

INF 553:

Foundations and Applications of Data Mining

Roadmap

- Problem, types, and distance functions
- Algorithms:
- Hierarchical clustering
- Point assignment
 - K-means
 - ♦ BFR: extend k-means to handle large data set
 - CURE

Learning Approaches

Supervised Learning

- ◆ The training data is annotated with information to help the learning system
 - Eg. the class for each instance

Unsupervised Learning

- ◆ The training data is not annotated with any extra information to help the learning system
 - → Eg. clustering of data

Semi-Supervised Learning

High Dimensional Data

High dim. data

Locality sensitive hashing

Clustering

Dimensional ity reduction

Graph data

PageRank, SimRank

Network Analysis

Spam
Detection

Infinite data

Filtering data streams

Web advertising

Queries on streams

Machine learning

SVM

Decision Trees

Perceptron, kNN

Apps

Recommen der systems

Association Rules

Duplicate document detection

4

High Dimensional Data

- Given a cloud of data points we want to understand its structure
- Group points into "clusters" according to some distance measure.

The Problem of Clustering

- Given a set of points that belong to some space,
 with a notion of distance between points
- Group the points into some number of clusters, so that:
 - > Members of a cluster are close/similar to each other
 - > Members of different clusters are dissimilar

♦ Usually:

- Points are in a high-dimensional space
- > Similarity is defined using a distance measure
 - Euclidean, Cosine, Jaccard, edit distance, ...

Example: Clusters & Outliers

Clustering is a hard problem!

Why is it hard?

- Clustering in two dimensions looks easy
- Clustering small amounts of data looks easy
 - And in most cases, looks are not deceiving
- ◆ BUT: Many applications involve not 2, but 10 or 10,000 dimensions
- ◆ High-dimensional spaces look different: Almost all pairs of points are at about the same distance
 - ➤ Curse of dimensionality: In high dimensions, almost all pairs of points are equally far away from one another; almost any two vectors are orthogonal.

Clustering Sky Objects: SkyCat

- ◆ A catalog of 2 billion "sky objects" represents objects by their radiation in 7 dimensions (frequency bands)
- Problem: Cluster into similar objects, e.g., galaxies, nearby stars, quasars, etc.
- Sloan Digital Sky Survey is a newer, better version of this

Clustering Problem: Songs

- Intuitively: Music divides into categories, and customers prefer a few categories
 - But what are categories really?
- Represent a song by a set of customers who bought it
- ◆ **Similar songs** have similar sets of customers, and vice-versa.

Clustering Problem: Songs

Space of all songs:

- Think of a space with one dimension for each customer
 - > Values in a dimension may be 0 or 1 only
 - A song is a point in this space $(x_1, x_2, ..., x_k)$, where $x_i = 1$ iff the i th customer bought the song
- For Amazon, the dimension is tens of millions
- ◆ Task: Find clusters of similar songs.

Clustering Problem: Documents

Finding topics:

- Represent a document by a **vector** $(x_1, x_2,..., x_k)$, where $x_i = 1$ iff the i th word (in some order) appears in the document
 - ➤ It actually doesn't matter if *k* is infinite; i.e., we don't limit the set of words
- Representing documents by sets of shingles in another example
- Documents with similar sets of words or same shingles may be about the same topic.

Jaccard, Euclidean and Cosine Distance

- Different ways of representing documents (as sets of words or shingles) lead to different distance measures
- Document = set of words
 - Jaccard distance
- Document = point in space of words
 - \rightarrow (x₁,x₂,...,x_n), where x_i=1 iff word *i* appears in doc
 - Euclidean distance
- Document = vector in space of words
 - \triangleright Vector from origin to $(x_1, x_2, ..., x_n)$
 - Cosine distance.

Euclidean Distance

Measures distance of two points in Euclidean space

$$d([x_1, x_2, \dots, x_n], [y_1, y_2, \dots, y_n]) = \sqrt{\sum_{i=1}^n (x_i - y_i)^2}$$

Cosine Distance

- Similarity = Cosine of angle btw vectors: A & B
 - Numerator is the dot product of vectors A and B
 - > Denominator is the product of the **Euclidean distance** of

each vector from the origin (length of the vector)

distance = 1- Cosine(A, B)

similarity =
$$\cos(\theta) = \frac{A \cdot B}{\|A\| \|B\|} = \frac{\sum_{i=1}^{n} A_i \times B_i}{\sqrt{\sum_{i=1}^{n} (A_i)^2} \times \sqrt{\sum_{i=1}^{n} (B_i)^2}}$$

Example-Cosine Distance

- Think of a point as a vector from the origin (0,0,...,0)
 to its location
- ◆ Two points'vectors make an angle, whose cosine is the normalized dot product of the vectors: p1.p2/|p2||p1|
- **Example**: p1=00111; p2=10011
- ◆ p1.p2=2
- ◆ |p2|=|p1|=√3
- \bullet Cos(θ)=2/3; θ is about 48 degrees.

similarity =
$$\cos(\theta) = \frac{A \cdot B}{\|A\| \|B\|} = \frac{\sum_{i=1}^{n} A_i \times B_i}{\sqrt{\sum_{i=1}^{n} (A_i)^2} \times \sqrt{\sum_{i=1}^{n} (B_i)^2}}$$

For Sets, Jaccard <u>Similarity</u>

D1: The quick brown fox jumped over the dog.

