# Organizing Web Information CS 728

Soumen Chakrabarti IIT Bombay

http://www.cse.iitb.ac.in/~soumen/

## Named entity disambiguation

#### Entity linking — working definition and motivation

- ► From coarse NER to fine types to specific entities with canonical IDs in knowledge graph (KG), e.g.,
  - http://en.wikipedia.org/wiki/Michael\_Jordan or http://en.wikipedia.org/wiki/Michael\_I.\_Jordan
- Many choices of KGs: Wikipedia, WikiData, Freebase, Google KG, Bing Satori, . . .
- An entity can have many aliases: Michael Jordan, Mike, Jordan
- Conversely, Jordan can refer to river, country, and lots of people
- A passage may mention<sup>6</sup> an entity; around the mention m is a context c from which we can observe context features
- ▶ If the mention string matches an alias of an entity *e*, the entity becomes a candidate
- $ightharpoonup \Gamma(m)$  is the set of all candidates of mention m

# Entity linking — working definition and motivation (2)

- For each mention, the goal is to choose one or zero (out-of-KG, reject, null, ⊥, NA) candidate
- ► Each mention is a multiclass, single-label classification problem, but they are inter-related



▶ Entity label at mention  $m_i$  is  $y_i$ ; gold label is  $y_i^*$ 

# Entity linking — working definition and motivation (3)

- Motivation: complex query responses involving joins
  - Company ?c in Korea makes phone ?p under \$400 with OLED display instantiate all possible ⟨?c,?p⟩
  - ► Need to recognize ?c, ?p as (single) company and phone in different contexts provide evidence for subqueries

<sup>&</sup>lt;sup>6</sup>Detecting mention boundaries is difficult [10] but is outside our scope.

#### Some distinctions from WSD

- Word sense disambiguation (WSD) is largely about common words, not references to specific entities
  - ▶ 42 senses of "run" in WordNet
  - Part of speech helps a fair bit
  - Identifying mention boundary is easy
- Entity catalog typically richer info source than dictionary
  - Broader category system
  - Part of speech is largely "proper noun" and not as helpful
- Entity disambiguation goals:
  - Identify that a sequence of tokens is a potential mention
  - Capture suitable context around to form spot s
  - Assign s to a suitable entity  $\gamma$  in catalog
  - lacktriangle Or claim that there is no suitable  $\gamma$

## Why annotate?

- Make raw text look like Wikipedia with definitional and informational links (most systems)
  - Annotate first occurrence only
  - Annotate only on-topic entities
  - Use discretion to avoid "hyperlink fatigue"
- ▶ Index the annotations to enable advanced search (our focus)
  - Exhaustive annotation
  - Make no whole-document topic judgment

#### More about catalog representation

- Pattern after WordNet, Wikipedia, Freebase, . . .
- lacktriangle Each entity  $\gamma$  has associated description or definition page
- ightharpoonup Descriptions link to other related entities  $\gamma'$
- ► Entities belong to one or more categories
- Categories (physicist) are subcategories of others (scientist)
- Links may be "incidental"
- Categories and super-categories may be noisy: Machine learning researcher more meaningful than Living people or Year of birth missing
- Cycles in is-a "hierarchy"?

# Local signals to choose e from $\Gamma(m)$

- Match between context and entity
- Entity representations
  - Text on definition pages in Wikipedia
  - Text from gold mention contexts
  - Types that contain the entity
- Between context and types containing entity [11]
- ▶ Between page topic/s and entity type/s [12]



# Integrating local and global signals [13, 12]



- ► Some entity pairs are more coherent than others
- Coherence may be measured in different ways
- Choose per-mention entity labels to maximize pairwise coherence as well as local compatibility
- ▶ Intractable in general; heuristic approximations common

# SemTag [14]

- Used Stanford TAP ontology (72,000 entities)
- Set of classes C, subclass relation  $S \subseteq C \times C$ , set of instances (entities) I, many-to-many type relation  $T \subseteq I \times C$
- lacktriangleq i has class  $c_1$  and  $c_1$  subclass of  $c_2$  implies i has class  $c_2$
- Entity taxonomy is a DAG,  $\pi(v)$  is the path up from v to root node r
- ▶ Taxonomy node v has label set L(v), e.g., nodes corresponding to cats, football, computers and cars all contain the label 'jaguar'

#### SemTag output example

The <resource ref="http://tap.stanford.edu/BasketballTeam\_Bulls">Chicago Bulls</resource> announced yesterday that <resource ref="http://tap.stanford.edu/AthleteJordan,\_Michael">Michael Jordan</resource> will ...

- Functionally identical to inserting Wikipedia links in free-form text
- Wikipedia is more organic than TAP; has poorer quality category hierarchy

#### SemTag disambiguation

- $\mathbf{sim}(u,s) \in [0,1]$  is a local similarity between catalog node u and (context of) spot s
- $ightharpoonup \sin(\cdot,\cdot)=rac{1}{2}$  is "most uncertain"
- lacktriangle Node v is eligible for spot s if

$$\mathsf{root}\ r \neq \arg\max_{u \in \pi(v)} \sin(u, s)$$

i.e., some node on  $\pi(v)$  other than root most similar to s

- Supplement eligibility with human-judged scores of reliability at each node u
  - $ightharpoonup m_u^a = ext{probability that spots for subtree rooted at } u ext{ are "on topic"}$
  - $lackbox{ } m_u^s = {
    m probability} {
    m \ that \ automatic \ eligibility \ judgment \ is \ correct$

#### SemTag TBD algorithm

- lacktriangle To decide whether to link spot s to node v . . .
- ► Find nearest ancestor *u* of *v* that has human-judged reliability scores
- ▶ If  $|\frac{1}{2} m_u^a| > |\frac{1}{2} m_u^s|$ , return  $\mathrm{sign}(m_u^a \frac{1}{2})$
- Else if  $m_u^s > \frac{1}{2}$  (eligibility judgment is often correct), return eligible(c,u)
- ▶ Else (eligibility judgment is often wrong) return 1 eligible(c, u)

(Can regard as a simple hand-tuned form of stacked learning)

# Wikify! [15]



- Two-phase process
- First identify token spans "worthy of annotation"
- ► Then choose entity labels

#### Sample annotations

In 1834, Sumner was admitted to the [[bar (law)|bar]] at the age of twenty-thre, and entered private practice in Boston.

It is danced in 3/4 time (like most waltzes), with the couple turning approx. 180 degrees every [[bar (music)|bar]].

Vehicles of this type may contain expensive audio players, televisions, video players, and [[bar (counter)|bar]]s, often with refrigerators.

Jenga is a popular beer in the [[bar (establishment)|bar]]s of Thailand

This is a disturbance on the water surface of a river or estuary, often cause by the presence of a [[bar (landform)|bar]] or dune on the riverbed.

