Chapter 24: Single-Source Shortest-Path

About this lecture

- What is the problem about?
- Dijkstra's Algorithm [1959]
 - ~ Prim's Algorithm [1957]
- Folklore Algorithm for DAG
- · Bellman-Ford Algorithm
 - · Discovered by Bellman [1958], Ford [1962]
 - · Allowing negative edge weights

Single-Source Shortest Path

- Let G = (V,E) be a weighted graph
 - ✓ the edges in G have positive weights
 - √ can be directed/undirected
 - √ can be connected/disconnected
- · Let s be a special vertex, called source
- Target: For each vertex v, compute the length of the shortest path from s to v

Single-Source Shortest Path

• E.g.,

Relax

 A common operation that is used in the algorithms is called Relax:

when a vertex v can be reached from the source with a certain distance, we examine an outgoing edge, say (u, v), and check if we can improve v Can we improve this?

• E.g., 4 ? 8 ? 2 ? 4 ? 6 ? 11 ? 6

Relax (u, v, w)

If d(v) > d(u) + w(u, v)

$$d(v) = d(u) + w(u, v)$$

d(v) is a shortest-path estimate from source s to v.

Can we improve this?

Dijkstra's Algorithm

```
Dijkstra(G, s)
  For each vertex v,
     Mark v as unvisited, and set d(v) = \infty;
  Set d(s) = 0;
  while (there is unvisited vertex) {
    v = unvisited vertex with smallest d(v);
     Visit v, and Relax all its outgoing edges;
  Return d:
```


Correctness

- · Theorem:
 - (i) The k^{th} vertex closest to the source s is selected at the k^{th} step inside the while loop of Dijkstra's algorithm
 - (ii) Also, by the time a vertex v is selected, d(v) will store the length of the shortest path from s to v
- · How to prove? (By induction)

Proof

- Both statements are true for k = 1;
- Let $v_j = j^{th}$ closest vertex from s
- Now, suppose both statements are true for k = 1, 2, ..., r-1
- · Consider the rth closest vertex v_r
 - If there is no path from s to v_r
 - \rightarrow d(v_r) = ∞ is never changed
 - Else, there must be a shortest path from s to v_r ; Let v_t be the vertex immediately before v_r in this path

Proof (cont)

- Then, we have $t \le r-1$ (why??)
- \rightarrow d(v_r) is set correctly once v_t is selected, and the edge (v_t,v_r) is relaxed (why??)
- (ii) \rightarrow After that, $d(v_r)$ is fixed (why??)
- (i) \rightarrow d(v_r) is correct when v_r is selected; also, v_r must be selected at the rth step, because no unvisited nodes can have a smaller d value at that time

Thus, the proof of inductive case completes

- · Dijkstra's algorithm is similar to Prim's
- · By simply store d(v) in the vth array.
 - Relax (Decrease-Key): O(1)
 - Pick vertex (Extract-Min): O(V)
- · Running Time:
 - the cost of |V| operation Extract-Min is $O(V^2)$
 - · At most O(E) Decrease-Key
 - \rightarrow Total Time: $O(E + V^2) = O(V^2)$

- By using binary Heap (Chapter 6),
 - Relax Decrease-Key: O(log V)
 - Pick vertex ⇔ Extract-Min: O (log V)
- · Running Time:
 - the cost of each |V| operation Extract-Min is O(V log V)
 - At most O(E) Decrease-Key
 - Total Time: $O((E + V) \log V)$ = $O(E \log V)$

- By using Fibonacci Heap (Chapter 19),
 - Relax
 Decrease-Key
 - Pick vertex Extract-Min
- · Running Time:
 - At most O(E) Decrease-Key
 - the amortized cost of each |V| operation Extract-Min is O(log V)
 - → Total Time: O(E + V log V)

Finding Shortest Path in DAG

```
We have a faster algorithm for DAG:
DAG-Shortest-Path(G, s)
  Topological Sort G;
  For each v, set d(v) = \infty; Set d(s) = 0;
  for (k = 1 to |V|) {
    v = kth vertex in topological order;
    Relax all outgoing edges of v;
  return d:
```


Correctness

· Theorem:

By the time a vertex v is selected, d(v) will store the length of the shortest path from s to v

How to prove? (By induction)

Proof

- Let $v_j = j^{th}$ vertex in the topological order
- We will show that $d(v_k)$ is set correctly when v_k is selected, for k = 1, 2, ..., |V|
- When k = 1,

 $v_k = v_1 = leftmost vertex$

If it is the source, $d(v_k) = 0$

If it is not the source, $d(v_k) = \infty$

- \rightarrow In both cases, $d(v_k)$ is correct (why?)
- → Base case is correct

Proof (cont)

- Now, suppose the statement is true for k = 1, 2, ..., r-1
- · Consider the vertex v_r
 - If there is no path from s to v_r
 - \rightarrow d(v_r) = ∞ is never changed
 - Else, we shall use similar arguments as proving the correctness of Dijkstra's algorithm ...

