



4.4

## SEMICONDUCTOR LIGHT-EMITTING DEVICE

Patent Number:

JP11340517

Publication date:

1999-12-10

Inventor(s):

HONDA SATOSHI

Applicant(s):

SANKEN ELECTRIC CO LTD

Requested Patent:

JP11340517

Application Number: JP19980141526 19980522

Priority Number(s):

IPC Classification:

H01L33/00; H01L23/29; H01L23/31; H01L25/04; H01L25/18

EC Classification:

Equivalents:

#### **Abstract**

PROBLEM TO BE SOLVED: To project the light emitted from the semiconductor light-emitting element of a semiconductor light-emitting device from a resin-encapsulated body with high luminance. SOLUTION: In a semiconductor light-emitting device, a reflector 11 having an inclined surface which surrounds a semiconductor light-emitting element 4 and reflects the light projected upon the inclined surface from the element 4 to a resin-encapsulated body 6 side is fixed to one main surface 1a of a substrate 1 and is embedded in the resin-encapsulated body 6. Since the light rays projected in the lateral direction from the element 4 are reflected upwards by the inclined surface of the reflector 11, the element 4 can emit light with high luminance by increasing the quantity of the light emitted upwards from the resin-encapsulated body 6, as compared with the conventional example.

Data supplied from the esp@cenet database - I2

1/1

## (19)日本国特許庁(JP)

# (12) 公開特許公報(A)

(11)特許出願公開番号

## 特開平11-340517

(43)公開日 平成11年(1999)12月10日

|                           |       |                                         | · <del>-</del> |                                                                    |            |               |
|---------------------------|-------|-----------------------------------------|----------------|--------------------------------------------------------------------|------------|---------------|
| (51) Int.Cl. <sup>6</sup> |       | 識別記号                                    | FΙ             |                                                                    |            |               |
| H01L 3                    | 33/00 |                                         | H01L 3         | 3/00                                                               | 1          | Ŋ             |
|                           | 23/29 |                                         | 2              | 3/30                                                               | •          | F             |
|                           | 23/31 |                                         |                | 5/04                                                               |            | Z             |
|                           | 25/04 |                                         |                | ,0, <del>0                                 </del>                  | <i>D</i>   |               |
|                           |       |                                         |                |                                                                    |            |               |
| 4                         | 25/18 |                                         | charles at the | _L. a.e. D.                                                        | nd Dom - M | 0 - (A 10 FF) |
|                           |       |                                         | <b>番金</b> 醇 不  | 未請求                                                                | 耐水坝の数15    | OL (全 10 頁)   |
| (21)出顧番号                  |       | 特顏平10-141526                            | (71)出顧人        | 000106276                                                          |            |               |
|                           |       |                                         |                | サンケン電気株式会社                                                         |            |               |
| (22)出顧日                   |       | 平成10年(1998) 5月22日                       |                | 埼玉県新座市北野3丁目6番3号<br>(72)発明者 本多 聡<br>埼玉県新座市北野3丁目6番3号 サンケ<br>ン電気株式会社内 |            |               |
| ~= <i>/</i>               |       | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | (72) 拳明者       |                                                                    |            |               |
|                           |       |                                         | (10) ) [ 9]    |                                                                    |            |               |
|                           |       |                                         |                |                                                                    |            |               |
|                           |       |                                         | (7.4) (D.DH I  |                                                                    |            | (H 1 & )      |
|                           |       |                                         | (伊代理人          | 开理工                                                                | 清水 敬一      | の行名)          |
|                           |       |                                         |                |                                                                    |            |               |
|                           |       |                                         |                |                                                                    |            |               |
|                           |       |                                         |                |                                                                    |            |               |
|                           |       |                                         |                |                                                                    |            |               |
|                           |       |                                         |                |                                                                    |            |               |
|                           |       |                                         |                |                                                                    |            |               |
|                           |       |                                         |                |                                                                    |            |               |
|                           |       |                                         |                |                                                                    |            |               |

## (54) [発明の名称] 半導体発光装置

## (57)【要約】

【課題】 半導体発光装置の半導体発光素子から照射された光を樹脂封止体から高輝度に発光させる。

【解決手段】 本発明による半導体発光装置では、半導体発光素子(4)を包囲し且つ半導体発光素子(4)から照射された光を樹脂封止体(6)側に反射する傾斜面(11c)を有するリフレクタ(11)を基板(1)の一方の主面(1a)に固着し、リフレクタ(11)を樹脂封止体(6)内に埋設する。半導体発光素子(4)から側方に照射される光をリフレクタ(11)の傾斜面(11c)によって上方に反射するので、樹脂封止体(6)の上方向かう光量を従来に比べて増加して高輝度に光を取り出すことができる。



