Recall that a "linear combination" of objects means to take those things, multiply them by (real) numbers, and add them together.

Let

$$u = \begin{bmatrix} 2 \\ 3 \end{bmatrix}, \quad v = \begin{bmatrix} -1 \\ 1 \end{bmatrix}, \quad w = u - 2v.$$

- 1. Graph the three vectors u, v, and w on the same axes.
- 2. Write a sentence in your notebook using the phrase "linear combination" and the letters u, v, w.
- 3. Express v as a linear combination of u and w.

Let

$$u = \begin{bmatrix} 2 \\ 3 \end{bmatrix}, \quad v = \begin{bmatrix} -1 \\ 1 \end{bmatrix}, \quad w = u - 2v$$

Let

$$u = \begin{bmatrix} 2 \\ 3 \end{bmatrix}, \quad v = \begin{bmatrix} -1 \\ 1 \end{bmatrix}, \quad w = u - 2v = \begin{bmatrix} 4 \\ 1 \end{bmatrix}$$

Let

$$u = \begin{bmatrix} 2 \\ 3 \end{bmatrix}, \quad v = \begin{bmatrix} -1 \\ 1 \end{bmatrix}, \quad w = u - 2v = \begin{bmatrix} 4 \\ 1 \end{bmatrix}$$

Let

$$u = \begin{bmatrix} 2 \\ 3 \end{bmatrix}, \quad v = \begin{bmatrix} -1 \\ 1 \end{bmatrix}, \quad w = u - 2v = \begin{bmatrix} 4 \\ 1 \end{bmatrix}$$

Let

$$u = \begin{bmatrix} 2 \\ 3 \end{bmatrix}, \quad v = \begin{bmatrix} -1 \\ 1 \end{bmatrix}, \quad w = u - 2v = \begin{bmatrix} 4 \\ 1 \end{bmatrix}$$

Let

$$u = \begin{bmatrix} 2 \\ 3 \end{bmatrix}, \quad v = \begin{bmatrix} -1 \\ 1 \end{bmatrix}, \quad w = u - 2v = \begin{bmatrix} 4 \\ 1 \end{bmatrix}$$

Let

$$u = \begin{bmatrix} 2 \\ 3 \end{bmatrix}, \quad v = \begin{bmatrix} -1 \\ 1 \end{bmatrix}, \quad w = u - 2v = \begin{bmatrix} 4 \\ 1 \end{bmatrix}$$

Write a sentence in your notebook using the phrase "linear combination" and the letters u, v, w

Let

$$u = \begin{bmatrix} 2 \\ 3 \end{bmatrix}, \quad v = \begin{bmatrix} -1 \\ 1 \end{bmatrix}, \quad w = u - 2v = \begin{bmatrix} 4 \\ 1 \end{bmatrix}$$

Write a sentence in your notebook using the phrase "linear combination" and the letters u, v, w:

w is a linear combination of u and v.

Let

$$u = \begin{bmatrix} 2 \\ 3 \end{bmatrix}, \quad v = \begin{bmatrix} -1 \\ 1 \end{bmatrix}, \quad w = u - 2v = \begin{bmatrix} 4 \\ 1 \end{bmatrix}$$

Write a sentence in your notebook using the phrase "linear combination" and the letters u, v, w:

w is a linear combination of u and v.

Let

$$u = \begin{bmatrix} 2 \\ 3 \end{bmatrix}, \quad v = \begin{bmatrix} -1 \\ 1 \end{bmatrix}, \quad w = u - 2v = \begin{bmatrix} 4 \\ 1 \end{bmatrix}$$

Write a sentence in your notebook using the phrase "linear combination" and the letters u, v, w:

w is a linear combination of u and v.

$$w = u - 2v$$

Let

$$u = \begin{bmatrix} 2 \\ 3 \end{bmatrix}, \quad v = \begin{bmatrix} -1 \\ 1 \end{bmatrix}, \quad w = u - 2v = \begin{bmatrix} 4 \\ 1 \end{bmatrix}$$

Write a sentence in your notebook using the phrase "linear combination" and the letters u, v, w:

w is a linear combination of u and v.

$$w = u - 2v$$
$$2v = u - w$$

Let

$$u = \begin{bmatrix} 2 \\ 3 \end{bmatrix}, \quad v = \begin{bmatrix} -1 \\ 1 \end{bmatrix}, \quad w = u - 2v = \begin{bmatrix} 4 \\ 1 \end{bmatrix}$$

Write a sentence in your notebook using the phrase "linear combination" and the letters u, v, w:

w is a linear combination of u and v.

$$w = u - 2v$$

$$2v = u - w$$

$$v = \frac{1}{2}u - \frac{1}{2}w.$$

Let $A \in \mathbb{R}^{n \times m}$ and $v \in \mathbb{R}^m$.

