12. Multivariate relationships

LPO.8800: Statistical Methods in Education Research

Sean P. Corcoran

LPO.8800 (Corcoran)

Lecture 1

Last update: December 7, 2021

/49

Last time

- Bivariate regression
- Prediction equation, predicted values, residuals (prediction errors)
- Ordinary least squares (OLS)
- Interpreting regression slope and intercept
- ullet Assessing goodness of fit (R^2)
- Conditional mean interpretation of regression
- Inference about the population slope: confidence intervals and hypothesis tests
- Regression diagnostics with residuals

Generally speaking, regression results (and correlations) *cannot* be interpreted as causal. Examples:

- Russian cholera epidemic: peasants observed that in communities with lots of doctors, there were lots of cholera cases; doctors were murdered.
- SAT prep courses: in 1988 Harvard interviewed its freshmen and found that those who took SAT coaching courses scored 63 points lower than those who did not.
 - A dean concluded that the SAT courses were unhelpful and that "the coaching industry is playing on parental anxiety."

Causal questions imply an "all else equal" assumption.

LPO.8800 (Corcoran)

Lecture 12

Last update: December 7, 2021

3 / 49

Correlation vs. causality, revisited

Correlation vs. causality, revisited

Imagine collecting data and conducting a simple regression analysis for each case:

In the lefthand figure, each data point is a community. In the righthand figure, each data point is a college applicant.

There is clearly an association between these pairs of variables, but can we say that variation in X is causing variation in Y ($X \rightarrow Y$)? For any correlation between two variables, there are three possible explanations: X is causing Y, Y is causing X, or some other factor is causing both.

Criteria for a causal relationship:

- Association between the two variables
- An appropriate time ordering
- Elimination of alternative explanations

LPO.8800 (Corcoran)

Lecture 12

Last update: December 7, 2021

7 / 49

Correlation vs. causality, revisited

Considering the above two examples:

- Russian cholera epidemic: it is unlikely doctors (X) caused the cholera cases (Y), since the presence of cholera preceded the arrival of the doctors (Y → X).
- SAT prep courses: it is possible that the prep course worsened SAT performance (the time ordering is appropriate). But it is more likely a third factor explains both enrollment in the prep course and low SAT scores (e.g., test anxiety, poor prior academic preparation). One would need to eliminate alternative explanations before making a causal connection.
 - The association between SAT performance and prep course participation may be spurious.

LPO.8800 (Corcoran)

Lecture 12

Last update: December 7, 2021

	Rigby	Com
when	Enough with the wind already Received April 1	judg
legis- Brent ters'	Ever since they installed all those big fans up on the hill it's become even windier. Whose bright idea was that? I've noticed when they're off, we get a nice calm spell. Please turn them off, at least on weekends. (Word count: 40) JEFF FORBES Idaho Falls	rerr "the issu mer from
ds max	- Guest columns, solicited: 450 words max • Guest o	colum

LPO.8800 (Corcoran)

Lecture 12

Last update: December 7, 2021

9 / 49

Experimental and observational data

Eliminating alternative explanations can be very difficult to do in social science and education research. The researcher is typically working with observational data, and has no control over assignment to "treatment" conditions of interest. Consider again these questions:

- Does smoking cause lung cancer?
- Would a smaller class size improve learning?
- Does education increase labor market productivity and earnings?
- Is parental divorce detrimental to childrens' outcomes?
- Does participation in an SAT prep course improve SAT performance?

Experimental and observational data

This is in contrast to the medical researcher who can randomly assign subjects to receive a new drug or a placebo. With this study design, she controls the time ordering, and can confidently attribute any systematic differences in the subjects' outcomes to the drug (and not due to some third factor). There are fewer opportunities for such designs in social science.

LPO 8800 (Corcoran)

Lecture 12

Last update: December 7, 2021

11 / 49

Eliminating alternative explanations

In the absence of random assignment, the elimination of alternative explanations is difficult to do, and depends on sound research design, data availability, and a good theoretical understanding of factors that affect variation in the outcome *Y*.

Outliers and anecdotal examples of contradictory cases are **not** sufficient for ruling out causal relationships! Causal effects are a description of how X affects Y on average, not in a deterministic sense.

- A high-poverty school that is "beating the odds" does not demonstrate that poverty has no effect on academic achievement.
- A smoker that lives to 102 is not proof that smoking does not cause lung cancer.

Controlling for other variables

In practice how does one eliminate alternative explanations for the association between X and Y? Typically one tries to find ways of removing the effects of other variables from this association. This is called **controlling** for the effects of other variables. It is the statistical equivalent of a lab researcher "holding other variables constant."

Suppose we are interested in the relationship between X_1 and Y. The variables we wish to remove the effects of are called **control variables** or **covariates** (e.g., $X_2, X_3, ..., X_k$).

 We statistically control for a third variable X₂ by examining the relationship between X₁ and Y conditional on X₂ (i.e., for fixed values of X₂). With a relatively small number of values, this can be done with partial tables that show the conditional mean of Y given X

LPO.8800 (Corcoran)

Lecture 12

Last update: December 7, 2021

13 / 49

Controlling for other variables

Does computer ownership benefit 8th grade math achievement?

Controlling for other variables

The association between computer ownership and math achievement could be spurious, and explained by a third factor correlated with computer ownership *and* math achievement (e.g., SES). Let's control for SES, using 2 groups (low or high):

```
    egen ses2=cut(ses), group(2)
    * the above command creates a new variable 'ses2' that splits 'ses' into two equal-sized groups (low and high)
    table computer ses2, contents(mean achmat08)
```

computer owned by family in eighth grade?	se 0	s2 1
no	53. 5129 169	57.53085 94
yes	55.46333 78	59.86031 159

The 3.46 point "effect" of computer ownership on math achievement is smaller after conditioning on SES. For both low and high SES students, the "effect" is 2.32 points.

LPO.8800 (Corcoran)

Lecture 12

Last update: December 7, 2021

15 / 49

Types of multivariate relationships

Ways in which the response variable Y may be related to explanatory and control variables:

- An association between Y and X₁ that is fully attributable to a third variable X₂ is said to be **spurious**. The association disappears after controlling for X₂. (E.g., a common time trend).
- Y may have multiple causes X₁, X₂, etc. Controlling for X₂ may change but not eliminate the association between Y and X₁ (and vice versa). (E.g., SES and computer ownership)
- The effect of X_1 on Y may be *indirect*, through an intervening variable (or **mediator**) X_2 . (E.g., education \rightarrow income \rightarrow health, perhaps).

The first two examples are often called **confounders**. Not accounting for other X variables provides a distorted view of the relationship between X_1 and Y.

Types of multivariate relationships

- A third variable may mask (i.e. understate) the association between Y and X₁. This is sometimes called a suppressor variable.
 - Example: Head Start participation and achievement (suppressor variable: poverty).
- When the effect of a variable X₁ on Y varies with the level of a third variable X₂, this is called a statistical interaction or an interaction effect.

LPO 8800 (Corcoran)

Lecture 1

Last update: December 7, 2021

17 / 40

Interaction effect

The relationship between monthly earnings (Y) and years of work experience (X_1) depends on the level of education (X_2) (wage2.dta):

Interaction effect

LPO.8800 (Corcoran) Lecture 12 Last update: December 7, 2021 19 / 49

Multiple regression

Multiple regression allows one to statistically control for other explanatory variables that are ignored in simple regression. With 2 explanatory variables the best fit "line" is:

$$\hat{y} = a + b_1 x_1 + b_2 x_2$$

With k explanatory variables, one can consider the best fit "line":

$$\hat{y} = a + b_1 x_1 + b_2 x_2 + ... + b_k x_k$$

There is now an intercept and k slope coefficients to compute.

