Саратовский государственный технический университет имени Гагарина Ю.А.

ПРАКТИКУМ ПО ДИСЦИПЛИНАМ

«ТЕХНИЧЕСКАЯ ТЕРМОДИНАМИКА И ТЕПЛОТЕХНИКА», «ТЕРМОДИНАМИКА И ТЕПЛОПЕРЕДАЧА», «ТЕПЛОФИЗИКА»

для студентов всех форм обучения по направлениям:
«Энерго и ресурсосберегающие процессы в химической технологии, нефтехимии и биотехнологии»;
«Нефтяное дело»;
«Безопасность жизнедеятельности в техносфере»

Рецензенты

1.

2.

Одобрено

редакционно-издательским советом Саратовского государственного технического университета имени Гагарина Ю.А.

Выходные данные

Содержатся исходные данные для расчета, методические и справочные материалы, необходимые для решения типовых задач по технической термодинамике и теплопередаче. Предназначено для студентов всех форм обучения, направлений «Энерго и ресурсосберегающие процессы в химической технологии, нефтехимии и биотехнологии»; «Нефтяное дело».

ВВЕДЕНИЕ

Практикум содержит задачи по технической термодинамике и теплопередаче. Задачи разделены на восемь основных тем: параметры состояния тела; идеальные газы; газовые смеси; теплоемкость газов; первое начало термодинамики; основные газовые процессы; теплопроводность; теплопередача и направлены на формирование способности применять термодинамические и теплофизические законы, основные уравнения и зависимости на практике.

Методические указания включают в себя основные зависимости и уравнения необходимые для решения задач. Примеры решения задач позволяют более доступно продемонстрировать использование законов и зависимостей в теплотехнических расчетах.

Данный практикум базируется на материале, изложенном [] и содержит индивидуальные задания и рекомендации по их выполнению.

1. УСЛОВИЯ ЗАДАЧ И ИСХОДНЫЕ ДАННЫЕ

Задача 1.1

Масса 1 м^3 метана при определенных условиях составляет \boldsymbol{m} кг. Определить плотность и удельный объем.

Таблица вариантов

№	Macca, <i>m</i>	№	Macca, <i>m</i>
0	0,1	5	0,6
1	0,2	6	0,7
2	0,3	7	0,8
3	0,4	8	0,9
4	0,5	9	1,1

Задача 1.2

В сосуде объемом v м³ находится m кг окиси углерода. Определить удельный объем и плотность окиси углерода при указанных условиях.

Таблица вариантов

No	Объем, и	Macca, <i>m</i>	№	Объем, и	Масса, м
0	0,1	0,5	5	0,6	1
1	0,2	0,6	6	0,7	1,1
2	0,3	0,7	7	0,8	1,2
3	0,4	0,8	8	0,9	1,3
4	0,5	0,9	9	1	1,4

Задача 1.3

Определить абсолютное давление в сосуде, если показания присоединенного к нему ртутного манометра p мм рт. ст., а атмосферное давление по ртутному барометру составляет B кПа. Температура воздуха в месте установки приборов t 0 C.

Таблица вариантов

№	Дав-	Дав-	Темпера-	№	Давле-	Давле-	Темпера-
	ление, <i>р</i>	ление, <i>В</i>	тура, <i>t</i>		ние, <i>р</i>	ние, <i>В</i>	тура, <i>t</i>
0	500	100	0	5	550	95	25
1	510	99	5	6	490	101	4
2	520	98	10	7	480	102	8
3	530	97	15	8	470	103	12
4	540	96	20	9	460	104	16

Задача 1.4

Ртутный вакуумметр, присоединенный к сосуду показывает разряжение p мм рт.ст. при температуре ртути в вакуумметре t_1 . давление атмосферы по ртутному барометру B кПа при температуре ртути t_2 .

Таблица вариантов

No	Давление, р	Температура, <i>t1</i>	Давление, <i>В</i>	Температура, <i>t2</i>
0	400	15	98	12
1	405	16	99	13
2	410	17	100	14
3	415	18	101	15
4	420	19	102	16
5	425	20	103	17
6	430	21	104	18
7	435	22	105	19
8	440	23	106	20
9	445	24	107	21

Задача 2.1

Определить плотность и удельный объем окиси углерода при давлении p МПа и температуре t 0 C.

Таблица вариантов

No	Давление, <i>р</i>	Температура, <i>t</i>	No	Давление, <i>р</i>	Температура, <i>t</i>
0	0,1	15	5	0,2	20
1	0,12	16	6	0,22	14
2	0,14	17	7	0,24	13
3	0,16	18	8	0,26	12
4	0,18	19	9	0,28	11

Задача 2.2

Определить массу углекислого газа в сосуде объемом V м³ при температуре t 0 С. Давление газа по манометру p МПа. Барометрическое давление B Па.

Таблица вариантов

№	Объем,	Темпер	Давлен	Давлен	No	Объем,	Темпер	Давлен	Давлен
	V	атура, <i>t</i>	ие, <i>р</i>	ие, <i>В</i>		V	атура, <i>t</i>	ие, <i>р</i>	ие, <i>В</i>
0	1	70	0,034	103000	5	4	80	0,044	104000
1	2	72	0,036	103200	6	3	82	0,046	104200
2	3	74	0,038	103400	7	2	84	0,048	104400
3	4	76	0,04	103600	8	1	86	0,050	104600
4	5	78	0,042	103800	9	2	88	0,052	104800

Задача 2.3

Какой объем занимает 1 кг азота при температуре t 0 С и давлении p МПа.

Таблица вариантов

No	Давление, <i>р</i>	Температура, <i>t</i>	No	Давление, <i>р</i>	Температура, <i>t</i>
0	0,1	60		0,2	70
1	0,12	62		0,098	72
2	0,14	64		0,096	74
3	0,16	66		0,094	76
4	0,18	68		0,092	78

Задача 2.4

Сосуд емкостью V м³ заполнен m кг углекислоты. Определить давление в сосуде если температура в нем t 0 С.

Таблица вариантов

No	Объем, V	Температура, <i>t</i>	Macca, M
0	5	12	18
1	6	14	19
2	7	16	20
3	8	18	21
4	9	20	22
5	10	22	23
6	11	24	24
7	12	26	25
8	13	28	26
9	14	30	27

Задача 2.5

Какова будет плотность двуокиси углерода при температуре t 0 С и давлении p кПа, если при нормальных условиях она равна 1,251 кг/м 3 .

Таблица вариантов

№	Давление, <i>р</i>	Температура, <i>t</i>	№	Давление, <i>р</i>	Температура, <i>t</i>
0	90	14	5	95	19
1	91	15	6	96	20
2	92	16	7	97	21
3	93	17	8	98	22
4	94	18	9	99	23

Задача 2.6

Дымовые газы, образовавшиеся в топке парового котла, охлаждаются от температуры t_1 ⁰C да температуры t_2 ⁰C. Во сколько раз уменьшится их объем, если давление газов в начале и в конце газоходов одинаково?

Таблица вариантов

№	Температура, t_1	Температура, t_2	№	Температура, t_1	Температура, t_2
0	1400	300	5	1150	200
1	1350	280	6	1100	180
2	1300	260	7	1050	160
3	1250	240	8	1000	140
4	1200	220	9	950	120

Задача 3.1

Газовая смесь имеет примерно следующий массовый состав m_{02} , m_{N2} . Определить объемный состав смеси, ее газовую постоянную, кажущуюся молекулярную массу и парциальное давление кислорода и азота, если давление воздуха по барометру $B=101325\ \Pi a$.

Таблица вариантов

№	Macca O_2 , m_{O2}	Macca N_2 , m_{N2}	№	Macca O_2 , m_{O2}	Macca N_2 , m_{N2}
0	23	77	5	25.5	74.5
1	23,5	76,5	6	26	74
2	24	76	7	26,5	73,5
3	24,5	75,5	8	27	73
4	25	75	9	27,5	72,5

Задача 3.2

Смесь газов состоит из водорода и окиси углерода. Массовая доля водорода m_{H2} . Найти газовую постоянную смеси и ее удельный объем при нормальных условиях.

Таблица вариантов

No	Массовая доля H_2 , m_{H2}	№	Массовая доля H_2 , m_{H2}
0	0,6	5	0,65
1	0,61	6	0,66
2	0,62	7	0,67
3	0,63	8	0,68
4	0,64	9	0,69

Задача 3.3

Определить газовую постоянную смеси газов, состоящей из v_I м³ генераторного газа и v_2 м³ воздуха, взятых при нормальных условиях, и найти парциальные давления составляющих смеси. Плотность генераторного газа $\rho = 1,2$ кг/м³.

Таблица вариантов

№	Объем, v_1	Объем, v_2	№	Объем, v_1	Объем , <i>v</i> ₂
0	0,8	1,1	5	1,3	1,6
1	0,9	1,2	6	1,4	1,7
2	1	1,3	7	1,5	1,8
3	1,1	1,4	8	1,6	1,9
4	1,2	1,5	9	1,7	2

Задача 3.4

Объемный состав сухих продуктов сгорания топлива следующий r_{CO2} , r_{O2} , r_{N2} . Найти кажущуюся молекулярную массу и газовую постоянную, а также плотность и удельный объем продуктов сгорания при $B=100~{\rm k}\Pi a$ и $t=800~{\rm ^oC}$.

Таблица вариантов

No	Об. доля	Об. доля	Об. доля	№	Об. доля	Об. доля	Об. доля
	CO_2, r_{CO2}	O_2, r_{O2}	N_2, r_{N2}		CO_2, r_{CO2}	O_2, r_{O2}	N_2, r_{N2}
0	10	10	80	5	13	7	80
1	12	10	78	6	20	5	75
2	8	12	80	7	18	8	74
3	14	12	74	8	17	13	70
4	15	8	77	9	16	10	74

Задача 3.5

Генераторный газ имеет следующий объемный состав: H_2 =53%; CH_4 =25%; CO_2 =4%; N_2 =10%. Найти кажущуюся молекулярную массу, массовые доли, газовую постоянную, плотность и парциальное давление при t_1 0 C и p МПа.

Таблица вариантов

No	Давление, <i>р</i>	Температура, <i>t</i>	No	Давление, <i>р</i>	Температура, <i>t</i>
0	0,9	14	5	1	19
1	0,92	15	6	1,2	20
2	0,94	16	7	1,4	21
3	0,96	17	8	1,6	22
4	0,98	18	9	1,8	23

Задача 4.1

Воздух в количестве V м³ при давлении p_1 МПа и температуре t_1 °C нагревается при постоянном давлении до t_2 °C. Определить количество подведенной к воздуху теплоты, считая c = const.

