Derivation of the Black-Scholes formula from the binomial tree

- This notebook is an extension of the week 5 slides for Computational Finance. It includes additional steps of the derivation of the Black-Scholes formula from the binomial tree for a European call option.
- The derivation is divided in two parts:
 - Next, we let $N o \infty$ to derive the Black-Scholes formula.

We start with deriving the closed form expression for European call options based on a given tree.

A Closed Form for European Options

• The price of a European option

depends only on
$$S_T$$
, so there is no need to use a tree explicitly to evaluate it.

 $C_0 = e^{-rT}\mathbb{E}^{\mathbb{Q}}\left[\max(S_T - K, 0)
ight]$

 $S_T = S_0 u^k d^{N-k} = u^k u^{-(N-k)} = S_0 u^{2k-N}$

• Let k denote the number of up moves of the stock , so that N-k is the number of down moves. Then

where we use that
$$u=1/d=d^{-1}.$$

• Under \mathbb{Q} , $k\sim \mathrm{Bin}(N,p)$, with pmf $f(k;N,p)={N\choose k}p^k(1-p)^{N-k}$. Thus

$$f(1;1,p)=p$$
 and we get the risk-neutral pricng formulas
$${f For the cases that } S_T>K, {\it the maximum in the sum is zero and adds nothing to the value of the option.}$$

- Therefore, we only have to consider the non-zero pay-offs, i.e. when $S_T>K$. Since the finally payoff only increases in k, we need to find the values of k for which this holds to truncate the sum. ullet Let a denote the minimum number of up moves so that $S_T>K$, i.e., it should hold that
- $S_T = S_0 u^{2k-N} > K \ u^{2k-N} > K/S_0,$ taking logs on both sides gives
- $(2k-N)\log(u) > \log(K/S_0)$ $2k - N > \log(K/S_0)/\log(u)$

$$k>N/2+\log(K/S_0)/(2\log u).$$

$$C_0 = e^{-rT} \sum_{k=a}^N f(k;N,p) \left[S_0 u^k d^{N-k} - K
ight].$$

 $\left|\sum_{l=1}^{N}f(k;N,p)
ight|e^{-rT}K=\left|\sum_{l=1}^{N}f(k;N,p)
ight|e^{-rT}K$

The second term is

where
$$F$$
 is the binomial cdf and \bar{F} is the survivor function.

• To derive the above expression, we use (i) that the binomial cdf is (by definition)
$$F(x;N,p)=\sum_{k=1}^x f(k;N,p), \text{ (ii) that } F(x;N,p)=1 \text{ because the probabilities should sum to one, and}$$

• The first term of the sum is

 $e^{-rT}S_0 \sum_{i=1}^N inom{N}{k} p^k (1-p)^{N-k} u^k d^{N-k} = S_0 \sum_{i=1}^N inom{N}{k} [e^{-r\delta t} p u]^k [e^{-r\delta t} (1-p) d]^{N-k}$

 $S = S_0 \sum_{k=1}^{N} {N \choose k} p_*^k (1-p_*)^{N-k},$

where we use that $e^{rT} = e^{r\delta tN} = e^{r\delta tk}e^{r\delta t(N-k)}$. Then, in the same as how we got the expression for the second term, we have that the first term can be

 $C_0 = S_0 \bar{F}(a-1; N, p_*) - \bar{F}(a-1; N, p)e^{-rT}K$ $=S_0\mathbb{Q}^*(S_T>K)-\mathbb{Q}(S_T>K)e^{-rT}K.$

· Putting things together,

· Similarly,

 $ppproxrac{1}{2}igg(1+\sqrt{\delta t}rac{r-rac{1}{2}\sigma^2}{\sigma}igg)\,.$

 $S_0 \sum_{k=0}^{N} {N \choose k} p_*^k (1-p_*)^{N-k} = S_0 ar{F}(a-1;N,p_*).$

$p^* pprox rac{1}{2} igg(1 + \sqrt{\delta t} rac{r + rac{1}{2} \sigma^2}{\sigma} igg) \,.$

 $X_T = \log S_0 + \sum^N R_i = \log S_0 + k \log u + (N-k) \log d$ $= \log S_0 + (2k - N) \log u$

$$\mathbb{E}^{\mathbb{Q}}[X_T] = \log S_0 + \sigma \sqrt{\delta t} N(2p-1)
ightarrow \log S_0 + (r-rac{1}{2}\sigma^2) T
onumber \ ext{Var}^{\mathbb{Q}}[X_T] = \sigma^2 \delta t 4 N p(1-p)
ightarrow \sigma^2 T.$$

 $S_0 = \log S_0 + \sigma \sqrt{\delta t} N \sqrt{\delta t} \frac{r - \frac{1}{2}\sigma^2}{\sigma^2}$

 $\mathbb{E}^{\mathbb{Q}}[X_T] = \log S_0 + \sigma \sqrt{\delta t} N(2p-1)$

• As we let $N \to \infty$, this converges to (\to means converges to)

We can similarly derive the expression for the variance.

