Sequential Pattern Learning via Kernel Alignment

Miao Cheng

Email: mcheng@mailbox.gxnu.edu.cn
College of Computer Science and Information Engineering
Guangxi Normal University, Guilin, China

June 6, 2019

- The original consideration is to design an affinity learning approach to feature (pattern) alignment.
- The incremental extension is available for futher enhancements.

- The original consideration is to design an affinity learning approach to feature (pattern) alignment. $(\sqrt{})$
- The incremental extension is available for futher enhancements. (\(\sqrt{} \))

- The original consideration is to design an affinity learning approach to feature (pattern) alignment. (√)
- The incremental extension is available for futher enhancements. (√)
- The calculation efficiency can be preserved for sequential learning.

- The original consideration is to design an affinity learning approach to feature (pattern) alignment. (√)
- The incremental extension is available for futher enhancements. (√)
- The calculation efficiency can be preserved for sequential learning. (x, as a fresh attempt)

General Learning Approaches

To make pattern alignment applicable

- Cross-domain learning
- Manifold matching

To make pattern alignment applicable

- Cross-domain learning
- Manifold matching

Suspicions, e.g.,

Sequential Pattern Alignment

Domain Adaptation

The figures from B. Gong's GFK and B. Fernando's SA papers

Continuous Manifold Based Adaptation

- CMA: A continuous extension of GFK
- SA (Subspace Alignment): Can be conveniently extended
- The further considerations are necessary for advancements

Sequential alignment of incremental patterns with feature mapping

- Sequential alignment of incremental patterns with feature mapping
- It is, but not restricted to reference patterns derived from feature kernel spaces

Basic Idea

- The source data is affected by target data sequentially.
- The subspace patterns of source and target data are aligned.
- Parallel mapping is involved to indirect alignments.

Feature alignment

$$x_s \sim h(x_s) \sim p(h(x_x)) x_t \sim h(x_t) \sim q(h(x_t))$$
 (1)

$$\Psi = \int_{x_s} \int_{x_t} \psi(h(x_s), h(x_t)) dh(x_s) dh(x_t), \quad (2)$$

$$\varphi(x_s, x_t) = \int_{x_s} \int_{x_t} f(x_s) \cdot g(x_t) dx_s dx_t \qquad (3)$$

$$\Psi = \int_{X} \int_{X_{s}} \psi(h(x_{s}), h(x_{t})) dh(x_{s}) dh(x_{t})$$
 (4)

Suppose that only source data are involved,

$$J = \arg\min_{\Gamma} \sum_{x_s} \|f(x_s) f(x_s) - h(x_s) \Gamma h(x_s)\|^2 + \lambda (\Gamma h(x_s))$$

$$+ \lambda (\Gamma h(x_s))$$

$$J = \arg\min_{\Gamma} \sum_{x_s} \|f(x_s) \cdot f(x_s) - k_s M k_s\|^2 + \lambda tr(M k_s),$$
(6)

Suppose that only source data are involved,

$$J = \arg\min_{\Gamma} \sum_{x_{s}} \|f(x_{s}) f(x_{s}) - h(x_{s}) \Gamma h(x_{s})\|^{2}$$

$$+ \lambda (\Gamma h(x_{s}))$$

$$J = \arg\min_{\Gamma} \sum_{x_{s}} \|f(x_{s}) \cdot f(x_{s}) - k_{s} M k_{s}\|^{2} + \lambda tr(M k_{s}),$$

$$J = \arg\min_{\Pi} \sum_{\Gamma} \|f(x_{s}) - \Pi k_{s}\|^{2} + \lambda tr(\Pi k_{s}),$$
(8)
$$J = \arg\min_{\Pi} \sum_{\Gamma} \|f(x_{s}) - \Pi k_{s}\|^{2} + \lambda tr(\Pi k_{s}),$$
(9)

$$J = \arg\min_{f} \sum_{x_{s}} \sum_{x_{t}} \|f(x_{s})g(x_{t}) - k_{st}Mk_{s}\|^{2} + \lambda tr(Mk_{s})$$
(10)

$$J = \arg\min_{f} \sum_{x_{s}} \sum_{x_{t}} \|f(x_{s}) g(x_{t}) - k_{st} M k_{s}\|^{2} + \lambda tr(M k_{s})$$

$$(11)$$

Tips: iterative learning is possible by fixing one item while solving another

The last target data is denoted by $X_t' \in R^{d \times a}$, and the source data set X_s is modified with appended X_t' .

