Serial No: 10/764,234

Inventor(s): Batlaw et al Case No: 5729

SPECIFICATION AMENDMENTS

The first full paragraph at page 30 should be amended as below:

Measurements of percent haze/thickness ratios have been obtained on various

containers 10 in the practice of the invention. It has been found that a percent

haze/thickness (in mils) reported as percent haze/mils of less than about 0.4 is useful,

with a value of less than about 0.05 being particularly highly desirable.

The Table I on page 32 should be amended as follows:

2

Inventor(s): Batlaw et al Case No: 5729

Table I. Example 1 Preforms

Example	Resin	MFI (g/10 sec min)	Injection Time (sec)	Injection Speed (g/cc) (g/sec)	Example	Resin	MFI (g/10 sec min)	Injection Time (sec)	Injection Speed (g/cc) (g/sec)
I-1	RB307MO	1.5	0.5	50.6	I-21	RF365MO	20	2.5	10.1
I-2	RB307MO	1.5	1.0	25.3	I-22	RF365MO	20	3.0	8.4
1-3	RB307MO	1.5	1.5	16.9	I-23	RF365MO	20	3.5	7.2
1-4	RB307MO	1.5	2.0	12.7	I-24	RF365MO	20	4.0	6.3
I-5	RB307MO	1.5	2.5	10.1	I-25	RG460MO	30	0.5	50.6
I-6	RB307MO	1.5	3.0	8.4	I-26	RG460MO	30	1.0	25.3
1-7	RB307MO	1.5	3.5	7.2	I-27	RG460MO	30	1.5	16.9
1-8	RB307MO	1.5	4.0	6.3	I-28	RG460MO	30	2.0	12.7
I-9	RE420MO	13	0.5	50.6	I-29	RG460MO	30	2.5	10.1
I-10	RE420MO	13	1.0	25.3	I-30	RG460MO	30	3.0	8.4
I-11	RE420MO	13	1.5	16.9	I-31	RG460MO	30	3.5	7.2
I-12	RE420MO	13	2.0	12.7	I-32	RG460MO	30	4.0	6.3
I-13	RE420MO	13	2.5	10.1	I-33	RJ370MO	45	0.5	50.6
I-14	RE420MO	13	3.0	8.4	I-34	RJ370MO	45	1.0	25.3
I-15	RE420MO	13	3.5	7.2	I-35	RJ370MO	45	1.5	16.9
I-16	RE420MO	13	4.0	6.3	I-36	RJ370MO	45	2.0	12.7
I-17	RF365MO	20	0.5	50.6	I-37	RJ370MO	45	2.5	10.1
I-18	RF365MO	20	1.0	25.3	I-38	RJ370MO	45	3.0	8.4
I-19	RF365MO	20	1.5	16.9	1-39	RJ370MO	45	3.5	7.2
I-20	RF365MO	20	2.0	12.7	I-40	RJ370MO	45	4.0	6.3

Serial No: 10/764,234

Inventor(s): Batlaw et al Case No: 5729

Table II on page 36 should be amended as follows:

Inventor(s): Batlaw et al Case No: 5729

Table II. Example 2 Preforms

Example	Resin	MFI (g/10 sec min)	Injection Time (sec)	Injection Speed (g/ ec sec)	Example	Resin	MFI (g/10 sec min)	Injection Time (sec)	Injection Speed (g/ ee sec)
II-1	RB307MO	1.5	0.5	40.6	II-21	RF365MO	20	2.5	8.1
II-2	RB307MO	1.5	1.0	20.3	II-22	RF365MO	20	3.0	6.8
II-3	RB307MO	1.5	1.5	13.5	II-23	RF365MO	20	3.5	5.8
11-4	RB307MO	1.5	2.0	10.2	II-24	RF365MO	20	4.0	5.1
II-5	RB307MO	1.5	2.5	8.1	II-25	RG460MO	30	0.5	40.6
11-6	RB307MO	1.5	3.0	6.8	II-26	RG460MO	30	1.0	20.3
II-7	RB307MO	1.5	3.5	5.8	II-27	RG460MO	30	1.5	13.5
II-8	RB307MO	1.5	4.0	5.1	II-28	RG460MO	30	2.0	10.2
11-9	RE420MO	13	0.5	40.6	II-29	RG460MO	30	2.5	8.1
II-10	RE420MO	13	1.0	20.3	II-30	RG460MO	30	3.0	6.8
II-11	RE420MO	13	1.5	13.5	II-31	RG460MO	30	3.5	5.8
II-12	RE420MO	13	2.0	10.2	II-32	RG460MO	30	4.0	5.1
II-13	RE420MO	13	2.5	8.1	II-33	RJ370MO	45	0.5	40.6
II-14	RE420MO	13	3.0	6.8	II-34	RJ370MO	45	1.0	20.3
II-15	RE420MO	13	3.5	5.8	II-35	RJ370MO	45	1.5	13.5
II-16	RE420MO	13	4.0	5.1	II-36	RJ370MO	45	2.0	10.2
II-17	RF365MO	20	0.5	40.6	II-37	RJ370MO	45	2.5	8.1
II-18	RF365MO	20	1.0	20.3	II-38	RJ370MO	45	3.0	6.8
II-19	RF365MO	20	1.5	13.5	II-39	RJ370MO	45	3.5	5.8
II-20	RF365MO	20	2.0	10.2	11-40	RJ370MO	45	4.0	5.1

