

SOLUTION QUESTION MODEL PAPER (3rd Set) SSC-I MATHEMATICS

SECTION-A

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
В	C	A	A	A	C	В	A	C	C	В	C	A	C	В

SECTION-B

Question 2

$$(i) A = \begin{bmatrix} 1 & 2 \\ 1 & 3 \end{bmatrix} I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

(a)
$$det(A) = (1)(3) - (2)(1) = 1$$
 $\rightarrow (01)mark$

$$Adj(A) = \begin{bmatrix} 3 & -2 \\ -1 & 1 \end{bmatrix}$$
 \rightarrow (01) mark

(b)
$$A(AdjA) = \begin{bmatrix} 1 & 2 \\ 1 & 3 \end{bmatrix} \begin{bmatrix} 3 & -2 \\ -1 & 1 \end{bmatrix} = \begin{bmatrix} 3-2 & -2+2 \\ 3-3 & -2+3 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I$$
 \rightarrow (01) mark $(AdjA)A = \begin{bmatrix} 3 & -2 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 1 & 3 \end{bmatrix} = \begin{bmatrix} 3-2 & 6-6 \\ -1+1 & -2+3 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I$ \rightarrow (01) mark

Hence A(AdjA) = (AdjA)A

(ii)
$$(x - iy)(3 + 5i) = \overline{-6 - 24i}$$

 $(3x + 5y) + (5x - 3y)i = -6 + 24i$ $\rightarrow (01)mark$
 $3x + 5y = -6$ $5x - 3y = 24$ $\rightarrow (01)mark$

Multiplying equations by -5 and by 3 respectively then adding the resultant

$$-15x - 25y + 15x - 9y = 30 + 72$$
 $\Rightarrow y = -3$ $\rightarrow (01)mark$

Multiplying equations by 3 and by 5 respectively then adding the resultant

$$9x + 15y + 25x - 15y = -18 + 120$$
 $\implies x = 3$ $\rightarrow (01)mark$

(iii)
$$\log_4(64)^{n+1} = \log_5(625)^{n-1}$$

 $\log_4(4)^{3(n+1)} = \log_5(5)^{4(n-1)} \rightarrow (01) mark$
 $3(n+1)\log_4 4 = 4(n-1)\log_5 5 \rightarrow (01) mark$
 $3(n+1) = 4(n-1) \rightarrow (01) mark$
 $n = 7 \rightarrow (01) mark$

$$(iv) \quad \frac{1}{x} = \sqrt{7} + \sqrt{6}$$

$$x = \frac{1}{\sqrt{7} + \sqrt{6}} \times \frac{\sqrt{7} - \sqrt{6}}{\sqrt{7} - \sqrt{6}} = \sqrt{7} - \sqrt{6}$$

$$x + \frac{1}{x} = (\sqrt{7} + \sqrt{6}) + (\sqrt{7} - \sqrt{6}) = 2\sqrt{7}$$

$$x - \frac{1}{x} = (\sqrt{7} + \sqrt{6}) - (\sqrt{7} - \sqrt{6}) = 2\sqrt{6}$$

$$(x + \frac{1}{x})(x - \frac{1}{x}) = (2\sqrt{7})(2\sqrt{6}) = 4\sqrt{42}$$

$$\rightarrow (01)mark$$

$$(x + \frac{1}{x})(x - \frac{1}{x}) = (2\sqrt{7})(2\sqrt{6}) = 4\sqrt{42}$$

$$\rightarrow (01)mark$$

(v)
$$P(x) = x^4 - 2x^3 - 11x^2 - 8x - 60$$

At $x = -3$
 $P(-3) = (-3)^4 - 2(-3)^3 - 11(-3)^2 - 8(-3) - 60 = 0$
Thus $(x + 3)$ is a factor of $P(x)$. $\rightarrow (01)$ mark $\rightarrow (01)$ mark $\rightarrow (01)$ mark $\rightarrow (02)$ marks $\rightarrow (02)$ marks $\rightarrow (01)$ mark $\rightarrow (01)$ mark $\rightarrow (02)$ marks $\rightarrow (02)$ m

