Desenvolvimento para a Web e Dispositivos Móveis Modelação e Base de Dados

Concepção do Modelo Lógico de Dados Relacional

Deloitte.

Sumário

- Estratégias de derivação do modelo de dados relacional
- Regras de derivação do modelo de dados relacional a partir do modelo E-R → tratamento de:
 - Relacionamentos binários de cardinalidade 1:1, 1:N e N:M, com participações obrigatórias e opcionais
 - Relacionamentos binários múltiplos
 - Relacionamentos de diversas ordens
 - Atributos multivalor
 - Tipos de entidades: independente, de agregação, de intersecção, fraca e subordinada
 - Entidades fracas e entidades subordinadas
 - Hierarquias de especialização/generalização
 - Malha de especialização/generalização
 - Categorias

Estratégias de concepção do modelo de dados Relacional

- <u>Do particular para o geral</u> (**Bottom-up**)
 - 1) Relação universal.
 - 2) Análise de dependências funcionais.
 - 3) Modelo de dados.

Pequenos projectos

(até 6-8 entidades)

- Do geral para o particular (**Top-down**)
 - 1) Modelo conceptual E-R.
 - 2) Regras de mapeamento para modelo lógico.
 - 3) Modelo de dados.

Grandes

projectos

Construção de modelo de dados relacional pelo método Entidade-Relacionamento

- Construir o modelo conceptual de dados:
 - identificar todas as entidades e todos os relacionamentos importantes para a situação a tratar;
 - construir o diagrama de Entidade-Relacionamento (DER);
 - identificar todos os atributos relevantes e associa-los a uma das <u>entidades</u> preliminares já definidas (ou a <u>relacionamentos</u> existentes entre estas).
- Derivar o modelo de dados relacional:
 - identificar as chaves primárias do conjunto de entidades preliminares;
 - aplicar as regras de derivação do modelo relacional;
 - verificar o resultado aplicando a teoria da normalização.

Regras de derivação do modelo de dados relacional

Modelo conceptual - DER

Modelo lógico relacional – conjunto de tabelas interligadas

Principais factores com influência nas regras de derivação do ML

- Cardinalidade do relacionamento (1:1, 1:N, N:M).
- Tipo de participação das entidades no relacionamento:
 - obrigatória;
 - opcional.
- Tipo de relacionamento:
 - binário;
 - n_ário;
 - recursivo;
 - etc.
- Tipo de entidade (e.g. fraca)

Principais situações a tratar

- Relacionamentos binários
- Relacionamentos binários múltiplos
- Relacionamentos não binários
- Relacionamentos recursivos
- Atributos multivalor
- Entidades Fracas
- Entidades subordinadas e representação de papéis
- Hierarquias e malhas de especialização/generalização
- Categorias

Resumo das principais regras do método ER

Relacionamento	Nº Tabelas	Observações
1:1	1	A Chave primária pode ser a chave de qualquer das entidades.
1:1	2	A Chave da entidade c/ participação <u>não</u> obrigatória tem de ser atributo na outra.
1:1	3	A tabela do relacionamento terá como atributos as chaves de ambas as entidades
1:N	2	A Chave da entidade do lado 1 tem de ser atributo na entidade do lado N.
1:N	3	A tabela do relacionamento terá como atributos as chaves de ambas as entidades.
N:M	3	A tabela do relacionamento terá como atributos as chaves de ambas as entidades.
	N+1	A tabela do relacionamento terá como atributos as chaves de <u>todas</u> as entidades.

Relacionamento binário 1:1 (2po)

Caso 1 (1:1) - participação obrigatória das duas entidades

Exemplo:

- todos os professores têm de leccionar uma só disciplina;
- cada disciplina **tem** de ser assegurada por um professor.

