Scientific Computing 1

Manuel Hinz

October 24, 2023

Contents

1	Par	tial differential equations	2
		Laplace equation	
	1.2	Heat equation	3
	1.3	Wave equation	4
	1.4	Helmholz equation	5
	1.5	Characterization of partial differential equations	6
	1.6	Maximum principle	7
2	Finite difference method		_ ~
		Poisson equation	
	2.2	The discrete maximum principle	12
	2.3	Convergence of the finite difference method	12

Introduction

• Tuesday 10:15 - 12:00

• Thursday: 08:25 - 10:00

• Orga infos and literature on ecampus

1 Partial differential equations

1.1 Laplace equation

<u>Problem:</u> How to model soap membrane spanned by a wire sling? **Notation:**

- $\Omega \subset \mathbb{R}^2$ a bounded domain (open and connected set)
- $\Gamma = \partial \Omega$
- $g:\Gamma\to\mathbb{R}$ describing the wire sling
- $u: \Omega : \to \mathbb{R}$ describing the soap membrane

Question: Given Ω and g, how can we characterize the soap membrane? u has minimal surface area.

$$\min_{u} \int_{u(\Omega)} 1 d\sigma = \int_{\Omega} \left\| \overrightarrow{u_x} \times \overrightarrow{u_y} \right\|_2 dx dy = \left\| \begin{pmatrix} 1 \\ 0 \\ u_x(x,y) \end{pmatrix} \times \begin{pmatrix} 0 \\ 1 \\ u_y(x,y) \end{pmatrix} \right\|_2 = \left\| \begin{pmatrix} -u_x(x,y) \\ u_y(x,y) \\ 1 \end{pmatrix} \right\|_2 = \sqrt{1 + u_x(x,y)^2 + u_y(x,y)^2}$$

Observation: $\sqrt{1+z} = 1 + z + O(z^2), z \to 0.$

 \implies Alternate minimization problem:

$$\min_{u} \underbrace{\frac{1}{2} \int_{\Omega} \left(u_x(x, y)^2 + u_y(x, y)^2 \right) dx dy}_{F(u)} = \min_{u} F(u)$$

<u>Assume:</u> We have a minimizer $u \in C^2(\Omega) \cap C(\overline{\Omega})$ with $u|_{\Gamma} = g$ For $v \in C^1(\Omega) \cap C(\overline{\Omega})$ with $v|_{\Gamma} = 0$, we obtain

$$0 = \lim_{\epsilon \to 0} \frac{F(u+\epsilon) - F(u)}{\epsilon} \tag{1}$$

$$= \lim_{\epsilon \to 0} \frac{1}{2\epsilon} \int_{\Omega} \left((u_x + \epsilon v_x)^2 + (u_y + \epsilon v_y)^2 - (u_x^2 + u_y^2) \right) dy dx = (\star)$$
 (2)

$$= \lim_{\epsilon \to 0} \frac{1}{2\epsilon} \int_{\epsilon \to 0} \int_{\Omega} (2\epsilon u_x v_x + \epsilon^2 v_x^2 + 2\epsilon u_y + v_y + \epsilon^2 v_y^2) dx dy$$
 (3)

$$= \lim_{\epsilon \to 0} \frac{1}{2} \int_{\Omega} (2u_x v_x + \epsilon v^2 + 2u_y v_y + \epsilon v_y^2) dx dy \tag{4}$$

$$= \int_{\Omega} (u_x v_x + u_y v_y) dx dy \tag{5}$$

$$= \int_{\Omega} \langle \nabla u, \nabla v \rangle dx dy \tag{6}$$

Observation: A similar term as (1.1) also appears in the Gaus theorem, i.e.

$$\int_{\Omega} \operatorname{div} \overrightarrow{f} \overrightarrow{x} = \int_{\Gamma} \langle \overrightarrow{f}, \overrightarrow{n} \rangle d\sigma$$

where \overrightarrow{n} is the outward pointing normal to Γ , and $f:\Omega\to\mathbb{R}^3$. If $f=\nabla(u)v$ we obtain

$$\begin{split} \int_{\Omega} \operatorname{div}(\nabla u) v dx + \int_{\Omega} \langle \nabla u, \nabla v \rangle dx \\ &= \int_{\Omega} \operatorname{div} f dx \\ &= \int_{\Gamma} \langle f, n \rangle d\sigma \\ &= \int_{\Gamma} \frac{\partial u}{\partial n} \underbrace{v}_{=0} d\sigma = 0 \end{split}$$

