Aula 17 - CMMI

Disciplina: Gerenciamento de Projetos Tecnológicos

Prof. Me. João Paulo Biazotto

Modelos de Maturidade

- Estruturas para *avaliar* e *melhorar* processos
- Avaliação da capacidade de uma organização

• Exemplo: Uma empresa com processos *repetíveis* e *previsíveis* tem maior maturidade que uma que improvisa cada projeto

Por que usar modelos de maturidade?

- Melhoria da qualidade dos produtos
- Redução de retrabalho e custos

• Exemplo: Empresas que seguem modelos de maturidade frequentemente entregam no prazo e com menos bugs

- Modelo internacional para melhoria de processos
- Criado pelo SEI (Software Engineering Institute)
- Utilizado em diversas áreas: desenvolvimento, serviços, aquisição

- Desenvolvido pelo Software Engineering Institute (SEI) da Carnegie Mellon University, a pedido do Departamento de Defesa dos EUA (DoD).
- Tinha por objetivo avaliar e melhorar a capacidade de processos de software de fornecedores militares.
- Primeiro modelo lançado: SW-CMM (Software Capability Maturity Model).

- Vários modelos CMM surgiram:
 - SW-CMM (Software)
 - IPD-CMM (Integrated Product Development)
 - SECM (Systems Engineering Capability Model)
 - P-CMM (People Capability Maturity Model)
- Empresas tinham dificuldade em aplicar e integrar vários modelos diferentes, gerando redundâncias e inconsistências.

Desafio: Projetos de grande porte envolviam software, hardware e pessoas, mas os modelos CMM tratavam esses aspectos separadamente

- Lançado o CMMI versão 1.0, integrando os modelos anteriores em um único modelo unificado.
- Objetivo: fornecer um modelo integrado e mais flexível de melhoria de processos organizacionais.
- Inicialmente focado em software e engenharia de sistemas.

- CMMI v1.2 (2006): melhorias na clareza e estrutura do modelo.
- CMMI v1.3 (2010): atualização das áreas de processo, incluindo ágil e engenharia de produto.
- CMMI v2.0 (2018): grande reformulação:
 - Linguagem mais acessível
 - Ênfase em resultados de negócio
 - Adoção digital e avaliações online

- Adotado por empresas em mais de 100 países.
- Aplicado em setores como: software, TI, aeroespacial, automotivo, finanças, saúde, defesa.
- Tornou-se referência mundial em melhoria de processos e avaliação da maturidade organizacional.

Representações do CMMI

- Contínua: foco em áreas de processo específicas
- Estagiada: foco em níveis de maturidade

Áreas de Processo do CMMI

 Exemplos: Gerência de Projetos, Garantia da Qualidade, Engenharia de Requisitos

CMMI – Modelo Contínuo

- Foco em capacitar áreas específicas: qualidade, engenharia, gestão
- Exemplo: Melhorar só a gerência de riscos em um projeto piloto

Níveis de Maturidade do CMMI (Estagiada)

Nível 1 – Inicial (Initial)

Características:

- Processos imprevisíveis e mal controlados.
- Êxito depende de indivíduos talentosos e heróicos.
- Resultados são instáveis, frequentemente ineficientes.

Nível 1 – Inicial (Initial)

Sinais típicos

- Falta de documentação formal de requisitos.
- Mudanças de escopo sem rastreabilidade.
- Entregas fora do prazo ou com defeitos frequentes.
- Conhecimento retido em poucas pessoas.

Nível 1 – Inicial (Initial)

Exemplo

A startup CodeRush desenvolve software com pressa, sem planejamento estruturado. O cliente envia um e-mail com os requisitos e os desenvolvedores começam a codificar diretamente. Não há controle de versão formal, e frequentemente os arquivos são sobrescritos acidentalmente.

Nível 2 – Gerenciado (Managed)

Características:

- Projetos têm processos gerenciados, mas ainda não padronizados organizacionalmente.
- Ênfase em planejar e controlar o desempenho do projeto.

Nível 2 - Gerenciado (Managed)

• Áreas de Processo-chave:

- Gerência de Requisitos (REQM): Identificar, rastrear e gerenciar mudanças em requisitos.
- Planejamento de Projeto (PP): Desenvolver estimativas e cronogramas.
- Monitoramento e Controle de Projeto (PMC): Acompanhar e controlar andamento do projeto.
- Medição e Análise (MA): Coletar e analisar dados para apoiar decisões.

Nível 2 – Gerenciado (Managed)

- Áreas de Processo-chave:
 - Gerência de Configuração (CM): Controlar artefatos do projeto.
 - Garantia da Qualidade do Processo e Produto (PPQA): Verificar se os processos estão sendo seguidos.
 - Gerência de Fornecedores (SAM): Gerenciar contratos e entregas de terceiros

Nível 2 – Gerenciado (Managed)

Exemplo

A empresa SoftLink adotou práticas como **cronogramas em Gantt**, **backlog priorizado**, controle de versões via Git, e reuniões semanais de acompanhamento. Quando um cliente solicita mudança de requisito, a equipe registra a solicitação e avalia o impacto antes de aceitar.

