Linearization

Given a function f(x), its linearization at x = a is the function

$$L(x) = f(a) + f'(a)(x - a).$$

For example, if $f(x) = \sqrt{x}$ and a = 4 then f(4) = 2 and $f'(4) = 1/(2\sqrt{4}) = 1/4$. So

$$L(x) = 2 + \frac{1}{4}(x - 4).$$

The graph of the linearization is just the tangent line to the curve $y = \sqrt{x}$ at x = 4. So we expect that L(x) is a good approximation for \sqrt{x} for x near 4. The point is that computing square roots is hard work (even if your calculator makes it look easy) but computing the value of a linear function like L is easy. In fact your calculator is doing a more sophisticated generalization of the linear approximation: stay tuned in Calculus II!

1. Use the linear approximation of $f(x) = \sqrt{x}$ at x = 4 to approximate $\sqrt{4.1}$ and compare your result to its approximation computed by your calculator.

$$L(4.1) = 2 + \frac{1}{4}(x-4)$$

$$= 2 + \frac{1}{4} = 2 + \frac{1}{40} = 2.025$$

$$= 2 + \frac{1}{40} = 2.025$$

2. Use the linear approximation to approximate the cosine of $29^{\circ} = \frac{29}{30} \frac{\pi}{6}$ radians.

Use |Mear approx of
$$\cos(x)$$
 at $x = TT/6$
 $\cos(TT/6) = J = J/2$
 $\sin(TT/6) = 1/2$
 $\cos(TT/6) =$

0.5

L(0.5)_

3. Find the linear approximation of $f(x) = \ln(x)$ at a = 1 and use it to approximate $\ln(0.5)$ and $\ln(0.9)$. Compare your approximation with your calculator's. Sketch both the curve $y = \ln(x)$ and y = L(x) and label the points $A = (0.5, \ln(0.5))$ and B = (0.5, L(0.5))

$$f(x) = \frac{x}{1}$$
 $f(1) = \frac{1}{1} = 1$
 $f(x) = \frac{1}{1} = 1$

$$L(x) = f(1) + f'(1)(x-1)$$
= x-1

$$L(0.5) = -0.5$$
 us. $h(0.5) = -0.6931$

4. Find the linear approximation of $f(x) = e^x$ at a = 0 and use it to approximate $e^{0.05}$ and e^1 Compare your approximations with your calculator's.

$$f(x)=e^{x}$$
 $f(0)=1$
 $f(x)=e^{x}$ $f'(0)=1$

$$L(x) = f(0) + f'(0)(x-0)$$
= $1 + (x-0)$
= $1 + x$

$$L(0.05) = 1.05$$
 us. $e^{6.05} = 1.0512$
 $L(1) = 2$ us $e^{1} = 2.718$

not so good, but I is "far" from O, so the approximation will be worse.

Differentials Suppose we have a variable y = f(x). We define its differential to be

$$dy = f'(x)dx$$

where x and dx are thought of as variables you can control. What's the point? The value of dy is an estimate of how much y changes if we change x into x + dx. See the graph:

dy = f(x) dx is the charge in the linear approximating central at x with step size dx

dy approximates $\Delta y = f(x+\Delta x) - f(x)$

5. A tree is growing and the radius of its trunk in centemeters is $r(t) = 2\sqrt{t}$ where t is measured in years. Use the differential to estimate the change in radius of the tree from 4 years to 4 years and one month.

$$dr = 2 \frac{1}{2\pi} dt = \frac{1}{\sqrt{t}} dt$$

$$t = 4$$
, $dt = \frac{1}{12}$

$$dr = \frac{1}{2} \cdot \frac{1}{12} = \frac{1}{24} cm$$

6. A coat of paint of thinkness 0.05cm is being added to a hemispherical dome of radius 25m. Estimate the volume of paint needed to accomplish this task. [Challenge: will this be an underestimate or an overestimate? Thinking geometrically or thinking algebraically will both give you the same answer.]

Point is the extra volume $V = \frac{1}{2} \frac{4}{3} \pi r^{3}$ $dr = 0.05 cm = \frac{0.05}{100} cm$ $dv = 2\pi r^{2} dr$ $dv = 7\pi (26)^{2} \left(\frac{0.05}{100}\right)$

= 1,96 m3

7. The radius of a disc is 24cm with an error of ± 0.5 cm. Estimate the error in the area of the disc as an absolute and as a relative error.

$$AA = 2\pi \cdot (24) \cdot \frac{1}{2}$$

This is absolute error.

Relative error compares the error with the mersued value:

$$\frac{dA}{A} = \frac{75.4}{\pi (25)^2} = 0.0884 = 3.89.$$