Multiple regression

As before, the best fit "line" is the one where the intercept a and slope coefficients $b_1, b_2, ..., b_k$ minimize the sum of the squared deviations between the actual data points and the regression line:

$$a, b \sum_{i=1}^{n} (y_i - \widehat{y_i})^2$$

$$a, b \sum_{i=1}^{n} (y_i - a - b_1 x_1 - b_2 x_2 - \dots - b_k x_k)^2$$

(Of course with multiple X variables the best fit "line" is no longer a line, but multi-dimensional.)

LPO 8800 (Corcoran)

Lecture 12

Last update: December 7, 2021

21 / 49

Example: multiple regression

To implement multiple regression in Stata, continue to use the regress command, and include the additional explanatory variables in your variable list:

Source	55	df		из		Number of obs F(1, 933)	
Model.	732.242855	1	732.	242855		Prob > F	- 0.946
Residual	152715436	933	1636	82.139		R-squared Ad1 R-squared	- 0.000
Total	152716168	934	1635	07.675		Root MSE	- 404.5
wage	Coef.	Std.	Err.	t	P> t	[95% Conf.	Interval
exper	.2024031	3.024	5148	0.07	0.947	-5.736443	6.14124
_cons	955.6049	37.4	111	25.59	0.000	882.1853	1029.02
regress wage	s exper educ						
regress wage	s exper educ	df		из		Number of obs	
Source Model	\$5 20747023.1	2	1037	3511.5		F(2, 932) Prob > F	= 73.2 = 0.000
Source	55		1037			F(2, 932) Prob > F R-squared	- 73.2 - 0.000 - 0.135
Source Model	\$5 20747023.1	932	1037:	3511.5		F(2, 932) Prob > F	- 73.2 - 0.000 - 0.135
Source Model Residual	35 20747023.1 131969145	2 932 934	1037: 1415: 1635:	3511.5 97.795	B> t	F(2, 932) Frob > F R-squared Adj R-squared	- 73.2 - 0.000 - 0.135 - 0.134 - 376.2
Source Model Residual Total	\$5 20747023.1 131969145 152716168	2 932 934	1037: 1415: 1635: Err.	3511.5 97.795 07.675	P> t	F(2, 932) Frob > F R-squared Adj R-squared Root MSE	- 73.2 - 0.000 - 0.135 - 0.134 - 376.2
Source Model Residual Total	55 20747023.1 131969145 152716168 Coef.	932 934 Std.	1037: 1415: 1635: Err.	3511.5 97.795 07.675 t		F(2, 932) Prob > F R-squared Adj R-squared Root HSE [95% Conf.	= 73.2 = 0.000 = 0.135 = 0.134 = 376.2

Example: multiple regression

The slope coefficients are now interpreted as **marginal** or **partial** effects: the linear relationship between Y and X_1 , *conditional* on (or "holding constant") X_2 and any other included control variables.

- Conditional on years of education (holding constant years of education), we predict that an additional year of work experience is associated with \$17.64 additional monthly earnings.
- Conditional on years of work experience (holding constant work experience), we predict that an additional year of education is associated with \$76.22 additional monthly earnings.

The prediction equation can be used to find the "best prediction" of Y given values of $X_2, ..., X_K$.

LPO.8800 (Corcoran)

Lecture 12

Last update: December 7, 2021

23 / 49

Example: multiple regression

For example, let years of experience be $X_1 = 10$ and years of education completed be $X_2 = 14$. Our best prediction of monthly earnings is:

$$\hat{y} = -272.53 + 17.64 * 10 + 76.22 * 14 = 970.95$$

When x_1 and x_2 are uncorrelated

When x_1 and x_2 are <u>uncorrelated</u>, the OLS estimators of b_1 and b_2 are:

$$\hat{b}_1 = r_{y1} \frac{s_y}{s_1}$$

$$\hat{b}_2 = r_{y2} \frac{s_y}{s_2}$$

where r_{y1} is the correlation between y and x_1 , and r_{y2} is the correlation between y and x_2 . (s_1 is the standard deviation of x_1 , and s_2 is the standard deviation of x_2). Notice these are equivalent to the formula for \hat{b} in the simple regression case. The r_{yk} are sometimes called **zero-order** correlations.

