Association Rule Mining with R *

Yanchang Zhao
http://www.RDataMining.com

Machine Learning 102 Workshop S P Jain School of Global Management, Mumbai, India

30 May - 5 June 2016

^{*}Chapter 9 - Association Rules, in *R* and *Data Mining: Examples and Case Studies.* http://www.rdatamining.com/docs/RDataMining-book.pdf

Outline

Introduction

Association Rule Mining

Removing Redundancy

Interpreting Rules

Visualizing Association Rules

Further Readings and Online Resources

Association Rules

Association rules are rules presenting association or correlation between itemsets.

$$support(A \Rightarrow B) = P(A \cup B)$$

$$confidence(A \Rightarrow B) = P(B|A)$$

$$= \frac{P(A \cup B)}{P(A)}$$

$$lift(A \Rightarrow B) = \frac{confidence(A \Rightarrow B)}{P(B)}$$

$$= \frac{P(A \cup B)}{P(A)P(B)}$$

where P(A) is the percentage (or probability) of cases containing A.

Association Rule Mining Algorithms in R

- Apriori [Agrawal and Srikant, 1994]
 - a level-wise, breadth-first algorithm which counts transactions to find frequent itemsets and then derive association rules from them
 - apriori() in package arules
- ECLAT [Zaki et al., 1997]
 - finds frequent itemsets with equivalence classes, depth-first search and set intersection instead of counting
 - eclat() in package arules

Outline

Introduction

Association Rule Mining

Removing Redundancy

Interpreting Rules

Visualizing Association Rules

Further Readings and Online Resources

The Titanic Dataset

- ▶ The Titanic dataset in the *datasets* package is a 4-dimensional table with summarized information on the fate of passengers on the Titanic according to social class, sex, age and survival.
- ➤ To make it suitable for association rule mining, we reconstruct the raw data as titanic.raw, where each row represents a person.
- ► The reconstructed raw data can also be downloaded at http://www.rdatamining.com/data/titanic.raw.rdata.

```
load("./data/titanic.raw.rdata")
## draw a sample of 5 records
idx <- sample(1:nrow(titanic.raw), 5)</pre>
titanic.raw[idx, ]
##
      Class Sex Age Survived
## 314
        2nd Male Adult
                          No
## 1916 1st Female Adult Yes
## 1511 3rd Male Child Yes
## 1408 3rd Female Adult No
## 6 3rd Male Child No
summary(titanic.raw)
                           Age Survived
##
   Class
                Sex
   1st :325 Female: 470 Adult:2092 No :1490
##
##
   2nd :285 Male :1731 Child: 109 Yes: 711
## 3rd :706
## Crew:885
```

Function apriori()

Mine frequent itemsets, association rules or association hyperedges using the Apriori algorithm. The Apriori algorithm employs level-wise search for frequent itemsets.

Default settings:

- ▶ minimum support: supp=0.1
- minimum confidence: conf=0.8
- ▶ maximum length of rules: maxlen=10

```
library(arules)
rules.all <- apriori(titanic.raw)</pre>
##
## Parameter specification:
## confidence minval smax arem aval originalSupport support
##
          0.8 0.1 1 none FALSE
                                               TRUE
                                                        0.1
## minlen maxlen target ext
##
        1 10 rules FALSE
##
## Algorithmic control:
## filter tree heap memopt load sort verbose
      0.1 TRUE TRUE FALSE TRUE 2
##
                                        TRUF.
##
## apriori - find association rules with the apriori algorithm
## version 4.21 (2004.05.09) (c) 1996-2004 Christia...
## set item appearances ...[0 item(s)] done [0.00s].
## set transactions ...[10 item(s), 2201 transaction(s)] don...
## sorting and recoding items ... [9 item(s)] done [0.00s].
## creating transaction tree ... done [0.00s].
## checking subsets of size 1 2 3 4 done [0.00s].
## writing ... [27 rule(s)] done [0.00s].
## creating S4 object ... done [0.00s].
```

