CC2-S1

2020-2021

- Correction - Analyse -

PARTIE 1

Dans cette partie, α désigne un réel quelconque.

1. A l'aide de la règle de d'Alembert, déterminer le rayon de convergence de la série $\sum_{n=1}^{\infty} \frac{x^n}{n^{\alpha}}$.

 $\left| \frac{(n+1)^{\alpha}}{n^{\alpha}} \right| \underset{n \to +\infty}{\sim} 1$. Ainsi, d'après la règle de d'Alembert, le rayon de convergence de la série est 1.

On notera R_{α} ce nombre et f_{α} la somme de la série entière, c'est-à-dire pour tout $x \in]-R_{\alpha}, R_{\alpha}[:$

$$f_{\alpha}(x) = \sum_{n=1}^{+\infty} \frac{x^n}{n^{\alpha}}$$

2. Justifier que f_{α} est de classe C^{∞} sur $]-R_{\alpha},R_{\alpha}[$.

 f_{α} est la somme d'une série entière. D'après le cours, elle est donc de classe C^{∞} sur son intervalle ouvert de

3. Montrer que pour tout $x \in]-R_{\alpha}, R_{\alpha}[, f_{\alpha}(x) + f_{\alpha}(-x) = 2^{1-\alpha}f_{\alpha}(x^2)]$.

Pour $x \in]-R_{\alpha}, R_{\alpha}[$, les séries étant convergentes, on a

$$f_{\alpha}(x) + f_{\alpha}(-x) = \sum_{n=1}^{+\infty} \frac{x^n}{n^{\alpha}} + \sum_{n=1}^{+\infty} \frac{(-1)^n x^n}{n^{\alpha}} = \sum_{n=1}^{+\infty} \frac{(1+(-1)^n)x^n}{n^{\alpha}} = \sum_{n=1}^{+\infty} \frac{2x^{2n}}{(2n)^{\alpha}} = 2^{1-\alpha} f_{\alpha}(x^2).$$

4. Etablir une relation entre $f'_{\alpha+1}(x)$ et $f_{\alpha}(x)$, pour tout $x \in]-R_{\alpha}, R_{\alpha}[$.

D'après le théorème de dérivation des séries entières, on a pour tout
$$x \in]-R_{\alpha}, R_{\alpha}[:f'_{\alpha+1}(x)=\sum_{n=1}^{+\infty}n\frac{x^{n-1}}{n^{\alpha+1}}\ \mathrm{donc}\ x\ f'_{\alpha+1}(x)=\sum_{n=1}^{+\infty}\frac{x^n}{n^{\alpha}}=f_{\alpha}(x).$$

5. Justifier que pour tout réel $x \in]-R_{\alpha}, R_{\alpha}[:$

$$f_{\alpha+1}(x) = \int_0^x \frac{f_{\alpha}(t)}{t} dt$$

Remarquons tout d'abord que pour $t \in]-R_{\alpha}, 0[\cup]0, R_{\alpha}[, \frac{f_{\alpha}(t)}{t} = \sum_{n=1}^{+\infty} \frac{t^{n-1}}{n^{\alpha}} \text{ donc la fonction } t \mapsto \frac{f_{\alpha}(t)}{t} \text{ se}$

prolonge par continuité en 0, et pour tout $x \in]-R_{\alpha}, 0[\cup]0, R_{\alpha}[$ l'intégrale $\int_0^x \frac{f_{\alpha}(t)}{t} dt$ est faussement impropre en 0. De plus, d'après le théorème de primitivation d'une série entière, on a pour tout $x \in]-R_{\alpha}, R_{\alpha}[$:

$$\int_0^x \frac{f_{\alpha}(t)}{t} dt = \int_0^x \left(\sum_{n=1}^{+\infty} \frac{t^{n-1}}{n^{\alpha}} \right) dt = \sum_{n=1}^{+\infty} \frac{x^n}{n^{\alpha+1}} = f_{\alpha+1}(x).$$

6. Expliciter f_0 et retrouver f_1 et f_{-1} en utilisant les résultats établis dans les questions précédentes.

Pour
$$x \in]-1, 1[, f_0(x) = \frac{1}{1-x} - 1 = \frac{x}{1-x}$$

D'après la question précédente, pour $x \in]-1,1[,f_1(x)=\int_0^x \frac{1}{1-t} dt=-\ln(1-x),$ et d'après la question 4,

$$f_{-1}(x) = xf_0'(x) = \frac{x}{(1-x)^2}$$

Spé PT Page 1 sur 3

PARTIE 2

Dans cette partie $\alpha = 2$, et on note $f_2 = S$.

1. Justifier que S est définie sur [-1, 1].

On a montré dans la partie précédente que le rayon de convergence de la série entière est 1. S est donc définie sur]-1,1[.

La série $\sum_{n\geq 1}^{\infty} \frac{1}{n^2}$ est une série de Riemann convergente donc $\sum_{n\geq 1} \frac{(-1)^n}{n^2}$ est absolument convergente et S est définie en -1 et en 1.

2. On considère la fonction φ définie sur]0,1[par

$$\varphi(x) = S(x) + S(1-x) + \ln(x) \ln(1-x)$$

a. Justifier que φ est de classe C^1 sur]0,1[.

