Tutorial 7

You may use the facts, proven in MATH102, that for all $x\in\mathbb{R}$, $\frac{d}{dx}(e^x)=e^x$ and that if x>0, $\frac{d}{dx}(\ln x)=\frac{1}{x}$.

Question 1.

Differentiate the following functions.

(a)
$$f: \mathbb{R} \longrightarrow \mathbb{R}, \quad x \longmapsto x^2 e^x$$

(b)
$$f: \mathbb{R} \longrightarrow \mathbb{R}, \quad x \longmapsto \frac{e^x - e^{-x}}{e^x + e^{-x}}$$

(c)
$$f: \mathbb{R} \longrightarrow \mathbb{R}, \quad y \longmapsto \ln\left(y + \sqrt{y^2 + 1}\right)$$

Question 2. Suppose that the function $f: X \to \mathbb{R}$, $x \mapsto y$ is differentiable. Find $\frac{dy}{dx}$ where possible and explain any restrictions if, for all $x \in X$,

(a)
$$x^2 + y^2 = 1$$

(b)
$$xy^2 + y\sin(xy) + e^x = 0$$

(c)
$$e^{2x} - 2ye^x - 1 = 0$$

Question 3. Verify that the function

$$f: \mathbb{R} \longrightarrow \mathbb{R}, \quad x \longmapsto x^3 - 6x^2 + 3x - 7$$

satisfies the hypotheses of the Mean Value Theorem on the interval [0, 6] find the values of c that satisfy the conclusion of the theorem.

Question 4.

Use the Mean Value Theorem to show that if $f: \mathbb{R} \to \mathbb{R}$ satisfies f'(x) = 0 for all $x \in \mathbb{R}$, then f must be a constant function.

Find an example of a function $f: X \to \mathbb{R}$ with $X \subseteq \mathbb{R}$ such that f'(x) = 0 for all $x \in X$, but f is not constant.