inspect(rules.all)

```
##
      lhs
                        rhs
                                       support confidence ...
      {}
                    => {Age=Adult}
                                     0.9504771
                                                0.9504771 1...
## 1
     {Class=2nd}
                    => {Age=Adult}
                                     0.1185825
                                                0.9157895 0...
## 2
## 3
    {Class=1st}
                    => {Age=Adult}
                                     0.1449341
                                                0.9815385 1...
                    => {Age=Adult}
## 4 {Sex=Female}
                                     0.1930940
                                                0.9042553 0...
    {Class=3rd}
                    => {Age=Adult}
                                     0.2848705
                                                0.8881020 0...
## 5
## 6
    {Survived=Yes}
                    => {Age=Adult}
                                     0.2971377
                                                0.9198312 0...
## 7
     {Class=Crew}
                    => {Sex=Male}
                                     0.3916402
                                                0.9740113 1...
## 8 {Class=Crew}
                    => {Age=Adult}
                                     0.4020900
                                                1.0000000 1...
                    => {Sex=Male}
## 9
    {Survived=No}
                                     0.6197183
                                                0.9154362 1...
  10 {Survived=No}
                    => {Age=Adult}
                                     0.6533394
                                                0.9651007 1...
                    => {Age=Adult}
  11 {Sex=Male}
                                     0.7573830
                                                0.9630272 1...
##
  12 {Sex=Female,
      Survived=Yes} => {Age=Adult}
##
                                     0.1435711
                                                0.9186047 0...
  13 {Class=3rd,
##
      Sex=Male}
                    => {Survived=No} 0.1917310
                                                0.8274510 1...
##
  14 {Class=3rd,
##
##
      Survived=No}
                    => {Age=Adult}
                                     0.2162653
                                                0.9015152 0...
## 15 {Class=3rd,
##
      Sex=Male}
                    => {Age=Adult}
                                     0.2099046
                                                0.9058824 0...
## 16 {Sex=Male,
                                                                 10 / 39
##
      Survived=Yes > {Age=Adult}
                                     0.1535666
                                                0.9209809 0...
```

inspect(rules.sorted)

```
##
     lhs
                   rhs
                                support confidence lift
## 1 {Class=2nd,
## Age=Child} => {Survived=Yes} 0.011 1.000 3.096
## 2 {Class=2nd,
##
     Sex=Female,
## Age=Child => {Survived=Yes} 0.006
                                           1.000 3.096
## 3 {Class=1st,
##
     Sex=Female > {Survived=Yes} 0.064
                                           0.972 3.010
## 4 {Class=1st,
##
     Sex=Female,
     Age=Adult => {Survived=Yes} 0.064
                                           0.972 3.010
##
## 5 {Class=2nd,
     Sex=Female > {Survived=Yes} 0.042
                                           0.877 2.716
##
## 6 {Class=Crew.
##
     Sex=Female > {Survived=Yes} 0.009
                                           0.870 2.692
## 7 {Class=Crew.
##
     Sex=Female,
##
     Age=Adult => {Survived=Yes} 0.009
                                           0.870 2.692
## 8 {Class=2nd,
##
      Sex=Female,
##
     Age=Adult => {Survived=Yes} 0.036
                                           0.860 2.663
## 9
     {Class=2nd.
```

12/39

Outline

Introduction

Association Rule Mining

Removing Redundancy

Interpreting Rules

Visualizing Association Rules

Further Readings and Online Resources

Redundant Rules

- There are often too many association rules discovered from a dataset.
- ▶ It is necessary to remove redundant rules before a user is able to study the rules and identify interesting ones from them.

Redundant Rules

- ▶ Rule #2 provides no extra knowledge in addition to rule #1, since rules #1 tells us that all 2nd-class children survived.
- When a rule (such as #2) is a super rule of another rule (#1) and the former has the same or a lower lift, the former rule (#2) is considered to be redundant.
- ▶ Other redundant rules in the above result are rules #4, #7 and #8, compared respectively with #3, #6 and #5.

