MARKING GUIDE - P515/2 UACE UNATA - 2022 PRINCIPLES AND PRACTICES OF AGRICULTURE

SECTION A (20 MARKS) Question 1 is compulsory.

The graph below shows the relationship between nutrient supply (Kg / Ha) and yield of maize (tons per Ha)

- a) Describe the relationship between the supply of each nutrient and yield of maize.
 (03 marks)
 - As the quantity of a increases slightly, the yield of maize increases rapidly and further increase in supply of a lowers the yield
 - As the quantity of b increases gradually, the yield of maize also increases gradually; it then reaches the maximum, further increase in the supply of b lowers yields
 - · At low supply of a, maize yield is high, reaches maximum and declines
 - At high supply of b, maize yield is high
 - Yield is high at low supply of a and its high at high supply of b

(Award 1 mark for any 3 points, $1 \times 3 = 03$ marks)

Explain the effect of supplying each of the nutrients on the yield of maize.

(04 marks)

- Micro nutrient a is required in small amounts, it becomes toxic or harmful t maize when supplied in high quantities
- Macro nutrient b is needed in larger amounts to sustain high maize yields and it becomes toxic /harmful at very high quantities

(Awa	rd 1 mark for any 4 points, 1× 4 = 04 marks) 1Mention: 1Explanati	ion for each a
c)	Name two nutrients in the category of: (i) A (micro nutrients) Iron Molybdenum Manganese Boron etc	(02 marks)
$(Award^{1}/_{2} mark for any 2, ^{1}/_{2} x 2 = 1 mark)$		
(Awa	 (ii) B (macro nutrients) Magnesium Calcium Phosphorus Potassium nitrogen etc rd ¹/₂ mark for any 2, ¹/₂ x 2 = 1 mark) 	
d)	Identify the;	(02 marks)
v. 197	(i) Adequate nutrient level • a - 30kg/ha • b - 100kg/ha rd ¹ /2 mark for any 2, ¹ /2 x 2 = 1 mark)	(
	 (ii) Toxicity level for each of the nutrients. a - 31kg/ha 	
(Awa	• b - 102 kg/ha $rd^{1}/_{2}$ mark for any 2, $^{1}/_{2}$ x 2 = 1 mark)	
e) (Awa	 What conditions make a soil nutrient to be in the same level as b? Its actively involved in plant nutrition The plant cannot complete its lifecycle without the element No other elements can take its place in plant nutrition rd 1 mark for any 3 points, 1 × 3 = 03 marks) 	(03 marks)
f) (Awa	 Give ways of increasing the concentration of nutrients in the soil. (06 Adding organic matter / organic fertilizers Addition / application of artificial fertilizers Bush fallowing to conserve nutrients Intercropping legumes Application of lime / liming Mulching / applying organic mulches rd 1 mark for any 6 points, 1 × 6 = 06 marks) 	тагкѕ)
SECTION B (20 MARKS) CROP PRODUCTION		
	Answer one question from this section.	
a) Des	scribe the features that suit organic matter to its role in soil. (08 r	narks)

- It has a high buffer capacity which enables it to resist change in pH
- Has a high nutrient holding capacity or adsorption capacity due to its colloidal nature hence retain nutrients long / prevent leaching
- Has a high Cation exchange capacity to release nutrients easily
- Dark colour to regulate soil temperature
- Is insoluble in water hence a long residual effect in the soil
- · Spongy in nature to allow good air circulation and drainage
- High water holding capacity and adsorptive power hence retaining water for a long period
- It has a low plasticity hence the ability to improve soil structure by reducing on the sticky nature of clay soil
- Has a high level of nutrients required for better plant growth and bacteria nourishment
- Has a large surface area for adsorption of nutrients / ions

(Award 1 mark for any 8 points, $1 \times 8 = 08$ marks)

b) Explain ways of increasing soil aggregate stability.

(12 marks)

- Minimum tillage which allows soil structure to recover and reduces break down of organic matter
- Afforestation / re-afforestation which helps to add organic matter and roots bind soil particles
- Mulching to soil erosion and add organic matter after decomposition
- By liming to bind soil particles together / application of agricultural lime / calcium carbonate
- Practicing crop rotation to ensure proper soil coverage / involving grass leys to bind soil particles together
- By growing cover crops to control erosion / cover cropping
- By carrying out controlled drainage to remove excess water in order to avoid dispersion of soil particles
- Manuring / application of manure to increase aggregate stability / to bind particles together
- · Growing of cover crops to ensure good vegetation cover / control soil erosion
- Practicing controlled grazing to ensure good soil surface cover / avoid destroying surface cover
- Bush fallowing to ensure a good surface cover and increases organic matter content
- Carrying out controlled irrigation of the land to avoid destruction of the soil structure / particles
- Cultivation the soil at the correct moisture content to avoid dispersion of particles / destroying the soil structure \
- By practicing agroforestry to bind soil particles together by tree roots

