

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

C12N 9/18 // C11D 3/386, C08G 63/91 A		1) International Publication Number: WO 00/34450
1	11	3) International Publication Date: 15 June 2000 (15.06.00)
(21) International Application Number: PCT/DK99/((22) International Filing Date: 3 December 1999 (03.1) (30) Priority Data: PA 1998 01604 4 December 1998 (04.12.98) 60/111,591 9 December 1998 (09.12.98) PA 1999 00330 9 March 1999 (09.03.99) 60/124,671 16 March 1999 (16.03.99) (71) Applicant (for all designated States except US): NORDISK A/S [DK/DK]; Novo Alle, DK-2880 Bag (DK). (72) Inventors; and (75) Inventors/Applicants (for US only): ABO, Masanobu [J 2-5-3, Kouyadai, Funabashi-shi, Chiba-ken 274 FUKUYAMA, Shiro [JP/JP]; Arlyoshi-cho 166-2 dori-ku, Chiba-shi, Chiba 211-0012 (JP). SVENI Allan [DK/DK]; Bakkeledet 28, DK-3460 Birkerød MATSUI, Tomoko [JP/JP]; Higashi-Ohwada 1-6-9-lchikawa, Chiba 272-0026 (JP). (74) Common Representative: NOVO NORDISK A/S; E Business Patents, Novo Alle, DK-2880 Bagsværd (D		
(54) Title: CUTINASE VARIANTS (57) Abstract Variants of fungal cutinases have improved thermostal near the N-terminal in the amino acid sequence or in the three three transfers.	bility	The variants comprise substitution of one or more amino acid residue ensional structure of the cutinase.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

L.	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
M	Armenia	FI	Pinland	LT	Lithuagia	SK	Slovakia
\T	Austria	FR	Prance	w	Luxembourg	SN	Senegal
AU .	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ.	Azerbaijan	GB	United Kingdom	MC.	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GB	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
B₽	Belgium	CN	Guinea	MK	The former Yegoslav	TM	Terkraenistan
BP	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey `
BG	Bulgaria	HU	Huagary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	31	Ireland	MN	Mongolia	UA.	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	υG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico -	UZ	Uzbekistan
CP	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KB	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU.	Coba	KZ	Kazakstan	RO	Romania		
CZ.	Czech Republic	LC	Saint Locia	RU	Russian Federation		
DB	Germany	и	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EB	Estocia	LR	Liberia	SG	Singapore		

CUTINASE VARIANTS

FIELD OF THE INVENTION

The present invention relates to a cutinase variant, more particularly to a cutinase variant having improved thermostability. The invention also relates to a DNA sequence encoding the variant, a vector comprising the DNA sequence, a transformed host cell harboring the DNA sequence or the vector, to a method of producing the variant, and to use of the variant.

BACKGROUND OF THE INVENTION

Cutinases are lipolytic enzymes capable of hydrolyzing the substrate cutin.

10 Cutinases are known from various fungi (P.E. Kolattukudy in "Lipases", Ed. B. Borgström and H.L. Brockman, Elsevier 1984, 471-504). The amino acid sequence and the crystal structure of a cutinase of *Fusarium solani pisi* have been described (S. Longhi et al., Journal of Molecular Biology, 268 (4), 779-799 (1997)). The amino acid sequence of a cutinase from *Humicola insolens* has also been published (US 5,827,719).

A number of variants of the cutinase of *Fusarium solani pisi* have been published: WO 94/14963; WO 94/14964; Appl. Environm. Microbiol. 64, 2794-2799, 1998; Proteins: Structure, Function and Genetics 26, 442-458, 1996; J. of Computational Chemistry 17, 1783-1803, 1996; Protein Engineering 6, 157-165, 1993; Proteins: Structure, Function, and Genetics 33, 253-264, 1998; J. of Biotechnology 66, 11-26, 1998; Biochemistry 35, 398-410, 1996.

Fungal cutinases may be used in the enzymatic hydrolysis of cyclic oligomers of poly(ethylene terephthalate), e.g. in the finishing of yarn or fabric from poly(ethylene terephthalate) fibers (WO 97/27237). However, it is desirable to improve the thermostability of known fungal cutinases to allow a higher process temperature.

SUMMARY OF THE INVENTION

The inventors have found certain variants of fungal cutinases having improved thermostability.

PCT/DK99/00678

2

Accordingly, the invention provides a variant of a parent fungal cutinase comprising substitution of one or more amino acid residues which is located:

- a) within 17 Å from the location of the N-terminal amino acid (as calculated from amino acid residues in a crystal structure), and/or
- b) within 20 positions from the N-terminal amino acid.

The invention also provides a DNA sequence encoding the variant, an expression vector comprising the DNA sequence, a transformed host cell harboring the DNA sequence or the expression vector, a method of producing the variant, proc10 esses using the variant and a detergent composition comprising the variant.

BRIEF DESCRIPTION OF THE DRAWINGS

Fig. 1 gives the coordinates for the 3D structure of the cutinase of *H. insolens*.

Fig. 2 is a computer model showing the three-dimensional structures of the cutinases from *F. solani pisi* (left) and *H. insolens* (right). Different colors have been used to identify the N-terminal amino acid and zones of 12 Å and 17 Å diameter around this.

Figs. 3-6 illustrate the hydrolysis of c3ET. Details are given in the Examples.

DETAILED DESCRIPTION OF THE INVENTION

20 Fungal cutinase

5

The parent cutinase is a fungal cutinase, such as a filamentous fungal cutinase, e.g. native to a strain of *Humicola* or *Fusarium*, specifically *H. insolens* or *F. solani pisi*, more specifically *H. insolens* strain DSM 1800.

The amino acid sequence of the cutinase of *H. insolens* strain DSM 1800 and the DNA sequence encoding it are shown as SEQ ID NO: 2 and SEQ ID NO: 1 of US 5,827,719. The numbering system used herein for the *H. insolens* cutinase is based on the mature peptide, as shown in said SEQ ID NO: 2.

The amino acid sequence of the cutinase of *F. solani pisi* is shown as the mature peptide in Fig. 1D of WO 94/14964. The numbering system used herein for

the F. solani pisi cutinase is that used in WO 94/14964; it includes the prosequence shown in said Fig. 1D; thus, the mature cutinase is at positions 16-214.

The parent cutinase may have an amino acid sequence which is at least 50 % (particularly at least 70 % or at least 80 %) homologous to the cutinase of H. inso-5 lens strain DSM 1800. The parent cutinase may particularly be one that can be aligned with the cutinase of H. insolens strain DSM 1800.

Nomenclature for amino acids and alterations

The specification and claims refer to amino acids by their one-letter codes. A particular amino acid in a sequence is identified by its one-letter code and its posi-10 tion, e.g. Q1 indicates Gln (glutamine at position 1, i.e. at the N-terminal.

The nomenclature used herein for defining substitutions is basically as described in WO 92/05249. Thus, R51P indicates substitution of R (Arg) at position 51 with P (Pro).

Homology and alignment

15

For purposes of the present invention, the degree of homology may be suitably determined according to the method described in Needleman, S.B. and Wunsch, C.D., (1970), Journal of Molecular Biology, 48, 443-45, with the following settings for polypeptide sequence comparison: GAP creation penalty of 3.0 and GAP extension penalty of 0.1. The determination may be done by means of a computer program 20 known such as GAP provided in the GCG program package (Program Manual for the Wisconsin Package, Version 8, August 1994, Genetics Computer Group, 575 Science Drive, Madison, Wisconsin, USA 53711).

Two given sequences can be aligned according to the method described in Needleman (supra) using the same parameters. This may be done by means of the 25 GAP program (supra).

Three-dimensional structure of cutinase

The structure of the cutinase of H. insolens was solved in accordance with the principle for X-ray crystallographic methods as given, for example, in X-Ray Structure Determination, Stout, G.K. and Jensen, L.H., John Wiley & Sons, Inc. NY, 30 1989. The structural coordinates for the solved crystal structure at 2.2 Å resolution

using the isomorphous replacement method are given in Fig. 1 in standard PDB format (Protein Data Bank, Brookhaven National Laboratory, Brookhaven, CT).

The structure of the cutinase of *F. solani pisi* is described in Martinez et al. (1992) Nature 356, 615-618. The 3D structures of the cutinases of *F. solani pisi* and *H. insolens* are compared as a computer model in Fig. 2.

It should be noted that the overall three-dimensional structures of fungal cutinases are very similar and have been shown by X-ray crystallography to be highly homologous. The similarities between the cutinases from *F. solani pisi* and *H. insolens* are clearly apparent from the computer model in Fig. 2. Therefore, modifications of the type indicated for one fungal cutinase will also be functional for other fungal cutinases.

Substitution near N-terminal

The variant of the invention has one or more amino acid substitutions in the vicinity of the N-terminal. The substitution is within a distance of 17 Å (e.g. within 12 Å) and/or within 20 positions (e.g. within 15 positions) of the N-terminal. The distance from the N-terminal is to be calculated between the Cα atom of the amino acids, and is calculated from an amino acid in a crystal structure (i.e. visible in the X-ray structure).

In the cutinase of *H. insolens* strain DSM 1800, the two N-terminal amino acids (Q1 and L2. i.e. Gln and Leu at positions 1 and 2) are not visible in the X-ray structure, so the distance is to be calculated from amino acid G3. Amino acids within 17 Å include positions 3-12, 18, 20-60, 62-64, 82, 85-86, 100-108, 110-111, 130-132, 174, 176-182, 184-185, 188, and 192. Those within 12 Å include positions 3-8, 22-27, 30-47, 53-59, 102, 177, and 180-181.

In the cutinase of *F. solani pisi*, the N-terminal amino acid G17 is visible in the X-ray structure. Amino acids within 17 Å include positions 17-26, 34-75, 77-79, 101, 115, 117-119, 147, 191-197, 199-200, and 203. Those within 12 Å include positions 17-22, 38, 40, 45-58, 60, 65, and 70-72.

The variants of the invention have improved thermostability compared to the parent enzyme. The thermostability may be determined from the denaturation tem-

perature by DSC (differential scanning calorimetry), e.g. as described in an example, e.g. at pH 8.5 with a scan rate of 90 K/hr. The variants may have a denaturation temperature which is at least 5°C higher than the parent enzyme.

The total number of substitutions in the above regions is typically 1-10, e.g. 1-5 substitutions in the above regions. In addition, the cutinase variant of the invention may optionally include other modifications of the parent enzyme, typically 10 or fewer, e.g. 5 or fewer alterations (substitutions, deletions or insertions) outside of the above regions. Thus, the total amino acid sequence of the variant typically 1-20, e.g. 1-10 alterations compared to the parent cutinase.

10 Solvent accessible surface

One or more of the substitutions may be made at an exposed amino acid residue, i.e. an amino acid residue having a solvent accessible surface. This can be calculated by the "dssp" program (version October 1988) described in W. Kabsch and C. Sander, Biopolymers, 22 (1983) pp. 2577-2637.

In the cutinase of *H. insolens* strain DSM 1800, the following amino acids lie within 17 Å of G3 at the N-terminal and have a solvent accessible surface greater than 0: 3-12, 18, 26-33, 36-38, 40-45, 47-56, 59-60, 62-64, 82, 85-86, 104-105, 174, 176-179, 181-182, 192.

Specific substitutions

The substitution near the N-terminal may specifically be one that increases the electrical charge, i.e. a substitution of a negatively charged amino acid with a neutral or positively charged amino acid or substitution of a neutral amino acid with a positively charged amino acid. Thus, a negative amino acid residue at a position corresponding to position E6, E10, E30, E47 D63, E82 and/or E179 in the cutinase of Humicola insolens strain DSM 1800 may be substituted by a neutral or positive amino acid, e.g. R, K, Y, H, Q or N. Some specific substitutions are those corresponding to E6Q/N, E10Q/N, E47K/R or E179Q/N. Also, a neutral amino acid residue at a position corresponding to N7, S11, N44 or N52 in the H. insolens cutinase may be substituted by a positive amino acid (R, K or H).

WO 00/34450 PCT/DK99/00678

.6

Another example of a substitution near the N-terminal is substitution with a Pro residue, e.g. a substitution corresponding to A14P or R51P in the cutinase of *Humicola insolens* strain DSM 1800.

Specific variants

The following are some examples of variants in the *H. insolens* cutinase. Corresponding variants may be made on the basis of other parent cutinases.

R51P

E6N/Q+L138I

A14P+ E47K

10 E47K

E179N/Q

E6N/Q+ E47K+ R51P

A14P+ E47K+ E179N/Q

E47K+ E179N/Q

15 E47K+ D63N

E6N/Q+ E10N/Q+ A14P+ E47K+ R51P+ E179N/Q

E6N/Q+ A14P+ E47K+ R51P+ E179N/Q

Q1P+ L2V+ S11C+ N15T+ F24Y+ L46I+ E47K

Use of cutinase variant

The cutinase variant of the invention may be used, e.g., for the enzymatic hydrolysis of cyclic oligomers of poly(ethylene terephthalate), such as cyclic tri(ethylene terephthalate), abbreviated as c3ET.

In particular, this may be used to remove such cyclic oligomers from polyester containing fabric or yarn by treating the fabric or yarn with the cutinase variant, optionally followed by rinsing the fabric or yarn with an aqueous solution having a pH in the range of from about pH 7 to about pH 11. The treatment of polyester is conveniently carried out above the glass transition temperature of c3ET (about 55°C) and below the glass transition temperature of polyester (about 70°C). Thus, the treatment may suitably be carried out at 50-80°C, e.g. at 60-75°C. The process may be carried out in analogy with WO 97/27237.

The cutinase variant may be used to treat polyester-containing textile. e.g. PET (polymer of ethyleneglycol and terephthalic acid), P3GT (polymer of 1,3-propanediol and terephthalic acid) or a polyester/cotton blend. The treatment may provide benefits to the polyester textile such as improved wear and comfort, increased water permeability, reduced antistatic behavior, improve handle and softness, changed redeposition characteristics and/or color clarification.

The cutinase variant may be used to improve the functional finish of a PET-containing yarn or fabric by a treatment with the cutinase variant, followed by a treatment with a finishing agent such as a softener, an anti-crease resin, an anti-static agent, an anti-soiling agent or agents to impair wrinkle-free, permanent press ior fire resistance effects. The treatment with the cutinase variant may increase the number of functional groups in the surface, and this can be used to attach the functional finish. Examples of finishing agents are described in "SENSHOKU SIAGEKAKO BENRAN" published 1998-10-15 by Nihon Seni Sentaa KK.

The cutinase variant of the invention is also useful in detergents, where it may be incorporated to improve the removal of fatty soiling, as described in WO 94/03578 and WO 94/14964. The addition of the cutinase variant to laundry detergent may reduce malodor from cloth which is accumulated during several wash/wear-cycles.

15

The cutinase variant may also be used for degradation and recycling of polyester such as polycaprolactone (PCL), poly-ethyleneglycol-terephthalate (PET), polylactic acid, polybutylenesuccinate, and poly(hydroxybutiric acid)-co-(hydroxyvaleric acid), e.g. film and bottles, e.g. as described in JP-A 5-344897.

The cutinase variant may also be used for other known applications of lipases and cutinases, for example, in the baking industry (e.g. as described in WO 94/04035 and EP 585988), in the papermaking industry (e.g. for pitch removal, see EP 374700), and in the leather, wool and related industries (e.g. for degreasing of animal hides, sheepskin or wool), and for other applications involving degreasing/defatting. It may be used in immobilized form in the fat and oil industry, as a catalyst in organic synthesis (e.g. esterification, transesterification or ester hydrolysis reactions).

Dyeing polyester

The invention provides a process for dyeing polyester fabric or yarn. In this process, the fabric or yarn is first treated with a cutinase, e.g. 12-48 hours at 50-70°C or 65-70°C, pH 7-10, followed by dyeing with dye, e.g. a reactive dye, a disperse dye or a cationic dye. The reactive dye may be one that reacts with OH or COOH groups, e.g. having the structure Chromophore-NHPh-SO₂CH₂CH₂OSO₃Na. The dyeing may be conducted at 40-80°C, e.g. for 20-60 minutes.

The cutinase may be a thermostable cutinase having a thermal denaturation temperature, T_d, at pH 8.5 which is at least 5° higher than the parent cutinase, e.g. 7-10° higher, e.g. a value of 65°C or higher. The measurement may be made by DSC as described in an Example of this specification.

Surfactant

In the treatment of fabric or yarn, a conventional wetting agent and/or a dispersing agent may be used to improve the contact with the enzyme. The wetting agent may be a nonionic surfactant, e.g. an ethoxylated fatty alcohol. A very useful wetting agent is an ethoxylated and propoxylated fatty acid ester such as Berol 087 (product of Akzo Nobel, Sweden).

The dispersing agent may suitably be selected from nonionic, anionic, cationic, ampholytic or zwitterionic surfactants. More specifically, the dispersing agent may be selected from carboxymethylcellulose, hydroxypropylcellulose, alkyl aryl sulfonates, long-chain alcohol sulfates (primary and secondary alkyl sulfates), sulfonated olefins, sulfated monoglycerides, sulfated ethers, sulfosuccinates, sulfonated methyl ethers, alkane sulfonates, phosphate esters, alkyl isothionates, acylsarcosides, alkyltaurides, fluorosurfactants, fatty alcohol and alkylphenol condensates, fatty acid condensates, condensates of ethylene oxide with an amine, condensates of ethylene oxide with an amide, sucrose esters, sorbitan esters, alkyloamides, fatty amine oxides, ethoxylated monoamines, ethoxylated diamines, alcohol ethoxylate and mixtures thereof. A very useful dispersing agent is an alcohol ethoxylate such as Berol 08 (product of Akzo Nobel, Sweden).

9

Methods for preparing cutinase variants

The cutinase variant of the invention can be prepared by methods known in the art, e.g. as described in WO 94/14963 or WO 94/14964 (Unilever). The following describes methods for the cloning of cutinase-encoding DNA sequences, followed by methods for generating mutations at specific sites within the cutinase-encoding sequence.

Cloning a DNA sequence encoding a cutinase

The DNA sequence encoding a parent cutinase may be isolated from any cell or microorganism producing the cutinase in question, using various methods well known in the art. First, a genomic DNA and/or cDNA library should be constructed using chromosomal DNA or messenger RNA from the organism that produces the cutinase to be studied. Then, if the amino acid sequence of the cutinase is known, labeled oligonucleotide probes may be synthesized and used to identify cutinase-encoding clones from a genomic library prepared from the organism in question. Alternatively, a labeled oligonucleotide probe containing sequences homologous to another known cutinase gene could be used as a probe to identify cutinase-encoding clones, using hybridization and washing conditions of lower stringency.

Yet another method for identifying cutinase-encoding clones would involve inserting fragments of genomic DNA into an expression vector, such as a plasmid, transforming cutinase-negative bacteria with the resulting genomic DNA library, and then plating the transformed bacteria onto agar containing a substrate for cutinase (i.e. maltose), thereby allowing clones expressing the cutinase to be identified.

Alternatively, the DNA sequence encoding the enzyme may be prepared synthetically by established standard methods, e.g. the phosphoroamidite method described S.L. Beaucage and M.H. Caruthers, (1981), Tetrahedron Letters 22, p. 1859-1869, or the method described by Matthes et al., (1984), EMBO J. 3, p. 801-805. In the phosphoroamidite method, oligonucleotides are synthesized, e.g. in an automatic DNA synthesizer, purified, annealed, ligated and cloned in appropriate vectors.

Finally, the DNA sequence may be of mixed genomic and synthetic origin, mixed synthetic and cDNA origin or mixed genomic and cDNA origin, prepared by

ligating fragments of synthetic, genomic or cDNA origin (as appropriate, the fragments corresponding to various parts of the entire DNA sequence). accordance with standard techniques. The DNA sequence may also be prepared by polymerase chain reaction (PCR) using specific primers, for instance as described in 5 US 4,683,202 or R.K. Saiki et al., (1988), Science 239, 1988, pp. 487-491.

Site-directed mutagenesis

Once a cutinase-encoding DNA sequence has been isolated, and desirable sites for mutation identified, mutations may be introduced using synthetic oligonucleotides. These oligonucleotides contain nucleotide sequences flanking the desired 10 mutation sites. In a specific method, a single-stranded gap of DNA, the cutinaseencoding sequence, is created in a vector carrying the cutinase gene. Then the synthetic nucleotide, bearing the desired mutation, is annealed to a homologous portion of the single-stranded DNA. The remaining gap is then filled in with DNA polymerase I (Klenow fragment) and the construct is ligated using T4 ligase. A specific example 15 of this method is described in Morinaga et al., (1984), Biotechnology 2, p. 646-639. US 4,760,025 discloses the introduction of oligonucleotides encoding multiple mutations by performing minor alterations of the cassette. However, an even greater variety of mutations can be introduced at any one time by the Morinaga method, because a multitude of oligonucleotides, of various lengths, can be introduced.

Another method for introducing mutations into cutinase-encoding DNA sequences is described in Nelson and Long, (1989), Analytical Biochemistry 180, p. 147-151. It involves the 3-step generation of a PCR fragment containing the desired mutation introduced by using a chemically synthesized DNA strand as one of the primers in the PCR reactions. From the PCR-generated fragment, a DNA fragment 25 carrying the mutation may be isolated by cleavage with restriction endonucleases and reinserted into an expression plasmid.

Expression of cutinase variants

20

According to the invention, a DNA sequence encoding the variant produced by methods described above, or by any alternative methods known in the art, can be 30 expressed, in enzyme form, using an expression vector which typically includes con-

trol sequences encoding a promoter, operator, ribosome binding site, translation initiation signal, and, optionally, a repressor gene or various activator genes.

Expression vector

The recombinant expression vector carrying the DNA sequence encoding a cutinase variant of the invention may be any vector which may conveniently be subjected to recombinant DNA procedures, and the choice of vector will often depend on the host cell into which it is to be introduced. The vector may be one which, when introduced into a host cell, is integrated into the host cell genome and replicated together with the chromosome(s) into which it has been integrated. Examples of suitable expression vectors include pMT838.

Promoter

In the vector, the DNA sequence should be operably connected to a suitable promoter sequence. The promoter may be any DNA sequence which shows transcriptional activity in the host cell of choice and may be derived from genes encoding proteins either homologous or heterologous to the host cell.

Examples of suitable promoters for directing the transcription of the DNA sequence encoding a cutinase variant of the invention, especially in a bacterial host, are the promoter of the *lac* operon of *E.coli*, the *Streptomyces coelicolor* agarase gene dagA promoters, the promoters of the *Bacillus licheniformis* α-amylase gene (amyL), the promoters of the *Bacillus stearothermophilus* maltogenic amylase gene (amyM), the promoters of the *Bacillus amyloliquefaciens* α-amylase (amyQ), the promoters of the *Bacillus subtilis* xylA and xylB genes etc. For transcription in a fungal host, examples of useful promoters are those derived from the gene encoding *A. oryzae* TAKA amylase, the TPI (triose phosphate isomerase) promoter from *S. cerevisiae* (Alber et al. (1982), J. Mol. Appl. Genet 1, p. 419-434, *Rhizomucor miehei* aspartic proteinase, *A. niger* neutral α-amylase, *A. niger* acid stable α-amylase, *A. niger* glucoamylase, *Rhizomucor miehei* lipase, *A. oryzae* alkaline protease, *A. oryzae* triose phosphate isomerase or *A. nidulans* acetamidase.

Expression vector

The expression vector of the invention may also comprise a suitable transcription terminator and, in eukaryotes, polyadenylation sequences operably connected to the DNA sequence encoding the α-amylase variant of the invention. Termination and polyadenylation sequences may suitably be derived from the same sources as the promoter.

The vector may further comprise a DNA sequence enabling the vector to replicate in the host cell in question. Examples of such sequences are the origins of replication of plasmids pUC19, pACYC177, pUB110, pE194, pAMB1 and pIJ702.

