## DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

## IBM – LITERATURE SURVEY PROJECT TITLE

## GAS LEAKAGE MONITORING AND ALERTING SYSTEM

(2022-2023)



Guide Name: Mr .S.VIJAYAKUMAR

SUBMITTED BY

KRISHNAVENI M(19105043)

LAKSHAYA R(19105044)

LAKSHMI PRABHA S(19105045)

LAVANYA I(19105046)

FINAL YEAR B.E. (ECE)

PAAVAI ENGINEERING COLLEGE,

Paavai Nagar, NH-7, Pachal, Namakkal-637018, Tamil Nadu

| S.NO | TITLE OF THE PROJECT                                                                | ADVANTAGES                                                                                                                                                                                                                                                                               | DISADVANTAGES                                                                                                                                                                                                                                             | TECHNOLOGY<br>USED        |
|------|-------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|
| 1.   | Sensor-Based<br>Gas Leakage<br>Detector<br>System                                   | a low-cost<br>advanced<br>sensor-based<br>gas leakage<br>detector, alert<br>and control<br>system is<br>proposed and<br>discussed. The<br>system is very<br>efficient, user<br>friendly,<br>portable, small<br>in size and cost<br>effective                                             | adding more software based intelligent functions with this system. This is an automatic gas detection, control and alert system                                                                                                                           | gas sensing<br>technology |
| 2.   | An Empirical Study on System Level Aspects of Internet of Things (IoT)              | Millions of devices exchange information using different communication standards, and interoperability between them is a significant issue. This paper provides the current status of the communication standards and application layer protocols used in IoT with the detailed analysis | IoT applications are provided. Then, the current challenges in the IoT system design are analyzed. Later, the present research trends in IoT architectures are articulated and also described the issues that are necessary to be addressed in the future | IOT technology.           |
| 3.   | Automated and<br>Scalable Online<br>Conformance<br>Testing for IoT<br>Applications. | This technique of automatic conformance testing can lessen the cost and human intercession to decrease the number of missteps.                                                                                                                                                           | The current IoT market is fragmented due to the inefficiency in conformance testing, which creates interoperability issues between                                                                                                                        | IOT technology.           |

|    |                                                                                                     | T                                                                                                                                                                                                                                                                                                                                                                                                            | T                                                                                                                                                                                                                                                                        | 1                       |
|----|-----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
|    |                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                              | multiple IoT applications.                                                                                                                                                                                                                                               |                         |
| 4. | A Survey on the Integration of Blockchain With IoT to Enhance Performance and Eliminate Challenges  | The emergence of blockchain opened the door to solve some challenges related to IoT networks. Blockchain characteristics such as security, transparency, reliability, and traceability make it the perfect candidate to improve IoT systems, solve their problems, and support their future expansion.                                                                                                       | This research proposes a new architecture based on three layers system consisting of; devices layer, dewblockchain layer, and cloudlet-blockcha in layer. It is the only architecture that utilizes dew computing in the integration process between IoT and blockchain. | Block chain technology. |
| 5. | An Efficient Counter-Based DDoS Attack Detection Framework Leveraging Software Defined IoT (SD-IoT) | The increase in DDoS attacks has made it important to address the consequences which imply in the IoT industry. This research proposes an SD-IoT based framework that provides security services to the IoT network. We developed a C-DAD (Counter-based DDoS Attack Detection) application that is based on counter values of different network parameters, which helps to detect DDoS attack successfully. | We have extensively analyzed the proposed framework's performance for attack detection time and other parameters such as SD-IoT network throughput, CPU and memory utilization, etc.                                                                                     | SD-IOT technology.      |

