Exercice 1

On effectue la simulation des équations de Cahn-Hilliard pour les deux schémas donnés. Dans un premier temps, on part de la même donnée initiale avec le même pas de temps, à savoir $\Delta t = 1 \cdot 10^{-4}$.

FIGURE 2 – Schéma IMEX relaxé avec $T=0.1,\,\varepsilon=0.1$ sur $\Omega=\left[-10,10\right]^2$

On remarque qu'en partant de la même donnée iniatiale, on obtient plus ou moins le même résultat à la fin de la simulation. Ce n'est donc pas la comparaison la plus intéressante. On peut essayer de faire varier le pas de temps pour quels schémas est stable avec un Δt plus grand. On essaie pour $\Delta t = 0.01$.

FIGURE 3 – Schéma IMEX relaxé avec $\Delta t = 0.01$, T = 10, $\varepsilon = 0.1$ sur $\Omega = [-10, 10]^2$

Après simulation, on observe que pour un pas de temps plus grand, le schéma IMEX relaxé est très stable. Alors que le schéma IMEX classique exploque au bout de seulement 6 itérations ce qui rends la simulation complètement impossible.

Exercice 2.1

1. On part de l'équation de base,

$$\partial_t u - \Delta(\Delta^2 u + 2\Delta u + \frac{1}{\epsilon^2} f(u)) = 0.$$
 (1)

Puis, on pose

$$w = \Delta^2 u + 2\Delta u + \frac{1}{\epsilon^2} f(u)$$

Alors, on obtient le système d'équations

$$\begin{cases} \partial_t u - \Delta w = 0 \\ w = \Delta^2 u + 2\Delta u + \frac{1}{\epsilon^2} f(u) \end{cases}$$

Avec, $u(x,0) = u_0(x)$ et $w(x,0) = w_0(x)$.

De plus, on pose que

$$p=-\Delta u$$

Alors, on a que

$$w = -\Delta p - 2\Delta p + \frac{1}{\epsilon^2} f(u)$$

Donc, au final, on obtient le système d'équations

$$\begin{cases} \partial_t u - \Delta w = 0\\ w = -\Delta p - 2\Delta p + \frac{1}{\epsilon^2} f(u)\\ p = -\Delta u \end{cases}$$

Avec,
$$u(x,0) = u_0(x)$$
, $w(x,0) = w_0(x)$ et $p(x,0) = p_0(x)$.

2. On part de notre équation de la forme

$$\begin{cases} w - \Delta w = 0 \\ w = -\Delta p - 2p + \frac{1}{\epsilon^2} f(u) \\ p = -\Delta u \end{cases}$$

Avec, $u(x,0) = u_0(x)$, $w(x,0) = w_0(x)$ et $p(x,0) = p_0(x)$. auguel on associe la formulation variationnelle suivante

$$\begin{cases} (\partial_t u, \phi_1) + (\nabla w, \nabla \phi_1) = 0, & \forall \phi_1 \in V_1 \\ (w, \phi_2) = (\nabla p, \nabla \phi_2) - 2(p, \phi_2) + \frac{1}{\epsilon^2} (f(u), \phi_2), & \forall \phi_2 \in V_2 \\ (p, \phi_3) = (\nabla u, \nabla \phi_3), & \forall \phi_3 \in V_3 \end{cases}$$

De plus, on prendra $V_1 = V_2 = V_3 \in H^1(\Omega)$.

3. En utilisant la formulation faible précédente, on obtient la formulation faible approché

$$\begin{cases} (\partial_t u, \phi_1) + (\nabla w, \nabla \phi_1) = 0, & \forall \phi_1 \in V_{1h} \\ (w, \phi_2) = (\nabla p, \nabla \phi_2) - 2(p, \phi_2) + \frac{1}{\epsilon^2} (f(u), \phi_2), & \forall \phi_2 \in V_{2h} \\ (p, \phi_3) = (\nabla u, \nabla \phi_3), & \forall \phi_3 \in V_{3h} \end{cases}$$

avec, $V_{1h} = V_{2h} = V_{3h}$, des espaces d'éléments finies construits sur des éléments \mathbb{P}_1 . A l'aide de cette formulation faible approché, on peut construire le schéma IMEX suivant

