Breast Cancer Classification Using Different Classification Models

Cancheng Ji, Jiexi Zhou, Sean Cancino

Data Description

- Data Source: https://www.kaggle.com/uciml/breast-cancer-wisconsin-data and also https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+%28Diagnostic%29
- **Description:** To predict whether the breast mass is malignant:
 - Attribute: Diagnosis (M=Malignant B=Benign)
 - Features: The <u>mean</u>, <u>standard error</u> and <u>"worst" or largest</u> of the **10 features**: radius, texture, perimeter, area, smoothness, compactness, concavity, concave points, symmetry, fractal dimension
 - So there are 30 features

Train Test Split

Used 70% training, 30% test, random seed = 202012

Training set contained 398 observations

Test set contained 171 observations

PCA

Used PCA like in midterm to choose optimal principal components. Decided to

use the first 4 components.

Classification Algorithms Used

- LDA/QDA
- Logistic Regression
- Classification Tree
- Random Forest
- Support Vector Machines
- Neural Network
 - 2 layers, 10 nodes per layer
- Clustering Analysis
 - GMM
 - Hierarchical Clustering
 - K Means

LDA

		precision	recall	f1-score	support
	0	0.926	0.990	0.957	101
	1	0.984	0.886	0.932	70
accur	acy			0.947	171
macro	avg	0.955	0.938	0.945	171
weighted	avg	0.950	0.947	0.947	171

LDA misclassification error rate: 5.263

QDA

		precision	recall	f1-score	support
	0	0.990	0.960	0.975	101
	1	0.945	0.986	0.965	70
accur	racy			0.971	171
macro	avg	0.968	0.973	0.970	171
weighted	avg	0.972	0.971	0.971	171

QDA Misclassification Error Rate: 2.92397

Logistic Regression with PCA

	Fit Statistics for SCORE Data										
Data Set	Total Frequency	Log Likelihood	Error Rate	AIC	AICC	BIC	SC	R-Square	Max-Rescaled R-Square	AUC	Brier Score
WORK.TEST	171	-15.6943	0.0292	41.38868	41.75231	57.09699	57.09699	0.677825	0.926176	0.995885	0.02703

Test result

M

В

Obs	M	В
1	59	1
2	4	107

Misclassification error rate=5/171=0.0292

Classification Tree

```
wconpoints < 0.1436
We generated a classification tree first.
Classification tree:
tree(formula = diagf ~ mradius + mtext + mper + marea + msmooth +
    mcomp + mconcavity + mconpoints + msymmetry + mfracdim +
    seradius + setext + seper + searea + sesmooth + secomp +
    seconcavity + seconpoints + sesymmetry + sefracdim + wradius +
    wtext + wper + warea + wsmooth + wcomp + wconcavity + wconpoints +
    wsymmetry + wfracdim, data = cancer, subset = ctrain)
Variables actually used in tree construction:
[1] "wconpoints" "wper"
                                                     "msymmetry" "wcomp"
                            "searea"
                                         "wtext"
                                                                              "wradius"
Number of terminal nodes: 10
Residual mean deviance: 0.08705 = 33.78 / 388
Misclassification error rate: 0.01508 = 6 / 398
                                                                                wper < 107.75
   The tree has 7 variables and 10 terminal nodes. In
                                                                                                                wradius < 15.87
   training set, its misclassification error rate is 0.01508.
                                                                                                             wtext < 23.74
```

Classification Tree

Then we try to prune the tree:

Classification Tree

Then to build the optimal classification

```
Classification tree:
snip.tree(tree = cancertree, nodes = 4L)
Variables actually used in tree construction:
[1] "wconpoints" "wper" "wtext"
                                          "wcomp"
Number of terminal nodes: 7
Residual mean deviance: 0.1549 = 60.58 / 391
Misclassification error rate: 0.01759 = 7 / 398
 By cross-validation
       optpred B
 Misclassification error rate=10/171=0.0585
```


Classification Tree with PC

```
PC1 < 0.0393041
Classification tree:
tree(formula = diagf ~ PC1 + PC2 + PC3 + PC4, data = cpc, subset = ctrain)
Variables actually used in tree construction:
[1] "PC1" "PC2" "PC3"
Number of terminal nodes: 10
Residual mean deviance: 0.1842 = 71.46 / 388
Misclassification error rate: 0.0402 = 16 / 398
The tree has 3 variables and 10 terminal nodes. In
training set, its misclassification error rate is 0.0402.
                                                                        PC2 < -0.999374
                                                                                                    PC1 < 1.0428
                                                                                PC1 < -0.35319 PC2 < 0.65754
                                                                PC1 < -2.09224
                                                           PC3 < 1.547583 < -0.897452M
                                                                                        M PC3 < -1.55821
```

