Aula 02 – Técnicas de Desenvolvimento de Algoritmos: Indução Fraca e Forte

Norton Trevisan Roman norton@usp.br

8 de agosto de 2018

Indução

- Técnica importante para projeto de algoritmos
- Ferramenta útil para provar afirmações quanto à eficiência e correção de algoritmos

Definição

Consistem em inferir uma regra geral a partir de instâncias particulares, indo então do efeito às causas, das consequências ao princípio, da experiência à teoria.

Dedutiva

- Consiste em chegar a uma conclusão a partir de premissas (regras e fatos)
- A conclusão deve necessariamente ser verdadeira, caso todas as premissas sejam verdadeiras
- Ex:
 - Premissa: se chover, a estrada estará molhada
 - Premissa: choveu
 - Dedução: a estrada está molhada

Indutiva

- Consiste de, após considerar um número suficiente de exemplos, concluir uma regra geral
- Constrói uma conclusão baseada em experiência
- Ex:
 - Premissas: todas as vezes em que vi chover, a estrada estava molhada
 - Indução: se chover, a estrada estará molhada
 - Naturalmente, a conclusão não é definitiva, pois contém informação (de que não há chuva sem estrada molhada) não dada pelas premissas

Abdutiva

- Consiste de encontrar a hipótese mais provável para uma determinada premissa observada
- Ex:
 - Premissa: se chover, a estrada estará molhada
 - Premissa: a estrada está molhada
 - Abdução: (provavelmente) choveu
- Trata-se da inferência a favor da melhor explicação

Dedução

 $\mathsf{A} \to \mathsf{B}$

Conheço a regra

Dedução

Sei que A é verdade

Dedução

 $A \rightarrow B$

Então infiro que B é verdade

Indução

B

Por várias vezes, vi B

Indução

A B

em decorrência de A

Indução

$$A \rightarrow B$$

Infiro então que provavelmente $A \rightarrow B$ (incerteza)

Abdução

 $\mathsf{A} \rightarrow \mathsf{B}$

Conheço a regra

Abdução

 $\mathsf{A} \to \mathsf{B}$

Sei que *B* é verdade

Abdução

 $A \rightarrow B$

Então infiro que A é provavelmente verdade (incerteza)

• E o que isso tudo tem a ver com algoritmos?

- E o que isso tudo tem a ver com algoritmos?
- Vejamos como geralmente criamos algoritmos para um determinado problema:

- E o que isso tudo tem a ver com algoritmos?
- Vejamos como geralmente criamos algoritmos para um determinado problema:
 - Olhamos alguns exemplos de entrada + saída esperada

- E o que isso tudo tem a ver com algoritmos?
- Vejamos como geralmente criamos algoritmos para um determinado problema:
 - Olhamos alguns exemplos de entrada + saída esperada
 - Criamos um procedimento que, para esses casos, faça com que a entrada leve à saída

- E o que isso tudo tem a ver com algoritmos?
- Vejamos como geralmente criamos algoritmos para um determinado problema:
 - Olhamos alguns exemplos de entrada + saída esperada
 - Criamos um procedimento que, para esses casos, faça com que a entrada leve à saída
- Naturalmente, isso ocorre para problemas ainda não especificados matematicamente
 - Do contrário, basta seguirmos a especificação (fórmula)

Mais de perto...

- Olhamos alguns exemplos de entrada + saída esperada
- Criamos um procedimento que, para esses casos, faça com que a entrada leve à saída

Mais de perto...

- Olhamos alguns exemplos de entrada + saída esperada
- Criamos um procedimento que, para esses casos, faça com que a entrada leve à saída

Ou seja...

- A partir de N pares $\{[E_i, S_i], 1 \le i \le N\}$
- Inferimos que, via nosso procedimento P, $\{E_i \stackrel{P}{\rightarrow} S_i, \forall [E_i, S_i]\}$

Nossa inferência:

- A partir de N pares $\{[E_i, S_i], 1 \le i \le N\}$
- Inferimos que, via nosso procedimento P, $\{E_i \stackrel{P}{\rightarrow} S_i, \forall [E_i, S_i]\}$
- Que tipo de raciocínio é esse?
 - () Dedutivo
 - () Indutivo
 - () Abdutivo

Nossa inferência:

- A partir de N pares $\{[E_i, S_i], 1 \le i \le N\}$
- Inferimos que, via nosso procedimento P, $\{E_i \stackrel{P}{\rightarrow} S_i, \forall [E_i, S_i]\}$
- Que tipo de raciocínio é esse?
 - ()Dedutivo
 - (\times) Indutivo
 - () Abdutivo

 Só que o raciocínio indutivo é incerto. Não podemos confiar plenamente nele.

