Методические указания

Оценка эффективности инвестиций (чистый дисконтированный доход)

Инвестиционный проект всегда требует оценки эффективности. Прежде чем принять решение, нужно сопоставить сумму вложений и ожидаемый доход.

Часть 1. Сравнение проектов

Сравнение различных инвестиционных проектов (или вариантов проекта) и выбор лучшего из них рекомендуется производить с использованием следующих показателей:

- 1) чистый дисконтированный доход NPV (net present value, ЧДД);
- 2) индекс доходности PI (profitability index, ИД); сравнение проектов
- 3) внутренняя норма доходности IRR (internal rate of return, ВНД);
- 4) срок окупаемости (payback period, PP, CO).

Чистый дисконтированный доход (net present value, NPV, ЧДД) – это разница между исходными инвестициями и возвратными денежными потоками, приведенная к настоящему времени. Это сумма, на которую может прирасти ценность предприятия в результате реализации инвестиционного проекта.

Индекс доходности (profitability index, PI, ИД) — показатель отношения дисконтированных денежных потоков от инвестиций к сумме инвестиций. Он показывает количество средств, заработанных за время существования инвестиционного проекта.

Внутренняя норма доходности (internal rate of return, IRR, ВНД) — это такая ставка дисконтирования, при которой инвестор получит назад все вложения, то есть выйдет в ноль.

Срок окупаемости (рауbаск period, PP, CO) — период времени, необходимый для того, чтобы доходы, генерируемые инвестициями, покрыли затраты на инвестиции.

Чистый дисконтированный доход NPV

Чистый дисконтированный доход (net present value, NPV, ЧДД) – это разница между исходными инвестициями и возвратными денежными потоками, приведенная к настоящему времени. Это сумма, на которую может прирасти ценность предприятия в результате реализации инвестиционного проекта.

Чистый дисконтированный доход NPV определяется как сумма текущих эффектов за весь расчетный период, приведенная к начальному шагу, или как превышение интегральных результатов над интегральными затратами. Величина NPV для постоянной нормы дисконта (E) вычисляется по формуле 1:

$$NPV = \sum_{t=0}^{T} (R_t - C_t) \times \frac{1}{(1+r)^t},$$

- R_t **результаты**, достигаемые на t-ом шаге расчета;
- C_t затраты (Costs) на том же шаге;
- T горизонт расчета (продолжительность расчетного периода); он равен номеру шага расчета, на котором производится закрытие проекта;
 - $(R_t C_t) \mathbf{эффект}$, достигаемый на t-ом шаге;
- r постоянная норма дисконта, равная приемлемой для инвестора норме дохода на капитал (процентная ставка).

Если NPV инвестиционного проекта положителен (NPV > 0), эффективным (при данной норме дисконта) и может рассматриваться вопрос о его принятии. Чем больше NPV, тем эффективнее проект.

На практике часто пользуются модифицированной формулой для определения NPV. Для этого из состава C_t исключают капитальные вложения и через C_t^+ обозначают затраты на t-ом шаге при условии, что в них не входят капиталовложения. Тогда:

$$NPV = \sum_{t=0}^{T} \left[\left(R_t - C_t^{+} \right) \times \frac{1}{(1+r)^t} \right] - K,$$

где К — сумма дисконтированных капиталовложений.

Четыре шага для определения NPV:

- 1) выбора ставки дисконтирования;
- 2) вычисления текущей стоимости ожидаемых от инвестиционного проекта денежных доходов;
- 3) вычисления текущей стоимости требуемых для проекта капиталовложений;
- 4) вычитания из текущей стоимости всех доходов текущей стоимости капиталовложений.

Индекс доходности PI – не сильно обязательно

Индекс доходности (profitability index, PI, ИД) — показатель отношения дисконтированных денежных потоков от инвестиций к сумме инвестиций. Он показывает количество средств, заработанных за время существования инвестиционного проекта.

Индекс доходности РІ представляет собой отношение суммы дисконтированных денежных притоков (приведенных эффектов) к величине капиталовложений (K):

$$PI = \frac{1}{K} \sum_{t=0}^{T} (R_t - C_t^+) \times \frac{1}{(1+r)^t},$$

Если NPV>1, то PI>1, то проект эффективен.

