

Contents lists available at ScienceDirect

Linear Algebra and its Applications

On minimum rank and zero forcing sets of a graph

Liang-Hao Huang d,1, Gerard J. Chang a,b,c,2, Hong-Gwa Yeh d,*,3

- ^a Department of Mathematics, National Taiwan University, Taipei 10617, Taiwan
- b Institute for Mathematical Sciences, National Taiwan University, Taipei 10617, Taiwan
- ^c National Center for Theoretical Sciences, Taipei Office, Taiwan
- d Department of Mathematics, National Central University, Jhongli City, Taoyuan 32001, Taiwan

ARTICLE INFO

Article history: Received 23 March 2009 Accepted 29 December 2009 Available online 6 February 2010

Submitted by L. Hogben

Keywords:
Minimum rank
Maximum nullity
Rank
Symmetric matrix
Zero forcing set
Block-clique graph
Unit interval graph
Product graph

ABSTRACT

For a graph G on n vertices and a field F, the minimum rank of G over F, written as $mr^F(G)$, is the smallest possible rank over all $n \times n$ symmetric matrices over F whose (i, j)th entry (for $i \neq j$) is nonzero whenever ij is an edge in G and is zero otherwise. The maximum nullity of G over F is $M^F(G) = n - mr^F(G)$. The minimum rank problem of a graph G is to determine $mr^F(G)$ (or equivalently, $M^F(G)$). This problem has received considerable attention over the years. In [F. Barioli, W. Barrett, S. Butler, S.M. Cioabă, D. Cvetković, S.M. Fallat, C. Godsil, W. Haemers, L. Hogben, R. Mikkelson, S. Narayan, O. Pryporova, I. Sciriha, W. So, D. Stevanović, H. van der Holst, K.V. Meulen, A.W. Wehe, AIM Minimum Rank-Special Graphs Work Group, Zero forcing sets and the minimum rank of graphs, Linear Algebra Appl. 428 (2008) 1628–1648], a new graph parameter Z(G), the zero forcing number, was introduced to bound $M^F(G)$ from above. The authors posted an attractive question: What is the class of graphs G for which $Z(G) = M^F(G)$ for some field F? This paper focuses on exploring the above question.

© 2010 Elsevier Inc. All rights reserved.

^{*} Corresponding author.

E-mail addresses: r90221003@gmail.com (L.-H. Huang), gjchang@math.ntu.edu.tw (G.J. Chang), hgyeh@math.ncu.edu.tw (H.-G. Yeh).

¹ Partially supported by National Science Council under Grant NSC98-2811-M-008-072.

² Partially supported by National Science Council under Grant NSC98-2115-M-002-013-MY3.

³ Partially supported by National Science Council under Grant NSC97-2628-M-008-018-MY3.

1. Introduction and preliminary results

A graph G consists of a set V(G) of vertices together with a set E(G) of unordered pairs of vertices called edges. We often use uv for an edge $\{u,v\}$. Two vertices u and v are adjacent to each other if $uv \in E(G)$. In this paper, all graphs are finite and have no loops or multiple edges. Let |G| denote the number of vertices of G. For $S \subseteq V(G)$, the subgraph of G induced by G is the graph G[S] with vertex set G and edge set G in G induced by G induc

Denote by $S_n(F)$ the set of $n \times n$ symmetric matrices over F. The graph of a matrix $A = [a_{ij}]$ in $S_n(F)$, denoted by $\mathcal{G}(A)$, is the graph with vertex set $\{1, 2, \ldots, n\}$ and edge set $\{ij : a_{ij} \neq 0 \text{ and } 1 \leq i < j \leq n\}$. Note that throughout this paper the vertices of G are implicitly labeled in coordination with the rows (columns) of A by the statement $\mathcal{G}(A) = G$. Denote the set $\{A \in S_{|G|}(F) : \mathcal{G}(A) = G\}$ by $\mathcal{S}^F(G)$. Given a graph G and a field G, the G minimum G of G over G, written as G over G is defined to be

$$\operatorname{mr}^{F}(G) = \min{\{\operatorname{rank}(A) : A \in \mathcal{S}^{F}(G)\}}.$$

The *maximum nullity* (or *maximum corank*) of *G* over *F* is defined to be

$$M^{F}(G) = \max{\{\text{nullity}(A) : A \in \mathcal{S}^{F}(G)\}},$$

where nullity (A) is the nullity of A. It is well known that $\operatorname{mr}^F(G) + M^F(G) = |G|$. We write $\operatorname{mr}(G)$ for $\operatorname{mr}^\mathbb{R}(G)$ and M(G) for $M^\mathbb{R}(G)$ in short. For matrix (resp. graph) terminology not defined in this paper, please see [12,17] or [22] (resp. [10,11] or [15]).

The minimum rank problem of a graph G is to determine $\operatorname{mr}^F(G)$ (or equivalently, $M^F(G)$). This problem has received considerable attention in the literature (see for example [1,2,4–7,9,13,14,18,19] and references therein). In spite of the many efforts and different approaches the minimum rank/maximum nullity problem remains largely open. This problem has been solved for relatively few classes of graphs (see [1,3,5–8,13,14,19–21] and references therein). Recently, in [1], a graph parameter Z(G), the zero forcing number, has been introduced as a technique to bound $M^F(G)$ from above. To define Z(G), we adopt some notation and terminology from [1,4,19].

Definition 1

- Color-change rule: Suppose that G is a graph with each vertex colored either white or black. If u is a black vertex in G and exactly one neighbor v of u is white, then change the color of v to black, we say that u forces v and write $u \to v$.
- Given a coloring of G, the *derived coloring* is the result of applying the color-change rule until no more changes are possible. It was remarked in [1, p. 1633] that the derived coloring (of a specific coloring) is in fact unique. A process of obtaining the derived coloring is called a *zero forcing process* on G. If $u_1 \rightarrow v_1, u_2 \rightarrow v_2, \dots, u_r \rightarrow v_r$ are the forces in the order in which they are performed in a zero forcing process, then (u_1, u_2, \dots, u_r) is called the *zero forcing sequence* of the zero forcing process with corresponding *color change sequence* (v_1, v_2, \dots, v_r) .
- Given a graph G, a subset S of vertices is called a *zero forcing set* for G if it has the property that when initially the vertices in S are colored black and the remaining vertices are colored white, then the derived coloring of G is all black. The smallest size of a zero forcing set for G is denoted by Z(G) and is called the *zero forcing number* of G. A zero forcing set for G of size G is called a *minimum* zero forcing set of G.

Theorem 2 (Proposition 2.4 of [1]). For any graph G and any field F, $M^F(G) \leq Z(G)$.

Using this technique, the authors of [1] successfully determine M(G) (or $M^F(G)$) and establish Z(G) = M(G) (or $Z(G) = M^F(G)$) for many interesting classes of graphs. At the end of the paper [1] the authors posed the following attractive question: What is the class of graphs G for which $Z(G) = M^F(G)$ for some field G? Our goal in this paper is to investigate which graphs has the property G (or G (or

2. The minimum rank of block-clique graphs and unit interval graphs.

In [1], the authors show that if G is a block-clique graph (defined below) such that no vertex is contained in more than two blocks, then Z(G) = M(G). In Theorem 7 we show that their conclusion is in fact true for any block-clique graph G.

