Chapter 1

SSE	$\sum (e_i^2)$
MSE	$\frac{SSE}{n-2} = s^2$
b_1	$r(s_y/s_x)$
b_1^*	$b_1(s_x/s_y)$

 b_1^* means an increase of 1 sd in X is associated with an increase of b_1^* sd of Y. For OLS, minimize Q (SSE)

Chapter 2

Test Statistic $t^* = \frac{b_1}{s(b_1)}$ Critical Value (t) = $t(1 - \alpha/2; n - 2)$ Confidence Limits $b_1 \pm t(s\{b_1\})$

Hypothesis Testing:

- 1) Set up H_0 and H_1
- 2) Choose significance level α
- 3) Calculate test statistic t^*
- 4) Determine critical value or p-value
- 5) Make a decision:

p-value approach:

$$p \le \alpha \text{ Reject } H_0$$

 $p > \alpha$ Fail to reject H_0

critical value approach:

if
$$|t^*| > t$$
 Reject H_0

if
$$|t^*| \le t$$
 Fail to reject H_0

Since $|t^*| > t$ or $p \ge \alpha$, Reject H_0 and conclude H_1 at the α level

$$\begin{array}{l} SSTO = SSR + SSE \\ SSTO = \sum \left(Y_i - \bar{Y}\right)^2; \ df = n-1 \\ SSR = \sum \left(\hat{Y}_i - \bar{Y}\right)^2; \ df = 1 \\ SSE = \sum \left(Y_i - \hat{Y}_i\right)^2; \ df = n-2 \\ \textbf{Test Statistic} \ F^* = MSR/MSE \ ; \ \text{where} \ MSR = SSR \\ \textbf{Critical Value} \ F(1-\alpha;1,n-2) \\ F^* = (t^*)^2 \end{array}$$