

Freescale Semiconductor, Inc.

Reference Guide

CPU12RG/D Rev. 2, 11/2001

CPU12 Reference Guide (for HCS12 and original M68HC12)

Figure 1. Programming Model

Stack and Memory Layout

STACK UPON ENTRY TO SERVICE ROUTINE IF SP WAS ODD BEFORE INTERRUPT

SP +8	
SP +6	
SP +4	
SP +2	
SP	
SP -2	_

RTN _{HI}
Y _{HI}
X _{HI}
В

STACK UPON ENTRY TO SERVICE ROUTINE IF SP WAS EVEN BEFORE INTERRUPT

RTN_{LO}

 Y_{LO}

 X_{LO}

CCR

SP +9	
SP +7	RTN _{HI}
SP +5	Y _{HI}
SP +4	X _{HI}
SP +1	В
SP -1	

SP +10 SP +8 SP +6 SP +4 SP +2

Interrupt Vector Locations

\$FFFE, \$FFFF Power-On (POR) or External Reset

\$FFFC, \$FFFD Clock Monitor Reset

SP +9

SP +7

SP +5

SP +3

SP +1

SP -1

\$FFFA, \$FFFB Computer Operating Properly (COP Watchdog Reset

\$FFF8, \$FFF9 Unimplemented Opcode Trap

\$FFF6, \$FFF7 Software Interrupt Instruction (SWI)

\$FFF4, \$FFF5 XIRQ \$FFF2, \$FFF3 IRQ

\$FFC0-\$FFF1 Device-Specific Interrupt Sources

Notation Used in Instruction Set Summary

CPU Register Notation

Accumulator A — A or a

Accumulator B — B or b

Accumulator D — D or d

Index Register Y — Y or y

Stack Pointer — SP, sp, or s

Program Counter — PC, pc, or p

Condition Code Register — CCR or c

```
Explanation of Italic Expressions in Source Form Column
       abc — A or B or CCR
   abcdxys — A or B or CCR or D or X or Y or SP. Some assemblers also allow T2 or T3.
       abd — A or B or D
    abdxys — A or B or D or X or Y or SP
      dxys — D or X or Y or SP
     msk8 — 8-bit mask, some assemblers require # symbol before value
      opr8i — 8-bit immediate value
     opr16i — 16-bit immediate value
     opr8a — 8-bit address used with direct address mode
    opr16a — 16-bit address value
oprx0_xysp — Indexed addressing postbyte code:
                oprx3,-xys Predecrement X or Y or SP by 1 . . . 8
                oprx3,+xys Preincrement X or Y or SP by 1 . . . 8
                oprx3,xys- Postdecrement X or Y or SP by 1 . . . 8
                oprx3,xys+ Postincrement X or Y or SP by 1 . . . 8
                oprx5,xysp 5-bit constant offset from X or Y or SP or PC
                abd,xysp Accumulator A or B or D offset from X or Y or SP or PC
     oprx3 — Any positive integer 1 . . . 8 for pre/post increment/decrement
     oprx5 — Any integer in the range –16 . . . +15
     oprx9 — Any integer in the range -256 . . . +255
    oprx16 — Any integer in the range -32,768 . . . 65,535
      page — 8-bit value for PPAGE, some assemblers require # symbol before this value
       rel8 — Label of branch destination within -256 to +255 locations
       rel9 — Label of branch destination within -512 to +511 locations
      rel16 — Any label within 64K memory space
   trapnum — Any 8-bit integer in the range $30-$39 or $40-$FF
       xys — X or Y or SP
```

Operators

- + Addition
- _ Subtraction
- Logical AND
- + Logical OR (inclusive)

xysp — X or Y or SP or PC

- ⊕ Logical exclusive OR
- × Multiplication
- ÷ Division
- M Negation. One's complement (invert each bit of M)
 - : Concatenate

Example: A : B means the 16-bit value formed by concatenating 8-bit accumulator A with 8-bit accumulator B.

A is in the high-order position.

Continued on next page

Freescale Semiconductor, Inc.

CPU12RG/D

Operators (continued)

- ⇒ Transfer
 - Example: (A) \Rightarrow M means the content of accumulator A is transferred to memory location M.
- ⇔ Exchange
 - Example: $D \Leftrightarrow X$ means exchange the contents of D with those of X.

Address Mode Notation

- INH Inherent; no operands in object code
- IMM Immediate; operand in object code
- DIR Direct; operand is the lower byte of an address from \$0000 to \$00FF
- EXT Operand is a 16-bit address
- REL Two's complement relative offset; for branch instructions
- IDX Indexed (no extension bytes); includes:
 - 5-bit constant offset from X, Y, SP, or PC
 - Pre/post increment/decrement by 1 . . . 8
 - Accumulator A, B, or D offset
- IDX1 9-bit signed offset from X, Y, SP, or PC; 1 extension byte
- IDX2 16-bit signed offset from X, Y, SP, or PC; 2 extension bytes
- [IDX2] Indexed-indirect; 16-bit offset from X, Y, SP, or PC
- [D, IDX] Indexed-indirect; accumulator D offset from X, Y, SP, or PC

Machine Coding

- dd 8-bit direct address \$0000 to \$00FF. (High byte assumed to be \$00).
- ee High-order byte of a 16-bit constant offset for indexed addressing.
- eb Exchange/Transfer post-byte. See Table 3 on page 22.
- Low-order eight bits of a 9-bit signed constant offset for indexed addressing, or low-order byte of a 16-bit constant offset for indexed addressing.
- hh High-order byte of a 16-bit extended address.
- ii 8-bit immediate data value.
- jj High-order byte of a 16-bit immediate data value.
- kk Low-order byte of a 16-bit immediate data value.
- 1b Loop primitive (DBNE) post-byte. See Table 4 on page 23.
- 11 Low-order byte of a 16-bit extended address.
- $\,$ mm $\,$ $\,$ 8-bit immediate mask value for bit manipulation instructions. Set bits indicate bits to be affected.
- pg Program page (bank) number used in CALL instruction.
- qq High-order byte of a 16-bit relative offset for long branches.
- tn Trap number \$30-\$39 or \$40-\$FF.
- Signed relative offset \$80 (-128) to \$7F (+127).
 Offset relative to the byte following the relative offset byte, or low-order byte of a 16-bit relative offset for long branches.
- xb Indexed addressing post-byte. See **Table 1** on page 20 and **Table 2** on page 21.

Access Detail

Each code letter except (,), and comma equals one CPU cycle. Uppercase = 16-bit operation and lowercase = 8-bit operation. For complex sequences see the *CPU12 Reference Manual* (CPU12RM/AD) for more detailed information.

- f Free cycle, CPU doesn't use bus
- g Read PPAGE internally
- Read indirect pointer (indexed indirect)
- i Read indirect PPAGE value (CALL indirect only)
- n Write PPAGE internally
- Optional program word fetch (P) if instruction is misaligned and has an odd number of bytes of object code — otherwise, appears as a free cycle (f); Page 2 prebyte treated as a separate 1-byte instruction
- P Program word fetch (always an aligned-word read)
- r 8-bit data read
- R 16-bit data read
- s 8-bit stack write
- s 16-bit stack write
- w 8-bit data write
- w 16-bit data write
- u 8-bit stack read
- ∨ 16-bit vector fetch (always an aligned-word read)
- t 8-bit conditional read (or free cycle)
- x 8-bit conditional write (or free cycle)
- () Indicate a microcode loop
- , Indicates where an interrupt could be honored

Special Cases

PPP/P — Short branch, PPP if branch taken, P if not

OPPP/OPO — Long branch, OPPP if branch taken, OPO if not

Condition Codes Columns

- Status bit not affected by operation.
- 0 Status bit cleared by operation.
- 1 Status bit set by operation.
- Δ Status bit affected by operation.
- ? Status bit may be cleared or remain set, but is not set by operation.
- 1 Status bit may be set or remain cleared, but is not cleared by operation.
- ? Status bit may be changed by operation but the final state is not defined.
- ! Status bit used for a special purpose.

Instruction Set Summary (Sheet 1 of 14)

Source Form	Operation	Addr.	Machine		ss Detail	SXHI	NZVC
	·	Mode	Coding (hex)	HCS12	HC12		
ABA	$(A) + (B) \Rightarrow A$ Add Accumulators A and B	INH	18 06	00	00	Δ-	ΔΔΔΔ
ABX	(B) + (X) \Rightarrow X Translates to LEAX B,X	IDX	1A E5	Pf	PP^1		
ABY	(B) + (Y) \Rightarrow Y Translates to LEAY B,Y	IDX	19 ED	Pf	PP^1		
ADCA #opr8i	$(A) + (M) + C \Rightarrow A$	IMM	89 ii	P	P	Δ-	ΔΔΔΔ
ADCA opr8a	Add with Carry to A	DIR	99 dd	rPf	rfP		
ADCA opr16a		EXT	B9 hh 11	rPO	rOP		
ADCA oprx0_xysp ADCA oprx9,xysp		IDX IDX1	A9 xb A9 xb ff	rPf rPO	rfP rPO		
ADCA oprx16,xysp		IDX1	A9 xb ii A9 xb ee ff	frPP	frPP		
ADCA [D,xysp]		[D,IDX]	A9 xb	fIfrPf	flPrfP		
ADCA [oprx16,xysp]		[IDX2]	A9 xb ee ff	fIPrPf	fIPrfP		
ADCB #opr8i	(B) + (M) + C ⇒ B	IMM	C9 ii	P	P	Δ-	ΔΔΔΔ
ADCB opr8a	Add with Carry to B	DIR	D9 dd	rPf	rfP	Δ-	
ADCB opr16a	That must builty to b	EXT	F9 hh 11	rPO	rOP		
ADCB oprx0_xysp		IDX	E9 xb	rPf	rfP		
ADCB oprx9,xysp		IDX1	E9 xb ff	rPO	rPO		
ADCB oprx16,xysp		IDX2	E9 xb ee ff	frPP	frPP		
ADCB [D,xysp]		[D,IDX]	E9 xb	fIfrPf	fIfrfP		
ADCB [oprx16,xysp]		[IDX2]	E9 xb ee ff	fIPrPf	fIPrfP		
ADDA #opr8i	$(A) + (M) \Rightarrow A$	IMM	8B ii	P	P	Δ -	Δ Δ Δ Δ
ADDA opr8a	Add without Carry to A	DIR	9B dd	rPf	rfP		
ADDA opr16a		EXT	BB hh ll	rPO	rOP		
ADDA oprx0_xysp		IDX IDX1	AB xb AB xb ff	rPf rPO	rfP rPO		
ADDA oprx9,xysp ADDA oprx16,xysp		IDX1	AB xb ii AB xb ee ff	frPP	frPP		
ADDA (D,xysp)		[D,IDX]	AB xb ee 11	fIfrPf	fIfrfP		
ADDA [oprx16,xysp]		[IDX2]	AB xb ee ff	fIPrPf	fIPrfP		
ADDB #opr8i	(B) + (M) ⇒ B	IMM	CB ii	P	P	Δ-	ΔΔΔΔ
ADDB opr8a	Add without Carry to B	DIR	DB dd	rPf	rfP		
ADDB opr16a	, ,	EXT	FB hh ll	rPO	rOP		
ADDB oprx0_xysp		IDX	EB xb	rPf	rfP		
ADDB oprx9,xysp		IDX1	EB xb ff	rPO	rPO		
ADDB oprx16,xysp		IDX2	EB xb ee ff	frPP	frPP		
ADDB [D, xysp]		[D,IDX] [IDX2]	EB xb EB xb ee ff	fIfrPf fIPrPf	fIfrfP fIPrfP		
ADDB [oprx16,xysp]	(1.2)						
ADDD #opr16i	$(A:B) + (M:M+1) \Rightarrow A:B$	IMM	C3 jj kk	PO	OP		ΔΔΔΔ
ADDD opr8a ADDD opr16a	Add 16-Bit to D (A:B)	DIR EXT	D3 dd F3 hh ll	RPf RPO	RfP ROP		
ADDD oprx0_xysp		IDX	E3 xb	RPf	RfP		
ADDD oprx9,xysp		IDX1	E3 xb ff	RPO	RPO		
ADDD oprx16,xysp		IDX2	E3 xb ee ff	fRPP	fRPP		
ADDD [D,xysp]		[D,IDX]	E3 xb	fIfRPf	fIfRfP		
ADDD [oprx16,xysp]		[IDX2]	E3 xb ee ff	fIPRPf	fIPRfP		
ANDA #opr8i	$(A) \bullet (M) \Rightarrow A$	IMM	84 ii	P	P		ΔΔ0-
ANDA opr8a	Logical AND A with Memory	DIR	94 dd	rPf	rfP		
ANDA opr16a		EXT	B4 hh ll	rPO	rOP		
ANDA oprx0_xysp		IDX	A4 xb	rPf	rfP		
ANDA oprx9,xysp		IDX1	A4 xb ff A4 xb ee ff	rPO frPP	rPO frPP		
ANDA oprx16,xysp ANDA [D,xysp]		IDX2 [D,IDX]	A4 xb ee II A4 xb	fIfrPf	fIfrfP		
ANDA [oprx16,xysp]		[IDX2]	A4 xb ee ff	fIPrPf	fIPrfP		
ANDB #opr8i	(P) • (M) → P		C4 ii	P			A A O
ANDB #opr8a	(B) • (M) ⇒ B Logical AND B with Memory	IMM DIR	D4 dd	rPf	P rfP		ΔΔ0-
ANDB opr16a	Eoglical AND D WILL WIGHTON	EXT	F4 hh 11	rPO	rOP		
ANDB oprx0_xysp		IDX	E4 xb	rPf	rfP		
ANDB oprx9,xysp		IDX1	E4 xb ff	rPO	rPO		
ANDB oprx16,xysp		IDX2	E4 xb ee ff	frPP	frPP		
ANDB [D,xysp]		[D,IDX]	E4 xb	fIfrPf	fIfrfP		
ANDB [oprx16,xysp]		[IDX2]	E4 xb ee ff	fIPrPf	fIPrfP		
ANDCC #opr8i	$(CCR) \bullet (M) \Rightarrow CCR$	IMM	10 ii	P	P	$\downarrow \downarrow \downarrow \downarrow \downarrow \downarrow$	$\Downarrow \Downarrow \overline{\Downarrow} \Downarrow \overline{\Downarrow}$
	Logical AND CCR with Memory						

Note 1. Due to internal CPU requirements, the program word fetch is performed twice to the same address during this instruction.

