General pyknosis

MSRI

Spring 2020

Contents

Introduction			2
0	Elen	nents of general topology	3
	0.1	Ultrafilters and compacta	3
		Stone spaces and projective compacta	
		Compactly generated topological spaces	

Introduction

These are notes for a series of talks at MSRI about the *pyknotic formalism*.

The pyknotic formalism offers a way to coordinate 'topological' and 'derived' structures. This formalism is only partially developed, but it's already clear that there is a lot to explore, and a lot of interesting possible applications. Many different points of view on pyknotic objects will be necessary to develop these applications.

o Elements of general topology

0.1 Ultrafilters and compacta

o.1.1 Notation. Write **Set** for the category of tiny finite sets. Write **Fin** \subset **Set** for the full subcategory of finite sets, and write *i* for the inclusion **Fin** \hookrightarrow **Set**.

o.1.2 Definition. For any tiny set *S*, write h^S for the functor $Fin \to Set$ given by $I \mapsto Map(S, I)$. An *ultrafilter* μ on *S* is a natural transformation

$$\int_{S}(\cdot)\,d\mu\colon h^{S}\to i\,,$$

which for any finite set I gives a map

$$Map(S, I) \longrightarrow I$$

$$f \longmapsto \int_{S} f \, d\mu$$

Write $\beta(S)$ for the set of ultrafilters on *S*. For any set *S*, the set $\beta(S)$ is the set

$$\beta(S) = \lim_{I \in \operatorname{Fin}_{S/}} I.$$

The functor

$$\beta \colon \mathsf{Set} \to \mathsf{Set}$$

is thus the right Kan extension of the inclusion $Fin \hookrightarrow Set$ along itself.

0.1.3 Example. For any set *S* and any element $s \in S$, there is a *principal ultrafilter* δ_s , which is defined so that

$$\int_{S} f \, d\delta_s = f(s) \, .$$

Every ultrafilter on a finite set is principal, but infinite sets have ultrafilters that are not principal. To prove the existence of these, let us look at a more traditional way of defining an ultrafilter on a set.

0.1.4 Definition. Let *S* be a set, $T \subseteq S$, and μ an ultrafilter on *S*. There is a unique *characteristic map* $\chi_T : S \to \{0, 1\}$ such that $\chi_T(s) = 1$ if and only if $s \in T$. Let us write

$$\mu(T) \coloneqq \int_{S} \chi_{T} d\mu.$$

We say that *T* is μ -thick if and only if $\mu(T) = 1$. Otherwise (that is, if $\mu(T) = 0$), then we say that *T* is μ -thin.

For any $s \in S$, the principal ultrafilter δ_s is the unique ultrafilter relative to which $\{s\}$ is thick.

0.1.5. If *S* is a set and μ is an ultrafilter on *S*, then we can observe the following facts about the collection of thick and thin subsets (relative to μ):

- (1) The empty set is thin.
- (2) Complements of thick sets are thin.
- (3) Every subset is either thick or thin.
- (4) Subsets of thin sets are thin.
- (5) The intersection of two thick sets is thick.

In other words, if *S* is a set, then an ultrafilter on *S* is tantamount to a Boolean algebra homomorphism $P(S) \rightarrow \{0, 1\}$.

It is possible to define ultrafilters on more general posets, and if P is a Boolean algebra, then an ultrafilter is precisely a Boolean algebra homomorphism $P \to \{0, 1\}$.

0.1.6. Ultrafilters are functorial in maps of sets. Let $\phi \colon S \to T$ be a map, and let μ be an ultrafilter on S. The ultrafilter $\phi_* \mu$ on T given by

$$\int_T f \ d(\phi_* \mu) = \int_S (f \circ \phi) \ d\mu \ .$$

For any $U \subseteq T$, one has in particular

$$(\phi_*\mu)(U) = \mu(\phi^{-1}(U))$$
.

Thus *U* is $\phi_*\mu$ -thick if and only if $\phi^{-1}U$ is μ -thick.

0.1.7 Definition. A *system of thick subsets* of *S* is a collection $F \subseteq P(S)$ such that for any finite set *I* and any partition

$$S = \coprod_{i \in I} S_i ,$$

there is a unique $i \in I$ such that $S_i \in F$.

o.1.8 Construction. We have seen that an ultrafilter μ specifies the system F_{μ} of μ -thick subsets. In the other direction, attached to any system F of thick subsets is an ultrafilter μ_F : for any finite set I and any map $f: S \to I$, the element $i = \int_S f \ d\mu \in I$ is the unique one such that $S_i \in F$.

