HW5

APPLY LOGISTIC REGRESSION
TO PREDICT IMDB_SCORE
(LOW OR HIGH) ON IMDB

Dhanabordee Mekintharanggur 6238077121

Step 1 - Loading the Data

The data is downloaded as a .csv file format and is placed in the same directory as the .ipynb file

The csv is read using pd.read_csv to read the data in the dataframe format for further exploration and preprocessing

	director_name	num_critic_for_reviews	duration	director_facebook_likes	actor_3_facebook_likes	actor_2_name	actor_1_facebook_likes
0	James Cameron	723.0	178.0	0.0	855.0	Joel David Moore	1000.0 76
1	Gore Verbinski	302.0	169.0	563.0	1000.0	Orlando Bloom	40000.0 30
2	Sam Mendes	602.0	148.0	0.0	161.0	Rory Kinnear	11000.0 2
3	Christopher Nolan	813.0	164.0	22000.0	23000.0	Christian Bale	27000.0 44
4	Doug Walker	NaN	NaN	131.0	NaN	Rob Walker	131.0
5038	Scott Smith	1.0	87.0	2.0	318.0	Daphne Zuniga	637.0
5039	NaN	43.0	43.0	NaN	319.0	Valorie Curry	841.0
5040	Benjamin Roberds	13.0	76.0	0.0	0.0	Maxwell Moody	0.0
5041	Daniel Hsia	14.0	100.0	0.0	489.0	Daniel Henney	946.0
5042	Jon Gunn	43.0	90.0	16.0	16.0	Brian Herzlinger	86.0

Notice that there are NaN values present in multiple columns. This has to be dealt with in the next step.

Step 2 - Exploring and Cleaning the Data

There are originally 5043 rows of data

Multiple columns contain null values

Fortunately, the "imdb_score" column that I will be predicting has no empty rows.

RangeIndex: 5043 entries, 0 to 5042

Data columns (total 27 columns):

Column Non-Null Count Dtype
--- ----0 director_name 4939 non-null object
1 num_critic_for_reviews 4993 non-null float64
2 duration 5028 non-null float64
3 director_facebook_likes 5020 non-null float64
4 actor_3_facebook_likes 5020 non-null float64
5 actor_2_name 5030 non-null float64
7 gross 4159 non-null float64
8 genres 5043 non-null object
9 actor_1_name 5043 non-null object
10 movie_title 5043 non-null object
11 num_voted_users 5043 non-null int64
12 cast_total_facebook_likes 5043 non-null int64
13 actor_3_name 5020 non-null ject
14 facenumber_in_poster 5030 non-null object
15 plot_keywords 4890 non-null object
16 movie_imdb_link 5043 non-null object
17 num_user_for_reviews 5022 non-null object
18 language 5031 non-null object
19 country 5038 non-null object
20 movie_facebook_likes 5043 non-null object
3 aspect_ratio 4714 non-null float64
4 dtypes: float64(13), int64(3), object(11)

memory usage: 1.0+ MB

Upon **selecting only the columns with numerical values**, these are the remaining columns.

Some of the columns do contain empty values, but are at most 17% empty, which means that the response is not to immediately remove the entire column but rather to fill in the missing values or remove the rows specifically

At later point, I have decided to scale the data, normalize the data, and filling the missing value due to the normal distribution of the data as shown in the next page

gross	17.529248
budget	9.756098
aspect_ratio	6.523895
title_year	2.141582
director_facebook_likes	2.062265
num_critic_for_reviews	0.991473
actor_3_facebook_likes	0.456078
num_user_for_reviews	0.416419
duration	0.297442
<pre>facenumber_in_poster</pre>	0.257783
actor_2_facebook_likes	0.257783
actor_1_facebook_likes	0.138806
cast_total_facebook_likes	0.000000
num_voted_users	0.000000
movie_facebook_likes	0.000000
imdb_score	0.000000
dtype: float64	

	num_user_for_reviews	director_facebook_likes	actor_3_facebook_likes	duration
count	5022.000	4939.000	5020.000	5028.000
mean	272.771	686.509	645.010	107.201
std	377.983	2813.329	1665.042	25.197
min	1.000	0.000	0.000	7.000
25%	65.000	7.000	133.000	93.000
50%	156.000	49.000	371.500	103.000
75%	326.000	194.500	636.000	118.000
max	5060.000	23000.000	23000.000	511.000

Step 2 - Exploring and Cleaning the Data

Visualizing the histogram of "imdb_score", it can be seen that the values appear to be somewhat **normally distributed**

The mean imdb_score is at 6.442 points

	imdb_score
count	5043.000
mean	6.442
std	1.125
min	1.600
25%	5.800
50%	6.600
75%	7.200
max	9.500

Encode imdb_score as high or low imdb score (binary values)

Next, the imdb_score is categorized as a "high" or a "low".

