Lecture 7: Dynamic Programming II (Adv.)

Exponential time algorithms

TSP in exponential time

Exact TSP

Input: An undirected graph G=(V,E) where each edge $(u,v) \in E$ has a positive weight d(u,v).

Aim: Find a bijection π : $\{1, \ldots, n\} \rightarrow V$ s.t.

(*)
$$\sum_{i=1}^{n} d(\pi(i),(\pi(i+1)) + d(\pi(n),\pi(1))$$
 is minimized.

Note: TSP is a permutation problem; find a permutation π of n vertices that minimizes (*).

Brute force algorithm

Algorithm: Test all possible permutations π of n vertices that minimizes (*).

Running time: There are n! possible permutations, each permutation takes O(n) time to test $\Rightarrow O(n! n)$

n! -
$$20! \approx 10^{18}$$
 $30! \approx 10^{32}$ $40! \approx 10^{47}$

$$2^{n}$$
 - $2^{20} \approx 10^{6}$ $2^{30} \approx 10^{9}$ $2^{40} \approx 10^{12}$

TSP

- No polynomial time algorithm is believed to exists.
- The fastest known algorithm for TSP was discovered independently by Bellman 1962 and Held & Karp 1962 using dynamic programming.
- Many good heuristics: Lin-Kernigan, k-opt, genetic algorithms...
- Good algorithms for special cases, e.g., $(1+\epsilon)$ -approximation algorithm for Euclidean TSP.

1954 n=49 [Dantzig, Fulkerson, Johnson]

-1962 n=33

Instances

World tour - 1,904,711 cities

Current best tour within 0.0474%

- Regard a tour to be a simple path that starts and end at vertex 1.
- Every tour consists of an edge (1,k) for some $k \in V \{1\}$ and a path from k to vertex 1. The path from vertex k to vertex 1 goes through each vertex in $V \{1,k\}$ exactly once.
- Let OPT[U,t] be the length of a shortest path starting at vertex
 1, going through all vertices in U and terminating at vertex t.

- OPT[U,t] = length of a shortest path starting at vertex 1, going through all vertices in U and terminating at vertex t.
- OPT[V,1] is the length of an optimal salesperson tour.
- $|U|=1 \Rightarrow OPT[U=\{t\},t] = d(s,t)$
- |U| > 1: consider all vertices $u \in U \setminus \{t\}$ for which $(u,t) \in E$.

Observation: If a path containing (u,t) is optimal then the subpath on $U\setminus\{t\}$ ending in u must also be optimal.

- OPT[U,t] = length of a shortest path starting at vertex 1, going through all vertices in U and terminating at vertex t.
- OPT[V,1] is the length of an optimal salesperson tour.
- $|U|=1 \Rightarrow OPT[U=\{t\},t] = d(s,t)$ $|U|>1 \Rightarrow OPT[U,t] = \min_{u \in U\setminus\{t\}} OPT[U\setminus\{t\},u] + d(u,t)$ s=1

Compute all solutions to subproblems in order of increasing cardinality of U.

$$OPT[U,t] = \min_{u \in U \setminus \{t\}} OPT[U \setminus \{t\},u] + d(u,t)$$

Compute all solutions to subproblems in order of increasing cardinality of U.

The cost of each subproblem can be evaluated in O(n) time.

$$OPT[U,t] = \min_{u \in U \setminus \{t\}} OPT[U \setminus \{t\},u] + d(u,t)$$

Compute all solutions to subproblems in order of increasing cardinality of U.

The cost of each subproblem can be evaluated in O(n) time.

Number of subproblems?

#sets U = 2ⁿ

#vertices connected to t < n

$$OPT[U,t] = \min_{u \in U \setminus \{t\}} OPT[U \setminus \{t\},u] + d(u,t)$$

Compute all solutions to subproblems in order of increasing cardinality of U.

The cost of each subproblem can be evaluated in O(n) time.

Number of subproblems?

#sets
$$U = 2^n$$
#vertices connected to $t < n$

Total time: O(n² 2ⁿ)

Longest path

Input: graph G=(V,E) and an integer k>0.

