

François Jacquenet

Professeur d'Informatique Faculté des Sciences Laboratoire Hubert Curien – UMR CNRS 5516 18 rue Benoit Lauras 42000 Saint-Etienne

Tél: 04 77 91 58 07

e-mail: Francois.Jacquenet@univ-st-etienne.fr Web: http://labh-curien.univ-st-etienne.fr/~fj/bd

Licence de Sciences et Techniques Unité d'enseignement BASES DE DONNEES

Le modèle relationnel L'algèbre relationnelle

Que verrons nous dans ce cours ?

Le modèle relationnel

L'algébre relationnelle

Partie I Le modèle relationnel

Le

Le modèle relationnel

- Modèle de niveau logique, très simple
- Défini par en ; prix Turing en 1986.
 Développé au centre de recherche d'IBM (Almaden, Californie)
- Aujourd'hui utilisé par beaucoup de SGBD commerciaux (Oracle, Informix, DB2, Ingres, Sybase, dBase, Access ...) et SIG
- Modèle à deux concepts:

4

Concepts de base

Etudiant

N°	Etud	nom	prénom	age
1	36	Dupont	Jean	19
2	53	Aubry	Annie	20
1	01	Duval	André	21
1	47	Dupont	Marc	21

Schéma relationnel

une BD =

schéma d'une BD relationnelle =

schéma d'une relation =
Ri = (A1/d1, A2/d2, ..., Ay/dy)
ou, plus simplement,
Ri = (A1, A2, ..., Ay)

Règles de structuration

- attributs: et valeurs atomiques)
- structure plate régulière

tuple x x x x

x: une et une seule valeur atomique par attribut

(domaine de W W W W **INTERDIT**

Valeurs nulles

- Un attribut peut ne pas être valué pour un tuple: on dit alors qu'il a une
 - exemple : on ne connaît ni l'age d'Annie ni le prénom de Duval

136	Dupont Jean		19
253	Aubry	Annie	
101	Duval	21	
147	Dupont	Marc	21

Les ide

Les identifiants

- Toute relation possède un
 - il ne peut y avoir deux tuples identiques dans la même relation
- ATTENTION :

Etudiant	<u>N° Etud</u>	nom	prénom	age
	136	Dupont	Jean	19
	253	Aubry	Annie	20
	101	Duval	André	21
	147	Dupont	Marc	21

Identifiant externe

Cours(NomC,horaire,prof)

BD	Mercredi 15-17	Duval
SE	Mardi 16-19	Malin

Suit(N° Etud, NomC)

253	SE
136	BD
253	BD
101	SE

Suit traduit un TA entre Etudiant et Cours. Elle comporte les identifiants de Etudiant et de Cours. Suit.NomC est un identifiant externe sur Cours.

Domaine de valeurs

- Domaine = Ensemble de valeurs atomiques que peut prendre un attribut
- Exemples de domaines:
 - Dnom : chaînes de caractères de longueur maximale 30
 - Dnum : entiers compris entre 0 et 99999
 - Dcouleur : {"bleu", "vert", "jaune"}
 - Dâge : entiers compris entre 16 et 65

Définition d'une relation

- Une relation est définie par :
 - son
 - sa <nom d'attribut : domaine>
 - son (ses) (s)
 - la (une phrase)
- Exemple :
 - Etudiant (N° Etud : Dnum, Nom : Dnom, Prénom : Dnom, Age : Dâge)

Identifiant: N° Etud

Définition: tout étudiant actuellement immatriculé à l'UJM

Contraintes de modélisation

- Les notions d'attribut multivalué ou complexe n'existent pas dans le modèle relationnel.
 Il faut donc les modéliser autrement.
- Pour un attribut complexe, il faut choisir entre le composé ou les composants
- Pour un attribut multivalué, il faut créer une autre relation (ceci pour chaque attribut multivalué)

Représentation d'attribut complexe

nom rue

Soit adresse: nom_rue, num, ville, code

adresse

num

ville

Solution 1

un attribut par composant:

nom_rue , num , ville, NPA

"Rue de la presse", "5", "Saint-Etienne", "42000"

 il est éventuellement possible de définir par ailleurs une vue restituant la notion globale d'adresse

Solution 2

un attribut adresse dont le domaine est une chaine de caractères
 "Rue de la presse 5 Saint-Etienne 42000"

Représentation d'attribut multivalué

Exemple: mémoriser les différents prénoms des étudiants

Solution incorrecte

Plusieurs attributs : Prénom1, Prénom2,...

