Plasma Physics Summary

Mathematical Notes

October 28, 2025

Contents

1	Intr	roduction to Plasma Physics	2
	1.1	What is Plasma?	2
	1.2	Plasma Parameters	2
	1.3	Plasma Conditions	2
2	Mag	gnetohydrodynamics (MHD)	2
	2.1		2
	2.2	*	3
	2.3		3
	2.4	9 ,	3
3	Plas	sma Waves and Instabilities	3
	3.1		3
	3.2	9	3
	3.3		3
	3.4		4
			4
		3.4.2 Kelvin-Helmholtz Instability	4
		3.4.3 Two-Stream Instability	4
4	Fus	ion Physics	4
	4.1	·	4
	4.2	Fusion Reactions	4
	4.3	Fusion Conditions	5
	4.4	Tokamak Physics	5
			5
		4.4.2 Plasma Equilibrium	5
	4.5		5
5	Spa	ice and Astrophysical Plasmas	5
	5.1	Solar Wind	5
		5.1.1 Solar Wind Properties	5
	5.2	•	6
		9 •	6
	5.3	Stellar Atmospheres	6
	5.4		6

6	Cor	mputational Plasma Physics			
	6.1	Particle-in-Cell (PIC) Method			
		6.1.1 PIC Algorithm			
	6.2	Magnetohydrodynamic Simulations			
	6.3	Kinetic Simulations			
7	Pla	sma Diagnostics			
	7.1	Electromagnetic Diagnostics			
	7.2	Particle Diagnostics			
	7.3	Spectroscopic Diagnostics			
8	Applications				
	8.1	Fusion Energy			
	8.2	Space Physics			
	8.3	Industrial Applications			
9	Important Constants and Parameters				
	9.1^{-}	Fundamental Constants			
	9.2	Plasma Parameters			
	9.3	Fusion Parameters			

1 Introduction to Plasma Physics

1.1 What is Plasma?

Definition 1.1. A **plasma** is a state of matter consisting of a collection of charged particles (ions and electrons) that is electrically neutral on average and exhibits collective behavior.

1.2 Plasma Parameters

- Plasma frequency: $\omega_p = \sqrt{\frac{n_e e^2}{m_e \epsilon_0}}$
- Debye length: $\lambda_D = \sqrt{\frac{\epsilon_0 k_B T_e}{n_e e^2}}$
- Plasma parameter: $g = \frac{1}{n_e \lambda_D^3}$
- Collision frequency: $\nu_{ei} = \frac{n_i e^4 \ln \Lambda}{4\pi \epsilon_0^2 m_e^{1/2} (k_B T_e)^{3/2}}$

1.3 Plasma Conditions

For a gas to be considered a plasma:

- 1. $\lambda_D \ll L$ (Debye length much smaller than system size)
- 2. $N_D = n_e \lambda_D^3 \gg 1$ (many particles in Debye sphere)
- 3. $\omega_p \tau \gg 1$ (plasma frequency much larger than collision time)

2 Magnetohydrodynamics (MHD)

2.1 MHD Equations

The MHD equations describe the macroscopic behavior of plasmas:

Theorem 2.1 (MHD Continuity Equation).

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \vec{v}) = 0$$

Theorem 2.2 (MHD Momentum Equation).

$$\rho \frac{D\vec{v}}{Dt} = -\nabla p + \vec{J} \times \vec{B} + \rho \vec{g}$$

Theorem 2.3 (MHD Induction Equation).

$$\frac{\partial \vec{B}}{\partial t} = \nabla \times (\vec{v} \times \vec{B}) + \eta \nabla^2 \vec{B}$$

where $\eta = \frac{1}{\mu_0 \sigma}$ is the magnetic diffusivity.

Theorem 2.4 (MHD Energy Equation).

$$\frac{D}{Dt} \left(\frac{p}{\rho^{\gamma}} \right) = 0$$

where γ is the adiabatic index.

2.2 MHD Approximations

• Ideal MHD: $\sigma \to \infty$ (perfect conductor)

• Resistive MHD: Finite conductivity included

• Hall MHD: Electron inertia effects included

2.3 Magnetic Reynolds Number

Definition 2.1. The magnetic Reynolds number is:

$$R_m = \frac{vL}{\eta} = \mu_0 \sigma v L$$

where v is characteristic velocity and L is characteristic length.

2.4 Frozen-in Theorem

Theorem 2.5 (Alfvén's Frozen-in Theorem). In ideal MHD, magnetic field lines are "frozen" into the plasma flow:

$$\frac{d\Phi}{dt} = 0$$

where Φ is magnetic flux through a surface moving with the plasma.

