Data Visualization and Pre-processing

Assignment -2

ASSIGNMENT DATE	26 September 2022
TEAM ID	PNT2022TMID15559
PROJECT NAME	A GESTURE BASED TOOL FOR STERILE BROWSING OF RADIOLOGY IMAGES
STUDENT NAME	SHARUSHA S
STUDENT ROLL NO	111519205044
MAXIMUM MARKS	2 Marks

Question-1:

Download the Dataset

SOLUTION:

RowNumb	Customer	Surname	CreditSco	Geograph	Gender	Age	Tenure	Balance	NumOfPrc HasCrCa			
1	15634602	Hargrave	619	France	Female	42	2	0	1	1 1	101348.9	1
2	15647311	Hill	608	Spain	Female	41	1	83807.86	1	0 1	112542.6	0
3	15619304	Onio	502	France	Female	42	8	159660.8	3	1 0	113931.6	1
4	15701354	Boni	699	France	Female	39	1	0	2	0 0	93826.63	0
5	15737888	Mitchell	850	Spain	Female	43	2	125510.8	1	1 1	79084.1	0
6	15574012	Chu	645	Spain	Male	44	8	113755.8	2	1 0	149756.7	1
7	15592531	Bartlett	822	France	Male	50	7	0	2	1 1	10062.8	0
8	15656148	Obinna	376	Germany	Female	29	4	115046.7	4	1 0	119346.9	1
9	15792365	He	501	France	Male	44	4	142051.1	2	0 1	74940.5	0
10	15592389	H?	684	France	Male	27	2	134603.9	1	1 1	71725.73	0
11	15767821	Bearce	528	France	Male	31	6	102016.7	2	0 0	80181.12	0
12	15737173	Andrews	497	Spain	Male	24	3	0	2	1 0	76390.01	0
13	15632264	Kay	476	France	Female	34	10	0	2	1 0	26260.98	0
14	15691483	Chin	549	France	Female	25	5	0	2	0 0	190857.8	0
15	15600882	Scott	635	Spain	Female	35	7	0	2	1 1	65951.65	0
16	15643966	Goforth	616	Germany	Male	45	3	143129.4	2	0 1	64327.26	0
17	15737452	Romeo	653	Germany	Male	58	1	132602.9	1	1 0	5097.67	1
18	15788218	Henderso	549	Spain	Female	24	9	0	2	1 1	14406.41	0
19	15661507	Muldrow	587	Spain	Male	45	6	0	1	0 0	158684.8	0
20	15568982	Hao	726	France	Female	24	6	0	2	1 1	54724.03	0
21	15577657	McDonald	732	France	Male	41	8	0	2	1 1	170886.2	0
22	15597945	Dellucci	636	Spain	Female	32	8	0	2	1 0	138555.5	0
23	15699309	Gerasimo	510	Spain	Female	38	4	0	1	1 0	118913.5	1
24	15725737	Mosman	669	France	Male	46	3	0	2	0 1	8487.75	0
25	15625047	Yen	846	France	Female	38	5	0	1	1 1	187616.2	0
26	15738191	Maclean	577	France	Male	25	3	0	2	0 1	124508.3	0
27	15736816	Young	756	Germany	Male	36	2	136815.6	1	1 1	170042	0
28	15700772	Nebechi	571	France	Male	44	9	0	2	0 0	38433.35	0
29	15728693	McWillian	574	Germany	Female	43	3	141349.4	1	1 1	100187.4	0
30	15656300	Lucciano	411	France	Male	29	0	59697.17	2	1 1	53483.21	0
31	15589475	Azikiwe	591	Spain	Female	39	3	0	3	1 0	140469.4	1
32	15706552	Odinakac	533	France	Male	36	7	85311.7	1	0 1	156731.9	0
33	15750181	Sanderso	553	Germany	Male	41	9	110112.5	2	0 0	81898.81	0
34	15659428	Maggard	520	Spain	Female	42	6	0	2	1 1	34410.55	0
35	15732963	Clements	722	Spain	Female	29	9	0	2	1 1	142033.1	0
36	15794171	Lombardo	475	France	Female	45	0	134264	1	1 0	27822.99	1
37	15788448	Watson	490	Spain	Male	31	3	145260.2	1	0 1	114066.8	0
38	15729599	Lorenzo	804	Spain	Male	33	7	76548.6	1	0 1	98453.45	0
39	15717426	Armstron	850	France	Male	36	7	0	1	1 1	40812.9	0
40	15585768	Cameron	582	Germany	Male	41	6	70349.48	2	0 1	178074	0

Question-2.