The vector may also comprise a selectable marker, e.g. a gene the product of which complements a defect in the host cell, such as the *dal* genes from *B. subtilis* or *B. licheniformis*, or one which confers antibiotic resistance such as ampicillin, kanamycin, chloramphenicol or tetracyclin resistance. Furthermore, the vector may comprise *Aspergillus* selection markers such as amdS, argB, niaD and sC, a marker giving rise to hygromycin resistance, or the selection may be accomplished by cotransformation, e.g. as described in WO 91/17243.

The procedures used to ligate the DNA construct of the invention encoding a cutinase variant, the promoter, terminator and other elements, respectively, and to insert them into suitable vectors containing the information necessary for replication, are well known to persons skilled in the art (cf., for instance, Sambrook et al., Molecular Cloning: A Laboratory Manual, 2nd Ed., Cold Spring Harbor, 1989).

Host Cells

The cell of the invention, either comprising a DNA construct or an expression vector of the invention as defined above, is advantageously used as a host cell in the recombinant production of a cutinase variant of the invention. The cell may be transformed with the DNA construct of the invention encoding the variant, conveniently by integrating the DNA construct (in one or more copies) in the host chromosome. This integration is generally considered to be an advantage as the DNA sequence is more likely to be stably maintained in the cell. Integration of the DNA constructs into the host chromosome may be performed according to conventional

methods, e.g. by homologous or heterologous recombination. Alternatively, the cell may be transformed with an expression vector as described above in connection with the different types of host cells.

The cell of the invention may be a cell of a higher organism such as a mam-5 mal or an insect, but is preferably a microbial cell, e.g. a bacterial or a fungal (including yeast) cell.

Examples of suitable bacteria are Gram positive bacteria such as Bacillus subtilis, Bacillus licheniformis, Bacillus lentus, Bacillus brevis, Bacillus stearothermophilus, Bacillus alkalophilus, Bacillus amyloliquefaciens, Bacillus coagulans, Bacillus circulans, Bacillus lautus, Bacillus megaterium, Bacillus thuringiensis, or Streptomyces lividans or Streptomyces murinus, or gramnegative bacteria such as E.coli. The transformation of the bacteria may, for instance, be effected by protoplast transformation or by using competent cells in a manner known per se.

The yeast organism may favorably be selected from a species of Saccharo-15 myces or Schizosaccharomyces, e.g. Saccharomyces cerevisiae.

The host cell may also be a filamentous fungus e.g. a strain belonging to a species of Aspergillus, most preferably Aspergillus oryzae or Aspergillus niger, or a strain of Fusarium, such as a strain of Fusarium oxysporium, Fusarium graminearum (in the perfect state named Gribberella zeae, previously Sphaeria zeae, synonym with Gibberella roseum and Gibberella roseum f. sp. cerealis), or Fusarium sulphureum (in the prefect state named Gibberella puricaris, synonym with Fusarium trichothecioides, Fusarium bactridioides, Fusarium sambucium, Fusarium roseum, and Fusarium roseum var. graminearum), Fusarium cerealis (synonym with Fusarium crokkwellnse), or Fusarium venenatum.

In a preferred embodiment of the invention the host cell is a protease deficient or protease minus strain.

This may for instance be the protease deficient strain *Aspergillus oryzae* Jal. 125 having the alkaline protease gene named "alp" deleted. This strain is described in WO 97/35956 (Novo Nordisk).

Filamentous fungi cells may be transformed by a process involving protoplast formation and transformation of the protoplasts followed by regeneration of the cell wall in a manner known per se. The use of Aspergillus as a host micro-organism is described in EP 238 023 (Novo Nordisk A/S), the contents of which are hereby incorporated by reference.

Production of cutinase variant by cultivation of transformant

The invention relates, *inter alia*, to a method of producing a cutinase variant of the invention, which method comprises cultivating a host cell under conditions conducive to the production of the variant and recovering the variant from the cells and/or culture medium.

The medium used to cultivate the cells may be any conventional medium suitable for growing the host cell in question and obtaining expression of the cutinase variant of the invention. Suitable media are available from commercial suppliers or may be prepared according to published recipes (e.g. as described in catalogues of the American Type Culture Collection).

The cutinase variant secreted from the host cells may conveniently be recovered from the culture medium by well-known procedures, including separating the
15 cells from the medium by centrifugation or filtration, and precipitating proteinaceous
components of the medium by means of a salt such as ammonium sulphate, followed
by the use of chromatographic procedures such as ion exchange chromatography,
affinity chromatography, or the like.

Expression of variant in plants

25

The present invention also relates to a transgenic plant, plant part or plant cell which has been transformed with a DNA sequence encoding the variant of the invention so as to express and produce this enzyme in recoverable quantities. The enzyme may be recovered from the plant or plant part. Alternatively, the plant or plant part containing the recombinant enzyme may be used as such.

The transgenic plant can be dicotyledonous or monocotyledonous, for short a dicot or a monocot. Examples of monocot plants are grasses, such as meadow grass (blue grass, Poa), forage grass such as festuca, lolium, temperate grass, such as Agrostis, and cereals, e.g. wheat, oats, rye, barley, rice, sorghum and maize (corn).

Examples of dicot plants are tobacco, legumes, such as lupins, potato, sugar beet, pea, bean and soybean, and cruciferous (family Brassicaceae), such as cauliflower, oil seed rape and the closely related model organism Arabidopsis thaliana.

Examples of plant parts are stem, callus, leaves, root, fruits, seeds, and tubers. In the present context, also specific plant tissues, such as chloroplast, apoplast, mitochondria, vacuole, peroxisomes and cytoplasm are considered to be a plant part. Furthermore, any plant cell, whatever the tissue origin, is considered to be a plant part.

Also included within the scope of the invention are the progeny of such plants, plant parts and plant cells.

The transgenic plant or plant cell expressing the variant of the invention may be constructed in accordance with methods known in the art. In short the plant or plant cell is constructed by incorporating one or more expression constructs encoding the enzyme of the invention into the plant host genome and propagating the resulting modified plant or plant cell into a transgenic plant or plant cell.

Conveniently, the expression construct is a DNA construct which comprises a gene encoding the enzyme of the invention in operable association with appropriate regulatory sequences required for expression of the gene in the plant or plant part of choice. Furthermore, the expression construct may comprise a selectable marker useful for identifying host cells into which the expression construct has been integrated and DNA sequences necessary for introduction of the construct into the plant in question (the latter depends on the DNA introduction method to be used).

The choice of regulatory sequences, such as promoter and terminator sequences and optionally signal or transit sequences is determined, eg on the basis of when, where and how the enzyme is desired to be expressed. For instance, the expression of the gene encoding the enzyme of the invention may be constitutive or inducible, or may be developmental, stage or tissue specific, and the gene product may be targeted to a specific tissue or plant part such as seeds or leaves. Regulatory sequences are eg described by Tague et al, Plant, Phys., 86, 506, 1988.

For constitutive expression the 35S-CaMV promoter may be used (Franck et al., 1980. Cell 21: 285-294). Organ-specific promoters may eg be a promoter from

storage sink tissues such as seeds, potato tubers, and fruits (Edwards & Coruzzi, 1990. Annu. Rev. Genet. 24: 275-303), or from metabolic sink tissues such as meristems (Ito et al., 1994. Plant Mol. Biol. 24: 863-878), a seed specific promoter such as the glutelin, prolamin, globulin or albumin promoter from rice (Wu et al., 5 Plant and Cell Physiology Vol. 39, No. 8 pp. 885-889 (1998)), a Vicia faba promoter from the legumin B4 and the unknown seed protein gene from Vicia faba described by Conrad U. et al, Journal of Plant Physiology Vol. 152, No. 6 pp. 708-711 (1998), a promotter from a seed oil body protein (Chen et al., Plant and cell physiology vol. 39, No. 9 pp. 935-941 (1998), the storage protein napA promoter from Brassica napus, 10 or any other seed specific promoter known in the art, eg as described in WO 91/14772. Furthermore, the promoter may be a leaf specific promoter such as the rbcs promoter from rice or tomato (Kyozuka et al., Plant Physiology Vol. 102, No. 3 pp. 991-1000 (1993), the chlorella virus adenine methyltransferase gene promoter (Mitra, A. and Higgins, DW, Plant Molecular Biology Vol. 26, No. 1 pp. 85-93 (1994), 15 or the aldP gene promoter from rice (Kagaya et al., Molecular and General Genetics Vol. 248, No. 6 pp. 668-674 (1995), or a wound inducible promoter such as the potato pin2 promoter (Xu et al, Plant Molecular Biology Vol. 22, No. 4 pp. 573-588 (1993).

A promoter enhancer element may be used to achieve higher expression of the enzyme in the plant. For instance, the promoter enhancer element may be an intron which is placed between the promoter and the nucleotide sequence encoding the enzyme. For instance, Xu et al. op cit disclose the use of the first intron of the rice actin 1 gene to enhance expression.

The selectable marker gene and any other parts of the expression construct 25 may be chosen from those available in the art.

The DNA construct is incorporated into the plant genome according to conventional techniques known in the art, including *Agrobacterium*-mediated transformation, virus-mediated transformation, micro injection, particle bombardment, biolistic transformation, and electroporation (Gasser et al, Science, 244, 1293; Potrykus, Bio/Techn. 8, 535, 1990; Shimamoto et al, Nature, 338, 274, 1989).

Presently, Agrobacterium tumefaciens mediated gene transfer is the method of choice for generating transgenic dicots (for review Hooykas & Schilperoort, 1992.

Plant Mol. Biol. 19: 15-38), however it can also be used for transforming monocots, although other transformation methods are generally preferred for these plants. Presently, the method of choice for generating transgenic monocots is particle bombardment (microscopic gold or tungsten particles coated with the transforming DNA) of embryonic calli or developing embryos (Christou, 1992. Plant J. 2: 275-281; Shimamoto, 1994. Curr. Opin. Biotechnol. 5: 158-162; Vasil et al., 1992. Bio/Technology 10: 667-674). An alternative method for transformation of monocots is based on protoplast transformation as described by Omirulleh S, et al., Plant Molecular biology Vol. 21, No. 3 pp. 415-428 (1993).

Following transformation, the transformants having incorporated the expression construct are selected and regenerated into whole plants according to methods well-known in the art.

MATERIALS AND METHODS

Plasmids

15 pJSO026

10

This is a *S. cerevisiae* expression plasmid described in WO 97/07205 and in J.S.Okkels, (1996) "A URA3-promoter deletion in a pYES vector increases the expression level of a fungal lipase in Saccharomyces cerevisiae. Recombinant DNA Biotechnology III: The Integration of Biological and Engineering Sciences, vol. 782 of the Annals of the New York Academy of Sciences).

pFuku83

This is a yeast and E. coli shuttle vector for expression of the H. insolens cutinase under the control of a TPI promoter, constructed from pJSO026.

Substrate

25 BETEB

Terephthalic acid bis(2-hydroxyethyl)ester dibenzoate is herein abbreviated as BETEB (benzoyl-ethylene-terephthalic-ethelene-benzoate). It was prepared from terephthalic acid bis (2-hydroxyethyl) ester and benzoic acid.

Lipase activity (LU)

A substrate for lipase is prepared by emulsifying tributyrin (glycerin tributyrate) using gum Arabic as emulsifier. The hydrolysis of tributyrin at 30 °C at pH 7 is followed in a pH-stat titration experiment. One unit of lipase activity (1 LU) equals the amount of enzyme capable of releasing 1 µmol butyric acid/min at the standard conditions.

Differential scanning calorimetry (DSC)

Sample and reference solutions are carefully degassed immediately prior to loading of samples into the calorimeter (reference: buffer without enzyme). Sample and reference solutions (approx. 0.5 ml) are thermally pre-equillibrated for 20 minutes at 5°C. The DSC scan is performed from 5 C to 95 C at a scan rate of approx. 90 K/hr. Denaturation temperatures are determined at an accuracy of approx. +/- 1 C. A VP-DSC from MicroCal Inc. is suitable for the experiments.

Methods

15 PCR conditions

step 1: 94° C, 120 sec. step 2: 94° C, 60 sec step 3: 50° C, 60 sec step 4: 72° C, 150 sec. 20 Go to step 2, 35 cycles step 5: 72° C, 480 sec. Step 6: 4° C, for ever

EXAMPLES

Example 1: Preparation of cutinase variants

A DNA sequence encoding *H. insolens* cutinase was obtained as described in US 5,827,719 (Novo Nordisk) and was found to have the DNA sequence shown in SEQ ID NO: 1 therein.

Variants were prepared by localized random mutagenesis and selection of positive clones by incubation at 60°C for 1 day on BETEB plates. The BETEB plates contained 200 ml/l of 500 mM glycine buffer (pH 8.5), 1.25 g/l of BETEB (dissolved in hot ethanol) and 20 g/l of agar.

Three positive variants were isolated, and their amino acid sequence was determined. They were found to have the following modifications, compared to the parent *H. insolens* cutinase:

A14P + E47K

E47K

10 E179Q

Example 2: Site directed mutation

A variant of the H. insolens cutinase having the substitutions E6Q+ E47K+ R51P was prepared as follows:

A pair of PCR primers were designed so as to introduce amino acid substitu-15 tions, making use of the existed restriction enzyme sites nearby, as follows (an asterisk indicates an introduced mutation):

Upper primer: E6Q F

cgg cag ctg gga gcc atc c*ag aac

Pvu II

20 Lower primer: E47K,R51P

cgc cct gga tcc aga tgt tcg* gga tgt ggg act t*aa ggc

BamH I

PCR was run using these primers and pFukuNL83 as a template under the PCR condition described above.

The obtained PCR fragment was purified by Clontech Spincolumn and digested with Pvu II and BamH I.

The resultant fragment was gel-purified and ligated to pFukuNL83 which had been digested with the same restriction enzyme sites.

Example 3: Thermostability of cutinase variants

Variants

The thermostability was tested as described below for the *H. insolens* cutinase and the following variants thereof:

5 A14P+ E47K

E47K

E179Q

E6Q+ E47K+ R51P

A14P+ E47K+ E179Q

10 E6Q+ A14P+ E47K+ R51P+ E179Q

E6Q+ E10Q+ A14P+ E47K+ R51P+ E179Q

Differential Scanning Calorimetry (DSC)

Thermostability of cutinase variants was investigated by means of DSC at pH 4.5 (50 mM acetate buffer) and pH 8.5 (50mM glycyl-glycine buffer). The thermal denaturation temperature, T_d, was taken as the top of denaturation peak (major endothermic peak) in thermograms (Cp vs. T) obtained after heating of enzyme solutions at a constant programmed heating rate.

The parent cutinase was found to have T_d of 63°C at pH 8.5. Six of the above variants were found to have T_d of 70-73°C, i.e. an improvement of 7-10°.

The parent cutinase was found to have T_d of 61°C at pH 4.5. Five of the above variants were found to have T_d of 64-66°C, i.e. an improvement of 3-5°.

Hydrolysis of BETEB

20

The thermostability of the *H. insolens* cutinase and two of the above variants was measured by hydrolysis of BETEB at elevated temperature. For each cutinase, the following mixture was incubated for 17 hours at various temperatures in the range 55-70°C:

0.1 ml 0.5 M glycyl-glycine buffer (pH 8.5)

0.1 ml 0.5 % BETEB dissolved in ethanol

0.1 ml enzyme solution (approx. 25 LU/ml)

30 0.7 ml Milli Q water

WO 00/34450

21

The degree of hydrolysis was measured after the incubation. The results are shown in the table below.

	Variant	Variant	Parent
	27 LU/ml	25 LU/ml	24 LU/m
55°C	98 %	99 %	72 %
60°C	91 %	83 %	33 %
65°C	66 %	13 %	7 %

These results clearly show that the variants have improved thermostability compared to the parent cutinase.

Hydrolysis of BETEB

The thermostability of the *H. insolens* cutinase and three of the above variants was measured by hydrolysis of BETEB at 60°C for 2 hours. The hydrolysis was carried out at the above conditions, except that the temperature was fixed at 60°C and the cutinase dosage was varied. The results below are shown in the table below.

LU/ml	Variant	Variant	Variant	Parent
0	0 %	0 %	0 %	0 %
10	97 %	99 %	9 %	6 %
20	98 %	99 %	74 %	
50	98 %	94 %	93 %	15 %
100	88 %	69 %	92 %	34 %
300				41 %
600				63 %
1200		·		82 %

The results show a much faster hydrolysis at 60°C with the variants than with the parent cutinase.

Example 4: Hydrolysis of c3ET

The *H. insolens* cutinase and five of the above variants were tested in hydrolysis of c3ET at elevated temperature. For each cutinase, the following mixture was incubated for 2 hours at various temperatures.

0.115mg c3ET (0.1ml of 2mM c3ET dissolved in HFIP was taken in reaction vessel. Solvent was removed under vacuum, then dried up at 70°C over night)

0.1ml 0.5M glycyl-glycine buffer (pH8.5)

0.1ml enzyme solution (approx. 600LU/ml)

0.8ml Milli Q water

After the incubation, 2ml of 1,1,1,3,3,3-Hexafluoro-2-propanol (HFIP) was added to each reaction mixture, then hydrolysis ratio was measured by HPLC. The results shown in Fig 3 clearly indicate that the variants have improved thermostability compared to the parent cutinase.

Example 5: Hydrolysis of c3ET on yam

The thermostability of the *H. insolens* cutinase five of the above variants was tested using polyester yarn containing c3ET as by product. The following substrate mixture was preincubated at 60 or 65°C:

0.1g polyester yarn

0.2ml 0.5M glycyl-glycine buffer (pH8.5)

20 1.7ml Milli Q water

After preincubation, 0.1ml enzyme solution (approx. 1000 LU/ml) was added to each reaction vessel and incubated for 17 hours. Then 2ml HFIP was added and left for 30 minutes to extract and hydrolyze c3ET sitting on the surface of the polyester yarn; then the hydrolysis ratio was measured. The results are shown in Fig. 4.

It is seen that the variants are more effective than the parent cutinase for hydrolyzing c3ET on polyester yarn. One variant gives higher hydrolysis ratio at 65°C than at 60°C.

Example 6: Treatment of yarn with cutinase variant

Time courses of c3ET hydrolysis on polyester yarn at different temperature or dosage were examined. Time course at different temperatures is shown in Fig 5. It is seen that the optimum temperature is 65°C. At 70°C there is still about half of the activity left. Time course with increased enzyme dosage is shown in Fig 6. The curves at dosage 275 and 550 LU/ml are seen to be the same, indicating that the hydrolysis ratio reached to plateau between dosage of 100 to 275 LU/ml. Presumably 200LU/ml is enough.

Example 7: Dyeing polyester with reactive dye

The following polyester fabrics were treated:

woven fabric; ca. 2 x 2 cm, 34mg

knitted fabric; ca. 1.5 x 1.5 cm, 50mg

Each fabric was soaked in 0.9 ml, 50 mM GlyGly (glycyl-glycine) buffer (pH 8.5) and 0.1 ml solution of a variant of the *H. insolens* cutinase (1100 LU/ml), and incubated at 65 or 70°C. After one day, another 0.1 ml enzyme solution was added, incubation was continued for two more days, the fabrics were then taken out and rinsed in water. A comparative experiment was made with the parent cutinase, and a blank was treated in the same manner without enzyme.

The fabrics were stirred in a mixture of 9 g 120 g Na₂SO₄ and 60 g Na₂CO₃
20 in 3 liter deionized water at 60 °C for 30 min, and then rinsed with running warm water. The reactive dye was Celmazol Brilliant Blue B (product of Mitsui Chemical Co., Japan), which has the structure Chromophore-NHPh-SO₂CH₂CH₂OSO₃Na.

In all four experiments, (woven and knitted, 65 and 70°C), the fabrics were uniformly dyed.

25 Example 8: Solubilization of polyester fragments from knitted textile

A 1x1 cm sample of knitted polyester textile (PET, polymer of ethyleneglycol and terephthalic acid) was incubated for 1 hour in 1 ml of buffer at pH 10, 60°C with 0.01 mg of a variant of *H. insolens* cutinase. The reaction mixture was separated, and the release of terephthalic acid was found by measuring OD at 250 nm (ex-

pressed as OD₂₅₀/mg PET). comparative experiments were made without enzyme or with the parent cutinase. Results:

	Enzyme	OD ₂₅₀
Invention	Cutinase variant	4.5
Reference	Parent cutinase	0.3
	None	0.1

The results show that the variant is effective in solubilizing polyester.

In another experiment, the cutinase variant was tested for 2 hours at 65°C with and without the addition of a non-ionic surfactant (alcohol ethoxylate, product name Softanol 50), using various amounts of the variant from 0.5 to 200 LU/ml. The results showed more solubilization in the presence of non-ionic surfactant.

Example 9: Hydrolysis of polycaprolactone and polyester film

About 0.1 g of polycaprolactone or polyester film were put in tubes. They were soaked in 5ml of 50mM GlyGly buffer (pH 8.5) with or without a variant of *H. insolens* cutinase (450 LU). They were incubated at 70°C for 5 hours. After the reaction we observed a thin layer of hydrolysate on the surface of the tubes with enzyme, both with polycaprolactone and with polyester film. On the other hand no change was observed in controls without enzyme. In the case of polycaprolactone there was 10% of weight loss. We see no weight change of polyester.

Example 10: cPET hydrolysis

20

The performance of a cutinase variant was compared with the parent enzyme (*H. insolens* cutinase). The trials were done as follows:

An oligomer-stained swatch of (black) PET-fabric (app. 4cm x 13cm) is subjected to the enzyme-treatment at relatively low agitation in a so-called minitergitometer apparatus. The PET-fabric is mounted onto a cylindrical, perforated holder (radius ca.2 cm, height ca 6 cm), that rotates around its axis, and with the oligomer stained side of the PET fabric facing the exterior of the cylinder.

The fabric is immersed in a 150ml glass-beaker containing 100ml of the treatment solution at a given temperature (here 65°C). After a given treatment time

(here 90minutes) the PET swatch is removed from the bath and rinsed in deionized water and air dried.

After conditioning the swatches are visually ranked (with respect to oligomer stain removal) on the side having the oligomer-staining. The rating being as follows:

-2: Sample significantly worse than blank (no enzyme)

-1: Sample slightly worse than blank (no enzyme)

0: Sample can not be distinguished from blank

1: Sample slightly improved vs blank

2: Sample significantly improved over blank

Also, the swatches are read spectrofotometrically (apparatus: Hunterlab Reflectometer) to quantify the color strength (K/S-value at 600nm).

The table below summarizes the test-conditions for a trial comparing the performance the enzymes under similar conditions:

Temperature:

65°C

Buffer/pH:

5

50 mM glycine buffer, pH 10.3

Treatment time (min)

90

Dosage of Enzyme (LU/g)

30000

15 Results from the trial are summarized below

Enzyme	Visual rating (avg.)	K/S Difference @ 600 nm
None	0 (defined)	2.33
Parent cutinase	0	2.38
Cutinase variant	1.5-2.0	2.89

From this set of experiments it thus appears that the parent enzyme provides no or only very limited effect at the given test conditions (probably because the temperature is too high for the enzyme to retain activity), while the cutinase variant provides a substantial removal of the oligomer staining from the PET-fabric.

Example 11: cPET hydrolysis

The pH and temperature profile of a variant of *H. insolens* cutinase was tested in a model disperse dyeing experiment. The trials were performed as follows:

An oligomer-stained swatch of (black) PET-fabric is subjected to the conditions of a typical disperse dyeing sequence in a Werner Mathis Labornat. In overview of the process, the swatch is added to a buffer solution, heated to 130°C,
cooled down to the treatment temperature. Enzyme or buffer is added and then held
at the desired temperature for 30 minutes. The solution is cooled down to room temperature and turbidity in the wash liquor is measured. The reduction in turbidity is a
direct measure of the cutinase activity, corresponding to hydrolyzed cPET oligomers.

Detailed description of the experiment:

15

A black PET (app. 4cm \times 13cm) swatch is added 140 ml 100 mM Britton-Robinson buffer containing 0.2 g/l Lutensol AT11 (BASF) and loaded in the Laborat (32 rotation per minute).

