Algèbre

Martin Andrieux

1 Groupes

Définition -

Soit $H \subset G$, H est un sous-groupe de G si :

- H ≠ ∅
- H est stable par ·
- 1 ∈ H
- $\forall \alpha \in H, \alpha^{-1} \in H$

Théorèmes -

- \bullet Les sous-groupes de $\mathbb Z$ sont de la forme $\mathfrak n\mathbb Z$
- Tout groupe fini de cardinal $\mathfrak n$ est isomorphe à un sous-groupe de $\mathfrak S_{\mathfrak n}$
- L'intersection de deux sous-groupes est un sous-groupe.

Définition -

Pour $A \subset G$, il existe un plus petit sous-groupe de G contenant A, c'est le sous-groupe engendré par A, noté $\langle A \rangle$.

Théorème de Lagrange -

Le cardinal de tout sous-groupe divise le cardinal du groupe.

En particulier, pour x dans G, le cardinal de $\langle x \rangle$, aussi appelé ordre de x, divise le cardinal de G.

2 Anneaux

Définition -

Soit $B \subset A$, B est un sous-anneau de A si :

- B ≠ ∅
- \bullet B est stable par \cdot et +
- 1 ∈ B

Définition

Un *corps* est un anneau dans lequel tous les éléments non nuls sont inversibles.

Soit A un anneau, on note A^* l'ensemble des éléments inversibles de A. A^* est un groupe pour la loi \cdot .

Définition -

Soit A un anneau, on dit que x et y sont des diviseurs de 0 si $x \neq 0$, $y \neq 0$ et xy = 0.

Si A ne possède pas de diviseur de 0, il est dit intègre.

3 Arithmétique

Définition -

Soit $I \subset A$ avec A un anneau. On dit que I est un $id\acute{e}al$ à gauche (resp à droite), si pour tout x de I et pour tout a de A, $ax \in I$ (resp $xa \in I$). Si I est un idéal à gauche et à droite, on dit qu'il est $bilat\`{e}re$.

Définition

Soit A un anneau, A est dit principal si les idéaux de A sont de la forme $\mathfrak{a}A$ avec $\mathfrak{a}\in A$. Ces idéaux sont appelés $id\acute{e}eaux$ principaux

Lemme chinois -

Si
$$1 \wedge b = 1$$
, alors

$$\mathbb{Z}/_{\alpha}\mathbb{Z}\times\mathbb{Z}/_{b}\mathbb{Z}=\mathbb{Z}/_{\alpha b}\mathbb{Z}$$

Lemme de Gauss -

Si $a, b, c \in A$, on a:

$$\begin{cases} \alpha | bc \\ \alpha \wedge b = 1 \end{cases} \implies \alpha | c$$

4 Espaces vectoriels

Somme directe de sous-espaces

Une somme de sous-espaces $(F_i)_1^k$ est directe si :

$$\forall (x_1, \dots, x_n) \in F_1 \times \dots \times F_n$$

$$\sum_{i=1}^{k} x_i = 0 \implies \forall i, \ x_i = 0$$

Dualité

L'ensemble des formes linéaires sur E, noté $\mathcal{L}(\mathsf{E},\mathsf{K})$ ou E* est l'espace dual de E.

On note e_i^* l'application qui à un vecteur x de E associe sa i-ième coordonnée dans la base $(e_i)_1^n$ Ainsi, pour tout x de E:

$$x = \sum_{i=1}^{n} e_i^*(x)e_i$$

5 Déterminants

Matrice de Vandermonde -

Le déterminant d'une matrice de Vandermonde est de la forme suivante :

$$\begin{vmatrix} 1 & 1 & 1 & \cdots & 1 \\ \alpha_1 & \alpha_2 & \alpha_3 & \cdots & \alpha_n \\ \alpha_1^2 & \alpha_2^2 & \alpha_3^2 & \cdots & \alpha_n^2 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \alpha_1^{n-1} & \alpha_2^{n-1} & \alpha_3^{n-1} & \cdots & \alpha_n^{n-1} \end{vmatrix}$$

Il est égal à $\prod_{1\leqslant i < j \leqslant n} (\alpha_j - \alpha_i).$

Formule de Cramer -

On s'interesse aux solution de l'équation AX = B avec A dans $GL_n(\mathbb{R})$. Les solutions sont de la

forme
$$X = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$
 avec :

$$x_i = \frac{\begin{vmatrix} a_{1,1} & \cdots & a_{1,i-1} & b_1 & a_{1,i+1} & \cdots & a_{1,n} \\ \vdots & & \vdots & \vdots & \vdots \\ a_{n,1} & \cdots & a_{n,i-1} & b_n & a_{n,i+1} & \cdots & a_{n,n} \end{vmatrix}}{\det A}$$