Arbres et arbres binaires

Irena.Rusu@univ-nantes.fr

LINA, bureau 123, 02.51.12.58.16

- Arbres (Rappels)
 - Généralités
 - Parcours
 - Représentations en machine
- Arbres binaires
 - Définition, implémentation
 - Hauteur

- Arbres (rappels)
 - Généralités
 - Parcours
 - Représentations en machine
- Arbres binaires
 - Définition, implémentation
 - Hauteur

Mise en garde

- Deux manières de définir les arbres :
 - Comme une structure hiérarchique, la racine (d'habitude) vers le haut
 - Comme un ensemble de relations entre objets, qui ne crée pas de cycle (mais qui n'est pas hiérarchique).

Conséquences :

- Dans le contexte « structures de données », on va utiliser la première
- Dans le contexte « théorie des graphes », on va utiliser la seconde.

Exemples

Hiérarchie sous-entendue (pas d'arcs)

- Arbres (rappels)
 - Généralités
 - Parcours
 - Représentations en machine
- Arbres binaires
 - Définition, implémentation
 - Hauteur

Arbres

Arbre ordinaire : A défini par

- N ensemble des nœuds
- P relation binaire « parent de » (définit l'ensemble d'arcs Arc(A))
- $r \in N$ la racine

 $\forall x \in N \exists \text{ un seul chemin de } r \text{ vers } x$

$$r = y_0 P y_1 P y_2 \dots P y_n = x$$

- \Rightarrow r n'a pas de parent
- $\Rightarrow \forall x \in N \{r\}$ x a exactement un parent

Terminologie

2, 3, 4 enfants de 1
3, 4 frères de 2
1, 3, 7 ancêtres de 7

7, 9, 10 descendants de 7

Niveaux

A arbre x nœud de Aniveau_A(x) = distance de x à la racine niveau_A(x) = $\begin{cases} 0 & \text{si } x = \text{racine}(A) \\ 1 + \text{niveau (parent } (x)) & \text{sinon} \end{cases}$

Sous-arbres

A arbre x nœud de A

 $Arbre_A(x) = sous-arbre de A qui a racine x$

- Arbres (rappels)
 - Généralités
 - Parcours
 - Représentations en machine
- Arbres binaires
 - Définition, implémentation
 - Hauteur

Parcours

Utiles pour l'exploration des arbres

Deux types:

```
parcours en profondeur
préfixe, suffixe, symétrique
parcours branche après branche
parcours en largeur ou hiérarchique
parcours niveau après niveau
```

Parcours en profondeur

Arbre non vide $A = (r, A_1, A_2, ..., A_k)$

Parcours préfixe

$$P(A) = (r).P(A_1).....P(A_k)$$

(1, 2, 5, 6, 3, 7, 9, 10, 4, 8)

Parcours suffixe

$$S(A) = S(A_1).....S(A_k).(r)$$

(5, 6, 2, 9, 10, 7, 3, 8, 4, 1)

Parcours symétrique (ou interne)

$$I(A) = I(A_1).(r).I(A_2).....I(A_k)$$
 (5, 2, 6, 1, 9, 7, 10, 3, 8, 4)

Parcours en largeur

Arbre non vide $A = (r, A_1, A_2, ..., A_k)$

Parcours hiérarchique

$$H(A) = (r, x_1, ..., x_i, x_{i+1}, ..., x_j, x_{j+1}, ..., x_n)$$

nœuds de niveau 0, 1, 2, ...

(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)

- Arbres (rappels)
 - Généralités
 - Parcours
 - Représentations en machine
- Arbres binaires
 - Définition, implémentation
 - Hauteur

Représentations en machine (1)

Représentation de la relation *P* table des parents

Avantages

représentation simple parcours faciles vers la racine économique en mémoire

Inconvénients

accès difficiles aux nœuds depuis la racine

Représentations en machine (2)

Représentation des listes de sous-arbres par chaînage

Avantages

accès faciles depuis la racine correspond à la définition récursive

Inconvénients

parcours difficiles vers la racine relativement gourmand en mémoire

Note. Si nombre de fils constant, tableau à la place de liste.