The assignments $\mu \mapsto F_{\mu}$ and $F \mapsto \mu_F$ together define a bijection between ultrafilters on S and systems of thick subsets.

0.1.9 Definition. If *S* is a set, and if $G \subseteq P(S)$, then an ultrafilter μ is said to be *supported* on *G* if and only if every element of *G* is μ -thick, that is, $G \subseteq F_{\mu}$.

o.1.10 Lemma. Let S be a set, and let $G \subseteq P(S)$. Assume that no finite intersection of elements of G is empty. Then there exists an ultrafilter μ on S supported on G.

Proof. Consider all the families $A \subseteq P(S)$ with the following properties:

- (1) A contains G;
- (2) no finite intersection of elements of *A* is empty.

By Zorn's lemma there is a maximal such family, *F*.

We claim that F is a system of thick subsets. For this, let $S = \coprod_{i \in I} S_i$ be a finite partition of S. Condition 2 ensures that at most one of the summands S_i can lie in F. Now suppose that none of the summands S_i lies in F. Consider, for each $i \in I$, the family $F \cup \{S_i\} \subseteq P(S)$; the maximality of F implies that none of these families can satisfy Condition 2. Thus for each $i \in I$, there is an empty finite intersection $S_i \cap \bigcap_{j=1}^{n_i} T_{ij} = \emptyset$. But this implies that the intersection $\bigcap_{i \in I} \bigcap_{j=1}^{n_i} T_{ij}$ is empty, contradicting Condition 2 for F itself. Hence at least one – and thus exactly one – of the summands S_i lies in F. Thus F is a system of thick subsets of S.

o.1.11. It is not quite accurate to say that the Axiom of Choice is *necessary* to produce nonprincipal ultrafilters, but it is true that their existence is independent of Zermelo–Fraenkel set theory.

0.1.12. If ϕ is a functor Set \to Set, then a natural transformation $\phi \to \beta$ is the same thing as a natural transformation $\phi \circ i \to i$. Please observe that we have a canonical identification $\beta \circ i = i$.

It follows readily that the functor β is a monad: the unit δ : id $\rightarrow \beta$ corresponds to the identification id \circ i=i, and the multiplication μ : $\beta^2 \rightarrow \beta$ corresponds to the identification $\beta^2 \circ i=i$.

The unit for the monad β structure is the assignment $s\mapsto \delta_s$ that picks out the principal ultrafilter at a point.

To describe the multiplication $\tau \mapsto \mu_{\tau}$, let us write T^{\dagger} for the set of ultrafilters supported on $\{T\}$. Now if τ is an ultrafilter on $\beta(S)$, then μ_{τ} is the ultrafilter on S such that

$$\mu_{\tau}(T) = \tau(T^{\dagger})$$
.

o.1.13 Construction. Let Top denote the category of tiny topological spaces. If S is a set, we can introduce a topology on $\beta(S)$ simply by forming the inverse limit $\lim_{I \in \operatorname{Fin}_{S_f}} I$ in Top. That is, we endow $\beta(S)$ with the coarsest topology such that all the projections $\beta(S) \to I$ are continuous. We call this the *Stone topology* on $\beta(S)$. By Tychonoff, this limit is a compact Hausdorff topological space. This lifts β to a functor Set \to Top.

0.1.14. Let's be more explicit about the topology on $\beta(S)$. The topology on $\beta(S)$ is generated by the sets T^{\dagger} (for $T \subseteq S$). In fact, since the sets T^{\dagger} are stable under finite intersections, they form a base for the Stone topology on $\beta(S)$. Additionally, since the sets T^{\dagger} are stable under the formation of complements, they even form a base of clopens of $\beta(S)$.

0.1.15 Definition. A *compactum* is an algebra for the monad β . Hence a compactum consists of a set K and a map $\lambda_K \colon \beta(K) \to K$, which is required to satisfy the usual identities:

$$\lambda_K(\lambda_{K,*}\tau) = \lambda_K(\mu_\tau)$$
 and $\lambda_K(\delta_s) = s$,

for any ultrafilter τ on $\beta(S)$ and any point $s \in S$. The image $\lambda_K(\mu)$ will be called the *limit* of the ultrafilter μ . We write **Comp** for the category of compacta.

o.1.16 Construction. If K is a compactum, then we use the limit map $\lambda_K \colon \beta(K) \to K$ to topologise K as follows. For any subset $T \subseteq K$, we define the closure of T as the image $\lambda_K(T^{\dagger})$.

