National Institute of Technology Srinagar, J&K

Department of Mechanical Engineering Major Examination Autumn 2024

I. C. ENGINE (MET 305) Fifth Somoster (Third Year)

Enrollment No.	\sqcap							L		
			_		M					
			P	rınt	ed	pag	ge: (UZ		

Time: 2 Hour 30 Minutes Total number of questions: 04

Course Outcome(s)

CO1- Execute and compare the air standard cycles for SI engine and CI engines.

CO2- Analyze the operating characteristics of different engines with actual air/fuel cycle.

CO3- Examine and compare the stages of combustion for SI engine and CI engine.

CO4- Identify the essential systems of IC engine and demonstrate its working.

Note: Attempt all four Questions. Marks are mentioned against each question. However, Question 4 has an internal choice. You can attempt either Question 3 or Question 3*.

Assun	ne the p	properties of air: $\gamma = 1.4$, $C_p=1.004$ kJ/kg K and $C_v=0.717$ kJ/kg K)		
Q1	(a)	Explain a two-stroke SI engine's working and construction features with schematics and a valve timing diagram.	4	(CO1) BTL4
	(b),	20 °C	5	(CO1) BTL5
	(6)	Using suitable assumptions and sketches, estimate the cycle efficiency and mean effective pressure for the Otto cycle.	4	(CO1) BTL4
Q2	(a)	Define the principle of carburation. Enumerate the factors that are affecting the carburation.	3	(CO2) BTL3
	(b)	What are the functional requirements of an injection system? Show the working of the jerk pump type injection system using neat sketches.	5	(CO2) BTL4
	(%)	Describe the battery ignition system. Why is a battery ignition system unsuitable for high-speed engines?	4	(CO2) BTL4
Q3	(a)	Explain the factors that reduce the detonation in SI engine and increase knocking in CI engine.	2	(CO3) BTL5
	(b)	Evaluate and explain the stages of combustion in CI engine using the P-O diagram of the combustion process.	5	(CO3) BTL4
	(9)	What is a liquid-cooling system and also explain the mechanism of the cooling system using a schematic diagram.	5	(CO4) BTL3
	, , , , , ,	OR		
Q3*	(a)	What is the necessity for gasoline injection? Explain the workings of gasoline direct injection using a suitable sketch.	3	(CO4) BTL4
	(b)	Briefly explains a typical electronic engine management system using line diagram for SI Engines. Also, write the name of the sensors which prove the data to ECU.	5	(CO4) BTL4
10				

National Institute of Technology Srinagar, J&K

Department of Mechanical Engineering

Major Examination Autumn 2024

I. C. ENGINE (MET 305)

Fifth Somostor (Third Yoar)

	(c)	What is meant by supercharging? What is its effect on engine performance? Briefly explains the centrifugal type of supercharging using a neat schematic diagram.	4	(CO4) BTL4
Q4	(a)	What are catalytic converters? How does catalytic converter help in reducing HC, CO and NO _x emissions? Write the main catalytic equations and discuss its working with	4	(CO4) BTL4
	(b)	help of a neat sketch. Draw the heat balance sheet for the test in % and kJ/h for a single-cylinder, four- stroke Diesel engine. Also determine the Indicated thermal efficiency, and Brake	9	(CO3) BTL6
	, ,	thermal efficiency. If the following data have been observed during engine trial:		

Brake Power = 31.5 kW;

Mechanical Efficiency = 60%;

Fuel consumption = 10.5 kg/h;

Calorific value of fuel = 43 MJ/kg;

Cooling water flow rate = 540 kg/min;

Air/fuel ratio= 19:1

Rise in cooling water temperature = 56°C;

Temperature of exhaust gases = 450°C;

Room temperature = 15°C;

Mean specific heat of exhaust gas = 1 kJ/kg K;

Specific heat of water = 4.18 kJ/kg K.