The Laborat is heated to 130°C at a gradient of 9°C/minute, and held for 10 minutes.

The beakers are cooled to run temperature (according to table below) at a gradient of 9°C/minute, and held for 1 minute.

10 mL enzyme solution (100 LU/ml of the variant) or buffer solution (0 LU/ml) 20 at appropriate pH is injected to the beakers.

The Labornat is re-heated to temperature at a gradient of 2°C/minute, and held for 30 minutes.

The swatches are removed, and the wash liquor is cooled down to room temperature.

25 Turbidity of the wash liquors are measured.

Evaluation: Turbidity is measured on Hach 18900 Ratio Turbidimeter (standardized with 1.8, 18, and 180 NTU Turbidity Standards). Enzyme performance is calculated relative to a blank as the difference between turbidity of blank liquor (no enzyme) and turbidity of enzyme treated liquor.

The relative performance (reduction in turbidity) of the cutinase variant is calculated, and the results are shown in the following table. When a negative num-

ber is obtained, then the result is given as "negative". A negative number is assumed to be an artifact, caused by the variation of the set up.

Temperature	pH 7	pH 8	pH 9	pH 10
60°C	39	57	37	14
65°C	39	16	60	30
70°C	25	12	54	33
75°C	22	50	114	58
85°C	negative	negative	15	negative

The results show that the cutinase variant is active over a broad pH and 5 temperature range, with optimum oligomer removal in the current set up around pH 9 and 75°C. Inactivation seems to occur at or above 85°C.

Example 12: cPET hydrolysis

10

The effect of treatment time was investigated for a variant of H. insolens cutinase in a model disperse dyeing experiment. The trials were performed as follows:

An oligomer-stained swatch of (black) PET-fabric is subjected to the conditions of a typical disperse dyeing sequence in a Werner Mathis Labomat. In overview of the process, the swatch is added to a buffer solution, heated to 130°C, cooled down to the treatment temperature. Enzyme or buffer (100 mM Britton-Robinson pH 9) is added, and then held at 75°C for 0-40 minutes. The solution is 15 cooled down to room temperature and turbidity in the wash liquor is measured. The reduction in turbidity is a direct measure of the cutinase activity, corresponding to hydrolyzed cPET oligomers.

Detailed description of the experiment:

A black PET (app. 4cm x 13cm) swatch is added to 140 ml 100 mM Britton-20 Robinson buffer containing 0.2 g/l Lutensol AT11 (BASF) and loaded in the Labornat (32 rotation per minute).

The Laborat is heated to 130°C at a gradient of 9°C/minute, and the temperature is held for 10 minutes.

The beakers are cooled to 75°C at a gradient of 9°C/minute, and held for 1 25 minute.

10 mL enzyme solution (100 LU/ml of variant) or 100 mM Britton-Robinson buffer pH 9.0 (0 LU/ml) is injected into the beakers.

The Labornat is re-heated to 75°C at a gradient of 2°C/minute, and held for the appropriate number of minutes (0-40 minutes, see table below).

5 The swatches are removed, and the wash liquor is cooled down to room temperature.

Turbidity of the wash liquors are measured.

Evaluation: Turbidity is measured on Hach 18900 Ratio Turbidimeter (standardized with 1.8, 18, and 180 NTU Turbidity Standards). Enzyme performance is calculated relative to a blank at time equal to zero: Turbidity of blank liquor at time zero (no enzyme) subtracted turbidity of enzyme treated liquor (at a given time).

The relative performance (reduction in turbidity) of the cutinase variant was calculated, and the results are shown in the following table.

Time (minutes)	Relative perform- ance (Reduction in turbidity)
0	0
5	42
10	48
15	62
20	69
25	85
30	72
40	78

The results show that the effect of the enzyme is increased over time. At the current enzyme dose and oligomer concentration, it seems to level off above approx. 20 minutes.

Example 13: Fiber modification

The effect on wetting characteristics of a disperse dyed polyester fabric was investigated by treating the fabric with a variant of *H. insolens* cutinase prior to dye-

WO 00/34450 PCT/DK99/00678

29

ing. The experiment therefore consisted of two phases, the actual fiber modification and the disperse dyeing procedure.

Phase 1 - Fiber Modification:

Equipment:

Atlas Launder-O-meter LP2

Fabric:

knit 100 % scoured polyester from Testfabrics

pH:

50 mM potassium phosphate buffer, pH 7

Abrasives:

5 big steel balls

Beaker Vol.:

120 mL

Treatment:

2 hours 65°C then ramped up to 90°C and held for 1 hour

Swatch Prep:

Cut 3* 1.5 g swatch of fabric, 3 per beaker = 4.5 g

Rinse:

5 Rinse in deionized water.

Phase 2 - Dyeing - disperse dye:

Dye Solution:

Add together with deionized water to make liquor ratio 1:20-

0.4 % Dianix Red (DyStar) SE-CB (owf)

10 pH to 4.5 - 5

Dyeing Procedure:

- 1. One swatch per treatment from the fiber modification is used for the dyeing (1.5 g/swatch is used for the liquor ratio calculation).
- Make dyebath according to the recipe above. Add the cold dye solution
 to the Labornat beakers and heat to 55°C at a gradient of 3.5°C/minute. Run for 5 minutes once temperature has been reached.
 - 3. Add the fabric to the beaker.
 - 4. Raise temperature to 130°C at a gradient of 1.5°C/minute. Dye for 30 minutes.
- 5. Cool to 70°C at a gradient of 5°C/minute. Drop bath, but collect, and rinse fabric hot (60°C) for 10 minutes. Follow the hot rinse with a room temperature overflow rinse until all bleeding had stopped.
 - 6. Let air dry overnight.

Tests/Analysis:

AATCC Test Method 61 - Colorfastness to washing

Percent Dyebath Exhaustion - Spectrophotometer

K/S and L* - Reflectometer

5 AATCC TM-79 Drop Test

Results:

The results from the fiber modification are shown in the following table.

Variant dosage	Staining (AATCC TM- 61)	Color Change (K/S @ 530 before and after TM-61)	Drop Test (AATCC TM-79)
Blank	4.5	5	53 sec.
50 LU/mL	4.5	5	18 sec.
100 LU/mL	4.5	5	15 sec.

The results show that the treatment of polyester with the variant increases to the wetting substantially. No adverse effects are noticed on the dyeability with the disperse dye in the current set-up.

Example 14: Malodor reduction in textiles soiled with human sweat/sebum by use of a cutinase variant in laundry

The performance of cutinase, with respect to malodor reduction, can be tested in a one-cycle washing trial carried out in a Terg-O-tometer.

Experimental conditions:

Washing liquor: 1000 ml per beaker

Swatches: 100 % polyester (interlock knitted, previously cleaned by Soxhlet extraction). 24 swatches (3.3 × 3.5 cm) per beaker.

Soil: Human male axillary sweat and sebum applied by wiping the armpits after exercise.

Detergent: 5 g/L of a standard color detergent. No pH adjustment.

Water hardness: 3.2 mM Ca²⁺/Mg²⁺ (in a ratio of 5:1)

Wash Temperature: 30°C

25 Wash time: 30 min

Rinse: 15 minutes in running tap water

Evaluation:

After wash the wet swatches are placed in closed, tinted 200 ml glasses. A trained sensory panel (9-11 judges) evaluates the odor by sniffing the headspace over the wet samples and evaluates the total odor intensity. The odor intensity is noted by placing a mark on an unstructured line scale measuring 15 cm, with word anchors at each end ('nothing' at the beginning of the scale and 'very strong' at the end). All evaluations are performed twice. The swatches are evaluated on day 1, 2 and 3 after wash (swatches are kept in the glasses at all times).

10

CLAIMS

5

- 1. A variant of a parent fungal cutinase, which variant:
 - comprises substitution of one or more amino acid residues at a position which is located:
 - i) within 17 Å from the location of the N-terminal amino acid (as calculated from amino acid residues in a crystal structure), and/or
 - ii) within 20 positions from the N-terminal amino acid, and
 - b) is more thermostable than the parent cutinase.
- 10 2. The variant of the preceding claim which comprises substitution of one or more amino acid residues at a position which is located:
 - within 12 Å from the location of the N-terminal amino acid (as calculated from amino acid residues in a crystal structure), and/or
- 15 ii) within 15 positions from the N-terminal amino acid.
 - 3. A variant of a parent fungal cutinase comprising substitution of one or more amino acid residues which is located:
 - a) within 17 Å from the location of the N-terminal amino acid (as calculated from amino acid residues in a crystal structure), and/or
- b) within 20 positions from the N-terminal amino acid, with the proviso that it is not a variant of the cutinase of *Fusarium solani pisi* having one of the substitutions R17, T18, T19V, D21N, I24E, Y38F, R40, G41A, S42, T43, E44, T45, G46, N47R, G49, T50, L51, P53, S54, A56C, S57, N58R, S61, A62E, K65A, D66S, G67D, W69Y, I70C, G74, G75, R78, Y119, G192, P193, D194R, 25 A195, R196, G197V, or A199C (*Fusarium solani pisi* cutinase numbering).
 - 4. A variant of a parent fungal cutinase comprising substitution of one or more amino acid residues which:
 - a) has a solvent accessible surface, and

- b) is located:
 - i) within 17 Å from the location of the Nterminal amino acid (as calculated from amino acid residues in a crystal structure), and/or
- ii) within 20 positions from the N-terminal amino acid, with the proviso that it is not a variant of the cutinase of *Fusarium solani pisi* having one of the substitutions T18, Y38F, R40, G41A, S42, T43, E44, T45, N47R, G49, T50, L51, P53, S54, A56C, A62E or G192 (*Fusarium solani pisi* cutinase numbering).
- 10 5. A variant of a parent fungal cutinase comprising substitution of one or more amino acid residues which is located:
 - a) less than 12 Å from the location of the N-terminal amino group (as calculated from amino acid residues in a crystal structure), and/or
 - b) within 15 positions from the N-terminal amino acid,
- with the proviso that the variant is not the cutinase of *Fusarium solani pisi* having one of the substitutions R17, T18, T19V, D21N, Y38F, R40, T45, G46, N47R, G49, T50, L51, P53, S54, A56C, S57, N58R, K65A or I70C (*Fusarium solani pisi* cutinase numbering).
- 6. The variant of any preceding claim wherein the parent cutinase is native to a filamentous fungus, preferably a strain of *Humicola* or *Fusarium*, preferably *H. insolens* or *F. solani pisi*, most preferably *H. insolens* strain DSM 1800.
 - 7. The variant of any preceding claim wherein the parent cutinase has an amino acid sequence which can be aligned with the cutinase of *H. insolens* strain DSM 1800.
- 25 8. The variant of any preceding claim wherein the parent cutinase has an amino acid sequence which is at least 50 % homologous to the cutinase of *H. insolens* strain DSM 1800, preferably at least 70 % homologous, more preferably at least 80 % homologous.

10

- 9. A variant of a parent fungal cutinase from *Humicola insolens* which comprises substitution of one or more amino acid residues located:
 - a) within 17 Å from the location of the N-terminal amino acid (as calculated from amino acid residues in a crystal structure), and/or
 - b) within 20 positions from the N-terminal amino acid.
- 10. The variant of the preceding claim which comprises substitution of one or more amino acid residues located:
 - a) less than 12 Å from the location of the N-terminal amino group (as calculated from amino acid residues in a crystal structure), and/or
- b) within 15 positions from the N-terminal amino acid
- 11. The variant of any preceding claim which comprises substitution of one or more amino acids having a solvent accessible surface.
- 12. The variant of any preceding claim wherein one or more substitutions is substitution of a negatively charged amino acid with a neutral or positively charged amino acid or substitution of a neutral amino acid with a positively charged amino acid.
- The variant of the preceding claim wherein one or more substitutions is at a position corresponding to position E6, E10, E30, E47, D63, E82 and/or E179 in the cutinase of *Humicola insolens* strain DSM 1800, preferably a substitution with R/K/Y/H/Q/N, more preferably a substitution corresponding to E6N/Q, E10N/Q, E47K/R and/or E179N/Q (*H. insolens* cutinase numbering).
 - 14. The variant of any preceding claim wherein one or more substitutions is substitution with a Pro residue, preferably at a position corresponding to position A14 and/or R51.
- 25 15. The variant of any preceding claim which has one, two, three, four, five or six of said substitutions.

- 16. The variant of any preceding claim which has substitutions corresponding to one of the following in the cutinase of *Humicola insolens* strain DSM 1800:
 - a) R51P
 - b) E6N/Q + L1381
- 5 c) A14P + E47K
 - d) E47K
 - e) E179N/Q
 - f) E6N/Q + E47K + R51P
 - g) A14P + E47K + E179N/Q
- 10 h) E47K + E179N/Q
 - i) E47K + D63N
 - j) E6N/Q + A14P + E47K + R51P + E179N/Q
 - k) E6N/Q + E10N/Q + A14P + E47K + R51P + E179N/Q, or
 - I) Q1P + L2V + S11C + N15T + F24Y + L46I + E47K
- 15 17. The variant of any preceding claim which has hydrolytic activity towards terephthalic acid esters, particularly towards cyclic tri(ethylene terephthalate) and/or Terephthalic acid bis(2-hydroxyethyl)ester dibenzoate (BETEB).
 - 18. The variant of any preceding claim which has a denaturation temperature which is at least 5° higher than the parent cutinase, preferably measured at pH 8.5
- 20 19. A DNA sequence encoding the variant of any preceding claim.
 - 20. A vector comprising the DNA sequence of the preceding claim.
 - 21. A transformed host cell harboring the DNA sequence of claim 19 or the vector of claim 20.
 - 22. A method of producing the variant of any of claims 1-18 comprising
- a) cultivating the cell of claim 21 so as to express and preferably secrete the variant, and

5

10

15

20

25

- b) recovering the variant.
- 23. A method of constructing a cutinase variant, which method comprises:
 - a) selecting a parent fungal cutinase,
 - b) identifying one or more amino acid residues in the parent cutinase at positions which are:
 - within 17 Å from the location of the N-terminal amino acid (as calculated from amino acid residues in a crystal structure), and/or
 - ii) within 20 positions from the N-terminal amino acid, and
 - c) making alterations each of which is an insertion, a deletion or a substitution of the amino acid residue,
 - optionally, making alterations each of which is an insertion, a deletion or a substitution of an amino acid residue at one or more positions other than b),
 - e) preparing the variant resulting from steps b-d,
 - f) testing the thermostability of the variant,
 - g) optionally repeating steps b-f, and
 - h) selecting a variant having higher thermostability than the parent cutinase.
- 24. A method of producing a cutinase variant, which method comprises:
 - a) selecting a parent fungal cutinase,
 - b) identifying one or more amino acid residues in the parent cutinase at positions which are:
 - within 17 Å from the location of the N-terminal amino acid (as calculated from amino acid residues in a crystal structure), and/or
 - ii) within 20 positions from the N-terminal amino acid, and
- c) making alterations each of which is an insertion, a deletion or a substitution of the amino acid residue,

WO 00/34450 PCT/DK99/00678

37

- d) optionally, making alterations each of which is an insertion, a deletion or a substitution of an amino acid residue at one or more positions other than b),
- e) preparing the variant resulting from steps b-d,
- f) testing the thermostability of the variant,
 - g) optionally repeating steps b-f,

5

15

- h) selecting a variant having higher thermostability than the parent cutinase, and
- i) producing the variant to obtain the cutinase variant.
- 10 25. A process for enzymatic hydrolysis of a cyclic oligomer of poly(ethylene terephthalate), which process comprises treating the cyclic oligomer with a variant of a parent fungal cutinase, which variant comprises substitution of one or more amino acid residues at a position which is located:
 - i) within 17 Å from the location of the N-terminal amino acid (as calculated from amino acid residues in a crystal structure), and/or
 - ii) within 20 positions from the N-terminal amino acid.
 - 26. The process of the preceding claim, in which the cyclic oligomer is cyclic tri(ethylene terephthalate).
- 20 27. The process of claim 25 or 26 wherein the treatment is done at 60-80°C, preferably at 65-75°C.
 - 28. The process of any of claims 25-27 wherein the cyclic oligomer is present in and on the fibers of a polyester containing fabric or yam.
- 29. The process of any of claims 25-28 which further comprises subsequently25 rinsing the fabric or yam, preferably rinsing with an aqueous solution having a pH in the range of from about pH 7 to about pH 11.
 - 30. A process for dyeing polyester fabric or yarn, comprising:

38

- a) treating the fabric or yarn with a cutinase having a thermal denaturation temperature of 65°C or higher at pH 8.5; and
- b) dyeing the treated fabric with a reactive dye or a disperse dye.
- 5 31. The process of the preceding claim wherein the cutinase is the variant of any of claims 1-18.
 - 32. A detergent composition comprising a surfactant and the variant of any of claims 1-18.
- 33. A method for detecting cutinase activity in a sample, comprising incubating
 the sample with terephthalic acid bis(2-hydroxyethyl)ester dibenzoate and detecting hydrolysis of said ester.
 - 34. A process for improving the functional finish of a PET-containing yarn or fabric comprising
 - a) treating the yarn or fabric with the variant of any of claims 1-18, and
- b) subsequently the yarn or fabric with a finishing agent selected from the group consisting of softeners, anti-crease resins, anti-static agents, anti-soiling agents.

Fig. 1

3D structure of cutinase from Humicola insolens

ATOM	1	N	GLY	A	3	24.424	-7.935	18.390	1.00 46.73
ATOM	2	CA	GLY	Α	3	23.848	-8.994	17.546	1.00 42.29
ATOM	3	С	GLY	Α	3	24.396	-10.112	16.727	1.00 37.35
ATOM	4	0	GLY	Α	3	25.347	-10.913	16.728	1.00 35.38
ATOM	5	N	ALA	Α	4	23.664	-10.625	15.797	1.00 34.53
ATOM	6	CA	ALA	A	4	23.051	-10.874	14.555	1.00 30.95
MOTA	7	С	ALA	Α	4	21.574	-11.246	14.920	1.00 28.33
ATOM	8	0	ALA	Α	4		-10.499	14.446	1.00 22.94
ATOM	9	CB	ALA	Α	4		-11.780	13.556	1.00 26.92
ATOM	10	N	ILE	Α	5	21.583	-12.058	16.043	1.00 26,48
ATOM	11	CA	ILE	A	5	20.281	-12.289	16.637	1.00 25.65
ATOM	12	С	ILE	Α	5	20.316	-12.151	18.118	1.00 22.40
MOTA	13	0	ILE	Α	5		-12.888	18.717	1.00 24.74
ATOM	14	CB	ILE	A	5	19.724	-13.683	16.524	1.00 26.04
ATOM	15	CG1	ILE	A	5	19.852	-13.927	15.050	1.00 29.85
ATOM	16	CG2	ILE	Α	5		-13.558	17.159	1.00 20.48
ATOM	17	CD1	ILE	A	5		-15.133	14.709	1.00 27.96
ATOM	18	N	GLU	Α	6		-11.377	18.668	1.00 20.52
ATOM	19	CA	GLU	Α	6	19.207	-11.015	20.040	1.00 17.94
ATOM	20	С	GLU	A	6	17.711	-11.027	20.432	1.00 17.76
ATOM	21	0	GLU	A	6	16.931	-10.165	19.990	1.00 17.60
ATOM	22	CB	GLU	A	6	19.809	-9.614	20.199	1.00 14.22
ATOM	23	CG	GLU	A	6	21.232	-9.374	20.385	1.00 16.71
ATOM	24	CD	GLU		6	22.148	-10.387	21.030	1.00 34.47
ATOM	25	OE1	GLU	Α	6	21.634	-11.347	21.693	1.00 49.57
ATOM	26	OE2	GLU	A	6	23.410	-10.310	20.975	1.00 37.43
ATOM	27	И	ASN	Α	7	17.375	-11.895	21.333	1.00 21.67
ATOM	28	CA	ASN	A	7	16.070	-11.854	21.846	1.00 24.04
ATOM	29	С	ASN		7	15.927	-11.488	23.238	1.00 22.08
ATOM	30	0	ASN	A	7	15.098	-12.179	23.820	1.00.24.00
ATOM	31	CB	ASN	A	7	15.468	-13.307	21.820	1.00 25.06
ATOM	32	CG	ASN		7	15.039	-13.160	20.341	1.00 38.52
MOTA	33		ASN		7	15.519	-14.147	19.759	1.00 48.45
ATOM	34	ND2	ASN	A	7	14.318	-12.081	19.968	1.00 36.89
ATOM	35	N	GLY	A	8	16.671	-10.813	23.926	1.00 23.56
ATOM	36	CA	GLY	Α	8	16.654	-10.628	25.363	1.00 23.69
ATOM	37	С	GLY	A	8	15.366	-10.247	25.984	1.00 22.72
ATOM	38	0	GLY		8	14.967	-10.939	26.867	1.00 32.25
MOTA	39	N	LEU		9	14.785	-9.144	25.755	1.00 23.61
ATOM	40	CA	LEU		9	13.470	-8.753	26.033	1.00 23.73
ATOM	41	С	LEU		9	12.559	-9.961	25.782	1.00 25.93
ATOM	42	0	LEU		9	11.494	-10.054	26.480	1.00 30.47
ATOM	43	CB	LEU		9	12.971	-7.621	25.105	1.00 5.84
ATOM	44	CG	LEU		9	11.556	-7.227	25.470	1.00 23.25
ATOM	45	CD1			9	11.422	-6.765	26.968	1.00 20.21
ATOM	46		LEU		9	11.009	-6.071	24.714	1.00 17.64
ATOM	47	N	GLU	A	10	12.775	-10.786	24.773	1.00 29.56

								04 404	1.00 33.93
MOTA	48	CA	GLU Z		10		-11.681	24.484 25.412	1.00 33.33
ATOM	49	С	GLU A		10		-12.872	25.996	1.00 32.10
ATOM	50	0	GLU I		10		-13.159	23.930	1.00 30.07
ATOM	51	CB	GLU I		10		-11.996		1.00 40.97
MOTA	52	CG	GLU I		10		-12.303	22.745	1.00 51.90
MOTA	53	CD	GLU 2		10		-11.711	21.437	1.00 34.08
ATOM	54		GLU .		10		-11.440	20.635	1.00 48.22
ATOM	55		GLU .		10		-11.643	21.471	1.00 32.39
ATOM	56	N	SER .		11		-13.334	25.688	1.00 25.38
ATOM	57	CA	SER .		11		-14.455	26.645	
MOTA	58	С	SER		11		-14.012	28.047	1.00 39.86
MOTA	59	0	SER		11		-14.790	28.919	1.00 43.72
ATOM	60	CB	SER		11.		-15.364	25.983	1.00 33.73
ATOM	61	OG	SER		11		-14.620	25.928	1.00 46.98
ATOM	62	N	GLY		12		-12.802	28.456	1.00 41.40
ATOM	63	CA	GLY		12		-12.332	29.752	1.00 45.34
MOTA	64	С	GLY		12		-12.562	30.694	1.00 47.62
. ATOM	65	0	GLY		12		-12.335	30.335	1.00 50.76
ATOM	66	N	SER		13		-12.900	31.936	1.00 48.09
ATOM	67	CA	SER		13		-13.158	32.995	1.00 45.26
ATOM	68	С	SER		13		-11.933	33.772	1.00 39.53
ATOM	69	0	SER	Α	13	12.563	-11.204	33.992	1.00 36.30
ATOM	70	CB	SER		13		-14.006	34.101	1.00 51.20
MOTA	71	OG	SER		13		-13.947	35.338	1.00 57.14
MOTA	72	N	ALA		14		-11.785	34.214	1.00 35.22
ATOM	73	CA	ALA		14		-10.530	34.964	1.00 34.78
MOTA	74	С	ALA		14		-10.620	36.417	1.00 37.51
MOTA	75	0	ALA		14	10.809		37.113	1.00 38.41
ATOM	76	CB	ALA		14	8.714		34.903	1.00 32.71
ATOM	77	N	ASN		15		-11.834	36.737	1.00 38.85
ATOM	78	CA	ASN		15		-12.086	37.963	1.00 43.49
ATOM	79	С	ASN		15		-11.411	37.953	1.00 46.45
ATOM	80	0	ASN		15		-11.022	39.022	1.00 52.50
ATOM	81	CB	ASN		15		-13.533	38.207	1.00 53.08
MOTA	82	CG	ASN		15		-14.226	38.553	1.00 71.86 1.00 71.73
ATOM	83		l ASN		15		-13.535	38.998	1.00 77.73
ATOM	84		2 ASN		15		5 -15.523	38.267	1.00 77.71
ATOM	85	N	ALA		16		2 -11.305	36.812	1.00 40.73
ATOM	86				16		5 -10.470	36.743	1.00 41.22
MOTA	87	С	ALA		16	15.03		35.798	1.00 36.70
ATOM	88		ALA		16	16.02		35.075	1.00 37.87
ATOM	89		ALA		16		3 -11.545	36.301	1.00 41.80
ATOM	90		CYS			14.300		35.843	
ATOM	91					14.61			1.00 31.78
MOTA	92		CYS			16.02	_		1.00 32.94
MOTA	93	0	CYS			16.74			1.00 39.10
ATOM	94					13.67			1.00 28.00
ATOM	95	S SG	CYS	5 A	. 17	12.04	8 -6.583	34.858	1.00 24.72

