THE RING $D + XD_S[X]$ AND t-SPLITTING SETS

D.D. Anderson*

Department of Mathematics The University of Iowa Iowa City, U.S.A.

David F. Anderson

Department of Mathematics The University of Tennessee Knoxville, Tennessee 37996, U.S.A.

Muhammad Zafrullah

Department of Mathematics Idaho State University Pocatello, Idaho 83209, U.S.A.

الخلاصة:

نسمّي فئة S، في حلقة تامة D، فئة قاسمة بواسطة عملية نجمية محدودة النوع \bigstar إذا كانت S مغلقة تحت الضرب ولكل D في D تجد مثاليتين D و D في D بالصفات التالية:

$$(d) = (AB)^* -$$

$$S$$
 لکل $A^{\star} \cap sD = sA^{\star} - \Upsilon$

$$B^{\star} \cap S \neq \emptyset - \Upsilon$$

نثبت في هذا البحث أنّ الحلقة D + XDs[X] - 0 من التركيبات الخلفية – تكون من نوع PVMD (أو GGCD) إذا وإذا فقط كانت D من نوع PVMD (أو GGCD) وكانت S فئة قاسمة بواسطة العملية النجمية "t" (أو العملية النجمية "t"). يضم البحث أيضاً نتائج عديدة تتمحور حول مفهوم الفئة القاسمة بواسطة عملية نجمية محدودة النوع \star .

ABSTRACT

Let D be an integral domain, S a multiplicatively closed subset of D, and \bigstar a finite character star-operation on D. We say that S is a \bigstar -splitting set if for each $0 \neq d \in D$, there exist integral ideals A and B of D with $(d) = (AB)^{\bigstar}$, where $A^{\bigstar} \cap sD = sA^{\bigstar}$ for all $s \in S$ and $B^{\bigstar} \cap S \neq \emptyset$. We show that $D^{(S)} = D + XD_S[X]$ is a PVMD (resp., GGCD domain) if and only if D is a PVMD (resp., GGCD domain) and S is a t-splitting (resp., d-splitting) subset of D. Let S be a t-splitting set of D and let $\mathcal{T} = \{A_1 \cdots A_n | \operatorname{each} A_i = d_i D_S \cap D$ for some nonzero $d_i \in D\}$. Then $D = D_S \cap D_{\mathcal{T}}$. We relate the t-operation on D to the t-operation on D_S and $D_{\mathcal{T}}$.

2000 Mathematics Subject Classification: 13A15, 13B25, 13F05, 13F20, 13G05

^{*}Address for correspondence: Department of Mathematics The University of Iowa, Iowa City 52242 U.S.A.

THE RING $D + XD_S[X]$ AND t-SPLITTING SETS

1. INTRODUCTION

Throughout this paper, D denotes an integral domain with quotient field K, $D^* = D - \{0\}$, and U(D) is the group of units of D. As usual, $X^{(1)} = X^{(1)}(D)$ is the set of height-one prime ideals of D. For a multiplicatively closed subset S of D, let $D^{(S)} = D + XD_S[X] \subseteq K[X]$. The $D^{(S)}$ construction has proved useful in constructing examples, see [1].

A saturated multiplicatively closed subset S of D is said to be a *splitting set* if for each $d \in D^*$ we can write d = sa for some $s \in S$ and $a \in D$ with $s'D \cap aD = s'aD$ for all $s' \in S$. The set $T = \{t \in D^* \mid sD \cap tD = stD$ for all $s \in S\}$ is also a splitting set, called the *m-complement of* S. Each $d \in D^*$ has a unique representation (up to unit factors) d = st, where $s \in S$ and $t \in T$. If d = st ($s \in S, t \in T$), then $dD_S \cap D = tD$. In fact, a saturated multiplicatively closed subset S of D is a splitting set if and only if $dD_S \cap D$ is principal for each $d \in D^*$. For these, and other, results on splitting sets, see [2]. Splitting sets are investigated further in [3].

In [1, Theorem 1.1], it was shown that $D^{(S)}$ is a GCD domain if and only if D is a GCD domain and GCD(d, X) exists in $D^{(S)}$ (equivalently, $(d, X)_t$ is principal in $D^{(S)}$) for each $d \in D^*$; while in [4, Corollary1.5], it was shown that $D^{(S)}$ is a GCD domain if and only if D is a GCD domain and (the saturation of) S is a splitting set.

In Section 2 of this paper, we introduce the notion of a t-splitting set. We say that a multiplicatively closed subset S of D is a t-splitting set if for each $d \in D^*$, $(d) = (AB)_t$ for some integral ideals A and B of D, where $A_t \cap sD = sA_t$ (or equivalently, $(A,s)_t = D$) for all $s \in S$ and $B_t \cap S \neq \emptyset$. Here, as usual, the t-operation is the star-operation given by $A \to A_t = \bigcup \{(a_1, \ldots, a_n)_v \mid a_1, \ldots, a_n \in A - \{0\}\}$ and $(a_1, \ldots, a_n)_v = ((a_1, \ldots, a_n)^{-1})^{-1}$. Also, recall that a nonzero fractional ideal I of D is a t-ideal if $I = I_t$ and that I is t-invertible if there exists a fractional ideal I with $(II)_t = D$. Note that $dD_S \cap D$ is a t-ideal for any $d \in D^*$ and multiplicatively closed subset S of D. Clearly a splitting set is a t-splitting set.

The integral domain D is called a $Pr\"{u}fer\ v$ -multiplication domain (PVMD) if each nonzero finitely generated ideal of D is t-invertible, or equivalently, if for each maximal prime t-ideal P of D, D_P is a valuation domain. We show that S is a t-splitting set if and only if $dD_S \cap D$ is a t-invertible t-ideal for each $d \in D^*$, or equivalently, (d, X) is a t-invertible ideal of $D^{(S)}$ for each $d \in D^*$. The main result of this paper, Theorem 2.5, is that $D^{(S)}$ is a PVMD if and only if D is a PVMD and (d, X) is t-invertible in $D^{(S)}$ for each $d \in D^*$, if and only if D is a PVMD and S is a t-splitting set of D.

Let D be an integral domain. The set of t-invertible fractional t-ideals forms an abelian group under the t-product $A * B = (AB)_t$. The t-class group of D is $\operatorname{Cl}_t(D)$, the abelian group of t-invertible fractional t-ideals of D modulo its subgroup of principal fractional ideals. For D a Krull domain, $\operatorname{Cl}_t(D) = \operatorname{Cl}(D)$, the divisor class group of D; while for D a Prüfer domain, $\operatorname{Cl}_t(D) = \operatorname{Pic}(D)$, the ideal class group of D. Recall that D is a generalized GCD domain (GGCD domain) if the intersection of two nonzero principal ideals of D is invertible or, equivalently, if each finite type v-ideal of D is invertible [5]. If D is a PVMD, then $\operatorname{Cl}_t(D) = 0$ (resp., $\operatorname{Cl}_t(D) = \operatorname{Pic}(D)$) if and only if D is a GCD (resp., GGCD) domain [6, Corollary 1.5] (resp., [6, Corollary 2.3]). For more on the t-class group, see [7].

Let \star be a finite character star-operation on D. In Section 3, we generalize the notion of a t-splitting set to a \star -splitting set. A multiplicatively closed subset S of D is a \star -splitting set if for each $d \in D^*$, $(d) = (AB)^*$, where $A^* \cap sD = sA^*$ for each $s \in S$ and $B^* \cap S \neq \emptyset$. In the case where \star is the d-operation $(A_d = A)$, S is a d-splitting set if and only if $dD_S \cap D$ is invertible for each $d \in D^*$, or equivalently, $(d, X)_t$ is an invertible ideal of $D^{(S)}$ for each $d \in D^*$. We show (Theorem 3.3) that $D^{(S)}$ is a GGCD domain if and only if D is a GGCD domain and $(d, X)_t$ is invertible in $D^{(S)}$ for each $d \in D^*$, if and only if D is a GGCD domain and S is a d-splitting set.

Thus $D^{(S)}$ is a PVMD (resp., GCD domain, GGCD domain) if and only if D is a PVMD (resp., GCD domain, GGCD domain) and $(d, X)_t$ is t-invertible (resp., principal, invertible) in $D^{(S)}$ for all $d \in D^*$. In Theorem 3.6, we show that $D^{(S)}$ is a Prüfer (resp., Bezout) domain if and only if D is a Prüfer (resp., Bezout) domain and (d, X) is invertible (resp., principal) in $D^{(S)}$ for all $d \in D^*$.

If S is a t-splitting set of D, then the set t-Max(D) of maximal t-ideals of D is the union of two disjoint subsets, $F = \{P \in t\text{-}\operatorname{Max}(D) \mid P \cap S = \varnothing\}$ and $G = \{P \in t\text{-}\operatorname{Max}(D) \mid P \cap S \neq \varnothing\}$, and D is "split" as $D = D_1 \cap D_2$, where $D_1 = \bigcap_{P \in F} D_P$ and $D_2 = \bigcap_{P \in G} D_P$. These decompositions are studied in Section 4. We show that $D_1 = D_S$ and $D_2 = D_T$ is a generalized quotient ring of D, where $\mathcal{T} = \{A_1 \cdots A_n \mid \text{each } A_i = d_i D_S \cap D \text{ for some } d_i \in D^*\}$. We also show that if A is a nonzero integral ideal of D, then $A_t = ((AD_S)_t \cap D) \cap ((AD_T)_t \cap D) = (((AD_S)_t \cap D)((AD_T)_t \cap D))_t$ and $A_t D_S = (AD_S)_t$.

