

NOV 29, 2023

,

OPEN ACCESS

DOI:

dx.doi.org/10.17504/protocol s.io.rm7vzx56xgx1/v1

Protocol Citation: Ann Hertzel, Laura J Niedernhofer, David A Bernlohr 2023. Isolation of nuclei from mouse white adipose tissues for single-nucleus genomics --University of Minnesota TMCs. protocols.io https://dx.doi.org/10.17504/p rotocols.io.rm7vzx56xgx1/v1

MANUSCRIPT CITATION:

CITATION

Van Hauwaert EL, Gammelmark E, Sárvári AK, Larsen L, Nielsen R, Madsen JGS, Mandrup S (2021). Isolation of nuclei from mouse white adipose tissues for singlenucleus genomics.. LINK

https://doi.org/10.1016/ j.xpro.2021.100612

https://dx.doi.org/10.17504/protocols.io.rm7vzx56xgx1/v1

(§) Isolation of nuclei from mouse white adipose tissues for singlenucleus genomics --University of Minnesota TMCs

Ann Hertzel¹, Laura J Niedernhofer¹, David A Bernlohr¹

¹University of Minnesota, Minneapolis, MN

Cellular Senescence Network (SenNet) Method Development Community

UMN SenNe

Allie Pybas

ABSTRACT

This protocol describes the steps to isolate and obtain total nuclei from frozen mouse white adipose tissues (WAT). We utilized this protocol to obtain nuclei from 4- and 24- month-old mouse epididymal adipose samples. Additionally this protocol can be used for various other murine adipose depots, with adjustment of the final resuspension volume to accommodate variations in the size of the final nuclei pellet as a result of the nuclei yield.

Adapted from STAR Protocols - Isolation of nuclei from mouse white adipose tissues for singlenucleus genomics

Isolation of nuclei from mouse white adipose tissues for single-nucleus genomics.pdf

BEFORE START INSTRUCTIONS

General preparation

Timing: 1 h

1. Clean Dounce homogenizers and pre-cool them on ice.

CRITICAL: If nuclei are to be used for transcriptomics, rinse Dounce homogenizers with RNaseZAP and DEPC-treated water to minimize RNase activity.

- 2. Pre-cool centrifuges to 4C.
- 3. Pre-cool tubes for nuclei isolation and Petri dishes for tissue mincing on ice.

Note: For each isolation, prepare 13 50 mL tube, 23 5 mL DNA low binding tubes, 23 1.5 mL DNA low binding tubes, and 13 Petri dish.

- 4. Prepare nuclei isolation buffer (NIB) and nuclei resuspension buffer (NRB).
- a. Filter buffers using a 0.2 mm syringe filter and pre-cool buffers on ice.

Note: Buffers are prepared freshly in order to minimize RNase activity.

Key resources table

REAGENT or RESOURCE	SOURCE	IDENTIFIER
Chemicals, peptides and recombinant proteins		
4-(2-Hydroxyethyl) pipera 1-ethanesulfonic acid (HEPES)	zine- Lonza	Cat#BE17- 737E; CAS: 7365-45-9

Oct 29 2023

License: This is an open access protocol distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

Protocol status: Working We use this protocol and it's working

Created: Oct 06, 2023

Last Modified: Nov 29,

2023

PROTOCOL integer ID:

88926

Funders Acknowledgement:

