

NIM : H1D022031

Mata Kuliah : Pemrograman Sistem Tertanam

Shift Baru/Lama : A-I-H / I

Tugas Pertemuan 3

Source Code:

```
#include <Arduino.h>
// deklarasi fungsi
int trigPin = D0;
int echoPin = D1;
int LED = D2;
long duration;
long distance;
void setup() {
  pinMode(LED, OUTPUT);
  pinMode(trigPin, OUTPUT);
  pinMode(echoPin, INPUT);
  Serial.begin(9600);
}
void loop() {
  digitalWrite(trigPin, LOW);
  delayMicroseconds(5);
  digitalWrite(trigPin, HIGH);
  delayMicroseconds(10);
  digitalWrite(trigPin, LOW);
  duration = pulseIn(echoPin, HIGH);
  distance = 0.034 * duration / 2;
  Serial.print("Jarak: ");
  Serial.print(distance);
  Serial.println("cm");
  if (distance <= 10){</pre>
    digitalWrite(LED, HIGH);
  } else {
    digitalWrite(LED, LOW);
  delay(1000);
}
```


NIM : H1D022031

Mata Kuliah : Pemrograman Sistem Tertanam

Shift Baru/Lama : A-I-H / I

Penjelasan fungsi setiap blok kode:

1. Deklarasi Variabel dan Pin

```
int trigPin = D0;
int echoPin = D1;
int LED = D2;

long duration;
long distance;
```

Penjelasan:

- trigPin dan echoPin: Digunakan untuk mengontrol dan menerima sinyal dari sensor ultrasonik.
- LED: Digunakan sebagai indikator yang akan menyala jika jarak kurang dari atau sama dengan 10 cm.
- duration: Menyimpan waktu pantulan gelombang ultrasonik.
- distance: Menyimpan hasil perhitungan jarak berdasarkan durasi gelombang ultrasonik.

2. Fungsi `setup()`

```
void setup() {
  pinMode(LED, OUTPUT);
  pinMode(trigPin, OUTPUT);
  pinMode(echoPin, INPUT);
  Serial.begin(9600);
}
```

Penjelasan:

- pinMode(LED, OUTPUT); → Menyetel pin LED sebagai output.
- pinMode(trigPin, OUTPUT); → Menyetel pin pemicu sensor ultrasonik sebagai output.
- pinMode(echoPin, INPUT); → Menyetel pin echo sensor ultrasonik sebagai input.
- Serial.begin(9600); → Mengaktifkan komunikasi serial dengan baud rate 9600 untuk menampilkan jarak di Serial Monitor.

3. Fungsi 'loop()'

```
void loop() {
  digitalWrite(trigPin, LOW);
  delayMicroseconds(5);
```


NIM : H1D022031

Mata Kuliah : Pemrograman Sistem Tertanam

Shift Baru/Lama : A-I-H / I

```
digitalWrite(trigPin, HIGH);
delayMicroseconds(10);
digitalWrite(trigPin, LOW);
```

Penjelasan:

- Mengirim sinyal ultrasonik:
 - trigPin disetel LOW selama 5 mikrodetik untuk memastikan kondisi awal.
 - trigPin disetel HIGH selama 10 mikrodetik agar sensor mengirimkan gelombang ultrasonik.
 - trigPin disetel LOW kembali setelah pengiriman sinyal selesai.

4. Menghitung Durasi dan Jarak

```
duration = pulseIn(echoPin, HIGH);
distance = 0.034 * duration / 2;
```

Penjelasan:

- pulseIn(echoPin, HIGH); → Mengukur durasi (waktu pantulan) dari gelombang ultrasonik yang diterima kembali oleh sensor.
- Menghitung jarak dengan rumus:

$$distance = \frac{kecepatan \, suara \, \times duration}{2}$$

- Kecepatan suara di udara ≈ 0.034 cm/ μ s.
- Dibagi 2 karena sinyal bergerak bolak-balik (dari sensor ke objek dan kembali ke sensor).

5. Menampilkan Hasil dan Kontrol LED

```
Serial.print("Jarak: ");
Serial.print(distance);
Serial.println("cm");
```

Penjelasan:

• Menampilkan hasil perhitungan jarak ke Serial Monitor.

```
if (distance <= 10){
    digitalWrite(LED, HIGH);
} else {
    digitalWrite(LED, LOW);</pre>
```


NIM : H1D022031

Mata Kuliah : Pemrograman Sistem Tertanam

Shift Baru/Lama : A-I-H / I

}

Penjelasan:

- Jika jarak $\leq 10 \text{ cm} \rightarrow \text{LED}$ menyala (HIGH).
- Jika jarak $> 10 \text{ cm} \rightarrow \text{LED mati (LOW)}$.

6. Delay Sebelum Mengulang Loop

```
delay(1000);
}
```

Penjelasan:

• Menunggu 1 detik sebelum mengulangi proses pengukuran jarak berikutnya.

7. Kesimpulan

Program ini menggunakan sensor ultrasonik untuk mengukur jarak ke suatu objek dan menampilkan hasilnya di Serial Monitor. Jika objek berada dalam jarak ≤ 10 cm, maka LED akan menyala, jika lebih jauh, LED akan mati.