Task: Find a simple path in G on k vertices [unweighted edges].

Input: graph G=(V,E) and an integer k>0.

Task: Find a simple path in G on k vertices [unweighted edges].

Start with the special case when G is a directed acyclic graph.

Input: graph G=(V,E) and an integer k>0.

Task: Find a simple path in G on k vertices [unweighted edges].

Start with the special case when G is a directed acyclic graph.

Topologically sorted

dist(v) = the longest distance from s to vertex v.

Example: $dist(d) = max{dist(b) + 1, dist(c) + 1}$

dist(v) = the longest distance from s to vertex v.

$$dist(s) = 0$$

$$dist(v) = \max_{(u,v) \in E} \{dist(u) + 1\}$$

Running time: O(|V|+|E|)

dist(v) = the longest distance from s to vertex v.

$$dist(s) = 0$$

$$dist(v) = \max_{(u,v) \in E} \{dist(u) + 1\}$$

Theorem: The longest path in an acyclic directed graph (DAG) can be computed in O(|V|+|E|) time.

Input: graph G=(V,E) and an integer k>0.

Task: Find a simple path in G on k vertices.

Input: graph G=(V,E) and an integer k>0.

Task: Find a simple path in G on k vertices.

Let $\pi: V \to [1..n]$ be a random permutation of V.

Input: graph G=(V,E) and an integer k>0.

Task: Find a simple path in G on k vertices.

Let $\pi: V \to [1..n]$ be a random permutation of V.

Create a DAG G'=(V,E') with vertex set V and edge set E' where $(u,v)\in E'$ if and only if $(u,v)\in E$ and $\pi(u)<\pi(v)$.

Create a DAG G'=(V,E') with vertex set V and edge set E' where $(u,v)\in E'$ if and only if $(u,v)\in E$ and $\pi(u)<\pi(v)$.

Observation 1: If there exists a k-path P in G and π happens to order the vertices of P in an orderly manner then P will be detected as a k-path in G'.

Create a DAG G'=(V,E') with vertex set V and edge set E' where $(u,v)\in E'$ if and only if $(u,v)\in E$ and $\pi(u)<\pi(v)$.

Observation 1: If there exists a k-path P in G and π happens to order the vertices of P in an orderly manner then P will be detected as a k-path in G'.

Observation 2: If G does not have a k-path then G' (for any permutation) does not have one either.

Create a DAG G'=(V,E') with vertex set V and edge set E' where $(u,v)\in E'$ if and only if $(u,v)\in E$ and $\pi(u)<\pi(v)$.

Observation 1: If there exists a k-path P in G and π happens to order the vertices of P in an orderly manner then P will be detected as a k-path in G'.

Observation 2: If G does not have a k-path then G' (for any permutation) does not have one either.

Observation 3: The probability that π turns a k-path in G into a directed k-path in G' is 2/k! Why?

Observation 3: The probability that π turns a k-path in G into a directed k-path in G' is 2/k! Why?

Consider a k-path in G.

When will this path be represented as a k-path in G'?

Two possible cases:

How many permutations are there in total of the path? k!

Observation 3: The probability that π turns a k-path in G into a directed k-path in G' is 2/k! Why?

Algorithm:

Generate k! random permutations.

For each random permutation construct a DAG G'.

Test if G' has a k-path.

- If G does not have a k-path then the algorithm always fails.
- If G has a k-path then the probability that the algorithm fails after k! attempts is

$$(1-2/k!)\cdot(1-2/k!)\cdots(1-2/k!) = (1-2/k!)^{k!} < 1/e < \frac{1}{2}.$$

- By increasing the number of iterations to $c \cdot k!$ one can improve the probability to $1-2^{-c}$.

Theorem: The k-path problem can be solved with probability $(1-1/2^c)$ in O(c(|V|+|E|)k!) time.

Technique: Colour coding [Alon et al. '94]

Algorithm

- 1. Colour the vertices of G with k colours uniformly at random. C:V \rightarrow [1..k]
- 2. Find a colourful k-path in G, if one exists. Otherwise, report that none has been found.

