Секущие плоскости

Используем пропозициональные переменные \bar{p} с интерпретацией 0=false и 1=true. Строка доказательства - это

$$\sum_{k} c_k p_k \ge C,$$

где c_k и C - целые.

Аксиомы: $p_k \ge 0$ и $-p_k \ge -1$ (т.е. $0 \le p_k \le 1$) для каждой пропозициональной переменной p_k .

Парвила:

- 1. Сложение. Из $\sum_{k} c_{k} p_{k} \geq C$ и $\sum_{k} d_{k} p_{k} \geq D$ получаем $\sum_{k} (c_{k} + d_{k}) p_{k} \geq C + D$;
- 2. Деление. Из $\sum_{k} c_{k} p_{k} \geq C$ получаем $\sum_{k} \frac{c_{k}}{d} p_{k} \geq \left\lceil \frac{C}{d} \right\rceil$, d > 0 целое, которое делит каждое c_{k} ;
- 3. Умножение. Из $\sum_k c_k p_k \ge C$ получаем $\sum_k dc_k p_k \ge dC$, где d произвольное положительное целое.

Для опровержения множества неравенств надо получить противоречие $0 \ge 1$.

Выразительная сила секущих плоскостей, по крайней мере, так же велика, как у клозов (т.е. можно по невыполнимой формуле в КНФ построить доказательство в секущих плоскостях).

Остальная часть доклада - нижняя оценка.