ABC Inc.

Case Study

Jared Raphael
Nick Morris
Domenico Colati
Burake Tave

- 1. Description
 - a. The Team
 - b. The Problem
 - c. The Alternatives
- 2. The Solution
- 3. Financial Metrics
- 4. Equipment Specifications
- 5. Improved Operation
- 6. The Layout

The Team

- ABC Inc. is a distribution corporation struggling to keep up with the changing demands of their 200 Brick & Mortar retail stores and rapidly growing small stores and online orders.
 - Their current picking process is designed to handle the initial proportions of demand, 50/50 Repack to Full Case orders.
 - The current proportions of demand require the ABC's East and West distribution centers to handle 80/20 Repack to Full Case orders.
- The current system of operation can't handle multiple units of measure
 - o ie. Cases, Eaches, Pallets, etc.
- The lead time of Replenishment store orders can take up to 10 days
- The East and West distribution centers are currently optimized to handle Brick & Mortar store orders and need to be optimized for Brick & Mortar, Small Store, and Online orders

The Alternatives

- → Option 1: 5% order cluster picking with automated print and apply labeling.
- → Option 2: 5/6 order cluster picking directed with voice instead of radio frequency terminals.
- → Option 3: Batch-pick-to-put with non-automated picking. Put-to-light system is utilized at put-stations.
- → Option 4: Batch-pick-to-put incorporating an automated goods-to-person machine with a Put-to-Light system at put-stations

- 1. Description
- 2. The Solution
 - a. Pick-To-Light
 - b. Put-To-Light
 - c. WMS, MRP, ERP Software Systems
 - d. Shipping Sorter
- 3. Financial Metrics
- 4. Equipment Specifications
- 5. Improved Operation
- 6. The Layout

Pick-To-Light

- Locations light up that need to be picked from
- Quantity to be picked is specified
- Once quantity is picked, button is pressed to confirm pick
- Worker then moves on to next lit up location
- Increases efficiency which in turn relieves congestion of workflow
- Helps to improve lead-time

Put-To-Light

- Locations light up that house order SKUs
- Quantity to be put in order is specified
- Once quantity is put, button is pressed to confirm
- Worker then moves on to next lit up location
- Significantly increases efficiency and order accuracy
- Also helps to improve lead time

Warehouse Management System

- Identifies pickers' locations and properly allocates work to each picker based on this location
- Coordinates replenishment of pick and storage locations
- Determines optimal placement of products for storage
- Allows rush orders to be programmed and will sort orders based on priority, customer, ship to, carrier, etc.
- Recognizes problem locations and can allocate employees and available locations to pick up the extra slack to work around the problem
- Minimizes overstock and level of inventory
- Handles multiple units of measure (each, case, etc.)

Material Requirements Planning

- Monitors levels of inventory
- Signals for replenishment
- The capacity of "finger storage" won't be an issue with efficient replenishment of storage locations.
- The MRP software will track the current inventory levels while the WMS software coordinates replenishment tasks.

Enterprise Resource Planning

- 1. Manages commercial functions of the business such as planning, inventory, purchasing, finance, HR, etc.
- 1. Automatic and coherent workflow from one department to another to ensure smooth and quicker transactions
- 1. Allows complete visibility of all the individual department processes
- 1. It monitors the transactions and sales of store, and is compatible with MRP and WMS to handle changes in order proportions.

Shipping Sorter

- Allows for various products of multiple orders in each pick zone to be put onto the conveyor system.
- Will sort and send products to the correct location of the facility to satisfy Brick & Mortar, small store, and online orders as well as orders sent to 3PL.
- Shorter lead times due to automated sortation of clustered orders.
 - Utilizes scanners and diverts.

- 1. Description
- 2. The Solution
- 3. Financial Metrics
 - a. Profit Baseline
 - b. The Options
- 4. Equipment Specifications
- 5. Improved Operation
- 6. The Layout

Profit Baseline

Product	Nov/Dec Revenue	Avg. Price	Cubic [in] (Min)	Cubic [in] (Max)
TV	\$43,671,100.00	\$550.00	4900	5500
Home Theatre System	\$2,368,000.00	\$500.00	15000	1000000
Camera	\$295,628,000.00	\$400.00	150	200
Car Audio Equipment	\$122,371,200.00	\$400.00	5500	15000
Laptop	\$370,051,500.00	\$700.00	500	800
Tablet	\$202,769,500.00	\$250.00	250	400
Cell Phone	\$449,118,075.00	\$175.00	30	80
Landline	\$12,699,900.00	\$50.00	400	500
GPS	\$82,887,800.00	\$200.00	200	250
Video Games	\$279,020,950.00	\$50.00	0	30
Office Equipment	\$31,027,960.00	\$40.00	800	1800
Personal Audio Equipment	\$309,161,600.00	\$200.00	80	150
Home Audio Equipment	\$59,070,500.00	\$100.00	1800	4900

