# Samlefil for alle data til prøveeksamen

## Filen 1A.txt

Perioden P er 268.2 millioner år

## Filen 1B/Oppgave1B\_Figur\_A.png

Figure 1: Figur fra filen 1B/Oppgave1B\_Figur\_A.png



# $Filen~1B/Oppgave1B\_Figur\_B.png$

Figure 2: Figur fra filen 1B/Oppgave1B\_Figur\_B.png



# $Filen~1B/Oppgave1B\_Figur\_C.png$

Figure 3: Figur fra filen 1B/Oppgave1B\_Figur\_C.png



# $Filen~1B/Oppgave1B\_Figur\_D.png$

Figure 4: Figur fra filen 1B/Oppgave1B\_Figur\_D.png



### Filen 1B/Oppgave1B\_Figur\_E.png

Figur E

657.63

657.61

657.60

0 10 20 30 40 50 60

Periode (år)

Figure 5: Figur fra filen 1B/Oppgave1B\_Figur\_E.png

### Filen 1D.txt

Stjerna A: Tilsynelatende visuell størrelseklasse m<br/>-V = 12.50, tilsynelatende blå størrelseklass $m\_B=15.01$ 

Stjerna B: Tilsynelatende visuell størrelseklasse m<br/>\_V = 3.94, tilsynelatende blå størrelseklass $m\_B = 5.45$ 

Stjerna C: Tilsynelatende visuell størrelseklasse  $m_{-}V = 3.94$ , tilsynelatende

blå størrelseklass m\_B = 6.45

Stjerna D: Tilsynelatende visuell størrelseklasse m\_V = 12.50, tilsynelatende blå størrelseklass $m\_B = 14.01$ 

### Filen 1E.txt

For stjerne 1 sin bane om massesenteret er elliptisiteten e=0.36 og store halvakse a=51.80 AU.

For stjerne 2 sin bane om massesenteret er elliptisiteten e=0.36 og store halvakse a=31.98 AU.

### Filen 1F.txt

Ved bølgelengden 657.12 nm finner du størst fluks

# $Filen~1G/Oppgave1G\_Figur\_A.png$

Figure 6: Figur fra filen 1G/Oppgave1G\_Figur\_A.png



# $Filen~1G/Oppgave1G\_Figur\_B.png$

Figure 7: Figur fra filen 1G/Oppgave1G\_Figur\_B.png



# $Filen \ 1G/Oppgave1G\_Figur\_C.png$

Figure 8: Figur fra filen 1G/Oppgave1G\_Figur\_C.png



# $Filen~1G/Oppgave1G\_Figur\_D.png$

Figure 9: Figur fra filen 1G/Oppgave1G\_Figur\_D.png



### Filen 1G/Oppgave1G\_Figur\_E.png

1.60 - 1.40 - 1.20 - 0.80 - 0 1 2 3 4

Observasjonstid (dager)

Figure 10: Figur fra filen 1G/Oppgave1G\_Figur\_E.png

### Filen 1I.txt

Gass-sky A har masse på 6.60 solmasser, temperatur på 27.00 Kelvin og tetthet 5.24e-21 kg per kubikkmeter

Gass-sky B har masse på 22.40 solmasser, temperatur på 21.40 Kelvin og tetthet 6.33e-22 kg per kubikkmeter

Gass-sky C har masse på 9.20 solmasser, temperatur på 66.90 Kelvin og

tetthet 5.66e-21 kg per kubikkmeter

Gass-sky D har masse på 32.20 solmasser, temperatur på 10.00 Kelvin og tetthet 9.60e-21 kg per kubikkmeter

Gass-sky E har masse på 14.60 solmasser, temperatur på 24.90 Kelvin og tetthet 3.35e-21 kg per kubikkmeter

