Read our COVID-19 research and news.

RESEARCH ARTICLE

Immunological memory to SARS-CoV-2 assessed for up to 8 months after infection

📵 Jennifer M. Dan^{1,2}*, 📵 Jose Mateus^{1,*}, 📵 Yu Kato^{1,*}, 📵 Kathryn M. Hastie¹, 📵 Esther Dawen Yu¹, Caterina E. Faliti¹, 📵 Alba Grifoni¹, 📵 Sydney I. Ramirez^{1,2}, 📵 Sonya Haupt¹, 📵 April Frazier... + See all authors and affiliations Science 05 Feb 2021: Vol. 371, Issue 6529, eabf4063 DOI: 10.1126/science.abf4063

Article Figures & Data PDF

Variable memory

Immune memory against severe acute respiratory syndrome coronavirus 2 (SARS-CoV 2) helps to determine protection against reinfection, disease risk, and vaccine efficacy. Using 188 human cases across the range of severity of OVID-19, Dan et al. analyzed cross-sectional data describing the dynamics of SARS-CoV-2 memory B cells, CD8+T cells, and CD4+Cells for more than 6 months after infection. The authors found a high degree of heterogeneity in the magnitude of adaptive immune responses that persisted into the immune memory phase to the virus. However, immune memory in three immunological compartments remained measurable ingreater than 90% of subjects for more than 5 months after infection. Despite the heterogeneity of immune responses, these results show that devable immunity against secondary COVID-19 disease is a possibility for most individuals.

Science, this issue p. eabf4063

Structured Abstract

INTRODUCTION

Immunological memory is the basis for durable protective immunity after infections or vaccinations. Duration of immunological memory after severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and COVID-19 is unclear. Immunological memory can consist of memory B cells, antibodies, memory CD4⁺ T cells, and/or memory CD8⁺ T cells. Knowledge of the kinetics and interrelationships among those four types of memory in humans is limited. Understanding immune memory to SARS-CoV-2 has implications for understanding protective immunity against COVID-19 and assessing the likely future course of the COVID-19 pandemic. PDF

RATIONALE

Assessing virus-specific immune memory over at least a 6-month period is likely necessary to ascertain the durability of immune memory to SARS-CoV-2. Given the evidence that antibodies, CD4+ T cells, and CD8+ T cells can all participate in protective immunity to SARS-CoV-2, we measured antigen-specific antibodies, memory B cells, CD4+ T cells, and CD8+ T cells in the blood from subjects who recovered from COVID-19, up to 8 months after infection.

RESULTS

The study involved 254 samples from 188 COVID-19 cases, including 43 samples at 6 to 8 months after infection. Fifty-one subjects in the study provided longitudinal blood samples, allowing for both cross-sectional and longitudinal analyses of SARS-CoV-2-specific immune memory. Antibodies against SARS-CoV-2 spike and receptor binding domain (RBD) declined moderately over 8 months, comparable to several other reports. Memory B cells against SARS-CoV-2 spike actually increased between 1 month and 8 months after infection. Memory CD8⁺ T cells and memory

minor population of IgA memory B cells. IgM memory B cells appeared to be snort-lived. CD8 $^{\circ}$ I cell and CD4 $^{\circ}$ I cell memory was measured for all SARS-CoV-2 proteins. Although ~70% of individuals possessed detectable CD8 $^{+}$ T cell memory at 1 month after infection, that proportion declined to ~50% by 6 to 8 months after infection. For CD4 $^{+}$ T cell memory, 93% of subjects had detectable SARS-CoV-2 memory at 1 month after infection, and the proportion of subjects positive for CD4 $^{+}$ T cells (92%) remained high at 6 to 8 months after infection. SARS-CoV-2 spike-specific memory CD4 $^{+}$ T cells with the specialized capacity to help B cells [T follicular helper (T_{FH}) cells] were also maintained.

The different types of immune memory each had distinct kinetics, resulting in complex interrelationships between the abundance of T cell, B cell, and antibody immune memory over time. Additionally, substantially heterogeneity in memory to SARS-CoV-2 was observed.

CONCLUSION

Substantial immune memory is generated after COVID-19, involving all four major types of immune memory. About 95% of subjects retained immune memory at ~6 months after infection. Circulating antibody titers were not predictive of T cell memory. Thus, simple serological tests for SARS-CoV-2 antibodies do not reflect the richness and durability of immune memory to SARS-CoV-2. This work expands our understanding of immune memory in humans. These results have implications for protective immunity against SARS-CoV-2 and recurrent COVID-19.

Immunological memory consists of antibodies, memory B cells, memory CD8+ T cells, and memory CD4+ T cells.

This study examined all of the types of virus-specific immune memory against SARS-CoV-2 in COVID-19 subjects. Robust immune memory was observed in most individuals.

and for assessing the likely future course of the COVID-19 pandemic. We analyzed multiple compartments of circulating immune memory to SARS-CoV-2 in 254 samples from 188 COVID-19 cases, including 43 samples at ≥6 months after infection. Immunoglobulin G (IgG) to the spike protein was relatively stable over 6+ months. Spike-specific memory B cells were more abundant at 6 months than at 1 month after symptom onset. SARS-CoV-2−specific CD4+ T cells and CD8+ T cells declined with a half-life of 3 to 5 months. By studying antibody, memory B cell, CD4+ T cell, and CD8+ T cell memory to SARS-CoV-2 in an integrated manner, we observed that each component of SARS-CoV-2 immune memory exhibited distinct kinetics.

SIGN UP FOR THE SCIENCE eTOC

Get the latest issue of Science delivered right to you!

Email address*

Coronavirus disease 2019 (COVID-19), caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is a serious disease that has resulted in widespread global morbidity and mortality. Humans make SARS-CoV-2–specific antibodies, CD4+ T cells, and CD8+ T cells in response to SARS-CoV-2 infection (1–4). Studies of acute and convalescent COVID-19 patients have observed that T cell responses are associated with reduced disease (5–7), suggesting that SARS-CoV-2–specific CD4+ T cell and CD8+ T cell responses may be important for control and resolution of primary SARS-CoV-2 infection. Ineffective innate immunity has been strongly associated with a lack of control of primary SARS-CoV-2 infection and a high risk of fatal COVID-19 (8–12), accompanied by innate cell immunopathology (13–18). Neutralizing antibodies have generally not correlated with lessened COVID-19 disease severity (5, 19, 20), which was also observed for Middle Eastern respiratory syndrome (MERS), caused by MERS-CoV (21). Instead, neutralizing antibodies are associated with protective immunity against secondary infection with SARS-CoV-2 or SARS-CoV in nonhuman primates (3, 22–25). Passive transfer of neutralizing antibodies in advance of infection (mirrocking preexisting conditions upon secondary exposure) effectively limits upper respiratory tract (URT) infection, lower respiratory tract (lung) infection and symptomatic disease in animal models (26–28). Passive transfer of neutralizing antibodies provided after initiation of infection in humans has nead more limited effects on COVID-19 (29, 30), consistent with a substantial role for T cells in control and clearance of an ongoing SARS-CoV-2 infection Thus, studying antibody memory B cell, CD4+ T cell, and CD8+ T cell memory to SARS-CoV-2 infection (1, 19, 31).

Whereas sterilizing immunity against viruses can only be accomplished by high-titer neutralizing antibodies, successful protection against clinical disease or death can be accomplished by several other immune memory scenarios. Possible mechanisms of immunological protection can vary according to the relative kinetics of the immune memory responses and infection. For example, clinical hepatitis after hepatitis B virus (HBV) infection is prevented by vaccine-elicited immune memory even in the absence of circulating antibodies, because of the relatively slow course of HBV disease (32, 33). The relatively slow course of severe COVID-19 in humans [median 19 days post-symptom onset (PSO) for fatal cases (34]) suggests that protective immunity against symptomatic or severe secondary COVID-19 may involve memory compartments such as circulating memory T cells and memory B cells (which can take several days to reactivate and generate recall T cell responses and/or anamnestic antibody responses) (19, 21, 31).

Immune memory, from either primary infection or immunization is the source of protective immunity from a subsequent infection (35–37). Thus, COVID-19 vaccine development relies on immunological memory (1,3). Despite intensive study, the kinetics, duration, and evolution of immune memory in humans to infection or immunization are not in general predictable on the basis of the initial effector phase, and immune responses at short time points after resolution of infection are not very predictive of long-term memory (38–40). Thus, assessing responses over an interval of 6 months or more is usually required to ascertain the durability of immune memory.

A thorough understanding of immune memory to SARS-CoV-2 requires evaluation of its various components, including B cells, CD8⁺ T cells, and CD4⁺ T cells, as these different cell types may have immune memory kinetics that are relatively independent of each other. Understanding the complexities of immune memory to SARS-CoV-2 is key to gaining insights into the likelihood of durability of protective immunity against reinfection with SARS-CoV-2 and secondary COVID-19 disease. In this study, we assessed immune memory of all three branches of adaptive immunity (CD4⁺ T cell, CD8⁺ T cell, and humoral immunity) in a predominantly cross-sectional study of 188 recovered COVID-19 cases, extending up to 8 months after infection. The find have implications for immunity against secondary COVID-19, and thus the potential future course of the pandemic (41, 42).

COVID-19 cohort

We recruited 188 individuals with COVID-19 for this study. Subjects (80 male, 108 female) represented a range of asymptomatic, mild, moderate, and severe COVID-19 cases (**Table 1**) and were recruited from multiple sites throughout the United States. The majority of subjects were from California or New York. Most subjects had a "mild" case of COVID-19, not requiring hospitalization. Ninety-three percent of subjects were never hospitalized for COVID-19; 7% of subjects were hospitalized, some of whom required intensive care unit (ICU) care (**Table 1**). This case severity distribution was consistent with the general distribution of symptomatic disease severity among COVID-19 cases in the United States. The study primarily consisted of symptomatic disease cases (97%, **Table 1**), owing to the nature of the study recruitment design. Subject ages ranged from 19 to 81 years old (**Table 1**). Most subjects provided a blood sample at a single time point, between 6 and 240 days PSO (**Table 1**), with 43 samples at ≥6 months PSO (178 days or

4/26/2021

Become a Member Log In ScienceMag.org Q

View this table: View popup | View inline

SARS-CoV-2 circulating antibodies over time

The vast majority of SARS-CoV-2—infected individuals seroconvert, at least for a duration of months (1, 2, 4, 43–45). Seroconversion rates range from 91 to 99% in large studies (44, 45). Durability assessments of circulating antibody titers in Fig. 1 were based on data ≥20 days PSO, with the plot of the best-fitting curve fit model shown in blue (see materials and methods). SARS-CoV-2 spike immunoglobulin G (IgG) endpoint enzyme-linked immunosorbent assay (ELISA) titers in plasma were measured for all subjects of this cohort (Fig. 1, A and B). Spike receptor binding domain (RBD) IgG was also measured (Fig. 1, C and D), as RBD is the target of most neutralizing antibodies against SARS-CoV-2 (4, 27, 46, 47). SARS-CoV-2 pseudovirus (PSV)—neutralizing antibody titers were measured in all subjects (Fig. 1, E and F). Nucleocapsid (N) IgG endpoint ELISA titers were also measured for all subjects (Fig. 1, G and H), as nucleocapsid is a common antigen in commercial SARS-CoV-2 serological test kits.

🕹 Download high-res image | 🗹 Open in new tab | 🕹 Download Powerpoint

Fig. 1 Circulating antibodies to SARS-CoV-2 over time.

(A) Cross-sectional spike IgG from COVID-19 subject plasma samples (n = 228). Continuous decay preferred model for best fit curve, $t_{1/2} = 140$ days; 95% CI: 89 to 325 days. R = -0.23, p = 0.0006. (B) Longitudinal spike IgG (n = 51), average $t_{1/2} = 103$ days; 95% CI: 65 to 235 days. (C) Cross-sectional RBD IgG. Continuous decay preferred model for best fit curve, $t_{1/2} = 83$ days; 95% CI: 62 to 126 days. R = -0.36, p < 0.0001. (D) Longitudinal RBD IgG, average $t_{1/2} = 69$ days; 95% CI: 58 to 87 days. (E) Cross-sectional SARS-CoV-2 PSV-neutralizing titers. One-phase decay (blue line) preferred model for best fit curve, $t_{1/2} = 27$ days; 95% CI: 11 to 15% days. R = -0.32. Continuous decay fit line shown as black line. (F) Longitudinal PSV-neutralizing titers of SARS-CoV-2-infected subjects, average $t_{1/2} = 90$ days; 95% CI: 30 to 125 days. (G) Cross-sectional nucleocapsid IgG. Continuous decay preferred model for best fit curve, $t_{1/2} = 60$ days; 95% CI: 50 to 106 days. R = -0.34, P = 0.001. (H) Longitudinal nucleocapsid IgG, average $t_{1/2} = 60$ days; 95% CI: 55 to 90 days. (I) Cross-sectional spike IgA titers. One-phase decay (blue line) preferred model for dest fit curve, initial $t_{1/2} = 11$ days; 95% CI: 5 to 25 days. R = -0.30. Continuous decay fit shown as black line. (J) Longitudinal spike (GA, $t_{1/2} = 210$ Days, 95% CI 126 to 62 days. (K) Cross-sectional RBD IgA. One-phase decay (blue line) preferred model for best fit curve, initial $t_{1/2} = 27$ days; 95% CI: 150039 days. R = -0.34. Continuous decay line fit shown in black. (L) Longitudinal RBD IgA, average $t_{1/2} = 74$ days; 95% CI: 56 to 107 days. For cross-sectional analyses, SARS-CoV-2-infected subjects (white circles, n = 238) and unexposed subjects (gray circles, n = 51). For longitudinal samples, SARS-CoV-2 subjects are depicted in gray, COVID subjects in white. Log data analyzation all cases. Thick blue line represents best fit curve. When two fit curves are shown, the thin black line r

SARS-CoV-2 spike IgG titers were relatively stable from 20 to 240 days PSO when assessing all COVID-19 subjects by cross-sectional analysis (half-life $t_{1/2}$ = 140 days, **Fig. 1A**). Spike IgG titers were heterogeneous among subjects (range 5 to 73,071; median 575), as has been widely observed (**45, 47**). This gave a wide confidence interval (CI) for the spike IgG $t_{1/2}$ (95% CI. 89 to 325 days). Although the antibody responses may have more complex underlying decay kinetics, the best fit curve was a continuous decay, likely related to heterogeneity between individuals. SARS-CoV-2 nucleocapsid IgG kinetics were similar to those of spike IgG over 8 months ($t_{1/2}$ 63 days; 95% CI: 50 to 106 days, **Fig. 1G**). As a complementary approach, using paired samples from the subset of subjects who donated at two of more time points, the calculated spike IgG titer average $t_{1/2}$ was 103 days, (95% CI: 66 to 235 days; **Fig. 1B**) and the nucleocapsid IgG titer average $t_{1/2}$ was 68 days, (95% CI: 55 to 90 days; **Fig. 1H**). The percentage of subjects seropositive for spike IgG at 1 month PSO (20 to 50 days) was 98% (54 out of 55). The percentage of subjects seropositive for spike IgG at 6 to 8 months PSO (\geq 178 days) was 90% (36 out of 40).

