Appunti di Fondamenti

Fondamenti dell'Informatica - CdL Informatica 23/24

Federico Zotti

2023-10-18

Matematica discreta	5
Fasi della matematica discreta	5
Logica	5
Algebra astratta	5
Insiemi e Operazioni	6
Numeri	6
Numeri naturali	6
Numeri interi	7
Numeri razionali	7
Numeri reali	8
Numeri complessi	8
Numeri booleani	9
Insiemi	9
Notazione	10
Operazioni	12
Famiglie di insiemi	14
Partizioni	15

Relaz	cioni	15
	Ordinamenti negli insiemi	15
	Relazioni	17
	Relazioni tra oggetti	17
	Rappresentazione tabulare	18
	Rappresentazione matriciale	18
	Elementi di una relazione	18
	Relazioni n-arie	19
	Operazioni su relazioni	19
	Proprietà delle relazioni	19
	Identità	20
	Proprietà delle relazioni binarie	20
Funzi	ioni	20
	Funzione iniettiva	21
	Funzione suriettiva	21
	Funzione biiettiva	21
	Corrispondenza biunivoca	22
	Formalizzazione	22
	Punto fisso	23
	Operazioni	23
	Immagine inversa	23
	Funzione inversa	24
	Composizione di Funzioni	24
	Funzione caratteristica	25
	Multinsiemi	25
Cardi	nalità	26
	Cardinalità tramite funzioni	26
	Cardinalità finite	26
	Numerabili	27
	Il continuo	27
	Gerarchia transfinita	28

Strutture relazionali, Grafi e Ordinamenti	29
Rappresentazioni	29
Relazioni in un insieme	29
Riflessività ed operazioni	30
Simmetria ed operazioni	30
Transitività ed operazioni	30
Matrici booleane	31
Operazioni su matrici booleane	31
Prodotto booleano	32
Composizione di relazioni	33
Relazioni di Equivalenza	33
Partizioni e classi di equivalenza	34
Grafi	35
Gradi	35
Cammino	36
Semicammino	36
Ciclo	36
Distanza	37
Trovare le distanze: Algoritmo	37
Definizione formale di grafo	37
Sottografo	38
Grafo aciclico orientato (DAG)	38
Grafi etichettati	38
Matrice di adiacenza	38
Grafo completo	39
Connettività	39
Isomorfismi tra grafi	39
Alberi	39
Proprietà	40
Rappresentazione gerarchica	40
Cammini in un albero	40
Profondità	41

Matematica discreta

Matematica discreta

Discreto: composto di elementi distinti, separati tra di loro.

Un sistema è:

• **Discreto** se è costituito da elementi isolati

• Continuo se non ci sono *vuoti* tra gli elementi

I sistemi informatici si basano su un sistema binario, perciò discreto.

Possiamo approssimare un sistema continuo dividendolo in piccole parti (discretizzazione

o digitalizzazione).

Fasi della matematica discreta

• Classificazione: individuare le caratteristiche comuni di entità diverse (teoria degli

insiemi)

• Enumerazione: assegnare ad ogni oggetto un numero naturale (contare)

• **Combinazione**: permutarne e combinarne gli elementi (*grafi*)

Queste fasi guidano un algoritmo.

Logica

In filosofia, la logica è lo studio del ragionamento, dell'argomentazione, e dei procedimenti

inferenziali per distinguere quelli validi da quelli non validi.

La logica matematica vede questi procedimenti come calcoli formali, con una struttura

algoritmica.

Infatti, è tutto basato sull'algebra di Boole.

Algebra astratta

L'algebra astratta studia le **strutture algebriche**, ovvero insiemi muniti di operazioni.

5

Numeri

Numeri naturali

I numeri naturali sono i primi che impariamo, e nascono dall'attività di contare.

Essi formano un **insieme**, chiamato *insieme dei numeri naturali* (\mathbb{N}) .

$$\mathbb{N} = \{0, 1, 2, 3, 4, \dots, n, n+1, \dots\}$$

Contare non è altro che assegnare ad ogni oggetto un numero naturale (in ordine).

 \mathbb{N} ha un *limite inferiore* (0), ma non ha un *limite superiore*, quindi \mathbb{N} è infinito.

Definizione semiformale

- I numeri naturali hanno l'elemento 0
- Ogni elemento n ha (esattamente) un successore s(n)
- 0 non è un successore di nessun elemento
- Due elmenti diversi hanno successori diversi

Questa definizione è la base del processo di induzione.

Una proprietà è vera in tutto $\mathbb N$ se e solo se:

- È vera in 0
- Se è vera in n allora è vera in s(n)

È possibile anche iniziare da un numero arbitrario.

Numeri interi

I numeri **interi** (relativi) è l'insieme dei numeri naturali preceduti da un segno "+" o "-". Questo insieme si denota con il simbolo \mathbb{Z} .

$$\mathbb{Z} = \{ \dots, -(n+1), -n, \dots, -2, -1, 0, 1, 2, \dots, n, n+1, \dots \}$$

Ogni intero ha un successore, ma anche un predecessore (non c'è un minimo).

I numeri interi positivi (più 0) formano \mathbb{N} .

$$\mathbb{N}\subset\mathbb{Z}$$

$$\mathbb{N} = \mathbb{Z}^+ \cup \{\,0\,\}$$

Valore assoluto II valore assoluto di un numero intero è il numero privo di segno.

$$|-n|=n$$

$$|n| = n$$

L'opposto di un numero si ottiene cambiandogli il segno.

Numeri razionali

Razionale in questo caso si riferisce a **ratio** ossia **proporzione**. Indicano dunque una proporzione risultante da una divisione.

Si esprimono come rapporto di due numeri interi (frazioni).

$$\frac{m}{n}$$

Si indicano con il simbolo \mathbb{Q} .

Rappresentazioni e Relazioni Ogni numero razionale può essere rappresentato da un numero decimale finito o periodico.

$$\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q}$$

Densità I numeri razionali sono **densi**: fra due razionali c'è sempre un altro numero. Sono comunque **discreti**.

Numeri reali

I **numeri irrazionali** (\mathbb{I}) sono quelli che non si possono esprimere tramite frazioni: hanno un'espansione decimale infinita e non periodica.

L'insieme dei **numeri reali** (\mathbb{R}) contiene tutti i numeri che ammettono una rappresentazione decimale.

$$\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R}$$

$$\mathbb{R} = \mathbb{Q} \cup \mathbb{I}$$

La Retta reale L'insieme dei numeri reali spesso viene rappresentato su una retta (ordine implicito).

A ogni punto della retta è associato un numero reale e viceversa (*corrispondenza biuni-voca*).

Numeri complessi

I **numeri complessi** (\mathbb{C}) estendono i reali per eseguire operazioni che non sono ben definite altrimenti.

Nascono dalla necessità di estrarre radici a numeri negativi.

