
Lab 2 Report

by

Jonathan Huynh #016137719 Adam Godfrey #015981472

Instructor: Dr. Mohamed Aly
Class: ECE 3300L.E02-OU - Verilog Design

June 25th, 2025

Summary:

In lab 2, we are tasked with designing, simulating, and implementing a 4-to-16 decoder along with an enable input on our Digilent Nexys A7-100T board.

Design:

```
Behavior Level Snippet:
                                                           Gate Level Snippet:
always @(*) begin
                                                           assign Y[0] = E \& \sim A[3] \& \sim A[2] \& \sim A[1] \& \sim A[0];
  Y = 16'b0; // reset all outputs to 0
                                                           assign Y[1] = E & \simA[3] & \simA[2] & \simA[1] & A[0];
  if (E) begin // only decode when enabled
                                                           assign Y[2] = E & \simA[3] & \simA[2] & A[1] & \simA[0];
                                                           assign Y[3] = E \& \sim A[3] \& \sim A[2] \& A[1] \& A[0];
     case (A)
       4'b0000: Y = 16'b0000 0000 0000 0001; //
                                                           assign Y[4] = E \& \sim A[3] \& A[2] \& \sim A[1] \& \sim A[0];
                                                           assign Y[5] = E \& \sim A[3] \& A[2] \& \sim A[1] \& A[0];
output 0
       4'b0001: Y = 16'b0000 0000 0000 0010;
                                                           assign Y[6] = E & \simA[3] & A[2] & A[1] & \simA[0];
                                                           assign Y[7] = E & \simA[3] & A[2] & A[1] & A[0];
       4'b0010: Y = 16'b0000_0000_0000_0100;
       4'b0011: Y = 16'b0000 0000 0000 1000;
                                                           assign Y[8] = E & A[3] & \simA[2] & \simA[1] & \simA[0];
       4'b0100: Y = 16'b0000_0000_0001_0000;
                                                           assign Y[9] = E & A[3] & \simA[2] & \simA[1] & A[0];
       4'b0101: Y = 16'b0000 0000 0010 0000:
                                                           assign Y[10] = E \& A[3] \& \sim A[2] \& A[1] \& \sim A[0];
       4'b0110: Y = 16'b0000 0000 0100 0000;
                                                           assign Y[11] = E \& A[3] \& \sim A[2] \& A[1] \& A[0];
       4'b0111: Y = 16'b0000 0000 1000 0000:
                                                           assign Y[12] = E \& A[3] \& A[2] \& \sim A[1] \& \sim A[0];
       4'b1000: Y = 16'b0000 0001 0000 0000;
                                                           assign Y[13] = E & A[3] & A[2] & ~A[1] & A[0];
       4'b1001: Y = 16'b0000 0010 0000 0000;
                                                           assign Y[14] = E \& A[3] \& A[2] \& A[1] \& \sim A[0];
       4'b1010: Y = 16'b0000_0100_0000_0000;
                                                           assign Y[15] = E & A[3] & A[2] & A[1] & A[0];
       4'b1011: Y = 16'b0000 1000 0000 0000;
       4'b1100: Y = 16'b0001 0000 0000 0000;
       4'b1101: Y = 16'b0010 0000 0000 0000;
       4'b1110: Y = 16'b0100 0000 0000 0000;
       4'b1111: Y = 16'b1000 0000 0000 0000;
     endcase
  end
end
```

Simulation:

Testbench Description:

The testbench tb_decoder4x16 is designed to verify the correct functionality of a 4-to-16 line decoder module (decoder4x16_behav). The decoder takes a 4-bit input A, an enable signal E, and produces a 16-bit one-hot output Y.

- Enable = 1 (Active Phase):
 - When the enable signal E is asserted (E = 1), the testbench iterates through all
 16 possible values of the 4-bit input A (from 0000 to 1111)
 - For each input value, it checks that the decoder output Y produces a one-hot encoding by comparing it to 1 << A
 - If the output does not match, the simulation halts with a failure message;
 otherwise, a success message is displayed.
- Enable = 0 (Disabled Phase):
 - After verifying all valid inputs with the decoder enabled, the testbench disables the decoder by setting E = 0
 - It again iterates over all values of A to ensure that the output Y remains zero regardless of the input
 - o Any non-zero output is treated as an error and flagged.

Sample Waveform:

														17.400	78																		
Name	Value	0.000 n		20.000		40.000	ns	60.000	n.s	80.000	ns	100.00	ns .	120.00) ns	140.00	0 ns	160.00	0 ns	180.00	ns	200.000	ns.	220.000		240.00	0 ns	260.000	ns.	280.00	0 ns	300.000	ns 32
> № A[3:0] ↓ E	b			2	3		5	6	7	8	9		Ъ	X	(d	X	X f	X o	X 1	2	3		5		7	8	У 9		Ъ	c	X d		
¼ E	1																																
> ₩ Y[15:0]		0001	$\overline{}$	1 ——	^	4	<u>~ </u>	-	$\overline{}$	-	<u> </u>	1——	^		^	<u> </u>	л	<u> </u>								000							
> W i[31:0]	d0000000	000	000	000	000	000	000	000	000	000	000	000	000.	. 000	000	000	000	000	000	000	000	000	000	000	000	000	000	000	000	000	X000	000	000

Zoomed in to 3 periods:

Implementation:

Resource Utilization Table

Resource	<u>Used</u>	<u>Available</u>	<u>Utilization</u>
LUTs	8	63,400	0.0126%
Registers (FFs)	0	126,800	0%
Bonded IOB	21	210	10%

Timing Summary:

Worst Negative Slack (WNS)	inf
Total Negative Slack (TNS)	0
Worst Hold Slack (WHS)	inf

Contributions:

Team Member	<u>Contribution</u>	% Effort
Jonathan Huynh	Demo, Debugging, Synthesis, Simulation, Written Report	50%
Adam Godfrey	Verilog Code, Test Bench, Written Report	50%

Link To Video:

https://youtu.be/pE-wBqzjdYA