CHERN CLASSES OF DELIGNE-MUMFORD STACKS AND THEIR COARSE MODULI SPACES

HSIAN-HUA TSENG

ABSTRACT. Let X be a complex projective algebraic variety with Gorenstein quotient singularities and \mathcal{X} a smooth Deligne-Mumford stack having X as its coarse moduli space. We show that the CSM class $c^{SM}(X)$ coincides with the pushforward to X of the total Chern class $c(T_{IX})$ of the inertia stack $I\mathcal{X}$. We also show that the stringy Chern class $c_{str}(X)$ of X, whenever is defined, coincides with the pushforward to X of the total Chern class $c(T_{IIX})$ of the double inertia stack $II\mathcal{X}$. Some consequences concerning stringy/orbifold Hodge numbers are deduced.

1. Introduction

Let X be a complex projective algebraic variety with Gorenstein quotient singularities. In attempt to associate invariants to X, there are at least two possible approaches: one can either view X as a singular variety by itself or view X as the coarse moduli space of a smooth Deligne-Mumford stack \mathcal{X} . Viewing as a singular variety we have the CSM class $c^{SM}(X)$ naturally associated to X. An important property of CSM class is that its degree is equal to the topological Euler characteristic of X:

$$\chi(X) = \int_{Y} c^{SM}(X).$$

The starting point of this note is the observation that $\chi(X)$ is equal to the Euler characteristic $\chi(I\mathcal{X})$ of the *inertia stack* $I\mathcal{X}$. By Gauss-Bonnet formula for Deligne-Mumford stacks we know that

$$\chi(I\mathcal{X}) = \int_{I\mathcal{X}} c_{top}(T_{I\mathcal{X}}),$$

where $c_{top}(T_{IX})$ is the top Chern class of the tangent bundle T_{IX} of the inertia stack IX. Therefore the degrees of $c^{SM}(X)$ and $c(T_{IX})$ are the same. The first result of this note, Theorem 3.4, says that this equality in fact holds for classes themselves: the pushforward to X of $c(T_{IX})$ is equal to $c^{SM}(X)$. This is a simple consequence of a comparison of the characteristic functions $\mathbf{1}_X, \mathbf{1}_{IX}$ and MacPherson's natural transformation for Deligne-Mumford stacks [10].

Under some natural assumption on the singularities of X, such as being log terminal, one can define ([5], [3]) the *stringy Chern class* $c_{str}(X)$ for X. In view of the above, it is reasonable to hope that $c_{str}(X)$ can be expressed using some kind of Chern class for the stack \mathcal{X} . We show (Theorem 4.1) that $c_{str}(X)$ is equal to the pushforward to X of the total Chern class of the tangent bundle of the *double inertia stack IIX* of X. This implies some formulas for stringy Hodge numbers.

It is known (see e.g. [12]) that if \mathcal{X} and X are K-equivalent, i.e. the natural map $\pi: \mathcal{X} \to X$ is birational and we have $K_{\mathcal{X}} = \pi^* K_X$, then stringy Hodge numbers of X coincide with orbifold

Date: August 25, 2009.

Hodge numbers of \mathcal{X} . Together with the above results we find some formulas for orbifold Hodge numbers. In particular we prove in Proposition 4.6 a conjecture in [7].

ACKNOWLEDGMENT

The author thanks P. Aluffi and K. Behrend for helpful discussions, and referees for useful suggestions. This work is done during a stay at Institut Mittag-Leffler (Djursholm, Sweden). It is a pleasure to acknowledge their hospitality and support. In addition the author is supported in part by NSF grant DMS-0757722.

2. Preliminaries

We work over \mathbb{C} . Throughout the paper we will make the following assumption.

Assumption 2.1. \mathcal{X} is a smooth separated Deligne-Mumford stack of finite type over \mathbb{C} . Its coarse moduli space X is a projective variety of finite type over \mathbb{C} . The structure map is denoted by $\pi: \mathcal{X} \to X$.