Definiscono l'**unità immaginaria** $i=\sqrt{-1}$. Un numero complesso è a+bi, con $a,b\in\mathbb{R}$

$$\mathbb{N}\subset\mathbb{Z}\subset\mathbb{Q}\subset\mathbb{R}\subset\mathbb{C}$$

Numeri booleani

L'insieme dei numeri booleani è

$$\mathbb{B} = \{0, 1\}$$

Insiemi

Gli **insiemi**, le loro proprietà e le loro **operazioni** sono alla base della matematica moderna e dell'informatica.

Un sistema è **discreto** se costituito da elementi isolati e **continuo** se non vi sono spazi vuoti. In matematica, discreto si basa sul concetto di **cardinalità** (il "numero" di elementi che contiene).

Un insieme è discreto se (e solo se) i suoi elementi si possono numerare.

Un insieme è un raggruppamento di oggetti distinti e ben definiti.

Gli oggetti che formano l'insieme sono i suoi **elementi**. In un insieme, tutti gli elementi sono **distinti** e l'ordine non è rilevante.

Gli elementi di un insieme possono essere anch'essi insiemi.

Un tempo si pensava che la **teoria degli insiemi** poteva dare una base solida alla matematica. Esistono paradossi però che dicono il contrario.

Per esempio il paradosso del barbiere

In un vilaggio vi è un solo barbiere, che rade tutti e soli gli uomini del villaggio che non si radono da soli. *Chi rade il barbiere?*

o il paradosso eterologico

Una parola è **autologica** se descrive se stessa (*"polisillabica"*, *"corta"*, *"leggibile"*). Una parola è **eterologica** se non è autologica (*"polillabica"*, *"lunga"*, *"illeggibile"*). *"Eterologica"* è eterologica?

Il più famoso di essi è il paradosso degli insiemi (Bertrand Russel)

Considerate l'insieme N di tutti gli insiemi che non appartengono a se stessi. N appartiene a se stesso?

Per costruire questo tipo di paradossi è necessario usare un'autoreferenza e una negazione.

Questa idea torna in diversi contesti per dimostrare l'impossibilità o inesistenza di certe strutture.

Notazione

Gli insemi generici saranno denotati da lettere latine maiuscole

$$A, B, C, \ldots$$

e i loro elementi con lettere latine minuscole

$$a, b, c, \ldots$$

L'insieme senza elementi si chiama **vuoto** e si denota con \varnothing .

L'uguaglianza fra oggetti (elementi, insemi, entità, ecc.) si denota con "=". La disuguaglianza si denota con " \neq ".

L'uguaglianza ha tre importanti proprietà:

• Riflessività: A = A

• Simmetria: $A = B \iff B = A$

• Transitività: se A=B e B=C allora A=C

Un insieme può avere diverse rappresentazioni:

- Diagramma Eulero-Venn
- Rappresentazione estensionale: elenco di tutti gli elementi $(\{x, y, z\})$
 - { rosso, giallo, arancio }: insieme con tre elementi
 - { rosso, giallo, rosso }: insieme con due elementi
 - $\{\emptyset\}$: insieme con un elemento
 - $\{0,1,2,3,\ldots\}$: insieme dei numeri naturali
 - $-\{\emptyset,1,2,\{3\}\}$
- Rappresentazione intensionale: consiste nel formulare una proprietà \mathcal{P} caratteristica che distingue precisamente gli elementi dell'insieme $(S = \{x \mid \mathcal{P}(x)\})$
 - $\{x \mid x \in \mathbb{Z}, x > 0\}$: insieme dei numeri interi positivi
 - $\{x \mid x \text{ è un colore dell'arcobaleno}\}$
 - $\{x \mid x \in \mathbb{Z}, x > 3, x \le 100\} = \{4, 5, \dots, 99, 100\}$
 - $\{x \mid x \text{ è un numero primo}\}$

Per ogni elemento x esiste l'insieme **singoletto** $\{x\}$.

Proprietà complesse si possono costruire combinando proprietà più semplici mediante operazioni **vero-funzionali**.

Un **sottoinsieme** di A è un insieme formato unicamente per (alcuni) elementi di A. Un sottoinsieme B di A è **proprio** se è diverso da A e da \varnothing .

L'insieme vuoto ammette esattamente un sottoinsieme: \varnothing (sottoinsieme non proprio). Un singoletto $\{a\}$ ammette due sottoinsiemi: \varnothing e $\{a\}$ (sottoinsiemi non propri).

Se A e B hanno gli stessi elementi, sono mutuamente sottoinsiemi

$$A=B \text{ se } A\subseteq B, B\subseteq A$$

L'inclusione soddisfa le proprietà:

• Riflessività: $A \subseteq A$

■ Antisimmetria: $A \subseteq B \land B \subseteq A \iff A = B$

 $\bullet \quad \mathsf{Transitivit\grave{a}} \colon \ A \subseteq B \land B \subseteq C \iff A \subseteq C$

L'insieme potenza (o insieme delle parti) di un insieme S, scritto $\mathscr{P}(S)$ è l'insieme formato da tutti i sottoinsiemi di S.

$$\mathscr{P}(S) = \{ x \mid x \subseteq S \}$$

Esempi:

- $\mathscr{P}(\varnothing) = \{\varnothing\}$
- $\bullet \ \mathscr{P}(\{\varnothing\}) = \{\varnothing, \{\varnothing\}\}$

Se S ha n elementi $(n \ge 0)$ allora $\mathcal{P}(S)$ ha 2^n elementi.

Operazioni

Unione L'unione di due insiemi A e B si denota

$$A \cup B$$

ed è definita come

$$A \cup B = \{ x \mid x \in A \lor x \in B \}$$

Le proprietà dell'unione sono:

- Idempotenza: $A \cup A = A$
- Commutatività: $A \cup B = B \cup A$
- Associatività: $A \cup (B \cup C) = (A \cup B) \cup C$
- Esistenza del neutro: $A \cup \varnothing = A$
- Assorbimento: $A \cup B = B$ se $A \subseteq B$
- Monotonicità: $A \subseteq A \cup B$ e $B \subseteq B \cup A$

Intersezione L'intersezione di due insiemi A e B si denota

$$A \cap B$$

ed è definita come

$$A \cap B = \{ x \mid x \in A \land x \in B \}$$

Le proprietà dell'intersezione sono:

• Idempotenza: $A \cap A = A$

• Commutatività: $A \cap B = B \cap A$

• Associatività: $A \cap (B \cap C) = (A \cap B) \cap C$

 $\bullet \ \ \, \textbf{Annichilazione} \colon \, A \cap \varnothing = \varnothing$

■ Assorbimento: $A \cap B = B$ se $A \subseteq B$

■ Monotonicità: $A \cap B \subseteq A$ e $A \cap B \subseteq B$

L'unione e l'intersezione distribuiscono una sull'altra

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

Sottrazione La **sottrazione** tra due insiemi A e B è definita come

$$A \setminus B = \{ x \mid x \in A \land x \notin B \}$$

Le proprietà della sottrazione sono:

- $A \setminus A = \emptyset$
- $A \setminus \varnothing = A$
- $\bullet \quad \varnothing \setminus A = \varnothing$
- $A \setminus B = A \cap \overline{B}$
- $\bullet (A \setminus B) \setminus C = A \setminus (B \cup C) = (A \setminus C) \setminus B$

• $A \setminus B \neq B \setminus A$

Differenza simmetrica La differenza simmetrica tra A e B è

$$A\triangle B = (A \setminus B) \cup (B \setminus A) = (A \cup B) \setminus (A \cap B)$$

Proprietà:

- \bullet $A\triangle A=\varnothing$
- \bullet $A \triangle \varnothing = A$
- $A\triangle B = B\triangle A$

Complementazione Dato un insieme di riferimento U (chiamato Universo), il complemento assoluto di A è definito come:

$$\overline{A} = \{ x \mid x \in U, x \notin A \} = U \setminus A$$

Le proprietà della complementazione sono:

- $\overline{U} = \emptyset$
- $\overline{\varnothing} = U$
- $\overline{\overline{A}} = A$
- $A \cap \overline{A} = \emptyset$ (terzo escluso)
- $\quad \bullet \quad A \cup \overline{A} = U$
- $\overline{(A \cup B)} = \overline{A} \cap \overline{B}$ (legge di De Morgan)
- $\overline{(A \cap B)} = \overline{A} \cup \overline{B}$ (legge di De Morgan)
- $A \subseteq B \iff \overline{B} \subseteq \overline{A}$

Famiglie di insiemi

Un insieme i cui elementi sono tutti insiemi viene chiamato famiglia di insiemi (\mathcal{F}) .

Le operazioni su una famiglia di insiemi sono:

$$\cup \mathcal{F} = \{ \, x \, | \, x \in A \text{ per almeno un insieme } A \in \mathcal{F} \, \}$$

$$\cap \mathcal{F} = \{ \, x \, | \, x \in A \, \forall \, A \in \mathcal{F} \, \}$$

Dunque

$$\cup \mathcal{P}(A) = A \ \forall A$$

Partizioni

Una partizione di un insieme $A \neq \emptyset$ è una famiglia $\mathcal F$ di sottoinsiemi di A tale che:

- $\forall c \in \mathcal{F}, c \neq \varnothing$ (non trivialità)
- $\cup \mathcal{F} = A$ (copertura)
- se $c \in \mathcal{F}$, $D \in \mathcal{F}$ e $C \neq D$, allora $C \cap D = \emptyset$ (disgiunzione)

Relazioni

Ordinamenti negli insiemi

Ricordate che gli insiemi non sono ordinati

$$\{x,y\} = \{y,x\}$$

A volte è utile poter ordinare i loro elementi in modo chiaro.

Coppia ordinata Una coppia ordinata è una collezione di due elementi, dove si può distringuere il **primo** e il **secondo** elemento

$$\langle x, y \rangle$$

Il primo elemento è x e il secondo è y. Notare che esiste la coppia ordinata $\langle x, x \rangle$.

Formulazione Insiemistica La coppia ordinata $\langle x,y \rangle$ non è altro che l'insieme

$$\{ \{ x \}, \{ x, y \} \}$$

Sia $\mathcal{F} = \{\{x\}, \{x,y\}\}$. x è il **primo elemento** $\iff x \in \cap \mathcal{F}$ (appartiene a tutti gli insiemi). y è il **secondo elemento** $\iff y \in \cup \mathcal{F} \setminus \cap \mathcal{F}$ (non appartiene a tutti gli insiemi) oppure $\{y\} = \cup \mathcal{F}$ ($\mathcal{F} = \{\{y\}\}$).

Notare che $\langle x, x \rangle = \{ \{x\}, \{x, x\} \}.$

Definizione giusta Vogliamo vedere che questa definizione **caratterizza** le coppie ordinate. Cioè, che

$$\langle a,b\rangle = \langle x,y\rangle \iff \{\{a\},\{a,b\}\} = \{\{x\},\{x,y\}\}$$

Le coppie ordinate sono ben definite.

Generalizzazione Possiamo generalizzare le coppie ordinate a **tuple ordinate** di lunghezza $n \ge 2$ (n-tuple ordinate) definendo

$$\langle x_1, x_2, \dots, x_n, x_{n+1} \rangle = \langle \langle x_1, x_2, \dots, x_n \rangle, x_{n+1} \rangle$$

[!warning] Correggere lo spacing #todo/uni

Prodotto cartesiano Dati due insiemi A e B, definiamo il prodotto cartesiano come

$$A \times B = \{ \langle x, y \rangle \mid x \in A, y \in B \}$$

 $A \times B$ è l'insieme di tutte le coppie ordinate dove:

- il primo elemento appartiene ad A
- il secondo elemento appartiene a B

Notare che:

- $A \times B \neq B \times A$
- \bullet $A \times \emptyset = \emptyset = \emptyset \times A$

 $A \times A$ è a volte denotato con A^2 .

Sequenze S^n è l'insieme di tutte le n-tuple di elementi di S definito tramite prodotti cartesiani di S. Una **sequenza finita** di elementi di S è un elemento di S^n per qualche $n \in \mathbb{N}$.

In altre parole, una sequenza è una tupla ordinata

$$\langle s_1, \dots s_n \rangle$$

dove $n \in \mathbb{N}$ e ogni $s_i \in S$.

Segmento Data una sequenza finita $\sigma = \langle s_1, \ldots, s_n \rangle$, una sequenza $\sigma' = \langle s_k, s_{k+1}, \ldots, s_\ell \rangle$ dove $1 \leq k \leq \ell \leq n$ è chiamata un **segmento** di σ .

Il segmento è iniziale sse k=1.

Relazioni

Una **relazione** tra gli elementi di due insiemi A e B non è altro che un sottoinsieme di $A \times B$.

Una relazione rappresenta un **collegamento** tra gli elementi di A e quelli di B.

Relazioni tra oggetti

Se la coppia ordinata $\langle x,y \rangle$ appartiene a una relazione $R \subseteq A \times B$, si dice che $x \in A$ ha come **corrispondente** $y \in B$ nella relazione R oppure che $x \in A$ in relazione con y.

Rappresentazione tabulare

Ogni relazione si può rappresentare graficamente tramite una tabella.

Rappresentazione matriciale

R si può anche rappresentare tramite una **matrice booleana**.

$$\begin{pmatrix}
0 & 1 & 1 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{pmatrix}$$

Ogni riga rappresenta un elemento dell'insieme A e ogni colonna rappresenta un elemento di B.

