Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«ИРКУТСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Институт информационных технологий и анализа данных

УТВЕРЖДЕНА:

на заседании УМК института ИТиАД Протокол №2 от «26» апреля 2021 г.

Рабочая программа дисциплины

«НЕЙРОСЕТЕВЫЕ ТЕХНОЛОГИИ»	
Направление: 09.03.02 Информационные системы и те	ехнологии
Профиль: Информационные системы и технологии в администра	ативном управлении
Квалификация: Бакалавр	,
Форма обучения: Очная	
Составитель программы:	
Осипова Е.А. / Wellen / " 26 " апреля	2021 г.
Руководитель ООП:	
Аршинский В.Л. / <i>В</i> / " 26 " апреля	2021 г.

1. Перечень планируемых результатов обучения по дисциплине, соотнесённых с планируемыми результатами освоения образовательной программы

1.1 Дисциплина «Нейросетевые технологии» обеспечивает формирование следующих компетенций с учётом индикаторов их достижения

Код, наименование компетенции	Код компетенции	индикатора
ОПК ОС-1 Способность решать задачи профессиональной		
деятельности на основе применения знаний	ОПК ОС-1.6	
математических, естественных и технических наук		
ОПК ОС-8 Способен применять математические модели,		
методы и средства проектирования информационных и	ОПК ОС-8.2	
автоматизированных систем		

1.2 В результате освоения дисциплины у обучающихся должны быть сформированы

Код индикатора	Содержание индикатора	Результат обучения
ОПК ОС-1.6	Применяет знания математических и алгоритмических аспектов функционирования искусственных нейронных сетей при решении задач аппроксимации, классификации, прогнозирования и управления динамическими процессами	Знать сходства и различия биологического и искусственного нейронов; основные свойства искусственного нейрона: обучаемость, способность к обобщению и абстрагированию; виды активационных функций; классификацию искусственных нейронных сетей; типовые задачи, решаемые с помощью нейронных сетей, и области их применения; виды однослойной нейронной сети и алгоритмы её обучения; архитектуры и принципы обучения многослойной нейронной сети; параметры, влияющие на обучение многослойной нейронной сети; математические основы радиальных базисных сетей и методы их обучения, преимущества; математические и алгоритмические аспекты функционирования адаптивных систем нейро-нечеткого вывода anfis. Уметь осуществить постановку задачи для нейронной сети и выполнить препроцессинг данных; реализовать персептрон на языке руthоп для решения задачи классификации; реализовать слой кохонена на языке руthоп для решения задачи кластеризации; осуществить программную

		U
		реализацию многослойной нейронной сети без применения готовых библиотек; аппроксимировать функцию с помощью разных нейронных сетей: двухслойной сети прямого распространения, радиальной базисной нейронной сети, гибридной сети аnfis Владеть навыком выбора архитектуры нейронной сети и алгоритма её обучения; навыком применения разных алгоритмов обучения нейронных сетей; навыком использования функций и классов в руthоп для создания нейросетей; навыком контроля
		адекватности работы нейросети. Знать понятие «машинное
ОПК ОС-8.2	Способен применять модели, методы и алгоритмы аппарата искусственных нейронных сетей для интеллектуализации принятия решений, в том числе в условиях неопределенности	обучение»; типы задач для машинного обучения и их классификация; этапы жизненного цикла нейронной сети; суть проблемы переобучения нейронной сети и способы её решения; особенности и возможности библиотек руthon для создания нейронных сетей. Уметь сформировать обучающую и тестовую выборки для задач классификации текстов, распознавания речи или образов и пругих практических задач

2. Место дисциплины в структуре ООП

Изучение дисциплины «Нейросетевые технологии» базируется на результатах освоения следующих дисциплин: «Математика», «Информатика», «Теория вероятностей и математическая статистика», «Математическая логика и теория алгоритмов», «Исследование операций», «Программирование на языке высокого уровня», «Объектно-ориентированное программирование», «Управление данными», «Методы анализа данных»

Дисциплина является предшествующей для дисциплин: «Интеллектуальные системы и технологии», «Производственная практика: научно-исследовательская работа», «Производственная практика: преддипломная практика», «Подготовка к процедуре защиты и защита выпускной квалификационной работы».

