Congratulations! You passed!

Grade received 90%

Latest Submission Grade 90%

To pass 80% or higher

Go to next item

1/1 point

	1.	What does	a neuron	compute?
--	----	-----------	----------	----------

A neuron computes the mean of all features before applying the output to an activation

- A neuron computes a function g that scales the input x linearly (Wx + b)
- \bigcirc A neuron computes an activation function followed by a linear function z=Wx+b
- lacksquare A neuron computes a linear function z=Wx+b followed by an activation function

∠⁷ Expand

⊘ Correct

Correct, we generally say that the output of a neuron is a = g(Wx + b) where g is the activation function (sigmoid, tanh, ReLU, ...).

2. Which of these is the "Logistic Loss"?

1/1 point

- $igcup \mathcal{L}^{(i)}(\hat{y}^{(i)},y^{(i)}) = \mid y^{(i)} \hat{y}^{(i)} \mid^2$
- $\bigcirc \ \, \mathcal{L}^{(i)}(\hat{y}^{(i)},y^{(i)}) = max(0,y^{(i)}-\hat{y}^{(i)})$
- $\bigcirc \;\; \mathcal{L}^{(i)}(\hat{y}^{(i)}, y^{(i)}) = \mid y^{(i)} \hat{y}^{(i)} \mid$
- \bigcirc $\mathcal{L}^{(i)}(\hat{y}^{(i)}, y^{(i)}) = -(y^{(i)}\log(\hat{y}^{(i)}) + (1 y^{(i)})\log(1 \hat{y}^{(i)})$

∠ Expand

⊘ Correct

Correct, this is the logistic loss you've seen in lecture!

3. Suppose img is a (32,32,3) array, representing a 32x32 image with 3 color channels red, green and blue. How do you reshape this into a column vector x?

1/1 point

- x = img.reshape((32*32,3))
- x = img.reshape((1,32*32,3))
- x = img.reshape((3,32*32))
- x = img.reshape((32*32*3,1))

∠⁷ Expand

⊘ Correct

4. Consider the following random arrays a and b, and c:

1/1 point

a = np.random.randn(3,4) # a.shape = (3,4)

b = np.random.randn(1, 4) #b.shape = (1, 4)

c = a + b

What will be the shape of c?

- c.shape = (1, 4)
- c.shape = (3, 1)
- c.shape = (3, 4)
- The computation cannot happen because it is not possible to broadcast more than one dimension.

∠ⁿ Expand

	○ Correct Yes. Broadcasting is used, so row b is copied 3 times so it can be summed to each row of a.			
5.	Consider the two following random arrays a and b :	1/1 point		
	a = np.random.randn(4,3) #a.shape = (4,3)	_/		
	b = np.random.randn(1, 3) #b.shape = (1, 3)			
	b = np.ranaom.ranan(1, s) * o.snape = (1, s) $c = a * b$			
	What will be the shape of c ?			
	That the die diape of e.			
	The computation cannot happen because the sizes don't match.			
	(a) c.shape = (4, 3)			
	 The computation cannot happen because it is not possible to broadcast more than one dimension. 			
	c.shape = (1, 3)			
	∠ [™] Expand			
	 Correct Yes. Broadcasting is invoked, so row b is multiplied element-wise with each row of a to create c. 			
6.	Suppose our input batch consists of 8 grayscale images, each of dimension 8x8. We reshape these images into feature column vectors \mathbf{x}^j . Remember that $X = \left[\mathbf{x}^{(1)}\mathbf{x}^{(2)}\cdots\mathbf{x}^{(8)}\right]$. What is the dimension of X ?	1/1 point		
	(8, 64)			
	(8, 8, 8)			
	(64, 8)			
	(512, 1)			
	∠ ⁷ Expand			
	\odot Correct Yes. After converting the 8x8 gray scale images to a column vector we get a vector of size 64 , thus X has dimension $(64,8)$.			
7				
٠.	Consider the following array:	1/1 point		
	a = np.array([[2,1],[1,3]])			
	What is the result of $a*a$?			
	$ \bigcirc $ $ \begin{pmatrix} 4 & 1 \\ 1 & 9 \end{pmatrix} $			
	The computation cannot happen because the sizes don't match. It's going to be an			
	"Error"! (5 5)			
	$\begin{pmatrix} 5 & 5 \\ 5 & 10 \end{pmatrix}$			
	· /4 2\			
	∠ [™] Expand			
	○ Correct Yes, recall that * indicates element-wise multiplication.			
8.	Consider the following code snippet:	0 / 1 point		
	a.shape = (4,3)			
	b.shape = (4,1)			
	facility and (2)			
	for i in range(3):			
	for j in range(4):			
	c[i][j] = a[j][i] + b[j]			
	How do you vectorize this?			

_ c = a + b

- ___ c = a.T + b.T
- c = a + b.T
- c = a.T + b

No. The a[j][i] being assigned to a[i][j] indicates that we are using a.T.

9. Consider the following arrays:

 $a=np.array\big([[1,1],[1,-1]]\big)$

 $b = np.array \big([[2],[3]] \big)$

c = a + b

Which of the following arrays is stored in c?

- The computation cannot happen because the sizes don't match. It's going to be an
- $\begin{array}{cccc} & 3 & 4 \\ & 3 & 2 \end{array}$
- $\begin{pmatrix}
 3 & 3 \\
 3 & 1 \\
 4 & 4
 \end{pmatrix}$

⊘ Correct

Yes. The array b is a column vector. This is copied two times and added to the array a to construct the array c.

 ${\bf 10.}\ {\bf Consider}\ {\bf the}\ {\bf following}\ {\bf computation}\ {\bf graph}.$

1/1 point

1/1 point

What is the output J?

- $\bigcirc \ \ J=(b-1)*(c+a)$
- $\bigcirc \quad J = (c-1)*(b+a)$
- $\bigcirc \quad J = a*b+b*c+a*c$

∠⁷ Expand

Yes. J = u + v - w = a * b + a * c - (b + c) = a * (b + c) - (b + c) = (a - 1) * (b + c).