- 一 选择题 (共75分)
 - 1. (本题 3分)(4181) (D)
 - 2. (本题 3分)(4182)(D)
 - 3. (本题 3分)(4183) (A)
 - 4. (本题 3分)(4181) (D)
 - 5. (本题 3分)(4182) (D)
 - 6. **(**本题 3分**)(4183)** (A)
 - 7. (本题 3分)(4185) (D)
 - 8. (本题 3分)(4244) (B)
 - 9. (本题 3分)(4382) (D)
 - 10. (本题 3分)(4383) (D)
 - 11. (本题 3分)(4384) (D)
 - 12. (本题 3分)(4385) (C)
 - 13. (本题 3分)(4386) (B)
 - 14. (本题 3分)(4387) (C)
 - 15. (本题 3分)(4503) (D)
 - 16. (本题 3分)(4607) (D)
 - 17. (本题 3分)(4736) (D)
 - 18. (本题 3分)(4737) (D)

19. (本题 3 分)(4739) (B)	
20. (本题 3分)(5232) (C)	
21. (本题 3分)(5363) (C)	
22. (本题 3分)(5364) (E)	
23. (本题 3 分) (5365) (D)	
24. (本题 3分)(5367) (D)	
25. (本题 3分)(5617) (B)	
填空题 (共76分)	
26. (本题 3分)(0475)	
3.82×10^{3}	3分
27. (本题 5分)(4179)	
hc / λ	1分
h/λ	2分
$h/(c\lambda)$	2 分
28. (本题 4分)(4180)	
2.5	2分
4.0×10^{14}	2分
29. (本题 5分)(4179)	
hc / λ	1分
h/λ	2分
$h/(c\lambda)$	2 分
30. (本题 4分)(4180)	
2.5	2分
4.0×10^{14}	2分
31. (本题 4分)(4184)	
1.45 V	2分
$7.14\times10^5~\mathrm{m\cdot s^{-1}}$	2分
32. (本题 4分)(4187)	
π	2分
0	2分

33. (本题 3 分)(4250) 2.21×10 ⁻³²	3 分
34. (本题 3 分)(4388) 0.99	3分
35. (本题 4 分)(4389) 5×10 ¹⁴	2 分
2	2分
36. (本题 4分)(4390) A/h	2 分
$(h/e)(v_1-v_0)$	2分
37. (本题 4分)(4391)	
2.5	2分
4.0×10^{14}	2 分
38. (本题 3分)(4546)	
1.5×10^{19}	3分
39. (本题 3分)(4608)	
1.5	3 分
40. (本题 4分)(4609)	2 ()
$6.63 \times 10^{-26} \text{ J}$ $2.21 \times 10^{-34} \text{ kg} \cdot \text{m/s}$	2分 2分
	2.7)
41. (本题 3 分)(4611) 不变	1分
变长	1分
波长变长	1分
42. (本题 3分)(4612)	
$\frac{hv}{dt} = \frac{(hv'\cos\phi)}{t} + p\cos\theta$	3分
C C	
43. (本题 3 分)(4740) 0.586	3分
	3 /1
44. (本题 4 分)(4741) >	2分
<	2 分
45. (本题 3分)(4742)	
h	3 分
W 2 (44 44)	, ·

46. (本题 3分)(5618)

$$hc\frac{\lambda'-\lambda}{\lambda\lambda'}$$
 3 分

参考解:

根据能量守恒定律有

$$m_e c^2 + h v = mc^2 + h v'$$

则

$$E_K = mc^2 - m_e c^2 = h v - h v' = \frac{hc}{\lambda} - \frac{hc}{\lambda'} = \frac{hc(\lambda' - \lambda)}{\lambda \lambda'}$$

三 计算题 (共114分)

47. (本题10分)(0640)

解: (1) $\varepsilon = h\nu$, $p = h/\lambda = h\nu/c$,

$$m = h v / c^2$$
.

