Речь

Слайд 1 "Титульный лист"

Здравствуйте, уважаемая комиссия. Я - Лукьянчикова Александра Валерьевна. Я представляю свое исследование на тему "Модель и алгоритмы поиска сигналов в звуковых базах данных". Научным руководителем работы выступает кандидат технических наук, доцент Гай Василий Евгеньевич.

Слайд 2 "Цель и задачи"

Целью данного исследования является разработка новой модели и алгоритмов поиска сигналов в звуковых базах данных. Для достижения поставленной цели были решены следующие задачи: анализ существующих методов поиска звуковых сигналов в базах данных, разработка алгоритма поиска сигналов в звуковых базах данных и проведение вычислительного эксперимента, подтверждающего работоспособности предложенного метода.

Слайд 3 "Научная новизна"

Научная новизна предложенного метода заключается в разработке новой информационной модели поиска сигналов в звуковых базах данных и использование алгоритма формирования признакового описания на основе теории активного восприятия.

Слайд 4 "Информационная модель"

На этом слайде изображена информационная модель разработанной системы. Здесь подробно расписаны этапы сохранения звукового сигнала в базу данных и этап поиска сигнала в базе данных.

Слайд 5 "Предварительная обработка"

На этапе предварительной обработки все звуковые сигналы приводятся к единому битрейту. Далее звуковые сигналы разбиваются на сегменты заданной длины. По каждому из полученных сегментов вычисляется массив сумм амплитудов отсчетов.

Слайд 6 "Предварительная обработка" картинка

На этом слайде видно как исходный сигнал разбивается на сегменты, суммируются амплитуды отсчетов отдельных сегментов и получается новый сигнал.

Слайд 7 "Формирование признакового описания"

После этапа предварительной обработки идет этап формирование признакового описания. Признаковое описание для полученных сегментов формируется на основе спектральных коэффициентов U-преобразования. U-преобразование является главным в Теории Активного Восприятия.

Слайд 8 "Принятие решения"

На этапе принятия решения происходит формирование дерева базы данных и дерева сигнала-запроса. Все полученные сегменты помещаются в корень дерева. Для формирования узлов берется сегмент из корня и делится пополам, полученные 2 новых сегмента распределяются в узлы. Эта процедура повторяется для всех сегментов корня.

Слайд 9 "Расстояние Хемминга"

В каком из узлов будет лежать полученный после деления сегмент, определяется по расстоянию Хэмминга. Для полученных сегментов считается признаковое описание, сравнивается с заданными шаблонами Т1 и Т2 и вычисляется расстояние Хэмминга. Для какого из шаблонов расстояние оказывается меньше, в тот узел определяется текущий сегмент.

Слайд 10 "Сравнение"

Сравнение происходит на нижнем уровне бинарного дерева базы данных и дерева-запроса. В соответствующих терминальных узлах этих деревьев ищутся схожие признаковые описания сегментов.

В дереве базы данных каждому сегменту в соответствие ставится идентификатор песни и номер сегмента в рамках этой песни.

Из всех найденных похожих сегментов формируется массив, который сортируется сначала по идентификатору песни, а потом по номеру сегмента в рамках одной песни. Результатом поиска будет максимальное число последовательно идущих сегментов, принадлежащих одной песне (в данном случае, это песня А).

Слайд 11 "Вычислительный эксперимент"

Для вычислительного эксперимента была сформирована база из 1000 звуковых сигналов.

В качестве запросов использовалась 1000 звуковых сигналов.

В качестве изменяемых параметров были взяты количество уровней в дереве, длительность входного запроса, величина сегмента разбиения звукового сигнала в дереве, величина смещения сегментов в запросе.

Слайд 12 "В нормальных условиях"

Здесь представлены конфигурации при которых получилось наилучшая точность поиска в нормальных условиях.

Это 7 уровней разложения в дереве, 4 секунды входной запрос и величина сегмента разбиения, смещение 10 отсчетов. В результате - 95,8% точность поиска.

Слайд 13 "В условиях шума"

В условиях шума при уровне 0, 10 и 20 дБ лучшие результаты получились на этой же конфигурации. Точность поиска соответственно составила 87,5%, 91,6%, 95,8%.

Слайд 14 "Сравнение"

Здесь показано сравнение показателей точности поиска в условиях шума для разработанного алгоритма и алгоритма, который использует Шазам. При уровне в 0 дБ разработанный алгоритм даже превосходит по точности поиска алгоритм Шазама.

Слайд 15 "Итоги"

В результате проведенного исследования были изучены существующие методы поиска сигналов в звуковых базах данных, предложен новый алгоритм поиска сигнала в звуковых базах данных, разработан программный продукт для проведения исследования, проведен вычислительный эксперимент, подтверждающий работоспособность предложенного метода.

Слайд 16 "Спасибо за внимание"

На этом у меня все. Спасибо за внимание.