UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE INSTITUTO METRÓPOLE DIGITAL

NOTAS DE AULA DA DISCIPLINA IMD1001 – MATEMÁTICA ELEMENTAR

26 de Abril de 2019

Antonio Igor Silva de Oliveira
Josenaldo Araújo da Silva Júnior
Giordano Vicente de Oliveira Fausto Rodrigues
matematicaelementar@imd.ufrn.br

Conteúdo

1	Con	njuntos 1					
	1.1	Apresentação					
	1.2	Introdução					
	1.3	Pertinência					
	1.4	Inclusão					
	1.5	Operações					
		1.5.1 Complementar					
		1.5.2 Diferença					
		1.5.3 União e Interseção					
	1.6	Conjuntos e Lógica					
	1.7	Exercícios					
	1.8	Bibliografia					
2	Con	Conjuntos Numéricos e Potenciação 17					
	2.1	Apresentação					
	2.2	Conjuntos Numéricos					
	2.3	Operações Básicas					
	2.4	Potenciação					
	2.5	Exercícios					
	2.6	Bibliografia					
3	Equ	uações e Inequações 22					
	3.1	Introdução					
	3.2	Equação do 1° grau					
	3.3	Equação do 2° grau					
	3.4	Inequação do 1° grau					
	3.5	Inequação do 2° grau					
	3.6	Módulos					
	3.7	Desigualdades Clássicas					
	3.8	Exercícios					
	3 9	Bibliografia 42					

CONTEÚDO ii

4	Pri	Princípio da Indução Finita		
	4.1	Introdução	43	
	4.2	Princípio da Indução Finita	43	
	4.3	Princípio Forte da Indução Finita	48	
	4.4	Exercícios	49	
	4.5	Bibliografia		
5	Fun	ıções	51	
	5.1	Introdução	51	
	5.2	Definição de Função	51	
	5.3	Funções Compostas	52	
	5.4	Função inversa	53	
	5.5	Injetividade e Sobrejetividade	54	
6	Pro	gressões	57	
	6.1	Progressão Aritmética	57	
	6.2	Somatório dos n primeiros termos de uma PA	60	
	6.3	Progressão Geométrica	60	
	6.4	Fórmulas de uma Progressão Geométrica	62	
	6.5	Somatório dos n primeiros termos de uma PG	63	
	6.6	Exercícios	64	
	6.7		66	

Capítulo 1

Conjuntos

1.1 Apresentação

Conjuntos estão por toda parte, ainda que, em um primeiro momento, isso não seja tão evidente. Utilizamos seus conceitos mais frequentemente do que imaginamos, mas não costumamos parar para pensar sobre o quão importantes eles são. Para se ter ideia, praticamente toda a Matemática atual é formulada na linguagem de conjuntos, mesmo sendo a mais simples das ideias matemáticas.

Comecemos com a mais simples das noções. Reflita sobre qual seria a resposta para a pergunta "O que é um conjunto?"

... Refletiu?

Intuitivamente, o que nos vem a cabeça é que conjuntos são uma espécie de coleção, agrupamento – ou qualquer outro sinônimo – de objetos. No entanto, esse é um conceito bastante abstrato; isso é, não há exatamente uma resposta para o questionamento proposto, tendo em vista que ela depende da interpretação de cada um.

No decorrer destas notas de aula, trataremos os conceitos de conjuntos de uma maneira mais palpável para que se tornem mais praticáveis. Logo, precisaremos ir um pouco mais além para entender melhor e ver o que essa ferramenta tão poderosa pode nos oferecer.

1.2 Introdução

Um *conjunto* é definido por seus elementos, e nada mais. Desse fato decorre, imediatamente, que dois conjuntos são *iguais* quando possuem os mesmos elementos, e apenas nessa situação.

Dados um conjunto A e um objeto qualquer b, é natural perguntar se b é um elemento do conjunto A. Tal questionamento admite apenas "sim" ou "não" como candidatos a resposta. Isso se dá porque, na Matemática, qualquer afirmação é verdadeira ou é falsa, não havendo possibilidade de ser as duas coisas simultaneamente nem de, ainda, haver

uma terceira opção.

Quando a Matemática falha

O caráter binário e exclusivo do valor-verdade das afirmações faz parecer que a Matemática é infalível se usada corretamente, o que não se verifica de fato. O matemático austríaco Kurt Gödel provou, em 1931, que todo sistema formal é falho pois possui verdades que não podem ser provadas – os chamados paradoxos. Antes de assistir ao vídeo Este vídeo está mentindo, reflita se você vai acreditar nele ou não.

A descrição dos elementos de um conjunto – necessária para defini-lo, conforme já comentado – pode ser feita textualmente. Contudo, nestas notas serão utilizadas duas formas matemáticas comuns de se especificar tal descrição, apresentadas nos Exemplos 1.1 e 1.2.

Exemplo 1.1. Se quisermos expressar qual seria o conjunto de todas as vogais do nosso alfabeto, precisaríamos de alguma notação para representá-lo. Temos $V = \{a, e, i, o, u\}$ como sendo o conjunto das vogais. Tal notação lista explicitamente os membros de seu conjunto.

Exemplo 1.2. O conjunto PP dos números primos pares pode ser representado por $PP = \{x : x \text{ \'e primo e par}\} = \{2\}$. Tal notação \'e lida por "o conjunto de todos os x's tais que x \'e primo e par". Nunca escreva $PP = \{\text{ números primos pares }\}$.

1.3 Pertinência

Na Seção 1.2, entendemos o que é um conjunto e como podemos defini-lo. Agora, teremos o poder de relacionar objetos a conjuntos perguntando se um dado objeto está em um conjunto. Como já falamos sobre, só temos uma resposta possível dentre sim e não. Dados um objeto a e um conjunto A, utilizamos a notação $a \in A$ para dizer que a pertence ao conjunto A, e $a \notin A$ significa que a não pertence a A.

Exemplo 1.3. Considere PP e V conforme definido nos Exemplos 1.1 e 1.2, respectivamente. Temos que $e \in V$ e $3 \notin PP$.

Exemplo 1.4. Considere L como sendo o conjunto de todas as letras do alfabeto latino. Sabendo que as vogais do conjunto V fazem parte desse alfabeto, podemos concluir que $a, e, i, o, u \in L$. Também sabemos que a letra j faz parte do alfabeto, isso $\acute{e}, j \in L$. Contudo, como j não \acute{e} uma vogal, podemos concluir que $j \notin V$.

Ainda na Seção 1.2 Introdução, viu-se que dois conjuntos iguais A e B possuem, necessariamente, os mesmos elementos, o que implica que são diferentes quando um possui algum elemento que o outro não possui. Com a notação de pertinência, isso é o mesmo que dizer que existe $x \in A$ tal que $x \notin B$ ou que existe $x \in B$ tal que $x \notin A$.

Exemplo 1.5. Os conjuntos \mathbb{N} (números naturais) e \mathbb{Z} (números inteiros), abordados com mais detalhe no Capítulo 2, são diferentes. Note que $-1 \in \mathbb{Z}$ mas $-1 \notin \mathbb{N}$, por exemplo, o que prova que esses conjuntos são diferentes.

As noções de conjuntos e elementos não são mutuamente exclusivas como, por exemplo, a paridade nos números naturais. Nos Exemplos 1.6 e 1.7, serão vistos conjuntos cujos elementos também são conjuntos!

Exemplo 1.6. Considere o conjunto $A = \{\{1, 2\}, \{2\}, 1\}$. Observe que existem elementos em A que são conjuntos. Note que:

- i. $\{1, 2\} \in A$
- ii. $\{2\} \in A$
- iii. $1 \in A$
- iv. $2 \notin A$

Exemplo 1.7. Os habitantes de um país pode ser visto como um conjunto de pessoas. Por sua vez, cada pessoa pode ser vista como um conjunto de células. Mais tarde, na definição 1.17, veremos um famoso conjunto formado por conjuntos.

Para dizer se um dado objeto deve receber o título de "elemento", é preciso olhar para o objeto com o qual ele está se relacionando. No caso do Exemplo 1.6, o conjunto $\{1,2\}$ é elemento do conjunto A, mas quando o interesse se volta à sua relação com o número 2, não faz sentido se referir a $\{1,2\}$ usando simplesmente o nome "elemento".

A Definição 1.8 irá introduzir outro importante tipo de conjunto.

Definição 1.8 (O Conjunto Vazio). O conjunto que não possui elementos é chamado de *conjunto vazio* e é representado por \emptyset . Em outras palavras, para qualquer que seja o objeto x, temos $x \notin \emptyset$.

Agora, com a Definição 1.8, o Exercício 1 já pode ser feito.

Exemplo 1.9. Quais outros conjuntos você conhece? Que tal pensar sobre o conjunto $A = \{x \; ; \; x \notin A\}$?

1.4 Inclusão

Definição 1.10 (Relação de Inclusão). Considere dois conjuntos A e B. Se for o caso que todo elemento de A é, também, elemento de B, diz-se que A é um subconjunto de B, que A está contido em B, ou que A é parte de B. Para indicar esse fato, usa-se a notação $A \subset B$.

Quando A $n\~ao$ está contido em B, utiliza-se a notação $A \not\subset B$. Na prática, isso significa que existe pelo menos um elemento que está em A mas não está em B. Em outras palavras, existe um elemento x tal que $x \in A$ mas $x \notin B$.

Observação. Também podemos escrever $B \supset A$ quando for o caso que $A \subset B$. Para essa situação, dizemos que B contém A.

Exemplo 1.11. Considere T o conjunto de todos os triângulos e P o conjunto dos polígonos no plano. Como todo triângulo é um polígono podemos concluir que $T \subset P$. Observe também que $P \not\subset T$. Para poder concluir isso precisamos encontrar um elemento de P que não seja um elemento de T. Ora, basta considerar um quadrado q com lados de tamanho 1, como todo quadrado é um polígono, temos que $q \in P$, mas quadrados não são triangulos, então $q \notin T$.

Exemplo 1.12. Na Geometria, uma reta, um plano e o espaço são conjuntos. Seus elementos são pontos. Quando dizemos que uma reta r está no plano Π , estamos afirmando que r está contida em Π ou, equivalentemente, que r é um subconjunto de Π , pois todos os pontos que pertencem a r pertencem, também, a Π . Nesse caso, deve-se escrever $r \subset \Pi$. Porém, não é correto dizer que r pertence a Π , nem escrever $r \in \Pi$. Os elementos do conjunto Π são pontos, não retas.

Exemplo 1.13. Considere os conjuntos $N = \{1, 2, 3, 4, 5, 6\}$, $I = \{1, 3, 5\}$ e $P = \{0, 2, 4, 6\}$. Analisando o cenário, podemos concluir que:

- i. $I \subset N$. Observe que todos os elementos de I também são elementos de N.
- ii. $P \not\subset N$. Observe que nem todos os elementos de P são elementos de N, pois $0 \in P$ mas $0 \notin N$.

Proposição 1.14 (Inclusão universal do \emptyset). Para todo conjunto A, tem-se que o conjunto vazio é subconjunto de A (em símbolos: $\emptyset \subset A$).

Demonstração. Para chegarmos num absurdo, considere um conjunto A tal que $\emptyset \not\subset A$. Logo, podemos concluir que existe um elemento x tal que $x \in \emptyset$ mas $x \notin A$, pela definição de inclusão. Mas, já sabemos que $x \notin \emptyset$ pela definição do conjunto vazio. O que nos leva a um absurdo, pois não pode acontecer que $x \in \emptyset$ e $x \notin \emptyset$ ao mesmo tempo. Portanto, podemos concluir que $\emptyset \subset A$.

Observação. Ao manter a arbitrariedade de um conjunto, qualquer conclusão relacionada a este conjunto valerá para todos os conjuntos.

Definição 1.15 (Inclusão Própria). Dizemos que $A \neq \emptyset$ é um subconjunto próprio de B quando $A \subset B$ mas $A \neq B$.

Proposição 1.16 (Propriedades da inclusão). Para quaisquer conjuntos A, B e C, são válidas as propriedades a seguir:

- i) Reflexividade: $A \subset A$;
- ii) Antissimetria: Se $A \subset B$ e $B \subset A$, então A = B;
- iii) Transitividade: Se $A \subset B$ e $B \subset C$, então $A \subset C$.

Demonstração. Apenas dos itens i) e iii).

- i) Seja $x \in A$ um elemento arbitrário. Ora, como já temos que $x \in A$ podemos concluir que $A \subset A$.
- ii) Sejam A e B conjuntos tais que $A \subset B$ e $B \subset A$. Suponha, por contradição, que $A \neq B$, ou seja, existe $x \in A$ tal que $x \notin B$ (1) ou existe $x \in B$ tal que $x \notin A$ (2). Ora, (1) é o mesmo que $A \not\subset B$, contradizendo $A \subset B$. Analogamente, (2) contradiz $B \subset A$. Portanto, A = B.
- iii) Sejam $A, B \in C$ conjuntos tais que $A \subset B \in B \subset C$. Agora basta demonstrar que $A \subset C$. Para isso, considere $x \in A$ um elemento arbitrário e mostremos que $x \in C$. Como temos que $A \subset B$, podemos concluir que $x \in B$. E, como $x \in B \in B \subset C$, segue que $x \in C$. Portanto, $A \subset C$.

Definição 1.17 (Conjunto das Partes). Dado um conjunto A, chamamos de *conjunto das partes* de A o conjunto formado por todos os seus subconjuntos, e denotamo-lo $\mathcal{P}(A)$. Em símbolos:

$$\mathcal{P}(A) = \{X \; ; \; X \subset A\}$$

Exemplo 1.18. Dado $A = \{1, 2, 3\}$, determine $\mathcal{P}(A)$.

Solução.
$$\mathcal{P}(A) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1,2\}, \{2,3\}, \{1,3\}, A\}.$$

Observação. Como o Exemplo 1.18 ilustra, o conjunto das partes de um determinado conjunto tem a particularidade de que todos os seus elementos também são conjuntos.

1.5 Operações

Assim como na aritmética, onde os números possuem suas operações (soma, subtração, multiplicação, etc.), os conjutos também possuem suas operações. De uma forma geral, operações têm o objetivo de receber objetos de um tipo, operá-los, e resultar em algum outro objeto, podendo ser diferente ou não.

1.5.1 Complementar

A noção de complementar de um conjunto só faz sentido quando fixamos um conjunto universo, que denotaremos por \mathcal{U} . Uma vez fixado \mathcal{U} , todos os elementos considerados

pertencerão a \mathcal{U} e todos os conjuntos serão subconjuntos de \mathcal{U} . Dessa forma, teremos bem esclarecidos quais objetos podem estar presentes nos conjuntos.

Exemplo 1.19. Na geometria plana, \mathcal{U} é o plano onde os elementos são pontos, e todos os conjuntos são constituídos por pontos desse plano. As retas servem como exemplos desses conjuntos; portanto, são subconjuntos de \mathcal{U} (não elementos!).

Definição 1.20 (Complementar). Dado um conjunto A (isto é, um subconjunto de \mathcal{U}), chama-se *complementar* de A o conjunto A^C formado pelos elementos de \mathcal{U} que não pertencem a A. Em outras palavras:

$$A^C = \left\{ x \; ; \; x \notin A \right\}$$

Proposição 1.21. Tem-se, para todo conjunto A, que:

$$x \notin A^C$$
 se, e somente se, $x \in A$.

Demonstração. Exercício.

Exemplo 1.22. Seja \mathcal{U} o conjunto dos triângulos. Qual o complementar do conjunto dos triângulos escalenos?

