Auto-dualité de WQSym, l'agèbre de Hopf sur les mots tassés

Hugo Mlodecki

Directeurs de thèse :

Florent Hivert Viviane Pons

9 octobre 2018

Sommaire

FQSym / permutations

- 2 WQSym / mots tassés
- 3 Contributions

Permutations

Définition

Une permutation de taille n est un mot sur l'alphabet $\{1, 2, ..., n\}$ où chaque lettre apparaît exactement une fois.

Permutations

Définition

Une permutation de taille n est un mot sur l'alphabet $\{1, 2, ..., n\}$ où chaque lettre apparaît exactement une fois.

Une représentation :

Permutations

Définition

Une permutation de taille n est un mot sur l'alphabet $\{1, 2, ..., n\}$ où chaque lettre apparaît exactement une fois.

Une représentation :

$$\rightarrow$$
 inversion \rightarrow

Produit

Produit de mélange

Produit de mélange

Produit de mélange

 \mathbb{F}_{2413}

3

2

Désassemblage horizontale

2

Désassemblage horizontale

+

3

2

Désassemblage horizontale

$$\mathbb{G}_{\epsilon} \otimes \mathbb{G}_{2413} \quad \mathbb{G}_{1} \otimes \mathbb{G}_{132} \quad \mathbb{G}_{21} \otimes \mathbb{G}_{21}$$

$$\mathbb{G}_{2413} \quad \stackrel{\Delta}{\rightarrow} \quad \mathbb{G}_{213} \otimes \mathbb{G}_{1} + \mathbb{G}_{2413} \otimes \mathbb{G}_{\epsilon}$$

Dualité de FQSym

Dualité

Soit H une algèbre de Hopf,

$$<\Delta(z), x \otimes y> = < z, x.y> \qquad \forall x, y \in H, z \in H^*, < y.z, x> = < y \otimes z, \Delta(x)> \qquad \forall x \in H, y, z \in H^*$$

Mots tassés

Définition

Un mot w sur l'alphabet $\{1,2,...n\}$ est un mot tassé si pour tout nombre k>1 apparessant dans w, k-1 apparait aussi dans w.

Mots tassés

Définition

Un mot w sur l'alphabet $\{1,2,...n\}$ est un mot tassé si pour tout nombre k>1 apparessant dans w, k-1 apparait aussi dans w.

Même représentation : #lignes $\leq \#$ colonnes

Mots tassés

Définition

Un mot w sur l'alphabet $\{1,2,...n\}$ est un mot tassé si pour tout nombre k>1 apparessant dans w, k-1 apparait aussi dans w.

Même représentation : #lignes $\leq \#$ colonnes

Produit

sur les mots tassés

Produit de mélange sur les mots tassés

Produit de mélange sur les mots tassés

Produit de mélange sur les mots tassés

Produit de mélange augmenté sur les valeurs

Produit de mélange augmenté sur les valeurs

Produit de mélange augmenté sur les valeurs

Ordres partiels

Ordres Partiels : Réflexivité, Transitivité, Antisymétrie.

111

From M to S in WQSym

Quelques matrices

	123	132	213	231	312	321	122	212	221	112	121	211	111
123						1							
132		-1	1	1									
213		1	-1		1								
231		1											
312			1										
321	1												
122							1	1	1	-1			
212							1	1					
221							1						
112							-1			1	1	1	
121										1	1		
211										1			
111													1

Figure: Matrice de changement de base de $\mathbb L$ à $\mathbb R$ pour les mots tassés de taille 3.

Quelques matrices

	123	132	213	231	312	321	122	212	221	112	121	211	111
123	0	0	0	0	0	1	0	0	1/2	0	0	1/2	1/6
132	0	0	0	1	0	0	0	0	1/2	0	1/2	0	1/6
213	0	0	0	0	1	0	0	1/2	0	0	0	1/2	1/6
231	0	1	0	1	-1	0	1/2	-1/2	1/2	0	1	-1/2	1/6
312	0	0	1	-1	1	0	0	1	-1/2	1/2	-1/2	1/2	1/6
321	1	0	0	0	0	0	1/2	0	0	1/2	0	0	1/6
122	0	0	0	1/2	0	1/2	0	0	3/2	0	1/4	1/4	2/3
212	0	0	1/2	-1/2	1	0	0	7/4	-5/4	1/4	-1/4	1/2	1/6
221	1/2	1/2	0	1/2	-1/2	0	3/2	-5/4	1/4	1/4	1/2	3/4	2/3
112	0	0	0	0	1/2	1/2	0	1/4	1/4	0	0	3/2	2/3
121	0	1/2	0	1	-1/2	0	1/4	-1/4	1/2	0	7/4	-5/4	1/6
211	1/2	0	1/2	-1/2	1/2	0	1/4	1/2	3/4	3/2	-5/4	1/4	2/3
111	1/6	1/6	1/6	1/6	1/6	1/6	2/3	1/6	2/3	2/3	1/6	2/3	13/6

Figure: Matrice de changement de base de $\mathbb S$ à $\mathbb M$ pour les mots tassés de taille 3.

• Développement des mots tassés en Sage, #25916 implement Packed Words.

- Développement des mots tassés en Sage, #25916 implement Packed Words.
- Développement de l'algèbre WQSym en Sage avec ses 8 bases, #25930 implementation of different basis of WQSym.

- Développement des mots tassés en Sage, #25916 implement Packed Words.
- Développement de l'algèbre WQSym en Sage avec ses 8 bases, #25930 implementation of different basis of WQSym.
- Lancement de tests à grande échelle pour vérifier les résultats de Vargas.

- Développement des mots tassés en Sage, #25916 implement Packed Words.
- Développement de l'algèbre WQSym en Sage avec ses 8 bases, #25930 implementation of different basis of WQSym.
- Lancement de tests à grande échelle pour vérifier les résultats de Vargas.
- Etude de la combinatoire de ces changements de base grâce à l'affichage des matrices et des graphes obtenu en Sage.

- Développement des mots tassés en Sage, #25916 implement Packed Words.
- Développement de l'algèbre WQSym en Sage avec ses 8 bases, #25930 implementation of different basis of WQSym.
- Lancement de tests à grande échelle pour vérifier les résultats de Vargas.
- Etude de la combinatoire de ces changements de base grâce à l'affichage des matrices et des graphes obtenu en Sage.
- Nouveaux résulats et conjectures

- Développement des mots tassés en Sage, #25916 implement Packed Words.
- Développement de l'algèbre WQSym en Sage avec ses 8 bases, #25930 implementation of different basis of WQSym.
- Lancement de tests à grande échelle pour vérifier les résultats de Vargas.
- Etude de la combinatoire de ces changements de base grâce à l'affichage des matrices et des graphes obtenu en Sage.
- Nouveaux résulats et conjectures
 - Stabilité de l'isomorphisme de Vargas sur FQSym.
 - Une infinité d'automorphisme de WQSym.
 - Généralisation à PQSym.