LITERATURE SURVEY

PRESENTED BY:
SHIVASHANKAR S
N NITHIN SRIVATSAV
PONNANNA M B
SWATHI N SHAYANA

No	Source	Problem Defined	Approach Used	Results	Implications
1	IJAER: (Intelligent IoT Based Automated Irrigation System)	A Intelligent Iot And ML based System For smart Agriculture Using Machine to Machine Communication.	For Communicating between microcontroller's M2M method is used. The soil moisture and temperature data captured and accordingly KNN (K- Nearest Neighbour) classification machine learning algorithm deployed for analysing the sensor data.	The Proposed system can predict the Moisture of the Soil .	The proposed network does satisfy the moisture condition of the soil but it does not know the water level in the tank before irrigation and data security is not provided for M2M communication

No	Source	Problem Defined	Approach Used	Results	Implications
2	IJTAM:(Agriculture Productivity Enhancement System using IOT)	An IoT based system which To improve plant productivity and achieve efficient utilization of the pesticides	The IoT sensor like Soil Moisture Sensor, Soil pH Value Sensor used for soil and Decision tree algorithm used to train the model	The proposed System will identify the diseases depending upon environment.	This system does not analyse the Crop visually for diseases.
3	IEEE Xplore: (A Smart IoT-Based Irrigation System with Automated Plant Recognition using Deep Learning)	Implementation of IoT in Irrigation System.to recognition of the plant and supply water according to it.	Divide the yard into different functional zones depending on the plants. The controllers are designed to usually have about three pre-set programs. Thus, users can then select which program to use in different zones. This approach does increase the flexibility of the irrigation system.	The proposed system will identify the crop and water the crop according to its required water for the crop for yielding.	This system is not scalable for large area of land and the accuracy of the model is not precise.

No	Source	Problem Defined	Approach Used	Results	Implications
4	IEEE International Conference on Innovations in Green Energy and Healthcare Technologies: (INTELLIGENT IRRIGATION SYSTEM – AN IOT BASED APPROACH)	The Iot Based Sensors are implemented to get the moisture level of the soil and provide the water according to it	The Proposal of the system is to develop a smart irrigation monitoring system using Arduino. Focus area will be parameters such as temperature and soil moisture. This system will be a substitute to classical farming method.	The proposed system provides real time information on the field irrigation. Here the water is supplied based on the actual needs for the crops. This automated irrigation system is cost reduction and resource optimization	This system provides moisture level of the soil to be maintained but this is not power efficient and is not suit for large scale.

No	Source	Problem Defined	Approach Used	Results	Implications
5	IEEE Xplore: (A Low Power IoT Network for Smart Agriculture - SoumilHeble, Ajay Kumar, K.V.V Durga Prasad, SoumyaSamirana, P.Rajalakshmi, U. B. Desai)	A Low Power and a Low Cost IoT Network for Smart Agriculture.	For monitoring the soil parameters, soil moisture and soil temperature sensor is used. In the proposed network, the 'IITH mote' is used as a sink and sensor node. Spatially distributed nodes, each an IEEE 802.15.4 based wireless platform with solar based power circuit which	The proposed IoT network can be deployed at an affordable price with low power consumption for smart agriculture.	The proposed network does satisfy the low cost requirements, however it does not satisfy long distance communication requirements. This network solely focuses on the quality of the soil and nothing else that will help the farming
			provides low-power communication are used.		process.

No	Source	Problem Defined	Approach Used	Results	Implications
6	IEEE Xplore: (IoT Based Monitoring System In Smart Agriculture - Prathibha S R, AnupamaHongal , Jyothi M P)	An IoT based system which monitors different factors required for improving the yield.	Temperature and Humidity sensor are used to get real time data. Camera is interfaced with the sensors to capture images and send pictures through MMS to farmers mobile using Wi-Fi.	This system provides real time monitoring of data to the user.	This system does not provide any analysis on the collected data.
7	IEEE Xplore:(Smart Farming – IoT in Agriculture - Rahul Dagar, SubhranilSom, Sunil Kumar Khatri)	IoT in Agriculture for better crop	The IoT sensors used in proposed model are air temperature sensor, soil pH sensor, soil moisture sensor, humidity sensor and water volume sensor.	The proposed model is a simple architecture of IoT sensors that collect information and send it over the Wi-Fi network to the server, there server can take actions depending on the information.	This system does not provide any analysis on the collected data. All the decisions must be taken by the farmers itself.

No	Source	Problem Defined	Approach Used	Results	Implications
8	T	A G		ml l ·	mny' l
0	International Research		A variety of sensors		KNN is a lazy learner; it does not learn
	Journal of Engineering	•	such as temperature and	provides a simple user interface for the	
	and Technology	that can assist	humidity sensor and soil		anything from the
	(IRJET):	farmers in crop	moisture sensors are	farmers to view the	training dataset. It
	(Smart Management of		used to get real time	data from the sensors as well as the	- •
	Crop Cultivation using IOT and Machine	hence help increase	data.		training data for classification. Thus
		their overall yield and quality of	KNN algorithm is used	prediction.	
	Learning T. Baghay Kuman	products.	to predict the type of		this system cannot be
	T Raghav Kumar, BhagavatulaAiswarya,	products.	crop which is best suited for the soil and other		implemented globally.
	Aashish Suresh,		parameters.		giobally.
	Drishti Jain,		A simple and easy to		
	NateshBalaji,		use user interface is		
	VarshiniSankaran)		implemented.		
9	IEEE Xplore:	A system which	The IoT sensors used in	IoT is used to	The proposed system
	(Affordable Smart	gives an insight into	proposed model are air	connect the ground	does not provide any
	Farming Using IoT and		temperature sensor, soil	module which	information about
	Machine Learning -	condition of the	moisture sensor,	includes the sensors	type of seed to be
	Reuben Varghese,	crop. The system	humidity sensor, air	to the cloud	used. And it does not
	Smarita Sharma)	leverages IoT and	quality.	infrastructure. In the	use fabricate PCB to
		Machine		cloud, machine	ensure that it is safe
		learning to produce		learning based real-	inside the soil.
		an affordable smart		time analytics is	
		farming module.		performed to predict	
				the future condition	
				of the crops	
				based on its past	
				data.	

