Total No. of Questions : 6]	SEAT No.:
P5074	[Total No. of Pages : 2
T.H	E./Insem622
T.E. (E &	TC) (Semester - I)
DIGITALS	IGNAL PROCESSING
(2)	015 Pattern)
Time: 1 Hour]	[Max. Marks: 30
Instructions to the candidates:	
1) Answer Q.1 or Q.2, Q.3 or	r Q.4, Q.5 or Q.6.
	Irawn wherever necessary

- 3) Figures to the right indicate full marks.
- 4) All questions carry equal marks.
- 5) Use of logarithmic tables slide rule, Mollier charts, electronic pocket calculator and steam tables is allowed.
- *6*) Assume suitable data if necessary.
- Q1) a) An analog signal is given by

 $x(t) = 3\cos 100\pi t + 2\sin 300\pi t$ $4\cos 100\pi t$

- What is the Nyquist rate for this signal? i)
- Write the equation of sampled signal. ii)
- If the signal is sampled at a rate of 200 sam/sec. What is the discrete iii) time signal obtained after sampling.
- Explain the basic elements of DSP system. b)

OR

Explain the concept of basis function and orthogonality. Check whether **Q2)** a) the functions given are orthogonal or not over a time interval [0, 1].

$$f(t)=1; x(t)=\sqrt{3}(1-2t).$$
 [6]

What are the advantages of digital signal processing over analog signal b) processing. [4]

P.T.O.

[4]

Compute the DFT of following sequence *Q3*) a)

$$x(n) = \cos \frac{n\pi}{4} n = 0,1,2,3$$
 [4]

- Given $x(n) = [0 \ 1 \ 2 \ 3]$, find x(k) using DIT FFT algorithm. b) [4]
- How many computations are required to compute 16 point DFT using c) DFT & FFT algorithm. [2]

OR

Compute the circular convolution of following sequences **Q4**) a) [4] $x_1(n) = \{1 \ 1 \ 2 \ 2\} \ x_2(n) = \{1 \ 2 \ 3 \ 4\}$.

- State and prove circular time shift property. b) [6]
- State and prove the convolution property of Z.transform. **Q5**) a) [4]
 - Compute the Z.transform of following sequences [6] b)
 - $x(n)=n \ u(n)$.

ii)
$$x(n) = \left(\frac{1}{2}\right)^n u(n) + (3)^n u(-n-1)$$
OR

Q6) a)

Find x(n)

if ROC is

- iii) $\frac{1}{3} < |z| < 1$.
- discrete

 2 Explain the causality and stability of discrete time systems w.r.t. b) Z.transform. [4]

