

(19) World Intellectual Property Organization
International Bureau(43) International Publication Date
24 October 2002 (24.10.2002)

PCT

(10) International Publication Number
WO 02/084160 A1

(51) International Patent Classification⁷: **F16L 1/16**

(81) Designated States (*national*): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.

(21) International Application Number: PCT/GB02/01677

(22) International Filing Date: 11 April 2002 (11.04.2002)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data: 01090/9.7 11 April 2001 (11.04.2001) GB

(71) Applicant (*for all designated States except US*): PRO-GENITIVE SERVICES LIMITED [GB/GB]; Badentoy Avenue, Porthlethen, Aberdeen AB12 4YB (GB).

(72) Inventor; and

(75) Inventor/Applicant (*for US only*): GRAVES, Leslie, John [GB/GB]; Dunreggan, Slug Road, Stonehaven, Aberdeenshire AB39 2DU (GB).

(74) Agent: MURGITROYD & COMPANY; 165-169 Scotland Street, Glasgow G5 8PL (GB).

(84) Designated States (*regional*): ARIPo patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BH, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

— with international search report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: METHOD OF FLOODING A PIPELINE

(57) **Abstract:** A method of flooding a pipeline (12) as it is being laid is disclosed. The method includes the use of an inlet to the pipeline that is attached to an end of the pipeline (12) either before the pipeline (12) enters the water or shortly thereafter. Water enters the pipeline (12) via the inlet as the pipeline (12) is laid, typically due to the hydrostatic head of water above the inlet, and the pipeline (12) is consequently flooded from one end (12a) as it is laid. Certain embodiments provide for chemicals to be added to the water as it floods the pipeline (12). Certain other embodiments also provide for filtering (14) of the water as it enters, and also there is the option for pressure testing the pipeline (12) once laid.

WO 02/084160 A1

1 "Method of Flooding a Pipeline"

2

3 The present invention relates particularly, but not
4 exclusively, to a method of flooding a subsea
5 pipeline as it is being laid from a lay barge,
6 vessel or the like.

7

8 The laying of a subsea pipeline from a lay barge or
9 vessel is well known in the art, and a number of
10 different methods exist, such as J-lay, S-lay etc.
11 Although the specific methods of laying the pipeline
12 can vary, they all share a common problem in that
13 the pipeline is generally relatively buoyant and can
14 be affected by storms and tides that can move the
15 pipeline.

16

17 To deal with this long-recognised problem, it is
18 conventional to increase the wall thickness of the
19 pipeline to make it heavier and less prone to
20 movement, and this increase can be around an eighth
21 of an inch (approximately 3mm) or more. This has
22 the advantage that the pipeline is made heavier and

1 thus less susceptible to movement by storms and
2 tides.

3

4 The movement of the pipeline by storms and tides can
5 be reduced by laying the pipeline into a trench
6 formed in the seabed.

7

8 According to the present invention, there is
9 provided a method of flooding a pipe as it is being
10 laid in water, the method comprising the steps of
11 providing an inlet to the pipe, the inlet having an
12 opening to admit water, and allowing water to enter
13 the pipe through the inlet as the pipe is being
14 laid.

15

16 The invention also provides a method of laying a
17 pipeline in a body of water, the method comprising
18 allowing the water to flood the pipe as it is being
19 laid.

20

21 The inlet is typically coupled to the pipe via a
22 pipe inlet port, and thus the method typically
23 includes the additional steps of coupling a pipe
24 inlet port to the pipe, and coupling the inlet to
25 the pipe inlet port.

26

27 The method typically includes the additional step of
28 coupling the inlet to the pipe before the pipe
29 enters the water. Alternatively, the method
30 typically includes the additional step of coupling
31 the inlet to the pipe underwater. The coupling of
32 the inlet to the pipe underwater may be achieved by

1 use of a diver, remotely operated vehicle (ROV) or
2 an autonomous vehicle (AUV).

3

4 The method typically includes the additional step of
5 actuating flooding of the pipe. The step of
6 actuating flooding of the pipe typically involves
7 opening an isolating valve located in the inlet (or
8 at another suitable location). The isolating valve
9 can be opened at the surface, or underwater by a
10 diver, ROV or AUV. Alternatively, the isolating
11 valve may be opened remotely (e.g. using a control
12 line from the surface).

13

14 The method preferably includes the additional step
15 of filtering the water that enters the pipe. Thus,
16 the method typically includes providing an intake
17 filter at the inlet.

