Исследование операций ПМ-1701

Преподаватель:

Чернов Виктор Петрович viktor_chernov@mail.ru

Санкт-Петербург 2020 г., 6 семестр

Список литературы

- [1] Sulsky D., Chen Z., Schreyer H. L. A particle method for history-dependent materials // Computer Methods in Applied Mechanics and Engineering. 1994, V. 118. P. 179–196.
- [2] Liu G. R., Liu M. B. Smoothed particle hydrodynamics: a meshfree particle method. — Singapore: World Scientific Publishing. — 2003. — 449 p.

Содержание

1	Конспекты лекций			2	
	1.1	13.02.	2020	2	
	1.2	20.02.2020		2	
		1.2.1	Стратегии управления запасами и критерий опти-		
			мальности	2	
		1.2.2	Простейшие модели управления запасами. Формула		
			Уилсона	3	
		1.2.3	Простейшая модель с допущением незадолженного		
			дефицита	6	
		1.2.4	Простешная модель с задолженным дефицитом	6	
		1.2.5	Модель с растянутой поставкой и задолженным де-		
			фицитом	7	
	1.3 Теория массового обслуживания			ия массового обслуживания	9
		1.3.1	Структура систем массового обслуживания	9	
		1.3.2	Три свойства потоков требования	10	
		1.3.3	Параметр и интенсивность потока	12	
		1.3.4	Определение пуассоновского потока и вычисление		
			вероятности V0	17	
		1.3.5	Вывод формул для вероятностей Vk элементарным		
			методом	17	
		1.3.6	Свойства вероятностей Vk пуассоновского потока	17	

1 Конспекты лекций

$1.1 \quad 13.02.2020$

Отчет о результатах: в каких пределах можно менять коэффициенты целевой функции чтобы оптимальный план не изменился.

Перейдем к листу отчета об устойчивости.

Теневая цена - предельная полезность ресурса, компонент оптимального плана двойственной задачи, частная производная целелвой функции по правой части ограничения - величина, показывает на сколько единиц изменится результат, если изменить правую часть на единицу.

Представим задачу, меняем коэффициенты правой части, получили оптимальное решение z^* :

$$CX \to max$$

$$\begin{cases} AX \le B \\ X \ge 0 \end{cases}$$

$$Z^* = Z(B) = Z(b_1, b_2, ..., b_n)$$

$$\frac{\partial Z}{\partial b_i} = y_i^*$$

где y_i^* - теневые цены, компоненты оптимального плана.

График предельной полезности является кусочно-линейным.

Отчет о пределах - сомнительная польза: если объем печенья будем равны 0, то остается один бисквит.

$1.2 \quad 20.02.2020$

1.2.1 Стратегии управления запасами и критерий оптимальности

Рисуем типичный график зависимости запасов от времени. В начальный момент времени есть какой-то запас и он изменяется с течением времени. Склад является аккумулятором запасов потребителя. На склад, в свою очередь постсупает продукция поставщиков.

В какой-то момент времени запас склада пополняется на некоторую величину V_1 . Дефицит может отображаться двумя способами.

- Незадолженный дефицит спустя какое-то время на склад при нулевом запасе приходит товар
- Задолженный дефицит дефицит уходит в отрицательную область.

Последовательность пополнения запасов - результат принятия решений, она возникает тогда, когда потребительская система формирует заказ поставщикам.

$$\begin{cases} V_1 & V_2 & \dots \\ t_1 & t_2 & \dots \end{cases}$$

Данный график носит название *стратегии управления поставка-ми*. Она состоит из отдельных управленческих решений. Какой график поставок лучше, т.е какая стратегия оптимальна? В этом и состоит оптимизационная задача.

Сущестует три вида затрат:

- Затраты связаны с поставками
- Затраты связаны с хранением
- Затраты связаны с дефицитом

Каждая из затрат подразделяется на постоянные и переменные затраты Постоянные - не зависещее от объема. Затраты, связанные с поставкой, не зависят от объема: затраты на огранизацию.

Критерий оптмимальности: средние затраты в единицу времени были минимальными.

1.2.2 Простейшие модели управления запасами. Формула Уилсона.

Простешйая модель обладает тремя свойствами:

- 1. Дефицит не допускается.
- 2. Постоянный не меняющийся спрос, α -сколько единиц товара уходит на единицу времени
- 3. Отсутствует неопределенность

На графике мы заменяем кривые прямыми, угол наклона будет одинаковым по второму свойству. Можно предположить, что поставка будет приходить точно в срок, и быть уверенным, что все так и будет.

