

Bachelorarbeit

Ermittlung optimierter Gebäudeenergiesysteme für den deutschen Wohngebäudebestand unter besonderer Berücksichtigung von Lüftungsverlusten

Determination of optimized building energy systems for the German residential building stock with special consideration of ventilation losses

Aachen, Mai 2019

Jonas Baumgärtner

Matrikelnummer: 330575

Betreuer:

Sebastian Remy, M. Sc. Univ.-Prof. Dr.-Ing. Dirk Müller

Diese Arbeit wurde vorgelegt am:
E.ON Energy Research Center | ERC
Institute for Energy Efficient Buildings and Indoor Climate | EBC
(Lehrstuhl für Gebäude- und Raumklimatechnik)
Mathieustraße 10, 52074 Aachen

Inhaltsverzeichnis

N	omei	nklatur	VI
Αl	bbild	lungsverzeichnis	VII
Ta	abell	enverzeichnis	IX
V	orwo	rt	X
1	Ein	leitung	1
	1.1	Motivation	1
	1.2	Aufgabenstellung	1
2	Gru	ındlagen	2
	2.1	Deutscher Wohngebäudebestand	2
	2.2	Historische Entwicklung der Gebäudehülle	5
	2.3	Sanierungsstand des deutschen Wohngebäudebestandes	9
	2.4	Förderprogramme	10
	2.5	Arten der Optimierung	11
	2.6	Referenzmodell	14
		2.6.1 Parameteraufbereitung	16
		2.6.2 Optimierungsprozess	18
3	Sta	nd der Technik	22
	3.1	Lüftungswärmeverluste	22
		3.1.1 Fensterlüftung	23
		3.1.2 Infiltration	25
		3.1.3 Maschinelle Lüftung	25
4	Par	rameterwahl und -beschaffung	26
	4.1	Kategorisierung des Gebäudebestandes	26
5	Мо	dellerweiterung	29
	5.1	Lüftungswärmeverluste	29
1 :	torat	turvorzojchnis	30

Α	Tabellen 34		
	A.1	Anzahl an Wohneinheiten nach Alter und Gebäudetyp (IWU Berechnungen)	34
	A.2	U-Werte nach TABULA	35
	A.3	Anzahl, Anteil und U_g -Werte gängiger Verglasungsarten	36
	A.4	Inputparameter Gebäudealter und -lage	37
	A.5	Kostenkennlinie und Nutzungsdauer der Gebäudehüllenkomponenten	37
	A.6	Nutzungskosten und Betriebskosten der Anlagentechnik	38
В	3 Wichtiger Anhang		

Nomenklatur

Formelzeichen und Einheiten

Symbol	Bedeutung	Einheit
A	Fläche	m^2
c_p	spezifische Wärmekapazität bei konstantem Druck	$J/(kg \cdot K)$
C	Wärmekapazität	W/kg
H	Enthalpie	J
\dot{H}	Enthalpiestrom	J/s
E	Exergie	J
e	spezifische Exergie	J/kg
\dot{m}	Massenstrom	kg/s
p	Druck	Pa
Ċ	Wärmestrom	W
R	spezifische Gaskonstante	$J/(kg \cdot K)$
S	Entropie	J/K
Ġ	Entropiestrom	W/K
T	Temperatur	K
t	Zeit	S
U	innere Energie	J
U_T	Wärmedurchgangskoeffizient	$W/(kg \cdot K)$
h	Wärmeübergangskoeffizient	$W/(m^2 \cdot K)$
V	Volumen	m^3
\dot{V}	Volumenstrom	m^3/s
\dot{W}	Leistung	W
Y	Wasserbeladung der Luft	g/kg

Griechische Formelzeichen

Symbol	Bedeutung	Einheit
λ	Wärmeleitfähigkeit	$W/(m \cdot K)$
1//	Wärmehrückenwirkung	<u>—</u>

Indizes und Abkürzungen

Symbol	Bedeutung
MFH	Mehrfamilienhaus (multy family home)
SFH	Einfamilienhaus (single family home)
WschV	Wärmeschutzverordnung

Abbildungsverzeichnis

2.1	errichtete Wonngebaude nach Mikrozensus-Klassen sowie deren Anteil am Gebau-	
	debestand [in %].[21]	3
2.2	Anzahl an Wohneinheiten bei Einfamilienhäuser (SFH) und Mehrfamilienhäuser (MFH)	
	sowie deren relativer Anteil [in %] nach Baualtersklassen. [22]	4
2.3	Flächenspezifischer Transmissionswärme verlust H_t^\prime nach Baujahr und Gebäudeart.	
	[3]	8
2.4	Anteil der Gebäudetypen Ein- und Zweifamilienhäuser sowie Mehrfamilienhäuser	
	mit nachträglicher Dämmung der Bauteile Außenwand, Dach/Obergeschossdecke	
	und Fußboden/Kellerdecke [3]	LO
2.5	Schomatischer Ablauf des Ontimierungsprogrammes	1 5

Tabellenverzeichnis

2.1	Übersicht über verschiedene Forder- und Anreizprogramme zur energetischen Ver-	
	besserung von Wohngebäuden	11
2.2	Anlagentechnik und deren Nutzungsdauer im Optimierungsmodell	17
2.3	U-Werte der Gebäudehülle für ein EnEV-Referenzgebäude nach EnEV 2009	18
2.4	Leistungsspezifische Emission der Energieträger	19
3.1	Kategorien der Einflussfaktoren zum Fensteröffnen/-schließen [8]	24
3.2	Nummerische Werte der Fitkoeffizienten nach Maas [15]	25
4.1	U-Werte der neuen Gebäudeklassen KG und GG in $\frac{W}{m^2 \cdot K}$	28
A.1	Anzahl an Wohneinheiten [in Tausend] nach Baualtersklasse und Gebäudetyp. [5] .	34
A.2	Wärmedurchgangskoeffizienten der Bauteile Dach, Außenwand, Fenster (\mathbf{U}_w) und	
	Boden nach Gebäudeart und Baualtersklasse [in $\frac{W}{m^2 \cdot K}$]	35
A.3	Bestand an Fenstern in Deutschland im Jahr 2015. [3]	36
A.4		36
A.5	Ausprägungen der Inputparameter Gebäudealter und -lage	37
A.6	y-Achsenabschnitt und Steigung der Kostenkennlinie sowie Nutzungsdauer der Bau-	
	teile Außenwand, Boden, Dach und Fenster [11]	37
A.7	Nutzungsdauer und Betriebskosten verschiedener Technologien	38

Vorwort

1 Einleitung

1.1 Motivation

das ist die einleitung

1.2 Aufgabenstellung

das ist die aufgabenstellung

2 Grundlagen

Ziel dieser Arbeit ist die Ermittlung optimierter Gebäudeenergiesysteme für den deutschen Wohngebäudebestand. Hierzu wird in Kapitel 2.1 der Bestand analysiert, um auf dieser Untersuchung aufbauend die nationale Wohngebäudesituation in einigen wenigen, repräsentativen Klassen abzubilden. Des Weiteren wird in 2.2 die historische Entwicklung der Gebäudehülle im Neubauzustand betrachtet und in 2.3 die Abweichungen des Neubauzustandes durch Sanierung erläutert. Daraus werden Zeiträume der Baualtersklassen mit ähnlichen Baustoffen und Dämmdicken zusammengefasst. Kapitel 2.4 stellt Förderprogramme zum Anreiz energetischer Sanierung vor. Zuletzt stellen Kapitel 2.5 und 2.6 die Grundlagen der mathematischen Optimierung sowie das im Rahmen dieser Arbeit erweiterte Optimierungsprogramm vor.

2.1 Deutscher Wohngebäudebestand

Zunächst wird der Wohngebäudebestand hinsichtlich Alter und Größe ausgewertet. Als Daten werden die Statistiken des Zensus2011, einer nationalen statistischen Erhebung von privaten Haushalten, betrachtet. Besagte Statistiken werden in verschiedenen wissenschaftlichen Untersuchungen des Instituts für Wohnen und Umwelt GmbH (IWU) ausgewertet und evaluiert. Weiterhin werden für die gebäudetypischen Kennwerte die Typgebäude des europaweiten Projekts "Typology Approach for Building Stock Energy Assessment" (TABULA) berücksichtigt. Die nationalen Daten Deutschlands wurden durch das IWU erhoben und berechnet.

Nach den 2011 veröffentlichten Zensus Daten besteht der deutsche Wohngebäudebestand aus rund 18.368.000 Gebäuden mit 39.432.000 Wohnungen [1]. Wie in Abbildung 2.1 zu erkennen ist, prägt den deutschen Wohngebäudebestand einen Boom in der Nachkriegszeit. So wurden in den Jahren von 1949 bis 1978 etwa 7,2 Millionen Häuser errichtet. Diese Klasse alleine macht 38 % der deutschen Wohngebäude aus. Mit circa 2,7 Millionen Gebäuden und einem Anteil von etwa 14 % bilden die vor 1919 fertiggestellten Wohnobjekte den zweitgrößten Anteil, sowie die Häuser mit Baualter zwischen 1919 und 1948 mit knapp 12 % die drittgrößte Gruppe. Folglich sind knapp zwei Drittel der deutschen Wohngebäude vor 1978 erbaut worden. Eine weitere relevante Klasse beschreiben mit fast 10 % die von 1979 bis 1986 geschaffenen Wohnbauten. Zusammen mit den drei Klassen 1987 - 1990, 1991 - 1995 und 1996 - 2000 werden durch diese vier Gruppen mehr als ein Viertel des Wohngebäudebestandes in Deutschland abgebildet. Im Gegensatz zu den zuvor genannten Gruppen stellen die nach der Jahrtausendwende konstruierten Häuser mit unter 10 % und nur 1,6 Millionen Häusern einen relativ kleinen Anteil des nationalen Bestandes dar.

Es sei noch zu erwähnen, dass in dieser Betrachtung den Mikrozensus-Klassen gefolgt wird. Diese sind explizit keine gleich langen Zeitintervalle, sondern "orientieren sich an historischen Einschnitten, den Zeitpunkten statistischer Erhebungen und den Veränderungen der wärmetechnisch relevanten Bauvorschriften"[1]. So beschreibt beispielsweise das relativ kurze Zeitintervall von 1979 bis 1983 den Zeitraum zwischen erster und zweiter Wärmeschutzverordnung, auf welche in Kapitel 2.2 noch näher eingegangen wird.

Abbildung 2.1: errichtete Wohngebäude nach Mikrozensus-Klassen sowie deren Anteil am Gebäudebestand [in %].[21]

Eine weitere Unterteilung des Wohngebäudebestandes erhält man bei der Betrachtung der Anzahl an Wohneinheiten im Gebäude. Hierbei setzt sich der Bestand zu zwei Dritteln aus Wohngebäuden mit nur einer Wohnung zusammen. Weitere 17 % bilden Gebäude mit zwei Wohnungen, während die Gebäudeklasse mit 3 - 6 Wohnungen mit 12 % vertreten ist. Die größeren Gebäude mit 7 - 12 Wohnungen sowie mit 13 und mehr Wohnungen sind anteilig am Gebäudebestand mit jeweils 5 % und 1 % relativ kleine Gruppen. Allerdings gelten letztere nur bei einer Gebäudebetrachtung als weniger relevant, da sie bei einer Anschauung der Wohneinheiten logischerweise mit größeren Faktoren im Vergleich zu Einfamilienhäusern einhergehen. [22]

In Abbildung 2.2 sind die Anzahl der Wohneinheiten für die drei Baualtersklassen älter als 1978, 1979 - 1994 und 1995 - 2009 sowie deren Anteil an allen Wohneinheiten bis Baujahr 2009 des Gebäudebestandes dargestellt. In Anlehnung an den vorherigen Abschnitt werden Gebäude mit bis zu 2 Wohnungen als Ein- und Zweifamilienhäuser zusammengefasst und nach der englischen Be-

zeichnung "single family home" mit SFH abgekürzt. Wohngebäude mit 3 oder mehr Wohnungen werden als Mehrfamilienhäuser mit der Abkürzung MFH für "multy family home" gebündelt.

