

Evatovnitá

Super-élément fini perforé non-linéaire pour la modélisation des assemblages dans les calculs de structures Phuc Viet Khoa NGUYEN, Doctorant 1A

ONERA, DMAS/CRD, phuc_viet_khoa.nguyen@onera.fr

Directeur(s) de thèse : Nicolas LECONTE ¹ Co-Directeur(s) de thèse : Franck MASSA ²

Encadrant(s): Bertrand LANGRAND 1, Cédric HUBERT 2

Financement(s): ONERA - Région Hauts de France

¹ ONERA Centre de Lille, ²LAMIH-UPHF

Contexte

Domaine aéronautique / Sécurité (passive) des usagers

Problématique

Champs de déplacement

Formulation

Méthode hybride-Trefftz

Limitation

L'élasticité linéaire

En non-linéaire

 Pas de solution équivalente à celle de Kolosov-Muskhelishvili!

Objectif

Intégrer les modes non-linéaires dans la formulation du super-élément

Axes de recherche

Correction des modes élastiques

En élasticité : $k_t = 3$ En plasticité : $k_t = f(\sigma_{\infty})$

Construction d'un modèle réduit

Créer une base réduite par la méthode POD $\mathbf{u}(x, t) \approx \sum_{r=1}^{M} \mathbf{a}_r(t) \boldsymbol{\psi}_r(x)$

Méthodes d'homogénéisation

 $\mathbf{E}, \mathbf{\Sigma}, \mathbb{L}^{hom}$

Matériau homogène

Apprentissage automatique