Solução. Quando classificamos um triângulo pelo comprimento de seus lados, ele é, necessariamente, equilátero, isósceles ou escaleno. Portanto, o complementar do conjunto dos triângulos escalenos é o conjunto dos triângulos que são equiláteros ou isósceles.

Proposição 1.23 (Propriedades do complementar). Fixado um conjunto universo \mathcal{U} , valem para todos conjuntos $A \in B$:

- i) $\mathcal{U}^C = \emptyset \in \emptyset^C = \mathcal{U};$
- ii) $(A^C)^C = A$ (todo conjunto é complementar do seu complementar);
- iii) Se $A \subset B$, então $B^C \subset A^C$ (se um conjunto está contido em outro, seu complementar contém o complementar desse outro).

Demonstração.

i) A inclusão $\emptyset \subset \mathcal{U}^C$ é imediata pois \emptyset é subconjunto de qualquer conjunto. Provemos, agora, que $\mathcal{U}^C \subset \emptyset$. Suponha, por absurdo, que $\mathcal{U}^C \not\subset \emptyset$; ou seja, existe $x \in \mathcal{U}^C$ tal que $x \notin \emptyset$. Ora, se $x \in \mathcal{U}^C$, então $x \notin \mathcal{U}$, o que é um absurdo. Logo, $\mathcal{U}^C \subset \emptyset$. Dos fatos de que $\emptyset \subset \mathcal{U}^C$ e $\mathcal{U}^C \subset \emptyset$, conclui-se que $\mathcal{U}^C = \emptyset$. A demonstração de que $\emptyset^C = \mathcal{U}$ fica como exercício para o leitor.

- ii) Provemos, primeiro, que $A \subset \left(A^C\right)^C$. Para tal, seja $x \in A$. Logo, $x \notin A^C$, pela Proposição 1.21. Assim, $x \in \left(A^C\right)^C$, usando, agora, a própria definição de complementar. Então, $A \subset \left(A^C\right)^C$. A prova de que $\left(A^C\right)^C \subset A$, item restante para podermos concluir que a igualdade desejada é válida, fica como exercício para o leitor.
- iii) Sejam A, B conjuntos tais que $A \subset B$. Além disso, seja $x \in B^C$, o que implica em $x \notin B$. Temos duas possibilidades para a presença de x no conjunto A, a saber, $x \in A$ e $x \notin A$. Se $x \in A$, teríamos $x \in B$ também pois $A \subset B$; um absurdo visto que já temos $x \notin B$. Logo, concluímos que $x \notin A$, ou seja, $x \in A^C$. Segue, então, que $B^C \subset A^C$.

1.5.2 Diferença

Definição 1.24 (Diferença de Conjuntos). A diferença do conjunto A por B, é o conjunto

$$A \setminus B = \{x ; x \in A \in x \notin B\}.$$

Observação. Em geral, não é verdade que $A \setminus B = B \setminus A$, pense em um par de conjuntos em que essa igualdade não é válida antes de ver o exemplo a seguir. Além disso, note que $A^C = \mathcal{U} \setminus A$.

Exemplo 1.25. Sejam $A = \{1, 2, 3\}$ e $B = \{2, 5\}$. Determine $A \setminus B$ e $B \setminus A$. Solução.

$$A \setminus B = \{1, 3\};$$

 $B \setminus A = \{5\}.$

1.5.3 União e Interseção

Definição 1.26 (União e Interseção). Dados os conjuntos A e B, definem-se:

i. A $uni\tilde{a}o$ $A \cup B$ como sendo o conjunto formado pelos elementos que pertencem a pelo menos um dos conjuntos A e B. Ou seja,

$$A \cup B = \left\{x \; ; \; x \in A \text{ ou } x \in B\right\}.$$

ii. A interseção $A \cap B$ como sendo o conjunto formado pelos elementos que pertencem a ambos A e B. Ou seja,

$$A \cap B = \{x \; ; \; x \in A \in x \in B\}$$
.

Exemplo 1.27. Sejam $A = \{1, 2, 3\}$ e $B = \{2, 5\}$. Determine $A \cup B$ e $A \cap B$. Solução.

$$A \cup B = \{1, 2, 3, 5\};$$

 $A \cap B = \{2\}.$

Proposição 1.28 (Propriedades da união e interseção). Para quaisquer conjuntos A, B e C, tem-se:

- i) Comutatividade:
 - a) $A \cup B = B \cup A$;
 - b) $A \cap B = B \cap A$.
- ii) Associatividade:
 - a) $(A \cup B) \cup C = A \cup (B \cup C);$
 - b) $(A \cap B) \cap C = A \cap (B \cap C)$.
- iii) a) $A \subset (A \cup B)$;
 - b) $(A \cap B) \subset A$.
- iv) Distributividade, de uma em relação à outra:
 - a) $A \cap (B \cup C) = (A \cap B) \cup (A \cap C);$
 - b) $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$.
- v) Leis de DeMorgan:
 - a) $(A \cup B)^C = A^C \cap B^C$;
 - b) $(A \cap B)^C = A^C \cup B^C$.

Demonstração.

- i) Exercício.
- ii) a) Exercício.
 - b) Provemos que $A \cap (B \cap C) \subset (A \cap B) \cap C$. Seja $x \in A \cap (B \cap C)$, isso é, $x \in A$ e $x \in B \cap C$. De $x \in B \cap C$, temos $x \in B$ e $x \in C$. Como $x \in A$ e $x \in B$, segue que $x \in A \cap B$. Além disso, $x \in C$. Então, $x \in A \cap (B \cap C)$. Logo, $A \cap (B \cap C) \subset (A \cap B) \cap C$.

A prova de que $A \cap (B \cap C) \supset (A \cap B) \cap C$, necessária para concluir a igualdade desejada, fica como exercício para o leitor.

- iii) a) Seja $x \in A$. Pela definição de união, segue que $x \in A \cup B$. Portanto, $A \subset (A \cup B)$;
 - b) Seja $x \in (A \cap B)$. Pela definição de interseção, segue que $x \in A$ e $x \in B$. Em particular, já temos que $x \in A$. Portanto, $(A \cap B) \subset A$.

Em decorrência dessa propriedade, vamos tratar como imediatos que: se $x \in A$, então $x \in (A \cup B)$; e se $x \in (A \cap B)$, então $x \in A$ (ou, caso convenha, $x \in B$).

- iv) Exercício.
- v) Exercício.

Atividade online. Notação Básica de Conjunto.

1.6 Conjuntos e Lógica

Em Matemática, a Teoria de Conjuntos está intimamente relacionada à Lógica. Como evidência disso, existem diversas equivalências entre relações e operadores de conjuntos e conectivos lógicos. Apresentar-se-ão quatro delas, mas antes vamos entender como usamos os símbolos \implies e \iff no nosso curso.

Na Lógica Proposicional, a implicação (\rightarrow) é um conectivo lógico. Ela constrói, a partir de duas proposições P e Q, uma terceira proposição $P \rightarrow Q$. O valor-verdade de $P \rightarrow Q$ é completamente determinado quando se conhecem os valores-verdade de P e Q. A relação exata pode ser consultada na Tabela 1.1, denominada tabela-verdade.

Tabela 1.1. Tabela-verdade da implicação:

P	Q	$P \to Q$
V	V	V
V	\mathbf{F}	\mathbf{F}
\mathbf{F}	V	V
F	F	V

A implicação aparece textualmente de algumas maneiras; a mais comum delas sendo "Se P, então Q". No caso de a afirmação anterior ser, por exemplo, um problema, interpreta-se o P como a sua hipótese, e Q, como a sua tese. Costuma-se escrever, também, nessa situação, $P \implies Q$ e reservar o $P \rightarrow Q$ para contextos puramente lógicos.

Para provar que uma implicação é verdadeira, o primeiro passo é considerar a hipótese P como uma propriedade verdadeira. Consequentemente, nossa atenção se restringe somente às duas primeiras linhas da tabela-verdade de $P \to Q$. Assim, pela tabela, constatamos que, para alcançarmos nosso objetivo de provar que a afirmação "Se P, então Q" é verdadeira, precisamos mostrar que a tese Q também é verdadeira.

Quando já está provado que "Se P, então Q" é verdadeira, utilizamos esse resultado para concluir que Q é verdadeira quando temos, também, que P é verdadeira. Isso pode, mais uma vez, ser verificado pela tabela-verdade de $P \to Q$: na única linha em que $P \to Q$ e P são verdadeiras, Q também é.

Outro conectivo lógico é o \leftrightarrow , chamado de bicondicional ou bi-implicação. Da mesma forma que a implicação – e os demais conectivos lógicos –, o valor-verdade da expressão $P \leftrightarrow Q$, dadas duas proposições P e Q, é totalmente determinado pelos valores-verdade dessas proposições. A relação se encontra na Tabela 1.2.

Tabela 1.2. Tabela-verdade da bi-implicação.

P	Q	$P \leftrightarrow Q$
V	V	V
V	\mathbf{F}	F
F	V	F
F	\mathbf{F}	V

Pela tabela, pode-se notar que a expressão $P \leftrightarrow Q$ é verdadeira quando P e Q têm o mesmo valor-verdade, e apenas nessa situação.

De forma similar ao que ocorre na implicação, reserva-se o símbolo \leftrightarrow para contextos lógicos, utilizando o \iff apenas em cenários menos formais. Textualmente, uma afirmação do tipo $P \iff Q$ costuma se manifestar como "P se, e somente se, Q". Isso começa a evidenciar um importante fato sobre a bi-implicação: ela pode ser definida como a conjunção de duas implicações. A frase "P se Q" é equivalente a "se Q, então P", o que, conforme já visto, pode ser representado como $Q \implies P$. Ademais, "P somente se Q" diz que P só pode ser verdade se Q também for, ou seja, $P \implies Q$. As frases, quando juntas, expressam a noção de bi-condicionalidade.

Outra versão textual comum do \iff é a sentença "Para P, é necessário e suficiente que Q". Assim como no caso do "se, e somente se", essa expressão carrega duas informações consigo. A frase "Para P, é necessário que Q" significa que a validade de P só é possível na presença da validade de Q, isso é, $P \implies Q$. Por outro lado, "Para P, é suficiente que Q" indica que basta Q ser verdade para P também ser, ou seja, $Q \implies P$.

Uma terceira forma de se apresentar a informação $P \iff Q$ é dizer que "P é equivalente a Q". Pode-se justificar essa construção pela tabela-verdade de $P \leftrightarrow Q$. Conforme mencionado, $P \leftrightarrow Q$ é verdade precisamente quando P e Q tem o mesmo valor-verdade. Em caso positivo, não existe uma diferença prática entre P e Q. Assim, usa-se o termo "equivalência", que também indica que, quando se tem uma dessas proposições, se tem a outra, já que elas possuem o mesmo valor-verdade.

Em todas as formas textuais vistas, o \iff pôde ser desmembrado em dois \implies . Isso reflete diretamente na maneira como se prova afirmações do tipo $P \iff Q$. O método consiste em demonstrar, de forma independente, que $P \implies Q$ e que $Q \implies P$. Aqui,

vale a discussão acerca de como provar afirmações com \implies . A diferença é que sempre se fazem necessárias duas provas desse tipo.

Explicados os usos do \implies e do \iff neste texto, podemos voltar a atenção à equivalência entre operadores e relações de conjuntos e conectivos lógicos. No restante desta seção, considere P e Q propriedades aplicáveis aos elementos de \mathcal{U} . Considere, também, $A = \{x \; ; \; x \; \text{satisfaz} \; P\}$ e $B = \{x \; ; \; x \; \text{satisfaz} \; Q\}$.

Equivalência 1.29 (Inclusão e implicação).

$$A \subset B$$
 é equivalente a $P \implies Q$.

Equivalência 1.30 (Igualdade e bi-implicação).

$$A = B$$
 é equivalente a $P \iff Q$.

Exemplo 1.31. Analise as implicações abaixo:

$$x^{2} + 1 = 0 \implies (x^{2} + 1)(x^{2} - 1) = 0 \cdot (x^{2} - 1)$$

$$\implies x^{4} - 1 = 0$$

$$\implies x^{4} = 1$$

$$\implies x \in \{-1, 1\}$$

Isso quer dizer que o conjunto solução de $x^2 + 1 = 0$ é $\{-1, 1\}$?

Solução. O conjunto-solução de $x^2+1=0$ é $S=\left\{x\in\mathbb{R}\;;\;x^2+1=0\right\}=\emptyset$, o que implica que $S\neq\{-1,1\}$.

Equivalência 1.32 (Complementar e negação). A^C é equivalente a $\neg P$.

Podemos combinar os itens ii) e iii) da Proposição 1.23 e obter que:

$$P \implies Q$$
 se, e somente se, $\neg Q \implies \neg P$.

Chamamos $Q \implies P$ de recíproca de $P \implies Q$, e $P \land \neg Q$ de negação de $P \implies Q$. É dado um exemplo no Exercício 12.

Exemplo 1.33. Observe as afirmações:

- i. Todo número primo maior do que 2 é ímpar;
- ii. Todo número par maior do que 2 é composto.

Essas afirmações dizem exatamente a mesma coisa, ou seja, exprimem a mesma ideia; só que com diferentes termos. Podemos reescrevê-las na forma de implicações vendo

claramente que uma é contrapositiva da outra, e todas estão sob a hipótese de que $n \in \mathbb{N}$, com n > 2:

$$n \text{ primo } \implies n \text{ ímpar}$$

$$\neg (n \text{ ímpar }) \implies \neg (n \text{ primo })$$

$$n \text{ par } \implies n \text{ composto}$$

Equivalencia 1.34 (União e disjunção). $A \cup B$ é equivalente a $P \vee Q$ (P ou Q).

Equivalência 1.35 (Interseção e conjunção). $A \cap B$ é equivalente a $P \wedge Q$ ($P \in Q$).

Observação. O conectivo lógico ou tem significado diferente do usado normalmente no português. Na linguagem coloquial, usamos P ou Q sem permitir que sejam as duas coisas ao mesmo tempo. Analise a seguinte história:

Um obstetra que também era matemático acabara de realizar um parto quando o pai perguntou: "É menino ou menina, doutor?". E ele respondeu: "sim".

As equivalências entre as relações e os operadores da Teoria dos Conjuntos e conectivos da Lógica são resumidas na Tabela 1.3.

Tabela 1.3. Equivalências entre as relações e operadores de conjuntos e conectivos lógicos.

Operação/relação em Conjuntos	Fórmula de Lógica
A = B	$P \iff Q$
$A \subset B$	$P \implies Q$
A^C	$\neg P$
$A \cup B$	$P \lor Q$
$A \cap B$	$P \wedge Q$

Problema 1.36. A polícia prende quatro homens, um dos quais cometeu um furto. Eles fazem as seguintes declarações:

- Arnaldo: Bernaldo fez o furto.

- Bernaldo: Cernaldo fez o furto.

– Dernaldo: eu não fiz o furto.

– Cernaldo: Bernaldo mente ao dizer que eu fiz o furto.

Se sabemos que só uma destas declarações é a verdadeira, quem é culpado pelo furto?

13

1.7 Exercícios

Exercício 1. De que outras formas podemos representar o conjunto vazio utilizando as duas notações de definição de conjuntos que conhecemos?

Exercício 2. Decida quais das afirmações a seguir estão corretas. Justifique suas respostas.

- a. $\emptyset \in \emptyset$;
- b. $\emptyset \subset \emptyset$;
- c. $\emptyset \in \{\emptyset\};$
- d. $\emptyset \subset \{\emptyset\}$.

Exercício 3. Complete as demonstrações em Propriedades da união e interseção que não foram feitas em sala de aula.

