

Biologie Niveau supérieur Épreuve 2

Lundi 14 mai 2018 (ap	rès-midi`	١
-----------------------	-----------	---

	Numéro de session du candidat														
2 heures 15 minutes															

Instructions destinées aux candidats

- Écrivez votre numéro de session dans les cases ci-dessus.
- N'ouvrez pas cette épreuve avant d'y être autorisé(e).
- Section A: répondez à toutes les questions.
- Section B : répondez à deux questions.
- Rédigez vos réponses dans les cases prévues à cet effet.
- Une calculatrice est nécessaire pour cette épreuve.
- Le nombre maximum de points pour cette épreuve d'examen est de [72 points].

20FP01

International Baccalaureate
Baccalaureat International
Bachillerato Internacional

Veuillez ne **pas** écrire sur cette page.

Les réponses rédigées sur cette page ne seront pas corrigées.

Section A

Répondez à toutes les questions. Rédigez vos réponses dans les cases prévues à cet effet.

1. Arabidopsis est une petite plante à fleurs appartenant à la famille de la moutarde (Brassicaceae) qui est largement utilisée dans la recherche élémentaire. Elle a un cycle de vie court, fleurit rapidement pour produire un grand nombre de graines et est facile à cultiver. Elle forme un cercle de feuilles connu sous le nom de rosette qui s'étend près du sol. Les fleurs se forment à l'extrémité de tiges courtes.

[Source : d'après une reproduction d'un tableau du botaniste suédois C. A. M. Lindman (1856–1928), à partir de son livre Bilder ur Nordens Flora (première édition publiée 1901–1905, édition augmentée 1917–1926), https://commons.wikimedia.org/wiki/File:Arabidopsis_thaliana_backtrav.jpg.]

Une étude a été réalisée sur les différences de développement des plants d'*Arabidopsis* cultivés durant des journées longues (16 heures de lumière, 8 heures d'obscurité) par rapport aux journées courtes (8 heures de lumière, 16 heures d'obscurité). La sixième feuille (L6) émergeant dans la rosette de chaque plant a été utilisée dans toutes les investigations.

Les nouvelles feuilles sont engendrées par le méristème et traversent quatre stades au fur et à mesure qu'elles se développent.

- Stade 1 (S1) division cellulaire rapide
- Stade 2 (S2) la division cellulaire s'est arrêtée, l'expansion cellulaire continue
- Stade 3 (S3) réduction du taux d'expansion cellulaire
- Stade 4 (S4) la croissance des feuilles est terminée

Le début de chaque stade de développement des feuilles des plants cultivés durant des journées longues et des journées courtes est indiqué au-dessus du premier graphique.

[Source: d'après K Baerenfaller, et al, (2015), "A long photoperiod relaxes energy management in Arabidopsis leaf six," Current Plant Biology, 2, pages 34–45. http://dx.doi.org/10.1016/j.cpb.2015.07.001. © 2015.

article à accès libre distribué sous les termes de la licence CC BY (http://creativecommons.org/licenses/by/4.0).]

Jours après l'amorce du développement de L6

(a)	(i)	Calculez la différence de surface moyenne de L6 au début du stade 4 entre les plants cultivés durant des journées longues et ceux cultivés durant des journées courtes.	[1]
		mm²	
	(ii)	Distinguez les plants cultivés durant des journées longues de ceux cultivés durant des journées courtes quant à la répartition dans le temps des quatre stades du développement des feuilles.	[2]
(b)	des	nguez les plants cultivés durant des journées longues de ceux cultivés durant journées courtes quant au nombre moyen de feuilles par rosette durant la période érimentale.	[2]

Tournez la page

(c)

Des feuilles ont été arrachées des plants d'*Arabidopsis* qui avaient été cultivés dans des conditions de journées longues et de journées courtes et la concentration d'amidon qu'elles contenaient a été mesurée. Cela a été fait à la fin de la journée (J) ainsi qu'à la fin de la nuit (N) à chacun des quatre stades du développement (S1, S2, S3, S4).

[Source: d'après K Baerenfaller, et al, (2015), "A long photoperiod relaxes energy management in Arabidopsis leaf six," Current Plant Biology, 2, pages 34–45. http://dx.doi.org/10.1016/j.cpb.2015.07.001. © 2015. article à accès libre distribué sous les termes de la licence CC BY (http://creativecommons.org/licenses/by/4.0).]

Discutez des preuves fournies par le graphique en barres quant à l'hypothèse que les

feuilles des plants utilisent les réserves d'amidon pour la respiration cellulaire durant

la nuit.	[2]

(Suite	de la	question	1)
(7	-,

(d)	(i)	Pour chacun des stades, identifiez si la concentration d'amidon à la fin de la journée est plus élevée dans les feuilles cultivées durant des journées longues ou dans celles cultivées durant des journées courtes.	[1]
	(ii)	Suggérez des raisons pour lesquelles il existe une différence entre les concentrations d'amidon en fin de journée au stade 2 (S2) des plants cultivés durant des journées longues et celles des plants cultivés durant des journées courtes.	[2]

Tournez la page

(e)

Pour expliquer les différences phénotypiques et métaboliques observées, les chercheurs ont analysé des données de transcription de l'ARNm. Ils ont découvert que certains transcrits étaient sur-représentés dans les plants d'*Arabidopsis* cultivés durant des journées longues (gris foncé), comparé à la quantité attendue par chance. D'autres types de transcrits étaient sur-représentés dans les plants d'*Arabidopsis* cultivés durant des journées courtes (gris clair).

