

1. Aritmética Computacional :: background

1.1 Sistema de numeração

Um sistema de numeração de vírgula flutuante F(b, t, m, M) é caracterizado por quatro parâmetros:

 \rightarrow **b** - base;

- $\rightarrow m$ valor mínimo do exponente;
- $\rightarrow t$ número de dígitos da mantissa;
- $\rightarrow M$ valor máximo do expoente.

Constituem o sistema F(b,t,m,M), para além do número zero, todos os números que se puderem exprimir na forma

$$\pm (.d_1d_2...d_t)_b \times b^e$$

 $\text{com } d_1, d_2, \dots d_t \in \{0, 1 \dots, b-1\}, \ d_1 \neq 0, \ \text{e} \ e \in \mathbb{Z} \ \text{tal que } m \leq e \leq M; \ \text{a notação} \ \big(.d_1 d_2 \dots d_t \big)_b$ designa $d_1 \, b^{-1} + d_2 \, b^{-2} + \dots + d_t \, b^{-t}.$

Estes são os chamados números normalizados. Um sistema F(b,t,m,M) pode ainda admitir os chamados números desnormalizados ou subnormais, que são os números obtidos deixando de impor a condição $d_1 \neq 0$, quando o expoente assume o valor mínimo.

O maior número de F(b, t, m, M), designa-se por nível de overflow e é dado por

$$\Omega := (1 - b^{-t})b^M$$

. O menor número positivo normalizado, chamado nível de underflow, é dado por

$$\omega := b^{m-1}$$

. O menor número positivo de um sistema que admita números desnormalizados $^{\mathbf{1}}$ é b^{m-t} Ao conjunto

$$R_F := [-\Omega, -\omega] \cup \{0\} \cup [\omega, \Omega]$$

chamamos conjunto dos números representáveis.

 $^{^{1}}$ Se nada for dito em contrário, quando nos referirmos a um sistema F(b,t,m,M), consideramos apenas os números normalizados.

■ Arredondamento

Dado um número $x \in R_F$, pretende-se encontrar um número de máquina que o represente. É natural exigir-se que esse número, iremos denotar por fl(x), esteja à menor distância possível de x, havendo uma regra para decidir o que fazer, no caso de empate. Naturalmente que se $x \in F$, então fl(x) = x, como seria de desejar. Quando fl(x) é escolhido desta forma², dizemos que é usado arredondamento para o mais próximo.

No caso em que existam dois números de máquina à mesma distância do número x, é habitual (sobretudo se a base do sistema for 2 ou 10) usar-se o chamado arredondamento para par, em que se escolhe para fl(x) aquele cujo último dígito da mantissa seja par.

No chamado arredondamento usual (que normalmente usamos no dia-a-dia), em caso de empate, as mantissas são arredondadas "para cima", o que equivale a somar à mantissa $\frac{1}{2}$ $bb^{-(t+1)}$, truncando, em seguida, o resultado para t dígitos.

A unidade de erro de arredondamento do sistema é $\mu:=\frac{1}{2}b^{1-t}$. Chama-se epsilon da máquina, e denota-se por ϵ , a diferença entre o número de F(b,t,m,M) imediatamente superior a 1 e o número 1, isto é, $\epsilon:=b^{1-t}$.

Operações de vírgula flutuante

Representaremos as operações de vírgula flutuante pelo símbolo usual rodeado por O; por exemplo \oplus , \otimes . Admitimos que o resultado de uma operação de vírgula flutuante é obtido por arredondamento do resultado da operação exata, isto é, $x \oplus y = fl(x+y), \ x \otimes y = fl(x \times y)$, etc.

1.2 Norma IEEE 754

Com o objetivo de uniformizar as operações nos sistemas de vírgula flutuante foi publicada, em 1985, a norma IEEE 754.³ Esta norma especifica dois formatos básicos para a representação de números num sistema de vírgula flutuante: o formato simples com 32 bits e o formato duplo com 64 bits.

