Basis and Dimension

Michael Brodskiy

Professor: Lynn Knight

March 18, 2021

- $B = \{\overrightarrow{\mathbf{v}}_1, \overrightarrow{\mathbf{v}}_2, \dots, \overrightarrow{\mathbf{v}}_n\}$ from vector space \mathbf{V} forms basis for \mathbf{V} if
 - 1. B is linearly independent
 - 2. $\operatorname{span}(B) = \mathbf{V}$
 - 3. $\overrightarrow{\mathbf{v}}_i$ called basis vectors
 - 4. Examples:
 - (a) \hat{i} and \hat{j} are basis vectors in \mathbb{R}^2
 - (b) \hat{i} , \hat{j} , and \hat{k} are basis vectors in \mathbb{R}^3
 - (c) $\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$, $\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$, $\begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$, and $\begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$ are basis vectors in $M_{2,2}$
- Show $\{1, x, x^2\}$ basis for P_2
 - 1. Trivial Solution only (so it is linearly independent)
 - 2. Spans $P_2 = c_1 + c_2 x + c_3 x^2$
- If B is basis there is only one set of scalars c_1, c_2, \ldots, c_n such that $\overrightarrow{\mathbf{w}} = c_1 \overrightarrow{\mathbf{v}}_1 + c_2 \overrightarrow{\mathbf{v}}_2 + \cdots + c_n \overrightarrow{\mathbf{v}}_n$
- Dimension is the number of basis vectors:
 - 1. $\mathbb{R}^n n$
 - 2. $P_n n + 1$
 - 3. $M_{m,n} \mathbf{m} \cdot \mathbf{n}$
- If $S = \{\overrightarrow{\mathbf{v}}_1, \overrightarrow{\mathbf{v}}_2, \dots, \overrightarrow{\mathbf{v}}_n\}$ is basis for vector space \mathbf{V} , then every set containing more than n vectors will be linearly dependent