Elementi di una relazione

Sia $R \subseteq A \times B$ una relazione

■ Il **dominio** di R (dom(R)) è l'insieme di tutti gli oggetti $x \in A$ tali che $\langle x,y \rangle \in R$ per qualche $y \in B$.

$$\mathsf{dom}(R) = \{ \, x \in A \, | \, \exists \, y \in B, \langle x, y \rangle \in R \, \}.$$

■ Il **codominio** è l'insieme di tutti gli oggetti $y \in B$ tali che $\langle x, y \rangle \in R$ per qualche $x \in A$.

$$\mathsf{codom}(R) = \{ y \in B \, | \, \exists \, x \in A, \langle x, y \rangle \in R \, \}.$$

• Il campo o estensione di R è dom $(R) \cup \operatorname{codom}(R)$.

Relazioni n-arie

Il concetto di relazione può estendersi a tuple ordinate con più di due elementi.

Se gli elementi delle tuple appartengono allo stesso insieme A, allora una relazione n-aria è un sottoinsieme di A^n .

Esempi:

- $\{\,\langle x,x\rangle\,|\,x\in A\,\}$ è una relazione binaria su A
- $\{\langle x,y\rangle\,|\,x,y\in\mathbb{N},x\leq y\,\}$ è la relazione d'ordine naturale su $\mathbb N$
- $\{\,\langle x,y,z\rangle\,|\,x,y,z\in\mathbb{R},x^2+y^2=z^2\,\}$ è un'area geometrica

Operazioni su relazioni

Siano $R, S \subseteq A \times B$ due relazioni

- $R \cup S$ ha tutte le coppie che appartengono a R o a S
- $R \cap S$ ha tutte le coppie che appartengono ad entrambi R e S
- $\overline{R} = \{ \langle x, y \rangle \mid \langle x, y \rangle \notin R \} \subseteq A \times B$ è il complemento di R
- $R^{-1}=\{\,\langle y,x\rangle\,|\,\langle x,y\rangle\in R\,\}\subseteq A\times B$ è la relazione inversa di R

Proprietà delle relazioni

Siano $R,S\subseteq A\times B$ due relazioni

- $\bullet \ \ \mathsf{Se} \ R \subseteq S \ \mathsf{allora} \ \overline{S} \subseteq \overline{R}$
- $\overline{(R \cap S)} = \overline{R} \cup \overline{S}$
- $\overline{(R \cup S)} = \overline{R} \cap \overline{S}$
- $\bullet \ \ \text{se} \ R \subseteq S \ \text{allora} \ R^{-1} \subseteq S^{-1}$
- $(R \cap S)^{-1} = R^{-1} \cap S^{-1}$
- $\qquad (R \cup S)^{-1} = R^{-1} \cup S^{-1}$

Esempi Siano $A = \{a, b\}, R = \{\langle a, b \rangle, \langle b, a \rangle\}, S = \{\langle a, b \rangle, \langle a, a \rangle\}$ $(R \subseteq A^2; S \subseteq A^2).$

1.
$$R \cap S = \{ \langle a, b \rangle \}$$

2.
$$\overline{R \cup S} = \{ \langle b, b \rangle \}$$

3.
$$R^{-1} = R$$

4.
$$S^{-1} \neq S$$

Identità

Dato un insieme A, la relazione

$$I_A = \{ \langle x, x \rangle \mid x \in A \}$$

dove ogni elemento è in relazione con se stesso è chiamata l'**identità** su A.

Proprietà delle relazioni binarie

Una relazione $R \subseteq A^2$ è

- Riflessiva se $\langle x, x \rangle \in R \ \forall x \in A \ (I_A \subseteq R)$
- Simmetrica se $\langle x,y \rangle \in R \implies \langle y,x \rangle \in R \ (R=R^{-1})$
- Antisimmetrica se $\langle x,y\rangle, \langle y,x\rangle \in R \implies x=y \ (R\cap R^{-1}\subseteq I_A)$
- Antisimmetrica (def alternativa) se $x \neq y \land \langle x, y \rangle \in R \implies \langle y, x \rangle \notin R$ $(R \cap R^{-1} \subseteq I_A)$
- $\blacksquare \ \ \text{Transitiva se} \ \langle x,y\rangle, \langle y,z\rangle \in R \implies \langle x,z\rangle \in R$

Funzioni

Una classe di relazioni binarie di particolare importanza sono le **funzioni** (o **applicazio- ni**).

Una funzione è una relazione $R\subseteq A\times B$ tale che ad ogni $a\in A$ corrisponde **al più** un elemento $b\in B$.

Formalmente: se $\langle a, b \rangle, \langle a, c \rangle \in R$ allora b = c.

Notazione: $f: A \rightarrow B$

Se per ogni $a \in A$ esiste **esattamente un** $b \in B$ tale che $\langle a, b \rangle \in R$, allora f è una funzione totale.

Riformulazione: una relazione $f\subseteq A\times B$ è una funzione se per ogni $x\in \text{dom}(f)$ esiste un unico $y\in B$ tale che $\langle x,y\rangle\in f.$ f(x) denota tale elemento y.

Se $x \in dom(f)$, allora si dice che f è **definita** in x. Se A = dom(f) allora f è una funzione **totale**.

Funzione iniettiva

Una funzione f è **iniettiva** se porta elementi distinti del dominio in elementi distinti del codominio (immagine).

 $f:A\to B$ è iniettiva sse per ogni $x,y\in A, x\neq y\implies f(x)\neq f(y).$

Funzione suriettiva

Una funzione f è **suriettiva** quando ogni elemento di B è immagine di almeno un elemento di A ossia, quando $B = \operatorname{codom}(f)$.

 $f:A\to B$ è suriettiva sse per ogni $y\in B$ esiste un $x\in A$ tale che f(x)=y.

Funzione biiettiva

Una funzione $f:A\to B$ è **biettiva** sse è iniettiva e suriettiva.

Attenzione: f può non essere totale.

- Ad ogni $x \in \operatorname{dom}(f)$ corrisponde esattamente un $y \in B$
- Ad ogni $y \in B$ corrisponde esattamente un $x \in dom(f)$

Corrispondenza biunivoca

Una corrispondenza biunivoca tra A e B è una relazione binaria $R\subseteq A\times B$ tale che ad ogni elemento di A corrisponde uno ed un solo elemento di B e viceversa, ad ogni elemento di B corrisponde uno ed un solo elemento di A.

Tale R deve essere una funzione totale, iniettiva e suriettiva.

