Adam Dracz

Nr indeksu: 415151

Eksploracyjna analiza zbioru danych Edukacyjnej Sieci Antysmogowej

Spis treści

1	Wstę	p	3
2	Ogólı	ne informacje o zbiorze danych	4
	2.1	Źródło zbioru danych	4
	2.2	Przykłady wykorzystania danych z ESA	4
	2.3	Zmienne występujące w zbiorze	4
3	Anali	za zbioru danych	6
	3.1	Wartości brakujące	6
	3.2	Kardynalność zmiennych nominalnych	7
	3.3	Miasta, w których wykonano pomiary	7
	3.4	Analiza pozostałych zmiennych numerycznych	9
	3.4.1	Badanie wartości odstających	9
	3.4.2	Badanie rozkładu zmiennych	12
	3.4.3	Badanie zależności między zmiennymi	13
4	Wnio	ski	15
5	Źródł	ła	16

1 Wstęp

Celem niniejszego raportu jest eksploracyjna analiza danych pochodzących z Edukacyjnej Sieci Antysmogowej (ESA).

Edukacyjna Sieć Antysmogowa to program informacyjny na rzecz czystego powietrza. W jego ramach w szkołach, które biorą w nim udział, są montowane czujniki, które mierzą parametry dotyczące warunków środowiskowych takie jak: ciśnienie atmosferyczne, stężenie PM10 i PM2.5 w powietrzu, wilgotność względna. Dane, które są zapisywane i udostępniane, są średnimi kroczącymi z ostatnich 60 minut, które zmieniają się co 5 minut.

2 Ogólne informacje o zbiorze danych

2.1 Źródło zbioru danych

Dane zostały pobrane z serwisu dane.gov.pl, na którym bezpłatnie są udostępniane różne zbiory danych. Mogą one zostać użyte w celach prywatnych, komercyjnych lub naukowych. Zbiory są regularnie aktualizowane.

Dane te dotyczą różnych dziedzin: gospodarki, środowiska, edukacji, technologii i wielu innych.

Zbiorów danych można szukać ze względu na obszar, którego dotyczą lub ze względu na dostawcę danych (np. ministerstwa, urzędy miast).

Dane mogą zostać pobrane przez API w postaci pliku JSON (jedyny rodzaj API) lub można je pobrać bezpośrednio w innych udostępnionych formatach, np. csv, xml, xlsx.

Dane pochodzące z Edukacyjnej Sieci Antysmogowej zostały udostępnione przez Naukową i Akademicką Sieć Komputerową – Państwowy Instytut Badawczy.

2.2 Przykłady wykorzystania danych z ESA

Dane z Edukacyjnej Sieci Antysmogowej mogą zostać wykorzystane w różnych rozwiązaniach korzystających z technik uczenia maszynowego.

Przy wykorzystaniu uczenia nadzorowanego mogą zostać użyte np. do predykcji jednej zmiennej na podstawie innych.

W przypadku uczenia nienadzorowanego można przeprowadzić klasteryzację zbioru czy też poszukiwanie wartości odstających (które np. ukażą ekstremalne i szkodliwe dla zdrowia wartości w jakimś miejscu w Polsce).

W danych są też udostępnione kolumny ze wpółrzędnymi geograficznymi miejsc, w których wykonywano pomiary, a więc na zbiór można też patrzeć pod kątem analiz przestrzennych.

2.3 Zmienne występujące w zbiorze

Na wstępnym etapie analizy można przyjrzeć się bliżej zbiorowi danych i spojrzeć na kilka pierwszych wierszy:

	Name	Street	Post Code	City	Longitude	Latitude	Humidity Avg	Pressure Avg	Temperature Avg	PM10 Avg	PM25 Avg
Timestamp											
2025-04-28 11:21:09	Szkoła Podstawowa im. Mariana Falskiego w Kras	ul. Szkolna	63-522	Kraszewice	18.224030	51.515630	95.120000	1015.110000	8.610000	32.860000	20.200000
2025-04-28 11:21:09	Szkoła Podstawowa we Wrząsowicach	ul. Szkolna	32-040	Wrząsowice	19.942820	49.961030	34.200000	988.925000	18.775000	6.175000	5.525000
2025-04-28 11:21:09	Publiczna Szkoła Podstawowa nr 2 im. Kazimierz	ul. Wawrzyńca Świerzego	47-100	Strzelce Opolskie	18.314889	50.503431	60.000000	1043.166667	12.266667	1.000000	0.490000
2025-04-28 11:21:09	Zespół Szkół nr 1 w Pszczynie	ul. Kazimierza Wielkiego	43-200	Pszczyna	18.945706	49.965883	79.666667	1005.566667	11.166667	10.800000	6.586667
2025-04-28 11:21:09	Zespół Szkół im. Powstańców Wielkopolskich w J	Szkolna	63-421	Janków Przygodzki	17.788907	51.596172	57.166667	1012.300000	14.400000	15.700000	8.893333
2025-04-28 11:21:09	Szkoła Podstawowa nr 7 im. Żołnierzy Września	ul. Męczenników Oświęcimskich	43-229	Ćwiklice	18.989839	49.971937	37.233333	996.366667	23.666667	8.066667	4.590000
2025-04-28 11:21:09	Szkoła Podstawowa nr 12 w Studzionce	ul. Jordana	43-245	Studzionka	18.774985	49.960356	99.333333	1004.266667	11.500000	14.800000	8.833333
2025-04-28 11:21:09	Zespół Szkolno-Przedszkolny w Piasku	Szkolna	43-211	Piasek	18.946340	50.009550	53.533333	1005.700000	11.700000	11.600000	7.260000
2025-04-28 11:21:09	Zespół Szkolno-Przedszkolny w Łące	Fitelberga	43-241	Łąka	18.906757	49.958244	51.166667	1003.033333	12.666667	14.066667	8.236667

Fig. 2.1. Pierwsze 9 wierszy analizowanego zbioru danych

Kolumny są indeksowane przez znacznik czasu (Timestamp), który informuje o dacie i godzinie wykonania pomiaru. W przypadku badanego zbioru wszystkie pomiary zostały pobrane w tym samym momencie – 28 kwietnia 2025 r. o godzinie 11:29:09.

Zmienne występujące w zbiorze:

- Name nazwa szkoły, w której zamontowano czujnik,
- Street ulica, przy której jest położona szkoła,
- Post Code kod pocztowy dla danej szkoły,
- City miasto (miejscowość), w której znajduje się szkoła,
- Longitude długość geograficzna,
- Latitude szerokość geograficzna,
- Humidity Avg średnia wilgotność powietrza (w %),
- Pressure Avg średnie ciśnienie atmosferyczne (w hPa),
- Temperature Avg średnia temperatura (w °C),
- PM10 Avg średnie stężenie PM10 (w μg/m³),
- PM25 Avg średnie stężenie PM2.5 (w μg/m³).

Zbiór danych zawiera 1727 rekordów.

3 Analiza zbioru danych

3.1 Wartości brakujące

Dla zmiennych występujących w zbiorze procentowy udział wartości brakujących dla poszczególnych zmiennych wynosi odpowiednio:

Name	0.000000
Street	18.297626
Post Code	0.000000
City	0.000000
Longitude	0.000000
Latitude	0.000000
Humidity Avg	0.115808
Pressure Avg	0.115808
Temperature Avg	0.115808
PM10 Avg	0.000000
PM25 Avg	0.000000

Fig. 3.1 Procentowy udział wartości brakujących dla zmiennych

Dla wilgotności, ciśnienia i temperatury jest to ok. 0.12%, więc w związku z małym udziałem wartości te mogą zostać uznane za nieistotne i usunięte.

Widoczny udział mają wartości brakujące dla zmiennej Street.

