14:20 - 14:50 SACLA共用開始10年のサマリー 籔内 俊毅/ 高輝度光科学研究センター、理化学研究所

概要

- X線自由電子レーザー施設SACLAの概要
- SACLA共用開始からの10年
 - 光源性能と利用環境の高度化
 - 主な共用装置と利用基盤の現状
- 世界のXFEL施設の現状
- SACLAの今後の展開
- まとめ

謝辞

SACLAの開発整備・高度化は、理化学研究所、高輝度光科学研究センター他多くの研究者・技術者の方々により実施されましたまた、利用装置や利用技術の開発は、国内外の研究者の皆様のご協力を受けて実施されました

XFELの特性とその活用法

サンプルを破壊する前に観察する

Nearly Full Spatial Coherence

XFEL

"Diffraction before destruction"

Ref: R.Neutze et al., Nature 406, 752 (2000).

Large Number of Photos

Ultrashort Pulse Duration

幅広い分野にわたり利用研究を実施できる体制を構築

- 柔軟性と効率性を両立させた実験ハッチ運用
 - ビーム特性にバリエーションを確保
 - 装置は可搬式を基本とし自由度を確保 高エネルギー密度科学 16%
 - 安定化・効率化のため一部機器は常設化
 - 幅広い研究分野の利用研究に対応

• ユーザーコミュニティとの連携、新規ユーザー開拓

SACLA共用初期から

2014年から

SACLAの先端的利用研究の開拓とXFELサイエンスの展開を目的とした分野横断的なコミュニティ

※SACLA Users' Meeting (年次開催)

- SACLA 試験利用

試験的にSACLAを利用いただく機会を提供し、特定の実験装置を用いた試料のスクリーニングやフィジビリティの確認などを実施 ※試験利用 募集案内(2022B、締切済)

https://sacla.xfel.jp/?page_id=16218

http://xfel.riken.jp/usersmeeting2022/index.html

■ SACLA 大学院生プログラム、産業利用推進プログラム など

※理研の各種プログラム

http://xfel.riken.jp

若手育成と大学-SACLA連携の強化、産業利用振興にむけた調査研究の実施

現在のSACLAのビームライン・実験ハッチ構成

典型的な利用パラメーター	BL1 (SXFEL)	BL2 (HXFEL)	BL3 (HXFEL)	
光子エネルギー	40-150 eV	4-15 keV	4-20 keV	
パルス幅	<100 fs <10 fs		<10 fs	
バンド幅 (Pink)	~10-2	~5x10 ⁻³	~5x10 ⁻³	
バンド幅 (Mono)	NA	~1x10-4	~1x10-4	
パルスエネルギー	~90 µJ@100 eV	~500 µJ@10 keV	~600 µJ@10 keV	
光子数 (/pulse)	>5x1012@100 eV	>3x1011@10 keV	>3x1011@10 keV	
繰り返し周波数	60 Hz	30 Hz (最大 60 Hz)	30 Hz(最大 60 Hz)	

非結晶粒子のイメージングへの活用

コヒーレント回折イメージング (CDI: Coherent Diffractive Imaging)

- 非結晶粒子にコヒーレントX線を照射し、2次元回折パターン(振幅情報)を取得
- 位相回復法により試料の電子密度情報を高い空間分解能で再現

MAXIC: Multiple Application X-ray Imaging Chamber Ref: C. Song et al., J. Appl. Cryst. 47, 188 (2014).

nature communications

Imaging live cell in micro-liquid enclosure by X-ray laser diffraction

T. Kimura, Y. Nishino et al., Nat. Comm. 5, 3052 (2014).

生きた細胞 (Microbacterium lacticum: 牛乳の中に生息するの微生物細胞) の内部構造を、放射線損傷を受けない状態でナノスケールの分解能で可視化

今後のXFEL開発の流れの鍵は「高繰返し化」

			建設・計画段階				
	LCLS	SACLA	PAL XFEL	European XFEL	SwissFEL	SHINE	LCLS-II-HE
光子エネルギー (HX 基本波)	1-25 keV	4-20 keV	2-15 keV	3-25 keV	2-12 keV	Up to 25 keV	13 keV or Up to 20 keV
最大繰返し	120 Hz	60 Hz	60 Hz	10 Hz 最大4.5 MHzバースト 最大27,000 pulse/s	100 Hz	1 MHz 最大1,00,000 pulse/s	1 MHz 最大1,00,00以pulse/s
最大パルス エネルギー	~2 mJ	~0.6 mJ	~2 mJ	~2 mJ	~0.6 mJ		
パルス幅	~30 fs	~5-7 fs	~25 fs	25 fs (<100 fs)	50-100 fs		
最大 ピークパワー	~80 GW	>80 GW	~80 GW	>70 GW	~10 GW		
= 48.51 //			-	超伝導加速器		超伝導加速器	超伝導加速器

高繰返し化:

データ取得時間の短縮・データ取得量の増加を実現、測定の精度・感度向上にも貢献

▶ MHz級の繰返し:

- 光学系への熱負荷、サンプルの取扱いや検出器・データ収集に対する影響が非常に大きい
- パルス的なものからCW的なものに近づく→第4世代放射光光源との棲み分けも重要

▶ kHz級の繰返し:

- 技術的な課題に比較的対応しやすく、高繰返し化による利得とのバランスが良い
- パルス的(シングルショットベース)な光源としての利活用を追求

