Introdução ao Aprendizado de Máquina

Lucas Gonçalves de Moura Leite

Aula anterior

- Overfitting
- Modelos lineares para classificação e regressão
 - Regressão linear (Regularização)
 - Regressão polinomial
 - Regressão logística
 - SVM linear

Aula de hoje

- SVM não linear
- Técnicas de validação
- Árvore de decisão
- ▶ Técnicas de pré-processamento dos atributos

SVM com Kernels

SVM com Kernels

Classificação para dados não linearmente separáveis

- Funções que levam o dado da dimensão original para uma nova dimensão através de uma projeção não linear.
- Maior probabilidade dos dados serem linearmente separáveis nesse novo espaço

Kernels – Exemplo 2D

Kernels – Exemplo 2D

Funções de Kernel

$$K(\vec{x}_i, \vec{x}_j) = \vec{x}_i \cdot \vec{x}_j$$

$$K(\vec{x}_i, \vec{x}_j) = \exp(-\gamma \|\vec{x}_i - \vec{x}_j\|^2)$$

$$K(\vec{x}_i, \vec{x}_j) = \exp(-\gamma \|\vec{x}_i - \vec{x}_j\|^2)$$

$$K(\vec{x}_i, \vec{x}_j) = (p + \vec{x}_i \cdot \vec{x}_j)^q$$

$$K(\vec{x}_i, \vec{x}_j) = (p + \vec{x}_i \cdot \vec{x}_j)^q \exp(-\gamma \|\vec{x}_i - \vec{x}_j\|^2)$$

$$K(\vec{x}_i, \vec{x}_j) = \tanh(k\vec{x}_i \cdot \vec{x}_j - \delta)$$

Linear kernel
Gaussian kernel
Exponential kernel
Polynomial kernel
Hybrid kernel
Sigmoidal

Kernel trick

- Dimensão não é aumentada explicitamente
 - Diferente da regressão polinomial
- Mais eficiente

Efeitos dos Parâmetros

- SVM
 - **C**
 - Permitir erro
 - Parâmetro do Kernel
 - ▶ Gamma (RBF), Degree(Poly)

Efeitos dos Parâmetros

- ► Gamma (RBF)
 - Aumentar -> superfícies mais complexas

SVM com Kernel

Vantagens

- Funcionam bem para uma vasta gama de problemas
- Funcionam bem para dados com muitos ou poucos atributos

Desvantagens

- Baixa interpretabilidade
- Custo computacional

Exercício

- Carregar os dados do dataset breast cancer
- Classificar usando o SVM com Kernel

```
from sklearn.datasets import load_breast_cancer
cancer = load_breast_cancer()
(X_cancer, y_cancer) = load_breast_cancer(return_X_y = True)
```


Validação

Aprendizado de Máquina

- Métodos Supervisionados
- Procedimento
 - Dividir em treino e teste
 - Treinar o modelo com dados de treino (.fit)
 - Aplicar o método para dados não vistos (.predict ou .score)

Divisão Treino e Teste

- Avaliar performance em dados que não foram vistos
- Uma só divisão
 - Pode ter "sorte" e encontrar uma boa divisão
- Validação cruzada
 - Multiplias divisões
 - Repetir o processo

Validação Cruzada

Original dataset		Model 1	Model 2	Model 3	Model 4	Model 5
	Fold 1	Test	Train	Train	Train	Train
	Fold 2	Train	Test	Train	Train	Train
	Fold 3	Train	Train	Test	Train	Train
	Fold 4	Train	Train	Train	Test	Train
	Fold 5	Train	Train	Train	Train	Test

Validação Cruzada

Scikit-learn

```
import numpy as np
import pandas as pd
from sklearn.model_selection import cross_val_score
from sklearn.model selection import train test split
from sklearn.neighbors import KNeighborsClassifier
df = pd.read csv('dadosClassBin.csv',index col=0)
X = df[['x1', 'x2']]
y = df['y']
clf = KNeighborsClassifier(n_neighbors = 5)
cv scores = cross val score(clf, X, y)
print('Cross-validation scores (3-fold):', cv scores)
print('Mean cross-validation score (3-fold): {:.3f}'
     .format(np.mean(cv scores)))
```

