NAIL062 P&P Logic: Worksheet 4 – The Tableaux Method

Teaching goals: After completing, the student

- knows terminology of tableau method (entry, tableau, tableau proof/refutation, finished/contradictory branch, canonical model), can define them formally, give examples
- knows all atomic tableaux and can create suitable atomic tableaux for any logical connective
- can construct a finished tableau for a given formula from a given (even infinite) theory
- can describe the canonical model for a given completed consistent branch of a tableau
- can apply the tableau method to solve a given problem (word problems, etc.)
- knows the compactness theorem and can apply it

IN-CLASS PROBLEMS

Problem 1. Aladdin found two chests, A and B, in a cave. He knows that each chest contains either a treasure or a deadly trap. The chests have the following inscriptions:

- On chest A: "At least one of these two chests contains a treasure."
- On chest B: "Chest A contains a deadly trap."

Aladdin knows that either both inscriptions are true, or both are false.

- (a) Express Aladdin's information as a theory T over a suitably chosen set of propositional variables \mathbb{P} . (Explain the meaning of each propositional variable in \mathbb{P} .)
- (b) Try to construct tableau proofs from the theory T for the propositions "The treasure is in chest A" and "The treasure is in chest B".
- (c) If any of these completed tableaux are consistent, construct the canonical model for one of its consistent branches.
- (d) What conclusion can we draw from this?

Problem 2. Consider the infinite propositional theories (a) $T = \{p_{i+1} \to p_i \mid i \in \mathbb{N}\}$ (b) $T = \{p_i \to p_{i+1} \mid i \in \mathbb{N}\}$. Using the tableau method, find all models of T. Is every model of T a canonical model for some branch of this tableau?

Problem 3. Design suitable atomic tableaux for the logical connective \oplus (XOR) and show that if a model satisfies the root of your atomic tableaux, it also satisfies some branch.

Problem 4. Using the compactness theorem, show that every countable partial order can be extended to a complete (linear) order.

EXTRA PRACTICE

Problem 5. During the interrogation of Adam, Barbara, and Cyril, it was established that:

- (i) At least one of the interrogated persons tells the truth, and at least one lies.
- (ii) Adam says: "Barbara or Cyril lie."
- (iii) Barbara says: "Cyril lies."
- (iv) Cyril says: "Adam or Barbara lie."
- (a) Express statements (i)–(iv) as formulas φ_1 – φ_4 over the set of propositional variables $\mathbb{P} = \{a, b, c\}$, where a, b, c respectively mean "Adam/Barbara/Cyril tells the truth".
- (b) Using the tableau method, prove that $T = \{\varphi_1, \dots, \varphi_4\}$ implies that Adam tells the truth.
- (c) Is the theory T equivalent to the theory $T' = \{\varphi_2, \varphi_3, \varphi_4\}$? Justify your answer.

Problem 6. Using the tableau method, prove that the following formulas are tautologies:

- (a) $(p \to (q \to q))$
- (b) $p \leftrightarrow \neg \neg p$
- (c) $\neg (p \lor q) \leftrightarrow (\neg p \land \neg q)$
- (d) $(p \to q) \leftrightarrow (\neg q \to \neg p)$

Problem 7. Using the tableau method, either prove or find a counterexample in the form of a *canonical* model for a consistent branch.

- (a) $\{\neg q, p \lor q\} \models p$
- (b) $\{q \to p, \ r \to q, \ (r \to p) \to s\} \models s$
- (c) $\{p \to r, p \lor q, \neg s \to \neg q\} \models r \to s$

Problem 8. Using the tableau method, determine all models of the following theories:

- (a) $\{(\neg p \lor q) \to (\neg q \land r)\}$
- (b) $\{\neg q \to (\neg p \lor q), \neg p \to q, r \to q\}$
- (c) $\{q \to p, r \to q, (r \to p) \to s\}$

Problem 9. Design suitable atomic tableaux and show that if a model satisfies the root of your atomic tableaux, it also satisfies some branch:

- for Peirce's connective ↓ (NOR),
- for Sheffer's connective \(\cdot \) (NAND),
- for \oplus (XOR),
- for the ternary operator "if p then q else r" (IFTE).

Problem 10. A half-adder circuit is a logic circuit with two input bits (bit 1, bit 2) and two output bits (carry, sum) illustrated in the following diagram:

- (a) Formalize this circuit in propositional logic. Specifically, express it as a theory $T = \{c \leftrightarrow \varphi, s \leftrightarrow \psi\}$ in the language $\mathbb{P} = \{b_1, b_2, c, s\}$, where the propositional variables mean "bit 1", "bit 2", "carry", and "sum", and the formulas φ, ψ do not contain the variables c, s.
- (b) Using the tableau method, prove that $T \models c \rightarrow \neg s$.

Problem 11. Using the compactness theorem, prove that every countable planar graph is four-colorable. You may use the Four Color Theorem (for finite graphs).

FOR FURTHER THOUGHT

Problem 12. Prove directly (by transforming tableaux) the *deduction theorem*, i.e., that for any theory T and formulas φ , ψ , we have:

$$T \vdash \varphi \rightarrow \psi$$
 if and only if $T, \varphi \vdash \psi$

Problem 13. Let A and B be two non-empty theories in the same language. Suppose that every model of theory A satisfies at least one axiom of theory B. Show that there exist finite sets of axioms $\{\alpha_1, \ldots, \alpha_k\} \subseteq A$ and $\{\beta_1, \ldots, \beta_n\} \subseteq B$ such that $\alpha_1 \wedge \cdots \wedge \alpha_k \to \beta_1 \vee \cdots \vee \beta_n$ is a tautology.