#### Filen 1J.txt

STJERNE A) hele stjerna er elektrondegenerert

STJERNE B) stjernas energi kommer hovedsaklig fra hydrogenfusjon i sentrum

STJERNE C) stjernas energi kommer hovedsaklig fra fusjon av magnesium i sentrum

STJERNE D) stjernas energi kommer hovedsaklig fra heliumfusjon i skall

STJERNE E) stjernas overflate består hovedsaklig av helium

#### Filen 1L.txt

Stjerne A har spektralklasse B6 og visuell tilsynelatende størrelseklasse m $_{\text{-}}\mathrm{V}$  = 6.61

Stjerne B har spektralklasse M4 og visuell tilsynelatende størrelseklasse m\_V =  $8.66\,$ 

Stjerne C har spektralklasse B9 og visuell tilsynelatende størrelseklasse m $_{-}\mathrm{V}$  = 8.87

Stjerne D har spektralklasse M4 og visuell tilsynelatende størrelseklasse m\_V

= 5.97

Stjerne E har spektralklasse M1 og visuell tilsynelatende størrelseklasse m\_V = 1.87

### Filen 1P.txt

Halvparten av partiklene har hastighetskomponent kun langs synsretningen som er enten  $100~\rm m/s$  mot deg eller fra deg (like mange i hver retning) og den andre halvparten har ingen bevegelse langs synsretningen

# $Filen~2A/Oppgave 2A\_Figur 1.png$

1 -

i

ź

3

Figur 1

10

9

8

7

4

3

2

5

x-posisjon (buesekunder)

9

10

Figure 11: Figur fra filen 2A/Oppgave2A\_Figur1.png

# $Filen~2A/Oppgave 2A\_Figur 2.png$

Figur 2 10 9

Figure 12: Figur fra filen 2A/Oppgave2A\_Figur2.png



## $Filen\ 2B/Oppgave 2B\_Figur\ 4.png$

Figure 13: Figur fra filen 2B/Oppgave2B\_Figur 4.png



4.png

### Filen 2B/Oppgave2B\_Figur3.png

Figur 3 10 9 8 y-posisjon (buesekunder) 7 6 5 3 2 1 . i ż ż 9 10 x-posisjon (buesekunder)

Figure 14: Figur fra filen 2B/Oppgave2B\_Figur3.png

### Filen 2C.txt

Avstand til solen er 0.7820000000000002842171 AU.

Tangensiell hastighet er 45215.770283751015085727 m/s.

#### Filen 2D.txt

Kometens avstand fra jorda i punkt 1 er r1=3.340 AU.

Kometens avstand fra jorda i punkt 2 er r2=9.085 AU.

Kometens tilsynelatende størrelseklasse i punkt 1 er m1=20.354.

#### Filen 3A.txt

Romskipets hastighet langs x-aksen er 0.9300 ganger lyshastigheten.

Tiden mellom utsendelse av strålene er 0.00087 sekunder målt i bakkesystemet.

#### Filen 3B.txt

Avstanden mellom de to romskipene ved første utsendelse er D=810.0 km.

Romskip2 sin hastighet langs x-aksen er 0.9905 ganger lyshastigheten.

#### Filen 3E.txt

Bølgelengden målt i romskipet som sender ut er 481.50 nm.

#### Filen 4A.txt

Stjernas masse er 3.92 solmasser.

Stjernas radius er 0.66 solradier.

## Filen 4C.png

Figur 4C 1.6500 1.5000 Sannsynlighetstetthet i 10<sup>-4</sup> % 1.3500 1.2000 1.0500 0.9000 0.7500 0.6000 0.4500 0.3000 0.1500 0.0000 -750 -500 -250 250 500 -1000 750 1000 Hastighet i x-retning (km/s)

Figure 15: Figur fra filen 4C.png

### Filen 4D.txt

Kun hvis du ikke fikk til forrige oppgave, skal du bruke denne temperaturen her:  $13.10~\mathrm{millioner}~\mathrm{K}$ 

### Filen 4G.txt

Massen til det sorte hullet er 4.01 solmasser.

r-koordinaten til det innerste romskipet er <br/>r $=12.43~\mathrm{km}.$ 

r-koordinaten til det innerste romskipet er <br/>r $=18.53~\mathrm{km}.$