

# ข้อสอบวิชาเคมี เพื่อคัดเลือกนักเรียนเข้ารับการอบรมค่าย 1 สอวน.

| ชื่อ-สกุล      | ข้อสอบวิชาเคมี                   |
|----------------|----------------------------------|
| เลขประจำตัวสอบ | รหัสชุดวิชา 000005               |
| สถานที่สอบ     | สอบวันอาทิตย์ที่ 28 สิงหาคม 2565 |
| ห้องสอบ        | เวลา 13.00-16.00 น.              |

## คำชี้แจง

- ข้อสอบมี 15 หน้า (รวมปกและค่าที่กำหนดให้) จำนวน 75 ข้อ
   ส่วนที่ । ข้อสอบปรนัยแบบเลือกตอบ จำนวน 60 ข้อ (หน้า 3-14) ข้อละ 1 คะแนน รวม 60 คะแนน ส่วนที่ ॥ ข้อสอบอัตนัยแบบเขียนตอบ จำนวน 15 ข้อ (หน้า 14-17) ข้อละ 2 คะแนน รวม 30 คะแนน
- 2. ใช้ปากกา เขียนชื่อ นามสกุล เลขประจำตัวสอบ สถานที่สอบ ห้องสอบ บนข้อสอบและกระดาษคำตอบ และ ใช้ดินสอดำ 2B ระบายลงในวงกลมให้ตรงกับเลขประจำตัว และรหัสชุดวิชาที่กรอกในกระดาษคำตอบ
- 3. วิธีตอบข้อสอบปรนัยแบบเลือกตอบ 4 ตัวเลือก
  - ให้นักเรียนเลือกคำตอบที่ถูกต้องและเหมาะสมที่สุดเพียงคำตอบเดียว แล้วใช้ดินสอดำ 2B ระบายวงกลม คำตอบที่เลือกให้ดำเต็มวงในกระดาษคำตอบ กรณีที่ตัวเลือกในข้อสอบและกระดาษคำตอบไม่ตรงกัน ให้ถือ ตามข้อกำหนดข้างล่างนี้

- ถ้าต้องการแก้ไข ให้ใช้ยางลบลบให้สะอาดก่อน แล้วจึงระบายวงกลมใหม่
- ถ้าข้อใดตอบมากกว่า 1 ตัวเลือก ข้อนั้นถือเป็นโมฆะ

  <u>วิธีตอบข้อสอบอัตนัยแบบเขียนตอบ</u> ให้ใช้ปากกาเขียนคำตอบลงในช่องว่างที่กำหนดให้ในกระดาษคำตอบ
  (รวม 2 หน้า)

4. ห้ามใช้เครื่องคำนวณ

- 5. นักเรียนต้องนั่งอยู่ในห้องสอบอย่างน้อย 2 ชั่วโมง ก่อนได้รับอนุญาตให้ออกจากห้องสอบ
- 6. ห้ามน้ำข้อสอบและกระดาษคำตอบออกจากห้องสอบ
- 7. ห้ามเผยแพร่ข้อสอบก่อนที่มูลนิธิ สอวน. จะเผยแพร่ทางเว็บไซต์

# ค่าต่าง ๆ ที่เกี่ยวข้องกับข้อสอบ ให้ใช้ค่าที่กำหนดให้ต่อไปนี้

เลขอะตอมและมวลอะตอมของธาตุบางชนิด (เรียงลำดับตามอักษรของสัญลักษณ์ธาตุ)

| ธาตุ | เลขอะตอม | มวลอะตอม | ธาตุ | เลขอะตอม | มวลอะตอม | ธาตุ | เลขอะตอม | มวลอะตอม |
|------|----------|----------|------|----------|----------|------|----------|----------|
| Ag   | 47       | 108      | F    | 9        | 19       | 0    | 8        | 16       |
| Al   | 13       | 27       | Fe   | 26       | 56       | Р    | 15       | 31       |
| Ar   | 18       | 40       | Н    | 1        | 1        | Pb   | 82       | 207      |
| В    | 5        | 11       | ı    | 53       | 127      | S    | 16       | 32       |
| Ва   | 56       | 137      | K    | 19       | 39       | Si   | 14       | 28       |
| Bi   | 83       | 209      | Kr   | 36       | 84       | Sn   | 50       | 118.5    |
| Br   | 35       | 80       | Li   | 3        | 7        | Xe   | 54       | 131      |
| C    | 6        | 12       | Mg   | 12       | 24       | W    | 74       | 184      |
| Ca   | 20       | 40       | Mn   | 25       | 55       | Zn   | 30       | 65       |
| Cl   | 17       | 35.5     | N    | 7        | 14       |      |          |          |
| Cu   | 29       | 63.5     | Na   | 11       | 23       |      |          |          |

ค่าคงตัวอาโวกาโดร, NA

= 6.02 × 10<sup>23</sup> อนุภาค

ความยาว 1 nm = 10<sup>-9</sup> m

ค่าคงตัวของพลังค์. h

 $= 6.6 \times 10^{-34} \, \text{J s}$ 

ความเข้มข้น 1 mM =  $10^{-3}$  M

ความเร็วของคลื่นแม่เหล็กไฟฟ้าในสุญญากาศ,  $c=3.0 imes 10^8 \, \mathrm{m \ s^{-1}}$ 

มวลของโปรตอน

 $= 1.673 \times 10^{-24} \, \text{g} = 1.007 \, \text{u}$ 

ปริมาตรต่อโมลของสารในสถานะแก๊ส

= 22.4 L ที่ STP

1 หน่วยมวลอะตอม (u)

 $= 1.66 \times 10^{-24} \text{ g}$ 

## จุดเยือกแข็ง จุดเดือด $K_{\rm f}$ และ $K_{\rm b}$ ของตัวทำละลายบางชนิด

| ตัวทำละลาย             | จุดเยือกแข็ง (°C) | K <sub>f</sub> (°C/m) | จุดเดือด (°C) | K₀ (°C/m) | ความหนาแน่น (g/mL) |
|------------------------|-------------------|-----------------------|---------------|-----------|--------------------|
| น้ำ (H <sub>2</sub> O) | 0.00              | 1.86                  | 100.00        | 0.51      | 1.00               |
| ไซโคลเฮกเซน            | 6.60              | 20.0                  | 80.73         | 2.92      | 0.800              |

### โครงตารางธาตุบางส่วนแสดงเลขหมู่



## ส่วนที่ I. ข้อสอบปรนัยแบบเลือกตอบ จำนวน 60 ข้อ ข้อละ 1 คะแนน รวม 60 คะแนน

เลือกคำตอบที่ถูกต้องและเหมาะสมที่สุดเพียงคำตอบเดียวในแต่ละข้อ แล้วระบายตัวเลือกนั้นในกระดาษคำตอบ ด้วยดินสอดำ 2B (ถ้าข้อใดตอบมากกว่า 1 ตัวเลือก ข้อนั้นถือเป็นโมฆะ)

#### 1. ข้อใดผิด

- ก. แบบจำลองอะตอมของทอมสันและแบบจำลองอะตอมของรัทเทอร์ฟอร์ดต่างกันในส่วนการกระจายตัวของ
   อนุภาคต่าง ๆ ในอะตอม
- ข. จากการทดลองของรัทเทอร์ฟอร์ดพบว่า อนุภาคแอลฟาส่วนใหญ่เคลื่อนที่เป็นเส้นตรง เนื่องจากอิเล็กตรอน ที่กระจายอยู่อย่างสม่ำเสมอในอะตอมมีมวลน้อย จึงไม่มีผลต่อการขนกับอนุภาคแอลฟา
- ค. เส้นสเปกตรัมของธาตุไฮโดรเจนที่นำมาซึ่งแบบจำลองอะตอมของโบร์ เกิดจากการเปลี่ยนระดับพลังงาน ของอิเล็กตรอน โดยเส้นสเปกตรัมที่มีค่าพลังงานเท่ากับ  $4.56 \times 10^{-22} \, \mathrm{kJ}$  จะแสดงเส้นสเปกตรัมสีน้ำเงิน ในช่วงที่ตามองเห็นได้



- แบบจำลองอะตอมกลุ่มหมอก ไม่สามารถบอกตำแหน่งที่แน่นอนของอิเล็กตรอนได้ บอกได้แต่เพียงโอกาส ที่จะพบอิเล็กตรอนในบริเวณต่าง ๆ ซึ่งเป็นที่มาของออร์บิทัล
- 2. พิจารณาข้อมูลความยาวคลื่นของเส้นสเปกตรัมที่ได้จากอะตอมไฮโดรเจนในช่วงคลื่นที่มองเห็นได้ :

410 nm (สีม่วง), 434 nm (สีน้ำเงินแกมม่วง), 486 nm (สีน้ำเงินแกมเขียว), 656 nm (สีแดง) โดยสเปกตรัมทั้ง 4 เส้นนี้เกี่ยวข้องกับการเปลี่ยนระดับพลังงานของอิเล็กตรอนดังนี้ :