Let $A \in \mathbb{R}^{n \times m}$ and $v \in \mathbb{R}^m$. Then the product $Av \in \mathbb{R}^n$.

Let $A \in \mathbb{R}^{n \times m}$ and $v \in \mathbb{R}^m$.

Then the product $Av \in \mathbb{R}^n$.

So "multiplication by matrix A" gives the following function:

$$f_A: \mathbb{R}^m \to \mathbb{R}^n \quad \text{by } v \mapsto Av.$$

Let $A \in \mathbb{R}^{n \times m}$ and $v \in \mathbb{R}^m$.

Then the product $Av \in \mathbb{R}^n$.

So "multiplication by matrix A" gives the following function:

$$f_A: \mathbb{R}^m \to \mathbb{R}^n \quad \text{by } v \mapsto Av.$$

or

$$f_A(v) = Av$$
.

Let $A \in \mathbb{R}^{n \times m}$ and $v \in \mathbb{R}^m$.

Then the product $Av \in \mathbb{R}^n$.

So "multiplication by matrix A" gives the following function:

$$f_A: \mathbb{R}^m \to \mathbb{R}^n \quad \text{by } v \mapsto Av.$$

or

$$f_A(v) = Av$$
.

▶ Note that \mathbb{R}^m is the **domain** of f_A and \mathbb{R}^n is its **range**.

Let $A \in \mathbb{R}^{n \times m}$ and $v \in \mathbb{R}^m$.

Then the product $Av \in \mathbb{R}^n$.

So "multiplication by matrix A" gives the following function:

$$f_A: \mathbb{R}^m \to \mathbb{R}^n \quad \text{by } v \mapsto Av.$$

or

$$f_A(v) = Av$$
.

- ▶ Note that \mathbb{R}^m is the **domain** of f_A and \mathbb{R}^n is its **range**.
- $f_A(v)$ is the **image** of v.

Let $A \in \mathbb{R}^{n \times m}$ and $v \in \mathbb{R}^m$.

Then the product $Av \in \mathbb{R}^n$.

So "multiplication by matrix A" gives the following function:

$$f_A: \mathbb{R}^m \to \mathbb{R}^n \quad \text{by } v \mapsto Av.$$

or

$$f_A(v) = Av$$
.

- ▶ Note that \mathbb{R}^m is the **domain** of f_A and \mathbb{R}^n is its **range**.
- $f_A(v)$ is the **image** of v.
- The set

$$\operatorname{Im}(f_A) = \{f_A(v) \in \mathbb{R}^n : v \in \mathbb{R}^m\} \subseteq \mathbb{R}^n$$

is the **image** of f_A . It is a subset of the range.

Let

$$A = \left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right]$$

Let

$$A = \left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right]$$

Then

▶ Domain of f_A :

Let

$$A = \left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right]$$

Then

▶ Domain of f_A : \mathbb{R}^3 .

Let

$$A = \left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right]$$

- ▶ Domain of f_A : \mathbb{R}^3 .
- ▶ Range of f_A :

Let

$$A = \left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right]$$

- ▶ Domain of f_A : \mathbb{R}^3 .
- ▶ Range of f_A : \mathbb{R}^2 .

Let

$$A = \left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right]$$

- ▶ Domain of f_A : \mathbb{R}^3 .
- ▶ Range of f_A : \mathbb{R}^2 .
- ▶ Image of $\begin{bmatrix} x \\ y \\ z \end{bmatrix}$:

Let

$$A = \left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right]$$

- ▶ Domain of f_A : \mathbb{R}^3 .
- ▶ Range of f_A : \mathbb{R}^2 .