(vi) Let P(x) be the required polynomial and $Q(x) = x^2 - 5x - 14$ the given polynomial with

$$\begin{aligned} \text{HCF} &= x - 7 \text{ and LCM} = x^3 - 10x^2 + 11x + 70 \\ P(x) &= \frac{(HCF)(LCM)}{Q(x)} & \rightarrow (01)mark \\ P(x) &= \frac{(x - 7)(x^3 - 10x^2 + 11x + 70)}{(x^2 - 5x - 14)} \\ P(x) &= \frac{(x - 7)(x^3 - 10x^2 + 11x + 70)}{(x - 7)(x + 2)} & \rightarrow (01)mark \\ P(x) &= \frac{(x^3 - 10x^2 + 11x + 70)}{(x + 2)} & \rightarrow (01)mark \\ P(x) &= \frac{(x^3 - 10x^2 + 11x + 70)}{(x + 2)} & \rightarrow (02)marks \end{aligned}$$

$$\begin{aligned} &= \frac{7}{3}x^2 + 11x + 70 \\ &= \frac{7}{3}x^2 + 21x \\ &= \frac{7}{3}x^2 + 11x + 70 \\ &= \frac{7}{3}x^2 + 11x + 70 \\ &= \frac{7}{3}x^2 + 11x + 70 \end{aligned}$$

$$\begin{vmatrix} \frac{3x+9}{2x+1} \\ -9 = 5 \end{vmatrix}$$

$$\begin{vmatrix} \frac{3x+9}{2x+1} \\ \frac{3x+9}{2x+1} \end{vmatrix} = 14$$

$$3x+9=14 (2x+1)$$

$$3x+9=28x+14$$

$$25x=-5$$

$$x=-\frac{1}{5}$$

$$3x+9=-28x-14$$

$$3x+9=-28x-14$$

$$3x+9=-23x$$

$$x=-\frac{23}{31}$$

$$3x+9=-23$$

$$x=-\frac{23}{31}$$

$$x=-\frac{23}{31}$$

$$x=-\frac{23}{31}$$

(viii)
$$\frac{2}{3} \le \frac{1+x}{6} \le \frac{3}{4}$$

 $\frac{2}{3} \le \frac{1+x}{6}$; $\frac{1+x}{6} \le \frac{3}{4}$ \rightarrow (01)mark
 $\frac{12}{3} \le 1+x$; $1+x \le \frac{18}{4}$ \rightarrow (01)mark

$$4 - 1 \le x \qquad ; \qquad x \le \frac{9}{2} - 1 \qquad \rightarrow (01) mark$$

$$3 \le x \qquad ; \qquad x \le \frac{7}{2} \qquad \rightarrow (01) mark$$
Solution Set = $\left\{ x \mid x \in R \land 3 \le x \le \frac{7}{2} \right\}$

(ix)
$$x + 2y = -4$$

 $y = -\frac{1}{2}(x + 4)$

х	2	0	-2	-4
у	-3	-2	-1	0
			<u>س</u> (01	mark

2x + 4y = 8 $y = -\frac{1}{2}(x - 4)$

х	4	2	0	-2
у	0	1	2	3
			(0.1)	

 \rightarrow (01)mark

The given system of linear equations represents a pair of parallel straight lines on the graph.

Therefore $Solution Set = \{ \}$

$$(x)$$
 $P(3,3), Q(8,3), R(3,12)$

$$|\overline{PQ}| = \sqrt{(8-3)^2 + (3-3)^2} = 5$$

$$\rightarrow$$
 (01)*mark*

$$|\overline{QR}| = \sqrt{(3-8)^2 + (12-3)^2} = \sqrt{106} = 10.3$$

$$\rightarrow$$
 (01)*mark*

$$|\overline{PR}| = \sqrt{(3-3)^2 + (12-3)^2} = 9$$

$$\rightarrow$$
 (01)*mark*

$$\left|\overline{PQ}\right| + \left|\overline{QR}\right| = 5 + 10.3 = 15.3 \neq \left|\overline{PR}\right|$$

$$\rightarrow$$
 (01)*mark*

Therefore given points are not collinear.

