LaPIS Diagnostic Test Workbook - Mathematics

Name: Boopesh R

Class: 7

Section : B

School : AKV Public School

Login ID : AKV134

Boopesh R's Performance Report

Score: 18/40 Percentage: 45.0%

Boopesh R's Study Planner

Date	Topics Planned	Q. Numbers	Teacher Remark	Teacher Sign	Parent Sign
		Teacher's Fe	edback to Student		
				ipal Signature	

Basic arithmetic

Topics to be Improved		
Types of angles	Identification of types of angles	

Hi, here in this video you will learn Types of Angles

Question: 1

Find the angles.

Answer:

The angle ranges from $__$ ° to $__$ °.

The angle perpendicular to 0° is $___^{\circ}$.

The straight line measures $__$ °.

Question: 2

The angle formed between the directions

(i) West and East is _____ angle.

(ii) North and East is angle.
(iii) East and South is angle.
Answer:
The angle formed between West and East is° and it is called angle.
The angle formed between North and East is° and it is called angle.
The angle formed between East and South is° and it is called angle.
Question: 3
The addition of straight angle and right angle is angle.
Answer:
The measurement of straight angle is°
The measurement of right angle is°.
Straight angle + Right angle = + = =
It is called as angle.

Mensuration

Topics to be Improved		
Area	Area of rectangle	

Hi, here in this video you will learn Area

Question: 4

Find which of the shaded portion in the given shape represent it's area.

.....

......

Answer:

Given figure is ______ in shape.

Area is the _____ (inside/ outside/ boundary) of a shape.

Question: 5

Find the area of a rectangular garden whose dimension is 25 ft in length and 20 ft in breadth.

Answer:

The garden is in _____ shape.

Length of garden is _____ and breadth of garden is _____.

Formula for area of the shape = $\underline{\hspace{1cm}}$.

The area of garden = ___ x ___ = __ cm^2

 $\underline{Question \colon \ 6}$

Shade the possible dimension of the door whose area is 500 m^2

$$50~m~\times~10~m$$

$$\boxed{25 \ m \ \times \ 25 \ m}$$

.....

Answer:	A	ns	w	er	•
---------	---	----	---	----	---

Door is _____ in shape. Area of the ____ shaped door is ____.

Dimensions	Length	Breadth	Area
$50 \text{m} \times 10 \text{m}$			
$25\text{m} \times 25\text{m}$			
$25m \times 20m$			
$30 \text{m} \times 20 \text{m}$			

Therefore, possible dimension of the door whose area is 500 m^2 is/are _____

Data handling

Topics to be Improved		
Arithmetic mean, mode and median	Mean, Median and Mode	
Chance of probability	Sample space in probability	

Hi, here in this video you will learn Mean, Median, Mode

Question: 7

Find the mode of the following data: 5, 15, 23, 5, 32, 44, 72, 55, 6, 3, 5, 65, 45, 67, 24, 19 and 98.

Answer:

Mode is the number that occurs _____ (frequently / rarely) in a given list of observations. Arranging the data in ascending order: _____

____ occurs most number of times. Then, mode of the given data is _____

Question: 8

Which shape contains median of the given data 3, 5, 6, 2, 7, 9, 6, 4 and 1

......

Answer:

Median is the _____(first/central/last) value of a data when the data is arranged in ascending or descending order.

Arrange the given data in ascending order: _____ Central value of the given data is ______ and it is the _____ of a data.

Question: 9

Marks scored	100	90	80	70
Number of students	4	5	2	1

 $Mean = \underline{\hspace{1cm}}$, $Median = \underline{\hspace{1cm}}$ and $Mode = \underline{\hspace{1cm}}$.

4	nswer	
71	.iiswei .	•

 $Mean = \frac{\text{ of all observation}}{\text{ number of observation}}.$

Here s sum of all observation = $___$, number of observation = $___$

Therefore, mean = _____

Arrange the data in ascending order:

Here, $median = \underline{\hspace{1cm}}$, $mode = \underline{\hspace{1cm}}$.

