

POTATO CASE STUDY

PREDICTION OF SOLID USING MULTIPLE REGRESSION ANALAYSIS

TAIWO FAMUYIWA | MATH 7353-990-ONLINE | T00589052

TABLE OF CONTENTS

- INTRODUCTION
- DISCRIPTIVE STATISTICS
- STATISTICAL ANALYSIS
- SUMMARY REPORT

INTRODUCTION

The project is base on the prediction of SOLID(response variable) using the predictor variables (LOWER, UPPER, THICK, VARIDRIV, AND DRUMSPD) after applying all necessary procedures for analysis.

DISCRIPTIVE STATISTICS

SCATTER PLOT

In order to explain the relationship between Solid(response variable) and predictors variables (PH, Lower, Upper, Thick, Varidriv, and Drumspd), apply scatter plot to show this correlation. The following scatter plots show the relationship between response variable(Solid) and predictor variables.

A moderate positive correlation exist between between solid and PH

There is little or no correlation between the Sollid and Lower.

There is little or no relationship between solid or Upper.

 $There\ is\ little\ or\ no\ relationship\ between\ Solid\ and\ Thick.$

Their is little or no relationship between Solid and varidriv

The plot above shows a moderate negative correlation between Solid and Drumspd.

CORRELATION COEFIENT

To investigate this further, determine the correlation coefficient between Solid and predictive variables using pearson correlation of Proc Corr (SAS). There exist the following results

Pearson Correlation Coefficients Prob > r under H0: Rho=0 Number of Observations					
	solid				
ph	0.53970				
	<.0001				
	53				
lower	-0.30843				
	0.0246				
	53				
upper	-0.26689				
	0.0534				
	53				
thick	-0.26553				
	0.0546				
	53				
varidriv	0.29176				
	0.0340				
	53				
drumspd	-0.13078				
•	0.3506				
	53				

The correlation between solid and ph is moderate positive relationship with p-value less than 0.05. Which means the correlation is signfcant.

The correlation between solid and lower, upper, thick and drumspdare weak negative linear relationship. The correlation between Solid and lower is significant at $p-value\ of\ 0.0246$

The correlation between Solid and Varidriv is weak positive linear linear relationship but with a it is signifianct at 0.0340 < 0.05

STATISTICAL ANALYSIS

It is important to note that correlation does not mean causation. Thus, further regression analysis should be carried out.

Because there exist two or more predictor variables, multiple linear regression will be apply to fit this model.

The result when all predictor's variables are consider in fitting the model is as follows:

Parameter Estimates									
Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t				
Intercept	1	-10.94752	5.50590	-1.99	0.0527				
ph	1	2.36405	0.46082	5.13	<.0001				
lower	1	-0.24671	0.14753	-1.67	0.1013				
upper	1	0.06284	0.13939	0.45	0.6542				
thick 1		1.22375	0.97295	1.26	0.2148				
varidriv	1	1.63638	0.58707	2.79	0.0077				
drumspd	1	0.13433	0.04901	2.74	0.0087				

Solid = -10.948 + 2.3641ph - 0.2467lower + 0.0628upper + 1.2238thick + 1.6364varidriv + 0.1343drumspd where $\hat{\beta}_0 = -10.948$, $\hat{\beta}_1 = 2.3641$, $\hat{\beta}_2 = -0.2467$, $\hat{\beta}_3 = 0.0628$, $\hat{\beta}_4 = 1.2238$, $\hat{\beta}_5 = 1.6364$, $\hat{\beta}_6 = 0.1343$ are least square estimates. or coefficient

<u>Interpretation of the least square estimates</u>

Holding all other regressors constant, if lower increases, solid will reduce by 0.2467. For $\hat{\beta}_3 = 0.0628$ means that, holding all other regressors constant, as upper increases so will solid increase in value by 0.0628. for $\hat{\beta}_1 = 2.3641$, holding all other regressor fixed, an increase in ph will lead to an increase in solid by 2.3641.

Statistical Inferences on β' s

In order to determine which predictor varibles have statistically significant effects on the response variable, hypothesis testing is carried out.

i.e
$$H_0$$
: $\hat{\beta}_1 = \hat{\beta}_2 = \hat{\beta}_3 = \hat{\beta}_4 = \hat{\beta}_5 = \hat{\beta}_6 = 0$ Vs H_1 : At least one $\beta_i \neq 0$ reject H_0 if $p-value < \alpha$

Analysis of Variance								
Source	DF	Sum of Squares		F Value	Pr > F			
Model	6	29.6585 2	4.9430 9	9.29	<.0001			
Error	46	24.4803 5	0.5321 8					
Corrected Total	52	54.1388 7						

Thus, from the table, the $p-value=0.0001<\alpha=0.05$, reject H_0 . It means there is at least one β_i that is significant. To test the hypothesis H_0 : $\hat{\beta}_1=0$, p-value $\hat{\beta}_1=0.0001<\alpha=0.05$. Reject H_0 , therefore, Ph may remain in the model.

