MTH 311 Homework 3

Philip Warton

February 9, 2020

2.2.2

c.)

Show that
$$\lim \frac{\sin(n^2)}{\sqrt[3]{n}} = 0$$
.

Proof. Choose $\epsilon>0$, arbitrarily. Let $N_\epsilon>\frac{1}{\epsilon^3}$. We can therefore write that for all $n\geqslant N_\epsilon$ we have $n>\frac{1}{\epsilon^3}$ which is equivalent to stating that $\epsilon^3n>1$. By properties of the sine function we also know that $|sin(n^2)|\leqslant 1$ and therefore $|sin(n^2)|^3\leqslant 1^3=1$. From there, we have by ordering that $|sin(n^2)|^3<\epsilon^3n$. We can divide this expression by n to get the inequality $\frac{|sin(n^2)|^3}{n}<\epsilon^3$. Since both sides are positive, this is equivalent to $\frac{|sin(n^2)|}{\sqrt[3]{n}}<\epsilon$. With both the numerator and denominator positive, we write $\left|\frac{sin(n^2)}{\sqrt[3]{n}}\right|<\epsilon$. Trivially subtracting a zero we get $\left|\frac{sin(n^2)}{\sqrt[3]{n}}-0\right|<\epsilon$. By definition of convergence we have $\lim\frac{sin(n^2)}{\sqrt[3]{n}}=0$.

2.5.1

a.)

By the Bolzano Weirstrass Theorem, every bounded sequence has a convergent subsequence. Therefore, if a sequence has as a bounded subsequence, it also contains a convergent subsequence.

b.)

We want a sequence with subsequences converging to 0 and 1, that does not contain 0 or 1. Let our sequence $a_n = \{\frac{1}{2}, \frac{1}{3}, \frac{2}{3}, \frac{1}{4}, \frac{3}{4}, \frac{1}{5}, \frac{4}{5}, \frac{1}{6}, \frac{5}{6}, \dots\}$.

c.)

We want a sequence that contains subsequences that converge to $\frac{1}{n} \forall n \in \mathbb{N}$.

2.5.3

Problem: Show that grouping terms of a convergent series results in a series that stil converges.

Proof. Assume that $\sum_{n=1}^{\infty} a_n$ converges to L. We want to show that any regrouping of terms results in a series that converges to L. Denote the grouping as $\sum_{n=1}^{\infty} a_n = (a_1 + a_2 + a_{n_1}) + (a_{n_1+1} + \ldots + a_{n_2}) + (a_{n_2+1} + \ldots + a_{n_3}) + \ldots$. We write the sequence of partial sums as $s_m = a_1 + a_2 + \ldots + a_m$. Let p_k be a sequence such that $p_k = s_{n_k}$ where n_k

is derived from our grouping. Since the series converges L , by the definition of series', the sequence of	f partial sums
converges to L. Since p_k is a subsequence of s_m , p_k converges to L, therefore grouping terms does not	interfere with
convergent series'.	

This proof does not apply to series' that do not converge, as it is reliant on the property that states: any subsequence of a convergent sequence converges.