KCS 47 20 30 : 2019

레일신축이음장치 설치공사

2019년 4월 8일 개정 http://www.kcsc.re.kr

건설기준 제정 또는 개정에 따른 경과 조치

이 기준은 발간 시점부터 사용하며, 이미 시행 중에 있는 설계용역이나 건설 공사는 발주기관의 장이 필요하다고 인정하는 경우 종전에 적용하고 있는 기준을 그대로 사용할 수 있습니다.

건설기준 연혁

- 이 기준은 건설기준 코드체계 전환에 따라 기존 건설기준(설계기준, 표준시방서) 간 중복· 상충을 비교 검토하여 코드로 통합 정비하였다.
- 이 기준은 기존의 철도에 해당되는 부분을 통합 정비하여 기준으로 제정한 것으로 제 · 개정 연혁은 다음과 같다.

건설기준	건설기준 주요내용	
철도건설공사 전문시방서(궤도편)	• 일반철도와 고속철도로 분리된 궤도분야의 전문 시방서를 통합하고, 기준체계를 명확히 하여 합리적 이고 효율적인 시방서(궤도편)로 제정 • 노반·궤도·전기분야 인터페이스를 고려한 시방 서와 기술발전 등 기술적 환경변화 대응을 위한 기 준을 마련	제정 (2011.12.)
철도건설공사 전문시방서(궤도편)	• 매년 발생되고 있는 상태가 양호한 PC침목을 재활용하도록 선정기준 및 사용용도 명시 • 레일용접부 초음파탐상지침 추가	개정 (2013.11.)
철도건설공사 전문시방서(궤도편)	• 시험성적서 위·변조 방지를 위해 시험성적서 원 본(부본), 시험결과 보고서를 제출토록 개정	개정 (2015.3.)
KCS 47 20 30 : 2016	• 건설기준 코드체계 전환에 따라 코드화로 통합 정비함	제정 (2016.6.)
KCS 47 20 30 : 2019	• 철도 건설기준 적합성평가에 의해 코드를 정비함	개정 (2019.04)

제 정: 2016년 6월 30일 개 정: 2019년 04월 08일

심 의 : 중앙건설기술심의위원회 자문검토 : 국가건설기준센터 건설기준위원회

소관부서 : 국토교통부 철도건설과

관련단체 : 한국철도시설공단 작성기관 : 한국철도기술연구원

목 차

1.	일반사항	1
	1.1 적용범위	1
	1.2 참고 기준	1
	1.3 용어의 정의	1
	1.4 제출물	1
2.	자재	1
	2.1 재료	1
3.	시공	1
	3.1 자갈궤도 레일신축이음장치 설치	1
	3.2 콘크리트궤도 레일신축이음장치 설치	5

KCS 47 20 30 : 2019

1. 일반사항

1.1 적용 범위

1.1.1 자갈궤도 레일신축이음장치

(1) 이 기준은 자갈궤도용 레일신축이음장치의 부설 작업에 적용한다.

1.1.2 콘크리트궤도 레일신축이음장치

(1) 이 기준은 콘크리트궤도 레일신축이음장치의 부설 작업에 적용한다.

1.2 참고 기준

- KS 한국산업규격
- KRS 한국철도표준규격
- KRSA 공단표준규격
- KRCS 코레일규격

1.3 용어의 정의

내용 없음

1.4 제출물

(1) 수급인은 레일신축이음장치에 관련된 시공계획서를 공사감독자에게 제출한다.

2. 자재

2.1 재료

- (1) 레일: 한국철도표준규격 KRS
- (2) 신축이음매장치: 코레일규격 KRCS
- (3) P.C침목(분기기 및 신축이음장치용): 코레일규격 KRCS
- (4) 도상자갈: 코레일규격 KRCS

3. 시공

3.1 자갈궤도 레일신축이음장치 설치

3.1.1 시공일반

(1) 자갈궤도용 레일신축이음장치의 부설은 침목배열, 상판설치, 이동레일과 텅레일 설치, 침목계재 설치, 도상자갈 보충, 용접 및 정리 작업의 순으로 시행한다.

