The Ledger Chain: From Flavor to Water to Gravity A Cross-Field, Fraction-First Compression With Pre-Registered Falsifiers

Rosetta Stone of Physics — Evan Wesley Reality Encoded September 13, 2025

Abstract

We exhibit a single finite registry of exact rational parameters that compresses independent domains of physics: quark/lepton flavor (CKM, PMNS), rare decays, neutrino masses, solvent/electrochemistry resonance rows, and gravity/cosmology in a bits—thermodynamic language. Every frozen fraction is auditable; every derived statement is parameter-free; and the whole chain is overdetermined. A conservative Minimum Description Length (MDL) audit shows a $\gtrsim 1200$ -bit compression versus baseline float encodings. We provide stress tests ("break one fraction, multiple domains fail"), and a global Rational-CSP certificate format that converts the narrative into a machine-checkable feasibility problem.

Axioms and Counting

- **A1** (**Exact Registry**) Physical input knobs appear as exact rationals p/q with small denominators. A "freeze" means future fits cannot alter the p,q; they are auditable integers.
- **A2** (Shared Calculus) Thermodynamic/bit identities, probability unitarity, and standard field-theory formulas are used *unchanged*. The novelty is the rational input, not the laws.
- A3 (MDL Accounting) Each frozen fraction pays $MDL[p/q] = \lceil \log_2 p \rceil + \lceil \log_2 q \rceil$ bits. Symbolic constants $(\pi, \ln 2, \text{ etc.})$ carry no MDL charge. Baseline floats: 64 bits each.
- **A4** (Cross-Field Overdetermination) The same registry is applied across flavor, rare decays, neutrinos, water/electrochemistry, and gravity/cosmology with zero or few extra seeds.

1 CKM Lock ⇒ Closed CP Geometry and Ratios

Frozen seeds (Wolfenstein-Buras style)

$$\lambda = \frac{2}{9}, \quad A = \frac{21}{25}, \quad \bar{\rho} = \frac{3}{20}, \quad \bar{\eta} = \frac{7}{20}$$

From these one-line rationals, the unitarity angles and clean magnitudes follow in closed form:

$$\tan \beta = \frac{7}{17}, \quad \sin 2\beta = \frac{119}{169}, \quad \delta_{\text{CKM}} = \arctan \frac{7}{3},$$

$$|V_{us}| = \lambda = \frac{2}{9}, \quad |V_{cb}| = A\lambda^2 = \frac{28}{675}, \quad J_{\text{CKM}} = A^2\lambda^6\bar{\eta} \text{ (exact)}.$$

MDL (this block). Seeds = $\{5, 10, 7, 8\}$ bits $\Rightarrow 30$ bits vs. $4 \times 64 = 256$ bits (baseline). Saved: 226 bits.

2 Rare-Decay Ledger in One Line Each

In the standard clean normalizations for $K \to \pi \nu \bar{\nu}$ and $B_{s,d} \to \mu^+ \mu^-$, the CKM cores collapse:

$$\frac{\text{Im}\lambda_t}{\lambda^5} = A^2 \bar{\eta}, \qquad \frac{\text{Re}\lambda_t}{\lambda^5} = -A^2 (1 - \bar{\rho}), \qquad \frac{|V_{td}|^2}{|V_{ts}|^2} = \lambda^2 \left[(1 - \bar{\rho})^2 + \bar{\eta}^2 \right] = \frac{169}{4050}.$$

With compact benchmarks for short-distance numbers $(X_t, P_c \text{ kept explicit})$, the kaon modes become two quadratics in small rationals. The B_d/B_s leptonic ratio exposes an almost pure CKM factor.

3 PMNS Lock: Exact First-Row Probabilities

Frozen seeds (Dirac, maximal CP)

$$\sin^2 \theta_{12} = \frac{7}{23}, \quad \sin^2 \theta_{13} = \frac{2}{89}, \quad \sin^2 \theta_{23} = \frac{9}{16}, \quad \delta_{\text{PMNS}} = -\frac{\pi}{2}$$

Then

$$(|U_{e1}|^2, |U_{e2}|^2, |U_{e3}|^2) = \left(\frac{1392}{2047}, \frac{609}{2047}, \frac{2}{89}\right), \quad J_{\text{PMNS}} = c_{12}s_{12}c_{23}s_{23}c_{13}^2s_{13} \text{ (maximal sign)}.$$

MDL (this block). Seeds $\approx \{8, 8, 8, 0\}$ bits $\Rightarrow 24$ vs. 256. Saved: 232 bits.

