Predicting Home Credit Client's Payment Abilities

BHARA YUDHIANTARA

28 SEPTEMBER 2018

Outline

- 1. Understanding the Problem
- 2. Data Checking and Formatting
- 3. Exploratory Data Analysis
- 4. Baseline Model
- 5. Improved Model
- 6. Summary

Understanding the Problem

- Many people struggle to get loans due to insufficient or non-existent credit histories. This
 population is often taken advantage of by untrustworthy lenders.
- Predicting client's repayment abilities will help ensuring this underserved population has a positive loan experience.
- Predicting client's repayment abilities will also ensure that clients capable of repayment are not rejected and that loans are given with a principal, maturity, and repayment calendar that will empower their clients to be successful.

Data Checking and Formatting

Source of Data

- There are 7 different sources of data, this project will only use application_train data as the baseline for analysis since it is still manageable to work with the current tool.
- Application_train: the main data with information about each loan application at Home Credit. Every loan has its own row and is identified by the feature SK_ID_CURR. The training application data comes with the TARGET indicating 0: loan repaid on time or 1: the loan was not repaid.

Data Checking and Formatting (cont.)

Missing Data: it can be a great noise since we can have misleading information of the distribution of the data.

Data Checking and Formatting (cont.)

Anomaly Data

DAYS_BIRTH values are negative which don't make sense. Dividing the variable with -365 will correct the data and generate new information which is approximation of client's age.

Data Checking and Formatting (cont.)

Recoding Categorical Variable

There are some categorical variables that need to be recoded since they are still in string format e.g. CODE_GENDER, OCCUPATION_TYPE, etc. By recoding them, they are ready to be analyzed as categorical data (nominal and ordinal).

OCCUPATION_TYPE		OCCUPATION_TYPE.HR.staff <dbl></dbl>	OCCUPATION_TYPE.IT.staff <dbl></dbl>	OCCUPATION_TYPE.Laborers <dbl></dbl>
		0	0	1
Laborers		0	0	0
Core staff		0	0	1
Laborers		0	0	1
Laborers		0	0	0
0		0	0	1
Core staff		139 of 182 columns		

DATA EXPLORATORY ANALYSIS

Client Based on Target Status

Baseline Model

Check Correlation

From the correlation and industry-related theory, we can make the model hypothesis.

Baseline Model (Cont.)

Logistic Regression

```
glm(formula = TARGET ~ AMT_CREDIT + AMT_GOODS_PRICE + NAME_EDUCATION_TYPE +
   DAYS BIRTH + EXT SOURCE 1 + EXT SOURCE 2 + EXT SOURCE 3,
    family = binomial(link = "logit"), data = data, na.action = na.exclude)
Deviance Residuals:
             10
                  Median
-3.2112 0.2176 0.3044 0.4197 1.5596
Coefficients:
                                                  Estimate
(Intercept)
                                                 1.789e+00
AMT CREDIT
                                                 -2.321e-06
AMT GOODS PRICE
                                                 2.516e-06
NAME EDUCATION TYPEHigher education
                                                 -1.696e+00
NAME_EDUCATION_TYPEIncomplete higher
                                                 -1.864e+00
NAME_EDUCATION_TYPELower secondary
                                                 -2.101e+00
NAME_EDUCATION_TYPESecondary / secondary special -2.007e+00
DAYS_BIRTH
                                                 -1.751e-02
EXT_SOURCE_1
                                                 2.627e+00
EXT_SOURCE_2
                                                 1.980e+00
EXT_SOURCE_3
                                                 2.712e+00
```

```
Model 1 (AIC = 63746)
```

```
glm(formula = TARGET ~ AMT CREDIT + AMT GOODS PRICE + DAYS BIRTH +
    EXT_SOURCE_1 + EXT_SOURCE_2 + EXT_SOURCE_3 + NAME_EDUCATION_TYPE +
   NAME_INCOME_TYPE + OCCUPATION_TYPE, family = binomial(link = "logit"),
    data = data, na.action = na.exclude)
Deviance Residuals:
                  Median
                                3Q
                                        Max
-3.2443 0.2159 0.3034 0.4200
Coefficients:
                                                  Estimate
                                                 9.780e+00
(Intercept)
AMT_CREDIT
                                                 -2.329e-06
AMT_GOODS_PRICE
                                                 2.516e-06
DAYS BIRTH
                                                 -1.863e-02
EXT SOURCE 1
                                                 2.565e+00
EXT_SOURCE_2
                                                 1.970e+00
EXT_SOURCE_3
                                                 2.720e+00
NAME_EDUCATION_TYPEHigher education
                                                 -1.721e+00
NAME_EDUCATION_TYPEIncomplete higher
                                                 -1.869e+00
NAME EDUCATION TYPELower secondary
                                                 -2.073e+00
NAME EDUCATION TYPESecondary / secondary special -1.983e+00
```

Model 2 (AIC = 63674)

Baseline Model (Cont.)

Idea Behind of Plot ROC

Logistic Regression Performance

AUC = 0.5169

Improved Model

random decision forests are an ensemble learning method for classification, regression and other tasks.

AUC = 0.6899 which is better than logistic regression

Important Feature

importance feature

EXT_SOURCE_2
DAYS_BIRTH
EXT_SOURCE_3
AMT_CREDIT
AMT_GOODS_PRICE
EXT_SOURCE_1
OCCUPATION_TYPE
NAME_INCOME_TYPE
NAME_EDUCATION_TYPE

MeanDecreaseGini

Summary

- Predicting client's repayment abilities is a complex task, since the nature of the data has imbalanced class distribution.
- There is no "one clean hit" in modeling, it is a trial error process. Since, it is a computer excessive task, the right technology will improve the results.
- From baseline model, we can get the probability of client's repayment status based on the selected variables. Unfortunately, the model doesn't have good performance.
- Based on improved model, the first three of important feature is credit score from external source 2, client's age, and credit score from external source 2.
- The next question is if the client has repayment difficulties, is it genuine or a fraud attempt?

Source

- https://www.kaggle.com/c/home-credit-default-risk
- https://www.tandfonline.com/doi/abs/10.1080/00220670209598786
- https://medium.com/@williamkoehrsen/random-forest-simple-explanation-377895a60d2d
- https://medium.com/greyatom/lets-learn-about-auc-roc-curve-4a94b4d88152