(104031) אינפי 1מ' | תרגול 10 - יוליה

שם: איל שטיין

November 25, 2022

נושאי השיעור: תתי סדרות, גבולות חלקיים

נושא ראשון - תתי סדרות:

הערה 1. תזכורת על תתי סדרות:

 a_n . מדרה. אם ניקח "תת-סדרה" , a_{n_k} , הכוונה היא לקחת חלק מהאיברים של a_n כאשר לא משנים את הסדר של האיברים ב- a_n אם נרצה לכתוב a_{m_k} הכוונה ל"תת-סדרה" אחרת.

הגדרה 2. גבול חלקי הוא גבול של תת סדרה.

 $L = \lim_{n o \infty} a_{n_k}$ כך ש a_{n_k} כך שקיימת תת-סדרה a_n נקרא גבול חלקי של

תרגיל 3. בניית תת סדרה:

 $max \ a_n$ סדרה חסומה מלמעלה כך שלא סדרה חסומה מלמעלה מ

 a_n הינו גבול חלקי של $sup\ a_n$ הוכיחו כי

(הוכיחו על ידי בנייה מפורשת של תת-סדרה המתכנסת אליו).

הוכחה:

- $sup\ a_n$ קיים השלמות הסדרה ולכן לפי אקסיומת ולכן פי הסדרה סומה מלמעלה ולכן היים
 - $sup \ a_n = M$ נסמן –
 - (max היה הוא אחרת $M \notin a_n$: נתון
- $\epsilon:M>a_n>M-arepsilon$ נוכיח באינדוקציה שלכל a_n קיים arepsilon כך שמתקיים
 - בסיס האינדוקציה:
- $M \geq a_n$ מתקיים ש מתקיים לכל הגדרת הסופרמום, לפי הגדרת לפי הגדרת לפי הגדרת החוא $M \, \star \,$
 - $M>a_n$ -ש מתקיים ש a_n לכל , $M\notin a_n$ יומכיוון ש
- $a_{n_{(arepsilon)}}>(sup\ a_n)-arepsilon$ שמקיים (arepsilon שמקיים לפל בינוסף, לפי משפט הסופרמום לכל arepsilon>0 קיים קיים $a_{n_{(arepsilon)}}$

: כך שמתקיים ($arepsilon_1$ מתקיים שכאשר ב- σ_1 קיים איבר איבר , $arepsilon_1=1$ שמתקיים -

$$a_{n_{(\varepsilon_1)}} > M - \varepsilon_1$$

נצרף ביחד את אי השוויונות ונקבל:

$$M > a_{n_{(\varepsilon_1)}} > M - 1$$

$$arepsilon_2=min\left\{rac{1}{2}, \overbrace{M-a_1}^{>0}, \overbrace{M-a_2}^{>0}, \ldots, \overbrace{M-a_{n_{(arepsilon_1)}}}^{>0}
ight\}$$
 נבחר *

- $a_{n_{(arepsilon_{+})}}$ הביטוי ה' תמיד יהיה או תמיד הביטוי אביטוי הביטוי הביטוי * בגלל הגדרת הביטוי אווה ל
- $a_{n_{(arepsilon_2)}} > M arepsilon_2$ שמתקיים כך קיים $a_{n_{(arepsilon_2)}}$ קיים $arepsilon_2$ לפי משפט הסופרמום, גם ל-
 - $M>a_{n_{(arepsilon_2)}}$ הוא מקיים הוא איבר בסדרה $a_{n_{(arepsilon_2)}}$ ומכיוון ש
 - M-ש אינסוף איברים הקטנים מ a_n מכיוון שלסדרה *
- ובין כל האיברים המינימלי המרחק את המרחת בגלל הגדרת בגלל הגדרת לפני $a_{n_{(\varepsilon_1)}}$ בגלל האיברים שונה מכל האיברים שהגיעו בסדרה לפני $a_{n_{(\varepsilon_1)}}$ שלפני שלפני שה $a_{n_{(\varepsilon_1)}}$
 - $n_{(arepsilon_2)} > n\left(arepsilon_1
 ight)$ כלומר, האינדקסים מקיימים -
 - a_{n_1} נסמנו בונים נסמנו בתת סדרה הראשון האיבר האיבר להיות להיות מחור מ $a_{n_{(\varepsilon_1)}}$ את לכן לכן לכן א
 - a_{n_2} נסמנו נסמנו שאנחנו בתת סדרה השני האיבר האיבר האיבר השני $a_{n(arepsilon_2)}$ א ונסמן א