Formalizzazione

 $f \subseteq A \times B$

$$\begin{split} \operatorname{dom}(f) &= \{\, x \in A \mid \exists \, y \in B. \langle x,y \rangle \in f \,\} \\ \operatorname{codom}(f) &= \{\, y \in A \mid \exists \, x \in B. \langle x,y \rangle \in f \,\} \end{split}$$

Funzione (parziale)

$$\forall a \in A. \forall x, y \in B. (\langle a, x \rangle \in f \land \langle a, y \rangle \in f) \implies x = y$$

Funzione totale

$$\forall\,a\in A.\exists!\,x\in B.\langle a,x\rangle\in f$$

Funzione iniettiva

$$\forall a \in A. \forall x, y \in B. (\langle a, x \rangle \in f \land \langle a, y \rangle \in f) \implies x = y \land$$

$$\forall a, b \in A. \forall x \in B. (\langle a, x \rangle \in f \land \langle b, x \rangle \in f) \implies a = b$$

Funzione suriettiva

$$\forall \, a \in A. \forall \, x, y \in B. (\langle a, x \rangle \in f \land \langle a, y \rangle \in f) \implies x = y \land$$

$$\forall \, x \in B. \exists \, a \in A. \langle a, x \rangle \in f$$

Funzione biiettiva

$$\forall a \in A. \forall x, y \in B. (\langle a, x \rangle \in f \land \langle a, y \rangle \in f) \implies x = y \land$$

$$\forall a, b \in A. \forall x \in B. (\langle a, x \rangle \in f \land \langle b, x \rangle \in f) \implies a = b \land$$

$$\forall x \in B. \exists a \in A. \langle a, x \rangle \in f$$

Punto fisso

Sia A un insieme e $f:A\to A$ una funzione.

Un **punto fisso** di f è un elemento di A che coincide con la sua immagine

$$x = f(x)$$

Operazioni

 $\operatorname{Sia} A$ un insieme.

Un'**operazione** (n-aria) su A è una funzione $A^n \to A$.

L'operazione è totale sse la funzione è totale.

Immagine inversa

Sia $f:A\to B$ una funzione e $y\in B$ l'immagine inversa di f in y è

$$f^{-1}: B \to \mathcal{P}(A)$$

 $f^{-1}(y) = \{ x \in A \mid f(x) = y \}$

Nota: f è iniettiva sse per ogni $y \in B$, $f^{-1}(y)$ ha al più un elemento.

Funzione inversa

Una funzione $f:A\to B$ è **invertibile** se esiste una funzione $g:B\to A$ tale che per ogni $x\in A$ e ogni $y\in B$ o

$$g(f(x)) = x$$

$$f(g(y)) = y$$

In questo caso, g è l'**inverso** di f e si rappresenta come f^{-1} .

Una funzione f è invertibile sse è iniettiva. f_{-1} è totale sse f è suriettiva.

Composizione di Funzioni

La **composizione** di due funzioni si riferisce all'applicazione di una funzione al risultato di un'altra.

Siano $f:A\to B$ e $g:B\to C$ due funzioni. La funzione composta $g\circ f:A\to C$ è definita per ogni $x\in A$ da

$$(g \circ f)(x) = g(f(x))$$

 $(g \circ f)(x)$ è definita sse f(x) e g(f(x)) sono definite.

Se $f:A\to B$ e $g:C\to D$ sono due funzioni, allora la composizione $g\circ f$ è solo definibile se $\operatorname{codom}(f)\subseteq C$.

Le proprietà della composizione:

- Associativa: $f \circ (g \circ h) = (f \circ g) \circ h$
- Se f e g sono entrambe iniettive, allora $f \circ g$ è **iniettiva**
- Se f e g sono entrambe suriettive, allora $f \circ g$ è suriettiva
- Se f e g sono entrambe invertibili, allora $f\circ g$ è **invertibile** $\big((g\circ f)^{-1}=f^{-1}\circ g^{-1}\big)$

Funzione caratteristica

I sottoinsiemi di un insieme A si possono anche rappresentare tramite una funzione detta caratteristica.

La funzione caratteristica di un insieme $S\subseteq A$ è la funzione $f_S:A\to \{\,0,1\,\}$ dove

$$f_S(x) = \begin{cases} 0 & x \notin S \\ 1 & x \in S \end{cases}$$

 $\text{Per ogni } x \in A$

- $f_{S \cap T}(x) = f_S(x) \cdot f_T(x)$
- $f_{S \cup T}(x) = f_S(x) + f_T(x) f_S(x) \cdot f_T(x)$
- $f_{S \triangle T}(x) = f_S(x) + f_T(x) 2 \cdot f_S(x) \cdot f_T(x)$

Multinsiemi

Un multinsieme è una variante di un insieme dove gli elementi si possono ripetere

$$\{\{a, a, b, c, c, c\}\} \neq \{\{a, b, c\}\}$$

Formalmente un multinsieme è una funzione da un insieme a $\mathbb N$

$$f:A\to\mathbb{N}$$

che esprime quante volte si ripete ogni elemento nel multinsieme $(A = \{a, b, c, d\})$

$$\{\langle a, 2 \rangle, \langle b, 1 \rangle, \langle c, 3 \rangle, \langle d, 0 \rangle\}$$

Cardinalità

I **numeri cardinali** si utilizzano per misurare gli insiemi (indicare la loro *grandezza*). Se un insieme è **finito**, la sua cardinalità è un numero naturale (il numero di elementi). Con

i numeri cardinali, possiamo anche misurare e classificare insiemi infiniti.

Cardinalità tramite funzioni

Georg Cantor utilizzò le proprietà delle funzioni per paragonare la cardinalità degli

insiemi.

Sia f una funzione $f:A\to B$

ullet Se f è suriettiva allora B non è "più grande" di A

ullet Se f è totale e iniettiva allora A non è "più grande" di B

Due insiemi sono equipotenti (hanno la stessa cardinalità) sse esiste una funzione

biunivoca fra di loro.

 $A \sim B$

Cardinalità finite

Se A ha n elementi, allora $A \sim \{1, \dots, n\}$. In questo caso si dice che A è **finito** e ha

cardinalità (o potenza) n.

Utilizziamo la notazione

|A| = n

I numeri naturali si utilizzano come cardinali finiti.

Se|A| = n allora $|\mathscr{P}(A)| = 2^n$.

26

Numerabili

Basati su questa definizione, chiamiamo **numerabili** tutti gli insiemi che hanno la cardinalità di \mathbb{N} . I suoi elementi possono essere posti in corrispondenza biunivoca con i naturali.

$$A \sim \mathbb{N} \sim \mathbb{N}^+$$

La cardinalità di \mathbb{N} è chiamata \aleph_0 .

$$|\mathbb{N}| = \aleph_0$$

 \aleph_0 è il più piccolo dei numeri cardinali **transfiniti** (i cardinali per misurare insiemi infiniti). Ovviamente \aleph_0 non è un numero naturale.