#### 【特許請求の範囲】

【請求項1】 一方の主面(1 a) にアイランド配線導体(2) とターミナル配線導体(3) とを個別に形成した絶縁性の基板(1)と、前記アイランド配線導体

(2)上に固着された半導体発光素子(4)と、該半導体発光素子(4)に形成された電極と前記ターミナル配線導体(3)とを接続するリード細線(5)と、前記基板(1)の一方の主面(1a)のアイランド配線導体

(2)及びターミナル配線導体(3)の一部、半導体発光素子(4)及びリード細線(5)を被覆する光透過性又は透明の樹脂封止体(6)とを有する半導体発光装置において、前記半導体発光素子(4)を包囲し且つ前記半導体発光素子(4)から照射された光を前記樹脂封止体(6)側に反射する傾斜面(11c)を有するリフレクタ(11)を前記基板(1)の一方の主面(1a)に固着し、前記リフレクタ(11)を前記樹脂封止体

(6) 内に埋設したことを特徴とする半導体発光装置。 【請求項2】 前記リフレクタ (11) はリング部 (11a) と、該リング部 (11a) の外周面の両端に設けられたフランジ部 (11b) とを有する請求項1に記載の半導体発光装置。

【請求項3】 前記リフレクタ(11)のフランジ部(11b)は前記リング部(11a)の両端から前記基板(1)の側面(1e)(1f)まで前記基板(1)の幅方向に延伸する請求項1に記載の半導体発光装置。

【請求項4】 前記リング部(11a)の高さは、前記 半導体発光素子(4)の高さよりも大きい請求項2に記 載の半導体発光装置。

【請求項5】 前記リフレクタ (11) は白色粉末を配合した熱可遡性樹脂又は熱硬化性樹脂から成る請求項1に記載の半導体発光装置。

【請求項6】 前記傾斜面(11c)は、前記樹脂封止体(6)に向かって拡径する円錐面、球面、放物面若しくはこれらの近似面又はこれらの組合せ面に形成され、前記傾斜面(11c)の内側に配置された前記半導体発光素子(4)は前記傾斜面(11c)によって包囲される請求項1に記載の半導体発光装置。

【請求項7】 前記アイランド配線導体(2)は、前記基板(1)の一方の主面(1a)に形成されたアイランド(2a)と、前記基板(1)の一方の主面(1a)の一端から一方の側面(1c)を通って前記基板(1)の他方の主面(1b)の一端まで形成されたアイランド電極部(2b)と、前記基板(1)の一方の主面(1a)に形成され且つアイランド(2a)とアイランド電極部(2b)とを接続する幅狭のアイランド配線部(2c)とから構成される請求項1に記載の半導体発光装置、

【請求項8】 前記ターミナル配線導体(3)は、前記基板(1)の一方の主面(1a)に形成されたターミナル(3a)と、前記基板(1)の一方の主面(1a)の他端から他方の側面(1c)を通って前記基板(1)の

他方の主面(1b)の他端まで形成されたターミナル電極部(3c)と、前記基板(1)の一方の主面(1a)に形成され且つ前記ターミナル(3a)とターミナル電極部(3c)とを接続するターミナル配線部(3b)とから構成される請求項1に記載の半導体発光装置。

【請求項9】 前記傾斜面(11c)の下縁部は、前記 アイランド配線導体(2)のアイランド(2a)の内側 に配置される請求項7に記載の半導体発光装置。

【請求項10】 前記リフレクタ(11)はリング部(11a)と、該リング部(11a)の外周面の両端に設けられたフランジ部(11b)とを有し、前記リング部(11a)は、前記アイランド配線導体(2)のアイランド(2a)の外周側とアイランド配線部(2c)及びターミナル(3a)の一部に重なる直径を有する請求項7に記載の半導体発光装置。

【請求項11】 前記アイランド電極部 (2b) は、前記基板 (1) の一方の主面 (1a) に形成された表面電極部 (2d) と、前記基板 (1) の他方の主面 (1b) に形成された裏面電極部 (2e) とを備えた請求項7に記載の半導体発光装置。

【請求項12】 前記ターミナル電極部(3c)は、前記基板(1)の一方の主面(1a)に形成された表面電極部(3d)と、前記基板(1)の他方の主面(1b)に形成された裏面電極部(3e)とを備えた請求項8に記載の半導体発光装置。

【請求項13】 前記半導体発光素子(4)は、前記基板(1)の略中央に配置された前記アイランド配線導体(2)のアイランド(2a)に固着され、前記アイランド(2a)は、平面的にみて前記半導体発光素子(4)より大きい面積を有する請求項5に記載の半導体発光装置。

