Дисциплина: Теория вероятностей и математическая статистика ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ №Д01 (Демонстрационный)

Задание 1. В урне 12 белых и 8 черных шаров. Из урны вынимают наугад сразу два шара. Найти вероятность того, что оба шара будут одного цвета.

Задание 2. В прямоугольник с вершинами в точках O(0;0), A(0;4), B(2;4), C(2;0) наудачу брошена точка. Найти вероятность того, что точка попадет в область $y < x^2$.

Задание 3. Оператор контролирует два станка с ЧПУ, на которых изготавливаются однотипные детали. Вероятность брака для первого станка равна 0.02, для второго -0.03. Найти вероятность того, что взятая наугад деталь будет бракованной.

Задание 4. Релейная схема состоит из двух элементов: A_1 и A_2 . Вероятность того, что за время T эти элементы не выйдут из строя, известна и равна: $P(A_1) = 0.8$, $P(A_2) = 0.7$. Найти вероятность безотказной работы данной схемы.

Задание 5. Вероятность выпуска стандартного изделия на автоматической линии равна 0,9. Найти вероятность того, что из пяти наудачу взятых изделий четыре окажутся стандартными.

ИЛИ

Задание 5.1. Вероятность выпуска бракованного изделия на автоматической линии равна 0,002. Найти вероятность того, что из 4000 выпущенных за смену изделий четыре окажутся бракованными.

Задание 6. Укажите номер таблицы, которая задаёт закон распределения некоторой дискретной случайной величины ξ , если в верхней строке указаны значения, которые она принимает, а в нижней – вероятности того, что она принимает эти значения.

1)	ξ	1	2	3	4	2)	ξ	1	2	3	4	3)	ξ	1	2	3	4
	P	0,2	0,6	0,3	0,1		P	0,15	0,45	0,2	0,2		P	0,15	0,4	0,25	0,1

Задание 7. Найти математическое ожидание дискретной случайной величины ξ , заданной законом распределения в виде таблицы, где в верхней строке указаны значения, которые она принимает, а в нижней – вероятности того, что она принимает эти значения.

ξ	2	3	4	5
P	0,1	0,4	0,3	0,2

Задание 8. Непрерывная случайная величина ξ задана плотностью распределения веро-

ятности
$$f(x) = \begin{cases} 0, & x \le 1, \\ C(1-x), & 1 < x \le 3, \\ 0, & x > 3. \end{cases}$$

Найти $M(\xi)$, $D(\xi)$, медиану и квантиль уровня 0.75.

Задание 9. Дано распределение участников детско-юношеской спортивной секции по возрасту.

Возраст	9	10	11	12	13	14
Количество человек	2	1	3	4	2	1

Найти размах и медиану данного вариационного ряда.

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ №Д02 (Демонстрационный)

Задание 1. Радист для надёжности трижды передаёт один и тот же сигнал. Вероятность того, что первый сигнал будет принят, равна 0,2, второй – 0,4 и третий – 0,6. Предполагается, что данные события независимы. Найти вероятность того, что сигнал не будет принят.

Задание 2. На отрезок числовой прямой [1; 16] наугад брошена точка. Найти вероятность того, что точка попала на отрезок [4; 9].

Задание 3. В магазин поступили компьютеры, собранные на двух предприятиях. Продукция первого предприятия содержит 4% компьютеров с дефектом, второго -2%. Найти вероятность того, что выбранный случайным образом компьютер окажется без дефектов, если с первого предприятия поступило 70% всех компьютеров, имеющихся в магазине, а со второго -30%.

Задание 4. В магазин поступили компьютеры, собранные на двух предприятиях. Продукция первого предприятия содержит 4% компьютеров с дефектом, второго – 2%. Выбранный случайным образом для проверки компьютер оказался с дефектом. Найти вероятность того, что он был произведен на первом предприятии, если с первого предприятия поступило 70% всех компьютеров, имеющихся в магазине, а со второго – 30%.

Задание 5. Стрелок совершает 6 выстрелов по мишени. Вероятность попадания при каждом выстреле постоянна и равна p=0,8. Найти вероятность того, что стрелок попадёт два раза.

ИЛИ

Задание 5.1. С базы в магазин отправлено 1000 тщательно упакованных доброкачественных изделий. Вероятность того, что изделие повредится в пути, равна 0,001. Найдите вероятность того, что в магазин прибудут 4 испорченных изделия.

Задание 6. На рисунке представлены три релейные схемы, состоящие из трёх элементов, имеющих одинаковую надёжность, 0 . Укажите номер наиболее надёжной схемы.

Задание 7. Найти дисперсию дискретной случайной величины ξ , заданной законом распределения в виде таблицы, где в верхней строке указаны значения, которые она принимает, а в нижней – вероятности того, что она принимает эти значения.

ξ	-2	1	3
P	0,5	0,2	0,3

Задание 8. Непрерывная случайная величина ξ задана плотностью распределения вероятности $f(x) = \left\{ \begin{array}{ll} 0, & x \leq 0, \\ 3x^2, & 0 < x \leq 1, \end{array} \right.$ Найти $M(\xi), D(\xi),$ медиану и квантиль уровня 0,25.

Задание 9. Дано распределение участников детской спортивной секции по возрасту.

возраст	8	9	10	11	12
количество детей	2	4	8	4	2

Найти выборочное среднее данного вариационного ряда.