Hi, here in this video you will learn Basics of probability

Question: 10

Which of the following contains list of all possible outcomes.

Probability

Sample space

Sure events

.....

......

Impossible events

Answer:

Probability is the measure of _____ (chance /number) of an events happenings.

Sample space consists of _____ (possible/ impossible) outcomes.

Sure events always _____ (occurs/don't occurs).

Impossible events _____ (occurs/ don't occurs).

Therefore, _____ contains list of possible outcomes.

Question: 11

Write the possible outcomes while spinning the given wheel.

Answer:

Outcomes are (possible/impossible) results of an experiment.
The possible outcomes while spinning wheel are ₹0, ₹10,
Question: 12
A bag contains three balss of colour blue, green and red. Write the possible outcomes if two balls are taken out.
Answer:
A bag contains, and balls.
If one of the ball is blue in colour, then other ball can be or
If one of the ball is green in colour, then other ball can be or
If one of the ball is red in colour, then other ball can be or
Therefore, if two balls are taken out then possible outcomes are blue $+$,

Geometry

Topics to be Improved		
Criteria for congruence of triangle	Idenfication of criteria of congruence of triangles	
Transversal angle made by transversal	Basics of Transversal angle	
Related angles	Basic of angles	
Angle sum property of triangle	Angle sum property of triangle	
Right angle triangle and pythagoras property	Basics of Pythagoras property	

Hi, here in this video you will learn Criteria of congruence

Question: 13	
--------------	--

Circle the groups that contain congruent images.

.....

Answer:

Two geometrical shapes are said to be congruent if they are _____ (identical/non-identical) in shapes and size.

Example: Square and Rectangle are ______ (congruent/not congruent).

Question: 14

If the three sides of the triangle are equal to the corresponding sides of the other triangle, then two triangles are congruent under _____ (SSS/ASA/SAS) criteria .

Answer:

Two triangle are _____ (congruent/not congruent) if they are identical in shapes and size. Criteria for congruence of triangles are SSS, _____ and ____.

1. In SSS Congruence criteria - (2/3/5) sides of the triangle are (equal/1) not equal) to the three corresponding sides of the other triangle.

- 2. In SAS Congruence criteria (2/3/5) sides and (one/two) angle between them are equal to the corresponding sides and the included angle of the other triangle.
- 3. In ASA Congruence criteria (2/3/5) angles and (one/two) side between them are equal to the corresponding angles and the included side of the other triangle.

SSS	sides and angles are equal
SAS	sides and angles are equal
ASA	sides and angles are equal

Question: 15

The triangles LNM and PRQ are congruent by SAS criteria. Then find the side PR

 $\underline{Answer:}$

The given two triangles satisfy ______ criteria of congruence. By SAS congruence criteria, MN = _____, ___ and $\angle N$ = _____ The side MN=8 cm in ΔLNM is equal to the side _____ in ΔPRQ The common included angle in Δ LNM and ΔPRQ are _____ The side PR is equal to the side in _____ ΔLNM . Therefore, length of side PR = _____

Hi, here in this video you will learn Basics of Transversal angle

 $Question: \ 16$

Answer:

A line that intersects two or more lines at distinct points is called a _____ (transversal/Intersecting line).

Angle that lies on different vertices and on the opposite sides of transversal is _____ angles.

Angle that lies on different vertices and on the same sides of transversal is _____ angles. Therefore, $\angle 1$ and $\angle 7$ are _____

Question: 17

Find the transversal, alternate angles and corresponding angles in a given diagram.

Answer:

A line that intersects two or more lines at distinct points is called a _____ (transversal/Intersecting line).

In a given diagram, _____ is a transversal line. (BF/AD/CE)

Alternate angles	Corresponding angles		
$\angle a$ and $\angle g$, $\angle b$ and $\angle h$,	\angle a and \angle e, \angle b and \angle f,		

Question: 18

Find $\angle e$ and $\angle g$ if $\angle a = 30^{\circ}$.