A norma IEEE 754 permite representar números normalizados na forma

$$x = (-1)^s (d_0.d_{-1}d_{-2}\cdots d_{-(t-1)})_2 2^{\mathfrak{e}},$$

onde

- $s \in \{0,1\}$ sinal; - t número de bits da mantissa;

- $d_0=1$ bit implícito; - \mathfrak{e} expoente com $e_{\min} \leq \mathfrak{e} \leq e_{\max}$.

²Existem outras formas de determinar fl(x), como, por exemplo, a chamada truncatura, em que simplesmente se ignoram todos os dígitos da mantissa do número que estejam para além da posição t

³IEEE- Institute for Electrical and Electronics Engineers.

A tabela seguinte contem os valores dos parâmetros do formato simples e duplo.

	formato simples	formato duplo	
t	24	53	
e_{min}	-126	-1022	
$e_{\sf max}$	127	1023	

O formato simples corresponde então ao sistema F(2, 24, -125, 128) e o duplo⁴ corresponde a F(2, 53, -1021, 1024). Ambos os sistemas admitem números desnormalizados.

Alocação dos bits no formato simples

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

S Expoente Mantissa
(8 bits) (23 bits)

Alocação dos bits no formato duplo

0 1 2 3 ··· 10 11 12 13 14 15 16 17 18 19 20 21 22 23 ··· 55 55 56 57 58 59 60 61 62 63

S Expoente Mantissa
(11 bits) (52 bits)

Representação do expoente

No formato simples, o expoente está codificado da seguinte forma

$-\varepsilon$	e
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	reservado
$\begin{picture}(60,0)(0,0)(0,0)(0,0)(0,0)(0,0)(0,0)(0,0$	-126
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	-125
:	:
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	1
÷ :	:
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	126
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	127
1 1 1 1 1 1 1 1	reservado

Os expoentes satisfazem, por isso, a relação

 $e = \varepsilon - e_{\text{max}}$.

⁴Por defeito, o MATLAB trabalha no sistema de numeração de norma IEEE em formato duplo.

O sistema de numeração IEEE admite ainda os "números" especiais $+\infty$ e $-\infty$ (Inf e -Inf), para representar, por exemplo, o resultado da divisão de um número por zero, bem como o símbolo especial NaN (Not a Number), para representar o resultado de operações não definidas matematicamente, tais como 0/0, $\infty - \infty$, etc.

	$e_1e_2\cdots e_8$	valor representado
<i>l</i> 23	$(00000000)_2 = (0)_{10}$	$\pm (0.d_1d_2d_3\cdots d_{22}d_{23})_2 \times 2^{-126}$
$d_{22}d_{23}$	$(00000001)_2 = (1)_{10}$	$\pm (1.d_1d_2d_3\cdots d_{22}d_{23})_2 \times 2^{-126}$
	$(00000010)_2 = (2)_{10}$	$\pm (1.d_1d_2d_3\cdots d_{22}d_{23})_2 \times 2^{-125}$
$d_1d_2d_3$	<u>:</u>	÷
d_1	$(011111111)_2 = (127)_{10}$	$\pm (1.d_1d_2d_3\cdots d_{22}d_{23})_2 \times 2^0$
$e_{7}e_{8}$	$(10000000)_2 = (128)_{10}$	$\pm (1.d_1d_2d_3\cdots d_{22}d_{23})_2 \times 2^1$
	÷ :	:
e_2e_3	$(111111101)_2 = (253)_{10}$	$\pm (1.d_1d_2d_3\cdots d_{22}d_{23})_2 \times 2^{126}$
$e_1\epsilon$	$(111111110)_2 = (254)_{10}$	$\pm (1.d_1d_2d_3\cdots d_{22}d_{23})_2 \times 2^{127}$
+	$(111111111)_2 = (255)_{10}$	$\pm\infty$ se $d_1=d_2\cdots=d_{23}=0$
		NaN, nos outros casos

A norma IEEE 754 especifica também as regras de arredondamento a utilizar. Por defeito, é utilizado o chamado arredondamento para par, isto é, se $x \in R_F$, fl(x) é escolhido como o número de máquina mais próximo de x, sendo, em caso de "empate", escolhido aquele que tem o último bit da mantissa igual a zero.

