Applying Levelized Cost of Storage Methodology to Utility-Scale Second-Life Lithium-Ion Battery Energy Storage Systems

Tobiah Steckel¹, Alissa Kendall², Hanjiro Ambrose^{2,3}

¹Energy Systems, Energy and Efficiency Institute, University of California, Davis

²Department of Civil and Environmental Engineering, University of California, Davis

³Union of Concerned Scientists, Oakland, CA

1. Introduction

- Approximately 5 million electric vehicles (EVs) have been deployed globally over the last decade, and with them, approximately 400 GWh of lithium-ion traction batteries [1]
- While battery packs from these vehicles will be retired for several reasons, the typical degradation pattern for lithium ion batteries (LIBs) indicates that many will retain upwards of 80% of their rated storage potential when retired from a vehicle [2–5] after about 8–10-years of useful life [6,7]
- Given this in-use lifetime estimate and remaining storage potential, the capacity of traction batteries at the end of automotive life is expected to increase ten-fold over the next decade, from 26 GWh in 2025 to as much as 227 GWh in 2030 [8,9].
- A potentially sustainable strategy is reusing these retired batteries in stationary energy storage
- Previous research is limited by system size or reports ambiguous results

Intended outcome of this research:

- 1. Adoption of LCOS as a common approach for cost assessment of second-life BESS
- 2. Improved comparability across LCOS estimates for second-life and new BESS, which will also facilitate a meaningful comparison between them.
- Estimation of the LCOS for a utility-scale second-life BESS based on current
- 4. Estimation of LCOS and repurposing costs for the purpose of informing policy around second-life batteries.

2. LCOS Equation

$$LCOS\left[\frac{\$}{MWh}\right] = \frac{TCC + \sum_{n=1}^{N} \frac{O\&M}{(1+r)^n} + \sum_{n=1}^{N} \frac{Charging}{(1+r)^n} + \frac{EOL}{(1+r)^{N+1}}}{\sum_{n=1}^{N} \frac{Elec_D}{(1+r)^n}}$$

Where: n is the project year, N is the project lifetime, r is the discount rate, O&M is the annual operation and maintenance cost in given year n, Charging is annual charging costs in a given year n, EOL is the end-of-life cost, and Elec_D is the annual electricity discharged. Adapted from Schmidt et al., 2019 [10]

Contact: tsteckel@ucdavis.edu

3. Methodology

- Develop a LCOS model, adapted from Schmidt et al.
- Define a shared set of parameters between new and second-life BESS
- Identify unique parameters for new BESS (discrete values)
- Identify unique parameters for second-life BESS (distribution of values)
- Model repurposing costs, adapted from Neubauer et al., 2015 [11]
- Perform Monte Carlo simulation to populate a distribution of LCOS values for second-life BESS

				standard		
parameter	symbol	units	mean value	deviation	value range	distribution
Total capital cost	tcc _e	\$/kWh	319	66.0	188-350	normal
Fixed O&M cost	O&M _p	\$/kW	7.78	1.75	4.88-10.0	normal
New battery module market cost	nmc	\$/kWh	150 9	19.0	134-180	uniform
market cost	e	γ/ ΚΨΤΙ	130.3	13.0	13 1 100	amom
Battery module						
repurposing cost	rc _e	\$/kWh	37.0	15.0	18.0-64.0	normal
Second life battery module market cost	rc_e	\$/kWh	80.0	21.0	50.0-108	normal
Battery module replacement labor						
cost	rl_e	\$/kWh	11.0	9.19	4.00-17.0	uniform
Future battery module repurposing						
cost	rc _e	\$/kWh	25.0	10.0	18.0-36.0	uniform
Future second life battery module						
market cost	rc _e	\$/kWh	42.0	1.84	40.0-43.0	discrete
Annual battery						
capacity degradation	a _{deg}	%/yr			1.00-3.00	discrete

				Cole	Cole					
				et al.,	et al.,	Lazard,	Lazard,	EIA,	Lazard,	Lazard,
			BNEF,	2019	2019	2019	2019	202	2020	2020
parameter	symbol	units	2019	(low)	(high)	(low)	(high)	0	(low)	(high)
Total capital cost	tcc _e	\$/kWh	328	331	371	189	429	346	188	350
Fixed O&M cost	O&M _p	\$/kW	0	33.0	37.1	1.00	20.0	24.7	7.20	8.80
Annual battery										
capacity degradation	a _{deg}	%/yr	1.30	0	0	0	0	0	2.59	2.59
Capacity	cap _p	MW	N/A	60.0	60.0	100	100	N/A	100	100

4. Results/Discussion

- Upfront capital costs of second-life BESS are 64.3-78.9 % of capital costs of new BESS; despite this, LCOS is higher for second-life BESS 234-278 \$/MWh vs. 211 \$/MWh
- Repurposing costs are between 28-36 \$/kWh and can potentially
- Mechanisms exist to promote price parity between new and second-life BESS including federal Investment Tax Credit and California Self-Generation Incentive Program
- Repurposing costs can help contextualize competing end of life pathways (e.g., recycling or disposal)

References

[1] IEA (International Energy Agency). Global EV Outlook 2020 2020. https://doi.org/10.1787/d394399e-en.

[2] Neubauer J, Wood E. The impact of range anxiety and home, workplace, and public charging infrastructure on simulated battery electric vehicle lifetime utility. J Power Sources 2014;257:12–20. https://doi.org/10.1016/j.jpowsour.2014.01.075.

[3] Neubauer JS, Wood E, Pesaran A. A Second Life for Electric Vehicle Batteries: Answering Questions on Battery Degradation and Value. SAE Int J Mater Manuf 2015;8. https://doi.org/10.4271/2015-01-1306.

[4] Saxena S, Le Floch C, Macdonald J, Moura S. Quantifying EV battery end-of-life through analysis of travel needs with vehicle powertrain models. J Power Sources 2015;282:265–76. https://doi.org/10.1016/j.jpowsour.2015.01.072.

[5] Noel L, Zarazua de Rubens G, Sovacool BK, Kester J. Fear and loathing of electric vehicles: The reactionary rhetoric of range anxiety. Energy Res Soc Sci 2019;48:96–107. https://doi.org/10.1016/j.erss.2018.10.001. [6] Williams B, Lipman T. (TSRRC U of CB. Analysis of the Combined Vehicle- and Post-Vehicle-Use Value of Lithium-Ion Plug-In-Hybrid

Propulsion Batteries. 2012.

[7] Baars J, Domenech T, Bleischwitz R, Melin HE, Heidrich O. Circular economy strategies for electric vehicle batteries reduce reliance on raw materials. Nat Sustain 2020;2017. https://doi.org/10.1038/s41893-020-00607-0.

[8] Martinez-Laserna E, Gandiaga I, Sarasketa-Zabala E, Badeda J, Stroe DI, Swierczynski M, et al. Battery second life: Hype, hope or reality? A critical review of the state of the art. Renew Sustain Energy Rev 2018;93:701–18. https://doi.org/10.1016/j.rser.2018.04.035. [9] Engel H, Hertzke P, Siccardo G. Second-life EV batteries: The newest value pool in energy storage. McKinsey Co 2019. [10] Schmidt O, Melchior S, Hawkes A, Staffell I. Projecting the Future Levelized Cost of Electricity Storage Technologies. Joule 2019;3:81–100. https://doi.org/https://doi.org/10.1016/j.joule.2018.12.008.

[11] Neubauer J, Smith K, Wood E, Pesaran A. Identifying and Overcoming Critical Barriers to Widespread Second Use of PEV Batteries