A vertex v of a graph is called a *cut-vertex* if deleting v and all edges incident to it increases the number of connected components. A *block* of a graph G is a maximal connected induced subgraph of G that has no cut-vertices. We call a complete subgraph of a graph G a *clique* of G. A graph is *block-clique* (also called 1-*chordal*) if every block is a clique. A block G of a block-clique graph G is a *pendent block* of G if G has at most one cut-vertex of G. Let G be a cut-vertex of G. If G has at most one cut-vertex of G has a cut-vertex of G has a pendent block of G if G has a pendent block of G induced by G has a pendent block of G induced by G has a pendent block of G induced by G has a pendent block of G induced by G has a pendent block of G induced by G induced by G is called the *vertex-sum* at G of the two graphs G and denoted by G is a pendent block of G induced by G induced by G is a pendent block of G induced by G induced by G induced by G is a pendent block of G induced by G

Theorem 3 (Cut-vertex Reduction Theorem [2,24]). *If* $G = G_1 \oplus_{\nu} G_2$, *then* $mr(G) = min\{mr(G_1) + mr(G_2), mr(G_1 - \nu) + mr(G_2 - \nu) + 2\}.$

Consequently, we have

Corollary 4. $M(G_1 \oplus_{\nu} G_2) = \max\{M(G_1) + M(G_2), M(G_1 - \nu) + M(G_2 - \nu)\} - 1.$

Lemma 5. The following assertions hold for $G = G_1 \oplus_{v} G_2$.

```
(i) Z(G) \geqslant Z(G_1) + Z(G_2) - 1.

(ii) Z(G) \leqslant \min\{Z(G_1) + Z(G_2 - \nu), Z(G_1 - \nu) + Z(G_2)\}.
```

Proof. Denote by V_1 (resp. V_2) the vertex set of G_1 (resp. G_2).

- (i) Let S be a minimum zero forcing set of G. Consider a zero forcing process \mathcal{P} on G with initial set of black vertices S. For the case of $v \notin S$, we may suppose without loss of generality that, in the process \mathcal{P} , v is forced by a vertex of V_1 . In this case, we see that $S \cap V_1$ is a zero forcing set for G_1 and $(S \cap V_2) \cup \{v\}$ is a zero forcing set for G_2 . For the case of $v \in S$, it is easy to see that $S \cap V_i$ is a zero forcing set for G_i for
- (ii) By symmetric, it suffices to show that $Z(G) \le Z(G_1) + Z(G_2 v)$. Denote by S_1 (resp. S_2) a minimum zero forcing set for G_1 (resp. $G_2 v$). There is a zero forcing process on G_1 (resp. $G_2 v$) with initial set of black vertices S_1 (resp. S_2) and zero forcing sequence (x_1, x_2, \ldots, x_p) (resp. (y_1, y_2, \ldots, y_q)). If $v \notin \{x_1, x_2, \ldots, x_p\}$, then there is a zero forcing process for G with initial set of black vertices $S_1 \cup S_2$ and zero forcing sequence $(x_1, x_2, \ldots, x_p, y_1, y_2, \ldots, y_q)$. If $v \in \{x_1, x_2, \ldots, x_p\}$, say $v = x_i$, then there is a zero forcing process for G with initial set of black vertices $S_1 \cup S_2$ and zero forcing sequence $(x_1, x_2, \ldots, x_{i-1}, y_1, y_2, \ldots, y_q, x_i, x_{i+1}, \ldots, x_p)$. In either case, $Z(G) \le |S_1| + |S_2| = Z(G_1) + Z(G_2 v)$. \square

Lemma 6. If v is a vertex in graph G, then $Z(G - v) - 1 \le Z(G) \le Z(G - v) + 1$.

Proof. Denote by $S(\operatorname{resp}, S_v)$ a minimum zero forcing set for $G(\operatorname{resp}, G - v)$. It is easy to see that $S_v \cup \{v\}$ is a zero forcing set for G, and hence $Z(G) \leq Z(G - v) + 1$. To prove the remaining inequality, notice that if a zero forcing process on G - v is started with the initial set of black vertices $S \setminus \{v\}$, then the derived coloring of the process has a set of black vertices F with $|N_G(v) \setminus F| \leq 1$. Since $S \cup (N_G(v) \setminus F)$ is a zero forcing set for G - v, we have $Z(G - v) \leq |S| + |N_G(v) \setminus F| \leq Z(G) + 1$. This completes the proof of the lemma. \square

Theorem 7. If G is a block-clique graph, then Z(G) = M(G).

Proof. Denote by b(G) the number of blocks in G. We shall prove the theorem by induction on b(G). If b(G)=1, then G is a complete graph and clearly we have Z(G)=M(G). Assume $b(G)\geqslant 2$ and Z(H)=M(H) for any block-clique graph H with b(H)< b(G). There is a cut vertex v such that all except at most one of the blocks that contain v are pendent blocks; let t denote the number of pendent blocks that contain v. We consider two cases.

Case 1. One of the t pendent blocks is of size at least 3. In this case, we may assume that $G = G_1 \oplus_{v} G_2$ where G_2 is a clique of size at least 3. By Corollary 4, the induction hypothesis and the fact that $Z(K_n) = n - 1$ for $n \ge 2$,

$$M(G) \ge M(G_1) + M(G_2) - 1 = Z(G_1) + Z(G_2) - 1 = Z(G_1) + (|G_2| - 1) - 1.$$

By Lemmas 5 (ii), $Z(G) \le Z(G_1) + Z(G_2 - v) = Z(G_1) + |G_2| - 2$. Since $M(G) \le Z(G)$, we then have $M(G) = Z(G) = Z(G_1) + |G_2| - 2$.

Case 2. All the t pendent blocks are of size 2. In this case, we may assume that $G = G_1 \oplus_{V} G_2$ where G_2 is a star with center V and U leaves V_1, V_2, \ldots, V_t .

For the subcase of $t \ge 2$, by Corollary 4, the induction hypothesis and the fact that $Z(tK_1) = t$,

$$M(G) \ge M(G_1 - \nu) + M(G_2 - \nu) - 1 = Z(G_1 - \nu) + Z(G_2 - \nu) - 1 = Z(G_1 - \nu) + t - 1.$$

By Lemmas 5 (ii) and the fact that $Z(K_{1,t}) = t - 1$ for $t \ge 2$, $Z(G) \le Z(G_1 - v) + Z(G_2) = Z(G_1 - v) + t - 1$. Since $M(G) \le Z(G)$, we then have $M(G) = Z(G) = Z(G_1 - v) + t - 1$.

For the subcase of t=1, by Corollary 4 and the induction hypothesis, we have $M(G) \ge M(G_1) + M(G_2) - 1 = Z(G_1) + Z(G_2) - 1 = Z(G_1)$. Next, we show that $Z(G) \le Z(G_1)$. Denote by S_1 a minimum zero forcing set for G_1 . Let \mathcal{P} be a zero forcing process on G_1 with initial set of black vertices S_1 . Let us consider two cases. If $v \in S_1$, then clearly $(S_1 \setminus \{v\}) \cup \{v_1\}$ is a zero forcing set for G. We next show that if $v \notin S_1$, then S_1 is a zero forcing set for G. Since V is not a cut-vertex of G_1 , G_1 (V) induces a clique in G. Therefore V cannot perform a force in the process F. These show that G0 in G1. Finally, since G1 is a zero forcing that G2 is a zero forcing set for G3. In G4 is a zero forcing set for G5. In G5 is a zero forcing set for G6. Since G8 is a zero forcing set for G9 in G9 in G9 in G9 is a zero forcing set for G9. In G9 is a zero forcing set for G9 in G

A clique covering of G is a set of cliques of G which together contain each edge of G at least once. The clique covering number cc(G) of G is the smallest cardinality of a clique covering of G. It is well known [14] that $mr(G) \le cc(G)$ for any graph G. In [1], it was also shown that if G is a block-clique graph such that no vertex is contained in more than two blocks, then mr(G) = cc(G). Notice that there are infinitely many block-clique graphs G for which mr(G) < cc(G). For example, if G is a block-clique many block-clique graphs G for which mr(G) < cc(G). For example, if G is a least once.

