

Block-oriented modeling

Maarten Schoukens Koen Tiels

Introduction

Wiener

- Wiener
- Hammerstein

- Wiener
- Hammerstein
- Wiener-Hammerstein

- Wiener
- Hammerstein
- Wiener-Hammerstein
- parallel Wiener-Hammerstein

- Wiener
- Hammerstein
- Wiener-Hammerstein
- parallel Wiener-Hammerstein
- nonlinear feedback

- Wiener
- Hammerstein
- Wiener-Hammerstein
- parallel Wiener-Hammerstein
- nonlinear feedback

Which model to choose?

Outline

- ► Which block structure to choose?
- ▶ How to identify the chosen block structure?

- Bussgang's theorem
- ε approximation
- Structure detection

Bussgang's Theorem

Stationary Gaussian input

→ Static nonlinearity ≈ static gain

$$f(u) = \gamma u$$

ε - Approximation

Small signal around a setpoint

y(t)

Taylor approximation

→ Static nonlinearity ≈ static gain

$$f(u) = \gamma u$$

3

- BLA, ε Approximation @ different setpoints
 - Change offset
 - Change power spectrum

Linear-Time-Invariant (LTI)

$$G_{bla}(q) = H(q)$$

→ No changes

5

	Gain	Poles	Zeros
Linear Time Invariant	Fixed	Fixed	Fixed
Hammerstein			
Wiener			
Wiener-Hammerstein			
Parallel WH			
Feedback			
LFR			

Hammerstein

→ Only gain factor

	Gain	Poles	Zeros
Linear Time Invariant	Fixed	Fixed	Fixed
Hammerstein	Variable	Fixed	Fixed
Wiener			
Wiener-Hammerstein			
Parallel WH			
Feedback			
LFR			

W.

Wiener

→ Only gain factor

	Gain	Poles	Zeros
Linear Time Invariant	Fixed	Fixed	Fixed
Hammerstein	Variable	Fixed	Fixed
Wiener	Variable	Fixed	Fixed
Wiener-Hammerstein			
Parallel WH			
Feedback			
LFR			

W.

Wiener-Hammerstein

→ Only gain factor

	Gain	Poles	Zeros
Linear Time Invariant	Fixed	Fixed	Fixed
Hammerstein	Variable	Fixed	Fixed
Wiener	Variable	Fixed	Fixed
Wiener-Hammerstein	Variable	Fixed	Fixed
Parallel WH			
Feedback			
LFR			

W.

Parallel Wiener-Hammerstein

→ Moving zeros, fixed poles

	Gain	Poles	Zeros
Linear Time Invariant	Fixed	Fixed	Fixed
Hammerstein	Variable	Fixed	Fixed
Wiener	Variable	Fixed	Fixed
Wiener-Hammerstein	Variable	Fixed	Fixed
Parallel WH	Variable	Fixed	Variable
Feedback			
LFR			

Feedback system

$$G_{\varepsilon}(q) = \frac{H(q)}{1 + \gamma H(q)}$$

→ Fixed zeros, moving poles

	Gain	Poles	Zeros
Linear Time Invariant	Fixed	Fixed	Fixed
Hammerstein	Variable	Fixed	Fixed
Wiener	Variable	Fixed	Fixed
Wiener-Hammerstein	Variable	Fixed	Fixed
Parallel WH	Variable	Fixed	Variable
Feedback	Variable	Variable	Fixed
LFR			

→ Moving zeros, moving poles

	Gain	Poles	Zeros
Linear Time Invariant	Fixed	Fixed	Fixed
Hammerstein	Variable	Fixed	Fixed
Wiener	Variable	Fixed	Fixed
Wiener-Hammerstein	Variable	Fixed	Fixed
Parallel WH	Variable	Fixed	Variable
Feedback	Variable	Variable	Fixed
LFR	Variable	Variable	Variable

- BLA, ε approximation @ ≠ setpoints
- · Only gain change
 - Hammerstein, Wiener, Wiener-Hammerstein, ...
- Zeros shift
 - Parallel feed-forward structure
- Poles shift
 - Feedback present

Outline

- Which block structure to choose?
- ▶ How to identify the chosen block structure?
 - ► Hammerstein model
 - Wiener model
 - Orthonormal basis functions

