SAMPLING

UNIFORM SAMPLING
C/D, D/C (A/D, D/A)

A MATHEMATICAL MODEL OF SAMPLING

IMPULSE SAMPLING

ALIASING

EXPRESSING $X(e^{j\omega})$ IN TERMS OF $X_c(\Omega)$

NYQUIST-SHANNON SAMPLING THEOREM

RECONSTRUCTION OF A CT SIGNAL FROM A DT SIGNAL

DISCRETE-TIME PROCESSING OF CONTINUOUS-TIME SIGNALS

IMPULSE RESPONSES OF EQUIVALENT CT AND DT SYSTEMS

CHANGING THE SAMPLING RATE IN DISCRETE-TIME
RATE REDUCTION BY AN INTEGER FACTOR

RATE INCREASE BY AN INTEGER FACTOR

CHANGING THE SAMPLING RATE BY A NONINTEGER (RATIONAL) FACTOR

DIGITAL PROCESSING OF ANALOG SIGNALS

ANTI-ALIASING FILTER

ANALOG TO DIGITAL CONVERSION

QUANTIZATION

DIGITAL TO ANALOG CONVERSION

IMPULSE RESPONSES OF EQUIVALENT CT AND DT SYSTEMS

Does

$$y_r(t) = \hat{y}_r(t)$$

hold if

$$h[n] = h_c(nT)$$
 ?

Çiloğlu 1 Çiloğlu

Let's see, if

$$h[n] = h_c(nT)$$

$$\Rightarrow \qquad H\!\left(e^{j\omega}\right) = \frac{1}{T} \, \sum_{k=-\infty}^{\infty} H_c\left(\frac{\omega}{T} - k \, \frac{2\pi}{T}\right) \, .$$

Then, since

$$H_{eff}(\Omega) = \begin{cases} H(e^{j\Omega T}) & |\Omega| < \frac{\pi}{T} \end{cases}$$

If $H_c(\Omega)$ is bandlimited to $\frac{\pi}{T}$,

Çiloğlu

$$H_{eff}(\Omega) = \frac{1}{T} H_c(\Omega)$$

Therefore, upper and lower paths are equivalent, i.e. $y_r(t) = \hat{y}_r(t)$, if

$$h[n] = Th_c(nT)$$

2

Note that, it is assumed that $x_c(t)$ is bandlimited to $\frac{\pi}{r}$.

3 Çiloğlu

oělu 4

Ex:

$$h_c(t) = \frac{sin(\Omega_c t)}{\pi t}$$

If

$$h[n] = Th_c(nT)$$

$$= T \frac{\sin(\Omega_c T n)}{\pi T n}$$

$$= \frac{\sin(\Omega_c T n)}{\pi n}$$

$$= \frac{\sin(\omega_c n)}{\pi n}$$

Çiloğlu

Ex: Rational system functions

Let

$$H(s) = \frac{s+4}{s^2 + 5s + 6}$$
$$= \frac{2}{s+2} - \frac{1}{s+3}$$

for which

$$h(t) = 2e^{-2t}u(t) - e^{-3t}u(t)$$

$$H(\Omega) = \frac{j\Omega + 4}{-\Omega^2 + j5\Omega + 6}$$

 $H(\Omega)$ is not bandlimited!

Çiloğlu 6

Ex: The frequency response of a LTI discrete-time system is $H(e^{j\omega})=e^{-j\alpha\omega}$.

- a) Plot the magnitude, phase and phase delay $\left(-\frac{\angle H(e^{j\omega})}{\omega}\right)$.
- b) Find the impulse response of this system by carrying out the inverse DTFT.
- c) Plot the impulse response for $\alpha=3$.
- d) Plot the impulse repsonse for $\alpha=$ 3.5.

Çiloğlu

e) What is the impulse response g(t) so that $\frac{Y(e^{j\omega})}{X(e^{j\omega})} = e^{-j3.5\omega}$?