An *interval graph* is a graph G for which we can associate with each vertex V an interval I(V) in the real line such that two distinct vertices U and V are adjacent if and only if $I(U) \cap I(V) \neq \emptyset$. The set of intervals $\{I(V)\}_{V \in V(G)}$ is called an *interval representation* for G. A graph is a *unit interval graph* if it is an interval graph which has an interval representation in which all intervals have equal length.

In Theorem 9 we use the following characterization of unit interval graphs to show that if G is a unit interval graph then cc(G) = mr(G) and Z(G) = M(G). We remark that, for $q \ge 2$, $K_{1,q}$ is an interval graph with $cc(K_{1,q}) = q$ and $mr(K_{1,q}) = 2$.

Theorem 8 [27]. A graph G is a unit interval graph if and only if there is an order on vertices such that for each vertex v, the closed neighborhood of v is a set of consecutive vertices in that order.

The order defined in Theorem 8 is called a *consecutive order* of *G*. The idea of the proof of Theorem 9 is to show that for any unit interval graph *G* we have cc(G) = |G| - Z(G).

Theorem 9. If G is a connected unit interval graph, then cc(G) = mr(G) and Z(G) = M(G).

Proof. Let $V(G) = \{v_1, v_2, \dots, v_n\}$ such that (v_1, v_2, \dots, v_n) is a consecutive order of G. For positive integers i and j with $i \le j$, denote by [i, j] the set $\{i, i + 1, i + 2, \dots, j\}$. Let $[v_i, v_j]$ denote the collection of vertices v_k such that $i \le k \le j$. Let $\ell(j) = \min\{k : v_k \in N_G[v_j]\}$. Define

$$S = \{v_1\} \cup \{v_k : k \in [3, n] \text{ and } \ell(k) = \ell(k-1)\}.$$

Consider a zero forcing process \mathcal{P} on G that is started with the initial set of black vertices S. Denote by F the set of of black vertices in the derived coloring of the process \mathcal{P} .

We shall show that S is a zero forcing set for G, that is, to show that F = V(G). Assume to the contrary that $V(G) \setminus F \neq \emptyset$. Let $t = \min\{k : v_k \in V(G) \setminus F\}$. Notice that $t \geqslant 2$. We claim that v_t has a neighbor in $\{v_1, v_2, v_3, \ldots, v_{t-1}\}$. Since G is connected, there exists an edge $v_i v_j$ in G such that $i < t \leqslant j$. Hence, by Theorem 8, it follows that v_t is adjacent to v_i . Let $r(t) = \max\{k : v_k \text{ is adjacent to } v_{\ell(t)}\}$. Notice that $v_{\ell(t)} \in F$ and $r(t) \geqslant t$. To get a contradiction we consider two cases of r(t). If r(t) = t, then all neighbors of $v_{\ell(t)}$ except v_t lie in F. It follows that v_t must be forced by $v_{\ell(t)}$ at some time during the zero forcing process \mathcal{P} . Hence $v_t \in F$, a contradiction to the choice of t. Next we consider the case when r(t) > t. In this case, by Theorem 8 and the choice of $\ell(t)$, we have

$$\ell(t) = \ell(t+1) = \ell(t+2) = \cdots = \ell(r(t)),$$

and hence $\{v_{t+1}, v_{t+2}, v_{t+3}, \dots, v_{r(t)}\}\subseteq S\subseteq F$. By the choices of r(t) and t, all neighbors of $v_{\ell(t)}$ except v_t lie in F. Thus, v_t must be forced by $v_{\ell(t)}$ during the zero forcing process \mathcal{P} , a contradiction to $v_t \notin F$.

Denote by C_j the set $\{v_k : \ell(j) \le k \le j\}$. By Theorem 8, it is clear that C_j is a clique of G for each integer j in [1, n]. Next we define

$$C = \{C_{k-1} : k \in [3, n] \text{ and } \ell(k) \neq \ell(k-1)\} \cup \{C_n\},\$$

and show that \mathcal{C} is a clique covering of G. For an edge $v_i v_j (i < j)$, we denote by j^* the largest integer t such that $\ell(j) = \ell(s)$ for any integer $s \in [j,t]$. If $j^* < n$, then $\ell(j^*) \neq \ell(j^*+1)$. Thus, by definition of \mathcal{C} , it follows that $\mathcal{C}_{j^*} \in \mathcal{C}$ and \mathcal{C}_{j^*} contains the edge $v_i v_j$. If $j^* = n$, then $\ell(j) = \ell(j+1) = \ell(j+2) = \ldots = \ell(n)$ and hence \mathcal{C}_n contains the edge $v_i v_j$. Since $v_i v_j$ is an arbitrary edge, we conclude that \mathcal{C} is a clique covering of G.

By the definitions of S and C together with Theorem 2 and the fact that $cc(G) \ge mr(G)$.

$$|S| = n - |C| \le n - \operatorname{cc}(G) \le n - \operatorname{mr}(G) = M(G) \le Z(G) \le |S|,$$

which give the theorem and show that |S| = Z(G) and |C| = cc(G). \square

3. The minimum rank of product graphs

In this section, several families of product graphs G are demonstrated that $M^F(G) = Z(G)$ for every field F.

3.1. Cartesian products

The Cartesian product of two graphs G and H is the graph $G \square H$ with vertex set $V(G) \times V(H)$ and edge set $\{(g,h)(g',h'): gg' \in E(G) \text{ with } h = h', \text{ or } g = g' \text{ with } hh' \in E(H)\}$. Note that the Cartesian product is commutative and associative (see page 29 of [25]). The d-dimensional hypercube Q_d is defined recursively: $Q_1 = K_2$ and $Q_{d+1} = Q_d \square K_2$. In [1], the authors showed that $\operatorname{mr}^F(Q_d) = Z(Q_d) = 2^{d-1}$ whenever $\operatorname{char}(F) = 2$ or $\operatorname{cchar}(F) \neq 2$ and $\sqrt{2} \in F$). It was shown in [13] that $M^F(Q_d) = Z(Q_d) = 2^{d-1}$ for any field F of order at least F. In the following, we show that in fact $\operatorname{mr}^F(Q_d) = 2^{d-1}$ for any field F. That is, $M^F(Q_d)$ is field independent.

Theorem 10. If F is a field, then $M^F(Q_d) = Z(Q_d) = 2^{d-1}$.

Proof. Since $2^d - \text{mr}^F(Q_d) = M^F(Q_d) \le Z(Q_d) \le 2^{d-1}$, it suffices to prove that $\text{mr}^F(Q_d) \le 2^{d-1}$. First we set two 2×2 symmetric matrices H_1 and L_1 over F as

$$H_1 = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$
 and $L_1 = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$.

We then define inductively two sequences of symmetric matrices $\{H_d\}_{d=1}^{\infty}$ and $\{L_d\}_{d=1}^{\infty}$ as follows: Given H_{d-1} and L_{d-1} , define

$$H_d = \begin{bmatrix} H_{d-1} & I \\ I & -H_{d-1} \end{bmatrix}$$
 and $L_d = \begin{bmatrix} L_{d-1} & I \\ I & -L_{d-1} \end{bmatrix}$.

