Masters Dissertation

"Smart Cafeteria" Adaptive And Interactive Mobile Application

Supta Richard Philip ¹

Supervisor: Professor Antonella De Angeli

¹M.Sc. in Computer Science Department of Information Engineering and Computer Science University of Trento, Italy.

July 9, 2013

Outline of Thesis

- Problem Statement
 - Scenarios
 - Objective
 - Proposed Solution
- 2 Analysis
 - Stakeholders
 - Functional & Non Functional Requirements
 - Data Gathering & More Requirements

- 3 Design
 - Desktop Prototype
 - Mobile Prototype
- 4 Usability Evaluation
 - Evaluation Methodology
 - Evaluation Result
- **5** Conclusion
 - Future Work
 - Questions

- Problem Statement
 - Scenarios
 - Objective
 - Proposed Solution
- 2 Analysis
 - Stakeholders
 - Functional & Non Functional Requirements
 - Data Gathering & More Requirements

- 3 Design
 - Desktop Prototype
 - Mobile Prototype
- **4** Usability Evaluation
 - **■** Evaluation Methodology
 - Evaluation Result
- **5** Conclusion
 - Future Work
 - Questions

Scenarios and Problem

Hungry Students and Busy Professors

- How to skip the long queue.
- How could know Today's menu.
- Appropriate menu for me(calorie, price).
- Collaborate and share feeling.
- How technology can help.

Objective

Services:

- Mensa Queue Skipper.
- Menu Finder.
- Menu Suggester and Dieting Adviser.
- Customized Menu creator.
- Lunch with Friends.

System should:

- Provide online cafeteria services.
- Provide dieting services to the students.
- Provide social collaboration services.

Proposed Solution

Create "Smart Cafeteria"

supported by

- web 2.0 system
- Smartphone application.

"Smart Cafeteria"

application should be

- Interactive.
- Adaptive.

- Problem Statement
 - Scenarios
 - Objective
 - Proposed Solution
- 2 Analysis
 - Stakeholders
 - Functional & Non Functional Requirements
 - Data Gathering & More Requirements

- 3 Design
 - Desktop Prototype
 - Mobile Prototype
- **4** Usability Evaluation
 - Evaluation Methodology
 - **■** Evaluation Result
- 5 Conclusion
 - Future Work
 - Questions

Stakeholders

Stakeholders

- System Users.
 - Students.
 - Professors.
 - Researchers.
 - Universitys Administration Officer.
 - Universitys Technical Staff.
- System Administrator.
 - Cafeteria Staffs.

Functional & Non Functional Requirements

Functional & Non Functional Requirements

Functional Requirements

42 Functional Requirements

Non Functional Requirements

- Usability.
- Internationalization.
- Portability.
- Adaptability.
- Safety and security.

Data Gathering & More Requirements

Data Gathering & More Requirements

- Focus Group 7 participants.
- Questionnaires.

Outcomes

- "Smart Cafeteria" is usefull application.
- Found 5 more functional requirement.
- Design UML (4 Use Case, Class Diagram, 4 Activity Diagram.)

- Problem Statement
 - Scenarios
 - Objective
 - Proposed Solution
- 2 Analysis
 - Stakeholders
 - Functional & Non Functional Requirements
 - Data Gathering & More Requirements

- 3 Design
 - Desktop Prototype
 - Mobile Prototype
- **4** Usability Evaluation
 - Evaluation Methodology
 - Evaluation Result
- 5 Conclusion
 - Future Work
 - Questions

Desktop Prototype[Index Page]

Desktop Prototype[User Dashboard]

Desktop Prototype[Suggested Food Menu]

Mobile Prototype

- Problem Statement
 - Scenarios
 - Objective
 - Proposed Solution
- 2 Analysis
 - Stakeholders
 - Functional & Non Functional Requirements
 - Data Gathering & More Requirements

- 3 Design
 - Desktop Prototype
 - Mobile Prototype
- 4 Usability Evaluation
 - Evaluation Methodology
 - Evaluation Result
- 5 Conclusion
 - Future Work
 - Questions

Evaluation Methodology

- Evaluation Methodology: User studies and questionnaire.
- 10 participants.
- Given them 9 tasks to perform.
- Given them 14 usability questions [likert scale: 1-7] to test.
 - usefulness
 - easy to use
 - learnability
 - Satisfaction
- Evaluation for Desktop and Mobile Prototype.
- lacktriangle Calculate Mean (μ) and Standard deviation (σ)

$$\sigma = \sqrt{\frac{1}{N} \sum_{i}^{N} (x_i - \mu^2)}$$
$$\mu = \frac{1}{N} \sum_{i}^{N} x_i.$$

Result for desktop Prototye

Result for Mobile Prototye

- Problem Statement
 - Scenarios
 - Objective
 - Proposed Solution
- 2 Analysis
 - Stakeholders
 - Functional & Non Functional Requirements
 - Data Gathering & More Requirements

- 3 Design
 - Desktop Prototype
 - Mobile Prototype
- 4 Usability Evaluation
 - Evaluation Methodology
 - Evaluation Result
- **5** Conclusion
 - Future Work
 - Questions

Future Work

Future Work

- Build high fidelity prototype [full functional]
- Find best machine learning approach for adaptability
- More User Study for better usability

Resources

■ Github Repository
https://github.com/suptaphilip/Master-Thesis

Questions

