三、函数极限的性质

1.有界性

定理 若在某个过程下, f(x)有极限, 则存在过程的一个时刻, 在此时刻以后 f(x)有界.

2.唯一性

定理 若 $\lim f(x)$ 存在,则极限唯一.

3.不等式性质

定理(保序性) 设
$$\lim_{x\to x_0} f(x) = A$$
, $\lim_{x\to x_0} g(x) = B$.

若∃
$$\delta > 0$$
, $\forall x \in U^0(x_0, \delta)$, 有 $f(x) \leq g(x)$,则 $A \leq B$.

推论 设
$$\lim_{x\to x_0} f(x) = A$$
, $\lim_{x\to x_0} g(x) = B$, 且 $A < B$

则
$$\exists \delta > 0, \forall x \in U^0(x_0, \delta), \mathsf{有}f(x) < g(x).$$

定理(保号性) 若 $\lim_{x\to x_0} f(x) = A, \text{且}A > 0(或 A < 0),$ 则 $\exists \delta > 0, \exists x \in U^0(x_0, \delta)$ 时, f(x) > 0(或 f(x) < 0).

推论 若 $\lim_{x \to x_0} f(x) = A$,且 $\exists \delta > 0$,当 $x \in U^0(x_0, \delta)$ 时, $f(x) \ge 0$ (或 $f(x) \le 0$),则 $A \ge 0$ (或 $A \le 0$).

4.子列收敛性(函数极限与数列极限的关系)

定义 设在过程 $x \to a(a$ 可以是 $x_0, x_0^+, \text{或}x_0^-)$ 中有数列 $x_n(\neq a)$,使得 $n \to \infty$ 时 $x_n \to a$.则称数列 $\{f(x_n)\}$,即 $f(x_1)$, $f(x_2)$,…, $f(x_n)$,…为函数f(x) 当 $x \to a$ 时的子列.

定理 若 $\lim_{x\to a} f(x) = A$,数列 $f(x_n)$ 是f(x)当 $x\to a$ 时的一个子列,则有 $\lim_{x\to \infty} f(x_n) = A$.

$$i\mathbb{E} : \lim_{x \to x_0} f(x) = A$$

$$\therefore \forall \varepsilon > 0, \exists \delta > 0, \notin \exists 0 < |x - x_0| < \delta \text{时,} 恒有$$
$$|f(x) - A| < \varepsilon.$$

$$\therefore$$
 对上述 $\delta > 0$, $\exists N > 0$, 使当 $n > N$ 时, 恒有 $0 < |x_n - x_0| < \delta$.

从而有
$$|f(x_n)-A| < \varepsilon$$
, 故 $\lim_{x\to\infty} f(x_n) = A$.

例如,
$$\lim_{x\to 0}\frac{\sin x}{x}=1$$

$$\lim_{n\to\infty}n\sin\frac{1}{n}=1,$$

$$y = \frac{\sin x}{x}$$

$$\lim_{n\to\infty}\sqrt{n}\sin\frac{1}{\sqrt{n}}=1, \quad \lim_{n\to\infty}\frac{n^2}{n+1}\sin\frac{n+1}{n^2}=1$$

函数极限与数列极限的关系

函数极限存在的充要条件是它的任何子列的极限都存在,且相等.

例7 证明 lim sin 1 不存在.

证
$$\mathbb{R}\left\{x_n\right\} = \left\{\frac{1}{n\pi}\right\},$$

$$\lim_{n\to\infty}x_n=0,\quad \perp x_n\neq 0;$$

取
$$\{x'_n\} = \left\{\frac{1}{4n+1} \frac{1}{\pi}\right\}$$
, $\lim_{n\to\infty} x'_n = 0$, 且 $x'_n \neq 0$;

$$\lim_{n\to\infty}x'_n=0,\quad \coprod x'_n\neq 0;$$

$$\overline{\prod} \lim_{n\to\infty} \sin\frac{1}{x_n} = \lim_{n\to\infty} \sin n\pi = 0,$$

$$\overrightarrow{\mathbb{I}} \lim_{n\to\infty} \sin\frac{1}{x'_n} = \lim_{n\to\infty} \sin\frac{4n+1}{2}\pi$$

$$=\lim_{n\to\infty}1=1,$$

二者不相等,故 $\lim_{x\to 0} \sin \frac{1}{x}$ 不存在.