Since there is practically no middle point to separate the high and low scores and in order to remove the ambiguity between films with close IMDb scores, the middle 10% percent of the data are removed.

The data between the 45-percentile and 55-percentile are dropped from the data frame, leaving 2 distinct sections to be categorized as a "high_score" represented by value of 1 in the high_imdb_score column, and a value of 0 in the same column for "low_score"

The new column is then added to the dataframe

the "movie_score_target" is a data frame as shown

Step 2 - Preprocess the DataSplit train-test

The data are then separated into x and y values x: all the numerical columns except for 'imdb_score' and 'high_imdb_score' binary value column y: the 'high_imdb_score' column created earlier

70% of the data will be used for training, and the remaining 30% will be used for testing

```
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test=train_test_split(
    x,
    movie_score_target,
    test_size=0.3,
    shuffle=True,
    stratify=movie_score_target,
    random_state=30
)
```

Standardize features (comparable units) in train dataset

Each column is normalized to ensure that each feature has comparable units in the training dataset.

The normalization is done by taking the square roots of the numerical values of each column twice.

In doing so, it can be ensured that the data has a more normal distribution behavior to prepare the data to fill the missing values in the next step.

Fill missing values

At this point, there are still some null values in the training dataset. Since the data have been normalized, it is possible to fill in the missing values using the mean of each specific column.

```
imputer=impute.SimpleImputer(missing_values=np.nan,strategy='median')
imputer.fit(x_train)
x_train=pd.DataFrame(imputer.transform(x_train),columns=x_train.columns)
x_test=pd.DataFrame(imputer.transform(x_test),columns=x_test.columns)
```

```
actor_2_facebook_likes
actor 1 facebook likes
cast_total_facebook_likes
movie_facebook_likes
num_user_for_reviews
                               17
director_facebook_likes
                               76
budget
                              332
num_voted_users
                                0
aspect_ratio
                              224
gross
                              607
title_year
                               78
facenumber_in_poster
                               11
actor_3_facebook_likes
                               14
duration
                               11
                               36
num_critic_for_reviews
dtype: int64
```

```
actor_2_facebook_likes
                              0
actor_1_facebook_likes
                              0
cast_total_facebook_likes
                              0
movie_facebook_likes
num_user_for_reviews
                              0
director_facebook_likes
                              0
budget
num_voted_users
aspect_ratio
gross
title_year
facenumber_in_poster
                              0
actor_3_facebook_likes
                              0
duration
                              0
num_critic_for_reviews
                              0
dtype: int64
```

Step 2 - Preprocess the DataSelect features in train dataset

The dataset at the moment only contains numerical values.

The next step is to identify the useful numerical features that will be helpful for training the logistic regression model.

It is important the remove any highlycorrelated features to avoid multicollinearity

The heatmap is plotted, and the features with high correlation are identified and chosen for removal

Select features in train dataset

Features with high correlation

num_user_for_reviews
num_voted_users
gross
num critic for reviews

num_voted_users	actor_1_facebook_likes
num_user_for_reviews	actor_2_facebook_likes
num_critic_for_reviews	actor_3_facebook_likes
gross	cast_total_facebook_likes

Columns to drop:

- gross
- num_user_for_reviews
- num_critic_for_reviews
- actor_1_facebook_likes
- actor_2_facebook_likes
- actor_3_facebook_likes

The columns with higher magnitude of correlation than 0.5 with each other suggests multicollinearity in the features, and should be removed as they may add noise when fitting the model.

The only features with the highest correlation with the "imdb_score" in each group are kept.

The rest of the features are dropped.

Preprocess (based on train dataset) and predict test dataset (scaling)

The train data that will be used to fit the logistic regression model is plotted as a histogram on the left. Some of the data are still different in terms of scale. Thus, the StandardScaler is used to fit the x_train data and transform them into using a more similar scale. Since the data have been previously normalized, the standard scaler can be used.

Also, after transforming the x_train data, the x_test data must also be scale-transformed.