Serial No: 10/764,234

Inventor(s): Batlaw et al Case No: 5729

Table III on page 38-39 should be revised as such:

Inventor(s): Batlaw et al Case No: 5729

Table III. Example 3 Preforms

Example	Resin	MFI (g/10 sec min)	Injecti on Time (sec)	Injection Speed (g/ ec sec)	Example	Resin	MFI (g/ 10 sec min)	Injection Time (sec)	Injection Speed (g/ee sec)
III-1	RB307 MO	1.5	0.5	34.6	III-21	RF36 5MO	20	2.5	6.9
III-2	RB307 MO	1.5	1.0	17.3	III-22	RF36 5MO	20	3.0	5.8
III-3	RB307 MO	1.5	1.5	11.5	III-23	RF36 5MO	20	3.5	4.9
111-4	RB307 MO	1.5	2.0	10.2	III-24	RF36 5MO	20	4.0	4.3
III-5	RB307 MO	1.5	2.5	6.9	III-25	RG46 0MO	30	0.5	34.6
III-6	RB307 MO	1.5	3.0	5.8	III-26	RG46 0MO	30	1.0	17.3
111-7	RB307 MO	1.5	3.5	4.9	III-27	RG46 0MO	30	1.5	11.5
III-8	RB307 MO	1.5	4.0	4.3	III-28	RG46 0MO	30	2.0	10.2
III-9	RE420 MO	13	0.5	34.6	III-29	RG46 0MO	30	2.5	6.9
III-10	RE420 MO	13	1.0	17.3	III-30	RG46 0MO	30	3.0	5.8
III-11	RE420 MO	13	1.5	11.5	III-31	RG46 0MO	30	3.5	4.9
III-12	RE420 MO	13	2.0	10.2	III-32	RG46 0MO	30	4.0	4.3
III-13	RE420	13	2.5	6.9	III-33	RJ37	45	0.5	34.6

Serial No: 10/764,234

Inventor(s): Batlaw et al Case No: 5729

Schal No. 10/704,234					Case 110. 3725				
MO					OMO				
RE420	13	3.0	5.8	111-34	RJ37	45	1.0	17.3	
МО	13	3.0	3.6	111-04	ОМО	10	1.0	17.5	
RE420	12	2.5	4.0	III 25	RJ37	45	15	11.5	
MO	13	3.5	4.9	111-33	0MO	40	1.5	11.5	
RE420	12	4.0	4.2	111.26	RJ37	45	2.0	10.2	
МО	13	4.0	4.3	111-30	ОМО	45	2.0	10.2	
RF365	20	0.5	346	III 27	RJ37	45	2.5	6.9	
МО	20	0.5	34.0	111-37	ОМО	40	2.5	0.9	
RF365	20	1.0	172	111 38	RJ37	15	3.0	5.8	
МО	20	1.0	17.3	111-30	ОМО	43	3.0	5.6	
RF365	20	15	115	111-30	RJ37	45	3.5	4.9	
МО	20	1.5	11.5	111-03	ОМО	75	0.0	7.5	
RF365	20	2.0	10.2	111-40	RJ37	15	4.0	4.3	
МО	20	2.0	10.2	111-40	ОМО	4 0	4.0	4.5	
	MO RE420 MO RE420 MO RE420 MO RF365 MO RF365 MO RF365 MO RF365	MO RE420 MO RE420 MO RE420 MO RE420 MO RF365	MO RE420 13 3.0 RE420 13 3.5 MO 13 4.0 RE420 13 4.0 MO 20 0.5 RF365 0.5 1.0 RF365 0.5 1.5 RF365 0.5 1.5 RF365 0.5 1.5 RF365 0.5 1.5 RF365 0.5 1.5	MO RE420 13 3.0 5.8 RE420 13 3.5 4.9 RE420 13 4.0 4.3 MO 13 4.0 4.3 RF365 20 0.5 34.6 RF365 20 1.0 17.3 RF365 20 1.5 11.5 RF365 20 2.0 10.2	MO RE420 MO 13 3.0 5.8 III-34 RE420 MO 13 3.5 4.9 III-35 RE420 MO 13 4.0 4.3 III-36 RF365 MO 20 0.5 34.6 III-37 RF365 MO 20 1.0 17.3 III-38 RF365 MO 20 1.5 11.5 III-39 RF365 MO 20 2.0 10.2 III-40	MO RE420 13 3.0 5.8 III-34 RJ37 MO 13 3.5 4.9 III-35 RJ37 MO 13 4.0 4.3 III-35 RJ37 MO 13 4.0 4.3 III-36 RJ37 MO 20 0.5 34.6 III-37 RJ37 MO 20 1.0 17.3 III-38 RJ37 MO 20 1.5 11.5 III-39 RJ37 MO RF365 20 1.5 11.5 III-39 RJ37 MO RF365 20 2.0 10.2 III-40 RJ37	MO RE420 MO 13 3.0 5.8 III-34 RJ37 0MO 45 RE420 MO 13 3.5 4.9 III-35 RJ37 0MO 45 RE420 MO 13 4.0 4.3 III-36 RJ37 0MO 45 RF365 MO 20 0.5 34.6 III-37 RJ37 0MO 45 RF365 MO 20 1.0 17.3 III-38 RJ37 0MO 45 RF365 MO 20 1.5 11.5 III-39 RJ37 0MO 45 RF365 MO 20 20 1.0 10.2 III-40 RJ37 0MO 45	MO RE420 MO 13 3.0 5.8 III-34 OMO RJ37 OMO 45 1.0 RE420 MO 13 3.5 4.9 III-35 OMO RJ37 OMO 45 1.5 RE420 MO 13 4.0 4.3 III-36 OMO RJ37 OMO 45 2.0 RF365 MO 20 0.5 34.6 III-37 OMO RJ37 OMO 45 2.5 RF365 MO 20 1.0 17.3 III-38 OMO RJ37 OMO 45 3.0 RF365 MO 20 1.5 11.5 III-39 OMO RJ37 OMO 45 3.5 RF365 MO 20 2.0 1.0 17.2 IIII-39 OMO RJ37 OMO 45 3.5	

