FONDAMENTI DI AUTOMATICA

Federico Mainetti Gambera

7 aprile 2020

Indice

1		DE: Introduzione al corso	3				
	1.1	Informazioni generale	3				
	1.2	Concetti preliminari	3				
	1.3	Prerequisiti, motivazione e collocamento del corso	3				
	1.4	Relazione fra automatica e informatica	3				
2	II pr	Il problema del controllo 3					
	2.1	Concetti fondamentali	3				
	2.2	Strategie di controllo	4				
		2.2.1 Controllo in anello aperto (AA)	4				
		2.2.2 Controllo in anello aperto (AA) con compensazione del disturbo misurabile	4				
		2.2.3 Controllo in anello chiuso (AC) o in retroazione o Feedback	4				
		2.2.4 Controllo in anello chiuso (AC) con compensazione del disturbo	4				
		2.2.5 Esempio	4				
3	Siste	emi dinamici (SD)	6				
_	3.1	Introduzione	6				
	3.2	Esempi	6				
	3.3	Sistema dinamico (SD) a tempo continuo (TC)	7				
		3.3.1 Espressione del sistema	7				
		3.3.2 Definizioni	8				
		3.3.3 Esempi	8				
	3.4	Sistema dinamico (SD) a tempo discreto (TD)	9				
		3.4.1 Espressione del sistema	9				
		·	10				
			10				
	3.5		11				
			11				
		3.5.2 Movimento	12				
4	Line	earizzazione di sistemi dinamico non lineari (SD, NL, SISO, TC) nell'intorno di un					
			15				
	4.1	Per l'equazione di stato	15				
	4.2	Per l'equazione d'uscita	15				
	4.3		16				
	4.4	Interpretazione	16				
5	Stal	bilità 1	۱6				
	5.1	Esempi	19				
	5.2	·	19				
		5.2.1 Tabella di Routh	19				
			20				
			20				

6	Segi	nali e t	rasformate	21
	6.1	Serie c	di Fourier	21
			rmata di Fourier	
	6.3		rmata di Laplace	
			Esempi	
		6.3.2	Proprietà della trasformata di Laplace	22
7				23
8				24
9				25
10				26
11				27
12				28

1 SLIDE: Introduzione al corso

1.1 Informazioni generale

II ma Le sli	Alberto Leva teriale didattico è distribuito su Beep e sulla pagina del corso. de e il materiale del corso non è sufficiente, bisogna prendere appunti e studiare dai testi. ci sono prove in itinere.
1.2	Concetti preliminari
(azzu c'è ai	Laboratorio: due transistor (marroni) non in contatto diretto, ma legati da una barretta di rame rra), ci sono tre sensori di temperatura (blu), due sui transistor e uno sulla barretta (non si vede), nche una ventola che può essere azionata o meno. Lo scopo è controllare la temperatura della tta agendo su uno dei due transistor, mentre l'altro ha lo scopo di rappresentare un disturbo.
1.3	Prerequisiti, motivazione e collocamento del corso
	Struttura del corso. Nozioni base da sapere: derivate, integrali, invertire un matrice, autovalori ovettori.
1.4	Relazione fra automatica e informatica
[28] [29] [30] [31] [32] [33] [34] [35]	

2 II problema del controllo

[appunti del prof disponibili su Beep]

2.1 Concetti fondamentali

[immagine dagli appunti del prof]

S: sistema da controllare.

U: variabili di controllo o in generale variabili di ingresso. Da notare è che per esempio anche una

pompa che possiamo comandare e che tira fuori acqua dal nostro sistema è una variabile di ingresso perchè la controlliamo, nonostante la massa fisica dell'acqua esca. y: variabili d'uscita.

w: andamento desiderato di y o segnale di riferimento o set point.

d: disturbi.

L'obbiettivo è che y sia il più possibile uguale a w nonostante d e nonostante una conoscenza potenzialmente imperfetta di S.

2.2 Strategie di controllo

2.2.1 Controllo in anello aperto (AA)

[immagine dagli appunti del prof]

 $\stackrel{\cdot}{C}$: controllore.

Il controllore decide l'andamento di U sulla base di w. Il controllore non sa cosa succede in y e non conosce d

Questo approccio funziona se il legame U o y è esattamente noto e non ci sono disturbi d.

2.2.2 Controllo in anello aperto (AA) con compensazione del disturbo misurabile

[immagine dagli appunti del prof]

 M_d : misuratore del disturbo.

 d_m : misura di d.

Il controllore in questo caso non vede y, ma vede d, o meglio d_m .

Questo approccio funziona s il legame $(U,d) \to y$ è esattamente noto e se $d_m = d$, cioè se la misura del disturbo è corretta.

2.2.3 Controllo in anello chiuso (AC) o in retroazione o Feedback

[immagine dagli appunti del prof]

 M_y : misuratore di y.

 y_m : misura di y.

Questo sistema può contrastare i disturbi ed errori di modello anche senza conoscerli, il controllore ne vede gli effetti tramite y_m .

Naturalmente occorre sempre che $y_m=y$, se la misurazione è sbagliata non si può fare nulla. Non laavoriamo con le grandezze vere e proprie, ma con le loro misurazioni.

2.2.4 Controllo in anello chiuso (AC) con compensazione del disturbo

[immagine dagli appunti del prof]

Questo approccio è come il caso precedente ma più pronto nel reagire a d. Nel caso precedente in seguito a un disturbo si reagisce alle sue conseguenze, in questo caso si reagisce in maniera preventiva ai disturbi.

N.B. la precisione di M_d conta meno di quella di M_y .

2.2.5 Esempio

[immagine dagli appunti del prof]

Abbiamo una guida su cui scorre una massa M attaccata con una molla di costante elastica k. La massa viene spinta da una forza F=U (è l'ingresso, lo imponiamo al sistema). La y (uscita) del sistema è la posizione della massa sulla guida.

$$\begin{split} F_{molla} &= -ky \\ F_{attrito} &= -h\frac{d}{dt}y = -h\dot{y} \end{split}$$

Modello statico

Per prima cosa vediamo un modello statico (all'equilibrio) di questo sistema:

In un modello statico la velocità è nulla, e quindi la $F_{attrito}=0$ e $F+F_{molla}=0$, che diventa $F-k\bar{y}=0$, dove peri \bar{y} si intende il valore di y in stato di equilibrio, e dunque $\bar{y}=\frac{F}{k}$. Quindi se voglio $y=y^o$, dove per y^o si intende un y desiderato, dovrò applicare una forza $F=ky^o$.

Analiziamo ora il sistema con un controllo in AA, supponendo che la costante elastica della molla

sia $k=k_n+\Delta k$, dove k_n è detto k nominale. Applicando quindi $F=k_ny^o$, otterrò $y=\frac{F}{k_n+\Delta k}=\frac{k_n}{kn+\Delta k}y^o$. Quindi si può avere un errore di modello dovuto a quel Δk , che provoca un errore di controllo, cioè che $y\neq y^o$.

Errore nel modello $(\Delta k) \Longrightarrow$ errore nel controllo $(y \neq y^o)$

Analiziamo ora il sistema con un controllo in AC.

Posso decidere di applicare una forza $F = \alpha(y^o - y)$, con $\alpha > 0$. Il termine $(y^o - y)$ rappresenta l'errore, (quello che voglio - quello che ho). F è la variabile di controllo ed è proporzionale (α) all'errore. Questo è un esempio di applicazione di controllo ad anello chiuso.

Con questo approccio ottengo $y=\frac{F}{k_n+\Delta k}=\frac{\alpha(y^o-y)}{k_n+\Delta k}$ e continuando i conti si arriva a $\frac{y-y^o}{y^o}=\frac{k}{k+\alpha}$, dove il termine $\frac{y-y^o}{y^o}$ prende il nome di errore normalizzato. Se $k=k_n$ non ho errore, però con α abbastanza grande posso rendere l'errore piccolo a piacere (con possibili problemi di stabilità di cui parleremo più avanti).

Quindi:

- il controllo in AA è basato sul modello (usa k_n); l'errore è nullo se il modello è esatto, se no non si può contrastare l'incertezza.
- ullet il controllo in AC è basato su misure (usa y^o-y); l'errore può essere nullo anche con modello esatto, ma può rendere l'errore piccolo a piacere.

Modello dinamico

Vediamo ora il modello dinamico: Partiamo dalla famosa formula "massa · accellerazione \sum forze ".

Quindi $m \cdot \ddot{y} = F - ky - h\dot{y}$, cioè $m\ddot{y}(t) + h\dot{y}(t) + ky(t) = F(t)$.

