

Εθνικό Μετσόβιο Πολυτέχνειο

Συστήματα & Τεχνολογίες Γνώσης

Σειρά Ασκήσεων

Γεωργίου Δημήτριος (03115106) < el15106@central.ntua.gr>

1 Ερώτημα

- (1) Κατασκευή μοντέλων για τις παρακάτω 2 έννοιες βάσει Tbox
 - (a) $A \cap \exists R.B \cap \forall R. \neg A \cap \geq 3R$

- Έστω ένα αντικείμενο a που ανήκει στο σύνολο-τομή $(A \sqcap \exists R.B \sqcap \forall R. \neg A \sqcap \geq 3R)^I$, τότε από τη σημαμοσιολογία του κατασκευαστή τομής προκύπτει:
 - $-a \in (\exists R.B)^I$
 - $-a \in (\exists R. \neg A)^I$
 - $-a \in A^I$
 - $-a \in (\geq 3R)^I$
- Από την σημασιολογία του υπαρξιακού περιοριρμού και εφόσον $a \in (\exists R.B)^I$, πρέπει να υπάρχει κάποιο άλλο αντικείμενο $b \in \Delta^I$, ενώ τα 2 αυτά αντικείμενα πρέπει να επαληθεύουν τις σχέσεις $(a,b) \in R^I$ και $b \in B^I$
- Από την σημασιολογία του περιορισμού τιμής και εφόσον $a \in (\exists R. \neg A)^I$, πρέπει να υπάρχει κάποιο αντικείμενο $c \in \Delta^I$, ενώ τα 2 αυτά αντικείμενα πρέπει να επαληθεύουν τις σχέσεις $(a,c) \in R^I$ και $c \in (\neg A)^I$
- Τελικά ορίζεται η παρακάτω ερμηνεία του μοντέλου που μπορεί να προκύψει:

$$\Delta^{I} = \{a, b, c, d\}$$

$$A^{I} = \{a\}$$

$$B^{I} = \{b, c, d\}$$

$$R^{I} = \{(a, b), (a, c), (a, d)\}$$

ΙΣΧΥΕΙ

(b) $\exists R.A \sqcap \exists R.B \sqcap \forall R.(C \sqcup B)$

Ορίζεται το T-box ως εξής: $\mathcal{T} = \{B \sqsubseteq D, \exists R.(D \sqcup C) \sqsubseteq \forall R.\neg A\}$

- Έστω ένα αντιχείμενο a που ανήχει στο σύνολο-τομή $(\exists R.A \sqcap \exists R.B \sqcap \forall R.(C \sqcup B)^I$, τότε από τη σημαμοσιολογία του κατασχευαστή τομής προχύπτει:
 - $-a \in (\exists R.A)^I$
 - $-a \in (\exists R.B)^I$
 - $-a \in (\forall R.(C \sqcap B))^I$
- Από την σημασιολογία του περιορισμού τιμής και εφόσον $a \in (\exists R.A)^I$, πρέπει να υπάρχει κάποιο αντικείμενο $b \in \Delta^I$, ενώ τα 2 αυτά αντικείμενα πρέπει να επαληθεύουν τις σχέσεις $(a,b) \in R^I$ και $b \in A^I$
- Ομοίως, για το $a\in (\exists R.B)$ πρέπει να υπάρχει κάποιο $c\in \Delta^I$, για τα οποία ισχύουν $(a,c)\in R^I$ και $c\in B$
- Τέλος, από την σημασιολογία του περιορισμού τιμής και εφόσον $a \in (\forall R.(C \sqcap B))^I$, πρέπει να υπάρχει κάποιο αντικείμενο $d \in \Delta^I$, ενώ τα 2 αυτά αντικείμενα πρέπει να επαληθεύουν τις σχέσεις $(a,d) \in R^I$ και $d \in (C \sqcap B)^I$
- Έτσι λοιπόν βάσει των προηγούμενων προχύπτει ότι $A \equiv C$. Επιπλέον από ανάλυση του T-box έχουμε:

- Τα στιγμιότυπα του Β είναι και στιγμιότυπα του D
- Τα αντιχείμενα που συνδέονται μέσω του R με ένα τουλάχιστον στιγμιότυπο του $D\sqcap C$, ανήχουν στο σύνολο των αντιχειμένων που συνδέονται μέσω του R μόνο με αντιχείμενα που δεν είναι στιγμιότυπα του A.
- Η προηγούμενη πρόταση δεν γίνεται να συμβεί, οπότε:

ΔΕΝ ΙΣΧΥΕΙ

(2) Ελέγχουμε τις παρακάτω υπαγωγές με βάση δεδομένο Τ-box

(a)
$$D \sqcup B \sqsubseteq A \quad \mu\beta\tau$$
. $\mathcal{T} = \{B \sqsubseteq A \sqcup C, D \sqsubseteq \neg C\}$

Έστω η παρακάτω ερμηνεία:

$$\Delta^{I} = \{x_{1}\}\$$

$$A^{I} = \{x_{1}\}\$$

$$B^{I} = \{\}\$$

$$D^{I} = \{x_{1}\}\$$

$$C^{I} = \{\}\$$

Υπάρχει ερμηνεία επομένως δεν υπάρχει κάποια αντίφαση.

