Gramáticas Libres de Contexto Implementación de Métodos Computacionales (TC2037)

M.C. Xavier Sánchez Díaz mail@tec.mx

Image from Maheshwari and Smid's Theory of Computation, 2017

El caso a^nb^n Lenguajes libres de contexto

Tesis

Sean $L=\{a^nb^n, n\in\mathbb{N}\}$ y LR el conjunto de los lenguajes regulares. Entonces, $L\not\in LR$.

Como un autómata debe tener un número finito de estados, no hay manera de hacer que recuerde cuántas as van para saber cuántas bs deberíamos tener.

El caso a^nb^n Lenguajes libres de contexto

Tesis

Sean $L=\{a^nb^n, n\in\mathbb{N}\}$ y LR el conjunto de los lenguajes regulares. Entonces, $L\not\in LR$.

Como un autómata debe tener un número $\it finito$ de estados, no hay manera de hacer que recuerde cuántas $\it as$ van para saber cuántas $\it bs$ deberíamos tener.

Las reglas en una **RG** son del modo $A \to bC$ o $A \to b$.

En una **Gramática Libre de Contexto** (GLC o CFG por sus siglas en inglés) las reglas son del modo $A \to bCd$ o $A \to b$.

Las reglas en una **RG** son del modo $A \to bC$ o $A \to b$.

En una **Gramática Libre de Contexto** (GLC o CFG por sus siglas en inglés) las reglas son del modo $A \to bCd$ o $A \to b$.

Las reglas en una **RG** son del modo $A \to bC$ o $A \to b$.

En una **Gramática Libre de Contexto** (GLC o CFG por sus siglas en inglés) las reglas son del modo $A \to bCd$ o $A \to b$.

Las reglas en una **RG** son del modo $A \rightarrow bC$ o $A \rightarrow b$.

En una **Gramática Libre de Contexto** (GLC o CFG por sus siglas en inglés) las reglas son del modo $A \to bCd$ o $A \to b$.

Palabras aceptadas: $\varepsilon, ab, aabb, aaabbb, \dots$

Volvemos al caso a^nb^n

CFGs bien formadas

Palabras aceptadas: ε , ab, aabb, aaabb, . . .

¿Qué patrón podemos identificar en los ejemplos?

Palabras aceptadas: ε , ab, aabb, aaabb, . . .

Palabras aceptadas: ε , ab, aabb, aaabb, . . .

Palabras aceptadas: ε , ab, aabb, aaabbb, . . .

Volvemos al caso a^nb^n

CFGs bien formadas

Palabras aceptadas: ε , ab, aabb, aaabbb, . . .

Estructura: Grupos anidados de una a al inicio y una b al final.

Volvemos al caso a^nb^n

CFGs bien formadas

Palabras aceptadas: ε , ab, aabb, aaabbb, . . .

Estructura: Grupos anidados de una a al inicio y una b al final.

CFG:

- $2 S \to \varepsilon$

CFGs bien formadas

Ejemplos:
$$(), (()), ()(), (())(), \dots$$

Estructura:

- ullet Grupos concatenados de paréntesis anidados $(((\dots)))$
- Cada grupo de $(((\dots)))$ es similar a $\{a^nb^n\}$
- ullet Concatenamos usando una regla de tipo S o SS

- \bullet $S \rightarrow (S)$
- \circ $S \rightarrow ()$
- \odot $S \rightarrow SS$

CFGs bien formadas

Ejemplos: $(), (()), ()(), (())(), \dots$

Estructura:

- ullet Grupos concatenados de paréntesis anidados $(((\dots)))$
- ullet Cada grupo de $(((\dots)))$ es similar a $\{a^nb^n\}$
- ullet Concatenamos usando una regla de tipo S o SS

- \bullet $S \rightarrow ()$
- \circ $S \rightarrow SSS$

CFGs bien formadas

```
Ejemplos: (), (()), ()(), (())(), \dots
```

Estructura:

- Grupos concatenados de paréntesis anidados (((...)))
- ullet Cada grupo de $(((\dots)))$ es similar a $\{a^nb^n\}$
- ullet Concatenamos usando una regla de tipo S o SS

- $\bigcirc S \rightarrow ()$
- \circ $S \rightarrow SS$

CFGs bien formadas

Ejemplos:
$$(), (()), ()(), (())(), \dots$$

Estructura:

- Grupos concatenados de paréntesis anidados (((...)))
- Cada grupo de $(((\dots)))$ es similar a $\{a^nb^n\}$
- ullet Concatenamos usando una regla de tipo S o SS

- $\mathbf{2} S \rightarrow ()$

CFGs bien formadas

Ejemplos:
$$(), (()), ()(), (())(), \dots$$

Estructura:

- Grupos concatenados de paréntesis anidados (((...)))
- Cada grupo de $(((\dots)))$ es similar a $\{a^nb^n\}$
- ullet Concatenamos usando una regla de tipo S o SS

- $\mathbf{2} S \rightarrow ()$
- \bullet $S \rightarrow SS$

CFGs bien formadas

Ejemplos:
$$(), (()), ()(), (())(), \dots$$

Estructura:

- Grupos concatenados de paréntesis anidados (((...)))
- \bullet Cada grupo de $(((\dots)))$ es similar a $\{a^nb^n\}$
- ullet Concatenamos usando una regla de tipo S o SS

¿Cómo concatenamos dos grupos?

- \circ $S \rightarrow ()$

CFGs bien formadas

Ejemplos:
$$(), (()), ()(), (())(), \dots$$

Estructura:

- Grupos concatenados de paréntesis anidados (((...)))
- Cada grupo de $(((\dots)))$ es similar a $\{a^nb^n\}$
- ullet Concatenamos usando una regla de tipo S o SS

- $\mathbf{2} S \rightarrow ()$

CFGs bien formadas

Ejemplos:
$$(), (()), ()(), (())(), \dots$$

Estructura:

- Grupos concatenados de paréntesis anidados (((...)))
- Cada grupo de $(((\dots)))$ es similar a $\{a^nb^n\}$
- ullet Concatenamos usando una regla de tipo S o SS

- $S \rightarrow SS$

CFGs bien formadas

Podemos formar expresiones aritméticas también, como 25+3*12, donde la multiplicación debe tener precedencia sobre la suma:

- $\mathbf{2} \ E \to T$
- $T \to T * F$
- \bullet $F \rightarrow CF$
- $C \rightarrow 0|1|2|3|4|5|6|7|8|9$

CFGs bien formadas

Podemos formar expresiones aritméticas también, como 25+3*12, donde la multiplicación debe tener precedencia sobre la suma:

- $\bullet E \to E + T$
- $\mathbf{2} \ E \to T$

- $C \rightarrow 0|1|2|3|4|5|6|7|8|9$

CFGs bien formadas

Podemos formar expresiones aritméticas también, como 25+3*12, donde la multiplicación debe tener precedencia sobre la suma:

- $\bullet E \to E + T$
- $\mathbf{2} \ E \to T$

- $C \rightarrow 0|1|2|3|4|5|6|7|8|9$

CFGs bien formadas

Podemos formar expresiones aritméticas también, como 25+3*12, donde la multiplicación debe tener precedencia sobre la suma:

- \bullet $E \rightarrow E + T$
- $\mathbf{2} \ E \to T$
- $T \to T * F$

- $C \rightarrow 0|1|2|3|4|5|6|7|8|9$

CFGs bien formadas

Podemos formar expresiones aritméticas también, como 25+3*12, donde la multiplicación debe tener precedencia sobre la suma:

- $\bullet E \to E + T$
- $\mathbf{2} \ E \to T$
- $T \to T * F$
- $T \to F$
- \bullet $F \rightarrow CF$
- $C \rightarrow 0|1|2|3|4|5|6|7|8|9$

CFGs bien formadas

Podemos formar expresiones aritméticas también, como 25+3*12, donde la multiplicación debe tener precedencia sobre la suma:

- \bullet $E \rightarrow E + T$
- $\mathbf{2} \ E \to T$
- $T \to T * F$
- $T \to F$
- \bullet $F \rightarrow CF$
- $C \rightarrow 0|1|2|3|4|5|6|7|8|9$

CFGs bien formadas

Podemos formar expresiones aritméticas también, como 25+3*12, donde la multiplicación debe tener precedencia sobre la suma:

- \bullet $E \rightarrow E + T$
- $\mathbf{2} \ E \to T$
- $3 T \rightarrow T * F$
- $T \to F$
- \bullet $F \rightarrow CF$
- $C \rightarrow 0|1|2|3|4|5|6|7|8|9$

CFGs bien formadas

Podemos formar expresiones aritméticas también, como 25+3*12, donde la multiplicación debe tener precedencia sobre la suma:

- $\bullet E \to E + T$
- $\mathbf{2} \ E \to T$
- $T \to T * F$
- $T \to F$
- \bullet $F \rightarrow CF$
- $C \rightarrow 0|1|2|3|4|5|6|7|8|9$

CFGs bien formadas

Podemos formar expresiones aritméticas también, como 25+3*12, donde la multiplicación debe tener precedencia sobre la suma:

- \bullet $E \rightarrow E + T$
- $\mathbf{2} \ E \to T$
- $3 T \rightarrow T * F$
- $T \to F$
- $\bullet F \to C$
- $C \rightarrow 0|1|2|3|4|5|6|7|8|9$

CFGs bien formadas

Podemos formar expresiones aritméticas también, como 25+3*12, donde la multiplicación debe tener precedencia sobre la suma:

- $\bullet E \to E + T$
- $\mathbf{2} \ E \to T$
- $3 T \rightarrow T * F$
- $T \to F$

- $C \rightarrow 0|1|2|3|4|5|6|7|8|9$

Ejemplo: palíndromos en $\{a,b\}$

CFGs bien formadas

Ejemplos: ε , a, aa, aaa, aba, abba, . . .

Caso Par: parecido a $\{a^nb^n\}$ pero con lo mismo en cada lado: S o aSa y S o bSb, y usando S o arepsilon para salir del *loop*.

Caso impar: idéntico al caso par, sólo que el loop se termina con un terminal no vacío: $S \to a, S \to b$.

- \bullet $S \rightarrow aSa$
- \bullet $S \rightarrow bSb$
- \bullet $S \rightarrow a$
- \bullet $S \rightarrow b$
- \bullet $S \to \varepsilon$

Ejemplo: palíndromos en $\{a, b\}$

CFGs bien formadas

Ejemplos: ε , a, aa, aaa, aba, abba, . . .

¿Cómo hacemos si es par, e.g. abba?

Caso Par: parecido a $\{a^nb^n\}$ pero con lo mismo en cada lado: $S\to aSa$ y $S\to bSb$, y usando $S\to \varepsilon$ para salir del *loop*.

Caso impar: idéntico al caso par, sólo que el *loop* se termina con un termina no vacío: $S \to a, S \to b$.

- $2 S \rightarrow bSb$
- $S \rightarrow a$
- $S \to \varepsilon$

Ejemplo: palíndromos en $\{a, b\}$

CFGs bien formadas

Ejemplos: ε , a, aa, aaa, aba, abba, . . .

Caso Par: parecido a $\{a^nb^n\}$ pero con lo mismo en cada lado: $S\to aSa$ y $S\to bSb$, y usando $S\to \varepsilon$ para salir del *loop*.

Caso impar: idéntico al caso par, sólo que el loop se termina con un termina no vacío: $S \to a, S \to b.$

- $\mathbf{2} S \rightarrow bSb$
- $S \rightarrow a$
- $S \rightarrow b$
- $S \to \varepsilon$

Ejemplo: palíndromos en $\{a, b\}$

CFGs bien formadas

Ejemplos: ε , a, aa, aaa, aba, abba, . . .

