Head-Driven Phrase Structure Grammar: The handbook

Edited by

Anne Abeillé Robert D. Borsley Jean-Pierre Koenig Stefan Müller

Empirically Oriented Theoretical Morphology and Syntax

Chief Editor: Stefan Müller

Consulting Editors: Berthold Crysmann, Laura Kallmeyer

In this series:

- 1. Lichte, Timm. Syntax und Valenz: Zur Modellierung kohärenter und elliptischer Strukturen mit Baumadjunktionsgrammatiken
- 2. Bîlbîie, Gabriela. Grammaire des constructions elliptiques: Une étude comparative des phrases sans verbe en roumain et en français
- 3. Bowern, Claire, Laurence Horn & Raffaella Zanuttini (eds.). On looking into words (and beyond): Structures, Relations, Analyses

ISSN: 2366-3529

Head-Driven Phrase Structure Grammar: The handbook

Edited by

Anne Abeillé

Robert D. Borsley

Jean-Pierre Koenig

Stefan Müller

Anne Abeillé, Robert D. Borsley, Jean-Pierre Koenig & Stefan Müller (ed.). 2018. *Head-Driven Phrase Structure Grammar: The handbook* (Empirically Oriented Theoretical Morphology and Syntax 99). Berlin: Language Science Press.

This title can be downloaded at:

http://langsci-press.org/catalog/book/000

© 2018, the authors

Published under the Creative Commons Attribution 4.0 Licence (CC BY 4.0):

http://creativecommons.org/licenses/by/4.0/

ISBN: no digital ISBN

no print ISBNs! ISSN: 2366-3529

no DOI

Source code available from www.github.com/langsci/000 Collaborative reading: paperhive.org/documents/remote?type=langsci&id=000

Cover and concept of design: Ulrike Harbort

Fonts: Linux Libertine, Libertinus Math, Arimo, DejaVu Sans Mono

Typesetting software: X¬IATeX

Language Science Press Unter den Linden 6 10099 Berlin, Germany langsci-press.org

Storage and cataloguing done by FU Berlin

no logo

Pr	eface	v
Ac	cknowledgments	vii
I	Introduction	
1	Basic properties and elements Bob Borsley & Anne Abeillé	3
2	The evolution of HPSG Dan Flickinger, Tom Wasow & Carl Pollard	7
3	Formal Background Frank Richter	9
4	The nature and role of the lexicon in HPSG Anthony Davis & Jean-Pierre Koenig	11
5	Understudied languages Doug Ball & Aron Broadwell	51
II	Syntactic phenomena	
6	Agreement Steve Wechsler	55
7	Case Adam Przepiórkowsk	57
8	Argument structure and linking Jean-Pierre Koenig, Steve Wechsler & Anthony Davis	59

9	Constituent order Stefan Müller	61
10	Clitics Anne Abeillé & Gerald Penn	93
11	Complex predicates Danièle Godard & Pollet Samvelian	95
12	Control and raising Anne Abeillé	97
13	Unbounded dependencies Berthold Crysmann & Bob Borsley	99
14	Relative clauses Doug Arnold & Danièle Godard	101
15	Island phenomena and related matters Rui Chaves	103
16	Coordination Anne Abeillé & Rui Chaves	105
17	Idioms Manfred Sailer	107
18	Negation Jong-Bok Kim	109
19	Ellipsis Joanna Nykiel & Jong-Bok Kim	111
20	Binding António Branco	113
III	Other levels of description	
21	Phonology Jesse Tseng	117

22	Morphology Berthold Crysmann	121
23	Semantics Jean-Pierre Koenig & Frank Richter	123
24	Information structure Kordula de Kuthy	125
25	Pragmatics and dialogue semantics Andy Lücking, Jonathan Ginzburg & Robin Cooper	127
IV	Other areas of linguistics	
26	Diachronic syntax Ulrike Demske	131
27	Acquisition Jonathan Ginzburg	133
28	Processing Tom Wasow	135
29	Computational linguistics and Language Engineering Emily Bender & Guy Emerson	137
30	Sign languages Markus Steinbach & Anke Holler	141
31	Gesture Andy Lücking	143
V	The broader picture	
32	HPSG and Minimalism Bob Borsley & Stefan Müller	147
33	HPSG and Categorial Grammar Yusuke Kubota	179

34	HPSG and Lexical Functional Grammar	
	Doug Arnold	181
35	HPSG and Dependency Grammar Dick Hudson	183
36	HPSG and Construction Grammar Stefan Müller	187
Ind	lexes	201

Preface

Acknowledgments

Part I Introduction

Chapter 1

Basic properties and elements

Bob Borsley University of Essex

Anne Abeillé Université Paris Diderot

Change epigram in chapters/01.tex or remove it there

Change the abstract in chapters/01.tex Lorem ipsum dolor sit amet, consectetur adipiscing elit. Aenean nec fermentum risus, vehicula gravida magna. Sed dapibus venenatis scelerisque. In elementum dui bibendum, ultricies sem ac, placerat odio. Vivamus rutrum lacus eros, interdum scelerisque est euismod eget. Class aptent taciti sociosqu ad litora torquent per conubia nostra, per inceptos himenaeos.

1 Introduction

Phasellus maximus erat ligula, accumsan rutrum augue facilisis in. Proin sit amet pharetra nunc, sed maximus erat. Duis egestas mi eget purus venenatis vulputate vel quis nunc. Nullam volutpat facilisis tortor, vitae semper ligula dapibus sit amet. Suspendisse fringilla, quam sed laoreet maximus, ex ex placerat ipsum, porta ultrices mi risus et lectus. Maecenas vitae mauris condimentum justo fringilla sollicitudin. Fusce nec interdum ante. Curabitur tempus dui et orci convallis molestie (Chomsky 1957).

Meier (2017)

(1) Latin (personal knowledge)
cogit-o ergo sum
think-1sg.prs.ind hence exist.1sg.prs.ind
'I think therefore I am'

Sed nisi urna, dignissim sit amet posuere ut, luctus ac lectus. Fusce vel ornare nibh. Nullam non sapien in tortor hendrerit suscipit. Etiam sollicitudin nibh ligula. Praesent dictum gravida est eget maximus. Integer in felis id diam sodales accumsan at at turpis. Maecenas dignissim purus non libero scelerisque porttitor. Integer porttitor mauris ac nisi iaculis molestie. Sed nec imperdiet orci. Suspendisse sed fringilla elit, non varius elit. Sed varius nisi magna, at efficitur orci consectetur a. Cras consequat mi dui, et cursus lacus vehicula vitae. Pellentesque sit amet justo sed lectus luctus vehicula. Suspendisse placerat augue eget felis sagittis placerat.

	nouns	verbs	adjectives	adverbs
absolute	12	34	23	13
relative	3.1	8.9	5.7	3.2

Table 1: Frequencies of word classes

Sed cursus ¹ sapien pulvinar. Sed consequat, magna². Nunc dignissim tristique massa ut gravida. Nullam auctor orci gravida tellus egestas, vitae pharetra nisl porttitor. Pellentesque turpis nulla, venenatis id porttitor non, volutpat ut leo. Etiam hendrerit scelerisque luctus. Nam sed egestas est. Suspendisse potenti. Nunc vestibulum nec odio non laoreet. Proin lacinia nulla lectus, eu vehicula erat vehicula sed.

Abbreviations

COP copula NEG negation
FV final vowel SM subject marker

¹eros condimentum mi consectetur, ac consectetur

 $^{^2}$ eu scelerisque la
oreet, ante erat tristique justo, nec cursus eros diam eu nisl. Vestibulum non arcu tellus

Acknowledgements

References

Chomsky, Noam. 1957. *Syntactic structures* (Janua Linguarum / Series Minor 4). The Hague/Paris: Mouton.

Meier, Jane. 2017. *Language universals and linguistic typology*. Oxford: Basil Blackwell.

Chapter 2

The evolution of HPSG

Dan Flickinger Stanford University

Tom Wasow Stanford University

Carl Pollard
Ohio State University

Change epigram in chapters/01.tex or remove it there

Change the abstract in chapters/02.tex Quisque ullamcorper placerat ipsum. Cras nibh. Morbi vel justo vitae lacus tincidunt ultrices. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. In hac habitasse platea dictumst. Integer tempus convallis augue. Etiam facilisis. Nunc elementum fermentum wisi. Aenean placerat. Ut imperdiet, enim sed gravida sollicitudin, felis odio placerat quam, ac pulvinar elit purus eget enim. Nunc vitae tortor. Proin tempus nibh sit amet nisl. Vivamus quis tortor vitae risus porta vehicula.

1 Introduction

Spanish (Chomsky 1957)

Abbreviations

COP copula NEG negation
FV final vowel SM subject marker

Acknowledgements

Nullam a ullamcorper diam, ut sagittis lorem. Aenean ullamcorper, quam sed interdum sodales, nibh mi venenatis odio, ac elementum sem leo et urna. Ut at laoreet erat. Morbi quis odio enim. Duis pulvinar eget tellus posuere pharetra. Fusce mollis hendrerit magna, eget ornare diam aliquam in. Maecenas condimentum mi a augue consectetur, id sagittis risus tempor. Integer vel velit venenatis, porta tellus nec, hendrerit purus. Mauris nisl justo, elementum et justo a, cursus tincidunt mauris. Nunc fermentum leo sed eros tincidunt, eu placerat dui sodales. In vulputate luctus libero, at pulvinar ligula.

References

Chomsky, Noam. 1957. *Syntactic structures* (Janua Linguarum / Series Minor 4). The Hague/Paris: Mouton.

Chapter 3

Formal Background

Frank Richter
Goethe-Universität Frankfurt

Change epigram in chapters/03.tex or remove it there

Change the abstract in chapters/03.tex Nulla malesuada porttitor diam. Donec felis erat, congue non, volutpat at, tincidunt tristique, libero. Vivamus viverra fermentum felis. Donec nonummy pellentesque ante. Phasellus adipiscing semper elit. Proin fermentum massa ac quam. Sed diam turpis, molestie vitae, placerat a, molestie nec, leo. Maecenas lacinia. Nam ipsum ligula, eleifend at, accumsan nec, suscipit a, ipsum. Morbi blandit ligula feugiat magna. Nunc eleifend consequat lorem. Sed lacinia nulla vitae enim. Pellentesque tincidunt purus vel magna. Integer non enim. Praesent euismod nunc eu purus. Donec bibendum quam in tellus. Nullam cursus pulvinar lectus. Donec et mi. Nam vulputate metus eu enim. Vestibulum pellentesque felis eu massa.

1 Introduction

Duis pulvinar lacus id gravida ornare. Phasellus eu mauris sed tortor maximus condimentum ultrices in leo. Donec non erat nec nulla ullamcorper ornare sed id ex. Integer risus mauris, aliquet vel aliquam sed, feugiat quis nisi. Suspendisse quis nunc a turpis porttitor mollis. In luctus nulla id nunc dapibus, id rhoncus lorem pretium. Nunc eget fringilla velit, semper commodo diam. Suspendisse odio odio, euismod ac ornare sed, tincidunt ac arcu. Pellentesque vitae fringilla orci. Donec faucibus metus dui, nec iaculis purus pellentesque sit amet. Sed fermentum lorem non augue cursus, eu accumsan risus ullamcorper. Suspendisse

Frank Richter

rhoncus magna vitae enim pellentesque, eget porttitor quam finibus. Nunc ultricies turpis at quam vehicula, at tempus justo molestie. Proin convallis augue ut turpis cursus rhoncus. Donec sed convallis justo. Sed sed massa pharetra ex aliquet eleifend. finality

Abbreviations

Acknowledgements

Chapter 4

The nature and role of the lexicon in HPSG

Anthony Davis
Buffalo?

Jean-Pierre Koenig University at Buffalo

This chapter discusses the critical role the lexicon plays in HPSG and the approach to lexical knowledge that is specific to HPSG. We describe the tenets of lexicalism in general, and discuss the nature and content of lexical entries in HPSG. As a lexicalist theory, HPSG treat lexical entries as informationally rich, representing the combinatorial properties of words as well as their part of speech, phonology, and semantics. Thus many phenomena receive a lexically-based account, including some that go beyond what is typically regarded as lexical. We then turn to the global structure of the HPSG lexicon, the hierarchical lexicon and inheritance. We show how the extensive type hierarchy employed in HPSG accounts for lexical generalizations at various levels and discuss some of the advantages of default (nonmonotonic) inheritance over simple monotonic inheritance. We then describe lexical rules and their various proposed uses in HPSG, comparing them to alternative approaches to relate lexemes and words based on the same root or stem.

1 Introduction

The nature, structure, and role of the lexicon in the grammar of natural languages has been a subject of debate for at least the last 50 years. For some, the lexicon is a prison that "contains only the lawless" to borrow a memorable phrase from Di Sciullo & Williams (1987), and not much of interest resides there. In some recent views, the lexicon records merely phonological information and some world knowledge about each lexical entry (see Marantz (1997)). All of the action is in

the syntax, save the expression of complex syntactic objects as inflected words. In contrast, lexicalist theories of grammar, and HPSG in particular, posit a rich and complex lexicon embodying much of grammatical knowledge.

This chapter has two principal goals. One is to review the arguments for and against a lexicalist view of grammar within the generative tradition. The other is to survey the HPSG implementation of lexicalism. In regard to the first goal, we begin with the reaction to Generative Semantics, and note developments that led to lexicalist theories of grammar such as LFG and then HPSG. Central to these developments was the argument that lexical processes, rather than transformational ones, provided more perspicuous accounts of derivational morphological processes. The same kinds of arguments then naturally extended to phenomena like passivization, which had previously been treated as syntactic. Once on this path, lexical treatments of other prototypically syntactic phenomena — long distance extraction, wh-movement, word order, and anaphoric binding — were advanced as well, with HPSG playing a leading role.

But this does not mean that opposition to lexicalism melted away. Both Minimalism (cross-ref here), in particular Distributed Morphology, and Construction Grammar (cross-ref here) claim that lexicalist accounts fail in various ways. We discuss some of these current issues, including phrasal processes in the lexicon, word-internal ellipsis, and endoclitics, each of which poses challenges for those who advocate a strict separation between lexical and syntactic systems. While we maintain that the anti-lexicalist arguments are not especially strong, and the phenomena they are based somewhat marginal, we acknowledge that these questions are not yet settled. We then turn to the specifics of the lexicon as modeled within HPSG. Lexicalism demands, of course, that lexical entries be informationally rich, encoding not merely idiosyncratic properties of a single lexical item like its phonology and semantics, but also more general characteristics like its combinatorial possibilities. We outline what HPSG lexical entries must contain, and how that information is represented. This leads naturally to the next topic: with so much information in a lexical entry, and so much of that repeated in similar ones, how is massive redundancy avoided? The hierarchical lexicon, in which individual lexical entries are the leaves of a multiple inheritance hierarchy, is a core component of HPSG. Types throughout the hierarchy capture information common to classes of lexical entries, thereby allowing researchers to express generalizations at various levels. Just as all verbs share certain properties, all transitive verbs, all verbs of caused motion, and all transitive verbs of caused motion share additional properties, represented as constraints on types within the hierarchy. We draw on examples from linking, gerunds, and passives

as illustrations, but many others could be added.

Constraints specified on types in the hierarchy are deemed to be inherited by their subtypes, but monotonic inheritance of this kind runs into vexing issues. Most obviously, there are irregular morphological forms; any attempt to represent, say, the phonology of English plurals, as a constraint on a plural noun class in the hierarchical lexicon must then explain why the plural of *child* is *children* and not **childs*. Beyond this simple example, there are ubiquitous cases of lexical generalizations that are true by default, but not always. Various mechanisms for modeling default inheritance have therefore been one focus within HPSG, and we furnish an example of their use in modeling the properties of gerunds cross-linguistically.

Finally, we discuss lexical rules and their alternatives. Along with the "vertical" relationships between classes of lexical entries modeled by types and their subtypes in the hierarchical lexicon, there is a perceived need for "horizontal" relationships between lexical entries that are based on a single root or stem, such as forms of inflectional paradigms. Yet formalizing lexical rules adequately within HPSG has proven tricky; specifying just what information is preserved and what is changed by a lexical rule is one prominent issue. We conclude this chapter by describing alternatives to lexical rules. One is implicational statements on partially specified feature structures; this might be thought of as a kind of "online lexical rule". The second augments the type hierarchy via online type construction, extending the predefined lexical types specified in the hierarchy to include "virtual types" that combine the information from multiple predefined types.

2 Lexicalism

2.1 Lexicalism and the origins of HPSG

Lexicalism began as a reaction to Generative Semantics, which treated any regularity in the structure of words (derivational patterns, broadly speaking) as only ephiphenomenally a matter of word structure and underlyingly as a matter of syntactic structure (see Lakoff (1970), among others). In the Generative Semantics view, all grammatical regularities are a matter of syntax (much of it, in fact, logical syntax). Chomsky (1970) presented many arguments that lexical knowledge differs qualitatively from syntactic knowledge and should be modeled differently. Jackendoff (1975) is an explicit model of lexical knowledge that follows Chomsky's insights, although it focuses exclusively on derivational morphological processes. The main insight that Jackendoff formalizes is that relations be-

tween stems and words (say, between *destruct* and *destruction*) are to be modeled not via a generative device but through a redundancy mechanism that measures the relative complexity of a lexicon where these relations are present or not present (the idea is that a lexicon where *construct* and *construction* are related is simpler than one where they are not). Bochner (1993) is the most formalized and detailed version of this approach to lexical relations. Lexicalist approaches, including LFG and HPSG, took their lead from Jackendoff's work. LFG relied heavily on treating relations between stems and between words as lexical rules, rather than the kind of generative devices that one finds in syntax. But, as accounts of linguistic phenomena in LFG focused increasingly on the lexicon, the question of whether lexical rules retained the character of redundancy rules or turned into yet another kind of generative device arose. Consequently, the necessity of lexical rules has been questioned as well (see Koenig & Jurafsky (1994) and Koenig (1999) for potential issues that arise once lexical rules are assumed to be involved in the creation of new lexical entries).

Lexicalism, at least within HPSG, embodies two distinct ideas. First is the idea that parts of words are invisible to syntactic operations (lexical integrity, see Bresnan & Mchombo 1995), so that relations between stems and between word forms cannot be the result of or follow syntactic operations, as in distributed morphology, or other linguistic models that assign no special status to the notion of word. Relations between words are therefore not modeled via syntactic operations (hence the appeal to Jackendoff's lexical rules). Second is the idea that the occurrence of a lexical head in distinct syntactic contexts arises from distinct variants of words. For instance, the fact that the verb expect can occur both with a finite clause and an NP+VP sequence (see (1) vs. (2)) means that there are two variants of the verb expect, one that subcategorizes for a finite clause and one where it subcategorizes for an NP+VP sequence. Not all lexicalist theories, though, cash out these two distinct ideas the same way. The net effect of lexicalism within HPSG is that words and phrases are put together via distinct sets of constructions and that words are syntactic atoms. These two assumptions justify positing two kinds of signs, phrasal-sign and lexical-sign and go hand in hand with the surface-oriented character of HPSG and what one might call a principle of surface combinatorics: If expression A consists of B⊕C, then all grammatical constraints that make reference to B and C are circumscribed to A.

¹As this chapter is an overview of the approach to lexical knowledge HPSG embodies rather than a description of particular HPSG analyses of phenomena, we will sample liberally from various illustrative examples and simplify whenever possible the analyses so that readers can see the forest and not get lost in the trees.

- (1) I expected to leave yesterday
- (2) I expected that I would leave yesterday.

An evident concern regarding this view of the lexicon is the potential proliferation of lexical entries, replete with redundant information. Will it be necessary to specify all the information in these two entries for *expect* without regard for the large amount of duplication between them? Will the same duplication be needed for the verb *hope*, which patterns similarly? How will somewhat similar verbs, such as *imagine* and *suppose*, which allow finite complements but not infinitive ones, be represented? We will describe HPSG's solutions to these questions below, in our discussion of the hierarchical lexicon. First, however, we turn to recent arguments against lexicalism, and then discuss in more detail just what kinds of information should be in HPSG lexical entries.

2.2 Recent challenges to lexicalism

As there are been several challenges to lexicalism (see Bruening (2018) and Haspelmath (2011) among others for some recent challenges), we now explore lexicalism and lexical integrity in HPSG in more detail. We first note that lexicalism does not imply that word and phrase formation are necessarily different "components" as is often claimed (see Marantz 1997, Bruening (2018)). Some lexicalist approaches do assume that word formation and phrase building belong to two different components of a language's grammar (this is certainly true of Jackendoff 1975), but they need not. Within HPSG, there are approaches that treat every sign-formation (be it word-internal or word-external) as resulting from typed mother-daughter configurations (this is the hypothesis pursued in Koenig (1999), and is also the approach frequently taken in implementations of large-scale grammars where lexical rules are modeled as unary-branching trees, see the English Resource Grammar at http://www.delph-in.net/erg/). Furthermore, recent approaches to inflectional morphology model realizational rules through the very same tools the rest of a language's grammar uses (see Crysmann & Bonami (2016) and the chapter on morphology in this volume). There are also approaches to phrases where the same analytical tools developed to model lexical knowledge (see Section 4) are employed to model phrase-structural constructions (see Sag's 1997 analysis of relative clauses, for example). So, both in terms of the formal devices and in terms of analytical tools used to model datasets, words and phrases can be treated the same way in HPSG (alltough they need not be). Somewhat ironically, and despite claims to the contrary, word formation in the syntacticocentric approach Marantz or Bruening advocate does make use of distinct formal

machinery to model word formation, namely realizational rules to model inflectional morphology (see Halle & Marantz 1993).

With this red herring out of the way, we concentrate on the two most important challenges Bruening (2018) and Haspelmath (2011) present to lexicalist views. The first challenge are cases of phrasal syntax feeding the lexicon, purportedly exemplified by sentences such as (3).

(3) I gave her a don't-you-dare! look. (example (1a) in Bruening 2018)

We can provisionally accept for the sake of argument Bruening's contention that don't-you-dare! is a word in (3), despite its reliance on the (unjustified) assumption that the secondary object in (3) involves N-N compounding rather than an AP N structure (we refer readers to Bresnan & Mchombo (1995) or Müller (2010) for counter-arguments to Bruening's claim). Crucially, though, examples such as (3) have no bearing on HPSG's model of lexical knowledge, as HPSG-style lexicalism does not preclude constructions that form words from phrases. Nothing, as far as we know, rules out constructions of the form $phrase \rightarrow stem/word$ in HPSG. The two assumptions underlying HPSG brand of lexicalism we mentioned above do not preclude a lexical-sign having a phrasal-sign as sole daughter (although we do not know of any HPSG work that exploits this possibility) and examples such as (3) are simply irrelevant to whether HPSG's lexicalist stance is empirically correct.

The second challenge to lexicalism presented in Bruening (2018) bears more directly on HPSG's assumption that words are syntactic atoms. Word-internal conjunction/ellipsis examples, illustrated in (4) (adapted from Bruening's (31a)), seem to violate the assumption that syntactic constraints cannot "see" the internal structure of words, as ellipsis in these kinds of examples seems to have access to the internal part of the word *over-application*. In fact, though, such examples do not violate lexical integrity if one enriches the representation of composite words (to borrow a term from Anderson 1992) to include a representation of their internal phonological parts as proposed in Chaves (2008; 2014).

(4) Over- and under-application of stress rules plagues Jim's analysis.

Chaves' analysis assumes that the phonology of compound words and words that contain affixoids (to borrom a term from Booij 2005) is structured. The MorphoPhonology or MP attribute of words (and phrases) is a list of phonological forms and morphs information. The MP of compound words and words that contain affixoids includes a separate member for each member of the compound, or

for the affixoid and stem. Thus in (4), the MPS of overapplication and underapplication each contain two elements: one for over/under, and one for application. Given this enriched representation of the morphophonology of words like under/overapplication, a single ellipsis rule can apply both to phrases and to composite words, eliding the second member of the word overapplication's MP. As Chaves makes clear (p.304) such an analysis is fully compatible with lexical integrity, as there is no access to the internal structure of composite words, only to the (enriched) morphophonology of the entire word.

Haspelmath (2011) similarly challenges the view that syntactic processes may not access the internal structure of words, although Haspelmath's point is merely that what is a word is cross-linguistically unclear. So-called suspended affixation in Turkish (see (5)) also shows that word parts can be elided. We cannot discuss here whether Chaves' analysis can be extended to cases like (5) where suffixes are seemingly elided or whether lexical sharing (where a single word can be the daughter of two c-structure nodes à la McCawley 1982), as proposed in Broadwell (2008) is needed. What is important for current purposes is that these putative challenges to lexical integrity such as (4) or (5) do not necessarily render a substantive version of it implausible. The same is true of another potential challenge to lexical integrity which neither Bruening nor Haspelmath discuss, endoclitics, which we discuss next.

(5) kedi ve köpek-ler-im-e cat and dog-PL-1SG-DAT 'to my cat(s) and dogs'

Endoclitics are clitics that at least appear to be situated within a word, rather than immediately preceding or following it, as clitics often do. (cross-reference to Abeillé & Penn chapter on clitics) In many cases, endoclitics appear at morphological boundaries, as in the well-studied pronominal clitics of European Portuguese (Crysmann 2001). An approach similar to what we have referenced above for composite words and elided morphology may well extend to these as well. But some trickier cases have also come to light, in which the clitic appears within a morpheme, not at a boundary. Two of the best documented cases from the Northeast Caucasian language Udi (Harris 2000) and from Pashto (Tegey 1977; Roberts 2000; Dost 2007). Here are examples from Udi (6) and Pashto (7), where the clitics appear in the middle of verbs.

- (6) q'ačay-y-on bez tänginax baš=q'un-q'-e thief-pl-erg my money.DAT steal₁-3pl-steal₂-AORII 'Thieves stole my money.' (root bašq', 'steal')
- (7) a. təlwahó=me
 push.impf.pst.3sg-cl.isg'I was pushing it.' (from Tegey 1977; Dost 2007)
 - b. tál=me-wahə push₁-cl.1sG-push₂.pf.pst.3sG 'I pushed it.' (from Tegey 1977; Dost 2007)

In these cases, as with clitics in general, there is a clash between the phonological criteria for wordhood, under which the clitics would be regarded as incorporated within words, and the syntactic constituency and semantic compositionality. But what makes these particularly odd is that these clitics are situated word-internally, even morpheme-internally. Udi subject agreement clitics such as q'un in (6) typically attach to a focused constituent, which can be a noun, a questioned constituent, or a negation particle as well as a verb (Harris 2000). Under certain conditions, as in (6), none of these options is available or permitted, and the clitic is inserted before the final consonant of the verb root, dividing it in two pieces, neither of which has any independent morphological status. Its position in this instance is apparently phonologically determined; it cannot appear word-finally or word initially, and as there is no morphological boundary within the word it must therefore appear within the monomorphemic root. Pashto clitics seek "second position," whether at the phrasal, morphological, or phonological level; me in (7) appears to be situated after the first stressed syllable (or metrical foot), which, in the case of (7b), also divides the verb into two parts that lack any independent morphological status.

If clitics are viewed as a syntactic phenomenon ("phrasal affixes", as Anderson (2005) puts it), these endoclitics must have "visibility" into the internal structure of words (be it morphological, prosodic, or something else), thereby seemingly violating lexical integrity. Anderson's brief account invokes a reranking of optimality theoretic constraints from their typical ordering, whereby the clitic's positional requirements outrank lexical integrity requirements. Crysmann (2015) proposes an analysis, paralleling in many respects his account of European Portuguese clitics in Crysmann (2001), using Kathol's topological fields (Kathol 1999). The "morphosyntactic paradox in Udi" is effectively "resolved on the basis of discontinuous lexical items"; this account then "parallels HPSG's representation of syntactic discontinuity." (cross reference to Müller's chapter on word order here)

For Pashto, researchers generally agree that the notion of second position is crucial, but that it can be defined at various levels— phrasal, lexical, and phonological. In this last case clitics can appear within a word following the first metrical unit, as illustrated above. (cross reference to Tseng's chapter on phonology, and Crysmann's on morphology here). Dost (2007) invokes word order domains (Reape 1994) and topological fields (Kathol 1999) at these various levels to account for this distribution of clitics. In this analysis, some words contain more than one order domain at the prosodic level. Lexical integrity is preserved to the extent that, while domains at the prosodic level are "visible" to clitics in Pashto, syntatic processes do not reference the internal makeup of words.

Still, these accounts of endoclitics in Udi and Pashto appear to breach the wall of the strictest kind lexical integrity, requiring that they have access to some of the internal structure of lexical entries through a partial decomposition of their morphophonology into distinct order domains. Yet we would not wish to advocate models that permit unconstrained violations of lexical integrity, either. The troublesome cases we have noted here are relatively marginal or cross-linguistically rare, and limited in scope to prosodic or morphophonological information and seem to only pertain to phonological interactions (ellipsis, insertion). As Broadwell (2008) points out when comparing possible analyses of Turkish suspended affixation, rejecting lexicalism altogether may lead to an unconstrained theory of the interaction between words/stems and phrases and incorrect predictions (e.g., that all affixes in Turkish can be suspended). Likewise, we would not expect to find a language in which endoclitics positioning is utterly unconstrained, and thus we would not wish to see grammatical theories abandon lexical integrity altogether.

3 Lexical entries in HPSG

3.1 What are lexical entries?

A consequence of HPSG's lexicalist stance is that there will be many lexical entries where one might at first glance expect a single entry. We will see below how HPSG handles multiple entries and classes of entries while avoiding redundancy, but it is important at the outset to clarify what a lexical entry is in HPSG. One of the misunderstandings about lexical knowledge is that it confuses descriptions and entities being described, or the distinction between constructions and constructs (lexical entry vs. fully instantiated lexeme). As the chapter on the formal foundations of HPSG discusses, grammars in HPSG consist of *descrip-*

tions of structures, and the lexicon thus consists of descriptions of what are fully specified lexemes. What is stored in the lexicon is descriptions of fully instantiated lexemes. To see the importance of the distinction between descriptions (stored entries) and the fully instantiated entries that are being described, consider HPSG's model of subcategorization and consider the relevant portion of the tree for sentence (2). HPSG's model of the dependency between heads and complements involves identity between the syntactic and semantic information of each complement (the value of the synsem attribute) and a member of the list of complements the head subcategorizes for. Since there are infinitely many synsem values, on the assumption that there are infinitely many clausal meanings (a point Jackendoff (1990) emphasizes), there are, in principle, infinitely many fully instantiated entries for the verb *see* subcategorizing for a clausal complement (as in (2)). But each of these fully instantiated entries for *expect*, one for each clausal sentence that corresponds to the tree in (8) corresponds to a single abstract description, and it is this description that the lexicon contains.

The formal status of lexical entries has engendered a fair amount of theoretical work and some debate, particularly over the question of whether lexical entries must be fully specified. We will touch on some aspects of this further below, in connection with online type construction. For further discussion of these kinds of issues, see the chapters on Basic Properties and Elements and on Formal Background.

3.2 What information is in lexical entries?

Because lexical items play a critical role in accounting for the syntax of natural languages, lexical entries are informationally rich in HPSG. Aside from the expected phonological and semantic information, specific to each lexeme, they include morphological and combinatorial potential information. Morphological information serves as input to inflectional rules, but is also used to select the appropriate types of phrases (via their projection through the Head-Feature Principle), as shown in (9). Some verbs, for instance, select for a PP headed by a particular preposition; others select for VPs whose verb is a gerund, or a bare infinitive, and so forth. Lexical entries thus include as much morphological information as both (inflectional) morphology and syntactic selection require.

- (9) a. John conceived *of*/**about* the world's tastiest potato chip..
 - b. John regretted going/*(to) go to the party.

We illustrate the second leading idea behind HPSG or LFG's lexicalism (that there are different variants of lexical heads for different contexts in which heads occur) with the French examples in (10). The verb *aller* 'go' in (10a) combines with a PP headed by \dot{a} that expresses its goal argument and a subject that expresses its theme argument. The same verb in (10b) combines with the so-called non-subject clitic y that expresses its goal argument. We follow Miller & Sag (1997) and assume here that French non-subject clitics are prefixes. Since the context of occurrence of the head of the sentence, *aller*, differs across these two sentences (NP____PP[\dot{a}] and NP y_____, respectively and informally), there will be two distinct entries for *aller* for both sentences, shown in (11) and (12) (we simplify the entries' feature geometry for expository purposes).

- (10) a. Muriel va à Lourdes.

 Muriel go-PRES.3RD.SG at Lourdes.
 - b. Muriel y va.

 Muriel there go-PRES.3RD.SG

CATEGORY information in both entries include part of speech information (including morphologically relevant features of verb forms), ARGument-Structure information and VALence information. MORPH information includes both stem form information, inflected form information (I-FORM) and, in case so-called clitics are present, the combination of the clitic and inflected form information. Both entries illustrate how informationally rich lexical entries are in HPSG. But. postulating informationally rich entries does not mean stipulating all of the information within every entry. In fact, only the stem form and the relation denoted by the semantic content of the verb aller need be stipulated within either entry. All the other information can be inferred once it is known which classes of verbs these entries belong to. In other words, most of the information included in the entries in (11) and (12) is not specific to these individual entries, an issue we take up in Section 4. The entry-specific information in (11) and (12) is in black font while the shared information is in gray font; the informational difference between the two entries for va and v va is included in shadowed boxes in the respective entries. The first difference between the two variants of *va* 'goes' is in the list of complements: the entry for *y va* does not subcategorizes for a locative PP since the affix y satisfies the relevant argument structure requirement. This difference in the realization of syntactic arguments (via phrases and pronominal affixes) is recorded in the type of the PP members of ARG-ST, p-aff in (12) but not in (11). Finally, the two entries differ in the FORM of the verb, which is the same

as the inflected form of the verb in (11) (as indicated by the identically numbered 5), but not in (12) whose form includes the prefix y.

One other question arises with regard to the information in lexical entries. Are there attributes or values that occur solely within lexical signs, and not in phrasal ones? If so, they would provide a diagnostic for distinguishing lexical signs from others. Specific phonological information, for instance, is something we would expect to be introduced by lexical entries, and not elsewhere. Some information is claimed to be specific to lexical signs, such as phonological information (cross reference to Tseng here) and the ARG-ST list, on the premise that lexical items alone specify combinatorial requirements (but see Przepiórkowski (2001) for a contrary view, and see the chapter on Construction Grammar for other views questioning this assumption). But HPSG researchers have generally not typically explored this question in depth, and we will leave this issue here.

3.3 The role of the lexicon in HPSG

As we hope is evident by now, the lexicon plays a critical role in HPSG's explanatory mechanisms, as words encode their distributional potential, as well as their idiosyncratic phonological and semantic charateristics. Much of the information contained in lexical entries is geared to modeling the combinatorial potential of words. As detailed in the chapter on Argument Structure, their combinatorial potential is recorded using two kinds of information, a list of syntactic arguments or syntactic requirements to be satisfied, and distinct lists that indicate how these requirements are to be satisfied (as local dependents, as non-local dependents, as clitics/affixes). Not only are syntactic arguments recorded; so is their relative obliqueness (in terms of grammatical function), as per the partial hierarchy in (13) from Pollard and Sag 1992.

(13) SUBJECT < PRIMARY OBJ < SECOND OBJ < OTHER COMPLEMENTS

We illustrate this explanatory role by alluding to the role of the lexicon in HPSG's approach to binding, as described in Pollard & Sag (1992) (see the chapter on Binding for details). As lexical entries of heads record both syntactic and semantic properties of their dependents, constraints between properties of heads and properties of dependents, e.g. subject-verb agreement, or between dependents, e.g. binding constraints illustrated in (15), can be stated as constraints on classes of lexical entries. The principle in (15) is such a constraint.

- (14) a. Mathilda_i saw herself_i in the mirror.
 - b. *Mathilda; saw her; in the mirror.

(15) An anaphor must be coindexed with a less oblique co-argument, if there is one.

Principle (15) is, formally, a constraint on lexical entries that makes use of the fact that an entry's argument structure records the syntactic and semantic properties of a word's dependents. The three argument structures in (16) illustrate permissible and ungrammatical entries. (16a) illustrates exempt anaphors as there is no less oblique syntactic argument than the anaphoric NP; (16b) illustrates a non-exempt anaphor properly bound by a less oblique, co-indexed non-anaphor; (16c) illustrates an ungrammatical lexical entry that selects for an anaphoric syntactic argument that is not co-indexed by a less oblique syntactic argument, despite not being an exempt anaphor (i.e., not being the least oblique syntactic argument).

(16) a.
$$\left[\text{Arg-st } \left\langle \text{NP}_{i,+ana}, ... \right\rangle \right]$$

b. $\left[\text{Arg-st } \left\langle \text{NP}_{i,-ana}, ..., \text{NP}_{i,+ana}, ... \right\rangle \right]$
c. * $\left[\text{Arg-st } \left\langle \text{XP}_{j}, ..., \text{NP}_{i,ana}, ... \right\rangle \right]$

Our purpose here is not to argue in favor of the specific approach to binding just outlined. Rather, we wish to illustrate that in a theory like HPSG where much of syntactic distribution is accounted for by properties of lexical entries, co-occurrence restrictions treated traditionally as constraints on trees (via some notion of command) are modeled as constraints on the argument structure of lexical entries. It is tempting to think of such a lexicalization of binding principles as a notational variant of tree-centric approaches. Interestingly, this is not the case, as argued in Wechsler (1999). Wechsler argues that the difference between argument structure and valence is critical to a proper model of binding in Balinese. Summarizing briefly, voice alternations in Balinese (e.g., objective or agentive voices) do not alter a verb's argument structure but do alter its valence, which is the subject and object it subcategorizes for. As binding is sensitive to relative obliqueness within ARG-ST, binding possibilities are not affected by voice alternations within the same clause, which are represented with different valence values. In the case of raising, on the other hand, the argument structure of the raising verb and the valence of the complement verb interact, as the subject of the complement verb is part of the argument structure of the raising verb. An HPSG approach to binding therefore predicts that voice alternations within the embedded clause will not affect binding of co-arguments of the embedded verb, but will affect binding of the raised NP and an argument of the embedded verb. This prediction seems to be borne out, as the examples in (17) show.

- (17) a. Ia_i nawang awakne_i/Ia_{*i} lakar tangkep polisi. 3rd Av.know self/3rd FUT ov.arrest police 'He_i knew that the police would arrest self_i./him_{*i}.'
 - b. Cang ngaden ia_i suba ningalin awakne_i/ia_{*i} 1sg Av.think 3rd already Av.see self/3rd 'I believe him_i to have seen himself_i/ him_{*i}.'
 - c. Cang ngaden awakne_i suba tingalin=a_i.
 1sg Av.think self_i already ov.see=3
 'I believe him to have seen himself.'