I seguenti insiemi sono numerabili:

- L'insieme dei numeri pari
- L'insieme dei numeri primi
- L'insieme dei numeri interi $\mathbb Z$

$$f: \mathbb{N} \to \mathbb{Z}$$

$$f(x) = \begin{cases} -\frac{x}{2} & \text{se } x \text{ pari} \\ \lceil \frac{x}{2} \rceil & \text{se } x \text{ dispari} \end{cases}$$

- Il prodotto cartesiano $\mathbb{N} \times \mathbb{N}$
- I numeri razionali $\mathbb{Q} \ (\subset \mathbb{N} \times \mathbb{N})$

Il continuo

$$[0,1] = \{ x \in \mathbb{R} \mid 0 \le x \le 1 \} \sim \mathscr{P}(\mathbb{N})$$

Denotiamo per convenzione $|\mathscr{P}(\mathbb{N})|=2^{\aleph_0}$. Allora $|\mathbb{R}|\geq 2^{\aleph_0}$.

Cantor dimostro che $\aleph_0<2^{\aleph_0}$ (in realtà che $|A|<|\mathscr{P}(A)|$). Dunque $\mathbb R$ non è numerabile.

Teorema di Cantor

$$\aleph_0 < 2^{\aleph_0}$$

Dobbiamo dimostrare che *non esiste* una funzione biunivoca $f: \mathbb{N} \to \mathscr{P}(\mathbb{N})$.

Supponiamo che esiste una tale funzione f. Definiamo

$$Z = \{ \, z \in \mathbb{N} \mid n \notin f(n) \, \} \subseteq \mathbb{N}$$

Siccome f è biunivoca (quindi suriettiva), esiste $k \in \mathbb{N}$ tale che f(k) = Z.

Domanda: $k \in \mathbb{Z}$?

Se $k \in \mathbb{Z}$, allora per definizione $k \notin f(k) = \mathbb{Z}$. Se $k \notin \mathbb{Z}$, allora $k \notin f(x)$ e quindi per definizione $k \in \mathbb{Z}$.

Conclusione: la funzione f non può esistere.

Gerarchia transfinita

Cantor definì la gerarchia dei numeri transfiniti

$$\aleph_0 < \aleph_1 < \aleph_2 < \dots$$

L'**ipotesi del continuo** dice che $\aleph_1=2^{\aleph_0}$. Non ci sono insiemi di cardinalità intermedia fra $\mathbb N$ e $\mathbb R$.

Rappresentazioni

Le relazioni possono essere rappresentate da diverse forme:

- Rappresentazione per elencazione: descrivere l'insieme di coppie ordinate $(R = \{\langle 1, 2 \rangle, \langle 2, 4 \rangle, \langle 3, 6 \rangle\})$
- Rappresentazione sagittale: collegare con delle frecce gli elementi che verificano la relazione
- Rappresentazione tramite diagramma cartesiano: se S e T sono sottoinsiemi di \mathbb{R} , rappresentare le coppie come coordinate sul piano cartesiano
- Rappresentazione tramite tabella: una matrice booleana con per colonne gli elementi dell'insieme di arrivo e per righe l'insieme di partenza.

Relazioni in un insieme

Una relazione $R \subseteq S \times S$ è detta **relazione in** S. In una relazione in S, la rappresentazione sagittale collassa in un **grafo**. Usiamo lo stesso insieme per l'origine e la destinazione di ogni freccia. Formalmente un grafo è costituito da **nodi** collegati fra loro da frecce (o **spigoli**). Se $\langle x,y \rangle \in \mathbb{R}$, disegnamo uno spigolo da x a y.

Le proprietà di una relazione sonon (again):

- Riflessiva se: $\langle x, x \rangle \in R \ \forall \ x \in S \ (ogni \ nodo \ ha \ un \ cappio)$
- Irriflessiva se: $\langle x, x \rangle \notin R \ \forall x \in S$ (nessun nodo ha un cappio)
- Simmetrica se: $\langle x,y \rangle \in R \implies \langle y,x \rangle \in R$ (ogni spigolo ha il suo inverso)
- Asimmetrica se: $\langle x,y\rangle \in R \implies \langle y,x\rangle \notin R$ (nessuno spigolo ha il suo inverso e nessun nodo ha un cappio)
- Antisimmetrica se: $\langle x,y\rangle \in R \land \langle y,x\rangle \in R \implies x=y$ (nessuno spigolo ha il suo inverso (escluso il cappio))
- Transitiva se: $\langle x,y\rangle \in R \land \langle y,z\rangle \in R \implies \langle x,z\rangle \in R$

Una relazione $R \subseteq S \times S$ in S è

- Connessa se ogni due elementi sono collegati. $\forall x,y \in S$ x se $x \neq y$ allora $\langle x,y \rangle \in R$ oppure $\langle y,x \rangle \in R$
- Relazione di equivalenza se è riflessiva, transitiva e simmetrica

La relazione vuota $\varnothing\subseteq S\times S$ è irriflessiva, simmetrica, asimmetrica, antisimmetrica e transitiva. L'identità I_S è riflessiva, simmetrica e transitiva (è una relazione di equivalenza).

Riflessività ed operazioni

Siano R ed R^\prime due relazioni su S

- 1. Se R è riflessiva, R^{-1} è riflessiva (stesso per irriflessibilità)
- 2. R è riflessiva sse \overline{R} è irriflessiva
- 3. Se R ed R' sono riflessive, allora anche $R \cup R'$ e $R \cap R'$ sono riflessive (stesso per irriflessibilità)

Simmetria ed operazioni

Siano R ed R^\prime due relazioni su S

- 1. R è simmetrica sse $R=R^{-1}$
- 2. Se R è simmetrica, allora R^{-1} e \overline{R} sono simmetriche
- 3. R è antisimmetrica sse $R \cap R^{-1} \subseteq I_S$
- 4. R è asimmetrica sse $R \cap R^{-1} = \emptyset$
- 5. Se R ed R' sono simmetriche, allora anche $R \cup R'$ e $R \cap R'$ sono simmetriche

Transitività ed operazioni

Se R ed R' sono transitive allora $R\cap R'$ è transitiva. $R\cup R'$ non è necessariamente transitiva.

Matrici booleane

Una matrice booleana è una matrice a valori $\{0,1\}$. La matrice booleana associata a $R \subseteq S \times T$ si denota M_R . Se |S| = n e |T| = m, M_R ha n righe e m colonne.

La riga i corrisponde all'elemento $s_i \in S$, la colonna j corrisponde all'elemento $t_j \in T$ ed è tale che

$$m_{ij} = \begin{cases} 1 & \langle s_i, t_j \rangle \in R \\ 0 & \text{altrimenti} \end{cases}$$

Proprietà di una matrice booleana Se R è una relazione su S, M_R ha le stesse proprietà della visualizzazione tabulare.

