

Visão geral

Tópico 05

Hugo Silva

Memória semicondutor

Circuito lógico

Correção de Erros

Tópico 05 - Memória principal

Hugo Vinícius Leão e Silva

hugovlsilva@gmail.com, hugo.vinicius.16@gmail.com, hugovinicius@ifg.edu.br

Instituto Federal de Educação, Ciência e Tecnologia de Goiás Campus Anápolis Curso de Bacharelado em Ciência da Computação

2 de junho de 2023

Visão geral

Tópico 05

Hugo Silva

Memória semicondutor

Circuito lógico

Correção de

1 Memória semicondutora

2 Circuito lógico

Memória semicondutora

Tópico 05

Hugo Silva

Memória semicondutora

Circuito lógico

- O elemento básico de uma memória semicondutora é a célula de memória, que possuem as seguintes características:
 - Possuem dois estados estáveis ou semiestáveis 0 e 1;
 - São capazes de serem gravadas para setar/definir o estado pelo menos uma vez;
 - São capazes de ler o estado.

Figura: Operações na célula de memória

Memória semicondutora

Tópico 05

Hugo Silva

Memória semicondutora

Circuito lógico

Correção de

Os tipos de memória RAM possíveis são:

Tipo	Categoria	Apagamento	Mecanismo de escrita	Volatili- dade
Random-access memory (RAM)	Leitura-escrita	Elétrico, nível de byte	Elétrico	Volátil
Read-only memory (ROM)	Leitura	Não aplicável	Máscara	Não volátil
Programmable ROM (PROM)	Leitura	Não aplicável	Elétrico	Não volátil
Eraseable PROM (EPROM)	Principalmente leitura	Luz UV, nível de chip	Elétrico	Não volátil
Electrically EPROM (EEPROM)	Principalmente leitura	Elétrico, nível de chip	Elétrico	Não volátil
Flash	Principalmente leitura	Elétrico, nível de bloco	Elétrico	Não volátil
3D Cross-Point (3D XPoint)	Leitura-escrita	Elétrico, nível de bit(?)	Elétrico	Não volátil

Memória semicondutora – RAM

Tópico 05

Memória semicondutora

Circuito lógico

Correção de

Memória RAM pode utilizar duas tecnologias, **DRAM** (RAM Dinâmica) e **SRAM** (RAM Estática). Na DRAM:

- DRAM é um dispositivo analógico;
- As células são capacitores. O valor de tensão é interpretado como 1 ou 0;
- Capacitores se descarregam mesmo quando energizados DRAMs necessitam um refresh periódico para manter os dados.

Memória semicondutora – RAM

Tópico 05

Hugo Silva

Memória semicondutora

Circuito lógico

Correção de Erros

SRAM:

- SRAM é um dispositivo puramente digital *flip-flops*;
- O bit é armazenado na célula enquanto ela for energizada não é necessário refresh periódico

Memória semicondutora – RAM

Tópico 05

Hugo Silva

Memória semicondutora

Circuito lógico

Correção de

- DRAM é mais densa do que a SRAM;
- DRAM é mais barata do que a SRAM (principalmente para grandes quantidades de memória);
- DRAM exige um circuito de refresh; SRAM, não;
- DRAM é mais lenta do que a SRAM;
- DRAM é usada para memória principal; SRAM, para cache (mas há exceções).

Memória semicondutora – ROM

Tópico 05

Hugo Silva

Memória semicondutora

Circuito lógico

Correção de Erros

Memória ROM pode utilizar quatro tecnologias:

- ROM Os dados são gravados **durante** o processo de fabricação do *chip* (sem chance para erros!);
- PROM Os dados são gravados uma única vez (WORM Write Once, Read Many) depois da fabricação do chip;
- EPROM Os dados são gravados depois da fabricação do chip, que pode ser completamente apagado expondo o seu die à luz UV;
- EEPROM Os dados são gravados depois da fabricação do chip, que pode ser completamente apagado eletricamente;
- Flash Os dados são gravados depois da fabricação do chip, que pode ter alguns blocos apagados eletricamente em alta velocidade.

