Chapter 5

Section 5.1

5.1.1
$$\|\vec{v}\| = \sqrt{7^2 + 11^2} = \sqrt{49 + 121} = \sqrt{170} \approx 13.04$$

5.1.2
$$\|\vec{v}\| = \sqrt{2^2 + 3^2 + 4^2} = \sqrt{4 + 9 + 16} = \sqrt{29} \approx 5.39$$

5.1.3
$$\|\vec{v}\| = \sqrt{2^2 + 3^2 + 4^2 + 5^2} = \sqrt{4 + 9 + 16 + 25} = \sqrt{54} \approx 7.35$$

5.1.4
$$\theta = \arccos \frac{\vec{u} \cdot \vec{v}}{\|\vec{u}\| \|\vec{v}\|} = \arccos \frac{7+11}{\sqrt{2}\sqrt{170}} = \arccos \frac{18}{\sqrt{340}} \approx 0.219 \text{ (radians)}$$

5.1.5
$$\theta = \arccos \frac{\vec{u} \cdot \vec{v}}{\|\vec{u}\| \|\vec{v}\|} = \arccos \frac{2+6+12}{\sqrt{14}\sqrt{29}} \approx 0.122 \text{ (radians)}$$

5.1.6
$$\theta = \arccos \frac{\vec{u} \cdot \vec{v}}{\|\vec{u}\| \|\vec{v}\|} = \arccos \frac{2-3+8-10}{\sqrt{10}\sqrt{54}} \approx 1.700 \text{ (radians)}$$

- 5.1.7 Use the fact that $\vec{u} \cdot \vec{v} = ||\vec{u}|| ||\vec{v}|| \cos \theta$, so that the angle is acute if $\vec{u} \cdot \vec{v} > 0$, and obtuse if $\vec{u} \cdot \vec{v} < 0$. Since $\vec{u} \cdot \vec{v} = 10 12 = -2$, the angle is obtuse.
- 5.1.8 Since $\vec{u} \cdot \vec{v} = 4 24 + 20 = 0$, the two vectors enclose a right angle.
- 5.1.9 Since $\vec{u} \cdot \vec{v} = 3 4 + 5 3 = 1$, the angle is acute (see Exercise 7).
- 5.1.10 $\vec{u} \cdot \vec{v} = 2 + 3k + 4 = 6 + 3k$. The two vectors enclose a right angle if $\vec{u} \cdot \vec{v} = 6 + 3k = 0$, that is, if k = -2.

5.1.11 a
$$\theta_n = \arccos \frac{\vec{u} \cdot \vec{v}}{\|\vec{u}\| \|\vec{v}\|} = \arccos \frac{1}{\sqrt{n}}$$

$$\theta_2 = \arccos \frac{1}{\sqrt{2}} = \frac{\pi}{4} (= 45^{\circ})$$

$$\theta_3 = \arccos \frac{1}{\sqrt{3}} \approx 0.955 \text{ (radians)}$$

$$\theta_4=\arccos\frac{1}{2}=\frac{\pi}{3}(=60^\circ)$$

b Since $y = \arccos(x)$ is a continuous function,

$$\lim_{n\to\infty}\theta_n=\arccos\left(\lim_{n\to\infty}\frac{1}{\sqrt{n}}\right)=\arccos(0)=\frac{\pi}{2}(=90^\circ)$$

5.1.12
$$\|\vec{v} + \vec{w}\|^2 = (\vec{v} + \vec{w}) \cdot (\vec{v} + \vec{w})$$
 (by hint)

$$= \|\vec{v}\|^2 + \|\vec{w}\|^2 + 2(\vec{v} \cdot \vec{w})$$
 (by definition of length)

$$\leq \|\vec{v}\|^2 + \|\vec{w}\|^2 + 2\|\vec{v}\|\|\vec{w}\|$$
 (by Cauchy-Schwarz)

$$= (\|\vec{v}\| + \|\vec{w}\|)^2$$
, so that

$$\|\vec{v} + \vec{w}\|^2 \le (\|\vec{v}\| + \|\vec{w}\|)^2$$

Taking square roots of both sides, we find that $\|\vec{v} + \vec{w}\| \leq \|\vec{v}\| + \|\vec{w}\|$, as claimed.

- 5.1.13 Figure 5.1 shows that $\|\vec{F}_2 + \vec{F}_3\| = 2\cos\left(\frac{\theta}{2}\right) \|\vec{F}_2\| = 20\cos\left(\frac{\theta}{2}\right)$.
 - It is required that $\|\vec{F}_2 + \vec{F}_3\| = 16$, so that $20\cos\left(\frac{\theta}{2}\right) = 16$, or $\theta = 2\arccos(0.8) \approx 74^\circ$.

Figure 5.1: for Problem 5.1.13.

5.1.14 The horizontal components of \vec{F}_1 and \vec{F}_2 are $-\|\vec{F}_1\|\sin\beta$ and $\|\vec{F}_2\|\sin\alpha$, respectively (the horizontal component of \vec{F}_3 is zero).

Since the system is at rest, the horizontal components must add up to 0, so that $-\|\vec{F}_1\|\sin\beta + \|\vec{F}_2\|\sin\alpha = 0$ or $\|\vec{F}_1\|\sin\beta = \|\vec{F}_2\|\sin\alpha$ or $\|\vec{F}_1\| = \frac{\sin\alpha}{\sin\beta}$.

To find $\frac{\overline{EA}}{\overline{EB}}$, note that $\overline{EA} = \overline{ED} \tan \alpha$ and $\overline{EB} = \overline{ED} \tan \beta$ so that $\frac{\overline{EA}}{\overline{EB}} = \frac{\tan \alpha}{\tan \beta} = \frac{\sin \alpha}{\sin \beta} \cdot \frac{\cos \beta}{\cos \alpha} = \frac{\|\vec{F_1}\|}{\|\vec{F_2}\|} \frac{\cos \beta}{\cos \alpha}$. Since α and β are two distinct acute angles, it follows that $\frac{\overline{EA}}{\overline{EB}} \neq \frac{\|\vec{F_1}\|}{\|\vec{F_2}\|}$, so that Leonardo was mistaken.

5.1.15 The subspace consists of all vectors \vec{x} in \mathbb{R}^4 such that

$$\vec{x} \cdot \vec{v} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix} = x_1 + 2x_2 + 3x_3 + 4x_4 = 0.$$

These are vectors of the form $\begin{bmatrix} -2r & -3s & -4t \\ r & & \\ & s & \\ & & t \end{bmatrix} = r \begin{bmatrix} -2 \\ 1 \\ 0 \\ 0 \end{bmatrix} + s \begin{bmatrix} -3 \\ 0 \\ 1 \\ 0 \end{bmatrix} + t \begin{bmatrix} -4 \\ 0 \\ 0 \\ 1 \end{bmatrix}.$

The three vectors to the right form a basis.

5.1.16 You may be able to find the solutions by educated guessing. Here is the systematic approach: we first find all vectors \vec{x} that are orthogonal to \vec{v}_1, \vec{v}_2 , and \vec{v}_3 , then we identify the unit vectors among them.

Finding the vectors \vec{x} with $\vec{x} \cdot \vec{v}_1 = \vec{x} \cdot \vec{v}_2 = \vec{x} \cdot \vec{v}_3 = 0$ amounts to solving the system

$$\begin{bmatrix} x_1 + x_2 + x_3 + x_4 = 0 \\ x_1 + x_2 - x_3 - x_4 = 0 \\ x_1 - x_2 + x_3 - x_4 = 0 \end{bmatrix}$$

(we can omit all the coefficients $\frac{1}{2}$).

The solutions are of the form $\vec{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} t \\ -t \\ -t \\ t \end{bmatrix}$.

