

УПРАВЛЕНИЕ КРЕДИТНЫМ РИСКОМ

Создатель: Умиджон Сатторов, студент платформы Skillbox

ОГЛАВЛЕНИЕ

Model selection and training

Results comparisons

05 Conclusion 06 About me

BUSINESS ANALYSIS

О1 Пользователю банка может потребоваться кредит в банке, но банку необходимо определить, является ли клиент мошенником или нет, чтобы не потерять свои финансовые ресурсы. **02** Практически каждый банк имеет собственную систему управления кредитными рисками для выявления таких рисков. Как бизнес-аналитик, мы должны изучить существующую систему банка, прежде чем углубляться в решение проблемы.

DATA ANALYSIS AND PREPARATION

Data sources and features

Данные содержали 61 различную функцию, все в числовой форме. Но поскольку некоторые столбцы данных были бинаризированы и закодированы, мне пришлось рассматривать их как категориальные столбцы, а не числовые.

1 df.info()

	x: 26162717 entries, 0 to 24506 columns (total 61 columns):	-	
#	Column	Dtype	
0	id	int64	
1	rn	int64	
2	pre_since_opened	int64	
3	pre_since_confirmed	int64	
4	pre_pterm	int64	
5	pre_fterm	int64	
6	pre_till_pclose	int64	
7	pre_till_fclose	int64	
8	pre_loans_credit_limit	int64	
9	pre_loans_next_pay_summ	int64	
10	pre_loans_outstanding	int64	

<class 'pandas.core.frame.DataFrame'>

Набор данных содержал много информации о сеансе для одного и того же идентификатора. Поэтому от меня требовалось агрегировать набор данных и хранить одну строку данных для одного идентификатора. Именно поэтому я использовал OneHotEncoder, чтобы не потерять свои данные изза агрегации.

Для предварительной обработки данных я разделил свой набор данных на три отдельные группы, такие как code_features и двоичные столбцы, которые мне пришлось рассматривать как категориальные признаки (а не числовые). После предварительной обработки данных в соответствии с типом объекта.

В целях анализа я наблюдал различные особенности данных, такие как размер, распределение набора данных, корреляцию функций данных друг с другом, и проверял, является ли набор данных несбалансированным или нет (наиболее распространенная проблема машинного обучения).

MODEL SELECTION

Random Forest classifier

После применения агрегации к моему набору данных у меня осталось 3 миллиона строк данных. Затем я использовал технику SMOTE, чтобы решить проблему несбалансированных данных. После применения SMOTE к моему набору данных я использовал полученные результаты повторной выборки для обучения алгоритму классификатора случайного леса. Он вернул максимум 0,63 гос_score.

Synthetic Minority Oversampling Technique

Random Forest classifier

Поскольку моя первоначальная модель не дала наилучшего результата, я решил уточнить ее гиперпараметры. Я думал, что таким образом смогу повысить качество модели случайного леса.

MODEL SELECTION

Поскольку такие модели, как Random Forest Classifier, продемонстрировали выдающиеся результаты при определении того, является ли клиент банка мошенником, я решил создать модель классификации с использованием алгоритмов Gradient Boosting. Среди них алгоритмы CatBoost Classifier показали хорошие результаты и дали наивысший балл гос_auc. Чтобы снизить стоимость вычислений и время, затрачиваемое на прогнозирование, я сохранил только 100 важных функций, позволяющих предсказать, является ли пользователь банка мошенником или нет.

OTHER MODELS RESULTS

XGBoostClassifier

AdaBoostClassifier

Logistic regression

MLPClassifier

CONCLUSION

В этом проекте по управлению кредитным риском я работал с различными моделями классификации и разными методами, чтобы преодолеть проблему классового дисбаланса. Проблема была сложной из-за размера набора данных (больших данных) и требуемой очень большой вычислительной мощности. Даже я некоторую потратил CYMMY ПОКУПКУ денег дополнительной оперативной памяти, чтобы решить проблему нехватки памяти. Однако мне удалось создать модель машинного обучения с показателем roc_auc более 0,76, чтобы решить проблему управления кредитным риском для банков. Эта модель машинного обучения работает с более высокой точностью и достойно прогнозирует оба класса пользователей банка. Он не перетренирован и работает на очень высокой скорости. Это может легко проблему решить управления кредитным риском для банков.

CONTACT ME

E-mail sattorov7474@gmail.com

Phone +998909250890

Linkedin <u>Umidjon Sattorov</u>