

Analysis of UAV dual camera system for 3D mapping and building modeling

การวิเคราะห์ระบบกล้องคู่ของยูเอวี เพื่อใช้ทำแผนที่และแบบจำลองอาคาร

Presented by: Thirawat Bannakulpiphat 5930813021

Advisor: Assoc. Prof. Dr. Phisan Santitamnont Department of Survey Engineering, Chulalongkorn University

BACKGROUND & BENEFITS BASIC THEORY SCOPE OF THE RESEARCH METHOD & DATA **RESULT & CONCLUSION** SUGGESTION

BACKGROUND

BACKGROUND

Nadir image

BACKGROUND

UAV camera mapping

UAV dual camera mapping

BENEFITS

- ทราบถึงเทคนิคและวิธีการในการประมวลผลข้อมูลภาพถ่ายทางอากาศที่ได้จากระบบกล้องคู่ยูเอวีให้ตรงตาม ลักษณะทางกายภาพของตัวจับยึดกล้อง
- (ปั้นข้อมูลสำหรับนักวิชาการ นักวิจัย หรือผู้ที่ศึกษาทางด้านนี้ในการตัดสินใจและพิจารณาเลือกวิธีเก็บบันทึก ข้อมูลภาพถ่ายและวิธีในการประมวลผลที่เหมาะสม หรือนำความรู้ที่ได้ไปทำการวิจัยต่อยอด

BASIC THEORY

Exterior Orientation (EO)

ค่าพารามิเตอร์ของการจัดวางภายนอก ประกอบไปด้วยค่าตำแหน่งและค่าการ วางตัวของจุดเปิดถ่าย ได้แก่ ค่า X,Y,Z,ω, φ, κ

Camera Rig

โครงสร้างที่เป็นตัวจับยึดกล้องและสามารถประกอบไปด้วยกล้อง หลายตัว ซึ่งมีความสัมพันธ์กันผ่านเรขาคณิต โดยจะมีกล้องหนึ่งตัวถูก ใช้เป็นกล้องอ้างอิงตำแหน่งให้กับกล้องตัวที่เหลือ ซึ่งกล้องที่เหลือจะมี ค่าการเคลื่อนที่และการหมุนความสัมพัทธ์กับกล้องอ้างอิง

ใช้ประมาณค่าความถูกต้องเชิงตำแหน่ง ซึ่งมีค่าเท่ากับรากที่สองของค่าเฉลี่ยของ ผลรวมกำลังสองของค่าต่างค่าที่วัดได้กับ ค่าตรวจสอบที่มีความถูกต้องสูงกว่า

$$RMSE_H = \sqrt{(RMSE_X)^2 + (RMSE_Y)^2}$$

$$RMSE_Z = \sqrt{\frac{\sum (Z_{data} - Z_{check})^2}{n}}$$

ค่า Exterior Orientation (EO) $T = (T_x, T_y, T_z)$ $R = R_X(\omega)R_Y(\phi)R_Z(\kappa)$

 $T_m R_m$

กำหนดให้กล้องอ้างอิงมีตำแหน่ง T_m และมีการวางตัว R_m ในระบบพิกัดภายในตัวจับยึดกล้อง กล้องรองมีตำแหน่ง T_s และมีการวางตัว R_s ในระบบพิกัดภายในตัวจับยึดกล้อง

สำหรับกล้องรองนั้นจะมีตำแหน่งและการวางตัวที่มีความสัมพัทธ์กับกล้องอ้างอิง โดยค่าการเคลื่อนที่สัมพัทธ์ (Relative Translation) มีสัญลักษณ์คือ T_{rel} ค่าการหมุนสัมพัทธ์ (Relative Rotation) มีสัญลักษณ์คือ R_{rel}

 $R_s = R_m R_{rel}$ $T_s = T_m + R_m T_{rel}$

DATA

ภาพถ่ายของระบบกล้องคู่ยูเอวี

ครอบคลุมทั้งพื้นที่ที่ใช้ในการศึกษา บริเวณพื้นที่บางขุนเทียน จังหวัดกรุงเทพมหานคร

ข้อมูลค่าพิกัดของ จุดควบคุมภาคพื้นดินและจุดตรวจสอบ

ข้อมูลค่าพิกัดที่ได้จากการรังวัดด้วยวิธีการแบบ จลน์ในทันที (Real-Time Kinematic; RTK)

ข้อมูลค่าพิกัดที่ไปรังวัดภาคพื้นดิน เพื่อใช้ในการตรวจสอบ Accuracy เชิงตำแหน่ง

ค่าพิกัดทางราบและทางดิ่งได้จากการรังวัดด้วยวิธีการแบบจลน์ในทันที่ (Real-Time Kinematic; RTK)

• ความถูกต้องทางราบ 2 cm. ความถูกต้องทางดิ่ง 5 cm.