Since $\|\vec{x}\| = 2|t|$, we have a unit vector if $t = \frac{1}{2}$ or $t = -\frac{1}{2}$. Thus there are two possible choices for \vec{v}_4 :

$$\begin{bmatrix} \frac{1}{2} \\ -\frac{1}{2} \\ -\frac{1}{2} \\ \frac{1}{2} \end{bmatrix} \text{ and } \begin{bmatrix} -\frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \\ -\frac{1}{2} \end{bmatrix}.$$

5.1.17 The orthogonal complement W^{\perp} of W consists of the vectors \vec{x} in \mathbb{R}^4 such that

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix} = 0 \text{ and } \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} \cdot \begin{bmatrix} 5 \\ 6 \\ 7 \\ 8 \end{bmatrix} = 0.$$

Finding these vectors amounts to solving the system $\begin{bmatrix} x_1 + 2x_2 + 3x_3 + 4x_4 = 0 \\ 5x_1 + 6x_2 + 7x_3 + 8x_4 = 0 \end{bmatrix}.$

The solutions are of the form

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} s+2t \\ -2s-3t \\ s \\ t \end{bmatrix} = s \begin{bmatrix} 1 \\ -2 \\ 1 \\ 0 \end{bmatrix} + t \begin{bmatrix} 2 \\ -3 \\ 0 \\ 1 \end{bmatrix}.$$

The two vectors to the right form a basis of W^{\perp} .

- 5.1.18 a $\|\vec{x}\|^2 = 1 + \frac{1}{4} + \frac{1}{16} + \frac{1}{64} + \dots = \frac{1}{1 \frac{1}{4}} = \frac{4}{3}$ (use the formula for a geometric series, with $a = \frac{1}{4}$), so that $\|\vec{x}\| = \frac{2}{\sqrt{3}} \approx 1.155$.
- b If we let $\vec{u} = (1, 0, 0, ...)$ and $\vec{v} = (1, \frac{1}{2}, \frac{1}{4}, ...)$, then

$$\theta = \arccos \frac{\vec{u} \cdot \vec{v}}{\|\vec{u}\| \|\vec{v}\|} = \arccos \frac{1}{\frac{2}{\sqrt{3}}} = \arccos \frac{\sqrt{3}}{2} = \frac{\pi}{6} (=30^{\circ}).$$

- c $\vec{x} = \left(1, \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{3}}, \cdots, \frac{1}{\sqrt{n}}, \cdots\right)$ does the job, since the harmonic series $1 + \frac{1}{2} + \frac{1}{3} + \cdots$ diverges (a fact discussed in introductory calculus classes).
- d If we let $\vec{v} = (1, 0, 0, ...), \vec{x} = \left(1, \frac{1}{2}, \frac{1}{4}, \cdots\right)$ and $\vec{u} = \frac{\vec{x}}{\|\vec{x}\|} = \frac{\sqrt{3}}{2} \left(1, \frac{1}{2}, \frac{1}{4}, \cdots\right)$ then $\operatorname{proj}_L \vec{v} = (\vec{u} \cdot \vec{v}) \vec{u} = \frac{3}{4} \left(1, \frac{1}{2}, \frac{1}{4}, \cdots\right).$
- 5.1.**19** See Figure 5.2.
- 5.1.20 On the line L spanned by \vec{x} we want to find the vector $m\vec{x}$ closest to \vec{y} (that is, we want $\|m\vec{x} \vec{y}\|$ to be minimal). We want $m\vec{x} \vec{y}$ to be perpendicular to L (that is, to \vec{x}), which means that $\vec{x} \cdot (m\vec{x} \vec{y}) = 0$ or $m(\vec{x} \cdot \vec{x}) \vec{x} \cdot \vec{y} = 0$ or $m = \frac{\vec{x} \cdot \vec{y}}{\vec{x} \cdot \vec{x}} \approx \frac{4182.9}{198.53^2} \approx 0.106$.

Recall that the correlation coefficient r is $r = \frac{\vec{x} \cdot \vec{y}}{\|\vec{x}\| \|\vec{y}\|}$, so that $m = \frac{\|\vec{y}\|}{\|\vec{x}\|} r$. See Figure 5.3.

Figure 5.2: for Problem 5.1.19.

Figure 5.3: for Problem 5.1.20.

5.1.21 Call the three given vectors \vec{v}_1, \vec{v}_2 , and \vec{v}_3 . Since \vec{v}_2 is required to be a unit vector, we must have b=g=0. Now $\vec{v}_1 \cdot \vec{v}_2 = d$ must be zero, so that d=0.

Likewise, $\vec{v}_2 \cdot \vec{v}_3 = e$ must be zero, so that e = 0.

Since \vec{v}_3 must be a unit vector, we have $\|\vec{v}_3\|^2 = c^2 + \frac{1}{4} = 1$, so that $c = \pm \frac{\sqrt{3}}{2}$.

Since we are asked to find just one solution, let us pick $c = \frac{\sqrt{3}}{2}$.

The condition $\vec{v}_1 \cdot \vec{v}_3 = 0$ now implies that $\frac{\sqrt{3}}{2}a + \frac{1}{2}f = 0$, or $f = -\sqrt{3}a$.

Finally, it is required that $\|\vec{v}_1\|^2 = a^2 + f^2 = a^2 + 3a^2 = 4a^2 = 1$, so that $a = \pm \frac{1}{2}$.

Let us pick $a = \frac{1}{2}$, so that $f = -\frac{\sqrt{3}}{2}$.

Summary:

$$\vec{v}_1 = \begin{bmatrix} \frac{1}{2} \\ 0 \\ -\frac{\sqrt{3}}{2} \end{bmatrix}, \vec{v}_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \vec{v}_3 = \begin{bmatrix} \frac{\sqrt{3}}{2} \\ 0 \\ \frac{1}{2} \end{bmatrix}$$

There are other solutions; some components will have different signs.

5.1.22 Let $W = \{\vec{x} \text{ in } \mathbb{R}^n : \vec{x} \cdot \vec{v_i} = 0 \text{ for all } i = 1, \dots, m\}$. We are asked to show that $V^{\perp} = W$, that is, any \vec{x} in V^{\perp} is in W, and vice versa.

If \vec{x} is in V^{\perp} , then $\vec{x} \cdot \vec{v} = 0$ for all \vec{v} in V; in particular, $x \cdot \vec{v}_i = 0$ for all i (since the \vec{v}_i are in V), so that \vec{x} is in W.

Conversely, consider a vector \vec{x} in W. To show that \vec{x} is in V^{\perp} , we have to verify that $\vec{x} \cdot \vec{v} = 0$ for all \vec{v} in V. Pick a particular \vec{v} in V. Since the \vec{v}_i span V, we can write $\vec{v} = c_1 \vec{v}_1 + \cdots + c_m \vec{v}_m$, for some scalars c_i . Then $\vec{x} \cdot \vec{v} = c_1(\vec{x} \cdot \vec{v}_1) + \cdots + c_m(\vec{x} \cdot \vec{v}_m) = 0$, as claimed.

5.1.23 We will follow the hint. Let \vec{v} be a vector in V. Then $\vec{v} \cdot \vec{x} = 0$ for all \vec{x} in V^{\perp} . Since $(V^{\perp})^{\perp}$ contains all vectors \vec{y} such that $\vec{y} \cdot \vec{x} = 0$, \vec{v} is in $(V^{\perp})^{\perp}$. So V is a subspace of $(V^{\perp})^{\perp}$.

Then, by Theorem 5.1.8c, dim (V) + dim (V^{\perp}) = n and dim (V^{\perp}) + dim $((V^{\perp})^{\perp})$ = n, so dim (V) + dim (V^{\perp}) = dim (V^{\perp}) + dim $((V^{\perp})^{\perp})$ and dim (V) = dim $((V^{\perp})^{\perp})$. Since V is a subspace of $(V^{\perp})^{\perp}$, it follows that $V = (V^{\perp})^{\perp}$, by Exercise 3.3.61.

5.1.24 Write $T(\vec{x}) = \text{proj}_V(\vec{x})$ for simplicity.

To prove the linearity of T we will use the definition of a projection: $T(\vec{x})$ is in V, and $\vec{x} - T(\vec{x})$ is in V^{\perp} .

To show that $T(\vec{x} + \vec{y}) = T(\vec{x}) + T(\vec{y})$, note that $T(\vec{x}) + T(\vec{y})$ is in V (since V is a subspace), and $\vec{x} + \vec{y} - (T(\vec{x}) + T(\vec{y})) = (\vec{x} - T(\vec{x})) + (\vec{y} - T(\vec{y}))$ is in V^{\perp} (since V^{\perp} is a subspace, by Theorem 5.1.8a).