Exercício 4. Demonstre que os seguintes itens são equivalentes:

- a. $A \cup B = B$;
- b. $A \subset B$;
- c. $A \cap B = A$;

Dica. Para tanto, é preciso provar $\mathbf{a}. \iff \mathbf{b}. \in \mathbf{b}. \iff \mathbf{c}.$ Outra maneira é provar $\mathbf{a}. \implies \mathbf{b}.$, $\mathbf{b}. \implies \mathbf{c}.$ e por fim, $\mathbf{c}. \implies \mathbf{a}.$

Exercício 5. O diagrama de Venn para os conjuntos X, Y, Z decompõe o plano em oito regiões. Numere essas regiões e exprima cada um dos conjuntos abaixo como reunião de algumas dessas regiões. (Por exemplo: $X \cap Y = 1 \cup 2$.)

- a. $(X^C \cup Y)^C$;
- b. $(X^C \cup Y) \cup Z^C$;
- c. $(X^C \cap Y) \cup (X \cap Z^C)$;
- d. $(X \cup Y)^C \cap Z$.

Exercício 6. Exprimindo cada membro como reunião de regiões numeradas, prove as igualdades:

- a. $(X \cup Y) \cap Z = (X \cap Z) \cup (Y \cap Z);$
- b. $X \cup (Y \cap Z)^C = X \cup Y^C \cup Z^C$.

Exercício 7. Sejam A, B e C conjuntos. Determine uma condição necessária e suficiente para que se tenha

$$A \cup (B \cap C) = (A \cup B) \cap C$$

Exercício 8. Recorde a definição da diferença entre conjuntos:

$$B \setminus A = \{x ; x \in B \in x \notin A\}.$$

Mostre que

- a. $B \setminus A = \emptyset$ se, e somente se, $B \subset A$;
- b. $B \setminus A = B$ se, e somente se, $A \cap B = \emptyset$;
- c. Vale a igualdade $B \setminus A = A \setminus B$ se, e somente se, A = B;
- d. Determine uma condição necessária e suficiente para que se tenha

$$A \setminus (B \setminus C) = (A \setminus B) \setminus C.$$

Exercício 9. Dê exemplos de implicações, envolvendo conteúdos de ensino médio, que sejam: verdadeiras com recíproca verdadeira; verdadeiras com recíproca falsa; falsas, com recíproca verdadeira; falsas, com recíproca falsa.

Exercício 10. Considere P, Q e R condições aplicáveis aos elementos de um conjunto universo \mathcal{U} , e A, B e C os subconjuntos de \mathcal{U} dos elementos que satisfazem P, Q e R, respectivamente. Expresse, em termos de implicações entre P, Q e R, as seguintes relações entre os conjuntos A, B e C.

- a. $A \cap B^C \subset C$;
- b. $A^C \cup B^C \subset C$:
- c. $A^C \cup B \subset C^C$;
- d. $A^C \subset B^C \cup C$;
- e. $A \subset B^C \cup C^C$.

Exercício 11. Considere as seguintes (aparentes) equivalências lógicas:

$$x = 1 \iff x^2 - 2x + 1 = 0$$

$$\iff x^2 - 2 \cdot 1 + 1 = 0$$

$$\iff x^2 - 1 = 0$$

$$\iff x = \pm 1$$

Conclusão (?): $x = 1 \iff x = \pm 1$. Onde está o erro?

Exercício 12. Escreva as recíprocas, contrapositivas e negações matemáticas das seguintes afirmações:

a. Todos os gatos têm rabo; $(G \implies R)$

Recíproca: Se têm rabo então é gato; $(R \implies G)$

Contrapositiva: Se não tem rabo então não é gato; $(\sim R \implies \sim G)$

Negação: Existe um gato que não tem rabo. $(G \land \sim R)$

- b. Sempre que chove, eu saio de guarda-chuva ou fico em casa;
- c. Todas as bolas de ping pong são redondas e brancas;
- d. Sempre que é terça-feira e o dia do mês é um número primo, eu vou ao cinema;
- e. Todas as camisas amarelas ou vermelhas têm manga comprida;
- f. Todas as coisas quadradas ou redondas são amarelas e vermelhas.

Exercício 13. Considere os conjuntos: F composto por todos os filósofos; M por todos os matemáticos; C por todos os cientistas; e P por todos os professores.

- a. Exprima cada uma das afirmativas abaixo usando a linguagem de conjuntos:
 - (i) Todos os matemáticos são cientistas; (ii) Alguns matemáticos são professores; (iii) Alguns cientistas são filósofos; (iv) Todos os filósofos são cientistas ou professores; (v) Nem todo professor é cientista.
- b. Faça o mesmo com as afirmativas abaixo:
 - (vi) Alguns matemáticos são filósofos; (vii) Nem todo filósofo é cientista; (viii) Alguns filósofos são professores; (ix) Se um filósofo não é matemático, ele é professor; (x) Alguns filósofos são matemáticos.
- c. Tomando as cinco primeiras afirmativas como hipóteses, verifique quais das afirmativas do segundo grupo são necessariamente verdadeiras.

Exercício 14. Considere um grupo de 4 cartões, que possuem uma letra escrita em um dos lados e um número do outro. Suponha que seja feita, sobre esses cartões, a seguinte afirmação: Todo cartão com uma vogal de um lado tem um número ímpar do outro. Quais dos cartões abaixo você precisaria virar para verificar se essa afirmativa é verdadeira ou falsa?

1.8 Bibliografia

- [1] Elon L. Lima. N'umeros e $Funç\~oes$ Reais. $1^{\underline{a}}$ ed. SBM, 2013.
- [3] Elon L. Lima et al. A Matemática do Ensino Médio. Vol. 1. 9ª ed. SBM, 2006.
- [9] Krerley I. M. Oliveira e Adán J. C. Fernandez. Iniciação em Matemática: um Curso com Problemas e Soluções. 2ª ed. SBM, 2010.

Capítulo 2

Conjuntos Numéricos e Potenciação

2.1 Apresentação

Os números têm grande importância na matemática; eles podem servir para contar ou medir coisas. Conhecer os conjuntos numéricos e suas operações é indispensável para trabalhar corretamente com os números.

2.2 Conjuntos Numéricos

Nesta seção, serão introduzidos os principais conjuntos numéricos com os quais se trabalha na Matemática.

Definição 2.1. Ao conjunto $\mathbb{N} = \{0, 1, 2, \dots, n, n+1, \dots\}$, damos o nome de *conjunto dos números naturais*.

Alguns autores consideram que o conjunto dos números naturais não possui o 0. Um dos principais argumentos utilizados é o fato de que esses números foram inventados para contar coisas (casas, animais, etc), e, quando fazemos uma contagem, não a iniciamos no 1. Conforme a Definição 2.1, enxergamos, neste texto, o 0 como um número natural. No entanto, usaremos a notação especial \mathbb{N}^* para se referir ao conjunto $\mathbb{N} \setminus \{0\} = \{1, 2, \dots, n, n+1, \dots\}$.

Definição 2.2. Ao conjunto $\mathbb{Z} = \{\dots, -m-1, -m, \dots, -1, 0, 1, \dots, n, n+1, \dots\}$ damos o nome de *conjunto dos números inteiros*.

Usam-se, por conveniência, as seguintes notações para se referir a certas "variações" do conjunto dos inteiros:

$$\begin{split} \mathbb{Z}^* &= \mathbb{Z} \setminus \{0\} \ \text{(inteiros não nulos;)} \\ \mathbb{Z}_+ &= \mathbb{N} \ \text{(inteiros não negativos);} \\ \mathbb{Z}_+^* &= \mathbb{N}^* \ \text{(inteiros positivos);} \\ \mathbb{Z}_- &= \{\dots, -m-1, -m, \dots, -1, 0\} \ \text{(inteiros não positivos);} \\ \mathbb{Z}_-^* &= \mathbb{Z}_- \setminus \{0\} \ \text{(inteiros negativos).} \end{split}$$

Definição 2.3. Ao conjunto $\mathbb{Q} = \{p/q \; ; \; p,q \in \mathbb{Z} \; \text{e} \; q \neq 0\}$ damos o nome de *conjunto dos números racionais*.

Observação. A representação decimal de um número racional é finita ou é uma dízima periódica (infinita).

Exercício 1. Reescreva os números 0,6; 1,37; 0,222...; 0,313131... e 1,123123123... em forma de fração irredutível, ou seja, já simplificada.

Definição 2.4. O conjunto dos números irracionais é constituído por todos os números que possuem uma representação decimal infinita e não periódica.

Exemplo 2.5. $\sqrt{2}$, $e \in \pi$ são números irracionais.

Demonstração. Provemos que $\sqrt{2} \notin \mathbb{Q}$. Para tal, suponhamos, por absurdo, que $\sqrt{2} \in \mathbb{Q}$. Logo, existem $p, q \in \mathbb{Z}_+^*$ tais que p/q é uma fração irredutível, ou seja, p e q não possuem nenhum fator comum nas suas decomposições em fatores primos. Teremos:

$$\sqrt{2} = \frac{p}{q} \implies 2 = \frac{p^2}{q^2}$$
$$\implies 2q^2 = p^2$$

Isso é um absurdo pois, enquanto que o número $2q^2$ possui uma quantidade ímpar de fatores 2, o número p^2 possui uma quantidade par. Esse fato contraria o Teorema Fundamental da Aritmética, que garante a unicidade da decomposição dos números inteiros em fatores primos. Portanto, $\sqrt{2} \notin \mathbb{Q}$.

As provas de que π e e são irracionais vão além do escopo desse texto.

Comparando infinitos

Você sabia que existem infinitos "maiores" que outros? Qual conjunto você diria que tem mais elementos: racionais ou irracionais? O problema a seguir, proposto pelo matemático alemão David Hilbert em 1924, ilustra a ideia de enumeração de elementos de conjuntos infinitos.

O Grande Hotel Georg Cantor tinha uma infinidade de quartos, numerados con-

secutivamente, um para cada número natural. Todos eram igualmente confortáveis. Num fim de semana prolongado, o hotel estava com seus quartos todos ocupados, quando chega um visitante. A recepcionista vai logo dizendo:

— Sinto muito, mas não há vagas.

Ouvindo isto, o gerente interveio:

— Podemos abrigar o cavalheiro sim, senhora.

E ordenou:

— Transfira o hóspede do quarto 1 para o quarto 2, passe o do quarto 2 para o quarto 3 e assim por diante. Quem estiver no quarto n, mude para o quarto n+1. Isso manterá todos alojados e deixará disponível o quarto 1 para o recém chegado.

Logo depois, chegou um ônibus com 30 passageiros, todos querendo hospedagem. Como deve proceder a recepcionista para acomodar todos?

Horas depois, chegou um trem com uma infinidade de passageiros. Como proceder para acomodá-los?

Atividade online. Classifique números: racionais e irracionais.

Atividade online. Expressões racionais versus irracionais.

Definição 2.6. À união de \mathbb{Q} com o conjunto dos números irracionais, nomeamos de conjunto dos números reais. Denotamo-la por \mathbb{R} .

Usamos os números reais para medir grandezas contínuas. A cada número real está associado um ponto na reta graduada, e vice-versa.

O conjunto dos números reais é "denso" no sentido de que, entre quaisquer dois números reais distintos, há um número racional e um irracional. Já este vídeo da Khan Academy mostra que, além disso, entre dois racionais distintos sempre há um número irracional.

Quando se trata de números reais, são frequentes as ocasiões nas quais nossa intuição inicial pode ser falha. Uma delas é a respeito de dízimas periódicas. Você consegue afirmar se a igualdade $0\,999\ldots=1$ é verdadeira?

Definição 2.7. Chamamos $i = \sqrt{-1}$ de número imaginário, e ao conjunto $\mathbb{C} = \{a + bi ; a, b \in \mathbb{R}\}$ damos o nome de conjunto dos números complexos.

Os conjuntos estudados até aqui estão relacionados por meio da seguinte cadeia de inclusões próprias:

$$\mathbb{N}\subset\mathbb{Z}\subset\mathbb{Q}\subset\mathbb{R}\subset\mathbb{C}$$

Definição 2.8. Seja $a + bi \in \mathbb{C}$. Nomeamos o número a - bi de conjugado de a + bi.

2.3 Operações Básicas

Definem-se duas operações básicas com os elementos dos conjuntos numéricos: adição e multiplicação. A subtração e a divisão provêm da adição e da multiplicação, respectivamente. A diferença a-b pode ser vista como a+(-b), e a razão c/d, como $c\cdot(1/d)$, onde $a,b,c,d\in\mathbb{R}$ com $d\neq 0$.

Você está bem treinado nas operações com frações? Dê uma treinada na Khan Academy aqui!

2.4 Potenciação

Definição 2.9. A potência $n \in \mathbb{N}^*$ de um número real a é definida como sendo a multiplicação de a por ele mesmo n vezes, ou seja:

$$a^n = \underbrace{a \cdot a \dots a}_{n \text{ vezes}}.$$

Definição 2.10. Quando $a \neq 0$, $a^0 = 1$. 0^0 é uma indeterminação. Além disso, para $n \in \mathbb{R}_+^*$, tem-se que:

$$a^{-n} = \frac{1}{a^n};$$
$$a^{1/n} = \sqrt[n]{a}.$$

É comum definir $0^0=1$ dependendo de como se quer abordar as potências. Saiba mais aqui.

Proposição 2.11 (Propriedades). Sejam $a, b, n, m \in \mathbb{R}$, a menos que se diga o contrário.

- i. $a^m \cdot a^n = a^{m+n}$, com $a \neq 0$ ou $m \neq -n$;
- ii. $\frac{a^m}{a^n} = a^{m-n}, \text{ com } a \neq 0;$
- iii. $(a^m)^n = a^{m \cdot n}$, com $a \neq 0$ ou $m \cdot n \neq 0$;
- iv. $a^{m^n} = a^{\overbrace{m \cdot m \dots m}^{n \text{ vezes}}}$, com $n \in \mathbb{N}^*$, e $a \neq 0$ ou $m \neq 0$;
- v. $(a \cdot b)^n = a^n \cdot b^n$, com $a \neq 0$ ou $a \cdot b \neq 0$;
- vi. $\left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}$, com $b \neq 0$ e $n \neq 0$;
- vii. $a^{\frac{m}{n}} = \sqrt[n]{a^m}$, com $n \neq 0$, e $a \neq 0$ ou $m \neq 0$.

Observação. Seja $a \in \mathbb{R}$. Temos que $\sqrt{a^2} = |a|$. Mais geralmente, $\sqrt[n]{a^n} = |a|$ para n par. Além disso, é errado dizer que $\sqrt{4} = \pm 2$. O correto é $\sqrt{4} = 2$, mesmo que escrevas $\sqrt{4} = \sqrt{(-2)^2}$.

O erro apresentado é comum, e o fator de confusão é que responder o conjunto-solução da equação $x^2=4$ não é equivalente a responder qual a raiz de 4, e sim responder quais números que elevados ao quadrado são iguais a 4.

Atividade online. Propriedades da potenciação (expoentes racionais).

Atividade online. Simplifique raízes quadradas (variáveis).

Atividade online. Simplifique expressões de raiz quadrada.

2.5 Exercícios

2.6 Bibliografia

- [4] Elon L. Lima et al. A Matemática do Ensino Médio. Vol. 1. 9ª ed. SBM, 2006.
- [6] Valéria Z. Medeiros et al. Em Pré-Cálculo. 2ª ed. Cengage Learning, 2009.

Capítulo 3

Equações e Inequações

3.1 Introdução

Como você responderia se te perguntassem: Qual o número cujo dobro somado com sua quinta parte é igual a 121? Você já viu alguma brincadeira do tipo? A seguir, temos outro exemplo:

- 1. Escolha um número;
- 2. Multiplique esse número por 6;
- **3**. Some 12;
- 4. Divida por 3;
- 5. Subtraia o dobro do número que você escolheu;
- **6**. O resultado é igual a 4.