Auffallend ist wiederum der enorme Anteil der Gebäude mit Baualter älter als 1978. Hier zählen die Mehrfamilienhäusern mit 14,8 Millionen Wohnungen und einem Anteil aller bis 2009 errichteten Wohneinheiten von 38 % zur größten Gruppe. Mit 12,5 Millionen Wohnungen und einem Anteil von 32 % entfällt die zweitgrößte Klasse auf die Einfamilienhäuser mit Baujahr älter 1978. Ähnlich wie zuvor bei der Gebäudebetrachtung wurden somit auch mehr als zwei Drittel aller Wohnungen vor 1978 erbaut.

Abbildung 2.2: Anzahl an Wohneinheiten bei Einfamilienhäuser (SFH) und Mehrfamilienhäuser (MFH) sowie deren relativer Anteil [in %] nach Baualtersklassen. [22]

Eine detailliertere Gliederung der Gebäudetypen ist in Tabelle A.1 zu finden. Hier wurden die Anzahl der Wohneinheiten nach Baualtersklasse und Gebäudetyp eingeteilt. Zu den zuvor beschriebenen Ein- und Mehrfamilienhäusern sind in der Tabelle außerdem die Klassen der Reihenhäusern (RH), großen Mehrfamilienhäuser (GMH) sowie Hochhäusern (HH) zu ermitteln. Weiter lassen sich die Anzahl der Wohnungen für diverse Gebäudearten in neuen Bundesländern (NBL) ablesen.

Zusammenfassend lassen sich folgende Punkte bei der statistischen Betrachtung des deutschen Gebäudebestandes festhalten:

≥ 2/3 aller Gebäude und Wohnungen des Bestandes wurden vor der 1. Wärmeschutzverordnung 1978 errichtet.

- ▶ Bei einer Betrachtung der Wohneinheiten halbiert sich der Bestand in Gebäude mit einer oder zwei Wohnungen (47 %) und drei oder mehr Wohnungen (53 %).
- ▶ Gebäude, die nach der Jahrtausendwende gebaut wurden, bilden keinen großen Anteil des Bestandes.

2.2 Historische Entwicklung der Gebäudehülle

Nachdem im vorherigen Kapitel der Gebäudebestand nach Alter und Größe beschrieben wurde, werden nun die zu den jeweiligen Gebäudealtern zugehörigen Baustoffe und Dämmeigenschaften vorgestellt. Hierzu wird zwischen der Isolierung verschiedener Gebäudebauteilen unterschieden. Neben Möglichkeiten zur Dämmung des Daches beziehungsweise der obersten Geschossdecke und der Außenwand werden zudem die Dämmung des Bodens betrachtet. Weiterhin wird auf den Verglasungsstandard verschiedener Epochen eingegangen.

Ein wichtiger Kennwert zur energetischen Bewertung eines Gebäudes und einzelner Gebäudekomponenten beschreibt der U-Wert. Hierbei handelt es sich um den Wärmeübergangskoeffizienten, welcher den Wärmestrom durch 1 m^2 Bauteilfläche bei 1 K Temperaturdifferenz beschreibt. Berechnet wird dieser als Kehrwert des Wärmedurchgangswiderstand R_T . Der U-Wert ist definiert als

$$U = \frac{1}{R_T} \quad \text{in } \frac{W}{m^2 \cdot K} \tag{2.1}$$

wobei mit

$$R_T = \sum_i \frac{d_i}{\lambda_i} \tag{2.2}$$

der Wärmedurchgangswiderstand als Verhältnis der Dämmstoffdicke d_i einer Dämmschicht i und der Wärmeleitfähigkeit λ_i des Baustoffes der Schicht i beschrieben wird.

Für transparente Bauteile und somit explizit für Fenster variiert die Berechnung des Wärmedurchgangskoeffizienten \mathbf{U}_w :

$$U_w = \frac{A_g \cdot U_g + A_f \cdot U_f + l_g \cdot \psi_g}{A_g + A_f} \quad \text{in } \frac{W}{m^2 \cdot K}$$
 (2.3)

Hierbei beschreiben A_f den Flächenanteil des Fensterrahmens und A_g die Glasfläche. Ferner sind U_g und U_f die Wärmeübergangskoeffizienten der Verglasung (Index g) und des Fensterrahmens (Index f). Außerdem werden Wärmebrückenbildungen des Glasrandverbundes mit der Multiplikation des ψ -Wertes mit der Gesamtumfangsfläche der Verglasung l_g berücksichtigt. [14]

Aus den Definitionen der U-Werte und des Wärmedurchgangswiderstandes lässt sich leicht erkennen, dass die Transmissionswärmeverluste eines Gebäudes stark von der Dicke und den Dämmeigenschaften des Dämmmaterials abhängen. Hierbei lassen sich historische Unterscheidungen treffen.

Die drei TABULA-Klassen vor 1918, 1919 - 1948 sowie 1949 - 1957 umfassen die Epochen der Gründerzeit, der Zwischenkriegszeit, den beiden Weltkriegen sowie der Nachkriegszeit. Wie in Kapitel 2.1 bereits dargelegt, prägen die Nachkriegsjahre einen schnellen Wiederaufbau, in dem vor allem mit Trümmern neue Gebäude errichtet wurde. Auch in dem Zeitraum vor 1918 kam es im Rahmen der Ausdehnung der Städte zu zahlreichen neuen Konstruktionen. Aus Tabelle A.2 lässt sich erkennen, dass sich die Wärmeübergangskoeffizienten der Gebäudetypen SFH und MFH in diesen Jahren stark ähneln. Dies ergibt sich auch aus der Darstellung der Geschichte des Dämmstandards von Eicke-Henning. Hier wurde festgehalten, dass sich bis zum Jahr 1957 die Dämmindustrie und der Hochbau im Rahmen der Industrialisierung zwar weiterentwickelte, es allerdings dennoch keinen Wandel im Hinblick auf Wärmeschutz gab. So wurde bevorzugt günstig gebaut und die damit verbunden erhöhten Heizkosten in Kauf genommen. Die im Jahr 1952 eingeführte DIN 4108 verkörperte zwar den ersten Ansatz Wärmeschutz normativ zu regulieren, jedoch konnte sie auch zu keiner Veränderung der energetischen Bauweise führen. Trotz deren Name "Wärmeschutz im Hochbau" beinhaltete die Norm nur einen Mindestwärmeschutz zur Vermeidung bauphysikalischer Schäden durch Schimmelbildung. Als Standard dieser Jahre galt das 38 cm dicke Vollziegel-Mauerwerk, Böden und Dächer ohne Dämmung sowie die Einscheiben-Verglasung. [6]

In den folgenden Jahren von 1958 - 1968 sowie 1969 - 1978 kam es zu keinen normativen Änderungen des Wärmeschutzes. Dennoch kann durch einen Wandel der Baustoffwahl eine Verbesserung der U-Werte beobachtet werden. So verschwand der Vollziegel langsam vom Markt und wurde durch Hochlochziegeln oder Hohlblocksteinen substituiert. Weiter wurden vermehrt Trittschalldämmungen in Böden und Dächer installiert. Trotz deren primären Zweckes der Lärmvermeidung erzielten diese dünnen Dämmschichten von 1 - 4 cm eine Verbesserung der Wärmedurchgangskoeffizienten der zuvor genannten Bauteile. Ab 1965 erreichten vorgefertigte Betonteile mit einem 3 - 6 cm dicken Dämmkern zudem einen besseren Wärmeschutz. Bezüglich der Fenster wurde in diesen Jahren keine Veränderung geschaffen, so dass weiterhin die Einscheiben-Verglasung die Konvention bildete. [6]

Nach der Ölkrise von 1974 rückte die Bedeutung des ressourcenschonenden Bauens beziehungsweise Betriebes von Gebäuden in den Vordergrund. Der Gesetzgeber verabschiedete am 11. August 1977 mit der 1. Wärmeschutzverordnung, im Folgenden mit WschV abgekürzt, erstmalig eine Verordnung, in der ein Standard zur Minimierung des Heizwärmebedarfs festgelegt wurde. In Folge der 1. WschV verbesserte sich die Dämmeigenschaften der Bauten mit Baujahr 1979 - 1983. So lässt sich bei den TABULA SFH-Typgebäude dieser Jahrgänge feststellen, dass sowohl das Dach eine 8 cm als auch der Boden eine 4 cm dicke Dämmschicht besitzen. Dadurch konnten U-Werte von $0.5 \frac{W}{m^2 \cdot K}$ für das Dach sowie $0.65 \frac{W}{m^2 \cdot K}$ für den Boden erreicht werden (s. Tabelle A.2). Weiterhin wurde durch die Verordnung vorgeschrieben, dass "außenliegende Fenster und Fenstertüren von beheizten Räumen (...) mindestens mit Isolier- und Doppelverglasung auszuführen (sind) "[4]. Somit ermöglichte die 1. WschV eine Verbesserung des energetischen Standards der Wohngebäuden. Allerdings stellten die ersten normativen Anforderungen an die Gebäudehülle aus heutiger

Sicht nur einen Zwischenschritt hin zu einem energetisch sinnvollen Reglement dar. Als Beispiel hierfür ist die Anforderung an Fenster zu nennen. Für diese wurde in der 1. WschV festgelegt, dass ein U-Wert von 3,5 $\frac{W}{m^2 \cdot K}$ nicht überschritten werden darf [4]. Nach heutigem Standard der Energieeinsparverordnung 2009, die im Folgenden noch weiter erläutert wird, sind für die Fenster im Neubau U_w -Werte kleiner 1,3 $\frac{W}{m^2 \cdot K}$ einzuhalten. Bei diesem Vergleich ist auch noch festzuhalten, dass es sich bei der Vorgabe zum U-Wert der 1. WschV um den U_g -Wert handelt, der nur den Wärmedurchgang durch die Verglasung beschreibt und somit im Gegensatz zu U_w weder den Wärmeübergang durch den Rahmen noch die Wärmebrückenbildung beachtet. Daher liegt der von TABULA ermittelte U_w -Wert für das SFH-Typgebäudenfenster der Jahre 1979 - 1983 aufgrund dessen energetisch schlechten Metallrahmen mit 4,3 $\frac{W}{m^2 \cdot K}$ höher als der U_g -Normwert der 1. WschV. [6]

Einen weiteren Schritt hin zu einem besseren Wärmeschutz des Gebäudebestandes markiert die 1982 beschlossene und 1984 in Kraft getretene 2. WschV, die sich auf den Wärmeschutz der Gebäude mit Baujahr 1984 - 1994 auswirkte. Nach Eicke-Henning kann sich "das Niveau von 1984 (…) mit 2-Scheiben-Isolierverglasung, 30 cm dicken porosierten Außenwänden (…), 8-9 cm Wärmedämmung im Dach und 4 cm Kellerdämmung beschreiben (lassen) " [6]. Wie sich aus Tabelle A.2 lesen lässt, führten die Maßnahmen der 2. WschV zu einem durchgehend besseren Verhalten der Bauteile gegenüber Transmissionswärmeverluste. Im Bezug auf die Anforderung der Fensterflächen ergab sich zwar eine Verbesserung im Vergleich zur 1. WschV auf $U_{g,max}=3,1\frac{W}{m^2\cdot K}$, allerdings blieb die im vorangegangenen Abschnitt diskutierte Problematik des U_g -Wertes erhalten. Des Weiteren definierte die 2. WschV Anforderungen an "Bauliche Änderungen bestehender Gebäude". Daraus folgte, dass bei Gebäudeerweiterungen oder Umbaumaßnahmen das betroffene Bauteil den geforderten energetischen Neubaustandard erfüllen musste.

Einen Paradigmenwechsel des Wärmeschutzes kennzeichnete die 3. Verordnung über einen energiesparenden Wärmeschutz bei Gebäuden von 1995. Im Gegensatz zu den zuvor vorgestellten Verordnungen begrenzte die 3. WschV nicht nur die U-Werte der Bestandteile der Gebäudehülle, sondern beschränkte zudem den Jahres-Heizwärmebedarf. Als Folge der neuen Verordnung erhielten die Bauteile im Vergleich zur 2. WschV 4 - 6 cm mehr Dämmdicke. Außerdem wurde durch die erhöhten Anforderungen an die Verglasung die Zweischeiben-Wärmeschutzverglasung der Neubaustandard. Aufgrund dieser Maßnahmen konnten die U-Werte der Gebäude mit Baujahr 1995 - 2001 signifikant gesenkt werden. Besonders die bessere Verglasung mit wärmetechnisch besseren Rahmen erzielte eine Verbesserung des U_g -Wertes von 3 - 3,2 $\frac{W}{m^2 \cdot K}$ auf 1,9 $\frac{W}{m^2 \cdot K}$.