Step 3 - Model the Data

Preprocess (based on train dataset) and predict test dataset (scaling)

From the pair plot and the heatmap, it can be seen that there is no correlations exceeding 0.5 between features anymore

Step 3 - Model the Data

Fitting the logistic regression model

```
#Create logistic regression
logr =LogisticRegression()

#Train the model using the training sets
logr.fit(x_train, y_train)

#Predict the response for test dataset
y_pred = logr.predict(x_test)
```

The processed x_train and y_train are then used to fit the Scikitlearn LogisticRegression model

Afterward, the model is used to make a prediction whether the IMDb score will be low or high in y_test using x_test data

```
high_imdb_score
1 1649
0 1610
dtype: int64
```

y_train value counts

```
high_imdb_score
1 707
0 690
dtype: int64
```

y_test value counts

Accuracy

The confusion matrix visualizes the model's prediction results

Accuracy

The <u>training data</u> has an **accuracy of 0.733**The model is able to predict the <u>test data</u> correctly with an **accuracy of 0.727**

- The dataset is balanced as there are a nearly identical numbers of high and low imdb score movies
- Since this model is used to predict a social science project, an accuracy of 0.727 is considered as very well acceptable

Result Interpretation Recall

523 <u>low-scoring</u> movies are correctly identified out of 690 movies

- recall = 0.76
- precision = 0.71

493 <u>high-scoring</u> movies are correctly identified out of 707 movies

- recall = 0.70
- precision = 0.75

I believe that both recall and precision are of similar importance, here. Instead it depends on what is a more severe case between misclassifying a high IMDB score movie as low as a low score one, or misclassifying a low IMDB score movie as a high score one.

In the first case, precision is more important, while in the latter case, recall will be more important

Classification	Report:			
	precision	recall	f1-score	support
low_score	0.71	0.76	0.73	690
high_score	0.75	0.70	0.72	707
accuracy			0.73	1397
macro avg	0.73	0.73	0.73	1397
weighted avg	0.73	0.73	0.73	1397
A	0 722			

Accuracy on train: 0.733

Accuracy on test: 0.727

Result Interpretation F1 Score

The model is able to achieve a relatively high f1 score of 0.73 as both the precision and recall are high in the social science context.

Since it is unclear whether the precision or the recall should be given more importance in this project, the F1 score serves as a decent balanced metric for evaluating the model here.

Classification	Report:			
	precision	recall	f1-score	support
low_score	0.71	0.76	0.73	690
high_score	0.75	0.70	0.72	707
accuracy			0.73	1397
macro avg	0.73	0.73	0.73	1397
weighted avg	0.73	0.73	0.73	1397
Accuracy on tra	ain: 0.733			
Accuracy on to	+ 0 727			

AUC scores

The AUC scores measure the ability of the binary classification model to separate the high_imdb and low_imdb cases.

Considering that the model achieves and AUC score of 0.78 for all cases (ROC of low_score, ROC of high_scoref, microavg ROC, and macro-average ROC).

An AUC of 0.78 is considered as acceptable but not excellent. While it is definitely better than a random coin flip (AUC of 0.5), it is still not always reliable.

Logistic Regression Equation, Log-odd, Odd

The intercept of the model is 0.07536737, with the coefficient for each feature as shown:

Logistic Regression Equation:

$$\log (y1/y0) = 0.07536737 + 1.1211112(x1) + 0.362813(x2) + ...$$

Meaning

- log(y1/y0) : log-odds
- x1, x2, x3 ... x9: each of the corresponding feature
- For each 1 unit change of the feature, the equation reveals how much the log-odd changes in response

	coef
num_voted_users	1.121112
duration	0.362813
aspect_ratio	0.253847
movie_facebook_likes	0.181063
director_facebook_likes	0.133364
facenumber_in_poster	-0.097919
cast_total_facebook_likes	-0.300441
title_year	-0.309871
budget	-0.681513

Logistic Regression Equation, Log-odd, Odd

Meaning

(y1/y0)before, (y1/y0)after : odds before and after the feature value changes

x1, x2, x3 ... x9: each of the corresponding feature

For each 1 unit change of the feature, it reveals how much the odd changes in response

	coef
num_voted_users	3.068264
duration	1.437367
aspect_ratio	1.288975
movie_facebook_likes	1.198490
director_facebook_likes	1.142666
facenumber_in_poster	0.906722
cast_total_facebook_likes	0.740491
title_year	0.733542
budget	0.505851