- סיכום בסיס האינדקוציה:

 $M>a_{n_2}>M-arepsilon_2$ בך שמתקיים a_{n_2} קיים $arepsilon_2$ קיים אול- $M>a_{n_1}>M-arepsilon_1$ בך שמתקיים $lpha_{n_1}>M-arepsilon_1$ א הראנו של

- הנחת האינדוקציה:

 $M>a_{n_k}$ איבר איבר אופן נבחר איבר . $M>a_{n_k}>M-arepsilon_k$ לניח של- $arepsilon_k$ קיים a_{n_k} סיים $lpha_k$ לניח של-

: **צעד** האינדוקציה –

- $M>a_{n_{k+1}}>M-arepsilon_{k+1}$ * צ"ל:
- $arepsilon_{k+1} = min\left\{rac{1}{k+1}, M-a_1, M-a_2\dots, M-a_{n_k}
 ight\}$ נגדיר *
- $M>a_{n_{k+1}}>M-arepsilon_{k+1}$: שמקיים שמקיים איבר $arepsilon_{k+1}$ לכל arepsilon>0 לכל הסופרמום, לפי
 - . בגלל בחירת בסדרה שבא אווה מכל גדול או $M-arepsilon_{k+1}$ הביטוי בסדרה בגלל הביטוי בגלל בחירת בסדרה שבא לפניו.
 - $n_{k+1} > n_k$: לכן, אינדקסים מקיימים י
 - $M>a_{n_k}>a_{n_k}-arepsilon_{n_k}\geq M-rac{1}{k}$ מתקיים a_{n_k} מתקייה, לכל איבר
 - a_{n_k} סדרה הזאת נבנה תת סדרה
 - : מתקיים $k\in\mathbb{N}$ לכל

$$M > a_{n_k} > M - a_k \ge M - \frac{1}{k}$$

 $k o \infty$ מתקבל משפט הסנדויץ' *

$$\lim_{n \to \infty} M > \lim_{n \to \infty} a_{n_k} > \lim_{n \to \infty} M - \frac{1}{k}$$

ולכן:

$$\lim_{n\to\infty}a_{n_k}=M$$

תרגיל 4.

תהי a_n סדרה.

: נתון

- .(בול המספר b_k) מולים של חלקי המספר הוא הוא המספר , $k\in\mathbb{N}$ לכל
 - $\lim_{n \to \infty} b_k = b$, בנוסף

 a_n צ"ל: b הוא גבול חלקי של

 $b_k=0$ אז $a_n=rac{1}{n}$ לדוגמא, אם

הוכחה:

- : יש שתי דרכים
- .1 או לבנות בצורה מפורשת תת סדרה של a_n שתתכנס (כמו שעשינו בתרגיל הקודם).
- . לפי המשפט: L הוא גבול חלקי של הסדרה a_n אם ורק אם לכל (L-arepsilon,L+arepsilon) יש אינסוף מאיברי הסדרה.
 - נפתור לפי הדרך השנייה.
 - .arepsilon>0 יהי •
 - a_n נוכיח שקיימים אינסוף מאיברי הסדרה אינסוף מאיברי •
 - $\epsilon>0$ לכל (b-arepsilon,b+arepsilon) בקטע בקטע איבר איבר אינדקס אינדקס אינדקס ולכן אינדקס וולכן אינדקס וולכן אינדקס ווא

$$arepsilon_1 = min\left\{\underbrace{(b+arepsilon) - b_k}_{>0}, \underbrace{b_k - (b-arepsilon)}_{>0}
ight\}$$
 נקבע *