เส้น a: 
$$n = 6$$
 ไป  $n = 2$ 

เส้น c: 
$$n = 5$$
 ไป  $n = 2$ 

เส้น d: 
$$n = 3$$
ไป  $n = 2$ 

เส้นสเปกตรัม a, b, c และ d จะมีสีใดตามลำดับ

- ก. ม่วง น้ำเงินแกมเขียว น้ำเงินแกมม่วง แดง ข. แดง น้ำเงินแกมเขียว น้ำเงินแกมม่วง ม่วง
- ค. ม่วง น้ำเงินแกมม่วง น้ำเงินแกมเขียว แดง ง. แดง น้ำเงินแกมม่วง น้ำเงินแกมเขียว ม่วง
- 3. A1 และ A2 เป็นไอโซโทปของธาตุ A โดยที่
  - 1) A1 มีจำนวนนิวตรอนน้อยกว่า A2 อยู่ 5
  - 2) ไอออนของ A2 ที่มีประจุ +2 มีจำนวนอิเล็กตรอนและนิวตรอนเท่ากับ 10 และ 15 ตามลำดับ ข้อใดเป็นสัญลักษณ์นิวเคลียร์ของ A1
  - n. 18A
- v. 25A
- P. 22A
- ₹. 25<sub>15</sub>A

4. พิจารณาจำนวนอิเล็กตรอนในระดับพลังงานย่อยของไอออน  $A^{2+}$ ,  $D^{2+}$ ,  $E^{2+}$ ,  $G^{2+}$  ในตารางต่อไปนี้

| ไอออน           | ຈໍ′ | านวนอิเล็กต | เรอนในระดัง | บพลังงานย่อ | ध  |
|-----------------|-----|-------------|-------------|-------------|----|
|                 | 3d  | 4d          | 3р          | 4p          | 5s |
| A <sup>2+</sup> | 10  | 0           | 6           | 6           | 0  |
| D <sup>2+</sup> | 6   | 0           | 6           | 0           | 0  |
| E <sup>2+</sup> | 8   | 0           | 6           | 0           | 0  |
| G <sup>2+</sup> | 0   | 0           | 2           | 0           | 0  |

ข้อใดถูกเกี่ยวกับธาตุ A, D, E และ G

ก. ธาตุทั้งสี่มีสมบัติเป็นโลหะ

- ข. แนวโน้มรัศมีอะตอมของ A > D > E > G
- ค. ธาตุ A, D และ E อยู่ในคาบเดียวกัน
- เลขอะตอมของ A = 38, D = 28, E = 31, G = 16
- 5. ไอออนของธาตุที่มีสัญลักษณ์สมมติ A, D, E และ G มีการจัดเรียงอิเล็กตรอนของไอออนในสถานะพื้น ดังนี้

 $A^{3-}$ :  $1s^22s^22p^63s^23p^6$ 

 $D^+$ :  $1s^22s^22p^63s^23p^4$ 

 $E^{2+}$ :  $1s^22s^22p^63s^23p^64s^23d^{10}4p^65s^24d^{10}5p^3$ 

G<sup>3+</sup>: 1s<sup>2</sup>2s<sup>2</sup>2p<sup>6</sup>3s<sup>2</sup>3p<sup>6</sup>3d<sup>4</sup>

#### ข้อใดผิด

- ก. ขนาดอะตอมของธาตุ E > A > D
- ข. ไอออน A³- และ D⁻ มีจำนวนอิเล็กตรอนเท่ากัน
- ค. ธาตุ E มีสถานะเป็นของแข็งที่อุณหภูมิห้อง ความดัน 1 บรรยากาศ
- ชาตุ G เป็นธาตุแทรนซิชันที่มีจำนวนอิเล็กตรอนใน 3d เท่ากับ 4 อิเล็กตรอน
- 6. X, Y และ Z เป็นสัญลักษณ์สมมติของธาตุที่อยู่ติดกันในคาบเดียวกัน ธาตุทั้งสามมีสมบัติดังนี้
  - 1) ธาตุ Y ไม่เกิดปฏิกิริยากับน้ำที่อุณหภูมิห้อง แต่เกิดปฏิกิริยากับไอน้ำได้สารละลายเบสและฟองแก๊ส ขนาดเล็ก
  - 2) เปรียบเทียบขนาดของไอออนที่เสถียรของธาตุ X, Y และ Z ได้ดังนี้  $X^{x+} > Y^{y+} > Z^{z+}$
  - ไอออนที่เสถียรของธาตุ Z ทำปฏิกิริยากับโซเดียมไฮตรอกไซด์ในอัตราส่วนโดยโมลเท่ากับ 1 : 3
     ข้อใดถูก
  - ก. ธาตุทั้งสามเป็นโลหะ รัศมีอะตอมของ Z > Y > X
  - ข. ค่าพลังงานไอออในเซซันลำดับที่ 1 ของ Z > Y > X
  - ค. ออกไซต์ของธาตุ X, Y และ Z มีสูตรเป็น  $X_2O_3$ , YO และ  $Z_2O$
  - อัตราส่วนโดยโมลอย่างต่ำของธาตุ X ที่ทำปฏิกิริยากับน้ำเท่ากับ 1 : 1

7. กำหนด X, Y และ Z เป็นธาตุในคาบเดียวกัน มีสูตรของสารประกอบออกไซด์และสมบัติดังตาราง

| ธาตุ | สูตรของสารประกอบออกไซด์ | การนำไฟฟ้าเมื่อหลอมเหลว |
|------|-------------------------|-------------------------|
| X    | XO                      | น้ำ                     |
| Υ    | YO <sub>2</sub>         | ไม่น้ำ                  |
| Z    | Z <sub>2</sub> O        | น้ำ                     |

#### ข้อความใด**ผิด**

- ก. รัศมีอะตอมของ Z > X > Y
- ข. X, Y และ Z เป็นธาตุในคาบ 6
- ค. พันธะใน XO เป็นพันธะไอออนิก ส่วนพันธะใน  ${
  m YO_2}$  เป็นพันธะโคเวเลนต์
- ง. XO และ  $Z_2$ O มีสถานะเป็นของแข็งที่อุณหภูมิห้อง ส่วน  $YO_2$  อาจมีสถานะเป็นแก๊สหรือของแข็งขึ้นกับ เลขอะตอม
- 8. การสลายตัวของ  $^{210}_{83}$ Bi เป็น  $^{210}_{84}$ Po ให้รังสีปีตามีครึ่งชีวิต 5 วัน หากเริ่มต้นบรรจุ  $^{210}_{83}$ Bi จำนวน 6 g ใน ภาชนะปิด เมื่อเวลาผ่านไป 15 วัน  $^{210}_{83}$ Bi จะสลายตัวไปร้อยละเท่าใดโดยมวล
  - n. 12.5
- ข. 50.0
- ค. 75.0
- 4. 87.5
- 9.  $^{14}_{6}$ C เกิดการสลายตัวให้  $^{14}_{7}$ N โดยมีครึ่งชีวิตเท่ากับ t ปี หากกำหนดให้วงกลมสีขาวแทน  $^{14}_{6}$ C และวงกลม สีเทาคือ  $^{14}_{7}$ N จากภาพที่กำหนดให้ เวลาที่ใช้ในการสลายตัวของ  $^{14}_{6}$ C (เริ่มต้น 16 อนุภาค) เป็นกี่ปี



n. t

v. 2t

A. 3t

a. 4t

- 10. พิจารณาข้อมูลต่อไปนี้
  - 1) ไอโซโทปของธาตุ A 1 โมล สลายตัวให้รังสีแอลฟา 1 โมล และไอโซโทปของธาตุ D 1 โมล
  - 2) ครึ่งชีวิตของไอโซโทปของธาตุ A เท่ากับ x ปี
  - 3) ธาตุ D อยู่ในคาบ 6 หมู่ 18
  - 4) ไอโชโทปของธาตุ D มีจำนวนนิวตรอนเท่ากับ 136

ล้าปริมาณเริ่มต้นของไอโซโทป A เท่ากับ 18.08 g เมื่อเวลาผ่านไป 4x ปี จะเกิดไอโซโทป D กี่กรัม

- n. 1.11
- ข. 16.47
- ค. 16.65
- 4. 17.26
- พิจารณาไอออนของโลหะแทรนซิชันต่อไปนี้: <sub>27</sub>A<sup>2+</sup>, <sub>48</sub>D<sup>2+</sup>, <sub>77</sub>E<sup>2+</sup>, <sub>79</sub>G<sup>3+</sup>
   ไอออนที่มีจำนวนอิเล็กตรอนมากที่สุดในระดับพลังงานย่อยที่มีพลังงานสูงสุดคือข้อใด
  - ก. A<sup>2+</sup>
- 91 D24
- P. F2+
- 4. G3+

12. ธาตุ T-234 เป็นธาตุกัมมันตรั้งสี สลายตัวดังสมการต่อไปนี้

$$\begin{array}{ccc} ^{234}\top & \longrightarrow & ^{234}\text{X} + \text{A} + \gamma \\ ^{234}\text{X} & \longrightarrow & \text{D} + \beta + \gamma \\ \text{D} & \longrightarrow & \text{E} + \alpha \end{array}$$

