Video 17: Countingsort and Radixsort COMS10017 - (Object-Oriented Programming and) Algorithms

Dr Christian Konrad

Countingsort: Sorting Integers fast

Countingsort

Input: Integer array $A \in \{0, 1, 2, ..., k\}^n$, for some integer k

Idea

- For each element $x \in \{0, 1, ..., k\}$, count # elements $\leq x$
- Put elements A[i] directly into correct position
- **Difficulty:** Multiple elements have the same value

Algorithm

```
Require: Array A of n integers from \{0, 1, 2, ..., k\}, for some integer k
  Let C[0...k] be a new array with all entries equal to 0
  Store output in array B[0 \dots n-1]
  for i = 0, ..., n-1 do {Count how often each element appears}
     C[A[i]] \leftarrow C[A[i]] + 1
  for i = 1, ..., k do {Count how many smaller (or equal) elements appear}
     C[i] \leftarrow C[i] + C[i-1]
  for i = n - 1, ..., 0 do
     B[C[A[i]] - 1] \leftarrow A[i]
     C[A[i]] \leftarrow C[A[i]] - 1
  return B
```

- Last loop processes A from right to left
- C[A[i]]: Number of elements smaller or equal to A[i]
- Decrementing C[A[i]]: Next element of value A[i] should be left of the current one

Example:
$$n = 8, k = 5$$

Example:
$$n = 8, k = 5$$

for
$$i = n - 1, \dots, 0$$
 do
$$B[C[A[i]] - 1] \leftarrow A[i]$$

$$C[A[i]] \leftarrow C[A[i]] - 1$$

Example:
$$n = 8, k = 5$$

for
$$i = n - 1, ..., 0$$
 do
 $B[C[A[i]] - 1] \leftarrow A[i]$
 $C[A[i]] \leftarrow C[A[i]] - 1$

Example:
$$n = 8, k = 5$$

for
$$i = n - 1, \dots, 0$$
 do
$$B[C[A[i]] - 1] \leftarrow A[i]$$

$$C[A[i]] \leftarrow C[A[i]] - 1$$

Example:
$$n = 8, k = 5$$

for
$$i = n - 1, \dots, 0$$
 do
 $B[C[A[i]] - 1] \leftarrow A[i]$
 $C[A[i]] \leftarrow C[A[i]] - 1$

Example:
$$n = 8, k = 5$$

for
$$i = n - 1, \dots, 0$$
 do
$$B[C[A[i]] - 1] \leftarrow A[i]$$

$$C[A[i]] \leftarrow C[A[i]] - 1$$

Example:
$$n = 8, k = 5$$

for
$$i = n - 1, ..., 0$$
 do
 $B[C[A[i]] - 1] \leftarrow A[i]$
 $C[A[i]] \leftarrow C[A[i]] - 1$

Example:
$$n = 8, k = 5$$

for
$$i = n - 1, \dots, 0$$
 do
$$B[C[A[i]] - 1] \leftarrow A[i]$$

$$C[A[i]] \leftarrow C[A[i]] - 1$$

Example:
$$n = 8, k = 5$$

for
$$i = n - 1, \dots, 0$$
 do
$$B[C[A[i]] - 1] \leftarrow A[i]$$

$$C[A[i]] \leftarrow C[A[i]] - 1$$

Example:
$$n = 8, k = 5$$

for
$$i = n - 1, ..., 0$$
 do
 $B[C[A[i]] - 1] \leftarrow A[i]$
 $C[A[i]] \leftarrow C[A[i]] - 1$

Example:
$$n = 8, k = 5$$

for
$$i = n - 1, \dots, 0$$
 do
$$B[C[A[i]] - 1] \leftarrow A[i]$$

$$C[A[i]] \leftarrow C[A[i]] - 1$$

Example:
$$n = 8, k = 5$$

for
$$i = n - 1, \dots, 0$$
 do
$$B[C[A[i]] - 1] \leftarrow A[i]$$

$$C[A[i]] \leftarrow C[A[i]] - 1$$

Example:
$$n = 8, k = 5$$

for
$$i = n - 1, \dots, 0$$
 do
$$B[C[A[i]] - 1] \leftarrow A[i]$$

$$C[A[i]] \leftarrow C[A[i]] - 1$$

Analysis: Counting Sort

Runtime:

$$O(n) + O(k) + O(n) = O(n+k)$$

- Counting Sort has runtime O(n) if k = O(n)
- This beats the lower bound for comparison-based sorting

$$\begin{array}{l} \text{for } i = 0, \dots, n-1 \text{ do} \\ C[A[i]] \leftarrow C[A[i]] + 1 \\ \text{for } i = 1, \dots, k \text{ do} \\ C[i] \leftarrow C[i] + C[i-1] \\ \text{for } i = n-1, \dots, 0 \text{ do} \\ B[C[A[i]] - 1] \leftarrow A[i] \\ C[A[i]] \leftarrow C[A[i]] - 1 \end{array}$$

Stable? In-place? Yes, it is stable (important!) No, not in-place

Correctness Loop Invariant

Radix Sort

Radix Sort

Input is an array A of d digits integers, each digit is from the set $\{0,1,\ldots,b-1\}$

Examples

- b = 2, d = 5. E.g. 01101 (binary numbers)
- b = 10, d = 4. E.g. 9714

Idea

- Iterate through the d digits
- Sort according to the current digit

Radix Sort (2)

Radix Sort Algorithm

 $\begin{aligned} & \textbf{for } i = 1, \dots, d \ \textbf{do} \\ & \text{Use a stable sort algorithm to} \\ & \text{sort array } A \ \text{on digit } i \end{aligned}$

(least significant digit is digit 1)

Example

329		720		720		329
457		355		329		355
657		436		436		436
839	\rightarrow	457	\rightarrow	839	\rightarrow	457
436		657		355		657
720		329		457		720
355		839		657		839

Radix Sort (3)

Analysis

Lemma

Given n d-digit number in which each digit can take on up to b possible values. Radix-sort correctly sorts these numbers in O(d(n+b)) time if the stable sort (e.g. Countingsort) it uses takes O(n+b) time.

Proof Runtime is obvious. Correctness follows by induction on the columns being sorted.

Observe: If d = O(1) and b = O(n) then the runtime is O(n)!