Дискретные структуры

осень 2013

Александр Дайняк

www.dainiak.com

Коммутативные группы

• Группа G коммутативная или абелева, если $\forall a,b \in G \ a \circ b = b \circ a$

Примеры абелевых групп:

- $(\mathbb{Z},+)$
- $(\mathbb{Q} \setminus \{0\}, \times)$

Примеры неабелевых групп:

- группы подстановок
- группа всех аффинных преобразований плоскости

Смежные классы

Пусть $H \leq G$. Для любого $a \in G$ множество

$$a \circ H \coloneqq \{a \circ b \mid b \in H\}$$

называется левым смежным классом элемента α по подгруппе H.

Аналогично, множество

$$H \circ a \coloneqq \{b \circ a \mid b \in H\}$$

называется правым смежным классом.

(Для абелевых групп соответствующие левые и правые смежные классы совпадают.)

Теоремы Лагранжа и Силова

• Если $H \leq G$, то |H| делит |G|

• Если число вида p^{α} делит |G|, то $\exists H \leq G \colon \ |H| = p^{\alpha}$

Остаток от деления

Для любых $n \in \mathbb{Z}$ и $m \in \mathbb{Z} \setminus \{0\}$ существуют и однозначно определены $k,r \in \mathbb{N}_0$, такие, что

$$n = k \cdot m + r$$
$$r < m$$

Число r — остаток от деления n на m, или вычет числа n по модулю m.

Обозначение:

$$r = n \mod m$$

Если

 $n_1 \mod m = n_2 \mod m$

то пишут

$$n_1 \equiv n_2 \pmod{m}$$

и говорят, что

 n_1 и n_2 равны по модулю m

Мы ещё будем обозначать это так:

$$n_1 \stackrel{m}{=} n_2$$

Утверждение.

Пусть
$$n_1 \stackrel{m}{=} n_2$$
 и $n_3 \stackrel{m}{=} n_4$.

Тогда

$$n_1 + n_3 \stackrel{m}{=} n_2 + n_4$$

$$n_1 - n_3 \stackrel{m}{=} n_2 - n_4$$

$$n_1 n_3 \stackrel{m}{=} n_2 n_4$$

Доказательство:

По условию,

$$n_1 = k_1 \cdot m + r'$$

 $n_2 = k_2 \cdot m + r'$
 $n_3 = k_3 \cdot m + r''$
 $n_4 = k_4 \cdot m + r''$

Отсюда

$$n_1 + n_3 = (k_1 + k_3) \cdot m + r' + r'' \stackrel{m}{=} r' + r''$$

 $n_2 + n_4 = (k_2 + k_4) \cdot m + r' + r'' \stackrel{m}{=} r' + r''$

Следовательно,

$$n_1 + n_3 \stackrel{m}{=} n_2 + n_4$$

$$n_1 = k_1 \cdot m + r'$$
 $n_2 = k_2 \cdot m + r'$
 $n_3 = k_3 \cdot m + r''$
 $n_4 = k_4 \cdot m + r''$

Отсюда

$$n_1 n_3 = (k_1 k_3 m + k_1 r'' + k_3 r') \cdot m + r' r'' \stackrel{m}{=} r' r''$$

Аналогично, $n_2 n_4 \stackrel{m}{=} r' r''$.

Следовательно,

$$n_1 n_3 \stackrel{m}{=} n_2 n_4$$

Утверждение.

Если $n_1 \stackrel{m}{=} n_2$, то $n_1^k \stackrel{m}{=} n_2^k$ для любого k.

 ${\it Доказательство:}$ индукцией по k с использованием предыдущего утверждения.

Пример вычислений по модулю

Задача.

Какому числу из [0,10] равно по модулю 11 значение выражения $4^{100} \cdot 10^6 + 18^{85}$?

Решение:

$$4^{100} \cdot 10^{6} + 18^{85} =$$

$$= (11+5)^{50} \cdot (11-1)^{6} + (22-4)^{85} \stackrel{11}{=} 5^{50} \cdot (-1)^{6} + (-4)^{85} =$$

$$= 25^{25} - 2^{10 \cdot 17} = (22+3)^{25} - (93 \cdot 11+1)^{17} \stackrel{11}{=} 3^{25} - 1 \stackrel{11}{=}$$

$$= 243^{5} - 1 = (2 \cdot 121+1)^{5} - 1 \stackrel{11}{=} 0$$

Аддитивная группа вычетов

Утверждение.

Множество чисел

$$\mathbb{Z}_m \coloneqq \{0,1,\ldots,m-1\}$$

образует группу относительно операции \bigoplus , где $x \bigoplus y -$ это такое число $z \in \mathbb{Z}_m$, что $z \stackrel{m}{=} x + y$

(igoplus - операция сложения по модулю <math>m)

Пример. Если мы работаем в \mathbb{Z}_5 , то

$$3 \oplus 2 = 0$$
, $4 \oplus 4 = 3$

Операцию 🕀 будем обычно обозначать просто +

Аддитивная группа вычетов

Утверждение.