Nel caso di un sistema con controllo in **AA**, F(t) non dipende da y(t) e quindi l'integrale generale non cambia qualunque sia F(t).

Nel caso di un sistema con controllo in **AC**, se, per esempio, $F(t) = \alpha(y^o(t) - y(t)) + \beta \dot{y}(t)$, ovvero se faccio dipendere la forza istante per istante, devo scrivere che $m\ddot{y}(t) + h\dot{y}(t) + ky(t) =$ $\alpha(y^o(t)-y(t))+\beta\dot{y}(t)$, cioè $m\ddot{y}(t)+(h-\beta)\dot{y}(t)+(k+\alpha)y(t)=\alpha y^o(t)$. Agendo con alfa e β sto cambiando il polinomio caratteristico dell'equazione differenziale e quindi sto cambiando l'integrale generale. L'integrale generale dipende dai parametri di controllo α e β .

[immagine dagli appunti del prof]: schema a blocchi (verrà spiegato meglio più avanti) dell'esempio appena fatto.

link clicca qui

3 Sistemi dinamici (SD)

3.1 Introduzione

[immagine dagli appunti del prof]

Premettendo che per questa trattazione la presenza del disturbo non è influente, ci poniamo la seguente domanda: se conosco u(t) sull'intervallo $[t_0,t]$, questo mi basta per conoscere $y[t_0,t]$, cioè l'andamento del segnale di y nell'intervallo $[t_0,t]$?

Se la risposta a questa domanda è sì, significa che siamo in presenza di un sistema dinamico, se la risposta è no, il sistema non è dinamico.

Un sistema dinamico è un sistema in cui la conoscenza degli ingressi su un intervallo di tempo non è sufficiente per determinare l'andamento delle uscite sullo stesso intervallo di tempo.

3.2 Esempi

es. sistema non dinamico:

[immagine dagli appunti del prof]

La tensione u(t) è l'ingresso, la corrente sulla resistenza R è l'uscita y(t). La legge che governa questo circuito è $y(t)=\frac{1}{R}u(t)$, quindi noto U(t) conosco y(t). Siamo in presenza di un sistema non dinamico.

es. sistema dinamico:

[immagine dagli appunti del prof]

La tensione u(t) è l'ingresso, la corrente sulla capacità C è l'uscita y(t). Per conoscere $y[t_0,t]$ mi occorrono $u[t_0,t]$ e $y(t_0)$, notiamo che ci serve un solo numero (l'equazione differenziale che governa questo sistema è del primo ordine, quindi necessità di una sola costante arbitraria). Siamo in presenza di un sistema dinamico.

es. sistema dinamico:

[immagine dagli appunti del prof]

E' lo stesso esempio visto alla lezione precedente. Per conoscere $y[t_0,t]$ mi occorrono $u[t_0,t]$ e la posizione e la velocità iniziali, notiamo che ci servono due numeri (l'equazione differenziale che governa questo sistema è del secondo ordine, quindi necessità di due costanti arbitrarie). Siamo in presenza di un sistema dinamico.

es. sistema dinamico:

Prendiamo come esempio un tram che fa delle fermate numerate da $0,\ldots,N$. Abbiamo un indice k che indica la fermata corrente, definiamo con u(k) la differenza fra il numero di passeggeri saliti e il numero di passeggeri scesi alla fermata k e con y(k) il numero di passeggeri a bordo quando il tram lascia la fermata k. Siamo in presenza di un sistema dinamico, perchè per conoscere $y[k_0,k]$ mi occorrono $u[k_0,k]$ e $y(k_0)$, notiamo che ci serve un solo numero.

es. sistema dinamico:

[immagine dagli appunti del prof]

Supponiamo di avere un nastro trasportatore, sopra la quale c'è una tamoggia che fa cadere del granulato. Definiamo come u(t) la portata in ingresso in [kg/s]. Il granulato viene trasportato dal nastro finchè non cade e definiamo come y(t) questa portata in uscita. Diciamo che il tempo di transito sul nastro trasportatore τ è costante.

Per conoscere $y[t_0,t]$ mi occorerà analizzare la portata $u[t_0-\tau,t-\tau]$ (notare i τ) e..., in questo caso notiamo che ci servono informazioni su un intervallo di tempo diverso da quello desiderato $([t_0,t])$. Per proseguire nell'esempio in maniera più semplice non utiliziamo $u[t_0-\tau,t-\tau]$, ma utiliziamo un approccio del tutto analogo: per conoscere $y[t_0,t]$ mi occorrono $u[t_0,t]$ e $y[t_0-\tau,t_0]$, che rappresenta cosa c'era sul nastro. Comunque notiamo che, senza fissarci in maniera troppo pignola su questo esempio, diversamente dagli esempi precedenti, la condizione iniziale del sistema sono infiniti numeri, che è ciò che succede quando un sistema è ritardato.

Siamo in presenza di un sistema dinamico.

Quindi un sistema dinamico per conoscere l'andamento dell'uscita ha bisogno di conoscere l'andamento dell'ingresso e il valore iniziale di qualcos'altro, che solitamente è un numero finito di numeri, ma può anche essere un numero infinito se si è in presenza di un ritardo.

es. caso particolare:

Il sistema è costituito da un pulsante e una lampadina e il suo funzionamento segue il seguente meccanismo: quando si rilascia il pulsante la lampada cambia stato (si accende se era spenta e viceversa). Per conoscere l'andamento dell'accensione y nell'intervallo $[t_0,t]$ occorre conoscere l'ingresso (istanti di rilascio entro $[t_0,t]$) e lo stato iniziale della lampada, che non rappresenta un numero, ma una variabile booleana. Non sarebbe sbagliato dire che lo stato iniziale della lampada è un numero, ma lo indichiamo come variabile booleana, per mostrare in maniera marcata che non è una variabile di cui si può fare una derivata temporale, l'intero sistema non è governato da un equazione differenziale. oss. Se mi interessa soltanto lo stato della lampada all'isante t, l'informazione che mi occorre è lo stato della lampada a t_0 e se il numero di volte in cui il pulsante è stato rilasciato è pari o dispari.

Tutti questi esempi mostrano i vari sistemi che esistono, noi ci specializzeremo in due classi di sistemi dinamici.

3.3 Sistema dinamico (SD) a tempo continuo (TC)

Le quantità di cui occorre il valore iniziale per conoscere l'uscita, noto l'ingresso, si dicono **variabili di stato** e si indicano tipicamente con x.

$$\left. \begin{array}{l} x(t_0) \\ u[t_0,t] \end{array} \right\} \rightarrow x(t), y(t) \; \mathrm{su} \; [t_0,t] \quad t \in \mathbb{R}$$

In questo corso consideriamo (quasi) sempre SD con solo un ingresso e solo un'uscita, i quali si dicono **SISO** (Single Input, Single Output), quindi non lavoriamo con vettori, ma con numeri scalari. Nel caso a TC abbiamo

- $t \in \mathbb{R}$ (scalare)
- $u, y \in \mathbb{R}$ (scalari)
- $x \in \mathbb{R}^n$ (non per forza uno scalare, può essere un vettore) (come esempio di caso vettoriale si può usare il terzo visto nella sezione precedente, che aveva bisogno di due variabili di stato: posizione e velocità)

dove con n si intende il numero di variabili di stato, (quasi) sempre finito, che prende il nome di **ordine**. **oss.** Un SD è definito su un campo, per noi in \mathbb{R} .

3.3.1 Espressione del sistema

Il volore assunto dalla prima variabile di stato $x_1(t)$ all'istante t è una funzione $\phi_1(x_1(t), x_2(t), \dots, x_n(t), u[t_0, t], t)$, quindi dipende da sè stessa e da tutte le altre variabili di stato, da $u[t_0, t]$ e dal tempo t se il sistema è tempo variante. E così pure per le altre variabili di stato:

$$\left. \begin{array}{ll} x_1(t) = \phi_1(x_1(t_0), x_2(t_0), \ldots, x_n(t_0), u[t_0, t], t) \\ \ldots & = & \ldots \\ x_n(t) = \phi_n(x_1(t_0), x_2(t_0), \ldots, x_n(t_0), u[t_0, t], t) \end{array} \right\} \rightarrow \text{funzione di transizione dello stato}$$

Queste espressioni prendono il nome di funzione di transizione dello stato.

$$y(t) = \gamma(x_1(t), x_2(t), \dots, x_n(t), u(t), t)$$
 \rightarrow equazione o trasformazione d'uscita

Questa espressione prende il nome di equazione o trasformazione d'uscita.