From the scheme theory perspective, Assumption 2.1 means that X is a projective variety of finite type with quotient singularities, and \mathcal{X} is a smooth separated Deligne-Mumford stack having the (singular) variety X as its coarse moduli space.

For an $\mathcal X$ as in Assumption 2.1 let $T_{\mathcal X}$ be the tangent bundle of $\mathcal X$. By definition $T_{\mathcal X}$ is a vector bundle over $\mathcal X$. As a locally free sheaf, $T_{\mathcal X}$ is defined to be the dual of the sheaf $\Omega^1_{\mathcal X}$ of differentials on $\mathcal X$. See e.g. [11], 7.20 (ii) for the definition of $\Omega^1_{\mathcal X}$. The paper [11] also constructs the theory of Chow groups (with rational coefficients) for Deligne-Mumford stacks. In particular the theory of Chern classes is constructed there. Given a vector bundle $\mathcal V$ over $\mathcal X$, we have the total Chern class of $\mathcal V$ which we denote by $c(\mathcal V)$. The class $c(\mathcal V)$ belongs to $A^*(\mathcal X)_{\mathbb Q}$, the Chow group of $\mathcal X$ with $\mathbb Q$ -coefficients. In particular, we write $c(T_{\mathcal X}) \in A^*(\mathcal X)_{\mathbb Q}$ for the total Chern class of the tangent bundle $T_{\mathcal X}$.

Consider a Deligne-Mumford stack of the form¹ $\mathcal{X} = [U/G]$ where U is a smooth scheme and G is a linear algebraic group. The paper [6] constructs a theory of equivariant Chow groups (with integer coefficients) for the G-action on U, denoted by $A_*^G(U)$. By [6], Proposition 14, we have

$$A_*^G(U)\otimes \mathbb{Q}=A^{\dim U-*}(\mathcal{X})_{\mathbb{Q}}.$$

The tangent bundle T_U is a G-equivariant vector bundle on U. The construction of [6], Section 2.4 associates to T_U its equivariant total Chern classes $c^G(T_U) \in A_*^G(U) \otimes \mathbb{Q}$. Under the above identification of Chow groups, we have $c^G(T_U) = c(T_X)$.

Remark 2.2. We may consider the equivariant Chern class $c^G(T_U)$ as a class in the equivariant cohomology $H_G^*(U) \otimes \mathbb{Q}$ by using the cycle map.

In the paper we make heavy use of the theory of constructible functions on Deligne-Mumford stacks. Our reference for this is [8], to which we refer the readers for a detailed treatment of of this. Below we recall some aspects of the theory.

¹Stacks of this form are called quotient stacks.

Let \mathcal{X} be a Deligne-Mumford stack as in Assumption 2.1. Denote by $\mathcal{X}(\mathbb{C})$ the set of \mathbb{C} -points of \mathcal{X} . By [8], Definition 4.1, a subset of $\mathcal{X}(\mathbb{C})$ is *constructible* if it is a finite union of sets of the form $\mathcal{X}_i(\mathbb{C})$ where each \mathcal{X}_i is a finite type substack of \mathcal{X} . A function $\phi: \mathcal{X}(\mathbb{C}) \to \mathbb{Q}$ is called *constructible* if $\phi(\mathcal{X}(\mathbb{C}))$ is finite and $\phi^{-1}(c) \subset \mathcal{X}(\mathbb{C})$ is constructible for any $c \in \phi(\mathcal{X}(\mathbb{C})) \setminus \{0\}$, see [8], Definition 4.3. Denote by $CF(\mathcal{X})$ the group of constructible functions on \mathcal{X} . For a constructible set $C \subset \mathcal{X}(\mathbb{C})$ define its *characteristic function* $\mathbf{1}_C: \mathcal{X}(\mathbb{C}) \to \mathbb{Q}$ by

$$\mathbf{1}_{C}(c) = \begin{cases} 1 & \text{if } c \in C, \\ 0 & \text{if } c \notin C. \end{cases}$$

Clearly $\mathbf{1}_C$ is constructible, and $CF(\mathcal{X})$ is additively generated by characteristic functions. Define the function $\mathbf{1}_{\mathcal{X}}: \mathcal{X}(\mathbb{C}) \to \mathbb{Q}$ to be $\mathbf{1}_{\mathcal{X}}:= \mathbf{1}_{\mathcal{X}(\mathbb{C})}$.

