BHAVESH SHRIMALI

NetID: bshrima2

CEE 570: Finite Element Method

HW #4 Date: 03/06/2016

Problem 2:

(a)

Results:

Element and Nodal Nomenclature considered for the problem

Deformed Configuration

Displacement Values:

Node #	Displacement in x (* 10 ⁻⁴)	Displacement in y (* 10 ⁻⁴)
1	0	0
2	0	-0.0568
3	0	-0.1889
4	0	-0.4132
5*	0.2559	-0.4013
6	0.1718	-0.1979
7	0.09	-0.0682
8	0	-0.035

^{*}The displacement of the top right node is highlighted.

2 (b):

Element and Nodal Nomenclature considered for the problem

Results:

Node #	Displacement in x (* 10 ⁻⁴)	Displacement in y (* 10 ⁻⁴)
1	0	0
2	0	-0.0195
3	0	-0.0666
4	0	-0.1442
5	0	-0.2525
6	0	-0.3916
7	0	-0.5678
8	0.193	-0.5615

9	0.1577	-0.3957
10	0.1251	-0.2569
11	0.0935	-0.1483
12	0.0624	-0.0706
13	0.0312	-0.024
14	0	-0.0122
15	0	-0.0155
16	0.0628	-0.0352
17	0.1246	-0.0823
18	0.1863	-0.1602
19	0.2478	-0.2691
20	0.3087	-0.4087
21*	0.3694	-0.579

^{*}The displacement of the top right node is highlighted.

Plot of u vs log(1/h) for x and y displacement values {normalized with exact values}:

Matlab Code for Plotting:

```
%Plot of u (&v) vs log(1/h) for different values of h:
x_plot=[log(1) log(2)];
u_plot=[0.2559 0.3694]/0.45;
v_plot=[-0.4013 -0.579]/(-0.69375);

subplot(2,1,1)
plot(x_plot,u_plot,'--');
grid on
xlabel('log(1/h)');
ylabel('X-displacement of rightmost point');
legend('X vs log(1/h)');
```

```
title('Plots of X (&Y) vs log(1/h)');
subplot(2,1,2)
plot(x_plot,v_plot,'--');
grid on
xlabel('log(1/h)');
ylabel('Y-displacement of rightmost point');
legend('y vs log(1/h)');
```

Problem 3:

Solution to 2 (a) using quads:

Element and Nodal Nomenclature considered for the problem

Nodal Displacements:

Node #	Displacement in x (* 10 ⁻⁴)	Displacement in y (* 10 ⁻⁴)
1	0	0
2	0	-0.0672
3	0	-0.2687
4	0	-0.6045
5*	0.403	-0.6213
6	0.2687	-0.2854
7	0.1343	-0.084
8	0	-0.0168

^{*}The displacement of top right node is highlighted.

Deformed Configuration

Contour Plots:

Solution to 2(b) using quads:

Element and Nodal Nomenclature considered for the problem

Results:

Node #	Displacement in x (* 10 ⁻⁴)	Displacement in y (* 10 ⁻⁴)	
1	0	0	
2	0	-0.0182	
3	0	-0.0729	
4	0	-0.164	
5	0	-0.2915	
6	0	-0.4551	
7	0	-0.6558	
8	0.22	-0.6599	
9	0.1825	-0.46	
10	0.1458	-0.2961	
11	0.1093	-0.1685	
12	0.0729	-0.0774	
13	0.0364	-0.0228	
14	0	-0.0046	
15	0	-0.0182	
16	0.0729	-0.0364	
17	0.1457	-0.0911	
18	0.2186	-0.1822	
19	0.2915	-0.3098	
20	0.3641	-0.4739	
21*	0.4356	-0.673	

^{*}The displacement of the top right node is highlighted.

Deformed Configuration:

Contour Plots:

Plot of u vs log (1/h) for x and y displacement values {normalized with exact values}:

Problem 3(d): Plane Strain

For the plane strain condition, the displacement values obtained for the case of 12 elements is as follows:

Node #	Displacement in x (* 10 ⁻⁴)	Displacement in y (* 10 ⁻⁴)
1	0	0
2	0	-0.017
3	0	-0.0682
4	0	-0.1534
5	0	-0.2727
6	0	-0.4257
7	0	-0.6135
8	0.206	-0.6188
9	0.1708	-0.4318
10	0.1364	-0.2784
11	0.1023	-0.1591

12	0.0682	-0.0739
13	0.0341	-0.0227
14	0	-0.0057
15	0	-0.0227
16	0.0682	-0.0398
17	0.1364	-0.0909
18	0.2045	-0.1761
19	0.2727	-0.2955
20	0.3406	-0.449
21*	0.4075	-0.6353

^{*}The displacement of the top right node is highlighted:

Deformed Configuration:

Contour Plots:

Part (ii)

For the plane strain condition, the displacement values obtained for the case of 3 elements is as follows:

Node #	Displacement in x (* 10 ⁻⁴)	Displacement in y (* 10 ⁻⁴)
1	0	0
2	0	-0.0625
3	0	-0.25
4	0	-0.5625
5*	0.375	-0.5833
6	0.25	-0.2708
7	0.125	-0.0833
8	0	-0.0208

^{*}The displacement of the top right node is highlighted.