ผลต่างของจำนวนนิวตรอนของธาตุ D และ E เป็นเท่าใด

ก. 0

ข. 1

P. 2

۹. 3

- 13. สารประกอบคลอไรด์ของโลหะแทรนซิชัน (A, D, E, G) มีสูตรเคมีดังนี้ :  $ACl_3$ ,  $DCl_4$ ,  $ECl_3$  และ  $GCl_2$  โดยที่ไอออนโลหะแทรนซิชันของสารประกอบคลอไรด์คือ  $A^{a+}$ ,  $D^{d+}$ ,  $E^{e+}$ ,  $G^{g+}$  และกำหนดให้
  - 1) A และ D อยู่คาบเดียวกัน
  - 2) E และ G อยู่คาบเดียวกัน
  - 3) A และ E อยู่ในคาบติดกัน โดยที่มวลอะตอมของ A น้อยกว่า E
  - 4) จำนวนอิเล็กตรอนในระดับพลังงานย่อย d ของ Aa+ และ D เท่ากันคือ 2
  - 5) จำนวนอิเล็กตรอนในระดับพลังงานย่อย 4d ของ E<sup>e+</sup> และ G<sup>3+</sup> เท่ากับ 5 และ 8 ตามลำดับ ข้อใดเป็นเลขอะตอมของธาตุ A, D, E, G ตามลำดับ

n. 23, 22, 44, 46

ข. 22, 23, 46, 44

ค. 25, 26, 46, 48

1. 26, 25, 48, 46

- 14. พิจารณาข้อมูลต่อไปนี้เกี่ยวกับธาตุที่มีสัญลักษณ์สมมติ A, D, E
  - 1) ธาตุทั้งสามชนิดนี้อยู่ในคาบเดียวกันโดยที่เลขอะตอมของ A < D < E
  - 2) ไอออน  $A^{2+}$ ,  $D^{2+}$  และ  $E^{2+}$  มีการบรรจุอิเล็กตรอนเต็มในระดับพลังงานย่อย d ทุกระดับพลังงาน
  - 3) ธาตุ D เป็นโลหะแทรนซิซัน
  - 4) ธาตุ D และไอออน E<sup>2+</sup> มีรูปแบบการจัดเรียงอิเล็กตรอนเหมือนกัน

ข้อใดถูกเกี่ยวกับธาตุ A, D และ E

ก. ธาตุ A, D และ E อยู่ในคาบ 4

ข. ธาตุ A, D และ E อยู่ในหมู่ 2, 12 และ 14 ตามลำดับ

ค. ธาตุ D มีเลขอะตอมเท่ากับ 30

ธาตุ E อยู่ในหมู่เดียวกับ 34Se

 นำสารละลาย A, B, C และ D ที่มีความเข้มข้นเท่ากันมาทดสอบสมบัติการนำไฟฟ้าโดยดูความสว่างของ หลอดไฟ และการเปลี่ยนสีของกระตาษลิตมัส ได้ผลการทดลองดังนี้

A หลอดไฟสว่าง

น้ำเงิน → แดง

B หลอดไฟสว่าง

ไม่เปลี่ยนสี

C หลอดไฟสว่าง

แดง --> น้ำเงิน

D หลอดไฟไม่สว่าง

ไม่เปลี่ยนสี

ตัวละลายในสารละลาย A, B, C และ D ข้อใดเป็นไปได้

|     | Α                              | В                               | C                                | D                                               |
|-----|--------------------------------|---------------------------------|----------------------------------|-------------------------------------------------|
| n.  | CH <sub>3</sub> COOH           | Na <sub>2</sub> SO <sub>4</sub> | КОН                              | C <sub>12</sub> H <sub>22</sub> O <sub>11</sub> |
| જી. | H <sub>2</sub> SO <sub>4</sub> | KNO <sub>3</sub>                | C <sub>2</sub> H <sub>5</sub> OH | CH <sub>3</sub> COOH                            |
| ค.  | HCl                            | AgCl                            | NaOH                             | C <sub>2</sub> H <sub>5</sub> OH                |
| ۹.  | $NH_3$                         | NaCl                            | CH <sub>3</sub> COOH             | 58                                              |

| 16. | -                                                                                                      | ะลายน้ำต่อไปนี้ สมการไออย                            | อนิกสุทธิในข้อใดถูกต้อง                                   |                                                                |  |  |
|-----|--------------------------------------------------------------------------------------------------------|------------------------------------------------------|-----------------------------------------------------------|----------------------------------------------------------------|--|--|
|     | ก. ปฏิกิริยาการสะเทินระหว่าง H₂SO₄ กับ NaOH                                                            |                                                      |                                                           |                                                                |  |  |
|     | สมการไอออนิกสุทธิ : 2H <sup>+</sup> (aq) + 2OH <sup>-</sup> (aq) $\longrightarrow$ H <sub>2</sub> O(l) |                                                      |                                                           |                                                                |  |  |
|     | **************************************                                                                 | เระหว่าง Na₂CO₃ กับ BaCl                             |                                                           |                                                                |  |  |
|     | - W.                                                                                                   | $2Ba^{+}(aq) + CO_3^{2-}(aq) \longrightarrow$        |                                                           |                                                                |  |  |
|     | (F)                                                                                                    | 3 กับ NaOH เกิดตะกอน Fe                              |                                                           |                                                                |  |  |
|     |                                                                                                        | $Fe^{3+}(aq) + OH^{-}(aq) \longrightarrow F$         | Fe(OH) <sub>3</sub> (s)                                   |                                                                |  |  |
|     | <ol> <li>ปฏิกิริยาระหว่าง NH<sub>4</sub>C</li> </ol>                                                   |                                                      | DAVOSONO VIII II SANI SANI VIII VIII                      |                                                                |  |  |
|     | สมการเอออนกสุทธ : 1                                                                                    | $NH_4^+(aq) + OH^-(aq) \longrightarrow I$            | $NH_3(g) + H_2O(l)$                                       |                                                                |  |  |
| 17. | สารประกอบในข้อใดที่ทุกอ                                                                                | ะตอมในโมเลกุลเป็นไปตาม                               | กฎออกเตตทุกชนิด                                           |                                                                |  |  |
|     | n. BCl <sub>3</sub> , OF <sub>2</sub> , CO <sub>3</sub> <sup>2-</sup>                                  | v. NO₂⁻, SCl₂, PBr₃                                  | P. NO <sub>2</sub> , OF <sub>2</sub> , SCl <sub>2</sub>   | 4. NO, PBr <sub>3</sub> , CO <sub>3</sub> <sup>2-</sup>        |  |  |
| 18. | สารประกอบออกไซด์ชนิด                                                                                   | หนึ่งของฟอสฟอรัสมีสูตร F                             | PaOa ทำปภิกิริยากับ Oa เร็                                | วมาก ได้ออกไซด์ P4O10                                          |  |  |
|     |                                                                                                        | ักรด H <sub>3</sub> PO <sub>4</sub> ซึ่งทำปฏิกิริยาต | 1.50                                                      |                                                                |  |  |
|     | พิจารณาข้อความต่อไปนี้                                                                                 |                                                      | en e                  |                                                                |  |  |
|     | 1) P4O6 อ่านชื่อว่า t                                                                                  | tetraphosphorus hexaox                               | kide                                                      |                                                                |  |  |
|     | <ol> <li>Na<sub>3</sub>PO<sub>4</sub> อ่านชื่อว</li> </ol>                                             | រ់។ trisodiumphosphate                               |                                                           |                                                                |  |  |
|     | 3) โครงสร้างของ H₃                                                                                     | ,PO4 ประกอบด้วย H+ และ                               | PO <sub>4</sub> 3-                                        |                                                                |  |  |
|     | 4) ผลิตภัณฑ์อีกชนิด                                                                                    | หนึ่งที่ได้พร้อมกับ Na <sub>3</sub> PO <sub>4</sub>  | คือ H <sub>2</sub> O                                      |                                                                |  |  |
|     | ข้อใดถูก                                                                                               |                                                      |                                                           |                                                                |  |  |
|     | ก. 1 และ 2                                                                                             | ข. 2 และ 3                                           | ค. 3 และ 4                                                | ง. 1 และ 4                                                     |  |  |
| 19. | พันธะระหว่างคาร์บอนกับอ                                                                                | ออกซิเจนในข้อใดควรจะแข็ง                             | งแรงที่สุด                                                |                                                                |  |  |
|     | n. CH <sub>3</sub> OH                                                                                  | v. COCl₂                                             | A. CF <sub>3</sub> CO <sub>2</sub>                        | 4. CO <sub>3</sub> <sup>2-</sup>                               |  |  |
| 20. | การเปรียบเทียบความยาวง                                                                                 | พันธะในโมเลกุลต่อไปนี้ ข้อใ                          | โดถูกต้อง                                                 |                                                                |  |  |
|     | n. $CO_2 > CS_2 > CO$                                                                                  | ,                                                    | ข. H <sub>2</sub> S > HF > HCl                            |                                                                |  |  |
|     | P. $C_2H_2 > C_2H_4 > C_2H_6$                                                                          |                                                      | 4. PBr <sub>3</sub> > NBr <sub>3</sub> > NCl <sub>3</sub> |                                                                |  |  |
|     | (พันธะระหว่าง C กับ (                                                                                  | C)                                                   |                                                           |                                                                |  |  |
| 21. | ธาต X, Y และ Z มีเลขอะเ                                                                                | ตอมเท่ากับ 8, 15 และ 17 เ                            | ตามลำดับ พิจารณาสูตรเค                                    | มี : YX <sub>4</sub> ³-, YZ <sub>3</sub> และ ZX <sub>3</sub> - |  |  |
|     | ข้อใด <u>ผิด</u>                                                                                       |                                                      | v                                                         |                                                                |  |  |
|     | ก. มุมระหว่างพันธะของ '                                                                                | YX₄³⁻ มากกว่า YZ₃                                    |                                                           |                                                                |  |  |
|     | ข. YZ <sub>3</sub> และ ZX <sub>3</sub> ี มีรูปร่า                                                      | างโมเลกุลเหมือนกัน                                   |                                                           |                                                                |  |  |
|     |                                                                                                        |                                                      |                                                           |                                                                |  |  |

