

Universidad Nacional de Ingeniería Facultad de Ciencias Escuela Profesional de Matemática

Ciclo 2020-I

[Cod: CM4F1A Curso: Análisis y Modelamiento Numérico I] [Temas: Revisión de Cálculo. Errores de redondeo aritmética computacional. Algoritmos y convergencia.]

Práctica Dirigida \mathcal{N}^{o} 1

1. La función $f:[a,b] \to \mathbb{R}$ se dice que satisface una condición de Lipschitz con constante de Lipschitz L en [a,b] si, para cada $x,y \in [a,b]$, se tiene

$$|f(x) - f(y)| \le L|x - y|.$$

- a) Demuestre que si f satisface la condición de Lipschitz con constante de Lipschitz L en el intervalo [a,b], entonces $f \in C[a,b]$.
- b) Demuestre que si f tiene una derivada que es acotada en [a,b] por L, entonces f satisface la condición de Lipschitz con constante de Lipschitz L en el intervalo [a,b].
- c) Dé un ejemplo de una función que sea continua en un intervalo cerrado pero que no satisfaga la condición de Lipschitz en el intervalo.
- 2. Suppose $f \in C[a, b]$, that x_1 and x_2 are in [a, b].
 - a) Show that a number ξ exists between x_1 and x_2 with $f(\xi) = \frac{f(x_1) + f(x_2)}{2} = \frac{1}{2}f(x_1) + \frac{1}{2}f(x_2)$.
 - b) Suppose that c_1 and c_2 are positive constants. Show that a number ξ exists between x_1 and x_2 with $f(\xi) = \frac{c_1 f(x_1) + c_2 f(x_2)}{c_1 + c_2}$.
 - c) Give an example to show that the result in part (b) does not necessarily hold when c_1 and c_2 opposite signs with $c_1 \neq -c_2$.
- 3. Sea $f \in C[a, b]$, y sea p en el intervalo (a, b).
 - a) Suponga que $f(p) \neq 0$. Demuestre que existe un $\delta > 0$ con $f(x) \neq 0$, para todo x en $[p \delta, p + \delta]$, con $[p \delta, p + \delta]$ subconjunto de [a, b].
 - b) Suponga que f(p) = 0 y k > 0 es dado. Demuestre que existe $\delta > 0$ con $|f(x)| \le k$, para todo x en $[p \delta, p + \delta]$, con $[p \delta, p + \delta]$ subconjunto de [a, b].
- 4. Sea $f(x) = \frac{x \cos x \sin x}{x \sin x}$
 - a) Encuentre $\lim_{x\to 0} f(x)$
 - b) Use aritmética de redondeo de cuatro dígitos para evaluar f(0,1)

- c) Reemplace cada función trigonométrica con su tercer polinomio de Maclaurin, y repita la parte (b).
- d) El valor real es f(0,1) = -1,99899998. Encuentre el error relativo para los valores obtenidos en las partes (b) y (c).
- 5. Use aritmética de redondeo de cuatro dígitos y las fórmulas (1.1), (1.2) y (1.3) para encontrar las aproximaciones más precisas a las raíces de las siguientes ecuaciones cuadráticas. Calcule los errores absolutos y los errores relativos.
 - a) $\frac{1}{3}x^2 \frac{123}{4}x + \frac{1}{6} = 0$
 - $b) \ \frac{1}{3}x^2 + \frac{123}{4}x \frac{1}{6} = 0$
 - c) $1.002x^2 11.01x + 0.01265 = 0$
 - d) $1,002x^2 + 11,01x + 0,01265 = 0$
- 6. Suppose that fl(y) is a k-digit rounding approximation to y. Show that

$$\left| \frac{y - fl(y)}{y} \right| \le 0.5 \times 10^{-k+1}$$

[Hint:If $d_{k+1} < 5$, then $fl(y) = 0.d_1.d_2...d_k \times 10^n$. If $d_{k+1} \ge 5$, then $fl(y) = 0.d_1.d_2...d_k \times 10^n + 10^{n-k}$.]

- 7. Sea $P(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$ un polinomio, y sea dado x_0 . Construya un algoritmo para evaluar $P(x_0)$ usando multiplicación anidada.
- 8. Las ecuaciones (1.2) y (1.3) en la Sección 1.2 dan fórmulas alternativas para las raíces x_1 y x_2 de $ax^2 + bx + c = 0$. Construya un algoritmo con entrada a, b, c y salida x_1 , x_2 que calcule las raíces x_1 y x_2 (que puede ser igual o ser conjugados complejos) usando la mejor fórmula para cada raíz.
- 9. Construya un algoritmo que tenga como entradas números enteros $n \geq 1, x_0, x_1, ..., x_n$ y un número x y que produzca como salida el producto

$$(x-x_0)(x-x_1)\cdots(x-x_n).$$

10. Suppose that as x approaches zero,

$$F_1(x) = L_1 + O(x^{\alpha})$$
 and

$$F_2(x) = L_2 + O(x^{\beta}).$$

Let c_1 and c_2 be nonzero constants, and define

$$F(x) = c_1 F_1(x) + c_2 F_2(x)$$
 and

$$G(x) = F_1(c_1x) + F_2(c_2x).$$

Show that if $\gamma = \min \{\alpha, \beta\}$, then as x approaches zero,

a)
$$F(x) = c_1 L_1 + c_2 L_2 + O(x^{\gamma})$$

b)
$$G(x) = L_1 + L_2 + O(x^{\gamma})$$

11. Dada la función $f: \mathbb{R} \to \mathbb{R}$, definida como

$$f(x) = 1 - \cos x$$

- a) Para qué valores de x el número de condición de f(x) crece hacia el infinito?.
- b) Al aplicar Taylor alrededor de cero en el número de condición y hacemos que x tienda cero. Evitamos el mal condicionamiento?.

- c) Si aplicamos Taylor a f(x) que se observa?.
- 12. Dada la función $f: \mathbb{R} \to \mathbb{R}$, definida como

$$f(x) = \sqrt{1+x} - \sqrt{x}$$
 para $|x| \gg 1$. Determine el número de condicionamiento de f .

13. Dado el polinomio de Wilkinson

$$p(x) = (x-1)(x-2)...(x-19)(x-20)$$
$$= x^{20} - 210x^{19} + 20615x^{18} - \cdots$$

tiene ceros en los números 1, 2, 3, ..., 20

- a) Usando una aritmética adecuada que sucede con los ceros de $q(x) = p(x) + 0,0001x^{19}$, con ello se puede afirmar que el problema está mal acondicionado?
- b) Pruebe analíticamente el resultado del item (a)

UNI, 01 de junio de 2020.