Sentence (17a) shows that the proto-agent (the first element of ARG-ST) of the subject-to-object raising verb nawang 'know' can bind the raised subject (which in this case corresponds to the proto-patient of the complement verb tangkep 'arrest' since that verb is in the objective voice). Sentence (17b) shows that the raised (proto-agent) subject of the complement verb can bind its proto-patient argument. Critically, sentence (17c) shows that the raised proto-patient (second) argument of the complement verb can be bound by the complement verb's protoagent. The contrast between sentences (17b) and (17c) illustrates that while binding is insensitive to valence alternations (the same proto-agent binds the same proto-patient argument in both sentences), raising is not (the proto-agent argument is raised in (17b) and the proto-patient argument in (17c)). As Wechsler argues, this dissociation between valence subjects and less oblique argumentson the ARG-ST list is hard to model in a configurational approach to binding that equates the two notions in terms of c-command or the like. What is important for our purposes is that a 'lexicalization' of argument structure, valence, and binding has explanatory power beyond tree configurations, illustrating some of analytical possibilities informationally rich lexical entries create.

3.4 Lexical vs. constructional explanations

As we have noted above, HPSG posits that much of the combinatorics of natural language syntax is lexically determined; lexical entries contain information about their combinatorial potential and, if a word occurs in two distinct syntactic contexts, it must have two distinct combinatorial potentials. Under this view, phrase-structure rules are boring and few in number. They are just the various ways for words to realize their combinatorial potential. In the version of HPSG presented in Pollard & Sag (1994), for example, there are only a handful of general phrase-structural schemata, one for a head and its complements, one for a head

and its specifier, one for a head and a filler in an unbounded dependency and so forth and the structure of clauses is relatively flat in that relations between contexts of occurrence of words is done "at the lexical level" rather through operations on trees.

In a transformational approach, on the other hand, relations between contexts of occurrence of words are seen as relations between trees, and the information included in words can be thus rather meager. In fact, in some recent approaches, lexical entries contain nothing more than some semantic and phonological information, so that even part of speech information is something provided by the syntactic context (see Borer 2003; Marantz 1997). In some constructional approaches (Goldberg (1995), for example), part of the distinct contexts of occurrence of words comes from phrase structural templates that words fit into. So again, there can be a single entry for several contexts of occurrence.

HPSG's approach to lexical knowledge is quite similar to that of Categorial Grammar (to some degree this is due to HPSG's borrowing from Categorial Grammar important aspects of its view on subcategorization). As in HPSG, the combinatorial potential of words is recorded in lexical entries so that two distinct contexts of occurrence correspond to two distinct entries. The difference from HPSG lies in how lexical entries relate to each other. In Categorial Grammar (be it Combinatorial or Lambek-calculus style), relations between entries are the result of a few general rules (e.g., type raising, function composition, hypothetical reasoning ...) and the assumption is that those rules are universally available (although those rules could be organized in a type hierarchy, as in Baldridge (2002)). Relations between entries in HPSG can be much more idiosyncratic and language-specific. We note, however, that nothing prevents lexical rules constituting a part of a Categorial Grammar (see Carpenter 1992a), so that this difference is not necessarily qualitative, but concerns how much of researchers' efforts are typically spent on extracting lexical regularities; HPSG has focused much more, it seems, on such efforts.

4 The hierarchical lexicon

We have seen that lexicalism demands that lexical entries be information rich, in order to encode what might otherwise be represented as syntactic rules. To avoid massive and redundant stipulation within each lexical entry, we need mechanisms to represent regularities within the lexicon. Two main mechanisms have been used in HPSG to represent these regularities. The first mechanism is the organization of information shared by lexical entries or parts of entries into a hi-

erarchy of types in a way quite similar to semantic networks within Knowledge Representation systems (see among others Brachman & Schmolze 1985). This hierarchy of types (present in HPSG since the beginning, Pollard & Sag (1987) and the seminal work of Flickinger (1987)) ensures that individual lexical entries only specify information that is unique to them. The second mechanism is lexical rules, which relates variants of entries, and more generally, members of a lexeme's morphological family (which consists of a root or stem as well as all stems derived from that root or stem). In this section, we discuss the hierarchical organization of the lexicon into cross-cutting classes of lexical entries at various levels of generality.

4.1 Inheritance

All grammatical frameworks classify lexical entries to some extent, of course. Basic part of speech information is one obvious case. This high-level classification is present in HPSG, too, as part of the hierarchy of types of heads. That information is recorded in the value of the HEAD feature. A simple hierarchy of types of heads is depicted in (18).

Each of these types is a partial specification of a lexical entry's head properties. Typing of HEAD information allows the ascription of appropriate properties to different classes of lexical entries. For example, case information is only relevant to nouns, and whether a verb is an auxiliary or not is only relevant to verbs. Each type in (18) includes in its definition a specification of which features are appropriate for it, as shown in (19). (19) specifies what it means to be a noun or a verb in a particular language (of course, there will strong similarities in these properties across languages).

(19) a.
$$noun \Rightarrow \begin{bmatrix} case \ case \end{bmatrix}$$
b. $verb \Rightarrow \begin{bmatrix} aux \ boolean \\ tense \ tns \\ aspect \ asp \end{bmatrix}$

More technically, each type of head imposes some constraint on lexical entries of that type. Thus, (19a) requires all noun lexemes to be eligible for case information. Here, the constraint on each type specifies the value of SYNSEM|LOC|CAT|HEAD,

as the atomic value *noun*, *verb*, etc. Since these atomic values are disjoint, and since the HEAD value is unique for each lexical entry, the types in (18) are also disjoint. If there's a type corresponding to each possible HEAD value, then they constitute a partition of lexical entries as well. Lexical entries for particular lexemes make use of the definitions of types like (19) to abstract information that is shared across classes of entries. Thus, the pronoun *him* need only include the fact that its HEAD is of type *noun*; the fact that it might bear case can be inferred. Similarly, the entry for the verb *can* need only include information that its head information include the specification [AUX +] for us to be able to infer that it is a *verb*.

So far, this is merely an HPSG implementation of a part of speech taxonomy, but once we consider subtypes with additional constraints the utility of the hierarchical lexicon within a lexicalist framework becomes apparent. There are interesting generalizations to be made about more specific classes, such as transitive verbs, or past participles, or predicators denoting caused motion (regardless of their part of speech). In the hierarchical lexicon, we can represent these "interesting" classes as types. Which classes are worth instantiating in the grammar of a given language depends on its grammar; thus we expect lexical classes to specify a mix of cross-linguistically common (maybe, in some cases, universal) and language-particular constraints. Consider some of the subtypes of verbs shown in (20) adapted from Bouma et al. (2000):

Again, each subtype specifies additional information constraining the lexical entries belonging to it. The boxed labels have no independent formal status (although they play a role in the framework of online type construction, discussed below), indicating simply that the parent type, here *verb*, is partitioned by the subtypes under each box. Typically, this means that each subtype specifies an atomic value for a particular attribute, out of a set of mutually disjoint values, as in the part of speech types above. Thus *main-verb* and *aux-verb* are disjoint subtypes of *verb*, with the values + and – for the attribute SYNSEM|LOC|CAT|HEAD|AUX.

More specific verb subtypes can combine the constraints of the types depicted in (20), through multiple inheritance. Infinitive forms of transitive verbs, for example, inherit the constraints of both *infinitive-verb* and *transitive-verb*. Provided

that the constraints do not conflict (i.e., the descriptions of the two types unify), such a type can exist and have members. Whether it is useful to reify such a type is another matter; not all possible combinations of constraints yield linguistically interesting classes of lexical entries (this is another issue we address in the discussion of online type construction). It seems desirable, for instance, to avoid a proliferation of types for each form of a verb in a paradigm in an inflectionally complex language, as the number of forms, and thus types, would be extremely large (there are, for example, 2,494 combinations of inflectional prefixes in Oneida, a Northern Iroquoian language, Karin Michelson, p.c.). While an economical type-based description of regular morphological paradigms may prove descriptively adequate, it is implausible in assuming that each form of every fully regular verb is reified as a lexical entry. We will discuss mechanisms (lexical rules and online type construction) that offer better accounts of morphologically regular and productive word formation below.

In general, types are posited in the hierarchy when there is some additional constraint to state about them. We now briefly examine some of the lower levels of the lexical hierarchy; that is, some more specific lexical types that illustrate how types is one way to reduce the amount of information that needs to be stipulated in individual lexical entries and are one of the tools HPSG employs to represent lexical generalizations. We begin with the *transitive-verb* type (*trans-vb* for short). Apart from requiring its ARG-ST list to contain two NPs, *trans-vb* is further constrained, at least in English, to be a main verb rather than an auxiliary verb (see the value of HEAD *main* in (21) and the hierarchy of verbal head information in (20)): there are no transitive auxiliaries in English. So, *trans-vb* includes information constraining the feature values of transitive verbs that goes beyond simply specifying the nature of the ARG-ST list.

The partial representation of the type transitive-verb in (21).

A more specific subtype of trans-vb is caused-motion-transitive-verb, which states information about the semantics of verbs in the class as well as their subcategorization, as in (22). (\uparrow indicates that the type that follows it is a supertype of the type indicated in the feature structure; in this case that caused-mot-trans-vb is a subtype of trans-vb.)

$$(22) \begin{bmatrix} \textit{caused-mot-trans-vb}(\uparrow \textit{trans-vb}) \\ \textit{content} \\ \begin{bmatrix} \textit{caused-motion-rel} \\ \textit{causer} \\ \end{bmatrix} \\ \textit{arg-st} \\ \begin{pmatrix} \textit{NP}_{\boxed{1}}, \textit{NP}_{\boxed{2}} \end{pmatrix}$$

The information in each type constitutes constraints on objects of that type. With the types situated in a hierarchy, each type inherits all the constraints of its supertypes. Thus constraints will be inherited from supertypes. But additional constraints can be added at the level of that type as well; this is the principal fashion in which generalizations about classes of lexical entries can be stated. For example, following Davis & Koenig (2000) and Koenig & Davis (2003) we might state a contraint on argument realization on the type caused-motion-transitiveverb, to ensure that the causer is linked to the subject and the entity that is caused to move to the direct object, as in (23). (cross-reference to chapter on argument structure and linking here) Here, we make use of Richter's logic (Richter 1999) to encode constraints on information that is included in lexical entries. The constraint in (23) says that if a verb's semantic content is a cause relation, the causer arguments corresponds to the index of the first NP on the ARG-ST list and that if a verb's semantic content is a motion relation, the moved entity is realized as an NP. Implicational constraints such as (23) relieve some of the burden of encoding generalizations over lexical entries exclusively through the lexical type hierarchy, and can lead to a simpler model of lexical generalizations in some cases, as Koenig & Davis (2003) point out. When it is preferable to use a hierarchy of lexical types or conditional constraints on the information included in lexical types remains an open issue.

(23) [CONTENT cause-rel]
$$\Rightarrow$$
 [CONT [CAUSER 1]]
$$[ARG-ST \langle NP:1]...\rangle$$
[CONTENT move-rel] \Rightarrow [CONT [MOVED 1]]
$$[ARG-ST \langle ...NP:1]...\rangle$$

More specific classes of transitive caused-motion verbs, such as the *spray* verbs in English that exhibit locative alternations, inherit the additional constraints in (22) and further specify additional semantic constraints that characterize these alternating verbs. The hierarchical organization of lexical types allows us to state these additional restrictions, which are often language-particular, in the appropriate place without additional formal mechanisms. The range of ditransitive constructions, to take one such case, varies across languages, with some lacking

them entirely and others freely allowing them in, e.g., morphologically productive causatives of any transitive verb. For those languages, like English, in between these extremes, semantic (and possibly other) constraints can be placed on the type *ditransitive-verb*, limiting such verbs to those involving, e.g., transfer of possession.

We now illustrate how the organization of the lexicon in a hierarchy of lexical types minimizes the information that needs to be specified within individual entries, such as those for the forms of the French verb va we provided earlier (see (11)). We start with semantics and how it links to the argument structure. We can infer that the use of va illustrated in (10a) includes two arguments, a theme and a goal, from the hierarchy of semantic relations, which ensures that all types of directed motion events, of which go-rel is a subtype, includes these two arguments (see Davis (2001) for such an approach to semantic relations). The linking of these arguments to an NP and PP follows either from linking types, as in Davis & Koenig (2000) or Davis (2001), or from constraints similar to those we show above in (23) for English caused-motion verbs. The relation between the argument structure of va and its subcategorization requirements for a subject and PP complement follows from general constraints on words and a general type for intransitive verbs, analogous to (21) for transitive verbs. The inflectional features of this form are instantiations of possible combinations of values of mood, tense, and agreement information within French verbs. Finally, the expression of these inflectional features is the result of either general lexical rules (see Miller & Sag (1997) for some examples) or, as in more recent work in HPSG, a network of associations between morphosyntactic features and forms at various positions in the word (see Crysmann & Bonami 2016). In the end, nothing but the meaning of this use of va and the fact that the stem form is v-need be stipulated in the entry.

4.2 The lexicon as repository of generalizations at various levels

The hierarchical lexicon makes it possible to specify constraints on classes of lexical entries at any level, not just, e.g., all nouns, or a single word. An illustrative example, drawn from Ackerman & Webelhuth (1998), involves German passives, which come in several varieties, each with its own constraints. Each passive construction uses a different auxiliary: (werden, sein, or bekommen) and two of these constructions require a participial form of the verb, while the sein passive requires zu followed by an infinitive VP. Additionally, passives appear attributively, as NP modifiers, as well as predicatively. Here are two examples of the zu + infinitive passive, the first attributive, the second predicative:

- (24) a. de dem Mann von Johann zu schenkenden Blumen the the man by Johann to give flowers 'the flowers that must be given to the man by Johann'
 - b. weil die Blumen den Mann von Johann zu schenken sind because the flowers the man by Johann to give are 'because the flowers must be given to the man by Johann'

Ackerman & Webelhuth's account of German passives posits a multiple inheritance hierarchy of lexical types in German, a portion of which is shown in Figure 1.

Figure 1: A portion of the hierarchy of passive lexical types according to Ackermann and Webelhuth, p.244

While all passives share the constraint that a logical subject is demoted, as stipulated on a general *univ-pas-bas-lci* passive type, the other requirements for each kind of passive are stated on various subtypes. The *zu*+infinitive passive, for instance, requires not only that *sein* is the auxiliary and that the main verb is infinitive, but that the semantics involves necessity or obligation. This differs from the other passives, which simply maintain the semantics of their active counterparts. However, the types of the passive verb *schenken(den)* in (24) both

inherit from several passive verb supertypes. As mentioned, at a general level, there is information common to all German passives, or indeed to passives universally, namely that the "logical subject" (first element of the basic verb's ARG-ST list) is realized as an oblique complement of the passive verb, or not at all. A very common subtype, which Ackerman & Webelhuth also regard as universal, rather than specific to German, specifies that the base verb's direct object is realized as the subject of its passive counterpart; this defines personal passives. Once in the German-specific realm, an additional subtype specifies that the logical subject, if realized, is the object of a *von*-PP; this holds true of all three types of German personal passives. Among its subtypes is one that requires zu and the infinitive form of the verb; moreover, although Ackerman & Webelhuth do not spell this out in detail, this subtype specifies the modal force characteristic of this passive construction but not of the others. Finally, both the predicative and attributive forms are subtypes of all the preceding, but these inherit also from distinct supertypes for predicative and attributive passives of all kinds. The supertype for predicative passives constrains them to occur with an auxiliary; its subtype for zu + infinitive passives further specifies that the auxiliary is *sein*. The attributive passive type, on the other hand, inherits from modifier types generally, which do not allow auxiliaries, but do require agreement in person, number, and case with the modified noun. In summary, the hierarchical lexicon is deployed here to factor out the differing properties of the various German passive constructions, each of which obtains its particular combination of properties via multiple inheritance.

The most specific types of the lexical hierarchy, where individual lexical entries reside, is where constraints pertaining solely to a given word or root – its phonological form, inflectional class, specific semantics, register, and so forth – are stated. Specific information about a word needs to be spelled out somewhere in any grammatical framework. In a hierarchically organized lexicon we can view this as just the narrowest, most particular case of specifying information about a class of linguistic entities. But where information is shared across a broader set of lexical entries, it need not be stated separately for each one. Thus, the phonology of the word *spray* and the precise manner of motion of the particles or liquid caused to move in a spraying event are unique to this lexical entry. However, much of its syntactic and semantic behavior— it is a regular verb, participating in a locative alternation, involving caused ballistic motion of a liquid or other dispersable material— is shared with other English verbs such as *splash*, *splatter*, *inject*, *squirt*, and *drizzle*. To the extent that these "narrow conflation classes," as Pinker (1989) terms them, are founded on clear semantic criteria, we can readily

state syntactic and semantic constraints at the appropriate level in the hierarchical lexicon (some, however, such as Briscoe & Copestake (1999), cast doubt on the feasibility of formulating such constraints for dative and other alternations in English, suggesting that lexical rules might be a better alternative). Given this semantic similarity, it may be that much of the semantics of a verb like spray need not be specified at the level of that individual lexical entry. Apart from the broad semantics of caused motion, shared by numerous verbs, the verbs in the narrow conflation class containing spray share the selectional restriction, noted above, that their objects are set in motion by an initial impulse and that they are liquid or particulate material. We might therefore posit a subtype of the type caused-motion-rel to represent this shared semantics triggering the locative alternation, with further subtypes of that for the semantics of the individual verbs. Note that not all these constraints apply to precisely the same class (there are other verbs with somewhat different semantics, like *load* and *wrap*, exhibiting the locative alternation, for example), so a multitude of types in the hierarchy is crucial.

4.3 Default inheritance in the lexicon

So far, we have assumed rigid, monotonic inheritance of all information in supertypes to their subtypes; none of the inherited information can be overridden. This runs into difficulties when dealing with lexical entries that appear to be exceptional in some way, the obvious examples being morphological irregularities. How can productive regular forms such as *childs* be blocked, and only children allowed as a lexical entry?

While several approaches to exceptions have been proposed, we will focus here on *default unification*; that is, weakening monotonic inheritance in some circumstances. Then, although the plural of *child* might inherit the information from the pertinent lexical entry and from the *plural-noun* type, which would entail the phonology for **childs*, this regular plural form is overridden. Various complex issues arise in attempting to formulate a workable system of default unifcation and inheritance. See, e.g., Briscoe & Copestake (1999) for a brief overview of various ways that default unification might be defined. Lascarides & Copestake (1999) list several desirable criteria, including:

- Non-default information is always preserved
- Default unification behaves like monotonic unification whenever possible
- Default unification is order-independent

They explore the properties of their system, called YADU, in considerable detail. The intent is to preserve the behavior of non-default unification in cases where no default information is present, and for defeasible information at more specific level in the type hierarchy to override defeasible information at a more general level.

As another example of the use of default, nonmonotonic inheritance, outside of morphology, consider the account of the syntax of gerunds in various languages developed by Malouf (2000). Gerunds exhibit both verbal and nominal characteristics, and furnish a well-known example of seemingly graded category membership, which does not accord well with the categorical assumptions of mainstream syntactic frameworks. Roughly speaking, English gerunds, and their counterparts in other languages, act much like verbs in their "internal" syntax, allowing direct objects and adverbial modifiers, but function distributionally ("externally") as NPs. To take but a couple of pieces of evidence (see Malouf, op.cit. p.27 et seq. for more details), gerunds can be the complement of prepositions when finite clauses cannot (see (25)); conversely, adverbs, but not adjectives can modify gerunds, but adjectives must modify deverbal nouns (see (26)).

- (25) a. Pat is concerned about Sandy('s) getting arrested.
 - b. *Pat is concerned about (that) Sandy got arrested.
- (26) a. Pat disapproved of (me/my) *quiet/quietly leaving before anyone noticed.
 - b. Pat disapproved of my quiet/*quietly departure.

In contrast to accounts that attempt to model this dichotomy directly, via syntactic rules that allow an NP to be expanded as a constituent internally headed by a verb, Malouf posits a lexical rule, which converts the lexical category of a verb to *noun*, but otherwise preserves its verbal properties, such as subcategorization. This would pose problems with strictly monotonic inheritance, however, as it would force us to abandon generalizations about nouns other than gerunds (e.g., they do not take direct object complements, as many verbs and their gerunds do). Default inheritance provides one way to model the observed phenomena, without weakening the constraints on parts of speech to the point where no meaningful constraints distinguish them.

Malouf notes that some possible combinations of noun-like and verb-like attributes are frequently attested cross-linguistically in gerunds and their equivalents, while others are rare or unattested. Cross-linguistically, gerunds vary in their subcategorization possibilities: some allow subjects and complements,

while some allow only complements and no subjects. But there appear to be no cases of gerund-like lexical items that can take a subject but cannot take complements. Malouf invokes default inheritance (Lascarides & Copestake 1999) as a mechanism to represent these generalizations. In his account, there are both "hard" constraints – a verb lexical entry, for example, must have a HEAD value of type relational (encompassing verbs, adjectives, and adpositions) – and "soft", overridable constraints – a verb lexical entry by default has a HEAD value of type verb. In addition, following Bouma et al. (2001), he posits the types ext-subj and ext-spr. The former constrains the HEAD value to relational and the first element of the ARG-ST list to be the SUBJ (only adjective, adpositions, and verbs have subjects), while the latter constrains the HEAD value to noun and the first element of the ARG-ST list to be the SPR (only nouns have specifiers), as shown in (27).

(27) a.
$$\begin{bmatrix} ext\text{-}subj \\ HEAD & relational \\ VAL & \begin{bmatrix} sUBJ & \boxed{1} \\ ARG\text{-}ST & \langle \boxed{1}, ... \rangle \end{bmatrix}$$
 b.
$$\begin{bmatrix} ext\text{-}spr \\ HEAD & noun \\ VAL & \begin{bmatrix} sPR & \boxed{1} \\ ARG\text{-}ST & \langle \boxed{1}, ... \rangle \end{bmatrix}$$

Malouf then specifies default HEAD values for the lexical classes n and v (see (29) for the latter's definition). As gerunds have both properties of nominal and relational heads, they are subtypes of both, as shown in the multiple inheritance hierarchy in (28). The v type, which concerns us here, has a default HEAD value verb, as shown in (29) in addition to the non-default, more general type relational it also includes (default information follows /).

However, the default value *verb* is overridden in the subtype *vger*, in which the HEAD value is *gerund*, which is a subtype of both *noun* and *relational*, but not of *verb*. The type *vger* is shown in (30); where *f-ing* is a function the produces the *-ing* form of an English verb from its root.

(30)
$$\begin{bmatrix} vger \\ MORPH & ROOT & 1 \\ I-FORM & f-ing(1) \end{bmatrix}$$
HEAD $gerund$

The type *vger* is thus compatible with "verb-like" characteristics; in particular, it has an ARG-ST list. But, as its HEAD is also a subtype of *noun*, it lacks a SUBJ attribute and instead has a SPR attribute. Gerunds therefore allow complements (unlike ordinary nouns), but not subjects (unlike ordinary verbs). Malouf's hierarchy of types makes this prediction, in effect, because the *ext-spr* type requires that the "external argument" (the first on the ARG-ST list) is realized as the value of SPR.

While it would be possible to construct type hierarchies of lexical types, HEAD types, and so on that would allow for this kind of "reverse gerunds" – those that would act externally as nouns, allow subjects, but not permit complements – this would require reorganizing these type hierarchies to a considerable extent. Given that many nouns besides gerunds – nominalizations, for example – are relational (that is, have a content value of type *psoa*), it could be difficult to model a hypothetical language that permits only the reverse gerunds rather than the normal ones.

Malouf further notes a key difference between gerunds and exceptions like *childs/children: English gerunds are productive (and completely regular morphologically). If the same mechanisms of default unification are involved in both, what accounts for this difference? His answer is that productive and predictable processes involve online type construction (see Section 5.2 for details). The irregular form *children* must of course be learned and stored, not generated online. The default mechanisms described above, however, are employed at higher levels of the lexical hierarchy, and the individual gerunds forms *are* productively generated online. Note that, in contrast to the morphological and syntactic consistency among gerunds, English nominalizations display some idiosycrasies that suggest at least some of them must be stored as distinct lexical items. Thus, as Malouf emphasizes, modeling prototypicality in the lexicon within HPSG can draw on both default inheritance and online type construction; together, they make "the connection between prototypicality, and productivity."

5 Lexical rules

In this section we describe the role lexical rules play in HPSG as well as their formal nature, i.e., how they model "horizontal" relations among elements of the

lexicon. These are relations between variants of a single entry (be they subcategorizational or inflectional variants) or between members of a morphological family, as opposed to the "vertical" relations modeled through inheritance. Thus they provide a means to represent the intuitive notion of "derivation" of one lexeme from another.

While lexical rules or similar devices have been invoked within HPSG since its inception, formalizing their nature and behavior was deferred until somewhat later. The intent, however, has always been, as Lahm (2016) stresses, to treat lexical rules (typically written $A \mapsto B$) to mean that for every lexeme or word described by A there is one described by B that has as much in common with A as possible.

Copestake & Briscoe (1991), Briscoe & Copestake (1999), Meurers (2001), and many others formalize the notion of lexical rule within HPSG by introducing a type, say *lex-rule*, with the attributes IN and OUT, whose values are respectively the rule's input and output lexical entries. As Briscoe & Copestake (1999) note, lexical rules of this form also bear a close relationship to default unification. The information in the input is intended to carry over to the output by default, except where the rule specifies otherwise and overrides this information. But, as Lahm (2016) points out, a sound basis for the formal details of how lexical rules work is not easy. Meurers' careful analysis of how to apply lexical rules to map a description of an entry *A* into the description *B* does not always work as intended in that what would expect to be licit inputs are actually not and no output description results as a consequence. Fortunately, it is not clear that this is a severe problem in practice, and Lahm notes that he has not found an example of practical import where Meurers's lexical rule formulation would encounter the problems he raises.

In a slight variant of the representation of lexical rules proposed by Copestake & Briscoe and Meurers, the OUT attribute can be dispensed with; the information in the lexical rule type not within the IN value then constitutes the output of the rule. In this variant, lexical rules could alternatively be viewed as be subtypes of a *derived-word* type, which could combine with other types in the lexical hierarchy, merely adding the derivational source via the IN value. Formulated in either fashion, lexical rules are essentially equivalent to unary syntactic rules, with the IN attribute corresponding to the daugther and the OUT attribute (or the rest of the information in the rule, if the OUT attribute is done away with) to the mother. This is the way lexical rules are implemented in the English Resource Grammar (see http://www.delph-in.net/erg/ for demos and details about this large-scale implemented grammar of English). (cross-reference to Bender &

Emerson's chapter on computational linguistics and language engineering here)

5.1 Phenomena accounted for by lexical rules

Lexical rules have been put to many uses, derivational and inflectional morphology (Copestake & Briscoe 1995; Emerson & Copestake 2015), complex predicate formation (Müller 2010), and diathesis alternations (Davis 2001). Moreover, proposals for lexical rules in HPSG have extended beyond what are traditionally or evidently viewed as lexical phenomena, to include treatments of extraction, unbounded dependencies, and adjuncts. In this section, we describe the use of lexical rules to model the realization of arguments as extracted dependents or affixes, rather than complements. We concentrate on these two cases, which we will contrast with alternative analyses not involving lexical rules presented by the same authors (see the next section). They thus provide a good illustration of some of the analytical choices available to model relations between variant lexical entries that are based on a single stem.

We begin with the Complement Extraction Lexical Rule (hereafter, CELR) proposed in Pollard & Sag (1994) shown in (31). The input to the rule is any lexeme that selects for a syntactic argument (3) that the lexeme requires be expressed as a complement (as indicated, this syntactic argument is also a member of the COMPS list). The ouput stipulates that this same syntactic argument is no longer a member of the COMPS list; however, the SLASH set now includes a new element, which is the local information of this syntactic argument (1). Informally stated, the input entry specifies that a syntactic argument must be realized as a complement, whereas the output entry specifies that the same syntactic argument must be realized by a non-local dependent (see Pollard & Sag (1994) for why only LOCAL information is shared between syntactic arguments and fillers that realize them).

(31)
$$\begin{bmatrix} \operatorname{Arg-st} \langle ..., \underline{3}, ... \rangle \\ \operatorname{comps} \langle ..., \underline{3}[\operatorname{loc} \underline{1}], ... \rangle \end{bmatrix} \mapsto \begin{bmatrix} \operatorname{Arg-st} \langle ..., \underline{4}[\operatorname{loc} \underline{1}], ... \rangle \\ \operatorname{comps} \langle ... \rangle \\ \operatorname{slash} \underline{2} \end{bmatrix} \mapsto \begin{bmatrix} \operatorname{Arg-st} \langle ..., \underline{4}[\operatorname{loc} \underline{1}], ... \rangle \\ \operatorname{slash} \underline{3}[\operatorname{loc} \underline{1}], ... \end{pmatrix}$$

A similar use of lexical rules to model alternative realizations of arguments can be found in Monachesi (1993), who analyzes alternations between complements and so-called object clitics in Italian in a way that parallels the French examples in (10). In the output of her lexical rule, in (32), a subset of the list of complements in the input (2) corresponds to a list of clitic synsems, realized as prefixes through inflectional rules not shown here.

$$(32) \begin{bmatrix} word \\ {}_{\mathsf{HEAD}} & verb \\ {}_{\mathsf{VAL}|\mathsf{COMPS}} & \boxed{1} \bigcirc \boxed{2} \\ {}_{\mathsf{CLTS}} & elist \end{bmatrix} \mapsto \begin{bmatrix} word \\ {}_{\mathsf{VAL}|\mathsf{COMPS}} & \boxed{1} \\ {}_{\mathsf{CLTS}} & \boxed{2}list(cl\text{-ss}) \end{bmatrix}$$

Here as well, a lexical rule is employed in an analysis of what might well be considered a syntactic phenomenon. The possibility of treating phenomena like extraction and clitic placement at a lexical level, however, makes sense when they are considered fundamentally as matters of the combinatorial requirements of predicators, rather than effects of movement.

Before turning to the alternatives, we note in passing that lexical rules are inherently "directional", with an input and an output. This seems intuitively correct in the cases we've discussed, but might not always be so. Is there inherent directionality, for example between the causative and inchoative alternants of verbs such as *melt* or *slide*? In constrast, the alternatives to lexical rules described in the following section lack this notion of directionality.

5.2 Alternatives to lexical rules

In this section we briefly examine two alternatives to lexical rules, each involving underspecification. The types of members of the ARG-ST list might be underspecified so that a lexical entry accounts for more than one subcategorization. Or the type of the entry itself may be underspecified, so that it subsumes multiple inflectional or derivations forms. In both cases, the intent is that sufficiently underspecified information covers multiple entries that would otherwise have to be specified and related by lexical rules. We begin with alternatives to the complement extraction and clitic lexical rules in (31) and (32), proposed in Bouma et al. (2001) and Miller & Sag (1997).

In both cases, the idea is to distinguish between "canonical" and "non-canonical" realizations of syntactic arguments, as shown in the hierarchy of *synsems* in (33). "Canonical" means local realization as a complement or subject/specifier, and "non-canonical" means realization as an affix or filler of an unbounded dependency. Linking constraints between semantic roles (values of argument positions) and syntactic arguments (members of ARG-ST) do not specify whether the realization is canonical or not; thus they retain their original form. Only canonical members of ARG-ST must be structured-shared with members of valence lists. The two constraints that determine the non-canonical realization of fillers are shown in (34). (34a) specifies what it means to be a *gap-ss*), namely that the argument is extracted (its local information is "slashed,") whereras (34b) prohibits any *gap-ss* member from being a member of the COMPS list. As these two constraints

are compatible with either a canonical or extracted object, there is no need for the lexical rule is (31).

(34) a.
$$gap\text{-ss} \Rightarrow \begin{bmatrix} \text{Loc} & \mathbb{I} \\ \text{slash} & \mathbb{I} \end{bmatrix}$$

b. $word \Rightarrow \begin{bmatrix} \text{SUBJ} & \mathbb{I} \\ \text{comps} & \mathbb{2} \ominus \textit{list(gap-ss)} \\ \text{DEPS} & \mathbb{I} \oplus \mathbb{2} \end{bmatrix}$

Miller & Sag (1997) make a similar use of non-canonical relations between the ARG-ST list and the valence lists, eschewing lexical rules to model French clitics and proposing instead the constraint in (35), where a subset of ARG-ST members, those that are realized as affixes (of type *aff*) are not also subcategorized for as complements.

(35)
$$\begin{bmatrix} \text{MORPH} & \text{Form} & F_{PRAF}(\boxed{1}, ...) \\ \text{I-FORM} \boxed{1} \end{bmatrix}$$

$$\text{SYNSEM} & \begin{bmatrix} \text{HEAD} & \textit{verb} \\ \text{VAL} & \begin{bmatrix} \text{SUBJ} & \boxed{2} \\ \text{COMPS} & \boxed{3} \textit{list(non-aff)} \end{bmatrix} \\ \text{ARG-ST} & (\boxed{2} \oplus \boxed{3}) \bigcirc \textit{nelist(aff)} \end{bmatrix}$$

The second alternative to lexical rules based on underspecification was presented in Koenig & Jurafsky (1994) and Koenig (1999). Typically in HPSG, all possible combinations of types are reified in the type hierarchy (in fact, they must be present, per the requirement that the hierarchy be sort-resolved, Carpenter 1992b,Pollard & Sag 1994). Thus, if one partitions verb lexemes into transitive and intransitive and, orthogonally, into, say, finite verbs and gerunds (limiting ourselves to two dimensions here for simplicity), the type hierarchy must also contain the combinations transitive+finite, transitive+gerund, intransitive+finite, and intransitive+gerund. Naturally, this kind of fully enumerated type system is unsatisfying. For one thing, there is no additional information that the combination subtype transitive+finite carries that is not present in its the two supertypes transitive and finite, and similarly for the other combinations. In contrast to

the "ordinary" types, posited to represent information shared by classes of lexemes, these combinations seem to have no other function than to satisfy a formal requirement of the mathematical structure of a type hierarchy (namely, that it forms a lattice under meet and join). Second, and related to the first point, this completely elaborated type hierarchy is redundant. Once you know that all verbs fall into two valence classes, transitive and intransitive, and simultaneously into two inflectional classes, finite and gerund, and that valence and inflection are two orthogonal dimensions of classification of verbs, you know all you need to know; the type of any verb can be completely predicted from these two orthogonal dimensions of classification and standard propositional calculus inferences.

In (36) is a simplified version of the hierarchy in (20), where the boxed labels in small caps vform and Arg-st are mnemonic names of orthogonal dimensions of classification of subcategories of verbs (and are not themselves labels of subcategories). Inheritance links to the predictable subtypes are dashed and their names grayed out; this indicates that these types can be inferred, and need not be declared explicitly as part of the grammar. A grammar of English would include statements to the effect that head information about verbs includes a classification of verbs into finite or base forms (of course, there would be more types of verb forms in a realistic grammar of English) as well a classification into intransitive and transitive verbs (again, a realistic grammar would include many more types).

Crysmann & Bonami (2016) have shown how this *online type construction*, where predictable combinations of types of orthogonal dimensions of classification are not reified in the grammar, is useful when modeling productive inflectional morphology. Consider, for example, exponents of morphosyntactic features whose shape remains constant, but whose position within a word's template (to speak informally here) varies. One case like this is the subject and object markers of Swahili, which can occur in multiple slots in the Swahili verb template. For reasons of space we illustrate the usefulness of this dynamic ap-

proach to type creation, the Type Underspecified Hierarchical Lexicon (TUHL) with an example from Koenig (1999), the cross-cutting classification of syntactic/semantic information and stem form in the entry for the French verb aller (see Bonami & Boyé (2001) for a much more thorough discussion of French stem allomorphy along similar lines; Crysmann and Bonami's much more developed approach to stem allomorphy would model the same phenomena differently and we use Koenig's simplified presentation for expository purposes only). The forms of aller are based on four different suppletive stems: all-(1st and 2nd person plural of the indicative and imperative present, infinitive, past participle, and imperfective past), i- (future and conditional), v- (1st-3rd person singular and 3rd person plural of the indicative present), and aill- (subjunctive present). These four suppletive stems are shared by all entries (i.e., senses) of the lexeme aller: the one which means 'to fit' as well as the one which means 'to leave', as shown in (37) (see Koenig, op.cit, p.40-41). The cross-cutting generalizations over lexemes and stems are represented in Figure 2. Any aller stem combines one entry and one stem form. In a traditional HPSG type hierarchy, each combination of types (grayed out in Figure 2), would have to be stipulated. In a TUHL, these combinations can be dynamically created when an instance of aller needs to be produced or comprehended.

- (37) a. Marc est allé à Paris.

 Marc be-pr.3rd.sg go-ppt to Paris

 'Marc went to Paris.'
 - b. Marc s'en ira. 'Marc will leave.'
 Marc 3.REFL-of.it go-FUT.3RD.SG
 - c. Ce costume te va bien.

 This suit you go-pr.3.sg well

 'This suit becomes you.' (lit. goes well to you)
 - d. Il faut que j'y aille. It must that I.to.there go-subj.pr.1.sg 'I must go there.'

44

Both synsem and type underspecification avoid conflict between the information specified in the variants of words based on a single lexeme (e.g., conflicts on how syntactic arguments are realized); they abstract over the relevant pieces of conflicting information. Underspecifying information included in lexical entries or lexical types allows a single entry or type to stand for the two distinct entries or types that would be related as input and output by lexical rules. The third alternative to lexical rules eschews informational conflict by adding internal structure to stems and words. This is the approach to derivational morphology taken by Riehemann (1998). Example (38) (Riehemann's (1)) illustrates -bar suffixation in German, a process by which an adjective that includes a modal component can be derived from verb stems (similar to English -able suffixation). A lexical rule approach would posit a verb stem input and derive an adjective output. As Riehemann stresses, though, there are many different subtypes of -bar suffixation, some productive, some unproductive, all sharing some information. This combination of productive and unproductive variants of a lexical process is exactly what the type hierarchy is meant to capture and what Riehemann's Type-Based Derivational Morphology capitalizes on. (39) presents the relevant information of Riehemann's type for regular -bar adjectives (see p.68 for more details). Critically, -bar adjectives include a singleton-list base (the value of MORPH-B) that records the information of the adjective's verbal base (what would be the lexical rule's input). Because of this extra layer, the local information in the base (local1) and the *-bar* adjective (*local*₂) can differ without being in conflict.

(38) Sie bemerken die Veränderung. Die Veränderung ist bemerkbar. They notice the change. The change is noticeable.

