1	1.	(Currently at	nended) A method of fabricating an electronic device, comprising
2		the steps of:	
3		a)	providing a coil of conductor and an insulation, said coil of
4			conductor having a coil outer surface and a coil inner surface, said
5			insulation on said coil outer surface, said coil of conductor further
6			comprising a coil length;
7		b)	forming openings in portions of said insulation on said coil outer
8			surface and exposing conductor in said openings for external
9			contacts; and
LO		c)	dicing completely through said coil to provide a plurality of short
l1			coils, wherein each said short coil has at least one said opening in
L2			said insulation, wherein each of said plurality of short coils has a
L3		•	short coil length that is less than said coil length.
1	2.	(Previously a	amended) The method as recited in claim 74, wherein said providing
2		step (a) com	prises the step of providing a tube and a wire, and winding said wire
3		around said t	tube.
1	3.	(Previously a	amended) The method as recited in claim 2, wherein, in said
2		providing ste	ep (a), said wire comprises two ends, wherein neither of said ends
3		extends from	said coil for contacting.

1	4.	(Previously amended and withdrawn from consideration) The method as recited		
2		in claim 1, further comprising the steps of:		
3				
4		e) providing a substrate; and		
5				
б		f) surface mounting said coil to said substrate.		
1	5.	(Previously amended and withdrawn from consideration) The method as recited		
2		in claim 4, wherein, in said providing step (e), said substrate comprises a printed		
3		circuit board, a ceramic substrate, a flexible material, or an integrated circuit.		
1	6.	(Previously amended and withdrawn from consideration) The method as recited		
2		in claim 4, wherein said surface mounting step (f) comprises the step of		
3		electrically connecting conductor exposed in said opening in said insulation to		
4		said substrate.		
1	7.	(Original and withdrawn from consideration) The method as recited in claim 6,		
2		further comprising the step of providing a solder or conductive polymer, wherein		
3		said electrical connecting step comprises joining with said solder or said		
4		conductive polymer.		
1	8.	(Original and withdrawn from consideration) The method as recited in claim 7,		
2		wherein said joining step comprises providing solder paste between said		
3		substrate and said conductor exposed in said window and heating to reflow said		
4		solder.		

1 9. (Previously amended and withdrawn from consideration) The method as recited 2 in claim 4, further comprising the step of mounting additional electronics on said 3 substrate. 10. (Original and withdrawn from consideration) The method as recited in claim 9, 1 2 further comprising the step of connecting said additional electronics to said coil. 1 11. (Original and withdrawn from consideration) The method as recited in claim 10, 2 further comprising the step of providing a housing for holding said coil, said 3 substrate, and said additional electronics. 12. 1 (Original and withdrawn from consideration) The method as recited in claim 11, 2 further comprising the step of hermetically sealing said housing. 13. 1 (Original and withdrawn from consideration) The method as recited in claim 11, 2 further comprising the step of providing pins for external connection through said 3 housing. 14. 1 (Previously amended and withdrawn from consideration) The method as recited 2 in claim 11, wherein said coil and said additional electronics comprise a sensor. 15. 1 (Original and withdrawn from consideration) The method as recited in claim 14, 2 wherein said sensor comprises a variable reluctance transducer. 16. 1 (Original and withdrawn from consideration) The method as recited in claim 14,

Docket No. 1024-035

pressure.

2

3

wherein said sensor is for measuring strain, displacement, acceleration, force, or

1	17.	(Original and withdrawn from consideration) The method as recited in claim 14
2		further comprising the step of providing a circuit to correct for temperature
3		variation.
1	18.	(Previously amended and withdrawn from consideration) The method as recited
2		in claim 17, wherein said circuit is integrated within said housing.
1	19.	(Previously amended and withdrawn from consideration) The method as recited
2		in claim 17, wherein said circuit is located within signal conditioning electronic
3		separate from said housing.
4		
5	20.	(Original and withdrawn from consideration) The method as recited in claim 9,
6		wherein said additional electronics provides excitation or synchronous
7		demodulation.
1	21.	(Previously amended and withdrawn from consideration) The method as recited
2		in claim 9, wherein said additional electronics converts an ac waveform to a de
3		voltage.
1	22.	(Previously amended and withdrawn from consideration) The method as recited
2		in claim 1, further comprising the step of enclosing said coil in a housing and
3		hermetically sealing said housing.
1	23.	(Previously amended and withdrawn from consideration) The method as recited
2		in claim 1, wherein said step of forming openings in portions of said insulation

3

comprises laser ablating said insulation.