• Características:

- Os processos são documentados, padronizados e integrados na organização.
- Há um modelo comum de processos, que pode ser adaptado a cada projeto.
- Cultura de melhoria e treinamento institucionalizado.

- Áreas de Processo-chave adicionais:
 - 11 novas áreas são adicionados ao projeto, entre elas:
 - Verificação (VER)
 - Validação (VAL)
 - Gerência de Riscos (RSKM)
 - Gerência de Decisões (DAR)

- Verificação (VER Verification)
 - Assegurar que os produtos de trabalho atendem aos requisitos especificados.
 - Preparar itens de verificação, critérios, ambiente e pessoal.
 - Executar atividades de verificação como inspeções, revisões técnicas e testes unitários.
 - Registrar e acompanhar os resultados da verificação.

Validação (VAL – Validation)

- Assegurar que o produto ou componente entregue atenda às necessidades do usuário final em seu ambiente operacional real.
- Selecionar produtos e componentes a serem validados.
- Estabelecer o ambiente de validação (simulado ou real).
- Conduzir testes com foco em usabilidade, funcionalidades e contexto de uso.
- Corrigir desvios entre o produto e as expectativas do usuário.

- Gerência de Riscos (RSKM Risk Management)
 - Identificar, analisar, priorizar, mitigar e monitorar riscos que possam impactar o projeto ou a organização.
 - Identificar riscos técnicos, de cronograma, de pessoal, de orçamento, de integração etc.
 - Analisar probabilidade e impacto.
 - Desenvolver planos de mitigação e contingência.
 - Acompanhar os riscos periodicamente.

- Gerência de Decisões (DAR Decision Analysis and Resolution)
 - Identificar decisões críticas (ex: seleção de ferramentas, arquitetura, terceirizações).
 - Estabelecer critérios de decisão (custo, desempenho, facilidade de uso, risco etc.).
 - Avaliar alternativas com base nos critérios definidos.
 - Justificar e documentar a decisão tomada.

• Exemplo:

A InovaTech possui um *repositório com processos organizacionais*, templates de documentos, guias de boas práticas e checklists para cada tipo de projeto. Todos os novos colaboradores passam por treinamento de integração com foco nos processos definidos da empresa.

Características:

- Os processos são controlados por dados quantitativos.
- Variabilidade dos processos é compreendida e controlada **estatisticamente**.
- Foco na previsibilidade do desempenho.

- Áreas de Processo-chave:
 - Desempenho do Processo Organizacional (OPP)
 - Gerência Quantitativa de Projeto (QPM)

Desempenho do Processo Organizacional (OPP)

- Estabelecer e manter uma compreensão quantitativa do desempenho dos processos da organização.
- Ajudar a alcançar os objetivos de qualidade e desempenho dos projetos.
- Definir indicadores (KPIs) que descrevam o desempenho (ex: bugs por mil linhas de código, histórias entregues por sprint).

Gerência Quantitativa de Projeto (QPM)

- Gerenciar quantitativamente o desempenho do projeto para atingir os objetivos de qualidade e processo
- Aplicação prática dos modelos de desempenho (OPP) nos projetos em andamento.
- Decisões são baseadas em dados quantitativos, e não apenas em percepções.

• Exemplo:

A empresa AlphaSoft define metas de **produtividade** com base em dados **históricos**, como "média de 10 funcionalidades por sprint, com variação de ±2". Monitoram **indicadores** como taxa de defeitos, tempo médio de resolução e esforço real vs. planejado. Quando um desvio foge da variação aceitável, uma **análise é feita para entender a causa**.

Nível 5 – Em Otimização (Optimizing)

• Características:

- Foco em melhoria contínua e inovação de processos, baseada em dados reais.
- A organização identifica proativamente pontos de melhoria e testa novas práticas.

Nível 5 – Em Otimização (Optimizing)

- Áreas de Processo-chave:
 - Análise de Causas e Resolução (CAR)
 - Inovação e Implantação Organizacional (OID)

Nível 5 – Em Otimização (Optimizing)

Análise de Causas e Resolução (CAR)

- Identificar causas raiz de problemas ou defeitos e implementar ações corretivas para prevenir recorrência.
- Não basta corrigir o defeito é necessário entender por que ele ocorreu.
- A organização deve ter um processo sistemático para análise e tratamento dos problemas mais significativos.
- As lições aprendidas devem ser disseminadas.

Nível 5 – Em Otimização (Optimizing)

- Inovação e Implantação Organizacional (OID)
 - Selecionar e implantar melhorias inovadoras nos processos organizacionais que contribuam para alcançar os objetivos estratégicos da empresa.
 - A inovação deve ser sistemática: não se trata de apenas "ter boas ideias", mas de avaliar, testar, adaptar e disseminar melhorias.