Cross-sectional analysis of SARS-CoV-2 RBD IgG titers from 20 to 240 days PSO gave an estimated $t_{1/2}$ of 83 days (95% CI: 62 to 126 days; **Fig. 1C**). As a complementary approach, we again used paired samples, which gave an average $t_{1/2}$ of 69 days (95% CI: 58 to 87 days; **Fig. 1D**). The percentage of subjects seropositive for RBD IgG at 6 to 8 months PSO was 88% (35 out of 40). Thus, RBD IgG titer maintenance largely matched that of spike Ig SARS-CoV-2 PSV neutralization titers in the full cohort largely matched the results of SARS-CoV-2 RBD IgG ELISA binding titers (**Fig. 1, E and F**). A phase decay model was the best fit (P = 0.015, F test; initial decay $t_{1/2}$ 27 days, followed by an extended plateau phase, **Fig. 1E**), whereas a continuous decay fit gave an estimated $t_{1/2}$ of 114 days (**Fig. 1E**, black line). Paired time points analysis of the PSV neutralization titers gave an estimated $t_{1/2}$ of 90 days, (95% CI: 70 to 125 days; **Fig. 1F**). The percentage of subjects seropositive for SARS-CoV-2-neutralizing antibodies (titer \geq 20) at 6 to 8 months PSO was 90% (36 out of 40). Notably, even low circulating neutralizing antibody titers (\geq 1:20) were associated with a substantial degree of protection against COVID-19 in nonhuman primates (**24, 48**). Thus, modest amounts of circulating SARS-CoV-2 neutralizing antibodies are of biological interest in humans.

SARS-CoV-2 spike IgA (Fig. 1, I and J) and RBD IgA (Fig. 1, K and L) titers were also assessed. Paired time points analysis of spike IgA titers yielded an estimated $t_{1/2}$ of 210 days (95% CI 126 to 703 days, Fig. 1J). Cross-sectional analysis of spike IgA fit a short one-phase decay model with an extended plateau phase (initial $t_{1/2}$ of 14 days, Fig. 1I). Circulating RBD IgA had an estimated initial $t_{1/2}$ of 27 days, decaying by ~90 days in most COVID-19 cases to levels indistinguishable from those of uninfected controls (Fig. 1K), consistent with observations 3 months PSO (44, 49). By paired sample analysis, long-lasting RBD IgA was made in some subjects, but often near the limit of sensitivity (LOS) (Fig. 1L).

La Download high-res image | ☐ Open in new tab | La Download Powerpoint

Fig. 2 Kinetics of SARS-CoV-2 memory B cell responses.

(A) Example flow cytometry plots showing staining patterns of SARS-CoV-2 antigen probes on memory B cells (see fig. S1 for gating). One unexposed donor and three convalescent COVID-19 subjects are shown. Numbers indicate percentages. (B) Gating strategies to define IgM[†], IgG[†], or IgA[†] SARS-CoV-2 spike-specific memory B cells. The same gating strategies were used for RBD- or nucleocapsid-specific B cells. (C) Cross-sectional analysis of frequency (percentage of CD19[†] CD20[†] B cells) of SARS-CoV-2 spike-specific total (IgG[†], IgM[†], or IgA[†]) memory B cells. (E) Cross-sectional analysis of SARS-CoV-2 RBD-specific total (IgG[†], IgM[†], or IgA[†]) memory B cells. Second-order polynomial model for best fit curve (*R* = 0.46). (F) Longitudinal analysis of SARS-CoV-2 RBD-specific memory B cells. (G) Cross-sectional analysis of SARS-CoV-2 nucleocapsid-specific total (IgG[†], IgM[†], or IgA[†]) memory B cells. Pseudo-first-order kinetic model for best fit curve (*R* = 0.44). (H) Longitudinal analysis of IgG[†] SARS-CoV-2 nucleocapsid-specific memory B cells. (I) Cross-sectional analysis of SARS-CoV-2 spike-specific IgG[†] memory B cells. Pseudo-first-order kinetic model for best fit curve (*R* = 0.49). (J) Longitudinal analysis of SARS-CoV-2 spike-specific IgG[†] memory B cells. (K) Cross-sectional analysis of SARS-CoV-2 spike-specific IgG[†] memory B cells. Second-order polynomial model for best fit curve (IR| = 0.32). (L) Longitudinal analysis of SARS-CoV-2 spike-specific IgA[†] memory B cells. Second-order polynomial model for best fit curve (IR| = 0.41). (N) Longitudinal analysis of SARS-CoV-2 spike-specific IgM[†] memory B cells. (G) Fraction of SARS-CoV-2 antigen-specific memory B cells. Second-order polynomial model for best fit curve (IR| = 0.51). (D) Cross-sectional analysis of SARS-CoV-2 pike-specific IgG[†] memory B cells. Second-order polynomial model for best fit curve (IR| = 0.51). (D) Cross-sectional analysis of SARS-CoV-2 nucleocapsid-specific IgG[†] memory B cells. Second-order polynomial m

Cross-sectional analysis of COVID-19 subjects revealed that frequencies of SARS-20V-2 spike-specific memory B cells increased over the first ~120 days PSO and then plateaued (pseudo-first- order model for best fit curve B = 0.38) better fit than second-order polynomial model by Akaike's information criterion; **Fig. 2C** and fig. S2A). Spike-specific memory B cell frequencies increased from the first time point (36 to 163 days) to the second time point (111 to 240 days) in paired samples from 24 of 36 longitudinally tracked donors (**Fig. 2D**). Spike-specific memory B cells in SARS-CoV-2-unexposed subjects were rare (median 0.0078%; **Fig. 2, A and C**).

RBD-specific memory B cells displayed similar kinetics to spike specific memory B cells. RBD specific memory B cells were undetectable in SARS-CoV-2-unexposed subjects (Fig. 2E and fig. S2C), as expected. RBD-specific memory B cells appeared as early as 16 days PSO, and the frequency steadily increased in the following 4 to 5 months (Fig. 2E and fig. S2, B and C). Twenty-nine of 36 longitudinally tracked individuals had higher frequencies of RBD-specific memory B cells at the later time point (Fig. 2F), again showing an increase in SARS-CoV-2-specific memory B cells several months after infection. About 10 to 30% of spike-specific memory B cells from SARS-CoV-2 convalescent donors were specific for the RBD domain (Fig. 2A and fig. S2B).

SARS-CoV-2 nucleocapsid-specific memory B cells were also detected after SARS-CoV-2 infection (Fig. 2A). Similar to spike- and RBD-specific memory B cells, nucleocapsid-specific memory B cell frequency steadily increased during the first ~4 to 5 months PSO (Fig. 2, G and H, and fig. S2D). Antibody affinity maturation could potentially explain the increased frequencies of SARS-CoV-2-specific memory B cells detected by the antigen probes. However, geometric mean fluorescent intensity (MFI) of probe binding was stable over time (fig. S2, I and J), not supporting an affinity maturation explanation for the increased memory B cell frequencies.

Representation of Ig isotypes among the SARS-CoV-2 spike-specific memory B cell population shifted with time (**Fig. 2, I to 0**). During the earliest phase of memory (20 to 60 days PSO), IgM⁺ and IgG⁺ isotypes were similarly represented (**Fig. 20**), but IgM⁺ memory B cells then declined (**Fig. 2, M to 0**), and IgG⁺ spike-specific memory B cells then dominated by 6 months PSO (**Fig. 20**). IgA⁺ spike-specific memory B cells were detected as a small fraction of the total spike-specific memory B cells (~5%, **Fig. 20**). IgG⁺ spike-specific memory B cell frequency increased, whereas IgA⁺ frequency was low and stable over the 8-month period (**Fig. 2, I to L**). Similar patterns of increasing IgG⁺ memory, short-lived IgM⁺ memory, and stable IgA⁺ memory were observed for RBD- and nucleocapsid-specific memory B cells over the 8-month period (**Fig. 2, 0 to Q**, and fig. S2, E to H).

There is limited knowledge of memory B cell kinetics following primary acute viral infection in humans. A recently published SARS-CoV-2 study found RBD-specific memory B cells up to ~90 days PSO, with increasing frequencies (and a low frequency of IgA⁺ cells) (50), consistent with observations reported here. For other acute infectious diseases, we are not currently aware of other cross-sectional or longitudinal analyses of antigen-specific memory B cells by flow cytometry covering a 6+-month window after infection, except for four individuals with Ebola (51) and two individuals studied after yellow fever virus immunization (52) (we exclude influenza vaccines for comparison here, because people have numerous exposures and complex immune history to influenza). In the yellow fever study, short-lived IgM⁺ memory and longer-lasting isotype-switched memory B cells were observed in the two individuals. Overall, on the basis of the observations here, development of B cell memory to SARS-CoV-2 was robust and is likely long-lasting.

SARS-CoV-2 memory CD8⁺ T cells

4/26/2021

Become a Member Log In ScienceMag.org Q

antigen-specific CD8+ T cells (53); however, pools of predicted SARS-CoV-2 class I epitope of optimal size also detected virus-specific CD8+ T cells in ~70% of individuals 1 to 2 months PSO, indicating consistency between the two experimental approaches (2).

Fig. 3 SARS-CoV-2 circulating memory CD8⁺ T cells.

(A) Representative flow cytometry plots of SARS-CoV-2-specific CD8⁺ T cells (CD69⁺ CD137⁺; see fig. S3 for gating) after overnight stimulation with S, N, M, ORF3a, or nsp3 peptide pools, compared to negative control (DMSO). (B) Cross-sectional analysis of frequency (percentage of CD8+T cells) of total SARS-CoV-2-specific CD8+T cells. Continuous decay preferred fit model, $t_{1/2}$ = 125 days. R = -0.24, p = 0.0003. (C) Longitudinal analysis of total SARS-CoV-2-specific CD8⁺ T cells in paired samples. (D) Crosssectional analysis of spike-specific CD8⁺ T cells. Linear decay preferred model, t_{1/2} = 225 days. R = -0.18, p = 0.007. (E) Longitudinal analysis of spike-specific CD8⁺ T cells in paired samples. (F and G) Distribution of central memory (T_{CM}), effector memory (T_{EM}), and terminally differentiated effector memory cells (T_{EMRA}) among total SARS-CoV-2specific CD8⁺ T cells. n = 169 COVID-19 subjects (n = 215 data points, white circles) for cross-sectional analysis. n = 37 COVID-19 subjects (n = 83 data points, white circles) for longitudinal analysis. The dotted black line indicates LOD. The dotted green line indicates LOS.

SARS-CoV-2 memory CD8⁺ T cells declined with an apparent t_{1/2} of 125 days in the full cohort (Fig. 3B) and t_{1/2} 190 days among 29 paired samples (Fig. 3C). Spike-specific memory CD8⁺ T cells exhibited similar kinetics to the overall SARS-CoV-2-specific memory CD8⁺ T cells (t_{1/2} 225 days for the full cohort and 185 days among paired samples; Fig. 3, D and E, respectively). Phenotypic markers indicated that the majority of SARS-CoV-2-specific memory CD8+ T cells were terminally differentiated effector memory cells (TEMRA) (54), with small populations of central memory (TCM) and effector memory (T_{EM}) (Fig. 3, F and G). In the context of influenza, CD8⁺ T_{EMRA} cells were associated with protection against severe disease in humans (55). The memory CD8⁺ T cell half-lives observed here were comparable to the 123 days 1/2 observed for memory CD8⁺ Cells after yellow fever immunization (56). Thus, the kinetics of circulating SARS-CoV-2-specific CD8+T cell were consistent with what has been deported for another virus that causes acute

SARS-CoV-2 memory CD4⁺ T cells

SARS-CoV-2 memory CD4⁺ T cells were identified in 169 subjects using the same series of 29 peptide pools covering the SARS-CoV-2 ORFeome (2, 5). The most commonly recognized ORFs were spike, M, nucleocapsid, ORF3a, and nsp3 (CD 37+ OX40+; Fig. 4A and fig. S4, A and B), consistent with our previous study (2). Circulating SARS-CoV-2 memory CD4+ T cell responses were quite robust (Fig. 4B); 42% (24 out of 57) of COVID-19 cases at 1 month PSO had >1.0% SARS-CoV-2-specific CD4⁺ T cells. SARS-CoV-2 memory CN4⁺ T cells declined with an apparent t_{1/2} of 94 days in the full cohort (Fig. 4B) and 64 days among 36 paired samples (Fig. 4C). The percentage of subjects with detectable circulating SARS-CoV-2 memory CD4+T cells at 1 month PSO (20 to 50 days) was 93% (53 out 57, Fig. 4B). The proportion of subjects positive for SARS-CoV-2 memory CD4⁺ T cells at ≥6 months PSO was 92% (33 out of 36).

🕹 Download high res image | 🗹 Open in new tab | 🕹 Download Powerpoint

Fig. 4 SARS-CoV-2 circulating memory CD4⁺ T cells.

(A) Representative flow cytometry plots of SARS-CoV-2-specific CD4+T cells (CD137+ 0X40+; see fig. S4 for gating) after overnight stimulation with S, N, M, ORF3a, or nsp3 peptide pools, compared to negative control (DMSO). (B) Cross-sectional analysis of frequency (percentage of CD4+T cells) of total SARS-CoV-2-specific CD4+T cells. Continuous decay preferred fit model, $t_{1/2} = 94$ days. R = -0.29, p < 0.0001. (C) Longitudinal analysis of total SARS-CoV-2-specific CD4⁺ T cells in paired samples from the same subjects. (D) Cross-sectional analysis of spike-specific CD4+ T cells. Linear decay preferred model, $t_{1/2}$ = 139 days. R = -0.26, p < 0.0001. (E) Longitudinal analysis of spike-specific CD4+T cells in paired samples from the same subjects. (F and G) Distribution of central memory (T_{CM}), effector memory (T_{FM}), and terminally differentiin PDF effector memory cells (TEMRA) among total SARS-CoV-2-specific CD4+T cells. (H and I) Quantitation of SARS-CoV-2-specific circulating T follicular helper (cTFH) cells (surface CD40L⁺ OX40⁺, as percentage of CD4⁺ T cells; see fig. S5 for gating) after overnight stimulation with (H) spike (S) or (I) MP_R peptide pools. (J) PD-1^{hi} SARS-1 specific T_{FH} at 1 to 2 months (mo) and 6 mo PSO. (K) CCR6+ SARS-CoV-2-specific CT_{FH} in comparison to bulk cT_{FH} cells in blood. For (A) to (E), n = 169 COVID-19 subjects (n = 215 data points, white circles) for cross-sectional analysis, n = 37 COVID-19 subjects (n = 83 data points, white circles) for longitudinal analysis. The dotted black line indicates limit of detection. The dotted green line indicates LOS. For (H) to (J), n = 29 COVID-19 subject samples (white circles), n = 17 COVID-19 subjects at 1 to 2 mo, n = 12 COVID-19 subjects at 6 mo. The dotted black line indicates LOD. Statistics by (J) Mann-Whitney U test and (K) Wilcoxon signed-rank test. *p < 0.05, **p < 0.01, ***p < 0.001. ns, not statistically significant.