18

19 The pipe is typically flooded from the end that is
20 in the water, rather than from the end of the pipe
21 that remains on the lay barge. Embodiments of the
22 present invention provide significant advantages in
23 that the hydrostatic head of water above the pipe
24 (i.e. the pressure difference between the air- or
25 gas-filled interior of the pipe and the surrounding
26 water) can be used to flood the pipe. Thus, a pump
27 may not be required.

28

29 Flooding the pipe from the end that is underwater
30 means that the end of the pipe that is on the barge
31 (that is the remainder of the pipe that has not been

1 laid) can provide a vent to the atmosphere for the
2 air or gas in the pipe during flooding.

3

4 Embodiments of the present invention also provide
5 the advantage that the flow of water into the
6 pipeline can be controlled, and thus the pipe is
7 less likely to be moved during flooding.

8

9 Furthermore, flooding of the pipe whilst it is being
10 laid has the advantage that the pipe is made,
11 relatively heavy shortly after it enters the water,
12 yet it is not excessively weighted before then.
13 Thus, it is less susceptible to storms, tides and
14 other adverse weather and sea conditions, whilst
15 being easy to handle.

16

17 The method optionally includes the additional step
18 of adding chemicals to the water that enters the
19 pipe.

20

21 The method typically includes the additional step of
22 pumping fluid into the pipe to complete flooding of
23 the pipe. This can be done by a boost pump where
24 the pressure difference between the interior of the
25 pipe and the surrounding seawater diminishes, and
26 flooding of the pipe ceases. The boost pump can be
27 actuated using a remotely operated valve and a
28 control line, or can be actuated by a diver, ROV or
29 AUV. Alternatively, the boost pump may be actuated
30 automatically in response to a drop in the flow rate
31 of water into the pipe. Thus, the method typically
32 includes the additional step of actuating a pump,

1 typically a boost pump, to complete flooding of the
2 pipe.

3

4 The method optionally includes the additional step
5 of pressure testing the pipe after it has been
6 flooded. The step of pressure testing the pipe
7 typically involves the actuation of a subsea pump,
8 although other methods of pressure testing may be
9 used.

10

11 The pipe typically comprises a pipeline, and
12 preferably a subsea pipeline.

13

14 GB2303895B, the entire disclosure of which is
15 incorporated herein by reference, describes a
16 suitable underwater pipeline apparatus for admitting
17 water into the pipeline in a controlled manner,
18 typically through a flow regulator and a filtration
19 system.

20

21 Embodiments of the present invention shall now be
22 described, by way of example only, with reference to
23 the accompanying drawings, in which:-

24 Fig. 1 is a schematic representation of a
25 subsea pipeline being laid from a lay barge;

26 Fig. 2 is a schematic representation of
27 apparatus for flooding a pipeline;

28 Fig. 3 is a schematic representation of
29 alternative apparatus for flooding a pipeline;
30 and

1 Fig. 4 is a schematic representation of a
2 pipeline laid on the seabed between two subsea
3 installations.

4
5 Referring to the drawings, Fig. 1 shows a schematic
6 representation of a subsea pipeline 12 being laid
7 from a lay barge 2. The lay barge 2 can be of any
8 conventional type and can use any one of a variety
9 of different pipeline laying methods, such as J-lay,
10 S-lay etc. The pipeline 12 is laid directly onto
11 the seabed 4, and in this particular example, the
12 pipeline 12 is not laid into a trench or the like,
13 although this may be an option. The stability of
14 pipeline 12 in rough weather or sea conditions will
15 be increased where it is laid into a pre-defined
16 trench.

17
18 The pipeline 12 may be of any conventional size and
19 type, and is generally initially air- or gas-filled
20 as it is paid out from a reel or drum 6, or coupled
21 together in successive lengths on the lay barge 2.
22 Thus, the pipeline 12 is relatively light and can be
23 affected by storms and tides when it is being laid,
24 and after it has been laid.

25
26 Apparatus 10 (best shown in Fig. 2) for flooding the
27 pipeline 12 is attached to an end 12a of the
28 pipeline 12 and is used to flood the pipeline 12
29 typically with seawater, as the pipeline 12 is laid
30 onto the seabed 4. The end 12a is typically the end
31 of the pipeline 12 that enters the water first.
32 This may be at the beginning of the laying process

1 or can be at any intermediate point should the
2 process be stopped and re-started, for example due
3 to adverse weather conditions. Fig. 1 shows the
4 apparatus 10 already located on the seabed 4, but it
5 is preferably attached to end 12a of the pipeline 12
6 on the lay barge 2 and can then be lowered to the
7 seabed 4 with the end 12a of the pipeline 12 as it
8 is laid.