Classification Tree with PC

To prune the tree:

```
$size
[1] 10
$dev
              38
                  43 152
$k
[1] -Inf
                  4
                           116
$method
[1] "misclass"
attr(,"class")
[1] "prune"
                      "tree.sequence"
```


Classification Tree with PC

```
the optimal classification tree:
                                                                 PC1 < 0.0393041
Classification tree:
snip.tree(tree = cpctree, nodes = c(5L, 8L, 9L, 12L))
Variables actually used in tree construction:
[1] "PC1" "PC2"
Number of terminal nodes: 6
Residual mean deviance: 0.2765 = 108.4 / 392
Misclassification error rate: 0.0402 = 16 / 398
  By cross-validation
      optcpcpred
                                                      PC2 < -0.999374
                                                                              PC1 < 1.0428
  Misclassification error rate=10/171=0.0585
                                                 PC1 < -2.09224
                                                                        PC2 < 0.65754
```

Random Forest

Checking the importance of variables:

	В	М	MeanDecreaseAccuracy	MeanDecreaseGini
mradius	4.1355075	2.2885803	4.9915917	0.6213350
mtext	12.0945992	10.7776297	15.3695633	4.0798643
mper	1.8746028	0.9505576	2.2837686	0.2265537
marea	6.4344522	2.4870955	7.1683007	1.2086196
msmooth	-1.0331482	4.7513378	4.4159905	0.5929447
mcomp	1.8150299	2.6043972	2.9855548	0.3085157
mconcavity	3.8979339	6.5210464	7.9640690	0.8707902
mconpoints	6.2580943	11.0548703	12.9545064	24.5591507
msymmetry	-0.3215612	1.7953564	1.2535504	0.4937772
mfracdim	3.3002212	-0.4531178	3.1240213	0.2840512
seradius	8.1702962	5.3802664	9.9747648	0.8652373
setext	-1.1722107	3.0180082	1.3435294	0.4728137
seper	3.8658839	5.1341261	6.3195097	0.6251178
searea	17.1627514	7.3105075	19.2397592	3.6250614
sesmooth	-0.3060789	-0.6240598	-0.7174837	0.2545378
secomp	1.4416876	1.1777390	2.1529881	0.3217019
seconcavity	1.3787664	0.8614078	1.4173912	0.6715783
seconpoints		1.7116019	1.7818250	0.4947539
sesymmetry	3.5134045	-1.3447555	2.6005789	0.6855989
sefracdim	4.5623844	2.6019841	5.2208962	1.1686648
wradius	14.4705296	8.6943097	16.4309906	23.0244114
wtext	14.7641825	14.0783897	19.2166328	4.9489065
wper	13.9074861	12.7657208	19.3957927	37.5200199
warea	14.0112518	10.5762520	17.1804782	15.9394499
wsmooth	7.1201652	5.4901922	8.4303617	1.6841613
wcomp	3.1702054	4.0678143	5.3116279	0.8065864
wconcavity	-1.3797768	8.5574792	8.7165392	1.3473307
wconpoints	27.1649101	16.1586136	31.6135133	58.0583165
wsymmetry	2.8268418	5.2388834	4.4381666	1.0381708
wfracdim	2.0143647	2.0017422	2.8446669	0.5408730

Random Forest

The final model

```
Call:
 randomForest(formula = diagf ~ mradius + mtext + mper + ma
mfracdim +
                seradius + setext + seper + searea + sesmo
dim + wradius +
                    wtext + wper + warea + wsmooth + wcomp
er, mtry = 9, ntree = 30, importance = TRUE, subset =
              Type of random forest: classification
                    Number of trees: 30
No. of variables tried at each split: 9
       OOB estimate of error rate: 5.53%
Confusion matrix:
       M class.error
      10 0.04065041
   12 140
         0.07894737
```

It has 30 trees and 9 variables tried at each split. And for the test group,

Misclassification error rate=5/171=0.0292

linear kernel

SVM classification plot

Parameter tuning of 'svm':

- sampling method: 10-fold cross validation

```
- best parameters:
cost gamma
10 0.5
```

