数理工学専攻R 2 年度入試問題

基礎数学 I

1

 \overline{n} を正の整数とする.実数 $\beta_{k,n}$ および n 次多項式

$$b_{k,n}(x) = \frac{n!}{k!(n-k)!} x^k (1-x)^{n-k}, \quad k \in \{0, 1, 2, \dots, n\}$$

を用いて、高々n次の多項式 $f_n(x)$ を

$$f_n(x) = \sum_{k=0}^{n} \beta_{k,n} b_{k,n}(x)$$

によって定める. このとき, 以下の問いに答えよ.

(i) 次の恒等式が成り立つことを示せ、

(a)
$$\sum_{k=0}^{n} b_{k,n}(x) = 1$$

(b)
$$\sum_{k=0}^{n} k b_{k,n}(x) = nx$$

(c)
$$\sum_{k=0}^{n} (k - nx)^2 b_{k,n}(x) = nx(1-x)$$

(ii) $\delta > 0$ および $x \in (0,1)$ に対して,

$$\sum_{\left|\frac{k}{n}-x\right| \ge \delta} b_{k,n}(x) \le \frac{1}{4n\delta^2}$$

が成り立つことを示せ、ここで和の記号は、 $\left|\frac{k}{n}-x\right| \ge \delta$ を満たす全ての k に対する和を表す。

(iii) f を区間 (0,1) 上の連続な実数値有界関数とし, $\beta_{k,n}=f(k/n)$ によって多項式列 $\{f_n(x)\}_{n=0}^\infty$ を定義する.このとき,任意の $\varepsilon>0$ に対して,ある正の整数 N で

$$|f(x) - f_n(x)| < \varepsilon \quad (n \ge N, x \in (0, 1))$$

を満たすものが存在することを示せ.

数理工学専攻R 2 年度入試問題

An English Translation:

Basic Mathematics I

1

Let n be a positive integer. We introduce a polynomial of degree at most n by

$$f_n(x) = \sum_{k=0}^{n} \beta_{k,n} b_{k,n}(x),$$

where $\beta_{k,n} \in \mathbb{R}$ and the polynomial of degree n,

$$b_{k,n}(x) = \frac{n!}{k!(n-k)!} x^k (1-x)^{n-k},$$

for $k \in \{0, 1, 2, ..., n\}$. Answer the following questions.

(i) Prove the following identities:

(a)
$$\sum_{k=0}^{n} b_{k,n}(x) = 1$$
,

(b)
$$\sum_{k=0}^{n} k b_{k,n}(x) = nx$$
,

(c)
$$\sum_{k=0}^{n} (k - nx)^2 b_{k,n}(x) = nx(1-x).$$

(ii) Show that

$$\sum_{\left|\frac{k}{n}-x\right| \ge \delta} b_{k,n}(x) \le \frac{1}{4n\delta^2}$$

for $\delta > 0$ and $x \in (0,1)$, where the summation symbol denotes the sum over k satisfying $\left|\frac{k}{n} - x\right| \ge \delta$.

(iii) Let f be a continuous real-valued bounded function on the interval (0,1). By $\beta_{k,n} = f(k/n)$, we define the polynomial sequence $\{f_n(x)\}_{n=0}^{\infty}$. Show that for any $\varepsilon > 0$ there exists a positive integer N such that

$$|f(x) - f_n(x)| < \varepsilon \quad (n \ge N, x \in (0, 1)).$$

アルゴリズム基礎

2

G=(V,E) を節点集合 V,枝集合 E から成る連結な単純無向グラフとし,G は隣接リストにより貯えられているとする.二点 $u,v\in V$ 間の路の最短の長さを $\mathrm{dist}(u,v)$ と記す.以下の問いに答えよ.

- (i) 任意の点 $s \in V$ を選ぶ. $\operatorname{dist}(s,u) = \operatorname{dist}(s,v)$ を満たす枝 $uv \in E$ が存在すれば、枝 uv は長さ奇数の単純閉路に含まれることを証明せよ.
- (ii) G が二部グラフであるかどうかを O(|V| + |E|) 時間で判定する方法を示せ.
- (iii) 異なる二点 $s,t \in V$ に対して,s,t 間の最短路が唯一であるかどうかを O(|V|+|E|) 時間で判定する方法を示せ.

