MA 102 (Mathematics II)

Mid Semester Examination

Date: February 29, 2016 Time: 2 Hours Maximum Marks: 30

Answer ALL questions

1. Let $f: \mathbb{R}^2 \to \mathbb{R}$ be given by $f(x,y) := \sin(y^2/x) \cdot \sqrt{x^2 + y^2}$ if $x \neq 0$ and f(x,y) = 0 if x = 0. Show that f is continuous at (0,0) and has directional derivatives in every direction at (0,0). Is f differentiable at (0,0)?

Solution: We have
$$|f(x,y) - f(0,0)| = |\sin(y^2/x)| \sqrt{x^2 + y^2} \le \sqrt{x^2 + y^2} \to 0$$
 as $||(x,y)|| = \sqrt{x^2 + y^2} \to 0$. Hence f is continuous at $(0,0)$. [1 mark]

Let $u = (u_1, u_2)$ be a unit vector. If $u_1 u_2 = 0$ then it follows that

$$D_u f(0,0) = \lim_{t \to 0} \frac{f(tu) - f(0,0)}{t} = 0.$$

[1 mark]

Now suppose that $u_1u_2 \neq 0$. Then

$$D_u f(0,0) = \lim_{t \to 0} \frac{f(tu) - f(0,0)}{t} = \lim_{t \to 0} \frac{\sin(tu_2^2/u_1)|t|}{t} = 0.$$

Thus $D_u f(0,0)$ exists for all unit vector u.

[1 mark]

However, f is not differentiable. Indeed, we have

$$\frac{|f(h,k) - f(0,0) - (f_x(0,0)h + f_y(0,0)k)|}{\sqrt{h^2 + k^2}} = |\sin(k^2/h)| \to |\sin(1/m)| \neq 0$$

as $(h,k) \to (0,0)$ along the path $h = mk^2$.

[1 mark]

2. Let $f: \mathbb{R}^2 \to \mathbb{R}^2$ and $g: \mathbb{R}^2 \to \mathbb{R}^3$ be given by $f(x,y) = (x^3y + y^2, xy)$ and $g(x,y) = (x^2y, xy, x - 2y)$. Use chain rule to determine the Jacobian matrix $J_{g \circ f}(1,2)$.

Solution: By the chain rule, $J_{g \circ f}(1,2) = J_g(f(1,2)) \cdot J_f(1,2)$. Now $J_f(x,y) = \begin{bmatrix} 3x^2y & x^3 + 2y \\ y & x \end{bmatrix}$ and $J_g(x,y) = \begin{bmatrix} 2xy & x^2 \\ y & x \\ 1 & -2 \end{bmatrix}$. [1 mark]

We have
$$f(1,2) = (6,2)$$
. So, $J_f(1,2) = \begin{bmatrix} 6 & 5 \\ 2 & 1 \end{bmatrix}$ and
$$J_g(f(1,2)) = J_g(6,2) = \begin{bmatrix} 24 & 36 \\ 2 & 6 \\ 1 & -2 \end{bmatrix}.$$
 [1 mark]

Hence
$$J_{g \circ f}(1,2) = \begin{bmatrix} 24 & 36 \\ 2 & 6 \\ 1 & -2 \end{bmatrix} \cdot \begin{bmatrix} 6 & 5 \\ 2 & 1 \end{bmatrix} = \begin{bmatrix} 216 & 156 \\ 24 & 16 \\ 2 & 3 \end{bmatrix}$$
. [1 mark]

3. Show that the equation $xy - z \log y + e^{xz} = 1$ can be solved locally around the point (0,1,1) as y = f(x,z) for some C^1 function f. Determine $\nabla f(0,1)$.

3 marks

Solution: Let $F(x, y, z) := xy - z \log y + e^{xz} - 1$. Then $F_y = x - z/y \Rightarrow F_y(0, 1, 1) = -1 \neq 0$. Hence by the implicit function theorem F(x, y, z) = 0 can be solved locally as y = f(x, z) for some C^1 function f. [1 mark]

Since F(x, f(x, z), z) = 0 in a neighborhood of (0, 1), differentiating w.r.t. x we have $F_x + F_y f_x = 0$. Hence $f_x(0, 1) = -F_x(0, 1, 1)/F_y(0, 1, 1) = 2$. [1 mark]

Again differentiating
$$F(x, f(x, z), z) = 0$$
 w.r.t. z, we have $f_z(0, 1) = -F_z(0, 1, 1)/F_y(0, 1, 1) = 0.$ [1 mark]

4. Find the maximum of $f: \mathbb{R}^3 \to \mathbb{R}$ given by f(x,y,z) := x+z subject to the constraint $x^2+y^2+2z^2=1$.

Solution: Consider the Lagrangian

$$L(x, y, z, \lambda) = x + z - \lambda(x^{2} + y^{2} + 2z^{2} - 1)$$

Then

$$L_x = 1 - 2\lambda x = 0$$
, $L_y = -2\lambda y = 0$, $L_z = 1 - 4\lambda z$, $L_\lambda = -x^2 - y^2 - 2z^2 + 1 = 0$.

Hence

$$1 - 2\lambda x = 0 \tag{1}$$

$$-2\lambda y = 0 \tag{2}$$

$$1 - 4\lambda z = 0 \tag{3}$$

$$x^2 + y^2 + 2z^2 = 1 (4)$$

[1 mark]

It follows from (1) that $\lambda \neq 0$. Hence by (1), (2) and (3), we have

$$x = \frac{1}{2\lambda}, \quad y = 0, \quad \text{and} \quad z = \frac{1}{4\lambda}$$
 (5)

respectively. Now using (5) in (4), we have

$$\lambda = \pm \sqrt{\frac{3}{8}} \tag{6}$$

[1 mark]

Finally, using (6) in (5), we have the critical points $\left(\sqrt{\frac{2}{3}}, 0, \frac{1}{\sqrt{6}}\right)$ and $\left(-\sqrt{\frac{2}{3}}, 0, -\frac{1}{\sqrt{6}}\right)$.