Spike-specific and M-specific memory CD4⁺ T cells exhibited similar kinetics to the overall SARS-CoV-2-specific memory CD4⁺ T cells (whole cohort t_{1/2} of 139 days and 153 days, respectively; Fig. 4, D and E, and fig. S4D). A plurality of the SARS-CoV-2 memory CD4⁺ T cells present at ≥6 months PSO had a T_{CM} phenotype (Fig. 4F).

memory appeared to be stable, with almost all subjects positive for spike and MP_R memory cT_{FH} cells at 6 months PSO (11 out of 12 and 10 out of 12, respectively; **Fig. 4, H and I**). Recently activated cT_{FH} cells are PD-1^{hi} (*57*). Consistent with conversion to resting memory cT_{FH} cells, the percentage of PD-1^{hi} SARS-CoV-2-specific memory cT_{FH} dropped over time (**Fig. 4J**). CCR6⁺ SARS-CoV-2-specific cT_{FH} cells have been associated with reduced COVID-19 disease severity (*5*) and have been reported to be a major fraction of spike-specific cT_{FH} cells in some studies (*5*, *50*, *58*). Here we confirmed that a significant fraction of both spike-specific and MP_R memory cT_{FH} cells were CCR6⁺. We also observed increases in CCR6⁺ cT_{FH} memory over time (p = 0.001 and p = 0.014 at ≥ 6 months PSO compared to bulk cT_{FH} , **Fig. 4K**). Overall, substantial cT_{FH} memory was observed after SARS-CoV-2 infection, with a durability ≥ 6 months PSO.

Immune memory relationships

Immune memory to SARS-CoV-2 was considered, including relationships between the compartments of immune memory. Males had higher spike IgG [analysis of covariance (ANCOVA) p = 0.00018, **Fig. 5A**] and RBD and nucleocapsid IgG (ANCOVA p = 0.00077 and p = 0.018; fig. S6, A and B), consistent with other studies (**46, 47**). Higher spike IgG was also observed in males when only nonhospitalized cases were considered (ANCOVA p = 0.00025, fig. S6C). By contrast, no differences were observed in IgA or PSV neutralization titers (fig. S6, D to F), and no differences were detected in SARS-CoV-2 memory B cell, memory CD8⁺ T cell, or memory CD4⁺ T cell frequencies between males and females (fig. S6, G to K).

🕹 Download high-res image | 🗹 Open in new tab | 🕹 Download Powerpoint

Fig. 5 Immune memory relationships.

(A) Relationship between gender and spike IgG titers over time. Males: Linear decay preferred model, $t_{1/2}$ = 110 days; 95% CI: 65 to 349 days, R = -0.27, p = 0.0046. Females: linear decay preferred model, $t_{1/2}$ = 159 days; 95% CI: 88 to 846 days, R = -0.22, p = 0.016. ANCOVA p = 0.00018. Test for homogeneity of regressions F = 1.51, p = 0.22. (B to E) Immune memory at 120+ days PSO in COVID-19 nonhospitalized and hospitalized subjects. Symbol colors represent peak disease severity (white: asymptomatic, gray: mild, blue: moderate, red: severe.) For subjects with multiple sample time points, only the mal time point was used for these analyses. (B) Spike-specific IgG (left) and RBD-specific lgG (right) binding titers. n = 64 (nonhospitalized), n = 10 (hospitalized), Marin-Whitney U tests (b) Frequency of memory B cells specific to spike (left) and RBD (right) at 120+ days PSO. n = 66 (nonhospitalized), n = 10 (hospitalized). Mann-Whitney U tests. (D) Frequency of total SARS COV & specific CD8+T cells (left) and spike-specific CD8+T cells (right). p = 0.72 for total SARS-2-CoV-specific, p = 0.60 for spike-specific W Mann-Whitney U tests. n = 12 (nonhospitalized), n = 10 (hospitalized). (E) Frequency of total SARS-CoV-2-specific CD4+T cells (left) and spike-specific CD4+T cells (right) p = 0.23 for total SARS-CoV 2-specific, p = 0.24 for spike-specific by Mann-Whitney U tests. (F) Immune memory to SARS-CoV-2 during the early phase (1 to 2 mg, slack line), morelum phase (3 to 4 mg, ved line), or late phase (5 to 8 mg, blue line). For each individual, a score of 1 was assigned for each response above LOS for RBD IgG, spike IgA, RBD-specific memory B cells, SARS-CoV-2-specific CD4⁺ T cells, and SARS-CoV-2-specific CD8⁺ T cells, giving a maximum total of five components of SARS-CoV-2 immune memory. Only COVID to convalescent subjects with all five immunological parameters tested were included in the analysis. n = 78 (1 to 2 mo), n = 52 (3 to 4 mo), n = 44 (5 to 8 mo). (G) Percentage dot plots showing frequencies (normalized to 100%) of subjects with indicated immune memory components as described in (B) during the early (1 to 2000) ordate (5 to 8 mo) phase. G, RBD-specific IgG; B, RBD-specific memory B cells; 4, SARS-CoV-2-specific CD4+T cells; 8, SARS-CoV-2-specific CD8+T cells; A, spike-specific lgi/n = 78 (1 to 2 mo), n = 44 (5 to 8 mo). (H) Relationships between immune memory compartments in COVID-19 subjects over time, as ratios (full curves and data show in fig. S10, B to F). AU, arbitrary units, scaled from fig. S10, B to F; B:IgA, RBD-specific memory B cell ratio to spike IgA antibodies; B:IgG, RBD-specific memory & cell ratio to RBD IgG antibodies; B:CD4, RBD-specific memory B cell ratio to SARS-CoV-2-specific CD4⁺ T cells; CD4:CD8, SARS-CoV-2-specific CD4⁺ T cells ratio to SARS-CoV-2-specific CD8⁺ T cells; CD4:IgG, SARS-CoV-2-specific CD4⁺ T cells ratio to RBD IgG antibodies.

Immune memory was examined for associations between magnitude of memory and COVID-19 disease severity. The number of previously hospitalized COVID-19 cases (n = 13) limited analysis options. However, the cases were well distributed between males and females (Table 1), data from large numbers of nonhospitalized cases were available for comparison, and the analyses in Figs. 1 to 4 demonstrated that immune memory was relatively stable over the time window analyzed. Therefore, we could simplify the disease severity analysis by grouping all samples from 120+ days PSO [also limiting data to a single sample per subject (figs. S7 to S9); most of the previously hospitalized subjects were sampled at two time points, fig. S7A] and then comparing nonhospitalized and hospitalized subjects. Spike and RBD IgG titers in hospitalized cases were higher than in nonhospitalized car (Fig. 5B), consistent with other studies (46, 47). Spike and RBD-specific memory B cell frequencies were also higher in hospitalized cases (~1.7-fc ~2.5-fold, respectively; Fig. 5C and fig. S8). By contrast, memory CD8+T cell frequencies were not higher in hospitalized cases compared to nonhospitalized cases (Fig. 5D and fig. S9), and memory CD4⁺ T cell frequencies trended lower in hospitalized cases compared to nonhospitalized cases (Fig. 5E and fig. S9). Therefore, although our conclusions are limited by the number of hospitalized subjects, increased spike IgG titers were consistent across three independent studies, and increased memory B cells among hospitalized cases were observed here (not measured in other studies), indicating that both compartments of long-term humoral immunity to SARS-CoV-2 are higher in individuals who experienced a more severe COVID-19 disease course. T cell memory did not follow the same pattern, consistent with indications that hospitalized cases of COVID-19 can be associated with poorer T cell responses in the acute phase (5, 59). Additionally, these data show that, although gender and COVID-19 disease severity contribute to differences in immune memory to SARS-CoV-2, neither factor could account for the majority of the heterogeneity in immune memory to this virus.

Very few published data sets compare antigen-specific antibody, B cell, CD8⁺ T cell, and CD4⁺ T cell memory to an acute viral infection in the same individuals. We therefore made use of this combined data set to examine interrelationships between compartments of immune memory. We focused on

Immune memory at 5 to 8 months PSO represented contributions from different immune memory compartments in different individuals (**Fig. 5G**). Similar results were obtained if RBD IgG was replaced by neutralizing antibodies (fig. S10A). Overall, these findings again highlight heterogeneity of immune memory, with different patterns of immune memory in different individuals.

Interrelationships between the components of memory were next examined by assessing ratios between immune memory compartments over time. The ratio of SARS-CoV-2 CD4 $^+$ T cell memory to SARS-CoV-2 CD8 $^+$ T cell memory was largely stable over time (**Fig. 5H** and fig. S10B). Given that serological measurements are the simplest measurements of immune memory at a population scale, we examined how well such serological measurements may serve as surrogate markers of other components of SARS-CoV-2 immune memory over time. The relationship between circulating RBD IgG and RBD-specific memory B cells changed ~20-fold over the time range studied (R = 0.60, **Fig. 5H** and fig. S10C). The changing relationship between circulating spike IgA and RBD-specific memory B cells was even larger (R = 0.55, **Fig. 5H** and fig. S10D). The relationship between RBD IgG and SARS-CoV-2 CD4 $^+$ T cell memory was relatively flat over the time range studied (**Fig. 5H**); however, variation spanned a ~1000-fold range (fig. S10E). Thus, predictive power of circulating RBD IgG for assessing T cell memory was poor because of the heterogeneity between individuals (R = 0.046). In sum, although heterogeneity of immune responses is a defining feature of COVID-19, immune memory to SARS-CoV-2 develops in almost all subjects, with complex relationships between the individual immune memory compartments.

Concluding remarks

In this study, we aimed to fill gaps in our basic understanding of immune memory after COVID-19. This required simultaneous measurement of circulating antibodies, memory B cells, CD8⁺ T cells, and CD4⁺ T cells specific for SARS-CoV-2, in a group of subjects with a full range of disease, and distributed from short time points after infection to 8 months later. By studying these multiple compartments of adaptive immunity in an integrated manner, we observed that each component of SARS-CoV-2 immune memory exhibited distinct kinetics.

The spike IgG titers were durable, with modest declines in titers at 6 to 8 months PSO at the population level. RBD IgG and SARS-CoV-2 PSV-neutralizing antibody titers were potentially similarly stable, consistent with the RBD domain of spike being the domainant neutralizing antibody target. We collected data at two time points for most longitudinal individuals herein. It is well recognized that the magnitude of the antibody response against SARS-CoV-2 is highly heterogeneous between individuals. We observed that heterogeneous initial antibody responses did not collapse into a homogeneous circulating antibody memory; rather, heterogeneity is also a central feature of immune memory to this virus. For antibodies, the responses spanned a ~200-fold range. Additionally, this heterogeneity means that long-term longitudinal studies will be required to precisely define antibody kinetics to SARS-CoV-2. We are reporting the simplest statistical models that explain the data. These curve fits do not disprove more complex kinetics such as overlapping kinetics, but those models would require much denser longitudinal sampling in future studies. Biologically, IgG antibodies having a half-life of ~21 days, and the magnitude of the antibody response over time, reflect antibodies produced first by skort-lived plasma cells and then long-lived plasma cells, with affinity maturation also affecting the apparent magnitude in conventional binding assays and neutralization assays. Overall, at 5 to 8 months PSO, almost all individuals were positive for SARS-CoV-2 spike and RBD IgG.

Notably, memory B cells specific for the spike protein or RBD were detected in almost all COVID-19 cases, with no apparent half-life at 5 to 8 months after infection. Other studies of RBD memory B cells report similar furdings (50, 60). B cell memory to some other infections has been observed to be long-lived, including 60+ years after smallpox vaccination (61), or 90+ years after infection with influenza (62). The memory T cell half-lives observed over 6+ months PSO in this cohort (\sim 125 to 225 days for CD8 and \sim 94 to 153 days for CD4+T cells) were comparable to the 123 days $t_{1/2}$ observed for memory CD8+T cells after yellow fever immunization (56). SARS-CoV-2 T cell memory at 6 months has also now been reported in another study (63). Notably, the durability of a fraction of the yellow fever virus—specific memory CD8+T cells possessed an estimated $t_{1/2}$ of 485 days by deuterium labeling (56). Using different approaches, studies determined the long-term durability of memory CD4+T cells to smallpox, over a period of many years, to be an estimated $t_{1/2}$ of \sim 10 years (61, 64), which is also consistent with recent detection of SARS-CoV-specific T cells 17 years after the initial infection (65). These data suggest that T cell memory might reach a more stable plateau, or slower decay phase, beyond the first 8 months after infection.

Although immune memory is the source of long-term protective immunity, direct conclusions about protective immunity cannot be made on the b quantifying SARS-CoV-2 circulating antibodies, memory B cells, CD8⁺ T cells, and CD4⁺ T cells, because mechanisms of protective immunity agained SARS-CoV-2 or COVID-19 are not defined in humans. Nevertheless, some reasonable interpretations can be made. Antibodies are the only component of immune memory that can provide truly sterilizing immunity. Immunization studies in nonhuman primates have indicated that circulating neutralization titers of ~200 may provide sterilizing immunity against a relatively high-dose URT challenge (66), and neutralizing titers of ~3400 may provide sterilizing immunity against a very high dose URT challenge (67), although direct comparisons are not possible because the neutralizing antibody assays have not been standardized (3). Conclusions are also constrained by the limited overall amount of data on protective immunity to SARS-CoV-2.

Beyond sterilizing immunity, immune responses that confine SARS-CoV-2 to the URT and oral cavity would minimize COVID-19 disease severity to that of a "common cold" or asymptomatic disease. This outcome is the primary goal of current COVID-19 vaccine clinical trials (3, 68). Such an outcome could potentially be mediated by a mixture of memory CD4⁺ T cells, memory CD8⁺ T cells, and memory B cells specific for RBD-producing anamnestic neutralizing antibodies, based on mechanisms of action in mouse models of other viral infections (69–71). In human COVID-19 infections, SARS-CoV-2–specific CD4⁺ T cells and CD8⁺ T cells are associated with less COVID-19 disease severity during an ongoing SARS-CoV-2 infection (5). Rapid

Log In ScienceMag.org Q Become a Member

secondary COVID-19. The presence of substerilizing neutralizing antibody titers at the time of SARS-CoV-2 exposure would blunt the size of the initial infection, and may provide an added contribution to limiting COVID-19 severity, on the basis of observations of protective immunity for other human respiratory viral infections (37, 72-74) and observations of SARS-CoV-2 vaccines in nonhuman primates (48, 67, 75).

The current study has some limitations. Longitudinal data for each subject, with at least three time points per subject, would be required for more precise understanding of the kinetics of durability of SARS-CoV-2-specific antibodies. Nevertheless, the current cross-sectional data describe well the dynamics of SARS-CoV-2 memory B cells, CD8+T cell, and CD4+T cell over 8 months PSO. This study was not sufficiently powered to control for many variables simultaneously. Additionally, circulating memory was assessed here; it is possible that local URT immune memory is a minimal, moderate, or large component of immune memory after a primary infection with SARS-CoV-2. This remains to be determined.

