Machine Learning

LINEAR ALGEBRA FOR ML

Dr. Panagiotis (Panos) Markopoulos panos@utsa.edu

A Note on Propositional Logic

Equivalent statements:

 $A \Rightarrow B$

If A, then B

A is **sufficient** for B

 $B \leftarrow A$

Only if B, then A

B is **necessary** for A

Example: y = |x|

 $x > 2 \Rightarrow y > 2$; IF x > 2 THEN y > 2; x > 2 is SUFFICIENT for y > 2 (but not NECESSARY since y > 2 also when x < -2 which excludes x > 2); x > 2 ONLY IF y > 2; y > 2 is NECESSARY for x > 2 Equivalent statements:

 $A \Leftrightarrow B$

Iff A, then B

Iff B, then A

A is **necessary & sufficient** for B

B is **necessary & sufficient** for A

A and B are equivalent

Example: $y = |x|, S := (-\infty, -2) \cup (2, +\infty)$

 $x \in S \Leftrightarrow y > 2$; IFF $x \in S$ THEN y > 2; IFF y > 2THEN $x \in S$; $x \in S$ is NECESSARY & SUFFICIENT for y > 2; y > 2 is NECESSARY & SUFFICIENT for $x \in S$; y > 2 and $x \in S$ are EQUIVALENT

Matrix

- □ **Consider matrix** $X \in \mathbb{C}^{M \times N}$. If M > N, it is a <u>tall</u> matrix. If M < N, it is a <u>wide</u> matrix. If M = N, it is a <u>square</u> matrix.
- **□ Vector** $\mathbf{x} \in \mathbb{C}^{M}$ is a matrix with a single column.
- **□** Scalar $x \in \mathbb{C}$ is a vector of length 1, or a 1 × 1 matrix.
- ☐ An array with more than 2 ways (sides) is called **tensor**.

Matrix (cont'd)

- **□ Matrix set:** $\mathcal{X} \subset \mathbb{C}^{M \times N}$ is a set of matrices (not ordered, in general).
- \square Cardinality: $|\mathcal{X}|$ is the number of distinct elements in \mathcal{X} .
- **□ Intersection, union, set-difference:** Consider matrix sets \mathcal{X} and \mathcal{Y} . Then, $\mathcal{X} \cap \mathcal{Y}$, $\mathcal{X} \cup \mathcal{Y}$, and $\mathcal{X} \setminus \mathcal{Y}$ are their intersection, union, and set-difference, respectively.

Matrix (cont'd)

☐ Indexing matrix entries

- Consider ordered sets $A \subseteq [N] := \{1, ..., N\}$ and $B \subseteq [M]$. $[\mathbf{X}]_{B,A} \in \mathbb{C}^{|B| \times |A|}$ is the sub-matrix obtained by extracting from \mathbf{X} the rows with index in B and columns with index in A (in the specified order).
- Special case: Consider $i \in [M]$ and $j \in [N]$. $[\mathbf{X}]_{i,j} \in \mathbb{C}$ is an entry of \mathbf{X} , $[\mathbf{X}]_{i,[N]} \in \mathbb{C}^{1 \times N}$ is the i-th row of \mathbf{X} and $[\mathbf{X}]_{[M],j} \in \mathbb{C}^{M \times 1}$ (or $[\mathbf{X}]_{:,j}$ is the j-th column of \mathbf{X}).