By a simple induction argument on d it can be shown that $H_d^2 = (d+1)I$, $L_d^2 = dI$ and $\mathcal{G}(H_d) = \mathcal{G}(L_d) = Q_d$. If char(F) is not a factor of d, then define

$$B_d = \begin{bmatrix} d^{-1}H_{d-1} & I \\ I & H_{d-1} \end{bmatrix}.$$

Since $G(B_d) = Q_d$ and

$$\begin{bmatrix} I & \mathbf{0} \\ -H_{d-1} & I \end{bmatrix} B_d = \begin{bmatrix} d^{-1}H_{d-1} & I \\ \mathbf{0} & \mathbf{0} \end{bmatrix},$$

we have $\operatorname{mr}^F(Q_d) \leq \operatorname{rank}(B_d) = 2^{d-1}$. If $\operatorname{char}(F)$ is a factor of d, since $\mathcal{G}(L_d) = Q_d$ and

$$\begin{bmatrix} I & \mathbf{0} \\ L_{d-1} & I \end{bmatrix} L_d = \begin{bmatrix} L_{d-1} & I \\ \mathbf{0} & \mathbf{0} \end{bmatrix},$$

we have $\operatorname{mr}^F(Q_d) \leqslant \operatorname{rank}(L_d) = 2^{d-1}$. In any case, we have $\operatorname{mr}^F(Q_d) \leqslant 2^{d-1}$. This proves the theorem.

Theorem 11. If F is a field and $n \ge 2$, then $M^F(K_2 \square K_{1,n}) = Z(K_2 \square K_{1,n}) = n$.

Proof. Denote by $\{v, w_1, \ldots, w_n\}$ (resp. $\{u_1, u_2\}$) the vertex set of $K_{1,n}$ (resp. K_2), where v is the vertex that has maximum degree in $K_{1,n}$. Clearly, the set $S = \{(u_1, v), (u_1, w_1), (u_1, w_2), \ldots, (u_1, w_{n-1})\}$ is a zero forcing set for $K_2 \square K_{1,n}$, and hence $M^F(K_2 \square K_{1,n}) \leq Z(K_2 \square K_{1,n}) \leq |S| = n$. Consider the following two $(n+1) \times (n+1)$ matrices over F:

$$B = \begin{bmatrix} 1 & \mathbf{1}^T \\ \mathbf{1} & I_n \end{bmatrix} \text{ and } C = \begin{bmatrix} n-3 & \mathbf{1}^T \\ \mathbf{1} & I_n \end{bmatrix},$$

where $\mathbf{1} = [1, 1, ..., 1]^T$ is a column vector in \mathbb{R}^n . To show that n is a lower bound for $M^F(K_2 \square K_{1,n})$, we consider the following $2(n+1) \times 2(n+1)$ symmetric matrix over F:

$$A = \begin{bmatrix} B & I \\ I & C \end{bmatrix}.$$

Note that

$$\begin{bmatrix} I & -B \\ \mathbf{0} & I \end{bmatrix} A = \begin{bmatrix} \mathbf{0} & I - BC \\ I & C \end{bmatrix}.$$

It is easy to check that $\operatorname{rank}(I - BC) = 1$, and hence $\operatorname{rank}(A) = n + 2$. Since $\mathcal{G}(A) = K_2 \square K_{1,n}$, we get $M^F(K_2 \square K_{1,n}) = 2(n+1) - \operatorname{mr}^F(K_2 \square K_{1,n}) \geqslant 2(n+1) - \operatorname{rank}(A) = n$. This completes the proof of the theorem. \square

It was shown in Theorem 3.6 of [1] that if G is a graph with $|V(G)| \le n$, then $Z(G \square P_n) = M(G \square P_n) = |G|$. We note that the proof of Theorem 3.6 in [1] in fact gives the sharper result that if there is a matrix $A \in \mathcal{S}^{\mathbb{R}}(G)$ such that A has at most n distinct eigenvalues, then $Z(G \square P_n) = M(G \square P_n) = |G|$.

Let $G = (G_1 \square \cdots \square G_r) \square (H_1 \square \cdots \square H_s) \square (Q_1 \square \cdots \square Q_t)$ such that G_k 's, H_k 's, and G_k 's are complete bipartite graphs, complete graphs and paths, respectively. Note that $\frac{1}{\sqrt{mn}}A(K_{m,n}) + I_{m+n}$ has spectrum $\{2, 1^{(m+n-2)}, 0\}$, $\frac{1}{n}A(K_n) + \frac{1}{n}I_n$ has spectrum $\{1, 0^{(n-1)}\}$, and there exists $B \in \mathcal{S}^{\mathbb{R}}(P_n)$ with spectrum $\{0, 1, \ldots, n-1\}$ (see Theorem 2 of [16]). Using well-known properties on eigenvalues of Kronecker product of graphs (see page 207 of [15]), it can be seen that there is a matrix $A \in \mathcal{S}^{\mathbb{R}}(G)$ such that the spectrum of A is contained in $\{0, 1, 2, \dots, \ell_G\}$, where $\ell_G = 2r + s - t + \sum_{k=1}^t |Q_k|$. What we have just proved can be summarized in the following theorem:

Theorem 12. For a graph G, let $\sigma_G = \min_{A \in S^{\mathbb{R}}(G)} |\operatorname{spec}(A)|$, where $|\operatorname{spec}(A)|$ denotes the number of distinct eigenvalues of A.

- (a) If $\sigma_G \leq n$, then $Z(G \square P_n) = M(G \square P_n) = |G|$.
- (b) If $G = (G_1 \square \cdots \square G_r) \square (H_1 \square \cdots \square H_s) \square (Q_1 \square \cdots \square Q_t)$ such that G_k 's, H_k 's, and Q_k 's are complete bipartite graphs, complete graphs and paths, respectively. Then $\sigma_G \leq 2r + s - t + \sum_{k=1}^t |Q_k| + 1$,

We remark that the idea of Theorem 12(a) is implicit in the proof technique of Theorem 3.10 of [1]. Theorem 12 also contains Proposition 3.3 of [1] as a special case, where the authors use the Colin de Verdière-type parameter to show that $Z(K_s \square P_n) = M(K_s \square P_n) = s$.

The following upper bound for the parameter Z for any Cartesian product is useful in the proof of Theorem 14.

Lemma 13 (Proposition 2.5 of [1]). For any two graphs G and H, $Z(G \square H) \leq \min\{Z(G)|H|, Z(H)|G|\}$.

In Example 3.4 of [1], an exhaustive search was used to show that $M^{\mathbb{Z}_2}(K_3 \square K_2) = 2$, and hence $M^F(K_3 \square K_2)$ depends on the field F. In the following theorem, we show that $M^F(K_s \square K_2)$ can be determined effectively for any field F and for any $s \ge 2$.

Theorem 14. Suppose F is a field and $s \ge 2$.

- (a) If $F \neq \mathbb{Z}_2$ then $M^F(K_s \square K_2) = Z(K_s \square K_2) = s$. (b) If s is even, then $M^{\mathbb{Z}_2}(K_s \square K_2) = s$; otherwise $M^{\mathbb{Z}_2}(K_s \square K_2) = s 1$.

Proof. (a) By Theorem 2 and Lemma 13, we get $M^F(K_s \square K_2) \le Z(K_s \square K_2) \le s$ for any field F. To prove the required lower bound for $M^F(K_S \square K_2)$, we divide the proof into three cases. In these cases, we denote by A a 2s \times 2s symmetric matrix over F.

Case 1. char(F) divides s. In this case, define A to be the following matrix:

$$A = \begin{bmatrix} I+J & I \\ I & I-J \end{bmatrix}.$$

Clearly, we have $A \in \mathcal{S}^F(K_s \square K_2)$. Since char(F) divides s and

$$\begin{bmatrix} I & \mathbf{0} \\ J - I & I \end{bmatrix} A = \begin{bmatrix} I + J & I \\ \mathbf{0} & \mathbf{0} \end{bmatrix},$$

we get $s = \text{nullity}(A) \leq M^F(K_s \square K_2)$, as required.

