$10_{105} (K10a_{72})$

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle -30u^{16} - 176u^{15} + \dots + 1103b + 331, \ 1294u^{16} - 1159u^{15} + \dots + 1103a + 2562, \\ &u^{17} + 6u^{15} + u^{14} + 16u^{13} + 4u^{12} + 20u^{11} + 7u^{10} + 7u^9 + 5u^8 - 7u^7 + 3u^6 - 3u^5 + u^4 + 3u^3 + 2u + 1 \rangle \\ I_2^u &= \langle -4.51865 \times 10^{39}u^{35} + 6.97530 \times 10^{39}u^{34} + \dots + 1.68010 \times 10^{40}b - 7.80705 \times 10^{39}, \\ &- 1.24909 \times 10^{45}u^{35} + 1.82583 \times 10^{45}u^{34} + \dots + 2.27642 \times 10^{45}a + 4.03057 \times 10^{46}, \\ &u^{36} - u^{35} + \dots + 186u + 43 \rangle \\ I_3^u &= \langle u^6 + 4u^4 - u^3 + 4u^2 + b - 2u + 2, \ -u^7 + u^6 - 4u^5 + 5u^4 - 5u^3 + 6u^2 + a - 3u + 3, \\ &u^8 + 4u^6 - u^5 + 5u^4 - 2u^3 + 4u^2 - u + 1 \rangle \end{split}$$

* 3 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 61 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

 $^{^2}$ All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle -30u^{16} - 176u^{15} + \dots + 1103b + 331, \ 1294u^{16} - 1159u^{15} + \dots + 1103a + 2562, \ u^{17} + 6u^{15} + \dots + 2u + 1 \rangle$$