Таблица вариантов

№	Объем, V	Давление, <i>р</i> 1	Температура, t_1	Температура, t2
0	2	0,12	14	100
1	3	0,14	15	105
2	4	0,16	16	110
3	5	0,18	17	115
4	6	0,2	18	120
5	7	0,22	19	125
6	8	0,24	20	130
7	9	0,26	21	135
8	10	0,28	22	140
9	11	0,3	23	145

Задача 4.2

В закрытом сосуде объемом V л находится воздух при давлении p_1 МПа и температуре t_1 °C. Какое количество теплоты необходимо подвести для того, чтобы температура воздуха поднялась до t_2 °C?

Таблица вариантов

№	Объем, V	Давление, <i>р</i> 1	Температура, t_1	Температура, t2
0	150	0,6	14	100
1	160	0,62	15	105
2	170	0,64	16	110
3	180	0,66	17	115
4	190	0,68	18	120
5	200	0,7	19	125
6	210	0,72	20	130
7	220	0,74	21	135
8	230	0,76	22	140
9	240	0,78	23	145

Задача 4.3

В сосуде объемом V л находится кислород при давлении p_1 МПа и температуре t_1 °С. Какое количество теплоты необходимо подвести, чтобы температура кислорода повысилась до t_2 °С? Какое давление установится при этом в сосуде?

Таблица вариантов

N₂	Объем, V	Давление, <i>p</i> 1	Температура, t_1	T емпература, t_2
0	250	0,16	14	270
1	260	0,18	15	275
2	270	0,2	16	280
3	280	0,22	17	285
4	290	0,24	18	290
5	300	0,26	19	295
6	310	0,28	20	300
7	320	0,3	21	305
8	330	0,32	22	310
9	340	0,34	23	315

Задача 4.4

Найти количество теплоты, необходимое для нагрева 1 м³ (при нормальных условиях) газовой смеси состава r_{CO2} %, r_{O2} %, r_{N2} % от t_1 до t_2 °C при p=const и нелинейной зависимости теплоемкости от температуры.

Таблица вариантов

№	r_{CO2}	r_{O2}	r_{N2}	Температура, t_1	Температура, t_2
0	10	10	80	100	800
1	12	8	80	110	850
2	17	13	70	120	900
3	7	13	80	130	950
4	10	15	75	140	1000
5	8	12	80	150	1050
6	15	15	70	160	1100
7	16	14	70	170	1150
8	14	6	80	180	1200
9	6	24	70	190	1250

Задача 5.1

Таблица вариантов

№	\mathbf{M} ощность, N	Теплота сгорания, Q_H^P	No	\mathbf{M} ощность, N	Теплота сгорания, Q_H^P
0	18	29	5	23	31,5
1	19	29,5	6	24	32
2	20	30	7	25	32,5
3	21	30,5	8	26	33
4	22	31	9	27	33,5

Задача 5.2

В котельной электрической станции за τ часов работы сожжены G тонн условного топлива, имеющего теплоту сгорания $Q_H^P=29,3\,$ МДж/кг. Определить среднюю мощность станции, если в электрическую энергию превращено 22 % теплоты, полученной при сгорании условного топлива.

Таблица вариантов

№	Часы работы,	Расход топлива, G	№	Часы работы,	Расход топлива, <i>G</i>
	τ			τ	
0	18	52	5	23	62
1	19	54	6	24	64
2	20	56	7	25	66
3	21	58	8	26	68
4	22	60	9	27	70

Задача 5.3

Паросиловая установка мощность N кВт имеет к.п.д. η . Определить часовой расход топлива, если его теплота сгорания $Q_H^P = 29300$ кДж/кг.

Таблица вариантов

No	Мощность , <i>N</i>	К.п.д., η	No	Мощность , <i>N</i>	К.п.д., η
0	3400	0,18	5	4400	0,23
1	3600	0,19	6	4600	0,24
2	3800	0,2	7	4800	0,25
3	4000	0,21	8	5000	0,26
4	4200	0,22	9	5200	0,27

Задача 5.4

Найти изменении внутренней энергии 1 кг воздуха при переходе его начального состояния t_1 °C до конечного состояния t_2 °C. Зависимость теплоемкости от температуры принять линейной. Ответ дать в кДж.

Таблица вариантов

№	Температура, t_1	Температура , t ₂	No	Температура, t_1	Температура , t ₂
0	300	50	5	350	40
1	330	40	6	420	60
2	370	60	7	450	30
3	250	30	8	250	60
4	200	20	9	240	40

Задача 6.1

Газ при давлении p_1 МПа и температуре t_1 °C нагревается при постоянном объеме до t_2 °C. Найти конечное давление газа.

Таблица вариантов

№	Давление, <i>р</i> 1	Темпера-	Темпера-	No	Давление, <i>p</i> ₁	Темпера-	Темпера-
		тура, <i>t</i> 1	тура, t_2			тура, t_1	тура, <i>t</i> 2
0	0,94	14	250	5	1,4	19	300
1	0,96	15	260	6	1,6	20	310
2	0,98	16	270	7	1,8	21	320
3	1	17	280	8	2	22	330
4	1,2	18	290	9	2,2	23	340

Задача 6.2

В закрытом сосуде заключен газ при разряжении p_1 Па и температуру t_1 °С. Показание барометра — 101325 Па. До какой температуры нужно охладить газ, чтобы разряжении стало p_2 Па.

Таблица вариантов

№	Давле-	Темпера-	Давле-	№	Давле-	Темпера-	Давле-
	ние, <i>p</i> 1	тура, t_1	ние, <i>p</i> ₂		ние, p_1	тура, t_1	ние, p_2
0	5000	14	12000	5	6000	19	13000
1	5200	15	12200	6	6200	20	13200
2	5400	16	12400	7	6400	21	13400
3	5600	17	12600	8	6600	22	13600
4	5800	18	12800	9	6800	23	13800

Задача 6.3

Сосуд емкостью V л содержит воздух при давлении p_1 МПа и температуре t_1 °C. Определить количество теплоты, которое необходимо сообщить воздуху, чтобы повысить его давление при v = const до p_2 МПа. Зависимость теплоемкости от температуры нелинейная.

Таблица вариантов

No	\mathbf{E} мкость, V	Давление, <i>р</i> 1	Температура, t_1	Давление, р2	
0	40	0,7	20	1,5	
1	50	0,72	22	1,52	
2	60	0,74	24	1,54	
3	70	0,76	26	1,56	
4	80	0,78	28	1,58	
5	90	0,8	30	1,6	
6	100	0,82	32	1,62	
7	110	0,84	34	1,64	
8	120	0,86	36	1,66	
9	130	0,88	38	1,68	

Задача 6.4

В резервуаре, имеющем объем V м³, находится углекислый газ при давлении p_I МПа и температуре t_I °С. Как изменится температура газа, если отнять от него при постоянном объеме 436 кДж? Зависимость теплоемкости от температуры считать линейной.

Таблица вариантов

No	\mathbf{E} мкость, V	Давление, <i>p</i> ₁	Температура, t_1
0	0,4	0,5	400
1	0,42	0,52	420
2	0,44	0,54	440
3	0,46	0,56	460
4	0,48	0,58	480
5	0,5	0,6	500
6	0,52	0,62	520
7	0,54	0,64	540
8	0,56	0,66	560
9	0,58	0,68	580

Задача 6.5

Какое количество теплоты необходимо затратить, чтобы нагреть V м³ воздуха при постоянном избыточном давлении p МПа от температура t_1 °C до температуры t_2 °C? Какую работу при этом совершит воздух?

Таблица вариантов

No	\mathbf{E} мкость, V	Давление, <i>р</i>	Температура, t_1	Температура, t2
0	1	0,1	50	400
1	1,2	0,12	60	420
2	1,4	0,14	70	440
3	1,6	0,16	80	460
4	1,8	0,18	90	480
5	2	0,2	100	500
6	2,2	0,22	110	520
7	2,4	0,24	120	540
8	2,6	0,26	130	560
9	2,8	0,28	140	580

Задача 6.6

В цилиндре находится воздух при давлении p МПа и температуре t_1 °C. От воздуха отнимается теплота при постоянном давлении таким образом, что в конце процесса устанавливается температура t_2 °C. Объем цилиндра, в котором находится воздух, равен V л. Определить количество отнятой

теплоты, конечный объем, изменение внутренней энергии и совершенную работу сжатия. Зависимость теплоемкости от температуры считать нелинейной.

Таблица вариантов

No	$\mathbf O$ бъем, V	Давление, р	Температура, t_1	Температура, t2
0	300	0,4	300	18
1	320	0,42	320	16
2	340	0,44	340	14
3	360	0,46	360	12
4	380	0,48	380	10
5	400	0,5	400	8
6	420	0,52	420	6
7	440	0,54	440	4
8	460	0,56	460	2
9	480	0,58	480	0

Задача 6.7

Воздух в количестве 1 кг при температуре t °C и начальном давлении p_1 МПа сжимается изотермически до конечного давления p_2 МПа. Определить конечный объем, затрачиваемую работу и количество теплоты, отводимой от газа.

Таблица вариантов

№	Температура , <i>t</i>	Давление, <i>p</i> 1	Давление , p ₂
0	14	0,09	0,9
1	16	0,092	0,92
2	18	0,094	0,94
3	20	0,096	0,96
4	22	0,098	0,98
5	24	0,1	1
6	26	0,12	1,2
7	28	0,14	1,4
8	30	0,16	1,6
9	32	0,18	1,8

Задача 6.8

Воздух в количестве 1 кг при температуре t °C и начальном давлении p_1 МПа сжимается адиабатно до конечного давления p_2 МПа. Определить конечный объем, конечную температуру и затрачиваемую работу.

Таблица вариантов

No	Температура, <i>t</i>	Давление, <i>p</i> 1	Давление , p ₂
0	14	0,09	0,9
1	16	0,092	0,92
2	18	0,094	0,94
3	20	0,096	0,96
4	22	0,098	0,98
5	24	0,1	1
6	26	0,12	1,2
7	28	0,14	1,4
8	30	0,16	1,6
9	32	0,18	1,8

Задача 6.9

Адиабатным сжатием повысили температуру воздуха в двигателе так, что она стала равной температуре воспламенения нефти; объем при этом уменьшился в 14 раз. Определить конечную температуру и конечное давление воздуха, если p_I МПа и t_I °C.

