Universidade Federal de Santa Catarina Centro Tecnológico DEPTO DE INFORMÁTICA E ESTATÍSTICA

INE5403-Fundamentos de Matemática Discreta para a Computação PROF. DANIEL S. FREITAS

4 - Relações

- 4.1) Relações e Dígrafos
- 4.2) Caminhos em Relações e Dígrafos
- 4.3) Propriedades de Relações
- 4.4) Relações de Equivalência

4.5) Manipulação e Fecho de Relações

LISTA DE EXERCÍCIOS

Para os próximos 2 exercícios, sejam R e S as relações dadas de A para B. Compute:

- (a) \overline{R}
- (b) $R \cap S$
- (c) $R \cup S$
- (d) S^{-1}
- 1. (Kolman5-seção 4.7-ex.1)

$$A = B = \{1, 2, 3\}$$

$$R = \{(1,1), (1,2), (2,3), (3,1)\}$$

$$S = \{(2,1), (3,1), (3,2), (3,3)\}$$

2. (Kolman5-seção 4.7-ex.7) Sejam R e S duas relações cujos dígrafos correspondentes são mostrados abaixo. Compute: (a) \overline{R} ; (b) $R \cap S$; (c) $R \cup S$; (d) S^{-1}

3. (Kolman5-seção 4.7-ex.9) Seja $A = \{1, 2, 3\}$ e $B = \{1, 2, 3, 4\}$. Sejam R e S relações de A para Bcujas matrizes são dadas abaixo. Compute (a) \overline{S} ; (b) $R \cap S$; (c) $R \cup S$; (d) R^{-1}

$$M_R = \begin{bmatrix} 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{bmatrix} \qquad M_S = \begin{bmatrix} 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 \end{bmatrix}$$

$$M_S = \left[\begin{array}{rrrr} 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 \end{array} \right]$$

- 4. (Kolman5-seção 4.7-ex.12) Seja $A = \{1, 2, 3, 4\}$ e $B = \{1, 2, 3\}$. Dadas as matrizes M_R e M_S abaixo, das relações R e S de A para B, compute:
 - (a) $M_{R \cap S}$; (b) $M_{R \cup S}$; (c) $M_{R^{-1}}$; (d) $M_{\overline{S}}$

$$M_R = \left[egin{array}{ccc} 0 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \\ 1 & 1 & 1 \end{array}
ight] \hspace{1cm} M_S = \left[egin{array}{ccc} 1 & 0 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \end{array}
ight]$$

- 5. (Kolman5-seção 4.7-ex.22) Seja $A=\{1,2,3,4\}$ e sejam: $R=\{(1,1),(1,2),(2,3),(2,4),(3,4),(4,1),(4,2)\}$ $S=\{(3,1),(4,4),(2,3),(2,4),(1,1),(1,4)\}$
 - (a) Será que $(1,3) \in R \circ R$?
 - (b) Será que $(4,3) \in S \circ R$?
 - (c) Será que $(1,1) \in R \circ S$?
 - (d) Compute $R \circ R$.
 - (e) Compute $S \circ R$.
 - (f) Compute $R \circ S$.
 - (g) Compute $S \circ S$.
- 6. (Kolman5-seção 4.7-ex.25) Seja $A = \{1, 2, 3, 4, 5\}$ e sejam M_R e M_S matrizes das relações R e S sobre A.

Compute (a) $M_{R \circ R}$; (b) $M_{S \circ R}$; (c) $M_{R \circ S}$; (d) $M_{S \circ S}$

$$M_R = \begin{bmatrix} 1 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 & 0 \end{bmatrix} \qquad M_S = \begin{bmatrix} 0 & 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 0 \end{bmatrix}$$

Fechos:

- 7. (Kolman5-seção 4.8-ex.1) Seja $A = \{1, 2, 3\}$ e $R = \{(1, 1), (1, 2), (2, 3), (1, 3), (3, 1), (3, 2)\}$.
 - (a) Compute a matriz $M_{R^{\infty}}$, do fecho transitivo de R, usando a fórmula: $M_{R^{\infty}} = M_R \vee (M_R)^2_{\odot} \vee (M_R)^3_{\odot}$
 - (b) Liste a relação R^{∞} cuja matriz foi computada na parte (a).
- 8. (Kolman5-seção 4.8-ex.3) Seja $A=\{a_1,a_2,a_3,a_4,a_5\}$ e seja R uma relação sobre A cuja matriz é:

$$M_R = \begin{bmatrix} 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 \end{bmatrix} = W_0$$

Compute as matrizes W_1 , W_2 e W_3 que seriam geradas pelo algoritmo de Warshall neste caso.

- 9. (Kolman5-seção 4.8-ex.5) Seja $A=\mathbb{Z}^+$ e seja R a relação sobre A definida por:
 - a R b se e somente se b = a + 1. Forneça o fecho transitivo de R.

Nos próximos 2 exercícios, seja $A = \{1, 2, 3, 4\}$. Para a relação R cuja matriz é dada, encontre a matriz do fecho transitivo usando o algoritmo de Warshall.

10. (Kolman5-seção 4.8-ex.9)

$$M_R = \left[egin{array}{cccc} 1 & 0 & 0 & 1 \ 1 & 1 & 0 & 0 \ 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 1 \end{array}
ight]$$

11. (Kolman5-seção 4.8-ex.11)

$$M_R = \left[\begin{array}{cccc} 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 \end{array} \right]$$