

Church Turing thesis Chapter 5: Undecidability

Prof. Riddhi Atulkumar Mehta
Assistant Professor
Department of Computer Science and
Engineering

Content

1.	Learning Goals	1
2.	Introduction	2
3.	Historical Background	3
4.	The Church-Turing Thesis	ļ
5.	Formal Models of Computation	5
6.	Turing Machine	6
7.	λ-Calculus – A Functional Perspective	7
8.	What Does "Computable" Mean?	8
9.	Implications of the Thesis	9
10	.Strong Church-Turing Thesis	10
11	. Quantum Church-Turing Thesis	11

INDEX

Learning Goals

- Understand what the Church-Turing Thesis asserts
- Explore multiple models of computation
- Learn historical developments that led to the thesis
- Appreciate the philosophical and theoretical implications
- Recognize its limits and open questions

Introduction

- What is a computation? What does it mean to "compute" a function?
- Informally, computation involves step-by-step execution of a finite procedure (algorithm) to solve a problem.
- Church-Turing Thesis provides a formal answer to what is computable.

Historical Background

- Alonzo Church (1936): Introduced λ -calculus, a formal system for expressing computation via function abstraction and application.
- Alan Turing (1936): Independently developed the Turing Machine, a theoretical machine to model algorithmic processes.
- Both proved the same class of computable functions—leading to the Church-Turing Thesis.

The Church-Turing Thesis

- "A function is effectively computable if and only if it is computable by a Turing machine."
- "Effectively computable" = can be computed by a human or machine using an algorithm, without intuition or guesswork.
- The thesis is not a formal theorem, but a philosophical hypothesis supported by overwhelming evidence.

Formal Models of Computation

Model	Inventor	Year	Description
Turing Machine	Alan Turing	1936	Machine with infinite tape and head for reading/writing symbols
λ-Calculus	Alonzo Church	1936	Formal system based on variable binding and substitution
Recursive Functions	Gödel/Kleene	1930s	Functions built using basic operations and recursion
Post Systems	Emil Post	1943	Production rules on strings (rewriting systems)

Turing Machine

- A Turing Machine is a mathematical model of computation that operates on an infinite tape with a finite set of rules.
- Capable of simulating any algorithm.
- Forms the basis of modern computing models.

λ-Calculus – A Functional Perspective

- Uses variable binding and substitution.
- Core operations: abstraction (functions), application (function calls).
- Foundation for many functional programming languages (e.g., Lisp, Haskell).

What Does "Computable" Mean?

- A function f: N→N is computable if there exists an algorithm (or TM) that produces
 f(n) for every input n.
- Example:
 - Computable: Addition, multiplication, sorting
 - Non-computable: Halting problem, truth of arbitrary mathematical statements

Implications of the Thesis

- Defines the boundary of what can be computed using any physical device or algorithm.
- Provides a unified model of computation used in:
- Programming language theory
- Complexity theory
- Logic and formal verification

Strong Church-Turing Thesis

"Any reasonable model of computation can be efficiently simulated by a Turing machine."

- Focuses not only on computability but also efficiency (time/space).
- Forms the basis of complexity theory (P, NP, etc.)

Quantum Church-Turing Thesis

- Proposes that any physically realizable computational process can be efficiently simulated by a quantum computer.
- Still under investigation.
- Shor's algorithm (factoring) suggests quantum computers can outperform classical
 TMs in some tasks.

https://paruluniversity.ac.in/

