

广义逆与矩阵方程求解

主 讲人: 马丽艳

办 公 室: 计1013

Email: liyanma@t.shu.edu.cn

计算机工程与科学学院

作业

矩阵论及其工程应用, p.210

- 6.4
- 6.5
- 6.7
- **6.9**
- 6.13

5/7/2020

作业

- 6.4 求 3×1 向量 $a = [1, 5, 7]^T$ 的 Moore-Penrose 逆矩阵。
- 6.5 证明 $A(A^TA)^{-2}A^T$ 是 AA^T 的 Moore-Perrose 逆矩阵。
- **6.7** 设 *A* 是一对称矩阵, 并且 *M* 是 *A* 的 Moore-Penrose 逆矩阵。证明: 矩阵 *M* ² 是 *A*² 的 Moore-Penrose 逆矩阵。
 - 6.9 己知矩阵

$$\mathbf{A} = \left[\begin{array}{rrrr} 1 & 0 & -1 & 1 \\ 0 & 2 & 2 & 2 \\ -1 & 4 & 5 & 3 \end{array} \right]$$

利用矩阵的满秩分解法,求 Moore-Penrose 逆矩阵 A^{\dagger} 。

5/7/2020

作业

6.13 考虑线性方程 $Ax + \epsilon = x$, 其中, ϵ 为加性有色噪声向量, 满足条件 $E\{\epsilon\} = 0$ 和 $E\{\epsilon\epsilon^T\} = R$ 。令 R 已知, 并使用加权误差函数 $Q(x) = \epsilon^T W \epsilon$ 作为求参数向量 x 最优估计 \hat{x}_{WLS} 的代价函数。这种方法称为加权最小二乘方法。证明

$$\hat{\boldsymbol{x}}_{\mathrm{WLS}} = (\boldsymbol{A}^{\mathrm{T}} \boldsymbol{W} \boldsymbol{A})^{-1} \boldsymbol{A}^{\mathrm{T}} \boldsymbol{W} \boldsymbol{x}$$

其中, 加权矩阵 W 的最优选择为 $W_{opt} = R^{-1}$ 。

谢 谢!