The Riemann Hypothesis

200042137

February 18, 2025

Abstract

The Riemann hypothesis is one of the most famous and important unsolved problems in mathematics. It is about the distribution of prime numbers and the properties of a complex function called the Riemann zeta function. The Riemann hypothesis states that all the non-trivial zeros of the zeta function have real part equal to $\frac{1}{2}$. In this document, we will introduce the zeta function, its functional equation, and some equivalent statements of the Riemann hypothesis.

The Riemann zeta function is defined as:

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}$$

$$= \prod_{p \text{ prime}} \frac{1}{1 - p^{-s}}, \quad \text{for } \Re(s) > 1$$
(1)

In Equation Equation 1, s is a complex variable

The zeta function satisfies a remarkable symmetry relation known as the functional equation, which relates the values of the zeta function at s and 1 s. The functional equation can be written as in Equation 2

$$\xi(s) = \xi(1-s) \tag{2}$$

The error term in the prime number theorem is $O\left(\sqrt{x}logx\right)$ where x is a positive $O\left(x^{1=4}\right)$

$$\sum_{n=1}^{\infty} \frac{\Lambda(n)}{n^s} \overline{\left(\sum_{n=1}^{\infty} \frac{\Lambda(n)}{n^{1-s}} = 0\right)} = 0, \quad \text{for } \Re(s) > 1$$
 (3)

In Equation 3, z denotes the complex conjugate of z.