

Outline

- Worksheet
- Prepare for simulation
- Instruction Idea implement
- Problem during coding
- Reference

Worksheet

Prepare for simulation

- Achieve a more real solar system
 - The ephemeris : Time
 - The ephemeris: Location
 - 3-Dimension RK4 method

Instruction Idea implement

- Interstellar Mission: Voyager 2
 - thruster system
 - Find the minim spend of fuel (unfinished)

Problem during coding

- Data manipulation
 - copy() & deepcopy() in Python

Real solar system(1)

1. The ephemeris -> time

Provided by "astropy" package:

JD(Julian Day) time

From Voyager 2 launch time to 10yr 1977/08/20 – 1987/08/20

Time

https://docs.astropy.org/en/stable/time/index.html

```
[35]: from astropy.time import Time

t = Time("2021-06-16 03:27")

t_launch = Time("1977-08-20 00:00")

t_arrive = Time("1987-08-20 00:00")
```

```
[36]: print(t)
2021-06-16 03:27:00.000
```

```
[37]: print(t.jd)
2459381.64375
```

```
[38]: import numpy as np
  time_duration = np.arange(t_launch.jd,t_arrive.jd+1,1)
  time_test = np.arange(t_launch.jd,t_launch.jd+365,1)
```

```
[33]: print(time_duration)
[2443375.5 2443376.5 2443377.5 ... 2447025.5 2447026.5 2447027.5]
```

Real solar system(2)

2. The ephemeris -> location

Provided by NASA NAIF database
(NASA's Navigation and
Ancillary Information Facility)

Use "jplephem" can read the file: given <u>time</u> array

get each planet location

Location

https://pypi.org/project/jplephem/

```
[28]: from jplephem.spk import SPK
kernel = SPK.open('de421.bsp')
print(kernel)

File type DAF/SPK and format LTL-IEEE with 15 segments:
2414864.50..2471184.50 Type 2 Solar System Barycenter (0) -> Mercury Barycenter (1)
Getting Started With DE421

The DE421 ephemeris is a useful starting point. It weighs in at 17 MB, but provides predictions over the years 1900-2050:
```

https://naif.jpl.nasa.gov/pub/naif/generic_kernels/spk/planets/a_old_versions/de421.bsp

After the kernel has downloaded, you can use jplephem to load this SPK file and learn about the segments it offers:

Real solar system – check the solar system

1977/08/20 - 1987/08/20

Real solar system(3): 3D RK4 method

1. Applied spherical coordinate idea

Idea implement(1): initial condition

 $m_{voyager} = 721.9 \, kg$ $initial \, velcoity = 38.6 \, km/s$ $initial \, position = 100km \, on \, Earth$ $lauch \, time : 1977.08.22 \, 00:00$

 $m_{voyager} = 721.9 \, kg$ $initial \ velcoity = 38.621 \, km/s$ $initial \ position = 1000km \ on \ Earth$ $lauch \ time : 1977.09.01 \ 00:00$

From NASA, Voyager have 16 thrusters (suppose 8 can act in same direction)

Each provide 3 ounces force

The electronics and heaters aboard each nearly one-ton Voyager spacecraft 400 watts of power, or roughly one-fourth that used by an average residentic western United States.

A set of small thrusters provides Voyager with the capability for attitude cont correction. Each of these tiny assemblies has a thrust of only three ounces. friction, on a level road, it would take nearly six hours to accelerate a large of 48 km/h (30 mph) using one of the thrusters.

The Voyager scan platform can be moved about two axes of rotation. A thur gear train drive assembly (which turns 9000 revolutions for each single revo

$$F_{thruster} = m_{voyager} * a_{thruster}$$

$$8 * \left(\frac{3 * 0.02835[ounces \to g]}{1000[g \to kg]}\right) * 9.8 = 721.9[kg] * a_{thruster}$$

Idea implement(3): thruster dt

speed up time (unit: min)

Simulation update time (unit: hr /day)

$$dt_{update} ! = dt_{speed up}$$

$$v = v_0 + dt * a_{planet} + dt' * a_{thruster}$$

$$v = v_0 + dt(a_{planet} + a_{thruster} (\frac{dt'}{dt}))$$

```
def euler(dt, yin1, yin2, derive, stell_acc):
    Do one euler update with dt
           = derive(yin2, stell acc)
    dydt
           = yin1 + dt*dydt
    yout
    return yout
```

```
(speedupinfo.speed ox):
 speedup acc vector = fuel acc * speedupinfo.direction
 speedup acc vector = speedup acc vector * speedupinfo.dt ratio
 stell acc[0] = stell acc[0] + speedup acc vector[0]
 stell acc[1] = stell acc[1] + speedup acc vector[1]
 stell_acc[2] = stell_acc[2] + speedup_acc_vector[2]
```

