This page is for extra work.

Student #: Page 1 of 9

Question 1. [15 MARKS]

Answer the following short answer questions. For each question circle all appropriate answers.

Part (a) [5 MARKS]

Each option below lists regions of the given Venn diagram. Circle all answers whose regions satisfy the statement:

$$p \leftrightarrow (q \wedge r)$$

(a) 1, 4 (b) 2, 4, 5 (c) 1, 8 (d) 6 (e) None

Soln. (a), (c), (d) 1 mark off for every missing or extra answer.

Part (b) [5 MARKS]

Write a propositional statement using \to and \neg (if necessary) equivalent to regions 3, 5 and 6. For part marks you can leave your solution using \land, \lor, \neg and \to . You do **not** need to specify which equivalence laws you use if you need them.

Solution.

$$p \wedge (q \vee r) \iff (p \wedge q) \vee (p \wedge r) \iff \neg (p \wedge q) \to (p \wedge r)$$

$$\iff (\neg p \vee \neg q) \to (\neg \neg p \wedge \neg \neg r) \iff (\mathbf{p} \to \neg \mathbf{q}) \to \neg (\mathbf{p} \to \neg \mathbf{r})$$
Final Answer: $(\mathbf{p} \to \neg \mathbf{q}) \to \neg (\mathbf{p} \to \neg \mathbf{r})$

Part (c) [5 MARKS]

Circle every statement equivalent to $\neg a \rightarrow b$.

- (a) $\neg b \rightarrow a \checkmark$
- (b) $a \rightarrow \neg b$
- (c) a is sufficient for $\neg b$
- (d) $\neg (a \land \neg b)$
- (e) b is sufficient for $\neg a$

- (f) a is necessary for $\neg b \checkmark$
- (g) $\neg a$ is necessary for b
- (h) b if $\neg a \checkmark$
- (i) $b \vee a \checkmark$

1 mark of for every missing or every extra

Question 2. [15 MARKS]

Part (a) [5 MARKS]

Give an example to show that \forall does not distribute over \vee , in other words,

$$\forall x \in X, p(x) \lor q(x) \iff \forall x \in X, p(x) \lor \forall x \in q(x)$$

Sample Soln.

Let $X = \{0,1\}$. Let p(0) = T, p(1) = F, q(0) = T, q(1) = F. Then $\forall x \in X, p(x) \lor q(x)$ is True since x = 0, p(0) = T and for x = 1, q(1) = T. Notice that the right hand side however, $\forall x \in X, p(x) \lor \forall x \in q(x)$ is not True since neither p(0) nor q(0) are True for all values in X.

Part (b) [5 MARKS]

It is a fact that \forall does distribute over \land , i.e., that

$$\forall x \in X, (p(x) \land q(x)) \iff (\forall x \in X, p(x)) \land (\forall x \in X, q(x)).$$

Show that your previous example satisfies this equivalence law.

Sample Soln.

In this case, if $X = \{0, 1\}$. Let p(0) = T, p(1) = F, q(0) = T, q(1) = F then both the left and right sides are False since both p() and q() are not true for all values.

Part (c) [5 MARKS]

Determine whether \forall can be factored from an implication. In other words is

$$\forall x \in X, (p(x) \to q(x)) \iff (\forall x \in X, p(x)) \to (\forall x \in X, q(x))$$

true? Explain your reasoning. Marks will only be given for your explanation.

Sample Soln.

No it cannot.

$$\forall x \in X, (p(x) \to q(x)) \iff \forall x \in X, \neg p(x) \lor q(x)$$

$$(\forall x \in X, p(x)) \to (\forall x \in X, q(x)) \iff \neg \forall x \in X, p(x) \lor \forall x \in X, q(x)$$
$$\iff \exists x \in X, \neg p(x) \lor \forall x \in X, q(x)$$

It is almost enough to say that since \forall does not factor from \vee and \rightarrow can be rewritten in terms of \vee that they are not equivalent - however since the negation turns the \forall into \exists we should be a little more careful.

Applying nearly the same domain and predicate definitions as in (a) gives the result, left side not equal to right side.

Let $X = \{0,1\}$. Let p(0) = F, p(1) = T, q(0) = T, q(1) = F. Left hand side is false, right hand side is true.