To show that $T(k\vec{x}) = kT(\vec{x})$, note that $kT(\vec{x})$ is in V (since V is a subspace), and $k\vec{x} - kT(\vec{x}) = k(\vec{x} - T(\vec{x}))$ is in V^{\perp} (since V^{\perp} is a subspace).

5.1.**25** a $||k\vec{v}||^2 = (k\vec{v}) \cdot (k\vec{v}) = k^2(\vec{v} \cdot \vec{v}) = k^2||\vec{v}||^2$

Now take square roots of both sides; note that $\sqrt{k^2} = |k|$, the absolute value of k (think about the case when k is negative). $||k\vec{v}|| = |k|||\vec{v}||$, as claimed.

b
$$\|\vec{u}\| = \left\| \frac{1}{\|\vec{v}\|} \vec{v} \right\| = \frac{1}{\|\vec{v}\|} \|\vec{v}\| = 1$$
, as claimed.

by part a

5.1.26 The two given vectors spanning the subspace are orthogonal, but they are not unit vectors: both have length 7. To obtain an orthonormal basis \vec{u}_1, \vec{u}_2 of the subspace, we divide by 7:

$$\vec{u}_1 = \frac{1}{7} \begin{bmatrix} 2\\3\\6 \end{bmatrix}, \vec{u}_2 = \frac{1}{7} \begin{bmatrix} 3\\-6\\2 \end{bmatrix}.$$

Now we can use Theorem 5.1.5, with $\vec{x} = \begin{bmatrix} 49 \\ 49 \\ 49 \end{bmatrix}$:

$$\operatorname{proj}_{V} \vec{x} = (\vec{u}_{1} \cdot \vec{x}) \vec{u}_{1} + (\vec{u}_{2} \cdot \vec{x}) \vec{u}_{2} = 11 \begin{bmatrix} 2 \\ 3 \\ 6 \end{bmatrix} - \begin{bmatrix} 3 \\ -6 \\ 2 \end{bmatrix} = \begin{bmatrix} 19 \\ 39 \\ 64 \end{bmatrix}.$$

5.1.27 Since the two given vectors in the subspace are orthogonal, we have the orthonormal basis

$$\vec{u}_1 = \frac{1}{3} \begin{bmatrix} 2\\2\\1\\0 \end{bmatrix}, \vec{u}_2 = \frac{1}{3} \begin{bmatrix} -2\\2\\0\\1 \end{bmatrix}.$$

Now we can use Theorem 5.1.5, with $\vec{x} = 9\vec{e}_1 : \text{proj}_V \vec{x} = (\vec{u}_1 \cdot \vec{x})\vec{u}_1 + (\vec{u}_2 \cdot \vec{x})\vec{u}_2$

$$= 2 \begin{bmatrix} 2 \\ 2 \\ 1 \\ 0 \end{bmatrix} - 2 \begin{bmatrix} -2 \\ 2 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 8 \\ 0 \\ 2 \\ -2 \end{bmatrix}.$$

5.1.28 Since the three given vectors in the subspace are orthogonal, we have the orthonormal basis

$$\vec{u}_1 = \frac{1}{2} \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}, \vec{u}_2 = \frac{1}{2} \begin{bmatrix} 1\\1\\-1\\-1 \end{bmatrix}, \vec{u}_3 = \frac{1}{2} \begin{bmatrix} 1\\-1\\-1\\1 \end{bmatrix}.$$

Now we can use Theorem 5.1.5, with $\vec{x} = \vec{e}_1 : \text{proj}_V \vec{x} = (\vec{u}_1 \cdot \vec{x}) \vec{u}_1 + (\vec{u}_2 \cdot \vec{x}) \vec{u}_2 + (\vec{u}_3 \cdot \vec{x}) \vec{u}_3 = \frac{1}{4} \begin{bmatrix} 3 \\ 1 \\ -1 \\ 1 \end{bmatrix}$.

5.1.29 By the Pythagorean theorem (Theorem 5.1.9),

$$\begin{split} \|\vec{x}\|^2 &= \|7\vec{u}_1 - 3\vec{u}_2 + 2\vec{u}_3 + \vec{u}_4 - \vec{u}_5\|^2 \\ &= \|7\vec{u}_1\|^2 + \|3\vec{u}_2\|^2 + \|2\vec{u}_3\|^2 + \|\vec{u}_4\|^2 + \|\vec{u}_5\|^2 \\ &= 49 + 9 + 4 + 1 + 1 \\ &= 64, \text{ so that } \|\vec{x}\| = 8. \end{split}$$

5.1.30 Since $\vec{y} = \text{proj}_V \vec{x}$, the vector $\vec{x} - \vec{y}$ is orthogonal to \vec{y} , by definition of an orthogonal projection (see Theorem 5.1.4): $(\vec{x} - \vec{y}) \cdot \vec{y} = 0$ or $\vec{x} \cdot \vec{y} - ||\vec{y}||^2 = 0$ or $\vec{x} \cdot \vec{y} = ||\vec{y}||^2$. See Figure 5.4.

Figure 5.4: for Problem 5.1.30.

- 5.1.31 If $V = \operatorname{span}(\vec{u}_1, \dots, \vec{u}_m)$, then $\operatorname{proj}_V \vec{x} = (\vec{u}_1 \cdot \vec{x}) \vec{u}_1 + \dots + (\vec{u}_m \cdot \vec{x}) \vec{u}_m$, by Theorem 5.1.5, and $\|\operatorname{proj}_V \vec{x}\|^2 = (\vec{u}_1 \cdot \vec{x})^2 + \dots + (\vec{u}_m \cdot \vec{x})^2 = p$, by the Pythagorean theorem (Theorem 5.1.9). Therefore $p \leq \|\vec{x}\|^2$, by Theorem 5.1.10. The two quantities are equal if (and only if) \vec{x} is in V.
- 5.1.32 By Theorem 2.4.9a, the matrix G is invertible if (and only if) $(\vec{v}_1 \cdot \vec{v}_1)(\vec{v}_2 \cdot \vec{v}_2) (\vec{v}_1 \cdot \vec{v}_2)^2 = \|\vec{v}_1\|^2 \|\vec{v}_2\|^2 (\vec{v}_1 \cdot \vec{v}_2)^2 \neq 0$. The Cauchy-Schwarz inequality (Theorem 5.1.11) tells us that $\|\vec{v}_1\|^2 \|\vec{v}_2\|^2 (\vec{v}_1 \cdot \vec{v}_2)^2 \geq 0$; equality holds if (and only if) \vec{v}_1 and \vec{v}_2 are parallel (that is, linearly dependent).
- 5.1.33 Let $\vec{x} = \begin{bmatrix} x_1 \\ \cdots \\ x_n \end{bmatrix}$ be a vector in \mathbb{R}^n whose components add up to 1, that is, $x_1 + \cdots + x_n = 1$. Let $\vec{y} = \begin{bmatrix} 1 \\ \cdots \\ 1 \end{bmatrix}$ (all n components are 1). The Cauchy-Schwarz inequality (Theorem 5.1.11) tells us that $|\vec{x} \cdot \vec{y}| \leq ||\vec{x}|| ||\vec{y}||$, or, $|x_1 + \cdots + x_n| \leq ||\vec{x}|| \sqrt{n}$, or $||\vec{x}|| \geq \frac{1}{\sqrt{n}}$. By Theorem 5.1.11, the equation $||\vec{x}|| = \frac{1}{\sqrt{n}}$ holds if (and only if) the vectors \vec{x} and \vec{y} are parallel, that is, $x_1 = x_2 = \cdots = x_n = \frac{1}{n}$. Thus the vector of minimal length is $\vec{x} = \begin{bmatrix} \frac{1}{n} \\ \cdots \\ \frac{1}{n} \end{bmatrix}$ (all components are $\frac{1}{n}$).

Figure 5.5 illustrates the case n=2.

Figure 5.5: for Problem 5.1.33.