Comment on the results of part-d and part-e. (What is the function/purpose of the discrete time system whose frequency response is $e^{-j3.5\omega}$?)

a)
$$|H(e^{i\omega})|=1$$
 $\Delta H(e^{i\omega})=-\infty\omega$ $C_{ph}(\omega)=-\frac{\Delta H}{\omega}=\infty$

b)
$$\frac{1}{2\pi} \int_{-\pi}^{\pi} e^{j\kappa \omega} e^{j\omega \eta} d\omega$$

$$= \frac{1}{2\pi} \frac{1}{\pi(n-\kappa)} 2j \sin(\pi(n-\kappa))$$

$$= \frac{\sin(\pi(n-\kappa))}{\pi(n-\kappa)} e^{j\kappa \eta}$$

c)
$$\alpha=3$$
 $h[n]=8[n-3]$ $\frac{1}{3}$

e)
$$X(e^{i\omega}) \rightarrow X(e^{i\omega})$$
 $G(\Omega) \rightarrow X(e^{i\omega})$ $G(\frac{\omega}{r}) = Y(e^{i\omega})$
 $G(\frac{\omega}{r}) = e^{-j3.5\omega} = G(\Omega) = e^{-j3.5T}\Omega \Rightarrow g(1) = \delta(4-3.5T)$

Comment: $e^{-j3.5\omega}$ (system) yields an output which can be obtained by resampling the continuous-time counterpart of its input signal after allowing by 3.5T seconds.

CHANGING THE SAMPLING RATE IN DISCRETE-TIME

Problem Statement:

Given x[n]. Consider

$$x_c(t) = \sum_{n=-\infty}^{\infty} x[n]h_r(t - nT)$$

obtained from $\boldsymbol{x}[n]$ by bandlimited interpolation.

We wish to construct another discrete-time sequence y[n] such that

$$y[n] = x_c[nT']$$

Following examples may help to understand the rate change problem.

Find a discrete-time system to place into the grid box so that $x_2[n] = x_1[n]$.

OR

Note that $x_c(t)$ has to be bandlimited to

Çiloğlu

Çiloğlu 10

- We aim to do this in discrete-time, i.e., without generating $x_c(t)$ and resampling it with T', i.e., we want to obtain y[n] from x[n] by discrete-time processing.
- We will consider $\underline{rational} \frac{T'}{T}$ rate changes.
- To do so, first, we will study rate increase

$$\frac{T'}{T} < 1$$

and rate decrease

$$\frac{T'}{T} > 1$$

by integer factors, then by rational factors.

RATE INCREASE BY AN INTEGER FACTOR (INTERPOLATION)

$$T' = \frac{T}{L}$$
 L: positive integer, $L > 1$

Define

$$x_i[n] = x_c(nT')$$

$$x_e[n] = \sum_{k=-\infty}^{\infty} x[k] \, \delta[n - kL]$$

$$\begin{split} X_e \left(e^{j\omega} \right) &= \sum_{k=-\infty}^{\infty} x[k] \, e^{-j\omega kL} \\ &= X \left(e^{j\omega L} \right) \end{split}$$

Çiloğlu 14

13

15

Çiloğlu 16

So that

$$X_{l}(e^{j\omega}) = \frac{L}{T} \sum_{k=-\infty}^{\infty} X_{c} \left(\frac{L}{T}(\omega - k2\pi)\right)$$

as desired.

Çiloğlu

$$T' = MT$$
$$x_d[n] = x[Mn]$$

Çiloğlu 18

Now we will relate $\mathit{X}(e^{j\omega})$ and $\mathit{X}_{d}(e^{j\omega}).$

17

19

Çiloğlu

Let

$$x_c(t) \triangleq \sum_{n=-\infty}^{\infty} x[n]h_r(t-nT)$$

We know that

$$X(e^{j\omega}) = \frac{1}{T} \sum_{k=-\infty}^{\infty} X_c \left(\frac{1}{T} (\omega - k2\pi) \right)$$

since $x[n] = x_c(nT)$,

and

$$\begin{split} X_d \Big(e^{j\omega} \Big) &= \frac{1}{MT} \sum_{k=-\infty}^{\infty} X_c \left(\frac{1}{MT} (\omega - k2\pi) \right) \qquad (*) \\ &= \frac{1}{MT} \left(\dots + X_c \left(\frac{1}{MT} (\omega + 2\pi) \right) + X_c \left(\frac{\omega}{MT} \right) + X_c \left(\frac{1}{MT} (\omega - 2\pi) \right) \right. \\ &+ \dots \Big) \end{split}$$

Since $x_d[n] = x_c(nMT)$.