Caso Par: parecido a $\{a^nb^n\}$ pero con lo mismo en cada lado: $S\to aSa$ y $S\to bSb$, y usando $S\to \varepsilon$ para salir del *loop*.

¿Cómo hacemos si es impar, e.g. abbba?

Caso impar: idéntico al caso par, sólo que el *loop* se termina con un termina no vacío: $S \to a, S \to b$.

- $2 S \rightarrow bSb$
- \bullet $S \rightarrow a$
- $S \rightarrow \varepsilon$

Ejemplo: palíndromos en $\{a,b\}$

CFGs bien formadas

Ejemplos: ε , a, aa, aaa, aba, abba, . . .

Caso Par: parecido a $\{a^nb^n\}$ pero con lo mismo en cada lado: $S\to aSa$ y $S\to bSb$, y usando $S\to \varepsilon$ para salir del *loop*.

Caso impar: idéntico al caso par, sólo que el *loop* se termina con un terminal no vacío: $S \to a, S \to b.$

- \bullet $S \rightarrow a$
- $S \rightarrow \varepsilon$

Ejemplo: palíndromos en $\{a,b\}$

CFGs bien formadas

Ejemplos: ε , a, aa, aaa, aba, abba, . . .

Caso Par: parecido a $\{a^nb^n\}$ pero con lo mismo en cada lado: $S\to aSa$ y $S\to bSb$, y usando $S\to \varepsilon$ para salir del *loop*.

Caso impar: idéntico al caso par, sólo que el *loop* se termina con un terminal no vacío: $S \to a, S \to b.$

- $algorates S \rightarrow bSb$
- $S \rightarrow a$

Operaciones en CFGs

¿Cómo unimos dos CFGs?

Ejemplo: CFG para las palabras de forma a^nb^m tal que $n \neq m$

Solución

$$\{a^n b^m, n \neq m\} = \{a^n b^m, n > m\} \cup \{a^n b^m, n < m\}$$

Usamos un **símbolo inicial nuevo** para hacer dos nuevas reglas: $S_0 \to S_1$ y $S_0 \to S_2$, donde S_1 y S_2 son los símbolos iniciales de las CFGs 1 y 2, respectivamente.

La concatenación es similar. Agregamos una nueva regla: $S_0
ightarrow S_1 S_2$

Operaciones en CFGs

¿Cómo unimos dos CFGs?

Ejemplo: CFG para las palabras de forma a^nb^m tal que $n \neq m$

Solución

$$\{a^n b^m, n \neq m\} = \{a^n b^m, n > m\} \cup \{a^n b^m, n < m\}$$

Usamos un **símbolo inicial nuevo** para hacer dos nuevas reglas: $S_0 \to S_1$ y $S_0 \to S_2$, donde S_1 y S_2 son los símbolos iniciales de las CFGs 1 y 2, respectivamente.

La concatenación es similar. Agregamos una nueva regla: $S_0 \to S_1 S_2$

Operaciones en CFGs

¿Cómo unimos dos CFGs?

Ejemplo: CFG para las palabras de forma a^nb^m tal que $n \neq m$

Solución:

$$\{a^nb^m, n \neq m\} = \{a^nb^m, n > m\} \cup \{a^nb^m, n < m\}$$

Usamos un **símbolo inicial nuevo** para hacer dos nuevas reglas: $S_0 \to S_1$ y $S_0 \to S_2$, donde S_1 y S_2 son los símbolos iniciales de las CFGs 1 y 2, respectivamente.

La concatenación es similar. Agregamos una nueva regla: $S_0 o S_1 S_2$

Operaciones en CFGs

¿Cómo unimos dos CFGs?

Ejemplo: CFG para las palabras de forma a^nb^m tal que $n \neq m$

Solución:

$$\{a^nb^m, n \neq m\} = \{a^nb^m, n > m\} \cup \{a^nb^m, n < m\}$$

Usamos un **símbolo inicial nuevo** para hacer dos nuevas reglas: $S_0 \to S_1$ y $S_0 \to S_2$, donde S_1 y S_2 son los símbolos iniciales de las CFGs 1 y 2, respectivamente.