Case 2. char(F) = 2 and s is odd. Since $F \neq \mathbb{Z}_2$, we can pick $a \in F$ such that $a \neq 0$ and $a \neq 1$. Let $b = a(a+1)^{-1}$. Clearly, we have $b \neq 0$. Define A to be the following matrix:

$$A = \begin{bmatrix} I + aJ & I \\ I & I + bJ \end{bmatrix}.$$

Clearly, we have $A \in \mathcal{S}^F(K_s \square K_2)$. Since char(F) = 2 and s is odd, it can be seen that $J^2 = I$ and

$$\begin{bmatrix} I & \mathbf{0} \\ -bJ - I & I \end{bmatrix} A = \begin{bmatrix} I + aJ & I \\ \mathbf{0} & \mathbf{0} \end{bmatrix}.$$

It follows that $s = \text{nullity}(A) \leq M^F(K_s \square K_2)$, as required.

Case 3. char(F) \neq 2 and char(F) does not divide s. Let $c = 2s^{-1}$. Define A to be the following matrix:

$$A = \begin{bmatrix} cJ - I & I \\ I & cJ - I \end{bmatrix}.$$

Since $A \in \mathcal{S}^F(K_s \square K_2)$ and

$$\begin{bmatrix} I & \mathbf{0} \\ -cJ + I & I \end{bmatrix} A = \begin{bmatrix} cJ - I & I \\ \mathbf{0} & \mathbf{0} \end{bmatrix},$$

we have $s = \text{nullity}(A) \leq M^F(K_s \square K_2)$, as required.

(b) Construct a 2s \times 2s symmetric matrix A over \mathbb{Z}_2 as follows:

$$A = \begin{bmatrix} I+J & I \\ I & I+J \end{bmatrix}.$$

Clearly, we have $A \in \mathcal{S}^{\mathbb{Z}_2}(K_s \square K_2)$ and

$$\begin{bmatrix} I & \mathbf{0} \\ J - I & I \end{bmatrix} A = \begin{bmatrix} I + J & I \\ sJ & \mathbf{0} \end{bmatrix}.$$

If *s* is even, then we have $s = \text{nullity}(A) \le M^{\mathbb{Z}_2}(K_s \square K_2) \le Z(K_s \square K_2) \le s$, where the last inequality follows from Lemma 13.

It remains to consider the case when s is odd. In this case, by the above matrix equation, it can be seen that $\operatorname{mr}^F(K_s \square K_2) \leqslant \operatorname{rank}(A) = s + 1$. We shall show that s + 1 is also a lower bound for $\operatorname{mr}^F(K_s \square K_2)$. To this end, let us consider an arbitrary matrix B in $\mathcal{S}^{\mathbb{Z}_2}(K_s \square K_2)$. We note that B has the following form

$$\begin{bmatrix} J+D_1 & I \\ I & J+D_2 \end{bmatrix},$$

where D_1 and D_2 are diagonal matrices. Denote by Q the matrix $J + JD_1 + D_2J + D_2D_1 + I$. It can readily be checked that all the diagonal entries of Q are zero if and only if both D_1 and D_2 are zero matrices. Since

$$\begin{bmatrix} I & \mathbf{0} \\ J + D_2 & I \end{bmatrix} B = \begin{bmatrix} J + D_1 & I \\ Q & \mathbf{0} \end{bmatrix},$$

it can be seen that Q is not a zero matrix, and hence $\operatorname{rank}(B) \geqslant s+1$. We conclude that $\operatorname{mr}^F(K_s \square K_2) \geqslant s+1$. This completes the proof of the theorem. \square

3.2. Direct and strong products

The *direct product* of two graphs G and H is the graph $G \times H$ with vertex set $V(G) \times V(H)$ and edge set $\{(g,h)(g',h'): gg' \in E(G) \text{ and } hh' \in E(H)\}$. The *strong product* of two graphs G and H is the graph $G \boxtimes H$ with vertex set $V(G) \times V(H)$ and edge set $E(G \subseteq H) \cup E(G \times H)$. Note that $G \boxtimes H = G \subseteq H \cup G \times H$ and that the direct and strong products are associative and commutative (see page 163 and page 148 of [25]).

Theorem 15. *If* $n \ge 2$, then $M(P_{2k+1} \times K_n) = Z(P_{2k+1} \times K_n) = (2k+1)n - 4k$.

Proof. Let $V(P_{2k+1}) = \{x_1, x_2, \dots, x_{2k+1}\}$, $E(P_{2k+1}) = \{x_1x_2, x_2x_3, \dots, x_{2k}x_{2k+1}\}$ and $V(K_n) = \{y_1, y_2, \dots, y_n\}$. Denote by \overline{S} the vertex subset $\{(x_i, y_j) : 2 \le i \le 2k + 1 \text{ and } 1 \le j \le 2\}$ of $P_{2k+1} \times K_n$. Consider a zero forcing process \mathcal{P} on $P_{2k+1} \times K_n$ with initial set of black vertices $V(P_{2k+1} \times K_n) \setminus \overline{S}$. Using $((x_1, y_1), (x_1, y_2), (x_2, y_1), (x_2, y_2), \dots, (x_{2k}, y_1), (x_{2k}, y_2))$ as the zero forcing sequence of \mathcal{P} , it is easy to see that $V(P_{2k+1} \times K_n) \setminus \overline{S}$ is a zero forcing set for $P_{2k+1} \times K_n$, and so $Z(P_{2k+1} \times K_n) \le (2k+1)n-4k$. For every integer $n \ge 2$, we construct a real $n \times n$ matrix A_n as follows:

$$A_n = [C_1 - C_2, 2C_1 - C_2, 3C_1 - C_2, \dots, nC_1 - C_2],$$

where $C_1 = [1, 1, ..., 1]^T$ and $C_2 = [1, 2, ..., n]^T$ are two column vectors in \mathbb{R}^n . Note that A_n has zero diagonal entries and nonzero off-diagonal entries. Moreover, $\operatorname{rank}(A_n) = 2$. Next, using A_n as a building block to construct a $(2k+1)n \times (2k+1)n$ symmetric matrix $B_{2k+1,n}$ as follows:

$$B_{2k+1,n} = \begin{bmatrix} \mathbf{0} & A_n & \mathbf{0} & \cdots & & & & \mathbf{0} \\ A_n^T & \mathbf{0} & A_n^T & \mathbf{0} & \cdots & & & \mathbf{0} \\ \mathbf{0} & A_n & \mathbf{0} & A_n & \mathbf{0} & \cdots & & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & A_n^T & \mathbf{0} & A_n^T & \mathbf{0} & \cdots & \mathbf{0} \\ \vdots & \vdots & & \ddots & \ddots & \ddots & & \vdots \\ \mathbf{0} & \mathbf{0} & \cdots & \mathbf{0} & A_n & \mathbf{0} & A_n & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & & \cdots & \mathbf{0} & A_n^T & \mathbf{0} & A_n^T \\ \mathbf{0} & \mathbf{0} & & & \cdots & \mathbf{0} & A_n & \mathbf{0} \end{bmatrix}.$$

It can be seen that $B_{2k+1,n} \in \mathcal{S}^{\mathbb{R}}(P_{2k+1} \times K_n)$ and $\operatorname{rank}(B_{2k+1,n}) = 4k$. By what we have proved above and Theorem 2, $(2k+1)n - 4k = \operatorname{nullity}(B_{2k+1,n}) \leqslant M(P_{2k+1} \times K_n) \leqslant Z(P_{2k+1} \times K_n) \leqslant (2k+1)n - 4k$. This completes the proof of the theorem. \square

In Section 3.1 of [1], the authors used techniques involving Kronecker product to study the maximum nullity/zero forcing number of the Cartesian product of two graphs. In the following, we use ideas involving the celebrated property of Kronecker product (see for example [23, Theorem 4.2.15])

$$rank(A \otimes B) = rank(A)rank(B) \tag{1}$$

to study the maximum nullity/zero forcing number of the direct product and the strong product of two graphs.

