

CS120: Computer Networks

Lecture 1. Course Introduction 1

Zhice Yang

General Information

- Week 1-9
 - Zhice Yang (杨智策)
 - yangzhc@shanghaitech.edu.cn
 - Office hours:
 - Tuesday 10:30 a.m. 11:30 a.m.
 - Office 1A-404E

- Week 9-16
 - Haoxian Chen (陈浩贤)
 - hxchen@shanghaitech.edu.cn
 - Office hours:
 - Thursday 10:30 a.m. 11:30 a.m.
 - Office 1C-503A

General Information (cont.)

- TAs:
 - Fengxu Yang (杨丰旭)
 - yangfx@shanghaitech.edu.cn
 - Yihong Hang (杭奕泓)
 - hangyh2023@shanghaitech.edu.cn
 - Chenfei Gao (高宸飞)
 - gaochf2022@shanghaitech.edu.cn
- Wechat
 - Q&A
 - Urgent Notifications
- Blackboard (互动教学平台)
 - Notifications
 - Course Materials
 - Homework Submission
- Github
 - https://github.com/sist-cs120/project-wiki
 - Project-related Discussion

Wechat QR Code

General Information (cont.)

- Textbook
 - Computer Networks: A System Approach 5th
 - by Larry Peterson, Bruce Davie
 - Computer Networks: A System Approach 6th
 - by Larry Peterson, Bruce Davie
 - https://item.jd.com/13015993.html
 - Open access version: https://book.systemsapproach.org/
- Reference Textbook
 - Computer Networking: A Top-Down Approach 8th
 - by James Kurose, Keith Ross
 - https://item.jd.com/13464817.html

Grading

- No Cheating!
 - Once confirmed. Fail the course
- 20% Homework
 - Four Homework Assignments (5% each)
- 35% Final Exam
 - No Midterm
- 45% Course Project
 - Group: <= 2 students
 - email TA (hangyh2023@shanghaitech.edu.cn) your group members no later than Oct. 6
 - 40% for four subprojects (about 10% each)
 - Submit your project (code) to Blackboard
 - Ask TAs to check and grade your project before submitting your code
 - 5% if you finish all the four subprojects
 - "finish" means: obtain a minimum score of 60% of the compulsory parts of every subproject
 - Reference code of project 1 and 2 is provided after the due
 - Programming language: No restrictions (Java is suggested)
 - Estimated coding overhead (3000 lines)
 - You can use any open-source code (should be explicitly acknowledged with reference links)
 - Project checking is scheduled on weekends
 - Can only use the provided sound cards
- Up to 25% Bonus Score
 - For finishing Course Project optional parts
- Up to 5% Attendance
- Delayed Submissions
 - -10 % * N, N is the delayed time in unit of day (N<=10)
 - -5% for the first 0 12 Hours
 - -10 % for the first 12 24 Hours

START PROJECT EARLY

Week	Time		Time	
1	Sep. 25	Course Introduction 1	Sep. 27	Course Introduction 2
2	Oct. 2		Oct. 4	
3	Oct. 9	Physical Layer	Oct. 11	Discussion: Audio Interface
4	Oct. 16	Framing & Error Detection	Oct. 18	Reliable Transmission
5	Oct. 23	Multiple Access 1	Oct. 25	Multiple Access 2
6	Oct. 30	Switching	Nov. 1	IP address
7	Nov. 6	RIP and OSPF	Nov. 8	BGP
8	Nov. 13	NAT and Router Design	Nov. 15	Discussion: Network Simulator
9	Nov. 20	SDN	Nov. 22	Mobile Routing
10	Nov. 27	TCP 1	Nov. 29	TCP 2
11	Dec. 4	Congestion Control 1	Dec. 6	Congestion Control 2
12	Dec. 11	Other Topics in TCP	Dec. 13	Data Compression
13	Dec. 18	DNS	Dec. 20	HTTP & SMTP
14	Dec. 25	FTP & P2P	Dec. 27	Network Security 1
15	Jan. 1	Network Security 2	Jan. 3	Summary
16	Jan. 8		Jan. 10	
18	Jan. 22		Jan. 24	

Week	Time	proj0 release	Time	roj1 release
1	Sep. 25	Course Introduction 1	Sep. 27	Course Introduction 2
2	Oct. 2	proj0 due	Oct. 4	
3	Oct. 9	Physical Layer proj1 due	Oct. 11	<u>Discussion: Audio Interface</u>
4	Oct. 16	Framing & Error December 4	Oct. 18	proj2 release ission
5	Oct. 23	Multiple Access 1	Oct. 25	- Manipie 7 66653 2
6	Oct. 30	Switching	Nov. 1	IP address
7	Nov. 6	RIP and OSPF proj2 due	Nov. 8	BGP
8	Nov. 13	NAT and Router Design	Nov. 15	work Simulator
9	Nov. 20	SDN	Nov. 22	proj3 release
10	Nov. 27	TCP 1 proj3 due	Nov. 29	TCP 2
11	Dec. 4	Congestion Control Projs due	Dec. 6	proj4 release trol 2
12	Dec. 11	Other Topics in TCP	Dec. 13	Data on & Compression
13	Dec. 18	DNS	Dec. 20	HTTP & SMTP
14	Dec. 25	FTP & P2P	Dec. 27	Network Security 1
15	Jan. 1	Network Security	Jan. 3	Summary
16	Jan. 8	proj4 due	Jan. 10	
18	Jan. 22		Jan. 24	

Withdraw Policy

According to University's Policies

What is a Computer Network

Internet

Device to Device Connections

Outlook Web App

Security (show explanation) This is a public or shared computer This is a private computer					
Use the light version of Outlook Web App					
User name:					
Password:					
Sign in Connected to Microsoft Exchange © 2010 Microsoft Corporation. All rights reserved.					
Email					

Wireless Connections

The Goal of This Course is

- NOT
 - Writing network apps
 - Configuring network devices

The Goal of This Course is

to Build a Computer Network

to understand how real computer networks work

Build a HTTP Service from Ground up?

- A Real Network Like Internet is too Complicated
 - Implement an http server (Apache, Nginx…)
 - Implement an http browser (Chrome, IE…)
 - Implement a TCP/IP stack (net/core, socket···)
 - Implement a link layer driver (ath9k, e1000...)
 - Implement a modem chip (ar9285, Intel i210···)

Too Much...

About our Project

Acoustic Network (Athernet)

FTP Server

Acoustic Channel

FTP Client 1

- Acoustic Connection
 - Node to node connection through speakers and microphones

- Multiple Access
 - Efficiently handle the access of multiple nodes

- NAT
 - Implement a network gateway

- Reliable Delivery and Network Application
 - e.g.: FTP

About the Project

- Building the Acoustic Network
 - Basic Communication
 - Reliability
 - Resource Sharing
 - Scalability
 - etc.

Still Very Challenging ...

Shoulders of Giants

 We introduce and borrow existing designs from state-of-the-art network technologies (especially the Internet)

The Concept of Network Layering

- Benefit
 - Modular Design

How Laying Works?

- Protocols
 - One or more protocols implement the functionality of a certain layer
 - A protocol defines a communication service
 - Service Interface (for upper layer)
 - Peer to peer Interface (for the same layer)

How Laying Works?

How Laying Works?

Canonical Layer Model

OSI 7 Layer Model

Layering of the Real Internet

Layering of the Real Internet