【請求項14】 前記ターミナル (3 a) は前記アイランド配線導体 (2) のアイランド (2 a) の側方から前記基板 (1) の幅方向の中心軸 (8) に対してずれて配置される請求項6に記載の半導体発光装置。

【請求項15】 前記リード細線(5)は、平面的に見て前記アイランド(2a)の中心線(8)に対し傾斜し且つ前記リフレクタ(11)を跨越して前記半導体発光素子(4)と前記ターミナル(3a)との間に接続される請求項5に記載の半導体発光装置。

#### 【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、樹脂封止体から高輝度に発光する半導体発光装置に関連する。

[0002]

【従来の技術】図18及び図19に示すように、従来の表面実装形の発光ダイオード装置は、一方の主面(1a)にアイランド配線導体(ダイパッド)(2)とターミナル配線導体(ボンディングパッド)(3)とを個別に形成した絶縁性の基板(1)と、アイランド配線導体

される。

(2)上に固着された半導体発光素子(発光ダイオードチップ)(4)と、半導体発光素子(4)の上面に形成された電極とターミナル配線導体(3)とを接続するリード細線(5)と、基板(1)の一方の主面(1a)のアイランド配線導体(2)及びターミナル配線導体

- (3) の一部、半導体発光素子(4) 及びリード細線
- (5)を被覆する光透過性の樹脂封止体(6)とから構成される。

【0003】基板(1)の一方の主面(1a)に形成されたアイランド配線導体(2)及びターミナル配線導体(3)は、基板(1)の端面(1c)(1d)に沿って下方に延び、アイランド配線導体(2)及びターミナル配線導体(3)の先端側は、基板(1)の他方の主面(1b)まで延伸して接続用電極を構成する。半導体発

(6) を通じて外部に放出される。図18及び図19の 発光ダイオード装置は、基板(1)の底面を回路基板等 の上に表面実装することができる。

【発明が解決しようとする課題】図18及び図19の発

光素子(4)の上面から放出された光は樹脂封止体

#### [0004]

光ダイオード装置では、半導体発光素子(4)の側面から光が照射され、側面からの光の多くは樹脂封止体(6)の側方から外部に放出されるため、半導体発光素子(4)から樹脂封止体(6)の上面を通り樹脂封止体(6)の外部に放出される光量が相対的に少なく、樹脂封止体(6)の上方に高輝度に光を取り出すことができなかった。そこで、本発明は、樹脂封止体から高輝度に発光する半導体発光装置を提供することを目的とする。また、本発明は、樹脂封止体から高輝度に発光し且つ半導体発光装置を低コストでかつ生産性よく製造できる半導体発光装置を提供することを目的とする。

### [0005]

【課題を解決するための手段】本発明による半導体発光装置(10)は、一方の主面(1a)にアイランド配線導体(2)とターミナル配線導体(3)とを個別に形成した絶縁性の基板(1)と、アイランド配線導体(2)上に固着された半導体発光素子(4)と、半導体発光素子(4)に形成された電極とターミナル配線導体(3)とを接続するリード細線(5)と、基板(1)の一方の主面(1a)のアイランド配線導体(2)及びターミナル配線導体(3)の一部、半導体発光素子(4)及びリード細線(5)を被覆する光透過性又は透明の樹脂封止体(6)とを有する。半導体発光素子(4)を包囲し且つ半導体発光素子(4)を包囲し且つ半導体発光素子(4)を包囲し且の半導体発光素子(4)を包囲し且の半導体発光素子(4)を包囲し且し、リフレクタ(11)を樹脂封止体(6)側に反射する傾斜面(11c)を有するリフレクタ(11)を基板(1)の一方の主面(1a)に固着し、リフレクタ(11)を樹脂封止体(6)内に埋設する

【0006】半導体発光素子(4)から側方に照射される光をリフレクタ(11)の傾斜面(11c)によって

上方に反射するので、従来の半導体発光装置に比べて樹脂封止体(6)の上方向かう光量を増加して高輝度に光を取り出すことができる。また、基板(1)に対して密着する樹脂封止体(6)によってリフレクタ(11)を基板(1)に強固に密着し、ダブルシール構造により樹脂封止体(6)と基板(1)及びリフレクタ(11)と基板(1)との両界面を通る水分等の異物の半導体発光素子(4)への侵入を防止することができる。