3分

(2) 光对平面镜的光压

如图示,每一个光子入射到平面镜

MN上,并以i角反射,其动量改变量为:

 $m\bar{c}' - m\bar{c} = 2mc\cos i\hat{n} = hv/c \cdot 2\cos i\hat{n}$, $2 \, \hat{\beta}$

平面镜上面积为S的截面上,在单位时间内受到碰撞的光子数为

$$N = c \cos i \cdot Sn$$
 (此处 n 为光子数密度)

2分

所以光压

$$P = N \mid (m\vec{c}' - m\vec{c}) \mid /S = (2mc\cos i \cdot c\cos i \cdot Sn) / S$$

2分

$$=2mc^2n\cos^2i=2hvn\cos^2i$$

48. (本题10分)(0640)

解: (1) $\varepsilon = h\nu$, $p = h/\lambda = h\nu/c$,

$$m = h v / c^2$$
.

3分

(2) 光对平面镜的光压

如图示,每一个光子入射到平面镜

MN上,并以 i 角反射,其动量改变量为:

平面镜上面积为S的截面上,在单位时间内受到碰撞的光子数为

$$N = c \cos i \cdot Sn$$
 (此处 n 为光子数密度)

2分

所以光压
$$P = N | (m\vec{c}' - m\vec{c})| / S = (2mc \cos i \cdot c \cos i \cdot Sn) / S$$

2分

$$=2mc^2n\cos^2 i = 2hvn\cos^2 i$$
 1 \(\frac{1}{2}\)

49. (本题10分)(4186)

$$e|U_a| = h v - A$$

得

$$|U_a| = h v / e - A / e$$

3分

$$d|U_a|/d\nu = h/e \qquad (恒量)$$

由此可知,对不同金属,曲线的斜率相同.

3分

(2)
$$h = e \operatorname{tg} \theta = e \frac{2.0 - 0}{(10.0 - 5.0) \times 10^{14}}$$

$$=6.4\times10^{-34}\,\mathrm{J\cdot s}$$

2分

50. (本题 8分)(4246)

解: (1) 由
$$eBv = mv^2/R$$
 得 $v = (ReB)/m$,

代入
$$hv = \frac{1}{2}mv^2 + A$$

可得
$$A = \frac{hc}{\lambda} - \frac{1}{2} \cdot \frac{mR^2 e^2 B^2}{m^2} = \frac{hc}{\lambda} - \frac{R^2 e^2 B^2}{2m}$$
 3 分

$$e|U_a| = \frac{1}{2}mv^2$$
 2 \mathcal{L}

$$|U_a| = \frac{mv^2}{2e} = \frac{R^2 e B^2}{2m}$$
 1 \implies

51. (本题 5分)(4392)

解: 由爱因斯坦方程
$$hv = \frac{1}{2}mv^2 + A$$
 和 $\frac{1}{2}mv^2 = e|U_a|$

得
$$e|U_a| = (hc/\lambda) - A$$

所以
$$e(|U_{a2}|-|U_{a1}|) = hc(\frac{1}{\lambda_2} - \frac{1}{\lambda_1})$$
 3分

遏止电压改变
$$\Delta |U_a| = (hc/e)(\frac{1}{\lambda_2} - \frac{1}{\lambda_1}) = 0.345 \text{ V}$$
 2分

数值加大.

52. (本题 5分)(4393)

解:设能使该金属产生光电效应的单色光最大波长为心.

可得
$$(hc/\lambda_0) - A = 0$$

$$\lambda_0 = hc/A$$

又按题意:
$$(hc/\lambda) - A = E_{\kappa}$$

$$A = (hc/\lambda) - E_K$$

得
$$\lambda_0 = \frac{hc}{(hc/\lambda) - E_K} = \frac{hc\lambda}{hc - E_K\lambda} = 612 \text{ nm}$$
 3分

53. (本题 5分)(4502)

解:设光源每秒钟发射的光子数为n,每个光子的能量为hv

则由
$$P = nhv = nhc / \lambda$$
 得: $n = P\lambda/(hc)$

令每秒钟落在垂直于光线的单位面积的光子数为 n_0 ,则

$$n_0 = n/S = n/(4\pi d^2) = P\lambda/(4\pi d^2 hc)$$
 3 $\%$

2分

光子的质量
$$m = hv/c^2 = hc/(c^2\lambda) = h/(c\lambda) = 3.33 \times 10^{-36} \text{ kg}$$
 2分

54. (本题 5分)(4502)

