Mathématiques – L2 – MPCI

DS: ESPACES PRÉHILBETIENS ET EUCLIDIENS

Exercice 1 (5 pts) 1. (a) Soit $\phi : \mathbb{R}^3 \times \mathbb{R}^3 \to \mathbb{R}$ définie par $\phi(X,Y) = {}^t X A_1 Y$.

Par linéarité du produit matriciel et de la transposition, ϕ est bilinéaire. De plus,

$$\phi(X,Y) = {}^{t} \phi(X,Y) = {}^{t} ({}^{t}XA_{1}Y) = {}^{t}Y{}^{t}A_{1}X = {}^{t}YA_{1}X = \phi(Y,X),$$

car A_1 est symétrique. Il reste donc à vérifier si ϕ est définie positive. Soit X un vecteur colonne de coordonnées x, y, z. Alors,

$$\begin{split} \phi(X,X) &= 2x^2 + y^2 + 4z^2 - 2xy - 4xz + 2yz \\ &= 2\left[(x - \frac{y}{2} - z)^2 - \frac{y^2}{4} - z^2 - yz \right] + y^2 + 4z^2 + 2yz \\ &= 2(x - \frac{y}{2} - z)^2 + \frac{y^2}{2} + 2z^2. \end{split}$$

Ainsi $\phi(X,X) \geq 0$ avec égalité ssi z = y = x = 0 ssi X = 0. Donc ϕ est un produit scalaire et sa matrice dans la base canonique est par construction A_1 .

(b) Supposons que A_2 soit la matrice d'un produit scalaire ϕ sur un espace E. Il existe donc une base de E dans laquelle ϕ s'exprime :

$$\phi(X,Y) = {}^t X A_2 Y.$$

Or, A_2 possède deux colonnes liées : $2C_2 - C_3 = 0$. Le vecteur dont les coordonnées dans la base sont $X = {}^t (0, 2, -1, 0)$ appartient au noyau de A_2 . En particulier,

$$\phi(X,X) = {}^t A_2 X = 0.$$

Donc ϕ n'est pas définie positive. Contradiction. Ainsi A_2 n'est pas la matrice d'un produit scalaire.

Barème: 1 pt par matrice.

2. (a) Par linéarité du produit matriciel et de la transposition, ϕ est bilinéaire. De plus, comme A est symétrique, on montre comme à la question précédente que ϕ est symétrique. Si $X = {}^t(x,y)$ alors,

$$\phi(X,X) = x^2 - 4xy + 5y^2 = (x - 2y)^2 + y^2,$$

Donc ϕ est définie positive. Ainsi c'est un produit scalaire.

Barème :0,5 pt pour la symétrie + 0,5 pt pour défini positif.

(b) On a

$$\phi(u_a \begin{pmatrix} \begin{bmatrix} x \\ y \end{bmatrix} \end{pmatrix}, \begin{bmatrix} u \\ v \end{bmatrix}) = \begin{bmatrix} 2x + ay & 0 \end{bmatrix} A \begin{bmatrix} u \\ v \end{bmatrix} = (2x + ay)(u - 2v)$$
$$= x(2u - 4v) + y(au - 2av)$$
$$= \begin{bmatrix} x & y \end{bmatrix} \begin{bmatrix} 2u - 4v \\ au - 2av \end{bmatrix}.$$

On cherche à exprimer $\begin{bmatrix} 2u - 4v \\ au - 2av \end{bmatrix}$ sous la forme $A \begin{bmatrix} u' \\ v' \end{bmatrix}$ car on aura alors

$$\phi(u_a\begin{pmatrix}\begin{bmatrix}x\\y\end{bmatrix}\end{pmatrix},\begin{bmatrix}u\\v\end{bmatrix}) = \begin{bmatrix}x&y\end{bmatrix}A\begin{bmatrix}u'\\v'\end{bmatrix} = \phi(\begin{bmatrix}x\\y\end{bmatrix},\begin{bmatrix}u'\\v'\end{bmatrix}).$$

En résolvant le système, on trouve u' = (5+a)(2u-4v) et v' = (4+a)(u-2v). Ainsi, on a montré que

$$u_a^*(u,v) = ((5+a)(2u-4v), (4+a)(u-2v)).$$

Par ailleurs, $u_a = u_a^*$ ssi a = -4.

Barème :1,5 pt pour l'adjoint +0,5 pt pour déterminer a.

