Math 733 – Fall 2020

Midterm Exam (AM version)

1. Suppose that Y_1, Y_2, \ldots are random variables with finite second moment. Show that

if
$$\lim_{n\to\infty} \frac{E[Y_n^2]}{(E[Y_n])^2} = 1$$
 then $\frac{Y_n}{E[Y_n]} \stackrel{P}{\to} 1$, as $n \to \infty$. (1)

There was a typo in the problem (some of the students noticed this), but all students found the path that would have led to the solution.

- 2. Suppose that X is a discrete random variable with support $A \subset \mathbb{R}$ and probability mass function $p_X : A \to [0,1]$. Let U be a random variable which is independent of X, and has uniform distribution on [0,1]. Show that Z = X + U has absolutely continuous distribution, and express its probability density function in terms of p_X . Hint: you could try to solve the problem with a specific p_X first.
- 3. Suppose that X_1, X_2, \ldots are independent (not necessarily identically distributed) random variables. Show that $P\left(\sup_{n\geq 1} X_n < \infty\right) = 1$ if and only if there exists $c\in \mathbb{R}$ with $\sum_{n=1}^{\infty} P(X_n > c) < \infty.$