1. 2 longest common subsequences of the 2 strings are: TCAGTTG and TCGATGC. There are more.

X= "TCAAAGATTAAGC"

Y= "TCGATGTCTCGTTG"

		T	С	G	Α	Т	G	Т	С	Т	С	G	Т	Т	G
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Τ	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1
С	0	1	2	2	2	2	2	2	2	2	2	2	2	2	2
Α	0	1	2	2	3	3	3	3	3	3	3	3	3	3	3
Α	0	1	2	2	3	3	3	3	3	3	3	3	3	3	3
Α	0	1	2	2	3	3	3	3	3	3	3	3	3	3	3
G	0	1	2	3	3	3	4	4	4	4	4	4	4	4	4
Α	0	1	2	3	4	4	4	4	4	4	4	4	4	4	4
Τ	0	1	2	3	4	5	5	5	5	5	5	5	5	5	5
Τ	0	1	2	3	4	5	5	6	6	6	6	6	6	6	6
Α	0	1	2	3	4	5	5	6	6	6	6	6	6	6	6
Α	0	1	2	3	4	5	5	6	6	6	6	6	6	6	6
G	0	1	2	3	4	5	6	6	6	6	6	7	7	7	7
С	0	1	2	3	4	5	6	6	7	7	7	7	7	7	7

```
2.
```

Proof by contradiction: Given X[n] != Y[m] and Z[k] != X[n], assume Z is not an LCS of X[1]...X[n-1] and Y. We know that Z is an LCS of X and Y. For Z not to be an LCS of X[1]...X[n-1] and Y, but to be an LCS of X and Y, the difference between the 2 pairs of strings, or X[n], must be in Z. However, since X[n] is at the end of X, if it were to appear in Z, it must be the last character of Z, or X[n], for Z to be an LCS of X

and Y. This is a contradiction, therefore Z must be an LCS of X[1]...X[n-1] and Y given the above assumptions.

4.

	0	1	2	3	4	5	6	7	8	9	10
Α	1	1	1	4	1	6	1	8	1	1	11
В	0	2	0	0	2	0	2	0	9	0	0
С	0	0	0	0	5	0	0	0	0	0	0
D	0	0	0	0	0	0	7	0	0	0	0
R	0	0	3	0	0	0	0	0	0	10	0

5.

This algorithm is O(3n) = O(n), in every case.