Множество чисел $\mathbb{Z}_m\coloneqq\{0,1,...,m-1\}$ образует группу относительно операции \bigoplus .

Доказательство:

• Ассоциативность операции:

Пусть $a \oplus (b \oplus c) = z'$ и $(a \oplus b) \oplus c = z''$. Тогда $z' \stackrel{m}{=} a + d$, где $d \stackrel{m}{=} b + c$, и следовательно

$$z' \stackrel{m}{=} a + b + c$$

Аналогично, $z'' \stackrel{m}{=} a + b + c$. Так как $z' \stackrel{m}{=} z''$ и z', z'' < m, то z' = z''.

Аддитивная группа вычетов

Продолжение доказательства:

- Нейтральный элемент: 0
- Существование обратных элементов:

Для 0 обратный элемент 0.

Для $a \neq 0$ обратным будет (m-a), т.к. $a + (m-a) = m \stackrel{m}{=} 0$

Определение.

Если конечная группа G изоморфна группе $\mathbb{Z}_{|G|}$, то G называется циклической группой.

Также циклическими называют бесконечные группы, изоморфные группе (\mathbb{Z} , +).

Примеры циклических групп:

- Группа поворотов плоскости относительно начала координат на угол, кратный $\frac{2\pi}{m}$
- \mathbb{Z}_m^{\times} для любого m (определение \mathbb{Z}_m^{\times} см. дальше)
- Группа чисел вида $\{n^a \mid a \in \mathbb{Z}\}$ относительно умножения (при фиксированном n)

Порядок элемента

Пусть G — группа с операцией о

Порядком элемента $a \in \mathbb{G}$ называется такое наименьшее k, для которого

$$\underbrace{a \circ a \circ \cdots \circ a}_{k \text{ pas}} = e$$

где e — нейтральный элемент в \mathbb{G} .

Если такого k не существует, порядок элемента считается равным ∞ .

Обозначается порядок так: $\operatorname{ord} a$

Порядок элемента

Утверждение.

У каждого элемента в конечной группе есть конечный порядок.

Доказательство:

В последовательности $a, a \circ a, a \circ a \circ a, ...$ обязательно возникнет повторение: для k>0

$$\underbrace{a \circ a \circ \cdots \circ a}_{s \text{ pas}} = \underbrace{a \circ a \circ \cdots \circ a}_{s+k \text{ pas}}$$

Отсюда сразу следует, что $\underbrace{a \circ a \circ \cdots \circ a}_{k \text{ раз}} = e.$

Для каждого $k \in \mathbb{N}$ обозначим

$$a^{\circ k} \coloneqq \underbrace{a \circ a \circ \cdots \circ a}_{k \text{ pas}}$$

По определению положим

$$a^{\circ 0} \coloneqq e$$

где e — нейтральный элемент группы.

Утверждение.

```
Пусть a \in \mathbb{G} и ord a < \infty. Тогда множество \mathbb{H} \coloneqq \{ a^{\circ k} \mid k \in [0, \operatorname{ord} a) \}
```

является подгруппой группы \mathbb{G} , и $|\mathbb{H}| = \operatorname{ord} a$.

Доказательство:

Нейтральный элемент $e \in \mathbb{H}$.

При $s \geq 1$ для элемента $a^{\circ s} \in \mathbb{H}$ обратным будет элемент $a^{\circ (\operatorname{ord} a - s)}$

При этом $|\mathbb{H}|=\operatorname{ord} a$, поскольку если m< n и $a^{\circ m}=a^{\circ n}$, то $|m-n|\geq \operatorname{ord} a$.

Утверждение.

Пусть
$$a \in \mathbb{G}$$
 и ord $a = r$. Тогда множество $\mathbb{H} \coloneqq \{ a^{\circ k} \mid k \in [0, r) \}$

образует *циклическую* группу, изоморфную \mathbb{Z}_r

Доказательство:

Изоморфизм $\phi \colon \mathbb{H} \to \mathbb{Z}_r$ очевиден:

$$\forall k \in [0, r) \quad \phi(a^{\circ k}) \coloneqq k$$

Тогда поскольку
$$a^{\circ m} \circ a^{\circ n} = a^{\circ ((m+n) \bmod r)}$$
, то $\phi(a^{\circ m} \circ a^{\circ n}) = (m+n) \bmod r = \phi(a^{\circ m}) \oplus \phi(a^{\circ n})$

то есть ϕ сохраняет групповую операцию, ч.т.д.

Утверждение.

Пусть $a \in \mathbb{G}$ и ord a = r. Тогда множество $\mathbb{H} \coloneqq \{ a^{\circ k} \mid k \in [0, r) \}$

образует *циклическую* группу, изоморфную \mathbb{Z}_r

 \mathbb{H} называется подгруппой, порождённой элементом a, обозначается: $\langle a \rangle$

Утверждение.

