# TL070, TL070A, TL071, TL071A, TL071B, TL072, TL072A, TL072B, TL074, TL074A, TL074B, TL075 LOW-NOISE JFET-INPUT OPERATIONAL AMPLIFIERS

D2393, SEPTEMBER 1978-REVISED JANUARY 1989

#### 19 DEVICES COVER COMMERCIAL, INDUSTRIAL, AND MILITARY TEMPERATURE RANGES

- Low Power Consumption
- Wide Common-Mode and Differential Voltage Ranges
- Low Input Bias and Offset Currents
- Output Short-Circuit Protection
- Low Total Harmonic Distortion . . .
   0.003% Typ
- Common-Mode Input Voltage Range Includes VCC+

- Low Noise . . .  $V_n = 18 \text{ nV}/\sqrt{\text{Hz}} \text{ Typ}$
- High Input Impedance . . . JFET-Input Stage
- Internal Frequency Compensation (Except TL070, TL070A)
- Latch-Up-Free Operation
- High Slew Rate . . . 13 V/μs Typ

# description

The JFET-input operational amplifiers in the TL07\_ series are designed as low-noise versions of the TL08\_ series amplifiers with low input bias and offset currents and fast slew rate. The low harmonic distortion and low noise make the TL07\_ series ideally suited as amplifiers for high-fidelity and audio preamplifier applications. Each amplifier features JFET-inputs (for high input impedance) coupled with bipolar output stages all integrated on a single monolithic chip.

The M suffix devices are characterized for operation over the full military temperature range of  $-55\,^{\circ}$ C to  $125\,^{\circ}$ C. The I suffix devices are characterized for operation from  $-40\,^{\circ}$ C to  $85\,^{\circ}$ C, and the C suffix devices are characterized for operation from  $0\,^{\circ}$ C to  $70\,^{\circ}$ C.

#### **AVAILABLE OPTIONS**

|       |         | PACKAGE  |          |          |           |         |          |          |         |  |  |  |
|-------|---------|----------|----------|----------|-----------|---------|----------|----------|---------|--|--|--|
| Τ.    | VIO MAX | SMALL    | CHIP     | CERAMIC  | CERAMIC   | METAL   | PLASTIC  | PLASTIC  | FLAT    |  |  |  |
| TA    | AT 25°C | OUTLINE  | CARRIER  | DIP      | DIP       | CAN     | DIP      | DIP      | PACK    |  |  |  |
|       |         | (D)      | (FK)     | (J)      | (JG)      | (L)     | (N)      | (P)      | (W)     |  |  |  |
|       | 10 mV   | TL070CD  |          |          | TL070CJG  |         |          | TL070CP  |         |  |  |  |
|       | 6 mV    | TL070ACD |          |          | TL070ACJG |         |          | TL070ACP |         |  |  |  |
| 1     | 10 mV   | TL071CD  |          |          | TL071CJG  |         |          | TL071CP  |         |  |  |  |
|       | 6 mV    | TL071ACD |          |          | TL071ACJG |         |          | TL071ACP |         |  |  |  |
| 0°C   | 3 mV    | TL071BCD |          |          | TL071BCJG |         |          | TL071BCP |         |  |  |  |
| to    | 10 mV   | TL072CD  |          |          | TL072CJG  |         |          | TL072CP  |         |  |  |  |
| 70°C  | 6 mV    | TL072ACD |          |          | TL072ACJG |         |          | TL072ACP |         |  |  |  |
| /     | 3 mV    | TL072BCD |          |          | TL072BCJG |         |          | TL072BCP |         |  |  |  |
| 1     | 10 mV   | TL074CD  |          | TL074CJ  |           |         | TL074CN  |          |         |  |  |  |
|       | 6 mV    | TL074ACD |          | TL074ACJ |           |         | TL074ACN |          |         |  |  |  |
|       | 3 mV    | TL074BCD |          | TL074BCJ |           |         | TL074BCN |          |         |  |  |  |
|       | 10 mV   |          |          |          |           |         | TL075CN  |          |         |  |  |  |
| -40°C | 6 mV    | TL070ID  |          |          | TL070IJG  |         |          | TL070IP  |         |  |  |  |
| to    | 6 mV    | TL071ID  |          |          | TL071IJG  |         |          | TL071IP  |         |  |  |  |
| 85 °C | 6 mV    | TL072ID  |          |          | TL072IJG  |         |          | TL072IP  |         |  |  |  |
| 85.0  | 6 mV    | TL074ID  |          | TL074IJ  |           |         | TL074IN  |          |         |  |  |  |
| -55°C | 6 mV    |          | TL071MFK |          | TL071MJG  | TL071ML |          |          |         |  |  |  |
| to    | 6 mV    |          | TL072MFK |          | TL072MJG  | TL072ML |          |          |         |  |  |  |
| 125°C | 9 mV    |          | TL074MFK | TL074MJ  |           |         |          |          | TL074MW |  |  |  |

The D package is available taped and reeled. Add the suffix R to the device type (e.g., TL071CDR).