Die zum 01. Februar 2002 in Kraft getretene Energieeinsparverordnung (EnEV) legte die zuvor genannte 3. WschV sowie die Heizungsanlagenverordnung zusammen. Somit wurden alle Anforderungen an den Energieverbrauch eines Gebäudes in einer Verordnung gebündelt. Anstelle der Begrenzung des Jahres-Heizwärmebedarfes, wie im Abschnitt zuvor, wurde der Jahres-Primärenergiebedarf sowie der flächenspezifische Transmissionswärmeverlust (H_t') limitiert. Obwohl nicht explizit strengere Regulationen an die Gebäudehülle formuliert wurden, konnte durch die Restriktion von H_t'

ein Absinken der Wärmedurchgangskoeffizienten aufgrund dickerer Dämmschichten erzielt werden. Nach Tabelle A.2 sank der U-Wert des Zeitraumes 2002 - 2009 für alle Komponenten der Gebäudehülle im Rahmen der EnEV 2002. Außerdem setzte die Verordnung striktere Anforderungen an den Altbaubestand. So mussten vor dem 01.10.1978 eingebaute Heizkessel mit flüssigem oder gasförmigen Brennstoff ersetzt werden, ungedämmte und zugängliche Wärmeverteilungsund Warmwasserleitungen nachgedämmt werden sowie nicht begehbar, zugängliche oberste Geschossdecken auf einen U-Wert von 0,3 $\frac{W}{m^2 \cdot K}$ gedämmt werden.

Auf die EnEV 2002 folgten 2004 sowie 2007 Novellierungen. Diese stellten keine Verschärfung der energetischen Anforderungen nach EnEV 2002 dar, sondern galten der Beseitigung juristischer Problematiken sowie der Einführung des Energieausweises für Bestandsgebäude [23]. Eine solche Verschärfung wurde durch die EnEV 2009 vollzogen. Zum einen wurde die Berechnung des Jahres-Primärenergiebedarfes umgestaltet. Das Berechnungsverfahren nach EnEV 2009 bestimmte einen flächenspezifischen Höchstwert des Jahres-Primärenergiebedarfes, welcher durch ein Referenzgebäude gleicher Geometrie, Gebäudenutzfläche und Ausrichtung kalkuliert wurde. Die U-Werte der Referenzgebäudeberechnung wurden von TABULA für die Typgebäude der Baujahre 2010 - 2015 übernommen und sind in Tabelle A.2 zu finden. Zum anderen wurden die Grenzwerte $H'_{t,max}$ in weniger Kategorien als EnEV 2002 unterteilt und verschärft.

Abbildung 2.3: Flächenspezifischer Transmissionswärmeverlust H'_t nach Baujahr und Gebäudeart. [3]

Abbildung 2.3 zeigt den flächenspezifischen Transmissionswärmeverlust der Gebäudetypen SFH

sowie MFH für verschiedene Baujahre. Zu erkennen ist zum Einen, dass die Werte der MFH immer über denen der SFH liegen und zum Anderen die kontinuierliche Verbesserung im Zuge der energetisch günstigeren Gestaltung der Wohngebäude. Weiterhin ist festzustellen, dass durch die Wärmeschutz- und Energieeinsparverordnungen der letzten 40 Jahre die flächenspezifische Transmissionswärmeverluste der Neubauten um Vergleich zu einem Altbau um fast 75 % gesunken sind.

Zu Tabelle A.2 ist anzumerken, dass sie sich auf den Zustand der Bauteile im damaligen Neubau bezieht. Einzige Ausnahme hierbei bilden die Fenster der Zeiträume bis 1978. Für diese charakterisiert die Einscheiben-Verglasung den Einbau-Zustand, allerdings wurde im Rahmen diverser Förderprogramme der Großteil der Einscheiben-Verglasungen durch Zweiglas-Fenster ersetzt.

2.3 Sanierungsstand des deutschen Wohngebäudebestandes

In dem vorangegangen Abschnitt wurde die Entwicklung der Gebäudehülle vorgestellt. Hierbei wurde sich auf den Neubauzustand bei Fertigstellung des Gebäudes bezogen. Dieses Kapitel soll nun die Veränderung des Gebäudebestandes durch energetische Sanierung veranschaulichen.

Abbildung 2.4 zeigt den Anteil der durch nachträgliche Wärmedämmung sanierten Bauteilflächen nach Bauteilen und Gebäudeart. Zu erkennen ist der große Anteil an sanierter Dachfläche beziehungsweise obere Geschossdeckenfläche. Dieser liegt für SFH und MFH annähernd gleich bei etwa 57 %. Folglich wurden mehr als die Hälfte der Dachflächen im Altbau nachträglich gedämmt. Einen leichten Unterschied zwischen den Gebäudearten ist bei den nachträglich sanierten Außenwänden zu beobachten. Bei diesem Bauteil wurden bei MFH etwas mehr als 31 % mit einer besseren Dämmung versehen, wohingegen es bei den SFH nur etwa ein Viertel waren. Deutlich weniger Relevanz bei der nachträglichen Dämmung erhielt die Isolierung des Fußbodens beziehungsweise der Kellerdecke. Für diese Bauteile wurden bei beiden Gebäudearten nur circa 10 % mit einem besseren Wärmeschutz versehen.

In Abbildung 2.4 fehlen die Angaben zum Sanierungsstand der Fenster. Hierfür ist die Datenlage der Sanierung schwierig, allerdings bietet das IWU eine Schätzung über den Bestand an Fenstern im Jahre 2015 [3]. Tabelle A.3 gibt verschiedene Verglasungsarten mit deren U_g -Werten sowie Anzahl und Anteil am gesamten Fensterbestand in Deutschland wieder. Wie in Gleichung 2.3 dargelegt, beschreibt der U_g -Wert den Wärmedurchgang durch die Verglasung ohne Berücksichtigung des Fensterrahmens oder der Wärmebrückenbildung.

Obwohl die Einfachverglasung für einen großen Teil des Altbaues den Neubaustandard darstellte, ist deren Anteil am Fensterbestand mit nur noch 3% sehr gering. Der heutige Bestand der Fenster wird durch unbeschichtetes Isolierglas sowie dem Zweischeiben-Wärmedämmglas dominiert, welche mit 34% und 47% vertreten sind. Weiterhin ist zu erkennen, dass das Dreischeiben-Wärmeglas bereits 8% des Fensterbestandes stellt, obwohl dieses erst 10 Jahren vor Erhebung der Daten auf den Markt kam.

Nachträgliche Wärmedämmung im Bestand nach Bauteilen und Gebäudeart.

Abbildung 2.4: Anteil der Gebäudetypen Ein- und Zweifamilienhäuser sowie Mehrfamilienhäuser mit nachträglicher Dämmung der Bauteile Außenwand, Dach/Obergeschossdecke und Fußboden/Kellerdecke [3]

2.4 Förderprogramme

In Kapitel 2.2 werden diverse Verordnungen zum besseren Wärmeschutz des deutschen Gebäudebestandes beschrieben. Diese verkörpern Anforderungen an den Neubau oder an Einzelsanierungsmaßnahmen und nur wenige Forderungen richten sich an den Gebäudebestand. Zur Steigerung der Wirtschaftlichkeit solcher Sanierungsmaßnahmen unterstützt die Bundesregierung Gebäudeeigentümer finanziell bei energetischen Sanierungsvorhaben.

Als Beispiel eines erfolgreichen Anreizprogrammes sei der Rückgang der Einfachverglasung genannt. Im Rahmen des Energiespar-Förderprogrammes investierte die Bundesregierung ab 1977 4,35 Milliarden DM zur Erneuerung von Heizungen und Fenster [7]. Dadurch konnte ein Anreiz zur energetischen Sanierung geschaffen werden, was mit einen Grund dafür darstellt, dass der Anteil an Einfachverglasung heute nur etwa 3 % beträgt.

Heute existieren verschiedene Fördermöglichkeiten, welche die Energieeffizienz der Heizungstechnik, den Einsatz erneuerbarer Energien zur Wärmeerzeugung und die energetische Verbesserung der Gebäudehülle subventionieren. Die Auszahlung der öffentlichen Geldern erfolgt größtenteils durch das Bundesamt für Wirtschaft und Ausfuhrkontrolle (BAFA) und das Kreditinstitut für Wiederaufbau (KfW). Letztere hat im Jahr 2018 insgesamt 12 Milliarden Euro an Krediten und

Zuschüssen im Bereich Energiewende für circa 220.000 Anträge verteilt [13]. Tabelle 2.1 listet einige Förder- und Anreizprogramme mit dem zu fördernden Technologien beziehungsweise Maßnahmen auf.

Programmbezeichnung	Fördertyp	Geförderte Technologie/ Maßnahme
Erneuerbare-Energien- Gesetz (EEG)	Einspeisevergütung	Photovoltaik
Kraft-Wärme-Kopplung- Gesetz (KWKG)	Einspeise-/Eigenverbrauch- vergütung	BHKWs
Mini-KWK-Zuschuss (durch BAFA)	Investitionszuschuss	BHKWs
Anreizprogramm Energieeffizienz (APEE)	Investitionszuschuss	Wärmepumpen Solarthermie Pelletkessel
KfW-Programm 430	Investitionszuschuss	Sanierung von einzelnen Bauteilen oder KfW-Effizienzhausstandard

Tabelle 2.1: Übersicht über verschiedene Förder- und Anreizprogramme zur energetischen Verbesserung von Wohngebäuden

2.5 Arten der Optimierung

Ziel dieser Arbeit ist die Bestimmung verschiedener Maßnahmen, welche für repräsentative Gebäudetypen eine wirtschaftlich und ökologisch optimale Lösung bieten. Hierbei werden neben verschiedenen Möglichkeiten der Energiebereitstellung auch die Qualität und Verbesserung verschiedener Komponenten der Gebäudehülle betrachtet. Dadurch ergibt sich eine hohe Anzahl an möglichen Kombinationsmöglichkeiten der Maßnahmen. Um aus dieser Komplexität ein Optimum zu bestimmen, ist es unabdingbar, ein rechnergestütztes Optimierungsprogramm als Werkzeug zu nutzen.

Im mathematischen Sinne beschreibt die Optimierung die Lösung einer Zielfunktion. Diese Funktion wird mit Variablen beschrieben und mit Rahmenbedingungen, Restriktionen genannt, beschränkt [20]. Somit wird mit einem Optimierungsprogramm versucht, eine Problematik mathematisch zu modellieren, um eine rationale Entscheidung über eine optimale Lösung zu treffen. Im Folgenden stellt dieses Kapitel verschiedene Arten der Optimierung sowie diverse Optimierungsprogramme vor, um letztlich das im Rahmen dieser Arbeit verwendete Programm in 2.6 beschreiben zu können.

Zur Einteilung von Optimierungsprogrammen existieren verschiedene Möglichkeiten. Bei der Be-

trachtung der zu Grunde liegenden Variablen erhält man eine Unterteilung. Hierbei werden die Programme in einem mathematischen Sinne danach unterteilt, aus welchem Raum die Variablen entstammen. So wird zwischen diskreten und kontinuierlichen Variablen unterschieden. Die diskreten entstammen aus \mathbb{Z} und umfassen unter anderem ganze Zahlen und Binärvariablen. Letztere sind die Menge aus [0;1] und werden im Rahmen der Optimierung oft als Option der Kaufentscheidung oder Schaltzustände genutzt. Dabei beschreibt 0 einen ausgeschalteten, beziehungsweise nicht gekauften Zustand und 1 den eingeschalteten/gekauften. Neben den diskreten Variablen werden auch kontinuierliche in Optimierungsprogrammen genutzt. Diese sind als reelle Zahlen \mathbb{R} definiert und beschreiben beispielsweise Kapazitäten, Heizbedarf oder Wärmeverluste. Werden in einem Programm diskrete und kontinuierliche Variablen gemischt, so spricht man von einer gemischt-ganzzahligen Optimierung. [20]

Neben den Variablen stellt die Art der Funktionen eine weitere Unterscheidung der Optimierungsprogramme dar. Bestehen die Restriktionen und die Zielfunktion eines Programmes einzig und allein aus linearen Zusammenhängen, so wird von einem linearen Programm (LP) gesprochen. Dem gegenüber werden solche Optimierungen, die auch Nichtlinearitäten abbilden, als nicht-lineare Programme (NLP) bezeichnet. Oftmals findet man in der Realität nicht-lineare Zusammenhänge, welche mit NLP gut modelliert werden können. Als ein Beispiel sei hier das Teillastverhalten von Wärmeerzeugern genannt. Jedoch stellt das Lösen von nicht-linearen Gleichungen einen erhöhten Rechenaufwand dar, welcher mit einer deutlich längeren Rechendauer einhergeht. Somit kann durch die Linearisierung von nicht-linearen Zusammenhängen Rechenzeit zu Kosten von Genauigkeit verkürzt werden. Die gemischt-ganzzahlige lineare Optimierung wird aufgrund ihrer englischen Bezeichnung ("Mixed Integer Linear Programing") mit MILP abgekürzt, die nicht-lineare analog mit MINLP. [19]

In der Literatur werden verschiedene Ansätze und Modelle für Optimierungen von Energiesystemen verfolgt, welche im Weiteren kurz vorgestellt werden.