Summarizing, u needs to satisfy

$$\int_{\Omega} \underbrace{\operatorname{div}(\nabla u)}_{=\Delta u} v dx = 0$$

for all $v \in C^1(\Omega) \cap C(\overline{\Omega})$

By the fundamental lemma of calculus of variations, u must satisfy

$$\begin{cases} \Delta u(x) = 0 & x \in \Omega \\ u(x) = g(x) & x \in \Gamma \end{cases}$$

This equation is called the Laplace equation or a potential equation.

1.2 Heat equation

<u>Problem:</u> How to model temperature in a fixed volume over time? **Notation:**

- $\Omega \subset \mathbb{R}^d$ a bounded domain, $d \in \mathbb{N}_+$
- $\Gamma = \partial \Omega$
- $u: \mathbb{R}_{>0} \times \Omega \to \mathbb{R}$
- $u(0,x) = u_0(x), x \in \Omega$
- $u(t,x) = g(t,x) \ (t,x) \in \mathbb{R}_{>0} \times \Omega$.
- f(t,x) heat source in Ω $(t,x) \in \mathbb{R}_{>0} \times \Omega$.

Question: Given Ω, u_0, f, g how can we characterize u?

First law of thermodynamics:

For any given $V \subset \Omega$ it must hold

$$\underbrace{\int_{V} \frac{\partial}{\partial} u(t,x) dx}_{\text{Change of temperature in } V} = \underbrace{-\int_{\partial V} \langle q(t,x), n \rangle d\sigma}_{heatflowthrough} V + \int_{V} f(t,x) dx$$

with the material law

$$q(t,x) = c(x\nabla u(t,x)), c(x) \ge c_0 > 0$$

$$\implies \int_{\partial V} \langle q(t,x), u \rangle d\sigma = \int_{V} \operatorname{div}(q(t,x)) dx$$

$$= \int_{V} \operatorname{div}(c(x) \nabla u(t,x)) dx$$

$$\implies \int_{V} \frac{\partial}{\partial t} U(t,x) - \operatorname{div}_{x}((c(x) \nabla u(t,x))) dx = \int_{V} f(t,x) dx$$

By a variation of the fundamental lemma of calculus of variations we obtain the heat equation

$$\begin{cases} \frac{\partial}{\partial t} u(t,x) - \operatorname{div}(c(x) \nabla u(t,x)) = f(t,x) & (x,t \in \mathbb{R}_{>0} \times \Omega) \\ u(0,x) = u_0(x) & x \in \Omega \\ u(t,x) = g(t,x) & (t,x) \in \mathbb{R}_{>0} \times \Gamma \end{cases}$$

For c(x) = 1 and f, g time independent, the temperature will tend towards an equilibrium for $t \to \infty$. Then $\frac{\partial u}{\partial t} = 0$ and we obtain the poisson equation

$$\begin{cases} -\delta u(x) = f(x) & x \in \Omega \\ u(x) = g(x) & x \in \Gamma \end{cases}$$

1.3 Wave equation

<u>Problem:</u> How can we model waves in an ideal gas? **Notation:**

- $\Omega \subset \mathbb{R}^d$ a bounded domain, $d \in \mathbb{N}_{>0}$
- $\Gamma = \partial \Omega$
- velocity $v: \mathbb{R}_{>0} \times \Omega \to \mathbb{R}^d$ of particles
- density $\rho = \rho_0 + \rho_1 : \mathbb{R}_{>0} \times \Omega \to \mathbb{R}$, ρ_0 is constant with $|\rho_1| << \rho_0$
- pressure $p: \mathbb{R}_{>0} \times \Omega \to \mathbb{R}$ of gas
- $p(0,x) = p_0(x), t = 0$
- g(t,x) pressure at boundary Γ , at t>0

Question: Given Ω, v, ρ, p_0, g can we characterize p?

