	Name:
	Vorname:
Biol 🖵	Studiengang:
Pharm 🖵	
BWS □	

Basisprüfung Winter 2011

Organische Chemie I+II

für Studiengänge
Biologie (Biologische Richtung)
Pharmazeutische Wissenschaften
Bewegungswissenschaften und Sport
Prüfungsdauer: 3 Stunden

Unleserliche Angaben werden nicht bewertet! Bitte auch allfällige Zusatzblätter mit Namen anschreiben.

Bitte freilassen:

Teil OC I	Punkte (max 50)	Teil OCI	Punkte (max 50)
Aufgabe 1		Aufgabe	6
Aufgabe 2		Aufgabe	7
Aufgabe 3		Aufgabe	8
Aufgabe 4		Aufgabe	9
Aufgabe 5			
Total OC I		Total OC	CII
Note OC I		Note OC	: 11
		Note	OC

1. Aufgabe (9.5 Pkt)

a) 1 Pkt.	Zeichnen Sie die Strukturformel von:	
	(R,Z)-8-(1-Brom-2-methylbut-2-enyl)-9-methyl-purin-6-amin	
b) 1 Dist	Zeichnen Sie die Strukturfermel (inkl. Stereechemie) von:	
b) 1 Pkt.	Zeichnen Sie die Strukturformel (inkl. Stereochemie) von: (S)-4-(3,3-Dimethylcyclopenta-1,4-dienyl)-4-methylcyclopenta-0.	
	(3)-4-(3,3-Dimetriyicyclopenta-1,4-dierryi)-4-metriyioct-0-iii-2-on	
c) 4.5 Pkt.	Benennen Sie die folgenden Verbindungen nach IUPAC	
	(wo erforderlich inkl. stereochemische Deskriptoren!)	
	OH COOH	
	S	
	NH ₂	
	он у	
d) 3 Pkt	Zu welcher Substanzklasse gehören die folgenden Verbindungen?	
	o [⊙]	
	.8	
	·	
	Punkte Aufgabe 1	

2. Aufgabe (5.5 Pkt)

a) 2 Plt — Tragon Sio in don folgondon Formola dio foblandon Formalladungan oin:			
a) 2 Pkt. Tragen Sie in den folgenden Formeln die fehlenden Formalladungen ein:			
b) 1 1/2 Pkt. Zeichnen Sie je eine weitere möglichst gute Grenzstruktur der untenstehenden			
Verbindungen			
$\begin{array}{c c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & &$			
		Í	
• • • • • • • • • • • • • • • • • • •			
		Í	
H_2C^{Θ} N			
c) 2 Pkt. Geben Sie die Bindungsgeometrie und Hybridisierung an den nummerierten		İ	
Atomen an.			
Bindungsgeometrie Hybridisierung			
(3) N NH ₂ 1		l	
		Ì	
2		Ì	
3		ſ	
N 4			
Punkte Aufgabe 2			

3. Aufgabe (12.5 Pkt)

a) 2 1/2 Pkt Liegt bei den folger Wenn ja, um welche Art von Iso	nden Strukturen Isomerie vor? merie handelt es sich?	
		Nicht Isomere Konstitutionsisomere Diastereoisomere Enantiomere identisch
NH ₂	NH ₂ N OH	Nicht Isomere Konstitutionsisomere Diastereoisomere Enantiomere identisch
HO OH OH	он ОН ОН	Nicht Isomere Konstitutionsisomere Diastereoisomere Enantiomere identisch
CI	CI	Nicht Isomere Konstitutionsisomere Diastereoisomere Enantiomere identisch
NH ₂ N O	NH ₂ N O Θ	Nicht Isomere Konstitutionsisomere Diastereoisomere Enantiomere identisch
		Übertrag Aufgabe 3

Aufgabe 3 (Fortsetzung)

b) 2 Pkt. Welche der angegebenen Moleküle sind chiral?		Ī	
Welches ist die Beziehung zwischen a und d?			
		1	
印的印			
a b c d	l		
chiral	ı	1	
achiral		Ī	
		Ī	
Enantiomere Moleküle a und d sind Diastereoisomere identisch			
c) 5 Pkt. Die Fischerprojektion einer Fructose ist unten angegeben.	ı	Ì	
1 CH ₂ OH 2 O HO 3 H H 4 OH H 5 OH 6 CH ₂ OH			
Fructose Perspektivformel Enantiomeres			
c1) 1/2 Pkt. Handelt es sich um D- oder L-Fructose?			
c2) 1 1/2 Pkt. Zeichnen Sie das in der Fischerprojektion angegebene Molekül als Perspektivformel (Keilstrichformel ergänzen).			
c3) 1/2 Pkt. Zeichnen Sie die Fischerprojektion des zur dargestellten Fructose enantiomeren Moleküls (Projektion ergänzen).			
c4) 1 Pkt. Bezeichnen Sie die absolute Konfiguration für die stereogenen Zentren C3 und C4 in der abgebildeten Fructose mit CIP Deskriptoren. C3: R S C4: R S			
c5) 1 1/2 Pkt. Wieviele Stereoisomere mit dieser Konstitution gibt es?			
Übertrag Aufgabe 3			

Aufgabe 3 (Fortsetzung).

d) 3 Pkt. WelcheTopizität h	aben die eingekreisten Atompaare	?	
N H	H N N	N H	
E H	N H	H H	
		Punkte Aufgabe 3	

4. Aufgabe (16.5 Pkt)

Aufgabe 4 (Fortsetzung).

