線形代数学・同演習 B

演習問題 11

1. 次の \mathbb{R}^2 の基底 (v_1, v_2) をGram-Schmidtの直交化法により直交化せよ.

$$(1) \begin{pmatrix} 3 & 1 \\ 2 & -2 \end{pmatrix} \quad (2) \begin{pmatrix} 1 & -3 \\ -1 & -1 \end{pmatrix} \quad (3) \begin{pmatrix} 3 & -1 \\ 1 & 1 \end{pmatrix} \quad (4) \begin{pmatrix} 4 & 2 \\ 2 & -3 \end{pmatrix}$$

 2^{\dagger} 次の \mathbb{R}^3 の基底 $(oldsymbol{v}_1,oldsymbol{v}_2,oldsymbol{v}_3)$ を $\operatorname{Gram-Schmidt}$ の直交化法により直交化せよ.

- 3. 次の $\mathbb{R}[x]_2$ の基底を Gram-Schmidt の直交化法により直交化せよ.ただし内積は $\langle f|g \rangle = \int_{-1}^1 f(x)g(x)\,dx$ とする.
 - (1) $p_1(x) = 1$, $p_2(x) = x$, $p_3(x) = x^2$.
 - (2) $q_1(x) = x^2$, $q_2(x) = x$, $q_3(x) = 1$.
 - (3) $r_1(x) = -x$, $r_2(x) = -x^2 + x$, $r_3(x) = -x^2 + x 1$.
- $4. \mathbb{R}^2$ の正規直交基底は次の形のもので尽くされることを示せ.

(1)
$$u_1 = \begin{pmatrix} \cos \theta \\ \sin \theta \end{pmatrix}$$
, $u_2 = \begin{pmatrix} -\sin \theta \\ \cos \theta \end{pmatrix}$ (2) $v_1 = \begin{pmatrix} \cos \theta \\ \sin \theta \end{pmatrix}$, $v_2 = \begin{pmatrix} \sin \theta \\ -\cos \theta \end{pmatrix}$

- 5.2次の直交行列をすべて求めよ.
- 6^{\dagger} 任意の 3 次正則行列 A は , ある直交行列 P と上三角行列 U を用いて A=PU という積でかけることを示せ *1 .
- 7.* 整数 $n=0,1,2,3,\ldots$ に対して $H_n(x):=(-1)^ne^{x^2}\left(\frac{d^n}{dx^n}e^{-x^2}\right)$ とおく*2.また,二 つの多項式 f,g に対して $\langle f\,|g\,\rangle_H:=\int_{-\infty}^\infty f(x)g(x)e^{-x^2}\,dx$ とする*3.
 - (1) n = 0, 1, 2, 3, 4 に対して $H_n(x)$ を求めよ.
 - (2) 各 $H_n(x)$ は n 次の多項式となることを示せ .
 - (3) $\langle \cdot | \cdot \rangle_H$ は $\mathbb{R}[x]_n$ (n は任意の自然数) の内積を定めることを示せ.
 - (4) この内積 $\langle\cdot|\cdot\rangle_H$ に関して,多項式 $H_n(x)$ $(n=0,1,2,\ldots)$ は互いに直交していることを示せ.

¹月16日分(凡例:無印は基本問題, †は特に解いてほしい問題,*は応用問題)

講義用 HP: http://www2.math.kyushu-u.ac.jp/~h-nakashima/lecture/2017LA.html

 $^{^{*1}}$ ヒント: $\operatorname{Gram-Schmidt}$ の直交化法.これは任意の n 次正則行列で成り立つ.

 $^{*^2}$ この多項式を Hermite 多項式という .

^{*3} 重み e^{-x^2} を持つ積分である.