A subset $Z \subseteq K$ is thus closed if and only if the limit of any ultrafilter relative to which Z is thick lies in Z. Dually, a subset $U \subseteq K$ is open if and only if it is thick with respect to any ultrafilter whose limit lies in U.

We denote the resulting topological space K^{top} . The assignment $K \mapsto K^{top}$ defines a lift $Alg(\beta) \to Top$ of the forgetful functor $Alg(\beta) \to Set$.

0.1.17 Proposition. The functor $K \mapsto K^{top}$ identifies the category of compacta with the category of compact Hausdorff topological spaces.

We will spend the remainder of this section proving this claim. Please observe first that $K \mapsto K^{top}$ is faithful. What we will do now is prove:

- (1) that for any compactum K, the topological space K^{top} is compact Hausdorff;
- (2) that for any compact Hausdorff topological space X, there is a β -algebra structure K on the underlying set of X such that $X \cong K^{top}$; and
- (3) that for any compacta K and L, any continuous map $K^{top} \to L^{top}$ lifts to a β -algebra homomorphism $K \to L$.

To do this, it is convenient to describe a related idea: that of *convergence* of ultrafilters on topological spaces.

- **o.1.18 Definition.** Let X be a topological space, and let $x \in X$. We say that x is a *limit point* of an ultrafilter μ on (the underlying set of) X if and only if every open neighbourhood of x is μ -thick. In other words, x is a limit point of μ if and only if, for every open neighbourhood U of x, one has $\mu \in U^{\dagger}$.
- **0.1.19 Lemma.** Let X be a topological space, and let $U \subseteq X$ be a subset. Then U is open if and only if it is thick with respect to any ultrafilter with limit point in U.

Proof. If U is open, then U is by definition thick with respect to any ultrafilter with limit point in U.

Conversely, assume that U is thick with respect to any ultrafilter with limit point in U. Let $u \in U$. Consider the set $G := N(u) \cup \{X \setminus U\}$, where N(u) is the collection of open neighbourhoods of u. If U does not contain any open neighbourhood of u, then no finite intersection of elements of G is empty. By Lemma 0.1.10 there is an ultrafilter μ supported on the $N(u) \cup \{X \setminus U\}$, whence u is a limit point of μ , but U is not μ -thick. This contradicts our assumption, and so we deduce that U contains an open neighbourhood of u.

0.1.20 Lemma. Let X and Y be topological spaces, and let $\phi: X \to Y$ be a map. Then ϕ is continuous if and only if, for any ultrafilter μ on X with limit point $x \in X$, the point $\phi(x)$ is a limit point of $\phi_*\mu$.

Proof. Assume that ϕ is continuous, and let μ be an ultrafilter on X, and assume that $x \in X$ is a limit point of μ . Now assume that V is an open neighbourhood of $\phi(x)$. Since $\phi^{-1}V$ is an open neighbourhood of x, so it is μ -thick, whence V is $\phi_*\mu$ -thick. Thus $\phi(x)$ is a limit point of $\phi_*\mu$.

Assume now that if $x \in X$ is a limit point of an ultrafilter μ , then $\phi(x)$ is a limit point of $\phi_*\mu$. Let $V \subseteq Y$ be an open set. Let $x \in \phi^{-1}(V)$, and let μ be an ultrafilter on X with limit point x. Then $\phi(x)$ is a limit point of $\phi_*\mu$, so V is $\phi_*\mu$ -thick, whence $\phi^{-1}(V)$ is μ -thick. It follows from Lemma 0.1.19 that $\phi^{-1}(V)$ is open.

0.1.21 Lemma. Let X be a topological space. Then X is quasicompact if and only if every ultrafilter on X has at least one limit point.

Proof. Assume first that X is quasicompact. Let μ be an ultrafilter on X, and assume that μ has no limit point. Select, for every point $x \in X$, an open neighbourhood U_x thereof that is not μ -thick. Quasicompactness implies that there is a finite collection $x_1, \ldots, x_n \in X$ such that $\{U_{x_1}, \ldots, U_{x_n}\}$ covers X. But at least one of U_{x_1}, \ldots, U_{x_n} must be μ -thick. This is a contradiction.