Load the dataset

solution:

import numpy as np

import pandas as pd

import seaborn as sns

import matplotlib.pyplot as plt

import sklearn

data = pd.read_csv(r'/content/Churn_Modelling.csv')

<mark>data.head</mark>

<bound< th=""><th>method</th><th></th><th></th><th></th><th></th><th>istor</th><th>merId</th><th>Sur</th><th>name</th><th>CreditScore</th><th>Geography</th><th>Gender</th><th>Ag</th></bound<>	method					istor	merId	Sur	name	CreditScore	Geography	Gender	Ag
0		1 156	534602	Hargrave	ϵ		France						
1		2 156	547311	Hill	6	80	Spain	n F	emale	41			
2		3 150	519304	Onio	5								
3		4 157	701354	Boni	6	99	France	e F	emale	39			
4		5 157	737888	Mitchell	8	150	Spain	n F	emale	43			
• • • •					-	• •	• • •	•		0.00			
9995				Obijiaku	7	71	France	e	Male	39			
9996				Johnstone		16	France	e	Male	35			
9997	99		584532	Liu	7	09	France	e F	emale	36			
9998				Sabbatini			German						
9999	100	00 156	528319	Walker	7	92	France	e F	emale	28			
	Tenure	Baland	e Nun	OfProducts	HasCrCard	I:	sActiveM	embe	er \				
0	2	0.6	90	1	1				1				
1	1	83807.8	36	1	6	1			1				
2	8	159660.8	30	3	1				0				
3	1	0.6	30	2	6	1			0				
4	2	125510.8	32	1	1				1				
	***	10.53	• •		199				**				
9995	5			2	1				0				
		57369.6		1	1				1				
	7			1	6				1				
9998		75075.3		2	1				0				
9999	4	4 130142.79		1	1				0				
	Estimat	edSalary	Exite	ed									
0	1	01348.88		1									
1	1	12542.58		0									
2	1	13931.57		1									
3		93826.63		0									
4		79084.10		0									
				G.									
9995		96270.64		0									
		01699.77		0									
9997		42085.58		1									
9998		92888.52		1									
9999		38190.78		0									

Question-3.

Perform Below Visualizations.

3.2 Bivariate Analysis

Solution:

```
plt.figure(figsize=(7,7))
sns.lineplot(data = data, x = 'Tenure', y = 'CreditScore')
```

<matplotlib.axes._subplots.AxesSubplot at 0x7f9ec7005610>

plt.fi gure (figs ize= (10, 10))

sns.barplot(data = data, x = 'CreditScore', y = 'Tenure')

sns.scatterplot(data = data, x = 'CreditScore', y = 'Age')

3.3 Multivariate Analysis

Solution:

sns.scatterplot(data = data, x = 'CreditScore', y = 'Balance', hue = 'Gender')

<matplotlib.axes._subplots.AxesSubplot at 0x7f9ec0229510>

sns.scatterplot(data['Tenure'], data['CreditScore'], hue = data['Gender'])

sns.scatterplot(
data['Age'],
data['Balance'], hue = data['Gender'])

sns.pairplot(data)

Question-4

Perform descriptive statistics on the dataset.

Solution:

data.mean(numeric_only = True)

RowNumber 5.000500e+03 CustomerId 1.569094e+07 6.505288e+02 CreditScore 3.892180e+01 Age Tenure 5.012800e+00 Balance 7.648589e+04 NumOfProducts 1.530200e+00 HasCrCard 7.055000e-01 IsActiveMember 5.151000e-01 EstimatedSalary 1.000902e+05 2.037000e-01 Exited dtype: float64

data.median(numeric_only = True)

```
CreditScore
                  6.520000e+02
                  3.700000e+01
  Age
  Tenure
                  5.000000e+00
                  9.719854e+04
  Balance
                 1.000000e+00
  NumOfProducts
  HasCrCard
                  1.000000e+00
  IsActiveMember
                  1.000000e+00
  EstimatedSalary 1.001939e+05
                  0.000000e+00
  Exited
  dtype: float64
data['CreditScore'].mode()
      0 850
      dtype: int64
data['EstimatedSalary'].mode()
    0 24924.92
    dtype: float64
data['HasCrCard'].unique()
  array([1, 0])
```

RowNumber CustomerId 5.000500e+03

1.569074e+07

```
array([ 2, 1, 8, 7, 4, 6, 3, 10, 5, 9, 0])
```

data.std(numeric only=True)

dtype: float64

data['Tenure'].unique()