- $B \sqsubseteq A \sqcup C$: Αρχικά υποθέτουμε ότι το B υπάγεται στο A και άρα στην περίπτωση αυτή η συνεπαγωγή $D \sqcup B \sqsubseteq A$
- Από την ίδια σχέση υποθέτουμε ότι το B υπάγεται στο C. Στην περίπτωση αυτή, και βάσει της άλλης σχέσης του $T\text{-Box }D\sqsubseteq \neg C$ συμπεραίνουμε ότι $D\sqcup B=\{\}$, και άρα υπάγεται στο A.

Άρα σε κάθε περίπτωση, η υπαγωγή:

ΔΕΝ ΙΣΧΥΕΙ

(b)
$$C \sqsubseteq \neg C_1 \sqcap C_2 \mid \mu \beta \tau$$
. $\mathcal{T} = \{ C \sqsubseteq \exists R. (A \sqcup \exists R.B), \exists R.B \sqsubseteq D, \exists R. (A \sqcup D) \sqsubseteq \neg (C_1 \sqcup C_2) \}$

• Θα δείξουμε ότι η υπαγωγή δεν ισχύει με αντιπαράδειγμα. Έστω η ερμηνεία:

$$\Delta^{I} = \{x_{0}, x_{1}, x_{2}, x_{3}, x_{4}\}$$

$$A^{I} = \{x_{0}, x_{1}, x_{2}, x_{4}\}$$

$$B^{I} = \{x_{0}, x_{2}, x_{3}, x_{4}\}$$

$$C^{I} = \{x_{0}\}$$

$$D^{I} = \{x_{0}, x_{1}, x_{3}, x_{4}\}$$

$$C_{1}^{I} = \{x_{0}, x_{1}, x_{2}, x_{3}, x_{4}\}$$

$$R^{I} = \{(x_{1}, x_{3}), (x_{2}, x_{1}), (x_{2}, x_{0})\}$$

• Για τα αξιώματα του Τ-box ισχύει:

$$- C \sqsubseteq \exists R.(A \sqcap \exists R.B)$$

$$\begin{cases} (\exists R.B)^I = \{x_0, x_3\} \\ (A \sqcap \exists R.B)^I = A^I \cap (\exists R.B)^I = \{x_0\} \\ (\exists R.(A \sqcap \exists R.B))^I = \{x_0\} \\ C^I = \{x_0\} \end{cases} \Rightarrow C^I \subseteq (\exists R.(A \sqcap \exists R.B))^I \text{ checked}$$

 $-\exists R.B \sqsubseteq D$

$$\begin{cases} (\exists R.B)^I = \{x_0, x_3\} \\ D^I = \{x_0, x_1, x_3, x_4\} \end{cases} \Rightarrow C(\exists R.B)^I \subseteq D^I \text{ checked}$$

 $- \exists R.(A \sqcap D) \sqsubseteq \neg (C_1 \sqcap C_2)$

$$\begin{cases} (A \cap D)^I = A^I \cap D^I = \{x_0, x_1, x_4\} \\ (\exists R. (A \sqcap D))^I = \{x_0, x_1\} \\ (C_1 \sqcap C_2)^I = C_1^I \cap C_2^I = \{\} \\ (\neg (C_1 \sqcap C_2))^I = \Delta^I \setminus (C_1 \sqcap C_2)^I = \{x_0, x_1, x_2, x_3, x_4\} \end{cases}$$

$$\Rightarrow (\exists R. (A \sqcap D))^I \subseteq \Delta^I \setminus (C_1 \sqcap C_2)^I \text{ checked}$$

• Για την υπαγωγή όμως ισχύει ότι:

$$\begin{cases} (\neg C_1)^I = \Delta^I \setminus C_1^I = \{\} \\ (\neg C_1 \sqcup C_2)^I = \{\} \cup \{\} = \{\} \end{cases} \Rightarrow \mathbf{H} \ \text{υπαγωγή δεν ισχύει} \ C = \{x_0\} \end{cases}$$