- Só que o raciocínio indutivo é incerto. Não podemos confiar plenamente nele.
- Temos então que achar uma forma de aplicar o raciocínio dedutivo
 - Provando assim que a conjectura $E_i \stackrel{P}{\to} S_i$ é verdadeira para todo $[E_i, S_i]$

- Só que o raciocínio indutivo é incerto. Não podemos confiar plenamente nele.
- Temos então que achar uma forma de aplicar o raciocínio dedutivo
 - Provando assim que a conjectura $E_i \xrightarrow{P} S_i$ é verdadeira para todo $[E_i, S_i]$
- Embora possamos buscar um contra-exemplo para a conjectura, provando sua falsidade, provar sua veracidade é mais difícil
 - Pois, a menos que possamos testar todos os exemplos possíveis, ainda restará dúvida

Indução Finita

 Nesse sentido, uma técnica que nos permite provar nossa conjectura é a Indução Finita.

Princípio da Indução Finita (Fraca)

Sejam P_n afirmações associadas a cada inteiro positivo $n \geq k$. Se P_k for verdadeira e, para cada inteiro positivo $j \geq k$ pudermos mostrar que, se P_j for verdadeira então P_{j+1} também o será, então P_n será verdadeira para todo inteiro $n \geq k$.

Indução Finita

• E, formalmente...

Princípio da Indução Finita (Fraca)

Para provarmos que P_n é verdadeira para todo $n \ge k$, teremos que provar que:

- **1** P é verdadeira para algum $k \ge 1$ (P_k é verdadeira)
- ② Para todo $j \ge k$, se P for verdadeira para j então também o será para j+1 $(P_j \Rightarrow P_{j+1})$

Em outras palavras...

- Mostramos que P é verdadeira para um determinado $k \ge 1$ (normalmente, k = 1)
- ② Assumimos que P é verdadeira para um inteiro arbitrário $j \ge k$ (j = k já provamos)
- ullet Baseados nessa hipótese, mostramos que P_{j+1} é verdadeira, ou seja, provamos que P é verdadeira para j+1

E assim conseguimos mostrar que P é verdadeira para qualquer inteiro $\geq k$

Partes do Processo de Indução Finita

- Base: demonstrar que P_1 (ou P_k , para um determinado $k \ge 1$) é verdadeira (passo 1 no slide anterior)
- Hipótese de indução: assumir que P_j é verdadeira
- **Passo indutivo**: estabelecer que $P_j \rightarrow P_{j+1}$ é verdadeira (passo 3)

E por que isso funciona?

- ullet Demonstramos que P vale para um determinado k
- Demonstramos que o fato de P valer para algum $j \ge k$ arbitrário implica valer para j+1
- Então segue que P valendo para k faz com que ela valha para k+1 também (P_{k+1} é verdadeiro)
- P valer para k + 1, por sua vez, implica valer para k + 2, e assim por diante...

E por que isso funciona?

Temos então um efeito dominó:

$$P_k$$
 P_{k+1} P_{k+2} \cdots P_j P_{j+1} \cdots

E por que isso funciona?

Temos então um efeito dominó:

$$P_k$$
 P_{k+1} P_{k+2} \cdots P_j P_{j+1} \cdots

Provamos a base

E por que isso funciona?

Temos então um efeito dominó:

$$P_k$$
 P_{k+1} P_{k+2} \cdots P_j P_{j+1} \cdots

A partir da base, e de que $P_j \Rightarrow P_{j+1}$, temos o segundo

E por que isso funciona?

Temos então um efeito dominó:

$$P_k$$
 P_{k+1} P_{k+2} \cdots P_j P_{j+1} \cdots

A partir do segundo, e de que $P_j \Rightarrow P_{j+1}$, temos o terceiro

E por que isso funciona?

Temos então um efeito dominó:

E assim por diante...

E por que isso funciona?

Temos então um efeito dominó:

E assim por diante...

E por que isso funciona?

Temos então um efeito dominó:

E assim por diante...

E por que isso funciona?

Temos então um efeito dominó:

E assim por diante...

E por que indução fraca?

• Essa formulação é denominada princípio da indução (finita) fraca, porque apenas P_j é assumida como verdadeiro para se provar a veracidade de P_{j+1}

E por que indução fraca?

• Essa formulação é denominada princípio da indução (finita) fraca, porque apenas P_j é assumida como verdadeiro para se provar a veracidade de P_{j+1}

Mas isso é realmente indução?

E por que indução fraca?

• Essa formulação é denominada princípio da indução (finita) fraca, porque apenas P_j é assumida como verdadeiro para se provar a veracidade de P_{j+1}

Mas isso é realmente indução?

• Não. O processo é, de fato, dedutivo

E por que indução fraca?

• Essa formulação é denominada princípio da indução (finita) fraca, porque apenas P_j é assumida como verdadeiro para se provar a veracidade de P_{j+1}

Mas isso é realmente indução?

- Não. O processo é, de fato, dedutivo
- Mas então, por que indução finita?