【0007】本発明の実施の形態では、リフレクタ(11)はリング部(11a)と、リング部(11a)の外周面の両端に設けられたフランジ部(11b)とを有する。リング部(11a)の高さは、半導体発光素子(4)の高さよりも大きく、リフレクタ(11)のフランジ部(11b)はリング部(11a)の両端から基板(1)の側面(1e)(1f)まで基板(1)の幅方向に延伸する。リフレクタ(11)は白色粉末を配合した熱可遡性樹脂又は熱硬化性樹脂から成る。傾斜面(11c)は、樹脂封止体(6)に向かって拡径する円錐面、球面、放物面若しくはこれらの近似面又はこれらの組合せ面に形成され、傾斜面(11c)の内側に配置された半導体発光素子(4)は傾斜面(11c)によって包囲

【0008】アイランド配線導体(2)は、基板(1) の一方の主面(1a)に形成されたアイランド(2a) と、基板(1)の一方の主面(1a)の一端から一方の 側面(1c)を通って基板(1)の他方の主面(1b) の一端まで形成されたアイランド電極部 (2b) と、基 板(1)の一方の主面(1 a)に形成され且つアイラン ド(2a)とアイランド電極部(2b)とを接続する幅 狭のアイランド配線部 (2 c) とから構成される。ター ミナル配線導体(3)は、基板(1)の一方の主面(1 a) に形成されたターミナル (3 a) と、基板 (1) の 一方の主面(1a)の他端から他方の側面(1c)を通 って基板(1)の他方の主面(1b)の他端まで形成さ れたターミナル電極部(3 c)と、基板(1)の一方の 主面(1a)に形成され且つターミナル(3a)とター ミナル電極部 (3 c) とを接続するターミナル配線部 (3b)とから構成される。傾斜面(11c)の下縁部 は、アイランド配線導体(2)のアイランド(2a)の 内側に配置される。

【0009】リング部(11a)は、アイランド配線導体(2)のアイランド(2a)の外周側とアイランド配線部(2c)及びターミナル(3a)の一部に重なる直径を有する。アイランド電極部(2b)は、基板(1)の一方の主面(1a)に形成された表面電極部(2d)と、基板(1)の他方の主面(!b)に形成された裏面電極部(2e)とを備えている。ターミナル電極部(3c)は、基板(1)の一方の主面(1a)に形成された表面電極部(3d)と、基板(1)の他方の主面(1

b) に形成された裏面電極部 (3 e) とを備えている。 半導体発光素子 (4) は、基板 (1) のほぼ中央に配置 されたアイランド配線導体 (2) のアイランド (2 a) に固着され、アイランド (2 a) は、平面的にみて半導 体発光素子 (4) より大きな面積を有する。ターミナル (3 a) はアイランド配線導体 (2) のアイランド (2 a) の側方から基板 (1) の幅方向の中心軸 (8) に対 してずれて配置され且つリング部 (1 1 a) が環状に形 成されるため、基板 (1) の長さを比較的小さくして、 半導体発光装置 (10) を小型化に製造することができ る。リード細線 (5) は、平面的に見てアイランド (2 a) の中心線 (8) に対して傾斜し且つ前記リフレクタ (11) を跨越して半導体発光素子 (4) とターミナル (3 a) との間に接続される。

#### [0010]

【発明の実施の形態】次に、表面実装形の発光ダイオード装置に適用した本発明による半導体発光装置の実施の形態を図1~図17について説明する。図1~図17では図18及び図19に示す箇所と同一の部分には同一の符号を付し、説明を省略する。

【0011】図1~図5に示すように、本実施の形態による発光ダイオード装置(10)は、半導体発光素子(発光ダイオード装置(10)は、半導体発光素子(発光ダイオードチップ)4を包囲するリフレクタ(11)を絶縁性の基板(1)の一方の主面(1a)に形成した点で図18及び図19に示す発光ダイオード装置と相違する。長方形の平面形状を有する基板(1)は、樹脂をガラス布に含浸させて成り、両主面が平坦な板材である。アイランド配線導体(2)及びターミナル配線導体(3)は、印刷技術によって母材の銅にニッケルと金を順次メッキして形成される。アイランド配線導体

(2) は、基板(1)の一方の主面(上面)(1a)に 形成されたアイランド(2a)と、基板(1)の一方の 主面(1a)の一端から一方の側面(1c)を通って基 板(1)の他方の主面(下面)(1b)の一端まで形成 されたアイランド電極部(2b)と、基板(1)の一方 の主面(1a)に形成され且つアイランド(2a)とア イランド電極部(2b)とを接続する幅狭のアイランド 配線部(2c)とから構成される。