3. Объем дисциплины

Объем дисциплины составляет - 6 ЗЕТ

	Трудоемкость в академических			
Вид учебной работы	Часах (Один академический час соответствует 45 минутам астрономического часа)			
	Всего	Семестр №5		
Общая трудоемкость дисциплины	144	144		
Аудиторные занятия, в том числе:	48	48		
лекции	16	16		
лабораторные работы	32	32		
практические/семинарские занятия				
Самостоятельная работа (в т.ч. курсовое проектирование)	60	60		
Трудоемкость промежуточной аттестации	36	36		
Вид промежуточной аттестации (итогового контроля по дисциплине)	Экзамен	Экзамен		

4. Структура и содержание дисциплины

4.1 Сводные данные по содержанию дисциплины

Семестр №5

Nº	Наименование раздела и темы			Ви	д контак	тной р	аботы			Форма текущо контроля и в промежуточн аттестации	ид Юй
п/п	дисциплины	Ле	екции		ЛР	ПЗ	(CEM)	(СРС		
		No	Кол. час.	No	Кол. час.	№	Кол. час.	№	Кол. час.		
1	2	3	4	5	6	7	8	9	10	11	
1	Основные понятия и области применения искусственных нейронных сетей	1	2							Отчет лабораторной работе	по
2	Однослойная нейронная сеть	2	2	1	8					Отчет лабораторной работе	ПО
3	Многослойная нейронная сеть	3	4	2	10					Отчет лабораторной работе	ПО
4	Нейронные сети с радиально- базисными функциями	4	2	3	8					Отчет лабораторной работе	ПО
5	Создание гибридной сети ANFIS для задач классификации и аппроксимации	5	2							Отчет лабораторной работе	по

6	Сверточные нейронные сети. Основная идея и виды сверточных сетей	6	2						Отчет лабораторной работе	по
7	Глубокий анализ текста	7	2	4	6				Отчет лабораторной работе	ПО
	Промежуточная аттестация						1	36	Экзамен	
	Всего		16		32			36		

4.2 Краткое содержание разделов и тем занятий

Семестр №5

No	Тема	Краткое содержание
1	Основные понятия и области применения искусственных нейронных сетей	Основные понятия. Основные свойства биологических нейронных сетей. Цели и проблемы обучения нейронных сетей. Классификация нейронных сетей. Области применения искусственных нейронных сетей.
2	Однослойная нейронная сеть	Формальная модель нейрона. Нормализация входной и выходной информации. Активационные функции. Алгоритм обучения персептрона. Алгоритм обучения слоя Кохонена.
3	Многослойная нейронная сеть	Принципы построения многослойных нейронных сетей. Алгоритм обратного распространения ошибки. Параметры, влияющие на обучение многослойной нейронной сети.
4	Нейронные сети с радиально-базисными функциями	Общие сведения о нейронных сетях с радиально- базисными функциями (RBF). Математические основы функционирования радиальных нейронных сетей. Обучение нейронной сети RBF.
5	Создание гибридной сети ANFIS для задач классификации и аппроксимации	Применение адаптивной нейро-нечеткой сети ANFIS для решения задачи идентификации сетевых атак. Основы нейросетевых нечетких систем. Моделирование и реализация нейро-нечеткой сети на языке Python.
6	Сверточные нейронные сети. Основная идея и виды сверточных сетей	Основные понятия и идеи глубокого обучения. Пример сверточной нейронной сети для распознавания рукописных цифр в Python.
7	Глубокий анализ текста	Области применения глубокого анализа текстов. Методы глубокого анализа текста. Учебный пример: классификация статей портала "Нейроновости"

4.3 Перечень лабораторных работ

Семестр №5

No॒	Наименование лабораторной работы						Кол-во	
п/п							акад.	
								часов
1	Применение	нейронных	сетей	для	задач	классификации	И	8
	кластеризации							

2	Создание простейшей искусственной нейронной сети для решения	10
	задачи распознавания образов	
3	Аппроксимация функций с помощью различных видов нейронных сетей	8
4	Применение прикладных библиотек для разработки нейронных сетей	6
	Итого	32

4.4 Перечень практических занятий

Практических занятий не предусмотрено.