Instruction Set Summary (Sheet 2 of 14)

Course Form	Operation	Addr.	Machine	Acces	ss Detail	cviii	NZVC
Source Form	Operation	Mode	Coding (hex)	HCS12	HC12	SXHI	NZVC
ASL opr16a		EXT	78 hh 11	rPwO	rOPw		ΔΔΔΔ
ASL oprx0_xysp		IDX	68 xb	rPw	rPw		
ASL oprx9,xysp	C b7 b0	IDX1	68 xb ff	rPwO	rPOw		
ASL oprx16,xysp ASL [D,xysp]	Arithmetic Shift Left	IDX2 [D,IDX]	68 xb ee ff 68 xb	frPwP fIfrPw	frPPw fIfrPw		
ASL [oprx16,xysp]	Anniment Shirt Left	[IDX2]	68 xb ee ff	fIPrPw	fIPrPw		
ASLA	Arithmetic Shift Left Accumulator A	INH	48	0	0		
ASLB	Arithmetic Shift Left Accumulator B	INH	58	0	0		
ASLD	← ←	INH	59	0	0		ΔΔΔΔ
	-0						
	C b7 A b0 b7 B b0 Arithmetic Shift Left Double						
ASR opr16a		EXT	77 hh 11	rPwO	rOPw		ΔΔΔΔ
ASR oprx0_xysp		IDX	67 xb	rPw	rPw		
ASR oprx9,xysp		IDX1	67 xb ff	rPwO	rPOw		
ASR oprx16,xysp	b7 b0 C	IDX2	67 xb ee ff	frPwP	frPPw		
ASR [D,xysp] ASR [oprx16,xysp]	Arithmetic Shift Right	[D,IDX] [IDX2]	67 xb 67 xb ee ff	fIfrPw fIPrPw	fIfrPw fIPrPw		
ASRA	Arithmetic Shift Right Accumulator A	INH	47	O	0		
ASRB	Arithmetic Shift Right Accumulator B	INH	57	0	0		
BCC rel8	Branch if Carry Clear (if C = 0)	REL	24 rr	PPP/P ¹	PPP/P ¹		
BCLR opr8a, msk8	$(M) \bullet (\overline{mm}) \Rightarrow M$	DIR	4D dd mm	rPwO	rPOw		ΔΔ0-
BCLR opr16a, msk8	Clear Bit(s) in Memory	EXT	1D hh ll mm	rPwP	rPPw		
BCLR oprx0_xysp, msk8	, , , , , , , , , , , , , , , , , , , ,	IDX	0D xb mm	rPwO	rPOw		
BCLR oprx9,xysp, msk8 BCLR oprx16,xysp, msk8		IDX1 IDX2	OD xb ff mm OD xb ee ff mm	rPwP frPwPO	rPwP frPwOP		
BCS rel8	Branch if Carry Set (if C = 1)	REL	25 rr	PPP/P ¹	PPP/P ¹		
BEQ rel8	Branch if Equal (if Z = 1)	REL	27 rr	PPP/P ¹	PPP/P ¹		
BGE rel8	Branch if Greater Than or Equal	REL	2C rr	PPP/P ¹	PPP/P ¹		
	(if $N \oplus V = 0$) (signed)						
BGND	Place CPU in Background Mode see CPU12 Reference Manual	INH	00	VfPPP	VfPPP		
BGT rel8	Branch if Greater Than	REL	2E rr	PPP/P ¹	PPP/P ¹		
DIII 10	(if $Z + (N \oplus V) = 0$) (signed)	5.51		. 1	. 1		
BHI rel8	Branch if Higher (if $C + Z = 0$) (unsigned)	REL	22 rr	PPP/P ¹	PPP/P ¹		
BHS rel8	Branch if Higher or Same	REL	24 rr	PPP/P ¹	PPP/P ¹		
	(if C = 0) (unsigned)						
DITA //0:	same function as BCC	10.40.4	05 11	_			4 4 0
BITA #opr8i BITA opr8a	(A) • (M) Logical AND A with Memory	IMM DIR	85 ii 95 dd	P rPf	P rfP		ΔΔ0-
BITA opr16a	Does not change Accumulator or Memory	EXT	B5 hh 11	rPO	rOP		
BITA oprx0_xysp	2000 not shange ribbanianater of moniony	IDX	A5 xb	rPf	rfP		
BITA oprx9,xysp		IDX1	A5 xb ff	rPO	rPO		
BITA oprx16,xysp		IDX2	A5 xb ee ff	frPP	frPP		
BITA [D, xysp]		[D,IDX]	A5 xb	fIfrPf	fIfrfP		
BITA [oprx16,xysp]		[IDX2]	A5 xb ee ff	fIPrPf	fIPrfP		
BITB # opr8i	(B) • (M)	IMM	C5 ii	P	P		ΔΔ0-
BITB opr8a	Logical AND B with Memory	DIR	D5 dd	rPf	rfP		
BITB opr16a	Does not change Accumulator or Memory	EXT	F5 hh ll E5 xb	rPO	rOP		
BITB oprx0_xysp BITB oprx9,xysp		IDX IDX1	E5 xb ff	rPf rPO	rfP rPO		
BITB oprx16,xysp		IDX1	E5 xb ii E5 xb ee ff	frPP	frPP		
BITB [D, xysp]		[D,IDX]	E5 xb	fIfrPf	fIfrfP		
BITB [oprx16,xysp]		[IDX2]	E5 xb ee ff	fIPrPf	fIPrfP		
BLE rel8	Branch if Less Than or Equal	REL	2F rr	PPP/P ¹	PPP/P ¹		
	(if $Z + (N \oplus V) = 1$) (signed)			,	_		
BLO rel8	Branch if Lower (if C = 1) (unsigned)	REL	25 rr	PPP/P ¹	PPP/P ¹		
	same function as BCS						

Note 1. PPP/P indicates this instruction takes three cycles to refill the instruction queue if the branch is taken and one program fetch cycle if the branch is not taken.

Instruction Set Summary (Sheet 3 of 14)

٥	Operation	Addr.	Machine	Access	Detail	6 7 111	117110
Source Form	Operation	Mode	Coding (hex)	HCS12	HC12	SXHI	NZVC
BLS rel8	Branch if Lower or Same (if $C + Z = 1$) (unsigned)	REL	23 rr	PPP/P ¹	PPP/P ¹		
BLT rel8	Branch if Less Than (if $N \oplus V = 1$) (signed)	REL	2D rr	PPP/P ¹	PPP/P ¹		
BMI rel8	Branch if Minus (if N = 1)	REL	2B rr	PPP/P ¹	PPP/P ¹		
BNE rel8	Branch if Not Equal (if Z = 0)	REL	26 rr	PPP/P ¹	PPP/P ¹		
BPL rel8	Branch if Plus (if N = 0)	REL	2A rr	PPP/P ¹	PPP/P ¹		
BRA rel8	Branch Always (if 1 = 1)	REL	20 rr	PPP	PPP		
BRCLR opr8a, msk8, rel8 BRCLR opr16a, msk8, rel8 BRCLR oprx0_xysp, msk8, rel8 BRCLR oprx9,xysp, msk8, rel8 BRCLR oprx16,xysp, msk8, rel8	Branch if (M) ● (mm) = 0 (If All Selected Bit(s) Clear)	DIR EXT IDX IDX1 IDX2	4F dd mm rr 1F hh ll mm rr 0F xb mm rr 0F xb ff mm rr 0F xb ee ff mm rr	rPPP rfPPP rPPP rfPPP PrfPPP	rPPP rfPPP rPPP rffPPP frPffPPP		
BRN rel8	Branch Never (if 1 = 0)	REL	21 rr	P	P		
BRSET opr8, msk8, rel8 BRSET opr16a, msk8, rel8 BRSET oprx0_xysp, msk8, rel8 BRSET oprx9,xysp, msk8, rel8 BRSET oprx16,xysp, msk8, rel8	Branch if (M) ◆ (mm) = 0 (if All Selected Bit(s) Set)	DIR EXT IDX IDX1 IDX2	4E dd mm rr 1E hh ll mm rr 0E xb mm rr 0E xb ff mm rr 0E xb ee ff mm rr	rPPP rfPPP rPPP rfPPP PrfPPP	rPPP rfPPP rPPP rffPPP frPffPPP		
BSET opr8, msk8 BSET opr16a, msk8 BSET oprx0_xysp, msk8 BSET oprx9,xysp, msk8 BSET oprx16,xysp, msk8	(M) + (mm) ⇒ M Set Bit(s) in Memory	DIR EXT IDX IDX1 IDX2	4C dd mm 1C hh 11 mm 0C xb mm 0C xb ff mm 0C xb ee ff mm	rPwO rPwP rPwO rPwP frPwPO	rPOw rPPw rPOw rPwP frPwOP		ΔΔ0-
BSR rel8	$ \begin{array}{l} (SP)-2 \Rightarrow SP; RTN_H:RTN_L \Rightarrow M_{(SP)}:M_{(SP+1)} \\ Subroutine \ address \Rightarrow PC \\ Branch \ to \ Subroutine \end{array} $	REL	07 rr	SPPP	PPPS		
BVC rel8	Branch if Overflow Bit Clear (if V = 0)	REL	28 rr	PPP/P ¹	PPP/P ¹		
BVS rel8	Branch if Overflow Bit Set (if V = 1)	REL	29 rr	PPP/P ¹	PPP/P ¹		
CALL opr16a, page CALL oprx0_xysp, page CALL oprx9,xysp, page CALL oprx16,xysp, page CALL [D.xysp] CALL [oprx16, xysp]	$\begin{split} &(SP) - 2 \Rightarrow SP; RTN_H; RTN_L \Rightarrow M_{(SP)}; M_{(SP+1)} \\ &(SP) - 1 \Rightarrow SP; (PPG) \Rightarrow M_{(SP)}; \\ &pg \Rightarrow PPAGE \ register; \ Program \ address \Rightarrow PC \\ &Call \ subroutine \ in \ extended \ memory \\ &(Program \ may \ be \ located \ on \ another \\ &expansion \ memory \ page.) \\ &Indirect \ modes \ get \ program \ address \\ ∧ \ new \ pg \ value \ based \ on \ pointer. \end{split}$	EXT IDX IDX1 IDX2 [D,IDX] [IDX2]	4A hh 11 pg 4B xb pg 4B xb ff pg 4B xb ee ff pg 4B xb 4B xb ee ff	gnSsPPP gnSsPPP gnSsPPP fgnSsPPP flignSsPPP flignSsPPP	gnfSsPPP gnfSsPPP gnfSsPPP fgnfSsPPP fIignSsPPP fIignSsPPP		
СВА	(A) – (B) Compare 8-Bit Accumulators	INH	18 17	00	00		ΔΔΔΔ
CLC	$0 \Rightarrow C$ Translates to ANDCC #\$FE	IMM	10 FE	P	Р		0
CLI	0 ⇒ I **Translates to ANDCC #\$EF (enables I-bit interrupts)	IMM	10 EF	Р	Р	0	
CLR opr16a CLR oprx0_xysp CLR oprx7e,xysp CLR oprx16,xysp CLR [D,xysp] CLR [oprx16,xysp] CLR [cRF oprx16,xysp] CLRA CLRB CLRB	$0 \Rightarrow M$ Clear Memory Location $0 \Rightarrow A$ Clear Accumulator A $0 \Rightarrow B$ Clear Accumulator B $0 \Rightarrow V$	EXT IDX IDX1 IDX2 [D,IDX] [IDX2] INH INH	79 hh 11 69 xb 69 xb ff 69 xb ee ff 69 xb ee ff 87 C7	PwO Pw PwO PwO PwP PIfw PIPw O O	WOP PW PWO PWP PIFPW O O		0100
	Translates to ANDCC #\$FD				į		

Note 1. PPP/P indicates this instruction takes three cycles to refill the instruction queue if the branch is taken and one program fetch cycle if the branch is not taken.

Instruction Set Summary (Sheet 4 of 14)

Source Form	Operation	Addr.	Machine	Access De	tail	SXHI	NZVC
Source Form	Operation	Mode	Coding (hex)	HCS12	HC12	2 X H I	NZVC
CMPA #opr8i	(A) – (M)	IMM	81 ii	P	P		ΔΔΔΔ
CMPA opr8a	Compare Accumulator A with Memory	DIR	91 dd	rPf	rfP		
CMPA opr16a CMPA oprx0_xysp		EXT IDX	B1 hh ll A1 xb	rPO rPf	rOP rfP		
CMPA oprx9,xysp		IDX IDX1	Al xb ff	rPO	rPO		
CMPA oprx16,xysp		IDX2	Al xb ee ff	frPP	frPP		
CMPA [D,xysp]		[D,IDX]	Al xb	fIfrPf	fIfrfP		
CMPA [oprx16,xysp]		[IDX2]	Al xb ee ff	fIPrPf	fIPrfP		
CMPB #opr8i	(B) – (M)	IMM	C1 ii	P	P		ΔΔΔΔ
CMPB opr8a	Compare Accumulator B with Memory	DIR	D1 dd	rPf	rfP		
CMPB opr16a CMPB oprx0_xysp		EXT IDX	F1 hh ll E1 xb	rPO rPf	rOP rfP		
CMPB oprx9,xysp		IDX IDX1	E1 xb ff	rPO	rPO		
CMPB oprx16,xysp		IDX2	El xb ee ff	frPP	frPP		
CMPB [D,xysp]		[D,IDX]	E1 xb	fIfrPf	fIfrfP		
CMPB [oprx16,xysp]		[IDX2]	El xb ee ff	fIPrPf	fIPrfP		
COM opr16a	$(\overline{M}) \Rightarrow M$ equivalent to \$FF – $(M) \Rightarrow M$	EXT	71 hh ll	rPwO	rOPw		ΔΔ01
COM oprx0_xysp	1's Complement Memory Location	IDX	61 xb	rPw	rPw		
COM oprx9,xysp		IDX1	61 xb ff	rPwO	rPOw		
COM ID vycel		IDX2 [D,IDX]	61 xb ee ff 61 xb	frPwP fIfrPw	frPPw fIfrPw		
COM [D,xysp] COM [oprx16,xysp]		[D,DX] [IDX2]	61 xb ee ff	fTPrPw	fIPrPw		
COMA	$(\overline{A}) \Rightarrow A$ Complement Accumulator A	INH	41	0	0		
COMB	$(\overline{B}) \Rightarrow B$ Complement Accumulator B	INH	51	0	0		
CPD #opr16i	(A:B) – (M:M+1)	IMM	8C jj kk	PO	OP		ΔΔΔΔ
CPD opr8a	Compare D to Memory (16-Bit)	DIR	9C dd	RPf	RfP		
CPD opr16a		EXT	BC hh 11	RPO	ROP		
CPD oprx0_xysp		IDX	AC xb	RPf	RfP		
CPD oprx9,xysp		IDX1	AC xb ff	RPO	RPO		
CPD oprx16,xysp		IDX2	AC xb ee ff	fRPP	fRPP		
CPD [D,xysp]		[D,IDX] [IDX2]	AC xb AC xb ee ff	fIfRPf fIPRPf	fIfRfP fIPRfP		
CPD [oprx16,xysp]	(CD) (MANA 4)						
CPS #opr16i	(SP) – (M:M+1)	IMM DIR	8F jj kk 9F dd	PO RPf	OP		ΔΔΔΔ
CPS opr8a CPS opr16a	Compare SP to Memory (16-Bit)	EXT	BF hh 11	RPO	RfP ROP		
CPS oprx0_xysp		IDX	AF xb	RPf	RfP		
CPS oprx9,xysp		IDX1	AF xb ff	RPO	RPO		
CPS oprx16,xysp		IDX2	AF xb ee ff	fRPP	fRPP		
CPS [D,xysp]		[D,IDX]	AF xb	fIfRPf	fIfRfP		
CPS [oprx16,xysp]		[IDX2]	AF xb ee ff	fIPRPf	fIPRfP		
CPX #opr16i	(X) – (M:M+1)	IMM DIR	8E jj kk 9E dd	PO	OP		ΔΔΔΔ
CPX opr8a CPX opr16a	Compare X to Memory (16-Bit)	EXT	9E dd BE hh ll	RPf RPO	RfP ROP		
CPX oprx0_xysp		IDX	AE xb	RPf	RfP		
CPX oprx9,xysp		IDX1	AE xb ff	RPO	RPO		
CPX oprx16,xysp		IDX2	AE xb ee ff	fRPP	fRPP		
CPX [D,xysp]		[D,IDX]	AE xb	fIfRPf	fIfRfP		
CPX [oprx16,xysp]		[IDX2]	AE xb ee ff	fIPRPf	fIPRfP		
CPY #opr16i	(Y) - (M:M+1)	IMM	8D jj kk	PO	OP		Δ Δ Δ Δ
CPY opr8a	Compare Y to Memory (16-Bit)	DIR	9D dd	RPf	RfP		
CPY opr16a CPY oprx0_xysp		EXT IDX	BD hh ll AD xb	RPO RPf	ROP RfP		
CPY oprx9,xysp		IDX IDX1	AD xb AD xb ff	RPO	RPO		
CPY oprx16,xysp		IDX1	AD xb ee ff	fRPP	fRPP		
CPY [D,xysp]		[D,IDX]	AD xb	fIfRPf	fIfRfP		
CPY [oprx16,xysp]		[IDX2]	AD xb ee ff	fIPRPf	fIPRfP		
DAA	Adjust Sum to BCD Decimal Adjust Accumulator A	INH	18 07	OfO	OfO		ΔΔ?Δ
DBEQ abdxys, rel9	(cntr) – 1⇒ cntr	REL	04 lb rr	PPP (branch)	PPP		
	if (cntr) = 0, then Branch	(9-bit)		PPO (no branch)			
	Lates Continue to next instruction		ı	1			1
	else Continue to next instruction						
	Decrement Counter and Branch if = 0						

Instruction Set Summary (Sheet 5 of 14)