Para além disso, em geral, tem-se

$$\rightarrow$$
 se $x > \Omega$, $fl(x) = \mathbf{Inf}$;

$$\rightarrow$$
 se $x < -\Omega$, $fl(x) = -\mathbf{Inf}$;

 \rightarrow se $2^{m-t} \le x < \omega$, fl(x) é o número desnormalizado mais próximo de x;

→ se
$$x < 2^{m-t}$$
, $fl(x) = 0$.

Exemplo 1.1 Formato simples

$$-(1.111)_2 \times 2^{129-127} = -(7.5)_{10}$$

$$(0.11)_2 \times 2^{-126}$$

NaN

 $-\infty$

1.3 Erro absoluto, erro relativo, algarismos significativos e casas decimais de precisão

Ao valor

$$E_{\tilde{x}} := x - \tilde{x}$$

chama-se erro absoluto do valor aproximado \tilde{x} para x. Para $x \neq 0$, o valor

$$R_{\tilde{x}} := \frac{x - \tilde{x}}{x}$$

constitui o chamado erro relativo do valor aproximado \tilde{x} para $x.^5$

Dizemos que \tilde{x} é uma aproximação para x com p casas decimais de precisão, se p é o maior inteiro tal que

$$|x - \tilde{x}| \le 0.5 \times 10^{-p}$$

Dizemos que \tilde{x} é uma aproximação para x com q algarismos (decimais) significativos, se q é o maior inteiro para o qual se tem

$$|x - \tilde{x}| < 0.5 \times 10^{-q} \times 10^{e}$$

onde e é o expoente de x na notação normalizada (na base decimal).

■ Erros de arredondamento

Sejam $\mathcal{F}:=F(b,t,m,M)$ e $x=(-1)^sm_xb^e\in R_{\mathcal{F}}$ não nulo e normalizado (i.e. $b^{-1}\leq m_x<1$, $m\leq e\leq M$).

O erro absoluto de arredondamento: é dado por:

$$|E_{fl(x)}| = |x - fl(x)| \le \frac{1}{2}b^{-t}b^e = \mu b^{e-1}.$$

e o erro relativo de arredondamento por:

$$|R_{fl(x)}| = \frac{|x - fl(x)|}{|x|} \le \frac{\frac{1}{2}b^{-t}b^e}{b^{-1}b^e} = \frac{1}{2}b^{1-t} = \mu.$$

⁵Muitas vezes estamos interessados apenas no valor absoluto destas quantidades, designado-as pelos mesmos nomes, caso tal seja claro pelo contexto.

O majorante do erro absoluto depende de e, logo de x. O majorante do erro relativo depende apenas da unidade de erro de arredondamento da máquina usada. Deste resultado, conclui-se de imediato que

$$fl(x) = x(1+\delta), \text{ com } |\delta| \le \mu.$$

Propagação de erros nas operações usuais

Sejam \tilde{x} e \tilde{y} valores aproximados para x e y, respetivamente $(x,y\neq 0)$, e sejam S=x+y, $P=x\times y$ e Q=x/y. Sejam \tilde{S},\tilde{P} e \tilde{Q} os valores aproximados para S,P e Q obtidos usando os valores \tilde{x} e \tilde{y} em vez de x e y e admitindo que as operações são efetuadas exatamente. Podem estabelecer-se facilmente os seguintes resultados:

$$E_{\widetilde{S}} = E_{\widetilde{x}} + E_{\widetilde{y}} \qquad E_{\widetilde{P}} = E_{\widetilde{x}}y + E_{\widetilde{y}}x - E_{\widetilde{x}}E_{\widetilde{y}} \qquad E_{\widetilde{Q}} = \frac{yE_{\widetilde{x}} - xE_{\widetilde{y}}}{y\widetilde{y}}$$

$$R_{\widetilde{S}} = \frac{x}{x+y}R_{\widetilde{x}} + \frac{y}{x+y}R_{\widetilde{y}} \qquad R_{\widetilde{P}} = R_{\widetilde{x}} + R_{\widetilde{y}} - R_{\widetilde{x}}R_{\widetilde{y}} \qquad R_{\widetilde{Q}} = \frac{R_{\widetilde{x}} - R_{\widetilde{y}}}{1 - R_{\widetilde{y}}}$$