Now assume that X is not quasicompact. Then there exists a collection $G \subseteq P(X)$ of closed subsets of X such that the intersection all the elements of G is empty, but no finite intersection of elements of G is empty. In light of Lemma 0.1.10, there is an ultrafilter μ with the property that every element of G is thick. For any $x \in X$, there is an element $Z \in G$ such that $x \in X \setminus Z$. Since Z is μ -thick, $X \setminus Z$ is not. Thus μ has no limit points.

0.1.22 Lemma. Let X be a topological space. Then X is Hausdorff if and only if every ultrafilter on X has at most one limit point.

Proof. Assume that μ is an ultrafilter with two distinct limit points x_1 and x_2 . Choose open neighbourhoods U_1 of x_1 and U_2 of x_2 . Since they are both μ -thick, they cannot be disjoint; hence X is not Hausdorff.

Conversely, assume that X is not Hausdorff. Select two points x_1 and x_2 such that every open neighbourhoods U_1 of x_1 and U_2 of x_2 intersect. Now the set G consisting of open neighbourhoods of either x_1 or x_2 has the property that no finite intersection of elements of G is empty. In light of Lemma 0.1.10, there is an ultrafilter μ with the property that every element of G is thick. Thus x_1 and x_2 are limit points of μ .

Let us now return to our functor $K \mapsto K^{top}$.

0.1.23 Lemma. Let K be a compactum, and let μ be an ultrafilter on K. Then a point of K^{top} is a limit point of μ in the sense of Definition 0.1.18 if and only if it is the limit of μ in the sense of Definition 0.1.15.

Proof. Let $x := \lambda_K(\mu)$. The open neighbourhoods U of x are by definition thick (relative to μ), so certainly x is a limit point of μ .

Now assume that $y \in K^{top}$ is a limit point of μ . To prove that the limit of μ is y, we shall build an ultrafilter τ on $\beta(K)$ with the following properties:

(1) under the multiplication $\beta^2 \to \beta$, the ultrafilter τ is sent to μ ; and

(2) under the map $\lambda_*: \beta^2 \to \beta$, the ultrafilter τ is sent to δ_v .

Once we have succeeded, it will follow that

$$\lambda_K(\mu) = \lambda_K(\mu_\tau) = \lambda_K(\lambda_{K,*}\tau) = \lambda_K(\delta_v) = y$$
,

and the proof will be complete.

Consider the family G' of subsets of $\beta(K)$ of the form T^{\dagger} for a μ -thick subset $T \subseteq S$; since these are all nonempty and they are stable under finite intersections, it follows that no finite intersection of elements of G' is empty.

Now consider the set $G := G' \cup \{\lambda_K^{-1}\{y\}\}$. If T is μ -thick, then we claim that there is an ultrafilter $v \in \lambda_K^{-1}\{y\} \cap T^{\dagger}$. Indeed, consider the set $N(y) \cup \{T\}$, where N(y) is the collection of open neighbourhoods of y. Since every open neighbourhood of y is μ -thick, no intersection of an open neighbourhood of y with T is empty. By Lemma 0.1.10 there is an ultrafilter supported on $N(y) \cup \{T\}$, which implies that no finite intersection of elements of G is empty.

Applying Lemma 0.1.10 again, we see that G supports an ultrafilter τ on $\beta(K)$. For any $T \subseteq K$,

$$\mu_{\tau}(T) = \tau(T^{\dagger}) ,$$

so since τ is supported on G', it follows that $\mu_{\tau} = \mu$. At the same time, since τ is supported on $\{\lambda_{K}^{-1}\{y\}\}$, it follows that $\{y\}$ is thick relative to $\lambda_{K,*}\tau$, whence $\lambda_{K,*}\tau = \delta_{y}$.

Proof of Proposition 0.1.17. Let K be a compactum. Combine Lemmas 0.1.21 to 0.1.23 to conclude that K^{top} is a compact Hausdorff topological space.

Let X be a compact Hausdorff topological space with underlying set K. Define a map $\lambda_K \colon \beta(K) \to K$ by carrying an ultrafilter μ to its unique limit point in X. This is a β -algebra structure on X, and it follows from Lemma 0.1.23 and the definition of the topology together imply that $X \cong K^{top}$.