(xi) Let ABCD represents a rectangular doorway

By Pythagoras Theorem

$$m|\overline{AC}|^2 = m|\overline{AB}|^2 + m|\overline{BC}|^2$$
 $\rightarrow (01)mark$
 $m|\overline{AC}|^2 = 4^2 + 8^2$ $\rightarrow (01)mark$
 $m|\overline{AC}|^2 = 80$

8 ft 8 ft

$$m\overline{AC} = \sqrt{80} = 8.94 \text{ feet}$$

$$\rightarrow$$
 (01)mark

Since 8.94ft < 9ft, so 9 feet wide table can pass through the rectangular doorway. \rightarrow (01)mark

(xii) Consider a parallelogram ABCD.

In right ΔCDA (by Pythagoras Theorem)

$$m|\overline{CD}|^2 = m|\overline{AD}|^2 + m|\overline{AC}|^2$$

 \rightarrow (01)mark

$$m|\overline{AC}|^2 = m|\overline{CD}|^2 - m|\overline{AD}|^2$$

$$m|\overline{AC}|^2 = 16^2 - 9^2 = 175$$

$$m|\overline{AC}| = \sqrt{175} = 13.23m$$

 \rightarrow (01)mark

Area of
$$\triangle CDA = \frac{1}{2} (m|\overline{AD}|)(m|\overline{AC}|) = \frac{1}{2} (9)(13.23) = \frac{1}{2} (119.07)$$

 $\rightarrow (01) mark$

Area of parallelogram ABCD = $2(Area \ of \ \Delta CDA) = 119.07m$

 \rightarrow (01)mark

(xiii)
$$x + y = 8 \implies y = 8 - x \rightarrow eqn - I$$

$$m\overline{BX}$$
: $m\overline{CX} = m\overline{AB}$: $m\overline{AC}$

 \rightarrow (01)*mark*

$$x: y = 5:4$$

$$4x = 5y$$

 \rightarrow (01)mark

$$4x = 5(8 - x)$$

From eqn - I

$$4x = 40 - 5x$$

$$x = \frac{40}{9}$$

 \rightarrow (01)mark

Using eqn - I

$$y = 8 - \frac{40}{9} = \frac{32}{9}$$

 \rightarrow (01)mark

 \rightarrow (0.5)*mark*

Given: Any point P lies inside $\angle AOB$ such that $\overline{PQ} = \overline{PR}$,

where
$$\overline{PQ} \perp \overrightarrow{OB}$$
 and $\overline{PR} \perp \overrightarrow{OA}$.

 $\rightarrow (0.5) mark$

To Prove: Point P is on the bisector of $\angle AOB$.

 \rightarrow (0.5)*mark*

Construction: Join P to 0.

 \rightarrow (0.5)*mark*

Proof:

SECTION-C

Q 3.
$$AB = \begin{bmatrix} 3 & 4 \\ 2 & 3 \end{bmatrix} \begin{bmatrix} 3 & 7 \\ 2 & 5 \end{bmatrix} = \begin{bmatrix} 9+8 & 21+20 \\ 6+6 & 14+15 \end{bmatrix} = \begin{bmatrix} 17 & 41 \\ 12 & 29 \end{bmatrix} \rightarrow (01) mark$$

$$|AB| = (17)(29) - (41)(12) = 1$$
 $Adj(AB) = \begin{bmatrix} 29 & -41 \\ -12 & 17 \end{bmatrix} \rightarrow (0.5 + 0.5) mark$

$$(AB)^{-1} = \frac{1}{|AB|} \cdot Adj(AB) = \begin{bmatrix} 29 & -41 \\ -12 & 17 \end{bmatrix}$$
 $\rightarrow (0.5 + 0.5) mark$

$$|B| = (3)(5) - (7)(2) = 1$$
 $Adj(B) = \begin{bmatrix} 5 & -7 \\ -2 & 3 \end{bmatrix} \rightarrow (0.5 + 0.5) mark$

