ГУАП

КАФЕДРА № 43

ОТЧЕТ ЗАЩИЩЕН С ОЦЕНКОЙ	[
ПРЕПОДАВАТЕЛЬ				
канд. техн. наук				А.А. Попов
должность, уч. степень, з	вание	подпись, дата		инициалы, фамилия
	ОТЧЕТ О ЛАН	БОРАТОРНОЙ РА	АБОТЕ №4	
ПРЕДСТАВЛЕНИЕ ДА	АННЫХ В ЭВМ	І СПОСОБЫ АЛІ	РЕСАНИИ С	БОРМАТЫ КОМАНЛ
АРИФМЕТИКО-ЛС				
	по курсу: АРХИ	ИТЕКТУРА ЭВМ	И СИСТЕМ	
РАБОТУ ВЫПОЛНИЛ				
СТУДЕНТ ГР. №	4831			К.А. Корнющенков
		подпись, да	та	инициалы, фамилия

Цель работы:

Изучение архитектуры процессора VAX-11, изучение форматов команд и данных процессора VAX-11, изучение системы арифметико-логических команд процессора VAX-11, изучение типов адресации процессора VAX-11. Выполнение простейших программ арифметико-логической обработки регистровых данных и данных из памяти с использованием различных способов адресации.

Задание:

Практическая часть работы включает выполнение следующих действий:

- а) формирование числовых значений в соответствии с индивидуальным заданием, перевод их в шестнадцатеричную систему счисления и определения минимального формата представления исходных данных как целых чисел;
- б) определения минимального формата и представление исходных данных как чисел с плавающей запятой (кроме X9);
- в) запись целочисленных данных в РОН;
- г) запись целочисленных данных в память по заданным адресам;
- д) запись чисел с плавающей запятой в память по заданным адресам;
- е) по заданному алгоритму составление и выполнение простейшей программы работы с целочисленными данными, хранящимися в РОН;
- ж) по заданному алгоритму составление и выполнение простейшей программы работы с целочисленными данными, хранящимися в памяти, с использованием различных способов косвенной адресации;
- з) по заданному алгоритму составление простейшей программы работы с целочисленными данными с использованием заданных способов адресации по смещению и через счетчик команд, причем непосредственная адресация должна быть по возможности заменена на литеральную.

Определение варианта:

$$NB = 2 ('K' = 202)$$

 $N\Gamma = 1 (4831)$

Определение данных для пункта а.

Значения исходных данных:

```
 \begin{array}{l} X1 = [ \ (-1) \ ** \ (NB + 0 \ ) \ ] \ * \ [ \ (NB + N\Gamma \ ) \ * \ 3 \ ] = \\ = [ \ (-1) \ ** \ (2 + 0 \ ) \ ] \ * \ [ \ (2 + 1 \ ) \ * \ 3 \ ] = 9 \\ X2 = [ \ (-1) \ ** \ (NB + 1 \ ) \ ] \ * \ (NB + N\Gamma + 17 \ ) = \\ = [ \ (-1) \ ** \ (2 + 1 \ ) \ ] \ * \ (2 + 1 + 17 \ ) = -20 \\ X3 = [ \ (-1) \ ** \ (NB + 2 \ ) \ ] \ * \ [ \ (NB + N\Gamma + 29 \ ) \ ** \ 2 \ ] = \\ = [ \ (-1) \ ** \ (2 + 2 \ ) \ ] \ * \ [ \ (2 + 1 + 29 \ ) \ ** \ 2 \ ] = \\ = [ \ (-1) \ ** \ (NB + 3 \ ) \ ] \ * \ [ \ (NB + N\Gamma + 23 \ ) \ ** \ 2 \ ] = \\ = [ \ (-1) \ ** \ (2 + 3 \ ) \ ] \ * \ [ \ (2 + 1 + 23 \ ) \ ** \ 2 \ ] = -676 \\ X5 = X3 \ ** \ 2 = 1048576 \\ X6 = \ (-1) \ * \ (X4 \ ** \ 2 \ ) = -456976 \\ X7 = \ (-1) \ * \ [ \ X5 \ * \ (2 \ ** \ 28 \ ) \ ] = -281474976710656 \\ X8 = \ (-1) \ * \ [ \ X6 \ * \ (2 \ ** \ 20 \ ) \ ] = 479174066176 \\ X9 = [ \ X7 \ * \ (2 \ ** \ 52 \ ) \ ] \ - 12 = -1267650600228229401496703205364 \\ \end{array}
```

