La loi normale (Probabilités)

A. El Ouni, A. Khaldi, C. Samir, A. Wohrer

2A - BUT Info Année 2024-2025

Avant de commencer

disponibles sur l'ENT.

- Pour toutes questions sur le sours
 - Pour toutes questions sur le cours :
 - achref.eloudi@uca.fr abderrahmane.khaldi@ext.uca
 - abderrahmane.khaldi@ext.uca.fr chafik.samir@uca.fr
 - adrien.wohrer@uca.frLes transparents du cours et d'autres documents sont

Plan du cours aujourd'hui

- 1 Applications
- 2 Loi normale

- 1 Applications
- 2 Loi normale

Application I: traitement d'images

Remarque

Améliorer la qualité d'une image par filtre gaussien.

Applications II: Les pinsons de Darwin

- 1. Geospiza magnirostris
- 3. Geospiza parvula
- 2. Geospiza fortis 4. Certhidea olivacea

Finches from Galapagos Archipelago

Remarque

La taille et la forme du bec?

- Applications
- 2 Loi normale

Variable normale centrée réduite Variable normale quelconque Théorème de la limite centrale

La fonction gaussienne

La fonction suivante est appeleé fonction gaussienne :

$$\varphi(x) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x^2}{2}\right)$$

Voici son graphe:

La fonction gaussienne

La fonction $\varphi: x \mapsto \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x^2}{2}\right)$ est une fonction continue et positive sur $\mathbb R$ avec comme propriétés :

Propriétés

- $\varphi(0) = \frac{1}{\sqrt{2\pi}}$
- Symétrique : $\varphi(-x) = \varphi(x)$
- Fonction normalisée :

$$\int_{-\infty}^{+\infty} \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x^2}{2}\right) dx = 1$$

On peut donc y voir une densité de probabilité.

• Remarque - conséquence de la symétrie :

$$\int_{-\infty}^{+\infty} \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x^2}{2}\right) dx = 2 \int_{0}^{+\infty} \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x^2}{2}\right) dx$$

Variable normale centrée réduite

On a vu que φ est une fonction de densité de probabilité.

Définition

On dit qu'une variable aléatoire continue X est **normale centrée réduite** et on note $X \sim N(0, 1)$, si X est une v.a. de densité :

$$\varphi(x) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x^2}{2}\right).$$

Propriétés

•
$$E(X) = \int_{-\infty}^{+\infty} \frac{t}{\sqrt{2\pi}} \exp(-\frac{t^2}{2}) dt = 0$$

•
$$V(X) = \int_{-\infty}^{+\infty} \frac{t^2}{\sqrt{2\pi}} \exp(-\frac{t^2}{2}) dt = 1$$

•
$$\sigma(X) = \sqrt{V(X)} = 1$$

Fonction de répartition

Soit X une v.a. normale centrée réduite $(X \sim N(0, 1))$

Définition

• La fonction de répartition de X est donnée par :

$$\Phi(X) = P(X \le X) = \int_{-\infty}^{X} \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{t^2}{2}\right) dt$$

Propriétés

- $\Phi(0) = 0.5$
- $\forall x \in \mathbb{R}, \ \Phi(-x) = 1 \Phi(x)$

Fonction de répartition

Soit X une v.a. normale centrée réduite $(X \sim N(0, 1))$

Définition

• La fonction de répartition de X est donnée par :

$$\Phi(X) = P(X \le X) = \int_{-\infty}^{X} \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{t^2}{2}\right) dt$$

Propriétés

- $\Phi(0) = 0.5$
- $\forall x \in \mathbb{R}, \ \Phi(-x) = 1 \Phi(x)$

Fonction de répartition

Soit X une v.a. normale centrée réduite $(X \sim N(0, 1))$

Définition

• La fonction de répartition de X est donnée par :

$$\Phi(X) = P(X \le X) = \int_{-\infty}^{X} \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{t^2}{2}\right) dt$$

Propriétés

- $\Phi(0) = 0.5$
- $\forall x \in \mathbb{R}, \ \Phi(-x) = 1 \Phi(x)$

Problème : $\Phi(x)$ n'est donnée par aucune formule!

