第二十四届全国青少年信息学奥林匹克联赛初赛

提高组 C++ 语言试题

竞赛时间: 2018 年 10 月 13 日 14:30~16:30

先列引. 2010 中 10 /3 10 日 14.00 10.00
(WORD重新整理排版)
选手注意: 试题纸共有 9 页,答题纸共有 2 页,满分 100 分。请在答题纸上作答,写在试题纸
上的一律无效。
不得使用任何电子设备(如计算器、手机、电子词典等)或查阅任何书籍资料。
一、单项选择题(共 10 题,每题 2 分,共计 20 分 ; 每题有且仅有一个正确选项)
1. 下列四个不同进制的数中,与其它三项数值上不相等的是()。
A. (269) 16
B. (617) 10
C. (1151) 8
D. (1001101011) ₂
2. 下列属于解释执行的程序设计语言是 ()。
A. C
B. C++
C. Pascal
D. Python
2. 中国认常和党会工 / 人,》 在创办会国事小在认管和和京汉认充第
3. 中国计算机学会于()年创办全国青少年计算机程序设计竞赛。 A. 1983
B. 1984
C. 1985
D. 1986
D. 1900
4. 设根节点深度为 0 , 一棵深度为 h 的满 k (k>1) 叉树 , 即除最后一层无任何子节点外 ,
每一层上的所有结点都有 k 个子结点的树,共有()个结点。
A. $(k^{h+1} - 1) / (k - 1)$
B. k ^{h-1}
C. k h
D. (k h-1) / (k - 1)
5. 设某算法的时间复杂度函数的递推方程是 T(n) = T(n - 1) + n (n 为正整数)及 T(0)
= 1 ,则该算法的时间复杂度为()。
A. O(log n) B. O(n log n) C. O(n) D. O(n 2)
6. 表达式 a * d - b * c 的前缀形式是 ()。
A. a d * b c * -

B. - * a d * b c

C. a * d - b * c

```
D. - * * a d b c
7. 在一条长度为 1 的线段上随机取两个点 , 则以这两个点为端点的线段的期望长度是
                                                       ( )
A. 1/2
B. 1/3
C. 2/3
D. 3/5
8. 关于 Catalan 数 Cn = (2n)! / (n + 1)! / n!
                                 ,下列说法中错误的是(
A. Cn 表示有 n + 1 个结点的不同形态的二叉树的个数。
B. Cn 表示含 n 对括号的合法括号序列的个数。
C. Cn 表示长度为 n 的入栈序列对应的合法出栈序列个数。
D. Cn 表示通过连接顶点而将 n+2 边的凸多边形分成三角形的方法个数。
9. 假设一台抽奖机中有红、蓝两色的球,任意时刻按下抽奖按钮,都会等概率获得红球或
蓝球之一。 有足够多的人每人都用这台抽奖机抽奖,
                                                抽中蓝球则继续
                                 假如他们的策略均为:
              最后每个人都把自己获得的所有球放到一个大箱子里,
抽球,抽中红球则停止。
                                                   最终大箱子
里的红球与蓝球的比例接近于(
A. 1:2
B. 2:1
C. 1:3
D. 1:1
10. 为了统计一个非负整数的二进制形式中
                           1 的个数,代码如下:
int CountBit(int x)
  int ret = 0;
  while (x)
     ret++;
   return ret;
则空格内要填入的语句是(
A. x >>= 1
B. x \&= x - 1
C. x = x >> 1
D. x <<= 1
    不定项选择题(共 5 题,每题 2 分,共计 10 分;每题有一个或多个正确选项,
多选或少选均不得分
            )
1. NOIP 初赛中,选手可以带入考场的有( )。
```

