Case No.: Page No.:

21458P

AMENDMENTS TO THE CLAIMS

Please cancel Claims 21-44. This listing of claims will replace all prior versions, and listings, of claims in the application.

Listing of Claims

1. (original) A compound represented by formula I:

$$(R^2)_2$$
 R^3
 R^4
 $(R^2)_2$
 R^8
 R^9
 $C(O)N^{-R^5}$
 $(CH_2)_n(CR^6R^7)_mZ$

or a pharmaceutically acceptable salt or solvate thereof, wherein:

R¹ represents H or is independently selected from the group consisting of:

- a) OH, halo, CO₂R^a, C(O)NR^bR^c, NR^bR^c, CN or S(O)_pR^d;
- b) C_{1-10} alkyl, C_{2-10} alkenyl, C_{2-10} alkynyl, OC_{1-10} alkyl, OC_{3-10} alkenyl and OC_{3-10} alkynyl, said groups being optionally substituted with:
 - (1) 1-5 halo groups up to a perhaloalkyl group;
 - (2) 1 oxo group;
 - (3) 1-2 OH groups;
 - (4) 1-2 C₁₋₁₀alkoxy groups, each optionally substituted with: up to five halo or a perhaloalkoxy, 1 OH or CO₂R^a group;
 - (5) $1 \text{ CO}_2\text{R}^a \text{ or S(O)}_p\text{R}^d$;
 - (6) 1-2 Aryl, Hetcy or HAR groups, each optionally substituted as follows:
 - (a) 1-5 halo groups,
 - (b) 1 OH, CO_2R^a , CN, $S(O)_pR^d$, NO_2 or $C(O)NR^bR^c$,
- (c) 1-2 C₁₋₁₀alkyl or alkoxy groups, each optionally substituted with: 1-5 halo, up to perhaloalkyl, and 1-2 OH or CO_2R^a groups; and

Page No.:

(d) 1-2 phenyl rings, each of which is optionally substituted as follows: 1-5 halo groups up to perhalo, 1-3 C₁₋₁₀alkyl or alkoxy groups, each being further optionally substituted with 1-5 halo up to perhalo, or 1-2 hydroxy or CO₂R^a groups;

- c) Aryl, HAR, Hetcy, -O-Aryl, -O-HAR and -O-Hetcy, each optionally substituted as set forth below:
 - (1) 1-3 C_{1-10} alkyl, C_{2-10} alkenyl or C_{2-10} alkynyl groups optionally substituted with 1-5 halo groups; 1-2 OH groups; phenyl optionally substituted with 1-3 halo, C_{1-6} alkyl or C_{1-6} alkoxy groups, the alkyl and alkoxy groups being further optionally substituted with 1-3 halo groups; CO_2R^a ; CN or $S(O)_pR^d$ groups; and
 - (2) 1-3 C_{1-10} alkoxy groups, the alkyl portion of which is optionally substituted with 1-5 halo groups, 1-2 OH; phenyl optionally substituted with 1-3 halo, C_{1-6} alkyl or C_{1-6} alkoxy groups, the alkyl and alkoxy groups being further optionally substituted with 1-3 halo groups; CO_2R^a ; CN or $S(O)_pR^d$ groups;

said Aryl, HAR, Hetcy -O-Aryl, -O-HAR and -O-Hetcy group c) being further optionally substituted on carbon by a group selected from the group consisting of;

- (3) 1-5 halo groups;
- (4) 1-2 OH groups;
- (5) $1 S(O)_p R^d$, NO_2 or CN group;
- (6) $1-2 CO_2R^a$;
- (7) $-C(O)NR^bR^c$;

each R² represents H or is independently selected from the group consisting of:

- a) OH, halo, CO₂R^a, C(O)NR^bR^c, NR^bR^c, CN or S(O)_pR^d;
- b) C_{1-10} alkyl, C_{2-10} alkenyl, C_{2-10} alkynyl, OC_{1-10} alkyl, OC_{3-10} alkenyl and OC_{3-10} alkynyl, said groups being optionally substituted with:
 - (1) 1-5 halo groups up to a perhaloalkyl group;
 - (2) 1 oxo group;

- (3) 1 OH group;
- (4) 1 C₁₋₁₀alkoxy group, each optionally substituted with: up to five halo or a perhaloalkoxy, 1 OH or CO₂R^a group;
- (5) $1 \text{ CO}_2\text{R}^a \text{ or S(O)}_p\text{R}^d$;
- (6) 1 Aryl, Hetcy or HAR group, each optionally substituted as follows:
 - (a) 1-5 halo groups,
 - (b) 1 OH, CO_2R^a , CN, $S(O)_pR^d$, NO_2 or $C(O)NR^bR^c$,
- (c) 1-2 C₁₋₁₀alkyl or alkoxy groups, each optionally substituted with: 1-5 halo, up to perhaloalkyl, and 1-2 OH or CO_2R^a groups; and
- (d) 1-2 phenyl rings, each of which is optionally substituted as follows: 1-5 halo groups up to perhalo; 1-3 C₁₋₁₀alkyl or alkoxy groups, each being further optionally substituted with 1-5 halo up to perhalo; and 1-2 hydroxy or CO₂R^a groups;
- c) Aryl, HAR, Hetcy, -O-Aryl, -O-HAR and -O-Hetcy, each optionally substituted as set forth below:
 - (1) 1-3 C_{1-10} alkyl, C_{2-10} alkenyl or C_{2-10} alkynyl groups optionally substituted with 1-5 halo groups, 1-2 OH, phenyl, CO_2R^a , CN or $S(O)_pR^d$ groups;
- (2) 1-3 C₁₋₁₀alkoxy groups, the alkyl portion of which is optionally substituted with 1-5 halo groups, 1-2 OH, phenyl, CO₂R^a, CN or S(O)_pR^d groups; said Aryl, HAR or Hetcy group c) being further optionally substituted on carbon by a group selected from the group consisting of;
 - (3) 1-5 halo groups up to perhalo;
 - (4) 1 OH group;
 - (5) $1 S(O)_p R^d$, NO_2 or CN group;
 - (6) $1 \text{ CO}_2 R^a$;

R³ is selected from the group consisting of:

a) C₁₋₁₀alkyl or C₂₋₁₀alkenyl, each optionally substituted with

US Appln. No.: To Be Assigned
US Filing Date: Concurrently
Case No.: 21458P

Page No.:

1-5 halo groups up to perhalo;

- 1-2 OH, C₁₋₃alkoxy or haloC₁₋₃alkoxy groups;
- 1-2 NR^cR^d groups; and

٠.

- 1-2 Aryl, HAR or Hetcy groups, each optionally substituted with 1-3 halo groups and 1-2 groups selected from CN, NO₂, C₁₋₃alkyl, haloC₁₋₃alkyl, C₁₋₃alkoxy and haloC₁₋₃ alkoxy groups,
- b) Aryl, HAR or Hetcy, each optionally substituted with 1-3 halo groups and 1-2 groups selected from CN, NO₂, C₁₋₃alkyl, haloC₁₋₃alkyl, C₁₋₃alkoxy and haloC₁₋₃ alkoxy groups;

R⁴ is independently selected from the group consisting of: Aryl, HAR or Hetcy, each optionally substituted as set forth below:

- (1) 1-3 C_{1-14} alkyl, C_{2-10} alkenyl or C_{2-10} alkynyl groups optionally substituted with 1-5 halo groups, 1-2 OH, CO_2R^a , CN or $S(O)_pR^d$ groups or phenyl optionally substituted as follows: 1-5 halo groups up to perhalo; 1-3 C_{1-10} alkyl or alkoxy groups, each being further optionally substituted with 1-5 halo up to perhalo, or 1-2 hydroxy or CO_2R^a groups;
- (2) 1-3 C_{1-10} alkoxy or C_{3-10} alkenyloxy groups, the alkyl portion of which is optionally substituted with 1-5 halo groups, 1-2 OH, CO_2R^a , CN, $S(O)_pR^d$, and phenyl optionally substituted as follows: 1-5 halo groups up to perhalo; 1-3 C_{1-10} alkyl or alkoxy groups, each being further optionally substituted with 1-5 halo up to perhalo, or 1-2 hydroxy or CO_2R^a groups;
- (3) 1-2 Aryl, HAR or Hetcy, OAryl, OHAR or OHetcy groups, each optionally substituted as follows:
 - (i) 1-3 halo groups;
 - (ii) 1-2 C_{1-10} alkyl, C_{2-10} alkenyl or C_{2-10} alkynyl groups each optionally substituted with 1-5 halo groups, 1-2 OH, phenyl, CO_2R^a , CN or $S(O)_pR^d$ groups;
 - (iii) 1-2 C₁₋₁₀alkoxy groups the alkyl portion of which being optionally substituted with 1-5 halo groups, 1-2 OH, phenyl, CO₂R^a, CN or S(O)_DR^d groups; and