At these critical points, the value of f(x,y,z) is $\sqrt{\frac{3}{2}}$ and $-\sqrt{\frac{3}{2}}$ respectively. So the maximum value of f(x,y,z) subject to the constraint $x^2 + y^2 + 2z^2 = 1$ is $\sqrt{\frac{3}{2}}$. [1 mark]

5. Consider the vector field $F: \mathbb{R}^2 \to \mathbb{R}^2$ given by $F(x,y) := (x^2 + y^2, 2xy)$. Determine whether or not F is a conservative vector field and find a scalar potential, if it exists.

3 marks

Solution: Here $P = x^2 + y^2$ and Q = 2xy which shows that $Q_x = P_y$ so that the necessary condition is satisfied. [1 mark]

Now $f_x = P = x^2 + y^2 \Rightarrow f = x^3/3 + xy^2 + h(y)$ for some function h(y).

[1 mark]

Hence $f_y = 2xy + h'(y) = Q = 2xy \Rightarrow h'(y) = 0 \Rightarrow h(y) = c$. This shows that $f(x,y) = x^3/3 + xy^2 + c$ is the scalar potential. [1 mark]

6. The force field $F: \mathbb{R}^2 \to \mathbb{R}^2$ given by $F(x,y) := (xy, x^6y^2)$ moves a particle from (0,0) to the line x=1 along $y=ax^b$, where a>0 and b>0. If the workdone is independent of b then find the value of a.

Solution: Work done is given by

$$\begin{split} W &= \int_{\Gamma} F \bullet \mathbf{dr} = \int_{\Gamma} (xy, x^6y^2) \bullet (dx, dy) \\ &= \int_0^1 ax^{b+1} dx + \int_0^1 (a^2x^{2b+6})(abx^{b-1}) dx \quad [\mathbf{1mark}] \\ &= \frac{a}{b+2} + \frac{a^3b}{3b+6} \quad [\mathbf{1mark}]. \end{split}$$

Hence W is independent of b iff $\frac{dW}{db} = 0$ iff $0 = \frac{(b+2)a^2 - (3+a^2b)}{(b+2)^2}$ [1 mark]

which gives $a = \sqrt{\frac{3}{2}}$ (as a > 0). [1 mark]

7. Evaluate $\iint_D xy \, dA$, where D is the region bounded by the parabola $y^2 = 2x + 6$ and the line y = x - 1.

Solution: Note that D is a Type-II domain given by

$$D := \{(x, y) : -2 \le y \le 4, y^2/2 - 3 \le x \le y + 1\}$$
 [1mark].

Hence
$$\iint_D xy \, dA = \int_{-2}^4 \left(\int_{y^2/2-3}^{y+1} x \, dx \right) y \, dy = 1/2 \int_{-2}^4 y \left[(y+1)^2 - (y^2/2-3)^2 \right] dy$$

[1 mark]

$$= 1/2 \int_{-2}^{4} (-y^5/4 + 4y^3 + 2y^2 - 8y) dy = 1/2(-y^6/24 + y^4 + 2y^3/3 - 4y^2)|_{-2}^{4} = 36.$$

[1 mark]

Aliter: If D is written as Type-I domain then

$$D := \{-3 \le x \le -1, \ -\sqrt{2x+6} \le y \le \sqrt{2x+6}\} \cup \{-1 \le x \le 5, \ x-1 \le y \le \sqrt{2x+6}\}.$$

8. Let Γ be the circle $x^2 + y^2 = 9$ oriented positively. Use Green's theorem to evaluate the line integral $\oint_{\Gamma} \left((3y - e^{\cos x}) dx + (7x + \sqrt{y^4 + 5}) dy \right)$. **2 marks**

Solution: Let $D := \{(x, y) : x^2 + y^2 \le 9\}$. We have $Q_x - P_y = 7 - 3 = 4$.

[1 mark]

Hence by Green's theorem $I = \iint_D 4dA = 4\text{Area}(D) = 36\pi$. [1 mark]

9. Let $f: \mathbb{R}^n \to \mathbb{R}$ be continuous satisfying $f(\mathbf{x}) > 0$ when $\mathbf{x} \neq \mathbf{0}$ and $f(\alpha \mathbf{x}) = \alpha^2 f(\mathbf{x})$ for $\alpha \in \mathbb{R}$ and $\mathbf{x} \in \mathbb{R}^n$. Show that there is a real number $\beta > 0$ such that $f(\mathbf{x}) \geq \beta \|\mathbf{x}\|^2$ for $\mathbf{x} \in \mathbb{R}^n$.

Solution: Since f is continuous, f attains minimum on $S := \{ \mathbf{x} \in \mathbb{R}^n : ||\mathbf{x}|| = 1 \}$. Let $\beta := \min_{\mathbf{x} \in S} f(\mathbf{x})$. Then $\beta = f(\mathbf{x}_0) > 0$ for some $\mathbf{x}_0 \in S$. [2 marks]

Let $\mathbf{x} \in \mathbb{R}^n$. If $\mathbf{x} = 0$ then $f(\mathbf{x}) = 0$ and hence $f(\mathbf{x}) \ge \beta \|\mathbf{x}\|^2$. On the other hand, if $\mathbf{x} \ne 0$ then $f(\mathbf{x}) = \|\mathbf{x}\|^2 f(\mathbf{x}/\|\mathbf{x}\|) \ge \beta \|\mathbf{x}\|^2$. [2 marks]

**** End ****