9

10 Apparatus 10 can be lowered to the seabed 4 using
11 any conventional method or apparatus, such as a
12 crane. It will be appreciated that apparatus 10 can
13 be coupled to end 12a at any convenient time, and it
14 is typically coupled before the end 12a of the
15 pipeline 12 enters the water, although this is not
16 essential. For example, a diver or ROV could be
17 used to couple apparatus 10 to end 12a just after
18 the end 12a has entered the water.

19

20 The pipeline 12 is thus flooded from the end 12a
21 that is in the water. Flooding the pipeline 12 from
22 the end 12a that is underwater allows the
23 hydrostatic pressure difference between the interior
24 of the pipeline 12 that is typically initially air-
25 or gas-filled and the surrounding water to be used
26 to flood the pipeline 12. Thus, there is generally
27 no requirement for a pump with a large capacity. A
28 pump of lesser capacity may be required to flood the
29 pipeline 12 if the hydrostatic pressure equalises.

30

31 As the water enters the pipeline 12 from the end 12a
32 that is underwater, the pipeline 12 can be vented to

1 atmosphere through the distal end on the barge 2.
2 This can provide advantages in that it may not be
3 necessary to vent the pipeline 12 underwater.
4
5 Flooding the pipeline 12 from the end 12a that is in
6 the water provides the advantage that the pipeline
7 12 can be flooded with relatively little movement of
8 it. This is because the pipeline 12 is
9 progressively flooded from the end 12a as it is
10 being laid, and the flow of water into it can be
11 controlled. The control over the flow rate provides
12 the advantage that the water does not cascade into
13 the pipeline 12 in an uncontrolled manner where
14 excessive flow rates may cause movement of the
15 pipeline 12. Furthermore, the water that is used to
16 flood pipeline 12 flows progressively along it as it
17 is being laid. The pipeline 12 will therefore flood
18 gradually from end 12a as it is paid out from the
19 lay barge 2.
20
21 Apparatus 10 and the use thereof to flood pipelines
22 has been described herein with reference to the
23 laying of pipelines in the sea and the flooding
24 thereof using seawater, but it will be noted that
25 the pipeline 12 may be laid in a lake or the like
26 and flooded with fresh water, rather than seawater.
27
28 Referring now to Fig. 2, an exemplary embodiment of
29 apparatus 10 for flooding of the pipeline 12 as it
30 is being laid shall now be described. Apparatus 10
31 is similar to that described in GB2303895B, the

1 entire disclosure of which is incorporated herein by
2 reference.

3

4 Apparatus 10 preferably includes an intake filter 14
5 that is capable of straining the surrounding
6 seawater to remove substantially all of the
7 contaminants before it is allowed to enter the
8 pipeline 12. However, it is sufficient for the
9 intake filter 14 to strain the seawater to the
10 required standard only, and need not necessarily
11 remove all contaminants. The intake filter 14 is
12 also preferably capable of providing water at a flow
13 rate necessary to flood the pipeline 12.

14

15 The intake filter 14 is coupled to the end 12a of
16 the pipeline 12 via a conduit 16 that includes an
17 orifice plate 18, a variable choke, generally
18 designated 20, and an isolating valve 22. The
19 variable choke 20 can be used to adjust the flow of
20 water into the pipeline 12 to compensate for the
21 varying hydrostatic head, and is automatically
22 controlled in response to the existing rate of flow
23 by use of differential pressure lines 24, 26. One
24 pressure line 24, 26 is coupled to a first side of
25 the orifice plate 18, and the other line 24, 26 is
26 coupled to the other side of the plate 18.

27

28 Alternatively, the variable choke 20 can be
29 automatically controlled using a pressure-operated
30 device such as a diaphragm that is coupled to each
31 side of the orifice plate 18.

32

1 As the pipeline 12 is laid from the lay barge 2, the
2 pipeline 12 can be provided from the reel or drum 6
3 (as shown schematically in Fig. 1) or can comprise a
4 number of lengths of pipe that are welded together
5 on the lay barge 2 and then lowered into the sea.
6 The latter method is generally used where the pipe
7 is of a large diameter and cannot be wound onto a
8 reel or drum. The laying operation can often be
9 stopped and started, particularly in the latter
10 method, and this can cause problems where chemicals
11 are to be added or injected into the seawater that
12 enters the pipeline 12. The flow rate of seawater
13 into the pipeline 12 is generally not constant if
14 the laying process is continually stopped and
15 started, and thus it can be difficult to provide the
16 correct dosage of injected chemicals into the water.

17

18 The variable choke 20 is generally used to keep the
19 water level at a near constant in the rising portion
20 12r of the pipeline 12 (see Fig. 1). The variable
21 choke 20 is used to ensure that there is at least a
22 minimum flow of seawater into the pipeline 12 even
23 where the laying process is stopped and started.
24 This allows the chemical additives to be injected
25 into the seawater at the correct dosage more easily
26 by maintaining a substantially constant flow of
27 water into the pipeline 12.