【0012】ターミナル配線導体(3)は、基板(1)・の一方の主面(1a)に形成されたターミナル(3a)と、基板(1)の一方の主面(1a)の他端から他方の側面(1d)を通って基板(1)の他方の主面(下面)(1b)の他端まで形成されたターミナル電極部(3c)と、基板(1)の一方の主面(1a)に形成され且つターミナル(3a)とターミナル電極部(3c)とを接続するターミナル配線部(3b)とから構成される。アイランド電極部(2b)とターミナル電極部(3c)は、それぞれ基板(1)の一方の主面(1a)に形成された表面電極部(2d)(3d)と、基板(1)の他方の主面(1b)に形成された裏面電極部(2e)(3

e) とを備えている。基板 (1) の一方の主面 (1 a) の全幅にわたって形成される表面電極部 (2 d) (3 d) の内端部 (1 3) (1 4) は、基板 (1) の全幅より若干短かく、基板 (1) の一対の側面 (1 e) (1 f) まで達しない。同様に、図5に示すように、基板 (1) の他方の主面 (1 b) に形成された裏面電極部 (2 e) (3 e) の内端部 (2 f) (3 f) は、基板 (1) の全幅より若干短かく、基板 (1) の一対の側面 (1 e) (1 f) まで達しない。

【0013】図1に示すように、基板(1)の略中央に配置されたアイランド(2a)は、平面的にみて半導体発光素子(4)より大きな面積を有し、ターミナル(3a)はアイランド(2a)の側方から基板(1)の幅方向の中心軸(8)からずれて配置される。このため、リード細線(5)は、中心線(8)に対して傾斜して半導体発光素子(4)とターミナル(3a)との間に接続される。本実施の形態では、ターミナル(3a)が中心軸(8)からずれて配置され且つリング部(11a)が環状に形成されるため、基板(1)の長手方向の長さを比較的小さくして、発光ダイオード装置(10)を小型に製造することができる。

【0014】半導体発光素子(4)はガリウム砒素(GaAs)、ガリウム燐(GaP)、ガリウムアルミニウム砒素(GaAlAs)等のガリウム系化合物半導体素子である。半導体発光素子(4)の底面に形成された図示しない底部電極は、導電性接着剤によってアイランド(2a)のほぼ中央に固着される。また、半導体発光素子(4)の上面に形成された図示しない上部電極は、ワイヤボンディング方法によって形成されたリード細線(5)によってターミナル(3a)に接続される。リード細線(5)は、リフレクタ(11)の上方を跨って形成される。

【0015】リフレクタ(11)は、図6に示すよう に、リング部 (11a) と、リング部 (11a) の外周 面の両端に設けられたフランジ部(11b)とを有し、 白色粉末を配合した液晶ポリマーやABS樹脂等により 構成される。リング部(11a)の内周面に設けられた 上方に向かって拡径する円錐面、球面、放物面若しくは これらに近似する面又はこれらの組合せから成る面の傾 斜面(11c)の下縁部は、図1に示すように、アイラ ンド(2a)の内側に配置される。傾斜面(11c)の 内側に配置された半導体発光素子 (4) はリング部 (1 1a)によって包囲される。リング部(11a)の高さ は、半導体発光素子(4)の高さよりも大きい。また、 図3に示すように、リング部 (11a) はアイランド (2a) の外周側とアイランド配線部 (2c) 及びター ミナル (3 a) の一部に重なる直径を有する。 リフレク タ (11) のフランジ部 (11b) はリング部 (11 a) の両端から側面(1e) (1f) まで基板(1) の 短手方向に延伸する。後述のように、リフレクタ (1

1)は、リフレクタ(11)の形状に対して相補的形状を有する成形金型の成形空所(キャビティ)内に溶融した熱可塑性の液状樹脂を流し込みこれを冷却するインサート成形法によって形成するため、リフレクタ(11)を構成する樹脂が冷却するときに、接着剤等を使用せずに基板(1)の一方の主面(1a)に良好に固着することができる。

【0016】樹脂封止体(6)は、基板(1)の一対の 側面(1 c) (1 d) に対して一定角度傾斜し且つ電極 部(2d)(3d)より内側に配置された一対の傾斜面 (6a) (6b) と、基板(1)の一対の側面(1e) (1 f) と略同一平面を形成する一対の直立面 (6 c) (6d) と、一対の直立面(6c)(6d)の間で直立 面(6c)(6d)に対して略直角な平面に形成された 上面(6e)とを有する。図1に示すように、樹脂封止 体(6)は、アイランド(2a)、ターミナル(3 a)、アイランド配線部 (2 c) とターミナル配線部 (3b) の内側部分、リフレクタ(11)、半導体発光 素子(4)及びリード細線(5)を被覆するが、一対の 電極部(2d)(3d)及び配線導体(2c)とターミ ナル配線部 (3 b) の外側部分は樹脂封止体 (6) から 露出する。リフレクタ(11)の一対のフランジ部(1 1 b) の外端面(11d)は、基板(1)の一対の側面 (1e) (1f) の延長線上にある樹脂封止体 (6) の 直立面(6c)(6d)から露出する。

