1 Discrete Random Variables and Expectation

A (real-valued) random variable X on a sample space Ω is a measurable function $X:\Omega\to\mathbb{R}$, and a discrete random variable is one which may take on only a countable number of distinct values. "X=a" represents the set $\{s\in\Omega\mid X(s)=a\}$, and we denote the probability of that event by $\mathbb{P}(X=a)=\sum_{s\in\Omega:X(s)=a}\mathbb{P}(s)$.

Random variables X_1, X_2, \dots, X_n are mutually independent (simply called independent when k = 2) if and only if, for any subset $I \subseteq \{1, 2, \dots, k\}$ and any values $x_i \ (i \in I), \ \mathbb{P}(\bigcap_{i \in I} (X_i = x_i)) = \prod_{i \in I} \mathbb{P}(X_i = x_i)$.

The expectation of a discrete random variable X, denoted by $\mathbb{E}[X]$, is given by $\mathbb{E}[X] = \sum_i i \cdot \mathbb{P}(X = i)$. Note that the infinite series needs to be absolutely convergent (i.e. rearrangements do not change the value of the sum).

Theorem 1.1 (Linearity of expectation) For discrete random variables X_1, X_2, \dots, X_n with finite expectations and any contants c_1, c_2, \dots, c_n , we have $\mathbb{E}[\sum_{i=1}^n c_i X_i] = \sum_{i=1}^n c_i \mathbb{E}[X_i]$.

proof. Observe that we only need to prove the following two cases:

$$\begin{split} \mathbb{E}[X+Y] &= \sum_i \sum_j (i+j) \cdot \mathbb{P}((X=i) \cap (Y=j)) \\ &= \sum_i i \sum_j \mathbb{P}((X=i) \cap (Y=j)) + \sum_j j \sum_i \mathbb{P}((X=i) \cap (Y=j)) = \mathbb{E}[X] + \mathbb{E}[Y], \\ \mathbb{E}[cX] &= \sum_i i \cdot \mathbb{P}(cX=j) = c \cdot \sum_j (j/c) \cdot \mathbb{P}(X=j/c) = c \cdot \sum_k k \cdot \mathbb{P}(X=k) = c \cdot \mathbb{E}[X]. \end{split}$$

When there are countably infinite variables, the situation becomes more subtle. We will discuss it later.

Theorem 1.2 (Jensen's inequality) If f is a convex function, then $\mathbb{E}[f(X)] \geq f(\mathbb{E}[X])$.

proof. Assume that f has a Taylor expansion. Let $\mu = \mathbb{E}[X]$. By Taylor's theorem, there is a value c such that

$$f(x) = f(\mu) + f'(\mu)(x - \mu) + \frac{f''(c)(x - \mu)^2}{2} \ge f(\mu) + f'(\mu)(x - \mu)$$

Taking expectations of both sides

$$\mathbb{E}[f(X)] \ge \mathbb{E}[f(\mu) + f'(\mu)(X - \mu)] = \mathbb{E}[f(\mu)] + f'(\mu)(\mathbb{E}[X] - \mu) = f(\mu) = f(\mathbb{E}[X])$$

An alternative proof will be presented in Exercise 2.10.

Define conditional expectation $\mathbb{E}[Y \mid Z = z] = \sum_{y} y \cdot \mathbb{P}(Y = y \mid Z = z)$ and $\mathbb{E}[Y \mid Z]$ as a random variable f(Z) that takes on the value $\mathbb{E}[Y \mid Z = z]$ when Z = z.

Theorem 1.3 (Law of total expectation) For any random variables X and Y,

$$\mathbb{E}[X] = \sum_{y} \mathbb{P}(Y = y) \cdot \mathbb{E}[X \mid Y = y] = \mathbb{E}[\mathbb{E}[X \mid Y]].$$

A Bernoulli random variable X takes 1 with probability p and 0 with probability 1-p. A binomial random variable X with parameters n and p, denoted by B(n,p), is defined by probability distribution $\mathbb{P}(X=k) = \binom{n}{k} \cdot p^k (1-p)^{n-k}$, $n = 0, 2, \dots, n$. Its expectation is np.

A geometric random variable X with parameter p is defined by probability distribution $\mathbb{P}(X=n)=(1-p)^{n-1}p$, $n=1,2,\cdots$. Its expectation is 1/p. Geometric random variables are *memoryless*, that is, one ignores past failures as distribution does not change. Formally, we have the following statement.

Lemma 1.4 (Memorylessness) Let X be a geometric random variable with parameter p. Then, for n > 0,

$$\mathbb{P}(X = n + k \mid X > k) = \mathbb{P}(X = n).$$

Lemma 1.5 Let X be a discrete random variable that takes on only nonnegative integer values. Then,

$$\mathbb{E}[X] = \sum_{k=1}^{\infty} k \cdot \mathbb{P}(X = k) = \sum_{1 \le i \le k} \mathbb{P}(X = k) = \sum_{i=1}^{\infty} \mathbb{P}(X \ge i)$$