Exercícios de avaliação

Exercício 11.1 Considere um sistema digital S que possui 10 bits de entrada e 7 bits de saída. Os bits de saída z_1 a z_7 reproduzem os bits de entrada x_1 a x_7 ao se colocar a palavra binária 000 nos bits de entrada $c_2c_1c_0$. Por outro lado, ao se colocar o número decimal i, em binário, nas entradas c_k o sistema faz a complementação na saída do i-ésimo bit, reproduzindo os demais bits sem complementação. Por exemplo, para i=5 então $c_2c_1c_0=101$, $z_5=\overline{x_5}$ e $z_k=x_k$ para k=1,2,3,4,6,7. Outro exemplo, para i=1 então $c_2c_1c_0=001$, $z_1=\overline{x_1}$ e $z_k=x_k$ para k=2,3,4,5,6,7, e assim por diante. Implemente o sistema S usando apenas um decoder 3x8 e portas XOR.

Exercício 11.2 Implemente as três funções f_1 , f_2 e f_3 listadas a seguir usando dois *decoders* 3x8 e portas OR. Para realizar a implementação considere a metodologia vista em aula. Dica: utilize a entrada de *enable* do *decoder* para auxiliar na implementação.

```
f_1(x_3, x_2, x_1, x_0) = \text{Conjunto-UM}(0, 7, 10, 15).

f_2(x_3, x_2, x_1, x_0) = \text{Conjunto-UM}(2, 6).

f_3(x_3, x_2, x_1, x_0) = \text{Conjunto-UM}(12, 13, 14).
```