

Bibliografia

- ① A. van Lamsweerde, Requirements Engineering: From System Goals to UML Models to Software Specifications, Wiley, 2009, Capítulo 1 (está online)
- ② S. Robertson and J. Robertson, *Mastering the Requirements Process*, 2nd Edition, Addison-Wesley, 2006, Capítulos 1 e 3.

- Agradecimento
 - Dr. Emmanuel Letier (UCL) por permitir a adaptação de seu curso em modelagem de sistemas

Agenda

- Introdução a Engenharia de Requisitos
- Stakeholders, Metas e Escopo
- Elementos do Documento de Requisitos

A parte mais difícil de construir um sistema de software é decidir o que fazer [...] Portanto, a função mais importante que o engenheiro de software pode fazer para o cliente é a extração iterativa e o refinamento dos requisitos do produto

(F. Brooks, No Silver Bullet: Essence and Accidents of Software Engineering, 1987)

Erros de requisitos são...

- caros...
 - o "até 200 vezes o custo de uma correção durante ER" (Boehm, 1988)
- numerosos e persistentes...
 - "50% das falhas tem sua origem em problemas de requisitos e de design" (Jones, 1991)
 - "pesquisa com 8000 empresas dos EUA apontou que em 50% dos casos, gerentes identificaram problemas relacionados a requisitos como a principal razão para dificuldades e abandono do desenvolvimento do sistema" (Standish group, 1995)
 - "relatório atribui 60-70% das falhas em projetos de TI a uma pobre elicitação, análise e gerência de requisitos" (Meta Group, 2003)

7

Erros de requisitos são...

- fontes de falhas de segurança
 - "290 pessoas foram mortas quando o avião A300 da IranAir foi confundido e abatido por um navio de guerra, devido a uma combinação da condições de ameaça e omissão de requisitos" (US Department of Defense, 1988).
 - "mortes no metro de Londres devido a abertura e fechamento das portas, sem aviso ao condutor" (Neumann, 1995)
 - "falha sistêmica sistema de ambulância de Londres, devido a violação de uma série de suposições" (LAS, 1993)

Causas Percebidas de Sucesso ou Falha de Projetos (Chaos report, Standish Group, 1995)

	Causa do sucesso do projeto	Causes of delays and cost overruns	Causes for system not completed / never used
1.	Envolvimento do usuário	Falta da opinião/ informação do usuário	Requisitos incompletos
2.	Suporte da gerência executiva	Requisitos incompletos	Falta da opinião/informação do usuário
3.	Requisitos claramente descritos	Mudança de requisitos	Falta de recursos
4.	Declaração clara dos requisitos	Falta de suporte do executivo	Expectativas irrealistas
5.	Planejamento apropriado	Incompetência tecnológica	Falta de suporte do executivo
6.	Expectativas realistas	Falta de recursos	Modificação dos requisitos e especificação
7.	Etapas/marcos de projetos curtos	Expectativas irrealistas	Falta de planejamento
8.	Competência da equipe	Objetivos pouco claros	Não era mais necessário
9.	Ownership	Cronograma irrealista	Falta de gerenciamento de TI
10.	Objetivos e visões claras	Nova tecnologia	Ignorância tecnológica

O Que é Engenharia de Requisitos?

Engenharia de Requisitos (ER) é um conjunto de atividades interessado em identificar e comunicar o propósito de um sistema de software intensivo, e o contexto no qual ele será usado. Portanto, ER age como uma ponte entre as necessidades do mundo real dos usuários, clientes e outros constituintes afetados pelo sistema de software, e as oportunidades proporcionadas pelas tecnologias de software intensivo.

10

(definição e slide: Steve Easterbrook)

O Que é Engenharia de Requisitos? Qualidade significa Não é uma adequação ao Engenharia de Requisitos (ER) é um fase ou um propósito. Não se estágio pode dizer nada conjunto de atividades interessado em sobre qualidade a identificar e comunicar o propósitó de Comunicação é tão não ser que se um sistema de software intensivo, importante quanto entenda a análise finalidade e o contexto no qual ele será usado. Projetistas Portanto, ER age como uma ponte entre precisam saber as necessidades do mundo real dos como e quando o É preciso sistema será usuários, clientes e outros constituintes identificar todos usado os stakeholders, afetados pelo sistema de software, e as não só os usuários Requisitos são oportunidades proporcionadas pelas e os clientes parcialmente tecnologias de software intensivo. sobre o que é necessário... ... e parcialmente sobre o que é possível (definição e slide: Steve Easterbrook)

Sistema

- Um sistema é um conjunto de componentes interagindo uns com os outros para satisfazer objetivos globais
 - Componentes pode ser
 - Humanos e procedimentos humanos
 - Dispositivos físicos
 - Sistemas de software

Stakeholders, Metas & Escopo

Flickr CC: By ~jjjohr

Stakeholders, Metas, Escopo

vantagens mensuráveis que o stakeholder quer experimentar quando o sistema estiver funcionando

Stakeholders: quem é afetado por este projeto?