The notation and terminology used in this paper are standard and may be found in [8]. Also see [8] for an introduction to star-operations. For results on PVMD's, see [9] and [10], and for results on GGCD domains, see [5]. For results on t-ideals and t-invertibility, and for star operations in general, the reader is referred to [7], [11], [12], or [13].

2. t-SPLITTING SETS AND PVMD's

Let D be an integral domain with quotient field K and let S be a multiplicatively closed subset of D. We say that $d \in D^*$ is t-split by S if $(d) = (AB)_t$ for integral ideals A and B of D, where $A_t \cap sD = sA_t$ (or equivalently, $(A, s)_t = D$, cf. Theorem 4.4) for all $s \in S$ and $B_t \cap S \neq \emptyset$. Note that A and B are both t-invertible. So by replacing A by A_t and B by B_t , we can assume that A and B are t-invertible t-ideals and $B \cap S \neq \emptyset$. We say that S is a t-splitting set if each $d \in D^*$ is t-split by S. Note that S is a t-splitting set if and only if the saturation S of S is a t-splitting set.

Lemma 2.1. Suppose that D is an integral domain and S is a multiplicatively closed subset of D. Suppose that $d \in D^*$ is t-split by S. Thus $(d) = (AB)_t$, where A and B are integral ideals of D with $A_t \cap sD = sA_t$ for all $s \in S$ and $B_t \cap S \neq \emptyset$. Then $A_t = dD_S \cap D$, and hence $dD_S \cap D$ is a t-invertible t-ideal. Also, $B_t = dA^{-1}$.

Proof. Since $A_tB_t \subseteq (AB)_t \subseteq (d)$, $A_t \subseteq A_tD_S \cap D = A_tB_{tS}D_S \cap D = A_tB_tD_S \cap D \subseteq dD_S \cap D$. Let $x \in dD_S \cap D$. Then there exists $s \in S$ with $sx \in (d)$. Thus $sx \in A_t \cap sD = sA_t$, and hence $x \in A_t$. Thus $dD_S \cap D = A_t$ is a t-invertible t-ideal. Also, $dA^{-1} = (dA^{-1})_t = (ABA^{-1})_t = (AA^{-1}B)_t = B_t$.

Lemma 2.2. Suppose that D is an integral domain and S is a multiplicatively closed subset of D. Let $d \in D^*$ such that $dD_S \cap D$ is t-invertible. Then d is t-split by S.

Proof. Let $A = dD_S \cap D$. Hence A is a t-ideal. Since $(d) \subseteq A$, $B = dA^{-1}$ is an integral t-invertible t-ideal of D and $(d) = (AB)_t$. Now $B_S = (dA^{-1})_S = dD_S(A^{-1})_S = dD_S(AD_S)^{-1} = dD_S(dD_S)^{-1} = D_S$. (Here $(A^{-1})_S = (AD_S)^{-1}$ follows from [14, Lemma 4].) Hence $B \cap S \neq \emptyset$. We next show that $A \cap sD = sA$. Clearly $sA \subseteq A \cap sD$. Let $z \in A \cap sD$. Then z = sb for some $b \in D$. Thus $b = z/s \in A_S \cap D = dD_S \cap D = A$. So $z \in sA$, and thus $A \cap sD = sA$.

Corollary 2.3. Suppose that D is an integral domain and S is a multiplicatively closed subset of D. Then $d \in D^*$ is t-split by S if and only if $dD_S \cap D$ is t-invertible. Moreover, if $(d) = (AB)_t$, where $A_t \cap sD = sA_t$ for all $s \in S$ and $B_t \cap S \neq \emptyset$, then $A_t = dD_S \cap D$ and $B_t = dA^{-1}$. Hence S is a t-splitting set if and only if $dD_S \cap D$ is t-invertible for all $d \in D^*$.

Lemma 2.4. Let D be an integral domain and S a multiplicatively closed subset of D. Then $d \in D^*$ is t-split by S if and only if (d, X) is t-invertible in $D^{(S)} = D + XD_S[X]$.

Proof.

- (\Leftarrow) Suppose that (d, X) is t-invertible in $D^{(S)}$. Then $(d, X)_t D_S[X] = ((d, X)_t D^{(S)})_S = (((d, X)D^{(S)})_S)_t = ((d, X)D_S[X])_t$, where the second equality follows from the fact that $C_t D_S = (CD_S)_t$ for any t-invertible ideal C of D. This may be seen by combining [6, Lemma 2.9], which says that $C_t D_S = (C_t D_S)_t$ for any t-invertible t-ideal C_t , with [15, Lemma 3.9], which states that $(C_t D_S)_t = (CD_S)_t$ for any nonzero ideal C of D. But $((d, X)D_S[X])_t = D_S[X]$, so $(d, X)_t D_S[X] = D_S[X]$, and hence $(d, X)_t \cap S \neq \varnothing$. Thus $(d, X)_t \supseteq XD_S[X]$, and hence $(d, X)_t = B + XD_S[X]$ for some ideal B of D (with $B \cap S \neq \varnothing$). Now $B + XD_S[X] = BD^{(S)}$; so B is a t-invertible t-ideal of D by [16, Proposition 3.9]. We show that $dB^{-1} = dD_S \cap D$, which gives that $dD_S \cap D$ is a t-invertible t-ideal. Thus by Lemma 2.2, d is t-split by S. Let $0 \neq x \in dD_S \cap D$; so $x = d\frac{r}{s}$, where $r \in D$ and $s \in S$. Then $\frac{r}{s}(B + XD_S[X]) = \frac{r}{s}(d, X)_t = (d\frac{r}{s}, \frac{r}{s}X)_t \subseteq D^{(S)}$. Thus $\frac{r}{s}B \subseteq D$, and hence $\frac{r}{s} \in B^{-1}$. So $x \in dB^{-1}$, and hence $dD_S \cap D \subseteq dB^{-1}$. Now $d \in B$, so $dB^{-1} \subseteq D$. Also, $D^{(S)} \supseteq B^{-1}BD^{(S)} = B^{-1}(B + XD_S[X]) = B^{-1}B + XB^{-1}D_S[X]$; so $B^{-1} \subseteq B^{-1}D_S \subseteq D_S$ (or note that $dB^{-1} \subseteq dD_S \cap D$.
- (\Rightarrow) Suppose that d is t-split by S. Then $(d) = \left((dD_S \cap D)B\right)_t$, where B is a t-invertible t-ideal of D with $B \cap S \neq \varnothing$. Again by [16, Proposition 3.9], $BD^{(S)} = B + XD_S[X]$ is a t-invertible t-ideal of $D^{(S)}$. Now $(d,X) \subseteq BD^{(S)}$, so $(d,X)_t \subseteq BD^{(S)}$. We need to show that $BD^{(S)} \subseteq (X,d)_t$, or $(X,d)^{-1} \subseteq (BD^{(S)})^{-1} = B^{-1}D^{(S)} = B^{-1} + XD_S[X]$ (the first equality follows from [17, Lemma 3.2] and the second since $B \cap S \neq \varnothing$). Let $\frac{f}{h} \in (X,d)^{-1}$, where $f,h \in D[X]$ with f and h having no common factor in D[X] of degree ≥ 1 . First suppose that h(0) = 0, so h = Xh'. Then $\frac{f}{Xh'}d \in D^{(S)}$ implies f(0) = 0. But then X|f, contrary to our assumption that f and h have no common factor in D[X] of degree ≥ 1 . Thus we can assume $h(0) \neq 0$. Now $\frac{f}{h}X = a_0 + \frac{a_1}{s}X + \dots + \frac{a_n}{s}X^n$, where each $a_i \in D$ and $s \in S$. Hence $fX = \left(a_0 + \frac{a_1}{s}X + \dots + \frac{a_n}{s}X^n\right)h$. Since $h(0) \neq 0$, $a_0 = 0$. So $\frac{f}{h}X = \frac{a_1}{s}X + \dots + \frac{a_n}{s}X^n$, and hence $\frac{f}{h} = \frac{a_1}{s} + \frac{a_2}{s}X + \dots + \frac{a_n}{s}X^{n-1} := g(x) \in D_S[X]$. Now $dg(x) \in D^{(S)}$, so $d\frac{a_1}{s} = dg(0) \in dD_S \cap D$, and hence $\frac{a_1}{s} \in d^{-1}(dD_S \cap D) = B^{-1}$. Thus $\frac{f}{h} = g \in B^{-1}D^{(S)}$. \square

Theorem 2.5. Let D be an integral domain and S a multiplicatively closed subset of D. Then the following statements are equivalent.

- (1) $D^{(S)}$ is a PVMD.
- (2) D is a PVMD and (d, X) is t-invertible in $D^{(S)}$ for each $d \in D^*$.
- (3) D is a PVMD and S is a t-splitting set.
- (4) D is a PVMD and, for each prime t-ideal P of D with $P \cap S = \emptyset$, there is a t-invertible t-ideal $A \subseteq P$ with $A \cap sD = sA$ for all $s \in S$.

Proof.

- $(1) \Rightarrow (2)$ Suppose that $D^{(S)}$ is a PVMD. Let B be a nonzero finitely generated ideal of D. Then $(BD^{(S)})^{-1}$ is a t-invertible t-ideal of $D^{(S)}$. Since $B^{-1}D^{(S)} = (BD^{(S)})^{-1}$ [17, Lemma 3.1], $B^{-1}D^{(S)}$ is a t-invertible t-ideal of $D^{(S)}$, and hence B^{-1} is a t-invertible t-ideal of D by [16, Proposition 3.9]. Thus D is D-invertible. Hence D is a PVMD. The second statement is clear.
- $(2) \Rightarrow (3)$ Lemma 2.4.
- (3) \Rightarrow (1) Let P be a prime t-ideal of $D^{(S)}$. To show that $D^{(S)}$ is a PVMD, it suffices to show that $D^{(S)}_P$ is a valuation domain. If $P \cap D = 0$, then $D^{(S)}_P$ is a quotient ring of K[X], and hence is a DVR. Thus we may assume $P \cap D \neq 0$.

