation. A permutation that can be expressed as a product of an odd number of 2-cycles is called an *odd* permutation.
- Theorem Even Permutations From a Group: The set of even permutations in S_n forms a subgroup of S_n .
- Definition Alternating Group A_n : The group of even permutations of n symbols is denoted by A_n and is called the alternating group of degree n.
- Theorem $|A_n| = \frac{n!}{2}$: For n > 1, A_n has order $\frac{n!}{2}$.

6 Isomorphisms

• Definition Group Isomorphism: An isomorphism ϕ from a group G onto a group \overline{G} is a one-to-one mapping from G onto \overline{G} that preserves the group operation. That is,

$$\phi(ab) = \phi(a)\phi(b) \quad \forall a, b \in G.$$

If there is an isomorphism from G onto \overline{G} , we say that G and \overline{G} are isomorphic and write $G \approx \overline{G}$.

- **Theorem Cayley's Theorem:** Every group is isomorphic to a group of permutations.
- Theorem Properties of Isomorphisms (acting on elements): Suppose that ϕ is an isomorphism from a group G onto a group \overline{G} . Then,
 - 1. ϕ carries the identity of G to the identity of \overline{G} .
 - 2. For every integer n and for every group element $a \in G$, $\phi(a^n) = [\phi(a)]^n$.
 - 3. For any elements $a, b \in G$, a and b commute if and only if $\phi(a)$ and $\phi(b)$ commute.

- 4. $G = \langle a \rangle$ if and only if $\overline{G} = \langle \phi(a) \rangle$.
- 5. $|a| = |\phi(a)|$ for all $a \in G$.
- 6. For a fixed integer k and a fixed group element $b \in G$, the equation $x^k = b$ has the same number of solutions in G as does the equation $x^k = \phi(b)$ in \overline{G} .
- 7. If G is finite, then G and \overline{G} have exactly the same number of elements of every order.
- Theorem Properties of Isomorphisms (acting on groups): Suppose that ϕ is an isomorphism from a group G onto a group \overline{G} . Then,
 - 1. ϕ^{-1} is an isomorphism from \overline{G} onto G.
 - 2. G is Abelian if and only if \overline{G} is Abelian.
 - 3. G is cyclic if and only if \overline{G} is cyclic.
 - 4. If K is a subgroup of G, then $\phi(K) = \{\phi(k) | k \in K\}$ is a subgroup of \overline{G} .
 - 5. If \overline{K} is a subgroup of \overline{G} , then $\phi^{-1}(\overline{K}) = \{g \in G | \phi(g) \in \overline{K}\}$ is a subgroup of G.
 - 6. $\phi(Z(G)) = Z(\overline{G}).$
- **Definition Automorphism:** An isomorphism from a group G onto itself is called an automorphism.
- Definition Inner Automorphism induced by a: Let G be a group, and let $a \in G$. The function ϕ_a defined by $\phi_a(x) = axa^{-1}$, $\forall x \in G$ is called the *inner automorphism of* G *induced by* a.
- Theorem Aut(G) and Inn(G) Are Groups: The set of automorphisms of a group and the set of inner automorphisms of a group are both groups under the operation of function composition.
- Theorem Aut $(Z_n) \approx U(n)$: For every positive integer n, Aut (Z_n) is isomorphic to U(n).

7 Cosets and La Grange's Theorem

- Definition Coset of H in G: Let G be a group and let H be a nonempty subset of G. For any $a \in G$, the set $\{ah|h \in H\}$ is denoted by aH. Analogously, $Ha = \{ha|h \in H\}$ and $aHa^{-1} = \{aHa^{-1}|h \in H\}$. When H is a subgroup of G, the set aH is called the *left coset of* H in G containing a, whereas Ha is called the *right coset of* H in G containing a. In this case, the element a is called the *coset representative of* aH (or Ha).
- Theorem Properties of Cosets: Let H be a subgroup of G, and let $a, b \in G$. Then,
 - 1. $a \in aH$.
 - 2. aH = H if and only if $a \in H$.