Если PI<1 – проект не эффективен.

Внутренняя норма доходности IRR

Внутренняя норма доходности (internal rate of return, IRR, ВНД) — это такая ставка дисконтирования, при которой инвестор получит назад все вложения, то есть выйдет в ноль.

Внутренняя норма доходности IRR представляет собой ту норму дисконта r, при которой величина приведенных эффектов равна приведенным капиталовложениям (NPV равен нулю). Иными словами, IRR является решением уравнения:

$$NPV = \sum_{t=0}^{T} \left[\left(R_t - C_t^{+} \right) \times \frac{1}{(1 + IRR)^t} \right] - K_0 = 0,$$

Здесь K_0 – сумма начальных инвестиций.

Рассчитать это арифметически не получится. В экономических учебниках есть 2 ручных» варианта. С помощью графического сначала рассчитывают график NVP для каждого проекта и затем находят IRR на нулевом уровне. Метод подбора требует знаний логарифмических расчётов.

Аналитически найти корень этого уравнения невозможно. С помощью пакетов программ для обработки таблицы можно рассчитать этот показатель или использовать метод подборы, графические методы.

В MS Excel ВНД (IRR) рассчитывается с помощью формул ВСД (). При этом K0- (вложения) заполняются со знаком минус.

В рассчитанном примере три проекта имеют следующие IRR: 15%, 20%, 19%. Лучше выбрать второй проект, причём если привлекать кредитные средства, то со ставкой не выше 20 %, иначе инвестиции будут убыточными.

Полезно сопоставлять полученную ставку доходности проекта с общей ставкой дисконтирования, учитывающей риски. Например, если ставка

дисконтирования для проекта — 15 %, а ВНД — 25 %, то прогноз положительный, потому что 10 % разницы — это солидный запас.

Срок окупаемости

Срок окупаемости (рауbаск period, PP, CO) — период времени, необходимый для того, чтобы доходы, генерируемые инвестициями, покрыли затраты на инвестиции.

Иными словами, это период (измеряемый в месяцах, кварталах или годах), начиная с которого первоначальные вложения и другие затраты, связанные с инвестиционным проектом, покрываются суммарными результатами его осуществления.

Простой способ расчёта

Если анализируется несколько проектов, то берутся проекты только с одинаковым сроком жизни, средства будут вкладываться только один раз в самом начале и прибыль от вложенного будет поступать примерно одинаковыми частями.

Этот подход не учитывает следующие факторы:

- ценность денежных средств, которая постоянно меняется;
- прибыль от проекта, которая будет идти хозяйствующему субъекту после прохождения отметки окупаемости;
 - прибыль поступает равными суммами. Формула для расчета:

$$PP = \frac{K}{4\Gamma\Pi}$$
.

Здесь К – сумма вложений, ЧПГ – чистая годовая прибыль.

Чистая годовая прибыль (ЧПГ) можно рассчитать следующим образом:

$$\Psi\Pi\Gamma = B - CC - \mathcal{Y}P - \mathcal{K}P + \Pi\mathcal{I} - \Pi P - H\Pi,$$

здесь:

• *В* — выручка;

- СС себестоимость продаж;
- *УР* и *КР* управленческие и коммерческие расходы;
- ПД и ПР прочие доходы и расходы;
- $H\Pi$ налог на прибыль.

Пример 1.

В проект необходимо инвестировать сумму в размере 150 тысяч рублей. Проект будет приносить в среднем 50 тысяч рублей в год чистой прибыли. Срок окупаемости составляет:

$$PP = \frac{150000}{50000} = 3$$
 года.

Динамичный или дисконтированный метод

Этот метод определяет время от вложения до возврата средств с учётом дисконтирования. Динамичный коэффициент подразумевает учёт изменения стоимости финансов, он заведомо будет больше коэффициента при расчёте простым способом. Для расчета РР используется следующая формула:

$$PP = \frac{\text{Денежный поток}}{(1+r)^T},$$

Здесь:

r – процентная ставка (ставка дисконтирования);

T – время;

Пример 2.

В проект нужно вложить 150 тысяч рублей.

