Introdução à Ciência de Dados com Python

Análise Exploratória de Dados

Residência em TIC 09 Programa Prioritário da Lei de Informática

Agenda

Conceitos gerais sobre Análise Exploratória de Dados

Exemplo passo à passo

Conceitos sobre Análise Exploratória de Dados

O que é análise exploratória de dados?

AED (EDA, em inglês) é a atividade de extrair informações e padrões dos dados utilizando técnicas de estatística e visualizações de dados

Etapa menos automatizada que outras etapas

Mais intuitiva e próxima do negócio

Potencial de auxiliar em tomada de decisões

Visão geral

Análise univariada

Quais são os atributos e tipos?

Quais as distribuições?

Há necessidade de transformações?

Análise bivariada

Há correlações entre atributos?

Relações lineares ou não lineares?

Há necessidade de novas colunas?

Análise multivariada e teste de hipóteses

Quais são os atributos e tipos?.info(), .dtypes

Há variáveis categóricas

Nominais ou Ordinais

Quais os valores únicos? .unique(), .value_count(), .bar()

Há desbalanceamento nos valores

Quais as distribuições? .describe(), .hist(), sns.histplot()

Avançado: qqplot, teste de normalidade, etc

Há necessidade de transformações?

Há coluna sem utilidade?

Mesmo valor ou muitos nulos


```
Há correlações entre atributos? .corr(), heatmap()
```

Relações lineares ou não lineares? .scatter(), boxplot()

Há necessidade de novas colunas?

dummies? dia? mês? etc.

get_dummies(), OneHotEncoder(),

Há colunas redundantes?

Ex: peso, altura e BMI

Análise Multivariada

Qual a relação da variável alvo (se houver) com pares de outras variáveis?

- .pairplot()
- .scatterplot() com hue definido pela variável alvo
- .boxplot() com hue definido pela variável alvo

Quais relações entre outras variáveis?

Use cores e tamanho para analisar até 4 variáveis ao mesmo tempo

Comece pelas mais correlacionadas entre si

.boxplot(), catplot(), violinplot()

Análise Multivariada (avançado)

Levante hipóteses

Quais possíveis influencias de uma variável, ou grupo, sobre a variável alvo?

Faça testes estatísticos

T-Test

ANOVA

Questões em geral

Tente levantar outras perguntas relevantes

Como a resposta vai ser útil para o negócio?

Como responder a pergunta com os dados?

É uma pergunta recorrente?

É uma pergunta de análise descritiva ou de predição? report, dashboard

Converse com especialista no domínio para encontrar perguntas relevantes

Produtos

Escreva relatório com os principais achados

Distribuições: normais, lognormais, etc

Variáveis redundantes ou com baixa qualidade devido a nulos e erros

Padrões, tendências e correlações encontradas Indique ações ou decisões que podem ser tomadas

Código + Dados

Notebooks, scripts, dashboards, datasets processados

Exemplo

Estudo de Caso

Dataset da House Prices Kaggle Competition

79 atributos sobre as características de casas em Ames, lowa, EUA.

Os dados estão em dois conjuntos, um de treino e outro de teste.

Há 1460 instancias (tuplas) em cada um deles.

Há um total de 81 atributos, dos quais 43 são categóricos.

Há ainda um campo de identificação e o valor da venda (SalesPrice)

Dependências e Leitura dos Dados

Imports

```
import pandas as pd
import numpy as np
import matplotlib as mpl
import matplotlib.pyplot as plt
%matplotlib inline
import seaborn as sns
import scipy.stats as st
from sklearn import ensemble, tree, linear_model
import missingno as msno
```

Carregar os dados

```
train = pd.read_csv('train.csv')
test = pd.read_csv('test.csv')
```


train.describe()

	ld	MSSubClass	LotFrontage	LotArea	OverallQual	OverallCond
count	1460.000000	1460.000000	1201.000000	1460.000000	1460.000000	1460.000000
mean	730.500000	56.897260	70.049958	10516.828082	6.099315	5.575342
std	421.610009	42.300571	24.284752	9981.264932	1.382997	1.112799
min	1.000000	20.000000	21.000000	1300.000000	1.000000	1.000000
25%	365.750000	20.000000	59.000000	7553.500000	5.000000	5.000000
50%	730.500000	50.000000	69.000000	9478.500000	6.000000	5.000000
75%	1095.250000	70.000000	80.000000	11601.500000	7.000000	6.000000
max	1460.000000	190.000000	313.000000	215245.000000	10.000000	9.000000

8 rows × 38 columns

Codificar? Ord? One Hot?

train.describe(exclude='number') nulos?

