FEATURES

- Output Current up to 1 A
- Low Dropout Voltage (1.2V at 1A Output current)
- Three Terminal Adjustable(ADJ) or Fixed 1.2V, 1.5V, 1.8V, 2.5V, 2.85V, 3.3V, 5.0V
- Line Regulation typically at 0.1% max.
- Load Regulation typically at 0.2% max.
- Internal Current and Terminal Protection
- Maximum Input Voltage 15V
- Surface Mount Package SOT-223, TO-252, SOT-89
- 100% Thermal Limit Burn-In
- Moisture Sensitivity Level 3

APPLICATION

- Active SCSI Terminators
- Portable/ Plan Top/ Notebook Computers
- High Efficiency Linear Regulators
- SMPS Post Regulators
- Mother B/D Clock Supplies
- Disk Drives
- Battery Chargers

ORDERING INFORMATION

Device	Package
LM1117S-ADJ	
LM1117S-X.X	SOT-223
LM1117GS-ADJ	301-223
LM1117GS-X.X	
LM1117RS-ADJ	
LM1117RS-X.X	TO-252
LM1117GRS-ADJ	10-232
LM1117GRS-X.X	
LM1117F-ADJ	SOT-89
LM1117F-X.X	301-09

X.X = Output Voltage = 1.2V, 1.5V, 1.8V, 2.5V, 2.85V, 3.3V, 5.0V

DESCRIPSION

The LM1117 is a low power positive-voltage regulator designed to meet 1A output current and comply with SCSI-II specifications with a fixed output voltage of 2.85V. This device is an excellent choice for use in battery-powered applications, as active terminators for the SCSI bus, and portable computers. The LM1117 features very low quiescent current and very low dropout voltage of 1V at a full load and lower as output current decreases. LM1117 is available as an adjustable or fixed 1.2V, 1.5V, 1.8V, 2.5V, 2.85, 3.3V, and 5.0V output voltages. The LM1117 is offered in a 3-pin surface mount package SOT-223, TO-252 & SOT-89. The output capacitor of 10μ F or larger is needed for output stability of LM1117 as required by most of the other regulator circuits.

Absolute Maximum Ratings

(T_A = 25 °C, unless otherwise specified)

(TA 20 0, dimeter date meet opcomed)				
CHARACTERISTIC	SYMBOL	MIN.	MAX.	UNIT
DC Input Voltage	V _{IN}	-	15	V
Lead Temperature (Soldering, 5 seconds)	T _{SOL}	-	260	${\mathbb C}$
Operating Junction Temperature Range	T _{OPR}	-40	125	${\mathbb C}$
Storage Temperature Range	T _{STG}	-65	150	${\mathbb C}$

1A L.D.O VOLTAGE REGULATOR

Ordering Information

\mathbf{V}_{OUT}	Package	Order No.	Package Marking	Supplied As	Status
	SOT-223	LM1117S-ADJ-3L	1117S ADJ	Reel	Active
	SOT-223	LM1117GS-ADJ-3L	1117GS ADJ	Reel	Contact us
ADJ	TO-252	LM1117RS-ADJ-3L	LM1117 ADJ	Reel	Active
	TO-252	LM1117GRS-ADJ-3L	LM1117G ADJ	Reel	Contact us
	SOT-89	LM1117F-ADJ-3L	1117 ADJ	Reel	Active
	SOT-223	LM1117S-1.2V-3L	1117S 1.2	Reel	Active
	SOT-223	LM1117GS-1.2V-3L	1117GS 1.2	Reel	Contact us
1.2V	TO-252	LM1117RS-1.2V-3L	LM1117 1.2	Reel	Active
	TO-252	LM1117GRS-1.2V-3L	LM1117G 1.2	Reel	Contact us
	SOT-89	LM1117F-1.2V-3L	1117 1.2	Reel	Active
	SOT-223	LM1117S-1.5V-3L	1117S 1.5	Reel	Active
	SOT-223	LM1117GS-1.5V-3L	1117GS 1.5	Reel	Contact us
1.5V	TO-252	LM1117RS-1.5V-3L	LM1117 1.5	Reel	Active
	TO-252	LM1117GRS-1.5V-3L	LM1117G 1.5	Reel	Contact us
	SOT-89	LM1117F-1.5V-3L	1117 1.5	Reel	Active
	SOT-223	LM1117S-1.8V-3L	1117S 1.8	Reel	Active
	SOT-223	LM1117GS-1.8V-3L	1117GS 1.8	Reel	Contact us
1.8V	TO-252	LM1117RS-1.8V-3L	LM1117 1.8	Reel	Active
	TO-252	LM1117GRS-1.8V-3L	LM1117G 1.8	Reel	Contact us
	SOT-89	LM1117F-1.8V-3L	1117 1.8	Reel	Active
	SOT-223	LM1117S-2.5V-3L	1117S 2.5	Reel	Active
	SOT-223	LM1117GS-2.5V-3L	1117GS 2.5	Reel	Contact us
2.5V	TO-252	LM1117RS-2.5V-3L	LM1117 2.5	Reel	Active
	TO-252	LM1117GRS-2.5V-3L	LM1117G 2.5	Reel	Contact us
	SOT-89	LM1117F-2.5V-3L	1117 2.5	Reel	Active
	SOT-223	LM1117S-2.85V-3L	1117S 2.85	Reel	Active
	SOT-223	LM1117GS-2.85V-3L	1117GS 2.85	Reel	Contact us
2.85V	TO-252	LM1117RS-2.85V-3L	LM1117 2.85	Reel	Active
	TO-252	LM1117GRS-2.85V-3L	LM1117G 2.85	Reel	Contact us
	SOT-89	LM1117F-2.85V-3L	1117 2.85	Reel	Active
	SOT-223	LM1117S-3.3V-3L	1117S 3.3	Reel	Active
	SOT-223	LM1117GS-3.3V-3L	1117GS 3.3	Reel	Contact us
3.3V	TO-252	LM1117RS-3.3V-3L	LM1117 3.3	Reel	Active
	TO-252	LM1117GRS-3.3V-3L	LM1117G 3.3	Reel	Contact us
	SOT-89	LM1117F-3.3V-3L	1117 3.3	Reel	Active