Let $f: \mathcal{X} \to \mathcal{Y}$ be a proper morphism of Deligne-Mumford stacks. In [8], Definition 4.17 (a), the notion of "stack pushforward" by f is defined. This notion of pushforward, which we simply call *pushforward* and denote by f_* , will be used in this paper. We recall its definition as follows. Define a function $e_{\mathcal{X}}: \mathcal{X}(\mathbb{C}) \to \mathbb{Q}$ by $e_{\mathcal{X}}(c) := |G_c|$, where $|G_c|$ is the order of the isotropy group G_c at the point $c \in \mathcal{X}(\mathbb{C})$. A function $e_{\mathcal{Y}}: \mathcal{Y}(\mathbb{C}) \to \mathbb{Q}$ is similarly defined. Let $\phi: \mathcal{X}(\mathbb{C}) \to \mathbb{Q}$ be a constructible function. Define $f_*\phi: \mathcal{Y}(\mathbb{C}) \to \mathbb{Q}$ by

(2.1)
$$f_*\phi(t) := e_{\mathcal{Y}}(t)\chi(\mathcal{X}(\mathbb{C}), \frac{1}{e_{\mathcal{X}}}\phi\mathbf{1}_{f^{-1}(t)}), \quad t \in \mathcal{Y}(\mathbb{C}),$$

where $\chi(-,-)$ is the weighted Euler characteristic as in [8], Definition 4.8. As pointed out in [8], page 599, since we work with Deligne-Mumford stacks, the pushforward f_* is always defined. By [8], Corollary 4.14, the pushforard satisfies functoriality: $(f \circ g)_* = f_*g_*$.

Lemma 2.3. Let $f: \mathcal{X} \to \mathcal{Y}$ be a finite proper representable étale morphism of Deligne-Mumford stacks. Then the following equality of constructible functions hold: $f_*\mathbf{1}_{\mathcal{X}} = (\deg f)\mathbf{1}_{f(\mathcal{X})}$.

Proof. For a geometric point $y \in f(\mathcal{X}(\mathbb{C}))$ we may write $f^{-1}(y) = \bigcup_{i \in I} x_i$, where $x_i \in \mathcal{X}(\mathbb{C})$ and I is a finite set. We have $f_*\mathbf{1}_{\mathcal{X}}(y) = e_{\mathcal{Y}}(y) \sum_{i \in I} \frac{1}{e_{\mathcal{X}}(x_i)}$, which is equal to $\deg f$.

Consider again a Deligne-Mumford quotient stack $\mathcal{X} = [U/G]$ where U is a smooth scheme and G is a linear algebraic group. In [10] the notion of constructible functions for this kind of stacks is also defined. By definition (see [10], Section 3.4) a constructible function on \mathcal{X} is a G-invariant constructible function on U. Let $CF^G_{inv}(U)$ be the group of G-invariant constructible functions on U. By [10], Lemma 3.3, this group is independent of the presentation of \mathcal{X} as a quotient. Given a finite type substack $\mathcal{Z} \subset \mathcal{X}$, define $U_{\mathcal{Z}} := \mathcal{Z} \times_{\mathcal{X}} U \subset U$. It is easy to see that the map $\mathbf{1}_{\mathcal{Z}(\mathbb{C})} \mapsto \mathbf{1}_{U_{\mathcal{Z}}(\mathbb{C})}$ defines an isomorphism

