Санкт-Петербургский политехнический университет Петра Великого Институт компьютерных наук и технологий Высшая школа интеллектуальных систем и суперкомпьютерных технологий

Телекоммуникационные технологии

Отчёт по лабораторной работе №11

Работу выполнил: Смирнов Л. Д. Группа: 3530901/80202 Преподаватель: Богач Н. В.

 ${
m Caнкт-} \Pi {
m erep fypr} \\ 2021$

Содержание

1.	. Выполнение работы																3							
	1.1.	Упражнение 1																	 					3
	1.2.	Упражнение 2																	 					3
	1.3.	Упражнение 3				•					•			•					 			•		3
2.	Выв	олы																					(6

1. Выполнение работы

1.1. Упражнение 1

В этом упражнении я, как и указано в книге, изучил, запустил и прослушал все примеры, приведенные в файл chap11.

1.2. Упражнение 2

В качестве выполнения этого упражнения я посмотрл видео о выборках, приведенное в книге.

1.3. Упражнение 3

Для начала я взял запись барабанного соло, использовавшегося ранее и вывел его сигнал после нормализации:

```
wave = read_wave('263868__kevcio__amen-break-a-160-bpm.wav')
wave.normalize()
wave.plot()
```


Затем я вычислил и также вывел спектр этого сигнала:

После этого я понизил частоту выборки и применил фильтр для отсечения частот, значение которых выше заданной.

```
factor = 3
framerate = wave.framerate / factor
cutoff = framerate / 2 - 1
spectrum.low_pass(cutoff)
spectrum.plot()
```

Получившийся спектр выглядит следующим образом:

Далее я добавил функцию, иммитирующую процесс выборки:

```
def sample(wave, factor):
    ys = np.zeros(len(wave))
    ys[::factor] = np.real(wave.ys[::factor])
    return Wave(ys, framerate=wave.framerate)
```

В отличие от предыдущих двух записей, результат работы этой функции имеет неприятные шумы, связанные с копированием спектра:

Повторное применение фильтра позволяет избавиться от нежелательных копий и получить результат, схожий с тем, что был рассмотрен ранее.

На рисунке выше можно видеть, что энергия сигнала сократилось, что в целом небольшая проблема и исправляется путем масштабирования. Сравним полученный спектр с тем, что рассматривался ранее:

```
sampled_spectrum.scale(factor)
spectrum.max_diff(sampled_spectrum)
```

Как результат получаем число 1.8189894035458565e-12, что говорит о высокой степени схожести спектров до и после дискретизации. И теперь в завершение упражнения проведем сравнения интерполированной волны с отфильтрованной:

filtered.max_diff(interpolated)

Результат: 5.56290642113787е-16. Как нетрудно убеедиться, разница действительно мала.

2. Выводы

В ходе выполнения данной лабораторной работы я подробнее изучил выборки, и теорему о выборках, а также закрепил полученные знания при выполнении упражнений.