### Volos Summer School



### Before we start ...

- A <u>Single Nucleotide</u>
   <u>Polymorphism</u> (SNP) is a single base pair at which more than one nucleotide is observed.
- The Minor Allele Frequency
   (MAF) is the relative frequency in a relevant population of the minor
   (2nd most common) allele.
- For biallelic SNPs, if the MAF of T allele is q then the frequency of the C allele is p=1-q.



### Before we start

At a given position in the DNA (or genetic locus), the pair of alleles from the two chromosomes makes up the **genotype** at that position.

SNP genotypes are <u>usually encoded as 0</u>, <u>1 or 2</u>, based on the number of copies of non-reference alleles.

- genotype TT is coded as 0 (homozygous non-reference)
- genotype CT is coded as 1 (heterozygous)
- genotype CC is coded as 2 (homozygous reference)



https://www.ancestry.com/lp/genotype



### Before we start

SNP genotypes are usually **encoded as 0, 1 or 2**, based on the number of copies of non-reference alleles.

- 1. genotype TT is coded as 0 (homozygous non-reference)
- 2. genotype CT is coded as 1 (heterozygous)
- 3. genotype CC is coded as 2 (homozygous reference)

#### **Genotypes frequency:**

- For  $1. = q^2$
- For 2.= 2pq
- For  $3 = p^2$



https://www.ancestry.com/lp/genotype



### Did you say intensities?



















**HELMHOLTZ MUNICI** 

### Intensities: the good ...



Zhao et al., 2018

### Intensities: the bad ...



### Intensities: the ugly ...



# The GWAS analysis pipeline



The (imputed)
GWAS
analysis
pipeline



### Genotyping data storage

Which data types do we need?

### phenotype ~ pxgenotype + covariates + structure + e

$$\left[ egin{array}{c} pheno_0 \ dots \ pheno_n \end{array} 
ight]$$

$$\begin{bmatrix} A/T \\ \vdots \\ T/T \end{bmatrix}$$



These stay constant (they describe the samples)

This one changes



Can either be text-format files or binary files.



| *.far | *.fam *.bed |     |     | *.bed | *.bin | n                              |     |     |    |        |          |          |
|-------|-------------|-----|-----|-------|-------|--------------------------------|-----|-----|----|--------|----------|----------|
| FID   | IID         | PID | MID | Sex   | Р     | Contains binary version of the | Chr | SNP | GD | BPP    | Allele 1 | Allele 2 |
| 1     | 1           | 0   | 0   | 2     | 1     | SNP info of the *.ped file.    | 1   | rs1 | 0  | 870000 | С        | T        |
| 2     | 2           | 0   | 0   | 1     | 0     | (not in a format readable for  | 1   | rs2 | 0  | 880000 | Α        | G        |
| 3     | 3           | 0   | 0   | 1     | 1     | humans)                        | 1   | rs3 | 0  | 890000 | Α        | С        |
|       |             |     |     |       |       |                                |     |     |    |        |          |          |

| 10101111 | 10101111 | 10100010 | 10111011 | 10101000 | 10000000 |
|----------|----------|----------|----------|----------|----------|
| 00101011 | 00100000 | 10101000 | 10001011 | 00000011 | 11111111 |
| 11111111 | 11111111 | 11111111 | 11111110 | 11111111 | 11111111 |
| 11111111 | 11111110 | 11111110 | 11111110 | 11101111 | 11111111 |

|     | Legend         |       |                                                              |  |  |
|-----|----------------|-------|--------------------------------------------------------------|--|--|
| FID | Family ID      | rs{x} | Alleles per subject per SNP                                  |  |  |
| IID | Individual ID  | Chr   | Chromosome                                                   |  |  |
| PID | Paternal ID    | SNP   | SNP name                                                     |  |  |
| MID | Maternal ID    | GD    | Genetic distance (morgans)                                   |  |  |
| Sex | Sex of subject | BPP   | Base-pair position (bp units)                                |  |  |
| Р   | Phenotype      | C{x}  | Covariates (e.g., Multidimensional Scaling (MDS) components) |  |  |