NC-No internal connection.



## symbols



#### absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

|                                                              |                        | TL07_M     | TL07_I                       | TL07_C<br>TL07_AC<br>TL07_BC | UNIT |  |  |
|--------------------------------------------------------------|------------------------|------------|------------------------------|------------------------------|------|--|--|
| Supply voltage, V <sub>CC+</sub> (see Note 1)                |                        | 18         | 18                           | 18                           | V    |  |  |
| Supply voltage, V <sub>CC</sub> _ (see Note 1)               |                        | - 18       | -18                          | -18                          | V    |  |  |
| Differential input voltage (see Note 2)                      |                        | ±30        | ±30                          | ±30                          | ٧    |  |  |
| Input voltage (see Notes 1 and 3)                            |                        | ±15        | ±15                          | ±15                          | V    |  |  |
| Duration of output short circuit (see Note 4)                |                        | unlimited  | unlimited                    | unlimited                    |      |  |  |
| Continuous total dissipation                                 |                        | See        | See Dissipation Rating Table |                              |      |  |  |
| Operating free-air temperature range                         |                        | -55 to 125 | -40 to 85                    | 0 to 70                      | °C   |  |  |
| Storage temperature range                                    |                        | -65 to 150 | -65 to 150                   | -65 to 150                   | °C   |  |  |
| Case temperature for 60 seconds                              | FK package             | 260        |                              |                              | °C   |  |  |
| Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds | J, JG, or<br>W package | 300        | 300                          | 300                          | °C   |  |  |
| Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds | D, N, or<br>P package  |            | 260                          | 260                          | °C   |  |  |
| Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds | L package              | 300        |                              |                              | °C   |  |  |

- NOTES: 1. All voltage values, except differential voltages, are with respect to the midpoint between V<sub>CC+</sub> and V<sub>CC+</sub>.
  - 2. Differential voltages are at the noninverting input terminal with respect to the inverting input terminal.
  - 3. The magnitude of the input voltage must never exceed the magnitude of the supply voltage or 15 V, whichever is less.
  - 4. The output may be shorted to ground or to either supply. Temperature and/or supply voltages must be limited to ensure that the dissipation rating is not exceeded.

#### DISSIPATION RATING TABLE

| PACKAGE         | T <sub>A</sub> ≤ 25°C<br>POWER RATING | DERATING<br>FACTOR | DERATE<br>ABOVE TA | T <sub>A</sub> = 70°C<br>POWER RATING | T <sub>A</sub> = 85°C<br>POWER RATING | T <sub>A</sub> = 125°C<br>POWER RATING |
|-----------------|---------------------------------------|--------------------|--------------------|---------------------------------------|---------------------------------------|----------------------------------------|
| D (8-pin)       | 680 mW                                | 5.8 mW/°C          | 33°C               | 464 mW                                | 377 mW                                | N/A                                    |
| D (14-pin)      | 680 mW                                | 7.6 mW/°C          | 60°C               | 608 mW                                | 494 mW                                | N/A                                    |
| FK              | 680 mW                                | 11.0 mW/°C         | 88°C               | 680 mW                                | 680 mW                                | 275 mW                                 |
| J (TL07_M)      | 680 mW                                | 11.0 mW/°C         | 88°C               | 680 mW                                | 680 mW                                | 275 mW                                 |
| J (all others)  | 680 mW                                | 8.2 mW/°C          | 67°C               | 656 mW                                | 533 mW                                | N/A                                    |
| JG (TL07M)      | 680 mW                                | 8.4 mW/°C          | 69°C               | 672 mW                                | 546 mW                                | 210 mW                                 |
| JG (all others) | 680 mW                                | 6.6 mW/°C          | 47°C               | 528 mW                                | 429 mW                                | N/A                                    |
| L               | 680 mW                                | 6.6 mW/°C          | 25°C               | 528 mW                                | 429 mW                                | 165 mW                                 |
| N               | 680 mW                                | 9.2 mW/°C          | 76°C               | 680 mW                                | 598 mW                                | N/A                                    |
| P               | 680 mW                                | 8.0 mW/°C          | 65°C               | 640 mW                                | 520 mW                                | N/A                                    |
| w               | 680 mW                                | 8.0 mW/°C          | 65°C               | 640 mW                                | 520 mW                                | 200 mW                                 |