4 Neutrino Mass Row (Frozen Split Ratio)

Normal ordering, with a compact split ratio

$$R_{21/31} \equiv \Delta m_{21}^2 / \Delta m_{31}^2 = \frac{2}{65}$$

fixes the shape of (m_1, m_2, m_3) as a function of the lightest mass (absolute scale external). Then the direct beta mass, neutrinoless envelope, and sum

$$m_{\beta} = \sqrt{\sum |U_{ei}|^2 m_i^2}, \qquad m_{\beta\beta} = \left| \sum U_{ei}^2 m_i e^{i\alpha_i} \right|, \qquad \sum m_i$$

follow deterministically from the lock.

MDL. One seed 2/65: 7 bits vs. 64. Saved: 57 bits.

5 Water Rows & EKTL (Instrument-Facing, Frozen)

We freeze solvent/electrochemistry anchors and a lab-ready engine map:

$$\tau_{\text{Debye}} = \frac{83}{10} \,\text{ps}, \quad \tau_{\text{hydr}} = 1 \,\text{ns}, \ \mathcal{R} = \{1/2, 1, 2, 3\}, \ \Delta \psi_{\text{ref}} = \frac{3}{20} \,\text{V}, \ \Delta pH_{\text{ref}} = 1$$

and an EKTL-style transduction engine

$$\dot{a} = (gR - \gamma)a - \beta a^3, \qquad \dot{R} = \Pi_{\rm in} - \kappa R - ca^2 R, \qquad P_{\rm out} = \gamma_{\rm load} a^2,$$

with thresholds and impedance matching conditions (e.g., $g\Pi_{\rm in} > \gamma \kappa$, $\gamma_{\rm load} = \gamma_{\rm int}$ at max power).

MDL. Water/electro rows pay ~ 22 bits (all small p/q) vs. eight floats = 512 bits. Saved: 490 bits.

6 Cosmology Anchors (Frozen) & Black-Hole Bit Law (Zero Seeds)

Cosmology registry

$$\Omega_m = \frac{63}{200}, \quad \Omega_{\Lambda} = \frac{137}{200}, \quad \Omega_b/\Omega_c = \frac{14}{75}, \quad H_0 = \frac{337}{5} \text{ km s}^{-1} \text{ Mpc}^{-1}$$

These define H_0 , ρ_c , R_H , V_H , and sector entropies in *bits* for photons and (effectively relativistic) neutrinos via standard formulas.

MDL. Seeds $\{14, 16, 11, 12\}$ bits $\Rightarrow 53$ vs. 256. Saved: 203 bits.

Black-hole bit law

Keep $G, \hbar, k_{\rm B}, c$ explicit. Entropy and bit count:

$$S = \frac{A}{4\ell_{\rm P}^2}, \qquad S_{\rm bits} = \frac{S}{\ln 2} = \frac{A}{4\ell_{\rm P}^2 \ln 2}.$$

Zero parameters, many consequences: one-bit costs ($\Delta A_{1 \text{ bit}} = 4\ell_{\rm P}^2 \ln 2$, $\Delta E_{1 \text{ bit}} = k_{\rm B} \ln 2T$), areatheorem merger bounds on ε , accretion bits per baryon growing $\propto M$, and bit–joule constraints for jets. This plugs directly into the cosmic bit balance sheet.

7 Grand MDL Tally and Evidence Factor

Block	MDL (bits)	Baseline (bits)	Saved
CKM lock (4 seeds)	30	256	+226
PMNS lock (4 seeds)	24	256	+232
Neutrino mass ratio (1 seed)	7	64	+57
Water rows (frozen)	22	512	+490
Cosmo anchors (4 seeds)	53	256	+203
Totals	136	1344	+ 1208

Under MDL/Bayes, the evidence factor scales like $2^{\rm Saved} \sim 2^{1208}$ in favor of the registry over the float baseline.

8 Global Rational-CSP Certificate (Machine-Checkable)

We package the chain as a feasibility problem over rationals:

- Variables: $\{\lambda, A, \bar{\rho}, \bar{\eta}\}$, PMNS angles, $R_{21/31}$, water/electro rows, cosmo anchors.
- Constraints: exact equalities for CKM/PMNS derived entries and J-invariants; rare-decay CKM cores; neutrino $m_{\beta}, m_{\beta\beta}, \sum m$ formulae; Debye/hydration Debye-form response windows and Nernst gates; cosmology H_0, ρ_c ; BH bits/area axioms and merger inequality.

• Objective: none (feasibility). Certificate: a single JSON-like table of p/q for all seeds + a script that recomputes the derived relations symbolically/numerically and asserts all equalities/inequalities. If any fraction changes, multiple constraints fail.