	MSZoning	Street	Alley	LotShape	LandContour	Utilities	LotConfig	LandSlope	Neighborhood
count	1460	1460	91	1460	1460	1460	1460	1460	1460
unique	5	2	2	4	4	2	5	3	25
top	RL	Pave	Grvl	Reg	LvI	AllPub	Inside	Gtl	NAmes
freq	1151	1454	50	925	1311	1459	1052	1382	225

4 rows × 43 columns

Use head(), tail() e sample(), .shape

20

70

20

RL

RL

RL

13175

9042

9717

9937

85.0

66.0

75.0

train.shape , test.shape ((1460, 81), (1459, 80))

train.	sample(n=10)
--------	---------	-------

	ld	MSSubClass	MSZoning	LotFrontage	LotArea	Street	Alley
30	31	70	C (all)	50.0	8500	Pave	Pave
833	834	20	RL	100.0	10004	Pave	NaN
1411	1412	50	RL	80.0	9600	Pave	NaN
9	10	190	RL	50.0	7420	Pave	NaN
1136	1137	50	RL	80.0	9600	Pave	NaN
1185	1186	50	RL	60.0	9738	Pave	NaN
1319	1320	20	RL	75.0	10215	Pave	NaN
1044	1045	20	RL	80.0	9600	Pave	NaN
229	230	120	RL	43.0	3182	Pave	NaN
193	194	160	RM	24.0	2522	Pave	NaN

10 rows × 81 columns

5	rows	×	81	columns
•	1000		01	COIGITITIS

1456 1457

1457 1458

1458 1459

1459 1460

Separe colunas numéricas e categóricas


```
numeric_features = train.select_dtypes(include=['number'])
numeric features.columns
Index(['Id', 'MSSubClass', 'LotFrontage', 'LotArea', 'OverallQual',
       'OverallCond', 'YearBuilt', 'YearRemodAdd', 'MasVnrArea', 'BsmtFinSF1',
       'BsmtFinSF2', 'BsmtUnfSF', 'TotalBsmtSF', '1stFlrSF', '2ndFlrSF',
       'LowQualFinSF', 'GrLivAr
       'HalfBath', 'BedroomAbv( categorical_features = train.select_dtypes(include=['object'])
       'Fireplaces', 'GarageYr
       'OpenPorchSF', 'Enclose categorical_features.columns
       'MiscVal', 'MoSold', 'Yr
                                Index(['MSZoning', 'Street', 'Alley', 'LotShape', 'LandContour', 'Utilities',
      dtype='object')
                                       'LotConfig', 'LandSlope', 'Neighborhood', 'Condition1', 'Condition2',
                                       'BldgType', 'HouseStyle', 'RoofStyle', 'RoofMatl', 'Exterior1st',
                                       'Exterior2nd', 'MasVnrType', 'ExterQual', 'ExterCond', 'Foundation',
                                       'BsmtQual', 'BsmtCond', 'BsmtExposure', 'BsmtFinType1', 'BsmtFinType2',
                                       'Heating', 'HeatingQC', 'CentralAir', 'Electrical', 'KitchenQual',
                                       'Functional', 'FireplaceQu', 'GarageType', 'GarageFinish', 'GarageQual',
                                       'GarageCond', 'PavedDrive', 'PoolQC', 'Fence', 'MiscFeature',
                                       'SaleType', 'SaleCondition'],
                                      dtype='object')
```


Descrição de cada atributo (numérico)

Histograma

Assimetria (skew): normal = 0

Curtose (kurt): achatamento normal = 3

Boxplots individuais

Exemplo com boxplots

```
nf_cols = numeric_features.columns
```


Atributos categóricos

Atributos categóricos com seaborn countplot

Há correlação entre os atributos?

