Homework7

Jyoti Chaudhary April 8, 2018

Problem 1

This is the case of two way Anova without interaction. Here Factor A = portfolio and Factor B = Advisor. k = 3, b = 4.

```
data2 <- read.csv(paste(getwd(),"/XR12095.csv",sep = ""),header=T)

library(reshape2)
data3 <- melt(data2)</pre>
```

```
## Using Advisor as id variables
```

```
data3
```

```
##
      Advisor
               variable value
## 1 advisorA portfolio1
## 2 advisorB portfolio1
                            12
## 3 advisorC portfolio1
                            8
## 4 advisorD portfolio1
                            15
## 5 advisorA portfolio2
                            8
## 6 advisorB portfolio2
                            10
## 7 advisorC portfolio2
                            11
## 8 advisorD portfolio2
                            12
## 9 advisorA portfolio3
                             5
## 10 advisorB portfolio3
## 11 advisorC portfolio3
                            10
## 12 advisorD portfolio3
                            11
```

```
mdl1 <- aov(value ~ Advisor + variable, data = data3)

# Now lets compare the portfolios
TukeyHSD(mdl1, conf.level = 0.95, "variable")</pre>
```

```
Tukey multiple comparisons of means
##
       95% family-wise confidence level
##
##
## Fit: aov(formula = value ~ Advisor + variable, data = data3)
##
## $variable
##
                          diff
                                     lwr
                                              upr
                                                       p adj
## portfolio2-portfolio1 -0.50 -4.061343 3.061343 0.9043374
## portfolio3-portfolio1 -2.25 -5.811343 1.311343 0.2084893
## portfolio3-portfolio2 -1.75 -5.311343 1.811343 0.3522676
```

```
plot(TukeyHSD(mdl1,"variable"))
```


From the output p-values and the plot, we can determine that there is no signficant difference between portfolios at 5% level.

```
with(data3, pairwise.t.test(x=value, g=variable, p.adjust="none")) ## FISHER'S LSD
```

None of the portfolio comparisons are statistically significant. Hence we conclude that there is no significant difference between the expected annual rate of return between portfolios at 5% level.

Problem 2:

This is one-way anova test.

```
data1 <- read.csv(paste(getwd(),"/XR12096.csv",sep = ""),header=T)

Stacked_data1 <- stack(data1)

mdl2 <- aov(values ~ ind, data = Stacked_data1)</pre>
```

Lets compare the brands using 0.025 level.

```
TukeyHSD(mdl2, conf.level = 0.975, "ind")
```

```
Tukey multiple comparisons of means
##
##
       97.5% family-wise confidence level
##
## Fit: aov(formula = values ~ ind, data = Stacked_data1)
##
## $ind
##
                      diff
                                  lwr
                                            upr
                                                    p adj
## brandB-brandA 4.583333 -1.5769755 10.743642 0.1249145
## brandC-brandA 1.666667 -4.4936422 7.826976 0.8315865
## brandD-brandA 5.483333 -0.6769755 11.643642 0.0513716
## brandC-brandB -2.916667 -9.0769755 3.243642 0.4663531
## brandD-brandB 0.900000 -5.2603088 7.060309 0.9674269
## brandD-brandC 3.816667 -2.3436422 9.976976 0.2440724
```

Looking at the p-value, we can further determine that at 0.025 level, there is no statistically significant difference between the breaking strength of different brand types.

```
with(Stacked_data1, pairwise.t.test(x=values, g=ind, p.adjust="none")) ## FISHER'S LSD
```

```
##
## Pairwise comparisons using t tests with pooled SD
##
## data: values and ind
##
## brandA brandB brandC
## brandB 0.030 - -
## brandC 0.407 0.154 -
## brandD 0.011 0.652 0.067
##
## P value adjustment method: none
```

Except for brandD-brandA, none of the other portfolio comparisons are statistically significant. For brandD-brandA, there is statistically significant difference between the breaking strength. For all other brand comparisons, we conclude that there is no significant difference between the breaking strength at 2.5% level.