Оптимальную стратегию следует искать среди графиков следующего вида:

Обозначим за a - постоянные затраты поставок. Постоянные затраты связанные с хранением мы устраняем из рассмотрения. Переменная составляющая по поставкам - тоже исключается, так как мы на нее не можем влиять - она изменяется от нас не зависяще. b - коэффициент затрат по хранению - затраты по хранению товара на единицу времени. Размерность - количество единиц товара на единицу времени. Дефицитные поставки все исключаем.

Коэффициент b на графике - единичный квадрат.

Допустим у нас есть два треугольника. Общие затраты равны суммы двух затрат $T=T_1+T_2,\ Q=\alpha\cdot T$ Тогда средние затраты равны площади этих двух треугольников, то есть:

$$mse = \frac{2a + b(\frac{1}{2}Q_1T_1 + \frac{1}{2}Q_2T_2)}{T}$$

Так как $Q = \alpha \cdot T$, то:

$$mse = \frac{2a + b(\frac{1}{2}\alpha T_1^2 + \frac{1}{2}\alpha T_2^2)}{T}$$

Необходимо минимизировать следующее выражение:

$$2a + \frac{1}{2}b\alpha(T_1^2 + (T - T_1)^2) \to \min$$

Возьмем производную:

$$f'(T_1) = b\alpha(T_1 - (T - T_1)) = b\alpha(-T + 2T_1) = 0$$
$$T_1 = \frac{1}{2}T, T_2 = \frac{1}{2}T$$

Следовательно, оптимальные решения нужно искать среди перио-

дической модели с одинаковыми треугольниками. Теперь задача состоит в том, чтобы найти длину партии Q и T - пероид.

Затраты на одном цикле управления запасами:

$$L_{sum} = a + \frac{1}{2}bQT = a + b\frac{1}{2}\alpha T^2$$

Такие формулы не позволятют сравнивать стратегии, следовательно нужно сравнить средни затраты, поэтому поделим на длину цикла:

$$L = \frac{a + b\frac{1}{2}\alpha T^2}{T} = \frac{a}{T} + \frac{1}{2} \cdot b \cdot \alpha \cdot T \to \min$$

$$L'(T) = -\frac{a}{T^2} + \frac{1}{2}b\alpha = 0$$

$$T^* = \sqrt{\frac{2a}{b\alpha}} - \min$$

$$Q^* = \sqrt{\frac{2a\alpha}{b}} - \min$$

$$L = \frac{a}{\sqrt{\frac{2a}{b\alpha}}} + \frac{1}{2}b\alpha\sqrt{\frac{2a}{b\alpha}} = \sqrt{\frac{ab\alpha}{2}} + \sqrt{\frac{ab\alpha}{2}} = \sqrt{2ab\alpha}$$

Данные формулы называются Φ ормулами Yилсона. Если рассмотреть зависимость двух величин L от T, то графически мы ищем минимум зеленой прямой на графике:

Необходимо выбрать прямоугольник заданной площади с минимальным периодом и данный прямоугольник является квадратом.

Философское правило: лучше перебрать, чем недобрать.

1.2.3 Простейшая модель с допущением незадолженного дефицита.

Незадолженный дефицит

Обозначим за T_1 недефицитный период $(0;4):T_1$ и $(4,8):T_2$ - период дефицтного периода. g - штраф за отсутствие товара.

$$\alpha, a, b, g, Q = \alpha \cdot T_1$$

$$L = \frac{a + b\frac{1}{2}Q \cdot T_1 + g \cdot T_2}{T_1 + T_2} \to \min$$

Лемма о неправильной суммы дробей:

Лемма 1. $\frac{A_1}{B_1} \leq \frac{A_2}{B_2}$

Доказательство:

$$\frac{A_1}{B_1} \le \frac{A_1 + A_2}{B_1 + B_2} \le \frac{A_2}{B_2}$$

$$A_1B_1 + A_2B_2 \le A_1B_1 + A_2B_1$$

$$\frac{A_1}{B_1} \le \frac{A_2}{B_2}$$

 $\sqrt{2a\alpha b} < g$ - дефифит не выгоден, $\sqrt{2a\alpha b} > g$ - выгоден дефицит.

