Rich Mirror Alignment

13/07/2015

Claire Prouve

- How does it even work?
- Implementation in the online framework
- Current status

RICH Mirror Alignment

RICH 1: ^{4 primary mirrors} ^{16 secondary mirrors}

RICH 2: 54 primary mirrors 40 secondary mirrors

Misaligned mirrors will affect the PID due to incorrectly predicted Cherenkov angle!

Best possible resolution ~1.5mrad for RICH1, ~0.7mrad for RICH2.

Misalignment

Identify misalignment:

$$\Delta\theta_C = \theta_x \cos(\phi) + \theta_y \sin(\phi)$$
Misalignments
on detector plane
$$\Delta\theta_C = \theta_{\text{meas.}} - \theta_{\text{exp.}}$$

Aligning mirrors to each other

RICH1: easy!

-> fix primary mirrors only align secondary mirrors

RICH2: more complicated

For a given secondary mirror several primary mirrors possible -> solve a set of simultaneous equations per half of RICH2

Secondary mirrors Primary Left-hand side

System of equations linking all primary mirrors (grey) and secondary mirrors(red).

Alignment procedure

- Select high momentum-tracks with pion hypothesis (p > 20GeV for RICH1, p > 40GeV for RICH2)
- 2. Reconstruct **unambiguous photons** for each 0.02 necessary mirror pair
- 3. Fit $\Delta\theta(\Phi)$ distributions
- Calculate magnification coefficients by reconstructing same events for 8 different mirror tilts
- Translate misalignments on detector plane into mirror-tilts using magnification coefficients
- 6. If changes for each mirror tilt smaller than threshold (0.1mrad) consider mirrors as aligned, otherwise restart at 1. with newly made alignment constants
- 7. Alignment usually converges after ~5 iterations

Unambiguous photons will be reflected by the same mirror-pair no matter where along the track they were emitted.

Use of online framework

Previously alignment done offline:

- python driver script executed in ganga
- ganga starts Brunel jobs + waits for them to finish

New alignment on the HLT farm:

- Uses the online FSM (Finite State Machine)
- Driver script: python Iterator
- Brunel jobs: python Analyzer
- Analyzers run on each node of the HLT farm (~1500)

Use of online framework

- 1. Run control gives command to configure
- 2. When all analyzers and the iterator are configured run control gives command to start
- 3. Analyzers execute Brunel jobs
- 4. When all analyzers are finished they go to ready and write the rootfiles
- 5. The iterators goes to *paused* and sets everything up for the next iteration
- 6. The Iterator goes to *running* which makes the Analyzers *run* again (this time with a different mirror-xml file as input)
- 7. After 9 of these iteration the iterator calculates the magnification coefficients, fits the mirror tilts, calculates the new mirror constants and determines if the alignment has converged
- 8. If no: set up next iteration with new xml file and start at 3.

New HLT Lines

- Triggers on tracks that will populate the hardest-to-populate mirror-pairs
- usually the very outer mirrors
- Other tracks in the events will populate the rest

RICH2 line:

p > 40 GeV **&&** χ^2 < 2 **&&** 2.59 < η < 2.97 (-2.69 < Φ < -2.29) || (-0.85 < Φ < -0.45) || (0.45 < Φ < 0.85) || (2.29 < Φ < 2.69)

RICH1 line:

p > 10 GeV **&&** χ^2 < 2 **&&** 1.6 < η < 2.04 (-2.65 < Φ < -2.3) || (-0.8 < Φ < -0.5) || (0.5 < Φ < 0.8) || (2.3 < Φ < 2.65)

Need to reconstruct ~10 times less events!

Current Status

Currently used alignment:

- Made offline on data taken on 12 14/06 (second weekend of data taking)
- Data from 'old' HLT1 line (suboptimal for RICH1)
- RICH1: 2.1mrad to 1.85mrad
- RICH2: 0.73mrad to 0.72mrad

Current Status

Online alignment functioning (with some hand-holding)

~ 8 times faster than offline alignment

New alignment for RICH1

- On the 50ns data
- With new HLT lines in place
- More than enough entries in all histograms!!!

Here plots are missing will be put in soon

Summary

- Online alignment running
- Decent alignment being used already (res. of 1.85/0.72 mrad for RICH1/RICH2)
- Better alignments on the way
- Without Roel we would all be lost

To do:

- Implement monitoring
- Stabilize the fitting of the histograms
- Run online alignment fully automatically
- Magnet polarity test

Backup

Cherenkov angle resolution

Limiting factors to Cherenkov angle resolution:

	$\sigma [\mathrm{mrad}]$		
	RICH1		RICH2
	Aerogel	$\mathrm{C_4F_{10}}$	CF_4
Emission point	0.4	0.8	0.2
Chromatic dispersion	2.1	0.9	0.5
Pixel size	0.5	0.6	0.2
Tracking	0.4	0.4	0.4
Total	2.6	1.5	0.7

Magnification coefficients

Magnification coefficients: Translate the tilt on the detector plane into actual mirror tilts

Magnification coefficients are calculated new for each iteration:

- Introduce 8 rotations: primary and secondary mirrors rotated around ±y and ±z axis respectively
- Rotate about 0.3 mrad (half the resolution of RICH2)
- Reconstruct events for each rotation and evaluate the tilts on the detector plane

Need to reconstruct all events 9 times!

$$\Theta^y \approx 2.0 \,\alpha^y - 0.9 \,\beta^y$$
 and $\Theta^z \approx 1.8 \,\alpha^z + 0.6 \,\beta^z$.