Trabajo de investigación:

Simulaciones de chubascos atmosféricos producidos por UHECR con diferentes composiciones.

Cindy Castellón

Escuela de Física

15 de febrero de 2021

- Marco Teórico
 - Sustento histórico
 - Estado del conocimiento
- Objetivos
- Metodología
- Resultados
 - Profundidad del máximo
 - Distribuciones laterales
 - Densidad de partículas a ropt
- Conclusiones

Rayos cósmicos

Descubiertos por Victor Hess en 1912; son partículas cargadas originadas en ambientes extremos del universo que llegan a la Tierra con altas energías ($> 10^9$ eV).

Figura: Intensidad del flujo de rayos cósmicos en función de su energía. Es representado por una ley de potencias $E^{-2,7}$ (, 1999).

Marco Teórico Objetivos Metodología Resultados Conclusion Sustento histórico Estado del conocimiento

Chubascos atmosféricos

Figura: Esquema de la formación y desarrollo de un chubasco atmosférico. Se ilustra la componente hadrónica y la electromagnética. (ALguien, 1999)

Marco Teórico Objetivos Metodología Resultados Conclusion Sustento histórico Estado del conocimiento

Modelos de chubascos

Sección eficaz

Probabilidad de que una partícula interactúe.

Multiplicidad

Número de mesones producidos en una interacción hadrónica.

Inelasticidad

Fracción de la energía que se invierte en producción de mesones.

Marco Teórico Objetivos Metodología Resultados Conclusion Sustento histórico Estado del conocimiento

Estado del conocimiento

Preguntas abiertas en la física de rayos cósmicos:

- ¿Cómo alcanzan sus altas energías observadas?
- ¿Dónde se producen?
- A ultraaltas energías ¿ qué especie de partículas son?

Figura: X_{max} promedio (izquierda) y desviación estándar (derecha) de chubascos simulados con diferentes modelos hadrónicos (Bellido, 2017).

Figura: X_{max} promedio (izquierda) y desviación estándar (derecha) asumiendo una composición mixta (línea sólida), comparado con datos del Observatorio Pierre Auger (Sciutto, 2019).

Figura: Comparación de distribuciones laterales de muones resultado de simulaciones con el programa CORSIKA y medidas del observatorio KASCADE (Apel et al, 2005).

Marco Teórico Objetivos Metodología Resultados Conclusion

Objetivos

- Verificar el efecto de una composición mixta de los UHECR en la profundidad del máximo $X_{\rm max}$.
- Analizar las distribuciones laterales y densidad de partículas (electrones y muones) a una distancia fija del eje en chubascos producidos por diferentes composiciones primarias.
- Examinar las discrepancias entre las predicciones realizadas con los diferentes modelos hadrónicos de altas energías.

Marco Teórico Objetivos Metodología Resultados Conclusion

Metodología

Con el sistema AIRES se simularon chubascos producidos por rayos cósmicos de energías entre 10^{17} y 10^{20} eV, en la ubicación de Malargue en Mendoza, Argentina -donde se encuentra una de las estaciones del Observatorio Pierre Auger-.

Se consideraron direcciones de incidencia con ángulo zenital entre 0° y 70° y ángulo azimutal distribuido isotrópicamente entre 0° y 360° .

Se utilizaron tres modelos de interacciones hadrónicas de altas energías; Sibyll 2.3c, EPOS-LHC y QGSJETII-04.

Figura: Composición en función de la energía, resultado de ajustes con los datos de X_{max} del Observatorio Pierre Auger realizados con tres modelos de interacciones hadrónicas de altas energías.

- Los programas de simulación principales (AiresEPLHC, AiresEP199, AiresQIIr03, AiresQIIr04, AiresS21, AiresS23, AiresS23c), cada uno conteniendo la interfaz para un paquete de interacciones hadrónicas.
- El programa resumen (AiresSry), diseñado para procesar parte de los datos generados por los programas de simulación.
- El programa de conversión de formato IDF (internal dump file) a ADF (portable dump file) (AiresIDF2ADF).
- Una librería de auxiliares para procesar los archivos de salida de los programas de simulación (libAires.a).
- El AIRES runner system, para facilitar el trabajo con AIRES en ambientes UNIX.

Marco Teórico Objetivos Metodología Resultados Conclusion X_{max} Distribuciones Densidad a r_{opt}

Resultados

Se muestran y discuten resultados de:

- Profundidad del máximo X_{max} . Composición ligera, pesada y mixta.
- Distribuciones laterales de electrones y muones. Composición ligera y pesada.
- Densidad de electrones y muones a 1000 m. Composición ligera y pesada.

Figura: X_{max} promedio de chubascos de composición ligera y pesada, simulados con diferentes modelos hadrónicos.

Ajuste lineal:

$$\langle X_{max}\rangle = \Lambda \log(E) + b$$

Cuadro: Parámetros del ajuste lineal a los datos de X_{\max} de diferentes modelos y composiciones.

Modelo	Prim	Λ	b
Sibyll 2.3c	р	58.133	-284.299
Sibyli 2.3C	Fe	60.589	-435.177
EPOS-LHC	р	56.129	-262.527
LF O3-LITC	Fe	60.731	-443.335
QGSJETII-04	р	52.319	-206.041
QG3JL111-04	Fe	56.287	-374.749

Figura: Resultados de la profundidad del máximo en chubascos con composición primaria mixta, comparándolos con datos experimentales del Observatorio Pierre Auger.