Regra 1 - 1:1 e 2po

Professor (NProf, Nome, Tel, #Disc, Prereq)

NProf	Nome	Tel	#Disc	Prereq
1001	Couto	721334	Inf2	Inf1
1662	Nunes	776188	SOC	LP
77	Peixoto	722876	Inf1	Nenhum

Regra 1 - Relacionamento binário de cardinalidade 1:1 e participação obrigatória de ambas as entidades:

- é apenas necessária uma tabela (as duas entidades podem fundir-se numa só);
- a chave primária dessa tabela <u>pode</u> ser a chave primária de qualquer das entidades.

Relacionamento binário 1:1 (1po)

Caso 2 (1:1) - participação obrigatória de apenas uma das entidades

Exemplo:

- todos os professores têm de leccionar uma só disciplina;
- cada disciplina em funcionamento é assegurada por um professor.

Caso1:1 (1po)

• É viável recorrer a uma só tabela?

NProf	Nome	Tel	#Disc	Prereq
1001	Couto	721334	Inf2	Inf1
?	?	?	IG2	IG1

Regra 2 - 1:1 e 1po (Professor tem de leccionar)

Professor (NProf, Nome, Tel, #Disc)

NProf	Nome	Tel	#Disc<
1001	Couto	721334	Inf2

Disciplina (<u>#Disc</u>, Prereq)

#Disc	Prereq
Inf2	Inf1
IG2	IG1

Regra 2 - Relacionamento binário de cardinalidade 1:1 e participação obrigatória de apenas uma das entidades.

- são necessárias duas tabelas;
- a chave primária de cada entidade serve de chave primária na tabela correspondente;
- a chave primária da entidade com participação não obrigatória tem de ser usada como atributo (FK) na tabela correspondente à entidade cuja participação é obrigatória.

Relacionamento binário 1:1 (sem po)

Caso 3 (1:1) - sem participação obrigatória em ambas as entidades

Exemplo:

- os docentes leccionam uma só disciplina, se não estiverem dispensados do serviço docente;
- cada disciplina é assegurada por um docente, excepto se for opcional e se o número de inscrições for inferior a 15 alunos .

Caso1:1 (sem po) – uma tabela?

NProf	Nome	Tel	#Disc	Prereq
1001	Couto	721334	Inf2	Inf1
1662	Nunes	776188	SOC	LP
?	?	?	IG2	IG1
1056	Martins	734976	?	?

Utilizando uma só tabela, surgem valores nulos:

- quer para as disciplinas que ainda não têm professor;
- quer para os professores que não leccionam nenhuma disciplina

Caso1:1 (sem po) – duas tabelas?

Professor (Prof, Nome, Tel, #Disc)

NProf	Nome	Tel	#Disc
1001	Couto	721334	Inf2
1662	Nunes	776188	SOC
1056	Martins	734976	?

Disciplina (#Disc, Prereq, NDoc)

#Disc	Prereq	NDoc
Inf2	Inf1	1001
SOC	LP	1662
IG2	IG1	?

A subdivisão da entidade em duas tabelas, segundo solução análoga à regra 2, também origina valores nulos.

Regra 3 - 1:1 sem po

Professor

NProf	Nome	Tel
1001	Couto	721334
1662	Nunes	776188
1056	Martins	734976

Disciplina

#Disc	Prereq
Inf2	Inf1
SOC	LP
IG2	IG1

Leccionar

NProf	#Disc
1001	Inf2
1662	SOC

Regra 3 - Relacionamento binário de cardinalidade 1:1 e participação não obrigatória em ambas as entidades.

- são necessárias três tabelas, uma para cada entidade (e sem FK's) e a terceira para o relacionamento (com FK's);
- a chave primária de cada entidade serve de chave primária na tabela correspondente;
- a tabela correspondente ao relacionamento terá entre os seus atributos as chaves primárias das duas entidades (como FK's e frequentemente são também a PK).

Relacionamento binário 1:N (po lado N)

Caso 4 (1:N) - participação obrigatória do lado N (a participação obrigatória no lado 1 não afecta resultado)

Exemplo:

- os professores podem leccionar várias disciplinas;
- cada disciplina têm de ser assegurada por um só professor.