# Choosing token spans to annotate ("spotting")

- Wikify! follows the Wikipedia philosophy
- Use some score to rank candidate spans
- TFIDF of a token in a document

  count of token | count of all other

  tokens in doc

  count of token | count of all other

  in other docs | count of all other

  tokens in other docs
- "Keyphraseness" In how many Wikipedia documents is the same term made a link anchor?
- (They only consider as candidates words which appear at least five times in Wikipedia)

#### Disambiguation

Wikify! compares two local techniques:

- $\,\blacktriangleright\,$  "Knowledge-based approach" similarity between Wikipedia page text of entity  $\gamma$  and context words in spot s
- $\,\blacktriangleright\,$  "Data-driven approach" similarity between context of known links to  $\gamma$  and context words in spot s
- ightharpoonup "Context" consists of  $\pm 3$  words around mention, their parts of speech, salient words chosen from whole document

#### Results

- "Data-driven" better than "knowledge-based"
- ► Consensus (agreement) has highest precision

| -                      | Words                             |           | Evaluation |       | n     |  |
|------------------------|-----------------------------------|-----------|------------|-------|-------|--|
| Method                 | (A)                               | (C)       | (P)        | (R)   | (F)   |  |
|                        | Baselines                         |           |            |       |       |  |
| Random baseline        | 6,517                             | 4,161     | 63.84      | 56.90 | 60.17 |  |
| Most frequent sense    | 6,517                             | 5,672     | 87.03      | 77.57 | 82.02 |  |
|                        | Word sense disambiguation methods |           |            |       |       |  |
| Knowledge-based        | 6,517                             | $5,\!255$ | 80.63      | 71.86 | 75.99 |  |
| Feature-based learning | $6,\!517$                         | 6,055     | 92.91      | 83.10 | 87.73 |  |
| Combined               | 5,433                             | 5,125     | 94.33      | 70.51 | 80.69 |  |



## Modeling local compatibility

- ▶ Feature vector  $f_s(\gamma) \in \mathbb{R}^d$  expresses local textual compatibility between (context of) spot s and candidate label  $\gamma$
- ▶ One element of  $f_s(\gamma)$  might be the TFIDF cosine similarity between tokens from the context of spot s (say  $\pm 10$  tokens) and whole page of description for entity  $\gamma$
- ► Another element may be derived of "anchor text" match:
  - ightharpoonup Find all links to  $\gamma$  from within Wikipedia
  - Collect anchor text from all these links in a bag of words
  - lackbox Find TFIDF cosine similarity between this bag and the spot context s

#### The sense probability prior

- What entity does "Intel" refer to?
  - Chip design and manufacturing company
  - Fictional cartel in a 1961 BBC TV serial
- $ightharpoonup \Pr_0(\gamma|s)$  is very high for chip maker, low for cartel
- ▶ Append element  $\log \Pr_0(\gamma|s)$  to  $f_s(\gamma)$
- "log" will be explained later

#### Node score

- ▶ Node scoring model  $w \in \mathbb{R}^d$
- ▶ Node score defined as  $w^{\top}f_s(\gamma)$
- lacktriangleright w is trained to give suitable relative weights to different compatibility measures and aggregate the evidence
- ▶ During test time, greedy choice local to s would be  $\arg\max_{\gamma\in\Gamma_s} w^\top f_s(\gamma)$
- Early algorithms are variations on this theme

## Effect of learning single-mention scores



- ► Learning w is better than commonly-used single features
- Enough to beat some collective approaches (soon)

## Limitations of $sim(\gamma, s)$

- Training data is sparse
- $\blacktriangleright$  Direct overlap of words between description of entity  $\gamma$  and context of spot s may be limited
- $\blacktriangleright$  But overlap between ancestors of  $\gamma$  and context of s may be more reliable

## Word-category correlations



## Designing tree kernels

- Let  $C(\gamma)$  be all ancestor categories of entity  $\gamma$
- Let T(s) be the text in the context of spot s
- ightharpoonup For every word w and every all categories c, define a feature

$$\phi_{w,c}(s,\gamma) = \begin{cases} 1 & \text{if } w \in T(s) \text{ and } c \in C(\gamma) \\ 0 & \text{otherwise} \end{cases}$$

- ▶ Run through all possible w, c, e.g., ("conducted", musician), ("concert", wrestler)
- ▶ Pad  $(\phi_{w,c})$  with local compatibility features
- $\blacktriangleright$  Finally, get feature vector  $\Phi(s,\gamma)$

#### Learning

- Model as classification: correct/incorrect  $(s,\gamma)$  pair should be labeled +1/-1 respectively
- ▶ Similar to sequence labeling:  $\arg\max_{\gamma} w^{\top}\Phi(s,\gamma)$ ; same max-margin training
- What about spots that do not have any suitable entity in the catalog?
- Out-of-catalog entity  $\hat{\gamma}$ , with  $C(\hat{\gamma}) = \emptyset$  and  $T(\hat{\gamma}) = \emptyset$
- ▶ One last feature element  $\phi_{\hat{\ }}(s,\gamma) = \llbracket \gamma = \hat{\gamma} \rrbracket$
- $\blacktriangleright$  Equivalent to automatically learning a (lower) threshold on  $w^\top \Phi(s,\gamma)$

#### Tree kernel results

| Data set                                  | TreeKernel | TextOnly |
|-------------------------------------------|------------|----------|
| People by occupation, top 110             | 0.772      | 0.615    |
| Ditto, all 540                            | 0.684      | 0.558    |
| Ditto, categories with $\geq 20$ entities | 0.680      | 0.554    |

▶ Summary: tree kernel better than comparing only text

## Modeling entity relatedness from catalog

- Some entity pairs are more compatible than others
- Better to choose per-mention entity labels to maximize pairwise compatibility
- Compatibility may have different notions
- ► Entities belong to related types, e.g., soccer coaches, clubs, players [13, 12]
- Frequently co-cited from Web/Wikipedia pages [16]
- ▶ Entities connected by short path in knowledge graph [17]
- (Similarity between vector embeddings of entities based on corpus mentions — soon)
- ▶ How related are two entities  $\gamma, \gamma'$  in Wikipedia?
- ▶ Embed  $\gamma$  in some space using  $g: \Gamma \to \mathbb{R}^c$
- ▶ Define relatedness  $r(\gamma, \gamma') = g(\gamma) \cdot g(\gamma')$  or related

# Modeling entity relatedness from catalog (2)

 $\blacktriangleright$  Cucerzan's proposal: c= number of categories;  $g(\gamma)[\tau]=1$  if  $\gamma$  belongs to category  $\tau,~0$  otherwise

$$r(\gamma, \gamma') = \frac{g(\gamma)^{\top} g(\gamma')}{\sqrt{g(\gamma)^{\top} g(\gamma)}} \sqrt{g(\gamma')^{\top} g(\gamma')},$$

(standard cosine)

Milne and Witten's proposal: c= number of Wikipedia pages;  $g(\gamma)[p]=1$  if page p links to page  $\gamma$ , 0 otherwise

$$r(\gamma, \gamma') = \frac{\log \frac{|g(\gamma) \cap g(\gamma')|}{|g(\gamma) \cup g(\gamma')|}}{\log \frac{c}{\min\{|g(\gamma)|, |g(\gamma')|\}}}$$