5.1.34 Let \vec{x} be a unit vector in \mathbb{R}^n , that is, $\|\vec{x}\| = 1$. Let $\vec{y} = \begin{bmatrix} 1 \\ \dots \\ 1 \end{bmatrix}$ (all n components are 1). The Cauchy-Schwarz inequality (Theorem 5.1.11) tells us that $|\vec{x} \cdot \vec{y}| \leq \|\vec{x}\| \|\vec{y}\|$, or, $|x_1 + \dots + x_n| \leq \|\vec{x}\| \sqrt{n} = \sqrt{n}$. By Theorem 5.1.11, the equation $x_1 + \dots + x_n = \sqrt{n}$ holds if $\vec{x} = k\vec{y}$ for positive k. Thus \vec{x} must be a unit vector of the form $\vec{x} = \begin{bmatrix} k \\ \dots \\ k \end{bmatrix}$ for some positive k. It is required that $nk^2 = 1$, or, $k = \frac{1}{\sqrt{n}}$. Thus $\vec{x} = \begin{bmatrix} \frac{1}{\sqrt{n}} \\ \dots \\ \frac{1}{\sqrt{n}} \end{bmatrix}$ (all components are $\frac{1}{\sqrt{n}}$).

Figure 5.6 illustrates the case n=2.

Figure 5.6: for Problem 5.1.34.

5.1.35 Applying the Cauchy-Schwarz inequality to $\vec{u} = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$ and $\vec{v} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$ gives $|\vec{u} \cdot \vec{v}| \le ||\vec{u}|| ||\vec{v}||$, or $|x + 2y + 3z| \le \sqrt{14}$. The minimal value $x + 2y + 3z = -\sqrt{14}$ is attained when $\vec{u} = k\vec{v}$ for negative k. Thus \vec{u} must be a unit vector of the form $\vec{u} = \begin{bmatrix} k \\ 2k \\ 3k \end{bmatrix}$, for negative k. It is required that $14k^2 = 1$, or, $k = -\frac{1}{\sqrt{14}}$. Thus $\vec{u} = \begin{bmatrix} -\frac{1}{\sqrt{14}} \\ -\frac{2}{\sqrt{14}} \\ -\frac{3}{\sqrt{14}} \end{bmatrix}$.

5.1.36 Let $\vec{x} = \begin{bmatrix} a \\ b \\ c \end{bmatrix}$ and $\vec{y} = \begin{bmatrix} 0.2 \\ 0.3 \\ 0.5 \end{bmatrix}$. It is required that $\vec{x} \cdot \vec{y} = 0.2a + 0.3b + 0.5c = 76$. Our goal is to minimize quantity $\vec{x} \cdot \vec{x} = a^2 + b^2 + c^2$. The Cauchy-Schwarz inequality (squared) tells us that $(\vec{x} \cdot \vec{y})^2 \le ||\vec{x}||^2 ||\vec{y}||^2$, or $76^2 \le (a^2 + b^2 + c^2)(0.2^2 + 0.3^2 + 0.5^2)$ or $a^2 + b^2 + c^2 \ge \frac{76^2}{0.38}$. The quantity $a^2 + b^2 + c^2$ is minimal when $a^2 + b^2 + c^2 = \frac{76^2}{0.38}$. This is the case when $\vec{x} = \begin{bmatrix} a \\ b \\ c \end{bmatrix} = \begin{bmatrix} 0.2k \\ 0.3k \\ 0.5k \end{bmatrix}$ for some positive constant k. It is required that $0.2a + 0.3b + 0.5c = (0.2)^2k + (0.3)^2k + (0.5)^2k = 0.38k = 76$, so that k = 200. Thus a = 40, b = 60, c = 100: The student must study 40 hours for the first exam, 60 hours for the second, and 100 hours for the third.

- 5.1.37 Using Definition 2.2.2 as a guide, we find that $\operatorname{ref}_V \vec{x} = 2(\operatorname{proj}_V \vec{x}) \vec{x} = 2(\vec{u}_1 \cdot \vec{x})\vec{u}_1 + 2(\vec{u}_2 \cdot \vec{x})\vec{u}_2 \vec{x}$.
- 5.1.38 Since \vec{v}_1 and \vec{v}_2 are unit vectors, the condition $\vec{v}_1 \cdot \vec{v}_2 = \|\vec{v}_1\| \|\vec{v}_2\| \cos(\alpha) = \cos(\alpha) = \frac{1}{2}$ implies that \vec{v}_1 and \vec{v}_2 enclose an angle of 60° (= $\frac{\pi}{3}$). The vectors \vec{v}_1 and \vec{v}_3 enclose an angle of 60° as well. In the case n=2 there are two possible scenarios: either $\vec{v}_2=\vec{v}_3$, or \vec{v}_2 and \vec{v}_3 enclose an angle of 120° . Therefore, either $\vec{v}_2 \cdot \vec{v}_3 = 1$ or $\vec{v}_2 \cdot \vec{v}_3 = \cos(120^\circ) = -\frac{1}{2}$. In the case n=3, the vectors \vec{v}_2 and \vec{v}_3 could enclose any angle between 0° (if $\vec{v}_2=\vec{v}_3$) and 120° , as illustrated in Figure 5.7. We have $-\frac{1}{2} \leq \vec{v}_2 \cdot \vec{v}_3 \leq 1$.

For example, consider
$$\vec{v}_1 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$
, $\vec{v}_2 = \begin{bmatrix} 0 \\ \frac{\sqrt{3}}{2} \\ \frac{1}{2} \end{bmatrix}$, $\vec{v}_3 = \begin{bmatrix} \left(\frac{\sqrt{3}}{2}\right)\cos\theta \\ \left(\frac{\sqrt{3}}{2}\right)\sin\theta \\ \frac{1}{2} \end{bmatrix}$

Note that $\vec{v}_2 \cdot \vec{v}_3 = (\frac{3}{4}) \sin \theta + \frac{1}{4}$ could be anything between $-\frac{1}{2}$ (when $\sin \theta = -1$) and 1 (when $\sin \theta = 1$), as claimed.

Figure 5.7: for Problem 5.1.38.

If n exceeds three, we can consider the orthogonal projection \vec{w} of \vec{v}_3 onto the plane E spanned by \vec{v}_1 and \vec{v}_2 .

Since $\operatorname{proj}_{\vec{v}_1} \vec{w} = (\vec{v}_1 \cdot \vec{w}) \vec{v}_1 = \frac{1}{2} \vec{v}_1$, and since $\|\vec{w}\| \leq \|\vec{v}_3\| = 1$, (by Theorem 5.1.10), the tip of \vec{w} will be on the line segment in Figure 5.8. Note that the angle ϕ enclosed by the vectors \vec{v}_2 and \vec{w} is between 0° and 120° , so that $\cos \phi$ is between $-\frac{1}{2}$ and 1.

Therefore, $\vec{v}_2 \cdot \vec{v}_3 = \vec{v}_2 \cdot \vec{w} = \|\vec{w}\| \cos \phi$ is between $-\frac{1}{2}$ and 1.

This implies that $\angle(\vec{v}_2, \vec{v}_3)$ is between 0° and 120° as well. To see that all these values are attained, add (n-3) zeros to the three vectors $\vec{v}_1, \vec{v}_2, \vec{v}_3$ in \mathbb{R}^3 given above.

Figure 5.8: for Problem 5.1.38.

5.1.39 No! By definition of a projection, the vector $\vec{x} - \text{proj}_L \vec{x}$ is perpendicular to $\text{proj}_L \vec{x}$, so that $(\vec{x} - \text{proj}_L \vec{x}) \cdot (\text{proj}_L \vec{x}) = \vec{x} \cdot \text{proj}_L \vec{x} - \|\text{proj}_L \vec{x}\|^2 = 0$ and $\vec{x} \cdot \text{proj}_L \vec{x} = \|\text{proj}_L \vec{x}\|^2 \ge 0$. (See Figure 5.9.)

Figure 5.9: for Problem 5.1.39.

