

Matemática Discreta

Aula 04 - Lógica Matemática

Bruno Xavier

Departamento de Engenharias e Tecnologia Centro Multidisciplinar de Pau dos Ferros

11 de dezembro de 2023

Agenda

- 1. Crônica do Dia
- 2. Tautologia, Contradição e Contingência
- 3. Equivalência e Negação de Proposições
- 4. Contrapositiva, inversa e reciproca da implicação

Crônica do Dia

Crônica do Dia

PEN2025 - Matemática Discreta

Tautologia, Contradição e Contingência

PEN2025 - Matemática Discreta

Tautologia

Quando a tabela verdade de um proposição lógica possui **SOMENTE** o valor V, então dizemos que essa proposição é uma tautologia.

Р	$\neg P$	$P \lor \neg P$
٧	F	V
F	٧	V

Em qualquer interpretação, o valor verdade da proposição é V.

Contradição

Quando a tabela verdade de um proposição lógica possui **SOMENTE** o valor F, então dizemos que essa proposição é uma contradição.

Р	$\neg P$	$P \wedge \neg P$
٧	F	F
F	٧	F

Em qualquer interpretação, o valor verdade da proposição é F.

Contingência

Quando a tabela verdade de um proposição lógica possui TANTO o valor V QUANTO o valor F, então dizemos que essa proposição é uma contingência.

Р	Q	$(P \lor Q) \to (P \land Q)$	
٧	٧	V	
V	F	F	
F	٧	F	
F	F	V	

Existem interpretações cujo valor verdade da proposição é F ou V.

Equivalência e Negação de Proposições

Equivalência

Dizemos que duas proposições $A \in B$ são equivalentes se $A \leftrightarrow B$ é uma tautologia.

Р	Q	$\neg (P \lor Q)$	$\neg P \wedge \neg Q$	$\neg (P \lor Q) \leftrightarrow (\neg P \land \neg Q)$
٧	٧	F	F	V
٧	F	F	F	V
F	٧	F	F	V
F	F	V	V	V

Também podemos dizer que duas proposições são equivalentes se as suas tabelas verdade são idênticas.

Negando o conectivo \neg :

Р	$\neg P$	$\neg\neg P$
٧	F	V
F	V	F

Portanto, $\neg \neg P \equiv P$

Negando o conectivo \wedge :

Р	Q	$P \wedge Q$	$\neg (P \land Q)$	$\neg P \lor \neg Q$
٧	٧	V	F	F
٧	F	F	V	V
F	٧	F	V	V
F	F	F	V	V

Portanto,
$$\neg(P \land Q) \equiv \neg P \lor \neg Q$$

Negando o conectivo \lor :

Р	Q	$P \lor Q$	$\neg (P \lor Q)$	$\neg P \wedge \neg Q$
V	٧	V	F	F
V	F	V	F	F
F	٧	V	F	F
F	F	F	V	V

Portanto,
$$\neg(P \lor Q) \equiv \neg P \land \neg Q$$

Exercício

Usando os resultados anteriores, simplifique as proposições abaixo:

- $\neg(\neg P \lor \neg Q)$
- $\neg(\neg P \land \neg Q)$

Negando o conectivo \rightarrow :

Р	Q	P o Q	$\neg (P \rightarrow Q)$	$P \wedge \neg Q$
٧	٧	V	F	F
٧	F	F	V	V
F	٧	V	F	F
F	F	V	F	F

Portanto,
$$\neg(P \rightarrow Q) \equiv P \land \neg Q$$

Negando o conectivo \leftrightarrow :

Р	Q	$P \leftrightarrow Q$	$\neg (P \leftrightarrow Q)$	$(P \land \neg Q) \lor (\neg P \land Q)$
٧	٧	V	F	F
٧	F	F	V	V
F	٧	F	V	V
F	F	V	F	F

Portanto,
$$\neg(P \leftrightarrow Q) \equiv (P \land \neg Q) \lor (\neg P \land Q)$$

Contrapositiva, inversa e reciproca da implicação

Contraposição

Р	Q	P o Q	$\neg Q \rightarrow \neg P$
V	٧	V	V
٧	F	F	F
F	٧	V	V
F	F	V	V

Portanto,
$$P \rightarrow Q \equiv \neg Q \rightarrow \neg P$$

Inversa

Р	Q	P o Q	$\neg P ightarrow \neg Q$
٧	٧	V	V
٧	F	F	V
F	٧	V	F
F	F	V	V

Portanto, $P \rightarrow Q \not\equiv \neg P \rightarrow \neg Q$

Recíproca

Р	Q	P o Q	$Q \rightarrow P$
٧	٧	V	V
٧	F	F	V
F	٧	V	F
F	F	V	V

Portanto, $P \rightarrow Q \not\equiv Q \rightarrow P$

Exercício

- Mostre que a inversa e a recíproca de $A \rightarrow B$ são equivalentes.
- Mostre que:
 - $P \lor P \equiv P$
 - $P \wedge P \equiv P$
 - $P \lor (P \land Q) \equiv P$
 - $P \wedge (P \vee Q) \equiv P$

Obrigado pela sua atenção

Bruno Xavier

Departamento de Engenharias e Tecnologia Centro Multidisciplinar de Pau dos Ferros

11 de dezembro de 2023