		0.44-	Markins	Access	Dotail		1
Source Form	Operation	Addr. Mode	Machine Coding (hex)	HCS12	HC12	SXHI	NZVC
DBNE abdxys, rel9	(cntr) – 1 ⇒ cntr If (cntr) not = 0, then Branch; else Continue to next instruction	REL (9-bit)	04 lb rr	PPP (branch) PPO (no branch)	РРР		
	Decrement Counter and Branch if $\neq 0$ (cntr = A, B, D, X, Y, or SP)						
DEC opr16a DEC oprx0_xysp	(M) – \$01 ⇒ M Decrement Memory Location	EXT IDX	73 hh 11 63 xb	rPwO rPw	rOPw rPw		ΔΔΔ-
DEC oprx9,xysp DEC oprx16,xysp DEC [D,xysp]		IDX1 IDX2 [D,IDX]	63 xb ff 63 xb ee ff 63 xb	rPwO frPwP fIfrPw	rPOw frPPw fIfrPw		
DEC [oprx16,xysp] DECA DECB	(A) – \$01 ⇒ A Decrement A (B) – \$01 ⇒ B Decrement B	[IDX2] INH INH	63 xb ee ff 43 53	fIPrPw O O	fIPrPw O O		
DES	(SP) – \$0001 ⇒ SP Translates to LEAS –1,SP	IDX	1B 9F	Pf	PP^1		
DEX	(X) – \$0001 \Rightarrow X Decrement Index Register X	INH	09	0	0		- A
DEY	(Y) – \$0001 ⇒ Y Decrement Index Register Y	INH	03	0	0		-Δ
EDIV	$(Y:D) \div (X) \Rightarrow Y$ Remainder $\Rightarrow D$ 32 by 16 Bit \Rightarrow 16 Bit Divide (unsigned)	INH	11	fffffffff0	ffffffffff		ΔΔΔΔ
EDIVS	$(Y:D) \div (X) \Rightarrow Y$ Remainder $\Rightarrow D$ 32 by 16 Bit \Rightarrow 16 Bit Divide (signed)	INH	18 14	Offfffffffo	Offffffffff		ΔΔΔΔ
EMACS opr16a ²	$(M_{(X)}:M_{(X+1)}) \times (M_{(Y)}:M_{(Y+1)}) + (M-M+3) \Rightarrow M-M+3$ 16 by 16 Bit \Rightarrow 32 Bit	Special	18 12 hh 11	ORROfffRRfWWP	ORROfffRRfWWP		ΔΔΔΔ
FILLYD	Multiply and Accumulate (signed)	IBV					<u> </u>
EMAXD oprx0_xysp EMAXD oprx9,xysp	MAX((D), (M:M+1)) ⇒ D MAX of 2 Unsigned 16-Bit Values	IDX IDX1	18 1A xb 18 1A xb ff	ORPf ORPO	ORfP ORPO		ΔΔΔΔ
EMAXD oprx16,xysp	N 7 V 10 11 11 11 11 11 11	IDX2	18 1A xb ee ff	OfRPP	OfRPP		
EMAXD [D,xysp] EMAXD [oprx16,xysp]	N, Z, V and C status bits reflect result of internal compare ((D) – (M:M+1))	[D,IDX] [IDX2]	18 1A xb 18 1A xb ee ff	OfIfRPf OfIPRPf	OfIfRfP OfIPRfP		
EMAXM oprx0_xysp	$MAX((D), (M:M+1)) \Rightarrow M:M+1$	IDX	18 1E xb	ORPW	ORPW		ΔΔΔΔ
EMAXM oprx9,xysp EMAXM oprx16,xysp	MAX of 2 Unsigned 16-Bit Values	IDX1 IDX2	18 1E xb ff 18 1E xb ee ff	ORPWO OfRPWP	ORPWO OfRPWP		
EMAXM [D,xysp]	N, Z, V and C status bits reflect result of	[D,IDX]	18 1E xb ee 11	OfIfRPW	OfffRPW		
EMAXM [oprx16,xysp]	internal compare ((D) – (M:M+1))	[IDX2]	18 1E xb ee ff	OfIPRPW	OfIPRPW		
EMIND oprx0_xysp EMIND oprx9,xysp	$MIN((D), (M:M+1)) \Rightarrow D$ MIN of 2 Unsigned 16-Bit Values	IDX IDX1	18 1B xb 18 1B xb ff	ORPf ORPO	ORfP ORPO		ΔΔΔΔ
EMIND oprx16,xysp	With 012 Offsigned 10-bit values	IDX1	18 1B xb ee ff	Ofrpp	Ofrpp		
EMIND [D,xysp]	N, Z, V and C status bits reflect result of	[D,IDX]	18 1B xb	OfIfRPf	OfIfRfP		
EMIND [oprx16,xysp] EMINM oprx0 xysp	internal compare ((D) – (M:M+1)) $MIN((D), (M:M+1)) \Rightarrow M:M+1$	[IDX2] IDX	18 1B xb ee ff 18 1F xb	OfIPRPf ORPW	OfIPRfP		
EMINM oprx9,xysp	MIN of 2 Unsigned 16-Bit Values	IDX IDX1	18 1F xb 18 1F xb ff	ORPWO	ORPW ORPWO		ΔΔΔΔ
EMINM oprx16,xysp		IDX2	18 1F xb ee ff	OfRPWP	OfRPWP		
EMINM [D,xysp] EMINM [oprx16,xysp]	N, Z, V and C status bits reflect result of internal compare ((D) – (M:M+1))	[D,IDX] [IDX2]	18 1F xb 18 1F xb ee ff	Of I fRPW Of I PRPW	OfIfRPW OfIPRPW		
EMUL	$(D) \times (Y) \Rightarrow Y:D$ 16 by 16 Bit Multiply (unsigned)	INH	13	ffO	ffO		ΔΔ-Δ
EMULS	$(D) \times (Y) \Rightarrow Y:D$	INH	18 13	OfO	OfO		ΔΔ-Δ
	16 by 16 Bit Multiply (signed)			(if followed by pa	ge 2 instruction)		
EORA #opr8i	(A) ⊕ (M) ⇒ A	IMM	88 ii	P	P		ΔΔ0-
EORA opr8a EORA opr16a	Exclusive-OR A with Memory	DIR EXT	98 dd B8 hh ll	rPf rPO	rfP rOP		
EORA oprx0_xysp		IDX	A8 xb	rPf	rfP		
EORA oprx9,xysp		IDX1	A8 xb ff	rPO	rPO		
EORA oprx16,xysp EORA [D,xysp]		IDX2 [D,IDX]	A8 xb ee ff A8 xb	frPP fIfrPf	frPP fIfrfP		
EORA [oprx16,xysp]		[IDX2]	A8 xb ee ff	fIPrPf	fIPrfP		

- 1. Due to internal CPU requirements, the program word fetch is performed twice to the same address during this instruction.
 2. opr16a is an extended address specification. Both X and Y point to source operands.

Instruction Set Summary (Sheet 6 of 14)

Course Form	Operation	Addr.	Machine	Access	s Detail	CVIII	NZVO
Source Form	Operation	Mode	Coding (hex)	HCS12	HC12	SXHI	NZVC
EORB #opr8i EORB opr8a EORB opr16a EORB oprx0_xysp EORB oprx16,xysp EORB oprx16,xysp EORB [D,xysp] EORB [oprx16,xysp]	(B) ⊕ (M) ⇒ B Exclusive-OR B with Memory	IMM DIR EXT IDX IDX1 IDX2 [D,IDX] [IDX2]	C8 ii D8 dd F8 hh ll E8 xb E8 xb ff E8 xb ee ff E8 xb E8 xb ee ff	P rPf rPO rPf rPO frp frp fifrpf fIFrpf	p rfp rOP rfp rPO frPp fIfrfp		ΔΔ0-
ETBL oprx0_xysp	$(M:M+1)+[(B)\times((M+2:M+3)-(M:M+1))] \Rightarrow D$ 16-Bit Table Lookup and Interpolate	IDX	18 3F xb	ORRffffffp	ORREFEEEP		$\Delta \Delta - \Delta$
	Initialize B, and index before ETBL. <ea> points at first table entry (M:M+1) and B is fractional part of lookup value (no indirect addr. modes or extensions allowed)</ea>						I undefined IC12
EXG abcdxys,abcdxys	(r1) ⇔ (r2) (if r1 and r2 same size) or \$00:(r1) ⇒ r2 (if r1=8-bit; r2=16-bit) or (r1 _{low}) ⇔ (r2) (if r1=16-bit; r2=8-bit) r1 and r2 may be A, B, CCR, D, X, Y, or SP	INH	B7 eb	P	Р		
FDIV	(D) ÷ (X) ⇒ X; Remainder ⇒ D 16 by 16 Bit Fractional Divide	INH	18 11	Offfffffffo	Offfffffffo		- Δ Δ Δ
IBEQ abdxys, rel9	(cntr) + 1⇒ cntr If (cntr) = 0, then Branch else Continue to next instruction Increment Counter and Branch if = 0 (cntr = A, B, D, X, Y, or SP)	REL (9-bit)	04 lb rr	PPP (branch) PPO (no branch)	ррр		
IBNE abdxys, rel9	(cntr) + 1⇒ cntr if (cntr) not = 0, then Branch; else Continue to next instruction Increment Counter and Branch if ≠ 0 (cntr = A, B, D, X, Y, or SP)	REL (9-bit)	04 lb rr	PPP (branch) PPO (no branch)	PPP		
IDIV	(D) ÷ (X) ⇒ X; Remainder ⇒ D 16 by 16 Bit Integer Divide (unsigned)	INH	18 10	Offfffffffo	Offfffffffo		- Δ 0 Δ
IDIVS	(D) ÷ (X) ⇒ X; Remainder ⇒ D 16 by 16 Bit Integer Divide (signed)	INH	18 15	Offfffffffo	Offfffffffo		ΔΔΔΔ
INC opr16a INC oprx0_xysp INC oprx9,xysp INC oprx16,xysp INC [D,xysp] INC [Oprx16,xysp] INC [Nc [Oprx16,xysp] INC [Nc [Oprx16,xysp] INCA	$(M) + \$01 \Rightarrow M$ Increment Memory Byte $(A) + \$01 \Rightarrow A$ $(B) + \$01 \Rightarrow B$ Increment Acc. A Increment Acc. B	EXT IDX IDX1 IDX2 [D,IDX] [IDX2] INH INH	72 hh 11 62 xb 62 xb ff 62 xb ee ff 62 xb ee ff 62 xb ee ff 42 52	rPwO rPw rPwO frPwP fIfrPw fIPrPw O	rOPw rPw rPOw frPPw fIfrPw fIPrPw O		ΔΔΔ-
INS	(SP) + $$0001 \Rightarrow SP$ Translates to LEAS 1,SP	IDX	1B 81	Pf	PP^1		
INX	(X) + \$0001 \Rightarrow X Increment Index Register X	INH	08	0	0		-Δ
INY	(Y) + \$0001 ⇒ Y Increment Index Register Y	INH	02	0	0		-Δ
JMP opr16a JMP oprx0_xysp JMP oprx9,xysp JMP oprx16,xysp JMP [D,xysp] JMP [oprx16,xysp]	Routine address ⇒ PC Jump	EXT IDX IDX1 IDX2 [D,IDX] [IDX2]	06 hh 11 05 xb 05 xb ff 05 xb ee ff 05 xb 05 xb ee ff	PPP PPP PPP fPPP fIfPPP fIfPPP	PPP PPP PPP fPPP fIfPPP fIfPPP		

Note 1. Due to internal CPU requirements, the program word fetch is performed twice to the same address during this instruction.

Instruction Set Summary (Sheet 7 of 14)

		Addr.	Machine	Acces	s Detail		
Source Form	Operation	Mode	Coding (hex)	HCS12	HC12	SXHI	NZVC
JSR opr8a	(SP) – 2 ⇒ SP;	DIR	17 dd	SPPP	PPPS		
JSR opr16a	$RTN_H:RTN_I \Rightarrow M_{(SP)}:M_{(SP+1)};$	EXT	16 hh 11	SPPP	PPPS		
JSR oprx0_xysp	Subroutine address ⇒ PC	IDX	15 xb	PPPS	PPPS		
JSR oprx9,xysp JSR oprx16,xysp	Jump to Subroutine	IDX1 IDX2	15 xb ff 15 xb ee ff	PPPS	PPPS		
JSR (D,xysp)	Jump to Subroutine	[D,IDX]	15 xb ee II 15 xb	fPPPS fIfPPPS	fPPPS fIfPPPS		
JSR [oprx16,xysp]		[IDX2]	15 xb ee ff	fIfPPPS	fIfPPPS		
LBCC rel16	Long Branch if Carry Clear (if C = 0)	REL	18 24 qq rr	OPPP/OPO ¹	OPPP/OPO ¹		
LBCS rel16	Long Branch if Carry Set (if C = 1)	REL	18 25 qq rr	OPPP/OPO ¹	OPPP/OPO ¹		
LBEQ rel16	Long Branch if Equal (if Z = 1)	REL	18 27 qq rr	OPPP/OPO ¹	OPPP/OPO ¹		
LBGE rel16	Long Branch Greater Than or Equal (if $N \oplus V = 0$) (signed)	REL	18 2C qq rr	OPPP/OPO ¹	OPPP/OPO ¹		
LBGT rel16	Long Branch if Greater Than (if $Z + (N \oplus V) = 0$) (signed)	REL	18 2E qq rr	OPPP/OPO ¹	OPPP/OPO ¹		
LBHI rel16	Long Branch if Higher (if $C + Z = 0$) (unsigned)	REL	18 22 qq rr	OPPP/OPO ¹	OPPP/OPO ¹		
LBHS rel16	Long Branch if Higher or Same (if C = 0) (unsigned) same function as LBCC	REL	18 24 qq rr	OPPP/OPO ¹	OPPP/OPO ¹		
LBLE rel16	Long Branch if Less Than or Equal (if $Z + (N \oplus V) = 1$) (signed)	REL	18 2F qq rr	OPPP/OPO ¹	OPPP/OPO ¹		
LBLO rel16	Long Branch if Lower (if C = 1) (unsigned) same function as LBCS	REL	18 25 qq rr	OPPP/OPO ¹	OPPP/OPO ¹		
LBLS rel16	Long Branch if Lower or Same (if $C + Z = 1$) (unsigned)	REL	18 23 qq rr	OPPP/OPO ¹	OPPP/OPO ¹		
LBLT rel16	Long Branch if Less Than (if $N \oplus V = 1$) (signed)	REL	18 2D qq rr	OPPP/OPO ¹	OPPP/OPO ¹		
LBMI rel16	Long Branch if Minus (if N = 1)	REL	18 2B qq rr	OPPP/OPO ¹	OPPP/OPO ¹		
LBNE rel16	Long Branch if Not Equal (if Z = 0)	REL	18 26 qq rr	OPPP/OPO ¹	OPPP/OPO ¹		
LBPL rel16	Long Branch if Plus (if N = 0)	REL	18 2A qq rr	OPPP/OPO ¹	OPPP/OPO ¹		
LBRA rel16	Long Branch Always (if 1=1)	REL	18 20 qq rr	OPPP	OPPP		
LBRN rel16	Long Branch Never (if 1 = 0)	REL	18 21 qq rr	OPO	OPO		
LBVC rel16	Long Branch if Overflow Bit Clear (if V=0)	REL	18 28 qq rr	OPPP/OPO ¹	OPPP/OPO ¹		
LBVS rel16	Long Branch if Overflow Bit Set (if V = 1)	REL	18 29 qq rr	OPPP/OPO ¹	OPPP/OPO ¹		
LDAA #opr8i	$(M) \Rightarrow A$	IMM	86 ii	P	P		ΔΔ0-
LDAA opr8a	Load Accumulator A	DIR	96 dd	rPf	rfP		440
LDAA opr16a		EXT	B6 hh 11	rPO	rOP		
LDAA oprx0_xysp		IDX	A6 xb	rPf	rfP		
LDAA oprx9,xysp LDAA oprx16,xysp		IDX1 IDX2	A6 xb ff A6 xb ee ff	rPO frPP	rPO frPP		
LDAA (D,xysp)		[D,IDX]	A6 xb ee 11	fIfrPf	fIfrfP		
LDAA [oprx16,xysp]		[IDX2]	A6 xb ee ff	fIPrPf	fIPrfP		
LDAB #opr8i	(M) ⇒ B	IMM	C6 ii	P	P		ΔΔ0-
LDAB opr8a	Load Accumulator B	DIR	D6 dd	rPf	rfP		
LDAB opr16a		EXT	F6 hh ll	rPO	rOP		
LDAB oprx0_xysp		IDX	E6 xb	rPf	rfP		
LDAB oprx9,xysp LDAB oprx16,xysp		IDX1 IDX2	E6 xb ff E6 xb ee ff	rPO frPP	rPO frPP		
LDAB (D,xysp)		[D,IDX]	E6 xb ee II	fIfrPf	fIfrfP		
LDAB [oprx16,xysp]		[IDX2]	E6 xb ee ff	fIPrPf	fIPrfP		
LDD #opr16i	(M:M+1) ⇒ A:B	IMM	CC jj kk	PO	OP		ΔΔ0-
LDD opr8a	Load Double Accumulator D (A:B)	DIR	DC dd	RPf	RfP		
LDD opr16a		EXT	FC hh ll	RPO	ROP		
LDD oprx0_xysp		IDX	EC xb	RPf	RfP		
LDD oprx9,xysp LDD oprx16,xysp		IDX1 IDX2	EC xb ff EC xb ee ff	RPO fRPP	RPO fRPP		
LDD (D, xysp)		[D,IDX]	EC xb ee II	fIfRPf	fIfRfP		
LDD [oprx16,xysp]		[IDX2]	EC xb ee ff	fIPRPf	fIPRfP	l	1

Note 1. OPPP/OPO indicates this instruction takes four cycles to refill the instruction queue if the branch is taken and three cycles if the branch is not taken.