Exercice 2 (4 pts) 1. Soient $S \in S_n(\mathbb{R})$ et $A \in A_n(\mathbb{R})$ alors,

$$\langle S, A \rangle = tr({}^tSA) = tr(SA) = tr(AS) = -tr({}^tAS) = -\langle A, S \rangle = -\langle S, A \rangle.$$

Donc $\langle S, A \rangle = 0$. Cela montre que $S_n(\mathbb{R})$ et $A_n(\mathbb{R})$ sont orhtogonaux. Par ailleurs, si $M \in M_n(\mathbb{R})$, alors M = S + A où $S = \frac{1}{2}(^tM + M)$ est symétrique et $A = \frac{1}{2}(M - ^tM)$ est antisymétrique. Par conséquent, $M_n(\mathbb{R}) = S_n(\mathbb{R}) + A_n(\mathbb{R})$ et la somme est directe car $S_n(\mathbb{R}) \cap A_n(\mathbb{R}) = \{0\}$ puisqu'ils sont orthogonaux.

Montrer que $S_n(\mathbb{R})$ et $A_n(\mathbb{R})$ sont orthogonaux $(S_n(\mathbb{R}) \subset A_n(\mathbb{R})^{\perp})$ n'est pas pareil que montrer que $S_n(\mathbb{R})$ est l'orthogonal de $A_n(\mathbb{R})$ $(S_n(\mathbb{R}) = A_n(\mathbb{R})^{\perp})$. En particulier, la première partie de la question n'implique pas que $S_n(\mathbb{R})$ et $A_n(\mathbb{R})$ sont en somme directe ni même que $M_n(\mathbb{R}) = S_n(\mathbb{R}) + A_n(\mathbb{R})$.

Barème :1 pt pour l'orthogonalité + 1pt pour suplémentaire.

- 2. D'après la question, $p(M) = \frac{1}{2}(M + t^{t} M)$.

 Barème :0.5 pt.
- 3. D'après la caractérisation de la projection sur un sev, on a

$$d(M, S_3(\mathbb{R})) = || M - p(M) || = || \frac{1}{2} (M - {}^t M) ||.$$

Or

$$M - {}^{t} M = \begin{bmatrix} 0 & 2 & 2 \\ -2 & 0 & 0 \\ -2 & 0 & 0 \end{bmatrix}$$

donc

$$d(M, S_3(\mathbb{R})) = \frac{1}{2}\sqrt{16} = 2.$$

Barème:1,5 pt (justification + calcul correct).

Exercice 3 (7 pts) 1. On commence par déterminer un base de F:

$$(x,y,z,t) \in F \iff \begin{cases} 3z+2t &= 0 \\ x+y+t+z &= 0 \end{cases}$$

$$\iff \begin{cases} z &= -\frac{2}{3}t \\ x+y+\frac{1}{3}t &= 0 \end{cases}$$

$$\iff (x,y,z,t) = y(-1,1,0,0) + t(-\frac{1}{3},0,-\frac{2}{3},1)$$

Ainsi, les vecteurs $e_1 = (-1, 1, 0, 0)$ et $e_2 = (-\frac{1}{3}, 0, -\frac{2}{3}, 1)$ forment une base de F.

Ensuite, on orthonormalise cette base par l'algorithme de Gram-Schmidt. On norme le vecteur e_1 en posant $f_1 = \frac{e_1}{\|e_1\|} = \frac{1}{\sqrt{2}}e_1$ puis on cherche $f_2 = \mu(e_2 - \lambda f_1)$ avec $\mu \neq 0$ de sorte que f_2 soit normé et orthogonal à f_1 . Cette dernière condition impose

$$0 = \langle f_1, f_2 \rangle = \mu(\langle f_1, e_2 \rangle - \lambda),$$

donc

$$\lambda = \langle f_1, e_2 \rangle = \frac{1}{3\sqrt{2}}.$$

Ainsi $f_2 = \frac{\mu}{6}(-1, -1, -4, 6)$. Enfin, comme on veut que f_2 soit normé, cela impose la valeur de μ (au signe près):

$$\mu = \|\frac{1}{6}(-1, -1, -4, 6)\|^{-1} = \frac{6}{3\sqrt{6}}.$$

Ainsi, une base orthonormée de F est donnée par

$$f_1 = \frac{1}{\sqrt{2}}(-1, 1, 0, 0)$$
 et $f_2 = \frac{1}{3\sqrt{6}}(-1, -1, -4, 6)$.

Barème: 1 pt pour la base + 2pts pour l'orthonormalisation.

