

Vorlesungsskript

Mitschrift von Falk-Jonatan Strube

Vorlesung von Dr. Axel Toll

5. April 2016

Inhaltsverzeichnis

ı	Date	enbank als System und Modell
	1.1	Daten als Unternehmensressource
		1.1.1 Daten und Informationen
		1.1.2 Klassifikation von Daten
		1.1.3 Datenverschlüsselung
		1.1.4 Speicher- und Zugriffsformen
	1.2	Datenmodelle als Abbild
	1.3	Datenbanksysteme als Grundlage
2	Date	enbanksystem 14
	2.1	Konventioneller / Datenbankorientierter Ansatz
	2.2	Architektur von Datenbanksystemen
		2.2.1 Grundlegende Begriffe
		2.2.2 3-Ebenen-Architektur
		2.2.2.1 Konzeptionelle Ebene
		2.2.2.2 Externe Ebene
		2.2.2.3 Interne Ebene
	2.3	Aufgbau und Arbeitsweise von DBMS
		2.3.1 Zugriffsvermittlung
		2.3.2 Unterstützung Datenbeschreibung-Entwicklung
		2.3.3 Integritätssicherung
		2.3.4 Zugriffsschutz
		2.3.5 Dienstprogrammfunktionen
	2.4	Datenorganisation
3	Rela	ationales Datenmodell 23
	3.1	Terminologie im Relationenmodell
	3.2	Definition und Manipulation im relationalen Datenmodell
		3.2.1 Datendefinition
		3.2.2 Datenmanipulation / Relationenalgebra
		3.2.2.1 Mengenoperationen
		3.2.2.2 Relationale Operationen

Prüfungsmodalitäten

PVL unbenoteter Beleg als Voraussetzung zur Prüfung

- 1.) Access-Beleg (in Papier-Form abzugeben)
- 2.) Abnahme der SQL-Praktikums-Aufgaben (Abnahme während Praktikumszeit)

SP schriftliche Prüfung, 90min keine eigenen Unterlagen zugelassen. Nur zuvor ausgegeben Referenzen.

1 Betriebliche Informations- und Kommunikationssysteme -Unternehmensmodell - Datenbank

1.1 Daten als Unternehmensressource

1.1.1 Daten und Informationen

Redundante Daten bergen Gefahr von Inkonsistenz \Rightarrow Ziel: Schaffen von Datenbank mit folgenden Eigenschaften:

- ohne Inkonsistenzen (redundanzarm)
- Zugriffsschutz
- Mehrfachzugriff
- Backup-Möglichkeiten (mit Widerspruchsfreier Wiederherstellung)

	Daten	Informationen
Zweck	zweckneutral	zweckgebunden
Verarbeitung	maschinell	Interpretation durch Menschen
Speicherform	vergegenständlicht	an Menschen gebunden

Betriebliche Produktionsfaktoren

- klassische Faktoren
 - Betriebsmittel
 - Werkstoffe
 - Arbeitskraft
- Daten + Informationen

Große Datenbestände ⇒ Maßnahmen zur Datenorganisation

Eine mögliche Organisationsform (logisches Konzept): Ablage in Relationen (=Tabelle)

Eine Zeile in dieser Tabelle nennt man *Datensatz* (Tupel, Record, ...). Eine Spalte nennt man *Datenfeld*.

1.1.2 Klassifikation von Daten

Mögliche Kriterien für Datenfeld

- Zeichenart
 - ganze Zahl ⇒ für Aufzählungen
 - reelle zahl ⇒ numerische Berechnungen
 - Währung ⇒ finanztechnische Berechnungen
 - Datum ⇒ kalendarische Berechnungen/Werte
 - Text ⇒ Beschreibung
 - Bitmuster ⇒ Video, Bilder, . . .
- Erscheinungsform

- sprachlich
- bildlich
- schriftlich
- Stellung im Verarbeitungsprozess (E V A)
 - Eingabe
 - Verarbeitung
 - Ausgabe
- • Verarbeitbarkeit mittels IT (Umwandlung in digitale Daten: analog \rightarrow diskret \rightarrow digital)

Verwendungszweck

	Charakterisierung	Beispiel
Stammdaten	selten zu verändern (über längeren Zeitraum in Struktur und Inhalt konstant)	Personalstammdaten (Name, Adresse)
Änderungsdaten	Aktualisierung der Stammdaten	Änderung der Adresse
Bestandsdaten	Periodische Änderung des wertes (Inhalt) von Feldern, Datenstruktur besteht über längeren Zeitraum konstant	Lagerbestände, Kassenbestände
Bewegungsdaten	Daten zur Aktualisierung des Wertes von Bestandsdaten	Lagerzugänge und -abgänge
Archivdaten	vergangenheitsbezogene Daten die über langeren Zeitraum aufbewahrt werden	Rechnungen, Buchungen der vergangenen 5 Jahre
Transferdaten	Daten, die von einem anderen Programm erzeugt wurden und an ein anderes transferiert werden	Verkauf von Kundenadresson
Vormerkdaten	Daten, die solange existieren, bis ein genau definiertes Ereignis eintritt	Reservierung einer Materialmenge im Lager

1.1.3 Datenverschlüsselung

Gemeint ist nicht die Codierung und Decodierung von Daten, sondern das Zuweisen von Schlüsseln zu Datensätzen.