解:设光源每秒钟发射的光子数为n,每个光子的能量为hv

则由
$$P = nhv = nhc/\lambda$$
 得: $n = P\lambda/(hc)$

令每秒钟落在垂直于光线的单位面积的光子数为 n_0 ,则

$$n_0 = n/S = n/(4\pi d^2) = P\lambda/(4\pi d^2 hc)$$
 3 \(\frac{1}{2}\)

光子的质量
$$m = hv/c^2 = hc/(c^2\lambda) = h/(c\lambda) = 3.33 \times 10^{-36} \text{ kg}$$
 2 分

55. (本题 5分)(4504)

解:设散射前电子为静止自由电子,则反冲电子的动能 E_{K} =入射光子与散射光子能量之差= ε_{0} - ε

入射 X 射线光子的能量
$$\varepsilon_0 = hv_0 = hc/\lambda_0$$
 $\lambda_0 = hc/\varepsilon_0$ 2 分

散射光子的能量 $\varepsilon = hc/\lambda = hc/(1.20\lambda_0) = (1/1.2)\varepsilon_0$

反冲电子的动能
$$E_K = \varepsilon_0 - \varepsilon = (1-1/1.2)\varepsilon_0 = 0.10 \text{ MeV}$$
 3分

56. (本题 8分)(4505)

解: (1) 康普顿散射光子波长改变:

$$\Delta \lambda = (hm_e c)(1 - \cos \phi) = 0.024 \times 10^{-10} \text{ m}$$

 $\lambda = \lambda_0 + \Delta \lambda = 1.024 \times 10^{-10} \text{ m}$ 4 分

(2) 设反冲电子获得动能 $E_{\scriptscriptstyle K}=(m-m_e)c^2$,根据能量守恒:

$$hv_0 = hv + (m - m_e)c^2 = hv + E_K$$

 $||D| ||hc/\lambda_0| = [hc/(\lambda_0 + \Delta \lambda)] + E_K$

故
$$E_K = hc\Delta\lambda/[\lambda_0(\lambda_0 + \Delta\lambda)] = 4.66 \times 10^{-17} \text{ J} = 291 \text{ eV}$$
 4分

57. (本题 5分)(4610)

解: $hv = A + \frac{1}{2}m_e v^2$ ① 1分

$$evB = m_e v^2 / R$$
 2 1 \Re

$$A = hc / \lambda_0$$
 3 1 \mathcal{H}

$$\lambda = c/v \qquad . \tag{4}$$

①, ②, ③, ④式联立可求得

$$\lambda = \frac{\lambda_0}{1 + \lambda_0 (eBR)^2 / (2m_e hc)} = 0.137 \text{ Å}$$
 2 \(\frac{\(\frac{1}{2}\)}{2}\)

58. (本题 5分)(4743)

解: (1) 由 $A = h \nu_0 = hc/\lambda_0$

得
$$\lambda_0 = \frac{hc}{A} = 5.65 \times 10^{-7} \text{ m} = 565 \text{ nm}$$
 2 分

(2)
$$\stackrel{1}{\boxplus}$$
 $\frac{1}{2}mv^2 = e|U_a|$, $hv = \frac{hc}{\lambda} = e|U_a| + A$

得
$$\lambda = \frac{hc}{e|U_n| + A} = 1.73 \times 10^{-7} \text{ m} = 173 \text{ nm}$$
 3 分

59. (本题 5分)(4744)

解: 当铜球充电达到正电势U时,有

$$hv = eU + A + \frac{1}{2}mv^2$$
 2 \(\frac{\partial}{2}\)

当
$$h\nu \leq eU + A$$
 时,铜球不再放出电子, 1分

即
$$eU \geqslant h \ v - A = \frac{hc}{\lambda} - A = 2.12 \text{ eV}$$

故 $U \ge 2.12 \text{ V}$ 时,铜球不再放出电子. 2 分

60. (本题 5分)(4745)

解:入射光子的能量为
$$\varepsilon_0 = \frac{hc}{\lambda_0}$$
 1分

散射光子的能量为
$$\varepsilon = \frac{hc}{\lambda}$$
 1 分

反冲电子的动能为
$$E_{K} = \varepsilon_{0} - \varepsilon = hc(\frac{1}{\lambda_{0}} - \frac{1}{\lambda}) = 1.68 \times 10^{-16}$$
 3分