RowNumber	2886.895680
CustomerId	71936.186123
CreditScore	96.653299
Age	10.487806
Tenure	2.892174
Balance	62397.405202
NumOfProducts	0.581654
HasCrCard	0.455840
IsActiveMember	0.499797
EstimatedSalary	57510.492818
Exited	0.402769

data.describe()

uutuiuesei ine()

	RowNumber	CustomerId	CreditScore	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	EstimatedSalary	Exited
count	10000.00000	1.000000e+04	10000.000000	10000.000000	10000.000000	10000.000000	10000.000000	10000.00000	10000.000000	10000.000000	10000.000000
mean	5000.50000	1.569094e+07	650.528800	38.921800	5.012800	76485.889288	1.530200	0.70550	0.515100	100090.239881	0.203700
std	2886.89568	7.193619e+04	96.653299	10.487806	2.892174	62397.405202	0.581654	0.45584	0.499797	57510.492818	0.402769
min	1.00000	1.556570e+07	350.000000	18.000000	0.000000	0.000000	1.000000	0.00000	0.000000	11.580000	0.000000
25%	2500.75000	1.562853e+07	584.000000	32.000000	3.000000	0.000000	1.000000	0.00000	0.000000	51002.110000	0.000000
50%	5000.50000	1.569074e+07	652.000000	37.000000	5.000000	97198.540000	1.000000	1.00000	1.000000	100193.915000	0.000000
75%	7500.25000	1.575323e+07	718.000000	44.000000	7.000000	127644.240000	2.000000	1.00000	1.000000	149388.247500	0.000000
max	10000.00000	1.581569e+07	850.000000	92.000000	10.000000	250898.090000	4.000000	1.00000	1.000000	199992.480000	1.000000

data['Tenure'].value_counts()

```
1048
2
1
    1035
    1028
8
    1025
5
    1012
3
    1009
4
     989
9
     984
     967
6
10
    490
     413
Name: Tenure, dtype: int64
```

Question-5:

Handle the Missing values.

Solution:

data.isnull().any()

RowNumber False CustomerId False Surname False CreditScore False Geography False Gender False False Age Tenure False Balance False NumOfProducts False HasCrCard False IsActiveMember False EstimatedSalary False Exited False dtype: bool

data.isnull().sum()

RowNumber 0 CustomerId 0 Surname 0 CreditScore Geography 0 Gender 0 Age Tenure 0 Balance 0 NumOfProducts HasCrCard IsActiveMember 0 EstimatedSalary Exited 0 dtype: int64

Question-6.

Find the outliers and replace the outliers

SOLUTION:

sns.boxplot(data['CreditScore'])#Outlier detection - box plot

400 500 600 700 800 CreditScore

```
fig, ax = plt.subplots(figsize = (5,3)) #Outlier detection - Scatter plot
ax.scatter(data['Balance'], data['Exited'])
```

```
# x-axis label
ax.set_xlabel('Balance')

# y-axis label
ax.set_ylabel('Exited')
plt.show()
sns.boxplot(x=data['Balance'])
```


<matplotlib.axes._subplots.AxesSubplot at 0x7f8cadb22ad0>


```
from scipy import stats #Outlier detection - zscore
zscore = np.abs(stats.zscore(data['CreditScore']))
print(zscore)
print('No. of Outliers : ', np.shape(np.where(zscore>3)))
```

```
0
        0.326221
        0.440036
1
2
        1.536794
3
        0.501521
4
        2.063884
          . . .
9995
        1.246488
9996
        1.391939
9997
        0.604988
9998
        1.256835
9999
        1.463771
Name: CreditScore, Length: 10000, dtype: float64
No. of Outliers: (1, 8)
q = data.quantile([0.75, 0.25])
q
```

RowNumber CustomerId CreditScore Age Tenure Balance NumOfProducts HasCrCard IsActiveMember EstimatedSalary Exited 0.75 7500.25 15753233.75 718.0 44.0 7.0 127644.24 2.0 1.0 1.0 149388.2475 0.0 0.25 2500.75 15628528.25 584.0 32.0 3.0 0.00 0.0 0.0 51002.1100 0.0 1.0

```
iqr = q.iloc[0] - q.iloc[1]
iqr
```