Identifizierender Schlüssel

kennzeichnet Objekteindeutig Bsp.:

- Personal-Nr.
- Material-Nr.

Klassifiziernder Schlüssel

ordnet Objekt einer Klasse zu Bsp.:

• Länderkennung: D, C, CH, ...

· Geschlecht: M, W

Hierarchischer Verbundschlüssel

identifizierender Teil hängt vom klassifizierenden Teil ab Bsp.:

Autokennzeichen: DD XY 715
 klass. ident.

Parallelschlüssel

zwei unabhängige Schlüsselteile Bsp.:

• Flugnummer LH 283 AB3 Flugnr. Flugzeug

spezielle Schlüssel in Datenbanksystemen

• *Primärschlüssel* (primary key PK): Datenfeld oder die Kombination aus Datenfeldern, die den Datensatz in der Tabelle eindeutig identifizieren.

Bsp. Vereinsdatenbank:

Primärschlüssel als einzelnes Datenfeld (Mitgliedertabelle): Migtlieds-ID

Primärschlüssel als eine Kombination von Datendfeldern (Betragstabelle): ID mit Jahr (für Vereinsbeitrag abhängig von Jahr)

• Fremdschlüssel (foreign key FK): Datenfeld, oder Kombination aus Datenfeldern, der (die) auf den PK einer anderen Tabelle zeigt.

Bsp.: Mitglieds-ID in Tabelle mit Datenfelder-Primärschlüssel kommt aus der ersten Tabelle

• Referentielle Integrität: Jeder Wert eines FK muss gleich dem Wert des PK sein, auf den der FK zeigt.

Bsp.: Neuer Eintrag in Beitragstabelle kann nur neue Einträge bekommen, die Mitglieder aus Mitgliedertabelle enthält. Anders herum kann aus der Mitgliedertabelle kein Mitglied gelöscht werden, das noch in der Beitragstabelle genutzt wird.

1.1.4 Speicher- und Zugriffsformen

• sequentielle Speicherung (fortlaufend)

Bsp.: Bandlaufwerk

• verkettete Speicherung

Bsp.: verkette Listen (vgl. Programmierung I)

• indexverkettete Speicherung

Trennung: Datenspeicherung und "Weg" zu den Daten

Indexdatei (sortiert nach entsprechendem Index)

- Primärindex zeigt auf physische Adresse
- Sekundärindex zeigt auf Primärindex
- Hauptdatei

Unterschied Primärschlüssel-Primärindex:

- Primärschlüssel dient dem Identifizieren
- Primärindex zum schnellen Suchen

1.2 Datenmodelle als informationelles Abbild der Unternehmensrealität

Informationssystem

ullet Funktionsmodell (was soll das System leisten: Produktion, Lager, Beschaffung, ...) \Rightarrow Kernfrage: "Was will ich machen"

Strukturen, Abläufe

Technik: Programm-Ablauf-Plan (PAP), Ereignisorientierte Prozessketten (EPK), ...

Datenmodell

Daten und deren logische Struktur

Technik: Entity-Relationship-Modell (ERM)

Bsp.: ABB9 (1-3)

1.3 Datenbanksysteme als technologische Grundlage der Datenverwaltung

Datenbasis: Tabellen mit Metadaten

Datenbankbetriebssystem (DBMS): Software, die mit Datenbasis kommuniziert

2 Grundlagen und Architektur eines Datenbanksystems (DBS)

2.1 Defekte des konventionellen Ansatzes der Datenverwaltung / Zielstellung des datenbankorientierten Ansatzes

konventionell

ABB 11

konventionelle Datenorganisation

Merkmale

- Datenspeicherung je Anwendung
- Datenspeicherung auf physischem Niveau

Nachteile

- mangelnde Passfähigkeit (Zugriffskonflikte usw.)
- Redundanz
- Konsistenzprobleme
- mangelnde Flexibilität
- Daten-Programm-Abhängigkeit (kurz: Datenabhängigkeit)

Zielsetzung des Datenbankeinsatzes

- 1.) Bsp. für gewollte Redundanz: Sekundärindex
- 2.) Datensicherheit:
 - physisch, falls bspw. der Server abbrennt
 - logisch, dass bspw. alle Daten den richtigen Typ haben

