Division in Number Theory

Definition of Division

If a and b are integers with $b \neq 0$, we say that b divides a if there is an integer c such that a = bc. In this case, we write $b \mid a$, and say 'b divides a'. For example, 3 divides 12 since $12 = 3 \times 4$.

Example 1

Determine whether 3 | 7 and whether 3 | 12.

Solution: 3 does not divide 7, since $7 \div 3$ is not an integer. However, 3 divides 12, since $12 \div 3 = 4$ is an integer.

Easier Example: Does 2 divide 8?

Solution: Yes, since $8 \div 2 = 4$.

Challenging Example: Does 7 divide 100?

Solution: No, since $100 \div 7 = 14.2857...$, not an integer.

Example 2

Let n = 4. The positive integers divisible by 4 are all integers of the form 4k, where k is a positive integer: 4, 8, 12, 16, ...

Easier Example: List the positive integers divisible by 2 up to 20.

Solution: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20.

Challenging Example: List the positive integers divisible by 9 up to 100.

Solution: 9, 18, 27, 36, 45, 54, 63, 72, 81, 90, 99.

Theorem 1

Let a, b, and c be integers, where $a \neq 0$. (i) If a | b and a | c, then a | (b + c). (ii) If a | b, then a | (b × m) for all integers m. (iii) If a | b and b | c, then a | c.

Easier Example: Show that if 2 divides 6 and 2 divides 8, then 2 divides (6 + 8).

Solution: 6 + 8 = 14, and $14 \div 2 = 7$ is an integer. So $2 \mid 14$.

Challenging Example: If 5 | 20 and 5 | 35, prove 5 | (20 + 35).

Solution: 20 + 35 = 55, and $55 \div 5 = 11$, so $5 \mid 55$.

Corollary 1

If a, b, and c are integers, with $a \neq 0$, such that a | b and a | c, then a | (mb + nc) whenever m and n are integers.

Easier Example: If $3 \mid 6$ and $3 \mid 9$, prove $3 \mid (2 \times 6 + 1 \times 9)$.

Solution: $2 \times 6 + 9 = 21$, and $21 \div 3 = 7$, so $3 \mid 21$.

Challenging Example: If 4 | 12 and 4 | 20, prove 4 | (3×12 + 2×20).

Solution: $3 \times 12 + 2 \times 20 = 36 + 40 = 76$. Since $76 \div 4 = 19$, $4 \mid 76$.