La concatenación es similar. Agregamos una nueva regla: $S_0 \to S_1 S_2$.

Operaciones en CFGs

¿Cómo unimos dos CFGs?

Ejemplo: CFG para las palabras de forma a^nb^m tal que $n \neq m$

Solución:

$${a^n b^m, n \neq m} = {a^n b^m, n > m} \cup {a^n b^m, n < m}$$

Usamos un **símbolo inicial nuevo** para hacer dos nuevas reglas: $S_0 \to S_1$ y $S_0 \to S_2$, donde S_1 y S_2 son los símbolos iniciales de las CFGs 1 y 2, respectivamente.

La concatenación es similar. Agregamos una nueva regla: $S_0 \to S_1 S_2$.

Ejemplo de ambigüedad: #a = #b

Ambigüedad y Refinamiento de CFGs

Estructura: grupos de $a \dots b$ o $b \dots a$.

Reglas:

- $2 S \rightarrow bSa$
- $S \rightarrow SS$

Probar **derivaciones** usando *DFS* para $abab = \langle 3, 1, 4, 1, 4 \rangle$ y $abab = \langle 1, 2, 4 \rangle$.

Ejemplo de ambigüedad: #a = #b

Ambigüedad y Refinamiento de CFGs

Estructura: grupos de $a \dots b$ o $b \dots a$.

Reglas:

- $S \rightarrow bSa$
- $S \rightarrow SS$

Probar **derivaciones** usando *DFS* para $abab = \langle 3, 1, 4, 1, 4 \rangle$ y $abab = \langle 1, 2, 4 \rangle$.

Ejemplo de ambigüedad: #a = #b

Ambigüedad y Refinamiento de CFGs

Estructura: grupos de $a \dots b$ o $b \dots a$.

Reglas:

- $S \rightarrow bSa$
- $\mathbf{S} \to SS$

Probar **derivaciones** usando *DFS* para $abab = \langle 3, 1, 4, 1, 4 \rangle$ y $abab = \langle 1, 2, 4 \rangle$.

Ambigüedad y Refinamiento de CFGs

Es posible reemplazar reglas en una CFG sin alterar el conjunto de palabras que se pueden formar con ellas.

Por ejemplo, aquellas que generen producciones vacías: A
ightarrow arepsilon

Producciones 'inútiles' para reducir el tamaño de las derivaciones: $A \to B$ y $B \to a$.

Ambigüedad y Refinamiento de CFGs

Es posible reemplazar reglas en una CFG sin alterar el conjunto de palabras que se pueden formar con ellas.

Por ejemplo, aquellas que generen producciones vacías: $A \rightarrow \varepsilon$

Producciones 'inútiles' para reducir el tamaño de las derivaciones: $A \to B$ y $B \to a$.

Ambigüedad y Refinamiento de CFGs

Es posible reemplazar reglas en una CFG sin alterar el conjunto de palabras que se pueden formar con ellas.

Por ejemplo, aquellas que generen producciones vacías: $A \to \varepsilon$

Producciones 'inútiles' para reducir el tamaño de las derivaciones: $A \to B$ y $B \to a$.

Ambigüedad y Refinamiento de CFGs

Existen algunos problemas con las reglas vacías:

Son ineficientes, pues crean un símbolo para después destruirlo

Las reglas vacías pueden **crecer o decrecer** las derivaciones, e.g. derivaciones de ab

$$S \rightarrow SS \rightarrow SSS \rightarrow SS \rightarrow SS \rightarrow SS \rightarrow SS \rightarrow aSb \rightarrow ab$$

Ambigüedad y Refinamiento de CFGs

Existen algunos problemas con las reglas vacías:

Son ineficientes, pues crean un símbolo para después destruirlo.

