Projekt: Zdalny Dostęp do Terminali przez przeglądarke

1. Cel Projektu

Projekt umożliwia zdalny dostęp do terminali dwóch maszyn (Debian i Rocky Linux) poprzez przeglądarkę internetową. Dostęp jest zabezpieczony mechanizmem uwierzytelniania opartym o OIDC (OpenID Connect) z wykorzystaniem serwera Keycloak. Po zalogowaniu użytkownik trafia do strony wyboru, gdzie wybiera maszynę, z którą chce się połączyć (Debian lub Rocky Linux). Terminale udostępniane są za pomocą narzędzia ttyd, a cały ruch kierowany jest przez Nginx działający jako reverse proxy.

2. Zastosowane Technologie

Frontend

• HTML, CSS, JavaScript

Strony logowania oraz wyboru terminala (choose.php) są napisane w HTML i stylizowane przy użyciu CSS. Animacja unoszącego się nagłówka dodaje interaktywności oraz nowoczesnego wyglądu.

Backend

PHP

Skrypty PHP, takie jak login.php, auth_check.php, choose.php oraz logout.php, zarządzają logiką uwierzytelniania, obsługą sesji użytkowników oraz przekierowywaniem.

OIDC (OpenID Connect)

Uwierzytelnianie jest realizowane przy użyciu biblioteki PHP (np. Jumbojett\OpenIDConnectClient), która inicjuje przepływ OIDC, przekierowując użytkownika do serwera Keycloak.

Uwierzytelnianie

Keycloak Server

Serwer Keycloak służy do zarządzania użytkownikami oraz procesem autoryzacji. Po poprawnym uwierzytelnieniu użytkownik otrzymuje token, który jest zapisywany w sesji PHP, umożliwiając dostęp do zabezpieczonych zasobów.

Keycloak Deployment:

Kluczowy serwer uwierzytelniania jest uruchomiony jako kontener Docker, zarządzany przy użyciu docker-compose. Konfiguracja docker-compose obejmuje usługi Keycloak, PostgreSQL (jako bazę danych) oraz Nginx. Dzięki temu wdrożenie jest łatwe w utrzymaniu, skalowalne oraz umożliwia szybkie aktualizacje. Pełna konfiguracja docker-compose znajduje się w osobnym pliku.

Serwer WWW i Reverse Proxy

Nginx

Nginx pełni rolę serwera WWW oraz reverse proxy. Ruch z internetu jest kierowany na odpowiednie ścieżki:

- Na "/" do strony logowania.
- Na "/debian/" do ttyd działającego na maszynie Debian (IP: 10.0.0.4, port: 7681).
- Na "/rocky/" do ttyd działającego na maszynie Rocky Linux (IP: 10.0.0.10, port: 7681).
 Konfiguracja zawiera mechanizm auth_request, który sprawdza, czy użytkownik posiada aktywną sesję, oraz obsługę WebSocket dzięki

Terminal w Przeglądarce

ttyd

Narzędzie ttyd umożliwia udostępnienie terminala w przeglądarce. Na obu maszynach (Debian oraz Rocky Linux) ttyd jest uruchamiany na porcie LAN (np. 7681), a dostęp do niego jest możliwy dzięki reverse proxy Nginx.

ustawieniom proxy_set_header Upgrade oraz Connection.

Certyfikaty SSL

Certbot / Let's Encrypt

Certbot generuje certyfikaty SSL dla domeny, co umożliwia bezpieczny dostęp przez HTTPS.

Infrastruktura Chmurowa

Microsoft Azure

- Maszyny Wirtualne: Maszyny (Debian i Rocky Linux) są tworzone jako VM w ramach Azure.
- Resource Groups: Wszystkie zasoby (maszyny, sieci, adresy IP) są zarządzane w dedykowanych grupach zasobów.
- Virtual Networks: Maszyny wirtualne są połączone w prywatnej sieci (VNet) o podsieci 10.0.0.0/24.
- Publiczny Adres IP i DNS: Publiczny adres IP jest przypisany do gateway'a, a zarządzanie rekordami DNS odbywa się przy użyciu Azure. Domena została wykupiona u GoDaddy i skonfigurowana w Azure w celu zarządzania rekordami.

3. Architektura i Przepływ Danych

Logowanie i Uwierzytelnianie

1. Wejście na stronę:

Użytkownik wchodzi na adres https://terminal.bjochym.solutions. Strona główna wyświetla statyczną stronę logowania (login.html).

2. Proces logowania:

Po kliknięciu przycisku "Zaloguj się" użytkownik trafia do skryptu PHP (login.php), który inicjuje przepływ OIDC. Użytkownik zostaje przekierowany do serwera Keycloak, gdzie podaje dane logowania. Po udanym uwierzytelnieniu Keycloak przekierowuje użytkownika z powrotem do witryny, a PHP zapisuje dane sesji.

3. Strona wyboru:

Użytkownik trafia na stronę choose.php, gdzie ma do wyboru dwa przyciski:

- Debian TTYD: Kliknięcie przekierowuje do /debian/, a Nginx proxy'uje ruch do ttyd na maszynie Debian (IP: 10.0.0.4, port: 7681).
- Rocky Linux TTYD: Kliknięcie przekierowuje do /rocky/, a Nginx kieruje ruch do ttyd na maszynie Rocky Linux (IP: 10.0.0.10, port: 7681).

Przekierowanie Ruchu przez Nginx

• Reverse Proxy:

Nginx przekierowuje żądania na ścieżkach /debian/ oraz /rocky/ do odpowiednich maszyn w sieci LAN.

• WebSocket:

Dzięki odpowiednim nagłówkom (Upgrade i Connection) ttyd komunikuje się z przeglądarką w czasie rzeczywistym.

Auth_request:

Mechanizm auth_request sprawdza za pomocą skryptu PHP (auth_check.php), czy użytkownik posiada aktywną sesję. W przypadku braku autoryzacji następuje przekierowanie do strony logowania.

Wylogowanie

Wylogowanie:

Na stronie choose.php znajduje się przycisk "Wyloguj się", który kieruje do skryptu

logout.php.

• Skrypt logout.php:

Skrypt usuwa dane sesji PHP (oraz opcjonalnie przekierowuje do Keycloak, aby zakończyć sesję na poziomie uwierzytelniania). W wyniku tego użytkownik traci dostęp do zabezpieczonych zasobów i przy kolejnym wejściu musi ponownie się zalogować, co zwiększa bezpieczeństwo.

4. Podsumowanie

Projekt łączy technologie webowe (HTML, CSS, PHP, OIDC), narzędzia terminalowe (ttyd) oraz infrastrukturę chmurową Azure. Kluczowe elementy rozwiązania obejmują:

- Bezpieczne uwierzytelnianie przy użyciu serwera Keycloak oraz PHP OIDC.
- **Reverse Proxy Nginx** z obsługą WebSocket i mechanizmem auth_request, które kierują ruch do ttyd na maszynach w prywatnej sieci.
- Infrastrukturę Azure: maszyny wirtualne, Virtual Networks, publiczny adres IP oraz zarządzanie rekordami DNS (domena wykupiona u GoDaddy i skonfigurowana w Azure).
- Udostępnienie terminali za pomocą ttyd działających na prywatnych adresach IP (10.0.0.4 dla Debiana i 10.0.0.10 dla Rocky Linux), które dzięki Nginx stają się dostępne z Internetu.
- Proces wylogowania, który usuwa sesję użytkownika, zabezpieczając system poprzez wymuszenie ponownego logowania.