

深度学习与非凸优化

AI100学院 2017年9月

▶大纲

• 深度学习简介

• 非凸优化问题

• 深度学习训练技巧

• 卷积神经网络

▶机器学习中的函数拟合

- 语音识别 f()= "How are you"
- 图像识别 f(

• 围棋对战 *f*(

对话系统 f(

图像识别框架

图像:

图像识别步骤

图像识别:

$$f($$
 $)=$ "cat"

▶深度学习的三个步骤

神经网络

步骤 2: 函数拟合度评价

步骤 3: 选取最优函数

神经网络简介

神经元

$$z = a_1 w_1 + \dots + a_k w_k + \dots + a_K w_K + b$$

权重与偏置记为网络参数 θ

▶ 全连接前馈网络

输入、输出均为向量的函数

$$f\left(\begin{bmatrix}1\\-1\end{bmatrix}\right) = \begin{bmatrix}0.62\\0.83\end{bmatrix} \quad f\left(\begin{bmatrix}0\\0\end{bmatrix}\right) = \begin{bmatrix}0.51\\0.85\end{bmatrix}$$

给定参数 θ ,函数即定义好

给定函数网络结构,即定义函数集合

深度神经网络具有非常多的隐藏层

输出层示例:Softmax层

• Softmax作为输出层

Softmax Layer

既率输出

- $1 > y_i > 0$
- $\blacksquare \sum_i y_i = 1$

▶应用示例

▶深度学习的三个步骤

步骤 3: 选取最优函数

▶训练数据

• 准备训练数据: 图像及其标签

学习目标在训练集上定义

损失函数

优秀的神经网络使得所有样本的损失越小越好

▶深度学习的三个步骤

步骤 1: 定义函数的集合

步骤 2: 函数拟合度评价

步骤 3: 选取最优函数

▶如何选择最优函数

寻找最小化总体损失L的最优网络参数 <u>6*</u>

上百万参数

例如语音识别使用 8 层神经元,每 层1000个神经元

神经网络训练方法——梯度下降

网络参数 $\theta = \{w_1, w_2, \dots, b_1, b_2, \dots\}$

▶大纲

• 深度学习简介

• 非凸优化问题

• 深度学习训练技巧

• 卷积神经网络

▶ 梯度下降算法示意图

▶ 梯度下降难题:局部极小值等

▶反向传播算法

- 反向传播: 神经网络中计算梯度 $\partial L/\partial w$, 更新权重参数的有效方法。
- 主流深度学习软件包中均采用反向传播算法

theano Caffe

► Keras神经网络

Step 3: pick the best function

model.fit(x_train, y_train, batch_size=100, nb_epoch=20

Do not always blame Overfitting

http://arxiv_org/abs/1512_03385

▶大纲

• 深度学习简介

• 非凸优化问题

• 深度学习训练技巧

• 卷积神经网络

➤ 深度学习菜谱

选择合适的损失函数

Mini-batch训练

新的激活函数

自适应学习率

含动量的梯度下降

训练技巧

选择合适的损失函数

采用Softmax输出层时, 选择交叉熵更合适

平方误差 VS 交叉熵

► Mini-batch (小批量)训练

- 随机初始化网络参数
- 选择第一批样本更新 参数

$$L'=l^1+l^{31}+\cdots$$

选定第二批样本更新 参数

$$L'' = l^2 + l^{16} + \cdots$$

重复参数更新,直到 所有mini-batch被选 定

Mini-batch

▶ 难以发挥深度的优势

选择合适的损失函数

Mini-batch训练

新的激活函数

自适应学习率

含动量的梯度下降

▶梯度消失问题

梯度小学习慢

接近初始随机

梯度大学习快

接近收敛

ReLU激活函数:

- 1. 计算快速
- 2. 生物启发
- 3. 克服梯度消失问题

► Maxout激活函数

优缺点:可学习的激活函数(+),激活参数加倍(-)