Regra 4 - 1:N e po lado N (Disciplina tem de ser leccionada)

Professor (Ndoc, Nome, Tel)

NProf	Nome	Tel
1662	Nunes	776188
1056	Martins	734976

Disciplina (#Disc, Prereq, NProf)

#Disc	Prereq	NProf	/ \
SOC	LP	1662	*
SDP	SOC	1662	

Regra 4 - Relacionamento binário de cardinalidade 1:N e participação obrigatória do lado N:

- são necessárias duas tabelas;
- a chave primária de cada entidade serve de chave primária na tabela correspondente;
- a chave primária da entidade do lado 1 tem de ser usada como atributo (FK) na tabela correspondente à entidade do lado N.

Relacionamento binário 1:N (sem po lado N)

Caso 5 (**1:N**) - participação <u>não</u> obrigatória do lado N

(a participação obrigatória no lado 1 não afecta resultado)

Exemplo:

Regra 5 - 1:N e (sem po lado N)

Professor

NProf	Nome	Tel
1662	Nunes	776188
1056	Martins	734976

Disciplina

#Disc	Prereq
SOC	LP
SDP	SOC
IG2	IG1

Leccionar

#Disc	NProf
SOC	1662
SDP	1662

Regra 5 - Relacionamento binário de cardinalidade 1:N e participação não obrigatória do lado N.

- são necessárias três tabelas, uma para cada entidade e a terceira para o relacionamento;
- a chave primária de cada entidade serve de chave primária na tabela correspondente;
- a tabela relativa ao relacionamento terá de ter entre os seus atributos (como FK's) as chaves primárias de cada uma das entidades (tipicamente a FK respeitante ao lado N é usada simultaneamente como PK).

Relacionamento binário N:M

Caso 6 (N:M) - independentemente do tipo de participação

(a participação obrigatória não afecta resultado)

Exemplo:

Regra 6 – cardinalidade N:M

Professor

NProf	Nome	Tel
1001	Couto	721334
1662	Nunes	776188
1033	Reis	716623
1052	Neves	714356
1056	Martins	734976

Disciplina

#Disc	Prereq
Inf2	Inf1
SOC	LP
SDP	SOC
IA	LP
IG2	IG1

Leccionar

#Disc.	NProf .
Inf2	1001
SOC	1662
SDP	1662
IA	1033
IA	1052

Regra 6 - Relacionamento binário de cardinalidade N:M:

- são sempre necessárias três tabelas, uma para cada entidade e uma terceira para o relacionamento;
- a chave primária de cada entidade serve de chave primária na tabela correspondente;
- a tabela relativa ao relacionamento terá de ter entre os seus atributos (FK's) as chaves primárias de cada uma das entidades (usualmente constituem também a PK).

Relacionamentos binários múltiplos (1/4)

- Na maioria dos casos, uma entidade pode ter relacionamentos binários com diversas entidades, ou seja, relacionamentos binários múltiplos.
- <u>Exemplo</u>:
 - um aluno pode inscrever-se em vários seminários;
 - um seminário é dirigido por vários instrutores;
 - um instrutor dirige vários seminários.

Relacionamentos binários múltiplos (2/4)

Supondo que um aluno tem de ser orientado por <u>um instrutor</u> nos vários seminários, obtém-se:

Relacionamentos binários múltiplos (3/4)

- O novo relacionamento dá origem às seguintes tabelas (mais propriamente, origina uma nova FK numa das tabelas já existentes):
 - Aluno (N aluno,, N_instrutor, ...)
 - Instrutor (N Instrutor,)
- O Modelo de dados final seria:
 - Aluno (N aluno, ..., N_instrutor, ...)
 - Instrutor (N Instrutor,)
 - Seminário (N Seminário,)
 - Inscrição (N Seminário, N aluno,)
 - Direcção (<u>N seminârio</u>, <u>N Instrutor</u>,...)