- Grande risco: falta de requisitos-chave porque alguns stakeholders foram esquecidos ou excluídos do projeto
- · Papéis dos principais stakehoders
 - o O Cliente paga pelo desenvolvimento do produto
 - o O Consumidor compra o produto uma vez desenvolvido
 - o Os usuários operam o produto
 - · operador normal
 - · operador de manutenção

15

Mais papéis de Stakeholders

- Sistemas adjacentes
 - o todos os sistemas que tem interface com o escopo do projeto
- · Especialistas da área
 - especialistas de domínio, especialistas em segurança, especialistas em usabilidade, ...
- Equipe de desenvolvimento
 - o gerentes de projeto, projetistas e equipe de validação, ...
- · Reguladores e inspetores
 - o requisitos legais, inspetores de segurança,...
- Stakeholders Negativos
 - não querem o produto, são afetados negativamente pelo produto, competição
- Stakeholders hostis
 - o atacadores, ladrões, terroristas, ...

Como identificar os Stakeholders?

- Quem vai utilizar o produto?
- Quem começou o projeto?
- Quem está pagando pelo projeto?
- Quem vai estar definindo, projetando e construindo o produto?
- Quem dará suporte ao produto depois que ele estiver pronto?
- Quem são as entidades externas impactadas ou influenciadas por este projeto?
- Quem este projeto vai impactar negativamente?

Stakeholders, Metas, Escopo vantagens mensuráveis que o stakeholder quer experimentar quando a Máquina estiver funcionando Metas Stakeholders Escopo parte do mundo real relevante ao projeto

Metas: O que você quer alcançar?

PAM - Purpose, Advantage, Measurement (Propósito, Vantagens, Medida)

- Propósito
 - o que é esperado do produto?
- Vantagens
 - o quais são as vantagens de negócio para o cliente?
 - o quais são as vantagens para os outros stakeholders?
- Medidas
 - o como as vantagens serão medidas?

19

Sistema de Despacho de Ambulância

- Propósito
 - Novo sistema vai lidar com chamadas urgentes e ajudar atendentes a despachar ambulâncias para os incidentes
- Vantagens
 - o Alocação de ambulância mais rápida e precisa
 - o Comunicação com as ambulâncias mais rápidas e confiáveis
- Medidas
 - Padrão governamental Inglês: primeira ambulância deve chegar ao local do incidente dentro de 14 minutos em pelo menos 95% dos casos

o ...

Cuidado com projetos sem metas claras

- Erros comuns
 - Foco no produto sem esclarecer as vantagens no domínio de aplicação
 - "O objetivo do projeto é desenvolver um sistema de despacho de ambulâncias novo"
 - 2. Vantagens vagas, ambíguas, não mensuráveis "O objetivo do projeto é aumentar eficiência"

21

Cuidado com projetos sem metas claras

- · Erros comuns
 - Foco no produto sem esclarecer as vantagens no domínio de aplicação
 - "O objetivo do projeto é desenvolver um sistema de despacho de ambulâncias novo"
 - 2. Vantagens vagas, ambíguas, não mensuráveis "O objetivo do projeto é aumentar eficiência"
- Risco: projeto sem visão ou direção, esforço desperdiçado, construção do sistema errado

Tempo gasto para alcançar um consenso nas metas do projeto, e escrevê-las de forma clara, não ambígua e mensurável tem benefícios consideráveis mais tarde.

Stakeholders, Metas, Escopo

vantagens mensuráveis que o stakeholder quer experimentar quando a Máquina estiver funcionando

23

Escopo: Definição da Fronteira do Projeto

- o escopo do projeto é a parte do mundo real relevante ao projeto
 - quais são as fronteiras do novo sistema? Com quais outros sistemas ele interage?
 - quais componentes do sistema existente podem ou n\u00e3o ser modificados?

Atenção com os Erros de Escopo

- Um escopo do projeto muito limitado implica no risco de se construir o sistema errado, previne a exploração de alternativas
 - a caneta multimilionária de gravidade-zero da NASA's vs. lápis do cosmonautas Russos (é um mito, mas explica a ideia)
- Um escopo do projeto muito amplo implica o risco de se transcender o objetivo projeto, falta de uma visão coerente, mudança descontrolada dos requisitos, e esforço desperdiçado
 - Metas extremamente abrangentes: "fazer todo mundo feliz",
 "Trazer paz a terra", ...
 - o A parábola da torradeira ("The parable of the toaster")

Modelo de Contexto

- É preciso decidir os limites do sistema
 - Quais funcionalidades incluir no sistema; quais processos automatizar
 - A posição dos limites do sistema tem um efeito profundo nos custos e no tempo para os requisitos e projeto
- Modelo de contexto ilustra o contexto operacional do sistema
 - o Mostra o que está fora dos limites do sistema

Exemplo 1: MHC-PMS

- Sistema de pacientes para a área de saúde mental: gerencia informações sobre pacientes que procuram clinicas de saúde mental e os tratamentos prescritos
 - Deve se concentrar exclusivamente em coletar informações sobre as consultas e usar outros sistemas para coletar informações sobre os pacientes? Ou deve fazer ambos?
 - Quais seriam são as vantagens e desvantagens de cada opção?

Fonte: Sommerville, I. Engenharia de Software. Ed. 9

