10.12

Determine all the points in $E_{11}(1,6)$, in other words find solutions (x,y) to the equation $y^2 = x^3 + x + 6 \pmod{11}$.

x	$x^3 + x + 6 \pmod{11}$	y (quadratic residue of x)
0	6	{}
1	8	{}
2	5	{4,7}
3	3	{5,6}
4	8	{}
5	4	{2,9}
6	8	8
7	4	{2,9}
8	9	{3,8}
9	7	{}
10	4	{2,9}

Therefore, the points in $E_7(2,1)$ are

 $\{(2,4),(2,7),(3,5),(3,6),(5,2),(5,9),(7,2),(7,9),(8,3),(8,8),(10,2),(10,9)\}.$

10.13

What are the negatives of the following points over \mathbb{Z}_{17} ? P=(5,8), Q=(3,0), and R=(0,6)

$$-P = (5,9)$$

$$-Q = (3,0)$$

$$-R = (0,11)$$

10.14

 $E_{11}(1,6)$, point G=(2,7), compute multiples of G from 2G through 13G.

$N \times G$	Р	Q	λ	R_{x}	$R_{\mathcal{Y}}$	R
$2 \times G$ $= G + G$	(2,7)	(2,7)	$\frac{3*2^2+1}{2*7}=8$	$8^2 - 2 - 2 = 5$	8(2-5) - 7 = 2	(5,2)
$3 \times G$ $= G + 2G$	(2,7)	(5,2)	$\frac{7-2}{2-5} = 2$	$2^2 - 2 - 5 = 8$	2(2-8) - 7 = 3	(8,3)
$4 \times G$ $= G + 3G$	(2,7)	(8,3)	$\frac{7-3}{2-8} = 3$	$3^2 - 2 - 8 = 10$	10(2-10)-7=2	(10,2)
$5 \times G$ $= G + 4G$	(2,7)	(10,2)	$\frac{7-2}{2-10} = 9$	$9^2 - 2 - 10 = 3$	9(2-3) - 7 = 6	(3,6)
$6 \times G$ $= G + 5G$	(2,7)	(3,6)	$\frac{7-6}{2-3} = 10$	$10^2 - 2 - 3 = 7$	10(2-7) - 7 = 9	(7,9)
$7 \times G$ $= G + 6G$	(2,7)	(7,9)	$\frac{7-9}{2-7} = 7$	$7^2 - 2 - 7 = 7$	7(2-7) - 7 = 2	(7,2)

$8 \times G$ $= G + 7G$	(2,7)	(7,2)	$\frac{7-2}{2-7} = 10$	$10^2 - 2 - 7 = 3$	10(2-3) - 7 = 5	(3,5)
$9 \times G$	(2,7)	(3,5)	$\frac{7-5}{2-3} = 9$	$9^2 - 2 - 3 = 10$	9(2-10)-7=9	(10,9)
$= G + 8G$ $10 \times G$	(2,7)	(10,9)	7 – 9	$3^2 - 2 - 10 = 8$	3(2-8) - 7 = 8	(8,8)
$= G + 9G$ $11 \times G$	(2,7)	(8,8)	2-10 7 - 8	$2^2 - 2 - 8 = 5$	2(2-5)-7=9	(5,9)
$= G + 10G$ $12 \times G$	(2,7)	(5,9)	$\frac{2-8}{2-8} = 2$ $7-9$	$8^2 - 2 - 5 = 2$	8(2-2)-7=4	(2,4)
=G+11G			${2-5}=8$. ,	
$13 \times G$ $= G + 12G$	(2,7)	(2,4)	$\frac{3*2^2+1}{2*7}=8$	$8^2 - 2 - 2 = 5$	8(2-5) - 7 = 2	(5,2)

10.15

a.
$$P_B = n_B \times G = 7 \times (2,7) = (7,2)$$

b.
$$C_m = \{kG, P_m + kP_B\} = \{3 \times (2,7), (10,9) + 3 \times (7,2)\} = \{(8,3), (10,2)\}$$

c. $P_m = C_2 - n_B \times C_1 = (10,2) - 7 \times (8,3) = (10,9)$

c.
$$P_m = C_2 - n_B \times C_1 = (10,2) - 7 \times (8,3) = (10,9)$$