【0017】本発明による発光ダイオード装置(10)

を製造する際に、まず図7に示す基板組立体(12)を 用意する。図7及び図8に示すように、基板組立体(1 2) は、互いに並行に複数の細長い貫通孔(16)が形 成された例えば樹脂をガラス布に含浸させて成る板状の 絶縁性の基板材料(13)と、各貫通孔(16)の一方 の側に隣接する基板材料 (13) 上に形成されたアイラ ンド導体列(14)と、各貫通孔(16)の他方の側に 隣接する基板材料 (13) 上に形成されたターミナル導 体列(15)とから構成される。本実施例では1枚の基 板材料(13)から約500個の発光ダイオード装置 (10) を得ることができる。貫通孔 (16) は、基板 材料 (13) の一方の主面 (13a) から他方の主面 (13b)に向かって貫通し、基板材料(13)の第3 の側面(13d)及び第4の側面(図示せず)に平行 に、基板材料(13)の第1の側面(13c)から第1 の側面(13c)に平行な第2の側面(図示せず)に向 かって延伸する。図7に示すように、基板材料(13) の一方の主面(13a)の隣合う貫通孔(16)の間に アイランド導体列(14)とターミナル導体列(15) とが対向して形成される。尚、本実施の形態では貫通孔 (16) を細長い長穴形状としたが、複数の円形状の貫 通孔 (スルーホール) によって構成してもよい。 【0018】アイランド導体列(14)は、基板材料

(13) の一方の主面(13a)上に形成され相対的に

幅広に形成され且つ略四角形の平面形状を有するアイランド(14a)と、基板材料(13)の一方の主面(13a)から貫通孔(16)の側面を通って基板材料(13)の他方の主面(13b)まで形成されたアイランド電極部(14b)と、基板材料(13)の一方の主面(13a)に形成され且つアイランド(14a)とアイランド電極部(14b)とを接続する相対的に幅狭のアイランド配線部(14c)とから構成される。アイランドで14a)、アイランド配線部(14c)及びアイランド電極部(14b)は、完成した図1及び図3に示す発光ダイオード装置(10)のアイランドで12a)、アイランド配線部(2c)及びアイランド電極部(2b)となる。

【0019】ターミナル導体列(15)は、基板材料(13)の一方の主面(13a)上に形成され且つ相対的に幅広で略四角形の平面形状を有するターミナル(15a)と、基板材料(13)の一方の主面(13a)から貫通孔(16)の側面を通って基板材料(13)の他方の主面(13b)まで形成されたターミナル電極部(15b)と、基板材料(13)の一方の主面(13a)に形成され且つターミナル(15a)とターミナル電極部(15b)とを接続する相対的に幅狭のターミナル配線部(15c)とから構成される。ターミナル(15a)、ターミナル配線部(15c)とから構成される。ターミナル電極部(15b)は、完成した図1及び図3に示す発光ダイオード装置(10)のターミナル(3a)、ターミナル配線部(3b)及びターミナル電極部(3c)となる

【0020】アイランド(14a)は隣り合う一対の貫通孔(16)の略中間で基板材料(13)上に形成され、ターミナル(15a)は、アイランド(14a)及びアイランド配線部(14c)の中心線の片側にずれて形成される。アイランド電極部(14b)とターミナル電極部(15b)は、基板材料(13)の一方の主面から貫通孔(16)の側壁を通って基板材料(13)の他方の主面まで延伸し、貫通孔(16)の側壁ではアイランド電極部(14b)とターミナル電極部(15b)は連続し、アイランド導体列(14)とターミナル導体列(15)とは一体となる。

【0021】次に、図9に示すインサート成形に使用する成型用金型(17)に基板組立体(12)を装着する。成型用金型(17)は、凹部(18a)が形成された上型(18)と下型(19)とから構成され、上型(18)と下型(19)の一方は可動型となり、他方は固定型となる。上型(18)と下型(19)とを閉じると、成型用金型(17)内には凹部(18a)によって基板材料(13)のアイランド(14a)と同数のキャビティ(成形空所)(20)が形成される。各キャビティ(20)は、リフレクタ(11)と相補的形状を有する複数のリフレクタ形成部(20a)と、隣合うリフレ

