6.1. Sporządzić wykres zależności względnego wydłużenia drutu $\Delta L/L0$ od przyrostu temperatury ΔT (ΔT =to). Dla wybranych punktów z początkowego, środkowego i końcowego zakresu temperatur zaznaczyć pola niepewności. Z nachylenia wykresu wyznaczyć współczynnik rozszerzalności liniowej α badanego materiału.

Dane	Wartość			
$L_0[mm]$	880	Tabela 1.0 Dane potrzebne do obliczenia współczynnika		
ΔL [mm]	0.15	rozszerzalności liniowej		
Δt [°C]	12			

$$\alpha = \frac{\Delta L}{L_0 * \Delta t} = \frac{0.15}{880 * 12} = \frac{0.15}{880} * \frac{1}{12} = 0.000170455 * \frac{1}{12} \left[\frac{1}{0}\right] = 0.000014204 \left[\frac{1}{0}\right] = 1.42 \text{E-05} \left[\frac{1}{0}\right]$$

6.2. Metodą regresji liniowej wyznaczyć, a następnie omówić, parametry prostej y = Ax+B (gdzie: y = Δ L/Lo , x= Δ T, A= α , niepewność u(A)=u(α)) oraz współczynnik korelacji r. Nanieść na wykres prostą najlepszego dopasowania. Porównać parametry tej prostej z wartością α wyznaczoną w punkcie 1 i przedyskutować wnioski płynące z tych porównań.

$$\frac{\Delta L}{L_0} = \alpha * \Delta T + b$$

Dane	Wartość			Wartosc[1]	
$\Delta L/L_0$	0.0001705	Tabela 1.1 Dane potrzebne do obliczenia współczynnika	α	0	Tabela 1.2 Dane po liczeniu
$u(\Delta L)[mm]$	0.0058		u(α)	0	współczynnika rozszerzalności liniowej metodą regresji liniowej
$u(L_0)[mm]$	2.4		b	0.00017	
			u(b)	0	
			wspolczynnik	0	iiiiowej
-			korelacji	U	

Obliczenia do końcowej tabelki

$$\begin{array}{ll} u(t_i)liczone \; dla \; punktu \; nr \; 3 \\ \Delta_p t_3 = 0.3\%^* t_3 + 1 = 0.3\%^* \; 26.6 + 1 = \\ 0.0798 + 1 = 1.0798 \approx \; 1.08 \\ u(t_0) = u(t_3) = u_b(t_0) = \sqrt{\frac{1.08^2}{3}} = \sqrt{\frac{1.1664}{3}} = \\ \sqrt{0.3888} = 0.6236 \approx \underbrace{0.631}^{\circ} \text{Cl} \\ \Delta_p \Delta t = \frac{\Delta(\Delta t)}{\sqrt{3}} = \underbrace{0.002309}_{0.0024[\text{m}]} = \underbrace{\frac{2.4[\text{mm}]}{3}} = \\ u(L_0) = \frac{0.004}{\sqrt{3}} = 0.002309 \approx 0.0024[\text{m}] = \underbrace{\frac{2.4[\text{mm}]}{3}} = \\ \Delta t = t_i \cdot t_0 \\ \frac{\partial \Delta t}{\partial t_0} = \frac{\partial t_i - t_0}{\partial t_0} = -1 \\ \frac{\partial \Delta t}{\partial t_0} = \frac{\partial t_i - t_0}{\partial t_0} = -1 \\ \frac{\partial \Delta t}{\partial t_0} = \frac{\partial t_i - t_0}{\partial t_0} = 1 \\ = \sqrt{4.30239E - 11} \\ = 6.55926E - 06 \\ \end{array}$$

 $u_c(\Delta t)$ liczone dla punktu nr 3

$$u_c(\Delta t) = \sqrt{(\frac{\partial \Delta t}{\partial t_i} u(t_i))^2 + (\frac{\partial \Delta t}{\partial t_0} u(t_0))^2} = \sqrt{(1 * 0.63)^2 + (-1 * 0.63)^2} = \sqrt{2 * 0.3969} = \sqrt{0.7938} = 0.890954544 \approx 0.90[^{\circ}C]$$

Wnioski

Współczynnik rozszerzalności liniowej badanego materiału liczony metodą numeryczną jest zbliżony do tego policzonego metodą regresji liniowej (mieści się w niepewności pomiarowej). Według tabelki na stronie wikipedia.org, wnioskuję że drut został wykonany ze stali nierdzewnej.