AMENDMENTS TO THE CLAIMS

1. (Currently Amended) A polyether copolymer comprising (A) an aromatic polyether block and (B) an aliphatic polyether block, wherein (B) the aliphatic polyether block is on a side chain of (A) the aromatic polyether block.

2. (Canceled)

3. (Original) The polyether copolymer according to claim 1, wherein the aromatic polyether block (A) has a structural unit represented by the following formula (1):

(1)

wherein R¹, R², R³, R⁴, R⁵, R⁶, R⁷ and R⁸ are independently selected from the group consisting of a hydrogen atom, a chlorine atom, an iodine atom, an alkyl group having 1 to 10 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, an alkynyl group having 2 to 10 carbon atoms, a cycloalkyl group having 4 to 10 carbon atoms, a methoxy group, a phenyl group which may be substituted and a functional group

represented by the formula (2) or (3) described below; Y^1 is selected from any one of functional groups described below or two or more of the functional groups;

$$Q^{1} = Q^{1} = Q^{5} = Q^{8} = Q^{4} = Q^{5} = Q^{8} = Q^{1} = Q^{5} = Q^{1} = Q^{1$$

 Y^2 is selected from any one of a single bond, a hydrocarbon group having 1 to 20 carbon atoms, an ether group, a ketone group and a sulfone group or two or more of them; at least one of R^1 , R^2 , R^3 , R^4 , R^5 , R^6 , R^7 and R^8 or Q^1 , Q^2 , Q^3 , Q^4 , Q^5 , Q^6 , Q^7 , Q^8 , Q^9 , Q^{10} , Q^{11} , Q^{12} and Q^{13} in at least one unit structure contained in a molecular chain is selected from functional groups represented by the formula (3); wherein Q^1 , Q^2 , Q^3 , Q^4 , Q^5 , Q^6 , Q^7 , Q^8 , Q^9 , Q^{10} , Q^{11} and Q^{12} are independently selected from the group consisting of a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, an alkenyl

group having 2 to 10 carbon atoms, an alkynyl group having 2 to 10 carbon atoms and a functional group represented by the formula (2) or (3) described below; Q^{13} is selected from the group consisting of an alkyl group having 1 to 10 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, an alkynyl group having 2 to 10 carbon atoms and a functional group represented by the formula (2) or (3) described below; Z is selected from the group consisting of a hydrogen atom, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, a group $-OZ^1$ and a group $-NZ^2Z^3$; and Z^1 , Z^2 and Z^3 are independently selected from the group consisting of a hydrogen atom, a saturated or unsaturated hydrocarbon group and an ether bond-containing group;

$$-si \left(T^{1}\right)_{n}$$

$$\left(T^{2}\right)_{3-n}$$

(2)

wherein T^1 is selected from an alkenyl group having 2 to 10 carbon atoms; T^2 is selected from an alkyl group having 1 to 10 carbon atoms and an aryl group; n represents an integer of 1 to 3 inclusive; plural T^1 's may be different from each other and plural T^2 's may also be different from each other;

$$-R^{9}(R^{10}O)R^{11}$$

(3)

wherein R^9 is selected from a single bond and a hydrocarbon group having 1 to 10 carbon atoms; R^{10} is selected from a hydrocarbon group having 1 to 10 carbon atoms; R^{11} is selected from a hydrogen atom and a hydrocarbon group having 1 to 10 carbon atoms; and m is selected from an integer of 1 or more.

- 4. (Original) The polyether copolymer according to claim 3, wherein R^{10} is $-CH_2-CH_2-$, $-CH_2-CH(CH_3)-$ or $-CH(CH_3)-CH_2-$.
- 5. (Original) The polyether copolymer according to claim 1, wherein the relation between the thermal decomposition starting temperature Ta (°C) of the aromatic polyether block (A) and the thermal decomposition starting temperature Tb (°C) of the aliphatic polyether block (B) is represented by the formula: Ta \geq (Tb + 40).

6-16. (Canceled)