24. 1 (Previously amended and withdrawn from consideration) The method as recited 2 in claim 23, wherein said step of laser ablating said insulation, comprises 3 directing light from a laser on said insulation. 1 25. (Previously amended and withdrawn from consideration) The method as recited 2 in claim 23, wherein said coil comprises a plurality of turns of said wire and wherein said step of laser ablating said insulation comprises opening said 3 insulation over a plurality of said turns of wire. 4 26. (Previously amended and withdrawn from consideration) The method as recited 1 2 in claim 23, wherein said step of laser ablating said insulation comprises ablating a ring shaped opening in said insulation. 3 27. 1 (Original) The method as recited in claim 1, wherein said insulation comprises 2 polyimide. 28. (Previously amended) The method as recited in claim 75, further comprising the 1 2 step of providing a structure for holding position of said core within said tube. 29. (Previously amended) The method as recited in claim 28, further comprising the 1 step of providing a structure for resetting position of said core within said tube. 2 30. (Previously amended) The method as recited in claim 29, wherein said structure 1 2 for resetting position of said core within said tube comprises an electronically 3 controllable clamp. 31. 1 (Original) The method as recited in claim 30, wherein said electronically

2

controllable clamp comprises a shape memory alloy.

1	32.	(Previously amended) The method as recited in claim 29, wherein said structure
2		for resetting position of said core further comprises a spring so said core can snap
3		to a new position when said clamp is released.
1	72.	(Previously added) The method as recited in claim 1, wherein said step of
2		forming openings in portions of said insulation comprises abrading said
3		insulation.
1	73.	(Previously added and withdrawn from consideration) The method as recited in
2		claim 1, wherein said step of forming openings in portions of said insulation
3		comprises chemically etching said insulation.
1	74.	(Previously added) The method as recited in claim 1, further comprising the step
2		of providing a tube, said tube having an outer surface and an inner surface,
3		wherein said providing step (a) comprises providing said coil of conductor inner
4		surface and said insulation on a said tube outer surface.
1	75.	(Currently amended) The method as recited in claim 74, further comprising the
2		step steps of providing a movable core within said tube inner surface and moving
3		said movable core within said tube inner surface for adjusting inductance of said
4		coil.
1	76.	(Currently amended) The method as recited in claim 75 74, further comprising
2		the steps of:
3		•
4		e) providing a substrate; and
5		
6		f) surface mounting said coil to said substrate.

09/757,909

Docket No. 1024-035 Page 7 of 21

1	7 7.	(Previously added) The method as recited in claim 76, wherein, in said providir
2		step (e), said substrate comprises a printed circuit board, a ceramic substrate, a
3		flexible material, or an integrated circuit.
1	78.	(Previously added) The method as recited in claim 76, wherein said surface
2		mounting step (f) comprises the step of electrically connecting conductor
. 3		exposed in said opening in said insulation to said substrate.
1	79.	(Previously added) The method as recited in claim 78, further comprising the
2		step of providing a solder or conductive polymer, wherein said electrical
3		connecting step comprises joining with said solder or said conductive polymer.
1	80.	(Previously added) The method as recited in claim 79, wherein said joining step
2		comprises providing solder paste between said substrate and said conductor
3		exposed in said window and heating to reflow said solder.
1	81.	(Previously added) The method as recited in claim 76, further comprising the
2		step of mounting additional electronics on said substrate.
1	82.	(Previously added) The method as recited in claim 81, further comprising the
2		step of connecting said additional electronics to said coil.
1	83.	(Previously added) The method as recited in claim 82, further comprising the
2		step of providing a housing for holding said coil, said substrate, and said
3		additional electronics.
1	84.	(Previously added) The method as recited in claim 83, further comprising the
2		step of hermetically sealing said housing.