Relacionamentos binários múltiplos (4/4)

- Supondo agora, que:
 - o mesmo aluno pode ter <u>vários instrutores</u>;
 - os instrutores poderão ser diferentes consoante o seminário;
 - ⇒ o relacionamento "orientado" passaria a ser do tipo N:M.
- O modelo de dados final passaria a ser:

```
Aluno (N aluno, ....)
Instrutor (N Instrutor, ....)
Seminário (N Seminário, ....)
Inscrição (N Seminário, N aluno, ....)
Direcção (N seminário, N Instrutor,...)
Orientação (N aluno, N Instrutor,...)
```

- Questão (já discutida):
 - quem é(são) o(s) orientador(es) de um aluno num dado seminário ?
 - só é possível determinar quais são os instrutores de um seminário e quais são os orientadores de um dado aluno.

Relacionamento ternário

Regra 7 - Relacionamento ternário (e superior):

- são sempre necessárias quatro tabelas, uma para cada entidade e uma quarta para o relacionamento;
- a chave primária de cada entidade serve de chave primária na tabela correspondente;
- a tabela relativa ao relacionamento terá de ter entre os seus atributos (como FK) as chaves primárias de cada uma das entidades;
- num relacionamento de grau n são necessárias n+1 relações, de modo inteiramente idêntico.

Modelo resultante de relacionamento ternário

O modelo de dados final passaria a ser:

- **Aluno** (<u>N aluno</u>,)
- **Instrutor** (N Instrutor,)
- Seminário (N Seminário,)
- Inscrição (N Seminário, N aluno, N instrutor,....)

Obs: Se cada aluno tiver um só instrutor num dado seminário, a chave primária da entidade seria somente N_Aluno, N_seminário.

Resumo das principais regras do método ER

Relacionamento	Nº Tabelas	Observações
1:1	1	A Chave primária pode ser a chave de qualquer das entidades.
1:1	2	A Chave da entidade c/ participação <u>não</u> obrigatória tem de ser atributo na outra.
1:1	3	A tabela do relacionamento terá como atributos as chaves de ambas as entidades
1:N	2	A Chave da entidade do lado 1 tem de ser atributo na entidade do lado N.
1:N	3	A tabela do relacionamento terá como atributos as chaves de ambas as entidades.
N:M	3	A tabela do relacionamento terá como atributos as chaves de ambas as entidades.
	N+1	A tabela do relacionamento terá como atributos as chaves de <u>todas</u> as entidades.

Relacionamentos recursivos

Relacionamento não obrigatório do lado N (aplica-se a regra 5) => 3 tabelas: Empregado, Empregado e "Supervisão" (omitindo a repetição)

- **Empregado** (<u>BI</u>, Nome, Morada, Salário)
- **Supervisão** (<u>Bl empregado</u>, Bl_Supervisor)

Regra para relacionamentos recursivos

<u>Usam-se as regras já definidas</u> para os relacionamentos não recursivos.

Atributos Multivalor

O atributo localizações é um atributo multivalor, pois um departamento possui várias localizações ⇒

- Departamento (Número, Data_início_activ)
- Local (Número, Localização)

Regra para atributos multivalor

- um atributo multivalor M origina uma nova tabela;
- a nova tabela vai conter esse atributo M e a chave estrangeira K, sendo K o conjunto de atributos que constituem a chave primária da entidade já existente;
- a chave primária da nova tabela será constituída pela combinação de M com K.

Tipos de entidades

- Entidades independentes
- Entidades de agregação
- Entidades de intersecção
- Entidades dependentes ou fracas
- Entidades subordinadas

Entidades independentes e de agregação

Entidades independentes

- são, frequentemente, entidades centrais num modelo de dados;
- possuem nomes claramente distinguíveis, pelo facto de ocorrerem no mundo real;
- por norma, possuem chaves simples (e.g. código de Departamento ou código de Funcionário).
- Exemplos:
 - Funcionário (N Funcionário, Nome, ...)
 - Departamento (<u>N Departamento</u>, Designação_departamento, ...)