- R è **riflessiva** sse M_R ha tutti 1 sulla diagonale principale
- R è irriflessiva sse M_R ha tutti 0 sulla diagonale principale
- R è simmetrica sse M_R è simmetrica
- R è asimmetrica sse per ogni i,j, se $m_{ij}=1$, allora $m_{ji}=0$
- R è antisimmetrica sse per ogni $i \neq j$, se $m_{ij} = 1$, allora $m_{ji} = 0$
- $M_{R^{-1}}$ è la trasposta di M_R
- $M_{\overline{R}}$ si ottiene scambiando 0 e 1 in M_R

$$R = \{ \langle 0, 0 \rangle, \langle 1, 2 \rangle \}$$

$$M_R = egin{pmatrix} 1 & 0 & 0 & 0 \ 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 \end{pmatrix} \longrightarrow M_{R^{-1}} = egin{pmatrix} 1 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 \ 0 & 0 & 0 & 0 \end{pmatrix}$$

Operazioni su matrici booleane

Se M e N sono due matrici booleane di dimensini $n \times m$, $M \sqcup N$ (il **join** di M e N) è la matrice booleana L di dimensine $n \times m$ i cui elementi sono

$$\ell_{ij} = \begin{cases} 1 & m_{ij} = 1 \lor n_{ij} = 1 \\ 0 & \text{altrimenti} \end{cases}$$

 $M\sqcap N$ (il **meet** di M e N) è la matrice booleana L di dimensione $n\times m$ i cui elementi sono

$$\ell_{ij} = \begin{cases} 1 & m_{ij} = 1 \land n_{ij} = 1 \\ 0 & \text{altrimenti} \end{cases}$$

 \sqcup e \sqcap sono commutative, associative e distributive fra di loro.

Prodotto booleano

Siano M e N matrici booleane di dimensioni $n \times m$ e $m \times p$ rispettivamente. Il loro **prodotto booleano** è la matrice $L = M \odot N$ di dimensioni $n \times p$ dove

$$\ell_{ij} = \begin{cases} 1 & \exists \, k, 1 \leq k \leq m \text{ t.c. } m_{ik} = 1 \land n_{kj} = 1 \\ 0 & \text{altrimenti} \end{cases}$$

Esempio:

$$\begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix} \odot \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$

Questa operazione è associativa ma non commutativa.

YT Link con spiegazione¹.

¹https://youtu.be/BiTeDlpj-ts?si=snvhzdZvQByBGinl

Composizione di relazioni

Dati $R_1 \subseteq S \times T$, $R_2 \subseteq T \times Q$:

$$R_2 \circ R_1 = \{ \langle x, y \rangle \in S \times Q \mid \exists \in T. \langle x, z \rangle \in R_1, \langle z, y \rangle \in R_2 \}$$

 $R_2 \circ R_1$ è la **composizione** di R_1 e R_2 .

La composizione si può calcolare tramite il prodotto di matrici booleane.

$$M_{R_2 \circ R_1} = M_{R_1} \odot M_{R_2}$$

Relazioni di Equivalenza

Una **relazione di equivalenza** ci aiuta a creare blocchi di elementi che hanno *qualcosa* in comune. Sono relazioni che si comportano "come l'uguaglianza" tra oggetti. Dal punto di vista di una proprietà data, **non** esistono differenze tra due elementi in una relazione di equivalenza.

Def: una relazione riflessiva, simmetrica e transitiva è detta **relazione di equivalenza**.

Esempio:

- Appartenenere alla stessa classe
- Essere nati nello stesso anno
- Essere parallele nell'insieme delle rette
- ...

Se $f:A\to B$ è una funzione totale, allora la relazione

$$R := \{ \langle x, y \rangle \in A \times A \mid f(x) = f(y) \}$$

è una relazione di equivalenza.

La rappresenzazione sagittale di una relazione di equivalenza consiste di diversi grafi

totalmente collegati.

Partizioni e classi di equivalenza

Dividendo S in gruppi i cui elementi sono "uguali", possiamo studiare insiemi grandi

osservando soltanto pochi elementi. Questi gruppi sono chiamati classi di equivalenza.

Sia S un insieme. Una partizione di S è una famiglia di insiemi $\mathcal{P}=\left\{\,T_1,\ldots,T_n\,\right\},T_i\subseteq$

 $S, 1 \leq i \leq n$ tali che:

• $T_i \neq \varnothing$ per ogni i, $1 \leq i \leq n$

 $\quad \blacksquare \ \, T_i \cap T_j \neq \varnothing \,\, \mathrm{per \,\, ogni} \,\, i,j,\, 1 \leq i \leq j \leq n \,\,$

 $\mathbf{P} \cup \mathcal{P} = S$

Se R è una **relazione di equivalenza** su S allora $T \neq \varnothing \subseteq S$ è una classe di equivalenza

se per ogni $x \in S$:

$$x \in T \iff \{ y \in S \mid \langle x, y \rangle \in R \} = T$$

Cioè, x è in relazione con tutti e soltanto quegli elementi di T.

Sia S un insieme e R una relazione di equivalenza su S. Ogni elemento $x \in S$ definisce

una classe di equivalenza

$$[x]_R = \{ y \in S \mid \langle x, y \rangle \in R \}$$

La famiglia di insiemi $\{[x]_R \mid x \in S\}$ (gli elementi sono le classi di equivalenza di S) è

chiamato l'insieme quoziente di S rispetto a R (indicato con S/R). L'insieme quoziente

è una partizione di S.

Esempio: Sia $n \in \mathbb{N}$. La relazione $\simeq_n \subseteq \mathbb{N} \times \mathbb{N}$ definita come

$$x \simeq_n y \iff x \equiv y \mod n \leftrightarrow (\operatorname{ossia}(x \mod n) = (y \mod n))$$

34

è una relazione di equivalenza.

Per n=4, \simeq_4 definisce 4 classi di equivalenza.

$$[x] = \{ x + 4k \mid k \in \mathbb{N} \}$$

$$[0] = \{ 0, 4, 8, 12, \dots \}$$

$$[1] = \{ 1, 5, 9, 13, \dots \}$$

$$[2] = \{ 2, 6, 10, 14, \dots \}$$

$$[3] = \{ 3, 7, 11, 15, \dots \}$$

L'insieme quoziente $\mathbb{N}/\simeq_4=\{\,[0],[1],[2],[3]\,\}$ è spesso indicato con \mathbb{N}_4 .

Grafi

Un grafo è definito da

- Un insieme di **nodi** (chiamati anche *vertici*)
- Collegamenti tra vertici che possono essere:
 - Orientati (archi)
 - Non orientati (spigoli)
- (eventualmente) Dati associati ai nodi e collegamenti (etichette)

I grafi possono rappresentare relazioni binarie.

Gradi

Un arco che va da v a w è **uscente** da v ed entrante in w. Il numero di archi uscenti dal nodo v è il **grado di uscita** di v. Il numero di archi entranti in v è il **grado in ingresso** di v.

Un nodo è chiamato:

• **Sorgente** se non ha archi entranti (*grado di entrata* 0)

- Pozzo se non ha archi uscenti (grado di uscita 0)
- Isolato se non ha archi né uscenti né entranti

I nodi v e w sono **adiacenti** se c'è un arco tra v e w (in qualunque direzione). Questo arco è **incidente** su v e w. Il grado di v è il numero di nodi adiacenti a v.

