Probability Theory I - Homework 1

Kai-Jyun Wang

Exercise 1.1

Suppose f is a measurable mapping from one measurable space S to another measurable space S. If S is a measurable subset of S, does it follow that the image S is a measurable subset of S?

Solution. No. Consider the case where $S = U = \{0, 1\}$. Define the σ -algebra on S to be $S = 2^S$ and the one on U to be $\mathcal{U} = \{\emptyset, U\}$. f is the identity mapping, which is measurable. However, $f(\{0\}) = \{0\} \notin \mathcal{U}$.

Exercise 1.2

Let Ω be a sample space and let I be an arbitrary index set, which could be uncountable.

- (a) For each $i \in I$, let \mathcal{F}_i be a σ -algebra on Ω . Show that $\bigcap_{i \in I} \mathcal{F}_i$ is a σ -algebra on Ω .
- (b) Let \mathcal{A} be a collection of subsets of Ω . Show that there is a smallest σ -algebra containing \mathcal{A} .

Solution. For (a), first note that $\emptyset \in \mathcal{F}_i$ for all $i \in I$ and thus $\emptyset \in \cap_{i \in I} \mathcal{F}_i$. Next, if $A \in \cap_{i \in I} \mathcal{F}_i$, then $A \in \mathcal{F}_i$ for all $i \in I$. Since \mathcal{F}_i are σ -algebras, $A^c \in \mathcal{F}_i$ for all i; hence $A^c \in \cap_{i \in I} \mathcal{F}_i$. Finally, if $\{A_n\} \subset \cap_{i \in I} \mathcal{F}_i$ is a countable subcollection, then $\{A_n\} \subset \mathcal{F}_i$ for all i. Since \mathcal{F}_i are σ -algebras, $\cup_n A_n \in \mathcal{F}_i$ for all i; hence $\cup_n A_n \in \cap_{i \in I} \mathcal{F}_i$. Therefore, $\cap_{i \in I} \mathcal{F}_i$ is a σ -algebra.

For (b), set \mathcal{F} to be the intersection of all σ -algebras containing \mathcal{A} . Since the power set of Ω is a σ -algebra containing \mathcal{A} , \mathcal{F} is non-empty. By (a), we know that \mathcal{F} is a σ -algebra. By definition, if \mathcal{G} is a σ -algebra containing \mathcal{A} , then $\mathcal{F} \subset \mathcal{G}$ since \mathcal{F} is the intersection of all such σ -algebras. Hence \mathcal{F} is the smallest σ -algebra containing \mathcal{A} .

Exercise 1.3

Let $\Omega = \mathbb{R}$ and \mathcal{F} be all subsets of \mathbb{R} such that either A or A^c is countable. Define P(A) = 0 if A is countable and P(A) = 1 if uncountable. Show that (Ω, \mathcal{F}, P) is a probability space.

Solution. I first claim that \mathcal{F} is a σ -algebra. Since \varnothing is countable, $\varnothing \in \mathcal{F}$. If $A \in \mathcal{F}$, then either A or A^c is countable; either A^c or $A = (A^c)^c$ is countable, respectively. Thus $A^c \in \mathcal{F}$. Suppose that $\{A_n\} \subset \mathcal{F}$ is a countable collection of sets. If all A_n are countable, then $\cup_n A_n$ is countable and thus in \mathcal{F} . If there is some A_n , say A_1 , is uncountable, then A_1^c is countable. Now $(\cup_n A_n)^c = \cap_n A_n^c \subset A_1^c$ is countable, so $\cup_n A_n \in \mathcal{F}$. Therefore, \mathcal{F} forms a σ -algebra.

Next, I show that P is a probability measure. Clearly every set in \mathcal{F} is either countable or uncountable, so P is well-defined and $P(A) \geq 0 = P(\emptyset)$ for all $A \in \mathcal{F}$ since \emptyset is countable. Also, $P(\Omega) = 1$ since \mathbb{R} is uncountable. Finally, suppose that $\{A_n\} \subset \mathcal{F}$ is a countable collection of disjoint sets. If all A_n are countable, then $\bigcup_n A_n$ is countable and

$$P(\cup_n A_n) = 0 = \sum_n 0 = \sum_n P(A_n).$$

If some A_n , say A_1 , is uncountable, then A_n are countable for all $n \neq 1$; otherwise, $\bigcup_{n \neq 1} A_n$ would be uncountable and $A_1^c \supset \bigcup_{n \neq 1} A_n$ is uncountable, contradiction. Now $\bigcup_n A_n$ is uncountable and

$$P(\cup_n A_n) = 1 = 1 + \sum_{n \neq 1} 0 = P(A_1) + \sum_{n \neq 1} P(A_n) = \sum_n P(A_n).$$

Therefore, *P* is a probability measure and (Ω, \mathcal{F}, P) is a probability space.