Iturriaga et al. [12] erarbeiten ein allgemeines Modell für Gebäudeenergiesysteme auf Gebäudeebene. Dieses soll alle derzeit verfügbaren Technologien der Wärme-, Kälte- und Elektrizitätsbereitstellung abbilden können. Hierzu werden die Anlagen unterteilt in solche, welche hohe, mittlere und niedrige Temperaturen erzeugen, Kältemaschinen und elektrische Module. Thermische und elektrische Energie kann zwischen den jeweiligen Gruppen ausgetauscht werden, um letztlich den Wärme-, Kälte- und Elektrizitätsbedarf des Gebäudes zu decken. Weiterhin berücksichtigt das Modell neben der Energieerzeugung auch Speicher und Interaktionen mit anderen Gebäuden durch Nah-, Fernwärme- sowie Stromnetzen. Die stückweise Linearisierung des nicht-linearen Teillastverhaltens der Anlagen führt zu rein linearen Gleichungen und somit zu einem MILP Problem. Als Zielfunktion ist die Minimierung der annualisierten Kosten definiert. Diese setzen sich aus Investitionskosten, jährlichen variablen Kosten, Energiebezugskosten sowie Gewinnen aus dem Verkauf an überschüssiger Wärme, Kälte oder Elektrizität zusammen.

Als Restriktionen der Optimierung sind technologische Nebenbedingungen der oben genannten Gruppen, die Bedarfserfüllung des Energiesystems, gebäudespezifische Rahmenbedingungen sowie Begrenzungen der Variablen aufgeführt. Zuletzt wird das Modell anhand eines Beispielgebäudes im nordspanischen Bilbao getestet. Hierbei werden 13 verschiedenen Technologien der Wärme- und Elektrizitätserzeugung in Betracht gezogen. Diese umfassen neben Organic-Rankine-, Gasturbinen- und Verbrennungsmotoren-Blockheizkraftwerke (BHKW) auch verschiedene solarthermische Anlagen (CPC, Vakuumröhrenkollektoren, Flachkollektoren), Biomasse-, Gasund Brennwertkessel, Luft-Wasser-Wärmepumpen und diverse Photovoltaik-Anlagen (amorphe, mono- und polykristalline Solarmodule).

In [17] wird von Pinzon et al. ein Modell zur Optimierung der Stromkosten unter Berücksichtigung der Behaglichkeit der Bewohner vorgestellt. Hierbei werden neben Stromkosten aus Heizoder Kühlzwecken, Beleuchtung, Ersparnissen aus Photovoltaik (PV) und Energiespeichern auch thermische Lasten in den modellierten Zonen betrachtet. Wie in Iturriaga et al. [12] wird zunächst ein MINLP Modell erstellt, dass daraufhin durch stückweise Linearisierung in ein MILP gewandelt wird. Als Zielfunktion ist die Minimierung des Strombedarfes und somit der Stromkosten beschrieben. Der Bedarf setzt sich aus dem Verbrauch der zuvor genannten Komponenten zusammen. Als Nebenbedingungen werden die Nutzung der PV-Anlagen und Energiespeicher, des Klimageräts und der Beleuchtung sowie der Einhaltung des thermischen Komforts definiert. Bei letzterem werden auch die Wärmeträgheit des Luftvolumens im Raum, sowie der Wärmeverlust durch den Infiltrationsluftvolumenstrom, also durch Undichtheiten in der Gebäudehülle, berücksichtigt.

In Risbeck et al. [18] wird der optimale Betrieb von Lüftungssystemen zum Kühlen und Wärmen in kommerziellen Gebäuden, also Nichtwohngebäuden, untersucht. Hierzu werden diskrete Variablen zum Modellieren des An- und Abschaltens der Komponenten sowie kontinuierliche zur Abbildung der Lasten und Speicherstände genutzt. Als Zielfunktion werden minimale Betriebskosten bei Einhaltung des thermischen Komforts im Gebäude formuliert. Auch Risbeck et al. wandeln nicht-lineare Geräteverhalten durch stückweise Linearisierung in lineare um. Dadurch wird die Rechenzeit verkürzt und das Programm kann in Echtzeit auf Preisänderungen, Bedarfsschwankungen und Wetteränderungen eingehen. Als Nebenbedingungen der Optimierungsaufgabe werden neben der Temperierung verschiedener Gebäudezonen auch die optimale Nutzung der zur Verfügung stehenden Speicher beachtet.

Zhu et al. [25] beschäftigen sich mit der Kapazitätsauslegung thermischer und elektrischer Speicher in Gebäudeenergiesystemen mit mehreren Energiebereitstellungsformen. Der Bedarf an elektrischer Energie wird hierbei entweder durch Photovoltaik (PV), Netzbezug oder einer Batterie gedeckt. Zur Erfüllung des Wärmebedarfs stehen neben einer Wärmepumpenheizung noch ein sensibler Wasserspeicher zur Verfügung. Ein Teil der nicht-linearen Gleichungen werden linearisiert. Da jedoch noch nicht-lineare Zusammenhänge in dem Programm existieren, handelt es sich bei

dem Modell um ein MINLP.

Eine Betrachtung der Gebäudehülle ist in Asadi et al. zu finden [2]. Hierbei handelt es sich zum einen um ein MINLP und zum anderen um eine Parteo-Optimierung, bei welcher dem Programm mehrere Zielfunktionen übergeben werden. Das Modell betrachtet neben Dämmarten und -dicken der Außenwand und des Dachs auch den Fenstertyp sowie Solarkollektoren. Hierzu wird für jedes Bauteil zwischen unterschiedlichen Sanierungsmaßnahmen unterschieden, allerdings wird das Programm auf die Wahl eines Szenarios je Bauteil eingeschränkt. Weiter wird der Energiebedarf des Gebäudes vereinfacht als Summe des Wärme-, Kälte- und Warmwasserbedarfes berechnet. Ziel des Programmes ist die Bestimmung des kosten- und emissionsoptimalen Energiesystem.

In [24] modellieren Wouters et al. Haushalte, die auf Quartiersebene thermische und elektrische Energie untereinander austauschen können. An Anlagentechnik stehen Brennwertkessel, BHKWs , thermische und elektrische Speicher, PV-Anlagen und kleine Windkraftanlagen (WKA) zur Verfügung. Als Zielfunktion ist die Minimierung der Annuität durch optimale Anlagenwahl, -auslegung und -betrieb definiert. Das Programm wird nur mit linearen Gleichungen modelliert, sodass es sich um ein MILP handelt. Weiter werden Einflüsse regulatorischer Maßnahmen untersucht und darauf aufbauend zwei Standorte mit ähnlichen klimatischen Bedingungen in Griechenland und Australien miteinander verglichen.

Das Optimierungsmodell von Harb et al. [10] bestimmt die optimale Anlagenauswahl zur Wärmeerzeugung von Einzelwohngebäuden oder Quartieren. Es werden Mikro-BHKWs, Wärmepumpen, Elektroheizstäbe, PV, thermische Speicher, Kessel sowie Nahwärmenetze in Betracht gezogen. Besonders an dem Modell von Harb et al. ist weiterhin, dass die Einspeisevergütung von PV-Strom sowie die Förderung von BHKW produzierter Elektrizität in die wirtschaftliche Betrachtung mit einfließen.

2.6 Referenzmodell

Als Grundlage dieser Arbeit liegt ein Programm zur Kosten- oder Emissionsoptimierung von Gebäudeenergiesystemen vor. Neben einer Auswahl an Anlagentechniken zur Energiebereitstellung stehen außerdem Sanierungsmaßnahmen der Gebäudehülle zur Verfügung. Hierbei werden ähnlich wie bei Asadi et al. [2] Außenwände, Fenster und Dächer sowie zusätzlich Böden betrachtet. Die Entscheidung für verschiedene Anlagen oder Maßnahmen an der Hülle erfolgt durch diskrete Binärvariablen, wohingegen die Auslegung und der Betrieb durch kontinuierliche Variablen modelliert wird. Wie in Iturriaga et al. [12], Pinzon et al. [17] und Risbeck et al. [18] erfolgt eine Linearisierung der nicht-linearen Gleichungen, sodass es sich um ein MILP handelt. Die Zielfunktion der Optimierung kann entweder zur Minimierung der Kosten oder CO₂-Emissionen gesetzt werden. Des weiteren besteht die Möglichkeit wie bei Asadi et al. [2] eine Pareto-Optimierung durchzufüh-

ren, bei welcher ein Gebäudeenergiesystem unter Berücksichtigung der Kosten- und Emissionsoptimierung ermittelt wird.

Nach einer Parametrisierung des Gebäudes durch den Nutzer greift das Programm auf verschiedene hinterlegte Daten zurück, welche zum einen die Umweltbedingungen simulieren und zum anderen das Gebäude und die Anlagentechnik näher beschreiben. Weiter werden die 365 Tage eines Jahres in einigen wenigen, repräsentativen Typtagen zusammengefasst, um somit die Komplexität des Problems zu reduzieren. Bei dem eigentlichen Optimierungsprozess wird ein Gleichungssystem basierend auf den zuvor gewählten und eingelesenen Parametern zur Minimierung der Zielfunktion gelöst. Nach der Optimierung gibt das Programm Daten zu dem gewählten Energiesystem, den Kosten und den Emission aus, die dann vom Nutzer ausgewertet werden. In Abbildung 2.5 ist der Programmablauf schematisch skizziert. Im Folgenden wird in Kapitel 2.6.1 die Schritte vor dem Optimierungsprozess vorgestellt und weiter in Kapitel 2.6.2 die Gleichungen, welche der Optimierung zu Grunde liegen, beschrieben.

Abbildung 2.5: Schematischer Ablauf des Optimierungsprogrammes

2.6.1 Parameteraufbereitung

Zunächst werden dem Programm durch den Nutzer Angaben zum zu berechnenden Gebäude übergeben. Hier werden Gebäudetyp, -alter und -lage sowie Wohnungsanzahl, Wohnfläche je Wohnung, Haushaltsgröße und qualitative Angaben zum Strom- und Trinkwarmwasserbedarfs definiert. In Bezug auf den Gebäudetyp stehen die TABULA-Klassen Einfamilien-, Reihen-, Mehrfamilienhaus und Apartment-Block zur Wahl. Auch die Baualtersklassen basieren auf TABULA-Unterteilungen und gliedern sich in 12 Klassen im Zeitraum von 1860 bis 2010. Bei der Gebäudelage stehen dem Nutzer 15 verschiedene Städte aus verschiedenen Klimaregionen Deutschlands zur Auswahl. Eine Übersicht über die möglichen Ausprägungen der Inputparameter Gebäudealter und -lage ist Tabelle A.5 zu entnehmen.

Auf Basis der übergebenen Angaben wird auf eine Datengrundlage zurückgegriffen. So werden anhand des Gebäudestandortes entsprechend jährliche Klimaprofile genutzt. Diese entsprechen dem Testreferenzjahr des Deutschen Wetterdienstes, welches für den Betrachtungszeitraum von 1981 bis 2010 einen repräsentativen Witterungsverlauf beschreibt. Neben einem Umgebungstemperaturverlauf liefern die Profile solare Einstrahlungen und sind stündlich, also in 8760 Zeitpunkte, aufgeteilt. Weiter werden Strom- und Trinkwarmwasserbedarfsprofile sowie Profile der internen Gewinne eingelesen. Im Falle der Einfamilien- und Reihenhäuser hängen diese von der Haushaltsgröße ab und bei den Mehrfamilienhäusern sowie Apartment-Blocks von der Wohnungsanzahl. Außerdem bedingen die Angaben zur Höhe des Strom- und Trinkwarmwasserbedarfes die Auswahl der Profile. Die eingelesenen Verläufe basieren auf stochastischen Auswertungen des deutschen Stromspiegels und bilden Grundlasten sowie Lastspitzen ab. Wie bei den Klimaprofilen sind auch diese als stündliche Werte über ein Jahr aufgetragen.