เปรียบเทียบการประมวลผลด้วย

แบบจำลองกล้องคู่ที่มีความสัมพันธ์ต่อกันกับแบบจำลองกล้องคู่ที่อิสระต่อกัน

แผนที่ภาพถ่ายทางอา	แบบจำลองอาคารสามมิติ	
กรณีศึกษาที่ 1 ความถูกต้องเชิงตำแหน่ง	กรณีศึกษาที่ 2 ความสามารถในการลอกลายบนแผนที่	กรณีศึกษาที่ 3 แบบจำลองอาคารบริเวณฟาซาด
 จุดควบคุมภาคพื้นดินและจุดตรวจสอบที่ ใช้ในการประมวลผล ค่าพิกัดที่ไปรังวัดภาคพื้นดินเทียบกับ ข้อมูลที่ประมวลผล จุดตรวจสอบที่คำนวณได้จากชุดคำสั่ง เสริมของโปรแกรมที่ใช้ในการคำนวณ 	 พิจารณาเส้น Roof line และ Footprint ผ่านการมองด้วยตา 	 พิจารณาแบบจำลองอาคารความ สมบูรณ์ของฟาซาดอาคาร ผ่านการมอง ด้วยตา

คำสั่ง rayCloud (Multiple View Geometry; MVG)

การลอกลายบนแผนที่ (Delineation)

ฟาซาด (Facade)

คือ คำสั่งในโปรแกรม Pix4Dmapper ที่ใช้ใน การรังวัดคำนวณค่าพิกัดตำแหน่งที่ผู้ใช้สนใจ โดยคำนวณผ่านภาพถ่ายหลายภาพที่บันทึกจุดที่ อยากทราบค่าพิกัด (จำนวน 10 ภาพขึ้นไป) การที่ผู้ใช้สามารถมองเห็นแผนที่ได้อย่างชัดเจน แล้วทำการขีดเส้นวัตถุต่าง ๆ บนแผนที่ได้ โดยใน การศึกษานี้พิจารณาเส้นขอบเขตของอาคาร (Footprint) และเส้นรอบรูปหลังคา (Roof line) ต้องเห็นเป็นเส้นเดียวกัน คือ องค์ประกอบด้านหน้าอาคาร โดยปกติมักจะ เรียกว่า เปลือกอาคารซึ่งแต่ละส่วนจะมี องค์ประกอบของงานทางสถาปัตยกรรมอยู่ด้วย เช่น ประตู หน้าต่าง ระเบียง ระแนง ชายคา เป็น ต้น

METHOD

01

ออกแบบแผนการบินและบินถ่ายภาพ

- ออกแบบแผนการบินด้วยโปรแกรม Ardupilot
- บินด้วยยูเอวี Foxtech Nimbus VTOL V2 ที่ติดตั้งตัวจับยึดกล้อง
- ความสูงของการบินที่ระดับความสูงเฉลี่ย 215 เมตร
- มี Overlap 80% และ Side lap 60% , GSD 4-5 cm/pixel
- ทำการบินถ่ายเมื่อวันที่ 17 มิถุนายน 2562
- ครอบคลุมพื้นที่ได้ถึง 1.4 ตารางกิโลเมตร

02

กำหนดตำแหน่งและทำการรังวัดจุดควบคุมภาคพื้นดินและจุดตรวจสอบ

- กำหนดตำแหน่งให้กระจายและครอบคลุมพื้นที่
- ลงพื้นที่เพื่อทำการรังวัดจุดควบคุมภาคพื้นดินและจุดตรวจสอบ
- ทำการรังวัดจุดมาทั้งหมด 11 จุด แต่เลือกใช้เพียง 9 จุด เลือกเฉพาะจุดที่เห็นได้ชัดบน ภาพและกระจายอยู่ในพื้นที่ที่ทำการศึกษา
- แบ่งเป็นจุดควบคุมภาคพื้นดิน (GCP) 5 จุดและจุดตรวจสอบความถูกต้อง (CHK) 4 จุด

METHOD

03

ประมวลผลภาพถ่ายทางอากาศ

- ทำการประมวลผลภาพถ่ายโดยใช้โปรแกรม Pix4Dmapper
- แบ่งการประมวลผลเป็น 2 แบบ ได้แก่ แบบจำลองกล้องคู่ที่มีความสัมพันธ์ต่อกัน
 และแบบจำลองกล้องคู่ที่อิสระต่อกัน
- การประมวลผลด้วยแบบจำลองกล้องคู่ที่มีความสัมพันธ์ต่อกันจะมีขั้นตอนในการตั้ง ค่าพารามิเตอร์แรกเริ่ม เพื่อทำการหาค่า Exterior Orientation (EO) ที่มีความ สัมพัทธ์กันระหว่างกล้องทั้งสองตัวที่ใช้ในการประมวลผล
- ใช้คำสั่ง rayCloud เพื่อหาค่าพิกัดจุดตรวจสอบ