1. Continuity Equation: (mass conservation) in any $V \subset \mathbb{R}$.

$$\underbrace{\int_{V} \frac{\partial}{\partial t} \rho(t, x) dx}_{\text{Change of mass}} = -\underbrace{\int_{\partial V} \rho(t, x) \langle v(t, x), n \rangle d\sigma}_{\text{flux through } \partial V}$$
$$= \kappa - \rho_0 \int_{\partial V} \langle v(t, x), n \rangle d\sigma$$
$$= -\rho_0 \int_{V} \operatorname{div}_{x}(v(t, x)) dx$$

As before \Longrightarrow

$$\frac{\partial}{\partial t}\rho(t,x) \approx -\rho_0 \operatorname{div}_x(v(t,x))$$

2. Newton's law:

$$-\nabla_x p(t,x) = \rho(t,x) \frac{\partial}{\partial t} v(t,x) \approx \rho_0 \frac{\partial}{\partial t} v(t,x)$$

3. Equation of state:

$$p(t,x) = c^2 \rho(t,x)$$

Combining these 3 laws:

$$\begin{split} \frac{\partial^2}{\partial t^2} p(t,x) &= c^2 \frac{\partial^2}{\partial t^2} \rho(t,x) \\ &= -c^2 \frac{\partial}{\partial t} \mathrm{div} : x(\rho_0 v(t,x)) = (\star) \\ &= -c^2 \mathrm{div}_x (\rho_0 \frac{\partial}{\partial t} v(t,x)) \\ &= c^2 \mathrm{div}_x (\nabla p(t,x)) \\ &= c^2 \Delta p(t,x) \end{split}$$

This yields the wave equation

$$\begin{cases} \frac{\partial^2}{\partial t^2} p(t, x - \Delta p(t, x)) = 0 & (t, x \in \mathbb{R}_{>0} \times \Omega) \\ p(t, x) = g(t, x) & (t, x) \in \mathbb{R}_{>0} \times \Gamma \\ p(0, x) = p_0(x) & x \in \Omega \end{cases}$$

-End of lecture 1 (10.10.2023) -Start of lecture 2 (12.10.2023)

1.4 Helmholz equation

Observation: Waves are quite often time-periodic, i.e.

$$p(t,x) = e^{\pm i\omega t} \hat{p}(x), \omega > 0$$

Substituting into the wave equation:

$$0 = -\omega^2 p(t, x) - c^2 \Delta_x p(t, x)$$
$$= e^{i\omega t} \left(-\omega^2 \hat{p}(x) - c^2 \Delta_x \hat{p}(x) \right)$$
$$\implies -\Delta_x \hat{p}(x) - \underbrace{\frac{\omega^2}{c^2}}_{-L^2} \hat{p}(x) = 0, x \in \Omega$$

If the boundary data are time periodic as well, $g(t,x) = e^{i\omega t}g(x)$, we obtain the **Helmholz equation:**

$$\begin{cases} -\Delta \hat{p}(x) - k^2 \hat{p}(x) = 0 & x \in \Omega \\ \hat{p}(x) = \hat{g}(x) & x \in \Gamma \end{cases}$$
 (7)

Advantage: We have gotten rid of the time-dimension.

1.5 Characterization of partial differential equations

Question: Can we find some structure in the partial differential equations above?

Observation: Given a sufficiently smooth function $u: \Omega \to \mathbb{R}$, all of the above PDE can be written in terms of a general partial differential operator

$$(Lu)(x) = -\sum_{i,j=1}^{d} a_{i,j}(x) \frac{\partial^2}{\partial x_i \partial x_k} u(x) + \sum_{i=1}^{d} b_i(x) \frac{\partial}{\partial x_i} u(x) + c(x) \cdot u(x)$$
(8)

where

$$A(x) = [a_{i,j}(x)]_{i,j}^d \in C(\overline{\Omega})^{d \times d}$$
$$b(x) = [b_i(x)]_{i=1}^d \in C(\overline{\Omega})^d$$
$$c(x) \in C(\overline{\Omega})$$

Observation: For $u \in C^2(\Omega)$ we have

$$\frac{\partial^2}{\partial x_i \partial x_j} u = \frac{\partial^2}{\partial x_j \partial x_i} u$$

 \implies w.l.o.g. we cab assume that A(x) is symmetric. \implies A(x) has real eigenvalues.

definition 1.1. We call $-\sum_{i,j=1}^d a_{i,j}(x) \frac{\partial^2}{\partial x_i \partial x_j} u(x)$ the <u>principle part</u> of the operator. Partial differential operators are called

- elliptic in $x \in \Omega$ if all eigenvalues of A(x) are positive
- parabolic in $x \in \Omega$ if d-1 eigenvalues of A are positive, one eigenvalue vanishes and

$$rank(A(x) b(x)) = d$$

• hyperbolic in $x \in \Omega$ if d-1 eigenvalues of A(x) are positive and one eigenvalue is negative.

