

金融工程课程实验:

最优套期保值比的确定

桑梓洲 141292018

选题

期货套利和套期保值交易

了解期货套利方法和策略。理解套期保值的概念、原理及作用;掌握基差及其基本原理;了解套期保值的基本方法;进行套期保值模拟交易实验;利用时间序列分析的方法建立模型以计算最优套期保值比率系数。

目录

- 1.发展概述
- 2.实证检验
- 3.改进空间
- 4.参考文献

The Theory of hedging and Speculation in Commodity Futures, Johnson (1960)

between market i and market j, a combination of positions in i and j has a total variance of return V(R) due to price change given by:

(1)
$$V(R) = x_i^2 \sigma_i^2 + x_j^2 \sigma_j^2 + 2x_i x_j \operatorname{cov}_{ij}$$

The combination also has an actual return R and an expected return E(R) due to price change given respectively by:

$$(2) R = x_i B_i + x_j B_j$$

and

$$(3) E(R) = x_i u_i + x_j u_j$$

p. 143

where B_i , B_j denotes the actual price changes from t_1 to t_2 in i and j, and u_i and u_j denote the price changes from t_1 to t_2 expected at t_1 . As such, u_i and u_j are the mean values of the probability distributions of return existing in the i and j markets respectively at time t_1 .

Differentiating equation (1) with respect to x_i and setting the derivative equal to 0, we have the value x_i^* minimizing the variance of return for the combination x_i , x_j^* .

$$(4) x_j^* = -\frac{x_i \operatorname{cov}_{ij}}{\sigma_j^2}$$

Substituting the value x_j^* for x_j in equation (1) and letting $V(R)^*$ denote the total variance of return of the combination x_i , x_j^* , we have :

$$V(R)^* = x_i^2 \sigma_{i}^2 + \frac{x_i^2 \operatorname{cov}_{ij}^2}{\sigma_{j}^2} - \frac{2x_i^2 \operatorname{cov}_{ij}^2}{\sigma_{j}^2}$$

or
$$V(R)^* = x_i^2 \left(\sigma_i^2 - \frac{\operatorname{COV}_{ij}^2}{\sigma_j^2}\right)$$

Since the coefficient of correlation, ρ , estimated by the trader is equal to $\frac{\cot g}{\sigma_i \sigma_j}$ then $V(R)^* = x_i^2 \sigma_i^2 (1 - \rho^2)$. Generally speaking the larger the (absolute) value of the coeffi-

The Hedging Performance of the New Futures Markets, Ederington (1979)

If the expected change in the basis is zero, then clearly the expected gain or loss is reduced as $b \to 1$. It is also obvious that expected changes in the basis may add to or subtract from the gain or loss which would have been expected on an unhedged portfolio $\{E(U) = X_s E(S)\}$.

Holding X_s constant, let us consider the effect of a change in b, the proportion hedged, on the expected return and variance of the portfolio R.

$$\frac{\partial \operatorname{Var}(R)}{\partial b} = X_s^2 \{ 2b\sigma_f^2 - 2\sigma_{sf} \} \tag{8}$$

so the risk minimizing b, b^* , is

$$r^* = \frac{\sigma_{sf}}{\sigma_f^2} \tag{9}$$

$$\frac{\partial E(R)}{\partial b} = -X_s[E(\Delta B) + E(S)] - \frac{\partial K(X_s, b)}{\partial b}$$
(10)

164

The Journal of Finance

opportunity locus in figure 1, and corresponds to the variance of the return on a portfolio where b equals the b^* defined in equation 9. The measure of hedging effectiveness used in this paper is, therefore, the percent reduction in the variance or

$$e = 1 - \frac{\operatorname{Var}(R^*)}{\operatorname{Var}(U)}$$

where $varR^*$ denotes the minimum variance on a portfolio containing security futures.

Substituting equation 9 into equation 5 yields

$$Var(R^*) = X_s^2 \left\{ \sigma_s^2 + \frac{\sigma_{sf}^2}{\sigma_f^2} - 2 \frac{\sigma_{sf}^2}{\sigma_f^2} \right\} = X_s^2 \left(\sigma_s^2 - \frac{\sigma_{sf}^2}{\sigma_f^2} \right)$$

Consequently

$$e = \frac{\sigma_{sf}^2}{\sigma_s^2 \sigma_f^2} = \rho^2$$

where ρ^2 is the population coefficient of determination between the change in the cash price and the change in the future's price.

In order to judge the market's effectiveness at reducing risk, we estimated e using the sample coefficient of determination, r^2 , for hedges of two arbitrary lengths (two and four weeks) and using the sample variances and sample covariance of the two and four week price changes over the observed period to estimate b^* as well as σ_s^2 , σ_f^2 and σ_{sf} . As noted above, the GNMA and T-Bill markets were established in October 1975 and January 1976 respectively. Since it seemed prudent to allow the markets to gain some depth before analyzing them, weekly data collection for the GNMA market began in January 1976 and for the T-Bill market in March 1976. Both data sets were continued through December 1977. For comparison purposes we also collected data (January 1976—December 1977) and calculated e for two established and heavily traded futures: corn and wheat.

