Chapter 1: LDO (TPS7A4901)

Experiment 2: Impact of line and load conditions on the efficiency.

Test 1: Impact of load current and line voltage (at low V_{IN}) on efficiency

Objective: You will configure the design in WEBENCH and record the appropriate operating values to report the corresponding efficiency at several input voltage and output current combinations and record in Table 1 below.

Efficiency is calculated per the formula below:

$$\eta$$
 % = $(V_{OUT}I_{OUT})/(V_{IN}I_{IN}) \times 100$

However, we must remember that Input Current equals all the current that flows to the output plus all the current that flows into ground.

Thus, to use the values from the WEBENCH Op Values, the equation will look like this:

$$\eta$$
 % = $(V_{OUT \ Actual \ x} I_{OUT \ OP})/(V_{IN \ OP \ x} I_{IN \ Avg}) \times 100$
where $I_{IN} \ AVG = I_{OUT \ OP} + IC \ I_{ground}$

We have to calculate I_{IN} AVG from the two operating values ($I_{OUT\ OP}$ + $IC\ I_{ground}$) because the value for $I_{OUT\ OP}$ in WEBENCH does not have enough decimal places to show the included ground current. (You will notice $I_{OUT\ OP}$ in 'Amps' and $IC\ I_{ground}$ in 'microAmps' so be sure and remember this when adding the two numbers together)

You will then produce a report and use as pre-work for lab measurements

- Click on the <u>link</u> to open the TPS7A4901 design in <u>WEBENCH® Power</u>
 <u>Designer</u>. You may be required to login or register for your my.ti.com account to access WEBENCH.
- 2. Your design will be ready within WEBENCH Power Designer configured for this experiment.

3. Select the **Op Vals** icon at the top of the window to view the operating values.

4. In the 'Modify Operating Point' window, enter 8V for Vin and 0.025 for lout and Recalculate.

5. Read the values from the **Operating Values** table and enter them into Table 1: I_{OUT} OP, IC Iground, V_{OUT} Actual, and Efficiency. Calculate I_{IN} AVG from the equation below and enter into Table 1. Then calculate efficiency from the equation using the WEBENCH Op Values and enter that into Table 1 and compare that to the efficiency read from the Op Vals table. You may see a slight difference and this is due to the fact that WEBENCH uses V_{OUT} Op to calculate efficiency and we will use the V_{OUT} Actual voltage in our equation. Try to think of why the efficiency numbers are different.

Again, efficiency is calculated as follows:

$$\eta \% = (V_{OUT}I_{OUT})/(V_{IN}I_{IN}) \times 100$$

To use the values from the WEBENCH Op Values, the equation will look like this:

$$\eta$$
 % = $(V_{OUT Actual x} I_{OUT OP})/(V_{IN OP x} I_{IN AVG}) \times 100$
where $I_{IN} AVG = I_{OUT OP} + IC I_{around}$

I _{OUT} OP (A) IC Iground (A) I _{IN AVG} (A)	I _{OUT} (A)								
V _{OUT Actual} (V) η (%) from Op Vals η (%) calculated	0.025	0.050	0.075	0.100	0.125	0.150			
V _{IN} = 8V									
V _{IN} = 10V									

Table 1: Efficiency of TPS7A4901 vs load current/input voltage for Vout = 5V (make this table large and on one page for printing out)

6. Continue as with Step 4 in the same manner until you recorded the values for all combinations of input voltage and output current.

Test 2: Impact of load current and line voltage (high Vin) on efficiency

Objective: You will configure the design in WEBENCH and obtain the efficiency as calculated by WEBENCH, for several input voltage and output current combinations as shown in the Table 2 below.

You will then produce a report and use as pre-work for lab measurements and manual calculations.

- 1. Click on the link to open the TPS7A4901 design in WEBENCH® Power Designer
- 2. Your design will be ready within WEBENCH Power Designer configured for this experiment. Note: this design has been configured with a -30 degree C ambient temperature so the design does not exceed the temperature limits within the tool.

3. Select the Op Vals icon at the top of the window to view the operating values.

4. In the **Operating Values Window** window, enter 16V for Vin and 0.010A for lout and **Recalculate**.

5. Read the values from the **Operating Values** table and enter them into Table 2: I_{OUT} OP, IC Iground, V_{OUT} Actual, Efficiency, and Total Pd. Calculate I_{IN} AVG from the equation below and enter into Table 2. Then calculate efficiency from the equation using the WEBENCH Op Values and enter that into Table 2.

Again, efficiency is calculated as follows:

$$\eta \% = (V_{OUT}I_{OUT})/(V_{IN}I_{IN}) \times 100$$

To use the values from the WEBENCH Op Values, the equation will look like this:

$$\eta$$
 % = (V_{OUT Actual x} I_{OUT OP})/(V_{IN OP x} I_{IN} AVG) x 100

where
$$I_{IN}$$
 AVG = $I_{OUT OP}$ + IC I_{ground}

6. Continue in the same manner as with Step 4 and complete the table.

Modify Operating Point							
Vin:	16	lout:	0.01	Recalculate	Export to:	Excel Export	
Name				Value Category			
BOM Co	unt				9		
Efficienc	су				92.55%	Op_Point	
FootPrint		76mm2	General				
IC Iground		129.636uA	Current				
IC Pd		0.01W	W Power				
IC Tj		-29.234degC	9.234degC Op_Point				
IC Tolerance		0.030V	General				
ICThetaJA		63.4degC/W	Op_Point				
lin Avg					0.010A	Current	
Input Ri	pple Freque	ency			100kHz	Op_Point	
IOUT_OF	P				0.010A	Op_Point	
Output I	Noise RMS				34.892uV	2uV General	
Pout					0.15W	General	
PSRR es	st.				-46.311dB	Op_Point	
Softstar	rt Time				0.02s	General	
Total BOM		1.9\$.9\$				
Total Pd		0.01W	Power				
Vin p-p		0.260V	Op_Point				
VIN_OP		16.000V	Op_Point				
Vout Actual			14.905V	General			
Vout OP			15.000V	Op_Point			
Vout p-	р				1.257mV	Op_Point	
Vout To	lerance				2.47%	General	

I _{OUT} OP (A) IC Iground (A) I _{IN AVG} (A) V _{OUT Actual} (V)	V _{IN}					
η (%) calculated						
P _d loss (W)	16V	18V	20V	22V	24V	26V
IOUT = 10mA						
IOUT = 50mA						

Table 2: Efficiency and Power Loss of TPS7A4901 at $V_{OUT} = 15V$ (make this large and on one page for printing out and taking data)