1.2.4 Простешная модель с задолженным дефицитом

$$X = \alpha T_1, S = \alpha T_2, \alpha, a, b, g$$

$$Q = \alpha T$$

S - задолженный дефицит.

$$L = \frac{a + bT_1 X_{\frac{1}{2}} + gT_2 S_{\frac{1}{2}}}{T_1 + T_2} \to \min$$

$$L = \frac{a + bT_1^2 \alpha_{\frac{1}{2}}^1 + gT_2^2 \alpha_{\frac{1}{2}}^1}{T_1 + T_2} \to \min$$

Приравниваем к нулю производные уравнений и решаем систему.

$$T_2 = \frac{b}{g} T_1$$

$$T_1^* = \sqrt{\frac{2a}{b\alpha \cdot (1 + \frac{b}{g})}}$$

$$T_2^* = \frac{b}{g} \sqrt{\frac{2a}{b\alpha \cdot (1 + \frac{b}{g})}} = \sqrt{\frac{2agb^2}{b\alpha \cdot (g + b)g^2}} = \sqrt{\frac{2ab}{\alpha \cdot (g + b)g}}$$

В пределе:

$$T_1^* \to \sqrt{\frac{2a}{b\alpha}}$$

$$T_2^* \to 0$$

$$X^* = \alpha T_1 = \alpha \sqrt{\frac{2a}{b\alpha \cdot (1 + \frac{b}{g})}}$$

Размер дефицита:

$$S^* = \alpha T_2 = \alpha \sqrt{\frac{2ab}{\alpha \cdot (g+b)g}}$$

То есть при оптимальном случае, размер дефицита стремится к нулю, а $X \to Q$.

1.2.5 Модель с растянутой поставкой и задолженным дефицитом.

В тот момент, когда приходит поставка, запас увеличивается по какой-то линейной функции с каким-то угловым коффициентом. Разгрузка товара проходит с какой-то скоростью β . α - скорость уменьшения запаса (интенсивность спроса - объем разгружаемого товара в единицу

времени). $\beta - \alpha$ - угол наклона прямой разгрузки поставки.

 α - угловой коэффициент (tg α) В модели с дефицитом запасы уходят в минус и со скоростью $\beta-\alpha$ повышаются.

 T_1' - поставка есть. T_1'' - поставки нет. T_1 - запас есть. T_2 - дефицит. Максимальный размер запаса X, максимальный размер дефицита S.

$$X = (\beta - \alpha) \cdot T_1' = \alpha T_1''$$
$$S = (\beta - \alpha) \cdot T_2' = \alpha T_2''$$

а - постоянные затраты не зависящие от объема.
 Определим средние затраты.

$$L = \frac{a + b\frac{1}{2}T_1X + g\frac{1}{2}T_2S}{T} = \frac{a + b\frac{1}{2}T_1X + g\frac{1}{2}T_2S}{T_1 + T_2} \to \min$$

Должны минимизировать относительно T_1, T_2, X, S .

$$T_1' = \frac{x}{\beta - \alpha}, \quad T_1 = \frac{X}{\alpha} \Rightarrow T_1 = \frac{(\alpha + \beta - \alpha)X}{\alpha(\beta - \alpha)}$$

$$X = \frac{\alpha(\beta - \alpha)}{\beta} T_1 = \lambda T_1$$

$$S = \frac{\alpha(\beta - \alpha)}{\beta} T_2 = \lambda T_2$$

Подставим:

$$L = \frac{a + b\frac{1}{2}\lambda T_1^2 + g\frac{1}{2}T_2^2\lambda}{T_1 + T_2} \to \min$$

Возьмем частные производные:

$$\frac{\partial L}{\partial T_1} = \frac{b\lambda T_1(T_1 + T_2) - (a + \frac{1}{2}b\lambda T_1^2 + \frac{1}{2}g\lambda T_2^2)}{(T_1 + T_2)^2} = 0$$

$$\frac{\partial L}{\partial T_1} = \frac{g\lambda T_1(T_1 + T_2) - (a + \frac{1}{2}b\lambda T_1^2 + \frac{1}{2}g\lambda T_2^2)}{(T_1 + T_2)^2} = 0$$