Da eine Optimierung über jede Stunde eines Jahres mit einem großen Rechenaufwand einhergeht, werden die eingelesenen Profile in Typtagen zusammengefasst. An Tagen mit vergleichbaren Witterungsverläufen ähneln sich die Energiebedarfsprofile, sodass diese im Rahmen des Programmes mit Hilfe eines Clusteringvorgangs zusammengefasst werden. Um einerseits saisonale Effekte abzubilden und aussagekräftige Ergebnisse zu erhalten und andererseits die Rechenzeit des Programmes zu verkürzen, werden die 8760 Stunden eines Jahres in 8 Typtagen mit 192 Zeitpunkten zusammengefasst. Diese besitzen wiederum Gewichtungen, welche in Summe 365 Tage und somit ein Jahr ergeben.

Neben den bereits erläuterten Klima- und Energiebedarfsprofilen werden weitere Gebäudeparameter an das Programm übergeben. So werden für die Bauteile der Gebäudehülle U-Werte für drei Sanierungsszenarien eingelesen. Bei diesen handelt es sich um den Standard-Zustand des parametrisierten Gebäudes im Bestand ("standard "), einer normalen energetischen ("retrofit") und einer fortgeschrittenen energetischen Nachrüstung ("advanced retrofit "). Zudem werden Faktoren zur Dimensionierung der Fenster-, Dach-, Boden- und Außenwandfläche eingelesen. In Kapitel 2.6.2 wird die Berechnung der Wärmeverluste anhand der U-Werte und der Bauteilflächen

näher erläutert.

Schließlich werden auch ökonomische Faktoren zur Bestimmung des Preises einer Sanierungsmaßnahme in das Programm mit aufgenommen. Hierbei werden die Investitionskosten der Gebäudehüllenbestandteile als lineare Funktion ausgedrückt. Außer bei den Fenstern berechnen sich diese Kosten anhand der zusätzlichen Dämmdicke im Zuge des Sanierungsszenario. Im Falle der Verglasung wird die lineare Funktion anstelle der Dämmdicke in Abhängigkeit der Verbesserung des U-Wertes aufgestellt. Die Werte für den y-Achsenabschnitt und die Steigung der linearen Funktionen für die einzelnen Bauteile basieren auf Berechnungen des IWU [11] und sind in Tabelle A.6 aufgeführt. Zusätzlich sind in dieser Tabelle Angaben zu der Nutzungsdauer der Komponenten zu finden, welche aus derselben Quelle entstammen. Diese werden für die Berechnung der annualisierten Kosten benötigt.

Mit den bisher beschriebenen Daten lassen sich die Bedarfe des Gebäudes bestimmen. Zur Deckung dieser werden verschiedene Energieerzeuger und -speicher zu dem Modell hinzugefügt. Die Dimensionierung der jeweiligen Technologien erfolgt kontinuierlich. Um die Investitionskosten der Anlagen zu berechnen, existieren Installationskosten mit einer Unterscheidung zwischen Einfamilien- oder Mehrfamilienhaus. Zudem werden die Steigung und der y-Achsenabschnitt einer linearen Funktion zur Preiskalkulation an das Programm übergeben oder anhand von empirischen Herstellerangaben generiert. Tabelle 2.2 führt die verschiedenen Technologien, welche im Modell Beachtung finden, sowie deren Nutzungsdauer auf.

Technologie	Nutzungsdauer in Jahren	Technologie	Nutzungsdauer in Jahren
Brennwertkessel	20	Solarthermie	20
Luft-Wärmepumpe	18	PV	20
Sole-Wärmepumpe	20	Thermischer Speicher	20
Pelletkessel	20	Batteriespeicher	15
BHKW	15	Elektroheizstab	20

Tabelle 2.2: Anlagentechnik und deren Nutzungsdauer im Optimierungsmodell

Weiter werden betriebswirtschaftliche Parameter eingelesen. Hierbei werden neben allgemeinen Faktoren wie dem Betrachtungszeitraum, der Mehrwertsteuer, dem internen Zinssatz und der Inflationsrate auch energieträgerspezifische Kennwerte übergeben. Bei letzteren handelt es sich um Preisänderungsfaktoren, welche zukünftige Preisänderungen der Energieträger abbilden, sowie der Einspeisevergütung und der Energiesteuer. In Tabelle A.4 sind die Parameter mit ihren jeweiligen Werten aufgeführt.

Zudem werden Daten zur Modellierung von Förderprogrammen mitaufgenommen. Die Fördergelder beeinflussen die Wirtschaftlichkeit verschiedener Technologien und Maßnahmen. Somit

werden die leistungsabhängigen Förderhöhen mit in das Modell aufgenommen. Außerdem gibt es für alle Programme Bedingungen, welche für eine Auszahlung erfüllt seien müssen und monetäre Grenzen, in denen sich die Fördersumme minimal und maximal bewegt. Einen Überblick über die Förderkonditionen und -grenzen werden in Tabelle XXXX dargelegt.

Um die Förderungen im Rahmen des KfW-Effizienzhaus-Programms zu erhalten, wird die Sanierungsmaßnahme mit einem EnEV-Referenzgebäude verglichen. Hierbei entspricht beispielsweise ein KfW-Effizienzhaus 85 einem Gebäude, welches 85 % der Energie eines EnEV-Referenzgebäudes benötigt. Für die Berechnung des EnEV-Referenzgebäudes werden weitere Daten eingelesen. Das Referenzgebäude besitzt dieselbe Geometrie wie die des zu berechnenden Gebäudes und eine nach EnEV vorgegebene energetische Qualität der Hülle. Diese sind in Tabelle 2.3 aufgeführt.

Bauteil	U-Werte $\left[\frac{W}{m^2 \cdot K}\right]$
Außenwand	0,28
Boden	0,35
Dach	0,20
Fenster	1,30

Tabelle 2.3: U-Werte der Gebäudehülle für ein EnEV-Referenzgebäude nach EnEV 2009.

2.6.2 Optimierungsprozess

Als Zielfunktion des Optimierungsprogrammes kann zwischen der Minimierung der annualisierten Kosten oder der CO_2 -Emissionen ausgewählt werden. Die Kosten setzten sich zusammen aus Investitionskosten durch die Anschaffung der Anlagentechnik und Verbesserung der Gebäudehülle ($C_{Investition}$), den Wartungs- und Instandhaltungskosten der Anlagen ($C_{Variabel}$), den Kosten aus dem Bedarf an Elektrizität und Brennstoffen (C_{Bedarf}), den Fixkosten durch Strom- und Gasbezug (C_{Fix}) sowie den Gewinnen aus dem Verkauf von Strom ($R_{Erlöse}$) und die Zuschüsse aus Fördergeldern ($R_{F\"{o}rdergelder}$).

$$C_{total} = \sum C_{Investition} + \sum C_{Variabel} + \sum C_{Bedarf} + \sum C_{Fix} - \sum R_{Erl\"{o}se} - \sum R_{F\"{o}rdergelder} \quad (2.4)$$

Die Berechnung der Investitionskosten unterscheidet sich leicht zwischen Energieerzeugern und Hüllensanierung. Es sei zu erwähnen, dass das Standard-Szenario den Bestandszustand beschreibt und somit nicht mit Kosten verbunden ist. Letztlich wird in allen Fällen eine totale Investitionssumme berechnet und unter Beachtung der jeweiligen Nutzungsdauer, dem internen Zinssatz und der Inflationsrate annualisiert.

Die betriebsgebundenen Kosten für Wartung und Instandhaltung werden anteilig aus den Investitionskosten bestimmt und mit einem Faktor zur Inflationsbereinigung multipliziert.

Zur Bestimmung der bedarfsspezifischen Kosten wird die Summe aus verschiedenen Energiequellen gebildet. Jeder Summand besteht hierfür aus dem Bedarf des Energieträgers multipliziert mit den leistungsspezifischen Kosten, dem Preisänderungsfaktor der Bezugsgröße und dem Faktor zur Annualisierung der Kosten. Eine Ausnahme bilden die BHKWs, da bei diesen der Gaspreis um die Energiesteuer reduziert wird. Dies ist eine Folge der Förderung durch das KWK-Gesetz.

Im Falle der Fixkosten liest das Programm Grundpreise für die Nutzung von Gas und Strom ein. Für Erdgas betragen diese 138 $\frac{\epsilon}{3}$ und für den Strombezug 73 $\frac{\epsilon}{3}$.

Durch die Verbrennung von Brennstoffen wird CO_2 freigesetzt. Somit kann die Emission beschrieben werden als Summe der CO_2 -Freisetzung, die durch den Bedarf an Brennstoffen entstehen. Hierbei ist zu beachten, dass sich die Emission durch Gutschriften aus Stromeinspeisungen in das Netz reduzieren lassen. Somit setzt sich die Berechnung der Emission aus der Verbrennung von Holz-Pellets (E_{Pellet}) oder Gas (E_{Gas}), dem Emissionswert des Stromes aus Netzbezug (E_{Netz}) und den negativen Emissionen der Gutschriften ($E_{Einspeisung}$) zusammen.

$$E_{total} = E_{Pellet} + E_{Gas} + E_{Netz} - E_{Einspeisung}$$
 (2.5)

Die jeweiligen Summanden ergeben sich als Produkt aus dem Bedarf der Bezugsgröße und der leistungsspezifischen Emission der Emissionsquelle. In Tabelle 2.4 sind die Werte für die Energiequellen Holz-Pellets, Gas und Strom aufgeführt. Überschreitet die Elektrizitätsproduktion aus PV oder BHKW den Eigenbedarf des Gebäudes kann Strom ins Netz eingespeist werden, wodurch $E_{Einspeisung}$ als Produkt der eingespeisten Energiemenge und dem leistungsspezifischen Emissionswert des Stromes berechnet wird.

Energiequelle	CO ₂ -Emission
	in $[kg_{CO_2}/kWh]$
Holz-Pellets	0,025
Gas	0,25
Strom	0,566

Tabelle 2.4: Leistungsspezifische Emission der Energieträger

Die Kombinationsmöglichkeiten zur Erfüllung der Zielfunktionen wird durch den Lösungsraum, welcher durch Restriktionen definiert wird, beschränkt. So wird beispielsweise die Anzahl der PV-Module durch die zur Verfügung stehende Dachfläche limitiert. Eine zentrale Nebenbedingung stellt die Berechnung der Heizlast dar. Diese beschreibt die Wärmemenge, welche durch die Anlagentechnik bereitgestellt werden muss, um das Gebäude auf die Norm-Innentemperatur in Höhe von $20\,^{\circ}$ C zu heizen. Als Berechnungsgrundlage dient die DIN EN 12831. Diese definiert die Norm-Heizlast $\Phi_{HL,build}$ als Summe der Transmissionswärmeverlusten Φ_T , Lüftungswärmever-

lusten $\Phi_{V,build}$, der Aufheizleistung Φ_{hu} und abzüglich der internen Gewinne Φ_{gain} .

$$\Phi_{HL,build} = \Phi_T + \Phi_{V,build} + \Phi_{hu} - \Phi_{gain}$$
(2.6)

Die internen Gewinne werden aufgeteilt in solare Gewinne aus Sonneneinstrahlung und internen Wärmequellen wie beispielsweise Küchengeräte oder anwesenden Personen. Diese werden durch eingelesene Profile bestimmt und sind somit für das parametrisierte Gebäude für einen Zeitabschnitt konstant. Da das Modell keine Gebäudemasse abbildet, kann die Aufheizleistung nicht berechnet werden. Laut Norm ist Φ_{hu} optional und wird somit vernachlässigt.