# TL071M, TL072M, TL074M LOW-NOISE JEET-INPUT OPERATIONAL AMPLIFIERS

# electrical characteristics, $V_{CC\pm} = \pm 15 \text{ V}$ (unless otherwise noted)

| PARAMETER                        |                                                                       | TEST CONDITIONS <sup>†</sup>                |                                               |     | TL071M<br>TL072M |     |     | UNIT  |     |       |
|----------------------------------|-----------------------------------------------------------------------|---------------------------------------------|-----------------------------------------------|-----|------------------|-----|-----|-------|-----|-------|
|                                  |                                                                       |                                             |                                               | MIN | TYP              | MAX | MIN | TYP   | MAX |       |
| Vio                              | Input offset voltage                                                  |                                             | T <sub>A</sub> = 25°C                         |     | 3                | 6   |     | 3     | 9   | mV    |
| VIO                              | input onset voitage                                                   | $R_S = 50 \Omega$ ,                         | $T_A = -55$ °C to 125 °C                      |     |                  | 9   |     |       | 15  | 1110  |
| αVIO                             | Temperature coefficient of input offset voltage                       | $V_O = 0$ ,<br>$T_A = -55$ °C               | •                                             |     | 18               |     |     | 18    |     | μV/°C |
| l. a                             | Input offset                                                          | V0 = 0                                      | T <sub>A</sub> = 25°C                         |     | 5                | 100 |     | 5     | 100 | pΑ    |
| lo                               | current <sup>‡</sup>                                                  | v0 = 0                                      | $T_A = -55^{\circ}C \text{ to } 125^{\circ}C$ |     |                  | 20  |     |       | 20  | nΑ    |
| l <sub>IB</sub>                  | Input bias current                                                    | V <sub>O</sub> = 0                          | T <sub>A</sub> = 25°C                         |     | 65               | 200 |     | 65    | 200 | pΑ    |
| 'IB                              | mput bias current                                                     | VO = 0                                      | $T_A = -55$ °C to 125 °C                      |     |                  | 50  |     |       | 50  | nA    |
|                                  | Common-mode                                                           |                                             |                                               | 1   | - 12             |     |     | -12   |     |       |
| VICR                             | input voltage range                                                   | T <sub>A</sub> = 25°C                       |                                               | ±11 | to               |     | ±11 | to    |     | V     |
|                                  | input voitage range                                                   |                                             |                                               | L   | +15              |     |     | +15   |     |       |
|                                  | Maximum                                                               | $R_L = 10 \text{ k}\Omega$                  | $T_A = 25$ °C                                 | ±12 | ±13.5            |     | ±12 | ±13.5 |     |       |
| Vом                              | peak output                                                           | R <sub>L</sub> ≥ 10 kΩ                      | $T_A = -55$ °C to 125°C                       | ±12 |                  |     | ±12 |       |     | V     |
|                                  | voltage swing                                                         | $R_L \ge 2 k\Omega$                         | 1A = -33 C to 123 C                           | ±10 |                  |     | ±10 |       |     |       |
| A <sub>VD</sub>                  | Large-signal<br>differential voltage                                  | $V_0 = \pm 10 \text{ V},$                   | T <sub>A</sub> = 25°C                         | 35  | 200              |     | 35  | 200   |     | V/mV  |
| ~vu                              | amplification                                                         | R <sub>L</sub> ≥ 2 kΩ                       | $T_A = -55$ °C to 125 °C                      | 15  |                  |     | 15  |       |     | •/•   |
| B <sub>1</sub>                   | Unity-gain bandwidth                                                  | $T_A = 25$ °C                               |                                               |     | 3                |     |     | 3     |     | MHz   |
| rį                               | Input resistance                                                      | $T_A = 25$ °C                               |                                               |     | 1012             |     |     | 1012  |     | Ω     |
| CMRR                             | Common-mode rejection ratio                                           | $V_{IC} = V_{ICR} m$<br>$R_S = 50 \Omega$ , |                                               | 80  | 86               |     | 80  | 86    |     | dB    |
| <sup>k</sup> SVR                 | Supply voltage rejection ratio (ΔV <sub>CC±</sub> /ΔV <sub>IO</sub> ) |                                             | ' to ±9 V, V <sub>O</sub> = 0,                | 80  | 86               |     | 80  | 86    |     | dB    |
| Icc                              | Supply current (each amplifier)                                       | No load,<br>T <sub>A</sub> = 25 °C          | V <sub>O</sub> = 0,                           |     | 1.4              | 2.5 |     | 1.4   | 2.5 | mA    |
| V <sub>01</sub> /V <sub>02</sub> | Crosstalk attenuation                                                 |                                             | T <sub>A</sub> = 25°C                         |     | 120              |     |     | 120   |     | dB    |