(i) Arc colorings

$$a_{2} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -1.17316u^{16} + 1.05077u^{15} + \dots + 0.526745u - 2.32276 \\ 0.0271985u^{16} + 0.159565u^{15} + \dots + 1.65549u - 0.300091 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -1.20036u^{16} + 0.891206u^{15} + \dots - 1.12874u - 2.02267 \\ 0.0271985u^{16} + 0.159565u^{15} + \dots + 1.65549u - 0.300091 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -0.393472u^{16} - 0.0417044u^{15} + \dots + 0.317316u + 0.407978 \\ -1.59383u^{16} + 0.849501u^{15} + \dots - 0.811423u - 1.61469 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1.57298u^{16} - 1.10517u^{15} + \dots + 0.408885u + 1.81142 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -1.16500u^{16} + 1.49864u^{15} + \dots + 1.42339u - 0.312783 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -u \\ u^{3} + u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -1.49864u^{16} + 0.407978u^{15} + \dots - 1.01723u - 1.16500 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $\frac{1215}{1103}u^{16} \frac{3902}{1103}u^{15} + \dots + \frac{52}{1103}u \frac{4030}{1103}u^{15} + \dots$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_6	$u^{17} - 7u^{16} + \dots - 36u + 8$
c_2, c_4, c_8 c_9	$u^{17} + 6u^{15} + \dots + 2u + 1$
c_3, c_7	$u^{17} - u^{16} + \dots - u + 1$
c_5	$u^{17} + 7u^{16} + \dots - 48u + 64$
c_{10}	$u^{17} - 15u^{16} + \dots + 608u - 64$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_6	$y^{17} - 7y^{16} + \dots - 48y - 64$
c_2, c_4, c_8 c_9	$y^{17} + 12y^{16} + \dots + 4y - 1$
c_3, c_7	$y^{17} + 3y^{16} + \dots - 9y - 1$
c_5	$y^{17} + 5y^{16} + \dots + 17664y - 4096$
c_{10}	$y^{17} - 5y^{16} + \dots + 17408y - 4096$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.099668 + 0.990377I		
a = 0.755793 + 0.048508I	-0.65585 - 3.58827I	-5.01554 + 5.19820I
b = 0.874913 + 1.017070I		
u = -0.099668 - 0.990377I		
a = 0.755793 - 0.048508I	-0.65585 + 3.58827I	-5.01554 - 5.19820I
b = 0.874913 - 1.017070I		
u = -0.397497 + 1.032420I		
a = 2.04240 - 0.79952I	-3.72641 - 6.77030I	-4.91686 + 11.50550I
b = 1.30568 + 0.56699I		
u = -0.397497 - 1.032420I		
a = 2.04240 + 0.79952I	-3.72641 + 6.77030I	-4.91686 - 11.50550I
b = 1.30568 - 0.56699I		
u = 0.749827 + 0.244567I		
a = 0.108910 + 0.611388I	2.74501 + 0.69000I	3.24547 - 1.78817I
b = 0.696825 - 0.650971I		
u = 0.749827 - 0.244567I		
a = 0.108910 - 0.611388I	2.74501 - 0.69000I	3.24547 + 1.78817I
b = 0.696825 + 0.650971I		
u = 0.346178 + 0.692637I		
a = -0.666585 + 0.297186I	0.24233 + 1.64711I	1.95019 - 4.12084I
b = -0.037067 + 0.756233I		
u = 0.346178 - 0.692637I		
a = -0.666585 - 0.297186I	0.24233 - 1.64711I	1.95019 + 4.12084I
b = -0.037067 - 0.756233I		
u = -0.736048 + 0.038467I		
a = 0.755454 + 0.908610I	2.06897 + 4.31656I	2.23828 - 5.03995I
b = 0.928563 - 0.638410I		
u = -0.736048 - 0.038467I		
a = 0.755454 - 0.908610I	2.06897 - 4.31656I	2.23828 + 5.03995I
b = 0.928563 + 0.638410I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.285508 + 1.357540I		
a = -1.79507 - 0.11101I	-10.04230 + 5.59145I	-9.61044 - 4.67516I
b = -1.375440 - 0.134825I		
u = 0.285508 - 1.357540I		
a = -1.79507 + 0.11101I	-10.04230 - 5.59145I	-9.61044 + 4.67516I
b = -1.375440 + 0.134825I		
u = -0.52629 + 1.31806I		
a = -0.119329 - 0.266115I	-3.89694 - 9.32757I	-4.13921 + 5.55906I
b = 0.352099 - 0.977016I		
u = -0.52629 - 1.31806I		
a = -0.119329 + 0.266115I	-3.89694 + 9.32757I	-4.13921 - 5.55906I
b = 0.352099 + 0.977016I		
u = 0.59743 + 1.42672I		
a = 1.62332 + 0.78900I	-6.4799 + 15.1817I	-6.31050 - 8.67042I
b = 1.192940 - 0.641161I		
u = 0.59743 - 1.42672I		
a = 1.62332 - 0.78900I	-6.4799 - 15.1817I	-6.31050 + 8.67042I
b = 1.192940 + 0.641161I		
u = -0.438874		
a = -1.40978	-1.63327	-4.88280
b = -0.877026		

II.
$$I_2^u = \langle -4.52 \times 10^{39} u^{35} + 6.98 \times 10^{39} u^{34} + \dots + 1.68 \times 10^{40} b - 7.81 \times 10^{39}, \ -1.25 \times 10^{45} u^{35} + 1.83 \times 10^{45} u^{34} + \dots + 2.28 \times 10^{45} a + 4.03 \times 10^{46}, \ u^{36} - u^{35} + \dots + 186 u + 43 \rangle$$