Let $A = [a_{ij}] \in F^{m \times n}$ and $B \in F^{p \times q}$, where F is a field. The *Kronecker product* of A and B, denoted by $A \otimes B$, is the $mp \times nq$ matrix over F with the block structure

$$A \otimes B = \begin{bmatrix} a_{11}B & a_{12}B & \cdots & a_{1n}B \\ a_{21}B & a_{22}B & \cdots & a_{2n}B \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1}B & a_{n2}B & \cdots & a_{nn}B \end{bmatrix}.$$

Theorem 16. If $m \ge 3$ and $n \ge 2$, then $M(K_m \times K_n) = Z(K_m \times K_n) = mn - 4$.

Proof. Let $V(K_m \times K_n) = \{(x_i, y_j) : 1 \le i \le m \text{ and } 1 \le j \le n\}$ and $S = V(K_m \times K_n) \setminus \{(x_2, y_2), (x_3, y_1), (x_1, y_2), (x_2, y_1)\}$. Then S is a zero-forcing set for $K_m \times K_n$ with the zero forcing sequence $((x_1, y_1), (x_2, y_2), (x_3, y_1), (x_1, y_2))$, and so $Z(K_m \times K_n) \le |S| = mn - 4$.

Next, we want to show that mn-4 is a lower bound for $M(K_m \times K_n)$. Using the notation A_n defined in the proof of Theorem 15 we consider an $mn \times mn$ matrix $A_m \otimes A_n$. Note that A_n is skew-symmetric. The elementary fact about Kronecker product $(A_m \otimes A_n)^T = A_m^T \otimes A_n^T$ (see, for example, [26, page 8]) shows that $A_m \otimes A_n$ is symmetric. Moreover, it can readily be seen that $A_m \otimes A_n \in \mathcal{S}^\mathbb{R}(K_m \times K_n)$. Then by equation (1), $\operatorname{rank}(A_m \otimes A_n) = \operatorname{rank}(A_m)\operatorname{rank}(A_n) = 4$, and hence $mn-4 = \operatorname{nullity}(A_m \otimes A_n) \leq M(K_m \times K_n) \leq Z(K_m \times K_n) \leq mn-4$. \square

Using Lemma 19 below we will exhibit a large new class of product graphs G for which $Z(G) = M^F(G)$ for any field F, that is, G has a field independent minimum rank (see [13] for much more about field independence of the minimum rank of a graph). To achieve the proof of Lemma 19, we need some notation and facts.

Using the same idea used in [1] to show that $Z(P_S \boxtimes P_t) \le s + t - 1$, we have the following upper bound estimates for $Z(G \boxtimes H)$ and $Z(G \times H)$. Lemma 17 is useful in the proof of Lemma 19 and is also independently interesting from a combinatorial point of view.

Lemma 17. For graphs G and H, $Z(G \boxtimes H) \le |G|Z(H) + Z(G)|H| - Z(G)Z(H)$ and $Z(G \times H) \le |G|Z(H) + Z(G)|H| - Z(G)Z(H)$.

Proof. Denote by S_G (resp. S_H) a minimum zero forcing set of G (resp. H). Let $s = |V(G) \setminus S_G|$ and $t = |V(G) \setminus S_H|$. Denote by \mathcal{P}_G (resp. \mathcal{P}_H) a zero forcing process on G (resp. H) with zero forcing sequence (g_1, g_2, \ldots, g_s) (resp. (h_1, h_2, \ldots, h_t)) and its corresponding color change sequence $(\alpha_1, \alpha_2, \ldots, \alpha_s)$ (resp. $(\beta_1, \beta_2, \ldots, \beta_t)$). Consider a zero forcing process \mathcal{P} on $G \boxtimes H$ started from the initial set of black vertices $S = \{(g, h) : g \in S_G \text{ or } h \in S_H\}$ with the following zero forcing sequence:

```
\Phi = \begin{pmatrix} (g_1, h_1), & (g_1, h_2), & (g_1, h_3), & \cdots & (g_1, h_t), \\ (g_2, h_1), & (g_2, h_2), & (g_2, h_3), & \cdots & (g_2, h_t), \\ \vdots & \vdots & \vdots & & \vdots & & \vdots \\ (g_s, h_1), & (g_s, h_2), & (g_s, h_3), & \cdots & (g_s, h_t) \end{pmatrix},
```

where the time steps are equipped with the lexicographical order \prec such that for two time steps (i,j) and (i',j') we have $(i,j) \prec (i',j')$ if and only if i < i' or (i = i' and j < j'). We want to show that the zero forcing process \mathcal{P} will eventually reach the situation in which all vertices of $G \boxtimes H$ are black.

Let Q(i,j) be the statement: Vertex (α_i,β_j) is forced by vertex (g_i,h_j) at time step (i,j) in the process \mathcal{P} . We shall prove by induction on (i,j) that Q(i,j) holds at each time step (i,j). For the induction basis, we consider the case (i,j)=(1,1). Since $N_G(g_1)\setminus\{\alpha_1\}\subseteq S_G$ and $N_H(h_1)\setminus\{\beta_1\}\subseteq S_H$, by the definition of S we see that (g_1,h_1) has exactly one white neighbor (α_1,β_1) in $G\boxtimes H$ at time step (1,1), and hence (α_1,β_1) is forced by (g_1,h_1) at time step (1,1) in the process \mathcal{P} .

Let $(i,j) \succ (1,1)$ be a given time step and assume that Q(i',j') holds for all time steps $(i',j') \prec (i,j)$. We shall show that Q(i,j) holds. First we claim that (g_i,h_j) is a black vertex at time step (i,j). Indeed, if it is not, then $g_i \notin S_G$ and $h_j \notin S_H$. It follows that g_i (resp. h_j) must be forced by some vertex $g_{i'} \in V(G)$ with i' < i (resp. $h_{j'} \in V(H)$ with j' < j) in the process \mathcal{P}_G (resp. \mathcal{P}_H). Since $(i',j') \prec (i,j)$, by the induction hypothesis, (g_i,h_i) is forced by $(g_{i'},h_{i'})$ at time step (i',j') in the process \mathcal{P} , a contradiction.

Next, we want to show that vertex (g_i, h_j) has exactly one white neighbor (α_i, β_j) at time step (i, j). Denote by (g, h) a white neighbor of (g_i, h_j) in $G \boxtimes H$ at time step (i, j). Since $(g, h) \not\in S$, $(g, h) = (\alpha_k, \beta_\ell)$ for some integers k and ℓ . It follows that $\{\alpha_i, \alpha_k\} \subseteq N_G(g_i)$ and $\{\beta_j, \beta_\ell\} \subseteq N_H(h_j)$ with $\{\alpha_i, \alpha_k\} \cap S_G = \emptyset$ and $\{\beta_j, \beta_\ell\} \cap S_H = \emptyset$. Since g_i (resp. h_j) has exactly one white neighbor α_i (resp. β_j) at time i (resp. j) in the zero forcing process \mathcal{P}_G (resp. \mathcal{P}_H) on G (resp. H), it can be seen that $k \leq i$ (resp. $\ell \leq j$). If k < i then, by the fact that $(k, \ell) \prec (i, j)$ and the induction hypothesis, we see that $Q(k, \ell)$ holds. It follows that (α_k, β_ℓ) is a black vertex at time step (i, j), a contradiction. Thus it must be k = i. If $\ell < j$ then, by using the fact that $(k, \ell) \prec (i, j)$ and induction hypothesis again, we see that $Q(k, \ell)$ holds and hence (α_k, β_ℓ) is a black vertex at time step (i, j). That is a contradiction. Thus it must be $\ell = j$. From what we have already proved, we conclude that $(g, h) = (\alpha_i, \beta_j)$ and Q(i, j) holds. This completes the inductive step.