28

29 The isolating valve 22 is used to control the
30 flooding of the pipeline 12 and in particular is
31 used to initiate the process of flooding the
32 pipeline 12. The isolating valve 22 is typically

1 opened at the surface before the apparatus 10 and
2 the end 12a of the pipeline 12 are lowered to the
3 seabed 4. Thus, flooding of the pipeline 12 is
4 initiated as it is being laid, thereby increasing
5 the weight of the pipeline 12 as it is being laid.
6 The increase in weight during laying of the pipeline
7 12 due to the intake of water has the potential to
8 allow the wall thickness of the pipeline 12 to be
9 reduced. This is because the weight of the pipeline
10 12 is being increased by the flooding action of
11 apparatus 10, and thus the pipeline 12 is relatively
12 heavy as it is laid on the seabed 4, or at least
13 shortly after.

14

15 Thus, there is no requirement to increase the wall
16 thickness of the pipeline 12 purely for stability
17 during and after the laying operation. The pipeline
18 12 can thus comprise conventional pipe with a
19 standard wall thickness that does not have to be
20 increased purely for stability purposes. Thus, a
21 pipeline with a reduced wall thickness (a reduction
22 of around 3mm or more being typical) when compared
23 with pipeline used in conventional methods, over the
24 entire length of the pipeline 12 (typically many
25 kilometres and possibly hundreds of kilometres in
26 length) has the potential for significant cost
27 savings. It will be appreciated that a pipeline
28 with an increased wall thickness is more expensive
29 than standard pipeline due to the additional
30 material that is required to add weight purely for
31 stability purposes. Furthermore, the equipment on
32 the lay barge 2 does not have to handle the heavier

1 pipeline that has increased wall thickness, thus
2 also providing cost savings.

3

4 There can also be savings in terms of time as the
5 pipeline 12 with the reduced wall thickness is
6 easier to handle and can thus be laid more quickly.
7 This also has the potential to reduce costs as the
8 lay barge 2 is required for a lesser amount of time.

9

10 Furthermore, the pipeline 12 is more lightweight and
11 smaller than the pipeline with the increased wall
12 thickness and thus more of the pipeline 12 can be
13 stored on the lay barge 2 and in a more compact
14 area. This also has the potential to save costs as
15 the additional amount of pipeline 12 that can be
16 stored on-board the barge 2 results in the stock
17 having to be replenished less often by a service
18 vessel or the like, thereby saving on associated
19 costs.

20

21 The apparatus 10 optionally includes an injection
22 pump 28 that is capable of injecting or pumping
23 additive chemicals into the conduit 16 and thus the
24 pipeline 12. The additive chemicals are typically
25 stored in a reservoir 30, although it will be
26 appreciated that a number of reservoirs 30 and/or
27 pumps 28 may be used, depending on the particular
28 chemicals that are to be added to the seawater. The
29 injection pump 28 is driven from a high-pressure
30 supply 32 through an injection control valve 34.
31 The injection control valve 34 can control the flow
32 of the injected chemicals according to the

1 prevailing hydrostatic pressure, or at a flow rate
2 that varies with the water flow rate into the
3 pipeline 12 (e.g. to be approximately proportional
4 to the amount of water flowing into the pipeline
5 12). The latter can be derived from a pressure
6 differential across the orifice plate 18 via
7 differential pressure lines 36, 38. Alternatively,
8 the injection pump 28 can be driven from a system of
9 fixed or variable orifices that can control the rate
10 of adding of the chemicals.

11
12 The differential pressure between the interior of
13 the pipeline 12 and the surrounding seawater can
14 also be used for chemical injection of additives.
15 For example, a venturi, orifice or a fixed choke may
16 be used where the venturi etc is coupled to a bag or
17 the like of chemical additives at the orifice of the
18 venturi. The bag or the like is typically at least
19 partially flexible so that the pressure of the
20 surrounding seawater can act on it. The pressure on
21 one side of the venturi is typically at the same
22 pressure as the surrounding seawater, and the
23 pressure acting on the bag of additives is also at
24 the same pressure as the surrounding seawater. The
25 orifice in the venturi is at a lower pressure and
26 thus the chemicals are sucked in from the bag
27 because of the pressure differential. The pressure
28 at the orifice will vary as the flow rate of water
29 therethrough varies, and thus the chemicals are
30 added in approximate proportion to the flow rate.