If M = 3

Here we have periodic extension of $X_c\left(\frac{\omega}{MT}\right)$ with period 2π .

Çiloğlu

21

Note that,

$$\frac{1}{M}X\left(e^{j\frac{\omega}{M}}\right) = \frac{1}{MT}\sum_{k=-\infty}^{\infty}X_{c}\left(\frac{1}{MT}(\omega - k2\pi M)\right) \tag{**}$$

$$= \frac{1}{MT}\left(\cdots + X_{c}\left(\frac{1}{MT}(\omega + 2\pi M)\right) + X_{c}\left(\frac{\omega}{MT}\right) + X_{c}\left(\frac{1}{MT}(\omega - 2\pi M)\right) + \cdots\right)$$

Here we have periodic extension of $X_c\left(\frac{\omega}{MT}\right)$ with period $2\pi M$.

Comparing (*) and (**)

$$X_d(e^{j\omega}) = \frac{1}{M} \sum_{k=0}^{M-1} X\left(e^{j\left(\frac{\omega}{M} - k\frac{2\pi}{M}\right)}\right)$$

Çiloğlu 22

Therefore, to avoid aliasing, before M-fold sampling rate reduction, an ideal lowpass filter having a cutoff frequency of $\frac{\pi}{M}$ has to be used!

Note that if x[n] is not bandlimited to $\frac{\pi}{M}$, anti-aliasing filter causes distortion. However this is preferred against aliasing.

Another way to relate $\mathit{X}(e^{j\omega})$ and $\mathit{X}_d(e^{j\omega})$

Consider

$$x_d[n] \longrightarrow \widehat{\chi}[n]$$

Let

$$\begin{split} \hat{x}[n] &\triangleq x[n] \; \left(\sum_{k=-\infty}^{\infty} \delta[n-kM] \right) \\ &= x[n] \; \left(\frac{1}{M} \sum_{p=0}^{M-1} e^{jp \frac{2\pi}{M} n} \right) \end{split}$$

$$\hat{X}(e^{j\omega}) = \frac{1}{M} \sum_{p=0}^{M-1} X\left(e^{j\left(\omega - p\frac{2\pi}{M}\right)}\right)$$

$$\begin{split} X_d \left(e^{j\omega} \right) &= \hat{X} \left(e^{j\frac{\omega}{M}} \right) \\ &= \frac{1}{M} \sum_{p=0}^{M-1} X \left(e^{j\left(\frac{\omega}{M} - p\frac{2\pi}{M}\right)} \right) \end{split}$$

 $\hat{X}\!\left(e^{j\omega}\right) = X_d\!\left(e^{jM\omega}\right)$

Çiloğlu 25

CHANGING THE SAMPLING RATE BY A NONINTEGER (RATIONAL) FACTOR

 $\underline{\sf First}$ upsample (interpolate) by a factor of L, $\underline{\sf then}$ downsample (decimate) by a factor of M.

Priority of upsampling is important!

Çiloğlu 26

 $\label{eq:local_local} \mbox{If} \ \ \, \frac{L}{M} > 1 \mbox{, sampling rate is increased.}$ $\mbox{If} \ \ \, \frac{L}{M} < 1 \mbox{, sampling rate is decreased.}$

In either case, upsampling must be performed first!

Otherwise, x[n] has to be bandlimited to $\frac{\pi}{M}$ although

no bandlimit is required for $\frac{L}{M} > 1$

or

a bandlimit of $\frac{\pi L}{M}$ is sufficient for $\frac{L}{M} < 1$.

Ex: Let L = 5 and M = 3

Since sampling rate is increased, no bandlimit is required.

Assume that the input has the following spectrum,

Çiloğlu 29

Çiloğlu 30

Ex: Let L=3 and M=5

This time, SR is decreased so x[n] has to be bandlimited to $\frac{3\pi}{5}$, otherwise aliasing distortion occurs.