Page No.:

7

(iv) 1-2 CO₂R^a, S(O)_pR^d, CN, NR^bR^c, NO₂ or OH groups; said Aryl, HAR or Hetcy group R⁴ being further optionally substituted on carbon by a group selected from the group consisting of;

- (4) 1-5 halo groups;
- (5) 1-2 OH groups;
- (6) $1 S(O)_p R^d$, NO_2 or CN group;
- (7) $1-2 CO_2R^a$;

R⁵ represents H or C₁₋₆ alkyl;

R⁶ is selected from the group consisting of H, OH, F or C₁₋₃alkyl;

R⁷ is H or F, or R⁶ and R⁷ are taken in combination and represent oxo;

 R^8 represents H or C_{1-6} alkyl, optionally substituted with OH and 1-5 halo groups up to perhalo;

R⁹ represents H, halo, OH, C ₁₋₆alkyl, optionally substituted with 1-5 halo groups up to perhalo, or C₁₋₆alkoxy, optionally substituted with 1-3 halo groups up to perhalo,

or when R^9 is ortho to the benzylic group, R^8 and R^9 can be taken together and represent a -(CH₂)₂₋₄- or a -O-(CH₂)₁₋₃- group;

 R^a is H or C_{1-10} alkyl, optionally substituted with phenyl, OH, OC₁₋₆alkyl, CO₂H, CO₂C₁₋₆alkyl and 1-3 halo groups;

R^b is H or C₁₋₁₀alkyl;

R^c is H or is independently selected from:

- (a) C_{1-10} alkyl, optionally substituted with OH, OC_{1-6} alkyl, CO_2H , CO_2C_{1-6} alkyl, and 1-3 halo groups;
- (b) Aryl or Ar- C_{1-6} alkyl, each optionally substituted with 1-5 halos and 1-3 members selected from the group consisting of: CN, OH, C_{1-10} alkyl and OC_{1-10} alkyl, said alkyl and alkoxy being further optionally substituted with 1-5 halo groups up to perhalo;

US Appln. No.: To Be Assigned US Filing Date: Concurrently Case No.: 21458P

Page No.: 8

(c) Hetcy or Hetcy- C_{1-6} alkyl, optionally substituted with 1-5 halo groups and 1-3 groups selected from: oxo, C_{1-10} alkyl and OC_{1-10} alkyl, said alkyl and alkoxy being further optionally substituted with 1-5 halo groups up to perhalo; and

(d) HAR or HAR- C_{1-6} alkyl, optionally substituted with 1-5 halo groups and 1-3 groups selected from: C_{1-10} alkyl and OC_{1-10} alkyl, said alkyl and alkoxy being further optionally substituted with 1-5 halo groups up to perhalo;

 R^d is C_{1-10} alkyl, Aryl or Ar- C_{1-10} alkyl; m is an integer selected from 0, 1 and 2; n is an integer selected from 0 to 6; p is an integer selected from 0, 1 and 2, and

when at least one of m and n is other than 0, Z is selected from CO_2R^a , 5-tetrazolyl and 5-(2-oxo-1,3,4-oxadiazolyl), and when both m and n are 0, Z is selected from 5-tetrazolyl and 5-(2-oxo-1,3,4-oxadiazolyl).