Basic Operations

Summation: If **X**, **Y** ∈ $\mathbb{R}^{M \times N}$, then **Z** = **X** + **Y** is defined, such that $\forall (i, j) \in [M] \times [N]$

$$[\mathbf{Z}]_{i,j} = [\mathbf{X}]_{i,j} + [\mathbf{Y}]_{i,j}.$$

■ Multiplication: If $X \in \mathbb{R}^{M \times N}$ and $Y \in \mathbb{R}^{N \times L}$, then Z = XY is defined, such that $\forall (i, j) \in [M] \times [L]$

$$[\mathbf{Z}]_{i,j} = \sum_{n=1}^{N} [\mathbf{X}]_{i,n} [\mathbf{Y}]_{n,j}.$$

□ Hadamard product: If **X**, **Y** ∈ $\mathbb{R}^{M \times N}$, then **Z** = **X** ⊙ **Y** is defined, such that $\forall (i, j) \in [M] \times [N]$

$$[\mathbf{Z}]_{i,j} = [\mathbf{X}]_{i,j} [\mathbf{Y}]_{i,j}.$$

□ **Kronecker product**: For any $X \in \mathbb{R}^{M \times N}$ and $Y \in \mathbb{R}^{K \times L}$, $Z = X \otimes Y$ is **block-matrix** of $M \times N$ blocks, such that the (i, j)-th block is equal to $[X]_{i,j}Y$.

Transpose, Conjugate, Hermitian

- \square **Transpose of matrix:** For any (i,j), it holds $[\mathbf{X}]_{i,j} = [\mathbf{X}^{\top}]_{j,i}$. This implies that $(\mathbf{X}\mathbf{Y})^{\top} = \mathbf{Y}^{\top}\mathbf{X}^{\top}$.
 - X is called "Symmetric" iff $X^T = X$.
- \square Conjugate of matrix: For any (i, j), it holds $[X]_{i,j} = [X^*]_{i,j}$
- □ Hermitian of matrix: $\mathbf{X}^H = (\mathbf{X}^*)^\top \in \mathbb{C}^{N \times M}$.
 - X is a "Hermitian" matrix iff $X^H = X$.

Ortho-gonality/normality

- **□ Orthogonality:** $\mathbf{X} \in \mathbb{C}^{M \times N}$ is orthogonal iff $[\mathbf{X}^H \mathbf{X}]_{i,j} = 0$ for $i \neq j \text{i.e.}$, the columns of \mathbf{X} are orthogonal vectors.
- \square **Orthonormality:** $\mathbf{X} \in \mathbb{C}^{M \times N}$ is orthonormal matrix iff $\mathbf{X}^H \mathbf{X} = \mathbf{I}_M$.
 - If **X** is square and $\mathbf{X}^H \mathbf{X} = \mathbf{I}_M$, then $\mathbf{X} \mathbf{X}^H = \mathbf{I}_M$. $\mathbf{X}^H \mathbf{X} = \mathbf{I}_N$ only if $N \leq M$.
- □ Stiefel Manifold: $S_{M,N} = \{X \in \mathbb{C}^{M \times N} : X^H X = I_N\}$, for any $N \leq M$.
 - Special case is the *M*-sphere $\mathbb{S}_M = \{x \in \mathbb{R}^{M+1} : x^\top x = 1\}$. Notice that the unit circle is a 1-sphere.

Trace and Entry-wise Norms

- **□ Trace:** For square $\mathbf{X} \in \mathbb{C}^{M \times M}$, we define Trace $(\mathbf{X}) := \sum_{i=1}^{M} [\mathbf{X}]_{i,i}$
- **□** Entry-wise matrix norm: For any $X \in \mathbb{C}^{M \in N}$ and $p, q \ge 1$, we define

$$\parallel \mathbf{X} \parallel_{p,q} := \left(\sum_{j=1}^{N} \left(\sum_{i=1}^{M} \left| [\mathbf{X}]_{i,j} \right|^{p} \right)^{\frac{q}{p}} \right)^{\frac{1}{q}}.$$

- **□ Norm properties**: Operator $\|\cdot\|$ is a norm iff, for any $X, Y \in \mathbb{C}^{M \times N}$ and $\alpha \in \mathbb{C}$:
- $\|\alpha X\| = |\alpha| \|X\|$ (absolute homogeneity).
- $\| \mathbf{X} + \mathbf{Y} \| \le \| \mathbf{X} \| + \| \mathbf{Y} \|$ (triangle inequality).
- $\| \mathbf{X} \| \ge 0$. $\| \mathbf{X} \| = 0$ iff $\mathbf{X} = \mathbf{0}_{M,N}$ (non-negativity).