Планируется, что в течение первого года доход будет 30 тысяч рублей. В течение второго — 50 тысяч. В течение третьего — 40 тысяч рублей. В четвёртом — 60 тысяч. Ставка дисконтирования составит 10% (в реальности она примерно такая и есть).

Если считать без учета стоимости денежных средств получаем денежный поток за четыре года:

За первые три года денежный поток составляет

$$30+50+40=120$$
 тыс. рублей.

То есть, ориентировочно окупаемость составляет 3.5 года.

С учетом дисконта получаем:

$$PP$$
 (первый год) $= \frac{30\ 000}{(1+0.1)^1} = 27\ 272,72$ рублей; PP (второй год) $= \frac{50\ 000}{(1+0.1)^2} = 41\ 322,31$ рублей; PP (третий год) $= \frac{40\ 000}{(1+0.1)^3} = 30\ 052,39$ рублей; PP (четвертый год) $= \frac{60\ 000}{(1+0.1)^4} = 40\ 980,80$ рублей.

Получаем, что за первые четыре год денежный поток составляет: 139 628,22 рублей. То есть, проект не окупается за тот срок, который мы получили при «простом» подходе. Необходимо исследовать возможность окупаемости проекта в следующем временном периоде.

Часть 2 ROI (Return on Investments) и TCO — Total Cost of Ownership

ROI (Return on Investments) и TCO — Total Cost of Ownership и традиционные финансовые инструменты, такие, как ROI, следует использовать вместе, чтобы правдиво и реалистично показать стоимость и преимущества инвестирования в ИС.

ROI (Return on Investments) определяется следующим образом:

$$ROI = \frac{Profit}{Costs}$$
.

Пример 1.

Два проекта по внедрению сетевого оборудования и программного обеспечения. Финансовые данные представлены в таблице:

	Проект 1	Проект 2 Б
Активы (Assets), тыс. долл.	60000	60000
Прибыль, тыс. долл.	12000	15000
Новые инвестиции, тыс. долл.	6000	6000
Новые активы, тыс. долл.	66000	66000
Добавленная прибыль, тыс. долл.	1220	1220
Новая прибыль, тыс. долл.	13320	16320

До инвестиций:

ROI (проект 1) =
$$\frac{12000}{60000}$$
 = 0.20;

$$ROI$$
 (проект 2) = $\frac{15000}{60000}$ = 0.25.

После инвестирования:

ROI (проект 1) =
$$\frac{13320}{66000}$$
 = 0.2018;

$$ROI$$
 (проект 2) = $\frac{16320}{66000}$ = 0.2472.

Оценка TCO — Total Cost of Ownership

TCO (Total cost of ownership), или совокупная стоимость владения — общие расходы, которые возникают у компании из-за владения каким-либо активом, например IT-инфраструктурой.

При расчете TCO главное — правильный анализ и учет всех затрат. Особенно важно это при выборе корпоративных IT-систем, которые становятся все сложнее и включают в себя множество компонентов.

Стандартно принято делить затраты на две категории: первоначальные и эксплуатационные. Посмотрим, что относится к каждому виду, когда речь идет об IT-инфраструктуре:

- Первоначальные затраты расходы на закупку, установку и настройку аппаратного и программного обеспечения, ІТ-систем.
- Эксплуатационные затраты все последующие расходы. Среди них продление лицензий на ПО, зарплаты обслуживающего персонала, затраты, связанные с обслуживанием оборудования.

TCO = Первоначальные затраты - Эксплуатационные затраты.

По методике расчета TCO Microsoft и Interpose все расходы подразделяют на два вида: прямые и косвенные.

Прямые затраты — расходы, которые обычно учитывают, планируя бюджет компании:

- закупка или аренда, внедрение, настройка и обновление ПО;
- проектирование и администрирование систем и сетей;
- содержание штата техподдержки, подготовка сотрудников, оплата техподдержки на аутсорсинге;
- разработка и тестирование приложений, подготовка технической документации;

• создание и поддержание каналов связи.

К косвенным затратам относится более 50% расходов компаний на IT (исследования Interpose):

- неформальное обучение пользователей;
- персональная поддержка для ключевых клиентов компании (все расходы, которые возникают во время взаимодействия с пользователями);
 - затраты, которые возникают из-за временных перебоев в работе и т.д.