- best performance: 0.0351817

```
- Detailed performance results:
                    error dispersion
    cost gamma
           0.5 0.04047619 0.02637903
           0.5 0.03872180 0.02329052
   1e+01
           0.5 0.03518170 0.02196662
   1e+02
           0.5 0.03518170 0.02196662
   1e+03
           0.5 0.03518170 0.02196662
           1.0 0.04047619 0.02637903
           1.0 0.03872180 0.02329052
   1e+00
           1.0 0.03518170 0.02196662
   1e+01
  1e+02
           1.0 0.03518170 0.02196662
10 1e+03
           1.0 0.03518170 0.02196662
11 1e-01
           2.0 0.04047619 0.02637903
12 1e+00
           2.0 0.03872180 0.02329052
           2.0 0.03518170 0.02196662
13 1e+01
14 1e+02
           2.0 0.03518170 0.02196662
15 1e+03
           2.0 0.03518170 0.02196662
16 1e-01
           3.0 0.04047619 0.02637903
17 1e+00
           3.0 0.03872180 0.02329052
18 1e+01
           3.0 0.03518170 0.02196662
19 1e+02
           3.0 0.03518170 0.02196662
20 1e+03
           3.0 0.03518170 0.02196662
21 1e-01
           4.0 0.04047619 0.02637903
22 1e+00
           4.0 0.03872180 0.02329052
23 1e+01
           4.0 0.03518170 0.02196662
24 1e+02
           4.0 0.03518170 0.02196662
25 1e+03
           4.0 0.03518170 0.02196662
```

linear kernel best model

Levels:

Number of Classes: 2

ВМ

Misclassification error rate=5/171=0.0292

SVM classification plot

radial kernel

Parameter tuning of 'svm':
- sampling method: 10-fold cross validation

```
best parameters:cost gamma1 0.5best performance: 0.05097118
```

```
- Detailed performance results:
                    error dispersion
    cost gamma
1 1e-01
           0.5 0.05623434 0.02957767
           0.5 0.05097118 0.03354977
  1e+00
  1e+01
           0.5 0.06328321 0.03986131
  1e+02
           0.5 0.09138471 0.04662673
  1e+03
           0.5 0.09307644 0.04045505
  1e-01
           1.0 0.07026942 0.04747135
  1e+00
           1.0 0.05447995 0.03032595
  1e+01
          1.0 0.07559524 0.04144717
9 1e+02
           1.0 0.09135338 0.03764245
10 1e+03
           1.0 0.09132206 0.03761233
11 1e-01
           2.0 0.23543233 0.08259742
12 1e+00
           2.0 0.06500627 0.03791151
13 1e+01
           2.0 0.08436717 0.03682023
14 1e+02
           2.0 0.08959900 0.03640202
15 1e+03
           2.0 0.08959900 0.03640202
16 1e-01
           3.0 0.36895363 0.06450119
17 1e+00
           3.0 0.07033208 0.03212957
18 1e+01
           3.0 0.08612155 0.03831415
19 1e+02
           3.0 0.09138471 0.03678705
20 1e+03
           3.0 0.09138471 0.03678705
21 1e-01
           4.0 0.37252506 0.06139258
22 1e+00
           4.0 0.08085840 0.03433829
23 1e+01
           4.0 0.09138471 0.03388356
24 1e+02
           4.0 0.09313910 0.03607462
25 1e+03
           4.0 0.09313910 0.03607462
```

radial kernel best model

Number of Classes: 2

Levels: B M Misclassification error rate=3/171=0.0175

Neural Network

		precision	recall	f1-score	support
	0	1.000	0.980	0.990	101
	1	0.972	1.000	0.986	70
accur	racy			0.988	171
macro	avg	0.986	0.990	0.988	171
weighted	avg	0.989	0.988	0.988	171

Neural Network Misclassification Error Rate: 1.169

Gaussian Mixture Model

	precision	recall	f1-score	support
0	0.945	0.851	0.896	101
1	0.812	0.929	0.867	70
accuracy			0.883	171
macro avg	0.879	0.890	0.881	171
weighted avg	0.891	0.883	0.884	171

GMM misclassification error rate: 11.7

Gaussian Mixture Model

Chose two components because AIC and BIC remain relatively the same after two components.

Higher misclassification error rate than other models because pdfs for two gaussians overlap.

Classification Error Rate Comparison

	Models	Misclassification	Error Rate
0	LDA		5.263
1	QDA		2.920
2	LR		2.920
3	SVM Lin		2.920
4	SVM Rad		1.750
5	NN		1.169
6	Class Tree		5.850
7	GMM		11.700

Clustering Analysis

Cancer data

Hierarchical Method

The optimal number of clusters is 2

Compare with the original data

hiclpred B M 1 357 186 2 0 26

The size of the 2 clusters are 543 and 26

Clustering Analysis

K-Means Method

SS_total=8,039.543

Compare with the original data:

CLUSPLOT(pcscale)

Q&A