E por que indução fraca?

• Essa formulação é denominada princípio da indução (finita) fraca, porque apenas P_j é assumida como verdadeiro para se provar a veracidade de P_{j+1}

Mas isso é realmente indução?

- Não. O processo é, de fato, dedutivo
- Mas então, por que indução finita?
 - Porque tentamos demonstrar uma conjectura que possivelmente foi formulada por um raciocínio indutivo (como nosso algoritmo $\{E_i \xrightarrow{P} S_i, \forall [E_i, S_i]\}$)

E qual a utilidade disso?

- O princípio da Indução Finita é uma implicação, cuja conjectura é da forma:
 - "a afirmação P é verdadeira para todos os inteiros positivos"
- Assim, é uma técnica útil quando queremos demonstrar que alguma propriedade é válida para qualquer inteiro positivo

- Prove que $1 + 3 + 5 + ... + (2n 1) = n^2$, para $n \ge 1$
 - Nesse caso, S(n) = 1 + 3 + 5 + ... + (2n 1), e queremos mostrar P_n : $S(n) = n^2$

- Prove que $1 + 3 + 5 + ... + (2n 1) = n^2$, para $n \ge 1$
 - Nesse caso, S(n) = 1 + 3 + 5 + ... + (2n 1), e queremos mostrar P_n : $S(n) = n^2$
 - Base: $P_1: S(1) = 1 = 1^2$

- Prove que $1 + 3 + 5 + ... + (2n 1) = n^2$, para $n \ge 1$
 - Nesse caso, S(n) = 1 + 3 + 5 + ... + (2n 1), e queremos mostrar P_n : $S(n) = n^2$
 - Base: $P_1: S(1) = 1 = 1^2$ (ok)

- Prove que $1 + 3 + 5 + ... + (2n 1) = n^2$, para $n \ge 1$
 - Nesse caso, S(n) = 1 + 3 + 5 + ... + (2n 1), e queremos mostrar P_n : $S(n) = n^2$
 - Base: $P_1: S(1) = 1 = 1^2$ (ok)
 - **Hipótese**: $P_j: S(j) = j^2$ (assumo verdadeira)

- Prove que $1 + 3 + 5 + ... + (2n 1) = n^2$, para $n \ge 1$
 - Nesse caso, S(n) = 1 + 3 + 5 + ... + (2n 1), e queremos mostrar P_n : $S(n) = n^2$
 - Base: $P_1: S(1) = 1 = 1^2$ (ok)
 - **Hipótese**: P_j : $S(j) = j^2$ (assumo verdadeira)
 - **Passo**: $S(j+1) = 1+3+5+\ldots+(2(j+1)-1)$

- Prove que $1 + 3 + 5 + ... + (2n 1) = n^2$, para $n \ge 1$
 - Nesse caso, $S(n) = 1 + 3 + 5 + \ldots + (2n 1)$, e queremos mostrar P_n : $S(n) = n^2$
 - Base: $P_1: S(1) = 1 = 1^2$ (ok)
 - **Hipótese**: $P_j : S(j) = j^2$ (assumo verdadeira)
 - Passo: $S(j+1) = 1+3+5+\ldots+(2(j+1)-1)$ = $1+3+5+\ldots+(2j-1)+(2(j+1)-1)$

Incluímos o penúltimo elemento de P_{j+1}

- Prove que $1 + 3 + 5 + ... + (2n 1) = n^2$, para $n \ge 1$
 - Nesse caso, $S(n) = 1 + 3 + 5 + \ldots + (2n 1)$, e queremos mostrar P_n : $S(n) = n^2$
 - Base: $P_1: S(1) = 1 = 1^2$ (ok)
 - **Hipótese**: $P_j : S(j) = j^2$ (assumo verdadeira)
 - Passo: $S(j+1) = 1+3+5+\ldots+(2(j+1)-1)$ = $\underbrace{1+3+5+\ldots+(2j-1)}_{=(j+1)-1} + (2(j+1)-1)$ = S(j)+(2(j+1)-1)

Usamos que isso tudo é S(j)

- Prove que $1 + 3 + 5 + ... + (2n 1) = n^2$, para $n \ge 1$
 - Nesse caso, $S(n) = 1 + 3 + 5 + \ldots + (2n 1)$, e queremos mostrar P_n : $S(n) = n^2$
 - Base: $P_1: S(1) = 1 = 1^2$ (ok)
 - **Hipótese**: $P_j : S(j) = j^2$ (assumo verdadeira)
 - Passo: $S(j+1) = 1+3+5+\ldots+(2(j+1)-1)$ $= 1+3+5+\ldots+(2j-1)+(2(j+1)-1)$ = S(j)+(2(j+1)-1) $= j^2 + (2(j+1)-1)$ E assumimos $P_i : S(j) = j^2$

