

2013 JOI春合宿 Day4 漢字しりとり(Kanji Shiritori) 解説

2014/03/24 山下 洋史 @utatakiyoshi

はじめに

・問題文が7ページもありますが,

ちゃんと読みましたか?

問題文が長くなる傾向にあります

・時間はたっぷりあるので、焦らずに読んでください

Anna

の視点

N頂点 M辺 の有向グラフ

① → 1 の最短経路は?
というクエリが Q 個飛んでくる

Anna

の視点

N頂点 M辺 の有向グラフ

① → 1 の最短経路は?
というクエリが Q 個飛んでくる

Bruno

の視点

N頂点 M辺 の有向グラフ

0 → 1 の最短経路は?

コストが[???]の辺が K本 というクエリが Q 個飛んでくる

小課題

- ・小課題 1 [10点] (L ≤ 1000 いろいろ小さい)
- ・小課題 2 [22点] (L ≤ 180)
- · 小課題 3 [8点] (L ≤ 160)
- · 小課題 4 [40点] (L ≤ 90)
- · 小課題 5 [20点] (L ≤ 64)

制約

すべての入力データは以下の条件を満たす.

- $2 \le N \le 300$.
- $1 \leq M \leq N \times (N-1)$.
- $0 \le Ai < N \ (0 \le i < M).$
- $0 \le Bi < N \ (0 \le i < M).$
- Ai \neq Bi $(0 \le i < M)$.
- $(Ai,Bi) \neq (Aj,Bj) (0 \le i < j < M).$
- $1 \le Ci \le 10^{16} (< 2^{54}) (0 \le i < M).$
- 1 ≤ Q ≤ 60.
- $0 \le Sj < N \ (0 \le j < Q).$
- $0 \le Tj < N \ (0 \le j < Q).$
- $S_j \neq T_j \ (0 \leq j < Q)$.
- $(Si,Ti) \neq (Sj,Tj)(0 \le i < j < Q)$.
- ・漢字 Sj から始まり漢字 Tj で終わる漢字しりとりが存在する (0 ≤ j < Q).
- $1 \le K \le 5$.
- $0 \le U_k < M(0 \le k < K)$.
- $U_i \neq U_j \ (0 \le i < j < K)$.
- Bruno が忘れてしまった単語の最初の文字は共通である. すなわち $A_{U0} = A_{U1} = \cdots = A_{UK-1}$.

重要な制約

← かなり小さい

小課題 1 (10点)

- Q ≤ 10
- · 答えのサイズ = W ≤ 10
- L ≤ 1000
- → Anna で最短路して、答えを全部送る

 $(QWlog(N) = 10 \times 10 \times log(300) \rightarrow 900 \text{ bit })$

小課題 1'(10点)

- Q ≤ 10
- · 答えのサイズ = W ≤ 10
- L ≤ 1000
- → Anna が U_k のコストをそのまま送る

 $(\log(C)K = \log(2^{54}) \times 5 = 270 \text{ bit })$

重要な考察

こんなものはいらない

最短経路はこの6通りしかない

重要な考察

とりあえず番号付け

小課題 2 (22点)

- ・この 6 (=K+1) 通りのどれを通るかを送る
- ・1クエリあたり3bit
- $Q \times 3 = 60 \times 3 = 180$ bit

数字を0/1列で送る

一般的なテク

- ・0 ≦ a < 5, 0 ≦ b < 5, 0 ≦ c < 10 を送りたい
- そのまま送ると

aに3bit,bに3bit,cに4bit→合計10bit

- · (a,b,c) は 5 × 5 × 10 = 250 通り
- ・250 通りのうちどれか?を送ることにする
 - → 8 bit (2 bit 短縮)

小課題 3 (8点)

- ・3つずつまとめて送る
- ·x,y,z を送るとき, 36x + 6y + z を送る
- ・6×6×6=216通り → 8 bit
- $(Q/3) \times 8 = (60/3) \times 8 = 160 \text{ bit}$

Compare(j, a, b):

問題jでパスaとパスbはどっちが短い?

