Problem Statement for predicting the insurance premium

- 1. The problem statement is to identify the insurance premium for the customers based on their age, gender, body mass index, no. of children and if the customer is a smoker or a non-smoker. These criteria have an impact on the premium calculation for the insurance policy.
- 2. Total number of rows and columns are 1338 rows × 6 columns.
- 3. The dataset has columns such as Sex and Smoker which are nominal data and get_dummies() method has been used to convert them to categorical data.
- 4. Data model Tabulation is listed below where the dataset is processed using the Multiple Linear Regression, Support Vector Machine, Decision Tree and Random Forest.
- 5. Based on the analysis, it is evident that Random Forest algorithm yields the highest R2 Score making it more appropriate to predict this dataset with the criterion as absolute_error, max feature as sqrt or log2 with the n_estimators as 100.

R2 Score for the dataset "Insurance Premium" using various algorithms

1. Multiple Linear Regression:

The R2 score is 0.7894790349867009

2. <u>Support Vector Machine(SVM)</u>:

The best R2 score for SVM is $\frac{0.84193382759}{0.84193382759}$ achieved using linear Poly where C = 3000

Iteration	Penalty Value - C	linear - R2 score	rbf - R2 score	poly - R2 score	sigmoid - R2 score
1	C=0.1	-35396.04768594211	-5440261.70880	-1766046.7478	-1246546.72301874
2	C=1	-332.77071665376997	-54117.2876953	-17454.966238	-12346.3461962857
3	C=10	-1.6415812170241182	-519.116705864	-157.46063728	-110.183700425396
4	C=100	0.0033516801839467	-4.82156703100	-0.3896453881	-0.77891306449674
5	C=1000	0.7372671733693169	0.688275816002	0.81947037838	-0.28834225376504
6	C=2000	0.7637722902026782	0.808554857964	0.84061597474	-0.13559466214339
7	C=3000	0.7646313401248144	0.836065961734	0.84193382759	-0.09891008475063

3. <u>Decision Tree</u>:

The best R2 score for Decision Tree is 0.7466445434644639 achieved using absolute_error as the criterion with the max feature as auto and splitter as random

Use Case	Criterion	Max Features	Splitter	R2 Value
1	absolute_error	auto	best	0.6893033518872613
2	absolute_error	auto	random	0.7349387883843278
3	absolute_error	sqrt	best	0.674523068447676
4	absolute_error	sqrt	random	0.6891483872431307
5	absolute_error	log2	best	0.7340315560069428
6	absolute_error	log2	random	0.6074797925035988
7	poisson	auto	best	0.7262611798891718
8	poisson	auto	random	0.6814529550502325
9	poisson	sqrt	best	0.7364142961841933
10	poisson	sqrt	random	0.6199974631095988
11	poisson	log2	best	0.7333235997692493
12	poisson	log2	random	0.6437429542708426
13	friedman_mse	auto	best	0.7081966858881397
14	friedman_mse	auto	random	0.7045053498470839
15	friedman_mse	sqrt	best	0.7385439221685439
16	friedman_mse	sqrt	random	0.6602615877159796
17	friedman_mse	log2	best	0.74080766177542
18	friedman_mse	log2	random	0.7466445434644639

4. Random Forest:

The best R2 score for Random Forest is 0.8710685856341518 achieved using absolute_error as the criterion with the max feature as sqrt and log2 with the n_estimators as 100.

Use Case	Criterion	Max Features	n_estimators	R2 Value
1	absolute_error	auto	10	0.835063555313752
2	absolute_error	auto	100	0.8520093621081837
3	absolute_error	sqrt	10	0.8574290080917196
4	absolute_error	sqrt	100	0.8710685856341518
5	absolute_error	log2	10	0.8574290080917196
6	absolute_error	log2	100	0.8710685856341518
7	poisson	auto	10	0.8313991040134341
8	poisson	auto	100	0.8526334258892607
9	poisson	sqrt	10	0.8544955286235119
10	poisson	sqrt	100	0.8680156984764337
11	poisson	log2	10	0.8544955286235119
12	poisson	log2	100	0.8680156984764337
13	friedman_mse	auto	10	0.8331662678473348
14	friedman_mse	auto	100	0.8540518935149612
15	friedman_mse	sqrt	10	0.8502777994291519
16	friedman_mse	sqrt	100	0.8710544015500664
17	friedman_mse	log2	10	0.8502777994291519
18	friedman_mse	log2	100	0.8710544015500664