Instruction Set Summary (Sheet 8 of 14)

		Addr.	Machine	Access D)etail		
Source Form	Operation	Mode	Coding (hex)	HCS12	HC12	SXHI	NZVC
LDS #opr16i	(M:M+1) ⇒ SP	IMM	CF jj kk	PO	OP		ΔΔ0-
LDS opr8a	Load Stack Pointer	DIR	DF dd	RPf	RfP		
LDS opr16a		EXT	FF hh ll	RPO	ROP		
LDS oprx0_xysp		IDX	EF xb	RPf	RfP		
LDS oprx9,xysp		IDX1	EF xb ff	RPO	RPO		
LDS oprx16,xysp LDS [D,xysp]		IDX2 [D,IDX]	EF xb ee ff EF xb	fRPP fIfRPf	fRPP fIfRfP		
LDS [oprx16,xysp]		[IDX2]	EF xb ee ff	fIPRPf	fIPRfP		
LDX #opr16i	(M:M+1) ⇒ X	IMM	CE jj kk	PO	OP		ΔΔ0-
LDX #opr8a	Load Index Register X	DIR	DE dd	RPf	RfP		ΔΔ0-
LDX opr16a	2000 maon riogisto. A	EXT	FE hh 11	RPO	ROP		
LDX oprx0_xysp		IDX	EE xb	RPf	RfP		
LDX oprx9,xysp		IDX1	EE xb ff	RPO	RPO		
LDX oprx16,xysp		IDX2	EE xb ee ff	fRPP	fRPP		
LDX [D,xysp]		[D,IDX] [IDX2]	EE xb EE xb ee ff	fIfRPf	fIfRfP fIPRfP		
LDX [oprx16,xysp]				fIPRPf			
LDY #opr16i	$(M:M+1) \Rightarrow Y$	IMM	CD jj kk	PO PD f	OP		ΔΔ0-
LDY opr8a LDY opr16a	Load Index Register Y	DIR EXT	DD dd FD hh 11	RPf RPO	RfP ROP		
LDY oprx0_xysp		IDX	ED xb	RPf	RfP		
LDY oprx9,xysp		IDX1	ED xb ff	RPO	RPO		
LDY oprx16,xysp		IDX2	ED xb ee ff	fRPP	fRPP		
LDY [D,xysp]		[D,IDX]	ED xb	fIfRPf	fIfRfP		
LDY [oprx16,xysp]		[IDX2]	ED xb ee ff	fIPRPf	fIPRfP		
LEAS oprx0_xysp	Effective Address ⇒ SP	IDX	1B xb	Pf	PP^1		
LEAS oprx9,xysp	Load Effective Address into SP	IDX1	1B xb ff	PO	PO		
LEAS oprx16,xysp		IDX2	1B xb ee ff	PP	PP		
LEAX oprx0_xysp	Effective Address ⇒ X	IDX	1A xb	Pf	PP^1		
LEAX oprx9,xysp	Load Effective Address into X	IDX1	1A xb ff	PO	PO		
LEAX oprx16,xysp		IDX2	1A xb ee ff	PP	PP		
LEAY oprx0_xysp	Effective Address \Rightarrow Y	IDX	19 xb	Pf	PP^1		
LEAY oprx9,xysp	Load Effective Address into Y	IDX1	19 xb ff	PO	PO		
LEAY oprx16,xysp		IDX2	19 xb ee ff	PP	PP		
LSL opr16a		EXT	78 hh 11	rPwO	rOPw		$\Delta \ \Delta \ \Delta \ \Delta$
LSL oprx0_xysp	-0	IDX	68 xb	rPw	rPw		
LSL oprx9,xysp LSL oprx16,xysp	C b7 b0 Logical Shift Left	IDX1 IDX2	68 xb ff 68 xb ee ff	rPwO frPPw	rPOw frPPw		
LSL (D,xysp)	same function as ASL	[D,IDX]	68 xb	fIfrPw	fIfrPw		
LSL [oprx16,xysp]	Sume function as NOE	[IDX2]	68 xb ee ff	fIPrPw	fIPrPw		
LSLA	Logical Shift Accumulator A to Left	INH	48	0	0		
LSLB	Logical Shift Accumulator B to Left	INH	58	0	0		
LSLD		INH	59	0	0		ΔΔΔΔ
	C b7 A b0 b7 B b0						
	Logical Shift Left D Accumulator same function as ASLD						
	Same function as ASLD						
LSR opr16a		EXT	74 hh 11	rPwO	rOPw		0 Δ Δ Δ
LSR oprx0_xysp	0	IDX IDX1	64 xb 64 xb ff	rPw rPwO	rPw rPOw		
LSR oprx9,xysp LSR oprx16,xysp	b7 b0 C Logical Shift Right	IDX1	64 xb ee ff	frPwP	frPPw		
LSR [D,xysp]	20g.out Office right	[D,IDX]	64 xb	fIfrPw	fIfrPw		
LSR [oprx16,xysp]		[IDX2]	64 xb ee ff	fIPrPw	fIPrPw		
LSRA	Logical Shift Accumulator A to Right	INH	44	0	0		
LSRB	Logical Shift Accumulator B to Right	INH	54	0	0		
LSRD	→	INH	49	0	0		0 Δ Δ Δ
	0						
	b7 A b0 b7 B b0 C		1				
	Logical Shift Right D Accumulator						
MAXA oprx0_xysp	$MAX((A), (M)) \Rightarrow A$	IDX	18 18 xb	OrPf	OrfP		$\Delta \; \Delta \; \Delta \; \Delta$
MAXA oprx9,xysp	MAX of 2 Unsigned 8-Bit Values	IDX1	18 18 xb ff	OrPO	OrPO		
MAXA oprx16,xysp MAXA [D,xysp]	N, Z, V and C status bits reflect result of	IDX2 [D,IDX]	18 18 xb ee ff 18 18 xb	OfrPP OfIfrPf	OfrPP OfIfrfP		
MAXA [<i>D,xysp</i>]	internal compare ((A) – (M)).	[IDX2]	18 18 xb 18 18 xb ee ff	OfIPrPf	OfIPrfP		
	mandi compare (v v (m)).	[IDAZ]	10 10 VD 66 11	V	OLIFILE		

Note 1. Due to internal CPU requirements, the program word fetch is performed twice to the same address during this instruction.

Instruction Set Summary (Sheet 9 of 14)

	<u> </u>	۸ ماماء	Machina	Access Detail		1
Source Form	Operation	Addr. Mode	Machine Coding (hex)	HCS12 HC	12 S X H I	NZVC
MAXM oprx0_xysp MAXM oprx9,xysp MAXM oprx16,xysp MAXM [D,xysp] MAXM [oprx16,xysp]	MAX((A), (M)) ⇒ M MAX of 2 Unsigned 8-Bit Values N, Z, V and C status bits reflect result of internal compare ((A) – (M)).	IDX IDX1 IDX2 [D,IDX] [IDX2]	18 1C xb 18 1C xb ff 18 1C xb ee ff 18 1C xb 18 1C xb ee ff	OrPw Or OrPwO OrP OfrPwP OfrP OfIfrPw OfIfr OfIPrPw OfIPr	wO wP Pw	ΔΔΔΔ
MEM	$\begin{array}{l} \mu \ (\text{grade}) \Rightarrow M_{\text{YO}}; \\ (X) + 4 \Rightarrow X; \ (Y) + 1 \Rightarrow Y; \ A \ \text{unchanged} \\ \text{if } (A) < P1 \ \text{or } (A) > P2 \ \text{then } \mu = 0, \text{else} \\ \mu = \text{MIN}[((A) - P1) \times S1, (P2 - (A)) \times S2, SFF] \\ \text{where:} \\ A = \text{current crisp input value}; \\ X \ \text{points at } 4 \text{-byte data structure that describes a trapezoidal membership function } (P1, P2, S1, S2); \\ Y \ \text{points at fuzzy input } (RAM \ \text{location}). \\ \text{See } \textit{CPU12 Reference Manual for special cases}. \end{array}$	Special	01	RREOW RRE	Ow?-	????
MINA oprx0_xysp MINA oprx9,xysp MINA oprx16,xysp MINA [D,xysp] MINA [oprx16,xysp]	MIN((A), (M)) ⇒ A MIN of 2 Unsigned 8-Bit Values N, Z, V and C status bits reflect result of internal compare ((A) – (M)).	IDX IDX1 IDX2 [D,IDX] [IDX2]	18 19 xb 18 19 xb ff 18 19 xb ee ff 18 19 xb ee ff 18 19 xb 18 19 xb ee ff	OrPf Or OrPO Or OfrPP Ofr OfIfrPf OfIfr OfIPrPf OfIPr	PO PP fP	ΔΔΔΔ
MINM oprx0_xysp MINM oprx9,xysp MINM oprx16,xysp MINM [D,xysp] MINM [oprx16,xysp]	MIN((A), (M)) ⇒ M MIN of 2 Unsigned 8-Bit Values N, Z, V and C status bits reflect result of internal compare ((A) – (M)).	IDX IDX1 IDX2 [D,IDX] [IDX2]	18 1D xb 18 1D xb ff 18 1D xb ee ff 18 1D xb 18 1D xb ee ff	OrPw Or OrPwO OrP OfrPwP Ofr OfIfrPw OfIfr OfIPrPw OfIPr	wO wP Pw	ΔΔΔΔ
MOVB #opr8, opr16a ¹ MOVB #opr8, oprx0_xysp ¹ MOVB opr16a, opr16a ¹ MOVB opr16a, oprx0_xysp ¹ MOVB oprx0_xysp, opr16a ¹ MOVB oprx0_xysp, oprx0_xysp ¹	$(M_1) \Rightarrow M_2$ Memory to Memory Byte-Move (8-Bit)	EXT-EXT	18 0B ii hh 11 18 08 xb ii 18 0C hh 11 hh 11 18 09 xb hh 11 18 0D xb hh 11 18 0A xb xb	OPwP OP OPwO OP OrPwPO OrPw OPrPW OP OrPwD OrP OrPwO OrP	wO PO Pw wP	
MOVW #oprx16, opr16a ¹ MOVW #opr16i, oprx0_xysp ¹ MOVW opr16a, oprx0_xysp ¹ MOVW opr16a, oprx0_xysp ¹ MOVW oprx0_xysp, opr16a ¹ MOVW oprx0_xysp, oprx0_xysp ¹	(M:M+1 ₁) ⇒ M:M+1 ₂ Memory to Memory Word-Move (16-Bit)	EXT-EXT	18 03 jj kk hh ll 18 00 xb jj kk 18 04 hh ll hh ll 18 01 xb hh ll 18 05 xb hh ll 18 02 xb xb	OPWPO OPW OPPW OP ORPWPO ORPW OPPRPW OPP ORPWP ORP ORPWO ORP	PW PO PW WP	
MUL	$(A) \times (B) \Rightarrow A:B$ 8 by 8 Unsigned Multiply	INH	12	0 f	fo	Δ
NEG opr16a NEG oprx0_xysp NEG oprx9.xysp NEG oprx16,xysp NEG [D.xysp] NEG [oprx16,xysp] NEGA	0 – $(M) \Rightarrow M$ equivalent to (\overline{M}) + $1 \Rightarrow M$ Two's Complement Negate 0 – $(A) \Rightarrow A$ equivalent to (\overline{A}) + $1 \Rightarrow A$ Negate Accumulator A 0 – $(B) \Rightarrow B$ equivalent to (\overline{B}) + $1 \Rightarrow B$ Negate Accumulator B	EXT IDX IDX1 IDX2 [D,IDX] [IDX2] INH	70 hh 11 60 xb 60 xb ff 60 xb ee ff 60 xb 60 xb ee ff 40	rPwO rC rPw r rPwO rP frPwP frP fIfrPw fIfr fIPrPw fIPr O	Pw Ow Pw Pw	ΔΔΔΔ
NOP	No Operation	INH	A7	0	0	
ORAA #opr8i ORAA opr8a ORAA opr16a ORAA oprx0_xysp ORAA oprx9_xysp ORAA oprx16,xysp ORAA [D,xysp] ORAA [oprx16,xysp]	(A) + (M) ⇒ A Logical OR A with Memory	IMM DIR EXT IDX IDX1 IDX2 [D,IDX] [IDX2]	8A ii 9A dd BA hh 11 AA xb AA xb ff AA xb ee ff AA xb AA xb ee ff	rPO r rPf r	fP	ΔΔ0-

Note 1. The first operand in the source code statement specifies the source for the move.

Instruction Set Summary (Sheet 10 of 14)

		۸ ما ما	Mostrine	Access Detail		
Source Form	Operation	Addr. Mode	Machine Coding (hex)	HCS12 HC12	SXHI	NZVC
ORAB #opr8i	$(B) + (M) \Rightarrow B$	IMM	CA ii	P P		ΔΔ0-
ORAB opr8a	Logical OR B with Memory	DIR	DA dd	rPf rfP		ΔΔ0-
ORAB opr16a		EXT	FA hh ll	rPO rOP		
ORAB oprx0_xysp		IDX	EA xb	rPf rfP		
ORAB oprx9,xysp		IDX1	EA xb ff	rPO rPO		
ORAB (D. worl		IDX2	EA xb ee ff EA xb	frPP frPP fIfrPf fIfrfP		
ORAB [D,xysp] ORAB [oprx16,xysp]		[D,IDX] [IDX2]	EA xb EA xb ee ff	fIPrPf fIPrfP		
ORCC #opr8i	(CCR) + M ⇒ CCR	IMM	14 ii	P P	1 – 11 11	$\uparrow\uparrow\uparrow\uparrow\uparrow$
	Logical OR CCR with Memory					
PSHA	(SP) – 1 \Rightarrow SP; (A) \Rightarrow M _(SP) Push Accumulator A onto Stack	INH	36	Os Os		
PSHB	(SP) – 1 \Rightarrow SP; (B) \Rightarrow M _(SP) Push Accumulator B onto Stack	INH	37	Os Os		
PSHC	$(SP) - 1 \Rightarrow SP; (CCR) \Rightarrow M_{(SP)}$ Push CCR onto Stack	INH	39	Os Os		
PSHD	(SP) – 2 \Rightarrow SP; (A:B) \Rightarrow M _(SP) :M _(SP+1) Push D Accumulator onto Stack	INH	3B	os os		
PSHX	(SP) – 2 \Rightarrow SP; (X _H :X _L) \Rightarrow M _(SP) :M _(SP+1) Push Index Register X onto Stack	INH	34	os os		
PSHY	(SP) – 2 \Rightarrow SP; (Y _H :Y _L) \Rightarrow M _(SP) :M _(SP+1) Push Index Register Y onto Stack	INH	35	OS OS		
PULA	$(M_{(SP)}) \Rightarrow A; (SP) + 1 \Rightarrow SP$ Pull Accumulator A from Stack	INH	32	ufO ufO		
PULB	$(M_{(SP)}) \Rightarrow B$; $(SP) + 1 \Rightarrow SP$ Pull Accumulator B from Stack	INH	33	ufO ufO		
PULC	$(M_{(SP)}) \Rightarrow CCR; (SP) + 1 \Rightarrow SP$ Pull CCR from Stack	INH	38	ufO ufO	ΔΨΔΔ	ΔΔΔΔ
PULD	$(M_{(SP)}:M_{(SP+1)}) \Rightarrow A:B; (SP) + 2 \Rightarrow SP$ Pull D from Stack	INH	3A	UfO UfO		
PULX	$(M_{(SP)}:M_{(SP+1)}) \Rightarrow X_H:X_L:(SP) + 2 \Rightarrow SP$ Pull Index Register X from Stack	INH	30	UfO UfO		
PULY	$(M_{(SP)}:M_{(SP+1)}) \Rightarrow Y_H:Y_L:(SP) + 2 \Rightarrow SP$ Pull Index Register Y from Stack	INH	31	UfO UfO		
REV	MIN-MAX rule evaluation	Special	18 3A	Orf(t,tx)O Orf(t,tx)O	?-	??∆?
	Find smallest rule input (MIN). Store to rule outputs unless fuzzy output is already larger (MAX).			(exit + re-entry replaces comma above if interrupted)		
				ff + Orf(t, ff + Orf(t,		
	For rule weights see REVW.					
	Each rule input is an 8-bit offset from the base address in Y.					
	Each rule output is an 8-bit offset from the base address in Y.					
	\$FE separates rule inputs from rule outputs. \$FF terminates					
	the rule list.					
	REV may be interrupted.					
DEVM	, ,	Cncolol	18 3B	ODE/+ The\O	?-	?? <u>\</u> 1
REVW	MIN-MAX rule evaluation Find smallest rule input (MIN),	Special	TO 3B	ORf(t,Tx)O ORf(t,Tx)O	!-	((Δ!
	Store to rule outputs unless fuzzy output is already larger			(loop to read weight if enabled)		
	(MAX).			(r,RfRf) (r,RfRf)]	
	Rule weights supported, optional.			(exit + re-entry replaces comma above if interrupted)		
				ffff + ORf(t, fff + ORf(t,		
	Each rule input is the 16-bit address of a fuzzy input. Each rule output is the 16-bit address of a fuzzy output. The value \$FFFE separates rule inputs from rule outputs. \$FFFF terminates the rule list.			IIII + ORI(t, III + ORI(t,		
	REVW may be interrupted.					
	TLEV W may be interrupted.			1		