Contour Plot:

Using Triangular Elements:

Using triangular elements, and keeping number of elements equal to 24, the following results were obtained for the plane strain condition:

Node #	Displacement in x (* 10 ⁻⁴)	Displacement in y (* 10 ⁻⁴)	
1	0	0	
2	0	-0.0185	
3	0	-0.0624	
4	0	-0.1348	
5	0	-0.2357	
6	0	-0.3654	
7	0	-0.5302	
8	0.1804	-0.525	
9	0.1474	-0.3706 -0.2411	
10	0.1168		
11	0.0873	-0.1399	
12	0.0582	-0.06	
13	0.0291	-0.024	
14	0	-0.0132	
15	0	-0.0194	
16	0.0586	-0.038	
17	0.1162	-0.0819	

18	0.1737	-0.1546
19	0.2311	-0.2561
20	0.2879	-0.3864
21*	0.3452	-0.5459

*The displacement of the top right node is highlighted.

• For the case of triangular elements, and when the number of elements is equal to 3, the following results were obtained.

Node #	Displacement in x (* 10 ⁻⁴)	Displacement in y (* 10 ⁻⁴)
1	0	0
2	0	-0.0557
3	0	-0.1807
4	0	-0.3918
5*	0.2395	-0.3824
6	0.1618	-0.1922
7	0.0861	-0.0693
8	0	-0.0389

*The displacement of the top right node is highlighted.

Contour Plot:

Summary of the tabulated values of displacement of the top right node for Plane Stress and Plane Strain cases:

Case	Element Type	# of Elements	Ux (*10-4)	U _y (10 ⁻⁴)
		6	0.2559	-0.4013
	Triangular	24	0.3694	-0.579
		3	0.403	-0.6213
Plane Stress	Quadrilateral	12	0.4356	-0.673
		6	0.2395	-0.3824
	Triangular	24	0.3452	-0.5459
		3	0.375	-0.5833
Plane Strain	Quadrilateral	12	0.4075	-0.6353

The input files used for the assignment are appended below: For Plane Strain:

(a) Triangular Elements (# of Elements = 6)

```
% Mesh Nodal Coordinates
NodeTable = [0 \ 0]
             1 0
             2 0
             3 0
             3 1
             2 1
             1 1
             0 1];
numnp = length(NodeTable);
% Mesh Element Connectivities
ix = [1 7 8 0 1]
      1 2 7 0 1
      2 6 7 0 1
      2 3 6 0 1
      3 5 6 0 1
      3 4 5 0 1
      ];
nen = 4;
numel = 6;
% Mesh Boundary Conditions and Loads
BCLIndex = [6 1]';
NodeBC = [1 1 0]
          1 2 0
          2 1 0
          3 1 0
          4 1 0
          8 1 0
          1;
NodeLoad = [5 1 5];
% Mesh Material Properties
young = 10e5;
pois = .25;
thick = 1;
PSPS = 'n';
MateT = [young pois thick];
FEA Program
```