Supondo $|R_{\tilde{x}}|, |R_{\tilde{y}}| \ll 1$, obtêm-se as seguintes fórmulas simplificadas para o erro relativo do produto e do quociente

$$R_{\widetilde{P}} \approx R_{\widetilde{x}} + R_{\widetilde{y}} \qquad R_{\widetilde{O}} \approx R_{\widetilde{x}} - R_{\widetilde{y}}$$

Nota: A operação mais "perigosa" (isto é, que pode amplificar significativamente o erro relativo dos argumentos) é a adição (podendo ocorrer o chamado cancelamento subtrativo quando se somam números muito próximos e com sinais contrários).

1.4 Condicionamento e estabilidade

Um problema diz-se mal condicionado se for muito sensível a perturbações introduzidas nos seus dados, isto é, se "pequenas" alterações nos dados produzirem "grandes" alterações na sua solução (independentemente do método escolhido para resolver o problema). Se tal não acontecer, o problema diz-se bem condicionado.

Um método numérico diz-se instável se, no decurso dos cálculos inerentes à aplicação do método, os erros se amplificarem de forma inaceitável; Se tal não acontecer, o método diz-se estável.

Número de condição de uma função

Sendo f uma função continuamente diferenciável na vizinhança de um ponto x e sendo $f(x) \neq 0$, à quantidade

$$\operatorname{cond}(f(x)) := \frac{|xf'(x)|}{|f(x)|}$$

chamamos número de condição de f em x.

Supondo $x \neq 0$ e sendo \tilde{x} pertencente à vizinhança de x onde f é diferenciável, tem-se

$$\frac{|f(x) - f(\tilde{x})|}{|f(x)|} \approx \operatorname{cond}(f(x)) \frac{|x - \tilde{x}|}{|x|}.$$

De modo análogo, se f é uma função de duas variáveis suficientemente diferenciável na vizinhança de (x,y) e (\tilde{x},\tilde{y}) está nessa vizinhança, tem-se

$$\frac{|f(x,y)-f(\tilde{x},\tilde{y})|}{|f(x,y)|} \approx \frac{|x\frac{\partial f(x,y)}{\partial x}|}{|f(x,y)|} \frac{|x-\tilde{x}|}{|x|} + \frac{|y\frac{\partial f(x,y)}{\partial y}|}{|f(x,y)|} \frac{|y-\tilde{y}|}{|y|}.$$

As quantidades $\frac{|x\frac{\partial f(x,y)}{\partial x}|}{|f(x,y)|}$ e $\frac{|y\frac{\partial f(x,y)}{\partial y}|}{|f(x,y)|}$ são os números de condição de f em (x,y) relativamente à variável x e à variável y, respetivamente.

1.5 Funções pré-definidas do MATLAB

Função	Objetivo		
abs	Valor absoluto		
ceil	Arredondamento para o inteiro mais próximo (na direcção de $+\infty$)		
base2dec	Mudança de uma dada base para a base decimal		
bin2dec	Mudança da base binária para a base decimal		
dec2base	Mudança da base decimal para outra base		
dec2bin	Mudança da base decimal para a base binária		
eps	epsilon da máquina		
fix	Arredondamento para o inteiro mais próximo (na direcção de zero)		
floor	Arredondamento para o inteiro mais próximo (na direcção de $-\infty$)		
\mathbf{Inf}	Representação na aritmética IEEE de $+\infty$		
NaN	Representação na aritmética IEEE de "Not-a-Number"		
realmax	Nível de overflow		
realmin	Nível de underflow		
rem	Resto da divisão		
round	Arredondamento para o inteiro mais próximo		

■ Referências

Para mais pormenores sobre a norma IEEE 754, veja, por exemplo, [IEE85], [Ove01] ou [Gol91]; o livro clássico de Wilkinson [Wil63], apesar de bastante antigo, continua a ser uma referência importante sobre o tema deste capítulo; outro livro bastante interessante sobre este tópico é o de Higham [Hig02].