Die Transmissionswärmeverluste Φ_T beschreiben Wärmeverluste aufgrund des Wärmeüberganges an der Gebäudehülle und lassen sich als Produkt der Temperaturdifferenz zwischen der Norm-Innen- $(\Theta_{int,i})$ und Außentemperatur (Θ_e) mit dem Transmissionswärmetransferkoeffizienten (H_t) bestimmen und sind in Gleichung 2.7 wiedergegeben. Zur Berechnung von H_t werden die Bauteilfläche (A_k) , der U-Wert (U_k) und der Temperaturkorrekturfaktor $(f_{U,k})$ für jedes Bauteil k multipliziert und die Summe der Produkte gebildet. Außerdem werden Wärmebrücken mit dem zusätzlichen Wärmedurchgangskoeffizient (ΔU_{TB}) berücksichtigt. Die Formel zur Berechnung von H_t ist in 2.8 zu finden.

$$\Phi_T = H_t \cdot (\Theta_{int,i} - \Theta_e) \tag{2.7}$$

$$H_t = \sum_k A_k \cdot (U_k + \Delta U_{TB}) \cdot f_{U,k} \quad \text{mit } k \in \{\text{Außenwand, Boden, Fenster, Dach}\}$$
 (2.8)

Hierbei wird ΔU_{TB} laut Norm vereinfacht mit 0,05 $\frac{W}{m^2 \cdot K}$ angenommen. Der Temperaturkorrekturfaktor berücksichtigt einen Unterschied zwischen Norm-Innentemperatur und Außentemperatur. Da in dem Programm keine Unterscheidung der Raumnutzung erfolgt, gibt es nur im Falle des Bodens aufgrund des Kontakts mit dem Erdreich einen solchen Unterschied. Daher wird $f_{U,Boden}$ nach Norm mit 0,6 bestimmt. Die verschiedenen Kombinationsmöglichkeiten der Sanierungsszenarien werden durch Multiplikation mit einer binären Entscheidungsvariablen $(x_{k,i})$ in das Programm mit aufgenommen, wobei $k \in \{Außenwand, Boden, Dach Fenster\}$ und $i \in \{standard, retrofit, advanced retrofit\}$.

$$H_t = \sum_{k} \sum_{i} A_k \cdot (U_k + \Delta U_{TB}) \cdot f_{U,k} \cdot x_{k,i}$$
 (2.9)

Im Falle $x_{k,i} = 1$, wird das Szenario gekauft und die Transmissionswärmeverluste werden gesenkt. Analog hierzu entspricht $x_{k,i} = 0$ einer Ablehnung für das Bauteil k das Szenario i zu kaufen. Logischerweise können je Gebäudehüllenkomponente nicht mehr als eine Sanierungsmaßnahme vorgenommen werden, sodass das Modell durch die Nebenbedingung

$$\sum_{i} x_{k,i} = 1 \quad \text{mit i } \in \{\text{standard, retrofit, advanced retrofit}\}$$
 (2.10)

beschränkt wird.

Schließlich wird die Heizlast auch durch die Lüftungswärmeverluste beeinflusst. Diese werden durch das Heizperiodenverfahren in DIN V 4108-6 modelliert. Hierzu wird laut Norm von einer Luftwechselrate (n) für ein nicht-luftdichtheitsgeprüftes Gebäude von $0.7\,\mathrm{h^{-1}}$ ausgegangen. Die Luftwechselrate beschreibt, wie oft pro Stunde das Volumen des Gebäudes mit Frischluft ausgetauscht wird. Des Weiteren wird das Netto-Volumen (V) in der Norm als 0.76-fachen des Brutto-Volumens (V_e) bestimmt. Somit ergibt sich mit der Wärmekapazität der Luft (c_{p,Luft}) und der Luftdichte (ρ_{Luft}) die spezifische Lüftungswärmeverluste (H_V) zu

$$H_V = 0.76 \cdot V_e \cdot \rho_{Luft} \cdot c_{p,Luft} \cdot n \quad . \tag{2.11}$$

Zuletzt wird durch Berücksichtigung des Korrekturfaktor aufgrund von Nachtabschaltung der Heizung ($f_{NA}=0,95$) und des Gradtagzahlfaktor (G_t) die Lüftungswärmeverluste zu

$$\Phi_{V,build} = H_V \cdot G_t \cdot f_{NA} \cdot 24 \frac{h}{d} \cdot \frac{1}{1000} \frac{kW}{W}$$
(2.12)

berechnet.

3 Stand der Technik

3.1 Lüftungswärmeverluste

Lüftungswärmeverluste entstehen durch den Austausch von warmer Raumluft mit kälterer Außenluft. Dies kann durch Fensteröffnung, durch maschinelle Lüftung und durch Infiltration, also durch Fugen oder Undichtheiten an der Gebäudehülle, geschehen. Somit sind die Verluste auch vom Nutzerverhalten bezüglich des Fensteröffnens, der Dichtheit der Gebäudehülle und dem Lüftungskonzept abhängig. Je nach Ausprägung dieser Faktoren stellen die Lüftungswärmeverluste zwischen 20 bis 40 % der Gesamtwärmeverluste eines Gebäudes. Den niedrigen Wert findet man im Altbau. Durch die schlechte energetische Qualität der Hülle weicht hier zwar viel Luft durch Fugen und kleine Öffnungen, wodurch der Infiltrationsluftvolumenstrom hoch ist, allerdings dominieren die Transmissionswärmeverluste aufgrund der schlechten Dämmeigenschaften der Hüllenbauteile. Analog hierzu liegt der relative Anteil der Lüftungs- an den Gesamtwärmeverlusten in solchen Gebäuden höher, welche durch gute Isolationseigenschaften der Bauteile geringe Transmissionswärmeverluste besitzen. So beispielsweise in Neubauten oder Altbauten mit sanierter Gebäudehülle.

Den Lüftungswärmeverlusten stehen hygienische Aspekte und die Luftqualität gegenüber. Einerseits muss in einem Gebäude ein Luftaustausch geschehen um Luftfeuchtigkeit und Kohlenstoffdioxid aus den Räumen abzutransportieren. Andererseits steigen mit zunehmen Luftwechsel die Wärmeverluste, wodurch ökologisch und ökonomisch Nachteilhaft mehr geheizt werden muss.

Einen Ansatz zur Bestimmung der Lüftungswärmeverluste bietet die DIN EN 12831. Hier werden diese Verluste des Gebäudes ($\Phi_{V,build}$) in z Zonen aufgeteilt.

$$\Phi_{V,build} = \sum_{z} \left\langle \Phi_{V,z} \right\rangle \tag{3.1}$$

Die Zonen umfassen jeweils beheizte Räume (i), womit sich die Lüftungswärmeverluste der Zone (z) zu

$$\Phi_{V,z} = \rho \cdot c_p \cdot \sum_{i} \left\langle f_{i-z} \cdot q_{v,min,i} \cdot (\theta_{int,i} - \theta_e) \right\rangle$$
(3.2)

berechnen lassen. Hier fließen neben der Luftdichte (ρ) , der spezifischen Wärmekapazität der Luft (c_p) und der Temperaturdifferenz zwischen Norm-Innnen- $(\theta_{int,i})$ und Außentemperatur (θ_e) auch der Mindest-Luftvolumenstrom des Raums i $(q_{v,min,i})$ und das Verhältnis zwischen dem Mindestwert des Luftvolumenstroms und des sich ergebenden Luftvolumenstroms $(f_i - z)$ ein.

Das Produkt aus $q_{v,min,i}$ und $f_i - z$ ergibt somit den eintretenden Luftvolumenstrom. Wird das Gebäude als eine Zone modelliert, erhält man mit q_V als Produkt von $q_{v,min,i}$ und $f_i - z$

$$\Phi_V = \rho \cdot c_p \cdot q_V \cdot (\theta_{int} - \theta_e) \quad . \tag{3.3}$$

Dies entspricht einer Energiebilanz um die Gebäudehülle, bei welcher der eintretende Volumenstrom dem austretenden entspricht.

Zur Berechnung des eintretenden Luftvolumenstroms q_V wird dieser in Fensteröffnungsvolumenstrom ($q_{V,Fenster}$), Infiltrationsvolumenstrom ($q_{V,Infiltration}$) und maschineller Lüftungsvolumenstrom ($q_{V,Maschinell}$) aufgeteilt. Somit ergibt sich q_V zu

$$q_V = q_{V,Fenster} + q_{V,Infiltration} + q_{V,Maschinell}$$
(3.4)

Im Folgenden werden die jeweiligen Komponenten mitsamt ihrer Berechnungsansätze vorgestellt.

3.1.1 Fensterlüftung

Durch das Öffnen eines Fensters kann ein Bewohner direkt Einfluss auf die Qualität der Raumluft ausüben. Somit stellt das Nutzerverhalten des Bewohners einen wichtigen Faktor bezüglich der Lüftungswärmeverluste durch die Fenster dar. Gründe für das Fensteröffnen sind in Fabi et al. [8] wiedergegeben. Hier erfolgt eine Unterscheidung der ausschlaggebenden Faktoren in die Kategorien "Physische Umweltfaktoren", "Kontextabhängige Faktoren", "Psychologische Faktoren", "Physiologische Faktoren" und "Soziale Faktoren". Beispiele für die einzelnen Kategorien sind in Tabelle 3.1.1 dargelegt.

Einflussfaktor	Beispiele
Physische Umweltfaktoren	Temperatur
	Luftfeuchte
	Lärm
Kontextabhängige Faktoren	Dämmstärke der Gebäudehülle
	Fassadenorientierung
	Heizsystem
Psychologische Faktoren	Thermischer Komfort
	Sicherheit
	Ökologisches und
	ökonomisches Bewusstsein
Physiologische Faktoren	Alter
	Geschlecht
	Gesundheit
Soziale Faktoren	Interaktionen zwischen Bewohnern
	Kollektive Präferenzen

Tabelle 3.1: Kategorien der Einflussfaktoren zum Fensteröffnen/-schließen [8]

Aufgrund der zuvor genannten Faktoren entscheidet ein Bewohner, ob und wie ein Fenster geöffnet wird. Die Position der Fensteröffnung beeinflusst die effektive geöffnete Fensterfläche und somit den Volumenstrom der Luft, welcher durch das Fenster ein- beziehungsweise austritt.

Weiter zählen neben dem Nutzereinfluss auch die Triebkräfte der Luftbewegung zu wichtigen Faktoren der Fensterlüftung. Zu diesen gehören zum einen die Temperaturdifferenz zwischen Innenund Außen und zum anderen die Windgeschwindigkeit. Durch den Wind entsteht ein Druckgefälle zwischen Innerem des Gebäudes und Umgebung. Oftmals kommt es zu einer Überlagerung dieser beiden Kräfte. Außerdem existiert eine Wechselwirkung zwischen den Triebkräften und dem Nutzerverhalten. So besteht beispielsweise bei winterlichen Außentemperaturen eine große Temperaturdifferenz, wodurch der eintretende Volumenstrom größer wird. Gleichzeitig reagiert ein Nutzer mit kurzen Fensteröffnungszeiten aufgrund des thermischen Diskomforts. [16]

Zur Bestimmung des Volumenstromes durch ein Fenster existieren verschiedene Ansätze in der Literatur.

Auf Basis von experimentellen Untersuchungen unter realen meteorologischen Bedingungen ermittelt Maas eine Formel zur Berechnung des Luftvolumenstroms durch ein Fenster. Hierbei werden neben der Windgeschwindigkeit (u) und der Temperaturdifferenz zwischen Innen und Außen $(\Delta\theta)$ auch die lichte Fensteröffnungsfläche (A_l) und das Durchflussverhältnis (Θ) beachtet. Letzteres ist abhängig von der Öffnungsweite des Fensters und bildet Turbulenzeffekte ab. Somit ergibt

sich nach Maas der Volumenstrom zu

$$q_{V,Fenster} = 3600 \cdot \frac{1}{2} \cdot A_l \cdot \Theta \cdot \sqrt{(C_1 \cdot u^2 + C_2 \cdot H \cdot \Delta\theta + C_3)} \quad . \tag{3.5}$$

Hierbei wird A_l halbiert, da sich bei einem geöffneten Fenster ein ein- und ausströmender Volumenstrom bildet, welche sich die Öffnungsfläche des Fensters teilen. Der Faktor 3600 wird zum Umrechnen des sekündlichen Volumenstroms in einen stündlichen genutzt. Die Koeffizienten C_1 , C_2 und C_3 werden experimentell bestimmt. Ihre nummerischen Ausprägungen sind Tabelle 3.1.1 zu entnehmen.