- (2) 수급인은 시공 장소, 시기 및 방법 등에 대하여 미리 계획을 수립하여 공사감독자의 승인을 받는다.
- (3) 운행선로에서 시공 시에 선로 차단이 필요한 경우에는 공사감독자의 입회를 받는다.
- (4) 편측 텅레일 레일신축이음장치는 열차진행 방향에 대하여 배향으로 부설한다.
- (5) 레일신축이음장치는 현장 여건에 따라 다음의 방법으로 부설한다.
 - ① 레일신축이음장치를 조립된 상태로 직접 부설하는 방법
 - ② 레일신축이음장치를 설치예정개소 현장 부근에서 조립하여 옆 또는 길이 방향으로 밀어 넣는 방법
 - ③ 부설현장에 직접 침목을 배열하고 이동레일과 텅레일을 부설하여 체결하는 방법, 이 경우에는 레일신축이음장치용 침목상판의 설치와 이동레일 접합 등의 부분조 립은 본 작업에 앞서 시행하다.
- (6) 레일신축이음장치의 재료와 설치는 설계도 등에 의한다.
- (7) 스트로크 설정 시는 레일온도를 측정하여 중위온도일 때는 텅레일 끝단을 이동레일 0점 위치에 맞추어 놓고 중위온도에서 5 $^{\circ}$ 이상 차이로 설정할 때는 온도 차이 1 $^{\circ}$ 에 대하여 1.5 mm의 비율로 정정한다.
- (8) 수급인은 레일신축이음장치 부설 후에 설계도 등에 의거한 궤간 확인 및 텅레일의 밀착상태를 확인한다.
- (9) 시공 후에는 시공기록을 제출하여 공사감독자의 검사를 받는다.

3.1.2 레일신축이음장치의 부설

- (1) 레일신축이음장치의 부설
 - 레일신축이음장치의 부설은 현장반입 방법, 부설위치 및 부설방법 등에 대하여 사전에 공사감독자에게 시공계획서를 제출하여 승인을 받은 후에 시행한다.
- (2) 부설 장비
 - 부설에 필요한 장비를 사전에 공사감독자의 승인을 받는다.
- (3) 시공 방법
 - 제작공장에서 조립검사를 완료한 상태에서 레일만 해체하여 1세트로 현장으로 운반하고 조립하여 시공한다.
- (4) 조정
 - ① 레일신축이음장치는 현장으로 운반한 후에 조립상태를 검사 ·확인한다.
 - ② 양쪽에 신축부를 가진 레일신축이음장치를 조정할 때는 양쪽 각각의 장대레일 신축을 고려한다.
 - 가. 일반구간 쪽의 신축부는 장대레일의 신축량에 따라 중간 정도 움직인 위치(중 앙 위치)와 비교하여 조정한다.
 - 나. 교량 쪽의 신축부는 거더 상부의 신축량에 따른 교량상의 축력을 고려하여 조 정한다. 이때의 조정은 신축량 변화가 중간일 때 신축부의 스트로크를 조정한 다.

- KCS 47 20 30 : 2019
- ③ 양쪽에 신축부를 가진 레일신축이음장치는 레일신축이음장치의 중간 부분이 고정 지점이기 때문에 두 신축부를 별도로 조정한다.
 - 가. 일반구간 쪽 신축부의 스트로크가 중위온도일 때 텅레일 첨단이 중간 구멍에 가도록 조정한다.
 - 나. 교량쪽 신축부의 스트로크가 거더의 연평균 온도일 때 텅레일 첨단이 중간 구멍에 위치하게 한다.
- (5) 기호표시

Tr: 신축부설 및 조정 시의 레일 온도

T_e: 신축부설 및 조정 시의 거더 온도

a : 설정된 텅레일의 첨단에서 편칭마크까지의 거리(mm)

거더의 신축구간(m): 고정지점에서 고정지점 사이

(6) 신축량(a) 산출

$$a = \Delta t \times L \times \alpha \tag{3.1-1}$$

토공구간의 경우, $\Delta t = Tn$ (레일중위온도) -Tr (조정 시의 장대레일온도)

