Stochastic Programs, Probability and Distribution

Chapter 17

You don't have to be so stochastic

- What do we mean when we say "stochastic"
 - Describes a value or event that occur at random or is randomly distributed

- Newtonian physics:
 - If A then B
- Quantum physics:
 - If A then maybe B (or maybe C or maybe both?)
- No such thing as homo economicus

Nondeterminism

- Causal nondeterminism
 - Not every event is caused by a previous event
 - Bohr/Heisenberg
- Predictive nondeterminism
 - It is impossible to make precise predictions about future states
 - Einstein/Schodinger

Stochastic problems

- Games of chance
 - Gambling
 - Is that car really going to turn?
 - Dating
 - Games
- Predictions
 - Weather
 - Stocks
 - Actuary

Randomness

 What is the output of roll n(10)? def roll die(): """Returns a random integer between 1 and 6""" return random.choice([1,2,3,4,5,6]) def roll n(n): result = '' for i in range(n): result = result + str(rollDie()) return result

• How likely are we to see s-s-s-snake eyes (1111111111)

Calculating simple probabilities

- What is probability
 - The fraction of all possible results that have a given outcome
 - Always represented as a number between 0 and 1
 - 0 = absolute impossibility
 - 1 = absolute certainty
 - Multiply by 100 to get a percentage
- The probability of an event not happening
 - 1 probability it will happen

Independent probability

- No event is dependent on the result of another event
- The roll of 1 die does not depend on the previous roll
- Probability of two independent events occurring
 - Probability of event 1 × Probability of event 2
 - Multiplicative law
- Selection with replacement

Craps – what is the probability of 7

- Probability of the two rolls totaling 7
- Each die is independent
 - 1 6
 - 2 5
 - 3 4
 - 4 3
 - 5 2
 - 1 6
- 6(1/6 * 1/6) = 1/6 = 0.166667

Dependent probability

- The probability of an event depends on prior events
- Dealing cards
 - Probability the first card is an ace
 - 4/52 = 1/13 = 0.0769
 - Probability the second card is also an ace
 - 3/51 = 0.0577
 - Probability the first two cards dealt are both aces?
 - Multiplicative law still applies
 - 4/52 * 3/52 = 0.0044

Inferential statistics

- Guiding principle:
 - A random sample tends to have the same properties as the population from which it was drawn
- So, we can infer about the whole based on the sample
 - If our sample is good (Chapter 19)
- Chance of two aces in a row? 0.0044 (0.44%)
 - Happens once wow, that is rare
 - Happens twice something might be fishy
 - Happens thrice prestidigitator

Flipping a coin

- Fair coin
 - Probability of heads = Probability of tails = 0.50

```
def flip(num_flips):
    heads = 0.0
    for i in range(num_flips):
        if random.random() < 0.5:
          heads += 1
    return heads/num_flips

def flip_sim(numFlipsPerTrial, numTrials):
    fracHeads = []
    for i in range(numTrials):
        fracHeads.append(flip(numFlipsPerTrial))
    mean = sum(fracHeads)/len(fracHeads)
    return mean</pre>
```

What is "average"

- Measures of central tendency
 - Mean total / number of samples
 - Expressed as 'mu' μ
 - Median mid point between the largest and smallest samples
 - Same number of samples before and after the mid-point
 - Mode Most common value

Law of large numbers

- Bernoulli's theorem
 - in repeated independent experiments with the same probability (p) of the expected value, the chance the number of times differs from p converges to 0 as the number of experiments goes to infinity.
- Regression to the mean
 - Following an extreme event
 - The next random event will more likely be closer to the mean
- Gambler's fallacy
 - Following an extreme even
 - Things will "even out"

Example:

If I flip a coin 6 times and get 6 heads

Gambler's fallacy

 The next 6 flips will have more tails than heads

Regression to the mean

 The next 6 flips will have some heads and some tails, but still may have more heads than tails

