9:00am 9:15am 14 70 9:15am 9:30am 14 9:30am 9:45am 14 9:45am 10:00am 10:15am 16 10:15am 10:30am 10:30am 10:30am 10:45am 24 11:00am 11:15am 24 11:15am 11:30am 24 11:30am 11:45am 34 11:45am 12:00am 24	Room A: AERO 111 Zoom Link: https://cuboulder.zoom.us/s/93439516683 Session 1A: Atmospheric and Aerodynamic Flows (Room A) Chair: Matthew Munson LA.1 Dasha Gloutak: Unsteady Loading of a Wing in Global Streamwise Gusts LA.2 Jaylon McGhee: Impact of Canonical Perturbations in the Inflow on Wind Furbine Loads LA.3 Lukas Spies: Comparison of some RANS solvers LA.4 Robert Sasse: Development and Application for UAS LA.5 Aaron True: Distortion of passive scalar structure during suction-based colume sampling LA.6 Lars Larson: Experimental and numerical characterization of odor plume structure in the wake of a commercial odor-delivery device Session 2A: Geophysical Flows (Room A) Chair: Melissa Moulton CA.1 Jaime Herriott: Small-Scale Variations in Ocean Acidity using a Large Eddy Simulation CA.2 Laura Clark: Dispersion of non-spherical particles by waves and currents CA.3 Malik Jordan: Tools For Analyzing And Reducing Ocean Biogeochemical And Transport Models CA.4 Mary McGuinn: Interactions Between Physical Processes and Carbonate Chemistry in the Oceanic Mixed Layer	neighborhoods 1B.2 Kelly Cao: Computational Hemodynamics Using 3D Rotational Angiography Imaging 1B.3 Sebastian Laudenschlager: Estimation of Pulmonary Vascular Impedance for Children with Single Ventricle 1B.4 Sreeparna Majee: Distance Field Based Approach for Resolving Particle-Wall Interactions for Biomedical Flows 1B.5 Summer Andrews: Image Based In Silico Modeling of Transarterial Radioembolization for Liver Cancer 1B.6 Thomas Puhr: Designing a Benchtop Flow Loop for Investigating Particle Transport in Human Arterial Flows Morning Break Session 2B: Nonequilibrium Flows and Energy Systems (Room B) Chair: Brennan Sprinkle 2B.1 Filipe Henrique: Applying the Principles of Flow in Porous Media to Energy Storage Applications 2B.2 Eman Yahia: Lattice Boltzmann Simulations of Magnetohydrodynamic Flows Bounded by Electrically Conducting Walls	Combustion Systems 1C.2 Adam Binswanger: Validation of exascale combustion code for the simulation of an internal combustion engine 1C.3 Michael Meehan: The role of diffusion and viscosity on laminar unsteady plumes 1C.4 Samuel Whitman: Pressure gradient tailoring effects on vorticity dynamics in the near-wake of bluff-body stabilized flames 1C.5 Tyler Souders: Pressure Gradient Tailoring Effects for Bluff-Body Stabilized Flames subjected to Freestream Turbulence 1C.6 Parneeth Lokini: Laser Ignition and Laser-Induced Breakdown Spectroscopy of a Hydrocarbon Flame in an Annular Spray Burner Session 2C: CFD Techniques and Modeling (Room C) Chair: Debanjan Mukherjee 2C.1 Alberto Olmo: Physics-Conforming Turbulent Flow Simulations Compression Approach 2C.2 Graham Pash: Towards Uncertainty Propagation for Data-Driven Turbulence Closure Models 2C.3 Kiran Eiden: Using Machine-Learned Manifolds to Simplify the State Spaces of Combustion Simulations
8:45am 10:15am 19:00am 14:00am 19:30am 19:30am 19:30am 10:30am 10:30am 10:30am 10:45am 12:00pm 11:15am 11:30am 11:45am 11:45am 12:00pm 11:15pm 1:15pm	Session 1A: Atmospheric and Aerodynamic Flows (Room A) Chair: Matthew Munson LA.1 Dasha Gloutak: Unsteady Loading of a Wing in Global Streamwise Gusts LA.2 Jaylon McGhee: Impact of Canonical Perturbations in the Inflow on Wind Furbine Loads LA.3 Lukas Spies: Comparison of some RANS solvers LA.4 Robert Sasse: Development and Application for UAS LA.5 Aaron True: Distortion of passive scalar structure during suction-based folume sampling LA.6 Lars Larson: Experimental and numerical characterization of odor plume structure in the wake of a commercial odor-delivery device Session 2A: Geophysical Flows (Room A) Chair: Melissa Moulton CA.1 Jaime Herriott: Small-Scale Variations in Ocean Acidity using a Large Eddy Simulation CA.2 Laura Clark: Dispersion of non-spherical particles by waves and currents CA.3 Malik Jordan: Tools For Analyzing And Reducing Ocean Biogeochemical And Transport Models CA.4 Mary McGuinn: Interactions Between Physical Processes and Carbonate Chemistry in the Oceanic Mixed Layer	Room B: AERO 120 Zoom Link: https://cuboulder.zoom.us/s/94417171841 Password for all Zoom Rooms: RMFM2022 Session 1B: Biological Flows (Room B) Chair: Bradford Smith 1B.1 Chayut Teeraratkul: Flow and flow mediated transport in dynamic blood clot neighborhoods 1B.2 Kelly Cao: Computational Hemodynamics Using 3D Rotational Angiography Imaging 1B.3 Sebastian Laudenschlager: Estimation of Pulmonary Vascular Impedance for Children with Single Ventricle 1B.4 Sreeparna Majee: Distance Field Based Approach for Resolving Particle-Wall Interactions for Biomedical Flows 1B.5 Summer Andrews: Image Based In Silico Modeling of Transarterial Radioembolization for Liver Cancer 1B.6 Thomas Puhr: Designing a Benchtop Flow Loop for Investigating Particle Transport in Human Arterial Flows Morning Break Session 2B: Nonequilibrium Flows and Energy Systems (Room B) Chair: Brennan Sprinkle 2B.1 Filipe Henrique: Applying the Principles of Flow in Porous Media to Energy Storage Applications 2B.2 Eman Yahia: Lattice Boltzmann Simulations of Magnetohydrodynamic Flows Bounded by Electrically Conducting Walls 2B.3 Nathan Jarvey: Application of Boundary Layer Theory from Fluid Mechanics to Multicomponent Energy Storage Problems	Session 1C: Reacting Flows (Room C) Chair: Ciprian Dumitrache 1C.1 Iris Kessler: Development of Advanced Hydrogen Fueled Gas Turbine Combustion Systems 1C.2 Adam