گزارش کار سری دوم شبیه سازی رایانه ای در فیزیک مشکات صدری 97100919

ولنشست

برای T بار ده تا ذره به ازای هر خانه ی طول اضافه میکنیم، هربار نتایج را به ماتریسی دو بعدی که T^*L بعدی است اضافه میکنیم که L همان طول پیکسلی محل لایه نشانی است. شکل اصلی لایه پس از T بار نشاندن:

و بتا برا*ی* T=5000

حالا میفهمم که داده ی زمان های اولیه دقیقا درست نیستند، پس میانگین بتا های زمان های 4000 تا 5000 را گزارش میکنم، سه بار ران کردم تا بتوانم اختلاف بتا ها را نیز ببینم

Name 🔺	Туре	Size	Va	lue
betha_final	float64	1	0.6365950954424205	
betha_final	float64	1	0.6362112774900263	
betha_final	float64	1	0.6402563485959766	

خب در واقع با خطای یک صدم بتا 0.64 است، خطای این عدد هرچه T را بیشتر کنیم و همچنان بازه ای مثلا هزارتای آخر را بگیریم کمتر میشود چون هرچه تعداد بیشتری عدد رندم بگیریم سیستم به حالت آماری پیوسته شبیه تر میشود.

نام این کد deposition p است

سري جوليا

اول تابع جولیا را با نام f تعریف کردم. ماتریسی 2000*2000 با نام fin مخفف final تعریف کردم که به ازای هر نقطه با مختصات R+il و n بار ماندن در آستانه ی اندازه ی تعریف شده به ما میداد که fin[R][I]=n و نهایتا هم همان fin را با دستور imshow رسم کردم.

از ویکی پدیا دریافتم که اگر ثابت اولیه به فرم $e^{ia} = 0.7885$ باشد جولیا ست های زیبایی میدهد، جولیا ست های زیر نتیجه ی کد بودند:

a=2pi* k/50 برای تصاویر زیر

نام فایل این کد julia 1 است، گیفی به همین نام نیز در پوشه موجود است.