Таблица вариантов

No	Давление, <i>p</i> 1	Температура, t_1	№	Давление, <i>р</i> 1	Температура, t_1
0	0,09	60		0,09	110
1	0,092	70	6	0,1	120
2	0,094	80	7	0,12	140
3	0,096	90	8	0,14	160
4	0,098	100	9	0,16	180

Задача 6.10

Из сосуда, содержащего углекислоту при давлении p МПа и температуре t °C, вытекает 2/3 содержимого. Вычислить конечное давление и температуру, если в процессе истечения не происходит теплообмена со средой (k принять равным 1,28).

Таблица вариантов

№	Давление, <i>р</i>	Температура, <i>t</i>	No	Давление, <i>р</i>	Температура, <i>t</i>
0	0,6	14	5	1,6	19
1	0,8	15	6	1,8	20
2	1	16	7	2	21
3	1,2	17	8	2,2	22
4	1,4	18	9	2,4	23

Задача 6.11

Воздух в количестве 1 кг при p_1 МПа и t_1 °С расширяется политропно до давления p_2 МПа. Определить конечное состояние воздуха, изменение внутренней энергии, количество подведенной теплоты и полученную работу, если показатель политропы m = 1,2.

Таблица вариантов

№	Давление, <i>р</i> 1	T емпература, t_I	Давление, p ₂
0	0,4	98	0,09
1	0,42	100	0,092
2	0,44	102	0,094
3	0,46	104	0,096
4	0,48	106	0,098
5	0,5	108	0,1
6	0,52	110	0,12
7	0,54	112	0,14
8	0,56	114	0,16
9	0,58	116	0,18

Задача 6.12

Воздух массой 1,5 кг сжимают политропно от p_1 МПа и t_1 °С до p_2 МПа; температура при этом повышается до t_2 °С. Определить показатель политропы, конечный объем, затраченную работу и количество отведенной теплоты.

Таблица вариантов

№	Температура, t_1	Давление, <i>р</i> 1	Температура , t ₂	Давление , р 2
0	14	0,08	98	0,9
1	16	0,082	100	0,92
2	18	0,084	102	0,94
3	20	0,086	104	0,96
4	22	0,088	106	0,98
5	24	0,09	108	1
6	26	0,092	110	1,2
7	28	0,094	112	1,4
8	30	0,096	114	1,6
9	32	0,098	116	1,8

Задача 7.1

Вычислить плотность теплового потока через плоскую однородную стенку, толщиной δ мм. Коэффициент теплопроводности стенки λ Вт/м·град. Температура на поверхностях стенки t_1 и t_2 °C.

Таблица вариантов

№	Теплопроводность, λ	$ ext{Толщина}, oldsymbol{\delta}$	Температура, t_1	Температура , t ₂
0	0,11	10	50	40
1	1,1	20	55	45
2	5	30	60	50
3	7,4	40	65	55
4	26	50	70	6
5	31	60	75	65
6	32,5	70	80	70
7	40	80	85	75
8	55	100	90	80
9	67,3	110	95	85

Задача 7.2

Плотность теплового потока через плоскую однородную стенку толщиной $\pmb{\delta}$ мм \pmb{q} Вт/м 2 . Определить разность температур на поверхности стенки.

Таблица вариантов

№	Материал стенки	Толщина, δ	Плотность теплового потока, q
0	Кирпич красный	10	10
1	Кирпич шамотовый	20	20
2	Кирпич силикатный	30	30
3	Сталь углеродная	40	40
4	Сталь нержавеющая	50	50
5	Кирпич силикатный	60	60
6	Кирпич красный	70	70
7	Кирпич шамотовый	80	80
8	Сталь углеродная	100	90
9	Сталь нержавеющая	110	100

Задача 7.3

Определить коэффициент теплопроводности материала стенки, если при толщине ее δ мм и разности температур на поверхности Δt °C плотность теплового потока q BT/м².

Таблица вариантов

No	Разность температур, Δt	$ ext{Толщина}, oldsymbol{\delta}$	Плотность теплового потока, q
0	15	10	10
1	20	20	20
2	25	30	30
3	30	40	40
4	35	50	50
5	40	60	60
6	45	70	70
7	50	80	80
8	55	100	90
9	60	110	100

Задача 7.4

Стенка состоит из двух слоев их толщины соответственно δ_1 , δ_2 , мм. Коэффициенты теплопроводности материалов из которых выполнены стенки равны соответственно λ_1 , λ_2 Вт/м·град. Температура на внешней поверхности перового слоя t_1 °C, температура на внешней поверхности второго слоя t_3 °C. Вычислить температура в плоскости соприкосновения двух слоев стенки и плотность теплового потока через стенку.

Таблица вариантов

№	Толщина, δ_I	Толщина , δ_2	Материал первой	Материал второй стенки	Температу- ра, <i>t</i> ₁	Температу- ра, <i>t</i> ₃
	01	, 02	стенки	2 ropon oronin	P, 1	p.a., 03
0	10	40	Кирпич шамотовый	Пробковые плиты	150	18
1	12	50	Кирпич силикатный	Совелит	118	19
2	14	60	Кирпич красный	Стекловата	146	20
3	16	70	Сталь углеродная	Пенопласт	144	21
4	18	80	Сталь нержавеющая	Шлаковата	142	22
5	20	90	Кирпич Пробковые красный плиты		140	23
6	22	100	Кирпич Совелит шамотовый		138	24
7	24	110	Кирпич силикатный	Стекловата	136	25
8	26	120	Сталь углеродная	Пенопласт	134	26
9	28	130	Сталь нержавеющая	Шлаковата	132	27

Задача 7.5

Определить потерю теплоты Q, Вт, через стенку из красного кирпича длиной l м, высотой h м и толщиной δ м, если температура на поверхности стенки поддерживается t_1 °C и t_2 °C. Стенка выполнена из красного кирпича.

Таблица вариантов

№	Длина, <i>l</i>	Высота, h	Толщина, δ	Температура, t_1	Температура , t ₂
0	1	4	0,2	80	30
1	2	6	0,25	85	32
2	3	8	0,3	90	34
3	4	10	0,35	95	36
4	5	12	0,4	100	38
5		10	0,45	105	40
6	7	8	0,5	110	42
7	8	6	0,55	115	44
8	9	4	0,6	120	46
9	10	2	0,65	125	48

Задача 8.1

Стенка печи состоит из двух слоем: красного кирпича (δ_1 , мм) и шамотового кирпича (δ_2 , мм). Температура внутри печи 1300 °C, температура окружающего пространства 25 °C. Определить потери теплоты с 1 м² поверхности стенки, температуру t^3 на границе между огнеупорным и строительным кирпичом. Коэффициент теплоотдачи от печных газов к стенке α_1 , $Bt/m^2 \cdot K$; коэффициент теплоотдачи от стенки к воздуху α_2 , $Bt/m^2 \cdot K$;

Таблица вариантов

No	Толщина, $oldsymbol{\delta}_{I}$	Толщина, $oldsymbol{\delta}_2$	Коэффициент, a_1	Коэффициент, a_1
0	450	200	30	12
1	460	210	30,5	12,5
2	470	220	31	13
3	480	230	31,5	13,5
4	490	240	32	14
5	500	250	32,5	14,5
6	510	260	33	15
7	520	270	33,5	15,5
8	530	280	34	16
9	540	290	34,5	16,5

2. МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РЕШЕНИЮ ЗАДАЧ Тема №1:ПАРАМЕТРЫ СОСТОЯНИЯ ТЕЛА

Основные понятия

1. Удельный объем (ν) тела — объем единицы его массы, м³/кг:

$$v = \frac{V}{M},\tag{1.1}$$

где V – объем занимаемый телом, M^3 ;

М – масса тела, кг.

2. Плотность (ρ) масса единицы объема, кг/м³. Величина обратная удельному объему:

$$\rho = \frac{1}{v} = \frac{M}{V} \,. \tag{1.2}$$

3. Давление (p) в единицах СИ измеряется в Па.

Соотношение между единицами измерения представлено в таблице 1.1

Таблица 1.1 – Соотношения между единицами давления

Единицы измерения	Па	бар	мм рт. ст.	мм вод. ст.	кгс/см2
Паскаль	1	10 ⁻⁵	$7,5024\cdot10^{-3}$	0,102	$1,02 \cdot 10^{-5}$
Бар	10 ⁻⁵	1	$7,5024\cdot10^2$	$1,02 \cdot 10^4$	1,02
Миллиметр ртутного столба	133,322	1,33322·10	1	13,6	1,36·10 ⁻³
Миллиметр водяного столба	9,8067	9,8067·10 ⁻⁵	7,35·10 ⁻²	1	10 ⁻⁴
Килограмм-сила на квадратный сантиметр	9,8067·10 ⁴	0,98067	$7,35\cdot 10^2$	10 ⁴	1

Параметром состояния рабочего тела является абсолютное давление:

$$p_{abc} = p_{MAH} + B, \qquad (1.3)$$

$$p_{a\delta c} = B - p_{eak}, \tag{1.4}$$

где $p_{_{\mathit{MAH}}}$ - манометрическое давление, давление выше атмосферного, Па;

В - атмосферное (барометрическое) давление, Па;

 $p_{\scriptscriptstyle \it Bak}$ - вакуумное давление, давление ниже атмосферного.

При измерении давления высотой ртутного столба следует учитывать, что на показание прибора (манометра, ртутного барометра) влияет не только давление, но и температура. Привести показания ртутного барометра к 0^{0} С можно с помощью соотношения:

$$B_0 = B \cdot (1 - 0,000172 \cdot t), \tag{1.5}$$

где B_0 - барометрическое давление, приведенное к 0^0 С;

B - действительное давление при температуре воздуха t^0 С;

0,000172 – коэффициент объемного расширения ртути.

4. Температура (T) характеризует степень нагретости тела. Единицей измерения температуры является кельвин (K). Температура, измеряемая в 0 C обозначается t, ее можно перевести в K с помощью соотношения:

$$T = t + 273.15 \tag{1.6}$$

Примеры решения задач

Задача 1.

