Lezione 11 Geometria 2

Federico De Sisti 2025-03-31

0.1 Altro sulle identificazioni

Lemma 1 (proprietà universale delle identificaizone) SCHEMA 3:18

Sia $f: X \to Y$ identificazione fra spazi topologici, sia Z spazio topologico e $g: X \to Z$ continua. Supponiamo che g sia costante sulle fibre di f (fibra di f = controimmagine $f^{-1}(y)$ per $y \in Y$). Allora $\exists !h: Y \to Z$ continua t.c. il diagramma commuta cioè $g = h \circ f$

Dimostrazione

Per ogni $y \in Y$ scegliamo $x \in X$ tale che f(x) = y ponendo h(y) = g(x) questo definisce

$$h: Y \to Z$$
.

È ben definita perché g è costante sulla fibra di f, infatti se $x \in X$ soddisfa f(x') = y allora $x, x' \in f^{-1}(y)$ e g(x) = g(x') = h(y).

Chiara, ente questa h è unica tale che $g = h \circ f$

Verifichiamo che h è continua, sia $A \subseteq Z$ aperto. Abbiamo $g^{-1}(A) \subseteq X$ è aperto, Inoltre $g^{-1}(A) = f^{-1}(h^{-1}(A))$

Quindi $h^{-1}(A)$ è un sottoinsieme di Y la controimmagine in X è aperta. Visto che f è identificazione, $h^{-1}(A)$ è aperta.

Osservazione

Sia $f: X \to Y$ identificazione.

Sia $A \subseteq X$ aperto saturo, cioè $\forall a \in A \ \forall b \in X$. se f(a) = f(b) allora $b \in A$.

Allora vale $f^{-1}(f(A))=$ insieme dei punti di X che vanno in punti di Y dove vanno anche punti di A

Allora f(A) è aperto in Y perché la sua controimmagine è A

Cioè f è aperta sugli aperti saturi.

0.2 Topologia quoziente

Definizione 1 (Topologia quoziente)

Siano X spazio topologico, Y insieme, $f: X \to Y$ applicazione suriettiva. La famiglia

$${A \subseteq Y \mid f^{-1}(A) \ \hat{e} \ aperto \ di \ X}.$$

questa è una topologia su Y ed è detta topologia quoziente (indotta da f)

Esercizio

Verificare che sia una topologia

Osservazione

Se su Y metto la topologia quoziente allora f è un'identificazione. Inoltre è l'unica topologia su Y che rende f un'identificazione.

Esempi

1. Sia X spazio topologico, sia \sim una relazione d'equivalenza su X e consideriamo $X/\sim=\{$ classi di equivalenza [x] con $x\in X\}$

e l'applicazione

$$\pi: X - > X / \sim$$

$$x \to [x]$$

Si mette su X/\sim la topologia indotta da π

2. Considero X = [0, 1] definisco

$$x \sim y \Leftrightarrow \begin{cases} x = y & \text{oppure} \\ x, y \in \{0, 1\} \end{cases}$$
.

Le classi di equivalenza sono

$$[0] = [1], [z] \quad \forall z \in]0, 1[.$$

Mettiamo su X/\sim la topologia quoziente Ad esempio $X=[0,\frac{1}{2}[\subseteq X$ è aperto in X. L'immagine $\pi(C)$ è

$$\pi(C) = \{[0] = [1]\} \cup \{[z] \mid z \in]0, \frac{1}{2}[\}.$$

è aperto in X/\sim ?

La sua controimmagine è $\pi^{-1}(\pi(C))$ = punti di X equivalenti a qualche punto di $C = [0, \frac{1}{2}] \cup \{1\}$ non è aperto in [0, 1] Ad esempio invece

$$\pi([0,\frac{1}{2}[\cup]\frac{3}{4},1]).$$

è un aperto in X/\sim . Vediamo che X/\sim è omeomorfo a S^1 .