Pour $x \in]0,1[,1-x \in]0,1[.S$ étant la somme d'une série entière de rayon 1, elle est de classe C^1 sur]0,1[et la fonction ln est de classe C^1 sur]0,1[.

On en déduit que par produit et somme, φ est de classe C^1 sur]0,1[.

b. Calculer S'(x) pour $x \in]0,1[$.

D'après le théorème de dérivation d'une série entière, pour tout $x \in]0,1[$, on a $S'(x)=\sum_{n=1}^{+\infty}\frac{x^{n-1}}{n}$.

On reconnait un développement en série entière usuel et on a pour $x \in]0,1[,S'(x)=\frac{-1}{x}\ln(1-x)$. Remarque: On pouvait également utiliser les questions 4 et 6 de la partie 1.

c. En déduire que φ est constante sur]0,1[.

Pour tout $x \in]0,1[$, on a : $\varphi'(x) = S'(x) - S'(1-x) + \frac{\ln(1-x)}{x} - \frac{\ln(x)}{1-x} = 0$.

On en déduit que φ est une fonction constante sur]0,1[.

- **3.** Pour $x \in [0,1]$, et $n \in \mathbb{N}^*$, on note $S_n(x) = \sum_{k=1}^n \frac{x^k}{k^2}$.
 - $\textbf{a.} \quad \text{Montrer que}: \forall \varepsilon > 0, \exists N \in \mathbb{N}^*, \forall x \in [0,1], |S(x) S_N(x)| < \varepsilon.$

 $\operatorname{Soit}(n,p) \in (\mathbb{N}^*)^2$, n < p; la série de Riemann $\sum_{n \geq 1} \frac{1}{n^2}$ étant convergente, pour tout $x \in [0,1]$ on a :

$$0 \leq \sum_{k=n+1}^p \frac{x^k}{k^2} \leq \sum_{k=n+1}^p \frac{1}{k^2} \leq \sum_{k=n+1}^{+\infty} \frac{1}{k^2} \text{ puis, la série } \sum_{n\geq 1} \frac{x^n}{n^2} \text{ étant convergente, par passage à la limite en p}:$$

$$\sum_{k=n+1}^{+\infty} \frac{x^k}{k^2} \leq \sum_{k=n+1}^{+\infty} \frac{1}{k^2}$$

La suite des restes d'une série convergente a une limite nulle, on en déduit :

$$\forall \varepsilon > 0, \exists N \in \mathbb{N}^*, \forall x \in [0, 1], |S(x) - S_N(x)| = \sum_{k=N+1}^{+\infty} \frac{x^k}{k^2} \le \sum_{k=N+1}^{+\infty} \frac{1}{k^2} < \varepsilon$$

b. Montrer que : $\forall n \in \mathbb{N}^*, \forall \varepsilon > 0, \exists r > 0, \forall x \in [1 - r, 1], |S_n(x) - S_n(1)| < \varepsilon$.

Pour tout $n \in \mathbb{N}^*$, la fonction S_n est une fonction polynomiale elle est donc continue en 1, ce qui s'exprime formellement comme le résultat attendu.

 $\operatorname{Sp\'{e}}\operatorname{PT}$ Page 2 sur 3

 \mathbf{c} . Déduire des deux questions précédentes que S est continue en 1.

Soit $\varepsilon > 0$. D'après la question **3.a** il existe $N \in \mathbb{N}^*$ tel que pour tout $x \in [0,1], |S(x) - S_N(x)| < \frac{\varepsilon}{3}$; cette inégalité est en particulier vraie pour x = 1. D'après la question **3.b** pour l'entier N défini précédemment, il existe r > 0 tel que pour $x \in [1-r,1],$ $|S_N(x) - S_N(1)| < \frac{\varepsilon}{3}$. Ainsi, pour $x \in [1-r,1], |S(x) - S(1)| \le |S(x) - S_N(x)| + |S_N(x) - S_N(1)| + |S_N(1) - S(1)| < \varepsilon$. S est donc continue en 1.

4. Montrer que pour tout $x \in]0,1[,\varphi(x)=S(1).$

On vient de montrer que S est continue en 1 et comme S est la somme d'une série entière de rayon strictement positif elle est continue en 0, donc la fonction $S: x \mapsto S(1-x)$ est continue en 1. De plus, $\ln(x)\ln(1-x) \underset{x\to 1}{\sim} (x-1)\ln(1-x)$ donc par croissances comparées, $\lim_{x\to 1} \ln(x)\ln(1-x)=0$. On en déduit que φ se prolonge par continuité en 1, et donc que pour tout $x\in]0,1[,\varphi(x)=S(1)+S(0)+0=S(1)$.

5. En admettant que $S(1) = \frac{\pi^2}{6}$, en déduire la valeur de la somme $\sum_{n=1}^{+\infty} \frac{1}{2^n n^2}$.

D'après ce qui précède, on a $\varphi\left(\frac{1}{2}\right)=S(1),$ d'où $2S\left(\frac{1}{2}\right)+\left(-\ln 2\right)^2=\frac{\pi^2}{6}$; c'est-à-dire :

$$\sum_{n=1}^{+\infty} \frac{1}{2^n n^2} = \frac{\pi^2}{12} - \frac{(\ln 2)^2}{2}$$

 $\operatorname{Sp\'{e}}\operatorname{PT}$ Page 3 sur 3