Probability Theory

Exercise Sheet 5

Exercise 5.1

- (a) Let $(X_n)_{n\in\mathbb{N}}$ be a sequence of real random variables converging in probability to a random variable X. Show that $(X_n)_{n\in\mathbb{N}}$ converges to X in distribution.
- (b) The converse does not hold in general. Instead, show that if the sequence $(X_n)_{n\in\mathbb{N}}$ converges in distribution to a *constant* random variable X=c, then $(X_n)_{n\in\mathbb{N}}$ converges in probability to c.

Exercise 5.2 Compute the characteristic functions of the following distributions:

- (a) The triangular distribution $(1 |x|)1_{[-1,1]}(x)dx$.
- (b) The Cauchy distribution $\frac{\alpha}{\pi} \frac{1}{x^2 + \alpha^2} dx$ with parameter $\alpha > 0$. **Hint**: Use a contour integral.

Exercise 5.3 Let $(P_n)_{n\in\mathbb{N}}$ be a sequence of probability measures with

$$\int_{\mathbb{R}} x^k P_n(dx) \stackrel{n \to \infty}{\longrightarrow} \alpha_k \in \mathbb{R} \quad \text{for all } k \in \mathbb{N}.$$

Assume that there exists exactly one probability measure P with the k-th moment $\alpha_k = \int_{\mathbb{R}} x^k P(dx)$. Show that $(P_n)_{n \in \mathbb{N}}$ converges weakly towards P.

Hint: First show that $(P_n)_{n\in\mathbb{N}}$ is tight. Then show that each subsequence of $(P_n)_{n\in\mathbb{N}}$ has a sub-subsequence that converges weakly towards P.

Remark: Note that in general, there is no uniqueness of such P. A counter-example would be $Y = e^X$ with X a standard normal random variable.

Submission: until 14:15, Oct 29., during exercise class or in the tray outside of HG G 53.

Office hours (Präsenz): Mon. and Thu., 12:00-13:00 in HG G 32.6.

Class assignment:

Students	Time & Date	Room	Assistant
Afa-Fül	Tue 13-14	HG F 26.5	Angelo Abächerli
Gan-Math	Tue 13-14	ML H 41.1	Zhouyi Tan
Meh-Schu	Tue 14-15	HG F 26.5	Angelo Abächerli
Schü-Zur	Tue 14-15	ML H 41.1	Dániel Bálint