- 2. (original) A compound in accordance with claim 1 wherein R^1 is selected from the group consisting of: H, halo, C_{1-10} alkyl and OC_{1-10} alkyl, said alkyl and O-alkyl groups being optionally substituted with 1-5 halo groups up to a perhaloalkyl or perhaloalkoxy.
- 3. (original) A compound in accordance with claim 2 wherein R¹ is selected from the group consisting of: H, halo, C1-4 alkyl, C1-4 alkoxy, said alkyl and alkoxy being optionally substituted with 1-3 halo groups.
- 4. (original) A compound in accordance with claim 1 wherein each R² represents H or is independently selected from the group consisting of:
 - a) halo or $S(O)_pR^d$; wherein p is 2 and R^d represents C_{1-10} alkyl;
- b) C_{1-10} alkyl, C_{2-10} alkenyl, OC_{1-10} alkyl and OC_{3-10} alkenyl, said groups being optionally substituted with:

21458P

Case No.: Page No.:

9

(1) 1-5 halo groups up to a perhaloalkyl group;

- (2) 1 C₁₋₁₀alkoxy group, each optionally substituted with: up to five halo or perhaloalkoxy, 1 OH or CO₂R^a group;
- (3) 1 Aryl or HAR group, each optionally substituted as follows:
 - (a) 1-5 halo groups,
- (b) 1-2 C₁₋₁₀alkyl or alkoxy groups, each optionally substituted with: 1-5 halo, up to perhaloalkyl, and 1-2 OH or CO₂R^a groups;
 - c) Aryl or HAR, each optionally substituted with:
 - (1) 1-2 C_{1-10} alkyl groups optionally substituted with 1-5 halo groups;
 - (2) 1-2 C₁₋₁₀alkoxy groups, the alkyl portion of which is optionally substituted with 1-5 halo groups;

said Aryl or HAR being further optionally substituted on carbon by 1-3 halo groups; up to perhalo.

- 5. (original) A compound in accordance with claim 4 wherein one R² group represents H and the other represents H or is selected from the group consisting of:
 - a) halo or $S(O)_pR^d$; wherein p is 2 and R^d represents C_{1-10} alkyl;
- b) C_{1-10} alkyl, C_{2-10} alkenyl, OC_{1-10} alkyl or OC_{3-10} alkenyl, said groups being optionally substituted with:
 - (1) 1-5 halo groups up to a perhaloalkyl group;
 - (2) 1 C₁₋₁₀alkoxy group, each optionally substituted with: up to five halo or a perhaloalkoxy, 1 OH or CO₂R^a group;
 - (3) 1 Aryl or HAR group, each optionally substituted as follows:
 - (a) 1-5 halo groups,
- (b) 1-2 C_{1-10} alkyl or alkoxy groups, each optionally substituted with: 1-5 halo, up to perhaloalkyl, and 1-2 OH or CO_2R^a groups;
 - c) Aryl or HAR, each optionally substituted with:
 - (1) 1-2 C₁₋₁₀alkyl groups optionally substituted with 1-5 halo groups;
 - (2) $1-2 C_{1-10}$ alkoxy groups, the alkyl portion of which is optionally substituted with 1-5 halo groups;

Case No.: Page No.:

21458P 10

said Aryl or HAR being further optionally substituted on carbon by 1-3 halo groups; up to perhalo. Within this subset, all other variables are as originally defined with respect to formula I.

6. (original) A compound in accordance with claim 5 wherein:

one R² group represents H and the other represents H or a member selected from the group consisting of:

a) halo or S(O)_pR^d; wherein p is 2 and R^d represents C₁₋₂alkyl;

٠,

- b) C₁₋₄alkyl, C₂₋₄alkenyl, OC₁₋₄alkyl or OC₃₋₄alkenyl, said groups being optionally substituted with:
 - (1) 1-5 halo groups up to a perhaloalkyl group;
 - (2) 1 C₁₋₄alkoxy group, optionally substituted with: up to 3 halo or a perhaloalkoxy group;
 - (3) 1 Aryl or HAR group, each optionally substituted as follows:
 - (a) 1-3 halo groups,
- (b) 1 C₁₋₄alkyl or alkoxy group, each optionally substituted with: 1-3 halo, up to perhaloalkyl, groups;
 - c) Aryl or HAR, each optionally substituted with:
 - (1) 1-2 C₁₋₄alkyl groups optionally substituted with 1-3 halo groups;
 - (2) 1-2 C₁₋₄alkoxy groups, the alkyl portion of which is optionally substituted with 1-3 halo groups;

said Aryl or HAR being further optionally substituted on carbon by 1-3 halo groups; up to perhalo.