Answer:

When parallel lines cut by a transversal,

- (i) Alternate angles are _____ (equal / not equal).
- (ii) Corresponding angles are _____ (equal / not equal).

Here, alternate angle of $\angle a$ is _____ and its value is ____. Corresponding angle of $\angle a$ is _____ and its value is _____.

Hi, here in this video you will learn Related Angles

Question: 19

- (i) When two rays of an angle are perpendicular, then the angle formed between them is a $\underline{\hspace{1cm}}$ angle .
- (ii) When two rays of an angle are in opposite sides, then the angle formed between them is a _____ angle .

Answer:

A _____ (line segment /ray) begins from one point and travels endlessly in a direction.

- (i) The angle formed between two perpendicular rays is ____° and it is called _____ angle.
- (ii) If two rays starting at same point moves in opposite direction, they form a ______ (straight / perpendicular) line. The measure of the angle formed is _____ and it is called _____ angles.

Question: 20

Find the angle of $\angle DBE$

Answer:

BA and BC are _____ (parallel / perpendicular) rays. The angle formed between this rays is ____, $\angle ABC$ = ____.

$$\angle ABC = \angle ABE + \underline{\hspace{1cm}} + \underline{\hspace{1cm}}$$

$$= 30^{\circ} + \underline{\hspace{1cm}} + \underline{\hspace{1cm}}$$

$$= \underline{\hspace{1cm}}$$
Therefore, $\angle DBE = \underline{\hspace{1cm}}$

.....

Question: 21

Find the complementary angles in the given diagram.

Answer:

Two angles are said be complementary if sum of their angles is equal to _____.

 $\angle AOB =$ ______, and its complement angle is ______.

 $\angle BOC = \underline{\hspace{1cm}}$, and its complement angle is $\underline{\hspace{1cm}}$.

 $\angle COD =$ _____, and its complement angle is _____.

 $\angle DOE =$ ______, and its complement angle is ______.

Therefore, in the given figure the complementary angles are $\angle AOB$, _____ and $\angle BOC$, _____

Hi, here in this video you will learn Angle sum property

Question: 22

Sum of the angles of triangle is _____.

.....

 $\underline{Answer:}$

$$\angle A + \angle B + \angle C = \underline{\hspace{1cm}}$$

Angle sum formula = $(n-2) \times 180^{\circ}$, n = number of sides

Triangle has _____ sides.

Sum of the angles of triangle = $(\underline{} - 2) \times 180^{\circ} = \underline{}$

Question: 23

Which of the following triangle satisfy the angle sum property.

.....

Answer:

Angle sum property of triangle: sum of the angles of a triangle is ____

In $\triangle ABC$, Sum of the angles $= \angle A + \angle B + \angle C = \underline{\hspace{1cm}} = \underline{\hspace{1cm}}$

In $\triangle PQR$, Sum of the angles = _____ = ____ = ____

In $\triangle KLM$, Sum of the angles = _____ = ____ = ____

In $\triangle XYZ$, Sum of the angles = _____ = ___ = ____

Therefore, the triangles that satisfy the angle sum property are = $_$

...... Question: 24

Find the angles of triangle, if their angles are in the ratio 8:6:4.

Answer:

Ratio of angles in the triangle is _____

Let's consider the angles of triangle be 8x, ___ and ___

We know sum of the angles of a triangle is ____

Therefore, $8x + \underline{\hspace{1cm}} + \underline{\hspace{1cm}} = 180^{\circ}$. The value of $x = \underline{\hspace{1cm}}$

The angles of the triangle are _____

Hi, here in this video you will learn Pythagoras property

Question: 25

In a right angled triangle, square of the _____ = sum of the squares of the legs.

Answer:

Pythagoras theorem is only applicable for ______ triangle.

