Issue XLIV: Adjoint String of Identity Modalities

Namdak Tonpa

May 2025

Abstract

In Homotopy Type Theory (HoTT), identity systems (Contractible, Strict Id, Quotient, Isomorphism, Path = Equivalence) are modeled as modalities in the ∞ -topos $\mathcal{E} = \infty$ Grp. We construct a non-degenerate adjoint quadruple extending the Jacobs-Lawvere triple $C \dashv \mathrm{Id}_A \dashv Q(-/\sim)$, incorporating Isomorphism and Path = Equivalence. The modalities are ordered by adjointness: Contractible \leq Strict Id \leq Quotient \leq Isomorphism \leq Path = Equivalence, reflecting their structure in HoTT, where Strict Id, Quotient, and Path = Equivalence are mere propositions for h-sets, while Isomorphism is not.

1 Introduction

Homotopy Type Theory (HoTT) provides a framework for reasoning about equality via the identity type $\mathrm{Id}_A(x,y)$. In the ∞ -topos $\mathcal{E}=\infty$ Grp, identity systems are modalities (monads), ordered by adjointness. The classical Jacobs-Lawvere adjunction triple $C\dashv \mathrm{Id}_A\dashv Q(-/\sim)$ captures Contractible, Strict Id, and Quotient. We extend this to a quadruple, including Isomorphism and Path = Equivalence, respecting the HoTT equivalence of Path and Equivalence and the propositional nature of Strict Id, Quotient, and Path = Equivalence for h-sets.

2 Identity Systems as Modalities

Definition 1. In HoTT, the identity systems are:

- Contractible: (-1)-truncated types, mere propositions.
- Strict Id: $Id_A(x,y)$ for h-sets (0-truncated), a mere proposition.
- Quotient: Set-quotients A/\sim , 0-truncated, equivalent to Strict Id.
- **Isomorphism**: $iso_A(x, y)$, a triple (f, g, p), not a mere proposition.
- Path = Equiv: $\operatorname{Id}_A(x,y) \simeq (x \simeq y)$, equivalent in HoTT.

In $\mathcal{E} = \infty$ Grp, we define categories:

- $\mathcal{E}_{contr} = \mathcal{E}_{\leq -1}$: Mere propositions.
- $\mathcal{E}_{\text{strict}} = \mathcal{E}_{\leq 0} \cong \text{Set: h-sets (Strict Id)}.$
- $\mathcal{E}_{quot} = \mathcal{E}_{\leq 0} \cong Set: \text{ h-sets (Quotient)}.$
- $\mathcal{E}_{iso} \cong \mathcal{E}$: ∞ -groupoids with isomorphisms.
- $\mathcal{E}_{\text{path/equiv}} \cong \mathcal{E}$: ∞ -groupoids with paths/equivalences.

3 Adjoint Quadruple

The Jacobs-Lawvere triple $C \dashv \operatorname{Id}_A \dashv Q(-/\sim)$ is extended to a non-degenerate adjoint quadruple:

$$\mathcal{E}_{\mathrm{contr}} \xrightarrow{F_4} \mathcal{E}_{\mathrm{strict}} \xrightarrow{F_3} \mathcal{E}_{\mathrm{quot}} \xrightarrow{F_2} \mathcal{E}_{\mathrm{iso}} \xrightarrow{F_1} \mathcal{E}_{\mathrm{path/equiv}}$$

Theorem 1. The functors form an adjoint quadruple with non-degenerate adjunctions:

$$F_4 \dashv U_4$$
, $F_3 \dashv U_3$, $F_2 \dashv U_2$, $F_1 \dashv U_1$

- $F_4: \mathcal{E}_{\mathbf{contr}} \to \mathcal{E}_{\mathbf{strict}}$: Inclusion of (-1)-truncated objects into 0-truncated objects. Right adjoint U_4 : (-1)-truncation, $U_4(X) = ||X||_{-1}$.
- $F_3: \mathcal{E}_{strict} \to \mathcal{E}_{quot}$: Canonical map to quotient structure, viewing h-sets as quotiented by trivial relations. Right adjoint U_3 : Inverse map preserving h-set structure.
- $F_2: \mathcal{E}_{\mathbf{quot}} \to \mathcal{E}_{\mathbf{iso}}$: Inclusion of h-sets into \mathcal{E} , $\operatorname{core}(X) \cong X$. Right adjoint U_2 : 0-truncation, $U_2(X) = ||X||_0$.
- $F_1: \mathcal{E}_{iso} \to \mathcal{E}_{path/equiv}$: Canonical inclusion of ∞ -groupoids with isomorphisms into full ∞ -groupoids with paths/equivalences. Right adjoint U_1 : Core map, preserving isomorphism structure.

4 Ordering by Adjointness

The adjunctions induce the ordering:

Contractible \leq Strict Id \leq Quotient \leq Isomorphism \leq Path = Equivalence

- Contractible: Coarsest, mere propositions ((-1)-truncated).
- Strict Id: h-sets, $\mathrm{Id}_A(x,y)$ is a mere proposition.
- Quotient: Equivalent to Strict Id, 0-truncated set-quotients.
- **Isomorphism**: $iso_A(x, y)$ is not a mere proposition for general types.
- Path = Equivalence: Finest, full ∞-groupoid structure, equivalent via univalence.

5 Conclusion

The adjoint quadruple extends the Jacobs-Lawvere triple, capturing the structure of identity systems in HoTT. The ordering reflects their increasing complexity, with Strict Id, Quotient, and Path = Equivalence collapsing to mere propositions for h-sets, while Isomorphism retains higher structure. Future work could explore these adjunctions in other ∞ -topoi or specific CTT models.