

IEL – protokol k projektu

Vojtěch Kališ xkalis03

12. prosince 2020

Obsah

1	Příklad 1	2
2	Příklad 2	3
3	Příklad 3	4
4	Příklad 4	5
5	Příklad 5	6

Stanovte napětí U_{R6} a proud I_{R6} . Použijte metodu postupného zjednodušování obvodu.

sk.	U_1 [V]	U_2 [V]	$R_1 [\Omega]$	$R_2 [\Omega]$	$R_3 [\Omega]$	$R_4 [\Omega]$	$R_5 [\Omega]$	$R_6 [\Omega]$	$R_7 [\Omega]$	$R_8 [\Omega]$
\mathbf{E}	115	55	485	660	100	340	575	815	255	225

$$\begin{array}{l} R_{34} = \frac{R_3*R_4}{R_3+R_4} = \frac{100*340}{100+340} = 77.273\,\Omega \\ R_{234} = R_2 + R_{34} = 660 + 77,273 = 737.273\,\Omega \end{array}$$

Dostanu obvod:

Pro následující výpočet rezistorů mezi uzly označenými jako A, B a C budu muset použít převod trojúhelník \rightarrow hvězda.

Trojune in
$$R \to R$$
 in $R \to R$ in

Dostanu obvod:

Po tomto zjednodušení je již vidno, že mohu lehce dopočítat R_{EKV} .

$$\begin{array}{l} R_{B7} = R_B + R_7 = 155, 166 + 255 = 410.166\,\Omega, \\ R_{B7C6} = \frac{R_{B7}*R_{C6}}{R_{B7}+R_{C6}} = \frac{410,166*1050,86}{410,166+1050,86} = 295.0167\,\Omega \end{array}$$

$$\begin{array}{ll} \text{Pak:} & R_{EKV} = R_A + R_{B7C6} + R_8 = 198, 96 + 295, 0167 + 225 = \underline{718.9767\,\Omega} \\ & U = U_1 + U_2 = 115 + 55 = \underline{170\,\text{V}}, \quad I = \frac{U}{R_{EKV}} = \frac{170}{718,9767} = 0.236\,447\,\text{A} = \underline{236.447\,\text{mA}} \end{array}$$

Abychom mohli vypočítat U_{R6} , potřebujeme vědět proud, který rezistorem protéká, což bude stejný proud který protéká prvkem R_{C6} (z 1. kirchhoffova zákona). Tudíž: $U_{R6} = I_{RC6} * R_6$. Pro výpočet I_{RC6} je zase zapotřebí znát U_{RC6} , nebo U_{RB7C6} (2. kirch. z.).

$$\begin{array}{l} U_{RB7C6} = I*R_{B7C6} = 0,236447*295,0167 = 69.756\,\mathrm{V} \\ I_{RC6} = \frac{U_{RB7C6}}{R_{C6}} = \frac{69.756}{1050,86} = 0.066\,379\,\mathrm{A} = \underline{66.379\,\mathrm{mA}} = I_{R6} \end{array}$$

A nakonec $U_{R6} = I_{R6} * R_6 = 66,379 * 815 = \underline{54.099 \Omega}$

Stanovte napětí U_{R3} a proud I_{R3} . Použijte metodu Théveninovy věty.

sk.	U[V]	$R_1 [\Omega]$	$R_2 [\Omega]$	$R_3 [\Omega]$	$R_4 [\Omega]$	$R_5 [\Omega]$	$R_6 [\Omega]$	
A	50	100	525	620	210	530	100	

Stanovte napětí U_{R2} a proud I_{R2} . Použijte metodu uzlových napětí (U_A, U_B, U_C) .

sk.	U[V]	I_1 [A]	I_2 [A]	$R_1 [\Omega]$	$R_2 [\Omega]$	$R_3 [\Omega]$	$R_4 [\Omega]$	$R_5 [\Omega]$
Ε	135	0.55	0.65	52	42	52	42	21

Pro napájecí napětí platí: $u_1 = U_1 \cdot \sin(2\pi f t)$, $u_2 = U_2 \cdot \sin(2\pi f t)$. Ve vztahu pro napětí $u_{L_2} = U_{L_2} \cdot \sin(2\pi f t + \varphi_{L_2})$ určete $|U_{L_2}|$ a φ_{L_2} . Použijte metodu smyčkových proudů.

Pozn: Pomocné směry šipek napájecích zdrojů platí pro speciální časový okamžik $(t=\frac{\pi}{2\omega}).$

sk.	U_1 [V]	U_2 [V]	$R_1 [\Omega]$	$R_2 [\Omega]$	$L_1 [mH]$	L_2 [mH]	C_1 [μ F]	$C_2 [\mu F]$	f [Hz]
E	50	30	14	13	130	60	100	65	90

V obvodu na obrázku níže v čase t=0[s] sepne spínač S. Sestavte diferenciální rovnici popisující chování obvodu na obrázku, dále ji upravte dosazením hodnot parametrů. Vypočítejte analytické řešení $i_L=f(t)$. Proveď te kontrolu výpočtu dosazením do sestavené diferenciální rovnice.

Pozn: Pomocné směry šipek napájecích zdrojů platí pro speciální časový okamžik $(t=\frac{\pi}{2\omega}).$

sk.	U[V]	L [H]	$R [\Omega]$	$i_L(0)$ [A]
A	40	50	10	16