Instruction Set Summary (Sheet 11 of 14)

		Addr.	Machine	Access	Detail		
Source Form	Operation	Mode	Coding (hex)	HCS12	HC12	SXHI	NZVC
ROL opr16a		EXT	75 hh 11	rPwO	rOPw		ΔΔΔΔ
ROL oprx0_xysp		IDX	65 xb	rPw	rPw		
ROL oprx9,xysp	C b7 b0	IDX1	65 xb ff	rPwO	rPOw		
ROL oprx16,xysp ROL [D,xysp]	Rotate Memory Left through Carry	IDX2 [D,IDX]	65 xb ee ff 65 xb	frPwP fIfrPw	frPPw fIfrPw		
ROL [D,xysp]		[IDX2]	65 xb ee ff	fIPrPw	fIPrPw		
ROLA	Rotate A Left through Carry	INH	45	0	0		
ROLB	Rotate B Left through Carry	INH	55	0	0		
ROR opr16a		EXT	76 hh 11	rPwO	rOPw		ΔΔΔΔ
ROR oprx0_xysp		IDX	66 xb	rPw	rPw		
ROR oprx9,xysp	b7 b0 C	IDX1	66 xb ff	rPwO	rPOw		
ROR oprx16,xysp	Rotate Memory Right through Carry	IDX2	66 xb ee ff	frPwP	frPPw		
ROR [D, xysp]		[D,IDX]	66 xb	fIfrPw	fIfrPw		
ROR [<i>oprx16,xysp</i>] RORA	Rotate A Right through Carry	[IDX2] INH	66 xb ee ff 46	fIPrPw O	fIPrPw O		
RORB	Rotate B Right through Carry	INH	56	0	0		
RTC	$(M_{(SP)}) \Rightarrow PPAGE; (SP) + 1 \Rightarrow SP;$		0A				
RIC	$(M_{(SP)}) \Rightarrow PPAGE; (SP) + 1 \Rightarrow SP;$ $(M_{(SP)}, M_{(SP)}, n) \Rightarrow PC_{(SP)}C_{(SP)}$	INH	UA	uUnfPPP	uUnPPP		
	$(M_{(SP)}:M_{(SP+1)}) \Rightarrow PC_H:PC_L;$ $(SP) + 2 \Rightarrow SP$						
	Return from Call						
RTI	$(M_{(SP)}) \Rightarrow CCR; (SP) + 1 \Rightarrow SP$	INH	0B	uUUUUPPP	uUUUUPPP	ΔΨΔΔ	ΔΔΔΔ
	$(M_{(SP)}:M_{(SP+1)}) \Rightarrow B:A; (SP) + 2 \Rightarrow SP$			(with interru	pt pending)		
	$(M_{(SP)}:M_{(SP+1)}) \Rightarrow X_H:X_L:(SP) + 4 \Rightarrow SP$,			
	$(M_{(SP)}:M_{(SP+1)}) \Rightarrow PC_H:PC_L; (SP) - 2 \Rightarrow SP$			uUUUUVfPPP	uUUUUfVfPPP		
	$(M_{(SP)}:M_{(SP+1)}) \Rightarrow Y_H:Y_L: (SP) + 4 \Rightarrow SP$ Return from Interrupt						
RTS	$(M_{(SP)}:M_{(SP+1)}) \Rightarrow PC_H:PC_L;$	INH	3D	UfPPP	UfPPP		
	(SP) + 2 ⇒ SP						
	Return from Subroutine						
SBA	$(A) - (B) \Rightarrow A$ Subtract B from A	INH	18 16	00	00		ΔΔΔΔ
SBCA # opr8i	$(A) - (M) - C \Rightarrow A$	IMM	82 ii	P	P		ΔΔΔΔ
SBCA opr8a	Subtract with Borrow from A	DIR	92 dd	rPf	rfP		
SBCA opr16a		EXT	B2 hh 11	rPO	rOP		
SBCA oprx0_xysp		IDX	A2 xb	rPf	rfP		
SBCA oprx9,xysp		IDX1	A2 xb ff	rPO	rPO		
SBCA oprx16,xysp		IDX2	A2 xb ee ff A2 xb	frPP	frPP		
SBCA [D,xysp] SBCA [oprx16,xysp]		[D,IDX] [IDX2]	A2 xb A2 xb ee ff	fIfrPf fIPrPf	fIfrfP fIPrfP		
SBCB # opr8i	(B) – (M) – C ⇒ B	IMM	C2 ii	P	P		ΔΔΔΔ
SBCB opr8a	Subtract with Borrow from B	DIR	D2 dd	rPf	rfP		
SBCB opr16a	Subtract with Borrow from B	EXT	F2 hh 11	rPO	rOP		
SBCB oprx0_xysp		IDX	E2 xb	rPf	rfP		
SBCB oprx9,xysp		IDX1	E2 xb ff	rPO	rPO		
SBCB oprx16,xysp		IDX2	E2 xb ee ff	frPP	frPP		
SBCB [D, xysp]		[D,IDX]	E2 xb	fIfrPf	fIfrfP		
SBCB [oprx16,xysp]		[IDX2]	E2 xb ee ff	fIPrPf	fIPrfP		
SEC	1 ⇒ C Translates to ORCC #\$01	IMM	14 01	P	P		1
SEI	1 ⇒ I; (inhibit I interrupts) <i>Translates to</i> ORCC #\$10	IMM	14 10	P	Р	1	
SEV	1 ⇒ V Translates to ORCC #\$02	IMM	14 02	P	Р		1-
SEX abc,dxys	$$00:(r1) \Rightarrow r2 \text{ if } r1, \text{ bit } 7 \text{ is } 0 \text{ or}$ $$FF:(r1) \Rightarrow r2 \text{ if } r1, \text{ bit } 7 \text{ is } 1$	INH	B7 eb	Р	Р		
	Sign Extend 8-bit r1 to 16-bit r2 r1 may be A, B, or CCR r2 may be D, X, Y, or SP						
	Alternate mnemonic for TFR r1, r2						

Instruction Set Summary (Sheet 12 of 14)

			I	Access Detail	1	1
Source Form	Operation	Addr. Mode	Machine Coding (hex)	HCS12 HC	S X H I	NZVC
STAA opr8a	$(A) \Rightarrow M$	DIR	5A dd	Pw I	w	ΔΔ0-
STAA opr16a	Store Accumulator A to Memory	EXT	7A hh 11	PwO wo		
STAA oprx0_xysp		IDX	6A xb		w	
STAA oprx9,xysp STAA oprx16,xysp		IDX1 IDX2	6A xb ff 6A xb ee ff	PwO Pv PwP Pv		
STAA (D, xysp)		[D,IDX]	6A xb ee 11	PIFW PIFF		
STAA [oprx16,xysp]		[IDX2]	6A xb ee ff	PIPW PIPH		
STAB opr8a	(B) ⇒ M	DIR	5B dd	Pw I	w	ΔΔ0-
STAB opr16a	Store Accumulator B to Memory	EXT	7B hh 11	PwO wo		
STAB oprx0_xysp	•	IDX	6B xb	Pw I	w	
STAB oprx9,xysp		IDX1	6B xb ff	PwO Pv		
STAB Oprx16,xysp		IDX2	6B xb ee ff 6B xb	PwP Pv Pifw Pifi		
STAB [D,xysp] STAB [oprx16,xysp]		[D,IDX] [IDX2]	6B xb ee ff	PIfw PIfF PIPW PIPF		
	(0) 11 (0) 11 1					
STD opr8a STD opr16a	(A) ⇒ M, (B) ⇒ M+1 Store Double Accumulator	DIR EXT	5C dd 7C hh 11	PW I	W	ΔΔ0-
STD oprx0_xysp	Store Double Accumulator	IDX	6C xb		W	
STD oprx9,xysp		IDX1	6C xb ff	PWO PV		
STD oprx16,xysp		IDX2	6C xb ee ff	PWP PV	P	
STD [D,xysp]		[D,IDX]	6C xb	PIfW PIfI		
STD [oprx16,xysp]		[IDX2]	6C xb ee ff	PIPW PIPI	W	
STOP	$(SP) - 2 \Rightarrow SP$;	INH	18 3E	(entering STOP)		
	$RTN_H:RTN_L \Rightarrow M_{(SP)}:M_{(SP+1)};$			OOSSSSsf OOSSSfS	s	
	$\begin{array}{l} (SP) - 2 \Rightarrow SP; (Y'_H: Y_L) \Rightarrow M_{(SP)}: M_{(SP+1)}; \\ (SP) - 2 \Rightarrow SP; (X_H: X_L) \Rightarrow M_{(SP)}: M_{(SP+1)}; \end{array}$			(exiting STOP)		
	$(SP) - 2 \Rightarrow SP$, $(X_H, X_L) \Rightarrow W_{(SP)}, W_{(SP+1)}$, $(SP) - 2 \Rightarrow SP$; $(B:A) \Rightarrow M_{(SP)}, M_{(SP+1)}$;			fVfPPP fVfPI		
	$(SP) - 1 \Rightarrow SP$; $(CCR) \Rightarrow M(SP)$;				P	
	STOP All Clocks			(continue)		
				ff	0	
	Registers stacked to allow quicker recovery by interrupt.					
	If S control bit = 1, the STOP instruction is disabled and acts			(if STOP disabled)		
	like a two-cycle NOP.			00	О	
STS opr8a	$(SP_H:SP_1) \Rightarrow M:M+1$	DIR	5F dd	PW I	W	ΔΔ0-
STS opr16a	Store Stack Pointer	EXT	7F hh 11	PWO WO		
STS oprx0_xysp		IDX	6F xb		W	
STS oprx9,xysp		IDX1	6F xb ff	PWO PV		
STS oprx16,xysp STS [D,xysp]		IDX2 [D,IDX]	6F xb ee ff 6F xb	PWP PV PIfW PIfI		
STS [oprx16,xysp]		[IDX2]	6F xb ee ff	PIPW PIPE		
STX opr8a	$(X_H:X_1) \Rightarrow M:M+1$	DIR	5E dd		w	ΔΔ0-
STX opr16a	Store Index Register X	EXT	7E hh 11	PWO WO		ΔΔ0-
STX oprx0_xysp	otoro maon register n	IDX	6E xb		W	
STX oprx9,xysp		IDX1	6E xb ff	PWO PV		
STX oprx16,xysp		IDX2	6E xb ee ff	PWP PV	P	
STX [D,xysp]		[D,IDX]	6E xb	PIfW PIfI		
STX [oprx16,xysp]		[IDX2]	6E xb ee ff	PIPW PIPI	W	
STY opr8a	$(Y_H:Y_L) \Rightarrow M:M+1$	DIR	5D dd		W	ΔΔ0-
STY opr16a	Store Index Register Y	EXT	7D hh 11	PWO WO		
STY oprx0_xysp		IDX IDX1	6D xb 6D xb ff	PW I	W	
STY oprx9,xysp STY oprx16,xysp		IDX1	6D xb ii 6D xb ee ff	PWP PV		
STY [D,xysp]		[D,IDX]	6D xb	PIFW PIFF		
STY [oprx16,xysp]		[IDX2]	6D xb ee ff	PIPW PIPH		
SUBA # opr8i	$(A) - (M) \Rightarrow A$	IMM	80 ii	P	P	ΔΔΔΔ
SUBA opr8a	Subtract Memory from Accumulator A	DIR	90 dd	rPf ri		
SUBA opr16a	_	EXT	B0 hh 11	rPO ro		
SUBA oprx0_xysp		IDX	A0 xb	rPf ri		
SUBA oprx9,xysp		IDX1	A0 xb ff	rPO rI		
SUBA oprx16,xysp		IDX2	A0 xb ee ff A0 xb	frPP frl fIfrPf fIfri		
SUBA [D, xysp] SUBA [oprx16 xysp]		[D,IDX]				
SUBA [oprx16,xysp]		[IDX2]	A0 xb ee ff	fIPrPf fIPri	P	

Instruction Set Summary (Sheet 13 of 14)