四、小结

函数极限的统一定义

$$\lim_{n\to\infty}f(n)=A;$$

$$\lim_{x\to\infty} f(x) = A; \quad \lim_{x\to+\infty} f(x) = A; \quad \lim_{x\to-\infty} f(x) = A;$$

$$\lim_{x \to x_0} f(x) = A; \quad \lim_{x \to x_0^+} f(x) = A; \quad \lim_{x \to x_0^-} f(x) = A.$$

$$\lim f(x) = A \Leftrightarrow \forall \varepsilon > 0, \exists$$
 时刻,从此时刻以后, 恒有 $|f(x) - A| < \varepsilon$. (见下表)

	过	程	$n \to \infty$	$x \to \infty$	$x \to +\infty$	$x \to -\infty$
	时	刻	N或者X			
	从此时	刻以后	n > N	x > X	x > X	x < -X
\Box	f(<i>x</i>)	$ f(x)-A <\varepsilon$			

过程	$x \rightarrow x_0$	$x \rightarrow x_0^+$	$x \rightarrow x_0^-$		
时 刻	δ				
从此时刻以		$0 < x - x_0 < \delta$	$-\delta < x - x_0 < 0$		
f(x)		$ f(x)-A <\varepsilon$			

一、极限的运算法则

定理 设 $\lim f(x) = A, \lim g(x) = B, 则$

- (1) $\lim[f(x)\pm g(x)] = A\pm B;$
- (2) $\lim [f(x) \cdot g(x)] = A \cdot B;$
- (3) $\lim \frac{f(x)}{g(x)} = \frac{A}{B}$, 其中 $B \neq 0$.

推论1 如果 $\lim_{x \to \infty} f(x)$ 存在,而c为常数,则 $\lim_{x \to \infty} [cf(x)] = c \lim_{x \to \infty} f(x).$

常数因子可以提到极限记号外面.

推论2 如果 $\lim_{x \to \infty} f(x)$ 存在,而n是正整数,则 $\lim_{x \to \infty} [f(x)]^n = [\lim_{x \to \infty} f(x)]^n.$

例1 求 $\lim_{x\to 2} \frac{x^3-1}{x^2-3x+5}$.

解:
$$\lim_{x \to 2} (x^2 - 3x + 5) = \lim_{x \to 2} x^2 - \lim_{x \to 2} 3x + \lim_{x \to 2} 5$$
$$= (\lim_{x \to 2} x)^2 - 3\lim_{x \to 2} x + \lim_{x \to 2} 5$$
$$= 2^2 - 3 \cdot 2 + 5 = 3 \neq 0,$$

$$\therefore \lim_{x\to 2} \frac{x^3-1}{x^2-3x+5} = \frac{\lim_{x\to 2} x^3 - \lim_{x\to 2} 1}{\lim_{x\to 2} (x^2-3x+5)} = \frac{2^3-1}{3} = \frac{7}{3}.$$

小结: 1. 设
$$f(x) = a_0 x^n + a_1 x^{n-1} + \cdots + a_n$$
,则有

$$\lim_{x \to x_0} f(x) = a_0 (\lim_{x \to x_0} x)^n + a_1 (\lim_{x \to x_0} x)^{n-1} + \dots + a_n$$

$$= a_0 x_0^n + a_1 x_0^{n-1} + \dots + a_n = f(x_0).$$

2. 设
$$f(x) = \frac{P(x)}{Q(x)}$$
, 且 $Q(x_0) \neq 0$, 则有

$$\lim_{x \to x_0} f(x) = \frac{\lim_{x \to x_0} P(x)}{\lim_{x \to x_0} Q(x)} = \frac{P(x_0)}{Q(x_0)} = f(x_0).$$

若 $Q(x_0) = 0$,则商的法则不能应用.

$$\lim_{x \to \infty} \frac{a_0 x^m + a_1 x^{m-1} + \dots + a_m}{b_0 x^n + b_1 x^{n-1} + \dots + b_n} = \begin{cases} \frac{a_0}{b_0}, \stackrel{\cong}{\Rightarrow} n = m, \\ 0, \stackrel{\cong}{\Rightarrow} n > m, \\ \infty, \stackrel{\cong}{\Rightarrow} n < m, \end{cases}$$

无穷小分出法:以分母中自变量的最高次幂除分子,分母,以分出无穷小,然后再求极限.

极限存在准则与两个重要极限

- 一 极限存在的两个准则
- 二 两个重要极限
- 三 小结与思考判断题

一 极限存在准则

1. 夹逼准则(两边夹定理)

定理 I 如果数列 x_n, y_n 及 z_n 满足下列条件:

(1)
$$y_n \le x_n \le z_n$$
 $(n = 1, 2, 3 \cdots)$

(2)
$$\lim_{n\to\infty} y_n = a$$
, $\lim_{n\to\infty} z_n = a$,

那末数列 x_n 的极限存在,且 $\lim_{n\to\infty}x_n=a$.

准则 | ' 如果当 $x \in U_{\delta}^{0}(x_{0})$ (或|x| > M) 时, 有

$$(1) g(x) \le f(x) \le h(x),$$

(2)
$$\lim_{\substack{x\to x_0\\(x\to\infty)}} g(x) = A$$
, $\lim_{\substack{x\to x_0\\(x\to\infty)}} h(x) = A$,

那末 $\lim_{\substack{x \to x_0 \\ (x \to \infty)}} f(x)$ 存在,且等于A .