Solution correcte : créer une relation supplémentaire:

PrénomsEtudiants(Num_Etud , Prénom)

```
136 Jean136 Marie101 André253 Annie253 Claudine
```

Ou liste ordonnée:

EtudPrénoms2 (N° Etud, N° Prénom, Prénom)

Identifiant d'une relation

- Une relation peut avoir plusieurs identifiants
 PrénomsEtudiants2 (N° Etud, N° Prénom, Prénom)
 - N° Etud + N° Prenom
 - N° Etud + Prenom
- Identifiant =

Identifiants externes

- Décrivent
- Suit (N° Etud : Dnum, NomC : Dnom)
 - N° Etud **référence un** Etudiant NomC **référence un** Cours
- Si la relation référencée possède plusieurs identifiants, il faut préciser:
 - N° Etud référence un Etudiant.N° Etud
- La vérification de SGBD: les identifiants externes doivent nécessairement désigner des tuples existants.

Un schéma relationnel se compose:

- pour chaque relation de:
 - nom de la relation
 - définition
 - attributs + domaines
 - identifiant(s)
 - éventuellement identifiant(s) externe(s)
 - contraintes d'intégrité associées
- et des autres contraintes d'intégrité qui portent sur plusieurs relations.

Domaines:

- Dnom : chaînes de caractères de longueur inférieure à 30
- Dch100 : chaînes de caractères de longueur inférieure à 100
- Dannée : [1970 , 1990]
- Dnote : [0.0 , 20.0]
- Ddate: [1,31]/[1,12]/[1920,1990]

Relation : Personne

Attributs : n° P: entier sans nul

nom: Dnom sans nul adr: Dch100 sans nul

Identifiant: : n° P

Définition: tout étudiant et tout enseignant de l'école (état actuel).

Relation : PersonnePrénoms

(permet d'avoir une liste de prénoms pour une personne donnée)

Attributs : n° P: entier sans nul

prénom : Dnom sans nul

Identifiant: : $n^{\circ} P + prénom$

Identifiant externe : $n^\circ P$ référence une *Personne*

Définition : prénoms des personnes

Relation : Etudiant

Attributs : $n^{\circ} P$: entier sans nul

n° E: entier sans nul

dateN: Ddate sans nul

Identifiants: $(n^{\circ} E)$

Identifiant externe : n° P référence une Personne

Définition : tout individu qui est actuellement inscrit à l'école, ou qui a déjà passé avec succès

un des cours de l'école

Relation : EtudiantEtudes

Attributs: n° E: entier sans nul

année : Dannée sans nul diplôme : Dnom sans nul

Identifiant: $(n^{\circ} E + dipl\hat{o}me)$

Identifiant externe : n° E référence un Etudiant.n° E

Définition: études antérieures des étudiants

Relation : Enseignant

Attributs: n° P: entier sans nul

tel: : entier sans nul

statut : Dnom sans nul banque : Dnom sans nul agence : Dnom sans nul

compte: entier sans nul

Identifiant : $(n^{\circ} P)$

Identifiant externe : n° P référence une Personne

Définition : tout individu assurant actuellement un ou plusieurs cours à l'école

Relation : Cours

Attributs : nomC : Dnom sans nul

cycle: entier sans nul

n° Ens: entier sans nul

Identifiant : (nomC)

Identifiant externe : n° Ens référence un Enseignant **Définition** : tout cours actuellement offert par l'école

