

Eletrotécnica I

Aula – 02

Padrões Elétricos e Convenções

Eleilson Santos Silva

UNIDADES

Tabela 2-1 Unidades Fundamentais do Sistema Métrico Internacional

Grandeza	Unidade fundamental	Símbolo
Comprimento	metro Masseuliu ani	SODIALEN SO
Massa	quilograma	kg
Tempo	segundo	12 10 CHUUS
Corrente elétrica	ampère	Marilla (ATO)
Temperatura termodinâmica	kelvin	K
Intensidade luminosa	candela	cd
Quantidade de matéria	mole	mol

Tabela 2-3 Unidades Derivadas do SI

Grandeza	Unidade	Símbolo
Energia	joule	JAQ
Força	newton	N
(Potência)	anotoum watt ournent amenals of sale	w w
Carga elétrica	coulomb	2 C
Potencial elétrico	common volt ole 12 oh angelo et.	v.
Resistência elétrica	ca, intensidade incrimendo quantida	Ω
Condutância elétrica	siemens 200 200 200 200 200 200 200 200 200 20	S
Capacitância elétrica	farad o symmetry 2 -	F
Indutância elétrica	henry de la	onelo oli Hill
Freqüência	hertz	Hz
Fluxo magnético	weber	Wb
Densidade de	3.000000 N	
fluxo magnético	Length 2 tesla troms land Leslach of Line	clude T

Prefixos métricos

 Algumas unidades são pequenas demais e outras grandes demais, portanto precisamos usar prefixos métricos para reduzir sua escrita

 \circ 1000 g = 1 kg

 \circ 2000 m = 2 km

 \circ 0,005 L = 5 mL

 \circ 0, 000 007 A = 7 μ A

Prefixo Métricos

n	μ	m	Un ida de	k	M	${f G}$
nano	micro	mili		kilo	mega	giga
0,000 000 001	0,000 001	0,001	1	1 000	1 000 000	1 000 000 000

• Exemplo 1: Um resistor tem um valor de 10 MΩ estampado em seu invólucro. Quantos ohms de resistência tem esse resistor?

• Exemplo 2: Uma estação geradora de energia elétrica tem a capacidade de fornecer 500.000 watts (W). Qual sua capacidade em quilowatts (kW)

- o Potências de 10
- Regra 1: Para se escrever números maiores do que 1 na forma de um número pequeno vezes uma potência de 10, desloca-se a casa decimal para a esquerda tantos algarismo quantos os desejados. A seguir multiplica-se o número obtido por 10 elevado a uma potência igual ao número de casas deslocadas.

• Exemplos:

• Passar Exercícios

• Regra 2: Para se escrever números menores do que 1 como um número inteiro vezes uma potência de 10, desloca-se a casa decimal para a direita tantos algarismos quantos forem necessário. A seguir, multiplica-se o número obtido por 10 elevado a uma potência negativa igual ao número de casas decimais deslocadas

• Exemplos:

$$0,006 = 0_{\odot}006_{\downarrow}$$
 (A vírgula é deslocada três casas para a direita)
 $= 6 \times 10^{-3}$ (Portanto, a potência ou o expoente é -3)
 $0,435 = 0_{\odot}4_{\downarrow}35$ (A vírgula é deslocada uma casa para a direita)
 $= 4,35 \times 10^{-1}$ (Portanto, o expoente é -1)
 $0,000 92 = 0_{\odot}000 92_{\downarrow}$ (A vírgula é deslocada cinco casas para a direita)
 $= 92 \times 10^{-5}$ (Isto é, o expoente é -5)
 $0,578 = 0_{\odot}57_{\downarrow}8$ (A vírgula é deslocada duas casas para a direita)
 $= 57,8 \times 10^{-2}$ (Portanto, o expoente é -2)

o Passar Exercícios

Prefixo Métricos em potência de 10

n	μ	m	Uni dad e	k	M	G
nano	micro	mili		kilo	mega	giga
0,000 000 001	0,000 001	0	1	1 000	1 000 000	1 000 000 000
10^{-9}	10^{-6}	10^{-3}	10^0	10^3	10^{6}	10^{9}

O mesmo número poder ser escrito de diversas forma em potência de 10 sem alterar seu valor

$$\vdots$$

$$0,000 \ 045 = 0,45 \times 10^{-4}$$

$$0,000 \ 045 = 4,5 \times 10^{-5}$$

$$0,000 \ 045 = 45 \times 10^{-6}$$

$$0,000 \ 045 = 450 \times 10^{-7}$$

$$0,000 \ 045 = 4500 \times 10^{-8}$$

Os números serão escritos na forma:

a x 10^b

- a: entre 0,1 e 999
- b: múltiplo inteiro de 3 (3*n)

O objetivo é converter numa potência de 10 e que se possa usar a tabela anterior.

<Passar exercícios>

• Regra 3: Para converter um número expresso como uma potência positiva de 10 num número decimal, desloca-se a casa decimal para a *direita* tantas casas ou posições quanto o valor do expoente.

