CORSO DI LAUREA IN INFORMATICA PROVA SCRITTA DI ALGEBRA (I E II GRUPPO) 14 DICEMBRE 2012

Svolgere i seguenti esercizi, giustificando tutte le risposte. Sui fogli consegnati vanno indicati: nome, cognome, matricola e gruppo di appartenenza. Non è necessario consegnare la traccia.

Esercizio 1. L'applicazione $\psi \colon f \in \mathbb{Z}^{\mathbb{Z}} \mapsto f(2) \in \mathbb{Z}$ è iniettiva? È suriettiva?

Esercizio 2. Rappresentare con un diagramma di Venn: $((A \setminus B) \cap (A \triangle C)) \cup (B \setminus A)$.

Esercizio 3. In $A := \mathbb{Z} \times \mathbb{Z}_{10}$ si definisca un'operazione binaria * ponendo, per ogni $a, c \in \mathbb{Z}$, $\bar{b}, \bar{d} \in \mathbb{Z}_{10}$,

$$(a, \bar{b}) * (c, \bar{d}) = (ac, \bar{b}\bar{d}\bar{a}).$$

- (i) Si stabilisca se * è associativa, se è commutativa, se ammette elementi neutri, a destra o a sinistra.
- (ii) Posto $X = 1 + 10\mathbb{Z} = \{1 + 10k \mid k \in \mathbb{Z}\}, B := X \times \mathbb{Z}_{10}$ è chiusa rispetto a *? Se lo è, che tipo di struttura è (B, *)? (un semigruppo, un monoide, un gruppo, nessuna di queste, ...; commutativa oppure no?).

Si consideri la relazione binaria $\sim \cos$ i definita in $B: \forall (a, \bar{b}), (c, \bar{d}) \in B$

$$(a, \bar{b}) \sim (c, \bar{d}) \iff (ac > 0 \land b \equiv_2 d).$$

- $(iii) \sim$ è una relazione di equivalenza? Se lo è, rispondere anche alle domande che seguono.
- (iv) Descrivere gli elementi di $[(131, \bar{4})]_{\sim}$. Questa classe è un insieme finito o infinito?
- (v) Descrivere in modo esplicito l'insieme quoziente B/\sim . Quanti sono i suoi elementi?

Esercizio 4. Sia τ la relazione binaria definita in \mathbb{N} ponendo, per ogni $n, m \in \mathbb{N}$,

$$m \tau n \iff ((n \le m) \land (\operatorname{rest}(n, 10) \le \operatorname{rest}(m, 10)).$$

 τ è una relazione d'ordine? Se lo è, si risponda alle domande che seguono.

- (i) Si descrivano gli eventuali minimo, massimo, elementi minimali, elementi massimali in (\mathbb{N}, τ) .
- (ii) Posto $X = \{2, 6, 17, 23, 25, 32, 59, 105\}$, si disegni il diagramma di Hasse di (X, τ) ; si indichino gli eventuali minimo, massimo, elementi minimali, elementi massimali in (X, τ) e si stabilisca se (X, τ) è un reticolo.
- (iii) Esiste $y \in X$ tale che $(X \setminus \{y\}, \tau)$ sia un reticolo? Se sì, indicare un tale y.
- (iv) In (\mathbb{N}, τ) determinare, se esistono, inf $\{37, 54\}$ e sup $\{37, 54\}$.
- (v) (\mathbb{N}, τ) è un reticolo?

Esercizio 5. Sia $V = \{n \in \mathbb{N} \mid n < 10\}$ e sia ρ la relazione binaria in V definita ponendo, per ogni $x, y \in V$,

$$x \rho y \iff |x - y| = 2.$$

Disegnare il grafo $G=(V,\rho)$ (cioè il grafo su V che abbia ρ come relazione di adiacenza). G è connesso? È un albero? È una foresta?

Esercizio 6. Fornire, o spiegare perché non esistono, esempi di polinomi f tali che:

- (1) $f \in \mathbb{R}[x]$, f ha grado 9, f non ha radici in \mathbb{R} ;
- (2) $f \in \mathbb{Q}[x]$, f ha grado 9, f non ha radici in \mathbb{Q} ;
- (3) $f \in \mathbb{R}[x]$, f ha grado 8, f non ha radici in \mathbb{R} ;
- (4) $f \in \mathbb{R}[x]$, f ha grado 8, f ha una ed una sola radice in \mathbb{R} ;
- (5) $f \in \mathbb{Q}[x]$, f ha grado 8, f è il prodotto di due polinomi irriducibili in $\mathbb{Q}[x]$.