Größe	Bedeutung	Nummerischer Wert	Einheit
C_1	Geschwindigkeitskoeffizient	0,0056	_
C ₂	Temperaturkoeffizient	0,0037	$\frac{m}{s^2 \cdot K}$
C ₂	Turbulenzkoeffizient	0,012	$\frac{m^2}{s^2}$

Tabelle 3.2: Nummerische Werte der Fitkoeffizienten nach Maas [15]

Einen weiteren Modellierungsansatz liefert Hall [9]. Der

$$q_{V,Fenster} = C_d \cdot A_{eff} \cdot \left(2 \cdot g \cdot H \cdot Z \cdot \frac{\Delta \theta}{\theta_i} \right)^n \tag{3.6}$$

DIN EN 12831

3.1.2 Infiltration

3.1.3 Maschinelle Lüftung

4 Parameterwahl und -beschaffung

Im Rahmen dieser Arbeit wird das in Kapitel 2.6 vorgestellte Optimierungsprogramm im Hinblick auf Lüftungswärmeverluste untersucht und um die Möglichkeit einer maschinellen Lüftung erweitert. Weiter sollen besonders effiziente Maßnahmen zur energetischen Sanierung des deutschen Wohngebäudebestandes analysiert werden. Hierfür wird der Gebäudebestand in Kapitel 4.1 in Klassen unterteilt, um für die Analyse der Maßnahmen weniger Kombinationsmöglichkeiten zu erhalten. Zudem wird in $\ref{thm:properties}$ die Generierung verschiedener Daten erläutert, die zum Modellieren der Lüftungswärmeverlusten von Nöten sind.

4.1 Kategorisierung des Gebäudebestandes

Wird der deutsche Wohngebäudebestand nach der Einteilung von TABULA betrachtet, lassen sich 43 Klassen erkennen. Diese sind nach Baujahr und Gebäudeart unterteilt. Wie in Tabelle A.1 zu sehen, existieren nicht für alle Klassen Daten zur Wohneinheitenanzahl bei verschiedenen Baujahren. Außerdem unterscheiden sich die Anteile der einzelnen Gruppen am gesamten Wohneinheitenbestand. So bilden beispielsweise die Klasse der Hochhäuser in den alten Bundesländer nur 1 % des Bestandes ab, wohingegen sich der Anteil bei den Mehrfamilienhäuser zu 38 % ergibt. Um aus dieser inhomogenen Verteilung eine einfachere Kategorisierung zu gewinnen, mit welcher sich Gebäudeenergiesysteme für wenige Klassen bestimmen lassen, wird eine ABC-Analyse des Bestandes durchgeführt. Hierbei handelt es sich um ein betriebswirtschaftlichen Analyseverfahren zur Bewertung von Objekten einer Menge. Es stehen die drei Kategorien A, B und C zur Auswahl, welche nach absteigender Reihenfolge dem Objekt eine Wertung zuteilen. Im Falle des Gebäudebestandes werden die TABULA-Klassen danach untersucht, inwieweit diese den Bestand repräsentieren und Potenzial für eine energetische Verbesserung besitzen. Betrachtet wird daher die Wohneinheintenanzahl, beziehungsweise der Anteil am Bestand, sowie die U-Werte als Kriterium des energetischen Einsparpotenzials. Weiter werden anhand des Wärmedurchgangskoeffizient ähnliche Klassen zusammengefasst. Da die Analyse darauf abzielt eine Entscheidung zu treffen, ob die Klasse für die Optimierung relevant ist oder nicht, wird auf eine Bewertung mit B verzichtet. Eine Bewertung mit A bedeutet schließlich, dass die Klasse repräsentativ wichtig für den Bestand ist. Analog dazu werden C-gewertete Typen nicht weiter untersucht.

Zunächst werden die Hochhäuser in neuen und alten Bundesländern betrachtet. Deren Anteil am gesamten Wohnungsbestand ist mit unter 2 % gering. Zudem weicht die Geometrie der Gebäude stark von anderen Klassen ab, sodass ein Zusammenfassen der Hochhäuser mit einem anderen

Gebäudetypen Schwierigkeit bereitet. Somit erhalten die Hochhäuser ein C-Wertung.

Weiterhin werden für die Gebäudetypen der Einfamilien- und Mehrfamilienhäuser die Baualtersklassen der Gebäuden vor 1856 angeschaut. Hier ist auffällig, dass die U-Werte für alle Bauteile deutlich von denen der nächsten Baualtersklasse abweichen. So verbessern sich beispielsweise die Dächer in dem Zeitraum vor 1856 im Vergleich zu den Baujahren von 1857 bis 1919 von 2,60 auf $1,30 \frac{W}{m^2 \cdot K}$. Außerdem handelt es sich bei diesen oftmals um denkmalgeschützte Bauten, bei denen nicht jede energetische Sanierung aufgrund des Denkmalschutz zulässig ist. Daher erhalten auch die Klassen der Einfamilien- und Mehrfamilienhäuser vor 1856 eine C-Wertung.

Bei den Baujahren nach 1994 weicht die energetische Qualität der Hülle im Vergleich zu denen der Baujahre zuvor ebenfalls ab. Im Zuge der 3. WschV wurden die Anforderungen an die Gebäudehülle verschärft. Daher lässt sich eine sprunghafte Verbesserung der U-Werte beobachten. Zwar handelt es sich bei dieser Klasse um Gebäude, welche mitunter 20 Jahre oder älter sind und somit Sanierungsbedarf aufweisen, allerdings ist deren energetisches Einsparpotenzial nicht sehr hoch, weswegen Gebäude mit Baujahr jünger als 1994 ebenfalls eine C-Wertung erhalten.

Somit verbleiben die Gebäudetypen der Einfamilien-, Reihen-, Mehrfamilien- und großen Mehrfamilienhäuser der Jahrgänge von 1856 bis 1994, welche eine A-Wertung erhalten.

Bei einem Vergleich der Einfamilien- und Reihenhäuser fällt auf, dass alle U-Werte außer dem des Daches nahezu identisch sind. Da auch die Größe und Dimensionierung der beiden Gebäudetypen Ähnlichkeiten aufweisen, werden diese zusammengefasst und im Weiteren als kleinen Gebäuden (KG) bezeichnet.

Ebenso lassen sich vergleichbare Wärmedurchgangskoeffizienten bei den Mehrfamilien- und großen Mehrfamilienhäuser erkennen. Sogar bei einem Vergleich der alten und neuen Bundesländer weichen U-Werte der TABULA-Typgebäuden nur leicht voneinander ab. So besitzen beispielsweise die Fenster der Mehrfamilienhäuser von 1919 bis bis 1994 einen U_g -Wert von 3 $\frac{W}{m^2 \cdot K}$ und die der großen Mehrfamilienhäuser von 1969 bis 1983 aufgrund des vorteilhafteren Holzrahmens 2,7 $\frac{W}{m^2 \cdot K}$. Daher werden diese Gebäudetypen unter der Bezeichnung große Gebäude (GG) zusammengefasst.

Im Bezug auf die Baujahre lassen sich ebenfalls Jahrgänge mit ähnlichen energetischen Eigenschaften der Gebäudehülle erkennen. Nach Eicke-Henning [6] und Tabelle A.1 weisen die U-Werte der Bauteile mit Jahrgang 1856 bis 1957 aufgrund ähnliche Baustoffe und Bauweisen Ähnlichkeiten auf. Nach 1957 verbessern sich diese bis zur 1. WschV 1978 aufgrund der Wahl anderer Baustoffe und dem Fortschritt im Hochbau. Im Zuge der 1. und 2. WschV lassen sich Verbesserungen der energetischen Qualität der Hülle im Zeitraum von 1978 bis 1994 erkennen. Somit werden die Jahrgänge von 1856 bis 1994 in drei Epochen unterteilt. Die Älteste umfasst alle Baujahre inklusive der Nachkriegszeit und daher 1856 - 1957. Die nächste beschreibt die Jahrgänge von 1958 bis 1978 und beinhaltet somit den Zeitraum nach der Nachkriegszeit, in der ohne Regulation durch den Gesetzgeber die Gebäudehülle verbessert wurde. Zuletzt charakterisieren die dritte Epoche von 1979 bis 1994 Bauten mit Baustandard der 1. und 2. WschV. Zur Bestimmung der U-Werte der

neu generierten Klassen werden die Wärmedurchgangskoeffizienten der ursprünglichen Gebäudetypen anhand ihrer Anzahl linear interpoliert. In Tabelle 4.1 sind die neuen Klassen mitsamt der jeweiligen U-Werte der Hüllenbestandteile aufgeführt.

		Baualtersklasse			
Gebäudetyp	Bauteil	1856	1957	1979	
		-1957	-1978	-1994	
	Dach	1,29	0,64	0,43	
Kleine Gebäude	Außenwand	1,59	1,1	0,61	
Kielile Gebauue	Fenster	2,8	2,8	2,8	
	Boden	0,82	0,93	0,56	
	Dach	1,24	0,51	0,39	
Große Gebäude	Außenwand	1,61	1,11	0,68	
Große Gebaude	Fenster	3	3	3	
	Boden	1,03	0,93	0,56	

Tabelle 4.1: U-Werte der neuen Gebäudeklassen KG und GG in $\frac{W}{m^2 \cdot K}$

- 5 Modellerweiterung
- 5.1 Lüftungswärmeverluste

Literaturverzeichnis

- [1] Deutsche Wohngebäudetypologie: Beispielhafte Maßnahmen zur Verbesserung der Energieeffizienz von typischen Wohngebäuden. Neue Ausg. Darmstadt: Wohnen und Umwelt, 2015. – ISBN 978–3–941140–47–9
- [2] ASADI, Ehsan; DA SILVA, Manuel G.; ANTUNES, Carlos H.; DIAS, Luís: Multi-objective optimization for building retrofit strategies: A model and an application. In: *Energy and Buildings* 44 (2012), S. 81–87. http://dx.doi.org/10.1016/j.enbuild.2011.10.016. DOI 10.1016/j.enbuild.2011.10.016. ISSN 03787788
- [3] BIGALKE, Uwe; ARMBRUSTER, Aline; LUKAS, Franziska; KRIEGER, Oliver; SCHUCH, Cornelia; KUNDE, Jan; DEUTSCHE ENERGIE-AGENTUR GMBH (Hrsg.): dena-Gebäudereport 2016: Statistiken und Analysen zur Energieeffizienz im Gebäudebestand. www.dena.de
- [4] BUNDESREGIERUNG: 1. Verordnung über einen energiesparenden Wärmeschutz bei Gebäuden: 1. WschV. https://de.wikipedia.org/wiki/W%C3%A4rmeschutzverordnung. Version: 1977
- [5] DIEFENBACH, Nikolaus; BORN, Rolf; INSTITUT WOHNEN UND UMWELT GMBH (Hrsg.): Basisdaten für Hochrechnungen mit der Deutschen Gebäudetypologie des IWU
- [6] EICKE-HENNING, Werner: Kleine Geschichte der Dämmstoffe: "Erster Teil". In: *wksb* 2011 (2011), Nr. 65, S. 6–27
- [7] EICKE-HENNING, Werner: Kleine Geschichte der Dämmstoffe: "Zweiter Teil". In: *wksb* 2011 (2011), Nr. 66, S. 6–34
- [8] FABI, Valentina; ANDERSEN, Rune V.; CORGNATI, Stefano; OLESEN, Bjarne W.: Occupants' window opening behaviour: A literature review of factors influencing occupant behaviour and models. In: *Building and Environment* 58 (2012), S. 188–198. http://dx.doi.org/10.1016/j.buildenv.2012.07.009. DOI 10.1016/j.buildenv.2012.07.009. ISSN 03601323
- [9] HALL, Monika: *Untersuchungen zum thermisch induzierten Luftwechselpotential von Kipp-fenstern*. Kassel: Universität Kassel, 2004
- [10] HARB, Hassan; REINHARDT, Jan; STREBLOW, Rita; MÜLLER, Dirk: MIP approach for designing heating systems in residential buildings and neighbourhoods. In: *Journal of Building Performance Simulation* 9 (2016), Nr. 3, S. 316–330. http://dx.doi.org/10.1080/19401493. 2015.1051113. DOI 10.1080/19401493.2015.1051113. ISSN 1940–1493