(39)
$$\begin{bmatrix} reg-bar-adj \\ phonology & \boxed{1}+bar \\ morph-b & \begin{bmatrix} trans-verb \\ phon & \boxed{1} \\ local & local_1 \end{bmatrix} \end{bmatrix}$$

$$SYNSEM|LOCAL & local_2$$

Lexical rules played a critical role in the rise of lexicalist approaches to syntax. But the three alternative analytical tools we discussed in this section (which, of course, can be combined in an analysis) have chipped away at their use in HPSG. Inflectional morphology is now dealt with through lexical types associating morphosyntactic features with forms/positions and constraints on words (ensuring that all morphosyntactic features are realized). (cross-reference the chapter on Morphology) Derivational morphology is handled via lexical types

too, but ones that add an extra internal layer (the MORPH-Base in Riehemann's analysis and (39)). Non-canonical realization of syntactic arguments as affixes or fillers in unbounded dependencies is now modeled by distinguishing kinds of members of the ARG-ST list and constraints on words that relate valence, argument structure, and dependents lists. So, what remains of the case for lexical rules now? Müller (2006; 2010) argues that diathesis phenomena, broadly speaking, favor a lexical rules approach over a phrase-structural constructional approach à la Goldberg (1995) or an online type construction approach suggested in Kay (2002). The arguments are convincing, but it should be noted that some of the data involves derivational morphology (e.g., causatives) or passive morphemes, which, arguably, could be handled via a Type-Based Derivational Morphology of the kind Riehemann argues for (such an approach was suggested in Koenig (1999: Chapter 4)). It is unclear to us whether there are always motivated types for morphologically derived stems to dispense entirely with lexical rules of the kind Müller argues for. On the other hand, if one adopts the version of lexical rules in which the OUT attribute is eliminated and lexical rules are subtypes of derived-lexeme, little will be at stake formally, as lexical rules and derivational processes "look the same."

Abbreviations

Acknowledgements

References

Ackerman, Farrell & Gert Webelhuth. 1998. *A theory of predicates*. Stanford, CA: CSLI Publications.

Anderson, Stephen. 1992. *A-morphous morphology*. Cambridge: Cambridge University Press.

Anderson, Stephen. 2005. *Aspects of the theory of clitics*. Oxford: Oxford University Press.

Baldridge, Jason. 2002. *Lexically specified derivational control in combinatory categorial grammar*. Edinburgh: University of Edinburgh dissertation.

Bochner, Harry. 1993. Simplicity in generative morphology. Berlin: Mouton de Gruyter.

Bonami, Olivier & Gilles Boyé. 2001. Suppletion and dependency in inflectional morphology. In Frank Van Eyde, Lars Hellan & Dorothee Beermann (eds.), *Proceedings of the 2001 HPSG conference*, 51–70. Stanford: CSLI Publications.

- Booij, Gert. 2005. Compounding and derivation: Evidence for Construction Morphology. In Wolfgang Dressler, Dieter Kastovsky, Oskar Pfeiffer & Franx Rainer (eds.), *Morphology and its demarcations*, 109–132. Amsterdam: John Benjamins Publishing Co.
- Borer, Hagit. 2003. Exo-skeletal vs. endo-skeletal explanations: syntactic projections and the lexicon. In John Moore & Maria Polinsky (eds.), *The nature of explanation in linguistic theory*, 31–67. Stanford: CSLI Publications.
- Bouma, Gosse, Frank Van Eynde & Dan Flickinger. 2000. Constraint-based lexicons. In Frank Van Eynde & Dafydd Gibbon (eds.), *Lexicon development for speech and language processing* (Text, Speech and Language Technology). Dordrecht: Kluwer Academic Publishers.
- Bouma, Gosse, Robert Malouf & Ivan Sag. 2001. Satisfying constraints on extraction and adjunction. *Natural Language and Linguistic Theory* 19. 1–65.
- Brachman, Ronald & James Schmolze. 1985. An overview of the KL-ONE knowledge representation system. *Cognitive Science*. 2nd ser. 9. 171–216.
- Bresnan, Joan & Sam Mchombo. 1995. The lexical integrity principle: evidence from Bantu. *Natural Language and Linguistic Theory* 13. 181–254.
- Briscoe, Ted & Ann Copestake. 1999. Lexical rules in constraint-based grammars. *Computational Linguistics* 25(4). 487–526.
- Broadwell, George Aaron. 2008. Turkish suspended affixation is lexical sharing. In Miriam Butt & Tracy Holloway King (eds.), *Proceedings of the LFG 2008 conference*, 198–213. Stanford, CA: CSLI Publications. http://csli-publications.stanford.edu/LFG/13/, accessed 2018-2-25.
- Bruening, Benjamin. 2018. The lexicalist hypothesis: both wrong and superfluous. *Language* 94. 1–42.
- Carpenter, Bob. 1992a. Categorial grammars, lexical rules, and the English predicative. In Bob Levine (ed.), *Formal grammar: theory and implementation*, 168–242. New York, NY: Oxford University Press.
- Carpenter, Bob. 1992b. *The logic of typed feature structures* (Tracts in Theoretical Computer Science). Cambridge: Cambridge University Press.
- Chaves, Rui. 2008. Linearization-based word-part ellipsis. *Linguistics and Philosophy* 31. 261–307.
- Chaves, Rui. 2014. On the disunity of right-node raising phenomena: extraposition, ellipsis, and deletion. *Language* 90. 834–886.
- Chomsky, Noam. 1970. Remarks on nominalization. In Roderick A. Jacobs & Peter S. Rosenbaum (eds.), *Readings in english transformational grammar*, 184–221. Boston: Ginn.

- Copestake, Ann & Ted Briscoe. 1991. Lexical operations in a unification-based framework. In James Pustejovsky & Sabine Bergler (eds.), *Lexical semantics and knowledge representation*, 101–119. Berlin: Springer Verlag.
- Copestake, Ann & Ted Briscoe. 1995. Semi-productive polysemy and sense extension. *Journal of Semantics* 12. 15–67.
- Crysmann, Berthold. 2001. Clitics and coordination in linear structure. In Birgit Gerlach & Janet Grijzenhout (eds.), *Clitics in phonology, morphology and syntax* (Linguistik Aktuell/Linguistics Today 36), 121–159. Amsterdam: John Benjamins Publishing Co.
- Crysmann, Berthold. 2015. On the placement and morphology of Udi subject agreement. In Frank Van Eynde, Lars Hellan & Dorothee Beermann (eds.), *Proceedings of the HPSG-2001 Conference, Norwegian University of Science and Technology, Trondheim.* Stanford, CA: CSLI Publications. http://csli-publications.stanford.edu/HPSG/2001/, accessed 2015-12-23.
- Crysmann, Berthold & Olivier Bonami. 2016. Variable morphotactics and Information-based Morphology. *Journal of Linguistics* 52. 311–374.
- Davis, Anthony. 2001. *Linking by types in the hierarchical lexicon*. Stanford: CSLI Publications.
- Davis, Anthony & Jean-Pierre Koenig. 2000. Linking as constraints on word classes in a hierarchical lexicon. *Language* 76. 56–91.
- Di Sciullo, Anna-Maria & Edwin Williams. 1987. *On the definition of word.* Cambridge, MA: MIT Press.
- Dost, Ascander. 2007. A domain-based approach to second position clitics in Pashto. In Frederick Hoyt, Nikki Seifert, Alexandra Teodorescu & Jessica White (eds.), *Texas linguistic society ix: the morphosyntax of underrepresented languages*. Austin, TX.
- Emerson, Guy & Ann Copestake. 2015. Lacking integrity: HPSG as a morphosyntactic theory. In Stefan Müller (ed.), *Proceedings of the 22nd International Conference on Head-Driven Phrase Structure Grammar, Nanyang Technological University (NTU), Singapore*, 75–95. Stanford, CA: CSLI Publications. http://csli-publications.stanford.edu/HPSG/2015/, accessed 2018-2-25.
- Flickinger, Daniel. 1987. *Lexical rules in the hierarchical lexicon*. Stanford University dissertation.
- Goldberg, Adele E. 1995. Constructions: A Construction Grammar approach to argument structure (Cognitive Theory of Language and Culture). Chicago/London: The University of Chicago Press.

- Halle, Morris & Alec Marantz. 1993. Distributed morphology and the pieces of inflection. In Kenneth Hale & Samuel Jay Keyser (eds.), *The view from building 20*, 111–176. Cambridge, MA: MIT Press.
- Harris, Alice. 2000. Where in the word is the Udi clitic? Language 76. 593-616.
- Haspelmath, Martin. 2011. The indeterminacy of word segmentation and the nature of morphology and syntax. *Folia Linguistica* 45. 31–80.
- Jackendoff, Ray. 1990. Semantic structures. Cambridge, MA: MIT Press.
- Jackendoff, Ray S. 1975. Morphological and semantic regularities in the lexikon. *Language* 51(3). 639–671.
- Kathol, Andreas. 1999. *Linearization-based syntax*. Oxford: Oxford University Press.
- Kay, Paul. 2002. An informal sketch of a formal architecture for construction grammar. *Grammars* 5. 1–19.
- Koenig, Jean-Pierre. 1999. *Lexical relations* (Stanford Monographs in Linguistics). Stanford, CA: CSLI Publications.
- Koenig, Jean-Pierre & Anthony Davis. 2003. Semantically transparent linking in HPSG. In Stefan Müller (ed.), *Proceedings of the HPSG 2003 conference*, 222–235. Stanford: CSLI Publications.
- Koenig, Jean-Pierre & Daniel Jurafsky. 1994. Type underspecification and on-line type construction in the lexicon. In *Proceedings of WCCFL XIII*, 270–285. Stanford: CSLI Publications.
- Lahm, David. 2016. Refining the semantics of lexical rules in HPSG. In Doug Arnold, Miriam Butt, Berthold Crysmann, Tracy Holloway-King & Stefan Müller (eds.), *Proceedings of the joint 2016 conference on Head-driven Phrase Structure Grammar and Lexical Functional Grammar*, 360–379. Stanford, CA: CSLI Publications. http://cslipublications.stanford.edu/HPSG/2016/headlex2016-lahm.pdf.
- Lakoff, George. 1970. *Irregularity in syntax*. New York: Holt, Rinehart, & Winston. Lascarides, Alex & Ann Copestake. 1999. Default representation in constraint-based frameworks. *Computational Linguistics* 25(1). 55–105.
- Malouf, Robert. 2000. *Mixed categories in the hierarchical lexicon*. Stanford, CA: CSLI Publications.
- Marantz, Alec. 1997. No escape from syntax: don't try morphological analysis in the privacy of your own lexicon. In A. AkmajianDimitriadis, L. Siegel, C. Surek-Clark & A. Williams (eds.), *Upenn working papers in linguistics*, vol. 4, 201–225. Philadelphia: University of Pennsylvania Linguistics Department.
- McCawley, James D. 1982. Parentheticals and discontinuous constituent structure. *Linguistic Inquiry* 13. 91–106.

- Meurers, Detmar. 2001. On expressing lexical generalizations in HPSG. *Nordic Journal of Linguistics* 24. 161–217.
- Miller, Philip & Ivan Sag. 1997. French clitic movement without clitics or movement. *Natural Language and Linguistic Theory* 15. 573–639.
- Monachesi, Paola. 1993. Object clitics and clitic climbing in Italian HPSG grammar. In Steven Krauwer, Michael Moortgat & Louis des Tombe (eds.), Sixth Conference of the European Chapter of the Association for Computational Linguistics. Proceedings of the conference, 437–442. Uetrecht: Association for Computational Linguistics.
- Müller, Stefan. 2006. Phrasal or lexical constructions? Language 82(4). 850-883.
- Müller, Stefan. 2010. Persian complex predicates and the limits of inheritance-based analyses. *Journal of Linguistics* 46(3). 601–655. DOI:10.1017/S0022226709990284
- Pollard, Carl J. & Ivan A. Sag. 1987. *Information-based syntax and semantics* (CSLI Lecture Notes 13). Stanford, CA: CSLI Publications.
- Pollard, Carl & Ivan Sag. 1992. Anaphors in English and the scope of binding theory. *Linguistic Inquiry*. 2nd ser. 23. 261–303.
- Pollard, Carl & Ivan Sag. 1994. *Head-driven phrase-structure grammar*. Chicago, IL: Chicago University Press.
- Przepiórkowski, Adam. 2001. ARG-ST on phrases: evidence from Polish. In Dan Flickinger & Andreas Kathol (eds.), *Proceedings of the 7th international conference on head-driven phrase structure grammar*, 267–284. CSLI Publications.
- Reape, Mike. 1994. Domain union and word order variation in german. In John Nerbonne, Klaus Netter & Carl Pollard (eds.), *German in head-driven phrase structure grammar*, 151–197. Stanford University: CSLI Publications.
- Richter, Frank. 1999. RSRL for HPSG. In Valia Kordoni (ed.), *Tübingen studies in head-driven phrase structure grammar* (Arbeitsberichte des SFB 340 132), 74–115. Tübingen: Universität Tübingen.
- Riehemann, Susanne Z. 1998. Type-based derivational morphology. *The Journal of Comparative Germanic Linguistics* 2. 49–77.
- Roberts, Taylor. 2000. Clitics and agreement. Cambridge, MA: MIT dissertation.
- Tegey, Habibullah. 1977. *The grammar of clitics: evidence from Pashto and other languages*. Urbana-Champaign: University of Illinois at Urbana-Champaign dissertation.
- Wechsler, Stephen. 1999. HPSG, GB, and the Balinese bind. In Gert Webelhuth, Jean-Pierre Koenig & Andreas Kathol (eds.), *Lexical and Constructional aspects of linguistic explanation* (Studies in Constraint-Based Lexicalism 1), 179–195. Stanford, CA: CSLI Publications.

Chapter 5

Understudied languages

Doug Ball

Aron Broadwell

Change epigram in chapters/03.tex or remove it there

Change the abstract in chapters/03.tex Nulla malesuada porttitor diam. Donec felis erat, congue non, volutpat at, tincidunt tristique, libero. Vivamus viverra fermentum felis. Donec nonummy pellentesque ante. Phasellus adipiscing semper elit. Proin fermentum massa ac quam. Sed diam turpis, molestie vitae, placerat a, molestie nec, leo. Maecenas lacinia. Nam ipsum ligula, eleifend at, accumsan nec, suscipit a, ipsum. Morbi blandit ligula feugiat magna. Nunc eleifend consequat lorem. Sed lacinia nulla vitae enim. Pellentesque tincidunt purus vel magna. Integer non enim. Praesent euismod nunc eu purus. Donec bibendum quam in tellus. Nullam cursus pulvinar lectus. Donec et mi. Nam vulputate metus eu enim. Vestibulum pellentesque felis eu massa.

1 Introduction

Duis pulvinar lacus id gravida ornare. Phasellus eu mauris sed tortor maximus condimentum ultrices in leo. Donec non erat nec nulla ullamcorper ornare sed id ex. Integer risus mauris, aliquet vel aliquam sed, feugiat quis nisi. Suspendisse quis nunc a turpis porttitor mollis. In luctus nulla id nunc dapibus, id rhoncus lorem pretium. Nunc eget fringilla velit, semper commodo diam. Suspendisse odio odio, euismod ac ornare sed, tincidunt ac arcu. Pellentesque vitae fringilla

Doug Ball & Aron Broadwell

orci. Donec faucibus metus dui, nec iaculis purus pellentesque sit amet. Sed fermentum lorem non augue cursus, eu accumsan risus ullamcorper. Suspendisse rhoncus magna vitae enim pellentesque, eget porttitor quam finibus. Nunc ultricies turpis at quam vehicula, at tempus justo molestie. Proin convallis augue ut turpis cursus rhoncus. Donec sed convallis justo. Sed sed massa pharetra ex aliquet eleifend. finality

Abbreviations

Acknowledgements

Part II Syntactic phenomena

Chapter 6

Agreement

Steve Wechsler University of Texas at Austin

Change epigram in chapters/03.tex or remove it there

Change the abstract in chapters/03.tex Nulla malesuada porttitor diam. Donec felis erat, congue non, volutpat at, tincidunt tristique, libero. Vivamus viverra fermentum felis. Donec nonummy pellentesque ante. Phasellus adipiscing semper elit. Proin fermentum massa ac quam. Sed diam turpis, molestie vitae, placerat a, molestie nec, leo. Maecenas lacinia. Nam ipsum ligula, eleifend at, accumsan nec, suscipit a, ipsum. Morbi blandit ligula feugiat magna. Nunc eleifend consequat lorem. Sed lacinia nulla vitae enim. Pellentesque tincidunt purus vel magna. Integer non enim. Praesent euismod nunc eu purus. Donec bibendum quam in tellus. Nullam cursus pulvinar lectus. Donec et mi. Nam vulputate metus eu enim. Vestibulum pellentesque felis eu massa.

1 Introduction

Duis pulvinar lacus id gravida ornare. Phasellus eu mauris sed tortor maximus condimentum ultrices in leo. Donec non erat nec nulla ullamcorper ornare sed id ex. Integer risus mauris, aliquet vel aliquam sed, feugiat quis nisi. Suspendisse quis nunc a turpis porttitor mollis. In luctus nulla id nunc dapibus, id rhoncus lorem pretium. Nunc eget fringilla velit, semper commodo diam. Suspendisse odio odio, euismod ac ornare sed, tincidunt ac arcu. Pellentesque vitae fringilla orci. Donec faucibus metus dui, nec iaculis purus pellentesque sit amet. Sed fermentum lorem non augue cursus, eu accumsan risus ullamcorper. Suspendisse rhoncus magna vitae enim pellentesque, eget porttitor quam finibus. Nunc ultricies turpis at quam vehicula, at tempus justo molestie. Proin convallis augue

Steve Wechsler

ut turpis cursus rhoncus. Donec sed convallis justo. Sed sed massa pharetra ex aliquet eleifend. finality

Abbreviations

Acknowledgements

Chapter 7

Case

Adam Przepiórkowsk Polish Academy of Sciences

Change epigram in chapters/03.tex or remove it there

Change the abstract in chapters/03.tex Nulla malesuada porttitor diam. Donec felis erat, congue non, volutpat at, tincidunt tristique, libero. Vivamus viverra fermentum felis. Donec nonummy pellentesque ante. Phasellus adipiscing semper elit. Proin fermentum massa ac quam. Sed diam turpis, molestie vitae, placerat a, molestie nec, leo. Maecenas lacinia. Nam ipsum ligula, eleifend at, accumsan nec, suscipit a, ipsum. Morbi blandit ligula feugiat magna. Nunc eleifend consequat lorem. Sed lacinia nulla vitae enim. Pellentesque tincidunt purus vel magna. Integer non enim. Praesent euismod nunc eu purus. Donec bibendum quam in tellus. Nullam cursus pulvinar lectus. Donec et mi. Nam vulputate metus eu enim. Vestibulum pellentesque felis eu massa.

1 Introduction

Duis pulvinar lacus id gravida ornare. Phasellus eu mauris sed tortor maximus condimentum ultrices in leo. Donec non erat nec nulla ullamcorper ornare sed id ex. Integer risus mauris, aliquet vel aliquam sed, feugiat quis nisi. Suspendisse quis nunc a turpis porttitor mollis. In luctus nulla id nunc dapibus, id rhoncus lorem pretium. Nunc eget fringilla velit, semper commodo diam. Suspendisse odio odio, euismod ac ornare sed, tincidunt ac arcu. Pellentesque vitae fringilla orci. Donec faucibus metus dui, nec iaculis purus pellentesque sit amet. Sed fermentum lorem non augue cursus, eu accumsan risus ullamcorper. Suspendisse

Adam Przepiórkowsk

rhoncus magna vitae enim pellentesque, eget porttitor quam finibus. Nunc ultricies turpis at quam vehicula, at tempus justo molestie. Proin convallis augue ut turpis cursus rhoncus. Donec sed convallis justo. Sed sed massa pharetra ex aliquet eleifend. finality

Abbreviations

Acknowledgements

Chapter 8

Argument structure and linking

Jean-Pierre Koenig University at Buffalo

Steve Wechsler
University of Texas at Austin

Anthony Davis Buffalo?

Change epigram in chapters/03.tex or remove it there

Change the abstract in chapters/03.tex Nulla malesuada porttitor diam. Donec felis erat, congue non, volutpat at, tincidunt tristique, libero. Vivamus viverra fermentum felis. Donec nonummy pellentesque ante. Phasellus adipiscing semper elit. Proin fermentum massa ac quam. Sed diam turpis, molestie vitae, placerat a, molestie nec, leo. Maecenas lacinia. Nam ipsum ligula, eleifend at, accumsan nec, suscipit a, ipsum. Morbi blandit ligula feugiat magna. Nunc eleifend consequat lorem. Sed lacinia nulla vitae enim. Pellentesque tincidunt purus vel magna. Integer non enim. Praesent euismod nunc eu purus. Donec bibendum quam in tellus. Nullam cursus pulvinar lectus. Donec et mi. Nam vulputate metus eu enim. Vestibulum pellentesque felis eu massa.

1 Introduction

Duis pulvinar lacus id gravida ornare. Phasellus eu mauris sed tortor maximus condimentum ultrices in leo. Donec non erat nec nulla ullamcorper ornare sed id ex. Integer risus mauris, aliquet vel aliquam sed, feugiat quis nisi. Suspendisse

quis nunc a turpis porttitor mollis. In luctus nulla id nunc dapibus, id rhoncus lorem pretium. Nunc eget fringilla velit, semper commodo diam. Suspendisse odio odio, euismod ac ornare sed, tincidunt ac arcu. Pellentesque vitae fringilla orci. Donec faucibus metus dui, nec iaculis purus pellentesque sit amet. Sed fermentum lorem non augue cursus, eu accumsan risus ullamcorper. Suspendisse rhoncus magna vitae enim pellentesque, eget porttitor quam finibus. Nunc ultricies turpis at quam vehicula, at tempus justo molestie. Proin convallis augue ut turpis cursus rhoncus. Donec sed convallis justo. Sed sed massa pharetra ex aliquet eleifend. finality

Abbreviations

Acknowledgements

Chapter 9

Constituent order

Stefan Müller

Humboldt-Universität zu Berlin

1 Introduction

This chapter deals with constituent order with a focus on local order variants. English is the language that is treated most thoroughly in theoretical linguistics but it is also the most boring language as far as the possibilities of reordering constituents is concerned: the order of subject verb and object is fixed in sentences like (1):

(1) Kim likes bagels.

Of course there is the possibility to front the object as in (2) but this is a special, non-local construction that is not the topic of this chapter but is treated in Chapter 13.

(2) Bagels, Kim likes.

This chapter deals with scrambling (the local reordering of arguments) and with alternative placements of heads (called head movement in some theories). Examples of the former are the sentences in (3) and an example of the latter is given in (4):

- (3) a. [weil] der Mann der Frau das Buch gibt (German) because the.NOM man the.DAT woman the.ACC book gives
 - b. [weil] der Mann das Buch der Frau gibt because the.NOM man the.ACC book the.DAT woman gives

- c. [weil] das Buch der Mann der Frau gibt because the.ACC book the.NOM man the.DAT woman gives
- d. [weil] das Buch der Frau der Mann gibt because the ACC book the DAT woman the NOM man gives
- e. [weil] der Frau der Mann das Buch gibt because the.dat woman the.nom man the.acc book gives
- f. [weil] der Frau das Buch der Mann gibt because the.dat woman the.acc book the.nom man gives
- (4) Gibt der Mann der Frau das Buch? (German) gives the.NOM man the.DAT woman the.ACC book
 'Does the man give the woman the book?'
- (3) shows that in addition to the unmarked order in (3a) (see Höhle (1982) on the notion of unmarked order), five other argument orders are possible in sentences with three-place verbs.
- (4) shows that the verb is placed in initial position in questions in German. This contrasts with the verb final order in (3a). This alternation of verb placement is usually treated as head movement in the transformational literature (Bach 1962; Bierwisch 1963: 34; Reis 1974; Thiersch 1978: Chapter 1). Declarative main clauses in German are V2 clauses and the respective fronting is usually treated as a non-local dependency (see Chapter 13). Hence, these sentences will not be handled here.

The following sections deal with the theoretical options within the HPSG framework for dealing with these phenomena. I first discuss the separation of grammar rules in the immediate dominance part and a linear precedence component in Section 2 and then flat vs. binary branching structures (Section 3). While flat structures allow verbs to be ordered finally or initially, this is not the case for binary branching structures. Proposals with binary branching structures are usually paired with so-called head-movement approaches. These are explained in Section 4. Section 5 introduces an extension to standard HPSG developed by Reape (1994): constituent order domains. Such constituent order domains allow for discontinuous constituents and have been used to account for languages like Warlipri (Donohue & Sag 1999). Section 6 shows how such languages can be analyzed without admitting discontinuous constituents.

2 ID/LP format

HPSG was developed out of GPSG and Categorial Grammar. The ideas concerning linearization of daughters in a local tree were taken over from GPSG (Gazdar, Klein, Pullum & Sag 1985). In GPSG a separation between immediate dominance and linear precedence is assumed. So, while in classical phrase structure grammar a phrase structure rule like (5) states that the NP[nom], NP[dat] and NP[acc] have to appear in exactly this order, this is not the case in GPSG and HPSG:

(5)
$$S \rightarrow NP[nom], NP[dat], NP[acc], V$$

The HPSG schemata corresponding to the phrase structure rule in (5) do not express information about ordering. Instead there are separate linearization rules. A schema like (5) licenses 24 different orders: the six permutations of the three arguments that were shown in (3) and all possible placements of the verb (to the right of NP[acc], between NP[dat] and NP[acc], between NP[nom] and NP[dat], to the left of NP[nom]). Orders like NP[nom], NP[dat], V, NP[acc] are not attested in German and hence these linearizations have to be filtered out. This is done by linearization rules, which can refer to features or to the function of a daughter in a schema. (6) shows some examples of linearization rules:

The first rule says that all constituents have to precede a V in the local tree. The second rule says that all constituents have to precede a V that has the initial value —. One option to analyze German would be the one that was suggested by Uszkoreit (1987) within the framework of GPSG: one could allow for two linearization variants of finite verbs. So in addition to the ini— variant there could be a ini— variant and this variant would be linearized initially. The LP rule in (6c) is more general than (6b) in that it does not mention the part of speech but instead refers to the function of the constituent. The rule says that a head that has the ini value — has to be linearized to the right of all other elements in the local tree.

This treatment of constraint on linearization has an advantage that was already pointed out by researchers working in GPSG: it captures the generalizations regarding linearization. For instance the order of verbs and their arguments is the same in embedded sentences in German independent of the finiteness of the verb:

- (7) a. dass er dem Mann das Buch gab that he the man the book gave 'that he gave the man the book'
 - b. dass er versucht, [dem Mann das Buch zu geben] that he tried the man the book to give 'that he tried to give the man the book'

This is also true for the relative order of dative and accusative object in (7). The constraints regarding linearization hold across rules. By factoring these constraints out, the generalizations can be captured.

3 Flat and binary branching structures

The previous section discussed LP rules and used flat phrase structure rules for illustration. The corresponding flat structures are also used in HPSG. Schema 1 shows a Head-Complement schema that combines a head with all the complements selected via the COMPS-Liste.

Schema 1 (Head-Complement Schema)

head-complement-phrase \Rightarrow

$$\begin{bmatrix} ... | \text{COMPS} & \langle \rangle \\ \text{HEAD-DTR} & \begin{bmatrix} ... | \text{COMPS} \boxed{1} \end{bmatrix} \\ \text{NON-HEAD-DTRS} & \text{synsem2sign}(\boxed{1}) \end{bmatrix}$$

synsem2sign is a relational constraint mapping *synsem* objects as they are contained in the COMPS-Liste onto objects of type *sign* as they are contained in daughters (Pollard & Sag 1994). ¹ How this schema can be used to analyze VPs like the one in (8) is shown in Figure 1.

(8) Kim gave Sandy a book.

Researchers working on English usually assume a flat structure but assuming binary branching structures would be possible as well, as is clear from analyses in Categorial Grammar, where binary combinatory rules are assumed (Ajdukiewicz 1935; Steedman 2000). For languages like German it is usually assumed that structures are binary branching (but see Reape (1994: 156) and Bouma & van Noord

page

¹In Sign-Based Construction Grammar the objects in valence lists are of the same type as the daughters. A relational constraint would not be needed in this variant of the HPSG theory.

Figure 1: Analysis of the VP gave Sandy a book with a flat structure

(1998: 51)). The reason for this is that adverbials can be placed anywhere between the arguments as the following example from Uszkoreit (1987: 145) shows:

(9) Gestern hatte in der Mittagspause der Vorarbeiter in der yesterday had during the lunch.break the foreman in the Werkzeugkammer dem Lehrling aus Boshaftigkeit langsam zehn tool.shop the apprentice maliciously slowly ten schmierige Gußeisenscheiben unbemerkt in die Hosentasche gesteckt. greasy cast.iron.disks unnoticed in the pocket put 'Yesterday during lunch break, the foreman maliciously and unnoticed, put ten greasy cast iron disks slowly into the apprentice's pocket.'

A straightforward analysis of adjunct placement in German and Dutch is to assume that adjuncts can attach to any verbal projection.

Binary branching structures with attachment of adjuncts to any verbal projection also accounts for recursion and hence the fact that arbitrarily many adjuncts can attach to a verbal projection. Of course it is possible to formulate analyses with flat structures that involve arbitrarily many adjuncts (Kasper 1994; van Noord & Bouma 1994; Bouma et al. 2001), but these analyses involve relational constraints in schemata or in lexical items. In Kasper's analysis the relational constraints walk through lists of daughters of unbounded length in order to compute the semantics. In the other two analyses adjuncts are treated as valents, which may be problematic because of scope issues. This cannot be dealt with in detail here but see Levine & Hukari (2006) and Chaves (2009) for discussion.

The following schema licenses binary branching head-complement phrases:

Schema 2 (Head-Complement Schema (binary branching))

head-complement-phrase \Rightarrow

$$\begin{bmatrix} \text{comps} & \mathbb{1} \oplus \mathbb{2} \\ \text{head-dtr} & \begin{bmatrix} \text{comps} & \mathbb{1} \oplus \langle & \mathbb{3} & \rangle \oplus \mathbb{2} \end{bmatrix} \end{bmatrix}$$
$$\text{non-head-dtrs} & \left(\begin{bmatrix} \text{synsem} & \mathbb{3} \end{bmatrix} \right)$$

 \oplus (append) is a relational constraint that concatenates two lists. The comps-Liste of the head daughter is split into three lists: a beginning (1), a list containing 3 and a rest (2). 3 is identified with the synsem value of the non-head daughter. All other elements of the comps-Liste of the head daughter are concatenated and the result of this concatenation (1 \oplus 2) is the comps-Liste of the mother node. This schema is very general. It works for languages that allow for scrambling since it allows to take an arbitrary element out of the comps-Liste of the head daughter and realize it in a local tree. The schema can also be "parametrized" to account for languages with fixed word order. For head final languages with fixed order 2 would be the empty list and for head-initial languages with fixed order (e.g., English) 1 would be the empty list.

The alternative to using relational constraints as in Schema 2 is to use sets rather than lists for the representation of valence information (Gunji 1986; Hinrichs & Nakazawa 1989; Pollard 1996; Engelkamp, Erbach & Uszkoreit 1992). The Head-Complement Schema would combine the head with one of its complements. Since the elements of a set are not ordered, any complement can be taken and hence all permutations of complements are accounted for.

The disadvantage of set-based approaches is that sets do not impose an order on their members but an order is needed for various subtheories of HPSG (see Chapter 7 on case assignment, and Chapter 20 on Binding Theory). In the approach proposed above and in Müller (2003b; 2015a,b), the valence lists are ordered but the schema allows for combination with any element of the list. For valence representation and the order of elements in valence lists see Chapter 8.

4 Head movement vs. constructional approaches assuming flat structures

The Germanic languages signal the clause type by verb position. All Germanic languages with the exception of English are V2 languages: the finite verb is in second position in declarative main clauses. The same holds for questions with

wh phrases. Yes/no questions are formed by putting the verb in initial position. English is a so-called *residual V2 language*. While declarative clauses are in base order (SVO), questions follow the pattern that is known from other Germanic languages.

(10) What_i did Kim read $_{-i}$?

Analyses assuming flat structures (or flat linearization domains, see Section 5) usually treat alternative orders of verbs in Germanic languages as linearization variants (Reape 1994; Kathol 2001; Müller 1995; 2003b; Bjerre 2006), but this is not necessarily so as Bouma and van Noord's analysis of Dutch clauses show (Bouma & van Noord 1998: 62, 71). The alternative to verb placement as linearization is something that is similar to verb-movement in Government & Binding: a trace takes the position of the verb in its canonical position and the verb is realized in initial or second position. The following subsection deals with such approaches in more detail. Subsection 4.2 deals with a constructional approach.

4.1 Head movement approaches

Borsley (1989) showed that in addition to the analysis of auxiliary inversion in English that was suggested in GPSG (Gazdar et al. 1985) an analysis that is similar to the movement-based analysis in GB is possible in HPSG as well. The technique that is used in the analysis is basically the same that was developed by Gazdar (1981) for the treatment of nonlocal dependencies in GPSG. A trace is assumed and the information about the missing element is passed up the tree until it is bound off at an appropriate place (that is by the fronted verb). The analysis of (11) is shown in Figure 2.

(11) Did Kim get the job?

A special variant of the auxiliary selects a full clause in which an auxiliary is missing. The fact that the auxiliary is missing is represented as the value of DSL. The value of DSL is a *synsem* object, that is something that contains syntactic and semantic information (2 in Figure 2). DSL is a head feature and hence available everywhere along a projection path (see Chapter 1 for the Head Feature Principle). The trace for head movement is rather simple:

check reference to Chapter 1.

(12)
$$\begin{bmatrix} word \\ phon & \langle \rangle \\ synsem|loc \ \boxed{1} \ [cat|head|dsl \ \boxed{1} \end{bmatrix}$$

Figure 2: Analysis of English auxiliary constructions as head-movement following (Borsley 1989)

It states that there is an empty element that has the local requirements that correspond to its DSL value. For cases of verb movement it says: I am a verb that is missing itself. The fronted auxiliary is licensed by a lexical rule that maps a non-fronted auxiliary onto one that selects a complete clause from which the input auxiliary is missing.

Such head-movement analyses are assumed by most researchers working on German (Kiss & Wesche 1991: Section 4.7; Oliva 1992; Netter 1992; Kiss 1993; Frank 1994; Kiss 1995; Feldhaus 1997, Meurers 2000; Müller 2005a; 2017) and also by (Bouma & van Noord 1998: 62, 71) in their work on Dutch, by Müller & Ørsnes (2015) in their grammar of Danish and by Müller (2018) for Germanic in general.

4.2 Constructional approaches

The alternative to head-movement-based approaches is a flat analysis with an alternative serialization of the verb. This was already discussed with respect to German, but I want to discuss English auxiliary constructions here, since the figured prominently in linguistic discussions. In the analysis of (13) shown in

Figure 3, the auxiliary *did* selects for the subject *Kim* and a VP *get the job*.

(13) Did Kim get the job?

Figure 3: Analysis of English auxiliary constructions according to (Sag et al. 2018)

The tree in Figure 3 is licensed by a schema combining a head with its subject (1) and its VP complement (2) in one go. As is common in HPSG since 1995 (Sag 1997) phrasal schemata are organized in type hierarchies and the general schema for auxiliary initial constructions has the type *aux-initial-cxt*. Fillmore (1999) and Sag et al. (2018) argue that there are various usages of auxiliary-initial constructions and assign the respective usages to subconstructions of the general auxiliary-initial construction. Technically this amounts to stating subtypes of *aux-initial-cxt*. For example, Sag et al. (2018) posit a subtype *polar-int-cl* for polar interrogatives like (14a) and another subtype *auxinitial-excl-cl* for exclamatives like (14b).

(14) a. Are they crazy?

b. Are they crazy!

Chomsky (2010) compared the various clause types used in HPSG with the – according to him – much simpler Merge-based analysis in Minimalism. Minimalism assumes just one very general schema for combination (External Merge is basically equivalent to our Schema 2 above, see Müller (2013)), so this rule for combining linguistic objects is very simple, but this does not help in any way when considering the facts: there are at least three different meanings associated with auxiliary initial clauses and these have to be captured somewhere in a grammar. One way is to state them in a type hierarchy as is done in some HPSG analyses and in SBCG, another way is to use implicational constraints that assign meaning with respect to actual configurations (see Section 4.3) and a third way is to do everything lexically. The only option for Minimalism is the lexical one. This means that Minimalism has to either assume as many lexical

items for auxiliaries as there are types in HPSG or to assume empty heads that contribute the meaning that is contributed by the phrasal schemata in HPSG (Borsley 2006: Section 5; Borsley & Müller 2018). The latter proposal is generally assumed in Cartographic approaches (Rizzi 1997). Since there is a fixed configuration of functional projections that contribute semantics, one could term these Rizzi-style analyses *Crypto-Constructional*.

4.3 Mixed approaches

The situation with respect to clause types is similar in German. Verb first sentences can be yes/no questions (15a), imperatives (15b), conditional clauses (15c), and declarative sentences with topic drop (15d).

- (15) a. Kommt Peter? (German) comes Peter

 'Does Peter come?'
 - b. Komm!
 - Kommt Peter, komme ich nicht.
 comes Peter come I not
 'If Peter comes. I won't come.'
 - d. Kommt. (Was ist mit Peter?)comes what is with Peter'What about Peter?' 'He comes.'

Verb second sentences can be questions (16a), declarative sentences (16b), or imperatives (16c).

- (16) a. Wer kommt? who comes
 - b. Peter kommt. (German)
 Peter comes
 - c. Jetzt komm! now come 'Come now!'

While one could try and capture this situation by assuming surface order-related clause types, such approaches are rarely assumed (but see Kathol (2001) and Wetta (2011). See Section 5.4.2 on why such approaches are doomed to failure).

Rather researchers assumed binary branching head-complement structures together with verb movement (I assumed linearization domains (see Section 5) for ten years and then switched to the head-movement approach (Müller 2005a,b; 2017)).

As was explained above, the head movement approaches are based on lexical rules or unary projections. These license new linguistic objects that could contribute the respective semantics. As Borsley (2006) pointed out, this would mean that one needs seven versions of fronted verbs to handle the seven cases in (15 and (16), which would correspond to the seven phrasal types that would have to be stipulated in phrasal approaches. But there is a way out of this: one can assume one lexical item with underspecified semantics. HPSG makes it possible to use implicational constraints referring to a structure in which an item occurs. Depending on the context the semantics contributed by a specific item can be further specified. Figure 4 shows the construction-based and the lexical rule-based analysis for comparison. In the construction-based analysis the daughters

Figure 4: Construction-based, phrasal approach and approach with implicational constraint

contribute x and y as semantic values and the whole construction adds the construction meaning f. In the lexical rule- or unary projection-based analysis, the lexical rule/unary projection adds the f and the output of the rule is combined compositionally with the other daughter. Now, implicational constraints can be used to determine the exact contribution of the lexical item (Müller 2016). This is shown with the example of a question in Figure 5. The implication says: when the configuration has the form that there is a question pronoun in the left daughter, the output of the lexical rule gets question semantics. Since HPSG represents all linguistic information in the same AVM, such implicational constraints can refer to intonation as well.