Há atributos redundantes?

Há relações lineares ou não-lineares?

Correlações

correlation = train_num_df.corr() print(correlation['SalePrice'].sort_values(ascending = False))

Forte 70.7

SalePrice

Positiva

	Saterite	1.000000	
Į	OverallQual	0.790982	
	GrLivArea	0.708624	
	GarageCars	0.640409	
	GarageArea	0.623431	
	TotalBsmtSF	0.613581	
	1stF1rSF	0.605852	Bsm
	FullBath	0.560664	Mis
	TotRmsAbvGrd	0.533723	Id
	YearBuilt	0.522897	Low
	YearRemodAdd	0.507101	YrS
	GarageYrBlt	0.486362	0ve
	MasVnrArea	0.477493	MSS
			Enc

1 aaaaaaa

BsmtHalfBath	-0.016844
MiscVal	-0.021190
Id	-0.021917
LowQualFinSF	-0.025606
YrSold	-0.028923
OverallCond	-0.077856
MSSubClass	-0.084284
EnclosedPorch	-0.128578
KitchenAbvGr	-0.135907

Name: SalePrice, dtype: float64

Correlações

Suspeita de multicolinearidade nas correlações muito altas >90

Colunas 'TotalBsmtSF' e '1stFlrSF' são suspeitas

Também as colunas Garage_* são suspeitas

Uma delas pode ser excluída na etapa de modelagem

Zoom nos atributos que tem maiores correlações com preço

Se o analista está interessado em saber o que afeta o preço.

O mesmo serve para qualquer outra coluna

Pairplot

SalePrice' e 'YearBuilt' podem tem uma relação não linear, talvez exponencial.

Os preços estão aumentando mais rapidamente em relação aos anos anteriores.

Scatter com linha de regressão

Aqui se pode identificar se há relação linear, não linear ou mesmo não há relação por inspeção visual

SalePrice parece ser influenciado pelo OverallQual

SalePrice em relação aos vários bairros

Comentários:

OverallQual', 'GrLivArea' e 'TotalBsmtSF' parecem influenciar fortemente 'SalePrice'.

'GarageCars' and 'GarageArea' são fortemente correlacionadas entre si. Recomenda-se manter 'GarageCars' pela correlação com 'SalePrice'

'TotalBsmtSF' e '1stFloor' são fortemente correlacionadas. Recomenda-se manter 'TotalBsmtSF'

'YearBuilt' parece ser fracamente correlacionado com 'SalePrice'.

Análise Multivariada

Para esta etapa pode-se utilizar

Algoritmo de regressão linear, regressão logística ou mesmo árvores de decisão

Analisar o peso de cada atributo nestes algoritmos e levantar hipóteses sobre sua importância para variável alvo

Próximas etapas

Testes de hipótese

Testar as várias hipóteses levantadas sobre quais atributos mais influenciam o SalePrice

Ex: T-test, ANOVA, etc.

Aprendizagem de máquina

SalePrice talvez possa ser predito por um algoritmo de regressão.

Conclusão

Resumo

Análise Exploratória de Dados é a etapa principal de compreensão dos dados

Nessa aula tivemos uma visão geral de como aplicar todos os conhecimentos de manipulação e visualização para encontrar padrões e ajudar a tomada de decisão

Os produtos dessa etapa incluem: relatório com os principais achados, notebooks, scripts, figuras, e dados transformados

A próxima etapa é a modelagem de dados com técnicas de aprendizagem de máquina ou criação de produtos de tais como dashboards coorporativos

Referências

Livros

McKINNEY, Wes. "Python for Data Analysis". O'Reilly, 2017.

VANDERPLASS, Jake. "Python Data Science Handbook". O'Reilly, 2016.

HARRISON, Matt. "Machine Learning: guia de referencia rápida". Novatec, 2020.

CHEN, Daniel Y. "Analise de Dados com Python e Pandas". Novatec, 2018.

Links

https://towardsdatascience.com/exploratory-data-analysis-in-python-a-step-by-step-process-d0dfa6bf94ee