Entidades de agregação

- são criadas quando várias entidades diferentes possuem atributos similares distinguíveis somente pelos prefixos ou sufixos;
- normalmente tornam-se entidades independentes.
- <u>Exemplo</u>:
 - Cliente (#cliente, morada_cliente, telefone_cliente, Fax_cliente)
 - Fornecedor (<u>#fornecedor</u>, morada_fornec, telefone_fornec, Fax_fornec.)
- ⇒ Contactos (#entidade, Tipo_entidade, morada, telefone, fax)

Entidades de intersecção (1/2)

- Resultam de relacionamentos:
 - com cardinalidade N:M;
 - sem participação obrigatória em ambas as entidades.
- Por vezes, estas entidades possuem nomes óbvios pelo facto de ocorrerem no mundo real.
- Em caso contrário, utilizam-se, frequentemente, os nomes das duas entidades (e.g. Categoria_Funcionário).

Entidades de intersecção (2/2)

- Podem representar:
 - Relacionamentos correntes a entidade inclui nos seus atributos ambas as chaves primárias das entidades iniciais;
 - Relacionamentos históricos Para além dos atributos que constituem a chave primária das entidades iniciais, a entidade possui atributos de medidas temporais.
- Se a entidade de intersecção tiver uma chave primária própria, esta torna-se uma entidade independente.

Entidades dependentes ou fracas (1/2)

- Depende de outra entidade na sua existência e/ou identificação.
- <u>Exemplo</u>:

- Características de entidades dependentes ou fracas:
 - num relacionamento de dependência a participação da entidade fraca é sempre obrigatória;
 - se a entidade fraca não possui atributos que possam constituir chaves candidatas => o conjunto de atributos que permitem identificar univocamente uma ocorrência da entidade fraca, para uma dada ocorrência da entidade identificadora, é a chave parcial da entidade fraca.

Entidades dependentes ou fracas (1/2)

Entidades resultantes do exemplo:

- K
- Funcionário (N funcionário, Nome_f,)
- Dependente (<u>N funcionário</u>, <u>Nome D</u>, Parentesco,)

Regra para entidades dependentes ou fracas

- a entidade fraca terá de incluir nos seus atributos a chave estrangeira K, sendo K a chave primária da entidade forte;
- se existe dependência da identificação, a chave primária da entidade fraca é a combinação da sua chave parcial com K.

Entidade subordinada e representação de papéis (1/2)

Estas entidades são necessárias quando existem instâncias que possuem atributos específicos não associados com todos os membros de uma entidade

Entidade subordinada e representação de papéis (2/2)

Regra para instâncias com atributos diferentes ou situação de uso de papéis

- a <u>entidade fonte</u> gera uma tabela que agrupa os atributos comuns e cuja chave primária é a chave da entidade;
- os <u>atributos específicos</u> são separados em <u>entidades subordinadas</u> (papéis) e geram tabelas correspondentes;
- a <u>chave da entidade fonte terá de ser usada como atributo nas tabelas</u> correspondentes às entidades subordinadas (simultaneamente como FK e PK);
- as entidades que representam os papéis são tratadas como entidades normais, às quais se aplicam as regras já conhecidas.
- Aplicando a regra 4 e a presente regra, obtém-se:
 - Empregado (Ncontrib, Nome, Telef casa, Morada)
 - Supervisor (<u>NcontribS</u>, Telef_trab, Salário, Área)
 - Montador (<u>NcontribM</u>, Pagam_hora, #taref, NcontribS)

regra 4

Conforme já foi referido, esta representação possui limitações.