Масса одного кубометра газа при определенных условиях составляет 0,9 кг. Определить плотность и удельный объем газа при этих условиях.

Решение

По формуле 1.1 определим удельный объем газа:

$$\frac{1}{0.8} = 1.25 \frac{\text{M}^3}{\text{K}\Gamma}.$$

Плотность является обратной величиной удельного объема, таким образом:

$$\rho = \frac{1}{1.25} = 0.8 \frac{\text{K}\Gamma}{\text{M}^3}.$$

Задача 2.

Найти абсолютное давление пара в котле, если манометр показывает $p=0.12\,$ МПа, а атмосферное давление по ртутному барометру составляет $B=680\,$ мм рт. ст. при температуре $24\,$ 0 C.

Решение

Показание барометра получено при температуре ртути $t=24~^{0}$ С. Это показание необходимо привести к $0~^{0}$ С. Переведем предварительно барометрическое давление в паскали:

$$\frac{680}{7,5024 \cdot 10^{-3}} = 90640 \text{ Па.}$$

Воспользуемся формулой 1.5:

$$B_0 = 90640 \cdot (1 - 0,000172 \cdot 24) = 90267\Pi a.$$

Тогда абсолютное давление пара в котле по формуле 1.3:

$$p_{a6c} = 0,12 + 90267 \cdot 10^{-6} = 0,21$$
МПа

Тема №2:ИДЕАЛЬНЫЕ ГАЗЫ. ОСНОВНЫЕ ГАЗОВЫЕ ЗАКОНЫ Основные понятия

Под идеальным газом понимают гипотетический газ, в котором отсутствуют силы притяжения между молекулами, а собственный объем молекул ничтожно мал по сравнению с объемом междумолекулярного пространства, т.е. молекулы идеального газа принимают за материальные точки.

Основное уравнение кинетической теории газов имеет вид

$$p = \frac{2}{3} \cdot n \cdot \frac{m\omega^2}{2},\tag{2.1}$$

где р – давление идеального газа;

n — число молекул в $1 m^3$ газа;

т – масса одной молекулы;

 ω - средняя квадратичная скорость поступательного движения молекул;

 $\frac{n\omega^2}{2}$ - средняя кинетическая энергия поступательного движения одной молекулы.

Основные зависимости, характеризующие соотношение между параметрами идеального газа:

1. Закон Бойля-Мариотта, температура газа постоянная (T=const)

$$pv = const;$$
 (2.2)

2. Закон Гей-Люссака, давление остается постоянным (p=const)

$$\frac{v}{T} = const$$
 или $\rho T = const$; (2.3)

3. Закон Авагадро, для газов имеющих одинаковые температуры и давления

$$\frac{\mu}{\rho} = const$$
 или $\mu v = const$, (2.4)

где μ - молекулярная масса газа.

Принято относить 1 м^3 газа к нормальным условиям, при которых рабочее тело находится под давлением p=101325 Па и T=273,15 К. Объем 1 кмоля всех идеальных газов равен 22,4136 м^3 /кмоль при нормальных условиях.

Плотность газа при нормальных условиях определяется из равенства:

$$\rho_H = \frac{\mu}{22.4}, \, \text{K}\Gamma/\text{M}^3; \qquad (2.5)$$

Удельный объем газа при нормальных условиях:

$$v_H = \frac{22.4}{\mu}, \, \text{M}^3/\text{K}\Gamma.$$
 (2.6)

Характеристические уравнения или уравнения состояния идеального газа:

$$pV = MRT, (2.7)$$

$$pv = RT (2.8)$$

$$pV_{\mu} = R_{\mu}T, \qquad (2.9)$$

где R – газовая постоянная для 1 кг газа, Дж/(кг·К);

 V_{μ} - объем 1 кмоля газа, м³/кмоль;

 R_{μ} - универсальная газовая постоянная 1 кмоля газа, Дж/(кмоль·К).

Численное значение универсальной газовой постоянной R_{μ} =8314 Дж/(кмоль·К).

Газовую постоянную можно определить по отношению:

$$R = \frac{R_{\mu}}{\mu} = \frac{8314}{\mu} \,. \tag{2.10}$$

Выражения для определения любого параметра при переходе из одного состояния в другое, если значения остальных известны:

$$\frac{p_1 v_1}{T_1} = \frac{p_2 v_2}{T_2}; (2.11)$$

$$\frac{p_1 V_1}{T_1} = \frac{p_2 V_2}{T_2} \,; \tag{2.12}$$

Представленные уравнения можно записать через плотность рабочего тела:

$$\frac{p_1}{\rho_1 T_1} = \frac{p_2}{\rho_2 T_2}$$
, отсюда $\rho_2 = \rho_1 \cdot \frac{p_2}{p_1} \cdot \frac{T_1}{T_2}$. (2.13)

Примеры решения задач

Задача 1.

Во сколько раз объем определенной массы газа при -30° С меньше, чем при $+20^{\circ}$ С, если давление в обоих случаях одинаковое?

Решение

При постоянном давлении давление изменяется по закону (2.2):

$$rac{v}{T}=const$$
 или $rac{V_2}{V_1}=rac{T_2}{T_1}$, $rac{V_2}{V_1}=rac{273+20}{273-30}=1.21.$

Задача 2.

Какой объем занимает 1 кг азота при температуре 50 0 C и давлении 0,4 МПа?

Решение

Объем получим из характеристического уравнения (2.8) для 1 кг газа получим, но предварительной найдем значение газовой постоянной для азота (2.10):

$$R_{N2} = \frac{8314}{28} = 297 \frac{\text{Дж}}{\text{кг}} \text{K},$$

$$v = \frac{RT}{p} = \frac{297 \cdot (50 + 273)}{0.2 \cdot 10^6} = 0.48 \frac{\text{M}^3}{\text{кг}}.$$

Задача 2.

Найти массу 5 M^3 водорода при давлении 0,4 МПа и температуре 150 0 C.

Решение

Воспользуемся характеристическим уравнение для произвольного количество газа (2.7):

$$M = \frac{pV}{RT} = \frac{0.4 \cdot 10^6 \cdot 5}{R \cdot (150 + 273)} = \frac{4728}{R}.$$

Значение газовых постоянных можно взять из таблицы I (см. приложения): $R_{H_2} = 4124 \frac{\text{Дж}}{\text{кг·K}}$;

Тогда:
$$M_{\rm H_2} = \frac{4728}{4124} = 1,15$$
 кг.

Тема №3: ГАЗОВЫЕ СМЕСИ

Основные понятия

Состав газовой смеси определяется количеством каждого из газов, входящих в смесь, и может быть задан объемными и массовыми долями.

Массовые доли определяются соотношениями:

$$m_1 = \frac{M_1}{M}; \ m_2 = \frac{M_2}{M}; \dots m_n = \frac{M_n}{M},$$
 (3.1)

где M_1 , M_2 , M_n – массы отдельных газов;

M – масса всей смеси.

Объемные доли определяются соотношениями:

$$r_1 = \frac{V_1}{V}; \ r_2 = \frac{V_2}{V}; \dots r_n = \frac{V_n}{V},$$
 (3.2)

где V_1 , V_2 , V_n – объемы отдельных газов;

V – общий объем газовой смеси.

Очевидно, что

$$r_1 + r_2 + ... + r_n = 1;$$
 (3.3)

$$m_1 + m_2 + \dots + m_n = 1;$$
 (3.4)

$$M_1 + M_2 + ... + M_n = M;$$
 (3.5)

$$V_1 + V_2 + \dots + V_n = V (3.6)$$

Для перевода массовых долей в объемные используем формулу:

$$r_i = \frac{\frac{m_i}{\mu_i}}{\sum_{i=1}^{n} \frac{m_i}{\mu_i}}.$$
(3.7)

Объемные доли переводятся в массовые с помощью формулы:

$$m_i = \frac{r_i \mu_i}{\sum_{1}^{n} r_i \mu_i}.$$
 (3.8)

Плотность смеси можно определить из следующих выражений:

$$\rho_{CM} = \sum r_i \rho_i , \text{K}\Gamma/\text{M}^3; \qquad (3.9)$$

$$\rho_{CM} = \frac{1}{\sum_{i=1}^{n} \frac{m_{i}}{\rho_{i}}}, \text{ K}\Gamma/\text{M}^{3}.$$
(3.10)

Удельный объем представляет собой величину обратную плотности смеси и определяется соответственно.

Значение кажущейся молекулярной массы определяется выражениями:

$$\mu_{CM} = \sum_{i=1}^{n} r_{i} \mu_{i} ; \qquad (3.11)$$

$$\mu_{CM} = \frac{1}{\sum_{i=1}^{n} \frac{m_{i}}{\mu_{i}}}.$$
(3.12)

Газовая постоянная смеси газов может быть выражена или черз постоянные отдельных компонентов, входящих в смесь, или через кажущуюся молекулярную массу смеси:

$$R_{CM} = \sum_{i=1}^{n} m_i R_i, \, \text{Дж/(кг·K)}; \qquad (3.13)$$

$$R_{CM} = \frac{8314}{\mu_{CM}} = \frac{8314}{\sum_{i=1}^{n} r_i \mu_i}, \text{Дж/(кг·К)}.$$
 (3.14)

Закон Дальтона устанавливает связь между давлением газовой смеси и парциальными давлениями отдельных компонентов, входящих в смесь:

$$p = p_1 + p_2 + \dots + p_n, (3.15)$$

где p — общее давление газовой смеси;

 $p_1,\,p_2,\,...\,\,p_n$ - парциальные давления отдельных компонентов, входящих в смесь.

При известных объемных долях компонентов смеси парциальное давление можно определить:

$$p_i = pr_i, (3.16)$$

где pi — парциальное давление любого газа, входящего в смесь.

Если известны массовые доли, то парциальное давление любого газа, входящего в смесь:

$$p_i = m_i \frac{R_i}{R_{CM}} p \tag{3.17}$$

Примеры решения задач

Задача 1.

Газовая смесь имеет следующий массовый состав: $m_{CO_2} = 35\%$; $m_{CH_4} = 65\%$. Определить объемный состав газовой смеси, ее газовую постоянную, кажущуюся молекулярную массу и парциальные давления компонентов, если давление смеси по барометру $B=90650~\Pi a$.