Las reglas vacías pueden **crecer o decrecer** las derivaciones, e.g. derivaciones de ab

$$S \rightarrow SS \rightarrow SSS \rightarrow SS \rightarrow SSS \rightarrow SS \rightarrow aSb \rightarrow abb$$

Ambigüedad y Refinamiento de CFGs

Existen algunos problemas con las reglas vacías:

Son ineficientes, pues crean un símbolo para después destruirlo.

Las reglas vacías pueden ${\bf crecer} \; {\bf o} \; {\bf decrecer}$ las derivaciones, e.g. derivaciones de ab

$$S \rightarrow SS \rightarrow SSS \rightarrow SS \rightarrow SS \rightarrow SS \rightarrow aSb \rightarrow abb$$

Ambigüedad y Refinamiento de CFGs

Existen algunos problemas con las reglas vacías:

Son ineficientes, pues crean un símbolo para después destruirlo.

Las reglas vacías pueden ${\bf crecer} \; {\bf o} \; {\bf decrecer}$ las derivaciones, e.g. derivaciones de ab

$$S \rightarrow SS \rightarrow SSS \rightarrow SS \rightarrow SS \rightarrow SS \rightarrow aSb \rightarrow ab$$

Ambigüedad y Refinamiento de CFGs

Para eliminar reglas de producciones vacías $A \to \varepsilon$, se reemplaza el lado derecho de cada ocurrencia de una regla:

$$2 S \to \varepsilon$$

donde podemos reemplazar cada S por arepsilon, para generar una nueva regla:

$$2 S \rightarrow ab$$

$${}_{\dot{ar{c}}}$$
Qué pasa si el lenguaje $L(G)$ sí contiene a la palabra vacía $arepsilon ?$

Ambigüedad y Refinamiento de CFGs

Para eliminar reglas de producciones vacías $A \to \varepsilon$, se reemplaza el lado derecho de cada ocurrencia de una regla:

$$aabb = \langle 1, 1, 2 \rangle$$

$$2 S \to \varepsilon$$

donde podemos reemplazar cada S por arepsilon, para generar una nueva regla:

$$aabb = \langle 1, 2 \rangle$$

 $_{\dot{\epsilon}}$ Qué pasa si el lenguaje L(G) sí contiene a la palabra vacía arepsilon ?

Ambigüedad y Refinamiento de CFGs

Para eliminar reglas de producciones vacías $A \to \varepsilon$, se reemplaza el lado derecho de cada ocurrencia de una regla:

$$aabb = \langle 1, 1, 2 \rangle$$

$$2 S \to \varepsilon$$

donde podemos reemplazar cada S por ε , para generar una nueva regla:

$$aabb = \langle 1, 2 \rangle$$

$$\circ$$
 $S \rightarrow ab$

 $_{\dot{\epsilon}}$ Qué pasa si el lenguaje L(G) sí contiene a la palabra vacía arepsilon ?

Ambigüedad y Refinamiento de CFGs

Para eliminar reglas de producciones vacías $A \to \varepsilon$, se reemplaza el lado derecho de cada ocurrencia de una regla:

$$aabb = \langle 1, 1, 2 \rangle$$

$$2 S \to \varepsilon$$

donde podemos reemplazar cada S por ε , para generar una nueva regla:

$$aabb = \langle 1, 2 \rangle$$

$$\mathbf{2} S \to ab$$

¿Qué pasa si el lenguaje L(G) sí contiene a la palabra vacía arepsilon ?

Ambigüedad y Refinamiento de CFGs

Para eliminar reglas de producciones vacías $A \to \varepsilon$, se reemplaza el lado derecho de cada ocurrencia de una regla:

$$aabb = \langle 1, 1, 2 \rangle$$

$$2 S \to \varepsilon$$

donde podemos reemplazar cada S por ε , para generar una nueva regla:

$$aabb = \langle 1, 2 \rangle$$

$$\mathbf{2} S \to ab$$

¿Qué pasa si el lenguaje L(G) sí contiene a la palabra vacía arepsilon?