ค. อะตอมกลางของ  $YX_4^{3-}$  และ  $YZ_3$  มีจำนวนอิเล็กตรอนคู่โดดเดี่ยวเท่ากัน ง. เขียนโครงสร้างลิวอิสของ  $YX_4^{3-}$ ,  $YZ_3$  และ  $ZX_3^-$  ที่เป็นไปตามกฎออกเตตได้ 22. โครงสร้างโมเลกุลของกรตอะมิโน alanine แสดงดังรูป โดยทรงกลมสีขาวแทนอะตอม H



การสร้างพันธะของ alanine เป็นไปตามกฎออกเตต พิจารณาข้อความต่อไปนี้

- อะตอม O ที่ตำแหน่ง O<sub>1</sub> สร้างพันธะคู่กับ C และยังเหลืออิเล็กตรอนคู่โดดเดี่ยว 2 คู่
- 2) อะตอม O ที่ตำแหน่ง  $O_2$  สร้างพันธะเดี่ยวกับ C และมุมพันธะ C-O-H มีค่ามากกว่า 109.5° เล็กน้อยเนื่องจากผลของอิเล็กตรอนคู่โดดเดี่ยว
- 3) ที่ตำแหน่ง C<sub>1</sub> มุมพันธะ H-C-H ที่อะตอม H อยู่ใกล้กัน มีค่าใกล้เคียง 90°
- รูปร่างโมเลกุลรอบอะตอมกลาง C ที่ตำแหน่ง C₂ เป็นทรงสี่หน้า
- รูปร่างโมเลกุลรอบอะตอมกลาง C ที่ตำแหน่ง C₃ เป็นสามเหลี่ยมแบนราบ ข้อใดถูก

ก. 1, 2 และ 4

ข. 2,3 และ 5

ค. 3, 4 และ 5

ง. 1,4 และ 5

23. แผนภาพของโมเลกุล  $CH_3NH_2$  ในข้อใดแสดงทิศทางขั้วของพันธะที่เกี่ยวข้องและทิศทางขั้วสุทธิ (Net) ของ โมเลกุลได้ถูกต้อง



24. พิจารณาโมเลกุลหรือไอออนต่อไปนี้  $NO_2$ ,  $SnCl_2(g)$  และ  $I_3^-$  ข้อใดมีรูปร่างโมเลกุล<u>ไม่</u>เป็นเส้นตรง ก.  $NO_2$  และ  $SnCl_2$  ข.  $SnCl_2$  และ  $I_3^-$  ค.  $I_3^-$  และ  $NO_2$  ง.  $NO_2$  เท่านั้น

25. ข้อใดเปรียบเทียบมุมระหว่างพันธะภายในโมเลกุลได้ถูกต้อง

n. 
$$CS_2 > BF_3 > NH_3 > H_2S$$

$$v. CS_2 > BF_3 > H_2S > NH_3$$

$$PA. NH_3 > H_2S > BF_3 > CS_2$$

26. ข้อมูลของสารประกอบในข้อใดถูกต้อง

| สารประกอบ                         | จำนวนพันธะรอบ<br>อะตอมกลาง | จำนวนอิเล็กตรอนคู่โดดเดี่ยว<br>รอบอะตอมกลาง (คู่) | มุมระหว่างพันธะ | สภาพขั้ว  |
|-----------------------------------|----------------------------|---------------------------------------------------|-----------------|-----------|
| <u>Xe</u> F <sub>4</sub>          | 4                          | 2                                                 | 90°             | ไม่มีขั้ว |
| <u>CL</u> F <sub>3</sub>          | 3                          | 2                                                 | > 90°           | มีข้า     |
| CH <sub>3</sub> COCH <sub>3</sub> | 3                          | 0                                                 | 120°            | ไม่มีข้ำ  |
| Br <u>C</u> N                     | 2                          | 0                                                 | 180°            | มีขั้ว    |

27. เมื่อผ่านแก๊ส HCl 0.1 mol ลงในน้ำปริมาตร 1 L จะได้สารละลายกรด การเปลี่ยนแปลงนี้มีแรงยึดเหนี่ยว ระหว่างโมเลกุลชนิดใดสูญหายไป

ก. พันธะโคเวเลนต์ H-Cl

ข. แรงระหว่างขั้วในสาร HCl

ค. พันธะไฮโดรเจนระหว่างโมเลกุล HCl

ง. พันธะไฮโดรเจนระหว่างโมเลกุล H₂O

28. การเปรียบเทียบจุดเดือดของสารประกอบในข้อใตถูกต้อง

- n. C<sub>2</sub>H<sub>5</sub>OH > CH<sub>3</sub>OCH<sub>3</sub>> CH<sub>3</sub>COOH
- V. CH3OH > CH4 > SiH4

A. CHCl3 > CH2Cl2 > CH3Cl

1. HI > HBr > HF

29. จากข้อมูลของธาตุโบรมีนในตารางธาตุต่อไปนี้



พิจารณาข้อสรุปต่อไปนี้

- โบรมีนที่เสถียร ในธรรมชาติมี 2 ไอโซโทปคือ <sup>79</sup>Br (มวลอะตอม = 78.918) ร้อยละ 60.000 และ <sup>81</sup>Br (มวลอะตอม = 80.916) ร้อยละ 40.000
- 2) โบรมีน 1 อะตอม มีมวลของโปรตอนเท่ากับ 35.245 u
- โบรมีนเหลวบริสุทธิ์ 1 โมล มีมวลเท่ากับ 159.808 g

ข้อใดถก :

ก. 1 และ 2 เท่านั้น

ข. 1 และ 3 เท่านั้น ค. 2 และ 3 เท่านั้น ง. 1, 2 และ 3

30. ถ้าเลขอาโวกาโดร (Avogadro's number) ใหม่เท่ากับ  $9.02 \times 10^{22}$  ต่อโมล จะส่งผลให้ข้อความใดถูกต้อง

- ก. แก๊สคาร์บอนไดออกไซด์จะมีมวลต่อโมลมากขึ้น
- ข. น้ำตาลซูโครส 1 g จะให้พลังงานแก่เซลล์ได้น้อยกว่าเดิม
- ค. ต้องใช้โฟตอนที่มีความถี่สูงขึ้นในการกระตุ้นอิเล็กตรอนของไฮโดรเจน
- เมื่อละลายโซเดียมไฮดรอกไซด์ 1 โมล ในน้ำ 1 L จะคายพลังงานน้อยกว่าเดิม