- 3. (ab)H = a(bH) and H(ab) = (Ha)b.
- 4. aH = bH if and only if $a \in bH$.
- 5. aH = bH or $aH \cap bH = \emptyset$.
- 6. aH = bH if and only if $a^{-1}b \in H$.
- 7. |aH| = |bH|.
- 8. aH = Ha if and only if $H = aHa^{-1}$.
- 9. aH is a subgroup of G if and only if $a \in H$.
- Theorem La Grange's Theorem: If G is a finite group and H is a subgroup of G, then |H| divides |G|. Moreover, the number of distinct left (right) cosets of H in G is |G|/|H|.
- Corollary |G:H| = |G|/|H|: If G is a finite group and $H \leq G$, then |G:H| = |G|/|H|.
- Corollary |a| divides |G|: In a finite group, the order of each element of the group divides the order of the group.
- Corollary Groups of Prime Order are Cyclic: A group of prime order is cyclic.
- Corollary $a^{|G|} = e$: Let G be a finite group, and let $a \in G$. Then $a^{|G|} = e$.
- Corollary Fermat's Little Theorem: For every integer a and every prime p, $a^p \mod p = a \mod p$.
- **Theorem** $|HK| = \frac{|H||K|}{|H \cap K|}$: For two finite subgroups H and K of a group, define the set $HK = \{hk | h \in H, k \in K\}$. Then $|HK| = \frac{|H||K|}{|H \cap K|}$.
- Theorem Classification of Groups of Order 2p: (SKIPPED FOR NOW)
- Definition Stabilizer of a Point: Let G be a group of permutations of a set S. For each $i \in S$, let $\mathrm{stab}_G(i) = \{\phi \in G | \phi(i) = i\}$. We call $\mathrm{stab}_G(i)$ the stabilizer of i in G.
- Definition Orbit of a Point: Let G be a group of permutations of a set S. For each $i \in S$, let $\operatorname{orb}_G(i) = \{\phi(i) | \phi \in G\}$. The set $\operatorname{orb}_G(i)$ is a subset of S called the *orbit of i under G*. We use $|\operatorname{orb}_G(i)|$ to denote the number of elements in $\operatorname{orb}_G(i)$.
- Theorem Orbit-Stabilizer Theorem: Let G be a finite group of permutations of a set S. Then, for any $i \in S$, $|G| = |\operatorname{orb}_G(i)||\operatorname{stab}_G(i)|$.

8 External Direct Products

• Definition External Direct Product: Let G_1, G_2, \ldots, G_n be a finite collection of groups. The *external direct product* of G_1, G_2, \ldots, G_n , written

as $G_1 \oplus G_2 \oplus \cdots \oplus G_n$, is the set of all *n*-tuples for which the *i*th component is an element of G_i and the operation is component wise.

$$G_1 \oplus G_2 \oplus \cdots \oplus G_n = \{(g_1, g_2, \ldots, g_n) \mid g_i \in G_i\}$$

- Other Example Classification of Groups of Order 4: A group of order 4 is isomorphic to Z_4 or $Z_2 \oplus Z_2$.
- Theorem Order of an Element in a Direct Product: The order of an element in a direct product of a finite number of finite groups is the least common multiple of the orders of the components of the element. In symbols,

$$|(g_1, g_2, \ldots, g_n)| = \operatorname{lcm}(|g_1|, |g_2|, \ldots, |g_n|).$$

• Theorem Criterion for $G \oplus H$ to be Cyclic: Let G and H be finite cyclic groups. Then $G \oplus H$ is cyclic if and only if |G| and |H| are relatively prime.

9 Normal Subgroups and Factor Groups

- **Definition Normal Subgroup:** A subgroup H of a group G is called a normal subgroup of G if aH = Ha, $\forall a \in G$. We denote this by $H \leq G$.
- Theorem Normal Subgroup Test: A subgroup H of G is normal if and only if $xHx^{-1} \subseteq H$, $\forall x \in G$.
- Theorem Factor Groups: Let G be a group and let H be a normal subgroup of G. The set $G/H = \{aH | a \in G\}$ is a group under the operation (aH)(bH) = abH.
- Theorem G/Z Theorem: Let G be a group and let Z(G) be the center of G. If G/Z(G) is cyclic, the G is abelian.
- Theorem $G/Z(G) \approx Inn(G)$: For any group G, G/Z(G) is isomorphic to Inn(G).
- Theorem Cauchy's Theorem for Abelian Groups: Let G be a finite Abelian group and let p be a prime that divides the order of G. Then G has an element of order p.
- Definition Internal Direct Product: We say G is the internal direct product of H and K and write $G = H \times K$ if H and K are normal subgroups of G and,

$$G = HK$$
 and $H \cap K = \{e\}$.