A. 笔
B. 橡皮
C. 手机(关机)
D. 草稿纸
2. 2-3 树是一种特殊的树,它满足两个条件:
(1)每个内部结点有两个或三个子结点;
(2)所有的叶结点到根的路径长度相同。
如果一棵 2-3 树有 10 个叶结点,那么它可能有()个非叶结点。
A. 5
B. 6
C. 7
D. 8
2. 工列关工具结束等计的设计工格的左(
3. 下列关于最短路算法的说法正确的有 ()。
A. 当图中不存在负权回路但是存在负权边时, Dijkstra 算法不一定能求出源点到所有点的
B. 当图中不存在负权边时,调用多次 Dijkstra 算法能求出每对顶点间最短路径。
C. 图中存在负权回路时,调用一次 Dijkstra 算法也一定能求出源点到所有点的最短路。
D. 当图中不存在负权边时,调用一次 Dijkstra 算法不能用于每对顶点间最短路计算。
4. 下列说法中,是树的性质的有()。
A. 无环
B. 任意两个结点之间有且只有一条简单路径
C. 有且只有一个简单环
D. 边的数目恰是顶点数目减 1
5. 下列关于图灵奖的说法中,正确的有()。
A. 图灵奖是由电气和电子工程师协会(IEEE)设立的。
B. 目前获得该奖项的华人学者只有姚期智教授一人。
C. 其名称取自计算机科学的先驱、英国科学家艾伦·麦席森·图灵。
D. 它是计算机界最负盛名、最崇高的一个奖项,有"计算机界的诺贝尔奖"之称。
三、 问题求解(共 2 题,每题 5 分,共计 10 分)
1. 甲乙丙丁四人在考虑周末要不要外出郊游。
已知 如果周末下雨, 并且乙不去, 则甲一定不去; 如果乙去, 则丁一定去; 如果丙去,
则丁一定不去; 如果丁不去 , 而且甲不去 , 则丙一定不去。 如果周末丙去了 , 则甲
(去了/没去)(1分),乙(去了/没去)(1分),丁(去了/没去)(1分),
周末(下雨 / 没下雨) (2 分)。
2. 方程 a*b = (a or b) * (a and b) , 在 a,b 都取 [0, 31] 中的整数时,共有组
解。(* 表示乘法; or 表示按位或运算; and 表示按位与运算)

```
1.
#include <cstdio>
int main() {
     int x;
     scanf("%d", &x);
     int res = 0;
     for (int i = 0; i < x; ++i) {
          if (i * i % x == 1) {
               ++res;
          }
     printf("%d", res);
     return 0;
}
输入: 15
输出:_____
2.
#include <cstdio>
int n, d[100];
bool v[100];
int main() {
     scanf("%d", &n);
     for (int i = 0; i < n; ++i) {
          scanf("%d", d + i);
          v[i] = false;
     int cnt = 0;
     for (int i = 0; i < n; ++i) {
          if (!v[i]) {
               for (int j = i; !v[j]; j = d[j]) {
                    v[j] = true;
               }
               ++cnt;
          }
     printf("%d\n", cnt);
     return 0;
输入: 107143259806
输出:_____
```

```
3.
#include <iostream>
using namespace std;
string s;
long long magic(int I, int r) {
     long long ans = 0;
     for (int i = I; i \le r; ++i) {
          ans = ans * 4 + s[i] - 'a' + 1;
     return ans;
int main() {
     cin >> s;
     int len = s.length();
     int ans = 0;
     for (int 11 = 0; 11 < len; ++11) {
          for (int r1 = 11; r1 < len; ++r1) {
                bool bo = true;
               for (int 12 = 0; 12 < len; ++12) {
                     for (int r2 = 12; r2 < len; ++r2) {
                          if (magic(l1, r1)==magic(l2, r2) &&(l1!=l2 || r1!=r2)) {
                                bo = false;
                          }
                if (bo) {
                     ans += 1;
     cout << ans << endl;
     return 0;
}
输入: abacaba
输出:_____
4.
#include <cstdio>
using namespace std;
const int N = 110;
bool isUse[N];
int n, t;
int a[N], b[N];
bool isSmall() {
```

```
for (int i = 1; i \le n; ++i)
           if (a[i] != b[i]) return a[i] < b[i];
     return false;
}
bool getPermutation(int pos) {
     if (pos > n) {
           return isSmall();
     for (int i = 1; i \le n; ++i) {
           if (!isUse[i]) {
                b[pos] = i; isUse[i] = true;
                if (getPermutation(pos + 1)) {
                      return true;
                isUse[i] = false;
           }
     return false;
void getNext() {
     for (int i = 1; i \le n; ++i) {
           isUse[i] = false;
     getPermutation(1);
     for (int i = 1; i \le n; ++i) {
           a[i] = b[i];
int main() {
     scanf("%d%d", &n, &t);
     for (int i = 1; i \le n; ++i) {
           scanf("%d", &a[i]);
     }
     for (int i = 1; i \le t; ++i) {
           getNext();
     for (int i = 1; i \le n; ++i) {
           printf("%d", a[i]);
           if (i == n) putchar('\n'); else putchar(' ');
     return 0;
输入 1:610164532
输出 1: _____(3分)
```

```
输入 2:6200153426
输出 2:____(5分)
```

五、完善程序 (共 共 2 题, 每题 14 分 , 共计 28 分)