- Related to Jaccard
- ► With voice of small inlink sets attenuated
- ► Combination of above [18]

#### A joint local+global objective

- Notation: mentions written variously as  $m_i, s_i$ ;  $s_i$  includes  $m_i$  and features from context  $c_i$
- Entity labels written variously as  $\gamma_i, y_i, e_i$
- igle  $\Psi(e_i,m_i,c_i)$  is the local score of entity  $e_i$  for mention  $m_i$  with context  $c_i$
- $lackbox{}{\Phi}(e_i,e_j)$  is the pairwise coherence between the entities chosen for mentions i,j
- For whole document, let e, m, c be the sequence of n entity labels, mentions, and contexts
- Overall objective is to maximize wrt e

$$g(\boldsymbol{e}, \boldsymbol{m}, \boldsymbol{c}) = \underbrace{\frac{1}{n} \sum_{i} \Psi(e_i, m_i, c_i)}_{\text{local}} + \underbrace{\frac{1}{\binom{n}{2}} \sum_{i \neq j} \Phi(e_i, e_j)}_{\text{global}}$$

# A joint local+global objective (2)

- ► (Conditional) probabilistic graphical model with complete graph
- Aka the quadratic assignment problem
- Difficult NP-hard problem
- ▶ Heuristics: leave-one-out [19], easy-mention-first [16], hill-climbing [13, 20], LP relaxation [13], multifocal attention [21]

# Leave-one-out disambiguation [19]

- Let  $\Gamma_0 = \bigcup_i \Gamma(m_i)$  be all possible entity disambiguations for all mentions on a page
- Precompute the average entity representation vector  $g(\Gamma_0) = \sum_{\gamma \in \Gamma_0} g(\gamma)$
- $\blacktriangleright$  Score of candidate label  $\gamma$  for spot s depends on two factors multiplied together
- The local compatibility score as before
- $g(\gamma)^{\top} g(\Gamma_0 \setminus \{\gamma\}) = g(\gamma)^{\top} \sum_{\gamma' \in \Gamma_0 \setminus \gamma} g(\gamma')$
- Note that  $\Gamma_0 \setminus \gamma$  still contains contributions from entities that cannot be used simultaneously to label the page
- $g(\Gamma_0 \setminus \gamma)$  may not be a representative feature vector

#### Commonness, usefulness, relatedness

| Depth-first search                                                          |          |                       |            |             |
|-----------------------------------------------------------------------------|----------|-----------------------|------------|-------------|
| From Wikipedia, the free encyclopedia                                       | 1,       | sense                 | commonness | relatedness |
|                                                                             | <i>y</i> | Tree                  | 92.82%     | 15.97%      |
| Depth-first search (DFS) is an algorithm for traversing or searching a tree |          | Tree (graph theory)   | 2.94%      | 59.91%      |
| tree structure or graph. One starts at the root (selecting some node as the | N        | Tree (data structure) | 2.57%      | 63.26%      |
| root in the graph case) and explores as far as possible along each branch   |          | Tree (set theory)     | 0.15%      | 34.04%      |
| before backtracking.                                                        |          | Phylogenetic tree     | 0.07%      | 20.33%      |
| Formally, DFS is an uninformed search that progresses by expanding the      |          | Christmas tree        | 0.07%      | 0.0%        |
| first child node of the search tree that appears and thus going deeper and  |          | Binary tree           | 0.04%      | 62,43%      |
| deeper until a goal node is found, or until it hits a node that has no      |          | Family tree           | 0.04%      | 16.31%      |
| children. Then the search backtracks, returning to the most recent node it  |          | ,                     | 0.0170     | 10.0170     |
| hadn't finished exploring. In a non-recursive implementation, all freshly   |          |                       |            |             |
| expanded nodes are added to a LIFO stack for exploration.                   |          |                       |            |             |

- "Tree" has many senses, common and rare
- But a low probability sense may be the correct one, based on relatedness to unambiguous anchor entities mentioned near "tree"
- ▶ Not all anchors equally useful: "until" vs. "LIFO"

## Milne and Witten's recipe

- lacktriangle Identify unambiguous spots  $S_!$  from all spots  $S_0$
- ▶ Denote  $\Gamma_! = \bigcup_{s \in S_!} \Gamma_s$ , note that  $\Gamma_! \stackrel{1:1}{\longleftrightarrow} S_!$
- Ambiguous spot  $s \mapsto \Gamma_s$ , have to pick  $\gamma \in \Gamma_s$
- Each candidate  $\gamma$  is scored based on three signals Commonness of  $\gamma$ , i.e., sense probability prior  $\Pr_0(\gamma|s)$  Average relatedness to anchor entities  $\gamma_!$ , weighted by the usefulness  $u(\gamma_!)$  of  $\gamma_!$

$$\frac{\sum_{\gamma_! \in \Gamma_! \backslash \gamma} u(\gamma_!) r(\gamma, \gamma_!)}{\sum_{\gamma_! \in \Gamma_! \backslash \gamma} u(\gamma_!)}$$
 where  $u(\gamma) = \sum_{\gamma'' \in \Gamma_! \backslash \gamma'} r(\gamma', \gamma'')$ 

Overall context quality for the spot,  $\sum_{\gamma_1} u(\gamma_1)$ 

# Milne and Witten's recipe (2)

- ► These three signals are presented as features to a classifier (bagged decision tree worked best)
- ightharpoonup The label is whether  $\gamma$  is correct for s

#### M&W results

|                        | recall | precision | f-measure |
|------------------------|--------|-----------|-----------|
| Random sense           | 56.4   | 50.2      | 53.1      |
| Most common sense      | 92.2   | 89.3      | 90.7      |
| Medelyan et al. (2008) | 92.3   | 93.3      | 92.9      |
| Most valid sense       | 95.7   | 98.4      | 97.1      |
| All valid senses       | 96.6   | 97.0      | 96.8      |

- Random sense gives precision over  $\frac{1}{2}$ , only around two senses per spot
- ► Recall is as per (reticent) Wikipedia annotation policy

| correct                                 | 76.4 |
|-----------------------------------------|------|
| incorrect (wrong destination)           | 0.9  |
| incorrect (irrelevant and/or unhelpful) | 19.8 |
| incorrect (unknown reason)              | 2.9  |

# Hill-climbing [20]

- Two stages, ranker followed by linker
- ► Ranker obtains best non-null label for each mention
- Linker decides whether to replace best label with NA

```
for each mention m_i do construct disambiguation candidates \Gamma_i run ranker to get best non-null disambiguation y_i for mentions m_i in some arbitrary order do
```

if changing  $y_i$  to null improves collective objective then commit to change

More details

#### Integer program

- Let i index mentions and e index candidate entities
- ▶ Decision variable  $z_{ie} \in \{0,1\}$  is 1 if mention i gets label e and 0 otherwise
- ▶ For each mention i,  $\sum_{e \in \Gamma_i} z_{ie} \le 1$  (zero or one label per mention from among candidates)
- lacktriangle Local node log-potential for mention i is  $\phi_i(e)$
- ▶ Local objective is  $\sum_i \sum_e \phi_i(e) z_{ie}$
- Auxiliary decision variables  $p_{i,e,i',e'} \in \{0,1\}$  for all mention and label pairs
- ▶ Constraints for all i, e, i', e',  $p_{i,e,i',e'} \leq z_{ie}$  and  $p_{i,e,i',e'} \leq z_{i'e'}$
- ▶ Global objective is  $\sum_{i,e,i',e'} p_{i,e,i',e'} \psi_{ii'}(e,e')$
- ▶ Relax to  $z_{i,e}, p_{i,e,i',e'} \in [0,1]$  (not a nice relaxation, cannot round to provably good discrete solutions)