La differenza fra ϕ e γ è che γ è una semplice funzione a cui noi diamo dei parametri e ci viene restituita la y, mentre le ϕ sembrano "qualcosa di strano" che ci richiede la "storia" del sistema come parametri.

Tutte queste espressioni possono sostanziarsi matematicamente in diversi modi. Vediamo quello principale e il solo di nostro interesse.

Negli SD a TC:

$$\begin{vmatrix} \dot{x}_1(t) = f_1(x_1(t), x_2(t), \dots, x_n(t), u(t), t) \\ \dots = \dots \\ \dot{x}_n(t) = f_n(x_1(t), x_2(t), \dots, x_n(t), u(t), t) \end{vmatrix} \rightarrow \text{equazione (differenziale) di stato}$$

Queste espressioni prendono il nome di equazione (differenziale) di stato.

$$y(t) = g(x_1(t), x_2(t), \dots, x_n(t), u(t), t)$$
 \rightarrow equazione o trasformazione d'uscita

Quello che è cambiato rispetto a prima è che siamo in presenza di un equazione differenziale e quindi, quando noi integriamo questa equazione differenziale, il valore della funzione dipende da tutta la storia del termine noto.

Con espressione vettoriale:

$$x(t) = \begin{bmatrix} x_1(t) \\ \dots \\ x_n(t) \end{bmatrix} \Rightarrow \begin{cases} \dot{x}(t) = f(x(t), u(t), t) \\ y(t) = g(x(t), u(t), t) \end{cases} \quad u, y \in \mathbb{R}, \quad x \in \mathbb{R}^n$$

3.3.2 Definizioni

- Se f e g sono lineari in x e in u, allorà dirò che il sistema dinamico è **lineare**.
- Se f = f(x, u) (non compare esplicitamente t) e g = g(x, u) (non compare esplicitamente t), allora dirò che il sistema dinamico è **tempo invariante o stazionario**.
- Se g = g(x,t) (non compare u), allora dirò che il sistema dinamico è **strettamente proprio**.

3.3.3 **Esempi**

Rivediamo alcuni degli esempi di prima ed altri nuovi analizzandoli con le definizioni e i concetti appena introdotti.

es. esempio del condensatore:

Equazione della maglia x + Ri = u e equazione del condensatore $i = C\dot{x}$.

$$\begin{cases} x + RC\dot{x} = u \\ y = x \end{cases} \qquad \begin{cases} \dot{x} = -\frac{1}{RC}x + \frac{1}{RC}u \\ y = x \end{cases} \qquad f(x, u) = -\frac{1}{RC}x + \frac{1}{RC}u \text{ e } g(x, u) = x \end{cases}$$

Evidentemente questo è un sistema dinamico, è lineare, è tempo invariante, è del prim'ordine (una equazione di stato), è strettamente proprio.

es. Massa-molla:

Nell'esempio di prima eravamo arrivati a dire che $m\ddot{y}=F-ky-h\dot{y}$, dove F=u.

A questo punto dico che $x_1=$ posizone =y e $x_2=$ velocità $=\dot{y}$, da qui traggo che $m\dot{x}_2=u-kx_1-hx_2$ e $\dot{x}_1=x_2$.

Mettendo tutto assieme ottengo:

$$\begin{cases} \dot{x}_1 = x_2 \\ \dot{x}_2 = -\frac{k}{m}x_1 - \frac{h}{m}x_2 + \frac{1}{m}u \\ y = x_1 \end{cases}$$

Questo è un sistema dinamico, è lineare, è tempo invariante, è strettamente proprio, è del secondo ordine.

es. nuovo esempio:

[immagine dagli appunti del prof]

Una cerniera a cui è attaccato un pendolo (un'asta lunga l (senza peso) con attaccato un peso m). θ è l'angolo di sfasamento del pendolo rispetto all'asse verticale. Diciamo che su questo oggetto c'è una coppia (sinonimo di momento) motrice, che chiamo τ_m .

L'equazione che governa questo oggetto è $j=\ddot{\theta}=\sum\limits_{}^{m}$ coppie , dove j è il momento di inerzia e $\ddot{\theta}$ è l'accellerazione angolare. In questo ingresso ci sono diverse coppie: $\tau_m=$ coppia motrice, il nostro ingresso =u, $\tau_f=$ coppia d'attrito $=-h\dot{\theta}$ (h>0), $\tau_g=$ coppia gravità $=mg\cdot lsin(\theta)$ (mg forza di gravità e $lsin(\theta)$ è il braccio).

Quindi $x_1 = \theta$ e $x_2 = \dot{\theta} = \dot{x}_1$.

Il momento di inerzia è ml^2 .

Quindi riscrivendo l'equazione che governa il sistema otteniamo: $ml^2\dot{x}_2 = u - hx_2 - mg \cdot lsin(x_1)$.

$$\begin{cases} \dot{x}_1 = x_2 \\ \dot{x}_2 = -\frac{g}{l} \sin(x_1) - \frac{h}{ml^2} x_2 + \frac{l}{ml^2} u \\ y = x_1 \end{cases}$$

Questo è un sistema dinamico, è tempo invariante, è non lineare (per via del termine $sin(x_1)$), è strettamente proprio, è del secondo ordine.

3.4 Sistema dinamico (SD) a tempo discreto (TD)

Per tempo discreto si intende che l'evoluzione temporate è "a passi", esiste infatti un indice temporale k intero che tiene traccia dei numeri di passi. In alcuni cassi fra k e il tempo t esiste una relazione, nel senso che k rappresenta un intervallo temporale.

3.4.1 Espressione del sistema

Come sarà fatto un sistema dinamico a tempo discreto?

$$\left. \begin{array}{ll} x_1(k) = \phi_1(x_1(k_0), x_2(k_0), \ldots, x_n(k_0), u[k_0, k], k) \\ \ldots &= & \ldots \\ x_n(k) = \phi_n(x_1(k_0), x_2(k_0), \ldots, x_n(k_0), u[k_0, k], t) \end{array} \right\} \rightarrow \text{funzione di transizione dello stato}$$

Queste espressioni prendono il nome di funzione di transizione dello stato.

$$y(k) = \gamma(x_1(k), x_2(k), \dots, x_n(k), u(k), k)$$
 \rightarrow equazione o trasformazione d'uscita

Queste espressioni prendono il nome di equazione o trasformazione d'uscita.

E' la stessa identica cosa scritta per i sistemi discreti a tempo continuo, solo che invece di t abbiamo k.

Anche qui ci domandiamo come effettivamente sostanziare queste formule a livello pratico. Nel caso di tempo continuo abbiamo usato le equazioni differenziali. Nel caso di tempo discreto invece usiamo le **equazioni (di stato) alle differrenze** usando il "passo prima" k-1 (capiremo perchè più avanti nel corso).

Negli SD a TD:

$$\left. \begin{array}{ll} \dot{x}_1(k) = f_1(x_1(k-1), x_2(k-1), \ldots, x_n(k-1), u(k-1), k) \\ \ldots &= \ldots \\ \dot{x}_n(k) = f_n(x_1(k-1), x_2(k-1), \ldots, x_n(k-1), u(k-1), k) \end{array} \right\} \rightarrow \text{equazioni (di stato) alle differenze}$$

$$y(k) = g(x_1(k), x_2(k), \dots, x_n(k), u(k), k)$$
 $ightarrow$ equazione o trasformazione d'uscita

Nel caso a tempo continuo usavamo l'integrazione per esprimere la dipendenza dagli stati passati, qui abbiamo un equivalente a tempo discreto, in cui lo stato attuale (k) dipende dallo stato di prima (k-1).

3.4.2 Definizioni

Le definizioni di **lineare**, **tempo invariante**, **strettamente proprio**, **ordine**, sono le stesse di quelle a tempo continuo (sostituendo t con k).

3.4.3 **Esempi**

Anche per TC rivediamo uno degli esempi analizzandolo con le definizioni e i concetti appena introdotti.

es. Esempio del tram:

y(k) = x(k) = numero di passeggeri a bordo alla partenza dalla fermata k.

u(k) = numero di passeggeri saliti - numeri di passeggeri scesi alla fermata k.

Vediamo la legge che governa questo sistema:

$$x(k) = x(k-1) + u(k)$$

oss. non è un eq. di stato ben posta perchè a secondo membro c'è u(k).

Per capire bene perchè questa equazione di stato non è corretta vediamo un gioco ("educational game"):

Definisco un operatore "anticipo di un passo" e lo chiamo z, cioè, quando scrivo z[v(k)] (qualunque cosa sia v), intendo in realtà dire v(k+1). Questo operatore è lineare ($z(av_1(k)+bv_2(k))=av_1(k+1)+bv_2(k+1)=a(z(v_1(k))+b(z(v_2(k))))$).