► Image of
$$\begin{bmatrix} x \\ y \\ z \end{bmatrix}$$
: $f_A \begin{pmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} \end{pmatrix} = \begin{bmatrix} x \\ y \end{bmatrix}$.

Let

$$A = \left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right]$$

Then

- ▶ Domain of f_A : \mathbb{R}^3 .
- ▶ Range of f_A : \mathbb{R}^2 .

▶ Image of
$$\begin{bmatrix} x \\ y \\ z \end{bmatrix}$$
: $f_A \begin{pmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} \end{pmatrix} = \begin{bmatrix} x \\ y \end{bmatrix}$.

▶ Image of f_A :

Let

$$A = \left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right]$$

Then

- ▶ Domain of f_A : \mathbb{R}^3 .
- ▶ Range of f_A : \mathbb{R}^2 .

► Image of
$$\begin{bmatrix} x \\ y \\ z \end{bmatrix}$$
: $f_A \begin{pmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} \end{pmatrix} = \begin{bmatrix} x \\ y \end{bmatrix}$.

▶ Image of f_A : \mathbb{R}^2 .

Let

$$A = \left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right]$$

Then

- ▶ Domain of f_A : \mathbb{R}^3 .
- ▶ Range of f_A : \mathbb{R}^2 .

▶ Image of
$$\begin{bmatrix} x \\ y \\ z \end{bmatrix}$$
: $f_A \begin{pmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} \end{pmatrix} = \begin{bmatrix} x \\ y \end{bmatrix}$.

▶ Image of f_A : \mathbb{R}^2 .

If image of f is the same as the range of f then we say that f is **onto**.

Geometry of f_A

Geometry of f_A

Geometry of f_A

f "collapses" \mathbb{R}^3 onto \mathbb{R}^2 .

Example Two

Let

$$B = \left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{array} \right]$$

Example Two

Let

$$B = \left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{array} \right]$$

Then

▶ Domain of f_B:

Example Two

Let

$$B = \left[\begin{array}{rrr} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{array} \right]$$

Then

▶ Domain of f_B : \mathbb{R}^3 .

Let

$$B = \left[\begin{array}{rrr} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{array} \right]$$

- ▶ Domain of f_B : \mathbb{R}^3 .
- ▶ Range of f_B :

Let

$$B = \left[\begin{array}{rrr} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{array} \right]$$

- ▶ Domain of f_B : \mathbb{R}^3 .
- ▶ Range of f_B : \mathbb{R}^3 .

Let

$$B = \left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{array} \right]$$

- ▶ Domain of f_B : \mathbb{R}^3 .
- ▶ Range of f_B : \mathbb{R}^3 .
- ▶ Image of $\begin{bmatrix} x \\ y \\ z \end{bmatrix}$:

Let

$$B = \left[\begin{array}{rrr} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{array} \right]$$

- ▶ Domain of f_B : \mathbb{R}^3 .
- ▶ Range of f_B : \mathbb{R}^3 .

▶ Image of
$$\begin{bmatrix} x \\ y \\ z \end{bmatrix}$$
: $f_B \begin{pmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} \end{pmatrix} = \begin{bmatrix} x \\ y \\ 0 \end{bmatrix}$.

Let

$$B = \left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{array} \right]$$

Then

- ▶ Domain of f_B : \mathbb{R}^3 .
- ▶ Range of f_B : \mathbb{R}^3 .

► Image of
$$\begin{bmatrix} x \\ y \\ z \end{bmatrix}$$
: $f_B \begin{pmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} \end{pmatrix} = \begin{bmatrix} x \\ y \\ 0 \end{bmatrix}$.

▶ Image of \bar{f}_B :

Let

$$B = \left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{array} \right]$$

- ▶ Domain of f_B : \mathbb{R}^3 .
- Range of f_B : \mathbb{R}^3 .
- ► Image of $\begin{bmatrix} x \\ y \\ z \end{bmatrix}$: $f_B \begin{pmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} \end{pmatrix} = \begin{bmatrix} x \\ y \\ 0 \end{bmatrix}$.
- ▶ Image of f_B :

$$\left\{ \left[\begin{array}{c} x \\ y \\ 0 \end{array} \right] \in \mathbb{R}^3 : x, y \in \mathbb{R} \right\}$$

Let

$$B = \left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{array} \right]$$

Then

- ▶ Domain of f_R : \mathbb{R}^3 .
- ▶ Range of f_B : \mathbb{R}^3 .

