# Information Security CS3002 (Sections BDS-7A/B) Lecture 23

Instructor: Dr. Syed Mohammad Irteza
Assistant Professor, Department of Computer Science
11 November, 2024

#### Previous Lecture

- Access Control
  - Maps to some parts of Chapter 4 in Computer Security: Principles and Practices (William Stallings)

#### Access Control

4.1 Access Control Principles

Access Control Context Access Control Policies

- 4.2 Subjects, Objects, and Access Rights
- I.3 Discretionary Access Control

An Access Control Model Protection Domains

4.4 Example: Unix File Access Control

Traditional UNIX File Access Control Access Control Lists in UNIX

4.5 Role-Based Access Control

RBAC Reference Models

4.6 Attribute-Based Access Control

ABAC Logical Architecture ABAC Policies

#### Second Lecture After Mid-02 Exam

Remaining Lectures (Content)

- Network Security (4 lectures)
- Theoretical Models of Access Control (1 lecture)
- Cybercrime Laws and Ethics (1 lecture)
- Project Presentations (2 lectures at least)

# Network Security – I

- SSL Introduction
- SSL certificate
- SSL architecture
- SSL handshake

# Message/Data Security

- Authentication (single), integrity and privacy self contained in the message
- Possibility of non repudiation
- Requires modification of applications



# Channel Security

- Authentication (single or mutual), integrity and privacy only during the transit inside the communication channel
- No possibility of non repudiation
- Requires no (or small) modification of applications



## Security internal to applications

- Each application implements security internally
- The common part is limited to the communication channels (socket)
- Possible implementation errors (inventing security protocols is not simple!)
- Does not guarantee interoperability



# Security external to applications

- The *session* level would be the ideal one to be used to implement many security functions
- ... but it does not exist in TCP/IP!
- a "secure session" level was proposed:
  - it simplifies the work of application developers
  - it avoids implementation errors
  - it is up to the application to select it (or not)



#### OSI Model (not the TCP/IP Model)



#### SSL: What is it?

- Security at layer 4 (transport layer)
- Secure Sockets Layer (SSL)
- Secure transport channel (session level):
  - Peer authentication (server, server + client)
  - Message confidentiality
  - Message authentication and integrity
  - Protection against replay attacks
- Easily applicable to all protocols based on TCP:
  - HTTP, SMTP, FTP, TELNET, ...
  - e.g. the famous secure HTTP (https://....) = 443/TCP

# SSL/TLS

- Philosophy of SSL: Easier to deploy something if no changes in OS required
- Application's API (Socket) is interface to SSL: Hence secure socket layer
- API to SSL is the superset of API to TCP
- SSL/TLS operate above TCP. OS doesn't change, applications do!

| 7                    | Application Layer | <b>^</b> | Encryption |
|----------------------|-------------------|----------|------------|
| Secure Sockets Layer |                   |          | ,.         |
| 4                    | Transport Layer   |          |            |
| 3                    | Network Layer     |          |            |
| 2                    | Data Link Layer   |          |            |
| 1                    | Physical Layer    |          |            |

#### SSL Handshake

- Agree on a set of algorithms for confidentiality, integrity and authentication
- Exchange random numbers between the client and the server to be used for the subsequent generation of the keys
- Establish a symmetric key by means of public key operations, e.g. RSA
- Negotiate the session-ID
- Exchange the necessary certificates

SSL Handshake:

Simplified



- Secrets are:
  - Pre-master key S
  - Master Key K
- Server authentication
- Client authentication by password (optional)

#### SSL Handshake: In Detail



# SSL Handshake: Figure of CS: P&P (William Stallings)



Figure 22.6 Handshake Protocol Action

### Key Terms

- HELLO Extensions: request extended functionality by sending data in the extensions field.
  - For example: max\_fragment\_length, status request
  - The server may not oblige
  - Client may abort the handshake
- Pre-shared Secret (key): generated by client OR directly obtained from the key exchange. E.g: (DH: gab mod p)
- Master keys: generated from the pre-shared secret + random.client
   + random.server by applying a PRF (pseudo random function)
- Master key = PRF (pre-shared secret, random.client, random.server)

#### SSL: V3 Architecture



- *Handshake*: enables the SSL or TLS client and server to establish the secret keys with which they communicate
- Change cipher spec: indicates the usage of secret key for data communication
- *Alert*: signal problems with SSL connection, give current status
- Record Protocol: permits the encapsulation of higher level protocols

# SSL3/TLS Record Protocol



# SSL MAC Computation

- MAC = message\_digest(key, seq\_number | type | version | length | fragment)
- message\_digest
  - depends on the chosen algorithm
- key
  - sender-write-key or receiver-read-key
- seq\_number
  - 32-bit integer
- type
  - Type of record
    - change cipher spec (20)
    - alert (21)
    - Handshake (22)
    - Application data (23)
- length
  - length of the fragment/plaintext

#### Data Protection in SSL



# SSL-3: new features with respect to SSL-2

- Data compression:
  - optional
  - Done before encryption
- Data encryption is optional: in order to have only authentication and integrity
- Possibility to re-negotiate the SSL connection:
  - periodical change of keys
  - change of the algorithms

# Acknowledgments

• Dr Haroon Mahmood (FAST-NU)

# Appendix

- <u>SSL, TLS, HTTPS Explained</u> (ByteByteGo, Youtube)
- **SSL-TLS** (University of Auckland, NZ)