Source Form	Operation	Addr.	Machine	Access	Detail	SXHI	NZVC
Source Form	Operation	Mode	Coding (hex)	HCS12	HC12	SXHI	NZVC
SUBB #opr8i	$(B) - (M) \Rightarrow B$	IMM	C0 ii	P	P		ΔΔΔΔ
SUBB opr8a	Subtract Memory from Accumulator B	DIR	D0 dd	rPf	rfP		
SUBB opr16a		EXT	F0 hh 11	rPO	rOP		
SUBB oprx0_xysp		IDX	E0 xb	rPf	rfP		
SUBB oprx9,xysp		IDX1	E0 xb ff	rPO	rPO		
SUBB oprx16,xysp		IDX2	E0 xb ee ff E0 xb	frPP fIfrPf	frPP		
SUBB [D,xysp] SUBB [oprx16,xysp]		[D,IDX] [IDX2]	E0 xb E0 xb ee ff	fIPrPf	fIfrfP fIPrfP		
	(6) (444.4) 5	٠, ,					
SUBD #opr16i	(D) - (M:M+1) ⇒ D Subtract Manager from D (A:D)	IMM	83 jj kk	PO	OP		ΔΔΔΔ
SUBD opr8a SUBD opr16a	Subtract Memory from D (A:B)	DIR EXT	93 dd B3 hh 11	RPf RPO	RfP ROP		
SUBD oprx0 xysp		IDX	A3 xb	RPf	RfP		
SUBD oprx9,xysp		IDX1	A3 xb ff	RPO	RPO		
SUBD oprx16,xysp		IDX2	A3 xb ee ff	fRPP	fRPP		
SUBD [D,xysp]		[D,IDX]	A3 xb	fIfRPf	fIfRfP		
SUBD [oprx16,xysp]		[IDX2]	A3 xb ee ff	fIPRPf	fIPRfP		
SWI	$(SP) - 2 \Rightarrow SP$;	INH	3F	VSPSSPSsP*	VSPSSPSsP*	1	
· · · · · · · · · · · · · · · · · · ·	$RTN_H:RTN_L \Rightarrow M_{(SP)}:M_{(SP+1)};$		31				
	$(SP) - 2 \Rightarrow SP: (Y_H:Y_I) \Rightarrow M_{(SP)}:M_{(SP+1)}$			(for R			
	$(SP) - 2 \Rightarrow SP; (X_H:X_L) \Rightarrow M_{(SP)}:M_{(SP+1)};$			VfPPP	VfPPP	11-1	
	$(SP) - 2 \Rightarrow SP$; $(B:A) \Rightarrow M_{(SP)}:M_{(SP+1)}$;						
	$(SP) - 1 \Rightarrow SP; (CCR) \Rightarrow M_{(SP)}$						
	$1 \Rightarrow I$; (SWI Vector) $\Rightarrow PC$						
	Software Interrupt						
*The CPU also uses the SWI m	crocode sequence for hardware interrupts and unimplemented of	ocode traps	Reset uses the Vfppi	variation of this sequer	nce.	•	•
TAB	$(A) \Rightarrow B$	INH	18 OE	00	00		ΔΔ0-
	Transfer A to B						
TAP	(A) ⇒ CCR Translates to TFR A, CCR	INH	B7 02	P	P	$\Delta \downarrow \Delta \Delta$	ΔΔΔΔ
TD 4							
TBA	(B) ⇒ A Transfer B to A	INH	18 OF	00	00		ΔΔ0-
TDEO 1.1 10		DEI	0.4.33	((1)			
TBEQ abdxys,rel9	If (cntr) = 0, then Branch;	REL (0, bit)	04 lb rr	PPP (branch) PPO (no branch)	PPP		
	else Continue to next instruction	(9-bit)		PPO (no branch)			
	Test Counter and Branch if Zero						
	(cntr = A, B, D, X,Y, or SP)						
TDL apped won	<u>,</u>	IDV	10 201-	ODEEED	OrrffffP		A A A
TBL oprx0_xysp	$(M) + [(B) \times ((M+1) - (M))] \Rightarrow A$ 8-Bit Table Lookup and Interpolate	IDX	18 3D xb	ORfffP	OrrIIIIP		$\Delta \Delta - \Delta$
	6-bit Table Lookup and interpolate						l
	Initialize B, and index before TBL.						indefined
						In H	C12
	<ea> points at first 8-bit table entry (M) and B is fractional part</ea>						
	<ea> points at first 8-bit table entry (M) and B is fractional part of lookup value.</ea>						
	of lookup value.						
TBNE abdxys,rel9	of lookup value. (no indirect addressing modes or extensions allowed) If (cntr) not = 0, then Branch;	REL	04 lb rr	PPP (branch)	PPP		
TBNE abdxys,rel9	of lookup value. (no indirect addressing modes or extensions allowed)	REL (9-bit)	04 lb rr	PPP (branch) PPO (no branch)	PPP		
TBNE abdxys,rel9	of lookup value. (no indirect addressing modes or extensions allowed) If (cntr) not = 0, then Branch; else Continue to next instruction		04 lb rr		PPP		
TBNE abdxys,rel9	of lookup value. (no indirect addressing modes or extensions allowed) If (cntr) not = 0, then Branch; else Continue to next instruction Test Counter and Branch if Not Zero		04 lb rr		PPP		
	of lookup value. (no indirect addressing modes or extensions allowed) If (cntr) not = 0, then Branch; else Continue to next instruction Test Counter and Branch if Not Zero (cntr = A, B, D, X,Y, or SP)	(9-bit)		PPO (no branch)			
TBNE abdxys,rel9 TFR abcdxys,abcdxys	of lookup value. (no indirect addressing modes or extensions allowed) If (cntr) not = 0, then Branch; else Continue to next instruction Test Counter and Branch if Not Zero (cntr = A, B, D, X,Y, or SP) (r1) = r2 or		04 lb rr B7 eb		ррр		
	of lookup value. (no indirect addressing modes or extensions allowed) If (cntr) not = 0, then Branch; else Continue to next instruction Test Counter and Branch if Not Zero (cntr = A, B, D, X,Y, or SP) $(r1) \Rightarrow r2 \text{ or}$ $\$00:(r1) \Rightarrow r2 \text{ or}$	(9-bit)		PPO (no branch)			 or
	of lookup value. (no indirect addressing modes or extensions allowed) If (cntr) not = 0, then Branch; else Continue to next instruction Test Counter and Branch if Not Zero (cntr = A, B, D, X,Y, or SP) (r1) = r2 or	(9-bit)		PPO (no branch)			
	of lookup value. (no indirect addressing modes or extensions allowed) If (cntr) not = 0, then Branch; else Continue to next instruction Test Counter and Branch if Not Zero (cntr = A, B, D, X,Y, or SP) (r1) \Rightarrow r2 or \Rightarrow s00:(r1) \Rightarrow r2 or \Rightarrow r2 or (r1[7:0]) \Rightarrow r2	(9-bit)		PPO (no branch)			 or \[\Delta
	of lookup value. (no indirect addressing modes or extensions allowed) If (cntr) not = 0, then Branch; else Continue to next instruction Test Counter and Branch if Not Zero (cntr = A, B, D, X,Y, or SP) (r1) ⇒ r2 or \$00:(r1) ⇒ r2 or (r1[7:0]) ⇒ r2 Transfer Register to Register	(9-bit)		PPO (no branch)			
	of lookup value. (no indirect addressing modes or extensions allowed) If (cntr) not = 0, then Branch; else Continue to next instruction Test Counter and Branch if Not Zero (cntr = A, B, D, X,Y, or SP) (r1) \Rightarrow r2 or \Rightarrow s00:(r1) \Rightarrow r2 or \Rightarrow r2 or (r1[7:0]) \Rightarrow r2	(9-bit)		PPO (no branch)			

Instruction Set Summary (Sheet 14 of 14)

	2	Addr.	Machine	Access Detail	6 V	N 7 c
Source Form	Operation	Mode	Coding (hex)	HCS12 HC12	SXHI	NZVC
TRAP trapnum	$ \begin{array}{l} (SP) - 2 \Rightarrow SP; \\ RTN_H : RTN_L \Rightarrow M_{(SP)} : M_{(SP+1)}; \\ (SP) - 2 \Rightarrow SP; (Y_H; Y_L) \Rightarrow M_{(SP)} : M_{(SP+1)}; \\ (SP) - 2 \Rightarrow SP; (X_H; X_L) \Rightarrow M_{(SP)} : M_{(SP+1)}; \\ (SP) - 2 \Rightarrow SP; (B:A) \Rightarrow M_{(SP)} : M_{(SP+1)}; \\ (SP) - 2 \Rightarrow SP; (B:A) \Rightarrow M_{(SP)} : M_{(SP+1)}; \\ (SP) - 1 \Rightarrow SP; (CCR) \Rightarrow M_{(SP)} \\ 1 \Rightarrow I; (TRAP \ Vector) \Rightarrow PC \\ \\ Unimplemented \ opcode \ trap \\ \end{array} $	INH	18 tn tn = \$30-\$39 or \$40-\$FF	OVSPSSPSsP OfVSPSSPSsP	1	
TST opr16a TST oprx0_xysp TST oprx9,xysp TST oprx16,xysp TST [D,xysp] TST [oprx16,xysp] TSTA TSTB TSTB	(M) − 0 Test Memory for Zero or Minus (A) − 0 Test A for Zero or Minus (B) − 0 Test B for Zero or Minus (SP) ⇒ X	EXT IDX IDX1 IDX2 [D,IDX] [IDX2] INH INH	F7 hh 11 E7 xb E7 xb ff E7 xb ee ff E7 xb ee ff 97 D7	rPO rOP rPf rfp rPO rPP rPO rPO frPP ffrPP fffrpf ffrpf fIPrpf 0 0 0 P		ΔΔ00
	Translates to TFR SP,X		20.00			
TSY	$(SP) \Rightarrow Y$ Translates to TFR SP,Y	INH	B7 76	P P		
TXS	$(X) \Rightarrow SP$ Translates to TFR X,SP	INH	B7 57	P P		
TYS	$(Y) \Rightarrow SP$ Translates to TFR Y,SP	INH	B7 67	P P		
WAI	$ \begin{aligned} &(SP) - 2 \Rightarrow SP; \\ &RTN_H:RTN_L \Rightarrow M_{(SP)}:M_{(SP+1)}; \\ &(SP) - 2 \Rightarrow SP; (Y_H:Y_L) \Rightarrow M_{(SP)}:M_{(SP+1)}; \\ &(SP) - 2 \Rightarrow SP; (X_H:X_L) \Rightarrow M_{(SP)}:M_{(SP+1)}; \\ &(SP) - 2 \Rightarrow SP; (B:A) \Rightarrow M_{(SP)}:M_{(SP+1)}; \\ &(SP) - 1 \Rightarrow SP; (CCR) \Rightarrow M_{(SP)}; \\ &WAIT for interrupt \end{aligned} $	INH	3E	OSSSSsf OSSSfSsf (after interrupt) fVfPPP VfPPP	1	 or or
WAV	$\begin{split} B & \sum_{i = 1}^{B} S_{i}F_{i} \Rightarrow \textit{Y:D} \text{and} \sum_{i = 1}^{B} F_{i} \Rightarrow X \\ & \text{I} = 1 \end{split}$ Calculate Sum of Products and Sum of Weights for Weighted Average Calculation Initialize B, X, and Y before WAV. B specifies number of elements. X points at first element in S_{i} list. Y points at first element in F_{i} list. All S_{i} and F_{i} elements are 8-bits. If interrupted, six extra bytes of stack used for intermediate values	Special	18 3C	Of(frr,ffff)O Off(frr,fffff)O (add if interrupt) SSS + UUUrr, SSSf + UUUrr	?-	?Δ??
wavr pseudo- instruction	see WAV Resume executing an interrupted WAV instruction (recover intermediate results from stack rather than initializing them to zero)	Special	3C	UUUrr,fffff UUUrrffffff (frr,ffff)o (frr,fffff)o (exit+re-entry replaces comma above if interrupted) SSS + UUUrr, SSSf + UUUrr	?-	?∆??
XGDX	(D) \Leftrightarrow (X) Translates to EXG D, X	INH	B7 C5	P P		
XGDY	(D) ⇔ (Y) Translates to EXG D, Y	INH	B7 C6	P P		

Table 1. Indexed Addressing Mode Postbyte Encoding (xb)

							,		1						
00	10	20	30	40	20	09	0/	80	06	A0	B0	00	D0	E0	F0
0,X 5b const	-16,X 5b const	1,+X pre-inc	1,X+ post-inc	0,Y 5b const	–16,Y 5b const	1,+Y pre-inc	1,Y+ post-inc	0,SP 5b const	-16,SP 5b const	1,+SP pre-inc	1,SP+ post-inc	0,PC 5b const	-16,PC 5b const	n,X 9b const	n,SP 9b const
01	11	21	31	41	51	61	71	81 1 CD	91	A1	B1	C1 1 PC	D1	E1 ,	F1
5b const	5b const	2,+7 pre-inc	2,A+ post-inc	5b const	5b const	z,+ r pre-inc	2,17 post-inc	5b const	5b const	z,+3r pre-inc	2,3F+ post-inc	5b const	5b const	9b const	9b const
02	12	22	32	42	52	62	72	82	92	A2	B2	C2	D2	E2 . v	F2
2,X 5b const	5b const	3,+7 pre-inc	5,7+ post-inc	2, Y 5b const	−14, ĭ 5b const	3,+1 pre-inc	3, r + post-inc	5b const	5b const	5,+3F pre-inc	5,5P+ post-inc	2,PC 5b const	5b const	n,A 16b const	n,sP 16b const
03	13	23	33	43	53	63	73	83	93	A3	B3	ຮ	D3	E3	F3
3,X 5b const	-13,X 5b const	4,+X	4,X+	3,Y 5b const	–13,Y 5b const	4,+Y pre-inc	4,Y+ post-inc	3,SP 5b const	-13,SP 5b const	4,+SP pre-inc	4,SP+ post-inc	3,PC 5b const	-13,PC 5b const	[n,X] 16b indr	[n,SP] 16b indr
04	14	24	34	44	54	64	74	84	94	A4	B4	C4	D4	E4	F4
4,X	-12,X	2,+X	5,X+	4,∀	-12,Y	5,+∀	5,Y+	4,SP	-12,SP	5,+SP	5,SP+	4,PC	-12,PC	A,X	A,SP
5b const	5b const	pre-inc	post-inc	5b const	5b const	pre-inc	post-inc	5b const	5b const	pre-inc	post-inc	5b const	5b const	A offset	A offset
05	15	25	35	45	55	65	75	85	95	A5	B5	C5	D5 11 PC	E5	F5
5, const	5b const	o,+7 pre-inc	o,^+ post-inc	5, r 5b const	5b const	o,+r pre-inc	o, r + post-inc	5,3F	5b const	o,+3r pre-inc	o, 3F+ post-inc	5b const	5b const	B offset	B offset
90	16	26	36	46	26	99	9/	86	96	A6	B6	90	D6	E6	F6
6,X	-10,X	7,+X	+X,Y+	6,Y	-10,Y	7,+Y	7,Y+	6,SP	-10,SP	7,+SP	7,SP+	6,PC	-10,PC	X,D,C	D,SP
SO COLISI	JOD COLISE	PIG-110	post-inc	35 corrise	SD correct	pie-iilo	post-line 77	35 Wilst	35 corrist	DIG-1916	post-inc	ob correct	SD Wilst	D OIISEL	D 011361
7,X	X'6-	7, 8,+X	3, 8,X+	4, 7,Y	7, −9,Y	6, 8,+Y	// 8,Y+	7,SP	9/ -9,SP	A/ 8,+SP	ь/ 8,SP+	C/ 7,PC	D/ -9,PC	[X,0]	r, [D,SP]
5b const	5b const	pre-inc	post-inc	5b const	5b const	pre-inc	post-inc	5b const	5b const	pre-inc	post-inc	5b const	5b const	D indirect	D indirect
80 8 X	18 _8 X	28 8 – X	38 8 X-	48 8 Y	58 ×	68 Y- 8	78 8 Y –	88 S S D	98 -8 SP	A8 8-SP	B8 8 SP-	S 8 P C	D8 _8 PC	E8	F8 n PC
_	5b const	pre-dec	post-dec		5b const	pre-dec	post-dec	5b const	5b const	pre-dec	post-dec	5b const	5b const	9b const	9b const
60	19	29 7 ×	39	49	59	69	79	89	96	A9 7 S.D	B9 7 CB	60	D9 7 PC	E9	F9 .
9,A 5b const	5b const	pre-dec	-v,, post-dec	9, r 5b const	5b const	pre-dec	post-dec	5b const	5b const	pre-dec		5b const	5b const	9b const	9b const
0A	14	2A	3A	4A	5A	6A	7A	8A	98	AA		CA	DA	EA	FA
10,X 5b const	-6,X 5b const	6,-X pre-dec	6,X- post-dec	10,Y 5b const	-6,Y 5b const	6,-Y pre-dec	6,Y- post-dec	10,SP 5b const	-6,SP 5b const	6,-SP pre-dec	6,SP- post-dec	10,PC 5b const	-6,PC 5b const	n,Y 16b const	n,PC 16b const
0B	18		3B	4B	5B	6B	78	8B	9B	AB	BB	CB	DB	EB	FB
1,X	-5,X	5,-X	5,X-	11,Y	-5,Y	5,−∀	5,Y-	11,SP	-5,SP	5,–SP	5,SP-	11,PC	-5,PC	[n,Y]	[n,PC]
JC COLLSE	SD COIISE		Dost-dec	3D COLISI	30 COIISI	nan-aid	nen-isod	oc collec	30 001181	oen-eid ∨∪	post-dec	nsilon de	3D correct	IDIII GOI	I OD III di
12,X	5 4 ×,	54 X-,-	5 -X,X	4€ 12,Y	5 4 ≻,4	50 7–,4	7, 4,Y_	12,SP	-4,SP	4,–SP	4,SP-	12,PC	7. 4.PC	A,Y	A,PC
5b const		pre-dec	post-dec	0				5b const	5b const		post-dec	5b const	5b const		A offset
0D 13 V	10	2D , <	3D > <	4D	5D	о О	7D , c	8D	9D	AD 2 SB	BD 2 SB	CD 1, PC	DD	ED P <	FD P PC
5b const	5b const	pre-dec	post-dec	5b const	5b const	pre-dec	post-dec	5b const	5b const	pre-dec	post-dec	5b const	5b const	B offset	B offset
0E	16	2E , ,	3E	46	5E	6E ,	7E	8E	9E	AE 2.00	BE	CE 44 PC	DE	EE	FE
14,X 5b const	-2,X 5b const	Z,-X pre-dec	2,X- post-dec	14, Y 5b const	-2, Y 5b const	Z,-Y pre-dec	z, Y – post-dec	5b const	5b const	2,-3F pre-dec	2,SP- post-dec	14,PC 5b const	5b const	D,Y D offset	D,PC D offset
0F 15,X	1F -1,X	2F 1,-X	3F 1,X-	4F 15,Y	5F -1,Y	6F 1,-Y	7F 1,Y-	8F 15,SP	9F -1,SP	AF 1,-SP	BF 1,SP-	CF 15,PC	DF -1,PC		FF [D,PC]
5b const	5b const	pre-dec	post-dec	5b const	5b const	pre-dec	post-dec	5b const		pre-dec	post-dec	5b const	5b const	D indirect	D indirect
				Koy	AdeT of	7									