- [11] HINZ, Eberhard: Kosten energierelevanter Bau- und Anlagenteile bei der energetischen Modernisierung von Altbauten: Endbericht. 1. Auflage. Darmstadt: Institut Wohnen und Umwelt, 10.08.2015. – ISBN 978–3–941140–50–9
- [12] ITURRIAGA, E.; ALDASORO, U.; CAMPOS-CELADOR, A.; SALA, J. M.: A general model for the optimization of energy supply systems of buildings. In: *Energy* 138 (2017), S. 954–966. http://dx.doi.org/10.1016/j.energy.2017.07.094. DOI 10.1016/j.energy.2017.07.094. ISSN 03605442
- [13] KFW BANKENGRUPPE: Förderreport 2018. https://www.kfw.de/PDF/Unternehmen/Zahlen-und-Fakten/KfW-auf-einen-Blick/F%C3%B6rderreport/KfW-F%C3%B6rderreport_2018.pdf
- [14] LAASCH, Thomas (Hrsg.); LAASCH, Erhard (Hrsg.): *Haustechnik*. Wiesbaden: Springer Fachmedien Wiesbaden, 2013. http://dx.doi.org/10.1007/978-3-8348-9900-2. http://dx.doi.org/10.1007/978-3-8348-9900-2. ISBN 978-3-8348-1260-5
- [15] MAAS, Anton: *Experimentelle Quantifizierung des Luftwechsels von Fensterlüftung.* Kassel: Universität Gesamthochschule Kassel, 1995
- [16] Maas, Anton: Lüftung. Version: 2017. http://dx.doi.org/10.1007/978-3-658-16074-6{_}4. In: HÄUPL, Peter (Hrsg.); HÖFKER, Gerrit (Hrsg.); HOMANN, Martin (Hrsg.); KÖLZOW, Christian (Hrsg.); Maas, Anton (Hrsg.); NOCKE, Christian (Hrsg.); RIESE, Olaf (Hrsg.); WILLEMS, Wolfgang M. (Hrsg.): Lehrbuch der Bauphysik. Wiesbaden: Springer Fachmedien Wiesbaden, 2017. DOI 10.1007/978-3-658-16074-6_4. ISBN 978-3-658-16073-9, S. 51-60
- [17] PINZON, Jerson A.; VERGARA, Pedro P.; DA SILVA, Luiz C. P.; RIDER, Marcos J.: An MILP model for optimal management of energy consumption and comfort in smart buildings. In: 2017 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT), IEEE, 23.04.2017 26.04.2017. ISBN 978–1–5386–2890–4, S. 1–5
- [18] RISBECK, Michael J.; MARAVELIAS, Christos T.; RAWLINGS, James B.; TURNEY, Robert D.: A mixed-integer linear programming model for real-time cost optimization of building heating, ventilation, and air conditioning equipment. In: *Energy and Buildings* 142 (2017), S. 220–235. http://dx.doi.org/10.1016/j.enbuild.2017.02.053. DOI 10.1016/j.enbuild.2017.02.053. ISSN 03787788
- [19] SAMSATLI, Sheila; SAMSATLI, Nouri J.: A general mixed integer linear programming model for the design and operation of integrated urban energy systems. In: *Journal of Cleaner Production* 191 (2018), S. 458–479. http://dx.doi.org/10.1016/j.jclepro.2018.04.198. DOI 10.1016/j.jclepro.2018.04.198. ISSN 09596526
- [20] SCHELLONG, Wolfgang: Analyse und Optimierung von Energieverbundsystemen. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/

- 978-3-662-49463-9. http://dx.doi.org/10.1007/978-3-662-49463-9. ISBN 978-3-662-48527-9
- [21] STATISTISCHE ÄMTER DES BUNDES UND DER LÄNDER: Gebäude mit Wohnraum nach Art des Gebäudes und Baujahr (Mikrozensus-Klassen). https://ergebnisse.zensus2011.de/#StaticContent:00,GWZ_10_2,m,table. Version:2014
- [22] STATISTISCHE ÄMTER DES BUNDES UND DER LÄNDER: Gebäude mit Wohnraum nach Art des Gebäudes, Zahl der Wohnungen und Baujahr (Mikrozensus-Klassen). https://ergebnisse.zensus2011.de/#StaticContent:00, GWZ_10_8, m, table. Version: 2014
- [23] WILD, Uwe: EnEV und Energetische Sanierung. Version: 2015. http://dx.doi.org/10. $1007/978-3-658-07456-2\{_\}3$. In: Stahr, Michael (Hrsg.): *Bausanierung*. Wiesbaden: Springer Fachmedien Wiesbaden, 2015. DOI 10.1007/978–3–658–07456–2_3. ISBN 978–3-658-07455-5, S. 85–109
- [24] WOUTERS, Carmen; FRAGA, Eric S.; JAMES, Adrian M.; POLYKARPOU, Eleftheria M.: Mixed-integer optimisation based approach for design and operation of distributed energy systems. In: ABU-SIADA, A. (Hrsg.): *Australasian Universities Power Engineering Conference (AUPEC)*, 2014. Piscataway, NJ: IEEE, 2014. ISBN 978–0–6469–2375–8, S. 1–6
- [25] ZHU, Qianwen; LI, Qiqiang; ZHANG, Bingying; WANG, Luhao; LI, Guanguan; WANG, Rui: Capacity Optimization for Electrical and Thermal Energy Storage in Multi-energy Building Energy System. In: *Energy Procedia* 158 (2019), S. 6425–6430. http://dx.doi.org/10.1016/j.egypro.2019.01.183. DOI 10.1016/j.egypro.2019.01.183. ISSN 18766102

Anhang

A Tabellen

A.1 Anzahl an Wohneinheiten nach Alter und Gebäudetyp (IWU Berechnungen)

Gebäude-				Bau	ıalterskla	asse				
	-1859	1860	1919	1949	1958	1969	1979	1984	1995	Σ
typ	-1033	-1918	-1948	-1957	-1968	-1978	-1983	-1994	-2006	
EFH	916	1707	2010	1915	2274	1867	936	2055	2665	16345
RH	_	145	326	231	348	517	202	281	368	2418
MFH	462	1501	2034	1912	2210	1677	821	1712	2536	24865
GMH	_	448	169	703	784	697	-	_	_	2801
НН	_	_	_	_	198	198	_	_	_	396
MFH NBL	-	-	_	329	408	-	-	_	-	737
GMH NBL	-	-	_	-	-	390	336	305	-	1031
HH NBL	-	-	_	-	-	310	67	-	-	377
Σ	1378	3801	4539	5090	6222	5656	2362	4353	5569	38970

Tabelle A.1: Anzahl an Wohneinheiten [in Tausend] nach Baualtersklasse und Gebäudetyp. [5]

 $\label{eq:eff} EFH = Einfamilienhaus, RH = Reihenhaus, MFH = Mehrfamilienhaus, GMH = großes Mehrfamilienhaus, HH = Hochhaus, NBL = neue Bundesländer$

A.2 U-Werte nach TABULA

Baualters-	Reveltors				MFH			
klassen	Dach	Außen- wand	Fenster	Boden	Dach	Außen- wand	Fenster	Boden
vor 1918	1,3	1,7	2,8	0,88	1,3	2,2	2,7	0,88
1919 -1948	1,4	1,7	2,8	0,77	1,4	1,7	3	0,77
1949 -1957	1,4	1,4	2,8	0,78	1,08	1,2	3	1,33
1958 -1968	0,8	1,2	2,8	1,08	0,51	1,2	3	1,08
1969 -1978	0,5	1	2,8	0,77	0,51	1	3	0,77
1979 -1983	0,5	0,8	4,3	0,65	0,43	0,8	3	0,65
1984 -1994	0,4	0,5	3,2	0,52	0,36	0,6	3	0,51
1995 -2001	0,35	0,3	1,9	0,4	0,32	0,4	1,9	0,4
2002 -2009	0,25	0,3	1,4	0,28	0,2	0,25	1,4	0,32
2010 -2015	0,2	0,28	1,3	0,35	0,2	0,28	1,3	0,35

Tabelle A.2: Wärmedurchgangskoeffizienten der Bauteile Dach, Außenwand, Fenster (U_w) und Boden nach Gebäudeart und Baualtersklasse $[\inf \frac{W}{m^2 \cdot K}]$

A.3 Anzahl, Anteil und U_g -Werte gängiger Verglasungsarten

Vowelooungeton	Anzahl	Anteil am Bestand	U _g -Wert
Verglasungstyp	[in Millionen]	[in %]	in $\left[\frac{W}{m^2 \cdot K}\right]$
Einfachverglasung	19,6	3	5,8
Verbund- und Kastenfenster	44,8	7	2,8
Dreischeiben-Wärmedämmglas	48,9	8	0,7
Unbeschichtetes Isolierglas	207,3	34	2,8
Zweischeiben-Wärmedämmglas	284,2	47	1,4 - 1,1

Tabelle A.3: Bestand an Fenstern in Deutschland im Jahr 2015. [3]

Parameter	Wert	Einheit
Betrachtungszeitraum	15	Jahre
Mehrwertsteuer	19	%
Interner Zinssatz	2	%
Inflationsrate	1,4	%
Preisänderungsfaktor	1,0388	
Elektrizität	1,0300	_
Preisänderungsfaktor	1,001	
Gas	1,001	_
Preisänderungsfaktor	1,0158	
Holz-Pellets	1,0136	_
Preisänderungsfaktor	1.0260	
EEX-Kompensierung	1,0268	_
Einspeisevergütung	0,03307	<u>€</u> kWh
BHKW-Strom	0,03307	kWh
Energiesteuer	0,0055	€ kWh

Tabelle A.4:

A.4 Inputparameter Gebäudealter und -lage

Gebäudealter		Gebäudelage			
bis 1859	1979 - 1983	Bad Marienberg	Garmisch	Potsdam	
1860 - 1918	1984 - 1994	Braunlage	Hamburg	Rostock	
1919 - 1948	1995 - 2001	Bremerhaven	Hof	Stötten	
1949 - 1957	2002 - 2009	Chemnitz	Kassel		
1958 - 1968	2010 - 2015	Essen	Mannheim		
1969 - 1978	ab 2016	Fichtelberg	Mühldorf		

Tabelle A.5: Ausprägungen der Inputparameter Gebäudealter und -lage

A.5 Kostenkennlinie und Nutzungsdauer der Gebäudehüllenkomponenten

	Kos	tenkennlinie	
	K	$C = a \cdot x + b$	Nutzungsdauer
	mit x als	Dämmstärke [cm}	
Komponente	a	b	in Jahren
	$\left[\frac{\in}{m^2 \cdot cm}\right]$	$\left[\frac{\epsilon}{m^2}\right]$	III Jainen
Außenwand	2,81	96,88	40
Boden	1,55	54,25	50
Dach	2,37	33,44	50
	mit x a	s U-Wert $\left[\frac{W}{m^2 \cdot K}\right]$	
	a	b	in Johnon
	$\left[\frac{\bigodot}{\frac{W}{m^2 \cdot K}}\right]$	[€]	in Jahren
Fenster	-242	785	30

Tabelle A.6: y-Achsenabschnitt und Steigung der Kostenkennlinie sowie Nutzungsdauer der Bauteile Außenwand, Boden, Dach und Fenster [11]

A.6 Nutzungskosten und Betriebskosten der Anlagentechnik

Tachnologia	Nutzungsdauer	Betriebskosten
Technologie	in Jahren	in % der Anfangsinvestition
Gas-Brennwertkessel	20	2,5
Pellet-Kessel	15	5,0
BHKW	15	1,25
Luft-Wärmepumpe	18	2,5
Sole-Wärmpumpe	20	2,5
Elektroheizstab	20	3,0
Photovoltaik	20	1,0
Solarthermie	20	1,5
Thermischer Speicher	20	2,0
Batteriespeicher	15	1,0

Tabelle A.7: Nutzungsdauer und Betriebskosten verschiedener Technologien

B Wichtiger Anhang

Eigenständigkeitserklärung

Hiermit versichere ich, dass ich die vorliegende Arbeit selbstständig und ohne Benutzung anderer als der angegebenen Hilfsmittel angefertigt habe. Alle Stellen, die wörtlich oder sinngemäß übernommen sind, sind als solche kenntlich gemacht. Die Arbeit ist in gleicher oder ähnlicher Form noch nicht als Prüfungsarbeit eingereicht worden. Ich erkläre mich damit einverstanden, dass die vorliegende Arbeit in der Lehrstuhlbibliothek und Datenbank aufbewahrt und für den internen Gebrauch kopiert werden darf.

Aachen, den 13. Juni 2019

Jonas Baumgärtner