MARKETPULSE: DAILY VOLATILITY ANALYTICS & FORECASTING DASHBOARD

Automated Pipeline for Financial Risk Assessment

PRESENTED BY: UDIT SINGH

BACKGROUND: SOFTWARE DEVELOPER TRANSITIONING TO

DATA ANALYTICS

PROJECT FOCUS: FIRST EXPLORATION INTO QUANTITATIVE

FINANCE

BUSINESS PROBLEM & SOLUTION

Current State: Manual Risk Assessment Challenges DATA FRAGMENTATION

- PRICE HISTORY SCATTERED ACROSS MULTIPLE SOURCES (APIS, SPREADSHEETS, MANUAL DOWNLOADS)
- ANALYSTS SPEND HOURS GATHERING AND CLEANING DATA BEFORE ANALYSIS BEGINS

LACK OF PREDICTIVE INSIGHTS

- RISK ASSESSMENT RELIES ON BACKWARD-LOOKING ANALYSIS ONLY
- NO STATISTICAL MODELING FOR VOLATILITY FORECASTING
- CRITICAL QUESTION UNANSWERED: "WHAT WILL MARKET VOLATILITY LOOK LIKE NEXT WEEK?"

MANUAL WORKFLOWS

- ERROR-PRONE, REPETITIVE PROCESSES FOR EACH TICKER ANALYSIS
- NO STANDARDIZED RISK METRICS ACROSS PORTFOLIO HOLDINGS

SOLUTION DELIVERED: AUTOMATED ANALYTICS PIPELINE

QUANTIFIED BUSINESS VALUE

- 1,000 CLEAN DATA POINTS PROCESSED ACROSS 4 MAJOR TECH STOCKS
- 14-DAY VOLATILITY FORECASTS WITH STATISTICAL CONFIDENCE INTERVALS
- AUTOMATED RISK RANKING BASED ON GARCH MODEL PERFORMANCE (AIC SCORING)

KEY BUSINESS QUESTIONS ANSWERED

- RISK-RETURN POSITIONING: TSLA IDENTIFIED AS EXTREME OUTLIER (150% RETURNS, 16.75% MAX LOSS)
- VOLATILITY FORECASTING: GARCH MODELS PREDICT INCREASING VOLATILITY TRENDS FOR TACTICAL PLANNING
- CROSS-TICKER COMPARISON: MSFT SHOWS MOST PREDICTABLE PATTERNS (AIC: 919.53 VS TSLA: 1464.23)

IMPACT

- MANUAL ANALYSIS TIME REDUCED FROM HOURS TO MINUTES
- FORWARD-LOOKING RISK INSIGHTS ENABLE PROACTIVE PORTFOLIO MANAGEMENT

TECHNICAL ARCHITECTURE

END-TO-END DATA PIPELINE DATA FLOW

YAHOO FINANCE API → RAW CSV FILES → POSTGRESQL STAGING → FEATURE ENGINEERING → GARCH MODELING → POWER BI DASHBOARD

TECHNOLOGY STACK & DESIGN DECISIONS DATA EXTRACTION

- YAHOO FINANCE API VIA YFINANCE LIBRARY FOR OHLCV MARKET DATA
- ATOMIC FILE OPERATIONS USING TEMPORARY FILES TO PREVENT DATA CORRUPTION
- 1 YEAR OF DAILY DATA FOR AAPL, GOOGL, MSFT, TSLA (250 TRADING DAYS PER TICKER)

DATA PROCESSING PIPELINE

- # FINANCIAL FEATURE ENGINEERING LOG RETURNS CALCULATION
 - DF['DAILY_RETURN'] = NP.LOG(DF['CLOSE'] / DF['CLOSE'].SHIFT(1))
- #14-DAY ROLLING VOLATILITY (ANNUALIZED)
- DF['VOLATILITY_14D'] = DF['DAILY_RETURN'].ROLLING(WINDOW=14).STD() * NP.SQRT(252)

GARCH IMPLEMENTATION

- # GARCH(1,1) MODEL FITTING WITH ARCH LIBRARY
- MODEL = ARCH_MODEL(RETURNS, VOL='GARCH', P=1, Q=1, DIST='NORMAL')FITTED_MODEL = MODEL.FIT(DISP='OFF')
- # MODEL VALIDATION USING AIC CRITERION
- AIC_SCORE = FITTED_MODEL.AIC PERSISTENCE = FITTED_MODEL.PARAMS['ALPHA[1]'] + FITTED_MODEL.PARAMS['BETA[1]']