Note that in Constructional HPSG as layed out by Sag (1997) implicational

Figure 5: Implication for interrogative sentences

constraints can refer to the structure of a complete utterance. Hence items with a complex internal structure can be seen as contributing a certain meaning. This is ruled out by design in Sign-Based Construction Grammar, where linguistic objects of type *phrase* do not have daughters.

5 Constituent order domains

There is an interesting extension to standard HPSG that opens up possibilities for analyses that are quite different from what is done otherwise in theoretical linguistics: Mike Reape (1991; 1992; 1994) working on German suggested formal tools that allow for the modeling of discontinuous constituents. His original motivation was to account for scrambling of arguments in verbal complexes but this analysis was superseeded by Hinrichs and Nakazawa's analysis (Hinrichs & Nakazawa 1989; 1994) since pureley linearization-based approaches are unable to account for agreement and the so-called remote passive (Kathol 1998: Section 5.1, Section 5.2; Müller 1999: Chapter 21.1). Nevertheless, his work was taken up by others and was used for analyzing German (Kathol & Pollard 1995; Kathol 2000; Müller 1995; 1996; 2004; Wetta 2011; Wetta 2014). As will be discussed below, there were reasons for dropping analyses of German assuming discontinuous constituents (Müller 2005b; 2017) but constituent order domains still play a major role in analyzing ellipsis (Chapter 19) and coordination (Chapter 16).

5.1 A special representational layer for constituent order

The technique that is used to model discontinuous constituents in frameworks like HPSG goes back to Mike Reape's work on German (1991; 1992; 1994). Reape uses a list called domain to represent the daughters of a sign in the order in which they appear at the surface of an utterance. (17) shows an example in which the dom value of a headed-phrase is computed from the dom value of the head and the list of non-head daughters.

(17)
$$headed\text{-}phrase \Rightarrow \begin{bmatrix} \text{HEAD-DTR}|\text{DOM} & \boxed{1} \\ \text{NON-HEAD-DTRS} & \boxed{2} \\ \text{DOM} & \boxed{1} \bigcirc \boxed{2} \end{bmatrix}$$

The symbol 'O' stands for the *shuffle* relation. *shuffle* relates three lists A, B and C iff C contains all elements from A and B and the order of the elements in A and the order of the elements of B is preserved in C. (18) shows the combination of two sets with two elements each:

(18)
$$\langle a, b \rangle \bigcirc \langle c, d \rangle = \langle a, b, c, d \rangle \lor \langle a, c, b, d \rangle \lor \langle a, c, d, b \rangle \lor \langle c, a, b, d \rangle \lor \langle c, a, d, b \rangle \lor \langle c, d, a, b \rangle$$

The result is a disjunction of six lists. a is ordered before b and c before d in all of these lists, since this is also the case in the two lists $\langle a, b \rangle$ and $\langle c, d \rangle$ that have been combined. But apart from this, b can be placed before, between or after c and d.

Every word comes with a domain value that is a list that contains the word itself:

(19) Domain contribution of single words, here gibt 'gives':

$$\begin{bmatrix}
PHON & \langle gibt \rangle \\
SYNSEM & \dots \\
DOM & \langle I \rangle
\end{bmatrix}$$

The description in (19) may seem strange at first glance, since it is cyclic, but it can be understood as a statement saying that *gibt* contributes itself to the items that occur in linearization domains.

The constraint in (20) is responsible for the determination of the PHON values of phrases:

(20)
$$phrase \Rightarrow \begin{bmatrix} PHON & \boxed{1} \oplus ... \oplus \boxed{n} \\ DOM & \begin{bmatrix} sign \\ PHON & \boxed{1} \end{bmatrix}, ..., \begin{bmatrix} sign \\ PHON & \boxed{n} \end{bmatrix} \end{bmatrix}$$

It states that the PHON value of a sign is the concatenation of the PHON values of its domain elements. Since the order of the domain elements corresponds to their surface order, this is the obvious way to determine the PHON value of the whole linguistic object.

Figure 6 shows how this machinery can be used to license binary branching structures with discontinuous constituents. Words or word sequences that are

Figure 6: Analysis of *dass der Frau ein Mann das Buch gibt* 'that a man gives the woman the book' with binary branching structures and discontinuous constituents

separated by commas stand for separate domain objects, that is, $\langle das, Buch \rangle$ contains the two objects das and Buch and $\langle das Buch, gibt \rangle$ contains the two objects das Buch and gibt. The important point to note here is that the arguments are combined with the head in the order accusative, dative, nominative, although the elements in the constituent order domain are realized in the order dative, nominative, accusative rather than nominative, dative, accusative, as one would expect. This is possible since the formulation of the computation of the DOM value using the shuffle operator allows for discontinuous constituents. The node for der Frau das Buch gibt 'the woman the book gives' is discontinuous: ein Mann 'a man' is inserted into the domain between der Frau 'the woman' and das Buch 'the book'. This is more obvious in Figure 7, which has a serialization of NPs that corresponds to their order.

5.2 Absolutely free

While German is more exciting than English in terms of constituent order it is still boring in comparison to languages like Warlpiri which have much freer con-

Figure 7: Analysis of *dass der Frau ein Mann das Buch gibt* 'that a man gives the woman the book' with binary branching structures and discontinuous constituents showing the discontinuity

stituent order. In Warlpiri the auxiliary has to be in first or in second position (Donohue & Sag 1999: 8) and apart from this even parts of what are noun phrases in German and English can appear separated from each other. For example, the two parts of the NP *Kurdu-jarra-rlu wita-jarra-rlu* 'child small' may appear discontinuously since they are marked with the same case:

(21) Kurdu-jarra-rlu ka-pala maliki wajili-pi-nyi wita-jarra-rlu. child-du-erg prs-3du.subj dog.abs chase-npast small-du-erg (Warlpiri)

'Two small children are chasing the dog.' or

'Two children are chasing the dog and they are small.'

Donohue & Sag (1999) developed an analysis for this that simply liberates domain elements and inserts them into the next higher domain. (22) shows how this is formalized:

Mistake in glossing.
Should pi-nyi be pi.nyi?

(22)
$$liberating-phrase \Rightarrow$$

$$\begin{bmatrix}
DOM & \delta_0 \bigcirc \delta_1 \bigcirc \ldots \bigcirc \delta_n \\
HEAD-DTR & \left[DOM \ \delta_0\right] \\
NON-HEAD-DTRS & \left(\left[DOM \ \delta_1\right], \ldots, \left[DOM \ \delta_n\right]\right)
\end{bmatrix}$$

Rather than inserting the complete daughters into the domain of the mother as in (17), the DOM values of the daughters are shuffled into the domain of the

mothers. So instead of having the NPs in the same domain as the verb as in the German example in the previous section one has all the parts of NPs in the next higher domain. Hence, a single nominal element being placed in front of the auxiliary in second position is explained without problems. Figure 8 shows the analysis of Donohue & Sag (1999). *child* and *small* form an NP. They contribute

Figure 8: Analysis of free constituent order in Warlpiri according to Donohue & Sag (1999)

two independent domain objects ($\boxed{1}$ and $\boxed{3}$) to the domain of the mother. The second element in this domain has to be the auxiliary ($\boxed{2}$), $\boxed{1}$ is realized initially and $\boxed{3}$ follows the auxiliary.

We have seen so far an analysis that inserts complete objects into the domain of the mother, an analysis that inserts all domain objects of objects into the domain of the mother and in the next subsection I want to look at an intermediate case, so-called *partial compaction*.

5.3 Partial compaction (extraposition)

Kathol & Pollard (1995) developed an analysis of extraposition that is a mix of the strategies discussed in the two subsections: most of one NP object is inserted into the domain of the mother as a single object, only those parts that are extraposed are liberated and inserted as individual domain objects into the domain of the mother. Kathol & Pollard's analysis of (23) is given in Figure 9.

$$\begin{bmatrix} \text{VP} \\ \text{DOM} & \boxed{5} \left(\boxed{2} \begin{bmatrix} \text{NP} \\ \text{einen } \text{Hund} \end{bmatrix}, \begin{bmatrix} \text{V} \\ \text{füttern} \end{bmatrix}, \boxed{3} \begin{bmatrix} \text{REL-S} \\ \text{EXTRA} + \\ \text{der } \text{Hunger } \text{hat} \end{bmatrix} \right) \end{bmatrix}$$

$$\begin{bmatrix} \text{NP} \\ \text{DOM} & \left(\begin{bmatrix} \text{DET} \\ \text{einen} \end{bmatrix}, \begin{bmatrix} \text{N} \\ \text{Hund} \end{bmatrix}, \boxed{3} \begin{bmatrix} \text{REL-S} \\ \text{EXTRA} + \\ \text{der } \text{Hunger } \text{hat} \end{bmatrix} \right) \end{bmatrix}$$

$$\begin{bmatrix} \text{DET} \\ \text{einen} \end{bmatrix} & \begin{bmatrix} \overline{\text{N}} \\ \text{DOM} & \left(\begin{bmatrix} \text{N} \\ \text{Hund} \end{bmatrix}, \boxed{3} \begin{bmatrix} \text{REL-S} \\ \text{EXTRA} + \\ \text{der } \text{Hunger } \text{hat} \end{bmatrix} \right) \end{bmatrix}$$

$$\begin{bmatrix} \text{N} \\ \text{Hund} \end{bmatrix} & \begin{bmatrix} \text{REL-S} \\ \text{EXTRA} + \\ \text{der } \text{Hunger } \text{hat} \end{bmatrix}$$

Figure 9: Analysis of extraposition via partial compaction of domain objects according to Kathol & Pollard (1995)

p-compaction($\boxed{1}$, $\boxed{2}$, $\langle \boxed{3} \rangle$) $\boxed{5} = \langle \boxed{2} \rangle \bigcirc \langle \boxed{3} \rangle \bigcirc \boxed{4}$ einen Hund, der Hunger hat 'a dog who is hungry' consists of three domain objects: einen 'a', Hund 'dog', and der Hunger hat 'who hungry is'. The two initial ones are inserted as one object (the NP ein Hund 'a dog') into the higher domain and the relative clause is liberated. While the formation of the new domain at the mother node is relatively straight-forward in the cases discussed so far, a complex relational constraint is needed to split the relative clause (3) from the other domain objects and construct a new domain object that has the determiner and the noun as constituents (2). Kathol and Pollard have a relational constraint called compaction that builds new domain objects for insertion into higher domains. partial compaction takes an initial part of a domain and forms a new domain object from this returning the remaining domain objects for separate insertion into the higher domain. Due to space limitations, this constraint will not be discussed here but see Müller (1999: 244) for a refined version of Kathol and Pollard's constraint. The effect of partial compaction in Figure 9 is that there is a new object [2] and a list containing the remaining objects, in the example ([3]). A list containing the new object ([2]), a list containing the remaining objects ([3]) are shuffled with the domain list of the head [4]. Since the relative clause is in the same domain as the verb, it can be serialized to the right of the verb.

5.4 Problems with order domains

Constituent order domains may seem rather straight-forward since linearization facts can be handled easily. I assumed constituent order domains and discontinuous constituents for German myself for over a decade (Müller 1995; 2004). However, there are some problems that seem to suggest that a traditional GB-like head-movement approach is the better alternative. In what follows I want to discuss just two problematic aspects of linearization approaches: spurious ambiguities and apparently multiple frontings.

5.4.1 Partial fronting and spurious ambiguities

Kathol (2000) suggests an analysis with binary branching structures in which all arguments are inserted into a linearization domain and can be serialized there in any order provided no LP rule is violated. Normally one would have the elements of the comps-Liste in a fixed order, combine the head with one element from the comps-Liste after the other, and let the freedom in the Dom-Liste be responsible for the various attested orders. So both sentences in (24) would have analyses in which the verb <code>erzählt</code> 'tells' is combined with <code>Geschichten</code> 'stories' first and then <code>Geschichten erzählt</code> 'stories tells' is combined with <code>den Wählern</code> 'the voters'.

Since the verb and all its arguments are in the same linearization domain they can be ordered in any order including the two orders in (24):

- (24) a. weil er den Wählern Geschichten erzählt (German) because he the voters stories tells 'because he tells the voters stories'
 - b. weil er Geschichten den Wählern erzählt because he stories the voters tells

The problem with this approach is that examples like (25) show that grammars have to account for combinations of any of the objects to the exclusion of the other:

- (25) a. Geschichten erzählen sollte man den Wählern nicht. (German) stories tell should one the voters not 'One should not tell the voters such stories.'
 - b. Den Wählern erzählen sollte man diese Geschichten nicht. the voters tell should one these stories not

Kathol (2000: Section 8.9) accounts for examples like (25) by relaxing the order of the objects in the valence list. He uses the shuffle operator in the valence representation:

(26)
$$\langle NP[nom] \rangle \oplus (\langle NP[dat] \rangle \bigcirc \langle NP[acc] \rangle)$$

This solves the problem with examples like (25) but it introduces a new one: sentences like (24) now have two analyses each. One is the analysis we had before and another one is the one in which *den Wählern* 'the voters' is combined with *erzählt* 'tells' first and the result is then combined with *Geschichten* 'stories'. Since both objects are inserted into the same linearization domain, both orders can be derived. So we have too much freedom: freedom in linearization and freedom in the order of combination. The proposal that I suggested has just the freedom in the order of combination and hence can account for both (24) and (25) without spurious ambiguities.

5.4.2 Surface order, clause types, fields within fields, and empty elements

Kathol (2001) develops an analysis of German that uses constituent order domains and determines the clause types on the basis of the order of elements in such domains. He suggests the topological fields 1, 2, 3, and 4, which correspond to the traditional topological fields *Vorfeld* 'prefield', *linke Satzklammer*

'left sentence bracket', *Mittelfeld* 'middle field', *rechte Satzklammer* 'right sentence bracket'. Domain objects may assigned to these fields and they are then ordered by linearization constraints stating that objects assigned to 1 have to precede objects of type 2, type 3, and type 4. Objects of type 2 have to precede type 3, and type 4 and so on. For the Vorfeld and the left sentence he stipulates uniqueness constraints saying that at most one constituent may be of this type. This can be stated in a nice way by using the linearization constraints in (27):

(27) a.
$$1 < 1$$

b. $2 < 2$

This trick was first suggested by Gazdar et al. (1985: 55, Fn. 3) in the framework of GPSG and it works since if there were two objects of type 1 than each one would be required to precede the other one resulting in a violation of the linearization constraint. So in order to avoid such constraint violation there must not be more than one 1.

Kathol (2001) assumes the following definition for V2 clauses:

(28)
$$V2\text{-}clause \Rightarrow \begin{bmatrix} S[fin] \\ DOM & \left\langle [1], \begin{bmatrix} 2 \\ V[fin] \end{bmatrix}, \ldots \right\rangle \end{bmatrix}$$

This says that the constituent order domain starts with one element assigned to field 1 followed by another domain object assigned to field 2. While this is in accordance with general wisdom about German, which is a V2 language, there are problems for entirely surface-based theories: German allows for multiple constituents in front of the finite verb. (29) shows some examples:

- (29) a. [Zum zweiten Mal] [die Weltmeisterschaft] errang Clark 1965 ... ² to.the second time the world.championship won Clark 1965 'Clark won the world championship for the second time in 1965.'
 - b. [Dem Saft] [eine kräftige Farbe] geben Blutorangen.³ the.DAT juice a.ACC strong color give blood.oranges 'Blood oranges give the juice a strong color.'

²(Beneš 1971: 162)

³Bildhauer & Cook (2010) found this example in the *Deutsches Referenzkorpus* (DeReKo), hosted at Institut für Deutsche Sprache, Mannheim: http://www.ids-mannheim.de/kl/projekte/korpora

Müller (2003a) extensively documents this phenomenon. The categories that can appear before the finite verb are almost unrestricted. Even subjects can be fronted together with other material (Bildhauer & Cook 2010: 72; Bildhauer 2011: 371). The empirical side of these apparent multiple frontings was further examined in the Collective Research Center 632, Project A6 and the claim that only constituents depending on the same verb can be fronted together (Fanselow 1993; Hoberg 1997: 1634) was confirmed (Müller 2017: Chapter 3). A further insight is that the linearization properties of the fronted material (NPs, PPs, adverbs, adjectives) correspond to the linearization properties they would have in the Mittelfeld. The example in (30) are even more interesting. It shows that there can be a right sentence bracket (the particle *los*) and an extraposed constituent (something following the particle: *damit*) before the finite verb (*geht* 'goes'):

(30) Los damit geht es schon am 15. April.⁴ off there with goes it PRT on 15. April 4 5 2 3 3 3 'The whole thing starts on the 15th April.'

In Kathol's system, *los* would be of type 4 and *damit* would have to be of type 5 (an additional type for extraposed items). Without any modification of the general system, we would get a 4 and a 5 ordered before a 2 (a right sentence bracket and a postfield preceding the left sentence bracket), something that is ruled out by Kathol's linearization constraints.

Müller (2002), still working in a domain-based framework, developed an analysis assuming an empty verbal head to explain the fact that the fronted constituents have to depend on the same verb and that there is a separate topological area that is independent of the remaining clause. So, *los* and *damit* are domain objects within a larger domain object placed in the prefield. Wetta (2011) suggests an analysis in which two or more constituents are compacted into one domain object, so *los* and *damit* would form one object that is inserted into the domain containing the finite verb. However, this begs the question what kind of object it is that is formed. Section 5.3 dealt with partial compaction of NPs. Some of the elements from an NP domain were liberated and other elements were fused into a new object that had the same category as the object containing all material, namely NP. But the situation with examples like (29) and (30) is quite different. We have a particle and a pronominal adverb in (30) and various other combinations of categories in the examples collected by Müller (2003a) and Bildhauer (2011). It would not make sense to claim that the fronted object is a particle or a

⁴taz, 01.03.2002, p. 8.

pronominal adverb. Note that it is neither an option to leave the category of the fronted object unspecified since HPSG comes with the assumption that models of linguistic objects are total, that is, maximally specific (King 1999, see also Chapter 3). Leaving the category and valence properties of the item in the prefield unspecified would make such sentences infinitely many times ambiguous. Of course Wetta could state that the newly created object is a verbal projection but this would just be stating the effect of the empty verbal head within a relational constraint, which I consider less principled than stating the empty element.

However, the empty verbal head that I stated as part of a linearization grammar in 2002 comes as a stipulation since its only purpose in the grammar of German was to account for apparent multiple frontings. Müller (2005b; 2017) drops the linearization approach and assumes head-movement instead. The empty head that is used for accounting for the verb position in German can also be used to account for apparent multiple frontings. The analysis is sketched in (31):

(31) [VP [Zum zweiten Mal] [die Weltmeisterschaft]
$$_{\rm UV}$$
] $_i$ errang $_j$ Clark to the second time the world championship won Clark 1965 $_{-i}$ $_{-j}$.

The details cannot be explained here but the analysis treats apparent multiple frontings parallel to partial verb phrase frontings. A lexical rule is used for multiple frontings which is a special case of the head-movement rule that was discussed in Section 4. So apparent multiple frontings are analyzed with means that are available to the grammar anyway. This analysis allows to keep the insight that German is a V2 language and it also gets the same-clause constraint and the linearization of elements right. See Müller (2005a,b; 2017) for details.

The paper so far discussed the tools that have been suggested in HPSG to account for constituent order: flat vs. binary branching structures, linearization domains, head-movement via DSL. I showed that analyses of German relying on discontinuous constituents and constituent order domains are not without problems and that head-movement approaches with binary branching and continuous constituents can account for the data. I also demonstrated in Section 5.2 that languages like Warlpiri that allow for much freer constituent order than German can be accounted for in models allowing for discontinuous constituents. The following section discusses a proposal by Bender (2008) showing that even languages like the Australian free constituent order languages can be handled without discontinuous constituents.

6 Free constituent order languages without order domains

Bender (2008) discusses the Australian language Wambaya and shows how phenomena parallel to those treated by Donohue & Sag (1999) can be handled without discontinuous constituents. The trick is that all arguments of a head are projected to higher nodes even when they are combined with the head, that is, arguments are not canceled off from valence lists. See also Meurers (1999); Przepiórkowski (1999) and Müller (2008) for earlier non-cancellation approaches. The example (21) from Section 5.2 can be recast with continuous constituents as is shown in Figure 10. The figure shows that arguments are not removed from the

Figure 10: Analysis of free constituent order in Warlpiri using noncancellation

valence representation after combination with the head. Rather they are marked as satisfied. Since they are still in the representation, schemata may refer to them. Bender suggests a schema that identifies the MOD value of an element that could function as an adjunct in a normal head-adjunct structure with an element in the valence representation. In Figure 10 the MOD value of the second ergative nominal wita-jarra-rlu 'small' is identified with an argument of the auxiliary verb (1). The adjunct hence has access to the referential index of the argument and it is therefore guaranteed that both parts of the noun phrase refer to the same discourse referent. The NP for kurdu-jarra-rlu is combined with the projection of the auxiliary to yield a complete sentence. Since 1 not just contains the semantic

index and hence information about number (the dual) but also case information, it is ensured that distributed noun phrases have to bear the same case. Since information about all arguments are projected along the head path, ② would also be available for an adjunct referring to it. So in the place of *wita-jarra-rlu* 'small-DU-ERG' we could also have another adjunct referring to *maliki* 'dog.ABS'. This shows that even languages with constituent order as free as the Australian languages can be handled within HPSG without assuming discontinuous constituents.

7 Summary

This paper discussed general approaches to constituent order in HPSG. On the one hand there are approaches assuming flat constituent structure allowing permutation of daughters as long as no LP constraints are violated and on the other hand, there are approaches assuming binary branching structures. Approaches that assume flat structures can serialize the head to the left or to the right or somewhere between other daughters in the structure. Approaches assuming binary branching have to use other means. One such means is "head movement", which is analyzed as a series of local dependencies by passing information about the missing head up along the head path. The alternative to head movement is linearization of elements in special linearization domains, allowing for discontinuous constituents. I showed that there are reasons for assuming head-movement for German and how even languages with extremely free constituent order can be analyzed without assuming discontinuous constituents.

Acknowledgements

I thank Bob Borsley for comments.

References

Ajdukiewicz, Kazimierz. 1935. Die syntaktische Konnexität. *Studia Philosophica* 1. 1–27.

Bach, Emmon. 1962. The order of elements in a Transformational Grammar of German. *Language* 8(3). 263–269.

- Bender, Emily M. 2008. Radical non-configurationality without shuffle operators: An analysis of Wambaya. In Stefan Müller (ed.), *Proceedings of the 15th International Conference on Head-Driven Phrase Structure Grammar*, 6–24. Stanford, CA: CSLI Publications. http://csli-publications.stanford.edu/HPSG/2008/, accessed 2018-2-25.
- Beneš, Eduard. 1971. Die Besetzung der ersten Position im deutschen Aussagesatz. In Hugo Moser (ed.), *Fragen der strukturellen Syntax und der kontrastiven Grammatik* (Sprache der Gegenwart Schriften des IdS Mannheim 17), 160–182. Düsseldorf: Pädagogischer Verlag Schwann.
- Bierwisch, Manfred. 1963. *Grammatik des deutschen Verbs* (studia grammatica 2). Berlin: Akademie Verlag.
- Bildhauer, Felix. 2011. Mehrfache Vorfeldbesetzung und Informationsstruktur: Eine Bestandsaufnahme. *Deutsche Sprache* 39(4). 362–379.
- Bildhauer, Felix & Philippa Cook. 2010. German multiple fronting and expected topic-hood. In Stefan Müller (ed.), *Proceedings of the 17th International Conference on Head-Driven Phrase Structure Grammar, Université Paris Diderot*, 68–79. Stanford, CA: CSLI Publications. http://csli-publications.stanford.edu/HPSG/2010/, accessed 2018-2-25.
- Bjerre, Tavs. 2006. *Object positions in a topological sentence model for Danish: A linearization-based HPSG approach.* http://www.hum.au.dk/engelsk/engsv/objectpositions/workshop/Bjerre.pdf, accessed 2018-2-25. Presentation at Ph.D.-Course at Sandbjerg, Denmark.
- Borsley, Robert D. 1989. Phrase-Structure Grammar and the Barriers conception of clause structure. *Linguistics* 27(5). 843–863.
- Borsley, Robert D. 2006. Syntactic and lexical approaches to unbounded dependencies. Essex Research Reports in Linguistics 49. University of Essex. 31–57. http://core.ac.uk/download/pdf/4187949.pdf#page=35, accessed 2018-2-25.
- Borsley, Robert D. & Stefan Müller. 2018. Minimalism. In Anne Abeillé, Robert D. Borsley, Jean-Pierre Koenig & Stefan Müller (eds.), *Head-Driven Phrase Structure Grammar: The handbook* (Empirically Oriented Theoretical Morphology and Syntax). Berlin: Language Science Press. To appear.
- Bouma, Gosse, Robert Malouf & Ivan A. Sag. 2001. Satisfying constraints on extraction and adjunction. *Natural Language and Linguistic Theory* 19(1). 1–65.
- Bouma, Gosse & Gertjan van Noord. 1998. Word order constraints on verb clusters in German and Dutch. In Erhard W. Hinrichs, Andreas Kathol & Tsuneko Nakazawa (eds.), *Complex predicates in nonderivational syntax* (Syntax and Semantics 30), 43–72. San Diego: Academic Press. http://www.let.rug.nl/~vannoord/papers/, accessed 2018-2-25.

- Chaves, Rui P. 2009. Construction-based cumulation and adjunct extraction. In Stefan Müller (ed.), *Proceedings of the 16th International Conference on Head-Driven Phrase Structure Grammar, University of Göttingen, Germany*, 47–67. Stanford, CA: CSLI Publications. http://csli-publications.stanford.edu/HPSG/2009/, accessed 2018-2-25.
- Chomsky, Noam. 2010. *Restricting stipulations: consequences and challenges.* Talk given in Stuttgart.
- Donohue, Cathryn & Ivan A. Sag. 1999. Domains in Warlpiri. In *Sixth International Conference on HPSG–Abstracts*. 04–06 August 1999, 101–106. Edinburgh.
- Engelkamp, Judith, Gregor Erbach & Hans Uszkoreit. 1992. Handling linear precedence constraints by unification. In Henry S. Thomson (ed.), 30th Annual Meeting of the Association for Computational Linguistics. Proceedings of the conference, 201–208. Newark, DE: Association for Computational Linguistics. auch als CLAUS-Report, Nr. 19, Universität des Saarlandes erschienen.
- Fanselow, Gisbert. 1993. Die Rückkehr der Basisgenerierer. *Groninger Arbeiten zur Germanistischen Linguistik* 36. 1–74.
- Feldhaus, Anke. 1997. Eine HPSG-Analyse ausgewählter Phänomene des deutschen w-Fragesatzes. Working Papers of the Institute for Logic and Linguistics 27. IBM Scientific Center Heidelberg: Institute for Logic & Linguistics.
- Fillmore, Charles J. 1999. Inversion and Constructional inheritance. In Gert Webelhuth, Jean-Pierre Koenig & Andreas Kathol (eds.), *Lexical and Constructional aspects of linguistic explanation* (Studies in Constraint-Based Lexicalism 1), 113–128. Stanford, CA: CSLI Publications.
- Frank, Anette. 1994. *Verb second by lexical rule or by underspecification*. Arbeitspapiere des SFB 340 No. 43. Heidelberg: IBM Deutschland GmbH. ftp://ftp.ims.uni-stuttgart.de/pub/papers/anette/v2-usp.ps.gz, accessed 2018-3-20.
- Gazdar, Gerald. 1981. Unbounded dependencies and coordinate structure. *Linguistic Inquiry* 12. 155–184.
- Gazdar, Gerald, Ewan Klein, Geoffrey K. Pullum & Ivan A. Sag. 1985. *Generalized Phrase Structure Grammar*. Cambridge, MA: Harvard University Press.
- Gunji, Takao. 1986. Subcategorization and word order. In William J. Poser (ed.), *Papers from the Second International Workshop on Japanese Syntax*, 1–21. Stanford, CA: CSLI Publications.
- Hinrichs, Erhard W. & Tsuneko Nakazawa. 1989. Subcategorization and VP structure in German. In *Aspects of German VP structure* (SfS-Report-01-93). Tübingen: Eberhard-Karls-Universität Tübingen.
- Hinrichs, Erhard W. & Tsuneko Nakazawa. 1994. Linearizing AUXs in German verbal complexes. In John Nerbonne, Klaus Netter & Carl J. Pollard (eds.), *Ger*-

- *man in Head-Driven Phrase Structure Grammar* (CSLI Lecture Notes 46), 11–38. Stanford, CA: CSLI Publications.
- Hoberg, Ursula. 1997. Die Linearstruktur des Satzes. In Hans-Werner Eroms, Gerhard Stickel & Gisela Zifonun (eds.), *Grammatik der deutschen Sprache*, vol. 7.2 (Schriften des Instituts für deutsche Sprache), 1495–1680. Berlin: Walter de Gruyter.
- Höhle, Tilman N. 1982. Explikationen für "normale Betonung" und "normale Wortstellung". In Werner Abraham (ed.), *Satzglieder im Deutschen Vorschläge zur syntaktischen, semantischen und pragmatischen Fundierung* (Studien zur deutschen Grammatik 15), 75–153. Tübingen: originally Gunter Narr Verlag now Stauffenburg Verlag. Republished as Höhle (2018).
- Höhle, Tilman N. 2018. Explikationen für "normale Betonung" und "normale Wortstellung". In Stefan Müller, Marga Reis & Frank Richter (eds.), *Beiträge zur Grammatik des Deutschen: Gesammelte Schriften von Tilman N. Höhle* (Classics in Linguistics 5). Berlin: Language Science Press. DOI:10.5281/zenodo.1145680
- Kasper, Robert T. 1994. Adjuncts in the Mittelfeld. In John Nerbonne, Klaus Netter & Carl J. Pollard (eds.), *German in Head-Driven Phrase Structure Grammar* (CSLI Lecture Notes 46), 39–70. Stanford, CA: CSLI Publications.
- Kathol, Andreas. 1998. Constituency and linearization of verbal complexes. In Erhard W. Hinrichs, Andreas Kathol & Tsuneko Nakazawa (eds.), *Complex predicates in nonderivational syntax* (Syntax and Semantics 30), 221–270. San Diego: Academic Press.
- Kathol, Andreas. 2000. *Linear syntax*. New York, Oxford: Oxford University Press.
- Kathol, Andreas. 2001. Positional effects in a monostratal grammar of German. *Journal of Linguistics* 37(1). 35–66.
- Kathol, Andreas & Carl J. Pollard. 1995. Extraposition via complex domain formation. In Hans Uszkoreit (ed.), 33rd Annual Meeting of the Association for Computational Linguistics. Proceedings of the conference, 174–180. Cambridge, MA: Association for Computational Linguistics.
- King, Paul. 1999. Towards truth in Head-Driven Phrase Structure Grammar. In Valia Kordoni (ed.), *Tübingen studies in Head-Driven Phrase Structure Grammar* (Arbeitsberichte des SFB 340 No. 132), 301–352. Tübingen: Universität Tübingen. http://www.sfs.uni-tuebingen.de/sfb/reports/berichte/132/132abs.html, accessed 2018-2-25.
- Kiss, Tibor. 1993. *Infinite Komplementation Neue Studien zum deutschen Verbum infinitum*. Arbeiten des SFB 282 No. 42. Bergische Universität Gesamthochschule Wuppertal.

- Kiss, Tibor. 1995. *Infinite Komplementation: Neue Studien zum deutschen Verbum infinitum* (Linguistische Arbeiten 333). Tübingen: Max Niemeyer Verlag.
- Kiss, Tibor & Birgit Wesche. 1991. Verb order and head movement. In Otthein Herzog & Claus-Rainer Rollinger (eds.), *Text understanding in LILOG* (Lecture Notes in Artificial Intelligence 546), 216–242. Berlin: Springer Verlag.
- Levine, Robert D. & Thomas E. Hukari. 2006. *The unity of unbounded dependency constructions* (CSLI Lecture Notes 166). Stanford, CA: CSLI Publications.
- Meurers, Walt Detmar. 1999. Raising spirits (and assigning them case). *Groninger Arbeiten zur Germanistischen Linguistik (GAGL)* 43. 173–226. http://www.sfs.uni-tuebingen.de/~dm/papers/gagl99.html, accessed 2018-2-25.
- Meurers, Walt Detmar. 2000. *Lexical generalizations in the syntax of German non-finite constructions*. Arbeitspapiere des SFB 340 No. 145. Tübingen: Eberhard-Karls-Universität. http://www.sfs.uni-tuebingen.de/~dm/papers/diss.html, accessed 2018-2-25.
- Müller, Stefan. 1995. Scrambling in German Extraction into the *Mittelfeld*. In Benjamin K. T'sou & Tom Bong Yeung Lai (eds.), *Proceedings of the Tenth Pacific Asia Conference on Language, Information and Computation*, 79–83. City University of Hong Kong.
- Müller, Stefan. 1996. The Babel-System: An HPSG fragment for German, a parser, and a dialogue component. In *Proceedings of the Fourth International Conference on the Practical Application of Prolog*, 263–277. London.
- Müller, Stefan. 1999. Deutsche Syntax deklarativ: Head-Driven Phrase Structure Grammar für das Deutsche (Linguistische Arbeiten 394). Tübingen: Max Niemeyer Verlag.
- Müller, Stefan. 2002. *Complex predicates: Verbal complexes, resultative constructions, and particle verbs in German* (Studies in Constraint-Based Lexicalism 13). Stanford, CA: CSLI Publications.
- Müller, Stefan. 2003a. Mehrfache Vorfeldbesetzung. *Deutsche Sprache* 31(1). 29–62.
- Müller, Stefan. 2003b. Solving the bracketing paradox: An analysis of the morphology of German particle verbs. *Journal of Linguistics* 39(2). 275–325. DOI:10.1017/S0022226703002032
- Müller, Stefan. 2004. Continuous or discontinuous constituents? A comparison between syntactic analyses for constituent order and their processing systems. Research on Language and Computation, Special Issue on Linguistic Theory and Grammar Implementation 2(2). 209–257.
- Müller, Stefan. 2005a. Zur Analyse der deutschen Satzstruktur. *Linguistische Berichte* 201. 3–39.

- Müller, Stefan. 2005b. Zur Analyse der scheinbar mehrfachen Vorfeldbesetzung. *Linguistische Berichte* 203. 297–330.
- Müller, Stefan. 2008. Depictive secondary predicates in German and English. In Christoph Schroeder, Gerd Hentschel & Winfried Boeder (eds.), *Secondary predicates in Eastern European languages and beyond* (Studia Slavica Oldenburgensia 16), 255–273. Oldenburg: BIS-Verlag.
- Müller, Stefan. 2013. Unifying everything: Some remarks on Simpler Syntax, Construction Grammar, Minimalism and HPSG. *Language* 89(4). 920–950.
- Müller, Stefan. 2015a. HPSG A synopsis. In Tibor Kiss & Artemis Alexiadou (eds.), *Syntax Theory and analysis: An international handbook*, 2nd edn. (Handbooks of Linguistics and Communication Science 42.2), 937–973. Berlin: Walter de Gruyter.
- Müller, Stefan. 2015b. The CoreGram project: Theoretical linguistics, theory development and verification. *Journal of Language Modelling* 3(1). 21–86. DOI:10.15398/jlm.v3i1.91
- Müller, Stefan. 2016. Satztypen: Lexikalisch oder/und phrasal. In Rita Finkbeiner & Jörg Meibauer (eds.), *Satztypen und Konstruktionen im Deutschen* (Linguistik Impulse und Tendenzen 65), 72–105. Berlin, Boston: de Gruyter.
- Müller, Stefan. 2017. *German sentence structure: An analysis with special consideration of so-called multiple fronting* (Empirically Oriented Theoretical Morphology and Syntax). Berlin: Language Science Press. Revise and resubmit.
- Müller, Stefan. 2018. *Germanic syntax*. Ms. Humboldt Universität zu Berlin, to be submitted to Language Science Press. Berlin. https://hpsg.hu-berlin.de/~stefan/Pub/germanic.html, accessed 2018-3-20.
- Müller, Stefan & Bjarne Ørsnes. 2015. *Danish in Head-Driven Phrase Structure Grammar* (Empirically Oriented Theoretical Morphology and Syntax). Berlin: Language Science Press. In Preparation.
- Netter, Klaus. 1992. On non-head non-movement: An HPSG treatment of finite verb position in German. In Günther Görz (ed.), *Konvens 92. 1. Konferenz "Verarbeitung natürlicher Sprache*". *Nürnberg 7.–9. Oktober 1992* (Informatik aktuell), 218–227. Berlin: Springer Verlag.
- Oliva, Karel. 1992. *Word order constraints in binary branching syntactic structures.* CLAUS-Report 20. Saarbrücken: Universität des Saarlandes.
- Pollard, Carl J. 1996. On head non-movement. In Harry Bunt & Arthur van Horck (eds.), *Discontinuous constituency* (Natural Language Processing 6), 279–305. Berlin: Mouton de Gruyter. Veröffentlichte Version eines Ms. von 1990.
- Pollard, Carl J. & Ivan A. Sag. 1994. *Head-Driven Phrase Structure Grammar* (Studies in Contemporary Linguistics). Chicago: The University of Chicago Press.

- Przepiórkowski, Adam. 1999. On case assignment and "adjuncts as complements". In Gert Webelhuth, Jean-Pierre Koenig & Andreas Kathol (eds.), *Lexical and Constructional aspects of linguistic explanation* (Studies in Constraint-Based Lexicalism 1), 231–245. Stanford, CA: CSLI Publications.
- Reape, Mike. 1991. *Word order variation in Germanic and parsing*. DYANA Report Deliverable R1.1.C. University of Edinburgh.
- Reape, Mike. 1992. *A formal theory of word order: A case study in West Germanic.* University of Edinburgh dissertation.
- Reape, Mike. 1994. Domain union and word order variation in German. In John Nerbonne, Klaus Netter & Carl J. Pollard (eds.), *German in Head-Driven Phrase Structure Grammar* (CSLI Lecture Notes 46), 151–198. Stanford, CA: CSLI Publications.
- Reis, Marga. 1974. Syntaktische Hauptsatzprivilegien und das Problem der deutschen Wortstellung. Zeitschrift für Germanistische Linguistik 2(3). 299–327.
- Rizzi, Luigi. 1997. The fine structure of the left periphery. In Liliane Haegeman (ed.), *Elements of grammar*, 281–337. Dordrecht: Kluwer Academic Publishers.
- Sag, Ivan A. 1997. English relative clause constructions. *Journal of Linguistics* 33(2). 431–484.
- Sag, Ivan A., Rui Chaves, Anne Abeillé, Bruno Estigarribia, Frank Van Eynde, Dan Flickinger, Paul Kay, Laura A. Michaelis-Cummings, Stefan Müller, Geoffrey K. Pullum & Tom Wasow. 2018. Lessons from the English auxiliary system. *Journal of Linguistics*. To appear.
- Steedman, Mark J. 2000. *The syntactic process* (Language, Speech, and Communication). Cambridge, MA/London, England: MIT Press.
- Thiersch, Craig L. 1978. *Topics in German syntax*. M.I.T. Dissertation. http://hdl. handle.net/1721.1/16327, accessed 2018-2-25.
- Uszkoreit, Hans. 1987. Word order and constituent structure in German (CSLI Lecture Notes 8). Stanford, CA: CSLI Publications.
- van Noord, Gertjan & Gosse Bouma. 1994. The scope of adjuncts and the processing of lexical rules. In Makoto Nagao (ed.), *Proceedings of COLING 94*, 250–256. Kyoto, Japan: Association for Computational Linguistics. http://www.aclweb.org/anthology/C94-1039, accessed 2018-7-5.
- Wetta, Andrew C. 2011. A Construction-based cross-linguistic analysis of V2 word order. In Stefan Müller (ed.), *Proceedings of the 18th International Conference on Head-Driven Phrase Structure Grammar, University of Washington*, 248–268. Stanford, CA: CSLI Publications. http://csli-publications.stanford.edu/HPSG/2011/, accessed 2018-2-25.

