МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «САМАРСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИМЕНИ АКАДЕМИКА С.П. КОРОЛЕВА»

(Самарский университет)

Институт информатики и кибернетики Кафедра лазерных и биотехнических систем

Пояснительная записка к курсовому проекту "Носимый монитор ЭКГ"

Выполнил студент группы 6364-120304D:	 Репик В.И.
Руководитель проекта:	 Корнилин Д.В.
Работа запишена с опенкой:	

ЗАДАНИЕ

Разработать монитор активности и отслеживания падений со следующими параметрами:

- Амплитуда сигнала от 0.5 мВ до 4 мВ;
- Диапазон частот 0.05 Гц до 40 Гц;
- Погрешность регистрации амплитуды и частоты 1%;
- Передача данных по интерфейсу Bluetooth;
- Предусмотреть возможность сохранения данных на встроенном носителе в течение суток;
- Питание батарейное;

РЕФЕРАТ

Пояснительная записка: 20 страниц, 8 рисунков, источников, 1 приложение.

НОСИМЫЙ МОНИТОР ЭКГ, МИКРОКОНТРОЛЛЕР, BLUETOOTH, STM32WB, АЛГОРИТМ, ADS1293

В курсовом проекте разработаны структурная и принципиальная схемы монитора ЭКГ, с использованием интегральной АFE микросхемы ADS1293. Был осуществлен выбор микроконтроллера со встроенным блоком Bluetooth. Разработан алгоритм анализа данных и программа на языке Си, реализующая его.

СОДЕРЖАНИЕ

1 РАЗРАБОТКА СТРУКТУРНОЙ СХЕМЫ УСТРОЙСТВА	6
2 РАЗРАБОТКА ПРИНЦИПИАЛЬНОЙ СХЕМЫ УСТРОЙСТВА	8
2.1 Разработка(надо придумать заголовок)	8
2.2 Выбор микроконтроллера	12
2.3 Выбор аккумулятора	15
3 РАЗРАБОТКА ПРОГРАММЫ	17
ЗАКЛЮЧЕНИЕ	18
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ	19
ОПРЕДЕЛЕНИЯ, ОБОЗНАЧЕНИЯ И СОКРАЩЕНИЯ	20

ВВЕДЕНИЕ

Автоматизация различных процессов на базе интеллектуальных систем невозможна в современном мире без использования устройств такого типа, как микроконтроллер. Многофункциональные, компактные микроконтроллеры применяются во многих современных приборах, бытовом оборудовании, прочих инженерно-технических объектах, а также в медицинской диагностике.

Согласно статистике сердечно-сосудистые заболеваний являются причиной смерти 17,9 млн человек в год. Именно поэтому мониторинг и диагностика состояния сердечно-сосудистой системы человека является такой важной задачей. Самым простым методом диагностики является ЭКГ.

В данном курсовом проекте рассматривается проектирование носимого монитора ЭКГ, автономной системы, позволяющий вести непрерывный мониторинг показателей сердечно-сосудистой системы человека. В процессе проектирования были выбраны микросхема ADS1293 и микроконтроллер STM32WB55RCV6 со встроенным модулем Bluetooth, а также была написана программа управления на языке Си.

1 РАЗРАБОТКА СТРУКТУРНОЙ СХЕМЫ УСТРОЙСТВА

Структурная схема устройства представлена на рисунке 1.

Рисунок 1 – Структурная схема устройства

Принцип работы устройства заключается в следующем.

AFE микросхема ADS1293, производит измерение биопотенциала сердечной мышцы

?? как это по русски записать

Эти данные поступают в микроконтроллер, где они проходят первичную обработку,

Так же, данные передаются по модулю Bluetooth, интегрированному в микроконтроллер. Передача данных запускается по таймеру. На устройстве есть LED-индикатор, который сигнализирует о передаче пакета данных.

Все элементы схемы питаются от литий-полимерного аккумулятора, имеющего номинальное напряжение 3.7 В, и DC-DC преобразователя, встроенного в микроконтроллер, который стабилизирует напряжение до уровня 3.3 В, необходимого всем элементам устройства.

2 РАЗРАБОТКА ПРИНЦИПИАЛЬНОЙ СХЕМЫ УСТРОЙСТВА

Электрическая принципиальная схема представлена в приложении.

2.1 Разработка(надо придумать заголовок)

Для получения кардиосигнала возможны несколько подходов - проектирование собственных схемотехнических решений на основе дискретных компонентов, или использование Analog Front End (AFE) микросхем, например, ADS1293 от Texas Instruments.