Binswanger: Validation of exascale combustion code for the simulation of an internal combustion engine 1C.3 Michael Meehan: The role of diffusion and viscosity on laminar unsteady plumes 1C.4 Samuel Whitman: Pressure gradient tailoring effects on vorticity dynamics in the near-wake of bluff-body stabilized flames 1C.5 Tyler Souders: Pressure Gradient Tailoring Effects for Bluff-Body Stabilized Flames subjected to Freestream Turbulence 1C.6 Parneeth Lokini: Laser Ignition and Laser-Induced Breakdown Spectroscopy of a Hydrocarbon Flame in an Annular Spray Burner Session 2C: CFD Techniques and Modeling (Room C) Chair: Debanjan Mukherjee 2C.1 Alberto Olmo: Physics-Conforming Turbulent Flow Simulations Compression Approach 2C.2 Graham Pash: Towards Uncertainty Propagation for Data-Driven Turbulence Closure Models 2C.3 Kiran Eiden: Using Machine-Learned Manifolds to Simplify the State Spaces of Combustion Simulations
8:45am 9:00am 14 9:00am 9:15am 14 9:15am 9:30am 14 9:30am 9:45am 14 9:45am 10:00am 14 10:00am 10:15am 14 10:30am 10:30am 10:30am 10:45am 24 11:00am 11:15am 11:30am 24 11:15am 11:30am 24 11:30am 11:45am 24 11:45am 11:45am 24 11:45am 12:00pm 24 11:15pm 1:15pm 1:15pm 1:15pm 2:00pm	Session 1A: Atmospheric and Aerodynamic Flows (Room A) Chair: Matthew Munson LA.1 Dasha Gloutak: Unsteady Loading of a Wing in Global Streamwise Gusts LA.2 Jaylon McGhee: Impact of Canonical Perturbations in the Inflow on Wind Furbine Loads LA.3 Lukas Spies: Comparison of some RANS solvers LA.4 Robert Sasse: Development and Application for UAS LA.5 Aaron True: Distortion of passive scalar structure during suction-based folume sampling LA.6 Lars Larson: Experimental and numerical characterization of odor plume structure in the wake of a commercial odor-delivery device Session 2A: Geophysical Flows (Room A) Chair: Melissa Moulton CA.1 Jaime Herriott: Small-Scale Variations in Ocean Acidity using a Large Eddy Simulation CA.2 Laura Clark: Dispersion of non-spherical particles by waves and currents CA.3 Malik Jordan: Tools For Analyzing And Reducing Ocean Biogeochemical And Transport Models CA.4 Mary McGuinn: Interactions Between Physical Processes and Carbonate Chemistry in the Oceanic Mixed Layer	Zoom Link: https://cuboulder.zoom.us/s/94417171841 Password for all Zoom Rooms: RMFM2022 Session 1B: Biological Flows (Room B) Chair: Bradford Smith 1B.1 Chayut Teeraratkul: Flow and flow mediated transport in dynamic blood clot neighborhoods 1B.2 Kelly Cao: Computational Hemodynamics Using 3D Rotational Angiography Imaging 1B.3 Sebastian Laudenschlager: Estimation of Pulmonary Vascular Impedance for Children with Single Ventricle 1B.4 Sreeparna Majee: Distance Field Based Approach for Resolving Particle-Wall Interactions for Biomedical Flows 1B.5 Summer Andrews: Image Based In Silico Modeling of Transarterial Radioembolization for Liver Cancer 1B.6 Thomas Puhr: Designing a Benchtop Flow Loop for Investigating Particle Transport in Human Arterial Flows Morning Break Session 2B: Nonequilibrium Flows and Energy Systems (Room B) Chair: Brennan Sprinkle 2B.1 Filipe Henrique: Applying the Principles of Flow in Porous Media to Energy Storage Applications 2B.2 Eman Yahia: Lattice Boltzmann Simulations of Magnetohydrodynamic Flows Bounded by Electrically Conducting Walls 2B.3 Nathan Jarvey: Application of Boundary Layer Theory from Fluid Mechanics to Multicomponent Energy Storage Problems	Session 1C: Reacting Flows (Room C) Chair: Ciprian Dumitrache 1C.1 Iris Kessler: Development of Advanced Hydrogen Fueled Gas Turbine Combustion Systems 1C.2 Adam Binswanger: Validation of exascale combustion code for the simulation of an internal combustion engine 1C.3 Michael Meehan: The role of diffusion and viscosity on laminar unsteady plumes 1C.4 Samuel Whitman: Pressure gradient tailoring effects on vorticity dynamics in the near-wake of bluff-body stabilized flames 1C.5 Tyler Souders: Pressure Gradient Tailoring Effects for Bluff-Body Stabilized Flames subjected to Freestream Turbulence 1C.6 Parneeth Lokini: Laser Ignition and Laser-Induced Breakdown Spectroscopy of a Hydrocarbon Flame in an Annular Spray Burner Session 2C: CFD Techniques and Modeling (Room C) Chair: Debanjan Mukherjee 2C.1 Alberto Olmo: Physics-Conforming Turbulent Flow Simulations Compression Approach 2C.2 Graham Pash: Towards Uncertainty Propagation for Data-Driven Turbulence Closure Models 2C.3 Kiran Eiden: Using Machine-Learned Manifolds to Simplify the State Spaces of Combustion Simulations
8:45am 9:00am 14 9:00am 9:15am 14 9:15am 9:30am 14 9:30am 9:45am 14 9:45am 10:00am 14 10:00am 10:15am 14 10:30am 10:30am 10:30am 10:30am 10:45am 24 11:00am 11:15am 11:30am 24 11:00am 11:45am 11:30am 24 11:30am 11:45am 24 11:30am 11:45am 24 11:30am 11:45am 32 11:45am 12:00pm 24 11:45am 12:00pm 24 11:45am 12:00pm 24 11:15pm 12:15pm 12	Session 1A: Atmospheric and Aerodynamic Flows (Room A) Chair: Matthew Munson LA.1 Dasha Gloutak: Unsteady Loading of a Wing in Global Streamwise Gusts LA.2 Jaylon McGhee: Impact of Canonical Perturbations in the Inflow on Wind Turbine Loads LA.3 Lukas Spies: Comparison of some RANS solvers LA.4 Robert Sasse: Development and Application for UAS LA.5 Aaron True: Distortion of passive scalar structure during suction-based John Sampling LA.6 Lars Larson: Experimental and numerical characterization of odor plume structure in the wake of a commercial odor-delivery device Session 2A: Geophysical Flows (Room A) Chair: Melissa Moulton CA.1 Jaime Herriott: Small-Scale Variations in Ocean Acidity using a Large Eddy Simulation CA.2 Laura Clark: Dispersion of non-spherical particles by waves