Validação Cruzada Estratificada

- Mantem proporção das classes
- Ordem dos dados é escolhida aleatoriamente
- Usado no scikit learn para classificação
- Regressão
 - Validação cruzada convencional

Validação Leave-one-out

- K é igual ao número de dados
- Poucos dados

Curva de Validação

Variar parâmetros e observar performance do método

 Conjunto de regras se-então utilizadas para classificação e regressão

 Conjunto de regras se-então utilizadas para classificação e regressão

Exemplo

Brilho	Tamanho	Classifica ção
1,2	23	Salmão
1,1	30	Salmão
0,9	36	Salmão
0,8	45	Salmão
0,8	38	Salmão
0,9	15	Seabass
0,8	20	Seabass
0,8	25	Seabass
0,7	25	Seabass

Exemplo

Brilho	Tamanho	Classifica ção
1,2	23	Salmão
1,1	30	Salmão
0,9	36	Salmão
0,8	45	Salmão
0,8	38	Salmão
0,9	15	Seabass
0,8	20	Seabass
0,8	25	Seabass
0,7	25	Seabass

Como obter a árvore, automaticamente, a partir dos dados ?

Como obter a árvore, automaticamente, a partir dos dados ?

Brilho	Tamanho	Classifica ção
1,2	23	Salmão
1,1	30	Salmão
0,9	36	Salmão
0,8	45	Salmão
0,8	38	Salmão
0,9	15	Seabass
0,8	20	Seabass
0,8	25	Seabass
0,7	25	Seabass

- Como obter a árvore, automaticamente, a partir dos dados ?
- Utilizar um índice de impureza do resultado
- Vários índices (entropia, gini ...)

Brilho	Tamanho	Classifica ção
1,2	23	Salmão
1,1	30	Salmão
0,9	36	Salmão
0,8	45	Salmão
0,8	38	Salmão
0,9	15	Seabass
0,8	20	Seabass
0,8	25	Seabass
0,7	25	Seabass

▶ Gini

$$G = 1 - \sum_{i=1}^{m} f_i^2$$

▶ Gini

$$G = 1 - \sum_{i=1}^{m} f_i^2$$

Exemplo

▶ 4 Seabass e 5 salmão

Brilho	Tamanho	Classifica ção
1,2	23	Salmão
1,1	30	Salmão
0,9	36	Salmão
0,8	45	Salmão
0,8	38	Salmão
0,9	15	Seabass
0,8	20	Seabass
0,8	25	Seabass
0,7	25	Seabass

▶ Gini

$$G = 1 - \sum_{i=1}^{m} f_i^2$$

Exemplo

▶ 4 Seabass e 5 salmão

$$G = 1 - \left[\left(\frac{4}{9} \right)^2 + \left(\frac{5}{9} \right)^2 \right] = 0.5$$

Brilho	Tamanho	Classifica ção
1,2	23	Salmão
1,1	30	Salmão
0,9	36	Salmão
0,8	45	Salmão
0,8	38	Salmão
0,9	15	Seabass
0,8	20	Seabass
0,8	25	Seabass
0,7	25	Seabass

▶ Gini

$$G = 1 - \sum_{i=1}^{m} f_i^2$$

Exemplo

► Escolhendo B > 0.7

Brilho	Tamanho	Classifica ção
1,2	23	Salmão
1,1	30	Salmão
0,9	36	Salmão
0,8	45	Salmão
0,8	38	Salmão
0,9	15	Seabass
0,8	20	Seabass
0,8	25	Seabass
0,7	25	Seabass

▶ Gini

$$G = 1 - \sum_{i=1}^{m} f_i^2$$

Exemplo

- ► Escolhendo B > 0.7
- Dois lados
 - ▶ I Seabass e 0 salmão
 - ▶ 3 Seabass e 5 salmão

Brilho	Tamanho	Classifica ção
1,2	23	Salmão
1,1	30	Salmão
0,9	36	Salmão
0,8	45	Salmão
0,8	38	Salmão
0,9	15	Seabass
0,8	20	Seabass
0,8	25	Seabass
0,7	25	Seabass

