COMP 460 Lecture Notes

R. I. Greenberg

1 Sorting in Linear Time

1.1 Counting Sort

Assumes input elts. A[1..n] are integers in the range 1 to k.

- 1. $C[i] \leftarrow$ no. of elts. of A that equal i. (Do it by marching through input array once and tallying values.)
- 2. Change C[i] to no. of elts. $\leq i$. $(C[i] \leftarrow C[i] + C[i-1]$ for $i = 2, 3, 4, \dots k$.)
- 3. Put each elt. of A into correct position of output array B:
 - 1 for $j \leftarrow n$ downto 1
 - $2 B[C[A[j]]] \leftarrow A[j]$
 - $3 C[A[j]] \leftarrow C[A[j]] 1$
 - 4 endfor

This sort is <u>stable</u>: inputs with same value appear in output array in same order as in input array. (This matters when "satellite data" being carried around with keys being sorted.)

Running time:
$$O(k+n)$$

= $O(n)$ when $k = O(n)$.

1.2 Radix Sort

Sorts nos. digit by digit (or other keys field by field).

Let d = no. of digits in a number k = max. range of digits (e.g., digits from 1 to k or 0 to k - 1)

k is called the <u>radix</u> or number base.

Intuitive digit-by-digit approach would be:

Sort by most significant digit; then recursively sort the k collections of nos. having same first digit. Gives a lot of subarrays to keep track of.

Radix sort counterintuitively sorts on least significant digit first:

Radix-Sort(A, d)

- 1 for $i \leftarrow 1$ to d
- 2 Do a stable sort of array A on ith digit from right.
- 3 endfor

If k not too large, counting sort is a good choice for line 2.

Running time: $\Theta(n+k)$ for each execution of line 2. Total time: $\Theta(d(n+k))$.

When d constant and k = O(n), time for radix sort is O(n). This is often an appropriate perspective, since we tend to build computers with around $\Theta(\lg n)$ -bit numbers for the largest n used in practice.

So radix sort time may be good in practice, but it does not sort in place (when based on counting sort).

1.3 Bucket Sort

 $\Theta(n)$ average time for random inputs uniformly distributed over interval [0, 1), for example.

Divide [0,1) into n equal-sized <u>buckets</u>. Put each elt. in correct bucket. Go through buckets in order, sorting nos. in each bucket by, e.g., insertion sort.

Let n_i be no. of elts. in bucket i for $0 \le i \le n-1$. Expected time to do the insertion sorts is

$$\sum_{i=0}^{n-1} E[O(n_i^2)] = O(\sum_{i=0}^{n-1} E[n_i^2]) ,$$

which the book shows is O(n). The book gives a somewhat lengthy argument using only elementary principles. Here is a shorter argument using some more advanced results that are derived elsewhere in the text. Letting p = 1/n denote the probability of a particular item following into a particular bucket, we have:

$$E[n_i^2] = Var[n_i] + E^2[n_i]$$
 By Eqn. C.27
 $= np(1-p) + (np)^2$ By Eqns. C.37 and C.39
 $= 1 - \frac{1}{n} + 1^2$
 $= 2 - \frac{1}{n}$
 $= \Theta(1)$.