MOTA	96	N	PRO	A	18	16.529	-5.910	34.092	1.00 30.49
MOTA	97	CA	PRO	Α	18	17.994	-5.626	33.971	1.00 22.04
ATOM	98	С	PRO	A	18	18.178	-4.138	34.241	1.00 20.15
ATOM	99	0	PRO	Α	18	17.085	-3.459	34.370	1.00 17.83
ATOM	100	CB	PRO		18	18.353	-6.003	32.559	1.00 17.83
ATOM	101	CG	PRO		18	17.044	-6.595	32.101	1.00 20.16
ATOM	102	CD	PRO		18	15.903	-5.936	32.792	1.00 20.16
ATOM	103	N	ASP		19	19.428	-3.652	34.011	1.00 24.35
ATOM	104	CA	ASP		19	19.451	-2.168	34.226	
ATOM	105	C	ASP		19	18.739	-1.367		1.00 16.59
ATOM	106	ō	ASP		19	18.311		33.156	1.00 20.42
ATOM	107	СВ	ASP		19		-0.242	33.430	1.00 23.84
ATOM	108	CG	ASP		19	20.896	-1.818	34.485	1.00 27.25
ATOM	109		ASP			21.433	-2.389	35.793	1.00 42.30
ATOM	110				19	21.162	-3.549	36.297	1.00 53.52
			ASP		19	22.251	-1.719	36.543	1.00 54.02
ATOM	111	N	ALA		20	18.646	-1.780	31.895	1.00 20.18
ATOM	112	CA	ALA		20	18.066	-1.036	30.809	1.00 17.43
ATOM	113	C	ALA		20	17.713	-2.087	29.703	1.00 16.06
ATOM	114	0	ALA		20	18.334	-3.172	29.860	1.00 9.45
ATOM	115	СВ	ALA		20	18.975	-0.048	30.100	1.00 12.07
ATOM	116	N	ILE		21	16.814	-1.602	28.829	1.00 8.47
ATOM	117	CA	ILE		21	16.657	-2.583	27.753	1.00 9.23
ATOM	118	C	ILE		21	16.952	~1.745	26.486	1.00 14.77
ATOM	119	0_	ILE		21	16.681	-0.473	26.403	1.00 12.01
ATOM	120	CB	ILE		21	15.208	-2.984	27.837	1.00 16.28
ATOM	121	CG1	ILE		21	14.851	-3.898	28.956	1.00 15.55
MOTA	122	CG2	ILE		21	14.689	-3.671	26.514	1.00 13.71
ATOM	123	CD1	ILE		21	13.401	-3.879	29.372	1.00 6.12
MOTA	124	N	LEU	A	22	17.432	-2.451	25.391	1.00 12.24
ATOM	125	CA	LEU	A	22	17.665	-1.774	24.087	1.00 11.27
ATOM	126	С	LEU	Α	22	16.849	-2.517	23.038	1.00 14.60
ATOM	127	0	LEU	Α	22	16.908	-3.781	22.850	1.00 9.78
MOTA	128	CB	LEU	A	22	19.087	-1.865	23.693	1.00 10.96
MOTA	129	CG	LEU	A	22	19.493	-1.543	22.257	1.00 10.32
MOTA	130	CD1	LEU	A	22	19.311	-0.081	21.900	1.00 4.72
ATOM	131	CD2	LEU	A	22	20.990	-1.842	22.156	1.00 7.42
ATOM	132	N	ILE	A	23	16.038	-1.815	22.242	1.00 15.13
ATOM	133	CA	ILE	Α	23	15.298	-2.459	21.115	1.00 18.06
ATOM	134	С	ILE	A	23	15.916	-1.771	19.901	1.00 17.42
ATOM	135	0	ILE	A	23	16.117	-0.519	19.795	1.00 17.42
ATOM	136	СВ		A	23	13.820	-2.194	21.392	1.00 19.31
ATOM	137	CG1	ILE		23	13.208	-3.076	22.447	1.00 18.16
ATOM	138	CG2	ILE		23	12.787	-2.167	20.247	1.00 14.23
ATOM	139	CD1	ILE		23	12.142	-2.065	22.976	
ATOM	140	N	PHE		24	16.218	-2.548	18.940	1.00 20.41
ATOM	141	CA	PHE		24	16.859	-2.159	17.671	1.00 14.59
ATOM	142	C	PHE		24	16.347	-2.139		1.00 11.72
ATOM	143	0	PHE	_	24			16.353	1.00 7.25
111 011	173	9	ETTE	_	24	16.095	-3.998	16.161	1.00 3.47

ATOM	144	CB	PHE	A	24	18.195	-2.855	17.658	1.00 12.61
MOTA	145	CG	PHE	A	24	19.015	-2.150	16.716	1.00 10.72
ATOM	146	CD1	PHE	A	24	19.457	-0.844	16.913	1.00 13.08
ATOM	147	CD2	PHE	Α	24	19.325	-2.852	15.558	1.00 6.61
MOTA	148	CE1	PHE	Α	24	20.232	-0.187	15.983	1.00 4.86
ATOM	149	CE2	PHE	Α	24	20.061	-2.218	14.545	1.00 7.61
ATOM	150	CZ	PHE	Α	24	20.550	-0.823	14.804	1.00 8.78
ATOM	151	N	ALA		25	16.037	-1.700	15.449	1.00 6.32
ATOM	152	CA	ALA		25	15.662	-2.158	14.068	1.00 7.18
ATOM	153	С	ALA		25	16.851	-1.976	13.055	
ATOM	154	ō	ALA		25	17.518	-1.000	13.133	
ATOM	155	СВ	ALA		25	14.488	-1.402	13.153	
ATOM	156	N	ARG		26	17.174	-3.032		1.00 8.27
ATOM	157	CA	ARG		26	18.134		12.325	1.00 8.84
ATOM	158	C	ARG		26		-3.278	11.277	1.00 4.04
ATOM	159	0	ARG		26	17.691	-2.694	9.894	1.00 7.67
ATOM	160	CB	ARG			16.527	-2.361	9.525	1.00 9.36
ATOM	161	CG			26	18.581	-4.659	10.756	1.00 6.06
ATOM	162		ARG		26	17.705	-5.741	10.439	1.00 5.08
ATOM	163	CD NE	ARG		26	18.069	-7.224	10.382	1.00 6.73
ATOM	164	CZ	ARG		26	17.000	-8.053	9.708	1.00 9.04
	165		ARG		26	15.724	-8.206	9.912	1.00 7.06
ATOM			ARG		26	15.085	-7.535	10.895	1.00 22.93
ATOM	166		ARG		26	14.809	-8.825	9.346	1.00 7.89
ATOM	167	N	GLY		27	18.761	-2.539	9.092	1.00 7.71
ATOM	168	CA	GLY		27	18.537	-1.888	7.782	1.00 5.34
ATOM	169	С	GLY		27	18.063	-2.896	6.862	1.00 4.70
ATOM	170	0	GLY		27	18.155	-4.139	7.075	1.00 13.14
ATOM	171	N	SER		28	17.562	-2.612	5.765	1.00 11.82
ATOM	172	CA	SER		28	17.108	-3.325	4.615	1.00 14.72
ATOM	173	С	SER		28	18.214	-4.327	4.142	1.00 7.74
ATOM	174	0	SER		28	19.286	-3.973	4.083	1.00 6.71
ATOM	175	CB	SER		28	16.460	-2.352	3.538	1.00 6.38
ATOM	176	OG	SER		28	16.819	-0.978	3.833	1.00 28.10
ATOM	177	N	THR		29	17.942	-5.634	4.241	1.00 4.79
ATOM	178	CA	THR		29	18.562	-6.763	3.914	1.00 8.71
ATOM	179	С	THR		29	19.500	-7.271	4.985	1.00 14.00
ATOM	180	0	THR		29	20.162	-8.326	4.713	1.00 17.68
ATOM	181	CB	THR		29	19.454	-6.680	2.617	1.00 14.90
ATOM	182	OG1			29	20.736	-6.066	2.595	1.00 14.00
ATOM	183	CG2	THR	A	29	18.785	-5.888	1.561	1.00 15.59
ATOM	184	N	GLU	Α	30	19.740	-6.599	6.105	1.00 14.52
ATOM	185	CA	GLU	A	30	20.677	-7.266	7.056	1.00 14.10
MOTA	186	С	GLU		30	20.092	-8.513	7.647	1.00 13.07
ATOM	187	0	GLU	A	30	18.916	-8.726.	7.705	1.00 19.98
ATOM	188	CB	GLU	Α	30	21.228	-6.371	8.072	1.00 15.45
ATOM	189	CG	GLU	A	30	21.166	-4.945	7.709	1.00 8.37
MOTA	190	CD	GLU	A	30	22.073	-4.143	8.637	1.00 23.08
ATOM	191	OE1	GLU	Α	30	21.395	-3.328	9.284	1.00 19.26
								_	

ATOM	192		GLU		30	23.317	-4.327	8.712	1.00 19.71
ATOM	193	N	PRO		31	20.875	-9.479	7.918	1.00 13.09
ATOM	194	CA	PRO		31	20.477	-10.818	8.402	1.00 14.56
ATOM	195	С	PRO	Α	31	20.167	-10.698	9.895	1.00 18.27
MOTA	196	0	PRO	A	31	20.148	-9.636	10.392	1.00 20.45
ATOM	197	CB	PRO	Α	31		-11.692	8.215	1.00 10.95
ATOM .	198	CG	PRO	Α	31	22.790	-10.664	8.455	1.00 10.33
ATOM	199	CD	PRO	A	31	22.350	-9.316	7.864	1.00 13.71
ATOM	200	N	GLY	Α	32		-11.689	10.472	1.00 13.71
MOTA	201	CA	GLY	A	32		-11.774	11.816	1.00 13.53
ATOM	202	С	GLY		32		-10.808	12.188	1.00 13.53
ATOM	203	0	GLY		32		-10.294	11.411	
ATOM	204	N	ASN	A	33		-10.528	13.468	1.00 17.01
ATOM	205	CA	ASN		33	17.290	-9.346	13.823	1.00 16.15
ATOM	206	С	ASN		33	18.294	-8.273	14.230	1.00 14.74
ATOM	207	Ō	ASN		33	17.774	-7.184		1.00 15.46
ATOM	208	СВ	ASN		33	16.241	-9.663	14.575	1.00 15.90
ATOM	209	CG	ASN		33		-10.201	14.867	1.00 17.42
ATOM	210		ASN	Δ	33			16.127	1.00 17.97
ATOM	211		ASN		33		-10.395 -10.460	17.089	1.00 19.05
ATOM	212	N	MET		34	19.633		16.112	1.00 13.29
ATOM	213	CA	MET		34	20.282	-8.378	14.282	1.00 14.22
ATOM	214	C	MET		34		-7.171	14.751	1.00 12.97
ATOM	215	ō	MET		34	21.142	-6.663	13.611	1.00 19.02
ATOM	216	CB		A	34	21.654	-5.512	13.713	1.00 26.04
ATOM	217	CG		A	34	21.202	-7.329	15.859	1.00 13.39
ATOM	218	SD	MET		34	20.579	-7.713	17.163	1.00 9.02
ATOM	219	CE	MET		34	20.175	-6.316	18.069	1.00 9.13
ATOM	220	N	GLY		35	21.481	-5.121	18.095	1.00 4.11
ATOM	221	CA	GLY		.35	21.259	-7.446	12.550	1.00 19.99
ATOM	222	C	GLY			22.071	-7.135	11.418	1.00 14.30
ATOM	223	0	GLY		35	23.511	-7.340	11.764	1.00 17.58
ATOM	224	N	ILE		35 36	23.965	-7.724	12.842	1.00 12.78
ATOM	225	CA	ILE		36	24.450	-6.839	10.950	1.00 20.63
ATOM	226	C	ILE		36	25.833	-7.029	11.277	1.00 17.71
ATOM	227	0		-	36	26.609	-5.714	11.280	1.00 16.15
ATOM	228	СВ	ILE		36	27.865	-5.618	11.662	1.00 20.30
ATOM	229	CG1	ILE		36	26.412	-8.070	10.327	1.00 30.19
ATOM					36	26.088	-7.448	8.959	1.00 31.16
	230	CG2	ILE		36	25.944	-9.490	10.543	1.00 15.68
ATOM	231	CD1	ILE		36	26.922	-8.149	7.958	1.00 34.10
ATOM	232	N	THR		37	25.905	-4.589	11.040	1.00 13.00
ATOM	233	CA	THR		37	26.825	-3.396	11.141	1.00 9.67
ATOM	234		THR		37	26.587	-2.513	12.350	1.00 15.44
ATOM	235	0	THR		37	27.040	-3.055	13.410	1.00 20.20
ATOM	236	CB	THR		37	26.592	-2.679	9.818	1.00 14.13
ATOM	237	0G1	THR		37	25.241	-2.212	9.503	1.00 22.62
ATOM	238	CG2	THR		37	26.949	-3.739	8.800	1.00 2.29
MOTA	239	N	VAL	A	38	25.733	-1.493	12.249	1.00 11.92

ATOM	240	CA	VAL	Δ	38	25.237	0 000	33 433	
ATOM	241	C	VAL		38		-0.800	13.411	1.00 15.22
ATOM	242	Ö	VAL		38	24.588	-1.455	14.612	1.00 14.68
ATOM	243	СВ	VAL		38	24.906	-1.185	15.733	1.00 15.89
ATOM	244		VAL			24.124	0.180	12.855	1.00 14.13
	245				38	23.663	0.897	14.167	1.00 13.55
ATOM			VAL		38	24.570	1.025	11.670	1.00 6.75
ATOM	246	N	GLY		39	23.745	-2.410	14.677	1.00 14.24
ATOM	247	CA	GLY		39	23.135	-3.151	15.746	1.00 11.03
ATOM	248	C	GLY		39	24.096	-3.586	16.791	1.00 13.34
ATOM	249	0	GLY		39	24.131	-3.181	17.934	1.00 15.13
ATOM	250	N	PRO		40	25.067	-4.340	16.352	1.00 14.70
ATOM	251	CA	PRO		40 .	26.094	-5.025	17.171	1.00 13.44
MOTA	252	С	PRO		40	27.010	-3.909	17.589	1.00 11.81
ATOM	253	0	PRO		40	27.346	-3.871	18.764	1.00 12.79
ATOM	254	СВ	PRO	Α	40	26.723	-6.111	16.279	1.00 8.43
ATOM	255	CG	PRO	Α	40	25.873	-6.243	14.950	1.00 4.84
ATOM	256	CD	PRO		40	25.198	-4.902	14.995	1.00 12.36
ATOM	257	N	ALA		41	27.226	-2.979	16.695	1.00 7.41
ATOM	258	CA	ALA	A	41	28.066	-1.962	17.278	1.00 11.03
ATOM	259	С	ALA		41	27.378	-1.206	18.439	1.00 14.87
ATOM	260	0	ALA	A	41	28.028	-0.503	19.274	1.00 14.26
ATOM	261	CB	ALA		41	28.579	-0.905	16.313	1.00 7.17
ATOM	262	N	LEU	Α	42	26.135	-0.811	18.237	1.00 11.87
MOTA	263	CA	LEU	Α	42	25.487	-0.048	19.300	1.00 12.36
ATOM	264	С	LEU	A	42	25.337	-0.856	20.624	1.00 11.94
ATOM	265	0	LEU	A	42	25.423	-0.397	21.730	1.00 8.33
ATOM	266	CB	LEU	Α	42	24.036	0.168	18.811	1.00 13.24
ATOM	267	CG	LEU	A	42	23.272	1.160	19.676	1.00 6.90
ATOM	268	CD1	LEU	A	42	24.108	2.419	19.962	1.00 6.62
ATOM	269	CD2	LEU	Α	42	21.991	1.580	18.943	1.00 7.11
ATOM	270	N	ALA	A	43	24.905	-2.095	20.482	1.00 10.88
ATOM	271	CA	ALA	A	43	24.761	-3.027	21.553	1.00 12.37
ATOM	272	С	ALA	A	43	26.106	-3.136	22.252	1.00 15.45
MOTA	273	0	ALA		43	25.958	-2.743	23.433	1.00 20.80
ATOM	274	CB	ALA	Α	43	24.148	-4.324	21.002	1.00 20.80
ATOM	275	N	ASN	A	44	27.263	-3.440	21.636	1.00 16.91
ATOM	276	CA	ASN		44	28.454	-3.434	22.439	1.00 20.33
ATOM	277	С	ASN		44	28.717	-2.044	23.113	1.00 20.33
ATOM	278	0	ASN		44	29.019	-1.991	24.301	1.00 17.06
ATOM	279	СВ	ASN		44	29.756	-3.695	21.625	1.00 17.00
ATOM	280	CG	ASN		44	29.564	-5.115	21.138	1.00 58.23
ATOM	281		ASN		44	30.013	-5.403	20.034	1.00 38.23
ATOM	282		ASN		44	28.908	-5.945	21.921	1.00 79.77
ATOM	283	N	GLY		45	28.682	-0.988	22.297	1.00 70.10
ATOM	284	CA	GLY		45	29.015	0.221	22.237	
ATOM	285	C	GLY		45	28.175	0.255	24.234	1.00 11.65
ATOM	286	ō	GLY		45	28.529	0.582	24.234	1.00 14.30
ATOM	287	N	LEU		46	26.861	0.099		1.00 10.77
				• •	10	20.001	ひ・ひラブ	24.065	1.00 16.88

ATOM	288	8 C.F	LEU	A	46		25 06	_				
MOTA	289	9 C	LEU		46		25.960 26.390	_	0.248			0 16.29
ATOM	290	0	LEU		46		26.579		0.651			0 13.48
ATOM	291	L CE	LEU	A	46		24.608		0.325			
ATOM	292	CG			46				0.243			0 19.46
MOTA	293				46		23.642		0.551		1.0	0 13.97
ATOM	294	CD			46		24.089		1.994		1.0	0 13.99
ATOM	295	N	GLU		47		22.275		0.465		1.0	0 32.18
ATOM	296				47		26.523		1.890		1.0	0 15.90
ATOM	297		GLU		47		26.910		2.886		1.0	0 24.03
ATOM	298		GLU		47		28.140		2.500	27.702	1.00	24.14
ATOM	299				47		28.722		3.203	28.500	1.00	27.24
ATOM	300				47	•	27.147		1.206	26.204	1.00	33.33
ATOM	301		GLU		47		27.386		.254	27.245	1.00	51.29
ATOM	302				47		27.661		5.560	26.524	1.00	68.40
ATOM	303				47		26.741		.007	25.777	1.00	66.37
ATOM	304	N	SER		48		28.856		.921	26.830	1.00	78.70
ATOM	305	CA	SER		48		28.992	-1	.626	27.215	1.00	27.50
ATOM	306	C	SER		48		30.331	-1	.518	27.789	1.00	25.23
ATOM	307	ŏ	SER		48		30.108		.555	28.926	1.00	26.91
ATOM	308	СВ	SER		48		31.124		.058	29.462	1.00	33.39
ATOM	309	OG	SER		48		31.116		.990	26.621	1.00	21.90
ATOM	310	N	HIS		49		31.294		.422	26.483	1.00	27.87
ATOM	311	CA	HIS		49		28.826		.101	28.995	1.00	25.04
ATOM	312	С	HIS		49		28.542		. 955	29.956	1.00	19.72
ATOM	313	0	HIS		49		27.480		.461	30.950	1.00	22.55
ATOM	314	CB	HIS I		49		27.186	1	.089	31.898	1.00	27.93
ATOM	315	CG	HIS I		49		28.094		.197	29.463	1.00	16.13
ATOM	316		HIS A	- 4	49		28.806	3.	.036	28.520		39.79
ATOM	317	CD2	HIS A	<u>.</u>	49		29.564		. 058	28.953	1.00	45.66
ATOM	318	CE1	HIS I		49		28.776		.070	27.197	1.00	46.91
ATOM	319	NE2	HIS A		49		30.028		.750	27.979	1.00	45.87
ATOM	320	N	ILE A		50		29.544		.139	26.934	1.00	50.84
ATOM	321	CA	ILE A		50		27.009		703	30.715	1.00	18.34
ATOM	322	С	ILE A		50		25.874		129	31.415	1.00	19.89
ATOM	323	0	ILE A		50		25.917		629	31.146		26.29
ATOM	324	СВ	ILE A		50		25.322		023	30.168		25.33
ATOM	325	CG1	ILE A		50		24.527		535	31.008		10.50
ATOM	326	CG2	ILE A		50		24.340		906	31.292	1.00	4.97
MOTA	327	CD1	ILE A		50		23.466		298	31.697	1.00	12.96
ATOM	328	N	ARG A		51		23.413		845	30.602		16.65
ATOM	329	CA	ARG A		1	•	26.707		256	32.066	1.00	31.77
ATOM	330		ARG A		1		26.887	-4.	714	32.107	1.00	29.06
ATOM	331	0	ARG A		1		25.457	-5.		32.170	1.00	32.68
ATOM	332		ASN A		2		25.396	-6.		31.512	1.00	37.16
MOTA	333		ASN A		2		24.380	-4.		32.788	1.00	28.48
ATOM	334		ASN A		2	•	23.284	-5.		32.832	1.00	26.39
ATOM	335		ASN A	5			22.176	-5.		31.993	1.00	27.75
				,	-		21.333	-4.	488	32.636	1.00	26.68

