Definition: A relation R on a set A is called transitive if whenever we have $(a,b) \in R$ and $(b,c) \in R$ we also have $(a,c) \in R$.

Note: If, in the digraph of a transitive relation R, one can get from a to b following arrows then there must be an arrow from a to b. (If we see two edges following each other the third side of the directed triangle must also be present.)

Examples: The R in Example 1 is not transitive. $(3,2) \in R$ and $(2,1) \in R$ but $(3,1) \notin R$. Here a=3,b=2 and c=1. Note that we also have $(3,2) \in R$ and $(2,3) \in R$ but $(3,3) \notin R$. (a and c could be equal.) The R in Example 2 is not transitive. If I link to your webpage, I do not necessarily link to the crazy sites that you link to. The R in Example 3 is transitive. If $(a,b) \in R$ and $(b,c) \in R$ then b=ka and c=lb for some positive integers k and k. However this means k0 = k1 = k2 and k3 = k3 = k4 is transitive. If k4 is k5 = k6 and k7 = k8 and k8 and k9 = k9 k9 = k9 = k9 and k9 = k

Definition: If A is a set and R is a relation on A which is not reflexive we define the reflexive closure of R to be the relation consisting of R together with $\{(a,a) \mid a \in A\}$. (Recall that this is just a union of sets.)

Definition: If A is a set and R is a relation on A which is not symmetric we define the symmetric closure of R to be the relation consisting of R together with $\{(a,b) \mid (b,a) \in R\}$.

Definition: If A is a set and R is a relation on A which is not transitive we define the transitive closure of R to be the relation R^* on A defined by aR^*b if and only if there is a sequence of elements of A, a_1, a_2, \ldots, a_k with $a = a_1, b = a_k$ and a_iRa_{i+1} .

Example: Transitive closures of relations are the most applicable. If A is a set of websites and R is the relation define by 'is linked to', then the transitive closure of R is the relation 'is connected to by a sequence of links'.

Example: If $A = \{1, 2, 3\}$ and R is the relation $\{(1, 3), (2, 1), (2, 2), (2, 3), (3, 2)\}$, then R is not reflexive, not symmetric and not transitive. What are the corresponding closures?

The reflexive closure is

$$\{(1,1),(1,3),(2,1),(2,2),(2,3),(3,2),(3,3)\}$$

Here we had to add (1,1) and (3,3) to get $(a,a) \in \mathbb{R}^*$ for all $a \in A$. The symmetric closure is

$$\{(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2)\}$$

Here we had to add (1,2) and (3,1) to get $(b,a) \in \mathbb{R}^*$ for all $(a,b) \in \mathbb{R}$. The transitive closure is

$$\{(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3),\}$$

Here the construction is more complicated. We see that 1R3 and 3R2 so that transitivity of R^* will force $(1,2) \in R^*$. However $1R^*2$ and $2R^*1$ will force $(1,1) \in R^*$. Thus 1 is related to every element of A by R^* . Continue in this way for 2 and 3.

