

为什么要学习微分方程数值解

· 微分方程是研究函数变化规律的重要工具,有着广泛的应用。如:

物体的运动,电路的电压,人口增长的预测

· 许多微分方程没有解析解,数值解法是求解的重要手段,如

$$\frac{dy}{dx} = y^2 + x, \qquad \dot{x}(t) = -axy \\ \dot{y}(t) = axy - by$$

(1) (3)

- 4. 数值算法的收敛性、稳定性与刚性方程
- 5. 实际问题用微分方程建模,并求解

(1) (2)

作者大学 模型的数值解 大学数学实验				
实例1	t	x(t)	y(t)	$y_1(t)$
海上缉私(续)	0	0	0	0
设 <i>b,c</i> 不变 <i>,a</i> 变大 为30, 35,接近40,	0.1	3.9561	0.5058	3.5
	0.2	7.5928	2.1308	7.0
观察解的变化:	0.3	10.5240	4.8283	10.5
观录/开印文化:	0.4	12.5384	8.2755	14.0
a=35, b=40, c=15	0.5	13.7551	12.0830	17.5
t=? 缉私艇追上走私船	•••		•••	
	1.2	14.9986	40.0164	42.0
累积误差较大	1.3	14.9996	44.0165	45.5
	1.4	15.0117	48.0183	49.0
提高精度!	1.5	15.0023	52.0146	52.5
	1.6	14.9866	55.9486	56.0