Ordering Information

(Continued)

V _{out}	Package	Order No.	Package Marking	Supplied As	Status
	SOT-223	LM1117S-5.0V-3L	1117S 5.0	Reel	Active
	SOT-223	LM1117GS-5.0V-3L	1117GS 5.0	Reel	Contact us
5.0V	TO-252	LM1117RS-5.0V-3L	LM1117 5.0	Reel	Active
	TO-252	LM1117GRS-5.0V-3L	LM1117G 5.0	Reel	Contact us
	SOT-89	LM1117F-5.0V-3L	1117 5.0	Reel	Active

PIN CONFIGURATION

PIN DESCRIPTION

Pin No.	SOT-223 / TO-252 / SOT-89				
	Name	Function			
1	ADJ/GND	Adjustable / Ground			
2	V _{OUT}	Output Voltage			
3	VIn	Input Voltage			

ELECTRICAL CHARACTERISTICS

For ADJ Output Voltage

(T_A=25 $^{\circ}$ C, C_O = 10uF unless otherwise specified)

Symbol	Parameters	Condition	Min.	Тур.	Max.	Unit
V _{REF}	Reference Voltage	V _{IN} =5V, I _O =10mA	1.238	1.250	1.262	V
V_{REF}	Reference Voltage	I_O = 10mA to 1A, V_{IN} - V_{REF} = 1.5V to 13.75V (T_J = 0 ~ 125°C)	1.219		1.281	V
ΔV_{LINE}	Line Regulation	I _O = 10mA , V _{IN} - V _{REF} = 1.5V to 12V		0.1	0.2	%
ΔV_{LOAD}	Load Regulation	I _O = 10mA to 1A, V _{IN} - V _{REF} = 2 V		0.2	0.4	%
V _{IN}	Operating Input Voltage				15	V
I _{ADJ}	Adjustment pin Current	V _{IN} - V _{REF} = 1.5V to 12V, I _O = 100mA		50	120	uA
Δl _{ADJ}	Adjustment Pin Current Change	V_{IN} - V_{REF} = 1.5V to 12V, I_{O} = 100mA to 1A		0.5	5	uA
I _{O(MIN)}	Minimum Load Current	V _{IN} =5V, V _{REF} =0V		5	10	mA
Io	Current Limit	V _{IN} - V _{REF} = 5V	1000	1250	1600	mA
EΝ	Output Noise(%V _O)	B = 10Hz to 10kHz, T _J = 25 ℃		0.003		%
SVR	Supply Voltage Rejection	I_O = 1A, f = 120Hz, V_{IN} - V_{REF} = 3V, V_{RIPPLE} = 1 V_{PP}	60	75		dB

For 1.2V Output Voltage

(T_A=25 $^{\circ}$ C, C_O = 10uF unless otherwise specified)