A partial differential operator is called elliptic, parabolic, hyperbolic if it is so for all $x \in \Omega$

example 1.2. • Laplace and Poisson equations are elliptic

- The heat equation is parabolic
- The wave equation is hyperbolic
- The Helmholz equation is elliptic

These three classes have fundamentally different properties.

• Elliptic PDE are (mostly) similar to Laplace od Poisson equations. For $f \in C(\Omega)$, $g \in C(\Omega)$, look for $u \in C^2(\Omega) \cap C(\overline{\Omega})$ s.t.

$$\begin{cases} \mathcal{L}u = f & \text{in } \Omega \\ u = g & \text{on } \partial\Omega \end{cases}$$

These boundary conditions are called <u>Dirichlet</u> boundary conditions. They can be replaced by <u>Neumann boundary conditions</u> $\frac{\partial u}{\partial n} = g$ an others.

• Parabolic PDE: The coordinate direction from the vanishing eigenvalue is usually taken as time derivative, while the rest of the differential operator is elliptic, call it \mathcal{L} . Write

$$\frac{\partial}{\partial t}u + \mathcal{L}u = f$$

• Hyperbolic PDE: Take the coordinate direction with the negative eigenvalue as time. Write

$$\frac{\partial^2}{\partial t^2}u + \mathcal{L}u = f$$

Observation: We need to look at elliptic differential operators.

Question: When is it reasonable to look at solutions to PDE?

definition 1.3. A problem is <u>well-posed</u> if there exists a solution, the solution is unique and it depends continuously on the data.

Question: Are the PDE above well posed?

1.6 Maximum principle

Simplification: Consider a bounded domain $\Omega \subset \mathbb{R}^d$ and

$$(\mathcal{L}u)(x) = -\sum_{i,j=1}^{d} a_{i,j}(x) \frac{\partial^2}{\partial x_i \partial x_j} u(x)$$
(9)

which is elliptic.

theorem 1.4 (Maximum principle). Let $u \in C^2(\Omega) \cap C(\overline{\Omega})$ a solution to $\mathcal{L}(u) = f \leq 0$. Then u attains its maximum on the boundary, i.e.

$$\max_{x \in \overline{\Omega}} u(x) = \max_{x \in \partial \Omega} u(x)$$

Proof. Case 1: f < 0 Assume there is $y \in \Omega$ with $u(y) = \max_{x \in \overline{\Omega}} > \max_{x \in \Gamma} u(x)$.

Observation: A(x) is symmetric, \mathcal{L} is elliptic.

- $\implies A(y)$ is symmetric and has positive, real eigenvalues.
- \implies there is $Q \in \mathbb{R}^{d \times d}$ such that

$$QA(y)Q^t$$

is diagonal and has positive entries.

<u>Observation</u>: Rotating the coordinate system on Ω by Q, i.e., setting $\zeta = Qx$ changes the differential operator to our advantage.

$$(\mathcal{L}\sqcap)(\zeta) \stackrel{\text{exercise}}{=} - \sum_{i,j=1}^{d} \left(QA(\zeta)Q^{t} \right)_{ij} \frac{\partial^{2}}{\partial \zeta_{i} \partial \zeta_{j}} u(\zeta)$$

$$\implies ()\mathcal{L}u)(y) = - \sum_{i,j=1}^{d} \underbrace{\left(QA(y)Q^{t} \right)_{ij} \frac{\partial^{2}}{\partial \zeta_{i} \partial \zeta_{j}}_{=0 \text{ if } i \neq j}}_{=0 \text{ if } i \neq j} u(\zeta)$$

$$= - \sum_{i=1}^{d} \underbrace{\left(QA(y)Q^{t} \right)_{ii} \frac{\partial^{2}}{\partial \zeta_{i}^{2}} u(\zeta)}_{>0}$$

Observation: y is an extremal point of u

$$\implies \partial_{\zeta_i} u(y) = 0, \frac{\partial^2}{\partial \zeta_i^2} u(y) \le 0$$

$$f(y) = (\mathcal{L}u)(y) = -\sum_{i=1}^d \left(QA(y)Q^t\right)_{ii} \frac{\partial^2}{\partial \zeta_i^2} u(y) \geq 0$$

Contradiction to f < 0.