Finally, let K and L be compacta, and let $\phi: K^{top} \to L^{top}$ be a continuous map. To prove that ϕ is a β -algebra homomorphism, it suffices to confirm that if μ is an ultrafilter on K, then

$$\lambda_L(\phi_*\mu) = \phi(\lambda_K(\mu))$$
,

but this follows exactly from Lemma 0.1.20.

0.1.24. We opted in Construction 0.1.16 to define the topology on a compactum K in very explicit terms, but note that the map $\lambda_K \colon \beta(K) \to K^{top}$ is a continuous surjection between compact Hausdorff topological spaces. Thus K^{top} is endowed with the quotient topology relative to λ_K .

0.2 Stone spaces and projective compacta

0.2.1 Definition. Let X be a topological space. One says that X is *totally separated* if and only if, for any two distinct points $x, y \in X$, there exists a clopen subset $V \subseteq X$ that contains x but not y.

o.2.2 Lemma. A compactum K is totally separated if and only if it admits a base consisting of clopen sets.

Proof. Assume that K is totally separated. Let $U \subseteq K$ be an open subset. It suffices to show that for any point $x \in U$, there is a clopen neighbourhood of x that is contained in U. For any $y \notin U$, let $V_y \subseteq X$ be a clopen that contains y but not x; now $\{V_y\}_{y \in X \setminus U}$ covers $X \setminus U$. Since $X \setminus U$ is a closed subset of a compactum, it too is compact, whence there exist finitely many points $y_1, \ldots, y_n \in X \setminus U$ such that $\{V_{y_1}, \ldots, V_{y_n}\}$ cover $X \setminus U$. Now the complement

$$X \setminus (V_{y_1} \cup \cdots \cup V_{y_n})$$

is a clopen neighbourhood of x contained in U.

Conversely, assume that X admits a base of clopen subsets, and let $x, y \in X$ be distinct points of X. By Hausdorffness, there exists an open neighbourhood U of x that does not contain y. Since X admits a base of clopen subsets, there is a clopen neighbourhood of x that is contained in U, which therefore does not contain y.

o.2.3 Definition. A compactum is a *Stone space* if and only if it is totally separated. Let us write **Stone** \subseteq **Comp** for the full subcategory spanned by the Stone spaces.

o.2.4 Example. Clearly any finite set is a Stone space.

More generally, let $I: A^{op} \to \mathbf{Fin}$ be a diagram of finite sets. If we form the limit $K = \lim_{\alpha \in A^{op}} I_{\alpha}^{disc}$ in **Top** or **Comp**, then K is a Stone space. Indeed, K is clearly Hausdorff and compact by Tychonoff; since it admits a base consisting of the inverse images of opens from the discrete spaces I_{α}^{disc} , it follows that it admits a base of clopens.

In particular, if *S* is any set, then $\beta(S) = \lim_{I \in \text{Fin}_{S}} I$ is a Stone space.

0.2.5 Lemma. Any Stone space is the inverse limit of its finite discrete quotients.

Proof. Let K be a Stone space. The category $Fin_{K/}$ of finite sets to which K maps (in Comp is an *inverse* category – i.e., the opposite of a filtered category. Limit-cofinal in $Fin_{K/}$ is the full subcategory spanned by the finite discrete quotients. Hence we aim to show that the natural continuous map

$$p: K \to \lim_{I \in \mathbf{Fin}_{K/I}} I$$

is a homeomorphism. Since both source and target are compact Hausdorff topological spaces, it suffices to prove that p is a bijection. For this, let $x = \{x_I\}_{I \in \operatorname{Fin}_{K/}}$ be a point of the limit. For any finite discrete quotient $p_I \colon K \to I$, let W_I be the clopen set $p_I^{-1}(x_I)$; each of these is clopen, and the claim now is that the intersection

$$W\coloneqq\bigcap_I W_I$$

consists of exactly one point of K. Since K is quasicompact, it follows that W is nonempty. Since K is totally disconnected and Hausdorff, it follows that if $x \neq y$, there exists a continuous map to $\{0, 1\}^{disc}$ such that $x \mapsto 0$ and $y \mapsto 1$; hence W contains at most one point.

o.2.6. In particular, **Stone** is the smallest full subcategory of **Top** that contains **Fin** and is closed under inverse limits.