Time Varying Distributions and Dynamic Hedging with Foreign Currency Futures, Kroner & Sultan(1993)

Two potential problems are prevalent in these empirical studies. First, if the spot and futures rates are cointegrated, then Regression (1) is misspecified because it involves overdifferencing the data and obscuring the long-run relationship between S_t and F_t (Engle and Granger (1987)). This implies a downward bias in $\hat{\beta}$ (Brenner and Kroner (1993)). Second, these studies implicitly assume that the risk in spot and futures markets is constant over time, implying that the minimum risk hedge ratio will be the same irrespective of when the hedging is undertaken. But this assumption contrasts sharply with reality because as new information is received by the market, the riskiness of each of these assets changes. See Bollerslev (1990) or Kroner and Sultan (1991) for evidence of this. This assumption implies that the risk-minimizing hedge ratio is time varying. Therefore, conventional models like (1) cannot produce risk-minimizing hedge ratios, raising important concerns regarding the risk reduction properties of conventional hedging models.

In this paper, we demonstrate a method of calculating the risk-minimizing futures hedge that addresses both of these issues, and apply the method to several different currencies. We propose and estimate a bivariate error correction model (ECM) in ΔS_t and ΔF_t with a GARCH error structure. The error correction term imposes the long-run relationship between S_t and F_t , and the GARCH error structure permits the second moments of the distribution to change through time. The time-varying hedge ratios can then be calculated from the estimated covariance matrix from the model. Both within-sample tests and out-of-sample tests reveal

(11)
$$s_t = \alpha_{0s} + \alpha_{1s} \left(S_{t-1} - \delta F_{t-1} \right) + \epsilon_{st}$$
$$f_t = \alpha_{0f} + \alpha_{1f} \left(S_{t-1} - \delta F_{t-1} \right) + \epsilon_{ft},$$

(12)
$$\left[\begin{array}{c} \epsilon_{st} \\ \epsilon_{ft} \end{array}\right] \left| \Psi_{t-1} \sim N(0, H_t), \right.$$

$$(13) \quad H_t = \begin{bmatrix} h_{ss,t} & h_{sf,t} \\ h_{sf,t} & h_{ff,t} \end{bmatrix} = \begin{bmatrix} h_{s,t} & 0 \\ 0 & h_{f,t} \end{bmatrix} \begin{bmatrix} 1 & \rho \\ \rho & 1 \end{bmatrix} \begin{bmatrix} h_{s,t} & 0 \\ 0 & h_{f,t} \end{bmatrix},$$

(14)
$$h_{s,t}^2 = c_s + a_s \epsilon_{s,t-1}^2 + b_s h_{s,t-1}^2$$
$$h_{f,t}^2 = c_f + a_f \epsilon_{f,t-1}^2 + b_f h_{f,t-1}^2,$$

t can be computed as the ratio of conditional covariance between s and f to the conditional variance of f (both measured at time t), i.e., as

$$\hat{b}_t^* = \frac{\hat{h}_{sf,t}}{\hat{h}_{ff,t}}.$$

OLS, Intro

 $y_t = \alpha + \beta x_t + u_t$

普通最小二乘 (OLS) 法认为, α 、 β 的估计值,分别记为 \hat{a} 、 $\hat{\beta}$,应能最小化下面的式子,

*Ordinary Least Square

$$L = \sum_{t=1}^{T} u_t^2 = \sum_{t=1}^{T} (y_t - \alpha - \beta x_t)^2$$
 (7)

OLS, Intro

对扰动项的假设

$$\mathbf{4} \, \mathbf{E}(u_t) = 0$$

(5)
$$\operatorname{var}(u_t) = \sigma^2 < \infty$$
 (6) $\operatorname{cov}(u_i, u_j) = 0$

$$(6) \operatorname{cov}(u_i, u_j) = 0$$

(8)
$$u_t \sim N(0, \sigma^2)$$

符合这8个假设下的(6)式称为**经典线性回归模型**(CLRM)。其中,①~

⑥的假设确保了 OLS 估计量的优良性质,被称为**高斯-马尔科夫假设**。

OLS 估计量是"最优线性无偏估计量(BLUE)"

- \triangleright 线性估计量: OLS 估计量是随机变量 y_i 的线性组合
- ightharpoonup 无偏估计量: $E(\hat{\alpha}) = \alpha$, $E(\hat{\beta}) = \beta$
- 最优线性估计量(高斯-马尔科夫定理): 在所有的线性估计量中, OLS 估计量的方差最小(效率最高)

