

Branch & Bound Algorithm for Aircraft Ground Movement Optimization

Pushkar Godbole, Abhiram Ranade, Rajkumar Pant Indian Institute of Technology - Bombay

14th AIAA Aviation Technology, Integration, and Operations Conference, 16th – 20th June, Atlanta, GA

Air Traffic Ground Control

- Given aircraft data with:
 - tentative Entry-time
 - Entry & Exit points on the airport
- Route aircraft through network of runways & taxiways
- Resolve overlap conflicts: Minimize overall delays

Motivation

- Heavy congestion: 12.5% of flight delays in USA in 2012 estimated to have occurred in vicinity of airports (FAA)
- Over-scheduling by airlines leads to unrestrained push-backs
- Prominently manual FCFS scheduling by ATCs: Myopic schedules
- Existing methods don't guarantee solution optimality while maintaining minimal run-times

• Airport map:

• Airport map:

Aircraft:

Airport map: Graph with nodes and arcs

Aircraft:

Airport map: Graph with nodes and arcs

Aircraft: Point object with constant speed

- Aircraft: Point object with constant speed
 - Entry-time

- Aircraft: Point object with constant speed
 - Entry-time
 - Origin

- Aircraft: Point object with constant speed
 - Entry-time
 - Origin
 - Destination

- Aircraft: Point object with constant speed
 - Entry-time
 - Origin
 - Destination
 - Speed (constant)

- Aircraft: Point object with constant speed
 - Entry-time
 - Origin
 - Destination
 - Speed (constant)
 - Trailing separation (turbulence mitigation)

- Aircraft: Point object with constant speed
 - Entry-time
 - Origin
 - Destination
 - Speed (constant)
 - Trailing separation (turbulence mitigation)
 - Take-off/Landing distance

- Aircraft: Point object with constant speed
 - Entry-time
 - Origin
 - Destination
 - Speed (constant)
 - Trailing separation (turbulence mitigation)
 - Take-off/Landing distance
 - Priority

Constraints

Conjunctive (Path traversal)

Travel-time

Disjunctive (Precedence)

Head-on

Trailing

Runway

Objective

- Route and schedule all aircraft to:
 - Eliminate overlap conflicts
 - Minimize overall taxi and waiting time weighted by priority

$$Minimize: \sum_{i=0}^{N} P_i t_{in}$$

output: values of t_{ik} for $i \in (0, N)$ & $k \in (0, n)$

 t_{ik} : Time when aircraft i reaches node k

 P_i : Priority level of aircraft i.

N: Total no. of flights

n: Last / Destination node in the path of flight i

 All possible origin-destination simple-paths generated for all aircraft

- All possible origin-destination simple-paths generated for all aircraft
- Flight-path combinations generated and fed to scheduler in order of increasing path lengths

- All possible origin-destination simple-paths generated for all aircraft
- Flight-path combinations generated and fed to scheduler in order of increasing path lengths
- B&B tree generated for every flight-path combination

- All possible origin-destination simple-paths generated for all aircraft
- Flight-path combinations generated and fed to scheduler in order of increasing path lengths
- B&B tree generated for every flight-path combination
- Overlap constraints resolved at every level

- All possible origin-destination simple-paths generated for all aircraft
- Flight-path combinations generated and fed to scheduler in order of increasing path lengths
- B&B tree generated for every flight-path combination
- Overlap constraints resolved at every level
- Upper bound updated for every better solution

- All possible origin-destination simple-paths generated for all aircraft
- Flight-path combinations generated and fed to scheduler in order of increasing path lengths
- B&B tree generated for every flight-path combination
- Overlap constraints resolved at every level
- Upper bound updated for every better solution
- Solution space spanned and global optimum identified

Problem Illustration

Flight	Start-time	Origin	Destination	Speed	Trailing Separation	Take-off/Landing Distance	Priority
i	0	1	10	1	20	16	1
j	4	1	10	2	20	16	1