Identification of a Hammerstein model

Step 1: Estimate a nonparametric BLA

Random-phase multisine excitation:

$$u^{[m]}(t) = \sum_{k=1}^{N_F} A_k \sin(2\pi k f_0 t + \phi_k^{[m]})$$

Step 1: Estimate a nonparametric BLA

Random-phase multisine excitation:

$$u^{[m]}(t) = \sum_{k=1}^{N_F} A_k \sin(2\pi k f_0 t + \phi_k^{[m]})$$

FRF:

$$G_{BLA}(k) = \frac{1}{M} \sum_{m=1}^{M} \frac{Y^{[m]}(k)}{U^{[m]}(k)}$$

Step 1: Estimate a nonparametric BLA

Random-phase multisine excitation:

$$u^{[m]}(t) = \sum_{k=1}^{N_F} A_k \sin(2\pi k f_0 t + \phi_k^{[m]})$$

FRF:

$$G_{BLA}(k) = \frac{1}{M} \sum_{m=1}^{M} \frac{Y^{[m]}(k)}{U^{[m]}(k)}$$

Nonparametric noise model:

$$\sigma_{G_{\rm BLA}}^2(k) = \sigma_{\rm NL}^2(k) + \sigma_{\rm noise}^2(k)$$

Step 2: Estimate a parametric BLA

Step 2: Estimate a parametric BLA

Step 3: Estimate the polynomial coefficients

Step 3: Estimate the polynomial coefficients

Step 4: Do a nonlinear optimization of all parameters

Nonlinear optimization of β and θ simultaneously.

Outline

- Which block structure to choose?
- ▶ How to identify the chosen block structure?
 - ► Hammerstein model
 - ► Wiener model
 - Orthonormal basis functions

Identification of a Wiener model

$$G(q) = \frac{B(q, \theta)}{A(q, \theta)}$$

$$f(u) = \sum_{d=0}^{D} \beta_d x^d$$

Step 3: Estimate the polynomial coefficients

Outline

- Which block structure to choose?
- ▶ How to identify the chosen block structure?
 - ► Hammerstein model
 - Wiener model
 - ► Orthonormal basis functions

Motivation for orthonormal basis functions

Motivation for orthonormal basis functions

$$\hat{\beta} = \underset{\beta}{\operatorname{arg \, min}} \left\| y(t) - \sum_{d=0}^{D} \beta_d y_d(t) \right\|_2^2$$
 possibly ill-conditioned

 $\begin{array}{ccc} \text{Linear dynamics} & \to & \text{Rational orthonormal basis functions} \\ \text{Static nonlinearities} & \to & \text{Hermite polynomials} \end{array}$

Rational OBFs are determined by their pole locations

$$F_k(q) = \frac{\sqrt{1 - |\xi_k|^2}}{q - \xi_k} \prod_{i=1}^{k-1} \frac{1 - \xi_i^* q}{q - \xi_i}$$

all-pass filter

Pole locations ξ_k	OBFs
origin	FIR
real pole	Laguerre
complex conjugate pair	Kautz
repeated poles	Generalized OBFs
arbitrary	Takenaka-Malmquist

Example: Approximation of a parallel Wiener system

Step 1: Estimate the linear dynamics

 F_k : rational orthonormal basis functions g: multivariate Hermite polynomials

Step 1: Estimate the linear dynamics

pole locations → orthonormal basis functions

Step 1: Estimate the linear dynamics

 $\begin{array}{c} \text{pole locations} \to \text{orthonormal basis functions} \\ \Downarrow \\ \text{best linear approximation} \end{array}$

Step 2: Estimate the polynomial coefficients

The model is linear-in-the-parameters

Prior knowledge can be incorporated via user-specified pole locations

$$\{\hat{p}_1,\ldots,\hat{p}_n\} \Rightarrow \{F_1,\ldots,F_n\}$$

Prior knowledge can be incorporated via user-specified pole locations

$$\begin{aligned}
\{\hat{p}_1, \dots, \hat{p}_n\} &\Rightarrow \{F_1, \dots, F_n\} \\
\{\hat{p}_1, \dots, \hat{p}_n\} &\Rightarrow \{F_{n+1}, \dots, F_{2n}\} \\
&\vdots &\vdots
\end{aligned}$$

The extra basis functions compensate for a pole mismatch

The number of parameters increases rapidly with the number of orthonormal basis functions

Better prior knowledge allows for better models

Iteratively update the pole locations

- Estimate a high-order nonlinear model
- 2) Extract a low-order linear model

Overview

- Structure detection via BLA
- ▶ Identification of some block structures
 - ► Hammerstein
 - Wiener
 - Parallel Wiener