Wetta, Andrew Charles. 2014. *Construction-based approaches to flexible word order.* Buffalo: State University of New York at Buffalo dissertation. http://gradworks.umi.com/36/83/3683106.html, accessed 2016-3-11.

Chapter 10

Clitics

Anne Abeillé Université Paris Diderot

Gerald Penn
University of Toronto

Change epigram in chapters/03.tex or remove it there

Change the abstract in chapters/03.tex Nulla malesuada porttitor diam. Donec felis erat, congue non, volutpat at, tincidunt tristique, libero. Vivamus viverra fermentum felis. Donec nonummy pellentesque ante. Phasellus adipiscing semper elit. Proin fermentum massa ac quam. Sed diam turpis, molestie vitae, placerat a, molestie nec, leo. Maecenas lacinia. Nam ipsum ligula, eleifend at, accumsan nec, suscipit a, ipsum. Morbi blandit ligula feugiat magna. Nunc eleifend consequat lorem. Sed lacinia nulla vitae enim. Pellentesque tincidunt purus vel magna. Integer non enim. Praesent euismod nunc eu purus. Donec bibendum quam in tellus. Nullam cursus pulvinar lectus. Donec et mi. Nam vulputate metus eu enim. Vestibulum pellentesque felis eu massa.

1 Introduction

Duis pulvinar lacus id gravida ornare. Phasellus eu mauris sed tortor maximus condimentum ultrices in leo. Donec non erat nec nulla ullamcorper ornare sed id ex. Integer risus mauris, aliquet vel aliquam sed, feugiat quis nisi. Suspendisse quis nunc a turpis porttitor mollis. In luctus nulla id nunc dapibus, id rhoncus lorem pretium. Nunc eget fringilla velit, semper commodo diam. Suspendisse odio odio, euismod ac ornare sed, tincidunt ac arcu. Pellentesque vitae fringilla

Anne Abeillé & Gerald Penn

orci. Donec faucibus metus dui, nec iaculis purus pellentesque sit amet. Sed fermentum lorem non augue cursus, eu accumsan risus ullamcorper. Suspendisse rhoncus magna vitae enim pellentesque, eget porttitor quam finibus. Nunc ultricies turpis at quam vehicula, at tempus justo molestie. Proin convallis augue ut turpis cursus rhoncus. Donec sed convallis justo. Sed sed massa pharetra ex aliquet eleifend. finality

Abbreviations

Acknowledgements

Chapter 11

Complex predicates

Danièle Godard Université Paris Diderot

Pollet Samvelian Université Sorbonne Nouvelle

Change epigram in chapters/03.tex or remove it there

Change the abstract in chapters/03.tex Nulla malesuada portitior diam. Donec felis erat, congue non, volutpat at, tincidunt tristique, libero. Vivamus viverra fermentum felis. Donec nonummy pellentesque ante. Phasellus adipiscing semper elit. Proin fermentum massa ac quam. Sed diam turpis, molestie vitae, placerat a, molestie nec, leo. Maecenas lacinia. Nam ipsum ligula, eleifend at, accumsan nec, suscipit a, ipsum. Morbi blandit ligula feugiat magna. Nunc eleifend consequat lorem. Sed lacinia nulla vitae enim. Pellentesque tincidunt purus vel magna. Integer non enim. Praesent euismod nunc eu purus. Donec bibendum quam in tellus. Nullam cursus pulvinar lectus. Donec et mi. Nam vulputate metus eu enim. Vestibulum pellentesque felis eu massa.

1 Introduction

Duis pulvinar lacus id gravida ornare. Phasellus eu mauris sed tortor maximus condimentum ultrices in leo. Donec non erat nec nulla ullamcorper ornare sed id ex. Integer risus mauris, aliquet vel aliquam sed, feugiat quis nisi. Suspendisse quis nunc a turpis porttitor mollis. In luctus nulla id nunc dapibus, id rhoncus lorem pretium. Nunc eget fringilla velit, semper commodo diam. Suspendisse odio odio, euismod ac ornare sed, tincidunt ac arcu. Pellentesque vitae fringilla

Danièle Godard & Pollet Samvelian

orci. Donec faucibus metus dui, nec iaculis purus pellentesque sit amet. Sed fermentum lorem non augue cursus, eu accumsan risus ullamcorper. Suspendisse rhoncus magna vitae enim pellentesque, eget porttitor quam finibus. Nunc ultricies turpis at quam vehicula, at tempus justo molestie. Proin convallis augue ut turpis cursus rhoncus. Donec sed convallis justo. Sed sed massa pharetra ex aliquet eleifend. finality

Abbreviations

Acknowledgements

Control and raising

Anne Abeillé Université Paris Diderot

Change epigram in chapters/03.tex or remove it there

Change the abstract in chapters/03.tex Nulla malesuada porttitor diam. Donec felis erat, congue non, volutpat at, tincidunt tristique, libero. Vivamus viverra fermentum felis. Donec nonummy pellentesque ante. Phasellus adipiscing semper elit. Proin fermentum massa ac quam. Sed diam turpis, molestie vitae, placerat a, molestie nec, leo. Maecenas lacinia. Nam ipsum ligula, eleifend at, accumsan nec, suscipit a, ipsum. Morbi blandit ligula feugiat magna. Nunc eleifend consequat lorem. Sed lacinia nulla vitae enim. Pellentesque tincidunt purus vel magna. Integer non enim. Praesent euismod nunc eu purus. Donec bibendum quam in tellus. Nullam cursus pulvinar lectus. Donec et mi. Nam vulputate metus eu enim. Vestibulum pellentesque felis eu massa.

1 Introduction

Duis pulvinar lacus id gravida ornare. Phasellus eu mauris sed tortor maximus condimentum ultrices in leo. Donec non erat nec nulla ullamcorper ornare sed id ex. Integer risus mauris, aliquet vel aliquam sed, feugiat quis nisi. Suspendisse quis nunc a turpis porttitor mollis. In luctus nulla id nunc dapibus, id rhoncus lorem pretium. Nunc eget fringilla velit, semper commodo diam. Suspendisse odio odio, euismod ac ornare sed, tincidunt ac arcu. Pellentesque vitae fringilla orci. Donec faucibus metus dui, nec iaculis purus pellentesque sit amet. Sed fermentum lorem non augue cursus, eu accumsan risus ullamcorper. Suspendisse rhoncus magna vitae enim pellentesque, eget porttitor quam finibus. Nunc ultricies turpis at quam vehicula, at tempus justo molestie. Proin convallis augue

Anne Abeillé

ut turpis cursus rhoncus. Donec sed convallis justo. Sed sed massa pharetra ex aliquet eleifend. finality

Abbreviations

Unbounded dependencies

Berthold Crysmann Université Paris Diderot

Bob Borsley University of Essex

Change epigram in chapters/03.tex or remove it there

Change the abstract in chapters/03.tex Nulla malesuada porttitor diam. Donec felis erat, congue non, volutpat at, tincidunt tristique, libero. Vivamus viverra fermentum felis. Donec nonummy pellentesque ante. Phasellus adipiscing semper elit. Proin fermentum massa ac quam. Sed diam turpis, molestie vitae, placerat a, molestie nec, leo. Maecenas lacinia. Nam ipsum ligula, eleifend at, accumsan nec, suscipit a, ipsum. Morbi blandit ligula feugiat magna. Nunc eleifend consequat lorem. Sed lacinia nulla vitae enim. Pellentesque tincidunt purus vel magna. Integer non enim. Praesent euismod nunc eu purus. Donec bibendum quam in tellus. Nullam cursus pulvinar lectus. Donec et mi. Nam vulputate metus eu enim. Vestibulum pellentesque felis eu massa.

1 Introduction

finality

Abbreviations

Relative clauses

Doug Arnold University of Essex

Danièle Godard Université Paris Diderot

Change epigram in chapters/03.tex or remove it there

Change the abstract in chapters/03.tex Nulla malesuada porttitor diam. Donec felis erat, congue non, volutpat at, tincidunt tristique, libero. Vivamus viverra fermentum felis. Donec nonummy pellentesque ante. Phasellus adipiscing semper elit. Proin fermentum massa ac quam. Sed diam turpis, molestie vitae, placerat a, molestie nec, leo. Maecenas lacinia. Nam ipsum ligula, eleifend at, accumsan nec, suscipit a, ipsum. Morbi blandit ligula feugiat magna. Nunc eleifend consequat lorem. Sed lacinia nulla vitae enim. Pellentesque tincidunt purus vel magna. Integer non enim. Praesent euismod nunc eu purus. Donec bibendum quam in tellus. Nullam cursus pulvinar lectus. Donec et mi. Nam vulputate metus eu enim. Vestibulum pellentesque felis eu massa.

1 Introduction

Duis pulvinar lacus id gravida ornare. Phasellus eu mauris sed tortor maximus condimentum ultrices in leo. Donec non erat nec nulla ullamcorper ornare sed id ex. Integer risus mauris, aliquet vel aliquam sed, feugiat quis nisi. Suspendisse quis nunc a turpis porttitor mollis. In luctus nulla id nunc dapibus, id rhoncus lorem pretium. Nunc eget fringilla velit, semper commodo diam. Suspendisse odio odio, euismod ac ornare sed, tincidunt ac arcu. Pellentesque vitae fringilla

Doug Arnold & Danièle Godard

orci. Donec faucibus metus dui, nec iaculis purus pellentesque sit amet. Sed fermentum lorem non augue cursus, eu accumsan risus ullamcorper. Suspendisse rhoncus magna vitae enim pellentesque, eget porttitor quam finibus. Nunc ultricies turpis at quam vehicula, at tempus justo molestie. Proin convallis augue ut turpis cursus rhoncus. Donec sed convallis justo. Sed sed massa pharetra ex aliquet eleifend. finality

Abbreviations

Island phenomena and related matters

Rui Chaves
University at Buffalo

Change epigram in chapters/03.tex or remove it there

Change the abstract in chapters/03.tex Nulla malesuada porttitor diam. Donec felis erat, congue non, volutpat at, tincidunt tristique, libero. Vivamus viverra fermentum felis. Donec nonummy pellentesque ante. Phasellus adipiscing semper elit. Proin fermentum massa ac quam. Sed diam turpis, molestie vitae, placerat a, molestie nec, leo. Maecenas lacinia. Nam ipsum ligula, eleifend at, accumsan nec, suscipit a, ipsum. Morbi blandit ligula feugiat magna. Nunc eleifend consequat lorem. Sed lacinia nulla vitae enim. Pellentesque tincidunt purus vel magna. Integer non enim. Praesent euismod nunc eu purus. Donec bibendum quam in tellus. Nullam cursus pulvinar lectus. Donec et mi. Nam vulputate metus eu enim. Vestibulum pellentesque felis eu massa.

1 Introduction

Duis pulvinar lacus id gravida ornare. Phasellus eu mauris sed tortor maximus condimentum ultrices in leo. Donec non erat nec nulla ullamcorper ornare sed id ex. Integer risus mauris, aliquet vel aliquam sed, feugiat quis nisi. Suspendisse quis nunc a turpis porttitor mollis. In luctus nulla id nunc dapibus, id rhoncus lorem pretium. Nunc eget fringilla velit, semper commodo diam. Suspendisse odio odio, euismod ac ornare sed, tincidunt ac arcu. Pellentesque vitae fringilla orci. Donec faucibus metus dui, nec iaculis purus pellentesque sit amet. Sed fermentum lorem non augue cursus, eu accumsan risus ullamcorper. Suspendisse rhoncus magna vitae enim pellentesque, eget porttitor quam finibus. Nunc ultricies turpis at quam vehicula, at tempus justo molestie. Proin convallis augue

Rui Chaves

ut turpis cursus rhoncus. Donec sed convallis justo. Sed sed massa pharetra ex aliquet eleifend. finality

Abbreviations

Coordination

Anne Abeillé Université Paris Diderot

Rui Chaves
University at Buffalo

Change epigram in chapters/03.tex or remove it there

Change the abstract in chapters/03.tex Nulla malesuada porttitor diam. Donec felis erat, congue non, volutpat at, tincidunt tristique, libero. Vivamus viverra fermentum felis. Donec nonummy pellentesque ante. Phasellus adipiscing semper elit. Proin fermentum massa ac quam. Sed diam turpis, molestie vitae, placerat a, molestie nec, leo. Maecenas lacinia. Nam ipsum ligula, eleifend at, accumsan nec, suscipit a, ipsum. Morbi blandit ligula feugiat magna. Nunc eleifend consequat lorem. Sed lacinia nulla vitae enim. Pellentesque tincidunt purus vel magna. Integer non enim. Praesent euismod nunc eu purus. Donec bibendum quam in tellus. Nullam cursus pulvinar lectus. Donec et mi. Nam vulputate metus eu enim. Vestibulum pellentesque felis eu massa.

1 Introduction

Duis pulvinar lacus id gravida ornare. Phasellus eu mauris sed tortor maximus condimentum ultrices in leo. Donec non erat nec nulla ullamcorper ornare sed id ex. Integer risus mauris, aliquet vel aliquam sed, feugiat quis nisi. Suspendisse quis nunc a turpis porttitor mollis. In luctus nulla id nunc dapibus, id rhoncus lorem pretium. Nunc eget fringilla velit, semper commodo diam. Suspendisse odio odio, euismod ac ornare sed, tincidunt ac arcu. Pellentesque vitae fringilla

Anne Abeillé & Rui Chaves

orci. Donec faucibus metus dui, nec iaculis purus pellentesque sit amet. Sed fermentum lorem non augue cursus, eu accumsan risus ullamcorper. Suspendisse rhoncus magna vitae enim pellentesque, eget porttitor quam finibus. Nunc ultricies turpis at quam vehicula, at tempus justo molestie. Proin convallis augue ut turpis cursus rhoncus. Donec sed convallis justo. Sed sed massa pharetra ex aliquet eleifend. finality

Abbreviations

Idioms

Manfred Sailer Goethe-Unversität Frankfurt

Change epigram in chapters/03.tex or remove it there

Change the abstract in chapters/03.tex Nulla malesuada portitior diam. Donec felis erat, congue non, volutpat at, tincidunt tristique, libero. Vivamus viverra fermentum felis. Donec nonummy pellentesque ante. Phasellus adipiscing semper elit. Proin fermentum massa ac quam. Sed diam turpis, molestie vitae, placerat a, molestie nec, leo. Maecenas lacinia. Nam ipsum ligula, eleifend at, accumsan nec, suscipit a, ipsum. Morbi blandit ligula feugiat magna. Nunc eleifend consequat lorem. Sed lacinia nulla vitae enim. Pellentesque tincidunt purus vel magna. Integer non enim. Praesent euismod nunc eu purus. Donec bibendum quam in tellus. Nullam cursus pulvinar lectus. Donec et mi. Nam vulputate metus eu enim. Vestibulum pellentesque felis eu massa.

1 Introduction

Duis pulvinar lacus id gravida ornare. Phasellus eu mauris sed tortor maximus condimentum ultrices in leo. Donec non erat nec nulla ullamcorper ornare sed id ex. Integer risus mauris, aliquet vel aliquam sed, feugiat quis nisi. Suspendisse quis nunc a turpis porttitor mollis. In luctus nulla id nunc dapibus, id rhoncus lorem pretium. Nunc eget fringilla velit, semper commodo diam. Suspendisse odio odio, euismod ac ornare sed, tincidunt ac arcu. Pellentesque vitae fringilla orci. Donec faucibus metus dui, nec iaculis purus pellentesque sit amet. Sed fermentum lorem non augue cursus, eu accumsan risus ullamcorper. Suspendisse rhoncus magna vitae enim pellentesque, eget porttitor quam finibus. Nunc ultricies turpis at quam vehicula, at tempus justo molestie. Proin convallis augue

Manfred Sailer

ut turpis cursus rhoncus. Donec sed convallis justo. Sed sed massa pharetra ex aliquet eleifend. finality

Abbreviations

Negation

Jong-Bok Kim Kyung Hee University, Seoul

Change epigram in chapters/03.tex or remove it there

Change the abstract in chapters/03.tex Nulla malesuada porttitor diam. Donec felis erat, congue non, volutpat at, tincidunt tristique, libero. Vivamus viverra fermentum felis. Donec nonummy pellentesque ante. Phasellus adipiscing semper elit. Proin fermentum massa ac quam. Sed diam turpis, molestie vitae, placerat a, molestie nec, leo. Maecenas lacinia. Nam ipsum ligula, eleifend at, accumsan nec, suscipit a, ipsum. Morbi blandit ligula feugiat magna. Nunc eleifend consequat lorem. Sed lacinia nulla vitae enim. Pellentesque tincidunt purus vel magna. Integer non enim. Praesent euismod nunc eu purus. Donec bibendum quam in tellus. Nullam cursus pulvinar lectus. Donec et mi. Nam vulputate metus eu enim. Vestibulum pellentesque felis eu massa.

1 Introduction

Duis pulvinar lacus id gravida ornare. Phasellus eu mauris sed tortor maximus condimentum ultrices in leo. Donec non erat nec nulla ullamcorper ornare sed id ex. Integer risus mauris, aliquet vel aliquam sed, feugiat quis nisi. Suspendisse quis nunc a turpis porttitor mollis. In luctus nulla id nunc dapibus, id rhoncus lorem pretium. Nunc eget fringilla velit, semper commodo diam. Suspendisse odio odio, euismod ac ornare sed, tincidunt ac arcu. Pellentesque vitae fringilla orci. Donec faucibus metus dui, nec iaculis purus pellentesque sit amet. Sed fermentum lorem non augue cursus, eu accumsan risus ullamcorper. Suspendisse rhoncus magna vitae enim pellentesque, eget porttitor quam finibus. Nunc ultricies turpis at quam vehicula, at tempus justo molestie. Proin convallis augue

Jong-Bok Kim

ut turpis cursus rhoncus. Donec sed convallis justo. Sed sed massa pharetra ex aliquet eleifend. finality

Abbreviations

Ellipsis

Joanna Nykiel University of Silesia

Jong-Bok Kim Kyung Hee University, Seoul

Change epigram in chapters/03.tex or remove it there

Change the abstract in chapters/03.tex Nulla malesuada porttitor diam. Donec felis erat, congue non, volutpat at, tincidunt tristique, libero. Vivamus viverra fermentum felis. Donec nonummy pellentesque ante. Phasellus adipiscing semper elit. Proin fermentum massa ac quam. Sed diam turpis, molestie vitae, placerat a, molestie nec, leo. Maecenas lacinia. Nam ipsum ligula, eleifend at, accumsan nec, suscipit a, ipsum. Morbi blandit ligula feugiat magna. Nunc eleifend consequat lorem. Sed lacinia nulla vitae enim. Pellentesque tincidunt purus vel magna. Integer non enim. Praesent euismod nunc eu purus. Donec bibendum quam in tellus. Nullam cursus pulvinar lectus. Donec et mi. Nam vulputate metus eu enim. Vestibulum pellentesque felis eu massa.

1 Introduction

Duis pulvinar lacus id gravida ornare. Phasellus eu mauris sed tortor maximus condimentum ultrices in leo. Donec non erat nec nulla ullamcorper ornare sed id ex. Integer risus mauris, aliquet vel aliquam sed, feugiat quis nisi. Suspendisse quis nunc a turpis porttitor mollis. In luctus nulla id nunc dapibus, id rhoncus lorem pretium. Nunc eget fringilla velit, semper commodo diam. Suspendisse odio odio, euismod ac ornare sed, tincidunt ac arcu. Pellentesque vitae fringilla

Joanna Nykiel & Jong-Bok Kim

orci. Donec faucibus metus dui, nec iaculis purus pellentesque sit amet. Sed fermentum lorem non augue cursus, eu accumsan risus ullamcorper. Suspendisse rhoncus magna vitae enim pellentesque, eget porttitor quam finibus. Nunc ultricies turpis at quam vehicula, at tempus justo molestie. Proin convallis augue ut turpis cursus rhoncus. Donec sed convallis justo. Sed sed massa pharetra ex aliquet eleifend. finality

Abbreviations

Binding

António Branco University of Lisbon

Change epigram in chapters/03.tex or remove it there

Change the abstract in chapters/03.tex Nulla malesuada portitior diam. Donec felis erat, congue non, volutpat at, tincidunt tristique, libero. Vivamus viverra fermentum felis. Donec nonummy pellentesque ante. Phasellus adipiscing semper elit. Proin fermentum massa ac quam. Sed diam turpis, molestie vitae, placerat a, molestie nec, leo. Maecenas lacinia. Nam ipsum ligula, eleifend at, accumsan nec, suscipit a, ipsum. Morbi blandit ligula feugiat magna. Nunc eleifend consequat lorem. Sed lacinia nulla vitae enim. Pellentesque tincidunt purus vel magna. Integer non enim. Praesent euismod nunc eu purus. Donec bibendum quam in tellus. Nullam cursus pulvinar lectus. Donec et mi. Nam vulputate metus eu enim. Vestibulum pellentesque felis eu massa.

1 Introduction

Duis pulvinar lacus id gravida ornare. Phasellus eu mauris sed tortor maximus condimentum ultrices in leo. Donec non erat nec nulla ullamcorper ornare sed id ex. Integer risus mauris, aliquet vel aliquam sed, feugiat quis nisi. Suspendisse quis nunc a turpis porttitor mollis. In luctus nulla id nunc dapibus, id rhoncus lorem pretium. Nunc eget fringilla velit, semper commodo diam. Suspendisse odio odio, euismod ac ornare sed, tincidunt ac arcu. Pellentesque vitae fringilla orci. Donec faucibus metus dui, nec iaculis purus pellentesque sit amet. Sed fermentum lorem non augue cursus, eu accumsan risus ullamcorper. Suspendisse

António Branco

rhoncus magna vitae enim pellentesque, eget porttitor quam finibus. Nunc ultricies turpis at quam vehicula, at tempus justo molestie. Proin convallis augue ut turpis cursus rhoncus. Donec sed convallis justo. Sed sed massa pharetra ex aliquet eleifend. finality

Abbreviations

Part III Other levels of description

Phonology

Jesse Tseng Université Paris Diderot

Put abstract here with \abstract.

1 Introduction: PHONOLOGY in the HPSG sign

The PHONOLOGY attribute in (Pollard & Sag 1987) and (Pollard & Sag 1994):

- rudimentary рном value
- basic Phonology Principle constrained by Linear Precedence rules: corresponds to simple terminal spell-out of the phrase structure tree
- "Phonology-Free Syntax" (Miller et al. 1997): PHON information inaccessible for selection via SYNSEM

There has been relatively little work within HPSG on phonological representation and the analysis of phonological phenomena. Most references to the PHON attribute use it simply as a lexical identifier, or they are dealing with phenomena at the phonology-syntax interface (e.g. constituent order, ellipsis). For such applications, the actual content of the PHON value is unimportant. These topics are covered in other chapters.

2 Phonological representations in HPSG

Proposals for the detailed content of PHON values:

• encoding of phonological constituents (Bird & Klein 1994; Klein 2000; Höhle 1999)

- syllable structure Tseng (2008)
- metrical phonology (Klein 2000; Bonami & Delais-Roussarie 2006)

3 Phonological analysis in HPSG

- principles of constraint-based phonology vs derivational phonology (Bird & Klein 1994): compositionality, monotonicity
- compositional construction of prosodic structure in parallel with phrase structure (Klein 2000)

But HPSG is formally compatible with many approaches, and there is as yet no emerging consensus among practitioners.

- Finite state phonology (Bird 1992; 1995)
- need for abstract underlying forms (Skwarski 2009); phonologically empty categories
- OT in HPSG (Orgun 1996)

4 Specific phenomena and case studies

- shape conditions (Asudeh & Klein 2002)
- French (Tseng 2003; Bonami et al. 2004)
- phonological idioms [already covered in Manfred's chapter]
- ...

Abbreviations

Acknowledgements

References

- Asudeh, Ash & Ewan Klein. 2002. Shape conditions and phonological context. In Frank Van Eynde, Lars Hellan & Dorothee Beermann (eds.), *Proceedings of the HPSG-2001 Conference, Norwegian University of Science and Technology, Trondheim*, 20–30. Stanford, CA: CSLI Publications. http://csli-publications.stanford.edu/HPSG/2001/, accessed 2015-12-23.
- Bird, Steven. 1992. Finite-state phonology in HPSG. In *Proceedings of coling 92*, 74–80. Nantes, France.
- Bird, Steven. 1995. *Computational phonology: A constraint-based approach* (Studies in Natural Language Processing). Cambridge, UK: Cambridge University Press.
- Bird, Steven & Ewan Klein. 1994. Phonological analysis in typed feature systems. *Computational Linguistics* 20(3). 455–491.
- Bonami, Olivier, Gilles Boyé & Jesse Tseng. 2004. An integrated approach to French liaison. In Gerhard Jäger, Paola Monachesi, Gerald Penn & Shuly Wintner (eds.), *Proceedings of Formal Grammar 2004, Nancy*, 29–45. Stanford, CA: CSLI Publications. http://cslipublications.stanford.edu/FG/2004/, accessed 2018-2-25.
- Bonami, Olivier & Elisabeth Delais-Roussarie. 2006. Metrical phonology in HPSG. In Stefan Müller (ed.), *Proceedings of the 13th International Conference on Head-Driven Phrase Structure Grammar*, 39–59. Stanford, CA: CSLI Publications. http://csli-publications.stanford.edu/HPSG/2006/, accessed 2018-2-25.
- Höhle, Tilman N. 1999. An architecture for phonology. In Robert D. Borsley & Adam Przepiórkowski (eds.), *Slavic in Head-Driven Phrase Structure Grammar*, 61–90. Stanford, CA: CSLI Publications. Republished as Höhle (2018).
- Höhle, Tilman N. 2018. An architecture for phonology. In Stefan Müller, Marga Reis & Frank Richter (eds.), *Beiträge zur Grammatik des Deutschen: Gesammelte Schriften von Tilman N. Höhle* (Classics in Linguistics 5). Berlin: Language Science Press. Originally published as Höhle (1999). DOI:10.5281/zenodo.1145680
- Klein, Ewan. 2000. A constraint-based approach to English prosodic constituents. In 38th Annual Meeting of the Association for Computational Linguistics: Proceedings of the conference, 217–224. Hong Kong: Association for Computational Linguistics.

- Miller, Philip H., Geoffrey K. Pullum & Arnold M. Zwicky. 1997. The principle of Phonology-Free Syntax: Four apparent counterexamples in French. *Journal of Linguistics* 33(1). 67–90.
- Orgun, Cemil Orhan. 1996. *Sign-based morphology and phonology*. University of California, Berkeley dissertation.
- Pollard, Carl J. & Ivan A. Sag. 1987. *Information-based syntax and semantics* (CSLI Lecture Notes 13). Stanford, CA: CSLI Publications.
- Pollard, Carl J. & Ivan A. Sag. 1994. *Head-Driven Phrase Structure Grammar* (Studies in Contemporary Linguistics). Chicago: The University of Chicago Press.
- Skwarski, Filip. 2009. Accounting for underlying forms in HPSG phonology. In Stefan Müller (ed.), *Proceedings of the 16th International Conference on Head-Driven Phrase Structure Grammar, University of Göttingen, Germany*, 318–337. Stanford, CA: CSLI Publications. http://cslipublications.stanford.edu/HPSG/2009/skwarski.pdf, accessed 2018-2-25.
- Tseng, Jesse. 2003. Edge features and French liaison. In Jongbok Kim & Stephen Mark Wechsler (eds.), *The proceedings of the 9th International Conference on Head-Driven Phrase Structure Grammar*, 313–333. Stanford, CA: CSLI Publications. http://csli-publications.stanford.edu/HPSG/3/, accessed 2018-3-20.
- Tseng, Jesse. 2008. The representation of syllable structure in HPSG. In Stefan Müller (ed.), *Proceedings of the 15th International Conference on Head-Driven Phrase Structure Grammar*, 234–252. Stanford, CA: CSLI Publications. http://csli-publications.stanford.edu/HPSG/2008/, accessed 2018-2-25.

Morphology

Berthold Crysmann Université Paris Diderot

Change epigram in chapters/03.tex or remove it there

Change the abstract in chapters/03.tex Nulla malesuada porttitor diam. Donec felis erat, congue non, volutpat at, tincidunt tristique, libero. Vivamus viverra fermentum felis. Donec nonummy pellentesque ante. Phasellus adipiscing semper elit. Proin fermentum massa ac quam. Sed diam turpis, molestie vitae, placerat a, molestie nec, leo. Maecenas lacinia. Nam ipsum ligula, eleifend at, accumsan nec, suscipit a, ipsum. Morbi blandit ligula feugiat magna. Nunc eleifend consequat lorem. Sed lacinia nulla vitae enim. Pellentesque tincidunt purus vel magna. Integer non enim. Praesent euismod nunc eu purus. Donec bibendum quam in tellus. Nullam cursus pulvinar lectus. Donec et mi. Nam vulputate metus eu enim. Vestibulum pellentesque felis eu massa.

1 Introduction

Duis pulvinar lacus id gravida ornare. Phasellus eu mauris sed tortor maximus condimentum ultrices in leo. Donec non erat nec nulla ullamcorper ornare sed id ex. Integer risus mauris, aliquet vel aliquam sed, feugiat quis nisi. Suspendisse quis nunc a turpis porttitor mollis. In luctus nulla id nunc dapibus, id rhoncus lorem pretium. Nunc eget fringilla velit, semper commodo diam. Suspendisse odio odio, euismod ac ornare sed, tincidunt ac arcu. Pellentesque vitae fringilla orci. Donec faucibus metus dui, nec iaculis purus pellentesque sit amet. Sed fermentum lorem non augue cursus, eu accumsan risus ullamcorper. Suspendisse rhoncus magna vitae enim pellentesque, eget porttitor quam finibus. Nunc ultricies turpis at quam vehicula, at tempus justo molestie. Proin convallis augue

Berthold Crysmann

ut turpis cursus rhoncus. Donec sed convallis justo. Sed sed massa pharetra ex aliquet eleifend. finality

Abbreviations

Semantics

Jean-Pierre Koenig University at Buffalo

Frank Richter Goethe-Universität Frankfurt

Change epigram in chapters/03.tex or remove it there

Change the abstract in chapters/03.tex Nulla malesuada porttitor diam. Donec felis erat, congue non, volutpat at, tincidunt tristique, libero. Vivamus viverra fermentum felis. Donec nonummy pellentesque ante. Phasellus adipiscing semper elit. Proin fermentum massa ac quam. Sed diam turpis, molestie vitae, placerat a, molestie nec, leo. Maecenas lacinia. Nam ipsum ligula, eleifend at, accumsan nec, suscipit a, ipsum. Morbi blandit ligula feugiat magna. Nunc eleifend consequat lorem. Sed lacinia nulla vitae enim. Pellentesque tincidunt purus vel magna. Integer non enim. Praesent euismod nunc eu purus. Donec bibendum quam in tellus. Nullam cursus pulvinar lectus. Donec et mi. Nam vulputate metus eu enim. Vestibulum pellentesque felis eu massa.

1 Introduction

Duis pulvinar lacus id gravida ornare. Phasellus eu mauris sed tortor maximus condimentum ultrices in leo. Donec non erat nec nulla ullamcorper ornare sed id ex. Integer risus mauris, aliquet vel aliquam sed, feugiat quis nisi. Suspendisse quis nunc a turpis porttitor mollis. In luctus nulla id nunc dapibus, id rhoncus lorem pretium. Nunc eget fringilla velit, semper commodo diam. Suspendisse odio odio, euismod ac ornare sed, tincidunt ac arcu. Pellentesque vitae fringilla

Jean-Pierre Koenig & Frank Richter

orci. Donec faucibus metus dui, nec iaculis purus pellentesque sit amet. Sed fermentum lorem non augue cursus, eu accumsan risus ullamcorper. Suspendisse rhoncus magna vitae enim pellentesque, eget porttitor quam finibus. Nunc ultricies turpis at quam vehicula, at tempus justo molestie. Proin convallis augue ut turpis cursus rhoncus. Donec sed convallis justo. Sed sed massa pharetra ex aliquet eleifend. finality

Abbreviations

Information structure

Kordula de Kuthy Universität Tübingen

Put abstract here with \abstract.

1 Introduction

Duis pulvinar lacus id gravida ornare. Phasellus eu mauris sed tortor maximus condimentum ultrices in leo. Donec non erat nec nulla ullamcorper ornare sed id ex. Integer risus mauris, aliquet vel aliquam sed, feugiat quis nisi. Suspendisse quis nunc a turpis porttitor mollis. In luctus nulla id nunc dapibus, id rhoncus lorem pretium. Nunc eget fringilla velit, semper commodo diam. Suspendisse odio odio, euismod ac ornare sed, tincidunt ac arcu. Pellentesque vitae fringilla orci. Donec faucibus metus dui, nec iaculis purus pellentesque sit amet. Sed fermentum lorem non augue cursus, eu accumsan risus ullamcorper. Suspendisse rhoncus magna vitae enim pellentesque, eget porttitor quam finibus. Nunc ultricies turpis at quam vehicula, at tempus justo molestie. Proin convallis augue ut turpis cursus rhoncus. Donec sed convallis justo. Sed sed massa pharetra ex aliquet eleifend. finality

Abbreviations

Pragmatics and dialogue semantics

Andy Lücking
Goethe-Universität Frankfurt

Jonathan Ginzburg Université Paris Diderot

Robin Cooper
University of Gothenburg

Change epigram in chapters/03.tex or remove it there

Change the abstract in chapters/03.tex Nulla malesuada porttitor diam. Donec felis erat, congue non, volutpat at, tincidunt tristique, libero. Vivamus viverra fermentum felis. Donec nonummy pellentesque ante. Phasellus adipiscing semper elit. Proin fermentum massa ac quam. Sed diam turpis, molestie vitae, placerat a, molestie nec, leo. Maecenas lacinia. Nam ipsum ligula, eleifend at, accumsan nec, suscipit a, ipsum. Morbi blandit ligula feugiat magna. Nunc eleifend consequat lorem. Sed lacinia nulla vitae enim. Pellentesque tincidunt purus vel magna. Integer non enim. Praesent euismod nunc eu purus. Donec bibendum quam in tellus. Nullam cursus pulvinar lectus. Donec et mi. Nam vulputate metus eu enim. Vestibulum pellentesque felis eu massa.

1 Introduction

Duis pulvinar lacus id gravida ornare. Phasellus eu mauris sed tortor maximus condimentum ultrices in leo. Donec non erat nec nulla ullamcorper ornare sed id ex. Integer risus mauris, aliquet vel aliquam sed, feugiat quis nisi. Suspendisse quis nunc a turpis porttitor mollis. In luctus nulla id nunc dapibus, id rhoncus

lorem pretium. Nunc eget fringilla velit, semper commodo diam. Suspendisse odio odio, euismod ac ornare sed, tincidunt ac arcu. Pellentesque vitae fringilla orci. Donec faucibus metus dui, nec iaculis purus pellentesque sit amet. Sed fermentum lorem non augue cursus, eu accumsan risus ullamcorper. Suspendisse rhoncus magna vitae enim pellentesque, eget porttitor quam finibus. Nunc ultricies turpis at quam vehicula, at tempus justo molestie. Proin convallis augue ut turpis cursus rhoncus. Donec sed convallis justo. Sed sed massa pharetra ex aliquet eleifend. finality

Abbreviations

Part IV Other areas of linguistics

Diachronic syntax

Ulrike Demske Universität Potsdam

Change epigram in chapters/03.tex or remove it there

Change the abstract in chapters/03.tex Nulla malesuada porttitor diam. Donec felis erat, congue non, volutpat at, tincidunt tristique, libero. Vivamus viverra fermentum felis. Donec nonummy pellentesque ante. Phasellus adipiscing semper elit. Proin fermentum massa ac quam. Sed diam turpis, molestie vitae, placerat a, molestie nec, leo. Maecenas lacinia. Nam ipsum ligula, eleifend at, accumsan nec, suscipit a, ipsum. Morbi blandit ligula feugiat magna. Nunc eleifend consequat lorem. Sed lacinia nulla vitae enim. Pellentesque tincidunt purus vel magna. Integer non enim. Praesent euismod nunc eu purus. Donec bibendum quam in tellus. Nullam cursus pulvinar lectus. Donec et mi. Nam vulputate metus eu enim. Vestibulum pellentesque felis eu massa.

1 Introduction

Duis pulvinar lacus id gravida ornare. Phasellus eu mauris sed tortor maximus condimentum ultrices in leo. Donec non erat nec nulla ullamcorper ornare sed id ex. Integer risus mauris, aliquet vel aliquam sed, feugiat quis nisi. Suspendisse quis nunc a turpis porttitor mollis. In luctus nulla id nunc dapibus, id rhoncus lorem pretium. Nunc eget fringilla velit, semper commodo diam. Suspendisse odio odio, euismod ac ornare sed, tincidunt ac arcu. Pellentesque vitae fringilla orci. Donec faucibus metus dui, nec iaculis purus pellentesque sit amet. Sed fermentum lorem non augue cursus, eu accumsan risus ullamcorper. Suspendisse rhoncus magna vitae enim pellentesque, eget porttitor quam finibus. Nunc ultricies turpis at quam vehicula, at tempus justo molestie. Proin convallis augue

Ulrike Demske

ut turpis cursus rhoncus. Donec sed convallis justo. Sed sed massa pharetra ex aliquet eleifend. finality

Abbreviations

Chapter 27

Acquisition

Jonathan Ginzburg Université Paris Diderot

Change epigram in chapters/03.tex or remove it there

Change the abstract in chapters/03.tex Nulla malesuada porttitor diam. Donec felis erat, congue non, volutpat at, tincidunt tristique, libero. Vivamus viverra fermentum felis. Donec nonummy pellentesque ante. Phasellus adipiscing semper elit. Proin fermentum massa ac quam. Sed diam turpis, molestie vitae, placerat a, molestie nec, leo. Maecenas lacinia. Nam ipsum ligula, eleifend at, accumsan nec, suscipit a, ipsum. Morbi blandit ligula feugiat magna. Nunc eleifend consequat lorem. Sed lacinia nulla vitae enim. Pellentesque tincidunt purus vel magna. Integer non enim. Praesent euismod nunc eu purus. Donec bibendum quam in tellus. Nullam cursus pulvinar lectus. Donec et mi. Nam vulputate metus eu enim. Vestibulum pellentesque felis eu massa.