| 6. | REMOS-IoT-A Relay and Mobility Scheme for Improved IoT Communication Performance.                               | This paper proposes REMOS-IoT - A RElay and MObility Scheme for improved IoT communication performance in support of increased QoS for the data exchange services between mobile IoT devices.                                                                                                                     | Although REMOS-IoT was deployed on NS-3, significant differences were not found when comparing the schemes, in relation to the simulator used, with results being alike.                                                                                                      | IOT technology.           |
|----|-----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|
| 7. | TON_IoT Telemetry Dataset: A New Generation Dataset of IoT and IIoT for Data-Driven Intrusion Detection Systems | This paper addresses this issue and proposes a new data-driven IoT/IIoT dataset with the ground truth that incorporates a label feature indicating normal and attack classes, as well as a type feature indicating the sub-classes of attacks targeting IoT/IIoT applications for multi-classificatio n problems. | The main finding of the evaluation was that RF and CART achieved the highest score in all metrics on both per-device datasets and the combined one. This finding indicated an inherent advantage of both methods in distinguishing normal class and different attack classes. | IOT Telemetry technology. |
| 8. | Routing Optimization For Cloud Services in SDN-based Internet of Things With TCAM Capacity Constraint           | With the rapid increase of IoT devices and applications, the backhaul or backbone networks, which transmit IoT traffic to various in-network clouds, will experience a predicted explosion in the                                                                                                                 | The volume of data required to be sent to nearby clouds through backhaul network will increase explosively in the near future                                                                                                                                                 | IOT technology.           |

|     |                | I                          |                   |              |
|-----|----------------|----------------------------|-------------------|--------------|
|     |                | volume of carried traffic. |                   |              |
| 9.  | Gas Detection  | In this work, a            | This is essential | Artificial   |
|     | and            | multimodal                 | in high-risk      | Intelligence |
|     | Identification | Al-based fusion            | applications      | Based Sensor |
|     | Using          | framework for              | such as leak      | Fusion       |
|     | Multimodal     | reliable                   | detection in      |              |
|     | Artificial     | identification             | chemical plants,  |              |
|     | Intelligence   | and detection              | identification of |              |
|     | Based Sensor   | of gases is                | explosives, etc.  |              |
|     | Fusion         | developed. We              | The proposed      |              |
|     |                | considered four            | architecture is   |              |
|     |                | classes for data           | based on the      |              |
|     |                | collection using           | deep learning     |              |
|     |                | sensors, namely            | frameworks and    |              |
|     |                | thermal camera             | hence require     |              |
|     |                | for capturing              | large number of   |              |
|     |                | the thermal                | data samples      |              |
|     |                | signature of the           | for appropriate   |              |
|     |                | gases and array            | training of the   |              |
|     |                | of gas sensors             | network.          |              |
|     |                | for detection of           |                   |              |
|     |                | specific gases.            |                   |              |
| 9.  | Automatic Gas  | a robotic drive            | The integration   | Integration  |
|     | Leakage        | which is                   | technology may    | technology   |
|     | Detection and  | capable                    | also create new   |              |
|     | Prevention     | of detecting the           | risks. Sensor     |              |
|     | System         | gas leakages in            | technologies,     |              |
|     |                | pipelines and it           | for example,      |              |
|     |                | will detect the            | will need to be   |              |
|     |                | leakage and                | robust enough     |              |
|     |                | automatically              | to prevent false  |              |
|     |                | closes the valve           | alarms, and       |              |
|     |                | by using                   | ensure that vital |              |
|     |                | Arduino                    | information       |              |
|     |                | controller                 | such as the       |              |
|     |                |                            | location of       |              |
|     |                |                            | occupants         |              |
|     |                |                            | not lost due to   |              |
|     |                |                            | data overload     |              |
| 10  |                | 22                         | during a fire.    |              |
| 10. | LPG Gas        | Liquid petroleum           | When heavy        | Wireless and |
|     | Leakage        | gas (LPG) is               | dust, steam or    | GSM          |
|     | Detection and  | highly<br>inflammable and  | fog blocks the    | technology   |
|     | Alert System   | can burn even at           | laser beam, the   |              |
|     |                | some distance              | system will not   |              |
|     |                | from the source            |                   |              |
|     |                | and source                 |                   |              |

| of leakage. Most   |               |  |
|--------------------|---------------|--|
| fire accidents are | measurements. |  |
| caused because     |               |  |
| of a poor-quality  |               |  |
| rubber tube or     |               |  |
| the regulator is   |               |  |
| not turned off     |               |  |
| when not in use.   |               |  |
| Therefore,         |               |  |
| developing the     |               |  |
| gas leakage alert  |               |  |
| system is very     |               |  |
| essential.         |               |  |