## Benefits of collective labeling

- ► Two different data sets (Web, newswire)
- ► Can significantly push recall while preserving precision
- ▶ Improves upon Milne&Witten [16], Cucerzan [19]



## Multifocal attention [21]

- lacktriangle Consider again the all-pairs global term  $\sum_{i 
  eq j} \Phi(e_i, e_j)$
- ▶ Entities in doc may not all be in one type cluster; e.g.,  $e_i$  may be a politician and  $e_i$  a real-estate baron
- ▶ KG may not know of common type-to-type relations, e.g., cricketers and business tycoons, or politicians and real estate barons
- Less salient entity  $e_i$  may not find enough  $\Phi$  support from all other entities  $e_j$
- Asserting all-pairs potentials across coherent clusters needlessly adds noise floor to objective
- Discussed by Kulkarni et al. [13] but not addressed

#### Single link baseline

► As an extreme simplication of the clique potential, for each mention, find one best supporter

$$g_{\mathsf{SL}}(\boldsymbol{y}) = \prod_{i} s_i(y_i) \Big[ \max_{j} s_{ij}(y_i, y_j) \Big]$$

- y is the vector of entity labels assigned to all mentions in a document
- $ightharpoonup s_i(y_i)$  is the local score for entity label  $y_i$  for mention/spot i
- MAP inference is still intractable
  - ▶ If *j* is the best supporter of *i*, is *i* necessarily the best supporter of *j*?
- Approximate by message passing (loopy belief propagation) on factor graph
- ightharpoonup Factor  $a_i$  for each mention i

# Single link baseline (2)

- Each factor connects to all (mention) nodes, but best supporter makes message passing practical
- Message from  $a_k$  to mention i is

$$n_{a_k \to i}(y_i) = \max_{\boldsymbol{y}_{\backslash i}} \left[ \psi_k(y_i, \boldsymbol{y}_{\backslash i}) \prod_{j \neq i} m_{j \to a_k}(y_j) \right]$$

lacktriangle Belief in  $oldsymbol{y}$  based on incoming messages from all factors

### Relaxing to a star model

- Give up global consistency for tractability
- In turn, make each mention center of a star
- Assign label to each spoke separately to maximize support for hub
- Support for label  $y_i$  from mention j is  $q_{ij}(y_i) = \max_{y_j} [s_{ij}(y_i, y_j) + s_j(y_j)]$
- Score function for mention i is  $f_i(y_i) = s_i(y_i) + \sum_{\substack{\text{all } j \neq i}} q_{ij}(y_i)$
- lacktriangle Predict  $y_i$  by maximizing above score
- Next step: replace all  $j \neq i$  with something more robust
- In what follows, let  $\mathbf{q}_i(y_i) = \langle q_{i1}(y_i), \dots, q_{in}(y_i) \rangle$  be the sequence of support from other mentions to mention i





#### You need only six good friends

- Star model with top-K supporters:
  - When choosing  $e_i$ , set other  $e_j$  to get the best top-K supporters  $e_j$ , rather than all n-1
  - Later, when setting  $e_j$ , do not constrain  $e_i$  to be the label earlier chosen
- ▶ Best support for label  $e_i$  from mention j is  $q_{ij}(e_i) = \max_{e_j} \left[ \Psi(e_j) + \Phi(e_i, e_j) \right]$
- Star model with all n-1 supporters amounts to overall score  $f_i(e_i) = \Psi(e_i) + \sum_{j \neq i} q_{ij}(e_i)$
- ▶ Let  $q_i(e_i) = \langle q_{i1}(e_i), \dots, q_{in}(e_i) \rangle$  be the sequence of supports from other mentions to mention i
- ▶ Given support sequence q, let  $amx_K(q)$  be the sum of the largest K elements of q
- Redefine score function for ith mention as  $f_i(e_i) = \Psi(e_i) + \max_{K} (\boldsymbol{q}_i(e_i))$

# You need only six good friends (2)



- ightharpoonup Plot accuracy against K
- Single supporter too little to go by
- ▶ All n-1 supporters too much to ask for
- ightharpoonup Clear peak at K=6
- lacksquare K supporters get full backprop, others get none
- ightharpoonup From K-max to soft-K-max

#### Multifocal last step: from max to soft-max

- Find maximum element in non-negative vector q is equivalent to  $\max_{u \in \Delta} u \cdot q$
- $ightharpoonup \Delta$  is the unit simplex
- ightharpoonup u will concentrate on one corner of  $\Delta$
- ► Anneal with entropy:  $\max_{u \in \Delta} u \cdot q + H(u)/\beta$
- Easy to see solution as  $u_i \propto \exp(\beta q_i)$
- ▶ In other words, adding entropic annealing to max gives us soft-max
- In standard multiclass classification, benefit of soft-max is continuous differentiability
- Can backprop to downstream model components

#### Soft multifocal attention

- lacktriangledown Recall  $m{q} = \langle q_{i1}(y_i), \dots, q_{in}(y_i) \rangle$  is the vector of supports for  $y_i$
- ► Add entropy term to **amx** to get **smx**:

$$\operatorname{smx}_K(q) = \max_{u \in \Delta_K} \left[ q \cdot u - \frac{1}{\beta} \sum_i u_i \log u_i \right]$$

- ▶ Here  $\Delta_K$  is the K-simplex:  $u \geq \vec{0}$  and  $||u||_1 = K$
- ightharpoonup smx $_K$  can be computed easily and is differentiable
- Apply to fine typing and other applications where softmax gives excessively skewed attention



#### Soft multifocal attention

- Note  $\operatorname{amx}_K(\boldsymbol{q}) = \max_{\vec{0} \leq \boldsymbol{z} \leq \vec{1}} \boldsymbol{z} \cdot \boldsymbol{q}$  s.t.  $\sum_j z_j = K$
- Replace  $\operatorname{amx}_K$  with soft K-max  $\operatorname{smx}_K(\boldsymbol{q}) = \operatorname{max}_{\vec{0} \leq \boldsymbol{z} \leq \vec{1}} \boldsymbol{z} \cdot \boldsymbol{q} \sum_j z_j \log z_j$  s.t.  $\sum_j z_j = K$
- Generalizes softmax
- lacktriangle Used to train model weights inside  $\Psi,\Phi$

| System         | Alias-entity map | Accuracy% |
|----------------|------------------|-----------|
| Lazic+ 2015    | Older KG         | 86.4      |
| Our baseline   | Latest KG        | 87.9      |
| Single link    | Latest KG        | 88.2      |
| Multifocal     | Latest KG        | 89.5      |
| Chisholm+ 2015 | YAGO             | 88.7      |
| Our baseline   | YAGO+KG          | 85.2      |
| Single link    | YAGO+KG          | 86.6      |
| Multifocal     | YAGO+KG          | 91.0      |
| Multifocal     | KG+HP            | 92.7      |