$$(T_1 + T_2)\lambda(bT_1 - gT_2) = 0 \Rightarrow T_2 = \frac{b}{g}T_1$$

$$b\lambda T_1(T_1 + \frac{b}{g}T_1) - (a + \frac{1}{2}b\lambda T_1^2 + \frac{1}{2}g\lambda(\frac{b}{g}T_1)^2) = 0$$

$$\frac{1}{2}b\lambda T_1^2(1+\frac{b}{q}) = a$$

Найдем оптимальные значения:

$$T_1^* = \sqrt{\frac{2a}{b\lambda(1+\frac{b}{g})}}, \quad \lambda = \frac{\alpha(\beta-\alpha)}{\beta}$$

$$T_2^* = \frac{b}{g}\sqrt{\frac{2a}{b\lambda(1+\frac{b}{g})}}, \quad \lambda = \frac{\alpha(\beta-\alpha)}{\beta}$$

$$X^* = \sqrt{\frac{2a\lambda}{b(1+\frac{b}{g})}}, \quad \lambda = \frac{\alpha(\beta-\alpha)}{\beta}$$

$$S^* = \frac{b}{g}\sqrt{\frac{2a\lambda}{b(1+\frac{b}{g})}}, \quad \lambda = \frac{\alpha(\beta-\alpha)}{\beta}$$

Если $\frac{b}{g} \to \min, T_2^* = 0, S^* = 0,$ то получится бездефицитная модель. Выразим λ :

$$\lambda = \alpha (1 - \frac{\beta}{\alpha})$$

Если $\alpha \to 0$, то $\lambda \to \alpha$. И прямая становится все более вертикальной - разбираемся с растяжкой.

Домашнее задание - разобрать модель с растянутой поставкой и незадолженным дефицитом.

1.3 Теория массового обслуживания

1.3.1 Структура систем массового обслуживания

Есть некоторый поток входящих требований. Детерменированные потоки - потоки, которые подчиняются некому расписанию. Регулярный поток - поток с постоянным интервалом между соседними элементами. Перед тем как попасть на очередь, используется накопитель. Накопитель может быть ограниченным или неограниченным.

После этого - парралельно работающие устройства - узлы обслуживания. Сам процесс обсулживания - случайный процесс. Длительность обслуживания может быть разной. Посе прохождения обсужливания получается выходящий поток требований.

1.3.2 Три свойства потоков требования

Изучение потока требований нацелено на получение важнейших его характеристик. Характеристики вероятностного потока, естественно, являются вероятностными. К ним относятся, например, вероятности поступления того или иного числа требований на заданном отрезке времени, среднее число требований, поступающих за данное время, вероятностное распределение длин временных интервалов между соседними требованиями и т.д. Оказывается, первая из названных характеристик является фундаментальной: зная ее, можно определить остальные.

Мы введем для нее специальное обозначение: характеристика потока требования на промежутке.

 $V_k(t_0,t)$ - вероятность возникновения k-требований из рассматриваемого потока на промежутке времени, начинающийся в t_0 и имеет длину t.

 $V_{\geq k}(t_0,t)$ - вероятность возникновения не менее k-требований из рассматриваемого потока на промежутке времени, начинающийся в t_0 и имеет длину t, $V_{\leq k}(t_0,t)$ - не более k.

При этом $V_0(t_0,t)$ становится вероятностью отсутствия требований на нашем отрезке времени.

 $V_{>1}(t_0,t)$ - возникновение хотя бы одного требования.

Свойства потока требования:

1. Стационарность потока.

Поток называется стационарным, если его базовая характеристика $V_k(t_0,t)$ не зависит от t_0 , то есть не зависит от положения отрезка на оси времени (вероятность не зависит от положения на оси).

$$V_k(t_0, t) = V_k(t_0', t) (1.3)$$

2. Ординарность потока.

Поток называется ординарным, если требования возникают по одному.

Рассмотрим вероятность возникновения на каком-то промежутке времени более двух требований. $V_{\geq 2}(t_0,t)$. Устремим конец к началу, тогда данная вероятность будет стремиться к нулю. Для того чтобы уловить ординарность необходимо, чтобы данная вероятность стремилась быстро к нулю.