Tornando al sistema: y(k) = x(k) = x(k-1) + u(k), siccome questo sistema è tempo invariante la stessa cosa succede anche se sposto l'indice di un'unità, quindi posso riscrivere quest'equazione come x(k+1) = x(k) + u(k+1). Ora posso usare il nostro operatore z e scrivere zx(k) = x(k) + zu(k), (z-1)x(k) = zu(k).

otteniamo $\begin{cases} \xi(k) = \xi(k-1) + u(k-1) & \text{(equzione di stato ben posta, non c'è più } u(k) \\ y(k) = \xi(k) + u(k) & \text{.} \end{cases}$

Tutto questò mi evidenzia che il sistema è diamico, lineare tempo invariante, del primo ordine, e non strettamente proprio (compare u(k) nell'equazione d'uscita).

[ci sono problemi tecnici nella lezione per cui questo esempio è molto mal spiegato, il prof ricommenta l'esempio da capo].

La ragione per cui il sistema è dinamico è che c'è un legame fra ciò che succede al passo prima rispetto al passo corrente. La chiave di tutto è che c'è un anticipo (l'operatore lineare z). [numerosi passaggi algebrici dopo] Arrivo ad avere un $\frac{z}{z-1}$, termine con lo stesso grado sia al numeratore sia al denominatore, cosa che non ci piace molto (lo capiremo più avanti nel corso). [altri passaggi algebrici dopo] Arrivo a definire $\xi(k)$ [ancora un passaggio algebrico] e svolgo l'operatore z su ξ (da $(z-1)\xi(k)$ arrivo a $\xi(k+1)-\xi(k)$). [altri passaggi algebrici] e trovo un'equazione di stato ben posta.

Quindi nel caso a tempo continuo, la ragione per cui il sistema è dinamico è perchè c'è un'equazione differenziale e l'operatore utilizzato era la derivata. Nel caso a tempo discreto abbiamo usato questo operatore z, definito da noi.

Questo ci fa capire che andando a lavorare sugli operatori che rendono dinamico un sistema, si può elaborare il sistema stesso in modo da far emergere la sua struttura in termini di equazioni di stato e d'uscita, che ci permette quindi di studiare il sistema in un modo non possibile se lo lasciassimo come era in origine.

3.5 Sistemi dinamici (SD) lineari tempo invarianti (LTI)

I sistemi dinamici lineari tempo invarianti sono sistemi in cui f e g sono lineari in x e in u, e per cui non c'è dipendenza esplicita da t (TC) o da k (TD). Li vedremo solo SISO (single input, single output).

Cominciamo per il caso a **tempo continuo** (TC). L'unico modo per fare un sistme DC TC LTI è il seguente:

$$\begin{cases} \dot{x}_1(t) &= a_{11}x_1(t) + \dots + a_{1n}x_n(t) + b_1u(t) \\ \dots &= \dots \\ \dot{x}_n(t) &= a_{n1}x_1(t) + \dots + a_{nn}x_n(t) + b_nu(t) \\ y(t) &= c_1x_1(t) + \dots + c_nx_n(t) + du(t) \end{cases}$$

In forma vettoriale:

$$x = \begin{bmatrix} x_1 \\ \dots \\ x_n \end{bmatrix}, \quad A = \begin{bmatrix} a_{11} & \dots & a_{1n} \\ \dots & \dots & \dots \\ a_{n1} & \dots & a_{nn} \end{bmatrix}, \quad b = \begin{bmatrix} b_1 \\ \dots \\ b_n \end{bmatrix}, \quad c = \begin{bmatrix} c_1 & \dots & c_n \end{bmatrix}$$
$$\begin{cases} \dot{x} = Ax + bu \\ y = cx + du \end{cases}$$

I termini A, b, c, d prendono il nome di **descrizione di stato**.

Il caso a tempo discreto (TD) è analogo.

$$\begin{cases} x(k) = Ax(k-1) + bu(k-1) \\ y(k) = cx(k) + du(k) \end{cases}$$

oss. Nei libri di testo si può trovare scritto così: $\begin{cases} x(k+1) = Ax(k) + bu(k) \\ y(k+1) = cx(k+1) + du(k+1) \end{cases}$, comunque la cosa importatne è che nella prima equazione del sistema ci siano due valori successivi di k e nella seconda ci sia un solo valore di k.

3.5.1 Equilibrio

Poniamoci una domanda: con u(t) (o u(k)) = \bar{u} costante, esiste un qualche valore \bar{x} costante tale che

, cioè, con un ingresso costante deciso, esiste un qualche stato costante tale che, prendendo proprio questo stato come stato iniziale e applicando l'ingresso costante deciso, lo stato non cabia?

oss. Il concetto di equilibrio è che se io metto un sistema in uno stato di equilibrio, lui rimane lì. Da notare è che la stabilità è un altra cosa (se muovo dallo stato d'equilibrio, il sistema ritorna lì).

Per rispondere a questa domanda dobbiamo distinguere i casi a tempo continuo e a tempo discreto:

Vediamo il caso a **tempo continuo** (TC). Se x deve rimanere costante, significa che $\dot{x}=0$ la derivata deve essere nulla. Quindi in generale con $\dot{x}=f(x,u)$, noto il valore \bar{u} segnato che applico, gli eventuali \bar{x} sono le soluzioni di $f(\bar{x},\bar{u})=0$.

Vediamo il caso a **tempo discreto** (TD). Se x deve rimanere costante, significa che x(k+1)=x(k) per ogni k, cioè che x(k+1) deve rimanere costante. Quindi in tal caso dovrò risolvere per \bar{x} l'equazione $f(\bar{x}, \bar{u}) = \bar{x}$.

Vediamo ora il caso tempo continuo (TC) lineare tempo invariante (LTI). In questo caso l'equazione da risolvere diventa $0 = A\bar{x} + b\bar{u}$. Se A non è singolare, allora esiste uno e uno solo $\bar{x} = -A^{-1}bu$, altrimento o non esiste \bar{x} o esistono infiniti \bar{x} .

Vediamo ora il caso tempo discreto (TD) lineare tempo invariante (LTI). In questo caso l'equazione da risolvere diventa $\bar{x}=A\bar{x}+b\bar{u}$. Questa equazione si scrive anche $(I-A)\bar{x}=b\bar{u}$ e se I-A non è singolare, cioè se A non ha autovalori in 1, allora esiste uno e uno solo $\bar{x}=(I-A)^{-1}b\bar{u}$, altrimento o non esiste \bar{x} o esistono infiniti valori \bar{x} .

Se esiste un \bar{x} (cioè se un sistema ammette un certo stato di equilibrio) per certo $u=\bar{u}$, in generale esiste un **uscita di equilibrio** $\bar{y} = g(\bar{x}, \bar{u})$.

oss. Nel caso non lineare $g(\bar{x}, \bar{u})$ potrebbe anche non avere significato, quindi non esiste un'uscita d'equilibrio. Invece nel caso lineare (sia TC sia TD) se esiste \bar{x} , allora esiste sempre $\bar{y}=c\bar{x}+d\bar{u}$

Esempi

es. Esempio della massa-molla visto la lezione scorsa:

L'equazione che governa il sistema è $m\ddot{y} = F - ky - h\dot{y}$, con u = F, ed eravamo arrivati a dire che $\begin{cases} \dot{x}_1 - x_2 \\ \dot{x}_2 = -\frac{k}{m}x_1 - \frac{h}{m}x_2 + \frac{1}{m}u \end{cases}$, con x_1 posizione e x_2 velocità.

Riscriviamo il tutto in forma matriciale:

$$\begin{cases} \begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -\frac{k}{m} & -\frac{h}{m} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ \frac{1}{m} \end{bmatrix} u \\ y = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

Ponendo $u = \bar{u}$ esiste un equilibrio \bar{x} ?

Pongo $\dot{x}_1=0\Longrightarrow \bar{x}_2=0$, ovvio perchè la velocità è nulla all'equilibrio.

Pongo
$$\dot{x}_2=0$$
, quindi $-\frac{k}{m}\bar{x}_1-\frac{h}{m}\bar{x}_2+\frac{1}{m}\bar{u}=0\Longrightarrow \bar{x}_1=\frac{\bar{u}}{k}$.

es. Esempio del pendolo visto la lezione scorsa:

[immagine dagli appunti del prof]

Avevamo posto $x_1= heta$ e $x_2=\dot{ heta}$. Andando a rivedere le equazioni che governano questo sistema

che abbiamo scritto la volta scorsa si arriva ad avere $\begin{cases} \dot{x}_1 = x_2 \\ \dot{x}_2 = -\frac{q}{l} sin(x_1) - \frac{h}{ml^2} x_2 + \frac{1}{ml^2} u \end{cases}$

 $u=\bar{u}$ esiste un equilibrio \bar{x} ?

