

Analyse I Examen Pr. Z. Ennaimani & H. Ramchoun

Questions de cours

- 1. Énoncer le théorème de Rolle.
- 2. Définir les suites adjacentes et énoncer le théorème associé.
- 3. Corriger les assertions suivantes s'elles sont fausses
 - (a) Une suite divergente s'elle admet une limite infinie.
 - (b) f est dérivable en $x_0 \Leftrightarrow f$ est dérivable à gauche et à droite de x_0
 - (c) Une suite convergente Ssi elle est bornée.

Exercice 1: Soit (u_n) une suite numérique du terme général défini par :

$$u_n = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n-1} + \frac{1}{n}$$

1. Montrer que la suite (u_n) n'est pas de Cauchy et déduire sa nature.

Exercice 2: Soit f une fonction continue sur [a,b], avec f(a)=f(b)=0, telle que f soit dérivable sur [a,b] et telle que sa dérivé soit strictement décroissante

- 1. Montrer qu'il existe $c \in]a,b[$ tel que f'(c)=0
- 2. Montrer si $y \in]a, c[$ alors $f'(y) \succ 0$ et que si $y \in]c, b[$ alors $f'(y) \prec 0$.

Exercice 3: Soit
$$u_n$$
 une suite définie par $u_1=rac{3}{2}$ et pour tout entier $n\succeq 1$,

$$u_{n+1} = \underbrace{\frac{4u_n - 2}{un + 1}}$$

- Démontrer que pour tout entier n, un > 1.
- 2. On définit la suite (v_n) pour $n \in \mathbb{N}$ par

$$v_n = \frac{u_n - 2}{u_n - 1}$$

Montrer que (v_n) est géométrique et déterminer sa limite.

3. En déduire que (u_n) est convergente et déterminer sa limite.