Longest side of the triangle is ______ (hypotenuse/ legs) and other two sides are called _____ (hypotenuse/ legs).

Pythagoras theorem states that ______

Question: 26

Find the hypotenuse of the triangle ABC if base is 12 m and altitude is 5 m.

Answer:

Pythagoras theorem states that square of the _____ = sum of the squares of its

Given: Base = _____, Altitude = _____,

Base and altitude are _____ (hypotenuse/legs) of the triangle.

Therefore, hypotenuse of the triangle is _____.

Question: 27

Find the length of the rectangle, if breadth is 3 cm and diagonal is 5 cm.

Answer:

Pythagoras theorem states that square on the $\underline{\hspace{1cm}}$ = sum of the squares on
Is Pythagoras theorem applicable in rectangle? (yes/ no). Given: breadth =, length of diagonal =
By Pythagoras theorem, $()^2 = ()^2 + ()^2$ = +
Therefore, diagonal of the rectangle is

Number system

Topics to be Improved		
Integers	Basics of integers	
Fractions	Multiplication of fractions, Division of fraction	
Operations on rational numbers	Subtraction of rational numbers, Division of rational numbers	
Decimals	Multiplication and division of decimals	
Positive and negative rational numbers	Identification of positive rational numbers	

Hi, here in this video you will learn Basics of integers

Question: 28

Highlight the ring that contains whole numbers.

......

Answer:

The numbers inside the inner ring $(1, 2, 3, \ldots)$ are _____ numbers.

The numbers inside the middle ring are _____ numbers.

The numbers inside the outer ring are negative numbers, positive numbers and zero and they are called as ______.

Question: 29

Colour the frame of the box which contains the number 1, 4 and -10

Whole numbers

Negative numbers

Integers

.....

Naturals numbers

4	ns	211	er	
71	เบอ	\boldsymbol{w}	C1	•

Whole number consists of 0,1,2,3,4,... Negative number consists of _______. Natural numbers consists of ______.

Now, 1, 4, -10 are in _____

Question: 30

State whether the statement is true or false.

Every positive number is an integer.

Answer:

Positive numbers are ______. Integers consists of ______.

Therefore, positive numbers are _____ (in/not in) integers.

Hi, here in this video you will learn Multiplication on fractions

Question: 31

Fill the boxes

$$2 + 4 + \frac{6}{2} = \frac{2}{\Box} + \frac{4}{\Box} + \frac{3}{\Box} = \frac{\Box}{\Box} = 9$$

.....

Answer:

The whole number can be expressed in fraction with denominator equal to $___$ (zero/one).

Therefore, 2 can be written as _____ in fraction.

4 can be written as _____ in fraction.

$$2 + 4 + \frac{6}{2} = \frac{2}{1} + \frac{4}{\square} + \dots = \frac{2}{1} + \frac{4}{\square} + \frac{3}{\square} = \frac{\square}{\square} = 9$$

Question: 32

There are 400 students in a school. Find the number of girls, if three sixteenth of the students are girls.

Answer:

Total number of students = $_$

Fraction of students who are girls = _____

Number of girls = \times = = =

Question: 33

Solve : $2\frac{7}{4} \times \frac{2}{3}$

Answer:

 $2\frac{7}{4}$ is a _____ (proper / mixed) fraction. Here, 2 is ____ , 7 is ____ and 4 is ____

To convert mixed fraction into improper fraction, $\frac{\text{(Whole} \times \underline{\hspace{1cm}}) + \text{Numerator}}{\text{Denominator}}$ Improper fraction of $2\frac{7}{4} = \underline{\hspace{1cm}}$

$$2\frac{7}{4} \times \frac{2}{3} = \boxed{ } \times \frac{2}{3} = \boxed{ }$$

Hi, here in this video you will learn **Operation on rational numbers**

Question: 34

Solve: $\frac{-3}{3} + \frac{1}{3}$

Answer:

Fractions with same denominators are called ______ (like/ unlike) fractions. Fraction can be added only if they are ______ (like/ unlike) fractions.

$$\frac{-3}{3} + \frac{1}{3} = \frac{}{} =$$

Question: 35

Find the addition of shaded part of box A and shaded part of box B.