Микросхема ADS1293 предназначена для измерения биопотенциалов, в таких медицинских приборах, как портативные электрокардиографы с батарейным питанием, холтеровские мониторы и аппаратура беспроводного мониторинга пациентов. [1]

ADS1293 способна поддерживать от одного до пяти каналов, что позволяет существенно сократить габариты, энергопотребление и полную стоимость масштабируемых измерительных медицинских систем. Каждый канал ADS1293 может быть независимо запрограммирован на работу со специальными (отличными от других) частотой выборки и полосой пропускания.

На основании анализа функциональных возможностей и технических характеристик AFE ADS1293, можно сделать вывод о том, что кроме очевидных преимуществ по габаритам в сравнении с аналоговой частью холтеровских мониторов на дискретных операционных усилителях (ОУ) и аналогоцифровых преобразователях (АЦП), гибридная интегральная схема (ИС) обладает достаточно низким энергопотреблением даже в активном режиме, высоким соотношением сигнал/шум и достаточным динамическим диапазоном для решения задач холтеровского мониторирования. Как следствие высокой интеграции аналоговой части и АЦП, а так же цифровой подсистемы первичной обработки квантованного сигнала использование AFE позволило существенно упростить схемные решения монитора ЭКГ, уменьшить габариты и

продолжительность автономной работы от батареи той же емкости.

Структурная схема акселерометра из даташита ADS1293 [2] приведена на рисунке 2.

BLOCK DIAGRAM

Рисунок 2 – Структурная схема ADS1293

Оцифрованный аналоговый сигнал от ADS1293 передается микроконтроллеру посредством Serial Periphial Interface (SPI).

Так же, в даташите приведена рекомендованная схема включения для трехэлектродной схемы(рисунок 3).

Figure 32. 3-Lead ECG Application

Рисунок 3 – Трехэлектродная схема включения

Нумерация и назначение выводов ADS1293 приведены ниже (рисунки 4, 5).

CONNECTION DIAGRAM

Рисунок 4 – Нумерация выводов

Table 2. Pin Descriptions

	PIN			
NO.	NAME	TYPE	FUNCTION	
1 - 6	IN1 - IN6	Analog Input	Electrode input signals	
7	WCT	Analog Output	Wilson reference output or analog pace channel output	
8	CMOUT	Output	Common-mode detector output	
9	RLDOUT	Analog Output	Right leg drive amplifier output	
10	RLDINV	Analog Input	Right leg drive amplifier negative input	
11	RLDIN	Analog I/O	Right leg drive amplifier positive input or analog pace channel output	
12	RLDREF	Analog Output	Internal right leg drive reference	
13	SYNCB	Digital I/O	Sync bar; multiple-chip synchronization signal input or output	
14	VSSIO	Digital Supply	Digital input/output supply ground	
15	ALARMB	Digital Output	Alarm bar	
16	CSB	Digital Input	Chip select bar	
17	SCLK	Digital Input	Serial clock	
18	SDI	Digital Input	Serial data input	
19	SDO	Digital Output	Serial data output	
20	DRDYB	Digital Output	Data ready bar	
21	CLK	Digital I/O	Internal clock output or external clock input	
22	VDDIO	Digital Supply	Digital input/output supply	
23	XTAL1	Digital Input	External crystal for clock oscillator	
24	XTAL2	Digital Input	External crystal for clock oscillator	
25	RSTB	Digital Input	Reset bar	
26	CVREF	Analog I/O	External cap for internal reference voltage	
27	VSS	Analog Supply	Power supply ground	
28	VDD	Analog Supply	Positive power supply	
	DAP		No connect	

Рисунок 5 – Назначение выводов

2.2 Выбор микроконтроллера

С учетом технического задания микроконтроллер должен обладать следующими свойствами:

- Интерфейс для работы с микросхемой ADS1293: SPI;
- Интерфейс для работы с внешней флеш-памятью: SPI или I^2 C;
- Для передачи данных по Bluetooth: встроенный стек протокола Bluetooth;
- Малое энергопотребление;
- Свободные выводы для подключения индикатора и выводов прерываний от ADS1293;

Для решения задачи был выбран микроконтроллер STM32WB55RCV6 фирмы ST Microelectronics [3].STM32WB55 содержит два производительных ядра ARM-Cortex:

- ядро ARM® -Cortex® M4 (прикладное), работающее на частотах до 64 МГц, для пользовательских задач имеется модуль управления памятью, модуль плавающей точки, инструкции ЦОС (цифровой обработки сигналов), графический ускоритель (ART accelerator);
- ядро ARM®-Cortex® M0+ (радиоконтроллер) с тактовой частотой 32 МГц, управляющее радиотрактом и реализующее низкоуровневые функции сетевых протоколов;

Данный микроконтроллер включает в себя все необходимые периферийные устройства, такие как интерфейсы передачи данных SPI, необходимый для подключения к акселерометру, и радиоконтроллер с поддержкой Bluetooth.