Inverse limits of compacta are exceptionally well behaved. A key lemma that demonstrates this is the following.

0.2.7 Lemma. Let $\{K_{\alpha}\}_{{\alpha}\in A^{op}}$ be an inverse system of compacta, and assume that the inverse limit is empty. Then one of the K_{α} is empty as well.

Proof. Let K be the product $\prod_{\alpha \in A} K_{\alpha}$; by Tychonoff it is compact. For any $\beta \in A$, consider the subset

$$Z_{\beta} := \{(x_{\alpha})_{\alpha \in A} \in K : \forall \beta \to \alpha, \ \phi_{\alpha\beta}(x_{\alpha}) = x_{\beta}\}\ .$$

The subsets $Z_{\beta} \subseteq X$ are closed by Hausdorffness, and the intersection $\bigcap_{\beta \in A} Z_{\beta}$ is the limit of the K_{α} , which is empty. By compactness and the filteredness of A, there exists an index β for which Z_{β} is empty.

On the other hand, Z_{β} is in bijection with $K_{\beta} \times L_{\beta}$, where L_{β} is the product of K_{γ} over those $\gamma \in A$ such that γ does not receive a map from β . Thus one of these copies of K_{α} is empty.

o.2.8 Example. The compactness condition is necessary in the previous lemma. For instance, consider the inverse system

$$\cdots \stackrel{s}{\hookrightarrow} N^{disc} \stackrel{s}{\hookrightarrow} N^{disc} \stackrel{s}{\hookrightarrow} N^{disc}$$

where $s: N \hookrightarrow N$ is the successor function. Its limit is empty.

o.2.9 Lemma. Any finite discrete set is cocompact as an object of Comp. Consequently, the fully faithful functor $Fin \hookrightarrow Comp$ extends to a limit-preserving fully faithful functor $Pro(Fin) \hookrightarrow Comp$ whose essential image is **Stone**.

Proof. Let $\{K_{\alpha}\}_{\alpha \in A^{op}}$ be an inverse system of compacta, and let I be a finite set. Write $K := \lim_{\alpha \in A^{op}} K_{\alpha}$; the claim is that the map $\operatorname{colim}_{\alpha \in A^{op}} \operatorname{Map}(K_{\alpha}, I^{disc}) \to \operatorname{Map}(K, I^{disc})$ is a bijection.

For any topological space X, a continuous map $X \to I^{disc}$ is the same thing as a partition of X into clopens indexed by the elements of I. Hence by induction, it suffices to show:

- (1) that every clopen $V \subseteq K$ into two complementary clopens is the inverse image of some clopen of $V_{\alpha} \subseteq K_{\alpha}$, and
- (2) that if clopens $V_{\alpha} \subseteq K_{\alpha}$ and $V_{\beta} \subseteq V_{\beta}$ pull back to the same $V \subseteq K$, then there are maps $\alpha \to \gamma$ and $\beta \to \gamma$ in A such that V_{α} and V_{β} pull back to the same subset of K_{γ} .

For the first claim, consider a clopen $V \subseteq K$. Since K has the inverse limit topology, V is a union of open sets of the form V_{γ} , where V_{γ} is pulled back from an open K_{γ} . But since V is also closed, it is quasicompact, and therefore by the filteredness of A there is a single $\gamma \in A$ such that V is pulled back from V_{γ} . The same analysis of the complement of V exhibits it as the pullback from some K_{β} ; now letting $\alpha \in A$ be an object that receives maps from both β and γ completes the proof.

For the second claim, suppose that clopens $V_{\alpha} \subseteq K_{\alpha}$ and $V_{\beta} \subseteq V_{\beta}$ pull back to the same $V \subseteq K$. For any object $\gamma \in A$ that receives morphisms from both α and β , let $V_{\alpha\gamma} \subseteq K_{\gamma}$ denote the inverse image of V_{α} , and let $V_{\beta\gamma} \subseteq K_{\gamma}$ denote the inverse image of V_{β} . Let $D_{\gamma} \subseteq K_{\gamma}$ be the symmetric difference of $V_{\alpha\gamma}$ and $V_{\beta\gamma}$; its inverse image in K is empty. Lemma 0.2.7 now implies that for some index γ , the set D_{γ} is empty, whence $V_{\alpha\gamma} = V_{\beta\gamma}$.