Symbol	Parameters	Condition	Min.	Тур.	Max.	Unit
Vo	Output Voltage	V _{IN} = 2.7V, I _O = 10mA	1.176	1.200	1.224	V
Vo	Output Voltage	V_{IN} = 2.7V to 12V, I_O = 0mA to 1A $(T_J$ = 0 ~ 125°C)	1.152		1.248	V
ΔV_{LINE}	Line Regulation	I _O = 0mA , V _{IN} = 2.7V to 12V		0.1	0.2	%
ΔV_{LOAD}	Load Regulation	I _O = 10mA to 1A, V _{IN} = 3.2V		0.2	0.4	%
V _{IN}	Operating Input Voltage				15	V
I_D	Quiescent Current	V _{IN} - V _O = 5V		5	10	mA
Io	Current Limit	V _{IN} - V _O = 5V	1000	1250	1600	mA
EΝ	Output Noise(%V _O)	B = 10Hz to 10kHz, T _J = 25℃		0.003		%
SVR	Supply Voltage Rejection	I_{O} = 1A, f = 120Hz, $V_{IN} - V_{O}$ = 1.5V, V_{RIPPLE} = 1 V_{PP}	60	75		dB

For 1.5V Output Voltage

(T_A=25 $^{\circ}$ C, C_O = 10uF unless otherwise specified)

Symbol	Parameters	Condition	Min.	Тур.	Max.	Unit
Vo	Output Voltage	V _{IN} = 3.0V , I _O = 10mA	1.485	1.5	1.515	V
Vo	Output Voltage	V_{IN} = 3.0V to 12V, I_O = 0mA to 1A $(T_J$ = 0 ~ 125°C)	1.470		1.530	V
ΔV_{LINE}	Line Regulation	I _O = 0mA , V _{IN} = 3.0V to 12V		0.1	0.2	%
ΔV_{LOAD}	Load Regulation	I _O = 0mA to 1A, V _{IN} = 3.5 V		0.2	0.4	%
V _{IN}	Operating Input Voltage	I _O = 100mA			12	V
I _D	Quiescent Current	V _{IN} - V _O = 5V		5	10	mA
Io	Current Limit	$V_{IN} - V_{O} = 5V$	1000	1250	1600	mA
EΝ	Output Noise(%V _O)	B = 10Hz to 10kHz, T _J = 25 ℃		100		uV
SVR	Supply Voltage Rejection	I_{O} = 1A, f = 120Hz, $V_{IN} - V_{O}$ = 3V, V_{RIPPLE} = 1 V_{PP}	60	75		dB

For 1.8V Output Voltage

(T_A=25 $^{\circ}$ C, C_O = 10uF unless otherwise specified)

Symbol	Parameters	Condition	Min.	Тур.	Max.	Unit
Vo	Output Voltage	V _{IN} = 3.3V, I _O = 10mA	1.782	1.8	1.818	V
Vo	Output Voltage	$V_{IN} = 3.3V \text{ to } 12V, I_O = 0\text{mA to } 1\text{A} \ (T_J = 0 \sim 125^{\circ}\text{C})$	1.764		1.836	V
ΔV_{LINE}	Line Regulation	I _O = 0mA , V _{IN} = 3.3V to 12V		0.1	0.2	%
ΔV_{LOAD}	Load Regulation	I _O = 0mA to 1A, V _{IN} = 3.8 V		0.2	0.4	%
V _{IN}	Operating Input Voltage	I _O = 100mA			12	V
I _D	Quiescent Current	$V_{IN} - V_{O} = 5V$		5	10	mA
lo	Current Limit	V _{IN} - V _O = 5V	1000	1250	1600	mA
EΝ	Output Noise(%V _O)	B = 10Hz to 10kHz, T _J = 25 ℃		100		uV
SVR	Supply Voltage Rejection	I_{O} = 1A, f = 120Hz, $V_{IN} - V_{O}$ = 3V, V_{RIPPLE} = 1 V_{PP}	60	75		dB

For 2.5V Output Voltage

 $(T_A=25^{\circ}C, C_O=10 \text{urless otherwise specified})$

Symbol	Parameters	Condition	Min.	Тур.	Max.	Unit
Vo	Output Voltage	V _{IN} = 4.0V, I _O = 10mA	2.475	2.5	2.525	V
Vo	Output Voltage	V_{IN} = 4.0V to 12V, I_O = 0mA to 1A $(T_J$ = 0 ~ 125°C)	2.450		2.550	V
ΔV_{LINE}	Line Regulation	I _O = 0mA , V _{IN} = 4.0V to 12V		0.1	0.2	%
ΔV_{LOAD}	Load Regulation	I _O = 0mA to 1A, V _{IN} = 4.5 V		0.2	0.4	%
V_{IN}	Operating Input Voltage	I _O = 100mA			12	٧
I_D	Quiescent Current	V _{IN} - V _O = 5V		5	10	mA
Io	Current Limit	V _{IN} - V _O = 5V	1000	1250	1600	mA
ΕN	Output Noise(%V _O)	B = 10Hz to 10kHz, T_J = 25 $^{\circ}$ C		100		uV
SVR	Supply Voltage Rejection	I_{O} = 1A, f = 120Hz, $V_{IN} - V_{O}$ = 3V, V_{RIPPLE} = 1 V_{PP}	60	75		dB