(2.2)
$$CF(\mathcal{X}) \simeq CF_{inv}^G(U).$$

It is also straightforward to check that under the identification above, the notion of pushforward for $CF^G_{inv}(U)$, as defined in [10], Section 2.6, coincides with the pushforward in (2.1). Let $f: \mathcal{X} \to \mathcal{Y}$ be a proper morphism of Deligne-Mumford stacks. Denote by $f_*: CF(\mathcal{X}) \to CF(\mathcal{Y})$ the pushforward as in (2.1), and by $f_{*'}: CF(\mathcal{X}) \to CF(\mathcal{Y})$ the pushforward in [10], Section 2.6 after the identification (2.2). By construction we also have functorialty property $(f \circ g)_{*'} = f_{*'}g_{*'}$. Given $\phi \in CF(\mathcal{X})$, to compare $f_*\phi$ and $f_{*'}\phi$ it suffices to compare them pointwise. Therefore we may

 $^{^2 \}mathrm{In}$ [10] this group is denoted by $\mathcal{F}^G_{inv}(U).$

assume that f is of the form $f:BG\to BH$ given by a homomorphism $G\to H$ of finite groups, and $\phi=\mathbf{1}_{BG}$.

In case G is trivial, i.e. $f: \operatorname{pt} \to BH$, we have $f_*\mathbf{1}_{\operatorname{pt}} = |H|\mathbf{1}_{BH}$ by Lemma 2.3. Let H acts on itself by translations. Then we may present the map f as a quotient by H of the constant map $\tilde{f}: H \to \operatorname{pt}$. Then it follows from the definitions that $f_{*'}\mathbf{1}_{\operatorname{pt}} = \tilde{f}_*\mathbf{1}_H = |H|\mathbf{1}_{\operatorname{pt}} = |H|\mathbf{1}_{BH}$. Thus $f_* = f_{*'}$ in this case.

Suppose G is not necessarily trivial. Let $p: \operatorname{pt} \to BG$ be an atlas of BG. Then we have $p_*\mathbf{1}_{\operatorname{pt}} = |G|\mathbf{1}_{BG} = p_{*'}\mathbf{1}_{\operatorname{pt}}$ and $(f \circ p)_*\mathbf{1}_{\operatorname{pt}} = |H|\mathbf{1}_{BH} = (f \circ p)_{*'}\mathbf{1}_{\operatorname{pt}}$ by the case above. Thus by functoriality of pushforward, we have

$$f_* \mathbf{1}_{BG} = \frac{1}{|G|} f_* p_* \mathbf{1}_{pt} = \frac{1}{|G|} (f \circ p)_* \mathbf{1}_{pt} = \frac{1}{|G|} (f \circ p)_{*'} \mathbf{1}_{pt} = \frac{1}{|G|} f_{*'} p_{*'} \mathbf{1}_{pt} = f_{*'} \mathbf{1}_{BG},$$

which is what we want.

3. CHERN CLASSES

Let $\Delta: \mathcal{X} \to \mathcal{X} \times \mathcal{X}$ be the diagonal morphism. Recall that the *inertia stack* of \mathcal{X} is defined to be $I\mathcal{X} := \mathcal{X} \times_{\Delta, \mathcal{X} \times \mathcal{X}, \Delta} \mathcal{X}$, see for example [5], Definition 5.1. and Lemma 5.2. Let $p: I\mathcal{X} \to \mathcal{X}$ be the natural projection.

If $\mathcal{X} = [M/G]$ where M is a scheme and G is a finite group, then the inertia stack can be described as follows:

$$I[M/G] = \coprod_{(g): \text{conjugacy class of } G} [M^g/C_G(g)].$$

See for example [5], Lemma 5.6 for a proof of this fact.

The following is well-known.

Lemma 3.1 (c.f. [2], Lemma 2.2.3). Let \mathcal{X} be a separated Deligne-Mumford stack, and X its coarse moduli space. There is an étale covering $\coprod_a X_a \to X$ such that for each a there is a scheme U_a and a finite group G_a acting on U_a , such that $\mathcal{X} \times_X X_a \simeq [U_a/G_a]$.