We first note that $p = P \cap D$ is a prime t-ideal of D. Let d_1, \ldots, d_n be nonzero elements of p. Since D is a PVMD, $(d_1, \ldots, d_n)^{-1}$ is a finite type v-ideal of D, and hence by [17, Lemma 3.2], $\left(((d_1, \ldots, d_n)^{-1})D^{(S)}\right)^{-1} = (d_1, \ldots, d_n)_v D^{(S)}$. But $(d_1, \ldots, d_n)^{-1}D^{(S)} = \left((d_1, \ldots, d_n)D^{(S)}\right)^{-1}$ by [17, Lemma 3.1]. Thus:

$$(d_1, \dots, d_n)_v D^{(S)} = ((d_1, \dots, d_n) D^{(S)})_v \subseteq P.$$

Hence $(d_1, \ldots, d_n)_v \subseteq P \cap D = p$. So p is a prime t-ideal of D, and hence D_p is a valuation domain. Alternatively, by [16, Lemma 3.6] $D \subset D^{(S)}$ is a flat extension. Then $p \neq 0$ gives $p_t \neq D$. But since D is a PVMD and in a PVMD a nonzero prime ideal contained in a maximal t-ideal is again a prime t-ideal, p is a prime t-ideal.

Suppose $P \cap S \neq \emptyset$. Then $D^{(S)}_{D-p} = D_p + XD_{S(D-p)}[X] = D_p + XK[X]$ is a Bezout domain by [1, Corollary 4.13]. Here the fact that $D_{S(D-p)} = K$ follows from Lemma 4.2. Thus $D^{(S)}_P$ is a localization of the Bezout domain $D_p + XK[X]$, and hence is a valuation domain.

Thus we may assume $P \cap S = \varnothing$. Suppose $P \cap D[X]$ is not a t-ideal of D[X]. Since D[X] is a PVMD, $(P \cap D[X])_t = D[X]$. Hence there exists $f(X) \in P \cap D[X]$ with $(A_f)_v = D$ [18, Lemma 10]. (Here A_f is the content of f.) Let $0 \neq d \in p$. Since S is a t-splitting set, $(d) = (AB)_t$, where we can take A to be finitely generated and $B \cap S \neq \varnothing$. Then $AB \subseteq p$ and $B \not\subseteq p$ imply $A \subseteq p$, and hence $A \subseteq P$. Thus $(f(X), A)D^{(S)} \subseteq P$. Since P is a t-ideal, $((f(X), A)D^{(S)})_v \subseteq P$. Hence there exist $\alpha, \beta \in D[X]$ with $\alpha \nmid \beta$ in $D^{(S)}$ such that $(f(X), A)D^{(S)} \subseteq \frac{\alpha}{\beta}D^{(S)}$. Now $AD^{(S)} \subseteq \frac{\alpha}{\beta}D^{(S)}$, so we can take $\alpha \in D$. Since $\beta f(X)D^{(S)} \subseteq \alpha D^{(S)}$, there exists $s \in S$ with $\beta s f(X) \in \alpha D[X]$. Thus $s A_{\beta f} \subseteq \alpha D$, and hence $s A_{\beta} \subseteq s (A_{\beta})_t = s (A_{\beta}A_f)_t = s (A_{\beta f})_t \subseteq \alpha D$. Thus $s A_{\beta f} \in \alpha D[X]$, and hence $s A_{\beta f} \in \alpha D[X]$. Now $(A, s)_t = D$, so $((A, s)D^{(S)})_t = D^{(S)}$. Hence $\beta (A, s)D^{(S)} \subseteq \alpha D^{(S)}$ gives $\beta \in \beta ((A, s)D^{(S)})_t \subseteq \alpha D^{(S)}$; so $\alpha \mid \beta$ in $D^{(S)}$, a contradiction. Thus $P \cap D[X]$ is a prime t-ideal of D[X]. Since D[X] is a PVMD, $(P \cap D[X])D_S[X]$ is a prime t-ideal of the PVMD $D_S[X]$. By [1, Lemma 2.3], $(P \cap D[X])D_S[X] = PD_S[X]$. Hence $D^{(S)}_P = D_S[X]_{PD_S[X]}$ is a valuation domain.

(3) \Rightarrow (4) Suppose that P is a prime t-ideal of D with $P \cap S = \emptyset$. Let $0 \neq d \in P$. Thus $(d) = (AB)_t$, where $(A, s)_t = D$ for every $s \in S$ and $B_t \cap S \neq \emptyset$. Then $A_tB_t \subseteq (d) \subseteq P$ and $B_t \cap S \neq \emptyset$ gives $B_t \not\subset P$, and hence $A_t \subseteq P$. Thus A_t is the desired t-invertible t-ideal.

 $(4) \Rightarrow (1)$ If A is the ideal given by (4), then $A = F_t$ for some finitely generated ideal $F \subseteq A$. Now just replace the ideal A in the proof of $(3) \Rightarrow (1)$ by the ideal F. The proof of $(3) \Rightarrow (1)$ carries through verbatim.

Theorem 2.5 allows us to recover the two characterizations of when $D^{(S)}$ is a GCD domain mentioned in the Introduction.

Corollary 2.6. Let D be an integral domain and S a multiplicatively closed subset of D with saturation \bar{S} . Then the following statements are equivalent.

- (1) $D^{(S)}$ is a GCD domain.
- (2) D is a GCD domain and $(d, X)_t$ is principal for each $d \in D^*$.
- (3) D is a GCD domain and \bar{S} is a splitting set.

Proof. The equivalence of statements (1) and (2) follows directly from Theorem 2.5 since $Cl_t(D^{(S)})$ is isomorphic to $Cl_t(D)$ when D is integrally closed [16, Corollary 4.5] and a PVMD is a GCD domain if and only if it has trivial t-class group [6, Corollary 1.5]. The equivalence of (1) and (3) follows as above since in a GCD domain a saturated multiplicatively closed set is a splitting set if and only if it is a t-splitting set.

An integral domain D is said to be weakly factorial [19] if every nonzero nonunit of D is a finite product of primary elements. In [20], it is shown that the following conditions are equivalent for an integral domain D: (1) D is weakly factorial; (2) D - P is a splitting set for each prime ideal P of D; and (3) each saturated multiplicatively closed subset S of D is a splitting set. Since a Krull domain is weakly factorial if and only if it is factorial [19, Theorem 15], a Krull domain D has every saturated multiplicatively closed subset of D a splitting set if and only if D is factorial (or, it is easily checked that for a height-one prime ideal P of a Krull domain D, S = D - P is a splitting set if and only if P is principal). Also, it follows from [19, Theorems 18 and 19] that the following conditions on an integral domain D are equivalent: (1) D is a PVMD and every saturated multiplicatively closed subset of D is a splitting set (i.e., D is weakly factorial); (2) D is a weakly factorial GCD domain; (3) D is a weakly factorial generalized Krull domain; and (4) D is a generalized Krull domain and a GCD domain. (Recall that an integral domain D is a generalized Krull domain if $D = \bigcap_{P \in X^{(1)}} D_P$, where the intersection is locally finite and each D_P is a valuation domain. It is easily checked that a generalized Krull domain is a PVMD.) The integral domains satisfying the equivalent conditions (1)–(4) are the focus of study of [21], where they are called generalized unique factorization domains (GUFD's) (see [21, page 402] for the formal definition of a GUFD). A number of other characterizations of GUFD's may be found in [21, Theorem 10].

An integral domain D is weakly Krull if $D = \bigcap_{P \in X^{(1)}} D_P$, where the intersection is locally finite, or equivalently, if every nonzero proper principal ideal of D is a t-product of primary ideals (necessarily of height-one) [22, Theorem 3.1]. Let D be weakly Krull and let S be a multiplicatively closed subset of D. Let d be a nonzero nonunit of D. Then $(d) = (Q_1 \cdots Q_n)_t$, where each Q_i is P_i -primary with $P_i \in X^{(1)}$. Let $A = \Pi\{Q_i \mid Q_i \cap S = \emptyset\}$ and $B = \Pi\{Q_i \mid Q_i \cap S \neq \emptyset\}$. Hence $(d) = (AB)_t$, where $(A, s)_t = D$ for each $s \in S$ (for each P_i is a maximal t-ideal of D) and $P_i \cap S \neq \emptyset$. Hence $P_i \cap S \in S$ is a $P_i \cap S \in S$ set. Thus, $P_i \cap S \in S$ is a $P_i \cap S \in S$ is a $P_i \cap S \in S$ that the following conditions are equivalent for an integral domain $P_i \cap S \in S$ is a $P_i \cap S \in S$ that the following set for each prime ideal $P_i \cap S \in S$ minimal over a principal ideal; and $P_i \cap S \in S$ is a $P_i \cap S \in S$ that the following two conditions are equivalent for an integral domain $P_i \cap S \in S$ is a $P_i \cap S \in S$ that the following two conditions are equivalent for an integral domain $P_i \cap S \in S$ is a $P_i \cap S \in S$ that the following two conditions are equivalent for an integral domain $P_i \cap S \in S$ the following corollary to Theorem 2.5.

Corollary 2.7. Let D be a generalized Krull domain and S a multiplicatively closed subset of D. Then $D^{(S)} = D + XD_S[X]$ is a PVMD. Moreover, $\operatorname{Cl}_t(D^{(S)}) \cong \operatorname{Cl}_t(D)$.

