8 אלגוריתמים -2023 תרגיל

תזכורות:

, פונקציית קיבול על הצלעות, $C: E \rightarrow R_{>0}$, גרף מכוון, G = (V, E) כאשר: N = (V, E, c, s, t) פונקציית קיבול על הצלעות, אני קדקודים מיוחדים (מקור ובור).

(t הבור מקדקוד היוצאות אין צלעות s ואין לקדקוד המקור אין צלעות הנכנסות לקדקוד המקור

:ים: אילוצים שני המקיימת הוקית היא פונקציה ק: ברשת היא ברשת היא הוקית ברשת היא פונקציה לובים:

- f(e)≤c(e) :מתקיים e∈E לכל לכל (1)
- . $\sum_{u:(u,x)\in E}f(u,x)=\sum_{v:(x,v)\in E}f(x,v)$:x \in V\{s,t} לכל לכל (2)

N = (V, E, c, s, t) בעיית הזרימה: $\frac{5}{2}$ רשת ורימה:

. מקסימלי. ברשת הוקית בעלת הנתונה אנתונה והוקית ברשת ברשת הזרימה ברשת ברשת הזרימה הנתונה או

.1 נגדיר רשת זרימה מרובת מקורות ומרובת בורות באופן הבא:

 $S,T\subseteq V$ באשר: $C:E o R_{>0}$, גרף מכוון, G=(V,E) באשר: R=(V,E,c,S,T) מונקציית קיבול על הצלעות, אחרי קבוצות מקורות וקבוצת בורות).

(T בור מקדקודי מקרות אין צלעות היוצאות מקדקודי מקור S ואין בועות הנכנסות צלעות בור S

:מקיימת שני אילוצים: $f\colon E{\to}R_{_+}$ פונקציה כזו היא זרימה ברשת ברשת אוקית ברשת אולוצים:

- f(e)≤c(e) :מתקיים e∈E לכל לכל (3)
- . $\sum_{u:(u,x)\in E} f(u,x) = \sum_{v:(x,v)\in E} f(x,v) : x\in V\setminus \{S\cup T\} \text{ for an infinity } 1$

N = (V, E, c, S, T) נעיית הזרימה: $\frac{g}{2}$: רשת זרימה כזו

. מקסימלי אין שטף ו|f| שטף בעלת הנתונה הנתונה הזרימה ברשת יחוקית פלט: זרימה ברשת ברשת הזרימה ברשת ברשת הזרימה אונה אונה ב

כלומר זו רשת זרימה רגילה, למעט שני שינויים: אנו מתירים מספר קודקודי מקור ומספר קודקודי בור. הציעו אלגוריתם שפותר את הבעיה. הוכיחו כי הפתרון שלכם מחזיר זרימה מקסימלית ברשת הנתונה.

<u>רמז</u>: מתוך הרשת הנתונה בנו רשת רגילה, הריצו אלגוריתמים FF/EK **על רשת זו**, והיעזרו בפלט המתקבל על מנת לבנות פלט נדרש.

- 2. בשאלה זו נתונות בעיות. הציעו אלגוריתם לפתרון כל אחת מבעיות אלו בהנחה שיש בידיכם אלגוריתם פולינומיאלי המוצא זרימה חוקית מקסימלית ברשת זרימה (אדמונדס-קארפ). הניחו כי הדרך בה האלגוריתם עובד מבטיחה כי אם פונקציית הקיבול היא בשלמים ($c: E \rightarrow N \cup \{0\}$), אז הזרימה שתוחזר מהאלגוריתם גם היא בשלמים הסבירו בקצרה את תשובותיכם. אין צורך להוכיח את נכונות האלגוריתמים ולנתח זמן ריצה.
- $c: E \to R^+$ עם קיבולות על הצלעות G = (V, E), קדקוד מקור G = (V, E) וקדקוד בור G = (V, E) בור G = (V, E) וקדקוד בור G = (V, E) ביתן מכוונות. בכל צלע מכוונות. בכל צלע מקסימלית בגרף. זרימות עדיין מוגדרות כמכוונות, על אף שהצלעות עצמן אינן מכוונות. בכל צלע ניתן להזרים את מלוא הקיבול בכל אחד מהכיוונים.
- במות, כמות μ : $V \rightarrow R^+$ יש חסם קיבולי הער בגרף עם לכל לכל (כאשר גם לכל N = (V, E, c, s, t) כלומר, כמות .2

פלט: זרימה מקסימלית ברשת, תחת כלל המגבלות.