Remove Redundant Rules

```
## find redundant rules
subset.matrix <- is.subset(rules.sorted, rules.sorted)
subset.matrix[lower.tri(subset.matrix, diag = T)] <- NA
redundant <- colSums(subset.matrix, na.rm = T) >= 1
```

```
## which rules are redundant
which(redundant)

## [1] 2 4 7 8

## remove redundant rules
rules.pruned <- rules.sorted[!redundant]</pre>
```

Remaining Rules

```
inspect(rules.pruned)
    lhs
##
                 rhs
                              support confidence lift
## 1 {Class=2nd,
     Age=Child => {Survived=Yes}
                                0.011
                                         1.000 3.096
##
## 2 {Class=1st,
     Sex=Female > {Survived=Yes}
                                0.064
                                         0.972 3.010
##
## 3 {Class=2nd,
     Sex=Female > {Survived=Yes}
                                0.042
                                         0.877 2.716
##
## 4 {Class=Crew,
##
     Sex=Female > {Survived=Yes}
                                0.009
                                         0.870 2.692
## 5 {Class=2nd,
##
    Sex=Male,
    Age=Adult  => {Survived=No}
                                0.070
##
                                         0.917 1.354
## 6 {Class=2nd,
     0.070
                                         0.860 1.271
##
## 7 {Class=3rd,
     Sex=Male,
##
## Age=Adult} => {Survived=No}
                                0.176
                                         0.838 1.237
## 8 {Class=3rd,
     0.192
                                         0.827 1.222
##
```

Outline

Introduction

Association Rule Mining

Removing Redundancy

Interpreting Rules

Visualizing Association Rules

Further Readings and Online Resources

Did children of the 2nd class have a higher survival rate than other children?

Did children of the 2nd class have a higher survival rate than other children?

The rule states only that all children of class 2 survived, but provides no information at all to compare the survival rates of different classes.

Rules about Children

```
rules <- apriori(titanic.raw, control = list(verbose=F),
     parameter = list(minlen=3, supp=0.002, conf=0.2),
     appearance = list(default="none", rhs=c("Survived=Yes"),
                       lhs=c("Class=1st", "Class=2nd", "Class=3rd",
                             "Age=Child", "Age=Adult")))
rules.sorted <- sort(rules, by="confidence")</pre>
inspect(rules.sorted)
##
    lhs
                    rhs
                                       support confidence
## 1 {Class=2nd,
##
      Age=Child} => {Survived=Yes} 0.010904134 1.0000000 3....
## 2 {Class=1st.
##
      Age=Child} => {Survived=Yes} 0.002726034 1.0000000 3....
## 3 {Class=1st.
##
      Age=Adult} => {Survived=Yes} 0.089504771 0.6175549 1....
  4 {Class=2nd,
      Age=Adult => {Survived=Yes} 0.042707860
                                                0.3601533 1....
##
  5 {Class=3rd,
      Age=Child} => {Survived=Yes} 0.012267151 0.3417722 1....
##
## 6 {Class=3rd,
##
      Age=Adult} => {Survived=Yes} 0.068605179 0.2408293 0....
```

Outline

Introduction

Association Rule Mining

Removing Redundancy

Interpreting Rules

Visualizing Association Rules

Further Readings and Online Resources

library(arulesViz) plot(rules.all)

Grouped matrix for 27 rules

plot(rules.all, method = "graph")

Graph for 27 rules

size: support (0.119 - 0.95) color: lift (0.934 - 1.266)

Graph for 27 rules

size: support (0.119 - 0.95) color: lift (0.934 - 1.266)

plot(rules.all, method = "paracoord", control = list(reorder = TRUE))

Parallel coordinates plot for 27 rules

Outline

Introduction

Association Rule Mining

Removing Redundancy

Interpreting Rules

Visualizing Association Rules

Further Readings and Online Resources

Further Readings

- ► Data Mining Algorithms In R: Apriori
 https://en.wikibooks.org/wiki/Data_Mining_Algorithms_In_R/Frequent_
 Pattern_Mining/The_Apriori_Algorithm
- ► Data Mining Algorithms In R: ECLAT

 https://en.wikibooks.org/wiki/Data_Mining_Algorithms_In_R/Frequent_

 Pattern_Mining/The_Eclat_Algorithm
- ► Data Mining Algorithms In R: FP-Growth

 https://en.wikibooks.org/wiki/Data_Mining_Algorithms_In_R/Frequent_

 Pattern_Mining/The_FP-Growth_Algorithm
- ► FP-Growth Implementation by Christian Borgelt http://www.borgelt.net/fpgrowth.html
- ► Frequent Itemset Mining Implementations Repository http://fimi.ua.ac.be/data/
- Package arulesSequences: mining sequential patterns http://cran.r-project.org/web/packages/arulesSequences/

