python-----因子分析

因子分析用Python做的一个典型例子

一、实验目的

采用合适的数据分析方法对下面的题进行解答

例 3.17 现有 48 位应聘者应聘某公司的某职位,公司为这些应聘者的 15 项指标打分,这 15 项指标分别是:求职信的形式 (FL)、外貌 (APP)、专业能力 (AA)、讨人喜欢 (LA)、自信心 (SC)、洞察力 (LC)、诚实 (HON)、推销能力 (SMS)、经验 (EXP)、驾驶水平 (DRV)、事业心 (AMB)、理解能力 (GSP)、潜在能力 (POT)、交际能力 (KJ) 和适应性 (SUIT). 每项分数是从 0 分到 10 分, 0 分最低, 10 分最高. 每位求职者的 15 项指标列在表 3.6 中. 公司计划 录用 6 名最优秀的申请者,问公司将如何挑选这些应聘者?

二、实验要求

采用因子分析方法,根据48位应聘者的15项指标得分,选出6名最优秀的应聘者。

三、代码

```
1
     import pandas as pd
 2
     import numpy as np
 3
     import math as math
 4
     import numpy as np
 5
     from numpy import *
 6
     from scipy.stats import bartlett
 7
     from factor analyzer import *
 8
     import numpy.linalg as nlg
 9
     from sklearn.cluster import KMeans
10
     from matplotlib import cm
11
     import matplotlib.pyplot as plt
12
     def main():
13
         df=pd.read csv("./data/applicant.csv")
14
         # print(df)
15
         df2=df.copy()
16
         print("\n原始数据:\n",df2)
17
         del df2['ID']
18
         # print(df2)
19
         # 皮尔森相关系数
20
         df2_corr=df2.corr()
21
         print("\n相关系数:\n",df2_corr)
22
         #热力图
23
         cmap = cm.Blues
24
         \# cmap = cm.hot r
25
         fig=plt.figure()
26
         ax=fig.add subplot(111)
27
         map = ax.imshow(df2_corr, interpolation='nearest', cmap=cmap, vmin=0, vmax=1)
28
         plt.title('correlation coefficient--headmap')
29
```

```
2022/11/16 下午8:32
                                (83条消息) python-----因子分析 贺幂的博客-CSDN博客 python做因子分析
             ax.set_yticks(range(ien(at2_corr.columns)))
    30
             ax.set_yticklabels(df2_corr.columns)
    31
             ax.set xticks(range(len(df2 corr)))
    32
             ax.set_xticklabels(df2_corr.columns)
    33
             plt.colorbar(map)
    34
             plt.show()
    35
             # KMO测度
    36
             def kmo(dataset_corr):
    37
                 corr_inv = np.linalg.inv(dataset_corr)
    38
                 nrow_inv_corr, ncol_inv_corr = dataset_corr.shape
    39
                 A = np.ones((nrow_inv_corr, ncol_inv_corr))
    40
                 for i in range(0, nrow_inv_corr, 1):
    41
                     for j in range(i, ncol_inv_corr, 1):
    42
                         A[i, j] = -(corr_inv[i, j]) / (math.sqrt(corr_inv[i, i] * corr_in
    43
                         A[j, i] = A[i, j]
    44
                 dataset_corr = np.asarray(dataset_corr)
    45
                 kmo_num = np.sum(np.square(dataset_corr)) - np.sum(np.square(np.diagonal(
    46
                 kmo_denom = kmo_num + np.sum(np.square(A)) - np.sum(np.square(np.diagonal
    47
                 kmo value = kmo num / kmo denom
    48
                 return kmo_value
    49
             print("\nKMO测度:", kmo(df2 corr))
    50
             # 巴特利特球形检验
    51
             df2 corr1 = df2 corr.values
    52
             print("\n巴特利特球形检验:", bartlett(df2 corr1[0], df2 corr1[1], df2 corr1[2],
    53
                                           df2_corr1[5], df2_corr1[6], df2_corr1[7], df2_c
    54
                                           df2 corr1[10], df2 corr1[11], df2 corr1[12], df
    55
             # 求特征值和特征向量
    56
             eig value, eigvector = nlg.eig(df2 corr) # 求矩阵R的全部特征值,构成向量
    57
             eig = pd.DataFrame()
    58
             eig['names'] = df2 corr.columns
    59
             eig['eig_value'] = eig_value
    60
             eig.sort values('eig value', ascending=False, inplace=True)
    61
             print("\n特征值\n: ",eig)
    62
             eig1=pd.DataFrame(eigvector)
    63
             eig1.columns = df2 corr.columns
    64
             eig1.index = df2 corr.columns
    65
             print("\n特征向量\n",eig1)
    66
             # 求公因子个数m,使用前m个特征值的比重大于85%的标准,选出了公共因子是五个
    67
             for m in range(1, 15):
    68
                 if eig['eig_value'][:m].sum() / eig['eig_value'].sum() >= 0.85:
    69
                     print("\n公因子个数:", m)
    70
                     break
    71
             # 因子载荷阵
    72
             A = np.mat(np.zeros((15, 5)))
    73
             i = 0
    74
             j = 0
    75
             while i < 5:
    76
```

```
100
   101
   102
   103
   104
   105
   106
   107
   108
   109
   110
   111
   112
   113
   114
   115
   116
               plt.figure()
   117
               ax1=plt.subplot(111)
   118
               X=fa_t_score['ID']
   119
               Y=fa_t_score['综合得分']
   120
               plt.bar(X,Y,color="#87CEFA")
   121
               # plt.bar(X, Y, color="red")
   122
               plt.title('result00')
   123
https://blog.csdn.net/shanchuaner/article/details/102491032?spm=1001.2101.3001.6650.12&utm medium=distribute.pc relevant.none-task-blo...
```

```
2022/11/16 下午8:32
                                 (83条消息) python-----因子分析 贺幂的博客-CSDN博客 python做因子分析
             ax1.set_xtlcks(range(len(ta_t_score)))
   124
             ax1.set_xticklabels(fa_t_score.index)
   125
             plt.show()
   126
             fa_t_score1=pd.DataFrame()
   127
             fa_t_score1=fa_t_score.sort_values(by='综合得分',ascending=False).head()
   128
             ax2 = plt.subplot(111)
   129
             X1 = fa_t_score1['ID']
   130
             Y1 = fa_t_score1['综合得分']
   131
             plt.bar(X1, Y1, color="#87CEFA")
   132
             # plt.bar(X1, Y1, color='red')
   133
             plt.title('result01')
   134
             plt.show()
   135
         if __name__ == '__main__':
   136
             main()
```