Case: $f \leq 0$

Assumption: As before assume there is $y \in \Omega$, s.t. $u(y) = \max_{x \in \overline{\Omega}} > \max_{x \in \Gamma} u(x)$.

Observation: Setting

$$h(x) = ||x - y||_2^2 = \sum_{i=1}^d |x_i - y_i|^2$$

and $\delta > 0$ small enough and set $w = \delta h$.

For δ small enough, w has its maximum in Ω .

-End of lecture 2 (12.10.2023)--Start of lecture 3 (17.10.2023)

Proof. (continued) Case $f \leq 0$:

Assumption: There exists

$$y \in \Omega$$
 s.t. $u(y) = \max_{x \in \Omega} u(x) > \max_{x \in \Gamma} u(x)$

Observation:

$$h(x) = ||x - y||_2^2 = \sum_{i=1}^d (x_i - y_i)^2$$

and u is convex.

For $\delta > 0$ small enough, set

$$w = u + \delta h$$

such that w still attains its maximum in Ω .

Observe:

$$\frac{\partial^2}{\partial x_i \partial x_j} h(x) = 2\delta_{ij}$$

$$\implies (\mathcal{L}w)(x) = \underbrace{\mathcal{L}\Box(x)}_{=f \le 0} + \underbrace{\underbrace{\delta(\mathcal{L}h)(x)}_{=-\sum_{j=1}^d a_{i,j}(x) \frac{\partial^2}{\partial x_i \partial x_j} h(x) \frac{\partial^2}{\partial x_i \partial x_j} h(x)}_{=\star} < 0$$

$$\star = -2\sum_{i=1}^d a_{ii}$$

 $A = [a_{i,j}(x)]_{i,j=1}^d$ has positive eigenvalues. $\Longrightarrow A(x)$ is positive definite. $\Longrightarrow z^t A(x)z > 0$ for $\neq 0 \Longrightarrow a_{ii} = e_i^t A(x)e_i > 0$

Proceed as in the first case f < 0 to obtain a contradiction.

corollary 1.5. (Minimum principle) If $\mathcal{L}u = f \geq 0$ in Ω , then u attains its minimum on the boundary.

Proof. Apply the maximum principle to -u.

corollary 1.6 (Comparison principle). If $\mathcal{L}u \leq \mathcal{L}v$ in Ω and $u \leq v$ on $\partial\Omega$ then $u \leq v$ in $\overline{\Omega}$.

Proof. Set w = u - v and apply the maximum principle.

corollary 1.7. Uniqueness There is at most 1 solution to

$$\begin{cases} \mathcal{L}u = f & \in \Omega \\ u = g & \in \partial\Omega \end{cases}$$

Proof. Exercise.

remark 1.8. We have not (yet) shown existence of solutions.

corollary 1.9 (Continuous depedence on the boundary data). The solution to

$$\begin{cases} \mathcal{L}u = f & \in \Omega \\ u = g & \in \partial\Omega \end{cases}$$

depends continuously on the boundary data, i.e.

$$\max_{x \in \Omega} |u_1(x) - u_2(x)| \le \max_{x \in \partial \Omega} |g_1(x) - g_2(x)|$$

Proof. Exercise.

definition 1.10. The second order partial differential operator \mathcal{L} from (1.13) is called <u>uniformly elliptic</u> if there is an $\alpha > 0$ s.t.

$$z^{t}A(x)z > \alpha ||z||_{2}^{2}, z \neq 0.$$

 α is called the ellipticity constant of \mathcal{L} .

corollary 1.11 (Continuous dependence on the right-handed side). Let \mathcal{L} be uniformly elliptic. Then there is a constant $c = c(\Omega, \alpha)$, s.t. for all solutions $u \in C^2(\Omega) \cap C(\overline{\Omega})$ it holds

$$|u(x)| \le \max_{z \in \Gamma} |\underbrace{u(z)}_{=g(z)}| + c \sup_{z \in \Omega} |\underbrace{\mathcal{L}u(z)}_{=f(z)}|$$

remark 1.12. This tells us that small changes in f imply small changes in u.

