

LM2904,LM358/LM358A,LM258/ LM258A

Dual Operational Amplifier

Features

- Internally Frequency Compensated for Unity Gain
- Large DC Voltage Gain: 100dB
- Wide Power Supply Range: LM258/LM258A, LM358/LM358A: 3V~32V (or ±1.5V ~ 16V)

LM2904 : $3V \sim 26V$ (or $\pm 1.5V \sim 13V$)

- Input Common Mode Voltage Range Includes Ground
- Large Output Voltage Swing: 0V DC to Vcc -1.5V DC
- Power Drain Suitable for Battery Operation.

Description

The LM2904,LM358/LM358A, LM258/LM258A consist of two independent, high gain, internally frequency compensated operational amplifiers which were designed specifically to operate from a single power supply over a wide range of voltage. Operation from split power supplies is also possible and the low power supply current drain is independent of the magnitude of the power supply voltage. Application areas include transducer amplifier, DC gain blocks and all the conventional OP-AMP circuits which now can be easily implemented in single power supply systems.

Internal Block Diagram

Schematic Diagram

(One section only)

Absolute Maximum Ratings

Parameter	Symbol	LM258/LM258A	LM358/LM358A	LM2904	Unit
Supply Voltage	Vcc	±16 or 32	±16 or 32	±13 or 26	V
Differential Input Voltage	VI(DIFF)	32	32	26	V
Input Voltage	VI	-0.3 to +32	-0.3 to +32	-0.3 to +26	V
Output Short Circuit to GND VCC≤15V, TA = 25°C(One Amp)	-	Continuous	Continuous	Continuous	-
Operating Temperature Range	TOPR	-25 ~ +85	0 ~ +70	-40 ~ +85	°C
Maximun Junction Temperature	TJ(MAX)	+150	+150	+150	°C
Storage Temperature Range	TSTG	-65 ~ +150	-65 ~ +150	-65 ~ +150	°C

Electrical Characteristics

(VCC = 5.0V, VEE = GND, $T_A = 25$ °C, unless otherwise specified)

Doromotor	Compleal	Conditions -			LM25	В	LM358				11		
Parameter	Symbol			Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	Unit
Input Offset Voltage	VIO	$VCM = 0V$ $-1.5V$ $VO(P) = 1.4$ $RS = 0\Omega$		-	2.9	5.0	-	2.9	7.0	-	2.9	7.0	mV
Input Offset Current	lio	-		-	3	30	-	5	50	-	5	50	nA
Input Bias Current	IBIAS	-		-	45	150	-	45	250	-	45	250	nA
Input Voltage Range	V _{I(R)}	VCC = 30V (LM2904, V		0	ı	VCC -1.5	0	ı	VCC -1.5	0	-	VCC -1.5	V
Supply Current	ICC	$RL = \infty$, VC (LM2904, V		-	0.8	2.0	-	0.8	2.0	-	0.8	2.0	mA
Зарріу Сапені	100	$R_L = \infty$, V_C	CC = 5V	-	0.5	1.2	-	0.5	1.2	-	0.5	1.2	mA
Large Signal Voltage Gain	G∨	VCC = 15V, $R_L = 2k\Omega$ VO(P) = 1V to 11V		50	100	-	25	100	-	25	100	-	V/mV
	VO(H)	Vcc=30V	$R_L = 2k\Omega$	26	-	-	26	-	-	22	-	-	V
Output Voltage Swing		(VCC =26V for LM2904)	RL= 10kΩ	27	28	-	27	28	-	23	24	-	V
	VO(L)	Vcc = 5V,	R _L = 10kΩ	-	5	20	-	5	20		5	20	mV
Common-Mode Rejection Ratio	CMRR	-		70	85	-	65	80	-	50	80	-	dB
Power Supply Rejection Ratio	PSRR	-		65	100	ı	65	100	ı	50	100	-	dB
Channel Separation	cs	f = 1kHz to (Note1)	20kHz	1	120	1	-	120	ı	-	120	-	dB
Short Circuit to GND	Isc	-		ı	40	60	-	40	60	-	40	60	mA
	ISOURCE	V _I (+) = 1V, V _I (-) = 0V, V _{CC} = 15V, V _O (P) = 2V		20	30	-	20	30	-	20	30	-	mA
Output Current		VI(+) = 0V, VI(-) = 1V, VCC = 15V, VO(P) = 2V		10	15	-	10	15	-	10	15	-	mA
	ISINK	$V_{I(+)} = 0V, V_{I(-)} = 1V$, $V_{CC} = 15V$, $V_{O(P)} = 200mV$		12	100	-	12	100	-	-	-	-	μΑ
Differential Input Voltage	VI(DIFF)	-		-	-	Vcc	-	-	Vcc	-	-	Vcc	V

Note:

^{1.} This parameter, although guaranteed, is not 100% tested in production.