(b) Triangular Elements (# of Elements = 24)

```
% Mesh Nodal Coordinates
NodeTable = [0 \ 0]
              0.5 0
              1 0
              1.5 0
              2 0
              2.5 0
              3 0
              3 0.5
              2.5 0.5
              2 0.5
              1.5 0.5
              1 0.5
              0.5 0.5
              0 0.5
              0 1
              0.5 1
              1 1
              1.5 1
              2 1
              2.5 1
              3 1];
numnp = length(NodeTable);
% Mesh Element Connectivities
ix = [1 \ 13 \ 14 \ 0 \ 1]
      1 2 13 0 1
      2 12 13 0 1
      2 3 12 0 1
      3 11 12 0 1
      3 4 11 0 1
      4 10 11 0 1
      4 5 10 0 1
      5 9 10 0 1
      5 6 9 0 1
      6 8 9 0 1
      6 7 8 0 1
      13 15 14 0 1
      13 16 15 0 1
      12 16 13 0 1
      12 17 16 0 1
      11 17 12 0 1
      11 18 17 0 1
      10 18 11 0 1
      10 19 18 0 1
      9 19 10 0 1
```

```
9 20 19 0 1
      8 20 9 0 1
      8 21 20 0 1
      ];
nen = 4;
numel = 24;
% Mesh Boundary Conditions and Loads
BCLIndex = [10 2]';
NodeBC = [1 1 0]
          1 2 0
          2 1 0
          3 1 0
          4 1 0
          5 1 0
          6 1 0
          7 1 0
          14 1 0
          15 1 0];
NodeLoad = [8 \ 1 \ 3.75]
            21 1 3.125];
% Mesh Material Properties
young = 10e5;
pois = .25;
thick = 1;
PSPS = 'n';
MateT = [young pois thick];
FEA Program
(c) Quadrilateral Elements (# of elements = 3)
% Mesh Nodal Coordinates
NodeTable = [0 \ 0]
             1 0
              2 0
              3 0
              3 1
              2 1
              1 1
              0 1];
numnp = length(NodeTable);
% Mesh Element Connectivities
ix = [1 2 7 8 1]
      2 3 6 7 1
      3 4 5 6 1];
```

```
nen = 4;
numel = 3;
% Mesh Boundary Conditions and Loads
BCLIndex = [6 1]';
NodeBC = [1 1 0]
        1 2 0
        2 1 0
        3 1 0
        4 1 0
        8 1 01;
NodeLoad = [5 1 5];
% Mesh Material Properties
young = 10e5;
pois = .25;
thick = 1;
PSPS = 'n';
MateT = [young pois thick];
FEA Program
      Modification in the Elas_2D file:
  (i)
if PSPS == 's' %Plane Stress
   Dmat = ElemE/(1-Elemv^2)*[1 Elemv 0; Elemv 1 0; 0 0 (1-
Elemv)/21;
else %Plane Strain
   Dmat = ElemE/((1+Elemv)*(1-2*Elemv))*[1-Elemv Elemv 0;Elemv
1-Elemv 0;0 0 (1-2*Elemv)/2];
end
if nel == 4
      else
      Qxy(2,1) Qxy(1,1) Qxy(2,2) Qxy(1,2) Qxy(2,3) Qxy(1,3)];
      end
```

(ii) Modification in the shp_2l.m file:

elseif nel == 4

```
% shp(i,j). j = denotes the node number,
% i = 1, derivative w.r.t r
% i = 2, derivative w.r.t s
% i = 3, shape funtion
clear shp
syms xc eta real
shp(3,1)=0.25*(1-xc)*(1-eta);
shp(1,1) = diff(shp(3,1),xc);
shp(2,1) = diff(shp(3,1),eta);
shp(3,2) = 0.25*(1+xc)*(1-eta);
shp(1,2) = diff(shp(3,2),xc);
shp(2,2) = diff(shp(3,2),eta);
shp(3,3) = 0.25*(1+xc)*(1+eta);
shp(1,3) = diff(shp(3,3),xc);
shp(2,3) = diff(shp(3,3),eta);
shp(3,4) = 0.25*(1-xc)*(1+eta);
shp(1,4) = diff(shp(3,4),xc);
shp(2,4) = diff(shp(3,4),eta);
xc=r;
eta=s;
```

(d)Quadrilateral Elements (# of elements = 12):

shp=double(subs(shp));

```
0 1
             0.5 1
             1 1
             1.5 1
             2 1
             2.5 1
             3 1
             ];
numnp = length(NodeTable);
% Mesh Element Connectivities
ix = [1 \ 2 \ 13 \ 14 \ 1]
      2 3 12 13 1
      3 4 11 12 1
      4 5 10 11 1
      5 6 9 10 1
      6 7 8 9 1
      8 21 20 9 1
      9 20 19 10 1
      10 19 18 11 1
      11 18 17 12 1
      12 17 16 13 1
      13 16 15 14 1
      ];
nen = 4;
numel = 12;
% Mesh Boundary Conditions and Loads
BCLIndex = [10 2]';
NodeBC = [1 1 0]
          1 2 0
          2 1 0
          3 1 0
          4 1 0
          5 1 0
          6 1 0
          7 1 0
          14 1 0
          15 1 0
          ];
NodeLoad = [8 1 3.75]
            21 1 3.125];
% Mesh Material Properties
young = 10e5;
pois = .25;
thick = 1;
PSPS = 'n';
MateT = [young pois thick];
```

(e) Calculation of Nodal Forces for Problem #2:

```
clc;
%Calculation of the nodal forces for Problem#2
%Since we know that the shape function varies linearly between
two
%nodes we can directly carry out the integrals.
syms y
f=15*y;
% 1) Using Mesh 1
N = [1 - y \ y];
f nodal=int(N'*f,y,0,1);
% 2) Using Mesh 2
N12=y*2; N11=2*(0.5-y);
N21=2*(1-y); N22=2*(y-0.5);
N1 = [N11 \ N12];
N2 = [N21 N22];
f1 nodal=int(N1'*f,y,0,0.5);
f2_nodal=int(N2'*f,y,0.5,1);
```