	Name	Street	Post Code	City	Longitude	Latitude	Humidity Avg	Pressure Avg	Temperature Avg	PM10 Avg	PM25 Avg
Timestamp											
2025-04-28 11:21:09	Zespół Szkół w Piotrowie	NaN	62-814	Piotrów	18.054850	51.815700	27.633333	1013.666667	23.433333	7.200000	4.070000
2025-04-28 11:21:09	Szkoła Podstawowa w Czarnymlesie	NaN	63-421	Czarnylas	17.762604	51.508366	73.800000	1008.866667	13.466667	16.200000	9.376667
2025-04-28 11:21:09	Szkoła Podstawowa im. Bohaterów Powstań Śląski	NaN	48-364	Kałków	17.185241	50.404200	96.340000	1010.980000	8.550000	31.050000	18.640000
2025-04-28 11:21:09	Szkoła Podstawowa w Maciejowicach	NaN	48-385	Maciejowice	17.134970	50.499800	38.433333	991.800000	21.433333	4.466667	2.390000
2025-04-28 11:21:09	Szkoła Podstawowa w Szkodnej	NaN	39-126	Szkodna	21.647559	49.984184	39.955556	989.711111	12.766667	3.266667	3.255556

Fig. 3.2 Pięć przykładowych wierszy, gdzie brakuje wartości dla zmiennej Street

Po zbadaniu okazuje się, że wartości brakujące dla Street występują dla niewielkich miejscowości, w których nie ma podziału na ulice.

W zbiorze występują jednak również miejscowości, w których nie ma ulic, a jako wartość w kolumnie Street jest podana nazwa miejscowości.

	Name	Street	Post Code	City	Longitude	Latitude	Humidity Avg	Pressure Avg	Temperature Avg	PM10 Avg	PM25 Avg
Timestamp											
2025-04-28 11:21:09	Szkoła Podstawowa im. Arkadego Fiedlera w Rasz	Pogrzybów	63-440	Pogrzybów	17.723099	51.713966	48.70	1018.200000	22.900000	6.000000	3.500000
2025-04-28 11:21:09	Szkoła Podstawowa im. Orła Białego w Sokołowicach	Sokołowice	56-400	Sokołowice	17.446900	51.245000	77.98	1009.180000	9.680000	10.980000	6.150000
2025-04-28 11:21:09	Szkoła Podstawowa w Ligocie Polskiej	Ligota Polska	56-400	Ligota Polska	17.542356	51.239942	99.90	1005.966667	15.833333	9.000000	4.830000
2025-04-28 11:21:09	Szkoła Podstawowa im. Unicef w Ligocie Małej	Ligota Mała	56-400	Ligota Mała	17.365476	51.142467	52.70	984.200000	11.600000	15.766667	8.633333
2025-04-28 11:21:09	Szkoła Podstawowa we Wszechświętem	Wszechświęte	56-400	Wszechświęte	17.484968	51.191751	99.90	1008.266667	13.033333	6.833333	3.946667

Fig. 3.3 Przykłądowe wiersze, w których nazwa ulicy jest taka jak nazwa miejscowości

Jest to niekonsekwencja przy zapisie danych w zbiorze. Wobec tego wartości NA w kolumnie mogą zostać uzupełnione przez wpisanie w to miejsce nazwy miejscowości.

W tym wypadku jest to jednak zabieg kosmetyczny, niemający wpływu na dalszą analizę.

3.2 Kardynalność zmiennych nominalnych

Liczebność etykiet dla zmiennych nominalnych wynosi odpowiednio:

```
Ilość etykiet dla zmiennej Name: 1722
Ilość etykiet dla zmiennej Post Code: 1139
Ilość etykiet dla zmiennej City: 1203
Ilość etykiet dla zmiennej Street: 1149
```

Fig. 3.4 Kardynalność zmiennych nominalnych

Są to duże wartości w stosunku do wielkości zbioru danych. Ze względu na charakter analiz i skupienia w dalszej części na cechach numerycznych, nie są to jednak istotne informacje. W związku z tym nie zachodzi potrzeba kodowania zmiennych nominalnych.

3.3 Miasta, w których wykonano pomiary

W celu wizualizacji przestrzennej na wykresie punktowym można przedstawić miasta, w których wykonano pomiary.

Prowadzona analiza nie ma charakteru analizy przestrzennej, a ogólną wizualizację w celu detekcji potencjalnych anomalii i powodów, dla których dane mogą nie być reprezentatywne, więc punkty nie są nanoszone na mapę.

Fig. 3.5 Mapa rozłożenia przestrzennego szkół

Można zauważyć jeden punkt bardzo widocznie odstający.