For 2.85V Output Voltage

(T_A=25 $^{\circ}$ C, C_O = 10uF unless otherwise specified)

Symbol	Parameters	Condition	Min.	Тур.	Max.	Unit
Vo	Output Voltage	V _{IN} = 4.4V, I _O = 10mA	2.821	2.85	2.878	V
Vo	Output Voltage	V_{IN} = 4.4V to 12V, I_O = 0mA to 1A $(T_J$ = 0 ~ 125°C)	2.793		2.907	V
ΔV_{LINE}	Line Regulation	I _O = 0mA , V _{IN} = 4.4 to 12V		0.1	0.2	%
ΔV_{LOAD}	Load Regulation	I _O = 0mA to 1A, V _{IN} = 4.85 V		0.2	0.4	%
V _{IN}	Operating Input Voltage	I _O = 100mA			12	V
I _D	Quiescent Current	$V_{IN} - V_{O} = 5V$		5	10	mA
lo	Current Limit	V _{IN} - V _O = 5V	1000	1250	1600	mA
EΝ	Output Noise(%V _O)	B = 10Hz to 10kHz, T _J = 25 ℃		100		uV
SVR	Supply Voltage Rejection	I_{O} = 1A, f = 120Hz, $V_{IN} - V_{O}$ = 3V, V_{RIPPLE} = 1 V_{PP}	60	75		dB

For 3.3V Output Voltage

(T_A=25 $^{\circ}$ C, C_O = 10uF unless otherwise specified)

		,				
Symbol	Parameters	Condition	Min.	Тур.	Max.	Unit
Vo	Output Voltage	V _{IN} = 4.8V, I _O = 10mA	3.267	3.3	3.333	V
Vo	Output Voltage	V_{IN} = 4.8V to 12V, I_O = 0mA to 1A $(T_J$ = 0 ~ 125 $^{\circ}$ C)	3.234		3.366	V
ΔV_{LINE}	Line Regulation	I _O = 0mA , V _{IN} = 4.8V to 12V		0.1	0.2	%
ΔV_{LOAD}	Load Regulation	I _O = 0mA to 1A, V _{IN} = 5.3 V		0.2	0.4	%
V _{IN}	Operating Input Voltage	I _O = 100mA			12	٧
I _D	Quiescent Current	$V_{IN} - V_O = 5V$		5	10	mA
Io	Current Limit	$V_{IN} - V_O = 5V$	1000	1250	1600	mA
EΝ	Output Noise(%V _O)	B = 10Hz to 10kHz, T _J = 25 ℃		100		uV
SVR	Supply Voltage Rejection	I_{O} = 1A, f = 120Hz, $V_{IN} - V_{O}$ = 3V, V_{RIPPLE} = 1 V_{PP}	60	75		dB

For 5.0V Output Voltage

 $(T_A=25\,^{\circ}\text{C},\,C_O=10\text{urless}$ otherwise specified)

Symbol	Parameters	Condition	Min.	Тур.	Max.	Unit
Vo	Output Voltage	V _{IN} = 6.5V, I _O = 10mA	4.950	5.0	5.050	٧
Vo	Output Voltage	V_{IN} = 6.5V to 15V, I_O = 0mA to 1A $(T_J$ = 0 ~ 125°C)	4.900		5.100	V
ΔV_{LINE}	Line Regulation	I _O = 0mA , V _{IN} = 6.5V to 15V		0.1	0.2	%
ΔV_{LOAD}	Load Regulation	I _O = 0mA to 1A, V _{IN} = 7.0 V		0.2	0.4	%
V _{IN}	Operating Input Voltage	I _O = 100mA			15	V
I _D	Quiescent Current	$V_{IN} - V_O = 5V$		5	10	mA
lo	Current Limit	V _{IN} - V _O = 5V	1000	1250	1600	mA
EΝ	Output Noise(%V _O)	B = 10Hz to 10kHz, T _J = 25 ℃		100		uV
SVR	Supply Voltage Rejection	I_{O} = 1A, f = 120Hz, $V_{IN} - V_{O}$ = 3V, V_{RIPPLE} = 1 V_{PP}	60	75		dB