# Soft multifocal attention (2)

- Within each alias-entity map, single-link and multifocal are the best
- ▶ Baseline and single link degrade when alias map changes from KG to YAGO+KG (larger ambiguity), but multifocal improves
- Similar consistent gains in TAC 2010, 2011, 2012
- What's missing? Entity embeddings

## Using entity embeddings [22]

- Three-part optimization
- Overall likelihood fitted through simultaneous maximization

$$\mathcal{L} = \mathcal{L}_w + \mathcal{L}_e + \mathcal{L}_a$$

Word-word:  $\mathcal{L}_w$ , standard word2vec on text corpus

Entity-entity:  $\mathcal{L}_e$ , as expressed through KG

Word-entity:  $\mathcal{L}_a$ , connecting mention context words and entity embeddings

ightharpoonup e, e' are related if there is a link between them in the KG, and  $e \neq e'$ , in which case we want large

$$\mathcal{L}_e = \sum_{e,e'} \log \Pr(e'|e),$$
 where  $\Pr(e'|e) = \frac{\exp(oldsymbol{u}_e \cdot oldsymbol{v}_{e'})}{\sum_e \exp(oldsymbol{u}_e \cdot oldsymbol{v}_e)}$ 

# Using entity embeddings [22] (2)

- As in skip-gram, predict mention context words given focus entity ID
- Let  $M_e$  be mentions of entity  $e, m \in M_e$  be one mention, and  $w \in m$  a mention word

$$\mathcal{L}_a = \sum_e \sum_{m \in M_e} \sum_{w \in m} \log \Pr(w|e),$$
 where 
$$\Pr(w|e) = \frac{\exp(\boldsymbol{v}_w \cdot \boldsymbol{u}_e)}{\sum_{w'} \exp(\boldsymbol{v}_{w'} \cdot \boldsymbol{u}_e)}$$

As is common, softmax is replaced by negative samples

#### Inference with coherence

- Given a document with many mention spots
- For each mention, compute context vector as average of neighboring word vectors
- (Nothing more fancy like convnet or RNN)
- Set initial entity labels using cosine with context vectors
- Now define the coherence of an entity with others as average cosine between entity vectors
- Reassign most coherent label in a second step
- Crude two-step loopy BP?

## Joint word-entity embeddings: NED results

|                         | CoNLL   | CoNLL   | TAC10   |
|-------------------------|---------|---------|---------|
|                         | (Micro) | (Macro) | (Micro) |
| Yamada et al., 2016     | 93.1    | 92.6    | 85.2    |
| Hoffart et al., 2011    | 82.5    | 81.7    | -       |
| He et al., 2013         | 85.6    | 84.0    | 81.0    |
| Chisholm & Hachey, 2015 | 88.7    | -       | 80.7    |
| Pershina et al., 2015   | 91.8    | 89.9    | -       |

## Attention on mention context [23]

- lacktriangle Jointly pre-embed all words w and entities e in training corpus (Wikipedia, say) to (focus) embeddings  $x_w, x_e$
- ▶ Given a mention m with candidates  $\Gamma(m)$ , mention context c mentioning entity  $e \in \Gamma(m)$ , for each word w in the context, compute the importance of w as

$$u(w) = \max_{e \in \Gamma(m)} x_e^{\top} \mathbf{A} x_w,$$

where A is a global (diagonal) matrix to be trained

- Intention: u(w) should be large if w is strongly associated with at least one candidate entity, otherwise small
- lacktriangle Sort by decreasing u(w) and prune context to top-K
- ▶ Now let surviving context words compete for attention:

$$\beta(w) = \exp(u(w)) / \sum_{w'} \exp(u(w'))$$

## Attention on mention context [23] (2)

▶ Compute similarity between  $x_e$  and  $x_w$  and add up, weighted by attention:

$$\Psi(e,c) = \sum_{w} \beta(w) x_e^{\mathsf{T}} \mathbf{B} x_w,$$

where  $oldsymbol{B}$  is another global diagonal matrix to be trained

- $\blacktriangleright$  Note, very frugal model so far, only 2D model weights, where embeddings are in  $\mathbb{R}^D$
- Finally, combine with (empirical) mention prior Pr(e|m):

$$\Psi(e, m, c) = N(\Psi(e, c), \log \Pr(e|m)),$$

where N is a 2-layer fully-connected network with 100 hidden units and ReLU nonlinearities

## Attention on mention context [23] (3)

For training, use standard hinge loss

$$\underset{\pmb{A},\pmb{B},N,\dots}{\operatorname{argmin}} \sum_{m} \sum_{e \in \Gamma(m)} \left[ \clubsuit - \Psi(e^*,m,c) + \Psi(e,m,c) \right]_+,$$

where 🌲 is a tuned margin

Local attention model results:

| Methods                     | AIDA-test-b |
|-----------------------------|-------------|
| Mention prior $\Pr(e m)$    | 71.9        |
| (Lazic et al., 2015)        | 86.4        |
| (Yamada et al., 2016)       | 87.2        |
| (Globerson et al., 2016)    | 87.9        |
| Ganea+ (local, K=100, R=50) | 88.8        |

ightharpoonup Network N benefits from nonlinearity

#### Document-level deep model

- Now we bring back in global coherence between entity labels
- For a whole document, let e, m, c be the sequence of n entity labels, mentions, and contexts
- Fully connected pairwise random field

$$g(\boldsymbol{e}, \boldsymbol{m}, \boldsymbol{c}) = \frac{1}{n} \sum_{i} \Psi(e_i, m_i, c_i) + \frac{1}{\binom{n}{2}} \sum_{i < j} \Phi(e_i, e_j),$$

where 
$$\Phi(e,e') = x_e^{\top} \boldsymbol{C} x_{e'}$$

- ► Note, all mention pairs
- C is another diagonal weight matrix to be trained
- ▶ Inference amounts to finding  $\operatorname{argmax}_{\pmb{e}} g(\pmb{e}, \pmb{m}, \pmb{c})$ , given observed  $\pmb{m}, \pmb{c}$
- Back to (max-product) message-passing

## Document-level deep model (2)

In iteration t, mention  $m_i$  votes for entity candidate  $e' \in \Gamma(m_j)$  using outgoing (log) message

$$m_{i \to j}^{t+1}(e') = \max_{e \in \Gamma(m_i)} \left[ \Psi(e, m_i, c_i) + \Phi(e, e') + \sum_{k \neq j} \overline{m}_{k \to i}^t(e) \right]$$

▶ The incoming messages would ordinarily be just log-beliefs:

$$\overline{m}_{i \rightarrow j}^t(e) = \log \operatorname{softmax} \left( m_{i \rightarrow j}^t(e) \right)$$

In practice, damping with  $\delta \in (0,1]$  helps stability and convergence:

$$\overline{m}_{i \to j}^t(e) = \log \Big[ \delta \operatorname{softmax} \big( m_{i \to j}^t(e) \big) + (1 - \delta) \exp(\overline{m}_{i \to j}^{t-1}(e)) \Big]$$

## Document-level deep model (3)

ightharpoonup Unroll BP to T time steps, resulting in final beliefs

$$\mu_i(e) = \Psi(e, m_i, c_i) + \sum_{k \neq i} \overline{m}_{k \to i}^T(e)$$
$$\overline{\mu}_i(e) = \frac{\exp(\mu_i(e))}{\sum_{e' \in \Gamma(m_i)} \exp(\mu_i(e))}$$

- Given the above inference procedure, we can use it for training as well
- ► Given gold entity labels, express hinge loss wrt final beliefs:

$$\underset{\pmb{A},\pmb{B},\pmb{C},N}{\operatorname{argmin}} \sum_{m} \sum_{e \in \Gamma(m)} \left[ \spadesuit - \overline{\mu}_i(e^*) + \overline{\mu}_i(e) \right]_+$$

- ► Hinge loss assessed wrt per-variable marginals
- Everything is still end-to-end (sub)differentiable 3

## Document-level deep model (4)

 May be simpler (but possibly less accurate) than sampling negative instances and expressing objective as hinge loss corresponding to

$$\forall \boldsymbol{e}_{-}: \qquad g(\boldsymbol{e}_{+}, \boldsymbol{m}, \boldsymbol{c}) \geq g(\boldsymbol{e}_{-}, \boldsymbol{m}, \boldsymbol{c}) + \spadesuit$$

#### Ganea et al.: global results

| Global method               | AIDA-test-b |
|-----------------------------|-------------|
| (Huang et al., 2015)        | 86.6        |
| (Ganea et al., 2016)        | 87.6        |
| (Chisholm and Hachey, 2015) | 88.7        |
| (Guo and Barbosa, 2016)     | 89.0        |
| (Globerson et al., 2016)    | 91.0        |
| (Yamada et al., 2016)       | 91.5        |
| Ganea+ (global)             | 92.22±0.14  |

- Impressive gains with very few model weights!
- Even more impressive that tail entities work out so well
- ▶ OTOH the whole network is quite complex; quite a wonder that backprop through such hostile functions works so well to depth  ${\cal O}(T)$
- Many potential bad choices for A, B, N; would be good to know how robust the design is

#### References

- [1] D. Freitag and A. McCallum, "Information extraction using HMMs and shrinkage," in *Papers from the AAAI-99 Workshop on Machine Learning for Information Extraction*, 1999, pp. 31–36.
- [2] I. Tsochantaridis, T. Joachims, T. Hofmann, and Y. Altun, "Large margin methods for structured and interdependent output variables," *JMLR*, vol. 6, no. Sep., pp. 1453–1484, 2005. [Online]. Available: http://ttic.uchicago.edu/~altun/pubs/TsoJoaHofAlt-JMLR.pdf
- [3] J. Lafferty, A. McCallum, and F. Pereira, "Conditional random fields: Probabilistic models for segmenting and labeling sequence data," in *ICML*, 2001, pp. 282–289.
- [4] F. Sha and F. Pereira, "Shallow parsing with conditional random fields," in *HLT-NAACL*, 2003, pp. 134–141. [Online]. Available: http://acl.ldc.upenn.edu/N/N03/N03-1028.pdf
- [5] X. Ling and D. S. Weld, "Fine-grained entity recognition." in *AAAI*, 2012. [Online]. Available: http://xiaoling.github.io/pubs/ling-aaai12.pdf

## References (2)

- [6] D. Gillick, N. Lazic, K. Ganchev, J. Kirchner, and D. Huynh, "Context-dependent fine-grained entity type tagging," arXiv preprint arXiv:1412.1820, 2014. [Online]. Available: https://arxiv.org/pdf/1412.1820.pdf
- [7] D. Yogatama, D. Gillick, and N. Lazic, "Embedding methods for fine grained entity type classification," in ACL Conference, 2015, pp. 26–31.
   [Online]. Available: http://anthology.aclweb.org/P/P15/P15-2048.pdf
- [8] S. Shimaoka, P. Stenetorp, K. Inui, and S. Riedel, "An attentive neural architecture for fine-grained entity type classification," arXiv preprint arXiv:1604.05525, 2016. [Online]. Available: https://arxiv.org/pdf/1604.05525.pdf
- Y. Yaghoobzadeh, H. Adel, and H. Schütze, "Noise mitigation for neural entity typing and relation extraction," arXiv preprint arXiv:1612.07495, 2016. [Online]. Available: https://arxiv.org/pdf/1612.07495.pdf

## References (3)

- [10] A. Sil and A. Yates, "Re-ranking for joint named-entity recognition and linking," in CIKM, 2013, pp. 2369–2374. [Online]. Available: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.398.9086&rep =rep1&type=pdf
- [11] R. Bunescu and M. Pasca, "Using encyclopedic knowledge for named entity disambiguation," in EACL, 2006, pp. 9–16. [Online]. Available: http://www.cs.utexas.edu/ $\sim$ ml/papers/encyc-eacl-06.pdf
- [12] J. Hoffart et al., "Robust disambiguation of named entities in text," in EMNLP Conference. Edinburgh, Scotland, UK: SIGDAT, Jul. 2011, pp. 782–792. [Online]. Available: http://aclweb.org/anthology/D/D11/D11-1072.pdf
- [13] S. Kulkarni, A. Singh, G. Ramakrishnan, and S. Chakrabarti, "Collective annotation of Wikipedia entities in Web text," in *SIGKDD Conference*, 2009, pp. 457–466. [Online]. Available: http://www.cse.iitb.ac.in/~soumen/doc/CSAW/

## References (4)

- [14] S. Dill et al., "SemTag and Seeker: Bootstrapping the semantic Web via automated semantic annotation," in WWW Conference, 2003, pp. 178–186.
- [15] R. Mihalcea and A. Csomai, "Wikify!: linking documents to encyclopedic knowledge," in CIKM, 2007, pp. 233–242. [Online]. Available: http://portal.acm.org/citation.cfm?id=1321440.1321475
- [16] D. Milne and I. H. Witten, "Learning to link with Wikipedia," in CIKM, 2008, pp. 509–518. [Online]. Available: http://www.cs.waikato.ac.nz/~d nk2/publications/CIKM08-LearningToLinkWithWikipedia.pdf
- [17] X. Cheng and D. Roth, "Relational inference for wikification," in EMNLP Conference, 2013, pp. 16–58. [Online]. Available: https://www.aclweb.org/anthology/D/D13/D13-1184.pdf
- [18] M. Ponza, P. Ferragina, and S. Chakrabarti, "A two-stage framework for computing entity relatedness in wikipedia," in CIKM, 2017, pp. 1867–1876. [Online]. Available: https://dl.acm.org/citation.cfm?id=3132890