(Award $1^{1}/_{2}$ mark for any 8 points, $1^{1}/_{2}$ x 8 = 12 marks)

a) Describe how a farmer would ensure high yields of Okra

(12 marks)

- Selecting and Planting high yielding variety
- Application of fertilizers / Manuring to supply more nutrients and lighten the soil. This
 can be done by side dressing with compost / slow release fertilizers
- Proper seedbed preparation ridged soil
- · Choosing soils with favourable conditions like suitable temperature, loose and well

- drained, moderately fertile
- · Proper spacing to maximize plant size and yield a seed rate of 4-6 kg per acre
- Adequate irrigation at least once a week for consistent yields
- Carry out seed treatment to increase germination and protect plants from soil borne diseases
- Pest control to minimize losses like aphids, sting bugs. Bugs can be sprayed using soapy water to keep them away or handpicked and killed
- Disease control to reduce on crop losses
- Proper harvesting of okra pods i.e. harvest okra when pods are 2-3 inches long
- Mulching around the plant to prevent weed growth and also conserve soil moisture
- Liming to create a suitable pH for the plant to grow well e.g. 6.5 7.0
- Carry out thinning when the seeds you planted have germinated to ensure proper spacing of plants
- Proper weeding while okra is still young to avoid competition for nutrients

(Award 1mark for any 12 points, $1 \times 12 = 12$ marks)

b) Outline the limitations involved in growing perennial crops.

(08 marks)

- · Difficult to include in a crop rotation program
- Require large capital investment
- Reduction of the water table
- Create food scarcity problems
- Increase pest population
- Reduction in productivity over a few years
- Mainly need large acreage / large piece of land
- Require intense labour / more labour is required

(Award 1 mark for any 8 points, $1 \times 8 = 08$ marks)

SECTION C (20 MARKS) ANIMAL PRODUCTION

Answer one question from this section.

Distinguish between digestibility and biological value as applied in animal nutrition.
 (04 marks)

 Digestibility is the measure of how much nutrients a feed provides in a given volume expressed as a percentage while Biological value (BV) refers to the proportion of nitrogen that is absorbed from food and used in the manufacture of body proteins.

(Award 2 marks for each correct definition, $2 \times 2 = 04$ marks)

b) Describe the main characteristics of an ideal ration for feeding farm animals.

(10 marks)

- . Its attractive and palatable to the animals
- It contains enough water for metabolism and heat regulation
- Its non-toxic to the animals
- It provides sufficient nutrients to provide / supply energy necessary for proper functioning of the animal
- It contains enough quality proteins to ensure growth and maintenance of the animal
- It has a bulk in proper proportions to support nutritive value
- It contains vitamins / wholesome

(Award 2 marks for any 5 points, $2 \times 5 = 10$ marks)

c) State ways in which animals utilize digested and absorbed food materials. (06 marks)

- · For manufacturing of chemical substances needed by the animal's body
- For synthesis of products, some nutrients are used to manufacture milk
- For production of energy especially from fats and carbohydrates
- For repair of worn out body tissues
- For body building / growth and development e.g. amino acids are used to build animal's body cells and tissues
- Build resistance against diseases.
- For reproduction to facilitate multiplication

(Award 1 mark for any 6 points, $1 \times 6 = 06$ marks)

a) Explain factors that predispose farm animals to diseases

(08 marks)

- Age; Young animals have undeveloped immunity / low resistance while the old ones have a worn out immune system which exposes both more to disease easily.
- Climate; some diseases are common in tropical warm climate than in the temperate regions. - Also Very cold weather and humid conditions would expose the animals to respiratory infections like pneumonia.
- Pollution; Air and water pollution exposes the animals to many infections and may also cause poisoning.
- Hereditary; Inheritance of large and pendulous udders in dairy animals predisposes such animals to disease like mastitis.
- Breed; exotic breeds of cattle are more prone to tick borne diseases than indigenous cattle
- Communal grazing; this brings herds of cattle together with those that are diseased hence predisposing the health animals
- Mechanical injuries; these may act as entry points for the pathogens
- Skin coat colour, the skin coat colour may attract organisms that cause or transmit diseases
- Drainage, poor drainage in animal houses encourage breeding of pathogens and their spread
- Stress, this reduces immunity in animals making them susceptible to diseases
- Soil, this act as a hiding ground of some pathogens and spores that attack animals
- Presence of thick vegetation, this act as a hide out for vectors like tsetse flies that attack animals
- Sex; some diseases are more prevalent / common in one sex than the other
- Air circulation / ventilation / housing, poor ventilation in animal houses encourages the spread of air borne diseases
- Feeding, poor feeding deprives the animal's ability to fight against infections hence increasing susceptibility to diseases
- Poor hygiene, this encourages pathogens to contaminate feeds and water hence easy spread of disease
- Improper disposal of dead animals; animals that have died due to disease once disposed poorly may lead to easy disease outbreaks