Relation : Obtenu

Attributs: $n^{\circ} E$: entier sans nul

nomC: Dnom sans nul note: Dnote sans nul

année : Dannée sans nul

Identifiant : $(n^{\circ} E + nomC)$

Identifiants externes : n° E référence un Etudiant.n° E

nomC référence un Cours

Définition : l'étudiant n° E a réussi le cours nomC telle année et a

obtenu telle note

Relation : Inscrit

Attributs: n° E: entier sans nul

nomC: Dnom sans nul

Identifiant: $(n^{\circ} E + nomC)$

Identifiants externes: $n^{\circ} E$ référence un *Etudiant.n*° E

nomC référence un Cours

Définition: actuellement, l'étudiant n° E est inscrit au cours nomC

Relation : Prérequis

Attributs: nomC: Dnom sans nul

nomCprérequis : Dnom sans nul

Identifiant : (nomC + nomCprérequis)

Identifiants externes: nomC référence un Cours

nomCprérequis référence un Cours

Définition: le cours nomCprérequis est un prérequis pour le cours nomC

Contrainte d'intégrité : dans tout tuple, nomCprérequis doit être différent de

nomC

4

Exemple de schéma relationnel

Contraintes d'intégrité :

- Pour tout tuple de Prérequis < nomC, nomCprérequis>, le cycle de nomCprérequis dans Cours doit être inférieur ou égal à celui de nomC:
 - <x,y> in Prérequis => x.cycle > y.cycle
- Pour tout tuple de EtudiantEtudes <n° E,année,diplôme>, soit dateN la date de naissance des étudiants dans la relation Etudiant, alors:

dateN < année:

<x,y,z> in EtudiantEtudes, <a,x,d> in Etudiant => d < y</p>

Contraintes d'intégrité (suite):

- Pour tout tuple de Etudiant : cette_année dateN = 18, où cette_année est une variable du SGBD
- Pour tout tuple de Obtenu <n° E, nomC, note, année>, soit dateN la date de naissance de l'étudiant dans la relation Etudiant, alors : dateN < année
- Pour tout tuple de Inscrit <n° E, nomC>, le n° E doit exister dans Obtenu associé à tous les cours existant dans Prérequis associés à nomC.

Partie II L'Algèbre relationnelle

- Les opérateurs de l'algèbre relationnelle
 - Sélection
 - Projection
 - Renommage
 - Produit cartésien
 - Jointure
 - Union
 - Intersection
 - Différence
 - Division

Langages de manipulation

Langages : base théorique solide

Langages : version plus ergonomique

 Langages : définissent comment deriver le résultat souhaité

Langages ou : définissent le résultat souhaité

LMD classiques

Langages

 langages : définissent un ensemble d'opérateurs de manipulation

 langages : définissent le résultat souhaité en utilisant des expressions de logique

Langages

Langages : SQL

Langage : QBE, QUEL

L'approche algèbrique

- Une algèbre est un base, formellement définis, qui peuvent être combinés à souhait pour construire des expressions algèbriques
- Une algèbre est dite si le résultat de tout opérateur est du même type que les opérandes (ce qui est indispensable pour construire des expressions)
- toute manipulation pouvant être souhaitée par les utilisateurs devrait pouvoir être exprimable par une expression algèbrique

4

L'algèbre relationnelle

- Opérandes:
- Fermeture:
- Complétude: permet (à peu prêt) toute opération
- Opérations unaires (une seule opérande):
 (noté σ), (π), (α)
- Opérations binaires:

$$(\times), \qquad (\bowtie), \qquad (\cup), \\ (\cap), \qquad (-), \qquad (/)$$

Préambule

- Pour chacune de ces 9 opérations, on va donner :
 - I 'opération
 - la syntaxe (notation)
 - la sémantique (résultat attendu)
 - le schéma
 - d'éventuelles remarques
 - un exemple

Sélection

J

Syntaxe:

```
p: prédicat de sélection (condition de sélection)
< prédicat-élémentaire opérateur-logique prédicat-</p>
élémentaire >
opérateur-logique ∈ { et, ou }
prédicat-élémentaire :
[non] attribut opérateur-de-comparaison constante-ou-
attribut
attribut est un attribut de la relation R
opérateur-de-comparaison \in \{=, \leq, <, >, \geq, \neq\}
```