Решение

По уравнению (3.7) получаем:

$$r_{CO_2} = \frac{\frac{r_{CO_2}}{\mu_{CO_2}}}{\frac{m_{CO_2}}{\mu_{CO_2}} + \frac{m_{CH_4}}{\mu_{CH_4}}} = \frac{\frac{35}{44}}{\frac{35}{44} + \frac{65}{16}} = 0.164;$$

$$r_{CH_4} = \frac{\frac{r_{CH_4}}{\mu_{CH_4}}}{\frac{m_{CH_4}}{\mu_{CH_4}} + \frac{m_{CO_2}}{\frac{65}{44} + \frac{35}{16}}} = \frac{\frac{65}{16}}{\frac{65}{44} + \frac{35}{16}} = 0.836.$$

Газовую постоянную смеси находим по уравнению (3.13):

$$\begin{split} R_{\text{\tiny CM}} &= \sum_{1}^{n} m_{i} R_{i} = m_{CO_{2}} \cdot R_{CO_{2}} + m_{CH_{4}} \cdot R_{CH_{4}} = 0,164 \cdot \frac{8314}{44} + 0,836 \cdot \frac{8314}{16} = \\ &= 465 \frac{\text{\upmu}}{\text{\tiny K}\Gamma \cdot \text{\tiny K}}. \end{split}$$

Кажущуюся молекулярную массу смеси определим по уравнению (3.11):

$$\mu_{\text{CM}} = r_{CO_2} \cdot \mu_{CO_2} + r_{CH_4} \cdot \mu_{CH_4} = 0.164 \cdot 44 + 0.836 \cdot 16 = 20.6.$$

Парциальные давления получим из уравнения (3.16):

$$p_{CO_2} = r_{CO_2} \cdot p = 0,164 \cdot 90650 = 14867$$
 Па; $p_{CH_4} = r_{CH_4} \cdot p = 0,836 \cdot 90650 = 75783$ Па.

Задача 2.

Смесь газов состоит из двуокиси углерода и метана. Массовая доля метана $m_{CH_4}=0,47\%$. Найти газовую постоянную смеси и ее удельный объем при нормальных условиях.

Решение

Из уравнения (3.13):

$$R_{\text{CM}} = \sum_{1}^{n} m_{i} R_{i} = m_{CH_{4}} R_{CH_{4}} + m_{CO_{2}} R_{CO_{2}} = 0,047 \cdot \frac{8314}{16} + 0,9953 \cdot \frac{8314}{44} =$$

$$= 212 \frac{\text{Дж}}{\text{KF} \cdot \text{K}}.$$

Удельный объем газовой смеси получим из характеристического уравнения (2.8):

$$v_H = \frac{RT_H}{p_H} = \frac{212 \cdot 273}{101325} = 0.57 \frac{\text{M}^3}{\text{K}\Gamma}.$$

Тема №4: ТЕПЛОЕМКОСТЬ ГАЗОВ

Основные понятия

Теплоемкостью называют количество теплоты, которое необходимо сообщить телу (газу), чтобы повысить температуру какой-либо количественной единицы на $1\,^{0}$ С.

В зависимости от выбранной количественной единицы вещества различают массовую теплоемкость c, кДж/кг·К, объемную теплоемкость c' – кДж/м³·К, мольную теплоемкость μc , кДж/кмоль·К.

Формулы связи между теплоемкостями:

$$c = \frac{\mu c}{\mu}; \tag{4.1}$$

$$c' = \frac{\mu c}{22.4}; (4.2)$$

$$c' = c \cdot \rho_H, \tag{4.3}$$

где $\rho_{\scriptscriptstyle H}$ - плотность газа при нормальных условиях.

Средняя теплоемкость при изменении температуры газа от t_1 до t_2 (от T_1 до T_2):

$$c_m = \frac{q}{t_2 - t_1},\tag{4.3}$$

где q – количество подведенной теплоты единице количества газа, Bт.

Предел этого соотношения, когда разность температур стремится к нулю, называют истинной теплоемкость, аналитически она определяется выражением:

$$c = \frac{dq}{dt}. (4.4)$$

В зависимости от характера процесса выделяют теплоемкость при постоянном объеме c_v и теплоемкость при постоянном давлении c_p . Таким образом различают истинную и среднюю теплоемкости:

массовую — при постоянном объеме (c_v, c_{vm}) и постоянном давлении $(c_p, c_{pm});$

объемную — при постоянном объеме (c'_v, c'_{vm}) и постоянном давлении (c'_n, c'_{nm}) ;

мольную — при постоянном объеме (μc_v , μc_{vm}) и постоянном давлении (μc_p , μc_{pm}).

Между мольными теплоемкостями при постоянном давлении и постоянном объему существует следующая зависимость:

$$\mu c_p - \mu c_v = \mu R \approx 8{,}314 \text{ кДж/кмоль·К.}$$
 (4.5)

В таблице 4.1 приведены значения мольных теплоемкостей при невысоких температурах, использующиеся для приближенных расчетов.

Таблица 4.1 Значения мольных теплоемкостей

	Теплоемкость, кДж/кмоль К		
Газы	μc_v	μc_p	
Одноатомные	12,56	20,93	
Двухатомные	20,93	29,31	
Трех- и многоатомные	29,31	37,68	

Отношение теплоемкостей при постоянном давлении и постоянном объеме имеет большое значение в термодинамических расчетах:

$$k = \frac{\mu c_p}{\mu c_n} = \frac{c_p}{c_n}.$$
 (4.6)

Количество теплоты, которое необходимо затратить в процессе нагревания 1 кг газа в интервале температур от t_1 до t_2 затрачиваемой в процессе при постоянном объеме и в процессе при постоянном давлении:

$$q_{v} = c_{vm2}t_{2} - c_{vm1}t_{1}; (4.7)$$

$$q_p = c_{pm2}t_2 - c_{pm1}t_1. (4.8)$$

Эти же уравнения для процесса с участием M кг и $V_{\scriptscriptstyle H}$ м3 газа:

$$Q_{v} = M \cdot (c_{vm2}t_{2} - c_{vm1}t_{1}) = V_{H} \cdot (c_{vm2}^{\prime}t_{2} - c_{vm1}^{\prime}t_{1}); \tag{4.9}$$

$$Q_p = M \cdot (c_{pm2}t_2 - c_{pm1}t_1) = V_H \cdot (c'_{pm2}t_2 - c'_{pm1}t_1). \tag{4.10}$$

Пример решения задач

Задача 1.

Газ (O_2) объемом 17 м³ с давлением $p_1 = 0,7$ МПа и температурой $t_1 = 38$ °C нагревается до температуры $t_2 = 250$ °C в изобарном процессе. Определить количество подведенной к воздуху теплоты, если теплоемкость остается постоянной.

Решение

По уравнению (4.10) с учетом c=const получим:

$$Q_p = M_{C_P} \cdot (t_2 - t_1) = V_H \cdot c_p' \cdot (t_2 - t_1).$$

Массу газа найдем по характеристическому уравнению (2.7):

$$M = \frac{p_1 \cdot V_1}{RT} = \frac{0.7 \cdot 10^6 \cdot 17}{259 \cdot 311} = 147.7 \text{ Kr},$$

а объем газа при нормальных условиях найдем из уравнения (2.12):

$$V_H = \frac{p_1 \cdot V_1 \cdot T_H}{p_H \cdot T_1} = \frac{0.7 \cdot 10^6 \cdot 17 \cdot 273}{0.1013 \cdot 10^6 \cdot 311} = 103 \text{ m}^3.$$

На основании формул (4.1) и (4.2) и табл. 4.1:

$$c_p = \frac{\mu c_p}{\mu} = \frac{29,31}{32} = 0,92 \frac{\kappa \text{Дж}}{\kappa \Gamma \cdot \text{K}};$$

$$c_p' = \frac{\mu c_p}{22,4} = \frac{29,31}{22,4} = 1.308 \frac{\text{кДж}}{\text{м}^3 \cdot \text{K}}.$$

Следовательно, по уравнениям (4.9) и (4.10):

$$Q_p = M \cdot c_p \cdot (t_2 - t_1) = 147,7 \cdot 0,92 \cdot (250 - 38) = 28807$$
 кДж,

$$Q_p = V_H \cdot c_p' \cdot (t_2 - t_1) = 103 \cdot 1{,}308 \cdot (250 - 38) = 28561$$
 кДж.

Тема №5: ПЕРВОЕ НАЧАЛО ТЕРМОДИНАМИКИ

Основные понятия

Первый закон термодинамики является частным случаем закона сохранения и превращения энергии и устанавливает эквивалентность при взаимных превращениях механической и тепловой энергии и математически может быть описан выражением:

$$Q = L, (5.1)$$

где Q – количество теплоты превращенной в работу, Дж;

L – работа, полученная за счет теплоты Q, Дж.

Соотношения между единицами измерения энергии и мощности приведены в таблицах 5.1, 5.2.

Таблица 5.1 – Соотношения между единицами энергии

Единицы измерения	Дж	кгс. м	кал	кВт∙ч
Джоуль	1	0,102	0,239	$2,78\cdot10^{-7}$
Килограмм-сила-метр	9,8067	1	2,343	$2,72 \cdot 10^{-6}$
Калория	4,1868	0,42686	1	$1,16\cdot10^{-6}$
Киловатт-час	$3,6.10^{6}$	$3,67 \cdot 10^5$	$8,6 \cdot 10^5$	1

Таблица 5.2 – Соотношения между единицами мощности

Единицы измерения	Вт	кгс·м/с	кал/с
Ватт	1	0,102	0,239
Килограмм-сила-метр в секунду	9,8067	1	2,343
Калория в секунду	4,1868	0,42686	1

Пользуясь первым законом термодинамики, определим коэффициент полезного действия (к.п.д.), характеризующий степень совершенство превращения теплоты в работу. При известном расходе топлива на 1 кВт-ч к.п.д. найдем по формуле:

$$\eta_{CT} = \frac{3600}{Q_H^P \cdot b},\tag{5.2}$$

где $Q_{\scriptscriptstyle H}^{\scriptscriptstyle P}$ - теплота сгорания топлива, кДж/кг;

b – удельный расход топлива на 1 кВт·ч, кг/ кВт·ч.

Аналитическое выражение первого закона термодинамики или основное уравнение теплоты в дифференциальной форме для любого тела имеет вид:

$$dQ = dU + dL, (5.3)$$

где dQ — количество теплоты сообщенное извне рабочему телу массой М кг;

dU – изменение внутренней энергии рабочего тела;

dL — работа, совершенная рабочим телом по преодолению внешнего давления, «внешняя работа» расширения.