- Arbres (rappels)
 - Généralités
 - Parcours
 - Représentations en machine
- Arbres binaires
 - Définition, implémentation
 - Hauteur

Arbres binaires

Arbre binaire: tout nœud possède deux sous-arbres (vides ou non)

$$A = \int \Lambda$$
 arbre vide ou (r, G, D) r élément, G , D arbres binaires Nœuds $(A) = \{r\} \cup N$ œuds $(G) \cup N$ œuds (D) unions disjointes

Arbre binaire complet : tout nœud interne possède deux enfants

Transformation d'un arbre n-aire en arbre binaire

- Arbre binaire = Vision « inclinée » de l'arbre de départ
- Parcours en profondeur préfixe identique
- La profondeur augmente, mais l'implémentation est plus aisée

Algorithme de transformation (1)

- Arbre n-aire T fourni : les fils d'un nœud peuvent être parcourus par une boucle, selon les représentations vues précédemment
- Arbre binaire U construit
- Idée :
 - La racine de U est une copie de la racine de T
 - Parcours en profondeur préfixe de l'arbre T, en récursif
 - Lorsqu'on est sur un nœud X de T, sa copie Y est déjà dans U, et
 - Le premier fils de X dans T devient fils gauche de Y dans U
 - Le deuxième fils de X dans T devient fils droit de Y dans U
 - Le troisième fils de X devient fils droit du fils droit de Y
 - Etc.

Algorithme de transformation (2)

copie(X) crée un nœud de U copie du nœud pointé par X dans T

```
Si T ≠ arbre vide, alors U ←copie(nœud racine de T)
(void) transfoNen2(T: arbre N-aire, U: arbre binaire);
                                                       // variables locales
    X \leftarrow \text{racine de T}; Y \leftarrow \text{racine de U};
   si (X a au moins un fils) {
                                                       // variable locale
        Dernier← arbre vide;
        pour tout fils W de X faire {
           si (Dernier = arbre vide) alors{ Y.G←copie(W); Dernier ← Y.G;}
           sinon {Dernier.D←copie(W); Dernier ← Dernier.D;}
           transfoNen2(W, Dernier);
```

Opérations de base avec les arbres binaires

(que nous n'écrirons pas)

```
Arbre-vide : \rightarrow arbre
                           // sans argument, crée un arbre binaire vide
 G, D: arbre \rightarrow arbre // étant donné un arbre binaire, retourne les sous-
                               arbres G et D de la racine
 Cons: nœud x arbre x arbre → arbre // étant donné un nœud et deux
                         arbres, crée l'arbre binaire ayant comme racine ce
                         nœud, et comme sous-arbres de la racine le
                         premier arbre à G et le deuxième arbre à D
 Elt : arbre → élément
                           // étant donné un arbre, retourne l'élément situé à
                            // sa racine
 Vide : arbre → booléen // test arbre vide
Remarques : 1) un nœud est vu comme la racine de l'arbre situé « en dessous »
```

2) l'implémentation de l'arbre n'est pas visible à ce niveau.

Implémentations possibles

Type « pointeur »

Type « tableau »

Avantage:

Suppression d'un nœud en O(1) (càd temps constant), sans créer de « trous » dans la structure

Avantage:

Recherche possible d'un élément comme dans un tableau.

Mise en garde

- L'avantage du type « tableau » devient caduque lorsqu'on parle d'arbres binaires de recherche (surtout équilibrés)
- Par conséquent, tous nos arbres seront supposés implémentés sous la forme « pointeur »
- Interdiction de parcourir les éléments d'un arbre comme si c'était un tableau
- Besoin de traverser l'arbre avec un pointeur

- Arbres (rappels)
 - Généralités
 - Parcours
 - Représentations en machine
- Arbres binaires
 - Définition, implémentation
 - Hauteur

Mesures des arbres binaires

Arbre binaire, hauteur h et n nœuds

Arbre plein

 2^i nœuds au niveau i $n = 2^{h+1} - 1$

1 nœud par niveau n = h + 1

Arbre binaire

$$h+1 \le n \le 2^{h+1}-1$$

 $\log_2(n+1)-1 \le h \le n-1$

Arbres et ensembles ordonnés

But : gérer des sous-ensembles de E (ordonné) avec les opérations

```
Ens_vide: \rightarrow Ens  // crée un ensemble vide 
Ajouter: Ens x élément \rightarrow Ens // ajoute un élément 
Enlever: Ens x élément \rightarrow Ens // enlève un élément 
Elément: Ens x élément \rightarrow booléen // teste l'appartenance 
Vide: Ens \rightarrow booléen // teste si ensemble vide 
Min, Max: Ens \rightarrow élément // calcule min, max 
Place: Ens x élément \rightarrow arbre // trouve la place de l'élément // dans l'arbre
```

Implémentations possibles

Tables (triées ou non), Listes chaînées, Tables de hachage, Arbres (équilibrés ou non)

A suivre ... avec des arbres

- Structures Classe-Union
- ABRs (ou arbres binaires de recherche)
- AVLs (ou arbres binaires de recherche équilibrés en hauteur/profondeur)
- Arbres rouges et noirs (ou arbres binaires de recherche bicolores)