# Escuela Técnica Superior de Ingeniería Informática

Asignatura: Algebra Lineal y Numérica

Autor: Fernando José Mateos Gómez

Ultima Modificacion: 28 de enero de 2022

ော်သင်္က က်ာက်က ထိုက်တာတို့ မြိုက် က ေ သင်္က ကြိုက်လို့ က်လက်လ ကောင်းမြင့်မျှီးကို မ

# Indice

| 1. | Ten                      | na 1: Sistemas de Ecuaciones Lineales, Métodos Directos | 2 |
|----|--------------------------|---------------------------------------------------------|---|
|    | 1.1.                     | Sistema de Ecuaciones Lineales                          | 2 |
|    |                          |                                                         | 2 |
|    |                          |                                                         | 2 |
|    | 1.2.                     | Matrices Elementales                                    | 2 |
|    |                          | 1.2.1. Propiedades                                      | 3 |
|    | 1.3.                     | Método de Gauss-Jordan                                  | 3 |
|    |                          | 1.3.1. Matriz Inversa                                   | 3 |
|    | 1.4.                     | Método LU                                               | 3 |
|    |                          | 1.4.1. Método de Cholesky                               | 4 |
| 2. | 2. Tema 2: Interpolación |                                                         | 5 |
| 3. | Ten                      | na 3: Polinomio de Taylor                               | 6 |
| 4. | Ten                      | na 4: Series Numéricas. Series de Potencias             | 7 |
| 5. | Ten                      | na 5: Series de Fourier. Series Trigonométricas         | 8 |
| К  | Ten                      | na 6: Funciones de Varias Variables                     | q |

# 1. Tema 1: Sistemas de Ecuaciones Lineales, Métodos Directos

#### 1.1. Sistema de Ecuaciones Lineales

Considerando que un sistema de ecuaciones lineales se puede representar como  $\mathbf{A}\mathbf{x} = \mathbf{b}$  podemos decir entonces que esta expresión equivale a:

$$\begin{cases} ax + by + cz + \dots = k \\ \dots + \dots + \dots + \dots = \dots \\ \dots + \dots + \dots + \dots = \dots \\ \dots + \dots + \dots + \dots = \dots \end{cases}$$

Que es lo mismo que:

$$\begin{pmatrix} ax & by & cz & \cdots \\ \vdots & \ddots & \cdots & \cdots \\ \vdots & \cdots & \ddots & \cdots \\ \vdots & \cdots & \cdots & \ddots \end{pmatrix} \begin{pmatrix} x \\ y \\ z \\ \vdots \end{pmatrix} = \begin{pmatrix} k \\ \vdots \\ \vdots \\ \vdots \end{pmatrix}$$

#### 1.1.1. Método de Eliminacion de Gauss

Aplicando transformaciones elementales simplificamos la matriz (A|b) de forma que sea triangular superior:

$$\begin{pmatrix} 1 & 2 & | 3 \\ -1 & 1 & | 3 \\ 1 & 1 & | 3 \end{pmatrix} \xrightarrow{F_{21}(1) \ F_{31}(-1)} \begin{pmatrix} 1 & 2 & | 3 \\ 0 & 3 & | 6 \\ 0 & -1 & | 0 \end{pmatrix} \xrightarrow{F_{32}(\frac{1}{3})) \ F_{2}(\frac{1}{3})} \begin{pmatrix} 1 & 2 & | 3 \\ 0 & 1 & | 2 \\ 0 & 0 & | 2 \end{pmatrix}$$

$$\begin{cases} x + 2y = 3 \\ 3y = 6 \\ 0 = 2 \end{cases}$$

En este caso no tiene solución.

### 1.1.2. Discusión

Existen 3 tipos de sistemas de ecuaciones:

- Incompatible: No tiene soluciones.
- Compatible:
  - Determinado: Tiene una sola solución.
  - Indeterminado: Tiene infinitas soluciones.

Para determinar cual es, sin resolverla, aplicamos el método de Rouché-Fröbenius:

- Si el Rango(A)  $\neq$  Rango(A|b) entonces es Incompatible.
- Si el Rango(A) es igual al número de incógnitas, es <u>Determinado</u>.
- Si el Rango(A) es menor al número de incógnitas es <u>Indeterminado</u>.

### 1.2. Matrices Elementales

Llamamos a estas a las matrices que surgen de operar con sus filas (F) o columnas C.

- $F_{ij} \Rightarrow F_i \leftrightarrow F_j$
- $F_i(\lambda) \Rightarrow F_i \leftarrow \lambda F_i$
- $F_{ij}(\lambda) \Rightarrow F_i \leftarrow F_i + F_j \lambda$

## 1.2.1. Propiedades

- 1. Mover dos filas o columnas implica en multiplicar la matriz por (-1).
- 2. Multiplicar una fila o columna por un número, implica multiplicar la matriz por ese valor.

