		Date Page
		WEEK 04: APACHE HIVE BASICS-
	A.	INTRODUCTION HIVE:
	B.	HIVE BASICS data wavehouse tool to process structured.
	C.	HIVE PRACTICAL hystor, data (on top of
	D.	HADOOP)
Tut	orial	A. INTRODUCTION
//	07	· Transactional D Analytical sus
	ti mi	· HIVE + HQL
-		· Hive table, matagata
		· why hive over traditional database
		· Transactional & Analytical Processing.
		· Data warehousing
		· Hive Architecture
		. Hive on top of Hadoop Analytic
		actional of working of Hive.
/	rath	ctional o working of Hive.
		-> day to daty data/ -> nistorical challes use
		current data for analysis
	/	-> daily updates, inserts, / -> no updates, only
		delete analysis/reads
		-> ATM
		-> RDBMS (best suited) -> Dataware house (be
	1	mysql, oracle teradata
		-> monolytic system -> distributed syste
		Hive is open source
		data warehouse
		(meant to solve analytical problems)

classmate

page 1

HIVE converts HQL to mapreduce job and will submit on the hadoop cluster.

ulitity: mapreduce works on java, insted of writing long java codes we can write hive querries in single lines and hive will do all further processing.

"Abstracting complexities from user"

* Hive table

2 parts of table

- 1. Actual data (stored in HDFS)
 (raw.format).
- 2. Meta data (schema's format).

 (stoved in database).

 (mysq1).

Why meta data is stored in database?

- 1). In HDFS updates & edits are difficult.
- 2). fast retrival of data in database (low latancy)

both are kept separately.

metadata
emp_name (string)

shivam banglore. 100000

city (string) - rahul delhi 100000

salavy (int)

nitish delhi 20000

* hive metadata is stored in mysal inside database named "metastore".

Titorial 02

- · Transactional & Analytical processing
- · data warehouse concepts.
- · HQL, metastore
- · Hive vs RDBMS
- · HOLYS SQL

Transactional	Analyt
Processing	Proces
110000110	

- analyze individual entry
- recent and changing data
- updation of data
 - real time access!
- Single data source

tical

- analyze large batch
- historical data.
- only reads data
- long jobs.
- multiple data source

example: delivery of any product by amazon.

(RPBMS) mysal

revenue generated, extraction of reports/

(warehouse) teradata

Dorta Warehouse

- Long running batch jobs
- optimized for read operations
- holds data from multiple sources
- holds data for long period.
- hystorical data.

Vertica, Teradata, Oracle, IBM.

Hive metastore stores metadata of all tables

- · maps files to table
- holds schema for each table.

HIVE Y/s. ROBMS · small datasets. · large datasets. · parallel computation · serial com. 6 1000 · high latency · write/update/read · read operation e ACID compliant · not ACID compliant · SQL · HivegL decluster of machines Now lateray means, takes less time. SQL V/S HQL indexes allowed. minimal index support less b.i.f. many built in functions all joins, allowed. only equi join many sub. restricted subqueries utona 103 A data is by default stoved in wavehouse directory / user/ hive/wavehouse - = * if creating a database." / user/ hive/wavehouse/trenaytech.db * files. /user/ hive/ warehouse/ trendytech.db/ files.

* metadata is stored in metastore (videons (mysal))

Complex Data Types.

(ARRAY, MAP, STRUCT.)

- 1). ARRAY o homogenous collections.
- o data in form of key-values. · unordered
- 3) STRUCT . class · diff data types allowed.

Built 9n functions.

- user defined function 1. UDF
 - 2. UDAF u.d. aggregate f.
 - 3. UDTF u.d. table generating f.

UDF UDAF apte

- · works on multiple · Single · works on a single
- row · outputs a single · outputs a single e multiple

vow

- row row
- · trim(), concat(), · count(*), sum(), · explode(), aug() length (), round(), posexplodel)

floor()

* (flattens the data) * (provides lateral view)

Set Operations on HIVE

- · union (only operation of HIVE)

 - o minus (not supported in HIVE)

 - · Intersect (-PT

union & union all

* How to use union instead of minus & intersect?

THE WHERE CLAUSE

- 1). IN / NOT IN
- 2). EXISTS / NOT EXISTS.
- (a) Select id from customers &

where id in (1111, 3333, 5555);

(b) Select id from customers where exists (

select cust_ia from orders where

orders. cust-id == cust.id);

VIEWS IN HIVE

view = virtual table.

" it is better to share few columns rather than all columns "

Benifts: - 1) security.

- 2). can change according to need.
- 3). create diff. logical path.

Normalization

* normalization is not preferred.

* denormalization is preferred

* single table.