HW4

1.

(a) color noise

如果 noise 隨著頻率改變的公式可以寫成 $S(f)=\sigma|f|^{lpha}$,就可以稱之為 color noise。 $S(f)=\sigma$ 是 white noise; $S(f)=\sigma|f|$ 是purple noise; $S(f)=\frac{\sigma}{|f|}$ 是 pink noise 。

(b) vanish moment

Vanish moment 是判斷 Mother wavelet 如何遞減的指標。Vanishing moment 越高,經過內積後被濾掉的低頻成分越多。

(c) the Fresnel transform

電磁波在空氣中傳播,相當於對初始訊號做chirp convolution

2.

(i) x(2t+3)是white noise

做Scaliing和Horizontal Shifting不會影響white noise的WDF

(ii) $x(t)exp(-\pi t^2)$ 是white noise

做Shearing不會影響white noise的WDF

(iii) the FT of x(t)是white noise

做Rotation不會影響white noise的WDF

(iv) the LCT of x(t)是white noise

做Twisting不會影響white noise的WDF

3.

- (1) complex function
- (2) non-sinusoid-like function
- (3) multiple components

Hilbert transform在以上三種情況無法算出精確的instantaneous frequency

4.

(a) video compression

做完 wavelet transform, 低頻部分會保留原特徵。因此適合用wavelet transform進行影像 壓縮

(b) random process analysis

由於WDF的期望值就是訊號的Power spectral density。所以WDF非常適合random process analysis

(c) analyzing the variation of temperature

溫度變化的訊號同時包含趨勢,低頻和高頻成分。因此適合用Hilbert-Huang transform進行分析

(d) modulation

由於modulation是兩個訊號疊合而成,需要考慮cross term的問題。因此適合用STFT進行分析

5.

(a)

Haar transform 現今主要優點是分析一個訊號在不同的 scales 和 locations 中的邊緣特徵。

(b)

- 所有elements 的個數: $2^k*2^k=2^{2k}$
- element = -1 的個數: $k2^{k-1}$

以k = 3為例

group 1:
$$2^0 * 2^{(k-1)} = 4$$

group 2:
$$2^1 * 2^{(k-2)} = 4$$

group 3:
$$2^2 * 2^{(k-3)} = 4$$

因此element = -1 的個數可以寫成 $2^0*2^{k-1}+2^1*2^{k-2}+...+2^{k-1}*2^0=k2^{k-1}$

• element = 1 的個數: $k2^{k-1}+2^k$

• element = 0 的個數: $2^{2k}-k2^{k-1}-k2^{k-1}-2^k=2^{2k}-(k+1)2^k$

6.

(a)

$$egin{aligned} \psi(t) &= rac{d^5}{dt^5} e^{-\pi t^2} \ \Psi(f) := FT\{\psi(t)\} = (j2\pi f)^5 e^{-\pi f^2} \ m_k &= rac{1}{(-j2\pi)^k} rac{d^k}{df^k} \Psi(f) = rac{j2\pi)^5}{(-j2\pi)^k} rac{d^k}{df^k} f^5 e^{-\pi f^2} \end{aligned}$$

when k<5, $m_k=0$

vanish moment = 5

(b)

$$egin{aligned} m_0 &= \int_{-2}^2 (1-|t|) dt = 0 \ m_1 &= \int_{-2}^2 t (1-|t|) dt = 0 \ m_2 &= \int_{-2}^2 t^2 (1-|t|) dt = -rac{8}{3} \end{aligned}$$

vanish moment = 2

7.