ATOM	336	CB	ASN	A	52	22.750	-5.884	34.232	1.00 34.86
ATOM	337	CG	ASN	A	52	21.637	-6.879	34.271	1.00 39.54
ATOM	338		ASN		52	20.781	-6.541	35.095	1.00 54.31
MOTA	339	ND2	ASN	Α	52	21.611	-7.954	33.503	1.00 48.82
ATOM	340	N	ILE	A	53	22.127	-5.699	30.800	1.00 24.42
ATOM	341	CA	ILE		53	21.261	-5.092	29.772	1.00 20.15
ATOM	342	С	ILE	Α	53	20.585	-6.151	28.912	1.00 17.63
ATOM	343	0	ILE	A	53	21.020	-7.349	28.917	1.00 18.01
ATOM	344	CB	ILE	Α	53	22.245	-4.297	28.880	1.00 14.09
ATOM	345	CG1	ILE	Α	53	21.682	-3.257	27.936	1.00 22.91
ATOM	346	CG2	ILE	Α	53	22.907	-5.321	27.946	1.00 16.37
MOTA	347	CD1	ILE	A	53	22.877	-2.315	27.622	1.00 38.17
ATOM	348	N	TRP		54	19.447	-5.880	28.383	1.00 15.19
ATOM	349	CA	TRP		54	18.804	-6.889	27.567	1.00 17.96
ATOM	350	С	TRP		54	18.803	-6.230	26.151	1.00 17.90
ÁTOM	351	0	TRP	A	54	18.340	-5.059	25.985	1.00 13.82
ATOM	352	CB	TRP		54	17.364	-7.046	27.998	1.00 23.18
ATOM	353	CG	TRP	Α	54	16.949	-7.932	29.100	1.00 23.18
ATOM	354	CD1	TRP		54	17.757	-8.727	29.895	1.00 24.37
ATOM	355	CD2	TRP		54	15.595	-8.164	29.603	1.00 24.46
ATOM	356	NE1	TRP		54	17.004	-9.372	30.858	1.00 30.21
ATOM	357	CE2	TRP		54	15.692	-9.039	30.700	1.00 23.87
ATOM	358	CE3	TRP		54	14.358	-7.633	29.243	1.00 24.92
ATOM	359	CZ2	TRP		54	14.611	-9.442	31.432	1.00 36.26
ATOM	360	CZ3	TRP		54	13.316	-8.042	30.009	1.00 19.75
ATOM	361	CH2	TRP		54	13.451	-8.916	31.068	1.00 32.94
ATOM	362	N	ILE		55	19.063	-7.152	25.204	1.00 23.02
ATOM	363	CA	ILE		55	19.178	-6.655	23.838	1.00 13.21
ATOM	364	С	ILE		55	18.091	-7.215	22.962	1.00 12.41
ATOM	365	0	ILE		55	17.955	-8.378	22.680	1.00 7.34
ATOM	366	CB	ILE		55	20.546	-6.962	23.201	1.00 16.44
ATOM	367	CG1	ILE		55	21.939	-6.409	23.702	1.00 10.44
ATOM	368	CG2	ILE		55	20.384	-6.460	21.750	
ATOM	369	CD1	ILE		55	21.767	-5.582	24.863	1.00 21.77 1.00 16.23
ATOM.	370	N	GLN		56	17.226	-6.412	22.390	1.00 16.23 1.00 9.67
ATOM	371	CA	GLN		56	16.161	-7.016	21.619	1.00 9.87
ATOM	372	С	GLN		56	16.432	-6.621	20.143	
ATOM	373	Ö	GLN		56	16.402	-5.393	19.953	
ATOM	374	CB	GLN		56	14.786	-6.542	22.014	1.00 10.32
ATOM	375	CG	GLN		56	13.653	-7.256	21.316	1.00 11.49
ATOM	376	CD	GLN		56	13.789	-8.741	21.351	1.00 23.47
ATOM	377	OE1	GLN		56	13.610	-9.379		1.00 24.88
ATOM	378	NE2			56	14.119	-9.221	20.324 22.544	1.00 9.56
ATOM	379	N	GLY		57	16.288	-7.645	19.216	1.00 17.94
ATOM	380	CA	GLY		57	16.174	-7.019		1.00 6.84
ATOM	381	C	GLY		57	14.740	-7.019 -7.085	17.841	1.00 16.15
ATOM	382	0	GLY		57 57			17.267	1.00 13.72
ATOM	383	N	VAL		5 <i>7</i> 58	14.124	-8.016	17.752	1.00 12.70
411 OI1	303	14	AVT	A	50	14.068	-6.264	16.525	1.00 12.73

						_			
MOTA	384	CA	VAL		58	12.739	-6.308	16.070	1.00 11.16
ATOM	385	С	VAL		58	12.715	-7.246	14.893	1.00 14.85
ATOM	386	0	VAL		58	13.234	-6.891	13.849	1.00 18.64
ATOM	387	CB	VAL		58	12.262	-4.984	15.352	1.00 6.54
ATOM	388	CG1	VAL	A	58	10.894	-4.974	14.731	1.00 5.89
ATOM	389	CG2	VAL	Α	58	12.650	-3.840	16.331	1.00 5.86
ATOM	390	И	GLY	A	59	12.209	-8.465	15.008	1.00 21.96
ATOM	391	CA	GLY	A	59	12.120	-9.385	13.874	1.00 17.81
ATOM	392	С	GLY	A	59	10.645	-9.561	13.550	1.00 23.35
ATOM	393	0	GLY	Α	59	9.919	-8.579	13.249	1.00 27.99
ATOM	394	N	GLY	A	60	10.166	-10.805	13.623	1.00 18.75
ATOM	395	CA	GLY	A	60	8.841	-11.142	13.285	1.00 11.46
MOTA	396	С	GLY	Α	60	8.550	-10.833	11.851	1.00 14.56
ATOM	397	0	GLY	Α	60		-11.439	11.003	1.00 16.32
ATOM	398	N	PRO	A	61		-10.103	11.612	1.00 12.10
ATOM	399	CA	PRO	A	61	7.123	-9.774	10.250	1.00 14.70
ATOM	400	С	PRO	Α	61	8.230	-8.941	9.570	1.00 22.17
ATOM	401	0	PRO	Α	61	8.143	-8.758	8.344	1.00 25.74
ATOM	402	CB	PRO	Α	61	5.911	-8.860	10.332	1.00 14.30
ATOM	403	CG	PRO	Α	61	5.880	-8.514	11.784	1.00 13.62
ATOM	404	CD	PRO	Α	61	6.723	-9.417	12.576	1.00 12.29
ATOM	405	N	TYR	A	62	9.162	-8.257	10.292	1.00 21.56
ATOM	406	CA	TYR	Α	62	9.973	-7.242	9.674	1.00 17.07
ATOM	407	С	TYR	A	62	11.133	-7.907	9.047	1.00 18.73
ATOM	408	0	TYR	A	62	12.132	-8.213	9.691	1.00 22.39
ATOM	409	CB	TYR		62	10.504	-6.401	10.803	1.00 17.51
ATOM	410	CG	TYR	A	62	11.461	-5.421	10.236	1.00 15.23
ATOM	411	CD1	TYR	A	62	11.343	-4.920	9.032	1.00 17.79
ATOM	412	CD2	TYR	A	62	12.465	-4.971	10.969	1.00 19.09
ATOM	413	CE1	TYR	Α	62	12.206	-3.997	8.506	1.00 19.28
ATOM	414	CE2	TYR	A	62	13.438	-4.101	10.490	1.00 25.40
ATOM	415	CZ	TYR	A	62	13.327	-3.571	9.186	1.00 20.95
ATOM	416	OH	TYR	A	62	14.320	-2.649	8.791	1.00 14.70
ATOM	417	N	ASP	A	63	10.998	-8.419	7.816	1.00 19.47
ATOM	418	CA	ASP	A	63	12.137	-9.011	7.081	1.00 17.52
ATOM	419	С	ASP	A	63	13.027	-7.973	6.453	1.00 17.97
ATOM	420	0	ASP	A	63	13.628	-8.442	5.512	1.00 14.94
ATOM	421	CB	ASP	A	63	11.474	-9.873	6.015	1.00 17.16
ATOM	422	CG	ASP	Α	63	10.563	-9.136	5.096	1.00 27.75
ATOM	423	OD1	ASP	A	63	10.049	-8.030	5.281	1.00 34.11
ATOM	424	OD2	ASP	A	63	10.300	-9.635	4.002	1.00 44.13
ATOM	425	N	ALA	Α	64	13.089	-6.685	6.584	1.00 15.36
ATOM	426	CA	ALA	A	64	14.054	-5.725	6.098	1.00 17.14
MOTA	427	С	ALA	Α	64	14.118	-5.780	4.589	1.00 21.10
ATOM	428	0	ALA	A	64	15.193	-5.861	3.968	1.00 23.12
ATOM	429	CB	ALA	A	64	15.458	-5.861	6.646	1.00 20.45
ATOM	430	N	ALA	A	65	12.946	-6.009	4.006	1.00 22.21
ATOM	431	CA	ALA	A	65	12.817	-6.072	2.565	1.00 21.81
								_	

MOTA	432	С	ALA	Α	65	13.143	-4.857	1.745	1.00	21.76
ATOM	433	0	ALA	A	65	12.855	-3.801	2.229		23.60
ATOM	434	CB	ALA	Α	65	11.384	-6.390	2.364		17.31
ATOM	435	N	LEU	Α	66	13.401	-4.866	0.402		21.48
ATOM	436	CA	LEU	A	66	13.763	-3.581	-0.216		13.20
ATOM	437	С	LEU	А	66	12.469	-2.913	-0.452		13.90
ATOM	438	0	LEU	Α	66	12.548	-1.767	-0.197		11.85
ATOM	439	СВ	LEU		66	14.593	-3.602	-1.470	1.00	3.92
ATOM	440	CG	LEU	-	66	15.891	-4.308	-1.191	1.00	9.05
ATOM	441	CD1	LEU		66	16.509	-4.725	-2.438		12.78
ATOM	442	CD2	LEU		66	16.569	-3.119	-0.580		13.44
ATOM	443	N	ALA		67	11.413	-3.625	-0.801		14.94
ATOM	444	CA	ALA		67	10.253	-2.759			
ATOM	445	C	ALA		67			-1.277		12.42
ATOM	446	0	ALA			9.626	-1.879	-0.224		14.21
	447	CB			67	9.218	-0.818	-0.643		14.29
ATOM			ALA		67	9.089	~3.588	-1.781	1.00	3.90
ATOM	448	N	THR		68	9.494	-2.409	1.006		12.11
ATOM	449	CA	THR		68	8.780	-1.647	1.997		11.77
ATOM	450	C	THR		68	9.242	-0.214	2.219		13.05
ATOM	451	0	THR		68	8.597	0.683	2.766		11.13
MOTA	452	СВ	THR		68	8.892	-2.488	3.241		13.93
ATOM	453	OG1	THR		68	10.145	-3.150	3.224		27.44
ATOM	454	CG2	THR		68	7.783	-3.459	3.087		13.39
ATOM	455	N	ASN		69	10.450	-0.057	1.808	1.00	7.59
MOTA	456	CA	ASN		69	11.020	1.236	1.791	1.00	8.76
MOTA	457	С	ASN		69	10.095	2.165	1.047	1.00	10.28
MOTA	458	0	ASN		69	9.950	3.345	1.305	1.00	5.30
ATOM	459	CB	ASN		69	12.461	1.251	1.231	1.00	5.54
MOTA	460	CG	ASN		69	13.374	1.207	2.398	1.00	15.08
ATOM	461	OD1	ASN	Α	69	13.307	2.124	3.275	1.00	31.90
ATOM	462	ND2	ASN	A	69	14.048	0.099	2.360	1.00	4.51
ATOM	463	N	PHE	A	70	9.390	1.656	0.079	1.00	19.09
ATOM	464	CA	PHE	A	70	8.552	2.619	-0.631	1.00	21.80
ATOM	465	С	PHE	Α	70	7.157	2.836	-0.123	1.00	23.36
ATOM	466	0	PHE	A	70	6.509	3.717	-0.724		25.74
ATOM	467	CB	PHE	A	70	8.547	2.386	-2.082	1.00	17.38
ATOM .	468	CG	PHE	A	70	9.870	2.360	-2.770		15.72
ATOM	469	CD1	PHE	Α	70	10.080	3.430	-3.576	1.00	5.15
ATOM	470	CD2	PHE	A	70	10.702	1.245	-2.497	1.00	7.61
ATOM	471	CE1	PHE	A	70	11.268	3.330	-4.191		16.05
ATOM	472	CE2	PHE	А	70	11.913	1.267	-3.168		22.23
ATOM	473	CZ	PHE	А	70	12.199	2.314	-4.016	1.00	9.57
ATOM	474	N	LEU		71	6.765	2.246	1.034		25.53
ATOM	475	CA	LEU		71	5.506	2.725	1.599		24.24
ATOM	476	c	LEU		71	5.649	4.037	2.343		27.91
ATOM	477	Ö	LEU		71	6.694	4.521	2.750		28.86
ATOM	478	СВ	LEU		71	5.150	1.635	2.535		19.99
ATOM	479	CG	LEU		71	5.003	0.342	1.873		16.09
			~~0			3.003	J.J42	1.0/3	1.00	10.03

ATOM	480		LEU		71	4.879	-0.764	2.885	1.00 18.12
ATOM	481	CD2	LEU	A	71	3.786	0.546	1.000	1.00 18.24
ATOM	482	N	PRO	A	72	4.535	4.663	2.529	1.00 33.01
ATOM	483	CA	PRO	Α	72	4.389	5.888	3.311	1.00 34.96
ATOM	484	C	PRO	A	72	4.865	5.590	4.778	1.00 32.90
ATOM	485	0	PRO		72	4.619	4.512	5.331	1.00 28.55
ATOM	486	CB	PRO	A	72	2.983	6.453	3.095	1.00 28.33
ATOM	487	ĊG	PRO	A	72	2.224	5.189	2.827	1.00 32.98
ATOM	488	CD	PRO		72	3.188	4.093	2.380	
ATOM	489	N	ARG		73	5.601	6.610	5.221	1.00 33.56
ATOM	490	CA	ARG		73	6.325	6.547		1.00 27.54
ATOM	491	C	ARG		73	7.613	5.755	6.408	1.00 25.42
ATOM	492	o	ARG		73	8.360		6.321	1.00 21.78
ATOM	493	СВ	ARG		73		5.950	7.304	1.00 29.61
ATOM	494	CG	ARG		73	5.469	5.978	7.549	1.00 24.29
ATOM	495	CD	ARG		73	4.575	6.998	8.155	1.00 23.47
ATOM	496	NE			_	3.818	6.793	9.360	1.00 29.73
ATOM	497	CZ	ARG		73	3.222	5.460	9.392	1.00 36.30
			ARG		73	2.891	5.312	10.713	1.00 42.26
ATOM	498	NH1	ARG		73	3.145	6.288	11.555	1.00 26.57
ATOM	499	NH2	ARG		73	2.320	4.144	10.883	1.00 39.03
ATOM	500	N	GLY		74	7.868	4.909	5.326	1.00 8.42
ATOM	501	CA	GLY		74	9.120	4.291	5.332	1.00 5.06
ATOM	502	С	GLY		74	9.243	2.858	5.508	1.00 12.74
ATOM	503	0	GLY		74	10.256	2.286	5.317	1.00 16.46
ATOM	504	N	THR		75	8.145	2.321	5.906	1.00 12.82
ATOM	505	CA	THR		75	8.036	0.869	6.008	1.00 11.14
ATOM	506	С	THR		75	6.625	0.428	6.134	1.00 10.64
ATOM	507	0	THR		75	5.757	1.231	5.949	1.00 9.36
ATOM	508	CB	THR	Α	75	8.843	0.398	7.219	1.00 6.97
ATOM	509	OG1	THR	Α	75	8.938	-0.950	7.125	1.00 5.64
ATOM	510	CG2	THR	A	75	8.108	0.865	8.603	1.00 6.30
ATOM ·	511	N	SER	A	76	6.409	-0.858	6.259	1.00 10.07
ATOM	512	CA	SER	A	76	5.061	-1.384	6.354	1.00 13.33
ATOM	513	С	SER	Α	76	4.405	-1.163	7.747	1.00 21.87
ATOM	514	0	SER	A	76	5.228	-1.102	8.679	1.00 24.22
ATOM	515	CB	SER	Α	76	5.030	-2.832	6.083	1.00 4.81
ATOM	516	OG	SER	A	76	5.327	-3.664	7.107	1.00 16.98
ATOM	517	N	GLN	A	77	3.082	-1.100	7.911	1.00 24.90
ATOM	518	CA	GLN	A	77	2.454	-1.020	9.166	1.00 23.85
ATOM	519	С	GLN	A	77	2.643	-2.236	10.015	
ATOM	520	0	GLN		77	2.908	-2.140	11.203	1.00 19.58
ATOM	521	СВ	GLN		77	0.983	-0.703		1.00 15.15
ATOM	522	CG	GLN		77	0.567		9.217	1.00 32.64
ATOM	523	CD	GLN		77	0.587	-0.580 0.785	10.642	1.00 49.56
ATOM	524	OE1			77			11.194	1.00 65.91
ATOM	525	NE2	GLN		77	0.956	0.869	12.356	1.00 66.06
ATOM	526	NEZ N	ALA		-	0.481	1.750	10.350	1.00 68.91
					78	2.754	-3.376	9.402	1.00 15.90
ATOM	527	CA	ALA	A	78	3.071	-4.577	10.073	1.00 19.47

ATOM	528	С	ALA	Α	78	4.381	-4.332	10.819	1.00 24.48
ATOM	529	0	ALA	A	78	4.389	-4.729	11.983	1.00 26.91
ATOM	530	CB	ALA	A	78	3.390	-5.808	9.336	1.00 17.23
ATOM	531	N	ASN		79	5.350	-3.863	10.093	1.00 21.58
ATOM	532	CA	ASN	A	79	6.602	-3.576	10.774	1.00 20.62
ATOM	533	С	ASN	Α	79	6.480	-2.673	11.969	1.00 20.93
ATOM	534	0	ASN	Α	79	6.975	2.944	13.053	1.00 15.52
ATOM	535	CB	ASN	A	79	7.474	-3.069	9.670	1.00 24.79
ATOM	536	CG	ASN	A	79	7.933	-4.238	8.824	1.00 24.75
ATOM	537		ASN		79	7.867	-5.439	9.091	1.00 25.78
ATOM	538		ASN		79	8.488	-3.891	7.660	
ATOM	539	N	ILE		80	5.731	-1.611		1.00 24.90
ATOM	540	CA	ILE		80	5.586		11.936	1.00 15.93
ATOM	541	C	ILE		80	4.925	-0.574	12.924	1.00 17.00
ATOM	542	ō	ILE		80		-1.187	14.118	1.00 20.63
ATOM	543	СВ	ILE		80	5.234	-0.939	15.264	1.00 18.79
ATOM	544	CGI	ILE		80	4.756	0.629	12.436	1.00 11.98
ATOM	545	CG2				5.627	1.124	11.297	1.00 9.50
ATOM	546	CD1			80	4.379	1.728	13.354	1.00 16.27
					80	5.007	2.071	10.424	1.00 8.15
ATOM	547	N	ASP		81	4.017	-2.019	13.708	1.00 19.21
ATOM	548	CA	ASP	-	81	3.304	-2.778	14.728	1.00 15.15
ATOM	549	С	ASP		81	4.147	-3.711	15.510	1.00 15.77
ATOM	550	0	ASP		81	4.084	-3.697	16.695	1.00 15.82
ATOM	551	CB	ASP		81	2.291	-3.438	13.868	1.00 26.36
ATOM	552	CG	ASP		81	1.065	-2.530	13.790	1.00 23.71
ATOM	553		ASP.		81	1.105	-1.355	14.226	1.00 14.33
ATOM	554		ASP		81	0.061	-3.125	13.222	1.00 33.05
ATOM	555	N	GLU		82	5.148	-4.447	15.096	1.00 16.07
ATOM	556	CA	GLU	A	82	5.984	-5.318	15.882	1.00 14.77
ATOM	557	С	GLU		82	6.839	-4.355	16.667	1.00 19.33
ATOM	558	0	GLU	A	82	7.315	-4.708	17.752	1.00 23.58
ATOM	559	CB	GLU		82	6.998	-6.031	15.064	1.00 13.20
ATOM	560	CG	GLU	A	82	7.792	-7.239	15.476	1.00 23.09
MOTA	561	CD	GLU	A	82	6.767	-8.114	16.185	1.00 29.68
ATOM	562	OE1	GLU	Α	82	5.666	-7.670	16.403	1.00 26.63
ATOM	563	OE2	GLU	A	82	7.273	-9.181	16.411	1.00 33.08
ATOM	564	N	GLY	A	83	7.228	-3.227	16.199	1.00 16.79
ATOM	565	CA	GLY	A	83	8.033	-2.428	17.140	1.00 17.32
ATOM	566	С	GLY	Α	83	7.238	-2.018	18.366	1.00 17.52
ATOM	567	0	GLY	A	83 .	7.561	-2.103	19.528	1.00 17.54
ATOM	568	N	LYS		84	6.093	-1.408	18.114	1.00 13.00
ATOM	569	CA	LYS		84	5.050	-1.146	19.096	1.00 16.72
ATOM	570	C	LYS		84	4.893	-2.337		
ATOM	571	ŏ	LYS		84	4.962	-2.337	20.057	1.00 17.74
ATOM	572	СВ	LYS		84			21.295	1.00 14.31
ATOM	573	CG	LYS		84	3.799	-0.872	18.307	1.00 14.62
ATOM	574	CD	LYS		84	3.535	0.565	18.291	1.00 19.30
ATOM	575	CE	LYS		84	2.787	1.013	17.044	1.00 34.24
AION	313	CE	P12	A	54	1.568	1.902	17.337	1.00 37.70

ATOM	576	NZ	LYS	А	84	0.346	1.226	16.827	1.00 48.42
ATOM	577	N	ARG		85	4.617	-3.506	19.519	1.00 18.50
ATOM	578	CA	ARG		85	4.583	-4.705	20.280	1.00 19.04
ATOM	579	c	ARG		85	5.677	-4.733	21.308	1.00 19.63
ATOM	580	0.	ARG		85	5.442	-5.192	22.383	1.00 19.03
ATOM	581	СВ	ARG		85	4.740	-5.979	19.464	1.00 19.24
ATOM	582	CG	ARG		85	3.843	-7.094	19.887	
ATOM	583	CD	ARG		85	4.146	-8.554	19.705	1.00 8.85
ATOM	584	NE	ARG		85				1.00 7.20
	585	CZ	ARG			5.483	-8.898	19.194	1.00 20.30
ATOM	586		ARG		85 85	6.170	-9.705	19.899	1.00 18.19
ATOM						5.627		21.040	1.00 34.03
ATOM	587		ARG		85	7.345	-9.979	19.555	1.00 15.36
ATOM	588	N	LEU		86	6.901	-4.586	20.956	1.00 22.21
ATOM	589	CA	LEU		86	8.006	-4.792	21.873	1.00 20.94
ATOM	590	С	LEU		86	8.044	-3.637	22.803	1.00 20.73
ATOM	591	0	LEU		86	8.155	-3.970	23.925	1.00 22.18
ATOM	592	CB	LEU		86	9.333	-4.932	21.168	1.00 6.67
ATOM	593	CG	LEU		86	9.358	-6.241	20.282	1.00 11.45
ATOM	594		LEU		86	10.546	-6.054	19.287	1.00 18.60
ATOM	595		LEU		86	9.362	-7.516	21.020	1.00 5.17
ATOM	596	N	PHE		87	7.700	-2.446	22.529	1.00 16.79
ATOM	597	CA	PHE		87	7.850	-1.416	23.492	1.00 18.21
MOTA	598	С	PHE		87	6.939	-1.805	24.618	1.00 26.51
MOTA	599	0	PHE		87	7.082	-1.565	25.839	1.00 30.36
ATOM	600	CB	PHE		87	7.498	-0.118	22.846	1.00 15.81
ATOM	601	CG	PHE		87	8.661	0.503	22.128	1.00 22.72
ATOM	602		PHE		87	9.625	1.163	22.795	1.00 25.90
MOTA	603·		- PHE		-87-	8 - 800		20.774	- 1-00- 24-19
MOTA	604		PHE		87	10.699	1.781	22.220	1.00 26.46
ATOM	605		PHE		87	9.871	0.991	20.153	1.00 29.24
ATOM	606	CZ	PHE		87	10.827	1.669	20.849	1.00 20.81
ATOM	607	N	ALA		88	5.862	-2.422	24.266	1.00 29.15
ATOM	608	CA	ALA	A	88	4.772	-2.699	25.195	1.00 22.92
ATOM	609	С	ALA		88	5.186		26.068	1.00 22.03
ATOM	610	0	ALA	A	88	4.974	-3.879	27.284	1.00 27.02
ATOM	611	CB	ALA	Α	88	3.551	-2.803	24.299	1.00 22.13
ATOM	612	N	LEU	Α	89	5.649	-4.897	25.531	1.00 19.16
ATOM	613	CA	LEU	A	89	6.188	-6.032	26.208	1.00 19.29
ATOM	614	С	LEU	A	89	7.250	-5.507	27.133	1.00 22.06
ATOM	615	0	LEU	A	89	7.449	-6.050	28.177	1.00 20.49
ATOM	616	CB	LEU	A	89	7.021	-6.863	25.221	1.00 18.41
ATOM	617	CG	LEU	Α	89	7.477	-8.167	25.834	1.00 20.45
ATOM	618	CD1			89	6.326	-8.707	26.627	1.00 17.22
ATOM	619	CD2	LEU	A	89.	8.060	-9.057	24.769	1.00 18.83
ATOM	620	N	ALA		90	8.124		26.722	1.00 22.80
MOTA	621	CA	ALA		90	9.027		27.701	1.00 24.14
ATOM	622	C	ALA	Α	90	8.237		28.849	1.00 23.63
ATOM	623	0	ALA		90	8.414		30.071	1.00 22.73
							· -		

