Wireline Transceiver Circuits

Dr. Mohamed Salah Mobarak
Email: mohamedmobarak@eng.cu.edu.eg
Department of Electronics and Electrical
Communications Engineering
Cairo University

Introduction to Phase Noise

- Phase step
- $v(t) = \sin(\omega t + \Delta \emptyset u(t))$

Introduction to Phase Noise

Introduction to Phase Noise

Voltage Noise

- Noise is a time varying random signal
 - Frequency domain representation of noise is Fourier transform of autocorrelation function of noise
 - > Autocorrelation of white noise is delta function
 - ➤ What is the definition of SNR

White Noise and Flicker Noise

- Transistor noise consists of two parts
 - \triangleright White noise modeled as current $i_n^2 = 4KT\gamma g_m$
 - Flicker noise modeled as voltage at gate $v_n^2 = \frac{K}{WLC_{ox}f}$

- Oscillator ideal output signal is given by $V_{out} = ACos(\omega t)$
- Real output signal contains noise and hence zero crossing changes randomly
- $V_{out} = ACos(\omega t + \phi_n)$
 - > Frequency of real oscillator is not constant
 - Amplitude noise is not important in oscillator since it is removed when it is converted to digital signal

- Phase noise is varying with time
 - > Frequency spectrum of phase noise is Fourier transform of phase noise autocorrelation function

Relationship Between Phase Noise and Jitter

- Jitter is the time domain representation of phase noise
- For a periodic signal, period time T is equivalent to 2π
- A signal with frequency f_0 and phase noise ϕ_n , the jitter is simply given by

- Jitter is typically used for square waves
- Integral of jitter is called rms jitter

 Noise added to sinusoidal signal will cause phase noise

- Spectrum of real oscillator is broadened
- Note that the spectrum of PLL output will contain spurs in addition to phase noise

Amplitude and Phase Noise

- Amplitude noise is most common form of noise
- $V_{out} = (A + aCos(\Delta\omega t))Cos(\omega t)$

•
$$V_{out} = ACos(\omega t) + \frac{a}{2}Cos((\omega + \Delta \omega)t) + \frac{a}{2}Cos((\omega - \Delta \omega)t)$$

Amplitude and Phase Noise

•
$$V_{out} = ACos\left(\omega t - \frac{a}{A}Sin(\Delta\omega t)\right)$$

•
$$V_{out} = ACos(\omega t)Cos\left(-\frac{a}{A}Cos(\Delta\omega t)\right) + ASin(\omega t)Sin\left(-\frac{a}{A}Sin(\Delta\omega t)\right)$$

- $V_{out} \approx ACos(\omega t) aSin(\omega t)Sin(\Delta \omega t)$
- $V_{out} = ACos(\omega t) + \frac{a}{2}Cos((\omega + \Delta \omega)t) \frac{a}{2}Cos((\omega \Delta \omega)t)$

Phase Noise Spectrum

• $V_{out} = V_0 Cos(\omega_0 t + \phi_n(t)) \approx V_0 Cos(\omega_0 t) - V_0 \phi_n(t) Sin(\omega_0 t)$

- Phase noise is measured in dBc/Hz
 - Total noise is integrated in 1Hz BW at a certain offset and then divided by the carrier power

- At small frequency offset, phase noise is large and previous approximation doesn't hold
- Spectrum of real oscillator is broadened

$$S_{out}(f) = \frac{V_0^2(\eta/4)}{(\omega_0 - \omega)^2 + \eta^2/16}.$$

Effect of Phase Noise

 Oscillator phase noise may cause interferer to distort desired channel

Effect of Phase Noise

 Also transmitting outside the allocated band might distort signals to nearby receivers

Effect of Jitter

Noise at Control Line

- $\omega_{\text{VCO}} = \omega_0 + KV_C$
- Any noise at control line affect the frequency and cause phase noise
- $\omega_{\text{VCO}} = \omega_0 + K(V_C + V_n)$
- Higher VCO gain means higher phase noise
 - ➤ VCO gain should be selected to be lowest possible value

Noise at Control Line

- $\omega_{\text{VCO}} = \omega_0 + K(V_C + V_n)$
- $V_{out} = ACos(\int \omega dt) = ACos((\omega_0 + KVC)t + \int V_n dt))$
- Assume $V_n = -aCos(\Delta\omega t)$
- $V_{out} = ACos((\omega_0 + KV_C)t \frac{a}{\Delta\omega}Sin(\Delta\omega t)))$
- $V_{out} = ACos(\omega_{vco}t) + \frac{aA}{2\Delta\omega}Cos((\omega_{vco} + \Delta\omega)t) \frac{aA}{2\Delta\omega}Cos((\omega_{vco} \Delta\omega)t)$
- Noise power is inversely proportional to $(1/\Delta\omega)^2$

