Feuille d'exercices nº 6 : fonctions usuelles

Exercice 1. Résoudre dans \mathbb{R} les équation suivantes :

$$(E_1)$$
: $ch(x) = 3$ (E_2) : $ch^2(x) + sh^2(x) = 17$

Indication: Poser: $X = e^x$. Alors e^{-x} s'écrit aussi en fonction de X.

Exercice 2. Résoudre dans \mathbb{R} les équations suivantes :

$$(E_1)$$
: $\arcsin x = \arccos \frac{1}{3}$ (E_2) : $\arcsin x = \arccos \left(-\frac{1}{3}\right)$

Indication: Composer par sin. Que vaut $\sin^2(\arccos x)$?

Exercice 3.

- 1. Soient a, b strictement positifs. Vérifier que $\arctan(a) \arctan(b) = \arctan\left(\frac{a-b}{1+ab}\right)$.
- 2. En déduire la limite lorsque n tends vers $+\infty$ de $\sum_{k=0}^{n} \arctan\left(\frac{1}{1+k(k+1)}\right)$.

Indication : Poser $T_1 = \arctan(a) - \arctan(b)$ et $T_2 = \arctan\left(\frac{a-b}{1+ab}\right)$. Vérifier que T_1 et T_2 ont la même tangente. Pourquoi sont-ils égaux?

Exercice 4.

- 1. Simplifier : $\arcsin x + \arccos x$.
- 2. Résoudre l'équation (E): $\arcsin(x) + \arcsin\sqrt{1-x^2} = \frac{\pi}{2}$ en posant (après justification) $x = \sin\theta$.

Indication:

- 1. Étudier la fonction $x \mapsto \arccos x + \arcsin x$.
- 2. Déterminer le domaine de résolution de (E). Que vaut $\sqrt{1-x^2}$ en fonction de t?

Exercice 5. Montrer que :

- 1. $\forall x \in \mathbb{R}_+^*$ $\arctan x + \arctan \frac{1}{x} = \frac{\pi}{2}$
- 2. $\forall x \in \mathbb{R}^*_ \arctan x + \arctan \frac{1}{x} = -\frac{\pi}{2}$

Indication: Dériver la fonction $f(x) = \arctan x + \arctan \frac{1}{x}$. Attention au domaine de définition.

Exercice 6.

- 1. Simplifier pour tout $x \in \mathbb{R} : A(x) = \operatorname{ch}^2(x) \operatorname{sh}^2(x)$.
- 2. Montrer que pour tout x > 0, on a : $\arctan(\operatorname{sh}(x)) = \arccos\left(\frac{1}{\operatorname{ch}(x)}\right)$.

Exercice 7. Soit f définie par : $x \mapsto \arcsin\left(\frac{1+x}{1-x}\right)$. Étudier le domaine de définition et le domaine de dérivabilité de f puis calculer f' quand elle existe.

Exercice 8. On pose

$$f(x) = \arcsin\left(\frac{x}{\sqrt{1+x^2}}\right).$$

Le but de cet exercice est de simplifier l'expression de f par deux méthodes.

- 1. (a) Déterminer le domaine de définition de f et son domaine de dérivabilité.
 - (b) Montrer que : $\forall x \in \mathbb{R}, \quad f'(x) = \frac{1}{1+x^2}.$
 - (c) En déduire une simplification de f.
- 2. Soit $x \in \mathbb{R}$.
 - (a) On écrit $x = \tan \theta$ avec $\theta \in \left[-\frac{\pi}{2}; \frac{\pi}{2} \right]$. Pourquoi est-ce possible?
 - (b) Simplifier alors $f(\tan \theta)$.
 - (c) Retrouver la simplification de f.

Exercice 9. Soit f la fonction définie par $f: x \mapsto \arcsin \frac{2x}{1+x^2}$.

- 1. Déterminer l'ensemble de définition de f. Étudier sa parité.
- 2. Déterminer le domaine de dérivabilité de f et calculer f'.
- 3. En déduire une expression simplifiée de f.

Pour s'entrainer

Exercice 10. Résoudre $\arctan(x-1) + \arctan(x) + \arctan(x+1) = \frac{\pi}{2}$.

Exercice 11. Soit f la fonction définie par $f(x) = \arctan \sqrt{\frac{1+x}{1-x}}$. Dans cet exercice, on cherche à simplifier l'expression de f par deux méthodes.