- Prove que $1 + 3 + 5 + ... + (2n 1) = n^2$, para $n \ge 1$
 - Nesse caso, S(n) = 1 + 3 + 5 + ... + (2n 1), e queremos mostrar P_n : $S(n) = n^2$
 - Base: $P_1: S(1) = 1 = 1^2$ (ok)
 - **Hipótese**: P_j : $S(j) = j^2$ (assumo verdadeira)
 - Passo: $S(j+1) = 1+3+5+\ldots+(2(j+1)-1)$ = $1+3+5+\ldots+(2j-1)+(2(j+1)-1)$ = S(j)+(2(j+1)-1)= $j^2+(2(j+1)-1)$ = j^2+2j+1

- Prove que $1 + 3 + 5 + ... + (2n 1) = n^2$, para $n \ge 1$
 - Nesse caso, S(n) = 1 + 3 + 5 + ... + (2n 1), e queremos mostrar P_n : $S(n) = n^2$
 - Base: $P_1: S(1) = 1 = 1^2$ (ok)
 - **Hipótese**: $P_j : S(j) = j^2$ (assumo verdadeira)
 - Passo: $S(j+1) = 1+3+5+\ldots+(2(j+1)-1)$ $= 1+3+5+\ldots+(2j-1)+(2(j+1)-1)$ = S(j)+(2(j+1)-1) $= j^2+(2(j+1)-1)$ $= j^2+2j+1$ $= (j+1)^2$

- Prove que $1 + 3 + 5 + ... + (2n 1) = n^2$, para $n \ge 1$
 - Nesse caso, S(n) = 1 + 3 + 5 + ... + (2n 1), e queremos mostrar P_n : $S(n) = n^2$
 - Base: $P_1: S(1) = 1 = 1^2$ (ok)
 - **Hipótese**: P_j : $S(j) = j^2$ (assumo verdadeira)
 - Passo: $S(j+1) = 1+3+5+\ldots+(2(j+1)-1)$ $= 1+3+5+\ldots+(2j-1)+(2(j+1)-1)$ = S(j)+(2(j+1)-1) $= j^2+(2(j+1)-1)$ $= j^2+2j+1$ $= (j+1)^2 \Rightarrow S(j+1) = (j+1)^2$

- Prove que $1 + 3 + 5 + ... + (2n 1) = n^2$, para $n \ge 1$
 - Nesse caso, S(n) = 1 + 3 + 5 + ... + (2n 1), e queremos mostrar P_n : $S(n) = n^2$
 - Base: $P_1: S(1) = 1 = 1^2$ (ok)
 - **Hipótese**: $P_j : S(j) = j^2$ (assumo verdadeira)
 - Passo: $S(j+1) = 1+3+5+\ldots+(2(j+1)-1)$ $= 1+3+5+\ldots+(2j-1)+(2(j+1)-1)$ = S(j)+(2(j+1)-1) $= j^2+(2(j+1)-1)$ $= j^2+2j+1$ $= (j+1)^2 \Rightarrow S(j+1) = (j+1)^2 \Rightarrow P_{j+1}$ é verdadeira

- Prove que $1 + 3 + 5 + ... + (2n 1) = n^2$, para $n \ge 1$
 - Nesse caso, $S(n) = 1 + 3 + 5 + \ldots + (2n 1)$, e queremos mostrar P_n : $S(n) = n^2$
 - Base: $P_1: S(1) = 1 = 1^2$ (ok)
 - **Hipótese**: $P_j : S(j) = j^2$ (assumo verdadeira)

Passo:
$$S(j+1) = 1+3+5+...+(2(j+1)-1)$$

= 1+3+5+...+(2j-1)+(2(j+1)-1)
= $S(j)+(2(j+1)-1)$
= $j^2 \leftrightarrow (2(j+1)-1)$
= j^2+2j+1
= $(j+1)^2 \Rightarrow S(j+1) = (j+1)^2 \Rightarrow P_{j+1}$ é verdadeira

• Seja
$$S(n) = 1 + 2 + ... + n$$
. Prove $P_n : S(n) = \frac{n(n+1)}{2}$

- Seja S(n) = 1 + 2 + ... + n. Prove $P_n : S(n) = \frac{n(n+1)}{2}$
 - Base: $P_1: S(1) = 1 = \frac{1(1+1)}{2}$

• Seja S(n) = 1 + 2 + ... + n. Prove $P_n : S(n) = \frac{n(n+1)}{2}$

• Base: $P_1: S(1) = 1 = \frac{1(1+1)}{2}$ (ok)

- Seja S(n) = 1 + 2 + ... + n. Prove $P_n : S(n) = \frac{n(n+1)}{2}$
 - Base: $P_1: S(1) = 1 = \frac{1(1+1)}{2}$ (ok)
 - **Hipótese**: $P_j : S(j) = \frac{j(j+1)}{2}$