RowNumber	4999.5000
CustomerId	124705.5000
CreditScore	134.0000
Age	12.0000
Tenure	4.0000
Balance	127644.2400
NumOfProducts	1.0000
HasCrCard	1.0000
IsActiveMember	1.0000
EstimatedSalary	98386.1375
Exited	0.0000
dtype: float64	

$$u = q.iloc[0] + (1.5*iqr)$$

u

RowNumber 1.499950e+04 CustomerId 1.594029e+07 CreditScore 9.190000e+02 Age 6.200000e+01 Tenure 1.300000e+01 3.191106e+05 Balance NumOfProducts 3.500000e+00 HasCrCard 2.500000e+00 IsActiveMember 2.500000e+00 EstimatedSalary 2.969675e+05 Exited 0.000000e+00 dtype: float64

```
RowNumber
                  -4.998500e+03
   CustomerId
                 1.544147e+07
   CreditScore
                  3.830000e+02
                  1.400000e+01
   Age
   Tenure
                  -3.000000e+00
   Balance
                  -1.914664e+05
   NumOfProducts
                  -5.000000e-01
   HasCrCard
                  -1.500000e+00
   IsActiveMember
                  -1.500000e+00
   EstimatedSalary
                 -9.657710e+04
                  0.000000e+00
   Exited
   dtype: float64
Q1 = data['EstimatedSalary'].quantile(0.25) #Outlier detection - IQR
Q3 = data['EstimatedSalary'].quantile(0.75)
iqr = Q3 - Q1
print(iqr)
upper=Q3 + 1.5 * iqr
lower=Q1 - 1.5 * iqr
count = np.size(np.where(data['EstimatedSalary'] >upper))
count = count + np.size(np.where(data['EstimatedSalary'] <lower))</pre>
print('No. of outliers : ', count)
       98386.1375
       No. of outliers: 0
data['CreditScore'] = np.where(np.logical or(data['CreditScore']>900, data['
CreditScore']<383), 650, data['CreditScore'])</pre>
sns.boxplot(data['CreditScore'])
    amucpiociio.unco. Suppioco.nucosuppioc uc onflocuuuz
      400
             500
                    600
                           700
                                  800
                   CreditScore
upper = data.Age.mean() + (3 * data.Age.std()) #Outlier detection - 3 sigma
lower = data.Age.mean() - (3 * data.Age.std())
columns = data[ ( data['Age'] > upper ) | ( data['Age'] < lower ) ]</pre>
print('Upper range : ', upper)
print('Lower range : ', lower)
print('No. of Outliers : ', len(columns))
```

Upper range : 70.38521935511383 Lower range : 7.458380644886169 No. of Outliers : 133

```
columns = ['EstimatedSalary', 'Age', 'Balance', 'NumOfProducts', 'Tenure', '
CreditScore'] #After outlier removal
for i in columns:
 Q1 = data[i].quantile(0.25)
 Q3 = data[i].quantile(0.75)
 iqr = Q3 - Q1
 upper=Q3 + 1.5 * iqr
 lower=Q1 - 1.5 * iqr
 count = np.size(np.where(data[i] >upper))
 count = count + np.size(np.where(data[i] <lower))</pre>
 print('No. of outliers in ', i, ' : ', count)
 No. of outliers in EstimatedSalary : 0
 No. of outliers in Age : 359
 No. of outliers in Balance : 0
 No. of outliers in NumOfProducts : 60
 No. of outliers in Tenure : 0
 No. of outliers in CreditScore : 0
Question-7.
Check for Categorical columns and perform encoding
SOLUTION:
from sklearn.preprocessing import LabelEncoder, OneHotEncoder
le = LabelEncoder()
oneh = OneHotEncoder()
data['Surname'] = le.fit transform(data['Surname'])
data['Gender'] = le.fit_transform(data['Gender'])
data['Geography'] = le.fit transform(data['Geography'])
data.head()
```

	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	EstimatedSalary	Exited
0	1	15634602	1115	619	0	0	42	2	0.00	1	1	1	101348.88	1
1	2	15647311	1177	608	2	0	41	1	83807.86	1	0	1	112542.58	0
2	3	15619304	2040	502	0	0	42	8	159660.80	3	1	0	113931.57	1
3	4	15701354	289	699	0	0	39	1	0.00	2	0	0	93826.63	0
4	5	15737888	1822	850	2	0	43	2	125510.82	1	1	1	79084.10	0

Question-8.