- 1. Déterminer le domaine de définition \mathcal{D} de f.
- 2. Déterminer le domaine de dérivation de f et calculer f'. En déduire une écriture simplifier de f.
- 3. Soit $x \in D$. Justifier qu'il existe un unique $\theta \in [0, \frac{\pi}{2}[$ tel que $\tan \theta = \sqrt{\frac{1+x}{1-x}}$. Exprimer ensuite x en fonction de θ .
- 4. En déduire une expression simplifiée de f. Est-ce la même que celle trouvée en 2?

Exercice 12. On cherche à étudier la fonction f définie par $f(x) = \arcsin(2x\sqrt{1-x^2})$.

- 1. Déterminer le domaine de définition de la fonction f.
- 2. Étudier la parité de f. En déduire un intervalle d'étude le plus restreint possible pour f.
- 3. Sur quel ensemble la fonction f est-elle dérivable? Calculer la dérivée de f.
- 4. En déduire une expression simplifiée de la fonction f (on pourra distinguer plusieurs intervalles).
- 5. En posant $x = \cos(\theta)$, retrouver directement l'expression de f.

Exercice 13 (Formule de Machin).

Exprimer, pour un réel x pour lequel cela a un sens, tan(4x) en fonction de tan(x).

En déduire que $\frac{\pi}{4} = 4 \arctan\left(\frac{1}{5}\right) - \arctan\left(\frac{1}{239}\right)$

(cette formule, connue sous le nom de formule de Machin, permit au mathématicien du même nom de déterminer les 100 premières décimales du nombre π au début du 18ème siècle).

Exercice 14. Résoudre $\arccos(x) = \arcsin(1/3) + \arccos(1/4)$ en précisant le domaine de résolution. *Indication*: On justifiera que le membre de droite est dans $[0, \pi]$.

Exercice 15. Démontrer les formules suivantes (analogues pour les fonctions hyperboliques des formules de trigonométries que vous connaissez bien) :

- $\operatorname{sh}(x+y) = \operatorname{sh}(x)\operatorname{ch}(y) + \operatorname{ch}(x)\operatorname{sh}(y)$
- $\operatorname{sh}(x-y) = \operatorname{sh}(x) \operatorname{ch}(y) \operatorname{ch}(x) \operatorname{sh}(y)$
- $\operatorname{ch}(x+y) = \operatorname{ch}(x) \operatorname{ch}(y) + \operatorname{sh}(x) \operatorname{sh}(y)$
- $\operatorname{ch}(x-y) = \operatorname{ch}(x) \operatorname{ch}(y) \operatorname{sh}(x) \operatorname{sh}(y)$
- $\operatorname{sh}(2x) = 2\operatorname{sh}(x)\operatorname{ch}(x)$
- $\bullet \ \operatorname{ch}(2x) = \operatorname{ch}^2(x) + \operatorname{sh}^2(x)$

Exercice 16. Montrer que les fonctions suivantes sont périodiques et déterminer la plus petite période :

1.
$$f(x) = x - \left[x + \frac{1}{2} \right]$$

2.
$$f(x) = 2x - |2x|$$

3.
$$f(x) = (-1)^{\lfloor x \rfloor} (x - \lfloor x \rfloor)$$

Exercice 17.

- 1. Déterminer une fonction $g:]0, +\infty[\to \mathbb{R}$ telle que $\forall x \in \mathbb{R}, g(e^x) = \operatorname{ch}(x)$.
- 2. Existe-t-il une fonction $f: [1, +\infty[\to \mathbb{R} \text{ telle que } \forall x \in \mathbb{R}, f(\operatorname{ch}(x)) = e^x ?$
- 3. Existe-t-il une fonction $f: [1, +\infty[\to \mathbb{R} \text{ telle que } \forall x \geqslant 0, f(\operatorname{ch}(x)) = e^x ?$

Exercice 18. Simplifier les expressions suivantes :

•
$$\arccos\left(\cos\left(\frac{507\pi}{3}\right)\right)$$

•
$$\cos^2\left(\frac{1}{2}\arctan(x)\right)$$

•
$$\cos(\arcsin(x))$$

•
$$\arctan\left(\sqrt{\frac{1-x}{1+x}}\right)$$

Exercice 19. Résoudre l'équations suivante : $4\operatorname{ch}(x) + 3\operatorname{sh}(x) - 4 = 0$.

Exercice 20. Étudier et tracer la courbe de : $f(x) = \arccos\left(\frac{\sqrt{x}}{1+x}\right)$.