huang-r-hwk3

Ron Huang

Table of contents

gi	t@git	hub.com:Rorn001/econ470-hwk3.git	2
1	Sun	nmarize the data	2
	1.1	Present a bar graph showing the proportion of states with a change in their cigarette tax in each year from 1970 to 1985	2
	1.2	Plot on a single graph the average tax (in 2012 dollars) on cigarettes and the average price of a pack of cigarettes from 1970 to 2018	3
	1.3	Identify the 5 states with the highest increases in cigarette prices (in dollars) over the time period. Plot the average number of packs sold per capita for those	
	1.4	states from 1970 to 2018	4
		period. Plot the average number of packs sold per capita for those states from 1970 to 2018	5
	1.5	Compare the trends in sales from the 5 states with the highest price increases to those with the lowest price increases	6
2	Esti	mate ATEs	7
	2.1	Focusing only on the time period from 1970 to 1990, regress log sales on log prices to estimate the price elasticity of demand over that period. Interpret	
	0.0	your results	7
	2.2	Again limiting to 1970 to 1990, regress log sales on log prices using the total (federal and state) cigarette tax (in dollars) as an instrument for log prices. Interpret your results and compare your estimates to those without an instrument.	
		Are they different? If so, why?	8
	2.3	Show the first stage and reduced-form results from the instrument	9
	2.4	Repeat questions 1-3 focusing on the period from 1991 to 2015	10
	2.5	Compare your elasticity estimates from 1970-1990 versus those from 1991-2015.	
		Are they different? If so, why?	11

git@github.com:Rorn001/econ470-hwk3.git

1 Summarize the data

1.1 Present a bar graph showing the proportion of states with a change in their cigarette tax in each year from 1970 to 1985.

$1.2\,$ Plot on a single graph the average tax (in 2012 dollars) on cigarettes and the average price of a pack of cigarettes from 1970 to 2018.

1.3 Identify the 5 states with the highest increases in cigarette prices (in dollars) over the time period. Plot the average number of packs sold per capita for those states from 1970 to 2018.

	state	price_change	price_1970	price_2019
8	District of Columbia	7.441234	1.931230	9.372464
32	New York	7.005608	2.470316	9.475923
39	Rhode Island	6.500704	2.381455	8.882160
21	Massachusetts	6.346255	2.428847	8.775102
6	Connecticut	6.339671	2.695428	9.035099

1.4 Identify the 5 states with the lowest increases in cigarette prices over the time period. Plot the average number of packs sold per capita for those states from 1970 to 2018.

	state	price_change	price_1970	price_2019
25	Missouri	2.505294	2.180039	4.685332
42	Tennessee	2.524120	2.464392	4.988512
34	North Dakota	2.579710	2.304443	4.884153
0	Alabama	2.673970	2.529556	5.203526
10	Georgia	2.695882	2.120798	4.816680

1.5 Compare the trends in sales from the 5 states with the highest price increases to those with the lowest price increases.

2 Estimate ATEs

2.1 Focusing only on the time period from 1970 to 1990, regress log sales on log prices to estimate the price elasticity of demand over that period. Interpret your results.

Dep. Variable:	\log _sales		R-squared:		0.	.922
Model:	OLS		Adj. 1	Adj. R-squar		.917
Method:	Least Squares		F-stat	F-statistic:		66.5
Date:	Sat, 16 Mar 2024		Prob	Prob (F-statis		.00
Time:	12:11:10		Log-Likelihoo		od: 14	43.6
No. Observations:]	1071	AIC:		-2	743.
Df Residuals:		999	BIC:		-2	385.
Df Model:		71				
Covariance Type:	nonrobust					
	\mathbf{coef}	std err	\mathbf{t}	$\mathbf{P} > \mathbf{t} $	[0.025]	0.975]
log_price	-0.7417	0.044	-16.829	0.000	-0.828	-0.655
const	5.2905	0.040	131.505	0.000	5.212	5.369
individaul dummies	Yes					
time dummies	Yes					
Omnibus:	97.631 Durb		oin-Wats	oin-Watson:		
Prob(Omnibus	s): 0.000 Jarq u		ue-Bera (JB):		577.353	
Skew:	, -		(JB):		4.26e-126	
Kurtosis:	6.58	9 Cone	d. No.		67.0	
						_

Notes:

^[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

2.2 Again limiting to 1970 to 1990, regress log sales on log prices using the total (federal and state) cigarette tax (in dollars) as an instrument for log prices. Interpret your results and compare your estimates to those without an instrument. Are they different? If so, why?

Dep. Variable:	log_sales	R-squared:	0.9204
Estimator:	IV-2SLS	Adj. R-squared:	0.9147
No. Observations:	1071	F-statistic:	1.343e + 04
Date:	Sat, Mar 16 2024	P-value (F-stat)	0.0000
Time:	12:23:08	Distribution:	chi2(71)
Cov. Estimator:	robust		

	Parameter	Std. Err.	T-stat	P-value	Lower CI	Upper CI
const	5.4621	0.0643	84.952	0.0000	5.3361	5.5882
\log _price	-0.9484	0.0744	-12.755	0.0000	-1.0942	-0.8027
individual dummies	Yes					
time dummies	Yes					

Endogenous: log_price Instruments: log_tax

Robust Covariance (Heteroskedastic)

Debiased: False

2.3 Show the first stage and reduced-form results from the instrument.

Table 1: Table 1 - OLS, Reduced Form, and First Form Results

	OLS	IV	First Form	Reduced Form
const	5.29***	5.462***	0.81***	4.70***
	(0.04)	(0.06)	(0.01)	(0.02)
log_price	-0.74***	-0.95***		
	(0.04)	(0.07)		
$\log_{ ext{tax}}$			0.36***	-0.34***
			(0.01)	(0.02)
Individual dummies	Yes	Yes	Yes	Yes
Time dummies	Yes	Yes	Yes	Yes
R-squared	0.92	0.92	0.96	0.92
R-squared Adj.	0.92	0.92	0.96	0.92
No. observations	1071	1071	1071	1071

Standard errors in parentheses.

^{*} p<.1, ** p<.05, ***p<.01

2.4 Repeat questions 1-3 focusing on the period from 1991 to 2015.

Table 2: Table 1 - OLS, Reduced Form, and First Form Results

	OLS	IV	First Form	Reduced Form
const	5.62***	5.63***	1.18***	4.61***
	(0.05)	(0.06)	(0.01)	(0.03)
log_price	-0.86***	-0.87***		
	(0.05)	(0.05)		
$\log_{ ext{tax}}$			0.33***	-0.29***
			(0.01)	(0.02)
individual dummies	Yes	Yes	Yes	Yes
time dummies	Yes	Yes	Yes	Yes
R-squared	0.94	0.93	0.98	0.93
R-squared Adj.	0.93	0.93	0.98	0.93
No. observations	1275	1275	1275	1275

Standard errors in parentheses.

^{*} p<.1, ** p<.05, ***p<.01

2.5 Compare your elasticity estimates from 1970-1990 versus those from 1991-2015. Are they different? If so, why?