- Seja S(n) = 1 + 2 + ... + n. Prove $P_n : S(n) = \frac{n(n+1)}{2}$
 - Base: $P_1: S(1) = 1 = \frac{1(1+1)}{2}$ (ok)
 - **Hipótese**: $P_j : S(j) = \frac{j(j+1)}{2}$
 - Passo: $S(j+1) = 1+2+\ldots+j+(j+1)$

- Seja S(n) = 1 + 2 + ... + n. Prove $P_n : S(n) = \frac{n(n+1)}{2}$
 - Base: $P_1: S(1) = 1 = \frac{1(1+1)}{2}$ (ok)
 - **Hipótese**: $P_j : S(j) = \frac{j(j+1)}{2}$
 - Passo: $S(j+1) = 1+2+\ldots+j+(j+1)$ = S(j)+(j+1)

- Seja S(n) = 1 + 2 + ... + n. Prove $P_n : S(n) = \frac{n(n+1)}{2}$
 - Base: $P_1: S(1) = 1 = \frac{1(1+1)}{2}$ (ok)
 - **Hipótese**: $P_j : S(j) = \frac{j(j+1)}{2}$
 - Passo: S(j+1) = 1+2+...+j+(j+1)= $S(j)+(j+1) = \frac{j(j+1)}{2}+(j+1)$

- Seja S(n) = 1 + 2 + ... + n. Prove $P_n : S(n) = \frac{n(n+1)}{2}$
 - Base: $P_1: S(1) = 1 = \frac{1(1+1)}{2}$ (ok)
 - **Hipótese**: $P_j : S(j) = \frac{j(j+1)}{2}$
 - Passo: S(j+1) = 1 + 2 + ... + j + (j+1)= $S(j) + (j+1) = \frac{j(j+1)}{2} + (j+1)$ = $\frac{j(j+1) + 2(j+1)}{2}$

- Seja S(n) = 1 + 2 + ... + n. Prove $P_n : S(n) = \frac{n(n+1)}{2}$
 - Base: $P_1: S(1) = 1 = \frac{1(1+1)}{2}$ (ok)
 - **Hipótese**: $P_j : S(j) = \frac{j(j+1)}{2}$
 - Passo: $S(j+1) = 1+2+\ldots+j+(j+1)$ $= S(j)+(j+1) = \frac{j(j+1)}{2}+(j+1)$ $= \frac{j(j+1)+2(j+1)}{2} = \frac{(j+1)(j+2)}{2}$

- Seja S(n) = 1 + 2 + ... + n. Prove $P_n : S(n) = \frac{n(n+1)}{2}$
 - Base: $P_1: S(1) = 1 = \frac{1(1+1)}{2}$ (ok)
 - **Hipótese**: $P_j : S(j) = \frac{j(j+1)}{2}$
 - Passo: $S(j+1) = 1+2+\ldots+j+(j+1)$ = $S(j) + (j+1) = \frac{j(j+1)}{2} + (j+1)$ = $\frac{j(j+1)+2(j+1)}{2} = \frac{(j+1)(j+2)}{2}$ = $\frac{(j+1)((j+1)+1)}{2}$

- Seja S(n) = 1 + 2 + ... + n. Prove $P_n : S(n) = \frac{n(n+1)}{2}$
 - Base: $P_1: S(1) = 1 = \frac{1(1+1)}{2}$ (ok)
 - **Hipótese**: $P_j : S(j) = \frac{j(j+1)}{2}$
 - Passo: $S(j+1) = 1+2+\ldots+j+(j+1)$ = $S(j) + (j+1) = \frac{j(j+1)}{2} + (j+1)$ = $\frac{j(j+1)+2(j+1)}{2} = \frac{(j+1)(j+2)}{2}$ = $\frac{(j+1)((j+1)+1)}{2} \Rightarrow S(j+1) = \frac{(j+1)((j+1)+1)}{2}$

Muito cuidado!

- É fácil se enganar ao construir uma prova por indução
- Quando demonstramos que P_{j+1} é verdadeira, sem usarmos a hipótese P_j , não estamos fazendo uma prova por indução finita
- Nesse caso, estamos fazendo uma prova direta de P_{j+1} , onde j+1 é arbitrário

Indução Finita

• Em alguns problemas, contudo, para se provar que P_{j+1} é verdadeira, temos que assumir a veracidade de todas as P_i , para $k \le i \le j$

Princípio da Indução Finita (Forte)

Sejam P_n afirmações associadas a cada inteiro positivo $n \geq k$. Se P_k for verdadeira e, para cada inteiro positivo $j \geq k$ pudermos mostrar que, se $P_k, P_{k+1}, \ldots, P_j$ forem verdadeiras então P_{j+1} também o será, então P_n será verdadeira para todo inteiro $n \geq k$.

Indução Finita

• E, formalmente...

