```
In [7]: import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
import seaborn as sns
```

In [8]: data_path = 'https://gist.githubusercontent.com/netj/8836201/raw/6f9306ad21398ea43cba4f7d537619d0e07d5ae3/iris.csv'
 df = pd.read_csv(data_path)
 df.head()

Out[8]: sepal.length sepal.width petal.length petal.width variety 0 5.1 3.5 1.4 0.2 Setosa 4.9 3.0 1.4 0.2 Setosa 2 4.7 3.2 1.3 0.2 Setosa 3 4.6 3.1 1.5 0.2 Setosa 4 5.0 3.6 1.4 0.2 Setosa

In [9]: df.size, df.shape

Out[9]: (750, (150, 5))

In [10]: df.describe()

mean	L U/1000	2.057222	2.750000	4 400000			
	5.843333	3.057333	3.758000	1.199333			
std	0.828066	0.435866	1.765298	0.762238			
min	4.300000	2.000000	1.000000	0.100000			
25%	5.100000	2.800000	1.600000	0.300000			
50%	5.800000	3.000000	4.350000	1.300000			
75%	6.400000	3.300000	5.100000	1.800000			
max	7.900000	4.400000	6.900000	2.500000			
Data co		tries, 0 to 149 l 5 columns):					
0 se 1 se 2 pe 3 pe 4 va dtypes	epal.width		Dtype float64 float64 float64 object				

Out[10]:

sepal.length sepal.width petal.length petal.width

count 150.000000 150.000000 150.000000 150.000000

```
plt.figure(figsize=(12, 5))
plt.hist(numeric_column, bins=x_values, color=bar_color, edgecolor=edge_color, alpha=transparency)

bars = plt.hist(numeric_column, bins=n_bins, color=bar_color, edgecolor=edge_color, alpha=transparency)[2]
for i in range(len(bars)):
    # Cycle through the individual colors
    bars[i].set_facecolor(individual_colors[i % len(individual_colors)])

plt.xlabel('Values')
plt.ylabel('Frequency')
plt.title('Customized Histogram for Sepal Length')
plt.show()
```

Customized Histogram for Sepal Length


```
In [13]: ages = np.random.randint(1, 101, size=100)

plt.figure(figsize=(10, 5))
plt.bar(range(100), ages, color='black')

plt.title('Barcoded Ages of 100 Persons')
plt.xlabel('Person')
plt.ylabel('Age')
plt.xticks([])

plt.show()
```

Barcoded Ages of 100 Persons


```
In [14]: iris_setosa = df.loc[df["variety"] == "Setosa"]
    iris_virginica = df.loc[df["variety"] == "Virginica"]

sns.kdeplot(
    x=iris_setosa["sepal.width"],
    y=iris_setosa["sepal.length"],
    fill=True,
    cmap="Blues",
    label="Setosa"
)
```

```
sns.kdeplot(
    x=iris_virginica["sepal.width"],
    y=iris_virginica["sepal.length"],
    fill=True,
    cmap="Oranges",
    label="Virginica"
)

plt.xlabel("Sepal Length (cm)")
plt.ylabel("Sepal Width (cm)")

plt.title("Sepal Length vs Sepal Width for Setosa and Virginica")

plt.grid(False)
```

Sepal Length vs Sepal Width for Setosa and Virginica


```
plt.title('Lower Triangular Correlation Matrix for Iris Dataset')
plt.show()
```



```
In [16]: df = pd.read_csv(r'..\dataset\Indian_earthquake_data.csv')

df['Origin Time'] = pd.to_datetime(df['Origin Time'])

df_filtered = df[df['Origin Time'] >= '2018-01-01']
```

```
plt.figure(figsize=(12, 8))
scatter = plt.scatter(
    x=df filtered['Longitude'],
   v=df filtered['Latitude'],
    s=df filtered['Magnitude'] * 20,
    c=df filtered['Depth'],
    cmap='viridis',
    alpha=0.6,
    edgecolors="w",
    linewidth=0.5
cbar = plt.colorbar(scatter)
cbar.set label('Depth of Earthquake (km)', rotation=270, labelpad=15)
plt.title('Earthquakes in India (2018-Present)', fontsize=16)
plt.xlabel('Longitude', fontsize=12)
plt.ylabel('Latitude', fontsize=12)
plt.grid(True)
plt.grid(False)
plt.show()
```