ATOM	624	CB	ALA		90	10.080	-3.253	27.139	1.00 7.74
ATOM	625	N	ASN		91	7.457	-2.445	28.732	1.00 25.45
ATOM	626	CA	ASN	A	91	6.665	-1.979	29.870	1.00 27.25
ATOM	627	C	ASN		91	5.847	-2.996	30.656	1.00 30.97
ATOM	628	0	ASN	A	91	5.346	-2.884	31.768	1.00 27.64
ATOM	629	CB	ASN	Α	91	5 .5 60	-1.206	29.125	1.00 29.14
ATOM	630	CG	ASN		91	4.946	-0.345	30.216	1.00 31.73
ATOM	631		ASN		91	3.845	-0.692	30.645	1.00 46.76
ATOM	632	ND2	ASN	А	91	5.641	0.629	30.643	1.00 29.03
ATOM	633	N	GLN		92	5.369	-4.008	29.969	1.00 35.37
ATOM	634	CA	GLN		92	4.702	-5.141	30.591	1.00 35.55
ATOM	635	C	GLN		92	5.619	-6.072	31.352	1.00 34.28
ATOM	636	ŏ	GLN		92	5.227	-6.519	32.440	1.00 34.28
ATOM	637	СВ	GLN		92	3.866	-5.903		
ATOM	638	CG	GLN		92			29.573	1.00 54.94
	639	CD	GLN		92	2.689	-6.698	30.142	1.00 78.63
ATOM		-				2.806	-8.167	29.805	1.00 93.87
ATOM	640	OE1	GLN		92	3.597	-8.840	30.475	1.00 96.99
ATOM	641	NE2	GLN		92	2.083	-8.696	28.824	1.00 97.81
ATOM	642	N	LYS		93	6.859	-6.403	31.050	1.00 31.97
ATOM	643	CA	LYS		93	7.675	-7.204	31.972	1.00 25.22
ATOM	644	C	LYS		93	8.381	-6.298	33.015	1.00 24.68
ATOM	645	0	LYS		93	8.716	-6.793	34.075	1.00 32.13
ATOM	646	CB	LYS		93	8.673	-7.980	31.148	1.00 10.86
ATOM	647	CG	LYS		93	8.225	-8.963	30.159	1.00 24.26
ATOM	648	CD	LYS		93	9.362	-9.966	29.986	1.00 21.96
ATOM	649	CE	LYS	Α	93	9.093	-10.718	28.658	1.00 23.78
ATOM	650	NZ	LYS	Α	93	10.084	-11.805	28.300	1.00 25.87
-ATOM	651-	N .	CYS-	Α	94	8752	-5.096	32.774	1.00 16.62
ATOM	652	CA	CYS	A	94	9.752	-4.412	33.480	1.00 18.95
ATOM	653	С	CYS	A	94	9.512	-2.936	33.537	1.00 24.83
ATOM	654	0	CYS	Α	94	10.184	-2.017	33.150	1.00 26.80
ATOM	655	CB	CYS	Α	94	11.147	-4.691	32.911	1.00 3.14
ATOM	656	SG	CYS	A	94	11.618	-6.437	32.882	1.00 25.28
ATOM	657	N	PRO		95	8.403	-2.561	34.086	1.00 26.08
ATOM	658	CA	PRO	Α	95	7.891	-1.202	33.878	1.00 26.11
ATOM	659	С	PRO		95	8.960	-0.259	34.299	1.00 27.32
ATOM	660	Ō	PRO		95	8.776	0.966	34.108	1.00 29.08
ATOM	661	СB	PRO		95	6.609	-1.090	34.747	1.00 20.75
ATOM	662	CG	PRO		95	6.587	-2.421	35.322	1.00 19.04
ATOM	663	CD	PRO		95	7.363	-3.461	34.509	1.00 13.04
ATOM	664	N	ASN		96	9.836	-0.776	35.193	
ATOM	665	CA	ASN		96	10.559	0.274	35.966	1.00 31.44 1.00 35.38
	666	CAL	ASN		96			-	
ATOM		-	_			11.891	0.476	35.353	1.00 33.83
ATOM	667	0	ASN		96	12.599	1.359	35.684	1.00 33.31
ATOM	668	CB	ASN		96	10.558	-0.099	37.429	1.00 53.70
ATOM	669	CG	ASN		96	9.238	0.342	38.026	1.00 61.69
MOTA	670		ASN		96	8.758	1.432	37.706	1.00 64.33
ATOM	671	ND2	ASN	A	96	8.676	-0.526	38.861	1.00 67.25

MOTA	672	N	THR A	97	12.287	-0.409	34.507	1.00 30.32
ATOM	673	CA	THR A	97	13.519	-0.367	33.794	1.00 22.83
ATOM	674	С	THR A	97	13.404	0.493	32.534	1.00 22.44
MOTA	675	0	THR A	97	12.446	0.779	31.816	1.00 21.14
ATOM	676	CB	THR A	97	13.835	-1.851	33.705	1.00 25.87
ATOM	677	0G1	THR A	97	14.602	-1.915	32.528	1.00 38.91
ATOM	678	CG2	THR A	97	12.769	-2.901	33.621	1.00 24.22
ATOM	679	N	PRO A	98	14.393	1.415	32.408	1.00 20.59
ATOM	680	CA	PRO A	98	14.513	2.292	31.254	1.00 18.15
ATOM	681	С	PRO A	98	14.882	1.494	29.978	1.00 16.07
ATOM	682	0	PRO A	98	15.622	0.462	29.934	1.00 17.19
ATOM	683	СВ	PRO A	98	15.563	3.339	31.676	1.00 14.55
ATOM	684	CG	PRO A	98	16.270	2.646	32.699	1.00 12.29
ATOM	685	CD	PRO A	98	15.735	1.331	33.046	1.00 12.02
ATOM	686	N	VAL A	99	14.322	2.107	28.940	1.00 12.02
ATOM	687	CA	VAL A	99	14.225	1.544	27.632	1.00 13.81
ATOM	688	С	VAL A	99	14.956	2.407	26.663	1.00 14.02
ATOM	689	Ö	VAL A	99	14.716	3.679	26.712	1.00 10.66
ATOM	690	CB	VAL A	99	12.673	1.343	27.335	
ATOM	691		VAL A	99	12.666	1.272	25.872	
ATOM	692		VAL A	99	12.442	-0.111	27.744	1.00 17.40
ATOM	693	N	VAL A		15.885	1.776	25.861	1.00 5.75
ATOM	694	CA	VAL A		16.525	2.755		1.00 6.45
ATOM	695	C	VAL A		16.389		24.900	1.00 9.61
ATOM	696	0	VAL A			2.159	23.561	1.00 10.79
ATOM	697	CB	VAL A		16.256 17.877	0.973	23.477	1.00 9.11
ATOM	698		VAL A			3.260	25.197	1.00 8.05
ATOM	699		VAL A		17.824	4.252	26.336	1.00 6.05
ATOM	700	N N	ALA A		18.853	2.053	25.591	1.00 6.68
ATOM	701	CA	ALA A		16.277	2.928	22.511	1.00 13.14
ATOM	702	C	ALA A		16.127	2.266	21.183	1.00 15.67
ATOM	703	0	ALA A		17.065	2.747	20.053	1.00 12.08
ATOM	704	СВ	ALA A		17.261	4.042	19.907	1.00 11.16
	705	N			14.685	2.609	20.812	1.00 6.57
MOTA			GLY A		17.218	1.787	19.099	1.00 7.53
ATOM	706	CA	GLY A		17.949	2.415	17.939	1.00 7.10
ATOM	707	С	GLY A		17.477	1.803	16.744	1.00 7.27
ATOM	708	0	GLY A		17.102	0.621	16.878	1.00 10.83
ATOM	709	N	GLY A		17.706	2.407	15.648	1.00 7.80
ATOM	710	CA	GLY A		17.446	1.745	14.356	1.00 5.33
ATOM	711	C	GLY A		18.303	2.211	13.180	1.00 7.56
ATOM	712	0	GLY A		18.785	3.340	13.227	1.00 6.88
ATOM	713	N	TYR A		18.490	1.387	12.139	1.00 7.09
ATOM	714	CA	TYR A		19.392	1.682	11.069	1.00 5.99
ATOM	715	С	TYR A		18.705	1.614	9.705	1.00 9.47
ATOM	716	0	TYR A	_	18.115	0.638	9.441	1.00 6.46
ATOM	717	CB	TYR A	_	20.592	0.797	11.079	1.00 5.40
ATOM	718	CG	TYR A		21.436	1.078	9.876	1.00 8.05
ATOM	719	CD1	TYR A	104	21.708	2.302	9.352	1.00 5.91

ATOM	720	CD2	TYR A	104	21.961	-0.044	9.172	1.00 6.85
ATOM	721	CE1	TYR A	104	22.447	2.513	8.186	1.00 5.61
ATOM	722	CE2	TYR A	104	22.751	0.052	8.072	1.00 7.49
ATOM	723	CZ	TYR A		22.972	1.377	7.608	1.00 11.08
ATOM	724	OH	TYR A		23.795	1.509	6.479	1.00 14.32
ATOM	725	N	SER A		18.939	2.975	8.852	1.00 18.39
ATOM	726	CA	SER A		18.190	2.854	7.601	1.00 9.66
ATOM	727	С	SER A	105	16.763	2.370	7.722	1.00 6.10
ATOM	728	0	SER A	105	16.090	3.304	8.077	1.00 5.63
ATOM	729	CB	SER A	105	19.124	2.159	6.607	1.00 8.55
ATOM	730	OG	SER A	105	18.553	1.685	5.463	1.00 24.30
ATOM	731	N	GLN A	106	16.241	1.405	7.079	1.00 9.93
ATOM	732	CA	GLN A	106	14.759	1.316	7.002	1.00 8.25
ATOM	733	С	GLN A	106	14.453	1.089	8.473	1.00 8.51
ATOM	734	0	GLN A	106	13.470	1.683	8.862	1.00 6.31
ATOM	735	CB	GLN A	106	14.239	0.393	5.940	1.00 7.45
ATOM	736	CG	GLN A	106	13.184	-0.528	6.465	1.00 18.04
MOTA	737	CD	GLN A		12.228	-1.220	5.581	1.00 16.87
MOTA	738	OE1	GLN A	106	11.024	-1.180	5.492	1.00 17.59
MOTA	739	NE2			12.643	-2.032	4.713	1.00 8.32
MOTA	740	N	GLY A		15.269	0.310	9.172	1.00 7.13
ATOM	741	CA	GLY A		15.190	0.159	10.606	1.00 4.61
MOTA	742	С	GLY A		15.048	1.472	11.356	1.00 8.27
ATOM	743	0	GLY A		14.219	1.511	12.290	1.00 6.52
ATOM	744	N	ALA A	108	15.653	2.637	11.033	1.00 6.44
ATOM	745	CA	ALA A		15.266	3.864	11.641	1.00 7.41
ATOM	746	С	ALA A		13.813	4.346	11.471	1.00 11.76
ATOM	747	0	ALA A		13.150	4.914	12.298	1.00 12.64
ATOM	748	CB	ALA A		16.121	5.006	11.170	1.00 13.93
ATOM	749	N	ALA A		13.321	4.312	10.267	1.00 9.78
ATOM	750	CA	ALA A		12.056	4.685	9.861	1.00 10.47
ATOM	751	C	ALA A		11.093	3.858	10.727	1.00 12.32
ATOM	752	0	ALA A		10.016	4.391	11.035	1.00 14.67
ATOM	753	CB	ALA A		12.035	4.173	8.456	1.00 10.24
ATOM	754	N	LEU A		11.259	2.690	11.077	1.00 4.34
ATOM	755	CA	LEU A		10.458	1.760	11.783	1.00 11.71
ATOM	756	С	LEU A		10.305	2.253	13.203	1.00 15.26
ATOM	757	0	LEU A		9.298	2.672	13.685	1.00 18.07
ATOM	758	СВ	LEU A		11.031	0.319	11.634	1.00 7.52
ATOM	759	CG	LEU A		10.247	-0.801	12.258	1.00 8.41
ATOM	760		LEU A		10.685	-2.233	11.862	1.00 7.17
ATOM	761		LEU A		10.278	-0.659	13.783	1.00 5.25
ATOM	762	N	ILE A		11.397	2.373	13.907	1.00 15.77
ATOM	763	CA	ILE A		11.510	2.860	15.246	1.00 12.22
ATOM	764	C	ILE A		11.027	4.255	15.234	1.00 9.39
ATOM	765	0	ILE A		10.404	4.636	16.241	1.00 12.54
ATOM	766	CB	ILE A		12.977	2.814	15.685	1.00 15.55
ATOM	767	CGI	ILE A	111	13.222	1.279	15.805	1.00 14.19

ATOM	768	CG2	ILE	Α	111	13.195	3.465	17.005	1 00	4 6.
ATOM	769	CD1			111	12.410	0.887	17.003	1.00	4.64
ATOM	770	N	ALA	A	112	11.309	5.170	14.341	1.00	
ATOM	771	CA			112	10.792	6.528	14.427	1.00	
ATOM	772	С			112	9.266	6.455	14.308	1.00	12.45
ATOM	773	0			112	8.728	7.131			15.59
ATOM	774	СВ			112	11.334	7.505	15.154 13.486		18.13
ATOM	775	N			113	8.575	5.572		1.00	5.70
ATOM	776	CA			113	7.167	5.512	13.587		12.85
ATOM	777	С			113	6.475	5.093	13.557		15.39
ATOM	778	ō			113	5.498	5.750	14.861		18.21
ATOM	779	СВ			113	6.678	4.562	15.226 12.500		14.59
ATOM	780	N			114	6.937	3.948			17.63
ATOM	781	CA			114	6.483	3.218	15.303	1.00	
ATOM	782	C			114	6.578		16.412	1.00	
ATOM	783	ŏ	ALA	A	114	5.673	4.114	17.643	1.00	
ATOM	784	CB			114	7.474	4.321	18.426	1.00	
ATOM	785	N			115	7.722	2.084	16.565	1.00	4.69
ATOM	786	CA	VAL	A	115	7.722	4.836	17.744		22.46
ATOM	787	C			115	6.670	5.499 6.469	19.064		20.88
ATOM	788	Ο.			115	6.136	6.761	19.007	1.00	22.71
ATOM	789	СВ			115	9.279	6.090	20.057 19.137	1.00	22.05
ATOM	790	CG1	VAL	Α	115	9.396	7.259			19.61
ATOM	791		VAL			10.245	5.016	20.122 19.562	1.00	8.35
ATOM	792	N			116	6.467	7.085	17.828	1.00	13.91 23.59
ATOM	793	CA			116	5.539	8.172	17.736		
ATOM	794	С			116	4.169	7.647	18.120		23.68 23.77
ATOM	795	0			116	3.333	8.523	18.399		27.35
ATOM	796	CB			116	5.522	8.865	16.376		25.21
MOTA	797	OG			116	5.168	8.043	15.277		28.05
ATOM	798	N	GLU			3.859	6.397	18.004		18.83
ATOM	799	CA	GLU			2.491	6.020	18.238		22.21
ATOM	800	С	GLU			2.461	5.474	19.653		30.46
ATOM	801	0	GLU	A	117	1.487	4.773	19.863	1.00	35.72
MOTA	802	CB	GLU			1.977	4.902	17.343		21.63
ATOM	803	CG	GLU	A	117	2.167	5.219	15.897		26.41
MOTA	804	CD	GLU			1.560	4.424	14.814		34.01
ATOM	805	OE1	GLU	A	117	0.912	3.440	15.046	1.00	32.59
ATOM	806	OE2	GLU	A	117	1.750	4.833	13.659	1 00	44.62
ATOM	807	N	LEU			3.438	5.570	20.512		34.45
ATOM	808	CA	LEU	Α	118	3.326	5.006	21.812		33.64
ATOM	809	С	LEU	A	118	2.681	6.110	22.633		41.75
ATOM	810	0	LEU	A	118	2.594	7.267	22.370		39.90
ATOM	811	СВ	LEU	A	118	4.600	4.668	22.392		29.44
ATOM	812	CG	LEU	A	118	5.628	3.891	21.645		26.36
ATOM	813		LEU	A	118	6.921	3.840	22.379	1.00	27.53
ATOM	814	CD2	LEU	A	118	5.110	2.520	21.536		20.69
ATOM	815	N	SER			2.076	5.794	23.726		48.86
								/20	1.00	40.00

ATOM	816	CA	SER A	119	0.910	5.647	24.476	1.00 52.44
ATOM	817	С	SER A	119	1.212	6.063	25.866	1.00 52.57
ATOM	818	0	SER A	119	1.485	5.258	26.735	1.00 55.54
ATOM	819	CB	SER A	119	0.550	4.132	24.488	1.00 70.55
ATOM	820	OG	SER A	119	1.393	3.091	23.908	1.00 66.80
ATOM	821	N	GLY A	120	1.532	7.307	26.024	1.00 52.95
ATOM	822	CA	GLY A	120	1.910	7.761	27.382	1.00 53.35
ATOM	823	С	GLY A		2.944	7.109	28.291	1.00 49.09
ATOM	824	0	GLY A		4.086	7.617	28.358	1.00 49.66
ATOM	825	N	ALA A		2.526	6.129	29.102	1.00 42.97
MOTA	826	CA	ALA A		3.477	5.574	30.022	1.00 40.72
ATOM	827	С	ALA A	121	4.587	4.772	29.326	1.00 44.20
ATOM		0	ALA A		5.749	4.803	29.711	1.00 45.42
ATOM		CB	ALA A		2.965	4.542	30.903	1.00 36.34
ATOM		N	VAL A		4.122	4.035	28.312	1.00 41.15
ATOM		CA	VAL A		5.090	3.269	27.548	1.00 33.41
ATOM		С	VAL A		5.870	4.168	26.652	1.00 28.48
ATOM		ō	VAL A		7.084	4.019	26.872	1.00 27.69
ATOM		СВ	VAL A		4.424	2.056	26.952	1.00 27.03
ATOM			VAL A		2.924	1.997	27.098	1.00 28.03
ATOM			VAL A		4.891	1.836	25.551	1.00 23.22
ATOM		N	LYS A		5.424	5.310	26.177	1.00 23.16
ATOM		CA	LYS A		6.354	6.314	25.661	1.00 23.11
ATOM		С	LYS A		7.403	6.783	26.661	1.00 25.28
ATOM		0	LYS A		8.524	7.224	26.449	1.00 29.01
ATOM	841	CB	LYS A		5.561	7.502	25.100	1.00 23.54
ATOM		CG	LYS A		6.171	8.573	24.277	1.00 26.71
ATOM	843	CD	LYS A		5.400	9.775	23.888	1.00 43.07
ATOM	844	CE	LÝS A		4.953	9.783	22.461	1.00 59.59
ATOM	845	NZ	LYS A		3.518	9.637	22.099	1.00 67.50
ATOM	846	N	GLU A		6.977	6.991	27.918	1.00 27.95
ATOM	847	CA	GLU A	124	7.845	7.700	28.863	1.00 27.29
ATOM	848	С	GLU A		8.910	6.706	29.243	1.00 25.21
ATOM	849	0	GLU A		9.993	7.165	29.769	1.00 21.21
MOTA	850	CB	GLU A	124	6.986	8.351	29.927	1.00 40.13
ATOM		CG	GLU A		7.588	8.609	31.295	1.00 57.40
ATOM	852	CD	GLU A	124	8.530	9.814	31.247	1.00 66.99
ATOM	853	OE1	GLU A	124	9.619	9.751	31.902	1.00 70.44
ATOM	854	OE2			7.949	10.652	30.502	1.00 73.84
ATOM	855	N	GLN A	125	8.656	5.393	29.058	1.00 19.93
ATOM	856	CA	GLN A		9.761	4.509	29.546	1.00 17.98
ATOM	857	С	GLN A	125	10.865	4.556	28.521	1.00 24.28
ATOM	858	0	GLN A	125	11.964	4.107	28.815	1.00 21.47
ATOM	859	CB	GLN A	125	9.225	3.178	29.844	1.00 9.13
ATOM	860	CG	GLN A	125	9.901	2.001	30.299	1.00 9.05
ATOM	861	CD	GLN A		9.211	0.719	30.129	1.00 19.33
ATOM	862	OE1	GLN A	125	8.190	0.703	29.466	1.00 28.52
ATOM	863		GLN A		9.662	-0.396	30.684	1.00 13.34

ATOM	864	N	VAL			10.593	5.188	27.319	1 00	25.30
ATOM	865	CA	VAL	A	126	11.738	5.124	26.361		22.55
ATOM	866	С	VAL			12.546	6.334	26.614		17.55
ATOM	867	0	VAL	A	126	12.109	7.408	26.329		12.79
ATOM	868	CB	VAL			11.227	4.560	25.022		23.76
ATOM	869	CG1	VAL	A	126	9.706	4.686	24.946	1.00	23.77
ATOM	870	CG2	VAL	Α	126	11.795	5.081	23.743		
ATOM	871	N	LYS			13.726	6.233	27.264	1.00	23.81
ATOM	872	CA	LYS			14.462	7.494	27.639	1.00	16.41
ATOM	873	С	LYS			15.239	8.063	26.488		18.18
ATOM	874	0	LYS			15.812	9.103	26.680		18.49
ATOM	875	CB	LYS	A	127	15.401	7.148	28.792		18.99
ATOM	876	CG	LYS	A	127	14.770	6.110	_		20.81
ATOM	877	CD	LYS			13.435	6.726	29.713		21.99
ATOM	878	CE	LYS			12.779	6.612	30.064		33.86
ATOM	879	NZ	LYS	A	127	12.279	7.863	31.399	1.00	32.17
ATOM	880	N	GLY	A	128	15.522	7.281	31.993 25.416		45.34
ATOM	881	CA	GLY			16.280	7.948			20.56
ATOM	882	С	GLY			16.358	7.104	24.306		20.72
ATOM	883	0	GLY			16.168	5.901	23.063	1.00	17.71
ATOM	884	N	VAL			16.451	7.725	23.226 21.892		16.66
ATOM	885	CA	VAL			16.497	6.872	20.691	1.00	16.16
ATOM	886	С	VAL			17.519	7.371	19.719		13.82
ATOM	887	0	VAL			17.602	8.553	19.556	1.00	8.35
ATOM	888	CB	VAL	A	129	15.192	6.426	20.054		3.85 11.02
ATOM	889	CG1	VAL	A	129	14.007	7.041	20.726	1.00	
ATOM	890	CG2	VAL	A	129	15.051	6.729	18.571		6.50 10.03
ATOM	891	N	ALA			18.455	6.398	19.363	1.00	8.05
ATOM	892	CA	ALA			19.430	6.845	18.344	1.00	7.55
ATOM	893	С	ALA	A	130	19.078	6.293	16.958		11.17
ATOM	894	0	ALA			18.755	5.145	16.849		15.74
ATOM	895	CB	ALA	Ą	130	20.781	6.391	18.603	1.00	5.89
ATOM	896	N	LEU	A	131	18.911	6.953	15.892	1.00	7.36
ATOM	897	CA	LEU	A	131	18.635	6.625	14.553	1.00	7.70
ATOM	898	С	LEU			19.876	6.908	13.661		12.02
ATOM	899	0	LEU			20.436	8.033	13.604	1.00	6.80
ATOM	900	CB	LEU			17.604	7.713	14.102	1.00	8.40
ATOM	901	CG	LEU			16.160	7.830	14.575	1.00	6.67
ATOM	902	CD1		A	131	15.391	8.957	13.981	1.00	4.49
ATOM	903	CD2	LEU			15.481	6.488	14.324	1.00	5.12
ATOM	904	N	PHE	A	132	20.271	6.009	12.802		11.56
ATOM	905	CA	PHE			21.422	6.183	11.908	1.00	
ATOM	906		PHE			20.965	6.013	10.478	1.00	8.46
ATOM	907		PHE			20.175	5.101	10.097	1.00	
ATOM	908		PHE			22.217	4.931	12.282	1.00	
ATOM	909	CG	PHE	A	132	22.693	4.830	13.714		16.38
ATOM	910		PHE			21.951	4.029	14.542		13.36
ATOM	911	CD2	PHE	A	132	23.860	5.489	14.213		15.12

