جـــامــعـــة الملكسعود **King Saud University** King Saud University **College of Computer and Information Sciences** College of Computer & Information Sciences **Computer Science Department** Computer Science Department **Course Code** CSC 220 **Course Title** Computer Organization Semester S1 – 1443 (Fall-2021-22) Final Exam 04/01/2022 **Duration** 3 Hours **Student Name**

Course Learnin	ng Outcomes	Relevant question	Full mark	Student's mark
CLO 2.1	Combinational and sequential circuits design	1	8	
CLO 2.2	Register, counter, and RAM design	2	6	
CLO 2.2	Register, counter, and RAM design	3	6	
CLO 2.3	Arithmetic and Logic Unit (ALU) design	4	6	
CLO 2.4	Datapath and CPU design	5	6	
CLO 1.3	Instruction set and machine programming	6	8	
Total			40	

Feedback/Comments	:
-------------------	---

Exam

Date

Student ID Section No.

Question 1. (8 Marks: 2+2+2+2)

(a) Determine the decimal value represented by 1000 1011 in each of the following systems.

1. Unsigned notation?	139
2. Two's complements?	-117

(b) For an 8-bit adder, write the following values

and our adder, write the following values				
i. Number of inputs?	17			
ii. Number of Outputs?	9			
iii.Size of truth table?	217			
iv. How many function to be optimized?	9			

(c) Implement the following function using an 8X1 multiplexer

$$F(x,y,z) = xy'z + x'y'z + xyz$$

(d) Show how to:

i. implement a JK flip-flop using NAND gates

v. obtain T Flip Flop from the JK structure.

Question 2 (6 Marks: 2+1+3)

(a) Determine the cycle described by the following 4-bit synchronous counter.

The counter describes the cycle 0,1,2,3,4,5,6,7,8,9,10,11 / 0, 1, 2 3......

(b) Calculate the memory space in Bytes considering the following memory (RAM) diagram.

The memory has the size (2^16) Bytes

(c) Show how to design a 128×8 RAM Using 32×8 RAM chips

Question 3 (6 Marks: 3+3)

(a) Design 4-bits register using necessary flip-flops and MUXs that performs the following operations

S1	S0	Operation
0	0	Shift left
0	1	Rotate Right
1	0	Shift right
1	1	Logical Shift Left

(b) Consider the following **RTL program** with the initial values of 8-bit registers R1 = 0001 0111, R2 = 1110 0111, R3 = 0000 0000 (2's complement representation). Show the contents of the registers after execution of each micro-operation sequentially.

micro- operations	R1	R2	R3	
R3 ← R1 + R2	0001 0111	1110 0111	1111 1110	

R1 ← R3 + 1	1111 1111	1110 0111	1111 1110		
R2 ← SL R1	1111 1111	1111 1110	1111 1110		

Question 4 (6 Marks: 3+3)

(a) In order to design an **input logic** for a 4-bit-arithmetic unit as shown below and considering the operation table with eight-arithmetic operations, **write the required adder's inputs** (A, B, CI) in terms of user input X and Y.

Answer of Question 6 (a)

Se	electi	on	Arithmetic operation			Required adder inputs			
S ₂	S_1	S ₀	G (A + B + CI)	Description	1111	Х	0		
0	0	0	X - 1	(decrement)	1111	Х	1		
0	0	1	X	(transfer)	Y'	Х	0		
0	1	0	X + Y'	(1C subtraction)	Y'	Х	1		
0	1	1	X + Y' + 1	(2C subtraction)	Υ	X	0		
1	0	0	X + Y	(add)	Y	Х	1		
1	0	1	X + Y + 1		0000	Х	0		
1	1	0	X	(transfer)	0000	Х	1		
1	1	1	X + 1	(increment)	1111	Х	0		

- (b) Design the **input logic** using necessary logic gates for the 4-bit arithmetic unit above and considering the same set of operations. Here, the inputs for the circuit are three-bit selections $S(S_2, S_1, S_0)$, 4-bit data $Y(Y_3, Y_2, Y_1, Y_0)$ and the 4-bit outputs are $A(A_3, A_2, A_1, A_0)$. Show the followings:
 - i. Abbreviated and full truth table,
 - ii. Simplified function with k-map,
 - iii. The diagram of the input logic (Note: MUX-based implementation is not acceptable).

Answer of Question 4 (b)

1

S_2	S_1	Yi	A_{i}
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	0

0000

iii.

ii.

			S_1	
	1	1	0	1
S_2	0	1	0	0
·		Yi		

$$A_{i} = S'_{2}Y_{i} + S'_{1}Y'_{i}$$

Question 5 (6 Marks: 4+2)

(a) Show how to design a 4 x n register file using necessary registers, MUXs, and decoders.

(b) Compute the control words for the following micro-operations for the datapath below described by the Table 8.5.

