MA211

Lecture 10: 2nd-Order DEs with Constant Coefficients

Wednesday, 8th October 2008

Class test next Wednesday

Reminder: There will be a 30 minute in-class test next Wednesday (15/10/08). It will be worth approximately 5% for total for MA211.

Questions will be based on Problem Set 2.

In this class...

For more details, see 17.1 of Stewart.

2nd Order, Constant Coefficient, Homogeneous differential equations

On Monday we started a new section of MA211 were we try to solve problems of the form

$$ay''(x) + by'(x) + cy(x) = 0.$$

where a, b and c are constants (real numbers).

We introduced the *The Auxiliary Equation*:

$$aR^2 + bR + c = 0,$$

and the **Discriminant**, $D = b^2 - 4ac$.

$$ay''(x) + by'(x) + cy(x) = 0.$$

where a, b and c are constants (real numbers).

When solving the above equation, we consider separately the three cases

(i)
$$D > 0$$
, (ii) $D = 0$ (iii) $D < 0$.

The easiest case is $D = b^2 - 4ac > 0$.

D > 0

If $D = b^2 - 4ac > 0$, then the auxiliary equation

$$ar^2 + br + c = 0$$

has two solutions:

$$R_1 = \frac{-b + \sqrt{b^2 - 4ac}}{2a}, \qquad R_2 = \frac{-b - \sqrt{b^2 - 4ac}}{2a},$$

and the general solution is

$$y(x) = Ae^{R_1x} + Be^{R_2x}.$$

Example

Find the general solution to the differential equation

$$y''-4y=0.$$

and express the solution in terms of sinh and cosh

$$\cosh(x) = \frac{1}{2} (e^x + e^{-x}), \quad \sinh(x) = \frac{1}{2} (e^x - e^{-x})$$

Solution:

Exercise (Q10.1)

Find general solutions to the following differential equations:

- (i) y'' + y' 6y = 0.
- (ii) 3y'' + y' y = 0.
- (iii) y'' + 4y' + 2y = 0
- (iv) y'' + 2y' = 0

$$D=0$$

The next easiest case is $D = b^2 - 4ac = 0$.

$$D = 0$$

If $D = b^2 - 4ac = 0$, then the auxiliary equation

$$ar^2 + br + c = 0$$

has just one solution:

$$R=\frac{-b}{2a},$$

and the general solution is

$$y(x) = Ae^{Rx} + Bxe^{Rx}.$$

$$D = 0$$

Example

Find the general solution to the equation

$$y''+2y'+y=0,$$

and verify your solution.

Solution:

D = 0

Example

Find the general solution to the equation

$$4y'' + 12y' + 9y = 0.$$

Example

Suppose the coefficients of the differential equation

$$ay'' + by' + cy = 0.$$

are such that $b^2 = 4ac$. If $y_1 = e^{Rx}$ is a solution, where R = -b/2a, then show that $y_2 = xe^{Rx}$ is also a solution.

Exercise (Q10.2)

Find general solutions to the following differential equations:

(i)
$$\frac{3}{4}y'' + 3y' + 3y = 0$$
.

(ii)
$$y'' - 8y' + 16y = 0$$
.

Finally, we consider the most complicated situation:

$$D=b^2-4ac<0,$$

so that the solutions to the auxiliary equation are *complex valued*.

But first... simple harmonic motion

Before we see how to solve the problem in general, we'll look at a simple but important example:

$$y'' + \omega^2 y = 0.$$

Solution: