'If Ninaad is elected as the VP, then EITHER Ayushi is chosen as a G-Sec OR Devang is chosen as a Treasurer, but not both. Ayushi is NOT chosen as a G-Sec. Hence, if Ninaad is elected as VP then Devang is chosen as a Treasurer.'

Is this a Tautology?

In case of a goal is mentioned as MAY or MAY-NOT, how to encode? "... Therefore Ninaad may nor may not be the VP of Gymkhana."

G:
$$V V_{7}V = True$$

$$\underbrace{(1) \land (2) \land (3)}_{F/T} \rightarrow \underbrace{G}_{True} = True$$

Clarify meanings of $(a \to b)$, $(a \leftrightarrow b)$. IF/Necessary and ONLY-IF/Sufficiency?

Elaboration on Deduction process to declare a statement Tautology/Valid?

Clarification of notions like Unsatisfiable, Invalid, Satisfiable?

Clarification of notions like Unsatisfiable, Invalid, Satisfiable?

Clarification of notions like Unsatisfiable, Invalid, Satisfiable?

$$a \rightarrow b$$
 $a \rightarrow b$
 $a \rightarrow$

In Labyrinth question, how can one define goals to prove tautology or contradiction of overall formula?

GMS
$$Z$$
 $Z \rightarrow G$ is a trutology? $Z \rightarrow M$? $Z \rightarrow S$?

What is the difference between $\forall x[P(x) \to Q(x)]$ and $|\forall x[P(x)] \to \forall x[Q(x)]|$?

Is $\forall x [(pass(x) \land scnd(x)) \leftrightarrow \neg wlty(x)] \not\equiv \forall x [pass(x) \rightarrow (scnd(x) \leftrightarrow \neg wlty(x))]$ for "Each passenger is in second class if and only if he or she is not wealthy."?

pass
$$(A) = 0$$

with $(A) = 0$

Scholar
$$= 1$$
 $0 \rightarrow True$

False

Can different encoding possible for First-order logic? Yes.
"Every passenger either travels in first class or second class."

$$\forall x [pass(x) \rightarrow (frst(x) \lor scno(x))]$$
 travel (x, c)
 $mode(x, \forall)$ person x travels travel $(x, 1)$
in class-c.

Is there a difference between 'Every' and 'Any' in Predicate Logic expressions?

Amyone who swres >80 |
$$\forall x$$
 ? R depends (\exists , \forall)

is 'Ex' | ; f Anyone solves &2, 1'11 move (\forall)

 \exists)

Simple Programs: Conditional Branching

Program (Conditional-Swapping) and Input/Output Assertions

Program Requirement

$$\forall \underline{x} \ \forall \underline{y} \ \exists \underline{x'} \ \exists \underline{y'} \ \big(\ [\mathtt{True}] \leadsto [((\underline{x} \leq \underline{y}) \land ((\underline{x'} = \underline{x}) \land (\underline{y'} = \underline{y}))) \lor ((\underline{x'} = \underline{y}) \land (\underline{y'} = \underline{x}))] \ \big)$$

Formal Program Analysis

Assume that, the initial values of x and y are α and β , respectively.

How is the statement $(\alpha = \alpha) \land (\beta = \beta)$ similar to $(x' = y) \land (y' = x)$?

When the condition $(\alpha > \beta)$ is already true, then why are we considering the case of $(\alpha <= \beta)$ after the program progress again?

Simple Programs: Looping / Iterations

Program (Factorial) and Input/Output Assertions

Program Requirement

```
\forall n \exists f ((n \geq 0) \rightsquigarrow (f = n!))
```

Formal Program Analysis

Assume that, the initial value of n is γ ; the current values of i and f are α and β (resp.).

Please explain this analysis.

Why loop invariant is checked even just before entering into loop?

Which of the following sentences are valid, unsatisfiable, or neither.

- (i) $Smoke \rightarrow Smoke$, (ii) $Smoke \rightarrow Fire$, (iii) $Smoke \lor Fire \lor \neg Fire$,
- $(iv) (Smoke \rightarrow Fire) \rightarrow (\neg Smoke \rightarrow \neg Fire),$
- $(v) \ (Smoke \to Fire) \to (Smoke \land Heat \to Fire)$
 - (i) ¬Smoke V Smoke = True -> Valid, Sat.
 - (ii) Smoke = T} Invalid., Sat.
 - (iii) Valid
 - (iv) Smoke = F } T -> F -> Invalid, Sat.
 - (v) Valid? (7 Smoke V Fire) -> (7 Smoke V 7 Head V Fire) = (Smoke \lambda - Fire) \lambda 7 Smoke \lambda 7 Heat \lambda Fire) = (1 Smoke \lambda - Fire) \lambda 7 Smoke \lambda 7 Heat \lambda Fire) = 1 Tautology

Prove/Disprove: $\forall x [P(x) \to (Q(x) \leftrightarrow R(x))]$ is equivalent to $[\forall x [(P(x) \land Q(x)) \to R(x)]] \land [\forall x [(P(x) \land R(x)) \to Q(x)]]$ $\forall x [A(n)] \land \forall x [B(n)] \equiv \forall x [A(n) \land B(n)]$ $\forall x [\exists P(x) \lor \exists Q(x) \lor R(x) \land A(x) \lor A(x) \lor A(x) \land A(x) \lor A(x) \lor A(x) \land A(x) \lor A($

Encode and Reason about the following:

"If a scarcity of commodities develops, then the prices rise. If there is a change of government, then fiscal controls will not be continued. If the threat of inflation persists, then fiscal controls will be continued. If there is over-production, then prices do not rise. It has been found that there is over-production and there is a change of government. Therefore, neither the scarcity of commidities has developed, nor there is a threat of inflation."