(i) Arc colorings

$$a_{2} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 0.548710u^{35} - 0.802063u^{34} + \dots - 49.1305u - 17.7057 \\ 0.268951u^{35} - 0.415172u^{34} + \dots - 2.22836u + 0.464678 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 0.279759u^{35} - 0.386891u^{34} + \dots - 46.9021u - 18.1704 \\ 0.268951u^{35} - 0.415172u^{34} + \dots - 2.22836u + 0.464678 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -0.769505u^{35} + 1.07166u^{34} + \dots + 31.1795u + 19.4777 \\ -0.393831u^{35} + 0.112167u^{34} + \dots - 65.8523u - 14.5725 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -0.637961u^{35} + 0.592755u^{34} + \dots - 103.303u - 23.1636 \\ -0.184491u^{35} + 0.149837u^{34} + \dots - 15.4345u + 1.18486 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -0.359956u^{35} + 0.244025u^{34} + \dots - 66.5978u - 5.35101 \\ 0.294559u^{35} - 0.557722u^{34} + \dots - 13.0683u - 4.16067 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -u \\ u^{3} + u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -0.371740u^{35} + 1.03334u^{34} + \dots + 105.667u + 33.5297 \\ -0.291646u^{35} + 0.0216178u^{34} + \dots - 56.3790u - 13.1684 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $-0.228694u^{35} 0.643530u^{34} + \cdots 255.696u 70.7596$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_6	$(u^6 + u^5 - u^4 - 2u^3 + u + 1)^6$
$c_2, c_4, c_8 \ c_9$	$u^{36} - u^{35} + \dots + 186u + 43$
c_3, c_7	$u^{36} - 3u^{35} + \dots - 16u + 1$
c_5	$ (u^6 + 3u^5 + 5u^4 + 4u^3 + 2u^2 + u + 1)^6 $
c_{10}	$(u^3 + u^2 - 1)^{12}$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_6	$(y^6 - 3y^5 + 5y^4 - 4y^3 + 2y^2 - y + 1)^6$
c_2, c_4, c_8 c_9	$y^{36} + 27y^{35} + \dots + 29904y + 1849$
c_3, c_7	$y^{36} - 9y^{35} + \dots - 36y + 1$
c_5	$(y^6 + y^5 + 5y^4 + 6y^2 + 3y + 1)^6$
c_{10}	$(y^3 - y^2 + 2y - 1)^{12}$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.046060 + 0.100110I		
a = -0.471095 + 0.739312I	-0.02007 + 3.75243I	-0.77353 - 3.77367I
b = -0.428243 - 0.664531I		
u = -1.046060 - 0.100110I		
a = -0.471095 - 0.739312I	-0.02007 - 3.75243I	-0.77353 + 3.77367I
b = -0.428243 + 0.664531I		
u = -0.071145 + 1.052640I		
a = 2.96217 + 0.54442I	-3.80128 - 1.90382I	-8.20696 + 2.18522I
b = 1.002190 - 0.295542I		
u = -0.071145 - 1.052640I		
a = 2.96217 - 0.54442I	-3.80128 + 1.90382I	-8.20696 - 2.18522I
b = 1.002190 + 0.295542I		
u = 0.445481 + 0.807833I		
a = -0.769672 - 0.151793I	-0.02007 + 1.90382I	-0.77353 - 2.18522I
b = -0.428243 + 0.664531I		
u = 0.445481 - 0.807833I		
a = -0.769672 + 0.151793I	-0.02007 - 1.90382I	-0.77353 + 2.18522I
b = -0.428243 - 0.664531I		
u = -0.015491 + 1.101610I		
a = 0.567110 - 0.099771I	-4.15765 + 0.92430I	-7.30279 - 0.79423I
b = -0.428243 - 0.664531I		
u = -0.015491 - 1.101610I		
a = 0.567110 + 0.099771I	-4.15765 - 0.92430I	-7.30279 + 0.79423I
b = -0.428243 + 0.664531I		
u = 0.098878 + 1.131130I		
a = -1.90200 - 0.19672I	-1.91067 + 2.86490I	-4.49024 - 2.53112I
b = -1.073950 + 0.558752I		
u = 0.098878 - 1.131130I		
a = -1.90200 + 0.19672I	-1.91067 - 2.86490I	-4.49024 + 2.53112I
b = -1.073950 - 0.558752I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.196406 + 1.132180I		