Proof. Let R > 0 s.t. $\Omega \subset B_R(0)$. Set

$$w(x) = R^2 - ||x||_2^2 \ge 0.$$

Note that $\frac{\partial^2}{\partial x_i \partial x_j} = -2\delta_{ij}$.

$$(\mathcal{L}u)(x) = -\sum_{i,j=1}^{d} a_{ij}(x) \frac{\partial^2}{\partial x_i \partial x_j} w(x) = 2 \sum_{i=1}^{d} \underbrace{a_{ij}}_{\geq \alpha}$$

because of $z^t A(x)z \ge \alpha \|z\|_2^2$. Now, set

$$v(t) = \max_{z \in \Gamma} |u(z)| + \frac{w(x)}{2} \sup_{z \in \Omega} |(\mathcal{L}u)(z)|$$

This yields:

$$(\mathcal{L}v)(x) = \frac{(\mathcal{L}w)(x)}{2} \sup_{z \in \Omega} |(\mathcal{L}u)(z)| \ge \sup_{z \in \Omega} |(\mathcal{L}u)(z)| \ge |(\mathcal{L}u)(x)|$$

Moreover:

$$\begin{split} geqv(x) & \geq \sup_{z \in \Gamma} |u(z)| \geq ||u(x)|| \,, x \in \Omega \\ & \geq \pm u(x) \end{split}$$

Apply the comparison principle twice to u, v and $-u, v \implies \pm u \le v \implies |u| \le v$ (both in $\overline{\Omega}$).

$$\implies |u(x)| \le \max_{z \in \Gamma} |u(z)| + \underbrace{\frac{\le R^2}{w(x)}}_{2} \underbrace{\frac{R^2}{2\alpha}} \sup_{z \in \Omega} |(\mathcal{L}u)(z)|$$

9

2 Finite difference method

2.1 Poisson equation

<u>Problem:</u> Let $\Omega \subset \mathbb{R}^d$ bounded domain, $\Gamma = \partial \Omega$. $f \in C(\Omega), g \in C(\Gamma)$. We look for $u \in C^2(\Omega) \cap C(\overline{\Gamma})$ s.t.

$$\begin{cases} \Delta u = f & \text{in } \Omega \\ u = g & \text{on } \Gamma \end{cases}.$$

definition 2.1. A solution $u \in C^2(\Omega) \cap C(\overline{\Gamma})$ is called a <u>classical solution</u>. For f = 0, we say that u is harmonic.

In this chapter we say solution, but refer to classical solutions.

Question: How can we solve (2.1) for rather general domains Ω ?

definition 2.2. Let $f \in C(\mathbb{R}^d)$, $1 \le i \le d$. We define for h > 0

• the forward (finite) difference as

$$\partial_j^{+h} f = \frac{f(x + he_j) - f(x)}{h}$$

• the backward (finite) difference as

$$\partial_j^{-h} f = \frac{f(x - he_j) - f(x)}{-h}$$

• the central (finite) difference as

$$\partial_j^h \frac{f(x+he_j) - f(x-he_j)}{2h}$$

lemma 2.3. Let $f \in C^4(\mathbb{R}^d)$ it holds

$$\frac{\partial f}{\partial x_j}(x) = \partial_j^{\pm h} f(x) + R_1^{\pm} \le \frac{h}{2} \|F\|_{C^2(\mathbb{R}^d)}$$

$$\frac{\partial f}{\partial x_j}(x) = \partial_j^h f(x) + R_2, R_2 \le \frac{h^2}{6} \|f\|_{C^3(\mathbb{R}^d)}$$

$$\frac{\partial^2 f}{\partial x_i \partial x_j}(x) = (\partial_j^{+h} \partial_j^{-h} f)(x + R_3)$$

$$= \frac{f(x + he_j) - 2f(x) + f(x - he_j)}{h^2} + \underbrace{R_3}_{\|S\|^2} \|f\|_{C^4(\mathbb{R}^d)}$$

where $||f||_{C^k(\mathbb{R}^d)} = \sum_{|\alpha| \le k} \sup_{x \in \mathbb{R}^d} |\partial^{\alpha} f(x)|$

Proof. Exercise.

<u>Idea:</u> For $x \in \Omega$, we have

$$\Delta u(x) = -\sum_{i=1}^d (\partial_i^{+h} \partial_i^{-h} u)(x) + O(h^2)$$

<u>Idea:</u> Introduce a equally spaced grid on Ω : Discrete Domain $\Omega_h = \{x \in \Omega : x = hk, k \in \mathbb{Z}^d\}$.