2.2 Architektur von Datenbanksystemen

2.2.1 Grundlegende Begriffe

Am Beispiel der Objekte der Datenmodellierung mittels ERM

Begriff	Erklärung	Beispiel
Entity	Objekt der realen Welt	Max Meier, Arbeitsaufgabe Reportgenerator
Entity-Typ	Objektklasse (-Menge), enthält Elemente mit struktureller Ähnlichkeit	Mitarbeiter, Arbeitsaufgabe, Abteilung
Merkmale / Attribut / Prädikat	Beschreibungen eines Entity-Typs	Name, Vorname, Gehalt
Wert	Ausprägung des Merkmals je Entity, aus einem bestimmten Wertevorrat (Domain)	"Meier", "Max", 3800,-
Beziehung, Set	Logischer Zusammenhang zwischen Entity-Typen	Mitarbeiter – <u>arbeitet an</u> – Arbeitsaufgabe
Beziehungstyp, Settyp	Art der Beziehung (mögliche Anzahl an Entitäten, die in Beziehung treten)	n: 1 Mitarbeiter – gehört zu – Abteilung ABB50

2.2.2 3-Ebenen-Architektur

gemäß ANSI x3/SPARC (1975)

- Architekturebene
 - externe Ebene
 - konzeptionelle Ebene
 - interne Ebene
- Modell
 - externes Modell
 - konzeptionelles Modell
 - internes Modell
- Schema (konkrete Ausprägung des Modells)
 - externes Schema
 - konzeptionelles Schema
 - internes Schema

2.2.2.1 Konzeptionelle Ebene

Gegenstand: logisches Modell des gesamten Systems

Beschreibungselemente:

- Entity-Typen
- Beziehungen
- Attribute
- Wertevorrate (bspw. Einschränkung von Alter: nur Zahlen zwischen 1 und 100)
- Integritätsbedingung (bspw. NOT NULL, vgl. Wertevorrat)

2.2.2.2 Externe Ebene

Gegenstand: Beschreibung *ausgewählter* Elemente der konzeptionellen Ebene aus Sicht des jeweiligen Endbenutzers

Element: Sicht (View)

2.2.2.3 Interne Ebene

Gegenstand: Form/Art der Ablage der Elemente der konzeptionellen Ebene im physischen Spei-

cher

Element: Index

Ebene/ Modell/Schema	Beschreibung	Verantwortlichkeit
extern	Enthält verschiedene Sichten (views) auf die Daten eines Bereichs der objektiven Realität (exterene Objekte mit von speziellen Nutzern vorgegebenen Beziehungen)	Anwendungsadministrator (application administrator)
konzeptuell	Enthält die Gesamtschau der Daten eines Bereiches. Beschreibt die Daten des Bereichs auf einer logischen Ebene unabhängig von den Gesichtspunkten der EDV. Es werden Typen von Objekten und die bestehenden Beziehungen zwischen den Objekten definiert sowie die Attribute (von Objekten und Beziehungen) und deren Wertevorrat spezifiziert.	Unternehmensadministrator (enterprise administrator)
intern	Enthält die Form der Ablage der logisch beschriebenen Daten im Speicher und die Zugriffsmöglichkeiten zu diesen Daten (physische Datenorganisation mit Angaben zu Aufbau, Speicherungsform und Zugriffspfaden).	Datenbankadministrator (database administrator)

2.3 Aufgbau und Arbeitsweise von DBMS

5 Grundfunktionen eines DBMS

2.3.1 Zugriffsvermittlung

2.3.2 Unterstützung Datenbeschreibung-Entwicklung

2.3.3 Integritätssicherung

Bsp. operationale Integrität:

Gehaltserhöhungen sowohl für Organisatoren (O) und Programmierer (P) um €50,-.

Gehaltserhöhung darf nicht doppelt erfolgen ⇒ Sperren von Gehalt, solange ein Nutzer das Gehalt ändert (bei Gefahr bezgl. Deadlock, muss das System das Problem erkennen und entsprechend auflösen).

2.3.4 Zugriffsschutz

2.3.5 Dienstprogrammfunktionen

2.4 Datenorganisation

- logische Datenorganisation (DO)
 - externe Ebene

- konzeptionelle Ebene
- physische DO
 - interne Ebene

klassische Datermodelle (logisch)

- hierarchisch DM (graphisches DM)
- Netzwerk DM (graphisches DM)
- relationales DM (behandelt in DBS I+II)

weitere DM

- objektorientiertes DM (DBS II)
- objektrelationales DM (DBS II)
- XML-DM / NoSQL DM ... (DBS III)

