



# Mechanisms of large-scale low-frequency Dynamic Sea Level in Australia-Antarctica Basin: an adjoint sensitivity analysis

**Dong Jian** 

Advisors: Dr. Armin Köhl & Prof. Dr. Detlef Stammer

Institude of Oceanograhy, Universität Hamburg, January xx, 2022

# 1. Introduction: Sea Level

global mean sea-level satellite altimetry  $4.68 \text{ mm yr}^{-1}$ 100 Jan 2013-Mar 2022 average trend:  $3.33 + -0.33 \text{ mm yr}^{-1}$ 90 80 sea-level (mm) 3.29 mm yr<sup>-1</sup>  $2.27 \text{ mm yr}^{-1}$ Jan 2003-Dec 2012 Jan 1993–Dec 2002 30 20 2017 2020 2023 2011 2014 time (year)

- GMSL rise 3.3 mm/yr
- Rate of rise has increased
- Thermal expansion (46%)
- Melting of grounded ice (44%)
- terestrial water change (10%)



- Not uniform spatially
- Southern Ocean
- Different regions have different dirvers/mechanisms

### Processes that influence regional sea level



### (1) Dynamical Sea Level

- Ocean circulation:
  - Waves
  - Ekman processes
- Density changes:
  - Salinity
  - temperature
- Surface Wind Stress
- Surface Heat Flux:
  - Sensiable heat
  - latent heat
  - radiation
- Freshwater Flux:
  - Precipitation/Evaporation
  - Land water

### (2) Static Sea Level

- Ocean loadings:
  - Land motion
  - Gravity/rotation/solid earth

### Region: Australia-Antarctica Basin



SSH EOF1 (Webb and de Cuevas, 2002)

- High-frequency barotropic variability
- Wind-driven Ekman pumping

- Increased interannual SSH variability under global warming
- regional wind stress

Relatively littile is known about low-frequency variability What is mechanism of low-frequency (> 3 years) sea-level variability?

# Research question:

# How sensitive of large—scale low-frequency dynamic sea level to surface forcing and whats its associated mechanism?

- 1. When/where/which forcing is able to generate SSH anomaly (a typical signal characterizing low-frequency variability)?
- 2. Which forcing has the most contribution?
- 3. What ocean dynamics are involved to produce SSH anomaly?

## An estimate (which forcing contributes more)

- 1. Monthly-varying input forcing: zonal wind, meridional wind, heat flux, freshwater flux
- 2. Specify only one interannually-varying forcing + other forcing as monthly climatologies
- 3. Compare changes in SSH variability (RCP 8.5 scenerio historical scenario)



- Wind stress seems be to the most important to influence SSH variability
- Can we assess their contribution quantitatively?

2. Methodology: sensitivity analysis









## S: Adjoint sensitivity

Output 2 Reveal how the changes in x can affect J



distance

distance



### J: Cost Function

A function of the mode state Quantity of interest (e.g., mean sea level)

### x: Controls

Vector in time and space of model inputs that can affect *J* (e.g., surface wind stress)

# How to derive the adjoint sensitivity?

$$y = M(x)$$
Nonlinear Operator

### **Tangent Linear Operator**

$$y'_{i} = \sum_{j} \frac{\partial y_{i}}{\partial x_{j}} x'_{j}$$
Perturbation

$$J = J(y) = J[M(x)]$$

$$\frac{\partial J}{\partial x_j} = \sum_{i} \frac{\partial y_i}{\partial x_j} \frac{\partial J}{\partial y_i}$$
Adjoint Operator

Adjoint Operator

A graphical TLM schematic



- Variables are different
- Reversed indices i & j
- Order of calculation differ
- Adjoint operator propagates gradients backward in time to the initial

### 3. Model

### **MITgcm** and its adjoint

- Boussinesq Navier-Stokes equations
- Adjoint model via automatic differentiation

| $\boxed{\frac{\partial \mathbf{v}}{\partial t} + (f + \zeta)\hat{\mathbf{k}} \times \mathbf{v} + \nabla_{\!\!z}*KE + w\frac{\partial \mathbf{v}}{\partial z} + g\nabla_{\!\!z}*\eta + \nabla_{\!\!h}\Phi'}$ |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $= D_{z^*,v} + D_{\perp,v} + \mathcal{F}_v,$                                                                                                                                                                |
| $\frac{\partial \Phi'}{\partial z} = g \frac{\rho'}{\rho_{\rm c}},$                                                                                                                                         |
| $\frac{1}{H}\frac{\partial \eta}{\partial t} + \nabla_{z^*}(s^*v) + \frac{\partial w}{\partial z^*} = s^*\mathcal{F},$                                                                                      |
| $\frac{\partial (s^*\theta)}{\partial t} + \nabla_{z^*}(s^*\theta v_{\text{res}}) + \frac{\partial (\theta w_{\text{res}})}{\partial z^*}$                                                                  |
| $= s^*(\mathcal{F}_{\theta} + D_{\sigma,\theta} + D_{\perp,\theta}),$                                                                                                                                       |
| $\frac{\partial (s^*S)}{\partial t} + \nabla_{z^*}(s^*Sv_{\text{res}}) + \frac{\partial (Sw_{\text{res}})}{\partial z^*}$                                                                                   |
| $= s^*(\mathcal{F}_S + D_{\sigma,S} + D_{\perp,S}),$                                                                                                                                                        |