Thus Q(i,j) holds at each time step (i,j) in the zero-forcing process \mathcal{P} . Therefore, S is a zero forcing set of $G \boxtimes H$, and hence $Z(G \boxtimes H) \leq |S| = |G|Z(H) + Z(G)|H| - Z(G)Z(H)$.

To prove $Z(G \times H) \le |G|Z(H) + Z(G)|H| - Z(G)Z(H)$, we just replace $G \boxtimes H$ by $G \times H$ in the above proof. This completes the proof of the lemma. \square

Let $\mathcal{S}_1^F(G)$ (resp. $\mathcal{S}_0^F(G)$) denote the set of all matrices A in $\mathcal{S}^F(G)$ such that A has non-zero (resp. zero) diagonal entries. We have the following observation, whose proof is straightforward and is omitted.

Observation 18. Suppose *F* is a field, and *G* and *H* are graphs.

```
(a) If A \in \mathcal{S}_1^F(G) and B \in \mathcal{S}_1^F(H), then A \otimes B \in \mathcal{S}_1^F(G \boxtimes H).

(b) If A \in \mathcal{S}_0^F(G) and B \in \mathcal{S}_0^F(H), then A \otimes B \in \mathcal{S}_0^F(G \times H).
```

For $i \in \{0,1\}$, define $\operatorname{mr}_i^F(G) = \min\{\operatorname{rank}(A) : A \in \mathcal{S}_i^F(G)\}$ and $M_i^F(G) = \max\{\operatorname{nullity}(A) : A \in \mathcal{S}_i^F(G)\}$. Clearly we have $\operatorname{mr}_i^F(G) + M_i^F(G) = |G|$ for i = 0, 1. Denote by \mathcal{A}^F (resp. \mathcal{A}_0^F , resp. \mathcal{A}_1^F) the

collection of graphs G for which $Z(G)=M^F(G)$ (resp. $Z(G)=M_0^F(G)$, resp. $Z(G)=M_1^F(G)$) holds. By Theorem 2 it can be seen that $\mathcal{A}_0^F\subseteq\mathcal{A}^F$ and $\mathcal{A}_1^F\subseteq\mathcal{A}^F$.

Lemma 19. Suppose F is a field and s = |G|Z(H) + Z(G)|H| - Z(G)Z(H).

- (a) If $G \in \mathcal{A}_1^F$ and $H \in \mathcal{A}_1^F$, then $G \boxtimes H \in \mathcal{A}_1^F$ and $Z(G \boxtimes H) = s$. (b) If $G \in \mathcal{A}_0^F$ and $H \in \mathcal{A}_0^F$, then $G \times H \in \mathcal{A}_0^F$ and $Z(G \times H) = s$.

Proof. (a) Denote by A (resp. B) a matrix in $S_1^F(G)$ (resp. $S_1^F(H)$) with rank $(A) = \operatorname{mr}_1^F(G)$ (resp. $rank(B) = mr_1^F(H)$.

With these notations, we have the following result:

$$|G||H| - s = (|G| - Z(G))(|H| - Z(H)) = (|G| - M_1^F(G))(|H| - M_1^F(H))$$

$$= \operatorname{mr}_1^F(G)\operatorname{mr}_1^F(H) = \operatorname{rank}(A)\operatorname{rank}(B) = \operatorname{rank}(A \otimes B)$$

$$\geqslant \operatorname{mr}_1^F(G \boxtimes H)(\text{by Observation 18(a)})$$

$$= |G||H| - M_1^F(G \boxtimes H) \geqslant |G||H| - M^F(G \boxtimes H)$$

$$\geqslant |G||H| - Z(G \boxtimes H)(\text{by Theorem 2})$$

$$\geqslant |G||H| - s(\text{by Lemma 17}).$$

Consequently, $M_1^F(G \boxtimes H) = M^F(G \boxtimes H) = Z(G \boxtimes H) = s$.

(b) This part follows exactly the same lines as in the proof of (a) and is thus omitted. \Box

From what we have already proved and results in [1,13] we have the following easy observations, whose proofs we omit because they are not difficult.

- 1. For any field F, $\{C_{4n}, P_{2n+1}, K_{m,n} : n \ge 1, m \ge 2\} \subseteq \mathcal{A}_0^F$. 2. For any field F, $\{C_{3n}, P_{3n-1}, K_{n+1} : n \ge 1\} \cup \{P\} \subseteq \mathcal{A}_1^F$, where P is the Petersen graph.
- 3. $\{Q_d, P_{2k+1} \times K_n, K_r \times K_s : d \ge 2, k \ge 1, n \ge 2, r \ge 3, s \ge 2\} \subseteq \mathcal{A}_0^{\mathbb{R}}$
- $4. \{C_n, P_k : n \geqslant 5, k \geqslant 2\} \subseteq \mathcal{A}_1^{\mathbb{R}}.$

Let us define A as follows: $A = \bigcap_F A^F$, where the intersection is taken over all fields F. Notice that if G is a graph in A, then $M^F(G)$ is field independent. Starting from the above observations, with Lemma 19 at hand, we can exhibit a large new class of product graphs G for which $Z(G) = M^F(G)$ for any field F. As a result, we have

$$C_{40} \times P_{25} \times K_{37.51} \times C_{84} \times K_{106.17} \in A$$
 and $C_{63} \boxtimes P_{32} \boxtimes K_{2009} \boxtimes P \in A$.

3.3. Strongly regular graphs

Let *G* be a graph with $V(G) = \{v_1, v_2, \dots, v_n\}$ and let \overline{G} be the complement graph of *G* with $V(\overline{G}) = \{v_1, v_2, \dots, v_n\}$ $\{v_1', v_2', \dots, v_n'\}$ and $E(\overline{G}) = \{v_1'v_1' : v_1v_1 \notin E(G) \text{ and } i \neq j\}$. In the following, we define a graph product between G and \overline{G} . Denote by $G \ominus \overline{G}$ the graph with vertex set $V(G) \cup V(\overline{G})$ and edge set $E(G) \cup E(\overline{G}) \cup F(\overline{G})$ $\{v_iv_i':1\leq i\leq n\}$. A strongly regular graph G with parameters (n,k,a,c) is a k-regular graph on n vertices that is neither complete nor empty, where the number of common neighbors of every two adjacent (resp. distinct non-adjacent) vertices is a (resp. c). A strongly regular graph G is called *primitive* if both G and \overline{G} are connected. The following results about an (n, k, a, c) strongly regular graph G are well known (see, for example, Chapter 5 of [12] or Chapter 10 of [15]). The adjacency matrix A of G has the equation $A^2 = kI + aA + c(J - A - I)$, and its complement \overline{G} is also a strongly regular graph with parameter (n, n - k - 1, n - 2k + c - 2, n - 2k + a).

Theorem 20. *If* G *is a strongly regular graph, then* $Z(G \ominus \overline{G}) = M(G \ominus \overline{G})$. *In particular, if* G *is primitive then* $Z(G \ominus \overline{G}) = |G|$; *otherwise* $Z(G \ominus \overline{G}) = |G| - 1$.

