

CSC3100 Data Structures Lecture 4: Insertion sort and merge sort

Yixiang Fang
School of Data Science (SDS)
The Chinese University of Hong Kong, Shenzhen

- Use array to solve the sorting problem
- Insertion sort
 - Recursion - -
 - Algorithm analysis
- Merge sort
 - Divide-and-conquer
 - Algorithm analysis

Paradigms of algorithm design

The sorting problem

- ▶ Input: a sequence of n numbers $\langle a_1, a_2, ..., a_n \rangle$
- Output: a permutation (reordering) < a'_1 , a'_2 ,..., $a'_n>$ of input such that $a'_1<=a'_2<=...<=a'_n$
 - Stored in arrays
 - The numbers are referred as keys
- Many sorting algorithms

Insertion sort

- A simple algorithm for <u>a small number of elements</u>
- Similar to sort a hand of cards
 - Start with an empty left hand
 - Pick up one card and insert it into the correct position
 - To find the correct position, compare it with each of the cards in the hand, from right to left
 - The cards in the left hand are sorted

Example of insertion sort

Insertion sort pseudocode

```
INSERTION-SORT (A)
for j \leftarrow 2 to n
     do key \leftarrow A[j]
         \triangleright Insert A[j] into the sorted sequence A[1...j-1].
         i \leftarrow j-1
         while i > 0 and A[i] > key
              do A[i+1] \leftarrow A[i]
                   i \leftarrow i - 1
         A[i+1] \leftarrow key
```


Correctness: loop invariant

- ▶ A property of the loop: loop invariant
 - Insertion sort: in each iteration, the array A[1,...,j-1] is sorted
- Help us prove the correctness of the algorithm
 - Initialization: true before the begin of loop
 - Maintenance: if true before an iteration, then also true after it
 - Termination: when the loop stops, use the invariant to show the algorithm is correct
- Similar to the mathematical induction

Correctness: loop invariant

```
INSERTION-SORT (A)
for j \leftarrow 2 to n \stackrel{\text{$\sim$ lnitialization}}{}

ightharpoonup do key \leftarrow A[j]
          \triangleright Insert A[j] into the sorted sequence A[1...j-1].
          i \leftarrow j-1
          while i > 0 and A[i] > key
                do A[i+1] \leftarrow A[i]
                     i \leftarrow i - 1
          A[i+1] \leftarrow key
Endfor
```

Termination

Loop invariant: insertion sort

Proof:

- Initialization: true before the begin of loop Only one element A[1]
- Maintenance: true before an iteration and after it A[j] is in the correct position $j' \Leftrightarrow A[j'-1] = A[j'] = A[j'+1]$
- Termination: when the loop stops, use the loop invariant to show the algorithm is correct j = n when loop stops, A[1,...,j-1] is sorted

How to analyze running time?

- Random-access machine (RAM) model
 - Sequential and no concurrent operations
 - Operations taking a constant amount of time:
 - E.g., arithmetic, data movement, conditions, function all, etc.
- For a given input, the time cost can be measured by the number of primitive operations (steps) executed
- Each line of pseudocode is composed of some numbers of operations and therefore requires a constant amount of time
 - One line may take a different amount of time than another

INSERTION-SORT
$$(A)$$
 cost times

for $j \leftarrow 2$ to n c_1 n

do $key \leftarrow A[j]$ c_2 $n-1$
 \Rightarrow Insert $A[j]$ into the sorted sequence $A[1 ... j-1]$. 0 $n-1$
 $i \leftarrow j-1$ c_4 $n-1$

while $i > 0$ and $A[i] > key$ c_5 $\sum_{j=2}^n t_j$

do $A[i+1] \leftarrow A[i]$ c_6 $\sum_{j=2}^n (t_j-1)$
 $i \leftarrow i-1$ c_7 $\sum_{j=2}^n (t_j-1)$
 $A[i+1] \leftarrow key$ c_8 $n-1$

$$T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 \sum_{j=2}^{n} t_j + c_6 \sum_{j=2}^{n} (t_j - 1) + c_7 \sum_{j=2}^{n} (t_j - 1) + c_8 (n-1).$$

$$T(n) \text{ depends on } n \text{ and } t_j$$

Best case: the array is sorted

$$\Rightarrow t_j = 1$$

$$T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 (n-1) + c_8 (n-1)$$

= $(c_1 + c_2 + c_4 + c_5 + c_8) n - (c_2 + c_4 + c_5 + c_8)$.

Worst case: the array is in reverse order

$$\Rightarrow t_j = j$$

$$\sum_{j=2}^{n} j = \left(\sum_{j=1}^{n} j\right) - 1, \text{ it equals } \frac{n(n+1)}{2} - 1$$

When talking about best/worst case, the algorithm itself should be able to handle all the cases

Worse case (con't)

$$T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 \left(\frac{n(n+1)}{2} - 1\right)$$

$$+ c_6 \left(\frac{n(n-1)}{2}\right) + c_7 \left(\frac{n(n-1)}{2}\right) + c_8 (n-1)$$

$$= \left(\frac{c_5}{2} + \frac{c_6}{2} + \frac{c_7}{2}\right) n^2 + \left(c_1 + c_2 + c_4 + \frac{c_5}{2} - \frac{c_6}{2} - \frac{c_7}{2} + c_8\right) n$$

$$- (c_2 + c_4 + c_5 + c_8) .$$

Can express T(n) as $an^2 + bn + c$ for constants a, b, c (that again depend on statement costs) $\Rightarrow T(n)$ is a quadratic function of n.