Discrete Boundary $\Gamma_h = \{x \in \Gamma : \exists 1 \leq i \leq d : x_i = hk_i, k_i \in \mathbb{Z}\}.$ Set $\overline{\Omega}_h = \Omega_h \cup \Gamma_h$, $\overline{\Omega}_h \setminus \Gamma_h$ interior points.

Observation: If Ω is a disjoint union of equal cubes, then we can modify (2.1) to

$$\begin{cases} \Delta_h u_h(x) = f(x) & \in \overline{\Omega}_h \setminus \Gamma_h \\ u_h(x) = g(x) & x \in \Gamma_h \end{cases}$$

This corresponds to a system of linear equations!

example 2.4. $\Omega = (0,1)^2, n \in \mathbb{N}, h = \frac{1}{n}, y_{ij}h(i,j), i, j = 0, \dots, n$ Assume: g = 0, Abbreviate $u_{ij} := u(x_{ij})$, then

$$\Delta_h u_h(x_{ij}) = \frac{4u_{ij} - u_{i-1j} - u_{i+1j} - u_{ij-1} - u_{ij+1}}{h^2}$$
$$= \frac{1}{h^2} \begin{bmatrix} -1 & -1 \\ -1 & 4 & -1 \\ -1 & -1 \end{bmatrix} u(x_{ij})$$

This is called the **5-point finite difference stencil**. Set $f_{ij} := f(x_{ij})$.

$$\implies \frac{4u_{ij} - u_{i-1j} - u_{i+1j} - u_{ij-1} - u_{ij+1}}{h^2} = f_{ij}i = 1, \dots, n-1$$
$$u_{ij} = 0i = \{0, 1\}, j \in \{0, 1\}.$$

We can write this in matrix form as

$$\frac{1}{h^2}\begin{bmatrix}A & -I \\ -I & A & -I \\ & \ddots & \ddots & \ddots \\ & & \ddots & \ddots & -I \\ & & & -I & A\end{bmatrix}\begin{bmatrix}u_1 \\ \vdots \\ \vdots \\ u_{n-1}\end{bmatrix} = \begin{bmatrix}f_1 \\ \vdots \\ \vdots \\ f_{n-1}\end{bmatrix}$$

where

remark 2.5. The same approach can be applied to more partial differential operators, but a few technicalities need to be considered.

remark 2.6. More general domains (non-cuboids) can be dealt with by modifying the stencils close to the boundary. However in general, this will only lead to O(h) approximations, rather than $O(h^2)$

Question: Are the systems of linear equations uniquely solvable?

2.2 The discrete maximum principle

<u>Observation</u>: Applying a finite difference stencil amounts to computing a weighted average of functions values. The value of the stencil can not be larger as the maximum of the values where it is applied to.

lemma 2.7 (Star lemma). Let k > 0 and consider numbers $\alpha_0, \ldots, \alpha_k$ with $\alpha_1, \ldots, \alpha_k < 0$ and p_0, \ldots, p_k such that

$$\sum_{l=0}^{k} \alpha_l \ge 0, \sum_{l=0}^{k} \alpha_l p_l \le 0.$$

Assume that $p_0 \ge 0$ or $\sum_{l=0}^k \alpha_l = 0$, then if $p_0 \ge \max_{1 \ge l \ge k} p_l$, it holds that

$$p_0 = p_1 = \dots = p_k$$

Proof.

$$0 \ge \sum_{k=0}^{l} \alpha_{l} p_{l} - p_{0} \sum_{l=0}^{k} \alpha_{l}$$

$$= \sum_{l=0}^{k} \alpha_{l} (p_{l} - p_{0}) = \sum_{l=1}^{k} \underbrace{\alpha_{l} (p_{l} - p_{0})}_{\ge 0} \ge 0$$

which implies the assertion.

theorem 2.8 (Discrete maximum principle). Let u_h be the solution to $\Delta_h u_h = f$, with $f \leq 0$ and assume that Ω_h is (discretely) connected. Then it holds

$$\max_{x \in \overline{\Omega}_h \setminus \Gamma_h} u_h(x) \le \max_{x \in \Gamma_h} u_h(x).$$

Proof. Assume that the maximum is attained at $y \in \overline{\Omega}_h \setminus \Gamma_h$, set $p_0 = u_h(y)$. Identify p_1, \ldots, p_k with the values of u_h on the neighboring grid cells, and $\alpha_0, \ldots, \alpha_k$ with the weights of the stencil.

$$0 \ge f(y) = (\Delta_h u_h)(y) = \sum_{l=0}^k \alpha_l p_l.$$
Star lemma $p_0 = \dots = p_k$

i.e., $u_h(y)$ at points in eastern, western, southern and northern direction is equal to u_h . Proceed iteratively by marching to the boundary.