1

2		step of providing pins for external connection through said housing.
1 2	86.	(Previously added) The method as recited in claim 83, wherein said coil and said additional electronics comprise a sensor.
1	87.	(Previously added) The method as recited in claim 86, wherein said sensor comprises a variable reluctance transducer.
1	88.	(Previously added) The method as recited in claim 86, wherein said sensor is for measuring strain, displacement, acceleration, force, or pressure.
1 2	89.	(Previously added) The method as recited in claim 86, further comprising the step of providing a circuit to correct for temperature variation.
1	90.	(Previously added) The method as recited in claim 89, wherein said circuit is integrated within said housing.
1 2	91.	(Previously added) The method as recited in claim 89, wherein said circuit is located within signal conditioning electronics separate from said housing.
1 2	92.	(Previously added) The method as recited in claim 81, wherein said additional electronics provides excitation or synchronous demodulation.
1	93.	(Previously added) The method as recited in claim 81, wherein said additional electronics converts an ac waveform to a dc voltage.

85. (Previously added) The method as recited in claim 83, further comprising the

1	94.	(Previously added) The method as recited in claim 75, further comprising the
2		step of enclosing said coil in a housing and hermetically sealing said housing.
1	95.	(Previously added) The method as recited in claim 75, wherein said step of
2		forming openings in portions of said insulation comprises laser ablating said
3		insulation.
1	96.	(Previously added) The method as recited in claim 95, wherein said step of laser
2		ablating said insulation, comprises directing light from a laser on said insulation
1	97.	(Previously added) The method as recited in claim 96, wherein said laser
2		comprises an excimer laser.
1	98.	(Previously added) The method as recited in claim 95, wherein said coil
2		comprises a plurality of turns of said wire and wherein said step of laser ablating
3		said insulation comprises opening said insulation over a plurality of said turns of
4		wire.
1	99.	(Previously added) The method as recited in claim 95, wherein said step of laser
2		ablating said insulation comprises ablating a ring shaped opening in said
3		`insulation.
1	100.	(Previously added) The method as recited in claim 2, wherein said wire
2		comprises an insulated wire and said step (a) comprises winding said insulated
3		wire around said tube.
1	101.	(Previously added and withdrawn from consideration) The method as recited in

2

claim 24, wherein said laser comprises an excimer laser.

1	102.	(Currently amended) A method of fabricating an electronic device, comprising in		
2		order, the st	eps of:	
3		a)	providing a coil of conductor and an insulation, said coil of	
4			conductor having a coil outer surface and a coil inner surface, said	
5			insulation on said coil outer surface, said coil of conductor further	
6			comprising a coil length;	
7		b)	forming openings in portions of said insulation on said coil outer	
8			surface and exposing conductor in said openings for external	
9			contacts;	
10		c)	dicing through said coil to provide a plurality of short coils,	
11			wherein each said short coil has at least one said opening in said	
12			insulation, wherein each of said plurality of short coils has a short	
13		•	coil length that is less than said coil length;	
1 4		d) _	providing a substrate;	
L- T		a),	providing a substrate,	
15		е)	surface mounting said coil to said substrate;	
L6		f)	mounting additional electronics on said substrate;	
L 7		g)	connecting said additional electronics to said coil; and	
18		h)	providing a housing for holding said coil, said substrate, and said	
19			additional electronics.	

Docket No. 1024-035

Page 11 of 21 09/757,909

1	103.	(Currently amended) A method of fabricating an electronic device, comprising in		
2		order, the st	eps of:	
3		a)	providing a coil of conductor, an insulation, and a tube, said coil of	
4	•		conductor having a coil outer surface and a coil inner surface, said	
5			insulation on said coil outer surface, wherein said tube has a tube	
6			outer surface and a tube inner surface, and wherein said coil of	
7			conductor and said insulation are on said tube outer surface, further	
8			wherein said coil of conductor further comprises a coil length;	
9		b)	forming openings in portions of said insulation on said coil outer	
10			surface and exposing conductor of said coil for contacts;	
L1		c)	dicing through said coil to provide a plurality of short coils,	
L2			wherein each said short coil has at least one said opening in said	
L3			insulation, wherein each of said plurality of short coils has a short	
L 4			coil length that is less than said coil length; and	
L5		d)	providing a movable core within said tube and providing for	
L6			moving said movable core within said tube for adjusting	
L7			inductance of said coil.	