TD 8 : Arithmétique modulaire

christina.boura@uvsq.fr

16 novembre 2020

1 Définition

Rappel : On dit définit la relation d'équivalence modulo n par

$$a \equiv b \mod n \iff n \mid (a - b).$$

On note \bar{a} la classe d'équivalence de a modulo n, ou simplement a lorsque cela est clair du contexte.

1. Montrer qu'il s'agit bien d'une relation d'équivalence.

On doit montrer que cette relation sur \mathbb{Z} est réflexive, symétrique et transitive.

Réflexive: Pour tout $a \in \mathbb{Z}$ on a que $a \equiv a \mod n$ puisque n'importe quel entier positif n divise toujours (a-a)=0.

Symétrique On doit montrer que pour tout $a, b \in \mathbb{Z}$, si $a \equiv b \mod n$ alors $b \equiv a \mod n$. On suppose que $a \equiv b \mod n$. Par définition, on a qu'il existe un entier $k \in \mathbb{Z}$ tel que $(a-b) = k \cdot n \Rightarrow b-a = \ell \cdot n$, avec $\ell = -k$. On voit donc bien que $n \mid (b-a)$.

Transitive On doit montrer que pour tout $a,b,c\in\mathbb{Z}$, si $a\equiv b\mod n$ et $b\equiv c\mod n$ alors $a\equiv c\mod n$. On suppose que $a\equiv b\mod n$ et $b\equiv c\mod n$. Alors il existe des entiers k,ℓ tels que $(a-b)=k\cdot n$ et $(b-c)=\ell\cdot n$. On voit que

$$(a-c) = (a-b) + (b-c) = k \cdot n + \ell \cdot n = (k+\ell) \cdot n = m \cdot n,$$

avec $m = k + \ell \in \mathbb{Z}$. On conclut alors que $n \mid (a - c)$.

2. Donner la classe d'équivalence de $-3 \mod 7$.

$$\overline{-3} = \{ n \in \mathbb{Z} : n \equiv -3 \mod 7 \}$$
$$= \{ \dots, -17, -10, -3, 4, 11, 18, \dots \}.$$

3. Lesquelles des égalités suivantes sont vraies? Lesquelles sont fausses?

4. Montrer que la définition est équivalente à

$$a \equiv b \mod n \iff \exists c. \ a = b + cn.$$

En effet,

$$a \equiv b \mod n \iff n \mid (a-b) \iff \exists c. (a-b) = cn \iff \exists c. a = b + cn.$$

5. Montrer que pour n=2, la définition est équivalente à

$$a \equiv b \mod 2 \iff 2 \mid (a+b).$$

On calcule:

$$a \equiv b \mod 2 \Leftrightarrow 2 \mid (a-b) \Leftrightarrow \exists k \in \mathbb{Z} : (a-b) = 2k$$
$$\Leftrightarrow \exists k \in \mathbb{Z} : (a-b) + 2b = 2k + 2b$$
$$\Leftrightarrow \exists k \in \mathbb{Z} : (a+b) = 2(k+b)$$
$$\Leftrightarrow 2 \mid (a+b).$$

- 6. Soit n un entier quelconque, montrer les deux propriétés suivantes :
 - Si $a \equiv b \mod n$ alors pour tout entier c on a $a+c \equiv b+c \mod n$, Il faut montrer que $n \mid (a+c)-(b+c)=a-b$, ce qui est vrai puisque on a supposé que $a \equiv b$
 - Si $a \equiv b \mod n$ alors pour tout entier c on a $ac \equiv bc \mod n$.

Il faut montrer que $n \mid (ac - bc) = (a - b)c$. Puisque on a supposé que $a \equiv b \mod n$ on sait qu'il existe un $k \in \mathbb{Z}$ tel que $(a - b) = k \cdot n$. Par conséquent,

$$(ac - bc) = k \cdot n \cdot c = (k \cdot c) \cdot n = m \cdot n,$$

avec $m = k \cdot c \in \mathbb{Z}$.

2 Structure additive

- 1. Calculer un représentant pour les sommes suivantes
 - $\bullet \ 5 + 5 \equiv 0 \mod 10$
 - $\bullet -1 + 4 \equiv 3 \mod 6$
 - $9 15 \equiv 1 + 1 \equiv 2 \mod 4$.
- 2. Calculer un représentant pour les produits suivants
 - $3 \cdot 3 \equiv 9 \equiv 2 \mod 7$
 - $-1 \cdot 9 \equiv -1 \cdot 4 \equiv -4 \equiv 1 \mod 5$
 - $14 \cdot 12 \equiv -1 \cdot -3 \equiv 3 \mod 15$.
- 3. Calculer les tables d'addition et de multiplication de $\mathbb{Z}/2\mathbb{Z}$. A quels opérateurs du calcul des propositions correspondent-elles?

La table de l'addition correspond à l'opérateur OU-EXCLUSIF ou XOR, tandis que la multiplication correspond au ET logique.

4. Calculer les tables d'addition et de multiplication de $\mathbb{Z}/6\mathbb{Z}$.

+	0	1	2	3	4	5	x	0	1	2	3	4	5
0	0	1	2	3	4	5	0	0	0	0	0	0	0
1	1	2	3	4	5	0	1	0	1	2	3	4	5
2	2	3	4	5	0	1	2	0	2	4	0	2	4
3	3	4	5	0	1	2	3	0	3	0	3	0	3
4	4	5	0	1	2	3	4	0	4	2	0	4	2
5	5	0	1	2	3	4	5	0	5	4	3	2	1

- 5. Calculer le résultat des expressions suivantes
 - $3 \cdot (4+7) \equiv 3 \cdot 0 \equiv 0 \mod 11$
 - $\bullet \ 4 4 \cdot 12 \equiv 4 4 \cdot 1 \equiv 0 \mod 11$
 - $(1234 + 789) \cdot 12 \equiv (4+9) \cdot 2 \equiv 3 \cdot 2 \equiv 6 \mod 10.$

3 Structure multiplicative

Voici la table de multiplication de $\mathbb{Z}/15\mathbb{Z}$. À partir de maintenant on va arrêter d'écrire $\mod n$ partout : lorsque le module est clair du contexte, on se contentera d'écrire 6+8=-1, plutôt que $6+8=-1 \mod 15$.