1 Thus, apparatus 10 facilitates chemical treatment of
2 the seawater before it enters the pipeline 12 as it
3 is being laid. This can be used for numerous
4 purposes, such as for de-scaling, prevention of
5 green growth, anti-corrosion and can also facilitate
6 leak detection during pressure testing, as will be
7 described. Thus, the chemical injection of selected
8 additives provides numerous benefits over simply
9 allowing untreated seawater to flood the pipeline
10 12.

11
12 Towards the completion of the pipe laying process,
13 the hydrostatic pressure difference diminishes as
14 the pipeline 12 floods, and the pressure difference
15 between the interior of the pipeline 12 and the
16 surrounding seawater will eventually decay to zero.
17 This is dependent upon whether the distal end of the
18 pipeline 12 remains on the lay barge 2 or is lowered
19 to the seabed 4. If the distal end remains on the
20 lay barge 2, flooding of the pipeline 12 may slow
21 down or cease, but this may not be the case until
22 substantially all of the pipeline 12 is laid on the
23 seabed 4. It is therefore useful to provide a means
24 by which pressurised water can be admitted to the
25 pipeline 12 to completely flood it after the
26 hydrostatic head has diminished. Where the distal
27 end is lowered to the seabed (e.g. to be retrieved
28 later for further extension to the pipeline 12), the
29 distal end can be fitted with an air release valve.
30 As the end is lowered to the seabed 4, the flooding
31 of the pipeline 12 continues under the hydrostatic
32 head of water above it and the air that remains in

1 the distal end is vented through the air release
2 valve.
3
4 In the embodiment shown in Fig. 2, a boost pump 40
5 is provided that is operable via a remotely operated
6 valve 42. The valve 42 is typically controlled via
7 a control line 43 from the surface, or may be
8 operated by a diver, ROV or an autonomous vehicle
9 (AUV). Alternatively, the valve 42 may be operated
10 in response to a drop in the flow rate of water into
11 the pipeline 12. The boost pump 40 can be powered
12 from the surface or preferably from a local power
13 supply such as from the ROV or some other power
14 supply (e.g. batteries, hydraulic power source etc).
15 The boost pump 40 is preferably located downstream
16 of the injection pump 28 so that chemicals may be
17 added to the water used to flood the pipeline 12.
18
19 Conduit 16 optionally includes a one-way or check
20 valve 45 to prevent the flow of water back towards
21 the intake filter 14.
22
23 The apparatus 10 optionally includes a pig (not
24 shown) that is propelled along the pipeline 12 as it
25 is being laid and flooded. The position of the pig
26 within the pipeline 12 can be used as an indication
27 of the amount of flooding, and thus it is desirable
28 to track the location of the pig within the pipeline
29 12 and this can be done using any conventional means
30 (e.g. a telemetry system). Use of a pig in certain
31 embodiments provides the advantage that the flow
32 rate of water into the pipeline 12 can be

1 controlled. Further, as the movement and location
2 of the pig in the pipeline 12 can be monitored, the
3 extent of flooding of the pipeline 12 can also be
4 monitored.

5

6 Additionally, it is advantageous to monitor the flow
7 rate of the water into the pipeline 12 as it is
8 being flooded. Thus, the apparatus 10 may include a
9 flow recording device (not shown) such as a dial
10 that can be read by an underwater camera provided on
11 an ROV or AUV. The flow recording device can be of
12 any conventional type, and can be electrically or
13 otherwise coupled (e.g. via a telemetry system) to
14 the surface for remote monitoring of the water flow
15 rate.

16

17 Thus, apparatus 10 facilitates flooding of the
18 pipeline 12 as it is being laid. This facilitates a
19 reduction in the wall thickness of the pipeline 12
20 thereby having the potential to save money and time.
21 Furthermore, the laying and flooding of the pipeline
22 12 can be achieved in one operation, thus providing
23 further savings in terms of costs and time. This is
24 particularly the case where the pipeline 12 would be
25 laid using a lay barge 2 and then flooded using a
26 large-bore, high-pressure conduit dropped from a
27 support vessel (not shown). However, flooding of
28 the pipeline 12 as it is being laid has the
29 advantage that only the lay barge 2 or vessel is
30 required, and this can significantly reduce costs by
31 avoiding the use of an additional surface or support

1 vessel that is normally required to flood the
2 pipeline 12 (and optionally pressure test it).

3

4 The cost of the operation can be reduced further by
5 using the apparatus 10 described above to pressure
6 test the pipeline 12 once it has been laid and
7 flooded to ensure that there are no fluid leaks, as
8 this is generally desirable.