*Classic Linear Regression Model

*Best Linear Unbiased Estimator

OLS, Intro

对扰动项的假设

$$\mathbf{(4)}\,\mathrm{E}(u_t)=0$$

(5)
$$\operatorname{var}(u_t) = \sigma^2 < \infty$$
 (6) $\operatorname{cov}(u_i, u_j) = 0$

$$(6)\operatorname{cov}(u_i, u_j) = 0$$

(8)
$$u_t \sim N(0, \sigma^2)$$

符合这8个假设下的(6)式称为**经典线性回归模型**(CLRM)。其中,①~

⑥的假设确保了 OLS 估计量的优良性质,被称为**高斯-马尔科夫假设**。

OLS 估计量是"最优线性无偏估计量(BLUE)"

- \triangleright 线性估计量: OLS 估计量是随机变量 y_i 的线性组合
- ightharpoonup 无偏估计量: $E(\hat{\alpha}) = \alpha$, $E(\hat{\beta}) = \beta$
- 最优线性估计量(高斯-马尔科夫定理): 在所有的线性估计量中, OLS 估计量的方差最小(效率最高)

*Classic Linear Regression Model

*Best Linear Unbiased Estimator

Hedge Ratio, Naïve OLS

从Wind获取2017/2/20-2017/3/22日苏宁云商等几家上市公司的数据,按心情构建投资组合作为被套期保值资产;再获取同阶段沪深300股指期货IF1704数据,作为套保资产,拟分别用实际值、收益率、对数差分进行套保比测算。

* * * * * * * * * * * * * * * * * * * *	2/21/2017	37.99	11.55	12.29	3./1	
· / / · / · · · · · · · · · · · · · · ·	2/22/2017	38.07	11.40	12.36	3.72	
作为被套期保	2/23/2017	38.09	11.27	12.21	3.73	
	2/24/2017	37.66	11.26	12.25	3.72	
	2/27/2017	37.61	11.20	12.11	3.69	
下取同阶段 沪深	2/28/2017	38.00	11.33	12.24	3.68	
	3/01/2017	37.88	11.36	12.15	3.67	
1日4704米分十日	3/02/2017	37.93	11.20	11.91	3.67	
IF1704数据,	3/03/2017	37.89	11.20	11.84	3.65	
	3/06/2017	37.76	11.23	12.04	3.63	
1	3/07/2017	37.35	11.16	12.16	3.64	
^r ,拟分别用实	3/08/2017	36.22	11.10	12.08	3.64	
7 421/4 /44/14 /	3/09/2017	36.52	10.98	11.84	3.64	
ラーストルトナートートートートートートートートートートートートートートートートートート	3/10/2017	36.63	10.99	11.76	3.63	
区、对数差分进	3/13/2017	36.19	11.03	11.79	3.67	
· //1 /// // // // // // // // // // // /	3/14/2017	36.40	11.00	11.85	3.66	
'	3/15/2017	36.92	11.01	11.86	3.66	
	3/16/2017	36.91	11.08	12.01	3.68	
•	3/17/2017	<				
	_					
FOLIO						

Group: UNTITLED Workfile: HEDGING RATIO::Untitled\

SUNING

SUNING

11.25

11 EE

∨ Sort Edit+/- Smpl+/- Compai

BOC

BOC

3.69

2.71

NJCB

NJCB

12.47

12.20

View Proc Object | Print Name Freeze | Default

CENBEST

CENBEST

37.80

27.00

2/20/2017

PORTFOLIC

portfolio=cenbest+suning+2*boc+njcb Modified: 2/20/2017 3/22/2017 => portfolio=0.3*cenbest+suning+3*boc+njcb

Hedge Ratio, OLS

Dependent Variable: PORTFOLIO Method: Least Squares Date: 03/27/17 Time: 10:17 Sample: 2/20/2017 3/22/2017 Included observations: 23

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C IF300	-3.272617 0.014204	24.03688 -0.13615 0.007031 2.02030		0.8930 0.0563
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.162734 0.122864 0.642584 8.671194 -21.41748 4.081622 0.056290	Mean depen S.D. depend Akaike info d Schwarz cri Hannan-Qui Durbin-Wats	lent var riterion terion nn criter.	45.28839 0.686114 2.036302 2.135041 2.061135 0.110685

DLOG(IF300) — DLOG(PORTFOLIO)

Dependent Variable: DLOG(PORTFOLIO)

Method: Least Squares Date: 03/27/17 Time: 10:18

Sample (adjusted): 2/21/2017 3/22/2017 Included observations: 22 after adjustments

_					
	Variable	Coefficient	Std. Error	t-Statistic	Prob.
	C DLOG(IF300)	-0.001915 0.731374	0.000871 0.175553	-2.199535 4.166106	0.0398 0.0005
	R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.464617 0.437848 0.004079 0.000333 90.87170 17.35644 0.000477	Mean depen S.D. depend Akaike info d Schwarz cri Hannan-Qui Durbin-Wats	lent var riterion terion nn criter.	-0.002084 0.005441 -8.079245 -7.980060 -8.055880 1.999034

Dependent Variable: D(PORTFOLIO)/PORTFOLIO(-1)

