ITC-ADA-C1-2023: Assignment #3

Luis Ballado luis.ballado@cinvestav.mx

CINVESTAV UNIDAD TAMAULIPAS — February 5, 2023

1 Considerando el algoritmo recursivo mostrado a continuación, responda las siguientes preguntas

Algorithm 1: Algoritmo Misterio
entrada: Un arreglo $A[0n-1]$ de números reales
if $n==1$ then
return A[0];
else
$ temp \leftarrow Misterio(A[0n-2])$
if $temp \le A[n-1]$ then
∟ return temp;
else
return A[n-1];

Pregunta 1
¿Qué calcula el algoritmo?

Pregunta 2

¿Cuál es el parámetro que indica el tamaño de la entrada del algoritmo?

Pregunta 3

Cuál es el parámetro que indica el tamaño de la entrada del algoritmo?

←(Pregunta 4) ¿Cuál es el parámetro que indica el tamaño de la entrada del algoritmo? Pregunta 5

¿Cuál es el parámetro que indica el tamaño de la entrada del algoritmo?

Pregunta 6

¿Cuál es el parámetro que indica el tamaño de la entrada del algoritmo?

Pregunta 7

¿Cuál es el parámetro que indica el tamaño de la entrada del algoritmo?

2 Dado el problema de encontrar el determinante de una matriz A de nxn , desarrolle los siguiente puntos:

Pregunta 8

Programe las versiones iterativa y recursiva del algoritmo para resolver el problema

2.1 Implementación

```
tarea1.cpp
1 #include <iostream>
2 #include <vector>
4 //Complejidad funcion principal O(n^2)
5 //por el doble for que recorre los arreglos
6 int main(){
   std::vector<int> a;
   a.push_back(2);
   a.push_back(5);
   a.push_back(5);
   a.push_back(5);
   std::vector<int> b;
   b.push_back(2);
   b.push_back(2);
   b.push_back(3);
   b.push_back(5);
   b.push_back(5);
   b.push_back(7);
   //vector de resultados
   std::vector<int>arr;
   int last_index = 0;
                                               // O(n^2)
   //Usando fuerza bruta
   for (int i = 0; i < a.size(); i++){</pre>
                                               // O(n)
     for (int j = i; j < b.size(); j++){</pre>
                                               // O(n)
       //std::cout << a[i] << "<-a comparacion b->"<< b[
     last_index] << "\n";</pre>
        if (a[i] == b[last_index]){
          arr.push_back(a[i]);
          break; // romper ciclo cuando sean iguales
        last_index = i+1; //indice auxiliar para avanzar
     }
   }
   // Imprimir resultado
   //-----
   std::cout << "El resultado es: \n";
for(int i = 0; i<arr.size(); i++){</pre>
                                          // 1
// n
     std::cout << arr[i] << "\n";
52 }
```

ver código en github

Ejecutar desde una terminal

```
Command Line

$ g++ -o ./tarea1 ./tarea1.cpp
$ ./tarea1
```

Pregunta 9

Analice matemáticamente cada versión el algoritmo por separado usando las metodologías vistas en clase. Respuesta aqui

Pregunta 10

En base a los resultados obtenidos en el punto anterior determine cuál de los dos algoritmos es más eficiente Respuesta aqui

Pregunta 11

Para cada uno de los dos algoritmos desarrollados aplique el método descrito en el apartado "Doubling ratio experiments" del libro Algorithms de Sedgewick y Wayne, generando instancias de tamaños 1000,2000,etc; hasta lograr un radio de 2^b , ejecutando 20 pruebas con cada tamaño y con cada algoritmo. Registre sus resultados. Respuesta aqui

Pregunta 12

Para cada algoritmo comparado realice una tabla con 5 predicciones, posteriores al tamaño con que se logró obtener el radio 2^b Respuesta aqui

Pregunta 13

Para cada algoritmo comparado grafique los siguientes resultados de sus ejecuciones Respuesta aqui

Pregunta 14

Con base en los experimentos realizados y considerando un tiempo máximo de ejecución sobre su computadora de 7 días, ¿Cuál es el tamaño máximo de entrada que puede resolver cada algoritmo analizado? Respuesta aqui

Pregunta 15

Conclusiones respecto al orden de crecimiento de cada algoritmo observado empíricamente y constrástelas contra los resultados de sus análisis matemático Respuesta aqui