

Analysis of Sleep Health and Lifestyle Habits

My goal is

- Analyze trends in the quality of sleep across individuals' lifestyles.
- Identify key indicators of sleep quality and duration.
- Create a prediction model for stress levels based on available data.

Project Management

On Trello:

Data gathering

- ☐ Flat flies: Two datasets "Sleep Health and Lifestyle" from Kaggle
- API: GDP by country from World Bank Data API
- **Web scraping:** Two datasets:
 - 1. Body mass index (BMI) categorie
 - 2. Lists countries by their average BMI

Note: We cannot observe any significant relationship between the GDP of rich and poor countries and BMI (Body Mass Index). Therefore, for the remainder of my data analysis, I will not take them into consideration

Dataset Overview

- Person ID
- **□** Gender
- Age
- Occupation/profession of the person.
- Sleep Duration (hours)
- Quality of Sleep (scale: 1-10)
- Sleep Disorder
- Physical Activity Level (minutes/day)
- ☐ Stress Level (scale: 1-10)
- BMI Category: The BMI category of the person
- Blood Pressure (systolic/diastolic)
- Heart Rate (bpm)
- Daily Steps

Personal information

Sleep information

factors influencing sleep patterns.

Data cleaning

- Merge main tables into a single dataframe.
- Checking for data shapes & data types.
- Column Formatting (lowercase, removing special characters...)
- Handle Null Values: Address null values using "isna.sum()" method.
- Modifications:
 - _ Fill null values in "sleep_disorder" column with "no disorder"
 - _ Classify "blood_pressure" column: convert les valeurs "126/83" to categorical variable (hypotension, Normal, elevated and hypertension)

Final Sleep Dataframe After Cleaning

person_id	gender	age	occupation	sleep_duration	quality_of_sleep	physical_activity_level	stress_level	id_bmi	heart_rate	daily_steps	sleep_disorder	blood_pressure_class
1	Male	27	Software Engineer	6.1	6	42	6	5	77	4200	no disorder	Normal
2	Male	28	Doctor	6.2	6	60	8	4	75	10000	no disorder	Normal
3	Male	28	Doctor	6.2	6	60	8	4	75	10000	no disorder	Normal
4	Male	28	Sales Representative	5.9	4	30	8	6	85	3000	Sleep Apnea	Hypertension
5	Male	28	Sales Representative	5.9	4	30	8	6	85	3000	Sleep Apnea	Hypertension
6	Male	28	Software Engineer	5.9	4	30	8	6	85	3000	Insomnia	Hypertension
7	Male	29	Teacher	6.3	6	40	7	6	82	3500	Insomnia	Hypertension
8	Male	29	Doctor	7.8	7	75	6	4	70	8000	no disorder	Hypotension
9	Male	29	Doctor	7.8	7	75	6	4	70	8000	no disorder	Hypotension
10	Male	29	Doctor	7.8	7	75	6	4	70	8000	no disorder	Hypotension
11	Male	29	Doctor	6.1	6	30	8	4	70	8000	no disorder	Hypotension
12	Male	29	Doctor	7.8	7	75	6	4	70	8000	no disorder	Hypotension
13	Male	29	Doctor	6.1	6	30	8	4	70	8000	no disorder	Hypotension
14	Male	29	Doctor	6.0	6	30	8	4	70	8000	no disorder	Hypotension
15	Male	29	Doctor	6.0	6	30	8	4	70	8000	no disorder	Hypotension
16	Male	29	Doctor	6.0	6	30	8	4	70	8000	no disorder	Hypotension
17	Female	29	Nurse	6.5	5	40	7	4	80	4000	Sleep Apnea	Elevated

EDA & Visualization

Identify categorical and numerical variables

- <u>Categorical values:</u> gender, occupation, sleep disorder, blood pressure, bmi
- <u>Numérical variable</u>: age, sleep duration, quality of sleep, physical activity level, stress level, heart rate, daily steps

EDA & Visualization

Distribution

Correlation

EDA & Visualization

EDA & Visualization

- Average stress level by profession

Entity Relationship Diagram(ERD)

Examples of queries in MySQL

1. Create view quality and hour of sleep according to occupation and stress level

Examples of queries in MySQL

2. The average quality of sleep and sleep duration for doctors who have a stress level less than 5

Flask API

- Ressources from MySql query
- **☐** 5 Endpoints:

/person?include_details=O or 1

/person/<int:person_id>

/quality_sleep

/quality_sleep/bmi

/quality_sleep/occupation

Flask API Documentation

Sample

```
"last_page": "/person?page=19&page_size=30&include_details=1",
"next_page": "/person?page=1&page_size=30&include_details=1",
"person":
    "age": 27,
    "gender": "Male",
    "occupation": "Software Engineer",
   "person_id": 1,
    "quality_sleep": [
        "quality_of_sleep": 6,
        "sleep_disorder": "no disorder",
        "sleep_duration": 6.1
    "age": 28.
    "gender": "Male",
    "occupation": "Doctor",
    "person_id": 2,
    "quality_sleep": [
        "quality_of_sleep": 6,
        "sleep_disorder": "no disorder",
        "sleep_duration": 6.2
```

Machine learning

/ariable.

Forest'.

Main Results

- There's a strong connection between how long you sleep and how good your sleep is.
- People with healthier hearts tend to sleep better
- when people are more stressed, their sleep tends to be worse and shorter.
 This shows how stress can really mess with your sleep.

Highlight

Managing stress, staying active, and caring for our heart health can all improve our sleep. It's not just about bedtime; it's about making healthy choices all day for better rest.

NEXT STEP

As companies in the nutritional supplement industry, this information can help us create products that improve sleep by focusing on stress reduction

Challenges

- Find the right datasets
- Struggling to find the right API sources to gather data that matches my study.
- Insufficient data. I would prefer more extensive datasets to conduct a comprehensive analysis.
- → Write the report and prepare the presentation in English

THANK YOU