3. 
$$F_{ij} = F_{ij}^{-1}$$

4. 
$$F_i^{-1}(\lambda) = F_i(\frac{1}{\lambda})$$

5. 
$$F_{ij}^{-1}(\lambda) = F_{ij}(-\lambda)$$

# 1.3. Método de Gauss-Jordan

Se basa en el método de Gauss, partiendo de una matriz I, unitaria, debemos de encontrar otra tal que su producto nos devuelva la solución que buscamos.

#### 1.3.1. Matriz Inversa

Para calcularla debemos de hacer transformaciones elementales de la matriz A|I tal que A se convierta en I, haciendo transformaciones elementales para obtener una matriz triangular superior y luego diagonal. Es decir:

$$A^{-1} = FI$$

## 1.4. Método LU

Para poder aplicar este algoritmo, y sus derivados, debemos de cerciorarnos que A es una matriz definida positiva, cada una de sus submatrices, partiendo desde el elemento en la primera columna, primera fila, y de ahí expandiendo, es positiva.

$$Ax = b$$
  $A = LU$ 

Considerando A como la matriz con la que partimos, las matrices L y U son matrices diagonales inferior y superior, respectivamente. Considerando esto, podemos usar el método de Gauss para obtener la matriz U y para L, aplicamos el siguiente sistema de ecuaciones:

$$\begin{cases} Ly = b \\ Ux = y_0 \end{cases}$$

Siendo x la solución del sistema. ¿Cómo hayar L? A partir de las transformaciones elementales que hemos hecho, le hacemos la inversa, y se las aplicamos a una matriz unitaria, veamos este ejemplo:

$$\begin{pmatrix} 2 & -1 & 0 & 1 \\ 2 & -2 & 0 & 2 \\ -2 & 0 & 1 & -2 \\ -1 & 1 & 0 & 0 \end{pmatrix} \xrightarrow{F_{21}(-1) F_{31}(1) F_{41}\left(\frac{1}{2}\right)} \begin{pmatrix} 2 & -1 & 0 & 1 \\ 0 & -1 & 0 & 1 \\ 0 & -1 & 1 & -1 \\ 0 & \frac{1}{2} & 0 & \frac{1}{2} \end{pmatrix} \xrightarrow{F_{32}(-1) F_{42}\left(\frac{1}{2}\right)} \begin{pmatrix} 2 & -1 & 0 & 1 \\ 0 & -1 & 0 & 1 \\ 0 & 0 & 1 & -2 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Ahora tenemos la siguiente ecuacion:

$$F_{42}\left(\frac{1}{2}\right)F_{32}(-1)F_{41}\left(\frac{1}{2}\right)F_{31}(1)F_{21}(-1)A = U$$

$$L = (F_{42} \left(\frac{1}{2}\right) F_{32}(-1) F_{41} \left(\frac{1}{2}\right) F_{31}(1) F_{21}(-1))^{-1}$$

$$L = F_{21}(1)F_{31}(-1)F_{41}\left(\frac{-1}{2}\right)F_{32}(1)F_{42}\left(\frac{-1}{2}\right)I$$

Con todo esto, ya seríamos capaces de plantear los sistemas de ecuaciones.

## 1.4.1. Método de Cholesky

Es una derivación del método LU, solo se puede usar cuando la matriz es simétrica  $A=A^t$ , en cuyo caso  $A=KK^t$ 

De esta forma, ahora la ecuación que tendremos que resolver es la siguiente:

$$\begin{cases} Ky = b \\ K^t x = y_0 \end{cases}$$

Para obtener K debemos de obtener L y multiplicarla por una matriz formada por los elementos de la diagonal de U, con su raiz cuadrada:

$$\begin{pmatrix} 4 & 2 & 0 \\ 2 & 3 & -2 \\ 0 & -2 & 3 \end{pmatrix} \xrightarrow{F_{21}\left(\frac{-1}{2}\right) F_{32}(1)} \begin{pmatrix} 4 & 2 & 0 \\ 0 & 2 & -2 \\ 0 & 0 & 1 \end{pmatrix} = U$$

$$L = \begin{pmatrix} 1 & 0 & 0 \\ \frac{1}{2} & 1 & 0 \\ 0 & -1 & 1 \end{pmatrix}$$

$$K = \begin{pmatrix} 1 & 0 & 0 \\ \frac{1}{2} & 1 & 0 \\ 0 & -1 & 1 \end{pmatrix} \begin{pmatrix} 2 & 0 & 0 \\ 0 & \sqrt{2} & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 2 & 0 & 0 \\ 1 & \sqrt{2} & 0 \\ 0 & -\sqrt{2} & 1 \end{pmatrix}$$

# 2. Tema 2: Interpolación

3. Tema 3: Polinomio de Taylor

4. Tema 4: Series Numéricas. Series de Potencias

5. Tema 5: Series de Fourier. Series Trigonométricas

6. Tema 6: Funciones de Varias Variables