The special case of p = q = 2 is also known as **Euclidean** or **Frobenius** norm, denoted as $\|\mathbf{X}\|_F$.

Scalar and Vector Norms

- For a scalar x, all "entry-wise" norms boil down to the absolute value |x|.
- For a vector $\mathbf{x} \in \mathbb{R}^{M \times 1}$, the (p, q) entry-wise norm is invariant to q, which can be omitted.

$$\| \mathbf{x} \|_{p} \coloneqq \| \mathbf{x} \|_{p,q} \ (\forall q) = \left(\sum_{j=1}^{1} \left(\sum_{i=1}^{M} \left| [\mathbf{x}]_{i,j} \right|^{p} \right)^{\frac{q}{p}} \right)^{\frac{1}{q}} = \left(\sum_{i=1}^{M} \left| [\mathbf{x}]_{i} \right|^{p} \right)^{\frac{1}{p}}$$

Other norm-like notation, but not typical norms:

- $\|\mathbf{x}\|_{\infty} = \max_{i=1,2,...,M} |[\mathbf{x}]_i|$ (infinity norm or maximum norm)
- $\|\mathbf{x}\|_0 = \text{#non-zero entries in } \mathbf{x} \text{ (just common notation; not really a norm)}$

Norm Inequality and Unit-Norm Spheres

• For any $\mathbf{x} \in \mathbb{R}^{M \times 1}$ and $p > r \ge 1$,

$$\parallel \mathbf{x} \parallel_p \leq \parallel \mathbf{x} \parallel_r \leq M^{\left(\frac{1}{r} - \frac{1}{p}\right)} \parallel \mathbf{x} \parallel_p.$$

Fig: Unit norm spheres defined upon different norms.

Norm Inequality and Unit-Norm Spheres (cont'd)

• p-norm of all vectors on the 2-norm sphere (M = 2 dimensions).

(p>2)-norms are maximized where (p<2) norms are minimized, and vice versa.

Vector Inner Product

 \square For vectors $\mathbf{x}, \mathbf{y} \in \mathbb{R}^M$, **inner product** is defined as:

$$\mathbf{x}^{\mathsf{T}}\mathbf{y} := \sum_{i=1}^{M} [\mathbf{x}]_{i} [\mathbf{y}]_{i}.$$

- Algebraicaly, $\| \mathbf{x} + \mathbf{y} \|_2^2 = \| \mathbf{x} \|_2^2 + \| \mathbf{y} \|_2^2 + 2 \mathbf{x}^{\mathsf{T}} \mathbf{y}$.
- Geometrically, $\| \mathbf{x} + \mathbf{y} \|_2^2 = \| \mathbf{x} \|_2^2 + \| \mathbf{y} \|_2^2 + 2\cos(\theta) \| \mathbf{x} \|_2 \| \mathbf{y} \|_2$.
- Thus, another expression of inner product is

$$\mathbf{x}^{\mathsf{T}}\mathbf{y} = \cos(\theta) \| \mathbf{x} \|_2 \| \mathbf{y} \|_2$$
.

Cauchy-Schwarz Inequality

- $\mathbf{x}^{\mathsf{T}}\mathbf{y} = \cos(\theta) \| \mathbf{x} \|_2 \| \mathbf{y} \|_2$
- $|\cos(\theta)| \le 1$, with equality iff $\theta = 0$.

Cauchy-Schwartz Inequality (CSI):

For any $\mathbf{x}, \mathbf{y} \in \mathbb{R}^M$, it holds

$$|\mathbf{x}^{\mathsf{T}}\mathbf{y}| \leq \|\mathbf{x}\|_2 \|\mathbf{y}\|_2$$

with equality iff $\mathbf{x} = \mathbf{y}c$, for any $c \in \mathbb{R}$.