1 Introduction

Duis pulvinar lacus id gravida ornare. Phasellus eu mauris sed tortor maximus condimentum ultrices in leo. Donec non erat nec nulla ullamcorper ornare sed id ex. Integer risus mauris, aliquet vel aliquam sed, feugiat quis nisi. Suspendisse quis nunc a turpis porttitor mollis. In luctus nulla id nunc dapibus, id rhoncus lorem pretium. Nunc eget fringilla velit, semper commodo diam. Suspendisse odio odio, euismod ac ornare sed, tincidunt ac arcu. Pellentesque vitae fringilla orci. Donec faucibus metus dui, nec iaculis purus pellentesque sit amet. Sed fermentum lorem non augue cursus, eu accumsan risus ullamcorper. Suspendisse rhoncus magna vitae enim pellentesque, eget porttitor quam finibus. Nunc ultricies turpis at quam vehicula, at tempus justo molestie. Proin convallis augue

Jonathan Ginzburg

ut turpis cursus rhoncus. Donec sed convallis justo. Sed sed massa pharetra ex aliquet eleifend. finality

Abbreviations

Acknowledgements

Chapter 28

Processing

Tom Wasow Stanford University

Put abstract here with \abstract.

Abbreviations

Acknowledgements

Chapter 29

Computational linguistics and Language Engineering

Emily Bender
University of Washington

Guy Emerson

Cambridge University

Put abstract here with \abstract.

1 Introduction

2 Infrastructure

- Relevant properties of HPSG that facilitate all of this
 - Stable formalism
 - Differentiating formalism from theory
 - Interest in core as well as periphery
 - Type hierarchy (maintainability)
- Tractability / pratical considerations
 - Turing-completeness in theory
 - Efficiency in practice
 - Difference of perspective compared to CCG, TAG
 - Parse ranking

- History: PAGE, VerbMobil, ??
- Current platforms:
 - LKB/ACE/PET/Agree
 - Trale
 - Other

3 Development of HPSG resources

- CoreGram
- DELPH-IN consortium
 - ERG
 - Other large-ish grammars
 - Grammar Matrix
- Systems inspired by HPSG:
 - Alpino
 - Enju
 - RASP

4 Deployment of HPSG resources

- Language documentation/linguistic hypothesis testing
 - CoreGram
 - Grammar Matrix
 - AGGREGATION
- DELPH-IN:
 - DELPH-IN Applications: Things we do using DELPH-IN grammars directly
 - Derived resources: Redwoods-style treebanks
 - Training data for Deep Learning
- Alpino

- ??
- Other?

5 Lessons for Linguistics

- Ambiguity
- Long-tail phenomena (raising and control?)
- Scaling up (thematic roles)
- CLIMB methodology

6 Summary

Abbreviations

Acknowledgements

Chapter 30

Sign languages

Markus Steinbach Georg-August-Universität Göttingen

Anke Holler Georg-August-Universität Göttingen

Change epigram in chapters/03.tex or remove it there

Change the abstract in chapters/03.tex Nulla malesuada porttitor diam. Donec felis erat, congue non, volutpat at, tincidunt tristique, libero. Vivamus viverra fermentum felis. Donec nonummy pellentesque ante. Phasellus adipiscing semper elit. Proin fermentum massa ac quam. Sed diam turpis, molestie vitae, placerat a, molestie nec, leo. Maecenas lacinia. Nam ipsum ligula, eleifend at, accumsan nec, suscipit a, ipsum. Morbi blandit ligula feugiat magna. Nunc eleifend consequat lorem. Sed lacinia nulla vitae enim. Pellentesque tincidunt purus vel magna. Integer non enim. Praesent euismod nunc eu purus. Donec bibendum quam in tellus. Nullam cursus pulvinar lectus. Donec et mi. Nam vulputate metus eu enim. Vestibulum pellentesque felis eu massa.

1 Introduction

Duis pulvinar lacus id gravida ornare. Phasellus eu mauris sed tortor maximus condimentum ultrices in leo. Donec non erat nec nulla ullamcorper ornare sed id ex. Integer risus mauris, aliquet vel aliquam sed, feugiat quis nisi. Suspendisse quis nunc a turpis porttitor mollis. In luctus nulla id nunc dapibus, id rhoncus lorem pretium. Nunc eget fringilla velit, semper commodo diam. Suspendisse odio odio, euismod ac ornare sed, tincidunt ac arcu. Pellentesque vitae fringilla

orci. Donec faucibus metus dui, nec iaculis purus pellentesque sit amet. Sed fermentum lorem non augue cursus, eu accumsan risus ullamcorper. Suspendisse rhoncus magna vitae enim pellentesque, eget porttitor quam finibus. Nunc ultricies turpis at quam vehicula, at tempus justo molestie. Proin convallis augue ut turpis cursus rhoncus. Donec sed convallis justo. Sed sed massa pharetra ex aliquet eleifend. finality

Figure 1: Type hierarchy for sign

Abbreviations

Acknowledgements

Chapter 31

Gesture

Andy Lücking
Goethe-Universität Frankfurt

Change epigram in chapters/03.tex or remove it there

Change the abstract in chapters/03.tex Nulla malesuada porttitor diam. Donec felis erat, congue non, volutpat at, tincidunt tristique, libero. Vivamus viverra fermentum felis. Donec nonummy pellentesque ante. Phasellus adipiscing semper elit. Proin fermentum massa ac quam. Sed diam turpis, molestie vitae, placerat a, molestie nec, leo. Maecenas lacinia. Nam ipsum ligula, eleifend at, accumsan nec, suscipit a, ipsum. Morbi blandit ligula feugiat magna. Nunc eleifend consequat lorem. Sed lacinia nulla vitae enim. Pellentesque tincidunt purus vel magna. Integer non enim. Praesent euismod nunc eu purus. Donec bibendum quam in tellus. Nullam cursus pulvinar lectus. Donec et mi. Nam vulputate metus eu enim. Vestibulum pellentesque felis eu massa.

1 Introduction

Duis pulvinar lacus id gravida ornare. Phasellus eu mauris sed tortor maximus condimentum ultrices in leo. Donec non erat nec nulla ullamcorper ornare sed id ex. Integer risus mauris, aliquet vel aliquam sed, feugiat quis nisi. Suspendisse quis nunc a turpis porttitor mollis. In luctus nulla id nunc dapibus, id rhoncus lorem pretium. Nunc eget fringilla velit, semper commodo diam. Suspendisse odio odio, euismod ac ornare sed, tincidunt ac arcu. Pellentesque vitae fringilla orci. Donec faucibus metus dui, nec iaculis purus pellentesque sit amet. Sed fermentum lorem non augue cursus, eu accumsan risus ullamcorper. Suspendisse rhoncus magna vitae enim pellentesque, eget porttitor quam finibus. Nunc ultricies turpis at quam vehicula, at tempus justo molestie. Proin convallis augue

Andy Lücking

ut turpis cursus rhoncus. Donec sed convallis justo. Sed sed massa pharetra ex aliquet eleifend. finality

Abbreviations

Acknowledgements

Part V The broader picture

Chapter 32

HPSG and Minimalism

Bob Borsley University of Essex

Stefan Müller Humboldt-Universität zu Berlin

Put abstract here with \abstract.

1 Introduction

The Minimalist framework, which was first outlined by Chomsky in the early 1990s (Chomsky 1993; 1995b), still seems to be the dominant approach to syntax. It is important, therefore, to consider how HPSG compares with this framework. The issues are clouded by the rhetoric that surrounds the framework. At one time 'virtual conceptual necessity' was said to be its guiding principle. A little later, it was said to be concerned with the "perfection of language", with 'how closely human language approaches an optimal solution to design conditions that the system must meet to be usable at all' Chomsky (2002: 58). Much of this rhetoric seems designed to suggest that Minimalism is quite different from other approaches and should not be assessed in the same way. In the words of Postal Postal (2003: 19), it looks like 'an attempt to provide certain views with a sort of privileged status, with the goal of placing them at least rhetorically beyond the demands of serious argument or evidence'. However, the two frameworks have enough in common to allow meaningful comparisons.

Both frameworks seek to provide an account of what is and is not possible both in specific languages and in language in general. Moreover, both are concerned not just with local relations such as that between a head and its complement or complements but also with non-local relations such as those in the following:

- (1) The student knows the answer.
- (2)It seems to be raining,
- Which student do you think knows the answer?

In (1), the student is subject of thinks and is responsible for the fact that thinks is a third person singular form, but they are not sisters if knows and the answer form a VP. In (2) the subject is it because the complement of be is raining, but it and raining are obviously not sisters. Finally, in (3), which student is understood as the subject of *thinks* and is responsible for the fact that it is third person singular, but again the two elements are structurally quite far apart. Both frameworks provide analyses for these and other central syntactic phenomena, and it is quite reasonable to compare them and ask which is the more satisfactory.¹

Although HPSG and Minimalism have enough in common to permit comparisons, there are obviously many differences. Some are more important than others, and some relate to the basic approach and outlook, while others concern the nature of grammatical systems and syntactic structures. In this chapter we will explore the full range of differences.

The chapter is organized as follows. In Section 2, we look at differences of approach between the two frameworks. Then in Section 3, we consider the quite different views of grammar that the two frameworks espouse, and in Section 4, we look at the very different syntactic structures which result. Finally, in Section 5.2, we will look at a further issue which deserves some attention.

2 Differences of approach and outlook

As many of the chapters in this volume have emphasized, HPSG is a framework which places considerable emphasis on detailed formal analyses of the kind that one might expect within generative grammar. Thus, it is not uncommon to find lengthy appendices setting out formal analyses. See, for example, Sag's (1997) paper on English relative clauses and especially Ginzburg & Sag (2000), which has a 50 page appendix. One consequence of this, discussed in Chapter ??, is that HPSG has had considerable influence in computational linguistics.

In Minimalism things are very different. Detailed formal analyses are virtually non-existent. There appear to be no appendices like those in Sag (1997) and Ginzburg & Sag (2000). In fact the importance of formalization has long been

provides only sketches of analyses in which various details are left quite vague.

¹As noted below, comparison is complicated somewhat by the fact that Minimalists typically

insert chapter reference -RF

downplayed in Chomskyan work. Thus, in a 1980 conversation, Chomsky remarked that 'I do not see any point in formalizing for the sake of formalizing' (see Huybregts & Riemsdijk 1982: 73), and this view seems fairly standard within Minimalism. Chomsky and Lasnik (1995: 28) attempt to justify the absence of detailed analyses when they suggest that providing a rule system from which some set of phenomena can be derived is not 'a real result' since 'it is often possible to devise one that will more or less work'. Instead, they say, 'the task is now to show how the phenomena ... can be deduced from the invariant principles of UG with parameters set in one of the permissible ways'. In other words, providing detailed analyses is a job for unambitious drudges, and real linguists pursue a more ambitious agenda. Postal (2004: 5) comments that what we see here is 'the fantastic and unsupported notion that descriptive success is not really that hard and so not of much importance'. He points out that if this were true, one would expect successful descriptions to be abundant within transformational frameworks. However, he suggests that 'the actual descriptions in these frameworks so far are not only not successful but so bad as to hardly merit being taken seriously'. Postal does much to justify this assessment with detailed discussions of Chomskyan work on strong crossover phenomena and passives in Chapters 9 and 8 of his book.

There has also been a strong tendency to focus on just a subset of the facts in whatever domain is being investigated. As Culicover & Jackendoff (2005: 535) note, 'much of the fine detail of traditional constructions has ceased to garner attention'. This tendency has sometimes been buttressed by a distinction between core grammar, which is supposedly a fairly straightforward reflection of the language faculty, and a periphery of marked constructions, which are of no great importance and which can reasonably be ignored. However, as Culicover (1999) and others have argued, there is no evidence for a clear cut distinction between core and periphery. It follows that a satisfactory approach to grammar needs to account both for such core phenomena as wh-interrogatives, relative clauses, and passives but also with more peripheral phenomena such as the following:

- (4) a. It's amazing the people you see here.
 - b. The more I read, the more I understand.
 - c. Chris lied his way into the meeting.

These exemplify the nominal extraposition construction (Michaelis & Lambrecht 1996), the comparative correlative construction (Borsley 2011), and the *X's Way* construction (Sag 2012). As has been emphasized in other chapters, the HPSG system of types and constraints is able to accommodate broad linguistic general-

Chomsky papers

bibkey needed; 1995 or "The theory of principles and parameters" from 1993? – RF

bibkey needed; which article from 2011? – RF izations and highly idiosyncratic facts and everything in between.

The general absence in Minimalism of detailed formal analyses is quite important. It means that Minimalists may not be fully aware of the complexity of the structures they are committed to and allows them to sidestep the question whether it is really justified. It also allows them to avoid the question of whether the very simple conception of grammar that they favour is really satisfactory. Finally, it may be that they are unaware of how many phenomena remain unaccounted for. These are all important matters.

The general absence of detailed formal analyses has also led to Minimalism having little impact on computational linguistics. There has been some work that has sought to implement Minimalist ideas, but Minimalism has not had anything like the productive relation with computational work that HPSG has enjoyed.

There are, then, issues about the quantity of data that is considered in Minimalist work. There are also issues about its quality. Research in HPSG is typically quite careful about data and often makes use of corpus and experimental data. Research in Minimalism is often rather less careful. In a review of a collection of Minimalist papers, Bender (2002: 434) comments that: 'In these papers, the data appears to be collected in an off-hand, unsystematic way, with unconfirmed questionable judgments often used at crucial points in the argumentation'. She goes on to suggest that the framework encourages 'lack of concern for the data, above and beyond what is unfortunately already the norm in formal syntax, because the connection between analysis and data is allowed to be remote.' Similar things could be said about a variety of Minimalist work. Consider, for example, Aoun & Li (2003), who argue for quite different analyses of *that*-relatives and *wh*-relatives on the basis of the following (supposed) contrasts, which appear to represent nothing more than their own judgements:

- (5) a. The headway that Mel made was impressive.
 - b. ?? The headway which Mel made was impressive.
- (6) a. We admired the picture of himself that John painted in art class
 - b. *We admired the picture of himself which John painted in art class
- (7) a. The picture of himself that John painted in art class is impressive.
 - b. *? The picture of himself which John painted in art class is impressive.

None of the native speakers we have consulted find significant contrasts here which could support different analyses.

refs

This material comes from my Lexington paper. Maybe there are

150

There are also differences in the kind of arguments that the two frameworks find acceptable. It is common within Minimalism to assume that some phenomenon which cannot be readily observed in some languages must be part of their grammatical system because it is clearly present in other languages. Notable examples would be case or agreement. This stems from the longstanding Chomskyan assumption that language is the realization of a complex innate language faculty. From this perspective, there is much in any grammatical system that is a reflection of the language faculty and not in any simple way of the observable phenomena of the language in question. If some phenomenon plays an important role in many languages it is viewed as a reflection of the language faculty, and hence it must be a feature of all grammatical systems even those in which it is hard to see any evidence for it. This line of argument would be reasonable if a complex innate language faculty was an established fact, but it isn't, and since Hauser, Chomsky & Fitch (2002), it seems to have been rejected within Minimalism. It follows that ideas about an innate language faculty should not be used to guide research on individual languages. Rather, as Müller (2015: 25) puts it, 'grammars should be motivated on a language-specific basis.' Does this mean that other languages are irrelevant when one investigating a specific language? Clearly not. As Müller also puts it, 'In situations where more than one analysis would be compatible with a given dataset for language X, the evidence from language Y with similar constructs is most welcome and can be used as evidence in favor of one of the two analyses for language X.' (2015: 43) In practice, any linguist working on a new language will use apparently similar phenomena in other languages as a starting point. It is important, however, to recognize that apparently similar phenomena may turn out on careful investigation to be significantly different.²

Radford's
PP analysis?
AgrO?
Anything
else?

3 Different views of grammar

We turn now to more substantive differences between HPSG and Minimalism, differences in their conceptions of grammar, especially syntax, and differences in their views of syntactic structure. As we will see, these differences are related. In this section we consider the former, and in the next we will look at the latter.

As has been emphasized throughout this volume, HPSG assumes a declarative or constraint-based view of grammar. It also assumes that the grammar involves

²Equally, of course, apparently rather different phenomena may turn out on careful investigation to be quite similar. For further discussion of HPSG and comparative syntax, see Borsley (forthcoming).

a complex systems of types and constraints. Finally, it assumes that syntactic analyses complemented by separate semantic and morphological analyses. In each of these areas, Minimalism is different. It assumes a procedural view of grammar. It assumes that grammar involves just a few general operations. Finally, it assumes that semantics and morphology are simple reflections of syntax. We comment on each of these matters in the following paragraphs.

Whereas HPSG is a declarative or constraint-based approach, Minimalism seems to be firmly committed to a procedural approach. Chomsky (1995b: 219) remarks that: 'We take L [a particular language] to be a generative procedure that constructs pairs (π, λ) that are interpreted at the articulatory-perceptual (A-P) and conceptual-intentional (C-I) interfaces, respectively, as "instructions" to the performance systems'. Various arguments have been presented within HPSG for a declarative view, but no argument seems to be offered within Minimalism for a procedural view. Obviously, speakers and hearers do construct representations and must have procedures that enable them to do so, but this is a matter of performance, and there is no reason to think that the knowledge that is used in performance has a procedural character. Rather, the fact that it used in both production and comprehension suggests that it should be neutral between the two and hence declarative. For further discussion of the issues, see e. g. Pullum & Scholz (2001), Postal (2003) and Sag & Wasow (2011; 2015).

Bob: Maybe we should say more here.

The declarative-procedural contrast is an important one, but the contrast between the complex systems of types and constraints that are assumed within HPSG and the few general operations that form a Minimalist grammar is arguably more important.³ Much work in Minimalism has three main operations Merge, Agree, and Move or Internal Merge. Merge combines two expressions, either words or phrases, to form a larger expression with the same label as one of the expressions (Chomsky 1995b: 244). Its operation can be presented as follows:

Figure 1: insert caption

³A procedural approach doesn't necessarily involve a very simple grammatical system. The Standard Theory of transformational grammar (Chomsky 1965) is procedural but has many different rules, both phrase structure rules and transformations.

In the case of English, the first alternative is represented by situations where a lexical head combines with a complement while the second is represented by situations where a specifier combines with a phrasal head.

Agree, as one might suppose, offers an approach to various kinds of agreement phenomena. It involves a probe, which is a feature or features of some kind on head, and a goal, which the head c-commands. At least normally, the probe is an uninterpretable feature or features with no value and the goal has a matching interpretable feature or features with appropriate values. Agree values the uninterpretable feature or features and they are ultimately deleted, commonly after they have triggered some morphological effect. Agree can be represented as follows (where the 'u' prefix identifies a feature as uninterpretable.):⁴

Figure 2: insert caption

Unsurprisingly subject-verb agreement is one manifestation of Agree, where X is a T(ense) and Y is a nominal phase, for Minimalism a DP, inside the complement of T. Here, and elsewhere, Agree is a non-local relation involving elements which are not sisters. This contrasts with the situation in HPSG, in which subject-verb agreement is a consequence of a relation between the subject and its VP sister and a relation between the VP and the V that heads it.

Finally, Move or Internal Merge is an operation which makes a copy of a constituent of some expression and merges it with the expression. The original element that is copied normally undergoes deletion. The process can be presented as follows:

This covers both the A'-movement process assumed for unbounded dependency constructions such as wh-interrogatives and the A-movement process assumed for raising sentences and passives. A question arises about so-called head-movement add referwhere a head moves to a higher head position. This appears to mean that it must

ences

⁴On standard assumptions, the goal also has some uninterpretable feature, which renders it 'active', i. e. capable of undergoing Agree. This is ultimately deleted, possibly after they have triggered some morphological effect.

Figure 3: insert caption

be possible for the copy to be merged with the head of the expression that contains it. However, this is incompatible with the widely assumed extension condition, which requires Merge to produce a larger structure. One response is the idea espoused in Chomsky (1995a: 368; 2001: 37) that head-movement takes place not in the syntax but in the PF component, which maps syntactic representations to phonetic representations. It seems that its status is currently rather unclear.

The three operations just outlined interact with lexical items to provide syntactic analyses. It follows that the properties of constructions must largely derive from the lexical items that they contain. Hence, the properties of lexical items are absolutely central to Minimalism. Oddly, the obvious implication – that the lexicon should be a major focus of research – seems to be ignored. As Newmeyer (2005: 95, fn. 9) comments:

'...in no framework ever proposed by Chomsky has the lexicon been as important as it is in the MP [Minimalist Program]. Yet in no framework proposed by Chomsky have the properties of the lexicon been as poorly investigated.'

Sometimes it is difficult to derive the properties of constructions from the properties of visible lexical elements. But there is a simple solution: postulate an invisible element. The result is a large set of invisible functional heads. As we will see in the next section, these heads do the work in Minimalism that is done by phrase types and the constraints on them in HPSG.

Although Minimalism is a procedural approach and HPSG a declarative approach, there are some similarities between Minimalism and early HPSG, the approach presented in Pollard & Sag (1987; 1994). In much the same way as Minimalism has just a few general mechanisms, early HPSG had just a few general phrase types. Research in HPSG in the 1990s led to the conclusion that this is too

simple and that a more complex system of phrase types is needed to accommodate the full complexity of natural language syntax. Nothing like this happened within Minimalism, almost certainly because there was little attempt within this approach to deal with the full complexity of natural language syntax. As noted above, the approach has rarely been applied in detailed formal analyses. It looks too simple and it appears problematic in various ways. It is also a major source of the complexity that is characteristic of Minimalist syntactic structures, as we will see in the next section.

The Minimalist machinery has various implications for syntactic structure which we will explore in the next section. Here we will just highlight two points. First, the fact that Merge combines two expressions entails that syntactic structures are confined to binary branching and excludes various analyses that have been assumed within HPSG and other frameworks. Second, the assumption that expressions produced by Merge have the same label as one of the expressions that they consist of is essentially the assumption that all complex expressions are headed. For HPSG, as for many other approaches, there are headed expressions and non-headed expressions, e.g., coordinate structures. We will discuss both of these matters in the next section.

As emphasized above, a further important feature of Minimalism is the view that semantics and morphology are simple reflections of syntax. The idea that semantics is a simple reflection of syntax goes back to the early years of transformational grammar. One aspect of this idea was formalized as the Uniform Theta Assignment Hypothesis (UTAH) by citet [46] Baker 88a.

(8) Uniform Theta Assignment Hypothesis

Identical thematic relationships between items are represented by identical structural relationships between those items at the level of D-structure.

Minimalism abandoned the notion of D-structure, but within Minimalism the Hypothesis can be reformulated as follows:

(9) Uniform Theta Assignment Hypothesis (revised)

Identical thematic relationships between items are represented by identical structural relationships between those items when introduced into the structure.

We will look at some of the implications of this in the next section.

The idea that morphology is a simple reflections of syntax is also important. As we will discuss in the next section, it leads to abstract underlying structures and

complex derivations and to functional heads corresponding to various suffixes. Again, we will say more about this in the next section.

4 Different views of syntactic structure

The very different views of grammar that are assumed in Minimalism and HPSG naturally lead to very different views of syntactic structure. The syntactic structures of Minimalism are both very complex and very simple. This sounds paradoxical but it isn't. They are very complex in that is that they involve much more structure than those assumed in HPSG and other approaches. But they are very simple in that they have just a single ingredient – they consist entirely of local trees in which there is a head and a single non-head. From the standpoint of HPSG, they are both too complex and too simple. We will consider the complexity in 4.1 and then turn to the simplicity in 4.2.

4.1 The complexity of Minimalist structures

For HPSG, as the chapters in this volume have illustrated, linguistic expressions have a single relatively simple constituent structure with a minimum of phonologically empty elements.⁵ For Minimalism, they have a complex structure containing a variety of empty elements and with various constituents occupying more than one position in the course of the derivation. Thus the structures assumed within Minimalism are not at all minimalist. But this complexity is a more or less inevitable consequence of the Minimalist view of grammar outlined above.

There are a variety of sources of complexity, and some predate Minimalism.⁶ This is true especially of the idea that semantics and morphology are simple reflections of syntax. For the syntax-semantics relation, UTAH, which we introduced above, is particularly important. It leads to a variety of abstract representations and movement processes. Consider, for example, the following:

- (10) a. Who did Lee see?
 - b. Lee saw who

⁵The relatively simple structures of HPSG are not an automatic consequence of its declarative nature. Postal's Metagraph Grammar framework (formerly known Arc Pair Grammar) is a declarative framework with structures that are similar in complexity to those of Minimalism (see Postal 2010).

⁶For interesting discussion of the historical development of the ideas that characterize Minimalism, see Culicover & Jackendoff (2005: Chapters 2 and 3).

Who bears the same thematic relation to the verb see in (10a) as in (10b). Assuming UTAH, it follows that who in (10a) should be introduced in the object position which it occupies in (10b) and then be moved to its superficial position. Consider next the following:

- (11) a. Lee was seen by Kim.
 - b. Kim saw Lee.

Here, *Lee* bears the same thematic relation to the verb *see* in (11a) as in (11b). Hence, it follows that *Lee* in (11a) should be introduced in the object position which it occupies in (11b) and then be moved to its superficial subject position. Finally, consider these examples:

- (12) a. Lee seems to be ill.
 - b. It seems that Lee is ill.

Here, *Lee* bears the same thematic relation to *ill* in (12a) as in (12b). Thus, it follows that *Lee* in (12a) should be introduced in the same position as *Lee* in (12a). The standard Minimalist approach assumes that *Lee* in both examples originates in a position adjacent to *ill* and is moved a short distance in (12a) but a longer distance in (12a).

These analyses are more or less inevitable if one accepts UTAH. But how sound is UTAH? Work in HPSG shows that it is quite possible to capture both the syntactic and the semantic properties of these sentence types without the assumption that the crucial constituents occupy more than one position. Thus, there is no reason to accept UTAH.

The idea that semantics is a simple reflection of syntax has led to other kinds of complexity. For example, it has led to revival of the idea once characteristic of Generative Semantics that lexical items may derive from complex expressions which in some sense represent their meanings. Thus, Hale & Keyser (1993) argue that (4a) derives from a structure like that of (4b).

- (13) a. Kim shelved the books.
 - b. Kim put the books on the shelf.

One problem with this proposal is that *shelve* X means more than just *put* X *on the shelf.* Thus, (14a) is not equivalent to (14b).

- (14) a. Kim put his elbow on the shelf.
 - b. Kim shelved his elbow.

Moreover, denominal verbs can have many different interpretations.

- (15) a. Kim saddled the horse.(Kim put the saddle on the horse.)
 - b. Lee chaired the meeting.(Lee was the chairperson of the meeting.)
 - c. Sandy skinned the rabbit.(Sandy removed the skin from the rabbit.)
 - d. Kim pictured the scene.(Kim constructed a mental picture of the scene.)
 - e. They stoned the criminal. (They threw stones at the criminal.)
 - f. He fathered three children.(He was the biological father of three children.)
 - g. He mothers his students.(He treats his students the way a mother would.)

Denominal verbs need to be associated with the correct meanings, but there is no reason to think that syntax has a role in this.⁷

The idea that morphology is a simple reflection of syntax also leads to syntactic complexity. The fact that verbs in English and many other languages are marked for tense leads to the assumption that there is a T(ense) head at the heart of clause structure. Similarly the fact that nouns in English and other languages are marked for number leads to the assumption that there is a Num(ber) head at the heart of noun phrase structure. These elements are not solely motivated by morphology. The assumption that verbs move to T and nouns to Num in some languages but not others provides a way of accounting for cross-linguistic word order differences. However, assumptions about morphology are an important part of the motivation.

Another source of complexity which also predates Minimalism is the assumption that all structures are binary branching. As Culicover & Jackendoff (2005: 112-116) note, this idea goes back to the 1980s. It entails that there can be no structures of the form in figure 4. Rather all structure must take the form in figure 5 or figure 6.

As Culicover and Jackendoff discuss, the arguments for the binary branching restriction have never been very persuasive. Moreover, it is incompatible with various analyses which have been widely accepted in HPSG and other frameworks. We will return to this topic in 4.2.

Bob: Prob-

ably there

should ti
be some reference to HPSG o
work on morphology. ti

⁷See Culicover & Jackendoff (2005: 53–56) for further discussion.

Figure 4: insert caption

Figure 5: insert caption

Figure 6: insert caption

As noted in section 3, the simplicity of the Minimalist grammatical system means the properties of constructions must largely derive from the lexical items that they contain. Hence, the properties of lexical items are absolutely central to Minimalism and often this means the properties of phonologically empty items, especially empty functional heads. Thus, a large set of such elements is a central feature of Minimalism. These elements do much the same work as phrase types and the associated constraints in HPSG.

The contrast between the two frameworks can be illustrated with unbounded dependency constructions. Detailed HPSG analyses of various unbounded dependency constructions are set out in Sag (1997; 2010) and Ginzburg & Sag (2000), involving a complex system of phrase types. For Minimalism, unbounded dependency constructions are headed by a phonologically empty complementizer (C) and have either an overt filler constituent or an invisible filler (an empty operator) in their specifier position. Essentially, then, they have the following structure:

Figure 7: insert caption

All the properties of the construction must stem from the properties of the C that heads it.

An important unbounded dependency construction is relative clauses. In English there are *wh*-relatives and non-*wh*-relatives and finite and non-finite relatives. *Wh*-relatives are illustrated by the following:

- (16) a. someone [who you can rely on]
 - b. someone [on whom you can rely]
- (17) a. * someone [who to rely on]
 - b. someone [on whom to rely]

These show that whereas finite *wh*-relatives allow either an NP or a PP as the filler, non-finite *wh*-relatives only allow a PP. In the HPSG analysis of Sag (1997), the facts are a consequence of constraints on two phrase types. A constraint on the type *fin-wh-fill-rel-cl* allows the first daughter to be an NP or a PP while a constraint on *inf-wh-fill-rel-cl* requires the first daughter to be a PP. For Minimalism, the facts must be attributed to the properties of the complementizer. There must be a complementizer which takes a finite TP complement and allows either an NP or a PP as its specifier and another complementizer which takes a non-finite TP complement (with an unexpressed subject) and only allows a PP as its specifier.

Non-*wh*-relatives require further phrase types within HPSG and further complementizers in Minimalism. However, rather than consider this, we will look at another unbounded dependency construction: *wh*-interrogatives. The basic data that needs to be accounted for is illustrated by the following:

- (18) a. Who knows?
 - b. I wonder [who knows].
 - c. Who did Kim talk to?

- d. I wonder [who Kim talked to].
- e. I wonder [who to talk to].

Like wh-relatives, wh-interrogatives can be finite and non-finite. When they are finite their form depends on whether the wh-phrase is subject of the highest verb or something else. When it is subject of the highest verb, it is followed by what looks like a VP although it may be a clause with a gap in subject position. When the wh-phrase is something else, the following clause shows auxiliaryinitial order if it is a main clause and subject-initial order if it is not. Non-finite wh-interrogatives are a simple matter, especially as the filler does not have to be restricted in the way that it does in non-finite wh-relatives. Ginzburg & Sag (2000) present an analysis which has two types for finite wh-interrogatives, one for subject-wh-interrogatives such as those in (18a) and (18b), and another for non-subject-wh-interrogatives such as those in (18c) and (18d). The latter is subject to a constraint requiring it to have the same value for the features IC (INDEPENDENT-CLAUSE) and INV (INVERTED). Main clauses are [IC +] and auxiliary-initial clauses are [INV +]. Hence the constraint ensures that a nonsubject-wh-interrogative shows auxiliary-initial order just in case it is a main clause.

How can the facts be handled within Minimalism? As noted above, Minimalism analyses auxiliary-initial order as a result of movement of the auxiliary to C. It is triggered by some feature of C. Thus C must have this feature just in case (18a) it heads a main clause and (18b) the *wh*-phrase in its specifier position is not the subject of the highest verb. There are no doubt various ways in which this might be achieved, but the key point is the properties of a phonologically empty complementizer are crucial.

Borsley (2006b; 2017) discusses Minimalist analyses of relative clauses and *wh*-interrogatives and suggests that at least eight complementizers are necessary. One is optionally realized as *that*, and another is obligatorily realized as *for*. The other six are always phonologically empty. But it has been clear since Ross (1967) and Chomsky (1977) that relative clauses and *wh*-interrogatives are not the only unbounded dependency constructions. Here are some others:

(19) a. What a fool he is!

(*Wh*-exclamative clause)

b. The bagels, I like.

(Topicalized clause)

c. Kim is more intelligent [than Lee is].

(Comparative-clause)

d. Kim is hard [to talk to].

(*Tough*-complement-clause)

e. Lee is too important [to talk to].

(Too-complement-clause)

small caps? – RF

small caps? – RF

Bob: We could probably say more here, e.g. referring to Pesetsky and Torrego's account of the contrast between subject and nonsubjectwhinterrogatives.

but I'm

f. [The more people I met], [the happier I became]. (*The*-clauses)

Each of these constructions will require at least one empty complementizer. Thus, a comprehensive account of unbounded dependency constructions will require a large number of such elements. But a large set of complementizers makes no distinction between properties shared by some or all elements and properties restricted to a single element. There are a variety of shared properties. Many of the complementizers will take a finite complement, many others will take a non-finite complement, and some will take both. There will also be complementizers which take the same set of specifiers. Most will not attract an auxiliary, but some will, not only the compementizer in an example like (18c) but also the complementizers in the following, where the auxiliary is in bold:

- (20) a. Only in Colchester *could* such a thing happen.
 - b. Kim is in Colchester, and so is Lee.
 - c. Such is life.
 - d. The more Bill smokes, the more does Susan hate him.

Thus, there are generalizations to be captured here. The obvious way to capture them is with the approach developed in the 1980s in HPSG work on the hierarchical lexicon, i.e. a detailed classification of complementizers which allows properties to be associated not just with individual complementizers but also with classes of complementizers. With this it should be possible for Minimalism not just to get the facts right but to capture the full set of generalizations. In many ways such an analysis would be mimicking the HPSG approach with its hierarchy of phrase types. But in the present context the main point is that the Minimalist approach to unbounded dependency constructions which leads to considerable complexity.

Thus, a variety of features of Minimalism lead to structures that are much more complex than those of HPSG. HPSG shows that this complexity is unnecessary given a somewhat richer conception of grammar.

4.2 The simplicity of Minimalist structures

As we emphasized above, while minimalist structures are very complex, they are also simple in the sense that they have just a single ingredient, local trees consisting a head and a single non-head. To most outsiders this looks too simple.

We look first at binary branching. As we noted above, the assumption that

Bob: It might make sense to say something about Rizzi's 'split CP' analysis which adds a lot more complex-

ity, and

Cinque's approach to adverb

⁸For a fuller discussion of the issues see Borsley (2006b; 2017)

all branching is binary is incompatible with various analyses which have been widely accepted in HPSG and other frameworks. For example, it means that the bracketed VP in (21), which contains two complements, cannot have the ternary branching structure in figure 8.

(21) Kim gave a book to Lee.

Figure 8: insert caption

Instead it has been assumed since Larson (1988) that it has something like the following structure:

Figure 9: insert caption

It is assumed that the verb originates in the lower VP and is moved into the higher VP.⁹ The main argument for such an analysis appears to involve anaphora, especially contrasts like the following:

 $^{^9 \}mbox{The higher V}$ position to which the verb moves is commonly labelled v ('little v') and the higher phrase vP.

- (22) a. John showed Mary herself in the picture.
 - b. * John showed herself Mary in the picture.

The first complement can be the antecedent of a reflexive which is the second complement, but the reverse is not possible. If constraints on anaphora refer to constituent structure, the contrast suggests that the second NP should be lower in the structure than the first NP. But, as discussed in Chapter ??, it is assumed in HPSG that constraints on anaphora refer not to constituent structure but to ARG-ST lists. On this view, anaphora can provide no argument for the complex structure in (24).

The fact that Merge combines two expressions also means that the auxiliary-initial clause in (23) cannot have a flat structure with both subjects and complement(s) as sisters of the verb, as in (10).

(23) Will Kim be here?

Figure 10: insert caption

It is standardly assumed that it has a structure of the following form:

Will is analysed as a T(ense) element which moves to the C(omplementizer) position. An analysis like this is essentially the only possibility within Minimalism.

It is not just English auxiliary-initial clauses that cannot have a ternary branching analysis within Minimalism but verb-initial clauses in any language. A notable example is Welsh, which has verb-initial order in all types of finite clause. Here are some relevant examples: ¹⁰

(24) a. Mi/Fe gerddith Emrys i 'r dre.

PRT walk.FUT.3SG Emrys to the town
'Emrys will walk to the town.'

which chapter
- RF

Bob: We should probably note that some HPSG work, e.g. yours involves a different binary branching structure.

¹⁰Positive main clause verbs are optionally preceded by a particle (*mi* or *fe*). We have included this in (24a) but not in (24b). When it appears it triggers so-called soft mutation. Hence (24a) has *gerddith* rather than the basic form *cerddith*, which is seen in (24b).

Figure 11: insert caption

b. Dywedodd Megan [cerddith Emrys i 'r dre]. say.PAST.3SG Megan walk.FUT.3SG Emrys to the town 'Megan said Emrys will walk to the town.'

A variety of transformational work, including work in Minimalism, has argued for an analysis like (23) for Welsh finite clauses (see e.g., Jones & Thomas 1977, Sproat 1985, Sadler 1988, Rouveret 1994, and Roberts 2005). But Borsley (2006a) argues that there is no theory-neutral evidence for a structure of this kind. Hence, at least for Welsh, it seems that a simpler flat structure like (22) is preferable. 11

We turn now to the idea that all structures are headed. For HPSG, and many other approaches, there are headed structures and non-headed structure. Probably the most important example of the latter are coordinate structures such as those in (25) (see Sag 2003 for an HPSG analysis).

(25) [Kim and Lee] [sang and danced].

Much work in Minimalism assumes that coordinate structures are headed by the conjunction. This suggests that both coordinate structures in (25) are conjunction phrases. If they are phrases of the same kind, one would expect them to be interchangeable, but of course they are not.¹²

(26) * [Sang and danced] [Kim and Lee].

It is fairly clear that conjunctions cannot be ordinary heads. One might suggest that they are heads which have the properties of their specifier and complement,

Bob: I assume you favour a structure rather like (30) for German. I suppose we need to make it clear that (29) seems right for some verbinitial clauses, not all.

