108703017 資科三 邱彥翔

即時光線追蹤法的實作與效能分析-以UE4和UE5實作為例

指導教授:紀明德

即時光線追蹤法的實作與效能分析-以 UE4和 UE5 實作為例

•遊戲引擎?

可編輯電腦遊戲系統的工具,用來幫助遊戲開發者容易和快速的開發遊戲

• 光線追蹤?

計算機圖學中的特殊彩現演算法,該演算法本質為沿著 光線路徑去追蹤光源,進而解決光柵化難以解決之全局光照問 題,使呈現之畫面逼近真實世界的光照效果

Unreal Engine 5(UE5)

UE5 的關鍵新技術: Nanite & Lumen

• Nanite (虛擬化微多邊形幾何物件系統):即時處理所有的資料串流和縮放,無需擔心面數對記憶體的限制

• Lumen (動態全局光照技術):即時使場景裡的光照與物件反應、即使的間接照明並且無需烘焙光照貼圖

即時光追

• UE4 的即時光追需先為靜態場景烘焙光照貼圖,使反射及陰影更加柔和(Soft Shadow),接著利用光柵化生成動態直接光照,再使用 SSGI添加動態間接光照

• UE5 的 Lumen 不再需要預先烘焙貼圖,使開發效率大幅提升

UE4雖可即時達成動態光照,但為龐大的靜態場景預 烘焙靜態光照時往往需花費數小時;UE5則將靜動態 光照皆推向即時化

	靜態光照	動態光照	Lumen
Global Illumination	有	沒有	有
性能開銷	低	高	中
Shadow	Soft(Real)	Hard	Soft
硬體(GPU)需求	低	高	中
彩現時間	長	即時	即時
動態物體的移動光源	無	有	有
消耗內存	高	無	無

Lumen

UE4 Ray Traced Rendering

UE5 Lumen Rendering

Lumen

基於SDF(Signed Distance Field)實現的軟體即時光追

同時支援硬體光追

第一部分: UE4 vs. UE5

UE5的效能優於UE4,但其彩現表現仍有待評估與測試

• 使用多個材質、多組場景同時測試其效能與彩現效果

·知悉Lumen技術不足待改進之處,以利日後使用該技術開發遊戲與動畫

研究方法與步驟

- 1. 查閱 Unreal Engine 開發資源 官方文檔或網路資源
- 蒐集各種材質素材
 測試靜動態與碰撞時的高光、陰影、邊緣鋸齒、動態模糊
- 3. 建立場景測試基準 多套融合多組物件的模擬場景,並測試效能
- 4. 整理與比較 統整資料,列出 Lumen 呈現效果與效能待改進之處

第二部分:Lumen 半透明

使用UE5 嘗試開發一個 Plugin,以此改善 Lumen 對於半透明物體全局光照的低品質彩現

UE4 Hardware Raytracing

Real World

UE5 Lumen Raytracing

研究方法與步驟

- 1. 研究即時半透明體光照方法 近期學界論文及書籍、業界常用手法
- 2. 研究 Unreal Engine Plugin 熟悉 UE5 的Plugin 框架
- 3. 設計 Plugin 並應用於場景 呈現簡單易懂的介面,使半透明材質能有更好的光照表現
- 4. UE5 的 Marketplace Plugins 研究成果發表至UE5 中的Plugin 商店

Planar Reflection (PRN)

Sphere Reflection Capture(SRC)

加入 SRC, 增強反射的細節與成像

Dither Fake Translucency

有效降低性能開銷,但成像效果差

Fake Translucency by Blueprint

Blueprint

