ISyE 6739 –Goodness of Fit and Contingency Table Tests (Chapter 9)

Instructor: Kamran Paynabar
H. Milton Stewart School of
Industrial and Systems Engineering
Georgia Tech

Kamran.paynabar@isye.gatech.edu
Office: Groseclose 436

ISyE 6739, Goodness of Fit & Contingency Table Tests

1

Goodness of Fit

- The objective of Goodness of fit tests is to test hypotheses on the probability distribution of a population.
- The test is based on the difference of observed frequency and expected frequency.
- The test statistic follows a chi-square distribution when H0 is true

H0: The probability distribution of defects is Poisson

H1: The probability distribution of defects is NOT Poisson

EXAMPLE 9-12 Printed Circuit Board Defects Poisson Distribution

The number of defects in printed circuit boards is hypothesized to follow a Poisson distribution. A random sample of n=60 printed boards has been collected, and the following number of defects observed.

Number of Defects	Observed Frequency
0	32
1	15
2	9
3	4

Goodness of Fit

H0: The probability distribution of defects is Poisson

H1: The probability distribution of defects is NOT Poisson

	Number of Defects	Observed Frequency
Interval 1 →	0	32
	1	15
	2	9
	3	4

- Let O_i be the observed frequency in the ith class interval.
- Let E_i be the expected frequency in the ith class interval.

The test statistic is

$$X_0^2 = \sum_{i=1}^k \frac{(O_i - E_i)^2}{E_i}$$
 (9-47)

Interval 1 →

Pearson, Karl (1900). "On the criterion that a given system of deviations from the probable in the case of a correlated system of variables is such that it can be reasonably supposed to have arisen from random sampling". Philosophical Magazine Series 5 50 (302): 157–175.

ISyE 6739, Goodness of Fit & Contingency Table Tests

3

Frequency

Expected Frequency

- Let O_i be the observed frequency in the ith class interval.
- Let E_i be the expected frequency in the ith class interval.

In order to calculate expected frequency

- 1. Use the sample data and estimate the parameter of the distribution (λ)
- 2. Calculate the probability of each interval (p_i)
- 3. Find the expected frequency $E_i = np_i$

Note: if the expected frequency for an interval is less than 3, the interval should be combined with the previous interval

ISyE 6739, Goodness of Fit & Contingency Table Tests

Goodness of Fit

H0: The probability distribution of defects is Poisson

H1: The probability distribution of defects is NOT Poisson

N 1 C	01 1
Number of	Observed
Defects	Frequency
0	32
1	15
2	9
3	4

The test statistic is

$$X_0^2 = \sum_{i=1}^k \frac{(O_i - E_i)^2}{E_i}$$
 (9-47)

If $X_0^2 > \chi^2_{\alpha,k-p-1}$ H0 is rejected # of intervals # of estimated parameters

ISyE 6739, Goodness of Fit & Contingency Table Tests

5

Example

A sample of 60 observations was collected from a production line. Each observation is the number of produced parts until one defective is found. Use goodness of fit to investigate if the distribution of X is Geometric.

$$P(X = x) = (1 - p)^{x-1} p$$

$$E_i = np_i$$

х	Obsreved (Oi)	pi	Ei
1	30		
2	15		
3	10		
4	5		

$$X_0^2 = \sum_{i=1}^k \frac{(O_i - E_i)^2}{E_i}$$

6

ISyE 6739, Goodness of Fit & Contingency Table Tests

Normality Test

ISyE 6739, Goodness of Fit & Contingency Table Tests

7

Goodness of Fit – Normal Distribution

H0: The probability distribution of defects is Normal

H1: The probability distribution of defects is NOT Normal

- 1. Define interval boundaries so that the expected frequencies E_i are equal for all intervals
- 2. Calculate the observed frequency for each interval
- 3. Calculate the test statistic

Class Interval	Observed Frequency o _i	Expected Frequency E _i
x < 4.948	12	12.5
$4.948 \le x < 4.986$	14	12.5
$4.986 \le x < 5.014$	12	12.5
$5.014 \le x < 5.040$	13	12.5
$5.040 \le x < 5.066$	12	12.5
$5.066 \le x < 5.094$	11	12.5
$5.094 \le x < 5.132$	12	12.5
$5.132 \le x$	14	12.5
Totals	100	100
$\chi_0^2 = \sum_{i=1}^8 \frac{(o_i - E_i)^2}{E_i}$		a lidi a
$=\frac{(12-12.5)^2}{12.5}+$	$(14-12.5)^2$	$(14 - 12.5)^2$
	12.5	12.5
= 0.64		