ATOM	912		PHE	A	132	22.342	3.911	15.889	1.00	14.91
ATOM	913	CE2	PHE	Α	132	24.176	5.323	15.513		18.02
ATOM	914	CZ	PHE	A	132	23.426	4.530	16.403		15.09
ATOM	915	N			133	21.431	6.876	9.580	1.00	7.35
ATOM	916	CA			133	21.026	6.893	8.148	1.00	5.86
ATOM	917	С			133	19.503	6.919			12.25
ATOM	918	0	GLY	A	133	18.890	5.926	7.593	1.00	9.03
ATOM	919	N	TYR	A	134	18.926	8.070	8.532	1.00	9.85
ATOM	920	CA	TYR	A	134	17.455	8.022	8.838	1.00	7.40
ATOM	921	С	TYR	Α	134	16.647	8.365	7.584		10.61
ATOM	922	0	TYR	A	134	16.785	9.513	7.131	1.00	5.85
ATOM	923	CB			134	17.161	9.128	9.836	1.00	7.27
ATOM	924	CG			134	15.842	9.393	10.391	1.00	7.89
ATOM	925	CD1	TYR	A	134	14.889	8.437	10.312	1.00	6.65
ATOM	926	CD2		A	134	15.661	10.651	10.948		11.44
ATOM	927	CE1	TYR			13.657	8.690	10.821	1.00	
ATOM	928	CE2	TYR			14.408	10.928	11.467		9.05 12.89
ATOM	929	CZ			134	13.428	9.923	11.423		
ATOM	930	ОН			134	12.146	10.110	11.423		14.22
ATOM	931	N			135	15.811	7.398	7.139		12.41
ATOM	932	CA			135	15.229	7.581	5.789	1.00	11.51
ATOM	933	С			135	14.082	8.530	5.825	1.00	7.71
ATOM	934	0			135	13.845	8.878	4.727		10.36
ATOM	935	CB	THR			14.772	6.394	4.727		11.26
ATOM	936	OG1	THR			13.821	5.399	5.398		12.02 22.81
ATOM	937	CG2				15.828	5.332	4.712		
ATOM	938	N	GLN			13.632	9.105	6.928	1.00	14.88
ATOM	939	CA	GLN			12.596	10.134	6.968		15.28
ATOM	940	С	GLN	Α	136	13.102	11.418	7.646		16.48
ATOM	941	0	GLN			12.292	12.231	8.035		17.46
ATOM	942	СВ	GLN			11.336	9.671	7.701		12.82
ATOM	943	CG	GLN			11.178	8.191	7.761	1.00	5.71
ATOM	944	CD	GLN			10.504	8.264			13.60
ATOM	945	OE1	GLN			9.587	9.102	5.932		14.65
ATOM	946	NE2	GLN			10.852	7.529	5.986		23.99
ATOM	947	N	ASN			14.421	11.532	4.914		14.68
ATOM	948	CA	ASN			14.953	12.752	7.566		18.52
ATOM	949	C	ASN			14.301	13.929	8.141		18.16
ATOM	950	Ō	ASN			13.895	14.802	7.458		19.79
ATOM	951	СВ	ASN			16.481	12.573	8.157		12.28
ATOM	952	CG	ASN			17.247	13.740	8.239		14.17
ATOM	953		ASN			17.821		8.812		19.75
ATOM	954		ASN			17.321	14.341	7.934		14.52
ATOM	955	N	LEU			14.180	14.130	10.042		17.43
ATOM	956	CA	LEU			13.640	14.062	6.141		27.31
ATOM	957	C	LEU			12.190	15.270	5.553		25.53
ATOM	958	0	LEU			12.190	15.332	5.971		22.45
ATOM	959	CB	LEU				16.281	6.549		25.13
	,,,			41	130	13.632	15.269	4.056	1.00	41.28

ATOM	960	CG	LEU Z			16.582	3.303	1.00 31.76
ATOM	961	CD1			14.641	17.503	4.012	1.00 51.09
ATOM	962	CD2	LEU Z			16.573	1.958	1.00 46.20
ATOM	963	N	GLN Z	139	11.378	14.403	5.569	1.00 20.48
ATOM	964	CA.	GLN 2	A 139	10.034	14.390	6.037	1.00 19.98
ATOM	965	С	GLN Z			14.749	7.471	1.00 22.85
ATOM	966	0	GLN I			15.282	7.528	1.00 26.66
ATOM	967	CB	GLN Z			12.969	5.899	1.00 18.37
ATOM	968	CG	GLN 2			12.643	4.450	1.00 22.02
MOTA	969	CD	GLN I			11.983	4.110	1.00 22.69
ATOM	970	OE1	GLN I			10.980	3.477	1.00 22.69
ATOM	971	NE2	GLN 2			12.405	4.410	1.00 33.82
ATOM	972	N	ASN Z			14.072	8.427	1.00 31.70
ATOM	973	CA	ASN 2			14.183	9.848	1.00 28.14
ATOM	974	С	ASN Z			15.429	10.293	
ATOM	975	Õ	ASN I			15.654	11.454	1.00 16.99
MOTA	976	СВ	ASN A					1.00 18.05
MOTA	977	CG	ASN I			12.910	10.541	1.00 17.20
ATOM	978	OD1				11.998	10.210	1.00 16.28
ATOM	979	ND2				12.565	9.563	1.00 23.57
ATOM	980	N	ARG I			10.756	10.630	1.00 22.65
ATOM	981	CA	ARG I			16.162	9.397	1.00 19.20
ATOM	982	C	ARG I			17.350	9.790	1.00 26.25
ATOM	983	Ö	ARG Z			17.090 17.928	10.818	1.00 25.06
ATOM	984	СВ	ARG A			18.299	11.649	1.00 27.60
ATOM	985	CG ·	ARG I			18.233	10.271	1.00 37.72
ATOM	986	N	GLY A				9.372	1.00 49.61
ATOM	987	CA	GLY A			16.165 15.778	10.920	1.00 19.42
ATOM	988	C	GLY I			15.066	11.902	1.00 14.21
ATOM	989	Ö	GLY I			14.759	13.158	1.00 19.42
ATOM	990	N	GLY A				13.971 13.569	1.00 23.74
ATOM	991	CA	GLY A			14.851 14.075	14.757	1.00 14.09
ATOM	992	c	GLY A			12.972		1.00 11.80
ATOM	993	ō	GLY A			12.787	14.555	1.00 16.69
ATOM	994	N	ILE 2			12.787	13.481	1.00 19.57
ATOM	995	CA	ILE A			11.589	15.590	1.00 19.71
MOTA	996	C	ILE A				15.667	1.00 20.13
ATOM	997	ŏ	ILE A			12.315	16.296	1.00 27.00
ATOM	998	CB	ILE A		10.973	13.026	17.268	1.00 26.75
ATOM	999	CG1	ILE 2			10.583	16.692	1.00 16.84
ATOM	1000	CG2	ILE 2			9.956	16.348	1.00 5.60
ATOM	1001	CD1	ILE I			9.636	16.775	1.00 14.01
ATOM	1002	N	PRO I			9.156	17.562	1.00 2.75
ATOM	1003	CA	PRO I			12.380 12.993	15.499	1.00 32.77
ATOM	1004	C	PRO I				15.779	1.00 29.89
ATOM	1005	0	PRO I			12.588	17.180	1.00 27.78
ATOM	1005	СВ	PRO I			11.446	17.537	1.00 26.07
ATOM	1007	CG	PRO I			12.384	14.784	1.00 26.51
	1007	CG	ERO I	7 T43	6.887	12.059	13.668	1.00 25.85

ATOM	1008	CD	PRO A	145	8.174	11.563	14.234	1.00	31.33
MOTA	1009	N	ASN A	146	5.796	13.462	17.878		27.07
ATOM	1010	CA	ASN A	146	5.454	13.274	19.230		28.59
ATOM	1011	С	ASN A	146	6.526	12.605	20.045		29.25
ATOM	1012	0	ASN A	146	6.087	11.995	20.996		35.51
ATOM	1013	CB	ASN A		4.285	12.364	19.230		41.13
ATOM	1014	CG	ASN A		3.300	12.568	18.120		48.43
ATÓM	1015	OD1			3.134	13.721	17.788		49.24
ATOM	1016	ND2	ASN A		2.763	11.437	17.695		47.79
ATOM	1017	N	TYR A		7.791	12.799	19.885		23.88
ATOM	1018	CA	TYR A		8.689	12.339	20.969		21.90
ATOM	1019	C	TYR A		9.583	13.495			22.57
ATOM	1020	ŏ	TYR A		9.777	14.399	21.285 20.494		
ATOM	1021	СB	TYR A		9.309				26.53
ATOM	1022	CG	TYR A		10.285	11.098	20.498		21.16
ATOM	1023	CD1	TYR A			10.471	21.349		20.45
ATOM	1023	CD2	TYR A		9.882	9.720	22.384		24.28
ATOM	1025	CE1	TYR A		11.608	10.564	21.189		17.96
ATOM	1025	CE2	TYR A		10.681	9.029	23.273		24.55
ATOM	1027	CEZ	TYR A		12.509	9.948	21.983		20.73
ATOM	1027	OH	TYR A		12.022	9.184	23.030		24.61
ATOM	1029	N			12.891	8.536	23.887		24.80
ATOM	1023	CA	PRO A		9.893	13.858	22.507		22.86
ATOM	1030	CA	PRO A		10.817	14.916	22.769		21.77
ATOM	1031	o			12.127	14.882	21.957		22.49
ATOM	1032		PRO A		13.007	14.004	22.117		22.31
ATOM	1033	CB CG	PRO A		11.185	14.694	24.251		23.23
ATOM	1034		PRO A		10.324	13.576	24.719		23.39
		CD	PRO A		9.677	12.889	23.590		25.33
ATOM	1036	N	ARG A		12.432	15.980	21.250		25.45
ATOM	1037	CA	ARG A		13.735	16.138	20.567		22.54
ATOM	1038	С	ARG A		14.910	16.018	21.499		21.28
ATOM	1039	0	ARG A		15.860	15.477	21.015		16.61
ATOM	1040	CB	ARG A		13.829	17.346	19.727		31.02
ATOM	1041	CG	ARG A		12.837	17.750	18.719		58.26
ATOM	1042	CD	ARG A		13.452	18.605	17.658		80.58
MOTA	1043	NE	ARG A		13.769	17.798	16.491		92.05
ATOM	1044	CZ	ARG A		13.315	18.154	15.320		91.85
ATOM	1045		ARG A		12.586	19.213	15.165	1.00	86.98
ATOM	1046		ARG A		13.544	17.488	14.242	1.00	91.61
ATOM	1047	N	GLU A		14.813	16.282	22.825		28.09
ATOM	1048	CA	GLU A		15.950	16.171	23.735	1.00	25.55
ATOM	1049	С	GLU A		16.272	14.736	24.020	1.00	21.12
ATOM	1050	0	GLU A		17.372	14.443	24.371	1.00	24.39
ATOM	1051	CB	GLU A		15.753	17.040	24.917	1.00	38.73
ATOM	1052	CG	GLU A		. 14.328	17.370	25.359		67.27
MOTA	1053	CD	GLU A		14.252	17.185	26.899		85.05
ATOM	1054		GLU A		15.005	17.890	27.657		90.70
ATOM	1055	OE2	GLU A	150	13.454	16.321	27.373		91.68

ATOM	1056	N	ARG A	151	15.396	13.807	23.727	1.00 19.70
ATOM	1057	CA	ARG A	151	15.752	12.424	23.844	1.00 19.52
ATOM	1058	С	ARG A	151	16.163	11.779	22.531	1.00 19.28
ATOM	1059	0	ARG A	151	16.373	10.586	22.480	1.00 14.55
ATOM	1060	CB	ARG A	151	14.548	11.796	24.412	1.00 23.06
ATOM	1061	CG	ARG A		13.853	12.432	25.516	1.00 22.24
ATOM	1062	CD	ARG A		13.200	11.451	26.393	1.00 33.40
ATOM	1063	NE	ARG A	•	12.609	11.893	27.633	1.00 46.53
ATOM	1064	CZ	ARG A		11.796	11.028	28.275	1.00 52.87
ATOM	1065		ARG A		11.428	9.823	27.930	1.00 51.02
ATOM	1066	NH2	ARG A	151	11.203	11.278	29.416	1.00 59.98
ATOM	1067	N	THR A		16.360	12.526	21.505	1.00 14.12
ATOM	1068	CA	THR A		16.629	11.925	20.253	1.00 14.12
ATOM	1069	C	THR A		17.995	12.249	19.745	
ATOM	1070	0	THR A		18.282			1.00 17.30
ATOM	1071	СВ	THR A			13.373	19.965	1.00 21.34
ATOM	1072	OG1	THR A		15.680	12.408	19.158	1.00 13.91
ATOM	1072	CG2			14.423	12.256	19.858	1.00 23.92
ATOM	1073	N N	THR A LYS A		15.737	11.934	17.759	1.00 6.77
ATOM	1075	CA			18.704	11.336	19.121	1.00 15.49
ATOM	1075	CA	LYS A		19.930	11.725	18.450	1.00 17.73
ATOM	1077	0	LYS A		19.893	11.035	17.073	1.00 18.41
	1078				19.866	9.800	17.121	1.00 16.04
ATOM		CB	LYS A		21.112	11.260	19.338	1.00 14.55
ATOM	1079	CG	LYS A		22.523	11.508	18.933	1.00 11.95
ATOM	1080	CD	LYS A		22.883	12.882	19.403	1.00 40.35
ATOM	1081	CE	LYS A		24.358	13.093	19.079	1.00 62.12
ATOM	1082	NZ	LYS A		24.930	14.235	19.863	1.00 73.03
ATOM	1083	N	VAL A		19.910	11.962	16.136	1.00 15.86
MOTA	1084	CA	VAL A		20.031	11.508	14.730	1.00 15.79
ATOM	1085	С	VAL A		21.406	11.481	14.040	1.00 13.11
ATOM	1086	0	VAL A		21.958	12.460	13.675	1.00 13.51
ATOM	1087	CB	VAL A		19.095	12.257	13.674	1.00 5.90
ATOM	1088		VAL A		19.276	11.765	12.247	1.00 8.45
ATOM	1089		VAL A		17.672	12.091	14.117	1.00 7.14
ATOM	1090	N	PHE A		22.039	10.448	13.605	1.00 13.75
ATOM	1091	CA	PHE A		23.263	10.473	12.843	1.00 10.67
ATOM	1092	С	PHE A		22.906	10.406	11.402	1.00 11.64
ATOM	1093	0	PHE A		22.505	9.367	10.893	1.00 15.09
ATOM	1094	CB	PHE A		23.955	9.120	13.304	1.00 5.38
ATOM	1095	CG	PHE A		24.396	9.266	14.739	1.00 16.52
ATOM	1096		PHE A		23.678	8.642	15.696	1.00 23.70
ATOM	1097	CD2	PHE A	155	25.503	9.950	15.107	1.00 11.27
ATOM	1098		PHE A		24.037	8.702	17.011	1.00 23.25
ATOM	1099		PHE .A		25.888	9.994	16.372	1.00 7.37
ATOM	1100	CZ	PHE A	155	25.139	9.384	17.357	1.00 16.13
ATOM	1101	N	CYS A		23.205	11.255	10.511	1.00 12.38
ATOM	1102	CA	CYS A	156	22.847	11.443	9.114	1.00 11.64
ATOM	1103	С	CYS A	156	24.057	12.027	8.461	1.00 10.08

ATOM	1104	0	CYS .	A	156	24.385	13.174	8.378	1.00	13.73
ATOM	1105	CB	CYS .	A	156	21.575	12.391	8.917	1.00	6.30
MOTA	1106	SG	CYS .	A	156	20.137	11.470	8.287	1.00	10.60
ATOM	1107	N	ASN .	A	157	24.814	11.147	7.918		16.95
ATOM	1108	CA	ASN .	A	157	26.229	11.665	7.576		19.16
ATOM	1109	С	ASN .	A		26.197	12.367	6.310		17.70
MOTA	1110	0	ASN .			25.368	12.330	5.469		20.91
MOTA	1111	СВ	ASN .			27.115	10.714	8.300		30.34
ATOM	1112	CG	ASN .			27.733	9.498	7.932		34.95
ATOM	1113	OD1	ASN .			28.011	8.573	8.606		44.28
ATOM	1114	ND2	ASN .	A	157	27.965	9.541	6.660		54.18
ATOM	1115	N	VAL			26.849	13.501	6.313		25.65
ATOM	1116	CA	VAL .			26.825	14.483	5.192		28.21
ATOM	1117	С	VAL .			26.768	13.893	3.758		24.85
ATOM	1118	0	VAL .			25.732	14.266	3.111		30.96
ATOM	1119	СВ	VAL			27.954	15.512	5.217		27.87
ATOM	1120	CG1	VAL			28.751	14.595	4.238	1.00	40.51
ATOM	1121		VAL			27.791	16.704	4.399	1 00	34.39
ATOM	1122	N	GLY			27.483	12.956	3.016	1.00	5.94
ATOM	1123	CA	GLY			26.713	12.774	1.732	1.00	6.20
ATOM	1124	С	GLY			25.734	11.797	1.487	1.00	4.00
ATOM	1125	0	GLY			25.732	10.704	0.848	1.00	4.06
ATOM	1126	N	ASP .			25.052	11.441	2.643	1.00	8.53
ATOM	1127	CA	ASP	Α	160	24.106	10.302	2.828		11.97
ATOM	1128	С	ASP .			22.755	10.698	2.177		14.44
ATOM	1129	0	ASP			21.928	11.398	2.692		10.21
ATOM	1130	CB	ASP .			24.037	9.829	4.277		12.43
ATOM	1131	CG	ASP	Α	160	23.126	8.629	4.261		20.99
ATOM	1132		ASP			22.525	8.408	3.179		33.03
ATOM	1133	OD2	ASP .	A	160	22.956	7.840	5.216		10.13
ATOM	1134	N	ALA .	A	161	22.455	10.402	0.961		12.33
ATOM	1135	CA	ALA.	A	161	21.318	10.743	0.269		11.01
ATOM	1136	С	ALA .	A	161	19.961	10.317	0.848		15.22
ATOM	1137	0	ALA .	A	161	18.969	11.034	0.594	1.00	9.50
ATOM	1138	CB	ALA .	A	161	21.365	10.334	-1.172		13.68
ATOM	1139	N	VAL .	A	162	19.915	9.468	1.840		14.54
ATOM	1140	CA	VAL .	A	162	18.653	9.014	2.287	1.00	9.86
MOTA	1141	С	VAL .	A	162	18.235	10.063	3.258		13.50
ATOM	1142	0	VAL .	A	162	17.094	10.458	3.377		20.47
ATOM	1143	CB	VAL .			18.596	7.778	3.117	1.00	7.34
ATOM	1144	CG1	VAL	A	162	18.931	6.592	2.259	1.00	6.50
ATOM	1145	CG2	VAL .	A	162	19.514	7.858	4.210		18.46
ATOM	1146	N	CYS .	Α	163	19.198	10.733	3.719		13.44
ATOM	1147	CA	CYS			18.864	11.811	4.720		11.26
ATOM	1148	С	CYS			18.256	12.963	4.042		15.57
MOTA	1149	0	CYS	Α	163	18.219	13.857	4.880		14.09
ATOM	1150	CB	CYS	A	163	20.144	12.145	5.570		18.70
MOTA	1151	SG	CYS	A	163	20.748	10.705	6.581		13.38

MOTA	1152	N	THR	A	164	18.100	13.014	2.696	1.00	21.82
ATOM	1153	CA	THR	A	164	17.603	14.283	2.171		23.08
ATOM	1154	С	THR	A	164	16.597	14.022	1.098		23.39
ATOM	1155	0	THR	A	164	16.517	14.727	0.137		33.37
ATOM	1156	CB	THR	A	164	18.463	15.341	1.454		23.25
ATOM	1157	OG1	THR	A	164	19.486	14.707	0.674		23.21
ATOM	1158	CG2	THR	Α	164	18.958	16.261	2.491		37.71
ATOM	1159	N	GLY	A	165	15.802	13.085	1.309		24.23
ATOM	1160	CA	GLY	A	165	14.606	12.783	0.579		26.69
ATOM	1161	С	GLY	A	165	14.699	11.814	-0.515		28.56
ATOM	1162	0	GLY	A	165	13.680	11.775	-1.124		39.76
ATOM	1163	N	THR	A	166	15.661	11.044	-0.736		25.80
ATOM	1164	CA	THR			16.006	10.220	-1.774		25.53
ATOM	1165	С	THR	Α	166	16.195	8.866	-1.175		25.35
ATOM	1166	0	THR	Α	166	16.913	8.760	-0.206		30.91
ATOM	1167	CB	THR	Α	166	17.406	10.657	-2.230		31.57
ATOM .	1168	OG1	THR	Α	166	17.105	11.788	-2.982		24.13
ATOM	1169	CG2	THR			18.061	9.559	-2.983		34.67
ATOM	1170	N	LEU			15.734	7.833	-1.817		19.63
ATOM	1171	CA	LEU			16,219	6.552	-1.465		16.11
ATOM	1172	С	LEU	A	167	17.395	6.044	-2.300		19.87
ATOM	1173	0	LEU	A	167	17.265	4.869	-2.612		21.38
ATOM	1174	CB	LEU	A	167	15.086	5.624	-1.555		23.45
ATOM	1175	CG	LEU	A	167	14.123	5.773	-0.401		33.91
ATOM	1176	CD1	LEU	A	167	12.969	4.908	-0.793	1.00	42.10
ATOM	1177	CD2	LEU	A	167	14.776	5.385	0.903		25.86
ATOM	1178	N	ILE			18.534	6.726	-2.507		21.67
MOTA	1179	CA	ILE	A	168	19.608	6.051	-3.170		23.38
ATOM	1180	С	ILE	Α	168	20.675	5.585	-2.189		20.47
ATOM	1181	0	ILE	Α	168	21.139	6.541	-1.581		18.08
ATOM	1182	CB	ILE	A	168	20.254	6.835	-4.297		23.50
ATOM	1183	CG1	ILE	Α	168	21.232	7.874	-3.800		13.71
ATOM	1184	CG2	ILE	Α	168	19.445	7.627	-5.276		18.16
ATOM	1185	CD1	ILE			20.908	8.938	-4.804		26.95
ATOM	1186	N	ILE	A	169	21.396	4.478	-2.394		18.32
ATOM	1187	CA	ILE	Α	169	22.554	4.448	-1.536		13.25
ATOM	1188	С	ILE			23.924	4.662	-1.967		11.95
ATOM	1189	0	ILE	Α	169	24.615	3.942	-2.539		20.35
ATOM	1190	CB	ILE	A	169	22.503	3.351	-0.499		21.07
ATOM	1191	CG1	ILE	A	169	23.398	2.181	-0.655		11.06
ATOM	1192	CG2	ILE	A	169	21.122	2.801	-0.533	1.00	7.02
ATOM	1193	CD1	ILE	Α	169	22.581	1.266	-1.587		32.83
ATOM	1194	N	THR			24.570	5.586	-1.296		17.16
ATOM	1195	CA	THR			25.883	6.217	-1.397		13.01
ATOM	1196	С	THR			26.722	5.719	-0.240		10.14
ATOM	1197	0	THR			26.334	5.036	0.758	1.00	9.98
ATOM	1198	CB	THR	Α	170	25.623	7.713	-1.344		15.02
ATOM	1199	OG1	THR	Α	170	26.466	7.947	-0.255		23.39