Proposition 3.2. Let X be as in Assumption 2.1. Then

$$\pi_* p_* \mathbf{1}_{IX} = \mathbf{1}_{X}.$$

Proof. The question is local on X. Lemma 2.3 allows one to replace X by an étale cover. In view of Lemma 3.1, we are reduced to the case $\mathcal{X} = [M/G]$ where M is a scheme and G is a finite group. Denote by $\rho: M \to [M/G]$ the atlas map, and $\pi: [M/G] \to M/G$ the map to coarse moduli scheme.

Put $\alpha := \frac{1}{|G|} \sum_{g \in G} \mathbf{1}_{M^g}$. For a geometric point $x \in M$ we denote by [x] the corresponding geometric point in M/G. The calculation in the proof of [10], Proposition 6.1 gives

$$(\pi \circ \rho)_* \alpha([x]) = \frac{1}{|G|} \sum_{g \in G} (\pi \circ \rho)_* \mathbf{1}_{M^g}([x])$$
$$= \frac{1}{|G|} \sum_{x' \in G.x} \sum_{g \in G} \mathbf{1}_{M^g}(x')$$
$$= \frac{1}{|G|} |G.x| |\operatorname{Stab}_x(G)| = 1.$$

Thus $(\pi \circ \rho)_* \alpha = \mathbf{1}_{M/G}$. It is easy to see that

$$\frac{1}{|G|} \sum_{g \in G} \mathbf{1}_{M^g} = \sum_{(g): \text{conjugacy class}} \frac{\mathbf{1}_{M^g}}{|C_G(g)|}.$$

By Lemma 2.3, we see that the pushforward of $\mathbf{1}_{M^g}$ to $[M^g/C_G(g)]$ is equal to $|C_G(g)|\mathbf{1}_{[M^g/C_G(g)]}$. Therefore the pushforward of α to I[M/G] is equal to $\mathbf{1}_{I[M/G]}$. The result follows.

Remark 3.3. In the proof of Proposition 3.2 one can argue without using Lemmas 3.1 and 2.3, as follows: Let x: Spec $k \to X$ be a geometric point. Then Spec $k \times_{x,X,\pi} \mathcal{X}$ is isomorphic to BG for some finite group G. Moreover, we have

$$\operatorname{Spec} k \times_{x,X,\pi \circ p} I \mathcal{X} \simeq \coprod_{(g): \text{conjugacy class of } G} [\operatorname{Spec} k / C_G(g)].$$

We conclude by using the equality

$$\sum_{(g): \text{conjugacy class of } G} \frac{1}{|C_G(g)|} = 1.$$

Theorem 3.4. Let \mathcal{X} be as in Assumption 2.1. Then

$$\pi_* p_* c(T_{IX}) = c^{SM}(X).$$

Proof. Assumption 2.1 on \mathcal{X} implies that $I\mathcal{X}$ is a quotient stack [W/H] of a quasi-projective scheme W by a linear algebraic group H (see [9], Theorem 4.4). This allows us to apply [10], Theorem 3.5 to Proposition 3.2 to obtain

$$\pi_* p_* C_*(\mathbf{1}_{IX}) = c^{SM}(X) \cap [X].$$

The function $\mathbf{1}_{I\mathcal{X}}$ is identified with $\mathbf{1}_W$ under the identification $CF(I\mathcal{X}) \simeq CF_{inv}^H(W)$ of groups of constructible functions. This implies that $C_*(\mathbf{1}_{I\mathcal{X}}) = C_*^H(\mathbf{1}_W)$. The normalization property of C_*^H implies that $C_*^H(\mathbf{1}_W) = c^H(T_W) \cap [W]_H$. Since the H-equivariant Chern class $c^H(T_W)$ is identified with the Chern class $c(T_{I\mathcal{X}})$ under the identification $H_H^*(W) \simeq H^*(I\mathcal{X})$, the result follows.