ΔΕΝ ΙΣΧΥΕΙ

2 Ερώτημα

Θεωρούμε την ερμηνεία $I: \Delta^I = \{\alpha_1, \alpha_2, \alpha_3, \alpha_4\}$, και $A^I = \{\alpha_1\}$, $B^I = \{\alpha_2\}$, $C^I = \{\alpha_3\}$, $D^I = \{\alpha_4\}$, $r^I = \{(\alpha_1, \alpha_2), (\alpha_4, \alpha_3), (\alpha_4, \alpha_4)\}$ και $s^I = \{(\alpha_1, \alpha_2), (\alpha_1, \alpha_3), (\alpha_2, \alpha_4)\}$. Τα ζητούμενα σύνολα X^I που απαιτούνται είναι:

• $\forall s. \forall r. \bot$ $\forall r.\bot = \{\alpha_2, \alpha_3\}$

Προχύπτει ότι το ζητούμενο σύνολο αποτελείσαι από το αριστερό μέλος των στοιχείων του s^I που το δεξί μέλος είναι α_2 ή α_3 , οπότε και $X^I = {\alpha_1}$

• $\exists s.(D \cup \exists r^-.C)$

Για το $\exists r^-.C$ ψάχνουμε στα στοιχεία του r^I και κρατάμε αυτά που το αριστερό μέλος ανήκει στο C^I , άρα οδηγούμαστε στο κενό σύνολο. Επομένως πλέον αναζητούμε τα στοιχεία του s^I , στα οποία το δεξί μέλος ανήκει στο D^I , οπότε προκύπτει $X^I = \{\alpha_2\}$

- $\bullet \exists r. \exists s^-. \exists r$
 - Για το $\exists r$ αναζητούμε όλα τα στοιχεία του r^I , χρατώντας το αριστερό μέλος αυτών άρα τα α_1, α_4 .
 - Εν συνεχεία, για το $\exists s^-.\exists r$ αποτελείται από το αριστερό μέλος των στοιχείων του s^I για τα οποία το αριστερό μέλος είναι, βάσει των προηγούμενων, τα $\alpha_1, \alpha_4, \delta$ ηλαδή τα α_2, α_3 .
 - Εν κατακλείδι, το σύνολο X^I περιλαμβάνει το αριστερό μέλος των στοχείων του r^I για τα οποία δεξί μέλος είναι τα α_2, α_3 . Εναλλακτικά $X^I = \{\alpha_1, \alpha_4\}$
- $\exists r^- . \bot \sqcap (A \sqcup C)$

Εφόσον ισχύει ότι η ερμηνεία του $A \sqcup C$ είναι $(A \sqcup C)^I = \{\alpha_1, \alpha_3\}$, και επειδή το $\exists r^-.\bot$ περιλαμβάνει τα στοιχεία που δεν υπάρχουν ως δεξί μέρος στο r^I , άρα το α_1 προχύπτει για το σύνολο $X^I = \{\alpha_1\}$

3 Ερώτημα

Η εφαρμογή του αλγορίθμου δοκιμής υπαγωγής για την FL_0 προϋποθέτει την **κανονική μορφή** των εννοιών. Επομένως, μετατρέπουμε αρχικά τις δοθούσες έννοιες σε κανονική μορφή με γνωστή μεθοδολογία, τα βήματα της οποίας αποφαίνονται παρακάτω

- Γ ia thy énnoia C_1
 - (1) $C_1 \equiv \forall r.A \cap C \cap \forall r.\forall r.E \cap \forall r.B \cap E \forall r.(A \cap B) \cap \forall r.\forall r.\forall s.D$ (Αρχική μορφή)
 - (2) Το βήμα 1 δεν οδηγεί σε τροποποίηση της έννοιας
 - (3) $C_1 \equiv C \sqcap E \sqcap \forall r.A \sqcap \forall r.\forall r.E \sqcap \forall r.B \sqcap \forall r.(A \sqcap B) \sqcap \forall r.\forall r.\forall s.D$ (**Βήμα 2**)
 - (4) Το βήμα 3 δεν οδηγεί σε τροποποίηση της έννοιας
 - (5) $C_1 \equiv C \sqcap E \sqcap \forall r. (A \sqcap \forall r. \forall r. E \sqcap \forall r. B \sqcap (A \sqcap B) \sqcap \forall r. \forall s. D)$ (**Βήμα 4**)
 - (6) Αναδρομικά εκτελούμε τα παραπάνω βήματα και έχουμε: $C_1 \equiv C \sqcap E \sqcap \forall r. (A \sqcap B \sqcap \forall r. E \sqcap \forall r. \forall s. D)$
 - (7) $C_1 \equiv C \sqcap E \sqcap \forall r.(A \sqcap B \sqcap \forall r.(E \sqcap \forall s.D))$
- Για την έννοια C_2
 - (1) $C_2 \equiv \forall r. \forall r. E \cap \forall r. \forall r. \forall s. (D \cap A) \cap E$ (Αρχική μορφή)
 - (2) Το βήμα 1 δεν οδηγεί σε τροποποίηση της έννοιας
 - (3) $C_2 \equiv E \sqcap \forall r. \forall r. E \sqcap \forall r. \forall r. \forall s. (D \sqcap A)$ (Βήμα 2)
 - (4) Το βήμα 3 δεν οδηγεί σε τροποποίηση της έννοιας