Tópico 05

Hugo Silva

Memória semicondutor

Circuito lógico

- Um chip contém um arranjo de células de memória visto como W palavras de B bits cada; ex.: um chip de 16 Mb pode ser uma memória de 1M-palavras de 16 bits ou 16M-palavras de um bit ou 4M-palavras de quatro bits;
- Cada bit fica em uma matriz;
- 16 Mb = 16.777.216 bits $\rightarrow \frac{16}{4}$ Mbits = 4.194.304 bits = $2048^2 \rightarrow \log_2 2048 = 11$ bits para endereçar linhas e colunas. As linhas de endereço são multiplexadas para economizar o n.º de pinos;
- Podem ser necessários vários chips de memória para casar com a largura do barramento de memória.

Tópico 05

Hugo Silva

Memória semicondutor

Circuito lógico

Figura: Diagrama de uma memória de 16 Mb (4M \times 4)

Tópico 05

Memória semicondutor

Circuito lógico

Correção de

Uma operação de **leitura** em um chip genérico de RAM é realizado da seguinte forma:

- I Os sinais $\overline{OE} = 0$ e $\overline{WE} = 1$ são apresentados no bus juntamente com o endereço de linha em A0–A10 e com sinal $\overline{RAS} = 0$ (Row Address Select);
- 2 Alguns CLKs depois, $\overline{RAS} = 1$ e o sinal $\overline{CAS} = 0$ (*Column Address Select*) é apresentado no *bus* **juntamente** com o endereço de coluna em A0-A10;
- Alguns CLKs depois os dados lidos são apresentados no bus
 esse atraso é conhecido como (CAS Latency).

Tópico 05

Hugo Silva

Memória semicondutora

Circuito lógico

Correção de Erros Uma operação de **gravação** em um chip genérico de RAM é realizado da seguinte forma:

- 2 Alguns CLKs depois, $\overline{RAS} = 1$, $\overline{CAS} = 0$ e o endereço de coluna em A0-A10;
- 3 Alguns CLKs depois os dados a serem gravados são apresentados no *bus*.

Tópico 05

Circuito lógico

Tópico 05

Hugo Silva

Memória semicondutor

Circuito lógico

Tópico 05

Hugo Silva

Memória semicondutor

Circuito lógico

Correção de Erros Vários *chips* DRAM podem/devem ser agrupados em paralelo para casar com a largura do barramento, formando um *memory* rank:

Tópico 05

Hugo Silva

Memória semicondutor

Circuito lógico

- Um memory bank é um grupo de memory arrays independentes;
- Interleaving é uma técnica que permite que os B bancos atendam a B operações independentemente → aumento das taxas de transferência/dados (data rate);
- A frequência de operação do interleaving é maior do que a frequência de cada banco individual;
- O circuito de controle utiliza o round-robin para alternar entre os bancos;
- Exemplo: cada banco de memória transfere dados a cada 10 ns; dois bancos: 5 ns (2x); quatro bancos: 2,5 ns (4x);
- Memory banks != memory arrays.

Tópico 05

Hugo Silva

Memória semicondutora

Circuito lógico

Correção de Erros DIMM (Dual-Inline Memory Module) com dois ranks e oito banks:

Memory ranks são alternados utilizando o sinal \overline{CS} (*Chip Select*).

Tópico 05

Hugo Silva

Memória semicondutor

Circuito lógico

Correção de Erros

Um DIMM de 8 GB pode ter as seguintes configurações:

	DIMM 1	DIMM 2
N.º de <i>memory ranks</i>	1	2
N.º de DRAMs	8	16
N.º de <i>memory banks</i> em cada DRAM	8	8
Organização de cada DRAM	$1G \times 8$ bits	512M × 8 bits
Densidade de cada DRAM	8 Gb	4 Gb
Organização da DIMM	$1G \times 64$ bits	1G× 64 bits

Correção de Erros

Tópico 05 Hugo Silva

Memória semicondutor

Circuito lógico

- DRAM está sujeita a erros: *hard error* e *soft error*;
- Hard error é um erro permanente/físico e células de memória, que não são capazes de armazenar dados confiavelmente → uso intenso/severo; defeitos de fabricação; desgaste;
- Soft error é proveniente de erro aleatório e não danifica as células de memória → decaimento radioativo, radiação de fundo (raios cósmicos e nêutrons);
- São necessários processos de detecção e, se possível, correção de erros;
- Para isso, utilizam-se códigos corretores de erros (ECC -Error-Correcting Codes);
- Armazenam-se a palavra de M bits de dados e o código de K bits (cada palavra na memória ocupa (M + K) bits no total).