□ TABLE 8-5 Encoding of Control Word for the Datapath

DA, AA	, BA	MB		FS		MD I		RW	1
Function	Code	Function	Code	Function	Code	Function	Code	Function	Code
R0	000	Register	0	F = A	0000	Function	0	No Write	0
R1	001	Constant	1	F = A + 1	0001	Data in	1	Write	1
R2	010			F = A + B	0010				
R3	011			F = A + B + 1	0011				
R4	100			$F = A + \overline{B}$	0100				
R5	101			$F = A + \overline{B} + 1$	0101				
R6	110			F = A - 1	0110				
R7	111			F = A	0111				
				$F = A \wedge B$	1000				
				$F = A \vee B$	1001				
				$F = A \oplus B$	1010				
				$F = \overline{A}$	1011				
				F = B	1100				
				$F = \operatorname{sr} B$	1101				
				$F = \operatorname{sl} B$	1110				

Micro- operations	DA (15-13)	AA (12-10)	BA (9-7)	MB (6)	FS (5-2)	MD (1)	RW (0)
R2←R3 – R1	010	011	001	0	0101	0	1
R3←M(R2)	011	010	XXX	X	XXX	1	1
R0←R0 ⊕ R1	000	000	001	0	1010	0	1
R2←sr R7	010	XXX	111	0	1101	0	1

Question 6 (8 Marks: 2 + 2 + 4)

□ TABLE 8-8

Instruction Specifications for the Simple Computer

Instruction	Opcode	Mne- monic	Format	Description	Status Bits
Move A	0000000	MOVA	RD, RA	$R[DR] \leftarrow R[SA]^*$	N, Z
Increment	0000001	INC	RD, RA	$R[DR] \leftarrow R[SA] + 1*$	N, Z
Add	0000010	ADD	RD, RA, RB	$R[DR] \leftarrow R[SA] + R[SB]^*$	N, Z
Subtract	0000101	SUB	RD, RA, RB	$R[DR] \leftarrow R[SA] - R[SB]^*$	N, Z
Decrement	0000110	DEC	RD, RA	$R[DR] \leftarrow R[SA] - 1*$	N, Z
AND	0001000	AND	RD, RA, RB	$R[DR] \leftarrow R[SA] \wedge R[SB]^*$	N, Z
OR	0001001	OR	RD, RA, RB	$R[DR] \leftarrow R[SA] \vee R[SB]^*$	N, Z
Exclusive OR	0001010	XOR	RD, RA, RB	$R[DR] \leftarrow R[SA] \oplus R[SB]^*$	N, Z
NOT	0001011	NOT	RD, RA	$R[DR] \leftarrow \overline{R[SA]}^*$	N, Z
Move B	0001100	MOVB	RD, RB	$R[DR] \leftarrow R[SB]^*$	
Shift Right	0001101	SHR	RD, RB	$R[DR] \leftarrow sr R[SB]^*$	
Shift Left	0001110	SHL	RD, RB	$R[DR] \leftarrow sl R[SB]^*$	

Load Immediate	1001100	LDI	RD, OP	$R[DR] \leftarrow zf OP^*$
Add Immediate	1000010	ADI	RD, RA, OP	$R[DR] \leftarrow R[SA] + zf OP*$ N, Z
Load	0010000	LD	RD, RA	$R[DR] \leftarrow M[SA]^*$
Store	0100000	ST	RA, RB	$M[SA] \leftarrow R[SB]^*$
Branch on Zero	1100000	BRZ	RA,AD	if $(R[SA] = 0) PC \leftarrow PC + se AD, N, Z$ if $(R[SA] \neq 0) PC \leftarrow PC + 1$
Branch on Negative	1100001	BRN	RA,AD	if $(R[SA] < 0) PC \leftarrow PC + \text{se AD}, N, Z$ if $(R[SA] \ge 0) PC \leftarrow PC + 1$
Jump	1110000	JMP	RA	$PC \leftarrow R[SA]^*$

^{*} For all of these instructions, PC ← PC + 1 is also executed to prepare for the next cycle.

(a) Consider table 8-8 containing instruction specification for a simple computer. Translate the following instructions into 16-bit binary machine codes (**NB**: use 0 for don't care).

Instruction	Binary machine code				
	Opcode	RD/AD(left)	RA	RB/OP/AD(Right)	
ADD R0, R5, R3	0000010	000	101	011	
ST (R5), R6	0100000	000	101	110	
ADI R2, R7 5	1000010	010	111	101	
BRZ R2 AD $(AD = 101 \ 110)$	1100000	101	010	110	

(b) Show the design of a single cycle control unit involving Program Counter, Instruction Register, Instruction Decoder and a Branch Control Logic.

(c) Consider the following set of instructions written in assembly code and the content of the memory. What will be the final value of register R0, R1, R2 and the memory location 311 after executing these instructions?

Solution:

LDI R0, 250 LD R1, (R0) INC R0, R0 LD R2, (R0) ADD R1, R1, R2 INC R0, R0 LD R2, (R0) **ADD** R1, R1, R2 INC R0, R0 LD R2, (R0) **ADD** R1, R1, R2

SHR R1, R1 SHR R1, R1

LDI R0, 311 ST (R0), R1

address	memory
•••	•••
250	90
251	-3
252	25
253	9
	•••
311	•••

R0	R1	R2	Memory location 311
311	30	9	30

THE END