and currents CA.3 Malik Jordan: Tools For Analyzing And Reducing Ocean Biogeochemical And Transport Models CA.4 Mary McGuinn: Interactions Between Physical Processes and Carbonate Chemistry in the Oceanic Mixed Layer	Password for all Zoom Rooms: RMFM2022 Session 1B: Biological Flows (Room B) Chair: Bradford Smith 1B.1 Chayut Teeraratkul: Flow and flow mediated transport in dynamic blood clot neighborhoods 1B.2 Kelly Cao: Computational Hemodynamics Using 3D Rotational Angiography Imaging 1B.3 Sebastian Laudenschlager: Estimation of Pulmonary Vascular Impedance for Children with Single Ventricle 1B.4 Sreeparna Majee: Distance Field Based Approach for Resolving Particle-Wall Interactions for Biomedical Flows 1B.5 Summer Andrews: Image Based In Silico Modeling of Transarterial Radioembolization for Liver Cancer 1B.6 Thomas Puhr: Designing a Benchtop Flow Loop for Investigating Particle Transport in Human Arterial Flows Morning Break Session 2B: Nonequilibrium Flows and Energy Systems (Room B) Chair: Brennan Sprinkle 2B.1 Filipe Henrique: Applying the Principles of Flow in Porous Media to Energy Storage Applications 2B.2 Eman Yahia: Lattice Boltzmann Simulations of Magnetohydrodynamic Flows Bounded by Electrically Conducting Walls 2B.3 Nathan Jarvey: Application of Boundary Layer Theory from Fluid Mechanics to Multicomponent Energy Storage Problems	Session 1C: Reacting Flows (Room C) Chair: Ciprian Dumitrache 1C.1 Iris Kessler: Development of Advanced Hydrogen Fueled Gas Turbine Combustion Systems 1C.2 Adam Binswanger: Validation of exascale combustion code for the simulation of an internal combustion engine 1C.3 Michael Meehan: The role of diffusion and viscosity on laminar unsteady plumes 1C.4 Samuel Whitman: Pressure gradient tailoring effects on vorticity dynamics in the near-wake of bluff-body stabilized flames 1C.5 Tyler Souders: Pressure Gradient Tailoring Effects for Bluff-Body Stabilized Flames subjected to Freestream Turbulence 1C.6 Parneeth Lokini: Laser Ignition and Laser-Induced Breakdown Spectroscopy of a Hydrocarbon Flame in an Annular Spray Burner Session 2C: CFD Techniques and Modeling (Room C) Chair: Debanjan Mukherjee 2C.1 Alberto Olmo: Physics-Conforming Turbulent Flow Simulations Compression Approach 2C.2 Graham Pash: Towards Uncertainty Propagation for Data-Driven Turbulence Closure Models 2C.3 Kiran Eiden: Using Machine-Learned Manifolds to Simplify the State Spaces of Combustion Simulations
8:45am 9:00am 14 9:00am 9:15am 7t 7t 9:15am 9:30am 14 9:30am 9:45am 14 9:45am 10:00am 16 10:00am 10:15am 15 10:30am 10:30am 10:30am 10:30am 10:45am 24 11:00am 11:15am 11:30am 24 11:00am 11:15am 11:30am 25 11:45am 11:30am 26 11:45am 11:45am 26 11:45am 12:00pm 26 11:45am 12:00pm 27 11:45am 12:00pm 28	Chair: Matthew Munson LA.1 Dasha Gloutak: Unsteady Loading of a Wing in Global Streamwise Gusts LA.2 Jaylon McGhee: Impact of Canonical Perturbations in the Inflow on Wind Turbine Loads LA.3 Lukas Spies: Comparison of some RANS solvers LA.4 Robert Sasse: Development and Application for UAS LA.5 Aaron True: Distortion of passive scalar structure during suction-based olume sampling LA.6 Lars Larson: Experimental and numerical characterization of odor plume structure in the wake of a commercial odor-delivery device Session 2A: Geophysical Flows (Room A) Chair: Melissa Moulton 2A.1 Jaime Herriott: Small-Scale Variations in Ocean Acidity using a Large Eddy Simulation 2A.2 Laura Clark: Dispersion of non-spherical particles by waves and currents 2A.3 Malik Jordan: Tools For Analyzing And Reducing Ocean Biogeochemical And Transport Models 2A.4 Mary McGuinn: Interactions Between Physical Processes and Carbonate Chemistry in the Oceanic Mixed Layer	Session 1B: Biological Flows (Room B) Chair: Bradford Smith 1B.1 Chayut Teeraratkul: Flow and flow mediated transport in dynamic blood clot neighborhoods 1B.2 Kelly Cao: Computational Hemodynamics Using 3D Rotational Angiography Imaging 1B.3 Sebastian Laudenschlager: Estimation of Pulmonary Vascular Impedance for Children with Single Ventricle 1B.4 Sreeparna Majee: Distance Field Based Approach for Resolving Particle-Wall Interactions for Biomedical Flows 1B.5 Summer Andrews: Image Based In Silico Modeling of Transarterial Radioembolization for Liver Cancer 1B.6 Thomas Puhr: Designing a Benchtop Flow Loop for Investigating Particle Transport in Human Arterial Flows Morning Break Session 2B: Nonequilibrium Flows and Energy Systems (Room B) Chair: Brennan Sprinkle 2B.1 Filipe Henrique: Applying the Principles of Flow in Porous Media to Energy Storage Applications 2B.2 Eman Yahia: Lattice Boltzmann Simulations of Magnetohydrodynamic Flows Bounded by Electrically Conducting Walls 2B.3 Nathan Jarvey: Application of Boundary Layer Theory from Fluid Mechanics to Multicomponent Energy Storage Problems	Chair: Ciprian Dumitrache 1C.1 Iris Kessler: Development of Advanced Hydrogen Fueled Gas Turbine Combustion Systems 1C.2 Adam Binswanger: Validation of exascale combustion code for the simulation of an internal combustion engine 1C.3 Michael Meehan: The role of diffusion and viscosity on laminar unsteady plumes 1C.4 Samuel Whitman: Pressure gradient tailoring effects on vorticity dynamics in the near-wake of bluff-body stabilized flames 1C.5 Tyler Souders: Pressure Gradient Tailoring Effects for Bluff-Body Stabilized Flames subjected to Freestream Turbulence 1C.6 Parneeth Lokini: Laser Ignition and Laser-Induced Breakdown Spectroscopy of a Hydrocarbon Flame in an Annular Spray Burner Session 2C: CFD Techniques and Modeling (Room C) Chair: Debanjan Mukherjee 2C.1 Alberto Olmo: Physics-Conforming Turbulent Flow Simulations Compression Approach 2C.2 Graham Pash: Towards Uncertainty Propagation for Data-Driven Turbulence Closure Models 2C.3 Kiran Eiden: Using Machine-Learned Manifolds to Simplify the State Spaces of Combustion Simulations