1. 对于一个 1 到 n 的排列 P(即 1 到 n 中每一个数在 P中出现了恰好一次) , 令 q 为第 个位置之后第一个比 P 值更大的位置, 如果不存在这样的位置,则 q=n+1。举例来说,如果 n=5 且 P为 15423 ,则 P为 26656 。

下列程序读入了排列 P,使用双向链表求解了答案。 试补全程序。(第二空 2 分,其余 3 分)数据范围 1 n 10^5 。

```
#include <iostream>
using namespace std;
const int N = 100010;
int n;
int L[N], R[N], a[N];
int main() {
     cin >> n;
     for (int i = 1; i <= n; ++i) {
           int x;
           cin >> x;
               (1)
     }
     for (int i = 1; i \le n; ++i) {
           R[i] = (2) ;
           L[i] = i - 1;
     for (int i = 1; i \le n; ++i) {
           L[ (3) ] = L[a[i]];
                             (4)
           R[L[a[i]]] = R[
     for (int i = 1; i \le n; ++i) {
           cout <<
                       (5)
     }
     cout << endl;
     return 0;
}
```

2. 一只小猪要买 N 件物品(N 不超过 1000)。

它要买的所有物品在两家商店里都有卖。第 i 件物品在第一家商店的价格是 a[i] ,在第二家商店的价格是 b[i] ,两个价格都不小于 0 且不超过 10000。如果在第一家商店买的物品的总额于 不少于 50000 ,那么在第一家店买的物品都可以打 95 折(价格变为原来的 0.95 倍)。

求小猪买齐所有物品所需最少的总额。输入: 第一行一个数 N。接下来 N 行,每行两个数。

```
行的两个数分别代表
第i
                             a[i] , b[i] 。
输出:输出一行一个数,表示最少需要的总额,保留两位小数。
试补全程序。 (第一空 2 分,其余 3 分)
#include <cstdio>
#include <algorithm>
using namespace std;
const int Inf = 1000000000;
const int threshold = 50000;
const int maxn = 1000;
int n, a[maxn], b[maxn];
bool put_a[maxn];
int total_a, total_b;
double ans;
int f[threshold];
int main() {
     scanf("%d", &n);
     total_a = total_b = 0;
     for (int i = 0; i < n; ++i) {
          scanf("%d%d", a + i, b + i);
          if (a[i] \le b[i]) total_a += a[i];
          else total_b += b[i];
     ans = total_a + total_b;
     total_a = total_b = 0;
     for (int i = 0; i < n; ++i) {
               (1)
          if (
               put_a[i] = true;
              total_a += a[i];
          } else {
               put_a[i] = false;
              total_b += b[i];
          }
     }
     if (
          printf("%.2f", total_a * 0.95 + total_b);
     return 0;
     f[0] = 0;
     for (int i = 1; i < threshold; ++i)
          f[i] = Inf;
```

第二十四届全国青少年信息学奥林匹克联赛初赛

提高组参考答案

一、单项选择题(共 10 题,每题 2 分,共计 20 分)

1	2	3	4	5	6	7	8	9	10
D	D	В	А	D	В	В	А	D	В

二、不定项选择题(共 5 题,每题 2 分,共计 10 分;每题有一个或多个正确选项,没有部分分)

1	2	3	4	5
AB	CD	ABD	ABD	BCD

- 三、问题求解(共 2题,每题 5分,共计 10分)
- 1. 去了 没去 没去 没下雨 (第4空2分,其余1分)
- 2. 454
- 四、阅读程序写结果(共 4题,每题 8分,共计 32分)
- 1. 4
- 2. 6
- 3. 16
- 4. 输出 1: 213564 (3 分) 输出 2: 325614 (5 分)

五、完善程序(共计 28分,以下各程序填空可能还有一些等价的写法,由各省赛区组织本省专家审定及上机验证,可以不上报 CCF NOI科学委员会复核)

		Pascal 语言	C++语言	C 语言	分值			
1	(1)	a[x] := i a[x] = i			3			
	(2)	i + 1						
	(3)	R[a[i]]						
	(4)	a[i]						
	(5)	R[i]						
2	(1)	a[i] * 0.95 <= b[i] 或 b[i] >= a[i] * 0.95						
	(2)	total_a >= threshold 或 thresho	otal_a >= threshold 或 threshold <= total_a 或 total_a >= 50000					
		或 50000 <= total_a						
	(3)	total_a + j + a[i]						
	(4)	f[j] + total_b - total_b_prefix						
	(5)	f[j - a[i]]						