# Retail-Giant Sales Forecasting Case Study

Shravani Karra



# **Problem Solving**

### **Selection Of Top Two Buckets**

Calculate the CoV on the profit for each of the 21 market segments on the train data

- •We compare the variance between the segments using the coefficient of variation which will normalise the standard deviation with the mean and give a comparative figure on the basis of which we can identify the most profitable market segment.
- •We want to forecast the sales where the market segment is reliable or in other words, there is less variation in the profits.



- •We can see that Lowest CoV is 0.52272
- •We can infer that the corresponding Marget Segment is "APAC\_Consumer"
- •The most profitable Market Segment is APAC\_Consumer

## ANALYSIS FOR APAC CONSUMER

#### **Retail Giant Sales**



#### Simple time series methods







#### Simple exponential smoothing



#### **Holt's Exponential Smoothing**





#### Holt Winter's multiplicative method with trend and seasonality



#### Stationarity vs non-stationary time series



#### Augmented Dickey-Fuller (ADF) test

Null Hypothesis (H0)(H0): The series is not stationary p-value>0.05p-value>0.05 Alternate Hypothesis:(H1)(H1) The series is stationary p-value<=0.05

- •We can see that p-value is 0.011, which is less than 0.05
- •So The series is stationary. And Reject the null hypothesis (H0)(H0)

#### Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test

Null Hypothesis (H0)(H0): The series is stationary p-value>0.05p-value>0.05 Alternate Hypothesis:(H1)(H1) The series is not stationary p-value<=0.05p-value<=0.05

#### **Box Cox transformation to make variance constant**





#### **Autocorrelation function (ACF)**



#### Partial autocorrelation function (PACF)





2013-01

2013-07

2014-01

2014-07

2015-01

10000

2011-01

2011-07

2012-01

2012-07







#### Seasonal auto regressive integrated moving average (SARIMA)

- SARIMA Model has both non seasonal elements and seasonal elements.
- •SARIMA brings all the features of an ARIMA model with an extra feature seasonality.
- •SARIMA has six parameters along with seasonality.



#### Conclusion

- •Thus we can conclude that, Holt Winters additive method is the best forecasting method in the smoothing technique
- •And SARIMA Seasonal Autoregressive Integrated moving average is the best method in ARIMA set of techniques.