

Master thesis

Social network analysis in academic environment

Bc. Jindřich Bär, 2024

Charles Explorer

- Open-source academic search engine developed for Charles University
- Search in people, courses, study programmes and publications
- Goal: improve UX over existing solutions + exploratory tool

- Available at https://explorer.cuni.cz
- Source available in <u>GitLab</u>.

Problems

- Existing data exports (SIS, WHOIS, Verso) are flawed
 - Data input inconsistencies, schema irregularity
 - Missing identifiers for guest authors(!), only names
- In-application ranking
 - The search result ranking is easily skewed
 - Producing unexpected results for certain queries
- Visualization tool provides unsatisfactory results
 - => Solution(?): Mining the social networks in the data

Identity inference

- Reconstructing the missing identifiers for external authors
- Baseline: Merging all authors of the same name
 - Test data evaluation:

Method	Value	
Macro-averaged F_1 score	0.874959	
Micro-averaged F_1 score	0.900994	

Proposed approach:

- Social-network based hierarchical merging
 - Performant implementation of distance matrix calculation
 - Hierarchical clustering with parametrized cutoff cophenetic distance

Evaluation

Figure 2.11: The F1 scores for the hierarchical clustering algorithm for different threshold values.¹⁴

- Proposed solution dominated by the naïve merging
- Likely caused by the specific data distribution in the input dataset

Result reranking

- Mitigating the effect of "SEO optimization"
- Global author / publication relevance:
 - Is not in the CUNI data
 - Federated queries to larger citation databases are infeasible
 - Can it be mined from semi-local neighborhoods in the social network?
- Searching for **correlation** between:
 - Node degree, centrality measures (Betweenness, Katz), node cut size
 - Search result ranking from Scopus (via nDCG), or
 - Citation and reference count for publications

Benchmark design

- Evaluating the proposed algorithms on a precomputed query set
 - The results must fairly cover the original dataset, w.r.t. faculty distribution
 - Wordnet seeding + "simulated annealing" search for the optimal KL
 - Comparing:
 - Proposed ranking based on local social network structure
 - VS
 - Result rankings from Scopus, or
 - Rankings based on citation / reference count

Evaluation

Feature	Coefficient	
charles_explorer_ranking	-0.23068	
centrality_1	0.08317	
centrality_2	0.01018	
degree	-0.08756	
katz_centrality	-0.00491	
node_cut	-0.02733	

Figure 3.10: Coefficients of the linear regression model for the linear combination of the original relevance scores and the social network metrics.

Figure 3.13: nDCG scores of 100 queries with different citation count prediction methods.

- Default Scopus ranking seems to be heavily full-text-relevance based
 - This means also potentially vulnerable to ASEO(!)
- Search for linear aggregation of local SocNet features yields promising results
 - nDCG weighs top results more, just like users would

Visualization

- Exploratory tool for the university structure
- More information passed "per view" + preattentive processing
- First implementation = causing user confusion and performance issues

Visualization, refined

- Removing unintuitive graph preprocessing (monopartite projection)
- Adding different modes (network / pie chart) less load on each visualization
- Adding interactive search => from static visualization to true exploratory tool

Questions

Bc. Jindřich Bär

https://github.com/barji

Attps://jindrich.bar

Deployment details

- 2 threads on Intel Xeon (~2015 2018)
- 8 GiB RAM (+ 8 GiB swap)
- 100 GiB HDD space

- PostgreSQL, Memgraph, Apache Solr, Node.JS, Python microservices
 - ∼1.1 million DB records, ~3 million (implicit & explicit) edges

- Over different categories:
 - p50 (median time) 1.19s for response (round-trip)
 - *p95: 3.38s* (round-trip)

Evaluation results

Figure 2.11: The F1 scores for the hierarchical clustering algorithm for different threshold values. [14]

After aggregation over all the queries, this gives us the following unfavorable statistics:

Mean	0.208727
Standard deviation	0.211699
Minimum	0.010101
25%	0.074786
50%	0.137028
75%	0.265263
Maximum	1.000000

Figure 3.7: Aggregated statistics of the F_1 score for the search results of Charles Explorer.

	dcg	ideg	ndcg
mean	14.919819	19.167405	0.761607
std	16.810894	17.665142	0.180979
min	0.094340	0.094340	0.405669
25%	5.250473	7.704989	0.627563
50%	9.527864	14.840570	0.736246
75%	18.064385	24.112511	0.934206
max	104.693354	104.693354	1.000000

Figure 3.9: Aggregated statistics of the nDCG score for the original search results of Charles Explorer ($query\ count = 149$).

Bc. Jindřich Bär

https://github.com/barji

https://jindrich.bar