• Theorem Classification of Groups of Order p^2 : Every Group of order p^2 , where p is a prime, is isomorphic to Z_{p^2} or $Z_p \oplus Z_p$.

10 Group Homomorphisms

- Definition Group Homomorphism: A homomorphism ϕ from a group G to a group \overline{G} is a mapping from G into \overline{G} that preserves the group operation; that is, $\phi(ab) = \phi(a)\phi(b)$ for all $a, b \in G$.
- Definition Kernel of a Homomorphism: The *kernel* of a homomorphism ϕ from a group G to a group with identity e is the set $\{x \in G | \phi(x) = e\}$. The kernel of ϕ is denoted by $\text{Ker}\phi$.
- Theorem Properties of Elements Under Homomorphisms: Let ϕ be a homomorphism from a group G to a group \overline{G} and let g be an element of G. Then,
 - 1. ϕ carries the identity of G to the identity of \overline{G} .
 - 2. $\phi(g^n) = (\phi(g))^n$ for all $n \in \mathbb{Z}$.
 - 3. If |g| is finite, then $|\phi(g)|$ divides |g|.
 - 4. Ker ϕ is a subgroup of G.
 - 5. $\phi(a) = \phi(b)$ if and only if $a \operatorname{Ker} \phi = b \operatorname{Ker} \phi$.
 - 6. If $\phi(g) = g'$, then $\phi^{-1}(g') = \{x \in G | \phi(x) = g'\} = g \text{Ker} \phi$.
- Theorem Properties of Subgroups Under Homomorphisms: Let ϕ be a homomorphism from a group G to a group \overline{G} and let H be a subgroup of G. Then,
 - 1. $\phi(H) = {\phi(h)|h \in H}$ is a subgroup of \overline{G} .
 - 2. If H is cyclic, then $\phi(H)$ is cyclic.
 - 3. If H is Abelian, then $\phi(H)$ is Abelian.
 - 4. If H is normal in G, then $\phi(H)$ is normal in $\phi(G)$.
 - 5. If $|Ker\phi| = n$, then ϕ is an n-to-1 mapping from G onto $\phi(G)$.
 - 6. If |H| = n, then $|\phi(H)|$ divides n.
 - 7. If \overline{K} is a subgroup of \overline{G} , then $\phi^{-1}(\overline{K})=\{k\in G|\phi(k)\in \overline{K} \text{ is a subgroup of } G.$
 - 8. If \overline{K} is a normal subgroup of \overline{G} , then $\phi^{-1}(\overline{K}) = \{k \in G | \phi(k) \in \overline{K} \text{ is a normal subgroup of } G.$
 - 9. If ϕ is onto and $\operatorname{Ker} \phi = \{e\}$, then ϕ is an isomorphism from G to \overline{G} .
- Corollary Kernals Are Normal: Let ϕ be a group homomorphism from G to \overline{G} . Then Ker ϕ is a normal subgroup of G.
- Theorem First Isomorphism Theorem: Let ϕ be a group homomorphism from G to \overline{G} . Then the mapping from $G/\mathrm{Ker}\phi$ to $\phi(G)$, given by $g\mathrm{Ker}\phi \longrightarrow \phi(g)$, is an isomorphism. In symbols, $G/\mathrm{Ker}\phi \approx \phi(G)$.
- Corollary $|\phi(G)|$ Divides |G| and $|\overline{G}|$: If ϕ is a homomorphism from a finite group G to \overline{G} , then $|\phi(G)|$ divides |G| and $|\overline{G}|$.

• Theorem Normal Subgroups Are Kernels: Every normal subgroup of a group G is the kernal of a homomorphism of G. In particular; a normal subgroup N is the kernel of the mapping $g \longrightarrow gN$ from G to G/N.

11 Fundamental Theorem of Finite Abelian Groups

• Theorem Fundamental Theorem of Finite Abelian Groups: Every finite Abelian group is a direct product of cyclic groups of prime-power order. Moreover, the number of terms in the product and the orders of the cyclic groups are uniquely determined by the group.