- 7. (original) A compound in accordance with claim 1 wherein R³ is selected from the group consisting of:
 - a) C_{1-6} alkyl optionally substituted with:
 - 1-3 halo groups up to perhalo;
 - 1 OH, C₁₋₃alkoxy or haloC₁₋₃alkoxy group;
 - 1 NR^cR^d group; and
- 1 Aryl or HAR group, each optionally substituted with 1-3 halo groups and 1-2 groups selected from C_{1-3} alkyl, halo C_{1-3} alkyl, C_{1-3} alkoxy and halo C_{1-3} alkoxy groups,

US Appln. No.: To Be Assigned
US Filing Date: Concurrently
Case No.: 21458P
Page No.: 11

b) Aryl or HAR, each optionally substituted with 1-3 halo groups and 1-2 groups selected from C_{1-3} alkyl, halo C_{1-3} alkyl, C_{1-3} alkoxy and halo C_{1-3} alkoxy groups.

- 8. (original) A compound in accordance with claim 7 wherein R³ is selected from the group consisting of:
 - a) C_{1-6} alkyl optionally substituted with:

. . . .

- 1-3 halo groups up to perhalo;
- 1 C_{1-3} alkoxy or halo C_{1-3} alkoxy group;
- 1 NR^cR^d group; wherein R^c and R^d are independently selected from H, C₁₋₃alkyl and phenyl; and

1 Aryl or HAR group, each optionally substituted with 1-3 halo groups and 1-2 groups selected from C₁₋₃alkyl, haloC₁₋₃alkyl, C₁₋₃alkoxy and haloC₁₋₃alkoxy groups,

- b) Aryl or HAR, each optionally substituted with 1-3 halo groups and 1 group selected from: C_{1-3} alkyl, halo C_{1-3} alkyl, C_{1-3} alkoxy and halo C_{1-3} alkoxy.
 - 9. (original) A compound in accordance with claim 1 wherein: R⁴ represents an Aryl or HAR group, each optionally substituted as set forth below:
 - (1) 1-2 C₁₋₁₀alkyl or C₂₋₁₀alkenyl groups, which are optionally substituted with 1-3 halo groups, or phenyl optionally substituted with 1-2 halo, C₁₋₄alkyl or alkoxy groups, each being further optionally substituted with 1-3 halo groups;
 - (2) 1-2 C_{1-10} alkoxy or C_{3-10} alkenyloxy groups, which are optionally substituted with 1-3 halo groups, 1-2 OH or $S(O)_pR^d$, and phenyl optionally substituted as follows: 1-3 halo groups up to perhalo; 1-2 C_{1-6} alkyl or alkoxy groups, each being further optionally substituted with 1-3 halo up to perhalo, or 1-2 hydroxy or CO_2R^a groups;
 - (3) 1-2 Aryl, HAR or Hetcy, OAryl, OHAR or OHetcy groups, each optionally substituted as follows:
 - (i) 1-3 halo groups;
 - (ii) 1-2 C₁₋₃alkyl or C₂₋₄alkenyl groups each optionally substituted with 1-3 halo groups, and 1 of OH, phenyl, CO₂R^a, CN and S(O)_pR^d;

12

Page No.:

(iii) 1-2 C_{1-3} alkoxy groups the alkyl portion of which being optionally substituted with 1-3 halo groups, and 1 of OH, phenyl, CO_2R^a , CN or $S(O)_DR^d$; and

