## Mining Time Series:

## **Forecasting**

#### Mining Massive Datasets

Prof. Carlos Castillo — <a href="https://chato.cl/teach">https://chato.cl/teach</a>



#### Sources

- Data Mining, The Textbook (2015) by Charu Aggarwal (chapter 14)
- Introduction to Time Series Mining (2006) tutorial by Keogh Eamonn [alt. link]
- Time Series Data Mining (2006) slides by Hung Son Nguyen



(A similar phrase is attributed to Niels Bohr, Danish physicist and winner of the Nobel Prize in 1922)

## **Forecasting**

(AR, MA, ARMA, ARIMA, ...)

#### Stationary vs Non-Stationary processes

#### Stationary process

- Parameters do not change over time
- E.g., White noise has zero mean, fixed variance, and zero covariance between  $y_t$  and  $y_{t+L}$  for any lag L

#### Non-stationary process

- Parameters change over time
- E.g., price of oil, height of a child, glucose level of a patient, ...

#### **Stationary process**



#### Non-stationary process



#### Strictly stationary time series

A **strictly stationary time series** is one in which the distribution of values in any time interval [a,b] is identical to that in [a+L], b+L for any value of time shift (lag) L

• In this case, current parameters (e.g., mean) are good predictors of future parameters

#### Differencing

#### First order differencing

$$y_i' = y_i - y_{i-1}$$

In this first example, if the original series is superlinear, the differenced series is stationary or non-stationary?



## Differencing (cont.)

#### First order differencing

$$y_i' = y_i - y_{i-1}$$

In this second example, where the series is linear, the differenced series is stationary or non-stationary?



#### Other differencing operations

Second-order differencing

$$y_i'' = y_i' - y_{i-1}'$$
  
=  $y_i - 2 \cdot y_{i-1} + y_{i-2}$ 

•  $y'_i = y_i - y_{i-m}$ rencing (m = 24 hours, 7 days, ...)

If you find a differencing that yields a stationary series, the forecasting problem is basically solved.

### Autoregressive model AR(p)

Autocorrelation(L) = 
$$\frac{\text{Covariance}_t(y_t, y_{t+L})}{\text{Variance}_t(y_t)}$$

- Autocorrelation lines in [-1,1]
- High absolute values ⇒ predictability
- Autoregressive model of order p, AR(p):

$$y_t^{AR} = \sum_{i=1}^{p} a_i \cdot y_{t-i} + c + \epsilon_t$$

#### How to decide p? Autocorrelation plots



### Finding coefficients and evaluating

 Each data point is a training element

$$y_t^{AR} = \sum_{i=1}^p a_i \cdot y_{t-i} + c + \epsilon_t$$

- Coefficients found by least-squares regression
- Best models have  $R^2 \rightarrow 1$

$$R^{2} = 1 - \frac{\operatorname{Mean}_{t}(\epsilon_{t}^{2})}{\operatorname{Variance}_{t}(y_{t})}$$

## Exercise: simple auto-regressive model

- Create a simple auto-regressive model for temperature in a city
- Use two lags:

1 hour

24 hours

Compute the predicted series
 (optionally: include it in the plot)

Compute the maximum error



Spreadsheet links: https://upfbarcelona.padlet.org/chato/hogch321o6pws1fd



## Moving average model MA(q)

 Focus on the variations (shocks) of the model, i.e., places where change was unexpected

• AR(p) model: 
$$y_t^{AR} = \sum_{i=1}^r a_i \cdot y_{t-i} + c + \epsilon_t$$

$$y_t^{\text{MA}} = \sum_{i=1}^q b_i \cdot \epsilon_{t-i} + c + \epsilon_t$$

# Autoregressive moving average model ARMA(p,q)

Combines both the autoregressive and the moving average model

$$y_t^{\text{ARMA}} = \sum_{i=1}^p a_i \cdot y_{t-i} + \sum_{i=1}^q b_i \cdot \epsilon_{t-i} + c + \epsilon_t$$

• Select small p, q, to avoid overfitting

# Autoregressive integrated moving average model ARIMA(p,q)

 Combines both the autoregressive and the moving average model on differenced series

$$y_t^{\text{ARIMA}} = \sum_{i=1}^{p} a_i \cdot (y_{t-i} - y_{t-i-1}) + \sum_{i=1}^{q} b_i \cdot \epsilon_{t-i} + c + \epsilon_t$$

Note: this is an ARIMA(p,1,q) model as we're using first order differencing

See also: ARIMA end-to-end project in Python by Susan Li (2018)

# Event detection (a simple framework)

#### Event: an important occurrence







Earthquake or aftershock

Droplet release

Sudden price change

#### **Example:** pipe rupture





Pressure (pipe rupture scenario)

#### (But what if sensors fail? ...

- "Systems in general work poorly or not at all"
- "In complex systems,
  malfunction and even total nonfunction may not be detectable
  for long periods, if ever"



#### ... Can we still detect failure?)



(c) Temperature (sensor failure scenario)



(d) Pressure (sensor failure scenario)

## A general scheme for event detection in multivariate time series

- Let  $T_1$ ,  $T_2$ , ...,  $T_r$  be times at which an event has been observed in the past
- (Offline) Learn coefficients  $\alpha_1$ ,  $\alpha_2$ , ...,  $\alpha_d$  to distinguish between event times and non-event times
- (Online) Observe series and determine deviation of every stream i at timestamp t as  $z_t^i$
- (Online) Compute composite alarm level  $Z_t = \sum_{i=1}^{n} \alpha_i \cdot z_t^i$

## Learning discrimination coefficients $\alpha_{i}$ ,

$$\alpha_2, \ldots, \alpha_d$$

Average alarm level for events

$$Q^{\mathrm{event}}(\alpha_1, \dots, \alpha_d) = \frac{1}{r} \sum_{i=1}^r Z_{T^i}$$

 $Z_t = \sum_{i=1}^d \alpha_i \cdot z_t^i$ 

 Average alarm level for non-events (we assume most points are non-events)

$$Q^{\text{normal}}(\alpha_1, \dots, \alpha_d) = \frac{1}{N} \sum_{i=1}^{N} Z_t$$

## Learning discrimination coefficients $\alpha_1$ , $\alpha_2$ , ..., $\alpha_d$ (cont.)

For events

$$Q^{\text{event}}(\alpha_1, \dots, \alpha_d) = \frac{1}{r} \sum_{i=1}^r Z_{T^i}$$

• For non-events

$$Q^{\text{normal}}(\alpha_1, \dots, \alpha_d) = \frac{1}{N} \sum_{i=1}^{N} Z_i$$

 $Q^{\text{event}}(\alpha_1, \dots, \alpha_d) - Q^{\text{normal}}(\alpha_1, \dots, \alpha_d)$ 

Maximize

subject to 
$$\sum_{i=1}^{d} \alpha_i^2 = 1$$

Use any off-the-shelf iterative optimization solver

## Summary

#### Things to remember

- Time series forecasting
- Event detection

#### Exercises for TT27-TT29

- Data Mining, The Textbook (2015) by Charu Aggarwal
  - Exercises  $14.10 \rightarrow 1-6$