1. Example Section

Theorem 1.1. There are infinitely many primes

Proof. Suppose that $p_1 < p_2 < \cdots < p_n$ are all of the primes. Let $P = 1 + \prod_{i=1}^{n} p_i$ and let p be a prime dividing P.

Then p can not be any of p_i , for otherwise p would divide the difference $P - (\prod_{i=1}^n p_i) - 1$, which is impossible. So this prime p is still another prime, and $p_1, p_2, \ldots p_n$ cannot be all of the primes. \square

Exercise 1.2. Give an alternative proof that there are an infinite number of prime numbers.

To solve this exercise, we first introduce the following lemma.

Lemma 1.3. The Fermat numbers $F_n = 2^{2^n} + 1$ are pairwise relatively prime.

Proof. It is easy to show by induction that

$$F_m - 2 = F_0 F_1 \dots F_{m-1}.$$

This means that if d divides both F_n and F_m (with n < m), then d also divides $F_m - 2$. Hence, d divides 2. But every Fermat number is odd, so d is necessarily one. This proves the lemma.

We can now provide a solution to the exercise.

Theorem 1.4. There are infinitely many prime numbers (Goldbach's proof)

Proof. Choose a prime divisor p_n of each Fermat number F_n . By the lemma we know these primes are all distinct, showing there are infinitely many primes.

2. LateX examples

python latex2markdown.py latex.tex markdown.md
cat latex.tex | python latex2markdown.py > markdown.md

- (1) Example list item
- (2) Another list item