

Lista de Exercícios Nº 3

Exercício Nº 1

A força $\vec{F} = 2\hat{i} - 3\hat{j} + \hat{k}$ atua no ponto (1,5,2). Determine o torque ($\vec{t} = \vec{r} \times \vec{F}$) devido à \vec{F} em relação:

- a) à origem
- b) ao eixo dos y
- c) à linha x/2 = y/1 = -z/2

Exercício Nº 2

Dado o campo vetorial $\vec{F} = 4xz\hat{\imath} - y^2\hat{\jmath} + yz\hat{k}$, avalie

$$\int\limits_{S} \hat{n} \cdot \vec{F} dA$$

onde S é a superfície do prisma limitado pelos planos x=0, x=2, y=0, y=1, z=0 e z=1. Utilize o teorema da divergência para confirmar sua resposta.

Exercício Nº 3

Considere um dado escoamento onde o campo de pressão é dado por $p(\vec{r},t)=x^2+yz$.

- Obtenha a variação da pressão ao longo da orientação tangente à linha x + 1 = 5 z = y + 3, no ponto (3,4,1).
- Avalie a circulação de $\vec{\nabla} p$ ao longo da curva que conecta (0,0,0), (1,0,0), (1,1,0), (0,1,0) e comente o resultado.

Exercício Nº 4

Dado $\mathbf{F} = (x^2 - y^2)\hat{\imath} - 2xy\hat{\jmath}$, calcule o trabalho realizado por esse campo de força,

$$\int_{C} \vec{F} \cdot \hat{t} ds = \int_{C} \left[(x^2 - y^2) dx - 2xy dy \right],$$

ao longo dos seguintes caminhos C, que ligam o ponto (0,0) ao ponto (1,2):

- a) $y = 2x^2$
- b) $x = t^2, y = 2t$
- c) y=0 de x=0 a x=1, e daí ao longo da linha vertical que liga (1,0) a (1,2)

Calcule, $\vec{\nabla} \! \times \! \vec{F}$ e comente o resultado.

Exercício Nº 5

Considere o campo vetorial $\mathbf{V} = 2yx^2\hat{i} + 2xy^2\hat{j} - (8xyz + 2z)\hat{k}$.

- a) Calcule $\oint \mathbf{V} \cdot \hat{n} dA$ em uma superfície fechada formada por um cubo de lado " Δ ", expressando seu resultado em função de Δ (não utilize o teorema da divergência neste passo).
 - b) Divida o resultado do item "a"pelo volume do cubo (Δ^3) e avalie o limite para $\Delta \to 0$.
- c) Calcule agora o fluxo liquido através do teorema da divergência. O que representa o resultado obtido?

Exercício Nº 6

a) Aplique o teorema da divergência na seguinte função

$$\mathbf{G}(x,y) = G_x(x,y)\hat{\imath} + G_y(x,y)\hat{\jmath}$$

para um volume ΔV e superfície S de forma cilíndrica representada por uma curva plana fechada no plano xy de área A com seu topo na mesma forma e paralelo à base, e lateral paralela ao eixo z, conforme ilustrado na figura 1. A seguir obtenha a seguinte relação

Figura 1: Volume proposto

$$\oint_C (G_x dy - G_y dx) = \int_A \left(\frac{\partial G_x}{\partial x} + \frac{\partial G_y}{\partial y} \right) dx dy$$

que é o teorema da divergência em duas dimensões.

b) Aplique o teorema de Stokes para a seguinte função

$$\vec{F}(x,y) = F_x(x,y)\hat{\imath} + F_y(x,y)\hat{\jmath}$$

na mesma figura indicada e mostre que

$$\oint_C (F_x dx + F_y dy) = \int_A \left(\frac{\partial F_y}{\partial x} - \frac{\partial F_x}{\partial y} \right) dx dy$$

que é o teorema de Stokes em duas dimensões.

c) Mostre que em duas dimensões os teoremas da divergência e de Stokes são idênticos.

Exercício Nº 7

Considere o tensor cujas componentes no sistema de coordenadas cartesiano ortogonal são dadas por,

$$\mathbf{T} = \begin{pmatrix} 7 & 3 & 0 \\ 3 & 7 & 4 \\ 0 & 4 & 7 \end{pmatrix}$$

- a) Calcule o vetor associado a este tensor na orientação $(0, -\sqrt{2}/2, \sqrt{2}/2)$;
- b) Calcule as componentes de **T** no sistema $\hat{e}_1 = \hat{k}$, $\hat{e}_2 = \frac{\hat{i}+\hat{j}}{\sqrt{2}}$ e $\hat{e}_3 = \frac{\hat{i}-\hat{j}}{\sqrt{2}}$;
- c) Calcule os eixos principais de T;
- d) Expresse as componentes de T em relação aos eixos principais;
- e) Calcule os invariantes de \mathbf{T} e verifique que de fato I_1 , I_2 e I_3 independem do sistema de coordenadas usado para expressar as componentes de \mathbf{T} .

Exercício Nº 8

Avalie a força resultante (nas suas componentes x e y) sobre a superfície definida pelo plano 2x+y=10 que se encontra no primeiro quadrante, considerando um estado de tensões dado pelo o tensor cartesiano,

$$\mathbf{T} = \begin{pmatrix} 5y & 2x & 0 \\ 2x & 5y & 0 \\ 0 & 0 & 5y \end{pmatrix}$$

Avalie a componente dessa força, na direção **normal a superfície**.