これが $0 \le j < Q$, $0 \le a \le 5$, $0 \le b \le 5$

について全部分かれば解ける

Brunoの視点

a+1 < b+4 なら 問題 1 は上ルートが勝ち

a+1 < b+5 なら 問題 2 は上ルートが勝ち

Bruno

の視点

a-b < -1+5 なら 問題 2 は上ルートが勝ち

Bruno

の視点

a-b < -1+4 なら 問題 1 は上ルートが勝ち

a-b < -1+5 なら 問題 2 は上ルートが勝ち

Brunoの視点

a-0 < -2+5 なら 問題 1 は中ルートが勝ち

a-0 < -8+9 なら 問題 2 は中ルートが勝ち

a-b < -3 なら 問題 1 は上ルートが勝ち

a-b < -1 なら 問題 2 は上ルートが勝ち

a-b < 4 なら 問題 3 は上ルートが勝ち

a-b < -1 なら 問題 4 は上ルートが勝ち

a-b < -5 なら 問題 5 は上ルートが勝ち

a-b < 9 なら 問題 6 は上ルートが勝ち

- ・パス a と パス b の比較で パス a が勝つのはいくつか? を送る。
- ・「パスa勝ち」の個数が分かればBrunoで復元できる
- ・送るのは log(Q+1) → 6 bit
- ・a, b の組み合わせが (K+1) × K / 2 = 15 通り
- $6 \times 15 = 90$ bit

パス 0 < パス 1 パス 0 > パス 2 パス 1 > パス 2 だからパス 2 が最短やな!

- ・パス a と パス b の比較で パス a が勝つのはいくつか? を送る。
- ・「パスa勝ち」の個数が分かればBrunoで復元できる
- ・送るのは log(Q+1) → 6 bit
- ・a, b の組み合わせが (K+1) × K / 2 = 15 通り
- $6 \times 15 = 90$ bit

小課題 5 (20点)

最短パスをパスiと比較

2014 JOI春合宿 Day4 漢字しりとり(Kanji Shiritori) 解説 2014/03/24

小課題 5 (20点)

使う Compare は

· Compare(?, 0, 1):9個

· Compare(?, 0, 2):6個

· Compare(?, 1, 2):3個

小課題 5 (20点)

- ・Compare(?, a, b) を使う個数を Xab とする
- ・左が勝つのは何個かを送る. $(0 \sim X_{ab})$ の範囲) (まとめて送るテクでの圧縮もする)

 $log(X_{01}+1) + log(X_{02}+1) + log(X_{12}+1) + ... + log(X_{45}+1)$ [bit]

 \cdot (60) \rightarrow (30,30) \rightarrow (20,20,20) \rightarrow (15,15,15,15) \rightarrow (12,12,12,12,12)

となるように分割された時が最悪

- $\rightarrow \log(61) + \log(31) \times 2 + \log(21) \times 3 + \log(16) \times 4 + \log(12) \times 5$
- → 64 bit

4, **2, 1**

4, 2, 1, **1, 2, 0**

4, 2, 1, 1, 2, 0, ...

小課題 5 (20点)

- ・Compare(?, a, b) を呼ぶ回数を Cab とする
- ・それぞれ小課題4と同じように送る(まとめて送るテクでの圧縮もする)
- $\cdot \log(C_{01}+1) + \log(C_{02}+1) + \log(C_{12}+1) + ... + \log(C_{45}+1)$ [bit]
- \cdot (60) \rightarrow (30,30) \rightarrow (20,20,20) \rightarrow (15,...,15) \rightarrow (12,...,12)
- となるように分割された時が最悪
- $\rightarrow \log(61) + \log(31) \times 2 + \log(21) \times 3 + \log(16) \times 4 + \log(12) \times 5$
- → **64 bit** (おめでとうございます)

諸注意

- ・ long long (引数の型見てネ)
- ・パス i が無い ([???]の辺を消すと非連結になる)
- ・グラフが密なので Dijkstra なら

priority queue を使わないO(V²)の方で

(今回はどっちでもたぶん OK)

・不正はいけない

全頂点対間の最短距離を求めます 1~(k-1) だけを通って行く最短路がわかっている

(i → k) + (k → j) が (i → j) より短かったら

$$(i \rightarrow k) + (k \rightarrow j)$$
 が $(i \rightarrow j)$ より短かったら $i \rightarrow j$ を更新


```
for (k = 1 ... N) {
  for (i = 1 ... N) {
   for (j = 1 ... N) {
    i → j を更新する
}}}
```


経路復元

 $next(i \rightarrow j): i \rightarrow j$ の経路で初めにたどる辺

更新: next (i → j) ← next (i → k)

辿る:i ← next (i → j)の終点

点数

2014 JOI春合宿 Day4 漢字しりとり(Kanji Shiritori) 解説 2014/03/24