LPO.8800 (Corcoran)

Lecture 12

Last update: December 7, 2021

25 / 40

When x_1 and x_2 are uncorrelated

In multiple regression, R^2 can still be used as a measure of fit, interpreted in the same way: the fraction of overall variation in y that is explained by the regression. When x_1 and x_2 are uncorrelated, R^2 is simply:

$$R^2 = r_{y1}^2 + r_{y2}^2$$

(the sum of the two squared zero-order correlations)

- R² is the coefficient of determination
- ullet R-the square root of R^2 -is the multiple correlation

Venn diagram with one explanatory variable

LPO 8800 (Corcoran)

Lecture 12

Last update: December 7, 2021

7 / 49

Venn diagram with one explanatory variable

The circle labeled y represents variation in y, and the circle labeled x_1 represents variation in x_1 .

- ullet Think of the overlap (red) as variation in y "explained" by variation in x_1
- \bullet The red area represents information used by the regression to estimate \hat{b}_1
- The black area is variation in y unexplained by variation in x₁ ("residual" variation)
- The proportion of y covered by x_1 represents the R^2

Venn diagram with two explanatory variables - 1

LPO 8800 (Corcoran)

Lecture 12

Last update: December 7, 2021

29 / 49

Venn diagram with two explanatory variables - 1

- Think of the overlap between y and x_1 (red) as variation in y "explained" by variation in x_1
- Think of the overlap between y and x_2 (green) as variation in y "explained" by variation in x_2
- x_1 and x_2 do not overlap (they are uncorrelated), so it is easy to attribute variation in y separately to x_1 and x_2
- ullet The red area represents information used by the regression to estimate \hat{b}_1
- The green area represents information used by the regression to estimate \hat{b}_2
- ullet The black area is variation in y unexplained by x_1 or x_2
- The proportion of y covered by x_1 and x_2 represents R^2

Venn diagram with two explanatory variables - 2

LPO.8800 (Corcoran)

Lecture 12

Last update: December 7, 2021

31 / 40

Venn diagram with two explanatory variables - 2

- In this case x_1 and x_2 overlap—they are *correlated* (represented by the yellow area), thus it is not as clear how to attribute variation in y separately to x_1 and x_2
- \bullet The red area represents the unique information used by the regression to estimate \hat{b}_1
- ullet The green area represents the unique information used by the regression to estimate \hat{b}_2
- Both the red and green areas are smaller than those in example
 1—we have less certainty about how much of y can be attributed to each explanatory variable

When x_1 and x_2 are correlated

When x_1 and x_2 are correlated, the OLS estimators of b_1 and b_2 are:

$$\hat{b}_{1} = \left(\frac{r_{y1} - r_{y2}r_{12}}{1 - r_{12}^{2}}\right) \left(\frac{s_{y}}{s_{1}}\right)$$

$$\hat{b}_2 = \left(\frac{r_{y2} - r_{y1}r_{12}}{1 - r_{12}^2}\right) \left(\frac{s_y}{s_2}\right)$$

where r_{12} is the correlation between x_1 and x_2 (and other terms were defined previously). Notice what happens if $r_{12} = 0$ (i.e. if there is no correlation between x_1 and x_2).

LPO.8800 (Corcoran)

reg achmat12 private

Lecture 12

Last update: December 7, 2021

. . . .

