Teoria Obwodów i Sygnałów (III rok)

Zadania na ćwiczenia, zestaw 2

1. Stosując twierdzenie Thevenina wyznaczyć prąd w oporniku R_x w obwodach przedstawionych na rysunku. Dane: U_1 =8V, I_1 =9mA, R_1 = R_3 =2k Ω , R_2 = R_4 = R_5 =1k Ω , R_x =4k Ω .

- 2. Za pomocą twierdzenia Nortona obliczyć prąd I płynący przez opornik R w obwodzie pokazanym na rysunku. Dane: U_1 =60V, U_2 =50V, R_1 =3k Ω , R_2 =2k Ω , R=6k Ω .
- 3. Obliczyć wartość napięcia V_x w zależności od konfiguracji przełączników S_i z rysunku obok. Każdy przełącznik jest zawsze podłączony albo do masy (stan 0) albo do napięcia V_{ref} (stan 1). Do końcówki V_{ref} należy podłączyć źródło napięcia o takiej wartości. Symbol ▲ oznacza potencjał tzw. masy. Wszystkie symbole masy traktujemy jakby były połączone za sobą.
- 4. Stosując twierdzenie a) Nortona b) Thevenina wyznaczyć spadek napięcia na oporniku R_x w obwodzie przedstawionym na rysunku. Dane: U_1 =16V, I_1 =9mA, R_1 =1k Ω , R_2 =2k Ω , R_3 =6k Ω , R_4 =2k Ω , R_5 =4k Ω , R_x =1k Ω .