Основные характеристики:

- типовое энергопотребление 50 мкА/МГц (при напряжении питания 3 В);
- потребление в режиме останова 1,8 мкА (радиочасть в режиме ожидания (standby));

- потребление в выключенном состоянии (Shutdown) менее 50 нА;
- диапазон допустимых напряжений питания 1,7...3,6 В (встроенный DC– DC–преобразователь и LDO-стабилизатор);
- рабочий температурный диапазон -40...105°C.

Структурная схема микроконтроллера приведена на рисунке 6, а назначение выводов портов корпуса на рисунке 7.

Figure 2. STM32WB35xx block diagram

Рисунок 6 – Структурная схема

Figure 11. STM32WB55Rx VFQFPN68 pinout(1)(2) PB5
PB4
PB3
PD1
PD0
PD1
PC10
PC10
PA14
VDDU
VDDU
PA13
PA11 PC13 2 PC14-OSC32_IN PB15 PC15-OSC32 OUT PB14 PH3-BOOT0 7 5 PB13 PB12 PB8 NRST VDDSMPS VFQFPN68 PC0 43 VLXSMPS 42 VSSSMPS 41 VFBSMPS 40 PE4 39 PB1 38 PB0 VREF+ VDDA 14 PA0 15 PA1 16 37 🗖 AT1 36 AT0 35 OSC_IN PA3
PA4
PA5
PA6
PA7
PA8
PA9
PC4
PC5
PC5
PB10
PB10
VDD
VDD
VDD
VDD
VDD

Рисунок 7 – Назначение выводов

Подключение будет осуществляться согласно типовой схеме из Application note [4](рисунок 8).

Рисунок 8 – Типовая схема подключения STM32WB55

2.3 Выбор аккумулятора

Питание схемы будет осуществляться с помощью аккумулятора LP-310-233350 [5]. Аккумулятор литий-полимерный LP-310-233350 имеет номиналь-

ную емкость 310 мАч, номинальное напряжение 3,7 В, вес 8г. Длина: 50 ± 1 мм. Ширина: 33 ± 1 мм. Толщина: $2,3\pm1$ мм.

Так как в микроконтроллере есть встроенный DC-DC преобразователь, внешний можно не ставить, напрямую подключив положительный электрод аккумулятора к выводу микроконтроллера "VBAT". Внутренний DC-DC преобразователь стабилизирует напряжение на выводе "VDD" на уровне 3.3В, необходимого для питания всех элементов схемы.

3 РАЗРАБОТКА ПРОГРАММЫ

Для работы программы необходимо для начала разработать алгоритм. Алгоритм нашего устройства представлен на

ЗАКЛЮЧЕНИЕ

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1 Беляев, А. О. Анализ аналоговых характеристик микросхемы ADS1293 для применения в медицинской технике / А. О. Беляев, В. В. Кириенко // Инженерный вестник Дона. 2014. № 3(30). С. 67. EDN TFXFTD
- 2 Data Sheet на AFE микросхему ADS1293 [Электронный ресурс]. URL:https://radioaktiv.ru/ds/ti/snas602b.pdf (Дата обращения: 6.05.2023)
- 3 Data Sheet на микроконтроллер STM32WB55CCU6 [Электронный ресурс]. URL:https://www.st.com/resource/en/datasheet/stm32wb55cc.pdf (Дата обращения: 10.05.2023)
- 4 Application note на микроконтроллеры серии STM32WB [Электронный pecypc]. URL:https://www.st.com/resource/en/application_note/an5165-development-of-rf-hardware-using-stm32wb-microcontrollers-stmicroelectronics.pdf (Дата обращения: 11.05.2023)
- 5 Спецификация на Li-pol аккумулятор LP-310-233350 [Электронный ресурс]. URL:https://static.chipdip.ru/lib/412/DOC005412828.pdf (Дата обращения: 11.05.2023)

ОПРЕДЕЛЕНИЯ, ОБОЗНАЧЕНИЯ И СОКРАЩЕНИЯ

AFE	_	Analog Front End	8
SPI	_	Serial Periphial Interface	9
ΑЦП	_	Аналого-цифровой преобразователь	8
ИС	_	интегральная схема	8
ОУ	_	операционный усилитель	8
ЭКГ	_	электрокардиограмма	8