Pongo $\dot{x}_1=0\Longrightarrow x_2=0$, ovvio perchè la velocità angolare è nulla all'equilibrio.

Pongo $\dot{x}_2 \Longrightarrow 0 = -\frac{q}{l} sin(\bar{x}_1) + \frac{1}{ml^2} \bar{u}.$ Il risultato è che $\begin{cases} \bar{x}_1 = arcsin(\frac{\bar{u}}{mgl}) \\ \bar{x}_2 = 0 \end{cases}$ e quindi:

- se $|\bar{u}| > mgl$, non esiste equilibrio \bar{x} , e il pendolo continua a girare.
- se $\bar{u}=0$, allora abbiamo due soluzioni: $\bar{x}_1=0$ o $\bar{x}_1=\pi$ (sono due equilibri).

3.5.2 Movimento

Dato uno stato iniziale x(0) e dato un ingresso u(t) o u(k), per t o k > 0:

dato uno stato iniziale x(0)uno stato iniziale x(0) dato un ingresso u(t) (o u(k)) per t (o k) ≥ 0 $\}$ \rightarrow si produce un x(t) (o x(k)) e un y(t) (o y(k))

Questi x(t) (o x(k)) e un y(t) (o y(k)) prendono il nome di **movimenti di stato e uscita**.

Formule di Lagrange

Vediamo il caso tempo discreto (TD) lineare tempo invariante (LTI). Questo sistema, come sappiamo, è fatto così:

$$\begin{cases} x(k) = Ax(k-1) + bu(k-1) \\ y(k) = cx(k) + dx(k) \end{cases}$$

Vediamo cosa succede se imponiamo un x(0) e un u(k) con $k \ge 0$.

Calcoliamo il movimento dello stato x:

x(0) è il dato di partenza,

$$x(1) = Ax(0) + bu(0),$$

$$x(2)Ax(1) + bu(1) = A^2x(0) + Abu(0) + bu(1),$$

. . . ,

quinidi per il generico k posso scrivere

$$x(k) = A^{k}x(0) + \sum_{l=0}^{k-1} A^{k-l-1}bu(l)$$

che prende il nome di formula di Lagrange a tempo discreto per lo stato, dove il termine $A^kx(0)$ è il movimento libero (ML) dello stato e il termine $\sum_{l=0}^{k-1}A^{k-l-1}bu(l)$ è il movimento forzato (MF) dello stato.

oss. ML dipende linearmente solo dallo stato iniziale x(0) e non dall'ingresso u(k), MF dipende linearmente solo dall'ingresso u(k) e non dallo stato iniziale x(0).

oss. ML e MF sommati danno il movimento totale, vale quindi il principio di sovrapposizione degli effetti (PSE).

oss. Se il sistema non è lineare, in genere non si riesce a separare il movimento in ML e MF.

Calcoliamo il movimento dell'uscita u:

Analogamente si giunge alla formula di Lagrange a tempo discreto per l'uscita:

$$y(k) = cx(k) + du(k) = cA^{k}x(0) + c\sum_{l=0}^{k-1} A^{k-l-1}bu(l) + du(k)$$

dove il termine $cA^kx(0)$ è il movimento libero (ML) dell'uscita e il termine $c\sum_{l=0}^{k-1}A^{k-l-1}bu(l)+du(k)$ è il movimento forzato (MF) dell'uscita.

Vediamo il caso tempo continuo (TC) lineare tempo invariante (LTI).

Formula di Lagrange a tempo continuo per lo stato

$$x(t) = e^{At}x(0) + \int_0^t e^{A(t-\tau)}bu(\tau)d\tau$$

con $e^{At}x(0)$ movimento libero (ML) dello stato e $\int_0^t e^{A(t-\tau)}bu(\tau)d\tau$ movimento forzato (MF) dello stato.

Formula di Lagrange a tempo continuo per l'uscita

$$y(t) = ce^{At}x(0) + c\int_0^t e^{A(t-\tau)}bu(\tau)d\tau + du(t)$$

con $ce^{At}x(0)$ movimento libero (ML) dell'uscita e $c\int_0^t e^{A(t-\tau)}bu(\tau)d\tau+du(t)$ movimento forzato (MF) dell'uscita.

Esponenziale di matrice

Per sistemi di ordine maggiore di 1 occorre calcolare l'esponenziale di matrice e^{At} , vediamo come fare per il caso in cui A sia diagonalizzabile (altrimenti si usa un altro metodo, ma la incontreremo più avanti):

Definizioni e concetti importanti:

- Data una matrice M, scriviamo $e^M = I + M + \frac{M^2}{2!} + \frac{M^3}{3!} + \dots$
- Se M è diagonalizzabile, allora esiste una matrice T^{-1} (non singolare) tale che $T^{-1}MT=D$ è una matrice diagonale tale che i suoi elementi sulla diagonale sono gli autovalori λ_i di M. Di conseguenza $M=TDT^{-1}$.

Quindi unendo questi due concetti posso scrivere

$$e^{M} = I + M + \frac{M^{2}}{2!} + \frac{M^{3}}{3!} + \dots =$$

$$=TT^{-1}+TDT^{-1}+\frac{TDT^{-1}TDT^{-1}}{2!}+\frac{TDT^{-1}TDT^{-1}}{3!}+\cdots=$$

$$=TT^{-1}+TDT^{-1}+\frac{TD^2T^{-1}}{2!}+\frac{TD^3T^{-1}}{3!}+\cdots=$$

[dove $TT^{-1} = I$. Ora raccogliendo ottengo]

$$= T(I + D + \frac{D^2}{2!} + \frac{D^3}{3!} + \dots)T^{-1} = Te^D T^{-1}$$

ma siccome $D=\begin{bmatrix}\lambda_1 & 0 & 0\\ 0 & \dots & 0\\ 0 & 0 & \lambda_n\end{bmatrix}$, allora elevando D a un generico indice k, otteniamo $D^k=\begin{bmatrix}\lambda_1^k & 0 & 0\end{bmatrix}$

$$\begin{bmatrix} \lambda_1^k & 0 & 0 \\ 0 & \dots & 0 \\ 0 & 0 & \lambda_n^k \end{bmatrix}.$$

Di conseguenza $Te^DT^{-1}=T\begin{bmatrix}e^{\lambda_1}&0&0\\0&\dots&0\\0&0&e^{\lambda_n}\end{bmatrix}T^{-1}.$

Tornando alla nostra matrice A (diagonalizzabile)

$$e^{At} = e^{TD_AT^{-1}t} =$$

[con $D_A = T^{-1}AT$ diagonale (cioè la matrice A diagonalizzata). Porre molta **attenzione** alla posizione dei T e T^{-1} , è un errore molto gettonato all'esame.]

$$= T(It + D_A t + \frac{(D_a t)^2}{2!} + \dots)T^{-1} = T \begin{bmatrix} e^{\lambda_1 t} & 0 & 0\\ 0 & \dots & 0\\ 0 & 0 & e^{\lambda_n t} \end{bmatrix} T^{-1}$$

con λ_i autovalore i-esimo di A, gli autovalori di $e^{\lambda_i t}$ prendono il nome di **modi del sistema**.

Esempi

es. Movimento a TC:

siano

 $\dot{x} = -2x$ (solo ML dello stato) e x(0) = 4

Che cosa è x(t) per $t \ge 0$?

Applicando la formula otteniamo: $x(t)=e^{At}x(0)=e^{-2t}4$

es. Da risolvere a casa!

Siano
$$\dot{x}=Ax$$
, con $A=\begin{bmatrix}1&1\\2&1\end{bmatrix}$ e $x(0)=\begin{bmatrix}3\\4\end{bmatrix}$, allora come è $x(t)$ per $t\geq 0$?

[il professore lo risolve con Maxima]

Manca registrazione della lezione

[RICOPIO APPUNTI PRESI DALLE SLIDE DEL PROF] Trovata registrazione di backup! **link** Link a una registrazione di back up

4 Linearizzazione di sistemi dinamico non lineari (SD, NL, SISO, TC) nell'intorno di un equilibrio

Consideriamo un sistema dinamico non lineare (TI):

$$S: \begin{cases} \dot{x} = f(x, u) \\ y = h(x, u) \end{cases}$$

e un suo equilibrio $(\bar{u}, \bar{x}, \bar{y})$.