| J   | เอทานอส ((                                                                                                     | -21 15O1 17 X 11 a                                             | 94 941                          | 111001 y Danier                              | 1161600                               | มยส (C3⊓8C                          | 3/ 50/ 1 11000             | 27 66            | ฮโดรเจนก็อะตอม                                                     |
|-----|----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|---------------------------------|----------------------------------------------|---------------------------------------|-------------------------------------|----------------------------|------------------|--------------------------------------------------------------------|
|     | n. <i>y</i> /16                                                                                                |                                                                | ข.                              | y/8                                          | Р.                                    | <i>y</i> /2                         |                            | ۹.               | y                                                                  |
| 32. |                                                                                                                | A 1.00 g มาก<br>วลอะตอมเท่าใ                                   |                                 | ยด้วยกรด จากนั้น                             | นำไปตกต                               | กะกอน พบว                           | ว่า ได้ตะกอเ               | a AS             | 5O <sub>4</sub> 1.50 g                                             |
|     | n. 48                                                                                                          |                                                                | ข.                              | 64                                           | P.                                    | 96                                  |                            | ۹.               | 192                                                                |
| 33. | จำนวนอะตร                                                                                                      | อมทั้งหมดในแ                                                   | มกนี                            | เซียมไซยาไนด์ (ma                            | agnesiur                              | n cyanide)                          | ) 91.2 g เป็               | นเท่า            | าใด                                                                |
|     | n. 7.22 x                                                                                                      |                                                                |                                 | $2.17 \times 10^{24}$                        |                                       |                                     |                            |                  | $3.61 \times 10^{24}$                                              |
| 34. |                                                                                                                | 1 22                                                           | ถ้าม                            | เลกุลประกอบด้วย<br>เวลอะตอมของธาตุ<br>32     | B เท่ากัง                             |                                     |                            | เตุ A            | อยละโดยมวลของ B<br>เป็นเท่าใด<br>108                               |
| 35. | ก. โซเดียม                                                                                                     |                                                                | ງຍລະ                            | โดยมวลของธาตุอย                              | ข.                                    | งที่สุด<br>ซัลเฟอร์ได<br>แมกนีเชียม |                            | ด์               |                                                                    |
| 36. | 120                                                                                                            | X 12.00 g กัง<br>ลอะตอมเท่าใด                                  |                                 | สออกซิเจนมากเกิน                             | พอ ได้ผลิ                             | เตภัณฑ์เป็นส                        | สารประกอเ                  | X <sub>2</sub> ر | O 14.46 g                                                          |
|     | ก. 23                                                                                                          |                                                                | ข.                              | 39                                           | ข.                                    | 78                                  |                            | ۹.               | 156                                                                |
| 37. | สลายตัวพบ<br>มวล และที่เ                                                                                       | ว่า ได้ผลิตภัณ<br>หลือเป็นไอน้ำ                                | เท่เป็า<br>ข้อ                  |                                              | ก์ร้อยละ :<br>ัลของสาร                | 26.9 โดยมว<br>ประกอบนี้             | ล คาร์บอนไ                 | เดอส             | ให้ความร้อนจนเกิดก<br>อกไซด์ร้อยละ 21.1 โ<br>CaCO₃·2H₂O            |
|     | n. CaCO <sub>3</sub>                                                                                           |                                                                |                                 |                                              |                                       |                                     |                            |                  |                                                                    |
| 38. | แก๊สคลอรีน                                                                                                     | และแก๊สออก<br>บออกไซด์ของ                                      | ซิเจน<br>คลอร์                  | แกิดปฏิกิริยาการแ<br><b>่</b> นเพียงสารเดียว | เยกสลาย<br>เมื่อทดลเ                  | ด้วยแสงวาง<br>องใช้แก๊สคล           | บ (flash ph<br>อรีนกับแก๊ส | noto<br>labi     | blysis) ให้ผลิตภัณฑ์เ<br>าซิเจนปริมาณต่าง ๆ                        |
| 38. | แก๊สคลอรีน<br>สารประกอ                                                                                         | และแก๊สออก<br>บออกไซด์ของ                                      | คลอริ                           | นเพียงสารเดียว                               | เยกสลาย<br>เมื่อทดละ<br>(สออกชิเจ     | องใช้แก๊สคล                         | อรีนกับแก๊ส                | ออก              | blysis) ให้ผลิตภัณฑ์เ<br>าซิเจนปริมาณต่าง ๆ<br>อบออกไซด์ที่ได้ (g) |
| 38. | แก๊สคลอริน<br>สารประกอ<br>ได้ผลดังต่อไ                                                                         | มและแก๊สออก<br>บออกไซด์ของ<br>ไปนี้                            | คลอริ<br>ลอริน                  | นเพียงสารเดียว                               | เมื่อทดลเ                             | องใช้แก๊สคล                         | อรีนกับแก๊ส                | ออก              | าชีเจนปริมาณต่าง ๆ                                                 |
| 38. | แก๊สคลอรีน<br>สารประกอ<br>ได้ผลดังต่อไ                                                                         | มและแก๊สออก<br>บออกไซด์ของ<br>ไปนี้<br>มวลแก๊สคล               | คลอรี<br>ลอรีน<br>0             | นเพียงสารเดียว                               | เมื่อทดละ<br>โสออกชิเจ                | องใช้แก๊สคล                         | อรีนกับแก๊ส                | ออก              | าซิเจนปริมาณต่าง ๆ<br>อบออกไซด์ที่ได้ (g)                          |
| 38. | แก๊สคลอรีน<br>สารประกอ<br>ได้ผลดังต่อไ<br>ครั้งที่<br>1                                                        | มและแก๊สออก<br>บออกไซด์ของ<br>ไปนี้<br>มวลแก๊สคอ<br>7.1        | คลอริ<br>ลอริน<br>0             | นเพียงสารเดียว                               | เมื่อทดละ<br>สออกซิเร<br>3.20         | องใช้แก๊สคล                         | อรีนกับแก๊ส                | ออก<br>ระกา      | าซิเจนปริมาณต่าง ๆ<br>อบออกไซต์ที่ได้ (g)<br>7.96                  |
| 38. | <ul> <li>แก๊สคลอริน</li> <li>สารประกอง</li> <li>ได้ผลดังต่อ</li> <li>ครั้งที่</li> <li>1</li> <li>2</li> </ul> | มและแก๊สออก<br>บออกไซด์ของ<br>ไปนี้<br>มวลแก๊สคล<br>7.1<br>10. | คลอร์<br>ลอร์น<br>0<br>15<br>20 | นเพียงสารเดียว                               | เมื่อทดละ<br>สออกซิเจ<br>3.20<br>6.40 | องใช้แก๊สคล                         | อรีนกับแก๊ส                | ขอก<br>ระกา      | าซิเจนปริมาณต่าง ๆ<br>อบออกไซด์ที่ได้ (g)<br>7.96<br>15.84         |

39. ผงคลอรีนที่ใช้สำหรับฆ่าเชื้อในสระว่ายน้ำเป็นของผสมระหว่างแคลเซียมคลอไรด์กับแคลเซียมไฮโปคลอไรด์ เมื่อเติมผงคลอรีน 1.5 kg ลงในสระว่ายน้ำขนาด 100,000 L แล้วนำน้ำไปตรวจวัดปริมาณไอออนพบว่า ความเข้มข้นของแคลเซียมไอออน (Ca²+) คลอไรด์ไอออน (Cl⁻) และไฮโปคลอไรต์ไอออน (ClO⁻) เท่ากับ 0.100, 0.067 และ 0.133 mM ตามลำดับ สมมุติให้น้ำในสระว่ายน้ำยังคงมีความหนาแน่นเท่ากับน้ำบริสุทธิ์ เศษส่วนโมลของแคลเซียมไฮโปคลอไรต์ในผงคลอรีนเป็นเท่าใด

n. 0.34

ข. 0.50

ศ. 0.66

4. 0.80

40. X เป็นโลหะที่มีมวลอะตอมเท่ากับ 200 และไอออนของโลหะ X เป็นพิษต่อสิ่งแวดล้อม ถ้าตัวอย่างน้ำจาก แม่น้ำแห่งหนึ่งมีใอออนของโลหะ X เข้มข้น 0.50 mg/10.0 kg และมีความหนาแน่น 1.0 g/mL ความเข้มข้น ของไอออนของโลหะ X ในหน่วยโมลาร์ ร้อยละโดยมวล และส่วนในพันล้านส่วน เป็นดังข้อใด

|    | โมลาริตี (mol/L)     | ร้อยละโดยมวล (%w/w)  | ส่วนในพันล้านส่วน (ppb) |
|----|----------------------|----------------------|-------------------------|
| n. | 2.5                  | 5.0                  | 50                      |
| ข. | 0.25                 | 5.0                  | $5.0 \times 10^{5}$     |
| ค. | $2.5 \times 10^{-7}$ | $5.0 \times 10^{-6}$ | $5.0 \times 10^{5}$     |
| ٩. | $2.5 \times 10^{-7}$ | $5.0 \times 10^{-6}$ | 50                      |

- 41. การแปลงหน่วยความเข้มข้นข้อใด<u>ไม่</u>ต้องใช้ค่าความหนาแน่นของสารละลาย
  - ก. โมแลลิตีเป็นโมลาริตี

- ข. โมแลลิตีเป็นร้อยละโดยมวล
- ค. โมลาริตีเป็นร้อยละโดยปริมาตร
- ง. ร้อยละโดยปริมาตรเป็นร้อยละโดยมวล
- 42. พิจารณาสารละลาย a, b และ c ต่อไปนี้
  - a : สารละลาย NaCl เข้มข้น 50 ppm
  - b : สารละลาย NaCl เข้มข้นร้อยละ 0.050 โดยมวลต่อปริมาตร
  - c : สารละลาย NaCl เข้มข้น  $5.0 \times 10^{-3} \, \mathrm{M}$  ข้อใดเปรียบเทียบความเข้มข้นของสารละลายได้ถูกต้อง
  - n. a > b > c
- v. a>c>b
- ค. b>c>a
- a < b > a
- 43. ถ้าต้องการเตรียมสารละลายกรดซัลฟิวริก (H<sub>2</sub>SO<sub>4</sub>) เข้มข้น 1 M ปริมาตร 100 mL จากกรดซัลฟิวริกในขวดที่ ฉลากระบุว่า เข้มข้นร้อยละ 95.9 โดยมวล และมีความหนาแน่น 1.84 g/mL จะต้องใช้กรดจากขวดนี้ปริมาตร เท่าใด และควรเตรียมในภาชนะใด

|    | ปริมาตรกร <mark>ดที่</mark> ใช้ (mL) | ภาชนะที่ใช้     |
|----|--------------------------------------|-----------------|
| n. | 5.6                                  | ขวดกำหนดปริมาตร |
| ข. | 5.6                                  | ปีกเกอร์        |
| ค. | 18                                   | ขวดกำหนดปริมาตร |
| ۹. | 18                                   | ปีกเกอร์        |