Inventor(s): Batlaw et al Case No: 5729

Table IV on page 40 should be amended as follows:

Inventor(s): Batlaw et al Case No: 5729

Table IV. Example 4 Bottles

Example	MFI (g/10 sec min)	Injection Speed (g/ ee sec)	%Haze/ thickness (%/mil)	Bottle Quality	Example	MFI (g/10 see min)	Injection Speed (g/ ee sec)	%Haze/ thickness (%/mil)	Bottle Quality
IV-1	1.5	50.6	1.252	Acceptable	IV-21	20	10.1	0.782	Average
IV-2	1.5	25.3		Acceptable	IV-22	20	8.4	,	Excellent
IV-3	1.5	16.9	<u>. </u>	Acceptable	IV-23	20	7.2		Excellent
IV-4	1.5	12.7	1.530	Acceptable	IV-24	20	6.3	0.036	Excellent
IV-5	1.5	10.1		Acceptable	IV-25	30	50.6	1.191	Acceptable
IV-6	1.5	8.4		Acceptable	IV-26	30	25.3	0.150	Acceptable
IV-7	1.5	7.2		Acceptable	IV-27	30	16.9	0.062	Excellent
IV-8	1.5	6.3		Acceptable	IV-28	30	12.7	-	Excellent
IV-9	13	50.6		Acceptable	IV-29	30	10.1		Excellent
IV-10	13	25.3		Acceptable	IV-30	30	8.4		Excellent
IV-11	13	16.9		Acceptable	IV-31	30	7.2	0.075	Excellent
IV-12	13	12.7		Acceptable	IV-32	30	6.3		Excellent
IV-13	13	10.1		Acceptable	IV-33	45	50.6		NA
IV-14	13	8.4		Average	IV-34	45	25.3		NA
IV-15	13	7.2	0.067	Excellent	IV-35	45	16.9		NA
IV-16	13	6.3	0.043	Excellent	IV-36	45	12.7		NA
IV-17	20	50.6		Acceptable	IV-37	45	10.1		NA
IV-18	20	25.3		Acceptable	IV-38	45	8.4		NA
IV-19	20	16.9		Acceptable	IV-39	45	7.2		NA
IV-20	20	12.7		Average	IV-40	45	6.3	0.072	NA

Serial No: 10/764,234

Inventor(s): Batlaw et al Case No: 5729

Table V on page 42 should be amended:

Table V. Example 5 Bottles

Example	MFI (g/10 see min)	Injection Speed (g/ ee sec)	%Haze/ thickness (%/mil)	Bottle Quality	1	Example	MFI (g/10 see min)	Injection Speed (g/ ee sec)	%Haze/ thickness (%/mil)	Bottle Quality
V-1	1.5	40.6		Acceptable		V-21	20	8.1		Average
V-2	1.5	20.3		Acceptable		V-22	20	6.8	0.132	Average
V-3	1.5	13.5		Acceptable		V-23	20	5.8		Excellent
V-4	1.5	10.2		Acceptable		V-24	20	5.1	0.056	Excellent
V-5	1.5	8.1		Acceptable		V-25	30	40.6	0.125	Acceptable
V-6	1.5	6.8		Acceptable		V-26	30	20.3		Acceptable
V-7	1.5	5.8		Acceptable		V-27	30	13.5		Acceptable
V-8	1.5	5.1	2.143	Acceptable		V-28	30	10.2		Excellent
V-9	13	40.6		Acceptable		V-29	30	8.1		Excellent
V-10	13	20.3		Acceptable		V-30	30	6.8		Excellent
V-11	13	13.5	1	Acceptable	-	V-31	30	5.8	0.075	Excellent
V-12	13	10.2		Acceptable		V-32	30	5.1		Excellent
V-13	13	8.1		Acceptable		V-33	45	40.6		Acceptable
V-14	13	6.8		Acceptable		V-34	45	20.3		Average
V-15	13	5.8		Average		V-35	45	13.5		Excellent
V-16	13	5.1		Excellent		V-36	45	10.2		Excellent
V-17	20	40.6		Acceptable		V-37	45	8.1		Excellent
V-18	20	20.3		Acceptable	-	V-38	45	6.8		Excellent
V-19	20	13.5		Acceptable		V-39	45	5.8		Excellent
V-20	20	10.2		Average		V-40	45	5.1		Excellent

Inventor(s): Batlaw et al Case No: 5729

Table VI on page 44 should be amended:

Inventor(s): Batlaw et al Case No: 5729

Table VI. Example 6 Bottles

Example	MFI (g/10 see min)	Injection Speed (g/ ee sec)	%Haze/ thickness (%/mil)	Bottle Quality	Example	MFI (g/10 see min)	Injection Speed (g/ ee sec)	%Haze/ thickness (%/mil)	Bottle Quality
VI-1	1.5	34.6		Acceptable	VI-21	20	6.9		Acceptable
VI-2	1.5	17.3		Acceptable	VI-22	20	5.8		Average
VI-3	1.5	11.5	· .	Acceptable	VI-23	20	4.9		Excellent
VI-4	1.5	10.2		Acceptable	VI-24	20	4.3		Excellent
VI-5	1.5	6.9	-	Acceptable	VI-25	30	34.6	*	Acceptable
VI-6	1.5	5.8		Acceptable	VI-26	30	17.3		Acceptable
VI-7	1.5	4.9		Acceptable	VI-27	30	11.5		Acceptable
VI-8	1.5	4.3		Acceptable	VI-28	30	10.2		Acceptable
VI-9	13	34.6		Acceptable	VI-29	30	6.9		Excellent
VI-10	13	17.3		Acceptable	VI-30	30	5.8		Excellent
VI-11	13	11.5		Acceptable	VI-31	30	4.9		Excellent
VI-12	13	10.2	۰	Acceptable	VI-32	30	4.3		Excellent
VI-13	13	6.9		Acceptable	VI-33	45	34.6		Acceptable
VI-14	13	5.8	-	Acceptable	VI-34	45	17.3		Average
VI-15	13	4.9		Acceptable	VI-35	45	11.5		Excellent
VI-16	13	4.3		Average	VI-36	45	10.2		Excellent
VI-17	20	34.6		Acceptable	VI-37	45	6.9		Excellent
VI-18	20	17.3		Acceptable	VI-38	45	5.8		Excellent
VI-19	20	11.5		Acceptable	VI-39	45	4.9		Excellent
VI-20	20	10.2		Acceptable	VI-40	45	4.3	0.087	Excellent

Inventor(s): Batlaw et al Case No: 5729 Serial No: 10/764,234

Table VII on page 46 should be amended as such:

Inventor(s): Batlaw et al Case No: 5729

Table VII. Example 7 Bottles

Example	MFI (g/10 sec min)	Injection Speed (g/ ee sec)	%Haze/ thickness (%/mil)	Bottle Quality	Example	MFI (g/10 see min)	Injection Speed (g/ ee sec)	%Haze/ thickness (%/mil)	Bottle Quality
VII-1	1.5	50.6		Acceptable	VII-21	20	10.1	0.467	Acceptable
VII-2	1.5	25.3		Acceptable	VII-22	20	8.4	0.211	Average
VII-3	1.5	16.9		Acceptable	VII-23	20	7.2	0.086	Excellent
VII-4	1.5	12.7		Acceptable	VII-24	20	6.3	0.068	Excellent
VII-5	1.5	10.1		Acceptable	VII-25	30	50.6		Acceptable
VII-6	1.5	8.4		Acceptable	VII-26	30	25.3		Acceptable
VII-7	1.5	7.2		Acceptable	· VII-27	30	16.9		Average
VII-8	1.5	6.3	1.500	Acceptable	VII-28	30	12.7	0.079	Excellent
VII-9	13	50.6		Acceptable	VII-29	30	10.1		Excellent
VII-10	13	25.3		Acceptable	VII-30	30	8.4		Excellent
VII-11	13	16.9	1.474	Acceptable	VII-31	30	7.2	,	Excellent
VII-12	13	12.7	0.494	Acceptable	VII-32	30	6.3	0.068	Excellent
VII-13	13	10.1	0.283	Average	VII-33	45	50.6		Excellent
VII-14	13	8.4	0.205	Average	VII-34	45	25.3		Excellent
VII-15	13	7.2	0.075	Excellent	VII-35	45	16.9		Excellent
VII-16	13	6.3	0.089	Excellent	VII-36	45	12.7		Excellent
VII-17	20	50.6		Acceptable	VII-37	45	10.1		Excellent
VII-18	20	25.3	0.895	Acceptable	VII-38	45	8.4		Excellent
VII-19	20	16.9	0.250	Acceptable	VII-39	45	7.2		Excellent
VII-20	20	12.7	0.111	Acceptable	VII-40	45	6.3		Excellent