数理工学専攻R 2 年度入試問題

An English Translation:

Data Structures and Algorithms

Let G = (V, E) denote a simple connected undirected graph with a vertex set V and an edge set E. Assume that G is stored in adjacency lists. For two vertices $u, v \in V$,

let dist(u, v) denote the shortest length of a path between them. Answer the following questions.

- (i) Let $s \in V$ be an arbitrary vertex. Prove that if there is an edge $uv \in E$ such that dist(s, u) = dist(s, v) then edge uv is contained in a simple cycle of an odd length.
- (ii) Show how to test whether G is a bipartite graph or not in O(|V| + |E|) time.
- (iii) Let $s, t \in V$ be two distinct vertices. Show how to test whether G has only one shortest path between s and t or not in O(|V| + |E|) time.

線形計画

3

 $m{a}^i~(i=1,\ldots,n)$ と $m{b}$ をm 次元ベクトル, $m{c}=(c_1,c_2,\ldots,c_n)^{\top}$ をn 次元ベクトルする. ただし $^{\top}$ は転置記号を表す. さらに, $m{A}$ を第i 列が $m{a}^i$ となる $m\times n$ 行列,つまり $m{A}=[m{a}^1~m{a}^2~\cdots~m{a}^n]$ とする.

次の線形計画問題 (P) とその双対問題 (D) を考える.

(P) Minimize
$$\boldsymbol{c}^{\top}\boldsymbol{x}$$
 (D) Maximize $\boldsymbol{b}^{\top}\boldsymbol{w}$ subject to $\boldsymbol{A}\boldsymbol{x} = \boldsymbol{b}$ subject to $\boldsymbol{A}^{\top}\boldsymbol{w} \leq \boldsymbol{c}$

ただし, (P) の決定変数は $x \in \mathbb{R}^n$, (D) の決定変数は $w \in \mathbb{R}^m$ である.

問題 (P) は $x_1^* = 0$ となる唯一の最適解 $\boldsymbol{x}^* = (x_1^*, x_2^*, \dots, x_n^*)^\top$ を持つとする.このとき,次の線形計画問題 (Q) を考える.

(Q) Maximize
$$\boldsymbol{b}^{\top}\boldsymbol{u} - (\boldsymbol{c}^{\top}\boldsymbol{x}^{*})v$$

subject to $(\boldsymbol{a}^{1})^{\top}\boldsymbol{u} - c_{1}v \leq -1$
 $(\boldsymbol{a}^{i})^{\top}\boldsymbol{u} - c_{i}v \leq 0 \ (i = 2, 3, \dots, n)$
 $v \geq 0$

ただし、決定変数は $u \in \mathbb{R}^m$ と $v \in \mathbb{R}$ である.

以下の問いに答えよ.

- (i) 問題(Q)の双対問題を書け.
- (ii) 問題 (Q) が最適解を持つことを示せ.
- (iii) 問題(Q)の最適値が0となることを示せ.
- (iv) 問題 (Q) は $v^* > 0$ となる最適解 (u^*, v^*) を持つとする. $w^* = \frac{u^*}{v^*}$ とする. このとき, w^* は双対問題 (D) の最適解であることを示せ.
- (v) 問題 (Q) は $v^* = 0$ となる最適解 (u^*, v^*) を持つとする.このとき,(a^1) $w^* < c_1$ となる (D) の最適解 w^* が存在することを示せ.

Linear Programming

3

Let \mathbf{a}^i (i = 1, ..., n) and \mathbf{b} be m-dimensional vectors, and let $\mathbf{c} = (c_1, c_2, ..., c_n)^{\top}$ be an n-dimensional vector, where the superscript $^{\top}$ denotes transposition. Moreover, let \mathbf{A} be an $m \times n$ matrix whose ith column is \mathbf{a}^i , that is, $\mathbf{A} = [\mathbf{a}^1 \ \mathbf{a}^2 \ \cdots \ \mathbf{a}^n]$.

