Estatística Básica Para Inteligência Artificial

	10011106:0:0613.		
1881315168164	881881811881881881881881		
38188811181188118818118	100010111010100010111101	101e	
1881881881888181881881818181881	88188181188188188188188	1688158183184	
1881884.0018188818181884. 1881884.0011881818188181	00100111001010010101001 010001011101010010	1818	
.01110010010010101000010010001001	88188111881818818181881	181818881178128881811115	
3100100100100100101001001001001010101001	88188181188188188188188	100010010	
d010100100100100100101010001001001001001	88188181188188188188188	100010001111111111111111111111111111111	
101010111100100100101010001001001001	8818811188181881818181881	1818188811181=70910111181.	
3801801801801801801801110110011001101	100010111010100001011101	0101010110101001 01010010	
10101011110010010010101000010010001001	881881118816188161818881	101818881118188881011111	
<1000100100100100100011101100110010110	100010111210	0101010110101001001 001 1001	
110191911110919910919191991991991991	0810811 8	888111818883 317116	
081881818818818818818818818181881818181	001001011	10001001011011100101011010	
110001001001001001001111111111111111111	18881011	110101011010101001001110010	
01801818818818818818818818818818818181881	8818010	20019019110111	
1101010111001001001010100001001001			
991818818818818819841777			
.e. [18]8111 Sie8 e *	1881		
1,16109916916916918		10) 01101018318310101 01	
f 1.818181 w 46 8186		18181888111818886181	
\$ 11018181 .e81881e			
1 10010100.00100100		102010000132111201011111111111111111111	
16 91811186198816316181888183188818		101010001110100901011	
9.98 1188188188188188188 61881881818		18841881811011183181 118"11	
938 381881881881888111811 1188181		188	
9121881881881881888181 88181818		1000100101101111001010101010	
1918111001981201019 17 '9881		10101011111200113111111	
181118818818813 431881889		1019109011161626616	
98168188188184 189		1 11181/8	
919810710		31117316	
1100104100101110001100		1006:110128001	
9188163		9316 3131	
181881 5 6 .	.91081 PA16: 0.	U101383 1016788	
38186 3 38119918118	1976171	01010101010100100	
381 18818881881		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
160 % 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0		100 20191 100 18810	
3816411181118118818118	1113 837.	20101	
10 010184100101101	8 33116018016	31118F	
#18188E189188B18B1	8 . 9 118618188	101000	
14818181881881	Ed 001011E010E n	10110117	
317:00019010001001	8010811188191	1887.18	
81: 911001100101110	1 4318111101	18181181	
1818 81881895124	8018311100	1016 300	
10181 (100181919)	50160.1. 1981	10 9180	
20016. 10016.000	981881	1990	
186 18181888 18881	U18818181J81	101	
	198188188198188		
31231 381118118811881	1118181818181111		
30010100101010100			
010100010001001	08188111881818818		
81 8 31818818818	.118818109187		

19191991011

O que é Regressão Linear

- ► Regressão linear simples é um modelo de equação matemática que inclui duas variáveis e apresenta uma linha entre elas;
- ► Serve para prever comportamentos com base na associação entre essas duas variáveis, que geralmente possuem uma correlação;
- ► Através de um gráfico de dispersão é mais fácil observar a linearidade. Teremos duas variáveis.
- ► Ex: idade x tempo de estudo.

Variáveis Numéricas

► Em uma regressão linear simples as duas variáveis são chamadas de independente e dependente. Isso significa que a variável dependente é a que será explicada e a independente é que será usada para explicar a variação (comportamento) da dependente;

Resultado	Causa
Dependente	Independente
Nota da prova	Tempo de estudo
Tempo de uso de ar-condicionado	Sensação térmica na cidade
Frequência de compras online	Valor do frete

Variáveis numéricas

- ► A regressão linear simples funciona para dados contínuos, ou seja, dados com valores numéricos, dados quantitativos, que representam medidas;
- ► Caso o dado seja qualitativo, deve-se transformá-los em variáveis numéricas.