Inventor(s): Batlaw et al Case No: 5729

Table VIII on page 48 should be amended:

Inventor(s): Batlaw et al Case No: 5729

Table VIII. Example 8 Bottles

Example	MFI (g/10 sec min)	Injection Speed (g/ ee sec)	%Haze/ thickness (%/min)	Bottle Quality	Example	MFI (g/10 sec min)	Injection Speed (g/ ee sec)	%Haze/ thickness (%/mil)	Bottle Quality
VIII-1	1.5	40.6		Acceptable	VIII-21	20	8.1	100-100-100-100-100-100-100-100-100-100	Average
VIII-2	1.5	20.3	,	Acceptable	VIII-22	20	6.8		Excellent
VIII-3	1.5	13.5		Acceptable	VIII-23	20	5.8		Excellent
VIII-4	1.5	10.2		Acceptable	VIII-24	20	5.1	0.084	Excellent
VIII-5	1.5	8.1		Acceptable	VIII-25	30	40.6		Acceptable
VIII-6	1.5	6.8		Acceptable	VIII-26	30	20.3		Acceptable
VIII-7	1.5	5.8		Acceptable	VIII-27	30	13.5	0.094	Average
VIII-8	1.5	5.1	1.316	Acceptable	VIII-28	30	10.2		Excellent
VIII-9	13	40.6		Acceptable	VIII-29	30	8.1	,	Excellent
VIII-10	13	20.3		Acceptable	VIII-30	30	6.8		Excellent
VIII-11	13	13.5		Acceptable	VIII-31	30	5.8		Excellent
VIII-12	13	10.2		Acceptable	VIII-32	30	5.1	0.082	Excellent
VIII-13	13	8.1	-	Acceptable	VIII-33	45	40.6	<u>=</u>	Acceptable
VIII-14	13	6.8		Acceptable	VIII-34	45	20.3	0.192	Average
VIII-15	13	5.8	0.087	Average	VIII-35	45	13.5		Excellent
VIII-16	13	5.1	0.074	Excellent	VIII-36	45	10.2		Excellent
VIII-17	20	40.6		Acceptable	VIII-37	45	8.1		Excellent
VIII-18	20	20.3		Acceptable	VIII-38	45	6.8		Excellent
VIII-19	20	13.5	:	Acceptable	VIII-39	45	5.8		Excellent
VIII-20	20	10.2	0.153	Average	VIII-40	45	5.1	0.072	Excellent

Inventor(s): Batlaw et al Case No: 5729

Table IX on page 50 should be amended:

Inventor(s): Batlaw et al Case No: 5729

Table IX. Example 9 Bottles

Example	MFI (g/10 see min)	Injection Speed (g/ ee sec)	%Haze/ thickness (%/min)	Bottle Quality	Example	MFI (g/10 sec min)	Injection Speed (g/ ee sec)	%Haze/ thickness (%/mil)	Bottle Quality
IX-1	1.5	34.6	3.462	Acceptable	IX-21	20	6.9	0.200	Acceptable
IX-2	1.5	17.3	2.722	Acceptable	IX-22	20	5.8	0.107	Average
IX-3	1.5	11.5	2.300	Acceptable	IX-23	20	4.9	0.186	Average
IX-4	1.5	10.2	2.053	Acceptable	IX-24	20	4.3		Excellent
IX-5	1.5	6.9	2.250	Acceptable	IX-25	30	34.6		Acceptable
IX-6	1.5	5.8	2.000	Acceptable	IX-26	30	17.3		Acceptable
IX-7	1.5	4.9	2.000	Acceptable	IX-27	30	11.5		Acceptable
IX-8	1.5	4.3	1.824	Acceptable	IX-28	30	10.2		Average
IX-9	13	34.6	2.537	Acceptable	IX-29	30	6.9	0.143	Average
IX-10	13	17.3	1.739	Acceptable	IX-30	30	5.8		Excellent
IX-11	13	11.5	1.833	Acceptable	IX-31	30	4.9		Excellent
IX-12	13	10.2	0.545	Acceptable	IX-32	30	4.3	0.100	Excellent
IX-13	13	6.9	0.154	Acceptable	IX-33	45	34.6	1.000	Acceptable
IX-14	13	5.8	0.146	Acceptable	IX-34	45	17.3	0.387	Acceptable
IX-15	13	4.9	0.160	Acceptable	IX-35	45	11.5	0.143	Average
IX-16	13	4.3	0.115	Average	IX-36	45	10.2		Excellent
IX-17	20	34.6	2.591	Acceptable	IX-37	45	6.9		Excellent
IX-18	20	17.3	1.250	Acceptable	IX-38	45	5.8		Excellent
IX-19	20	11.5	2.000	Acceptable	IX-39	45	4.9		Excellent
IX-20	20	10.2	1.077	Acceptable	IX-40	45	4.3	0.092	Excellent