Example: private school attendance and math achievement

Source	SS	df	MS	Numbe F(1,	er of obs	=	10.92
Model	665.476286	1	665.476286		> F	- 5	0.0010
Residual	30351.3075	498	60.9464005			-	0.0215
RODIGULI	50551.5075	450	00.5404005		R-squared	_	0.0195
Total	31016.7838	499	62.1578833			-	7.8068
achmat12	Coef.	Std. Err.	t	P> t	[95% Cor	nf.	Interval]
private	2.630139	.7959513	3.30	0.001	1.066303	3	4.193976
cons	56.22278	.4058571		0.000	55.42538		57.02019
eg achmat12	? private ses						
eg achmat12	private ses	df	MS		er of obs	_	
Source	SS			F(2,	497)	-	500 29.23
	•	df 2 497	MS 1632.31194 55.8393559	F(2, Prob	497) > F		29.23 0.0000
Source Model	SS 3264.62388	2	1632.31194	F(2, Prob R-squ	497) > F	-	
Source Model	SS 3264.62388	2	1632.31194	F(2, Prob R-squ Adj F	497) > F lared R-squared	-	29.23 0.0000 0.1053 0.1017
Source Model Residual	SS 3264.62388 27752.1599	2 497	1632.31194 55.8393559	F(2, Prob R-squ Adj F	497) > F sared -squared MSE	-	29.23 0.0000 0.1053
Source Model Residual Total	SS 3264.62388 27752.1599 31016.7838 Coef.	2 497 499 Std. Err. .821064	1632.31194 55.8393559 62.1578833 t	F(2, Prob R-squ Adj F Root P> t	497) > F sared R-squared MSE [95% Cos -1.07140:	- - - nf.	29.23 0.0000 0.1053 0.1017 7.4726 Interval]
Source Model Residual Total achmat12	SS 3264.62388 27752.1599 31016.7838	2 497 499 Std. Err.	1632.31194 55.8393559 62.1578833 t 0.66 6.82	F(2, Prob R-squ Adj F Root	497) > F sared R-squared MSE	nf.	29.2 0.0000 0.105 0.101 7.4726

Example: private school attendance and math achievement

$$\begin{split} \hat{b}_1 &= \left(\frac{r_{y1} - r_{y2}r_{12}}{1 - r_{12}^2}\right) \left(\frac{s_y}{s_1}\right) \\ \hat{b}_1 &= \left(\frac{0.1465 - 0.3232 * 0.3728}{1 - 0.3728^2}\right) \left(\frac{7.884}{0.439}\right) = 0.542 \end{split}$$

LPO.8800 (Corcoran)

Lecture 12

Last update: December 7, 2021

35 / 49

Example: private school attendance and math achievement

$$\hat{b}_2 = \left(\frac{r_{y2} - r_{y1}r_{12}}{1 - r_{12}^2}\right) \left(\frac{s_y}{s_2}\right)$$

$$\hat{b}_2 = \left(\frac{0.3232 - 0.1465 * 0.3728}{1 - 0.3728^2}\right) \left(\frac{7.884}{6.924}\right) = 0.3552$$

When x_1 and x_2 are correlated

With two explanatory variables the R^2 can be written as:

$$R^2 = r_{y1}^2 + r_{y2|1}^2$$

- First part: the proportion of variation in y explained by x_1
- Second part: the proportion of variation in y explained by x₂ beyond that explained by x₁ (a semi-partial correlation)

LPO.8800 (Corcoran) Lecture 12 Last update

Last update: December 7, 2021

37 / 49

When x_1 and x_2 are correlated

When x_1 and x_2 are correlated

Equivalently, the R^2 can be written as:

$$R^2 = r_{y2}^2 + r_{y1|2}^2$$

- First part: the proportion of variation in y explained by x_2
- Second part: the proportion of variation in y explained by x_1 beyond that explained by x_2 (a semi-partial correlation)

LPO.8800 (Corcoran) Lecture 12 Last update: December 7, 2021 39

When x_1 and x_2 are correlated

Semi-partial correlations

The correlations $r_{y2|1}^2$ and $r_{y1|2}^2$ are called *semi-partial* or *part* correlations. The represent the correlation observed between y and that part of x_1 (or x_2) that is uncorrelated with x_2 (or x_1).