Proof. Let *G* be a strongly regular graph on the parameter (n, k, a, c). We denote by *A* and *B* the adjacency matrices of *G* and its complement \overline{G} , respectively. Since B = J - A - I, it is straightforward to see that BA = (k - c)B + (k - a - 1)A. To shorten notation, we let F = k - a - 1 and F = k - a - 1.

First we consider the case that *G* is primitive. In this case, by Lemma 10.1.1(c) of [15], we see that r > 0 and s > 0. Let us define *H* to be the following $2n \times 2n$ symmetric matrix:

$$H = \begin{bmatrix} A - sI & -rsI \\ -rsI & rs(B - rI) \end{bmatrix}.$$

Since $H \in \mathcal{S}^{\mathbb{R}}(G \ominus \overline{G})$,

$$\begin{bmatrix} I & \mathbf{0} \\ B - rI & I \end{bmatrix} H = \begin{bmatrix} A - sI & -rsI \\ \mathbf{0} & \mathbf{0} \end{bmatrix},$$

and V(G) is a zero forcing set for $G \ominus \overline{G}$, we get $n = \text{nullity}(H) \leq M(G \ominus \overline{G}) \leq Z(G \ominus \overline{G}) \leq n$.

It remains to consider the case that G is connected and \overline{G} is disconnected, say \overline{G} has components G_1, \ldots, G_t . Let $V_1 = \{v \in V(G) : v \text{ is adjacent to some vertex of } G_1\}$. For any vertex v of V_1 , it can readily be checked that $(V_1 \setminus \{v\}) \cup V(G_2) \cup V(G_3) \cup \cdots \cup V(G_t)$ is a zero forcing set for $G \ominus \overline{G}$, and hence $Z(G \ominus \overline{G}) \leq n-1$. Since G is connected and \overline{G} is disconnected, by Lemma 10.1.1(c) of [15], we have F > 0 and F = 0. and hence F = 0. Let us define matrix F = 0 as follows:

$$P = \begin{bmatrix} -rB & rI \\ rI & A + rI \end{bmatrix}.$$

Since $P \in \mathcal{S}^{\mathbb{R}}(G \ominus \overline{G})$ and

$$\begin{bmatrix} I & B \\ \mathbf{0} & I \end{bmatrix} P = \begin{bmatrix} \mathbf{0} & rJ \\ rI & A + rI \end{bmatrix},$$

we have $n-1=\operatorname{nullity}(P)\leqslant M(G\ominus \overline{G})\leqslant Z(G\ominus \overline{G})\leqslant n-1$. This completes the proof of the theorem. \Box

Acknowledgement

The authors thank anonymous referee for very careful reading and for many constructive comments which helped to considerably improve the presentation of the paper.

References

- [1] F. Barioli, W. Barrett, S. Butler, S.M. Cioabă, D. Cvetković, S.M. Fallat, C. Godsil, W. Haemers, L. Hogben, R. Mikkelson, S. Narayan, O. Pryporova, I. Sciriha, W. So, D. Stevanović, H. van der Holst, K.V. Meulen, A.W. Wehe, AIM Minimum Rank-Special Graphs Work Group, Zero forcing sets and the minimum rank of graphs, Linear Algebra Appl. 428 (2008) 1628–1648.
- [2] F. Barioli, S.M. Fallat, L. Hogben, Computation of minimal rank and path cover number for graphs, Linear Algebra Appl. 392 (2004) 289–303.
- [3] F. Barioli, S.M. Fallat, R.L. Smith, On acyclic and unicyclic graphs whose minimum rank equals the diameter, Linear Algebra Appl. 429 (2008) 1568–1578.
- [4] F. Barioli, S.M. Fallat, D. Hershkowitz, H.T. Hall, L. Hogben, H. van der Holst, B. Shader, On the minimum rank of not necessarily symmetric matrices: a preliminary study, Electron. J. Linear Algebra 18 (2009) 126–145.
- [5] W. Barrett, H. van der Holst, R. Loewy, Graphs whose minimal rank is two, Electron. J. Linear Algebra 11 (2004) 258–280.
- [6] W. Barrett, H. van der Holst, R. Loewy, Graphs whose minimal rank is two: the finite fields case, Electron. J. Linear Algebra 14 (2005) 32-42.
- [7] W. Barrett, J. Grout, R. Loewy, The minimum rank problem over the finite field of order 2: minimum rank 3, Linear Algebra Appl. 430 (2009) 890–923.
- [8] W. Barrett, H.T. Hall, R. Loewy, The inverse inertia problem for graphs: cut vertices, trees, and a counterexample, Linear Algebra Appl. 431 (2009) 1147–1191.
- [9] A. Berman, S. Friedland, L. Hogben, U.G. Rothblum, B. Shader, An upper bound for the minimum rank of a graph, Linear Algebra Appl. 429 (2008) 1629–1638.

- [10] N.L. Biggs, Algebraic Graph Theory, second ed., Chambridge University Press, Cambridge, UK, 1994.
- [11] J.A. Bondy, U.S.R. Murty, Graph Theory, Graduate Texts in Mathematics, vol. 244, Springer-Verlag, New York, 2008.
- [12] R.A. Brualdi, H.J. Ryser, Combinatorial Matrix Theory, Encyclopedia of Mathematics and its Applications, Cambridge University Press, Cambridge, UK, 1991.
- [13] L. DeAlba, J. Grout, L. Hogben, R. Mikkelson, K. Rasmussen, Universally optimal matrices and field independence of the minimum rank of a graph. Electron. J. Linear Algebra 18 (2009) 403–419.
- [14] S.M. Fallat, Leslie Hogben, The minimum rank of symmetric matrices described by a graph: a survey, Linear Algebra Appl. 426 (2007) 558–582.
- [15] C.D. Godsil, G.F. Royle, Algebraic Graph Theory, Graduate Texts in Mathematics, vol. 207, Springer-Verlag, New York, 2001.
- [16] O.H. Hald, Inverse eigenvalue problems for Jacobi matrices, Linear Algebra Appl. 14 (1976) 63–85.
- [17] L. Hogben, Handbook of Linear Algebra, Chapman & Hall/CRC, 2006.
- [18] L. Hogben, Orthogonal representations, minimum rank, and graph complements, Linear Algebra Appl. 428 (2008) 2560–2568.
- [19] L. Hogben, Minimum rank problems, Linear Algebra Appl. 2009, doi:10.1016/j.laa.2009.05.003.
- [20] H. van der Holst, The maximum corank of graphs with a 2-separation, Linear Algebra Appl. 428 (2008) 1587-1600.
- [21] H. van der Holst, Three-connected graphs whose maximum nullity is at most three, Linear Algebra Appl. 429 (2008) 625–632.
- [22] R.A. Horn, C.R. Johnson, Matrix Analysis, Cambridge University Press, New York, 1985.
- [23] R.A. Horn, C.R. Johnson, Topics in Matrix Analysis, Cambridge University Press, New York, 1991.
- [24] L.-Y. Hsieh, On minimum rank matrices having prescribed graph, Ph.D. Thesis, University of Wisconsin-Madison, 2001.
- [25] W. Imrich, S. Klavžar, Product Graphs: Structure and Recognition, John Wiley & Sons, 2000.
- [26] M. Marcus, H. Minc, A Survey of Matrix Theory and Matrix Inequalities, Prindle, Weber, & Schmidt, Boston, 1964.
- [27] F.S. Roberts, On the compatibility between a graph and a simple order, J. Combin. Theory 11 (1971) 28–38.