Plotting regression to mean

```
def regress to mean (num flips,
num trials):
                                                               Regression to the Mean
  frac heads = []
                                                  1.0
                                                                                    extreme
  for t in range(num trials):
                                                                                    next trial
    frac heads.append(flip(num flips))
                                                  0.8
    extremes, next trials = [], []
  for i in range(len(frac heads) - 1):
                                                Fraction Heads
    if frac heads[i] < 0.\overline{33} or
        frac heads[i] > 0.66:
       extremes.append(frac heads[i])
      next_trials.append(frac heads[i+1]
  #Plot results
                                                  0.2
  plt.plot(range(len(extremes)),
            extremes, 'ko',
                                                  0.0
            label = 'Extreme')
                                                                                   10
                                                                                         12
  plt.plot(range(len(next trials)),
                                                              Extreme Sample and Next Trial
            next trials, 'k^',
            label = 'Next Trial')
```

Question?

- Sally averages 5 strokes per hole when she plays golf.
- One day, she took 40 strokes to complete the front nine.
 - Averaging 4.444 strokes per hole
- Her partner suggests that should would probably regress to the mean and shoot a 50 on the back nine.

What to you think?

Differences between heads and tails

```
def flip_plot(min_exp, max_exp, style='k'):
    """Assumes min_exp and max_exp positive ints; min_exp < max_exp
    Plots results of 2**min exp to 2**max exp coin flips"""</pre>
```

Plotting the absolute difference and ratios

16
32
64
128
256
512
1024
2048
4096
8192
16384
32768
65536
131072
262144
524288
1048576

Variance

- Measure of how much spread there is in the data
 - How much it varies

•
$$variance(X) = \frac{\sum_{x \in X} (x - \mu)^2}{|X|}$$

• Informally, the fraction of values that are close to the mean

Standard Deviation

- Square Root of the Variance
- It is in the same scale as the variable under consideration
- $\bullet \sigma$, s , sd

 We can use the relationship between the sample size and standard deviation to help determine how much confidence we have in a result

Standard deviation for absolute difference and ratios

Coefficient of Variance (CV)

- Coefficient of Variance shows the relationship between the mean and the standard deviation
 - Why not variance?

• In general. Distributions with CV < 1.0 are considered low variance

Adding in CV to our plots

CV - Continued

Allows comparison of sets with different means

CV ACT= 0.32

CV Tas = 0.42

Confidence?

- As mean approaches 0, CV varies considerably
- Mean of 0 does not have a value for CV

We can build a confidence interval with SD but not CV

Distributions

- Probability
- Normal
- Continuous and Discrete Uniform Distributions
- Binomial and Multinomial
- Exponential and Geometric
- Benford's Distribution

Histograms

- A plot designed to show the distribution of values in a set of data
 - Not the same as a bar chart
 - Values are sorted
 - Divided into equal-width bins
- Frequency Distribution

```
vals = []
for i in range(1000):
    num1 = random.choice(range(0, 101))
    num2 = random.choice(range(0, 101))
    vals.append(num1+num2)
plt.close()
plt.hist(vals, bins = 10)
plt.xlabel('Number of Occurences')
plt.show()
```


Probability Distribution

- Relative frequency
- Shows the probability of a random value falling within a specific range
 - As opposed to raw counts
- Discrete (Random Variable)
 - Possible values are finite (e.g. roll of a die)
- Continuous (Random Variable)
 - Infinite values within a range (e.g. speed of a car)

Discrete Probability Distribution

Point	Possible Rolls						Count	Probability
1							0	0
2	1, 1						1	0.027777778
3	1, 2	2, 1					2	0.05555556
4	1, 3	2, 2	3, 1				3	0.083333333
5	1, 4	2, 3	3, 2	4, 1			4	0.111111111
6	1, 5	2, 4	3, 3	4, 2	5, 1		5	0.138888889
7	1, 6	2, 5	3, 4	4, 3	5, 2	6, 1	6	0.166666667
8		2, 6	3, 5	4, 4	5, 3	6, 2	5	0.138888889
9			3, 6	4, 5	5, 4	6, 3	4	0.111111111
10				4, 6	5, 5	6, 4	3	0.083333333
11					5, 6	6, 5	2	0.05555556
12						6, 6	1	0.027777778