Also for H_0 : $\hat{\beta}_1 = 0$, the p-value = 0.1013 > 0.05, fail to reject H_0 . Lower may not be in the model. Do this for other $\hat{\beta}_{i,}$ it is obvious that x_1 is the only regressor that seems to have a greater likelihood of remaining in the model. This shows that further analysis can still be done.

Root MSE	0.72951	R-Square	0.5478
Dependent Mean	10.96604	Adj R-Sq	0.4888
Coeff Var	6.65243		

Also, the coefficient of determination is $R^2 = 0.5478$. Which means the overall fit of the model is not too good. About 54.78% of the total variation is explained by multiple regression model. To investigate this difficulty, a model checking procedure must be applied.

MODEL CHECKING (DIAGNOSTIC TESTING)

The following test will be carried out:

- Linearity
- Constant variance for the errors
- Normally distributed error
- Test for outliers and influential observation.

Linearity

The main idea of linearity is to check if the regression of solid on EACH regressor is linear. From the graph above, the residual plot against ph and drumspd fairly exhibit random scatter around zero. All other plot show systematic pattern that indicates a corresponding deviation form linearity. To deduce from this, the regression of y on ph and drumspd may be fairly linear.

CHECKING FOR CONSTANT VARIANCE

Using proc reg of SAS can be used to determine the constant variance. From above diagram, it can be seen that the residuals (error term) take on negative values with small fitted values than the positive value. It can be seen that the residual is fairly scatter around zero. Less of constant variance was esterblish.

CHECKING FOR NORMALITY

Another test that should be carried out is checking for normality of the residual.

This plot seems to be close to normality because it is nearly normal.

This suggests that the error distribution is normal or agreement with normality.

EFFECT OF INDIVIDUAL CASES

Most times, outliers might affect the outcome of a model. If discovered, it can be removed and the model can be re-fitted. To get the best model to predict Solid, the next aspect is to check for outliers.

CHECKING FOR OUTLIERS AND INFLUENTIAL

The dot plot of the studentized residuals below shows that the studendized value for observation 28 and 29 is high i.e 4.136 > 2.5 and 3.711 > 2.5.

CHECING FOR INFLUENTIAL

The Cook's distance measures the influence of each individual case has on a given statistical procedure if the conclusion of the analysis are significantly altered when the case is omitted from the analysis. Taking a look at the observation below, the following observations have a high Cook's distance; observation 25 (cook's distance = 0.179), observation 28 (Cook's distance = 1.246), observation 29 (Cook's distance = 0.190) and observation 34 (Cook's distance = 0.190).

The next thing to do is to remove observation 25, 28, 29 and 34 and refit the model to show if there will be a significant difference from the first model.

After the refit of the model, the new regression equation is y=-0.866+1.6466ph-0.0336lower-0.0905upper-0.5577thick+0.8589varidriv+0.0652drumpspd

Their seems to be a significant different between the first model and the second model. All except the coefficient of ph is positive for the first model. But for the second model, most of the coefficient of each regressor is negative. For example, an increase in upper leads to an reduce in solid. Thus, the removal of the outliers and influencial have significant difference on the new model.

The residual plot shown above shows a little difference from original. Observation 26 with $d_i=4.256$ will not make musch different.

MODEL SELECTION

Having talked about descriptive statistic, diagnostic testing, the next point of call is model selection. Under model selection, we want to know which of the models is best predictors of solid.

To do this, apply cp critirion. The main goal is to identify the subset of X for which Cp value is small, Cp value is near p.

Number in			
Model	C(p)	R-Square	Variables in Model
4	4.9036	0.5291	ph lower varidriv drumspd
5	5.2032	0.5458	ph lower thick varidriv drumspd
5	6.5820	0.5323	ph lower upper varidriv drumspd
4	6.8581	0.5099	ph upper varidriv drumspd
6	7.0000	0.5478	ph lower upper thick varidriv drumspd
5	7.7964	0.5203	ph upper thick varidriv drumspd
3	8.9425	0.4697	ph lower thick
2	9.1183	0.4484	ph lower
3	9.4205	0.4650	ph varidriv drumspd
4	10.531	0.4738	ph lower thick varidriv
3	10.695 4	0.4525	ph lower varidriv
4	10.840	0.4707	ph lower thick drumspd
4	10.896	0.4702	ph lower upper thick
3	11.002	0.4495	ph lower drumspd
3	11.005 5	0.4495	ph lower upper
4	11.392	0.4653	ph thick varidriv drumspd
2	12.081 4	0.4192	ph upper