	Qualitativo	Quantitativo	
Refere a qualida-	Sexo (homem, mulher)	Homem = 0 Mulher = 1	Refere a quanti-
de, geralmente é um adjetivo.	Cor dos olhos (castanho, verde, azul)	Castanho = 0 Verde = 1 Azul = 2	dade, dado re- presentado por um número.

Parâmetros de Regressão

- ► São as variáveis que formam a equação linear que descreve a relação entre as variáveis;
- ▶ O termo linear é usado para indicar que o modelo é linear nos parâmetros da regressão.
- ightharpoonup Y=f(x).

Parâmetros da Regressão

- ► A equação que descreve a regressão, é formada pelas variáveis dependente, independente, constante e o coeficiente.
- ▶ Juntas elas formam uma equação de primeiro grau que descreve a reta que melhor aproxima os dados.

$$y = b_0 + b_1 * x_1$$

y = Dependente

 b_0 = Constante

 b_1 = Coeficiente

 x_1 = Independente

- ► Por exemplo, queremos saber qual seria o custo do plano de saúde de acordo com a idade da pessoa. Nesse caso teremos:
 - ► Y sendo custo do plano de saúde;
 - ▶ B0 e B1 os valores que determinam a reta, e iremos calcular utilizando Python para encontrar a melhor posição da reta. B0 indica onde a reta começa e o B1 indica a inclinação da reta;
 - ► X1 sendo a idade da pessoa.

Aproximação e Erro

- ▶ Para avaliar o modelo de regressão, precisamos calcular a distância dos pontos (dados) até a reta. Essa distância é o erro entre o valor previsto (reta) e o valor real; a intenção é reduzir ao máximo esse erro. A reta passa no "meio" dos pontos.
- ► A técnica mais utilizada é o mean squared erro (MSE, ou Erro quadrático Médio);
- ► Lembrando que é necessário eliminar os outliers.

► A fórmula do MSE é:

$$MSE = \frac{1}{N} \sum_{i=1}^{N} (f_i - y_i)^2$$

- ▶ Onde:
 - ► N = Total de amostras;
 - ► Fi = Valor calculado pelo modelo;
 - ➤ Yi = Preço real.

Aproximação e Erro

- ► Olhando para fórmula, parece um pouco complicado. Vamos descomplicar o entendimento;
- ► O MSE penaliza os erros maiores;
- ▶ Quanto menor o valor de MSE, mais precisa a reta vai estar;
- ► Fazendo o treinamento do modelo para encontrar parâmetros de B0 e B1 que minimizem o erro.

Preço real (y)	Preço calculado (f)	Erro	
150	180	$(150 - 180)^2 = 900$	
60	60 55		
220	230	$(220 - 230)^2 = 100$	
45	$(45 - 67)^2 = 484$		
div	1509/4 = 377,25		

Viés e Variância

- ► Um valor de Viés alto, significa que o modelo não está aprendendo como deveria. Já um valor muito baixo indica que o modelo está se adaptando muito aos dados de treinamento, o que poderá gerar muito erro com novos dados;
- ► A variância indica a "sensibilidade" do modelo a novos dados. Uma variância alta nos levará a um modelo super adaptado aos dados de treinamento;
- ► Viés está relacionado ao modelo se ajustar aos dados (underfitting), e a variância está relacionada com o modelo se ajustar a novos dados (overfitting).