(Award 1 mark for any 8 points, $1 \times 8 = 08$ marks) $^{1}/_{2}$ Mention: $^{1}/_{2}$ Explanation

b) Mention the various practices involved in the spread of animal diseases on the farm (08

marks)

- Use of contaminated equipment like vaccination equipment, drenching guns, insemination syringe may spread disease.
- Improper disposal of dead animals that have died due to a certain disease.
- Introduction of sick animals to the farm, which can transmit disease to the healthy ones by contact.
- Introduction of healthy animals that are carriers of certain diseases.
- Through use of contaminated water and feeds.
- Vectors like tsetse flies and ticks can also transmit disease.
- Wild birds and rodents may carry disease to the domestic animals through contaminating feeds and water.
- Shoes and clothing of any one who moves from flock to flock or in animal quarters can spread disease.
- Air borne organisms like bacteria spores may be spread through air and cause disease.
- The soil can Harbour resting stages for anthrax spores which can survive for up to 40 years.
- Through infected animal products like eggs in birds can spread new castle to chicks
- Through blood sucking vectors like ticks that transmit pathogens

(Award any 8 points for 1 mark @, $8 \times 1 = 8$ marks)

c) Outline the relevancy of keeping farm animals healthy

(04 marks)

- Ensures long economic and productive life of animals
- Enables animals to produce quality produce like meat, milk
- High maximum production / high performance
- Controls the spread of diseases to other animals / human beings
- Animals grow faster and reach maturity early
- Reduces the cost of production / managing animals through buying drugs / treatment
 (Award 1 mark for any 4 points, 1 × 4 = 04 marks)

SECTION D (20 MARKS)

AGRICULTURAL ENGINEERING
Answer one question from this section.

a) Describe the characteristics of good livestock house.

(12 marks)

- Strong walls / firm walls to reduce chances of accidents to animals residing there
 after collapsing.
- Concrete floor which makes cleaning easy.
- Big enough / enough space for all the animals to be housed so as to avoid overcrowding
- Leak proof roof / water proof roof to prevent rain water from entering the building.
- · Have walls that are high enough to keep animals in the house.
- · Have enough windows to allow in light.
- · Have enough litter to absorb moisture / provide warmth to animals
- · Walls high enough and strong to keep the animal in and ensure security
- Adjacent dung heap down slope and down ward of the animal house / a proper waste disposal system
- Have a drainage channel
- · Store for supplementary feeds

- Well ventilated for easy air circulation
- Strong lockable door
- Rough floor finish to prevent sliding of animals / accidents
- A feed trough for feeds
- A water trough for water
- A design that e enables animals to see each other
- · Having a provision for adequate light
- Large space between the top of walls and roof for good ventilation

(Award $1^{1}/2$ mark for any 8 points, $1^{1}/2 \times 8 = 12$ marks)

b) Explain factors considered when designing a building for housing farm processing equipment. (08 marks)

- Power installation for running machines
- Good ventilation to allow easy air circulation
- Easy to access machine inside with consideration of movement of tools with in the building
- Accessibility, easy to transport of machinery / inputs / products
- Position of exit from the house in the event of fire outbreak
- Ease of cleaning the building
- Provision of water supply with in the building
- Ease of loading and off loading
- Temperature insulation
- Ease of future expansion
- Size of the building, large enough to accommodate machinery / equipment

(Award any 8 points for 1 mark @, $8 \times 1 = 8$ marks)

a) State reasons why wood is versatile among the construction materials. (06 marks)

- Wood is use for making doors
- Wood is use for making wooden foundations
- Wood is use for making ceilings
- Wood is use for making the roof
- Wood is use for making walls
- Wood is use for making columns
- Wood is use for making feed troughs
- Wood is use for making furniture
- Wood is use for fencing / used as fencing poles

(Award any 6 points for 1 mark @, $6 \times 1 = 6$ marks)

b) Describe factors that should be considered when selecting good quality wood. (14 marks)

- · Strength of wood; which is dependent on species used and seasoning ability
- Presence of wood defects like fissures, knots etc should not be selected
- Cost of wood; choose that which is relatively cheaper to buy
- Workability; should be easy to saw, shape or nail
- Ability to hold paint, good wood should be able to hold paint especially where there is exposure to pest attack and rain water

- Warping ability; choose one which does not bend or warp / twist / bow for hard jobs
- Hardness; good wood selected should be resistant from wear
- Ability to hold nails; should have greater nail holding ability y

(Award 2 marks for any 6 points, $2 \times 6 = 12$ marks)

SECTION E (20 MARKS) AGRICULTURAL ECONOMICS

Answer one question from this section.

a) Explain the causes of price instability for agricultural commodities.

