Predicting Survival Outcomes of Helicopter Accidents

Bronwyn Middleton May 2019

Background

Helicopter Accidents usually make the news due to their severity

New Zealand helicopter crash: two Leicester City owner among five dead in helicopter crash Australians and four Britons among seven killed

Britons killed in Grand Canyon helicopter crash named

as newlyweds die in helicopter crash

Success Metrics

- To explore the dataset and find interesting facts
- To identify trends
- To discover whether predictions can be made about the severity of an accident given circumstances of the accident

Data Source

National Transportation Safety Board
Government agency

https://www.ntsb.gov/ layouts/ntsb.aviation/index.aspx

Exploratory Data Analysis

gitude	Airport Code	Airport Name	Injury Severity	Aircraft Damage	Aircraft Category	Registration Number	Mak
911944		N/A	Non-Fatal	Substantial	Helicopter	N593C	MI HELICOPTE
79723	FUL	Fullerton Muni	Unavailable	Substantia		N9964L	Cessn
331389	ММК	Meriden Markham Muni	Non-Fatal	Substantial	Airplane	N38658	Pipe
765000		N/A	Fatal(1)	Destroyed	Airplane	N7314D	Air Tracto
111667	T67	HICKS AIRFIELD	Non-Fatal	Substantial	Airplane	N801R	Zena

BUT df.isna.sum() = result 0

df.replace({' ': np.nan}, inplace = True)

event id	0
investigation type	3
accident number	0
event date	0
location	77
country	507
latitude	53929
longitude	53938
airport_code	35861
airport_name	30462
injury_severity	0
aircraft_damage	2622
aircraft_category	56737
registration_number	3633
make	71
model	99
amateur_built	635
number_of_engines	4670
engine_type	4004
far_description	57070
schedule	71221
purpose_of_flight	4613
air_carrier	78865
total_fatal_injuries	26214
total_serious_injuries	28762
total_minor_injuries	27568
total_uninjured	13968
weather_condition	2791
broad_phase_of_flight	6550
report_status	0
publication_date	14073

Approach

Drop columns that don't add value

- Subset dataset
 - Aircraft_category = Helicopters (2781 rows)
 - Investigation_type = Accidents (2701 rows)

https://en.wikipedia.org/wiki/Aviation accidents and incidents

	1996
e vent_id	
investigation_type	3
accident_number	0
event_date	0
location	77
country	507
latitude	53929
longitude	53938
airport_code	35861
airport_name	30462
injury_severity	0
aircraft_damage	2622
aircraft_category	56737
registration_number	3633
make	71
model	99
amateur_built	635
number_of_engines	4670
engine_type	4004
far_description	57070
schedule	71221
purpose_of_flight	4613
air_carrier	78865
total_fatal_injuries	26214
total_serious_injuries	28762
total_minor_injuries	27568
total_uninjured	13968
weather_condition	2791
broad_phase_of_flight	6550
report_status	0
publication date	14073

```
location6country13latitude583longitude584
```

```
geolocator = Nominatim()
city ="McCool Junction, Nebraska"
country ="united states"
loc = geolocator.geocode(city+','+ country)
print("latitude is :" ,loc.latitude,"\nlongtitude is:" ,loc.longitude)
latitude is : 40.7442155
longtitude is: -97.5935135
```


2/1/1982 - 16/4/2019

NTSB - 22 reports for UK helicopter accidents

AAIB - 1002 reports for UK helicopter accidents

https://www.gov.uk/aaib-reports?parent=&keywords=&aircraft_category%5B%5D=commercial-rotorcraft&aircraft_category%5B%5D=gener al-aviation-rotorcraft&date_of_occurrence%5Bfrom%5D=1%2F1%2F1982&date_of_occurrence%5Bto%5D=

Rest of the World vs US

Rest of the world (2:1)

Fatal = 314

Non Fatal = 150

US (1:6)

Fatal = 334

Non Fatal =1886

Cleaning

- White spaces between quote marks
 - o 'robinson'
- Inconsistency in naming convention of makes and models

```
r-22_beta r-22_hp r_22_beta r-22hp
r-22 r-22_beta_2 r22_-alpha
r22_beta_ii r-22_beta_ii r-22a
```

Feature Engineering

purpose_of_flight	pilot_type
personal or private	private
instructional	instructional
unknown	unknown
All others	professional

Injuries by pilot type (mean)

Professional pilotsfatality rate

Instructional flights

```
len(us_df[(us_df['pilot_type'] == 'instructional') & (us_df['fatalities'] != 'fatal')&(us_df['people_on_board']==2)])
318
len(us_df[(us_df['pilot_type'] == 'instructional') & (us_df['fatalities'] != 'fatal')&(us_df['people_on_board']==1)])
65
len(us_df[(us_df['pilot_type'] == 'instructional') & (us_df['fatalities'] == 'fatal')&(us_df['people_on_board']==2)])
10
len(us_df[(us_df['pilot_type'] == 'instructional') & (us_df['fatalities'] == 'fatal')&(us_df['people_on_board']==1)])
7
```

Weather

Visual Meteorological Conditions:

VMC minima (day)

- One mile horizontal visibility
- Clear of clouds
- In sight of the ground

Weather Condition results

Weather Condition results

Exploratory Data Analysis (models)

- Several helicopter models
 - o <30

EDA - Helicopter Accidents over Time

Modelling

Classification problem:

Logistic Regression

KNN

Decision Tree

Random Forest

Consideration: Class imbalance

Baseline: 0.8570677877036259

272:1631

Modelling - Tree Models

Decision Trees

		precision	recall	f1-score
	0	0.86	1.00	0.92
	1	0.00	0.00	0.00
micro	avg	0.86	0.86	0.86
macro	-	0.43	0.50	0.46
weighted	avg	0.73	0.86	0.79

Random Forest

	precision	recall	f1-score
0	0.87	1.00	0.93
1	0.00	0.00	0.00
micro avg	0.87	0.87	0.87
macro avg	0.43	0.50	0.46
weighted avg	0.75	0.87	0.81

Modelling Logistic Regression (GridSearch)

```
LogisticRegression(C=0.19306977288832497, class_weight=None, dual=False, fit_intercept=True, intercept_scaling=1, max_iter=1000, multi_class='ovr', n_jobs=None, penalty='12', random_state=None, solver='newton-cg', tol=0.0001, verbose=0, warm_start=False)
```

Gives a test score of 0.850

		precision	recall	f1-score
	0	0.86	0.98	0.92
	1	0.53	0.15	0.24
micro	avg	0.85	0.85	0.85
macro		0.70	0.56	0.58
weighted		0.81	0.85	0.81

Modelling KNN

Gives a test score of 0.884

	precision	recall	f1-score
0	0.87	0.89	0.88
1	0.31	0.27	0.29
micro avg	0.80	0.80	0.80
macro avg	0.59	0.58	0.59
weighted avg	0.78	0.80	0.79

Risks and Limitations

- Data Provenance
- Aircraft Failure vs Pilot Error
- Currency of the Pilot
 - Total Number of Flying Hours
- Other Licences
- Accidents only but not non accident flights

Next Steps

To collect data from the Air Accident Investigation Branch

Look into areas that were not possible to be covered in this project

Summary

Several interesting insights during EDA

I do not believe these models are accurate enough to show me areas where predictions can be made