四、实验步骤

(1) 引入数据,数据标准化

原始	数据:															
	ID	FL	APP	AA	LA	SC	LC	HON	SMS	EXP	DRV	AMB	GSP	POT	ΚJ	SUIT
0	1	6	7	2	5	8	7	8	8	3	8	9	7	5	7	10
1	2	9	10	5	8	10	9	9	10	5	9	9	8	8	8	10
2	3	7	8	3	6	9	8	9	7	4	9	9	8	6	8	10
3	4	5	6	8	5	6	5	9	2	8	4	5	8	7	6	5
4	5	6	8	8	8	4	4	9	5	8	5	5	8	8	7	7
5	6	7	7	7	6	8	7	10	5	9	6	5	8	6	6	6
6	7	9	9	8	8	8	8	8	8	10	8	10	8	9	8	10
7	8	9	9	9	8	9	9	8	8	10	9	10	9	9	9	10
8	9	9	9	7	8	8	8	8	5	9	8	9	8	8	8	10
9	10	4	7	10	2	10	10	7	10	3	10	10	10	9	3	10
10	11	4	7	10	0	10	8	3	9	5	9	10	8	10	2	5
11	12	4	7	10	4	10	10	7	8	2	8	8	10	10	3	7
12	13	6	9	8	10	5	4	9	4	4	4	5	4	7	6	8
13	14	8	9	8	9	6	3	8	2	5	2	6	6	7	5	6
14	15	4	8	8	7	5	4	10	2	7	5	3	6	6	4	6
15	16	6	9	6	7	8	9	8	9	8	8	7	6	8	6	10
16	17	8	7	7	7	9	5	8	6	6	7	8	6	6	7	8
17	18	6	8	8	4	8	8	6	4	3	3	6	7	2	6	4
18	19	6	7	8	4	7	8	5	4	4	2	6	8	3	5	4
19	20	4	8	7	8	8	9	10	5	2	6	7	9	8	8	9
20	21	3	8	6	8	8	8	10	5	3	6	7	8	8	5	8
21	22	9	8	7	8	9	10	10	10	3	10	8	10	8	10	8
22	23	7	10	7	9	9	9	10	10	3	9	9	10	9	10	8
23	24	9	8	7	10	8	10	10	10	2	9	7	9	9	10	8
24	25	6	9	7	7	4	5	9	3	2	4	4	4	4	5	4
25	26	7	8	7	8	5	4	8	5	os <mark>3</mark> /b	14,0	es 5 In	.n ∮ t/s	sh <mark>a</mark> n	5	lan é r
26	27	2	10	7	9	8	9	10	5	3	5	6	7	6	4	5