#### **<u>ped</u>**(igree) file has **6+2***n*, providing:

- 1. Family ID
- 2. Individual ID
- 3. Paternal ID (0 if father not in dataset)
- 4. Maternal ID (0 if mother not in dataset)
- 5. Sex (1=Male, 2=Female, 0 or -9=missing)
- 6. Phenotype (here 2 or 1, corresponding to case and control)
- 7. 2 alleles for each SNP (0 = missing)

- map(ing) file has 4 columns, providing:
  - 1. Chromosome
  - 2. SNP Name
  - 3. Genetic distance (in morgans)
  - 4. Base-pair position (bp unit)



- fam(ily) file consists of the
  first six columns of ped file
- The <u>bed</u> (binary pedigree)
   file is a matrix of 0s, 1s, 2s
   or NAs stored in binary
   format.
- PLINK uses the following two-bit coding of genotypes:
  - 00 = A1/A1 (Homozygous non-reference)
  - 01 = A1/A2 (Heterozygous)
  - 11 = A2/A2 (Homozygous reference)
  - 10 = 0/0 (Missing)

 bim (binary mapping) file is the .map file plus two columns, providing the A1 and A2 alleles



What is left?



Matrix file

| Covariate file |     |            |            |              |
|----------------|-----|------------|------------|--------------|
| FID            | IID | C1         | C2         | C3           |
| 1              | 1   | 0.00812835 | 0.00606235 | -0.000871105 |
| 2              | 2   | -0.0600943 | 0.0318994  | -0.0827743   |
| 3              | 3   | -0.0431903 | 0.00133068 | -0.000276131 |

Phenotype files have 2 + M columns: Family ID, Individual ID, then value for each of M phenotypes



### Genotyping data: PLINK common operations

- https://www.cog-genomics.org/plink/1.9/index
- https://www.cog-genomics.org/plink/2.0/index



### Why Quality Control?











**HELMHOLTZ MUNICI** 

### Why Quality Control?

The QC protocol of a GWAS is usually split into two broad categories.

### "Sample QC"



### "Variant QC"

- 1. Identification of variants with an excessive missing genotype
- 2. Identification of variants
   demonstrating a significant
   deviation from <u>Hardy-Weinberg</u>
   equilibrium (HWE)
- 3. Removal of all makers with a
   very low minor allele frequency
- 4. Removal of all makers with cluster separation score <0.4
- 5. <u>Differential missingness</u> (case/control studies)

#### <u>Missingness</u>

- Per sample missingness
- ➣ % missing for a sample across your variants
- 2. Per SNP missingness
- ➤ % missing for a particular variant among your samples

| Quality control step | PLINK summary commands | PLINK filtering commands |
|----------------------|------------------------|--------------------------|
| Missingness          | missing                | geno,mind                |

Low genotyping call rate indicates issues with sample DNA (eg low concentration).



#### **Discordant Sex Check**

- ➤ Men have only one copy of the X chromosome
  - > All X chromosome data is expected to be homozygous.

Example

Alleles Female genotypes possible Male genotypes possible

A,C A/A, A/C, C,C A/A or C/C

>X chromosome homozygosity estimate for males (F statistic or inbreeding coefficient) is 1.

➤In Plink

| check-sex | Check sexes by looking at chrX |
|-----------|--------------------------------|
|-----------|--------------------------------|

➤ Male (1) : XHE > 0.80

➤• Female (2) : XHE <0.20

>• No sex (0): 0.20 <XHE <0.80

Sex check



X chr inbreeding (homozygosity) estimate F

HELMHOLTZ MUNICI

#### **Heterozygosity rate**

- The proportion of heterozygous genotypes (per sample)
- Various ways of calculating the rate

PLINK: (<observed hom. count> - <expected count>) / (<total observations> - <expected count>))

- --het (gives back and F estimate)
- <custom scripts>
- Excess heterozygosity -> Possible sample contamination
- Less than expected heterozygosity -> Possibly inbreeding

#### Autosomal heterozygosity and call rate





#### **Duplicated or related individuals**

A basic assumption of GWAS: unrelated individuals

• Either exclude or account for it

The presence can introduce a bias: genotypes in families to be over-represented



#### <u>Duplicated or related individuals</u>

#### **Calculated metrics:**

- Identity by state (IBS): A DNA segment is identical by state (IBS) in two or more individuals if they have identical nucleotide sequences in this segment.
- Identity by Descent (IBD): An IBS segment is identical by descent (IBD) in two or more individuals if they have inherited it from a common ancestor without recombination, that is, the segment has the same ancestral origin in these individuals.





