A case study in object-oriented programming

Dirk Husmeier

Biomathematics and Statistics Scotland Edinburgh, United Kingdom

Email: dirk@bioss.ac.uk

http://www.bioss.ac.uk/~dirk

Searching for Evidence of Recombination in Alignments of DNA

Searching for Evidence of Recombination in Alignments of DNA

Husmeier, Wright (2001) Journal of Computational Biology 8, 401-427.

Searching for Evidence of Recombination in Alignments of DNA

Husmeier, Wright (2001) Journal of Computational Biology 8, 401-427.

- HMMs
- Phylogenetic trees
- Recombination
- Object-oriented programming implementation

Example: The occasionally corrupt casino

Example: HMM

Example: HMM

y_t

y_(t+1)

y_N

y_1

y_2

The most likely state sequence

Find the mode of $P(S_1, \ldots, S_N | y_1, \ldots, y_N)$

Problem: $(S_1, \ldots, S_N) : 2^N$ different sequences.

Factorisation in HMMs

$$P(y_1, \dots, y_N, S_1, \dots, S_N) = \prod_{t=1}^N P(y_t|S_t) \prod_{t=2}^N P(S_t|S_{t-1}) P(S_1)$$

Viterbi algorithm $\longrightarrow P(S_1, \ldots, S_N | y_1, \ldots, y_N)$

Computational complexity and example

Observed sequence:

Recombination

AGCATCGTTCTATTTTACCGGCTCCCG TGTGTCGCTCAAGATTGCCATCGCGCG TGTCGTGGTCTAGATTGCCATCGCGCG TGTATCGCTCTAGTTTGCCAGCTCCCG

Emission probabilities

Transition probabilities

HMM

PRIVATE Number of hidden states Transition probabilities Initial probabilities

EMISSION PROB

PRIVATE

Number of hidden states Data

EMISSION PROB

PRIVATE

Number of hidden states Data

METHODS

Receive data
Compute emission probabilities
Send emission probabilities

HMM

PRIVATE

Number of hidden states
Transition probabilities
Initial probabilities

METHODS

Receive data
Apply Viterbi algorithm
Send state sequence
Send data
Receive emission probabilities

USER

PRIVATE

Data

METHODS

Send data Receive data

EMISSION PROB

PRIVATE

Number of hidden states Data

METHODS

Receive data
Compute emission probabilities
Send emission probabilities

Receive data
Compute emission probabilities
Send emission probabilities

 $P(y_1, y_2, y_3, y_4, z_1, z_2 | \mathbf{w})$

 $P(y_1, y_2, y_3, y_4, z_1, z_2 | \mathbf{w})$

$$P(y_1, y_2, y_3, y_4, z_1, z_2 | \mathbf{w})$$

=
$$P(y_1|z_1, \mathbf{w_1})P(y_2|z_1, \mathbf{w_2})P(z_2|z_1, \mathbf{w_5})P(y_3|z_2, \mathbf{w_3})P(y_4|z_2, \mathbf{w_4})P(z_1)$$