## References (5)

- [19] S. Cucerzan, "Large-scale named entity disambiguation based on Wikipedia data," in *EMNLP Conference*, 2007, pp. 708–716. [Online]. Available: http://www.aclweb.org/anthology/D/D07/D07-1074
- [20] L. Ratinov, D. Roth, D. Downey, and M. Anderson, "Local and global algorithms for disambiguation to Wikipedia," in ACL Conference, ser. ACL/HLT, Portland, Oregon, 2011, pp. 1375–1384. [Online]. Available: http://dl.acm.org/citation.cfm?id=2002472.2002642
- [21] A. Globerson, N. Lazic, S. Chakrabarti, A. Subramanya, M. Ringgaard, and F. Pereira, "Collective entity resolution with multi-focal attention," in ACL Conference, 2016, pp. 621–631. [Online]. Available: https://www.aclweb.org/anthology/P/P16/P16-1059.pdf
- [22] I. Yamada, H. Shindo, H. Takeda, and Y. Takefuji, "Joint learning of the embedding of words and entities for named entity disambiguation," arXiv preprint arXiv:1601.01343, 2016. [Online]. Available: https://arxiv.org/pdf/1601.01343.pdf

## References (6)

- [23] O.-E. Ganea and T. Hofmann, "Deep joint entity disambiguation with local neural attention," *arXiv preprint arXiv:1704.04920*, 2017. [Online]. Available: https://arxiv.org/pdf/1704.04920.pdf
- [24] N. Ge, J. Hale, and E. Charniak, "A statistical approach to anaphora resolution," in *Proceedings of the sixth workshop on very large corpora*, vol. 71, 1998, p. 76. [Online]. Available: http://www.aclweb.org/anthology/W98-1119
- [25] M. Charikar, V. Guruswami, and A. Wirth, "Clustering with qualitative information," in FOCS Conference, 2003, pp. 524–533. [Online]. Available: http://www.cs.mu.oz.au/~awirth/pubs/awirthFocs03.pdf
- [26] S. Sarawagi and A. Bhamidipaty, "Interactive deduplication using active learning," in SIGKDD Conference, ser. KDD '02. New York, NY, USA: ACM, 2002, pp. 269–278. [Online]. Available: http://www.cse.iitb.ac.in/~sunita/papers/kdd02.pdf

## References (7)

- [27] N. Bansal, A. Blum, and S. Chawla, "Correlation clustering," in FOCS Conference, 2002, p. 238. [Online]. Available: http://www.cs.cmu.edu/~shuchi/papers/clusteringfull.pdf
- [28] A. McCallum and B. Wellner, "Conditional models of identity uncertainty with application to noun coreference," in NIPS Conference, 2004, pp. 905–912. [Online]. Available: https://papers.nips.cc/paper/2557-conditional-models-of-identity-uncertainty-with-application-to-noun-coreference.pdf
- [29] P. Singla and P. Domingos, "Object identification with attribute-mediated dependences," in *PKDD Conference*, Porto, Portugal, 2005, pp. 297–308. [Online]. Available: http://www.cs.washington.edu/homes/parag/paper s/object-mediated-pkdd05.pdf
- [30] V. Kolmogorov and R. Zabih, "What energy functions can be minimized via graph cuts?" *IEEE PAMI*, vol. 26, no. 2, pp. 147–159, Feb. 2004. [Online]. Available: http://www.cs.cornell.edu/rdz/Papers/KZ-ECCV02-graphcuts.pdf

## References (8)

- [31] D. M. Greig, B. T. Porteous, and A. Seheult, "Exact maximum a posteriori estimation for binary images," *Journal of the Royal Statistical Society*, vol. B, no. 51, pp. 271–279, 1989. [Online]. Available: http://jstor.org/stable/2345609
- [32] M. Hearst, "Automatic acquisition of hyponyms from large text corpora," in *International Conference on Computational Linguistics*, vol. 14, 1992, pp. 539–545. [Online]. Available: http://www.aclweb.org/website/old\_anthology/C/C92/C92-2082.pdf
- [33] O. Etzioni, M. Cafarella et al., "Web-scale information extraction in KnowltAll," in WWW Conference. New York: ACM, 2004. [Online]. Available: http: //www.cs.washington.edu/research/knowitall/papers/www-paper.pdf
- [34] M. Banko, M. J. Cafarella, S. Soderland, M. Broadhead, and O. Etzioni, "Open information extraction from the Web," in *IJCAI*, M. M. Veloso, Ed., 2007, pp. 2670–2676. [Online]. Available: http://www.ijcai.org/papers07/Papers/IJCAI07-429.pdf

## References (9)

- [35] H. Poon and P. Domingos, "Unsupervised semantic parsing," in EMNLP Conference, 2009, pp. 1–10. [Online]. Available: http://anthology.aclweb.org/D/D09/D09-1001.pdf
- [36] L. Yao, A. Haghighi, S. Riedel, and A. McCallum, "Structured relation discovery using generative models," in *EMNLP Conference*, 2011, pp. 1456–1466. [Online]. Available: http://anthology.aclweb.org/D/D11/D11-1135.pdf
- [37] S. Riedel, L. Yao, A. McCallum, and B. M. Marlin, "Relation extraction with matrix factorization and universal schemas," in *NAACL Conference*, 2013, pp. 74–84. [Online]. Available: http://www.anthology.aclweb.org/N/N13/N13-1008.pdf
- [38] S. Brin, "Extracting patterns and relations from the World Wide Web," in WebDB Workshop, ser. LNCS, P. Atzeni, A. O. Mendelzon, and G. Mecca, Eds., vol. 1590. Valencia, Spain: Springer, Mar. 1998, pp. 172–183. [Online]. Available: http://ilpubs.stanford.edu:8090/421/1/1999-65.pdf

### References (10)

- [39] E. Agichtein and L. Gravano, "Snowball: Extracting relations from large plain-text collections," in *ICDL*, 2000, pp. 85–94. [Online]. Available: http://www.academia.edu/download/31007490/cucs-033-99.pdf
- [40] R. C. Bunescu and R. J. Mooney, "A shortest path dependency kernel for relation extraction," in *EMNLP Conference*. ACL, 2005, pp. 724–731. [Online]. Available: http://acl.ldc.upenn.edu/H/H05/H05-1091.pdf
- [41] M. Surdeanu, J. Tibshirani, R. Nallapati, and C. D. Manning, "Multi-instance multi-label learning for relation extraction," in *EMNLP Conference*, 2012, pp. 455–465. [Online]. Available: http://anthology.aclweb.org/D/D12/D12-1042.pdf
- [42] G. Angeli, J. Tibshirani, J. Wu, and C. D. Manning, "Combining distant and partial supervision for relation extraction." in *EMNLP Conference*, 2014, pp. 1556–1567. [Online]. Available: http://www.anthology.aclweb.org/D/D14/D14-1164.pdf

