Árvores de decisão – Random Forest

Jones Granatyr

Base original

Baixa

Alta

Alta

Alta

Alta

Boa

Boa

Boa

Boa

Boa

História do crédito	Dívida	Garantias	Renda anual	Risco	
Ruim	Alta	Nenhuma	< 15.000	Alto	
Desconhecida	Alta	Nenhuma	>= 15.000 a <= 35.000	Alto	
Desconhecida	Baixa	Nenhuma	>= 15.000 a <= 35.000	Moderado	
Desconhecida	Baixa	Nenhuma	> 35.000	Alto	
Desconhecida	Baixa	Nenhuma	> 35.000	Baixo	
Desconhecida	Baixa	Adequada	> 35.000	Baixo	
Ruim	Baixa	Nenhuma	< 15.000	Alto	
Ruim	Baixa	Adequada	> 35.000	Moderado	

> 35.000

> 35.000

< 15.000

> 35.0000

>= 15.000 a <= 35.000

Baixo

Baixo

Baixo

Moderado

Alto

Nenhuma

Adequada

Nenhuma

Nenhuma

Nenhuma

$$Entropy(S) = \sum_{i=1}^{c} -p_i \log_2 p_i$$

$$Gain(S, A) = Entropy(S) - \sum_{v \in Values(A)} \frac{|S_v|}{|S|} Entropy(S_v)$$

Risco

Alto

Alto

Moderado

Alto

Baixo

Baixo

Alto

Moderado

Baixo

Baixo

Alto

Moderado

Baixo

Alto

 $Entropy(S) = \sum_{i=1}^{c} -p_i \log_2 p_i$

Alto = 6/14

Moderado = 3/14

Baixo = 5/14

E(s) = -6/14 * log(6/14; 2) - 3/14 * log(3/14; 2) - 5/14 * log(5/14; 2) =**1,53**

Dívida

Alta

Alta

Baixa

Baixa

Baixa

Baixa

Baixa

Baixa

Baixa

Alta

Alta

Alta

Alta

Alta

Renda anual

< 15.000

> 35.000

> 35.000

> 35.000

< 15.000

> 35.000

> 35.000

> 35.000

< 15.000

> 35.0000

História de crédito = 0,26 Dívida = 0,06 Garantias = 0,20

Renda = 0,66

História do crédito	Dívida	Garantias	Renda anual	Risco
Ruim	Alta	Nenhuma	< 15.000	Alto
Ruim	Baixa	Nenhuma	< 15.000	Alto
Boa	Alta	Nenhuma	< 15.000	Alto

História do crédito	Dívida	Garantias	Renda anual	Risco
Desconhecida	Baixa	Nenhuma	> 35.000	Alto
Desconhecida	Baixa	Nenhuma	> 35.000	Baixo
Desconhecida	Baixa	Adequada	> 35.000	Baixo
Ruim	Baixa	Adequada	> 35.000	Moderado
Boa	Baixa	Nenhuma	> 35.000	Baixo
Boa	Alta	Adequada	> 35.000	Baixo
Boa	Alta	Nenhuma	> 35.0000	Baixo

História do crédito	Dívida	Garantias	Renda anual	Risco
Desconhecida	Alta	Nenhuma	>= 15.000 a <= 35.000	Alto
Desconhecida	Baixa	Nenhuma	>= 15.000 a <= 35.000	Moderad o
Boa	Alta	Nenhuma	>= 15.000 a <= 35.000	Moderad o
Ruim	Alta	Nenhuma	>= 15.000 a <= 35.000	Alto

< 15

Árvores de decisão

- Vantagens
 - Fácil interpretação
 - Não precisa normalização ou padronização
 - Rápido para classificar novos registros
- Desvantagens
 - Geração de árvores muito complexas
 - Pequenas mudanças nos dados pode mudar a árvore (poda pode ajudar)
 - Problema NP-completo para construir a árvore
- Eram muito populares em meados dos anos 90
- Upgrades como random forest (florestas randômicas) melhoram o desempenho (usado no Kinect da Microsoft)
- CART classification and regression trees

Random Forest (floresta randômica)

Random Forest

- Ensemble learning (aprendizagem em conjunto)
 - "Consultar diversos profissionais para tomar uma decisão"
 - Vários algoritmos juntos para construir um algoritmo mais "forte"
 - Usa a média (regressão) ou votos da maioria (classificação) para dar a resposta final

>= 15.000 a <= 35.000 > 35.000

>= 15.000 a <= 35.000

> 35.000

> 35.000

Baixa

Baixa

Random Forest

História do crédito	Dívida	Garantias	Renda anual	Risco
Ruim	Alta	Nenhuma	< 15.000	Alto
Desconhecida	Alta	Nenhuma	>= 15.000 a <= 35.000	Alto
Desconhecida	Baixa	Nenhuma	>= 15.000 a <= 35.000	Moderado
Desconhecida	Baixa	Nenhuma	> 35.000	Alto
Desconhecida	Baixa	Nenhuma	> 35.000	Baixo
Desconhecida	Baixa	Adequada	> 35.000	Baixo
Ruim	Baixa	Nenhuma	< 15.000	Alto
Ruim	Baixa	Adequada	> 35.000	Moderado
Boa	Baixa	Nenhuma	> 35.000	Baixo
Boa	Alta	Adequada	> 35.000	Baixo
Boa	Alta	Nenhuma	< 15.000	Alto
Boa	Alta	Nenhuma	>= 15.000 a <= 35.000	Moderado
Boa	Alta	Nenhuma	> 35.0000	Baixo
Ruim	Alta	Nenhuma	>= 15.000 a <= 35.000	Alto

Escolhe de forma aleatória K atributos para comparação da métrica de pureza/impureza (impureza de gini/entropia)

$$K = 3$$

Árvores = 3

História de crédito Dívida Garantias

Renda Dívida Garantias

Renda História de crédito Dívida

Conclusão