 $(5) C_2 \equiv E \sqcap \forall r. (\forall r. E \sqcap \forall r. \forall s. (D \sqcap A))$

(Βήμα 4)

(6) Αναδρομικά εκτελούμε τα παραπάνω βήματα και έχουμε: $C_2 = E \sqcap \forall r. (\forall r. (E \sqcap \forall s. (D \sqcap A)))$

Στην συνέχεια γίνεται εφαρμογή του αλγορίθμου δομικής υπαγωγής για την FL_0 οπότε έχουμε προκύπτουν τα παρακάτω βήματα:

Βήμα 10: Εκτελούμε την συνάτηση atom() για την έννοια C_1 η οποία οδηγεί στην δημιουργία του συνόλου $\overline{NC_1}=\{C,E\}$, ενώ για την έννοια C_2 δίνεται το $NC_2=\{E\}$

Βήμα 20: Εκτελούμε την συνάτηση forall-roles() για την έννοια C_1 η οποία οδηγεί στην δημιουργία του συνόλου $RC_1 = \{r\}$, ενώ για την έννοια C_2 δίνεται το $RC_2 = \{r\}$

Βήμα 30: Εκτελούμε το for loop για έλεγχο της συνθήκης $NC_2 \subseteq NC_1$

Βήμα 40: Επειδή η συνθήχη του βήματος 3 ισχύει, γίνεται αναδρομική κλήση του αλγόριθμου

 $\underline{\underline{B\eta\mu\alpha}}$ 50: Εάν η εκτέλεση του αλγορίθμου φτάσει έως το τέλος τότε η υπαγωγή ισχύει και ο αλγόριθμος τερματίζει εμφανίζοντας το μήνυμα **YES**, σε διαφορετική περίπτωση το μήνυμα **NO**

Στην δική μας περίπτωση:

- Συνεχίζοντας με το βήμα 4, γίνεται αναδρομική κλήση του αλγορίθμου και καλούνται εκ νέου οι συναρτήσεις atom() και forall-roles() οδηγώντας στην δημιουργία των συνόλων $NC_1=\{A,B\},NC_2=\{\},RC_1=\{r\},RC_2=\{r\}.$ Η 2η εκτέλεση του βήματος 3 μας δίνεται τον επιτυχή έλεγχο της συνθήκης $NC_2\subseteq NC_1$ οπότε γίνεται 2η εκτέλεση του βήματος βήματος 4.
- Η 3η εκτέλεση του αλγορίθμου οδηγεί στην δημιουργία των συνόλων $NC_1=\{E\}, NC_2=\{\}, RC_1=\{s\}, RC_2=\{s\}$ και επειδή ικανοποιείται ξανά η συνθήκη $NC_2\subseteq NC_1$, οπότε ο αλγόριθμος εκτελείται εκ νέου.
- Η 4η και τελευταία εκτέλεση του αλγορίθμου, οδηγεί στην δημιουργία των συνόλων $NC_1=\{D\},NC_2=\{D,A\},RC_1=\{\},RC_2=\{\}$. Τώρα η συνθήκη $NC_2\subseteq NC_1$ δεν ικανοποιείται, και έτσι λοιπόν ο αλγόριθμος μας τερματίζετι επιστρέφοντας ${\bf NO}$

Η παραπάνω εκτέλεση του αλγορίθμου δομική υπαγωγής υπέδειξε ότι η υπαγωγή $C_1 \sqsubseteq C_2$

ΔΕΝ ΙΣΧΥΕΙ

4 Ερώτημα

Στην άσκηση αυτή σχηματίζουμε μια βάση K που χρησιμοποιεί τις έννοιες $A\nu \partial \rho \omega \pi \sigma \sigma$ και τους ρόλους έχει Σ ύζυγο, έχει Ω ίδι και έχει Ω δερφό, και στην οποία ορίζονται οι έννοιες:

- (1) Μοναδικός Αδερφός Ανύπαντρου Γονιού Με Τέσσερα Εγγόνια
 - Με αφορμή τον ρόλο έχειΠαιδί και την εμφάνιση του όρου Γονιός, την έννοια του οποίου την ορίζουμε ως εξής:

$$\Gamma o \nu i \delta \varsigma \equiv \exists \epsilon \chi \epsilon i \Pi a i \delta i. A \nu \partial \rho \omega \pi o \varsigma \tag{1}$$

• Εν συνεχεία, παρατηρούμε τον όρο **Ανύπαντρου**, την έννοια του οποίου θα ορίσουμε κάνοντας χρήση της έννοιας *έχειΣύζυγο* και της έννοιας *Bottom*. Οπότε:

$$Aνύπαντρος \equiv \forall έχειΣύζυγο. \bot$$
 (2)

• Κάνοντας χρήση των νέων ορισμένων εννοιών (1), (2) προχύπτει ο ανύπαντρος γονιός, η έννοια του οποίου ορίζεται ως εξής:

$$AνύπαντροςΓονιός ≡ ∀έχειΣύζυγο.⊥ □ ∃έχειΠαιδί. Άνθρωπος$$
 (3)

• Εν συνεχεία, βάσει της (3) και της ύπαρξης στιγμιότυπου του ρόλου έχει Αδερφό, ορίζουμε την έννοια όχι για τον όρο Μοναδικό Αδερφό, αλλά απευθείας:

Μοναδικός Αδρφός Ανύπαντρος Γονιού
$$\equiv \geq \exists 1 \epsilon \chi \epsilon_1 A \delta \epsilon_1 \rho \phi \delta$$
. Ανύπαντρος Γονιός $\sqcap \leq \exists 1 \epsilon \chi \epsilon_1 A \delta \epsilon_1 \rho \phi \delta$. (4)

Δημιουργούμε αχόμα τον ρόλο έχει εγγόνι, κάνοντας σύνθεση δοθέντων ρόλων ως εξής:

• Τώρα, βάσει της (4) και τους περιορισμούς μέγιστης και ελάχιστης πληθικότητας έχουμε:

$$M\epsilon T\epsilon$$
σσερα E γγόνια $\equiv \geq 4$ ϵ χει E γγόνι $\sqcap \leq 4$ ϵ χει E γγόνι (6)

• Εν κατακλείδι, η ζητούμενη έννοια που πρέπει να οριστεί προκύπτει από τις σχέσεις (4), (6) και ορίζεται ως εξής:

Μοναδικός Αδερφός Ανύπαντρου Γονιού ΜεΤέσσερα Εγγόνια \equiv Άνθρωπος \sqcap Μοναδικός Αδερφός Ανύπαντρου Γονιού \sqcap ΜεΤέσσερα Εγγόνια

(2) Ετεροθαλής Αδερφός Χωρίς Παντρεμένα Εγγόνια

 Δημιουργούμε τον ρόλο χωρίς παντρεμένα εγγόνια, κάνοντας σύνθεση των ρόλων Ανύπαντρος, έχειΕγγόνι ως εξής:

$$XωρίςΠαντρεμέναΕγγόνια ≡ έχειΕγγόνι ∘ Ανύπαντρος$$
 (7)

• Για τον ορισμό της έννοιας του Ετεροθαλή Αδεφού, γίνεται χρήση των περιορισμών ελάχιστης πληθικότητας και του ρόλου έχει Γονιό Αδερφού, ο οποίος ορίζεται και περιλαμβάνει όλους τους γονείς μεταξύ αδερφών, οπότε όταν αυτοί ξεπερνούν το 2 σε πλήθος τότε τα αδέρφια είναι ετεροθαλή:

• Οπότε, βάσει της παραπάνω έννοιας (8)και του περιορισμού ελάχιστης πληθικότητας λαμβάνουμε:

$$Ετεροθαλής Αδερφός ≡έχει Γονέα Αδερφού$$
 (9)

• Εν κατακλείδι, η ζητούμενη έννοια που πρέπει να οριστεί προκύπτει από τις σχέσεις (7), (9) και ορίζεται ως εξής:

Ετεροθαλής Αδερφός Χωρίς Παντρεμένα Εγγόνια $\equiv Aνθρωπος \sqcap Ετεροθαλής$ $Αδερφός \sqcap Χωρίς$ ΠαντρεμέναΕγγόνια