	Name	Street	Post Code	City	Longitude	Latitude	Humidity Avg	Pressure Avg	Temperature Avg	PM10 Avg	PM25 Avg
Timestamp											
2025-04-28 11:21:09	Test Szkoła	ul Testowa	00-000	Testcity	-157.529698	1.858685	89.69	992.47	7.76	50.17	30.32

Fig. 3.6 Rekord dla punktu o odstających współrzędnych geograficznych

Po sprawdzeniu okazuje się, że jest to wartość testowa, sztuczna. Można ją zatem usunąć ze zbioru.

Fig. 3.7 Mapa szkół po usunięciu wartości odstającej

Można zauważyć, że w przybliżeniu dane pokrywają cały obszar Polski. Największe skupiska można dostrzec na południu i zachodzie kraju. Oznacza to, że dane mogą być w pewien sposób niereprezentatywne (dane ze skupisk będą do siebie podobne i prawdopodobnie inne od pochodzących z innych rejonów). Wada to może być jednak zrównoważona przez fakt, że pozostałe dane pochodzą z miejsc rozproszonych po całym kraju.

3.4 Analiza pozostałych zmiennych numerycznych

3.4.1 Badanie wartości odstających

Płynnie można przejść do analizy pozostałych zmiennych numerycznych w zbiorze: wilgotność, ciśnienie, temperatura, stężenie PM10 i PM2.5.

	Humidity Avg	Pressure Avg	Temperature Avg	PM10 Avg	PM25 Avg
count	1724.000000	1724.000000	1724.000000	1724.000000	1724.000000
mean	45.892248	1003.547592	14.511042	9.540906	7.893529
std	14.905450	14.198035	3.256907	10.575737	8.351864
min	0.000000	941.675000	-40.000000	0.000000	0.000000
25%	35.947917	994.739583	12.508050	5.272917	4.566667
50%	42.864800	1005.045833	13.868333	7.430952	6.416667
75%	51.783333	1014.920417	16.495833	11.037500	9.300000
max	100.000000	1097.800000	31.800000	245.666667	241.000000

Fig. 3.8 Statystyki opisowe dla zmiennych numerycznych

Już na tym etapie można zauważyć kilka nietypowych wartości: temperatura minimalna równa -40, wilgotność równa 0 i 100, czy wartości stężenia PM10 i PM2.5 powyżej 240.

Pomocne jest również przedstawienie danych na wykresach pudełkowych, które m.in. wskażą wartości odstające:

Fig. 3.9 Wykresy pudełkowe dla zmiennych numerycznych

Na powyższym wykresie można zauważyć wartości odstające dla danych zmiennych. Niektóre są ewidentnymi błędami i są mało realne (np. temperatura równa -40, wilgotność równa 0 lub ciśnienie równe 1100).

Pozostałe (np. PM10 do wartości 150) są jednak realne i nie ma podstaw, aby uważać je za błędne. Nie należy ich zatem odrzucać z danych, ponieważ też niosą potencjalnie ważną informację.

Z danych odrzucone zostały następujące wartości odstające (na podstawie analizy danych pogodowych i ustaleniu przybliżonych zakresów wartości typowych):

- wilgotność powyżej 90% i poniżej 7%
- ciśnienie atmosferyczne powyżej 1050 hPa i poniżej 960 hPa
- temperatura poniżej 5 °C i powyżej 26 °C
- stężenie PM10 powyżej 100 μg/m³
- stężenie PM2.5 powyżej 79 μg/m³

Wykresy pudełkowe zmiennych numerycznych po usunięciu wartości odstających Wilgotność [%] Ciśnienie atmosferyczne [hPa] 1040 80 1020 60 1000 980 Temperatura [°C] 25 10 Stężenie PM10 [µg/m^3] Stężenie PM2.5 [µg/m^3] 60 30 40 20 10

Fig. 3.10 Wykresy pudełkowe dla zmiennych numerycznych po usunięciu wartości odstających

3.4.2 Badanie rozkładu zmiennych

Dane przedstawić można również za pomocą histogramu, aby zbadać ich rozkład.

Do histogramu dodane zostały też jądrowe estymatory gęstości, które pozwolą łatwiej ocenić kształt rozkładu.