$$(\frac{u_h^{k+1} - u_h^k}{\Delta t}, \phi_{1h}) - (\nabla w_h^{k+1}, \nabla \phi_{1h}) + (w_h^{k+1}, \phi_{2h}) - (\nabla p_h^{k+1}, \nabla \phi_{2h}) + 2(p_h^{k+1}, \phi_{2h}) - \frac{1}{\epsilon^2} (f(u_h^k), \phi_{2h}) + (p_h^{k+1}, \phi_{3h}) - (\nabla u_h^{k+1}, \nabla \phi_{3h}) = 0$$

On applique ce schéma dans le programme FreeFem++ suivant :

```
// Parametres
    int nx = 100, ny = 100;
    real L = 10;
    real aa = -L, bb = L, cc = -L, dd = L;
 4
 5
    real eps = 0.1;
    real eps2 = 1/eps^2;
 6
    real T=2;
    real dt = 0.001;
 8
    // Creation des bordures du maillage
10
11
    border AB(t = aa,bb)\{x = t; y=cc; label = 1;\};
    border BC(t = cc, dd)\{x = bb; y=t; label = 2;\};
    border CD(t = bb,aa)\{x = t; y=dd; label = 3;\};
    border DA(t = dd,cc)\{x = aa; y=t; label = 4;\};
15
    // Creation du maillage et de l'espace d'elements finis
16
17
    mesh Th = buildmesh(AB(nx)+BC(ny)+CD(nx)+DA(ny));
    fespace Vh(Th,P1,periodic = [[1,x],[3,x],[4,y],[2,y]]);
18
19
20
    Vh u,w,p,uold,phi,psi,xi;
21
22
    // Definition de la condition initiale
23
    func u0 = 1-2*randreal1();
24
25
    macro Grad(u)[dx(u),dy(u)] //
26
    // Definition du probleme
28 problem CH([u,w,p],[phi,psi,xi]) =
```

```
29
      int2d(Th)(u*phi/dt)
      -\inf_{\mathbf{2d}}(\mathrm{Th})(\mathrm{uold*phi}/\mathrm{dt})
30
31
      + int2d(Th)(Grad(w)'*Grad(phi))
      + int2d(Th)(w*psi)
32
33
      - int2d(Th)(Grad(p)'*Grad(psi))
      + int2d(Th)(2*p*psi)
34
35
      - int2d(Th)(eps2*(uold^3 - uold)*psi)
36
      + int2d(Th)(p*xi)
37
      - int2d(Th)(Grad(u))*Grad(xi);
38
39
    u = u0;
    int k = 0;
40
41
42
    // Iterations
43
    for (real t=0;t=T;t+=dt){
44
45
            uold = u;
46
            CH;
47
      if (k == 0)
48
49
        plot(u,fill=true,value=true,nbiso=25,wait = 0, ps = "exo2 00.eps");
50
51
      if (k == 500)
52
53
54
        plot(u,fill=true,value=true,nbiso=25,wait = 0, ps = "exo2 05.eps");
55
56
      if (k == 1000)
57
        plot(u,fill=true,value=true,nbiso=25,wait = 0, ps = "exo2 10.eps");
58
59
      if (k == 1500)
60
61
        plot(u,fill=true,value=true,nbiso=25,wait = 0, ps = "exo2 15.eps");
62
63
      if (k == 2000)
64
65
        plot(u,fill=true,value=true,nbiso=25,wait = 0, ps = "exo2 20.eps");
66
67
68
69
      k = k+1;
70
```

4. A l'aide du programme précédent, on obtient

FIGURE 4 – Schéma IMEX de (1) pour $\Delta t = 10^{-3}$, $\epsilon = 0.1$ et T = 2