Answer:

Total number of square in box $A = \underline{\hspace{1cm}}$.

Number of shaded square in box $A = \underline{\hspace{1cm}}$

Shaded part of box A in fraction = _____

Total number of square in box $B = \underline{\hspace{1cm}}$.

Number of shaded square in box $B = \underline{\hspace{1cm}}$.

Shaded part of box \hat{B} in fraction = $\underline{\hspace{1cm}}$.

Shaded part of box A + Shaded part of box B = $___$ + $___$ = $___$

Question: 36

Find the missing values in the given figure.

Answer:

Given: $1 = \frac{7}{10} + \underline{\hspace{1cm}}$ Transposing $\frac{7}{10}$ to other sides, $1 = \frac{7}{10} = \underline{\hspace{1cm}}$ Therefore, result is $\underline{\hspace{1cm}}$.

Hi, here in this video you will learn **Operation on rational numbers**

Question: 37

Fill in the boxes to make the given expression correct.

$$\frac{1}{5} \div \frac{14}{15} = \frac{1}{\square} \times \boxed{\square}$$

Answer:

When any fraction is divided by a fraction, we multiply the dividend by the ______ (same/reciprocal) of the divisor.

Here, dividend = _____ and divisor = ____

$$\frac{1}{5} \div \frac{14}{15} = \frac{1}{\square} \times \square = \square$$

Question: 38

Solve: $\frac{18}{7} \div 0.6$

Answer:

Fraction form of $0.6 = $, when any fraction is divided by a fraction, we multiply the dividend by the (same/reciprocal) of the divisor. Here, dividend = and divisor =					
$\frac{18}{7} \div \boxed{\square} = \frac{18}{7} \times \boxed{\square} = \boxed{\square}$					
Question: 39					
Find the missing number in the expression $\frac{8}{3} \div \frac{16}{\Box} = 2$					
Answer:					
$\frac{8}{3} \div \frac{16}{\square} = 2$ $\frac{8}{3} \times \frac{\square}{16} = 2$ Transposing 8/3 to RHS, $\frac{\square}{16} = 2 \square \frac{8}{3}$ $\frac{\square}{16} = 2 \times \square$ $\frac{\square}{16} = \square$					
Transposing 16 to other side, the result is					
Hi, here in this video you will learn Basics of decimals					
Question: 40					
Shade 0.4 part of the given shape.					
Answer:					
There are boxes.					

	an be expressed as in fraction
	fraction represents parts out ofequal parts.
So, w	ve need to shade boxes out ofboxes.
Que	stion: 41
Solve	e the following.
(i)	0.4 imes 1.2
(ii)	0.48×1.2
\underline{Ans}	wer:
	$\begin{array}{c} 0.4\times1.2:\\ \text{Multiplication of } 0.4\times1.2 \text{ assuming there is no decimal point is } \underline{\hspace{1.5cm}} .\\ \text{The number of digits after decimal point in } 0.4 \text{ is } \underline{\hspace{1.5cm}} \text{ and } 1.2 \text{ is } \underline{\hspace{1.5cm}} .\\ \text{Total digits after decimal point in the product of two numbers is } \underline{\hspace{1.5cm}} .\\ \text{Count that digits from the right towards left and place the decimal point, the result is } \underline{\hspace{1.5cm}} .\\ \text{0.48}\times1.2:\\ \text{Multiplication of } 0.48\times1.2 \text{ assuming there is no decimal point is } \underline{\hspace{1.5cm}} .\\ \text{The number of digits after decimal point in } 0.48 \text{ is } \underline{\hspace{1.5cm}} \text{ and } 1.2 \text{ is } \underline{\hspace{1.5cm}} .\\ \text{Total digits after decimal point in the product of two numbers is } \underline{\hspace{1.5cm}} .\\ \text{Count that digits from the right towards left and place the decimal point, the result is } \underline{\hspace{1.5cm}} .\\ \end{array}$
Que	stion:~42
One	box of chocolate costs Rs.20.10. What is the cost of 15 chocolates, if a box contains 10 plates?
Ans	wer:
	box contains chocolates. The cost of one box is a cost of one chocolate = ÷ =
(i)	Total digits after decimal point in decimal number =
(ii)	Divide the two numbers assuming there is no decimal point.
	$\frac{2010}{15} = $
	15
(iii)	Place the decimal point after digits counting from the right in the quotient after division.