3 Plasma Waves and Instabilities

3.1 Electromagnetic Waves in Plasma

Theorem 3.1 (Dispersion Relation for Electromagnetic Waves).

$$\omega^2 = \omega_p^2 + c^2 k^2$$

4

3.2 Electrostatic Waves

• Ion acoustic waves: $\omega^2 = \frac{k_B T_e}{m_i} k^2$

• Upper hybrid waves: $\omega^2 = \omega_p^2 + \omega_c^2$

• Lower hybrid waves: $\omega^2 = \frac{\omega_{ci}\omega_{ce}}{1 + \frac{\omega_c^2}{\omega_c^2}}$

3.3 Magnetohydrodynamic Waves

• Alfvén waves: $v_A = \frac{B}{\sqrt{\mu_0 \rho}}$

• Magnetosonic waves: $v_{ms} = \sqrt{v_A^2 + c_s^2}$

• Slow magnetosonic waves: $v_s = \frac{v_A c_s}{\sqrt{v_A^2 + c_s^2}}$

3.4 Plasma Instabilities

Definition 3.1. A plasma instability occurs when small perturbations grow exponentially in time

3.4.1 Rayleigh-Taylor Instability

Theorem 3.2 (Rayleigh-Taylor Growth Rate).

$$\gamma = \sqrt{gk\frac{\rho_2 - \rho_1}{\rho_2 + \rho_1}}$$

where $\rho_2 > \rho_1$ and g is the acceleration.

3.4.2 Kelvin-Helmholtz Instability

Theorem 3.3 (Kelvin-Helmholtz Growth Rate).

$$\gamma = \frac{k\Delta v}{2} \sqrt{\frac{\rho_1 \rho_2}{(\rho_1 + \rho_2)^2}}$$

where Δv is the velocity shear.

3.4.3 Two-Stream Instability

Theorem 3.4 (Two-Stream Instability Condition).

$$\omega^2 = \omega_p^2 \left(1 + \frac{v_0^2}{v_{th}^2} \right)$$

where v_0 is the relative velocity between streams and v_{th} is thermal velocity.

4 Fusion Physics

4.1 Thermonuclear Fusion

Definition 4.1. Thermonuclear fusion is the process of combining light atomic nuclei to form heavier nuclei, releasing energy.

5

4.2 Fusion Reactions

• Deuterium-Tritium: $D + T \rightarrow^4 He + n + 17.6 \text{ MeV}$

• Deuterium: $D + D \rightarrow^3 He + n + 3.3 \text{ MeV}$

• Deuterium: $D + D \rightarrow T + p + 4.0 \text{ MeV}$

• Proton-Proton: $p + p \rightarrow D + e^+ + \nu_e + 0.42 \text{ MeV}$

4.3 Fusion Conditions

Theorem 4.1 (Lawson Criterion). For energy breakeven:

$$n\tau \geq \frac{12k_BT}{\langle \sigma v \rangle E_f}$$

where n is density, τ is confinement time, T is temperature, $\langle \sigma v \rangle$ is reaction rate, and E_f is fusion energy per reaction.

4.4 Tokamak Physics

Definition 4.2. A **tokamak** is a toroidal magnetic confinement device for controlled fusion.

4.4.1 Magnetic Confinement

- Toroidal field: $B_{\phi} = \frac{B_0 R_0}{R}$
- Poloidal field: Generated by plasma current
- Safety factor: $q = \frac{rB_{\phi}}{RB_{\theta}}$

4.4.2 Plasma Equilibrium

Theorem 4.2 (Grad-Shafranov Equation).

$$\Delta^* \psi = -\mu_0 R^2 \frac{dp}{d\psi} - F \frac{dF}{d\psi}$$

where ψ is the poloidal flux function and $F = RB_{\phi}$.

4.5 Fusion Power Density

Theorem 4.3 (Fusion Power Density).

$$P_f = \frac{1}{4}n^2 \langle \sigma v \rangle E_f$$

5 Space and Astrophysical Plasmas

5.1 Solar Wind

Definition 5.1. The **solar wind** is a stream of charged particles ejected from the Sun's corona.

6

5.1.1 Solar Wind Properties

- Slow solar wind: $v \approx 400 \text{ km/s}, n \approx 10^7 \text{ cm}^{-3}$
- Fast solar wind: $v \approx 800 \text{ km/s}, n \approx 3 \times 10^6 \text{ cm}^{-3}$
- Temperature: $T \approx 10^5 10^6 \text{ K}$

5.2 Magnetosphere

Definition 5.2. The **magnetosphere** is the region around a planet dominated by its magnetic field.