Electrical Characteristics (Continued)

(Vcc= 5.0V, VEE = GND, unless otherwise specified)

The following specification apply over the range of -25°C \leq TA \leq +85°C for the LM258; and the 0°C \leq TA \leq +70°C for the LM358; and the -40°C \leq TA \leq +85°C for the LM2904

Danamatan	Council of	Conditions			LM25	8		LM35	8	L	11		
Parameter	Symbol			Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	Unit
Input Offset Voltage	Vio	$V_{CM} = 0V$ to V_{CC} -1.5V $V_{O(P)} = 1.4V$, $R_{S} = 0\Omega$		-	-	7.0	-	-	9.0	-	-	10.0	mV
Input Offset Voltage Drift	ΔVΙΟ/ΔΤ	$Rs = 0\Omega$		-	7.0	-	-	7.0	-	-	7.0	-	μV/°C
Input Offset Current	lio	-	-	-	-	100	-	-	150	-	45	200	nA
Input Offset Current Drift	ΔΙΙΟ/ΔΤ	-	-	-	10	-	-	10	-	-	10	-	pA/°C
Input Bias Current	IBIAS	-		-	40	300	-	40	500	-	40	500	nA
Input Voltage Range	VI(R)	VCC = 30V (LM2904 , VCC = 26V)		0	-	VCC -2.0	0	-	VCC -2.0	0	-	VCC -2.0	V
Large Signal Voltage Gain	G∨	$V_{CC} = 15V$, $R_L = 2.0kΩ$ $V_{O(P)} = 1V$ to 11V		25	-	-	15	-	-	15	-	-	V/mV
		Vcc=30V	$R_L = 2k\Omega$	26	-	-	26	-	-	22	-	-	V
Output Voltage Swing	VO(H)	(VCC = 26V for LM2904)	RL=10kΩ	27	28	-	27	28	-	23	24	-	V
	VO(L)	VCC = 5V,	R _L =10kΩ	-	5	20	-	5	20	-	5	20	mV
Output Current	ISOURCE	V _{I(+)} = 1V, V _{I(-)} = 0V, V _{CC} = 15V, V _{O(P)} = 2V		10	30	-	10	30	-	10	30	-	mA
Output Current	ISINK	VI(+) = 0V, VI(-) = 1V, VCC = 15V, VO(P) = 2V		5	8	-	5	9	-	5	9	-	mA
Differential Input Voltage	VI(DIFF)	-	•	-	-	Vcc	-	-	Vcc	-	-	Vcc	V

Electrical Characteristics (Continued)

(VCC = 5.0V, VEE = GND, TA = 25°C, unless otherwise specified)

Danamatan	Comple al	O a m alit		LM258	Α		Unit				
Parameter	Symbol	Condit	ions	Min.	Тур.	Max.	Min.	Тур.	Max.	Oille	
Input Offset Voltage	VIO	VCM = 0V to V $VO(P) = 1.4V$	-	1.0	3.0	-	2.0	3.0	mV		
Input Offset Current	lio	-		-	2	15	-	5	30	nA	
Input Bias Current	IBIAS	-		-	40	80	-	45	100	nA	
Input Voltage Range	VI(R)	VCC = 30V		0	-	VCC -1.5	0	-	VCC -1.5	V	
Supply Current	loo	RL = ∞, VCC = 30V RL = ∞, VCC = 5V		-	0.8	2.0	-	0.8	2.0	mA	
Supply Current	Icc			-	0.5	1.2	-	0.5	1.2	mA	
Large Signal Voltage Gain	G∨	V_{CC} = 15V, R_{L} = 2k Ω VO = 1V to 11V		50	100	-	25	100	-	V/mV	
Output Voltage Swing	Voн	VCC = 30V	$R_L = 2k\Omega$	26	-	-	26		-	V	
			R _L =10kΩ	27	28	-	27	28	-	V	
	V _{O(L)}	$V_{CC} = 5V, R_{L}=10k\Omega$		-	5	20	-	5	20	mV	
Common-Mode Rejection Ratio	CMRR	-		70	85	-	65	85	-	dB	
Power Supply Rejection Ratio	PSRR	-		65	100	-	65	100	-	dB	
Channel Separation	CS	f = 1kHz to 20l	kHz (Note1)	-	120	-	-	120	-	dB	
Short Circuit to GND	Isc	-		-	40	60	-	40	60	mA	
	ISOURCE	V _I (+) = 1V, V _I (-) = 0V V _{CC} = 15V, V _O (P) = 2V		20	30	-	20	30	-	mA	
Output Current	lowur	V _I (+) = 1V, V _I (- VCC = 15V, V _C	10	15	-	10	15	-	mA		
	Isink	Vin + = 0V, Vin VO(P) = 200m	12	100	-	12	100	-	μΑ		
Differential Input Voltage	VI(DIFF)	-	-	-	Vcc	-	-	Vcc	V		