Ricorda:
$$X = [0, 1], x \sim y \Leftrightarrow \begin{cases} x = y & opp. \\ x, y \in \{0, 1\} \end{cases}$$

Verifica che X/\sim è omeomorfo a S^1 (importante!)

Abbiamo le applicazioni:

AGGIUNGI GRAFICO 4:25

 $g(t) = (\cos(2\pi t), \sin(2\pi t))$ è continua, ed è costante sulle fibre di π

Fibre di
$$\pi$$
: $\{z\} = [z] = \pi^{-1}([z]) \quad \forall z \in]0,1[$

$$\pi^{-1}([0] = [1]) = [0] = [1] = \{0, 1\}$$

Infatti g(0) = g(1)

Per la proprietà universale delle identificazioni esiste $h: X/\sim \to S^1$ tale che $g(\pi(t))=f(h([z]))=g(t)$

Inoltre h è suriettiva perché lo è g

Si verifica facilmente che h è iniettiva perché g non 'e iniettiva, solo perchè g(0)=g(1)

Inoltre S^1 è T2 (poiché è in $\mathbb{R}^2)$ e X/\sim è compatto poiché $X/sim=\pi(X)$ e X è compatto

Terzo esempio

 $X = \mathbb{R}$ definisco $x \sim y \Leftrightarrow x - y \in \mathbb{Z}$

Possiamo immaginare questo quoziente come una spirale guardata dall'alto (la retta \mathbb{R} proiettata sul piano x, y dove quelli sulla stessa fibra sono quelli a distanza 1,1'un l'altro)

Verifichiamo che X/\sim è omeomorfo a S^1 . Come prima abbiamo Inserisci immagine 4:40

Prendo $g(t) = (\cos(2\pi t), \sin(2\pi t))$ come prima abbiamo l'applicazione

h([t] = g(t) è ben definita $(g(t+n) = g(t) \ \forall t \in \mathbb{R}, \ \forall n \in \mathbb{Z})$ è continua. Anche qui h è biettiva. Vorrei che X/\sim compatto, ma X non è compatto.

Osservo che $\pi(X) = X/\sim = \pi([0,1])$ poiché ogni classe di equivalenza ha rappresentante in [0,1]

Quindi h è omeomorfismo

Esempio 4

In \mathbb{R}^2 consideriamo $X = \mathbb{R} \times \{0, 1\}$

definiamo

$$(x,y) \sim (x',y') \Leftrightarrow \begin{cases} (x,y) = (x',y') & oppure \\ x = x' \neq 0 \end{cases}$$
.

È una relazione di equivalenza per cui

 $(x,0) \sim (x,1) \text{ se } x \neq 0$

 $(0,0) \not\sim (0,1)$

 X/\sim è uno specie di $\mathbb R$ con l'origine "raddoppiata"

 $X/\sim \text{non è T2}$

Esempio di intorno aperto di [(0,0)]

 $\pi(|-1.1[\times\{0\}\cup]-1,0[\cup]0,1[)\times\{1\}$ aperto saturo di X

Esempio 5

Dato X spazio topologico e $Y \subseteq X$ sottoinsieme, spesso si considera \sim_Y su X:

$$a \sim b \Leftrightarrow \begin{cases} a = b & opp. \\ a, b \in Y \end{cases}$$

Lo spazio topologico X/\sim è in X

dove ho contratto i sottoinsieme Y ad un singolo punto.

L'esempio 2 è ottenuto in questo modo prendendo $Y = \{0, 1\}$

Esempio

 $X = \mathbb{R}^2$ definiamo $Y = \{p \in \mathbb{R}^2 \mid ||p||^2 \le 1\}$ e considero X/\sim_Y È omeomorfo a S^2 . Possiamo anche prendere $Z = \{p \in \mathbb{R}^2 \mid ||p|| > 1\}$

 X/\sim_Z è più strano!

Definizione 2

Sia X spazio topologico, considero $Omeo(X) = \{f : X \to X \mid f \ e \ omeomorfismo\}$ è un gruppo con operazione $f \circ g$ ed è elemento neutro Id_X .