Gol91 D. Goldberg. What every computer scientist should know about floating-point arithmetic. ACM Computing Surveys, 23(1):5–48, 1991.

Hig02 N. J. Higham. Accuracy and Stability of Numerical Algorithms. SIAM, 2^a edição, 2002.

- IEE85 IEEE Standard for Binary Floating-Point Arithmetic, ANSI/IEEE Standard 754-1985. Institute for Electrical and Electronics Engineers, New York, 1985.
- Ove01 M. L. Overton. *Numerical Computing with IEEE Floating Point Arithmetic*. SIAM, New York, 2001.
- Wil63 J. H. Wilkinson. *Rounding Errors in Algebraic Processes*. Prentice Hall, Englewood Cliffs, NJ, 1963.

Nos seguintes endereços encontrará exemplos curiosos de casos verídicos de problemas causados por erros de arredondamento:

http://www5.in.tum.de/ huckle/bugse.html http://catless.ncl.ac.uk/Risks/

2. Problemas

2.1 Exercícios

Exercício 1. Considere uma máquina com sistema de numeração $\mathcal{F} = F(2,3,-2,2)$, com arredondamento usual.

- a) Quantos números têm representação exata em F? Quantos desses números são inteiros?
- b) Para cada uma das alíneas seguintes, indique, caso exista, um número $x \neq 0$, tal que:
- ii) $fl(x) = -\infty$; iii) fl(1+x) = 1;
- iv) fl(x) > x;
- v) $x \in \mathcal{F}$ e $x \notin R_{\mathcal{F}}$, sendo $R_{\mathcal{F}}$ o conjunto dos números representáveis deste sistema.
- c) Calcule fl(7.125).

Exercício 2.

- a) Use a ajuda do Matlab para obter informação sobre as funções pré-definidas realmax, realmin e eps.
- b) Justifique os valores obtidos quando as usa (sem especificação do argumento).
- c) Que espera obter se efetuar cada uma das instruções seguintes no Matlab? Confirme a sua resposta.

Exercício 3. Obtenha a representação IEEE dos números

Exercício 4. Obtenha a representação decimal dos números representados abaixo.

Exercício 5. Justifique que num sistema de vírgula flutuante de base b, a divisão ou multiplicação por uma potência de b, se não conduzir a *overflow* ou *underflow*, é uma operação exata.

Exercício 6. Diga, justificando, se são verdadeiras ou falsas as seguintes afirmações, considerando que está trabalhar num sistema de vírgula flutuante IEEE (com o arredondamento usual):

- a) $x \le y \Longrightarrow fl(x) \le fl(y)$;
- b) $x < y \Longrightarrow fl(x) < fl(y)$;
- c) $x \le y \Longrightarrow x \le fl(\frac{x+y}{2}) \le y \quad (x, y \in F).$
- d) Mostre, através de um exemplo, que a afirmação contida na alínea c) pode ser falsa se trabalharmos num sistema de vírgula flutuante de base 10.

Exercício 7. Escreva uma script destinada a calcular aproximações para o número de Nepper e, usando a expressão

$$e = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n$$

Esta script deverá produzir uma tabela com os valores das aproximações $\left(1+\frac{1}{n}\right)^n$ e dos respetivos erros, para

a)
$$n = 10^k$$
; $k = 1, 2 \dots, 20$;

b)
$$n = 2^k$$
; $k = 45, 46, \dots, 55$.

Comente os resultados obtidos.

Exercício 8. Considere a função $f(x,h) = \frac{\operatorname{sen}(x+h) - \operatorname{sen}(x)}{h}$.