MIT general circulation model



### configuration

- 4°x4° spherical polar grid
- Quasi-global (80N-80S)
- 15 vertical layers (50m 690m)
- Climatological monthly mean forcing
- Spin-up: 100 year
- Integrated forward 10 years
- SST/SSS relaxation
- Timestep:
- Monthly snapshot fields are saved



# Cost Function: last 3 yr mean SLA averaged over target region

$$J=rac{1}{(t_2-t_1)A}\int_{t_1}^{t_2}\int_A\eta \quad \mathrm{d}A\,\mathrm{d}t$$

Quantity of interest J: Characterizing large-scale (>300km), low-frequency (> 3yr) SL variability off southwest Australia

Region of interest A: the box covering the first EOF mode [52-56S, 96-112E] (1x4 grids box)



#### **Timescale:**

(t2 - t1) is the last 3 year over a 10-year simulation

 $\eta$ : Dynamic Sea Level (sea level above geoid due to ocean dynamics)

# Forward versus adjoint

### **Forward model**



Adjoint model

- Surface wind and fluxes drive the forward model
- Output of forward model is ocean states
- Produce a background for adjoint model
  - $S = \frac{\partial J}{\partial \underline{x}}$

**Zonal wind stress** 

- Meridional wind stress
  - Net surface heat flux
  - Net surface freshwater flu

- Cost function (SL) as a forcing in the adjoint simulation
- Output is sensitivity/gradient of cost function to controls throughout the model domain and back in time
- Spatial and temporal details of adjoint fileds sugguest causality

### 4. Results



# Adjoint Solution produces sensitivity backward in time





Sensitivity to Forcing(e.g. Zonal wind stress)

Sensitivity to model states (e.g. SSH...)

Positive Sensitivity: Cost function increases if given a standard perturbation at earlier time

Nagetive Sensitivity: Cost function decreases if given a standard perturbation at earlier time

# sensitivity to zonal & meridional wind stress 9 years go







- Northeast-southwest tilt → Beta effect/Coriolis
- Indonisian throughflow
- Coatsal trapped waves





# -0.75 -0.50 -0.25 -0.00 -0.25 -0.00 -0.25 -0.00 -0.25 -0.50 -0.75 -0.75

0.00

-0.25

-0.75

### From past to now

 Primary sensitivities propagate westward against ACC







### sensitivity to surface heat and freshwater flux Heat flux





- Net heat flux from ocean to atmosphere
- Negative sensitivity

  →Surface heating
- Positive sensitivity

  →Surface cooling
- Seasonal ocean wamring/cooling (not shown)





#### **Freshwater flux**

- Negative sensitivity → Surface freshening
- Positive sensitivity → Surface salinification
- **Negative sensitivity** dominates

### From past to now

Primary sensitivities propagate eastward along ACC 15

**Eastward ACC mean flow (carrying T/S anomaly)** 

### **Sensitivity to sea level anomaly**





Theoretical Rossby wave speed (Chelton and Schlax, 1996)



# Relative contribution under global warming scenario standard deviation of $\tau_x$ (Nm<sup>-2</sup>)

### Scaled sensitivity=Sensitivity x Forcing Standard Deviation

$$\left|\frac{\partial J}{\partial x}\right| * 6$$

- $\left| \frac{\partial J}{\partial x} \right| * \delta$  Strong sensitivity + high forcing variability  $\rightarrow$  enhanced response Strong sensitivity + low forcing variability
  - **→**diminished response









**Relative contribution** 

Wind stress dominates

# perturbation experiments



Sensitivity-like zonal wind stresss perturbation lasts 3 years

### Local wind versus nonlocal wind





# **Strengthened Equtorial zonal** wind?

- Kelvin wave → coastal waves → reflected Rossby wave → passing through Tasman Sea
- Takes several years to arrive



# Strengthened Southern Ocean wind stress curl?

- Westward Rossby wave (advected with ACC)
- Immediate responses

### **Heat flux-perturbation experiments**



- Sensitivity-like perturbation →generates signals chracterizing the cost function (positive SSH anomaly)
- Forcing, its location and timing, strength  $\rightarrow$  influences the ocean response

4. Conclusions



- Large-scale circulation and SSH variability is essentially forced by surface wind stress
- SSH variability is mainly driven by wind-induced Ekman pumping and waves
- · Local and regional winds is the leading factor, while remote winds take years
- Buoyancy fluxes modulate sea level variation via ACC mean flow
- Different mechanisms cause opposite pathways of sensitivities in the ACC section.

# 5. Outlook

### 1. Reconstruct sea level variability

$$f(t) = \sum_{i} \sum_{S} \sum_{\Delta t} \left( \frac{\partial J}{\partial F_i(S, \Delta t)} \delta F_i(S, t - \Delta t) \right)$$

### 2. Relation with ENSO, SAM?

# 3. Higher resolution configuration

- Mesoscale processes?
- Small Currents?