Data Understanding Data Preprocessing

Classification & Regression

How do we obtain reliable estimates of performance measures?

Estimating Model Performance

How do we estimate performance measures?

- Error on training data?
 - Also called resubstitution error.
 - Not a good indicator of the performance on future data.

- Simple solution
 - Spit the available data into training and testing sets.

Training and Testing Sets

Avoiding Data Snooping

- It is important that the test data is not used in any way to create the classifier.
- Some learning schemes operating in two stages
 - Stage 1: builds the basic structure
 - Stage 2: optimizes parameter settings
- The test data cannot be used for parameter tuning.
- Proper procedure uses three sets: training data, validation data, and test data.

Validation Data

- A validation dataset is a subset of the data used to tune parameters.
- Typically used when an appropriate model needs to be chosen from several rivaling approaches.

Data Understanding Data Preprocessing

Validation Data

Methods of Estimating Performance

- Holdout
 - Reserve ½ for training and ½ for testing.
 - Reserve 2/3 for training and 1/3 for testing.
- Random subsampling
- Cross validation
 - Partition data into k disjoint subsets
 - -k-fold: train on k-1 partitions, test on the remaining one
 - Leave-one-out: k = n

Methods of Estimating Performance

- Holdout
 - Single holdout
 - Repeated holdout
- Cross validation
 - -k-fold validation
 - Leave-one-out validation
- Stratified sampling
- Bootstrap

Holdout Estimation

Key Idea:

Reserve a certain amount of data for testing and use the remainder for training.

Problems:

- For small or "unbalanced" datasets, instances might not be representative.
- The data used for training and testing may vary significantly.

Stratified Holdout

Generate holdout using stratified sampling.

 Generates new subsets of instances with an approximately equal proportions of classes.

Ensures that the classes are equally represented in the samples.

Repeated Holdout

- Repeated holdout, or "random subsampling," improves the reliability of the holdout estimate by repeating the process with different subsamples.
 - In each iteration, a certain proportion of data is randomly selected for training.
 - The error rates on different iterations are averaged to yield an overall error rate.
- Problem: overlapping test sets.

Cross-Validation

- Cross-validation ensures non-overlapping test sets.
- In *k*-fold cross-validation:
 - The data is split into k stratified subsets of equal size.
 - Each of the k subsets is used for testing and the combination of the rest for training.
- The error estimates are averaged across each of the *k* folds.

Fold 1

Fold 2

Fold 3

Fold 4

Fold 5

Fold 6

Fold 7

Fold 8

Fold 9

Fold 10

1. Divide a dataset into *k* folds.

Fold 1

Fold 2

Fold 3

Fold 4

Fold 5

Fold 6

Fold 7

Fold 8

Fold 9

Fold 10

- 1. Divide a dataset into *k* folds.
- 2. Use one subset for testing and the remainder for training.

Fold 1

Fold 2

Fold 3

Fold 4

Fold 5

Fold 6

Fold 7

Fold 8

Fold 9

Fold 10

- 1. Divide a dataset into *k* folds.
- 2. Use one subset for testing and the remainder for training.
- 3. Iterate.

Fold 1

Fold 2

Fold 3

Fold 4

Fold 5

Fold 6

Fold 7

Fold 8

Fold 9

Fold 10

- 1. Divide a dataset into k folds.
- 2. Use one subset for testing and the remainder for training.
- 3. Iterate.
- 4. Average the error rates over all *k* folds.

Properties of Cross-Validation

- Cross-validation uses sampling without replacement.
 - The same instance, once selected, cannot be selected again for a particular training/testing set.
- Computationally expensive.
- Variance tends to be high.

The Bootstrap

- The bootstrap uses sampling with replacement to form the training set.
 - Sample a dataset of *n* instances *n* times with replacement to form a new dataset of *n* instances.
 - Use this data as the training set.
 - Use the instances from the original dataset that don't occur in the new training set for testing.

The Bootstrap

- An instance has a probability of 1 1/n of not being picked for training.
- Thus, its probability of ending up in the test data is:

$$\left(1 - \frac{1}{n}\right)^n \approx e^{-1} = 0.368$$

• This means the training data will contain approximately 63.2% of the instances.

Estimating Error using the Bootstrap

- The error estimate on the test data will be very pessimistic, since training was on just ~63% of the instances.
- Therefore, combine it with the resubstitution error: $err = 0.632 \times e_{\text{test instances}} + 0.368 \times e_{\text{training instances}}$
- The resubstitution error gets less weight than the error on the test data.

Properties of the Bootstrap

- For small sample size n, bootstrap will have much smaller variability than the cross-validation estimate.
- Bootstrap and CV estimates will generally be close for large sample sizes.
 - Their ratio will approach unity as the sample size approaches infinity.