Idea implement(4): thruster timing

• Can effect when the target planet gravity start to influence our satellite

• Sphere of influence

$$r_{SOI} \approx a \left(\frac{m_{planet}}{M_{SUD}}\right)^{\frac{2}{5}}$$

Use the SOI distance to stop record trajectory

calculation minimum distance
 voyager2 <-> target planet

Record the direction angle
 Back to SOI star point to fire thruster

Problem : copy() in Python

Problem: copy() in Python


```
Satellite information
                                 Copy information
 before enter SOI
                                       object
                                                          find the direction:
                                    Loop to find
                                minimum distance
                                 Copy information
                                    will need to
                                 update & modify
  Back to the step
                            But...
 before enter SOI
Do thruster update
                                                           Done for simulation!
```

```
time: 2444111.0 x; -623471372.2138661 v; 415888130.4259438 z; 180511336.62062678
TIME: Z44411Z.U X: -0Z4109485.531010/ Y: 41503/05/.01Z553Z4 Z: 18040/10Z.13Z401Z
time: 2444113.0 x: -624866251.7632319 y: 415386632.8318817 z: 180302747.0527599
time: 2444114.0 x: -625561671.6445698 y: 415135065.12856567 z: 180198279.6698904
time: 2444210.0 x: -686773621.5519373 y: 388509732.0850351 z: 175801763.68224213
time: 2444211.0 x: -687371288.8545544 y: 388106725.4316633 z: 175893467.3111652
time: 2444212.0 x: -687968006.4191173 y: 387699307.9846047 z: 175984946.90626466
time: 2444213.0 x: -688563747.769249 y: 387287670.8538812 z: 176076100.26585796
time: 2444214.0 x: -689158488.6781838 y: 386871996.61781687 z: 176166840.29239056
time: 2444215.0 x: -689752207.0116308 y: 386452459.0000437 z: 176257093.13340542
back to : 2444110.5 with no speed
x: -690344739.6401566 y: 386030743.2745501 z: 176346930.5982988
```

Problem: copy() in Python

	python	Numpy	Tensorflow
b = a	deep copy	deep copy	shallow copy
b = a[:]	shallow copy	deep copy	shallow copy
b = a.copy()	shallow copy	shallow copy	X
b = copy.copy(a)	shallow copy	shallow copy	shallow copy
b = copy.deepcopy(a)	deep copy	deep copy	X
b = tf.identity(a)	X	X	shallow copy

deep copy will use the address of the variable

So if we modify the copy one, modification will act on save address

will also modify the original one

Idea implement(6): thruster demo

```
time: 2444194.0 x: -677112585.1588489 y: 394198990.7772657 z: 174476938.62255636
time: 2444195.0 x: -677720056.3957083 y: 393890756.87884665 z: 174538834.75926706
time: 2444196.0 x: -678327238.5998429 y: 393576126.805971 z: 174605447.32445163
time: 2444197.0 x: -678934099.8019776 y: 393254955.5530706 z: 174676327.32943112
time: 2444198.0 x: -679540601.6323012 y: 392927162.37275875 z: 174751017.5425642
time: 2444199.0 x: -680146700.7939484 y: 392592726.8913396 z: 174829063.80248457
time: 2444200.0 x: -680752350.5351741 y: 392251683.2757299 z: 174910024.66204777
time: 2444201.0 x: -681357502.0324658 y: 391904113.127306 z: 174993479.06117046
time: 2444202.0 x: -681962105.6221398 y: 391550137.75010103 z: 175079031.95526236
time: 2444203.0 x: -682566111.8439447 y: 391189910.34813744 z: 175166318.0070777
time: 2444204.0 x: -683169472.2831584 y: 390823608.5799337 z: 175255003.57197046
time: 2444205.0 x: -683772140.2155529 y: 390451427.7639656 z: 175344787.27150825
time: 2444206.0 x: -684374071.0718333 y: 390073574.9060365 z: 175435399.4683076
time: 2444207.0 x: -684975222.7451872 y: 389690263.6187343 z: 175526600.93934396
time: 2444208.0 x: -685575555.7684168 y: 389301709.9280775 z: 175618181.00913325
time: 2444209.0 x: -686175033.3869493 y: 388908128.9119333 z: 175709955.35902524
time: 2444210.0 x: -686773621.5519373 y: 388509732.0850351 z: 175801763.68224213
time: 2444211.0 x: -687371288.8545544 y: 388106725.4316633 z: 175893467.3111652
time: 2444212.0 x: -687968006.4191173 y: 387699307.9846047 z: 175984946.90626466
time: 2444213.0 x: -688563747.769249 y: 387287670.8538812 z: 176076100.26585796
time: 2444214.0 x: -689158488.6781838 y: 386871996.61781687 z: 176166840.29239056
time: 2444215.0 x: -689752207.0116308 y: 386452459.0000437 z: 176257093.13340542
direction is find!
back to : 2444110.5 with no speed
x: -623471372.2138661 y: 415888130.4259438 z: 180511336.62062678
back to : 2444110.5 with speed 1 day
x: -623471370.298339 y: 415888164.7842788 z: 180511338.71796173
Done for simulation!
```


Reference

- https://docs.astropy.org/en/stable/time/index.html
- https://pypi.org/project/jplephem/
- https://voyager.jpl.nasa.gov/mission/did-you-know/
- https://zh.wikipedia.org/wiki/%E5%8F%8D%E6%8E%A8%E5%8A%9B%E7%B3%BB%E7%BB%9F
- https://en.wikipedia.org/wiki/Sphere_of_influence_(astrodynamics)
- https://medium.com/@johnnyliao/python%E9%81%BF%E9%96%8Bdeep-copy%E7%9A%84%E9%99%B7%E9%98%B1-%E5%AF%A6%E9%9A%9B%E5%9C%A8numpy-tensorflow%E7%9A%84%E6%87%89%E7%94%A8-bebbdd247535
- https://www.facebook.com/519265398171665/posts/1212531952178336/
- https://ithelp.ithome.com.tw/articles/10221255

Thank you for listening