Volgiamo determinare un sistema dinamico lineare tempo invariante che approssimi il comportamento di S nell'intorno dell'equilibrio, cioè finchè u(t), x(t) e y(t) non si discostano "troppo" dai valori \bar{u} , \bar{x} e \bar{y} di equilibrio.

4.1 Per l'equazione di stato

Consideriamo l'equazione di stato e sviluppiamola in serie fermandoci al primo ordine:

$$d(\bar{x} + \delta x, \bar{u} + \delta u) = f(\bar{x}\bar{u}) + f_x|_{\bar{x},\bar{u}}\delta x + f_0|_{\bar{x},\bar{u}}\delta u(+\dots)$$

dove

- δx e δu rappresentano gli scostamenti di x e di u rispetto all'equilibrio;
- $f(\bar{x}, \bar{u})$ vale 0 perchè \bar{x} è stato di equilibrio per $u = \bar{u}$:
- f_x è la derivata parziale rispetto a x della funzionei f: $\frac{\delta f}{\delta x}$;
- (+...) indica i termini di ordine superiore dello sviluppo.

 $\frac{d}{dt}(\bar{x}+\delta x)=\frac{d}{dt}(\delta x)=\delta \dot{x}= \text{ derivata temporale dello scostamento di } x \text{ rispetto all'equilibrio}$

$$\dot{x} = f(x, u) \qquad x = \bar{x} + dx \qquad \dot{x} = \delta \dot{x} \qquad 0 = \tau + \delta u$$
$$\delta \dot{x} = f_x|_{\bar{x}, \bar{u}} \delta x + f_u|_{\bar{x}, \bar{u}} \delta u$$

Equazione di stato lineare, alle variazioni \Longrightarrow Equazione di stato del sistema linearizzato.

4.2 Per l'equazione d'uscita

Consideriamo ora **l'equazione d'uscita** y=g(x,u) e come prima sviluppiamola in serie fermandoci al primo ordine:

$$g(\bar{x} + \delta x, \bar{u} + \delta u) = g(\bar{x}, \bar{u}) + g_x|_{\bar{x}, \bar{u}} \delta x + g_u|_{\bar{x}, \bar{u}} \delta u(+\dots)$$

dove

- $g(\bar{x} + \delta x, \bar{u} + \delta u)$ è g(x, u), cioè y;
- $q(\bar{x}, \bar{u}) \in y$;
- (+...) indica i termini di ordine superiore dello sviluppo.

$$y - \bar{y} = g_x|_{\bar{x},\bar{u}} \delta x + g_u|_{\bar{x},\bar{u}} \delta u \Longrightarrow \delta y = g_x|_{\bar{x},\bar{u}} \delta x + g_u|_{\bar{x},\bar{u}} \delta y = g_x|_{\bar{x},\bar{u}} \delta y = g_x$$

4.3 Sistema linearizzato nell'intorno dell'equilibrio $\bar{u}, \bar{x}, \bar{y}$

$$\mathcal{L}^{S}: \begin{cases} \delta \dot{x} = f_{x}|_{\bar{x},\bar{u}} \delta x + f_{0}|_{\bar{x},\bar{u}} \delta u \\ \delta y = g_{x}|_{\bar{x},\bar{u}} \delta x + g_{u}|_{\bar{x},\bar{u}} \delta u \end{cases}$$

con $\delta u = u - \bar{u}$, $\delta x = x - \bar{x}$, $\delta y = y - \bar{y}$.

4.4 Interpretazione

[immagine dagli appunti del prof]

5 Stabilità

Il concetto di stabilità si applica solitamente agli equilibri, ma a volta anche a movimenti, e qualche volta ai sistemi.

Equilibrio stabile:

Sia \bar{x} uno stato di equilibrio del SD generico $\dot{x}=f(x,u)$ per $u=\bar{u}$ costante, si dice equilibrio stabile se

$$\forall \epsilon > 0 \ \exists \delta > 0 \ : \ |x(0) - \bar{x}| < \delta \Rightarrow |x(t) - \bar{x}| < \epsilon \ \forall t \ge 0$$

Interpretazione con x scalare:

[immagine dagli appunti del prof]

Equilibrio asintoticamente stabile (AS):

L'equilibrio deve essere stabile e inoltre deve valere

$$|x(t) - \bar{x}| \to 0 \ per \ t \to \infty$$

Equilibrio instabile:

In tutti gli altri casi.

Stabilità nei SD LTI a TC

 $\dot{x} = Ax + bu$

Sia \bar{x} uno stato di eq. per $u=\bar{u}$

Allora

Quindi

$$x(t) = e^{At}\bar{x} + \int_0^t e^{A(t-\tau)}b\bar{u}d\tau = \bar{x}$$

Consideriamo ora il movimento perturbato

$$x_{\Delta}(t) = e^{At}(\bar{x} + \Delta \bar{x}) + \int_0^t e^{A(t-\tau)} b\bar{u}d\tau$$

Quindi

$$x_{\Delta}(t) - \bar{x} = e^{At} \Delta \bar{x}$$

dove notiamo che la maniera in cui x_{Δ} di muove rispetto a \bar{x} non dipende dal particolare \bar{x} che al secondo membro non compare.

Tutti gli equilibri (se ve ne sono) hanno le stesse caratteristiche di stabilità.

Quindi nei sistemi lineari (TI) la stabilità è una proprietà del sistema.

In tal caso la stabilità del sistema dipende soltanto dal comportamento di e^{At} , cioè dalla matrice A.

es. Sistema LTI a TC di ordine 1:

 $\dot{x} = ax$, con a scalare e equilibrio $\bar{x} = 0$.

$$x(0) = \Delta \bar{x}$$

$$x(t) = e^{at} \Delta \bar{x} \Rightarrow \begin{cases} a < 0 & x(t) \to 0 = \bar{x} \text{ eq. AS} \\ a = 0 & x(t) = \Delta \bar{x} \text{ eq. S} \\ a > 0 & x(t) \text{ diverse eq- I} \end{cases}$$

$$a>0$$
 $x(t)$ diverse eq-

Riassunto:

Quindi

- $e^{At} \rightarrow =_{nxn} \text{ per } t \rightarrow \infty \implies \text{sistema AS (ML di } x \rightarrow 0);$
- e^{At} diverge per $t \to \infty \Longrightarrow$ sistema I (ML di x diverge salvo eccezzioni);
- e^{At} non $\to 0$ e non diverge per $t \to \infty \Longrightarrow$ sistema S.

Proprietà dei SD LTI a TC AS

- i ML di x e di y tendono a 0 per $t \to \infty$, quindi tali SD "dimenticnao lo stato iniziale";
- Se

$$u(t) = \begin{cases} \text{qualsiasi segnale} & t < \bar{t} \\ 0 & t \geq \bar{t} \end{cases}$$

allora per $t \geq \bar{t}$ c'è solo ML e quindi $x, y \to 0$ per $t \to \infty$

Stabilità di un SD LTI a TC e matrice A

Cosa in cui A è diagonalizzabile (se no vedi più avanti): $x_L(t) = e^{At}x(0) = e^{Tdiag\{\lambda_i\}T^{-1}t}x(0) = e^{Tdiag\{\lambda_i\}T^{-1}t}$ $Tdiag\{e^{\lambda_i t}\}T^{-1}x(0)$, dove $x_L(t)$ è ML di x, T è la matrice che diagonalizza A e $e^{\lambda_i t}$ prende il nome di modi del sistema.

Se A è reale, allora λ_i sono o reali o coppie complesse conjugate. $\mathsf{ML} \to 0$ per ogni x(0) vuol dire che tutti i modi devono tendere a 0 per $t \to \infty$.

• λ_i reale

$$\begin{cases} \lambda_i > 0 & \text{modo divergente} \\ \lambda_i = 0 & \text{modo costante} \\ \lambda_i < 0 & \text{modo} \ \rightarrow 0 \end{cases}$$

 $\bullet \ \ \lambda_{h,k} = \alpha \pm i\beta \quad \text{coppia complessa coniugata, con } \alpha \text{ e } \beta \text{ reali , implica che } e^{()\alpha \pm i\beta)t} = e^{\alpha t}sin(\beta t) + icos(\beta t)$ [perchè $sin(\beta t) + icos(\beta t)$ è limitata] e quindi

$$\begin{cases} Re(\lambda) < 0 & \text{modo convergente} \\ Re(\lambda) = 0 & \text{modo limitato ma non tendente a } 0 \\ Re(\lambda) > 0 & \text{modo divergente} \end{cases}$$

Stabilità e autovalori di A

TUtti gli autovalori di A hanno $Re < 0 \iff$ Sistema AS.