Exercise 1.4

Suppose X and Y are random variables on (Ω, \mathcal{F}, P) and let $A \in \mathcal{F}$. Show that if we let $Z(\omega) = X(\omega)$ for $\omega \in A$ and $Z(\omega) = Y(\omega)$ for $\omega \in A^c$, then Z is a random variable.

Solution. For any Borel set $B \subset \mathbb{R}$,

$$Z^{-1}(B) = (A \cap X^{-1}(B)) \cup (A^{c} \cap Y^{-1}(B)).$$

Since X and Y are random variables, $X^{-1}(B)$, $Y^{-1}(B) \in \mathcal{F}$. The σ -algebra \mathcal{F} is closed under finite intersections and unions, so $Z^{-1}(B) \in \mathcal{F}$. Z is thus a random variable.

Exercise 1.5

 $Show\ that\ if\ \mathcal{S}=\sigma(\mathcal{A}),\ then\ X^{-1}(\mathcal{A})=\left\{X^{-1}(A)\ \big|\ A\in\mathcal{A}\right\} generates\ \sigma(X)=\left\{X^{-1}(B)\ \big|\ B\in\mathcal{S}\right\}.$

Solution. Set

$$\mathcal{F} = \left\{ E \in \mathcal{S} \mid X^{-1}(E) \in \sigma(X^{-1}(\mathcal{A})) \right\}.$$

Clearly $\varnothing \in \mathcal{S}$ and $X^{-1}(\varnothing) = \varnothing \in \sigma(X^{-1}(\mathcal{A}))$, so $\varnothing \in \mathcal{F}$. If $E \in \mathcal{F}$, then $E^c \in \mathcal{S}$ and $X^{-1}(E^c) = (X^{-1}(E))^c \in \sigma(X^{-1}(\mathcal{A}))$ since $\sigma(X^{-1}(\mathcal{A}))$ is a σ -algebra. Thus $E^c \in \mathcal{F}$. Suppose that $\{E_n\} \subset \mathcal{F}$ is a countable collection of sets. Then $\{E_n\} \subset \mathcal{S}$ and $\cup_n E_n \in \mathcal{S}$. Also,

$$X^{-1}(\cup_n E_n) = \cup_n X^{-1}(E_n) \in \sigma(X^{-1}(\mathcal{A}))$$

since $X^{-1}(E_n) \in \sigma(X^{-1}(\mathcal{A}))$ and $\sigma(X^{-1}(\mathcal{A}))$ is a σ -algebra. Hence $\cup_n E_n \in \mathcal{F}$ and \mathcal{F} is a σ -algebra.

By the construction, $\mathcal{A} \subset \mathcal{F} \subset \mathcal{S}$ and we must have $\mathcal{S} = \sigma(\mathcal{A}) \subset \mathcal{F} \subset \mathcal{S}$; hence $\mathcal{F} = \mathcal{S}$. But by the definition of \mathcal{F} , $X^{-1}(\mathcal{F}) = \{X^{-1}(E) \mid E \in \mathcal{F}\}$ is a σ -algebra such that $X^{-1}(\mathcal{A}) \subset X^{-1}(\mathcal{F}) \subset \sigma(X^{-1}(\mathcal{A}))$. Thus $\sigma(X) = X^{-1}(\mathcal{S}) = X^{-1}(\mathcal{F}) = \sigma(X^{-1}(\mathcal{A}))$.

Exercise 1.6

Conclude that a random variable Y is measurable with respect to $\sigma(X)$ if and only if Y = f(X), where $f: \mathbb{R} \to \mathbb{R}$ is measurable.

Solution. If Y = f(X) for some measurable function $f : \mathbb{R} \to \mathbb{R}$, then for any Borel set $B \subset \mathbb{R}$, $Y^{-1}(B) = X^{-1}(f^{-1}(B)) \in \sigma(X)$ since $f^{-1}(B)$ is also a Borel set and X is $\sigma(X)$ -measurable. Thus Y is $\sigma(X)$ -measurable.

Conversely, suppose that Y is $\sigma(X)$ -measurable. If Y is simple, $Y = \sum_{i=1}^{n} y_i \mathbf{1}_{A_i}$ where $A_i \in \sigma(X)$ are disjoint and y_i are distinct. Now $A_i = X^{-1}(B_i)$ for disjoint Borel sets B_i . Set $f = \sum_i y_i \mathbf{1}_{B_i}$, which is measurable. Then

$$f(X) = \sum_{i} y_{i} \mathbf{1}_{X^{-1}(B_{i})} = \sum_{i} y_{i} \mathbf{1}_{A_{i}} = Y.$$

For general measurable Y, there is a sequence of simple measurable functions $Y_k \to Y$ pointwise. For each k, there is a corresponding measurable $f_k : \mathbb{R} \to \mathbb{R}$ such that $Y_k = f_k(X)$. Now define f to be the pointwise limit of f_k ; then f is measurable and

$$Y = \lim_{k \to \infty} Y_k = \lim_{k \to \infty} f_k(X) = f(X).$$