For All Output Voltage	$(T_A=25^{\circ}C, C_O=10 \text{unless otherwise specified})$
I OI AII GUIDUI VOILUUC	(TA-20 C, O() - TOUL UTILGS OUT WISC SPECIFICA)

Symbol	Parameters	Condition	Min.	Тур.	Max.	Unit
V _D	Dropout Voltage	I _O = 100mA		1.0	1.1	V
		I _O = 500mA		1.1	1.2	V
		I _O = 1A		1.2	1.3	V
	Temperature Stability			0.5		%
	Long Term Stability	1000 hrs, T _J = 125℃		0.3		%
	Thermal Regulation	T _A = 25℃ 30ms Pulse		0.003		%/W

TYPICAL APPLICATION CIRCUIT

Fig.1 1A Current Output

Fig.2 Typical Adjustable Regulator

Fig.3 Negative Supply

Fig.4 Active Terminator for SCSI-2BUS

Fig.5 Voltage Regulator with Reference

Fig.6 Battery Backed-up Regulated Supply

TYPICAL OPERATING CHARACTERISTICS

Fig.12 QUIESCENT CURRENT CHANGE VS TEMPERATURE

Fig.11 ADJ PIN CURRENT VS TEMPERATURE

APPLICATION INFORMATION

Maximum Output Current Capability

The LM1117 can deliver a continuous current of 1A over the full operating junction temperature range. However, the output current is limited by the restriction of power dissipation which differs from packages. A heat sink may be required depending on the maximum power dissipation and maximum ambient temperature of application. With respect to the applied package, the maximum output current of 1A may be still undeliverable due to the restriction of the power dissipation of LM1117. Under all possible conditions, the junction temperature must be within the range specified under operating conditions. The temperatures over the device are given by:

$$T_C = T_A + P_D X \theta_{CA} / T_J = T_C + P_D X \theta_{JC} / T_J = T_A + P_D X \theta_{JA}$$

where T_J is the junction temperature, T_C is the case temperature, T_A is the ambient temperature, P_D is the total power dissipation of the device, θ_{CA} is the thermal resistance of case-to-ambient, θ_{JC} is the thermal resistance of junction-to-case, and θ_{JA} is the thermal resistance of junction to ambient. The total power dissipation of the device is given by:

$$P_D = P_{IN} - P_{OUT} = (V_{IN} X I_{IN}) - (V_{OUT} X I_{OUT})$$

= $(V_{IN} X (I_{OUT} + I_{GND})) - (V_{OUT} X I_{OUT}) = (V_{IN} - V_{OUT}) X I_{OUT} + V_{IN} X I_{GND}$

where I_{GND} is the operating ground current of the device which is specified at the Electrical Characteristics. The maximum allowable temperature rise (T_{Rmax}) depends on the maximum ambient temperature (T_{Amax}) of the application, and the maximum allowable junction temperature (T_{Jmax}):

$$T_{Rmax} = T_{Jmax} - T_{Amax}$$

The maximum allowable value for junction-to-ambient thermal resistance, θ_{JA} , can be calculated using the formula:

$$\theta_{JA} = T_{Rmax} / P_D = (T_{Jmax} - T_{Amax}) / P_D$$

LM1117 is available in SOT223, TO252 and SOT89 packages. The thermal resistance depends on amount of copper area or heat sink, and on air flow. If the maximum allowable value of θ_{JA} calculated above is over 137°C/W for SOT-223 package, over 105 °C/W for TO252 package, over 315 °C/W for SOT-89 package, no heat sink is needed since the package can dissipate enough heat to satisfy these requirements. If the value for allowable θ_{JA} falls near or below these limits, a heat sink or proper area of copper plane is required. In summary, the absolute maximum ratings of thermal resistances are as follow:

Absolute Maximum Ratings of Thermal Resistance

Characteristic	Symbol	Rating	Unit
Thermal Resistance Junction-To-Ambient / SOT-223	Ө JA-SOT-223	137	°C/W
Thermal Resistance Junction-To-Ambient / TO-252	Ө JА-ТО-252	105	°C/W
Thermal Resistance Junction-To-Ambient / SOT-89	Ө JA-SOT-89	315	°C/W

No heat sink / No air flow / No adjacent heat source / 0.066 inch² copper area. (T_A=25°C)

Feb. 2009 – Rev. 1.3 - 11 - **HTC**