Еще одно эквивалентное определение можно дать через бесконечно

малую величину - величина, стремящаяся к нулю быстрее, чем t:

$$V_{>2}(t_0, t) = o(t) \tag{1.5}$$

Если поток является стационарным, то условие ординарности упрощается и приобретает вид:

$$\lim_{t \to 0} \frac{V_{\geq 2}(t_0, t)}{t} = 0 \tag{1.6}$$

$$V_{\geq 2}(t) = o(t) \tag{1.7}$$

3. Отсутсвует последействие

У потока отсутствует последействие, если его вероятностные характеристики, связанные с разными промежутками времени являются независимыми.

Задание 1.2:

Выведем формулу (1.8)

Доказательство:

Возьмем на оси времени два промежутка t и τ .

Определим вероятноть того, что за время $t+\tau$ событие наступит ровно k раз. Это может осуществиться k+1 различными способами, а именно:

- \bullet за промежуток времени длительности t произойдет k событий, а за время $(t+\tau)$ ни одного
- за промежуток времени длительности t произойдет k-1 событий, а за время $(t+\tau)$ 1
- за промежуток времени длительности t произойдет k-2 событий, а за время $(t+\tau)$ 2
- . . .
- за k+1 промежуток времени длительности t не наступит ни одного события, а за время $(t+\tau)$ k событий.

Воспользуемся формулой полной вероятности, а именно найдем вероятность наступление k событий равна:

$$V_k(t_0, t + \tau) = \sum_{m=0}^{k} V_m(t_0, t) \cdot V_{k-m}(t_0 + t, \tau) \quad \blacksquare$$
 (1.8)

$$\sum_{k=0}^{\infty} V_k(t_0, t) = 1$$

- знание истории не дает уточнить что-то в будущем.

Если поток удовлетворяет всем трем свойствам, то такой поток является $\Pi yacconoвckum$.

Задание 1.1: Примеры потоков:

- 1. стационарный + ординарный + отсутствие последствий: падение капли из не до конца завинченного крана.
- 2. стационарный + ординарный + последствия: проходящая баржа под разведенными мостами ночью
- 3. стационарный + не ординарный + последствия: машины, въезжающих на Володарский мост
- 4. стационарный + не ординарный + отсутствие последствий: поток пассажиров входящих в метро
- 5. не стационарный + ординарный + последствия: появление поезда из туннеля в метро
- 6. не стационарный + ординарный + отсутствие последствий: выход из квартиры человека
- 7. не стационарный + не ординарный + отсутствие последствий: поток уборки станций в одно и то же время.
- 8. не стационарный + не ординарный + последствия: появление вагонов из туннеля в метро

1.3.3 Параметр и интенсивность потока

Конспекты с лекций:

Onp: Параметром потока называется предел вероятности возникновения хотя бы одного требования:

$$\lim_{t \to 0} \frac{V_{\geq 1}(t_0, t)}{t} = \lambda(t_0)$$

$$\lim_{t \to 0} \frac{V_{\geq 1}(t)}{t} = \lambda$$

 λ - параметр потока.

Onp: рассмотрим математическое ожидание числа требования на промежутке времени $\mathbb{E}(t_0,t)$:

$$\mathbb{E}(t_0, t) = \sum_{k=0}^{\infty} k \cdot V_k(t_0, t) = \sum_{k=1}^{\infty} k \cdot V_k(t_0, t)$$

.

Будем рассматривать среднее число требования на коротких промежутках времени:

$$\lim_{t \to 0} \frac{\mathbb{E}(t_0, t)}{t} = \mu(t_0)$$

 $\mu(t_0)$ - мгновенная интенсивность потока.

$$\lim_{t \to 0} \frac{\mathbb{E}(t)}{t} = \mu$$

 μ - число, интенсивность потока

Введем две важные характеристики потоков: параметр и интенсивность.

Пусть дан стационарный поток. Его параметром называется предел (если он существует для рассматриваемого потока):

$$\lambda = \lim_{t \to 0} \frac{1 - V_0(t)}{t} = \lim_{t \to 0} \frac{V_{\ge 1}(t)}{t} \tag{2.1}$$

Параметр обозначается буквой λ . Из (2.1) следует, что:

$$1 - V_0(t) = V_{\ge 1}(t) = \lambda t + o(t) \tag{2.2}$$

Параметр показывает скорость сходимости к 0 вероятности поступления хотя бы одного требования на отрезке t при стремлении к 0 длины отрезка. Очевидно, что параметр не может быть отрицательным.

