PLASS-NIA 인공지능학습데이터구축사업 (2021) C3D 모델

4팀(김도현, 전은성)

목차

- 1. 배경
- 1. 이상 탐지 AI 모델 : C3D
- 1. 환경설정
- 1. 테스트

1. 배경

- AI 영상감시 분야의 이상 탐지(anomaly detection) 연구 동향
 - CCTV, 카메라 사용이 증가함에 따라 머신러닝, 딥러닝을 활용한 HAR(Human Action Recognition) 기반의 이상 탐지 연구가 이슈
 - HAR 기반의 이상 탐지 연구는 영상 내에서 행동하는 사람을 분석

구분	이상 탐지 분석내용	예시		
제스청 (Gesture)	사람의 신체에서 손, 얼굴과 같은 부 분적인 움직임을 분석			
액션 (Action)	사람이 겉거나 뛰는 동작을 분석 (Space, Point, Skeleton etc.)			
상호작용 (Interaction)	두 사람 이상의 액션이나 <u>제스처른</u> 포함한 상호작용 분석			
그룹 활동 (Group activity)	제스처, 액션, 상호작용이 혼합된 분 석			

- 24시간 모니터링을 위한 CCTV 환경에서, AI를 활용하여 HAR기반 이상 탐지 연구는 몇 가지 문제점(사람 위치 파악, 배경-명암, 시점의 변화, 해상도-품질)이 존재

문제점들을 해결하고 실시간으로 변하는 영상을 잘 인식하기 위해 좋은 모델이 필요

2. 이상 탐지 AI 모델 : C3D

- 대량의 영상 데이터에 지도학습 방식으로 훈련한 모델
- 시공간적 성격(spatiotemporal feature)을 띄는 이상탐지, 행동인식에 적합
- 실시간으로 변하는 skeleton 정보를 모델링(temporal information modeling)가능

- 2D convolution은 여러 이미지에 적용되더라도 channel로 인식하기 때문에 하나의 이미지만을 생성.
- 3D convolution은 input signal의 temporal information을 보존하고 생성 결과물이 volume형태.

2. 이상 탐지 AI 모델: C3D

사진: 페이스북 C3D모델

2. 이상 탐지 AI 모델: C3D

• C3D모델 성능

Method	Accuracy (%)	
Imagenet + linear SVM	68.8	
iDT w/ BoW + linear SVM	76.2	
Deep networks [18]	65.4	
Spatial stream network [36]	72.6	
LRCN [6]	71.1	
LSTM composite model [39]	75.8	
C3D (1 net) + linear SVM	82.3	
C3D (3 nets) + linear SVM	85.2	
iDT w/ Fisher vector [31]	87.9	
Temporal stream network [36]	83.7	
Two-stream networks [36]	88.0	
LRCN [6]	82.9	
LSTM composite model [39]	84.3	
Conv. pooling on long clips [29]	88.2	
LSTM on long clips [29]	88.6	
Multi-skip feature stacking [25]	89.1	
C3D (3 nets) + iDT + linear SVM	90.4	

Dataset	[4]	[41]	[8]	[9]	Imagenet	C3D
Maryland	43.1	74.6	67.7	77.7	87.7	87.7
YUPENN	80.7	85.0	86.0	96.2	96.7	98.1

3D ConvNets을 이용하여 video로부터 spatiotemporal feature를 학습하는것이 가능하며, video 분석을 위한 여러 2D ConvNets에 비해 좋은 성능

3. 환경설정

4. 테스트

```
import numpy as np
    import matplotlib.pyplot as plt
    def main():
        model = create_model_functional()
        trv:
            model.load_weights('/content/gdrive/MyDrive/weight/C3D_Sport1M_weights_keras_2.2.4.h5')
        except OSError as err:
            print('Check path to the model weights\" file!\m\\", err)
        # 16 black frames with 3 channels
        dummy_input = np.zeros((1, 16, 112, 112, 3))
        prediction_softmax = model.predict(dummy_input)
        predicted_class = np.argmax(prediction_softmax)
        print('{}Success, predicted class index is: {}{}'.format('#033[92m',
                                                                 predicted_class,
                                                                 '#033[Om'))
        print('{}'.format(prediction_softmax))
    if __name__ == "__main__":
        main()
Success, predicted class index is: 184
    [[0.01001086 0.00026731 0.00073504 0.00106497 0.00208855 0.00092236
      0.00092741 0.00174843 0.00296563 0.00088088 0.00354544 0.00175207
      0.00349513 0.00080835 0.00097627 0.0028619 0.00231419 0.00114139
      0,00153565 0,00210065 0,0012336 0,00080623 0,00065166 0,00086575
```

참고: https://github.com/aslucki/C3D_Sport1M_keras

감사합니다