因为数据是面试中的得分,量纲相同,并且数据的分布无异常值,所以数据可以不进行标准化。

(2) 建立相关系数矩阵

计算皮尔森相关系数, 从热图中可以明显看出变量间存在的相关性。

相关系数:

	FL	APF	P AA	 POT	г кэ	SUIT
FL	1.000000	0.238806	0.044041	 0.367453	0.467206	0.585918
APP	0.238806	1.000000	0.123419	 0.507377	0.284093	0.384208
AA	0.044041	0.123419	1.000000	 0.290032	-0.323319	0.140017
LA	0.306313	0.379614	0.001590	 0.605508	0.685156	0.326957
SC	0.092145	0.430769	0.001107	 0.671821	0.482456	0.250283
LC	0.228432	0.371259	0.076824	 0.777316	0.526836	0.416145
HON	-0.106749	0.353691	-0.030270	 0.415657	0.448246	0.002756
SMS	0.270699	0.489549	0.054727	 0.753610	0.563284	0.558036
EXP	0.548380	0.140925	0.265585	 0.348339	0.214953	0.692636
DRV	0.345576	0.340549	0.093522	 0.788400	0.612808	0.622554
AMB	0.284645	0.549636	0.044066	 0.768870	0.547126	0.434768
GSP	0.338202	0.506299	0.197505	 0.875831	0.549408	0.527816
POT	0.367453	0.507377	0.290032	 1.000000	0.539397	0.573873
KJ	0.467206	0.284093	-0.323319	 0.539397	1.000000	0.395799
SUIT	0.585918	0.384208	0.140017	 0.573873	0.395799	1.000000

进行相关系数矩阵检验——KMO测度和巴特利特球体检验:

KMO值: 0.9以上非常好; 0.8以上好; 0.7一般; 0.6差; 0.5很差; 0.5以下不能接受; 巴特利球形检 验的值范围在0-1,越接近1,使用因子分析效果越好。

KMO测度: 0.783775605643526

巴特利特球形检验: BartlettResult(statistic=5.96957033201623, pvalue=0.9672526107058504)

通过观察上面的计算结果,可以知道,KMO值为0.783775605643526,在较好的范围内,并且巴特 利球形检验的值接近1, 所有可以使用因子分析。

(3) 求解特征值及相应特征向量

特征值

```
names eig_value
           7.513794
0
      FL
1
     APP
            2.056301
2
            1.455819
      ΑА
3
      LA
            1.197898
      SC
           0.739153
4
5
      LC
           0.494579
6
           0.351262
     HON
7
     SMS
           0.309902
8
     EXP
           0.256962
9
     DRV
           0.184910
           0.152680
10
     AMB
13
      ΚJ
           0.097563
14
    SUIT
           0.088819
     POT
12
           0.064633
11
     GSP
           0.035725
```

特征向量

	FL	_ APF	P AA	٠	. POT	r KJ	SUIT
FL	0.162440	0.428846	0.315375		0.091327	0.184823	0.031532
APP	0.213108	-0.035266	-0.022878		-0.087154	0.004062	-0.314357
AA	0.040184	0.236919	-0.430470		-0.010788	-0.174262	0.037602
LA	0.225078	-0.129796	0.465825		0.149087	-0.024951	-0.059241
SC	0.290481	-0.248896	-0.241026		-0.379547	-0.338609	0.001044
LC	0.314870	-0.130990	-0.150037		0.113247	-0.002121	-0.420695
HON	0.158117	-0.405450	0.283928		0.217349	0.145379	0.201511
SMS	0.324256	-0.029492	-0.185975		-0.031535	0.632561	0.299488
EXP	0.134068	0.553139	0.082591		0.046044	0.125766	-0.138344
DRV	0.315071	0.046243	-0.079635		0.224606	0.061844	-0.558286
AMB	0.318024	-0.068155	-0.208651		0.523673	-0.181224	0.377577
GSP	0.331497	-0.023150	-0.117142		0.161206	-0.162698	0.109070
POT	0.333289	0.022257	-0.072544		-0.557355	0.285995	0.131305
KJ	0.259208	-0.082272	0.467206		-0.300908	-0.285675	0.009124
SUIT	0.236037	0.420662	0.089152		-0.051240	-0.395659	0.292181