Assume that the input has the following spectrum,

On the other hand, if downsampling is performed first Rate change is achieved, however, signal is distorted. END OF THE EXAMPLE

DIGITAL PROCESSING OF ANALOG SIGNALS

ANTI-ALIASING FILTER

Anti-aliasing filter is a lowpass filter with a cutoff frequency of

$$\frac{\pi}{T} = \frac{\Omega_s}{2}$$

Ideal filter characteristic cannot be achieved in practice. The distortion of the nonideal filter can be be taken into account in DT system design.

> Çiloğlu 34

ANALOG TO DIGITAL CONVERSION

Çiloğlu

33

Zero order hold produces

$$x_0(t) = \sum_{n=-\infty}^{\infty} x_c(nT)h_0(t - nT)$$

where

Çiloğlu

 Δ : quantization level $2 \, X_m$: dynamic range

$$\Delta = \frac{2X_m}{2^{B+1}}$$

Çiloğlu

$$X_{B} = \begin{cases} 011 & \frac{5\Delta}{2} \leq X_{0} \\ 010 & \frac{3\Delta}{2} \leq X_{0} < \frac{5\Delta}{2} \\ 001 & \frac{\Delta}{2} \leq X_{0} < \frac{3\Delta}{2} \\ 000 & -\frac{\Delta}{2} \leq X_{0} < \frac{\Delta}{2} \\ 111 & -\frac{3\Delta}{2} \leq X_{0} < -\frac{\Delta}{2} \\ 110 & -\frac{5\Delta}{2} \leq X_{0} < -\frac{5\Delta}{2} \\ 101 & -\frac{7\Delta}{2} \leq X_{0} < -\frac{7\Delta}{2} \\ 100 & X_{0} < -\frac{7\Delta}{2} \end{cases}$$

Çiloğlu 38

Figure 4.57 Example of quantization noise. (a) Unquantized samples of the signal $x[n]=0.99\cos(n/10)$.

Figure 4.57 (continued) (b) Quantized samples of the cosine waveform in part (a) with a 3-bit quantizer. (c) Quantization error sequence for 3-bit quantization of the signal in (a). (d) Quantization error sequence for 8-bit quantization of the signal in (a).

DIGITAL TO ANALOG CONVERSION

37

Çiloğlu 39

$$\bar{x}(t) = \sum_{n=-\infty}^{\infty} x[n]h_0(t - nT)$$

$$\bar{X}(\Omega) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\Omega nT}H_0(\Omega)$$

$$\sum_{n=-\infty}$$

$$= X(e^{j\Omega T})H_0(\Omega)$$

$$H_0(\Omega) = \frac{\sin\left(T\frac{\Omega}{2}\right)}{\frac{\Omega}{2}}e^{-j\frac{\Omega T}{2}}$$

Çiloğlu 41

Therefore (compensated) reconstruction filter can be specified as

$$\begin{split} \widetilde{H}_r(\Omega) &= \frac{H_r(\Omega)}{H_0(\Omega)} \\ &= \left\{ \begin{array}{cc} &\frac{T\frac{\Omega}{2}}{\sin\left(\frac{\Omega T}{2}\right)} e^{j\frac{\Omega T}{2}} & |\Omega| < \frac{\pi}{T} \\ &0 & otherwise \\ \end{array} \right. \end{split}$$

Çiloğlu 42

$$\begin{split} \mathbf{Ex:} & \quad x_{c}(t) \! = \! \cos\!\left(\!\Omega_{0}t\right) \\ & \quad X_{c}(\Omega) \! = \! \pi \, \delta\!\left(\!\Omega \! - \! \Omega_{0}\right) \! + \! \pi \, \delta\!\left(\!\Omega \! + \! \Omega_{0}\right) \end{split}$$

If $x_c(t)$ is sampled with sampling period T.

$$\Rightarrow x[n] = \cos(\Omega_0 T n)$$

$$= \cos(\omega_0 n)$$

$$X(e^{j\omega}) = \pi \delta(\omega - \Omega_0 T) + \pi \delta(\omega + \Omega_0 T) \qquad \text{in } (-\pi, \pi]$$
(1)

and periodic with 2π .