Grant ID: 5U54AG079754-02

NIH

Grant ID: 5U54AG076041-03

REAGENT or RESOURCE	SOURCE	IDENTIFIER
Bovine Serum Albumin	Sigma-Aldrich	Cat#B6917; CAS: 9048-46- 8
Diethyl dicarbonate (DEPC)	Sigma-Aldrich	Cat#D5758; CAS: 1609-47- 8
DL-Dithiothreitol (DTT)	New England Biolabs	Cat#B1034A; CAS: 3483-12- 3
IGEPAL CA-630	Sigma-Aldrich	Cat#I8896; CAS: 9002-93- 1
Magnesium chloride (MgCl2)	Sigma-Aldrich	Cat#M1028; CAS: 7786-30- 3
Phosphate buffered saline (PBS) (10×, pH 7.2)	Gibco	Cat#70013- 016
Potassium chloride (KCI)	Sigma-Aldrich	Cat#P9541; CAS: 7447-40- 7
RNase Inhibitor, Murine	New England Biolabs	Cat#M0314
RNaseZAP	Sigma-Aldrich	Cat#R2020
Sucrose	Sigma-Aldrich	Cat#S0389; CAS: 57-50-1
Trypan Blue	Bio-Rad	Cat#1450013
Biological Samples		
Mouse white adipose tissues	N/A	N/A
Critical commercial assays		
Chromium Next GEM Chip G Single Cell Kit (48 rxns)	10x Genomics	Cat#1000120
Chromium Next GEM Single Cell 3' Kit v3.1 (16 rxns)	10x Genomics	Cat#1000268
Dual Index Kit TT Set A (for Gene Expression Libraries)	10x Genomics	Cat#1000215
Experimental models: organisms/strains		
Mus musculus C57BL/6J and C57BL/6N	N/A	N/A
Other		
0.2 μm Syringe filters	Sartorius	Cat#17845- ACK
1.5 mL DNA LoBind tubes	Eppendorf	Cat#0030108 051
7 mL Dounce homogenizer	Sigma-Aldrich	Cat#D9063
5 mL DNA LoBind tubes	Eppendorf	Cat#0030122 348
6 cm Petri dish	Thermo Scientific	Cat#150288
50 mL Tube	SARSTEDT	Cat#62.547.2 54

REAGENT or RESOURCE	SOURCE	IDENTIFIER
10× Genomics Chromium Controller	10x Genomics	Cat#PN11020 3; RRID:SCR_01 9326
BRAND counting chamber BLAUBRAND Bürker pattern	Sigma-Aldrich	Cat#BR71892 0
Flowmi Cell Strainer, porosity 40 µm	Sigma-Aldrich	Cat#BAH136 800040
NovaSeq 6000 System	Illumina	Cat#2001285 0; RRID:SCR_01 6387
pluriStrainer 70 μm (Cell Strainer)	pluriSelect	Cat#43- 50070-51
Surgical Scalpel Blade No.22	Swann- Morton	Cat#0208

Materials and equipment

Nuclei isolation buffer (NIB)

Reagent	Final concentration	Amount
Sucrose (0.5 M)	250 mM	500 μL
HEPES (1 M)	10 mM	10 μL
MgCl2 (150 m M)	1.5 mM	10 μL
KCI (2 M)	10 mM	5 μL
IGEPAL CA- 630 (1%)	0.001%	1 μL
DTT (0.1 M)	0.2 mM	2 μL
RNase inhibitor (40,000 U/mL)	0.5 U/μL	12.5 μL
DEPC-treated water	N/A	459.5 μL
Total	N/A	1 mL

Nuclei resuspension buffer (NRB)

Reagent	Final concentration	Amount
BSA in 1× PBS (5%)	1%	200 μL
MgCl2 (150 m M)	2 mM	13.3 μL
RNase inhibitor (40,000 U/mL)	0.04 U/μL	1 μL
PBS (1×)	N/A	785.7 μL

Reagent	Final concentration	Amount
Total	N/A	1 mL

Note: NIB and NRB are prepared freshly, filtered, and kept on ice until use to minimize RNase activity. Sucrose is prepared freshly in DEPC-treated water. IGEPAL CA-630 solution is diluted in DEPC-treated water and can be stored for several months at 20°C-25°C. BSA is dissolved in 1× PBS (in DEPC-treated water) and can be stored at -20°C. 1× PBS solution is prepared by diluting a 10× PBS solution in DEPC-treated water.

Note

Alternatives: In principle, all reagents and resources listed in the key resources table can be replaced with equivalent items from other suppliers; however, the impact of alternative reagents on protocol performance has not been tested.

Tissue Homogenization

30m

1

Note

To minimize contamination with blood cells from the vasculature, it is recommended to do cardiac perfusion with 13 PBS in DEPC-treated water (typically 12 mL per perfusion) prior to isolating the tissue.

