On considère l'application $\varphi: \mathbb{R}^3 \to \mathbb{R}^3$, définie par

$$(x, y, z) \mapsto (x - 3y + 3z, 2y - z, 2y - z).$$

- 1. Justifier que φ est un endomorphisme de \mathbb{R}^3 .
- 2. (a) Déterminer une représentation paramétrique de $\ker(\varphi)$.
 - (b) Déterminer la dimension de $\ker(\varphi)$. Que peut-on en déduire pour l'application φ ?
- 3. Déterminer la dimension de $\operatorname{Im}(\varphi)$. Que peut-on en déduire pour l'application φ ?
- 4. Soit Id l'application identité de \mathbb{R}^3
 - (a) Que vaut l'applicaiton $\varphi \circ \varphi$?
 - (b) En déduire que $\varphi \circ (\varphi \mathrm{Id})$ et $(\varphi \mathrm{Id}) \circ \varphi$ sont égales à l'application constante égale à 0.
 - (c) A l'aide des résultats précédents, montrer que $\operatorname{Im}(\varphi \operatorname{Id}) \subset \ker(\varphi)$ et $\operatorname{Im}(\varphi) \subset \ker(\varphi \operatorname{Id})$.
 - (d) Que peut-on en déduire pour l'application φ Id?
- 5. Montrer que $\ker(\varphi \mathrm{Id}) = \mathfrak{Im}(\varphi)$.
- 6. (a) Déterminer une base (e_1) de $\ker(\varphi)$ et une base (e_2, e_3) de $\ker(\varphi \operatorname{Id})$
 - (b) Montrer que (e_1, e_2, e_3) est une base de \mathbb{R}^3 .
 - (c) Ecrire la matrice de φ dans la base (e_1, e_2, e_3) .