#### **Duplicated or related individuals**

PLINK calculates identity by descent (IBD) of all sample

Approximates the percentage IBD overall, representing pairs as s

- Zero alleles IBD (z0)
- One allele IBD (z1)
- Two alleles IBD (z2)

PI\_HAT (the proportion IBD, defined as P(IBD = 2) + 0.5\*P(IBD =



Use an independent SNP set before running this command:

- removing regions of extended Linkage Disequilibrium (LD)
- and
- 2) pruning the remaining regions so that no pair of SNPs within a given window is correlated.



| Relationship type     | z0   | z1  | <b>z</b> 2 | PI_HAT |
|-----------------------|------|-----|------------|--------|
| Unrelated             | 1    | 0   | 0          | 0      |
| Monozygotic (MZ) twin | 0    | 0   | 1          | 1      |
| Full siblings         | 0.25 | 0.5 | 0.25       | 0.5    |
| Half siblings         | 0.5  | 0.5 | 0          | 0.25   |
| Parent-offspring      | 0    | 1   | 0          | 0.5    |

#### <u>Linkage disequilibrium</u> (<u>LD</u>)

Is the non-random association of alleles at different loci in a given population.





In GWAS we (mainly) use correlation coefficient between pairs of loci, r<sup>2</sup>

r<sup>2</sup>=1 is perfect LD



#### **PLINK: LD-based SNP prunning**

```
plink --indep-pairwise <window> <step> <rsq> --bfile <data> --out <output>
                plink --indep-pairwise 8 3 <rsq> --bfile <data> --out <output>
```





#### The Hardy-Weinberg (dis)equilibrium (HWE) law:

The genotype and the allele frequencies are constant over generations.

#### Assumes:

- An indefinitely large population
- With no selection, no Mutation, no Migration ......

Significant deviations indicate genotyping errors



| Quality control step             | PLINK summary commands | PLINK filtering commands |
|----------------------------------|------------------------|--------------------------|
| Hardy-Weinberg equilibrium check | hardy                  | hwe                      |

Less strict case threshold avoids discarding disease-associated SNPs

#### **Population structure**

Occurs when samples have different genetic ancestries

Allele frequencies can differ between subpopulations and can lead to spurious associations due to differences in ancestry rather than true associations

PLINK: Merge with a population of known ethnic structure (e.g., HapMap/1KG data) and identify outliers through dimension reduction analyses such as Principal Component Analysis and/or MultiDimensional Scaling (MDS).





#### Variant QC

It consists of (at least) four steps:

- 1. Identification of variants with an excessive missing genotype
- 2.Identification of variants demonstrating a significant deviation from Hardy-Weinberg equilibrium (HWE)
- 3. Removal of all makers with a very low minor allele frequency
- 4.Removal of all makers with cluster separation score



# Where to draw the line?









# Genotyping data : PLINK common operations

#### Sample management

| keep [file]   | Keep samples in file   |
|---------------|------------------------|
| remove [file] | Remove samples in file |

#### **SNP** management

| extract [file] | Keep SNPs in file   |
|----------------|---------------------|
| exclude [file] | Remove SNPs in file |

#### **Extracting regions**

| chr [name]    | Extract data on specified chromosome |
|---------------|--------------------------------------|
| from-bp [pos] | From specified position              |
| to-bp [pos]   | To specified position                |

# Genotyping data: PLINK common operations

#### Variant QC

| maf [threshold]         | Keep variants with MAF>threshold   |
|-------------------------|------------------------------------|
| hwe midp<br>[threshold] | Keep variants with HWE p>threshold |

#### Sample QC

| missing   | Compute per-sample and per-variant missingness |
|-----------|------------------------------------------------|
| check-sex | Check sexes by looking at chrX                 |
| genome    | Compute relatedness, check for duplicates      |

# Genotyping data: PLINK common operations

#### What is the command for:

- Excluding SNPs that are missing in a large proportion of the subjects (<0.90).
- Excluding individuals who have high rates of genotype missingness (<0.85).</li>
- Keeping autosomal SNPs.
- Extracting the top 20 principal components.
- The association between SNPs and a binary/quantitative outcome.

Thank you.