| 44. | สารละลายให้เป็น 100.00<br>ลงในขวดกำหนดปริมาตรข                             | mL ในขวดกำหนดปริมาต                                                                           | าร จากนั้นปีเปต <sup>ิ</sup> สารสารล<br>ากลั่นจนจุดต่ำสุดของส่วนโ | นน้ำกลั่น แล้วปรับปริมาตร<br>เะลายที่เตรียมได้ 5.00 mL<br>ค้งของสารละลายอยู่ตรงกับ<br>วนในล้านส่วน |
|-----|----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|-------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
|     | ก. 0.127                                                                   | ข. 127                                                                                        | ค. 199                                                            | 1, 499                                                                                             |
|     | หลังจากการทำไอศกรีมพบ<br>ของสารละลาย A เป็นกี่องก<br>กำหนดให้ มวลโมเลกุลขอ | ว่า เมื่อน้ำแข็งในถังละลาย<br>ศาเซลเซียส<br>ง A เท่ากับ 100 และสาร A                          | หมด สารละลาย A มีปริมา<br>. ไม่แตกตัวเป็นไอออน                    | ลงในถังที่มีน้ำแข็ง 3.0 kg<br>ตรเป็น 3.5 L จุดเยือกแข็ง                                            |
|     | n2.8                                                                       | უ. −2.4                                                                                       | ค0.76                                                             | ١. 2.8                                                                                             |
| 46. | ปริมาตร, 1.0 M และ 1.0                                                     | ยของเอทิลีนไกลคอล (C₂H<br>m ตามลำดับ ถ้าสารละลา<br>จุดเยือกแข็งของสารละลาย                    | ย C มีความหนาแน่นเท่ากับ                                          | < B                                                                                                |
| 47  | การผลิตกรดในทริกในอตส                                                      | าหกรรมอาศัยปฏิกิริยาเคมีด์                                                                    | กังสมการ                                                          |                                                                                                    |
| 71. |                                                                            | $\rightarrow$ HNO <sub>3</sub> (aq) + NO(g)                                                   | (สมการยังไม่ดูล)                                                  |                                                                                                    |
|     |                                                                            | 7.56 kg ต้องใช้ในโตรเจนได                                                                     | 226                                                               |                                                                                                    |
|     | n. 3.7                                                                     | ข. 5.5                                                                                        | ค. 8.3                                                            | ۹. 16                                                                                              |
| 48. | <u>ชนิดเดียว</u> จำนวน 1 โมล                                               | ปฏิกิริยาพอดีกับธาตุโบรมีน<br>ข้อใดคือสูตรเคมีของสารผลิ<br>ข. Al <sub>2</sub> Br <sub>6</sub> | ตภัณฑ์                                                            | นสารประกอบโบรไมด์ <u>เพียง</u><br>ง. Al <sub>4</sub> Br <sub>12</sub>                              |
| 49. | มาเติมสารตกตะกอน ได้เ                                                      | แก่ สารละลาย NaIO3 เข้มร                                                                      | ข้น 0.0100 M ปริมาตร 20                                           | อนำตัวอย่างน้ำ 200.00 mL<br>).00 mL หลังจากตกตะกอน<br>ไอออนในน้ำตัวอย่างนี้เป็นกี่                 |
|     | n. 1.78                                                                    | ข. 0.890                                                                                      | ค. 0.445                                                          | ₹. 0.405                                                                                           |
| 50. |                                                                            | ) L มาทำปฏิกิริยาเผาไหม้อย                                                                    |                                                                   | 0.816 g/mL ถ้านำน้ำมัน<br>บอนไดออกไซด์กี่ลิตรที่ STP<br>ง. 1.79 × 10²                              |

51. น้ำส้มสายชูชนิดหนึ่งฉลากระบุว่า มีกรดแอซีติก (CH<sub>3</sub>COOH) เข้มข้นร้อยละ 5.0 โดยมวลต่อปริมาตร และมี ความหนาแน่น 1.0 g/mL เมื่อนักเรียนทดลองหาปริมาณกรดแอซีติกในน้ำส้มสายชูชนิดนี้ พบว่า น้ำส้มสายชู 10.00 mL ทำปฏิกิริยาพอดีกับสารละลายโซเดียมไฮดรอกไซด์ (NaOH) เข้มขัน 0.40 M ปริมาตร 20.50 mL ได้ CH<sub>3</sub>COONa และน้ำเป็นผลิตภัณฑ์ พิจารณาข้อความต่อไปนี้
1) น้ำส้มสายชูมีกรดแอซีติกเข้มขัน 0.82 M
2) น้ำส้มสายชูมีกรดแอซีติกเข้มขันร้อยละ 4.9 โดยมวลต่อปริมาตร
3) ปริมาณกรดแอซีติกที่ได้จากผลการทดลองมากกว่าค่าที่ระบุบนฉลากร้อยละ 2 ข้อใดถูก
ก. 1 และ 2 เท่านั้น ข. 1 และ 3 เท่านั้น ค. 2 และ 3 เท่านั้น ง. 1, 2 และ 3

52. สารประกอบ Y ทำปฏิกิริยากับ  $O_2$  มากเกินพอ เกิดเป็น  $Fe_2O_3$  8.00 g และแก๊ส  $SO_2$  3.36 L ที่ STP ข้อใดคือสูตรเอมพิริคัลของสารประกอบ Y

n. FeS

v. FeS2

A. Fe<sub>2</sub>S<sub>3</sub>

1. Fe<sub>3</sub>S<sub>4</sub>

53. น้ำตัวอย่างวัตถุระเบิดชนิดหนึ่ง 0.188 g ซึ่งมี KClO₃ เป็นองค์ประกอบ มาละลายแล้วทำปฏิกิริยากับ สารละลาย Fe²+ เข้มข้น 0.12 M ปริมาตร 50.0 mL เกิดปฏิกิริยาดังนี้

 $ClO_3^-(aq) + 6Fe^{2+}(aq) + 6H^+(aq) \longrightarrow Cl^-(aq) + 6Fe^{3+}(aq) + 3H_2O(l)$  เมื่อสิ้นสุดปฏิกิริยาหาปริมาณ  $Fe^{2+}$  ที่เหลือ พบว่า ทำปฏิกิริยาพอดีกับสารละลาย  $Ce^{4+}$  เข้มข้น 0.080 M ปริมาตร 15.0 mL โดยอัตราส่วนโมลของปฏิกิริยาระหว่าง  $Fe^{2+}$ :  $Ce^{4+}$  เป็น 1:1 ร้อยละโดยมวลของ  $KClO_3$  ในตัวอย่างวัตถุระเบิดนี้เป็นเท่าใด

ก. 0.098

ข. 13

ค. 52

1. 64

54. กำหนดให้ เอทานอลผลิตได้จากปฏิกิริยา 2 ขั้นตอนดังนี้

 $CO_2(g) + H_2O(l) \longrightarrow C_6H_{12}O_6(s) + O_2(g)$ 

(สมการยังไม่ดุล)

 $C_6H_{12}O_6(s) \longrightarrow CO_2(q) + C_2H_5OH(l)$ 

(สมการยังไม่ดูล)

ถ้าต้องการเตรียมสารละลายเอทานอลเข้มข้นร้อยละ 75 โดยปริมาตร จำนวน 200 mL ต้องใช้แก๊ส คาร์บอนไดออกไซด์กี่กรัมเป็นสารตั้งต้น กำหนดความหนาแน่นของเอทานอลเท่ากับ 0.782 g/mL

n. 5.1

ข. 56

ค. 112

3 220

55. เมื่อผสมสารละลาย  $Pb(NO_3)_2$  เข้มข้น 0.100 M ปริมาตร 25.0 mL กับสารละลาย KI เข้มข้น 0.100 M ปริมาตร 45.0 mL จะเกิดตะกอน  $Pbl_2$  มากที่สุดกี่กรัม

n. 0.576

ข. 1.04

ค. 2.07

s. 4.15

56. โซเดียมไฮดรอกไซด์ (NaOH) 4.0 g ทำปฏิกิริยากับแคลเซียมคลอไรด์ (CaCl<sub>2</sub>) 11.1 g โดยมีน้ำเป็น ตัวทำละลาย หลังปฏิกิริยาเกิดสมบูรณ์มีผลิตภัณฑ์เกิดขึ้นรวมกันกี่กรัม

ก. 5.8

ข. 9.6

ค. 13.2

s. 15.1

- 57. แก๊ส X และแก๊ส Y เกิดปฏิกิริยาดังนี้ 3X(g) + 5Y(g) → 2Z(g) เมื่อผสมแก๊ส X ปริมาตร 60 mL กับแก๊ส Y ปริมาตร 300 mL หลังจากปฏิกิริยาเกิดสมบูรณ์ (วัดปริมาตรแก๊ส ที่อุณหภูมิและความดันเดียวกันทั้งหมด) ข้อใดถูก
  - ก. เกิดแก๊ส Z ปริมาตร 90 mL
  - ข. ปริมาตรแก๊ส Y มากกว่าแก๊ส Z อยู่ 174 mL
  - ค. มีเฉพาะแก๊ส Y และ Z ปริมาตรรวม 354 mL
  - แก๊ส X เป็นสารกำหนดปริมาณ และมีแก๊ส Y เหลืออยู่ 200 mL
- 58. พิจารณาปฏิกิริยาต่อไปนี้  $C_2H_6(g) + O_2(g) \longrightarrow H_2O(g) + CO_2(g)$  (สมการยังไม่ดุล) ที่อุณหภูมิและความดันคงที่ หากผสมแก๊สอีเทนและแก๊สออกซิเจนปริมาตรเท่ากัน พบว่า เกิดแก๊สคาร์บอน ไดออกไซด์ปริมาตรเป็น 1/8 ของปริมาตรเริ่มต้นของแก๊สอีเทน ผลได้ร้อยละของปฏิกิริยานี้เป็นเท่าใด
  - n. 7
- ข. 12
- ศ. 22
- ۹. 25