クタ形成部 (20a) を繋ぐ複数の連繋部 (20b) とを有し、キャビティ (20) の上面に連絡する各1個のゲート(樹脂注入口) (21) が上型 (18) に形成される。

【0022】基板材料(13)にリフレクタ(11)をインサート形成するとき、図9に示すように成型用金型(17)の上型(18)と下型(19)との間に基板材料(13)を挟持して成型用金型(17)内に配置する。このとき、基板材料(13)の一方の主面(13a)と上型(18)の凹部(18a)との間にキャビティ(20)が形成され、基板材料(13)の一方の主面(13a)に設けられたアイランド(14a)は上型(18)に形成された円錐状の突起(18b)の底面に当接する。しかしながら、ゲート(21)に対向するアイランド(14a)の上部には、キャビティ(20)内に樹脂を円滑に注入できるように円錐状の突起(18b)を設けることができないため、リフレクタ(11)は形成されず、アイランド(14a)は樹脂によって完全に被覆される。

【0023】次に、ゲート(21)を通じてキャビティ (20) 内に流動性の樹脂を注入する。キャビティ(2 0)内に注入された流動性の樹脂は、成型用金型(1 7) 内で所定温度以上に加熱された後に冷却されて硬化 し、基板材料(13)の一方の主面(13a)に密着す る。これによって、図10及び図11に示すように、キ ャビティ(20)内の樹脂が硬化して基板材料(13) の一方の主面(13a)上で隣接するアイランド(14 a) に沿ってアイランド配線部(14c)及びターミナ ル配線部 (15c) に対して略直角に多数のリフレクタ アレイ(22)を同時に形成することができる。 基板材 料(13)の各アイランド(14a)に対応してリフレ クタ (11) が形成され、貫通孔 (16) の長さ方向に 隣接するリフレクタ(11)が連結部(23)によって 互いに連結されてリフレクタアレイ (22) が形成され るが、連結部(23)の幅は、リフレクタ(11)の径

【0024】図10に示すように、リフレクタ(11)は傾斜面(11c)が形成された内壁を有する円環状の平面形状を有する。リフレクタアレイ(22)は、アイランド(14a)の外周側とターミナル(15a)の先端部を被覆するが、アイランド(14a)の中央部とターミナル配線部(15c)の大部分はリフレクタアレイ(22)によって被覆されず露出する。尚、本実施の形態では熱可遡性樹脂を使用したインサート成形によってリフレクタアレイ(22)を形成したが、エポチシ系樹脂等の熱硬化性樹脂を使用したインサート成形(トランスファモールド成形)によって形成してもよい。

【0025】続いて、図11及び図12に示すように、 リフレクタ(11)内に露出するアイランド(14a) に半導体発光素子(4)を周知のダイボンディング方法 により固着し、ワイヤボンディング方法を使用して半導体発光素子(4)の上面に形成された電極(図示せず)とターミナル(15a)との間にリード細線(5)を接続するため、リード細線(5)はリフレクタ(11)の上方を通って半導体発光素子(4)の上面の電極とターミナル(15a)との間を電気的に接続する。本実施の形態では、リフレクタ(11)の高さを半導体発光素子(4)の高さより大きくしたが、両高さをほぼ同等又はリフレクタアレイ(22)の高さを半導体発光素子(4)より若干低くしてもよい。

【0026】その後、図13に示すように、上型(2 4) と下型(25) から構成されるトランスファモール ド用の成形金型 (26) を用意して、上型 (24) と下 型(25)との間にリフレクタアレイ(22)を形成し た基板材料(13)を挟持する。上型(24)と下型 (25) とを閉じると、上型(24)の凹部(24a) と基板材料(13)の一方の主面(13a)との間に樹 脂封止アレイ (30) と相補的形状を有するキャビティ (28) が成形金型 (26) 内に設けられ、凹部 (24 a) の端部にはゲート (29) に連絡するランナ (2 7) が形成される。周知のトランスファモールド方法に よってランナ(27)及び複数のゲート(29)を通じ てキャビティ (28) 内に流動化した樹脂を押圧注入す ると、キャビティ (28) 内に注入された樹脂は、所定 温度以上に加熱されて硬化し、図14~図16に示す光 透過性の複数の樹脂封止アレイ (30) が基板材料 (1 3) の一方の主面 (13a) に形成される。

【0027】図14に示すように、樹脂封止アレイ(30)は基板材料(13)のアイランド(14a)に対応してうね状に形成され、各樹脂封止アレイ(30)はリフレクタアレイ(22)を被覆する。最後に、図14に示すように、基板材料(13)と樹脂封止アレイ(30)と連結部(23)とを平面的に見て線( $L_1$ )に直交する線( $L_2$ )に沿って隣合うリフレクタ(11)の間の位置で切断する。これによって、図1~図5に示す個別化した発光ダイオード装置(10)が得られる。