L: 장대레일의 신축구간 연장

 $\alpha = 1.14 \times 10 - 5$: 레일강의 선팽창 계수

교량구간의 경우, $\Delta t = Tn$ (거더 중위온도) -Tg(조정 시의 거더 온도)

L: 거더의 신축구간(고정지점에서 고정지점 사이)

 $\alpha = 1.2 \times 10 - 5$: 강합성교의 선팽창 계수

a>0: 조정온도가 중위온도 이하일 경우, 편칭마크가 텅레일 바깥쪽으로 이동

a < 0: 조정온도가 중위온도 이상일 경우, 편칭마크가 텅레일 안쪽으로 이동

(7) 교량쪽의 신축부 조정에 관한 특별 조건 기온의 급격한 변화가 일어날 때 신축부를 조정하도록 한다.

3.1.3 레일신축이음장치의 검사

(1) 검사항목

표 3.1-1 레일신축이음장치 검사 항목

항목	기준 및 허용오차(mm)	공장조립	가조립	현장부설	비고
 외관검사	도면참조	0	0	_	
 줄마춤	±1	0	0	0	
 텅레일 직각틀림	±4	0	0	0	
	제작검사	0	0	_	
펀칭마크(punching marks)	도면참조	0	0	0	
텅레일 길이	10,200±5	0	0	0	
이동레일 길이	15,150±5	0	0	0	
텅레일과 기본 레일간의밀착	공극≤1.0	0	0	0	
볼트류 체결상태	250 Nm±10%	0	0	_	
이동레일/텅레일 고저차 (기본 레일 단부)	10±1	0	0	0	
- 텅레일 높이	109.6±1	0	0	0	
부설시 파트(part)별 온도차	±5 ℃	_	0	_	
이동레일 단조 품질	제작검사	0	0	\\\ -	
텅레일 단조 품질	제작검사	0	0	_	
철재침목 사이 간격차	± 5	0	0	0	
부설신축 길이	± 6	0	0	0	

(2) 궤간

표 3.1-2 레일신축이음장치 궤간 검사

항목	허용오차(mm)	공장조립	가조립	현장부설	비	고
이동레일 시점부	1,435 ± 2	0	0	0		
3	1,435 ± 2	0	0	0		
6	1,435 ± 2	0	0	0		
9	1,435 ± 2	0	0	0		
12	1,435 ± 2	0	0	0		
15	1,435 ± 2	0	0	0		
18	1,435 ± 2	0	0	0		
21	1,435 ± 2	0	0	0		
24	1,435 ± 2	0	0	0		
27	1,435 ± 2	0	0	0		

주 1) 항목은 궤간검사 침목 순서임.

3.2 콘크리트궤도 레일신축이음장치 설치

3.2.1 레일신축이음장치의 부설

- (1) 기본 레일 두부에 낸 편칭마크(punching mark, φ2 mm 각인)는 중위온도에서 텅레일 첨단의 위치이며, 텅레일의 첨단과 비교하여 신축을 파악하는 데 이용된다.
- (2) 교량신축이음위치에 레일신축이음장치가 설치될 경우는 교량신축이음 상부에 매달린 철재침목의 간격이 크로스바(crossbar) 제어시스템으로 항상 일정하게 유지되도록 연결하다.
- (3) 조정

레일신축이음장치 스트로크 설정 시의 시동하중과 제동하중은 서로 상쇄되는 것으로 가정하고, 열차 통과 시의 구조물 처짐에 의한 신축은 변화량을 고려하지 않는다.