Technique: Colour coding [Alon et al. '94]

Algorithm

- 1. Colour the vertices of G with k colours uniformly at random. C:V \rightarrow [1..k]
- 2. Find a colourful k-path in G, if one exists. Otherwise, report that none has been found.

Definition: A path is colourful if all vertices on the path have distinct colours.

Technique: Colour coding [Alon et al. '94]

Algorithm

- 1. Colour the vertices of G with k colours uniformly at random. C:V \rightarrow [1..k]
- 2. Find a colourful k-path in G, if one exists. Otherwise, report that none has been found.
- Step 1: What is the probability that a k-path P becomes colourful?

$$\frac{\text{\#colouring for which P is colourful}}{\text{\#possible colourings of P}} = \frac{k!}{k^k} \approx \frac{1}{e^k}$$

Technique: Colour coding [Alon et al. '94]

Algorithm

- 1. Colour the vertices of G with k colours uniformly at random. C:V \rightarrow [1..k]
- 2. Find a colourful k-path in G, if one exists. Otherwise, report that none has been found.
- Step 1: What is the probability that a k-path P becomes colourful?

#colouring for which P is colourful =
$$\frac{k!}{k^k} \approx \frac{1}{e^k}$$

 \Rightarrow The expected number of colourings required for a k-path to become colourful is e^k .

Improved k-path: colourful path

Step 2: Find a colourful k-path in G, if one exists. Otherwise, report that none has been found.

P[C,v] – indicator variable for every colour subset $C \subseteq \{1,...,k\}$ and every vertex $v \in V$. Is there a colourful path consisting of the colours in C ending at v.

How many sets C can there be? 2k

P[C,v] = 1 if there is a colourful path consisting of the colours in C and ending at v.

P[C,v] = 0 otherwise

Improved k-path: colourful path

Step 2: Find a colourful k-path in G, if one exists. Otherwise, report that none has been found.

P[C,v] = 1 if there is a colourful path consisting of the colours in C and ending at v.

P[C,v] = 0 otherwise

Iterate over i = the number of colours in C.

[i=1]:
$$P[C,v] = 1$$
 iff $C = \{c(v)\}$

[i>1]:
$$P[C,v] = 1$$
 iff $c(v) \in C$ and $\exists (u,v) \in E$ s.t. $P[C \setminus \{c(v)\}, u] = 1$.

$$P[C,v] = 1$$
 since $P[C \setminus \{yellow\}, u] = 1$ and $\{u,v\} \in E$

Improved k-path: colourful path

Step 2: Find a colourful k-path in G, if one exists. Otherwise, report that none has been found.

Iterate over i = the number of colours in C.

[i=1]:
$$P[C,v] = 1$$
 iff $C = \{c(v)\}$

[i>1]: P[C,v] = 1 iff $c(v) \in C$ and $\exists (u,v) \in E$ s.t. $P[C \setminus \{c(v)\}, u] = 1$.

Theorem: A k-colourful path in a graph G with k colours can be found in $O(2^k \cdot (|V| + |E|))$.

Number of sets C

Improved k-path: summary

Algorithm

i=0

found = false

while not found and $i \le e^k do$

- 1. Colour the vertices of G with k colours uniformly at random. C:V \rightarrow [1..k]
- 2. Find a colourful k-path in G, if one exists. Otherwise, report that none has been found.

end while

Theorem: The k-path problem can be solved with probability $(1-1/e^k)^{e^k} \approx 1/e$ in $O(2^k \cdot e^k \cdot (|V|+|E|))$ time.

Reading material

- TSP:

"Seminar on exact exponential algorithms — Dynamic programming" by Juho-Kustaa Kangas.

https://www.cs.helsinki.fi/u/jwkangas/seminars/report-eea.pdf

Longest path:

"Exact Algorithms - Lecture 5: Randomized Methods and Color Coding" by Eunjung Kim.

http://www.lamsade.dauphine.fr/~mlampis/Resolution/lecture05.pdf