Or we can use,

$$\begin{split} X\left(e^{j\omega}\right) &= \frac{1}{T}\sum_{k=-\infty}^{\infty}X_{c}\left(\frac{\omega}{T}-k\frac{2\pi}{T}\right) \\ &= \frac{1}{T}\sum_{k=-\infty}^{\infty}\pi\,\delta\!\left(\frac{\omega}{T}-k\frac{2\pi}{T}-\Omega_{0}\right) + \frac{1}{T}\sum_{k=-\infty}^{\infty}\pi\,\delta\!\left(\frac{\omega}{T}-k\frac{2\pi}{T}+\Omega_{0}\right) \\ \delta\!\left(\frac{\omega}{T}-k\frac{2\pi}{T}-\Omega_{0}\right) &= \delta\!\left(\frac{1}{T}(\omega-k2\pi-\Omega_{0}T)\right) = T\delta\!\left(\omega-k2\pi-\Omega_{0}T\right) \\ &= \sin \left(\delta\left(\omega\omega\right) = \frac{1}{|\omega|}\delta\!\left(\omega\right) \end{split}$$

Therefore

$$X(e^{j\omega}) = \sum_{k=-\infty}^{\infty} \pi \delta(\omega - k2\pi - \Omega_0 T) + \sum_{k=-\infty}^{\infty} \pi \delta(\omega - k2\pi + \Omega_0 T)$$
(2)

Obviously, (1) and (2) are the same.

a) Let
$$\begin{aligned} &\Omega_0 = 2000\pi \\ &T = 0.25 \text{ ms} \end{aligned} \qquad \begin{array}{c} (1 \text{ kHz}) \\ (4 \text{ kHz}) \end{aligned} \qquad \Rightarrow \Omega_0 T = \frac{\pi}{2} \end{aligned}$$

$$X(e^{j\omega}) = \sum_{k=-\infty}^{\infty} \pi \delta \left(\omega - k2\pi - \frac{\pi}{2}\right) + \sum_{k=-\infty}^{\infty} \pi \delta \left(\omega - k2\pi + \frac{\pi}{2}\right)$$

$$\xrightarrow{A} X(e^{j\omega}) \xrightarrow{A} X(e^{j\omega})$$

$$\xrightarrow{A} X(e^{j\omega}) \xrightarrow{A} X(e^{j\omega})$$

 $\Rightarrow \Omega_0 T = \pi$

Çiloğlu

 $\Omega_0 = 2000\pi$

b) Let

43

(1 kHz)

c) Let $\begin{array}{ccc} \Omega_0 = 2000\pi & (1 \text{ kHz}) \\ T = 1 \text{ ms} & (1 \text{ kHz}) \end{array} \Rightarrow \Omega_0 T = 2\pi$

 $X\left(e^{j\omega}\right) = \sum_{k=-\infty}^{\infty} \pi \delta(\omega - k2\pi - 2\pi) + \sum_{k=-\infty}^{\infty} \pi \delta(\omega - k2\pi + 2\pi) \quad \left(= \sum_{k=-\infty}^{\infty} 2\pi \delta(\omega - k2\pi)\right)$

Indeed, in this case x[n]=1. (Reconstruction at any T yields a cont-time DC!)

d) Let $\Omega_0 = 2000\pi \qquad (1 \text{ kHz})$ $T = \frac{1}{300} \text{ s} \qquad (300 \text{Hz})$ $\Rightarrow \Omega_0 T = \frac{20}{3} \pi = \left(6 + \frac{2}{3}\right) \pi$

$$X\!\left(\!e^{j\omega}\right)\!=\sum_{k=-\infty}^{\infty}\pi\delta\!\left(\omega-k2\pi-\frac{20}{3}\pi\right)\!+\sum_{k=-\infty}^{\infty}\pi\,\delta\!\!\left(\omega-k2\pi+\frac{20}{3}\pi\right)$$

END OF THE EXAMPLE

Çiloğlu 45

What do you get if you reconstruct at 300 Hz.?

Çiloğlu 46

Çiloğlu

 $\Omega_0 = 2000\pi$

c) Let T = 1 ms

(1 kHz)

(1 kHz)

 $\Rightarrow \Omega_0 T = 2\pi$

 $X_C(f_S\omega)$

 $X(e^{j\omega})$

Çiloğlu