- sémantique : population l'ensembles des tuples de R qui satisfont le prédicat p
- schéma (résultat)schéma (opérande)
- population (résultat) population (opérande)
- exemple : Petit-pays = σ [surface < 100] Pays

Sélection

σ

Exemple: soit la relation Pays

Pays	nom Autriche	capitale Vienne	population 8	surface 83
	UK	Londres	56	244
	Suisse	Berne	7	41

On ne veut que les pays dont la valeur de surface est inférieure à 100 :

Petit-pays = σ [surface < 100] Pays

Petit-pays	nom Autriche	capitale Vienne	population 8	surface 83
	UK	Londres	56	244
	Suisse	Berne	7	41

- syntaxe:
 - attributs: liste l'ensemble d'attributs de R à conserver dans le résultat
- sémantique : crée une nouvelle relation de population l'ensembles des tuples de R réduits aux seuls attributs de la liste spécifiée
- schéma (résultat)schéma (opérande)
- nb tuples (résultat)nb tuples (opérande)

 π

Exemple: soit la relation Pays

Pays	nom Autriche	capitale Vienne	population 8	surface 83
	UK	Londres	56	244
	Suisse	Berne	7	41

On ne veut que les attributs nom et capitale:

Capitales = π [nom, capitale] Pays

Capitales	nom Autriche	capitale Vienne	population 8	surface 83
	UK	Londres	56	244
	Suisse	Berne	7	41

Effet de bord de la projection

Elimination des doublons

- une projection qui ne conserve pas la clé de la relation peut générer dans le résultat deux tuples identiques (à partir de deux tuples différents de l'opérande)
- le résultat ne gardera que des tuples différents (fermeture)

Sélection-projection

- On veut les capitales des petits pays :
 - Petit-pays = σ [surface < 100] Pays</p>
 - Capitales = π [nom, capitale] Petit-pays

Capitale-petit-pays =
$$\pi$$
 [nom, capitale] σ [surface < 100] Pays

Pays

nom	capitale	population	surface
Irlande	Dublin	3	70
Autriche	Vienne	8	83
UK	Londres	56	244
Suisse	Berne	7	41

Renommage a

 but: résoudre des problèmes de compatibilité entre noms d'attributs de deux relations opérandes d'une opération binaire

- syntaxe:
- sémantique : les tuples de R avec un nouveau nom de l'attribut
- schéma : schéma (α [n:m] R) le même que schéma (R) avec n renommé en m
- précondition : le nouveau nom n'existe pas déjà dans R
- exemple : R1

Α	В
а	b
y b	z b

$$R2 = \alpha [B: C] R1$$

Α	C
а	b
У	Z b
D	D

Produit cartésien

- but : construire toutes les combinaisons de tuples de deux relations (en général, en vue d'une sélection)
- syntaxe:
- sémantique : chaque tuple de R est combiné avec chaque tuple de S
- schéma (R x S) = schéma(R) schéma(S)
- précondition: R et S n'ont pas d'attributs de même nom (sinon, renommage des attributs avant de faire le produit)

Produit cartésien

Exemple

Α	В	С	D	Е
a	b	С	d	e b
a		b	a	b
a	b	a	a	C
	C	C	d	e b
b	C		a	b
b	C	a	a	C
C	b	C	d	e b
C	b	b	a	b
C	b	a	a	C
	a a a b b	a b b c c c b c	a b c a b b a b a c c b c b c c c b c c b b	a b c d a a a b a a b c b c b a a b b c c b b c c b a a c c b b c c b a a c c b b c c b b c c b b c c b b c c b b c c b b c c c b b c c b b c c c b b c c c b b c c c b b c c c c b b c