Exemplo

► Com base nos dados de idade e valor do plano de saúde, vamos construir um modelo de regressão linear para que possamos prever qual será o valor do plano de acordo com a idade da pessoa.

```
#Importando as bibliotecas
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.linear model import LinearRegression
#Criando a base dados
dados = {'Valor': [200, 220, 300, 290, 450, 457, 500, 530, 700, 800],
         'Idade': [18, 22, 23, 30, 35, 44, 49, 50, 67, 75]}
dados = pd.DataFrame(data=dados)
#Separando os dados
#X é a variável independente
#Y é a variavel dependente
X = dados['Idade'].values
Y = dados['Valor'].values
```


Regressão Linear Exemplo

```
#Função para usar X transposto
X = X.reshape(-1, 1)
#Definindo o regressor linear
regressor = LinearRegression()
#Passando os dados para
#treinar o regressor
regressor.fit(X, Y)
#Visualizando o gráfico
plt.scatter(X, Y)
plt.plot(X, regressor.predict(X), color='red')
plt.title('Regressão Linear Simples')
plt.xlabel('Idade')
plt.ylabel('Valor do plano de saúde')
#Prevendo novos valores
idade = np.array(57)
previsao1 = regressor.predict(idade.reshape(-1,1))
previsao2 = regressor.intercept_ + regressor.coef_*idade
print(previsao1)
print(previsao2)
[604.39408838]
```


50

ldade

60

70

30

40

Regressão Linear Exemplo

Exercício

- ▶ O valor de um imóvel geralmente é calculado com base na sua área, quanto maior a área, mais caro o imóvel tende a ser. Isso nos indica que essa relação, é uma relação linear. Com base nisso, construa o gráfico que mostre a reta de regressão e verifique se existe algum outlier nos dados fornecidos. Utilize o regressor linear para prever também os seguintes valores dos imóveis com as seguintes áreas: 35, 70, 190.
- ► Tempo estimado: 60 min.

Área	40	45	50	53	60	65	100	110	113	130
Valor	120	180	190	187	195	200	300	320	305	400

```
Sala
Jai Digital
```

```
#Importando as bibliotecas
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.linear_model import LinearRegression
#Criando nosso dataset
dados = \{'Area': [40, 45, 50, 53, 60, 65, 100, 110, 113, 130],
         'Valor':[120, 180, 190, 187, 195, 200, 300, 320, 305, 400]}
dados = pd.DataFrame(data=dados)
#Separando as variáveis
independente = dados['Area'].values
dependente = dados['Valor'].values
```

```
#Transpondo os valores
independente = independente.reshape(-1,1)
```

```
Sala
Jai Digital
```

```
#Criando o regressor
regressor = LinearRegression()
#Passando os dados para
#treinar o regressor
regressor.fit(independente, dependente)
```



```
#Visualizando o gráfico da regressão

plt.scatter(independente, dependente)

plt.plot(independente, regressor.predict(independente), color='red')

plt.title('Regressão Linear Simples')

plt.xlabel('Area')

plt.ylabel('Valor do imovel')
```



```
#Verificando se há outliers
#Gerando um gráfico de boxplot
dados.boxplot(column=['Area', 'Valor'], grid=False)
```


Exercício - Resposta

```
Sala
;∍iDigital
```

```
#Usando o regressor para
#prever novos valores
area = np.array(35)
previsao = regressor.predict(area.reshape(-1,1))
print("O valor previsto é: ", previsao)
```

O valor previsto é: [133.86413463]

```
#Usando o regressor para
#prever novos valores
area = np.array(70)
previsao = regressor.predict(area.reshape(-1,1))
print("O valor previsto é: ", previsao)
```

O valor previsto é: [222.9087329]

```
#Usando o regressor para
#prever novos valores
area = np.array(190)
previsao = regressor.predict(area.reshape(-1,1))
print("O valor previsto é: ", previsao)
```

O valor previsto é: [528.2044984]

18181881001001887 8 7

Teoria e Conceitos

- ► Possui uma abordagem probabilística, pois é baseado no Teorema de Bayes;
- ▶ O algoritmo Naive Bayes é um algoritmo de classificação de dados;
- ▶ O treinamento se baseia em utilizados os dados de treinamento e calcular as probabilidades dos atributos previsores;
- ▶ Quando um novo registro é submetido, o retorno do algoritmo será a probabilidade desse registro pertencer a determinada classe.

Naïve Bayes Utilizações

- ► Principais utilizações:
 - ► Classificações de textos de notícias ou artigos;
 - Filtragem de spam no e-mail;
 - Analise de sentimento em textos;
 - Sistema de recomendação;
 - Previsões com muitas classes;
 - Medicina de diagnósticos;
 - Previsão do tempo.