9

10 To provide for the pressure testing of the pipeline
11 12, apparatus 10 includes a low-flow rate but high-
12 pressure pump 50 so that the pressure testing (also
13 called hydro testing) can follow the laying and
14 flooding of the pipeline 12 without the intervention
15 of a support or surface vessel, or at least to a
16 lesser extent than is conventional in the art.

17

18 Pump 50 is coupled into a conduit 52, the inlet of
19 which is preferably coupled downstream of the
20 injection pump 28 so that chemicals can be added to
21 the water if required. The operation of pump 50 is
22 controlled by a remotely operated valve 54 that can
23 be operated via a control line 56 from the surface,
24 or can be actuated by a diver, ROV or AUV.

25 Alternatively, the valve 54 may be operated
26 automatically when the flooding of the pipeline 12
27 is complete. An isolating valve 58 is located in
28 the conduit 52 upstream of the pipeline 12 so that
29 the conduit 52 can be opened and closed as required.

30

31 The pump 50 is actuated to provide a high-pressure
32 flow of water, typically at a relatively low flow

1 rate, into the pipeline 12. The high-pressure, low-
2 flow of water increases the pressure within the
3 pipeline 12 so that any leaks or weak points in the
4 pipeline 12 can be detected. Chemicals may be added
5 to the seawater to facilitate identifying the source
6 of any leaks.

7

8 Only a relatively low flow rate of water is required
9 as the pipeline 12 is already filled with seawater
10 and only the internal pressure within the pipeline
11 12 need be increased. The volume of water that
12 enters the pipeline 12 is considerably less than
13 that required to flood it.

14

15 Referring now to Fig. 4 there is shown as an example
16 a 12-inch (approximately 300 millimetre) bore
17 pipeline 200 that is 5 kilometres long and has been
18 laid on the seabed 202 between two installations
19 204, 206 in a deep-water field. Apparatus 10 is
20 coupled to the pipeline 200 using a conduit 208 that
21 is coupled to a pipeline inlet port, for example.
22 Apparatus 10 is typically used to flood the pipeline
23 200 and can then be used to pressure test it in
24 consecutive operations.

25

26 The flooding of the pipeline 200 typically requires
27 a volume of water to fill the pipeline 200 (e.g.
28 using the above described apparatus 10) that is in
29 the order of 360 cubic metres. The additional
30 volume of water required to raise the internal
31 pressure of the pipeline 200 to around 700 bar
32 (10150 psi) is 14% cubic metres. This is only a

1 small percentage (in the order of 4%) of the volume
2 of water required to fill the pipeline 200 in the
3 first instance, and highlights the difference in
4 required capacity between a relatively low-pressure,
5 high flow-rate flooding pump (e.g. boost pump 40)
6 and a high-pressure, low-flow pressure testing pump
7 (e.g. pump 50).

8

9 The pump 50 used for the pressure test typically
10 requires to pressurise the pipeline 200 at
11 approximately 1 bar per minute, and thus the
12 required flow rate from pump 50 would be in the
13 order of 21 litres per minute. If the pipeline 12
14 is to be pressured at around 3 bars per minute, then
15 the corresponding flow rate is around 62 litres per
16 minute.

17

18 Thus, the power required to provide these flow rates
19 at the required pressures would reach a maximum as
20 the final pressure is approached, and this maximum
21 would be around 23 kilowatts (31 horse power) for
22 the 1 bar per minute flow rate, and 60 kilowatts (94
23 horse power) for the 62 litres per minute flow rate.

24

25 Thus, the total energy required to pressurise the
26 pipeline 200 during the pressure test is typically
27 around 500 MJ. This energy can be provided by
28 dropping an electrical cable from a supply vessel
29 and coupling this to the pump 50. However, this has
30 a drawback in that the surface vessel would require
31 to remain in situ until the pressure test is
32 complete, and this may take several hours as the

1 pressure needs to be increased to the predetermined
2 testing pressure, and then held at that pressure for
3 a period of time, typically in the order of 24
4 hours.

5

6 It is therefore preferred that the energy required
7 to drive the pump 50 is provided locally (i.e.
8 subsea) as this has the advantage that the surface
9 vessel is not required to remain *in situ* during the
10 pressure test, providing significant costs
11 advantages.

12

13 For example, the energy can be provided by a local
14 (subsea) power supply such as a bank of suitable
15 batteries. The batteries can be charged during
16 flooding of the pipeline 200 by coupling an
17 alternator or the like into the conduit 16 at an
18 appropriate place so that the flow rate through the
19 conduit 16 drives a turbine in the alternator that
20 generates a sufficient current to charge the
21 batteries.