	Hierarchisches DM	Netzwerk DM	relationales DM
	ABB 51	ABB 52	ABB 53
Einstiegspunkt	ein Entity-Typ	mehrere Entity	beliebig
strukturelle Beschräknung	Hierarchie	keine	keine
Zeitpunkt des Aufbau der Beziehung	zur Entwicklungszeit	zur Entwicklungszeit	zur Laufzeit
Performance	+	+	_
Flexibilität bzgl. Änderung	_	_	+

3 Relationales Datenmodell

3.1 Terminologie im Relationenmodell

Bsp.:

Entitytyp:

• Zeugnis

Attribute:

- A_1 Fach
- A₂ Note

Wertebereiche:

- *W*₁ {Ma, Ph}
- $W_2\{1,2,3,4,5\}$

n=2, d.h. 2-stellige Relation ableitbar (Grad = degree = 2) $PM=W_1*W_2=W_1\times W_2$

Fach	Note
Ма	1
Ма	2
Ма	3
Ма	4
Ma	5
Pd	1
Pd	2
Pd	3
Pd	4
Pd	5

Teilmenge 1 = Relation 1:

Fach	Note	
Ма	1	gültig
Ph	2	

Teilmenge 2 = Relation 2:

Fach	Note	
Ма	1	gültige Relation (unabhängig von der semantischen Sinnhaftigkeit)
Ph	1	guilige Helation (unabhangig von der Semantischen Simmattigkeit)
Ph	4	

Weitere Kernaussagen zum relationalen Modell:

- Darstellung der Relation als Tabelle
- Identifikation der Relation über Namen

- Anzahl an Attributen (Spalten) ist fest (degree)
- Anzahl der Tupel (Zeilen) ist variabel (Mächtigkeit)
- Wertebereiche der Attribute = Domain
- Im Kreuzungspunkt von Attribut und Tupel stehen atomare Werte

3.2 Definition und Manipulation im relationalen Datenmodell

3.2.1 Datendefinition

⇒ Definition von Relationen

Relation:	Mitarbeiter			
	Attribute	Mitarbnr; INT Name; CHAR(20) Geburtsdatum; DATE Gehalt; NUMERIC(8,2)		
Relation:	Abteilung	Chief were Military of		
	Attribute	Abteilnr; INT Bezeichnung; CHAR(15) Raum; CHAR(5) Leiter; INT		
	Integritätsbedingung	Leiter → Mitarbeiter.Mitarbnr 100<= Raum <451		
Relation:	Mitabt			
	Attribute	Mitarbnr; INT Abteilnr; INT Anteil; NUMERIC(3,1)		
	Integritätsbedingung	(Mitarbnr,Abteilnr) ist Primärschlü Mitarbnr → Mitarbeiter.Mitarbnr; Abteilnr → Abteilung.Abteilnr; 0,1<=Anteil<=1,0	ssel;	

3.2.2 Datenmanipulation / Relationenalgebra

Relationenalgebra nach: Codd

Grundidee:

Operationen auf Relationen

⇒ Ergebnis ist wieder eine *Relation*

D.h. mengenweise Arbeit *nicht* satzweise.

3.2.2.1 Mengenoperationen

 $\cup \cap \setminus \times$ ABB57

Vereinigung ∪ ABB58 orange UNION

Durchschnitt ∩ ABB58 grün INTERSECTION

Differenz \

 $R_1 \setminus R_2$ ABB 58 lila

Bedingung für \cup , \cap , \setminus (*Vereinigungsverträglichkeit*):

- Anzahl an Attributen ist gleich
- unzugeordnete Attribute besitzen gleiche Domain (Domainverträglichkeit)

$$R_1 \cup R_2 = R_2 \cup R_1$$

$$R_1 \cap R_2 = R_2 \cap R_1$$

$$R_1 \setminus R_2 \neq R_2 \setminus R_1$$

Kartesissches Produkt ×

 $R_1 \times R_2$

Ergebnisrelation enthält:

- alle Attribute aus R_1 und R_2 .
- alle Kombinationen an Tupeln aus R_1 und R_2 .

ABB 59

3.2.2.2 Relationale Operationen

Projektion Spaltenauswahl PROJ ABB 60 grün

Selektion Tupelauswahl (laut Bedingung) REST ABB 60 orange

Verbund Verbindung zwischen zwei Relationen bezüglich der Gleichheit der Attributwerte in einer Verbindungsspalte JOIN

intern:

- 1.) Kartesisches Produkt der Relation
- 2.) auf Ergebnisrelation Selektion nach Gleichheit der Werte in der/den Verbindungsspalten

Merkmale des JOIN:

- Attribute über die den JOIN ausgeführt wird, müssen
 - keine Schlüsselspalten sein
 - gleiche Domain besitzen
 - nicht die gleichen Namen besitzen

Jede Relation ist mit jeder Relation via JOIN verbindbar (auch mit sich selbst).