5.1.40
$$||\vec{v}_2|| = \sqrt{\vec{v}_2 \cdot \vec{v}_2} = \sqrt{a_{22}} = 3.$$

$$5.1.41 \quad \theta = \arccos(\frac{\vec{v}_2 \cdot \vec{v}_3}{||\vec{v}_2||||\vec{v}_3||}) = \arccos(\frac{a_{23}}{\sqrt{a_{22}}\sqrt{a_{33}}}) = \arccos(\frac{20}{21}) \approx 0.31 \text{ radians.}$$

5.1.42
$$||\vec{v}_1 + \vec{v}_2|| = \sqrt{(\vec{v}_1 + \vec{v}_2) \cdot (\vec{v}_1 + \vec{v}_2)} = \sqrt{a_{11} + 2a_{12} + a_{22}} = \sqrt{22}.$$

- 5.1.43 Let $\vec{u} = \frac{\vec{v}_2}{||\vec{v}_2||} = \frac{\vec{v}_2}{3}$. Then, \vec{u} is an orthonormal basis for $\mathrm{span}(\vec{v}_2)$. Using Theorem 5.1.5, $\mathrm{proj}_{\vec{v}_2}(\vec{v}_1) = (\vec{u} \cdot \vec{v}_1)\vec{u} = (\frac{\vec{v}_2}{3} \cdot \vec{v}_1)\frac{\vec{v}_2}{3} = \frac{1}{3}(\vec{v}_2 \cdot \vec{v}_1)\frac{\vec{v}_2}{3} = \frac{1}{3}(a_{12})\frac{\vec{v}_2}{3} = \frac{5}{9}\vec{v}_2$.
- 5.1.44 One method to solve this is to take $\vec{v} = \vec{v}_2 \text{proj}_{\vec{v}_3} \vec{v}_2 = \vec{v}_2 \frac{20}{49} \vec{v}_3$.
- 5.1.45 Write the projection as a linear combination of \vec{v}_2 and \vec{v}_3 , $c_2\vec{v}_2+c_3\vec{v}_3$. Now you want $\vec{v}_1-c_2\vec{v}_2-c_3\vec{v}_3$ to be perpendicular to V, that is, perpendicular to both \vec{v}_2 and \vec{v}_3 . Using dot products, this boils down to two linear equation in two unknowns, $9c_2+20c_3=5$, and $20c_2+49c_3=11$, with the solution $c_2=\frac{25}{41}$ and $c_3=-\frac{1}{41}$. Thus the answer is $\frac{25}{41}\vec{v}_2-\frac{1}{41}\vec{v}_3$.
- 5.1.46 Write the projection as a linear combination of \vec{v}_1 and $\vec{v}_2:c_1\vec{v}_1+c_2\vec{v}_2$. Now we want $\vec{v}_3-c_1\vec{v}_1+c_2\vec{v}_2$ to be perpendicular to V, that is, perpendicular to both \vec{v}_1 and \vec{v}_2 . Using dot products, this boils down to two linear equations in two unknowns, $11=3c_1+5c_2$ and $20=5c_1+9c_2$, with the solution $c_1=-\frac{1}{2},c_2=\frac{5}{2}$. Thus, the answer is $-\frac{1}{2}\vec{v}_1+\frac{5}{2}\vec{v}_2$.

Section 5.2

In Exercises 1–14, we will refer to the given vectors as $\vec{v}_1, \ldots, \vec{v}_m$, where m = 1, 2, or 3.

5.2.1
$$\vec{u}_1 = \frac{1}{\|\vec{v}_1\|} \vec{v}_1 = \frac{1}{3} \begin{bmatrix} 2\\1\\-2 \end{bmatrix}$$

5.2.**2**
$$\vec{u}_1 = \frac{1}{\|\vec{v}_1\|} \vec{v}_1 = \frac{1}{7} \begin{bmatrix} 6 \\ 3 \\ 2 \end{bmatrix}$$

$$\vec{u}_2 = \frac{\vec{v}_2^{\perp}}{\|\vec{v}_2^{\perp}\|} = \frac{\vec{v}_2 - (\vec{u}_1 \cdot \vec{v}_2)\vec{u}_1}{\|\vec{v}_2 - (\vec{u}_1 \cdot \vec{v}_2)\vec{u}_1\|} = \frac{1}{7} \begin{bmatrix} 2\\ -6\\ 3 \end{bmatrix}$$

Note that $\vec{u}_1 \cdot \vec{v}_2 = 0$.

5.2.3
$$\vec{u}_1 = \frac{1}{\|\vec{v}_1\|} \vec{v}_1 = \frac{1}{5} \begin{bmatrix} 4\\0\\3 \end{bmatrix}$$

$$\vec{u}_2 = \frac{\vec{v}_2^{\perp}}{\|\vec{v}_2^{\perp}\|} = \frac{\vec{v}_2 - (\vec{u}_1 \cdot \vec{v}_2)\vec{u}_1}{\|\vec{v}_2 - (\vec{u}_1 \cdot \vec{v}_2)\vec{u}_1\|} = \frac{1}{5} \begin{bmatrix} 3\\0\\-4 \end{bmatrix}$$

5.2.4
$$\vec{u}_1 = \frac{1}{5} \begin{bmatrix} 4 \\ 0 \\ 3 \end{bmatrix}$$
 and $\vec{u}_2 = \frac{1}{5} \begin{bmatrix} 3 \\ 0 \\ -4 \end{bmatrix}$ as in Exercise 3.

Since
$$\vec{v}_3$$
 is orthogonal to \vec{u}_1 and $\vec{u}_2, \vec{u}_3 = \frac{1}{\|\vec{v}_3\|} \vec{v}_3 = \begin{bmatrix} 0 \\ -1 \\ 0 \end{bmatrix}$.

5.2.5
$$\vec{u}_1 = \frac{1}{\|\vec{v}_1\|} \vec{v}_1 = \frac{1}{3} \begin{bmatrix} 2\\2\\1 \end{bmatrix}$$

$$\vec{u}_2 = \frac{\vec{v}_2^{\perp}}{\|\vec{v}_2^{\perp}\|} = \frac{\vec{v}_2 - (\vec{u}_1 \cdot \vec{v}_2)\vec{u}_1}{\|\vec{v}_2 - (\vec{u}_1 \cdot \vec{v}_2)\vec{u}_1\|} = \frac{1}{\sqrt{18}} \begin{bmatrix} -1\\-1\\4 \end{bmatrix} = \frac{1}{3\sqrt{2}} \begin{bmatrix} -1\\-1\\4 \end{bmatrix}$$

$$\begin{split} 5.2.6 \quad \vec{u}_1 &= \frac{1}{\|\vec{v}_1\|} \vec{v}_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} = \vec{e}_1 \\ \\ \vec{u}_2 &= \frac{\vec{v}_2^{\perp}}{\|\vec{v}_2^{\perp}\|} = \frac{\vec{v}_2 - (\vec{u}_1 \cdot \vec{v}_2) \vec{u}_1}{\|\vec{v}_2 - (\vec{u}_1 \cdot \vec{v}_2) \vec{u}_1\|} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} = \vec{e}_2 \\ \\ \vec{u}_3 &= \frac{\vec{v}_3^{\perp}}{\|\vec{v}_3^{\perp}\|} = \frac{\vec{v}_3 - (\vec{u}_1 \cdot \vec{v}_3) \vec{u}_1 - (\vec{u}_2 \cdot \vec{v}_3) \vec{u}_2}{\|\vec{v}_3 - (\vec{u}_1 \cdot \vec{v}_3) \vec{u}_1 - (\vec{u}_2 \cdot \vec{v}_3) \vec{u}_2} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = \vec{e}_3 \end{split}$$

5.2.7 Note that
$$\vec{v}_1$$
 and \vec{v}_2 are orthogonal, so that $\vec{u}_1 = \frac{1}{\|\vec{v}_1\|} \vec{v}_1 = \frac{1}{3} \begin{bmatrix} 2 \\ 2 \\ 1 \end{bmatrix}$ and $\vec{u}_2 = \frac{1}{\|\vec{v}_2\|} \vec{v}_2 = \frac{1}{3} \begin{bmatrix} -2 \\ 1 \\ 2 \end{bmatrix}$. Then
$$\vec{u}_3 = \frac{\vec{v}_3^{\perp}}{\|\vec{v}_3^{\perp}\|} = \frac{\vec{v}_3 - (\vec{u}_1 \cdot \vec{v}_3)\vec{u}_1 - (\vec{u}_2 \cdot \vec{v}_3)\vec{u}_2}{\|\vec{v}_3 - (\vec{u}_1 \cdot \vec{v}_3)\vec{u}_1 - (\vec{u}_2 \cdot \vec{v}_3)\vec{u}_2} = \frac{1}{\sqrt{36}} \begin{bmatrix} 2 \\ -4 \\ 4 \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 1 \\ -2 \\ 2 \end{bmatrix}.$$

