Author Name: SRAVAN KUMAR VASAM

R & D Project: Machine Learning Clustering models K-means and Hierarchical Clustering

Technologies: R version 4.0.2, Rstudio, Linux

Year of submission : November, 2020

Data source: Banking/credit limit data

Aim: Based on the annual income and spending score we discover the group of clusters, segmenting the potential, non potential and sensitive customers. By applying two k-means and HC algorithms.

Clustering machine learning model

Important points to be noted

- 1) Clustering is similar to classification, but the basis is different.
- 2) In Clustering you don't know what you are looking for, and you are trying to identify some segments or clusters in your data.
- 3) When you use clustering algorithms on your dataset, unexpected things can suddenly pop up like structures, clusters and groupings you would have never thought of otherwise.
- 4) Using the elbow method to find the optimal number of clusters

Following machine learning clustering models implementing.

- (1) K-Means Clustering, library(cluster), function:clusplot
- (2) Hierarchical Clustering, library(cluster), functions: visualisation-clusplot, hclust
- 1. K-Means Clustering

pros: Simple to understand, easily adaptable, works well on small or large datasets, fast, efficient and performant

cons: Need to choose the number of clusters

formula:

--Fitting K-Means to the dataset

set.seed(29)

kmeans = kmeans(x = dataset, centers = 5)

K-means clustering model variables output

Data	
🚺 dataset	200 obs. of 2 variables
D kmeans	List of 9
Values	
i	10L
WCSS	num [1:10] 269981 186207 106348 73680 66465
y_kmeans	int [1:200] 4 4 4 4 4 4 4 4 4 4

Elbow method

The Elbow Method

K-means clustering Rlot

Clusters of customers

These two components explain 100 % of the point variabili

2. Hierarchical Clustering

pros: The optimal number of clusters can be obtained by the model itself, practical visualisation with the dendrogram.

Cons: Not appropriate for large datasets

formula:

dendrogram = hclust(d = dist(dataset, method = 'euclidean'), method = 'ward.D')
plot(dendrogram, main = paste('Dendrogram'), xlab = 'Customers', ylab = 'Euclidean distances')

Hierarchical clustering variable output:

Hierarchical clustering variable output:

Hierarchical clustering

Customers hclust (*, "ward.D")

super market mall data source

input data source

	Annual.Incomek	Spending.Score1.100.
		-p
1	15	39
2	15	81
3	16	6
4	16	77
5	17	40
6	17	76
7	18	6
8	18	94
9	19	3
10	19	72
11	19	14
12	19	99
13	20	15
14	20	77
15	20	13
16	20	79
17	21	35
18	21	66
19	23	29
20	23	98
21	24	35
22	24	73
	25	_