 $s, t \in V$ ושני קדקודים G = (V, E) ואני קרקודים .3

יקראו t-ל s- שני מסלולים שני מסלולים בגרף ל-s ל-ל הזרים בצלעות. כאשר שני מסלולים מ-s ל-ל יקראו יקראו המספר בצלעות אם אין אף צלע משותפת ביניהם.

- $s, t \in V$ ושני קדקודים G = (V, E) מכוון .4
- יקראו t-לים מ-s ל-t יקראו שני מסלולים מ-t-לים בגרף מ-t-לים בגרף מ-t-לים מ-t-לים מספר המקסימלי של מסלולים בגרף מ-t-לים ביניהם, פרט ל-t-לים אם אין אף קדקוד משותף ביניהם, פרט ל-t-לים מ-t-לים מספר משותף ביניהם.
- נאמר (פונקציה חח"ע ועל מקבוצה לעצמה). בהנתן קבוצה π : $[n] \to [n]$ ותהי π : $n \in N$ יהי π : π היא π ביחס ל- π

$$\{(i, \pi(i))|i = 1, ..., n\}\subseteq A$$

- ר או לא, כלומר חוקית האם קיימת ($n,A\subseteq[n] imes[n]$ הזוג ($n,A\subseteq[n]$ אשר בהינתן הזוג לא, כלומר הציעו אלגוריתם יעיל אשר בהינתן הזוג ($(i,\pi(i))|i=1,...,n\}\subseteq A$ כך שמתקיים האם קיימת תמורה π
 - ... הוכיחו את נכונות האלגוריתם לבעיית ההכרעה הנתונה.
 - 3. נתחו את זמן הריצה של האלגוריתם (שימו לב שזמן הריצה צריך להיות מבוטא כתלות בנתונים לבעיה המקורית(.

כמה נקודות לשים לב אליהן: (1) לא כל המסלולים P_i צריכים להיות באותו אורך. (2) כיסוי המסלולים המקסימלי לכל גרף הוא הכיסוי הטריוויאלי בו כל $P_i = (
u_i)$, כלומר קבוצת המסלולים באורך 0 המכסים את V.

- מספר באשר מספר כיסוי מסלולים מינימלי מכיל מספר צלעות מקסימלי ביחס לכל כיסוי מסלולים אחר (כאשר מספר. הצלעות בכיסוי הוא סכום מספר הצלעות בכל אחד מהמסלולים).
 - .. הציעו אלגוריתם לפתרון בעיית כיסוי המסלולים המינימלי והוכיחו את נכונותו בעזרת סעיף א'.

בורה: עבורה: רשת ארימה עבורה: $V = \{1, 2, ..., n\}$ כך שG = (V, E) הגדירו רשת ארימה עבורה:

$$V^{'} = \{s,t\} \cup \{v_{1},v_{2},...,v_{n}\} \cup \{u_{1},u_{2},...,u_{n}\}$$

$$E' = \{i \in [n]\} \cup \{i \in [n]\} \cup \{(i, j) \in E\}$$

אמ"מ קיימת צלע u_j אמ"ל עם קודקודי את אמאל עם אמאל ונחבר את קודקודי ונחבר את קודקודי אז אמ"ל מקורי. בנוסף, בדומה לתרגול נחבר את קודקודי אד שמאל למקור ואת אד ימין לבור). (i,j)