0.2.10 Definition. By a *projective compactum* we mean a projective object in compacta. That is, a compactum X is projective if and only if, for any surjection $Y \twoheadrightarrow Z$, the map $\operatorname{Map}(X,Y) \to \operatorname{Map}(X,Z)$ is also a surjection.

- **0.2.11 Lemma.** *The following are equivalent for a compactum K.*
 - **>** K is a retract of a free compactum $\beta(S)$.
 - ➤ *K* is projective.

Proof. Since a set *S* is a projective object of **Set**, it follows that the free compactum $\beta(S)$ is a projective compactum, and since surjections are stable under retracts, it follows that projective compacta are stable under retracts.

Conversely, let K be projective compactum, and let $\lambda_K \colon \beta(K) \twoheadrightarrow K$ be the structure map. Since K is projective, λ_K admits a section, whence K is a retract of a free compactum.

- **0.2.12.** In particular, please note that any projective compactum is a Stone space.
- **0.2.13 Definition.** A topological space *X* is *extremally disconnected* if and only if any closure of an open subset is open.
- **0.2.14.** Taking complements, we see that a topological space X is extremally disconnected if and only if the interior of a closed subset is closed.
- **0.2.15 Lemma.** If X is an extremally disconnected topological space, then if $\{Z_1, \ldots, Z_n\}$ is a finite family of closed subsets that cover X, then the interiors $\iota(Z_1), \ldots, \iota(Z_n)$ cover X as well.

Proof. Assume that $1 \le i \le n$ and that $\{\iota(Z_1), \dots, \iota(Z_{i-1}), Z_i, \dots, Z_n\}$ cover X. Then since $\iota(Z_1) \cup \dots \cup \iota(Z_{i-1}) \cup Z_{i+1} \cup \dots \cup Z_n$ is closed, it follows that $\{\iota(Z_1), \dots, \iota(Z_i), Z_{i+1}, \dots, Z_n\}$ cover X as well.

- **0.2.16 Proposition.** *The following are equivalent for a compactum K.*
 - > *K* is projective.
 - ➤ *K* is extremally disconnected as a topological space.

Proof. Assume that K is projective, and let $U \subseteq K$ be an open subset. Let Z be the complement of U, and let V be its closure. The composite ϕ of the inclusion $Z \sqcup V \hookrightarrow K \sqcup K$ followed by the fold map $\nabla \colon K \sqcup K \to K$ is a surjection, so since K is projective, it admits a section $\sigma \colon K \to Z \sqcup V$. For any $x \in U$, one has $\sigma(x) = x$, and by continuity

the same holds for any $x \in V$. Thus $\sigma^{-1}(V) = V$, so since V is open in $Z \sqcup V$, it follows that V is open in K.

Conversely, assume that K is extremally disconnected, assume that $X \twoheadrightarrow Y$ is a surjection between compacta, and assume that $f \colon K \to Y$ is a continuous map. A lift of f is the same thing as a section of the projection $p \colon P \coloneqq X \times_Y K \twoheadrightarrow K$. In other words, it suffices to prove the existence of a closed subset $W \subseteq P$ such that p restricts to a homeomorphism $W \cong K$. Consider the set of closed subsets $W' \subseteq P$ such that p(W') = K; Zorn's lemma ensures that this collection contains a minimal element W. To show that p restricts to a homeomorphism on W, it suffices to show that p restricts to an injection.

Let $x \neq y$ be distinct points of W. Choose closed subsets E and F that cover W such that $x \notin F$, and $y \notin E$. The sets p(E) and p(F) cover K. Since K is extremally disconnected, it follows that the interiors $\iota(p(E))$ and $\iota(p(F))$ also cover K.

So to prove that $p(x) \neq p(y)$, we shall show that $p(x) \notin \iota(p(F))$, and that $p(y) \notin \iota(p(E))$. Without loss of generality it suffices to prove the first claim. Suppose that $B \subseteq K$ is a closed subset such that $B \cup p(F) = K$; we aim to show that $p(x) \in B$. Indeed, $p(p^{-1}(B) \cup F) = K$, so the minimality of W implies that $p^{-1}(B) \cup F = W$, whence $x \in p^{-1}(B)$.

0.3 Compactly generated topological spaces