The cost of 15 chocolates = cost of one chocolate \times ____ = __ x ___ = __

Hi, here in this video you will learn Division on fractions

Question: 43

Find the shape which contains the improper fraction of $5\frac{2}{7}$.

.....

.....

......

Answer:

 $5\frac{2}{7}$ is a _____ (proper/mixed) fraction. Here, 5 is _____ , 2 is ____ and 7 is _____.

To convert mixed fraction into improper fraction, $\frac{(\text{Whole} \times \underline{\hspace{1cm}}) + \text{Numerator}}{Denominator})$

$$5\frac{2}{7} = \frac{(\times) + \underline{}}{7} = \frac{\square}{\square}$$

Question: 44

Solve: $\frac{1}{3} \div \frac{14}{3}$

Answer:

To divide a fraction by another fraction, multiply the dividend by _____ (same / reciprocal) of the divisor. Here, dividend = and divisor = and =

$$\frac{1}{3} \div \frac{14}{3} = \frac{1}{3} \times \square = \square$$

Question: 45

Find the half of the fraction $\frac{12}{40}$.

Answer:

To find half of a number, divide the number by _____

$$\frac{12}{40} \div \underline{} = \frac{12}{40} \times \underline{} = \underline{}$$

Thon	+ha	o to creation	;	
1 nen	une	answer	$_{1S}$	

Hi, here in this video you will learn Positive and Negative rational numbers

Question: 46

Segregate positive and negative rational number.

Answer:

•	If both the numerator and the denominator of a rational number are
	(positive/negative), then it is positive rational number.

•	If either the numerator and the denominator of a rational number are negative,	then i	it is
	(positive/negative) rational number.		

In the given circle, positive rational numbers are _____ and negative rational numbers are

...... Question: 47

 $\frac{-3}{-4}$ is a _____ (positive /negative / neither positive nor negative) rational number.

Answer:

-3 is a _____ number, -4 is a _____ number. Division of $\frac{-3}{-4} = \boxed{}$ and this ____ rational number.

(Positive / Negative / Neither positive nor negative rational number)

Question: 48

The product of a positive rational number and a negative rational number is _____ rational number. (Positive/ Negative/ neither positive nor negative)

Answer:

Examples for positive rational numbers:

Examples for negative rational numbers:Positive rational number × Negative rational number =	¥	_	and this is
rational number	^		

Comparing Quantities

Topics to be Improved

Conversion of fraction into percentage

Conversion of fraction into percentage

......

Hi, here in this video you will learn Converting fraction into percentage

Question: 49

Complete the box in the given equation.

$$5\% = \frac{5}{}$$

Answer:

Percentage are the fraction with the denominator _____.

Therefore, 5% can be expressed as _____

......

Question: 50

Mark the correct conversion form of fraction $\frac{1}{2}$ to percentage.

(i)
$$\frac{1}{2} \times \frac{50}{50} = \frac{50}{100} = 50\%$$

(ii)
$$\frac{1}{2} \times \frac{100}{100} = \frac{100}{200} = 200\%$$

(iii)
$$\frac{1}{2} \times 100 = \frac{100}{2} = 50\%$$

Answer:

To convert fraction into percentage, the value of ______ (denominator / numerator)should be 100 or _____ (multiply / divide) the fraction with 100 %.

