Vertex of the Quadratic

Given a quadratic $t(d) = a d^2 + b d + c$ compute its value at $d_1 = -\frac{b}{2a}$ namely $t(d_1) = c - \frac{b^2}{4a}$ Now compute the same quadratic at $\mathsf{d}_{1^+}\mathsf{h}$, namely

 $t(d_1+h) = -\frac{b^2}{4a} + a h^2 + c$ Compute $\triangle = t(d_1+h) - t(d_1) = a h^2$

Since $h^2 > 0$, therefore if a > 0 then $\triangle > 0$ or vertex is the global minimum!

Example 1. $t(d) = d^2 + 8d - 48$

However if ${\sf a<0}$ then ${\vartriangle<0}$ or vertex is the global maximum!

Line 1

$t(d) = -2 d^2 - 12 d + 40$