▶ Gini

$$G = 1 - \sum_{i=1}^{m} f_i^2$$

Exemplo

- ► Escolhendo B > 0.7
- Dois lados
 - ▶ I Seabass e 0 salmão

$$\Box G = 1 - \left[\left(\frac{1}{1} \right)^2 + \left(\frac{0}{1} \right)^2 \right]$$

▶ 3 Seabass e 5 salmão

$$\square G = 1 - \left[\left(\frac{3}{8} \right)^2 + \left(\frac{5}{8} \right)^2 \right]$$

Brilho	Tamanho	Classifica ção
1,2	23	Salmão
1,1	30	Salmão
0,9	36	Salmão
0,8	45	Salmão
0,8	38	Salmão
0,9	15	Seabass
0,8	20	Seabass
0,8	25	Seabass
0,7	25	Seabass

▶ Gini

$$G = 1 - \sum_{i=1}^{m} f_i^2$$

Exemplo

- ► Escolhendo B > 0.7
- Dois lados
 - ▶ I Seabass e 0 salmão

$$\Box G = 1 - [1^2 + 0^2] = 0$$

▶ 3 Seabass e 5 salmão

$$\Box G = 1 - [0.375^2 + 0.625^2] = 0.47$$

Brilho	Tamanho	Classifica ção
1,2	23	Salmão
1,1	30	Salmão
0,9	36	Salmão
0,8	45	Salmão
0,8	38	Salmão
0,9	15	Seabass
0,8	20	Seabass
0,8	25	Seabass
0,7	25	Seabass

Gini

$$G = 1 - \sum_{i=1}^{m} f_i^2$$

Exemplo

- ► Escolhendo B > 0.7
- Dois lados
 - ▶ I Seabass e 0 salmão

$$\Box G = 1 - [1^2 + 0^2] = 0$$

> 3 Seabass e 5 salmão

$$\Box G = 1 - [0.375^2 + 0.625^2] = 0.47$$

Total

$$G = 1 - \left[\frac{1}{9}1 + \frac{8}{9}0.53\right] = 0.42$$

Brilho	Tamanho	Classifica ção
1,2	23	Salmão
1,1	30	Salmão
0,9	36	Salmão
0,8	45	Salmão
0,8	38	Salmão
0,9	15	Seabass
0,8	20	Seabass
0,8	25	Seabass
0,7	25	Seabass

▶ Gini

$$G = 1 - \sum_{i=1}^{m} f_i^2$$

Exemplo

► Escolhendo T > 25

Brilho	Tamanho	Classifica ção
1,2	23	Salmão
1,1	30	Salmão
0,9	36	Salmão
0,8	45	Salmão
0,8	38	Salmão
0,9	15	Seabass
0,8	20	Seabass
0,8	25	Seabass
0,7	25	Seabass

▶ Gini

$$G = 1 - \sum_{i=1}^{m} f_i^2$$

Exemplo

- ► Escolhendo T > 25
- Dois lados
 - ▶ 4 Seabass e I salmão
 - ▶ 0 Seabass e 4 salmão

Brilho	Tamanho	Classifica ção
1,2	23	Salmão
1,1	30	Salmão
0,9	36	Salmão
0,8	45	Salmão
0,8	38	Salmão
0,9	15	Seabass
0,8	20	Seabass
0,8	25	Seabass
0,7	25	Seabass

▶ Gini

$$G = 1 - \sum_{i=1}^{m} f_i^2$$

Exemplo

- ▶ Escolhendo T > 25
- Dois lados
 - ▶ 4 Seabass e I salmão

$$\Box G = 1 - \left[\left(\frac{4}{5} \right)^2 + \left(\frac{1}{5} \right)^2 \right]$$

▶ 0 Seabass e 4 salmão

$$\square G = 1 - \left[\left(\frac{0}{4} \right)^2 + \left(\frac{4}{4} \right)^2 \right]$$

Brilho	Tamanho	Classifica ção
1,2	23	Salmão
1,1	30	Salmão
0,9	36	Salmão
0,8	45	Salmão
0,8	38	Salmão
0,9	15	Seabass
0,8	20	Seabass
0,8	25	Seabass
0,7	25	Seabass

