SCC5836 - Visualização Computacional Profa. Dra. Rosane Minghim

Visualization-based cancer microarray data classification analysis

Minca Mramor, Gregor Leban, Janez Demšar e Blaž Zupan

Tamires Brito da Silva 8124382

Motivação

- Métodos para analisar dados de microarray de câncer frequentemente enfrentam dois desafios distintos
 - Classificar novas amostras de tecido
 - Fornecer uma visão dos padrões e interações de genes escondidos nos dados

Motivação

A visualização de dados pode fornecer uma excelente abordagem para a descoberta de conhecimento e análise de dados com rótulo de classe

VizRank

 Pontua e classifica visualizações baseadas em pontos de acordo com o grau de separação de instâncias de dados de diferentes classes

Proposta do Artigo

- © Extensão do VizRank
 - Técnicas para descobrir outliers
 - Ranquear features (características) (genes)
 - Executar classificação
- Demonstrar que a abordagem proposta é bem adequada para a análise de *microarrays* de câncer

- Distinguir e classificar malignidades humanas dependem de uma variedade de aspectos clínicos, moleculares e parâmetros morfológicos
- O diagnóstico preciso do câncer continua a ser uma tarefa desafiadora
- Microarrays de DNA

Contextualização Microarray de DNA

O Determinar se o DNA contém mutação de genes

2006; Pham et al., 2006)

- Muitas pesquisas foram feitas para diagnóstico de câncer (Golub et al., 1999; Bhattacharjee et al., 2001; Khan et al., 2001; Shipp et al., 2002)
- O Vários métodos estatísticos e de mineração de dados para *microarray* análise de dados evoluíram (Allison et al., 2006; Asyali et al.

- Inicialmente eram usado métodos sem supervisão
 - Cluster e análise de componentes principais
- Modelos de dados de câncer são problemas de mineração de dados supervisionado
 - Máquinas de vetores de suporte (support vector machines SVMs) (Statnikov et al., 2005)
 - Redes neurais artificiais (artificial neural networks ANN) (Khan et al., 2001)
 - k-nearest neighbors (k-NN)(Golub et al., 1999)

- Os dois aspectos mais importantes de mineração de dados preditivos
 - Precisão nas previsões
 - Ganho de insight (visão)
- Nem todos os métodos cobrem esses dois aspectos igualmente bem
- O Visualização de dados oferece meios para exporgraficamente padrões interessantes

- Radviz (Hoffman et al., 1997)
 - Método de visualização não linear
 - Features são visualizadas como ponto-âncora igualmente espaçados ao redor do perímetro de um círculo unitário
 - Os valores das *features* são normalizados entre 0 e 1
 - As instâncias de dados são mostradas como pontos dentro do círculo

- © Radviz (Hoffman et al., 1997)
 - Abstração física
 - Cada ponto é mantido no lugar com molas presas na outra extremidade dos ponto-âncoras da feature
 - A rigidez de cada mola é proporcional ao valor da feature correspondente
 - Ponto termina na posição em que as forças da mola estão em equilíbrio
 - As instâncias de dados que estão mais próximas de um conjunto de features tem maior valor para essas features do que as outras

- © Radviz (Hoffman et al., 1997)
- Dataset de câncer de pulmão (Bhattacharjee et al., 2001)
 - 5 classes
 - 203 amostras de tecido (pontos)
- Posição de cada ponto depende do valor da sua feature (expressões genéticas)
- 7 genes é o suficiente para separar esse dataset

- adenocarcinoma(AD)
- pulmão normal (NL)
- câncer de pulmão
 de pequenas
 células (SMCL)
- carcinoma de células escamosas(SQ)
- carcinóide pulmonar (COID)

- (McCarthy et al., 2004)
 - Seleção de características através da aprendizagem de redes neurais para reduzir o número de genes na visualização
 - Cluster de features (cluster de âncoras de features correlacionados)

- (Khan, et al., 2001) resumiu os resultados da análise em uma visualização planar que mostra uma clara separação dos casos diagnósticos
 - Dados não podem ser rastreados até os genes originais
 - Plotagem obtida por escalonamento multidimensional

- Não é trivial achar uma projeção limpa e que separe as classes
 - Existem milhões de projeções possíveis no Radviz
- O VizRank (Leban et al., 2006)
 - Método para ordenar projeções visuais de dados com classificação de classe por seu potencial de interesse
 - Se concentra em um pequeno subconjunto de visualizações que são mais prováveis fornecer a melhor visão sobre os dados
 - Análise de dados não procura aleatoriamente entre milhões de possíveis projeções

- O VizRank (Leban et al., 2006)
 - Define o interesse da projeção estimando o quanto as instâncias de dados da mesma classe são agrupadas e separadas das instâncias de outras

Visualização - Extensão VizRank

O Classificação

- As projeções achadas pelo VizRank podem ser usadas para classificar novas amostras
- A posição da amostra na projeção é determinada por sua expressão dos genes utilizadas na projeção
- A amostra é então classificada para a classe predominante de amostras k-mais próximas da visualização original
- O algoritmo de classificação é, portanto, o mesmo que o utilizado no ranking das projeções

Visualização - Extensão VizRank

O Classificação

- Ranqueamento de features
 - Espera-se que os genes que aparecem nas projeções mais bem classificadas sejam aqueles que detêm mais informações para discriminação de classe
 - Pontuação utilidade genética
 - Número de aparições do gene em P melhores projeções ranqueadas

Ranqueamento de features

Visualização - Extensão VizRank

- O Detecção de outliers
 - A identificação e análise dos outliers nas melhores projeções podem revelam características interessantes dos dados
 - Casos especiais de uma doença específica
 - Amostras diagnosticadas erroneamente
 - Técnica automática que suporta análise exploratória de dados e examina um único caso selecionado
 - Relata suas probabilidades de classe previstas usando.
 - um conjunto de visualização mais bem classificadas

- Método para analisar dados de expressão gênica
 - Fornece um modelo de classificação confiável
 - Fornece uma visão valiosa dos dados na forma de visualizações informativas
- O método proposto de ranqueamento e classificação de projeções
 - Pode encontrar visualizações simples de conjuntos de dados de expressão gênica de câncer que usam um subconjunto muito pequeno

- Devido ao potencial na análise exploratória de dados, tempos de execução curtos e interface interativa
 - Visualização de dados suportada com técnicas eficientes de pesquisa de projeção deve complementar outras técnicas estabelecidas na análise de *microarrays* de câncer e se tornar parte das ferramentas de análise padrão

- VizRank e Radviz são implementados como parte do Orange data mining suite. Disponível em http://www.ailab.si/orange
- Os dados utilizados estão disponíveis em http://www.ailab.si/supp/bi-cancer
- Citado por 74 artigos no Google Scholar e 37 no Web of Science
 - A maioria em conferências/jornais de Bioinformática/ Biomedicina
 - Mas também foi citado em conferências de visualização

Perguntas

Perguntas

- 1. O que é um microarray de DNA?
- 2. Como a visualização pode ajudar no diagnóstico de câncer?
- 3. Como é a procura de projeções do VizRank?

Obrigada!

Perguntas?

tamiresbs@usp.br