59. ผลได้ร้อยละของปฏิกิริยาต่อไปนี้เท่ากับ 80

6KI(aq) + 8HNO₃(aq) → 6KNO₃(aq) + 2NO(g) + 3I₂(s) + 4H₂O(l) ถ้า KI 0.500 kg ทำปฏิกิริยากับสารละลาย HNO₃ มากเกินพอ จะเกิดแก๊ส NO กี่ลิตรที่ STP

- ก. 18.0
- ข. 22.5
- ค. 28.1
- ٩. 162

60. ผลได้ร้อยละของปฏิกิริยาต่อไปนี้เท่ากับ 75

 $CaO(s) + 2NH_4Cl(s) \longrightarrow 2NH_3(g) + H_2O(g) + CaCl_2(s)$ ถ้า CaO 168 g ทำปฏิกิริยากับ  $NH_4Cl$  535 g จะเกิดแก๊สแอมโมเนียกี่กรัม

- n. 76.5
- পা. 102
- ค. 128
- ٩. 136

# ส่วนที่ II. ข้อสอบอัตนัยแบบเขียนตอบ จำนวน 15 ข้อ ข้อละ 2 คะแนน รวม 30 คะแนน เขียนคำตอบลงในช่องว่างที่กำหนดให้ในกระดาษคำตอบ

- 61. ธาต X, Y และ Z มีเลขอะตอมน้อยกว่า 20 และมีสมบัติดังนี้
  - ธาตุ X: เป็นธาตุที่มีจุดเดือดและจุดหลอมเหลวสูงกว่า 3,000 °C ไม่ละลายน้ำ ธาตุ X 1 อะตอมมี อิเล็กตรอนใน 2p จำนวน 2 อิเล็กตรอน

ธาตุ Y: อยู่หมู่เดียวกับ <sub>9</sub>F

- ธาตุ Z: ในธรรมชาติอยู่ในรูปโมเลกุลอะตอมคู่ เกิดปฏิกิริยาได้กับธาตุที่เป็นทั้งโลหะและอโลหะ เมื่อ เกิดปฏิกิริยากับโลหะ มักเรียกว่า "กระบวนการเกิดสนิม" เช่น สนิมเหล็ก สนิมทองแดง
- 61.1 เรียงลำดับรัศมีอะตอมของธาตุ X, Y และ Z จากมากไปน้อย
- 61.2 เขียนโครงสร้างลิวอิสของสารประกอบ XZY $_2$  โดยแสดงอิเล็กตรอนคู่โดดเดี่ยวให้ครบถ้วน

62. สารประกอบคาร์บอเนตของโลหะ หลังจากเกิดปฏิกิริยาการเผาไหม้อย่างสมบูรณ์จะได้สารประกอบออกไซด์ และแก๊สคาร์บอนไดออกไซด์ ทำการทดลองเผาคาร์บอเนตของธาตุ A, D และ E (ธาตุทั้งสามชนิดเป็นธาตุหมู่ หลักที่อยในคาบเดียวกัน) ได้ผลดังนี้

คาร์บอเนตของธาตุ A 1 โมล ได้แก๊สคาร์บอนไดออกไซด์ 1 โมล คาร์บอเนตของธาตุ D 1 โมล ได้แก๊สคาร์บอนไดออกไซด์ 1 โมล คาร์บอเนตของธาตุ E 1 โมล ได้แก๊สคาร์บอนไดออกไซด์ 3 โมล มวลสูตรของออกไซด์ของ D มีค่ามากกว่ามวลสูตรของออกไซด์ของ A

- 62.1 เปรียบเทียบค่าอิเล็กโทรเนกาติวิตีของธาตุ A, D และ E
- 62.2 เขียนสูตรเคมีของคลอไรด์ของธาตุ A และ E
- 63. สาร W ประกอบด้วยธาตุ 4 ชนิด คือ A, D, E และ G ซึ่งธาตุทั้ง 4 ชนิดเป็นธาตุหมู่หลักมีมวลอะตอมน้อยกว่า 20 และโครงสร้างลิวอิสของสาร W เป็นดังนี้



เขียนสูตรเคฺมีของสารประกอบไอออนิกระหว่าง Li<sup>+</sup> กับไอออนของธาตุ A, D, E และ G (โดยที่ 1 ไอออนเกิด จาก 1 อะตอม)

- 64.  $^{238}_{92}$ U มีครึ่งชีวิต  $4.5 \times 10^8$  ปี โดยผลิตภัณฑ์ที่เกิดจากการสลายตัวประกอบด้วยอนุภาคแอลฟา 8 อนุภาค อนุภาคบีตา 6 อนุภาค และธาตุ A ถ้าเริ่มต้นมี  $^{238}_{92}$ U จำนวน 4.76 g เมื่อเกิดการสลายตัวไประยะเวลาหนึ่ง พบว่า ได้ธาตุ A 3.09 g ต้องใช้เวลาในการสลายตัวนานเท่าใด (ตอบเลขนัยสำคัญ 2 ตัว)
- 65. กำหนดข้อมูลพลังงานของกระบวนการต่าง ๆ ต่อไปนี้

$$2\text{Na(s)} + \frac{1}{2}\text{O}_2(\text{g}) \longrightarrow \text{Na}_2\text{O(s)} \qquad -416 \text{ kJ/mol(Na}_2\text{O)}$$

$$\text{Na(s)} \longrightarrow \text{Na(g)} \qquad +107 \text{ kJ/mol}$$

$$\text{Na(g)} \longrightarrow \text{Na}^+(\text{g}) + \text{e}^- \qquad +496 \text{ kJ/mol}$$

$$\text{O}_2(\text{g}) \longrightarrow 2\text{O(g)} \qquad +498 \text{ kJ/mol}$$

$$\text{O(g)} + \text{e}^- \longrightarrow \text{O^-(g)} \qquad -142 \text{ kJ/mol}$$

$$\text{O^-(g)} + \text{e}^- \longrightarrow \text{O}^2\text{-(g)} \qquad +844 \text{ kJ/mol}$$

จงคำนวณพลังงานแลตทิชของสารประกอบ Na<sub>2</sub>O

66. ฟีนอล (phenol,  $C_6H_5OH$ ) เป็นสารอินทรีย์ประเภทแอลกอฮอล์ เมื่อเกิดปฏิกิริยาเผาไหม้จะได้  $CO_2$  และ  $H_2O$ 

$$H \longrightarrow H$$
 OH +  $O_2 \longrightarrow CO_2 + H_2O$  (สมการยังไม่ดุล)

(ที่มุมของรูปหกเหลี่ยม คืออะตอมคาร์บอน, C)

จากค่าพลังงานพันธะเฉลี่ยที่กำหนดให้ต่อไปนี้

| พลังงานพันธะ | C-H | О-Н | C-C | C=C | C-0 | C=0 | 0=0 |
|--------------|-----|-----|-----|-----|-----|-----|-----|
| (kJ/mol)     | 413 | 463 | 346 | 614 | 358 | 804 | 498 |

- 66.1 ปฏิกิริยานี้ดูดหรือคายความร้อน
- 66.2 พลังงานต่อโมลของ phenol ของปฏิกิริยามีค่ากี่กิโลจูล
- 67. สาร X, Y และ Z มีสมบัติบางประการแสดงในตาราง

| -   | การน้       | ำไฟฟ้า       | สมบัติอื่น ๆ                                                                                                        |  |
|-----|-------------|--------------|---------------------------------------------------------------------------------------------------------------------|--|
| สาร | สภาพของแข็ง | สภาพหลอมเหลว | - สมบดอน ๆ                                                                                                          |  |
| X   | ไม่นำ       | นำ           | ละลายน้ำได้ มีธาตุองค์ประกอบ 4 ชนิด<br>จำนวนอะตอมในสูตรเอมพิริคัลเท่ากับ 14<br>ไอออนลบมีรูปร่างเป็นสามเหลี่ยมแบนราบ |  |
| Y   | ไม่น้ำ      | ไม่นำ        | ไม่ละลายน้ำ จุดหลอมเหลวสูงมาก และแข็งมาก<br>นิยมใช้ทำเครื่องประดับ                                                  |  |
| Z   | นำ          | นำ           | เกิดปฏิกิริยากับน้ำได้แก๊ส                                                                                          |  |