准则 I 和准则 I' 称为夹逼准则.

注意: 利用夹逼准则求极限关键是构造出 y_n 与 z_n ,并且 y_n 与 z_n 的极限是容易求的.

二、两个重要极限

$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$

设单位圆 O,圆心角 $\angle AOB = x$, $(0 < x < \frac{\pi}{2})$

作单位圆的切线,得 ΔACO .

扇形OAB的圆心角为x, $\triangle OAB$ 的高为BD,

于是有 $\sin x = BD$, x = 弧 AB, $\tan x = AC$,

利用变量代换可导出上 述极限的一般形式:

$$\lim_{\alpha(x)\to 0}\frac{\sin\alpha(x)}{\alpha(x)}=1;$$

例3 (1) 求
$$\lim_{x\to 0} \frac{1-\cos x}{x^2}$$
.

解 原式 =
$$\lim_{x \to 0} \frac{2\sin^2 \frac{x}{2}}{x^2} = \frac{1}{2} \lim_{x \to 0} \frac{\sin^2 \frac{x}{2}}{\left(\frac{x}{2}\right)^2}$$

$$= \frac{1}{2} \lim_{x \to 0} \left(\frac{\sin \frac{x}{2}}{\frac{x}{2}} \right)^2 = \frac{1}{2} \cdot 1^2 = \frac{1}{2}.$$

(2) 求
$$\lim_{x\to 0} \frac{\tan x}{x}$$
.

例 4 计算
$$\lim_{x\to 0} \frac{\sin 3x - \sin x}{x}$$
.

$$\lim_{x\to 0} \frac{\sin 3x - \sin x}{x} = \lim_{x\to 0} \frac{2\cos 2x \sin x}{x}$$

$$= 2 \cdot \lim_{x \to 0} \cos 2x \cdot \lim_{x \to 0} \frac{\sin x}{x}$$

$$= 2 \cdot 1 \cdot 1 = 2.$$

例5 求
$$\lim_{n\to\infty}\cos\frac{\varphi}{2}\cos\frac{\varphi}{2^2}\cos\frac{\varphi}{2^3}\cdots\cos\frac{\varphi}{2^n}$$
, $\varphi\neq 0$.

$$\begin{aligned}
& \text{iff } : \sin \varphi = 2\cos\frac{\varphi}{2}\sin\frac{\varphi}{2} &= 2^2\cos\frac{\varphi}{2}\cos\frac{\varphi}{2^2}\sin\frac{\varphi}{2^2} \\
&= 2^3\cos\frac{\varphi}{2}\cos\frac{\varphi}{2^2}\cos\frac{\varphi}{2^3}\sin\frac{\varphi}{2^3} \\
&= \dots = 2^n\cos\frac{\varphi}{2}\cos\frac{\varphi}{2^2}\cos\frac{\varphi}{2^2}\cos\frac{\varphi}{2^3}\dots\cos\frac{\varphi}{2^n}\sin\frac{\varphi}{2^n}
\end{aligned}$$

$$\lim_{x\to\infty}(1+\frac{1}{x})^x=e$$

$$\therefore \lim_{x\to +\infty} (1+\frac{1}{x})^x = e.$$

$$\Leftrightarrow t = -x$$

$$\lim_{x \to -\infty} (1 + \frac{1}{x})^x = \lim_{t \to +\infty} (1 - \frac{1}{t})^{-t} = \lim_{t \to +\infty} (1 + \frac{1}{t-1})^t$$

$$= \lim_{t \to +\infty} (1 + \frac{1}{t-1})^{t-1} (1 + \frac{1}{t-1}) = e.$$

$$\Rightarrow t = \frac{1}{x}, \quad \lim_{x \to 0} (1+x)^{\frac{1}{x}} = \lim_{t \to \infty} (1+\frac{1}{t})^t = e.$$

$$\lim_{x\to 0} (1+x)^{\frac{1}{x}} = e$$

利用变量代换可导出上 述极限的一般形式:

$$\lim_{\alpha (x) \to 0} (1 + \alpha(x))^{\frac{1}{\alpha(x)}} = e$$

例4 求
$$\lim_{x\to\infty}(1-\frac{1}{x})^x$$
.

解 原式 =
$$\lim_{x \to \infty} [(1 + \frac{1}{-x})^{-x}]^{-1} = \lim_{x \to \infty} \frac{1}{(1 + \frac{1}{-x})^{-x}}$$

= $\frac{1}{e}$.

例5 求
$$\lim_{x\to\infty} \left(\frac{3+x}{2+x}\right)^{2x}$$
.

解 原式 =
$$\lim_{x\to\infty} [(1+\frac{1}{x+2})^{x+2}]^2 (1+\frac{1}{x+2})^{-4} = e^2$$
.