Application No.: 10/605,990 Docket No.: BUR920020122US1

21806-00151-US1

AMENDMENTS TO THE CLAIMS

This listing of claims will replace all prior versions and listings of claims in the application:

LISTING OF CLAIMS

1. (Currently amended) A method for performing an electromigration check for conductors with alternating current flow adjacent to conductors with direct current flow in an integrated circuit comprising:

determining resistances R_{WRE} and a capacitance matrix C for the integrated circuit; converting the capacitance matrix C into a thermal conductance matrix G;

determining temperature differences ΔT_{ni} between conductors from thermal conductances G_{thi} of the thermal conductance matrix G;

approximating power flow P_n into conductors with direct current flow due to adjacent conductors with alternating current flow in the integrated circuit from the temperature differences ΔT_{ni} between conductors and the thermal conductances G_{thi} ;

determining a power limit as a function of the maximum temperature difference ΔT_{MAX} that ensures reliability of the integrated circuit; and

performing the electromigration check by limiting power generated in the conductors with alternating current flow to less than the power limit.

wherein n and i are conductor numbers.

- 2. (Original) The method of claim 1, wherein the thermal conductance matrix G is determined from the product of the capacitance matrix C and a scalar factor F and the scalar factor is given by a ratio of thermal conductivity κ to permittivity ϵ .
- 3. (Original) The method of claim 1, wherein the power limit is given by the product of scalar factor F, the total capacitance C_{ntot} and the maximum temperature difference ΔT_{MAX} .

MAY. 31. 2005 4:22PM CBL&H 202 293 6229 NO. 5226 P. 9

Application No.: 10/605,990 Docket No.: BUR920020122US1

21806-00151-US1

4. (Original) The method of claim 1, wherein the I_{RMS} value is determined by the expression C_{load}*V_{dd}*frequency*Switching factor.

- 5. (Original) The method of claim 1, wherein the thermal conductances G_{tht} are inputs for a circuit simulator that determines temperature differences between conductors ΔT_{nt} as outputs of the circuit simulator.
- 6. (Currently amended) The method of claim 1, wherein the capacitance matrix C and resistances R_{WIRE} are determined by using simulation and analysis tools that at least-include capacitance/resistance extraction capabilities.
- 7. (Currently amended) A method for performing an electromigration check for conductors with alternating current flow adjacent to conductors with direct current flow comprising:

determining resistances R_{WIRE} and capacitances C_{ni} for conductors with alternating current flow and conductors with direct current flow;

converting the capacitances Cni into thermal conductances Gthi;

determining temperature differences ΔT_{ni} between conductors from the thermal conductances G_{thi} :

approximating power flow P_n into conductors with direct current flow due to adjacent conductors with alternating current flow from the temperature differences ΔT_{ni} between conductors and thermal conductances G_{tht} ;

determining a power limit as a function of a maximum temperature difference ΔT_{MAX} for the conductors that ensures reliability of the conductors; and

performing the electromigration check by limiting power generated in the conductors with alternating current flow to less than the power limit.

wherein n and i are conductor numbers.

MAY. 31. 2005 4:22PM CBL&H 202 293 6229 NO. 5226

Application No.: 10/605,990 Docket No.: BUR920020122US1

21806-00151-US1

P. 10

8. (Currently amended) The method of claim 7, wherein the thermal conductances G_{thi} are determined from the product of the capacitances C_{ni} and a factor F and the scalar factor F is given by a ratio of thermal conductivity κ to permittivity ε .

- 9. (Original) The method of claim 7, wherein the power limit is given by the product of scalar factor F, the total capacitance C_{ntot} and the maximum temperature difference ΔT_{MAX} .
- 10. (Original) The method of claim 7, wherein the I_{RMS} value is determined by the expression $C_{load}^*V_{dd}^*$ frequency*Switching factor.
- 11. (Original) The method of claim 7, wherein the thermal conductances G_{tld} are inputs for a circuit simulator that determines temperature differences between conductors ΔT_{nl} as outputs of the circuit simulator.
- 12. (Original) The method of claim 7, wherein the capacitances C_{ni} and resistances R_{WIRE} are determined by using simulation and analysis tools that at least include capacitance/resistance extraction capabilities.
- 13. (Currently amended) A method for performing a check of local heating in a device comprising:

determining resistances R_{WIRE} and at least one of capacitances C_{ni} and a capacitance matrix C for the device;

determining thermal conductances G_{thi} from the at least one of capacitances C_{ni} and a capacitance matrix C;

setting a maximum temperature difference ΔT_{MAX} in accordance with electromigration requirements; determining a power limit F *C_{ntot}* ΔT_{MAX} as a function of the maximum temperature difference ΔT_{MAX} ;

checking each-interconnect conductor conductors with an-alternating current flow to determine if power generated $I_{RMS}*R_{WIRE}^2$ is less than the power limit $F*C_{ntot}*\Delta T_{MAX}$,

