	D 4 T	
IAME	DATE	
ANVIE	DAIL	

10-2 LAB EXPERIMENT: 3-BIT PARALLEL ADDER

OBJECTIVE

To wire and operate a 3-bit parallel adder using AND, NAND, and XOR gates.

MATERIALS

Qty.

Qty.

- 2 7400 two-input NAND gate ICs
- 2 7486 two-input XOR gates ICs
- 4 LED indicator-light assemblies
- 1 7408 two-input AND gate IC
- 6 logic switches
- 1 5-V dc regulated power supply

SYSTEM DIAGRAM

The wiring diagram for a 3-bit parallel adder using gates is drawn in Fig. 10-6. It will add two 3-bit binary numbers $(A_2A_1A_0 + B_2B_1B_0)$ and show the sum on the display at the lower right. The top XOR and AND gates form a half adder for adding the two inputs from the 1s column. The middle five gates (two XORs and three NANDs) form a full adder, used to add the carry in $(C_{\rm in})$ plus the two inputs from the 2s column. The bottom five gates also form a full adder, used to add the inputs from the 4s column plus the carry in $(C_{\rm in})$ from the 2s full-adder circuit. The carry out $(C_{\rm o})$ from the lower-right full adder is the overflow or carry into the 8s position of the sum.

PROCEDURE

- 1. Insert the two 7400, one 7408, and two 7486 ICs into the mounting board.
- **2.** Power OFF. Connect power (V_{CC} and GND) to each of the five ICs.
- **3.** Wire the 3-bit adder shown in Fig. 10-6. Use six switches for the input numbers $A_2A_1A_0$ and $B_2B_1B_0$. Wire the five ICs. Connect the outputs to the four LED indicator-light assemblies.
- **4.** Power ON. Operate the 3-bit parallel adder. Try adding binary 111 to 111. The answer should be 1110 (decimal 14). Try five binary addition problems of your choice (not over 3 bits long). Record your *inputs* and *outputs*.
- **5.** Show your instructor your 3-bit parallel adder circuit. Be prepared to demonstrate the circuit and answer questions about the circuit's operation.
- **6.** Power OFF. Take down the circuit, and return all equipment to its proper place.

QUESTIONS

Complete questions 1 to 5.

	Refer to Fig. 10-6. If inputs A_2 and B_2 and C_{in} of the bottom full adder are all 1, then indicators and [1s, 2s, 4s, 8s]	1.	
	are sure to be lit.		
2.	Refer to Fig. 10-6. Indicator [1s, 2s, 4s, 8s] could be	2.	
	considered an overflow or carry indicator.		
3.	Refer to Fig. 10-6. If A_0 , B_0 , A_1 , and B_1 are all at 1, then the 1s indicator	3. .	 ·
	will read (0, 1) and the 2s indicator		
	(0, 1).		
4.	Refer to Fig. 10-6. What is the highest binary sum this adder will handle?	4.	
	This equals what in decimal?		
	What do LSB and MSB mean in relation to a binary number?	5.	
•	mate do 252 and 1152 mean in relation to a binary number.	•	

Fig. 10-6 Wiring diagram for a 3-bit parallel adder using individual gates.

284 Copyright © by McGraw-Hill.