Exercice 2.2

Pour effectuer cette exercice, on utilise l'article de Laurence Cherfils, Alain Miranville, Shuiran Peng et Wen Zhang. On peut rédiger un programme en FreeFem++ et comparer les résultats obtenus avec ceux de l'article.

```
// Parametres
 1
 2
    int nx = 149, ny = 149;
    real L = ?;
    real \ aa = ?, bb = ?, cc = ?, dd = ?;
 4
    real eps = ?;
 5
    real T = ?;
 6
 7
    real dt = ?;
 8
9
    // Parametres probleme
    real a20 = ?;
10
11
    real a11 = ?;
    real a02 = ?;
12
    real a10 = ?;
13
    real a01 = ?;
14
15
    // Creation des bordures du maillage
16
    border AB(t = aa,bb)\{x = t; y=cc; label = 1;\};
17
    border BC(t = cc, dd)\{x = bb; y=t; label = 2;\};
18
19
    border CD(t = bb,aa)\{x = t; y=dd; label = 3;\};
    border DA(t = dd,cc)\{x = aa; y=t; label = 4;\};
20
21
22
    // Creation du maillage et de l'espace d'elements finis
23
    mesh Th = buildmesh(AB(nx)+BC(ny)+CD(nx)+DA(ny));
    fespace Vh(Th,P1, periodic = [[1,x],[3,x],[4,y],[2,y]]);
24
25
26
    Vh u,w,p,q,uold,phi1,phi2,phi3,phi4;
27
28
    // Definition de la condition initiale
29
    func u0 = ?;
```

```
30
31
     // Definition de la fonction f
32
     func real f(real c)
33
    return c^3-c;
34
35
     }
36
37
     macro Grad(u)[dx(u),dy(u)] //
38
39
     // Definition du probleme
     problem CH([u,w,p,q],[phi1,phi2,phi3,phi4]) =
40
41
       int2d(Th)(u*phi1/dt)
42
       - int2d(Th)(uold*phi1/dt)
       - int2d(Th)(Grad(w)^**Grad(phi1))
43
44
       + int2d(Th)("""g(x,uold)"""*phi1/eps)
45
       + int2d(Th)(w*phi2)
       - int2d(Th)(a20*eps*dx(p)*dx(phi2))
46
47
       - int2d(Th)(a02*eps*dy(q)*dy(phi2))
48
       -\operatorname{int2d}(\operatorname{Th})(a11*\operatorname{dy}(p)*\operatorname{dy}(\operatorname{phi2})/2)
49
       -\operatorname{int2d}(\operatorname{Th})(\operatorname{a11*dx}(q)*\operatorname{dx}(\operatorname{phi2})/2)
       - int2d(Th)(a10*eps*p*phi2)
50
51
       - int2d(Th)(a01*eps*q*phi2)
52
       + int2d(Th)(f(uold)*phi2/eps)
53
       + int2d(Th)(p*phi3)
       + int2d(Th)(dx(u)*dx(phi3))
54
55
       + int2d(Th)(q*phi4)
56
       + int2d(Th)(dy(u)*dy(phi4));
57
58
    u = u0;
59
60
     //Iterations
    for (real t=0;t=T;t+=dt){
61
62
       // Calculs et redefinition
63
              uold = u;
64
              CH;
65
66
       //Affichage
       plot(u,fill=true,value=true,nbiso=20);
67
68
```

1. Première simulation :

FIGURE 5 – Cahn-Hilliard-Oono. Condition initiale u_0 suivant une loi uniforme en [-1,1]. $f=u^3-u, g=0.5u, \epsilon=0.05, \Delta t=5\times 10^{-8}$.

2. Deuxieme simulation:

FIGURE 6 – Phase-field crystal. Condition initiale u_0 suivant une loi uniforme en [-1,1]. $f=u^3+(1-0.025)u, g=2u, \epsilon=1, \Delta t=10^{-4}$.

3. <u>Troisième simulation</u>:

FIGURE 7 – **Phase-field crystal**. $u_0 = 0.07 - 0.02cos(\frac{2\pi(x-12)}{32})sin(\frac{2\pi(y-1)}{32}) + 0.02cos^2(\frac{\pi(x+10)}{32})cos^2(\frac{\pi(y+3)}{32}) - 0.01sin^2(\frac{4\pi x}{32})sin^2(\frac{4\pi(y-6)}{32}).$ $f = u^3 + (1-0.025)u, \ g = 2u, \ \epsilon = 1, \ \Delta t = 10^{-3}.$