Proof. The second statement follows from [16, Corollary 4.5] since a generalized Krull domain is integrally closed. \Box

3. ★-SPLITTING SETS

Let D be an integral domain, S a multiplicatively closed subset of D, and \star a finite character star-operation on D. We say that $d \in D^*$ is \star -split by S if $(d) = (AB)^*$, where A and B are integral ideals of D with $A^* \cap sD = sA^*$ for all $s \in S$ and $B^* \cap S \neq \emptyset$. Note that A and B are both \star -invertible. By replacing A by A^* and B by B^* , we can assume that A and B are \star -invertible \star -ideals of D and that $B \cap S \neq \emptyset$. If A is a \star -invertible ideal with $(A, s)^* = D$, then using Theorem 4.4 it is easy to show that $A^* \cap sD = sA^*$. If A is t-invertible with $A_t \cap sD = sA_t$, then $(A, s)_t = D$. However, for an arbitrary finite character star-operation \star , we may have $A^* \cap sD = sA^*$, but $(A, s)^* \neq D$. (For example, let \star be the d-operation on D = K[X, Y], K a field, and take A = (X) and s = Y.) We say that S is a \star -splitting set if each $d \in D^*$ is \star -split by S. It is easy to check that S is a \star -splitting set if and only if the saturation \bar{S} of S is a \star -splitting set. When $\star = t$, we have the t-splitting sets considered in Section 2. Also, S is a t-splitting set if for each t and t and t and t are integral ideals of t and t and t and t and t are integral ideals of t and t are integral ideals of t and t and t are integral ideals of t and t are integral ideals

a d-splitting set; in fact, a splitting set is a \star -splitting set for any finite character star-operation \star . Now each multiplicative subset of a Krull domain (resp., Dedekind domain) is a t-splitting (resp., d-splitting) set. Also, each saturated multiplicative subset of a Krull domain (resp., Dedekind domain) D is a splitting set if and only if D is a UFD (resp., PID). Thus, if P is a non-principal prime ideal of a Dedekind domain D, then S = D - P is a d-splitting set that is not a splitting set. It is easily checked that Lemmas 2.1 and 2.2 (and hence Corollary 2.3) hold for any finite character star-operation. We state this as the first result of this section.

Proposition 3.1. Let D be an integral domain, S a multiplicatively closed subset of D, and \star a finite character star-operation on D. Then $d \in D^*$ is \star -split by S if and only if $dD_S \cap D$ is \star -invertible. Moreover, if $(d) = (AB)^*$, where $A^* \cap SD = sA^*$ for all $s \in S$ and $B^* \cap S \neq \emptyset$, then $A^* = dD_S \cap D$ and $B^* = dA^{-1}$. Hence S is a \star -splitting set if and only if $dD_S \cap D$ is \star -invertible for all $d \in D^*$.

We next give the d-splitting analog of Lemma 2.4.

Proposition 3.2. Let D be an integral domain and S a multiplicatively closed subset of D. Then $d \in D^*$ is d-split by S if and only if $(d, X)_t$ is an invertible ideal of $D^{(S)} = D + XD_S[X]$.

Proof.

(\Leftarrow) Suppose that $(d, X)_t$ is invertible in $D^{(S)}$. As in the proof of Lemma 2.4, we get that $(d, X)_t = B + XD_S[X]$ for some ideal B of D with $B \cap S \neq \varnothing$. Let $0 \neq b \in B$; so $bD + XD_S[X] \subseteq B + XD_S[X]$. Since $B + XD_S[X]$ is invertible, $bD + XD_S[X] = C(B + XD_S[X])$ for some ideal C of $D^{(S)}$. Passing to $D = D^{(S)}/XD_S[X]$, we have $bD = \bar{C}B$. Hence B is a factor of a principal ideal, and thus is invertible. As in the proof of Lemma 2.4, $dD_S \cap D = dB^{-1}$ is an invertible ideal of D.

 (\Rightarrow) This direction is an easy modification of the proof of Lemma 2.4 (\Rightarrow) .

Our next theorem is the *d*-splitting analog of Theorem 2.5.

Theorem 3.3. Let D be an integral domain and S a multiplicatively closed subset of D. Then the following statements are equivalent.

- (1) $D^{(S)}$ is a GGCD domain.
- (2) D is a GGCD domain and $(d, X)_t$ is an invertible ideal of $D^{(S)}$ for each $d \in D^*$.
- (3) D is a GGCD domain and S is a d-splitting set.

Proof.

- (1) \Rightarrow (2) Suppose that $D^{(S)}$ is a GGCD domain. Let B be a nonzero finitely generated ideal of D. Then $B^{-1}D^{(S)} = (BD^{(S)})^{-1}$ is invertible. Choose $0 \neq r \in D$ so that rB^{-1} is an integral ideal of D. Then $(rB^{-1})D^{(S)}$ is an integral invertible ideal of $D^{(S)}$. Hence rB^{-1} is an invertible ideal of D, and so $B_t = r(rB^{-1})^{-1}$ is an invertible ideal of D. Thus D is a GGCD domain. The second statement is clear.
- $(2) \Rightarrow (3)$ Proposition 3.2.
- $(3) \Rightarrow (1)$ It suffices to show that for all nonzero $a, b \in D^{(S)}$, $aD^{(S)} \cap bD^{(S)}$ is invertible. Since D is also a PVMD and S is a t-splitting set, $D^{(S)}$ is a PVMD by Theorem 2.5. Since $aD^{(S)} \cap bD^{(S)}$ has finite type, to show that $aD^{(S)} \cap bD^{(S)}$ is invertible, it suffices to show that $aD^{(S)}_{\mathcal{M}} \cap bD^{(S)}_{\mathcal{M}} = (aD^{(S)} \cap bD^{(S)})_{\mathcal{M}}$ is principal in $D^{(S)}_{\mathcal{M}}$ for each maximal ideal \mathcal{M} of $D^{(S)}$. And to do this, it is enough to show that $D^{(S)}_{\mathcal{M}}$ is a GCD domain for each maximal ideal \mathcal{M} of $D^{(S)}$. First, suppose that $\mathcal{M} \cap S = \emptyset$. Then $D^{(S)}_{\mathcal{M}} = D_S[X]_{\mathcal{M}_S}$. But D_S is a GCD domain, and thus so is $D_S[X]$ [5, Theorem 2]. Hence $D_S[X]_{\mathcal{M}_S}$ is a GCD domain. Next, suppose that

 $\mathcal{M} \cap S \neq \varnothing$. Then $\mathcal{M} = M + XD_S[X]$, where M is a maximal ideal of D. Now $D^{(S)}_{\mathcal{M}}$ is a localization of $D_M + X(D_M)_S[X] = (D_M)^{(S)}$. Here D_M is a GCD domain. We show that \bar{S} , the saturation of S in D_M , is a splitting set of D_M . Thus by the result [4, Corollary 1.5] mentioned in the Introduction, $(D_M)^{(S)}$ is a GCD domain, and hence $D^{(S)}_{\mathcal{M}}$ is a GCD domain. Since S is a d-splitting set, $dD_S \cap D$ is invertible for each $d \in D^*$, and thus $d(D_M)_S \cap D_M = (dD_S \cap D)_M$ is principal. Hence $x(D_M)_{\bar{S}} \cap D_M$ is principal for each $x \in (D_M)^*$, and thus \bar{S} is a splitting set in D_M .

Remark 3.4. We sketch another proof of Theorem 3.3. Note that a PVMD D is a GGCD domain if and only if $Pic(D) = Cl_t(D)$. Also, there is a commutative diagram

$$\operatorname{Pic}(D) \longrightarrow \operatorname{Pic}(D^{(S)})$$

$$\downarrow \qquad \qquad \downarrow$$
 $\operatorname{Cl}_t(D) \longrightarrow \operatorname{Cl}_t(D^{(S)})$

where the vertical maps are inclusions and the horizontal maps are isomorphisms, when D is integrally closed ([23, page 113] and [16, Corollary 4.5]). Suppose that $D^{(S)}$ is a GGCD domain. Then $D^{(S)}$ is a PVMD with $Pic(D^{(S)}) = Cl_t(D^{(S)})$. Thus D is a PVMD with $Pic(D) = Cl_t(D)$. Hence D is a GGCD domain. Since S is a t-splitting set and each t-invertible t-ideal of D is invertible, S is a t-splitting set. Conversely, suppose that D is a GGCD domain and S is a t-splitting set and t is a PVMD. So t0 is a PVMD with t1 is a GGCD domain.

We end this section with the d-analogs of our previous results (i.e., considering $(r, X)_d$ rather than $(r, X)_t$).

Lemma 3.5. Let D be an integral domain and S a multiplicatively closed subset of D. Then the following statements are equivalent for $d \in D^*$.

- (1) (d, X) is principal in $D^{(S)}$.
- (2) (d, X) is invertible in $D^{(S)}$.
- (3) $d \in \bar{S}$, where \bar{S} is the saturation of S.

Proof.

- $(1) \Rightarrow (2)$ Clear.
- (2) \Rightarrow (3) Since $(d, X)^{-1} = d^{-1}D^{(S)} \cap X^{-1}D^{(S)} = (\frac{1}{d}D \cap D_S) + XD_S[X]$, we have that (d, X) is invertible in $D^{(S)}$ if and only if $d(\frac{1}{d}D \cap D_S) = D$, if and only if $\frac{1}{d} \in D_S$, if and only if $d \in \bar{S}$.

$$(3) \Rightarrow (1) \ d \in \bar{S} \Rightarrow (d, X) = dD^{(S)}.$$

Theorem 3.6. Let D be an integral domain with quotient field K and S a multiplicatively closed subset of D. Then the following statements are equivalent.

- (1) $D^{(S)}$ is a Prüfer (resp., Bezout) domain.
- (2) D is a Prüfer (resp., Bezout) domain and (d, X) is invertible (resp., principal) in $D^{(S)}$ for all $d \in D^*$.
- (3) D is a Prüfer (resp., Bezout) domain and $D_S = K$.

Proof.

- $(1) \Rightarrow (2)$ Clear.
- $(2) \Rightarrow (3)$ Lemma 3.5.
- (3) \Rightarrow (1) The Prüfer domain case is from [1, Corollary 4.15]; while the Bezout domain case is from [1, Corollary 4.13].

Note that $D^{(S)}$ is a Dedekind domain if and only if D(=K) is a field, and in this case, $D^{(S)}=K[X]$ is a PID.

4. t-SPLITTING D

Suppose that D is an integral domain and S is a t-splitting set in D. Let $\mathcal{T} = \{A_1 \cdots A_n \mid \text{each } A_i = d_i D_S \cap D \text{ for some } d_i \in D^*\}$ and $D_{\mathcal{T}} = \{x \in K | xA \subseteq D \text{ for some } A \in \mathcal{T}\}$. Note that $D = D_S \cap D_{\mathcal{T}}$. As the containment \subseteq is clear, let $x \in D_S \cap D_{\mathcal{T}}$. Then there exists $s \in S$ with $sx \in D$ and ideals A_1, \ldots, A_n with each $A_i = d_i D_S \cap D$ such that $xA_1 \cdots A_n \subseteq D$. Now each $(A_i, s)_t = D$, and hence $(A_1 \cdots A_n, s)_t = D$. Thus $xD = x(A_1 \cdots A_n, s)_t = (xA_1 \cdots A_n, sx)_t \subseteq D$, and hence $x \in D$. We next give a complement to Lemma 2.1.

Lemma 4.1. Let D be an integral domain, S a t-splitting set of D, and $d \in D^*$. Suppose that $(d) = (AB)_t$, where A and B are integral ideals with $A_t \cap sD = sA_t$ for all $s \in S$ and $B_t \cap S \neq \emptyset$. Then

$$B_t = d(dD_S \cap D)^{-1} = dD_{\mathcal{T}} \cap D.$$

Moreover,

$$(d) = (dD_S \cap D) \cap (dD_T \cap D) = ((dD_S \cap D)(dD_T \cap D))_t.$$

Proof. By Lemma 2.1, $A_t = dD_S \cap D$ and $B_t = dA^{-1}$. So just take $A = dD_S \cap D$. Then $A^{-1}A \subseteq D$; so $A^{-1} \subseteq D_T$, and hence $dA^{-1} \subseteq dD_T$. Also, $dA^{-1} \subseteq D$, so $B_t = dA^{-1} \subseteq dD_T \cap D$. Now $(d) = d(D_S \cap D_T) = dD_S \cap dD_T = (dD_S \cap D) \cap (dD_T \cap D) \supseteq (dD_S \cap D)(dD_T \cap D) \supseteq dAA^{-1}$. Thus $(d) \supseteq ((dD_S \cap D)(dD_T \cap D))_t \supseteq (dAA^{-1})_t = (d)$. Hence $(d) = ((dD_S \cap D)(dD_T \cap D))_t$. Then $(dD_T \cap D)_t = dA^{-1} = B_t$, and hence $B_t = dD_T \cap D$.

Let D be an integral domain and S a multiplicatively closed subset of D. Recall that a prime ideal Q of D with $Q \cap S \neq \emptyset$ is said to intersect S in detail if $P \cap S \neq \emptyset$ for each nonzero prime ideal $P \subseteq Q$.

Lemma 4.2. Let D be an integral domain and let S be a t-splitting set of D. Let Q be a prime t-ideal of D with $Q \cap S \neq \emptyset$. Then Q intersects S in detail.

Proof. Let $0 \neq P \subseteq Q$ be a prime ideal of D. Let $0 \neq x \in P$. Then we can shrink P to a prime ideal minimal over (x) which is necessarily a t-ideal. Thus we can assume that P is a t-ideal. Assume $P \cap S = \emptyset$. Let $0 \neq x \in P$, so $(x) = (AB)_t$, where $B_t \cap S \neq \emptyset$ and $(A, s)_t = D$ for each $s \in S$. Now $A_tB_t \subseteq (AB)_t = (x) \subseteq P$ and $B_t \not\subset P$ since $B_t \cap S \neq \emptyset$. Thus $A_t \subseteq P$. Suppose $s \in Q \cap S$. Then $D = (A, s)_t \subseteq Q$, a contradiction. \square

Let D be an integral domain and S a t-splitting set of D. Let $F = \{P \in t\text{-Max}(D) \mid P \cap S = \varnothing\}$ and $G = \{P \in t\text{-Max}(D) \mid P \cap S \neq \varnothing\} = \{P \in t\text{-Max}(D) \mid P \text{ intersects } S \text{ in detail}\}$. Note that t-Max(D) is the disjoint union of F and G and that for $P \in F$ and $Q \in G$, $P \cap Q$ contains no nonzero prime ideal since Q intersects S in detail. However, such a splitting of t-Max(D) does not force S to be a t-splitting set, even when D_T is a quotient ring of D. For let E be the ring of entire functions and let S be the multiplicatively closed

set generated by the principal primes of E. Then since E is Bezout, $F = \{P \in t\text{-Max}(D) \mid P \cap S = \emptyset\} = \{P \in \text{Max}(D) \mid \text{ht } P > 1\}$ and $G = \{P \in t\text{-Max}(D) \mid P \cap S \neq \emptyset\} = \{P \in \text{Max}(D) \mid \text{ht } P = 1\}$. Clearly Max(D) = t-Max(D) is the disjoint union of F and G, and for G and G and G and G contains no nonzero prime ideal. But G is not a G-splitting set by Theorem 2.5 since G-since G

Theorem 4.3. Let D be an integral domain with quotient field K and S a t-splitting set of D. Then

- (1) $D_S = \bigcap_{P \in F} D_P$, where $F = \{P \in t\text{-Max}(D) \mid P \cap S = \emptyset\}$,
- (2) $D_{\mathcal{T}} = \bigcap_{P \in G} D_P$, where $G = \{P \in t\text{-} \operatorname{Max}(D) \mid P \text{ intersects } S \text{ in detail}\}$, and
- (3) $D_S D_T = K$.

Proof.

- (1) Now $P \cap S = \emptyset$ gives $D_S \subseteq D_P$, and hence $D_S \subseteq \bigcap_{P \in F} D_P$. Let $x \in \bigcap_{P \in F} D_P$. Then $(D:x) \not\subset P$ for each $P \in F$. Suppose $(D:x) \cap S = \emptyset$. Then there is a prime t-ideal Q with $(D:x) \subseteq Q$ and $Q \cap S = \emptyset$. Enlarge Q to a maximal t-ideal P. Since $P \supseteq (D:x)$, $P \in G$, and thus $P \cap S \neq \emptyset$. Hence $Q \cap S \neq \emptyset$ by Lemma 4.2, a contradiction. Thus $(D:x) \cap S \neq \emptyset$, and hence $x \in D_S$.
- (2) Let $x \in D_T$; so $xA_1 \cdots A_n \subseteq D$, where each $A_i = d_iD_S \cap D$. Let $P \in G$. We show that $(D:x) \not\subset P$, and hence $x \in D_P$. Assume $(D:x) \subseteq P$ for some $P \in G$. Now $A_1 \cdots A_n \subseteq P$ implies some $A_i \subseteq P$. Let $s \in P \cap S$. Then $D = (A_i, s)_t \subseteq P$, a contradiction. Conversely, let $\frac{a}{b} \in \bigcap_{P \in G} D_P$. Then $\frac{a}{b}(bD_S \cap D) \subseteq \bigcap_{P \in G} D_P$ and $\frac{a}{b}(bD_S \cap D) = aD_S \cap \frac{a}{b}D \subseteq D_S$. Thus $\frac{a}{b}(bD_S \cap D) \subseteq D_S \cap (\bigcap_{P \in G} D_P) = \bigcap_{P \in F} D_P \cap \bigcap_{P \in G} D_P = D$. Hence $\frac{a}{b} \in D_T$.
- (3) It suffices to show that $dD_SD_T = D_SD_T$ for each $d \in D^*$. Write $(d) = (AB)_t$, where $(A, s)_t = D$ for each $s \in S$ and $B \cap S \neq \emptyset$. Note that for each $Q \in G$, $A \not\subset Q$, and hence $AD_Q = D_Q$. Now $dD_SD_T = D_S(\bigcap_{Q \in G} dD_Q) = D_S(\bigcap_{Q \in G} (AB)_tD_Q) \supseteq D_S(\bigcap_{Q \in G} ABD_Q) = D_S(\bigcap_{Q \in G} BD_Q) \supseteq D_S(\bigcap_{Q \in G} D_Q) = D_S(\bigcap_{Q \in G} D_Q) = D_S(\bigcap_{Q \in G} D_Q) \supseteq D_S(\bigcap_{Q \in G} D_Q) = D_S(\bigcap_{Q \in G} D_Q) = D_S(\bigcap_{Q \in G} D_Q) \supseteq D_S(\bigcap_{Q \in G} D_Q) = D_S(\bigcap_{$

Suppose that D is an integral domain and S is a splitting set of D with m-complement T. Let T(D) be the monoid of fractional t-ideals of D with the t-product $A*B=(AB)_t$ and ordered by reverse inclusion. So $T_t(D)=\{A\in T(D)\mid 0\leq A\}=\{A\in T(D)\mid A\subseteq D\}$. In [2, Theorem 3.7], we showed that the map $\theta:T(D)\to T(D_S)\times_c T(D_T)$ (cardinal product, i.e., the direct product with the order $(A,B)\leq (C,D)\Leftrightarrow A\leq C$ and $B\leq D$), given by $\theta(A)=(AD_S,AD_T)$, is a monoid order-isomorphism. Moreover, for $A\in T(D)$, A is integral (resp., principal, of finite type, t-invertible) if and only if both AD_S and AD_T are integral (resp., principal, of finite type, t-invertible). Thus by [2, Corollary 3.8], the map θ induces the group isomorphism $\bar{\theta}: \operatorname{Cl}_t(D)\to \operatorname{Cl}_t(D_S)\times\operatorname{Cl}_t(D_T)$, given by $\bar{\theta}([A])=([AD_S],[AD_T])$. The proof of [2, Theorem 3.7] is based on the following decomposition of a nonzero integral ideal A of D. Let $A=(\{a_\alpha\})$, where each $a_\alpha\neq 0$. Write $a_\alpha=s_\alpha t_\alpha$, where $s_\alpha\in S$ and $t_\alpha\in T$. Then $(AD_S)_t\cap D=(\{t_\alpha\})_t$, $(AD_T)_t\cap D=(\{s_\alpha\})_t$, and $A_t=((\{s_\alpha\})(\{t_\alpha\}))_t=(\{s_\alpha\})_t\cap(\{t_\alpha\})_t=(AD_S)_t\cap(AD_T)_t=((AD_S)_t\cap D)\cap((AD_T)_t\cap D)=(((AD_S)_t\cap D)((AD_T)_t\cap D))_t$. Moreover, $A_tD_S=(AD_S)_t$ (resp., $A_tD_T=(AD_T)_t$) is a t-ideal of D_S (resp., D_T); so the localization of a t-ideal is again a t-ideal. Our next goal is to partially extend these results to t-splitting sets. A key tool is the next theorem which is of independent interest.

Theorem 4.4. Let \star be a star-operation on an integral domain D and let A be a nonzero fractional ideal of D. Then the following statements are equivalent.

- (1) A is \star -invertible.
- (2) $(A(\bigcap_{\alpha} B_{\alpha}))^* = (\bigcap_{\alpha} AB_{\alpha})^*$ for each nonempty collection $\{B_{\alpha}\}$ of fractional (or just integral) ideals of D with $\bigcap_{\alpha} B_{\alpha} \neq 0$.
- (3) $(A(\bigcap_{\alpha} B_{\alpha}^{\star}))^{\star} = \bigcap_{\alpha} (AB_{\alpha})^{\star}$ for each nonempty collection $\{B_{\alpha}\}$ of fractional (or just integral) ideals of D with $\bigcap_{\alpha} B_{\alpha} \neq 0$.

Proof. The proof is almost identical to the proof of [24, Theorem 1].

Lemma 4.5. Let D be an integral domain, S a t-splitting set of D, and $d_1, \ldots, d_n \in D^*$. Write each $(d_i) = (A_iB_i)_t$, where $A_i = d_iD_S \cap D$ and $B_i = d_iA_i^{-1}$. Then $(A_1B_1, \ldots, A_nB_n)_v = ((A_1 + \cdots + A_n)(B_1 + \cdots + B_n))_v$.

Proof. Put $A = A_1 \cdots A_n$, $\tilde{A}_i = A_1 \cdots \hat{A}_i \cdots A_n$, $B = B_1 \cdots B_n$, and $\tilde{B}_i = B_1 \cdots \hat{B}_i \cdots B_n$. Now since each $B_j \cap S \neq \varnothing$, $(A_i, B_j)_t = D$ for each $1 \leq i, j \leq n$. Hence $(\tilde{A}_i, \tilde{B}_j)_t = D$, and so $(\tilde{A}_i \tilde{B}_j)_t = \tilde{A}_{it} \cap \tilde{B}_{jt}$. Then using Theorem 4.4, $(A_1B_1 + \cdots + A_nB_n)^{-1} = (A_1B_1)^{-1} \cap \cdots \cap (A_nB_n)^{-1} = (A_1^{-1}B_1^{-1})_t \cap \cdots \cap (A_n^{-1}B_n^{-1})_t = ((A^{-1}B^{-1})(\tilde{A}_1\tilde{B}_1))_t \cap \cdots \cap ((A^{-1}B^{-1})(\tilde{A}_n\tilde{B}_n))_t = ((A^{-1}B^{-1})((\tilde{A}_1\tilde{B}_1)_t \cap \cdots \cap (\tilde{A}_n\tilde{B}_n)_t))_t = ((A^{-1}B^{-1})(\tilde{A}_{1t} \cap \tilde{B}_{nt}) \cap \cdots \cap (\tilde{A}_n\tilde{B}_n)_t)_t = ((A^{-1}B^{-1})(\tilde{A}_1\tilde{B}_n))_t = ((A^{-1}B^{-1})(\tilde{A}_1\tilde{B}_n))_t = ((A^{-1}B^{-1})(\tilde{A}_1\tilde{B}_n))_t = ((A^{-1}B^{-1})(\tilde{A}_1t \cap \tilde{B}_1t \cap \cdots \cap \tilde{A}_nt) \cap (\tilde{A}_nt \cap \tilde{B}_nt))_t$. Hence $(A_1B_1 + \cdots + A_nB_n)^{-1} = ((A_1 + \cdots + A_n)(B_1 + \cdots + B_n))^{-1}$, and thus $(A_1B_1, \ldots, A_nB_n)_t = ((A_1 + \cdots + A_n)(B_1 + \cdots + B_n))_t$.

Lemma 4.6. Let D be an integral domain, S a t-splitting set of D, and let $A = (\{a_{\alpha}\})$ be an integral ideal of D, where each $a_{\alpha} \neq 0$. For each α , let $(a_{\alpha}) = (A_{\alpha}B_{\alpha})_t$, where $A_{\alpha} = a_{\alpha}D_S \cap D$ and $B_{\alpha} = a_{\alpha}A_{\alpha}^{-1}$. Then $A_t = ((\sum A_{\alpha})(\sum B_{\alpha}))_t$.

Proof. Now $A_t = (\{a_{\alpha}\})_t = (\{(A_{\alpha}B_{\alpha})_t\})_t = (\sum A_{\alpha}B_{\alpha})_t \subseteq ((\sum A_{\alpha})(\sum B_{\alpha}))_t$. Let $0 \neq x \in ((\sum A_{\alpha})(\sum B_{\alpha}))_t$; so there exist $\alpha_1, \ldots, \alpha_n$ with $x \in ((\sum_{i=1}^n A_{\alpha_i})(\sum_{i=1}^n B_{\alpha_i}))_v$. Then by Lemma 4.5, $x \in (\sum_{i=1}^n A_{\alpha_i}B_{\alpha_i})_v \subseteq (\sum_{i=1}^n (A_{\alpha_i}B_{\alpha_i})_t)_v = (\sum_{i=1}^n (a_{\alpha_i}))_v \subseteq A_t$.

Lemma 4.7. Let D be an integral domain, S a t-splitting set of D, and let $A = (\{a_{\alpha}\})$ be an integral ideal of D, where for each α , $0 \neq (a_{\alpha}) = (A_{\alpha}B_{\alpha})_t$, with $A_{\alpha} = a_{\alpha}D_S \cap D$ and $B_{\alpha} = a_{\alpha}A_{\alpha}^{-1}$. Then $(AD_S)_t \cap D = (\sum A_{\alpha})_t$. Hence $((\sum A_{\alpha})D_S)_t \cap D = (\sum A_{\alpha})_t$ and $(\sum A_{\alpha})_tD_S = ((\sum A_{\alpha})D_S)_t$.

Proof. Now $(\sum A_{\alpha})_t \subseteq (\sum A_{\alpha})_t D_S \cap D \subseteq ((\sum A_{\alpha})D_S)_t \cap D = ((\sum A_{\alpha}B_{\alpha})D_S)_t \cap D = ((\sum A_{\alpha}B_{\alpha})_t D_S)_t \cap D = (A_t D_S)_t \cap D = (A_t D_S)_t \cap D$. Let $0 \neq x \in (AD_S)_t \cap D$; so $x \in ((\sum A_{\alpha})D_S)_t$, and hence $x \in ((A_{\alpha_1} + \cdots + A_{\alpha_n})D_S)_v \cap D$ for some finite subset $\{\alpha_1, \dots, \alpha_n\}$. Let $(x) = (A_0 B_0)_t$ be the "canonical t-splitting"; so $A_0 \subseteq ((A_{\alpha_1} + \cdots + A_{\alpha_n})D_S)_v$. Thus $A_0((A_{\alpha_1} + \cdots + A_{\alpha_n})^{-1}D_S) = A_0((A_{\alpha_1} + \cdots + A_{\alpha_n})D_S)^{-1} \subseteq D_S$, and hence $A_0(A_{\alpha_1}^{-1}D_S \cap \cdots \cap A_{\alpha_n}^{-1}D_S) \subseteq D_S$. So $A_0A_{\alpha_1} \cdots A_{\alpha_n}(A_{\alpha_1}^{-1}D_S \cap \cdots \cap A_{\alpha_n}^{-1}D_S) \subseteq A_{\alpha_1} \cdots A_{\alpha_n}D_S$, and hence $(A_{\alpha_1} \cdots A_{\alpha_n}A_0(A_{\alpha_1}^{-1}D_S \cap \cdots \cap A_{\alpha_n}^{-1}D_S))_t \subseteq (A_{\alpha_1} \cdots A_{\alpha_n}A_0)_t = (A_{\alpha_1} \cdots A_{\alpha_n})_t D_S$. Thus by Theorem 4.4 (since $A_0A_{\alpha_1} \cdots A_{\alpha_n} \cap A_0(A_{\alpha_1}^{-1}D_S \cap \cdots \cap A_{\alpha_n}^{-1}D_S))_t \subseteq (A_{\alpha_1} \cdots A_{\alpha_n} \cap A_0(A_{\alpha_1} \cdots A_{\alpha_n})_t D_S \cap C$. But since $(xa_{\alpha_2} \cdots a_{\alpha_n})_t D_S \cap D \cap ((A_0A_{\alpha_2} \cdots A_{\alpha_n})_t D_S \cap D) \cap ((A_0A_{\alpha_2} \cdots A_{\alpha_n})_t D_S \cap D) \subseteq (A_{\alpha_1} \cdots A_{\alpha_n})_t D_S \cap D$. But since $(xa_{\alpha_2} \cdots a_{\alpha_n})_t \cap D \cap ((A_0A_{\alpha_2} \cdots A_{\alpha_n})_t \cap D \cap ((A_0A_{\alpha_2} \cdots A_{\alpha_n})_t D_S \cap D) \cap ((A_0A_{\alpha_2} \cdots A_{\alpha_n})_t D_S \cap D$

Lemma 4.8. Let D be an integral domain, S a t-splitting set of D, and let A be a nonzero ideal of D. Suppose $A = (\{a_{\alpha}\})$, where for each α , $0 \neq (a_{\alpha}) = (A_{\alpha}B_{\alpha})_t$ with $A_{\alpha} = a_{\alpha}D_S \cap D$ and $B_{\alpha} = a_{\alpha}A_{\alpha}^{-1}$. Then $A_t = ((\sum A_{\alpha})(\sum B_{\alpha}))_t = (\sum A_{\alpha})_t \cap (\sum B_{\alpha})_t$.

Proof. By Lemma 4.6, $A_t = ((\sum A_\alpha)(\sum B_\alpha))_t$. Since $(\sum A_\alpha, \sum B_\alpha)_t = D$, $(\sum A_\alpha)_t \cap (\sum B_\alpha)_t = ((\sum A_\alpha)(\sum B_\alpha))_t$. The result follows.

Our next theorem generalizes [2, Corollary 3.5] to t-splitting sets.

Theorem 4.9. Let D be an integral domain and S a t-splitting set of D. If B is an (integral) t-ideal of D, then BD_S is an (integral) t-ideal of D_S . In fact, for a nonzero ideal A of D, $A_tD_S = (AD_S)_t$. If E is a t-ideal of D_S , then $E \cap D$ is a t-ideal of D.

Proof. As in Lemma 4.8, for an integral ideal A of D, $A_t = ((\sum A_\alpha)(\sum B_\alpha))_t = (\sum A_\alpha)_t \cap (\sum B_\alpha)_t$. Hence $A_tD_S = (\sum A_\alpha)_tD_S \cap (\sum B_\alpha)_tD_S = (\sum A_\alpha)_tD_S = ((AD_S)_t\cap D)D_S = (AD_S)_t$, where the third equality follows from Lemma 4.7. Dividing through by an appropriate element shows the equality also holds for fractional ideals as well. It is well known that if E is a t-ideal of D_S for any multiplicatively closed set S, then $E \cap D$ is a t-ideal of D.

We next show that the t-operation on D is induced by the t-operations on D_S and D_T .

Theorem 4.10. Let D be an integral domain and S a t-splitting set of D. Then $A_t = (AD_S)_t \cap (AD_T)_t$ for each nonzero fractional ideal A of D. Hence, if A is a nonzero integral ideal of D, then $A_t = ((AD_S)_t \cap D) \cap ((AD_T)_t \cap D) = (((AD_S)_t \cap D)((AD_T)_t \cap D))_t$.

Proof. Since $D = D_S \cap D_T$, the function $A \to A^* = (AD_S)_t \cap (AD_T)_t$, A a nonzero fractional ideal of D, is a finite character star-operation on D [25, Theorem 2]. Hence $A^* \subseteq A_t$ for each nonzero fractional ideal A of D. To show that $\star = t$, it is enough to show that $A_t \subseteq A^*$ for each nonzero integral ideal A of D. But $A^* = (AD_S)_t \cap (AD_T)_t = ((AD_S)_t \cap D) \cap ((AD_T)_t \cap D)$ is a t-ideal because $(AD_S)_t \cap D$ and $(AD_T)_t \cap D$ are both t-ideals, being the contractions of t-ideals of D_S and D_T , respectively. (One reference for the fact that E a t-ideal of D_T implies that $E \cap D$ is a t-ideal of D is [26, Propositions 1.5 and 1.8].) Hence $A_t \subseteq (A^*)_t = A^*$. The equality $((AD_S)_t \cap D) \cap ((AD_T)_t \cap D) = (((AD_S)_t \cap D)((AD_T)_t \cap D))_t$ follows from the fact that $((AD_S)_t \cap D, (AD_T)_t \cap D)_t = D$. Indeed, if $0 \neq a \in A$, then by Lemma 4.1, $(aD_S \cap D, aD_T \cap D)_t = D$ and hence $((AD_S)_t \cap D, (AD_T)_t \cap D)_t = D$.

Corollary 4.11. Let D be an integral domain and S a t-splitting set of D. Let $A = (\{a_{\alpha}\})$ be an integral ideal of D with each $a_{\alpha} \neq 0$. For each α , let $A_{\alpha} = a_{\alpha}D_{S} \cap D$ and $B_{\alpha} = a_{\alpha}A_{\alpha}^{-1} = a_{\alpha}D_{T} \cap D$. Then $(\sum B_{\alpha})_{t} = (AD_{T})_{t} \cap D = ((\sum B_{\alpha})D_{T})_{t} \cap D = (\sum B_{\alpha})_{t}D_{T} \cap D$.

Proof. By Theorem 4.10, $(\sum B_{\alpha})_t = (((\sum B_{\alpha})D_S)_t \cap D) \cap (((\sum B_{\alpha})D_T)_t \cap D)$. But $(\sum B_{\alpha}) \cap S \neq \emptyset$; so $((\sum B_{\alpha})D_S)_t \cap D = D$, and hence $(\sum B_{\alpha})_t = ((\sum B_{\alpha})D_T)_t \cap D$. But $A \subseteq \sum B_{\alpha} = \sum (a_{\alpha}D_T \cap D) \subseteq (\sum a_{\alpha}D_T) \cap D = AD_T \cap D$; so $AD_T = (\sum B_{\alpha})D_T$. Hence $((\sum B_{\alpha})D_T)_t \cap D = (AD_T)_t \cap D$. It remains to show that $(\sum B_{\alpha})_t D_T \cap D = (\sum B_{\alpha})_t$. The containment \supseteq is clear. Let $d \in (\sum B_{\alpha})_t D_T \cap D$. So $d = b_1 x_1 + \dots + b_n x_n$, where each $b_i \in (\sum B_{\alpha})_t$ and each $x_i \in D_T$. Choose $C \in \mathcal{T}$ with $Cx_i \subseteq D$ for each i. Then $dC \subseteq (\sum B_{\alpha})_t$; so $d(C, \sum B_{\alpha})_t \subseteq (\sum B_{\alpha})_t$. But $(\sum B_{\alpha}) \cap S \neq \emptyset$; so $(C, \sum B_{\alpha})_t = D$. Hence $d \in d(C, \sum B_{\alpha})_t \subseteq (\sum B_{\alpha})_t$.

Let S be a t-splitting set for the integral domain D. Let us call S a complemented t-splitting set if $D_{\mathcal{T}} = D_T$ for some multiplicatively closed set T. We then call \bar{T} , the saturation of T, the t-complement of S. In this case,

 $\bar{T} = \{x \in D^* \mid x^{-1} \in D_T\} = \{x \in D \mid x \text{ is a unit in each } D_Q, Q \in G\} = D - \bigcup_{Q \in G} Q$. Note that by Lemma 4.1, for each $d \in D^*$, $dD_T \cap D = dD_T \cap D = B_t$, where $(d) = (AB)_t$ with $A_t = dD_S \cap D$ and $B_t = dA^{-1}$. Thus for each $d \in D^*$, $dD_T \cap D$ is t-invertible. Hence by Corollary 2.3, T is also a t-splitting set. Moreover, the decomposition of t-Max(D) given by S shows that \bar{S} is the t-complement for T.

However, a t-splitting set need not be t-complemented. For example, let D be a Dedekind domain with a prime ideal P such that no power of P is principal. Then S = D - P is a t-splitting set (as every multiplicatively closed subset of a Dedekind domain is a t-splitting set), but S is not t-complemented. For $D_T = \bigcap \{D_Q \mid Q \in \text{Max}(D) - \{P\}\} = \bigcup_{n\geq 0} P^{-n}$ is not a quotient ring of D. We do have the following result, the proof of which is left to the reader. Let D be a Krull domain. Then every multiplicative set of D is a t-complemented t-splitting set if and only if the divisor class group of D is torsion.

Our next theorem is the promised partial extension of [2, Theorem 3.7] .

Theorem 4.12. Let D be an integral domain and S a complemented t-splitting set with t-complement T. Then the map $\theta: T(D) \to T(D_S) \times_c T(D_T)$ given by $\theta(A) = (AD_S, AD_T)$ is a monoid order-isomorphism. Moreover, for $A \in T(D)$, A is integral (resp., of finite type, t-invertible) if and only if both AD_S and AD_T are integral (resp., of finite type, t-invertible).

Proof. Let $A \in T(D)$. Since S and T are both t-splitting sets, $AD_S \in T(D_S)$ and $AD_T \in T(D_T)$ by Theorem 4.9. Clearly θ is an order-preserving monoid homomorphism. If $\theta(A) \leq \theta(B)$, then $A = AD_S \cap AD_T \supseteq BD_S \cap BD_T = B$. Hence $A \leq B$. So θ is an order-monomorphism. It remains to show that θ is surjective. It suffices to show that $\theta|_{T_+(D)}: T_+(D) \to T_+(D_S) \times_c T_+(D_T)$ is onto. Let $(E,F) \in T_+(D_S) \times_c T_+(D_T)$. Then $E \cap D, F \cap D \in T_+(D)$ by Theorem 4.9. Also, $(E \cap D) \cap T \neq \emptyset$ and $(F \cap D) \cap S \neq \emptyset$ by Corollary 4.11. Hence $\theta((E \cap D) \cap (F \cap D)) = (E,F)$. The "moreover" statements are easy consequences of the fact that θ is an isomorphism.

Remark 4.13. In the setup of Theorem 4.12, if A is a nonzero principal fractional ideal of D, then AD_S (resp., AD_T) is a nonzero principal fractional ideal of D_S (resp., D_T). Thus θ induces a surjective group homomorphism $\bar{\theta}: \operatorname{Cl}_t(D) \to \operatorname{Cl}_t(D_S) \times \operatorname{Cl}_t(D_T)$, given by $\bar{\theta}([A]) = ([AD_S], [AD_T])$. However, unlike the splitting set case, $\bar{\theta}$ need not be a monomorphism, i.e., AD_S and AD_T principal need not imply that A is principal. For example, let $D = \mathbb{Z}[\sqrt{-5}]_N$, where N is the multiplicative set generated by the principal primes of $\mathbb{Z}[\sqrt{-5}]$. So $\operatorname{Cl}(D) = \operatorname{Cl}(\mathbb{Z}[\sqrt{-5}]) = \mathbb{Z}/2\mathbb{Z}$, but each proper overring of D is a localization of D and is a PID. Let M be a nonprincipal maximal ideal of D and let S = D - M. Let T be the t-complement of S. Then MD_S and MD_T are both principal, but M is not principal. In fact, here D_S and D_T are both PID's, so $\operatorname{Cl}(D_S) \times \operatorname{Cl}(D_T) = 0$, while $\operatorname{Cl}(D) = \mathbb{Z}/2\mathbb{Z}$.

We end with the following Nagata-type theorem (cf. [2, Theorem 4.4]). One may add many more properties (for example: being root closed, integrally closed, completely integrally closed, weakly Krull, or satisfying ACCP) to those listed in Theorem 4.14; we leave the precise formulation to the interested reader.

Theorem 4.14. Let D be an integral domain and S a t-splitting set of D. Further, suppose that for each nonunit $s \in S$, sD is a t-product of height-one prime ideals. If D_S is a Mori domain (resp., Krull domain, PVMD), then D is a Mori domain (resp., Krull domain, PVMD).

Proof. As before, let $F = \{P \in t\text{-Max}(D) | P \cap S = \emptyset\}$ and $G = \{P \in t\text{-Max}(D) | P \cap S \neq \emptyset\}$. Let $Q \in G$; so $sD \subseteq Q$ for some $s \in S$. Since sD is a t-product of height-one prime ideals, Q contains a height-one t-invertible prime t-ideal Q_0 . Being t-invertible, Q_0 is a maximal t-ideal and hence $Q = Q_0$. So each $Q \in G$ is a height-one t-invertible maximal t-ideal and D_Q is a DVR. We next show that $D_T = \bigcap_{Q \in G} D_Q$ is a Krull domain.

It suffices to show that each nonunit $x \in D^*$ is contained in only finitely many members of G. Suppose that $x \in Q \in G$. Write $xD = (AB)_t$, where $(A, s)_t = D$ for all $s \in S$ and $B_t \cap S \neq \emptyset$. Choose $s_0 \in B_t \cap S$. Write $s_0D = (Q_1 \cdots Q_n)_t$, where each Q_i is a height-one prime ideal. Now $A_tB_t \subseteq xD \subseteq Q$ and $A_t \not\subset Q$, so $B_t \subseteq Q$. Hence $Q_1 \cdots Q_n \subseteq s_0D \subseteq B_t \subseteq Q$; and so $Q = Q_i$ for some i. Thus D_T is a Krull domain.

Suppose that D_S is a Mori domain (resp., Krull domain). It is immediately apparent that $D = D_S \cap D_T$ is a Mori domain (resp., Krull domain) since the intersection of two Mori domains (resp., Krull domains) is a Mori domain (resp., Krull domain).

Next suppose that D_S is a PVMD. Let P be a maximal t-ideal of D. We need to show that D_P is a valuation domain. We have already shown that if $P \in G$, then D_P is a DVR. So suppose $P \in F$. By Theorem 4.9, PD_S is a maximal t-ideal of D_S . Hence $D_P = (D_S)_{PD_S}$ is a valuation domain since D_S is a PVMD.

REFERENCES

- [1] D. Costa, J.L. Mott, and M. Zafrullah, "The Construction $D + XD_S[X]$ ", J. Algebra, 53 (1978), pp. 423–439.
- [2] D.D. Anderson, D.F. Anderson, and M. Zafrullah, "Splitting the t-Class Group", J. Pure Appl. Algebra, 74 (1991), pp. 17–37.
- [3] D.D. Anderson and M. Zafrullah, "Splitting Sets in Integral Domains", Proc. Amer. Math. Soc., to appear.
- [4] M. Zafrullah, "The $D + XD_S[X]$ Construction from GCD-Domains", J. Pure Appl. Algebra, **50** (1988), pp. 93–107.
- [5] D.D. Anderson and D.F. Anderson, "Generalized GCD Domains", Comment. Math. Univ. St. Paul., 28 (1979), pp. 215–221.
- [6] A. Bouvier and M. Zafrullah, "On Some Class Groups of an Integral Domain", Bull. Soc. Math. Grece (N.S.) 29 (1988), pp. 45–59.
- [7] D.F. Anderson, "The Class Group and Local Class Group of an Integral Domain", in Non-Noetherian Commutative Rings. Boston: Kluwer Academic Publishers, 2000, pp. 33–56.
- [8] R. Gilmer, "Multiplicative Ideal Theory", Queen's Papers in Pure Appl. Math., Kingston, Ontario, vol. 90, 1992.
- [9] M. Griffin, "Some Results on v-Multiplication Rings", Canad. J. Math., 19 (1967), pp. 710–722.
- [10] J.L. Mott and M. Zafrullah, "On Prüfer v-Multiplication Domains", Manuscripta Math., 35 (1981), pp. 1–26.
- [11] F. Halter-Koch, Ideal Systems, An Introduction to Multiplicative Ideal Theory. New York: Dekker, 1998.
- [12] P. Jaffard, Les Systèmes d'Idéaux. Paris: Dunod, 1960.
- [13] M. Zafrullah, "Putting t-Invertibility to Use", in Non-Noetherian Commutative Rings. Boston: Kluwer Academic Publishers, 2000, pp. 429–457.
- [14] M. Zafrullah, "On Finite Conductor Domains", Manuscripta Math., 24 (1978), pp. 191–204.
- [15] B.G. Kang, "Prüfer v-Multiplication Domains and the Ring $R[X]_{N_n}$ ", J. Algebra, 123 (1989), pp. 151–170.
- [16] D.F. Anderson, S. El Baghdadi, and S.-E. Kabbaj, "On the Class Group of A + XB[X] Domains", in *Advances in Commutative Ring Theory, Lecture Notes in Pure and Appl. Math.* New York: Marcel Dekker, vol. 205, 1999, pp. 73–85.
- [17] M. Zafrullah, "Well Behaved Prime t-Ideals", J. Pure Appl. Algebra, 65 (1990), pp. 199–207.
- [18] M. Zafrullah, "Some Polynomial Characterizations of Prüfer v-Multiplication Domains, J. Pure Appl. Algebra, 32 (1984), pp. 231–237.
- [19] D.D. Anderson and L.A. Mahaney, "On Primary Factorizations", J. Pure Appl. Algebra, 54 (1988), pp. 141–154.
- [20] D.D. Anderson and M. Zafrullah, "Weakly Factorial Domains and Groups of Divisibility", Proc. Amer. Math. Soc., 109 (1990), pp. 907–913.
- [21] D.D. Anderson, D.F. Anderson, and M. Zafrullah, "A Generalization of Unique Factorization", Boll. Un. Mat. Ital. A(7), 9 (1995), pp. 401–413.
- [22] D.D. Anderson, J.L. Mott, and M. Zafrullah, "Finite Character Representations for Integral Domains", Boll. Un. Mat. Ital. B(7), 6 (1992), pp. 613–630.
- [23] D.D. Anderson, D.F. Anderson, and M. Zafrullah, "Rings Between D[X] and K[X]", Houston J. Math., 17 (1991), pp. 109–129.
- [24] D.D. Anderson, "On the Ideal Equation $I(B \cap C) = IB \cap IC$ ", Canad. Math. Bull., 26 (1983), pp. 331–332.
- [25] D.D. Anderson, "Star-Operations Induced by Overrings", Comm. Algebra, 16 (1988), pp. 2535–2553.
- [26] S. Gabelli, "On Nagata's Theorem for the Class Group. II", in Commutative Algebra and Algebraic Geometry (Ferrara), Lecture Notes in Pure and Appl. Math. New York: Marcel Dekker, vol. 206, 1999, pp. 117–142.