~ ~

No	Source	Problem Defined	Approach Used	Results	Implications
10	(Agricultural practices Improvement Using IoT Enabled SMART Sensors - Pankaj Mohan Gupta, Moreshwar Salpekar, Pravesh Kumar Tejan)	A system that help in transforming the agriculture and provide farmers with timely and accurate information about alerts regarding crop yields, rainfall, pest infestation, and soil nutrition which can help improve yield.	This system uses LoRaWAN for the Communication purpose. The Smart Nodes are used for periodic sensing of soil quality parameters such as CO2 concentration, Photosynthetically Active Radiation (PAR) at soil surface, temperature, humidity, soil conductivity and soil composition.	In the proposed system how IoT can be used in various Agriculture processes is shown. It also describes how cloud based data analytics acting as backend to IoT sensor ecosystem helps in optimising the resource usage and yet at same time improve in yield size.	The proposed system used high-end devices which is not cost effective.

No	Source	Problem Defined	Approach Used	Results	Implications
11	The 21st International Symposium on Wireless Personal Multimedia Communications (WPMC- 2018) – (Effective Utilization of IoT for Low-cost Crop Monitoring and Automation - Petcharat Suriyachai, Jakkapong Pansit)	An IoT cloud-based platform and open APIs to utilize many services available via the Internet.	The IoT sensors used in proposed model are air temperature sensor and humidity sensor. Node MicroController Unit boards are used as the base of sensor nodes in the monitoring and automation system. Cloud storage called Firebase is used in the system to store sensed data and node's location.	The proposed model sends the data that are shown through a web application for both real-time and historical data displays. The system provides real-time monitoring of temperature and humidity and control water valves.	This system does not use pH sensor for water or soil, to measure and monitor the environment.
12	IEEE Xplore: (IoT based smart cropfield monitoring and automation irrigation system - R. Nageswara Rao, B.Sridhar)	The proposed method aims at making agriculture smart using automation and IoT technologies. IoT enables various applications such as crop growth monitoring and selection, irrigation decision support, etc.	A variety of sensors such as temperature, soil moisture sensor and humidity sensor are used to get real time data. A RASPBERRY PI 3 model is used.	is developed based on the information sent from the sensors and estimate the quantity	The status of the system can be checked at remote place but there are no machine learning algorithms implemented to process the data that is collected.

No	Source	Problem Defined	Approach Used	Results	Implications
13	IEEE Xplore: (Agriculture Analysis Using Data Mining And Machine Learning Techniques)	Analysis of different techniques that help in agriculture.	 SVM Bayesian Network KNN algorithm KMeans Clustering 	All algorithms are analyzed on an eagle-view level to see how different machine learning techniques can help agriculture industry.	This paper gives a head start to knowing what algorithms can be used for our project.
14	IEEE Xplore: (Model of neural networks for fertilizer recommendation and amendments in pasture crops)	Fertilizer recommendation using different parameters of the soil.	MLP ANN algorithm with k fold value 3.	The NN was able to predict the fertilizer with a decent accuracy and r^2 scores.	Neural Networks always have an upper hand on simple classification algorithms.
15	IEEE Conference: (A Scalable Machine Learning System for Pre- Season Agriculture Yield Forecast)	Forecasting Yield using DNN models.	DNN are used to forecast of yields that maybe produced.(LSTM)	The was able to accurately predict the yield that would be produced.	LSTMs have a higher accuracy if better dataset and parameters are provided.

No	Source	Problem Defined	Approach Used	Results	Implications
16	IEEE: (Unleashing	This paper	Farmers deploy	This paper	The proposed
	the Potential of	proposes a	sensors, cameras and	proposes an	solution is too
	Machine Learning	machine learning	drones on Farm land.	Android	costly and difficult
	and IoT in Cyber	based framework	Sensors generate	application which	to implement.
	Physical Farming.	for cyber	Farm data	provides an	
	(2017) - Dasari,	physical farming.	periodically and	interface for	
	Mallesham, Sergey		transmit to IoT	Farmer in	
	Madaminov, Sagnik		gateway over WiFi.	understanding the	
	Das and Santiago		ML gateway	Farm data and	
	Vargas.)		processes data coming	reacting	
			from IoT gateway to	accordingly.	
			predict and	Secondly, they	
			recommend the crop,	developed a	
			soil and other	prototype for	
			Farming information.	illiterate Farmers	
			ML gateway should	using Alexa AWS	
			be able to decide if	micro services to	
			the data requires	provide interactive	
			different ML models	experience with	
			for different data and	Farmland.	
			react autonomously.		

Thank You