Individual case reports show that reinfections with SARS-CoV-2 are occurring (76, 77). However, a 2800-person study found no symptomatic reinfections over a ~118-day window (78), and a 1246-person study observed no symptomatic reinfections over 6 months (79). We observed heterogeneity in the magnitude of adaptive immune responses to SARS-CoV-2 persisting into the immune memory phase. It is therefore possible that a fraction of the SARS-CoV-2-infected population with low immune memory would become susceptible to reinfection relatively soon. Although gender and disease severity both contribute to the heterogeneity of immune memory reported here, the source of much of the heterogeneity in immune memory to SARS-CoV-2 is unknown and worth further examination. Perhaps heterogeneity derives from low cumulative viral load or a small initial inoculum in some individuals. Nevertheless, our data show immune memory in at least three immunological compartments was measurable in ~95% of subjects 5 to 8 months PSO, indicating that durable immunity against secondary COVID-19 disease is a possibility in most individuals.

Materials and methods

Human subjects

Human subjects
The Institutional Review Boards of the University of California, San Diego (UCSD; 200236X) and the Lacolla Institute for Immunology (LJI; VD-214) approved the protocols used for blood collection for subjects with COVID-19 who donated at all sites other than Mount Sinai. The Icahn School of Medicine at Mount Sinai IRB approved the samples collected at this institution in New York City (IRB-1600791). All human subjects were assessed for medical decision-making capacity using a standardized, apploved assessment and voluntarily gave informed consent before being enrolled in the study. Study inclusion criteria included a diagnosis of COVID-19 or suspected COVID-19, age of 38 years or greater, and willingness and ability to provide informed consent. Although not a strict inclusion criterion, evidence of positive polymerase chain reaction (PCR)-based testing for SARS-CoV-2 was requested from subjects before participation. A total of 145 cases were confirmed SARS CoV-2 positive by PCR-based testing (Table 1). Two subjects tested negative by SARS-CoV-2 PCR (Table 1). The remainder were not tested codid not have test results available for review (Table 1). Subjects who had a medical history and/or symptoms consistent with COVID-19, but lacked positive PCR-based testing for SARS-CoV-2 and subsequently had negative laboratory-based serologic testing for SARS-CoV-2, were then excluded; i.e., all COVID-19 cases in this study were confirmed cases by SARS-CoV-2 PCR or SARS-CoV-2 serodiagnostics, or both. Adults of all races, ethnicities, ages, and genders were eligible to participate. Study exclusion criteria included lack of willingness to participate, lack of ability to provide informed consent, or a medical contraindication to blood donation (e.g., severe anemia). Subject samples at LJI were obtained from individuals in California and at least seven other states.

Blood collection and processing methods at LJI were performed as previously described (5). Briefly, whole blood was collected via phlebotomy in acid citrate dextrose (ACD) serum separator tubes (SST) or ethylenediaminetetraacetic acid (EDTA) tubes and processed for peripheral blood mononuclear cells (PBMCs), serum, and plasma isolation. Most donors were screened for symptoms prior to scheduling blood draws and had to be symptom-free and approximately 3 to 4 weeks out from symptom onset at the time of the initial blood draw at UCSD or LJI, respectively. Samples were coded, and then deidentified before analysis. Other efforts to maintain the confidentiality of participants included the labeling samples with coded identification numbers. An overview of the characteristics of subjects with COVID-19 is provided in Table 1.

COVID-19 disease severity was scored from 0 to 10 using a numerical scoring system based on the NIH ordinal scale (5, 80). A categorical descriptor was applied based on this scoring system: "asymptomatic" for a score of 1, "mild" for a score of 2 to 3, "moderate" for a score of 4 to 5, and "seve a score of 6 or more. Subjects with a numerical score of 4 or higher required hospitalization (including admission for observation) for manageme COVID-19. Only one of 13 hospitalized subjects is shared from the previous study of acute COVID-19 (5). The days PSO was determined based on the difference between the date of the blood collection and the date of first reported symptoms consistent with COVID-19. For asymptomatic subjects, the day from first positive SARS-CoV-2 PCR-based testing was used in place of the date of first reported COVID-19 symptoms.

Recombinant proteins

Stabilized spike protein [2P (81)] and the RBD were expressed in HEK293F cells. Briefly, DNA expressing stabilized spike protein and RBD were subcloned into separate phCMV vectors and transfected into HEK293F cells at a ratio of 1 mg of DNA to 1 liter of cells. The cells were cultured at 37°C in a shaker incubator set to 125 rpm, 80% humidity, and 8% CO₂. When cell viability dropped below 80% (typically 4 to 5 days), media was harvested and centrifuged to remove cells. Biolock reagent was added to the supernatant media to remove any excess biotin. The media was then filtered through a 0.22-µm filter to remove Biolocked-aggregates. Proteins were purified using Streptrap HP 5 ml columns (Cytiva) using 100 mM Tris, 100 mM NaCl as the wash buffer and 100 mM Tris, 100 mM NaCl, 2.5 mM d-Desthiobiotin as the elution buffer. The eluted fractions for spike proteins were concentrated on 100-kDa

μg/ml of antigen overnight at 4°C. Antigens included recombinant SARS-CoV-2 RBD protein, recombinant spike protein, and recombinant nucleocapsid protein (GenScript Z03488) [recombinant nucleocapsid antigens were also tested from Sino Biological (40588-V07E) and Invivogen (his-sars2-n) and yielded comparable results to GenScript nucleocapsid]. The following day, plates were blocked with 3% milk in phosphate-buffered saline (PBS) containing 0.05% Tween-20 for 1.5 hours at room temperature. Plasma was heat inactivated at 56°C for 30 to 60 min. Plasma was diluted in 1% milk containing 0.05% Tween-20 in PBS starting at a 1:3 dilution followed by serial dilutions by three and incubated for 1.5 hours at room temperature. Plates were washed five times with 0.05% PBS-Tween-20. Secondary antibodies were diluted in 1% milk containing 0.05% Tween-20 in PBS. For IgG, anti-human lgG peroxidase antibody produced in goat (Sigma A6029) was used at a 1:5,000 dilution. For IgA, anti-human IgA horseradish peroxidase antibody (Hybridoma Reagent Laboratory HP6123-HRP) was used at a 1:1,000 dilution. The HP6123 monoclonal anti-IgA was used because of its CDC- and WHOvalidated specificity for human IqA1 and IqA2 and lack of cross-reactivity with non-IqA isotypes (83).

End-point titers were plotted for each sample, using background-subtracted data. Negative and positive controls were used to standardize each assay and normalize across experiments. A positive control standard was created by pooling plasma from six convalescent COVID-19 donors to normalize between experiments. The limit of detection (LOD) was defined as 1:3 for IgG, 1:10 for IgA. Limit of sensitivity (LOS) for SARS-CoV-2-infected individuals was established on the basis of uninfected subjects, using plasma from normal healthy donors never exposed to SARS-CoV-2. For cross-sectional analyses, modeling for the best fit curve (e.g., one phase decay versus simple linear regression) was performed using GraphPad Prism 8.0. Best curve fit was defined by an extra sum-of-squares F Test, selecting the simpler model unless P < 0.05 (84). Continuous decay (linear regression), one-phased decay, or two-phased decay of log data were assessed in all cases, with the best fitting statistical model chosen on the basis of the F test; in several cases, a quadratic equation fit was also considered. To calculate the $t_{1/2}$, \log_2 -transformed data were utilized. Using the best fit curve, either a one-phase decay nonlinear fit or a simple linear regression (continuous decay) was utilized. For simple linear regressions, Pearson's R was calculated for correlation using log₂-transformed data. For one-phase decay nonlinear fit, R was reported. For longitudinal samples, a simple linear regression was performed, with $t_{1/2}$ calculated from log $_2$ -transformed data for each pair. For gender analyses, modeling and $t_{1/2}$ were performed similar to cross-sectional analyses; ANCOVA (VassarStats or GraphPad Prism 8.4) was then performed between male and female data sets. ANCOVA p-values of the adjusted means were reported and considered significant if the test for homogeneity of regressions was not significant.

Neutralizing antibody assays

Neutralizing antibody assays

The pseudovirus-neutralizing antibody assay was performed as previously described (5). Briefly, Vero cells were seeded in 96-well plates to produce a monolayer at the time of infection. Pretitrated amounts of VSVSARS-Cov-2 pnCMV3-SARS-Cov-2 spike SARS-CoV-2-pseduotyped VSV-ΔG-GFP (green fluorescent protein) were generated by transfecting HEK2931 cells, ATCCCRL-3216] were incubated with serially diluted human plasma at 37°C for 1 hour before addition to confluent Vero cell monolayers (AFCC CCL-81) in 96-well plates, cells were incubated for 12 to 16 hours at 37°C in 5% CO2. Cells were then fixed in 4% paraformaldehyde, stained with 1 μg/ml Hoccist, and imaged using a CellInsight CX5 imager to quantify the total number of cells expressing GFP. Infection was normalized to the average number of cells injected with rVSV-SARS-CoV-2 incubated with normal human plasma. The LOD was established as <1:20 on the basis of plasma samples from a series of unexposed control subjects. Negative signals were set to 1:19. Neutralization IC50 (median inhibitory concentration) titers were calculated using One Site Fit LogIC50 regression in GraphPad Prism 8.0.

Detection of antigen-specific memory B cells

Detection of antigen-specific memory B cells

To detect SARS-CoV-2 specific B cells, biotinylated protein antigens were individually multimerized with fluorescently labeled streptavidin at 4°C for 1 hour. Full-length SARS-CoV-2 spike (2P-stabilized, double Strep-tagged) and RBD were generated in-house. Biotinylation was performed using biotinprotein ligase standard reaction kit (Avidity, catalog no. Bic 00A) following the manufacturer's standard protocol and dialyzed overnight against PBS. Biotinylated spike was mixed with streptavidin BV421 (BioLegend, catalog no. 405225) and streptavidin Alexa Fluor 647 (Thermo Fisher Scientific, catalog no. S21374) at 20:1 ratio (~6:1 molar ratio). Biotinylated RBD was mixed with streptavidin phycoerythrin (PE)/Cyanine7 (BioLegend, catalog no. 405206) at 2.2:1 ratio (~4:1 molar ratio). Biotinylated SARS-CoV-2 full-length nucleocapsid (Avi- and His-tagged; Sino Biological, catalog no. 40588-V27B-B) was multimerized using streptavidin PE (BioLegend, catalog no. 405204) and streptavidin BV711 (BioLegend, catalog no. 405241) at 5.5:1 ratio (~6:1 molar ratio). Streptavidin PE/Cyanine5.5 (Thermo Fisher Scientific, catalog no. SA1018) was used as a decoy probe to gate out SARS-CoV-2 nonspecific streptavidin-binding B cells. The antigen probes prepared individually as above were then mixed in Brilliant Buffer (BD Bioscience, catalog no. 566 containing 5 µM free d-biotin (Avidity, catalog no. Bir500A). Free d-biotin ensured minimal cross-reactivity of antigen probes. About 10⁷ previously PBMC samples were prepared in U-bottom 96-well plates and stained with 50 µl of antigen probe cocktail containing 100 ng of spike per probe (total Help 200ng), 27.5 ng of RBD, 40 ng of nucleocapsid per probe (total 80 ng), and 20 ng of streptavidin PE/Cyanine5.5 at 4°C for 1 hour to ensure maximal staining quality before surface staining with antibodies as listed in table S1 was performed in Brilliant Buffer at 4°C for 30 min. Dead cells were stained using LIVE/DEAD Fixable Blue Stain Kit (Thermo Fisher Scientific, catalog no. L34962) in DPBS at 4°C for 30 min. About 80% of antigen-specific memory (IgD⁻ and/or CD27⁺) B cells detected using this method were IgM⁺, IgG⁺, or IgM⁻ IgG⁻ IgA⁺, which were comparable to nonspecific memory B cells. On the basisof these observations, we concluded that the antigen probes did not substantially affect the quality of surface immunoglobulin staining. Stained PBMC samples were acquired on Cytek Aurora and analyzed using FlowJo10.7.1 (BD Bioscience).

The frequency of antigen-specific memory B cells was expressed as a percentage of total B cells (CD19+ CD20+ CD38int/-, CD3-, CD14-, CD16-, CD56-, LIVE/DEAD⁻, lymphocytes), or as number per 10⁶ PBMCs (LIVE/DEAD⁻ cells). LOD was set on the basis of median + 2 × standard deviation (SD) of [1/(number of total B cells recorded)] or median + 2 × SD of [10⁶/(number of PBMCs recorded)]. LOS was set as the median + 2 × SD of the results in

Activation-induced markers (AIM) T cell assay

Antigen-specific CD4⁺ T cells were measured as a percentage of AIM⁺ (OX40⁺CD137⁺) CD4⁺ T and (CD69⁺CD137⁺) CD8⁺ T cells after stimulation of PBMCs with overlapping peptide megapools (MPs) spanning the entire SARS-CoV-2 ORFeome, as previously described (2). Cells were cultured for 24 hours in the presence of SARS-CoV-2-specific MPs (1 µg/ml) or 5 µg/ml phytohemagglutinin (PHA, Roche) in 96-wells U-bottom plates at 1 × 10⁶ PBMCs per well. Stimulation with an equimolar amount of dimethyl sulfoxide (DMSO) was performed as a negative control. PHA and stimulation with a combined CD4⁺ and CD8⁺ cytomegalovirus epitope MP (CMV, 1 µg/ml) were included as positive controls. Any sample with a low PHA signal was excluded as a quality control.

Antigen-specific CD4⁺ and CD8⁺ T cells were measured as background (DMSO)-subtracted data, with a minimal DMSO level set to 0.005%. All positive ORFs (>0.02% for CD4+, >0.05% for CD8+) were then aggregated into a combined sum of SARS-CoV-2-specific CD4+ or CD8+ T cells. The threshold for positivity for antigen-specific CD4⁺ T cell responses (0.03%) and antigen-specific CD8⁺ T cell responses (0.12%) was calculated using the median twofold standard deviation of all negative controls measured (>150). The antibody panel utilized in the (OX40+CD137+) CD4+ T and (CD69+CD137+) CD8+ T cells AIM staining is shown in table S2. A consistency analysis was performed for multiple measurements of AIM T cell assays by two different operators. Before merging, we compared the protein immunodominance, total SARS-CoV-2-specific CD4+ and CD8+T cell responses, and half-life calculations between the two groups of experimental data. In longitudinal analyses, half-life calculations excluded any samples that were negative at both time points (because a half-life could not be calculated), though all data were included in the graphs.