Princípio da Indução Finita (Forte)

Para provarmos que P_n é verdadeira para todo $n \ge k$, teremos que provar que:

- lacksquare P é verdadeira para algum $k \geq 1$ (P_k é verdadeira)
- ② Para todo $j \geq k$, se $P_k, P_{k+1}, \ldots, P_j$ forem verdadeiras, então P também o será para j+1 $(P_k, P_{k+1}, \ldots, P_j \Rightarrow P_{j+1})$

Indução Finita (Forte)

Em outras palavras...

- Mostramos que P é verdadeira para um determinado $k \ge 1$ (normalmente, k = 1)
- ② Dado um inteiro arbitrário j, assumimos que P é verdadeira para todo $i, k \le i \le j$
- $oldsymbol{\circ}$ Baseados nessa hipótese, mostramos que P_{j+1} é verdadeira, ou seja, provamos que P é verdadeira para j+1

E assim conseguimos mostrar que P é verdadeira para qualquer inteiro $n \ge k$

Indução Finita (Forte)

Partes do Processo de Indução Finita

- Base: demonstrar que P_1 (ou P_k , para um determinado $k \ge 1$) é verdadeira (passo 1 no slide anterior)
- Hipótese de indução: assumir que P_k, P_{k+1}, \dots, P_j são verdadeiras
- **Passo indutivo**: estabelecer que $P_k, P_{k+1}, \dots, P_j \rightarrow P_{j+1}$ é verdadeira (passo 3)

Afinal, qual a diferença entre elas?

• Na fraca, devemos provar, para um inteiro arbitrário j, que P_{j+1} é verdadeira, com base somente na premissa de que P_j é verdadeira

Afinal, qual a diferença entre elas?

- Na fraca, devemos provar, para um inteiro arbitrário j, que P_{j+1} é verdadeira, com base somente na premissa de que P_j é verdadeira
- Na forte, devemos assumir que P_i é verdadeira para todo inteiro i entre r e um inteiro positivo arbitrário j, para então provar que P_{j+1} é verdadeira.

 A forte recebe esse nome por nos dar mais base, para os casos em que não conseguimos provar com a fraca.

- A forte recebe esse nome por nos dar mais base, para os casos em que não conseguimos provar com a fraca.
- Então a forte é melhor?

- A forte recebe esse nome por nos dar mais base, para os casos em que não conseguimos provar com a fraca.
- Então a forte é melhor?
- Não. Elas são totalmente equivalentes

• Prove que para todo $n \ge 2$, n ou é um número primo ou é o produto de números primos.

- Prove que para todo $n \ge 2$, n ou é um número primo ou é o produto de números primos.
 - Nesse caso, P_i é a afirmação de que i ou é um número primo ou o produto de primos

- Prove que para todo $n \ge 2$, n ou é um número primo ou é o produto de números primos.
 - Nesse caso, P_i é a afirmação de que i ou é um número primo ou o produto de primos
 - **Base**: P_2 é verdadeira (2 é primo)

- Prove que para todo $n \ge 2$, n ou é um número primo ou é o produto de números primos.
 - Nesse caso, P_i é a afirmação de que i ou é um número primo ou o produto de primos
 - Base: P₂ é verdadeira (2 é primo)
 - **Hipótese**: Dado um inteiro arbitrário j, suponho que, para todo inteiro $2 \le i \le j$, P_i é verdadeira, ou seja, i é primo ou o produto de primos

- Prove que para todo $n \ge 2$, n ou é um número primo ou é o produto de números primos.
 - Nesse caso, P_i é a afirmação de que i ou é um número primo ou o produto de primos
 - Base: P₂ é verdadeira (2 é primo)
 - Hipótese: Dado um inteiro arbitrário j, suponho que, para todo inteiro 2 ≤ i ≤ j, P_i é verdadeira, ou seja, i é primo ou o produto de primos
 - Em outras palavras, assumo que todo inteiro entre 2 e j ou é primo ou é o produto de primos

• **Passo**: Vejamos agora j + 1.

• **Passo**: Vejamos agora j + 1.

Se j + 1 for primo, o resultado está correto.

• **Passo**: Vejamos agora j + 1.

Se j + 1 for primo, o resultado está correto.

Se não for primo, então podemos escrevê-lo como j+1=ab (pois, do contrário, j+1 seria primo)

• **Passo**: Vejamos agora j + 1.

Se j + 1 for primo, o resultado está correto.

Se não for primo, então podemos escrevê-lo como j + 1 = ab (pois, do contrário, j + 1 seria primo)

Nesse caso, 1 < a < j+1 e 1 < b < j+1, pois sua multiplicação não pode passar de j+1, e se um deles for 1 estaremos dizendo que j+1=j+1, o que é óbvio.

• **Passo**: Vejamos agora j + 1.

Se j+1 for primo, o resultado está correto.

