isolated singularities a_1, a_2, \ldots, a_m . If γ is a closed rectifiable curve in G which does not pass through any of the points a_k and if $\gamma \approx 0$ in G then $\frac{1}{2\pi i} \int_{\gamma} f = \sum_{k=1}^m n(\gamma; a_k) \operatorname{Res}(f; a_k).$

Theorem 1 (Residue Theorem). Let f be analytic in the region G except for the

Theorem 2 (Maximum Modulus). Let G be a bounded open set in $\mathbb C$ and suppose that f is a continuous function on G^- which is analytic in G. Then

$$\max\{|f(z)|:z\in G^-\}=\max\{|f(z)|:z\in\partial G\}.$$
 ΑΛΔ ∇ BCD Σ EFΓGHIJKLMNOΘ Ω ∇ PΦΠ Ξ QRSTUVWXYY Ψ Z 1234567890
$$\alpha\alphab\betac\partial d\delta e \epsilon \epsilon f \zeta \xi g \gamma h \hbar \hbar i i i j k κ κ l l \lambda m n η θ θ ο σ ς φ φ ρρρ q r s t τ π μ ν ν υ ν ω ω α χ χ ψ z ∞ ∞ \emptyset δ δ $\delta$$$