Online Resources

- ► Chapter 9 Association Rules, in book

 R and Data Mining: Examples and Case Studies [Zhao, 2012]

 http://www.rdatamining.com/docs/RDataMining-book.pdf
- RDataMining Reference Card
 http://www.rdatamining.com/docs/RDataMining-reference-card.pdf
- Free online courses and documents http://www.rdatamining.com/resources/
- ► RDataMining Group on LinkedIn (20,000+ members)
 http://group.rdatamining.com
- Twitter (2,500+ followers)@RDataMining

Outline

Introduction

Association Rule Mining

Removing Redundancy

Interpreting Rules

Visualizing Association Rules

Further Readings and Online Resources

The Mushroom Dataset I

- The mushroom dataset includes descriptions of hypothetical samples corresponding to 23 species of gilled mushrooms †.
- ▶ A csv file with 8,124 observations on 23 categorical variables:
 - 1. class: edible=e, poisonous=p
 - cap-shape: bell=b,conical=c,convex=x,flat=f, knobbed=k,sunken=s
 - 3. cap-surface: fibrous=f,grooves=g,scaly=y,smooth=s
 - 4. cap-color: brown=n,buff=b,cinnamon=c,gray=g,green=r, pink=p,purple=u,red=e,white=w,yellow=y
 - 5. bruises?: bruises=t,no=f
 - odor: almond=a,anise=l,creosote=c,fishy=y,foul=f, musty=m,none=n,pungent=p,spicy=s
 - 7. gill-attachment: attached=a,descending=d,free=f,notched=n
 - 8. gill-spacing: close=c,crowded=w,distant=d
 - 9. gill-size: broad=b,narrow=n
 - 10. gill-color: black=k,brown=n,buff=b,chocolate=h,gray=g, green=r,orange=o,pink=p,purple=u,red=e, white=w,yellow=y

The Mushroom Dataset II

- 11. stalk-shape: enlarging=e,tapering=t
- 12. stalk-root: bulbous=b,club=c,cup=u,equal=e, rhizomorphs=z,rooted=r,missing=?
- 13. stalk-surface-above-ring: fibrous=f,scaly=y,silky=k,smooth=s
- 14. stalk-surface-below-ring: fibrous=f,scaly=y,silky=k,smooth=s
- 15. stalk-color-above-ring: brown=n,buff=b,cinnamon=c,gray=g,orange=o, pink=p,red=e,white=w,yellow=y
- 16. stalk-color-below-ring: brown=n,buff=b,cinnamon=c,gray=g,orange=o, pink=p,red=e,white=w,yellow=y
- 17. veil-type: partial=p,universal=u
- 18. veil-color: brown=n,orange=o,white=w,yellow=y
- 19. ring-number: none=n,one=o,two=t
- 20. ring-type: cobwebby=c,evanescent=e,flaring=f,large=l, none=n,pendant=p,sheathing=s,zone=z

The Mushroom Dataset III

- 21. spore-print-color: black=k,brown=n,buff=b,chocolate=h,green=r, orange=o,purple=u,white=w,yellow=y
- 22. population: abundant=a,clustered=c,numerous=n, scattered=s,several=v,solitary=y
- 23. habitat: grasses=g,leaves=l,meadows=m,paths=p, urban=u,waste=w,woods=d

[†]https://archive.ics.uci.edu/ml/datasets/Mushroom

Load Mushroom Dataset

```
mushrooms <- read.csv(file = url, header = FALSE)</pre>
names(mushrooms) <- c("class", "cap-shape", "cap-surface",</pre>
    "cap-color", "bruises", "odor", "gill-attachment", "gill-spacing",
    "gill-size", "gill-color", "stalk-shape", "stalk-root",
    "stalk-surface-above-ring", "stalk-surface-below-ring",
    "stalk-color-above-ring", "stalk-color-below-ring",
    "veil-type", "veil-color", "ring-number", "ring-type",
    "spore-print-color", "population", "habitat")
table(mushrooms$class, useNA="ifany")
##
##
## 4208 3916
```

