COS 791 Image Processing and Analysis

Chapter 1

Lecturer

- Tayana Morkel
 tmorkel@cs.up.ac.za
- Dr Marde Helbig
 mhelbig@cs.up.ac.za

Recommended textbook

Feature Extraction: Image Processing for Computer Vision

Third Edition

Mark Nixon

Assessment

- 3 assignments
- Semester mark:
 - Average of three assignments
- Final mark:
 - 50% Semester mark
 - 50% Exam mark

Human and computer vision

- A computer vision system processes images acquired from an electronic camera
- In the human vision system the brain processes images derived from the eyes
- Computer vision systems can to some extent replicate the function of the human eye
- Sometimes a computer vision system can even improve upon the function of the eye

Human vision system

- Sophisticated system that senses and acts on visual stimuli
- Not possible from a computer to exactly replicate the function of the human eye

Human vision system

- Human vision system can be modeled in three parts;
 - The eye physical model determined by pathology
 - A processing system experimental model that cannot be determined precisely
 - Analysis by the brain psychological model can only be inferred by experiment

- There are nearly 100 million sensors dispersed around the retina
- Light falls on these sensors to stimulate photochemical transmissions
- Two types of sensors:
 - Rods for black and white vision
 - Cones for colour vision
- There are around 10 million cones and nearly all of them are found within 5° of the focal point

- Three types of cones:
 - Short wavelength sense light toward the blue end of the visual spectrum
 - Medium wavelength sense light towards the green
 - Long wavelength sense light toward the red
- The total response of the cones arises from summing the response of the three types of cones

8-bit gradient

One inherent property
 of how the eye
 perceives images is
 called Mach bands

8-bit gradient

(c) Perceived cross-section through (a)

8-bit gradient

(b) Cross-section through (a)

Mach bands

- Mach bands do not really exist but are introduced by your eyes
 - In order to differentiate between objects in our field of view the eye overshoots its response at boundaries
- Mach bands and sensitivity to unsensed phenomena are typically two properties that would be unwanted in a computer vision system

The brain can be misled...

Digital image representation

Image processing

- Image processing is a group of techniques performed on images to enhance them or to extract information from them
- Includes, but not limited to:
 - Operations to enhance image quality
 - Edge detection
 - Feature extraction
 - Object description
 - Object detection, etc.

Operations to enhance image quality

Ultrasound image of the cross section of the carotid artery

- Image is very noisy and this obscures the shape of the artery
- Need to be able to 'clean up' the image without removing important details

Operations to enhance image quality

noisy lena

Gaussian filter

median filter

Wiener filter

Edge detection

Edge detection

- Edge detection is helpful in identifying prominent features of an image
- Edge detection is often the first step for more complex image processing techniques

Edge detection algorithms

Feature extraction

- Feature extraction in image processing is the process of deriving values from an image that is intended to be informative
 - Reducing the collection of pixels to a subset that is more indicative of the object(s) in the image
- Low level: edge detection, corner detection, etc.
- High level: fixed shapes or deformable methods
 - Fixed shapes: lines, circles, ellipses etc.
 - Deformable shapes: unknown or compound shapes

Feature extraction – straight line

Image from https://www.wolfram.com/mathematica/new-in-8/comprehensive-image-processing-environment/detect-straight-lines.html

Feature extraction – deformable shapes

Facial recognition:

- To recognize a face we need to be able to analyze shapes shape of the nose, the eyes etc
- For this we need to be able to recognise and extract deformable shapes

Image processing

- Remotely sensed images (geospatial) are often analyzed by texture
- The perceived texture of the road is different from the different types of foliage

Object recognition

Image segmentation

Challenges in image processing