Method: Least Squares Date: 03/27/17 Time: 10:18

Sample (adjusted): 2/21/2017 3/22/2017 Included observations: 22 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C D(IF300)/IF300(-1)	-0.001908 0.728273	0.000870 0.175312	-2.194280 4.154156	0.0402 0.0005
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.463188 0.436348 0.004076 0.000332 90.89246 17.25702 0.000491	Mean depen S.D. depend Akaike info d Schwarz cri Hannan-Qui Durbin-Wats	lent var riterion terion nn criter.	-0.002068 0.005428 -8.081133 -7.981947 -8.057767 1.997592

$$\frac{Y_{t} - Y_{t-1}}{Y_{t-1}} = \frac{Y_{t}}{Y_{t-1}} - 1 = \ln \frac{Y_{t}}{Y_{t-1}}$$

ECM, Intro

我们不给出严格的定义,十分简要地陈述以下事实:

通常我们更喜欢平稳的时间序列,非平稳会导致一些方法的失效。一般金融数据中非平稳的数据经过一次差分后会成为平稳的,记作 $y \sim I(1)$,类似地经过d次差分后平稳则记为 $y \sim I(d)$,称作d 阶**单整** (Integration),平稳的数据则为 I(0)。

平稳性与单位根检验: ADF检验

 H_0 : series contains a unit root versus H_1 : series is stationary.

协整(Co-integration): 若两个 I(1) 变量的线性组合是平稳 (I(0)) 的,则称两个变量是协整的。协整说明随着时间推移两个变量会一起移动,也许短期会偏离他们的关系但从**长期**会恢复到他们原有的联系去。

*Error Correction Model

Hedge Ratio, ECM

$\Delta y_t =$	$\beta \Delta x_t + u_t$
$\Delta y_t =$	$\beta_1 \Delta x_t + \beta_2 (y_{t-1} - \gamma x_{t-1}) + u_t$

Augmented Dickey-Fuller Unit Root Test on CSI300

Null Hypothesis: CSI300 has a unit root Exogenous: Constant, Linear Trend

Lag Length: 0 (Automatic - based on SIC, maxlag=4)

		t-Statistic	Prob.*
Augmented Dickey-F Test critical values:	uller test statistic 1% level 5% level 10% level	-2.456904 -4.440739 -3.632896 -3.254671	0.3436

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Unit Root Test on D(CSI300)

Null Hypothesis: D(CSI300) has a unit root

Exogenous: None

Lag Length: 1 (Automatic - based on SIC, maxlag=4)

		t-Statistic	Prob.*
Augmented Dickey-Fu Test critical values:	uller test statistic 1% level 5% level 10% level	-5.154368 -2.685718 -1.959071 -1.607456	0.0000

^{*}MacKinnon (1996) one-sided p-values.

Engle-Granger Cointegration Test

Date: 03/27/17 Time: 16:33 Series: CSI300 IF300 Sample: 2/20/2017 3/22/2017 Included observations: 23

Null hypothesis: Series are not cointegrated

Cointegrating equation deterministics: C @TREND

Automatic lags specification based on Schwarz criterion (maxlag=4)

Dependent	tau-statistic	Prob.*	z-statistic	Prob.*
CSI300	-4.238728	0.0517	-41.77732	0.0000
IF300	-3.486000	0.1715	-16.00686	0.1570

^{*}MacKinnon (1996) p-values.

Warning: p-values may not be accurate for fewer than 25 observations.

$$S = \hat{\alpha} + \hat{\beta}F + \varepsilon$$

$$\{\varepsilon_t\} = \{S_t - (\hat{\alpha} + \hat{\beta}F_t)\}$$

$$\Delta S = c + \hat{\beta}_1 \Delta F + \hat{\beta}_2 \varepsilon_{t-1} + u_t$$

Hedge Ratio, ECM

Dependent Variable: DLOG(CSI300)

Method: Least Squares Date: 03/27/17 Time: 10:44

Sample (adjusted): 2/21/2017 3/22/2017 Included observations: 22 after adjustments

Dependent Variable: D(CSl300) Method: Least Squares Date: 03/26/17 Time: 11:57

Sample (adjusted): 2/21/2017 3/22/2017 Included observations: 22 after adjustments

Variable	Coefficient	Std. Error t-Statistic		Prob.
C DLOG(IF300)	-6.89E-05 0.894492	0.000370 0.074606	-0.186307 11.98962	0.8541 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.877863 0.874756 0.001734 6.01E-05 109.6977 143.7509 0.000000	Mean depen S.D. depend Akaike info d Schwarz cri Hannan-Qui Durbin-Wats	lent var riterion terion nn criter.	-0.000275 0.004841 -9.790700 -9.691514 -9.767335 2.135376

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C D(IF300) RSD_CSI_IF(-1)	-0.009936 0.933953 -0.695761	1.065792 0.063433 0.221860	-0.009322 14.72346 -3.136038	0.9927 0.0000 0.0054
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.919740 0.91)291 4.981996 471.5854 -64.93228 108.8649 0.000000	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat		-0.952727 16.72708 6.175662 6.324441 6.210710 1.620844