MAY. 31. 2005 4:22PM CBL&H 202 293 6229

NO. 5226 P. 11

Application No.: 10/605,990

Docket No.: BUR920020122US1

21806-00151-US1

indicating no local heating problem with an interconnect conductor when power generated $I_{RMS}*R_{WIRE}^2$ is less than the power limit $F*C_{ntot}*\Delta T_{MAX}$;

indicating a local heating problem exist with eurrent an interconnect conductor when the power generated $I_{RMS}*R_{WIRE}^2$ is equal to or greater than the power limit $F*C_{ntot}*\Delta T_{MAX}$ and taking corrective action to reduce the power generated $I_{RMS}*R_{WIRE}^2$; and

continuing to check each interconnect conductor conductors with alternating current flow until all interconnect conductors have a value for power generated $I_{RMS}*R_{WIRE}^2$ less than the power limit $F*C_{ntot}*\Delta T_{MAX}$.

wherein n and i are conductor numbers. F is a scalar factor and Cntot is a total capacitance.

- 14. (Currently amended) The method of claim 13, wherein the thermal conductances G_{thi} are determined from the product of the capacitances C_{ni} and a factor F and the-scalar factor F is given by a ratio of thermal conductivity κ to permittivity ε .
- 15. (Currently amended) The method of claim 13, wherein the power limit is given by the a product of scalar factor F, the total capacitance C_{ntol} and the maximum temperature difference ΔT_{MAX} .
- 16. (Original) The method of claim 13, wherein the I_{RMS} value is determined by the expression C_{load}*V_{dd}*frequency*Switching factor.
- 17. (Currently amended) The method of claim 13, wherein said thermal conductances G_{thi} are inputs for a circuit simulator that determines temperature differences ΔT_{nl} as outputs of the circuit simulator.
- 18. (Currently amended) The method of claim 13, wherein the capacitances C_{ni} and resistances R_{WIRE} are determined by using simulation and analysis tools that at-least include capacitance/resistance extraction capabilities.

CBL&H 202 293 6229

Application No.: 10/605,990 Docket No.: BUR920020122US1

21806-00151-US1

19. (Currently amended) A computer-readable medium having a plurality of computer executable instructions for causing a computer to perform an electromigration check for conductors with alternating current flow adjacent to conductors with direct current flow in an integrated circuit, the computer executable instructions comprising:

instructions for determining resistances R_{WIRE} and a capacitance matrix C for the integrated circuit;

<u>instructions for converting the capacitance matrix</u> C into a thermal conductance matrix G;

instructions for determining temperature differences ΔT_{ni} between conductors from thermal conductances G_{thi} of the thermal conductance matrix G;

instructions for approximating power flow P_n into conductors with direct current flow due to adjacent conductors with alternating current flow in the integrated circuit from the temperature differences ΔT_{ni} between conductors and the thermal conductances Gt_{hi} ;

instructions for determining a power limit as a function of the maximum temperature difference ΔT_{MAX} that ensures reliability of the integrated circuit; and perform

instructions for performing the electromigration check by limiting power generated in the conductors with alternating current flow to less than the power limit,

wherein n and i are conductor numbers.

- 20. (Currently amended) The method computer readable medium of claim 19, wherein the thermal conductance matrix G is determined from the product of the capacitance matrix C and a scalar factor F and the scalar factor is given by a ratio of thermal conductivity K to permittivity E.
- 21. (Currently amended) The method computer readable medium of claim [[1]] 19, wherein the power limit is given by the a product of scalar factor F, the total capacitance C_{ntol} and the maximum temperature difference ΔT_{MAX}.
- 22. (Currently amended) The method-computer readable medium of claim [[1]] 19, wherein the I_{RMS} value is determined by the expression: C_{load}*V_{dd}*frequency*Switching factor.

MAY. 31. 2005 4:23PM CBL&H 202 293 6229

NO. 5226 P. 13

Application No.: 10/605,990

Docket No.: BUR920020122US1

21806-00151**-**US1

23. (Currently amended) The method computer readable medium of claim [[1]] 19, wherein the thermal conductances G_{thi} are inputs for a circuit simulator that determines temperature differences between conductors ΔT_{m} as outputs of the circuit simulator.