Множество чисел

 $\mathbb{Z}_m^{\times} = \{k \in (0, m) \mid k \text{ взаимно просто с } m\}$ образует группу относительно операции \odot .

 \odot — операция умножения по модулю m.

По определению $x \odot y = z$, если $z \in \mathbb{Z}_m^{\times}$ и $z \stackrel{m}{=} x \cdot y$

Примеры: в \mathbb{Z}_9^{\times} имеем $2 \odot 5 = 1$, $4 \odot 4 = 7$

Операцию ⊙ будем обычно обозначать просто ·

Утверждение.

Множество чисел

 $\mathbb{Z}_m^{\times} = \{k \in (0, m) \mid k \text{ взаимно просто с } m\}$ образует группу относительно операции \odot .

Доказательство:

- Ассоциативность 🔾 доказывается, как и для 🕀
- Нейтральный элемент: 1
- Нетривиально только существование обратных элементов...

Доказательство существования обратных:

Пусть $a \in \mathbb{Z}_m^{\times}$ и $a \neq 1$.

Так как \mathbb{Z}_m^{\times} конечно, то в последовательности $a, \ a \odot a, \ a \odot a \odot a, ...$

есть повторяющиеся элементы.

То есть $a^{k+l} \stackrel{m}{=} a^k$ для некоторых $k, l \in \mathbb{N}$.

Заметим, что элемент $b\coloneqq a^{l-1} \bmod m$ и будет обратным к a.

$$b \coloneqq a^{l-1} \mod m$$

Поскольку $a^{k+l}\stackrel{m}{=}a^k$, то $a^{k+l}-a^k\stackrel{m}{=}0 \ \Rightarrow \ a^k(a^l-1)\stackrel{m}{=}0$

Так как a и m взаимно просты, то отсюда следует

$$a^{l} - 1 \stackrel{m}{=} 0$$

А значит

$$a \odot b \stackrel{m}{=} a^l \stackrel{m}{=} 1$$

то есть, по определению, $\,b\,$ обратен к $\,a.$

Утверждение.

Множество чисел

 $\mathbb{Z}_m^{\times} = \{k \in (0,m) \mid k \text{ взаимно просто с } m\}$ образует группу относительно операции \odot .

Следствие.

Для любого простого p множество $\mathbb{Z}_p \setminus \{0\}$ образует мультипликативную группу относительно умножения по модулю p.

Функция Эйлера

Через $\varphi(m)$ обозначается функция Эйлера: $\varphi(m) \coloneqq \#\{k < m \mid m \text{ и } k \text{ взаимно просты}\}$

Примеры:

- $\varphi(2^n) = 2^{n-1}$ для любого $n \in \mathbb{N}$
- $\varphi(p) = p 1$ для любого простого p
- $\varphi(30) = \#\{1,7,11,13,17,19,21,23,29\} = 9$

Теорема Эйлера — Ферма

Теорема.

Если $a,m \in \mathbb{N}$ — взаимно простые числа, то $a^{\varphi(m)} \stackrel{m}{=} 1$

Доказательство:

Пусть $b\coloneqq a \bmod m$. Достаточно доказать, что $b^{\varphi(m)}\stackrel{m}{=} 1$

Заметим, что $b \in \mathbb{Z}_m^{\times}$, и рассмотрим группу $\langle b \rangle$. Имеем $|\langle b \rangle| = \operatorname{ord} b$, $|\mathbb{Z}_m^{\times}| = \varphi(m)$.

Теорема Эйлера — Ферма

Имеем $|\langle b \rangle| = \text{ord } b$, $|\mathbb{Z}_m^{\times}| = \varphi(m)$.

Поскольку $\langle b \rangle$ — подгруппа \mathbb{Z}_m^{\times} , то по теореме Лагранжа получаем

$$\varphi(m) = t \cdot \operatorname{ord} b$$

для некоторого $t \in \mathbb{N}$.

Отсюда

$$b^{\varphi(m)} = b^{t \cdot \text{ord } b} = (b^{\text{ord } b})^t \stackrel{m}{=} 1$$

Теорема Эйлера — Ферма

Теорема.

Если $a,m \in \mathbb{N}$ — взаимно простые числа, то $a^{\varphi(m)} \stackrel{m}{=} 1$

Следствие. (Малая теорема Ферма) Для любого простого p и для любого a $a^p \stackrel{p}{=} a$

Пример вычислений по модулю, с применением теоремы Ферма

Задача.

Какому числу из [0,10] равно по модулю 11 значение выражения $4^{100} \cdot 10^6 + 18^{85}$?

Решение:

$$4^{100} \cdot 10^{6} + 18^{85} \stackrel{11}{=} (4^{10})^{10} \cdot (-1)^{6} + (-4)^{80+5} \stackrel{11}{=}$$

$$\stackrel{11}{=} 1 + ((-4)^{8})^{10} \cdot (-4)^{5} \stackrel{11}{=} 1 - 4^{5} = 1 - 2^{10} \stackrel{11}{=} 0$$