$$J = \arg\min_{f} \sum_{x_{s}} \sum_{x_{t}} \|f(x_{s}) g(x_{t}) - k_{st} M k_{s}\|^{2} + \lambda tr(M k_{s})$$

$$(12)$$

The last target data is denoted by $X_t' \in R^{d \times a}$, and the source data set X_s is modified with appended X_t' .

• $f(\cdot)$ is necessary to be modified corresponding to incremental data

The last target data is denoted by $X_t' \in R^{d \times a}$, and the source data set X_s is modified with appended X_t' .

- $f(\cdot)$ is necessary to be modified corresponding to incremental data
- Feature alignment M also needs to be updated as well as kernels

• To update $f(\cdot)$ with subspace alignment, it is straightforward to adopt SVD update algorithm to orthogonal decomposition of X_s

- To update f (·) with subspace alignment, it is straightforward to adopt SVD update algorithm to orthogonal decomposition of X_s
- Feature alignment M is updated with appended kernel matrices and the main calculation is on inverse of kernels

- To update f (·) with subspace alignment, it is straightforward to adopt SVD update algorithm to orthogonal decomposition of X_s
- Feature alignment M is updated with appended kernel matrices and the main calculation is on inverse of kernels
- The inverse of kernels can be approximated with SVD of kernel matrices $K = V\Lambda^2V^T$

 The decomposition of updated kernel matrix is learned by following the incremental KPCA (H. Zhao et. al., 2006)

$$K = \begin{bmatrix} K_{ss} & K_{st} \\ K_{ts} & K_{tt} \end{bmatrix} = \begin{bmatrix} P_s & P_1 \\ P_2 & P_3 \end{bmatrix}^T \begin{bmatrix} P_s & P_1 \\ P_2 & P_3 \end{bmatrix}. (13)$$

- Implemented in R language platform
- Ten common classes in three domains, namely Caltech, Amazon, DSLR, are refered, which contains 1123 (Caltech), 958 (Amazon), 157 (DSLR) images, respectively.
- SURF features of each data are extracted, and several state-of-the-art methods are involved to evaluate the performance.

Table: Classification accuracy (%) in object recognition with SURF features

Method	A -> C	C -> A	A -> D	D -> A	C -> D	D -> C	Mean
Baseline	15.94	15.66	3.18	6.68	15.92	12.38	11.63
LSCCA	26.63	28.5	30.57	18.89	28.03	15.05	24.61
GFK	35.55	36.29	31.97	32.5	36.97	29.58	33.81
unsupervised KEMA	22.8	26.3	20.38	22.96	31.85	26.54	25.14
SA	35.62	36.74	25.48	24.22	25.48	27.25	29.13
TCA	20.57	25.68	12.74	24.43	18.28	24.58	21.05
SPA	32.41	33.3	26.11	25.68	26.11	25.56	28.2

Sequential learning on benchmark traffic scene classification.

- 512 dimensional GIST features are learned from images.
- 500 labeled images are given, and then 2000 images come in a sequence with 100 images per duration.

Sequential learning on flower data set

- 512-dimensional VGG features are learned representatively
- 1000 instances are randomly selected to be source data, while target instances ranging from 1000 to 3000

Experimental results v.s. different sizes of sequential data

Conclusion and Future Works

- A novel approach to sequential pattern alignment is proposed in this work, which considers the featuer alignment as a reference for subspace alignment, while further more data is absorbed for sequential learning.
- The performance of proposed method is comparable, as a fresh attempt for further advancements.

Conclusion and Future Works

This work can be continued with several open problems:

- Improvements of learning efficiency, and iterative learning could be adopted.
- Other attempts to replace the feature alignment can be done.
- Further extensions to multi-view pattern alignment is possible.

Thank You