

Theory of Computation Week 12 Review

Much of the material on this slides comes from the recommended textbook by Elaine Rich

THE HIERARCHY

GENERAL DEFINITIONS

- An **alphabet** (Σ) is a finite set of symbols (or characters)
- A string is a finite sequence of symbols chosen from some alphabet Σ
- A language is a set (finite or infinite) of strings chosen from some finite alphabet Σ
- A decision problem is simply a problem for which the answer is yes or no (True or False). A decision procedure answers a decision problem.

Closure

□ A binary relation R on a set A is closed under property P if and only if R possesses P.

Examples

< on the integers, P = transitivity

 \leq on the integers, P = reflexive

☐ The *closure* of *R* under *P* is a <u>smallest set</u> that includes *R* and that is closed under *P*.

DECISION PROBLEMS

What If We're Not Working with Strings?

Anything can be encoded as a string.

<*X*> is the string encoding of *X*.

< X, Y > is the string encoding of the pair X, Y.

DECISION PROBLEMS

- Problem: Verify the correctness of the addition of two numbers.
- Encoding: encode each of the numbers as a string of decimal digits. Each instance of the problem is a string of the form: <integer₁> + <integer₂> = <integer₃>
- The language to be decided:

INTEGERSUM = {w of the from: $<integer_1> + <integer_2> = <integer_3>:$ each of the substrings $<integer_1> , <integer_2>$ and $<integer_3>$ is an element of $\{0,1,2,3,4,5,6,7,8,9\}^+$ and $integer_3$ is sum of $integer_1$ and $integer_2$ }.

DECISION PROBLEMS

Turning Problems into Decision Problems

The Traditional Problems and their Language Formulations are Equivalent

By equivalent we mean that either problem can be *reduced to* the other.

That is: if we have a *machine* to solve one, we can use it to build a machine to do the other using just the starting machine and other functions that can be built using a machine of equal or lesser power.

Equivalence of Decision Problem

Suppose we have a program P that multiplies a pair of integers. Then the following program decides the language INTEGERMUL where INTEGERMUL={w of the form: $<integer_1>\times<integer_2>=<integer_3>$, where: $<integer_n>$ is any well formed integer, and $integer_3 = integer_1 * integer_2$ }

Given a string of the form $< integer_1 > \times < integer_2 > = < integer_3 >$

- 1. Let $x = convert-to-integer(< integer_1 >)$.
- 2. Let $y = convert-to-integer(< integer_2>)$.
- 3. Let z = P(x,y)
- 4. If z = convert-to-integer(<integer₃>) then accept Else reject.

Equivalence of Decision Problem

Alternatively, if we have a program T that decides the language INTEGERMUL then the following program computes the sum of two integers x and y:

- 1. Lexicographically enumerate the strings that represent decimal encodings of nonnegative integers.
- 2. Each time a string s is generated, create the new string $\langle x \rangle \times \langle y \rangle = s$.
- 3. Feed the string to T.
- 4. If T accepts $\langle x \rangle \times \langle y \rangle = s$, halt and return conver-to-integers(s).

DETERMINISTIC FSM Definition

A Finite State Machine M is a quintuple

$$M = (K, \Sigma, \delta, s, A)$$
, where:

- K is a finite set of states
- Σ is an alphabet
- δ is the transition function from $(K \times \Sigma)$ to K
- $s \in K$ is the initial state, and
- $A \subseteq K$ is the set of accepting states

NONDETERMINISTIC FSM Definition

A Finite State Machine M is a quintuple

$$M = (K, \Sigma, \Delta, s, A)$$
, where:

- K is a finite set of states
- Σ is an alphabet
- Δ is the transition relation. It is a finite subset of $(K \times (\Sigma \cup \{\epsilon\}) \times K)$
- $s \in K$ is the initial state, and
- $A \subseteq K$ is the set of accepting states

NONDETERMINISTIC FSMs Analysing Nondeterminism

Two approaches:

Explore a search tree:

Follow all paths in parallel

REGULAR EXPRESSION Definition

The regular expressions over an alphabet Σ are all and only the strings that can be obtained as follows:

- 1. \emptyset is a regular expression.
- 2. ϵ is a regular expression.
- 3. Every element of Σ is a regular expression.
- 4. If α , β are regular expressions, then so is $\alpha\beta$.
- 5. If α , β are regular expressions, then so is $\alpha \cup \beta$.
- 6. If α is a regular expression, then so is α^* .
- 7. α is a regular expression, then so is α^+ .
- 8. If α is a regular expression, then so is (α).

REGULAR GRAMMAR Definition

A **regular grammar** G is a quadruple (V, Σ, R, S) , where:

- V is the rule alphabet, which contains nonterminals and terminals,
- Σ (the set of terminals) is a subset of V,
- R (the set of rules) is a finite set of rules of the form:

$$X \rightarrow Y$$

S (the start symbol) is a nonterminal.

REGULAR LANGUAGES Summary Of Concepts

A language is *regular* iff it is accepted by some FSM

- Given any DFSM M, there exists an algorithm minDFSM that constructs a minimal DFSM that also accepts L(M).
- Given any NDFSM M, there exists an algorithm ndfsmtodfsm that constructs a DFSM that also accepts L(M).

REGULAR LANGUAGES Summary Of Concepts

- Given any DFSM M, there exists an algorithm fsmtoregex that constructs a regular expression that recognises L(M).
- Given any grammar G, there exists an algorithm grammartofsm that constructs a DFSM that also accepts L(G).
- The class of languages that can be defined with regular grammars, DFSMs, NFSMs and regular expressions is exactly the regular languages.

CLOSURE PROPERTIES OF REGULAR LANGUAGES

- Union
- Concatenation
- Kleene star
- Complement
- Intersection
- Difference
- Reverse
- Letter substitution

DON'T TRY TO USE CLOSURE BACKWARDS

One Closure Theorem:

If L_1 and L_2 are regular, then so is

$$L = L_1 \cap L_2$$

But if L is regular, what can we say about L_1 and L_2 ?

$$\underline{L} = L_1 \cap L_2$$

THE PUMPING THEOREM FOR REGULAR LANGUAGES

If *L* is regular, then every "long" string in *L* is pumpable.

To show that *L* is not regular, we find one that isn't.

To use the Pumping Theorem to show that a language *L* is not regular, we must:

- 1. Choose a string w where $|w| \ge k$. Since we do not know what k is, we must state w in terms of k.
- 2. Divide the possibilities for *y* into a set of equivalence classes that can be considered together.
- 3. For each such class of possible y values where $|xy| \le k$ and $y \ne \varepsilon$:

Choose a value for q such that xy^qz is not in L.

CONTEXT-FREE GRAMMAR Definition

A context-free grammar G is a quadruple, (V, Σ, R, S) , where:

- V is the rule alphabet, which contains nonterminals and terminals.
- Σ (the set of terminals) is a subset of V,
- R (the set of rules) is a finite subset of $(V \Sigma) \times V^*$,
- S (the start symbol) is an element of $V \Sigma$.

Example:

(
$$\{S, a, b\}, \{a, b\}, \{S \rightarrow a S b, S \rightarrow \epsilon\}, S$$
)

CONTEXT-FREE LANGUAGES

A language *L* is *context-free* if and only if it is generated by some context-free grammar *G*.

PARSE TREES Definition

A parse tree, derived by a grammar $G = (V, \Sigma, R, S)$, is a rooted, ordered tree in which:

- Every leaf node is labeled with an element of $\Sigma \cup \{\epsilon\}$,
- The root node is labeled S,
- Every other node is labeled with some element of: $V-\Sigma$, and
- If m is a nonleaf node labeled X and the children of m are labeled $x_1, x_2, ..., x_n$, then R contains the rule
- $\blacksquare X \to X_1, X_2, ..., X_n.$

AMBIGUITY

A grammar is **ambiguous** iff there is at least one string in L(G) for which G produces more than one parse tree.