For surface CD40L+0X40+ CD4+ T cell AIM assays, experiments were performed as previously described (5), with the following modifications. Cells were cultured in complete RPMI containing 5% human AB serum (Gemini Bioproducts) & mercaptoethanol, penicillin/streptomycin, sodium pyruvate (NaPy), and nonessential amino acids. Prior to addition of peptide MPs, cells were blocked at 37°C for 15 min with 0.5 µg/ml of anti-CD40 mAb (Miltenyi Biotec). A stimulation with an equimolar amount of DMSO was performed to determine background subtraction, and activation from staphylococcal enterotoxin B (SEB) at 1 μg/ml was used as a (positive) quality control. LOD for antigen-specific cT_{FH} among CD4⁺ To ells was based on the LOD for antigen-specific CD4⁺ T cells (described above) multiplied by the average % cT_{FH} in the bulk CD4 T cells among control samples. An inclusion threshold of ten events Supplementary Materials
science.sciencemag.org/content/371/6529/eabf4063/suppl/DC1.
Figs. S1 to S10
Tables S1 and S2
MDAR Reproducibility Checklist
Data File S1
//iew/request a protocol for this paper from Bio-protocol. after the cT_{FH} CXCR5⁺ gate was used for PD-1^{hi} and CCR6⁺ calculations, and Mann, Whitney nonparametric and Wilcoxon signed-rank statistical tests

https://creativecommons.org/licenses/by/4.0/

This is an open-access article distributed under the terms of the Creative Commons Attribution license, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

References and Notes

1. 4 D. S. Stephens, M. J. McElrath, COVID-19 and the Path to Immunity. JAMA 324, 1279-1281 (2020). doi:10.1001/jama.2020.16656pmid:32915201 CrossRef PubMed

2. 4 A. Grifoni, D. Weiskopf, S. I. Ramirez, J. Mateus, J. M. Dan, C. R. Moderbacher, S. A. Rawlings, A. Sutherland, L. Premkumar, R. S. Jadi, D. Marrama, A. M. de Silva, A. Frazier, A. F. Carlin, J. A. Greenbaum, B. Peters, F. Krammer, D. M. Smith, S. Crotty, A. Sette, Targets of T Cell Responses to SARS-CoV-2 Coronavirus in Humans with COVID-19 Disease and Unexposed Individuals. Cell 181, 1489–1501.e15 (2020). doi:10.1016/j.cell.2020.05.015pmid:32473127 CrossRef PubMed Google Scholar

- 3. 4 F. Krammer, SARS-CoV-2 vaccines in development. Nature 586, 516-527 (2020). doi:10.1038/s41586-020-2798-3pmid:32967006 CrossRef PubMed Google Scholar
- 4. d. M. S. Suthar, M. G. Zimmerman, R. C. Kauffman, G. Mantus, S. L. Linderman, W. H. Hudson, A. Vanderheiden, L. Nyhoff, C. W. Davis, O. Adekunle, M. Affer, M. Sherman, S. Reynolds, H. P. Verkerke, D. N. Alter, J. Guarner, J. Bryksin, M. C. Horwath, C. M. Arthur, N. Saakadze, G. H. Smith, S. Edupuganti, E. M. Scherer, K. Hellmeister, A. Cheng, J. A. Morales, A. S. Neish, S. R. Stowell, F. Frank, E. Ortlund, E. J. Anderson, V. D. Menachery, N. Rouphael, A. K. Mehta, D. S. Stephens, R. Ahmed, J. D. Roback, J.

PDF

CrossRef PubMed Google Scholar

6. R. Zhou, K. K.-W. To, Y.-C. Wong, L. Liu, B. Zhou, X. Li, H. Huang, Y. Mo, T.-Y. Luk, T. T.-K. Lau, P. Yeung, W.-M. Chan, A. K.-L. Wu, K.-C. Lung, O. T.-Y. Tsang, W.-S. Leung, I. F.-N. Hung, K.-Y. Yuen, Z. Chen, Acute SARS-CoV-2 infection impairs dendritic cell and T cell responses. *Immunity* 53, 864–877.e5 (2020). doi:10.1016/j.immuni.2020.07.026pmid:32791036 CrossRef PubMed Google Scholar

- 7. 4 M. Liao, Y. Liu, J. Yuan, Y. Wen, G. Xu, J. Zhao, L. Cheng, J. Li, X. Wang, F. Wang, L. Liu, I. Amit, S. Zhang, Z. Zhang, Single-cell landscape of bronchoalveolar immune cells in patients with COVID-19. *Nat. Med.* 26, 842–844 (2020). doi:10.1038/s41591-020-0901-9pmid:32398875 CrossRef PubMed Google Scholar
- 8. A. G. Laing, A. Lorenc, I. Del Molino Del Barrio, A. Das, M. Fish, L. Monin, M. Muñoz-Ruiz, D. R. McKenzie, T. S. Hayday, I. Francos-Quijorna, S. Kamdar, M. Joseph, D. Davies, R. Davis, A. Jennings, I. Zlatareva, P. Vantourout, Y. Wu, V. Sofra, F. Cano, M. Greco, E. Theodoridis, J. D. Freedman, S. Gee, J. N. E. Chan, S. Ryan, E. Bugallo-Blanco, P. Peterson, K. Kisand, L. Haljasmägi, L. Chadli, P. Moingeon, L. Martinez, B. Merrick, K. Bisnauthsing, K. Brooks, M. A. A. Ibrahim, J. Mason, F. Lopez Gomez, K. Babalola, S. Abdul-Jawad, J. Cason, C. Mant, J. Seow, C. Graham, K. J. Doores, F. Di Rosa, J. Edgeworth, M. Shankar-Hari, A. C. Hayday, A dynamic COVID-19 immune signature includes associations with poor prognosis. *Nat. Med.* 26, 1623–1635 (2020). doi:10.1038/s41591-020-1038-6pmid:32807934
- 9. D. Blanco-Melo, B. E. Nilsson-Payant, W.-C. Liu, S. Uhl, D. Hoagland, R. Møller, T. X. Jordan, K. Oishi, M. Panis, D. Sachs, T. T. Wang, R. E. Schwartz, J. K. Lim, R. A. Albrecht, B. R. tenOever, Imbalanced Host Response to SARS-CoV-2 Drives Development of COVID-19. <u>Cell.</u> 181, 1036–1045.e9 (2020). doi:10.1016/j.cell.2020.04.026pmid:32416070 <u>CrossRef PubMed Google Scholar</u>
- 10. P. S. Arunachalam, F. Wimmers, C. K. P. Mok, R. A. P. M. Perera, M. Scott, T. Hagan, N. Sigal, Y. Feng, L. Bristow, O. Tak-Yin Tsang, D. Wagh, J. Coller, K. L. Pellegrini, D. Kazmin, G. Alaaeddine, W. S. Leung, J. M. C. Chan, T. S. H. Chik, C. Y. C. Choi, C. Huerta, M. Paine McCullough, H. Lv, E. Anderson, S. Edupuganti, A. A. Upadhyay, S. E. Bosinger, H. T. Maecker, P. Khatri, N. Rouphael, M. Peiris, B. Pulendran, Systems biological assessment of immunity to mild versus severe COVID-19 infection in humans. Science 369, 1210–1220 (2020). doi:10.1126/science.abc6261pmid:32788292 Abstract/FREE Full Text Google Scholar
- 11. P. Bastard, L. B. Rosen, Q. Zhang, E. Michailidis, H.-H. Hoffmann, Y. Zhang, K. Dorghan, Q. Philippot, J. Rosain, V. Béziat, J. Manty, E. Shaw, L. Haljasmägi, P. Peterson, L. Lorenzo, L. Bizien, S. Trouillet-Assant, K. Dobbs, A. A. de Jesus, A. Belot, A. Kallaste, E. Catherinot, Y. Tandjaoui-Lambiotte, J. & Pen, G. Kerner, B. Bigio, Y. Seeleuthner, R. Yang, A. Bolze, A. N. Spaan, O. M. Delmonte, M. S. Abers, A. Aiuti, G. Casari, V. Lampasona, L. Piemonti, F. Ciceri, M. Bilguwar, R. P. Lifton, M. Vasse, D. M. Smadja, M. Migaud, J. Hadjadj, B. Terrier, D. Duffy, L. Quintana-Murci, D. van de Beek, L. Roussel, D. C. Vinh, S. G. Tangye, E. Haeryick, D. Dalmau, J. Martinez-Picado, P. Brodin, M. C. Nussenzweig, S. Boisson-Dupuis, C. Rodríguez-Gallego, G. Vogt, T. H. Mogenser, A. J. Oler, J. Gu, P. D. Burbejo, J. I. Cohen, A. Biondi, L. R. Bettini, M. D'Angio, P. Bonfanti, P. Rossignol, J. Mayaux, F. Rieux-Laucat, E. S. Husebye, F. Fusco, M. Y. Ursini, L. Imberti, A. Sottini, S. Paghera, E. Quiros-Roldan, C. Rossi, R. Castagnoli, D. Montagna, A. Licari, G. L. Marseglia, X. Duval, J. Ghosn, J. S. Tsang, R. Goldbach-Mansky, K. Kisand, M. S. Lionakis, A. Puel, S. Y. Zhang, S. M. Holland, G. Gorochov, E. Jouanguy, C. M. Rice, A. Cobat, L. D. Notarangelo, L. Abel, H. C. Su, J. L. Casanova, Holl Lab; NIAID-USUHS Immune Response to COVID Group; COVID Clinicians; COVID-STORM Clinicians; Imagine COVID Group; French COVID Cohor (Study Group; Milieu Interieur Consortium, Cov Contact Cohort; Amsterdam UMC Covid-19 Biobank; COVID Human Genetic Effort, Autoantibodies against type I IFNs in patients with life-threatening COVID 19. Science 370, eabd4585 (2020).
- 12. J. Q. Zhang, P. Bastard, Z. Liu, J. Le Pen, M. Moncada-Velez, J. Chen, M. Ogishi, J. K. D. Səbli, S. Hodeib, C. Korol, J. Rosain, K. Bilguvar, J. Ye, A. Bolze, B. Bigio, R. Yang, A. A. Arias, Q. Zhou, Y. Zhang, F. Onodi, S. Korniotis, L. Karpf, Q. Philippot, M. Chbini, L. Bonnet-Madin, K. Dorgham, N. Smith, W. M. Schneider, B. S. Razooky, H.-H. Hoffmann, E. Michailidis, L. Moens, J. E. Han, L. Lorenzo, L. Bizien, P. Meade, A.-L. Neghus, A. C. Ugurbil, A. Corneau, G. Kerner, P. Zhang, F. Rapaport, Y. Seeleuthner, J. Manry, C. Masson, Y. Schmitt, A. Schlüter, T. Le Voyer, T. Khan, J. Li, J. Fellay, L. Roussel, M. Shahrooei, M. F. Alosaimi, D. Mansouri, H. Al-Saud, F. Al-Mulla, F. Al-Mulla, F. Almourfi, S. Z. Al-Muhsen, F. Alsohime, S. Al Turki, R. Hasanato, D. van de Beek, A. Biondi, L. R. Bettini, M. D'Angio', P. Bonfanti, L. Imberti, A. Sottini, S. Paghera, E. Quiros-Roldan, C. Rossi, A. J. Oler, M. F. Tompkins, C. Alba, I. Vandernoot, J.-C. Goffard, G. Smits, Migeotte, F. Haerynck, P. Soler-Palacin, A. Martin-Nalda, R. Colobran, P.-E. Morange, S. Keles, F. Çölkesen, T. Ozcelik, K. K. Yasar, S. Senoglu, Ş. N. Karabela, C. Rodríguez-Gallego, G. Novelli, S. Hraiech, Y. Tandjaoui-Lambiotte, X. Duval, C. Laouénan, A. L. Snow, C. L. Dalgard, J. D. Milner, D. C. Vinh, T. H. Mogensen, N. Marr, A. N. Spaan, B. Boisson, S. Boisson-Dupuis, J. Bustamante, A. Puel, M. J. Ciancanelli, I. Meyts, T. Maniatis, V. Soumelis, A. Amara, M. Nussenzweig, A. García-Sastre, F. Krammer, A. Pujol, D. Duffy, R. P. Lifton, S. Y. Zhang, G. Gorochov, V. Béziat, E. Jouanguy, V. Sancho-Shimizu, C. M. Rice, L. Abel, L. D. Notarangelo, A. Cobat, H. C. Su, J. L. Casanova; COVID-STORM Clinicians; COVID Clinicians; Imagine COVID Group; French COVID Cohort Study Group; CoV-Contact Cohort; Amsterdam UMC Covid-19 Biobank; COVID Human Genetic Effort; NIAID-USUHS/TAGC COVID Immunity Group, Inborn errors of type I IFN immunity in patients with life-threatening COVID-19. Science 370, eabd4570 (2020). doi:10.1126/science.abd4570pmid:32972995
- 13. D. M. Del Valle, S. Kim-Schulze, H.-H. Huang, N. D. Beckmann, S. Nirenberg, B. Wang, Y. Lavin, T. H. Swartz, D. Madduri, A. Stock, T. U. Marron, H. Xie, M. Patel, K. Tuballes, O. Van Oekelen, A. Rahman, P. Kovatch, J. A. Aberg, E. Schadt, S. Jagannath, M. Mazumdar, A. W. Charney, A. Firpo-Betancourt, D. R. Mendu, J. Jhang, D. Reich, K. Sigel, C. Cordon-Cardo, M. Feldmann, S. Parekh, M. Merad, S. Gnjatic, An inflammatory cytokine signature predicts COVID-19 severity and survival. Nat. Med. 2

 1636–1643 (2020). doi:10.1038/s41591-020-1051-9pmid:32839624 CrossRef PubMed Google Scholar
- 14. L. Kuri-Cervantes, M. B. Pampena, W. Meng, A. M. Rosenfeld, C. A. G. Ittner, A. R. Weisman, R. S. Agyekum, D. Mathew, A. E. Baxter, L. A. Vella, O. Kuthuru, S. A. Apostolidis, L. Bershaw, J. Dougherty, A. R. Greenplate, A. Pattekar, J. Kim, N. Han, S. Gouma, M. E. Weirick, C. P. Arevalo, M. J. Bolton, E. C. Goodwin, E. M. Anderson, S. E. Hensley, T. K. Jones, N. S. Mangalmurti, E. T. Luning Prak, E. J. Wherry, N. J. Meyer, M. R. Betts, Comprehensive mapping of immune perturbations associated with severe COVID-19. *Sci. Immunol.* 5, eabd7114 (2020). doi:10.1126/sciimmunol.abd7114pmid:32669287
- 15. S. Li, L. Jiang, X. Li, F. Lin, Y. Wang, B. Li, T. Jiang, W. An, S. Liu, H. Liu, P. Xu, L. Zhao, L. Zhang, J. Mu, H. Wang, J. Kang, Y. Li, L. Huang, C. Zhu, S. Zhao, J. Lu, J. Ji, J. Zhao, Clinical and pathological investigation of patients with severe COVID-19. <u>JCI Insight</u> 5, (2020). doi:10.1172/jci.insight.138070pmid:32427582 CrossRef PubMed Coogle Scholar
- C. Radermecker, N. Detrembleur, J. Guiot, E. Cavalier, M. Henket, C. d'Emal, C. Vanwinge, D. Cataldo, C. Oury, P. Delvenne, T. Marichal, Neutrophil extracellular traps infiltrate the lung airway, interstitial, and vascular compartments in severe COVID-19. <u>J. Exp. Med.</u> 217, e20201012 (2020). doi:10.1084/jem.20201012pmid:32926097
 CrossRef PubMed Google Scholar

Pino, T. N. Hoang, A. Chandrashekar, S. Patel, K. Stephenson, S. E. Bosinger, H. Andersen, M. G. Lewis, J. L. Hecht, P. K. Sorger, A. J. Martinot, J. D. Estes, D. H. Barouch, Vascular Disease and Thrombosis in SARS-CoV-2-Infected Rhesus Macaques. <u>Cell</u> 183, 1354–1366.e13 (2020). doi:10.1016/j.cell.2020.10.005pmid:33065030

<u>CrossRef PubMed Google Scholar</u>

- 19.