Consider the following linear programming problem (P) and its dual problem (D):

(P) Minimize
$$c^{\top}x$$
 (D) Maximize $b^{\top}w$ subject to $Ax = b$ subject to $A^{\top}w \leq c$, $x \geq 0$,

where the decision variables of (P) and (D) are $\boldsymbol{x} \in \mathbb{R}^n$ and $\boldsymbol{w} \in \mathbb{R}^m$, respectively.

Suppose that problem (P) has a unique optimal solution $\mathbf{x}^* = (x_1^*, x_2^*, \dots, x_n^*)^{\top}$ such that $x_1^* = 0$. Then consider the following linear programming problem (Q):

(Q) Maximize
$$\boldsymbol{b}^{\top}\boldsymbol{u} - (\boldsymbol{c}^{\top}\boldsymbol{x}^{*})v$$

subject to $(\boldsymbol{a}^{1})^{\top}\boldsymbol{u} - c_{1}v \leq -1$
 $(\boldsymbol{a}^{i})^{\top}\boldsymbol{u} - c_{i}v \leq 0 \ (i = 2, 3, \dots, n)$
 $v \geq 0,$

where the decision variables are $\boldsymbol{u} \in \mathbb{R}^m$ and $v \in \mathbb{R}$.

Answer the following questions.

- (i) Write out a dual problem of problem (Q).
- (ii) Show that problem (Q) has an optimal solution.
- (iii) Show that an optimal value of problem (Q) is 0.
- (iv) Suppose that problem (Q) has an optimal solution (\boldsymbol{u}^*, v^*) such that $v^* > 0$. Let $\boldsymbol{w}^* = \frac{\boldsymbol{u}^*}{v^*}$. Then show that \boldsymbol{w}^* is an optimal solution to problem (D).
- (v) Suppose that problem (Q) has an optimal solution (\boldsymbol{u}^*, v^*) such that $v^* = 0$. Then show that problem (D) has an optimal solution \boldsymbol{w}^* such that $(\boldsymbol{a}^1)^{\top} \boldsymbol{w}^* < c_1$.

線形制御理論

4

図 1 はフィードバック制御系を示す.ここで P(s) は制御対象,C(s) は PI 補償器,r は参照入力,e は偏差である.制御対象 P(s) と補償器 C(s) は

$$P(s) = \frac{-s+2}{s^2+3s+2}, \quad C(s) = 1 + \frac{1}{Ts}$$

でそれぞれ与えられているとする.ただしT>0は積分時間である.以下の問いに答えよ.

- (i) フィードバック制御系が安定となる T の集合を求めよ.
- (ii) 参照入力を単位ランプ関数 , すなわち r(t)=t とする . T>0 を変化させるとき , 定常偏差の下限を求めよ .
- (iii) T=1 とする.ゲイン余裕と位相余裕をそれぞれ $g_m,\,\phi_m$ で表す.このとき g_m と $an\phi_m$ を計算せよ.

図 1 フィードバック制御系

Linear Control Theory

4

A feedback control system is shown in Figure 1, where P(s) is a plant, C(s) is a PI controller, r is a reference input, and e is an error. The plant P(s) and the controller C(s) are given by

$$P(s) = \frac{-s+2}{s^2+3s+2}, \quad C(s) = 1 + \frac{1}{Ts},$$

respectively, where T > 0 is the integration time. Answer the following questions.

- (i) Find the set of T for which the feedback control system is stable.
- (ii) Let the reference input be the unit ramp signal, that is, r(t) = t. Calculate the infimum of the steady state error when T > 0 varies.
- (iii) Let T=1. Denote the gain margin and the phase margin by g_m and ϕ_m , respectively. Calculate g_m and $\tan \phi_m$.

