

AUDIO FOR CONFIRMATION



Force sensor

Audio sensing & acquisition unit

Ex-vivo porcine tissue

# Study of needle punctures into soft tissue through audio and force sensing: can audio be a simple alternative for needle guidance?

Muhannad Sabieleish<sup>1</sup> · Katarzyna Heryan<sup>2</sup> · Axel Boese<sup>1</sup> · Christian Hansen<sup>3</sup> · Michael Friebe<sup>1</sup> · Alfredo Illanes<sup>1</sup>

PDF download

## Sygnały akustyczne w tkance









## Butterworth bandpass filter



### Przygotowanie do laboratorium

- Ćwiczenie będzie wykonywane w pliku <u>prep.py</u>. Uzupełniaj linijki kodu tak, aby program działał poprawnie.
- Przed rozpoczęciem pracy upewnij się, że masz zainstalowane środowisko Python 3 wraz z menedżerem pakietów (pip lub conda).
- Upewnij się, że masz zainstalowane biblioteki:
  - numpy
  - opencv
  - maplotlib
  - librosa
  - scipy

### ZADANIE 1 (2 pkt)

- Zapoznaj się z plikiem <u>zad1.py</u> oraz załączonymi danymi. Uzupełnij kod tak, aby móc wczytać dane.
- Uzupełnij funkcję *load\_video\_data* o możliwość zastosowania filtru Gaussowskiego do klatek wideo w celu redukcji szumów.
- Uzupełnij funkcję butter\_bandpass o implementację filtru Butterworth bandpass.
- Dodaj proste wizualizacje, umożliwiające porównanie wyników poszczególnych operacji (przy pomocy funkcji np. plt.plot)

#### ZADANIE 2

Uzupełnij kod funkcji *anim\_process\_frame* tak, aby dodatkowo przefiltrować obraz. Odejmij od klatek filmu medianę wartości sąsiadujących klatek w celu lepszego wyróżnienia zmian na obrazie USG.

#### ZADANIE 3

Aktualnie ROI wyliczane jest na podstawie różnicy aktualnej wartości obrazu USG i mediany jasności poszczególnych klatek. Czy da się to zrobić lepiej? Zaproponuj własny deskryptor obrazu USG, zaimplementuj go i zobacz, jak się sprawdza.