Cammino

Un cammino è una sequenza finita di nodi

$$\langle v_1, v_2, \dots, v_n \rangle$$

tali che per ogni i, $1 \le i < n$, esiste un arco uscente da v_i ed entrante in v_{i+1} . Questo cammino va da v a w se $v_1 = v$ e $v_n = w$.

Semicammino

Un semicammino è una sequenza finita di nodi

$$\langle v_1, v_2, \dots, v_n \rangle$$

tali che per ogni i, $1 \le i < n$, esiste un arco che collega v_i e v_{i+1} in **direzione** arbitraria.

La **lunghezza** di un (semi)cammino è il numero di archi che lo compongono (n-1).

Un (semi)cammino è **semplice** se tutti i nodi nella sequenza sono diversi (anche se $v_1 = v_n$).

Un grafo è connesso se esiste sempre un semicammino tra due nodi qualsiasi.

Ciclo

Un **ciclo** intorno al nodo v è un cammino tra v e v. Un **semiciclo** intorno al nodo v è un semicammino tra v e v. Un **cappio** intorno a v è un ciclo di lunghezza 1.

Distanza

La **distanza** da v a w è la lunghezza del cammino più corto tra v e w.

• La distanza da v a v è sempre 0

• Se non c'è nessun cammino da v a w allora la distanza è infinita (∞)

In un grafo ordinato, la distanza da v a w **non** è sempre uguale alla distanza da w a v.

Trovare le distanze: Algoritmo

Ricerca in **ampiezza** delle distanze da v ad ogni nodo.

Inizializzazione:

• Segnare v come **visitato** con distanza d(v) = 0

• Segnare altri nodi come non visitato

Ciclo:

ullet Trovare un nodo w **visitato** con distanza *minima* d(w)=n

ullet Segnare w come **esplorato**

• Per ogni nodo w' incidente da w: se w' è **non visitato**, segnare w' come **visitato**

d(w') = n + 1

Finalizzazione: ad ogni nodo w **non visitato** assegnare $d(w) = \infty$.

Definizione formale di grafo

Un **grafo orientato** è una coppia G=(V,E) dove

• V è un insieme di **nodi**

• $E \subseteq V \times V$ è una relazione binaria in V (archi)

Un grafo non orientato è un grafo orientato dove E è una relazione simmetrica. In

questo caso gli archi sono rappresentati come **coppien non ordinate** (v,w) ((v,w) =

(w,v)). Graficamente togliamo le frecce (l'ordine) agli archi.

37

Sottografo

Il grafo $G_1=(V_1,E_1)$ è un **sottografo** di $G_2=(V_2,E_2)$ sse $V_1\subseteq V_2$ e $E_1\subseteq E_2$. Un sottografo si ottiene togliendo nodi e/o archi dal grafo.

Sia G=(V,E) un grafo. Il sottografo **indotto** da $V'\subseteq V$ è il grafo che ha soltanto archi adiacenti agli elementi di V'. Formalmente è il grafo G=(V',E') dove

$$E' = \{ \langle v, w \rangle \in E \mid v, w \in V' \}$$

Grafo aciclico orientato (DAG)

Un grafo orientatosenza cicli si chiama grafo aciclico orientato.

In un DAG non esiste nessun cammino da un nodo a se stesso

Grafi etichettati

Un **grafo etichettato** è una tripla $G = (V, E, \ell)$ dove

- (V, E) è un grafo
- $\ell:E \to L$ è una funzione totale che associa ad ogni arco $e \in E$ un'etichetta da un insieme L

Diamo un'etichetta ad ogni arco del grafo.

Un grafo etichettato può rappresentare una relazione ternaria (e viceversa).

I nomi e le etichette sono spesso irrilevanti.

Matrice di adiacenza

La matrice di adiacenza di un grafo G=(V,E) è la matrice booleana della relazione E.

La matrice di adiacenza di grafi non orientati è sempre simmetrica.

Grafo completo

Un grafo completo collega ogni nodo con tutti gli altri nodi (ma non con se stesso).

La sua matrice di adiacenza ha 0 su tutta la diagonale ed 1 sulle altre posizioni.

Connettività

Ricordiamo che G=(V,E) è **connesso** se per ogni $v,w\in V$ esiste un **semicammino** da v a w. G è **fortemente connesso** se per ogni due nodi $v,w\in V$ esiste un **cammino** da v a w.

In un grafo fortemente connesso:

- Esiste sempre un ciclo che visita **ogni** nodo (non necessariamente semplice)
- Non ci sono né sorgenti né pozzi

Isomorfismi tra grafi

Due grafi $G_1=(V_1,E_1)$ e $G_2=(V_2,E_2)$ sono **isomorfi** se esiste una funzione biunivoca $f:V_1\to V_2$ tale che

$$\langle v, w \rangle \in E_1 \iff \langle f(v), f(w) \rangle \in E_2$$

L'isomorfismo f mantiene la struttura del grafo G_1 , ma sostituisce i nomi dei vertici con quelli di G_2 . Due grafi isomorfi sono in realtà lo **stesso grafo** con i nodi rinominati.

Alberi

Un'albero è un DAG connesso tale che

- Esiste esattamente un nodo sorgente (radice dell'albero)
- Ogni nodo diverso dalla radice ha un solo arco entrante

I nodi pozzo di un'albero sono chiamati foglie o nodi esterni. Tutti gli altri nodi sono

chiamati interni. Per analogia con gli alberi genealogici, le relazioni tra i nodi usano

nomi come padre, figlio, discendente, ...

Proprietà

Il grado di ingresso di un nodo è:

■ 1 se non è la radice

• 0 se è la radice

Il grado di uscita di un nodo non ha restrizioni.

Per ogni nodo v che non è la radice, esiste esattamente un cammino dalla radice a v.

Un albero non può essere mai vuoto (la radice esiste sempre).

Se un albero è finito, allora esiste almeno una foglia (che può essere anche la radice).

I nodi intermedi sono contemporaneamente padre e figlio.

Rappresentazione gerarchica

Gli alberi spesso rappresentano strutture gerarchiche. In questo caso, l'ordine è

implicito (gli archi si disegnano senza frecce).

Cammini in un albero

In un albero c'è esattamente un cammino dalla radice a qualunque nodo v diverso dalla

radice. Ogni nodo w in questo cammino è un **ascendente** di v (oppure avo) e v è un

discendente di w (la radice è l'unico nodo senza discendenti). Se il cammino da w a v

[!error] Completare: #todo/uni

40

Profondità

La **profondità** di un nodo v è la lunghezza del cammino dalla radice a v.

L'altezza di un albero è la profondità massima dei suoi nodi.

Alberi binari

Un **albero binario** è un albero dove ogni nodo ha al massimo due figli. I figli di un nodo in un albero binario sono **ordinati** (*figlio sinistro* e *figlio destro*).