Serial No: 10/764,234

Inventor(s): Batlaw et al Case No: 5729

Table X on page 52 should be amended:

Inventor(s): Batlaw et al Case No: 5729

Table X. Example 10 Preforms

Example	Nucleator	Loading (ppm)	Injection Speed (g/ ee sec)	Example	Nucleator	Loading (ppm)	Injection Speed (g/ ee sec)
X-1	NA-21	2000	50.6	X-33	СаННРА	1500	50.6
X-2	NA-21	2000	25.3	X-34	CaHHPA	1500	25.3
X-3	NA-21	2000	16.9	X-35	CaHHPA	1500	16.9
X-4	NA-21	2000	12.7	X-36	CaHHPA	1500	12.7
X-5	NA-21	2000	10.1	X-37	CaHHPA	1500	10.1
X-6	NA-21	2000	8.4	X-38	CaHHPA	1500	8.4
X-7	NA-21	2000	7.2	X-39	CaHHPA	1500	7.2
X-8	NA-21	2000	6.3	X-40	СаННРА	1500	6.3
X-9	NA-11	1000	50.6	X-41	M3905	2000	50.6
X-10	NA-11	1000	25.3	X-42	M3905	2000	25.3
X-11	NA-11	1000	16.9	X-43	M3905	2000	16.9
X-12	NA-11	1000	12.7	X-44	M3905	2000	12.7
X-13	NA-11	1000	10.1	X-45	M3905	2000	10.1
X-14	NA-11	1000	8.4	X-46	M3905	2000	8.4
X-15	NA-11	1000	7.2	X-47	M3905	2000	7.2
X-16	NA-11	1000	6.3	X-48	M3905	2000	6.3
X-17	HPN-68	1000	50.6	X-49	M3988	2000	50.6
X-18	HPN-68	1000	25.3	X-50	M3988	2000	25.3
X-19	HPN-68	1000	16.9	X-51	M3988	2000	16.9
X-20	HPN-68	1000	12.7	X-52	M3988	2000	12.7
X-21	HPN-68	1000	10.1	X-53	M3988	2000	10.1
X-22	HPN-68	1000	8.4	X-54	M3988	2000	8.4
X-23	HPN-68	1000	7.2	X-55	M3988	2000	7.2
X-24	HPN-68	1000	6.3	X-56	M3988	2000	6.3

Serial No: 10/764,234

Inventor(s): Batlaw et al Case No: 5729

Gerrar 140.	10//01,25				 • • • • • • • • • • • • • • • • • • • 	
X-25	AlptBBA	1000	50.6	X-57	 	50.6
X-26	AlptBBA	1000	25.3	X-58	 	25.3
X-27	AlptBBA	1000	16.9	X-59	 	16.9
X-28	AlptBBA	1000	12.7	X-60	 	12.7
X-29	AlptBBA	1000	10.1	X-61	 	10.1
X-30	AlptBBA	1000	8.4	X-62	 	8.4
X-31	AlptBBA	1000	7.2	X-63	 	7.2
X-32	AlptBBA	1000	6.3	X-64	 	6.3

Serial No: 10/764,234

Inventor(s): Batlaw et al Case No: 5729

Table XI on page 54 should be amended:

USPTO Customer No. 25280 Inventor(s): Batlaw et al Serial No: 10/764,234 Case No: 5729