4. STRINGY CHERN CLASSES

Let IX be the coarse moduli scheme of the inertia stack IX. There is a diagram

$$I\mathcal{X} \xrightarrow{p} \mathcal{X}$$

$$\tilde{\pi} \downarrow \qquad \qquad \pi \downarrow$$

$$IX \xrightarrow{\bar{p}} X.$$

In [5] the authors define a constructible function Φ_X and the *stringy Chern class* of X:

$$c_{str}(X) := c^{SM}(\Phi_X).$$

Theorem 4.1. Let X be as in Assumption 2.1. Then

- $(1) \Phi_X = \bar{p}_* \mathbf{1}_{IX}.$
- (2) $c_{str}(X) = \pi_* q_* c(T_{IIX})$, where $q: IIX \to \mathcal{X}$ is the natural projection from the double inertia stack IIX to \mathcal{X} .

Proof. Let $g:W\to V$ be a resolution of singularity, $f:V'\to V$ an étale map, $W':=W\times_V V'$, and $f':W'\to W$, $g':W'\to V'$ the natural projections. Then g' is also a resolution of singularity, and we have

$$f'^*K_{W/V} = f'^*K_W - f'^*g^*K_V$$

= $K_{W'} - g'^*f^*K_V$ (since f' is étale)
= $K_{W'} - g'^*K_{V'}$,

where the last step is justified as follows: Let $j:U\to V$ be the smooth locus of $V,U':=U\times_V V'$, and $j':U'\to V'$, $f_U:U'\to U$ the natural projections. Then we have $K_V:=j_*(\wedge^{\dim U}\Omega^1_U)$. Thus

$$f^*K_V = f^*j_*(\wedge^{\dim U}\Omega_U^1) = j'_*f_U^*(\wedge^{\dim U}\Omega_U^1) = j'_*(\wedge^{\dim U'}\Omega_{U'}^1) = K_{V'}.$$

It follows that $f'^*K_{W/V} = K_{W'/V'}$. Applying [5], Proposition 2.3, we see that part (1) can be checked on an étale covering of X. Therefore by Lemma 3.1 we may assume that X = M/G for some scheme M and finite group G. In this case part (1) is [5], Theorem 6.1.

Since the inertia stack of IX is by definition the double inertia stack IIX, part (2) follows immediately from Theorem 3.4 applied to IX.

Let $e_{str}(X)$ be the stringy Euler characteristic of X. By [5], Proposition 4.4, we have $e_{str}(X) = \int_X c_{str}(X)$. The following is immediate from Theorem 4.1.

Corollary 4.2.
$$e_{str}(X) = \int_{II\mathcal{X}} c_{top}(T_{II\mathcal{X}}).$$

Let $n = \dim X$. In [4], Definition 3.1, Batyrev defined a number $c_{st}^{1,n-1}(X)$, which can be interpreted as a stringy analogue of the Chern number $c_1(X)c_{top-1}(X)$. Properties of $c_{str}(X)$ (see the proof of [5], Proposition 4.4) implies that

$$c_{st}^{1,n-1}(X) = \int_X c_1(X)c_{str}(X).$$

Theorem 4.1 implies

Corollary 4.3.

$$c_{st}^{1,n-1}(X) = \int_{IIX} q^* \pi^* c_1(X) c_{top-1}(T_{IIX}).$$

Remark 4.4. This proves a more general form of [7], Conjecture A.2.

Under additional hypotheses we can deduce some consequences on orbifold Hodge numbers.

Assumption 4.5. Let \mathcal{X} be as in Assumption 2.1. In addition X is assumed to be Gorenstein, the map $\pi: \mathcal{X} \to X$ is assumed to be birational, and $K_{\mathcal{X}} = \pi^* K_X$.

Let $I\mathcal{X} = \coprod_{i \in \mathcal{I}} \mathcal{X}_i$ be the decomposition into disjoint union of connected components. For each \mathcal{X}_i one can associate a rational number $age(\mathcal{X}_i)$ called the age of \mathcal{X}_i . See for example [12] for a definition.

