7.18 Theorem There exists a real continuous function on the real line which is nowhere differentiable.

 $\varphi(x+2)=\varphi(x).$

Proof Define

$$\varphi(x) = |x| \qquad (-1 \le x \le 1)$$

(34)and extend the definition of $\varphi(x)$ to all real x by requiring that

(35)

Then, for all s and t,

(39)

(36)
$$|\varphi(s) - \varphi(t)| \le |s - t|$$
.

In particular, φ is continuous on \mathbb{R}^1 . Define

(37)
$$f(x) = \sum_{n=0}^{\infty} (\frac{3}{4})^n \varphi(4^n x).$$

Since $0 \le \varphi \le 1$, Theorem 7.10 shows that the series (37) converges uniformly on R^1 . By Theorem 7.12, f is continuous on R^1 .

Now fix a real number x and a positive integer m. Put

(38)
$$\delta_m = \pm \frac{1}{2} \cdot 4^{-m}$$
 where the sign is so chosen that no integer lies between $4^m x$ and $4^m (x + \delta_m)$. This can be done, since $4^m |\delta_m| = \frac{1}{2}$. Define

 $\gamma_n = \frac{\varphi(4^n(x+\delta_m)) - \varphi(4^nx)}{\delta_m}.$

When n > m, then $4^n \delta_m$ is an even integer, so that $\gamma_n = 0$. When $0 \le n \le m$, (36) implies that $|\gamma_n| \leq 4^n$.

Since
$$|\gamma_m| = 4^m$$
, we conclude that
$$\left| \frac{f(x + \delta_m) - f(x)}{\delta_m} \right| = \left| \sum_{n=0}^m \left(\frac{3}{4} \right)^n \gamma_n \right|$$
$$\geq 3^m - \sum_{n=0}^{m-1} 3^n$$

As $m \to \infty$, $\delta_m \to 0$. It follows that f is not differentiable at x.

Rudin, Walter (1976). Principles of mathematical analysis (Third ed.). New York

A Bandit Approach to Indirect Inference

Erik Ildring

A Bandit Approach to Indirect Inference

Parameter estimation

Family of parametric models:

$$\mathcal{M} = \{ M(\theta) : \theta \in \Theta \}$$

Parameter estimation method:

$$D \mapsto \theta \in \Theta$$

Indirect Inference

Data points: D_N (By physical process)

Models: $\mathcal{M} = \{M(\theta) : \theta \in \Theta\}$ (Intractable)

Intractable: Mapping from D_N to θ difficult to describe or computationally expensive to calculate.

Auxiliary models:
$$\mathcal{M}_a = \left\{ M_a(\beta) : \beta \in B \subseteq \mathbb{R}^k \right\}$$

Indirect Inference (cont.)

$$J(\theta) = (\beta(\theta) - \beta^*)^T W(\beta(\theta) - \beta^*)$$

Stochastic bandit

Goal: In T rounds, find the arm with the best expected reward.

Regret

Expected reward of $\mathbf{a_t}$ $\mu(\ a_t)$

Best expected reward μ^*

$$R^{A}(T) = T \mu^* - \sum_{t=1}^{T} \mu(a_t)$$

Cost of learning

What we have done...

- Treat each parameter as an arm
- Let reward distribution for each arm θ_i be $J(\theta_i)$
- Agent explores set of arms to determine the arm with largest expected reward, in other words finds the parameter which minimizes J.

Example: Gaussian random variables

Data:
$$D \sim N(\mu, \sigma^2)$$

Models:
$$M(\theta) = N(\theta_1, \theta_2^2)$$

Auxiliary parameters:
$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$
 $S = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})^2}$

Agents: UCB1 and ε-greedy

Result: Gaussian random variables

Result: Gaussian random variables

$$\mu = 3.10, \ \sigma^2 = 2.82^2$$

Conclusions

- Present indirect inference as a stochastic bandit problem
- Demonstrated to work on simple example

Example: Bimodal Gaussian random variables

Data:
$$D \sim p \cdot N(\mu_1, \sigma_1^2) + (1-p) \cdot N(\mu_2, \sigma_2^2)$$

$$\begin{aligned} \text{Models:} \quad & M(\theta) = \theta_5 \cdot \textit{N} \Big(\, \theta_1 \, , \, \theta_2^{\, 2} \Big) \, + \, \Big(\, 1 - \theta_5 \Big) \cdot \textit{N} \Big(\, \theta_3 \, , \, \theta_4^{\, 2} \Big), \\ & \theta = \Big(\, \theta_1 \, , \, \theta_2 \, , \, \theta_3 \, , \, \theta_4 \, , \, \, \theta_5 \, \Big)^T \end{aligned}$$

Auxiliary parameters: k-quantiles

Agents: UCB1

Result: Bimodal Gaussian random variables