London Gold & AU1706

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C F	1.895235 0.976996			0.2560 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.976771 0.976728 3.256155 5746.580 -1413.118 22790.96 0.000000	Mean depend S.D. depend Akaike info c Schwarz crit Hannan-Quir Durbin-Wats	ent var riterion erion nn criter.	252.6386 21.34470 5.202641 5.218446 5.208820 0.674328

	Equation: DLOG_OLS Workfile: AU::Untitled\							-				
	View	Proc	Object	Print	Name	Freeze	Estimate	Forecast	Stats	Resids		
Dependent Variable: DLOG(S)												

Dependent Variable: DLOG(S)
Method: Least Squares
Date: 03/26/17 Time: 15:59
Sample (adjusted): 2/26/2015 3

Sample (adjusted): 2/26/2015 3/27/2017 Included observations: 543 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C DLOG(F)	0.000170 0.270785	0.000369 0.042938	0.460167 6.306469	0.6456 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.068481 0.066759 0.008593 0.039943 1813.493 39.77155 0.000000	Mean depend S.D. depend Akaike info c Schwarz crit Hannan-Quir Durbin-Wats	ent var riterion terion nn criter.	0.000233 0.008895 -6.672165 -6.656337 -6.665976 2.362073

London Gold(S) & AU1706(F)

ARMA, Intro

AR(p)
$$y_t = \mu + \phi_1 y_{t-1} + \phi_2 y_{t-2} + \dots + \phi_p y_{t-p} + u_t$$

*Auto-Regressive

MA(q)
$$y_t = \mu + u_t + \theta_1 u_{t-1} + \theta_2 u_{t-2} + \dots + \theta_q u_{t-q}$$

*Moving Average

 u_t (t = 1, 2, 3, ...)为白噪声过程

ARMA ARMA(p, q)模型是 AR(p)与 MA(q)的组合

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
		1	0.608	0.608	370.01	0.000
ı	III	2	0.381	0.019	515.59	0.000
–	•	3	0.221	-0.028	564.49	0.000
-		4	0.132	0.006	581.93	0.000
巾	1 10	5	0.070	-0.013	586.80	0.000
ıþ	.	6	0.055	0.029	589.85	0.000
ıþ	. h	7	0.053	0.021	592.72	0.000
ıþ	1 1	8	0.037	-0.014	594.09	0.000
ı j ı		9	0.017	-0.013	594.39	0.000
ıþι	1	10	-0.005	-0.019	594.41	0.000

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
		2 3 4 5 6 7	-0.028 0.030 -0.045 0.045 -0.026 -0.019	-0.310 -0.184 -0.178 -0.095 -0.089 -0.103	215.73 216.50 217.40 219.44 221.44 222.12 222.48 222.71	0.000 0.000 0.000 0.000
1 b 1 p	dı Ip	9 10			225.20 226.51	0.000 0.000

ARMA, Hedge Ratio

Correlogram of Residuals Squared

Date: 03/27/17 Time: 11:20 Sample: 2/25/2015 3/27/2017 Included observations: 543

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
ı j ı		1	0.049	0.049	1.3121	0.252
1 🖢		2	0.092	0.090	5.9582	0.051
1)1	1 1	3	0.030	0.021	6.4432	0.092
1 1	1 1	4	0.007	-0.003	6.4738	0.166
ı 🗀	<u> </u>	5	0.127	0.123	15.287	0.009
ı j jı		6	0.033	0.022	15.895	0.014
ıdı	di	7	-0.036	-0.063	16.631	0.020
1)1	1 1	8	0.019	0.014	16.839	0.032
1)1		9	0.018	0.026	17.027	0.048
ı j jı	1 1	10	0.034	0.016	17.686	0.061
ıţı		11	-0.027	-0.043	18.106	0.079
ı <u>þ</u> i	i b	12	0.058	0.070	20.009	0.067
1[1		13	0.007	0.007	20.039	0.094
ıþı	n	14	-0.039	-0.062	20.881	0.105
. L .	l . h.				~~	

Dependent Variable: DLOG(S) Method: Least Squares Date: 03/26/17 Time: 18:39

Sample (adjusted): 3/05/2015 3/27/2017 Included observations: 538 after adjustments Convergence achieved after 21 iterations MA Backcast: 2/26/2015 3/04/2015

=	Variable	Coefficient	Std. Error	t-Statistic	Prob.
=	С	0.000175	0.000379	0.462938	
2	DLOG(F)	0.273771	0.041892	6.535110	0.0000
1	AR(2)	-0.468204	0.027941	-16.75671	0.0000
2	AR(5)	-0.540410	0.026360	-20.50126	0.0000
6	MA(2)	0.449606	0.015744	28.55685	0.0000
	MA(5)	0.627853	0.013657	45.97421	0.0000
	R-squared	0.100113	Mean depen	ndent var	0.000239
	Adjusted R-squared	0.091655	S.D. depend	dent var	0.008928
8	S.E. of regression	0.008509	Akaike info	criterion	-6.684279
1	Sum squared resid	0.038519	Schwarz cri	iterion	-6.636459
9	Log likelihood	1804.071	Hannan-Qui	inn criter.	-6.665574
7	F-statistic	11.83702	Durbin-Wat	son stat	2.379410
4 5	Prob(F-statistic)	0.000000			
	Inverted AR Roots	.6357i 79	.63+.57i	23+.95i	2395i
	Inverted MA Roots	.6558i 82	.65+.58i	24+.97i	2497i

