Best Practices to pass Library QC

Library QC

Library Preparation

Modify nucleic acid to proper insert size & add adapters

Cluster Generation

Attach library to the flow cell & clone to increase intensity

Sequencing by Synthesis

Gather intensity information at each SBS cycle

Data Analysis

Convert intensity into base calls & Q-scores; write reads to FASTQ

Importance of library QC

Garbage in

Bad Sample

Bad Library

Garbage out

→ Bad Library

Bad Sequencing Data

Importance of library QC

Library size

- Inserts too short or too long will lead to improper coverage
- Insert size too short will lead to sequencing into the adapter

Contaminants

- Negatively impact data quantity (yield in Mb) and quality (Q-scores)
- Can lead to index mis-assignment on some sequencing platforms

Library yield

- Sequencing data quality depends on the loading concentration
- Pooling requires normalization to achieve equal amount of data/ sample
- Too little or too much library: reflects input quality issue or library prep biases that also impact data coverage (random loss of input RNA)

Library quantification

Quantification Methods of RNA-Seq Libraries

Fluorometric dsDNA assay

- Specifically detects double-stranded DNA
- Does not discriminate incomplete TruSeq libraries

qPCR

- Specifically measures full-length libraries
- Detection very sensitive

UV spectrophotometer (Nanodrop)

- Non-specific nucleic acid detection
- Contaminants elevate values

Library qPCR workflow

Step 1

 Create a Control standard curve using a Control template of known concentration

Step 2

 Run qPCR on Control template standard curve and unknown libraries

Step 3

Extrapolate concentration of unknown libraries from standard curve

Why is qPCR the most accurate quantification?

qPCR

Designed to quantify only cluster-forming fragments in the samples

Uses primers complementary to adapters to mimic amplification on the flow cell

Only amplifies and quantifies library fragments with proper adapters at both ends

Library Quantification Resource

KAPA Biosystems Library Quantification Kit

Best Practice

Use control library that has an insert size and GC content similar to your sample library

6 DNA Standards

Primers work with Illumina Universal Adapters

Designed specifically for libraries prepared with Illumina library prep assays KAPA
Biosystems
Library
Quantification
Kit

No dilutions needed

Reliable, accurate standard curve

Maximize Data Quality and Quantity

Optimized flow cell clustering determines data quality and overall data yield

Loading Concentration

Overclustering can result in:

- Loss of data quality and data output
- Loss of focus
- Reduced base calls and Q30 scores
- Complete run failure

Underclusterring can result in:

- Loss of time and money
- Loss of focus
- Complete run failure

Accurate Quantification Is Critical When Multiplexing

Calculated concentration is <u>10X</u> higher for one library in pool

Sample	Expected Output	Actual Output
1	16%	66%
2	16%	6%
3	16%	6%
4	16%	6%
5	16%	6%
6	16%	6%

Sample	Expected Output	Actual Output
1	16%	20%
2	16%	20%
3	16%	20%
4	16%	20%
5	16%	20%
6	16%	2%

Calculated concentration is <u>10X</u> <u>lower</u> for one library in pool

Library Size

Understanding a Bioanalyzer Trace

	BioAnalyzer Assay Options		
	DNA 1000 Chip	High Sensitivity DNA Chip	
Dynamic Range	25-1000 bp	50-7000 bp	
Input required	0.5-50ng	5-500pg	

Bioanalyzer Details

Average library size

Expected Bioanalyzer Traces

TruSeq Stranded mRNA:

100ng total RNA input

TruSeq Stranded Total RNA:

1µg total RNA input

Troubleshooting Library QC results

Troubleshooting scenario 1

RNA input recommendations

RNA Handling Best Practices

Bead handling

Bring beads to room temp

Dry pellet on plate

Use correct magnetic stand & follow protocol

AMPure XP beads best practices

> **Pipet** carefully

Minimize bead loss **Vortex clumps**

Resuspend beads thoroughly

Mix well: use shaker and follow protocol

No Sunsets

illumına[®]

Troubleshooting scenario 2

Library over-amplification

Occurs when PCR reagents (primers) are exhausted

- Do not increase PCR cycles
- Quantify input RNA using fluorometric assay and do not exceed recommended input range (100 ng 1 μg total RNA)
- Will create duplicate sequencing reads and possible amplification bias

Troubleshooting scenario 3

Presence of Library Contaminants

Why are dimers problematic?

- Primer dimers cannot cluster, but they can bind to the flow cell surface
 - Occupy real estate and reduce sequencing yield
- Adapter dimers will form clusters and be sequenced
 - Lower yield (some reads will be adapter sequence)
 - Lower passing filter (loss of quality)
 - On patterned flow cells (HiSeq 4000, NovaSeq), adapter dimers even at low levels cluster more efficiently than larger libraries
- Inefficient removal of adapter dimers correlate with higher rates of index hopping on patterned flow cells
 - Incorrect assignment of reads to their index

Adapter Dimer Sources

 Adapter dimers are formed when the P5 and P7 adapters ligate to one another rather than to an inserted library

Adapter Dimers Sources

Poor quality input

Insufficient input amount

Bead Handling Error

Enzymatic failure

Clean up steps

- Beads are used to remove small contaminants
- Ratio of beads to DNA is critical
 - 2 rounds of bead clean-up after ligation
 - Be mindful of extra beads on the outside of pipet tips

Removal of contaminants

If you see adapter dimers, perform additional 1:1 bead clean-up step

Summary

Best Practices Summary

Follow protocol as written Take care when adding viscous reagents Complete all wash steps Follow magnetic beads best practices Heat thermocycler lid during incubations Don't over amplify libraries Validate your libraries for quality and quantity

Before sequencing ...

Make sure that:

- The inserts are of the correct size and have adapters on each end
- The library concentration is appropriate
- The libraries are clean and free of major contaminants

Furthermore, the sequencing facility needs to know:

- The sequence of the sequencing-priming site
- The length and type of the read you desire
- Whether there is a barcode or index sequence
- If the inserts contain a region of low sequence complexity immediately after the sequencing-priming site
- What buffer the libraries are resuspended in