MOTA	1200	CG2	THR			24.389	7.914	-0.452	1.00	41.10
ATOM	1201	Ŋ	PRO			28.000	5.738	-0.469	1.00	10.12
ATOM	1202	CA	PRO			29.012	5.066	0.339	1.00	11.88
ATOM	1203	С	PRO	A	171	28.897	5.492	1.765	1.00	9.74
ATOM	1204	0	PRO	Α	171	28.904	4.682	2.646	1.00	9.54
MOTA	1205	CB	PRO	A	171	30.414	5.207	-0.286	1.00	7.15
ATOM	1206	CG	PRO	A	171	30.017	5.603	-1.654	1.00	7.18
ATOM	1207	CD	PRO			28.667	6.233	-1.601	1.00	6.90
ATOM	1208	N	ALA			28.725	6.718	1.980	1.00	6.71
ATOM	1209	CA	ALA			28.247	7.315	3.169	1.00	8.62
ATOM	1210	С	ALA			27.075	6.631	3.892		10.99
ATOM	1211	o	ALA			27.037	6.755	5.165		
ATOM	1212	СВ	ALA			27.904	8.812	3.040		16.49
ATOM	1213	N	HIS			26.287	5.815		1.00	2.86
ATOM	1214	CA	HIS			25.133		3.278	1.00	6.36
ATOM	1215	C	HIS			25.685	5.468	4.081	1.00	5.29
ATOM	1216	0	HIS				4.314	4.888		10.58
ATOM	1217	CB .	HIS			25.082	3.598	5.668	1.00	9.36
ATOM	1217	CG	HIS			24.081	4.883	3.216	1.00	8.41
						22.815	4.403	3.791	1.00	7.30
ATOM	1219		HIS			22.066	5.327	4.565	1.00	8.48
ATOM	1220		HIS			22.148	3.264	3.670	1.00	7.83
ATOM	1221		HIS			20.932	4.657	4.861		17.36
ATOM	1222		HIS			20.945	3.423	4.379	1.00	5.29
ATOM	1223	N	LEU			26.823	3.947	4.326	1.00	8.03
ATOM	1224	CA	LEU			27.344	2.623	4.682	1.00	8.06
ATOM	1225	С	LEU			28.171	2.787	5.930	1.00	13.06
ATOM	1226	0	LEU			28.609	1.648	6.151	1.00	19.88
ATOM	1227	СВ	LEU			28.078	2.118	3.488	1.00	2.76
ATOM	1228	CG	LEU			27.560	0.902	2.847	1.00	13.35
ATOM	1229		LEU			26.024	1.017	2.796	1.00	18.01
ATOM	1230	CD2	LEU	A	174	27.913	0.740	1.421	1.00	21.70
ATOM	1231	N	SER	Α	175	28.290	3.989	6.447	1.00	12.43
ATOM	1232	CA	SER	A	175	29.230	4.052	7.553		18.01
ATOM	1233	С	SER	A	175	28.872	4.811	8.847	1.00	19.89
ATOM	1234	0	SER	A	175	28.968	6.047	9.120		14.61
ATOM	1235	CB	SER	A	175	30.516	4.606	6.847		20.11
ATOM	1236	OG	SER	A	175	30.834	5.907	7.293		27.73
MOTA	1237	N	TYR			28.479	3.978	9.815		17.89
ATOM	1238	CA	TYR			28.092	4.530	11.133		12.54
ATOM	1239	С	TYR	Α	176	28.530	3.671	12.272		11.16
ATOM	1240	0	TYR			27.949	3.770	13.257	1.00	7.63
ATOM	1241	СВ	TYR			26.511	4.283	11.053	1.00	9.13
ATOM	1242	CG	TYR			25.831	5.525	10.029	1.00	5.03
ATOM	1243	CD1	TYR			25.874	6.923	10.025	1.00	2.75
ATOM	1244	CD2				25.152	5.022	8.980		
ATOM	1245	CE1	TYR			25.287	7.754		1.00	2.18
ATOM	1245	CE2	TYR					9.633	1.00	4.25
		CZ				24.649	5.981	8.085	1.00	6.77
MOTA	1247	CZ	TYR	A	T \ Q	24.658	7.329	8.399	1.00	6.22

ATOM	1248	OH	TYR A	176	24.074	8.375	7.635	1.00 5.76
ATOM	1249	N	THR A	. 177	29.430	2.685	12.167	1.00 10.72
ATOM	1250	CA	THR A	177	29.797	1.854	13.284	1.00 13.31
ATOM	1251	С	THR A		30.516	2.659	14.320	1.00 12.46
ATOM	1252	0	THR A	177	30.311	2.436	15.475	1.00 13.12
ATOM	1253	CB	THR A	177	30.658	0.683	12.798	1.00 3.49
ATOM	1254	OG1	THR A	. 177	31.361	1.247	11.870	1.00 32.08
MOTA	1255	CG2	THR A	177	29.675	-0.149	12.083	1.00 6.42
ATOM	1256	N	ILE A		31.409	3.474	13.920	1.00 10.48
ATOM	1257	CA	ILE A	178	32.203	4.246	14.783	1.00 15.25
ATOM	1258	С	ILE A		31.180	5.045	15.632	1.00 16.95
ATOM	1259	0	ILE A		31.092	4.774	16.851	1.00 10.93
ATOM	1260	CB	ILE A		33.338	5.121	14.357	1.00 25.11
MOTA	1261	CG1	ILE A		34.701	4.496	14.056	1.00 25.11
ATOM	1262	CG2	ILE A		33.599	6.205	15.392	1.00 23.03
MOTA	1263	CD1	ILE A		34.553	3.006	14.071	1.00 27.80
ATOM	1264	N	GLU A		30.218	5.799	15.178	1.00 33.86
ATOM	1265	CA	GLU A		29.290	6.610	15.985	1.00 16.34
ATOM	1266	С	GLU A		28.324	5.713	16.692	1.00 16.94
ATOM	1267	0	GLU A	. 179	27.683	6.012	17.716	1.00 19.20
ATOM	1268	СВ	GLU A		28.555	7.637	15.169	1.00 19.20
ATOM	1269	CG	GLU A		28.790	7.283	13.691	1.00 50.37
MOTA	1270	CD	GLU A		29.933	7.701	12.851	1.00 61.82
ATOM	1271	OE1	GLU A	179	30.163	8.890	12.697	1.00 77.56
MOTA	1272	OE2	GLU A	179	30.627	6.854	12.309	1.00 75.83
ATOM	1273	N	ALA.A	180	28.240	4.418	16.412	1.00 8.00
ATOM	1274	CA	ALA A		27.353	3.520	17.042	1.00 14.34
MOTA	1275	С	ALA A	180	28.048	2.991	18.280	1.00 19.53
ATOM	1276	0	ALA A		27.397	3.142	19.265	1.00 21.17
ATOM	1277	CB	ALA A		26.843	2.437	16.128	1.00 11.97
ATOM	1278	N	ARG A		29.317	2.547	18.287	1.00 21.89
ATOM	1279	CA	ARG A	181	29.992	1.982	19.398	1.00 16.48
ATOM	1280	С	ARG A		30.296	3.106	20.367	1.00 19.44
ATOM	1281	0	ARG A		30.243	3.104	21.639	1.00 28.53
ATOM	1282	CB	ARG A		31.310	1.408	19.143	1.00 12.43
ATOM	1283	CG	ARG A		31.954	0.432	20.052	1.00 45.44
ATOM	1284	CD	ARG A		32.596	-0.688	19.242	1.00 66.21
ATOM	1285	NE	ARG A		33.333	-0.030	18.164	1.00 85.83
ATOM	1286	CZ	ARG A		33.306	-0.321	16.895	1.00 91.35
ATOM	1287	NH1	ARG A		32.551	-1.320	16.530	1.00 96.98
ATOM	1288	NH2	ARG A	181	34.023	0.400	16.095	1.00 92.83
ATOM	1289	N	GLY A		30.387	4.262	19.847	1.00 13.94
ATOM	1290	CA	GLY A		30.553	5.404	20.728	1.00 7.40
ATOM	1291	С	GLY A		29.741	6.574	20.960	1.00 7.95
ATOM	1292	0	GLY A		29.171	6.512	22.083	1.00 12.73
ATOM	1293	N	GLU A		29.725	7.622	20.138	1.00 6.42
ATOM	1294	CA.	GLU A		28.816	8.775	20.405	1.00 10.04
ATOM	1295	С	GLU A	183	27.421	8.369	20.645	1.00 14.41

ATOM	1296	0	GLU	A	183	26.846	8.530	21.749	1.00 15.43
ATOM	1297	CB	GLU	A	183	29.053	9.791	19.402	1.00 21.24
MOTA	1298	CG	GLU	A	183	28.079	10.638	18.725	1.00 62.21
ATOM	1299	CD	GLU	A	183	28.248	12.103	19.141	1.00 81.34
ATOM	1300	OE1	GLU	Α	183	28.850	12.243	20.232	1.00 95.85
ATOM	1301	OE2	GLU	Α	183	27.791	13.027	18.430	1.00 90.85
ATOM	1302	N	ALA	A	184	26.766	7.605	19.808	1.00 15.56
ATOM	1303	CA	ALA			25.444	7.083	20.117	1.00 14.54
ATOM	1304	С	ALA	Α	184	25.549	6.382	21.464	1.00 13.62
ATOM	1305	0	ALA			24.575	6.533	22.215	1.00 16.75
ATOM	1306	CB	ALA			25.019	6.015	19.089	1.00 9.58
ATOM	1307	N	ALA			26.428	5.396	21.774	1.00 9.42
ATOM	1308	CA	ALA			26.219	4.677	23.031	1.00 7.48
ATOM	1309	С	ALA			26.330	5.715	24.100	1.00 12.30
ATOM	1310	Ō	ALA			25.761	5.503	25.179	1.00 12.30
ATOM	1311	CB	ALA			27.138	3.475	23.260	1.00 4.60
ATOM	1312	N	ARG			27.271	6.673	24.090	1.00 4.80
ATOM	1313	CA	ARG			27.352	7.507	25.300	1.00 13.54
ATOM	1314	C	ARG			26.085	8.286	25.561	1.00 13.37
ATOM	1315	ō	ARG			25.421	8.267	26.573	1.00 11.49
ATOM	1316	СВ	ARG			28.484	8.460	25.043	
ATOM	1317	CG	ARG			29.869	7.851	25.240	1.00 30.29 1.00 37.15
ATOM	1318	CD	ARG			30.983	8.826	24.813	
ATOM	1319	NE	ARG			31.902	7.942	24.064	1.00 42.36 1.00 51.82
ATOM	1320	CZ	ARG			32.324	8.346	22.870	1.00 50.20
ATOM	1321		ARG			31.924	9.538	22.424	
ATOM	1322		ARG			33.115	7.476	22.318	1.00 47.65 1.00 39.90
ATOM	1323	N			187	25.565	8.774	24.434	
ATOM	1324	CA	PHE			24.195	9.370	24.426	1.00 8.37 1.00 13.48
ATOM	1325	C			187	23.187	8.476	25.182	1.00 15.48
ATOM	1326	o			187	22.379	8.916	25.995	1.00 13.92
ATOM	1327	СВ			187	23.667	9.791	23.993	1.00 14.81
ATOM	1328	CG			187	22.282	10.323	23.032	1.00 11.61
ATOM	1329		PHE			21.984	11.586	23.391	1.00 14.64
ATOM	1330		PHE			21.186	9.599	22.564	1.00 18.34
ATOM	1331		PHE			20.698	12.134	23.353	1.00 18.34
ATOM	1332		PHE			19.895	10.026	22.485	1.00 12.89
ATOM	1333	CZ			187	19.661	11.322	22.924	1.00 17.42
ATOM	1334	N			188	23.033	7.232	24.803	1.00 3.70
ATOM	1335	CA			188	21.908	6.427	25.324	
ATOM	1336	c c			188	22.207	6.221	26.775	1.00 18.43 1.00 19.67
ATOM	1337	Ö	LEU			21.280	6.512	27.461	1.00 19.67
ATOM	1338	ČВ			188	21.703	5.088	24.552	
ATOM	1339	CG			188	21.116	5.375	23.136	1.00 18.72 1.00 9.96
ATOM	1340	CD1				20.950	4.066	22.601	
ATOM	1341					19.849	6.206	23.168	1.00 7.86 1.00 4.70
ATOM	1342	N			189	23.333	5.805	27.230	1.00 4.70
ATOM	1343	CA			189	23.798	5.812	28.547	1.00 17.48
						20.100	J. U.E.	20.34/	T.OO TO.4T

ATOM	1344	C	ARG A		23.353	7.039	29.321	1.00 16.87
ATOM	1345	0	ARG A		22.852	7.164	30.389	1.00 13.64
ATOM	1346	CB	ARG A		25.325	6.017	28.529	1.00 21.93
ATOM	1347	CG	ARG A		25.882	5.624	29.894	1.00 19.95
MOTA	1348	CD -	ARG A	189	27.239	6.140	30.235	1.00 21.42
MOTA	1349	NE	ARG A	189	27.257	7.545	29.926	1.00 25.62
ATOM	1350	CZ	ARG A	189	28.491	7.983	29. 699	1.00 29.22
ATOM	1351	NH1	ARG A	189	29.315	6.960	29.840	1.00 26.71
MOTA	1352	NH2	ARG A	189	28.780	9.210	29.383	1.00 33.27
ATOM	1353	N	ASP A		23.837	8.150	28.796	1.00 13.76
ATOM	1354	CA	ASP A		23.489	9.338	29.615	1.00 13.78
ATOM	1355	С	ASP A	190	22.008	9.364	29.711	1.00 17.78
ATOM	1356	0	ASP A		21.661	9.891	30.692	1.00 18.79
ATOM	1357	CB	ASP A		23.995	10.663	29.070	
ATOM	1358	CG	ASP A		25.553	10.664	29.079	1.00 23.17
ATOM	1359		ASP A	190	26.250	9.836		1.00 33.40
ATOM	1360		ASP A		25.961	11.595	29.761	1.00 22.68
ATOM	1361	N	ARG A		21.156	9.128	28.321	1.00 30.24
ATOM	1362	CA	ARG A		19.707		28.781	1.00 21.61
ATOM	1363	C	ARG A		19.176	9.265	28.849	1.00 20.99
ATOM	1364	0	ARG A		18.327	8.237	29.825	1.00 21.23
ATOM	1365	CB	ARG A		19.014	8.515	30.651	1.00 20.98
ATOM	1366	CG	ARG A		19.605	9.214	27.450	1.00 19.76
ATOM	1367	CD	ARG A			10.282	26.521	1.00 27.49
ATOM	1368	NE	ARG A		18.848	11.594	26.689	1.00 36.68
ATOM	1369	CZ	ARG A		17.559	11.023	27.144	1.00 60.89
ATOM	1370	NH1			16.841	11.651	28.087	1.00 73.30
ATOM	1371	NH2			17.404	12.780	28.496	1.00 76.65
ATOM	1372	N	ILE A		15.675	11.224	28.574	1.00 62.02
ATOM	1373	CA			19.734	7.037	29.885	1.00 21.02
ATOM	1374	CA	ILE A		19.500	6.080	30.913	1.00 21.92
ATOM	1375	0	ILE A		19.705	6.598	32.337	1.00 25.67
ATOM	1376	СВ	ILE A		19.145	6.053	33.263	1.00 27.95
ATOM	1377		ILE A		20.289	4.775	30.750	1.00 24.23
ATOM	1377	CG1	ILE A		19.770	4.215	29.475	1.00 26.91
ATOM		CG2	ILE A		19.923	3.983	31.951	1.00 15.15
	1379	CD1	ILE A		20.418	2.954	29.019	1.00 21.07
ATOM	1380	N	ARG A		20.535	7.574	32.629	1.00 28.72
ATOM	1381	CA	ARG A		20.800	8.068	33.963	1.00 33.95
ATOM	1382	С	ARG A		20.116	9.377	34.406	1.00 42.87
ATOM	1383	0	ARG A		20.479	9.267	35.618	1.00 48.19
ATOM	1384	CB	ARG A		22.298	8.179	34.167	1.00 34.19
ATOM	1385	CG	ARG A		23.096	6.896	34.100	1.00 39.38
ATOM	1386	CD	ARG A		24.590	7.213	34.133	1.00 65.92
ATOM	1387	NE	ARG A		25.339	5.973	34.003	1.00 81.05
ATOM	1388	CZ	ARG A		26.631	5.765	33.770	1.00 81.52
ATOM	1389		ARG A		27.441	6.816	33.647	1.00 80.92
ATOM	1390	NH2			27.120	4.536	33.652	1.00 74.00
ATOM	1391	OT	ARG A	193	19.292	10.277	34.082	1.00 38.80
TER								

Fig. 2
3D structure of cutinases from *F. solani pisi* (left) and *H. insolens* (right)

Fig. 3 Hydrolysis of solid c3ET, 2 hr

Fig. 4
Hydrolysis of c3ET on yarn, 17 hr

Fig. 5
Treatment of yarn; time course

Fig. 6
Treatment of yarn; time course

International application No. PCT/DK 99/00678

	1 C1/DR 33/006/8						
A. CLAS	SIFICATION OF SUBJECT MATTER						
According	IPC7: C12N 9/18 // C11D 3/386, C08G 63/91 According to International Patent Classification (IPC) or to both national classification and IPC						
	DS SEARCHED						
Minimum d	ocumentation searched (classification system followed)	by classification symbols	;)				
IPC7:							
1	tion searched other than minimum documentation to the	e extent that such docu	ments are included i	n the fields searched			
	FI,NO classes as above						
Electronic d	lata base consulted during the international search (name	e of data base and, whe	re practicable, searc	h terms used)			
C. DOCL	MENTS CONSIDERED TO BE RELEVANT						
Category*	Citation of document, with indication, where ap	propriate, of the rele	vant passages	Relevant to claim No.			
Х	WO 9009446 A1 (PLANT GENETICS SYSTEMS, N.V.), 23 August 1990 (23.08.90), see page 1, lines 11-20, claims						
Х	WO 9414963 A1 (UNILEVER N.V.), 7 July 1994 1-32,34						
A	WO 9414964 A1 (UNILEVER N.V.), 7 (07.07.94)	7 July 1994		1-32,34			
							
A	WO 9704078 A1 (NOVO NORDISK A/S) (06.02.97), see claim 51), 6 February :	1997	1-32,34			
							
X Furth	er documents are listed in the continuation of Box	C. X See pa	atent family annex	•			
Special	categories of cited documents:	T' later document	subdished after the inte	mational filing date or priority			
10 DE 01	nt defining the general state of the art which is not considered particular relevance	date and not in	conflict with the applic theory underlying the	ation but cited to understand			
"L" docume	ocument but published on or after the international filing date at which may throw doubts on priority claim(s) or which is establish the publication date of another citation or other	considered nove	rticular relevance: the i or cannot be consider ocument is taken alone	claimed invention carnot be red to involve an inventive			
zbecra:	reason (as specified) na referring to an oral disclosure, use, exhibition or other	"Y" document of pa considered to in	ricular relevance: the s volve an inventive step	claimed invention cannot be when the document is			
"P" docume	nt published prior to the international filing date but later than rily date claimed	being obvious to	a person skilled in the ser of the same patent				
Date of the	actual completion of the international search	Date of mailing of					
Q M	1 1 -05- 2000						
8 May Name and	mailing address of the ISA/	Authorized officer					
	Swedish Patent Office						
	S-102 42 STOCKHOLM	Yvonne Siöste					
Facsimile l	Facsimile No. + 46 8 666 02 86 Telephone No. + 46 8 782 25 00						

International application No. PCT/DK 99/00678

		1/UK 99/0	U6/8
C (Continu	ation). DOCUMENTS CONSIDERED TO BE RELEVANT		
Category*	Citation of document, with indication, where appropriate, of the relevant	passages	Relevant to claim No
A	PROTEINS: Structure, Function, and Genetics, Volume 26, 1996, Sonia Longhi et al, "Dynami Fusarium solani Cutinase Investigated Throug Structural Comparison Among Different Crysta Forms of Its Variants" page 442 - page 458	1-32,34	

	·	-	
		•	
		•	
٠			
			1
		•	1

International application No. PCT/DK 99/00678

Box I	Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)						
This inte	rnational search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:						
the mention and the mention of the manufacture of t							
ւ 🗍	Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:						
2.	Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:						
3.	Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).:						
Box li	Observations where unity of invention is tacking (Continuation of item 2 of first sheet)						
This Inte	ernational Searching Authority found multiple inventions in this international application, as follows:						
see :	next sheet						
r 🗆	As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.						
² 🗆	As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.						
3.	As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:						
4. ⊠	No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.: 1-32 and 34						
Remark	on Protest The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.						

International application No. PCT/DK 99/00678

The invention claimed relates to two different inventions:

- I. Claims 1-32 and 34 relate to cutinase variants and the use of these variants.
- II. Claim 33 relates to a method for detecting cutinase activity in a sample.

Unity of invention exists only when there is a technical relationship among the claimed inventions involving one or more of the same or corresponding "special technical feature" i.e. features that define a contribution which each of the inventions make over prior art. (See Annex B to administrative instructions and Rule 13.1).

Form PCT/ISA/210 (extra sheet) (July1992)

Information on patent family members

International application No. 02/12/99 PCT/DK 99/00678

Cited	in search repor	1	date		member(s)		date
MO	9009446	A1	23/08/90	NONE			· · · · · · · · · · · · · · · · · · ·
MO	9414963	A1	07/07/94	ΑU	5699994		19/07/94
				CA	2150837		07/07/94
				CN	1090328		03/08/94
				CZ	9501578		13/12/95
				EP	0679188		02/11/95
				PL	309388		02/10/95
				SK Za	79595 9309415		08/11/95 15/06/95
WO	9414964	A1	07/07/94	· AU	5700094		19/07/94
				CA	2151038		07/07/94
				CN	1090329		03/08/94
				CZ	9501639		15/11/95 29/10/97
				EP Hu	0802981 71315		28/11/95
				HU	9501874		00/00/00
				JP	8504589		21/05/96
				PL	309403	-	02/10/95
				SK	80295		11/10/95
				ZA	9309416	A	15/06/95
	9704078	Δ1	06/02/97	AU	6414096	Α .	18/02/97
NU	3704070	^~~	00, 02, 3,	AU	6414196		18/02/97
				CN	1193346		16/09/98
				EP	0839186		06/05/98
				MO	9704079	Α	06/02/97
				AU	6655196		12/03/97
				CN	1192780		09/09/98
				EP	0851913		08/07/98
				JP	11510699		21/09/99
				МО	9707202 		27/02/97
			•				
							•
			-				

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not	limited to the items checked:
☐ BLACK BORDERS	
☐ IMAGE CUT OFF AT TOP, BOTTOM OR	SIDES
☐ FADED TEXT OR DRAWING	
☐ BLURRED OR ILLEGIBLE TEXT OR DR	AWING
☐ SKEWED/SLANTED IMAGES	
☐ COLOR OR BLACK AND WHITE PHOTO	OGRAPHS
☐ GRAY SCALE DOCUMENTS	
☐ LINES OR MARKS ON ORIGINAL DOCU	MENT
Z REFERENCE(S) OR EXHIBIT(S) SUBMIT	TED ARE POOR QUALITY
Потить	

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.