8:45am 9:00am 14 9:00am 9:15am 7t 7t 9:15am 9:30am 14 9:30am 9:45am 14 9:45am 10:00am 16 10:00am 10:15am 15 10:30am 10:30am 10:30am 10:30am 10:45am 24 11:00am 11:15am 11:30am 24 11:00am 11:15am 11:30am 25 11:45am 11:30am 26 11:45am 11:45am 26 11:45am 12:00pm 26 11:45am 12:00pm 27 11:45am 12:00pm 28	Chair: Matthew Munson LA.1 Dasha Gloutak: Unsteady Loading of a Wing in Global Streamwise Gusts LA.2 Jaylon McGhee: Impact of Canonical Perturbations in the Inflow on Wind Turbine Loads LA.3 Lukas Spies: Comparison of some RANS solvers LA.4 Robert Sasse: Development and Application for UAS LA.5 Aaron True: Distortion of passive scalar structure during suction-based olume sampling LA.6 Lars Larson: Experimental and numerical characterization of odor plume structure in the wake of a commercial odor-delivery device Session 2A: Geophysical Flows (Room A) Chair: Melissa Moulton 2A.1 Jaime Herriott: Small-Scale Variations in Ocean Acidity using a Large Eddy Simulation 2A.2 Laura Clark: Dispersion of non-spherical particles by waves and currents 2A.3 Malik Jordan: Tools For Analyzing And Reducing Ocean Biogeochemical And Transport Models 2A.4 Mary McGuinn: Interactions Between Physical Processes and Carbonate Chemistry in the Oceanic Mixed Layer	Chair: Bradford Smith 1B.1 Chayut Teeraratkul: Flow and flow mediated transport in dynamic blood clot neighborhoods 1B.2 Kelly Cao: Computational Hemodynamics Using 3D Rotational Angiography Imaging 1B.3 Sebastian Laudenschlager: Estimation of Pulmonary Vascular Impedance for Children with Single Ventricle 1B.4 Sreeparna Majee: Distance Field Based Approach for Resolving Particle-Wall Interactions for Biomedical Flows 1B.5 Summer Andrews: Image Based In Silico Modeling of Transarterial Radioembolization for Liver Cancer 1B.6 Thomas Puhr: Designing a Benchtop Flow Loop for Investigating Particle Transport in Human Arterial Flows Morning Break Session 2B: Nonequilibrium Flows and Energy Systems (Room B) Chair: Brennan Sprinkle 2B.1 Filipe Henrique: Applying the Principles of Flow in Porous Media to Energy Storage Applications 2B.2 Eman Yahia: Lattice Boltzmann Simulations of Magnetohydrodynamic Flows Bounded by Electrically Conducting Walls 2B.3 Nathan Jarvey: Application of Boundary Layer Theory from Fluid Mechanics to Multicomponent Energy Storage Problems	Chair: Ciprian Dumitrache 1C.1 Iris Kessler: Development of Advanced Hydrogen Fueled Gas Turbine Combustion Systems 1C.2 Adam Binswanger: Validation of exascale combustion code for the simulation of an internal combustion engine 1C.3 Michael Meehan: The role of diffusion and viscosity on laminar unsteady plumes 1C.4 Samuel Whitman: Pressure gradient tailoring effects on vorticity dynamics in the near-wake of bluff-body stabilized flames 1C.5 Tyler Souders: Pressure Gradient Tailoring Effects for Bluff-Body Stabilized Flames subjected to Freestream Turbulence 1C.6 Parneeth Lokini: Laser Ignition and Laser-Induced Breakdown Spectroscopy of a Hydrocarbon Flame in an Annular Spray Burner Session 2C: CFD Techniques and Modeling (Room C) Chair: Debanjan Mukherjee 2C.1 Alberto Olmo: Physics-Conforming Turbulent Flow Simulations Compression Approach 2C.2 Graham Pash: Towards Uncertainty Propagation for Data-Driven Turbulence Closure Models 2C.3 Kiran Eiden: Using Machine-Learned Manifolds to Simplify the State Spaces of Combustion Simulations
8:45am 9:00am 14 9:00am 9:15am 14 9:15am 9:30am 14 9:30am 9:45am 14 9:45am 10:00am 14 10:00am 10:15am 14 10:30am 10:30am 10:30am 10:30am 10:45am 24 11:00am 11:15am 11:30am 24 11:00am 11:45am 11:30am 24 11:30am 11:45am 24 11:30am 11:45am 24 11:30am 11:45am 32 11:45am 12:00pm 24 11:45am 12:00pm 24 11:45am 12:00pm 24 11:15pm 12:15pm 12	LA.1 Dasha Gloutak: Unsteady Loading of a Wing in Global Streamwise Gusts LA.2 Jaylon McGhee: Impact of Canonical Perturbations in the Inflow on Wind Turbine Loads LA.3 Lukas Spies: Comparison of some RANS solvers LA.4 Robert Sasse: Development and Application for UAS LA.5 Aaron True: Distortion of passive scalar structure during suction-based plume sampling LA.6 Lars Larson: Experimental and numerical characterization of odor plume structure in the wake of a commercial odor-delivery device Session 2A: Geophysical Flows (Room A) Chair: Melissa Moulton CA.1 Jaime Herriott: Small-Scale Variations in Ocean Acidity using a Large Eddy Simulation CA.2 Laura Clark: Dispersion of non-spherical particles by waves and currents CA.3 Malik Jordan: Tools For Analyzing And Reducing Ocean Biogeochemical And Transport Models CA.4 Mary McGuinn: Interactions Between Physical Processes and Carbonate Chemistry in the Oceanic Mixed Layer	1B.1 Chayut Teeraratkul: Flow and flow mediated transport in dynamic blood clot neighborhoods 1B.2 Kelly Cao: Computational Hemodynamics Using 3D Rotational Angiography Imaging 1B.3 Sebastian Laudenschlager: Estimation of Pulmonary Vascular Impedance for Children with Single Ventricle 1B.4 Sreeparna Majee: Distance Field Based Approach for Resolving Particle-Wall Interactions for Biomedical Flows 1B.5 Summer Andrews: Image Based In Silico Modeling of Transarterial Radioembolization for Liver Cancer 1B.6 Thomas Puhr: Designing a Benchtop Flow Loop for Investigating Particle Transport in Human Arterial Flows Morning Break Session 2B: Nonequilibrium Flows and Energy Systems (Room B) Chair: Brennan Sprinkle 2B.1 Filipe