Exemple 1: utilisation du tableau

Exemple

	0	0,01	0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,09
0	0,5000	0,5040	0,5080	0,5120	0,5160	0,5199	0,5239	0,5279	0,5319	0,5359
0,1	0,5398	0,5438	0,5478	0,5517	0,5557	0,5596	0,5636	0,5675	0,5714	0,5753
0,2	0,5793	0,5832	0,5871	0,5910	0,5948	0,5987	0,6026	0,6064	0,6103	0,6141
0,3	0,6179	0,5217	0,6255	0,6293	0,6331	0,5368	0,6405	0,6443	0,6480	0,6517
0,4	0,6554	0,6591	0,6628	0,6664	0,6700	0,8736	0,6772	0,6808	0,6844	0,6879
0,5	0,6915	0,6950	0,6985	0,7019	0,7054	0 088	0,7123	0,7157	0,7190	0,7224
0,6	-0,7257	0,7201	0,7324	0,7357	0,7380	0.7422	0,7454	0,7486	0,7517	0,7549
0,7	0,7580	0,7611	0,7642	0,7673	0,7704	0,7734	0,7764	0,7794	0,7823	0,7852
8,0	0,7881	0,7910	0,7939	0,7967	0,7995	0,8023	0,8051	0,8078	0,8106	0,8133
0,9	0.8159	0,8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0,8365	0,8389

Figure - $P(X \le x_2) = \Phi(x_2)$

- Pour $x_2 = 0.65$ on lit $\Phi(x_2) = 0.7422$ (74.2%)
- Pour $x_2 = 0.99$ on lit $\Phi(x_2) = 0.8389$ (83.9%)
- Pour $x_2 = 1.56$ on lit $\Phi(x_2) = 0.9406$ (94.1%)

Exemple 2 : probabilité d'une valeur négative

Exemple

- $P(X \le -1.1)$: on ne sait pas calculer les valeurs négatives!?
- En fait si! On sait que $P(X \le -1.1) = \Phi(-1.1) = 1 \Phi(1.1)$.
- selon le tableau $\Phi(1.1) = 0.8643$ donc $P(X \le -1.1) = 0.1357$

Variable normale quelconque

Définition

On appelle **variable normale** toute v.a. *X* ayant une densité de la forme :

$$f_{m,\sigma}(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(x-m)^2}{2\sigma^2}\right)$$

Dans ce cas, on a

- E(X) = m
- $V(X) = \sigma^2$ (autrement dit, $\sigma(X) = \sigma$)

On notera alors $X \sim N(m, \sigma)$.

Variable normale quelconque

Figure - Exemples de lois normales.

Variable normale quelconque

Théorème

Soient m et σ deux réels avec $\sigma \ge 0$. X est une variable normale de paramètres m et σ si et seulement si la variable

$$Y = \frac{X - m}{\sigma}$$

est une variable normale centrée réduite :

$$X \sim N(m, \sigma) \iff Y \sim N(0, 1)$$

On peut donc recycler la fonction Φ pour calculer les probabilités associées à X:

$$P(\alpha \leq X \leq b) = P\left(\frac{\alpha - m}{\sigma} \leq Y \leq \frac{b - m}{\sigma}\right) = \Phi\left(\frac{b - m}{\sigma}\right) - \Phi\left(\frac{\alpha - m}{\sigma}\right)$$

Exemple 1 : calcul pratique

Exemple

On suppose qu'une certaine variable $X \sim N(12, 2)$. Pour quelle proportion d'individus est-ce que $X \le 14$?

- on cherche $P(X \le 14)$.
- on pose $Y = \frac{X-12}{2}$ alors $Y \sim N(0, 1)$
- alors $P(X \le 14) = P(Y \le 1) = \Phi(1)$
- d'après le tableau Φ(1) = 0.8413

Théorème de la limite centrale

Théorème [**]

Soit une suite de v.a. quelconques X_1, X_2, \ldots, X_n , indépendantes et de même loi. Soit m leur espérance et σ leur écart-type. Alors, la v.a. suivante :

$$Y = \frac{\sum_{i=1}^{n} X_i - nm}{\sigma \sqrt{n}}$$

converge en loi vers la loi normale centrée réduite.

Explication intuitive

Lorsqu'une variable Y résulte de l'addition de nombreuses variables indépendantes, alors la loi de Y est toujours (approx.) normale.

Hommages

Figure – (Wikipedia) Une peinture à l'huile contenant la courbe en cloche et Carl Friedrich Gauss ainsi que la courbe en cloche sur un billet de dix Deutsche Mark.