For most applications of context-free grammars, this is a problem.

INHERENT AMBIGUITY

Both of the following problems are undecidable:

- Given a context-free grammar G, is G ambiguous?
- Given a context-free language L, is L inherently ambiguous?

REDUCING AMBIGUITY

We can get rid of:

- ϵ rules like $S \rightarrow \epsilon$,
- rules with symmetric right-hand sides, e.g.,

$$S \rightarrow SS$$

 $E \rightarrow E + E$

 rule sets that lead to ambiguous attachment of optional postfixes.

CONVERSION TO CHOMSKY NORMAL FORM

- 1. Remove all ε-rules, using the algorithm *removeEps*.
- 2. Remove all unit productions (rules of the form $A \rightarrow B$).
- 3. Remove all rules whose right hand sides have length greater than 1 and include a terminal:

(e.g.,
$$A \rightarrow aB$$
 or $A \rightarrow BaC$)

4. Remove all rules whose right hand sides have length greater than 2:

(e.g.,
$$A \rightarrow BCDE$$
)

PUSHDOWN AUTOMATON Definition

A **pushdown automaton** is a 6-tuple $M = (K, \Sigma, \Gamma, \Delta, s, A)$, where:

- K is a finite set of states
- Σ is the input alphabet
- Γ is the stack alphabet
- $s \in K$ is the initial state
- $A \subseteq K$ is the set of accepting states, and
- Δ is the transition relation.

PUSHDOWN AUTOMATON Definition

 Δ , the transition relation, is a finite subset of

PDAs AND CONTEXT-FREE GRAMMARS

Theorem: The class of languages accepted by PDAs is exactly the class of context-free languages.

Recall: context-free languages are languages that can be defined with context-free grammars.

Restate theorem:

Can describe with context-free grammar

Can accept by PDA

PDAs AND CONTEXT-FREE GRAMMARS From CFG to PDA

Lemma: Each context-free language is accepted by some PDA.

Proof (by construction):

The idea: Let the stack do the work.

Two approaches:

- Top down
- Bottom up

CLOSURE PROPERTIES OF CONTEXT-FREE LANGUAGES

The context-free languages are:

CLOSED	NOT CLOSED
Union	Intersection
Concatenation	Complement
Kleene star	Difference
Reverse	
Letter substitution	

THE PUMPING THEOREM FOR CONTEXT-FREE LANGUAGES

If L is a context-free language, then $\exists k \geq 1$, such that

 \forall strings $w \in L$, where $|w| \ge k$, $\exists u, v, x, y, z$, such that: w = uvxyz, and $vy \ne \varepsilon$, and $|vxy| \le k$, and $\forall q \ge 0$, uv^qxy^qz is in L.

TURING MACHINES

A Turing machine *M* is a sixtuple (K, Σ , Γ , δ , s, H):

- K is a finite set of states;
- Σ is the input alphabet, which does not contain \square ;
- is the tape alphabet, which must contain
 and have Σ as a subset.
- $s \in K$ is the initial state;
- $H \subseteq K$ is the set of halting states;
- δ is the transition function:

$$(K-H)$$
 $\times \Gamma$ to K $\times \Gamma$ $\times \{\rightarrow, \leftarrow\}$

SHORTHANDS

L

Find the first occurrence of a to the left of the current square.

 $R_{\text{a,b}}$

Find the first occurrence of a or b to the right of the current square.

Find the first occurrence of a or b to the left of the current square, then go to M_1 if the detected character is a; go to M_2 if the detected character is b.

 $L_{x\leftarrow a,k}$

Find the first occurrence of a or b to the left of the current square and set x to the value found.

$$L_{x\leftarrow a,b}Rx$$

Find the first occurrence of a or b to the left of the current square, set x to the value found, move one square to the right, and write x (a or b).