a = -1.65820 + 1.54999I	-6.04826 - 5.69302I	-11.01951 + 5.51057I
b = -1.073950 - 0.558752I		
u = -0.196406 - 1.132180I		
a = -1.65820 - 1.54999I	-6.04826 + 5.69302I	-11.01951 - 5.51057I
b = -1.073950 + 0.558752I		
u = 1.031890 + 0.635795I		
a = 0.203148 - 0.430936I	-3.80128 + 1.90382I	-8.20696 - 2.18522I
b = 1.002190 + 0.295542I		
u = 1.031890 - 0.635795I		
a = 0.203148 + 0.430936I	-3.80128 - 1.90382I	-8.20696 + 2.18522I
b = 1.002190 - 0.295542I		
u = 0.444188 + 1.146330I		
a = 0.054279 - 0.572062I	-0.02007 + 3.75243I	-0.77353 - 3.77367I
b = -0.428243 - 0.664531I		
u = 0.444188 - 1.146330I		
a = 0.054279 + 0.572062I	-0.02007 - 3.75243I	-0.77353 + 3.77367I
b = -0.428243 + 0.664531I		
u = -0.560207 + 1.124730I		
a = 1.81411 - 1.13202I	-3.80128 - 3.75243I	-8.20696 + 3.77367I
b = 1.002190 + 0.295542I		
u = -0.560207 - 1.124730I		
a = 1.81411 + 1.13202I	-3.80128 + 3.75243I	-8.20696 - 3.77367I
b = 1.002190 - 0.295542I		
u = -0.598261 + 0.392855I		
a = -0.352723 + 0.385946I	-1.91067 + 2.86490I	-4.49024 - 2.53112I
b = -1.073950 + 0.558752I		
u = -0.598261 - 0.392855I		
a = -0.352723 - 0.385946I	-1.91067 - 2.86490I	-4.49024 + 2.53112I
b = -1.073950 - 0.558752I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.350340 + 0.016723I		
a = -0.597073 - 0.522912I	-1.91067 + 8.52114I	-4.49024 - 8.49002I
b = -1.073950 + 0.558752I		
u = 1.350340 - 0.016723I		
a = -0.597073 + 0.522912I	-1.91067 - 8.52114I	-4.49024 + 8.49002I
b = -1.073950 - 0.558752I		
u = -0.388989 + 1.300350I		
a = -2.16057 + 0.72732I	-1.91067 - 8.52114I	-4.49024 + 8.49002I
b = -1.073950 - 0.558752I		
u = -0.388989 - 1.300350I		
a = -2.16057 - 0.72732I	-1.91067 + 8.52114I	-4.49024 - 8.49002I
b = -1.073950 + 0.558752I		
u = -0.274718 + 0.565739I		
a = -0.544610 + 1.141380I	-0.02007 + 1.90382I	-0.77353 - 2.18522I
b = -0.428243 + 0.664531I		
u = -0.274718 - 0.565739I		
a = -0.544610 - 1.141380I	-0.02007 - 1.90382I	-0.77353 + 2.18522I
b = -0.428243 - 0.664531I		
u = -0.555599 + 1.270020I		
a = 0.035250 - 0.334569I	-4.15765 - 0.92430I	-7.30279 + 0.79423I
b = -0.428243 + 0.664531I		
u = -0.555599 - 1.270020I		
a = 0.035250 + 0.334569I	-4.15765 + 0.92430I	-7.30279 - 0.79423I
b = -0.428243 - 0.664531I		
u = -0.06736 + 1.43539I		
a = 1.81428 - 0.63593I	-7.93886 + 0.92430I	-14.7362 - 0.7942I
b = 1.002190 - 0.295542I		
u = -0.06736 - 1.43539I		
a = 1.81428 + 0.63593I	-7.93886 - 0.92430I	-14.7362 + 0.7942I
b = 1.002190 + 0.295542I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.216323 + 0.422026I		
a = -1.90801 - 1.66447I	-3.80128 + 3.75243I	-8.20696 - 3.77367I
b = 1.002190 - 0.295542I		
u = -0.216323 - 0.422026I		
a = -1.90801 + 1.66447I	-3.80128 - 3.75243I	-8.20696 + 3.77367I
b = 1.002190 + 0.295542I		
u = 0.80839 + 1.45058I		
a = -1.15715 - 0.89131I	-6.04826 + 5.69302I	0
b = -1.073950 + 0.558752I		
u = 0.80839 - 1.45058I		
a = -1.15715 + 0.89131I	-6.04826 - 5.69302I	0
b = -1.073950 - 0.558752I		
u = 0.31139 + 1.81407I		
a = 1.280070 - 0.127233I	-7.93886 - 0.92430I	0
b = 1.002190 + 0.295542I		
u = 0.31139 - 1.81407I		
a = 1.280070 + 0.127233I	-7.93886 + 0.92430I	0
b = 1.002190 - 0.295542I		