Therefore, correct conversion form is _____

Question: 51

Find the percentage of shaded part of square.

Answer:			
The square shape is divided into Number of shaded part of square		parts.	
Shaded part of square in fractio	n is		
To Convert i	into percentage,		x 100

Algebra

Topics to be Improved			
Monomials, binomials, trinomials and polynomials	Types of algebraic expression		
Basics of simple equation	Formating of simple equation, Solving of simple equation		
Addition and subtraction of algebraic expressions	Like terms and Unlike terms		
subtraction of algebraic expressions	subtraction of algebraic expressions		

Hi, here in this video you will learn T_{i}	ypes of expression
---	--------------------

Question:	<i>52</i>
Question:	02

There are _____ terms in the expression 7x + 3y + m + 5.

Answer:

In algebraic expression, _____ (variables/ terms) are connected together with operations of addition.

.....

......

The terms in the expression are ______, _____, and ______.

Therefore, there are ______ terms in the expression.

$\underline{Question: 53}$

Classify the following expression into monomial, binomial and polynomial.

- 1. 7m + n + 2
- 2. $8x^2 + 0$
- 3. 7xy + 4m

Answer:

- 1. The terms in expression $8x^2 + 0$ are _____. Here, expression has _____ term and it is a _____.
- 2. The terms in expression 7xy + 4m are _____. Here, expression has _____ term and it is a _____.
- 3. The terms in expression 7m + n + 2 are _____. Here, expression has ____ term and it is a _____.

Question: 54	
$5m^2 + m + 0$ is a expression. (Monomial/ Binomial/ Trinomial)	
Answer:	
The terms in expression $5m^2 + m + 0$ are	
Here, the expression has terms and it is called a exp	oression.
Hi, here in this video you will learn Solving an equation using application	
Question: 55	
Box A Box B	
Box B contains times the number of chocolates in Box A	
Answer:	
Box A contains chocolates. Box B contains chocolates. No. of chocolates in Box B = × (No. of chocolates in Box A)	
Question: 56	
Write the equation for the following statement. Subtracting four times of m from 4 is n	
Answer:	
Four times of $m = \underline{\hspace{1cm}}$ Subtracting four times of m from $4 = \underline{\hspace{1cm}}$	
The equation is	
Question: 57	
Compare the given two statements $(<,>,=)$ Sum of $2a$ and 9 Add 9 to the product of a and 2	
$\underline{Answer:}$	

Sum of $2a$ and $9 = \underline{\hspace{1cm}}$ Product of a and $2 = \underline{\hspace{1cm}}$ Add 9 to the product of a and $2 = \underline{\hspace{1cm}}$
Therefore, sum of $2a$ and $9 \square$ Add 9 to the product of a and 2
Hi, here in this video you will learn Addition on expression
Question: 58
Shade the like terms.
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
$\underline{Answer:}$
Given terms are Two or more term have (same/ different) variables is called like terms. Here, like terms are
Question: 59
Complete the expression $7r^2 + r \square - 2 \square = \underline{r^2}$
$\underline{Answer:}$
(Like / Unlike) terms can be added or subtracted.
$_{7r^2+ \ r} \square_{-2} \square = (7 + - 2)_{r^2} = $
Question: 60
Sam have 3a chocolates and 9y icecream. Ram have 7a chocolates and 5y icecream.
(i) Total chocolates Ram and Sam have :
(ii) How many icecreams Sam have more than Ram :
Answer:
Chocolates Icecream

Sam Ram (i) Total chocolates Ram and Sam have:

Ram's chocolate + Sam's chocolates = $___$ + $___$ = $_$

(ii) How many icecreams Sam have more than Ram:

____ icecream - ____ icecream = ____ - __ = _

......

......

Hi, here in this video you will learn **Solving an equation**

Question: 61

If ©=5, then 5 © +5 =

Answer:

The value of the given smiley \odot is _____.