Se não for primo, então podemos escrevê-lo como j+1=ab (pois, do contrário, j+1 seria primo)

Nesse caso, 1 < a < j+1 e 1 < b < j+1, pois sua multiplicação não pode passar de j+1, e se um deles for 1 estaremos dizendo que j+1=j+1, o que é óbvio.

Isso equivale a dizer que $2 \le a \le j$ e $2 \le b \le j$, pois a e b são inteiros

• **Passo**: Vejamos agora j + 1.

Se j+1 for primo, o resultado está correto.

Se não for primo, então podemos escrevê-lo como j+1=ab (pois, do contrário, j+1 seria primo)

Nesse caso, 1 < a < j+1 e 1 < b < j+1, pois sua multiplicação não pode passar de j+1, e se um deles for 1 estaremos dizendo que j+1=j+1, o que é óbvio.

Isso equivale a dizer que $2 \le a \le j$ e $2 \le b \le j$, pois a e b são inteiros

Aplicando-se a hipótese de indução em a, temos que ele é primo ou o produto de primos. O mesmo vale para b.

• **Passo**: Vejamos agora j + 1.

Se j+1 for primo, o resultado está correto.

Se não for primo, então podemos escrevê-lo como j+1=ab (pois, do contrário, j+1 seria primo)

Nesse caso, 1 < a < j+1 e 1 < b < j+1, pois sua multiplicação não pode passar de j+1, e se um deles for 1 estaremos dizendo que j+1=j+1, o que é óbvio.

Isso equivale a dizer que $2 \le a \le j$ e $2 \le b \le j$, pois a e b são inteiros

Aplicando-se a hipótese de indução em a, temos que ele é primo ou o produto de primos. O mesmo vale para b.

Assim, *ab* é o produto de primos (2 ou mais, nesse caso), e a demonstração se completa

- Note que, nesse exemplo, n\u00e3o conseguimos provar P usando apenas j
 - Precisamos apelar a dois inteiros arbitrários a e b, entre 2 e j
 - Como não sabemos quais usaremos, tivemos que assumir que a hipótese valia para todos os inteiros entre 2 e j
- É então nisso que reside a força dessa indução
 - Não ficamos presos a j, mas sim a um intervalo de valores, nos dando mais possibilidades para a demonstração

 Prove que qualquer valor postal maior ou igual a oito unidades monetárias pode ser obtido usando-se apenas selos com valores de 3 e 5

- Prove que qualquer valor postal maior ou igual a oito unidades monetárias pode ser obtido usando-se apenas selos com valores de 3 e 5
 - **Base**: $P_8 = 8 = 3 + 5$

- Prove que qualquer valor postal maior ou igual a oito unidades monetárias pode ser obtido usando-se apenas selos com valores de 3 e 5
 - **Base**: $P_8 = 8 = 3 + 5$ (ok)

- Prove que qualquer valor postal maior ou igual a oito unidades monetárias pode ser obtido usando-se apenas selos com valores de 3 e 5
 - **Base**: $P_8 = 8 = 3 + 5$ (ok)
 - Hipótese: Dado um inteiro arbitrário j, P_i é verdadeira para todo 8 ≤ i ≤ j

- Prove que qualquer valor postal maior ou igual a oito unidades monetárias pode ser obtido usando-se apenas selos com valores de 3 e 5
 - **Base**: $P_8 = 8 = 3 + 5$ (ok)
 - Hipótese: Dado um inteiro arbitrário j, P_i é verdadeira para todo 8 ≤ i ≤ j
 - Passo: Por conveniência, vamos demonstrar outros 2 resultados:

- Prove que qualquer valor postal maior ou igual a oito unidades monetárias pode ser obtido usando-se apenas selos com valores de 3 e 5
 - **Base**: $P_8 = 8 = 3 + 5$ (ok)
 - Hipótese: Dado um inteiro arbitrário j, P_i é verdadeira para todo 8 ≤ i ≤ j
 - Passo: Por conveniência, vamos demonstrar outros 2 resultados:

$$P_9 = 3 + 3 + 3 \text{ (ok)}$$

- Prove que qualquer valor postal maior ou igual a oito unidades monetárias pode ser obtido usando-se apenas selos com valores de 3 e 5
 - **Base**: $P_8 = 8 = 3 + 5$ (ok)
 - Hipótese: Dado um inteiro arbitrário j, P_i é verdadeira para todo 8 ≤ i ≤ j
 - Passo: Por conveniência, vamos demonstrar outros 2 resultados:

$$P_9 = 3 + 3 + 3 \text{ (ok)}$$

$$P_{10} = 5 + 5 \text{ (ok)}$$

• **Passo** (cont.): Podemos então assumir que $j + 1 \ge 11$

• **Passo** (cont.): Podemos então assumir que $j+1 \geq 11$

Precisamos escrever isso em termos de algo no intervalo $8 \le i \le j$

• **Passo** (cont.): Podemos então assumir que $j+1 \geq 11$ Temos então que $(j+1)-3 \geq 11-3$