9 Stress Tests (Pre-Registered Falsifiers)

Each line below is a one-digit falsification target:

T1 Rare kaons (cores only):

$$\operatorname{Core}_{K_L} = A^4 \bar{\eta}^2 X_t^2 \approx 0.1335908348, \quad \operatorname{AddOn}_{K^+} = \left[P_c + A^2 (1 - \bar{\rho}) X_t \right]^2 \approx 1.658029131.$$

T2 $B_d/B_s \to \mu^+\mu^-$ ratio (CKM core):

$$\frac{|V_{td}|^2}{|V_{ts}|^2} = \frac{169}{4050} \approx 0.0417283950.$$

T3 PMNS first row (exact closure): 1392/2047 + 609/2047 + 2/89 = 1 exactly.

- **T4 Neutrino envelope:** with $R_{21/31} = 2/65$ (NO) and maximal Dirac phase, the allowed $m_{\beta\beta}$ band vs. lightest mass matches the locked mixing to the next digit over the scan.
- **T5 Water resonance gates:** Debye $\tau = 8.3$ ps and hydration $\tau = 1$ ns windows produce impedance-matched EKTL thresholds at the stated p/q voltages/pH steps (Nernst).
- **T6 Cosmic bits:** with $(\Omega_m, \Omega_\Lambda, \Omega_b/\Omega_c, H_0)$ frozen as above, photon & neutrino entropy densities in bits per Mpc³ match the worksheet values to quoted digits; BHs dominate the bit budget under stated mass fractions.
- **T7 BH mergers:** equal-mass, nonspinning bound $\varepsilon \leq 1 1/\sqrt{2} \approx 0.293$ with $\Delta S_{\rm bits} \to 0^+$ at saturation.

10 Reproducibility and Audit

- Registry dump. Provide one table of all seeds as p/q; each derived object (angles, magnitudes, ratios) is computed from it.
- MDL calculator. For each p/q, compute $MDL[p/q] = \lceil \log_2 p \rceil + \lceil \log_2 q \rceil$. Totals as above.
- One-cell neutrino envelope. The minimal script generates the $m_{\beta\beta}$ min-max scan (NO) and prints the benchmark near $m_1 = 1$ meV.
- Engine worksheet. EKTL ODEs, steady-state thresholds, and matching conditions are run with the water/electro rows; outputs are recorded as p/q within gates.
- Cosmic bit sheet. Compute H_0 , ρ_c , R_H , V_H exactly from rationals; tabulate $s_{\gamma,\nu}$ in bits and BH contributions.

Appendix A: CKM Geometry From Four Fractions

Derive $\tan \beta$, $\sin 2\beta$, δ_{CKM} and leading $|V_{ij}|$ in closed form from $(\lambda, A, \bar{\rho}, \bar{\eta})$; show $J_{\text{CKM}} = A^2 \lambda^6 \bar{\eta}$.

Appendix B: Rare-Decay One-Liners

Start with the standard $K \to \pi \nu \bar{\nu}$ normalizations $(X_t, P_c, \kappa_{\pm} \text{ explicit})$ and substitute the CKM fractions; collect terms as small rationals. For $B_{s,d} \to \mu^+ \mu^-$, isolate the null-hadronic CKM ratio.

Appendix C: PMNS Exact First Row

From the locked $\sin^2 \theta_{ij}$ and $\delta = -\pi/2$, compute $(|U_{e1}|^2, |U_{e2}|^2, |U_{e3}|^2)$ exactly and verify closure.

Appendix D: Neutrino Envelope Map

Algorithm: choose m_1 grid, compute (m_2, m_3) from $(\Delta m_{21}^2, \Delta m_{31}^2)$ with $R_{21/31} = 2/65$, then sample the two Majorana phases to map $m_{\beta\beta}$ min–max; plot the envelope vs. m_1 .

Appendix E: Water/Electro Rows and EKTL

List Debye-form $\varepsilon(\omega)$, $\sigma(\omega)$, Nernst $V = (k_{\rm B}T/q) \ln a$, the gate voltages/pH steps in exact p/q, and the EKTL impedance-match condition.

Appendix F: Black-Hole Bits and Merger Bound

State $S_{\rm bits} = A/(4\ell_{\rm P}^2 \ln 2)$, one-bit costs, and the merger ε inequality from the area theorem; include the equal-mass, nonspinning limit.

Appendix G: Cosmology Anchors \rightarrow Bits per Mpc³

Compute H_0, ρ_c, R_H, V_H and radiation-sector $s_{\gamma,\nu}$ in bits, then scale to V_H ; provide worksheet totals.

Appendix H: MDL Details

Document the per-seed bit charges, the float baseline, and the grand total. Note: symbolic constants and common identities are free.