$$\text{III. } I_3^u = \langle u^6 + 4u^4 - u^3 + 4u^2 + b - 2u + 2, \ -u^7 + u^6 + \dots + a + 3, \ u^8 + 4u^6 - u^5 + 5u^4 - 2u^3 + 4u^2 - u + 1 \rangle$$

(i) Arc colorings

$$a_{2} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u^{7} - u^{6} + 4u^{5} - 5u^{4} + 5u^{3} - 6u^{2} + 3u - 3 \\ -u^{6} - 4u^{4} + u^{3} - 4u^{2} + 2u - 2 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u^{7} + 4u^{5} - u^{4} + 4u^{3} - 2u^{2} + u - 1 \\ -u^{6} - 4u^{4} + u^{3} - 4u^{2} + 2u - 2 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u^{7} + 3u^{5} - u^{4} + 2u^{3} - u^{2} + 3u \\ 2u^{7} + 7u^{5} - 2u^{4} + 6u^{3} - 3u^{2} + 4u - 1 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} u^{7} - u^{6} - 4u^{5} - 2u^{4} - 4u^{3} - u^{2} - 2u - 1 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -u^{7} - 2u^{6} - 4u^{5} - 6u^{4} - 3u^{3} - 4u^{2} - u - 3 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -u \\ u^{3} + u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 2u^{7} + 7u^{5} - 2u^{4} + 6u^{3} - 3u^{2} + 5u - 1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $-3u^7 + 6u^6 12u^5 + 23u^4 18u^3 + 21u^2 15u + 8u^4 + 21u^2 15u + 8u^3 + 8u^3$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$u^8 - 2u^6 - u^5 + 3u^4 + 2u^3 - 2u^2 - u + 1$
c_2, c_9	$u^8 + 4u^6 - u^5 + 5u^4 - 2u^3 + 4u^2 - u + 1$
c_3, c_7	$u^8 + u^7 - u^4 - u^3 + 1$
c_4, c_8	$u^8 + 4u^6 + u^5 + 5u^4 + 2u^3 + 4u^2 + u + 1$
c_5	$u^8 - 4u^7 + 10u^6 - 17u^5 + 23u^4 - 22u^3 + 14u^2 - 5u + 1$
c_6	$u^8 - 2u^6 + u^5 + 3u^4 - 2u^3 - 2u^2 + u + 1$
c_{10}	$u^8 + 4u^7 + 6u^6 + 4u^5 - 3u^3 - 2u^2 + 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_6	$y^8 - 4y^7 + 10y^6 - 17y^5 + 23y^4 - 22y^3 + 14y^2 - 5y + 1$
$c_2, c_4, c_8 \ c_9$	$y^8 + 8y^7 + 26y^6 + 47y^5 + 55y^4 + 42y^3 + 22y^2 + 7y + 1$
c_3, c_7	$y^8 - y^7 - 2y^6 + 2y^5 + 3y^4 - y^3 - 2y^2 + 1$
c_5	$y^8 + 4y^7 + 10y^6 + 23y^5 + 23y^4 + 10y^3 + 22y^2 + 3y + 1$
c_{10}	$y^8 - 4y^7 + 4y^6 + 4y^5 + 2y^4 + 3y^3 + 4y^2 - 4y + 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.484309 + 0.994840I		
a = 1.66075 - 1.39545I	-4.20254 - 5.73534I	-7.16249 + 5.56177I
b = 1.136610 + 0.491905I		
u = -0.484309 - 0.994840I		
a = 1.66075 + 1.39545I	-4.20254 + 5.73534I	-7.16249 - 5.56177I
b = 1.136610 - 0.491905I		
u = 0.487513 + 0.687654I		
a = -0.960124 - 0.950069I	-2.09195 + 2.24783I	-2.26438 - 2.85323I
b = 0.612814 + 0.310228I		
u = 0.487513 - 0.687654I		
a = -0.960124 + 0.950069I	-2.09195 - 2.24783I	-2.26438 + 2.85323I
b = 0.612814 - 0.310228I		
u = 0.110933 + 0.652805I		
a = -1.26488 + 0.66485I	0.32853 + 3.26075I	2.37672 - 5.45948I
b = -0.819536 + 0.880313I		
u = 0.110933 - 0.652805I		
a = -1.26488 - 0.66485I	0.32853 - 3.26075I	2.37672 + 5.45948I
b = -0.819536 - 0.880313I		
u = -0.11414 + 1.61519I		
a = -1.43575 + 0.22209I	-7.19351 + 1.24143I	-2.94984 - 5.90753I
b = -0.929887 + 0.300978I		
u = -0.11414 - 1.61519I		
a = -1.43575 - 0.22209I	-7.19351 - 1.24143I	-2.94984 + 5.90753I
b = -0.929887 - 0.300978I		