2. Puisque f_1, f_2 est une base orthonormée de F, la projection p_F s'exprime :

$$p_F(x) = \langle f_1, x \rangle f_1 + \langle f_2, x \rangle f_2.$$

On trouve alors

$$p_F((1,0,0,0)) = \frac{1}{27}(14,-13,2,-3), \quad p_F((0,1,0,0)) = \frac{1}{27}(-13,14,2,-3),$$

$$p_F((0,0,1,0)) = \frac{1}{27}(2,2,8,-12), \ p_F((0,0,0,1)) = \frac{1}{27}(-3,-3,-12,18).$$

Du coup, la matrice est :

$$\frac{1}{27} \begin{bmatrix}
14 & -13 & 2 & -3 \\
-13 & 14 & 2 & -3 \\
2 & 2 & 8 & -12 \\
-3 & -3 & -12 & 18
\end{bmatrix}.$$

Barème :2,5 pts (justification + calculs corrects).

3. La distance de (1,0,0,0) à F est

$$d((1,0,0,0),F) = ||(1,0,0,0) - p_F(1,0,0,0)||.$$

D'après la question précédent, un calcul donne

$$d((1,0,0,0),F) = \sqrt{\frac{13}{27}}$$

Barème :1,5 pts (justification + calcul correct.

Exercice 4 (4pts) 1. Soit $f \in H^{\perp}$. La fonction $g: t \mapsto tf(t)$ est continue sur [0,1] et g(0) = 0 donc $g \in H$. Il s'ensuit que

$$0 = \langle f, g \rangle = \int_0^1 t f(t)^2 dt.$$

En particulier, pour tout $t \in [0,1]$, $tf(t)^2 = 0$ puisque l'intégrande est positif et continu. Donc, pour tout t > 0, f(t) = 0 puis, par continuité de f, f(t) = 0 pour tout $t \in [0,1]$. Ainsi, f est la fonction nulle. Par conséquent, $H^{\perp} = \{0\}$.

Barème:1 pt.

- 2. Supposons par l'absurde que ϕ possède un adjoint ϕ^* .
 - (a) Pour $h \in H$, comme h(0) = 0 alors $\phi(h) = h$. Soient $h \in H$ et $f \in E$. On a :

$$\langle h, f \rangle = \langle \phi(h), f \rangle = \langle h, \phi^*(f) \rangle.$$

En particulier, par linéarité à gauche, pour tout $h \in H$, on a

$$\langle h, f - \phi^*(f) \rangle = 0,$$

ie $f - \phi^*(f) \in H^{\perp}$. D'après la question précédent, on a donc $\phi^*(f) = f$ pour tout $f \in E$.

Barème:1,5 pts.

(b) Soit $f: t \mapsto t+1$. On a par ce qui précède :

$$\langle \phi(f), f \rangle = \langle f, \phi^*(f) \rangle = \langle f, f \rangle.$$

Or, le membre de gauche vaut

$$\int_0^1 t(t+1)dt = \frac{5}{6},$$

et le membre de droite,

$$\int_0^1 (t+1)^2 dt = \frac{7}{3}.$$

Contradiction. Donc ϕ n'a pas d'adjoint.

Barème:0.5 pt.

Exercice 5 (3 pts) Soit $E = \mathcal{C}([a,b],\mathbb{R})$ et considérons l'application $\phi: E \times E \to \mathbb{R}$ définie par

$$\phi(f,g) = \int_{a}^{b} f(t)g(t)dt.$$

Par linéarité de l'intégral et bilinéarité du produit, ϕ est une forme bilinéaire qui est de plus symétrique (trivial). Par ailleurs, par positivité de l'intégrale

$$\phi(f, f) = \int_{a}^{b} f(t)^{2} dt \ge 0$$

avec égalité ssi f est identiquement nulle sur [a,b]. Cela montre que ϕ est un produit scalaire.

Barème:1 pt.

L'inégalité de Cauchy-Schwarz s'écrit alors : pour tout $f,g \in E$:

$$\left(\int_a^b f(t)g(t)dt\right)^2 \le \left(\int_a^b f(t)^2 dt\right) \left(\int_a^b g(t)^2 dt\right)$$

avec égalité ssi f et g sont liées.

En prenant g constante égale à 1 on trouve :

$$\left(\int_{a}^{b} f(t)dt\right)^{2} \le (b-a)\int_{a}^{b} f(t)^{2}dt$$

avec égalité ssi f et g sont liées ssi f est constante.

Barème :1 pt pour l'inégalité + 1 pt pour le cas d'égalité.