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
2	0	2	4	6	8	10	12	14	1	3	5	7	9	11	13
3	0	3	6	9	12	0	3	6	9	12	0	3	6	9	12
4	0	4	8	12	1	5	9	13	2	6	10	14	3	7	11
5	0	5	10	0	5	10	0	5	10	0	5	10	0	5	10
6	0	6	12	3	9	0	6	12	3	9	0	6	12	3	9
7	0	7	14	6	13	5	12	4	11	3	10	2	9	1	8
8	0	8	1	9	2	10	3	11	4	12	5	13	6	14	7
9	0	9	3	12	6	0	9	3	12	6	0	9	3	12	6
10	0	10	5	0	10	5	0	10	5	0	10	5	0	10	5
11	0	11	7	3	14	10	6	2	13	9	5	1	12	8	4
12	0	12	9	6	3	0	12	9	6	3	0	12	9	6	3
13	0	13	11	9	7	5	3	1	14	12	10	8	6	4	2
14	0	14	13	12	11	10	9	8	7	6	5	4	3	2	1

1. Quel est l'inverse (multiplicatif) de 2, 4, 7?

L' inverse (multiplicatif) de 2, 4, 7 est respectivement 8, 4 et 13.

- 2. Trouver un élément qui n'a pas d'inverse multiplicatif. Z/15Z est-il un corps ?
 3 ∈ Z/15Z n'a pas d'inverse multiplicatif. Z/15Z n'est donc pas un corps puisque tous les éléments non-nuls ne sont pas inversibles.
- 3. Combien d'éléments contient $(\mathbb{Z}/15\mathbb{Z})^*$ (le groupe des éléments inversibles de $\mathbb{Z}/15\mathbb{Z}$?

$$(\mathbb{Z}/15\mathbb{Z})^* = \{1, 2, 4, 6, 7, 11, 13, 14\}.$$

Il contient donc 8 éléments.

- 4. Calculer 3^3 , 5^4 et 2^7 .
 - $3^3 = 3^2 \cdot 3 \equiv 9 \cdot 3 \equiv 12 \mod 15$.
 - $5^4 = 5^2 \cdot 5^2 \equiv 10 \cdot 10 \equiv 10 \mod 15$.
 - $2^7 = 2^2 \cdot 2^2 \cdot 2^2 \cdot 2 \equiv 4 \cdot 4 \cdot 4 \cdot 2 \equiv 1 \cdot 8 \equiv 8 \mod 15$.

4 Corps finis

1. Calculer la table de multiplication de $\mathbb{Z}/7\mathbb{Z}$. Quels sont les éléments inversibles? $\mathbb{Z}/7\mathbb{Z}$ est-il un corps?

x	0	1	2	3	4	5	6
0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6
2	0	2	4	6	1	3	5
3	0	3	6	2	5	1	4
4	0	4	1	5	2	6	3
5	0	5	3	1	6	4	2
6	0 0 0 0 0 0	6	5	4	3	2	1

Tous les éléments de $\mathbb{Z}/7\mathbb{Z}$ sauf 0 sont inversibles. $\mathbb{Z}/7\mathbb{Z}$ est donc un corps.

- 2. Calculer toutes les puissances de 3 mod 7.
 - $3^0 \equiv 1 \mod 7$
 - $3^1 \equiv 3 \mod 7$
 - $3^2 \equiv 9 \equiv 2 \mod 7$
 - $3^3 \equiv 3^2 \cdot 3 \equiv 2 \cdot 3 \equiv 6 \mod 7$
 - $3^4 \equiv 3^2 \cdot 3^2 \equiv 2 \cdot 2 \equiv 4 \mod 7$
 - $3^5 \equiv 3^2 \cdot 3^3 \equiv 2 \cdot 6 \equiv 5 \mod 7$
 - $3^6 \equiv 3^2 \cdot 3^2 \cdot 3^2 \equiv 2^3 \equiv 1 \mod 7$

Rappel : Soit $(A, +, \times)$ et soit un élément $a \in A$, avec $a \neq 0$. On dit que a est un diviseur de 0, s'il existe $b \in A$, $b \neq 0$: ab = 0.

3. Montrer que si n = ab, alors $a \mod n$ est un diviseur de zéro.

$$n = ab \Leftrightarrow ab \equiv 0 \mod n \Leftrightarrow a \text{ est un diviseur de } 0.$$

4. Montrer que un élément est inversible si et seulement s'il n'est pas un diviseur de zéro.

Soit a un élément inversible. Forcément $a \neq 0$ et il existe un élément a^{-1} tel que $a \cdot a^{-1} = a^{-1} \cdot a \equiv 1 \mod n$. Soit $b \in \mathbb{Z}/n\mathbb{Z}$ tel que $a \cdot b \equiv 0 \mod n \Rightarrow (a \cdot a^{-1}) \cdot b \equiv 0 \mod n \Rightarrow 1 \cdot b \equiv 0 \mod n \Rightarrow b = 0$. L'inverse est laissé comme exercice.

5. Montrer que $\mathbb{Z}/n\mathbb{Z}$ est un corps si et seulement si n est premier.