5.2.8
$$\vec{u}_1 = \frac{1}{\|\vec{v}_1\|} \vec{v}_1 = \frac{1}{7} \begin{bmatrix} 5\\4\\2\\2 \end{bmatrix}$$

$$\vec{u}_2 = \frac{1}{\|\vec{v}_2\|} \vec{v}_2 = \frac{1}{7} \begin{bmatrix} -2\\2\\5\\-4 \end{bmatrix}$$

5.2.9
$$\vec{u}_1 = \frac{1}{\|\vec{v}_1\|} \vec{v}_1 = \frac{1}{2} \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}$$

$$\vec{u}_2 = \frac{\vec{v}_2^{\perp}}{\|\vec{v}_2^{\perp}\|} = \frac{\vec{v}_2 - (\vec{u}_1 \cdot \vec{v}_2)\vec{u}_1}{\|\vec{v}_2 - (\vec{u}_1 \cdot \vec{v}_2)\vec{u}_1\|} = \frac{1}{10} \begin{bmatrix} -1\\7\\-7\\1 \end{bmatrix}$$

5.2.10
$$\vec{u}_1 = \frac{1}{\|\vec{v}_1\|} \vec{v}_1 = \frac{1}{2} \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}$$

$$\vec{u}_2 = \frac{\vec{v}_2^{\perp}}{\|\vec{v}_2^{\perp}\|} = \frac{\vec{v}_2 - (\vec{u}_1 \cdot \vec{v}_2)\vec{u}_1}{\|\vec{v}_2 - (\vec{u}_1 \cdot \vec{v}_2)\vec{u}_1\|} = \frac{1}{2} \begin{bmatrix} 1 \\ -1 \\ 1 \\ -1 \end{bmatrix}$$

5.2.11
$$\vec{u}_1 = \frac{1}{\|\vec{v}_1\|} \vec{v}_1 = \frac{1}{5} \begin{bmatrix} 4\\0\\0\\3 \end{bmatrix}$$

$$\vec{u}_2 = \frac{\vec{v}_2^{\perp}}{\|\vec{v}_2^{\perp}\|} = \frac{\vec{v}_2 - (\vec{u}_1 \cdot \vec{v}_2)\vec{u}_1}{\|\vec{v}_2 - (\vec{u}_1 \cdot \vec{v}_2)\vec{u}_1\|} = \frac{1}{\sqrt{225}} \begin{bmatrix} -3\\2\\14\\4 \end{bmatrix} = \frac{1}{15} \begin{bmatrix} -3\\2\\14\\4 \end{bmatrix}$$

5.2.**12**
$$\vec{u}_1 = \frac{1}{7} \begin{bmatrix} 2\\3\\0\\6 \end{bmatrix}$$

$$\vec{u}_2 = \frac{\vec{v}_2^{\perp}}{\|\vec{v}_2^{\perp}\|} = \frac{\vec{v}_2 - (\vec{u}_1 \cdot \vec{v}_2)\vec{u}_1}{\|\vec{v}_2 - (\vec{u}_1 \cdot \vec{v}_2)\vec{u}_1\|} = \frac{1}{3} \begin{bmatrix} 0\\ -2\\ 2\\ 1 \end{bmatrix}$$

5.2.13
$$\vec{u}_1 = \frac{1}{\|\vec{v}_1\|} \vec{v}_1 = \frac{1}{2} \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}$$

$$\vec{u}_2 = \frac{\vec{v}_2^\perp}{\|\vec{v}_2^\perp\|} = \frac{\vec{v}_2 - (\vec{u}_1 \cdot \vec{v}_2)\vec{u}_1}{\|\vec{v}_2 - (\vec{u}_1 \cdot \vec{v}_2)\vec{u}_1\|} = \begin{bmatrix} \frac{1}{2} \\ -\frac{1}{2} \\ -\frac{1}{2} \\ \frac{1}{2} \end{bmatrix}$$

$$\vec{u}_3 = \frac{\vec{v}_3^{\perp}}{\|\vec{v}_3^{\perp}\|} = \frac{\vec{v}_3 - (\vec{u}_1 \cdot \vec{v}_3)\vec{u}_1 - (\vec{u}_2 \cdot \vec{v}_3)\vec{u}_2}{\|\vec{v}_3 - (\vec{u}_1 \cdot \vec{v}_3)\vec{u}_1 - (\vec{u}_2 \cdot \vec{v}_3)\vec{u}_2\|} = \begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \\ -\frac{1}{2} \\ -\frac{1}{2} \end{bmatrix}$$

5.2.14
$$\vec{u}_1 = \frac{1}{\|\vec{v}_1\|} \vec{v}_1 = \frac{1}{10} \begin{bmatrix} 1\\7\\1\\7 \end{bmatrix}$$

$$\vec{u}_2 = \frac{\vec{v}_2^{\perp}}{\|\vec{v}_2^{\perp}\|} = \frac{\vec{v}_2 - (\vec{u}_1 \cdot \vec{v}_2)\vec{u}_1}{\|\vec{v}_2 - (\vec{u}_1 \cdot \vec{v}_2)\vec{u}_1\|} = \frac{1}{\sqrt{2}} \begin{bmatrix} -1\\0\\1\\0 \end{bmatrix}$$

$$\vec{u}_{3} = \frac{\vec{v}_{3}^{\perp}}{\|\vec{v}_{3}^{\perp}\|} = \frac{\vec{v}_{3} - (\vec{u}_{1} \cdot \vec{v}_{3})\vec{u}_{1} - (\vec{u}_{2} \cdot \vec{v}_{3})\vec{u}_{2}}{\|\vec{v}_{3} - (\vec{u}_{1} \cdot \vec{v}_{3})\vec{u}_{1} - (\vec{u}_{2} \cdot \vec{v}_{3})\vec{u}_{2}\|} = \frac{1}{\sqrt{2}} \begin{bmatrix} 0\\1\\0\\-1 \end{bmatrix}$$

In Exercises 15–28, we will use the results of Exercises 1–14 (note that Exercise k, where $k=1,\ldots,14$, gives the QR factorization of the matrix in Exercise (k+14)). We can set $Q=[\vec{u}_1\ldots\vec{u}_m]$; the entries of R are

$$\begin{array}{ll} r_{11} &= \|\vec{v}_1\| \\ r_{22} &= \|\vec{v}_2^{\perp}\| &= \|\vec{v}_2 - (\vec{u}_1 \cdot \vec{v}_2)\vec{u}_1\| \\ r_{33} &= \|\vec{v}_3^{\perp}\| &= \|\vec{v}_3 - (\vec{u}_1 \cdot \vec{v}_3)\vec{u}_1 - (\vec{u}_2 \cdot \vec{v}_3)\vec{u}_2\| \\ r_{ij} &= \vec{u}_i \cdot \vec{v}_j, \text{ where } i < j. \end{array}$$

5.2.15
$$Q = \frac{1}{3} \begin{bmatrix} 2 \\ 1 \\ -2 \end{bmatrix}, R = [3]$$

5.2.16
$$Q = \frac{1}{7} \begin{bmatrix} 6 & 2 \\ 5 & -6 \\ 2 & 3 \end{bmatrix}, R = \begin{bmatrix} 7 & 0 \\ 0 & 7 \end{bmatrix}$$

5.2.17
$$Q = \frac{1}{5} \begin{bmatrix} 4 & 3 \\ 0 & 0 \\ 5 & -4 \end{bmatrix}, R = \begin{bmatrix} 5 & 5 \\ 0 & 35 \end{bmatrix}$$

5.2.18
$$Q = \frac{1}{5} \begin{bmatrix} 4 & 3 & 0 \\ 0 & 0 & -5 \\ 5 & -4 & 0 \end{bmatrix}, R = \begin{bmatrix} 5 & 5 & 0 \\ 0 & 35 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$