June 01, 2020

COMPUTING FUNCTIONS

Let $M = (K, \Sigma, \Gamma, \delta, s, \{h\})$. Its initial configuration is $(s, \underline{\square}w)$.

Define
$$M(w) = z$$
 iff $(s, \underline{\square} w) \mid -M^* (h, \underline{\square} z)$.

Let $\Sigma' \subseteq \Sigma$ be M's output alphabet. Let f be any function from Σ^* to Σ'^* .

M computes *f* iff, for all $w \in \Sigma^*$:

- If w is an input on which f is defined: M(w) = f(w).
- Otherwise M(w) does not halt.

A function f is **recursive** or **computable** iff there is a Turing machine M that computes it and that always halts.

IMPACT OF NONDETERMINISM

FS	M	S
	1 V I	u

PowerNO

Complexity

■ Time NO

Space YES

PDAs

Power YES

Turing machines

PowerNO

Complexity ?

CHURCH'S THESIS (CHURCH-TURING THESIS)

All formalisms powerful enough to describe everything we think of as a computational algorithm are equivalent.

This isn't a formal statement, so we can't prove it. But many different computational models have been proposed and they all turn out to be equivalent.

DECIDABLE LANGUAGES

M decides a language $L \subseteq \Sigma^*$ iff: For any string $w \in \Sigma^*$ it is true that:

- if $w \in L$ then M accepts w, and
- if $w \notin L$ then M rejects w.

A language *L* is *decidable* iff there is a Turing machine *M* that decides it. In this case, we will say that *L* is in *D*.

SEMIDECIDABLE LANGUAGES

Let Σ_M be the input alphabet to a TM M. Let $L \subseteq \Sigma_M^*$.

M semidecides *L* iff, for any string $w \in \Sigma_M^*$:

- $w \in L \rightarrow M$ accepts w
- $w \notin L \rightarrow M$ does not accept w.

M may either: reject or fail to halt.

A language *L* is **semidecidable** iff there is a Turing machine that semidecides it. We define the set **SD** to be the set of all semidecidable languages.

Theorems about D and SD

Theorem: The set of context-free languages is a *proper* subset of D.

Theorem: There are languages that are not in SD.

Theorem: The set D is closed under complement.

Theorem: The set SD is not closed under complement.

Theorem: A language is in D iff both it and its complement are in SD.

THE LANGUAGE H

 $H = \{ \langle M, w \rangle : TM M \text{ halts on input string } w \}$

Theorem: The language:

 $H = \{ \langle M, w \rangle : TM M \text{ halts on input string } w \}$

- is semidecidable, but
- is not decidable.

COMPLEMENT OF THE HALTING PROBLEM

 $\neg H = \{ \langle M, w \rangle : TM \ M \ does \ not \ halt \ on \ input \ string \ w \}$

Is not in SD

USING REDUCTION FOR UNDECIDABILITY

- 1. Choose a language L_1 :
 - that is already known not to be in D, and
 - that can be reduced to L_2 .
- 2. Define the reduction R.
- 3. Describe the composition C of R with Oracle.
- 4. Show that C does correctly decide L_1 iff O racle exists. We do this by showing:
 - R can be implemented by Turing machines,
 - C is correct:
 - If $x \in L_1$, then C(x) accepts, and
 - If $x \notin L_1$, then C(x) rejects.

$H_ε = {< M> : TM M halts on ε}$

Theorem: $H_{\varepsilon} = \{ < M > : TM M \text{ halts on } \varepsilon \} \text{ is not in D.}$

Proof: by reduction from H (i.e. we show $H \le H_{\epsilon}$)

 $H = \{ \langle M, w \rangle : TM M \text{ halts on input string } w \}$

R

(?Oracle)

 H_{ε} {<*M*> : TM *M* halts on ε}

R is a mapping reduction from H to H_{ϵ}:

- transforms the input of H into an input suitable for *Oracle*, which we will call *M#*.
- Builds a new TM that halts on ε if and only iff M halts on w