Henrique: Applying the Principles of Flow in Porous Media to Energy Storage Applications 2B.2 Eman Yahia: Lottice Boltzmann Simulations of Magnetohydrodynamic Flows Bounded by Electrically Conducting Walls 2B.3 Nathan Jarvey: Application of Boundary Layer Theory from Fluid Mechanics to Multicomponent Energy Storage Problems	1C.1 Iris Kessler: Development of Advanced Hydrogen Fueled Gas Turbine Combustion Systems 1C.2 Adam Binswanger: Validation of exascale combustion code for the simulation of an internal combustion engine 1C.3 Michael Meehan: The role of diffusion and viscosity on laminar unsteady plumes 1C.4 Samuel Whitman: Pressure gradient tailoring effects on vorticity dynamics in the near-wake of bluff-body stabilized flames 1C.5 Tyler Souders: Pressure Gradient Tailoring Effects for Bluff-Body Stabilized Flames subjected to Freestream Turbulence 1C.6 Parneeth Lokini: Laser Ignition and Laser-Induced Breakdown Spectroscopy of a Hydrocarbon Flame in an Annular Spray Burner Session 2C: CFD Techniques and Modeling (Room C) Chair: Debanjan Mukherjee 2C.1 Alberto Olmo: Physics-Conforming Turbulent Flow Simulations Compression Approach 2C.2 Graham Pash: Towards Uncertainty Propagation for Data-Driven Turbulence Closure Models 2C.3 Kiran Eiden: Using Machine-Learned Manifolds to Simplify the State Spaces of Combustion Simulations
9:00am 9:15am 14 70 9:15am 9:30am 14 9:30am 9:45am 14 9:45am 10:00am 16 10:00am 10:15am 15 10:15am 10:30am 10:30am 10:45am 24 10:045am 11:00am 24 11:00am 11:15am 11:30am 24 11:00am 11:45am 24 11:30am 11:45am 24 11:45am 12:00pm 24 11:15pm 12:15pm 12:15pm 12:15pm 12:15pm 12:00pm	LA.2 Jaylon McGhee: Impact of Canonical Perturbations in the Inflow on Wind Turbine Loads LA.3 Lukas Spies: Comparison of some RANS solvers LA.4 Robert Sasse: Development and Application for UAS LA.5 Aaron True: Distortion of passive scalar structure during suction-based colume sampling LA.6 Lars Larson: Experimental and numerical characterization of odor plume structure in the wake of a commercial odor-delivery device Session 2A: Geophysical Flows (Room A) Chair: Melissa Moulton CA.1 Jaime Herriott: Small-Scale Variations in Ocean Acidity using a Large Eddy Simulation CA.2 Laura Clark: Dispersion of non-spherical particles by waves and currents CA.3 Malik Jordan: Tools For Analyzing And Reducing Ocean Biogeochemical And Transport Models CA.4 Mary McGuinn: Interactions Between Physical Processes and Carbonate Chemistry in the Oceanic Mixed Layer	neighborhoods 1B.2 Kelly Cao: Computational Hemodynamics Using 3D Rotational Angiography Imaging 1B.3 Sebastian Laudenschlager: Estimation of Pulmonary Vascular Impedance for Children with Single Ventricle 1B.4 Sreeparna Majee: Distance Field Based Approach for Resolving Particle-Wall Interactions for Biomedical Flows 1B.5 Summer Andrews: Image Based In Silico Modeling of Transarterial Radioembolization for Liver Cancer 1B.6 Thomas Puhr: Designing a Benchtop Flow Loop for Investigating Particle Transport in Human Arterial Flows Morning Break Session 2B: Nonequilibrium Flows and Energy Systems (Room B) Chair: Brennan Sprinkle 2B.1 Filipe Henrique: Applying the Principles of Flow in Porous Media to Energy Storage Applications 2B.2 Eman Yahia: Lattice Boltzmann Simulations of Magnetohydrodynamic Flows Bounded by Electrically Conducting Walls 2B.3 Nathan Jarvey: Application of Boundary Layer Theory from Fluid Mechanics to Multicomponent Energy Storage Problems	Combustion Systems 1C.2 Adam Binswanger: Validation of exascale combustion code for the simulation of an internal combustion engine 1C.3 Michael Meehan: The role of diffusion and viscosity on laminar unsteady plumes 1C.4 Samuel Whitman: Pressure gradient tailoring effects on vorticity dynamics in the near-wake of bluff-body stabilized flames 1C.5 Tyler Souders: Pressure Gradient Tailoring Effects for Bluff-Body Stabilized Flames subjected to Freestream Turbulence 1C.6 Parneeth Lokini: Laser Ignition and Laser-Induced Breakdown Spectroscopy of a Hydrocarbon Flame in an Annular Spray Burner Session 2C: CFD Techniques and Modeling (Room C) Chair: Debanjan Mukherjee 2C.1 Alberto Olmo: Physics-Conforming Turbulent Flow Simulations Compression Approach 2C.2 Graham Pash: Towards Uncertainty Propagation for Data-Driven Turbulence Closure Models 2C.3 Kiran Eiden: Using Machine-Learned Manifolds to Simplify the State Spaces of Combustion Simulations
9:15am 9:35am 7L 9:15am 9:30am 1F 9:30am 9:45am 1F 9:45am 10:00am 1F 10:00am 10:15am 1F 5tt 10:15am 10:30am 10:45am 2F 11:00am 11:15am 11:30am 2F 11:15am 11:30am 2F 11:30am 11:45am 2F 11:45am 12:00pm 2F 11:15pm 1:15pm 1:15pm 1:15pm 1:15pm 1:15pm 1	LA.3 Lukas Spies: Comparison of some RANS solvers LA.4 Robert Sasse: Development and Application for UAS LA.5 Aaron True: Distortion of passive scalar structure during suction-based plume sampling LA.6 Lars Larson: Experimental and numerical characterization of odor plume structure in the wake of a commercial odor-delivery device Session 2A: Geophysical Flows (Room A) Chair: Melissa Moulton 2A.1 Jaime Herriott: Small-Scale Variations in Ocean Acidity using a Large Eddy Simulation 2A.2 Laura Clark: Dispersion of non-spherical particles by waves and currents 2A.3 Malik Jordan: Tools For Analyzing And Reducing Ocean Biogeochemical And Transport Models 2A.4 Mary McGuinn: Interactions Between Physical Processes and Carbonate Chemistry in the Oceanic Mixed Layer	Imaging 1B.3 Sebastian Laudenschlager: Estimation of Pulmonary Vascular Impedance for Children with Single Ventricle 1B.4 Sreeparna Majee: Distance Field Based Approach for Resolving Particle-Wall