- Concentrate on the worst-case running time
 - Give a guaranteed upper bound for any input
 - For some algorithms, the worst case occurs often
 - For example, search for absent items
 - Why not analyze the average case?
 - Because it is often as bad as the worst case
- On average, A[j] is less than half of A[1,...,j-1], which means that $t_i = j/2$
 - The average case is about half of the worse case, but still a quadratic of n

- What is recursion?
 - self-reference
 - recursive function: based upon itself
 - Solution of the whole problem is composed of solutions of sub-problems

```
f(x) = 2f(x-1) + x^{2}
public int f(int x){
if (x == 0)
return 0;
else
return 2 * f(x-1) + x^{*}x;
}
```


- Characteristics of a recursive definition
 - It has a stopping point (base case)
 - It recursively evaluates an expression involving a variable n from a higher value to a lower value of n
 - Base case must be reached

```
public static int bad (int N)
{
   if (N == 0)
      return 0;
   else
      return bad (N / 3 + 1) + N - 1;
}
```


Recursion: insertion sort

- Base case: If array size is 1 or smaller, return
- Recursively sort first n-1 elements
- Insert last element at its correct position in sorted array

Recursion: Tower of Hanoi

Problem:

 It consists of three rods and a number of disks of different diameters, which can slide onto any rod

- · Constraints:
- (1) only one disk can be moved at a time, and
- (2) at no time may a disk be placed on top of a smaller disk

Recursion: Tower of Hanoi

 \rightarrow n=3

- A solution by recursion
 - If n = 1, move the single disk from A to C and stop
 - Otherwise, move top n-1 disks from A to B, using C as auxiliary
 - Move the remaining disk from A to C
 - Move the n-1 disks from B to C, using A as auxiliary

Divide-and-conquer

Divide the problem into a number of subproblems

 Conquer the subproblems by solving them recursively (further divide if no small enough)

 Base case: If the subproblems are small enough, may solve them by brute force

Combine the subproblem solutions to give a solution to the original problem

- A sorting algorithm based on divide-and-conquer
- Its worst-case running time has a lower order of growth rate than insertion sort
- Each subproblem is to sort a subarray A[p,...,r].
 - p=1, r=n at the start and changes during splitting

To sort A[p,...,r]

- Algorithm steps
 - Divide it into two subarrays A[p,...,q] and A[q+1,...,r], where q is the middle point
 - Conquer by recursively sorting the two subarrays A[p,...,q] and A[q+1,...,r]
 - Merge the two sorted subarrays A[p,...,q] and A[q+1,...,r]

```
\begin{array}{ll} \operatorname{MERGE-SORT}(A,\,p,\,r) \\ & \text{ if } p < r & \rhd \operatorname{Check} \text{ for base case} \\ & \text{ then } q \leftarrow \lfloor (p+r)/2 \rfloor & \rhd \operatorname{Divide} \\ & \operatorname{MERGE-SORT}(A,\,p,\,q) & \rhd \operatorname{Conquer} \\ & \operatorname{MERGE-SORT}(A,\,q+1,r) & \rhd \operatorname{Conquer} \\ & \operatorname{MERGE}(A,\,p,\,q,r) & \rhd \operatorname{Combine} \end{array}
```


- Merge ordered subarray A[p,...,q] and ordered subarray A[q+1,...,r]
- How to efficiently implement it?
 - Think of two piles of cards
 - Each pile is sorted and placed face-up on a table with the smallest cards on top
 - We will merge them into a single sorted pile
 - Basic idea
 - Choose the smaller of the two top cards
 - Remove it from its pile
 - Repeat

Merge: example

& Merge: example

Implementation of merge sort

```
public static void mergeSort(int[] a) {
  int[] tmpArray = new int[a.length];
  mergeSort(a, tmpArray, 0, a.length - 1);
private static void mergeSort(int[] a, int[] tmpArray, int left, int right) {
  if (left < right) {
       int center = (left + right) / 2;
       mergeSort(a, tmpArray, left, center);
       mergeSort(a, tmpArray, center + 1, right);
       merge(a, tmpArray, left, center + 1, right);
```


Implementation of merge sort

```
private static void merge(int[] a, int[] tmpArray, int leftPos, int rightPos, int rightEnd){
  int leftEnd = rightPos - 1, tmpPos = leftPos;
  int numElements = rightEnd - leftPos + 1;
  while (leftPos <= leftEnd && rightPos <= rightEnd)
        if (a[leftPos] <= a[rightPos])</pre>
                 tmpArray[tmpPos++] = a[leftPos++];
        else
                 tmpArray[tmpPos++] = a[rightPos++];
  while (leftPos <= leftEnd)
        tmpArray[tmpPos++] = a[leftPos++];
  while (rightPos <= rightEnd)
        tmpArray[tmpPos++] = a[rightPos++];
  for (int i = 0; i < numElements; i++, rightEnd--)
       a[rightEnd] = tmpArray[rightEnd];
```


Analyzing merge sort

Suppose N is a power of 2

$$T(n) = \begin{cases} c & \text{if } n = 1, \\ 2T(n/2) + cn & \text{if } n > 1. \end{cases}$$

$$T(1) = C$$

$$T(N) = 2T(N/2) + CN$$

$$\frac{T(N)}{N} = \frac{T(N/2)}{N/2} + C = ... = \frac{T(1)}{1} + C \log N$$

$$T(N) = CN \log N + CN = O(N \log N)$$

Compare to insertion sort

- Compared to insertion sort (worst-case time is a quadratic of n), merge sort is faster
- On small inputs, insertion sort may be faster, but for large enough inputs, merge sort will always be faster
- What is your thinking now?

- Implement both insertion sort and merge sort in Java
- Implement a hybrid sorting algorithm combining merge sort and selection sort

Recommended reading

- Reading this week
 - Chapter 2, textbook
- Next lecture
 - Complexity analysis: chapter 3, textbook