Machine Learning (Introducción)

Gabriel Abellán (gabriel.abellan@gmail.com)
Laboratorio de Física Teórica, Campos y Partículas
Universidad Central de Venezuela (UCV)

Machine Learning (Introducción)

Machine Learning

- ¿Qué es?
- · Tipos
- Metodología

Redes Neurales

- · ¿Qué son?
- · Tipos
- Ejemplos (KERAS)

Machine Learning

¿Qué es? Es la ciencia (¿arte?) de programar un ordenador y aprenda usando datos

Algunas Aplicaciones

- Clasificación de imágenes
- Diagnóstico de enfermedades
- · Clasificación de texto
- Creación de asistentes personales (chatbot)
- Predicción de eventos
- · Detección de eventos anómalos
- Extracción de propiedades generales, segmentación de clases
- · Sistemas de recomendación
- Bot inteligente para juegos

- Predecir energías de moléculas, orbitales...
- · Desarrollo de drogas
- Desarrollo de materiales
- Predicción de estructuras cristalinas
- · Descubrimiento de transiciones de fase
- · Método para resolver ODEs y PDEs

Tipos de Machine Learninig

Algoritmos de Machine Learninig

en cualquier etapa es possible retroceder y replantearse cosas

Para aprender se realiza un proceso de optimización usando la función de costo

Buscar los parámetros que extreman la función costo y maximizan el performance

Los algoritmos más simples (lineales) tienen respuestas cerradas

Los algoritmos más poderosos son nolineales y usan métodos iterativos

- · Mini Batch 9D
- Stochastic GD

Memorizar no es aprender

Existe el riesgo de que el modelo se ajuste perfectamente a la data

Underfitted

Good Fit/Robust

Overfitted

Knowledge

iEstos modelos no generalizan bien!

Para evitar ser demasiado optimista, se utiliza un procedimiento para validar el performance del algoritmo

Bootstrap resampling

Algunas expresiones e ideas que aparecen en la literatura

Occam's Razor

Si dos modelos tienen igual performance, elegimos el más simple

The Curse of Dimensionality

Al aumentar las variables, la data necesaria para entrenar también aumenta (pero exponencialmente)

No Free Lunch Theorem

Dos algoritmos son equivalentes cuando se promedia su performance sobre todos los problemas posibles

Es necesario seleccionar e algoritmo para cada problema

Bias-Variance Tradeoff

Es necesario encontrar un compromiso entre la complejidad del modelo y la consistencia en las predicciones

En nuestro cerebro

Dibujo de Ramón y Cajal

~1900

Artificial Neural Network

En el ordenador

Inspirada en la forma en que se conectan las neuronas en el cerebro

- extraer características generals
- · predecir eventos dados unos datos
- ser flexible para enfretarse a data no vista con anterioridad

Deep Learning Timeline

Made by Favio Vázguez

¿Qué es? Una función nolineal que depende de muchos parámetros

- Cada conexión tiene un peso w
- Cada neurona tiene un bias b
- Cada neurona tiene una función nolineal- asociada f

Los valores en la entrada son provistos a la red

¿Qué es? Una función nolineal que depende de muchos parámetros

weighted sum

Los valores en la entrada son provistos a la red

- Cada conexión tiene un peso w
- Cada neurona tiene un bias b
- Cada neurona tiene una función nolineal- asociada f

Neural Networks: Ingredientes

General: feedforward y backpropagation

Específico:

- elegir arquitectura de la red (capas, # de neuronas, funciones de activación, función costo, métricas)
- generar data de bases de datos o colectarla a mano o simularla
- entrenamiento, elegir learning rate y batch size, probar combinaciones

Herramientas de alto nivel

From the website **keras.io**

"Keras is a high-level neural networks API, written in Python and capable of running on top of either **TensorFlow** or **Theano**. It was developed with a focus on enabling fast experimentation. Being able to go from idea to result with the least possible delay is key to doing good research."

Sequential: la red usual con capas sucesivas

Dense: capa totalmente conectada

input shape: neuronas de entrada

loss: cost

SGD: Mochastic gradient descent

Ir: learning rate (stepsize)

```
from keras import *
from keras.models import Sequential
from keras.layers import Dense
```

Defining a network

layers with 2,150,150,100,1 neurons

```
net=Sequential()
net.add(Dense(150, input shape=(2,), activation='relu'))
net.add(Dense(150, activation='relu'))
net.add(Dense(100, activation='relu'))
net.add(Dense(1, activation='relu'))
```

'Compiling' the network

```
net.compile(loss='mean squared error',
              optimizer=optimizers.SGD(lr=0.1),
              metrics=['accuracy'])
```


Neural Networks: para regresión lineal

Neural Networks: para clasificación

$$z = wy + b$$

Si f es una sigmoide se tiene un problema de clasificación

Linear Examples (No Supervisado)

Principal Component Analysis

(PCA)

Autoencoder

- reproduce la entrada (input) en la salida (output)
- no requiere ser etiquetado ('respuestas correctas')
- reduce la info de entrada haciéndola pasar por el bottleneck intermedio
- esto funciona si la red aprende a extraer las características esenciales de la data
- funciona como una forma de comprimir data

Autoencoder

Linear

Principal Component Analysis

$$|\psi
anglepprox\hat{P}\,|\psi
angle$$
Tentrada Proyector

$$\hat{P} = \sum_{j=1}^{M} |v_j\rangle \langle v_j|$$

Proyectar el input en un espacio de menor dimensionalidad y que sea lo más parecido al input mismo

Proyectar el input en un espacio de menor dimensionalidad y que sea lo más parecido al input mismo

En física podemos resolver este problema usando la matriz densidad

$$\hat{\rho} = \langle |\psi\rangle \langle \psi| \rangle = \sum_{j} p_{j} \left| \psi^{(j)} \right\rangle \left\langle \psi^{(j)} \right|$$

$$\rho_{mn} = \left\langle \psi_{m} \psi_{n}^{*} \right\rangle$$

La matriz densidad es cuadrática en la función de onda, por lo tanto está relacionada con la matriz de covarianza

- Diagonalizar
- Elegir los m autovalores más grandes
- Los autovectores asociados son la base del subespacio buscado

t-SNE (t-distributed Stochastic Neighbor Embedding)

al proyectar, busca preservar las distancias

Algunos ejemplos curiosos

https://cs.stanford.edu/people/karpathy/cnnembed/

t-SNE (t-distributed Stochastic Neighbor Embedding)

al proyectar, busca preservar las distancias

https://paperscape.org

Machine Learning (Introducción)

Referencias (en línea) Utiles

Clases en YouTube hay muchas, aún siguen siendo muy útiles las clases del prof. Yaser Abu-Mostafa en Caltech https://www.youtube.com/playlist?list=PLD63A284B7615313A

Como lectura puedes revisar

- A high-bias, low-variance introduction to Machine Learning for physicists (excelente introducción en nuestro argot https://arxiv.org/abs/1803.08823)
- An overview of gradient descent optimization algorithms (https://arxiv.org/abs/1609.04747)
- Neural Networks and Deep Learning (https://neuralnetworksanddeeplearning.com)
- Deep Learning (https://www.deeplearningbook.org)
- Machine Learning for Physicist (https://machine-learning-for-physicists.org/)
- Machine Learning Forum, Training, Competitions (https://www.kaggle.com/)