Если параметр существует и конечен, то используя (2.2) получаем:

$$V_{\geq 1}(0) = \lim_{t \to 0} V_{\geq 1}(t) = 0 \tag{2.3}$$

$$V_0(0) = \lim_{t \to 0} V_0(t) = \lim_{t \to 0} (1 - V_{\ge 1}(t)) = 1$$
(2.4)

то есть вероятность поступления хотя бы одного требования в точке (в момент времени, на отрезке времени длины 0) равна 0, а вероятность отсутствия требований в точке равна 1. Это обстоятельство, конечно,

не противоречит тому, что в некоторые моменты времени требования поступают; оно связано с бесконечностью множества моментов времени.

Интенсивностью стационарного потока называется среднее число требований, поступающих из потока за единицу времени. Интенсивность обозначается буквой μ . Таким образом:

$$\mu = \lim_{t \to 0} \frac{\mathbb{E}(t)}{t}$$

$$\mathbb{E}(t) = \sum_{k=0}^{\infty} k \cdot V_k(t) = \sum_{k=1}^{\infty} k \cdot V_k(t)$$
(2.5)

Интенсивность потока, очевидно, не может быть отрицательной. Если поток не предполагается стационарным, то значение параметра может меняться во времени.

Значением параметра в момент t_0 (мгновенным значением параметра) называется предел:

$$\lambda(t_0) = \lim_{t \to 0} \frac{1 - V_0(t_0, t)}{t} = \lim_{t \to 0} \frac{V_{\ge 1}(t_0, t)}{t} \tag{2.6}$$

Аналогично может менять свое значение и интенсивность. Значением интенсивности в момент t_0 (мгновенной интенсивностью) называется предел

$$\mu(t_0) = \lim_{t \to 0} \frac{\mathbb{E}(t_0, t)}{t}$$
 (2.7)

где математическое ожидание числа требования на промежутке времени $\mathbb{E}(t_0,t)$:

$$\mathbb{E}(t_0, t) = \sum_{k=0}^{\infty} k \cdot V_k(t_0, t) = \sum_{k=1}^{\infty} k \cdot V_k(t_0, t)$$
 (2.8)

В стационарном случае значение $\lambda(t_0), \mu(t_0)$ постоянны:

$$\lambda(t_0) = \lambda, \quad \mu(t_0) = \mu$$

Утв: Мгновенные параметры и интенсивность связаны следующим соотношением:

$$\mu(t_0) \ge \lambda(t_0) \tag{2.9}$$

Доказательство:

$$\mathbb{E}(t_0, t) = \sum_{k=0}^{\infty} k \cdot V_k(t_0, t) = \sum_{k=1}^{\infty} k \cdot V_k(t_0, t) \ge \sum_{k=1}^{\infty} V_k(t_0, t) = V_{\ge 1}(t_0, t)$$

$$\mathbb{E}(t_0, t) \ge V_{>1}(t_0, t) \tag{2.10}$$

$$\mu(t_0) = \lim_{t \to 0} \frac{\mathbb{E}(t_0, t)}{t} \ge \lim_{t \to 0} \frac{V_{\ge 1}(t_0, t)}{t} = \lambda(t_0) \Rightarrow \mu(t_0) \ge \lambda(t_0) \quad \blacksquare$$

Задание 2.1:

Утв: для стационарных потоков выполняется

$$\mu \ge \lambda \tag{2.11}$$

Доказательство:

$$\mu = \lim_{t \to 0} \frac{\sum_{k=0}^{\infty} k \cdot V_k(t)}{t} = \lim_{t \to 0} \frac{\sum_{k=1}^{\infty} k \cdot V_k(t)}{t} \ge \lim_{t \to 0} \frac{\sum_{k=1}^{\infty} V_k(t)}{t} = \lim_{t \to 0} \frac{V_{\ge 1}(t)}{t} = \lambda$$

$$\mu \ge \lambda \quad \blacksquare$$

У потоков, моделирующих реальные процессы поступления требований, параметр (то есть предел (2.1) или (2.6)) обычно существует; в дальнейшем мы будем изучать только такие потоки.