Interactions for Biomedical Flows 1B.5 Summer Andrews: Image Based In Silico Modeling of Transarterial Radioembolization for Liver Cancer 1B.6 Thomas Puhr: Designing a Benchtop Flow Loop for Investigating Particle Transport in Human Arterial Flows Morning Break Session 2B: Nonequilibrium Flows and Energy Systems (Room B) Chair: Brennan Sprinkle 2B.1 Filipe Henrique: Applying the Principles of Flow in Porous Media to Energy Storage Applications 2B.2 Eman Yahia: Lattice Boltzmann Simulations of Magnetohydrodynamic Flows Bounded by Electrically Conducting Walls 2B.3 Nathan Jarvey: Application of Boundary Layer Theory from Fluid Mechanics to Multicomponent Energy Storage Problems	simulation of an internal combustion engine 1C.3 Michael Meehan: The role of diffusion and viscosity on laminar unsteady plumes 1C.4 Samuel Whitman: Pressure gradient tailoring effects on vorticity dynamics in the near-wake of bluff-body stabilized flames 1C.5 Tyler Souders: Pressure Gradient Tailoring Effects for Bluff-Body Stabilized Flames subjected to Freestream Turbulence 1C.6 Parneeth Lokini: Laser Ignition and Laser-Induced Breakdown Spectroscopy of a Hydrocarbon Flame in an Annular Spray Burner Session 2C: CFD Techniques and Modeling (Room C) Chair: Debanjan Mukherjee 2C.1 Alberto Olmo: Physics-Conforming Turbulent Flow Simulations Compression Approach 2C.2 Graham Pash: Towards Uncertainty Propagation for Data-Driven Turbulence Closure Models 2C.3 Kiran Eiden: Using Machine-Learned Manifolds to Simplify the State Spaces of Combustion Simulations
9:30am 9:45am 14 9:45am 10:00am 16-ph 10:00am 10:15am 16-st 10:15am 10:30am 10:30am 10:45am 24-sh 10:45am 11:00am 24-sh 11:15am 11:30am 24-sh 11:30am 11:45am 34-sh 11:45am 12:00pm 24-sh 11:15pm 1:15pm 1:15pm 1:15pm 1:15pm 2:00pm	LA.4 Robert Sasse: Development and Application for UAS LA.5 Aaron True: Distortion of passive scalar structure during suction-based plume sampling LA.6 Lars Larson: Experimental and numerical characterization of odor plume structure in the wake of a commercial odor-delivery device Session 2A: Geophysical Flows (Room A) Chair: Melissa Moulton 2A.1 Jaime Herriott: Small-Scale Variations in Ocean Acidity using a Large Eddy Simulation 2A.2 Laura Clark: Dispersion of non-spherical particles by waves and currents 2A.3 Malik Jordan: Tools For Analyzing And Reducing Ocean Biogeochemical And Transport Models 2A.4 Mary McGuinn: Interactions Between Physical Processes and Carbonate Chemistry in the Oceanic Mixed Layer	Children with Single Ventricle 1B.4 Sreeparna Majee: Distance Field Based Approach for Resolving Particle-Wall Interactions for Biomedical Flows 1B.5 Summer Andrews: Image Based In Silico Modeling of Transarterial Radioembolization for Liver Cancer 1B.6 Thomas Puhr: Designing a Benchtop Flow Loop for Investigating Particle Transport in Human Arterial Flows Morning Break Session 2B: Nonequilibrium Flows and Energy Systems (Room B) Chair: Brennan Sprinkle 2B.1 Filipe Henrique: Applying the Principles of Flow in Porous Media to Energy Storage Applications 2B.2 Eman Yahia: Lattice Boltzmann Simulations of Magnetohydrodynamic Flows Bounded by Electrically Conducting Walls 2B.3 Nathan Jarvey: Application of Boundary Layer Theory from Fluid Mechanics to Multicomponent Energy Storage Problems	plumes 1.C.4 Samuel Whitman: Pressure gradient tailoring effects on vorticity dynamics in the near-wake of bluff-body stabilized flames 1.C.5 Tyler Souders: Pressure Gradient Tailoring Effects for Bluff-Body Stabilized Flames subjected to Freestream Turbulence 1.C.6 Parneeth Lokini: Laser Ignition and Laser-Induced Breakdown Spectroscopy of a Hydrocarbon Flame in an Annular Spray Burner Session 2.C. CFD Techniques and Modeling (Room C) Chair: Debanjan Mukherjee 2.C.1 Alberto Olmo: Physics-Conforming Turbulent Flow Simulations Compression Approach 2.C.2 Graham Pash: Towards Uncertainty Propagation for Data-Driven Turbulence Closure Models 2.C.3 Kiran Eiden: Using Machine-Learned Manifolds to Simplify the State Spaces of Combustion Simulations
9:45am 10:00am 14 pl 10:00am 10:15am 15 st 10:15am 10:30am 10:30am 10:45am 24 pl 10:45am 11:00am 24 pl 11:00am 11:15am 27 pr 11:15am 11:30am 24 pr 11:45am 12:00pm 25 pr 11:45am 12:00pm 26 pr 11:45am 12:00pm 27 pr 11:15pm 1:15pm 1:15pm 1:15pm 1:15pm 2:00pm	LA.5 Aaron True: Distortion of passive scalar structure during suction-based plume sampling LA.6 Lars Larson: Experimental and numerical characterization of odor plume structure in the wake of a commercial odor-delivery device Session 2A: Geophysical Flows (Room A) Chair: Melissa Moulton 2A.1 Jaime Herriott: Small-Scale Variations in Ocean Acidity using a Large Eddy Simulation 2A.2 Laura Clark: Dispersion of non-spherical particles by waves and currents 2A.3 Malik Jordan: Tools For Analyzing And Reducing Ocean Biogeochemical And Transport Models 2A.4 Mary McGuinn: Interactions Between Physical Processes and Carbonate Chemistry in the Oceanic Mixed Layer	Interactions for Biomedical Flows 1B.5 Summer Andrews: Image Based In Silico Modeling of Transarterial Radioembolization for Liver Cancer 1B.6 Thomas Puhr: Designing a Benchtop Flow Loop for Investigating Particle Transport in Human Arterial Flows Morning Break Session 2B: Nonequilibrium Flows and Energy Systems (Room B) Chair: Brennan Sprinkle 2B.1 Filipe Henrique: Applying the Principles of Flow in Porous Media to Energy Storage Applications 2B.2 Eman Yahia: Lattice Boltzmann Simulations of Magnetohydrodynamic Flows Bounded by Electrically Conducting Walls 2B.3 Nathan Jarvey: Application of Boundary Layer Theory from Fluid Mechanics to Multicomponent Energy Storage Problems	the near-wake of bluff-body stabilized flames 1C.5 Tyler Souders: Pressure Gradient Tailoring Effects for Bluff-Body Stabilized Flames subjected to Freestream Turbulence 1C.6 Parneeth Lokini: Laser Ignition and Laser-Induced Breakdown Spectroscopy of a Hydrocarbon Flame in an Annular Spray Burner Session 2C: CFD Techniques and Modeling (Room C) Chair: Debanjan Mukherjee 2C.1 Alberto Olmo: Physics-Conforming Turbulent Flow Simulations Compression Approach 2C.2 Graham Pash: Towards Uncertainty Propagation for Data-Driven Turbulence Closure Models 2C.3 Kiran Eiden: Using Machine-Learned Manifolds to Simplify the State Spaces of Combustion Simulations