Question 3. [10 MARKS]

Answer the following questions to construct a direct proof that $\forall n \in \mathbb{N}, n \geq 2$,

$$\forall a \in \mathbb{N}, \forall b \in \mathbb{N}, a \equiv_n b \to a^2 \equiv_n b^2$$

Part (a) [2 MARKS]

Recall the Division Theorem which says that every natural number can be written in the form of nq + r for some $n, q, r \in \mathbb{N}$ where $0 \le r < n$. Write a and b in terms of n using the Division Theorem taking into consideration any common variables.

Sample Soln.

$$a = nq_1 + r, b = nq_2 + r, 0 \le r < n$$

Note that r is the same r for both a and b since they are equivalent.

Part (b) [8 MARKS]

Now complete the proof.

Sample Soln.

From part (a) we have q_1, q_2 and r in the natural numbers such that $a = nq_1 + r$ and $b = nq_2 + r$.

Then
$$a^2 = (nq_1 + r)(nq_1 + r) = (n^2q_1^2 + 2nq_1) + r^2$$

and
$$b^2 = (nq_2 + r)(nq_2 + r) = (n^2q_2^2 + 2nq_2) + r^2$$
.

Notice then that $a^2 \mod n = r^2 \mod n$ and $r^2 \mod n = b^2 \mod n$. Therefore $a^2 \equiv_n b^2$.

Question 4. [10 MARKS]

Prove $\forall n \in \mathbb{N}, (n^2 - 1 \not\equiv_4 0) \to n$ is even.

Sample Solution.

Proof by contrapositive. 4 marks for seeing that an indirect proof method is necessary - contradiction fine too.

For all natural numbers n, if n is odd then $n^2 - 1 \equiv_4 = 0$. 2 marks for setting it up properly (contradiction or contrapositive

Since n is odd, we can rewrite as n = 2k + 1. Then $n^2 - 1 = (2k + 1)^2 - 1 = 4k^2 + 4k + 1 - 1 = 4k^2 + 4k = 4(k^2 + k)$ which is a multiple of 4 so equivalent to 0 mod 4. 4 marks for completing the proof. If they don't complete it all, give 2 marks for half done, 3 for 3/4 done 1 for 1/4 done etc).

Question 5. [10 MARKS]

In Assignment 1 we proved that for natural numbers a and n, a and n relatively prime is sufficient for there to exist a unique natural number b < n such that $ab \equiv_n 1$ (note that you can still answer this question even if you were unable to do the assignment question).

Part (a) [4 MARKS]

Write the following claim as an implication using quantifiers and \rightarrow . You may use p(x,y) to denote that x and y are relatively prime.

a and n relatively prime is necessary for there to exist a unique natural number b < n such that $ab \equiv_n 1$.

Sample Soln.

$$\exists x \in \mathbb{N}, b < n \land ab \equiv_n 1 \to p(a, n)$$

Part (b) [6 MARKS]

Prove the claim. Sample Soln.

Suppose there exists b < n such that $ab \equiv_n 1$.

Suppose that a, n are not relatively prime. Then there exists c that divides a and n.

Realizing that an INDIRECT proof is required. 2 marks. Setting up the indirect proof - 2 marks. (so 4 for this sentence).

$$ab = nq + 1$$

Since c divides both a and b we have that a = ck and n = cd.

ckb = cdq + 1. Then c(kb - dq) = 1 and therefore $kb - dq = \frac{1}{c}$. Notice that k, b, d, q are all natural numbers and so their product and difference must be a natural number, hence c must be 1. Therefore a, n are relatively prime.

Question 6. [10 MARKS]

Prove the following statement S(n) for all $n \in \mathbb{N}, n \geq 8$:

$$S(n): \exists a \in \mathbb{N}, \exists b \in \mathbb{N}, 3a + 5b = n.$$

You may use *simple* or *strong induction*.

Sample Solutions.

Base Cases:

$$n = 8 = 5 + 3$$

$$n = 9 = 3(3)$$

$$n = 10 = 2(5)$$

If using simple induction, base case is 8.

I.H. Assume that S(k) holds for $8 \le k < n$.

I.S. Prove S(n).

Since the base case covers 8, 9 and 10, we can assume that $n \ge 11$. Therefore we have the $n-3 \ge 8$. Therefore S(n-3) holds by the induction hypothesis. Therefore exists $a \in \mathbb{N}, b \in \mathbb{N}$ such that n-3=3a+5b and so n=3(a+1)+5b completing the proof.

Use this page for rough work.