Nível 5 – Em Otimização (Optimizing)

• Exemplo:

Na empresa ProDev Solutions, um **aumento de falhas** em produção levou à aplicação de análise de causa raiz (**5 Porquês**). Descobriram que a falta de **testes automatizados em integrações** era o principal fator. Implantaram **pipelines de CI/CD** como inovação organizacional e reduziram as **falhas em 70%**. Essa mudança foi **formalizada** como parte do processo padrão.

Níveis CMMI

CMMI V3.0 Maturity Levels

Reactive

Work gets completed but is often delayed and over budget.

Prospects are planned, performed, measured, and controlled.

Reactive

Organization-wide standards provide guidance across projects, programs, and portfolios.

Controlled

Organization is datadriven with quantitative performance improvement objectives that are predictable and align to meet the needs of internal and external stakeholders.

Flexible

Organization is focused on continuous improvement and is built to pivot and respond to opportunity and change. This stability provides a platform for agility and innovation.

Níveis CMMI

Nível	Nome	Foco Principal	Exemplo típico
1	Inicial	Sucesso depende de indivíduos	Entregas improvisadas, sem planejamento
2	Gerenciado	Gerência de projetos e requisitos	Uso de cronograma e controle de mudanças
3	Definido	Padronização organizacional	Repositório de processos, treinamentos e templates
4	Quantitativamente Gerenciado	Controle estatístico de desempenho	Indicadores quantitativos e metas baseadas em histórico
5	Em Otimização	Inovação e melhoria contínua	Adoção de CI/CD após análise de causa

A InovaTI mantém *processos padronizados* para requisitos, design, desenvolvimento, testes e controle de mudanças. Estes processos são documentados, treinados e *seguidos por todos os projetos*. Há um *repositório* organizacional de processos e lições aprendidas.

Os projetos realizam revisões técnicas formais e registram *métricas básicas* (*número de defeitos, tempo de entrega, esforço planejado x real*). Além disso, a empresa implementou um processo de **verificação** e **validação** com base em listas de checagem.

Porém, *não há uso sistemático de dados históricos* para previsão quantitativa de desempenho, nem análises estatísticas para controle de variação de processos.

Estudo de Caso 1 – DevCore

- Ausência de processos definidos e padronizados.
- O sucesso depende de pessoas e não de processos repetíveis.
- Não há evidências de planejamento sistemático, monitoramento quantitativo ou melhoria contínua.
- Há boas intenções, mas os processos são ad hoc e variam entre projetos.

Estudo de Caso 1 – DevCore

- Ausência de processos definidos e padronizados.
- O sucesso depende de pessoas e não de processos repetíveis.
- Não há evidências de planejamento sistemático, monitoramento quantitativo ou melhoria contínua.
- Há boas intenções, mas os processos são ad hoc e variam entre projetos.

CMMI Nível 1.0 (Inicial)

A InovaTI mantém **processos padronizados para requisitos**, design, desenvolvimento, testes e controle de mudanças. Estes processos são **documentados**, **treinados** e **seguidos por todos os projetos**. Há um repositório organizacional de processos e lições aprendidas.

Os projetos realizam revisões técnicas formais e **registram métricas básicas** (número de defeitos, tempo de entrega, esforço planejado x real). Além disso, a empresa implementou um processo de verificação e validação com base em listas de checagem.

Porém, **não há uso sistemático de dados históricos** para previsão quantitativa de desempenho, nem análises estatísticas para controle de variação de processos.

- Os processos estão documentados e institucionalizados.
- Há consistência na aplicação de processos entre os projetos.
- A organização tem uma estrutura de processos padrão, mantida e melhorada.
- Práticas como verificação, validação estão presentes.
- Não há uso quantitativo avançado de dados para controle estatístico.

- Os processos estão documentados e institucionalizados.
- Há consistência na aplicação de processos entre os projetos.
- A organização tem uma estrutura de processos padrão, mantida e melhorada.
- Práticas como verificação, validação estão presentes.
- Não há uso quantitativo avançado de dados para controle estatístico.

CMMI Nível 3 (Definido)

CMMI na prática

- Edital Secretaria de Infraestrutura de Meio Ambiente de São Paulo
- Edital MP-PA

Atividade - SmartCode -> Qual o nível CMMI?

A empresa SmartCode possui todos os processos documentados e padronizados. Ela utiliza dados históricos para prever esforço, tempo e qualidade dos projetos. Cada projeto é gerenciado com base em indicadores quantitativos, como produtividade da equipe, densidade de defeitos e lead time.

Gráficos de controle de processo são usados em tempo real, e as metas de qualidade são revisadas com base em dados. Os projetos que apresentam desvios são analisados e ajustados com base em modelos estatísticos.

Além disso, a empresa implementa práticas de análise de causas raiz para defeitos críticos e mantém um programa de inovação organizacional, que inclui a experimentação e disseminação de novas práticas (ex: DevOps, automação de testes com IA).

DÚVIDAS?