GARCH, Intro

ARCH(q)
$$\sigma_t^2 = \text{var}(u_t | u_{t-1}, u_{t-2}, ...)$$

$$y_t = \beta_1 + \beta_2 x_{2t} + \beta_3 x_{3t} + \beta_4 x_{4t} + u_t$$
 $u_t \sim N(0, \sigma_t^2)$ Heteroscedasticity

$$u_t \sim N(0, \sigma_t^2)$$

$$\sigma_t^2 = \alpha_0 + \alpha_1 u_{t-1}^2$$

$$\sigma_t^2 = \alpha_0 + \alpha_1 u_{t-1}^2 \qquad \sigma_t^2 = \alpha_0 + \alpha_1 u_{t-1}^2 + \alpha_2 u_{t-2}^2 + \dots + \alpha_q u_{t-q}^2$$

GARCH(p, q)

*Generalized ARCH

 $y_t = \beta_1 + \beta_2 x_{2t} + \beta_3 x_{3t} + \beta_4 x_{4t} + u_t$ $u_t = v_t \sigma_t$ $v_t \sim N(0, 1)$ $\sigma_t^2 = \alpha_0 + \alpha_1 u_{t-1}^2 + \beta \sigma_{t-1}^2$

ARCH term volatility

$$\sigma_t^2 = \alpha_0 + \sum_{i=1}^q \alpha_i u_{t-i}^2 + \sum_{j=1}^p \beta_j \sigma_{t-j}^2$$

一般来讲GARCH(1,1)已经足够好(Sufficient)。

fitted variance

long-term average value

GARCH term

GARCH vs OLS

Heteroskedasticity Test: ARCH				Heteroskedasticity Test: ARCH			
F-statistic Obs*R-squared		Prob. F(10,522) Prob. Chi-Square(10)		F-statistic Obs*R-squared		Prob. F(10,522) Prob. Chi-Square(10)	0.8539 0.8504

Test Equation:

Dependent Variable: RESID^2 Method: Least Squares Date: 03/27/17 Time: 17:42

Sample (adjusted): 3/12/2015 3/27/2017 Included observations: 533 after adjustments Test Equation:

Dependent Variable: WGT_RESID^2

Method: Least Squares Date: 03/27/17 Time: 17:48

Sample (adjusted): 3/12/2015 3/27/2017 Included observations: 533 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.	Variable	Coefficient	Std. Error	t-Statistic	Prob.
C	5.25E-05	1.07E-05	4.88834/7	0.0000	C WGT_RESID^2(-1) WGT_RESID^2(-2) WGT_RESID^2(-3) WGT_RESID^2(-4) WGT_RESID^2(-5) WGT_RESID^2(-6) WGT_RESID^2(-7)	0.950703	0.160206	5.934259	0.0000
RESID^2(-1)	0.046021	0.043769	1.0514/53	0.2935		0.015652	0.043778	0.357532	0.7208
RESID^2(-2)	0.103243	0.043778	2.3583/34	0.0187		0.027571	0.043767	0.629947	0.5290
RESID^2(-3)	0.010412	0.044008	0.236606	0.8131		-0.022375	0.043782	-0.511063	0.6095
RESID^2(-4)	-0.014901	0.043225	-0.344727	0.7304		-0.019828	0.042236	-0.469465	0.6389
RESID^2(-5)	0.127110	0.043209	2.941762	0.0034		0.065014	0.042235	1.539349	0.1243
RESID^2(-6)	0.025601	0.043205	0.592537	0.5537		0.001284	0.042239	0.030409	0.9758
RESID^2(-7)	-0.067705	0.043219	-1/566547	0.1178		-0.063057	0.042236	-1.492985	0.1360

Prob.

t-Statistic

Dependent Variable: DLOG(S) Method: Least Squares Date: 03/26/17 Time: 15:59

Variable

Prob(F-statistic)

Sample (adjusted): 2/26/2015 3/27/2017 Included observations: 543 after adjustments

Coefficient

0.000000

Dependent Variable: DLOG(S)

Method: ML - ARCH (Marguardt) - Normal distribution

Date: 03/27/17 Time: 17:45

Sample (adjusted): 2/26/2015 3/27/2017 Included observations: 543 after adjustments Convergence achieved after 15 iterations

Presample variance: backcast (parameter = 0.7) $GARCH = C(3) + C(4)*RESID(-1)^2 + C(5)*GARCH(-1)$