Problemática

- ► Algumas problemáticas e bases de dados não funcionam com o método de regressão linear;
- ► Problemática: Queremos prever em qual dia determinado time irá treinar;
- ► Dados:
 - ► Histórico do tempo(clima);
 - ► Umidade do ar;
 - ▶ Vento;
 - ► Houve treino?
- ► Com base nesse dados, podemos calcular a probabilidade do time treinar ou não em dias futuros utilizando o algoritmo Naive Bayes;
- ▶ Vamos ver a tabela dos dados a seguir para entender como funciona.

Problemática: Resolvendo

Atributos previsores

Classe

Dia	Tempo	Humidade	Vento	Treinou?
D1	Ensolarado	Alta	Fraco	Não
D2	Ensolarado	Alta	Forte	Não
D3	Nublado	Alta	Fraco	Sim
D4	Chuvoso	Alta	Fraco	Sim
D5	Chuvoso	Normal	Fraco	Sim
D6	Chuvoso	Normal	Forte	Não
D7	Nublado	Normal	Forte	Sim
D8	Ensolarado	Alta	Fraco	Não
D9	Ensolarado	Normal	Fraco	Sim
D10	Chuvoso	Normal	Fraco	Sim
D11	Ensolarado	Normal	Forte	Sim
D12	Nublado	Alta	Forte	Sim
D13	Nublado	Normal	Fraco	Sim
D14	Chuvoso	Alta	Forte	Não

Problemática: Resolvendo

▶ Primeiro devemos construir as tabelas de **frequência** para cada uma das colunas:

Tabala da	fraguânaia	Treinou?		
Tabela de frequência		Sim	Não	
Vento	Forte	6	2	
	Fraco	3	3	

Tobala da	fraguânaia	Treinou?		
Tabela de	frequência	Sim	Não	
Llumidada	Alta	3	4	
Humidade	Normal	6	1	

Tabela de frequência		Treinou?		
		Sim	Não	
	Ensolarado	3	2	
Tempo	Nublado	4	0	
	Chuvoso	3	2	

Problemática: Resolvendo

▶ Para cada tabela de frequência, devemos construir a tabela de **probabilidade**:

Tabela de probabilidade		Treir	nou?	
		Sim	Não	
Vonto	Forte	3/9	3/5	6/14
Vento	Fraco	6/9	2/5	8/14
		9/14	5/14	

Tabela de probabilidade		Treir		
		Sim	Não	
Humidade	Alta	3/9	4/5	7/14
	Normal	6/9	1/5	7/14
went at industrial property rights. We re-		9/14	5/14	

Problemática: Resolvendo

► Explicando a tabela:

$$P(x|c) = P(Ensolarado|Sim) = 2/9 = 0.22$$

Probabilidade de treino sendo sol

Tabela de		Treinou?			
probak	oilidade	Si <mark>m</mark>	Não		
	Ensolarado	2/9	3/5	5/14	Probabilidade de estar ensolarado
Tempo	Nublado	4/9	0/5	4/14	1 Tobabilidado do Ostar Oriociarado
	Chuvoso	3/9	2/5	5/14	
		9/14	5/14		

$$P(x) = P(Sim) = 9/14 = 0.64$$

Probabilidade de haver treino

Prevendo Novos Dados

- ► Vamos prever se haverá treino ou não com base em:
 - ► Tempo = Chuvoso;
 - ▶ Umidade = Alta;
 - ▶ Vento = Fraco;
- ▶ Probabilidade de 'Sim' neste dia:
 - ightharpoonup P(Tempo = Chuvoso|Sim) * P(Umidade = Alta|Sim) * P(Vento = Fraco|Sim) * P(Sim)
 - Arr = 3/9 * 3/9 * 6/9 * 9/14 = 0,0476
- ▶ Probabilidade de 'Não' neste dia:
 - ightharpoonup P(Tempo = Chuvoso|Não) * P(Umidade = Alta|Não) * P(Vento = Fraco|Não) * P(Não)
 - \triangleright = 2/5 * 4/5 * 2/5 * 5/14 = 0.0166
- ▶ Normalizando os valores:

►
$$P(Sim) = \frac{0.0199}{(0.0199 + 0.0476)} = 0.74$$
 $P(Não) = \frac{0.0166}{(0.0199 + 0.0476)} = 0.26$

Exemplo Prático com Python

▶ Determinado banco possui os dados de histórico de empréstimo, vistos na tabela abaixo. Com esses dados, o banco solicitou que fosse construído um modelo que fornecendo os dados de entrada, indique se deverá fornecer ou não o empréstimo.

Renda	Idade	Empréstimo	Emprestou?
Alta	Jovem	Alto	Sim
Média	Idoso	Alto	Não
Média	Adulto	Médio	Não
Baixa	Adulto	Médio	Não
Baixa	Adulto	Médio	Não
Baixa	Idoso	Baixo	Sim
Baixa	Jovem	Alto	Não
Alta	Jovem	Médio	Sim
Baixa	Jovem	Baixo	Sim
Média	Jovem	Baixo	Sim

Exemplo Prático com Python


```
#Importando as bibliotecas
import pandas as pd
from sklearn.naive_bayes import GaussianNB
from sklearn import preprocessing
```


Exemplo Prático com Python

```
Sala
Jai Digital
```

```
#Criando o LabelEncoder
renda_lbencoder = preprocessing.LabelEncoder()
idade_lbencoder = preprocessing.LabelEncoder()
valor_lbencoder = preprocessing.LabelEncoder()
emprestou_lbencoder = preprocessing.LabelEncoder()
```

```
#Usando o LabelEncoder para
#atribiur números as variáveis qualitativas
renda_lbencoder.fit(dados['Renda'].unique())
idade_lbencoder.fit(dados['Idade'].unique())
valor_lbencoder.fit(dados['Valor_Empréstimo'].unique())
emprestou_lbencoder.fit(dados['Emprestou'].unique())
```

► LabelEncoder pode transformar [cachorro, gato, cachorro, rato, gato] em [1,2,1,3,2], ou seja, ele codifica os dados apresentados em um dataFrame.

- ► Fitting é igual a training, depois de treinado o módulo é capaz de fazer estimativas.
- ► Fitting seu modelo para treinar o dado é especialmente a parte do treinamento de modelagem de processo.
- ▶ Por exemplo, ele encontra o coeficiente para uma equação especificada via o algoritmo que foi usado.


```
#Tranformando o dataset de variáveis qualitativas
#para variáveis quantitativas
dados['Renda'] = renda_lbencoder.transform(dados['Renda'])
dados['Idade'] = idade_lbencoder.transform(dados['Idade'])
dados['Valor_Empréstimo'] = valor_lbencoder.transform(dados['Valor_Empréstimo'])
dados['Emprestou'] = emprestou_lbencoder.transform(dados['Emprestou'])
```

```
#Separando o nosso data set nos atributos previsores
#e na classe objetivo
previsor = dados[['Renda', 'Idade', 'Valor_Empréstimo']]
classe = dados['Emprestou']

#Criando o classificado NaiveBayes
gnb = GaussianNB()
gnb.fit(previsor, classe)

#Verificando a precisão
print("Precisão =",gnb.score(previsor, classe)*100,"%")
```

```
Precisão = 80.0 %
```


Exemplo Prático com Python


```
#Inserindo novos dados para serem previstos
previsao = {'Renda':['Média','Alta'], 'Idade':['Jovem', 'Jovem'], 'Valor_Empréstimo':['Baixo','Alto']}
previsao = pd.DataFrame(data=previsao)
previsao['Renda'] = renda lbencoder.transform(previsao['Renda'])
previsao['Idade'] = idade lbencoder.transform(previsao['Idade'])
previsao['Valor_Empréstimo'] = valor_lbencoder.transform(previsao['Valor_Empréstimo'])
#Verificando o resultado
print(gnb.predict(previsao))
print(emprestou_lbencoder.inverse_transform(gnb.predict(previsao)))
[1 1]
['Sim' 'Sim']
#Verificando as probabilidades
gnb.predict proba(previsao)
array([[0.16817714, 0.83182286],
       [0.00590879, 0.99409121]])
```


