

planetmath.org

Math for the people, by the people.

filtration of σ -algebras

Canonical name FiltrationOfsigmaalgebras

Date of creation 2013-03-22 18:37:13 Last modified on 2013-03-22 18:37:13

Owner gel (22282) Last modified by gel (22282)

Numerical id 5

Author gel (22282) Entry type Definition Classification msc 60G05

Synonym filtration of sigma-algebras Related topic FilteredProbabilitySpace

Related topic Filtration

Defines natural filtration

For an ordered set T, a filtration of http://planetmath.org/SigmaAlgebra σ -algebras (\mathcal{F}_t) $_{t\in T}$ is a collection of σ -algebras on an underlying set Ω , satisfying $\mathcal{F}_s\subseteq \mathcal{F}_t$ for all s< t in T. Here, t is understood as the time variable, taking values in the index set T, and \mathcal{F}_t represents the collection of all events observable up until time t. The index set is usually a subset of the real numbers, with common examples being $T=\mathbb{Z}_+$ for discrete-time and $T=\mathbb{R}_+$ for continuous-time scenarios. The collection (\mathcal{F}_t) $_{t\in T}$ is a filtration on a measurable space (Ω, \mathcal{F}) if $\mathcal{F}_t\subseteq \mathcal{F}$ for every t. If, furthermore, there is a probability measure defined on the underlying measurable space then this gives a filtered probability space. The alternative notation (\mathcal{F}_t , $t\in T$) is often used for the filtration or, when the index set T is clear from the context, simply (\mathcal{F}_t) or \mathbf{F} .

Filtrations are widely used for studying stochastic processes, where a process X_t with time ranging over the set T is said to be adapted to the filtration if X_t is an \mathcal{F}_t -measurable random variable for each time t.

Conversely, any stochastic process $(X_t)_{t\in T}$ generates a filtration. Let \mathcal{F}_t be the smallest σ -algebra with respect to which X_s is measurable for all $s \leq t$,

$$\mathcal{F}_t = \sigma\left(X_s : s \le t\right).$$

This defines the smallest filtration to which X is adapted, known as the natural filtration of X.

Given a filtration, there are various limiting σ -algebras which can be defined. The values at plus and minus infinity are

$$\mathcal{F}_{\infty} = \sigma\left(\bigcup_{t} \mathcal{F}_{t}\right), \ \mathcal{F}_{-\infty} = \bigcap_{t} \mathcal{F}_{t},$$

which satisfy $\mathcal{F}_{-\infty} \subseteq \mathcal{F}_t \subseteq \mathcal{F}_{\infty}$. In continuous-time, when the index set is an interval of the real numbers, the left and right limits can be defined at any time. They are,

$$\mathcal{F}_{t+} = \bigcap_{s>t} \mathcal{F}_s, \ \mathcal{F}_{t-} = \sigma \left(\bigcup_{s < t} \mathcal{F}_s \right),$$

except if t is the maximum of T it is often convenient to set $\mathcal{F}_{t+} = \mathcal{F}_t$ or, if t is the minimum, $\mathcal{F}_{t-} = \mathcal{F}_t$. It is easily verified that $\mathcal{F}_s \subseteq \mathcal{F}_{s+} \subseteq \mathcal{F}_{t-} \subseteq \mathcal{F}_t$ for all times s < t. Furthermore, (\mathcal{F}_{t+}) and (\mathcal{F}_{t-}) are themselves filtrations.

A filtration is said to be right-continuous if $\mathcal{F}_t = \mathcal{F}_{t+}$ for every t so, in particular, (\mathcal{F}_{t+}) is always the smallest right-continuous filtration larger than (\mathcal{F}_t) .