Marco Teórico Objetivos Metodología Resultados Conclusion X_{max} Distribuciones Densidad a r_{opt}

Distribuciones laterales

Los resultados se ajustaron a una función NKG modificada de la forma:

$$\rho(r) = c \left(\frac{r}{r_{opt}}\right)^{-\beta} \left(1 - \frac{r}{r_{opt}}\right)^{-\beta}.$$

Cuadro: Parámetros para distribución de electrones

		С	β
Sib	р	1.313	2.553
Sib	Fe	1.339	2.421
EPO	р	1.437	2.505
EPU	Fe	1.390	2.465
QGS	р	0.757	2.497
	Fe	0.691	2.432

Cuadro: Parámetros para distribución de muones

		С	β
Sib	р	0.436	1.297
Sib	Fe	0.586	1.247
FPO	р	0.425	1.313
EPU	Fe	0.684	1.238
QGS	р	0.212	1.295
	Fe	0.318	1.253

R [m]

R [m]

Figura: Razones entre densidades de partículas de pares de modelos de interacción hadrónica.

R [m]

Se graficaron las distribuciones laterales para tres subintervalos de energía designados como bin02, bin13 y bin24, con energías

$$10^{17,1} \le E_{bin03} < 10^{17,2} \text{ eV},$$
 $10^{18,2} \le E_{bin14} < 10^{18,3} \text{ eV}, \text{ y}$ $10^{19,7} \le E_{bin23} < 10^{19,8} \text{ eV}.$

Figura: Distribuciones laterales de electrones y muones resultado de chubascos de energía promedio $E = 10^{17,15}$ eV.

Figura: Distribuciones laterales de electrones y muones resultado de chubascos de energía promedio $E=10^{18,25}\ {\rm eV}.$

Figura: Distribuciones laterales de electrones y muones resultado de chubascos de energía promedio $E=10^{19,75}\ {\rm eV}.$

Cuadro: Parámetros del ajuste de la distribución de electrones y muones.

Subintervalo		bir	bin02		bin13		bin24	
Modelo	Prim.	с	β	С	β	С	β	
Sibyll 2.3c	р	0.242	2.419	3.154	2.450	48.247	2.491	
Sibyli 2.30	Fe	0.193	2.362	3.811	2.284	30.944	2.507	
EPOS-LHC	р	0.282	2.362	3.433	2.446	48.576	2.570	
	Fe	0.319	2.191	3.423	2.315	38.819	2.385	
QGSJETII-04	р	0.270	2.392	3.577	2.511	61.917	2.487	
	Fe	0.171	2.361	3.140	2.336	42.061	2.402	

Subinterva	bintervalo		bin02		bin13		bin24	
Modelo	Prim.	С	β	с	β	С	β	
Sibyll 2.3c	р	0.124	1.193	1.431	1.182	13.841	1.243	
Sibyli 2.3C	Fe	0.179	1.181	1.811	1.196	16.816	1.219	
EPOS-LHC	р	0.135	1.185	1.397	1.188	15.138	1.273	
	Fe	0.205	1.161	1.968	1.150	18.815	1.161	
QGSJETII-04	р	0.101	1.238	1.135	1.233	13.823	1.247	
	Fe	0.147	1.178	1.622	1.159	17.012	1.174	

Marco Teórico Objetivos Metodología Resultados Conclusion X_{max} Distribuciones Densidad a r_{opt}

Densidad de partículas a ropt

Figura: Densidad de partículas (electrones y muones) a una distancia $R=r_{opt}$ en función de la energía inicial

Ajuste a una ley de potencias:

$$\rho_{r_{opt}}(E) = a \left(\frac{E}{10^{18}}\right)^b.$$

Cuadro: Parámetros del ajuste de la densidad de electrones.

		a	Ь
Sib	р	0.323	0.915
SID	Fe	0.542	0.780
EPO	р	0.317	0.952
	Fe	0.489	0.802
QGS	р	0.255	0.952
	Fe	0.454	0.779

Cuadro: Parámetros del ajuste de la densidad de muones.

		а	Ь
Sib	р	0.215	0.836
SID	Fe	0.308	0.829
EPO	р	0.184	0.898
EFO	Fe	0.314	0.822
QGS	р	0.154	0.911
CDy	Fe	0.227	0.888

Marco Teórico Objetivos Metodología Resultados Conclusion

Conclusiones

- La hipótesis de la composición mixta es apoyada por los resultados de X_{max}.
- El modelo EPOS-LHC el que más acertadamente reproduce los datos observacionales de X_{max}. el modelo QGSJETII-04 el que predice menores profundidades.

- En el caso de las distribuciones laterales en todo el intervalo de energías, los tres modelos producen formas similares.
 QGSJETII-04 muestra menor densidad de partículas.
- Se observa que al aumentar la energía la forma de las distribuciones se mantiene similar, aumentando en general el número de partículas.
- El efecto de la composición primaria es contrario para electrones y muones. A altas energías primarias las distribuciones de distintas composiciones casi se sobrelapan.

- Las densidades de partículas a la distancia óptima del PAO en función de la energía inicial no muestran una clara dependencia del modelo de interacciones hadrónicas.
- La densidad de electrones no presenta dependencia tampoco de la composición primaria, mientras que la densidad de muones aumenta sus diferencias entre composiciones al aumentar la energía.