4.5 Самостоятельная работа

Семестр №5

No	Вид СРС	Кол-во
п/п		акад. часов
1	Подготовка к лабораторным работам	
	Итого	
1	Подготовка к экзамену	36

В ходе проведения лекций и лабораторных работ используются следующие интерактивные методы обучения: интерактивная демонстрация способа решения типовой проблемы, работа парами «Консультация».

- 5. Перечень учебно-методического обеспечения дисциплины
- 5.1 Методические указания для обучающихся по освоению дисциплины:
- 5.1.1 Методические указания для обучающихся по лабораторным работам:

Осипова Е.А. Нейросетевые технологии: электронный курс / Е.А. Осипова https://el.istu.edu/course/view.php?id=4237

5.1.2 Методические указания для обучающихся по самостоятельной работе:

Осипова Е.А. Нейросетевые технологии: электронный курс / Е.А. Осипова https://el.istu.edu/course/view.php?id=4237

- 6. Фонд оценочных средств для контроля текущей успеваемости и проведения промежуточной аттестации по дисциплине
- 6.1 Оценочные средства для проведения текущего контроля

6.1.1 Входной контроль (ВК)

Не предусмотрен.

6.1.2 Отчет по лабораторной работе

Тема:

Комплект лабораторных работ охватывает все темы дисциплины.

Описание процедуры:

Выполнение каждой лабораторной работы состоит из двух частей: практической части, в ходе которой необходимо выполнить индивидуальное задание, подготовку и защиту отчета по лабораторной работе. Реализация решения индивидуального задания осуществляется средствами Jupyter Notebook.

В ходе выполнения лабораторной работы студент должен применить полученные в ходе изучения курса теоретические знания методов построения искусственных нейронных сетей и подготовки данных для их обучения, а также приобрести практические навыки использования языка программирования Руthon для решения типовых задач.

Подготовка отчета по лабораторной работе необходима для закрепления и переосмысления полученных знаний и навыков.

Для успешной сдачи лабораторной работы необходимо продемонстрировать работу программы, реализующую индивидуальное задание, устранить выявленные преподавателем недостатки, подготовить и защитить отчет.

Требования к содержанию отчета указаны в соответствующем разделе методических указаний для каждой лабораторной работы.

Критерии оценки:

В процессе защиты отчета по лабораторной работе, студенту задаются контрольные вопросы теоретического и практического характера, соответствующие теме работы. Для успешной защиты отчета студенту необходимо дать краткое изложение основных результатов полученных в ходе выполнения лабораторной работы, устно ответить на теоретические вопросы по теме лабораторной работы, а также продемонстрировать умение ориентироваться в написанном программном коде. Успешная защита отчета является необходимым условием для выставления оценки по соответствующей лабораторной работе.

6.2 Оценочные средства промежуточной аттестации

6.2.1 Критерии и средства (методы) оценивания индикаторов достижения компетенции в рамках промежуточной аттестации

Индикатор достижения компетенции	Критерий оценивания	Средства (методы) оценивания промежуточной аттестации
ОПК ОС-1.6 Применяет знания математических и алгоритмических аспектов функционирования искусственных нейронных сетей при решении задач аппроксимации, классификации, прогнозирования и управления динамическими процессами	современного объектно- ориентированного языка программирования Python	Устное собеседование по теоретическим вопросам и выполнение лабораторной работы
ОПК ОС-8.2 Способен применять модели, методы и алгоритмы аппарата искусственных нейронных сетей для интеллектуализации	Уверенно демонстрирует полученные знания принципов построения нейронных сетей для решения практических	Устное собеседование по теоретическим вопросам и выполнение лабораторной работы

принятия решений, в том числе	отвечает на вопросы. Способен
в условиях неопределенности	с использованием различных
	библиотек Python
	реализовывать нейросетевую
	модель на основе экспертных
	знаний о предметной области.

