

Symbol	Meaning
•	dot product
3	there exists
\forall	for all
∞	infinity
\in	element
∉	not in
s.t.	such that
\mathbb{R}	real numbers
\mathbb{R}^m	<i>m</i> -dimensioned real numbers
U	union
\cap	intersection
\	set difference
\Rightarrow	implies. $p \Rightarrow q$ is p implies q
$\stackrel{\Longleftrightarrow}{\Longrightarrow}$ S^1	if and only if
S^1	a circle
∇	gradient
D	differential or distance to closest obstacle (depending on
	context)
d_i	distance to obstacle i in either the workspace or
	configuration space (depending on context)
d(x, y)	distance between the two points x and y
Null	null space

A Mathematical Notation

O(n)	order of <i>n</i>
J	Jacobian
Γ	Christoffel symbol
RM	roadmap
${\mathcal W}$	workspace
Q	configuration space
$\mathcal{Q}_{ ext{free}}$	free space
x(k)	state at time <i>k</i>
x	norm of x
\subseteq	subset of
\subset	strict subset of
cl(A)	closure of A
T^n	<i>n</i> -dimensional torus
S^n	<i>n</i> -dimensional sphere in \mathbb{R}^{n+1}
SO(n)	special orthogonal group
SE(n)	special Euclidean group
$B_{\epsilon}(q)$	open ball of radius ϵ centered at q
Df	differential of f
∇f	gradient of f
∇	affine connection
$\nabla_{Y_1} Y_2$	covariant derivative of Y_2 with respect to Y_1
C^0	continuous
C^n	<i>n</i> times differentiable
$\langle x, y \rangle$	inner product of x and y
${\mathcal I}$	identity matrix
atan2(y, x)	returns angle to (x, y) in the plane in range $[-\pi, \pi)$
$T_x \mathcal{M}$	tangent space of \mathcal{M} at x
$T\mathcal{M}$	tangent bundle of \mathcal{M}
[f,g]	Lie bracket of vector fields f , g
$\overline{\text{Lie}}(\mathcal{G})$	the Lie algebra of a set of vector fields \mathcal{G}
$\overline{\mathcal{D}}$	involutive closure of the distribution \mathcal{D}
\mathcal{U}_{\pm}	control set positively spanning \mathbb{R}^m
\mathcal{U}_+	control set spanning \mathbb{R}^m
$\langle Y_1:Y_2\rangle$	the symmetric product of vector fields Y_1 and Y_2
$\overline{\operatorname{Sym}}(\mathcal{Y})$	the symmetric closure of the distribution \mathcal{Y}
$\mathrm{span}(\{x_1,\ldots,x_n\})$	the linear span of $\{x_1, \ldots, x_n\}$