Estimating divergence-free flows via neural networks

Dmitry I. Kabanov, Luis Espath, Raúl F. Tempone 18 March 2021

Outline

- Problem formulation
- How neural networks are used for the problem
- Intro to neural networks
- Example 1: synthetic dataset
- Example 2: real wind dataset from Sweden

Problem formulation

Consider dataset

$$D = \{x_i, u_i\}, i = 1, ..., N$$

where $x_i = (x_i, y_i) \in \mathcal{D} \subset \mathbb{R}^2$ is a spatial point, $u_i = (u_i, v_i) \in \mathbb{R}^2$ is the velocity field at point i.

Assume that the velocity field u(x) satisfies the incompressibility condition, at least, approximately:

$$\nabla \cdot \boldsymbol{u}(\boldsymbol{x}) \approx 0.$$

Goal: estimate the velocity field u(x) using the above condition.

Problem formulation

Instead of the true velocity field, we seek for estimator $\hat{u}(x;\theta)$, parameterized by $\theta \in \mathbb{R}^n$, that satisfies the measurements and the incompressibility condition.

Introduce an additional set of P points, at which the condition is enforced.

Then the problem is find

$$\arg\min_{\theta} \quad \frac{1}{N} \sum_{i=1}^{N} ||\boldsymbol{u}_i - \hat{\boldsymbol{u}}(\boldsymbol{x}_i; \theta)||_2^2 + \frac{\gamma}{P} \sum_{i=1}^{P} (\nabla \cdot \hat{\boldsymbol{u}}(\boldsymbol{x}_i; \theta))^2.$$

where γ is a regularization parameter that determines how strongly the incompressibility condition is enforced.

Estimator function

We use a neural network as an estimator function $\hat{u}(x;\theta)$.

This neural network is of type "multi-layer perceptron":

$$\hat{\boldsymbol{u}}(\boldsymbol{x};\boldsymbol{\theta}) = A \circ F_{L-1} \circ \cdots \circ F_1(\boldsymbol{x})$$

where

ullet Hidden layers $F_j:\mathbb{R}^{n_{j-1}} o\mathbb{R}^{n_j}$ are defined as

$$F_{j}\left(\boldsymbol{z}_{j-1}\right) = \sigma\left(\boldsymbol{W}_{j}\boldsymbol{z}_{j-1} + \boldsymbol{b}_{j}\right)$$

with σ being a nonlinear function applied componentwise

- $A(z_L) = W_L z_L + b_L$ the output layer
- Parameter vector $\boldsymbol{\theta}$ is a concatenation of weight matrices \boldsymbol{W}_j and bias vectors $\boldsymbol{b}_j,\ j=1,\ldots,L.$

Visualization of a neural network????

Should I have this slide?

Other details

- Points where divergence-free condition is enforced, are on the uniform grid
- To solve the optimization problem, we use ADAM optimizer
- Exponential averaging?
- Codes written with libraries Keras and Tensorflow 2

Example 1

Dataset of synthetic noiseless data ??????? Exact field?

$$\{x_i, u_i\}, \quad i = 1, ..., 10$$

where

$$u(x,y) = \begin{pmatrix} \cos x \sin y \\ -\sin x \cos y \end{pmatrix}$$

and points $x_i = (x_i, y_i)$ are sampled uniformly from domain $[0; 2\pi]^2$.

This dataset is a Taylor-Green 2D vortex fixed in time.

Model performance score

Model performance is measured with R^2 score:

$$R^{2} = 1 - \frac{\sum_{i=1}^{N} \|\boldsymbol{u}_{i} - \hat{\boldsymbol{u}}(\boldsymbol{x}; \boldsymbol{\theta})\|_{2}^{2}}{\sum_{i=1}^{N} \|\boldsymbol{u}_{i}\|_{2}^{2}}$$

Interpretation:

- measure model performance relative to the model that predicts zero velocity field at each point
- perfect model has $R^2 = 1$.

R^2 score versus γ

We train neural network by minimizing misfit + γ div-free condition

Error fields

Thank you!