3.2 Equação do 1° grau

Definição 3.1. Uma equação do primeiro grau na variável x é uma expressão da forma

$$ax + b = 0$$
.

onde $a, b \in \mathbb{R}$, $a \neq 0$ e x é um número real a ser encontrado.

Proposição 3.2 (Propriedades). Sejam $a, b, c \in \mathbb{R}$. Os seguintes valem:

- i. $a = b \implies a + c = b + c$;
- ii. $a = b \implies ac = bc$.

Exemplo 3.3. Resolva a equação 5x - 3 = 6.

Solução. Utilizaremos as propriedades dadas na Proposição 3.2 para resolver a equação.

$$5x - 3 = 6 \iff 5x - 3 + 3 = 6 + 3$$
 (i., com $c = 3$)
$$\iff 5x = 9$$
 (Aritmética)
$$\iff \frac{5x}{5} = \frac{9}{5}$$
 (ii., com com $c = \frac{1}{5}$)
$$\iff x = \frac{9}{5}$$

Exemplo 3.4. Escreva em forma de expressões cada passo da brincadeira da Introdução:

- 1. Escolha um número;
- 2. Multiplique esse número por 6;
- **3**. Some 12;
- 4. Divida por 3;
- 5. Subtraia o dobro do número que você escolheu;
- **6**. O resultado é igual a 4.

Solução.

- **1**. *x*
- **2**. 6x
- 3. 6x + 12
- 4. $\frac{6x+12}{3}$
- **5**. $\frac{6x+12}{3} 2x$
- **6**. $\frac{6x+12}{3} 2x = 4$

Observação. Deve-se ter cuidado ao efetuar divisões em ambos os lados de uma equação para não cometer o erro de dividir os lados por zero. Do contrário, pode-se derivar absurdos matemáticos. A seguir, temos um exemplo de "prova" de que 1=2:

$$0 = 0 \implies 1 - 1 = 2 - 2$$

$$\implies 1 \cdot (1 - 1) = 2 \cdot (1 - 1)$$

$$\implies 1 = 2$$

Qual o erro?

Atividade online (Modelo com equações de primeiro grau e resolução). Veja o desempenho na Missão 7° ano – Introdução às equações e inequações.

Exemplo 3.5. Se x representa um dígito na base 10 na equação

$$x11 + 11x + 1x1 = 777$$
,

qual o valor de x?

Solução. Seja $x \in \{0, 1, \dots, 9\}$. Teremos:

$$x11 + 11x + 1x1 = 777 \iff 100x + 11 + 10x + 100 + 110 + x = 777$$

$$\iff 111x + 222 = 777$$

$$\iff 111x = 555$$

$$\iff x = 5$$

Logo, x = 5.

Exemplo 3.6. Determine se é possível completar o preenchimento do tabuleiro abaixo com os números naturais de 1 a 9, sem repetição, de modo que a soma de qualquer linha seja igual à de qualquer coluna ou diagonal.

1		6
	9	

Os tabuleiros preenchidos com essas propriedades são conhecidos como quadrados mágicos.

Solução. Seja c o valor constante da soma de cada uma das linhas, colunas ou diagonais. Note que a soma das 3 linhas será:

$$3c = 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 = 45 \iff c = 15$$

Usaremos a notação posicional de matrizes para os quadrados q_{ij} . Da configuração inicial e da definição de quadrado mágico, além do valor de c, segue que:

$$1 + q_{12} + 6 = 15 \iff q_{12} = 8$$

 $q_{12} + q_{22} + 9 = 15 \iff 8 + q_{22} + 9 = 15$
 $\iff q_{22} = -2$

Os quadrados q_{ij} não podem conter números negativos. Logo, não é possível montar um quadrado mágico com a configuração inicial dada.

Exemplo 3.7. Imagine que você possui um fio de cobre extremamente longo, mas tão longo que você consegue dar a volta na Terra com ele. Para simplificar, considere que a Terra é uma bola redonda e que seu raio é de exatamente 6.378.000 metros.

O fio com seus milhões de metros está ajustado à Terra, ficando bem colado ao chão ao longo do Equador. Digamos, agora, que você acrescente 1 metro ao fio e o molde de modo que ele forme um círculo enorme, cujo raio é um pouco maior que o raio da Terra e tenha o mesmo centro. Você acha que essa folga será de que tamanho?

Solução. Consideremos C o comprimento do círculo máximo da Terra, r e r' os raios desse círculo antes e depois do aumento do fio, respectivamente, e f o tamanho da folga. Ora,

$$C + 1 = 2\pi r' \iff 2\pi r + 1 = 2\pi r'$$

$$\iff 2\pi r + 1 = 2\pi (r + f) = 2\pi r + 2\pi f$$

$$\iff 1 = 2\pi f$$

$$\iff f = \frac{1}{2\pi}$$

$$(C = 2\pi r)$$

$$(r' = r + f)$$

Logo, $f = 1/(2\pi)$ metros.

No Exemplo 3.7, a folga obtida aumentando-se o fio independe do raio em consideração. Além desse problema, veja outras curiosidades sobre o número π no vídeo 0 Pi existe e tente calculá-lo em casa usando algum objeto redondo.

3.3 Equação do 2° grau

Definição 3.8. A equação do segundo grau com coeficientes a, b e c é uma equação da forma

$$ax^2 + bx + c = 0,$$

onde $a, b, c \in \mathbb{R}$, $a \neq 0$ e x é uma variável real a ser determinada.

Exemplo 3.9. Encontre as soluções de uma equação do segundo grau.

Solução. Da Definição 3.8, sabemos que uma equação do segundo grau tem a seguinte forma:

$$ax^2 + bx + c = 0.$$

onde $a, b, c \in \mathbb{R}$, com $a \neq 0$. Manipulemos a equação para encontrar o valor de x:

$$ax^{2} + bx + c = 0 \iff x^{2} + \frac{b}{a}x + \frac{c}{a} = 0$$

$$\iff x^{2} + 2\frac{b}{2a}x + \left(\frac{b}{2a}\right)^{2} - \left(\frac{b}{2a}\right)^{2} + \frac{c}{a} = 0$$

$$\iff \left(x + \frac{b}{2a}\right)^{2} = \frac{b^{2}}{4a^{2}} - \frac{c}{a} = \frac{b^{2} - 4ac}{4a^{2}}$$

$$\iff \left|x + \frac{b}{2a}\right| = \sqrt{\frac{b^{2} - 4ac}{4a^{2}}}$$

$$\iff x + \frac{b}{2a} = \pm\sqrt{\frac{b^{2} - 4ac}{4a^{2}}} = \pm\sqrt{\frac{b^{2} - 4ac}{\pm 2a}} = \pm\frac{\sqrt{b^{2} - 4ac}}{2a}$$

$$\iff x = \frac{-b \pm\sqrt{b^{2} - 4ac}}{2a}$$

Portanto, quando $b^2 - 4ac \ge 0$, o conjunto-solução S da equação será:

$$S = \left\{ \frac{-b - \sqrt{b^2 - 4ac}}{2a}, \frac{-b + \sqrt{b^2 - 4ac}}{2a} \right\}$$

Atividade online (Equações do segundo grau com cálculo de raízes quadradas: com etapas).

Atividade online (Método de completar quadrados). Veja o desempenho na Missão Álgebra I – Equações do segundo grau.

Definição 3.10. Chamamos de discriminante da equação do segundo grau a expressão $b^2 - 4ac$ e denotamos pela letra grega maiúscula Δ (lê-se delta).

Observação. O número de soluções de uma equação do segundo grau é totalmente determinado pelo sinal do seu discriminante, de forma tal que:

- Se $\Delta > 0$, existem duas soluções reais;
- Se $\Delta = 0$, existe uma solução real $(x_1 = x_2 = -b/2a)$;
- Se $\Delta < 0$, não existe solução real.

Exemplo 3.11. Sabendo que x é um número real que satisfaz a equação:

$$x = 1 + \frac{1}{1 + \frac{1}{x}},$$

determine os valores possíveis de x.

Solução. Manipulemos a equação:

$$x = 1 + \frac{1}{1 + \frac{1}{x}} \iff x\left(1 + \frac{1}{x}\right) = \left(1 + \frac{1}{x}\right) + 1$$

$$\iff x + 1 = \frac{1}{x} + 2$$

$$\iff x^2 + x = 1 + 2x$$

$$\iff x^2 - x - 1 = 0$$

$$\iff x = \frac{1 \pm \sqrt{5}}{2}$$

Logo, as soluções são $\left(1-\sqrt{5}\right)/2$ e $\left(1+\sqrt{5}\right)/2$.

Observação. O número $\phi = \frac{\left(1+\sqrt{5}\right)}{2}$ é conhecido como razão áurea, número de ouro, proporção divina, entre outras denominações. Veja o episódio A Proporção Divina parte 01 e parte 02 do programa português Isto É Matemática.

Atividade online (Fórmula de Bhaskara). Veja o desempenho na Missão Álgebra I – Equações do segundo grau.

Teorema 3.12. Os números α e β são as raízes da equação do segundo grau:

$$ax^2 + bx + c = 0$$

se, e somente se,

$$\alpha + \beta = \frac{-b}{a}$$
 e $\alpha\beta = \frac{c}{a}$.

Demonstração. Sejam α e β raízes da equação do 2° grau $ax^2 + bx + c = 0$. Do Exemplo 3.9, temos:

$$\alpha+\beta=\frac{-b+\sqrt{\Delta}}{2a}+\frac{-b-\sqrt{\Delta}}{2a}=\frac{-2b}{2a}=\frac{-b}{a}$$

$$\alpha\beta=\frac{c}{a} \text{ (exercício)}$$

3.4 Inequação do 1° grau

Definição 3.13. Uma inequação do primeiro grau é uma relação de uma das seguintes formas:

$$ax + b < 0;$$

$$ax + b > 0;$$

$$ax + b \le 0;$$

$$ax + b \ge 0;$$

onde $a, b \in \mathbb{R}$ e $a \neq 0$. Lemos os símbolos da seguinte maneira: < (menor que), > (maior que), < (menor ou igual que) e > (maior ou igual que).

Observação. O $conjunto\ solução$ de uma inequação do primeiro grau é o conjunto S de números reais que satisfazem a inequação, isto é, o conjunto de números que, quando substituídos na inequação, tornam a desigualdade verdadeira.

Proposição 3.14. Sejam $a, b, c, d \in \mathbb{R}$; $n \in \mathbb{N}^*$. Os seguintes valem:

- i. Invariância por adição de números reais: $a < b \implies a + c < b + c$;
- ii. Invariância por multiplicação de números reais positivos: $a < b; c > 0 \implies a \cdot c < b \cdot c;$
- iii. Mudança por multiplicação de números reais negativos: $a < b; c < 0 \implies a \cdot c > b \cdot c;$
- iv. Se a < b, então $\frac{1}{a} > \frac{1}{b}$, para $a, b \neq 0$;
- v. Se $a, b \ge 0$ e c > 0, segue que $a < b \implies a^c < b^c$;
- vi. Se a, b < 0 e n par, segue que $a < b \implies a^n > b^n$;
- vii. Se a, b < 0 e n impar, segue que $a < b \implies a^n < b^n$;
- viii. Se a < b e c < d, então a + c < b + d;
- ix. Para $a, b, c, d \in \mathbb{R}_+$. Se a < b e c < d, então ac < bd.

Os resultados são análogos para os tipos >, \leq e \geq .

Exemplo 3.15. Qual o conjunto solução da inequação $8x - 4 \ge 0$?

Solução. Note que:

$$8x - 4 \ge 0 \iff 8x \ge 4$$

$$\iff x \ge \frac{1}{2}$$

Logo, o conjunto-solução da equação é $S = \{x \in \mathbb{R} ; x \ge 1/2\}$. A seguir, é exibida uma resolução alternativa da inequação:

$$8x - 4 \ge 0 \iff -4 \ge -8x$$
$$\iff \frac{-4}{-8} \le x$$
$$\iff \frac{1}{2} \le x$$

Exemplo 3.16. Antes de fazer os cálculos, diga qual dos números $a = 3456784 \cdot 3456786 + 3456785 e <math>b = 3456785^2 - 3456788$ é maior.

Solução. Suponha que a > b. Faça x = 3456784. Teremos:

$$x(x+2) + x + 1 > (x+1)^{2} - (x+4) \iff x(x+1+1) + x + 1 > (x+1)^{2} - (x+4)$$

$$\iff x(x+1) + x + (x+1) > (x+1)^{2} - x - 4$$

$$\iff (x+1)(x+1) + x > (x+1)^{2} - x - 4$$

$$\iff (x+1)^{2} > (x+1)^{2} - 2x - 4$$

$$\iff 0 > -2x - 4$$

$$\iff 4 > -2x$$

$$\iff -2 < x,$$

o que é uma verdade pois x = 3456784. Logo, a > b.

Atividade online (Problemas com Inequações). Veja o desempenho na Missão 7° Ano – Introdução às Equações e Inequações.

3.5 Inequação do 2° grau

Definição 3.17. Uma inequação do segundo grau é uma relação de uma das formas a seguir:

$$ax^{2} + bx + c < 0;$$

$$ax^{2} + bx + c > 0;$$

$$ax^{2} + bx + c \le 0;$$

$$ax^{2} + bx + c \le 0;$$

onde $a, b, c \in \mathbb{R}$, com $a \neq 0$.

Exemplo 3.18. Resolva as seguintes inequações: $x^2 - 3x + 2 > 0$; $x^2 - 3x + 2 \le 0$.

Solução. Observe que:

$$x^{2} - 3x + 2 = (x - 2)(x - 1) > 0$$

logo, teremos:

Figura 3.1

Assim, $S=\{x\in\mathbb{R}\;;\;x<1\;\text{ou}\;x>2\}.$ Ademais, a solução \bar{S} para a inequação $x^2-3x+2\leq 0$ será:

$$\bar{S} = \{x \in \mathbb{R} ; x \ge 1 \text{ e } x \le 2\}$$
$$= \{x \in \mathbb{R} ; 1 \le x \le 2\}$$

Exemplo 3.19. Prove que a soma de um número positivo com seu inverso é sempre maior ou igual a 2.

Demonstração. Queremos provar que $x+1/x\geq 2,$ para todo x>0. Note que:

$$x + \frac{1}{x} \ge 2 \iff \frac{x^2 + 1 - 2x}{x}$$
$$\iff \frac{(x - 1)^2}{x}$$

Figura 3.2

Logo, para que $x+1/x \ge 2$, é necessário e suficiente que x>0, ou seja, x é positivo. \square

3.6 Módulos

Definição 3.20. O módulo (ou valor absoluto) de um número real x, denotado por |x|, é definido por:

$$|x| = \begin{cases} x, & \text{se } x \ge 0 \\ -x, & \text{se } x < 0. \end{cases}$$

Para resolver equações modulares, usaremos dois métodos:

- Eliminação do módulo pela definição;
- Partição em intervalos.

Exemplo 3.21. Resolva as equações

- (a) |2x 5| = 3;
- (b) |2x 3| = 1 3x;
- (c) |3-x|-|x+1|=4.

Solução.

(a) Note que:

$$|2x - 5| = \begin{cases} 2x - 5, & \text{se } 2x - 5 \ge 0 \iff x \ge 5/2\\ -(2x - 5), & \text{se } 2x - 5 < 0 \iff x < 5/2 \end{cases}$$

Se $x \ge 5/2$, teremos:

$$|2x - 5| = 3 \iff 2x - 5 = 3$$
$$\iff x = 4$$

Como $x = 4 \ge 5/2$, temos que $4 \in S$.

