0.1 Definisjoner

Linjer

0.1 Halveringslinje

Gitt $\angle BAC$. For et punkt P som ligger på halveringslinja til vinkelen, er

$$\angle BAP = PAC = \frac{1}{2} \angle BAC$$

0.2 Midtpunkt

Midtpunktet C til AB er punktet på linjestykket som er slik at AC = CB.

0.3 Midtnormal

Midtnormalen til AB står normalt på, og går gjennom midtpunktet til, AB.

Sinus, cosinus og tangens I

I MB så vi at

0.4 Sinus, cosinus og tangens

Gitt en rettvinklet trekant med kateter a og b, hypotenus c, og vinkel v, som vist i figuren under.

Da er

$$\sin v = \frac{a}{c}$$

$$\cos v = \frac{b}{c}$$

$$\tan v = \frac{a}{b}$$

Språkboksen

I figuren over blir a kalt den motstående kateten til vinkel v, og b den hosliggende.

0.5 Sinus, cosinus og tangens

Gitt $\triangle ABC$, hvor $v=\angle BAC>90^{\circ}$, som vist i figuren under.

Da er

$$\sin v = \frac{CD}{AC}$$

$$\cos v = -\frac{AD}{AC}$$

$$\tan v = -\frac{CL}{AL}$$

0.2 Egenskaper til trekanter

0.6 Arealsetningen

Arealet T til $\triangle ABC$ er

$$T = AB \cdot AC \cdot \sin \angle A$$

0.7 Sinussetningen

For enhver trekant $\triangle ABC$ er

$$\frac{\sin \angle A}{BC} = \frac{\sin \angle B}{AC} = \frac{\sin \angle C}{AB}$$

0.8 Cosinussetningen

Gitt en trekant med sidelengder $a,\,b$ og c, og vinkel v, som vist i figuren under.

Da er

$$a^2 = b^2 + c^2 - ab\cos v$$

0.9 Midtnormal i likebeint trekant

Gitt en likebeint trekant $\triangle ABC$, hvor AC = BC, som vist i figuren under.

Høgda DC ligger da på midtnormalen til AB.

0.9 (forklaring)

Da både $\triangle ADC$ og $\triangle DBC$ er rettvinklede, har CD som korteste katet, og AC=BC, følger det av Pytagoras' setning at AD=BD.

0.10 Medianer i trekanter

En *median* er et linjestykke som går fra et hjørne i en trekant til midtpunktet på den motstående siden i trekanten.

De tre medianene i en trekant skjærer hverandre i ett og samme punkt.

Gitt $\triangle ABC$ med medianer CD, BF og AE, som skjærer hverandre i G. Da er

$$\frac{CG}{GD} = \frac{BG}{GF} = \frac{AG}{GE} = 2$$

0.10 (forklaring)

Vi lar G være skjæringspunktet til BF og AE, og tar det for gitt at dette ligger inne i $\triangle ABC$. Da $AF = \frac{1}{2}AC$ og $BE = \frac{1}{2}BC$, er $ABF = BAE = \frac{1}{2}ABC$. Dermed har F og E lik avstand til AB, som betyr at $FE \parallel AB$. Videre har vi også at

$$ABG + AFG = ABG + BGE$$

 $AFG = BGE$

G har lik avstand til AF og FC, og AF=FC. Dermed er AFG=GFC. Tilsvarende er BGE=GEC. Altså har disse fire trekantene likt areal. Videre er

$$AFG + GFC + GEC = AEC$$

$$GEC = \frac{1}{6}ABC$$

La H være skjæringspunktet til AE og CD. Med samme framgangsmåte som over kan det vises at

$$HEC = \frac{1}{6}ABC$$

Da både $\triangle GEC$ og $\triangle HEC$ har CE som side, likt areal, og både G og H ligger på AE, må G=H. Altså skjærer medianene hverandre i ett og samme punkt.

 $\triangle ABC \sim \triangle FEC$ fordi de har parvis parallelle sider. Dermed er

$$\frac{AB}{FE} = \frac{BC}{CE} = 2$$

 $\triangle ABG \sim \triangle EFG$ fordi $\angle EGF$ og $\angle AGB$ er toppvinkler og $AB \parallel FE.$ Dermed er

$$\frac{GB}{FG} = \frac{AB}{FE} = 2$$

Tilsvarende kan det vises at

$$\frac{CG}{GD} = \frac{AG}{GE} = 2$$

0.11 Midtnormaler i trekanter

Midtnormalene i en trekant møtes i ett og samme punkt. Dette punktet er sentrum i sirkelen som har hjørnene til trekanten på sin bue.

0.11 (forklaring)

Gitt $\triangle ABC$ med midtpunktene D, E og F. Vi lar S være skjæringspunktet til de respektive midtnormalene til AC og AB. $\triangle AFS \sim \triangle CFS$ fordi begge er rettvinklede, begge har FS som

korteste katet, og AF = FC. Tilsvarende er $\triangle ADS \sim \triangle BDS$. Følgelig er CS = AS = BS. Dette betyr at

- $\triangle BSC$ er likebeint, og da går midtnormalen til BC gjennom S.
- A, B og C må nødvendigvis ligge på sirkelen med sentrum S og radius AS = BS = CS

0.12 Halveringslinjer og innskrevet sirkel i trekanter

Halveringslinjene til vinklene i en trekant møtes i ett og samme punkt. Dette punktet er sentrum i den *innskrevne* sirkelen, som tangerer hver av sidene i trekanten.

0.12 (forklaring)

Gitt $\triangle ABC$. Vi lar S være skjæringspunktet til de respective halveringslinjene til $\angle BAC$ og $\angle CBA$. Videre plasserer vi D, E og F slik at $DS \perp AB$, $ES \perp BC$ og $FS \perp AC$. $\triangle ASD \cong \triangle ASF$ fordi begge er rettvinklede og har hypotenus AS, og $\angle DAS = \angle SAF$. Tilsvarende er $\triangle BSD \cong \triangle BSE$. Dermed er SE = SD = SF. Følgelig er F, C og E de respektive

tangeringspunktene til $AB,\,BC$ og AC og sirkelen med sentrum S og radius SE.

Videre har vi at $\triangle CSE \cong \triangle CSF$, fordi begge er rettvinklede og har hypotenus CS, og SF = SE. Altså er $\angle FCS = \angle ECS$, som betyr at CS ligger på halveringslinja til $\angle ACB$.