# Homework #2 Assignment Spring 2018 - ECE 2195 Parallel Computer Architecture

**REMINDER:** This is an <u>INDIVIDUAL</u> assignment. All deliverables for this assignment must be original (not borrowed or revamped from the work of others).

### A. Sobel Filter

For this assignment, you will be implementing the Sobel filter for edge detection. Your MPI program will use the scatter-gather messaging pattern to parallelize this image processing application for gray-scale images. Sobel filter uses convolution and updates each pixel based on a weighted average across its neighboring pixels as shown below.





### Provided

- PGM image reader and writer functions
- Template sobel.c and Makefile
- Sample 860x860 PGM image input.pgm
- *Hint:* You only need to worry about the distribution of data between nodes and the bounds when performing convolution

## <u>Rules</u>

- Only rank 0 may use the PGM image reader and writer functions
- Use MPI Scattery and MPI Gathery for communication only
- Support arbitrary image dimensions and number of nodes
- Invocation: mpiexec -n \$NODES ./sobel \$IN \$OUT \$WIDTH \$HEIGHT
- This program should be able to build and run on the Center for Research Computing (CRC) cluster without any issues (e.g. compilation errors, segmentation faults, etc.)

### B. Performance

Using the program from **Part A**, you will measure the speedup of the program by plotting the execution times when varying the number of nodes (\$NODES) and data size (\$WIDTH and \$HEIGHT) on the CRC cluster.

Provide the following in a report:

- Plot #1: Use values of 1, 2, 4, 8, 16 for \$NODES scaling the provide image by x8
- Plot #2: Use scales of 1x, 2x, 4x, 8x, and 16x for the provided image width and heights, and keep \$NODES fixed at **8 nodes**
- Describe the speedup observed when varying processing power and data size

Hint: Imagemagick can resize images: convert -resize WxH! input.pgm input2.pgm

### **Deliverables**

- Completed sobel.c
- Plots and description in report.pdf