The numbers $age(\mathcal{X}_i)$, which arise naturally in the context of Riemann-Roch formula for twisted curves (see [1], Section 7.2), are relevant to us due to their presence in the *Chen-Ruan orbifold cohomology*. By definition, the Chen-Ruan cohomology groups of \mathcal{X} are $H^*_{CR}(\mathcal{X},\mathbb{C}):=H^*(I\mathcal{X},\mathbb{C})=\oplus_{i\in\mathcal{I}}H^*(\mathcal{X}_i,\mathbb{C})$. The numbers $age(\mathcal{X}_i)$ are used to define a new grading on $H^*_{CR}(\mathcal{X},\mathbb{C})$:

$$H_{CR}^p(\mathcal{X}, \mathbb{C}) := \bigoplus_{i \in \mathcal{I}} H^{p-2age(\mathcal{X}_i)}(\mathcal{X}_i, \mathbb{C}).$$

The Dolbeault cohomology version of this can be similarly defined:

$$H^{p,q}_{CR}(\mathcal{X}, \mathbb{C}) := \bigoplus_{i \in \mathcal{I}} H^{p-age(\mathcal{X}_i), q-age(\mathcal{X}_i)}(\mathcal{X}_i, \mathbb{C}).$$

Proposition 4.6. Let \mathcal{X} be as in Assumption 4.5. Then the following holds.

(4.1)
$$c_{st}^{1,n-1}(X) = \int_{IIX} q^* c_1(\mathcal{X}) c_{top-1}(T_{IIX}).$$

(4.2)

$$\sum_{i\in\mathcal{I}}\sum_{p>0}(-1)^p\left(p+age(\mathcal{X}_i)-\frac{dim\mathcal{X}}{2}\right)^2\chi(\mathcal{X}_i,\Omega^p_{\mathcal{X}_i})=\frac{1}{12}\int_{II\mathcal{X}}dim\mathcal{X}c_{top}(T_{II\mathcal{X}})+2c_1(T_{\mathcal{X}})c_{top-1}(T_{II\mathcal{X}}).$$

Proof. (4.1) follows from $K_{\mathcal{X}} = \pi^* K_X$.

We now prove (4.2). Under Assumption 4.5 a result of T. Yasuda [12] asserts that Batyrev's stringy Hodge numbers $h^{p,q}_{st}(X)$ coincide with orbifold Hodge numbers $h^{p,q}_{orb}(\mathcal{X}) := \dim H^{p,q}_{CR}(\mathcal{X}, \mathbb{C})$. We refer to [12] for relevant definitions. In terms of generating functions, we have

$$E_{st}(X, s, t) = E_{orb}(\mathcal{X}, s, t),$$

where

$$E_{st}(X, s, t) := \sum_{p,q \ge 0} (-1)^{p+q} h_{st}^{p,q}(X) s^p t^q$$

is the stringy E-polynomial and

$$E_{orb}(\mathcal{X}, s, t) := \sum_{p,q>0} (-1)^{p+q} h_{orb}^{p,q}(\mathcal{X}) s^p t^q$$

is the orbifold E-polynomial. Combining this with Corollary 3.10 of [4] we find that

(4.3)
$$\sum_{p,q} (-1)^{p+q} \left(p - \frac{\dim \mathcal{X}}{2} \right)^2 h_{orb}^{p,q}(\mathcal{X}) = \frac{\dim X}{12} e_{str}(X) + \frac{1}{6} c_{st}^{1,n-1}(X).$$