【0028】本実施例の発光ダイオード装置(10)では下記の効果が得られる。

- ① 半導体発光素子(4)から側方に照射される光をリフレクタ(11)の傾斜面(11c)によって上方に反射するので、樹脂封止体(6)の上方向かう光量を従来例に比べて増加して高輝度に光を取り出すことができる。
- ② 基板 (1) の長さを減少して、発光装置の小型化を図ることができる。
- ③ 基板(1)に対して良好に密着する樹脂封止体 (6)によってリフレクタ(11)を基板(1)に押圧 するので、リフレクタ(11)が基板(1)に良好に密 着し、両界面を通る水分等の異物の侵入を防止すること ができる。

④ リフレクタ (11) を備えた複数素子をインサート 成形によって同時に形成できるので、高輝度の半導体発 光素子を生産性良く得ることができる。

#### [0029]

【発明の効果】前記のように、本発明では、絶縁性基板の上面にリフレクタを配置して樹脂封止体の上面から高輝度に発光する半導体発光装置が得られ、半導体発光装置を低コストでかつ生産性よく製造できる。

#### 【図面の簡単な説明】

【図1】 発光ダイオード装置に適用した本発明による 半導体発光装置の斜視図

【図2】 本発明による半導体発光装置の断面図

【図3】 本発明による半導体発光装置の平面図

【図4】 本発明による半導体発光装置の側面図

【図5】 本発明による半導体発光装置の底面図

【図6】 リフレクタの斜視図

【図7】 本発明による半導体発光装置の製造に使用する基板材料の平面図

【図8】 図7のVII-VII線に沿う断面図

【図9】 基板材料を成型用金型に装着した状態を示す 断面図

【図10】 複数のリフレクタアレイを形成した基板材 料の断面図

【図11】 ダイボンディング及びワイヤボンディング を施した基板材料の平面図

【図12】 図11のXI-XI線に沿う断面図

【図13】 基板材料を更に成形金型に装着した状態を 示す断面図

【図14】 封止樹脂アレイを形成した基板材料の断面図

【図15】 図14のXIV-XIV線に沿う断面図

【図16】 図14の側面図

【図17】 本発明による半導体発光装置の他の実施の 形態を示す斜視図 【図18】 従来の半導体発光装置の斜視図 【図19】 従来の半導体発光装置の側面図 【符号の説明】

(1)・・基板、 (1 a)・・一方の主面、 (1

b)・・他方の主面、(1 c)・・側面、 (1 e)

(1 f)・・側面、 (2)・・アイランド配線導体、

(2a)・・アイランド、 (2b)・・アイランド電極部、 (2c)・・アイランド配線部、 (2d)

・・表面電極部、 (2 e)・・裏面電極部、 (3)

・・ターミナル配線導体、 (3 a) ・・ターミナル、

(3b)・・ターミナル配線部、 (3c)・・ターミナル電極部、 (3d)・・表面電極部、 (3e)・・裏面電極部、 (4)・・半導体発光素子、

(5)・・リード細線、 (6)・・樹脂封止体、

(8)・・中心軸、 (10)・・発光ダイオード装置(半導体発光装置)、 (11)・・リフレクタ、

(1 1 a) ・・リング部、 (1 1 b) ・・フランジ 駅、 (1 1 c) ・・傾斜面、 (1 2) ・・基板組立

体、 (13) ・・基板材料、 (13a) ・・一方の

主面、 (13b)・・他方の主面、 (13c)・・ 第1の側面、 (13d)・・第3の側面、 (14)

・・アイランド導体列、 (14a)・・アイランド、

(14b)・・アイランド電極部、 (14c)・・

アイランド配線部、(15)・・ターミナル導体列、(15a)・・ターミナル、(15b)・・ターミナ

ル電極部、 (15c)・・ターミナル配線部、 (

6)・・貫通孔、 (17)・・成型用金型、 (1

8)・・上型、 (18a)・・凹部、 (18b)・

・突起、 (19)・・下型、 (20)・・キャビテ

ィ、(20a)・・リフレクタ形成部、 (20b)・

・連繋部、 (21)・・ゲート、 (22)・・リフ

レクタアレイ、 (23)・・連結部、 (26)・・

成形金型、 (28) ・・キャビティ、 (30) ・・ 樹脂封止アレイ、 (L<sub>1</sub>) (L<sub>2</sub>) ・・線、