61. (本题10分)(5233)

解: 令 \bar{p} 、 ν 和 \bar{p}' 、 ν' 分别为入射与散射光子的动量和频率, $m\bar{v}$ 为反冲电子的动 量(如图). 因散射线与入射线垂直,散射角 $\phi=\pi/2$,因此可求得散射 X 射线的波 长

$$\lambda' = \lambda + \frac{h}{m_{\circ}c} = 0.724 \text{ Å}$$
 2 %

(1) 根据能量守恒定律

Ħ.

则

$$m_e c^2 + h v = h v' + mc^2$$

$$E_K = mc^2 - m_e c^2$$

 $E_K = h \nu - h \nu' = hc(\lambda' - \lambda)/(\lambda'\lambda) = 9.42 \times 10^{-17} \text{ J}$ 得

4分

(2) 根据动量守恒定律 $\bar{p} = \bar{p}' + m\bar{v}$

$$mv = \sqrt{p^2 + {p'}^2} = \sqrt{(h/\lambda)^2 + (h/\lambda'')^2}$$

$$\cos \theta = \frac{p}{mv} = \frac{h/\lambda}{\sqrt{(h/\lambda)^2 + (h/\lambda')^2}} = \frac{1}{\sqrt{1 + (\lambda/\lambda')^2}}$$

$$\theta = \cos^{-1} \frac{1}{\sqrt{1 + (\lambda/\lambda')^2}} = 44.0^{\circ}$$
4 \(\frac{\frac{1}{\sqrt{1}}}{\sqrt{1}} = 44.0^{\circ}

62. (本题 5分)(5366)

解:根据能量守恒,有
$$hv_0 + m_e c^2 = hv + mc^2$$
 2分

这里
$$m = m_e \frac{1}{\sqrt{1 - (v/c)^2}}$$
 1分

$$h v = h v_0 + m_e c^2 \left[1 - \frac{1}{\sqrt{1 - (v/c)^2}} \right]$$

则
$$\frac{hc}{\lambda} = \frac{hc}{\lambda_0} + m_e c^2 \left[1 - \frac{1}{\sqrt{1 - (v/c)^2}} \right]$$

解得:
$$\lambda = \frac{\lambda_0}{1 + \frac{m_e c \lambda_0}{h} \left[1 - \frac{1}{\sqrt{1 - (v/c)^2}}\right]} = 0.00434 \text{ nm}$$
 2 分

63. (本题 8分)(5380)

解: (1) 当电子匀速直线地穿过互相垂直的电场和磁场区域时,电子所受静电力

与洛仑兹力相等,即
$$eE = evB$$
 2分

$$v = E/B = 10^6 \text{ m/s}$$
 1 $\%$

(2) 根据爱因斯坦光电理论,则有

$$hc/\lambda = hc/\lambda_0 + \frac{1}{2}m_e v^2$$
 2 \(\frac{\psi}{2}\)

$$\lambda = \frac{\lambda_0}{1 + \frac{1}{2} \left(\frac{m_e v^2 \lambda_0}{hc} \right)}$$
 2 β

$$=1.63 \times 10^{-7} \text{ m} = 163 \text{ nm}$$
 1 $\%$

四 理论推导与证明题 (共49分)

64. (本题 5分)(0486)

证:碰撞前后的光子的能量分别为

$$E = h v_0 = hc / \lambda_0$$
 1 \mathcal{A}

$$E' = hv = hc/\lambda$$

据能量守恒, 反冲电子的动能应当为

$$K = E - E'$$
 2分

则

$$\frac{K}{E} = \frac{E - E'}{E} = \frac{\lambda - \lambda_0}{\lambda}$$
 1 \mathcal{D}

65. (本题12分)(0504)