Figure 1 Feedback control system

基礎力学

5

ポテンシャル $V(r)=\frac{k}{r^n}$ $(k>0,n\geq 1)$ をもつ中心力による質量 m の粒子の散乱を考える.ここで,力の中心から粒子までの距離を r とし,r の最小値を r_0 ,力の中心のまわりの角運動量の大きさを h(>0) とし,無限遠方での粒子の速さを v_∞ とする.以下の問いに答えよ.

- (i) $r = r_0$ の時の粒子の速さ v_0 を求めよ.
- (ii) 散乱角 Θ が

$$\Theta = \pi - 2 \int_0^{u_0} \frac{du}{\sqrt{u_0^2 - u^2 + \frac{2m}{h^2} [V(\frac{1}{u_0}) - V(\frac{1}{u})]}}$$

で与えられることを示せ、但し、 $u=\frac{1}{r},\,u_0=\frac{1}{r_0}$ とする.

(iii) ポテンシャルが $V(r)=\frac{k}{r}$ (k>0) で与えられる場合の散乱の微分断面積を導出せよ.

Basic Mechanics

5

Let us consider a particle of mass m scattering under the action of a central force by a potential $V(r)=\frac{k}{r^n}$ $(k>0,n\geqq 1)$ where r denotes the distance between the particle and the center of the central force. Let r_0 be the minimal value of $r,\ h(>0)$ be the magnitude of the angular moment around the center of the central force and v_∞ be the speed of the particle at $r=\infty$. Answer the following questions.

- (i) Obtain the speed v_0 of the particle at $r = r_0$.
- (ii) Show that the scattering angle Θ is given by

$$\Theta = \pi - 2 \int_0^{u_0} \frac{du}{\sqrt{u_0^2 - u^2 + \frac{2m}{h^2} [V(\frac{1}{u_0}) - V(\frac{1}{u})]}}$$

where
$$u = \frac{1}{r}$$
 and $u_0 = \frac{1}{r_0}$.

(iii) Derive the scattering differential cross section in the case that $V(r) = \frac{k}{r}$ where k is a positive constant.

基礎数学 II

6

以下の問いに答えよ.

(i) 4×4行列

$$A = \begin{pmatrix} -1 & 1 & 2 & 1 \\ 4 & 1 & 3 & -1 \\ -7 & 2 & 3 & 4 \\ 11 & -1 & 0 & -5 \end{pmatrix}$$

のランク(階数)r を求め、rank B=r なる適当な $4\times r$ 行列 B、rank C=r なる $r\times 4$ 行列 C への分解 A=BC を計算せよ.

(ii) n 本の m 次元列ベクトル a_1, a_2, \ldots, a_n からなる $m \times n$ 行列

$$A = \left(egin{array}{cccc} oldsymbol{a}_1 & oldsymbol{a}_2 & \cdots & oldsymbol{a}_n \end{array}
ight)$$

のランクrは $r < \min\{m,n\}$ であるものとする.このとき,行列Aは,rank B = rなる適当な $m \times r$ 行列B,rank C = rなる $r \times n$ 行列Cを用いて

$$A = BC$$

と分解されることを示せ.

Basic Mathematics II

6

Answer the following questions.

(i) Find the rank r of the 4×4 matrix

$$A = \begin{pmatrix} -1 & 1 & 2 & 1 \\ 4 & 1 & 3 & -1 \\ -7 & 2 & 3 & 4 \\ 11 & -1 & 0 & -5 \end{pmatrix}$$

and a decomposition of A into a product A = BC, where B is a suitable $4 \times r$ matrix of rank r and C is an $r \times 4$ matrix of rank r.

(ii) Let a_1, a_2, \ldots, a_n be n column vectors of dimension m and let the $m \times n$ matrix

$$A = \left(egin{array}{cccc} oldsymbol{a}_1 & oldsymbol{a}_2 & \cdots & oldsymbol{a}_n \end{array}
ight)$$

be of rank r with $r < \min\{m, n\}$. Show that the matrix A can be decomposed into a product

$$A = BC,$$

where B is a suitable $m \times r$ matrix of rank r and C is an $r \times n$ matrix of rank r.