Se x < 5/2, teremos:

$$|2x - 5| = 3 \iff -(2x - 5) = 3$$
$$\iff -2x = 2$$
$$\iff x = 1$$

Como x = 1 < 5/2, então $1 \in S$.

Das análises dos dois casos, concluímos que o conjunto solução é $S = \{1, 4\}$.

(b) Observe que:

$$|2x - 3| = \begin{cases} 2x - 3, & \text{se } 2x - 3 \ge 0 \iff x \ge \frac{3}{2} \\ -(2x - 3), & \text{se } 2x - 3 < 0 \iff x < \frac{3}{2} \end{cases}$$

Se $x \ge 3/2$, teremos:

$$|2x - 3| = 1 - 3x \iff 2x - 3 = 1 - 3x$$
$$\iff x = \frac{4}{5}$$

Como 4/5 < 3/2, então $4/5 \notin S$.

Se x < 3/2, teremos:

$$|2x - 3| = 1 - 3x \iff -(2x - 3) = 1 - 3x$$
$$\iff x = -2$$

Como -2 < 3/2, então $-2 \in S$.

Das análises dos dois casos, concluímos que o conjunto solução é $S=\{2\}$.

(c) Note que:

$$|3-x| = \begin{cases} 3-x, & \text{se } 3-x \ge 0 \iff x \ne 3\\ -(3-x), & \text{se } 3-x < 0 \iff x > 3 \end{cases}$$
$$|x+1| = \begin{cases} x+1, & \text{se } x+1 \ge 0 \iff x \ge -1\\ -(x+1), & \text{se } x+1 < 0 \iff x < -1 \end{cases}$$

- Caso x < -1:

$$|3-x|-|x+1|=4 \iff 3-x-\left[-(x+1)\right]=4$$

 $\iff 4=4 \text{ para todo } x \in \mathbb{R}$

Temos, então, que x < -1 é solução para a equação.

- Caso $-1 \le x \le 3$:

$$|3 - x| - |x + 1| = 4 \iff 3 - x - (x + 1) = 4$$
$$\iff -2x + 2 = 4$$
$$\iff x = -1$$

Logo, x = -1 é solução da equação.

- Caso x > 3:

$$|3 - x| - |x + 1| = 4 \iff -(3 - x) - (x + 1) = 4$$

 $\iff -4 = 4$

Nesse caso, não há soluções.

Das análises dos casos, conclui-se que $S = \{x \in \mathbb{R} ; x \leq -1\}.$

Atividade online (Resolva Equações Modulares). Veja o desempenho na Missão O Mundo da Matemática.

Proposição 3.22 (Propriedades de inequações modulares). Sejam $x \in \mathbb{R}$, $a \in \mathbb{R}_+^*$.

- i. $|x| \ge 0$;
- ii. $|x| < a \Leftrightarrow -a < x < a$;
- iii. $|x| > a \Leftrightarrow x > a \text{ ou } -x < -a;$
- iv. $-|x| \le x \le |x|$.

Os resultados (ii) e (iii) também são válidos para os casos com \leq ou \geq .

Exemplo 3.23. Resolva as inequações:

- (a) |2x 5| < 3;
- (b) $|2x 3| \ge 1 3x$;
- (c) $|3-x|-|x+1| \le 4$.

Solução.

- (a) Exercício.
- (b) Exercício.
- (c) Note que:

$$|3-x| = \begin{cases} 3-x, & \text{se } 3-x \ge 0 \iff x \le 3\\ -(3-x), & \text{se } 3-x < 0 \iff x > 3 \end{cases}$$
$$|x+1| = \begin{cases} x+1, & \text{se } x+1 \ge 0 \iff x \ge 1\\ -(x+1), & \text{se } x+1 < 0 \iff x < -1 \end{cases}$$

- Caso x < -1:

$$|3-x|-|x+1| \le 4 \iff 3-x-\left[-(x+1)\right] \le 4$$

 $-\iff 4 \le 4 \quad \text{para todo } x \in \mathbb{R}$

A interseção das restrições para este caso é calculada na Figura 3.3.

Figura 3.3

Da figura, conclui-se que x<-1 é solução para a inequação.

- Caso $-1 \le x \le 3$:

$$|3-x|-|x+1| \le 4 \iff 3-x-(x+1) \le 4$$

 $\iff -2x+2 \le 4$
 $\iff x \ge -1$

A interseção das restrições para este caso é calculada na Figura 3.4.

Figura 3.4

Pela figura, conclui-se que $-1 \leq x \leq 3$ é solução para a inequação.

- Caso x > 3:

$$|3-x|-|x+1| \le 4 \iff -(3-x)-(x+1) \le 4$$

 $\iff -4 \le 4 \text{ para todo } x \in \mathbb{R}$

Na Figura 3.5, é calculada a interseção das restrições para este caso.

Figura 3.5

A partir da análise da figura, conclui-se que x>3 também é solução para a inequação.

Na Figura 3.6, é calculada a união das soluções de todos os casos.

Figura 3.6

Das análises dos três casos e da figura, pode-se concluir que o conjunto solução da inequação é o próprio conjunto dos números reais.

3.7 Desigualdades Clássicas

Para iniciar, apresentamos algumas desigualdades simples mas famosas, válidas para quaisquer $a, b \in \mathbb{R}$:

- $|a| \ge 0;$
- $-a^2 \ge 0;$
- $|a+b| \leq |a| + |b|$ (desigual
dade triangular).

Teorema 3.24. Para quaisquer $x, y \in \mathbb{R}$, vale:

$$xy \le \frac{x^2 + y^2}{2}.$$

Além disso, a igualdade acontece se, e somente se, x = y.

Demonstração. Sejam $x, y \in \mathbb{R}$. Sabemos que $(x-y)^2 \ge 0$. Segue que:

$$(x - y)^{2} \ge 0 \iff x^{2} - 2xy + y^{2} \ge 0$$
$$\iff 2xy \le x^{2} + y^{2}$$
$$\iff xy \le \frac{x^{2} + y^{2}}{2}$$

Ademais, note que a igualdade $xy = \frac{x^2 + y^2}{2}$ ocorre quando:

$$xy = \frac{x^2 + y^2}{2} \iff (x - y)^2 = 0$$
$$\iff x - y = 0$$
$$\iff x = y$$

Teorema 3.25. Para quaisquer $a, b \in \mathbb{R}_+$, vale:

$$\sqrt{ab} \le \frac{a+b}{2}.$$

Além disso, a igualdade acontece se, e somente se, a = b.

Demonstração. Sejam $a, b \in R_+$. Para provar o teorema, basta aplicar o Teorema 3.24 com $x = \sqrt{a}$ e $y = \sqrt{b}$.

Teorema 3.26 (Desigualdade das médias aritmética e geométrica). Para quaisquer $n \in \mathbb{N}^*$ e $a_1, a_2, \ldots, a_n \in \mathbb{R}_+$, vale:

$$\sqrt[n]{a_1 \dots a_n} \le \frac{a_1 + \dots + a_n}{n}.$$

Teorema 3.27 (Desigualdade das médias harmônica e geométrica). Para quaisquer $n \in \mathbb{N}^*$ e $a_1, a_2, \ldots, a_n \in \mathbb{R}_+^*$, vale:

$$\frac{n}{\frac{1}{a_1} + \dots + \frac{1}{a_n}} \le \sqrt[n]{a_1 \dots a_n}.$$

Demonstração. Sejam $a_1, a_2, \ldots, a_n \in \mathbb{R}_+^*$. Considere $b_i = \frac{1}{a_i}$ para todo $i \in \{1, 2, \ldots, n\}$. Usando o Teorema 3.26 com todos os b_i , tem-se que:

$$\sqrt[n]{b_1 \cdot \dots \cdot b_n} \le \frac{b_1 + \dots + b_n}{n} \iff \frac{n}{b_1 + \dots + b_n} \le \frac{1}{\sqrt[n]{b_1 \cdot \dots \cdot b_n}}$$

$$\iff \frac{n}{\frac{1}{a_1} + \dots + \frac{n}{a_n}} \le \frac{1}{\sqrt[n]{\frac{1}{a_1 \cdot \dots \cdot a_n}}}$$

$$= \frac{1}{\frac{1}{\sqrt[n]{a_1 \cdot \dots \cdot a_n}}}$$

$$= \sqrt[n]{a_1 \cdot \dots \cdot a_n}$$

Teorema 3.28 (Desigualdade de Cauchy-Schwarz). Sejam $x_1, \ldots, x_n, y_1, \ldots y_n \in \mathbb{R}$. O seguinte vale:

$$|x_1y_1 + \dots + x_ny_n| \le \sqrt{x_1^2 + \dots + x_n^2} \cdot \sqrt{y_1^2 + \dots + y_n^2}.$$

Além disso, a igualdade só ocorre se existir um número real α tal que $x_1 = \alpha y_1$, ..., $x_n = \alpha y_n$.

Exemplo 3.29. Duas torres são amarradas por uma corda APB que vai do topo A da primeira torre para um ponto P no chão, entre as torres, e então até o topo B da segunda torre. Qual a posição do ponto P que nos dá o comprimento mínimo da corda a ser utilizada?

Solução. Tomando B' como o reflexo de B em relação ao chão, conforme a Figura 3.7, temos que o comprimento da corda $\overline{AP} + \overline{PB}$ é igual a $\overline{AP} + \overline{PB'}$.

Traçando AB' e tomando P' como a interseção de AB' com o chão, tem-se que P' é a solução do problema pois, pela desigualdade triangular, segue que:

$$\overline{AP'} + \overline{P'B} = \overline{AP'} + \overline{P'B'}$$

$$= \overline{AB'}$$

$$\leq \overline{AP} + \overline{PB'}$$

$$= \overline{AP} + \overline{PB}$$

Logo, $\overline{AP'} + \overline{P'B} \le \overline{AP} + \overline{PB}$.

Exemplo 3.30. Prove que, num triângulo retângulo, a altura relativa à hipotenusa é sempre menor ou igual que a metade da hipotenusa. Prove, ainda, que a igualdade só ocorre quando o triângulo retângulo é isósceles.

Solução. Considere um triângulo retângulo como o da Figura 3.7.

40

Queremos provar que $h \leq \frac{a}{2}$. Da semelhança entre AHC e BAC, segue que:

$$\frac{b}{h} = \frac{a}{c} \iff ah = bc$$

Do Teorema 3.24, segue que:

$$ah = bc \le \frac{b^2 + c^2}{2} = \frac{a^2}{2},$$

ou seja,

$$ah \le \frac{a^2}{2} \iff h \le \frac{a}{2}.$$

Além disso, a igualdade só será válida quando b=c, ou seja, quando o triângulo for isósceles.

Exemplo 3.31. Prove que, entre todos os triângulos retângulos de catetos a e b, e com hipotenusa c fixada, o que tem maior soma dos catetos S = a + b é o triângulo isósceles.

Solução. Seja um triângulo retângulo com hipotenusa c fixada e catetos a e b. Utilizando a Desigualdade de Cauchy-Schwarz com $x_1=a, x_2=b, y_1=1$ e $y_2=1$, temos que:

$$|a \cdot 1 + b \cdot 1| \le \sqrt{a^2 + b^2} \cdot \sqrt{1^2 + 1^2} \iff S = a + b \le c\sqrt{2}.$$

Além disso, da Desigualdade, segue que S é igual a $c\sqrt{2}$, ou seja, atinge seu valor máximo se, e somente se, $a=\alpha\cdot 1$ e $b=\alpha\cdot 1$ para certo $\alpha\in\mathbb{R}$. Logo, o triângulo deve ser isósceles, com a=b.

3.8 Exercícios

Exercício 1. Descubra os valores de x de modo que seja possível completar o preenchimento do quadrado mágico abaixo:

Exercício 2. Observe as multiplicações a seguir:

- i. $12.345.679 \cdot 18 = 222.222.222$
- ii. $12.345.679 \cdot 27 = 333.333.333$
- iii. $12.345.679 \cdot 54 = 666.666.666$

41

Para obter 999.999.999 devemos multiplicar 12.345.679 por quanto?

Exercício 3. Com algarismos x, y e z não todos nulos formam-se os números de dois algarismos xy e yx, cuja soma é o número de três algarismos zxz. Quanto valem x, y e z?

Exercício 4. Quantos são os números inteiros de 2 algarismos que são iguais ao dobro do produto de seus algarismos?

Exercício 5. O número -3 é a raiz da equação $x^2 - 7x - 2c = 0$. Nessas condições, determine o valor do coeficiente c.

Exercício 6. Dada as frações

$$\frac{966666555557}{966666555558} \quad e \quad \frac{966666555558}{966666555559},$$

qual é a maior?

Exercício 7. Nove cópias de certas notas custam menos de R\$ 10,00 e dez cópias das mesmas notas (custando o mesmo preço cada uma) custam mais de R\$ 11,00. Quanto custa uma cópia das notas?

Exercício 8. Ache os valores de x para os quais cada uma das seguintes expressões é positiva:

a.

$$\frac{x}{x^2+9};$$

b.

$$\frac{x-3}{x+1};$$

c.

$$\frac{x^2-1}{x^2-3}.$$

Exercício 9. Sejam a, b, c, d > 0 tais que $\frac{a}{b} < \frac{c}{d}$. Mostre que

$$\frac{a}{b} < \frac{a+c}{b+d} < \frac{c}{d}.$$

Exercício 10. Determine o conjunto solução de cada uma das equações ou inequações modulares abaixo:

a.
$$|3x - 5| = 7$$
;

b.
$$|-x+8| = -1$$
;

c.
$$|x^2 - 1| = 3$$
;

d.
$$|x+1| + |-3x+2| = 6$$
;

e.
$$|x-1| \cdot |x+2| = 3$$
;

f.
$$|x-1| + |x+1| > 2$$
;

g.
$$|x+1| - |x-1| < -2$$
.

Exercício 11. Prove que $|x \cdot y| = |x| \cdot |y|$ para todo $x, y \in \mathbb{R}$.

Exercício 12. Seja $x \in \mathbb{R}$. Mostre que:

a.
$$|x-5| < 0, 1 \implies |2x-10| < 0, 2$$
;

b.
$$|x+3| < 0, 1 \implies \left| -\frac{3}{2}x + 3 - 7, 5 \right| < 0, 15;$$

c.
$$|x-2| < \sqrt{5} - 2 \implies |x^2 - 4| < 1$$
.

Exercício 13. Provar que em todo triângulo a soma dos comprimentos das medianas é menor que o perímetro do triângulo e maior que o semiperímetro (metade do perímetro) dele.

Exercício 14. Prove que $a^4 + b^4 + c^4 \ge abc(a + b + c)$.

Exercício 15. Sejam $a, b, c \in \mathbb{R}_+$. Prove que

$$(a+b)(a+c)(b+c) > 8abc.$$

Exercício 16. Sejam $a, b, c, d \in \mathbb{R}_+^*$. Prove que

$$(a+b+c+d)\left(\frac{1}{a} + \frac{1}{b} + \frac{1}{c} + \frac{1}{d}\right) \ge 16.$$

Exercício 17. A soma de três números positivos é 6. Prove que a soma de seus quadrados não é menor que 12.

3.9 Bibliografia

- [7] Krerley I. M. Oliveira e Adán J. C. Fernandez. Estágio dos Alunos Bolsistas OBMEP 2005 4. Equações, Inequações e Designaldades. SBM, 2006.
- [10] Krerley I. M. Oliveira e Adán J. C. Fernandez. *Iniciação em Matemática: um Curso com Problemas e Soluções.* 2ª ed. SBM, 2010.