กำหนดขอบเขตของสารและธาตุที่อาจเป็นองค์ประกอบของสาร X, Y และ Z ดังนี้

H Li C N O Al P Fe Zn Ag เพชร แกรไฟต์ ซิลิคอนคาร์ไบด์

- 67.1 X, Y และ Z ควรเป็นสารใด ตอบโดยระบุสูตรเคมีหรือชื่อของสารตามความเหมาะสม
- 67.2 สำหรับสารที่เป็นสารประกอบไอออนิก ไอออนลบมีอะตอมสร้างพันธะโคเวเลนต์รวมกี่พันธะ
- 68. โลหะแทรนซิชัน A ที่พบในธรรมชาติมี 3 ไอโซโทป โดย <sup>56</sup>A (มวลอะตอม = 56.00) มีปริมาณเป็น 46 เท่าของ <sup>54</sup>A (มวลอะตอม = 54.00) และไอโซโทปชนิดที่สามมีปริมาณเป็น 3 เท่าของ <sup>54</sup>A ถ้ามวลอะตอมเฉลี่ยของ A เท่ากับ 56.02 มวลอะตอมของไอโซโทปชนิดที่สามมีค่าเท่าใด (ตอบเลขนัยสำคัญ 4 ตัว)
- 69. โมเลกุลของอัญรูปหนึ่งของกำมะถันมีมวล  $3.19 \times 10^{-22} \, \mathrm{g}$ 
  - 69.1 เขียนสูตรโมเลกุลของอัญรูปนี้ (ตอบโดยใช้สัญลักษณ์ธาตุตามตารางธาตุ)
  - 69.2 ถ้ากำมะถันอัญรูปนี้มีสูตรเป็น S<sub>n</sub> กำมะถันอัญรูปนี้กี่กรัมจะมีจำนวนอะตอมเท่ากับจำนวนอะตอมใน ฟอสฟอรัส (P<sub>4</sub>) 62.0 g (ตอบในรูปของ n)

- 70. สารประกอบชนิดหนึ่งประกอบด้วย C, H, N และ O เมื่อนำสารชนิดนี้ 8.00 g ไปละลายในตัวทำละลาย อินทรีย์ ได้สารละลายที่มีความเข้มข้น 0.100 M ปริมาตร 400 mL เขียนสูตรโมเลกุลของสารประกอบนี้ กำหนดให้ ร้อยละโดยมวลของ N = 28, C = 9 เท่าของ H, และ O = 8 เท่าของ H
- 71. สารประกอบ X ประกอบด้วยธาตุ C, H, O และ N โดยมี C, H และ O ร้อยละ 33.5, 1.5 และ 45.0 โดยมวล ตามลำดับ เมื่อละลายสาร X 1.70 g ในไซโคลเฮกเซน ( $C_6H_{12}$ ) 50.0 mL พบว่า สารละลายที่ได้มีจุด เยือกแข็ง 0.60 °C เขียนสูตรโมเลกุลของสารประกอบนี้
- 72. เมื่อละลายชิ้นโลหะผสมที่ประกอบด้วยเหล็กและอะลูมิเนียม 20.5 g ในสารละลายกรดไฮโดรคลอริกมากเกินพอ เกิดแก๊สไฮโดรเจนปริมาตร 11.8 L ที่ STP ดังสมการเคมี

$$Fe(s) + 2HCl(aq) \longrightarrow FeCl_2(aq) + H_2(g)$$

$$2Al(s) + 6HCl(aq) \longrightarrow 2AlCl_3(aq) + 3H_2(q)$$

ร้อยละโดยมวลของเหล็กในชิ้นโลหะผสมเป็นเท่าใด (ตอบเลขนัยสำคัญ 2 ตัว)

73. ปฏิกิริยาการผลิตแก๊ส Z มี 2 ขั้นดังนี้

$$A \longrightarrow B + C$$

(1)

$$C + X \longrightarrow Z(g)$$

(2)

ถ้าผลได้ร้อยละของปฏิกิริยา (1) และปฏิกิริยา (2) เท่ากับ 60 และ 40 ตามลำดับ ถ้ามีสาร X มากเกินพอ สาร A 6.24 kg จะผลิตแก๊ส Z ได้ปริมาตรกี่ลิตรที่ STP (ตอบเลขนัยสำคัญ 3 ตัว) กำหนดให้ มวลต่อโมล (g/mol) ของ A = 312, X = 600, Z = 180

- สารประกอบ MCl<sub>4</sub> 3.80 g ทำปฏิกิริยากับสารละลายกรดชัลฟิวริกมากเกินพอ ได้แก๊สไฮโดรเจนคลอไรด์
   2.92 g และสารประกอบ M(SO<sub>4</sub>)<sub>2</sub> เป็นผลิตภัณฑ์ มวลอะตอมของธาตุ M เป็นเท่าใด
- 75. กรดฟอสโฟทังสติก ( $H_3PW_{12}O_{40}$ ) เตรียมได้จากปฏิกิริยาระหว่างกรดฟอสฟอริก ( $H_3PO_4$ ) และโซเดียมทั้งสเตต ( $Na_2WO_4$ ) ในสารละลายกรดไฮโดรคลอริกเข้มข้น ปฏิกิริยานี้มีน้ำและสารอื่นที่ไม่มีออกซิเจนและไฮโดรเจนเป็น องค์ประกอบเป็นผลิตภัณฑ์ร่วมด้วย
  - 75.1 ปฏิกิริยาการเกิดกรดฟอสโฟทังสติก 1 โมเลกุลจะมีน้ำเกิดขึ้นก็โมเลกุล
  - 75.2 หากต้องการเตรียมกรดฟอสโฟทั้งสติก 14.41 kg ต้องใช้โซเคียมทั้งสเตตอย่างน้อยกี่กิโลกรัม (ตอบเลข นัยสำคัญ 3 ตัว)

กำหนดให้ มวลต่อโมลของ  $Na_2WO_4 = 294$  g/mol,  $H_3PW_{12}O_{40} = 2882$  g/mol

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

# กระดาษคำตอบข้อสอบอัตนัยแบบเขียนตอบ วิชาเคมี

| ชื่อ-สกุล  | เลขประจำตัวสอบ |
|------------|----------------|
| สถานที่สอบ | ห้องสอบ        |
|            |                |

| a     | <b>เ</b> ยนคำตอบลงในช่องว่างที่กำหนดให้                                                                |     | คะแนน  |  |
|-------|--------------------------------------------------------------------------------------------------------|-----|--------|--|
| เขียน |                                                                                                        |     | ที่ได้ |  |
| 51.   | 61.1 รัศมีอะตอมของธาตุ :                                                                               | 1   |        |  |
|       | 61.2 โครงสร้างลิวอิสของสารประกอบ XZY₂ คือ                                                              | 1   |        |  |
| 62.   | 62.1 ค่าอิเล็กโทรเนกาติวิตีของธาตุ : > >                                                               | 1   |        |  |
|       | 62.2 สูตรเคมีของคลอไรด์ของธาตุ A และ E คือ                                                             | 1   |        |  |
| 63.   | สูตรเคมีของสารประกอบไอออนิกระหว่าง                                                                     |     |        |  |
|       | Li <sup>+</sup> กับไอออนของ A :                                                                        |     |        |  |
|       | Li <sup>+</sup> กับไอออนของ D :                                                                        |     |        |  |
|       | Li <sup>+</sup> กับไอออนของ E :                                                                        |     |        |  |
|       | Li <sup>+</sup> กับไอออนของ G :                                                                        |     |        |  |
| 64.   | เวลาที่ใช้ในการสลายตัว = ปี (ตอบเลขนัยสำคัญ 2 ตัว)                                                     | 2   |        |  |
| 65.   | พลังงานแลตที่ชของสารประกอบ Na <sub>2</sub> O =kl/mol                                                   | 2   |        |  |
| 66.   | 66.1 ปฏิกิริยานี้เป็นปฏิกิริยา □ ดูดความร้อน □ คายความร้อน (ทำเครื่องหมาย ✓ ในช่องหน้าข้อความที่เลือก) | 0.5 |        |  |
|       | 66.2 พลังงานต่อโมลของ phenol ของปฏิกิริยามีค่าเท่ากับkI                                                | 1.5 |        |  |

|     |                                                             | คะแนน |                                         |
|-----|-------------------------------------------------------------|-------|-----------------------------------------|
|     |                                                             | เต็ม  | ที่ได้                                  |
| 67. | 67.1 สาร X คือ                                              | 0.5   |                                         |
|     | สาร Y คือ                                                   | 0.5   | *************************************** |
|     | สาร Z คือ                                                   | 0.5   |                                         |
|     | 67.2 ไอออนลบมีพันธะต่อไอออน                                 | 0.5   |                                         |
| 68. | มวลอะตอมของไอโซโทปชนิดที่สาม =                              | 2     |                                         |
| 69. | 69.1 สูตรโมเลกุลของอัญรูปของกำมะถันนี้ คือ                  | 1     |                                         |
|     | 69.2 มวลของกำมะถันอัญรูปนี้ =                               | 1     |                                         |
| 70. | สูตรโมเลกุลของสารประกอบนี้คือ                               | 2     |                                         |
| 71. | สูตรโมเลกุลของสารประกอบ X คือ                               | 2     |                                         |
| 72. | ร้อยละโดยมวลของ Fe =                                        | 2     |                                         |
| 73. | ปริมาตรแก๊ส Z ที่ผลิตได้ =                                  |       |                                         |
| 74. | มวลอะตอมของธาตุ M =                                         | 2     |                                         |
| 75. | 75.1 มีน้ำเกิดขึ้น =โมเลกุล                                 | 1     |                                         |
|     | 75.2 ใช้โซเดียมทั้งสเตตอย่างน้อย =kg (ตอบเลขนัยสำคัญ 3 ตัว) | 1     |                                         |
|     | รวม                                                         | 30    |                                         |

\*\*\*\*\*\*\*\*\*