Spectral Clustering

- What makes a good partition?
 - Maximize the number of within-group connections
 - Minimize the number of between-group connections

Graph Cuts

- Express partitioning objectives as a function of the "edge cut" of the partition
- Cut: Set of edges with only one vertex in a group:

$$cut(A,B) = \sum_{i \in A, j \in B} w_{ij}$$

Graph Cut Criterion

- Criterion: Minimum-cut
 - Minimize weight of connections between groups

$$arg min_{A,B} cut(A,B)$$

• Degenerate case:

- Problem:
 - Only considers external cluster connections
 - Does not consider internal cluster connectivity

Graph Cut Criteria

 Criterion: Normalized-cut Connectivity between groups relative to the density of each group

$$ncut(A,B) = \frac{cut(A,B)}{vol(A)} + \frac{cut(A,B)}{vol(B)}$$

vol(A): total weight of the edges with at least one endpoint in A

Produces more balanced partitions

- How do we efficiently find a good partition?
 - Problem: Computing optimal cut is NP-hard

Spectral Graph Partitioning

$$\begin{bmatrix} L_{11} & \dots & L_{1n} \\ \vdots & & \vdots \\ L_{n1} & \dots & L_{nn} \end{bmatrix} \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} = \lambda \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}$$

Spectral Graph Theory:

- Analyze the "spectrum" of matrix representing G
- Spectrum: Eigenvectors x_i of a graph Laplacian, ordered by the magnitude (strength) of their corresponding eigenvalues λ_i :

$$\Lambda = \{\lambda_1, \lambda_2, ..., \lambda_n\}$$
$$\lambda_1 \le \lambda_2 \le ... \le \lambda_n$$

• λ_2 and the corresponding eigenvector give us a partitioning.

Matrix Representations

Adjacency matrix (A):

- *n×n* matrix
- $A=[a_{ij}], a_{ij}=1$ if edge between node i and j_{ij}

- Important properties:
 - Symmetric matrix
 - Eigenvectors are real and orthogonal

	1	2	3	4	5	6
1	0	1	1	0	1	0
2	1	0	1	0	0	0
3	1	1	0	1	0	0
4	0	0	1	0	1	1
5	1	0	0	1	0	1
6	0	0	0	1	1	0

Matrix Representations

- Degree matrix (D):
 - *n×n* diagonal matrix
 - $D=[\mathbf{d}_{ii}], d_{ii}=$ degree of node i

	1	2	3	4	5	6
1	3	0	0	0	0	0
2	0	2	0	0	0	0
3	0	0	3	0	0	0
4	0	0	0	3	0	0
5	0	0	0	0	3	0
6	0	0	0	0	0	2

Matrix Representations

- Laplacian matrix (L):
 - *n×n* symmetric matrix

	1	2	3	4	5	6
1	3	-1	-1	0	-1	0
2	-1	2	-1	0	0	0
3	-1	-1	3	-1	0	0
4	0	0	-1	3	-1	-1
5	-1	0	0	-1	3	-1
6	0	0	0	-1	-1	2

Graph Laplacian

- Why we call it graph Laplacian?
 - Analogue to the Laplacian operator on multivariate continuous functions
 - Given a multivariate function $f: \mathbb{R}^d \to \mathbb{R}$, the Laplacian of f is the divergence of f's gradient

$$\Delta f(\mathbf{x}) = \nabla \cdot \nabla f(\mathbf{x})$$

Graph Laplacian

- Why we call it graph Laplacian?
 - Constructing Laplacian for graphs

Function: $f: V \to R$

Gradient: $g(e_k) = f(v_i) - f(v_j)$

	1	2	3	4	5	6
1	3	-1	-1	0	-1	0
2	-1	2	-1	0	0	0
3	-1	-1	3	-1	0	0
4	0	0	-1	3	-1	-1
5	-1	0	0	-1	3	-1
6	0	0	0	-1	-1	2

$$L = D - A$$

divergence(grad(A))=
$$\sum g(e_k)$$

= $3f(A) - f(B) - f(C) - f(D)$

Graph Laplacian

Laplacian matrix (L):

• *n×n* symmetric matrix

	1	2	3	4	5	6
1	3	-1	-1	0	-1	0
2	-1	2	-1	0	0	0
3	-1	-1	3	-1	0	0
4	0	0	-1	3	-1	-1
5	-1	0	0	-1	3	-1
6	0	0	0	-1	-1	2

Important properties:

•
$$x^T L x = \sum_{ij} L_{ij} x_i x_j = \sum_{(i,j) \in E} (x_i - x_j)^2 \ge 0$$
 for every x $L = D - A$

- Eigenvalues are non-negative real numbers, x=(1,...,1) then $L\cdot x=0$ and so $\lambda=\lambda_1=0$
- Eigenvectors are real and orthogonal