 N. Baumgarth, J. Nikolich-Žugich, F. E.-H. Lee, D. Bhattacharya, Antibody Responses to SARS-CoV-2: Let's Stick to Known Knowns. <u>J. Immunol.</u> 205, 2342−2350 (2020). doi:10.4049/jimmunol.2000839pmid:32887754 Abstract/FREE Full Text Google Scholar
- A. Wajnberg, F. Amanat, A. Firpo, D. R. Altman, M. J. Bailey, M. Mansour, M. McMahon, P. Meade, D. R. Mendu, K. Muellers, D. Stadlbauer, K. Stone, S. Strohmeier, V. Simon, J. Aberg, D. L. Reich, F. Krammer, C. Cordon-Cardo, Robust neutralizing antibodies to SARS-CoV-2 infection persist for months. <u>Science</u> 370, 1227–1230 (2020). doi:10.1126/science.abd7728pmid:33115920 <u>Abstract/FREE Full Text</u> <u>Google Scholar</u>
- 21. 4 A. Sariol, S. Perlman, Lessons for COVID-19 immunity from other coronavirus infections. *Immunity* **53**, 248–263 (2020). doi:10.1016/j.immuni.2020.07.005pmid:32717182 CrossRef PubMed Google Scholar
- 22. 4 K. Subbarao, SARS-CoV-2: A New Song Recalls an Old Melody. Cell Host Microbe 27, 692–694 (2020). doi:10.1016/j.chom.2020.04.019pmid:32407706 CrossRef
- 23. W. Deng, L. Bao, J. Liu, C. Xiao, J. Liu, J. Xue, Q. Lv, F. Qi, H. Gao, P. Yu, Y. Xu, Y. Qu, F. Li, Z. Xiang, H. Yu, S. Gong, M. Liu, G. Wang, S. Wang, Z. Song, Y. Liu, W. Zhao, Y. Han, L. Zhao, X. Liu, Q. Wei, C. Qin, Primary exposure to SARS-CoV-2 protects against reinfection in rhesus macaques. <u>Science</u> 369, 818–823 (2020). doi:10.1126/science.abc5343pmid:32616673 <u>Abstract/FREE Full Text</u> <u>Google Scholar</u>
- 25. d. A. Chandrashekar, J. Liu, A. J. Martinot, K. McMahan, N. B. Mercado, L. Peter, K. H. Tostanoski, J. Yu, Z. Maliga, M. Nekorchuk, K. Busman-Sahay, M. Terry, L. M. Wrijil, S. Ducat, D. R. Martinez, C. Atyeo, S. Fischinger, J. S. Burke, M. D. Slein, L. Pessaint, A. Van Ry, J. Greenhouse, T. Taylor, K. Biade, A. Cook, B. Finneyfrock, R. Brown, E. Teow, J. Velasco, R. Zahn, F. Wegmann, P. Abbink, E. A. Bondzie, G. Dagotto, M. S. Gebre, X. He, C. Jacob-Dolan, N. Kordana, Z. Li, M. A. Lifton, S. H. Mahrokhian, L. F. Maxfield, R. Nityanandam, J. P. Nkolola, A. G. Schmidt, A. D. Miller, R. S. Baric, C. Alter, P. K. Solger, J. D. Este, H. Andersen, M. G. Lewis, D. H. Barouch, SARS-CoV-2 infection protects against rechallenge in rhesus macaques. Science, 369, 812–817 (2020), doi:10.1126/science.abc4776pmid:32434946

 Abstract/FREE Full Text

 Google Scholar
- 26. S. J. Zost, P. Gilchuk, J. B. Case, E. Binshtein, R. E. Chen, J. P. Mkolola, A. Schäfer, J. X. Reidy, A. Trivette, R. S. Nargi, R. E. Sutton, N. Suryadevara, D. R. Martinez, L. E. Williamson, E. C. Chen, T. Jones, S. Day, L. Myers, A. O. Hassan, N. M. Kafai, E. S. Winkler, J. M. Fox, S. Shrihari, B. K. Mueller, J. Meiler, A. Chandrashekar, N. B. Mercado, J. J. Steinhardt, K. Ren, Y.-M. Loo, N. L. Kallewaard, B. T. McCune, S. P. Keeler, M. J. Holtzman, D. H. Barouch, L. E. Gralinski, R. S. Baric, L. B. Thackray, M. S. Diamond, R. H. Carnahan, J. E. Crowe Jr., ., Potently neutralizing and protective human antibodies against SARS-CoV-2. Nature 584, 443–449 (2020). doi:10.1038/s41586-020-2548-6pmid:32668443
- 27. J. T. F. Rogers, F. Zhao, D. Huang, N. Beutler, A. Burns, W. T. He, O. Limbo, C. Smith, G. Song, J. Woehl, L. Yang, R. K. Abbott, S. Callaghan, E. Garcia, J. Hurtado, M. Parren, L. Peng, S. Ramirez, J. Ricketts, M. J. Ricciardi, S. A. Rawlings, N. C. Wu, M. Yuan, D. M. Smith, D. Nemazee, J. R. Teijaro, J. E. Voss, I. A. Wilson, R. Andrabi, B. Briney, E. Landais, D. Sok, J. G. Jardine, D. R. Burton, Isolation of potent SARS-CoV-2 neutralizing antibodies and protection from disease in a small animal model. <u>Science</u> 369, 956–963 (2020). doi:10.1126/science.abc7520pmid:32540903 <u>Abstract/FIEE Full Text</u> Google Scholar
- 28. A. Baum, D. Ajithdoss, R. Copin, A. Zhou, K. Lanza, N. Negron, M. Ni, Y. Wei, K. Mohammadi, B. Musser, G. S. Atwal, A. Oyejide, Y. Goez-Gazi, J. Dutton, E. Clemmons, H. M. Staples, C. Bartley, B. Klaffke, K. Alfson, M. Gazi, O. Gonzales, E. Dick Jr.., R. Carrion Jr.., L. Pessaint, M. Porto, A. Cook, R. Brown, V. Ali, J. Greenhouse, T. Taylor, H. Andersen, M. G. Lewis, N. Stahl, A. J. Murphy, G. D. Yancopoulos, C. A. Kyratsous, REGN-COV2 antibodies prevent and treat SARS-CoV-2 infection in rhesus macaques and hamsters. *Science* 370, 1110–1115 (2020). doi:10.1126/science.abe2402pmid:33037066 https://doi.org/10.1126/science.abe2402pmid:33037066 <a h
- D. M. Weinreich, S. Sivapalasingam, T. Norton, S. Ali, H. Gao, R. Bhore, B. J. Musser, Y. Soo, D. Rofail, J. Im, C. Perry, C. Pan, R. Hosain, A. Mahmood, J. D. Davis, K. C. Turner, A. T. Hooper, J. D. Hamilton, A. Baum, C. A. Kyratsous, Y. Kim, A. Cook, W. Kampman, A. Kohli, Y. Sachdeva, X. Graber, B. Kowal, T. DiCioccio, N. Stahl, L. Lipsich, N. Braunstein, G. Herman, G. D. Yancopoulos; Trial Investigators, REGN-COV2, a Neutralizing Antibody Cocktail, in Outpatients with Covid-19. N. Engl. J. Med. NEJMoa2035002 (2020). doi:10.1056/NEJMoa2035002pmid:33332778 CrossRef PubMed Google Scholar
- 30. 4 Lilly announces proof of concept data for neutralizing antibody LY-CoV555 in the COVID-19 outpatient setting | Eli Lilly and Company; https://investor.lilly.comreleases/news-release-details/lilly-announces-proof-concept-data-neutralizing-antibody-ly.

31. U. M. Altmann, R. J. Boyton, SARS-CoV-2 T cell immunity: Specificity, function, durability, and role in protection. Sci. Immunol. 5, eabd6160 (2020).

- D. M. Altmann, R. J. Boyton, SARS-CoV-2 T cell immunity: Specificity, function, durability, and role in protection. Sci. Immunol. 5, eabd6160 (2020). doi:10.1126/sciimmunol.abd6160pmid:32680954 <u>Abstract/FREE Full Text</u>
 <u>Google Scholar</u>
- 32.

 P. Van Damme, K. Van Herck, A review of the long-term protection after hepatitis A and B vaccination. *Travel Med. Infect. Dis.* 5, 79−84 (2007). doi:10.1016/j.tmaid.2006.04.004pmid:17298912 CrossRef PubMed Google Scholar
- 33. M. M. Rosado, M. Scarsella, E. Pandolfi, S. Cascioli, E. Giorda, P. Chionne, E. Madonne, F. Gesualdo, M. Romano, C. M. Ausiello, M. Rapicetta, A. R. Zanetti, A. Tozzi, R. Carsetti, Switched memory B cells maintain specific memory independently of serum antibodies: The hepatitis B example. *Eur. J. Immunol.* 41, 1800–1808 (2011). doi:10.1002/eji.201041187pmid:21469123 CrossRef PubMed Google Scholar
- 34. F. Zhou, T. Yu, R. Du, G. Fan, Y. Liu, Z. Liu, J. Xiang, Y. Wang, B. Song, X. Gu, L. Guan, Y. Wei, H. Li, X. Wu, J. Xu, S. Tu, Y. Zhang, H. Chen, B. Cao, Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: A retrospective cohort study. Lancet 395, 1054–1062 (2020). doi:10.1016/S0140-

PDF

- 37. 4 S. Plotkin, W. Orenstein, P. Offit, Plotkin's Vaccines (Elsevier, ed. 7, 2018).
- F. Sallusto, A. Lanzavecchia, K. Araki, R. Ahmed, From vaccines to memory and back. <u>Immunity</u> 33, 451−463 (2010). doi:10.1016/j.immuni.2010.10.008pmid:21029957 <u>CrossRef</u> <u>PubMed</u> <u>Web of Science</u> <u>Google Scholar</u>
- 39. S. Crotty, R. Ahmed, Immunological memory in humans. <u>Semin. Immunol.</u> **16**, 197–203 (2004). doi:10.1016/j.smim.2004.02.008pmid:15130504 <u>CrossRef</u> <u>PubMed</u>
 Web of Science Google Scholar
- 40.

 F. Weisel, M. Shlomchik, Memory B Cells of Mice and Humans. Annu. Rev. Immunol. 35, 255−284 (2017). doi:10.1146/annurev-immunol-041015-055531pmid:28142324 CrossRef PubMed Google Scholar
- 41. 4 S. M. Kissler, C. Tedijanto, E. Goldstein, Y. H. Grad, M. Lipsitch, Projecting the transmission dynamics of SARS-CoV-2 through the postpandemic period. Science 368, 860–868 (2020). doi:10.1126/science.abb5793pmid:32291278

 <u>Abstract/FREE Full Text</u>
 <u>Google Scholar</u>
- 42. C. M. Saad-Roy, C. E. Wagner, R. E. Baker, S. E. Morris, J. Farrar, A. L. Graham, S. A. Levin, M. J. Mina, C. J. E. Metcalf, B. T. Grenfell, Immune life history, vaccination, and the dynamics of SARS-CoV-2 over the next 5 years. Science 370, 811–818 (2020). doi:10.1126/science.abd7343pmid:32958581

 Abstract/FREE Full Text

 Google Scholar
- 43. Q.-X. Long, X.-J. Tang, Q.-L. Shi, Q. Li, H.-J. Deng, J. Yuan, J.-L. Hu, W. Xu, Y. Zhang, F.-J. Lv, K. Su, F. Zhang, J. Gong, B. Wu, X.-M. Liu, J.-J. Li, J.-F. Qiu, J. Chen, A.-L. Huang, Clinical and immunological assessment of asymptomatic SARS-CoV-2 infections. <u>Nat. Med.</u> **26**, 1200–1204 (2020). doi:10.1038/s41591-020-0965-6pmid:32555424 CrossRef PubMed Google Scholar
- 44. D. F. Gudbjartsson, G. L. Norddahl, P. Melsted, K. Gunnarsdottir, H. Holm, E. Eythorsson, A. O. Arnthorsson, D. Helgason, K. Bjarnadottir, R. F. Ingvarsson, B. Thorsteinsdottir, S. Kristjansdottir, A. M. Kristinsdottir, M. I. Sigurdsson, G. A. Arnadottir, E. V. Ivarsdottir, M. Andresdottir, F. Jonsson, A. B. Agustsdottir, J. Berglund, B. Eiriksdottir, R. Fridriksdottir, E. E. Gardarsdottir, M. Gottfredsson, O. S. Gretarsdottir, S. Gudmundsdottir, K. R. Gudmundsson, T. R. Gunnarsdottir, A. Gylfason, A. Helgason, B. O. Jensson, A. Jonasdottir, H. Jonsson, T. Kristjansson, K. G. Kristinsson, D. N. Magnusdottir, O. T. Magnusson, L. B. Olafsdottir, S. Rognvaldsson, L. le Roux, G. Sigmundsdottir, A. Sigurdsson, G. Sveinbjornsson, K. E. Sveinsdottir, M. Sveinsdottir, E. A. Thorarensen, B. Thorbjornsson, M. Thordardottir, J. Saemundsdottir, S. H. Kristjansson, K. S. Josefsdottir, G. Masson, G. Georgsson, M. Kristjansson, A. Moller, R. Palsson, T. Gudnason, B. Thorsteinsdottir, I. Jonsdottir, P. Sulem, K. Stefansson, Humoral Immune Response to SARS-CoV-2 in Iceland. M. Engl.: J. Med. 383, 1724-1734 (2020). doi:10.1056/NEJMoa2026116pmid:32871063
- 45.