Number in			
Model	C(p)	R-Square	Variables in Model
5	12.513	0.4740	ph lower upper thick varidriv
	7		
4	12.629	0.4532	ph lower upper varidriv
	9		
3	12.669	0.4331	ph upper thick
	7		
5	12.769	0.4715	ph lower upper thick drumspd
	4		
4	12.847	0.4510	ph lower upper drumspd
	2		
3	13.259	0.4273	ph upper varidriv
	1		
4	13.783	0.4418	ph upper thick varidriv
	7		
3	14.064	0.4194	ph upper drumspd
	1		
4	14.664	0.4332	ph upper thick drumspd
	3		
1	23.098	0.2913	ph
	7		
2	23.503	0.3070	ph varidriv
	7		
2	24.408	0.2981	ph thick
	4		
3	24.960	0.3123	ph thick varidriv
	1		
2	25.011	0.2921	ph drumspd
	3		
3	26.311	0.2990	ph thick drumspd
	6		
3	28.627	0.2762	thick varidriv drumspd
	8		
3	29.084	0.2718	lower varidriv drumspd
	0		

Number in			
Model	C(p)	R-Square	Variables in Model
2	29.265 9	0.2503	varidriv drumspd
4	29.816 0	0.2842	lower thick varidriv drumspd
3	29.979 7	0.2630	upper varidriv drumspd
4	30.345 4	0.2790	upper thick varidriv drumspd
4	30.702	0.2755	lower upper varidriv drumspd
5	31.317	0.2891	lower upper thick varidriv drumspd
2	37.993 2		lower varidriv
3	38.805 7	0.1762	lower thick varidriv
2	39.465	0.1501	upper varidriv
3	39.930 0	0.1651	lower upper varidriv
3	39.969 1	0.1648	upper thick varidriv
4	40.694	0.1773	lower upper thick varidriv
2	41.290 9	0.1321	thick varidriv
2	42.847 6	0.1168	lower thick
2	43.013 5	0.1152	lower drumspd
1	43.052	0.0951	lower
3	43.357 5	0.1315	lower thick drumspd

Number in			
Model	C(p)	R-Square	Variables in Model
Model			
1	44.070	0.0851	varidriv
	3		
3	44.380	0.1214	lower upper thick
	7		
2	44.567	0.0999	upper thick
_	0		PF or marrie
2	44.687	0.0987	lower upper
2	6	0.0707	lower upper
	44.070	0.1166	1 1
3	44.870	0.1166	lower upper drumspd
	/		
3	44.900	0.1163	upper thick drumspd
	2		
2	45.025	0.0954	upper drumspd
	8		
4	45.126	0.1337	lower upper thick drumspd
	3		
1	45.483	0.0712	upper
	7	0.0712	opp of
1	45.557	0.0705	thick
1	3	0.0703	unex
		0.0005	
2	46.543	0.0805	thick drumspd
	4		
1	50.990	0.0171	drumspd
	2		

It is important to search for c_p which is very small and which is close to 6+1=7. From the diagram above, the model whose c_p is close to 7 is ph, upper, varidiv and drumpsd.

AUTOMATIC METHODS

It is important to investigate the model selected with c_p procedure, apply Stepwise selection procedure.

	Summary of Forward Selection										
Step	Variable Entered	Number Vars In	Partial R-Square	Model R-Square		F Value	Pr > F				
1	ph	1	0.2913	0.2913	23.098 7	20.96	<.0001				
2	lower	2	0.1571	0.4484	9.1183	14.24	0.0004				
3	thick	3	0.0214	0.4697	8.9425	1.98	0.1661				

	Summary of Stepwise Selection									
Step	Variable Entered	Variable Removed	Number Vars In	Partial R-Square			F Value	Pr > F		
1	ph		1	0.2913	0.2913	23.098 7	20.96	<.0001		
2	lower		2	0.1571	0.4484	9.1183	14.24	0.0004		

From the diagram above, using forward selection, the model will contain ph, lower and thick. Also, using stepwise selection procedure, it can be said that ph and lower are the onle regressors left in the model.

SUMMARY REPORT

For testing the best model for Solid, the following points should be noted

- The variable ph has a strong correlation with solid
- Scatter plot of solid with most independent variables are not linear
- With stepwise selection, ph and lower are two variables that remain in the model. Also, with forward selection variable, ph, lower and thick are the only variables that remain in the model.

CONCLUSION

Using all possible procedure, ph is the best single predictor of Solid Using stepwise regression, the model will contain two variables: ph and lower with the following best of fit solid = 4.788 + 2.3078ph - 0.207lower