Analysis I (WS 18/19)

Pavel Zwerschke

26. Oktober 2018

Inhaltsverzeichnis

0	Organisatorisches	2
1	Was ist Analysis?	3
2	Etwas Logik	3

0 Organisatorisches

Dozent

Prof. Dr. Dirk Hundertmark (20.30, 2.028)

dirk.hundertmark@kit.edu

Übungsleiter

Dr. Markus Lange (20.30, 2.030)

markus.lange@kit.edu

Übungszettel

Ausgabe:

donnerstags unter www.math.kit.edu/iana1/lehre/ana12018w/

Abgabe:

bis mittwochs um 19:00 in den Abgabekästen des Foyers des Mathematikgebäudes (20.30)

getackert, mit Namen, Matrikelnummer, Tutoriennummer und Deckblatt (optional) in das Fach mit der richtigen Kennzeichnung legen

Zettel dürfen zu zweit abgegeben werden

Übungsschein

Jede K-Aufgabe wird mit 4 Punkten bewertet. Einen Übungsschein erhält wer 50% der Punkte aller K-Aufgaben erzielt.

Klausur

Die Anmeldung findet über das Online-Portal statt. Die Klausur findet in KW 8 2019 statt. Der Übungsschein ist Voraussetzung für die Teilnahme an der Klausur.

1 Was ist Analysis?

Zentrale Begriffe:

Grenzwerte von Folgen und Reihen, Funktionen, stetig, differenzierbar, integrieren, Differential- und Integralrechnung, Differentialgleichungen (Newton, Maxwell, Schrödinger), unendlich dimensionale Räume **Beispiel:**

$$S = \frac{1}{2} + \frac{1}{4} + \dots + \frac{1}{2^n} + \dots$$

$$2S = 1 + \frac{1}{2} + \dots + \frac{1}{2} + \dots$$

$$2S = 1 + S$$

S entspricht der Wahrscheinlichkeit, dass irgendwann mal Kopf in einem Münzwurf kommt.

Vorsicht!

$$S = 1 + 2 + 4 + \dots$$

 $2S = 2 + 4 + 8 + \dots = -1 + 1 + 2 + 4 + \dots = -1 + S$
 $S = -1$

Natürlich Quatsch!

Formales Rechnen kann gefährlich sein!

- Was sind mathematische Aussagen?
- Wie macht man Beweise, wie findet man sie? (learning by doing)
- logische Zusammenhänge

2 Etwas Logik

Eine (mathematische) Aussage ist ein Ausdruck, der wahr oder falsch ist. z. B.

- 1. A: 1+1=2. (auch 1+1=3, 1+1=0)
- 2. B: "Es gibt unendlich viele Primzahlen."
- 3. C: "Es gibt unendlich viele Primzahlen p für die p+2 auch eine Primzahl ist."
- 4. D: "Die Gleichung $m\ddot{x}=F$ hat geg. $\dot{x}(0)=v_0, x(0)=x_0$ immer genau eine Lösung."
- 5. E : "Jede gerade natürliche Zahl größer als 2 ist die Summe zweier Primzahlen."
- 6. F: "Morgen ist das Wetter schön."

- 7. G: "Ein einzelnes Atom im Vakuum mit der Kernladungszahl Z kann höchstens Z+1 Elektronen binden."
- 8. H(k, m, n): "Es gilt: $k^2 + m^2 = n^2$."(z. B. H(3, 4, 5) ist wahr.)

Gegeben für natürliche Zahlen n, Aussagen A(n), dann gilt: Für jede nat. Zahl n ist A(n) wahr, genau dann, wenn

- 1. A(1) ist wahr.
- 2. Unter der Annahme, dass A(n) wahr ist, folgt, dass A(n+1) wahr ist.

Beispiel:

$$A(n): 1+2+3+\cdots+n = \frac{n(n+1)}{2}.$$

Beweis. Vollständige Induktion

Induktionsanfang:

$$1 = \frac{1(1+1)}{2} \checkmark$$

Induktionsschluss:

Wir nehmen an, dass A(n) wahr ist (für $n \in \mathbb{N}$)

D. h. Induktionsannahme:

$$1 + 2 + 3 + \dots + n = \frac{n(n+1)}{2}$$

Dann folgt:

$$\underbrace{\frac{1+2+\cdots+n}{2}+(n+1)}_{=\frac{n(n+1)}{2}} + (n+1)$$

$$=\frac{\frac{n(n+1)}{2}}{2}$$

$$=\frac{n(n+1)+2(n+1)}{2} = \frac{(n+1)(n+2)}{2} = \frac{(n+1)((n+1)+1)}{2}$$

Bemerkung:

Gaußscher Trick:

$$S = 1 + 2 + 3 + \dots + n = n + (n - 1) + (n - 2) + \dots + 2 + 1$$

$$2S = \underbrace{(n + 1) + (n + 1) + \dots + (n + 1)}_{n-\text{mal}} \Leftrightarrow S = \frac{n(n+1)}{2}.$$