LPO.8800 (Corcoran)

Lecture 12

Last update: December 7, 2021

41 / 49

Multiple regression and R^2

Some facts about multiple regression and R^2 :

- R² still ranges between 0 and 1
- \bullet R^2 will be high when the x's are highly correlated with y
- R^2 will not fall below the highest R^2 with an individual x
- \bullet R^2 cannot decrease when additional xs are added to the regression equation
- R² will be larger when the explanatory variables are not redundant—i.e. their intercorrelation is low
- There is usually diminishing returns to additional explanatory variables (a greater chance of redundancy)

Adjusted R^2

The calculated R^2 tends to overestimate the population R^2 (it is upwardly biased). The smaller is N relative to the number of explanatory variables K, the more R^2 will be inflated. An **adjusted R^2** is often used instead:

$$R_{ADJ}^2 = 1 - (1 - R^2) \frac{(N-1)}{N - K - 1}$$

Holding N constant, the adjusted R^2 "penalizes" you for including additional explanatory variables K.

LPO.8800 (Corcoran)

Lecture 1

ast update: December 7, 2021

43 / 49

Multicollinearity

Multicollinearity is the condition when explanatory variables in a regression are highly correlated. The consequence of this is that it becomes more difficult to discern how much of the variation in *y* is "due to" each individual *x*. This is a bigger problem the smaller the sample size.

Semi-partial (part) correlations

The **semi-partial (or part) correlation** between y and x_1 is the correlation observed between y and that part of x_1 that is uncorrelated with the other x variables.

- The square of the semi-partial correlation is the amount by which R² decreases when that explanatory variable is excluded.
- It is also the proportion of the variation in y that is explained by x₁ only
- This can be used to assess the relative importance of the explanatory variables (in terms of independent predictive power).
- Could be used to guide model specification.

Can obtain semi-partial correlations in Stata using pcorr y x1 x2

LPO.8800 (Corcoran) Lecture 12 Last update: December 7, 2021 45 / 49

Semi-partial (part) correlations

Try this using the math achievement and private school example above.

- Regress achmat08 on ses and private, note R² (0.1053)
- Regress achmat08 on ses alone, note R2 (0.1045)
- Regress achmat08 on private alone, note R² (0.0215)
- Get squared semi-partial correlations pcorr achmat08 private ses

pcorr achmat12 private ses Partial and semipartial correlations of achmat12 with Partial Semipartial Partial Semipartial Significance Variable Corr. Corr. Corr.^2 Value 0.0008 private 0.0296 0.0280 0.0009 0.5097 0.2926 0.2895 0.0856 0.0838 0.0000 868

Partial regression equations

Suppose you are using the multiple regression equation:

$$y = a + b_1 x_1 + b_2 x_2$$

The estimated prediction equation is not graphable in two dimensions since there are two x variables. However, consider fixing x_2 at a particular value, X_2 . Now the regression equation is:

$$y = (a + (b_2X2)) + b_1x_1$$

This can be graphed in two dimension. See example using math achievement and private school, SES.

LPO.8800 (Corcoran)

Lecture 1

Last update: December 7, 2021

17 / 40

Partial plots

A partial regression plot ("added variable plot") for y versus x_1 uses the following *residuals*:

- \bullet \hat{u} from a regression of y on all other xs
- \hat{v} from a regression of x_1 on all other x_1

Note the slope of the best fit lit in this added variable plot equals the slope from the multiple regression. Likewise, the slope of the best fit line equals the slope of a regression of y on \hat{v} .

F-statistic

The F-statistic reported in regression output is calculated as:

$$F = \frac{R^2/k}{(1 - R^2)(n - k - 1)}$$

F follows a F sampling distribution with k and n-k-1 degrees of freedom. (k is the number of explanatory variables in the regression). This F-statistic can be used to test the null hypothesis:

$$H_0: \beta_1 = \beta_2 = \dots = \beta_k = 0$$

 H_1 : at least one $\beta_i \neq 0$

It is a test of the joint significance of the explanatory variables.