PRODUCTION QUALITY FEATURES

- MODULAR DESIGN WITH SEPARATE EXTRACT, TRANSFORM, LOAD COMPONENTS
- COMPREHENSIVE LOGGING AND ERROR HANDLING THROUGHOUT PIPELINE
- DATABASE STAGING CAPABILITY WITH POSTGRESQL INTEGRATION
- DATA VALIDATION WITH QUALITY CHECKS AND STATISTICAL PROPERTY VERIFICATION

TECHNICAL ARCHITECTURE

GARCH MODELING DEEP DIVE WHAT IS GARCH AND WHY IT MATTERS GARCH (GENERALIZED AUTOREGRESSIVE CONDITIONAL HETEROSKEDASTICITY)

- ADVANCED ECONOMETRIC MODEL FOR VOLATILITY FORECASTING IN FINANCIAL MARKETS
- CAPTURES VOLATILITY CLUSTERING PERIODS OF HIGH VOLATILITY FOLLOWED BY HIGH VOLATILITY
- ESSENTIAL FOR RISK MANAGEMENT AND PORTFOLIO OPTIMIZATION IN QUANTITATIVE FINANCE

BUSINESS PROBLEM SOLVED

- TRADITIONAL MODELS ASSUME CONSTANT VOLATILITY (UNREALISTIC FOR STOCK MARKETS)
- GARCH MODELS TIME-VARYING VOLATILITY BASED ON HISTORICAL PATTERNS AND SHOCKS

KEY STATISTICAL INSIGHTS PERSISTENCE ANALYSIS (ALPHA + BETA COEFFICIENTS)

- ALL MODELS SHOW 0.93-0.98 PERSISTENCE → STRONG VOLATILITY CLUSTERING ACROSS ALL STOCKS
- VALUES < 1.0 CONFIRM STATIONARY PROCESS → MODELS ARE MATHEMATICALLY STABLE

TSLA PATTERN DISCOVERY

- PURE GARCH EFFECTS (A≈0.00, B≈0.99) → UNIQUE VOLATILITY BEHAVIOR
- HIGHEST AIC SCORE → COMPLEX DYNAMICS NOT WELL CAPTURED BY STANDARD GARCH(1,1)
- BUSINESS IMPLICATION → REQUIRES SPECIALIZED RISK MANAGEMENT APPROACH

FORECAST CAPABILITY

- 14-DAY VOLATILITY PREDICTIONS WITH STATISTICAL CONFIDENCE INTERVALS
- MODEL VALIDATION CONFIRMS RELIABLE FORECASTING FOR TACTICAL DECISION-MAKING

Rank	Ticker	AIC Score	Model Quality	Key Characteristics
1	MSFT	919.53	****	Predictable volatility patterns
2	AAPL	976.37	****	Good model performance
3	GOOGL	1045.94	***	Moderate complexity
4	TSLA	1464.23	**	Extreme volatility, poor fit

TECHNICAL ARCHITECTURE

DASHBOARD DEMO & BUSINESS INSIGHTS
INTERACTIVE POWER BI ANALYTICS - 3 STRATEGIC PAGES

PAGE 1: EXECUTIVE SUMMARY KEY PERFORMANCE INDICATORS

- LATEST PRICES & TOTAL RETURNS: TSLA \$479.86 WITH 150.2% ANNUAL RETURN
- VOLATILITY COMPARISON: VISUAL RANKING SHOWS TSLA AT 0.69 VS MSFT AT 0.27
- PRICE TREND ANALYSIS: LINE CHARTS REVEAL TSLA'S VOLATILE JOURNEY TO EXCEPTIONAL RETURNS

BUSINESS VALUE: ONE-CLICK EXECUTIVE OVERVIEW FOR PORTFOLIO PERFORMANCE ASSESSMENT

PAGE 2: RISK ANALYTICS DASHBOARD RISK VS RETURN SCATTER PLOT ANALYSIS

- QUADRANT POSITIONING CLEARLY SEPARATES INVESTMENT CATEGORIES
- TSLA POSITIONED AS EXTREME OUTLIER: HIGH RISK (0.69 VOLATILITY) / HIGH RETURN (150%)
- RISK METRICS QUANTIFIED: MAXIMUM DAILY LOSS -16.75%, MAXIMUM GAIN +20.45%
- HIGH VOLATILITY DAYS: 52 OUT OF 250 TRADING DAYS FOR TSLA

BUSINESS VALUE: PORTFOLIO MANAGERS CAN INSTANTLY ASSESS RISK-RETURN TRADEOFFS

PAGE 3: VOLATILITY FORECASTING

HISTORICAL VS PREDICTIVE ANALYSIS

- HISTORICAL VOLATILITY TIMELINE SHOWS CLUSTERING PATTERNS OVER 12 MONTHS
- 14-DAY GARCH FORECASTS WITH INCREASING VOLATILITY TRENDS
- INTERACTIVE FILTERING BY TICKER REVEALS DIFFERENT VOLATILITY BEHAVIORS
- FORECAST CONFIDENCE: STATISTICAL BACKING FOR TACTICAL DECISION-MAKING