<sup>&</sup>lt;sup>†</sup>All characteristics are measured under open-loop conditions with zero common-mode voltage unless otherwise specified.

<sup>‡</sup>Input bias currents of a FET-input operational amplifier are normal junction reverse currents, which are temperature sensitive as shown in Figure 6. Pulse techniques must be used that will maintain the junction temperature as close to the ambient temperature as possible.

# electrical characteristics, $V_{CC\pm} = \pm 15 \text{ V}$ (unless otherwise noted)

| PARAMETER                        |                                                                       | TEST CONDITIONS <sup>†</sup>                                |                                            | TL070I<br>TL071I<br>TL072I<br>TL074I |                    | TL070C<br>TL071C<br>TL072C<br>TL074C |     | TL070AC TL071AC TL072AC TL074AC |          |     | TL070BC TL071BC TL072BC TL074BC |          |     | UNIT             |        |       |  |   |    |
|----------------------------------|-----------------------------------------------------------------------|-------------------------------------------------------------|--------------------------------------------|--------------------------------------|--------------------|--------------------------------------|-----|---------------------------------|----------|-----|---------------------------------|----------|-----|------------------|--------|-------|--|---|----|
|                                  |                                                                       |                                                             |                                            | MIN                                  | TYP                | MAX                                  | MIN | TYP                             | MAX      | MIN | TYP                             | MAX      | MIN | TYP              | MAX    | 1     |  |   |    |
| V <sub>IO</sub>                  | Input offset voltage                                                  |                                                             | $T_A = 25$ °C<br>$T_A = \text{full range}$ |                                      | 3                  | 6<br>8                               |     | 3                               | 10<br>13 |     | 3                               | 6<br>7.5 |     | 2                | 3<br>5 | mV    |  |   |    |
| <sup>α۷</sup> ιο                 | Temperature coefficient of input offset voltage                       | V <sub>O</sub> = 0,<br>T <sub>A</sub> = full range          | $R_S = 50 \Omega$ ,                        |                                      | 18                 |                                      |     | 18                              |          |     | 18                              |          |     | 18               |        | μV/°C |  |   |    |
|                                  | Input offset                                                          | V <sub>O</sub> = 0                                          | T <sub>A</sub> = 25°C                      |                                      | 5                  | 100                                  |     | 5                               | 100      |     | 5                               | 100      |     | 5                | 100    | pA    |  |   |    |
| 10                               | current <sup>‡</sup>                                                  | v <sub>0</sub> = 0                                          | T <sub>A</sub> = full range                |                                      |                    | 10                                   |     |                                 | 2        |     |                                 | 2        |     |                  | 2      | nA    |  |   |    |
| h                                | Input bias current <sup>‡</sup>                                       | V <sub>O</sub> = 0                                          | $T_A = 25$ °C                              |                                      | 65                 | 200                                  |     | 65                              | 200      |     | 65                              | 200      |     | 65               | 200    | pΑ    |  |   |    |
| lВ                               | input bias current.                                                   | \v0 = 0                                                     | v <sub>0</sub> = 0                         | v <sub>0</sub> = 0                   | v <sub>0</sub> = 0 | T <sub>A</sub> = full range          |     |                                 | 20       |     |                                 | 7        |     |                  | 7      |       |  | 7 | nA |