- We desire 2 reasonably large groups of vertices with very few edges between them
 - Let's assign +1 and -1 to each vertex to represent two different groups, say vertex v_i is assigned value x_i .
 - If v_i and v_j are in different partitions, $(x_i x_j)^2 = 4$, else 0.
- The number of edges between two partitions is

$$\sum_{\{(v_i, v_j) \in E\}} \frac{(x_i - x_j)^2}{4} = \frac{x^T L x}{4}$$

- Assume we have a perfect partitioning. Exactly |V|/2 points are assigned +1 and the other half assigned -1.
- Therefore, we have

$$\sum_{i} x_{i} = 0,$$

$$\sum_{i} x_{i}^{2} = |V|.$$

• Our problem:

$$\min_{\mathbf{x}} \sum \frac{(x_i - x_j)^2}{4} = \frac{x^T L x}{4},$$
Subject to $\sum_i x_i = 0$,
$$\sum_i x_i^2 = |V|.$$

- The Lagrangian is $\frac{x^TLx}{4} + \eta_1(V x^Tx) + \eta_2(-x^T1)$
- Take derivative $\nabla \frac{x^T L x}{4} + \nabla \eta_1 (V x^T x) + \nabla \eta_2 (-x^T 1) = 0$, That is, $Lx 4\eta_1 x 2\eta_2 1 = 0$

• Multiply by $\mathbf{1}^T$, we have

$$\mathbf{1}^{T} L \mathbf{x} - 4\eta_{1} \mathbf{1}^{T} \mathbf{x} - 2\eta_{2} \mathbf{1}^{T} \mathbf{1} = 0,
0 0 0 0 0 0 0 0 0 0 0$$

$$\eta_{2} = 0.$$

- Finally, $Lx = 4\eta_1 x$. $4\eta_1$ is an eigenvalue, and corresponding eigenvector minimize $x^T Lx/4$.
- Which eigenvalue? $x^T Lx/4 \sim \eta_1$, make the eigenvalue as small as possible.
 - But the smallest eigenvalue is 0, and the corresponding eigenvector is all 1.
- Then the second smallest eigenvalue λ_2 minimizes $x^T Lx/4$. The corresponding eigenvector v_2 gives us the partition.

- The eigenvector contains real values, not necessarily +1 and -1.
 - Assign positive entries of the eigenvector v_2 +1, and negative entries -1.
 - Sort the entries of v_2 , and assign the smallest half entries +1, the other half -1.

Spectral Partitioning Algorithm

- 1) Pre-processing:
 - Build Laplacian matrix *L* of the graph

	1	2	3	4	5	6
1	3	-1	-1	0	-1	0
2	-1	2	-1	0	0	0
3	-1	-1	3	-1	0	0
4	0	0	-1	3	-1	-1
5	-1	0	0	-1	3	-1
6	0	0	0	-1	-1	2

- 2) Decomposition:
 - Find eigenvalues λ and eigenvectors x of the matrix L

(=	0.4	0.3	-0.5	-0.2	-0.4	-0.5
	0.4	0.6	0.4	-0.4	0.4	0.0
	0.4	0.3	0.1	0.6	-0.4	0.5
	0.4	-0.3	0.1	0.6	0.4	-0.5
	0.4	-0.3	-0.5	-0.2	0.4	0.5
	0.4	-0.6	0.4	-0.4	-0.4	0.0
ζ =	0.4	0.3 -0.3 -0.3	0.1	0.6	-0.4 0.4 0.4	0.5 -0.5 0.5

1	0.3
2	0.6
3	0.3
4	-0.3
5	-0.3
6	-0.6

How do we now find the clusters?

Spectral Partitioning

• 3) Grouping:

- Sort components of reduced 1-dimensional vector
- Identify clusters by splitting the sorted vector in two

Example: Spectral Partitioning

Example: Spectral Partitioning

Example: Spectral partitioning

Spectral Domain

•
$$L=U\Lambda U^T=[u_1,u_2,\cdots u_n]$$
 $\begin{bmatrix} \lambda_1 & & & \\ & \ddots & & \\ & & \lambda_n \end{bmatrix} [u_1,u_2,\cdots u_n]^T$

$$u_1 = [0.4, 0.4, 0.4, 0.4, 0.4, 0.4]^T$$

$$u_1 = [0.4, 0.4, 0.4, 0.4, 0.4, 0.4]^T$$
 $u_2 = [0.4, 0.3, 0.1, -0.2, 0.2, -0.8]^T$ $u_6 = [-0.1, -0.5, 0.4, -0.6, 0.6, 0.2, -0.8]^T$

$$u_6 = [-0.1, -0.5, 0.4, -0.6, 0.6, 0.2]$$

Orthonormal basis corresponding

$$\lambda_1 = 0$$

$$\lambda_2 = 0.7$$

$$\lambda_6 = 4.9$$

Low Frequency

High Frequency

Spatial vs Spectral

- Spatial vs spectral domain in image
 - Fourier transformation

Graph Convolution in Spectral Domain

Graph Fourier transformation

The key difference in graph spectral convolution is the choice of $g_{ heta}$

Further Readings on Graph Spectral Learning

• Bruna, Joan, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. "Spectral networks and locally connected networks on graphs." *arXiv preprint arXiv:1312.6203* (2013).

Defferrard, Michaël, Xavier Bresson, and Pierre Vandergheynst.
 "Convolutional neural networks on graphs with fast localized spectral filtering." Advances in neural information processing systems 29 (2016).