- ① 토공구간쪽 신축부의 스트로크는 온도에 따른 장대레일 신축량을 고려하여 편칭마 크 중간 위치와 비교하여 조정한다.
- ② 교량쪽 신축부의 스트로크는 온도에 따른 교량거더의 신축량을 고려하여 편칭마크 중간 위치와 비교하여 조정한다.
- ③ 기호표시

T_r: 신축부설 및 조정 시의 레일 온도

T_e: 신축부설 및 조정 시의 거더 온도

a: 설정된 텅레일의 첨단에서 펀칭마크까지의 거리(mm)

거더의 신축구간(m): 고정지점에서 고정지점 사이

④ 신축량(a) 산출

$$a = \Delta t \times L \times \alpha \tag{3.2-1}$$

토공구간의 경우, $\Delta t = Tn$ (레일중위온도) -Tr (조정 시의 장대레일온도)

L: 장대레일의 신축구간 연장

 $\alpha = 1.14 \times 10 - 5$: 레일강의 선팽창 계수

교량구간의 경우, $\Delta t = Tn($ 거더 중위온도) - Tg (조정 시의 거더 온도)

L: 거더의 신축구간(고정지점에서 고정지점 사이)

 $\alpha = 1.2 \times 10 - 5$: 강합성교의 선팽창 계수

a>0: 조정온도가 중위온도 이하일 경우, 편칭마크가 텅레일 바깥쪽으로 이동 a<0: 조정온도가 중위온도 이상일 경우, 편칭마크가 텅레일 안쪽으로 이동

- ⑤ 교량쪽의 신축부 조정에 관한 특별 조건 기온의 급격한 변화가 일어날 때 신축부를 조정하도록 한다.
- (4) 레일신축이음장치 부설은 다음의 각 호에 따라야 한다.
 - ① 레일신축이음장치 부설하기 전 조립, 위치 등에 대하여 사전에 공사감독자에게 승인받는다.

- ② 레일신축이음장치 반입시 제품의 손상, 틀림 등을 확인 검사한다.
- ③ 레일신축이음장치는 정확히 조립하여 최종 검사를 통과한 제품만 현장에 부설한다.
- ④ 이동레일의 이동을 원활하게 하기 위하여 철재침목부터 신축부 방향으로 기본 레일 끝부분까지는 클램핑 플레이트로 체결한다.
- ⑤ 텅레일의 선단부가 손상되지 않도록 주의하고, 조립·운반·부설 시에 손상을 방지할 수 있도록 보호조치를 취하며, 부설 전에 제품의 손상, 틀림 등을 확인 검사한다.
- ⑥ 레일신축이음장치는 일체로 현장에 운반하며, 하화는 리프팅 유닛(lifting unit) 등을 이용하다.
- ⑦ 레일신축이음장치 부설시 사전에 위치를 표시하며, 부설 후에 이동부분을 청소하고 그리스 또는 기계유를 도유한다.
- ⑧ 레일신축이음장치의 수평 선형 조정은 아래와 같다.
 - 가. 수평 선형조정이 최소화 되도록 정확한 위치에 레일신축이음장치를 내린다.
 - 나. 수평 선형은 3차원 정밀측량기로 확인하고, 궤광받침대의 수평조절나사로 조정 하며, 텅레일 구간의 조정 시 주의한다.
- ⑨ 레일신축이음장치의 수직 선형은 아래와 같이 조정한다.
 - 가. 레일신축이음장치의 수직 선형 조정은 3차원 정밀측량기로 최대 허용 오차 ±2 mm 내로 한다.
 - 나. 수직 선형은 침목에 설치하는 수직조절볼트를 이용하여 실을 띄어 조정한다. 스핀들의 회전이 원활하도록 수직조절볼트 구멍에 윤활유를 도유 한다.
 - 다. 하부 콘크리트를 보호하도록 수직조절볼트에 콘크리트 블록이나 스틸플레이트 $(100 \times 100 \times 5 \text{ mm})$ 로 지지한다.
 - 라. 높이 조절 시 침목 상부에 과부하가 발생하지 않도록 동시에 최대 3개 이상의 침목을 들어 올리지 않도록 한다.
 - 마. 하중이 균등하게 전달되도록 궤광받침대나 수직조절볼트를 설치한다.
- ① 텅레일과 이동레일이 겹치는 부분은 표준도면에 따라 설치하여 체결하고 장대레일 설정 후에는 궤간외측 레일두부에 스트로크 이동 허용한계를 표시한다.
- ① 스트로크 설정 시에 설정온도 범위(장대레일 22~28 ℃, 교량거터 15 ℃)에 있을 때는 텅레일 끝을 기본 레일의 펀칭마크 위치에 맞추어 놓는다.
- ② 레일신축이음장치용 상판은 콘크리트 침목 위에 1/20, 1/40 기울기로 부설한다.
- ③ 유지보수 시에도 편칭마크(♠2 mm 각인)를 신축에 대한 기준으로 한다.
- ④ 레일신축이음장치 부설 후에는 궤간을 측정하여 적합여부를 확인하고, 텅레일의 밀착상태를 확인한다.
- (5) 콘크리트 타설 전에 교량신축장치의 유간 조정표를 계산하여 교량 신축 사이 두 개의 침목 간격을 결정한다. 유간조정표는 교량 온도에 따른다.
- (b) 강교 또는 콘크리트교에 레일신축이음장치를 부설하는 경우 교량온도를 측정하며,