[15 rows x 15 columns]

公因子个数:5

https://blog.csdn.net/shanchuaner

求公因子个数m,使用前m个特征值的比重大于85%的标准,选出了公共因子是五个。

(4) 因子载荷阵

因子载荷阵

	factor1	l factor2	2 factor	3 factor	4 factor5	特殊因子	2七羊.
FL	0.445270	0.614957	0.380523	0.103262	0.098166	FL FL	「刀左: 0.741535
APP	0.584156	-0.050571	-0.027604	-0.286947	0.748148	APP	0.986622
AA	0.110149	0.339737	-0.519393	-0.696393	-0.182963	AA	0.915762
LA	0.616969	-0.186125	0.562052	-0.378007	-0.110721	LA	0.886344
SC	0.796246	-0.356912	-0.290816	0.189131	0.004227	SC	0.881757
LC	0.863101	-0.187838	-0.181031	0.077745	-0.177803	LC	0.850656
HON	0.433418	-0.581408	0.342580	-0.455843	-0.054716	HON	0.854033
SMS	0.888828	-0.042291	-0.224392	0.216957	0.032148	SMS	0.890260
EXP	0.367498	0.793190	0.099652	-0.074154	-0.088631	EXP	0.787490
DRV	0.863652	0.066312	-0.096086	0.170726	-0.172758	DRV	0.818517
AMB	0.871745	-0.097733	-0.251753	0.218121	0.140215	AMB	0.900108
GSP	0.908676	-0.033197	-0.141341	-0.081786	-0.070855	GSP	0.858481
POT	0.913588	0.031917	-0.087529	-0.205916	-0.109465	POT	0.897708
KJ	0.710524	-0.117976	0.563718	0.220403	-0.095880	KJ	0.894311
SUIT	0.647007	0.603221	0.167568	0.021795	s 0.069571 er	SUIT dtype:	0.799380 float64

解释的总方差(即贡献率):

```
(factor1 7.513794
factor2 2.056301
factor3 1.455819
factor4 1.197898
factor5 0.739153
dtype: float64, factor1 0.500920
factor2 0.137087
factor3 0.097055
factor4 0.079860
factor5 0.049277
dtype: float64, factor1 0.500920
factor2 0.638006
factor3 0.735061
factor4 0.814921
factor5 0.864198
dtype: float64)
```

由上可以看出,选择5个公共因子,从方差贡献率可以看出,其中第一个公因子解释了总体方差的 50.092%, 四个公共因子的方差贡献率为86.42%, 可以较好的解释总体方差。

(5) 因子旋转

因子旋转:

	factor1	factor2	factor3	3 factor4	factor5
FL	0.106666	0.830036	0.096798	0.146775	0.101412
APP	0.325097	0.149292	0.215908	-0.057082	0.899317
AA	0.065186	0.120279	-0.013386	-0.946268	0.037998
LA	0.229594	0.240462	0.874979	0.041614	0.092134
SC	0.906854	-0.110057	0.141547	0.068346	0.150176
LC	0.876971	0.092289	0.267123	-0.040995	0.004957
HON	0.216746	-0.247016	0.848270	-0.021714	0.161259
SMS	0.897394	0.219691	0.077912	0.049814	0.167713
EXP	0.096702	0.849256	-0.046059	-0.230856	-0.038557
DRV	0.816915	0.345677	0.174706	0.011622	-0.031881
AMB	0.891125	0.156650	0.052890	0.074474	0.270408
GSP	0.808014	0.249143	0.312980	-0.156597	0.145061
POT	0.747264	0.319819	0.397570	-0.246644	0.134630
KJ	0.459516	0.361932	0.565427	0.481160	-0.030634
SUIT	0.369898	0.794922	0.050697	-0.071462	0.151583