Transfer 400 mg of gonadal adipose tissue (or 100 mg of inguinal adipose tissue) to a pre-cooled Petri dish on ice (Figure 1A).

2 Add 500 μL of NIB and mince the tissue thoroughly (<1 mm3) using a scalpel (Figures 1B and 1C).

Note

CRITICAL: Nuclei yield will be reduced if the tissue is not finely minced.

- With the scalpel, transfer the minced adipose tissue to a pre-cooled 7 mL glass Dounce homogenizer on ice (Figure 1D).
- 4 Homogenize the tissue to release nuclei by applying 5 strokes with pestle A (loose) followed by 5 strokes with pestle B (tight) (Figures 1E and 1F).

CRITICAL: Homogenize carefully to minimize generation of heat and foam, which will impact nuclei intactness.

Note

Note: For adipose tissues from obese mice, use the same amount of tissue as for lean tissues, but homogenize in a total volume of 1 mL NIB and apply 10 strokes with pestle A followed by 5 strokes with pestle B.

- **5** Pre-wet a 70 μm cell strainer with DEPC-treated water.
- 6 Filter the homogenate through the pre-wetted cell strainer into a pre-cooled 50 mL tube on ice.
- Wash the Dounce homogenizer with 1 mL NIB and filter through the same cell strainer.
- 8 Transfer the filtered homogenate to a pre-cooled 5 mL DNA Low binding tube on ice using a P1000 pipette.
- 9 Wash the cell strainer with 1 mL NIB and add to the filtered homogenate in the 5 mL tube to a total volume of \sim 2.5 mL using a P1000 pipette (Figure 1G).

Isolation of Nuclei

2h

10 Centrifuge the homogenate at 1000 x g for 10 min at 4°C using a fixed-angled rotor (Figure 2A).

Note

Nuclei are located as a smear along the side of the 5 mL tube.

11	Aspirate the lipid layer using a vacuum pump (Figure 2B).
	Note
	CRITICAL: Only remove the top lipid layer. Do not remove the entire supernatant, as this will lead to loss of nuclei.
12	Resuspend the pellet in the remaining supernatant using a P1000 pipette and transfer the resuspended nuclei to a new pre-cooled 5 mL DNA Low binding tube on ice.
13	To make sure that all nuclei are transferred, wash the first 5 mL tube twice with 1 mL NIB and transfer any remaining nuclei to the new 5 mL tube containing the resuspended nuclei using a P1000 pipette (Figure 2C).
14	Pellet the nuclei by centrifuging at 500 x g for 10 min at 4°C using a swing-bucket rotor (Figure 2D).
15	Aspirate the supernatant.
	Note
	CRITICAL: Be careful not to disturb the nuclei pellet.
15.1	Use vacuum aspiration to remove most of the supernatant (leave 80–100 mL supernatant) and remove remaining supernatant with a P100 pipette.
16	Wash the pellet - Resuspend the nuclei pellet in 750 μL of NIB
17	Pellet the nuclei by centrifuging at 500 x g for 10 min at 4°C
18	Resuspend the nuclei pellet in 100 μL NRB by pipetting using a regular P1000 pipette.

	Note
	For 2 yr old mice - pellet was resuspended in 750µL NRB.
19	Pre-wet a 40 mm tip strainer with NRB.
20	Filter the nuclei through the pre-wetted tip strainer using a P1000 pipette into a pre-cooled 1.5 mL DNA Low binding tube on ice (Figure 2E) to remove any remaining debris and avoid nuclei aggregation.
	Note
	The nuclei concentration will decrease by 30%–40% following filtration.
21	Proceed to nuclei counting using a Bürker counting chamber and Trypan Blue.
21.1	Mix nuclei and Trypan Blue in equal ratio in a separate tube.
21.2	Transfer 10 μL of the nuclei-Trypan Blue solution to the Bürker counting chamber.

If nuclei are diluted while counting, multiply the equation for calculating the concentration of nuclei with the dilution factor.

CRITICAL: Verify that nuclei are mostly intact and not clumping (Figures 3A and 3B). Note, that intact nuclei isolated from adipose tissues have a heterogenic morphology.