Almeno un autovalore di A ha $Re > 0 \Longrightarrow$ Sistema I.

Tutti gli autovalori di A hanno $Re \leq 0$ e ne esiste almeno uno con $Re = 0 \Longrightarrow$ Sistema S, ma non AS; oppure sistema I.

Caso a TD (A diagonalizzabile)

$$x_L(k) = A^k x(0)$$

 $A^k = (Tdiag\{\lambda_i\}T^{-1})^k = Tdiag\{\lambda_i\}T^{-1}Tdiag\{\lambda_i\}T^{-1}\dots$ (k volte) $= Tdiag\{\lambda_i\}T^{-1}$, dove λ_i^k sono i modi del sistema.

Quindi

 $|\lambda_i| < 1 \ \forall i \longleftrightarrow$ sistema AS.

 $\exists i : |\lambda_i| > 1 \Longrightarrow \mathsf{sistema} \ \mathsf{I}.$

$$\begin{cases} |\lambda_i| \leq 1 \ \, \forall \, i \\ \exists \ \, i \ \, : \ \, |\lambda_i| = 1 \end{cases} \implies \text{Sistema S, ma non AS; oppure sistema I.}$$

Criteri di stabilità (asintotica) per SD LTI a TC

Domanda: data la matrice A, posso dire se tutti i suoi autovalori hanno o meno Re < 0 senza calcolarli?

Sì, vi sono criteri per dirlo basati sull'ispezione di A o del suo polinomio caratteristico (PC) $\Pi(s) = det(sI - A)$:

- $det(A) = \prod_{i=1}^n S_i$, dove con S_i si intendono gli autovalori \Longrightarrow se det(A) = 0 esiste $S_i = 0 \Longrightarrow$ sistema non AS.
- $tr(A) = \sum_{i=1}^n S_i \Longrightarrow \text{se } tr(A) > 0$ esiste S_i tale che $Re(S_i) > 0 \Longrightarrow$ sistema I.
- Se $Re(S_i) < 0$ per ogni i (cioè se il sistema è AS), allora i coefficienti di $\Pi(S)$ sono tutti concordi e non nulli (n.b. il viceversa vale solo per polinomi del secondo ordine).

(continua prossima lezione)

LEZIONE 5 17/03/2020

link clicca qui

(continuo della lezione scorsa)

5.1 Esempi

es. Prendiamo un polinomio caratteristico $\Pi(s)=5s^2+s$: questo è chiaramente non asintoticamente stabile (c'è una radice nulla).

es. $\Pi(s) = s^3 - s^2 + s + 4$: anche questo non è asintoticamente stabile (c'è un coefficiente discorde)

es. $\Pi(s) = s^5 + 4s^3 + 3s^2 + s + 5$: anche questo non è asintoticamene stabile (manca il termine s^4 che quindi ha coefficiente nullo).

es. $\Pi(s) = s^4 + 2s^3 + 4s^2 + s + 5$: in questo esempio le condizioni necessarie sono soddisfatte, ma non sappiamo dire se è o meno asintoticamente stabile. Ci serve ora un criterio per stabilire se è asintoticamente stabile.

5.2 Routh

il criterio di Routh è una condizione necessaria e succificiente per la stabilità asintotica di un SD LTI a TC (l'analogo a TD è il criterio di Jury, ma noi non lo tratteremo).

Il criterio di Routh si basa sulla tabella di Routh che si costruisce a partire dal polinomio caratteristico $\Pi(s)$.

5.2.1 Tabella di Routh

Definiamo il polinomio caratteristico come

$$\Pi(s) = a_0 s^n + a_1 s^{n-1} + \dots + a_{n-1} s + a_n$$

oss. il polinomio deve avere tutti i termini, altrimenti violiamo una delle condizioni necessarie che abbiamo visto alla lezione scorsa.

La tabella di Routh si costruisce nel seguente modo:

• Si compilano le prime due righe a "zig-zag" (come mostrato con dalle frecce) con i coefficienti del polinomio.

• l'ultima colonna può terminare in due modi:

$$\begin{array}{cccc} \dots & a_{n-1} & & \dots & a_n \\ & & & & \\ \dots & a_n & & \dots & 0 \end{array}$$

ullet Le righe successive si costruiscono a partire dalle prime due. In totale, considerando anche le prime due righe, ci sono n+1 righe. Ogni riga dalla terza in poi dipende dalle due precedenti seguendo una regola:

$$h_1 \quad h_2 \quad h_3 \quad \dots$$
 $q_1 \quad q_2 \quad q_3 \quad \dots$
 $w_1 \quad w_2 \quad w_3 \quad \dots$

prese due generiche righe $(h_i e q_i)$, la riga successiva (w_i) si genera come $w_i = -\frac{1}{q_1} det \begin{bmatrix} h_1 & h_{i+1} \\ q_1 & q_{i+1} \end{bmatrix}$. Gli elementi mancanti al termine delle righe soprastanti si assumono nulli.

Se troviamo un elemento nullo in prima colonna, ci si ferma, sicuramente il sistema non è
asintoticamente stabile, e siamo in presenza di un caso particolare che non ci permette di calcolare
la tabella di Routh.

5.2.2 Criterio di Routh

Un SD con polinomio caratteristico $\Pi(s)$ è asintoticamente stabile se e solo tutti gli elementi della prima colonna della tabella di Routh sono concordi (e non nulli).

Corollario

Se non vi sono elementi nulli in prima colonna, allora il numero di inversioni di segno sulla prima colonna è uguale al numero di radici di $\Pi(s)0$ con Re>0. [non lo useremo mai questo corollario].

5.2.3 Esempi

es. $\Pi(s)=s^4+2s^3+4s^2+s+5$: soddisfa le condizioni necessarie, quindi faciamo la tabella di Routh. Siccome n=4 la tabella avrà n+1=5 righe:

$$\begin{array}{cccc} 1 & 4 & 5 \\ 2 & 1 & 0 \\ \alpha & \beta & \\ \gamma & \delta & \end{array} \qquad \qquad \alpha = -\frac{1}{2} det \begin{bmatrix} 1 & 4 \\ 2 & 1 \end{bmatrix} = \frac{7}{2}$$

$$\beta = -\frac{1}{2} det \begin{bmatrix} 1 & 5 \\ 2 & 0 \end{bmatrix} = 5 \quad \ \, \gamma = -\frac{1}{\alpha} det \begin{bmatrix} 2 & 1 \\ \alpha & \beta \end{bmatrix} = -\frac{13}{7} \quad \ \, \delta = -\frac{1}{\gamma} det \begin{bmatrix} \alpha & \beta \\ \gamma & 0 \end{bmatrix}$$

Siccome γ è discorde, sappiamo che non è asintoticamente stabile.

Inoltre fra α e γ c'è un'inversione di segno e fra γ e δ c'è un'altra inversione di segno. Avendo due inversioni di segno, so che ci sono due radici con Re>0. Da notare che, anche se abbiamo un solo elemento discorde, ci sono due inversioni di segno.

es. Dato il SD LTI a TC con polinomio caratteristico $\Pi(s)=s^3+2s^2+hs+k$, dire per quali valori di (h,k) esso è asintoticamente stabile.

Deduciamo che dovremo avere h>0 e k>0 (altrimenti violo una delle condizioni necessarie viste la lezione scorsa). Usiamo ora Rout, l'unico caso in cui si può evitare di usare Routh è se il polinomio caratteristico è di secondo grado.

$$\begin{array}{ccc} 1 & h \\ 2 & k \\ \alpha & \\ \beta & \end{array} \qquad \alpha = -\frac{1}{2} det \begin{bmatrix} 1 & h \\ 2 & k \end{bmatrix} = \frac{2h-k}{2} \qquad \qquad \beta = -\frac{1}{\alpha} det \begin{bmatrix} 2 & k \\ \alpha & 0 \end{bmatrix} = k$$

Disequazioni per imporre che i termini della prima colonna siano concordi:

$$\begin{cases} h - \frac{k}{2} > 0 \\ k > 0 \end{cases} \Rightarrow \begin{cases} k > 0 \\ k > 2h \end{cases} \text{ricordando che } k > 0 \text{ e } h > 0$$

6 Segnali e trasformate

Consideriamo un sistema S dinamico LTI a TC (SISO), con un ingresso u e un'uscita y.