Key to Table 1

postbyte (hex)

B0

#,REG

type

type offset used

Table 2. Indexed Addressing Mode Summary

Postbyte Code (xb)	Operand Syntax	Comments
rr0nnnn	,r n,r –n,r	5-bit constant offset n = -16 to +15 rr can specify X, Y, SP, or PC
111rr0zs	n,r –n,r	Constant offset (9- or 16-bit signed) z- 0 = 9-bit with sign in LSB of postbyte (s) 1 = 16-bit if z = s = 1, 16-bit offset indexed-indirect (see below) rr can specify X, Y, SP, or PC
rr1pnnnn	n,-r n,+r n,r- n,r+	Auto predecrement, preincrement, postdecrement, or postincrement; p = pre-(0) or post-(1), n = -8 to -1, +1 to +8 rr can specify X, Y, or SP (PC not a valid choice)
111rr1aa	A,r B,r D,r	Accumulator offset (unsigned 8-bit or 16-bit) aa - 00 = A 01 = B 10 = D (16-bit) 11 = see accumulator D offset indexed-indirect rr can specify X, Y, SP, or PC
111rr011	[n,r]	16-bit offset indexed-indirect rr can specify X, Y, SP, or PC
111rr111	[D,r]	Accumulator D offset indexed-indirect rr can specify X, Y, SP, or PC

CPU12RG/D

Table 3. Transfer and Exchange Postbyte Encoding

				NAGT	TPANSEEDS				
=	1								
⇒ FS	₩S	0	-	2	ဗ	4	2	9	7
0		$A \Leftrightarrow A$	B → A	CCR ⇒ A	$TMP3_{L} \Rightarrow A$	B → A	$X_L \Rightarrow A$	$Y_L \Rightarrow A$	$SP_{L} \Rightarrow A$
-	_	A ⇒ B	B ⊕	CCR ⇒ B	TMP3 _L ⇒ B	B ⊕ B	$X_L \Rightarrow B$	$Y_L\Rightarrow B$	SP _L ⇒ B
2		A ⇒ CCR	B ⇒ CCR	CCR ⇒ CCR	TMP3 _L ⇒ CCR	B⇒ccr	X _L ⇒ CCR	Y _L ⇒ CCR	SP _L ⇒ CCR
8	_	sex:A ⇒ TMP2	sex:B ⇒ TMP2	sex:CCR ⇒ TMP2	TMP3 ⇒ TMP2	D ⇒ TMP2	X ⇒ TMP2	Y ⇒ TMP2	SP ⇒ TMP2
4	_	sex:A ⇒ D SEX A,D	sex:B ⇒ D SEX B,D	sex:CCR ⇒ D SEX CCR,D	TMP3 ⇒ D	Q ← Q	Q	Y⇒D	SP ⇒ D
9		sex:A ⇒ X SEX A,X	$\begin{array}{c} \text{sex:B} \Rightarrow X \\ \text{SEX B,X} \end{array}$	sex:CCR ⇒ X SEX CCR,X	TMP3 ⇒ X	X ← Q	× ÷ ×	X⇔Y	SP ⇒ X
9	•	sex:A ⇒ Y SEX A,Y	sex:B ⇒ Y SEX B,Y	sex:CCR ⇒ Y SEX CCR,Y	TMP3 ⇒ Y	, ← Q	×⇔×	∀ ⇔ Y	SP⇒Y
2		sex:A ⇒ SP SEX A,SP	sex:B ⇒ SP SEX B,SP	sex:CCR ⇒ SP SEX CCR,SP	TMP3 ⇒ SP	D⇒SP	X⇒SP	$Y \Rightarrow SP$	SP ⇒ SP
				EXCH'	EXCHANGES				
ST∌	₩S⇒	8	6	٧	В	၁	Q	Э	ш
0		A ⇔ A	B⇔A	CCR ⇔ A	$TMP3_{L} \Rightarrow A$ \$00:A \Rightarrow TMP3	B ⇒ A A ⇒ B	$X_{L} \Rightarrow A$ \$00:A \Rightarrow X	$\begin{array}{c} Y_L \Rightarrow A \\ \$00:A \Rightarrow Y \end{array}$	$SP_L \Rightarrow A$ \$00:A \Rightarrow SP
~		A ⇔ B	B ⇔ B	CCR ⇔ B	$TMP3_{L} \Rightarrow B$ \$FF:B \Rightarrow TMP3	B ⇒ B \$FF ⇒ A	$X_{L} \Rightarrow B$ \$FF:B $\Rightarrow X$	$Y_{L} \Rightarrow B$ \$\text{\$FF:B \$\Rightarrow\$ \$Y\$}	$\begin{array}{c} SP_{L} \Rightarrow B \\ \$FF : B \Rightarrow SP \end{array}$
2		A ⇔ CCR	B ⇔ CCR	CCR ⇔ CCR	$TMP3_{L} \Rightarrow CCR$ \$FF:CCR \Rightarrow TMP3	$B \Rightarrow CCR \\ \$FF:CCR \Rightarrow D$	$X_L \Rightarrow CCR$ \$FF:CCR $\Rightarrow X$	$Y_L \Rightarrow CCR$ \$FF:CCR $\Rightarrow Y$	$SP_L \Rightarrow CCR$ \$FF:CCR \Rightarrow SP
3	_	$\$00:A \Rightarrow TMP2$ $TMP2_L \Rightarrow A$	$\$00:B \Rightarrow TMP2$ $TMP2_L \Rightarrow B$	$$00:CCR \Rightarrow TMP2$ $TMP2_L \Rightarrow CCR$	TMP3 ⇔ TMP2	D ⇔ TMP2	X ⇔ TMP2	Y ⇔ TMP2	SP ⇔ TMP2
4	_	\$00:A ⇒ D	\$00:B ⇒ D	\$00:CCR ⇒ D B ⇒ CCR	TMP3 ⇔ D	Ω⇔Ω	X⇔D	$V \Leftrightarrow D$	$SP \Leftrightarrow D$
5		$\$00:A \Rightarrow X$ $X_L \Rightarrow A$	$\$00:B \Rightarrow X$ $X_L \Rightarrow B$	$$00:CCR \Rightarrow X$ $X_L \Rightarrow CCR$	TMP3 ⇔ X	D ⇔ X	×⇔×	Y⇔X	SP ⇔ X
9		$\$00:A\Rightarrow Y$ $Y_L\Rightarrow A$	$\$00:B \Rightarrow Y$ $Y_{L} \Rightarrow B$	$\$00:CCR \Rightarrow Y$ $Y_L \Rightarrow CCR$	TMP3 ⇔ Y	D⇔Y	× ⇔ ×	∀ ⇔ ∀	SP ⇔ Y
7		\$00:A ⇒ SP SP _L ⇒ A	\$00:B ⇒ SP SP _L ⇒ B	\$00:CCR ⇒ SP SP _L ⇒ CCR	TMP3 ⇔ SP	D ⇔ SP	×⇔SP	Y⇔SP	SP ⇔ SP

TMP2 and TMP3 registers are for factory use only.

Table 4. Loop Primitive Postbyte Encoding (lb)

					=-						50
00 A	10 A	20 A	30 A	40 A	50 A	60 A		80 A	90 A		-
DBEQ	DBEQ	DBNE	DBNE	TBEQ	TBEQ	TBNE	TBNE	IBEQ	IBEQ	IBNE	IBNE
(+)	(–)	(+)	(–)	(+)	(–)	(+)	(–)	(+)	(–)	(+)	(–)
01 B	11 B	21 B	31 B	41 B	51 B	61 B	71 B	81 B	91 B	A1 B	B1 B
DBEQ	DBEQ	DBNE	DBNE	TBEQ	TBEQ	TBNE	TBNE	IBEQ	IBEQ	IBNE	IBNE
(+)	(-)	(+)	(-)	(+)	(-)	(+)	(-)	(+)	(-)	(+)	(-)
02	12	22	32	42	52	62	72	82	92	A2	B2
_	_	_	_	_	_	_	_	_	_	_	_
03	13	23	33	43	53	63	73	83	93	A3	B3
_	_	_	_	_	_	_	_	_	_	_	_
04 D	14 D	24 D	34 D	44 D	54 D	64 D	74 D	84 D	94 D	A4 D	B4 D
DBEQ	DBEQ	DBNE	DBNE	TBEQ	TBEQ	TBNE	TBNE	IBEQ	IBEQ	IBNE	IBNE
(+)	(-)	(+)	(-)	(+)	(-)	(+)	(-)	(+)	(-)	(+)	(-)
05 X	15 X	25 X	35 X	45 X	55 X	65 X	75 X	85 X	95 X	A5 X	B5 X
DBEQ	DBEQ	DBNE	DBNE	TBEQ	TBEQ	TBNE	TBNE	IBEQ	IBEQ	IBNE	IBNE
(+)	(-)	(+)	(-)	(+)	(–)	(+)	(-)	(+)	(–)	(+)	(–)
06 Y	16 Y	26 Y	36 Y	46 Y	56 Y	66 Y	76 Y	86 Y	96 Y	A6 Y	B6 Y
DBEQ	DBEQ	DBNE	DBNE	TBEQ	TBEQ	TBNE	TBNE	IBEQ	IBEQ	IBNE	IBNE
(+)	(-)	(+)	(-)	(+)	(-)	(+)	(-)	(+)	(-)	(+)	(-)
07 SP	17 SP	27 SP	37 SP	47 SP	57 SP	67 SP	77 SP	87 SP	97 SP	A7 SP	B7 SP
DBEQ	DBEQ	DBNE	DBNE	TBEQ	TBEQ	TBNE	TBNE	IBEQ	IBEQ	IBNE	IBNE
(+)	(–)	(+)	(–)	(+)	(–)	(+)	(–)	(+)	(–)	(+)	(–)

Key to Table 4

Table 5. Branch/Complementary Branch

	Br	anch			Complemen	tary Branch	
Test	Mnemonic	Opcode	Boolean	Test	Mnemonic	Opcode	Comment
r>m	BGT	2E	$Z + (N \oplus V) = 0$	r≤m	BLE	2F	Signed
r≥m	BGE	2C	N ⊕ V = 0	r <m< td=""><td>BLT</td><td>2D</td><td>Signed</td></m<>	BLT	2D	Signed
r=m	BEQ	27	Z = 1	r≠m	BNE	26	Signed
r≤m	BLE	2F	$Z + (N \oplus V) = 1$	r>m	BGT	2E	Signed
r <m< td=""><td>BLT</td><td>2D</td><td>N ⊕ V = 1</td><td>r≥m</td><td>BGE</td><td>2C</td><td>Signed</td></m<>	BLT	2D	N ⊕ V = 1	r≥m	BGE	2C	Signed
r>m	BHI	22	C + Z = 0	r≤m	BLS	23	Unsigned
r≥m	BHS/BCC	24	C = 0	r <m< td=""><td>BLO/BCS</td><td>25</td><td>Unsigned</td></m<>	BLO/BCS	25	Unsigned
r=m	BEQ	27	Z = 1	r≠m	BNE	26	Unsigned
r≤m	BLS	23	C + Z = 1	r>m	BHI	22	Unsigned
r <m< td=""><td>BLO/BCS</td><td>25</td><td>C = 1</td><td>r≥m</td><td>BHS/BCC</td><td>24</td><td>Unsigned</td></m<>	BLO/BCS	25	C = 1	r≥m	BHS/BCC	24	Unsigned
Carry	BCS	25	C = 1	No Carry	BCC	24	Simple
Negative	BMI	2B	N = 1	Plus	BPL	2A	Simple
Overflow	BVS	29	V = 1	No Overflow	BVC	28	Simple
r=0	BEQ	27	Z = 1	r≠0	BNE	26	Simple
Always	BRA	20		Never	BRN	21	Unconditional

For 16-bit offset long branches precede opcode with a \$18 page prebyte.

Memory Expansion

There are three basic memory expansion configurations in the M68HC12 and HCS12 MCU Families.

- Basic 64 Kbyte memory map with no additional expanded memory support
- 2. >5 megabyte expanded memory support with 8-bit PPAGE, DPAGE, and EPAGE registers (MC68HC812A4 only)
- >1 megabyte expanded memory support with 6-bit PPAGE register only — This configuration applies to all currently available HC12 and HCS12 devices with >60 Kbytes of on-chip FLASH memory.

Memory precedence

- Highest -

On-chip registers (usually \$0000 or \$1000)

BDM ROM (only when BDM active)

On-chip RAM

On-chip EEPROM

On-chip program memory (FLASH or ROM)

Expansion windows (on MCUs with expanded memory)

Other external memory

— Lowest —

CPU sees 64 Kbytes of address space (CPU_ADDR [15:0])

PPAGE 8-bit register to select 1 of 256 —16 Kbyte program pages or 6-bit register to select 1 of 64 — 16 Kbyte program pages DPAGE 8-bit register to select 1 of 256 — 4 Kbyte data pages EPAGE 8-bit register to select 1 of 256 — 1 Kbyte extra pages

Extended address is up to 22 bits (EXT_ADDR [21:0])

Program expansion window works with CALL and RTC instructions to simplify program access to extended memory space. Data and extra expansion windows (when present) use traditional banked expansion memory techniques.

Program window

If CPU_ADDR [15:0] = \$8000-BFFF and PWEN = 1

Then EXT_ADDR [21:0] = PPAGE [7:0]:CPU_ADDR [13:0]

or EXT_ADDR [19:0] = PPAGE [5:0]:CPU_ADDR [13:0]

Program window works with CALL/RTC to automate bank switching.

256 pages (banks) of 16 Kbytes each = 4 megabytes or

64 pages (banks) of 16 Kbytes each = 1 megabyte

Data window (when present)

If CPU_ADDR [15:0] = \$7000-7FFF and DWEN = 1

Then EXT_ADDR [21:0] = 1:1:DPAGE [7:0]:CPU_ADDR [11:0]

User program controls DPAGE value

Extra window (when present)

If CPU_ADDR [15:0] = \$0000-03FF and EWDIR = 1

and EWEN = 1

or CPU_ADDR [15:0] = \$0400-07FF and EWDIR = 0

and EWEN = 1

Then EXT_ADDR [21:0] = 1:1:1:1:EPAGE [7:0]:CPU_ADDR

[9:0]

User program controls EPAGE value

CPU address not in any enabled window

EXT_ADDR [21:0] = 1:1:1:1:1:1:CPU_ADDR [15:0] (4 megabyte map)

or (for 1 megabyte map)

If CPU_ADDR [15:0] = \$0000-3FFF

Then EXT_ADDR [19:0] = 1:1:1:1:0:1:CPU_ADDR [13:0]

This causes the FLASH at PPAGE \$3D to also appear as unpaged memory at CPU addresses \$0000–3FFF.

If CPU_ADDR [15:0] = \$4000-7FFF

Then EXT ADDR [19:0] = 1:1:1:1:1:0:CPU ADDR [13:0]

This causes the FLASH at PPAGE \$3E to also appear as unpaged memory at CPU addresses \$4000–7FFF.

If CPU ADDR [15:0] = \$C000-FFFF

Then EXT_ADDR [19:0] = 1:1:1:1:1:1:CPU_ADDR [13:0]

This causes the FLASH at PPAGE \$3F to also appear as unpaged memory at CPU addresses \$C000–FFFF.

