NHÀ MÁY CHẾ BIẾN, ĐÓNG GÓI VÀ VẬN CHUYỂN

- •Ribosome
- •Mạng lưới nội chất
- •Bộ máy Golgi

Ribosomes sinh tổng hợp protein của tế bào

- Ribosomes chứa rRNA và protein.
- 1 <u>ribosome</u> gồm 2 tiểu đơn vị có khả năng kết hợp với nhau để thực hiện chức năng tổng hợp protein.

- Tế bào nào tổng hợp một lượng lớn protein sẽ có một lượng lớn ribosomes và nhân vượt trội.
- Một số ribosomes, ribosomes tự do, thường trôi nổi trong cytosol và tổng hợp nên những phân tử proteins có chức năng trong cytosol
- Những ribosomes khác, ribosomes liên kết, thường được đính trên lớp ngoài của mạng lưới nội chất (endoplasmic reticulum).
 - Những protein được tổng hợp thường bao gồm những protein tham gia cấu trúc thành tế bào và cả những protein được tiết ra khỏi tế bào

Mạng lưới nội chất

sản xuất màng và thực hiện nhiều chức năng sinh tổng hợp khác

- Mạng lưới nội chất (ER) sản xuất ra hơn ½ số màng có trong tế bào eukaryotic.
- ER bao gồm những ống tube có màng bao bọc và những khoảng gian nội bào,lồi ra lõm vào linh động,cisternae.
- Màng ER được tiếp tục với màng nhân và khoảng gian cisternal của ER được tiếp tục với khoảng gian giữa 2 màng của màng nhân.

- Có 2 loại ER khác nhau về cấu trúc và chức năng mặc dù chúng nối trực tiếp với nhau:
 - ER nhám: thấy nhám
 vì chúng đính
 ribosome bên ngoài
 - ER trơn: trông trơn vì chúng không có ribosome

ER nhám

- ER nhám đặc biệt sẽ có rất nhiều trong những tế bào tiết protein.
 - Khi 1 polypeptide được tổng hợp bởi ribosome, nó sẽ xâu thành chuỗi vào trong khoảng gian cisternal qua 1 kênh protein trên màng ER
 - Rất nhiều trong số các polypeptides này là glycoproteins, 1 polypeptide được gắn vào 1 oligosaccharide (short sugar).
- Những protein sau khi được tổng hợp sẽ được đóng gói trong những túi vận chuyển

- ER nhám cũng là 1 nhà máy sản xuất màng.
 - Protein gắn trên màng được tổng hợp trực tiếp thành màng.
 - Enzymes trong ER nhám tổng hợp phospholipids từ các tiền chất trong cytosol.
 - Khi màng ER nở rộng, những phần được vận chuyển sẽ từ túi vận chuyển chuyển sang những thành phần khác của hệ thống nội màng.

ER tron

- (1) ER trơn mang nhiều enzymes và giữ vai trò quan trọng tạo nên sự đa dạng trong các quá trình biến dưỡng của tế bào.
- (2) Enzymes ER trơn sẽ tham gia tổng hợp lipids, bao gồm oils, phospholipids, và steroids.
- (3) ER trơn cũng xúc tác 1 bước quan trọng trong cố định glucose từ tinh bột dự trữ trong lá.

Thể Golgi hoàn tất, phân loại, và vận chuyển sản phẩm tế bào

- Nhiều túi vận chuyển thường sẽ di chuyển từ ER đến thể Golgi (Camillo Golgi, Nobel 1906) nhằm thay đổi nội dung chúng mang.
- Thể Golgi là 1 trung tâm sản xuất, xếp vào kho, phân loại và vận chuyển sản phẩm tế bào
- Thể Golgi sẽ đặc biệt mở rộng trong những tế bào tiết.

NHÀ MÁY PHÁ VÕ NGUYÊN LIỆU KHÔNG SỬ DỤNG THÀNH NGUYÊN LIỆU SỬ DỤNG

- •Không bào
- •Vi thể

Không bào giữ nhiều chức năng khác nhau trong duy trì sự tồn tại của 1 tế bào

- Những túi hay không bào (dạng túi lớn hơn) là những túi chứa có màng bao bọc với nhiều chức năng khác nhau
 - Không bào tiêu hóa, tương tự như 1 thực bào hay tiêu thể.
 - Không bào co bóp, được tìm thấy ở những sinh vật nguyên sinh nước ngọt, có vai trò bơm nước thừa ra khỏi tế bào.
 - Không bào trung tâm, được tìm thấy trong các tế bào thực vật trưởng thành, dự trữ các hợp chất biến dưỡng

The Tonoplast

= Màng không bào (màng đơn)

- Màng có thể vận chuyển chất theo gradient điện hóa nhờ bơm proton ATPase
- Mang nhiều protein chuyên biệt giúp vận chuyển chất qua màng

CHỨC NĂNG CỦA KHÔNG BÀO

- Duy trì sức trương của tế bào
- Tái sinh lại những phân tử không sử dụng của tế bào
- Dự trữ sản phẩm biến dưỡng, kể cả chất thải của tế bào

VI THỂ

 single membrane-bound compartments for specific metabolic pathways

- Peroxisomes are bounded by a single membrane.
- Không được tạo thành từ hệ thống nội màng nhưng bởi sự kết hợp giữa protein và lipids trong cytosol.
- Chúng thường sẽ phân chia thành 2 khi đạt được 1 kích thước nhất định.

Peroxisomes tái tạo và phân hủy H₂O₂ vời nhiều chức năng biến dưỡng khác nhau

- Peroxisomes chứa enzymes có thể chuyển hydrogen từ các cơ chất khác nhau thành oxygen
 - (1) Sản phẩm trung gian của quá trình này là (H₂O₂), 1 độc chất, nhưng peroxisome cũng đồng thời mang enzyme có thể chuyển H₂O₂ thành nước.
 - (2) 1 số <u>peroxisomes phân ca91t các aicd béo thành các</u> <u>phân tử nhỏ hơn</u> để được vận chuyển vào ti thể tạo năng lượng cho tế bào.
 - (3) 1 số khác có khả năng khử <u>alcohol và những chất</u> gây độc khác

Glyoxysomes

- =dạng đặc biệt của peroxisome trong tế bào thực vật
- Thường phổ biến trong mô dự trữ chất béo của hạt đang nẩy mầm
- Chứa các enzymes có thể chuyển đổi chất béo thành đường

