Chapitre 16 - Cours - Exemple de développement asymptotique

Exercice de cours:

Soit $n \in \mathbb{N}^*$. On étudie l'équation $(E_n): x^n + nx - 1 = 0$.

- 1. Montrer que l'équation admet une unique solution positive x_n . Montrer que $x_n \in]0;1[$.
- 2. On définit ainsi une suite $(x_n)_{n\in\mathbb{N}^*}$. Montrer que (x_n) converge vers 0.
- 3. En déduire que $x_n \sim \frac{1}{n \to +\infty} \frac{1}{n}$.
- 4. En utilisant des développements limités, montrer que $x_n = \frac{1}{n} \frac{1}{n^{n+1}} + o\left(\frac{1}{n^{n+1}}\right)$.

1. On force In (x) = OCM+ (M x) -1 Journ EN x.
1. On fare July = och + mx - 1 journ EN +. Soil (a,b) \(\int R + \) avec a \(\int \) - Comme M >0, ma
an < b m case u -> u m est strictement creissante suil R+
ét ma < mb d'au jar somme, a m+na-1 < 6 m+ mb-1
donc (n est strictement voissante seu (R+: "10)
et ma 2 mb d'où jar somme, a 4 ne-1 2 b 4 nb-1 donc for est strictement croissante seu [R+: na) 2 fally Et, for est folynomiale donc continue su IR+.
Dajois le Prénème de bijection, la est bijective de 12+
davos $\int u(R_+) = \int \int (0) \int u \int u \int = -1 \int +\infty$
On a OE [-1, + \in [alus l'équation (Em): \n(x) = 0
oue un que solution En Jais 12+
On a fu (0) = 1 fu (1) = 1 + n - 1 = 1 > 0
dos [n (0) < pm (n m) < fm (1) de 0, x m 1 + E/K+
On a $\{n(0) = 1 \}$ $\{n(1) = 1 + n - 1 = m > 0 \}$ obs $\{n(0) \leq p_n(n) \leq p_n(1) \}$ of $\{n(1) \leq m \leq 1 \}$ ef comme $\{n(0) \leq p_n(n) \leq p_n(1) \}$ and $\{n(1) \leq m \leq 1 \}$
2) One TRENT, 2n + 1 2n - 1 = 0 = 2cm = 1 - 2m
one fricont ozan 21 car un out strictement vaissante sur 12 + et 0 = 0 et 1 = 1
su 12 + ét 0 = 0 et 1 = 1