	5	5	4	4	3			2	1		<u>Year</u>
Profit Baseline \$2,372,838,389.25 \$2,467,751,924.82 \$2,566,462,001.81 \$2,669,120,481.89 \$2,775,885,30	85,301.16	\$2,775,885	20,481.89	\$2,669,12	462,001.81	\$2,566,	1,924.82	\$2,467,751	2,838,389.25	e \$2,372	Profit Baseline

The Options

<u>Option</u>	Efficiency Profit	Total Cost	Net Present Value
Automated Labeling	\$31,774,219.49	\$1,124,812.00	\$26,378,813.38
Voice Terminals	\$57,620,705.99	\$4,236,734.00	\$45,942,813.95
Put to Light	\$80,028,758.32	\$3,039,038.00	\$65,530,970.66
Goods-to-Man Machine	\$121,396,248.51	\$17,729,300.00	\$55,216,125.32
Solution: PTL, WMS, MRP, ERP, Sorter	\$431,914,375.27	\$37,956,830.00	\$316,443,252.98

- 1. Description
- 2. The Solution
- 3. Financial Metrics
- 4. Equipment Specifications
 - a. WMS, MRP, ERP, Shipping Sorter
- 5. Improved Operation
- 6. The Layout

Equipment Specifications

1. WMS Software:

- Platform: Windows
- Processor: Intel Core 2 Duo Recommended
- Memory: 1 GB Recommended

2. MRP Software:

- Platform: Windows
- Form: 500 mm deep, 1000 mm long, 750 mm high
- Material of Construction: Black Polyethylene

3. ERP Software:

- Server : 1 GB RAM minimum
- Processor: 1 GHz minimum
- Network: 100 MBit state-of-the-art network

4. Sortation Conveyor:

- Belt: High strength, tensile rating of 330 pounds per inch of belt width
- Belt speed: 4 feet per minute minimum, 150 maximum
- Motor: Severe duty, class F insulation for long motor life

- 1. Description
- 2. The Solution
- 3. Financial Metrics
- 4. Equipment Specifications
- 5. Improved Operation
 - a. Flow Charts
 - b. Throughput Rates
 - c. Required Labor
- 6. The Layout

Receiving Parameters (Per Worker)		Throughput Dotos					
Receiving Rate:	ving Rate: 100 cases/hr (norm)		Throughput Rates				
118 cases/hr (peak)							
Put	taway Parameters (Per	Worker)	Nov/Dec Demand (Per DC)				
Stocking Rate:	85	cases/hr	61		days		
Replenish Rate:	115	cases/hr (norm)	22.5		hours/day		
	150	cases/hr (peak)	1372.	5	hours		
Pic	cking Parameters (Per \	Vorker)	5,172	2	products/hr		
Get Label:	30	seconds (tower)	1,963	3	cases/hr		
	56	seconds (aisle)	4,190		eaches/hr		
Set Tote:	40	seconds/tote (tower)	Peak Throughput Rates (Per D		DC)		
	60	seconds/tote (aisle)	Receiving:	4058	cases/hr		
Walking:	2	ft/second (tower)	Putaway:	4058	cases/hr		
	1	ft/second (aisle)	Picking:	4190	eaches/hr		
Picking:	10	seconds/tote		1963			
Process:	1945	seconds/tote	Marina	4,190	eaches/hr		
	35	eaches/hr	Waving:	1963	cases/hr		
	16	cases/hr	Average Throughput Rates (Per D		r DC)		
W	aving Parameters (Per \	Vorker)	Receiving:	2029	cases/hr		
Slapper 1 Rate:	109	cases/hr	Putaway:	2029	cases/hr		
Slapper 2 Rate:	109	cases/hr	Picking:	2095	eaches/hr		
Slapper 3 Rate:	109	cases/hr		981			
Each Module Rate:	210	eaches/hr	10/	2,095	eaches/hr		
Case Module Rate:	98	cases/hr	Waving:	981	cases/hr		

Required Labor

Receiving (Per DC)			Picking (Per DC)			
Required Pickers:	35	(Peak Conditions)	Required Pickers:	119	(Peak Conditions)	
Required Pickers:	20	(Avg Conditions)	Required Pickers:	60	(Avg Conditions)	
	Putaway (Per DC)			Waving (Per DC)		
Required Pickers:	35	(Peak Conditions)	Each Module Workers:	20	(Peak Conditions)	
Required Pickers:	20	(Avg Conditions)	Case Module Workers:	10	(Peak Conditions)	
			Workers per Slapper:	3	(Peak Conditions)	
Total Operation (Per DC)		Each Module Workers:	10	(Avg Conditions)		
Required Operators:	204	(Peak Conditions)	Case Module Workers:	5	(Avg Conditions)	
Required Operators:	107	(Avg Conditions)	Workers per Slapper:	2	(Avg Conditions)	

- 1. Description
- 2. The Solution
- 3. Financial Metrics
- 4. Equipment Specifications
- 5. Improved Operation
- 6. The Layout
 - a. AutoCAD

AutoCad Layout

Questions?