Precisamos escrever isso em termos de algo no intervalo $8 \le i \le j$

• **Passo** (cont.): Podemos então assumir que $j+1 \ge 11$ Temos então que $(j+1)-3 \ge 11-3$ $\Rightarrow j-2 > 8$

Precisamos escrever isso em termos de algo no intervalo $8 \le i \le j$

• Passo (cont.): Podemos então assumir que $j+1 \geq 11$ Temos então que $(j+1)-3 \geq 11-3$

$$\Rightarrow$$
 $j-2 \ge 8$

Como $8 \le j-2 < j$ então, pela hipótese de indução, P_{j-2} é verdadeira, e posso escrever j-2 como uma combinação de 3 e 5

• Passo (cont.): Podemos então assumir que $j+1 \geq 11$ Temos então que $(j+1)-3 \geq 11-3$

$$\Rightarrow$$
 $j-2 \ge 8$

Como $8 \le j-2 < j$ então, pela hipótese de indução, P_{j-2} é verdadeira, e posso escrever j-2 como uma combinação de 3 e 5

Como j+1=(j-2)+3, então $P_{j+1}=P_{j-2}+3$, e como P_{j-2} é uma combinação de 3 e 5, adicionar 3 faz com que P_{j+1} também o seja.

- Inicialmente, vimos casos em que:
 - Mostramos P_k , assumimos $P_j, j \ge k$ e mostramos que $P_j \to P_{j+1}$ (fraca)
 - Mostramos P_k , assumimos $P_k, P_{k+1}, \dots, P_j, j \ge k$ e mostramos que $P_j \to P_{j+1}$ (forte)

- Inicialmente, vimos casos em que:
 - Mostramos P_k , assumimos $P_j, j \ge k$ e mostramos que $P_j \to P_{j+1}$ (fraca)
 - Mostramos P_k , assumimos $P_k, P_{k+1}, \dots, P_j, j \ge k$ e mostramos que $P_j \to P_{j+1}$ (forte)
- Caso clássico

- Contudo, podemos ampliar a base, por exemplo:
 - Mostramos P_k, P_{k+1}, P_{k+2} , assumimos $P_j, j \ge k+2$ e mostramos que $P_j \to P_{j+1}$ (fraca)
 - Mostramos P_k, P_{k+1}, P_{k+2} , assumimos $P_{k+2}, P_{k+3}, \ldots, P_j, j \geq k+2$ e mostramos que $P_j \rightarrow P_{j+1}$ (forte)

- Contudo, podemos ampliar a base, por exemplo:
 - Mostramos P_k, P_{k+1}, P_{k+2} , assumimos $P_j, j \ge k+2$ e mostramos que $P_j \to P_{j+1}$ (fraca)
 - Mostramos P_k, P_{k+1}, P_{k+2} , assumimos $P_{k+2}, P_{k+3}, \ldots, P_j, j \geq k+2$ e mostramos que $P_j \rightarrow P_{j+1}$ (forte)
- Ou seja, "esticamos" a base até um valor que nos ajude na prova, como no último exemplo visto

- E nada nos impede de fazer:
 - Mostramos P_k , assumimos $P_{j-1},\, j-1 \geq k$ e mostramos que $P_{j-1} \rightarrow P_j$ (fraca)
 - Mostramos P_k , assumimos $P_k, P_{k+1}, \dots, P_{j-1}, j-1 \ge k$ e mostramos que $P_{j-1} \to P_j$ (forte)

- E nada nos impede de fazer:
 - Mostramos P_k , assumimos $P_{j-1},\, j-1 \geq k$ e mostramos que $P_{j-1} \rightarrow P_j$ (fraca)
 - Mostramos P_k , assumimos $P_k, P_{k+1}, \dots, P_{j-1}, j-1 \ge k$ e mostramos que $P_{j-1} \to P_j$ (forte)
- Nesse caso, apenas fizemos uma mudança de variável, que pode vir a facilitar a prova matemática.

Referências

- Gersting, Judith L. Fundamentos Matemáticos para a Ciência da Computação. 3a ed. LTC. 1993.
- Manber, Udi. Introduction to Algorithms: A Creative Approach. Addison-Wesley. 1989.
- Ziviani, Nivio. Projeto de Algoritmos: com implementações em Java e C++. Cengage. 2007.
- Manber, Udi. Using Induction to Design Algorithms. Communications of the ACM, 31(11). 1988.

Referências

- https://pt.wikipedia.org/wiki/Abdução_(lógica_filosófica)
- https://pt.wikipedia.org/wiki/Método_dedutivo
- https://pt.wikipedia.org/wiki/Método_indutivo