Table XI. Example 11 Bottles

Example	Nucleator	Loading (ppm)	Injection Speed (g/ ee sec)	%Haze/ thickness (%/min)	Example	Nucleator	Loading (ppm)	Injection Speed (g/ ee sec)	%Haze/ thickness (%/mil)
XI-1	NA-21	2000	50.6	2.048	XI-33	СаННРА	1500	50.6	
XI-2	NA-21	2000	25.3	1.500	XI-34	СаННРА	1500	25.3	0.880
XI-3	NA-21	2000	16.9	0.130	XI-35	СаННРА	1500	16.9	
XI-4	NA-21	2000	12.7	0.079	XI-36	СаННРА	1500	12.7	
XI-5	NA-21	2000	10.1	0.074	XI-37	СаННРА	1500	10.1	
XI-6	NA-21	2000	8.4	0.076	XI-38	СаННРА	1500	8.4	
XI-7	NA-21	2000	7.2	0.100	XI-39	СаННРА	1500	7.2	
XI-8	NA-21	2000	6.3	0.052	XI-40	СаННРА	1500	6.3	0.100
XI-9	NA-11	1000	50.6	2.000	XI-41	M3905	2000	50.6	
XI-10	NA-11	1000	25.3	0.739	XI-42	M3905	2000	25.3	0.240
XI-11	NA-11	1000	16.9	0.132	XI-43	M3905	2000	16.9	
XI-12	NA-11	1000	12.7	0.100	XI-44	M3905	2000	12.7	
XI-13	NA-11	1000	10.1	0.111	XI-45	M3905	2000	10.1	
XI-14	NA-11	1000	8.4	0.087	XI-46	M3905	2000	8.4 .	- · · · · ·
XI-15	NA-11	1000	7.2	0.096	XI-47	M3905	2000	7.2	
XI-16	NA-11	1000	6.3	0.086	XI-48	M3905	2000	6.3	0.067
XI-17	HPN-68	1000	50.6		XI-49	M3988	2000	50.6	
XI-18	HPN-68	1000	25.3	1.565	XI-50	M3988	2000	25.3	1.826
XI-19	HPN-68	1000	16.9		XI-51	M3988	2000	16.9	
XI-20	HPN-68	1000	12.7		XI-52	M3988	2000	12.7	. "
XI-21	HPN-68	1000	10.1		XI-53	M3988	2000	10.1	
XI-22	HPN-68	1000	8.4	-	XI-54	M3988	2000	8.4	
XI-23	HPN-68	1000	7.2		XI-55	M3988	2000	7.2	

Serial No: 10/764,234

Inventor(s): Batlaw et al Case No: 5729

XI-24	HPN-68	1000	6.3	0.121	XI-56	M3988	2000	6.3	0.058
XI-25	AlptBBA	1000	50.6		XI-57			50.6	
XI-26	AlptBBA	1000	25.3	0.304	XI-58			25.3	1.917
XI-27	AlptBBA	1000	16.9		XI-59			16.9	
XI-28	AlptBBA	1000	12.7		XI-60			12.7	
XI-29	AlptBBA	1000	10.1		XI-61			10.1	
XI-30	AlptBBA	1000	8.4		XI-62			8.4	
XI-31	AlptBBA	1000	7.2		XI-63			7.2	
XI-32	AlptBBA	1000	6.3	0.186	XI-64			6.3	0.083

Serial No: 10/764,234

Inventor(s): Batlaw et al Case No: 5729

Table XII on page 56 should be amended:

Inventor(s): Batlaw et al Case No: 5729

Table XII. Example 12 Bottles

Example	Nucleator	Loading (ppm)	Injection Speed (g/ ee sec)	%Haze/ thickness (%/mil)	Exa	Example Nucl		Loading (ppm)	Injection Speed (g/ ee sec)	%Haze/ thickness (%/mil)
XII-1	NA-21	2000	50.6	· <u>-</u>	XI	[-33	СаННРА	1500	50.6	
XII-2	NA-21	2000	25.3		XI	[-34	СаННРА	1500	25.3	
XII-3	NA-21	2000	16.9		XI	I-35	СаННРА	1500	16.9	
XII-4	NA-21	2000	12.7		XI	I-36	СаННРА	1500	12.7	
XII-5	NA-21	2000	10.1		XI	I-37	СаННРА	1500	10.1	
XII-6	NA-21	2000	8.4		XI	I-38	СаННРА	1500	8.4	
XII-7	NA-21	2000	7.2		XI	[-39	СаННРА	1500	7.2	
XII-8	NA-21	2000	6.3	0.088	XI	[-40	СаННРА	1500	6.3	0.100
XII-9	NA-11	1000	50.6		XI	[-4]	M3905	2000	50.6	
XII-10	NA-11	1000	25.3		XI	XII-42 M3905		2000	25.3	
XII-11	NA-11	1000	16.9		XI	[-43	M3905	2000	16.9	
XII-12	NA-11	1000	12.7		XI	[-44	M3905	2000	12.7	
XII-13	NA-11	1000	10.1		XI	[-45	M3905	2000	10.1	
XII-14	NA-11	1000	8.4		XI	[-46	M3905	2000	8.4	
XII-15	NA-11	1000	7.2		XI	[-47	M3905	2000	7.2	
XII-16	NA-11	1000	6.3	0.115	XI	[-48	M3905	2000	6.3	0.048
XII-17	HPN-68	1000	50.6		XI	[-49	M3988	2000	50.6	
XII-18	HPN-68	1000	25.3		XI	I - 50	M3988	2000	25.3	
XII-19	HPN-68	1000	16.9		XI	XII-51 M3		2000	16.9	
XII-20	HPN-68	1000	12.7		XI	[-52	M3988	2000	12.7	
XII-21	HPN-68	1000	10.1		XI	[-53	M3988	2000	10.1	
XII-22	HPN-68	1000	8.4		XI	[-54	M3988	2000	8.4	
XII-23	HPN-68	1000	7.2		XI	[-55	M3988	2000	7.2	
XII-24	HPN-68	1000	6.3	0.116	XI	I-56	M3988	2000	6.3	0.076
XII-25	AlptBBA	1000	50.6		XI	[-57			50.6	