Continuous Probability Distribution

- What is the probability that someone is driving 59.1567853214787421487845245748975121877874 mph?
 - Likely 0

- We can create a Probability Density Function (PDF)
 - Describes the probability of a random variable being between two values
 - What is the probability that someone is driving between 59 and 60 mph?
 - Defines a curve
 - The probability of a rv occurring between x_1 and x_2 is the area under the curve between those two points

PDF examples (p370)

- random.random() produces a number between 0.0 and 1.0
 - The probability of any specific value is evenly distributed
 - The area under the curve is 1.0
 - The area under the curve for two points will be max min
- random.random() + random.random() produces a number between 0.0 and 2.0
 - The probability of any specific value is not evenly distributed (like the dice)
 - The area under the curve is 1.0
 - The area under the curve for two points will be would have to be calculated

Normal (Gaussian) Distribution

- Peaks in the middle
- Decreases symmetrically on both sides
- Asymptotically approaches 0 (at both ends)
- Standard bell curve

Specifying a Normal Distribution

- Mean defines the peak
- Standard deviation defines the shape
 - Width and slope of the side
- Often the law of large numbers drives us to a Normal Distribution
- Empirical rule
 - Approximately 67.27% of all values are + or -1σ from the mean
 - Approximately 95.45% are within 2σ
 - \sim 95% are within 1.96 σ
 - Approximately 99.7% are within 3σ

Normal Distribution and Confidence Intervals

- Provides a range that is likely to contain an unknown value
- And a degree of confidence that the value lies within that range

- Range is determined by mean +/- standard deviation
- Confidence level is given by the empirical rule

Introducing Error Bars

When Normal isn't

- Often data is "skewed" to the left or right
 - The direction of the skew corresponds with the side of the "long tail"
 - Is also referenced numerically

Income Example

Left (Negatively Skewed)

Right (Positive) Skewed

Uniform Distribution

- Continuous Uniform Distribution
 - Rectangular distribution
 - All intervals of the same length have the same probability
 - Probability for the interval (x,y)

•
$$P(x,y) = \begin{cases} \frac{y-x}{max-min} & \text{if } x \ge \min \\ else & 0 \end{cases}$$
 and $y \le max$

- random.uniform(min, max)
- Continuous Discrete Distribution

Binomial and Multinomial Distribution

- Can only be discrete
 - Nominal or Categorical

Binomial only two possible values (True/False, Pass/Fail)

- The probability of exactly *k* successes in *n* trials
- Binomial coefficient $\binom{n}{k}$ n choose k
 - Number of subsets (k) that can be constructed from a set of size n

Finger Exercise

• Implement a function that calculates the probability of rolling exactly two 3's in *k* rolls of a fair die. Use this function to plot the probability as k varies from 2 to 100

Multinomial Distribution

- A generalized case of binomial distribution
 - More than two possible outcomes
 - *n* trials each with *m* possible mutually exclusive outcomes
 - Multinomial distribution gives the probability of any combination of numbers of occurrences of outcomes

Exponential and Geometric Distributions

- Exponential Growth or Decay
 - Commonly found in nature
 - Half-life is the expected time for 50% decay
 - Use logarithmic plot for straight line

Geometric – discrete analog to exponential

Benford's Distribution

 Given a large set of decimal integers, how often will any particular digit (1 through 9) be the first digit?

- You would think this would be uniform, no?
- Benford's law $P(d) = log_{10} \left(1 + \frac{1}{d}\right)$
- Occurs more often than you would think
- http://testingbenfordslaw.com/

Examples

- Determining hashing collisions
- World Series
 - That's why we play the game
 - And that is why I leave it up to you to explore;)