6.2.2 Типовые оценочные средства промежуточной аттестации

6.2.2.1 Типовые оценочные средства для проведения экзамена/дифференцированного зачета по лисциплине

Вопросы к экзамену:

- 1. Понятие «машинное обучение». Типы задач для машинного обучения и их классификация.
- 2. Биологический и искусственный нейрон: сходства и различия. Обучаемость, способность к обобщению и абстрагированию как главные свойства искусственного нейрона.
- 3. Структура и свойства искусственного нейрона со смещением. Активационная функция как составная часть искусственного нейрона. Виды активационных функций. Что дает использование смещения при реализации нейрона?
- 4. Классификация искусственных нейронных сетей.
- 5. Сверточные нейронные сети. Основная идея и виды сверточных сетей.
- 6. Обучающее (Train), тестовое(Test) и проверочные (Validation) множества. Их назначение и способ формирования.
- 7. Этапы жизненного цикла нейронной сети: разработка, обучение, тестирование и использование.
- 8. Эффект переобучения как одна из проблем на этапе обучения нейронной сети, способы её решения.
- 9. Типовые задачи, решаемые с помощью нейронных сетей. Существующие и перспективные области применения.
- 10. Основные подходы к созданию нейронных сетей на объектно-ориентированном языке программирования Python.
- 11. Однослойная нейронная сеть как простейшая нейронная сеть, её структура. Понятие о персептроне.
- 12. Структура персептрона и алгоритм его обучения.
- 13. Классификация и кластеризация как типовые задачи для нейронных сетей. Метрики для определения спектрального и пространственного расстояния при сегментации изображения. Алгоритм кластеризации «k-средних».
- 14. Слой Кохонена как однослойная нейронная сеть, её архитектура и алгоритм обучения без учителя. Сходства алгоритма работы слоя Кохонена с алгоритмом «k-средних».
- 15. Понятие о многослойных нейронных сетях прямого распространения. Алгоритм обратного распространения ошибки. Области применения таких сетей.
- 16. Параметры, влияющие на обучение многослойной нейронной сети.
- 17. Радиальная базисная нейронная сеть как частный случай двухслойной нейронной сети, её преимущества. Отличие радиального нейрона от обычного нейрона сигмоидальной сети.
- 18. Понятие о гибридных сетях. Адаптивная система нейро-нечеткого вывода ANFIS как частный случай гибридной сети.
- 19. Аппроксимация функций как типовая задача для нейронной сети. Какие архитектуры нейронных сетей применяются для аппроксимации функций?
- 20. Библиотека TensorFlow. Основные особенности и возможности. Понятие тензор.
- 21. Библиотека Caffe. Основные особенности и возможности.

- 22. Библиотека Torch. Основные особенности и возможности.
- 23. Библиотека Microsoft Cognitive Toolkit. Основные особенности и возможности.
- 24. Библиотека Keras. Основные особенности и возможности.
- 25. Распознавание текстов как задача для нейронных сетей. Особенности подготовки текстовых данных. Классификация текстов. Возможности библиотек языка Python: Scikit-Learn и NLTK.
- 26. Распознавание речи. Нейросетевой подход к решению задачи распознавания речи. Библиотеки Python.
- 27. Распознавание образов как задача для нейронных сетей. Зависимость надежности распознавания образов от топологии нейронной сети. Библиотеки Python.

Типовой билет к экзамену:

- 1. Классификация искусственных нейронных сетей.
- 2. Параметры, влияющие на обучение многослойной нейронной сети.
- 3. Покажите пример решения задачи с помощью библиотеки Keras.

Код компетенции	Номера вопросов	
ОПК ОС-1	2, 3, 4, 5, 11, 12, 13, 14, 15, 17, 18, 19	
ОПК ОС-8	1, 6, 7, 8, 9, 10, 20, 21, 22, 23, 24, 25, 26, 27	

6.2.2.1.1 Описание процедуры экзамена/дифференцированного зачета

Для допуска к экзамену должны быть выполнены и защищены все лабораторные работы за 5 семестр. В ходе экзамена студент должен устно ответить на вопросы билета, а также быть способен составить программный код по тематике вопроса по требованию преподавателя. Допускается письменный ответ на вопросы билета на экзамене (по решению преподавателя).

