Teensy

Shopping Cart Download Website **Forum**

Blog

You are here: <u>Teensy</u> ▶ <u>Teensyduino</u> ▶ <u>Libraries</u> ▶ Wire

PJRC Store

- Teensy 4.1, \$26.85
- Teensy 4.0, \$19.95
- Teensy 3.6, \$29.25
- Teensy 3.5, \$24.25
- Teensy 3.2, \$19.80
- Teensy LC, \$11.65
- Teensy 2.0, \$16.00
- Teensy++ 2.0, \$24.00

Wire Library

The Wire library allows you to communicate with I²C devices, often also called "2 wire" or "TWI" (Two Wire Interface).

Download: Wire is included with Arduino

Products

Brian "nox771" has written an improved I2C library for Teensy 3.0.

Teensy

- Main Page
- **■** Hardware
- Getting Started
- <u>Tutorial</u>
- **■** How-To Tips
- **■** Code Library
- Projects
- Teensyduino
 - Main
 - Download+Install
 - Basic Usage
 - Digital I/O
 - PWM & Tone
 - **■** Timing
 - **USB Serial**
 - **USB** Keyboard
 - **USB Mouse**
 - USB Joystick USB MIDI

 - **USB Flight Sim**
 - Serial

Libraries

- Main List • GLCD
- LiquidCrystal OctoWS2811
- FastSPI LED
- Matrix/Sprite
- <u>LedDisplay</u> LedControl
- **DogLcd**
- ST7565
- **AltSoftSerial**
- **NewSoftSerial**
- **SoftwareSerial MIDI**
- PS2Keyboard
- **DmxSimple**
- <u>Firmata</u>
- Wire
- **SPI**
- OneWire **X**Bee
- VirtualWire
- X10
- **IRremote**
- TinyGPS
- **USBHostShield**
- **Ethernet** Bounce
- Keypad
- **■** Audio
- Encoder
- Ping
- CapacitiveSensor
- **FreqCount** FredMeasure
- <u>Servo</u>
- PulsePosition
- <u>Stepper</u>
- AccelStepper
- FrequencyTimer2 Tlc5940
- SoftPWM
- **ShiftPWM**
- <u>TimeAlarms</u>
- DS1307RTC

- <u>Time</u>
- Metro

Hardware Requirements

I²C devices communicate with 2 signals, called SDA and SCL. Normally a 4.7K pullup resistor is connected between each signal and power (+3.3V on Teensy 3.0, +5V on Teensy 2.0). On Teensy 2.0, 4.0, and 4.1, the weak internal pullup resistors may be sufficient for short wires to a single device. Because the internal resistors are so weak, communication may be slower or unreliable if the wires are long.

Signal Teensy 2.0 Teensy++ 2.0 Teensy LC Teensy 3.0 - 3.6 Teensy 4.0, 4.1

SCL	Pin 5	Pin 0	Pin 19	Pin 19	Pin 19
SDA	Pin 6	Pin 1	Pin 18	Pin 18	Pin 18

Teensy LC & 3.0-3.6 requires pullup resistors to +3.3V. The on-chip pullups are not used. 4.7K resistors are recommended for most applications.

The Wire library is not compatible with Teensy 1.0.

Basic Usage

Wire.begin()

Begin using Wire in master mode, where you will initiate and control data transfers. This is the most common use when interfacing with most I²C peripheral chips

Begin using Wire in slave mode, where you will respond at "address" when other I²C masters chips initiate communication.

Transmitting

Wire.beginTransmission(address)

Start a new transmission to a device at "address". Master mode is used.

Wire write(data)

Send data. In master mode, beginTransmission must be called first.

Wire.endTransmission()

In master mode, this ends the transmission and causes all buffered data to be sent.

Receiving

Wire.requestFrom(address, count)

Read "count" bytes from a device at "address". Master mode is used.

Wire.available()

- <u>TimerOne</u><u>MsTimer2</u><u>EEPROM</u>
- **■** Reference

Retuns the number of bytes available by calling receive.

Wire.read()

Receive 1 byte.

Pin Configuration (Teensy LC & 3.x Only)

Wire.setSDA(pin)

Configure the pin used for data. Possible alternate pins are shown on the <u>pinout card</u>. This function may be called before or after Wire.begin(). All pins used must have real pullup resistors.

Wire.setSCL(pin)

Configure the pin used for clock. Possible alternate pins are shown on the pinout card. This function may be called before or after Wire.begin(). All pins used must have real pullup resistors.

Responding in Slave Mode

Wire.OnReceive(myReceiveHandlerFunction)

Causes "myReceiveHandlerFunction" to be called when a master device sends data. This only works in slave mode.

Wire.OnRequest(myRequestHandlerFunction)

Causes "myRequestHandlerFunction" to be called when a master device wishes to read data. This only works in slave mode.

Example Program

This simple example uses a 24C256 I²C EEPROM. The first byte is read, incremented, and written back.


```
#include <Wire.h>
void setup()
   Wire.begin();
   Serial.begin(9600);
void loop()
  byte num=0;
   // set the 24C256 eeprom address to 0 \,
  Wire.beginTransmission(80);
Wire.write(0); // address high byte
Wire.write(0); // address low byte
Wire.endTransmission();
   // read 1 byte, from address 0
  Wire.requestFrom(80, 1);
while(Wire.available()) {
     num = Wire.read();
   Serial.print("num = ");
   Serial.println(num, DEC);
   // increment num
   num = num + 1;
   // write "num" to 24C256 eeprom at address zero
   Wire.beginTransmission(80);
  Wire.write(0);
                         // address high byte
// address low byte
  Wire.write(0);
  Wire.write(num); // any more send starts writing
Wire.endTransmission();
   // next time loop runs, it should retrieve the
// same number it wrote last time... even if you
   // shut off the power
   delay(5000);
```

Scanner Program

The Wire library comes with an example program which scans for all I2C devices. Open it from **File > Examples > Wire > Scanner**.

Using Addresses

Many datasheets will document ${}^{2}C$ addresses as 8 bit numbers including a R/W bit. Here is an excerpt from the AT24C256B datasheet, the chip used in the example above.

The Wire library requires addresses which do not include the R/W bit. Based only on the datasheet, you might conclude the address is 160 when writing and 161 when reading. The Wire library needs address 80 to communicate with this chip. The R/W bit is automatically created based on your use of the send or receive functions.

More Details

Please refer to the official Wire library documentation for more details.