Capítulo 4

Princípio da Indução Finita

4.1 Introdução

Imagine uma fila com infinitos dominós, um atrás do outro. Suponha que eles estejam de tal modo distribuídos que, uma vez que um dominó caia, o seu sucessor na fila também cai. O que acontece quando derrubamos o primeiro dominó? Não podemos dizer que todas as peças cairão, pois seria preciso um tempo infinito para que isso ocorresse. Porém, se desejas que alguma peça específica caia, basta ter tempo disponível que isso ocorrerá em algum momento.

O princípio da indução finita pode ser interpretado como essa fila com infinitos dominós. Se quisermos provar que um determinado resultado vale para qualquer número natural a partir de um valor especificado $n_0 \in \mathbb{N}$, basta verificar que:

- O resultado proposto é válido para n_0 , representando o primeiro dominó sendo derrubado:
- Se o resultado for válido para algum $n \in \mathbb{N}$, então o resultado também é válido para n+1, representando que qualquer peça de dominó ao cair, derrubará a peça seguinte.

4.2 Princípio da Indução Finita

O Princípio da indução finita é um Teorema muito usado. Nosso objetivo não é demonstrá-lo. Queremos usá-lo em situações e problemas mais elementares para possibilitar o entendimento e uso básico dessa poderosa ferramenta.

Teorema 4.1 (Princípio da Indução Finita). Considere n_0 um inteiro não negativo. Suponhamos que, para cada inteiro $n \ge n_0$, seja dada uma proposição p(n). Suponha que se pode verificar as seguintes propriedades:

(a) $p(n_0)$ é verdadeira;

(b) Se p(n) é verdadeira, então p(n+1) também é verdadeira, para todo $n \ge n_0$.

Então, p(n) é verdadeira para qualquer $n \geq n_0$.

Observação. No Teorema 4.1, a afirmação (a) é chamada de base da indução, e a (b), de passo indutivo. O fato de que p(n) é verdadeira no item (b) é chamado de hipótese de indução.

Exemplo 4.2. Demonstre que, para qualquer $n \in \mathbb{N}^*$, é válida a igualdade:

$$2+4+\cdots+2n=n(n+1)$$
.

Solução. A fim de provar que a soma dos n primeiros números pares é igual a n(n+1), ou seja, $2+4+\cdots+2n=n(n+1)$ para todo $n\in\mathbb{N}^*$, aplicaremos indução em n.

- Caso base [n = 1]: Observe que 2 = 1(1 + 1), ou seja, a soma do primeiro número par (somente o 2) é igual a 1(1 + 1). Logo, o caso base é válido.
- Passo indutivo: Suponha, como Hipótese de Indução (HI), que para algum $n \in \mathbb{N}^*$, vale a equação:

$$2 + 4 + \cdots + 2n = n(n+1).$$

Provemos então que:

$$2+4+\cdots+2n+2(n+1)=(n+1)[(n+1)+1].$$

De fato, segue da (HI) que:

$$\underbrace{2+4+\dots+2n}_{\text{HI}} + 2(n+1) = \underbrace{n(n+1)}_{\text{HI}} + 2(n+1)$$
$$= (n+1)(n+2)$$
$$= (n+1)[(n+1)+1].$$

Com isso, concluímos que o passo indutivo é satisfeito. Portanto, pelo Princípio da Indução Finita, a equação $2+4+\cdots+2n=n(n+1)$ é válida para todo $n\in\mathbb{N}^*$.

Exemplo 4.3. Demonstre que, para qualquer $n \in \mathbb{N}^*$, é válida a igualdade:

$$1+3+\cdots+(2n-1)=n^2$$
.

Solução. Demonstremos que a igualdade vale aplicando Indução em n.

- Caso base [n = 1]: Como $1 = 1^2$, o caso base é válido.
- Passo indutivo: Assuma, como Hipótese de Indução (HI), que a igualdade vale para algum $n \in \mathbb{N}^*$, ou seja:

$$1+3+\cdots+(2n-1)=n^2$$
.

Provemos a validade da equação:

$$1+3+\cdots+(2n-1)+[2(n+1)-1]=(n+1)^2.$$

Calculando o lado esquerdo da igualdade, obtemos:

$$\underbrace{1+3+\dots+(2n-1)}_{\text{HI}} + [2(n+1)-1] = \underbrace{n^2}_{\text{HI}} + 2n+1$$
$$= (n+1)^2$$

Com isso, provamos que o passo indutivo é válido. Portanto p(n) vale para todo $n \in \mathbb{N}^*$.

Exemplo 4.4. Mostre que, para todo número $n \in \mathbb{N}^*$ tal que n > 3 vale:

$$2^{n} < n!$$

Solução. Considere $n \in \mathbb{N}^*$ tal que n > 3. Provemos que $2^n < n!$ aplicando Indução em n.

- Caso base [n=4]: Temos $2^4=16$ e 4!=24. Como 16<24, o caso base é satisfeito.
- Passo Indutivo: Suponha, como Hipótese de Indução, que vale $2^n < n!$ para algum $n \in \mathbb{N}^*$ tal que n > 3.

Provemos que vale $2^{n+1} < (n+1)!$. Inicialmente, observe que 2 < n+1, visto que 2 < 3 < n < n+1. Também temos que 2 e 2^n são positivos. Sendo assim, podemos concluir que:

$$2^n < n!$$
 e $2 < n+1 \implies 2^n \cdot 2 < n!(n+1)$
 $\implies 2^{n+1} < (n+1)!$.

Assim provando que vale o passo indutivo. Portanto, $2^n < n!$ para qualquer $n \in \mathbb{N}^*$ tal que n > 3.

Exemplo 4.5. Prove que, para todo $n \in \mathbb{N}^*$,

$$\underbrace{\sqrt{2+\sqrt{2+\sqrt{2+\cdots+\sqrt{2}}}}}_{n \text{ radicais}} < 2.$$

Solução. Aplicaremos o Princípio da Indução Finita em $n \in \mathbb{N}^*$.

- Caso base (n = 1): $\sqrt{2} < 2$ é válido.
- Passo indutivo:

Suponha a validade da inequação para algum $k \in \mathbb{N}^*$, ou seja,

$$\underbrace{\sqrt{2 + \sqrt{2 + \sqrt{2 + \dots + \sqrt{2}}}}}_{k \text{ radicais}} < 2.$$

Da hipótese de indução, segue que:

$$2 + \underbrace{\sqrt{2 + \sqrt{2 + \sqrt{2 + \dots + \sqrt{2}}}}}_{k \text{ radicais}} < 2 + 2 \implies \underbrace{\sqrt{2 + \sqrt{2 + \sqrt{2 + \dots + \sqrt{2}}}}}_{k+1 \text{ radicais}} < \sqrt{4} = 2.$$

Logo, a inequação é válida para n=k+1; e, assim, concluímos a validade da inequação para todo $n \in \mathbb{N}^*$.

Exemplo 4.6. Seja $n \in \mathbb{N}$ tal que $n \geq 3$. Mostre que podemos cobrir os n^2 pontos no reticulado a seguir traçando 2n-2 segmentos de reta sem tirar o lápis do papel.

Exemplo 4.7. Um rei muito rico possui 3^n moedas de ouro, onde $n \in \mathbb{N}^*$. No entanto, uma dessas moedas é falsa, e seu peso é menor que o peso das demais. Com uma balança de dois pratos e sem nenhum peso, mostre que é possível encontrar a moeda falsa com apenas n pesagens.

Solução. Dado que o rei tem 3^n moedas, usaremos indução finita em $n \in \mathbb{N}^*$.

- Caso base [n = 1]: Para n = 1, ou seja, três moedas, coloca-se uma moeda em cada prato. Se as moedas tiverem pesos iguais, então a moeda falsa é a que não foi colocada na balança. Do contrário, a moeda falsa é a mais leve.
- Passo indutivo Como hipótese de indução, suponhamos que, para algum $n \in \mathbb{N}^*$, seja possível identificar a moeda falsa dentre 3^n moedas realizando-se n pesagens. Suponha que temos 3^{n+1} moedas.

Separando as moedas em três grupos com 3^n moedas cada, coloca-se um grupo em cada prato da balança. Assim, analogamente ao caso n = 1, identificamos o grupo com a moeda falsa. Tal grupo tem 3^n moedas e, pela hipótese de indução, pode-se identificar

a moeda falsa com mais n pesagens, totalizando n+1 pesagens. Concluímos assim a veracidade do passo indutivo.

Portanto, para cada $n \in \mathbb{N}^*$, é possível identificar a moeda falsa dentre 3^n moedas com apenas n pesagens.

Teorema 4.8. Para quaisquer $a_1, a_2, \ldots, a_n \in \mathbb{R}_+$, vale:

$$\sqrt[n]{a_1 \dots a_n} \le \frac{a_1 + \dots + a_n}{n}.$$

Demonstração. Provemos, inicialmente, que a desigualdade é válida quando n é uma potência de 2. Para tal, seja $n=2^m$, com $m\in\mathbb{N}$. Usaremos o Princípio da Indução Finita em m.

- Caso base [m=0]: Para m=0, temos n=1. Seja $a_1 \in \mathbb{R}_+$. Note que $\sqrt[4]{a_1} = a_1 \le \frac{a_1}{1}$. Assim, a desigualdade é válida para m=0.
- Passo indutivo: Como hipótese de indução, suponha, para algum $m=k\in\mathbb{N}$ ou seja, $n=2^k$ —, que vale:

$$\sqrt[2^k]{a_1 \cdot \dots \cdot a_{2^k}} \le \frac{a_1 + \dots + a_{2^k}}{2^k}$$

Agora, provemos que a desigualdade é válida para m=k+1 — isso é, $n=2^{k+1}$ —. De fato,

$$\frac{2^{k+1}\sqrt{a_1 \cdot \ldots \cdot a_{2^{k+1}}}}{2} = \sqrt[2]{\sqrt[2^k]{a_1 \cdot \ldots \cdot a_{2^k}} \cdot \sqrt[2^k]{a_{2^k+1} \cdot \ldots \cdot a_{2^{k+1}}}} \\
= \sqrt[2]{\sqrt[2^k]{a_1 \cdot \ldots \cdot a_{2^k}} \cdot \sqrt[2^k]{a_{2^k+1} \cdot \ldots \cdot a_{2^{k+1}}}} \\
\leq \frac{\sqrt[2^k]{a_1 \cdot \ldots \cdot a_{2^k}} + \sqrt[2^k]{a_{2^k+1} \cdot \ldots \cdot a_{2^{k+1}}}}{2} \qquad \text{(Teorema 3.25)} \\
\leq \frac{\sqrt[a_{1+\ldots + a_{2^k}}}{2^k} + \sqrt[a_{2^k+1} + \ldots + a_{2^{k+1}}}}{2} \\
= \frac{\sqrt[a_{1+\ldots + a_{2^{k+1}}}}{2^k}}{2} \\
= \frac{a_1 + \ldots + a_{2^{k+1}}}{2^{k+1}} \\
= \frac{a_1 + \ldots + a_{2^{k+1}}}{2^{k+1}}$$

Dessa forma, a desigualdade vale quando n é uma potência de 2.

Provemos, agora, o caso geral. Para tanto, seja $n \in \mathbb{N}$ arbitrário. Tomemos o menor $m \in \mathbb{N}$ tal que $n \leq 2^m$. Além disso, definamos $L = \sqrt[n]{a_1 \cdot \ldots \cdot a_n}$. Pelo que acabamos de provar, é válido que:

$$\frac{a_1 + \ldots + a_n + \overbrace{L + \ldots + L}^{2^m - n \text{ vezes}}}{2^m} \ge \sqrt[2^m]{a_1 \cdot \ldots + a_n \cdot L^{2^m - n}}$$

No entanto, note que:

$$\sqrt[2^m]{a_1 \cdot \ldots + a_n \cdot L^{2^m - n}} = \sqrt[2^m]{L^n \cdot L^{2^m - n}}$$

$$= \sqrt[2^m]{L^{2^m}}$$

$$= L$$

Assim,

$$\frac{a_1 + \ldots + a_n + (2^m - n)L}{2^m} \ge L \implies a_1 + \ldots + a_n \ge 2^m L - (2^m - n)L = n \cdot L$$

$$\implies \frac{a_1 + \ldots + a_n}{n} \ge \sqrt[n]{a_1 \cdot \ldots \cdot a_n}$$

Portanto, a desigualdade é válida para todo $n \in N$.

4.3 Princípio Forte da Indução Finita

Teorema 4.9 (Princípio Forte da Indução Finita). Considere n_0 um inteiro não negativo. Suponhamos que, para cada inteiro $n \ge n_0$, seja dada uma proposição p(n). Suponha que se pode verificar as seguintes propriedades:

- (a) $p(n_0)$ é verdadeira;
- (b) Se para cada inteiro não negativo k, com $n_0 \le k \le n$, temos que p(k) é verdadeira, então p(n+1) também é verdadeira.

Então, p(n) é verdadeira para qualquer $n \geq n_0$.

Teorema 4.10 (Teorema Fundamental da Aritmética). Todo número natural N maior que 1 pode ser escrito como um produto

$$N = p_1 \cdot p_2 \cdot p_3 \dots p_m, \tag{4.1}$$

onde $m \ge 1$ é um número natural e os p_i , $1 \le i \le m$, são números primos. Além disso, a fatoração exibida na Equação 4.1 é única se exigirmos que $p_1 \le p_2 \le \cdots \le p_m$.

Demonstração. Seja N um número natural maior que 1. Provemos, inicialmente, que existe uma fatoração de N em primos. Para isso, usaremos o Princípio Forte da Indução Finita.

- Caso base (N=2). O N já é sua própria fatoração em primos.
- Passo de Indução. Suponhamos, como hipótese indutiva, que todo $k \in \mathbb{N}$ tal que $2 \le k \le N 1$ pode ser escrito como um produto de primos. Para provar que N também tem essa propriedade, consideremos os casos a seguir:

- N é primo. Essa situação é similar à base: N já é um produto de primos;
- N é composto. Nesse caso, N pode ser escrito como um produto ab, em que a e b são números naturais maiores que 1 e menores que N. Consequentemente, pela hipótese indutiva, $a=p_1\cdot p_2\cdot\ldots\cdot p_{n_a}$ e $b=q_1\cdot q_2\cdot\ldots\cdot q_{n_b}$ para alguns $n_a,n_b\geq 1$, e p's e q's primos. Logo, $N=p_1\cdot p_2\cdot\ldots\cdot p_{n_a}\cdot q_1\cdot q_2\cdot\ldots\cdot q_{n_b}$, e, portanto, pode ser escrito como um produto de primos.

A demonstração da unicidade da fatoração vai além do escopo deste texto.

Exemplo 4.11. Critique a argumentação a seguir.

Quer-se provar que todo número natural é pequeno. Evidentemente, 1 é um número pequeno. Além disso, se n for pequeno, n+1 também o será, pois não se torna grande um número pequeno simplesmente somando-lhe uma unidade. Logo, por indução, todo número natural é pequeno.

Exemplo 4.12. Considere a seguinte afirmação, evidentemente falsa:

Em um conjunto qualquer de n bolas, todas as bolas possuem a mesma cor.

Analise a seguinte demonstração por indução para a afirmação anterior e aponte o problema da demonstração.

Para n = 1, nossa proposição é verdadeira pois em qualquer conjunto com uma bola, todas as bolas têm a mesma cor, já que só existe uma bola.

Assumamos, por hipótese de indução, que a afirmação é verdadeira para n e provemos que a afirmação é verdadeira para n + 1.