$$B^{-1} = \frac{1}{|B|} \cdot Adj(B) = \begin{bmatrix} 5 & -7 \\ -2 & 3 \end{bmatrix}$$
 $\rightarrow (0.5 + 0.5) mark$

$$|A| = (3)(3) - (4)(2) = 1$$
 $Adj(A) = \begin{bmatrix} 3 & -4 \\ -2 & 3 \end{bmatrix} \rightarrow (0.5 + 0.5) mark$

$$A^{-1} = \frac{1}{|A|} \cdot Adj(A) = \begin{bmatrix} 3 & -4 \\ -2 & 3 \end{bmatrix}$$
 $\rightarrow (0.5 + 0.5) mark$

$$B^{-1}A^{-1} = \begin{bmatrix} 5 & -7 \\ -2 & 3 \end{bmatrix} \begin{bmatrix} 3 & -4 \\ -2 & 3 \end{bmatrix} = \begin{bmatrix} 15 + 14 & -20 - 21 \\ -6 - 6 & 8 + 9 \end{bmatrix} = \begin{bmatrix} 29 & -41 \\ -12 & 17 \end{bmatrix} \rightarrow (01) mark$$

Q4.
$$\frac{x}{x^2 - x - 2} - \frac{1}{x^2 + 5x - 14} - \frac{2}{x^2 + 8x + 7} = \frac{x + 3}{x^2 + 5x - 14}$$
$$x^2 - x - 2 = x^2 - 2x + x - 2 = x(x - 2) + 1(x - 2) = (x - 2)(x + 1) \rightarrow (01)mark$$
$$x^2 + 5x - 14 = x^2 - 2x + 7x - 14 = x(x - 2) + 7(x - 2) = (x - 2)(x + 7) \rightarrow (01)mark$$

$$x^{2} + 8x + 7 = x^{2} + x + 7x + 7 = x(x+1) + 7(x+1) = (x+1)(x+7)$$
 \rightarrow (01) mark

$$x^2 + 5x - 14 = x^2 - 2x + 7x - 14 = x(x - 2) + 7(x - 2) = (x - 2)(x + 7) \rightarrow (01)$$
 mark

$$\frac{x}{(x-2)(x+1)} - \frac{1}{(x-2)(x+7)} - \frac{2}{(x+1)(x+7)} = \frac{x+3}{(x-2)(x+7)}$$

$$\frac{x(x+7)-(x+1)-2(x-2)}{(x-2)(x+1)(x+7)} = \frac{x+3}{(x-2)(x+7)}$$
 \rightarrow (01)mark

$$\frac{x^2 + 7x - x - 1 - 2x + 4}{(x - 2)(x + 1)(x + 7)} = \frac{x + 3}{(x - 2)(x + 7)}$$
 \rightarrow (0.5)mark

$$\frac{x^2 + 4x + 3}{(x-2)(x+1)(x+7)} = \frac{x+3}{(x-2)(x+7)}$$
 \rightarrow (01)mark

$$\frac{(x+1)(x+3)}{(x-2)(x+1)(x+7)} = \frac{x+3}{(x-2)(x+7)}$$
 \rightarrow (01)mark

$$\frac{x+3}{(x-2)(x+7)} = \frac{x+3}{(x-2)(x+7)} \to (0.5) mark$$

Q5. Figure:
$$\rightarrow$$
 (01)*mark*

Given: A point C not lying on \overrightarrow{AB} . A point D lying on \overrightarrow{AB} such that $\overline{CD} \perp \overrightarrow{AB}$. \rightarrow (01) mark

To Prove: \overline{CD} is the shortest distance from C to \overrightarrow{AB} .