Note:

^{1.} This parameter, although guaranteed, is not 100% tested in production.

Electrical Characteristics (Continued)

(VCC = 5.0V, VEE = GND, unless otherwise specified) The following specification apply over the range of -25°C \leq TA \leq +85°C for the LM258A; and the 0°C \leq TA \leq +70°C for the LM358A

Doromotor	Cumbal	Conditions			_M258	BA	l	11:0:4		
Parameter	Symbol	Conditions		Min.	Тур.	Max.	Min.	Тур.	Max.	Unit
Input Offset Voltage	VIO	_	$V_{CM} = 0V$ to V_{CC} -1.5V $V_{O(P)} = 1.4V$, Rs = 0Ω		-	4.0	-	-	5.0	mV
Input Offset Voltage Drift	ΔV10/ΔΤ		-	-	7.0	15	-	7.0	20	μV/°C
Input Offset Current	lio		-	-	-	30	-	-	75	nA
Input Offset Current Drift	ΔΙΙΟ/ΔΤ		-	-	10	200	-	10	300	pA/°C
Input Bias Current	IBIAS		-		40	100	-	40	200	nA
Input Common-Mode Voltage Range	VI(R)	VCC = 30V		0	-	Vcc -2.0	0	-	Vcc -2.0	V
	Vous	VO(H) VCC = 30V	$R_L = 2k\Omega$	26	-	-	26	-	-	V
Output Voltage Swing	VO(H)		RL = 10kΩ	27	28	-	27	28	-	V
	VO(L)	VCC = 5V, R	RL=10kΩ	-	5	20	-	5	20	mV
Large Signal Voltage Gain	G∨		V_{CC} = 15V, R _L =2.0kΩ $V_{O(P)}$ = 1V to 11V		-	-	15	-	-	V/mV
Output Current	ISOURCE	VI(+) = 1V, VI(-) = 0V VCC = 15V, VO(P) = 2V		10	30	-	10	30	-	mA
Output Current	ISINK	VI(+) = 1V, VI(-) = 0V VCC = 15V, VO(P) = 2V		5	9	_	5	9	-	mA
Differential Input Voltage	VI(DIFF)		-	-	-	Vcc	-	-	Vcc	V

Typical Performance Characteristics

Figure 1. Supply Current vs Supply Voltage

Figure 2. Voltage Gain vs Supply Voltage

Figure 3. Open Loop Frequency Response

Figure 4. Large Signal Output Swing vs Frequency

Figure 5. Output Characteristics vs Current Sourcing

Figure 6. Output Characteristics vs Current Sinking

Typical Performance Characteristics (Continued)

Figure 7. Input Voltage Range vs Supply Voltage

Figure 8. Common-Mode Rejection Ratio

Figure 9. Output Current vs Temperature (Current Limiting)

Figure 10. Input Current vs Temperature

Figure 11. Voltage Follower Pulse Response

Figure 12. Voltage Follower Pulse Response (Small Signal)

Mechanical Dimensions

Package

Dimensions in millimeters

Mechanical Dimensions (Continued)

Package

Dimensions in millimeters

8-SOP

Ordering Information

Product Number	Package	Operating Temperature
LM358N	8-DIP	
LM358AN	- 0-DIF	0 ~ +70°C
LM358M	8-SOP	0~ +70 C
LM358AM	6-30F	
LM2904N	8-DIP	-40 ∼ +85°C
LM2904M	8-SOP	-40 ~ +83 C
LM258N	8-DIP	
LM258AN	- 0-DIF	-25 ~ +85°C
LM258M	8-SOP	-25 ~ +05 C
LM258AM	0-301	

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com