C:\Users\Ayush\AppData\Local\Temp\ipykernel_9560\2892608194.py:3: FutureWarning: Parsed string "2021-07-31 09:43:23 IST" includ ed an un-recognized timezone "IST". Dropping unrecognized timezones is deprecated; in a future version this will raise. Instead pass the string without the timezone, then use .tz_localize to convert to a recognized timezone.

```
df['Origin Time'] = pd.to datetime(df['Origin Time'])
```

Earthquakes in India (2018-Present)


```
In [17]: pima_df = pd.read_csv(r"..\dataset\diabetes.csv")
    print("\nPima Indians Diabetes Dataset:")
    pima_df.head()
```

Pima Indians Diabetes Dataset:

Out[17]:		Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	DiabetesPedigreeFunction	Age	Outcome
	0	6	148	72	35	0	33.6	0.627	50	1
	1	1	85	66	29	0	26.6	0.351	31	0
	2	8	183	64	0	0	23.3	0.672	32	1
	3	1	89	66	23	94	28.1	0.167	21	0
	4	0	137	40	35	168	43.1	2.288	33	1

In [18]: pima_df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 768 entries, 0 to 767
Data columns (total 9 columns):

Duca	coramis (cocar s coramis)	•	
#	Column	Non-Null Count	Dtype
0	Pregnancies	768 non-null	int64
1	Glucose	768 non-null	int64
2	BloodPressure	768 non-null	int64
3	SkinThickness	768 non-null	int64
4	Insulin	768 non-null	int64
5	BMI	768 non-null	float64
6	DiabetesPedigreeFunction	768 non-null	float64
7	Age	768 non-null	int64
8	Outcome	768 non-null	int64
d+vn/	oc. floot64(2) int64(7)		

dtypes: float64(2), int64(7)
memory usage: 54.1 KB

In [19]: from sklearn.model_selection import train_test_split
 from sklearn.linear_model import LinearRegression
 from sklearn.metrics import mean_squared_error

```
X = pima df[['Glucose']]
         y = pima df['Outcome']
         X train, X test, y train, y test = train test split(X, y, test size=0.3, random state=42)
         linear model = LinearRegression()
         linear model.fit(X train, y train)
         y pred = linear model.predict(X test)
         mse = mean squared error(y test, y pred)
         print(f"Mean Squared Error (Linear Regression): {mse}")
        Mean Squared Error (Linear Regression): 0.1831271615072512
In [20]: from sklearn.linear model import LogisticRegression
         from sklearn.metrics import accuracy score
         X train, X test, y train, y test = train test split(X, y, test size=0.3, random state=42)
         logistic model = LogisticRegression(max iter=1000)
         logistic model.fit(X train, y train)
         y_pred_log = logistic_model.predict(X_test)
         accuracy = accuracy score(y test, y pred log)
         print(f"Accuracy (Logistic Regression): {accuracy}")
        Accuracy (Logistic Regression): 0.7229437229437229
In [21]: X multi = pima df[['Pregnancies', 'Glucose', 'BloodPressure', 'SkinThickness', 'Insulin', 'BMI', 'DiabetesPedigreeFunction',
         y multi = pima df['Outcome']
         X train, X test, y train, y test = train test split(X multi, y multi, test size=0.3, random state=42)
```

```
lm_multi = LinearRegression()
lm_multi.fit(X_train, y_train)

y_pred_multi = lm_multi.predict(X_test)
mse_multi = mean_squared_error(y_test, y_pred_multi)
print(f"Mean Squared Error (Multiple Regression): {mse_multi}")
```

Mean Squared Error (Multiple Regression): 0.17603335005142035

Linear Regression (Using Glucose):

• Mean Squared Error (MSE): 0.1831271615072512

Logistic Regression (Using Glucose):

• Accuracy: 72.29 %

Multiple Regression (Using all predictors):

• Mean Squared Error (MSE): 0.17603335005142035

Conclusion:

From the results, the logistic regression model using Glucose alone provides an accuracy of 72.29%, showing moderate predictive power for diagnosing diabetes. The multiple regression model, which uses more predictors, achieves an MSE of 0.17603335005142035, suggesting it might perform better in predicting diabetes outcomes compared to a simple linear regression model.