Исходя из этого, мы можем теперь дать другую формулировку ординарности стационарных потоков, эквивалентную (1.6).

$$\lim_{t \to 0} \frac{V_{\geq 2}(t)}{t} = 0 \tag{1.6}$$

Утв: поток является ординарным тогда и только тогда, когда:

$$\lim_{t \to 0} \frac{V_{\geq 2}(t)}{V_1(t)} = 0 \tag{2.15}$$

Доказательство:

Верно, что

$$V_1(t) = V_{\geq 1}(t) - V_{\geq 2}(t) \tag{2.16}$$

Откуда получаем:

$$\lim_{t \to 0} \frac{V_1(t)}{t} = \lim_{t \to 0} \frac{V_{\ge 1}(t)}{t} - \lim_{t \to 0} \frac{V_{\ge 2}(t)}{t} = \lambda - \lim_{t \to 0} \frac{V_{\ge 2}(t)}{t}$$
(2.17)

Пусть поток ординарен, то есть выполнено (1.6). Тогда из (2.17)

следует:

$$\lim_{t \to 0} \frac{V_1(t)}{t} = \lambda \tag{2.18}$$

$$\lim_{t \to 0} \frac{V_{\geq 2}(t)}{V_1(t)} = \lim_{t \to 0} \frac{V_{\geq 2}(t)}{t} \cdot \lim_{t \to 0} \frac{t}{V_1(t)} = 0 \tag{2.19}$$

Достаточность тоже доказывается.

Утв: для стационарных потоков с конечной интенсивностью из условия $\mu = \lambda$ следует условие ординарности.

Задание 2.2:

Утв: поток называется ординарным тогда и только тогда, когда

$$\lim_{t \to 0} \frac{V_{\geq 2}(t)}{V_1(t)} = 0 \sim \lim_{t \to 0} \frac{V_{\geq 2}(t)}{V_{\geq 1}(t)} = 0$$

Доказательство:

Необходимость:

$$\lim_{t \to 0} \frac{V_{\geq 2}(t)}{V_{>1}(t)} = \lim_{t \to 0} \frac{V_{\geq 2}(t)}{t} \cdot \lim_{t \to 0} \frac{t}{V_{>1}(t)} = 0$$

Достаточность:

Пусть поток удовлетворяет условию:

$$\lim_{t \to 0} \frac{V_{\geq 2}(t)}{V_{\geq 1}(t)} = 0$$

Тогда:

$$\lim_{t \to 0} \frac{V_{\geq 2}(t)}{V_1(t)} = 0 \qquad \blacksquare$$

Утв:

$$\lim_{t \to 0} \frac{V_{\geq 2}(t)}{V_1(t)} = 0 \sim \lim_{t \to 0} \frac{V_1(t)}{V_{\geq 1}(t)} = 1$$

Доказательство:

$$\lim_{t \to 0} \frac{V_1(t)}{V_{>1}(t)} = \lim_{t \to 0} \frac{V_1(t)}{t} \cdot \lim_{t \to 0} \frac{t}{V_{>1}(t)} = \lambda \frac{1}{\lambda} = 1$$

В обратную сторону аналогично .

- 1.3.4 Определение пуассоновского потока и вычисление вероятности V0
- 1.3.5 Вывод формул для вероятностей Vk элементарным методом
- 1.3.6 Свойства вероятностей Vk пуассоновского потока

Вероятность $V_k(t)$ обладают следующими свойствами:

1. У каждой вероятности есть единственная точка максимум и сама точка максимума находится на линии предыдщей вероятности

Доказательство:

$$f(t) = \frac{(\lambda t)^k}{k!} \cdot e^{-\lambda t} \to \max$$

$$\frac{\partial f(t)}{\partial t} = \frac{\lambda k (\lambda t)^{k-1}}{k!} \cdot e^{-\lambda t} - \lambda e^{-\lambda t} \frac{(\lambda t)^k}{k!} = 0$$

$$e^{-\lambda t} \cdot \frac{(\lambda t)^{k-1}}{(k-1)!} = e^{-\lambda t} \frac{(\lambda t)^k}{k!}$$

Действительно, точка максимума одна и в стационарной точке, являющейся максиумом, совпадает с предыдущей вероятностью. ■

2. Точки максимумов располагаются равномерно Доказательство:

При $\lambda \neq 0, k \leq 1$ и, так как $e^{-\lambda t} \neq 0 \Rightarrow$:

$$t^{k-1} \cdot (\frac{\lambda}{k}t - 1) = 0$$

$$t = 0, t = \frac{k}{\lambda}$$

Следовательно, получили равномерную последовательность с шагом $t=\frac{k}{\lambda}$.