Relacionamentos superentidade e subentidade e hierarquia de especialização ou generalização

- A implementação de relacionamentos superentidade-subentidade (superclassesubclasse) pode ser representada por tabelas distintas, ligadas pelo atributo chave em comum com a superentidade.
- Usualmente, existe uma condição (<u>predicado</u>), baseada no valor de algum atributo, que permite avaliar se um objecto pertence a uma subentidade:
 - no caso de uma disjunção pode usar-se um atributo que recebe um só valor;
 - no caso de <u>sobreposição</u> pode usar-se vários atributos binários

Regra para relacionamentos Superentidade-subentidade e hierarquias E/G

- a superentidade gera uma tabela com chave primária K;
- cada subentidade gera uma tabela que contém:
 - os atributos específicos;
 - o conjunto de atributos K, que também deve ser a chave primária da tabela (=> simultaneamente como FK e PK).

Exemplo de hierarquia E/G

Considerações adicionais

O modelo relacional não proporciona suporte nativo a hierarquias de especialização ou generalização =>

- Ponderar soluções alternativas.
- Decompor em várias tabelas e aplicar a regra em causa quando se justifica:
 - existem relacionamentos específicos relevantes;
 - o número de atributos específicos e comuns são ambos significativos.
- Assegurar integridade garantindo regras adicionais.

Algumas alternativas de implementação

- Criar tabelas só para subentidades (sem criar superentidade) =>
 Se:
 - as subentidades são disjuntas e
 - a especialização é <u>total</u> (cada instância pertence sempre a uma das supentidades)
 - ⇒ criar uma **tabela para cada subentidade** (<u>sem criar uma tabela para a superentidade</u>), cada contendo os atributos comuns e os específicos.

OBS:

- no caso de sobreposição conduz a redundância dos atributos comuns;
- no caso de especialização parcial perdem-se instâncias.
- Criar apenas a tabela para superentidade (sem criar subentidades=> Se existem poucos atributos específicos nas subentidades:
 - ⇒ criar uma tabela que conterá os atributos comuns, os atributos específicos e um ou vários atributos (respectivamente, no caso de disjunção e sobreposição) para indicar a(s) subentidade(s) a que o tuplo pertence.

Algumas regras para inserções e apagamento

- Apagar uma ocorrência da superentidade obriga a apagá-la automaticamente em todas as subentidades a que a ocorrência pertence.
- Inserir uma nova ocorrência numa superentidade com especialização (obrigatória ou total) obriga a a inseri-la em pelo menos uma das subentidades (também é conveniente definir predicado).
- Inserir uma nova ocorrência numa superentidade com especialização definida por predicados obriga a inseri-la em todas as subentidades que satisfazem o predicado.
- Ao inserir uma ocorrência numa superentidade com especialização disjunta é necessário garantir que a ocorrência é apenas inserida numa das subentidades.

•

Subentidades partilhadas e malhas de especialização ou generalização

Regra para subentidades partilhadas e malhas de especialização/generalização

Aplicam-se as regras anteriores, pois todas as entidades têm de possuir a mesma chave primária.

⇒ A subentidade partilhada recebe o atributo K comum às suas superentidades.

Categorias

As superentidades de uma categoria podem ter atributos chave diferentes ou iguais

Categorias – PK distintas

Regra para categorias cujas superentidades possuem chaves primárias distintas

- criar uma chave substituta S na categoria;
- adicionar a chave substituta S (como chave estrangeira) a cada superentidade, para especificar as correspondências em valores entre a chave substituta e a chave de cada superentidade.

Categorias – PK distintas

Regra para categorias cujas superentidades possuem a mesma chave primária

A chave primária das superentidades pode ser utilizada para relacionar as entidades.

Exemplo - modelo de dados resultante

```
Chave substituta: Id_proprietário
Pessoa (N_Pessoa, ..., Id_proprietário)
Banco (N_banco, ..., Id_proprietário)
Empresa (N_empresa, ..., Id_proprietário)
Proprietário (Id proprietário, ...) categoria cujas superentidades possuem PK distintas
Veículo_registado (Id_veículo, ...)
                                     categoria cujas superentidades possuem PK
                                     semelhantes
Carro (<u>Id_veículo</u>, ...)
Camião (Id_veículo, ...)
Registo_propriedade (Id_veículo, Id_proprietário, ..., data_compra)
```