5.2.19
$$Q = \frac{1}{3} \begin{bmatrix} 2 & -\frac{1}{\sqrt{2}} \\ 2 & -\frac{1}{\sqrt{2}} \\ 1 & \frac{4}{\sqrt{2}} \end{bmatrix}, R = 3 \begin{bmatrix} 1 & 1 \\ 0 & \sqrt{2} \end{bmatrix}$$

5.2.**20**
$$Q = I_3, R = \begin{bmatrix} \vec{v}_1 & \vec{v}_2 & \vec{v}_3 \end{bmatrix} = \begin{bmatrix} 2 & 3 & 5 \\ 0 & 4 & 6 \\ 0 & 0 & 7 \end{bmatrix}$$

5.2.21
$$Q = \frac{1}{3} \begin{bmatrix} 2 & -2 & 1 \\ 2 & 1 & -2 \\ 1 & 2 & 2 \end{bmatrix}, R = \begin{bmatrix} 3 & 0 & 12 \\ 0 & 3 & -12 \\ 0 & 0 & 6 \end{bmatrix}$$

5.2.**22**
$$Q = \frac{1}{7} \begin{bmatrix} 5 & -2 \\ 4 & 2 \\ 2 & 5 \\ 2 & -4 \end{bmatrix}, R = \begin{bmatrix} 7 & 7 \\ 0 & 7 \end{bmatrix}$$

5.2.23
$$Q = \begin{bmatrix} 0.5 & -0.1 \\ 0.5 & 0.7 \\ 0.5 & -0.7 \\ 0.5 & 0.1 \end{bmatrix}, R = \begin{bmatrix} 2 & 4 \\ 0 & 10 \end{bmatrix}$$

5.2.24
$$Q = \frac{1}{2} \begin{bmatrix} 1 & 1 \\ 1 & -1 \\ 1 & 1 \\ 1 & -1 \end{bmatrix}, R = \begin{bmatrix} 2 & 10 \\ 0 & 2 \end{bmatrix}$$

5.2.25
$$Q = \frac{1}{15} \begin{bmatrix} 12 & -3 \\ 0 & 2 \\ 0 & 14 \\ 9 & 4 \end{bmatrix}, R = \begin{bmatrix} 5 & 10 \\ 0 & 15 \end{bmatrix}$$

5.2.**26**
$$Q = \begin{bmatrix} \frac{2}{7} & 0\\ \frac{3}{7} & -\frac{2}{3}\\ 0 & \frac{2}{3}\\ \frac{6}{7} & \frac{1}{3} \end{bmatrix}, R = \begin{bmatrix} 7 & 14\\ 0 & 3 \end{bmatrix}$$

5.2.27
$$Q = \frac{1}{2} \begin{bmatrix} 1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & -1 & -1 \\ 1 & 1 & -1 \end{bmatrix}, R = \begin{bmatrix} 2 & 1 & 1 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{bmatrix}$$

5.2.28
$$Q = \begin{bmatrix} \frac{1}{10} & -\frac{1}{\sqrt{2}} & 0\\ \frac{7}{10} & 0 & \frac{1}{\sqrt{2}}\\ \frac{1}{10} & \frac{1}{\sqrt{2}} & 0\\ \frac{7}{10} & 0 & -\frac{1}{\sqrt{2}} \end{bmatrix}, R = \begin{bmatrix} 10 & 10 & 10\\ 0 & \sqrt{2} & 0\\ 0 & 0 & \sqrt{2} \end{bmatrix}$$

$$5.2.\mathbf{29} \quad \vec{u}_1 = \frac{1}{\|\vec{v}_1\|} \vec{v}_1 = \frac{1}{5} \begin{bmatrix} -3 \\ 4 \end{bmatrix} \vec{u}_2 = \frac{\vec{v}_2^{\perp}}{\|\vec{v}_2^{\perp}\|} = \frac{\vec{v}_2 - (\vec{u}_1 \cdot \vec{v}_2) \vec{u}_1}{\|\vec{v}_2 - (\vec{u}_1 \cdot \vec{v}_2) \vec{u}_1\|} = \frac{1}{5} \begin{bmatrix} 4 \\ 3 \end{bmatrix}. \text{ (See Figure 5.10.)}$$

Figure 5.10: for Problem 5.2.29.

5.2.**30** See Figure 5.11.

Figure 5.11: for Problem 5.2.30.

$$\begin{aligned} 5.2.\mathbf{31} \quad \vec{u}_1 &= \frac{1}{\|\vec{v}_1\|} \vec{v}_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} = \vec{e}_1 \\ \\ \vec{v}_2^{\perp} &= \vec{v}_2 - \mathrm{proj}_{V_1} \vec{v}_2 = \begin{bmatrix} b \\ c \\ 0 \end{bmatrix} - \begin{bmatrix} b \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ c \\ 0 \end{bmatrix}, \text{ so that } \vec{u}_2 = \frac{\vec{v}_2^{\perp}}{\|\vec{v}_2^{\perp}\|} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} = \vec{e}_2 \end{aligned}$$

Here $V_1 = \operatorname{span}(\vec{e}_1) = x$ axis.

$$\vec{v}_3^\perp = \vec{v}_3 - \mathrm{proj}_{V_2} \vec{v}_3 = \begin{bmatrix} d \\ e \\ f \end{bmatrix} - \begin{bmatrix} d \\ e \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ f \end{bmatrix}, \text{ so that } \vec{u}_3 = \frac{\vec{v}_3^\perp}{\|\vec{v}_3^\perp\|} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = \vec{e}_3.$$

Here $V_2 = \text{span}(\vec{e}_1, \vec{e}_2) = x-y$ plane. (See Figure 5.12.)

Figure 5.12: for Problem 5.2.31.

5.2.32 A basis of the plane is
$$\vec{v}_1 = \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix}$$
, $\vec{v}_2 = \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}$.

241

Copyright © 2013 Pearson Education, Inc.

Now apply the Gram-Schmidt process.

$$\vec{u}_1 = \frac{1}{\|\vec{v}_1\|} \vec{v}_1 \qquad \qquad = \frac{1}{\sqrt{2}} \begin{bmatrix} -1\\1\\0 \end{bmatrix}$$

$$\vec{u}_2 = \frac{\vec{v}_2^{\perp}}{\|\vec{v}_2^{\perp}\|} = \frac{\vec{v}_2 - (\vec{u}_1 \cdot \vec{v}_2)\vec{u}_1}{\|\vec{v}_2 - (\vec{u}_1 \cdot \vec{v}_2)\vec{u}_1\|} = \frac{1}{\sqrt{6}} \begin{bmatrix} -1\\-1\\2 \end{bmatrix}$$

Your solution may be different if you start with a different basis \vec{v}_1, \vec{v}_2 of the plane.

5.2.33
$$\operatorname{rref}(A) = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{bmatrix}$$

A basis of
$$\ker(A)$$
 is $\vec{v}_1 = \begin{bmatrix} -1\\0\\0\\1 \end{bmatrix}$, $\vec{v}_2 = \begin{bmatrix} 0\\-1\\1\\0 \end{bmatrix}$.

Since \vec{v}_1 and \vec{v}_2 are orthogonal already, we obtain $\vec{u}_1 = \frac{1}{\sqrt{2}} \begin{bmatrix} -1 \\ 0 \\ 0 \\ 1 \end{bmatrix}$, $\vec{u}_2 = \frac{1}{\sqrt{2}} \begin{bmatrix} 0 \\ -1 \\ 1 \\ 0 \end{bmatrix}$.

$$5.2.34 \quad \text{rref}(A) = \begin{bmatrix} 1 & 0 & -1 & -2 \\ 0 & 1 & 2 & 3 \end{bmatrix}$$

A basis of
$$\ker(A)$$
 is $\vec{v}_1 = \begin{bmatrix} 1 \\ -2 \\ 1 \\ 0 \end{bmatrix}$, $\vec{v}_2 = \begin{bmatrix} 2 \\ -3 \\ 0 \\ 1 \end{bmatrix}$.

