Homework 2 (All sections)

Full Marks: 40

Submit your homework to Moodle. Submission link and deadline will be notified through Moodle message.

You are given with a partial implementation of three classes: Point2D, Circle, and Rectangle in your homework 1. Extend the implementation according to the following instructions. Note that the numbers inside brackets specify the marks allotted to each task.

Point2D: [8 Marks]

- Let, $P_1 = (x_1, y_1)$ and $P_2 = (x_2, y_2)$ be two points. Overload the following operators according to their definitions given:

Operator	Туре	Expression	Expression output
+	Binary	$P_1 + P_2$	A new point $P = (x, y)$ where
			$x = x_1 + x_2$ and $y = y_1 + y_2$. This
			operation represents a translation of the
			point P_1 by the amount specified by P_2
*	Binary	$P_1 * n$	A new point $P = (x, y)$ where $x = x_1 * n$
		where n is a real	and $y = y_1 * n$. This operation represents
		number	a scaling of the point P_1 by the amount n .
			The scaling is done with respect to the
			origin $(0,0)$.
==	Binary	$P_1 == P_2$	TRUE (Boolean) if both points have same
			coordinates; otherwise FALSE
!=	Binary	$P_1! = P_2$	TRUE (Boolean) if the points are different;
			otherwise FALSE

Circle: [20 Marks]

-Let, C_1 and C_2 be two circles having centers c_1 and c_2 and radiuses r_1 and r_2 . Overload the following operators according to their definitions given:

Operator	Туре	Expression	Expression output
+	Binary	$C_1 + P$	A new circle whose center is translated
		where P is a 2D	by the amount specified by the point P.
		point.	This operation represents a translation of
			the circle with respect to the origin $(0,0)$.
*	Binary	$C_1 * n$	A new circle whose radius and center is
		where n is a real	scaled by the amount n . This operation
		number	represents a scaling operation for the
			circle with respect to the origin $(0,0)$.
+	binary	$C_1 + C_2$	A new circle whose center is the

		2.1.1.1
		weighted average $c_1 * \alpha + c_2 * (1 - \alpha)$
		and radius is $r_1 + r_2$.
		where $\alpha = r_1/(r_1 + r_2)$
Binary	$C_1 - C_2$	A new circle whose center is the
		weighted average $c_1 * \alpha + c_2 * (1 - \alpha)$
		and radius is r_1-r_2 .
		where $\alpha = r_1/(r_1 + r_2)$
Binary	$C_1 == C_2$	TRUE (Boolean) if both circles are of
		equal area; otherwise FALSE
Binary	$C_1 > C_2$	TRUE (Boolean) if the area of C_1 is larger
		than the area of C_2 ; otherwise FALSE
Binary	$C_1 >= C_2$	TRUE (Boolean) if the area of C_1 is larger
		than or equal to the area of C_2 ; otherwise
		FALSE
Binary	$C_1 < C_1$	TRUE (Boolean) if the area of C_1 is smaller
		than the area of C_2 ; otherwise FALSE
Binary	$C_1 <= C_1$	TRUE (Boolean) if the area of C_1 is smaller
-		than or equal to the area of C_2 ; otherwise
		FALSE
Unary	+ + C ₁	Increments of radius of C_1 by 1 unit.
	$C_1 + +$	Should support both prefix and postfix
		version.
	Binary Binary Binary Binary	Binary $C_1 == C_2$ Binary $C_1 > C_2$ Binary $C_1 >= C_2$ Binary $C_1 < C_1$ Binary $C_1 <= C_1$ Unary $C_1 <= C_1$

Rectangle: [6 Marks]

-Let, ${\it R}_1$ and ${\it R}_2$ be rectangles. Overload the following operators according to their definitions given:

Operator	Туре	Expression	Expression output
+	Binary	R + P	A new rectangle translated by point P .
		where P is a 2D	This operation represents a translation of
		point.	the rectangle with respect to the origin
			(0,0).
*	Binary	R*n	A new rectangle whose points are scaled
		where n is a real	by the amount n . This operation
		number	represents a scaling operation for the
			rectangle with respect to the origin $(0,0)$.

Main: [6 Marks]

-Create suitable examples to demonstrate all functionalities as specified in the cpp file.

More practice: [For online]

-Extend your program to include facilities for other geometric objects such as square, triangle, ellipse, etc.