Problem 3:

```
data4 <- read.csv(paste(getwd(),"/XR12099.csv",sep = ""),header=T)

data5 <- melt(data4)</pre>
```

```
## Using Style as id variables
```

```
mdl3 <- aov(value ~ Style * variable, data = data5)
summary(mdl3)</pre>
```

```
TukeyHSD(mdl3,"Style")
```

```
## Tukey multiple comparisons of means
## 95% family-wise confidence level
##
## Fit: aov(formula = value ~ Style * variable, data = data5)
##
## $Style
## diff lwr upr p adj
## TypSty2-TypSty1 -2 -5.262549 1.262549 0.1842807
```

Using 0.05 level of significance, we can conclude that Type style 1 and type style 2 has no significant difference in the effect on publication readability.

```
TukeyHSD(mdl3,"variable")
```

```
##
     Tukey multiple comparisons of means
##
       95% family-wise confidence level
##
## Fit: aov(formula = value ~ Style * variable, data = data5)
##
## $variable
##
                    diff
                                lwr
                                                   p adj
                                           upr
## TypMed-TypLight -5.25 -10.260471 -0.2395288 0.0417878
## TypDrk-TypLight -4.50 -9.510471 0.5104712 0.0738189
## TypDrk-TypMed
                    0.75 -4.260471 5.7604712 0.8922271
```

Using 0.05 level of significance, we can conclude that Only medium and light darkness levels have statistically significant difference in the effect on publication readability.

```
TukeyHSD(mdl3,"Style:variable")
```

```
##
     Tukey multiple comparisons of means
       95% family-wise confidence level
##
##
## Fit: aov(formula = value ~ Style * variable, data = data5)
##
## $`Style:variable`
##
                                     diff
                                                 lwr
                                                           upr
                                                                   p adj
## TypSty2:TypLight-TypSty1:TypLight -0.5 -9.691062 8.691062 0.9998933
## TypSty1:TypMed-TypSty1:TypLight
                                     -5.0 -14.191062 4.191062 0.3670304
## TypSty2:TypMed-TypSty1:TypLight
                                     -6.0 -15.191062 3.191062 0.2297666
## TypSty1:TypDrk-TypSty1:TypLight
                                     -2.5 -11.691062 6.691062 0.8724125
## TypSty2:TypDrk-TypSty1:TypLight
                                     -7.0 -16.191062 2.191062 0.1415192
## TypSty1:TypMed-TypSty2:TypLight
                                     -4.5 -13.691062 4.691062 0.4569213
## TypSty2:TypMed-TypSty2:TypLight
                                     -5.5 -14.691062 3.691062 0.2914508
## TypSty1:TypDrk-TypSty2:TypLight
                                     -2.0 -11.191062 7.191062 0.9420843
## TypSty2:TypDrk-TypSty2:TypLight
                                     -6.5 -15.691062 2.691062 0.1804384
## TypSty2:TypMed-TypSty1:TypMed
                                     -1.0 -10.191062 8.191062 0.9970263
## TypSty1:TypDrk-TypSty1:TypMed
                                      2.5 -6.691062 11.691062 0.8724125
## TypSty2:TypDrk-TypSty1:TypMed
                                     -2.0 -11.191062 7.191062 0.9420843
## TypSty1:TypDrk-TypSty2:TypMed
                                     3.5 -5.691062 12.691062 0.6693236
## TypSty2:TypDrk-TypSty2:TypMed
                                     -1.0 -10.191062 8.191062 0.9970263
## TypSty2:TypDrk-TypSty1:TypDrk
                                     -4.5 -13.691062 4.691062 0.4569213
```

Using 0.05 level of significance, we can conclude that the interaction effect of style type and darkness level do not have statistically significant difference in the effect on publication readability.

Problem 4

```
data6 <- read.csv(paste(getwd(),"/LtnSqr.csv",sep = ""),header=T)

mdl4 <- aov(Yield ~ Peanuts + Column + Row, data = data6)

TukeyHSD(mdl4,"Peanuts")</pre>
```

```
Tukey multiple comparisons of means
##
##
       95% family-wise confidence level
##
## Fit: aov(formula = Yield ~ Peanuts + Column + Row, data = data6)
##
## $Peanuts
##
         diff
                     lwr
                              upr
## B-A 4.075 -0.8189415 8.968942 0.0990478
## C-A 0.825 -4.0689415 5.718942 0.9334796
## D-A 0.275 -4.6189415 5.168942 0.9971031
## C-B -3.250 -8.1439415 1.643942 0.2001869
## D-B -3.800 -8.6939415 1.093942 0.1252130
## D-C -0.550 -5.4439415 4.343942 0.9782233
```

Using 0.05 level of significance, we can conclude that the comparison in difference of yield of various peanuts varities is not statistically significant.