10:00am 10:15am 14 st 10:15am 10:30am 10:30am 10:45am 24 11:00am 11:15am 11:30am 11:15am 11:30am 11:45am 11:45am 12:00pm 24 11:00am 11:45am 11:45am 12:00pm 25 th 11:25pm 12:15pm 12:1	A.A. Lars Larson: Experimental and numerical characterization of odor plume structure in the wake of a commercial odor-delivery device Session 2A: Geophysical Flows (Room A) Chair: Melissa Moulton 2A.1 Jaime Herriott: Small-Scale Variations in Ocean Acidity using a Large Eddy Simulation 2A.2 Laura Clark: Dispersion of non-spherical particles by waves and currents 2A.3 Malik Jordan: Tools For Analyzing And Reducing Ocean Biogeochemical And Transport Models 2A.4 Mary McGuinn: Interactions Between Physical Processes and Carbonate Chemistry in the Oceanic Mixed Layer	Radioembolization for Liver Cancer 1B.6 Thomas Puhr: Designing a Benchtop Flow Loop for Investigating Particle Transport in Human Arterial Flows Morning Break Session 2B: Nonequilibrium Flows and Energy Systems (Room B) Chair: Brennan Sprinkle 2B.1 Filipe Henrique: Applying the Principles of Flow in Porous Media to Energy Storage Applications 2B.2 Eman Yahia: Lattice Boltzmann Simulations of Magnetohydrodynamic Flows Bounded by Electrically Conducting Walls 2B.3 Nathan Jarvey: Application of Boundary Layer Theory from Fluid Mechanics to Multicomponent Energy Storage Problems	Flames subjected to Freestream Turbulence 1C.6 Parneeth Lokini: Laser Ignition and Laser-Induced Breakdown Spectroscopy of a Hydrocarbon Flame in an Annular Spray Burner Session 2C: CFD Techniques and Modeling (Room C) Chair: Debanjan Mukherjee 2C.1 Alberto Olmo: Physics-Conforming Turbulent Flow Simulations Compression Approach 2C.2 Graham Pash: Towards Uncertainty Propagation for Data-Driven Turbulence Closure Models 2C.3 Kiran Eiden: Using Machine-Learned Manifolds to Simplify the State Spaces of Combustion Simulations
10:15am 10:30am 10:30am 10:30am 12:00pm 10:30am 10:45am 24:5ii 10:45am 11:00am 11:15am 11:30am 11:45am 11:45am 11:45am 12:00pm 24:th 12:00am 12:15pm 12:15pm 1:15pm 1:15pm 1:15pm 1:15pm 12:00pm 12:15pm 1:15pm 12:00pm 10:15pm 1:15pm 12:00pm 10:15pm 1:15pm 12:00pm 10:15pm	Session 2A: Geophysical Flows (Room A) Chair: Melissa Moulton 2A.1 Jaime Herriott: Small-Scale Variations in Ocean Acidity using a Large Eddy Simulation 2A.2 Laura Clark: Dispersion of non-spherical particles by waves and currents 2A.3 Malik Jordan: Tools For Analyzing And Reducing Ocean Biogeochemical And Transport Models 2A.4 Mary McGuinn: Interactions Between Physical Processes and Carbonate Chemistry in the Oceanic Mixed Layer	Transport in Human Arterial Flows Morning Break Session 2B: Nonequilibrium Flows and Energy Systems (Room B) Chair: Brennan Sprinkle 2B.1 Filipe Henrique: Applying the Principles of Flow in Porous Media to Energy Storage Applications 2B.2 Eman Yahia: Lattice Boltzmann Simulations of Magnetohydrodynamic Flows Bounded by Electrically Conducting Walls 2B.3 Nathan Jarvey: Application of Boundary Layer Theory from Fluid Mechanics to Multicomponent Energy Storage Problems	of a Hydrocarbon Flame in an Annular Spray Burner Session 2C: CFD Techniques and Modeling (Room C) Chair: Debanjan Mukherjee 2C.1 Alberto Olmo: Physics-Conforming Turbulent Flow Simulations Compression Approach 2C.2 Graham Pash: Towards Uncertainty Propagation for Data-Driven Turbulence Closure Models 2C.3 Kiran Eiden: Using Machine-Learned Manifolds to Simplify the State Spaces of Combustion Simulations
10:30am 12:00pm 10:30am 10:45am 10:45am 24 5ii 24 11:00am 11:15am 11:15am 11:30am 11:30am 11:45am 11:45am 12:00pm 12:00am 12:15pm 12:15pm 1:15pm 1:15pm 2:00pm	Chair: Melissa Moulton 2A.1 Jaime Herriott: Small-Scale Variations in Ocean Acidity using a Large Eddy Simulation 2A.2 Laura Clark: Dispersion of non-spherical particles by waves and currents 2A.3 Malik Jordan: Tools For Analyzing And Reducing Ocean Biogeochemical And Transport Models 2A.4 Mary McGuinn: Interactions Between Physical Processes and Carbonate Chemistry in the Oceanic Mixed Layer	Session 2B: Nonequilibrium Flows and Energy Systems (Room B) Chair: Brennan Sprinkle 2B.1 Filipe Henrique: Applying the Principles of Flow in Porous Media to Energy Storage Applications 2B.2 Eman Yahia: Lattice Boltzmann Simulations of Magnetohydrodynamic Flows Bounded by Electrically Conducting Walls 2B.3 Nathan Jarvey: Application of Boundary Layer Theory from Fluid Mechanics to Multicomponent Energy Storage Problems	Chair: Debanjan Mukherjee 2C.1 Alberto Olmo: Physics-Conforming Turbulent Flow Simulations Compression Approach 2C.2 Graham Pash: Towards Uncertainty Propagation for Data-Driven Turbulence Closure Models 2C.3 Kiran Eiden: Using Machine-Learned Manifolds to Simplify the State Spaces of Combustion Simulations
