Quantified statements worksheet

Part One

Assume:

the domain consists of integers

- O(x) is "x is odd"

- L(x) is "x < 10"

- G(x) is "x>9"

What is the truth value of the following statements?

1. $\exists x [O(x)]$ True, e.g., take x=1

2. $\forall x [L(x) \rightarrow O(x)]$ False, e.g., take x=2

3. $\forall x [L(x) \rightarrow \neg G(x)]$ True. If an integer is <10 (9 or less), then it is not >9.

4. $\exists x [L(x) \land G(x)]$ False. There is no integer that is <10 and >9.

5. $\forall x [L(x) \lor G(x)]$ True.

6. $\exists x [L(x) \rightarrow G(x)]$ True, e.g., take x = 20.

Assume:

the domain consists of integers

- A(x) is "x<5"

- B(x) is "x<7"

What is the truth value of the following statements?

1. $\exists x [A(x)] True, e.g., take x=4.$

2. $\exists x [A(x) \land B(x)]$ True, e.g., take x=4.

3. $\forall x [A(x) \land B(x)]$ False, e.g., take x=6.

4. $\forall x [A(x) \rightarrow B(x)]$ True. If x<5 then x<7.

5. $\forall x [B(x) \rightarrow A(x)]$ False. E.g., take x=6, then B(x) is true but A(x) is false.

6. $\exists x [A(x) \rightarrow F]$ True. Take x=6. Then, A(x) is False and $A(x) \rightarrow F$ is True.

Part Two

How do you write the negation of the following statements (use De Morgan's laws for quantified statements):

• All Americans eat cheeseburgers

Negation: It is not the case that all Americans eat cheeseburgers.

Use De Morgan's law: There exists an American that does not eat cheeseburgers.

• There is a smart student at NMSU. Note: The original statement is True; therefore, its negation will be False.

Solution 1: Let domain D be students at NMSU. Let smart(x) mean "x is smart". Then, the original statement can be written as $\exists x \text{ smart}(x)$. Negation is $\neg (\exists x \text{ smart}(x))$. Using De Morgan's law we get: $\forall x \neg \text{smart}(x)$, which is "All NMSU students are not smart".

Solution 2. Let domain D be students. Let smart(x) mean "x is smart". Let atNMSU(x) mean "x is at NMSU". Then, the original statement can be written as $\exists x (\text{smart}(x) \land \text{atNMSU}(x))$. Negation is $\neg(\exists x (\text{smart}(x) \land \text{atNMSU}(x)))$. Using De Morgan's law we get: $\forall x \neg (\text{smart}(x) \land \text{atNMSU}(x)) \equiv \forall x (\neg \text{smart}(x) \lor \neg \text{atNMSU}(x))$, which is "Every student either is not smart or is not at NMSU".

Part Three

How do you write the negation of the following statements?

• \forall real numbers x, if $x^2 \ge 1$ then $x \ge 0$

Original statement: \forall real numbers x, $(x^2 \ge 1) \rightarrow (x \ge 0)$

Negation: $\neg(\forall \text{ real numbers } x, (x^2 \ge 1) \rightarrow (x \ge 0))$

 $\equiv \exists \text{ real number } x, \neg((x^2 \ge 1) \rightarrow (x \ge 0))$

 $\equiv \exists \text{ real number } x, \neg(\neg(x^2 \ge 1) \lor (x \ge 0))$

 $\equiv \exists \text{ real number } x, (\neg \neg (x^2 \ge 1) \land \neg (x \ge 0))$

 $\equiv \exists \text{ real number } x, (x^2 \ge 1) \land \neg(x \ge 0)$

• For every student at NMSU if they have been at NMSU for at least two years then they are classified as a Junior.

Original statement: ∀ student at NMSU x, beenAtNMSUforAtLeast2Years(x) → Junior(x)

Similar, to the previous example, negation is the following:

 \exists student at NMSU x, beenAtNMSUforAtLeast2Years(x) $\land \neg$ Junior(x)

That is, "There is a student at NMSU that has been at NMSU for at least 2 years but is not a Junior".

Part Four

How would you write these in English? Assume that the domain for x is all humans.

$$(\forall x) [GoesToNMSU(x) \rightarrow Smart(x)]$$

Everyone who goes to NMSU is smart. (Note: the statement does not mean that everyone goes to NMSU).

 $(\forall x) [GoesToNMSU(x) \land Smart(x)]$

Everyone goes to NMSU and is smart. (Note: the statement means that everybody goes to NMSU and everybody is smart).

 $(\exists x) [GoesToNMSU(x) \rightarrow Smart(x)]$

Someone either does not go to NMSU or is smart.

 $(\exists x) [GoesToNMSU(x) \land Smart(x)]$

Someone goes to NMSU and is smart.