 A. Wajnberg, F. Amanat, A. Firpo, D. R. Altman, M. J. Bailey, M. Mansour, M. McMahon, P. Meade, D. R. Wendu, K. Muellers, D. Stadlbauer, K. Stone, S. Strohmeier, V. Simon, J. Aberg, D. L. Reich, F. Krammer, C. Cordon-Cardo, Robust-neutralizing antibodies to SARS-CeV 2 infection persist for months. Science 370, 1227−1230 (2020). doi:10.1126/science.abd7728pmid:33115920

 Abstract/FREE Full Text. Google Sebalar
- 46. ^d L. Piccoli, Y.-J. Park, M. A. Tortorici, N. Czudnochowski, A. C. Walls, M. Beltramello, C. Silacci-Fregni, D. Pinto, L. E. Rosen, J. E. Bowen, O. J. Acton, S. Jaconi, B. Guarino, A. Minola, F. Zatta, N. Sprugasci, J. Bassi, A. Peter, A. De Marco, J. C. Nic, F. Mele, S. Jovic, B. F. Rodriguez, S. V. Gupta, F. Jin, G. Piumatti, G. Lo Presti, A. F. Pellanda, M. Biggiogero, M. Tarkowski, M. S. Pizzuto, E. Cameroni, C. Havena, Daughton, M. Smithey, D. Hong, V. Lepori, E. Albanese, A. Ceschi, E. Bernasconi, L. Elzi, P. Ferrari, C. Garzoni, A. Riva, G. Snell, F. Sallusto, K. Fink, H. W. Virgin, A. Lanzavecchia, D. Corti, D. Veesler, Mapping neutralizing and immunodominant sites on the SARS-CoV-2 spike receptor-binding domain by structure-guided high-resolution serology. *Cell* 183, 1024–1042.e21 (2020). doi:10.1016/j.cell.2020.09.037pmid:32991844

 CrossRef PubMed Google Scholar
- 47. d D. F. Robbiani, C. Gaebler, F. Muecksch, J. C. C. Lorenzi, Z. Wang, A. Cho, M. Agudelo, C. O. Barnes, A. Gazumyan, S. Finkin, T. Hägglöf, T. Y. Oliveira, C. Viant, A. Hurley, H.-H. Hoffmann, K. G. Millard, R. G. Kost, M. Cipolla, K. Gordon, F. Gianchini, S. T. Chen, V. Ramos, R. Patel, J. Dizon, I. Shimeliovich, P. Mendoza, H. Hartweger, L. Nogueira, M. Pack, J. Horowitz, F. Schmidt, Y. Weisblum, E. Michailidis, A. W. Ashbrook, E. Waltari, J. E. Pak, K. E. Huey-Tubman, N. Koranda, P. R. Hoffman, A. P. West Jr.., C. M. Rice, T. Hatziioannou, P. J. Bjorkman, P. D. Bieniasz, M. Caskey, M. C. Nussenzweig, Convergent antibody responses to SARS-CoV-2 in convalescent individuals. Nature 584, 437–442 (2020). doi:10.1038/s41586-020-2456-9pmid:32555388 CrossRef PubMed Google Scholar
- 48. J. Yu, L. H. Tostanoski, L. Peter, N. B. Mercado, K. McMahan, S. H. Mahrokhian, J. P. Nkolola, J. Liu, Z. Li, A. Chandrashekar, D. R. Martinez, C. Loos, C. Atyeo, S. Fischinger, J. S. Burke, M. D. Slein, Y. Chen, A. Zuiani, F. J. N. Lelis, M. Travers, S. Habibi, L. Pessaint, A. Van Ry, K. Blade, R. Brown, A. Cook, B. Finneyfrock, A. Dodson, E. Teow, J. Velasco, R. Zahn, F. Wegmann, E. A. Bondzie, G. Dagotto, M. S. Gebre, X. He, C. Jacob-Dolan, M. Kirilova, N. Kordana, Z. Lin, L. F. Maxfield, F. Nampanya, R. Nityanandam, J. D. Ventura, H. Wan, Y. Cai, B. Chen, A. G. Schmidt, D. R. Wesemann, R. S. Baric, G. Alter, H. Andersen, M. G. Lewis, D. H. Barouch, DNA vaccine protection against SARS-CoV-2 in rhesus macaques. *Science* 369, 806–811 (2020). doi:10.1126/science.abc6284pmid:32434945
- 49. ^e B. Isho, K. T. Abe, M. Zuo, A. J. Jamal, B. Rathod, J. H. Wang, Z. Li, G. Chao, O. L. Rojas, Y. M. Bang, A. Pu, N. Christie-Holmes, C. Gervais, D. Ceccarelli, P. Sama Lebrani, F. Guvenc, P. Budylowski, A. Li, A. Paterson, F. Y. Yue, L. M. Marin, L. Caldwell, J. L. Wrana, K. Colwill, F. Sicheri, S. Mubareka, S. D. Gray-Owen, S. J. Drews, W. L. Siqueira, M. Barrios-Rodiles, M. Ostrowski, J. M. Rini, Y. Durocher, A. J. McGeer, J. L. Gommerman, A.-C. Gingras, Persistence of serum and saliva antibody responses to SARS-CoV-2 spike antigens in COVID-19 patients. Sci. Immunol. 5, eabe5511 (2020). doi:10.1126/sciimmunol.abe5511pmid:33033173 Abstract/FREE Full Text Google Scholar
- 50. L. B. Rodda, J. Netland, L. Shehata, K. B. Pruner, P. A. Morawski, C. D. Thouvenel, K. K. Takehara, J. Eggenberger, E. A. Hemann, H. R. Waterman, M. L. Fahning, Y. Chen, M. Hale, J. Rathe, C. Stokes, S. Wrenn, B. Fiala, L. Carter, J. A. Hamerman, N. P. King, M. Gale Jr.., D. J. Campbell, D. J. Rawlings, M. Pepper, Functional SARS-CoV-2-specific immune memory persists after mild COVID-19. *Cell* S0092-8674(20)31565-8 (2020). doi:10.1016/j.cell.2020.11.029pmid:33296701 CrossRef PubMed Google Scholar
- 51. & C. W. Davis, K. J. L. Jackson, A. K. McElroy, P. Halfmann, J. Huang, C. Chennareddy, A. E. Piper, Y. Leung, C. G. Albariño, I. Crozier, A. H. Ellebedy, J. Sidney, A. Sette, T. Yu, S. C. A. Nielsen, A. J. Goff, C. F. Spiropoulou, E. O. Saphire, G. Cavet, Y. Kawaoka, A. K. Mehta, P. J. Glass, S. D. Boyd, R. Ahmed, Longitudinal Analysis of the Human B

53.

M. F. Kotturi, B. Peters, F. Buendia-Laysa Jr.., J. Sidney, C. Oserott, J. Botten, H. Grey, M. J. Buchmeier, A. Sette, The CD8+ T-cell response to lymphocytic choriomeningitis virus involves the L antigen: Uncovering new tricks for an old virus.

J. Virol. 81, 4928−4940 (2007). doi:10.1128/JVI.02632-06pmid:17329346

Abstract/FREE Full Text Google Scholar

- 54. J. Neidleman, X. Luo, J. Frouard, G. Xie, G. Gill, E. S. Stein, M. McGregor, T. Ma, A. F. George, A. Kosters, W. C. Greene, J. Vasquez, E. Ghosn, S. Lee, N. R. Roan, SARS-CoV-2-specific T cells exhibit phenotypic features of helper function, lack of terminal differentiation, and high proliferation potential. *Cell Rep. Med.* 1, 100081 (2020). doi:10.1016/j.xcrm.2020.100081pmid:32839763 CrossRef PubMed Google Scholar
- 55. S. Sridhar, S. Begom, A. Bermingham, K. Hoschler, W. Adamson, W. Carman, T. Bean, W. Barclay, J. J. Deeks, A. Lalvani, Cellular immune correlates of protection against symptomatic pandemic influenza. *Nat. Med.* 19, 1305–1312 (2013). doi:10.1038/nm.3350pmid:24056771 crossRef PubMed <a href="mailto:social-correlation-of-based-analysis and correlation-of-based-analysis and correlation-of-base
- 56. R. S. Akondy, M. Fitch, S. Edupuganti, S. Yang, H. T. Kissick, K. W. Li, B. A. Youngblood, H. A. Abdelsamed, D. J. McGuire, K. W. Cohen, G. Alexe, S. Nagar, M. M. McCausland, S. Gupta, P. Tata, W. N. Haining, M. J. McElrath, D. Zhang, B. Hu, W. J. Greenleaf, J. J. Goronzy, M. J. Mulligan, M. Hellerstein, R. Ahmed, Origin and differentiation of human memory CD8 T cells after vaccination. *Nature* 552, 362–367 (2017). doi:10.1038/nature24633pmid:29236685 Crossref PubMed Google Scholar
- 57. & S. Crotty, T Follicular Helper Cell Biology: A Decade of Discovery and Diseases. Immunity 50, 1132–1148 (2019). doi:10.1016/j.immuni.2019.04.011pmid:31117010

 CrossRef PubMed Google Scholar
- 58. J. A. Juno, H.-X. Tan, W. S. Lee, A. Reynaldi, H. G. Kelly, K. Wragg, R. Esterbauer, H. E. Kent, C. J. Batten, F. L. Mordant, N. A. Gherardin, P. Pymm, M. H. Dietrich, N. E. Scott, W.-H. Tham, D. I. Godfrey, K. Subbarao, M. P. Davenport, S. J. Kent, A. K. Wheatley, Humoral and circulating follicular helper T cell responses in recovered patients with COVID-19. *Nat. Med.* 26, 1428–1434 (2020). doi:10.1038/s41591-020-0995-0pmid:32661393 CrossRef PubMed Google Scholar
- 59. 4 A. T. Tan, M. Linster, C. W. Tan, N. L. Bert, W. N. Chia, K. Kunasegaran, Y. Zhuang, C. Y. L. Tham, A. Chia, G. J. Smith, B. Young, S. Kalimuddin, J. G. H. Low, D. Lye, L.-F. Wang, A. Bertoletti, Early induction of SARS-CoV-2 specific T cells associates with rapid viral clearance and mild disease in COVID-19 patients. bioRxiv 2020.10.15.341958 [Preprint]. 16 October 2020. https://doi.org/10.1101/2020.10.15.341958 doi:10.1101/2020.10.15.341958
- 60. C. Gaebler, Z. Wang, J. C. C. Lorenzi, F. Muecksch, S. Finkin, M. Tokuyama, M. Vadinský, A. Cho, M. Jankovic, D. Schaefer-Pabajew, T. Y. Oliveira, M. Cipolla, C. Viant, C. O. Barnes, A. Hurley, M. Turroja, K. Gordon, K. G. Millard, V. Ramos, F. Schmidt, Y. Weisblum, D. Jha, M. Tankelevich, J. Yee, I. Shimeliovich, D. F. Robbiani, Z. Zhao, A. Gazumyan, T. Hatziioannou, P. J. Bjorkman, S. Mehandru, P. D. Bieniasz, M. Caskey, M. C. Nussenzweig, Evolution of antibody Immunity to SARS-CoV-2. bioRxiv 2020.11.03.367391 (2020). doi:10.1101/2020.11.03.367391pmid:33.173867.
- 61. S. Crotty, P. Felgner, H. Davies, J. Glidewell, L. Villarreal, R. Anned, Cutting edge: Long-term B cell memory in humans after smallpox vaccination. J. Immunol. 171, 4969–4973 (2003). doi:10.4049/jimmunol.171.10.4969pmid.1460.890 Abstract/FREF Full Text Good Scholar
- 62. J. X. Yu, T. Tsibane, P. A. McGraw, F. S. House, C. J. Keefer, M. D. Hicar, T. M. Tumpey, C. Pappas & A. Perrone, O. Martinez, J. Stevens, I. A. Wilson, P. V. Aguilar, E. L. Altschuler, C. F. Basler, J. E. Crowe Jr., ., Neutralizing antibodies derived from the B cells of 1918 influenza pandemic survivors. <u>Nature</u> 455, 532–536 (2008). doi:10.1038/nature07231pmid:18716625 CrossRef PubMed Web of Science Google Scholar
- 63. J. Zuo, A. Dowell, H. Pearce, K. Verma, H. Long, J. Begum, F. Aiano, Z. Amin Chowchury, B. Hallis, L. Stapley, R. Borrow, E. Linley, S. Ahmad, B. Parker, A. Horsley, G. Amirthalingam, K. Brown, M. Ramsay, S. Ladhani, P. Moss, Robust SARS-Cov-2-specific T-cell immunity is maintained at 6 months following primary infection. *bioRxiv* 2020.11.01.362319 [Preprint]. doi:10.1101/2020.11.01.362319 [Preprint].
- 64.

 ✓ E. Hammarlund, M. W. Lewis, S. G. Hansen, L. I. Strelow, J. A. Nelson, S. J. Sexton, J. M. Hanifin, M. K. Slifka, Duration of antiviral immunity after smallpox vaccination.

 Nat. Med. 9, 1131–1137 (2003). doi:10.1038/nm917pmid:12925846 GossRef PubMed Web of Science Google Scholar
- 65. N. Le Bert, A. T. Tan, K. Kunasegaran, C. Y. L. Tham, M. Hafet, A. Chia, M. H. Y. Chng, M. Lin, N. Tan, M. Linster, W. N. Chia, M. I.-C. Chen, L.-F. Wang, E. E. Ooi, S. Kalimuddin, P. A. Tambyah, J. G.-H. Low, Y.-J. Tan, A. Bertoletti, SARS-CoV-2-specific T cell immunity in cases of COVID-19 and SARS, and uninfected controls. <u>Nature</u> 584, 457–462 (2020). doi:10.1038/s41586-020-2550-zpmid:32668444 Crossref PubMed Google Scholar
- 66. W. N. B. Mercado, R. Zahn, F. Wegmann, C. Loos, A. Chandrashekar, J. Yu, J. Liu, L. Peter, K. McMahan, L. H. Tostanoski, X. He, D. R. Martinez, L. Rutten, R. Bos, D. van Manen, J. Vellinga, J. Custers, J. P. Langedijk, T. Kwaks, M. J. G. Bakkers, D. Zuijdgeest, S. K. Rosendahl Huber, C. Atyeo, S. Fischinger, J. S. Burke, J. Feldman, B. M. Hauser, T. M. Caradonna, E. A. Bondzie, G. Dagotto, M. S. Gebre, E. Hoffman, C. Jacob-Dolan, M. Kirilova, Z. Li, Z. Lin, S. H. Mahrokhian, L. F. Maxfield, F. Nampanya, R. Nityanandam, J. P. Nkolola, S. Patel, J. D. Ventura, K. Verrington, H. Wan, L. Pessaint, A. Van Ry, K. Blade, A. Strasbaugh, M. Cabus, R. Brown, A. Cook, S. Zouantchangadou, E. Teow, H. Andersen, M. G. Lewis, Y. Cai, B. Chen, A. G. Schmidt, R. K. Reeves, R. S. Baric, D. A. Lauffenburger, G. Alter, P. Stoffels, M. Mamme Hoof, H. Schuitemaker, D. H. Barouch, Single-shot Ad26 vaccine protects against SARS-CoV-2 in rhesus macaques. Nature 586, 583–588 (2020). doi:10.1038/s² D20-2607-zpmid:32731257 CrossRef PubMed Google Scholar
- 67. V. K. S. Corbett, B. Flynn, K. E. Foulds, J. R. Francica, S. Boyoglu-Barnum, A. P. Werner, B. Flach, S. O'Connell, K. W. Bock, M. Minai, B. M. Nagata, H. Andersen, D. R. Martinez, A. T. Noe, N. Douek, M. M. Donaldson, N. N. Nji, G. S. Alvarado, D. K. Edwards, D. R. Flebbe, E. Lamb, N. A. Doria-Rose, B. C. Lin, M. K. Louder, S. O'Dell, S. D. Schmidt, E. Phung, L. A. Chang, C. Yap, J. M. Todd, L. Pessaint, A. Van Ry, S. Browne, J. Greenhouse, T. Putman-Taylor, A. Strasbaugh, T.-A. Campbell, A. Cook, A. Dodson, K. Steingrebe, W. Shi, Y. Zhang, O. M. Abiona, L. Wang, A. Pegu, E. S. Yang, K. Leung, T. Zhou, I.-T. Teng, A. Widge, I. Gordon, L. Novik, R. A. Gillespie, R. J. Loomis, J. I. Moliva, G. Stewart-Jones, S. Himansu, W.-P. Kong, M. C. Nason, K. M. Morabito, T. J. Ruckwardt, J. E. Ledgerwood, M. R. Gaudinski, P. D. Kwong, J. R. Mascola, A. Carfi, M. G. Lewis, R. S. Baric, A. McDermott, I. N. Moore, N. J. Sullivan, M. Roederer, R. A. Seder, B. S. Graham, Evaluation of the mRNA-1273 Vaccine against SARS-CoV-2 in Nonhuman Primates. N. Engl. J. Med. 383, 1544–1555 (2020). doi:10.1056/NEJMoa2024671pmid:32722908 CrossRef PubMed Google Scholar
- 4 L. Corey, J. R. Mascola, A. S. Fauci, F. S. Collins, A strategic approach to COVID-19 vaccine R&D. <u>Science</u> 368, 948−950 (2020). doi:10.1126/science.abc5312pmid:32393526 <u>Abstract/FREE Full Text</u> <u>Google Scholar</u>