- a) Use a fórmula trigonométrica $sen(a) sen(b) = 2cos(\frac{a+b}{2})sen(\frac{a-b}{2})$ para obter a expressão da função g(x,h), matematicamente equivalente a f(x,h).
- b) Avalie f(x,h) e g(x,h), em (1.2,h), para $h=1,10^{-1},\ldots,10^{-20}$.
- c) Explique a diferença dos resultados obtidos.
- d) Sugira uma fórmula para calcular uma aproximação para a derivada da função sen(x).

Exercício 9. Considere a função $f(x) = 1 - \cos x$.

- a) Sejam $\tilde{a}=0.292$ e $\tilde{b}=0.049$ aproximações para os valores $a=f(\frac{\pi}{4})$ e $b=f(\frac{\pi}{10})$. Indique o número de casas decimais corretas e o número de algarismos significativos de cada uma destas aproximações.
- b) Mostre que as funções f(x) e $g(x) = 2 \operatorname{sen}^2 \frac{x}{2}$ são iguais.
- c) Faça as representações gráficas de f e g no intervalo [0,t], considerando sucessivamente $t=10^{-7}$, $t=3\times 10^{-8}$ e $t=10^{-8}$ (use três figuras diferentes). Justifique o comportamento observado.

Exercício 10. Represente graficamente os polinómios $p(x)=(x-1)^6$ e $q(x)=x^6-6x^5+15x^4-20x^3+15x^2-6x+1$, para $x\in[0.999,1.001]$. Notando que q(x) é a forma expandida de p(x), comente os resultados obtidos.

2.2 Trabalhos

Trabalho 1. A média de uma amostra de n valores x_i ; i = 1, ..., n, é dada por

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i,$$

sendo o desvio padrão amostral dado por

$$s = \left(\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \overline{x})^2\right)^{1/2}.$$
 (2.1)

Para maior eficiência, é frequentemente sugerido o uso da seguinte fórmula alternativa para o cálculo do desvio padrão

$$s = \left(\frac{1}{n-1} \sum_{i=1}^{n} \left(x_i^2 - n\overline{x}^2\right)\right)^{1/2}.$$
 (2.2)

Escreva uma função,

$$[media, desvio1, desvio2] = \mathbf{mediaDesvios}(x),$$

destinada a calcular a média e o desvio padrão de uma amostra, sendo usadas as duas fórmulas (2.1) e (2.2) para o cálculo do desvio padrão.

Teste a sua função para várias amostras $\{x_i\}$. Em particular, tente encontrar uma amostra para a qual as duas fórmulas do cálculo do desvio padrão produzam valores bastante diferentes. Justifique a diferença dos resultados.

Trabalho 2. Considere o desenvolvimento em série da função exponencial

$$e^x = 1 + x + \frac{x^2}{2!} + \ldots + \frac{x^n}{n!} + \ldots$$

- a) Utilize este desenvolvimento, com 101 termos, para calcular uma aproximação para o valor de e^{-25} .
- b) Obtenha uma aproximação para e^{25} usando a série referida e calcule, então, e^{-25} através da fórmula $e^{-25}=\frac{1}{e^{25}}$.
- c) Compare os resultados obtidos nas alíneas anteriores com o valor de e^{-25} dado usando a função \exp do MATLAB e explique-os.

Trabalho 3. Relembrando as expansões em série das funções arctan x e arcsen x

$$\arctan x = x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \dots,$$

e

$$\arcsin x = x + \frac{1}{2} \frac{x^3}{3} + \frac{1 \times 3}{2 \times 4} \frac{x^5}{5} + \frac{1 \times 3 \times 5}{2 \times 4 \times 6} \frac{x^7}{7} + \dots,$$

obtenha duas fórmulas alternativas para o cálculo de π .

Escreva uma *script* para calcular aproximações para π usando as fórmulas referidas e considerando um número de termos em cada série sucessivamente igual a $10, 20, \ldots, 100, 200, 300, \ldots, 1000$. Comente os resultados obtidos.