MATH 644

Chapter 5

SECTION 5.3: REMOVABLE SINGULARITIES

Contents

Riemann's Removable Singularity Theorem	2
Painlevé's Removability Theorem	ş
Formula For the Inverse	Ę

Created by: Pierre-Olivier Parisé Spring 2023

RIEMANN'S REMOVABLE SINGULARITY THEOREM

THEOREM 1. Suppose f is analytic in $\Omega = \{z : 0 < |z - a| < \delta\}$ and suppose

$$\lim_{z \to a} (z - a)f(z) = 0.$$

Then f extends to be analytic in $\{z: |z-a| < \delta\}$.

Proof.

Note:

• Important case: If f is bounded and analytic in a punctured neighborhood of a, then f extends to be analytic in a neighborhood of a.

Painlevé's Removability Theorem

DEFINITION 2. A compact set $E \subset \mathbb{C}$ has one-dimensional Hausdorff measure equal to 0 if for every $\varepsilon > 0$ there are finitely many disks D_j with radius r_j so that

$$E \subset \cup_j D_j$$
 and $\sum_j r_j < \varepsilon$.

THEOREM 3. Suppose $E \subset \mathbb{C}$ is a compact set with one-dimensional Hausdorff measure 0. If f is bounded and analytic on $U \setminus E$, where U is open and $E \subset U$, then f extends to be analytic in U.

FORMULA FOR THE INVERSE