The Mushroom Dataset

```
str(mushrooms)
## 'data.frame': 8124 obs. of 23 variables:
                               : Factor w/ 2 levels "e", "p": ...
##
    $ class
                               : Factor w/ 6 levels "b", "c", "...
##
   $ cap-shape
##
   $ cap-surface
                               : Factor w/ 4 levels "f", "g", "...
   $ cap-color
                               : Factor w/ 10 levels "b", "c",...
##
##
   $ bruises
                               : Factor w/ 2 levels "f", "t": ...
                               : Factor w/ 9 levels "a", "c", "...
##
   $ odor
##
   $ gill-attachment
                              : Factor w/ 2 levels "a", "f": ...
##
    $ gill-spacing
                              : Factor w/ 2 levels "c", "w": ...
##
   $ gill-size
                              : Factor w/ 2 levels "b", "n": ...
##
   $ gill-color
                              : Factor w/ 12 levels "b", "e",...
##
   $ stalk-shape
                              : Factor w/ 2 levels "e", "t": ...
   $ stalk-root
                               : Factor w/ 5 levels "?", "b", "...
##
   $ stalk-surface-above-ring: Factor w/ 4 levels "f", "k", "...
##
   $ stalk-surface-below-ring: Factor w/ 4 levels "f", "k", "...
##
   $ stalk-color-above-ring : Factor w/ 9 levels "b", "c", "...
##
   $ stalk-color-below-ring : Factor w/ 9 levels "b", "c", "...
##
                               : Factor w/ 1 level "p": 1 1 1...
##
   $ veil-type
## $ veil-color
                               : Factor w/ 4 levels "n", "o", "...
                               : Factor w/ 3 levels "n"."o"."...
   $ ring-number
```

35 / 39

- ► From the mushroom data, find association rules that can be used to identify the edibility of a mushroom
- ► Think about parameters: length of rules, minimum support, minimum confidence
- How to find only rules relevant to edibility?
- Which interestingness measures to use?
- Any reduntant rules? How to remove them?
- ▶ What are characteristics of edible mushrooms? And characteristics of poisonous ones?

Mining Association Rules from Mushroom Dataset

```
rules <- apriori(mushrooms, control = list(verbose=F),</pre>
                parameter = list(minlen=2, maxlen=5),
                appearance = list(rhs=c("class=p", "class=e"),
                                  default="lhs"))
quality(rules) <- round(quality(rules), digits=3)</pre>
rules.sorted <- sort(rules, by="confidence")</pre>
inspect(head(rules.sorted))
##
    lhs
                      rhs
                                support confidence lift
## 1 {ring-type=1} => {class=p} 0.160
                                                 1 2.075
## 2 {gill-color=b} => {class=p} 0.213
                                                1 2.075
## 3 {odor=f} => {class=p} 0.266
                                                1 2.075
## 4 {gill-size=b,
  gill-color=n} => {class=e}
                                  0.108
                                                 1 1.931
##
## 5 {odor=n.
##
     stalk-root=e} => {class=e}
                                  0.106
                                                 1 1.931
## 6 {bruises=f.
## stalk-root=e} => {class=e} 0.106
                                                 1 1.931
```

The End

Thanks!

Email: yanchang(at)rdatamining.com

References

Agrawal, R. and Srikant, R. (1994).

Fast algorithms for mining association rules in large databases.

In Proc. of the 20th International Conference on Very Large Data Bases, pages 487-499, Santiago, Chile.

Zaki, M. J., Parthasarathy, S., Ogihara, M., and Li, W. (1997).

New algorithms for fast discovery of association rules.

Technical Report 651, Computer Science Department, University of Rochester, Rochester, NY 14627.

Zhao, Y. (2012).

R and Data Mining: Examples and Case Studies.

Academic Press, Elsevier.