Assume there are 9 tape drives.

Processes	Allocated Tape Drives	Max Tape Drives
P1	0	3
P2	3	5
P3	4	7

Available	
2	

Need = (Max Tape Drives – Allocated Tape drives)		
3		
2		
3		

- WORK (after P2's execution): 3 + 2= 5
- WORK (after P1's execution): 5 + 0= 5
- WORK (after P3's execution): 5 + 4= 9

The system is in safe state. The safe sequence is: <P2, P1, P3>

Suppose the process P1 makes an additional request of 1 more tape drive, will the request be granted?

Processes	Allocated Tape Drives	Max Tape Drives
P1	1	3
P2	3	5
P3	4	7

Available	
1	

Need = (Max Tape Drives – Allocated Tape drives)		
2		
2		
3		

There is no possible safe sequence, hence the system will be at the state of deadlock.

HENCE, THE REQUEST IS DENIED.