| VICR                             | Common-mode input voltage range                                       | T <sub>A</sub> = 25°C                                       | -                                          | ±11                                  | - 12<br>to<br>+ 15 |                                      | ±11 | – 12<br>to<br>+ 15              |          | ±11 | - 12<br>to<br>+ 15              |          | ±11 | -12<br>to<br>+15 |        | V     |  |   |    |
|                                  | Maximum                                                               | $R_L = 10 \text{ k}\Omega$                                  | T <sub>A</sub> = 25°C                      | ±12                                  | ±13.5              |                                      | ±12 | ±13.5                           |          | ±12 | ±13.5                           |          | ±12 | ±13.5            |        |       |  |   |    |
| Vом                              | peak output<br>voltage swing                                          | $R_L \ge 10 \text{ k}\Omega$<br>$R_L \ge 2 \text{ k}\Omega$ | T <sub>A</sub> = full range                | ±12                                  |                    |                                      | ±12 |                                 |          | ±12 |                                 |          | ±12 |                  |        | \ \   |  |   |    |
| AVD                              | Large-signal<br>differential voltage                                  | $V_0 = \pm 10 \text{ V}$                                    | T <sub>A</sub> = 25°C                      | 50                                   | 200                |                                      | 25  | 200                             |          | 50  | 200                             |          | 50  | 200              |        | V/mV  |  |   |    |
| 1                                | amplification                                                         | R <sub>L</sub> ≥2kΩ                                         | T <sub>A</sub> = full range                | 25                                   |                    |                                      | 15  |                                 |          | 25  |                                 |          | 25  |                  |        |       |  |   |    |
| В1                               | Unity-gain bandwidth                                                  | T <sub>A</sub> = 25°C                                       |                                            |                                      | 3                  |                                      |     | 3                               |          |     | 3                               |          |     | 3                |        | MHz   |  |   |    |
| ri                               | Input resistance                                                      | T <sub>A</sub> = 25°C                                       |                                            |                                      | 1012               |                                      |     | 1012                            |          |     | 1012                            |          |     | 1012             |        | Ω     |  |   |    |
| CMRR                             | Common-mode rejection ratio                                           | $V_{IC} = V_{ICR} m$<br>$R_S = 50 \Omega$ ,                 | -                                          | 80                                   | 100                |                                      | 70  | 100                             |          | 80  | 100                             |          | 80  | 100              |        | dB    |  |   |    |
| k <sub>SVR</sub>                 | Supply voltage rejection ratio (ΔV <sub>CC±</sub> /ΔV <sub>IO</sub> ) |                                                             | ' to ±9 V, V <sub>O</sub> = 0,             | 80                                   | 100                |                                      | 70  | 100                             |          | 80  | 100                             |          | 80  | 100              |        | dB    |  |   |    |
| lcc                              | Supply current (each amplifier)                                       | No load,<br>T <sub>A</sub> = 25°C                           | V <sub>O</sub> = 0,                        |                                      | 1.4                | 2.5                                  |     | 1.4                             | 2.5      |     | 1.4                             | 2.5      |     | 1.4              | 2.5    | mA    |  |   |    |
| V <sub>01</sub> /V <sub>02</sub> | Crosstalk attenuation                                                 | A <sub>VD</sub> = 100,                                      | T <sub>A</sub> = 25°C                      |                                      | 120                |                                      |     | 120                             |          |     | 120                             |          |     | 120              |        | dB    |  |   |    |