Effect of VCO Noise

 Noise can be modeled as a separate source added at control line or output of VCO

- How does normal noise convert to phase noise
 - ➤ Noise at control line directly affect frequency of oscillator
 - Thermal noise affect both amplitude and phase of oscillator

• Noise component at $\omega_0 + \Delta \omega$ will affect amplitude and phase

- $V_{out} = ACos(\omega t) + \phi_n Cos((\omega + \Delta \omega)t)$
- $V_{out} = (A + (\phi_n)Cos(\Delta\omega t))Cos(\omega t) (\phi_n)Sin(\omega t)Sin(\Delta\omega t)$
- $V_{out} \approx (A + (\phi_n) Cos(\Delta \omega t))Cos(\omega t + (\phi_n/A)Sin(\Delta \omega t))$

- Actual noise around ω_0 can be represented by
- $n(t) = n_I \cos(\omega_0 t) n_Q \sin(\omega_0 t)$
- Half of noise component near ω_0 will be converted to phase noise and other half will be converted to amplitude noise

$$V_{out}(t) = V_0 \cos \omega_0 t + n(t)$$

$$= [V_0 + n_I(t)] \cos \omega_0 t - n_Q(t) \sin \omega_0 t$$

$$= \sqrt{[V_0 + n_I(t)]^2 + n_Q^2(t)} \cos \left[\omega_0 t + \tan^{-1} \frac{n_Q(t)}{V_0 + n_I(t)}\right].$$

Phase Noise in LC VCO

- Any noise current is converted to noise voltage when multiplied by tank Impedance
- ½ of the noise will be phase noise and ½ will be amplitude noise

•
$$Z(\omega) = \frac{j\omega L}{1 - \omega^2 LC}$$

•
$$Z(\omega_0 + \Delta\omega) = \frac{j(\omega_0 + \Delta\omega)L}{1 - \omega_0^2 LC - 2\omega_0 \Delta\omega LC - \Delta\omega^2 LC}$$

•
$$Z(\omega_0 + \Delta\omega) \approx -\frac{j}{2\omega_0 C} \frac{\omega_0}{\Delta\omega} = -\frac{jR}{2Q} \frac{\omega_0}{\Delta\omega}$$

Phase Noise in LC VCO

- Resistor noise can be represented by current
- $i_n^2 = 4KT/R$
- $v_n^2 = i_n^2 * |Z_{tank}|^2 = \frac{4KT}{R} * \left| \frac{R}{2Q} \frac{\omega_0}{\Delta \omega} \right|^2$
- half of this noise will be amplitude noise and the other half will be phase noise
- Phase noise in dBc is given by

•
$$L(\Delta\omega) = \frac{2KTR}{V_{sig}^2} * \left|\frac{\omega_0}{2Q\Delta\omega}\right|^2 = \frac{2KT}{P_{sig}} * \left|\frac{\omega_0}{2Q\Delta\omega}\right|^2 dBc/Hz$$

Leeson Model

Takes into account flicker noise

•
$$L(\Delta\omega) = \frac{2KTF}{P_{sig}} \left(1 + \left(\frac{\omega_0}{2Q\Delta\omega} \right)^2 \right) \left(1 + \frac{\Delta\omega_{1/f}}{\Delta\omega} \right)$$
 dBc/Hz

• Where F is an empirical fitting factor and $\Delta\omega_{1/f}$ is the flicker noise corner

Cyclo-stationary Noise

- Transistor flicker noise and thermal noise are function of current
- Current through VCO transistor are periodic

$$> I = I_0 + I_1 \sin(\omega t)$$

$$g_m = g_{m0} + g_{m1} \sin(\omega t)$$

- Hence noise is also periodic, thus noise is upconverted by the periodic nature of current
- $i_n^2 = \frac{8}{3}KTg_m = \frac{8}{3}KT(g_{m0} + g_{m1}\sin(\omega t))$
- $i_n^2 = \frac{8}{3}KTg_m = \frac{8}{3}KT(g_{m0} + g_{m1}\sin(\omega t))$