Hölder's Inequality

CSI also derives from the more general Hölder's Inequality.

Hölder's Inequality (HI):

For any $\mathbf{x}, \mathbf{y} \in \mathbb{R}^M$ and q, p such that $\frac{1}{p} + \frac{1}{q} = 1$, it holds that

$$\sum_{i=1}^{M} |[\mathbf{x}]_i| |[\mathbf{y}]_i| \leq ||\mathbf{x}||_p ||\mathbf{y}||_q$$

with equality iff $\forall i$, $\frac{|[\mathbf{x}]_i|^p}{\|\mathbf{x}\|_p^p} = \frac{|[\mathbf{y}]_i|^q}{\|\mathbf{y}\|_q^q}$.

Young's Inequality (YI):

If $a, b \ge 0$ and $1 \le p, q \le \infty$ such that $\frac{1}{p} + \frac{1}{q} = 1$, then $ab \le \frac{a^p}{p} + \frac{b^q}{q}$, w/ eq. iff $a^p = b^q$.

- HI derives from YI.
- CSI derives from HI for p = q = 2.

HI implies $\left|\sum_{i=1}^{M} [\mathbf{x}]_i [\mathbf{y}]_i\right| \le \|\mathbf{x}\|_p \|\mathbf{y}\|_q$, with eq. iff $\forall i$, $\frac{|[\mathbf{x}]_i|^p}{\|\mathbf{x}\|_p^p} = \frac{|[\mathbf{y}]_i|^q}{\|\mathbf{y}\|_q^q}$ and $\mathrm{sgn}([\mathbf{x}]_i [\mathbf{y}]_i)$ fixed across i.

Linear Subspaces

- □ Set of linearly independent vectors: A set of vectors $\{\mathbf{x}_i\}_{i=1}^N \subset \mathbb{C}^M$ are linearly independent set (LI) iff: for any $i \in [N]$, $\nexists \mathbf{y} \in \mathbb{C}^{N-1}$ such that $\mathbf{x}_i = [\mathbf{X}]_{:,[N]\setminus i} \mathbf{y}$.
- □ **Linear subspace:** $S \subset \mathbb{C}^M$ is a linear subspace iff for any $\mathbf{x}, \mathbf{y} \in S$ and $a, b \in \mathbb{C}, \mathbf{x}a + \mathbf{y}b \in S$.
- **Dimensionality:** $\dim(\mathcal{S})$ is the cardinality of the largest linearly independent subset in \mathcal{S} . It's a way to measure the "size" of \mathcal{S} . $\dim(\emptyset) = \dim(\{\mathbf{0}_M\}) = 0$.

Dr. Panos Markopoulos (panos@utsa.edu)

Linear Subspaces (cont'd)

- □ Span or Range or Column Space: span(X) = $\{x \in \mathbb{C}^M : x = Xy, y \in \mathbb{C}^N\}$.
 - span(X) is a linear subspace.
- \square **Basis:** X is a basis for linear subspace S iff S = span(X).
 - A subspace can be spanned by infinitely many distinct bases.
 - Each matrix spans a unique subspace.
 - If $X^HX = I_N$, then X is an orthonormal basis for span(X).

Linear Subspaces (cont'd)

- □ Orthogonal subspace: $S^{\perp} = \{x \in \mathbb{C}^M : x^H y = 0 \ \forall y \in S\}.$
 - It holds $\dim(\mathcal{S}) = M \dim(\mathcal{S}^{\perp})$.
 - Consider $\mathbf{X} \in \mathbb{C}^{M \times N}$ and $\mathbf{Y} \in \mathbb{C}^{M \times L}$. Then, $\mathbf{X}^H \mathbf{Y} = \mathbf{0}_{N,L} \Leftrightarrow \operatorname{span}(\mathbf{X}) = \operatorname{span}(\mathbf{Y})^{\perp}$.
- □ Null-space or Kernel: $\mathcal{N}(\mathbf{X}) = \{ \mathbf{y} \in \mathbb{C}^N : \mathbf{X}\mathbf{y} = \mathbf{0} \}$