[immagine dagli appunti del prof]

Dominio del tempo: fra il segnale u(t) (la causa) e il segnale y(t) (effetto) per noi c'è un legame differenziale $(u(t) \to y(t))$. Ciò che attribuisce a un sistema il carattere dinamico è la presenza di equazioni differenziali. Nel dominio del tempo abbiamo $t,u,y \in \mathbb{R}$

Dominio delle trasformate: Supponiamo di poter associare a u(t) del dominio del tempo, con un operazione che chiamiamo "trasformazione", un'altra funzione U(s) del dominio delle trasformate $(u(t) \to U(s))$, dove U è una funzione e s è una variabile complessa. Facciamo la medesima cosa, ma con verso opposto, con $Y(s) \to y(t)$, dove questa operazione prende il nome di "antitrasformazione". Nel dominio delle trasformate abbiamo $s, U, Y \in \mathbb{C}$.

Date queste premesse, il legame fra U(s) e Y(s), il cui corrispondente nel dominio del tempo è differenziale, nel dominio delle trasformate è di tipo algebrico $(U(s) \to Y(s))$.

6.1 Serie di Fourier

Dato un segnale v(t) periodico di periodo T, posso esprimerlo come

$$v(t) = v_0 + \sum_{k=1}^{\infty} v_k sin(k\omega_0 t + \phi_k)$$

dove $\omega_0 = \frac{2\pi}{T}$. Questo significa che posso esprimere un segnale periodico come somma di infinite (infinito numerabile) sinusoidi di frequenze multiple di una fondamentale (ω_0 , di periodo T).

6.2 Trasformata di Fourier

Dato un segnale v(t) definito su tutto $\mathbb R$ (non necessariamente periodico), chiamiamo la sua trasformata di Fourier come

$$V(j\omega) = \mathcal{F}[v(t)] = \int_{-\infty}^{+\infty} v(t)e^{-j\omega t}dt \quad \text{(se esiste)}$$

L'antitrasformata di Fourier, invece, è

$$v(t) = \mathcal{F}^{-1}[V(j\omega)] = \frac{1}{2\pi j} \int_{-\infty}^{+\infty} V(j\omega)e^{j\omega t} d\omega$$

oss. una trasformata è definita dal suo nucleo, che è $e^{-j\omega t}$.

oss. l'antitrasformata è un integrale sulla variabile ω . L'integrale è stato introdotto ad analisi con le somme integrali (per calcolare l'area sottesa a una funzione, si fanno i rettangolini e si sommano, poi si fa tendere la dimensione dei rettangolini a zero, etc). Immaginiamo, con la metafora dei rettangolini, di fare tanti rettangolini dell'asse della nostra variabile ω , prendiamo uno di questi rettangolini e il suo contributo a v(t) nell'antitrasformata è $e^{j\omega t}$ moltiplicata per un numero complesso $V(j\omega)$. Il termine $e^{j\omega t}$, il nostro nucleo, può avere due aspetti, se $\omega=0$ è una costante, altrimenti è una sinusoide (ricordando che è un numero complesso e può essere espresso come somma di seni e coseni). Ora prendiamo il caso in cui il nucleo è una sinusoide, moltiplicarla per un numero complesso $V(j\omega)$ significa attenuarla o amplificarla (modulo) e sfasarla (argomento). Quindi noi per ricostruire v(t) con l'antitrasformata devo sommare infinite sinusoidi, ognuna delle quali caratterizzate da una propria ampiezza e una propria fase indicata dal valore di $V(j\omega)$, cioè $V(j\omega)$ ci dice quanto pesa ogni frequenza in v(t). In questo caso v(t) è somma di infinte (infinito del continuo) sinusoidi.

6.3 Trasformata di Laplace

Dato un segnale v(t) definito per $t \geq 0$ (o equivalentemente nullo per t < 0), definiamo trasformata di Laplace come

$$V(s) = \mathcal{L}[v(t)] = \int_0^\infty v(t)e^{-st}dt$$

 $con s, V \in \mathbb{C}.$

L'antitrasformata di Laplace, invece, è

$$v(t) = \mathcal{L}[V(s)] = \frac{1}{2\pi j} \int_{\alpha + j\infty}^{\alpha - j\infty} V(s)e^{st}ds$$

dove gli estremi dell'integrale rappresentano il fatto che quanto integriamo rispetto a una variabile complessa (s) dobbiamo specificare su quale linea si muove la variabile (spiegato molto "alla buona", non dare peso a questo fatto): la variabile di integrazione s si muove su una retta parallela all'asse immaginario di parte reale (ascissa) α , andando con la sua parte immaginaria (ordinata) da $-\infty$ a $+\infty$.

oss. Abbiamo che il nucleo è $e^{st}=e^{()\alpha+j\omega)t}=e^{\alpha t}(\cos(\omega t)+j\sin(\omega t))$. I segnali con questa forma sono, non solo le costanti e le sinusoidi (come nel caso del nucleo di Fourier), ma anche le sinusoidi che si smorzano, le sinusoidi che divergono, i segnali che esponenzialmente divergono, i segnali che esponenzialmente convergono. I segnali che si lasciano trasformare secondo Fourier, sono i segnali che si lasciano ricostruire per mezzo di una somma infinita di segnali che partono dal nucleo $e^{j\omega t}$, cioè costanti e sinusoidi, moltiplicato per un numero complesso $V(j\omega)$, cioè amplificate o attenuate e sfasate; i segnali che si lasciano trasformare secondo Laplace, sono molti di più, perchè il nucleo di partenza e^{st} rappresenta un insieme di segnali molto più grande. Tutti i segnali trasformabili secondo Fourier sono trasformabili anche secondo Laplace, ma non vale il viceversa.

6.3.1 Esempi

Vediamo tre trasformate di Laplace notevoli (da imparare a memoria, perchè saranno molto frequenti).

es.
$$v(t) = sca(t) := egin{cases} 1 & & t \geq \\ 0 & & t < 0 \end{cases}$$
, la trasformata di Laplace è

$$\mathcal{L}[sca(t)] = \int_0^\infty sca(t)e^{-st}dt = \int_0^\infty 1 \cdot e^{-st}dt = \left[\frac{e^{-st}}{-s}\right]_0^\infty = 0 - \frac{1}{-s} = \frac{1}{s}$$

es.
$$v(t)=imp(t):=\begin{cases} imp(t)=0 & \forall\ t\neq 0\\ \int_{-\infty}^{\infty}imp(t)dt=1 \end{cases}$$

[immagine dagli appunti del prof]

La trasformata di Laplace è

$$\mathcal{L}[imp(t)] = \lim_{\epsilon \to 0} \mathcal{L}[f_{\epsilon}(t)] = \lim_{\epsilon \to 0} \int_{0}^{\infty} f_{\epsilon}(t)e^{-st}dt = \lim_{\epsilon \to 0} \int_{0}^{\epsilon} \frac{1}{\epsilon}e^{-st}dt =$$

$$=\lim_{\epsilon\to 0}\left[\frac{e^{-st}}{-s\epsilon}\right]_0^\epsilon=\lim_{\epsilon\to 0}\left(\frac{e^{-s\epsilon}}{-s\epsilon}-\frac{1}{-s\epsilon}\right)=\lim_{\epsilon\to 0}\frac{1-e^{-s\epsilon}}{s\epsilon}=[F.I.,Hopital]=\lim_{\epsilon\to 0}\cancel{\xi}e^{-s\epsilon}=1$$

es. $v(t) = e^{at}$ per $t \ge 0$ o equivalentemente $v(t) = e^{at}sca(t)$, la trasformata di laplace è

$$\mathcal{L}[e^{at}sca(t)] = \int_0^\infty e^{at}e^{-st}dt = \int_0^\infty e^{(a-s)t}dt = \left[\frac{e^{(a-s)t}}{a-s}\right]_0^\infty = \frac{1}{s-a} \quad \text{se } Re(a-s) < 0, \text{ cioè } Re(s) > a$$

Riassunto dei concetti chiave introdotti:

- Le trasformate sono strumenti che legano biunivocamente sengali nel tempo a funzioni complesse di variabile complessa.
- Le trasformate di Fourier interpretano un segnale come somma di infinite sinusoidi, invece le trasformate di Laplace non considera sinusoidi, ma delle esponenziali complesse (categoria nella quale rientrano anche le sinusoidi).

6.3.2 Proprietà della trasformata di Laplace

Time stamp: 2:14:16 sono stanco sorry fede del futuro, mancano solo 15 minutiiiii...

LEZIONE 6 18/03/2020 link clicca qui

LEZIONE 7 19/03/2020 link clicca qui

LEZIONE 8 23/03/2020 link link a una registrazione di back up

LEZIONE 9 24/03/2020 link clicca qui

LEZIONE 10 25/03/2020 link clicca qui

LEZIONE 11 26/03/2020 link clicca qui