측정한 온도로 계산하여 텅레일 첨단과 이동레일의 첫 번째 체결장치 중심 간의 거리를 조정한다.

- ⑰ 텅레일과 이동레일의 용접은 제한된 온도 범위 내에서 한다.
- ® 레일신축이음장치의 이동레일이 허용 오차 2 mm 범위 내에서 직각 상태를 유지하고 있는지를 확인 후 용접한다.
- ⑨ 텅레일 위치의 허용 오차는 2 mm 를 벗어나서는 안 된다.
- ② 콘크리트를 타설한 후 교량 유간 사이의 침목 고정용 수직조절볼트를 철거한다.
- ② 설치 후에는 이 기준 3.1.3의 점검 항목(checking list)과 검사표(test sheet)에 따라 레일신축이음장치의 선형, 궤간, 및 모든 장치들을 최종 점검하며 점검된 모든 결과를 보관한다.

3.2.2 레일신축이음장치의 검사

(1) 검사는 이 기준 3.1.3에 따른다.

집필위원

성 명 소 속		성 명	소 속
황선근	한국철도기술연구원	신지훈	한국철도기술연구원

자문위원

성 명	소 속	성 명	소 속
박성현	서현기술단	신순호	㈜KRTC
성덕룡	대원대학교	이기승	서현기술단

국가건설기준센터 및 건설기준위원회

성 명	소 속	성 명	소 속
이용수	한국건설기술연구원	정혁상	동양대학교
구재동	한국건설기술연구원	구자안	한국철도공사
김기현	한국건설기술연구원	김석수	㈜수성엔지니어링
김태송	한국건설기술연구원	김재복	㈜태조엔지니어링
김희석	한국건설기술연구원	소민섭	회명정보통신㈜
류상훈	한국건설기술연구원	여인호	한국철도기술연구원
원훈일	한국건설기술연구원	이성혁	한국철도기술연구원
주영경	한국건설기술연구원	이승찬	㈜평화엔지니어링
최봉혁	한국건설기술연구원	이진욱	한국철도기술연구원
허원호	한국건설기술연구원	이찬우	한국철도기술연구원
		최상철	㈜한국건설관리공사
		최찬용	한국철도기술연구원

중앙건설기술심의위원회

성 명	소 속	성 명	소 속
김현기	한국철도기술연구원	최상현	한국교통대학교
이광명	성균관대학교	정광섭	포스코건설
신수봉	인하대학교	손성연	씨앤씨종합건설(주)
이용재	삼부토건(주)		

국토교통부

성 명	소 속	성 명	소 속
임종일	철도건설과	홍석표	철도건설과
문재웅	철도건설과		

KCS 47 20 30 : 2019

레일신축이음장치 설치공사

2019년 04월 08일 개정

소관부서 국토교통부 철도건설과

관련단체 한국철도시설공단

34618 대전광역시 동구 중앙로 242 한국철도시설공단

Tel: 1588-7270 http://www.kr.or.kr

작성기관 한국철도기술연구원

16105 경기도 의왕시 철도박물관로 176 한국철도기술연구원

Tel: 02-460-5000 http://www.krri.re.kr

국가건설기준센터

10223 경기도 고양시 일산서구 고양대로 283(대화동)

Tel: 031-910-0444 E-mail: kcsc@kict.re.kr

http://www.kcsc.re.kr