- (iv) 1-2 CO₂R^a, S(O)_pR^d, CN, NR^bR^c, NO₂ or OH groups; said Aryl, HAR or Hetcy group R⁴ being further optionally substituted on carbon by a group selected from the group consisting of;
 - (4) 1-5 halo groups;
 - (5) 1-2 OH groups;
 - (6) $1 S(O)_p R^d$, NO_2 or CN group.
- 10. (original) A compound in accordance with claim 1 wherein R⁵ represents H or CH₃.
- 11. (original) A compound in accordance with claim 1 wherein R^8 is selected from the group consisting of H and C_{1-3} alkyl.
- 12. (original) A compound in accordance with claim 1 wherein R⁶ and R⁷ represent H.
 - 13. (original) A compound in accordance with claim 9 wherein R⁹ represents H.
- 14. (original) A compound in accordance with claim 1 wherein m is 0 and n is an integer selected from 0 to 2.
- 15. (original) A compound in accordance with claim 1 wherein when n is 1 or 2, Z is selected from CO_2R^a and 5-tetrazolyl, when both m and n are 0, Z is 5-tetrazolyl.
 - 16. (original) A compound in accordance with claim 1 wherein:

US Appln. No.: To Be Assigned
US Filing Date: Concurrently
Case No.: 21458P
Page No.: 13

 R^1 is selected from the group consisting of: H, halo, C_{1-10} alkyl and OC_{1-10} alkyl, said alkyl and O-alkyl groups being optionally substituted with 1-5 halo groups up to a perhaloalkyl or perhaloalkoxy;

each R² represents H or is independently selected from the group consisting of:

- a) halo or S(O)_pR^d; wherein p is 2 and R^d represents C₁₋₁₀alkyl;
- b) C_{1-10} alkyl, C_{2-10} alkenyl, OC_{1-10} alkyl and OC_{3-10} alkenyl, said groups being optionally substituted with:
 - (1) 1-5 halo groups up to perhaloalkyl;
 - (2) 1 C_{1-10} alkoxy group, each optionally substituted with: up to five halo or perhaloalkoxy, 1 OH or CO_2R^a group;
 - (3) 1 Aryl or HAR group, each optionally substituted as follows:
 - (a) 1-5 halo groups,
 - (b) $1-2 C_{1-10}$ alkyl or alkoxy groups, each optionally

substituted with: 1-5 halo, up to perhaloalkyl, and 1-2 OH or CO₂R^a groups;

- c) Aryl or HAR, each optionally substituted with:
 - (1) $1-2 C_{1-10}$ alkyl groups optionally substituted with 1-5 halo groups;
- (2) 1-2 C₁₋₁₀alkoxy groups, the alkyl portion of which is optionally substituted with 1-5 halo groups;

said Aryl or HAR being further optionally substituted on carbon by 1-3 halo groups; up to perhalo; R³ is selected from the group consisting of:

- a) C_{1-6} alkyl optionally substituted with:
 - 1-3 halo groups up to perhalo;
 - 1 OH, C_{1-3} alkoxy or halo C_{1-3} alkoxy group;
 - 1 NR^cR^d group; and
- 1 Aryl or HAR group, each optionally substituted with 1-3 halo groups and 1-2 groups selected from C_{1-3} alkyl, halo C_{1-3} alkyl, C_{1-3} alkoxy and halo C_{1-3} alkoxy;
- b) Aryl or HAR, each optionally substituted with 1-3 halo groups and 1-2 groups selected from C_{1-3} alkyl, halo C_{1-3} alkyl, C_{1-3} alkoxy and halo C_{1-3} alkoxy;

US Appln. No.: To Be Assigned
US Filing Date: Concurrently
Case No.: 21458P
Page No.: 14

R⁴ represents an Aryl or HAR group, each optionally substituted as set forth below:

- (1) 1-2 C₁₋₁₀alkyl or C₂₋₁₀alkenyl groups, which are optionally substituted with 1-3 halo groups, or phenyl optionally substituted with 1-2 halo, C₁₋₄alkyl or alkoxy groups, each being further optionally substituted with 1-3 halo groups;
- (2) 1-2 C_{1-10} alkoxy or C_{3-10} alkenyloxy groups, which are optionally substituted with 1-3 halo groups, 1-2 OH or $S(O)_pR^d$, and phenyl optionally substituted as follows: 1-3 halo groups up to perhalo; 1-2 C_{1-6} alkyl or alkoxy groups, each being further optionally substituted with 1-3 halo up to perhalo, or 1-2 hydroxy or CO_2R^a groups;
- (3) 1-2 Aryl, HAR or Hetcy, OAryl, OHAR or OHetcy groups, each optionally substituted as follows:
 - (i) 1-3 halo groups;
 - (ii) 1-2 C₁₋₃alkyl or C₂₋₄alkenyl groups each optionally substituted with 1-3 halo groups, and 1 of OH, phenyl, CO₂R^a, CN and S(O)_pR^d;
 - (iii) 1-2 C_{1-3} alkoxy groups the alkyl portion of which being optionally substituted with 1-3 halo groups, and 1 of OH, phenyl, CO_2R^a , CN and $S(O)_pR^d$; and
- (iv) 1-2 CO₂R^a, S(O)_pR^d, CN, NR^bR^c, NO₂ or OH groups; said Aryl, HAR or Hetcy group R⁴ being further optionally substituted on carbon by a group selected from the group consisting of;
 - (4) 1-5 halo groups;
 - (5) 1-2 OH groups;
 - (6) $1 S(O)_p R^d$, NO_2 or CN group;

R⁵ represents H or CH₃:

R⁸ is selected from the group consisting of H and C₁₋₃alkyl;

R⁶, R⁷ and R⁹ represents H:

and m is 0 and n is an integer selected from 0 to 2, such that when n is 1 or 2, Z is selected from CO_2R^a and 5-tetrazolyl, and when both m and n are 0, Z is 5-tetrazolyl.

US Appln. No.: To Be Assigned
US Filing Date: Concurrently
Case No.: 21458P
Page No.: 15

17. (original) A compound in accordance with claim 16 wherein R¹ is selected from the group consisting of: H, halo, C1-4 alkyl, C1-4 alkoxy, said alkyl and alkoxy being optionally substituted with 1-3 halo groups.

18. (original) A compound in accordance with claim 1 selected from Table 1a or 1b below:

9	Cl	Н	Cl	-Me	−C>OCF ₃
10	-CF ₃	Н	Н	-Me	CF ₃
11	Cl	Cl	Н	-Me	—(_)→OCF ₃
12	-CF ₃	Н	Н	-Me	—⟨CF ₃
13	Н	Cl	Н	-Me	→CDCF ₃
14	Cl	Cl	Н	-Me	OCF ₃
18	-CF ₃	Н	Н	-Et	→CDCF ₃
19	Н	Н	Н	-Me	CI
20	-OMe	Н	Н	-Me	CI
22	Cl	Cl	Н	-Me	CI
23	Cl	Cl	Н	-Me	OCH ₂ CH=CH ₂
24	Cl	Cl	Н	-Me	
26	-CF ₃	Н	Н	-Me	—∕_>cı
27	-OnPr	Н	Н	-Me	-⟨>OCF ₃
28	Cl	Cl	Н	-Me	-{>он
31	Cl	Cl	Н	-Et	OCF ₃

Page No.: 17

32	Cl	Cl	Н	-Me	─ •
33	Cl	Cl	Н	-Me	~~·>
34	Cl	Cl	Н	-Me	———OiPr
35	Cl	Cl	Н	-Me	
36	Cl	Cl	Н	-Me	
37	Cl	Cl	Н	-Me	————t-Bu
38	Cl	Cl	Н	-Me	————OCH₃
39	-OMe	Н	Н	-Me	Me Me Me
40	Cl	Cl	Н	-Me	—()−CF ₃
41	Cl	Cl	Н		→CD-OCF ₃
42	-OMe	Н	H	-Me	-()-() _F
43	Cl	Н	-OnBu	-Me	→CDCF ₃
44	Н	-OnPr	Н	-Me	————OCH₂CF₃
45	Cl	Cl	Н	-Me	OCF ₃
46	Cl	Cl	Н	-Me	CI
47	Cl	Cl	Н	-CH ₂ CH ₂ F	→OCF ₃
48	Cl	Cl	Н	iPr	→CD-OCF ₃