BUSINESS VALUE: FORWARD-LOOKING RISK MANAGEMENT **CAPABILITIES**

DASHBOARD IMPACT

- MANUAL ANALYSIS TIME: REDUCED FROM HOURS TO MINUTES
- **DECISION SUPPORT:** DATA-DRIVEN INSIGHTS REPLACE INTUITION-BASED RISK ASSESSMENT
- SCALABILITY: FRAMEWORK SUPPORTS ADDITIONAL TICKERS AND LONGER FORECAST HORIZONS

BUSINESS QUESTIONS ANSWERED

DASHBOARD DELIVERS SPECIFIC SOLUTIONS TO PORTFOLIO MANAGEMENT CHALLENGES

1. RISK-RETURN ANALYSIS

QUESTION: HOW DO RISK AND RETURN METRICS COMPARE ACROSS DIFFERENT STOCKS? ANSWER: RISK-RETURN SCATTER PLOT REVEALS TSLA AS EXTREME OUTLIER (150% RETURNS, 0.69 VOLATILITY) VS MSFT'S MODERATE PROFILE (MODERATE RETURNS, 0.27 VOLATILITY) BUSINESS IMPACT: PORTFOLIO MANAGERS CAN INSTANTLY CATEGORIZE INVESTMENTS BY RISK QUADRANTS

2. VOLATILITY FORECASTING

QUESTION: WHAT IS THE PROJECTED VOLATILITY OVER THE NEXT 14 TRADING DAYS? **ANSWER:** GARCH MODELS PREDICT INCREASING VOLATILITY TRENDS WITH STATISTICAL CONFIDENCE INTERVALS

BUSINESS IMPACT: FORWARD-LOOKING RISK MANAGEMENT ENABLES PROACTIVE POSITION ADJUSTMENTS

3. CROSS-TICKER COMPARISON

QUESTION: HOW DO CURRENT VOLATILITY LEVELS AND FORECASTS VARY ACROSS OUR TECH PORTFOLIO?

ANSWER: INTERACTIVE FILTERING REVEALS MSFT HAS MOST PREDICTABLE PATTERNS (AIC: 919.53) WHILE TSLA REQUIRES SPECIALIZED APPROACH (AIC: 1464.23)

BUSINESS IMPACT: RISK ALLOCATION DECISIONS BASED ON MODEL RELIABILITY RANKINGS

4. RISK ASSESSMENT

QUESTION: WHAT ARE THE MAXIMUM DAILY LOSS/GAIN EXPOSURES?

ANSWER: TSLA SHOWS -16.75% MAX LOSS POTENTIAL, +20.45% MAX GAIN, WITH 52 HIGH-

VOLATILITY DAYS OUT OF 250

BUSINESS IMPACT: QUANTIFIED DOWNSIDE EXPOSURE FOR POSITION SIZING AND STOP-LOSS DECISIONS

5. VOLATILITY TRENDS

QUESTION: HOW DOES ROLLING VOLATILITY CHANGE THROUGH TIME FOR EACH STOCK? **ANSWER:** HISTORICAL TIMELINE CHARTS SHOW VOLATILITY CLUSTERING PATTERNS WITH CLEAR HIGH/LOW PERIODS

BUSINESS IMPACT: PATTERN RECOGNITION SUPPORTS TACTICAL ENTRY/EXIT TIMING STRATEGIES

TECHNICAL IMPLEMENTATION HIGHLIGHTS

CODE QUALITY & DATA ENGINEERING EXCELLENCE PRODUCTION-READY PIPELINE ARCHITECTURE MODULAR DESIGN

- SEPARATE EXTRACT, TRANSFORM, LOAD, AND ML COMPONENTS FOR MAINTAINABILITY
- COMPREHENSIVE ERROR HANDLING AND LOGGING THROUGHOUT PIPELINE
- CONFIGURATION MANAGEMENT VIA ENVIRONMENT VARIABLES

DATA QUALITY ASSURANCE

```
# AUTOMATED DATA VALIDATION WITH BUSINESS LOGIC

DEF VALIDATE_FINANCIAL_DATA(DF):
    VALIDATION_RESULTS = {
        'NEGATIVE_PRICES': (DF['CLOSE'] <= 0).SUM(),
        'EXTREME_RETURNS': (DF['DAILY_RETURN'].ABS() > 0.5).SUM(),
        'MISSING_VOLATILITY': DF['VOLATILITY_14D'].ISNA().SUM()
    }
    RETURN VALIDATION_RESULTS
```