Ambigüedad y Refinamiento de CFGs

Para eliminar reglas de producciones vacías $A \to \varepsilon$, se reemplaza el lado derecho de cada ocurrencia de una regla:

$$aabb = \langle 1, 1, 2 \rangle$$

$$2 S \to \varepsilon$$

donde podemos reemplazar cada S por ε , para generar una nueva regla:

$$aabb = \langle 1, 2 \rangle$$

$$\mathbf{2} \ S \to ab$$

¿Qué pasa si el lenguaje L(G) sí contiene a la palabra vacía arepsilon ?

Ambigüedad y Refinamiento de CFGs

Para eliminar reglas de producciones vacías $A \to \varepsilon$, se reemplaza el lado derecho de cada ocurrencia de una regla:

$$aabb = \langle 1, 1, 2 \rangle$$

$$2 S \to \varepsilon$$

donde podemos reemplazar cada S por ε , para generar una nueva regla:

$$aabb = \langle 1, 2 \rangle$$

$$2 S \rightarrow ab$$

¿Qué pasa si el lenguaje L(G) sí contiene a la palabra vacía ε ?

Ambigüedad y Refinamiento de CFGs

Para eliminar las reglas 'inútiles' (o pasos intermedios) en una CFG hay que ir **conectando** los extremos:

- $2 S \rightarrow ab$
- \bullet $S \to V$
- $V \rightarrow a$

En lugar de tener dos reglas $S \to V$ y $V \to a$ podemos tener directamente una sola, $S \to a$:

- \bullet $S \rightarrow aSb$
- \circ $S \rightarrow a$

Ambigüedad y Refinamiento de CFGs

Para eliminar las reglas 'inútiles' (o pasos intermedios) en una CFG hay que ir **conectando** los extremos:

- $\mathbf{2}$ $S \to ab$
- $S \rightarrow V$
- $V \to a$

En lugar de tener dos reglas $S \to V$ y $V \to a$ podemos tener directamente una sola, $S \to a$:

- \bullet $S \rightarrow aSb$
- \bullet $S \rightarrow a$

¿Qué pasa si hay ciclos en plan S o T y T o S?

Ambigüedad y Refinamiento de CFGs

Para eliminar las reglas 'inútiles' (o pasos intermedios) en una CFG hay que ir **conectando** los extremos:

- $\mathbf{2} S \to ab$
- $S \rightarrow V$
- $V \rightarrow a$

En lugar de tener dos reglas $S \to V$ y $V \to a$ podemos tener directamente una sola, $S \to a$:

- $2 S \rightarrow ab$
- \circ $S \rightarrow a$

Ambigüedad y Refinamiento de CFGs

Para eliminar las reglas 'inútiles' (o pasos intermedios) en una CFG hay que ir **conectando** los extremos:

- $\mathbf{2} S \to ab$
- $\mathbf{S} \to V$
- $V \rightarrow a$

En lugar de tener dos reglas $S\to V$ y $V\to a$ podemos tener directamente una sola, $S\to a$:

- \bullet $S \rightarrow aSb$
- $\mathbf{2} S \to ab$
- \circ $S \rightarrow a$

Ambigüedad y Refinamiento de CFGs

Para eliminar las reglas 'inútiles' (o pasos intermedios) en una CFG hay que ir **conectando** los extremos:

- $\mathbf{2} S \to ab$
- $S \rightarrow V$
- $V \rightarrow a$

En lugar de tener dos reglas $S\to V$ y $V\to a$ podemos tener directamente una sola, $S\to a$:

- $\mathbf{2} S \to ab$
- $S \rightarrow a$

Ambigüedad y Refinamiento de CFGs

Para eliminar las reglas 'inútiles' (o pasos intermedios) en una CFG hay que ir **conectando** los extremos:

- $S \rightarrow V$
- $V \rightarrow a$

En lugar de tener dos reglas $S \to V$ y $V \to a$ podemos tener directamente una sola, $S \to a$:

- $\mathbf{2} S \to ab$
- $S \rightarrow a$

¿Qué pasa si hay ciclos en plan $S \to T$ y $T \to S$?