Encode the following statements and deduce:

"No man who is a candidate will be defeated if he is a good campaigner Any man who runs for office is a candidate. Any candidate who is not defeated will be elected. Every man who is elected is a good campaigner. Therefore, Any man who runs for office will be elected if and only if he is a good campaigner."

(1)
$$\forall x \left[\operatorname{cand}(x) \wedge \operatorname{camp}(x) \rightarrow \neg \operatorname{def}(x) \right] \right] \left[\operatorname{cand}(x) \wedge \operatorname{camp}(x) \wedge \operatorname{def}(x) \right] \left[\operatorname{cand}(x) \wedge \operatorname{camp}(x) \wedge \operatorname{def}(x) \right] \left[\operatorname{def}(x) \wedge \operatorname{def}(x) \right] \left[\operatorname{cand}(x) \wedge \operatorname{cand}(x) \right] \left[\operatorname{cand}(x) \wedge \operatorname{rdef}(x) \rightarrow \operatorname{elect}(x) \right] \left[\operatorname{def}(x) \wedge \operatorname{cand}(x) \wedge \operatorname{rdef}(x) \right] \left[\operatorname{def}(x) \wedge \operatorname{camp}(x) \right] \left[\operatorname{def}(x) \wedge \operatorname{camp}(x) \right] \left[\operatorname{def}(x) \wedge \operatorname{camp}(x) \wedge \operatorname{camp}(x) \wedge \operatorname{camp}(x) \right] \left[\operatorname{def}(x) \wedge \operatorname{camp}(x) \wedge \operatorname{camp}(x) \wedge \operatorname{camp}(x) \right] \left[\operatorname{def}(x) \wedge \operatorname{camp}(x) \wedge \operatorname{camp}(x) \wedge \operatorname{camp}(x) \wedge \operatorname{camp}(x) \right] \left[\operatorname{def}(x) \wedge \operatorname{camp}(x) \wedge \operatorname{camp}(x) \wedge \operatorname{camp}(x) \wedge \operatorname{camp}(x) \right] \left[\operatorname{def}(x) \wedge \operatorname{camp}(x) \wedge \operatorname{camp}(x) \wedge \operatorname{camp}(x) \wedge \operatorname{camp}(x) \wedge \operatorname{camp}(x) \right] \left[\operatorname{def}(x) \wedge \operatorname{camp}(x) \wedge \operatorname{camp$$

(and (x) Camp (X) def(x) 0 ff (x) elect(x) (A)

Encode the following sentences and deduce: Jack owns a dog, Every dog owner is an animal lover. No animal lover kills an animal. Either Jack or Curiosity killed Juna, which is a cat. Did Curiosity kill the cat?

①
$$\exists x [own(Jack, x) \land dog(x)]$$
② $\forall x \exists y [own(x,y) \land dog(y)) \rightarrow (animal(z) \rightarrow dog(x) \leftarrow cat(x))$
 $\forall x \exists y \forall z [own(x,y) \land dog(y) \land animal(z)]$
 $\forall x \exists y \forall z [own(x,y) \land dog(y) \land animal(z)]$
 $\forall x \exists y \forall z [own(x,y) \land dog(y) \land animal(z)]$
 $\forall x \exists y \forall z [own(x,y) \land dog(y) \land animal(z)]$
 $\forall x \exists y \forall z [own(x,y) \land dog(y) \land animal(z)]$
 $\forall x \exists y \forall z [own(x,y) \land dog(y) \land animal(z)]$
 $\forall x \exists y \forall z [own(x,y) \land dog(y) \land animal(z)]$
 $\forall x \exists y \forall z [own(x,y) \land dog(y) \land animal(z)]$
 $\forall x \exists y \forall z [own(x,y) \land dog(y) \land animal(z)]$
 $\forall x \exists y \forall z [own(x,y) \land dog(y) \land animal(z)]$
 $\forall x \exists y \forall z [own(x,y) \land dog(y) \land animal(z)]$
 $\forall x \exists y \forall z [own(x,y) \land dog(y) \land animal(z)]$
 $\forall x \exists y \forall z [own(x,y) \land dog(y) \land animal(z)]$

- (3) txty [animal(y) 1 love(x,y) -> Kill(x,y)]
- (G): Kill (Chrissity, Tuna)

 (G): Kill (Chrissity, Tuna)

Encode the following statements: (Is it a Tautology/Valid statement?)
(i) All members are both officers and gentlemen, (ii) All officers are fighters, (iii) Only a pacifist is a gentleman or not a fighter, (iv) No pacifist is a gentleman if he is a fighter, (v) Some members are fighters iff they are officers. (G) Thus, not all members are fighters.

HOME WORK