- $.\varepsilon_1>0$ ש אינצא הגדרת , $b-\varepsilon < b_k < b+\varepsilon$ מתקיים הביטוי $\varepsilon>0$ מתקיים הביל מכיוון שלכל י
 - $arepsilon_1>0$ מתקיים בפרט עבור (b-arepsilon,b+arepsilon) מכיוון ש b_k הוא בסביבה של

$$b - \varepsilon_1 < b_k < b + \varepsilon_1$$

- $(b-arepsilon_1,b+arepsilon_1)$ הם בסביבה b_k הם מסוים כל האיברים מסוים מסוים, $\lim_{n o\infty}b_k=b$ מכיוון ש b_k היא סדרה אז יש לה אינסוף איברים ולכן קיימים אינסוף מאיברי b_k בסביבה b_k מכיוון ש b_k
- יש אינסוף מאיברי $(b_k-arepsilon_1,b_k+arepsilon_1)$ מתקיים שבסביבה ($arepsilon_k+arepsilon_1$) יש אינסוף מאיברי נתון ש $(b_k-arepsilon_1,b_k+arepsilon_1)$ יש אינסוף מאיברי מחדרה $(b_k-arepsilon_1,b_k+arepsilon_1)$ יש אינסוף מאיברי מחדרה $(b_k-arepsilon_1,b_k+arepsilon_1)$ יש אינסוף מאיברי מחדרה $(b_k-arepsilon_1,b_k+arepsilon_1)$

: ומכיוון ש

$$(b_k - \varepsilon_1, b_k + \varepsilon_1) \subseteq (b - \varepsilon, b + \varepsilon)$$

 a_n יש אינסוף מאיברי הסדרה (b-arepsilon,b+arepsilon) יש אינסוף לכן, גם בסביבה

תרגיל 5.

 $a_n=\sin\left(n\cdot\frac{\pi}{4}
ight)$ המוגדרת: a_n המוגדרת: $\lim_{n o\infty}inf~a_n$, המואדת החלקיים, החלקיים מצאו את כל הגבולות החלקיים פיתרון:

- מהתבוננות בסדרה אפשר לראות שהיא מחזורית.
- a_n וכל אחד מאלה הוא גבול הקי של $A=\left\{\pm 1,\pm rac{\sqrt{2}}{2},0
 ight\}$ הן: נקבל שהאפשרויות ל-
 - (A-נוכיח שלא יכול להיות שקיים עוד גבול חלקי (שהוא לא איבר ב-(A-
 - $.b \notin A$ יהי –
 - $b
 eq \pm 1, \pm \frac{\sqrt{2}}{2}, 0$, כלומר, *
 - : מכיוון ש $b \notin A$ מתקיים

$$b-1 \neq 0$$

$$b - (-1) \neq 0$$

$$b - \frac{\sqrt{2}}{2} \neq 0$$

$$b - \left(-\frac{\sqrt{2}}{2}\right) \neq 0$$

$$b-0 \neq 0$$

- $arepsilon=rac{1}{2}min\,\left\{\left|b-1
 ight|,\left|b+1
 ight|,\left|b+rac{\sqrt{2}}{2}
 ight|,\left|b-rac{\sqrt{2}}{2}
 ight|,\left|b
 ight|
 ight\}>0$ ניקח
- האפשרויות של לכל המינימלי בין מהמרחק להיות את להיות להיבר את האבשרויות לאיבר המ ε והגדרנו את האפשרויות לאיבר המינימלי ש:
 - a_n אין אף איבר של (b-arepsilon,b+arepsilon) אין איבר י
- . בסביבה a_n אין אף איבר הסדרה שלכל $\varepsilon>0$ יש שלכל להיות לא יכול איבר של איבר אין אף איבר הסדרה *
 - a_n של חלקיים של בולות הם ב-A הם היברים של a_n של חלקיים של –

- $\lim_{n \to \infty} sup = 1$ לא עשינו בשיעור אך ניתן לחשב ש
- $\lim_{n \to \infty} inf = -1$ לא עשינו בשיעור אך ניתן לחשב –

תרגיל 6.

