

Final Examinatio

Instructor: A. Dinh

Room: 2C82 Time: 45 minutes

Note: Return this booklet to Room 2C82 upon completing

Student Name:
Student#:

Question 1: A technician sets up a circuit with two CD74AD10 (triple 3-input NAND gate) chips and obtains the waveform show below using a logic analyzer. A, B, C are the inputs and Z is the output. Show his connection by drawing the lines connecting the inputs and the output to the two CD74AD10 and the inter-connections between the chips.

1

- Z

Question 2: Show the connection of a 74HC151 MUX used to implement the following Boolean function

Question 3: (Time allowed 12 minutes)

For this question, the circuit has been set-up (mark the set-up number in your paper). Pin 1 of the 7493 3-bit counter is connected to a 1kHz, $2.5V_{0-P}$ square wave. Using the provided logic analyzer or oscilloscope, display the waveforms on pin 5, 9, 10 and 11 of the 74LS151. From the waveforms, determine its input word (D_0 to D_7).

Set-up #: _____

D_0	D_1	D_2	D_3	D_4	D_5	D_6	D_7

Final Examination

Date: April 04, 2002

Instructor: M. Fotuhi-Firuzabad

Room: 2C70

Student Name: Student#:

Note: Return this booklet to Room 2C70 upon completion

- Three identical impedances can be connected either as a three-phase delta or as a three-01. phase wye load. For a given balanced three-phase supply, the power dissipation in the delta configuration will be _____ times that of the power dissipation in the Y configuration.
 - (a)

- (d) 1/**3**
- The power factor angle of a balanced three-phase load is the angle between its: **Q2.**
 - Line current and the line voltage (a)
 - Phase current and the corresponding line voltage (b)
 - Phase current and the corresponding phase voltage.
- Mark true (T) or false (F): Q3.
 - The two-wattmeter method cannot be used to measure the total power in an unbalanced 3-(a) phase load.
 - The current in the neutral wire of a balanced Y-to-Y connection is zero.
 - The algebraic sum of the three phase voltages in a balanced, sinusoidal 3-phase system is zero.
- **Q4.** What should the wattmeters read in the following circuits?

Final Examination Date: April 04, 2002 Instructor: M. Fotuhi-Firuzabad Room: 2C70 Note: Return this booklet to Room 2C70 upon completing

Q5. The circuit shown below has been set-up. In this circuit, $R1=32\Omega$ and $C1=80\mu F$.

Using readings from the meters, determine:

- a. Total active power in Watts.
- b. R2 and C2.
- c. Total reactive power.
- d. Power factor of the circuit.

Final Examination

Date: April 04, 2002

Instructor: A. S. Mehr

Room: **2C72**Time: **45 minutes**

Note: Return this booklet to Room 2C72 upon completion

Student #:

Question 1: (4 points)

In the following figure, the ammeter has the reading of 11.2(A). Find the resistance of the load (R).

Question 2: (14 points)

A 1.5KVA, 110V, 60Hz single-phase transformer gave the following test results:

i. Open-circuit test, low potential winding excited

 $V_{OC} = 110V$, $I_{OC} = 0.4A$, $P_{OC} = 25W$, $V_{HP} = 220V$

ii. Short-circuit test, low potential winding excited

 $V_{SC} = 8.25V$, $I_{SC} = 13.6A$, $P_{SC} = 40W$

iii. Direct-current winding resistances

 $R_{LP} = 0.113, R_{HP} = 0.413\Omega$

- a. Determine the equivalent circuit of the transformer referred to the low potential.
- b. Determine the full-load efficiency when the transformer is supplying at 110V, a load circuit with a lagging power factor of 0.8.

An RLC circuit with the following schematic is provided in the box. Connect this circuit to a (1.1V, 2.0 KHz) power supply. Find the output voltage.

Final Examination

<u>Date:</u> April 04, 2002

Instructor: D. Lynch

Room: 2C80 Time: 45 minutes

Note: Return this booklet to Room 2C80 upon completion

Student Name:	
Student#:	

1) (Time allowed: 15 minutes)

Determine 'n' for the unknown diode connected in the circuit (similar to that shown at right). $\frac{qV}{Recall the V}$

Recall that:
$$I \approx I_S e^{\frac{qV}{nkT}}$$

- 2) (*Time allowed: 15 minutes*)

 a) Design and draw the schematic for a diode resistor circuit that will give an output approximately as shown when connected to a 10V sinusoidal input waveform. connected to a $10V_{0-P}$ sinusoidal input waveform. (Assume ideal diodes – i.e. a forward biased voltage drop of approximately 0V

b) Determine a value of R in the schematic shown at right that will bias the circuit such that e_o =4.5 V_{DC} when the input is not connected.

3) (*Time allowed: 15 minutes*)

Use the setup provided (approximately as shown at right) to determine β_{AC} for the transistor in question.

9