22 It is preferred that the power to the pump 50 is
23 provided locally so that there is no surface
24 connection, although this may be possible in
25 relatively shallow water or where there is access to
26 a surface vessel. There is also the potential to
27 use a smaller boat with less personnel as the pump
28 used for pressure testing would not be required on
29 board the vessel; all that is required is an
30 electrical cable to be dropped to the seabed 202 for
31 coupling to the apparatus 10 (e.g. by ROV 210).

1
2 As an alternative to using power from batteries or
3 from an electrical cable from a surface vessel, the
4 power for the pump 50 may also be provided by the
5 ROV 210 or an autonomous vehicle (AUV - not shown).
6 This would require the pump 50 to be provided with a
7 suitable connector that can be engaged and
8 disengaged by the ROV 210 or AUV so that power can
9 be provided. Alternatively, an electrical cable 212
10 can be coupled between the pump 50 and the ROV 210
11 (see Fig. 4). Thus, the ROV 210 or AUV would be
12 coupled to the pump 50 in any conventional manner to
13 provide power thereto, and then de-coupled once the
14 pressure test is complete.

15
16 Alternatively, the pump 50 may be pneumatically or
17 hydraulically powered, the latter possibly being
18 provided by the ROV 210 as this can provide
19 hydraulic power.

20
21 It will be appreciated that the above apparatus 10
22 has been described where the pump 50 forms a part of
23 the apparatus 10, but it will also be appreciated
24 that the pump 50 may be provided on a separate
25 subsea skid from the remainder of the apparatus 10,
26 100. Having the pump 50 included in a single subsea
27 skid with the remainder of the apparatus 10 provides
28 the advantage that only a single piece of equipment
29 need be lowered to and retrieved from the seabed.
30 Additionally, the apparatus 10 need only be coupled
31 to the pipeline once in order to flood it and
32 pressure test it. There is no requirement to couple

1 and de-couple other equipment to the pipeline using
2 an ROV for example. Both of these are significant
3 advantages when the time taken to raise and lower
4 the apparatus 10 is considered, and also the time
5 taken to couple and de-couple conventional large-
6 bore conduits.

7

8 Indeed, the pump 50 can be used independently of the
9 remainder of the apparatus 10 that is generally used
10 to flood the pipeline 12. The pump 50 can be
11 provided on a separate subsea skid and coupled to
12 and de-coupled from the pipeline 12 using a diver,
13 ROV or AUV as necessary. Thus, the pump 50 does not
14 have to be used with the remainder of the apparatus
15 10 described above, and could be used with other
16 conventional methods of flooding the pipeline 12.
17 However, it will be noted that combining the pump 50
18 with the remainder of the apparatus 10 has
19 significant advantages in that the flooding and
20 pressure testing of the pipeline 12 can be done in
21 consecutive operations, without the intervention of
22 a vessel, and without having to de-couple and couple
23 other equipment and apparatus.

24

25 Referring now to Fig. 3, there is shown an
26 alternative embodiment of apparatus 100 for flooding
27 and pressure testing a pipeline 112. Apparatus 100
28 is shown in Fig. 3 as attached to the end 112a of
29 the pipeline 112 and is similar to apparatus 10, so
30 like numerals prefixed "1" have been used to
31 designate like parts.

32

1 In the embodiment shown in Fig. 3, the pump 50 has
2 been replaced by a gas accumulator bottle or a bank
3 of such, generally designated 160, that is capable
4 of providing high-pressure, low-flow gas into a
5 reservoir 162 or other container of seawater. As
6 the flow of gas from the accumulator bottles 160
7 (typically via a manifold (not shown) so that the
8 gas flow rate can be controlled) enters the
9 reservoir 162, the water therein is forced into the
10 pipeline 112, preferably at high pressure and a low
11 flow rate. The water already in the pipeline 112 is
12 compressed, thus increasing the internal pressure to
13 perform the pressure tests. This particular
14 embodiment is advantageous as an electrical power
15 supply is not required.

16
17 The gas bottles 160 can be filled with gas (e.g. air
18 or the like) at the surface before the apparatus 100
19 is lowered to the seabed. A conduit 164 is coupled
20 to the pipeline 112 so that the pressurised gas from
21 the bottles 160 can enter the reservoir 162 and
22 force pressurised water out of it and into the
23 pipeline 112. A remotely-operated isolating valve
24 166 is coupled into the conduit 164 so that the flow
25 of water into the pipeline 112 can be controlled
26 from the surface (e.g. using a control line 166), or
27 otherwise controlled (e.g. automatically in response
28 to the pressure within the pipeline 112).

