Section 13.9: Cylindrical and Spherical Coordinates

In the **cylindrical coordinate system**, a point P in space is represented by the ordered triple (r, θ, z) , where r and θ are polar coordinates of the projection of P onto the xy-plane and z is the directed distance from the xy-plane to P.

Figure 1: A point expressed in cylindrical coordinates.

To convert from cylindrical to rectangular coordinates we use the relations

$$x = r\cos\theta$$
 $y = r\sin\theta$ $z = z$.

To convert from rectangular to cylindrical coordinates we use the relations

$$r = \sqrt{x^2 + y^2}$$
 $\tan \theta = \frac{y}{r}$ $z = z$.

Example: Convert the point $\left(2, \frac{4\pi}{3}, 8\right)$ from cylindrical to rectangular coordinates.

Since r=2, $\theta=4\pi/3$, and z=8,

$$x = r\cos\theta = 2\cos\left(\frac{4\pi}{3}\right) = 2\left(-\frac{1}{2}\right) = -1,$$
$$y = r\sin\theta = 2\sin\left(\frac{4\pi}{3}\right) = 2\left(-\frac{\sqrt{3}}{2}\right) = -\sqrt{3},$$
$$z = z = 8.$$

Thus, the point is $(-1, -\sqrt{3}, 8)$ in rectangular coordinates.

Example: Convert the point $(\sqrt{3}, 1, 4)$ from rectangular to cylindrical coordinates.

Since $x = \sqrt{3}$, y = 1, and z = 4,

$$r = \sqrt{x^2 + y^2} = \sqrt{3 + 1} = 2,$$

$$\theta = \tan^{-1}\left(\frac{y}{x}\right) = \tan^{-1}\left(\frac{1}{\sqrt{3}}\right) = \frac{\pi}{6},$$

$$z = z = 4.$$

Thus, the point is $\left(2, \frac{\pi}{6}, 4\right)$ in cylindrical coordinates.

Example: Find an equation in cylindrical coordinates for the ellipsoid $4x^2 + 4y^2 + z^2 = 1$.

Since $r^2 = x^2 + y^2$, it follows that

$$4x^{2} + 4y^{2} + z^{2} = 1$$

$$4r^{2} + z^{2} = 1$$

$$z^{2} = 1 - 4r^{2}$$

In the **spherical coordinate system**, a point P in space is represented by the ordered triple (ρ, θ, ϕ) , where $\rho \geq 0$ is the distance from the origin to P, θ is the same angle as in cylindrical coordinates, and $0 \leq \phi \leq \pi$ is the angle between the positive z-axis and the line segment OP.

Figure 2: A point expressed in spherical coordinates.

The connection between rectangular and spherical coordinates can be seen in Figure 3. If the point P has rectangular coordinates (x, y, z) and spherical coordinates (ρ, θ, ϕ) , then

$$x = \rho \sin \phi \cos \theta$$
 $y = \rho \sin \phi \sin \theta$ $z = \rho \cos \phi$

and

$$\rho = \sqrt{x^2 + y^2 + z^2}.$$

Figure 3: Relationship between rectangular and spherical coordinates.

Example: Convert the point $\left(4, \frac{\pi}{4}, \frac{\pi}{6}\right)$ from spherical to rectangular coordinates.

Since $\rho = 4$, $\theta = \pi/4$, and $\phi = \pi/6$,

$$x = \rho \sin \phi \cos \theta = 4 \sin \left(\frac{\pi}{6}\right) \cos \left(\frac{\pi}{4}\right) = 4 \left(\frac{1}{2}\right) \left(\frac{1}{\sqrt{2}}\right) = \sqrt{2},$$
$$y = r \sin \phi \sin \theta = 4 \sin \left(\frac{\pi}{6}\right) \sin \left(\frac{\pi}{4}\right) = 4 \left(\frac{1}{2}\right) \left(\frac{1}{\sqrt{2}}\right) = \sqrt{2},$$
$$z = \rho \cos \phi = 4 \cos \left(\frac{\pi}{6}\right) = 4 \left(\frac{\sqrt{3}}{2}\right) = 2\sqrt{3}.$$

Thus, the point is $(\sqrt{2}, \sqrt{2}, 2\sqrt{3})$ in rectangular coordinates.

Example: Convert the point $(1, -1, -\sqrt{2})$ from rectangular to spherical coordinates.

Since
$$x = 1$$
, $y = -1$, and $z = -\sqrt{2}$,
$$\rho = \sqrt{x^2 + y^2 + z^2} = \sqrt{1 + 1 + 2} = 2,$$

$$\theta = \tan^{-1}\left(\frac{y}{x}\right) = \tan^{-1}(-1) = \frac{7\pi}{4},$$

$$\phi = \cos^{-1}\left(\frac{z}{\theta}\right) = \cos^{-1}\left(-\frac{1}{\sqrt{2}}\right) = \frac{3\pi}{4}.$$

Thus, the point is $\left(2, \frac{7\pi}{4}, \frac{3\pi}{4}\right)$ in spherical coordinates.

Example: Find an equation in spherical coordinates for the surface $3x^2 - x + 3y^2 + 3z^2 = 0$.

Since $\rho^2 = x^2 + y^2 + z^2$ and $x = \rho \sin \phi \cos \theta$, it follows that

$$3x^{2} + 3y^{2} + 3z^{2} = x$$
$$3\rho^{2} = \rho \sin \phi \cos \theta$$
$$\rho = \frac{1}{3} \sin \phi \cos \theta.$$

Example: A solid lies above the cone $5z = \sqrt{x^2 + y^2}$ and outside the sphere $x^2 + y^2 + z^2 = z$. Write a description of the solid in terms of spherical coordinates.

Since $\rho^2 = x^2 + y^2 + z^2$ and $z = \rho \cos \phi$, it follows that

$$x^{2} + y^{2} + z^{2} \ge z$$

$$\rho^{2} \ge \rho \cos \phi$$

$$\rho \ge \cos \phi.$$

The first equation gives

$$5z \geq \sqrt{x^2 + y^2}$$

$$25z^2 \geq x^2 + y^2$$

$$25\rho^2 \cos^2 \phi \geq \rho^2 \sin^2 \phi$$

$$25\cos^2 \phi \geq 1 - \cos^2 \phi$$

$$26\cos^2 \phi \geq 1$$

$$\cos \phi \geq \frac{1}{\sqrt{26}}.$$