(6) 因子得分

因子得分:

```
factor2
                           factor3
                                     factor4
       factor1
                                               factor5
FL
    -0.111880
               0.374860 0.001757 0.161634 0.084685
APP
    -0.128106 -0.006339 -0.052154
                                   0.041396
                                             1.033437
    -0.004663 -0.003754 0.073322 -0.737245 -0.071338
AΑ
    -0.140034
               0.070067 0.506222 -0.036746 -0.062229
LA
SC
                                   0.054565
     0.248754 -0.173037 -0.106656
                                             0.006978
LC
     0.216132 -0.078094 0.012096 -0.051161 -0.208574
    -0.088501 -0.159693 0.493553 -0.102192
HON
                                             0.039505
     0.210884 -0.019415 -0.151124
SMS
                                   0.066056
                                             0.028583
EXP
    -0.066061
               0.371123 -0.028068 -0.136820 -0.111698
DRV
     0.188303
               0.052491 -0.040102 0.009422 -0.231596
     0.202443 -0.049356 -0.183693 0.096352 0.168282
AMB
GSP
     0.137629 -0.007117 0.044198 -0.124110 -0.042579
POT
     0.094606
               0.028197 0.121148 -0.202259 -0.069206
ΚJ
     0.001067
               0.127011
                         0.231081 0.338604 -0.169310
SUIT -0.025375 0.311448 -0.061484 -0.001206 0.081820
```

应试者的五个因子得分:

```
0
                        1
                                   2
                                             3
                                                       4
0
     6.524874
                                               4.744487
                4.367623
                          4.153680 0.400840
1
                          6.285794 -1.931819
     7.112559
                5.970565
                                               6.517133
2
     6.661235
                4.982754 5.561203 -0.450129
                                               4.913979
3
                4.643731 7.351100 -6.699392
     3.012665
                                               2.743518
4
     2.376710
                6.412634 8.704217 -6.281653
                                               4.682285
5
     4.189914
                5.500093
                          7.295517 -5.448369
                                               3.253634
6
     5.958209
                8.370296 6.405041 -5.072268
                                               5.139811
7
     6.745431
                8.287796
                         6.618982 -5.582193
                                               4.423392
8
     5.099233
                8.082330 6.875704 -4.290462
                                               5.138021
9
    10.153699
                2.557192 1.674221 -7.940784
                                               3,574765
10
     9.769354
                2.279367 -1.092450 -7.991934
                                               3.714129
11
     8.907162
                1.452614
                         3.770172 -8.419758
                                               3.316798
12
     1.410785
                5.040534 9.270845 -5.428492
                                               6.738697
13
     1.111130
                5.276408 8.306805 -5.636397
                                               7.529463
14
     1.486985
                4.311309 8.467753 -7.231719
                                               4.960690
15
     6.023022
                6.223485 5.543384 -4.273181
                                               5.122205
16
     4.811251
                5.783340
                          6.047158 -3.602805
                                               4.337620
17
     4.376944
                2.392961 4.190689 -4.116244
                                               5.549346
18
    4.321601
                2.944730
                          3.802245 -4.921228
                                               4.646849
     5.669807
                2.894188 8.668027 -4.772283
19
                                               4.335706
20
     5.388702
                2.286936 7.876825 -5.172827
                                               4.887924
21
     7.684445
                4.887475 8.022307 -3.078910
                                               3.367635
22
     7.404572
                4.199587
                          8.386167 -3.420301
                                               5.742154
23
     6.787916
                4.861702 9.470221 -3.254071
                                               3.384584
24
     1.338339
                2.798158 7.839971 -4.302506
                                               6.857348
25
     1.580265
                4.292215
                          7.813739 -4.570511
                                               6.059691
26
     4.673277
                0.773849 8.253071 -5.988953
                                               6.696125
27
     1.128215
                1.168106
                          4.194156 -1.083751
                                               1.635245
                1 804096
                         1 602781 -0 008687
                                               1 888138
28
     1 043987
```

(7) 根据应聘者的五个因子得分,按照贡献率进行加权,得到最终各应试者的综合得分,然后选出前六个得分最高的应聘者。

综合得分: 综合得: ID 5.248942 5.968825 5.514660 2.845805 3.058899 3.802476 5.325041 5.704310 4.906470 5.949149 5.374803 5.227812 2.541093 2.322428 2.111374 4.998131 4.299714 3.323315 3.209289 4.525221 4.171571 6.037936 5.911305 5.661577 2.093515 2.397550 3.586807 1.303374 1.178177

综合得分前6名:

***	1 4 7 4 1	v v - – -
	ID	综合得分
39	40	6.283350
38	39	6.068583
21	22	6.037936
1	2	5.968825
9	10	5.949149
22	23	5.911305

所以我们用因子分析产生的前六名分别是: 40, 39, 22, 2, 10, 23