Число	Десятичное значение	Шестнадцатерич- ный код	Минималь- ный формат
X1	9	09	Байт
X2	-20	EC	Слово
X3	1024	0400	Слово
X4	-676	FD5C	Слово
	1048576	0010 0000	Длинное
X5			слово
	-456976	FFF9 06F0	Длинное
X6			слово
	-281474976710656	FFFF 0000 0000	Квадрослово
X7		0000	
	479174066176	0000 006F 9100	Квадрослово
X8		0000	
X9	-1267650600228229401496703205364	FFFF FFF0 0000	Октаслово
		0000 0000 0000 0000	
		0000	

Определение данных для пункта б.

Представление чисел в формате с плавающей точкой:

$$|X1| = 9 = 1001.0 = 1.001 \cdot 211$$

$$|X2| = 20 = 10100.0 = 1.01 \cdot 2100$$

$$|X3| = 1024 = 100\ 0000\ 0000.0 = 1\ 01\cdot 21010$$

$$|X4| = 676 = 10\ 1010\ 0100.0 = 1.0101\ 001 \cdot 21001$$

$$|X5| = 1048576 = 1\ 0000\ 0000\ 0000\ 0000\ 0000.0 = 1\cdot 210100$$

$$|X6| = 456976 = 110\ 1111\ 1001\ 0001\ 0000.0 = 1.1011\ 1110\ 0100\ 01\cdot 210010$$

 $|X7| = 281474976710656 = 1\ 0000\$

Для представления чисел в формате с плавающей запятой одинарной точности требуется определить смещенную экспоненту, путем сложения двоичной экспоненты и значение половины байта (+127=0111 1111):

Число	Знак S	Смещенная экспонента Е	Остаток мантиссы М	Шестнадцатеричный код
X1	0	1000 0010	1000 0000 0000 0000 0000 000	4140 0000
X2	1	1000 0011	0101 0000 0000 0000 0000 000	C1A8 0000
Х3	0	1000 1001	0001 0000 0100 0000 0000 000	4488 2000
X4	1	1000 1000	0110 1100 1000 0000 0000 000	C436 4000

X5	0	1001 0011	0010 0001 1000 1000 0001 000	4990 C408
X6	1	1001 0010	0000 0011 0111 1110 0010 000	C901 BF10
X7	1	1010 1111	0010 0001 1000 1000 0001 000	D790 C408
X8	0	1010 0110	0000 0011 0111 1110 0010 000	5301 BF10

Определение данных для пункта в.

2 mod 20 = 2 (по таблице 2.1)

Определение данных для пункта г.

Десятичное Значение	Шестнад-ца- теричный код
Aдp(X1) = 2	02
Aдp(X2) = 12	0C
Aдp(X3) = 22	16
Aдp(X4) = 32	20
Aдp(X5) = 42	2A
Aдp(X6) = 52	34
Aдp(X7) = 62	3E
Aдp(X8) = 72	48
Aдp(X9) = 82	52

Определение данных для пункта д.

