Classifying classical music by era

Sara Soueidan June 9th, 2020

Problem Statement

Classifying 'classical' music by era of composition using audio files.

Classical music eras used in this project:

- 1. Baroque (1600-1750)
- 2. Classical (1720-1770)
- 3. Romantic (1750-1820)
- 4. Modern (1890-1950)

Outline

- 1. Problem statement
- Raw data (.mp3)
- 3. Preprocess data (.ipynb)
 - ↓ Amplitudes (.csv)
- 4. Process data (.ipynb)
 - Melspectrogram images (.png)
 - Chromagram images (.png)
- 5. Model (.ipynb)
 - ↓ Convolutional neural networks (2D)
- 6. Future directions

Raw Data

	Size	Songs	Format	Loss
Musopen	8.5 GB			
Spotify	63 MB	180	.mp3	

In the Hall of the Mountain King Edvard Grieg

Also sprach Zarathustra Richard Strauss

Preprocess

- 1. Load
- 2. Label
- 3. Chop

sample sample sample sample sample

CSV

sample	song
sample	song

Process

- 1. Load
- 2. Image Generator
- 3. Save

Mel-spectrogram

- 1. Plot Data Waveplot
 - ↓ X = Amplitude
 - \downarrow Y = Time
- 2. Fourier Transform x 1
 - ↓ X = Absolute amplitude
- Fourier Transform x All
 - ↓ X = Frequency
 - \downarrow Y = Time
- 4. Scale Mel-Spectrogram
 - ↓ X = Frequency (non-linear mel-scale)
 - \downarrow Y = Time

Chromagram

- 1. Plot Data Waveplot
 - ↓ X = Amplitude
 - \downarrow Y = Time
- 2. Transform Constant-Q Spectrogram
 - ↓ X = Frequency bin / MIDI pitch
 - \downarrow Y = Time
- 3. Transform Chromagram
 - ↓ X = Pitch (ABCDEFG)
 - \downarrow Y = Time

Model

- 1. Load Images
- 2. Convert to Array
- 3. Train Neural Net

Convolutional 2D Neural Network

- 1. Sequential
- 2. Multi-class classifier
- 3. Layers
 - - Max Pooling

 - ↓ Dense
 - ↓ Dense

Musopen Data

- 145 songs
- Unbalanced classes
- Mel-spectrogram images
- 5 10s samples per song

	Train	Validation
Loss	0.3119	0.2445
Accuracy	0.8679	0.9531

Spotify Data

- 200 songs
- Balanced classes
- Mel-spectrogram images
- 5 10s samples per song

	Train	Validation
Loss	1.0673	1.0518
Accuracy	0.5603	0.4844

Future Directions

- 1. More data (10,000 songs)
- 2. Beat extraction
- 3. Instrument extraction
- 4. Composer classification
- 5. Interactive application

Thank you!

Questions?