证:将动量守恒关系式写成分量形式:

$$mv \sin \theta - (h/\lambda) \sin \phi = 0$$

$$mv\cos\theta + (h/\lambda)\cos\phi = h/\lambda_0$$

2分

则

$$tg \theta = \frac{\sin \phi}{(\lambda/\lambda_0) - \cos \phi}$$

上式分子:
$$\sin \phi = 2\sin(\frac{\phi}{2})\cos(\frac{\phi}{2})$$

上式分母:
$$\frac{\lambda}{\lambda_0} - \cos \phi = \frac{\lambda_0 + (\lambda - \lambda_0)}{\lambda_0} - \cos \phi = (1 - \cos \phi) + \frac{\lambda - \lambda_0}{\lambda_0}$$

由康普顿效应的结论已知:

$$\lambda - \lambda_0 = \frac{2h}{m_0 c} \sin^2(\frac{\phi}{2})$$
 3 \(\frac{\phi}{2}\)

$$\frac{\lambda}{\lambda_0} - \cos \phi = 2\sin^2(\frac{\phi}{2}) + \frac{h}{m_0 c \lambda_0} \cdot 2\sin^2(\frac{\phi}{2}) = 2\sin^2(\frac{\phi}{2})[1 + \frac{h}{m_0 c \lambda_0}]$$

$$\therefore \qquad \qquad \operatorname{tg} \theta = \left[\left(1 + \frac{h}{m_0 c \lambda_0} \right) \operatorname{tg} \left(\frac{\phi}{2} \right) \right]^{-1}$$

66. (本题 5分)(0486)

证:碰撞前后的光子的能量分别为

$$E = h v_0 = hc / \lambda_0$$
 1 \mathcal{A}

$$E' = hv = hc/\lambda$$

据能量守恒,反冲电子的动能应当为

$$K = E - E'$$
 2分

则

$$\frac{K}{E} = \frac{E - E'}{E} = \frac{\lambda - \lambda_0}{\lambda}$$
 1 \mathcal{D}

67. (本题12分)(0504)

证:将动量守恒关系式写成分量形式:

$$mv \sin \theta - (h/\lambda) \sin \phi = 0$$

$$mv \cos \theta + (h/\lambda) \cos \phi = h/\lambda_0$$

则

$$tg \theta = \frac{\sin \phi}{(\lambda/\lambda_0) - \cos \phi}$$

上式分子:

$$\sin \phi = 2\sin(\frac{\phi}{2})\cos(\frac{\phi}{2})$$

上式分母:
$$\frac{\lambda}{\lambda_0} - \cos \phi = \frac{\lambda_0 + (\lambda - \lambda_0)}{\lambda_0} - \cos \phi = (1 - \cos \phi) + \frac{\lambda - \lambda_0}{\lambda_0}$$

2分

由康普顿效应的结论已知:
$$\lambda - \lambda_0 = \frac{2h}{m_0 c} \sin^2(\frac{\phi}{2})$$

$$\frac{\lambda}{\lambda_0} - \cos\phi = 2\sin^2(\frac{\phi}{2}) + \frac{h}{m_0c\lambda_0} \cdot 2\sin^2(\frac{\phi}{2}) = 2\sin^2(\frac{\phi}{2})[1 + \frac{h}{m_0c\lambda_0}]$$

$$\mathbf{tg}\,\theta = \left[\left(1 + \frac{h}{m_0 c \lambda_0} \right) \mathbf{tg}(\frac{\phi}{2}) \right]^{-1}$$
 1 \mathcal{L}

68. (本题 5分)(4394)

证:由爱因斯坦方程
$$\frac{1}{2}mv^2 = hv - A$$

及逸出功

$$A = h v_0$$

2分

3分

得

$$hv - hv_0 = \frac{1}{2}mv^2$$

$$hv - hv_0 = \frac{1}{2}mv^2$$
 $h = \frac{\frac{1}{2}mv^2}{v - v_0} = \frac{E_K}{v - v_0}$

因为 $v = v_0$ 时 $E_K = 0$, 由图可知:

入射光频率为1时

$$\frac{E_K}{v - v_0} = \overline{RS} / (\overline{QS})$$

即

$$h = \overline{RS} / (\overline{QS})$$

69. (本题10分)(4443)