Variable	Coefficient	Std. Error	z-Statistic	Prob.					
C	2.11E-05	0.000376	0.056273	0.9551					
DLOG(F)	0.287810	0.028834	9.981478	0.0000					
Variance Equation									
C	7.94E-06	4.40E-06	1.805576	0.0710					
RESID(-1) ²	0.053483	0.019792	2.702208	0.0069					
GARCH(-1)	0.838454	0.075769	11.06585	0.0000					
R-squared	0.067945	Mean dependent var		0.000233					
Adjusted R-squared	0.066222	S.D. dependent var		0.008895					
S.E. of regression	0.008595	Akaike info criterion		-6.686612					
Sum squared resid	0.039966	Schwarz criterion		-6.647044					
Log likelihood	1820.415	Hannan-Quinn criter.		-6.671141					

2.384494

С 0.000170 0.000369 0.460167 0.6456 DLOG(F) 0.270785 0.042938 6.306469 0.0000 R-squared 0.068481 Mean dependent var 0.000233 Adjusted R-squared 0.066759 S.D. dependent var 0.008895 S.E. of regression 0.008593 Akaike info criterion -6.672165 Sum squared resid 0.039943 Schwarz criterion -6.656337 Log likelihood -6.665976 1813.493 Hannan-Quinn criter. F-statistic 39.77155 Durbin-Watson stat 2.362073

Std. Error

GARCH模型可显著消除ARCH效应。

Durbin-Watson stat

ECM-GARCH, the Model

⊠ s ⊠ z

Engle-Granger Cointegration Test

Date: 03/27/17 Time: 19:15

Series: F S

Sample: 2/25/2015 3/27/2017 Included observations: 544

Null hypothesis: Series are not cointegrated Cointegrating equation deterministics: C

Automatic lags specification based on Schwarz criterion (maxlag=18)

Dependent	tau-statistic	Prob.*	z-statistic	Prob.*
F	-3.954335	0.0089	-33.45841	0.0028
S	-3.976901	0.0083	-33.86799	0.0026

^{*}MacKinnon (1996) p-values.

$$S = \alpha + \beta F + \varepsilon$$

$$\{ect_t\} = \{S_t - \hat{\alpha} - \hat{\beta}F_t\}$$

$$\Delta S_{t} = c_{1} + \delta_{1}ect_{t-1} + \varepsilon_{s,t-1}$$

$$\Delta F_{t} = c_{2} + \delta_{2}ect_{t-1} + \varepsilon_{f,t-1}$$

Covariance Analysis: Ordinary Date: 03/26/17 Time: 17:14

Sample (adjusted): 2/26/2015 3/27/2017 Included observations: 543 after adjustments Balanced sample (listwise missing value deletion)

Correlation	RESID F	RESID S
RESID_F	1.000000	
RESID_S	0.305200	1.000000

series h= ρ *(GARCH01/GARCH02)^0.5

Variance Equation

$$f_{t} = \alpha_{0f} + \alpha_{1f} \left(S_{t-1} - \delta F_{t-1} \right) + \epsilon_{ft},$$

$$\begin{bmatrix} \epsilon_{st} \\ \epsilon_{ft} \end{bmatrix} \middle| \Psi_{t-1} \sim N(0, H_{t}),$$

 $s_t = \alpha_{0s} + \alpha_{1s} \left(S_{t-1} - \delta F_{t-1} \right) + \epsilon_{st}$

$$(13) \quad H_t = \begin{bmatrix} h_{ss,t} & h_{sf,t} \\ h_{sf,t} & h_{ff,t} \end{bmatrix} = \begin{bmatrix} h_{s,t} & 0 \\ 0 & h_{f,t} \end{bmatrix} \begin{bmatrix} 1 & \rho \\ \rho & 1 \end{bmatrix} \begin{bmatrix} h_{s,t} & 0 \\ 0 & h_{f,t} \end{bmatrix},$$

$$h_{s,t}^2 = c_s + a_s \epsilon_{s,t-1}^2 + b_s h_{s,t-1}^2$$

$$h_{f,t}^2 = c_f + a_f \epsilon_{f,t-1}^2 + b_f h_{f,t-1}^2,$$

ECM-GARCH, Hedge Ratio

Prob.

0.0000

0.0000

0.0000

0.0000

0.0000

0.061510

2.193985

4.077622

4.117190

4.093093

Dependent Variable: D(F) Method: ML - ARCH

> Variable С

> > B(-1)

С

RESID(-1)²

GARCH(-1)

Adjusted R-squared

S.E. of regression

Sum squared resid

Durbin-Watson stat

Log likelihood

R-squared

Date: 03/26/17 Time: 17:05

Sample (adjusted): 2/26/2015 3/27/2017 Included observations: 543 after adjustments Convergence achieved after 14 iterations

 $GARCH = C(3) + C(4)*RESID(-1)^2 + C(5)*GARCH(-1)$

Coefficient

1.740521

0.426790

0.314174

0.167326

0.763672

0.219932

0.218490

1.939550

2035.164

-1102.074

1.476420

Variance Equation

Std. Error z-Statistic

15.57776

19.92499

4.330103

4.527624

18.95516

0.111731

0.021420

0.072556

0.036957

0.040288

Mean dependent var

S.D. dependent var

Akaike info criterion

Hannan-Quinn criter.