. מונוטונית עולה סדרה a_n תהי

 $\lim_{n o \infty} a_{n_k} = L$ נתון שקיימת תת סדרה a_{n_k} כך ש

 $\lim_{n\to\infty}a_n=L$: הוכיחו

פיתרון:

- a_n מונוטונית עולה נשתמש בנתון ש-
- לפי משפט, סדרה מונוטונית עולה מתכנסת במובן הרחב.
 - : מכיוון שהיא סדרה עולה
 - ∞ -. או שהיא מתכנסת ל
 - M או שהיא מתכנסת לגבול סופי, שנסמנו 2.
- M אם היא שואפת לגבול סופי, כל תתי הסדרות שלה מתכנסות לאותו גבול, שהוא \cdot
 - $\lim_{n\to\infty} a_{n_k=L}$ נתון ש
- במובן הרחב אם יש לה גבול חלקי אחד במובן הרחב אם ורק אם יש לה $a_n:BW$ מתכנסת מסקנות \star
- . במובן הרחב, מתכנסת המ a_n שם ∞ אם ל-התכנס ל-מכיוון מתכנסת מתכנסת מתכנסת מתכנסת מתכנסת מכיוון ש a_n במובן הרחב. מתכנסת מתכנסת מתכנסת אווי מכיוון ש
 - L-אך מתכנסת a_{n_k} -ש מרכנסת *
 - אז גם a_n מתכנסת לגבול סופי
 - $\lim_{n \to \infty} a_n = L = M$ אוז י

תרגיל 7.

:נתון

- . תהי a_n סדרה חסומה
- מכיוון שהיא חסומה, קיימים לה גבולות חלקיים
 - : נסמן
 - $M = \lim \sup a_n *$
 - $m = \lim_{n \to \infty} \inf_{n \to \infty} a_n \star$
 - $\lim_{n\to\infty} \left(a_{n+1} a_n\right) = 0 \bullet$

 a_n שווה לקבוצת הגבולות שווה [m,M] שווה לקבוצת צ"ל:

במילים אחרות, ב"ל: צריך להוכיח שכל הגבולות החלקיםי נמצאים בקטע ושכל $a \in [m,M]$ במילים אחרות, ב"ל: צריך להוכיח שכל הגבולות החלקיםי במילים אחרות, ב"ל: ביי

: פיתרון

כיוון ראשון: כל גבול חלקי a_n של מקיים

$$m = \lim_{n \to \infty} \inf \ a_n \le a \le \lim \ \sup \ a_n = M$$

$a \in [m,M]$ לכן, כיוון שני:

- . נניח בשלילה שקיימת נקודה $a \in [m,M]$ ע כך שa נניח בשלילה שקיימת נקודה $a \in [m,M]$
- . אנחנו כבר יודעים שקצוות הקטע הם $\lim sup$ ור ו- $\lim sup$ והם גבולות חלקיים (ראינו בהרצאה שהם גבולות חלקיים).
 - (m,M) בלומר, צריך לבחון את הקטע הפתוח *
- לא גבול ש-a שבסביבה (כי הנחת השלילה איברים (כי $(a-\varepsilon_0,a+\varepsilon_0)$ קיים מספר קיים (כי הנחת השלילה אומרת ש-c
 - $a_n \notin (a-arepsilon_0, a+arepsilon_0)$ מתקיים n < N כך שלכל $N \in \mathbb{N}$ במילים אחרות: \star
 - $\lim_{n\to\infty} \left(a_{n+1}-a_n\right)=0$: לפי הנתון
 - : מתקיים $n>N_1$ כך שלכל (N_2 עוד כן אחר לייצא אחר כדי שלא נצטרך כדי שלא $n>N_1$ (שמקיים אחר כלומר, קיים \star

$$|a_n - a_{n+1}| < \varepsilon_0$$

- pproxנתבונן באיבר a_{N_1+1} ונבדוק באיזו סביבה הוא יכול להימצא *
- . כי בסביבה הזו יש רק מספר סופי של איברים ($a-arepsilon_0, a+arepsilon_0$) כי בסביבה איכול להימצא בסביבה \star
 - $: a_{N_1+1} < a arepsilon_0$ נניח בה"כ *
 - $a_n < a arepsilon_0$ לכן, כאשר $n \geq N_1 + 1$ כל איבר $n \geq N_1 + 1$ *
 - $k\geq N_1+1$ כך ש $a_{k-1}< a-arepsilon_0$ כך ש $a_k=a-arepsilon_0$ כאשר $a_k=a+arepsilon_0$ כאשר $a_k \geq a+arepsilon_0$ אז $a_k \neq (a-arepsilon_0,a+arepsilon_0)$ כאשר $a_k>a+arepsilon_0$ ווו סתירה
 - :מתקיים $n>N_1$ מתקיים *

$$a_n < a - \varepsilon_0$$

- . לכן בסביבה של M יש מספר סופי של איברים.
- .lim $sup\ a_n$ לא גם לא חלקי חלקי גבול להיות לא יכול לא מראים .

