Astronomy 211 Formulas

Distance d[pc] = 1/parallax[arcsec]

magnitudes $m = C - 2.5 \log_{10} F$; $m_1 - m_2 = -2.5 \log_{10} (F_1/F_2)$, $M - m = 5 - 5 \log_{10} (d/\text{pc})$

Doppler shift $\Delta \lambda / \lambda = -\Delta \nu / \nu = v_{\rm rad} / c$

Gravity and Tides accel= GM/r^2 , accel_{tide} $\approx (GM/r^2)(2R/r)$; escape speed $v_{\rm esc} = \sqrt{2GM/R}$

Kepler $GM = \Omega^2 a^3 = \left(\frac{2\pi}{P}\right)^2 a^3$; $\frac{a_1}{a} = \frac{v_1}{v} = \frac{m_2}{M}$; reduced mass $\mu = m_1 m_2/(m_1 + m_2)$, total mass $M = m_1 + m_2$; for circular orbit $v = \sqrt{GM/a}$, $L = \mu\sqrt{GMa}$; for Solar units (years, AU, M_{\odot}): $P^2 = a^3/M$

Virial Theorem $E_{\text{kin}} = -\frac{1}{2}E_{\text{pot}}$; $E_{\text{tot}} = E_{\text{kin}} + E_{\text{pot}} = \frac{1}{2}E_{\text{pot}}$, [where $E_{\text{pot,binary}} = -\frac{Gm_1m_2}{a}$ and $E_{\text{pot,star}} \approx -\frac{GM^2}{R}$]

Ideal Gas $P = nk_BT = \frac{\rho}{\mu m_H}k_BT$; typical KE per particle is $\frac{3}{2}k_BT$; energy density $u = \frac{3}{2}nk_BT = \frac{3}{2}P$

Degenerate Gas $\Delta x \Delta p \sim \hbar$; $E_{\rm F} = \frac{1}{2} \frac{p_{\rm F}^2}{m_e} \propto n_e^{2/3}$; $P \propto n_e E_{\rm F} \propto n_e^{5/3} \propto (\rho/\mu)^{5/3} \rightarrow R \propto M^{-1/3}$ [non-relativistic]

Photon Propagation $l_{\mathrm{mfp}} = \frac{1}{n\sigma} = \frac{1}{\kappa\rho}; \, t_{\mathrm{randomwalk}} = \frac{R}{l_{\mathrm{mfp}}} \frac{R}{c}$

Blackbody $L=4\pi R^2\sigma T_{\mathrm{eff}}^4,\,F=\sigma T_{\mathrm{eff}}^4;\,\lambda_{\mathrm{peak}}=0.29\,\mathrm{cm}/T$

Light $c = \lambda \nu$, $E = h\nu = hc/\lambda$, p = E/c, energy density $u = aT^4$, pressure $P = (a/3)T^4$

Hydrostatic Equilibrium $\frac{\Delta P}{\Delta r}=\rho\frac{GM}{r^2}=-g\rho\rightarrow P\propto M^2/R^4$

Stars $T_c \propto M/R$, $\rho_c \propto M/R^3$, $P_c \propto M^2/R^4$

Timescales $\tau_{\rm free-fall} \sim \sqrt{1/G\rho}$; $\tau_{\rm Kelvin-Helmholtz} \sim \frac{GM^2/R}{L}$

Hydrogen Fusion $E = \Delta mc^2 \approx 0.7\%c^2$

Hydrogen Atom $E_n = -13.6 \,\mathrm{eV}/n^2$

Jeans mass $M_J = 3k_BTR/2G\mu m_{\rm H}; \ \rho_J = (3/4\pi M^2)(3k_BT/2G\mu m_{\rm H})^3$

Equilibrium Temperature $T_p = T_s(1-A)^{1/4}(R_s/2d)^{1/2}$

Diffraction Limit $\theta = \lambda/D$

Poisson noise uncertainty on n counts is \sqrt{n}