Exercício

- ► Para este exercício, vamos utilizar os 10 primeiros dias da tabela utilizada na problemática (que será mostrada no próximo slide), para saber se o time irá treinar ou não. Utilizando Python, construa:
 - O dataset contendo dados;
 - ► Se necessário, transforme as variáveis qualitativas em quantitativas;
 - ▶ O modelo Naive Bayes;
 - Mostre a precisão do modelo;
 - ▶ Utilizando o modelo Naive Bayes criado, preveja os dados a seguir.
- ► Tempo estimado: 60 min.

Exercício

Dados para treinamento				
Tempo	Humidade	Vento	Treinou?	
Ensolarado	Alta	Fraco	Não	
Ensolarado	Alta	Forte	Não	
Nublado	Alta	Fraco	Sim	
Chuvoso	Alta	Fraco	Sim	
Chuvoso	Normal	Fraco	Sim	
Chuvoso	Normal	Forte	Não	
Nublado	Normal	Forte	Sim	
Ensolarado	Alta	Fraco	Não	
Ensolarado	Normal	Fraco	Sim	
Chuvoso	Normal	Fraco	Sim	

Dados para prever				
Tempo	Humidade	Vento		
Ensolarado	Normal	Forte		
Nublado	Alta	Forte		
Nublado	Normal	Fraco		
Chuvoso	Alta	Forte		


```
#Importando as bibliotecas
import pandas as pd
from sklearn.naive_bayes import GaussianNB
from sklearn import preprocessing
```

```
#Criando o LabelEncoder
tempo_lbencoder = preprocessing.LabelEncoder()
umidade_lbencoder = preprocessing.LabelEncoder()
vento_lbencoder = preprocessing.LabelEncoder()
treinou_lbencoder = preprocessing.LabelEncoder()
```



```
#Usando o LabelEncoder para
#atribiur números as variáveis qualitativas
tempo_lbencoder.fit(dados['Tempo'].unique())
umidade_lbencoder.fit(dados['Umidade'].unique())
vento_lbencoder.fit(dados['Vento'].unique())
treinou_lbencoder.fit(dados['Treinou'].unique())
```

```
#Tranformando o dataset de variáveis qualitativas
#para variáveis quantitativas
dados['Tempo'] = tempo_lbencoder.transform(dados['Tempo'])
dados['Umidade'] = umidade_lbencoder.transform(dados['Umidade'])
dados['Vento'] = vento_lbencoder.transform(dados['Vento'])
dados['Treinou'] = treinou_lbencoder.transform(dados['Treinou'])
```

```
#Separando o nosso data set nos atributos previsores
#e na classe objetivo
previsor = dados[['Tempo', 'Umidade', 'Vento']]
classe = dados['Treinou']
```



```
Sala
Jaid Digital
```

```
#Criando o classificado NaiveBayes
gnb = GaussianNB()
gnb.fit(previsor, classe)
```

```
#Verificando a precisão
print("Precisão =",gnb.score(previsor, classe)*100,"%")
```



```
Sala
Jai Digital
```

```
#Verificando o resultado
print(gnb.predict(previsao))
print(emprestou_lbencoder.inverse_transform(gnb.predict(previsao)))
[0 1 1 0]
['Não' 'Sim' 'Sim' 'Não']
#Verificando as probabilidades
gnb.predict_proba(previsao)
array([[0.6715144 , 0.3284856 ],
       [0.40756566, 0.59243434],
       [0.00771096, 0.99228904],
       [0.86747732, 0.13252268]])
```


Treiname de la company de la c