FINANCIAL DOMAIN EXPERTISE PROPER STATISTICAL IMPLEMENTATION

- LOG RETURNS CALCULATION USING LN(P_T/P_T-1) FOR ADDITIVE PROPERTIES
- VOLATILITY ANNUALIZATION WITH √252 TRADING DAYS FACTOR
- GARCH PARAMETER VALIDATION FOR MODEL STABILITY (A + B < 1.0)

DATA ENGINEERING RESULTS

- 1,000 CLEAN RECORDS PROCESSED WITH < 0.5% DATA LOSS
- EXPECTED MISSING VALUES DOCUMENTED (4 RETURNS, 56 VOLATILITY DUE TO ROLLING WINDOWS)
- QUALITY METRICS TRACKED THROUGHOUT PIPELINE EXECUTION

DATABASE & INTEGRATION POSTGRESQL STAGING

- SCHEMA DESIGN WITH DATA VALIDATION CONSTRAINTS
- ATOMIC OPERATIONS AND TRANSACTION MANAGEMENT
- DATABASE CAPABILITY IMPLEMENTED (CURRENT WORKFLOW USES CSV FOR SIMPLICITY)

DASHBOARD INTEGRATION

- 12 CUSTOM DAX MEASURES FOR ADVANCED POWER BI ANALYTICS
- PROPER DATA RELATIONSHIPS AND FILTERING LOGIC
- INTERACTIVE VISUALIZATIONS WITH BUSINESS-FOCUSED KPIS

KEY TAKEAWAYS & CAREER POSITIONING

SKILLS DEMONSTRATED THROUGH FIRST QUANTITATIVE FINANCE PROJECT TECHNICAL CAPABILITIES ACQUIRED ADVANCED STATISTICAL MODELING

- GARCH(1,1) IMPLEMENTATION WITH PROPER PARAMETER VALIDATION
- MODEL COMPARISON USING AIC CRITERION AND PERSISTENCE ANALYSIS
- STATISTICAL INTERPRETATION FOR BUSINESS DECISION-MAKING

PRODUCTION DATA ENGINEERING

- END-TO-END ETL PIPELINE WITH COMPREHENSIVE ERROR HANDLING
- DATABASE INTEGRATION AND DATA QUALITY VALIDATION SYSTEMS
- MODULAR ARCHITECTURE SUPPORTING SCALABILITY AND MAINTENANCE

BUSINESS INTELLIGENCE DEVELOPMENT

- INTERACTIVE DASHBOARD DESIGN WITH 12 CUSTOM DAX MEASURES
- FINANCIAL KPI IMPLEMENTATION AND RISK VISUALIZATION
- CROSS-FUNCTIONAL STAKEHOLDER COMMUNICATION THROUGH DATA STORYTELLING

DOMAIN KNOWLEDGE ACQUISITION QUANTITATIVE FINANCE FUNDAMENTALS

- LOG RETURNS CALCULATION AND VOLATILITY ANNUALIZATION TECHNIQUES
- RISK-RETURN ANALYSIS AND PORTFOLIO ASSESSMENT METHODOLOGIES
- FINANCIAL TIME SERIES MODELING AND FORECASTING APPLICATIONS

BUSINESS PROBLEM SOLVING

- TRANSLATED COMPLEX STATISTICAL RESULTS INTO ACTIONABLE PORTFOLIO INSIGHTS
- DELIVERED MEASURABLE BUSINESS VALUE (TIME REDUCTION, IMPROVED DECISION-MAKING)
- CONNECTED TECHNICAL IMPLEMENTATION TO STRATEGIC BUSINESS OBJECTIVES

CAREER TRANSITION CONTEXT

SOFTWARE DEVELOPMENT BACKGROUND TRANSITIONING TO DATA ANALYTICS

- APPLIED EXISTING TECHNICAL SKILLS TO NEW DOMAIN (QUANTITATIVE FINANCE)
- LEARNED STATISTICAL MODELING CONCEPTS THROUGH HANDS-ON IMPLEMENTATION
- BUILT END-TO-END SOLUTION CONNECTING TECHNICAL WORK TO BUSINESS OUTCOMES

PROJECT LEARNING OUTCOMES

- FIRST EXPLORATION INTO QUANTITATIVE FINANCE AND STATISTICAL MODELING
- GAINED EXPERIENCE WITH FINANCIAL DATA ANALYSIS AND RISK ASSESSMENT
- DEVELOPED UNDERSTANDING OF PRODUCTION DATA PIPELINE REQUIREMENTS