10:30am 10:45am Sii 10:45am 11:00am 24 11:00am 11:15am 7 11:15am 11:30am 24 11:30am 11:45am 11:30am 11:45am 12:00pm 24 11:200am 12:15pm 12:15pm 1:15pm 1:15pm 2:00pm	Chair: Melissa Moulton 2A.1 Jaime Herriott: Small-Scale Variations in Ocean Acidity using a Large Eddy Simulation 2A.2 Laura Clark: Dispersion of non-spherical particles by waves and currents 2A.3 Malik Jordan: Tools For Analyzing And Reducing Ocean Biogeochemical And Transport Models 2A.4 Mary McGuinn: Interactions Between Physical Processes and Carbonate Chemistry in the Oceanic Mixed Layer	Chair: Brennan Sprinkle 2B.1 Filipe Henrique: Applying the Principles of Flow in Porous Media to Energy Storage Applications 2B.2 Eman Yahia: Lattice Boltzmann Simulations of Magnetohydrodynamic Flows Bounded by Electrically Conducting Walls 2B.3 Nathan Jarvey: Application of Boundary Layer Theory from Fluid Mechanics to Multicomponent Energy Storage Problems	Chair: Debanjan Mukherjee 2C.1 Alberto Olmo: Physics-Conforming Turbulent Flow Simulations Compression Approach 2C.2 Graham Pash: Towards Uncertainty Propagation for Data-Driven Turbulence Closure Models 2C.3 Kiran Eiden: Using Machine-Learned Manifolds to Simplify the State Spaces of Combustion Simulations
10:30am 10:45am Sil 10:45am 11:00am 2# 11:00am 11:15am 2# 11:15am 11:30am 2# 11:30am 11:45am 3# 11:45am 12:00pm 2# 11:200am 12:15pm 12:15pm 1:15pm 1:15pm 2:00pm	Simulation 2A.2 Laura Clark: Dispersion of non-spherical particles by waves and currents 2A.3 Malik Jordan: Tools For Analyzing And Reducing Ocean Biogeochemical And Transport Models 2A.4 Mary McGuinn: Interactions Between Physical Processes and Carbonate Chemistry in the Oceanic Mixed Layer	Storage Applications 2B.2 Eman Yahia: Lattice Boltzmann Simulations of Magnetohydrodynamic Flows Bounded by Electrically Conducting Walls 2B.3 Nathan Jarvey: Application of Boundary Layer Theory from Fluid Mechanics to Multicomponent Energy Storage Problems	Approach 2C.2 Graham Pash: Towards Uncertainty Propagation for Data-Driven Turbulence Closure Models 2C.3 Kiran Eiden: Using Machine-Learned Manifolds to Simplify the State Spaces of Combustion Simulations
11:00am 11:15am 24 11:15am 11:30am 26 11:30am 11:45am 8i 11:45am 12:00pm 24 th 12:00am 12:15pm 1:15pm 1:15pm 2:00pm	2A.3 Malik Jordan: Tools For Analyzing And Reducing Ocean Biogeochemical And Transport Models 2A.4 Mary McGuinn: Interactions Between Physical Processes and Carbonate Chemistry in the Oceanic Mixed Layer	Bounded by Electrically Conducting Walls 2B.3 Nathan Jarvey: Application of Boundary Layer Theory from Fluid Mechanics to Multicomponent Energy Storage Problems	Closure Models 2C.3 Kiran Eiden: Using Machine-Learned Manifolds to Simplify the State Spaces of Combustion Simulations
11:15am 11:30am 24 11:15am 11:30am 24 11:30am 11:45am 24 11:45am 12:00pm 24 th 12:00am 12:15pm 1:15pm 1:15pm 2:00pm	Transport Models 2A.4 Mary McGuinn: Interactions Between Physical Processes and Carbonate Chemistry in the Oceanic Mixed Layer	to Multicomponent Energy Storage Problems	of Combustion Simulations
11:30am 11:30am ch 11:30am 11:45am 21 11:45am 12:00pm 22 12:00am 12:15pm 1:15pm 1:15pm 2:00pm	Chemistry in the Oceanic Mixed Layer	2B 4 Thomas Kaya: Numerical Simulation of Plasma Fueled Engines	· · · · · · · · · · · · · · · · · · ·
11:45am 12:00pm 24 th 12:00am 12:15pm 1:15pm 1:15pm 2:00pm		-	2C.4 Riccardo Balin: Online learning of turbulence closure model at scale
11:45am 12:00pm th 12:00am 12:15pm 12:15pm 1:15pm 2:00pm	2A.5 Skyler Kern: Automatic Parameter Estimation Study for a Coupled Biophysical Ocean Model	2B.5 Amin Taziny: A multi-scale framework to model the fluid dynamics of electrospray thrusters	2C.5 Tahani Alsadik: multiphase pseudopotential Lattice Boltzmann Model using multiple relaxation times for phase change problem
12:15pm 1:15pm 1:15pm 2:00pm	2A.6 Federico Municchi: Harnessing buoyancy-driven instability to enhance thermal membrane desalination	2B.6 Reece Churchill: The Research and Motor Octane Numbers of Liquified Petroleum Gas (LPG) and Dimethyl Ether (rDME) blends	
1:15pm 2:00pm		Morning Break II	
	Keynote Presentation (AERO 120): "The Force Partiti	ioning Method: A Data-Enabled Method for Dissecting Vortex Dominat	ted Flows", Dr. Rajat Mittal, Johns Hopkins University
2:00pm 3:00pm		Lunch: Offered in AERO 120	
	Diversity	Panel (AERO 120): Hosted by The Committee for Equity in Mechanical E	ngineering
3:00pm 3:15pm		Afternoon Break	
3:15pm 4:45pm	Session 3A: Multiphase Flows (Room A) Chair: Michael Calvisi		Session 3C: Turbulent Flows (Room C) Chair: Ryan King
3.12pm 3.30pm	3A.1 Ashish Srivastava: Experimental and Computational Analyses of Drop Motion in Straight Microchannels		3C.1 Diederik Beckers: Discretization error analysis of convective schemes for large eddy simulations with adaptive mesh refinement
3'3Unm 3'45nm	BA.2 Gesse Roure: Numerical Investigation of Deformable Droplets in Complex Microchannels		3C.2 Da Yang: Performance characterization of a laminar aircraft gas-inlet
3:45pm 4:00pm th	BA.3 Morteza Garousi: Numerical Modeling of Encapsulated Microbubbles Using the Lattice Boltzmann Method		3C.3 Nils Wunsch: Simulation of turbulent incompressible flows using immersogeometric analysis
4:00pm 4:15pm m	BA.4 William Schupbach: Central moment lattice Boltzmann methods for multiphase flows driven by variable surface tension effects using high		3C.4 Samantha Sheppard : Experimental exploration of 3D attached eddy structures in the surface layer.
4:15pm 4:30pm se	BA.5 Arkava Ganguly: A theoretical framework to understand diffusiophoretic self-propulsion of slender bent rods		3C.5 Thomas Calascione: Swirl Generation in Turbulent Jets: A Literature Review
4:30pm 4:45pm So			
5:00pm 8:00pm	BA.6 Ritu Raj: Colloidal Banding of Diffusiophoretic Particles in Two-Dimensional Solute Gradients		