<sup>†</sup>All characteristics are measured under open-loop conditions with zero common-mode voltage unless otherwise specified. Full range for TA is -40°C to 85°C for TL07\_1 and 0°C to 70°C

# , TL071, TL071A, , TL072B, TL074, **AMPLIFIERS** TL074B,

<sup>‡</sup>Input bias currents of a FET-input operational amplifier are normal junction reverse currents, which are temperature sensitive as shown in Figure 6. Pulse techniques must be used that will maintain the junction temperature as close to the ambient temperature as possible.

# TL070, TL070A, TL071, TL071A, TL071B, TL072, TL072A, TL072B, TL074, TL074A, TL074B, TL075 LOW-NOISE JFET-INPUT OPERATIONAL AMPLIFIERS

# operating characteristics, VCC ± = ±15 V, TA = 25 °C

| PARAMETER      |                         | TEST                    | 1                      | L07_N | Λ     | ALL OTHERS |       |       | UNIT |                    |
|----------------|-------------------------|-------------------------|------------------------|-------|-------|------------|-------|-------|------|--------------------|
|                | PARAMETER               | 1531 (                  | MIN                    | TYP   | MAX   | MIN        | TYP   | MAX   | UNIT |                    |
| SR             | Slew rate at unity gain | $V_{ } = 10 \text{ V},$ | $R_L = 2 k\Omega$ ,    | 8     | 13    |            | 8     | 13    |      | V/μs               |
| J"             | Siew rate at unity gain | $C_L = 100 pF$ ,        | See Figure 1           |       |       |            |       |       |      | V/µ3               |
|                | Rise time               | $V_1 = 20 \text{ mV},$  | $R_L = 2 k\Omega$ ,    |       | 0.1   |            |       | 0.1   |      | μS                 |
| t <sub>r</sub> | overshoot factor        | $C_L = 100 pF$ ,        | See Figure 1           | 20    |       |            | 20    |       |      | %                  |
| [ v            | Equivalent input        | $R_S = 100 \Omega$      | f = 1 kHz              |       | 18    |            |       | 18    |      | nV/√Hz             |
| Vn             | noise voltage           | ng = 100 tz             | f = 10 Hz to 10 kHz    |       | 4     |            |       | 4     |      | μV                 |
|                | Equivalent input        | $R_S = 100 \Omega$      | f = 1 kHz              |       | 0.01  |            |       | 0.01  |      | pA/√ <del>Hz</del> |
| <sup>l</sup> n | noise current           | ng = 100 u,             | I = 1 KMZ              |       | 0.01  |            |       | 0.01  |      | pA/VIIZ            |
| THD            | Total harmonic          | $V_{O(rms)} = 10 V,$    | $R_S \leq 1 k\Omega$ , |       | 0.003 |            | 0.003 |       |      | %                  |
| י חסיי         | distortion              | $R_L \ge 2 k\Omega$ ,   | f = 1 kHz              |       | 0.003 |            |       | 0.003 |      | ^0                 |

#### PARAMETER MEASUREMENT INFORMATION



FIGURE 1. UNITY-GAIN AMPLIFIER

FIGURE 2. GAIN-OF-10 INVERTING AMPLIFIER

FIGURE 3. FEED-FORWARD COMPENSATION

# INPUT OFFSET VOLTAGE NULL CIRCUITS



FIGURE 4

FIGURE 5



# TYPICAL CHARACTERISTICS†





# MAXIMUM PEAK OUTPUT VOLTAGE



# MAXIMUM PEAK OUTPUT VOLTAGE



<sup>&</sup>lt;sup>†</sup>Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. An 18-pF compensation capacitor is used with TL070 and TL070A.



# TL070, TL070A, TL071, TL071A, TL071B TL072, TL072A, TL072B, TL074, TL074A, TL074B, TL075 LOW-NOISE JFET-INPUT OPERATIONAL AMPLIFIERS

## TYPICAL CHARACTERISTICS<sup>†</sup>





# MAXIMUM PEAK OUTPUT VOLTAGE



# LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION



<sup>&</sup>lt;sup>†</sup>Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. An 18-pF compensation capacitor is used with TL070 and TL070A.

#### TYPICAL CHARACTERISTICS<sup>†</sup>





# NORMALIZED UNITY-GAIN BANDWIDTH and PHASE SHIFT



FIGURE 16

COMMON-MODE REJECTION RATIO vs



FIGURE 17

<sup>†</sup>Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. An 18-pF compensation capacitor is used with TL070 and TL070A.



# TL070, TL070A, TL071, TL071A, TL071B TL072, TL072A, TL072B, TL074, TL074A, TL074B, TL075 LOW-NOISE JEET-INPUT OPERATIONAL AMPLIFIERS

## TYPICAL CHARACTERISTICS<sup>†</sup>



†Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. An 18-pF compensation capacitor is used with TL070 and TL070A.

100 125

0.90

0.85

-75 - 50 - 25

0 25 50

FIGURE 21

TA-Free-Air Temperature-°C

TL070, TL071

25 50 75

TA-Free-Air Temperature-°C

FIGURE 20

50

25

-75 -50 -25



75 100 125

#### TYPICAL CHARACTERISTICS









# TL070, TL070A, TL071, TL071A, TL071B TL072, TL072A, TL072B, TL074, TL074A, TL074B, TL075 LOW-NOISE JFET-INPUT OPERATIONAL AMPLIFIERS

## TYPICAL APPLICATION DATA



FIGURE 26. 0.5-Hz SQUARE-WAVE OSCILLATOR

FIGURE 27. HIGH-Q NOTCH FILTER



†or TL075

FIGURE 28. AUDIO DISTRIBUTION AMPLIFIER

#### TYPICAL APPLICATION DATA



Note A: These resistor values may be adjusted for a symmetrical output.

#### FIGURE 29. 100-kHz QUADRATURE OSCILLATOR



FIGURE 30. AC AMPLIFIER

# TYPICAL APPLICATION DATA



FIGURE 31. IC PREAMPLIFIER

