

ETE102 - Fundamentos de Circuitos Digitais Trabalho — 1. Bimestre 2020 — Exercícios

Prezados alunos. O objetivo deste trabalho é resolver os exercícios apresentados. Para isso, leiam as instruções a seguir:

- Este trabalho será aplicado apenas para os alunos do período diurno. Para os alunos do período noturno o trabalho será proposto posteriormente.
- Nas questões os enunciados apresentam uma dependência do valor da variável X, onde X é o dígito do RA do aluno, conforme explicado a seguir:

RA:	0	\mathbb{C}			0			X	${\sf C}$] -[
-----	---	--------------	--	--	---	--	--	---	-----------	-------------	--

- O trabalho é individual. Divulgação no Moodle a partir de 03/04/2020 (sexta-feira). Entrega até o dia 10/04/2020 (sexta-feira). Os trabalhos não serão aceitos após esta data; o MoodleRooms estará programado para isto.
- Os exercícios devem ser resolvidos e, depois de concluídos, digitalizados, gerando um arquivo em PDF o qual deverá ser postado no MoodleRooms, fazendo o Upload na Tarefa "Trabalho do 1. Bimestre Diurno" na pasta "Ensino-Aprendizagem Mediados por Tecnologias Repositórios". Serão aceitos arquivos no formato PDF.

Aluno:	RA: 00•0000-0
Aluno:	

Valores das questões:

Questão	Valor	Nota
1ª Questão	2,0	
2ª Questão	2,0	
3ª Questão	1,5	
4ª Questão	2,0	
5ª Questão	2,5	
Total	10,0	

1ª Questão (2,0 ponto)

Realize as operações binárias abaixo, considerando que os números são **sinalizados** de 8 bits. Apresente obrigatoriamente a operação binária realizada.

Considere que nas operações X é o seu dígito obtido no RA conforme instrução apresentada anteriormente. **Mostre os resultados em binário e o correspondente número em decimal sinalizado.**

a)
$$5X_{16} + EF_{16} =$$

b)
$$EF_{16} - 5X_{16} =$$

2ª Questão (2,0 pontos)

Realize a operação de divisão binária utilizando **obrigatoriamente o procedimento adotado pelos processadores**. Considere que os números **são não sinalizados**, sendo respectivamente 8 bits no dividendo e 5 bits no divisor. Mostre o passo a passo completo da divisão binária **e apresente o resultado no formato binário obtido.**

Na operação X é o seu dígito obtido no RA.

CD ₁₆ 1X ₁₆ = Resto =	
---	--

3ª Questão (1,5 pontos)

Considere a seguintes cartas de tempo. Assuma como X o seu dígito obtido no RA.

Carta de tempo se X = 0.

Carta de tempo se X = 1.

Carta de tempo se X = 2.

Carta de tempo se X = 3.

Carta de tempo se X = 4.

Carta de tempo se X = 5.

Carta de tempo se X = 6.

Carta de tempo se X = 7.

Carta de tempo se X = 8.

Carta de tempo se X = 9.

a) Deduza a tabela verdade do sistema para a carta de tempo indicada (conforme o X específico). (0,5 ponto)

b) Desenhe e utilize o Mapa de Karnaugh para obter uma equação booleana mais simplificada possível (**obrigatório**) que represente o funcionamento da aplicação obtida no item a). (**1,0 ponto**)

4ª Questão (2,0 pontos)

Considere as expressões booleanas a seguir, que dependem de X. Simplifique a expressão booleana para obter a **expressão mais simplificada possível** utilizando Mapa de Karnaugh.

$Y_0 = ABD + BD + AC + ABCD$
$Y_1 = ABC + A\overline{B}D + \overline{A}\overline{B}\overline{C}\overline{D} + \overline{D}$
$Y_2 = A\overline{BC} + A\overline{D} + BD$
$Y_3 = \overline{A}BC + \overline{A}\overline{D} + BCD + \overline{B}D$
$Y_4 = \overline{A}D + BC\overline{D} + A\overline{B}C + \overline{A}\overline{B}\overline{C}$
$Y_5 = AB\overline{C}D + \overline{A}B + \overline{C} + AB\overline{D}$
$Y_6 = ABD + \overline{A} + ABC + \overline{BC}$
$Y_7 = \overline{A}\overline{B}\overline{C}\overline{D} + BC\overline{D} + \overline{B} + CD$
$Y_8 = A\overline{B}C + BD + \overline{A}D + \overline{B}CD$
$Y_9 = \overline{A}B\overline{C} + B\overline{C} + ABD + \overline{A}C\overline{D}$

5ª Questão (2,5 pontos)

Para X = 0 a 4.

Monte um circuito utilizando **apenas portas NAND com somente duas entradas** para as aplicações que funcionam conforme as seguintes expressões booleanas.

Expressão para $X = 0$.	$Y_0 = B\overline{C}D + AD$
Expressão para X = 1.	$Y_1 = AC\overline{D} + A\overline{B}$
Expressão para X = 2.	$Y_2 = \overline{B} + \overline{A}BD$
Expressão para X = 3.	$Y_3 = A\overline{B}C + B\overline{D}$
Expressão para X = 4.	$Y_4 = (A + \overline{D})(B + C + \overline{D})$

Para X = 5 a 9.

Monte um circuito utilizando **apenas portas NOR com somente duas entradas** para as aplicações que funcionam conforme as seguintes expressões booleanas.

Expressão para
$$X = 5$$
. $Y_5 = \overline{B}D + A\overline{C}D$
Expressão para $X = 6$. $Y_6 = (A + C + \overline{D})(\overline{A} + B)$
Expressão para $X = 7$. $Y_7 = (\overline{B} + \overline{D})(\overline{A} + C + D)$
Expressão para $X = 8$. $Y_8 = (A + \overline{B} + C)(\overline{C} + \overline{D})$
Expressão para $X = 9$. $Y_9 = AB\overline{C} + A\overline{D}$