Serial No: 10/764,234

Inventor(s): Batlaw et al Case No: 5729

50	11a1 140. 10/70	1,201				 <u> </u>	0.0127	
XII-26	AlptBBA	1000	25.3		XII-58	 	25.3	
XII-27	AlptBBA	1000	16.9		XII-59	 	16.9	
XII-28	AlptBBA	1000	12.7 .		XII-60	 	12.7	
XII-29	AlptBBA	1000	10.1		XII-61	 	10.1	
XII-30	AlptBBA	1000	8.4		XII-62	 	8.4	
XII-31	AlptBBA	1000	7.2		XII-63	 	7.2	
XII-32	AlptBBA	1000	6.3	0.164	XII-64	 	6.3	0.062

Serial No: 10/764,234

Inventor(s): Batlaw et al Case No: 5729

Table XIII on page 58 should be amended:

Inventor(s): Batlaw et al Case No: 5729

Table XIII. Example 13 Preforms

Example	Resin	MFI (g/10 sec min)	Injection Time (sec)	Injection Speed (g/ ee sec)	Example	Resin	MFI (g/10 sec min)	Injection Time (sec)	Injection Speed (g/ ee sec)
XIII-1	HP MT 230	30	0.5	50.6	XIII-9	RF 365MO	20	2.5	50.6
XIII-2	HP . MT 230	30	1.0	25.3	XIII-10	RF 365MO	20	3.0	25.3
XIII-3	HP MT 230	30	1.5	16.9	XIII-11	RF 365MO	20	3.5	16.9
XIII-4	HP MT 230	30	2.0	12.7	XIII-12	RF 365MO	20	4.0	12.7
XIII-5	HP MT 230	30	2.5	10.1	XIII-13	RF 365MO	20	0.5	10.1
XIII-6	HP MT 230	30	3.0	8.4	XIII-14	RF 365MO	20	1.0	8.4
XIII-7	HP MT 230	30	3.5	7.2	XIII-15	RF 365MO	20	1.5	7.2
XIII-8	HP MT 230	30	4.0	6.3	XIII-16	RF 365MO	20	2.0	6.3

USPTO Customer No. 25280 Inventor(s): Batlaw et al Serial No: 10/764,234 Case No: 5729

Table XIV on page 60 should be amended as shown, further wherein the right five columns shown in strikethrough are deleted entirely as inadvertent duplication of the data:

Table XIV. Example 14 Bottles

Inventor(s): Batlaw et al Case No: 5729

Example	MFI (g/10 min)	Resin	Injection Speed (g/sec)	%Haze/ thickness (%/mil)	Bottle Quality	Example	MFI (g/10 min)	Resin	Injection Speed (g / sc)	%Haze/ thickness	Bottle Quality
XIV-1	30	MT230 (HP)	50.6	2.427	Acceptable	XIV-9	20	RF 365M0	50.6	50.6	Acceptable
XIV-2	30	MT230 (HP)	25.3		Acceptable	XIV-10	20	RF 365M0	25.3	25.3	Acceptable
XIV-3	30	MT230 (HP)	16.9	0.583	Acceptable	XIV11	20	RF 365M0	16.9	16.9	Acceptable
XIV-4	30	MT230 (HP)	12.7	0.373	Average	XIV-12	20	RF 365M0	12.7	12.7	Average
XIV-5	30	MT230 (HP)	10.1	0.256	Excellent	XIV-13	20	RF 365M0	10.1	10.1	Excellent
XIV-6	30	MT230 (HP)	8.4	0.274	Excellent	XIV-14	20	RF 365M0	8.4	8.4	Excellent
XIV-7	30	MT230 (HP)	7.2	0.265	Excellent	XIV-15	20	RF 365M0	7.2	7.2	Excellent
XIV-8	30	MT230 (HP)	6.3	0.163	Excellent	XIV-16	20	RF 365M0	6.3	6.3	Excellent

USPTO Customer No. 25280 Inventor(s): Batlaw et al Serial No: 10/764,234 Case No: 5729

On page 66, the paragraph below should be amended as shown by addition of the underline portion:

For purposes of this specification, haze has been measured on a BYK-Gardner hazemeter by ASTM Standard Test Method D1003-61 modified by use of an 0.2" aperture. The area in which haze could be measured reliably was in relatively small areas less than about 0.5" in area. Samples were obtained from sample containers (bottles) at a relatively flat point approximately mid-way to the bottom of the bottle after the transition point. A thickness modified haze was calculated for each sample where (H/t) is defined as the haze divided by the thickness, measured in mils, at the point where the haze was measured.