Guía 1: Series Cronológicas

Profesor: Felipe Elorrieta L. Ayudante: Daniela Roco F.

Conceptos Básicos

- 1. Sea $Z_t = U \sin(2\pi t) + V \cos(2\pi t)$, donde U y V son v.a. independientes, cada una con media 0 y varianza 1.
 - a) Es $\{Z_t\}$ estacionario de 2do orden?
 - b) Discuta condiciones para que el proceso $\{Z_t\}$ sea estrictamente estacionario.
- 2. Dado el proceso Z_t definido por.
 - a) $Z_t = \beta_0 + \beta_1 \epsilon_t$
 - b) $Z_t = \beta_0 + \beta_1 t + \epsilon_t$
 - c) $Z_t = \beta_0^t exp\{\epsilon_t\}$
 - d) $Z_t = \beta_0 + \epsilon_t + \beta_1 \epsilon_{t-1}$

donde β_0 y β_1 son constantes y $\{\epsilon_t\}$ es un proceso de ruido blanco con media cero y varianza σ^2 , defina un nuevo proceso Y_t (en función de Z_t) que sea estacionario. Proporcione $\mathbb{E}[Y_t]$, $\mathbb{V}[Y_t]$ y $Cov(Y_t, Y_{t+k})$, para $k = 1, 2, \ldots$

- 3. Sean Z_1 y Z_2 dos variables aleatorias tal que $\mathbb{E}[Z_1] = \mu_1$, $\mathbb{E}[Z_2] = \mu_2$, $\mathbb{V}[Z_1] = \sigma_{11}$, $\mathbb{V}[Z_2] = \sigma_{22}$, $Cov(Z_1, Z_2) = \sigma_{12}$ y el proceso $X_t = Z_1 + Z_2t$, $t \in \mathbb{R}$. Determine condiciones para que X_t sea un proceso estacionario de segundo orden.
- 4. Mostrar que las dos series de tiempo.

a)
$$X_t = \epsilon_t - 2.25\epsilon_{t-1} + 0.5\epsilon_{t-2}$$

b)
$$X_t = \epsilon_t - 0.75\epsilon_{t-1} + 0.125\epsilon_{t-2}$$

tienen la misma función de autocorrelación.

- 5. Si $\{X_t\}$ y $\{Y_t\}$ son secuencias estacionarias no correlacionadas, ie, si X_r y Y_s son no correlacionados $\forall r, s$. Muestre que $\{X_t+Y_t\}$ es estacionario con función de autocovarianza igual a la suma de las funciones de autocovarianza de $\{X_t\}$ y $\{Y_t\}$
- 6. Verifique las siguientes propiedades de la FAC de un proceso estacionario:
 - a) $\rho(0) = 1$
 - b) $|\rho(k)| \leq 1$
 - c) $\rho(k) = \rho(-k)$
- 7. Considere una serie de tiempo de largo n=52 con la siguiente función de autocorrelación empírica:

Lag	0	1	2	3	4	5	6	7	8
ACF	1.00	0.40	0.03	0.05	0.03	-0.02	-0.09	-0.01	0.07

Usando un intervalo de 2σ . Considera usted que esta serie temporal una dependecia temporal significativa?.

- Descomposición clásica de una serie de Tiempo.
 - 8. Muestre que la predicción del alisado exponencial simple que se obtiene de la formula $\hat{X}_t(h) = \alpha X_t + (1-\alpha)\hat{X}_{t-1}(h+1)$, puede ser reescrita para h=1 como $\hat{X}_t(1) = \alpha e_t + \hat{X}_{t-1}(1)$, donde $e_t = X_t \hat{X}_{t-1}(1)$
 - 9. Considere el filtro de media móvil con pesos $\omega_j = \frac{1}{2q+1}$ $-q \le j \le q$.
 - a) Si $T_t = \alpha_0 + \alpha_1 t$ muestre que $\sum_{j=-q}^q \omega_j T_{t-j} = T_t$
 - b) Si ε_t , $t=0,\pm 1,\pm 2,\ldots$ son variables aleatorias independientes con media 0 y varianza σ^2 , muestre que el promedio móvil $\sum\limits_{j=-q}^q \omega_j \varepsilon_{t-j}$ es pequeño para q grande en el sentido que $\mathbb{E}[x_t]=0$ y $\mathbb{V}[x_t]=\frac{\sigma^2}{2q+1}$
 - 10. Las siguientes observaciones corresponden a las ventas en miles de pesos (M\$) de un determinado producto. A partir de la tabla responda las siguientes preguntas:

	ene	feb	mar	abr	may	jun	jul	ago	sep	oct	nov	dic
1975	19	15	39	102	90	29	90	46	30	66	80	89
1976	82	17	26	29								

a) Grafique el conjunto de datos y señale los aspectos más relevantes y técnicas posibles de predicción y aplique medias móviles utilizando tres meses como punto de referencia.

- b) Utilice AES con $\alpha=0.3$ y obtenga la predicción para mayo del 1976 y junio de 1976.
- c) Encuentre los intervalos de confianza para las predicciones de la parte b) con $\alpha=0.05$. Predicción a 1 y 2 pasos.
- 11. Considere el gráfico y los valores asociados a la serie temporal del número de vagones de carga nuevos en EE.UU. por año entre 1947 y 1976.

Año	Valor	Año	Valor	Año	Valor
1947	4631.4	1957	1109.3	1967	1924.5
1948	2885.1	1958	621.5	1968	2469.3
1949	2136.5	1959	1924.7	1969	3265.1
1950	5478.8	1960	1121.0	1970	2126.5
1951	2805.6	1961	950.6	1971	2345.7
1952	1133.6	1962	1187.2	1972	2117.2
1953	1171.5	1963	2189.2	1973	5106.8
1954	712.0	1964	2225.7	1974	4263.8
1955	4167.2	1965	3269.9	1975	1601.6
1956	1535.2	1966	3660.8	1976	1527.3

- a) Obtenga la función de autovarianza empírica $\gamma(k)$ para k=0,1,2, y la función de autocorrelación empírica r_k para k=1,2. Son las autocorrelaciones estimadas significativamente distintas de cero?. Le parece que la serie de tiempo observada se comporta como un proceso estacionario de segundo orden?. Justifique su respuesta.
- b) Obtenga un promedio móvil para r=10. Gráfique los valores suavizados sobre la serie de tiempo observada. Considera que el suavizado realizado a la serie de tiempo ha sido exitoso?. Justifique su respuesta.