D2: The brown fox jumps and the dog is there too.

Jaccard = $|S \land T| / |S \lor T| = 6/12 = 0.5$

Jaccard <u>Distance</u>

1 – (Jaccard Similarity)

Hamming Distance

- For two bit vectors, distance btw x and y =
 - > # of corresponding bits that differ

- x = 10101, y = 11110
 - \triangleright Hamming(x, y) = 3

Edit Distance

- Use when points are strings
- Distance between strings $x = x_1x_2...x_n$ and $y=y_1y_2...y_m$
- Smallest number of insertions and deletions of single characters that will convert x to y
- **Example:**
 - > x = abcde and y = acfdeg
 - To convert x to y: Delete b, insert f after c, insert g after e
 - ➤ Edit distance = 3

Roadmap

- Problem, types and distance functions
- ♦ Hierarchical clustering

- ◆Point assignment
 - ♦K-means
 - **♦**BFR
 - CURE

Overview: Methods of Clustering

♦ Hierarchical:

- > Agglomerative (bottom up):
 - Initially, each point is a cluster
 - Repeatedly combine the two "nearest" clusters into one
- > Divisive (top down):
 - Start with one cluster and recursively split it

- Maintain a set of clusters
- Points belong to "nearest" cluster.

Clustering Strategies (cont.)

Also distinguish clustering algorithms by:

- Whether the algorithm assumes a Euclidean space or uses some other distance measure
- Whether the algorithm assumes data are small enough to fit into memory.

Hierarchical Clustering (Agglomerative)

Key operation:
 Repeatedly combine
 two nearest clusters

◆ Three important questions:

- > 1) How do you represent a cluster of more than one point?
- > 2) How do you determine the "nearness" of clusters?
- > 3) When to stop combining clusters?

Hierarchical Clustering

- Key operation: Repeatedly combine two nearest clusters
- **♦ (1)** How to represent a cluster of many points?
 - ➤ **Key problem:** As you merge clusters, how do you represent the "location" of each cluster, to tell which pair of clusters is closest?
- Euclidean case: each cluster has a centroid = average of its (data) points
- **◆ (2)** How to determine "nearness" of clusters?
 - Measure cluster distances by distances of centroids.

Hierarchical Clustering

◆ Initially, a point is in a cluster by itself

```
How to pick and combine efficiently?
                                           When to stop?
   WHILE it is not time to stop DO
       pick the best two clusters to merge;
       combine those two clusters into one cluster;
   END;
```

How to measure cluster distance?27

Hierarchical Agglomerative (Bottom-Up) Clustering Algorithm

- ◆ First assume the space is Euclidean
- Represent cluster by its centroid or average of points in the cluster

Merging rule:

- the distance between two clusters is distance between their centroids
- dist(C1, C2) = distance of their centroids
 - Coordinate of centroid = avg of that of all points in the cluster
- > C1: {(1, 2), (2, 2)}
 - Centroid = (1.5, 2)
- merge two clusters at shortest distance.

Example: Hierarchical clustering

Data:

o ... data point

x ... centroid

When to Stop Clustering Process

- Several approaches:
- May know how many clusters there are in the data
 - Have been told or some intuitive number of clusters
- 2. Stop combining when best combination of existing clusters produces a cluster that is inadequate
 - E.g., Average distance between centroid and its points should be below some limit.

Rules for Controlling Hierarchical Clustering: Picking Clusters to Merge

- Find pair with smallest distance between centroids (previous)
- 2. Take distance between two clusters as minimum of distances between any two points, one chosen from each cluster
 - Merge two clusters with minimum distance
 - May result in entirely different clustering from distance-of-centroids
- Take distance between two clusters to be average distance of all pairs of points, one from each cluster
 - Merge two clusters with smallest average distance
- 4. Radius of cluster = maximum distance between all points and the centroid
 - Combine two clusters whose resulting cluster has lowest radius
- 5. Diameter of cluster = maximum distance between any two points of the cluster
 - Merge the clusters whose resulting cluster has smallest diameter.

Dendrogram

- Can obtain k clusters from result for desired k
 - k can be any value between 1 and n

And in the Non-Euclidean Case?

What about the Non-Euclidean case?