The derivation of both the expected value and the variance are below.

• The expected value of X_T is given by

that $T = N\delta t$.

because

 $=\sigma^2\delta t \mathrm{Var}^{\mathbb{Q}}[(2k-N)]$ $=\sigma^2 \delta t 4 \mathrm{Var}^{\mathbb{Q}}[k]$ $=\sigma^2\delta t4Np(1-p)$. using that the variance of a constant (e.g. $\log S_0$ or N) is zero. • Before we take the limit of the variance, note that if $N \to \infty$, then $1-p\approx 1-\frac{1}{2}\left(1+\sqrt{\delta t}\frac{r-\frac{1}{2}\sigma^2}{\sigma}\right)=1-\frac{1}{2}-\frac{1}{2}\left(\sqrt{\delta t}\frac{r-\frac{1}{2}\sigma^2}{\sigma}\right)=\frac{1}{2}-\frac{1}{2}\left(\sqrt{\delta t}\frac{r-\frac{1}{2}\sigma^2}{\sigma}\right)=\frac{1}{2}$

where we fill in the approximation for p (if $N o \infty$) that we derived before and use that $\delta t = T/N$ such

 $\operatorname{Var}^{\mathbb{Q}}[X_T] = \operatorname{Var}^{\mathbb{Q}}[\sigma\sqrt{\delta t}(2k-N)]$

 $ightarrow \sigma^2 \delta t 4 N rac{1}{4}$

 $A^2 = \delta t \left(rac{r-rac{1}{2}\sigma^2}{\sigma}
ight)^2
ightarrow 0,$ since $\delta t o 0$ and $\left(rac{r-rac{1}{2}\sigma^2}{\sigma}
ight)^2$ is a constant. ullet As we let $N o \infty$, the variance converges to $\operatorname{Var}^{\mathbb{Q}}[X_T] = \sigma^2 \delta t 4Np(1-p)$

 $=\sigma^2T$.

ullet Finally, as $N o\infty$, the distribution of X_T tends to a normal. This follows from the *central limit theorem* and

 $\mathbb{Q}(S_T > K) = \mathbb{Q}(X_T > \log K) = \mathbb{Q}\left(rac{X_T - \mathbb{E}^\mathbb{Q}[X_T]}{\sqrt{\operatorname{Var}^\mathbb{Q}[X_T]}} > rac{\log K - \mathbb{E}^\mathbb{Q}[X_T]}{\sqrt{\operatorname{Var}^\mathbb{Q}[X_T]}}
ight)$ $=1-\Phi\left(rac{\log K-\mathbb{E}^{\mathbb{Q}}[X_T]}{\sqrt{\mathrm{Var}^{\mathbb{Q}}[X_T]}}
ight)=:1-\Phi(-d_2)=\Phi(d_2), ext{where}$

- $1-\Phi(-d_2)=1-(1-\Phi(d_2))=\Phi(d_2)$ holds due to symmetry of the standard normal distribution around zero. • The same argument can be used to show that as $N o\infty$, $\mathbb{Q}^*(S_T>K)=\Phi(d_1),$ where
- In summary, we have derived the Black-Scholes formula

$$=:BS(S_0,K,T,r,\sigma).$$

$$C_0=e^{-rT}\sum_{k=0}^Nf(k;N,p)\max(S_0u^kd^{N-k}-K,0).$$
 • Note that this is an extension of the one period case: if $N=1$, then $f(0;1,p)=(1-p)$ and

This implies that $S_T > K$ if k is any of the integers greater than $N/2 + \log(K/S_0)/(2\log u)$. Note that Hull (2012) uses $\log(K/S_0) = -\log(S_0/K)$. ullet Let a denote the minimum number of up moves so that $S_T>K$, i.e., it should hold that a is the smallest integer greater than $N/2 + \log(K/S_0)/(2\log u)$. Then

• We can divide this into the sum of two terms:
$$C_0=e^{-rT}\sum_{l=1}^N f(k;N,p)S_0u^kd^{N-k}-e^{-rT}\sum_{l=1}^N f(k;N,p)K.$$

$$egin{aligned} &= [1 - F(a - 1; N, p)]e^{-rT}K \ &= ar{F}(a - 1; N, p)e^{-rT}K, \end{aligned}$$

(iii) that the survivor function is
$$ar F(k;N,p)=1-F(k;N,p)$$
.