5.2.1 Earth's Magnetosphere

- Bow shock: Standoff distance $\approx 10 15R_E$
- Magnetopause: Boundary between solar wind and magnetosphere
- Magnetotail: Extended region downstream from Earth

5.3 Stellar Atmospheres

- Photosphere: Visible surface, $T \approx 5800 \text{ K}$
- Chromosphere: Transition region, $T \approx 10^4 \text{ K}$
- Corona: Outer atmosphere, $T \approx 10^6 \text{ K}$

5.4 Interstellar Medium

- Cold neutral medium: $T \approx 100 \text{ K}, n \approx 30 \text{ cm}^{-3}$
- Warm neutral medium: $T \approx 8000 \text{ K}, n \approx 0.3 \text{ cm}^{-3}$
- Warm ionized medium: $T \approx 8000 \text{ K}, n \approx 0.1 \text{ cm}^{-3}$
- Hot ionized medium: $T \approx 10^6 \text{ K}$, $n \approx 0.003 \text{ cm}^{-3}$

6 Computational Plasma Physics

6.1 Particle-in-Cell (PIC) Method

Definition 6.1. The **Particle-in-Cell method** simulates plasmas by following individual particles in self-consistent electromagnetic fields.

6.1.1 PIC Algorithm

- 1. Initialize particles and fields
- 2. Push particles using Lorentz force
- 3. Deposit charge and current densities
- 4. Solve Maxwell's equations for fields
- 5. Repeat for next time step

6.2 Magnetohydrodynamic Simulations

- Finite difference methods: Direct discretization of MHD equations
- Finite volume methods: Conservative formulation
- Spectral methods: Fourier decomposition
- Adaptive mesh refinement: Variable resolution

6.3 Kinetic Simulations

- Vlasov equation: $\frac{\partial f}{\partial t} + \vec{v} \cdot \nabla f + \frac{q}{m} (\vec{E} + \vec{v} \times \vec{B}) \cdot \nabla_v f = 0$
- Gyrokinetic theory: Averaged over gyromotion
- Drift kinetic theory: Includes drift motion

7 Plasma Diagnostics

7.1 Electromagnetic Diagnostics

- Magnetic probes: Measure magnetic field fluctuations
- Electric probes: Measure electric field and plasma potential
- Interferometry: Measure electron density
- Thomson scattering: Measure electron temperature and density

7.2 Particle Diagnostics

- Langmuir probes: Current-voltage characteristics
- Retarding field analyzers: Energy distribution functions
- Neutral particle analyzers: Ion temperature and density
- Fast ion diagnostics: Energetic particle measurements

7.3 Spectroscopic Diagnostics

- Optical emission spectroscopy: Line intensities and widths
- X-ray spectroscopy: Bremsstrahlung and line emission
- Neutron diagnostics: Fusion product measurements

8 Applications

8.1 Fusion Energy

- Magnetic confinement fusion: Tokamaks, stellarators
- Inertial confinement fusion: Laser and particle beam drivers
- Magnetized target fusion: Hybrid approaches

8.2 Space Physics

- Solar-terrestrial interactions: Space weather
- Planetary magnetospheres: Comparative planetology
- Astrophysical plasmas: Stellar and galactic physics

8.3 Industrial Applications

- Plasma processing: Semiconductor manufacturing
- Plasma propulsion: Electric spacecraft propulsion
- Plasma medicine: Medical applications
- Materials processing: Surface modification

9 Important Constants and Parameters

9.1 Fundamental Constants

- Electron charge: $e = 1.602 \times 10^{-19} \text{ C}$
- Electron mass: $m_e = 9.109 \times 10^{-31} \text{ kg}$
- Proton mass: $m_p = 1.673 \times 10^{-27} \text{ kg}$
- Permittivity of free space: $\epsilon_0 = 8.854 \times 10^{-12} \text{ F/m}$
- Permeability of free space: $\mu_0 = 4\pi \times 10^{-7} \text{ H/m}$
- Boltzmann constant: $k_B = 1.381 \times 10^{-23} \text{ J/K}$
- Speed of light: $c = 2.998 \times 10^8 \text{ m/s}$

9.2 Plasma Parameters

- Classical electron radius: $r_e = \frac{e^2}{4\pi\epsilon_0 m_e c^2} = 2.818 \times 10^{-15} \text{ m}$
- Bohr radius: $a_0=\frac{4\pi\epsilon_0\hbar^2}{m_ee^2}=5.292\times 10^{-11}~\mathrm{m}$
- Fine structure constant: $\alpha = \frac{e^2}{4\pi\epsilon_0\hbar c} = 7.297 \times 10^{-3}$
- Electron cyclotron frequency: $\omega_{ce} = \frac{eB}{m_e}$
- Ion cyclotron frequency: $\omega_{ci} = \frac{eB}{m_i}$

9.3 Fusion Parameters

- DT fusion cross-section peak: $\sigma_{max} \approx 5 \times 10^{-28} \text{ m}^2 \text{ at } T \approx 100 \text{ keV}$
- Lawson criterion for DT: $n\tau \ge 10^{20} \text{ s/m}^3$ at $T \approx 10 \text{ keV}$
- ITER parameters: $R=6.2 \text{ m}, a=2.0 \text{ m}, B=5.3 \text{ T}, I_p=15 \text{ MA}$

9