Análise Complexa

LFis /MIEFis 19/01/2016

Departamento de Matemática e Aplicações

Exame de Recurso

Duração: 2h30m

Todas as respostas deverão ser convenientemente justificadas.

- 1. Seja $z \in \mathbb{C}$. Resolva a equação sen z = i.
- 2. Justifique se a função complexa $f(z) = \operatorname{sen} z$ é ou não uma função limitada.
- 3. Seja $f(z) = \overline{z}z^2$. Determine, caso existam, os pontos onde f(z) é diferenciável. Existem pontos onde f é analítica?
- 4. Determine $\int_{\gamma} e^{\cos z} dz$, onde $\gamma = \{z \in \mathbb{C} : |z| = 1\}$.
- 5. Determine $\int_{\gamma} 3z^2 + 3 dz$, onde γ é o segmento de reta de extremos -i e i.
- 6. Use o teste de Weierstrass para mostrar que a série $\sum_{n=0}^{\infty} \frac{z^n}{2^n}$ converge uniformemente no disco $D = \{z \in \mathbb{C} : |z| < 1\}.$
- 7. Determine a série de Laurent da função $f(z)=\frac{1}{(z+1)(z-2)}$ no anel $\Omega=\{z\in\mathbb{C}:\ 1<|z|<2\}.$
- 8. Justifique que $z_0 = 0$ é singularidade essencial da função $f(z) = e^{-\frac{1}{z}}$ e determine $\int_{\gamma} f(z) dz$, onde $\gamma = \{z \in \mathbb{C} : |z| = 1\}$.
- 9. Calcule $\int_0^{2\pi} \frac{1}{5 4\cos x} \, dx$.
- 10. Considere a equação $z^5 + z^2 2 = 0$. Determine quantas raízes a equação tem no conjunto $\Omega = \{z \in \mathbb{C} : |z| < 2\}$. Quantas tem em \mathbb{C} ?

Cotações: Todas as questões estão cotadas para dois valores.