• Let $p_*=rac{pu}{pu+(1-p)d}=e^{-r\delta t}pu$, where we use that $pu+(1-p)d=\mathbb E^\mathbb Q\left[R_i\right]=e^{r\delta t}$. Note that $1-p_*=1-rac{pu}{pu+(1-p)d}=rac{(1-p)d}{pu+(1-p)d}=e^{-r\delta t}(1-p)d$.

where we use that
$$e^{rT}=e^{r\delta tN}=e^{r\delta tk}e^{r\delta t(N-k)}$$
. Then, in the same as how we got the expression for the second term, we have that the first term written as

• Let's consider what happens if we let
$$N o \infty$$
• A first-order Taylor expansion, together with l'Hopital's rule, can be used to show that, for small δt ,

• Next, Let $X_T \equiv \log S_T$. Then, because R_i is either $\log u$ or $\log d = -\log u$, and since $\log u = \sigma \sqrt{\delta t}$ from the tree calibration, we have

$$=\log S_0+(2k-N)\log u$$
 $=\log S_0+\sigma\sqrt{\delta t}(2k-N).$ • As $k\sim \mathrm{Bin}(N,p)$, we have $\mathbb{E}^\mathbb{Q}[k]=Np$ and $\mathrm{var}^\mathbb{Q}[k]=Np(1-p).$ • Thus

$$egin{aligned} \mathbb{E}^{\mathbb{Q}}[X_T] &= \log S_0 + \sigma \sqrt{\delta t}(2\mathbb{E}^{\mathbb{Q}}[k] - N) \ &= \log S_0 + \sigma \sqrt{\delta t}(Np - N) \ &= \log S_0 + \sigma \sqrt{\delta t}N(2p - 1) \end{aligned}$$

 $0 o \log S_0 + \sigma \sqrt{\delta t} N \left(2 \left\lceil rac{1}{2} \left(1 + \sqrt{\delta t} rac{r - rac{1}{2} \sigma^2}{\sigma}
ight)
ight
ceil - 1
ight)$

 $S=\log S_0+(r-rac{1}{2}\sigma^2)T,$

• Next, let's work out the limit of
$$p(1-p)$$
 if $N\to\infty$. Define $A\equiv\sqrt{\delta t}\frac{r-\frac{1}{2}\sigma^2}{\sigma}$. We have that if $N\to\infty$, then
$$p(1-p)\approx\frac{1}{2}(1+A)\frac{1}{2}(1-A)=\frac{1}{4}(1-A+A-A^2)=\frac{1}{4}(1-A^2)\to\frac{1}{4},$$
 because
$$A^2=\delta t\left(\frac{r-\frac{1}{2}\sigma^2}{\sigma}\right)^2\to 0,$$

• Thus, as $N o \infty$,

where we use that $\delta t = T/N$ such that $T = N\delta t$.

the fact that X_T is the sum of N i.i.d. terms.

 $d_2 \equiv rac{\mathbb{E}^{\mathbb{Q}}[X_T] - \log K}{\sqrt{\operatorname{Var}^{\mathbb{Q}}[X_T]}} = rac{\log(S_0/K) + (r - rac{1}{2}\sigma^2)T}{\sigma\sqrt{T}}.$ • In the derivation, we use that X_T is normally distributed, such that $Z_T=rac{X_T-\mathbb{E}^\mathbb{Q}[X_T]}{\sqrt{\mathrm{Var}^\mathbb{Q}[X_T]}}\sim N(0,1).$ Further,

 $d_1 \equiv d_2 + \sigma \sqrt{T} = rac{\log(S_0/K) + (r + rac{1}{2}\sigma^z)T}{\sigma^2/T}.$ $C_0 = S_0 \Phi(d_1) - e^{-rT} K \Phi(d_2)$