3. Значение точек максимумов убывают с увеличением *t* ■ *Доказательство*:

$$f(\frac{k}{\lambda}) = \frac{k^k}{k!}e^{-k} = \frac{1}{k!} \cdot \left(\frac{k}{e}\right)^k \sim \frac{1}{\sqrt{2\pi k}}$$

Следовательность максимумов стремится к нулю, что и требовалось доказаать в данном свойстве \blacksquare

4. Параметр λ равен интенсивности $\mu(2.5)$. Доказательство:

$$\mathbb{E}(t) = \sum_{k=0}^{\infty} k \cdot V_k(t) = \sum_{k=1}^{\infty} k \cdot V_k(t)(2.5) = \sum_{k=1}^{\infty} k \cdot \frac{(\lambda t)^k}{k!} \cdot e^{-\lambda t} = e^{-\lambda t} \sum_{k=1}^{\infty} \frac{(\lambda t)^k}{(k-1)!} = e^{-\lambda t} \lambda t \sum_{k=1}^{\infty} \frac{(\lambda t)^{k-1}}{(k-1)!} = e^{-\lambda t} \cdot \lambda t \cdot e^{\lambda t} = \lambda t \quad \blacksquare$$

Упражнения:

Дисперсия в пуаасоновском потоке: $D = \frac{1}{\lambda^2}$:

Доказательство:

$$D = \int_0^\infty (x - \mathbb{E})^2 \cdot f(x) dx = \int_0^\infty \left(x - \frac{1}{\lambda} \right)^2 \cdot \lambda e^{-\lambda x} dx$$
$$E\xi^2 = \int_0^\infty x^2 \cdot f(x) dx = \int_0^\infty x^2 \lambda e^{-\lambda x} dx$$

Проведем интегрирование по частям:

$$u = x^{2}, du = 2xdx, dv = \lambda e^{-\lambda x}, v = -e^{-\lambda x}$$

$$\int_{0}^{\infty} u dv = uv - \int_{0}^{\infty} v du$$

$$\lim_{\alpha \to \infty} \int_{0}^{\infty} x^{2} \lambda e^{-\lambda x} dx = \lim_{\alpha \to \infty} \left(x^{2} \cdot (-e^{-\lambda x})|_{0}^{\alpha} - \int_{0}^{\alpha} 2x \cdot (-e^{-\lambda x}) dx \right) =$$

$$= \lim_{\alpha \to \infty} \left(x^{2} \cdot (-e^{-\lambda x})|_{0}^{\alpha} + 2 \cdot \frac{1}{\lambda} \int_{0}^{\alpha} x \cdot \lambda \cdot (e^{-\lambda x}) dx \right)$$

Видим, что второй предел в скобке является высчитанным на паром мат.ожиданием: $\mathbb{E} = \frac{1}{\lambda}$.

$$E\xi^2 = \lim_{\alpha \to \infty} \left(x^2 \cdot (-e^{-\lambda x})|_0^{\alpha} + \frac{2}{\lambda^2} \right) = 0 + \frac{2}{\lambda^2} = \frac{2}{\lambda^2}$$

Следовательно, дисперсия равна:

$$D\xi = E\xi^2 - (E\xi)^2 = \frac{2}{\lambda^2} - \frac{1}{\lambda^2} = \frac{1}{\lambda^2}$$

В дискретном пуассоновском потоке дисперсия равна $D\xi=\lambda t$: Доказательство:

$$E\xi^{2} = \sum_{k=0}^{\infty} k^{2} \cdot V_{k}(t) = \sum_{k=1}^{\infty} k^{2} \cdot V_{k}(t)(2.5) = \sum_{k=1}^{\infty} k^{2} \cdot \frac{(\lambda t)^{k}}{k!} \cdot e^{-\lambda t} = e^{-\lambda t} \sum_{k=1}^{\infty} \frac{(\lambda t)^{k}}{(k-2)!} = e^{-\lambda t} (\lambda t)(\lambda t + 1) \sum_{k=1}^{\infty} \frac{(\lambda t)^{k-2}}{(k-2)!} = e^{-\lambda t} \cdot (\lambda t) \cdot (\lambda t + 1) \cdot e^{\lambda t} = (\lambda t) \cdot (\lambda t + 1)$$

$$D\xi = E\xi^{2} - (E\xi)^{2} = (\lambda t) \cdot (\lambda t + 1) - (\lambda t)^{2} = \lambda t$$