6.2.2.1.2 Критерии оценивания

Отлично	Хорошо	Удовлетворительно	Неудовлетворительно
Продемонстрирова			
но глубокое			
понимание			
теоретических	Продемонстрирова		
основ дисциплины.	но хорошее		Демонстрирует
Поставленная	понимание		непонимание сущности
задача решена	теоретических	Демонстрирует	излагаемого вопроса,
полностью, в	основ дисциплины.	понимание	наличие грубых
процессе решения	Поставленная	теоретических основ	ошибок в ответах на
были применены	задача решена	дисциплины с	вопросы,
самостоятельно	полностью с	незначительными	неуверенность и
изученные	применением	пробелами.	неточность ответов на
программные	изученных в рамках	Поставленная задача	дополнительные или
библиотеки и	курса программных	решена частично	наводящие вопросы.
инструментальные	библиотек и		Поставленная задача не
средства,	инструментальных		решена
использованы	средств.		
дополнительные			
информационные			
источники.			

7. Основная учебная литература

- 1. Круглов В. В. Нечеткая логика и искусственные нейронные сети : учебное пособие / В.
- B. Круглов, М. И. Дли, Р. Ю. Голунов, 2001. 224 с. http://elib.istu.edu/viewer/view.php?file=/files/er-0414.pdf
- 2. Силен Д. Основы Data Science и Big Data. Python и наука о данных / Д. Силен, А. Мейсман, М. Али; пер. с англ. Е. Матвеев, 2018. 334 с.
- 3. Ростовцев В. С. Искусственные нейронные сети : учебник / В. С. Ростовцев, 2019. 213 с. https://e.lanbook.com/book/122180
- 4. Куцый Н. Н. Системы искусственного интеллекта. Нейронные сети и генетические алгоритмы : лабораторный практикум по специальностям "Информатика и вычислительная техника", "Информационные системы и технологии" / Н. Н. Куцый, Н. Д. Лукьянов, 2020. 44 с. http://elib.istu.edu/viewer/view.php?file=/files3/er-23249.pdf

8. Дополнительная учебная и справочная литература

- 1. Круглов В. В. Искусственные нейронные сети. Теория и практика / В. В. Круглов, В. В. Борисов, 2001. 381 с. http://elib.istu.edu/viewer/view.php?file=/files3/er-23249.pdf
- 2. Нейронные сети: история развития теории : учеб. пособие для вузов по направлению подгот. бакалавров и магистров "Прикладные математика и физика" / Под общ. ред. А. И. Галушкина, Я. З. Цыпкина, 2001. 839 с. http://elib.istu.edu/viewer/view.php?file=/files3/er-23249.pdf
- 3. Галушкин А. И. Нейронные сети: основы теории : монография / А. И. Галушкин, 2015. 496 с. http://elib.istu.edu/viewer/view.php?file=/files3/er-23249.pdf
- 4. Хливненко Л. В. Практика нейросетевого моделирования : учебное пособие / Л. В. Хливненко, Ф. А. Пятакович, 2019. 196 с. http://elib.istu.edu/viewer/view.php?file=/files3/er-23249.pdf

9. Ресурсы сети Интернет

- 1. http://library.istu.edu/
- 2. https://e.lanbook.com/

10. Профессиональные базы данных

- 1. http://new.fips.ru/
- 2. http://www1.fips.ru/

11. Перечень информационных технологий, лицензионных и свободно распространяемых специализированных программных средств, информационных справочных систем

- 1. Microsoft Windows (Подписка DreamSpark Premium Electronic Software Delivery (3 years). Сублицензионный договор №14527/МОС2957 от 18.08.16г.)
- 2. Microsoft Office
- 3. Свободно распространяемое программное обеспечение Anaconda (Jupyter Notebook)

12. Материально-техническое обеспечение дисциплины

- 1. Проектор Epson EB-460i LCD или аналогичный по техническим характеристикам.
- 2. Компьютер "i5-4440(3.1)/4Gb/500Gb/VGA/23"" или аналогичный по техническим характеристикам: не менее $16~\rm mt$.