29
30 The gas bottles 160 may include a regulating device
31 (not shown) to control the rate at which gas enters
32 the reservoir 162 and also to control the pressure

1 of the water from the reservoir 162 as it enters the
2 pipeline 112. The regulating device can be of any
3 conventional type, and could be a further remotely
4 operated valve that can be controlled from the
5 surface or by a diver, ROV or AUV, or automatically.
6

7 Embodiments of the present invention provide
8 numerous advantages over conventional methods for
9 the laying and flooding of pipelines. In
10 particular, there is the potential to reduce costs
11 and time, in addition to using lighter and easier to
12 handle pipe. Also, there is no requirement to use a
13 support vessel at the surface to flood and/or
14 pressure test the pipeline, thus saving significant
15 costs in terms of manpower and the operation of the
16 vessel. Furthermore, the present invention can be
17 used to flood the pipeline as it is being laid, and
18 then to pressure test it in consecutive operations;
19 there is no requirement to couple and de-couple
20 various pumps and other apparatus and equipment to
21 the pipeline in order to lay it, flood it and then
22 pressure test it.

23
24 Modifications and improvements may be made to the
25 foregoing without departing from the scope of the
26 present invention.
27
28
29

1 CLAIMS

2

3 1. A method of flooding a pipe as it is being laid
4 in water, the method comprising the steps of
5 providing an inlet to the pipe, the inlet having an
6 opening to admit water, and allowing water to enter
7 the pipe through the inlet as the pipe is being
8 laid.

9

10 2. A method according to claim 1, wherein the
11 method includes the additional steps of coupling a
12 pipe inlet port to the pipe, and coupling the inlet
13 to the pipe inlet port.

14

15 3. A method according to claim 2, wherein the
16 method includes the additional step of coupling the
17 inlet to the pipe before the pipe enters the water.

18

19 4. A method according to claim 2, wherein the
20 method includes the additional step of coupling the
21 inlet to the pipe underwater.

22

23 5. A method according to any preceding claim,
24 wherein the method includes the additional step of
25 actuating flooding of the pipe.

26

27 6. A method according to claim 5, wherein the step
28 of actuating flooding of the pipe involves opening
29 an isolating valve.

30

1 7. A method according to any preceding claim,
2 wherein the method includes the additional step of
3 filtering the water that enters the pipe.

4

5 8. A method according to any preceding claim,
6 wherein the method includes the additional step of
7 providing an intake filter at the inlet.

8

9 9. A method according to any preceding claim,
10 wherein the pipe is flooded from the end that is in
11 the water.

12

13 10. A method according to any preceding claim,
14 wherein a hydrostatic head of water above the pipe
15 is used to flood the pipe.

16

17 11. A method according to any preceding claim,
18 wherein an end of the pipe provides a vent to the
19 atmosphere for the air or gas in the pipe during
20 flooding.

21

22 12. A method according to any preceding claim,
23 wherein the method includes the additional step of
24 adding chemicals to the water that enters the pipe.

25

26 13. A method according to any preceding claim,
27 wherein the method includes the additional step of
28 pumping fluid into the pipe to complete flooding of
29 the pipe.

30

- 1 14. A method according to claim 13, wherein the
2 step[of pumping fluid into the pipe comprises
3 actuating a pump to complete flooding of the pipe.
4
- 5 15. A method according to any preceding claim,
6 wherein the method optionally the additional step of
7 pressure testing the pipe after it has been flooded.
8
- 9 16. A method according to claim 15, wherein the
10 step of pressure testing the pipe involves the
11 actuation of a subsea pump.
12
- 13 17. A method of laying a pipeline in a body of
14 water, the method comprising allowing the water to
15 flood the pipeline as it is being laid.
16
- 17 18. A method according to claim 17, wherein the
18 method includes the steps of providing an inlet to
19 the pipeline, the inlet having an opening to admit
20 water, and allowing water to enter the pipeline
21 through the inlet as the pipeline is being laid.
22
- 23 19. A method according to claim 18, wherein the
24 method includes the additional steps of coupling a
25 pipe inlet port to the pipe, and coupling the inlet
26 to the pipe inlet port.
27
- 28 20. A method according to claim 19, wherein the
29 method includes the additional step of coupling the
30 inlet to the pipe before the pipe enters the water.
31

1 21. A method according to claim 19, wherein the
2 method includes the additional step of coupling the
3 inlet to the pipe underwater.

4

5 22. A method according to any one of claims 17 to
6 21, wherein the method includes the additional step
7 of actuating flooding of the pipe.

8

9 23. A method according to claim 22, wherein the
10 step of actuating flooding of the pipe involves
11 opening an isolating valve.

12

13 24. A method according to any one of claims 17 to
14 23, wherein the method includes the additional step
15 of filtering the water that enters the pipe.

16

17 25. A method according to any one of claims 17 to
18 24, wherein the method includes the additional step