Projekt 3

(Nevill Gonzalez-Szwacki)

Napisz program, który na drodze ewolucji (metodą zbliżoną do algorytmu genetycznego) zoptymalizuje położenia zbioru oddziałujących sfer.

Opis układu

Sfery rozmieszczone są na sieci trójkątnej (heksagonalnej), tak że ich środki znajdują się w węzłach sieci (zielone kropki na Rys. 1a). Liczba dostępnych węzłów ograniczona jest powierzchniowo do okręgu o promieniu R. Sfery wypełniają wszystkie dostępne węzły, a ich promień jest tak duży, że każda z nich styka się z sąsiadami. Zbiór sfer jest podzielony na dwie grupy (przykładowe rozmieszczenie pokazane jest na Rys. 1b): czerwone oddziałują między sobą, natomiast niebieskie nie oddziałują z czerwonymi ani między sobą. Oddziaływanie czerwonych sfer jest kontaktowe, tzn. oddziałują ze sobą tylko te sfery czerwone, które są w bezpośrednim kontakcie ze sobą.

Proces optymalizacji położeń

Optymalizacja położeń sfer odbywa się na drodze ewolucji. Początek ewolucji polega na wygenerowaniu 10 układów (rodziców) z losowo rozmieszczonymi sferami. W każdym z dziesięciu układów stosunek liczby czerwonych do liczby niebieskich sfer jest ten sam. Po wygenerowaniu pierwszego pokolenia, każdy z dziesięciu układów (rodziców) podlega mutacji polegającej na zamianie miejscami losowo wybranych sfer czerwonej i niebieskiej (robimy to dla jednej lub więcej par sfer czerwona-niebieska). Dostajemy w ten sposób 10 nowych układów (potomków). Dalszej ewolucji będzie podlegać grupa 10-cio osobnikowa wybrana spośród grupy 20 układów (10 rodziców + 10 bezpośrednich potomków). Nowi rodzice będą wybrani na zasadzie selekcji rankingowej. Kryterium w rankingu będzie energia oddziaływania czerwonych sfer (im większa energia tym wyżej w rankingu będzie osobnik).

Jeśli w puli 20 układów jest 10 lub więcej układów o tej samej największej energii, do dalszej ewolucji przechodzi 10 osobników wybranych losowo spośród nich. Proces optymalizacji można zakończyć po N iteracjach (każda iteracja kończy się wyborem pokolenia dziesięciu nowych potencjalnych rodziców). Optymalne konfiguracje (może być ich kilka) są te o najwyższej energii oddziaływania.

Energia oddziaływania sfer (funkcja przystosowania)

Energia odziaływania czerwonych sfer wyrażona jest wzorem:

$$E(n_0, n_1, n_2, n_3, n_4, n_5, n_6) = \frac{1}{N_c} \sum_{i=0}^{6} n_i e_i$$

gdzie n_i ($i \in \{0,\ldots,6\}$) jest liczbą sfer będących w bezpośrednim kontakcie z i sferami czerwonymi, a $N_{\rm c}$ to całkowita liczba czerwonych sfer w układzie. Poszczególne wkłady energetyczne, e_i , są podane w Tabeli 1. Z tabeli wynika, że największe wkłady do energii będą dawały te sfery, które będą miały 5 najbliższych sąsiadów czerwonych, natomiast izolowane sfery czerwony dają zerowy wkład do energii.

Tabela 1	
parametry	wartości (eV)
e_0	0
e_1	1.7803
e_2	5.1787
e_3	5.6504
e_4	6.2522
e_5	6.5718
e_6	6.5116

Zmienne w naszym zagadnieniu

- *R* promień okręgu z Rys. 1a, który definiuje rozmiar naszego układu (liczbę dostępnych węzłów = liczbę czerwonych i niebieskich sfer)
- N_c liczba czerwonych sfer
- $^{\bullet}$ N liczba iteracji (pokoleń) w poszukiwaniu optymalnych położeń sfer czerwonych