Jointure naturelle M

- syntaxe :
- sémantique : combine certains tuples
- schéma (R S) = schéma (R) schéma (S)
 - les attributs de même nom n'apparaissent qu'une seule fois
- la combinaison exige l'égalité des valeurs de tous les attributs de même nom de R et de S
 - si R et S n'ont pas d'attributs de même nom la jointure peut être dynamiquement remplacée par un produit cartesien

Jointure naturelle M

- but : créer toutes les combinaisons significatives entre tuples de deux relations
 - significatif = portent la même valeur pour les attributs de même nom
- précondition : les deux relations ont au moins un attribut de même nom
- exemple :

R ⋈ S	Α	В	С	D
	a	b	0	d
	ر	b		J

Theta-jointure

- but : créer toutes les combinaisons significatives entre tuples de deux relations
 - significatif = critère de combinaison explicitement défini en paramètre de l'opération
- précondition: les deux relations n'ont pas d'attribut de même nom
- exemple : R ⋈[B ≠ C] S

R⋈	[B ≠	C	S
----	------	---	---

Α	В	С	D	Ш
a	b	С	a	С
b	С	b	С	c d
b	С	b	a	b
С	b	С	a	С

Theta-jointure

$\bowtie[p]$

- opération binaire
- syntaxe : R ⋈ [p] S
 - p: prédicat/condition de jointure
 - < prédicat-élémentaire et/ou prédicat-élémentaire >

- sémantique : combine les tuples qui satisfont le prédicat
- schéma (R⋈[p] S) = schéma (R) ∪ schéma (S)

- syntaxe:
- sémantique : réunit dans une même relation les tuples de R et ceux de S
- schéma(R ∪ S) schéma(R) schéma(S)
- précondition : schéma(R) = schéma(S)
- exemple :

R1	Α	В
	a b v	b b z
	<u> </u>	

Intersection

- syntaxe:
- sémantique : sélectionne les tuples qui sont à la fois dans R et S
- schéma (R ∩ S) schéma (R) schéma (S)
- précondition : schéma (R) = schéma (S)
- exemple :

R1	Α	В
	а	b
	y	Z
	D	b

Différence -

- syntaxe:
- sémantique : sélectionne les tuples de R qui ne sont pas dans S
- schéma (R S)schéma (R)schéma (S)
- précondition : schéma (R) = schéma (S)
- exemple :

R1	Α	В
	а	b
	y	Z
	b	b

Lac

La division

But : traiter les requêtes du style «les ... tels que TOUS les ...» soient R(a1, ..., an) et V(a1, ..., am) avec n>m et A1, ..., Am des attributs de même nom dans R et V $R/V = \{ <am+1, am+2, ..., an> / <math>\forall <a1, a2, ..., am> \in V, \exists <a1, a2, ..., am, am+1, am+2, ..., an> \in R \}$

exemples :

V "	B 3	C 5
R/\	/''	A

Exemple

R

Etudiant	Cours	Obtenu
François	RDB	yes
François	Maths	yes
François	Prog	yes
Jacques	RDB	yes
Pierre	Prog	yes
Pierre	RDB	no

V

Cours	Obtenu
Prog	yes
RDB	yes

R/V

Etudiant
François

Equivalences

- \blacksquare R \cap S = S \cap R, R \bowtie S = S \bowtie R, etc.
- σ [p1] (σ [p2] R) = σ [p2] (σ [p1] R) = σ [p2 et p1] R
- $\sigma[p](\pi[a]R) = \pi[a](\sigma[p]R)$ si attributs $(p) \subseteq a$

etc.

Exemples de requêtes algébriques

Soient les relations suivantes :

Journal (<u>code_i</u>, titre, prix, type, périodicité)

Dépôt (no_depot, nom_depot, adresse)

Livraison (no_depot, code_j, date_liv, quantite_livree)

Exemples de requêtes algébriques

• Quel sont les prix de tous les journaux ?

 Donnez tous les renseignements connus sur les journaux hebdomadaires.

Donnez les codes des journaux livrés à Lyon.

Exemples de requêtes algébriques

 Donnez les numéros des dépôts qui reçoivent plusieurs journaux différents.