Fundamental Theorem of Linear Algebra:

- $\dim(\operatorname{span}(\mathbf{X})) = M \dim(\operatorname{span}(\mathbf{X})^{\perp})$
- $\mathcal{N}(\mathbf{X}^H) = \operatorname{span}(\mathbf{X})^{\perp}$

Matrix Rank

■ Matrix rank: For $\mathbf{X} = [\mathbf{x}_1, ... \mathbf{x}_N] \in \mathbb{C}^{M \times N}$, rank(\mathbf{X}) is the size of the largest linearly independent subset among the columns of \mathbf{X} , $\{\mathbf{x}_i\}_{i=1}^N$.

Remarks:

- $\dim(\operatorname{span}(\mathbf{X})) = \operatorname{rank}(\mathbf{X}).$
- $\operatorname{rank}(\mathbf{X}) \leq \min\{M, N\}.$
- If rank(X) = M, X is full row rank.
- If rank(X) = N, X is full column-rank.
- If $rank(\mathbf{X}) = M = N$, \mathbf{X} is square full-rank.
- If $X \in S_{M,N}$, then rank(X) = N.

Inverse and Pseudo-Inverse

□ **Inverse:** If **X** is square and full rank, then \mathbf{X}^{-1} exists, such that $\mathbf{X}^{-1}\mathbf{X} = \mathbf{X}\mathbf{X}^{-1} = \mathbf{I}_{M}$.

☐ Moore-Penrose Pseudoinverses:

- Iff $\mathbf{X} \in \mathbb{C}^{M \times N}$ is full row rank (thus, wide), then the right-hand pseudoinverse $\mathbf{X}^{\dagger R} = \mathbf{X}^H (\mathbf{X}\mathbf{X}^H)^{-1}$ exists, such that $\mathbf{X}\mathbf{X}^{\dagger R} = \mathbf{I}_M$.
- Iff $\mathbf{X} \in \mathbb{C}^{M \times N}$ is full column rank (thus, tall), then left-hand MP pseudoinverse $\mathbf{X}^{\dagger L} = (\mathbf{X}^H \mathbf{X})^{-1} \mathbf{X}^H$ exists, such that $\mathbf{X}^{\dagger L} \mathbf{X} = \mathbf{I}_N$.
- If **X** is square full rank, then $\mathbf{X}^{\dagger R} = \mathbf{X}^{\dagger L} = \mathbf{X}^{-1}$.

Low-Rank Subspaces

It is often the case that high dimensional data largely reside on lower-dimensional subspaces. Thus, they can be compressed, denoised, visualized, and ML-processed within those subspaces with significant computational/storage gains and limited information loss.

Projection Matrix

Projection matrix: P is a projection matrix iff P = PP and $P = P^H$.

Remarks:

- The mapping from projection **P** to span(**P**) is 1-to-1.
- If **P** is projection, then $I_M P$ is also projection with span $(I_M P) = \text{span}(P)^{\perp}$.
- $\operatorname{rank}(\mathbf{P}) = M \operatorname{rank}(\mathbf{I}_M \mathbf{P}).$
- For any $\mathbf{x} \in \mathbb{C}^M$,

$$\mathbf{P}\mathbf{x} = \underset{\mathbf{y} \in \text{span}(\mathbf{P})}{\operatorname{argmin}} \| \mathbf{y} - \mathbf{x} \|_{2}^{2}.$$

• If $\mathbf{U} \in \mathbb{S}_{M,K}$, then $\mathbf{U}\mathbf{U}^H$ is a projection matrix on span $(\mathbf{U}) = \text{span}(\mathbf{U}\mathbf{U}^H)$.