Correção de Erros

Tópico 05

Hugo Silva

Memória semicondutora

Circuito lógico

Correção de Erros

Como funcionam os ECCs na leitura?

- Leem-se os (M + K) bits. Os M bits são comparados com os K bits do código;
 - **1** Nenhum erro foi encontrado? Os M bits são transferidos;
 - 2 Foi encontrado um erro corrigível? Os (M + K) bits são postos em um corretor e os M bits corretos são enviados;
 - 3 Foi encontrado um erro incorrigível? O erro é reportado.

Como funcionam os ECCs na gravação?

- Obtêm-se os *M* bits a serem gravados, que são passados em um gerador de código de erro com *K* bits;
- Armazenam-se os (M + K) bits.

Correção de Erros Código de Hamming

Tópico 05

Hugo Silva

Memória semicondutora

Circuito lógico

Correção de

Erros

Desejamos codificar a palavra 1100 (M=4). Como codificar essa palavra usando o Código de Hamming?

- **1** K deve respeitar à inequação $2^K 1 \ge M + K$. Para M = 4, K = 3 e, portanto, *overhead* de codificação de $\frac{7}{4} = 75\%$;
- Complete a tabela para construir a palavra codificada:

Posição do bit		1	2	3	4	5	6	7	
		001	010	011	100	101	110	111	
Paridade ou da	Paridade ou dado?		P2	D1	P3	D2	D3	D4	
Valor do bit		?	?	1	?	1	0	0	
	P1	Χ		Х		Χ		Χ	$P1 = D1 \oplus D2 \oplus D4$
Bits avaliados	P2		Х	Х			Х	Χ	$P2 = D1 \oplus D3 \oplus D4$
	P3				Χ	Χ	Χ	Χ	$P3 = D2 \oplus D3 \oplus D4$

- 3 Bits de dados: 1100; bits do código: 011;
- 4 A palavra final será na ordem 0111100.

Correção de Erros Código de Hamming

Tópico 05

Hugo Silva

Memória semicondutora

Circuito lógico

Correção de Erros Agora desejamos decodificar a palavra 0111100:

- 1 Lembre-se que M = 4 e K = 3;
- **2** Utilize a tabela para construir a **palavra síndrome**:

Posição do bit		1	2	3	4	5	6	7	
		001	010	011	100	101	110	111	
Paridade ou da	Paridade ou dado?		P2	D1	P3	D2	D3	D4	
Valor do bit		0	1	1	1	1	0	0	
	S1	Χ		Χ		Х		Χ	$S1 = P1 \oplus D1 \oplus D2 \oplus D4$
Bits avaliados	S2		Х	Χ			Χ	Χ	$S2 = P2 \oplus D1 \oplus D3 \oplus D4$
	S3				Х	Χ	Χ	Χ	$S3 = P3 \oplus D2 \oplus D3 \oplus D4$

- 3 S1 = 0, S2 = 0 e S3 = 0;
- 4 A palavra síndrome é codificada na ordem {S3, S2, S1};
- 5 Neste caso, a palavra síndrome é: 000.
 - Se a palavra síndrome só tem 0's, não tem erro;
 - Se houver apenas um bit 1, apenas os bits de paridade estão errados, nada precisa ser feito;
 - Se mais de um bit for 1, então o valor numérico da palavra síndrome indica o bit errado.

(cont'd)

Correção de Erros Código de Hamming

Tópico 05

Hugo Silva

Memória semicondutor

Circuito lógico

Correção de Erros ■ Outro exemplo: uma palavra de M=8 bits requer uma palavra síndrome de K=4 bits para corrigir erros **simples**, com *overhead* de codificação de $\frac{12}{8}=50\%$:

$$(2^4-1) \ge (8+4) \to 15 \ge 12$$

■ Observe que o *overhead* diminui à medida que *M* cresce:

	Single-Erro	or Correction	Single-Error Correction/ Double-Error Detection			
Data Bits	Check Bits	% Increase	Check Bits	% Increase		
8	4	50	5	62.5		
16	5	31.25	6	37.5		
32	6	18.75	7	21.875		
64	7	10.94	8	12.5		
128	8	6.25	9	7.03		
256	9	3.52	10	3.91		

Nota: existem códigos SEC (single-error-correcting) e
 SEC-DED (single-error-correcting, double-error-detecting)₂

Tópico 05

Correção de Erros

Capítulo abordado: 5