All implications of the continuous case transfer to the discrete case. Most importantly:

corollary 2.9. Under the assumptions of (last theorem), the solution of (2.2) is unique.

2.3 Convergence of the finite difference method

Notation:

$$\|v_h\|_{\Omega_h} = \max_{x \in \Omega_h} |v_h(x)|, \|v_h\|_{\overline{\Omega}_h} = \max_{x \in \overline{\Omega}} |v_h(x)|$$

definition 2.10. Let \mathcal{L}_h denote the finite difference approximation of \mathcal{L} from (1.12). The corresponding finite difference method is called

• convergent of order p, if the solution to the PDE satisfies

$$||u - h_h||_{\overline{\Omega}_h} = O(h^p).$$

• <u>consistent</u> of order p, if

$$\|\mathcal{L}u - \mathcal{L}_h u\|_{\overline{\Omega}_h} = O(h^p)$$

• stable, if there exists $C_s > 0$ s.t. for all

$$u_h:\Omega_h\to\mathbb{R}$$

with $u_h|_{\Gamma_h} = 0$ it holds

$$||u_h||_{\overline{\Omega}_h} \leq C_s ||\mathcal{L}_h u_h||_{\Omega_m}$$

remark 2.11. The 5-point stencil yields consistency order p = 2.

added remark. stability means that our solution depends continuously on our data.

remark 2.12. Let v_h be the coefficient vector of $v_h : \Omega_h \to \mathbb{R}$. Let $w_h = A_h v_h$ be the coefficient vector to $w_h = \mathcal{L}_h v_h$.

$$\Longrightarrow \underbrace{\|v_h\|_{\infty}}_{=\|v_h\|} \overline{\Omega}_h = \|A_h^{-1} w_h\|_{\infty}$$

$$\|v_h\|_{\infty} \stackrel{stability}{\leq} C_s \|\mathcal{L}_h v_h\|_{\Omega_h} = C_s \|A_h v_h\|_{\infty} = C_s \|w_n\|_{\infty},$$

i.e. A_h is boundedly invertible and has the same continuity constant for all h > 0.

theorem 2.13. If a finite difference scheme is stable and consistent of order p, then it is also convergent of order p.

Proof.

$$\|u - u_h\|_{\overline{\Omega}_h} \overset{\text{stability}}{\leq} C_s \|\mathcal{L}_h(u - u_h)\|_{\Omega_h} = C_s \|\mathcal{L}_h u - \underbrace{\mathcal{L}_h u_h}_{=f = \mathcal{L}u}\|_{\Omega_h} = C_s \|\mathcal{L}_h u \mathcal{L}u\|_{\Omega_h} = O(h^p)$$

Observation: We need to show stability of (2.2). Then the last theorem yields convergence.

<u>Idea:</u> Stability is nothing else than continuous dependence on the right-hand side. Adpot the proof of Corollary 1.11 to the discrete setting.

corollary 2.14. Let Ω be given as a disjoint union of cubes of equal size and assume $u \in C^4(\overline{\Omega})$ and satisfies 2.1. Then the finite difference approximation u_h converges with

$$||u - u_h||_{\overline{\Omega}_h} = O(h^2)$$

Proof. Corollary of the following lemma.

lemma 2.15. Let R > 0 s.t. $\Omega \subset B_R(0)$ and let $u_h : \Omega_h \to R$ with $u_h|_{\Gamma_h} = 0$. Then it holds

$$||u_h||_{\overline{\Omega}_h} \le \frac{R^2}{2d} ||\Delta_h u_h||_{\overline{\Omega}_h},$$

i.e., the finite difference approximation is stable.

$$Proof.$$
 Exercise

Problem.

- We are restricted to very specific domains.
- Strong smoothness requirements
- Special treatment of more involved differential operators required.

-End of lecture 5 (24.10.2023)