INTERROGATION N. 1

NOM: PRÉNOM:

Exercice 1 - On munit l'intervalle]-1,1[de la loi de composition $x*y=\frac{x+y}{1+xy}.$ Est-ce que (]-1,1[,*) est un groupe?

Exercice 2 - Soit (G, *) un groupe. Soient H, K des sous-groupes de G. On suppose que $G = H \cup K$. Démontrer que G = H ou G = K.

1) . Soilmf $z, y \in J-1, 1[$. Donc 1+xy>0 et donc x * y est défimi.

By a |x+y-(1+xy)| = (x-1)(1-y) < 0, donc x * y < 1. |1+xy>0|By a |x+y+(1+xy)| = (x+1)(y+1)>0, donc |x+y|>-1.

Donc * est une loi de composition interme sur J-1, 1[.

• Soiemt $x, y, z \in J-1, 1[$ $x * (y * z) = \frac{x + \frac{y + z}{1 + yz}}{1 + x \cdot \frac{y + z}{2}} = \frac{x + y + z + xyz}{1 + xy + xz + yz}$ $(x * y) * z = \frac{x + y}{1 + xy} + z = \frac{x + y + z + xyz}{2 + xyz}$ $\frac{x + y}{1 + xy} + z = \frac{x + y + z + xyz}{2 + xyz}$ $\frac{1 + \frac{x + y}{2 + xy} \cdot z}{1 + xy + xz + yz}$ $\frac{1 + \frac{x + y}{2 + xy} \cdot z}{2 + xyz}$ $\frac{1 + xy + xz + yz}{2 + xyz}$ $\frac{1 + xy + xz + yz}{2 + xyz}$ $\frac{1 + xy + xz + yz}{2 + xyz}$

donc * est associative.

- · 0 est élément neutre pour *.
- est invense de x four x.

Donc (]-1, 1[, *) est um grouse.

2) Pan l'absunde on suppose que G + H et G + K.

Soit ReGit, donc REK.

Soit REGIK, donc REH.

Alono R*R E G=HUK.

Par exemple, h*k ∈ H.

Donc G=How G=K.