[Source : d'après K Baerenfaller, et al, (2015), "A long photoperiod relaxes energy management in Arabidopsis leaf six," Current Plant Biology, 2, pages 34–45. http://dx.doi.org/10.1016/j.cpb.2015.07.001. © 2015. article à accès libre distribué sous les termes de la licence CC BY (http://creativecommons.org/licenses/by/4.0).]

En utilisant les données du graphique en barres, discutez des preuves que les plants d'*Arabidopsis* s'adaptent à des régimes de lumière du jour différents en modifiant le

profil de l'expression genique.												

(1)	des raisons, si <i>Arabidopsis</i> est une plante de journées longues ou une plante de journées courtes en termes de floraison.	[2]			

[2]

2.	(a)	Légendez les parties du diagramme d'ADN indiquées par I, II, III et IV.

l
IV

[Source : © Organisation du Baccalauréat International 2018]

(b)	(i))	E>	(pri	me	ЭZ	un	ırć	ŝΙε	e d	les	s r	าน	cle	éo	SC	m	es	s d	lar	าร	le	s (се	llι	ıle	S	eu	Ca	ıry	ot	es						[1]
								٠.																										 	 			

(ii) Résumez comment l'expérience réalisée par Hershey et Chase a apporté des preuves que l'ADN constitue le matériel génétique. [3]

(iii) Exprimez **une** fonction d'une région de l'ADN qui **ne** code **pas** pour des protéines.

[1]

																																																								•		
	•	•	•	•	•	٠.	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	 •	•	•	•	•	 •	•	•	•	 •	•	•	•	٠.	•	•	•	•	٠.	•	•	•	 •	•	•	٠.	•	•	•	•	•	 •	•	•	

(c)	Résumez	le rôle	des	éléments	suivants	dans	la trac	duction.
-----	---------	---------	-----	----------	----------	------	---------	----------

(i)	Le site A des ribosomes	[1]
(ii)	Les enzymes d'activation de l'ARNt	[2]

3. La photo prise au microscope montre une cellule végétale de *Lilium grandiflorum* durant la méiose.

[Source : vcbio.science.ru.nl; remerciements à Dr. J. Derkse]

(a)	(1)	Identifiez, en indiquant les raisons, le stade de la méiose représenté par cette cellule.	[2]
	(ii)	Résumez la loi sur la ségrégation indépendante.	[2]

(b)	Les gènes pour la mucoviscidose et le groupe sanguin ne sont pas liés. Deux parents sont hétérozygotes pour la mucoviscidose. Un parent a le groupe sanguin O et l'autre a le groupe sanguin AB. En utilisant un carré de Punnett, déterminez la probabilité que leur enfant ait en même temps la mucoviscidose et le groupe sanguin A.	[3]

Tournez la page

4. Le diagramme représente l'amylase alpha.

[Source : © Organisation du Baccalauréat International 2018]

(6) Expliquez la structure secondaire de cette molécule protéinique.	[3]
(I) L'amylase est utilisée dans la digestion humaine. (i) Exprimez deux sites de production de l'amylase.	[1]
	(ii) Exprimez la fonction de l'amylase.	[1]

 _				 	 	 			 _															_	_	_														_	_	_	_	_	_	_	_	_	_	_	—	_	_	_
		•										•																										-	-															
										٠											٠																																	
•							٠																																															
							٠																	٠																											٠	٠		
	٠					•		٠		٠			٠		•			•			٠						•	•																										
-	•	•				•			٠	٠	•	•	•	•	•	•		•	•	-	٠	•	٠	•				•			•	•		•		•			-					•		•	•		•	•				
•	•	•				•			٠	٠	•	•	•	•	•	•		•	•	-	٠	•	٠	•				•			•	•		•		•			-					•		•	•		•	•				
-	•	•								•	•	•	•	•							•	•		•				•			•	•		•													•							
																													_	_										_	_	_	_	_										

Tournez la page

Section B

Répondez à **deux** questions. Au plus un point supplémentaire pourra être attribué à la qualité de vos réponses pour chaque question. Rédigez vos réponses dans les cases prévues à cet effet.

- **5.** Chaque cellule est entourée d'une membrane cellulaire superficielle qui régule le mouvement des substances vers l'intérieur et vers l'extérieur de la cellule.
 - (a) Discutez des modèles alternatifs de structure membranaire, en incluant des preuves pour ou contre chaque modèle. [8]
 - (b) Décrivez les processus impliqués dans l'absorption de différents nutriments au travers de la membrane cellulaire des cellules de l'épithélium des villosités tapissant l'intestin grêle. [4]
 - (c) Résumez le processus utilisé pour charger les composés organiques dans les tubes criblés du phloème. [3]
- **6.** Tous les organismes vivants dépendent d'un approvisionnement permanent en énergie.
 - (a) Expliquez les stades de la respiration aérobie qui se produisent dans les mitochondries des eucaryotes. [8]
 - (b) Résumez comment la ventilation chez l'être humain assure un approvisionnement en oxygène. [4]
 - (c) Décrivez les raisons pour lesquelles une pyramide d'énergie revêt la forme que l'on connaît. [3]
- **7.** Bien que leur structure soit simple, les bactéries en tant que groupe montrent un large éventail de diversité.
 - (a) Expliquez la production et le rôle des anticorps dans la défense contre les agents pathogènes bactériens chez l'être humain. [8]
 - (b) Décrivez l'évolution de la résistance aux antibiotiques chez les bactéries. [4]
 - (c) Résumez les rôles que jouent les bactéries dans le cycle du carbone. [3]

Tournez la page

