Série 2

1. On considère l'équation : $(m-1)x^2 - 2(m+1)x + 2m - 1 = 0$.

Pour quelles valeurs de m cette équation admet-elle deux racines x_1 et x_2 vérifiant la relation : $-6 < x_1 < 4 < x_2$?

- **2.** On considère le trinôme $P(x)=(m-1)\,x^2-4m\,x-2\,(m+2)\,,\quad m\in\mathbb{R}$. Déterminer m pour que la courbe d'équation y=P(x) soit une parabole vérifiant simultanément les conditions suivantes :
 - i) le sommet de la parabole est situé dans le demi-plan défini par x > -5,
 - ii) la parabole coupe l'axe Ox en deux points distincts, déterminant un segment ne contenant pas le point M(2; 0).
- **3.** On donne le trinôme $P(x) = (m-2)x^2 4mx + 5m 1$, $m \in \mathbb{R}$.
 - a) Déterminer m pour que la courbe d'équation y = P(x) soit entièrement contenue dans le demi-plan défini par : y < -6x + 5.
 - b) Déterminer l'équation de la parabole définie par y = P(x) vérifiant les deux conditions suivantes :
 - i) la parabole est tangente à la droite d'équation y = -6x + 5,
 - ii) P(x) admet un minimum.

Calculer alors la valeur de x pour laquelle P(x) est minimum.

4. On considère l'équation : $x^2 + (m-2)x - (m+3) = 0$.

Déterminer m pour que la somme des carrés des racines soit égale à 9.

Indication : utiliser les formules de Viète pour exprimer la somme des carrés des racines.

5. Résoudre dans $\mathbb R$ l'équation suivante par rapport à la variable x en fonction du paramètre réel m .

$$|x^2 - x(m+3) + m| = -x^2 - x.$$

- **6.** Un domaine \mathcal{D} , formé d'une surface rectangulaire de hauteur a surmonté d'un demi-disque de rayon r (a et r variables), a pour périmètre une valeur donnée L.
 - a) Représenter graphiquement la variation de l'aire A du domaine \mathcal{D} en fonction du rayon r.
 - b) Calculer l'aire maximale de \mathcal{D} . Quelle est alors la relation entre a et r?

7. On considère un domaine D du plan formé d'un rectangle et d'un triangle rectangle dont les dimensions sont données par les variables a et b vérifiant les deux conditions suivantes :

a+b=k où k est une constante strictement positive, et $4a \geq b$.

- a) Déterminer k pour que l'aire maximale de D soit égale à 48 unités d'aire.
- b) On pose k = 15.
 - i) Représenter graphiquement la variation de l'aire A du domaine en fonction de la variable choisie (a ou b). Axe des abscisses : 1 unité = 1 carré, axe des ordonnées : 30 unités = 1 carré.
 - ii) Déterminer l'ensemble des valeurs prises par la variable (a ou b) pour que l'aire A du domaine vérifie la relation $|A-261| \leq 36$.

Réponses de la série 2

1. $m \in]1, \frac{5}{2}[.$

2.
$$m \in]-\frac{4}{3}, -1[\cup]\frac{2}{3}, \frac{5}{7}[.$$

3. a) $m \in]-\infty, 1[$.

b)
$$y = x^2 - 12x + 14$$
; $x_{\min} = 6$.

4. m = 1.

5. \circ si $m \in]-\infty, -2[\cup]0, +\infty[$ alors $\mathcal{S} = \emptyset,$ \circ si $m \in [-2, 0]$ alors $\mathcal{S} = \{\frac{m}{2}, \frac{m}{m+4}\}.$

- **6.** Aire maximale : $A_m = \frac{L^2}{2(\pi + 4)}$. L'aire du domaine est maximale lorsque a = r.
- 7. a) k = 6. b) $a \in [3, 4] \cup [6, 10], b \in [5, 9] \cup [11, 12]$.