• Exemplos:

$$0,615 \times 10^3 = 0_{\phi}615$$
 (O expoente é 3. Portanto, desloca-se a vírgula três casas = 615

 $0,615 \times 10^6 = 0_{\phi}615\,000$ (Desloca-se a vírgula seis casas para a direita) = 615 000

 $0,0049 \times 10^3 = 0_{\phi}004$ (Desloca-se a vírgula tres casas para a direita) = 4,9

 $84 \times 10^2 = 84_{\phi}00$ (Desloca-se a vírgula duas casas para a direita) = 8400

Passar Exercícios

• Regra 4: Para converter um número expresso como uma potência negativa de 10 num número decimal, desloca-se a vírgula para a *esquerda* tantas casas quanto o valor do expoente.

• Exemplos:

Passar Exercícios

• Regra 5: Para se multiplicar dois ou mais números expressos como potências de 10, multiplica-se os coeficientes para se obter o novo coeficiente e soma-se os expoentes para se obter o novo expoente de 10.

• Exemplos:

$$10^{2} \times 10^{4} = 10^{2+4} = 10^{6} \qquad Resp.$$

$$10^{-1} \times 10^{4} = 10^{-1+4} = 10^{3} \qquad Resp.$$

$$(40 \times 10^{3})(25 \times 10^{2}) = 40 \times 25 \times 10^{3} \times 10^{2} \qquad (40 \times 25 = 1.000 \text{ e } 3 + 2 = 5)$$

$$\log 0, \text{ temos:} = 1000 \times 10^{5} \qquad (\text{mas } 1.000 = 10^{3})$$

$$= 10^{3} \times 10^{5}$$

$$= 10^{8} \qquad Resp.$$

$$(2 \times 10^{-2})(50 \times 10^{2}) = 2 \times 50 \times 10^{-2} \times 10^{2}$$

$$= 100 \times 10^{0} \qquad (\text{mas } 100 = 10^{2})$$

$$= 10^{2} \times 1 \qquad (10^{0} = 1)$$

$$= 10^{2} \qquad Resp.$$

$$(3 \times 10^{-4})(6 \times 10^{6}) = 3 \times 6 \times 10^{-4} \times 10^{6}$$

$$= 18 \times 10^{2} \qquad Resp.$$

• Passar Exercícios

• **Regra 6:** Para se dividir por potência de 10, utiliza-se a fórmula

$$\frac{1}{10^n} = 1 \times 10^{-n}$$

• Podemos assim mover qualquer potência de 10 do numerador par ao denominador simplesmente mudando-se o sinal do expoente.

• Exemplos:

$$\frac{15}{10^{-1}} = 15 \times 10^{1} = 150$$

$$\frac{15}{10^{-3}} = 15 \times 10^{3} = 15.000$$

$$\frac{1500}{10^{4}} = 1500 \times 10^{-4} = 0.15$$

$$\frac{0.25 \times 4}{10^{-2}} = 1.0 \times 10^{2} = 100$$

o Passar Exercícios

ARREDONDAMENTO DOS NÚMEROS

- o Usaremos sempre duas casas após a vírgula
- Se o(s) algarismo(s) a ser(em) suprimido(s) for menor que 5, deixamos o seu vizinho da esquerda como está.
- Se o(s) algarismo(s) a ser(em) suprimido(s) for maior ou igual a 5, incrementamos seu vizinho da esquerda em uma unidade.
- o Passar exercícios.

NOT (a) 0,000 53 A para miliampères (mA)

$$0,000 53 A = 5,3 \times 10^{-4} A$$

= $0,53 \times 10^{-3} A$
= $0,53 \text{ mA}$

(b) 2.500 V para quilovolts (kV)

$$2500 \text{ V} = 2.5 \times 10^3 \text{ V}$$

(c) 0,000 000 1 F para microfarads (μF)

$$0,000\,000\,1\,F = 1 \times 10^{-7}\,F$$

$$= 0.1 \times 10^{-6}\,F$$

$$= 0.1\,\mu F$$

• Exemplos de cálculos que envolvam produtos e divisão no mesmo problema usando potência de 10:

 Notação científica na calculadora:

SÍMBOLOS GRÁFICOS E DIAGRAMAS

Amperimetro	-(A)-	Gerador (cc)	Chave
Antena	Ψ	Massa ± ou →	Diodo semicondutor +
Aparelho	Nome	Fones de ouvido	Transformador (geral) } {
Lâmpada de arco	\times	Indutor (núcleo de ar)	Transformador (núcleo de ferro)
Célula de bateria	- +	Indutor (núcleo de ferro)	Transistor (NPN)
Bateria	-	Indutor (com terminais)	Transitor (PNP)

Componente	Letra	Exemplo
Resistor	R	R ₃ , 120 kΩ
Capacitor	C	C ₅ , 20 pF
Indutor	L	L ₁ , 25 mH
Retificador ou diodo	D	D ₂
Transformador	T	T ₂
Transistor	Q	Q ₅ , 2N482 (detetor)
Válvula	v	V ₃ , 6AU6 1 ^a ampl. FI
Tomada	J	J_1

o Diagrama esquemático

o Diagrama de blocos

Fig. 2-5 Diagrama de blocos de um circuito típico de um rádio-receptor transistorizado

o Diagrama Unifilar

o Diagrama Multifilar

o Diagrama de fiação do painel de um carro

o Diagrama Unifilar de uma Residência

• Material Retirado de:

Gussow, Milton

Eletricidade básica / Milton Gussow

Tradução: Aracy Mendes da Costa

São Paulo: Pearson Makron Books, 1997.