▶ Gini

$$G = 1 - \sum_{i=1}^{m} f_i^2$$

Exemplo

- ▶ Escolhendo T > 25
- Dois lados
 - ▶ 4 Seabass e I salmão

$$\Box G = 1 - [0.8^2 + 0.2^2] = 0.32$$

▶ 0 Seabass e 4 salmão

$$\Box G = 1 - [0^2 + 1^2] = 0$$

Brilho	Tamanho	Classifica ção
1,2	23	Salmão
1,1	30	Salmão
0,9	36	Salmão
0,8	45	Salmão
0,8	38	Salmão
0,9	15	Seabass
0,8	20	Seabass
0,8	25	Seabass
0,7	25	Seabass

▶ Gini

$$G = 1 - \sum_{i=1}^{m} f_i^2$$

Exemplo

- ▶ Escolhendo T > 25
- Dois lados
 - ▶ 4 Seabass e I salmão

$$\Box G = 1 - [0.8^2 + 0.2^2] = 0.32$$

▶ 0 Seabass e 4 salmão

$$\Box G = 1 - [0^2 + 1^2] = 0$$

Total

$$G = 1 - \left[\frac{5}{9} \cdot 0.68 + \frac{4}{9} \cdot 1 \right] = 0.18$$

Brilho	Tamanho	Classifica ção
1,2	23	Salmão
1,1	30	Salmão
0,9	36	Salmão
0,8	45	Salmão
0,8	38	Salmão
0,9	15	Seabass
0,8	20	Seabass
0,8	25	Seabass
0,7	25	Seabass

Árvore de Decisão no Scikit-learn

```
from sklearn.datasets import load_iris
from sklearn import tree
from adspy_shared_utilities import plot_decision_tree
from sklearn.model_selection import train_test_split
import graphviz

iris = load_iris()

X_train, X_test, y_train, y_test = train_test_split(iris.data, iris.target, random_state = 3)
clf = tree.DecisionTreeClassifier(max_depth = 4).fit(X_train, y_train)
```


- Definir altura máxima
- Poda
- Parâmetros do scikit-learn
 - max_depth profundidade da arvore
 - min_samples_leaf numero minimo de dados em uma folha
 - max_leaf_nodes numero de folhas em uma árvore

Vantagens

- Dados com diferentes tipos de atributos (reais, categóricos ...)
- Interpretabilidade

Desvantagens

- Suscetíveis a overfitting
- Não consegue modelar relações complexas entre atributos

Exercício

- Carregar os dados do dataset breast cancer
- Classificar usando arvores de decisão

```
from sklearn.datasets import load_breast_cancer
cancer = load_breast_cancer()
(X_cancer, y_cancer) = load_breast_cancer(return_X_y = True)
```


Pré-Processsamento

Pré-processamento

- Em muitas aplicações é preciso modificar os dados originais
 - Anomalias
 - Valores faltantes
 - Tipos de dados
 - Atributos categóricos

Valores Faltantes

- Resultado de diversos fatores presentes em aplicações reais
 - ▶ Falhas de coleta
 - Falha de sensor
 - Falha de gravação
- Estratégias comuns
 - Descartar dados
 - Imputar
 - Valores constantes
 - Media dos dados

Imputação

```
import numpy as np
import pandas as pd

fruits = pd.read_table('fruit_data_with_colors_miss.txt',na_values=['?','.'])
pd.isnull(fruits)
fruits.fillna(0)
fruits['fruit_subtype'].fillna('missing')
fruits[['mass','width','height','color_score']].fillna(fruits.mean())
```


Atributos categóricos

- Diferentes de atributos discretos
- Não possuem ordem natural
- One-hot encoding

```
1 'red', 'red', 'green'

1 0, 0, 1

1 [1, 0]

2 [1, 0]

3 [0, 1]
```

One-hot encoding

```
from sklearn.preprocessing import LabelEncoder
from sklearn.preprocessing import OneHotEncoder

fruits = pd.read_table('fruit_data_with_colors.txt')

data = fruits['fruit_subtype']
label_encoder = LabelEncoder()
integer_encoded = label_encoder.fit_transform(data)
print(integer_encoded)
```

```
onehot_encoder = OneHotEncoder(sparse=False)
integer_encoded = integer_encoded.reshape(len(integer_encoded), 1)
onehot_encoded = onehot_encoder.fit_transform(integer_encoded)
print(onehot_encoded)
```