49	Cl	Cl	Н	-(CH ₂) ₂ OMe	→CD-OCF3
50	Cl	C1	Н	-(CH ₂) ₂ NMe ₂	→OCF ₃
51	CF ₃	Н	Н	Me	→
52	CF ₃	Н	CF ₃	Me	→OCF ₃
53	Cl	Cl	Н	-(CH ₂) ₃ OMe	→ OCF ₃
54	CF ₃	Н	Н	Me	Me Me Me Me
55	CF ₃	Н	Br	Me	→CDCF ₃
56	Cl	Cl	Н	-(CH ₂) ₃ NMe ₂	→CDCF ₃
57	OMe	Н	Н	Me	
58	Cl	Н	OMe	Me	→CDCF ₃
59	CF ₃	Н	Et	Me	→CDCF ₃
60	Cl	Н	OMe	Me	- ○ - ○
61	Н	-OnPr	Н	Me	⟨\CH ₂ CHF ₂
62	CF ₃	Н	-CH=CH ₂	Me	→OCF ₃
63	CF ₃	Н	SO₂Me	Me	→CD-OCF3
64	CF ₃	Н	Н	Me	————nBu
65	CF ₃	Н	Et	Me	
66	CF ₃	Н	Me	Me	→CD-OCF ₃
67	CF ₃	Н	Et	Me	- ⟨

68	CF ₃	Н	Et	Me	————tBu
69	Cl	Н	OiPr	Me	→OCF ₃
70	Cl	Н	OnPr	Me	→OCF ₃
71	CF ₃	Н		Me	→OCF ₃
72	Cl	Н	OEt	Me	→OCF ₃
73	CF ₃	Н	Н	Me	Me Me
74	Cl	Н	OMe	Me	————tBu
75	CF ₃	Н	Et	Me	————Me
76	OMe	Н	Н	Me	Me Me
77	CF ₃	Н	OnBu	Me	→CD-OCF ₃
78	CF ₃	Н	Et	Me	———iPr
79	L	Н	OMe	Me	OCF ₃
80	F	Н	Н	Me	$-\bigcirc$
81	CF ₃	Н	OMe	Me	→OCF ₃
82	Cl	Н	ОН	Me	→CD-OCF ₃
83	OMe	Н	Н	Me	iPr Me
84	CF ₃	Н	OnPr	Me	→CDCF ₃
85	CF ₃	Н	OMe	Me	———tBu

86	CF ₃	Н	OMe	Me	− € _>tBu Me
87	Н	Н	OnPr	Me	→OCF ₃
88	CF ₃	Н	OnPr	Me	→ tBu
90	CF ₃	Н	OEt	Me	→CD-OCF ₃
91	CF ₃	Н	Et	Et	—∕tBu
92	CF ₃	Н	Et	Et	→CD-OCF ₃
95	CF ₃	Н	Cl	Me	→CDCF ₃
96	CF ₃	Н	Н	Me	— (→tBu
97	Н	OnPr	Н	Me	-_\S

US Appln. No.: To Be Assigned
US Filing Date: Concurrently
Case No.: 21458P

Case No.: Page No.:

21

25	Cl	Cl	Н	Me	
29	CF ₃	Н	Н	Me	- ⟨_>-cı
30	CF ₃	Н	Н	Ме	−⟨
89	Cl	Н	OnPr	Et	- (_)-OCF₃
93	Н	Н	OnPr	Me	—()−OCF ₃
94	CF ₃	Н	Н	Me	— (_)→CF ₃

or a pharmaceutically acceptable salt or solvate thereof.

19. (original) A pharmaceutical composition comprising a compound in accordance with claim 1 in combination with a pharmaceutically acceptable carrier.

20. (original) A method of treating type 2 diabetes mellitus in a mammalian patient in need of such treatment comprising administering to said patient a compound in accordance with claim 1 in an amount that is effective to treat said type 2 diabetes mellitus

21 - 44. (canceled)