Homework 2

ESE 402/542

Due October 6, 2021 at 11:59pm

Type or scan your answers as a single PDF file and submit on Canvas.

Problem 1. Suppose that $X_1, X_2, ..., X_n$ are i.i.d. random variables in a sample with the density function

$$f(x|\sigma) = \frac{1}{2\sigma} \exp\left\{-\frac{|x|}{2\sigma}\right\}$$

- (a) Use method of moments to estimate σ ?
- (b) Find the MLE estimate of σ ?
- (c) What is the asymptotic variance of the mle?

Problem 2. Given

$$I(\theta) = E \left[\frac{\partial}{\partial \theta} \log f(X|\theta) \right]^2$$

Under appropriate smoothness conditions, it can be proved that the probability distribution $\sqrt{nI(\theta_0)}\left(\hat{\theta}-\theta_0\right)$ tends to standard normal distribution.

- (a) Show that $I(\theta) = -E\left[\frac{\partial^2}{\partial \theta^2} \log f(X|\theta)\right]$
- (b) For the distribution in **Problem 1** find the confidence interval for the estimate $\hat{\sigma}$ (Hint: use standard normal property of $\sqrt{nI(\theta_0)}\left(\hat{\theta}-\theta_0\right)$ to find the confidence bounds)
- (c) Suppose the distribution changes to a uniform distribution defined on on [a, b] for $X_1, X_2, ..., X_n$ i.i.d random variables in a sample. Find the MLE estimate for parameters a and b.

Problem 3. Suppose $X_1, X_2,, X_n$ are i.i.d distributed in a sample with pdf

$$f(x|\theta) = \begin{cases} e^{-(x-\theta)}, & \text{if } x \ge \theta \\ 0, & \text{otherwise} \end{cases}$$

1

- (a) Find the method of moments estimate of θ .
- (b) Find the mle of θ . (Hint: Be careful, and don't differentiate before thinking. For what values of is the likelihood positive?)

Problem 4. Suppose $X_1, X_2,, X_n \sim \text{Poisson}(\lambda)$. Given that the random variables are i.i.d, for $\theta = \exp(-\lambda)$,

- 1. Find an unbiased estimator of θ ? (Note that it may not be the best estimator. Any unbiased estimator is fine).
- 2. Find the variance of the unbiased estimator you found and compare with the Cramer Rao lowerbound?

Problem 5. We have access to a file consisting of $n = 10^4$ numbers. The numbers are either 1, 2, or 3. Moreover, the value 1 appears $n_1 = 2600$ times in the file, the value 2 appears $n_2 = 5200$ times, and the value 3 appears $n_3 = 2200$ times. We know that these numbers are generated i.i.d. according to an unknown distribution.

- (a) Let μ denote the mean of the distribution. Estimate the value of μ from sample data provided in the file and provide a 95% confidence interval.
- (b) Assume now that the generating distribution of the data has the following form:

$$X = \begin{cases} 1, & \text{with probability } p_1, \\ 2, & \text{with probability } p_2, \\ 3, & \text{with probability } 1 - (p_1 + p_2). \end{cases}$$

We would like to estimate the value of the parameters p_1 and p_2 . Consider the following estimator for the value of

$$p_1(X_1,\ldots,X_n) = \frac{1}{n} \sum_{i=1}^n \mathbb{1} \{X_i = 1\},$$

where $\mathbb{1}\{A\}$ takes value 1 if A is true, and 0 otherwise (this is known as an indicator function for A).

Compute the estimate p_1 from the sample data provided in the file. Is this estimator an unbiased estimator for p_1 ? Justify your answer.

- (c) Use the method of moments to estimate the value of p_1 and p_2 (you should compute the estimate from the sample data).
- (d) Now, assume that the precise value of p_1 is given as $p_1 = \frac{1}{4}$. As a result, we now know that the distribution of the data has the form:

$$X = \begin{cases} 1, & \text{with probability } \frac{1}{4}, \\ 2, & \text{with probability } p_2, \\ 3, & \text{with probability } \frac{3}{4} - p_2 \end{cases}$$

We would like to estimate the value of the parameter p_2 from data. Find the maximum likelihood estimator for p_2 and provide a 95% confidence interval.

Problem 6. Download data_HW2.csv and load it into Python. The numbers are observations drawn i.i.d. from an exponential distribution with unknown parameter λ . Include your code in your homework write up.

- (a) Compute estimates for the sample mean and sample variance without using inbuilt functions. Compare your answers with inbuilt numpy functions
- (b) Suppose now that the standard deviation is known to be 0.25. Compute a 90% confidence interval for the population mean.(python libraries can be used to calculate the confidence interval)