•
$$i_f^2 = \frac{K_f I}{f} = \frac{K_f (I_0 + I_1 \sin(\omega t))}{f}$$

Time Varying Noise Nature

 Noise injected at oscillation peak has effect on amplitude only, while noise injected at zero crossing affect phase of signal

Time Varying Noise Nature

- Convolution still valid for time varying systems
- $\phi(t) = \int h(t,\tau)i(\tau)d\tau$
- $h(t,\tau) = \Gamma(\omega_0 \tau) u(t-\tau)$
- Where Γ is the impulse sensitivity function (ISF)
- $\Gamma(\omega_0 \tau) = C_0 + \sum C_n Cos(n\omega_0 t + \theta_n)$
- If noise is time varying and effectively multiplied by $\alpha(\omega_{0t})$, then $\Gamma_{eff}(\omega_0 t) = \alpha(\omega_0 t) * \Gamma(\omega_0 t)$

ISF of LC oscillator

Time Varying Noise Nature

- Noise is multiplied by ISF and then converted to phase noise
- C0 is small for LC oscillator, hence flicker noise is minimized

Noise Transfer Function

$$\bullet \ \frac{\theta_{out}}{\phi_o} = \frac{1}{1 + K_D K_{VCO} F(s)/s}$$

•
$$\frac{\theta_{out}}{\phi_c} = N \frac{K_D K_{VCO} F(s)/s}{1 + K_D K_{VCO} F(s)/s}$$

Noise Transfer Function

•
$$K_D = I_{CP}/2\pi N$$

•
$$K_D = I_{CP}/2\pi N$$

• $F(s) = \frac{1+s/\omega_z}{s(1+s/\omega_p)}$

$$\bullet \quad \frac{\theta_{out}}{\phi_o} = \frac{s^2}{s^2 + sK_D K_{VCO}/\omega_z + K_D K_{VCO}}$$

•
$$\frac{\theta_{out}}{\phi_c} = N \frac{K_D K_{VCO} (1 + s/\omega_z)}{s^2 + sK_D K_{VCO} / \omega_z + K_D K_{VCO}}$$

Tradeoff Between Noise and Power Consumption

- Adding output of 2 oscillators results 6dB higher signal and 3 dB higher noise, hence 3 dB SNR enhancement
 - For N oscillators, signal is improved by $20\log(N)$, while noise is multiplied by $10\log(N)$

Three stage ring oscillator

Three-stage ring oscillator

$$H(s) = -\frac{A_0^3}{\left(1 + \frac{j\omega}{\omega_0}\right)^3}$$

$$\omega_{osc} = \sqrt{3}\omega_0$$
$$A_0 = 2$$

Oscillators 37

Ring Oscillator

- Ring oscillator consists of odd number of inverters
- Each inverter should provide a phase shift = 180/N (N is the number of inverters)
- $f_{osc} = 1/2Nt_d$

Propagation Delay of Inverter

•
$$i(0) = \frac{1}{2}k_n(V_{DD} - V_t)^2$$

•
$$i(t_{pHL}) = k_n ((V_{DD} - V_t)V_{DD}/2 - (V_{DD}/2)^2/2)$$

•
$$i_{av} = \left(i(0) + i\left(t_{pHL}\right)\right)/2$$

•
$$t_{pHL} = \frac{C\Delta V}{i_{av}} = \frac{CV_{DD}/2}{i_{av}}$$

•
$$t_p = 0.5(t_{pHL} + t_{pLH})$$

Current Starved Ring Oscillator

- Current control the delay and hence the frequency
- $t_d \approx CV_{DD}/2I$

Differential Ring Oscillator

- Differential pair can be used as a differential inverter
- Very fast since the voltage variation is I_{ss}R₁

Differential Ring Oscillator

• Even number of inverter stages can be used

Noise Analysis of Ring Oscillator

- Divider output is a square signal
 - ➤ Signal consists of multiple harmonics
- Zero crossing is a function of all signal harmonics
 - ➤ Noise at All harmonic matters
- Voltage noise will result in a time shift given by
 - > t_n=v_n/A, where A is the slope of the voltage with respect to time
 - Equivalent phase noise is $\phi_n = 2\pi f_0 t_n$

Effect of Supply Noise

- For simple inverter, the noise on supply is translated to noise at input as follows
 - $> v_{noise_in} = v_{noise_sup}/2$ (assuming symmetrical inverter)
 - $> t_n = v_{noise\ in}/A$, where A is the slope of the signal