 b) 5 Pkt. (je ½ für richtige Wahl und Begründung pro Paar) Welche der beiden Säuren ist stärker? (ankreuzen). Welcher Effekt ist dafür hauptsächlich verantwortlich? (1-8) einsetzen. Wichtgste Effekte: 1. Elektronegativität des direkt an das Proton gebunden Atoms. 2. Atomgrösse/Polarisierbarkeit des direkt an das Proton gebunden Atoms. 3. Hybridisierung des durch Deprotonierung entstehenden lone pairs 4. σ-Akzeptor = -I Effekt. 5. π-Akzeptor Effekt (-M). 6. π-Donor Effekt (+M). 7. Solvatation (Wechselwirkung mit dem Lösungsmittel). 8. Wasserstoffbrücken. 		
H ₃ C wichtigster Effekt (1-8)		
H_3C OH H_3C OH		
H ₃ C		
o—N		
О N — ОН		
CI ₂ HC OH CIH ₂ C OH		
OH SH		
———н		
	9.4	

Aufgabe 4 (Fortsetzung).

c) 4 Pkt. An welcher Stelle werden die untenstehenden Moleküle **protoniert**? Zeichnen Sie die konjugate Säure und begründen Sie ihre Antwort.

d) 4 Pkt. An welcher Stelle werden die untenstehenden Moleküle deprotoniert?Zeichnen Sie die konjugate Base und begründen Sie ihre Antwort.

Begründung:

Begründung:

Punkte Aufgabe 4

5. Aufgabe (6 Pkt)

a) 2 Pkt. Wie gross ist die Gleichgewichtskonstante des Gleichgewichts 2)? (keine Punkte ohne Lösungsweg!)

$$K_1 = 20$$

 $\Delta G_1 = -7.4 \text{ kJ/mol}$

Das oben angeschriebene Gleichgewicht 1) hat eine Gleichgewichtskonstante von 20, was einer freien Enthalpie von -7.4 kJ/mol entpricht.

Wie gross ist der Energieunterschied zwischen den beiden Sesselkonformeren im *trans*-1,4-Dimethylcyclohexan?

Antwort: kJ/mol

b) 2 Pkt. Ester wandeln sich mit einer freien Aktivierungenethalpie von 50 kJ/mol von der trans-Konformation in die cis-Konformation um. Bei Amiden ist die freie Aktivierungsenethalpie für den analogen Prozess etwa 78.5 kJ/mol.

$$\Delta G^{\neq}$$
 = 50 kJ/mol

cis-Konformation

 ΔG^{\neq} = 78.5 kJ/mol

Um welchen Faktor schneller ist dieser Prozess bei Estern relativ zu Amiden bei Raumtemperatur? (keine Punkte ohne Lösungsweg!)

Antwort:mal schneller.

c) c) 2 Pkt. Zeichnen Sie die Konformere von (2R,3R)-2,3-Diiodbutan in der Newman-Projektion. Zeichnen Sie qualitativ ein Energieprofil [E(θ)] der Rotation um die C(2)-C(3) Bindung (θ = Diederwinkel C(1)-C(2)-C(3)-C(4), d.h. θ =0°, wenn die Bindungen C(1)-C(2) und C(3)-C(4) verdeckt stehen).

6. Aufgabe (a-f= je 2.5 Pkt; total 15 Pkt)

Wie würden Sie die nachstehenden Umwandlungen durchführen? Geben Sie alle benötigten Reagenzien, Lösungsmittel und allenfalls Katalysatoren an! Bemerkung: eine Stufe beinhaltet auch die entsprechende Aufarbeitung! a) CHO b) (2 Stufen) c) d) Br e) Br f) ÒН (±) Punkte Aufgabe 6

7. Aufgabe (a-e=je 3 Pkt; Struktur: 2.5 Pkt, Typ: 0.5 Pkt; total 15 Pkt)

Welche Hauptprodukte erwarten Sie bei den folgenden Umsetzungen un welchen Reaktionstyp, bzw. um welche Namensreaktion handelt es sich (Wo erforderlich, Stereochemie angeben!). 2 Stereoisomere	
a) $COOEt$ $COOEt$ THF $16 \text{ h } 70^{\circ}$ $Typ:$	
b) K tert-BuO DMSO, 8 h 50° Typ:	
COOH 1) SOCI ₂ 2) 2 Equiv. NH ₂ CH ₂ CI ₂ als Lsgsm.	
COOEt FeBr ₃ , Br ₂ 16 h 80° Typ:	
e) Nal Aceton als Lsgsm. Typ:	
Punkte A	Aufgabe 7

8. Aufgabe (*a*=8 *Pkt*, *b*=2 *Pkt*; total 10 *Pkt*)

a) Formulieren Sie einen detaillierten Mechanismus für folgende Umsetzung!

Mechanismus:

b) Ist der neugebildete Heterocyclus aromatisch? ja: nein: Begründung (ohne befriedigende Begründung gibt es keine Punkte):

Punkte Aufgabe 8

9. Aufgabe (*a=4 Pkt,b=2x3 Pkt; total 10Pkt*)

a) Formulieren Sie einen detaillierten Mechanismus für folgende Umsetzung!

Mechanismus: (3 Punkte)

Wie heisst diese Namens-Reaktion? (1 Punkt)

b) Wie lautet die Regel von Saytzew? Geben Sie ein Anwendungsbeispiel!

Regel: (3 Punkte)

Anwendungsbeispiel: (3 Punkte)