Assignment 8: Recursive function

You should read the following topics before starting this exercise

- 1. Recursive definition
- 2. Declaring and defining a function
- 3. How to call a function
- 4. How to pass parameters to a function

Recursion is a process by which a function calls itself either directly or indirectly. The points to be remembered while writing recursive functions

- Each time the function is called recursively it must be closer to the solution.
- There must be some terminating condition, which will stop recursion.
- iii. Usually the function contains an if -else branching statement where one branch makes recursive call while other branch has non-recursive terminating condition

Expressions having recursive definitions can be easily converted into recursive functions

Sr. No	Recursive definition	Recursive Function	Sample program	
1.	The recursive definition for factorial is given below: n!= 1 if n = 0 or 1 = n * (n-1)! if n > 1 The recursive definition for nCr (no of combinations of r objects out of n objects) is as follows nCn = 1 nC0 = 1 nCr = n-1Cr + nCr-1	long int factorial (int n) { If(n==0) (n==1)) /* terminating condition */ return(1); else return(n* factorial(n- 1)); /* recursive call */ }	#include <stdio.h> main() (int num; /* function declaration */ long int factorial(int n); printf("\n enter the number:"); scanf("%d",#); printf("\n The factorial of %d is %ld",num,factorial(num)); } /* function code*/</stdio.h>	
2.		long int nCr(int n, int r) { if(n=r r==0) /* terminating condition */ return(1); else return (nCr(n-1,r) + nCr(n, r-1)); /* recursive call */ }	#include <stdio.h> /* function code*/ main() { int n, r; printf("\n enter the total number of objects:"); scanf("%d",&n); printf("\n enter the number of objects to be selected"); scanf("%d",&r); printf("\n The value %dC%d is %ld",n, r, nCr(n,r)); }</stdio.h>	

Set A. Write C programs for the following problems

- 1. Write a recursive C function to calculate the sum of digits of a number. Use this function in main to accept a number and print sum of its digits.
- 2. Write a recursive C function to calculate the GCD of two numbers. Use this

	function in main. The GCD	is calculated a	as:				
	gcd(a,b)=a	if $b = 0$					
	= gcd (b, a mod b)	otherwise					
3.	Write a recursive function to	find factorial (of a give	n numb	er		
4.	Write a recursive function to find factorial of a given number. Write a recursiveCfunctiontocalculatex ^y .(Donotusestandardlibraryfunction)						
	0.				1 1		
	Signature of Instructor	or L		Date			
Set B.	Write C programs for the fo	llowing prob	lems				
1.	Write a recursive function main to display the first n Fibonacci number is as followed fib(n)=1 if n = fib(n-2)+fib(n-1) if n>	Fibonacci nu ows: = 1 or2	Fibonac imbers.	ci numi The re	ber. Use the cursive de	is function in finition of nth	
2.	Write a recursive function t single digit number. Examp	o calculate th	e sum o	of digits Note: D	of a numb o not use a	er till you get loop)	
3.	Write a recursive C function this function in main to accessparated by tab.	n to print the ept a number	digits o	f a num	ber in reve igits in rev	erse order. Use erse order	
	Example: 3456	Output: 6	5	4	3		
	(Hint: Recursive print(n) = p		ingle di	git numl	per		
	= print n % 10 + ta	b + Recursive	print (n/10)			
	Signature of Instructo	or		Dat	te /	1	
ssign	ment Evaluation						
	0:Not Done	2:LateComp	olete		4:Compl	ete	
	1:Incomplete 3:N	leed Improve	ment		5: Well I	Done	