- The only "locations" we can talk about are the points themselves
 - > i.e., there is no "average" of two points

◆ Approach 1:

- > (1) How to represent a cluster of many points?
 - *clustroid* = (data)point "*closest*" to other points
- > (2) How do you determine the "nearness" of clusters?
 - Treat clustroid as if it were centroid, when computing inter-cluster distances.

Clustroid

Centroid is the avg. of all (data)points in the cluster. This means centroid is an "artificial" point

Clustroid is an **existing** (data)point that is "closest" to all other points in the cluster.

"Closest" Point?

- ◆ (1) How to represent a cluster of many points?
 clustroid = point "closest" to other points
- **◆** Possible meanings of "closest":
 - > Smallest maximum distance to other points
 - > Smallest average distance to other points in the cluster
 - > Smallest sum of squares of distances to other points
 - For distance metric **d** clustroid **c** of cluster **C** is: $\min_{c} \sum_{x \in C} d(x,c)^2$

Defining "Nearness" of Clusters

- ◆ (2) How do you determine the "nearness" of clusters?
 - Approach 1: Intercluster distance = minimum of the distances between any two points, one from each cluster
 - Approach 2: Pick a notion of "cohesion" of clusters, e.g., maximum distance from the clustroid
 - Merge clusters whose union is most cohesive.

Termination condition

- ◆ (3) When to stop merging
 - ➤ Approach 1: Pick a number k upfront, and stop when we have k clusters
 - Makes sense when we know that the data naturally falls into k classes
 - ➤ Approach 2: Stop when the next merge would create a cluster with low "cohesion"
 - i.e, a "bad" cluster.

Cohesion

- **◆** Merge clusters whose *union* is most cohesive
- ◆ Approach 3.1: Diameter of the merged cluster = maximum distance between points in the cluster
- Approach 3.2: Radius= maximum distance of a point from centroid (or clustroid)
- ◆ Approach 3.3: Use a density-based approach
 - Density = number of points per unit volume
 - > E.g., divide number of points in cluster by **diameter or** radius of the cluster
 - Perhaps use a power of the radius (e.g., square or cube).

Example

- Consider a cluster of 4 points:
 - ➤ abcd, aecdb, abecb, ecdab
- ◆ Their edit distances:

	aecdb	abecb	ecdab
abcd	3	3	5
aecdb		2	2
abecb			4

Determine Clusteroid

- aecdb will be chosen as clusteroid
 - ➤ Located in "center" judged by all 3 measures

	aecdb	abecb	ecdab
abcd	3	3	5
aecdb		2	2
abecb			4

Point	Sum	Sum- sq	Max
abcd	11	43	5
aecdb	7	17	3
abecb	9	29	4
ecdab	11	45	5

Complexity of Hierarchical Clustering

- n data points
- ◆ At most n 1 step of merging

◆ Naive implementation, e.g., storing pairwise cluster distances in a matrix

	C1	C2	C3	C4
C1	0	2	3	2
C2		0	4	5
C3			0	3
C4				0

Implementation

- **◆ Naïve implementation of hierarchical clustering:**
 - At each step, compute pairwise distances between all pairs of clusters, then merge
 - Initially, O(n²) for creating matrix and finding pair with minimum distance
 - Subsequent merge,
 - => Overall complexity: O(n³)
- Careful implementation using **priority queue** can reduce time to $O(N^2 \log N)$
 - > Still too expensive for really big datasets that do not fit in memory.

42

Roadmap

- Problem, types and distance functions
- Hierarchical clustering
- ◆Point assignment ◆
 - >K-means
 - **BFR**
 - **≻**CURE

K-Means Clustering Algorithm

- User specifies a target number of clusters (k)
- Place randomly k cluster centers
- For each datapoint, attach it to the nearest cluster center
- For each center, find the centroid of all the datapoints attached to it
- Turn the centroids into cluster centers
- Repeat until the sum of all the datapoint distances to the cluster centers is minimized

K-Means Clustering (1)

K-Means Clustering (2)

K-Means Clustering (3)

K-Means Clustering (4)

K-Means Clustering (5)

K-Means Clustering (6)

Clustering Methods

- Hierarchical clustering
 - Attach datapoints to root points
- K-Means clustering
 - Centroid-based
- Density-based methods
 - Clusters contain a minimal number of datapoints

Summary of Concepts in Clustering Clustering vs. Classification

- Classification is supervised
 - class labels are provided;
 - ▶ learn a classifier to predict class labels of novel/unseen data
- Clustering is unsupervised or semi-supervised;
 - No class label is give
 - > Understand the structure underlying your data.

Summary of Concepts in Clustering

- Clustering
- **◆** Algorithms:
- Hierarchical clustering
 - centroid
 - clustroid
 - Dendrogram
- Point assignment
 - > K-means: cluster centers, centroids
 - > BFR: extend k-means to handle large data set
 - > CURE.