In [2]:

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
```

In [3]:

df = pd.read_csv("F:\\DSE\\3rd year engineering\\5th sem\\6th sem\\DSBDA\\dataset\\bosto

In [4]:

df

Out[4]:

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	В
0	0.00632	18.0	2.31	0	0.538	6.575	65.2	4.0900	1	296	15.3	396.90
1	0.02731	0.0	7.07	0	0.469	6.421	78.9	4.9671	2	242	17.8	396.90
2	0.02729	0.0	7.07	0	0.469	7.185	61.1	4.9671	2	242	17.8	392.83
3	0.03237	0.0	2.18	0	0.458	6.998	45.8	6.0622	3	222	18.7	394.63
4	0.06905	0.0	2.18	0	0.458	7.147	54.2	6.0622	3	222	18.7	396.90
501	0.06263	0.0	11.93	0	0.573	6.593	69.1	2.4786	1	273	21.0	391.99
502	0.04527	0.0	11.93	0	0.573	6.120	76.7	2.2875	1	273	21.0	396.90
503	0.06076	0.0	11.93	0	0.573	6.976	91.0	2.1675	1	273	21.0	396.90
504	0.10959	0.0	11.93	0	0.573	6.794	89.3	2.3889	1	273	21.0	393.45
505	0.04741	0.0	11.93	0	0.573	6.030	80.8	2.5050	1	273	21.0	396.90

506 rows × 14 columns

```
In [5]:
```

```
df.isnull().sum()
Out[5]:
CRIM
           0
ΖN
            0
INDUS
            0
CHAS
            0
NOX
            0
           0
RM
           0
AGE
DIS
           0
RAD
            0
TAX
            0
PTRATIO
           0
            0
В
LSTAT
            0
PRICE
           0
dtype: int64
In [6]:
x=df.drop(['PRICE'],axis=1)
y=df['PRICE']
In [7]:
from sklearn.model_selection import train_test_split
xtrain,xtest,ytrain,ytest=train_test_split(x,y,test_size=0.2,random_state=0)
In [8]:
import sklearn
```

```
import sklearn
from sklearn.linear_model import LinearRegression
lm=LinearRegression()
model=lm.fit(xtrain,ytrain)
```

In [9]:

```
ytrain_pred=lm.predict(xtrain)
ytest_pred=lm.predict(xtest)
```

In [10]:

```
df1=pd.DataFrame(ytrain_pred,ytrain)
df2=pd.DataFrame(ytest_pred,ytest)
```

In [11]:

```
from sklearn.metrics import mean_squared_error, r2_score
mse = mean_squared_error(ytest, ytest_pred)
print(mse)
mse = mean_squared_error(ytrain_pred,ytrain)
print(mse)
```

33.44897999767649

19.326470203585725

In [13]:

```
plt.scatter(ytrain ,ytrain_pred,c='blue',marker='o',label='Training data')
plt.scatter(ytest,ytest_pred ,c='lightgreen',marker='s',label='Test data')
plt.xlabel('True values')
plt.ylabel('Predicted')
plt.title("True value vs Predicted value")
plt.legend(loc= 'upper left')
#plt.hlines(y=0,xmin=0,xmax=50)
plt.plot()
plt.show()
```

True value vs Predicted value

In []: