Math 5110 Applied Linear Algebra -Homework 5.

He Wang

1. Reading: [Gockenbach], Chapters 6

2. Questions:

Question 1. Let \mathbb{R}^5 be the Euclidean space. Let V be a subspace spanned by

$$\vec{u}_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 0 \\ 0 \end{bmatrix}, \vec{u}_2 = \begin{bmatrix} 0 \\ 1 \\ 1 \\ 1 \\ 0 \end{bmatrix}, \vec{u}_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 1 \\ 1 \end{bmatrix}$$

(1) Apply the Gram-Schmidt process to find the orthonormal basis of V. (2) Find the orthogonal complement

of
$$V$$
. (3) Compute $\operatorname{proj}_V \vec{y}$. (4) Write $\vec{y} = \begin{bmatrix} 2 \\ 2 \\ -1 \\ 1 \\ 1 \end{bmatrix}$ as $\vec{y} = \vec{y}_1 + \vec{y}_2$ such that $\vec{y}_1 \in V$ and $\vec{y}_2 \in V^{\perp}$

(5) Write a Matlab function projection(y, A) to compute $\operatorname{proj}_V \vec{y}$ (6) Write a Matlab function OBasis(A) to compute orthogonal basis and then a function NBasis(A) to compute orthonormal basis.

Question 2. Consider the following vectors in \mathbb{R}^4 :

$$\vec{u}_1 = \begin{bmatrix} 1 \\ -1 \\ 1 \\ -1 \end{bmatrix}, \vec{u}_2 = \begin{bmatrix} 1 \\ 0 \\ -1 \\ 0 \end{bmatrix}, \vec{u}_3 = \begin{bmatrix} 0 \\ -1 \\ 0 \\ 1 \end{bmatrix}, \vec{u}_4 = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$$

(a) Prove that $\{\vec{u}_1, \vec{u}_2, \vec{u}_3, \vec{u}_4\}$ is an orthogonal basis for \mathbb{R}^4 .

(b) Express
$$\vec{v} = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix}$$
 as a linear combination of $\vec{u}_1, \vec{u}_2, \vec{u}_3, \vec{u}_4$.

Question 3. Notice that $\{\vec{v}_1, \vec{v}_2, \vec{v}_3\}$, where

$$\vec{v}_1 = \begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \end{bmatrix}, \vec{v}_2 = \begin{bmatrix} 1 \\ 1 \\ -1 \\ 1 \end{bmatrix}, \vec{v}_3 = \begin{bmatrix} -1 \\ 2 \\ 1 \\ 0 \end{bmatrix},$$

is an orthogonal subset of \mathbb{R}^4 .

(1) Find a fourth vector $\vec{v}_4 \in \mathbb{R}^4$ that $\{\vec{v}_1, \vec{v}_2, \vec{v}_3, \vec{v}_4\}$ is an orthogonal basis for \mathbb{R}^4 .

(2) Find the orthogonal projection of
$$\vec{y} = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$$
 onto $V = \text{Span}\{\vec{v}_1, \vec{v}_2, \vec{v}_3\}$.

Question 4. Find scalars a, b, c, d, e, f, g such that the vectors

$$\vec{u} = \begin{bmatrix} a \\ d \\ f \end{bmatrix}, \vec{v} = \begin{bmatrix} b \\ 1 \\ g \end{bmatrix}, \vec{w} = \begin{bmatrix} c \\ e \\ 1/2 \end{bmatrix}$$

are orthonormal.

Question 5. Let *P* be the plane in \mathbb{R}^3 defined by the equation -3x + y + z = 0.

- (a) Find an orthogonal basis for P.
- (b) Find the shortest distance from (1, 1, 1) to the plane P.

Question 6. Show that an orthogonal transformation L from \mathbb{R}^n to \mathbb{R}^n preserves angles: The angle between two nonzero vectors \vec{v} and \vec{w} in \mathbb{R}^n equals the angle between $L(\vec{v})$ and $L(\vec{w})$. Conversely, is any linear transformation that preserves angles orthogonal?

Question 7. True or False. (Prove or explain the reason or provide a counter example for the false statement.)

- (1) If a matrix A is orthogonal, then A^2 is orthogonal.
- (2) If a matrix A is orthogonal, then A^T is orthogonal.
- (3) Rows of an orthogonal matrix A are orthogonal.
- (4) There exists an orthogonal transformation $T: \mathbb{R}^3 \to \mathbb{R}^3$ such that

$$T\begin{pmatrix} 1\\2\\3 \end{pmatrix} = \begin{bmatrix} 3\\2\\1 \end{bmatrix} \text{ and } T\begin{pmatrix} 1\\1\\1 \end{bmatrix} = \begin{bmatrix} 0\\3\\1 \end{bmatrix}$$

- (5) If A is any $m \times n$ matrix, then $A^T A$ and AA^T are symmetric.
- (6) If $n \times n$ matrices A and B are symmetric, then AB is symmetric.
- (7) If an $n \times n$ matrix A is symmetric, then A^k is symmetric.
- (8) If an $n \times n$ invertible matrix A is symmetric, then A^{-1} is symmetric.
- (9) If matrices A and S are orthogonal, then $S^{-1}AS$ is orthogonal.
- (10) the entries of orthogonal matrices are less than or equal to 1.
- (11) If A is invertible and $A = A^{-1}$, then A is orthogonal.

Question 8. Let $c_1, ..., c_n$ be positive numbers. The weighted dot product on \mathbb{R}^n is

$$\langle \vec{v}, \vec{w} \rangle := \sum_{i=1}^{n} c_i v_i w_i.$$

Verify that weighted dot product satisfies all axioms of definition of inner product..

Question 9. Does the formula $||\vec{x}|| := \sum_{i=1}^{n} x_i^2$ define a norm on \mathbb{R}^n ?

Question 10. Among all the unit vectors $\vec{x} \in \mathbb{R}^4$, find the one for which the sum $x_1 + 2x_2 + 3x_3 + 4x_4$ is minimal. What is the minimal value?

Question 11. Show that the following formula defines an inner product on the vector space of all $m \times n$ matrices.

$$\langle A, B \rangle := \operatorname{trace}(A^T B).$$