常用激活函数

Sigmoid $\sigma(x) = \frac{1}{1 + e^{-x}}$

Leaky ReLU $\max(0.1x, x)$

tanh

Maxout

 $\max(w_1^T x + b_1, w_2^T x + b_2)$

ReLU

 $\max(0,x)$

ELU

 $\begin{cases} x & x \ge 0 \\ \alpha(e^x - 1) & x < 0 \end{cases}$

▶自适应学习率

选择合适的损失函数

Mini-batch训练

新的激活函数

自适应学习率

含动量的梯度下降

问题:学习率太高,每回合总损失不下降;学习率太低,训练速度太慢

解决方案:训练过程中逐渐降低学习率

$$\eta^t = \eta/\sqrt{t+1}$$

► Adagrad方法 $w \leftarrow w - \eta_w \partial L / \partial w$

 $w_2 = \frac{g^0}{20.0}$

学习率:

$$\frac{\eta}{\sqrt{0.1^2}} = \frac{\eta}{0.1} \qquad \frac{\eta}{\sqrt{20^2}} = \frac{\eta}{20}$$

$$\frac{\eta}{\sqrt{0.1^2 + 0.2^2}} = \frac{\eta}{0.22} \qquad \frac{\eta}{\sqrt{20^2 + 10^2}} = \frac{\eta}{22}$$

 $g^i = \partial L/\partial w$,第i次更 新时获得; 分母为历次梯度的平 方和

特性:

- 1. 所有参数的学习率越来越小
- 2. 导数越小,梯度越大

动量梯度下降

选择合适的损失函数

Mini-batch训练

新的激活函数

自适应学习率

含动量的梯度下降

▶其他训练技巧

Early Stopping

正则化

Dropout

网络结构

样本扩增

Dropout

Early Stopping

正则化

Dropout

网络结构

样本扩增

每次参数更新前,每个神经元有p% dropout, 网络结构发生变化,使用新网络训练。每个minibatch重采样dropout神经元

Dropout作用解释

• Dropout作为集成学习方法

Dropout演示


```
model = Sequential()
```

```
model.add( Dense( output_dim=500 ) )
model.add( Activation('sigmoid') )
```

model.add(dropout(0.8))

```
model.add( Dense(output_dim=10 ) )
model.add( Activation('softmax') )
```


▶大纲

• 深度学习简介

• 非凸优化问题

• 深度学习训练技巧

• 卷积神经网络

▶ 卷积神经网络(CNN)用于图像分析

• 某些模式比全图小很多

• 相同模式出现在不同区域

● 图像下采样不改变物体

► CNN 之卷积示例

1	0	0	0	0	1
0	1	0	0	1	0
0	0	1	1	0	0
1	0	0	0	1	0
0	1	0	0	1	0
0	0	1	0	1	0

6 x 6 图像

1	-1	-1	
-1	1	-1	滤波器 1
-1	-1	1	参数矩阵

-1	1	-1
-1	1	-1
-1	1	-1

滤波器 2 参数矩阵 滤波器矩阵为待学习的 网络参数

•

特性1

每个滤波器检测一个3 x 3大小的模式.

卷积神经网络 VS 全连接前馈网络

CSDN

1	-1	-1
-1	1	-1
-1	-1	1

-1	1	-1
-1	1	-1
-1	1	-1

图像

全连接

	1	0	0	0	0	1
	0	1	0	0	1	0
I	0	0	1	1	0	0
I	1	0	0	0	1	0.0
	0	1	0	0	1	0
I	0	0	1	0	1	0

convolution

CNN的Max Pooling

CNN中的学习算法:

- 与其他神经网络学习算 法相同,仍然使用梯度 下降算法
- 由于卷积计算较高效, 能够使用GPU加速计算

► CNN热门应用——Deep Dream

算法在原始图像上增加CNN 检测结果

► CNN热门应用——Deep Style CNN **CNN** style content 需求:给定一张照片,使得 它的网格与著名绘画相似 实现:两套CNN网络分别 CNN 提取内容与网格的统计信息

▶更多应用:围棋对战

THANK YOU