Для конечного изменения состояния уравнение первого начала термодинамики примет вид:

$$Q = \Delta U + L \tag{5.4}$$

Изменение внутренней энергии идеального газа в пределах t_1 - t_2 имеет вид:

$$\Delta u = c_{vm} \cdot (t_1 - t_2) \,, \tag{5.5}$$

где c_{vm} — средняя массовая теплоемкость при постоянном объеме в пределах t_1 - t_2

Таким образом, изменение внутренней энергии идеального газа для любого процесса равно произведению средней теплоемкости при постоянном объеме на разность температур газа.

Для идеальных газов энтальпия в интегральной форме имеет вид:

$$h = \int_0^T c_p \cdot dT = c_{pm}T \,, \tag{5.6}$$

где $c_{\it pm}$ - средняя массовая теплоемкость при постоянном давлении в приделах от 0 до Т.

Количество теплоты в процессе при p=const численно можно найти как разность энтальпий конечного и начального состояния.

$$q_n = h_2 - h_1. (5.7)$$

Примеры решения задач

Задача 1

Мощность паровой турбины N =18 МВт, теплота сгорания топлива $Q_H^P = 30,6$ МДж/кг, к.п.д. установки 0,98. Определить часовой расход топлива на турбину.

Решение

Не смогла решить простую задачу.

Тема №6: ОСНОВНЫЕ ГАЗОВЫЕ ПРОЦЕССЫ

Основные понятия

Основными термодинамическими процессами являются:

- 1) процесс сообщения или отнятия теплоты при постоянном объеме газа (v = const) usoxophu процесс;
- 2) процесс сообщения или отнятия теплоты при постоянном давлении (p = const) изобарный процесс;
- 3) процесс сообщения или отнятия теплоты при постоянной температуре (t = const)— изотермический процесс;
- 4) процесс без сообщения или отнятия теплоты извне (dq=0) адиабатный процесс;
- 5) процесс, в котором изменение параметров подчиняется уравнению $pv^m = const$, (m величина, постоянная для данного процесса) политропный процесс.

Изохорный процесс

Зависимость между начальными и конечными параметрами процесса

$$\frac{p_1}{p_2} = \frac{T_1}{T_2} \,. \tag{6.1}$$

Изменение внутренней энергии

$$\Delta u_v = q_v = c_{vm}(t_2 - t_1). \tag{6.2}$$

Если в процессе участвует М кг или $V_{\rm H}$ м 3 газа, то количество теплоты или изменение внутренней энергии газа

$$Q_v = \Delta U_v = Mc_{vm}(t_2 - t_1) = V_H c'_{vm}(t_2 - t_1), \tag{6.3}$$

где $V_{\rm H}$ – количество газа в м 3 при нормальных условиях.

В изохорном процессе газ работы не совершает (L=0)

Изобарный процесс

Зависимость между начальными и конечными параметрами процесса

$$\frac{v_1}{v_2} = \frac{T_1}{T_2} \,. \tag{6.4}$$

Работа 1 кг газа

$$l = p \cdot (v_2 - v_1), \tag{6.5}$$

$$l = R \cdot (T_2 - T_1), \tag{6.6}$$

Для M кг газа

$$L = Mp \cdot (v_2 - v_1) = p \cdot (V_2 - V_1) = MR \cdot (t_2 - t_1). \tag{6.7}$$

Если в процессе участвует M кг или $V_{\scriptscriptstyle H}$ м 3 газа, то количество теплоты

$$Q_p = Mc_{pm}(t_2 - t_1) = V_H c'_{pm}(t_2 - t_1), \tag{6.8}$$

где $V_{\scriptscriptstyle H}$ – количество газа в м 3 при нормальных условиях.

Изотермический процесс

Зависимость между начальными и конечными параметрами определяется формулами:

$$\frac{p_1}{p_2} = \frac{v_2}{v_1} \; ; \tag{6.9}$$

$$\frac{p_1}{p_2} = \frac{V_2}{V_1} \,. \tag{6.10}$$

Работу 1 кг идеального газа находят из уравнений:

$$l = RT \cdot ln \frac{v_2}{v_1}; \tag{6.11}$$

$$l = RT \cdot ln \frac{p_1}{p_2} ; \qquad (6.12)$$

$$l = p_1 v_1 \cdot ln \frac{p_1}{p_2} \,; \tag{6.13}$$

$$l = p_1 v_1 \cdot ln \frac{v_2}{v_1} \,; \tag{6.14}$$

Если в процессе участвуют M кг газа, то полученные из вышеприведенных формул значения нужно увеличить в M раз. Можно для этого случая заменить удельный объем полным объемом:

$$L = p_1 V_1 \cdot ln \frac{v_2}{v_1} \,; \tag{6.15}$$

$$L = p_1 V_1 \cdot ln \frac{p_1}{p_2} ; (6.16)$$

Для идеального газа в изотермическом процессе изменение внутренней энергии равно

$$\Delta u = c_{vm} \cdot (t_2 - t_1) = 0 \tag{6.17}$$

Количество теплоты, сообщаемой газу или отнимаемой от него удельная или для M кг газа соответственно:

$$q_t = l; (6.18)$$

$$Q_t = L. (6.19)$$

Адиабатный процесс

Показатель адиабаты κ равен соотношению изобарной и изохорной теплоемкостей:

$$k = \frac{c_p}{c_v} \tag{6.20}$$

Зависимость между начальными и конечными параметрами:

междуpиv

$$\frac{p_2}{p_1} = \left(\frac{v_1}{v_2}\right)^k \,, \tag{6.21}$$

между T и v

$$\frac{T_2}{T_1} = \left(\frac{v_1}{v_2}\right)^{k-1},\tag{6.22}$$

междуp и T

$$\frac{T_2}{T_1} = \left(\frac{p_2}{p_1}\right)^{\frac{k-1}{k}}. (6.23)$$

Работу 1 кг газа находят по следующим формулам:

$$l = \frac{1}{k-1} \cdot (p_1 v_1 - p_2 v_2); \tag{6.24}$$

$$l = \frac{p_1 v_1}{k-1} \cdot \left[1 - \left(\frac{v_1}{v_2} \right)^{k-1} \right] ; \tag{6.25}$$

$$l = \frac{R}{k-1} \cdot (T_1 - T_2); (6.26)$$

$$l = \frac{p_1 v_1}{k - 1} \cdot \left[1 - \left(\frac{p_2}{p_1} \right)^{\frac{k - 1}{k}} \right]. \tag{6.27}$$

Для определения работы М кг газа вышеприведенные формулы примут следующий вид:

$$L = \frac{1}{k-1} \cdot (p_1 V_1 - p_2 V_2); \qquad (6.28)$$

$$L = \frac{p_1 V_1}{k-1} \cdot \left[1 - \left(\frac{V_1}{V_2} \right)^{k-1} \right] ; \tag{6.29}$$

$$L = \frac{MR}{k-1} \cdot (T_1 - T_2); (6.30)$$

$$L = \frac{p_1 V_1}{k-1} \cdot \left[1 - \left(\frac{p_2}{p_1} \right)^{\frac{k-1}{k}} \right]. \tag{6.31}$$

Уравнение первого закона термодинамики для адиабатного процесса имеет вид

$$0 = du + dl, (6.32)$$

следовательно,

$$du = -dl$$
 или $\Delta u = -l$. (6.34)

Таким образом, изменение внутренней энергии газа и работа адиабатного процесса равны по величине и противоположны по знаку.

Изменение внутренней энергии идеального газа в адиабатном процессе может быть также выражено уравнением

$$\Delta u = c_{mv} \cdot (t_2 - t_1). \tag{6.35}$$

Политропный процесс

Уравнение политропы в системе координат ру при постоянном значении теплоемкости имеет вид:

$$pv^m = const, (6.36)$$

где m — показатель политропы.

Характеристикой политропного процесса является величина

$$\varphi = \frac{\Delta u}{q},\tag{6.37}$$

которая может быть определена из выражения

$$\varphi = \frac{m-1}{m-k},\tag{6.38}$$

где k — показатель адиабаты.

Зависимости между начальными и конечными параметрами процесса: между p и v

$$\frac{p_2}{p_1} = \left(\frac{v_1}{v_2}\right)^m \,, \tag{6.39}$$

между T и v

$$\frac{T_2}{T_1} = \left(\frac{v_1}{v_2}\right)^{m-1},\tag{6.40}$$

между p и T

$$\frac{T_2}{T_1} = \left(\frac{p_2}{p_1}\right)^{\frac{m-1}{m}}. (6.41)$$

Работу 1 кг газа в политропном процессе находят по следующим формулам:

$$l = \frac{1}{m-1} \cdot (p_1 v_1 - p_2 v_2); \tag{6.41}$$

$$l = \frac{p_1 v_1}{m-1} \cdot \left[1 - \left(\frac{v_1}{v_2} \right)^{m-1} \right]; \tag{6.42}$$

$$l = \frac{R}{m-1} \cdot (T_1 - T_2); (6.43)$$

$$l = \frac{p_1 v_1}{m-1} \cdot \left[1 - \left(\frac{p_2}{p_1} \right)^{\frac{m-1}{m}} \right]. \tag{6.44}$$

Если количество теплоты, участвующей в процессе, известно, то работа может быть также вычислена по формуле

$$l = \frac{k-1}{k-m} \cdot q \ . \tag{6.45}$$

Для определения работы М кг газа вышеприведенные формулы примут следующий вид:

$$L = \frac{1}{m-1} \cdot (p_1 V_1 - p_2 V_2); \qquad (6.46)$$

$$L = \frac{p_1 V_1}{m-1} \cdot \left[1 - \left(\frac{V_1}{V_2} \right)^{m-1} \right] ; \tag{6.47}$$

$$L = \frac{MR}{m-1} \cdot (T_1 - T_2); (6.48)$$

$$L = \frac{p_1 V_1}{m - 1} \cdot \left[1 - \left(\frac{p_2}{p_1} \right)^{\frac{m - 1}{m}} \right] ; \tag{6.49}$$

$$L = \frac{k-1}{k-m} \cdot Q . \tag{6.50}$$

Теплоемкость политропного процесса можно найти по следующим формулам:

$$c = \frac{c_v}{\varphi} , \qquad (6.51)$$

$$c = c_v \frac{m - k}{m - 1} \ . \tag{6.52}$$

Количество теплоты, сообщаемой газу или отнимаемой от него:

$$q = c \cdot (t_1 - t_2) = c_v \frac{m - k}{m - 1} (t_2 - t_1);$$
 (6.53)

$$Q = Mc \cdot (t_1 - t_2) = Mc_v \frac{m - k}{m - 1} (t_2 - t_1); \qquad (6.54)$$

$$Q = \frac{k-m}{k-1} \cdot L \,. \tag{6.55}$$

Изменение внутренней энергии газа в политропном процессе может быть найдено аналогично другим процессам или по формулам:

$$\Delta u = \varphi q = \frac{m-1}{m-k} q \quad ; \tag{6.56}$$

$$\Delta u = \frac{m-1}{1-k}l \quad . \tag{6.57}$$

Показатель политропного процесса т определяется из уравнения:

$$m = \frac{c_p - c}{c_v - c} \ . \tag{6.58}$$

Примеры решения задач

Задача 1.