Адреса для чисел с плавающей запятой: NB=2

Десятичное значение	Шестнад- цатеричный код
Aдp(X1) = 2 + 100 = 102	66
Aдp(X2) = 2 + 110 = 112	70
Aдp(X3) = 2 + 120 = 122	7A
Aдp(X4) = 2 + 130 = 132	84
Aдp(X5) = 2 + 140 = 142	8E
Aдp(X6) = 2 + 150 = 152	98
Aдp(X7) = 2 + 160 = 162	A2
Aдp(X8) = 2 + 170 = 172	AC

По пункту е:

Начальный адрес размещения программы:

$$Aдp = 2 * 10 + 200 = 220$$

Шестнадцатеричное значение: Адр = DC

Алгоритм программы:

$$2 \mod 6 = 2$$

По пункту ж:

Начальный адрес размещения программы:

$$Aдp = NB + N\Gamma + 230 = 233$$

Шестнадцатеричное значение: Адр = ЕА

Промежуточные ячейки, используемые при реализации косвенной адресации, расположены с адреса:

$$Aдp = (NB * N\Gamma) + 250 = 253$$

Шестнадцатеричное значение: Адр = FE

Алгоритм программы:

 $2 \mod 4 = 2$

Типы используемой адресации:

 $2 \mod 18 = 2$

Номер	1		2		3		4			5	
оператора Операнд	ОП1	ОП2	ОП1	ОП2	ОП1	ОП2	ОП1	ОП2	ОП3	ОП1	ОП2
Тип	7	9	9	6	8	-	8	6	7	7	8
адресации											

где:

6 -косвенная регистровая (простая косвенная) адресация;

8 -автоинкрементная (простая косвенная с автоувеличением);

7 -автодекрементная (простая косвенная с автоуменьшением);

9 -косвенная автоинкрементная адресация (двойная косвенная с автоувеличением

По пункту з:

Начальный адрес размещения программы:

$$Aдp = NB + N\Gamma +300 = 304$$

Шестнадцатеричное значение: Адр = 130

Промежуточные ячейки, используемые при реализации косвенной адресации, расположены с адреса:

$$Aдp = (NB * N\Gamma) + 270 = 273$$

Шестнадцатеричное значение: 112

Алгоритм программы:

$$2 \mod 4 = 2$$

$$2^{**}N_{\Gamma} = 2^{**}2 = 4 \Rightarrow X6 := X2 * 4$$

 $2^{**}(-N_B) = 2^{**} - 2 = 1 / 4 \Rightarrow X5 := X3 / 4$

Типы используемой адресации:

$2 \mod 19 = 2$

Номер	1			2			3		4		
оператор											
a											
Операнд	ОΠ	ОП	ОΠ	ОП	ОП	ОΠ	ОΠ	ОΠ	ОΠ	ОП	ОΠ
1	1	2	3	1	2	3	1	2	1	2	3
Тип	8F	Cx	E	8F	AF	Dx	8F	Bx	Fx	9F	A
адресаци			F								X
И											

Номер	5		6		7		8		9
оператора									
Операнд	ОП1	ОП2	ОП1	ОП2	ОП1	ОП2	ОП1	ОП2	ОП1
Тип	BF	CF	DF	Ex	Bx		FF	Cx	Ax
адресации									

Выполнение заданий

Пункт в:

Регистры с записанными целочисленными данными:

Пункт г: Целочисленные значения, записанные в память:

Редактор па	мяти															
	+0	+1	+2	+3	+4	+5	+6	+7	+8	+9	+A	+B	+C	+D	+E	+F
00000000	00	00	00	00	0C	00	00	00	00	00	00	00	00	00	EB	FF
00000010	00	00	00	00	00	00	00	00	41	04	00	00	00	00	00	00
00000020	00	00	27	FD	00	00	00	00	00	00	00	00	81	18	12	00
00000030	00	00	00	00	00	00	OF	E4	F7	FF	00	00	00	00	00	00
00000040	00	00	00	FO	77	DE	FE	FF	00	00	00	00	10	BF	81	00
00000050	00	00	00	00	F4	FF	7E	E7								
00000060	ED	FF	FF	FF	00	00	00	00	00	00	00	00	00	00	00	00
00000070	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00

Пункт д: Числа с плавающей запятой, записанные в память:

Редактор па	иткм															
	+0	+1	+2	+3	+4	+5	+6	+7	+8	+9	+A	+B	+C	+D	+E	+F
00000000	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
00000010	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
00000020	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
00000030	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
00000040	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
00000050	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
00000060	00	00	00	00	00	00	00	00	41	40	00	00	00	00	00	00
00000070	00	00	A 8	Cl	00	00	00	00	00	00	00	20	88	44	00	00
08000000	00	00	00	00	00	40	36	C4	00	00	00	00	00	00	08	C4
00000090	90	49	00	00	00	00	00	00	10	BF	01	C9	00	00	00	00
0A00000	00	00	80	C4	90	D7	00	00	00	00	00	00	10	BF	01	53
000000B0	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
000000C0	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
000000D0	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
000000E0	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
000000F0	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
00000100	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
00000110	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
00000120	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
00000130	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
00000140	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
00000150	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
00000160	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
00000170	loo	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

Пункт е:

Память до выполнения:

Регистры до выполнения:

Регистры после выполнения:

Код программы:

Оператор	Адрес	Шестнадцатеричный	Мнемокод	Заданное
		код команд		выражение
1	DC	D7 55	DECL 55	X5 := X5 - 1
2	DE	B2 54 54	MCOMW 54	X4 := 7 X4
			54	
3	E1	AA 53 52	BICW2 53 52	X2 := 7 X3 &
				X2 .
4	E4	A0 52 53	ADDW2 52 53	X3 := X3 + X2
5	E7	C3 55 54 51	SUBL3 55 54	X1 := X4-X5
			51	
6	EB	D8 54 53	ADWC 54 53	X3 :=
				X3+X4+C

Трассировка программы:

Номер	Номер	Значения до	Значения	Расчетные зна-
шага	регистра	выполнения	после	чения, ожидае-
		команды	выполнения	мые после вы-
			команды	полнения
				команды
1	5	0012 1881	0012 1880	0012 1880
2	4	FFFF FD27	FFFF 02D8	FFFF 02D8
3	3	0000 0441	0000 0441	0000 0441
	2	FFFF FFEB	FFFF FBAA	FFFF FBAA
4	2	FFFF FBAA	FFFF FBAA	FFFF FBAA
	3	0000 0441	0000 FFEB	0000 FFEB
5	5	0012 1880	00121880	00121880
	4	FFFF 02D8	FFFF 02D8	FFFF 02D8
	1	0000 000C	FFEC EA58	FFEC EA58
6	4	FFFF 02D8	FFFF 02D8	FFFF 02D8
	3	0000 FFEB	0000 02C3	0000 02C3

Пункт ж:

Реализация программы работы с целочисленными данными, хранящимися в памяти, с использованием различных способов косвенной адресации

$$R0 = 10 - X2$$

$$R1 = FE - &X3, &X6$$

$$R2 = 04 - X1$$

$$R3 = 2C - X5$$

$$R4 = 22 - X4$$

$$R5 = 0E - X2$$

$$R6 = 3A - X6$$

$$2 \mod 18 = 2$$

Номер	1		2		3		4			5	
оператора											
Операнд	ОП1	ОП2	ОП1	ОП2	ОП1	ОП2	ОП1	ОП2	ОП3	ОП1	ОП2
Тип	7	9	9	6	8	-	8	6	7	7	8
адресации											

Память до выполнения:

Регистры до выполнения:

Память после выполнения:

Регистры после выполнения:

Код программы:

Оператор	Адрес	Шестнадцатеричный	Мнемокод	Заданное
		код команд		выражение
1	EA	AE 70 91	MNEGW 70	X3 := -X2
			91	
2	ED	CA 91 62	BICL2 91 62	X1 := 7 X6 & X1
3	F0	D7 83	DECL 83	X5 := X5-1
4	F2	C3 84 65 76	SUBL3 84 65	X6 := X2-X4
			76	
5	F6	C0 73 85	ADDL2 73 85	X2 := X5 + X2

Трассировка программы:

Номер	Номер	Значения до	Значения	Расчетные зна-
шага	регистра	выполнения	после	чения, ожидае-
		команды	выполнения	мые после вы-
			команды	полнения ко-
				манды
1	0	0000 0010	0000 000E	0000 000E
	1	0000 00FE	0000 0102	0000 0102
2	1	0000 0102	0000 0106	0000 0106
	2	0000 0004	0000 0004	0000 0004
3	3	0000 002C	0000 0030	0000 0030
4	4	0000 0022	0000 0026	0000 0026
	5	0000 000E	0000 000E	0000 000E
	6	0000 003A	0000 0036	0000 0036
5	3	0000 0030	0000 002C	0000 002C
	5	0000 000E	0000 0012	0000 0012

Номер шага	Значения Хі до вы-	Значения Хі	Расчетные значе-
	полнения команды	после выполне-	ния, ожидаемые
		ния команды	после выполне-
			ния команды
1	FFEB	FFEB	FFEB
	0441	0015	0015
2	FFF7E40F	FFF7E40F	FFF7E40F
	0C	00	00
3	00121881	00121880	00121880
4	FD27	FD27	FD27
	FFEB	FFEB	FFEB
	FFF7E40F	000002C4	000002C4
5	00121880	00121880	00121880
	FFEB	0013186B	0013186B

Пункт з:

Реализация программы работы с целочисленными данными с использованием заданных способов адресации по смещению ичерез счетчик команд

Память до выполнения:

Редактор па	мяти																х
	+0	+1	+2	+3	+4	+5	+6	+7	+8	+9	+A	+B	+C	+D	+E	+F	^
00000000	00	00	00	00	0C	00	00	00	00	00	00	00	00	00	EB	FF	
00000010	00	00	00	00	00	00	00	00	41	04	00	00	00	00	00	00	
00000020	00	00	27	FD	00	00	00	00	00	00	00	00	10	01	00	00	
00000030	00	00	00	00	00	00	0F	E4	F7	FF	00	00	00	00	00	00	
00000040	00	00	00	F0	77	DE	FE	FF	00	00	00	00	10	BF	81	00	
00000050	00	00	00	00	F4	FF	7E	E7									
00000060	ED	FF	FF	FF	00	00	00	00	00	00	00	00	00	00	00	00	
00000070	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
08000000	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
00000090	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
000000A0	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
000000B0	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
000000C0	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
000000D0	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
000000E0	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
000000F0	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
00000100	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
00000110	00	00	41	04	00	00	2C	00	00	00	0E	00	00	00	80	00	
00000120	00	00	18	00	00	00	43	00	00	00	00	00	00	00	00	00	
00000130	78	8F	02	C0	00	00	EF	FB	FE	FF	FF	78	8F	FE	AF	D2	
00000140	D1	00	00	A8	8F	27	FD	B5	00	АЗ	F4	00	00	00	00	9F	
00000150	04	00	00	00	A2	0A	AC	BF	С9	CF	C6	FE	D8	DF	BA	FF	
00000160	E2	0A	00	00	00	7C	B4	04	CO	FF	AC	FF	FF	FF	C2	00	
00000170	00	17	A2	F0	00	00	00	00	00	00	00	00	00	00	00	00	
00000180	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	¥

Регистры до выполнения:

Память после выполнения:

	1.0	1.1	1.2	1.2	1.4	+5	1.6	1.7	+8	+9	1.7	ı D	l+c	L D	1.0	1.00	
	+0	+1	+2	+3	+4		+6	+7		_	+A	+B		+D	+E	+F	
00000000	00	00	00	00	0C	00	00	00	00	00	00	00	00	00	EF	FF	
00000010	00	00	00	00	00	00	00	00	30	04	01	00	00	00	00	00	
00000020	00	00	7A	FF	01	00	00	00	00	00	00	00	10	01	00	00	
00000030	00	00	00	00	00	00	AC	FF	03	00	00	00	00	00	00	00	
00000040	00	00	00	00	00	00	00	00	00	00	00	00	10	BF	81	00	
00000050	00	00	00	00	F4	FF	FF	FF	FF	FF	FF	FF	FF	FF	7E	E7	
00000060	ED	FF	FF	FF	00	00	00	00	00	00	00	00	00	00	00	00	
00000070	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
08000000	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
00000090	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
0A00000	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
000000B0	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
000000C0	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
000000D0	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
000000E0	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
000000F0	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
00000100	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
00000110	00	00	41	04	00	00	2C	00	00	00	0E	00	00	00	08	00	
00000120	00	00	18	00	00	00	43	00	00	00	00	00	00	00	00	00	
00000130	78	8F	02	CO	00	00	EF	FB	FE	FF	FF	78	8F	FE	AF	D2	
00000140	D1	00	00	A8	8F	27	FD	В5	00	АЗ	F4	00	00	00	00	9F	
00000150	04	00	00	00	A2	0A	AC	BF	C9	CF	C6	FE	D8	DF	BA	FF	
00000160	E2	0A	00	00	00	7C	B4	04	CO	FF	AC	FF	FF	FF	C2	00	
00000170	00	17	A2	FO	00	00	00	00	00	00	00	00	00	00	00	00	
00000180	00	00	0.0	00	00	00	00	00	00	00	00	00	00	00	00	00	

Регистры после выполнения:

Код программы:

Оператор	Адрес	Шестнадцатеричный	Мнемокод	Заданное
		код команд		выражение
1	130	78 8F 02 C0 00 00	ASHL #02	X6 :=
		EF FB FE FF FF	0000(R0)	X2*(2**NΓ)
			FF FF FE FB	
2	13B	78 8F FE AF D2 D1	ASHL #FE	X5 :=
		00 001	D2	X3*(2**(-
			@0000(R1)	NB))
3	143	A8 8F 27 FD B5 00	BISW2 #FD27	X2 := X2 V
			@00(R5)	X4
4	149	A3 F4 00 00 00 00	SUBW3	X4 := X1 - X3
		9F 04 00 00 00 A2	@0000000(R4)	
		0A	@#0000004	
			0A(R2)	
5	156	AC BF C9 CF C6	XORW2 @C9	X4 := X4 (+)
		FE	FEC6	X3
6	15C	D8 DF BA FF E2 14	ADWC @FFBA	X5 :=
		00 00 00	00000014(R2)	X5+X2+C

7	165	7C B4 04	CLRQ	X7 := 0
			@04(R2)	
8	168	C0 FF AC FF FF FF	ADDL2	X3 := X3 + X2
		C2 00 00	@FFFFFFAC	
			0000(R2)	
9	171	17 A2 F0	JMP F0(R2)	Переход
				(ЈМР) по
				адресу
				(NB+NΓ)*2

Трассировка программы:

Номер	Адрес	Значения до	Значения	Расчетные зна-
шага	начальной	выполнения	после	чения, ожидае-
	ячейки	команды	выполнения	мые после вы-
	памяти		команды	полнения
				команды
1	132	02	02	02
	0E	FFEB	FFEB	FFEB
	36	FFF7E40F	0003FFAC	0003FFAC
2	13D	FE	FE	FE
	112	0441	0441	0441
	2C	121881	0110	0110
3	145	FD27	FD27	FD27
	0E	FFEB	FFEF	FFEF
4	18	441	441	441
	04	0C	0C	0C
	22	FD27	FBCB	FBCB
5	18	0441	0441	0441
	22	FBCB	FF8A	FF8A
6	0E	FFEF	FFEF	FFEF
	2C	0110	010100	010100
7	43	FFFEDE77F0	0	0
8	0E	FFEF	FFEF	FFEF
	18	441	10430	10430
9	08			

Вывод

В ходе лабораторной работы были изучены архитектура процессора VAX-11, форматы команд и данных процессора VAX-11, системы арифметико- логических команд процессора VAX-11, типы адресации процессора VAX-11. Выполнены простейшие программы арифметико-логической обработки регистровых данных и данных из памяти с использованием различных способов адресации.