Proof (cont)

- First, let v_t be the vertex immediately before v_r in the shortest path from s to v_r
 - \rightarrow t \leq r-1
 - \rightarrow d(v_r) is set correctly once v_t is selected, and the edge (v_t,v_r) is relaxed
 - \rightarrow After that, $d(v_r)$ is fixed
 - \rightarrow d(v_r) is correct when v_r is selected
- Thus, the proof of inductive case completes

- DAG-Shortest-Path selects vertex sequentially according to topological order
 - · no need to perform Extract-Min
- We can store the d values of the vertices in a single array \rightarrow Relax takes O(1) time
- · Running Time:
 - Topological sort : O(V + E) time
 - O(V) select, O(E) Relax : O(V + E) time
 - → Total Time: O(V + E)

Handling Negative Weight Edges

 When a graph has negative weight edges, shortest path may not be well-defined

What is the shortest path from s to v?

Handling Negative Weight Edges

- The problem is due to the presence of a cycle C, reachable by the source, whose total weight is negative
 - → C is called a negative-weight cycle
- · How to handle negative-weight edges??
 - → if input graph is known to be a DAG, DAG-Shortest-Path is still correct
 - → For the general case, we can use Bellman-Ford algorithm

Bellman-Ford Algorithm

```
Bellman-Ford(G, s) // runs in O(VE) time
  For each v, set d(v) = \infty; Set d(s) = 0;
  for (k = 1 \text{ to } |V|-1)
     Relax all edges in G in any order;
  /* check if s reaches a neg-weight cycle */
  for each edge (u,v),
     if (d(v) > d(u) + weight(u,v))
          return "something wrong !!";
  return d:
```


After the 4th Relax all

After checking, we found that there is nothing wrong \rightarrow distances are correct

After the 4th Relax all

After checking, we found that something must be wrong \rightarrow distances are incorrect

Correctness (Part 1)

· Theorem:

There is a negative-weight cycle in the input graph if and only if when Bellman-Ford terminates,

$$d(v) > d(u) + weight(u,v)$$

for some edge (u,v)

· How to prove? (By contradiction)

Proof

- (=>) Firstly, if there is a cycle $C = (v_0, v_1, ..., v_{k-1}, v_0)$ then total weight is negative (trivial!)
- That is, $\sum_{i=0 \text{ to } k-1} \text{ weight}(v_i, v_{(i+1) \text{ mod } k}) < 0$
- Now, suppose on the contrary that $d(v) \le d(u) + weight(u,v)$ for all edge (u, v) at termination

Proof (cont)

· Can we obtain another bound for

$$\sum_{i=0 \text{ to } k-1} \text{ weight}(v_i, v_{(i+1) \text{ mod } k}) ?$$

- By rearranging, for all edge (u,v)weight $(u,v) \ge d(v) - d(u)$
 - $\rightarrow \sum_{i=0 \text{ to } k-1} \text{ weight}(v_i, v_{(i+1) \text{ mod } k})$

$$\geq \sum_{i=0 \text{ to } k-1} (d(v_{(i+1) \text{ mod } k}) - d(v_i)) = 0 \text{ (why?)}$$

→ Contradiction occurs !! (<=) by next corollary</p>

Corollary

 Corollary: If there is no negative-weight cycle, then when Bellman-Ford terminates, d(v) ≤ d(u) + weight(u,v),
 for all edge (u,v)

Proof: By the next theorem, d(u) and d(v) are the cost of shortest path from s to u and v, respectively. Thus, we must have d(v) ≤ cost of any path from s to v

d(v) ≤ d(u) + weight(u,v)

Correctness (Part 2)

· Theorem:

If the graph has no negative-weight cycle, then for any vertex v with shortest path from s consists of k edges, Bellman-Ford sets d(v) to the correct value after the kth Relax all edges (for any ordering of edges in each Relax all)

· How to prove?

Path-Relaxation Property

• Consider any shortest path p from $s = v_0$ to v_k , and let $p = (v_0, v_1, ..., v_k)$. If we relax the edges (v_0, v_1) , (v_1, v_2) , ..., (v_{k-1}, v_k) in order, then $d(v_k)$ is the shortest path from s to v_k . Proof by induction (omit)

Example:

After the 4th Relax all

After checking, we found that there is nothing wrong \rightarrow distances are correct

Proof

- Consider any vertex v that is reachable from s, and let $p = (v_0, v_1, ..., v_k)$, where $v_0 = s$ and $v_k = v$ be any shortest path from s to v.
- p has at most |V| 1 edges, and so $k \le |V| 1$. Each of the |V| 1 iterations relaxes all |E| edges.
- Among the edges relaxed in the ith iteration, (for i = 1, 2,...k) is (v_{i-1}, v_i) .
- By the path-relaxation property, $d(v) = d(v_k) = the shortest path from s to v.$

Performance

- When no negative edges
 - Dijkstra's algorithm
 - Using array O(V²)
 - · Using Binary heap implementation: O(E Ig V)
 - Using Fibonacci heap: O(E + Vlog V)
- When DAG
 - DAG-Shortest-Paths: O(E + V) time
- When negative cycles
 - Using Bellman-Ford algorithm: O(VE) = (V3)

Homework

• Exercises: 24.1-3, 24.2-3, 24.2-4, 24.3-5, 24.3-8, 24.3-10

Quiz

- Which of the following statements are true for the Minimum Spanning Tree (MST) of a graph G = (V, E)?
- a. MST is the spanning tree that have the minimum weight
- b. MST of a graph is not unique
- c. MST has exactly |V| -1 edges