Schwarz criterion

Presample variance: backcast (parameter = 0.7)

Dependent Variable: D(S)
Method: ML - ARCH
Date: 03/26/17 Time: 17:01
Sample (adjusted): 2/26/2015 3/27/2017
ncluded observations: 543 after adjustments
Convergence achieved after 26 iterations
Presample variance: backcast (parameter = 0.7)
$GARCH = C(3) + C(4)*RESID(-1)^2 + C(5)*GARCH(-1)^4$

L (1)/ 1 LL D(0)

Variable	Coefficient	Std. Error	z-Statistic	Prob.			
C B(-1)	0.027101 0.002738	0.142541 0.029847	0.190128 0.091718	0.8492 0.9269			
Variance Equation							
C RESID(-1) ² GARCH(-1)	0.345556 0.036261 0.896137	0.171449 0.013951 0.045135	2.015507 2.599090 19.85446	0.0439 0.0093 0.0000			
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	-0.000507 -0.002356 2.254149 2748.921 -1204.466 1.999968	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter.		0.060265 2.251498 4.454757 4.494325 4.470228			

Correlogram of Standardized Residuals Squared

Date: 03/27/17 Time: 13:56 Sample: 2/25/2015 3/27/2017 Included observations: 543

Autocorrelation	n Partial Correlation		AC	PAC	Q-Stat	Prob*
1/1	1 (1)	1	-0.009	-0.009	0.0479	0.827
: (1	10(1	2	-0.033	-0.033	0.6527	0.722
1 1	1 1	3	0.001	0.001	0.6539	0.884
ıþı	101	4	-0.043	-0.045	1.6901	0.793
: t j r	1)1	5	0.028	0.028	2.1292	0.831
ı j i		6	0.038	0.035	2.9049	0.821
: (1)	1(1)	7	-0.028	-0.026	3.3529	0.851
r j u	1)1	8	0.027	0.027	3.7658	0.878
1(1)	1(1)	9	-0.030	-0.030	4.2774	0.892
1 1	1 1	10	-0.003	0.001	4.2828	0.934
: III	1(1)	11	-0.011	-0.017	4.3445	0.959
1(1)	- 1	12	-0.017	-0.015	4.5036	0.973
1 1	1 1	13	0.015	0.012	4.6361	0.982
1 1		14	0.007	0.005	4.6636	0.990

ECM-GARCH, Hedge Ratio

GARCH, Efficiency

基于 ECM-BGARCH 模型对中国黄金期货套期保值比率的研究

表 6.1 OLS、ECM、ECM-BGARCH 三种模型得出的套期保值绩效

方法	套期保值率 h	套期保值后资产组 合方差 Var(Ht)	套期保值绩效 Н。
OLS	0.693559	0.278710	0.906354
ECM	0.721125	0.230759	0.922466
ECM-BGARCH	0.742425	0.196806	0.933874

Conclusion, Room for Improvement

对不同的期货品种应对多种套期保值模型进行 尝试,或许不存在绝对最优; 不要盲目相信论文上的数据、结论,有可能是 巧合,不一定具备普适性;

缺乏对套期保值效果的检验及定量描述 应采用部分样本内预测,用样本外数据进行检测 对理论没有细致研究,缺乏扎实理论根基及深入理解 部分数据过少,不具有说服力 没有对比,未在一个具体案例上做出对比

Bibliography & Further Links

- [1]王超. 基于ECM-BGARCH模型对中国黄金期货套期保值比率的研究[D].西南财经大学,2011.
- [2]彭红枫,叶永刚. 基于修正的ECM-GARCH模型的动态最优套期保值比率估计及比较研究[J]. 中国管理科学,2007,(05):29-35.
- [3] Johnson, Leland L. "The Theory of Hedging and Speculation in Commodity Futures." *Review of Economic Studies* 27.3(1960):139.
- [4] Ederington, Louis H. "The Hedging Performance of the New Futures Markets." *The Journal of Finance*, vol. 34, no. 1, 1979, pp. 157–170., www.jstor.org/stable/2327150.
- [5] Engle, Robert F., and C. W. J. Granger. "Co-Integration and Error Correction: Representation, Estimation, and Testing." *Econometrica*, vol. 55, no. 2, 1987, pp. 251–276.
- [6] Engle, Robert F. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation." *Econometrica* 50.4(1982):987-1007.
- [7] Bollerslevb, Tim. "Generalized autoregressive conditional heteroskedasticity." *Journal of Econometrics* 31.3(1986):307-327.
- [8] Kroner, Kenneth F., and J. Sultan. "Time Varying Distributions and Dynamic Hedging with Foreign Currency Futures." *Journal of Financial and Quantitative Analysis* 28.4(1993):535-551.

The END

Thank you~