 $Sia\ G \subseteq Omeo(X)\ un\ sottogruppo.$

Si definisce $x \sim y \Leftrightarrow \exists g \in G \mid g(x) = g \}$ (è relazione d'equivalenza (ad esempio se $x \sim y$ e $y \sim z$ allora $\exists g \in G \mid g(x) = y \; \exists h \in G \mid h(y) = z$ allora $z = h(y) = h(g(x)) = (h \circ g)(x)$ da cui $x \sim z$)

Si definisce lo spazio topologico

$$X/G = X/\sim$$
.

(Le classi di equivalenza sono le orbite di G su X)

Esempio

 $X = \mathbb{R}$, poniamo

$$f_n : \mathbb{R} \to \mathbb{R}$$

 $x \to x + n$
 $G = \{ f_n \mid n \in \mathbb{Z} \}.$

è sottogruppo di Omeo(X) infatti $Id_X=f_0$ $f_n\circ f_m=f_{n+m}$

la relazione è la stessa di prima

$$x \sim y \Leftrightarrow x - y \in \mathbb{Z}$$
.

Proposizione 1

Sia X spazio topologico sia $G \subseteq Omeo(X)$ sottogruppo.

$$\pi: X \to X/G$$

$$x \to [x]$$

è aperta.

Inoltre se G è finito allora π è anche chiusa.

Dimostrazione

Sia $A \subseteq X$ aperto, dimostriamo che $\pi(A)$ è aperto in X/G

Considero
$$\pi^{-1}(\pi(A)) = \{x \in X \mid \pi(x) \in \pi(A)\}\$$

$$= \{x \in X \mid \exists a \in A \mid \pi(a) = \pi(x)\}$$

$$= \{x \in X \mid \exists g \in G \mid g(x) \in A\}$$

$$\bigcup \ h(A) \ con \ h = g^{-1}$$

 $h \in G$

Quindi $\pi^{-1}(\pi(A))$ è unione di aperti, quindi è aperto in X, quindi $\pi(A)$ è aperto in X/G

La dimostrazione con G finito è analoga prendendo $A \subseteq X$ chiuso. \square

Teorema 1

Siano X spazio topologico e $G\subseteq Omeo(X)$ sottogruppo. Suppongo X T2, allora X/G è T2 \Leftrightarrow $D=\{(x,g(x))\in X\times X\mid x\in X\ g\in G\}$ è chiuso in $X\times X$

Osservazione

In generale data una relazione d'equivalenza $X/\sim T2$ non è equivalente a $\{(x,y) | x\sim y\}$ chiuso in $X\times X$

Osservazione

Siano $f: X \to Y, \ g: Z \to W$

applicazione aperta fra spazi topologici. Allora

$$f \times g : X \times Z \to Y \times W$$

 $(x,z) \to (f(x),g(x))$

è aperta. Ma attenzione: se f,g sono identificazioni, non è detto che lo sia $f\times g$ (V foglio di esercizi)

Dimostrazione

Considero

$$\pi \times \pi : X \times X \to X/G \times X/G.$$

Ricordo $\pi: X \to X/G$ è aperta e suriettiva.

quindi $\pi \times \pi$ è aperta e suriettiva,

quindi $\pi \times \pi$ è un'identificazione.

Abbiamo

$$D = (\pi \times \pi)^{-1} (\Delta_{X/G}).$$

dove $\Delta_{X/G} \subseteq X/G \times X/G$ è la diagonale.

 $Infatti \ (x,y) \in X \times X \ soddisfa \ \pi(x) = \pi(y) \Leftrightarrow [x] = [y] \Leftrightarrow ([x],[y]) \in \Delta_{X/G}$

Quindi X/G è $T2 \Leftrightarrow \Delta$ è chiuso in $X \times X$

In un'identificazione qualsiasi, un sottoinsieme del codominio è chiuso se e solo se la diagonale è chiusa.finisci lezione

6