We apply the Gram-Schmidt process and obtain

$$\vec{u}_{1} = \frac{1}{\|\vec{v}_{1}\|} \vec{v}_{1} = \frac{1}{\sqrt{6}} \begin{bmatrix} 1\\ -2\\ 1\\ 0 \end{bmatrix}$$

$$\vec{u}_{2} = \frac{\vec{v}_{2}^{\perp}}{\|\vec{v}_{2}^{\perp}\|} = \frac{\vec{v}_{2} - (\vec{u}_{1} \cdot \vec{v}_{2})\vec{u}_{1}}{\|\vec{v}_{2} - (\vec{u}_{1} \cdot \vec{v}_{2})\vec{u}_{1}\|} = \frac{1}{\sqrt{30}} \begin{bmatrix} 2\\ -1\\ -4\\ 3 \end{bmatrix}$$

5.2.**35**
$$\operatorname{rref}(A) = \begin{bmatrix} 1 & 0 & \frac{1}{3} \\ 0 & 1 & \frac{1}{3} \\ 0 & 0 & 0 \end{bmatrix}$$

The non-redundant columns of A give us a basis of im(A):

$$\vec{v}_1 = \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix}, \ \vec{v}_2 = \begin{bmatrix} 2 \\ 1 \\ -2 \end{bmatrix}$$

Since \vec{v}_1 and \vec{v}_2 are orthogonal already, we obtain $\vec{u}_1 = \frac{1}{3} \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix}$, $\vec{u}_2 = \frac{1}{3} \begin{bmatrix} 2 \\ 1 \\ -2 \end{bmatrix}$.

5.2.36 Write
$$M = \frac{1}{2} \begin{bmatrix} 1 & 1 & 1 \\ 1 & -1 & -1 \\ 1 & -1 & 1 \\ 1 & 1 & -1 \end{bmatrix} \begin{bmatrix} 2 & 3 & 5 \\ 0 & -4 & 6 \\ 0 & 0 & 7 \end{bmatrix}$$

$$\uparrow \qquad \qquad \uparrow \qquad \qquad \downarrow \qquad \qquad \uparrow \qquad \qquad \uparrow \qquad \qquad \downarrow \qquad$$

This is almost the QR factorization of M: the matrix Q_0 has orthonormal columns and R_0 is upper triangular; the only problem is the entry -4 on the diagonal of R_0 . Keeping in mind how matrices are multiplied, we can change all the signs in the second column of Q_0 and in the second row of R_0 to fix this problem:

$$M = \frac{1}{2} \begin{bmatrix} 1 & -1 & 1 \\ 1 & 1 & -1 \\ 1 & 1 & -1 \\ 1 & -1 & 1 \end{bmatrix} \quad \begin{bmatrix} 2 & 3 & 5 \\ 0 & 4 & -6 \\ 0 & 0 & 7 \end{bmatrix}$$

$$\uparrow \qquad \qquad \uparrow$$

$$Q \qquad \qquad R$$

Note that the last two columns of Q_0 and the last two rows of R_0 have no effect on the product Q_0R_0 ; if we drop them, we have the $\mathbb{Q}R$ factorization of M:

$$M = \frac{1}{2} \begin{bmatrix} 1 & 1 \\ 1 & -1 \\ 1 & -1 \\ 1 & 1 \end{bmatrix} \quad \begin{bmatrix} 3 & 4 \\ 0 & 5 \end{bmatrix}$$

$$\uparrow \qquad \uparrow$$

$$Q \qquad R$$

5.2.38 Since $\vec{v}_1=2\vec{e}_3,\ \vec{v}_2=-3\vec{e}_1$ and $\vec{v}_3=4\vec{e}_4$ are orthogonal, we have

$$Q = \begin{bmatrix} \frac{\vec{v}_1}{\|\vec{v}_1\|} & \frac{\vec{v}_2}{\|\vec{v}_2\|} & \frac{\vec{v}_3}{\|\vec{v}_3\|} \end{bmatrix} = \begin{bmatrix} 0 & -1 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \text{ and } R = \begin{bmatrix} \|\vec{v}_1\| & 0 & 0 \\ 0 & \|\vec{v}_2\| & 0 \\ 0 & 0 & \|\vec{v}_3\| \end{bmatrix} = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 4 \end{bmatrix}.$$

5.2.39
$$\vec{u}_1 = \frac{1}{\sqrt{14}} \begin{bmatrix} 1\\2\\3 \end{bmatrix}$$
, $\vec{u}_2 = \frac{1}{\sqrt{3}} \begin{bmatrix} 1\\1\\-1 \end{bmatrix}$, $\vec{u}_3 = \vec{u}_1 \times \vec{u}_2 = \frac{1}{\sqrt{42}} \begin{bmatrix} -5\\4\\-1 \end{bmatrix}$

5.2.40 If
$$\vec{v}_1, \dots, \vec{v}_n$$
 are the columns of A , then $Q = \begin{bmatrix} \frac{\vec{v}_1}{\|\vec{v}_1\|} & \cdots & \frac{\vec{v}_n}{\|\vec{v}_n\|} \end{bmatrix}$ and $R = \begin{bmatrix} \|\vec{v}_1\| & 0 \\ & \ddots & \\ 0 & \|\vec{v}_n\| \end{bmatrix}$.

(See Exercise 38 as an example.)

5.2.41 If all diagonal entries of A are positive, then we have $Q = I_n$ and R = A. A small modification is necessary if A has negative entries on the diagonal: if $a_{ii} < 0$ we let $r_{ij} = -a_{ij}$ for all j, and we let $q_{ii} = -1$; if $a_{ii} > 0$ we let $r_{ij} = a_{ij}$ and $q_{ii} = 1$. Furthermore, $q_{ij} = 0$ if $i \neq j$ (that is, Q is diagonal).

For example,
$$\begin{bmatrix} -1 & 2 & 3 \\ 0 & 4 & 5 \\ 0 & 0 & -6 \end{bmatrix} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix} \begin{bmatrix} 1 & -2 & -3 \\ 0 & 4 & 5 \\ 0 & 0 & 6 \end{bmatrix}$$

$$\uparrow \qquad \qquad \uparrow \qquad \qquad \uparrow$$

$$A \qquad \qquad Q \qquad \qquad R$$

5.2.42 We have $r_{11} = \|\vec{v}_1\|$ and $r_{22} = \|\vec{v}_2^{\perp}\| = \|\vec{v}_2 - \operatorname{proj}_L \vec{v}_2\|$, so that $r_{11}r_{22}$ is the area of the parallelogram defined by \vec{v}_1 and \vec{v}_2 . See Figure 5.13.

Figure 5.13: for Problem 5.2.42.

5.2.43 Partition the matrices Q and R in the QR factorization of A as follows:

$$\begin{bmatrix} A_1 & A_2 \end{bmatrix} = A = QR = \begin{bmatrix} Q_1 & Q_2 \end{bmatrix} \begin{bmatrix} R_1 & R_2 \\ 0 & R_3 \end{bmatrix} = \begin{bmatrix} Q_1R_1 & Q_1R_2 + Q_2R_3 \end{bmatrix},$$

where Q_1 is $n \times m_1, Q_2$ is $n \times m_2, R_1$ is $m_1 \times m_1$, and R_3 is $m_2 \times m_2$.

Then, $A_1 = Q_1 R_1$ is the QR factorization of A_1 : note that the columns of A_1 are orthonormal, and R_1 is upper triangular with positive diagonal entries.

- 5.2.44 No! If m exceeds n, then there is no $n \times m$ matrix Q with orthonormal columns (if the columns of a matrix are orthonormal, then they are linearly independent).
- 5.2.45 Yes. Let $A = [\vec{v}_1 \quad \cdots \quad \vec{v}_m]$. The idea is to perform the Gram-Schmidt process in reversed order, starting with $\vec{u}_m = \frac{1}{\|\vec{v}_m\|} \vec{v}_m$.

Then we can express \vec{v}_j as a linear combination of $\vec{u}_j, \dots, \vec{u}_m$, so that $\begin{bmatrix} \vec{v}_1 & \cdots & \vec{v}_j & \cdots & \vec{v}_m \end{bmatrix} = \begin{bmatrix} \vec{u}_1 & \cdots & \vec{u}_j & \cdots & \vec{u}_m \end{bmatrix} L$ for some lower triangular matrix L, with