Figure 2. Memory Mapping in 1-Megabyte Map

Figure 3. Memory Mapping in 4-Megabyte Map

6. CPU12 Opcode Map (Sheet 1 of 2)

EX F9 ADCB EX $\stackrel{\sim}{\mathsf{E}}$ $\stackrel{\sim}{=}$ $\stackrel{\sim}{\mathsf{E}}$ ID 2-4 E8 3-6 EORB ID 2-4 D 2-4 E4 3-6 ANDB ID 2-4 ID 2-4 E6 3-6 LDAB EA 3-6 ORAB 3-6 ADCB 2 ID 3 E5 3 BITB Е ₽ ₽ ₽ ₽ ₽ 2 DI 1 D5 BITB DI D4 ANDB DI D9 ADCB D8 EORB DB ADDB Ճ D7 Ξ Ճ Ճ C8 EORB IM 2 C9 ADCB C4 ANDB CL 100 g B7 1 TFR/EXG IH 2 EX SANDA B8 3 EORA EX 3 B9 3 EX BB ADDA J B5 BITA $\stackrel{\sim}{\mathsf{E}}$ $\stackrel{\sim}{\mathsf{H}}$ $\stackrel{\sim}{\sim}$ $\stackrel{\sim}{\mathsf{H}}$ EX B8 /| A5 BITA A8 3-6 EORA ₽ ₽ P9 P3 ₽ ₽ Ω Ξ ₽ SUE SUE CMPA 1H 1 98 3 EORA DI S DI 2 94 3 ANDA DI 2 95 3 BITA DI 393 SUBD 9A ORAA □ 8 90 □ 98 Ճ 민 97 SUB. 83 SUBD SUBD 84 ANDA IM 85 BITA 88 EORA IM 89 ADCA 8A ORAA 8B ADDA IM 86 LDAA CLRA CPS Σ 8F 87 EX 76 ROR 7B STAB 1 78 ASL 7A STAA EX 79 CL $\stackrel{\sim}{\mathsf{H}}$ X Ĕ EX Ĕ Ĕ $\stackrel{\sim}{\mathsf{E}}$ EX ID 2-4 66 3-6 ROR ASL ROL 겅 П ₽ 64 €5 ₽ 29 Ω 89 09 ₽ ₽ 6F IH 56 RORB 53 DECB ASRB DI 5B STAB S5 ROLI ASLL Ξ Ξ Ξ 2D Ξ Ξ 59 Ճ 54 22 | DI | 2 | 4E | 4 | BRSET H 46 RORA 45 ROLA ASRA IH 48 ASLA IH 49 LSRD 4D BCL ^{|4}Ω 4B ₽ Ξ Ξ Ճ Ճ 35 PSHY 39 2 PSHC IH 36 PSHA 38 C 3A (38 PSHD RTS 30 Ξ Ξ -4 RL -26 S 25 BCS BVC 씸 牊 28 2B 23 R R 29 씸 20 R Ζ 牊 24 27 牊 뀜 牊 2F N DI 18 page 16 $\stackrel{\sim}{\mathsf{H}}$ ₽ RTC $\stackrel{\times}{\underline{\mathsf{z}}}$ EX 04 **∓** 8 지 3 2 8 ~ 8 OA 표명 Ξ ≖ ৪

Key to Table

Opcode → 00 5 ← Number of HCS12 cycles (‡ indicates HC12 different)

Mnemonic → BGND

dress Mode → IH I ← Number of bytes

Semiconductor, Inc. Table 6. CPU12 Opcode Map (Sheet 2 of 2)

10 2	л 10	10	٦,	100	2	10 J	2	¹ 0	2	¹ 0	2	10 P	2	¹ 0	2	10 P	2	D 10	2	D 4	2	² 0	2	10 P	2	10 P	2	10 P	2
F0 TRAP	F1 1 TRAP	IH F2	TRAP	F3 10	_ =	F4 10 TRAP	Ξ	F5 TRA	Ξ	F6 TRA	Ξ	F7 10 TRAP	Ξ	F8 TRA	Ξ	10 F9 10 TRAP	Ξ	FA TRA	Ξ	FB TRA	Ξ	FC TRA	Ξ	FD 10 TRAP	Ξ	FE TRA	Ξ	FF 10 TRAP	Ξ
E0 10 TRAP IH 2	E1 10 TRAP	2 IH 2 0 E2 10	TRAP	E3 10	H 2	E4 10 TRAP	IH 2	E5 10 TRAP	IH 2	E6 10 TRAP	IH 2	10 E7 10 1P TRAP	IH 2	E8 10 TRAP	H	E9 TRAF	H	EA TRAF	IH 2	EB 10 TRAP	IH 2	EC 10 TRAP	H	ED 10 TRAP	IH 2	10 EE 10 \P TRAP	IH 2	EF 10 TRAP	2 IH 2
D0 10 TRAP IH 2	RAP	IH 2 D2 10	RAP	10	7AP 2	D4 10 TRAP		~		6 TR/	_	7 TR/	Ξ	D8 TR/	Ξ	D9 TR/	Ξ	DA TR/	Ξ	DB TR/	Ħ	DC 10 TRAP		DD 10 TRAP	IH 2	DE 10 TRAP	IH 2	- ₹	_
C0 10 TRAP IH 2	10 RAP	H 2 C2 10	₹	C3 10	H 2	C4 10 TRAP		C5 10 TRAP	IH 2	10 C6 10 AP TRAP	IH 2	10 C7 10 D TRAP	IH 2	C8 10 TRAP	IH 2	10 C9 10 P TRAP	IH 2	CA 10 TRAP	IH 2	CB 10 TRAP	IH 2	CC 10 TRAP	IH 2	CD 10 TRAP			IH 2	10 3AP	2
В0 10 ТRAР IH 2	10 RAP	IH 2 B2 10	RAP	-	II 2	10 RAP	2	~		, SAP	IH 2	SAP		B8 10 TRAP	Н 2	≲		≲	Н 2	10 BB 10 TRAP		⊳		BD 10 TRAP	2	10 RAP	2	10 RAP	
A0 10 B TRAP 1H	10 RAP	A2 10 E		A3 10 E		10 RAP	٠.	RAP				A7 10 F	Н 2 П	10 A8 10 B	H 2 I	A9 10 E	H 2 I	10 AA 10 BA AP TRAP TF	H 2 I	AB 10 I	IH 2	0 AC 10 BC TRAP TF	Н 2 1	AD 10 I	H 2 IH	10 AE 10 I	H 2 I	AF 10 E	2 H 2 H 2 H 2 H 2 H
90 10 <i>f</i> TRAP III	10 RAP	92 10 A		10	\sim 1	10 RAP	~ .	10 RAP	2	10 RAP	2	ZAF		Ϋ́	IH 2	99 10 <i>t</i> TRAP		8	IH 2	9B 10 <i>f</i> TRAP		4AP		9D 10 4	IH 2	10 9E 10 <i>f</i> P TRAP	IH 2	7	4 2 IH
10 RAP	10 g RAP	10		10 8		10 g RAP	2	10 RAP	α ι	10 3AP	2	10 8 3AP	2	10 S	1 2 II	10 جAP		8A 10 9A TRAP TI	2) 8B 10 9 TRAP		3 8C 10 9C TF	_	10 S	_	0 8E 10 9 TRAP	2	10 8 2AP	2 IH
10 RAP 2	10 RAP	2 IH	RAP	1(2 = =						2	10 S	2 IH	78 10 86 TRAP	2 IH	10 79 10 89 TRAP		, 10 8/ TRAP	2 IH	7B 10 8F TRAP .	2 IH	7C 10 80 TRAP	2 IH		2 IH	7E 10 8E TRAP :	.,	RAP C	2 IH
10 7 RAP 2 1	10 71 RAP -	2 IH	RAP	10	RAP 2	34 10 74 TRAP T	2 IH	10 75 RAP 7	2 IH	66 10 76 TRAP 7		10 RAP	2	38 10 78 TRAP 1	2 IH	10 69 10 79 5 TRAP 7	2 IH	10 7 <i>4</i> RAP	2 IH	6B 10 7E TRAP 1		10 RAP		3D 10 7D 10 TRAP TRAP		6E 10 7E TRAP 7	_	RAP .	2 IH
50 10 60 TRAP T H 2 IH	11 10 61 TRAP T	2 IH	ZAP ,	10 6		54 10 64 TRAP T	2 IH	55 10 65 10 TRAP TRAP	2 IH	56 10 66 TRAP T	2 IH	_	~ :	58 10 68 TRAP T	2 IH	59 10 69 TRAP T	2 IH	10 6A 3AP T	2 IH	5B 10 6B TRAP T		SC 10 6C TRAP T	2	10 (3AP	.,	1ر RAP	.,	10 (2 IH
10 50 3AP T	10 51 3AP T	2 IH	SAP T	10 53	2 H	10 54 3AP T	2 IH	10 55 3AP T	2 IH	10 56 3AP T	2 IH	10 57 3AP T	2 IH	10 58 3AP T	2 IH	10 59 3AP T	2 IH	10 5A 10 SAP TRAP	2 IH	10 5B 2AP T	2 IH	AP 5C	2 IH	10 5D 3AP T	2 IH	10 5E 3AP T	2 IH	AP TF	2 IH
10 40 AP TF 2 IH	10 41 AP TF	10 42	AP TF	10 43	2 H	10 44 AP TF	2 IH	10 45 AP TF	2 IH	10 46 AP TF	2 IH	10 47 AP TF	2 IH	10 48 AP TF	2 IH	10 49 AP TF	2 IH	†3n 4A EV TF	2 IH	5n/3n 4B VW TF	2 IH	tt7B 4C AV TF	2 IH	±6 4D 3L TF	3 IH	that the second	2 IH	10 4F BL TF	3 IH
00 4 10 12 20 4 30 10 40 10 50 MOVW IDIV LBRA TRAP TRAP T TIM-ID 5 IH 2 IH 2 IH 2 IH	3 31 N TR	4/3 32	T T	4/3 33	0- 4 <u>∓</u>	4/3 34 C TR	4 IH	4/3 35 S TR	4 IH	4/3 36 JE TR	4 IH	4/3 37 :Q TR	4 IH	4/3 38 /C TR	4 IH	4/3 39 /S TR	4 IH	4/3 3A ³ L RE	4 SP	4/3 3B †	4 SP	4/3 3C ĭE W,	4 SP	4/3 3D .T TE	4 ID	4/3 3E 3T ST(4 H	4/3 3F .E ET	4 ID
12 20 / LBR 2 RL	12 21 / LBR	2 RL	LBF 4 RI	3 23	-5 2 RL	12 24 S LBC	2 RL	12 25 3 LBC	2 RL	2 26 LBN	2 RL	2 27 . LBE	2 RL	4-7 28 A LBV	3-5 RL	4-7 29 \ LBV	3-5 RL	4-7 2A :D LBF	3-5 RL	4-7 2B D LBN	3-5 RL	4-7 2C M LBG	3-5 RL	4-7 2D // LBL	3-5 RL	4-7 2E M LBG	3-5 RL	4-7 2F M LBL	3-5 RL
4 10 / IDIV 5 IH	5 11 / FDIV	5 IH	/ EMACS	5 13	, EMOL 6 H	6 14 / EDIV:	9	5 15 / IDIV\$	2 IH	2 16 SBA	2 IH	3 17 CBA	2 IH	4 MAX	4 ID	5 19 MIN	2 ID	5 1A EMAX	4 ID	4 1B EMIN	2 ID	6 TO MAXI	0I 9	5 1 DIA	2 ID	2 1E EMAX	2 ID	2 1F EMIN	2 ID
MOVW IM-ID	MOVW	EX-ID 02	MOV	03	IM-EX	04 MOVW	EX-EX	05 MOVW	ID-EX	06 ABA	Ξ	07 DAA	ェ	08 MOVB	IM-ID	90 MOVB	EX-ID	0A MOVB	ID-ID	0B MOVB	IM-EX	OC MOVB	EX-EX	OD MOVB	ID-EX	0E TAB	Ξ	0F TBA	Ξ

^{*} The opcode \$04 (on sheet 1 of 2) corresponds to one of the loop primitive instructions DBEQ, DBNE, IBEQ, IBNE, TBEQ, or TBNE.

[†] Refer to instruction summary for more information. ‡ Refer to instruction summary for different HC12 cycle count.

Table 7. Hexadecimal to ASCII Conversion

Hex	ASCII	Hex	ASCII	Hex	ASCII	Hex	ASCII
\$00	NUL	\$20	SP space	\$40	@	\$60	' grave
\$01	SOH	\$21	i	\$41	Α	\$61	а
\$02	STX	\$22	" quote	\$42	В	\$62	b
\$03	ETX	\$23	#	\$43	С	\$63	С
\$04	EOT	\$24	\$	\$44	D	\$64	d
\$05	ENQ	\$25	%	\$45	Е	\$65	е
\$06	ACK	\$26	&	\$46	F	\$66	f
\$07	BEL beep	\$27	ʻapost.	\$47	G	\$67	g
\$08	BS back sp	\$28	(\$48	Н	\$68	h
\$09	HT tab	\$29)	\$49	I	\$69	i
\$0A	LF linefeed	\$2A	*	\$4A	J	\$6A	j
\$0B	VT	\$2B	+	\$4B	K	\$6B	k
\$0C	FF	\$2C	, comma	\$4C	L	\$6C	I
\$0D	CR return	\$2D	- dash	\$4D	М	\$6D	m
\$0E	so	\$2E	. period	\$4E	N	\$6E	n
\$0F	SI	\$2F	/	\$4F	0	\$6F	0
\$10	DLE	\$30	0	\$50	Р	\$70	р
\$11	DC1	\$31	1	\$51	Q	\$71	q
\$12	DC2	\$32	2	\$52	R	\$72	r
\$13	DC3	\$33	3	\$53	S	\$73	s
\$14	DC4	\$34	4	\$54	Т	\$74	t
\$15	NAK	\$35	5	\$55	U	\$75	u
\$16	SYN	\$36	6	\$56	V	\$76	V
\$17	ETB	\$37	7	\$57	W	\$77	W
\$18	CAN	\$38	8	\$58	Χ	\$78	Х
\$19	EM	\$39	9	\$59	Υ	\$79	у
\$1A	SUB	\$3A	:	\$5A	Z	\$7A	z
\$1B	ESCAPE	\$3B	;	\$5B	[\$7B	{
\$1C	FS	\$3C	<	\$5C	\	\$7C	I
\$1D	GS	\$3D	=	\$5D]	\$7D	}
\$1E	RS	\$3E	>	\$5E	۸	\$7E	~
\$1F	US	\$3F	?	\$5F	_ under	\$7F	DEL delete

Hexadecimal to Decimal Conversion

To convert a hexadecimal number (up to four hexadecimal digits) to decimal, look up the decimal equivalent of each hexadecimal digit in **Table 8**. The decimal equivalent of the original hexadecimal number is the sum of the weights found in the table for all hexadecimal digits.

Table 8. Hexadecimal to/from Decimal Conversion

15	E	it 8		7	Bit		0
15	12	11	8	7	4	3	0
4th Hex Digit		3rd Hex Digit		2nd Hex Digit		1st Hex Digit	
Hex	Decimal	Hex	Decimal	Hex	Decimal	Hex	Decimal
0	0	0	0	0	0	0	0
1	4,096	1	256	1	16	1	1
2	8,192	2	512	2	32	2	2
3	12,288	3	768	3	48	3	3
4	16,384	4	1,024	4	64	4	4
5	20,480	5	1,280	5	80	5	5
6	24,576	6	1,536	6	96	6	6
7	28,672	7	1,792	7	112	7	7
8	32,768	8	2,048	8	128	8	8
9	36,864	9	2,304	9	144	9	9
Α	40,960	Α	2,560	Α	160	Α	10
В	45,056	В	2,816	В	176	В	11
С	49,152	С	3,072	С	192	С	12
D	53,248	D	3,328	D	208	D	13
Е	57,344	Е	3,484	Е	224	Е	14
F	61,440	F	3,840	F	240	F	15

Decimal to Hexadecimal Conversion

To convert a decimal number (up to 65,535₁₀) to hexadecimal, find the largest decimal number in **Table 8** that is less than or equal to the number you are converting. The corresponding hexadecimal digit is the most significant hexadecimal digit of the result. Subtract the decimal number found from the original decimal number to get the *remaining decimal value*. Repeat the procedure using the remaining decimal value for each subsequent hexadecimal digit.

Freescale Semiconductor, Inc.

HOW TO REACH US:

USA/EUROPE/LOCATIONS NOT LISTED:

Motorola Literature Distribution; P.O. Box 5405, Denver, Colorado 80217 1-303-675-2140 or 1-800-441-2447

JAPAN:

Motorola Japan Ltd.; SPS, Technical Information Center, 3-20-1, Minami-Azabu Minato-ku, Tokyo 106-8573 Japan 81-3-3440-3569

ASIA/PACIFIC:

Motorola Semiconductors H.K. Ltd.; Silicon Harbour Centre, 2 Dai King Street, Tai Po Industrial Estate, Tai Po, N.T., Hong Kong 852-26668334

TECHNICAL INFORMATION CENTER:

1-800-521-6274

HOME PAGE:

http://www.motorola.com/semiconductors

Information in this document is provided solely to enable system and software implementers to use Motorola products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part.

Motorola and the Stylized M Logo are registered in the U.S. Patent and Trademark Office. digital dna is a trademark of Motorola, Inc. All other product or service names are the property of their respective owners. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

© Motorola, Inc. 2001