Substituting the value in the expression $= 5(\underline{\hspace{1cm}}) + 5 = \underline{\hspace{1cm}} + \underline{\hspace{1cm}} = \underline{\hspace{1cm}}$.

Question: 62

Which of the following number can be placed in the box to make the equation correct (-2, -1, 0, 1,

7 +3 = -4

Answer:

The given equation is 7 = -4 Substitute the values (-2, -1, 0, 1, 2) in the circle,

- 7× ____+3= ____
- $7 \times$ _____+3 = _____
- $7 \times \underline{\hspace{1cm}} + 3 = \underline{\hspace{1cm}}$
- 7× ____+3 = ____
- $7 \times$ ____+3 = ____

Therefore, ______ is the number that can be placed in a box to make the equation correct.

Question: 63

Arrange the terms in the descending order when the value of x is 2.

 $5x \times 1$ x+3 $2x-\widecheck{4}$ $\frac{1}{2}x$ 2x

Answer:

The given expression are _____

The value of x is _

substituting value of x

$$2x = 2 \times \underline{\hspace{1cm}} = \underline{\hspace{1cm}}$$

$$x + 3 = \underline{\hspace{1cm}} = \underline{\hspace{1cm}}$$

$$5x \times 1 = 5 \times \underline{\hspace{1cm}} \times 1 = \underline{\hspace{1cm}}$$

$$2x - 4 = 2 \times \underline{\qquad} - 4 = \underline{\qquad}$$

$$\frac{1}{2}x = \frac{1}{2} \times \underline{\qquad} = \underline{\qquad}$$

Arranging in descending order: ____, ____, ____

Their respective algebraic terms are $\underline{\hspace{1cm}}$, $\underline{\hspace{1cm}}$, $\underline{\hspace{1cm}}$, $\underline{\hspace{1cm}}$, $\underline{\hspace{1cm}}$.						
Hi,	Hi, here in this video you will learn Subtraction on expression					
Que	estion: 64					
Find	the sum of two e	expressions $a + b + c$	and $b + c + d$			
\underline{Ans}	<u>wer:</u>					
The The	two terms will ge	sions are and a t added only if they are ssions = +	re(Lik	ee/ Unlike) terms.		
Que	estion: 65					
			School A	School B		
		Number of boys	100b	250b		
		Number of girls	150g	200g		
		Number of teachers	25t	45t		
(i)	Total number of	boys in school A and	B is			
(ii)	Total number of	students in school B	is			
(iii)	(iii) How many more teachers are there in school B than school A?					
\underline{Ans}	wer:					
(i) Number of boys in school $A = \underline{\hspace{1cm}}$, Number of boys in school $B = \underline{\hspace{1cm}}$. Total number of boys in school A and school B is $\underline{\hspace{1cm}} + \underline{\hspace{1cm}} = \underline{\hspace{1cm}}$.						
(ii)	(ii) Number of boys in school $B = \underline{\hspace{1cm}}$, Number of girls in school $B = \underline{\hspace{1cm}}$. Total number of students in school B is $\underline{\hspace{1cm}} + \underline{\hspace{1cm}} = \underline{\hspace{1cm}}$.					
(iii)	iii) Number of teachers more in school B than school A = Teachers in school B $-$ Teachers in school A = $___$.					
Que	estion: 66					

Solve the following:

$$\begin{array}{c|c}
13x + \underline{\hspace{1cm}} \\
(+) & 12x + 10y \\
\underline{\hspace{1cm}} + 25y
\end{array}$$

$$\begin{array}{ccc}
 & 3a - 5b \\
 & 5a - 7b \\
 & -2a - \underline{\hspace{1cm}}
\end{array}$$

Answer:

The two terms will get added only if they are _____ (like/unlike) terms.

$$\begin{array}{c|c}
3a - 5b \\
\hline
(-) & 5a - 7b \\
\hline
-2a - \underline{\hspace{1cm}}
\end{array}$$