#### References (11)

- [43] R. Hoffmann, C. Zhang, X. Ling, L. Zettlemoyer, and D. S. Weld, "Knowledge-based weak supervision for information extraction of overlapping relations," in *ACL Conference*, 2011, pp. 541–550. [Online]. Available: http://anthology.aclweb.org/P/P11/P11-1055.pdf
- [44] B. Min, R. Grishman, L. Wan, C. Wang, and D. Gondek, "Distant supervision for relation extraction with an incomplete knowledge base." in NAACL Conference, 2013, pp. 777–782. [Online]. Available: http://www.anthology.aclweb.org/N/N13/N13-1095.pdf
- [45] A. Bordes, J. Weston, R. Collobert, and Y. Bengio, "Learning structured embeddings of knowledge bases," in AAAI Conference, 2011, pp. 301–306. [Online]. Available: http://www.aaai.org/ocs/index.php /AAAI/AAAI11/paper/viewFile/3659/3898
- [46] A. Bordes, N. Usunier, A. Garcia-Duran, J. Weston, and O. Yakhnenko, "Translating embeddings for modeling multi-relational data," in NIPS Conference, 2013, pp. 2787–2795. [Online]. Available: http://papers.nips.cc/paper/5071-translating-embeddings-for-modeling-multi-relational-data.pdf

#### References (12)

- [47] G. Ji, S. He, L. Xu, K. Liu, and J. Zhao, "Knowledge graph embedding via dynamic mapping matrix." in ACL Conference, 2015, pp. 687–696. [Online]. Available: http://www.aclweb.org/anthology/P/P15/P15-1067.pdf
- [48] I. Vendrov, R. Kiros, S. Fidler, and R. Urtasun, "Order-embeddings of images and language," arXiv preprint arXiv:1511.06361, 2015. [Online]. Available: https://arxiv.org/pdf/1511.06361
- [49] K. Toutanova, D. Chen, P. Pantel, H. Poon, P. Choudhury, and M. Gamon, "Representing text for joint embedding of text and knowledge bases," in *EMNLP Conference*, 2015, pp. 1499–1509. [Online]. Available: https://www.aclweb.org/anthology/D/D15/D15-1174.pdf
- [50] P. D. Turney, "Mining the Web for synonyms: PMI-IR versus LSA on TOEFL," in ECML, 2001.

#### References (13)

- [51] J. Zhu, Z. Nie, B. Zhang, and J.-R. Wen, "Dynamic hierarchical Markov random fields and their application to Web data extraction," in *ICML*, 2007, pp. 1175–1182. [Online]. Available: http://www.machinelearning.org/proceedings/icml2007/papers/215.pdf
- [52] G. Bhalotia, A. Hulgeri, C. Nakhe, S. Chakrabarti, and S. Sudarshan, "Keyword searching and browsing in databases using BANKS," in *ICDE*. IEEE, 2002.
- [53] S. Agrawal, S. Chaudhuri, and G. Das, "DBXplorer: A system for keyword-based search over relational databases," in *ICDE*. San Jose, CA: IEEE, 2002.
- [54] V. Hristidis, L. Gravano, and Y. Papakonstantinou, "Efficient IR-style keyword search over relational databases," in *VLDB Conference*, 2003, pp. 850–861. [Online]. Available: http://www.db.ucsd.edu/publications/VLDB2003cr.pdf
- [55] G. Jeh and J. Widom, "Scaling personalized web search," in WWW Conference, 2003, pp. 271–279. [Online]. Available: http://www2003.org/cdrom/papers/refereed/p185/html/p185-jeh.html

#### References (14)

- [56] T. H. Haveliwala, "Topic-sensitive PageRank," in WWW Conference, 2002, pp. 517–526. [Online]. Available: http://www2002.org/CDROM/refereed/127/index.html
- [57] A. Balmin, V. Hristidis, and Y. Papakonstantinou, "Authority-based keyword queries in databases using ObjectRank," in VLDB Conference, Toronto, 2004.
- [58] M. J. Cafarella, C. Re, D. Suciu, O. Etzioni, and M. Banko, "Structured querying of web text: A technical challenge," in CIDR, 2007, pp. 225–234. [Online]. Available: http://www-db.cs.wisc.edu/cidr/cidr2007/papers/cidr07p25.pdf
- [59] S. Chakrabarti, K. Puniyani, and S. Das, "Optimizing scoring functions and indexes for proximity search in type-annotated corpora," in *WWW Conference*, Edinburgh, May 2006, pp. 717–726. [Online]. Available: http://www.cse.iitb.ac.in/~soumen/doc/www2006i

#### References (15)

- [60] T. Cheng, X. Yan, and K. C.-C. Chang, "EntityRank: Searching entities directly and holistically," in VLDB Conference, Sep. 2007, pp. 387–398. [Online]. Available: http: //www-forward.cs.uiuc.edu/pubs/2007/entityrank-vldb07-cyc-jul07.pdf
- [61] S. Chakrabarti, "Dynamic personalized PageRank in entity-relation graphs," in *WWW Conference*, Banff, May 2007. [Online]. Available: http://www.cse.iitb.ac.in/~soumen/doc/netrank/
- [62] P. Sarkar, A. W. Moore, and A. Prakash, "Fast incremental proximity search in large graphs," in *ICML*, 2008, pp. 896–903. [Online]. Available: http://icml2008.cs.helsinki.fi/papers/565.pdf
- [63] G. Kasneci, F. M. Suchanek, G. Ifrim, S. Elbassuoni, M. Ramanath, and G. Weikum, "NAGA: harvesting, searching and ranking knowledge," in SIGMOD Conference. ACM, 2008, pp. 1285–1288. [Online]. Available: http://www.mpi-inf.mpg.de/~kasneci/naga/

#### References (16)

- [64] F. M. Suchanek, G. Kasneci, and G. Weikum, "YAGO: A core of semantic knowledge unifying WordNet and Wikipedia," in WWW Conference. ACM Press, 2007, pp. 697–706. [Online]. Available: http://www2007.org/papers/paper391.pdf
- [65] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean, "Distributed representations of words and phrases and their compositionality," in NIPS Conference, 2013, pp. 3111–3119. [Online]. Available: https://goo.gl/x3DTzS
- [66] J. Pennington, R. Socher, and C. D. Manning, "GloVe: Global vectors for word representation." in *EMNLP Conference*, vol. 14, 2014, pp. 1532–1543. [Online]. Available: http://www.emnlp2014.org/papers/pdf/EMNLP2014162.pdf
- [67] N. Lao and W. W. Cohen, "Relational retrieval using a combination of path-constrained random walks," *Machine Learning*, vol. 81, no. 1, pp. 53–67, Oct. 2010. [Online]. Available: http://dx.doi.org/10.1007/s10994-010-5205-8

#### References (17)

[68] S. Sarawagi, "Information extraction," FnT Databases, vol. 1, no. 3, 2008. [Online]. Available: http://www.cse.iitb.ac.in/~sunita/papers/ieSurvey.pdf