> Bob: Insert NPNconstruction here

¹¹Borsley (2016) argues for a similar flat structure for the Caucasian ergative SOV language Archi.

¹²For a more detailed critique of this approach see Borsley (2005).

and are thus nominal if they are nominal, verbal if they are verbal, etc. This would make them a unique type of a head with a unique relation to their specifier and complement. A problem for this approach is coordinate structures in which the conjuncts belong to different categories, e.g., the following:

- (27) a. Hobbs is [a linguist and proud of it].
 - b. Hobbs is [angry and in pain].

Such examples have led to HPSG analyses in which coordinate structures have whatever properties are common to the two conjuncts (Sag 2003). Within Minimalism, one might try to mimic such analyses by proposing that conjunctions have whatever properties are common to their specifier and complement. But a problem arises with an example like (12), where the conjuncts are not words but phrases.

(28) Kim [criticized and insulted] his boss.

To accommodate such examples, conjunctions would have to acquire not only part of speech information from the conjuncts but also selectional information. They would be heads which combine with a specifier and a complement to form an expression which, like a typical head, combines with a specifier and a complement. This would be a very strange situation. Perhaps recognizing the weaknesses of the ConjP analysis, Chomsky (2013) sketches a different approach to coordinate structures, in which the first conjunct is the head. This approach has a problem with a simple example like (36).

(29) [Kim and Lee] were late.

Since the first conjunct *Kim* is singular, Chomsky's approach will identify the coordinate structure as singular and one would expect the singular form *was* and not the plural form *were*. Further problems arise with the following examples:

- (30) a. [You and he] know yourselves well.
 - b. [You and I] know ourselves well.

In both examples the first conjunct is the second person, and in (30a), the form of the reflexive suggests that the coordinate structure is too. However, in (30b), the form of the reflexive suggests that the coordinate structure is first person. Clearly, this is because the second conjunct is first person. It is clear, then, that the properties of a coordinate structure reflects both conjuncts in a way that

¹³There have been attempts to argue that conjuncts are always phrases (Kayne 1994, Bruening 2018). But this position seems untenable (Abeillé 2006, Müller 2018).

makes them very different from ordinary headed structures. This suggests rather strongly that the idea that all structures are headed is untenable.

Finally, we want to consider the Move/Internal Merge approach to unbounded and other non-local dependencies. It is important to emphasize that this mechanism is involved not only in unbounded dependency constructions but also in passives, unaccusatives, and raising sentences, such as the examples in (31).

- (31) a. Kim has been hit.
 - b. Kim has disappeared.
 - c. Kim seems to be clever.

The two types of construction have rather different. For example, whereas the gaps in unbounded dependency constructions are positions in which overt NPs can appear, this is not true of the supposed gap positions.

- (32) a. * It has been hit Kim.
 - b. * It has disappeared Kim.
 - c. * It seems Kim to be clever.

This is a complication if they involve the same mechanism, but is unsurprising if they involve different mechanisms, as in HPSG and most other frameworks.

The Move/Internal Merge approach seems quite plausible for typical examples of an unbounded dependency, but issues arise with less typical examples. Within this approach one expects to see a constituent in the tree and a matching gap somewhere inside its sister. This is what we commonly find, but there are unbounded dependency constructions in which there is a gap but no visible higher constituent matching it. Consider e.g., the following:

- (33) a. the book [Kim bought _]
 - b. Lee is too important [for you to talk to _].
 - c. Lee is important enough [for you to talk to _].
 - d. Kim is easy [for anyone to talk to _].____

Within Minimalist assumptions, it is more or less necessary to assume that such examples contain an invisible filler (a so-called empty operator). Unless there is some independent evidence for such invisible fillers, they are little more than an ad hoc device to maintain the Move/Internal Merge approach. Within the HPSG SLASH-based approach to unbounded dependencies, there is no assumption that there should always be a filler at the top of an unbounded dependency. Hence, the examples in (33) are completely unproblematic.

nice underlines needed – RF There are also unbounded dependency constructions which seem to have not a gap but a resumptive pronoun (RPs). Among many languages that are relevant here is Welsh, which has RPs in both *wh*-interrogatives and relative clauses, as the following illustrate:

- (34) a. Pa ddyn werthodd Ieuan y ceffyl iddo **fo**? which man sell.past.gsg Ieuan the horse to.gsgm he 'Which man did Ieuan sell the horse to?'
 - b. y dyn werthodd Ieuan y ceffyl iddo **fo**the man sell.past.gsg Ieuan the horse to he
 'the man that Ieuan sold the horse to'

Willis (2011) and Borsley (2010; 2013)) present evidence that Welsh RPs involve the same mechanism as gaps. Within Minimalism, this means that they must involve Move/Internal Merge. But one expects to see a gap where Move/Internal Merge has applied. One Minimalist response suggests that instead of being deleted, the copy left behind by Move/Internal Merge is somehow turned into a pronoun (see McCloskey 2006). Another approach exploits the complexity of Minimalist structures and proposes that there is a gap in the structure somewhere near the RP. See Willis (2011), Aoun et al. (2001), and Boeckx (2003). For detailed objections to both approaches, see Borsley (2013: section 3). Within the SLASH-based approach of HPSG, there is no reason to think that there will always be a gap at the bottom of a dependency, and it is not difficult to accommodate RPs. See Borsley (2013) and Crysmann (2012; 2016) for slightly different approaches.¹⁴

Thus, there are variety of phenomena which suggest that the Minimalist view of constituent structure is too simple. The restriction to binary branching, the assumption that all structures are headed, and Move/Internal Merge all seem problematic. It looks, then, as if the Minimalist view is both too complex and too simple.

Bob: Could obviously say more here, but maybe it's not necessary.

There have been various attempts to accommodate such examples within the Move/Internal Merge approach, but it is not clear that any of them is satisfactory. In contrast such examples are expect within the SLASH-based approach Levine & Sag (2003).

 $^{^{14}}$ Also relevant here are examples with more than one gap such as the following:

⁽³⁵⁾ a. Who does Kim like _ and Lee hate _?

b. Which book did you criticize _ without reading _?

5 Psycholinguistic issues

Although they differ in a variety of ways, HPSG and Minimalism agree that grammatical theory is concerned with linguistic knowledge. They focus first and foremost on the question: what form does linguistic knowledge take? But there are other questions that arise here, notably the following:

- How is linguistic knowledge put to use?
- How is linguistic knowledge acquired?

Both questions are central concerns for psycholinguistics. Thus, in considering the answers that HPSG and Minimalism can give we are considering their relevance to psycholinguistics. Chomskyan approaches, including Minimalism, have focused mainly on the second question and have paid little attention to the first. HPSG has had more to say about the first and has shown less interest in the second. Clearly an adequate grammatical theory should be able to give satisfactory answers to both questions. In this section we will look briefly at the relation of the two theories to processing and then consider more fully their relation to acquisition.

5.1 Processing

We noted in section 3 that whereas HPSG is a declarative or constraint-based approach to grammar, Minimalism has a procedural view of grammar. This contrast means that HPSG is much more suitable then Minimalism for incorporation into an account of the processes that are involved in linguistic performance.

The most obvious fact about linguistic performance is that it involves both production and comprehension. As noted in section 3, this suggests that the knowledge that is used in production and comprehension should have a declarative character as in HPSG and not a procedural character as in Minimalism.

A second important feature of linguistic performance is that it involves different kinds of information utilized in any order that is necessary. Sag & Wasow (2011) illustrate with the following examples:

- (36) a. The sheep that was sleeping in the pen stood up.
 - b. The sheep in the pen had been sleeping and were about to wake up.

In (36a), morphological information determines the number of sheep before nonlinguistic information determines that pen means 'fenced enclosure' and not 'writing implement'. In (36b), on the other hand, non-linguistic information determines that pen means 'fenced enclosure' before morphological information determines the number of sheep. This is unproblematic for an approach like HPSG in which linguistic and non-linguistic knowledge takes the form of constraints which are not ordered in any way. It is quite unclear how the facts can be accommodated within Minimalism given that linguistic knowledge with its procedural form is quite different from non-linguistic knowledge.

Other features of HPSG also make it attractive from a processing point of view. Firstly, there is the fact emphasized earlier that linguistic expressions have a single relatively simple constituent structure with a minimum of phonologically empty elements. Secondly there is the fact that all constraints are purely local and never affect anything larger than a local tree consisting of an expression and its daughters. Both these properties make processing easier than it would otherwise be. Minimalism has neither property and hence again seems less satisfactory than HPSG in this area.

5.2 Acquisition

Acquisition has long been a central concern for Chomskyans and it has long been argued that acquisition is made possible by the existence of a complex innate language faculty. Since the early 1980s the dominant view has been that the language faculty consists of a set of principles responsible for the properties which they share and a set of parameters responsible for the ways in which they may differ. On this view acquiring a grammatical system is a matter of parameter-setting. Proponents of HPSG have always been sceptical about these ideas (see e.g., the remarks about parameters in Pollard & Sag (1994: 31) and have favoured accounts with 'an extremely minimal initial ontology of abstract linguistic elements and relations' (Green 2011: 378). Thus, the two frameworks appear to be very different in this area. It is not clear, however, that this is really the case.

The idea that acquiring a grammatical system is a matter of parameter-setting is only as plausible as the idea of a language faculty with a set of parameters. It seems fair to say that this idea has not been as successful as was hoped when it was first introduced in the early 1980s. Outsiders have always been sceptical, but they have been joined in recent times by researchers sympathetic to many Chomskyan ideas. Thus, Newmeyer (2005: 75) writes as follows:

[...] empirical reality, as I see it, dictates that the hopeful vision of UG as providing a small number of principles each admitting of a small number

of parameter settings is simply not workable. The variation that one finds among grammars is far too complex for such a vision to be realized.

At least some Minimalists have come to similar conclusions. Thus, Boeckx (2011: 206) suggests that:

some of the most deeply-embedded tenets of the Principles-and-Parameters approach, and in particular the idea of Parameter, have outlived their usefulness. (Boeckx 2011: 206)

Much the same view is expressed in Hornstein (2009: 164-168).

A major reason for scepticism about parameters is that estimates of how many there are seem to have steadily increased. Fodor (2003) considers that there might be just twenty parameters, so that acquiring a grammatical system is a matter of answering twenty questions. Newmeyer (2005: 44) remarks that 'I have never seen any estimate of the number of binary-valued parameters needed to capture all of the possibilities of core grammar that exceeded a few dozen'. However, Roberts & Holmberg (2005) comment that '[n]early all estimates of the number of parameters in the literature judge the correct figure to be in the region of 50-100'. Clearly, a hundred is a lot more than twenty. This is worrying. As Newmeyer (2006: 6) observes, 'it is an ABC of scientific investigation that if a theory is on the right track, then its overall complexity decreases with time as more and more problematic data fall within its scope. Just the opposite has happened with parametric theory. Year after year more new parameters are proposed, with no compensatory decrease in the number of previously proposed ones. Just the opposite has happened with parametric theory. Year after year more new parameters are proposed, with no compensatory decrease in the number of previously proposed ones'.

The growing scepticism appears to tie in with the proposal by Hauser, Chomsky & Fitch (2002: 1573)) that 'FLN [the "Narrow Language Faculty"] comprises only the core computational mechanisms of recursion as they appear in narrow syntax and the mappings to the interfaces". On this view there seems to be no place for parameters within FLN. This conclusion is also suggested by Chomsky's remarks (2005) that 'There is no longer a conceptual barrier to the hope that the UG [Universal Grammar] might be reduced to a much simpler form' (p. 8) and that 'we need no longer assume that the means of generation of structured expressions are highly articulated and specific to language' (p. 9). It's hard to see how such remarks are compatible with the assumption that UG includes 50–100 parameters. But if parameters are not part of UG, it is not at all clear what their status might be.

page

Fodor (1998: 346 - 347assumes that there are 20 to 30 parameters, Gibson & Wexler (1994: 408) mention the number 40. Baker (2003: 349) talks of 10 to 20 and **Roberts** & Holmberg (2005:541) of 50 to 100.

It looks, then, as Chomskyans are gradually abandoning the idea of parameters. But if it is abandoned, grammar acquisition is not a matter of parameter-setting. Hence, it is not clear that Chomskyans can invoke any mechanisms that are not available to HPSG.

This might suggest that HPSG and Minimalism are essentially in the same boat where acquisition is concerned. However, this is not the case given the very different nature of grammatical systems in the two frameworks. The complex and abstract structures that are the hallmark of Minimalism and earlier Chomskyan frameworks pose major problems for acquisition. It is this that has led to the assumption that acquisition must be assisted by a complex language faculty. In contrast, HPSG structures are quite closely related to the observable data and so pose less of a problem for acquisition and hence create less need for some innate apparatus. Thus, HPSG probably has an advantage over Minimalism in this area too.

There is one further issue that we should discuss here. It appears to be quite widely assumed that one advantage that Minimalism has over alternatives like HPSG is that it is more 'restrictive', in other words that it makes more claims about what is and is not possible in language. It is true that HPSG makes few claims about what is and is not possible in language. It is also true that it is good other things being equal for a theory to make such claims. It looks then as if there might be an argument for Minimalism here. It is not clear, however, that this is really the case.

Minimalism would be a restrictive theory making interesting claims about language assumed a relatively small number of parameters. However, it seems that the idea that there is just small number of parameters seems to have been abandoned, and at least some minimalists have abandoned the idea of parameters altogether. If there is either a large number of parameters or no parameters at all, Minimalism is not restrictive in the way that it once was. However, it does still embody some restrictions on grammatical systems. The assumption that syntactic structures are confined to binary branching is an important restriction, as is the assumption that expressions produced by Merge have the same label as one of the expressions that they consist of. But we have argued that both assumptions are quite dubious. It also seems to be assumed that case and agreement are features of all grammatical systems. This would be another important restriction, but this also seems dubious given that many languages show no clear evidence for one or both of these features. It looks to us, then, as if the restrictiveness of Minimalism is largely a matter of imposing certain dubious restrictions on grammatical systems.

These remarks should not be understood as a suggestion that vary without limit, as Joos<u>suggested. No doubt there are language universals and variation is limited.</u> However, most HPSG linguists would think that we don't have enough detailed formal analyses of enough phenomena in enough languages to have any firm conclusions about these matters. If this is right, a restrictive theory if not a realistic expectation at the present time.

provide reference

Abbreviations

Acknowledgements

6 To do

Tom Wasow: Mention Generative Semantics.

References

Abeillé, Anne. 2006. In defense of lexical coordination. In Olivier Bonami & Patricia Cabredo Hofherr (eds.), *Empirical issues in formal syntax and semantics*, vol. 6, 7–36. Paris: CNRS. http://www.cssp.cnrs.fr/eiss6/, accessed 2018-2-25.

Aoun, Joseph E. & Yen-hui Audrey Li. 2003. Essays on the representational and derivational nature of grammar. Cambridge, MA: MIT Press.

Aoun, Joseph, Lina Choueiri & Norbert Hornstein. 2001. Resumption, movement, and derivational economy. *Linguistic Inquiry* 32(3). 371–404.

Baker, Mark C. 2003. Linguistic differences and language design. *Trends in Cognitive Sciences* 7(8). 349–353.

Bender, Emily M. 2002. Number names in Japanese: A head-medial construction in a head-final language. In *Linguistic society of america*. USA.

Boeckx, Cedric. 2003. Islands and chains. Amsterdam: Benjamins.

Boeckx, Cedric. 2011. Approaching parameters from below. In Anna Maria Di Sciullo & Cedric Boeckx (eds.), *The biolinguistic enterprise: New perspectives on the evolution and nature of the human language faculty*, 205–221. Oxford: Oxford University Press.

Borsley, Robert D. 2005. Against ConjP. Lingua 115(4). 461–482.

Borsley, Robert D. 2006a. On the nature of Welsh VSO clauses. *Lingua* 116(4). 462–490.

- Borsley, Robert D. 2006b. *Syntactic and lexical approaches to unbounded dependencies*. Essex Research Reports in Linguistics 49. University of Essex. 31–57. http://core.ac.uk/download/pdf/4187949.pdf#page=35, accessed 2018-2-25.
- Borsley, Robert D. 2010. An HPSG approach to Welsh unbounded dependencies. In Stefan Müller (ed.), *Proceedings of the hpsg10 conference*, 47–67. Stanford: CSLI Publications.
- Borsley, Robert D. 2013. On the nature of Welsh unbounded dependencies. *Lingua* 133. 1–29. DOI:10.1016/j.lingua.2013.03.005
- Borsley, Robert D. 2016. Hpsg and the nature of agreement in Archi. In Oliver Bond, Greville G. Corbett, Marina Chumakina & Dunstan Brown (eds.), *Archi: Complexities of agreement in cross-theoretical perspective*, 118–149. Oxford: Oxford University Press.
- Borsley, Robert D. 2017. Explanations and 'engineering solutions'? Aspects of the relation between Minimalism and HPSG? In Stefan Müller (ed.), *Proceedings of the hpsg17 conference*, 82–102. Stanford: CSLI Publications.
- Bruening, Benjamin. 2018. The lexicalist hypothesis: Both wrong and superfluous. *Language*. To appear.
- Chomsky, Noam. 1965. Aspects of the theory of syntax. Cambridge, MA: MIT Press.
- Chomsky, Noam. 1977. *On wh-movement*. Peter Culicover, Tom Wasow & Adrian Akmajian (eds.). New York.
- Chomsky, Noam. 1993. A Minimalist Program for linguistic theory. In Kenneth Hale & Samuel Jay Keyser (eds.), *The view from building 20: Essays in linguistics in honor of Sylvain Bromberger* (Current Studies in Linguistics 24), 1–52. Cambridge, MA/London: MIT Press.
- Chomsky, Noam. 1995a. Bare phrase structure. In Hector Campos & Paula Kempchinsky (eds.), *Evolution and revolution in linguistic theory: Essays in honor of Carlos Otero*, 51–109. Washington, DC: Georgetown U Press.
- Chomsky, Noam. 1995b. *The Minimalist Program* (Current Studies in Linguistics 28). Cambridge, MA/London, England: MIT Press.
- Chomsky, Noam. 2001. Derivation by phase. In Michael Kenstowicz (ed.), *Ken Hale: A life in language*, 1–52. Cambridge, MA: MIT Press.
- Chomsky, Noam. 2002. *On nature and language*. Cambridge, UK: Cambridge University Press.
- Chomsky, Noam. 2005. Three factors in language design. *Linguistic Inquiry* 36(1). 1–22.
- Chomsky, Noam. 2013. Problems of projection. Lingua 130. 33-49.

- Crysmann, Berthold. 2012. Resumption and island-hood in Hausa. In Philippe de Groote & Mark-Jan Nederhof (eds.), Formal Grammar. 15th and 16th International Conference on Formal Grammar, FG 2010 Copenhagen, Denmark, August 2010, FG 2011 Lubljana, Slovenia, August 2011, vol. 7395 (Lecture Notes in Computer Science). Berlin: Springer Verlag.
- Crysmann, Berthold. 2016. An underspecification approach to Hausa resumption. In Doug Arnold, Miriam Butt, Berthold Crysmann, Tracy Holloway King & Stefan Müller (eds.), *Proceedings of the joint 2016 conference on head-driven phrase structure grammar and lexical functional grammar*, 194–214. Stanford: CSLI Publications.
- Culicover, Peter W. 1999. *Syntactic nuts: Hard cases, syntactic theory, and language acquisition.* Vol. 1 (Foundations of Syntax). Oxford: Oxford University Press.
- Culicover, Peter W. & Ray S. Jackendoff. 2005. *Simpler Syntax*. Oxford: Oxford University Press.
- Fodor, Janet Dean. 1998. Parsing to learn. *Journal of Psycholinguistic Research* 27(3). 339–374.
- Fodor, Janet Dean. 2003. Setting syntactic parameters. In Mark Baltin & Chris Collins (eds.), *The handbook of contemporary syntactic theory*, 730–767. Oxford: Blackwell Publishing Ltd.
- Gibson, Edward & Kenneth Wexler. 1994. Triggers. *Linguistic Inquiry* 25(3). 407–454.
- Ginzburg, Jonathan & Ivan A. Sag. 2000. *Interrogative investigations: The form, meaning, and use of English interrogatives* (CSLI Lecture Notes 123). Stanford, CA: CSLI Publications.
- Green, Georgia M. 2011. Elementary principles of Head-driven Phrase Structure Grammar. In Robert D. Borsley & Kersti Börjars (eds.), *Non-transformational syntax: Formal and explicit models of grammar: A guide to current models*, 9–53. Oxford, UK/Cambridge, MA: Blackwell Publishing Ltd.
- Hale, Kenneth & Samuel Jay Keyser. 1993. On argument structure and the lexical expression of syntactic relations. In Kenneth Hale & Samuel Jay Keyser (eds.), *The view from building 20: Essays in linguistics in honor of Sylvain Bromberger* (Current Studies in Linguistics 24), 53–109. Cambridge, MA/London: MIT Press.
- Hauser, Marc D., Noam Chomsky & W. Tecumseh Fitch. 2002. The faculty of language: What is it, who has it, and how did it evolve? *Science* 298. 1569–1579. DOI:10.1126/science.298.5598.1569
- Hornstein, Norbert. 2009. *A theory of syntax: Minimal operations and Universal Grammar*. Cambridge University Press. DOI:10.1017/CBO9780511575129

- Huybregts, Riny & Henk van Riemsdijk. 1982. *Noam chomsky on the Generative Enterprise*. Dordrecht: Foris.
- Jones, Morris & Alun R. Thomas. 1977. *The Welsh language: Studies in its syntax and semantics*. Cardiff: University of Wales Press.
- Kayne, Richard S. 1994. *The antisymmetry of syntax* (Linguistic Inquiry Monographs 25). Cambridge, MA: MIT Press.
- Levine, Robert D. & Ivan A. Sag. 2003. Some empirical issues in the grammar of extraction. In Stefan Müller (ed.), *Proceedings of the HPSG-2003 Conference, Michigan State University, East Lansing*, 236–256. Stanford, CA: CSLI Publications. http://csli-publications.stanford.edu/HPSG/2003/, accessed 2018-6-7.
- McCloskey, James. 2006. Resumption. In Martin Everaert & Henk van Riemsdijk (eds.), *The blackwell companion to syntax*, 94–117. Oxford: Blackwell.
- Michaelis, Laura A. & Knud Lambrecht. 1996. Toward a Construction-based theory of language function: The case of nominal extraposition. *Language* 72(2). 215–247.
- Müller, Stefan. 2015. The CoreGram project: Theoretical linguistics, theory development and verification. *Journal of Language Modelling* 3(1). 21–86. DOI:10.15398/jlm.v3i1.9
- Müller, Stefan. 2018. The end of lexicalism as we know it? Language 94(1). e1-e13.
- Newmeyer, Frederick J. 2005. Possible and probable languages: A Generative perspective on linguistic typology. Oxford: Oxford University Press.
- Newmeyer, Frederick J. 2006. A rejoinder to 'On the role of parameters in Universal Grammar: A reply to Newmeyer' by Ian Roberts and Anders Holmberg. http://people.ds.cam.ac.uk/mtb23/NSP/Rejoinder%20to%20R&H.pdf, accessed 2018-6-7.
- Pollard, Carl J. & Ivan A. Sag. 1987. *Information-based syntax and semantics* (CSLI Lecture Notes 13). Stanford, CA: CSLI Publications.
- Pollard, Carl J. & Ivan A. Sag. 1994. *Head-Driven Phrase Structure Grammar* (Studies in Contemporary Linguistics). Chicago: The University of Chicago Press.
- Postal, Paul M. 2003. (virtually) conceptually necessary. *Journal of Linguistics* 39. 599–620.
- Postal, Paul M. 2004. Skeptical linguistic essays. Oxford: Oxford University Press. Postal, Paul M. 2010. Edge-based clausal syntax: A study of (mostly) English object structure. Cambridge, MA: MIT Press.
- Pullum, Geoffrey K. & Barbara C. Scholz. 2001. On the distinction between generative-enumerative and model-theoretic syntactic frameworks. In Philippe de Groote, Glyn Morrill & Christian Retor (eds.), *Logical Aspects of Computational Linguistics: 4th International Conference* (Lecture Notes in Computer Science 2099), 17–43. Berlin: Springer Verlag.

- Roberts, Ian. 2005. *Principles and Parameters in a VSO language: A case study in Welsh.* Oxford: Oxford University Press.
- Roberts, Ian F. & Anders Holmberg. 2005. On the role of parameters in Universal Grammar: A reply to Newmeyer. In Hans Broekhuis, N. Corver, Riny Huybregts, Ursula Kleinhenz & Jan Koster (eds.), *Organizing grammar: Linguistic studies in honor of Henk van Riemsdijk* (Studies in Generative Grammar 86), 538–553. Berlin: Mouton de Gruyter.
- Ross, John Robert. 1967. *Constraints on variables in syntax*. MIT dissertation. http://files.eric.ed.gov/fulltext/ED016965.pdf, accessed 2018-2-25. Reproduced by the Indiana University Linguistics Club and later published as Ross (1986).
- Ross, John Robert. 1986. *Infinite syntax!* Norwood, New Jersey: Ablex Publishing Corporation.
- Rouveret, Alain. 1994. *Syntaxe du gallois: principes généraux et typologie.* Paris: Editions du CNRS.
- Sadler, Louisa. 1988. *Welsh syntax: a government binding approach.* London: Croom Helm.
- Sag, Ivan. 2003. Coordination and underspecification. In Jong-Bok Kim & Stephen Wechsler (eds.), *Proceedings of the ninth international conference on head-driven phrase structure grammar, kyung-hee university, seoul*, 267–291. Stanford: CSLI Publications.
- Sag, Ivan A. 1997. English relative clause constructions. *Journal of Linguistics* 33(2). 431–484.
- Sag, Ivan A. 2010. English filler-gap constructions. Language 86(3). 486–545.
- Sag, Ivan A. 2012. Sign-Based Construction Grammar: An informal synopsis. In Hans C. Boas & Ivan A. Sag (eds.), *Sign-based Construction Grammar* (CSLI Lecture Notes 193), 69–202. Stanford, CA: CSLI Publications.
- Sag, Ivan A. & Thomas Wasow. 2011. Performance-compatible competence grammar. In Robert D. Borsley & Kersti Börjars (eds.), *Non-transformational syntax: Formal and explicit models of grammar: A guide to current models*, 359–377. Oxford, UK/Cambridge, MA: Blackwell Publishing Ltd.
- Sag, Ivan A. & Thomas Wasow. 2015. Flexible processing and the design of grammar. *Journal of Psycholinguistic Research* 44(1). 47–63.
- Sproat, Richard. 1985. Welsh syntax and vso structure. *Natural Language and Linguistic Theory* 3(2). 173–216.
- Willis, David. 2011. The limits of resumption in welsh *wh*-dependencies. In Alain Rouveret (ed.), *Resumptive pronouns at the interfaces*, 189–222. Amsterdam: Benjamins.

Dear Bob and Stefan

very good outline, although a bit on the defensive side (I would be more offensive, but it's me...)

- a historical part is missing: HPSG and minimalism both come form generative transformational grammar it would be good for the (young) reader to know when they set apart and why
- Main point : is HPSG generative ? Ivan was insisting that HPSG is truer than Minimalism to the Syntactic structures program of a formal explicit model of language

you may mention Pullum and Schulz's distinction between generative enumerative syntax and model theoretic syntax

ð HPSG more compatible with infinite lexicon and gradient grammaticality

- sections 2 and 3

Underspecification is what distinguishes HPSG: may allow several word order without positing one derived from the other, different scope etc

HPSG compatible with autonomous morphology (ref chapter) not minimalism : distributed morphology

- section 4 syntax:

you may mention the different view on features: from the little I know of minimalism, they only have binary features (like structuralists) which have to be « checked » (for me it's pathetically informal, but you may have a more subtle view)

Binary branching is also not plausible for coordination (ref chapter),

Very different view on islands : no innate syntactic constraints but discourse infelicity and processing difficulties (ref Island chapter)

section 5 - you should enlarge the scope and title of section 5 or add a section on psychological plausibility: minimalisms supposes an innate UG, not HPSG,

HPSG is more compatible with views as that language acquisition uses more general categorising mechanisms (ref acquisition chapter)

HPSG more compatible with incremental one stage models of human parsing (using all avalaible information at each word, not processing syntactic structure than semantics) (ref performance compatible paper by Sag and Wasow 2011) it's string that there are HPSG people in true lg processing conferences (Cuny, Amlap) but (almost) no minimalists

the chomskyan rhetorics about biolinguistics should be torn to pieces > best anne

Chapter 33

HPSG and Categorial Grammar

Yusuke Kubota University of Tsukuba

Change epigram in chapters/03.tex or remove it there

Change the abstract in chapters/03.tex Nulla malesuada porttitor diam. Donec felis erat, congue non, volutpat at, tincidunt tristique, libero. Vivamus viverra fermentum felis. Donec nonummy pellentesque ante. Phasellus adipiscing semper elit. Proin fermentum massa ac quam. Sed diam turpis, molestie vitae, placerat a, molestie nec, leo. Maecenas lacinia. Nam ipsum ligula, eleifend at, accumsan nec, suscipit a, ipsum. Morbi blandit ligula feugiat magna. Nunc eleifend consequat lorem. Sed lacinia nulla vitae enim. Pellentesque tincidunt purus vel magna. Integer non enim. Praesent euismod nunc eu purus. Donec bibendum quam in tellus. Nullam cursus pulvinar lectus. Donec et mi. Nam vulputate metus eu enim. Vestibulum pellentesque felis eu massa.

1 Introduction

Duis pulvinar lacus id gravida ornare. Phasellus eu mauris sed tortor maximus condimentum ultrices in leo. Donec non erat nec nulla ullamcorper ornare sed id ex. Integer risus mauris, aliquet vel aliquam sed, feugiat quis nisi. Suspendisse quis nunc a turpis porttitor mollis. In luctus nulla id nunc dapibus, id rhoncus lorem pretium. Nunc eget fringilla velit, semper commodo diam. Suspendisse odio odio, euismod ac ornare sed, tincidunt ac arcu. Pellentesque vitae fringilla orci. Donec faucibus metus dui, nec iaculis purus pellentesque sit amet. Sed fermentum lorem non augue cursus, eu accumsan risus ullamcorper. Suspendisse rhoncus magna vitae enim pellentesque, eget porttitor quam finibus. Nunc ultricies turpis at quam vehicula, at tempus justo molestie. Proin convallis augue

Yusuke Kubota

ut turpis cursus rhoncus. Donec sed convallis justo. Sed sed massa pharetra ex aliquet eleifend. finality

Abbreviations

Acknowledgements

Chapter 34

HPSG and Lexical Functional Grammar

Doug Arnold University of Essex

Change epigram in chapters/03.tex or remove it there

Change the abstract in chapters/03.tex Nulla malesuada porttitor diam. Donec felis erat, congue non, volutpat at, tincidunt tristique, libero. Vivamus viverra fermentum felis. Donec nonummy pellentesque ante. Phasellus adipiscing semper elit. Proin fermentum massa ac quam. Sed diam turpis, molestie vitae, placerat a, molestie nec, leo. Maecenas lacinia. Nam ipsum ligula, eleifend at, accumsan nec, suscipit a, ipsum. Morbi blandit ligula feugiat magna. Nunc eleifend consequat lorem. Sed lacinia nulla vitae enim. Pellentesque tincidunt purus vel magna. Integer non enim. Praesent euismod nunc eu purus. Donec bibendum quam in tellus. Nullam cursus pulvinar lectus. Donec et mi. Nam vulputate metus eu enim. Vestibulum pellentesque felis eu massa.

1 Introduction

Duis pulvinar lacus id gravida ornare. Phasellus eu mauris sed tortor maximus condimentum ultrices in leo. Donec non erat nec nulla ullamcorper ornare sed id ex. Integer risus mauris, aliquet vel aliquam sed, feugiat quis nisi. Suspendisse quis nunc a turpis porttitor mollis. In luctus nulla id nunc dapibus, id rhoncus lorem pretium. Nunc eget fringilla velit, semper commodo diam. Suspendisse odio odio, euismod ac ornare sed, tincidunt ac arcu. Pellentesque vitae fringilla orci. Donec faucibus metus dui, nec iaculis purus pellentesque sit amet. Sed fermentum lorem non augue cursus, eu accumsan risus ullamcorper. Suspendisse rhoncus magna vitae enim pellentesque, eget porttitor quam finibus. Nunc ultricies turpis at quam vehicula, at tempus justo molestie. Proin convallis augue

Doug Arnold

ut turpis cursus rhoncus. Donec sed convallis justo. Sed sed massa pharetra ex aliquet eleifend. finality

Abbreviations

Acknowledgements

Chapter 35

HPSG and Dependency Grammar

Dick Hudson

Put abstract here with \abstract.

1 Two centuries of syntactic theory

In the early 19th century, European grammar was still dominated by the Latin grammar of Priscian which focused on individual words, their morphosyntactic properties and their relations (controlled especially by government and agreement); grammars and grammatical theory were mainly focused on school pedagogy, where the dominant model was the parsing of individual words. But these ideas, and especially government, defined 'dependency' relations holding most words together. The exception was the relation between the verb and its subject, which was still described in terms of the dominant classical logic based on the subject-predicate split. Putting these two traditions together, grammarians produced a mixed theory of sentence structure and a number of diagramming systems to represent such structures - most famously, the diagramming system invented in the USA by Reed & Kellogg (1877) (and still taught in the 21st century in some American schools). This is also the theory that Bloomfield brought back to the USA from Germany, and which he developed into Immediate Constituent analysis (which later turned into phrase-structure analysis); as in the earlier theory, the subject and predicate were equal, in contrast with other 'endocentric' constructions. Bloomfield combined this mixed theory with Wundt's theory of cognition, with the sentence as the 'whole' which defines its parts (and the word no longer in prime position), which allowed a consistent geometry, but phrase-structure trees did not appear till the middle of the 20th century. Meanwhile, however, both Humboldt and Grimm had suggested that the verb was

the sole head of the sentence, with the subject as one of its dependents, and by the 1860s and 1870s, grammarians in Hungary, Russia and Germany (apparently working independently) were arguing for this view, half a century before it was formalised by Tesniere and named 'dependency analysis'. The first 'stemma' diagram appeared (in Hungary) in 1873. Another 19th-century reaction against classical logic was the logical tradition started (in Germany) by Frege, who may have learned to draw stemmas at school; this tradition gave rise (in Poland) to categorial grammar, which some (including Chomsky) see as a version of dependency analysis. One outcome of this history was the present-day geographical split between American phrase structure (PS) and European dependency structure (DS). Variations on the dependency theme Unsurprisingly, therefore, dependency theory has had more impact on Europeans than on Americans. The general idea of word-word dependencies was built into a number of different theoretical packages which combined it with other ideas, notably multiple levels (the Russian Mel'cuk) and information structure (the Czechs Sgall and Hajicova). However, dependency structure has also been popular internationally in natural-language processing (represented perhaps most notably by the Stanford Parser). 'Plainvanilla' versions of DS and PS are very similar and are weakly equivalent, but as with phrase structure, such theories need to be supplemented, giving rise to theories in which structures are much richer. One such theory is Word Grammar (WG), which is probably closer to HPSG than any of the other DS theories. In WG, a word is allowed to depend on more than one other word (like re-entrance in HPSG) and dependencies are combined with extra mechanisms for coordination and for word order. This theory will be the main point of comparison with HPSG in the rest of the chapter.

2 Signs, constructions and levels

The contrast between PS and DS is orthogonal to choices about the number of levels (syntax, morphology, etc) and how they are related, but of course these choices are essential for any theoretical package. As in PS theories, different DS theories assume different answers, but Word Grammar takes a rather conservative position in which syntax is distinct both from morphology and from semantics. This view is hard to reconcile with the claim that language consists of 'constructions' or 'signs', both of which assume a direct link between 'form' and 'meaning'. In this view, units of phonological 'form' are only indirectly linked to units of meaning. Approaches which evoke 'signs' or 'constructions' can also be challenged for their conservative assumptions about plain-vanilla surface PS.

Arguably, DS is a better basis for capturing the fine detail of idiosyncratic constructions since these always involve individual lexical items linked by dependencies, and typically focus on just one dependent of a given lexeme rather than on entire multi-dependent phrases. Networks WG takes the whole of language (not just the lexicon) to be a gigantic network, which is a step further than HPSG (where PS rules are outside the network); the network is also not assumed to be a DAG because mutual dependency is allowed. One of the characteristics of network analyses is the central role of relation types (i.e. HPSG attributes). According to WG, but not HPSG, these types form a typed hierarchy which parallels the typed hierarchy of non-relational 'entities' such as words, phonemes and so on; and in both hierarchies, properties are inherited by (a special formalisation of) default inheritance. One of the consequences of this treatment of relations is that, just like entities, they can freely be created and learned as required, so there is no need to assume a universal hard-wired reservoir of relations. This is particularly helpful in DS, where dependencies are typed but different languages require different classifications and distinctions. Word order Another similarity between WG and HPSG is in the treatment of word order. In both theories, dominance (i.e. daughterhood in HPSG and dependency in WG) is separated from linear precedence. In WG, a word's position is treated as one of the word's property's linked to a second property ('landmark'), the word from which it takes its position; the word's landmark is normally the word on which it depends, but exceptions are allowed in cases such as extraction and pied piping. The landmark relation allows a treatment of pied piping which avoids the feature-percolation of HPSG.

3 Words, nodes and semantic phrases

The final topic is the Achille's heel of DS: the completely flat structures where a word has two or more dependents. This is problematic in DS (but not, of course, in HPSG) in examples such as typical French house, meaning 'typical for a French house', because there is no syntactic node that could carry the meaning 'French house'. Current WG provides a solution which moves WG in the direction of PS by distinguishing types from tokens, and then distinguishing 'sub-tokens' of tokens. In this analysis, the token house is distinct not only from the type HOUSE, but also from the sub-token house' which is modified by the dependent French, which in turn is distinct from house' modified by typical. Sub-tokens are very similar in function to the phrases of HPSG but arguably not quite equivalent.

Abbreviations

Acknowledgements

References

Reed, Alonzo & Brainerd Kellogg. 1877. *Higher lessons in English: A work on English grammar and composition*. Projekt Gutenberg. http://www.gutenberg.org/ebooks/7188, accessed 2018-3-23.

Chapter 36

HPSG and Construction Grammar

Stefan Müller

Humboldt-Universität zu Berlin

This chapter deals with Construction Grammar and its relation to HPSG. The short version of the message is: HPSG is a Construction Grammar. It was right from the beginning and over the years certain aspects were adapted allowing to capture generalizations over phrasal patterns. In what follows I will first say what Construction Grammars are (Section 1), I will explain why HPSG as developed in Pollard & Sag (1987; 1994) was a Construction Grammar and how it was changed to become even more Constructive (Section ??). Section 2 deals with phenomena that are usually dealt with by assuming phrasal constructions in CxG and explains why this is problematic and why lexical approaches are more appropriate. Section ?? shows how cases that should be treated phrasally can be handled in HPSG.