(12 marks)

- Risks and uncertainties; these greatly affect the quality and quantity of production on farms
- Climate; the production of crop and animals is affected by rainfall, temperature / dependence on natural rainfall for production / change in supply
- Perishability of agricultural products and this makes them difficult to store hence must be sold soon after harvesting at any price.
- Agriculture products have inelastic demand so that excess production is difficult to absorb while maintaining price.
- Divergence between planned and actual output which at times is less than planned and at times, more than planned.
- Seasonality of production more especially crop products that are excess during harvesting period and scarce at planting.
- Stiff competition from synthetics like polyethene, plastics and other petroleum products for rubber and sisal.
- Long gestation period / biological lag; when prices for the products are high producers plan to produce more which takes a long time before production is affected.
- Bulkiness of the produce; most agriculture products are bulky which makes transportation difficult from places of plenty to scarcity.
- Agricultural products form a small part of manufactured production hence the excess supply cannot be absorbed in the manufacturing industry.
- Large number of producers; this makes it very difficult to plan and make actual productions giving room to peasant to sell at any price.
- Protectionism by developed nations; It's difficult to export surplus agricultural products to developed countries because of heavy regulations and tariffs imposed on agricultural imports.
- Low level of industrialization; Most LDC's don't process their agricultural products to final products which reduces the value of such items.
- Changing technologies; more technologies are being discovered which use less raw materials like cloth made of polyester and less
- Weak commodities agreements.
- Lack of alternative use for land.

(Award $1^{1}/_{2}$ mark for any 8 points, $1^{1}/_{2}$ x 8 = 12 marks)

b) Suggest measures to revert price instability in Uganda.

(08 marks)

- Improving technology in agriculture production to increase production and reduces scarcity.
- International commodity agreements these fix quotas and prices for both buyers and sellers of commodities to reduce exploitation.
- Improving transport to move produce to places where there is shortage to control price

fluctuations.

- Price support the farmers sale their commodities at market price and present their receipts for government to top up to a realistic price.
- Buffer stocks the surplus during plenty is bought by marketing boards and sold during scarcity.
- Forming farmers' organizations and commodity agreements to negotiate for better prices.
- Barter trade which helps in disposing off the surplus
- Fixing prices by government maximum or minimum price legislation so that the sellers are not exploited over price.
- Diversification which guards against total loss.
- Improving storage facilities more especially for the Perishables so that supply can be regulated to meet demand.
- Increase research so that good quality crops resistant to drought and pests, short gestation period are grown to reduce risks.
- Processing of agriculture products before being sold to increase their shelf life and value for higher prices.
- Fixing quotas for farmers so that over production is checked that can result into reduced prices.

(Award any 8 points for 1 mark @, 8 x 1 = 8 marks)

a) Define the term production function

(02 marks)

 This is the functional / physical relationship between the quantities of inputs (factors of production) and maximum amount of output Or This is the physical relationship between inputs and outputs.

(Award 2 marks for a correct definition $2 \times 1 = 02$ marks)

- b) With aid of illustrations, describe the types of production functions experienced in farming. (10 marks)
 - Increasing returns to scale; this is when output increases more than proportional
 physical quantities of inputs used, i.e output doubles the input.

 Decreasing returns to scale; this is when a change in inputs brings a less than proportional change in output.

 Constant returns to scale; this is when output changes in the same proportion as inputs.

(Award any 3 forms for 3 mark3 @, 3 x 3 = 9 marks)

- c) Suggest measures of increasing the profitability of a farming business (08 marks)
 - Use of better techniques of production i.e. improved seeds, good breeds.
 - Processing agriculture products so as to add value hence more profits.
 - · Advertising your produce so that buyers are aware
 - Grading the produce to allow fair prices for each product.
 - Packing of the produce so as to reduce transport costs and increase the profit margin.
 - Proper control of pests and diseases i.e. increase quality.
 - Proper allocation of resources to avoid over spending and under spending.
 - Use technical skills in management of enterprises e.g fertilizer application, correct spacing, pests and disease control.
 - Choosing correct business / farm enterprise with less risks and uncertainties
 - Having good storage facilities to allow selling produce when prices are high
 - Timely planting of crops so as to benefit from the high prices that are offered at the beginning of the harvesting season.
 - Proper record keeping for assessing progress of the farm business
 - Proper budgeting to reduce losses in business
 - Specialization as proper management skills are developed as a result of specialization.
 - Proper combination of farm enterprises which helps in reducing costs hence increasing profits in business. E.g poultry and horticulture.

- Use of proper farming methods like crop rotation will increase on the yields
- Use of machinery which increases efficiency i.e. ensures proper tillage which leads to high yields.

(Award any 8 points for 1 mark @, 8 x 1 = 8 marks)

END