► Image of
$$\begin{bmatrix} x \\ y \\ z \end{bmatrix}$$
: $f_B \begin{pmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} \end{pmatrix} = \begin{bmatrix} x \\ y \\ 0 \end{bmatrix}$.

▶ Image of f_B:

$$\left\{ \left[\begin{array}{c} x \\ y \\ 0 \end{array} \right] \in \mathbb{R}^3 : x, y \in \mathbb{R} \right\}$$

f is NOT onto, since the vector $\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$ is NOT in the image set.

f "collapses" \mathbb{R}^3 onto the x, y-plane of \mathbb{R}^3 .

f "collapses" \mathbb{R}^3 onto the x,y-plane of \mathbb{R}^3 . In this case the range and domain are the same. We call such a collapse a **projection**.

Exercises

Interpret each of the following matrices as linear transformations. What is the image of $\begin{bmatrix} x \\ y \end{bmatrix}$? What is the image of the unit square? Try to identify how the transform manipulates geometry.

$$A = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}, \quad B = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}, \quad C = \begin{bmatrix} \sqrt{2}/2 & -\sqrt{2}/2 \\ \sqrt{2}/2 & \sqrt{2}/2 \end{bmatrix}$$

$$\begin{array}{c|c}
y \\
(1,1) = v \\
S & \downarrow \\
X
\end{array}$$

$$f(v) = (-1,1)$$

$$f(S)$$

$$\uparrow y \\
(1,1) = v \\
\downarrow S \\
\downarrow X \\
\downarrow X$$

$$f(v) = (-1,1) \\
\downarrow f(S) \\
\downarrow f(S)$$

 f_A is a **reflection** across the y-axis.

 f_B is a **dilation**.

 f_B is a **dilation**. If the diagonal elements were less than one (but positive) it would be a **contraction**.

$$\uparrow^{y} \qquad f(v) = (0, \sqrt{2}) \uparrow^{y} \\
\downarrow^{S} \qquad \downarrow^{K} \qquad f(S)$$

 f_C is a **rotation** by $\pi/2$.

 f_C is a **rotation** by $\pi/2$. Note: in general, counter-clockwise is the "positive" direction for rotations.

In general, the matrix

$$R_{\theta} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$

gives the "positive rotation by $\theta \mbox{''}$ transform.

In general, the matrix

$$R_{\theta} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$

gives the "positive rotation by θ " transform.

Exercise

Is R_{Θ} singular? Why or why not? If not, compute R_{θ}^{-1} . You should be able to answer this without doing any algebra or using the 2×2 inversion formula.

In general, the matrix

$$R_{\theta} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$

gives the "positive rotation by θ " transform.

Exercise

Is R_{Θ} singular? Why or why not? If not, compute R_{θ}^{-1} . You should be able to answer this without doing any algebra or using the 2×2 inversion formula.

$$R_{\theta}^{-1} = \left[\begin{array}{cc} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{array} \right]$$

In general, the matrix

$$R_{\theta} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$

gives the "positive rotation by θ " transform.

Exercise

Is R_{Θ} singular? Why or why not? If not, compute R_{θ}^{-1} . You should be able to answer this without doing any algebra or using the 2×2 inversion formula.

$$R_{\theta}^{-1} = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix} = \begin{bmatrix} \cos(-\theta) & -\sin(-\theta) \\ \sin(-\theta) & \cos(-\theta) \end{bmatrix}$$
 (Why?)

In general, the matrix

$$R_{\theta} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$

gives the "positive rotation by θ " transform.

Exercise

Is R_{Θ} singular? Why or why not? If not, compute R_{θ}^{-1} . You should be able to answer this without doing any algebra or using the 2×2 inversion formula.

$$R_{\theta}^{-1} = \left[\begin{array}{cc} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{array} \right] = \left[\begin{array}{cc} \cos(-\theta) & -\sin(-\theta) \\ \sin(-\theta) & \cos(-\theta) \end{array} \right] \text{ (Why?)}$$

So
$$R_{\theta}^{-1} = R_{-\theta}$$
 is a rotation by $-\theta$.