We rewrite the left-hand side as follows. By definition of $h_{orb}^{p,q}(\mathcal{X})$,

$$\begin{split} &\sum_{p,q} (-1)^{p+q} \left(p - \frac{\dim \mathcal{X}}{2} \right)^2 h_{orb}^{p,q}(\mathcal{X}) \\ &= \sum_{i \in \mathcal{I}} \sum_{p,q} (-1)^{p+q} \left(p - \frac{\dim \mathcal{X}}{2} \right)^2 \dim H^{p-age(\mathcal{X}_i),q-age(\mathcal{X}_i)}(\mathcal{X}_i,\mathbb{C}) \\ &= \sum_{i \in \mathcal{I}} \sum_{p,q \geq 0} (-1)^{p+q+2age(\mathcal{X}_i)} \left(p + age(\mathcal{X}_i) - \frac{\dim \mathcal{X}}{2} \right)^2 \dim H^{p,q}(\mathcal{X}_i,\mathbb{C}) \quad \text{(re-indexing)} \\ &= \sum_{i \in \mathcal{I}} \sum_{p \geq 0} (-1)^p \left(p + age(\mathcal{X}_i) - \frac{\dim \mathcal{X}}{2} \right)^2 \left(\sum_{q \geq 0} (-1)^q \dim H^{p,q}(\mathcal{X}_i,\mathbb{C}) \right). \end{split}$$

In the last equality we used the fact that $age(\mathcal{X}_i) \in \mathbb{Z}$, which is true because X is Gorenstein. Thus we arrive at

(4.4)
$$\sum_{i \in \mathcal{I}} \sum_{p \geq 0} (-1)^p \left(p + age(\mathcal{X}_i) - \frac{\dim \mathcal{X}}{2} \right)^2 \chi(\mathcal{X}_i, \Omega_{\mathcal{X}_i}^p) = \frac{\dim X}{12} e_{str}(X) + \frac{1}{6} c_{st}^{1, n-1}(X).$$

(4.2) now follows from Corollary 4.2 and (4.1).

Remark 4.7. (4.2) is conjectured to hold for any smooth proper Deligne-Mumford stack with projective coarse moduli space, see [7], Conjecture 3.2'.

REFERENCES

- [1] D. Abramovich, T. Graber, and A. Vistoli, Gromov-Witten theory of Deligne-Mumford stacks, *Amer. J. Math.* 130 (2008) no. 5, 1337–1398.
- [2] D. Abramovich and A. Vistoli, Compactifying the space of stable maps, *J. Amer. Math. Soc.* 15 (2002), no. 1, 27–75.
- [3] P. Aluffi, Celestial integration, stringy invariants, and Chern-Schwartz-MacPherson classes, in *Real and complex singularities*, 1–13, Trends Math., Birkhäuser, Basel, 2007.
- [4] V. Batyrev, Stringy Hodge numbers and Virasoro algebra, Math. Res. Lett. 7 (2000), no. 2-3, 155–164.
- [5] T. de Fernex, E. Lupercio, T. Nevins, and B. Uribe, Stringy Chern classes of singular varieties, *Advances in Math.* 208 (2007), 597-621, arXiv:math/0407314.
- [6] D. Edidin, W. Graham, Equivariant intersection theory, *Invent. Math.* 131 (1998), no. 3, 595–634.
- [7] Y. Jiang and H.-H. Tseng, On Virasoro Constraints for Orbifold Gromov-Witten Theory, arXiv:0704.2009.
- [8] D. Joyce, Constructible functions on Artin stacks, J. London Math. Soc. (2) 74 (2006), no. 3, 583–606.
- [9] A. Kresch, On the geometry of Deligne-Mumford stacks, to appear in *Algebraic Geometry (Seattle 2005)*, Proc. Symp. Pure Math., Vol. 80, Amer. Math. Soc. 2009.
- [10] T. Ohmoto, Equivariant Chern classes of singular algebraic varieties with group actions, *Math. Proc. Cambridge Philos. Soc.* 140 (2006), no. 1, 115–134.
- [11] A. Vistoli, Intersection theory on algebraic stacks and on their moduli spaces, *Invent. Math.* 97 (1989), no. 3, 613–670.
- [12] T. Yasuda, Motivic integration over Deligne-Mumford stacks, Advances in Math. 207 (2006), 707–761.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF WISCONSIN-MADISON, VAN VLECK HALL, 480 LINCOLN DRIVE, MADISON, WI 53706-1388, USA

E-mail address: tseng@math.wisc.edu