Flight-Path Generation

Flight-Path Generation

Conjunctive constraints

Disjunctive constraints

Disjunctive constraints

Disjunctive constraints

Disjunctive constraints

Disjunctive constraints

Constraint Feasibility

Constraint Feasibility

Cycle

Constraint Feasibility

Constraint Feasibility

2,6

Constraint Feasibility

Grouping

Constraint Grouping

Longest path from origin to destination (Cost): 54 + 31 = 85

Longest path from origin to destination (Cost): 62 + 31 = 93

Longest path from origin to destination (Cost): 54 + 64 = 118

Flight-Path Generation

Conjunctive graph

86) Root node

Constraint generation

86) Root node

Constraint grouping

Constraint resolution (Bottle-neck)

Longest path from origin to destination (Cost): 55 + 31 = 86

Constraint resolution (Bottle-neck)

Longest path from origin to destination (Cost): 55 + 65 = 120

Longest path from origin to destination (Cost): 61 + 31 = 92

Longest path from origin to destination (Cost): 61 + 31 = 92

Longest path from origin to destination (Cost): 55 + 35 = 90

Longest path from origin to destination (Cost): 55 + 35 = 90

"Optimal airport surface traffic planning using mixed-integer linear programming" (Roling et al.)

Fno.	0	D	t ₀	Sp	T _{sep}	Р
1	26	15	7	1	4	1
2	24	15	6	2	4	1
3	25	6	10	2	4	1
4	25	6	8	1	4	1
5	25	6	16	2	4	1
6	24	6	14	1	4	1
7	28	26	0	1	4	1
8	28	26	3	1	4	1

Runway constraint relaxed

Roling et al. solution		B&B solution (Global optimum)				
Cost	Runtime	Cost	Time to find optimum	Total runtime	Flight-path combinations	Cost improvement
362	_	204	1 sec	7 sec	7776	75%

"Airport ground movement optimization using bacterial foraging algorithm" (Baijal et al.)

Fno.	0	D	t ₀	Sp	T _{sep}	Р
1	1	8	13	1	3	1
2	1	13	12	1	3	1
3	5	12	6	1	3	1
4	9	2	6	1	3	1
5	1	15	0	1	3	1
6	15	1	0	1	3	1
7	1	8	0	1	3	1

Runway constraint relaxed

Roling et al. solution		B&B solution (Global optimum)				
Cost	Runtime	Cost	Time to find optimum	Total runtime	Flight-path combinations	Cost improvement
186	_	166	2 sec	18 sec	124416	12%

Mumbai International & Domestic airport (Cross-runways)

Fno.	0	D	t ₀	Sp	T _{sep}	R _{dist}	P
1	1	14	0	1	3	20	1
2	11	22	10	1	3	20	1
3	36	40	20	1	3	20	1
4	24	36	30	1	3	20	1
5	24	36	40	1	3	20	1
6	36	16	50	1	3	15	1
7	36	40	60	1	3	20	1

No. of flights	Optimal cost	Flight - path combinations	Time to find optimum	Runtime
4	227	120	0 sec	1 sec
5	335	480	0 sec	5 sec
6	445	1440	0 sec	1 min 14 sec
7	575	1440	2 sec	6 min 45 sec

Tolerance

- Global optimum generally identified in first 1% of flight-path combinations
- Closely spaced solutions cause heavy branching
- Relax upper bound within tolerance to improve pruning
- No better solution than the relaxed upper bound exists

Tolerance Flight	Optimal cost	Relaxed UB	Runtime
0	575	575	6 min 45 sec
2	575	561	4 min 35 sec
4	575	547	2 min 54 sec
6	575	533	1 min 53 sec
8	575	519	1 min 21 sec
10	575	505	58 sec

Conclusions & Future work

- Aircraft Ground Movement Optimization modeled as a job-shop scheduling problem
- Key feature: Global optimum identification
- Small runtimes: Suitable for use as a real-time decision support tool
- Need to incorporate aircraft speed-profiling
- Rolling horizons for continuous scheduling like at the ATC

Thank you!