ISyE 6739, Goodness of Fit & Contingency Table Tests

Normality Check

Histogram and Normal plot for residuals:

· Normality assumption

Normal Probability Plot

- To construct a probability plot:
 - Sort the data observations in ascending order: $x_{(1)}, x_{(2)}, ..., x_{(n)}$.
 - Calculate empirical cumulative distribution $p_{(j)} = (j 0.5)/n$.
 - Find $z_j = z_{(1-p(j))}$
 - The paired numbers are plotted $(z_j vs. x_{(j)})$
 - If the paired numbers form a straight line, it is reasonable to assume that the data follows the proposed distribution.

Table 6-6 Calculations for				
Constructing a Normal				
Probability Plot				

j	$x_{(j)}$	(<i>j</i> -0.5)/10	z_j
1	176	0.05	-1.64
2	183	0.15	-1.04
3	185	0.25	-0.67
4	190	0.35	-0.39
5	191	0.45	-0.13
6	192	0.55	0.13
7	201	0.65	0.39
8	205		
9	214		
10	220		

ISyE 6739, Goodness of Fit & Contingency Table Tests

11

Contingency Table Tests

• The objective of Contingency Table tests is to test if two categorical variable are independent.

H0: Two categorical variables are independent

H1: Two categorical variables are NOT independent

Table 9-2 An $r \times c$ Contingency Table

		Columns			
		1	2		c
	1	O_{11}	O_{12}		O_{1c}
	2	O_{21}	O_{22}		O_{2c}
Rows	:	:	:	:	:
	r	O_{r1}	O_{r2}		O_{κ}

Table 9-3 Observed Data for Example 9-14

	Health	Insuran	ce Plan	
Job Classification	1	2	3	Totals
Salaried workers	160	140	40	340
Hourly workers	40	60	60	160
Totals	200	200	100	500

Contingency Table Tests

- p_{ij} Probability that a randomly selected element falls in the \it{ij} th cell
- *u_i* Probability that a randomly selected element falls in row *i*
- v_j Probability that a randomly selected element falls in column j

$$\hat{u}_i = \frac{1}{n} \sum_{j=1}^c O_{ij}$$

$$\hat{v}_j = \frac{1}{n} \sum_{i=1}^r O_{ij}$$

$$\hat{p}_{ij} = \hat{u}_i \hat{v}_j$$

$$E_{ij} = n\hat{p}_{ij} = n\hat{u}_i\hat{v}_j$$

Table 9-3 Observed Data for Example 9-14

	Health	Health Insurance Plan		
Job Classification	1	2	3	Totals
Salaried workers	160	140	40	340
Hourly workers	40	60	60	160
Totals	200	200	100	500

Table 9-4 Expected Frequencies for Example 9-14

	Health	Insuran	ce Plan	
Job Classification	1	2	3	Totals
Salaried workers				340
Hourly workers				160
Totals	200	200	100	500
$\hat{\mathbf{v}}_i = \frac{1}{r} \sum_{i=1}^{r} O_{ii}$	200	200	100	200

ISyE 6739, Goodness of Fit & Contingency Table Tests

Contingency Table Tests

$$\chi_0^2 = \sum_{i=1}^r \sum_{j=1}^c \frac{(O_{ij} - E_{ij})^2}{E_{ij}}$$

If $X_0^2 > \chi^2_{\alpha,(r-1)(c-1)}$ H0 is rejected

		Columns			
		1	2		с
	1	O_{11}	O_{12}		O_{1c}
Rows	2	O_{21}	O ₂₂		O_{2c}
	:	:	:	- 1	:
	-r	O _{rl}	O _{r2}		O _{rc}

Table 9-3 Observed Data for Example 9-14

	Health			
Job Classification	1	2	3	Totals
Salaried workers	160	140	40	340
Hourly workers	40	60	60	160
Totals	200	200	100	500

Table 9-4 Expected Frequencies for Example 9-14

	Health	Insuran	ce Plan	
Job Classification	1	2	3	Totals
Salaried workers				340
Hourly workers				160
Totals	200	200	100	500

ISyE 6739, Goodness of Fit & Contingency Table Tests