

Lecture 3: Networking Concepts

Administrivia

• Monday: Guest lecture (ME!)

• Wednesday: No lecture, MORE time for project 1

Recap: The Internet is...

- A federated system
- Of enormous scale
- Dynamic range
- Diversity
- Constantly evolving
- Asynchronous in operation
- Failure prone
- Constrained by what's practical to engineer
- Too complex for theoretical models
- "Working code" needn't mean much
- Performance benchmarks are too narrow

Today

- What is a network made of?
- How is it shared?
- How do we evaluate a network?
- How is communication organized?

Performance Metrics

- Delay
- Loss
- Throughput

Delay

 How long does it take to send a packet from its source to destination?

Delay

- Consists of four components
 - transmission delay
 - propagation delay
 - queuing delay
 - processing delay

due to link properties

due to traffic mix and switch internals

A network link

bandwidth

delay x bandwidth

Propagation delay

- Link bandwidth
 - number of bits sent/received per unit time (bits/sec or bps)
- Propagation delay
 - time for one bit to move through the link (seconds)
- Bandwidth-Delay Product (BDP)
 - number of bits "in flight" at any time
 - BDP = bandwidth × propagation delay

Examples

- Same city over a slow link:
 - bandwidth: ~100Mbps
 - propagation delay: ~0.1msec
 - BDP: 10,000bits (1.25KBytes)
- Cross-country over fast link:
 - bandwidth: ~10Gbps
 - propagation delay: ~10msec
 - BDP: 108bits (12.5MBytes)

Packet Delay Sending 100B packets from A to B?

1GB file in 100B packets Sending 100B packets from A to B?

The last bit in the file reaches B at (10⁷x800x1/10⁹)+1/10³s = 8001ms

The last bit reaches B at (800x1/10⁹)+1/10³s = 1.0008ms The last bit reaches B at (800x1/10⁶)+1/10³s = 1.8ms

Packet Delay: The "pipe" view Sending 100B packets from A to B?

Packet Delay: The "pipe" view Sending 100B packets from A to B?

1Mbps, 10ms (BDP=10,000)

1Mbps, 5ms (BDP=5,000)

10Mbps, **1**ms (BDP=10,000)

Pack 200B?: The "pipe" view Sending 100B packets from A to B?

1Mbps, 10ms (BDP=10,000)

1Mbps, 10ms (BDP=10,000)

1. Transmission delay

- How long does it take to push all the bits of a packet into a link?
- Packet size / Link bandwidth
 - e.g. $1000 \, \text{bits} / 100 \, \text{Mbits per sec} = 10^{-5} \, \text{sec}$

2. Propagation delay

- How long does it take to move one bit from one end of a link to the other?
- Link length / Link propagation delay
 - E.g. 30 kilometers / 3 108 meters per sec = 10-4 sec

3. Queuing delay

 How long does a packet have to sit in a buffer before it is processed?

Not a rare event!

Queues absorb transient bursts but introduce queuing delay

Will eventually drop packets ("loss")

Queuing delay

- If arrival rate > departure rate
 - approaches infinity (assuming an infinite buffer)

Queuing delay

- If arrival rate > departure rate
 - approaches infinity (assuming an infinite buffer)
 - in practice, finite buffer → loss
- If arrival rate < departure rate

Queuing Delay

- If arrival rate > departure rate
 - approaches infinity (assuming an infinite buffer)
 - in practice, finite buffer → loss
- If arrival rate < departure rate
 - depends on burst size

Queuing Delay

 How long does a packet have to sit in a buffer before it is processed?

Depends on traffic pattern

Queuing Delay

- How long does a packet have to sit in a buffer before it is processed?
- Depends on traffic pattern
- Characterized with statistical measures
 - average queuing delay
 - average arrival rate
 - average departure rate

Basic Queuing Theory Terminology

- Arrival process: how packets arrive
 - Average rate A
- W: average time packets wait in the queue
 - W for "waiting time"
- L: average number of packets waiting in the queue
 - L for "length of queue"

Little's Law (1961)

 $L = A \times W$

- Compute L: count packets in queue every second
 - How often does a single packet get counted? W times
- Why do you care?
 - Easy to compute L, harder to compute W

4. Processing Delay

 How long does the switch take to process a packet?

typically assume this is negligible

Delay

- Consists of four components
 - transmission delay
 - propagation delay
 - queuing delay
 - processing delay

due to link properties

due to traffic mix and switch internals

End-to-end Delay

```
transmission
       propagation
                   queuing
                  processing
                     transmission
                             propagation
                                        queuing
                                       processing
                                            transmission
                                                    propagation
```

Loss

 What fraction of the packets sent to a destination are dropped?

Throughput

- At what rate is the destination receiving data from the source
 - Data size / transfer time

transmission rate R bits/sec

file of size F bits packets of size L bits

Transfer time = F/R + propagation delay

Average throughput = R

Transfer time = F/R + propagation delay + L/R'

Average throughput = min { R, R' } = R

Average throughput = min { R, R' } = R

Throughput

 At what rate is the destination receiving data from the source?

- Later in the quarter
 - TCP throughput, application-level throughput, etc.
 - throughput vs. "goodput"

Plan of attack

- What is a network made of?
- How is it shared?
- How do we evaluate a network?
- How is communication organized?

Three steps

- Decompose the problem into tasks
- Organize these tasks
- Assign tasks to entities (who does what)

Inspiration...

- CEO A writes letter to CEO B
 - Folds letter and hands it to administrative aide
- Aide:
 - Puts better imen velbpe with CEO B's full name
 - Takes to FedEx
- FedEx_Office
 - Puts letter in larger envelope rger...
 - Puts name and street address on FedEx envelope
 - Puts package on FedEx delivery truck
- FedEx delivers to other company

The Path of the Letter

- "Peers" in the same layer understand the same things
- No one else needs to
- Lowest level has most packaging

In the Internet: decomposition

Applications

Reliable (or unreliable) transport

Best-effort *global* packet delivery

Best-effort local *packet* delivery

Physical transfer of bits

In the Internet: organization

In the context of the Internet

