Description

Image

Aluminum nitride

Caption

Aluminum nitride components. © Used with permission from Watlow Electric Manufacturing Company, 2013

The material

Aluminum nitride, (AIN) has an unusual combination of properties: it is an electrical insulator, but an excellent conductor of heat. This is just what is wanted for substrates for high-powered electronics; the substrate must insulate yet conduct the heat out of the microchips. This, and its high strength, chemical stability and low expansion give it a special role as a heat sinks for power electronics. It is transparent to microwaves and RF frequencies, and thus makes good microwave windows.

Composition (summary)

AIN

General properties

Density	204	-	208	lb/ft^3
Price	* 47	-	75.2	USD/lb
Date first used	1984			

Mechanical properties

Young's modulus	43.8	-	50.5	10^6 psi
Shear modulus	18.3	-	20.2	10^6 psi
Bulk modulus	* 29	-	33.6	10^6 psi
Poisson's ratio	0.23	-	0.26	
Yield strength (elastic limit)	* 43.5	-	50.8	ksi
Tensile strength	* 43.5	-	50.8	ksi
Compressive strength	286	-	363	ksi
Elongation	0			% strain
Hardness - Vickers	990	-	1.26e3	HV
Fatigue strength at 10^7 cycles	* 24.4	-	36	ksi
Fracture toughness	2.28	-	3.09	ksi.in^0.5

BIEDOPIACK	
Mechanical loss coefficient (tan delta)	* 1e-5 - 3e-5
Thermal properties	
Melting point	4.35e3 - 4.54e3 ℉
Maximum service temperature	* 1.88e3 - 3.14e3 F
Minimum service temperature	-460 F
Thermal conductor or insulator?	Good conductor
Thermal conductivity	80.9 - 116 BTU.ft/h.ft^2.F
Specific heat capacity	0.186 - 0.196 BTU/lb.°F
Thermal expansion coefficient	2.72 - 3.06 µstrain/℉
Electrical properties	
Electrical conductor or insulator?	Good insulator
Electrical resistivity	1e19 - 1e21 µohm.cm
Dielectric constant (relative permittivity)	8.3 - 9.3
Dissipation factor (dielectric loss tangent)	5e-4 - 9.2e-4
Dielectric strength (dielectric breakdown)	432 - 508 V/mil
Optical properties	
Transparency	Opaque
Critical Materials Risk	
High critical material risk?	No
Processability	
Moldability	2 - 3
Machinability	1 - 2
Durability: water and aqueous solutions	
Water (fresh)	Excellent
Water (salt)	Excellent
Soils, acidic (peat)	Excellent
Soils, alkaline (clay)	Excellent
Wine	Excellent
Durability: acids	
Acetic acid (10%)	Excellent
Acetic acid (glacial)	Excellent
Citric acid (10%)	Excellent
(10,10)	
Hydrochloric acid (10%)	Excellent
	Excellent Excellent

Nitric acid (10%)	Excellent
Nitric acid (70%)	Excellent
Phosphoric acid (10%)	Excellent
Phosphoric acid (85%)	Excellent
Sulfuric acid (10%)	Excellent
Sulfuric acid (70%)	Excellent

Durability: alkalis

Sodium hydroxide (10%)	Excellent
Sodium hydroxide (60%)	Excellent

Durability: fuels, oils and solvents

Amyl acetate	Excellent
Benzene	Excellent
Carbon tetrachloride	Excellent
Chloroform	Excellent
Crude oil	Excellent
Diesel oil	Excellent
Lubricating oil	Excellent
Paraffin oil (kerosene)	Excellent
Petrol (gasoline)	Excellent
Silicone fluids	Excellent
Toluene	Excellent
Turpentine	Excellent
Vegetable oils (general)	Excellent
White spirit	Excellent

Durability: alcohols, aldehydes, ketones

Acetaldehyde	Excellent
Acetone	Excellent
Ethyl alcohol (ethanol)	Excellent
Ethylene glycol	Excellent
Formaldehyde (40%)	Excellent
Glycerol	Excellent
Methyl alcohol (methanol)	Excellent

Durability: halogens and gases

Chlorine gas (dry)	Excellent
Fluorine (gas)	Acceptable
O2 (oxygen gas)	Excellent
Sulfur dioxide (gas)	Excellent

Durability: b	uilt envi	ronments
---------------	-----------	----------

Industrial atmosphere	Excellent
Rural atmosphere	Excellent
Marine atmosphere	Excellent
UV radiation (sunlight)	Excellent

Durability: flammability

Flammability	Non-flammable
--------------	---------------

Durability: thermal environments

Tolerance to cryogenic temperatures	Excellent
Tolerance up to 150 C (302 F)	Excellent
Tolerance up to 250 C (482 F)	Excellent
Tolerance up to 450 C (842 F)	Excellent
Tolerance up to 850 C (1562 F)	Excellent
Tolerance above 850 C (1562 F)	Excellent

Primary material production: energy, CO2 and water

Embodied energy, primary production	* 2.39e4	-	2.64e4	kcal/lb
CO2 footprint, primary production	* 11.9	-	13.2	lb/lb
Water usage	* 27.8	-	30.7	gal(US)/lb

Material processing: energy

Grinding energy (per unit wt removed)	* 1.44e4 -	1.59e4	kcal/lb
---------------------------------------	------------	--------	---------

Material processing: CO2 footprint

|--|--|--|

Material recycling: energy, CO2 and recycle fraction

Recycle	×
Recycle fraction in current supply	0.5 - 1 %
Downcycle	✓
Combust for energy recovery	×
Landfill	✓
Biodegrade	×
Toxicity rating	Non-toxic
A renewable resource?	×

Environmental notes

Technical ceramics that are used in the pure state, as AIN usually is, are very energy

Supporting information

Aluminum nitride

Design guidelines

Aluminum nitride is particularly unusual for its high thermal conductivity (among ceramics only beryllia, BeO, and diamond have higher values) combined with a high electrical resistance, low dielectric constant, good corrosion and thermal shock resistance. It is resistant to attack by molten metals, but is hydrolyzed slowly by water. Technical ceramics are formed by the following steps.(a) Pressing, isostatic pressing, powder extrusion (for bars and tubes) or powder injection molding (for intricate, high-volume parts).(b) Green-machining in the unfired state, using standard tools.(c) Firing or "sintering" typically at 1550 - 1700 C for 12 to 20 hours; the part shrinks by about 20%.(d) Diamond grinding to achieve tighter tolerance and surface finish: +/- 10 microns is achievable. The cost of a ceramic part is greatly increased if it has to be diamond-ground. Thus design for net-shape sintering, eliminating step (d) is highly desirable. The standard tolerance for as-fired dimensions is +/- 1% or 125 microns, whichever is greater.

Technical notes

Aluminum nitride is difficult to sinter when pure. To allow sintering between 1600 and 1900 C, additions of CaO or Y2O3 are made.

Typical uses

Microwave windows, insulators for specialty spark plugs and igniters, substrates and packaging for microcircuits, chip carriers, heat sinks, electronic and semiconductor components, windows, heaters, clamp rings, gas distribution plates.

Links	
Reference	
ProcessUniverse	
Producers	