Ottimizzazione di DFA

Deto un DFA $A = \{Q, Z, S, q_0, F\}$, diciomo che p, q sono INDISTINGUIBIZI $(p \sim q)$ se:

$\hat{\delta}(\rho,\omega) \in F \iff \hat{\delta}(q,\omega) \in F \quad \forall \quad \omega \in \Sigma^*$

L'indistinguibilità è una relezione di EQUIVARNZA

Diciono che due stati $p,q \in Q$ sono DISTINGUIBILI se $\exists w \in E^*$ tale che $\hat{\delta}(p,w)$ o $\hat{\delta}(q,w)$ appartiene a F, ma non entrambi. Diciono che la stringa w di stingue p da q

Un enterne è definite OTTIMALE se tuti gli stati sons a due a due distinti

ALGORITMO PER TROVARE STATI DISTINGUIBILI

- 1. Messure copie di stati mucata come indistinguibile inizialmente
- 2. Si marcano distinguibili tulte le coppie di stati in cui uno è finale e l'altro no
- 3. Le esistono $p,q \in Q$ e $a \in \Sigma$ f.c. $\{\delta(p,a), \delta(q,a)\}$ è moncota come distinguibile allone monco onche $\{p,q\}$ come distinguibile
- 4. Ripeto il passo 3 fino a quando non ho mancato tuti gli otati distinguibili

Dato un DFA al quale son stati nimorni gli stati innangiu ngibili dallo stato iniziale, l'automa minimo consisponde a:

im wi

$$S'([p], a) = [S(p, a)]$$
 $\forall p \in Q, a \in \Sigma$

TEOREMA: Per gmi DFA A, non existe un DFA in cui il numero
di stati è strettamente minore di quello dell'automa
minimo consispondente ad A costruito seconda l'algoritmo
sopra describto

L'algoritmo niempi-tabella prò essere vonto per verificare se dre outomi A, Az son equivalenti.

Cno A = (a, u a z , E, o, q, , F, u Fz) Love

$$\delta(q_1 x) = \begin{cases} \delta_1(q_1 x) & \text{se } q \in Q_1 \\ \delta_1(q_1 x) & \text{se } q \in Q_2 \end{cases}$$

A, ed Az sono equivalenti se que que sono indistinguibili in A