

Fachgebiet Halbleiterbauelemente
Praktikum Technologie und Bauelemente der Halbleitertechnik

Praktikum Technologie und Bauelemente der Halbleitertechnik

Dirk Barbendererde (321 836) Thomas Kapa () Alona Siebert () zg Dogan (326 048)

25. August 2012

Gruppe 1

Betreuer: Clemens Helfmeier Philipp Scholz

Inhaltsverzeichnis

1	Kennlinie	1
2	Schaltverhalten	1
	Emissionsmessung 3.1 Theorie der Emission	1

1 Kennlinie

Benennung der Dateien:

 $\mathsf{Kennlinie}_{WavernummerD}ie[Zeile,Spalte]_{M}ess_{messung}.mat$

100 μA Strombegrenzung Welche Diode? Welcher Manipulator

SMU1 = GND SMU2 = GND SMU3 = Var1

Unterdiffusion

unterspannung 0.0 2.4 0.5 3.8 0.8 4.5 1.0 5.0 1.3 5.5 1.8 6.7 2.5 8.2 3.0 9.2

TODO:

müssen wir die Dies durchnummerieren?

2 Schaltverhalten

3 Emissionsmessung

TODO:

Einleitung, Theorie, Verknüpfung, Messung, Ergebnisse, Auswertung

Eine Emissionsmessung ist in der Halbleitertechnologie insofern interessant, weil sie Erkenntnisse über charakteristische Eigenschaften des Halbleiters, in unserem Fall die selbst hergestellte Diode, liefert. Dazu gehören die Ladungsträgerlebensdauer $\tau_{n/p}$ und die Diffusionslänge $L_{n/p}$. Auf die Lebensdauer lässt sich mithilfe der Diffusionslänge und des Diffusionskoeffizienten schließen. Dieser ist ein materialabhängiger Wert, welcher von uns nicht weiter beachtet wird. Der folgende Zusammenhang hilft bei der Berechnung von $\tau_{n/p}$:

$$L_{n/p} = \sqrt{\tau_{n/p} \cdot D_{n/p}}$$

Ziel unserer Messung aber, war die Bestimmung der Diffusionslänge in unserer Diode. Dieser wurde über die realisierte Intensitätsmessung anhand der Emissionen in der Diode ermittelt. Dabei wurden folgende Proportionalitätsverhätnisse verwendet:

$$I(x) \sim \Delta n \sim exp(-\frac{x}{L_n})$$

Hierbei werden Strahlungsintensität ins Verhältnis mit der Minoritätsüberschussladungträgerkonzentration, hier frei bewegliche Elektronen im p-Gebiet, und dieser wiederum ins Verhältnis mit einem Exponentialtherm gesetzt. Daher kann man die Intensitätsmessung direkt mit diesem Therm in Verbindung setzen, welcher in seinem Argument die gesuchte Diffusionslänge beinhaltet. Weiteres zur Berechnung des L_n steht in der Auswertung der Messung.

Um aber die Intensitätsmessung verstehen zu können müssen einige grundlegende Theorien der Halbleiter bezüglich ihrer Typen und ihrer Rekombinationsarten behandelt und nachvollzogen werden.

Daher gibt es vor der Versuchsdurchführung und der Auswertung zunächst eine kleine Exkursion in den theoretischen Bereich.

3.1 Direkter und indirekter Halbleiter

Es gibt zwei Arten von Halbleitern, die direkten und die indirekten Halbleiter. Diese unterscheiden sich darin, dass die Rekombination eines Ladungsträgers aus dem Leitungs- in das Valenzband unterschiedliche Vorraussetzungen erfordert.

3.1.1 direkter Halbleiter

Die Rekombination bei einem direkten Halbleiter ist relativ simpel.

3.1.2 indirekter Halbleiter