71. D. Masopust, A. G. Soerens, Tissue-Resident T Cells and Other Resident Leukocytes. Annu. Rev. Immunol. 37, 521–546 (2019). doi:10.1146/annurev-immunol-042617-053214pmid:30726153 CrossRef PubMed Google Scholar

- 72. 4 H. C. Whittle, P. Aaby, B. Samb, H. Jensen, J. Bennett, F. Simondon, Effect of subclinical infection on maintaining immunity against measles in vaccinated children in West Africa. *Lancet* **353**, 98–102 (1999). doi:10.1016/S0140-6736(98)02364-2pmid:10023894 CrossRef PubMed Web of Science Google Scholar
- 73. S. A. Plotkin, Vaccines: Correlates of vaccine-induced immunity. Clin. Infect. Dis. 47, 401–409 (2008). doi:10.1086/589862pmid:18558875 CrossRef PubMed
 Web of Science Google Scholar
- 74. V. Burdin, L. K. Handy, S. A. Plotkin, What Is Wrong with Pertussis Vaccine Immunity? The Problem of Waning Effectiveness of Pertussis Vaccines. Cold Spring Harb.

 Perspect. Biol. 9, a029454 (2017). doi:10.1101/cshperspect.a029454pmid:28289064

 Abstract/FREE Full Text Google Scholar
- 75. N. van Doremalen, T. Lambe, A. Spencer, S. Belij-Rammerstorfer, J. N. Purushotham, J. R. Port, V. A. Avanzato, T. Bushmaker, A. Flaxman, M. Ulaszewska, F. Feldmann, E. R. Allen, H. Sharpe, J. Schulz, M. Holbrook, A. Okumura, K. Meade-White, L. Pérez-Pérez, N. J. Edwards, D. Wright, C. Bissett, C. Gilbride, B. N. Williamson, R. Rosenke, D. Long, A. Ishwarbhai, R. Kailath, L. Rose, S. Morris, C. Powers, J. Lovaglio, P. W. Hanley, D. Scott, G. Saturday, E. de Wit, S. C. Gilbert, V. J. Munster, ChAdOx1 nCoV-19 vaccine prevents SARS-CoV-2 pneumonia in rhesus macaques. Nature 586, 578–582 (2020). doi:10.1038/s41586-020-2608-ypmid:32731258 CrossRef PubMed Google Scholar
- 76. 4 R. L. Tillett, J. R. Sevinsky, P. D. Hartley, H. Kerwin, N. Crawford, A. Gorzalski, C. Laverdure, S. C. Verma, C. C. Rossetto, D. Jackson, M. J. Farrell, S. Van Hooser, M. Pandori, Genomic evidence for reinfection with SARS-CoV-2: A case study. *Lancet Infect. Dis.* 21, 52–58 (2021). doi:10.1016/S1473-3099(20)30764-7pmid:33058797

 CrossRef PubMed Google Scholar
- 77. 4 K. K.-W. To, I. F.-N. Hung, J. D. Ip, A. W.-H. Chu, W.-M. Chan, A. R. Tam, C. H.-Y. Fong, S. Yuan, H.-W. Tsoi, A. C.-K. Ng, L. L.-Y. Lee, P. Wan, E. Tso, W.-K. To, D. Tsang, K.-H. Chan, J.-D. Huang, K.-H. Kok, V. C.-C. Cheng, K.-Y. Yuen, COVID-19 re-infection by a phylogenetically distinct SARS-coronavirus-2 strain confirmed by whole genome sequencing. Clin. Infect. Dis. ciaa1275 (2020). doi:10.1093/cid/ciaa1275pmid:32840608 crossRef PubMed Google Scholar
- 78. D. Wyllie, R. Mulchandani, H. E. Jones, S. Taylor-Phillips, T. Brooks, A. Charlett, A. E. Ades, EDSAB-Home Investigators, A. Makin, I. Oliver, P. Moore, J. Boyes, A. Hormis, N. Todd, I. Reckless, SARS-CoV-2 responsive T cell numbers are associated with protection from COVID-19: A prospective cohort study in keyworkers. medRxiv 2020.11.02.20222778 [Preprint]. 4 November 2020. doi:10.1101/202011.02.20222778.
- 79. S. F. Lumley, D. O'Donnell, N. E. Stoesser, P. C. Matthews, A. Howarth, S. B. Hatch, B. D. Marsden, S. Cox, James, F. Warren, L. J. Peck, T. G. Ritter, Z. de Toledo, L. Warren, D. Axten, R. J. Cornall, E. Y. Jones, D. I. Stuart, G. Screaton, D. Ebner, S. Hoosdally, M. Chand, O. U.H. S. T. Group, D. W. Crook, A.-M. O'Donnell, C. P. Conlon, K. B. Pouwels, A. S. Walker, T. E. Peto, S. Hopkins, T. M. Walker, K. Jeffery, D. W. Eyre, Antibodies to SARS-CoV-2 are associated with protection against reinfection. *medRxiv* 2020.11.18.20234369 [Preprint]. 19 November 2020. doi:10.1101/2020.11.18.20234369
- 80. J. H. Beigel, K. M. Tomashek, L. E. Dodd, A. K. Mehta, B. S. Zingman, A. C. Kalil, E. Hohmann, H. Y. Chu, A. Luetkemeyer, S. Kline, D. Lopez de Castilla, R. W. Finberg, K. Dierberg, V. Tapson, L. Hsieh, T. F. Patterson, R. Paredes, D. A. Sweeney, W. R. Short, G. Fouloumi, D. C. Lye, N. Ohmagari, M.-D. Oh, G. M. Ruiz-Palacios, T. Benfield, G. Fätkenheuer, M. G. Kortepeter, R. L. Atmar, C. B. Creech, J. Lundgren, A. G. Babiker S. Pett, J. D. Neaton, T. H. Burgess, T. Bonnett, M. Green, M. Makowski, A. Osinusi, S. Nayak, H. C. Lane; ACTT-1 Study Group Members, Remdesivir for the Treatment of Covid-19 Final Report. N. Engl. J. Med. 383, 1813–1826 (2020). doi:10.1056/NEJMoa2007764pmid:32445440 CrossRef PubMed Google Schole
- 81. U. D. Wrapp, N. Wang, K. S. Corbett, J. A. Goldsmith, C.-L. Hsień, C. Abicha, B. S. Graham, J. S. McLellan, Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science 367, 1260–1263 (2020). doi:10.1126/science.abb2507pmid:32075877 Abstract/FREE Full Text Google Scholar
- 82. F. Amanat, D. Stadlbauer, S. Strohmeier, T. H. O. Nguyen, V. Chromikova, M. McMahon, K. Jiang, G. A. Arunkumar, D. Jurczyszak, J. Polanco, M. Bermudez-Gonzalez, G. Kleiner, T. Aydillo, L. Miorin, D. S. Fierer, L. A. Lugo, E. M. Kejic, J. Stoever, S. T. H. Liu, C. Cunningham-Rundles, P. L. Felgner, T. Moran, A. García-Sastre, D. Caplivski, A. C. Cheng, K. Kedzierska, O. Vapalahti, J. M. Hepojoki, V. Simon, F. Krammer, A serological assay to detect SARS-CoV-2 seroconversion in humans. Nat. Med. 26, 1033–1036 (2020). doi:10.1038/s41591-020-0913-5pmid:32398876 CrossRef PubMed Google Scholar
- 83. J. Mestecky, R. G. Hamilton, C. G. M. Magnusson, R. Jefferis, J. P. Vaerman, M. Goodall, G. G. de Lange, I. Moro, P. Aucouturier, J. Radl, C. Cambiaso, C. Silvain, J. L. Preud'homme, K. Kusama, G. M. Carlone, J. Biewenga, K. Kobayashi, F. Skvaril, C. B. Reimer, Evaluation of monoclonal antibodies with specificity for human IgA, IgA subclasses and allotypes and secretory component. Results of an IUIS/WHO collaborative study. J. Immunol. Methods 193, 103–148 (1996). doi:10.1016/0022-1759(95)00289-8pmid:8699027 CrossRef PubMed Google Scholar
- 84. d GraphPad, GraphPad Prism 8 Curve Fitting Guide (2020); www.graphpad.com/guides/prism/8/curve-fitting/index.htm.

Acknowledgments: We thank the LJI Clinical Core, specifically G. Levi and B. Schwan for healthy donor enrollment and blood sample procurement. We thank C. Moderbacher for input on data analysis. We are also grateful to the Mt. Sinai Personalized Virology Initiative for sharing banked samples from study participants with COVID-19. We are grateful to A. Wajnberg for study participant referrals and to the Personalized Virology Initiative (G. Kleiner, L.C.F. Mulder, M. Saksena, K. Srivastava, C. Gleason, C. M. Bermúdez-González, K. Beach, K. Russo, L. Sominsky, E. Ferreri, R. Chernet, L. Eaker, A. Salimbangon, D. Jurczyszak, H. Alshammary, W. Mendez, A. Amoako, S. Fabre, S. Suthakaran, M. Awawda, E. Hirsch, A. Shin) for sharing banked samples from study participants with COVID-19. Funding: This work was funded by the NIH NIAID under awards Al142742 (Cooperative Centers for Human Immunology) (A.S., S.C.), NIH contract no. 75N9301900065 (D.W., A.S.), U01 Al141995-03 (A.S., P.B.), and U01 CA260541-01 (D.W). This work was additionally supported in part by LJI Institutional Funds, the John and Mary Tu Foundation (D.S.), the NIAID under K08 award Al135078 (J.M.D.), UCSD T32s Al007036 and Al007384 Infectious Diseases Division (S.I.R., S.A.R.), and the Bill and Melinda Gates Foundation INV-006133 from the Therapeutics Accelerator, Mastercard, Wellcome, private philanthropic contributions (K.M.H., E.O.S., S.C.), and a FastGrant from Emergent Ventures in aid of COVID-19

J.M.D., J.M., Y.K., K.M.H., C.E.F., S.H., B.P., D.W., A.S., and S.C.; Patient Recruitment and Samples, S.I.R., A.F., S.A.R., F.K., V.S., D.M.S., and D.W.; Material Resources, F.K., V.S., V.R., E.O.S., D.W., A.S., and S.C.; Data Curation, Y.K., J.M.D., J.M., and S.H.; Writing, Y.K., J.M.D., J.M., S.I.R., D.W., A.S., and S.C.; Supervision, D.W., A.S., and S.C., Project Administration, A.F. Competing interests: A.S. is a consultant for Gritstone, Flow Pharma, Merck, Epitogenesis, Gilead, and Avalia. S.C. is a consultant for Avalia. L.J.I. has filed for patent protection for various aspects of T cell epitope and vaccine design work. Mount Sinai has licensed serological assays to commercial entities and has filed for patent protection for serological assays. D.S., F.A., V.S., and F.K. are listed as inventors on the pending patent application (F.K., V.S.), and Newcastle disease virus (NDV)—based SARS-CoV-2 vaccines that name F.K. as inventor. All other authors declare no conflict of interest. Data and materials availability: All data are provided in the supplementary materials. Epitope pools used in this paper will be made available to the scientific community upon request and execution of a material transfer agreement. This work is licensed under a Creative Commons Attribution 4.0 International (CC BY 4.0) license, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. To view a copy of this license, visit https://creativecommons.org/licenses/by/4.0/. This license does not apply to figures/photos/artwork or other content included in the article that is credited to a third party; obtain authorization from the rights holder before using such material.

Log In ScienceMag.org Q Become a Member

- Article
 - · Variable memory
 - Structured Abstract
 - Abstract
 - · COVID-19 cohort
 - SARS-CoV-2 circulating antibodies over time
 - SARS-CoV-2 memory B cells
 - SARS-CoV-2 memory CD8+ T cells
 - SARS-CoV-2 memory CD4⁺ T cells
 - Immune memory relationships
 - Concluding remarks
 - · Materials and methods
 - Supplementary Materials
 - References and Notes
- · Figures & Data
- · Info & Metrics
- eLetters
- 🚨 PDF

Get Our E-Alerts

Receive emails from Science. See full list	
Science Table of Contents	PDF
✓ Science Daily News	
✓ Weekly News Roundup	Help
Science Editor's Choice	
First Release Notification	
Science Careers Job Seeker	
United States	~
Email address*	

I also wish to receive emails from AAAS/Science and Science advertisers, including information on products, services, and special offers which may include but are not limited to news, career information, & upcoming events.

About Us

Journals

News from Science

Leadership Team Members

Work at AAAS

For Advertisers

Advertising Kits

Awards and Prizes

Custom Publishing

Webinars

For Authors

Submit

Information for Authors

Editorial Policies

For Librarians

Manage Your Institutional Subscription Information for Librarians

Request a Quote

Related Sites

AAAS.org

EurekAlert!
Science in the Classroom
Science Magazine Japanese

Help

Access and Subscriptions
Order a Single Issue
Reprints and Permissions
Contact Us
Accessibility

© 2021 American Association for the Advancement of Science. All rights reserved CAAS is a partner of HINARI, AGORA, OARE, CHORUS, CLOCKSS, CrossRef and COUNTER.
Science ISSN 1095-9203.

Terms of Service
Privacy Policy
Contact AAAS

Contact AAAS

PDF