	Jack Knife	Non-pura metric Bootstrap
L	erve - one - out	sampling with
	cove - one - out samples	. replace ment
• •	= h21,, 2i-1, 2i+1, 2Ny	
, · - 0	(° 1,, () (, » () (1, » N)	(size N)
(-)	= (0 ,, 0 y	(-) = \\(\hat{\theta}_1,, \\hat{\theta}_8\\)
		B = 1000
		Parametic
		bootstrap
		1
		1) Estimate the 0
		ponameter set
		(whole sampla)
		2) Gernate pseudodata
		2) Gehrate pseudodata from some distr.
		$X_i \sim law(\hat{\theta})$
		La suls ample of size h
		114
		In parameters
		dit parameters to resamples 3) () = (0)
		1 - 1
		B = 1000

Assumes the model is true

	Pros of Non-Parametric Bootstrap
	Easy to code
	0
_	Easily extended to
	- estimation of avariance
	· ·
	- mult. parameter males
	·
	- predictions
	·
	Cans -11-:
_	Interence limited to sample
	$\left(\begin{array}{cccccccccccccccccccccccccccccccccccc$
	(for in-sample injerence only)
	11 (00 10 (00 1)
	If sample size is small
	$\left(V_{\alpha} \right) $
	(Van sample < Van pap.)

Pair Bookstrup Mi= J, + B2 N; + E; , G; ~ N [1, 62) (Xi, yi) - pairs Resample deuta frames with indexes 1, ..., Ny drawn replacement Rootstrapping Planauells (Wild) 1) $\frac{1}{2}i = \frac{1}{2}(x, y, y, y, z)$ L> É: = y: - ý; assume: p(Ei) = 1/2 (=> i.i.d Subsumples: λ - one fixed $y = f(X, \beta_{01s}) + \epsilon_i$ be asing

with

sumpling with ilp ace how

Problem: het eros cedasticity $y_{i} = \beta_{i} + \beta_{2} x_{i} + \alpha_{i}, \quad \alpha_{i} \times N(0, \delta^{2}, x_{i})$ Wild Weighted bootstrap: D; fference: drawn from t $y_{i}^{*} = f(x_{i}, \beta_{0}, \delta) + \frac{f_{i}^{*} \cdot \hat{\xi}_{i}}{\sqrt{1 - h_{i}}}$ $h_{ii} = x_i^T (x^T X) x_i - i - h$ | werage Parametric Rootstrapping 1) $\frac{1}{2}i = \frac{1}{2}(x, y)$ Assume: $\varepsilon_i \sim Norm(0, \delta^2)$ 2) Subsumples: X - ane fixed $y_i = f(X, \beta_{ols}) + \epsilon_i$ Arawn

Axb

Fixed

Anon N(Q62)

Jackrife for regression: 1) leave on object vation out 2) Calculate \$ +