В замкнутом сосуде находится газ при разряжении p_1 =8975 Па и температуре t_1 =85°С. Показание барометра — 100355 Па. До какой температуры нужно охладить газ, чтобы разряжение стало p_2 = 15333 Па?

Решение

Процесс происходить при v=const (изохорный процесс), тогда по формуле (6.1):

$$\frac{100355 - 8975}{100355 - 15333} = \frac{273 + 85}{T_2}.$$

Отсюда

$$T_2 = \frac{85022 \cdot 358}{91380} = 333 \text{ K};$$
 $t_2 = 60^{-0} C.$

Задача 2.

Воздух под давлением 0,5 МПа и при температуре 25 °C помещен в сосуд емкостью 45 л. Определить количество теплоты, которое необходимо сообщить воздуху, чтобы повысить его давление при постоянном объеме до 1,8 МПа. Примем зависимость теплоемкости от температуры нелинейной.

Решение

По уравнению (6.1) найдем температуру Т₂:

$$T_2 = T_1 \frac{p_2}{p_1} = 298 \cdot \frac{1.8}{0.5} = 1073 \text{ K};$$

 $t_2 = 800 \, ^{0}C.$

Согласно уравнению (4.1): $q_v = c_{vm2}t_2 - c_{vm1}t_1$;

Найдем изохорные теплоемкости при температуре t_1 и t_2 °C, воспользуемся таблицей II:

$$c_{vm1} = 0,7164 + \frac{(0,7193 - 0,7164)}{(100 - 0)} \cdot (25 - 0) = 0,7165 \frac{\kappa Дж}{\kappa \Gamma \cdot K};$$

$$c_{vm2} = 0,7842 \frac{\kappa Дж}{\kappa \Gamma \cdot K}.$$

Таким образом,

$$q_v = 0.7842 \cdot 800 - 0.7165 \cdot 25 = 609.45 \frac{\kappa \text{Дж}}{\kappa \Gamma}.$$

Массу воздуха в резервуаре определим из характеристического уравнения (2.7):

$$M = \frac{p_1 \cdot V_1}{R \cdot T_1} = \frac{0.5 \cdot 10^6 \cdot 0.045}{287 \cdot 609.45} = 0.143 \text{ кг,}$$

а сообщенное ему количество теплоты:

$$Q_v = M \cdot q_v = 0,143 \cdot 609,45 = 87,15$$
 кДж.

Задача 3.

Воздух массой 7 кг, имеющий начальную температуру $t_1 = 20$ °C и давление $p_1 = 0.12$ МПа сжимается изотермически до давления 1,2 МПа. Определить конечный объем, затрачиваемую работу и количество теплоты, отводимой от газа.

Решение

Начальный объем воздуха найдем из уравнения состояния (2.8):

$$v_1 = \frac{RT_1}{p_1} = \frac{287 \cdot 293}{0,12 \cdot 10^6} = 0.7 \frac{\text{M}^3}{\text{K}\Gamma}.$$

Для изотермического процесса справедливо:

$$v_2 = v_1 \frac{p_1}{p_2} = 0.7 \cdot \frac{0.12}{1.2} = 0.07 \frac{\text{M}^3}{\text{K}\Gamma}.$$

Найдем работу затрачиваемую на сжатие 1 кг воздуха по формуле (6.12):

$$l = RT \cdot ln \frac{p_1}{p_2} = 287 \cdot 297 \cdot ln \frac{0.12}{1.2} = -196.3 \frac{\kappa \text{Дж}}{\kappa \text{Г}},$$

а для воздуха с определенной массой:

$$L = M \cdot l = 7 \cdot (-196.3) = 1374$$
 кДж.

Количество теплоты, отводимой от газа, равно работе, затраченной на сжатие:

$$q = -196,3 \frac{\kappa Дж}{\kappa \Gamma}$$
.

Задача 4.

В двигателе газовоздушная смесь сжимается адиабатно. В конце процесса сжатия температура газовоздушной смеси становится на 300 °C ниже температуры самовоспламенения газа. Начальные параметры сжатия: p_1 =0,1 МПа и t_1 =85 °C. Показатель адиабаты k =1,36, k=314 Дж/(кг·К), температура самовоспламенения равна 650 °C. Определить величину работы сжатия и степень сжатия.

Решение

Степенью сжатия называется отношение начального объема к конечному:

$$\varepsilon = \frac{v_1}{v_2},$$

используя это выражение и формулу (6.22) получем следующее соотношение:

$$\varepsilon = \frac{v_1}{v_2} = \left(\frac{T_2}{T_1}\right)^{\frac{1}{(1-k)}} = \left(\frac{923}{358}\right)^{\frac{1}{(1,36-1)}} = 13,9.$$

Работу сжатия найдем по уравнению (6.26):

$$l = \frac{314}{0.36} \cdot (358 - 923) = -493 \frac{\kappa \text{Дж}}{\kappa \Gamma}.$$

Задача 5.

Воздух массой 1 кг имеет следующие начальные параметры $p_1 = 0.34$ МПа и t_1 95°C и расширяется политропно до давления $p_2 = 0.098$ МПа. Определить конечное состояние воздуха, изменение внутренней энергии, количество подведенной теплоты и полученную работу, если показатель политропы m = 1.2.

Решение

Определим начальный объем воздуха:

$$v_1 = \frac{RT_1}{p_1} = \frac{287 \cdot 368}{0.34 \cdot 10^6} = 0.31 \frac{\text{M}^3}{\text{K}\Gamma}.$$

Конечный объем воздуха найдем из уравнения (6.39):

$$v_2 = v_1 \cdot \left(\frac{p_1}{p_2}\right)^{\frac{1}{m}} = 0.31 \cdot \left(\frac{0.34}{0.098}\right)^{\frac{1}{1.2}} = 0.88 \frac{\text{M}^3}{\text{K}\Gamma}.$$

Конечную температуру получим из известного характеристического уравнения:

$$T_2 = \frac{p_2 v_2}{R} = \frac{0,098 \cdot 10^6 \cdot 0,88}{287} = 300 K.$$

Величину работы находим из уравнения (6.43):

$$l = \frac{287}{(1,2-1)} \cdot (368 - 300) = 97.6 \frac{\text{кДж}}{\text{кг}}.$$

Изменение внутренней энергии находим по общей для всех процессов формуле:

$$\Delta u = c_v \cdot (T_2 - T_1) = \frac{20,93}{28.96} \cdot (368 - 300) = 49 \frac{\kappa \text{Дж}}{\kappa \text{Г}}.$$

Количество теплоты, сообщаемой воздуху, находим по уравнению (6.53):

$$q = 0.72 \cdot \frac{1.2 - 1.4}{1.2 - 1} \cdot (27 - 95) = 49 \frac{\kappa \text{Дж}}{\kappa \Gamma}.$$

В рассмотренном процессе внешняя работа совершается за счет подведенной теплоты и уменьшения внутренней энергии. Таким образом, проверить результаты можно следующим способом:

$$q = \Delta u + l;$$

$$l = q - \Delta u = 49 - (-49) = 98 \frac{\kappa \text{Дж}}{\kappa \Gamma}.$$

Можно сделать вывод, что решение выполнено верно.

Тема №7: ТЕПЛОПРОВОДНОСТЬ

Основные понятия

Уравнение теплопроводности для установившегося потока через однослойную плоскую стенку или закон Фурье:

$$q = (t_{\Gamma} - t_{X}) \frac{\lambda}{\delta}$$
 или $Q = qF = (t_{\Gamma} - t_{X}) \frac{\lambda F}{\delta}$, (7.1)

где q – удельный тепловой поток, $Bт/м^2$;

Q – тепловой поток, Вт;

 t_{c} , t_{x} — температура горячей и холодной поверхности соответственно, К или ${}^{\circ}\mathrm{C}$:

 λ – коэффициент теплопроводности, Bт/(м·K);

 δ – толщина стенки, м;

F – площадь поверхности стенки, м²;

 $r=\delta/\lambda$ – термическое сопротивление стенки, (м²·K)/Вт.

Уравнение теплопроводности для установившегося теплового потока через многослойную плоскую стенку:

$$q = \frac{Q}{F} = \frac{t_{\Gamma} - t_{X}}{\sum r} = \frac{t_{\Gamma} - t_{X}}{\frac{\delta_{1}}{\lambda_{1}} + \frac{\delta_{2}}{\lambda_{2}} + \dots}.$$
 (7.2)

Для цилиндрической однослойной стенки средняя площадь поверхности определяется по формуле:

$$F_{cp} = \pi d_{cp} L = \frac{\pi (d_2 - d_1) L}{\ln \frac{d_2}{d_1}} , \qquad (7.3)$$

где d_1 и d_2 – внутренний и наружный диаметры, м;

L — длина цилиндра, м.

Уравнение теплопроводности для установившегося теплового потока через однослойную цилиндрическую стенку:

$$Q = \frac{\lambda}{\delta} (t_{\Gamma} - t_{X}) F_{cp} = \frac{2\pi\lambda(t_{\Gamma} - t_{X})L}{\ln\frac{d_{2}}{d_{1}}}.$$
 (7.4)

Здесь $\delta = (d_2 - d_1)/2$.

Примеры решения задач

Задача 1.

Определить коэффициент теплопроводности стенки, если при толщине 25 мм и разности температур на поверхности 50 °C плотность теплового потока $75~{\rm Bt/m}^2$.

