1) POTENCIAS DE SENOS Y COSENOS.

$$\int sen^n(x)dx \qquad ; \quad \int cos^n(x)dx$$

Para resolver este tipo de integrales, consideramos dos casos:

 \circ Si n es impar, es decir, n = 2k+1, factorizamos el integrando, por ejemplo: $\operatorname{sen}^n x \, dx = \operatorname{sen}^{2k+1} x \, dx = (\operatorname{sen}^2 x)^k \operatorname{senx} dx$

Utilizamos la identidad sen²x+cos²x=1 y tomamos el siguiente cambio de variable:

- En caso de potencias del seno: u=cosx
- En caso de potencias del coseno: u=senx

2) PRODUCTOS DE POTENCIAS DE SENOS Y COSENOS.

$$\int sen^{-m}(x)\cos^{-n}(x)dx$$

 \circ Si m y n son pares, utilizaremos las identidades: $sen^2x = (1-cos2x)/2$ y $cos^2x = (1+cos2x)/2$

○ Si m ó n es impar, utilizaremos la identidad: sen²x+cos²x=1

3) PRODUCTOS DE POTENCIAS DE TANGENTES Y SECANTES.

Si n es par, utilizamos la identidad:

 $\sec^2 x = 1 + \tan^2 x$

Si m es impar, utilizamos la identidad:

 $tan^2x = sec^2x - 1$

Si n es impar y m par, utilizamos algún otro método, como por ejemplo, integración por partes.

SUSTITUCIÓN TRIGONOMÉTRICA.

Este método nos permitirá integrar cierto tipo de funciones algebraicas cuyas integrales son funciones trigonométricas.

1) Si en el integrando aparece un radical de la forma:

$$\sqrt{a^2-x^2}$$

tomamos el cambio de variable:

 $x = a sen \theta$, con a > 0; dx=acos $\theta d \theta$

$$sen\theta = \frac{x}{a}$$

2) Si en el integrando aparece un radical de la forma:

$$\sqrt{a^2 + x^2}$$

tomamos el cambio de variable siguiente: $x = a \tan \theta$, con a > 0, $dx=asec^2 \theta d \theta$

$$tan\theta = \frac{x}{a}$$

4) Si en el integrando aparece un radical de la forma:

$$\sqrt{x^2-a^2}$$

tomamos el cambio de variable siguiente: $x = a \sec \theta$, con a > 0

$$dx = asec\theta tan\theta d\theta$$

$$sec\theta = \frac{x}{a}$$