1 What is Construction Grammar?

The first question to answer in a chapter like this is: what is Construction Grammar? While it is relatively clear what a Construction is, the answer to the question regarding Construction Grammar is less straight-forward.

1.1 The notion Construction

Goldberg (2006: 5) defines Construction as follows:

Any linguistic pattern is recognized as a construction as long as some aspect of its form or function is not strictly predictable from its component parts or from other constructions recognized to exist. In addition, patterns are

stored as constructions even if they are fully predictable as long as they occur with sufficient frequency. (Goldberg 2006: 5)

She provides Table 1 with the examples for Constructions.

Table 1: Examples of constructions, varying in size and complexity according to Goldberg (2009)

Word	e.g., tentacle, gangster, the		
Word (partially filled)	e.g., post-N, V-ing		
Complex word	e.g., textbook, drive-in		
Idiom (filled)	e.g., like a bat out of hell		
Idiom (partially filled)	e.g., believe <one's> ears/eyes</one's>		
Covariational Conditional	The Xer the Yer		
	(e.g., The more you watch the less you know)		
Ditransitive	Subj V Obj1 Obj2		
	(e.g., She gave him a kiss;		
	He fixed her some fish tacos.)		
Passive	Subj aux VPpp (PPby)		
	(e.g., The cell phone tower was struck by lightening.)		

If one just looks at the definition of Construction, all theories currently on the market could be regarded as Construction Grammars. As Peter Staudacher pointed out in the discussion after a talk by Knud Lambrecht in May 2006 in Potsdam, lexical items are form-meaning pairs and the rules of phrase structure grammars come with specific semantic components as well, even if it is just functional application. So, Categorial Grammar, GB, GPSG, TAG, LFG, HPSG and even Minimalism would be Construction Grammars. If one looks at the examples of Constructions in Table 1 things change a bit. Idioms are generally not the focus of work in Mainstream Generative Grammar (MGG). MGG is usually concerned with explorations of the so-called Core Grammar as opposed to the Periphery, to which the idioms are assigned. The Core Grammar is the part of the grammar that is supposed to be acquired with help of innate domain specific knowledge, something the existence of which Construction Grammar denies. But if one takes Hauser, Chomsky & Fitch (2002) seriously and assumes that only the ability to form complex linguistic objects out of less complex linguistic objects (Merge) is part of this innate knowledge then the core/periphery distinction does not have much content and after all Minimalists could adopt a version of Sag's local, selection-based analysis of idioms (Sag 2007; Kay et al. 2015; Kay & Michaelis 2017).

1.2 Basic tenets of Construction Grammar

However, there are other aspects that really set Construction Grammar apart from MGG. Goldberg (2003) names the following aspects (in addition to Tenet 1, which is form-meaning pairs):

- **Tenet 3** A 'what you see is what you get' approach to syntactic form is adopted: no underlying levels of syntax or any phonologically empty elements are posited.
- **Tenet 4** Constructions are understood to be learned on the basis of the input and general cognitive mechanisms (they are constructed), and are expected to vary cross-linguistically.
- **Tenet 5** Cross-linguistic generalizations are explained by appeal to general cognitive constraints together with the functions of the constructions involved.
- **Tenet 6** Language-specific generalizations across constructions are captured via inheritance networks much like those that have long been posited to capture our non-linguistic knowledge.
- **Tenet 7** The totality of our knowledge of language is captured by a network of constructions: a 'construct-i-con.'

1.2.1 Language acquisition without the assumption of UG

Tenet 4 and 5 are basically what everybody should assume in MGG if Hauser, Chomsky & Fitch (2002) are taken seriously. Of course this is not what is done in large parts of the filed. The most extreme variant being Cinque & Rizzi (2010), who assume at least 400 functional heads being part of Universal Grammar (UG) and being present in all grammars of all languages although sometimes invisibly. Such assumptions beg the question why the genera of Bantu languages should be part of our genome and how they got there. Researchers working on language acquisition realized that the Principles & Parameters approach (Meisel 1995) makes wrong predictions. They now talk about Micro-Cues instead of parameters (Westergaard 2014) and these Micro-Cues are just features that can be learned. However, Westergaard still assumes that the features are determines by UG, an absurd assumption seen from a CxG perspective (and from the perspective of Hauser, Chomsky, Fitch and genetics in general (Bishop 2002)).

As research in computational linguistics shows, our input is rich enough to form classes, to determine the part of speech of lexical items and even to infer syntactic structure thought to be underdetermined by the input. For instance, Bod (2009) shows that the classical auxiliary inversion examples that Chomsky still uses in his Poverty of the Stimulus arguments can also be learned from language input available to children. See also (Freudenthal et al. 2006; 2007) on input-based language acquisition.

1.2.2 Surface orientation and empty elements

Tenet 3 requires a surface-oriented approach. Underlying levels and phonologically empty elements are ruled out. This excludes derivational models of transformational syntax assuming a D-structure and some derived structure or more recent derivational variants of Minimalism. There was a time where representational models of GB that did not assume a D-structure but just one structure with traces (Koster 1978: 1987: 235; Kolb & Thiersch 1991; Haider 1993: Section 1.4; Frey 1993: 14; Lohnstein 1993: 87–88, 177–178; Fordham & Crocker 1994: 38; Veenstra 1998: 58). Some of these analyses are rather similar to HPSG analyses as they are assumed today. Chomsky's Minimalist work (Chomsky 1995) assumes a derivational model and comes with a rhetoric of building structure in a bottom-up way and sending complete phases to the interfaces for pronunciation and interpretation. This is incompatible with Tenet 3, but in principle Minimalist approaches are very similar to Categorial Grammar, so there could be representational approaches adhering to Tenet 3.

A comment on empty elements is in order: all articles introducing Construction Grammar state that CxG does not assume empty elements. Most of the alternative theories do use empty elements: see König (1999) on Categorial Grammar, Gazdar, Klein, Pullum & Sag (1985: 143) on GPSG, Bresnan (2001: 67) on LFG, Bender (2000) and Sag, Wasow & Bender (2003: 464) on HPSG/Sign-Based Construction Grammar. There are results from the 60ies that show that phrase structure grammars containing empty elements can be translated into grammars that do not contain empty elements (Bar-Hillel, Perles & Shamir 1961: 153, Lemma 4.1). Grammars with empty elements often are more compact than those without empty elements and express generalizations more directly. See for example Bender (2000) for copulaless sentences in African American Venacular English and Müller (2014) on nounless NPs in German. The argument against empty elements usually refers to language acquisition: it is argued that empty elements cannot be learned since they are not present in the input. However, if the empty elements alternate with visible material it can be argued that what is learned is the

fact that a certain element can be left out. What is true though is that things like empty expletives cannot be learned since these empty elements are neither visible nor do they contribute to meaning. Their only purpose in grammars is to keep uniformity. For example, Grewendorf (1993) suggests an analysis of the passive in German that is parallel to the movement-based analysis of English passives. In order to account for the fact that the subject does not move in German, he suggests an empty expletive pronoun that takes the subject position and that is connected to the original non-moved subject. Such elements cannot be acquired without innate knowledge about the IP/VP system and constraints about the obligatory presence of subjects. The CxG criticism is justified here.

A frequent argumentation for empty elements in MGG is based on the fact that there are overt realizations of an element in other languages (e.g., object agreement in Basque and focus markers in Gungbe). But since there is no language internal evidence for these empty elements they cannot be learned and one would have to assume that they are innate. This kind of empty elements is rightly rejected.

1.2.3 Inhertiance networks

This leaves us with Tenet 6 and inheritance networks. MGG does not make reference to inheritance hierarchies. HPSG did this right from the beginning in 1985 (Flickinger et al. 1985) for lexical items and since 1995 also for phrasal constructions (Sag 1997). LFG rejected the use of types but used macros in computer implementation. The macros were abbreviatory devices and did not play any role in theoretical work. This changed in 2004 where macros were suggested in theoretical work (Dalrymple et al. 2004). And although any connection to constructionist work is vehemently denied by some of the authors recent work in LFG has a decidedly constructional flavor (Asudeh, Dalrymple & Toivonen 2008; 2014). LFG differs from frameworks like HPSG though in assuming a separate level of c-structure. c-structure rules are basically context free phrase structure rules and they are not modeled by feature value pairs (although they could be (Kaplan 1995)). This means that it is not possible to capture generalizations regarding lexical items, lexical rules and phrasal schemata. While HPSG describes all of these elements with the same inventory and hence can use common supertypes in the description of all three this is not possible in LFG. TAG is also using inheritance in the Meta Grammar Lichte & Kallmeyer (2017).

citep*
yields
wrong
results
here

add reference

¹See Toivonen (2013) for an explicit reference to phrasal constructions in the senese of Construction Grammar.

1.2.4 Summary

If all these points are taken together, it is clear that most variants of MGG are not Construction Grammars. However, CxG had considerable influence on other frameworks so that there are constructionist variants of LFG and TAG. HPSG in the version of Sag (1997) (also called Constructional HPSG) and the HPSG dialect Sign-Based Construction Grammar are Construction Grammars that follow all the tenets mentioned above.

1.3 Variants of Construction Grammar

The previous section discussed the tenets of CxG and to what degree other frameworks adhere to them. This section deals with frameworks that have Construction Grammar explicitly in their name. The following variants are usually named:

- Berkeley Construction Grammar (Fillmore 1988; Kay & Fillmore 1999; Fried 2015)
- Cognitive Construction Grammar (Lakoff 1987; Goldberg 1995; 2006)
- Cognitive Grammar (Langacker 1987; 2000; 2008; Dąbrowska 2004)
- Radical Construction Grammar (Croft 2001)
- Embodied Construction Grammar (Bergen & Chang 2005)
- Fluid Construction Grammar (Steels & De Beule 2006; Steels 2011)
- Sign-Based Construction Grammar (Sag 2010; 2012)

Berkely Construction Grammar, Embodied Construction Grammar, Fluid Construction Grammar, and Sign-Based Construction Grammar are the ones that are more formal. All of these variants use feature value pairs and are constraint-based. They are sometimes also referred to as unification-based approaches. Berkeley Construction Grammar never had a consistent formalization. The concept of unification assumed by Kay & Fillmore (1999) was inappropriate (Müller 2006: Section 2.4) and the computation of construction-like objects (CLOs) suggested by Kay (2002) did not work either (Müller 2006: Section 3). Berkeley Construction Grammar was dropped by the authors, who joined forces with Ivan Sag and Tom Wasow and eventually came up with an HPSG variant that was named Sign-Based Construction Grammar (Sag 2012). The differences between Constructional HPSG (Sag 1997) and SBCG are to some extent cosmetic: semantic relations

got the suffix -fr for frame (like-rel became like-fr), phrases were called constructions (hd-subj-ph became subj-head-cxt) and lexical rules were called derivational constructions.² While this renaming would not have changed anything in terms of expressiveness of theories, there was another change that was not motivated by any of the tenets of Construction Grammar but rather by the wish to get a more restrictive theory: Sag (2007) changed the feature geometry of phrasal signs in a way that signs do not contain daughters. The information about mother-daughter relations is contained in lexical rules and phrasal schemata (Constructions) only. The phrasal schemata are more like GPSG phrase structure rules in licensing a mother node when certain daughters are present but without the daughters being part of the mother as it was common in HPSG from 1985 till Sag, Wasow & Bender (2003). This differs quite dramatically from what was done in Berkeley Construction Grammar, since BCxG explicitly favored a non-local approach. Arguments were not cancelled but passed up to the mother node. Adjuncts were passed up as well so that the complete internal structure of an expression is available at the top-most node. The advantage of BCxG (Fillmore et al. 1988) and Constructional HPSG (Sag 1997) is that complex expressions (e.g., idioms and other more transparent expressions with high frequency) can be stored as chunks containing the internal structure. This is not possible with SBCG, since phrasal signs never contain internal structures. For a detailed discussion of Sign-Based Construction Grammar see Müller (2016: Section 10.6.2).

Embodied Construction Grammar (Bergen & Chang 2005) uses typed feature descriptions for the description of linguistic objects and allows for discontinuous constituents. As argued by Müller (2016: Section 10.6.3), it is a notational variant of Reape-style HPSG (Reape 1994) (see Section 5 for discontinuous constituents in HPSG).

Fluid Construction Grammar is also rather similar to HPSG. An important difference is that FCG attaches weights to constraints, something that is usually not done in HPSG. But in principle there is nothing that forbids to add weights to HPSG as well and in fact it has been done and it should be done to a larger extend. Van Trijp (2013) tried to show that Fluid Construction Grammar is fundamentally different from SBCG but I think he failed in every single respect. See Müller (2017) for a detailed discussion, which cannot be repeated here for space reasons.

What makes SBCG different from other Construction Grammars is that SBCG assumes a strongly lexicalist stance (Sag & Wasow 2011): argument structure

check

 $^{^2}$ This renaming trick was so successful that it even confused some of the co-editors of the volume about SBCG (Boas & Sag 2012). See for example Boas (2014) and the reply in Müller & Wechsler (2014b).

is encoded lexically. A ditransitive verb is a ditransitive verb since it selects for three NP arguments. This selection is encoded in valence features of lexical items. It is not assumed that phrasal configurations can license additional arguments as it is in Radical Construction Grammar, Embodied Construction Grammar and in Fluid Construction grammar. The next section discusses phrasal CxG approaches in more detail. Section 3 then discusses patterns that should be analyzed phrasally and which are problematic for entirely head-driven theories like Categorial Grammar, Dependency Grammar and Minimalism.

2 Valence vs. phrasal patterns

```
Goldberg (1996; 2006); Goldberg & Jackendoff (2004)
Müller (2006); Müller & Wechsler (2014a); Müller (2018)
```

3 Phrasal patterns

Why more than just binary branching abstract schemata are needed:

- Jackendoff (2008): NPN construction
- Jacobs (2008)
- Müller (2016: Section 21.10.1)

Specialized constructions for special cases, e.g., Sag (2010).

Acknowledgements

I thank Bob Borsley, Rui Chaves, and Jean-Pierre Koenig for comments on the outline for this chapter and for discussion in general.

References

Asudeh, Ash, Mary Dalrymple & Ida Toivonen. 2008. Constructions with lexical integrity: Templates as the lexicon-syntax interface. In Miriam Butt & Tracy Holloway King (eds.), *Proceedings of the LFG 2008 conference*. Stanford, CA: CSLI Publications. http://csli-publications.stanford.edu/LFG/13/, accessed 2018-2-25.

- Asudeh, Ash, Gianluca Giorgolo & Ida Toivonen. 2014. Meaning and valency. In Miriam Butt & Tracy Holloway King (eds.), *Proceedings of the LFG 2014 conference*, 68–88. Stanford, CA: CSLI Publications.
- Bar-Hillel, Yehoshua, Micha A. Perles & Eliahu Shamir. 1961. On formal properties of simple phrase-structure grammars. *Zeitschrift für Phonetik, Sprachwissenschaft und Kommunikationsforschung* 14(2). 143–172.
- Bender, Emily M. 2000. *Syntactic variation and linguistic competence: The case of AAVE copula absence.* Stanford University dissertation. http://faculty.washington.edu/ebender/dissertation/, accessed 2018-2-25.
- Bergen, Benjamin K. & Nancy Chang. 2005. Embodied Construction Grammar in simulation-based language understanding. In Jan-Ola Östman & Mirjam Fried (eds.), *Construction Grammars: Cognitive grounding and theoretical extensions*, 147–190. Amsterdam: John Benjamins Publishing Co.
- Bishop, Dorothy V. M. 2002. Putting language genes in perspective. *TRENDS in Genetics* 18(2). 57–59.
- Boas, Hans C. 2014. Lexical approaches to argument structure: Two sides of the same coin. *Theoretical Linguistics* 40(1-2). 89–112.
- Boas, Hans C. & Ivan A. Sag (eds.). 2012. *Sign-based Construction Grammar* (CSLI Lecture Notes 193). Stanford, CA: CSLI Publications.
- Bod, Rens. 2009. From exemplar to grammar: integrating analogy and probability in language learning. *Cognitive Science* 33(4). 752–793.
- Bresnan, Joan. 2001. *Lexical-Functional Syntax*. Oxford, UK/Cambridge, USA: Blackwell.
- Chomsky, Noam. 1995. *The Minimalist Program* (Current Studies in Linguistics 28). Cambridge, MA/London, England: MIT Press.
- Cinque, Guglielmo & Luigi Rizzi. 2010. The cartography of syntactic structures. In Bernd Heine & Heiko Narrog (eds.), *The Oxford handbook of linguistic analysis*, 51–65. Oxford: Oxford University Press.
- Croft, William. 2001. *Radical Construction Grammar: Syntactic theory in typological perspective*. Oxford: Oxford University Press.
- Dąbrowska, Ewa. 2004. Language, mind and brain: Some psychological and neurological constraints on theories of grammar. Washington, D.C.: Georgetown University Press.
- Dalrymple, Mary, Ronald M. Kaplan & Tracy Holloway King. 2004. Linguistic generalizations over descriptions. In Miriam Butt & Tracy Holloway King (eds.), *Proceedings of the LFG 2004 conference*, 199–208. Stanford, CA: CSLI Publications. http://csli-publications.stanford.edu/LFG/9/, accessed 2018-2-25.

- Fillmore, Charles J. 1988. The mechanisms of "Construction Grammar". In Shelley Axmaker, Annie Jaisser & Helen Singmaster (eds.), *Proceedings of the 14th Annual Meeting of the Berkeley Linguistics Society*, 35–55. Berkeley, CA: Berkeley Linguistics Society.
- Fillmore, Charles J., Paul Kay & Mary Catherine O'Connor. 1988. Regularity and idiomaticity in grammatical constructions: The case of *let alone*. *Language* 64(3). 501–538.
- Flickinger, Daniel P., Carl J. Pollard & Thomas Wasow. 1985. Structure-sharing in lexical representation. In William C. Mann (ed.), *Proceedings of the Twenty-Third Annual Meeting of the Association for Computational Linguistics*, 262–267. Chicago, IL.
- Fordham, Andrew & Matthew Walter Crocker. 1994. Parsing with principles and probabilities. In Judith L. Klavans Philip Resnik (ed.), *The balancing act: combining symbolic and statistical approaches to language*. Las Cruces, New Mexico, USA: Association for Computational Linguistics.
- Freudenthal, Daniel, Julian M. Pine, Javier Aguado-Orea & Fernand Gobet. 2007. Modeling the developmental patterning of finiteness marking in English, Dutch, German, and Spanish using MOSAIC. *Cognitive Science* 31(2). 311–341.
- Freudenthal, Daniel, Julian M. Pine & Fernand Gobet. 2006. Modeling the development of children's use of optional infinitives in Dutch and English using MOSAIC. *Cognitive Science* 30(2). 277–310.
- Frey, Werner. 1993. Syntaktische Bedingungen für die semantische Interpretation: Über Bindung, implizite Argumente und Skopus (studia grammatica 35). Berlin: Akademie Verlag.
- Fried, Mirjam. 2015. Construction Grammar. In Tibor Kiss & Artemis Alexiadou (eds.), *Syntax theory and analysis: An international handbook*, vol. 42 (Handbooks of Linguistics and Communication Science), 974–1003. Berlin: Mouton de Gruyter.
- Gazdar, Gerald, Ewan Klein, Geoffrey K. Pullum & Ivan A. Sag. 1985. *Generalized Phrase Structure Grammar*. Cambridge, MA: Harvard University Press.
- Goldberg, Adele E. 1995. *Constructions: A Construction Grammar approach to argument structure* (Cognitive Theory of Language and Culture). Chicago/London: The University of Chicago Press.
- Goldberg, Adele E. 1996. Words by default: Optimizing constraints and the Persian complex predicate. *Berkeley Linguistic Society* 22. 132–146. http://roa.rutgers.edu/files/415-0900/roa-415-goldberg-2.pdf, accessed 2018-3-20.
- Goldberg, Adele E. 2003. Constructions: A new theoretical approach to language. *Trends in Cognitive Sciences* 7(5). 219–224.

- Goldberg, Adele E. 2006. *Constructions at work: The nature of generalization in language* (Oxford Linguistics). Oxford, New York: Oxford University Press.
- Goldberg, Adele E. 2009. The nature of generalization in language. *Cognitive Linguistics* 20(1). 93–127.
- Goldberg, Adele E. & Ray S. Jackendoff. 2004. The English resultative as a family of Constructions. *Language* 80(3). 532–568.
- Grewendorf, Günther. 1993. German: A grammatical sketch. In Joachim Jacobs, Arnim von Stechow, Wolfgang Sternefeld & Theo Vennemann (eds.), *Syntax Ein internationales Handbuch zeitgenössischer Forschung*, vol. 9.2 (Handbücher zur Sprach- und Kommunikationswissenschaft), 1288–1319. Berlin: Walter de Gruyter Verlag. DOI:10.1515/9783110095869.1
- Haider, Hubert. 1993. *Deutsche Syntax generativ: Vorstudien zur Theorie einer projektiven Grammatik* (Tübinger Beiträge zur Linguistik 325). Tübingen: Gunter Narr Verlag.
- Hauser, Marc D., Noam Chomsky & W. Tecumseh Fitch. 2002. The faculty of language: What is it, who has it, and how did it evolve? *Science* 298. 1569–1579. DOI:10.1126/science.298.5598.1569
- Jackendoff, Ray S. 2008. Construction after Construction and its theoretical challenges. *Language* 84(1). 8–28.
- Jacobs, Joachim. 2008. Wozu Konstruktionen? Linguistische Berichte 213. 3-44.
- Kaplan, Ronald M. 1995. The formal architecture of Lexical-Functional Grammar. In Mary Dalrymple, Ronald M. Kaplan, John T. Maxwell III & Annie Zaenen (eds.), *Formal issues in Lexical-Functional Grammar* (CSLI Lecture Notes 47), 7–27. Stanford, CA: CSLI Publications.
- Kay, Paul. 2002. An informal sketch of a formal architecture for Construction Grammar. *Grammars* 5(1). 1–19.
- Kay, Paul & Charles J. Fillmore. 1999. Grammatical Constructions and linguistic generalizations: The What's X Doing Y? Construction. *Language* 75(1). 1–33.
- Kay, Paul & Laura A. Michaelis. 2017. A few words to do with multiword expressions. In Cleo Condoravdi & Tracy Holloway King (eds.), *Festschrift for lauri karttunen*. Stanford, CA: CSLI Publications. To appear.
- Kay, Paul, Ivan A. Sag & Daniel P. Flickinger. 2015. A lexical theory of phrasal idioms. Ms. CSLI Stanford.
- Kolb, Hans-Peter & Craig L. Thiersch. 1991. Levels and empty categories in a Principles and Parameters based approach to parsing. In Hubert Haider & Klaus Netter (eds.), *Representation and derivation in the theory of grammar* (Studies in Natural Language and Linguistic Theory 22), 251–301. Dordrecht: Kluwer Academic Publishers.

- König, Esther. 1999. LexGram: A practical Categorial Grammar formalism. *Journal of Language and Computation* 1(1). 33–52.
- Koster, Jan. 1978. Locality principles in syntax. Dordrecht: Foris Publications.
- Koster, Jan. 1987. *Domains and dynasties: The radical autonomy of syntax*. Dordrecht: Foris Publications.
- Lakoff, George. 1987. Women, fire, and dangerous things: What categories reveal about the mind. Chicago: The University of Chicago Press.
- Langacker, Ronald W. 1987. *Foundations of Cognitive Grammar*. Vol. 1. Stanford, CA: Stanford University Press.
- Langacker, Ronald W. 2000. A dynamic usage-based model. In Michael Barlow & Suzanne Kemmer (eds.), *Usage-based models of language*, 1–63. Stanford, CA: CSLI Publications.
- Langacker, Ronald W. 2008. *Cognitive Grammar: A basic introduction*. Oxford: Oxford University Press.
- Lichte, Timm & Laura Kallmeyer. 2017. Tree-Adjoining Grammar: A tree-based constructionist grammar framework for natural language understanding. In *Proceedings of the AAAI 2017 Spring Symposium on Computational Construction Grammar and Natural Language Understanding* (Technical Report SS-17-02). Association for the Advancement of Artificial Intelligence.
- Lohnstein, Horst. 1993. *Projektion und Linking: Ein prinzipienbasierter Parser fürs Deutsche* (Linguistische Arbeiten 287). Tübingen: Max Niemeyer Verlag.
- Meisel, Jürgen. 1995. Parameters in acquisition. In Paul Fletcher & Brian MacWhinny (eds.), *The handbook of child language*, 10–35. Oxford: Blackwell Publishing Ltd.
- Müller, Stefan. 2006. Phrasal or lexical Constructions? *Language* 82(4). 850–883. DOI:10.1353/lan.2006.0213
- Müller, Stefan. 2014. Elliptical constructions, multiple frontings, and surface-based syntax. In Paola Monachesi, Gerhard Jäger, Gerald Penn & Shuly Wintner (eds.), *Proceedings of Formal Grammar 2004, Nancy*, 91–109. Stanford, CA: CSLI Publications.
- Müller, Stefan. 2016. *Grammatical theory: From Transformational Grammar to constraint-based approaches* (Textbooks in Language Sciences 1). Berlin: Language Science Press. DOI:10.17169/langsci.b25.167
- Müller, Stefan. 2017. Head-Driven Phrase Structure Grammar, Sign-Based Construction Grammar, and Fluid Construction Grammar: Commonalities and differences. *Constructions and Frames* 9(1). 139–174. DOI:10.1075/cf.9.1.05mul
- Müller, Stefan. 2018. Phrasal constructions, derivational morphology, constituent structure and (cross-linguistic) generalizations: A discussion of template-based

- *phrasal LFG approaches* (Conceptual Foundations of Language Science). Berlin: Language Science Press. http://hpsg.hu-berlin.de/~stefan/Pub/phrasal-lfg.html, accessed 2018-3-20. To appear.
- Müller, Stefan & Stephen Mark Wechsler. 2014a. Lexical approaches to argument structure. *Theoretical Linguistics* 40(1–2). 1–76. DOI:10.1515/tl-2014-0001
- Müller, Stefan & Stephen Mark Wechsler. 2014b. Two sides of the same slim Boojum: Further arguments for a lexical approach to argument structure. *Theoretical Linguistics* 40(1–2). 187–224.
- Pollard, Carl J. & Ivan A. Sag. 1987. *Information-based syntax and semantics* (CSLI Lecture Notes 13). Stanford, CA: CSLI Publications.
- Pollard, Carl J. & Ivan A. Sag. 1994. *Head-Driven Phrase Structure Grammar* (Studies in Contemporary Linguistics). Chicago: The University of Chicago Press.
- Reape, Mike. 1994. Domain union and word order variation in German. In John Nerbonne, Klaus Netter & Carl J. Pollard (eds.), *German in Head-Driven Phrase Structure Grammar* (CSLI Lecture Notes 46), 151–198. Stanford, CA: CSLI Publications.
- Sag, Ivan A. 1997. English relative clause constructions. *Journal of Linguistics* 33(2), 431–484.
- Sag, Ivan A. 2007. Remarks on locality. In Stefan Müller (ed.), *Proceedings of the 14th International Conference on Head-Driven Phrase Structure Grammar*, 394–414. Stanford, CA: CSLI Publications. http://csli-publications.stanford.edu/HPSG/2007/, accessed 2018-2-25.
- Sag, Ivan A. 2010. English filler-gap constructions. *Language* 86(3). 486–545.
- Sag, Ivan A. 2012. Sign-Based Construction Grammar: An informal synopsis. In Hans C. Boas & Ivan A. Sag (eds.), *Sign-based Construction Grammar* (CSLI Lecture Notes 193), 69–202. Stanford, CA: CSLI Publications.
- Sag, Ivan A. & Thomas Wasow. 2011. Performance-compatible competence grammar. In Robert D. Borsley & Kersti Börjars (eds.), *Non-transformational syntax:* Formal and explicit models of grammar: A guide to current models, 359–377. Oxford, UK/Cambridge, MA: Blackwell Publishing Ltd.
- Sag, Ivan A., Thomas Wasow & Emily M. Bender. 2003. Syntactic theory: A formal introduction. 2nd edn. (CSLI Lecture Notes 152). Stanford, CA: CSLI Publications.
- Steels, Luc (ed.). 2011. *Design patterns in Fluid Construction Grammar* (Constructional Approaches to Language 11). Amsterdam: John Benjamins Publishing Co.
- Steels, Luc & Joachim De Beule. 2006. *A (very) brief introduction to Fluid Construction Grammar.* Paper presented at the Third International Workshop on

- Scalable Natural Language Understanding (ScaNaLU 2006) June 8, 2006, following HLT/NAACL, New York City.
- Toivonen, Ida. 2013. English benefactive NPs. In Miriam Butt & Tracy Holloway King (eds.), *Proceedings of the LFG 2013 conference*, 503–523. Stanford, CA: CSLI Publications.
- van Trijp, Remi. 2013. A comparison between Fluid Construction Grammar and Sign-Based Construction Grammar. *Constructions and Frames* 5(1). 88–116.
- Veenstra, Mettina Jolanda Arnoldina. 1998. *Formalizing the Minimalist Program.* Rijksuniversiteit Groningen Ph.D. thesis.
- Westergaard, Marit. 2014. Linguistic variation and micro-cues in first language acquisition. *Linguistic Variation* 14(1). 26–45.

Name index

Abeillé, Anne, 166

Tibellie, Tillie, 100
Ackerman, Farrell, 31
Ajdukiewicz, Kazimierz, 64
Anderson, Stephen, 16, 18
Aoun, Joseph, 168
Aoun, Joseph E., 150
Asudeh, Ash, 118, 191
Bach, Emmon, 62
Baker, Mark C., 171
Baldridge, Jason, 26
Bar-Hillel, Yehoshua, 190
Bender, Emily M., 82, 83, 150, 190,
193
Beneš, Eduard, 80
Bergen, Benjamin K., 192, 193
Bierwisch, Manfred, 62
Bildhauer, Felix, 80, 81
Bird, Steven, 117, 118
Bishop, Dorothy V. M., 189
Bjerre, Tavs, 67
Boas, Hans C., 193
Bochner, Harry, 14
Bod, Rens, 190
Boeckx, Cedric, 168, 171
Bonami, Olivier, 15, 31, 42, 43, 118
Booij, Gert, 16
Borer, Hagit, 26
Borsley, Robert D., 67, 68, 70, 71, 161,
162, 165, 168
Bouma, Gosse, 28, 36, 40, 64, 65, 67,
68

Boyé, Gilles, 43 Brachman, Ronald, 27 Bresnan, Joan, 14, 16, 190 Briscoe, Ted, 34, 38, 39 Broadwell, George Aaron, 17, 19 Bruening, Benjamin, 15, 16, 166 Carpenter, Bob, 26, 41 Chang, Nancy, 192, 193 Chaves, Rui, 16 Chaves, Rui P., 65 Chomsky, Noam, 3, 7, 13, 69, 147, 151, 152, 154, 161, 166, 171, 188-190 Cinque, Guglielmo, 189 Cook, Philippa, 80, 81 Copestake, Ann, 34, 36, 38, 39 Crocker, Matthew Walter, 190 Croft, William, 192 Crysmann, Berthold, 15, 17, 18, 31, 42, Culicover, Peter W., 149, 156, 158 Dalrymple, Mary, 191 Davis, Anthony, 30, 31, 39 De Beule, Joachim, 192 Delais-Roussarie, Elisabeth, 118 Di Sciullo, Anna-Maria, 11 Donohue, Cathryn, 62, 75, 76, 83 Dost, Ascander, 17-19 Dabrowska, Ewa, 192

Emerson, Guy, 39

Name index

Engelkamp, Judith, 66 Erbach, Gregor, 66

Fanselow, Gisbert, 81
Feldhaus, Anke, 68
Fillmore, Charles J., 69, 192, 193
Fitch, W. Tecumseh, 151, 171, 188, 189
Flickinger, Dan, 191
Flickinger, Daniel, 27
Fodor, Janet Dean, 171
Fordham, Andrew, 190
Frank, Anette, 68
Freudenthal, Daniel, 190
Frey, Werner, 190
Fried, Mirjam, 192

Gazdar, Gerald, 63, 67, 80, 190 Gibson, Edward, 171 Ginzburg, Jonathan, 148, 159, 161 Giorgolo, Gianluca, 191 Goldberg, Adele E., 26, 46, 187–189, 192, 194 Green, Georgia M., 170 Grewendorf, Günther, 191 Gunji, Takao, 66

Haider, Hubert, 190
Hale, Kenneth, 157
Halle, Morris, 16
Harris, Alice, 17, 18
Haspelmath, Martin, 15–17
Hauser, Marc D., 151, 171, 188, 189
Hinrichs, Erhard W., 66, 72
Hoberg, Ursula, 81
Holmberg, Anders, 171
Hornstein, Norbert, 171
Hukari, Thomas E., 65
Huybregts, Riny, 149
Höhle, Tilman N., 62, 87, 117, 119

Jackendoff, Ray, 20 Jackendoff, Ray S., 13, 15, 149, 156, 158, 194 Jacobs, Joachim, 194 Jones, Morris, 165 Jurafsky, Daniel, 14, 41

Kallmeyer, Laura, 191

Kaplan, Ronald M., 191
Kasper, Robert T., 65
Kathol, Andreas, 18, 19, 67, 70, 72, 76–80
Kay, Paul, 46, 188, 189, 192
Kayne, Richard S., 166
Kellogg, Brainerd, 183
Keyser, Samuel Jay, 157
King, Paul, 82
Kiss, Tibor, 68
Klein, Ewan, 63, 117, 118, 190
Koenig, Jean-Pierre, 14, 15, 30, 31, 41, 43, 44, 46
Kolb, Hans-Peter, 190

Lahm, David, 38 Lakoff, George, 13, 192 Lambrecht, Knud, 149 Langacker, Ronald W., 192 Lascarides, Alex, 34, 36 Levine, Robert D., 65, 168 Li, Yen-hui Audrey, 150 Lichte, Timm, 191 Lohnstein, Horst, 190

König, Esther, 190

Malouf, Robert, 35 Marantz, Alec, 11, 15, 16, 26 McCawley, James D., 17 McCloskey, James, 168 Mchombo, Sam, 14, 16 Meier, Jane, 3
Meisel, Jürgen, 189
Meurers, Detmar, 38
Meurers, Walt Detmar, 68, 83
Michaelis, Laura A., 149, 189
Miller, Philip, 21, 31, 40, 41
Miller, Philip H., 117
Monachesi, Paola, 39
Müller, Stefan, 16, 39, 46, 66–72, 78, 81–83, 151, 166, 190, 192–194

Nakazawa, Tsuneko, 66, 72 Netter, Klaus, 68 Newmeyer, Frederick J., 154, 170, 171

Oliva, Karel, 68 Orgun, Cemil Orhan, 118

Perles, Micha A., 190
Pollard, Carl, 23, 25, 39, 41
Pollard, Carl J., 27, 64, 66, 72, 76, 77, 117, 154, 170, 187
Postal, Paul M., 147, 149, 152, 156
Przepiórkowski, Adam, 23, 83
Pullum, Geoffrey K., 63, 152, 190

Reape, Mike, 19, 62, 64, 67, 193
Reed, Alonzo, 183
Reis, Marga, 62
Richter, Frank, 30
Riehemann, Susanne Z., 45
Riemsdijk, Henk van, 149
Rizzi, Luigi, 70, 189
Roberts, Ian, 165, 171
Roberts, Taylor, 17
Ross, John Robert, 161, 177
Rouveret, Alain, 165

Sadler, Louisa, 165

Sag, Ivan, 21, 23, 25, 31, 39–41, 165, 166 Sag, Ivan A., 27, 62–64, 69, 71, 75, 76, 83, 117, 148, 149, 152, 154, 159–161, 168–170, 187, 188, 190– 194

Schmolze, James, 27 Scholz, Barbara C., 152 Shamir, Eliahu, 190 Skwarski, Filip, 118 Sproat, Richard, 165 Steedman, Mark J., 64 Steels, Luc, 192

Tegey, Habibullah, 17, 18 Thiersch, Craig L., 62, 190 Thomas, Alun R., 165 Toivonen, Ida, 191 Tseng, Jesse, 118

Uszkoreit, Hans, 63, 65, 66

Van Noord, Gertjan, 64, 65, 67, 68 Van Trijp, Remi, 193 Veenstra, Mettina Jolanda Arnoldina, 190

Wasow, Thomas, 152, 169, 190, 193 Webelhuth, Gert, 31 Wechsler, Stephen, 24 Wechsler, Stephen Mark, 193, 194 Wesche, Birgit, 68 Westergaard, Marit, 189 Wetta, Andrew C., 70, 72, 81 Wetta, Andrew Charles, 72 Wexler, Kenneth, 171 Williams, Edwin, 11 Willis, David, 168

Ørsnes, Bjarne, 68

Language index

Danish, 68

Dutch, 68

English

African American Venacular, 190

German, 68, 70, 76, 79, 190

Latin, 4

Spanish, 7

Wambaya, 83

Warlpiri, 62, 74-76, 83-84

Subject index

○, 73	114, 122, 124, 125, 128, 132, 134, 142, 144, 180, 182
acquisition, 189	Fluid Construction Grammar, 193
agreement, 72	functional application, 188
Categorial Grammar, 63, 188, 194 Cognitive Grammar, 192 Construction, 187 Construction Grammar, 187–194	GB, 188 GPSG, 63, 80, 188 immediate dominance, 63
Berkeley, 192 Cognitive, 192 Embodied, 192 Fluid, 192	language acquisition, 190 LFG, 188 linear precedence, 63
Radical, 192 Sign-Based, 192 Construction Grammar (CxG) Sign-Based, 192, 193 construction-like object, 192 coordination, 72 Core, 188	Mainstream Generative Grammar (MGG), 188 Merge, 188 Micro-Cues, 189 Minimalism, 147–173, 188, 194 order domain, 72–82
cycle in feature description, 73	parameter, 66
Dependency Grammar, 194 ellipsis, 72 Embodied Construction Grammar, 193	passive remote, 72 Periphery, 188 Poverty of the Stimulus, 190 Principles & Parameters, 189 prolegomena, 4
feature DOMAIN, 72 finality, 10, 52, 56, 58, 60, 94, 96, 98, 99, 102, 104, 106, 108, 110, 112,	relation O, 73 shuffle, 73

Subject index

relational constraint, 64–66

TAG, 188 topological field, 79 type headed-phrase, 73

unification, 192 Universal Grammar (UG), 189

Did you like this book?

This book was brought to you for free

Please help us in providing free access to linguistic research worldwide. Visit http://www.langsci-press.org/donate to provide financial support or register as a community proofreader or typesetter at http://www.langsci-press.org/register.

Head-Driven Phrase Structure Grammar: The handbook

change blurb in localmetadata.tex