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ №Д03 (Демонстрационный)

Задание 1. В коробке лежат 12 букв, среди которых 5 гласных и 7 согласных. Из коробки случайным образом вынимают одну букву. Найти вероятность, что при извлечении второй буквы появится гласная буква.

Задание 2. Из отрезка [0; 5] случайным образом выбираются два действительных числа. Чему равна вероятность того, что сумма квадратов этих чисел не превысит 1?

Задание 3. Оператор контролирует три станка с ЧПУ, на которых изготавливаются однотипные детали. Вероятность брака для первого станка равна 0,02, для второго – 0,03, для третьего – 0,04. Изготовленные детали попадают в контейнер. Производительности станков относятся как 3:2:5. Найти вероятность того, что наугад взятая их контейнера деталь, оказалась бракованной.

Задание 4. Оператор контролирует три станка с ЧПУ, на которых изготавливаются однотипные детали. Вероятность брака для первого станка равна 0,02, для второго – 0,03, для третьего – 0,04. Изготовленные детали попадают в контейнер. Производительности станков относятся как 3:2:5. Взятая из контейнера наугад деталь оказалась бракованной. Найти вероятность того, что деталь изготовлена на третьем станке.

Задание 5. Вероятность выпуска стандартного изделия на автоматической линии равна 0,6. Найти вероятность того, что из восьми наудачу взятых изделий более двух изделий окажется стандартными.

Задание 6. Задан закон распределения дискретной случайной величины ξ . Выберите правильную формулу, по которой вычисляется дисперсия $\mathrm{D}(\xi)$.

1)
$$D(\xi) = \sum_{i=1}^{n} (x_i - M(\xi^2))^2 p_i; 2) D(\xi) = \sum_{i=1}^{n} (x_i - M(\xi^2)) p_i; 3) D(\xi) = \sum_{i=1}^{n} (x_i - M(\xi))^2 p_i.$$

Задание 7. Найти математическое ожидание дискретной случайной величины ξ , заданной законом распределения в виде таблицы, где в верхней строке указаны значения, которые она принимает, а в нижней – вероятности того, что она принимает эти значения.

ξ	2	0	1	3
Р	0,2	0,3	0,4	0,1

Задание 8. Непрерывная случайная величина ξ задана функцией распределения

$$F(x) = \begin{cases} 0, & x \le 0, \\ \frac{x^2}{81}, & 0 < x \le 9, \\ 1, & x > 9. \end{cases}$$

Найти $M(\xi), D(\xi)$, медиану и квантиль уровня 0,75.

Задание 9. Лаборатория электролампового завода провела испытания 10 ламп на продолжительность горения и получила следующие результаты (в часах): 820, 820, 820, 822, 825, 825, 826, 826, 826, 826, 826, 841. Найти моду и разность между выборочным средним и медианой данного вариационного ряда.

ИЛИ

Задание 9.1 Пусть имеется следующая выборка: (-4, -1, 1, 4, 5). Найти несмещённую (исправленную) выборочную дисперсию.

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ №Д04 (Демонстрационный)

Задание 1. В одной корзине имеется 5 шаров, из которых 3 белых, 2 черных, а во второй 6 шаров — 1 белый и 5 черных. Из каждой корзины вынимают по одному шару. Найти вероятность того, что среди вынутых шаров хотя бы один шар белого цвета.

Задание 2. В область $D: \{y < 4 - x^2, y > 0\}$, брошена точка. Найти вероятность того, что будет выполнено неравенство $\{y > x + 2\}$.

Задание 3. В первой урне 8 белых и 7 чёрных шаров, во второй – 4 белых и 6 чёрных. Наугад из одной из урн вынимается шар. Найти вероятность того, что он белый.

Задание 4. Релейная схема (см. рисунок) состоит из элементов трёх типов: A_1 , A_2 и A_3 . Вероятность того, что за время T эти элементы не выйдут из строя, известна и равна: $P(A_1)=0.9,\ P(A_2)=0.7,\ P(A_3)=0.8.$ Найти вероятность безотказной работы данной схемы.

Задание 5. Вероятность вытащить выигрышный лотерейный билет равна 0,1. Найти вероятность того, что из 10 купленных билетов будет 1 или 2 выигрышных.

Задание 6. Отметьте *верные* свойства дисперсии, где ξ и η – произвольные дискретные случайные величины, а C – константа.

$$1)\ D\left(\xi+\eta\right)=D\left(\xi\right)+D\left(\eta\right);\ 2)\ D\left(C\right)=C;\ 3)\ D\left(C\xi\right)=C^{2}D\left(\xi\right);\ 4)\ D\left(\xi\right)\geq0.$$

Задание 8. Непрерывная случайная величина ξ задана плотностью распределения веро-

ятности
$$f(x) = \begin{cases} 0, & x \le 0, \\ 6x^5, & 0 < x \le 1, \\ 0, & x > 1. \end{cases}$$

Найти $M(\xi)$, $D(\xi)$, медиану и квантиль уровня 0,75.

Задание 9. Найти доверительный интервал для оценки неизвестного математического ожидания a, если выборочное среднее $\overline{x}=32$, объём выборки $n{=}36$ и радиус доверительного интервала равен 1,5.

ИЛИ

Задание 9. Пусть имеется следующая выборка: (-4, -1, 1, 4, 5). Найти несмещённую (исправленную) выборочную дисперсию.