Split the data into dependent and independent variables split the data in X and Y

SOLUTION:

```
# independent values (inputs)
x = data.iloc[:, 0:13]
```

	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	EstimatedSalary
0	1	15634602	1115	619	0	0	42	2	0.00	1	1	1	101348.88
1	2	15647311	1177	608	2	0	41	1	83807.86	1	0	1	112542.58
2	3	15619304	2040	502	0	0	42	8	159660.80	3	1	0	113931.57
3	4	15701354	289	699	0	0	39	1	0.00	2	0	0	93826.63
4	5	15737888	1822	850	2	0	43	2	125510.82	1	1	1	79084.10
9995	9996	15606229	1999	771	0	1	39	5	0.00	2	1	0	96270.64
9996	9997	15569892	1336	516	0	1	35	10	57369.61	1	1	1	101699.77
9997	9998	15584532	1570	709	0	0	36	7	0.00	1	0	1	42085.58
9998	9999	15682355	2345	772	1	1	42	3	75075.31	2	1	0	92888.52
9999	10000	15628319	2751	792	0	0	28	4	130142.79	1	1	0	38190.78

10000 rows × 13 columns

```
# dependent values (output)
y = data['Exited']
У
        1
 1
 2
        1
 9995
       0
 9996
       0
 9997
        1
 9998
        1
 Name: Exited, Length: 10000, dtype: int64
Question-9.
```

Scale the independent variables

SOLUTION:

```
from sklearn.preprocessing import StandardScaler, MinMaxScaler
sc = StandardScaler()
x_scaled = sc.fit_transform(x)
x_scaled
     array([[-1.73187761, -0.78321342, -0.46418322, ..., 0.64609167,
             0.97024255, 0.02188649],
           [-1.7315312 , -0.60653412 , -0.3909112 , ..., -1.54776799 ,
             0.97024255, 0.21653375],
           [-1.73118479, -0.99588476, 0.62898807, ..., 0.64609167,
            -1.03067011, 0.2406869 ],
           [ 1.73118479, -1.47928179, 0.07353887, ..., -1.54776799,
             0.97024255, -1.00864308],
           [\ 1.7315312\ ,\ -0.11935577,\ 0.98943914,\ \ldots,\ 0.64609167,
            -1.03067011, -0.12523071],
           [ 1.73187761, -0.87055909, 1.4692527 , ..., 0.64609167,
            -1.03067011, -1.07636976]])
```

```
Ouestion-10:
Split x and y into Training and Testing
SOLUTION:
from sklearn.model selection import train test split
x_train, x_test, y_train, y_test = train_test_split(x_scaled, y, test_size =
 0.3, random state = 0)
x train
 array([[ 0.92889885, -0.79703192, -1.47580983, ..., 0.64609167,
          0.97024255, -0.77021814],
        [ 1.39655257, 0.71431365, -1.58808148, ..., 0.64609167,
         -1.03067011, -1.39576675],
        [-0.4532777 , 0.96344969, -0.24082173, ..., -1.54776799, 0.97024255, -1.49965629],
        [-0.60119484, -1.62052514, -0.36136603, ..., 0.64609167,
         -1.03067011, 1.41441489],
        [ 1.67853045, -0.37403866, 0.72589622, ..., 0.64609167,
        0.97024255, 0.84614739],
[-0.78548505, -1.36411841, 1.3829808, ..., 0.64609167,
         -1.03067011, 0.32630495]])
x train.shape
 (7000, 13)
x_test
 array([[ 1.52229946, -1.04525042, 1.39834429, ..., 0.64609167,
        0.97024255, 1.61304597],
[-1.42080128, -0.50381294, -0.78208925, ..., 0.64609167,
         -1.03067011, 0.49753166],
        [-0.90118604, -0.7932923, 0.41271742, ..., 0.64609167,
          0.97024255, -0.4235611 ],
        [ 1.49216178, -0.14646448, 0.6868966 , ..., 0.64609167,
          0.97024255, 1.17045451],
        [ 1.1758893 , -1.29228727, -1.38481071, ..., 0.64609167, 0.97024255, -0.50846777], [ 0.08088677, -1.38538833, 1.11707427, ..., 0.64609167,
          0.97024255, -1.15342685]])
x test.shape
   (3000, 13)
y train.shape
```

```
7681
    9031
           0
    3691
           0
    202
           1
    5625
    9225
           0
    4859
           0
    3264
           0
    9845
           0
    2732
          1
    Name: Exited, Length: 7000, dtype: int64
y_test
    9394
           0
    898
           1
     2398
    5906
           0
    2343
          0
    4004
          0
    7375
           0
    9307
           0
1
    8394
    5233
    Name: Exited, Length: 3000, dtype: int64
y_test.shape
   (3000,)
```