 $H = \{ \langle M, w \rangle : TM M \text{ halts on input string } w \}$

R

 $H_{\varepsilon} \{ < M > : TM M \text{ halts on } \varepsilon \}$ (*Oracle*)

C: Oracle + R

C: Oracle (R <M,w>)

R<M,w>: a TM <M#> as input for oracle

Oracle(<M>)

Accepts if M halts on ϵ Rejects if M does not halt on ϵ

R(<M, w>) =

- 1. Construct <M#>, where M#(x) operates as follows:
 - 1.1. Erase the tape.
 - 1.2. Write w on the tape.
 - 1.3. Run M on w.
- 2. Return < M#>.

How C works:

<M, w> ∈ H: M halts on w, so M# halts on everything. In particular, it halts on ϵ . Oracle accepts.

<M, w> \notin H: M does not halt on w, so M# halts on nothing and thus not on ϵ . Oracle rejects.

RICE'S THEOREM

No nontrivial property of the SD languages is decidable.

or

Any language L that can be described as:

$$L=\{: P(L(M)) = True\}$$

for any nontrivial property P, L is not in D.

A *nontrivial property* is one that is not simply:

- True for all languages, or
- False for all languages.

REDUCTION

Theorem: If there is a reduction R from L_1 to L_2 and L_1 is not SD, then L_2 is not SD.

So, we must:

- Choose a language L_1 that is known not to be in SD.
- Hypothesize the existence of a <u>semideciding</u> TM Oracle.

Note: R may not swap accept for loop.

The Problem View	The Language View	Status
Does TM <i>M</i> have an even number of states?	{ <m>: M has an even number of states}</m>	D
Does TM M halt on w?	$H = \{ \langle M, w \rangle : M \text{ halts on } w \}$	SD/D
Does TM M halt on the empty tape?	$H_ε = {< M> : M \text{ halts on } ε}$	SD/D
Is there any string on which TM <i>M</i> halts?	$H_{ANY} = \{ < M > : \text{ there exists at least one string on which TM } M \text{ halts } \}$	SD/D
Does TM M halt on all strings?	$H_{ALL} = \{ \langle M \rangle : M \text{ halts on } \Sigma^* \}$	¬SD
Does TM M accept w?	$A = \{ \langle M, w \rangle : M \text{ accepts } w \}$	SD/D
Does TM M accept ε?	$A_{\varepsilon} = \{ \langle M \rangle : M \text{ accepts } \varepsilon \}$	SD/D
Is there any string that TM M accepts?	A _{ANY} {< <i>M</i> > : there exists at least one string that TM <i>M</i> accepts }	SD/D

Does TM <i>M</i> accept all strings?	$A_{ALL} = \{ \langle M \rangle : L(M) = \Sigma^* \}$	¬SD _	
	ALL		49
Do TMs M_a and M_b accept the same	EqTMs = $\{< M_a, M_b > : L(M_a) = \{(M_a)\}$	¬SD	
languages?	$L(M_{\rm b})$		

Does TM M not halt on any string?	$H_{ANY} = \{ < M > : \text{ there does not exist any string on which } M \text{ halts} \}$	¬SD
Does TM <i>M</i> not halt on its own description?	{< <i>M</i> >: TM <i>M</i> does not halt on input < <i>M</i> >}	¬SD
Is TM M minimal?	$TM_{MIN} = {< M>: M \text{ is minimal}}$	¬SD
Is the language that TM <i>M</i> accepts regular?	TMreg = $\{: L(M) \text{ is regular}\}$	¬SD
Does TM M accept the language AnBn?	$A_{anbn} = \{ \langle M \rangle : L(M) = A^n B^n \}$	¬SD

LANGUAGE SUMMARY

LANGUAGES AND MACHINES

Rule of Least Power: "Use the least powerful language suitable for expressing information, constraints or programs on the World Wide Web."

THE UNIVERSITY OF NEWCASTLE AUSTRALIA