Решение

Воспользуемся законом Фурье (7.1) и выразим коэффициент теплопроводности:

$$\lambda = \frac{q}{\Delta t} \cdot \delta = \frac{75}{50} \cdot 0.025 = 0.0375 \frac{\text{BT}}{\text{M} \cdot {}^{\circ}\text{C}}.$$

Задача 2.

Определить потерю теплоты Q, BT, через стенку из красного кирпича длиной l=5 м, высотой h=3 м и толщиной $\delta=0,45$ м, если температура на поверхности стенки поддерживается $t_{cl}=130$ °C и $t_{c2}=45$ °C. Коэффициент теплопроводности красного кирпича 0,7 BT/(м·°C).

Решение

Найдем удельный тепловой поток через стенку (7.1):

$$q = (130 - 45) \cdot \frac{0.7}{0.45} = 132.6 \frac{BT}{M^2}$$

отсюда определим тепловой поток через стенку, домножив полученное выше значение на площадь стенки:

$$Q = q \cdot F = 132,6 \cdot (5 \cdot 3) = 1989 \text{ Bt.}$$

Тема №8: ТЕПЛОПЕРЕДАЧА

Основные понятия

Основную группу теплообменных аппаратов применяемых в промышленности, составляют поверхностные теплообменники, в которых теплота передается от горячего теплоносителя к холодному через разделяющую их стенку. К другой группе относятся теплообменники смесительного типа, в которых теплота передается при непосредственном соприкосновении горячего и холодного теплоносителей.

Основное уравнение теплопередачи:

$$Q = K \cdot F \cdot \Delta t \,, \tag{8.1}$$

где Q – тепловой поток, Вт;

K - коэффициент теплопередачи, Вт/м²·K;

F – площадь поверхности теплопередачи, M^2 ;

 Δt — средняя разность температур горячего и холодного теплоносителя (средний температурный напор), К.

Для плоской поверхности коэффициент теплопередачи К равняется:

$$K = \frac{1}{\frac{1}{\alpha_1} + \sum r_{ct} + \frac{1}{\alpha_2}} , \qquad (8.2)$$

где α_1 и α_2 — коэффициент теплоотдачи для первого и второго теплоносителя, $B\tau/M^2\cdot K$;

 $\sum r_{ct}$ — сумма термических сопротивлений всех слоев, из которых состоит стенка, включая слои загрязнения, м²·К/Вт.

Площадь поверхности теплообмена трубчатых аппаратов определяется из формулы:

$$F_{\rm ann} = \pi \cdot d_{cp} \cdot n \cdot L , \qquad (8.3)$$

где d_{cp} – средний диаметр трубок (принимаем равным внутреннему диаметру), м2;

n – число трубок;

L – длина рубок, м.

Средний температурный напор определяется по формуле:

$$\Delta t = \frac{\Delta t_6 - \Delta t_{\rm M}}{ln(\frac{\Delta t_6}{\Delta t_{\rm M}})} , \qquad (8.4)$$

где $\varDelta t_{\it o}$ и $\varDelta t_{\it m}$ - большая и меньшая разности температур на концах теплообменника.

Примеры решения задач

Задача 1.

Определить температуру внутренней t_2 и наружной t_3 поверхности стенки теплообменника, а также температуру t_4 наружной поверхности изоляции, которой покрыт аппарат. Температура жидкости в теплообменнике $t_1 = 75~^{\rm o}{\rm C}$, температура наружного воздуха $t_5 = 15~^{\rm o}{\rm C}$. Теплообменник сделан из стали; толщина стальной стенки $\delta_{\rm cr} = 5$ мм, толщина изоляции $\delta_{\rm cr} = 50$ мм, в качестве изоляции используется стекловата. Коэффициент теплоотдачи от жидкости к стенке аппарата $\alpha_1 = 250~{\rm BT/(m^2 \cdot K)}$, коэффициент теплоотдачи от поверхности изоляции к воздуху $\alpha_2 = 10~{\rm BT/(m^2 \cdot K)}$.

Решение

Воспользуемся формулой (8.2) и найдем коэффициент теплопередачи для многослойной стенки:

$$K = \frac{1}{\frac{1}{\alpha_1} + \frac{\delta_{CT}}{\lambda_{CT}} + \frac{\delta_{M3}}{\lambda_{M3}} + \frac{1}{\alpha_2}} = \frac{1}{\frac{1}{250} + \frac{0,005}{45} + \frac{0,05}{0,047} + \frac{1}{10}} = 0.86 \frac{\text{BT}}{\text{M}^2 \cdot \text{K}'}$$

Удельный тепловой поток:

$$q = K \cdot (t_1 - t_2) = 0.86 \cdot (75 - 15) = 51.5 \frac{BT}{M^2}$$

Температуры t₂, t₃, и t₄ определим из соотношения:

$$q = \alpha_1 \cdot (t_1 - t_2) = \frac{\lambda_{CT}}{\delta_{CT}} \cdot (t_2 - t_3) = \alpha_2 \cdot (t_4 - t_5).$$

Температура внутренней поверхности стенки аппарата:

$$t_2 = t_1 - \frac{q}{\alpha_1} = 75 - \frac{51,5}{250} = 74,8 \text{ °C}.$$

Температура наружной поверхности стенки аппаратов:

$$t_3 = t_2 - q \frac{\delta_{CT}}{\lambda_{CT}} = 74.8 - \frac{51.5 \cdot 0.005}{45} \approx 74.8 \, ^{\circ}\text{C}.$$

Температура наружной поверхности изоляции:

$$t_4 = \frac{q}{\alpha_1} + t_5 = \frac{51.5}{10} + 15 = 20.2$$
 °C.

Как видим при наличии изоляции термическим сопротивлением стальной стенки можно пренебречь ($t_2 \approx t_3$).

ПРИЛОЖЕНИЯ

I. Молекулярные массы, плотности и объемы киломолей при нормальных условиях и газовые постоянные некоторых газов.

Вещество	Химическое обозначение	Молекулярная масса μ	Плотность ρ , кг/м 3	Объем киломоля µv, м ³ /кг	Газовая постоянная, Дж/(кг·К)
Воздух	-	28,96	1,293	22,4	287
Кислород	O_2	32	1,429	22,39	259,8
Азот	N_2	28	1,251	22,4	296,8
Гелий	Не	4	0,179	22,42	2078
Аргон	Ar	40	1,783	22,39	208,2
Водород	H_2	2	0,09	22,43	4124
Окись углерода	СО	28	1,25	22,4	296,8
Двуокись углерода	CO_2	44	1,977	22,26	188,9
Сернистый газ	SO_2	64	2,926	21,89	129,8
Метан	CH ₄	16	0,717	22,39	518,8
Этилен	C_2H_4	28	1,251	22,41	296,6
Коксовый газ	-	11,5	0,515	22,33	721
Аммиак	NH ₃	17	0,771	22,08	488,3
Водяной пар	H ₂ O	18	0,804	22,4	461

II. Теплоемкость воздуха

Тем-	Мольная теплоемкость,				Массовая теплоемкость,		Объемная теплоемкость,	
пера-								
тура	кДж/(кмоль•К)			кДж/(кг·К)		кДж/(м³⋅К)		
t, °C	μc _p	μc _v	μc _{pm}	μc _{vm}	C _{pm}	c _{vm}	c' _{pm}	c' _{vm}
0	29,073	20,785	29,073	20,758	1,0036	0,7164	1,2971	0,9261
100	29,266	20,951	29,152	20,838	1,0061	0,7193	1,3004	0,9295
200	29,676	21,361	29,299	20,984	1,0115	0,7243	1,3071	0,9362
300	30,266	21,951	29,521	21,206	1,0191	0,7319	1,3172	0,9462
400	30,949	22,634	29,789	21,474	1,0283	0,7415	1,3289	0,9579
500	31,64	23,325	30,095	21,78	1,0387	0,7519	1,3427	0,9718
600	32,301	23,986	30,405	22,09	1,0496	0,7624	1,3565	0,9856
700	32,9	24,585	30,723	22,408	1,0605	0,7733	1,3708	0,9998
800	33,432	25,117	31,028	22,713	1,071	0,7842	1,3842	1,0312
900	33,905	25,59	31,321	23,006	1,0815	0,7942	1,3976	1,0262
1000	34,315	26,0	31,598	23,283	1,0907	0,8039	1,4097	1,0387
1200	35,062	26,687	32,109	23,794	1,1082	0,8215	1,4327	1,0618
1400	35,546	27,231	32,565	24,25	1,1242	0,8369	1,4528	1,0819
1600	35,977	27,662	32,967	24,652	1,138	0,8508	1,4708	1,0999
1800	36,346	28,031	33,319	25,004	1,1501	0,8633	1,4867	1,1158
2000	36,655	28,34	33,641	25,326	1,161	0,8742	1,501	1,1296
2200	36,928	28,613	33,926	25,611	1,171	0,8843	1,5135	1,1426

ІІІ. Коэффициент теплопроводности некоторых материалов

Вещество	Коэффициент теплопроводности λ, Вт/м·°С					
Кирпич красный	0,77					
Кирпич силикатный	0,81					
Кирпич шамотовый	1,14					
Лед	2,2					
Пробковые плиты	0,047					
Сланец	1,49					
Снег	0,46					
Совелит	0,09					
Сталь углеродная	45					
Сталь нержавеющая	18					
Стекло обыкновенное	0,74					
Стекловата	0,047					
Пенопласт	0,05					
Шлаковата	0,16					

Литература

- 1. Рабинович О.М. Сборник задач по технической термодинамики. М., «Машиностроение», 1973, 344 с.
- 2. Павлов К.Ф., Романков П.Г., Носков А.А. Примеры и задачи по курсу процессов и аппаратов химической технологии. Учебное пособие для вузов Л.: Химия, 1987. 576 с.
- 3. Краснощеков Е.А., Сукомел А.С. Задачник по теплопередаче: Учеб. пособие для вузов. М.: Энергия, 1980. 288 с.
- 4. Авчухов В.В., Паюсте Б.Я. Задачник по процессас тепломасообмена. Учеб. пособие для вузов. – М.: Энергоатомиздат, 1986. -144 с.
- 5. Теплотехника: Учеб. для вузов / А.П. Баскаков, Б.В. Берг, О.К. Витт и др.; Под ред. А.П. Баскакова М.: Энергоатомиздат, 1991. -244 с.