IV. u-Polynomials

Crossings	u-Polynomials at each crossing	
c_1	$((u^{6} + u^{5} - u^{4} - 2u^{3} + u + 1)^{6})(u^{8} - 2u^{6} + \dots - u + 1)$ $\cdot (u^{17} - 7u^{16} + \dots - 36u + 8)$	
c_2, c_9	$(u^{8} + 4u^{6} + \dots - u + 1)(u^{17} + 6u^{15} + \dots + 2u + 1)$ $\cdot (u^{36} - u^{35} + \dots + 186u + 43)$	
c_3, c_7	$ \left(u^8 + u^7 - u^4 - u^3 + 1 \right) (u^{17} - u^{16} + \dots - u + 1) (u^{36} - 3u^{35} + \dots - 16u + 1) $	+1)
c_4, c_8	$(u^{8} + 4u^{6} + \dots + u + 1)(u^{17} + 6u^{15} + \dots + 2u + 1)$ $\cdot (u^{36} - u^{35} + \dots + 186u + 43)$	
<i>C</i> 5	$(u^{6} + 3u^{5} + 5u^{4} + 4u^{3} + 2u^{2} + u + 1)^{6}$ $\cdot (u^{8} - 4u^{7} + 10u^{6} - 17u^{5} + 23u^{4} - 22u^{3} + 14u^{2} - 5u + 1)$ $\cdot (u^{17} + 7u^{16} + \dots - 48u + 64)$	
c_6	$((u^{6} + u^{5} - u^{4} - 2u^{3} + u + 1)^{6})(u^{8} - 2u^{6} + \dots + u + 1)$ $\cdot (u^{17} - 7u^{16} + \dots - 36u + 8)$	
c_{10}	$(u^{3} + u^{2} - 1)^{12}(u^{8} + 4u^{7} + 6u^{6} + 4u^{5} - 3u^{3} - 2u^{2} + 1)$ $\cdot (u^{17} - 15u^{16} + \dots + 608u - 64)$	

V. Riley Polynomials

Crossings	Riley Polynomials at each crossing	
c_1, c_6	$(y^{6} - 3y^{5} + 5y^{4} - 4y^{3} + 2y^{2} - y + 1)^{6}$ $\cdot (y^{8} - 4y^{7} + 10y^{6} - 17y^{5} + 23y^{4} - 22y^{3} + 14y^{2} - 5y + 1)$ $\cdot (y^{17} - 7y^{16} + \dots - 48y - 64)$	
$c_2, c_4, c_8 \\ c_9$	$(y^{8} + 8y^{7} + 26y^{6} + 47y^{5} + 55y^{4} + 42y^{3} + 22y^{2} + 7y + 1)$ $\cdot (y^{17} + 12y^{16} + \dots + 4y - 1)(y^{36} + 27y^{35} + \dots + 29904y + 1849)$	
c_3, c_7	$(y^8 - y^7 + \dots - 2y^2 + 1)(y^{17} + 3y^{16} + \dots - 9y - 1)$ $\cdot (y^{36} - 9y^{35} + \dots - 36y + 1)$	
c_5	$(y^6 + y^5 + 5y^4 + 6y^2 + 3y + 1)^6$ $\cdot (y^8 + 4y^7 + 10y^6 + 23y^5 + 23y^4 + 10y^3 + 22y^2 + 3y + 1)$ $\cdot (y^{17} + 5y^{16} + \dots + 17664y - 4096)$	
c_{10}	$((y^3 - y^2 + 2y - 1)^{12})(y^8 - 4y^7 + \dots - 4y + 1)$ $\cdot (y^{17} - 5y^{16} + \dots + 17408y - 4096)$	