תרגיל 8. תנו דוגמא לסדרה שהקטע [0,1] מהווה את קבוצות גבולות החלקיים שלה. פיתרון:

- לפי התרגיל הקודם, מספיק לבנות סדרה כך ש:
 - $\lim_{n\to\infty} (a_{n+1} a_n) = 0$.1
 - $\lim \sup a_n = 0 .2$
 - $\lim inf a_n = 1 .3$

• למשל,נבנה סדרה שקופצים בה מ0 ל-1 וכל פעם חוזרים עוברים במספר באמצע

$$0, 1, \frac{1}{2}, 0, \frac{1}{4}, \frac{1}{2}, \frac{3}{4}, 1, \frac{7}{8}, \frac{3}{4} \dots 0, \dots, 1 \dots$$

- $\lim_{n\to\infty} (a_n a_{n+1}) = 0$ הסדרה הזו מקיימת –
- 1 כי יש אינסוף פעמים את ווו $sup\ a_n=1$ היא מקיימת
 - 0 כי יש אינסוף פעמים את ווm inf $a_n=0$

הערה 9. לשים לב שלא כל גבול חלקי צריך להיות איבר בסדרה. בסדרה הזו

 a_{M} ואיבר מקסימלי ואיבר מינימילי איבר בעלת סדרה בעלת סדרה מינימילי מון כי:

- $L \in (a_m, a_M)$ מתקיים L מספר 1.
- a_n יש מספר סופי של איברי (L-arepsilon,L+arepsilon) איברי כך כך כל סיים כ

 $\lim_{n\to\infty}a_n=a_m$:צ"ל

פיתרון:

- הסדרה חסומה כי יש לה איבר מינימלי ואיבר מקסימלי
- מכיוון שהסדרה חסומה, לפי בולצאנו-ויירשטראס קיים לה לפחות גבול חלקי אחד.
- הגבול החלקי לא יכול להיות גדול מהאיבר המקס' של הסדרה והוא לא יכול להיות קטן מהאיבר המינימלי:
 - $a_m \leq L \leq a_M$ נסמן את הגבול החלקי ב-L. יתקיים *
 - L(L-arepsilon,L+arepsilon] נתון שיש מספר סופי של מספרים בקטע
 - L(L-arepsilon,L+arepsilon] כלומר אין אף גבול חלקי אין אר *
 - L = [L-arepsilon, L+arepsilon] אמרנו שאם יש גבול חלקי אז הוא יימצא •
 - a_n אין אף גבול חלקי אין אף ער (L-arepsilon,L+arepsilon] אין אף לפי הנתון בקטע
 - $\lim_{n\to\infty}a_n=a_m$, לכן

תרגיל 11.

. מהי a_n סדרה חסומה תהי

נגדיר לכל $n\in\mathbb{N}$ מתקיים

$$b_n = \sup \{a_k\}, k \ge n$$

 $\lim_{n\to\infty} b_n = \lim_{n\to\infty} \sup a_n$ הוכיחו כי

: פיתרון

: נתבון בנתון

$$b_n = \sup \{a_k\}$$

$$b_n = \sup \{a_k\} = \sup \{a_n, a_{n+1}, \dots, a_m\}$$

- כלומר:

$$b_1 = \sup \{a_1, a_2 \ldots\}$$

$$b_2 = \sup \{a_2, a_3 \ldots\}$$

$$b_{1000} = sup\{a_{1000}, a_{1001}...\}$$

- ההוכחה תתחלק לשלושה חלקים:
 - מתכנסת b_n (1)
- $\limsup \ a_n$ של סדרה עת היא b_n (2)
 - (3) הגבולות שלהם שווים.