Ora, seja $A = \{b_1, \ldots, b_n, b_{n+1}\}$ o conjunto com n+1 bolas referido. Considere os subconjuntos $B \in C$ de A com n elementos, construídos como:

$$B = \{b_1, b_2, \dots, b_n\} \ e \ C = \{b_2, \dots, b_{n+1}\}.$$

De fato, ambos os conjuntos têm n elementos. Assim, as bolas b_1, b_2, \ldots, b_n têm a mesma cor. Do mesmo modo, as bolas do conjunto C também têm a mesma cor. Em particular, as bolas b_n e b_{n+1} têm a mesma cor (ambas estão em C). Assim, todas as n+1 bolas têm a mesma cor.

4.4 Exercícios

Exercício 1. Demonstre, por indução, que para qualquer $n \in \mathbb{N}^*$ é válida a igualdade:

$$1+2+3+\cdots+n=\frac{n(n+1)}{2}$$
.

Exercício 2. Demonstre, por indução, que para qualquer $n \in \mathbb{N}^*$ é válida a igualdade:

$$1^{2} + 2^{2} + 3^{2} + \dots + n^{2} = \frac{n(n+1)(2n+1)}{6}.$$

Exercício 3. Prove que $3^{n-1} < 2^{n^2}$ para todo $n \in \mathbb{N}^*$.

Exercício 4. Mostre, por indução, que

$$\left(\frac{n+1}{n}\right)^n \le n,$$

para todo $n \in \mathbb{N}^*$ tal que $n \geq 3$.

Dica: Mostre que $\frac{k+2}{k+1} \leq \frac{k+1}{k}$ para todo $k \in \mathbb{N}^*$. Depois, eleve tudo à potência k+1.

Exercício 5. Prove que

$$\frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \dots + \frac{1}{\sqrt{n}} \ge \sqrt{n},$$

para todo $n \in \mathbb{N}^*$.

Exercício 6. Um subconjunto do plano é *convexo* se o segmento ligando quaisquer dois de seus pontos está totalmente nele contido. Os exemplos mais simples de conjuntos convexos são o próprio plano e qualquer semi-plano. Mostre que, para qualquer $n \in \mathbb{N}^*$, a interseção n de conjuntos convexos é ainda um conjunto convexo.

Exercício 7. Diz-se que três ou mais pontos são *colineares* quando eles todos pertencem a uma mesma reta. Do contrário, diz-se que eles são não colineares. Além disso, dois pontos determinam uma única reta. Usando o Princípio da Indução Finita mostre que n pontos, $n \geq 3$, tais que quaisquer 3 deles são não colineares, determinam

$$\frac{n!}{2 \cdot (n-2)!}$$

retas distintas.

4.5 Bibliografia

- [2] Elon L. Lima. Números e Funções Reais. 1ª ed. SBM, 2013.
- [8] Krerley I. M. Oliveira e Adán J. C. Fernandez. Estágio dos Alunos Bolsistas OBMEP 2005 4. Equações, Inequações e Designaldades. SBM, 2006.
- [11] Krerley I. M. Oliveira e Adán J. C. Fernandez. *Iniciação em Matemática: um Curso com Problemas e Soluções.* 2ª ed. SBM, 2010.

Capítulo 5

Funções

5.1 Introdução

Considere as funções $p \in q$ a seguir:

$$p: \mathbb{R} \to \mathbb{R}_{+}$$

$$x \mapsto x^{2};$$

$$q: \mathbb{R}_{+} \to \mathbb{R}$$

$$x \mapsto \sqrt{x}.$$

As funções p e q são inversas uma da outra? Elas são bijetivas?

Observação. Caso se façam necessários, para o leitor, conceitos mais básicos de funções, o material de funções da Khan Academy pode ser utilizado para estudo desses conceitos.

5.2 Definição de Função

Definição 5.1. Sejam X e Y dois conjuntos quaisquer. Uma função é uma relação $f: X \to Y$ que, a cada elemento $x \in X$, associa um e somente um elemento $y \in Y$. Definem-se, além disso, os seguintes termos:

- (i) Domínio e contradomínio de f para os conjuntos <math>X e Y, respectivamente;
- (ii) Imagem de f para o conjunto $f(X) = \{y \in Y ; \exists x \in X, f(x) = y\} \subset Y;$
- (iii) Imagem de x, dado $x \in X$, para o (único) elemento $y = f(x) \in Y$.

Observação. Uma função pode ser vista como um terno constituído por: domínio, contradomínio e lei de associação (dos elementos do domínio com os do contradomínio). Precisa-se desses três elementos para que uma função seja bem-definida. A definição alternativa a seguir também poderia ser adotada:

Uma relação $f: X \to Y$ é uma função se satisfaz as seguintes condições:

- (I) Estar bem-definida em todo elemento do domínio (existência);
- (II) Não fazer corresponder mais de um elemento do contradomínio a cada elemento do domínio (unicidade).

Exemplo 5.2. Considere as funções p e q a seguir:

$$p: \mathbb{R} \to \mathbb{R}_+$$

$$x \mapsto x^2;$$

$$q: \mathbb{R}_+ \to \mathbb{R}$$

$$x \mapsto \sqrt{x}.$$

Qual o domínio, contradomínio e a lei de associação de p e q? Solução.

- O domínio de $p \in \mathbb{R}$ e o de $q \in \mathbb{R}_+$;
- O contradomínio de $p \in \mathbb{R}_+$ e o de $q \in \mathbb{R}$;
- A lei de associação de p é $p(x) = x^2$ e a de q é $q(x) = \sqrt{x}$.

Definição 5.3. Seja $\mathcal{I}_X: X \to X$ uma função tal que $\mathcal{I}_X(x) = x$ para todo $x \in X$. Chamamos \mathcal{I}_X de função identidade do conjunto X.

5.3 Funções Compostas

Definição 5.4. Sejam $f: X \to Y$ e $g: U \to V$ duas funções, com $Y \subset U$. A função composta de g com f é a função denotada por $g \circ f$, com domínio em X e contradomínio em V, que a cada elemento $x \in X$ faz corresponder o elemento $v = (g \circ f)(x) = g(f(x)) \in V$. Diagramaticamente,

$$g \circ f: X \to Y \subset U \to V$$

 $x \mapsto f(x) \mapsto g(f(x)).$

Exemplo 5.5. Seja $f: X \to Y$ uma função. Mostre que $f \circ \mathcal{I}_X = f$ e $\mathcal{I}_Y \circ f = f$.

Solução. Note que o domínio de $f \circ \mathcal{I}_X$ é X já que X é o domínio de \mathcal{I}_X . Logo, f e $f \circ \mathcal{I}_X$ têm o mesmo domínio. Um resultado análogo vale para o contradomínio dessas funções: Y também é contradomínio de $f \circ \mathcal{I}_X$ pois é o contradomínio de f. Ademais, note que, para qualquer $x \in X$,

$$(f \circ \mathcal{I}_X)(x) = f(\mathcal{I}_X(x))$$
 (definição de composição)
= $f(x)$ (definição de identidade).

Das igualdades de domínio, contradomínio e lei de associação de f e $f \circ \mathcal{I}_X$, conclui-se que essas funções são iguais.

A demonstração da igualdade $\mathcal{I}_Y \circ f = f$ fica como exercício para o leitor.

Exemplo 5.6. Dadas as funções p e q definidas no Exemplo 5.2, qual função resulta da composição $p \circ q$?

Solução. Pode-se representar a função $p \circ q$ com o seguinte diagrama:

$$p \circ q: R_+ \to \mathbb{R} \subset \mathbb{R} \to \mathbb{R}_+$$

 $x \mapsto \sqrt{x} \mapsto (\sqrt{x})^2 = x.$

Do diagrama, conclui-se que $p \circ q = \mathcal{I}_{\mathbb{R}_+}$.

Atividade online (Encontre Funções Compostas).

Atividade online (Modele com Funções Compostas).

5.4 Função inversa

Definição 5.7. Uma função $f: X \to Y$ é invertível se existe uma função $g: Y \to X$ tal que:

- (i) $f \circ g = \mathcal{I}_Y$;
- (ii) $q \circ f = \mathcal{I}_X$.

Nesse caso, a função g é dita função inversa de f e denotada por $g = f^{-1}$.

Exemplo 5.8. A função q é inversa de p?

Solução. Do Exemplo 5.6, já temos que $p \circ q = \mathcal{I}_{\mathbb{R}_+}$. Então, devemos verificar se $q \circ p = \mathcal{I}_{\mathbb{R}}$. Para tal, seja $x \in \mathbb{R}$. Note que:

$$(q \circ p) (x) = q(p(x))$$

$$= q(x^{2})$$

$$= \sqrt{x^{2}}$$

$$= |x|.$$

Assim, temos que $q \circ p \neq \mathcal{I}_{\mathbb{R}}$, pois, por exemplo, $\mathcal{I}_{\mathbb{R}}(-3) = -3 \neq 3 = |-3| = (q \circ p)(-3)$. Portanto, q não é a função inversa de p.

O Exemplo 5.8 ilustra a importância de se verificar, quando se quer provar que uma função é inversa da outra, todas as condições da definição. Demonstrar a validade de apenas uma delas não garante que uma função é inversa de outra, mesmo que, inicialmente, pensemos o contrário.

Atividade online. Verifique Funções Inversas.

5.5 Injetividade e Sobrejetividade

Definição 5.9. Considere uma função $f: X \to Y$. Definem-se:

- (i) $f \in sobrejetiva$ se, para todo $y \in Y$, existe $x \in X$ tal que f(x) = y;
- (ii) $f \in injetiva$ se, para todos $x_1, x_2 \in X$, $x_1 \neq x_2$ implica que $f(x_1) \neq f(x_2)$;
- (iii) f é bijetiva se é sobrejetiva e injetiva.

Nas Proposições 5.10, 5.11, 5.12 e 5.13, são mostradas caracterizações alternativas dos conceitos introduzidos na Definição 5.9. Em todas elas, considere f uma função com domínio X e contradomínio Y.

Proposição 5.10. f é sobrejetiva se, e somente se, f(X) = Y.

Proposição 5.11. f é injetiva se, e somente se, para todos $x_1, x_2 \in X$, $f(x_1) = f(x_2)$ implica $x_1 = x_2$.

Proposição 5.12. f é injetiva se, e somente se, para todo $y \in f(X)$, existe um único $x \in X$ tal que f(x) = y.

Proposição 5.13. f é bijetiva se, e somente se, para todo $y \in Y$, existe um único $x \in X$ tal que f(x) = y.

Exemplo 5.14. Quais das propriedades de injetividade, sobrejetividade e bijetividade as funções p e q possuem?

Solução. Verifiquemos, primeiro, se as funções são injetivas. p não é, pois p(-1) = 1 = p(1). Já q, por outro lado, é injetiva. Para provar isso, sejam $x_1, x_2 \in \mathbb{R}_+$ tais que $q(x_1) = q(x_2)$. Ora,

$$q(x_1) = q(x_2) \implies \sqrt{x_1} = \sqrt{x_2}$$

$$\implies (\sqrt{x_1})^2 = (\sqrt{x_2})^2$$

$$\implies x_1 = x_2,$$

o que nos permite concluir que q é injetiva.

Agora, vamos à sobrejetividade. q não é sobrejetiva, pois não existe $x \in R_+$ tal que $\sqrt{x} = -1$, e -1 é um elemento do contradomínio dessa função. Já p, por sua vez, é sobrejetiva. De fato; para todo $y \in \mathbb{R}_+$, $p(\sqrt{y}) = (\sqrt{y})^2 = y$, e \sqrt{y} está no domínio de p.

A bijetividade não é válida para nenhuma das funções, já que p não é injetiva e p não é sobrejetiva.

Teorema 5.15. Uma função $f: X \to Y$ é invertível se, e somente se, é bijetiva.

Demonstração. Seja $f: X \to Y$.

- (Somente se) Suponha que f é invertível; isso é, existe $g: Y \to X$ tal que $f \circ g = \mathcal{I}_Y$ e $g \circ f = \mathcal{I}_X$. Provemos que f é bijetiva.
 - (Sobrejetividade) Seja $b \in Y$. Tome $g(b) \in X$. Note que:

$$f(g(b)) = (f \circ g)(b)$$
$$= \mathcal{I}_Y(b)$$
$$= b.$$

Assim, f é sobrejetiva.

- (*Injetividade*) Sejam $a_1, a_2 \in X$ tais que $f(a_1) = f(a_2)$. Logo, $g(f(a_1)) = g(f(a_2))$. Note que:

$$g(f(a_1)) = g(f(a_2)) \implies (g \circ f)(a_1) = (g \circ f)(a_2)$$
$$\implies \mathcal{I}_X(a_1) = \mathcal{I}_X(a_2)$$
$$\implies a_1 = a_2$$

Logo, f é injetiva.

Concluímos, então, que f é bijetiva.

-(Se) Suponha que f é bijetiva. Ademais, defina $g:Y\to X$ com lei de formação g(b)=a, em que $a\in X$ é tal que f(a)=b. Ora, para cada $b\in Y$ existe tal a, pela injetividade de f. Além disso, como f é injetiva, a é único. Assim, pela Observação 5.2), g é uma função.

A igualdade $f \circ g = \mathcal{I}_Y$ é válida, pois, para todo $b \in Y$,

$$(f \circ g) (b) = f (g(b))$$

$$= f(a)$$

$$= b$$

Verifiquemos, agora, que $g \circ f = \mathcal{I}_X$. Para tal, seja $a \in X$. Suponha, para chegar a um absurdo, que $(g \circ f)(a) \neq a$. Assim,

$$(g \circ f)(a) \neq a \implies f((g \circ f)(a)) \neq f(a)$$
 (Injetividade de f)
 $\implies (f \circ g \circ f)(a) \neq f(a)$
 $\implies (f \circ g)(f(a)) \neq f(a)$
 $\implies \mathcal{I}_Y(f(a)) \neq f(a)$
 $\implies f(a) \neq f(a)$

Chegamos a um absurdo. Consequentemente, $(f \circ g)(a) = a$, o que implica que $g \circ f = \mathcal{I}_X$ e nos permite concluir que f é invertível.

Capítulo 6

Progressões

6.1 Progressão Aritmética

Definição 6.1. Uma progressão aritmética — ou, simplesmente, PA — é uma sequência na qual a diferença entre um termo, quando este não é o primeiro, e seu anterior é constante. Essa diferença constante é chamada de razão da progressão e representada pela letra r.

Observação. De maneira recursiva, o n-ésimo, n > 1, termo de uma PA é escrito como:

$$a_n = a_{n-1} + r.$$

Exemplo 6.2. Uma fábrica de automóveis produziu 400 veículos em janeiro e aumenta mensalmente sua produção em 30 veículos. Quantos veículos foram produzidos em junho?

Solução. A produção de cada mês será, em número de veículos:

- Janeiro 400;
- Fevereiro 430;
- Março 460;
- Abril 490;
- Maio 520;
- Junho 550.

Poderíamos ter obtido a produção de junho calculando $400 + 5 \cdot 30$.

Observação. Em uma PA $(a_1, a_2, a_3, ...)$, para avançar um termo basta somar a razão; para avançar dois termos, basta somar duas vezes a razão, e assim por diante. Dessa

forma, teremos $a_{13} = a_5 + 8r$, $a_4 = a_{17} - 13r$, e, mais geralmente,

$$a_i = a_j + (i - j) r.$$

Em particular:

$$a_n = a_1 + (n-1)r$$
.

Exemplo 6.3. Em uma PA, o quinto termo vale 30, e o vigésimo termo vale 50. Quanto vale o oitavo termo dessa progressão?