证: 散射图中 \bar{n}_0 和 \bar{n} 分别代表碰撞前后光子运动方向的单位矢量,设碰撞后电子沿 θ 角方向飞出,它的能量和动量分别变为 mc^2 和 $m\bar{v}$. 因为光子与电子碰撞过程服从能量守恒定律和动量守恒定律,有

$$hv_0 + m_e c^2 = hv + mc^2$$

$$m\vec{v} = (hv_0/c)\vec{n}_0 - (hv/c)\vec{n}$$

由图可看出,②式也可写成:

$$(m v)^2 = (hv_0/c)^2 + (hv/c)^2 - 2(hv_0/c)(hv/c)\cos\phi$$

即:

$$m^2 v^2 c^2 = h^2 v_0^2 + h^2 v^2 - 2h^2 v_0 v \cos \phi$$
 3

①式也可写成:

$$mc^2 = h(v_0 - v) + m_e c^2$$
 (4)

将④式平方减③式得:

$$m^2c^4(1-v^2/c^2) = m_a^2c^4 - 2h^2v_0v(1-\cos\phi) + 2m_ac^2h(v_0-v)$$

根据相对论,上式中的 $m^2(1-v^2/c^2) = m_e^2$

所以上式可改写为:

$$m_e^2 c^4 = m_e^2 c^4 - 2h^2 v_0 v (1 - \cos \phi) + 2m_e c^2 h (v_0 - v)$$

由此可求得:

$$1 - \cos \phi = \frac{m_e c^2 (v_0 - v)}{h v_0 v}$$
 3 \(\frac{\gamma}{v}\)

$$\sin^2 \frac{\phi}{2} = \frac{m_e c^2 (v_0 - v)}{2h v_0 v}$$
 1 \(\frac{\psi}{2}\)

五 回答问题 (共25分)

70. (本题 5分)(4395)

答:不能产生光电效应. 1分

因为: 铝金属的光电效应红限波长 $\lambda_0 = hc/A$,而 $A = 4.2 \text{ eV} = 6.72 \times 10^{-19} \text{ J}$

$$\lambda_0 = 296 \text{ nm}$$
 2分

而可见光的波长范围为 $400 \text{ nm} > \lambda_0$. 2 分

71. (本题 5分)(4396)

已知
$$U_0 = 8 \text{ V}$$
 所以铂的逸出功 $A = eU_0 = 8 \text{ eV}$ 2分

而照射光光子的能量 $\varepsilon = hv = hc/\lambda = 4.14 \text{ eV}$

根据爱因斯坦方程
$$\varepsilon = hv = \frac{1}{2}mv^2 + A$$

即 $\varepsilon \ge A$ 才可能产生光电效应,而现在 $\varepsilon < A$,所以不能产生光电效应. 2 分

72. (本题 5分)(4398)

答: 在康普顿效应中观察到波长最大的偏移值为

$$\Delta \lambda = 2h/(m_e c) = 0.0485 \text{ Å}$$
 3 \(\frac{\psi}{2}\)

红外线波长的数量级大约为 10⁵ Å, 比Δλ大很多, 相对偏移率是如此之小, 在实验中是难以观察出来的, 所以不宜用红外线来观察康普顿效应. 2 分

73. (本题10分)(4402)

答:处于静止状态的自由电子不能吸收光子,并把全部能量用来增加自己的动能,因为假若原来静止的自由电子与光子碰撞后吸收光子,并以速度 v 运动,则根

据能量守恒定律有:
$$hv + m_0 c^2 = \frac{m_0}{\sqrt{1 - (v/c)^2}} c^2$$
 ①

由①式解得电子吸收光子后的运动速度为

$$v = \frac{c\sqrt{h^2v^2 + 2hvm_0c^2}}{hv + m_0c^2}$$
 3 \(\frac{2}{hv}\)

又根据动量守恒定律有
$$\frac{hv}{c} = \frac{m_0 v}{\sqrt{1 - v^2/c^2}}$$
 ②

由②式解得电子吸收光子后的运动速度为

$$v = \frac{h vc}{\sqrt{h^2 v^2 - m_0^2 c^4}}$$
 3 \(\frac{\frac{1}{2}}{2}\)

显然,由①式和②式决定的速度不相等,这说明自由电子吸收光子的过程不能同时遵守能量守恒和动量守恒定律.因而这一过程是不可能发生的. 4分