STA 032 R Homework 4

Hardy Jones 999397426 Professor Melcon Winter 2015

Original Dataset

1. (a)

The mean of NormalData is 5.00.

The standard deviation of NormalData is 3.35.

Sandardized Dataset

- The mean of Z is -6.17×10^{-17} .
 - The standard deviation of Z is 1.
- (c) The transformation moved the data so that it is now centered at 0. The data is also more heavily weighted towards 0. The range of data is also smaller. The height appears to be just a touch smaller than before. The overall shape is still the same, it still appears to be normal.

Original Lynx Dataset

2. (a) The mean of LynxData is 1.54×10^3 . The sd of LynxData is 1.59×10^3 .

Sandardized Dataset

The mean of Z is 4.22×10^{-17} .

The sd of Z is 1.

(c) The transformation moved the data so that it is now much closer to 0. The data is also more heavily weighted towards 0. The range of data is also smaller. The height appears to be just a touch smaller than before. The overall shape is still the same.

3. (a) i.

Samples (n = 10)

ii. The mean for part ii is 4.80. The sd for part ii is 9.31×10^{-1} .

Samples (n = 30)

iii. The mean for part iii is 4.79. The sd for part iii is 5.52×10^{-1} .

Samples (n = 50)

iv. The mean for part iv is 4.78. The sd for part iv is 4.37×10^{-1} .

Samples (n = 100)

v. The mean for part v is 4.77. The sd for part v is 2.98×10^{-1} .

The Population of Lynx Trappings

(b) i.

Samples of Lynx Trappings (n = 10)

ii. The mean for part ii is 1.52×10^3 . The sd for part ii is 4.62×10^2 .

Samples of Lynx Trappings (n = 30)

iii. The mean for part iii is 1.53×10^3 . The sd for part iii is 2.52×10^2 .

Samples of Lynx Trappings (n = 50)

iv. The mean for part iv is 1.54×10^3 . The sd for part iv is 1.64×10^2 .

Samples of Lynx Trappings (n = 100)

v. The mean for part v is 1.54×10^3 . The sd for part v is 5.53×10^1 .

(c) The distributions in parts a and b are both approximately normal distributions. It appears that as n increases, the range of values decreases.

Appendix A R code

Problem 1

```
NormalData <- rnorm(100, mean = 5, sd = 3)
```

(a)

```
png("prob1a.png")
hist(NormalData, main = "Original Dataset", xlim = c(-5, 15), ylim = c(0, 25))
dev.off()
mean(NormalData)
sd(NormalData)
```

(b)

```
Z <- (NormalData - mean(NormalData)) / sd(NormalData)

png("prob1b.png")
hist(Z, main = "Sandardized Dataset", xlim = c(-5, 5), ylim = c(0, 25))
dev.off()

mean(Z)
sd(Z)</pre>
```

Problem 2

```
LynxData <- as.numeric(lynx)
```

(a)

```
png("prob2a.png")
hist(LynxData, main = "Original Lynx Dataset", xlim = c(0, 7000), ylim = c(0, 100))
dev.off()
mean(LynxData)
sd(LynxData)
```

(b)

```
Z <- (LynxData - mean(LynxData)) / sd(LynxData)
png("prob2b.png")
hist(Z, main = "Sandardized Dataset", xlim = c(-5, 5), ylim = c(0, 100))</pre>
```

```
dev.off()
mean(Z)
sd(Z)
```

Problem 3

```
SampleMean <- function(X, n) {
    mean(sample(X, n))
}

SampleN <- function(X, n, N) {
    sapply(c(1:N), function(N) { SampleMean(X, n) })
}

SampleResults <- function(X, n, N, filename = "", main = "Samples") {
    samples <- SampleN(X, n, N)

    png(filename)
    hist(samples, main = main)
    dev.off()

list(mean = mean(samples), sd = sd(samples))
}</pre>
```

(a)

```
source("prob3.R")
FakeData <- rnorm(1000, mean=5, sd=3)
png("prob3a.png")
hist(FakeData, main = "The Population")
dev.off()
ii <- SampleResults(FakeData, 10, 1000,</pre>
    filename = "prob3a_ii.png", main = "Samples (n = 10)"
iii <- SampleResults(FakeData, 30, 1000,</pre>
    filename = "prob3a_iii.png", main = "Samples (n = 30)"
)
iv <- SampleResults(FakeData, 50, 1000,</pre>
    filename = "prob3a_iv.png", main = "Samples (n = 50)"
)
   <- SampleResults(FakeData, 100, 1000,</pre>
    filename = "prob3a_v.png", main = "Samples (n = 100)"
ii$mean
ii$sd
```

```
iii$mean
iii$sd

iv$mean
iv$sd

v$mean
v$sd
```

(b)

```
source("prob3.R")
ActualData <- as.numeric(lynx)</pre>
png("prob3b.png")
hist(ActualData, main = "The Population of Lynx Trappings")
dev.off()
ii <- SampleResults(ActualData, 10, 1000,</pre>
    filename = "prob3b_ii.png", main = "Samples of Lynx Trappings (n = 10)"
)
iii <- SampleResults(ActualData, 30, 1000,</pre>
    filename = "prob3b_iii.png", main = "Samples of Lynx Trappings (n = 30)"
iv <- SampleResults(ActualData, 50, 1000,</pre>
    filename = "prob3b_iv.png", main = "Samples of Lynx Trappings (n = 50)"
   <- SampleResults(ActualData, 100, 1000,</pre>
    filename = "prob3b_v.png", main = "Samples of Lynx Trappings (n = 100)"
ii$mean
ii$sd
iii$mean
iii$sd
iv$mean
iv$sd
v$mean
v$sd
```