Proof:

Statements	Reasons	
In $\triangle CDE$ $m \angle 1 > m \angle 3 \rightarrow (i)$	An exterior angle of a triangle is greater than non-adjacent interior angle	→ (01) <i>mark</i>
$m \angle 1 = m \angle 2$ $\rightarrow (ii)$	Supplement of right angle	\rightarrow (01)mark
$m\angle 2 > m\angle 3$	from (i) & (ii)	\rightarrow (0.5)mark
<i>m</i> ∠3 < <i>m</i> ∠2	If $a > b$ then $b < a$	
$m\overline{CD} < m\overline{CE}$	Opposite side of smaller angle	\rightarrow (01)mark
But E is any point on AB		
Hence \overline{CD} is the shortest distance from C to \overrightarrow{AB}		\rightarrow (0.5)mark

Q6. Figure:

Given: In $\triangle ABC$, line ι is intersecting sides \overline{AC} and \overline{AB} at points E and D respectively

such that $\overline{ED} \parallel \overline{CB}$. \rightarrow (01)*mark*

To Prove: $m\overline{AD}$: $m\overline{DB} = m\overline{AE}$: $m\overline{EC}$ \rightarrow (01) mark

Construction: Join B to E; C to D. Draw $\overline{DM} \perp \overline{AC}$ and $\overline{EL} \perp \overline{AB}$. \rightarrow (01)*mark*

Proof:

Statements	Reasons	
In triangles BED and AED, \overline{EL} is the common perpendicular.		
$\therefore Area \ of \Delta BED = \frac{1}{2} (m\overline{BD}) (m\overline{EL}) \rightarrow (i)$	Area of a $\Delta = \frac{1}{2}$ (base) (height)	\rightarrow (0.5)mark
$\therefore Area of \ \Delta AED = \frac{1}{2} (m\overline{AD}) (m\overline{EL}) \rightarrow (ii)$	Area of a $\Delta = \frac{1}{2}$ (base) (height)	\rightarrow (0.5)mark
$\Rightarrow \frac{Area\ of\ \Delta BED}{Area\ of\ \Delta AED} = \frac{m\overline{DB}}{m\overline{AD}} \qquad \rightarrow (iii)$	Dividing (i) by (ii)	\rightarrow (0.5)mark
$\Rightarrow \frac{Area\ of\ \Delta CDE}{Area\ of\ \Delta ADE} = \frac{m\overline{EC}}{m\overline{AE}} \qquad \rightarrow (iv)$	similarly	\rightarrow (0.5)mark
But Area of $\triangle BED \cong Area \ of \ \triangle CDE$	Areas of triangle with common base and same altitudes are equal. Given that $\overline{ED} \parallel \overline{CB}$. So altitudes are equal.	\rightarrow (01)mark
$\frac{m\overline{DB}}{m\overline{AD}} = \frac{m\overline{EC}}{m\overline{AE}}$	From (iii) and (iv)	\rightarrow (0.5)mark
$\frac{\overline{MAD}}{\overline{MDB}} = \frac{\overline{MAE}}{\overline{MEC}}$	On taking reciprocals	\rightarrow (0.5)mark
$m\overline{AD}: m\overline{DB} = m\overline{AE}: m\overline{EC}$		

Q7. (a) Construction Steps

- (i) Construct a 4 by 2 rectangle. \rightarrow (01)mark
- (ii) Produce \overline{AD} to H making $m\overline{DH} = m\overline{CD}$.
- (iii) Bisect \overline{AH} at O.

 \rightarrow (01)mark

- (iv) With centre O and radius \overline{OA} describe a semi-circle. \rightarrow (01)mark
- (v) Produce \overline{CD} to meet the semi-circle in E.
- (vi) On \overline{DE} as a side construct a square DGFE (the required one). \rightarrow (01)mark
- (b) $m\overline{DG} = m\overline{GF} = m\overline{FE} = m\overline{DE} = 2.8cm$ \rightarrow (01)mark Area of Square $DGFE = (2.8)(2.8) = 7.84cm^2$ \rightarrow (01)mark
- (c) Area of Rectangle $ABCD = (4)(2) = 8cm^2$ $\rightarrow (01)mark$ Area of Square $DGFE \approx Area$ of Rectangle ABCD $\rightarrow (01)mark$