Histogram został narysowany w wersji znormalizowanej (tak, że suma pól poszczególnych słupków sumuje się do 1), aby przybliżać funkcje gestości prawdopodobieństwa.

Zaznaczone zostały również średnia i mediana dla danej zmiennej.

Ważną uwaga: wykresy dla stężenia PM10 i PM2.5 zostały ograniczone tylko do wartości 35 na osi poziomej ze względu na niewielkie wartości występujące powyżej tej wartości, które zaburzają czytelność wykresu.

Fig. 3.12 Histogramy z jądrowymi estymatorami gęstości dla zmiennych numerycznych

Możemy zauważyć, że rozkłady zmiennych są lewoskośne i jednomodalne.

Wyjątkiem jest ciśnienie atmosferyczne, gdzie możemy dostrzec bimodalność (w okolicach 995 hPa i 1115 hPa).

3.4.3 Badanie zależności między zmiennymi

Poniżej przedstawiono również kilka wykresów punktowych, w których przedstawiono związki między niektórymi ze zmiennych.

Fig. 3.13 Zależność między stężeniem PM10 a stężeniem PM2.5

Fig. 3.14 Zależności między stężeniem PM2.5 oraz PM10 a wilgotnością

PM a temperatura

Fig. 3.15 Zależność między stężeniem PM2.5 i PM10 a temperaturą

Ciśnienie i temperatura a wilgotność

Fig. 3.16 Zależność między ciśnieniem i temperaturą a wilgotnością

Na podstawie powyższych wykresów można wyciągnąć wnioski:

- istnieje bardzo silna zależność między stężeniem PM2.5 i PM10 (PM2.5 zawiera się w PM10),
- istnieją też widoczne zależności między stężeniami PM2.5 i PM10 a wilgotnością i temperaturą, ale ze względu na nadreprezentację wartości niskich stężeń pyłów informacja ta jest niepełna,
- trudno zauważyć jednoznaczną zależność między ciśnieniem a wilgotnością, ale zależność między wilgotnością a temperaturą jest już silna.

4 Wnioski

Dane pochodzące z Edukacyjnej Sieci Antysmogowej nie są zbiorem o wielu zmiennych, ale ze względu na liczbę rekordów mogą służyć do analizy, predykcji czy też klasteryzacji.

Przykładem (przy zastosowaniu technik nadzorowanego uczenia maszynowego) może być predykcja wilgotności, dzięki której można prognozować opady. Może ona się odbyć przy użyciu zmiennych Pressure, Temperature i PM10. Jest to związane z tym, że warunki atmosferyczne mają wpływ na wilgotność powietrza. PM10 dodatkowo pomoże zbadać wpływ zanieczyszczeń na badany parametr. PM2.5 nie powinno być uwzględniane, ponieważ zawiera się w PM10, więc użycie go przy budowie modelu byłoby niepotrzebnym duplikowaniem informacji.

Badany zbiór nie jest jednak reprezentatywny. Widać to po mapie rozmieszczenia szkół, gdzie widać rejony, z których pobieranych jest więcej pomiarów, a dla warunków klimatycznych oznacza to, że zbiór będzie zawierał dużo danych podobnych do siebie, a wartości wyraźnie różniące się od większości, mające znaczącą informację, ale występujące w mniejszej ilości będą miały mniejszy udział w wymodelowaniu zjawiska.

Reprezentatywność mogłaby być lepsza, gdyby zbiór poddano analizom przestrzennym i udałoby się uśrednić dane pochodzące z danych zgrupowań (podobnych obszarów). Dodatkowo należałoby dysponować danymi pochodzącymi z różnym momentów w czasie i związanymi z różnymi warunkami atmosferycznymi, a także dotyczącymi zanieczyszczeń powietrza.

5 Źródła

http://meteo2.ftj.agh.edu.pl/meteo/archiwalneDaneMeteo

Dostęp: 09.05.2025 godz. 14.59

https://powietrze.gios.gov.pl/pjp/current

Dostęp: 09.05.2025 godz. 15.20

https://en.wikipedia.org/wiki/Humidity

Dostęp: 08.05.2025 godz. 13.50