12 Introduction to Rings

- **Definition Ring:** A ring R is a set with two binary operations, addition (denoted by a + b) and multiplication (denoted by ab), such that for all $a, b, c \in R$:
 - 1. a + b = b + a.
 - 2. (a+b)+c=a+(b+c).
 - 3. There is an additive identity 0. That is, there is an element 0 in R such that a+0=a for all $a\in R$.
 - 4. There is an element $-a \in R$ such that a + (-a) = 0.
 - 5. a(bc) = (ab)c.
 - 6. a(b+c) = ab + ac and (b+c)a = ba + ca.
- Theorem Rules of Multiplication: Let a, b, c belong to a ring R. Then,
 - 1. a0 = 0a = 0.
 - 2. a(-b) = (-a)b = -(ab).
 - 3. (-a)(-b) = ab.
 - 4. a(b-c) = ab ac and (b-c)a = ba ca.

Furthermore, if R has a unity element 1, then

- 5. (-1)a = -a.
- 6. (-1)(-1) = 1.
- Theorem Uniqueness of the Unity and Inverses: If a ring has a unity, it is unique. If a ring element has a multiplicative inverse, it is unique.
- **Definition Subring:** A subset S of a ring R is a *subring* of R if S is itself a ring with the operations of R.
- Theorem Subring Test: A nonempty subset S of a ring R is a subring if S is closed under subtraction and multiplication, that is, if a-b and ab are in S whenever $a, b \in S$.

13 Integral Domains

- Definition Zero-Divisors: A zero-divisor is a nonzero element a of a commutative ring R such that there is a nonzero element $b \in R$ with ab = 0.
- **Definition Integral Domains:** An *integral domain* is a commutative ring with unity and no zero-divisors.
- Theorem Cancellation: Let a, b, c belong to an integral domain. If $a \neq 0$ and ab = ac, then b = c.
- **Definition Field:** A *field* is a commutative ring with unity in which every nonzero element is a unit.
- Theorem Finite Integral Domains are Fields: A finite integral domain is a field.
- Corollary \mathbb{Z}_p is a Field: For every prime p, \mathbb{Z}_p , the ring of integers modulo p, is a field.
- Definition Characteristic of a Ring: The *characteristic* of a ring R is the least positive integer n such that nx = 0 for all $x \in R$. If no such integer exists, we say R has characteristic 0. The characteristic of R is denoted by char R.

14 Ideals and Factor Rings

- **Definition Ideal:** A subring A of a ring R is called a (two-sided) *ideal* of R if for every $r \in R$ and every $a \in A$, both ar and ra are in A.
- Theorem Ideal Test: A nonempty subset A of a ring R is an ideal of R if
 - 1. $a b \in A$ whenever $a, b \in A$.
 - 2. ra and ar are in A whenever $a \in A$ and $r \in R$.
- Theorem Existence of Factor Rings: Let R be a ring and let A be a subring of R. The set of cosets $\{r+A|r\in R\}$ is a ring under the operations (s+A)+(t+A)=s+t+A and (s+A)(t+A)=st+A if and only if A is an ideal of R.
- **Definition Prime Ideal:** A prime ideal A of a commutative ring R is a proper ideal of R such that $a, b \in R$ and $ab \in A$ imply $a \in A$ or $b \in A$.
- Definition Maximal Ideal: A maximal ideal of a commutative ring R is a proper ideal of R such that, whenever B is an ideal of R and $A \subseteq B \subseteq R$, then B = A or B = R.
- Theorem R/A Is an Integral Domain If and Only If A Is Prime: Let R be a commutative ring with unity and let A be an ideal of R. Then, R/A is an integral domain if and only if A is prime.

• Theorem R/A Is an Field If and Only If A Is Maximal: Let R be a commutative ring with unity and let A be an ideal of R. Then R/A is a field if and only if A is maximal.

Let f be a ring homomorphism from a ring R to a ring S. Let A be a subring of R and let B be an ideal of S. 1. For any r [R and any positive integer n, f(nr) 5 nf(r) and f(rn) 5 (f(r))n. 2. f(A) 5 f(a) — a [A is a subring of S. 3. If A is an ideal and f is onto S, then f(A) is an ideal. 4. f21(B) 5 r [R — f(r) [B is an ideal of R. 5. If R is commutative, then f(R) is commutative. 6. If R has a unity 1, S 2 0, and f is onto, then f(1) is the unity of S. 7. f is an isomorphism if and only if f is onto and Ker f 5 r [R — f(r) 5 0 5 0. 8. If f is an isomorphism from R onto S, then f21 is an isomorphism from S onto R.