Solução. Seja (a_1, a_2, \dots) uma PA tal que $a_5 = 30$ e $a_{20} = 50$. Note que:

$$a_5 = a_{20} + (5 - 20) \cdot r \iff 30 = 50 - 15r$$
$$\iff r = \frac{4}{3}$$

Assim,

$$a_8 = a_5 + (8 - 5) \cdot \frac{4}{3}$$
$$= 30 + 3 \cdot \frac{4}{3}$$
$$= 34$$

Exemplo 6.4. Qual a razão da PA que se obtém inserindo 10 termos entre os números 3 e 25?

Solução. Seja (a_1, a_2, \dots) uma PA tal que $a_1 = 3$ e $a_{12} = 25$. Note que há 10 termos entre 3 e 25. Assim,

$$a_{12} = a_1 + (12 - 1) \cdot r \iff 25 = 3 + 11r$$
$$\iff r = 2$$

A razão da PA é igual a 2.

Exemplo 6.5. O cometa Halley visita a Terra a cada 76 anos. Sua última passagem por aqui foi em 1986. Quantas vezes ele visitou a Terra desde o nascimento de Cristo? Em que ano foi sua primeira passagem na Era Cristã?

Solução. Seja (a_1,a_2,\dots) uma PA de razão -76 e $a_1=1986$. Quer-se saber qual o maior $n\in\mathbb{N}$ tal que $a_n\geq 0$. Calculemos:

$$a_1 + (n-1) \cdot r \ge 0 \iff 1986 + (n-1) \cdot (-76) \ge 0$$

$$\iff 76n \le 2062$$

$$\iff n < 27.13$$

Logo, o cometa passou 27 vezes na Era Cristã. Além disso, sua primeira passagem nessa era foi no ano $a_{27} = 1986 + (27 - 1) \cdot (-76) = 10$.

Atividade online. Use Fórmulas de Progressão Aritmética

Atividade online. Conversão das Formas Recursiva e Explícita de Progressões Aritméticas

Veja o desempenho na Missão Álgebra I.

Exemplo 6.6. O preço de um carro novo é de R\$ 30.000,00 e diminui R\$ 1.000,00 a cada ano de uso. Qual será o preço com quatro anos de uso?

Solução. Seja (a_0, a_1, \dots) uma PA tal que $a_0 = 30.000$ e r = -1.000. Calculemos:

$$a_4 = a_0 + (4 - 0) \cdot r$$
$$= 30.000 - 4.000$$
$$= 26.000$$

O preço do carro após quatro anos de uso será de R\$ 26.000,00.

Exemplo 6.7. Determine quatro números em uma PA crescente tais que sua soma é 8 e a soma de seus quadrados é 36.

Solução. Considere os quatro termos abaixo em uma PA de razão 2r:

$$x - 3r, x - r, x + r, x + 3r.$$

Por hipótese do problema, tem-se que:

$$x - 3r + x - r + x + r + x + 3r = 4x = 8$$

Logo, x=2. Também por hipótese do problema,

$$(2-3r)^{2} + (2-r)^{2} + (2+r)^{2} + (2+3r)^{2} = 36 \iff 4 \cdot 2^{2} + 2r^{2} + 2 \cdot 9r^{2} = 36$$
$$\iff 20r^{2} = 20$$
$$\iff r = \pm 1$$

Note que, tanto para r=1 quanto para r=-1, os quatro números desejados são -1, 1, 3 e 5.

Definição 6.8. Uma PA de razão $r \neq 0$ é chamada de progressão aritmética de primeira ordem. Se r = 0, chamamos de progressão aritmética estacionária.

Observação. Os termos introduzidos na Definição 6.8 são motivados pelo fato de que, em uma PA, o termo geral é dado por um polinômio em n, a saber:

$$a_n = a_1 + (n-1)r = r \cdot n + (a_1 - r).$$

Assim, se $r \neq 0$, esse polinômio é de grau 1. Note que, se r = 0, a PA é constante.

A recíproca desse resultado também é válida, ou seja, se uma sequência tiver seu termo de ordem n (a_n) definido por um polinômio em n de grau menor ou igual a 1, então essa sequência será uma PA.

6.2 Somatório dos n primeiros termos de uma PA

Proposição 6.9. A soma dos n primeiros termos da PA (a_1, a_2, a_3, \dots) é:

$$S_n = \frac{(a_1 + a_n) \, n}{2}.$$

Corolário 6.10. Nas condições da Proposição 6.9, tem-se que:

$$S_n = \frac{r}{2} \cdot n^2 + \left(a_1 - \frac{r}{2}\right) n.$$

Observação. Todo polinômio de segundo grau em n que não possua termo independente nulo é o somatório de alguma PA. De fato, tendo $P(n) = an^2 + bn$, basta tomar r = 2a e $a_1 = a + b$. Verifique!

6.3 Progressão Geométrica

Exemplo 6.11. Uma pessoa, começando com R\$ 64,00, faz seis apostas consecutivas, em cada uma das quais arrisca perder ou ganhar a metade do que possui na ocasião. Se ela ganha três e perde três dessas apostas, pode-se afirmar que ela:

- a) Ganha dinheiro;
- b) Não ganha nem perde dinheiro;
- c) Perde R\$ 27,00;
- d) Perde R\$ 37,00;
- e) Ganha ou perde dinheiro, dependendo da ordem em que ocorreram suas vitórias e derrotas.

Solução. Se a pessoa perdesse as três primeiras apostas e, depois, ganhasse as outras três, ela ficaria, em reais, com:

$$64 \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{3}{2} \cdot \frac{3}{2} \cdot \frac{3}{2} = 64 \cdot \frac{27}{64}$$
$$= 27$$

Note que, como a multiplicação de números reais é comutativa, a ordem das apostas não importa. Assim, a pessoa perdeu R\$ 37,00.

Exemplo 6.12. A população de um país é, hoje, igual a P_0 e cresce 2% ao ano. Qual será a população desse país daqui a n anos?

Solução. Construindo uma sequência P_0, P_1, P_2, \ldots tal que P_n é a população do país após n anos, com $n \geq 0$, teremos:

$$P_{1} = P_{0} + P_{0} \cdot 0.02 = P_{0} \cdot 1.02;$$

$$P_{2} = P_{1} \cdot 1.02 = P_{0} \cdot 1.02^{2};$$

$$\vdots$$

$$P_{n} = P_{0} \cdot 1.02^{n}.$$

Exemplo 6.13. A torcida de certo clube é, hoje, igual a T_0 e decresce 5% ao ano. Qual será a torcida desse clube daqui a n anos?

Solução. Analogamente ao Exemplo 6.12, a torcida do clube daqui a n anos será:

$$T_n = T_0 + 0.95^n$$
.

Observação. Note que, nos Exemplos 6.12 e 6.13, se uma grandeza teve taxa de crescimento igual a i, então cada valor da grandeza foi igual a (1+i) vezes o valor anterior.

Definição 6.14. Uma progressão geométrica (ou, simplesmente, PG) é uma sequência na qual a taxa de crescimento i de cada termo para o seguinte é sempre a mesma.

Exemplo 6.15. A sequência (1, 2, 4, 8, 16, 32, ...) é um exemplo de uma PG. Aqui, a taxa de crescimento de cada termo para o seguinte é de 100%, o que faz com que cada termo seja igual a 200% do termo anterior.

Exemplo 6.16. A sequência (1000, 800, 640, 512, ...) é um exemplo de uma PG. Aqui, cada termo é 80% do termo anterior. A taxa de crescimento de cada termo para o seguinte é de -20%.

6.4 Fórmulas de uma Progressão Geométrica

Observação. É claro que, numa PG, cada termo é igual ao anterior multiplicado por 1+i, onde i é a taxa de crescimento dos termos. Chamamos 1+i de razão da progressão e a representamos por q. Assim, para $n \geq 2$,

$$a_n = a_{n-1} \cdot q.$$

Portanto, uma progressão geométrica é uma sequência na qual é constante o quociente da divisão de cada termo pelo termo anterior (exceto quando o termo anterior é o primeiro).

Em uma PG $(a_1, a_2, a_3, ...)$, para avançar um termo, basta multiplicar pela razão; para avançar dois termos, basta multiplicar duas vezes pela razão, e assim por diante. Assim,

$$a_i = a_j \cdot q^{i-j}.$$

Em particular,

$$a_n = a_1 \cdot q^{n-1}.$$

Exemplo 6.17. Em uma PG, o quinto termo vale 5 e o oitavo termo vale 135. Quanto vale o sétimo termo dessa progressão?

Solução. Seja (a_1, a_2, \dots) uma PG tal que $a_5 = 5$ e $a_8 = 135$. Tem-se que:

$$a_8 = a_5 * q^{8-5} \iff 135 = 5 \cdot q^3$$

 $\iff q^3 = 27$
 $\iff q = 3$

Assim, o sétimo termo é:

$$a_7 = a_8 \cdot q^{7-8}$$
$$= \frac{135}{3}$$
$$= 45.$$

Exemplo 6.18. Qual é a razão da PG que se obtém inserindo 3 termos entre os números 30 e 480?

Solução. Considere uma PG $(a_n)_{n\in\mathbb{N}^*}$ tal que $a_1=30$ e $a_5=480$. Dos valores desses

termos, tem-se que:

$$a_1 = a_5 \cdot q^{1-5} \iff 30 = 480 \cdot q^{-4}$$

$$\iff q^4 = \frac{480}{30} = 16$$

$$\iff q = \pm 2.$$

Logo, as possíveis razões para a PG são -2 e 2.

Atividade online (Use Fórmulas de Progressão Geométrica).

Atividade online (Conversão das Formas Recursiva e Explícita de Progressões Geométricas (no Khan aparece errado como Aritméticas)).

Veja o desempenho na Missão Álgebra I.

6.5 Somatório dos n primeiros termos de uma PG

Proposição 6.19 (Soma dos n primeiros termos de uma PG). A soma dos n primeiros termos de uma PG (a_n) de razão $q \neq 1$ é:

$$S_n = a_1 \frac{1 - q^n}{1 - q}.$$

Demonstração. Seja $(a_n)_{n\in\mathbb{N}^*}$ uma PG de razão q. Considere

$$S_n = a_1 + a_2 + \dots + a_n. (6.1)$$

Logo,

$$S_n \cdot q = a_2 + a_3 + \dots + a_n + a_{n+1}. \tag{6.2}$$

Calculando 6.1 - 6.2:

$$S_n - S_n \cdot q = a_1 - a_{n+1} = a_1 - a_1 \cdot q^n \iff S_n \cdot (1 - q) = a_1 \cdot (1 - q^n)$$

 $\iff S_n = a_1 \cdot \frac{1 - q^n}{1 - q},$

o que conclui a demonstração.

Exemplo 6.20. Diz a lenda que o inventor do xadrez pediu como recompensa 1 grão de trigo pela primeira casa, 2 grãos pela segunda, 4 pela terceira e assim por diante, sempre dobrando a quantidade a cada nova casa. Sabendo que o tabuleiro de xadrez tem 64 casas, qual o número de grãos pedido pelo inventor do jogo?

Solução. Pelo seu enunciado, o problema pode ser modelado por uma PG $(a_1, a_2, \ldots, a_{64})$ tal que a_i , $1 \le i \le n$, é o número de grãos que o inventor pediu pela *i*-ésima casa do tabuleiro. A partir da equação para a soma dos n primeiros termos de uma PG, conclui-se que o inventor pediu, no total, $1 \cdot \frac{1-2^{64}}{1-2} = 2^{64} - 1 = 18446744073709551615$ grãos.

6.6 Exercícios

Exercício 1. Formam-se n triângulos com palitos, conforme a figura abaixo.

Qual o número de palitos usados para construir n triângulos?

Exercício 2. A soma dos ângulos internos de um pentágono convexo é igual a 540°e estes ângulos estão em PA. Determine a mediana dos valores dos ângulos.

Exercício 3. Se 3-x, -x, $\sqrt{9-x}$, ... é uma PA, determine x e calcule o quinto termo.

Exercício 4. Calcule a soma dos termos da PA 2, 5, 8, 11, ... desde o 25° termo até o 41° termo, inclusive.

Exercício 5. Determine o maior valor inteiro que pode ter a razão de uma PA que admita os números 32, 227 e 942 como termos da progressão.

Exercício 6. Em um quadrado mágico (Exemplo 3.6), chamamos de constante mágica o valor da soma de quaisquer uma das linhas, colunas ou diagonais. Calcule a constante mágica de um quadrado mágico $n \times n$.

Exercício 7. Suprimindo um dos elementos do conjunto $\{1, 2, ..., n\}$, a média aritmética dos elementos restantes é 16,1. Determine o valor de n e qual foi o elemento suprimido.

Exercício 8. O gordinho jaguatirica e Júnio vão jogar um jogo com as seguintes regras:

- Na primeira jogada, o gordinho jaguatirica escolhe um número no conjunto $A = \{1, 2, 3, 4, 5, 6, 7\}$ e diz esse número;
- Os jogadores jogam alternadamente;
- Cada jogador ao jogar escolhe um elemento de A, soma-o ao número DITO pelo jogador anterior e DIZ a soma;
- O vencedor é aquele que disser 63.

Pode o gordinho jaguatirica ou Júnio ter uma estratégia vencedora? Se sim, quem pode e qual é essa estratégia?

Exercício 9. Mostre que Júnio pode ter uma estratégia que impeça o gordinho vencer o jogo se a condição de vitória for 62 e $A = \{3, 4, 5, 6, 7\}$.

Exercício 10. Descontos sucessivos de 10% e 20% equivalem a um desconto total de quanto?

Exercício 11. Um decrescimento mensal de 5% gera um decrescimento anual de quanto?

Exercício 12. Mantida constante a temperatura, a pressão de um gás perfeito é inversamente proporcional a seu volume. De quanto aumenta a pressão quando reduzimos em 20% o volume?

Exercício 13. Considere um triângulo retângulo tal que seus lados formam uma PG crescente. Determine a razão dessa progressão.

Exercício 14. Qual o quarto termo da PG $\sqrt{2}$, $\sqrt[3]{2}$, $\sqrt[6]{2}$, ...?

Exercício 15. Determine três números em PG, tais que a soma desses números é 19 e a soma de seus quadrados é 133.

Exercício 16. A soma de três números em PG é 19. Subtraindo-se 1 do primeiro, eles passam a formar uma PA. Calcule-os.

Exercício 17. Quatro números que estão em sequência são tais que, os três primeiros formam uma PA de razão 6, os três últimos uma PG e o primeiro número é igual ao quarto. Determine-os.

Exercício 18. Será formada uma pilha de folhas de estanho que têm, cada uma, espessura de 0,1mm. Inicialmente, adiciona-se uma folha na pilha. Nas operações seguintes, é inserida uma quantidade de folhas igual ao número de folhas que já estavam na pilha no momento da inserção. Após serem realizadas 33 adições de folhas, a altura da pilha será, aproximadamente:

- a. A altura de um poste de luz;
- b. A altura de um prédio de 40 andares;
- c. O comprimento da praia de Copacabana;
- d. A distância Rio-São Paulo;
- e. O comprimento do equador terrestre.

Exercício 19. Larga-se uma bola de uma altura de 5m. Após cada choque com o solo, ela recupera apenas $\frac{4}{9}$ da altura anterior. Qual a distância total percorrida pela bola até o décimo choque com o solo? E até o centésimo?

Exercício 20. Começando com um segmento de tamanho 1, divide-se esse segmento em três partes iguais e retiramos o interior da parte central, obtendo dois segmentos de comprimento $\frac{1}{3}$. Repetimos agora essa operação com cada um desses segmentos e assim por diante. Sendo S_n a soma dos comprimentos dos intervalos que restaram depois de n dessas operações, determine o valor de S_n .

6.7 Bibliografia

[5] Elon L. Lima et al. A Matemática do Ensino Médio. Vol. 2. 5ª ed. SBM, 2004.