04

วิเคราะห์ เปรียบเทียบผลลัพธ์ และทำการสรุปผล

• คำนวณตรวจสอบ Accuracy กับข้อมูลต่าง ๆ ที่ประมวลผลได้จาก แบบจำลองกล้องคู่ที่มีความสัมพันธ์ต่อกันและแบบจำลองกล้องคู่ที่อิสระต่อกัน

$$RMSE_{H} = \sqrt{(RMSE_{X})^{2} + (RMSE_{Y})^{2}}$$

$$RMSE_{Z} = \sqrt{\frac{\sum (Z_{data} - Z_{check})^{2}}{n}}$$

RESULT 1: การคำนวณความสัมพันธ์ของค่าพารามิเตอร์ของกล้องคู่บนยูเอวี

🕨 ค่าพารามิเตอร์ภายนอกที่สัมพัทธ์กันของกล้องคู่บนยูเอวี

Camera Rig				
Exterior orientation parameters		Camera Right	Camera Left	
Translation	Х	0.060		
(meter)	Υ	0.000		
	Z	0.000	Reference	
Rotation (degree)	ω	31.644	Camera	
	φ	31.866		
	К	-87.566		

RESULT 1: การคำนวณความสัมพันธ์ของค่าพารามิเตอร์ของกล้องคู่บนยูเอวี (ต่อ)

🕨 ความสัมพันธ์ของระยะห่างของภาพที่ถ่ายจากกล้องทั้งสองที่ติดตั้งอยู่บนยูเอวี

saluara cosals varionaro	ระยะห่างระหว่างกล้องทั้งสองตัว			
รูปแบบการประมวลผล	Min (m.)	Max (m.)	Mean (m.)	Standard Deviation (m.)
ประมวลผลด้วยแบบจำลองกล้องคู่ที่มีความสัมพันธ์ต่อกัน	0.060	0.060	0.060	0.000
ประมวลผลด้วยแบบจำลองกล้องคู่ที่อิสระต่อกัน	0.488	2.953	1.552	0.380

ประมวลผลด้วยแบบจำลองกล้องคู่ที่มีความสัมพันธ์ต่อกัน

RESULT 2: ความถูกต้องเชิงตำแหน่งของแผนที่มาตราส่วนใหญ่

🕨 ความถูกต้องเชิงตำแหน่งของจุดควบคุมภาคพื้นดินและจุดตรวจสอบที่ใช้ในการประมวลผล

	ประมวลผลด้วยแบบจำลองกล้องคู่ที่มีความสัมพันธ์ต่อกัน		ประมวลผลด้วยแบบจำลองกล้องคู่ที่อิสระต่อกัน	
ประเภทของจุด	RMSE XY (m.)	RMSE Z (m.)	RMSE XY (m.)	RMSE Z (m.)
จุดควบคุมภาคพื้นดิน (5 จุด)	0.006	0.001	0.005	0.003
จุดตรวจสอบ (4 จุด)	0.106	0.146	0.058	0.147

RESULT 2: ความถูกต้องเชิงตำแหน่งของแผนที่มาตราส่วนใหญ่ (ต่อ)

🗲 ความถูกต้องเชิงตำแหน่งของข้อมูลค่าพิกัดที่ไปรังวัดภาคพื้นดินเทียบกับข้อมูลที่ประมวลผลขึ้นได้

	ประมวลผลด้วยแบบจำลองกล้องคู่ที่มีความสัมพันธ์ต่อกัน		ประมวลผลด้วยแบบจำลองกล้องคู่ ที่อิสระต่อกัน	
ประเภทของจุด	RMSE XY (m.)	RMSE Z (m.)	RMSE XY (m.)	RMSE Z (m.)
จุดตรวจสอบจากข้อมูลที่ได้จาก การรังวัดภาคพื้นดิน (25 จุด)	0.075	0.380	0.078	0.166

RESULT 2: ความถูกต้องเชิงตำแหน่งของแผนที่มาตราส่วนใหญ่ (ต่อ)

🕨 ความถูกต้องเชิงตำแหน่งของจุดตรวจสอบที่คำนวณได้จากชุดคำสั่งของโปรแกรมที่ใช้ในการประมวลผล (ชุดคำสั่งที่ใช้คือคำสั่ง rayCloud)

	แผนที่ที่ผลิตมาจากการประมวลผลด้วยแบบจำลองกล้องคู่ที่อิสระต่อกันและแบบจำลองกล้องคู่ที่มีความสัมพันธ์ต่อกัน		
ประเภทของจุด	RMSE XY (m.)	RMSE Z (m.)	
จุดตรวจสอบ (10 จุด) ที่คำนวณ จากคำสั่ง rayCloud ในโปรแกรม	0.067	0.203	

RESULT 3: ความสามารถในการลอกลายแผนที่ (Delineation) บนแผนที่มาตราส่วนใหญ่

ประมวลผลด้วยแบบจำลองกล้องคู่ที่อิสระต่อกัน

ประมวลผลด้วยแบบจำลองกล้องคู่ที่มีความสัมพันธ์ต่อกัน

RESULT 3 : ความสามารถในการลอกลายแผนที่ (Delineation) บนแผนที่มาตราส่วนใหญ่ (ต่อ)

ประมวลผลด้วยแบบจำลองกล้องคู่ที่อิสระต่อกัน

ประมวลผลด้วยแบบจำลองกล้องคู่ที่มีความสัมพันธ์ต่อกัน

RESULT 4: แบบจำลองอาคารโดยพิจารณาบริเวณฟาซาดของอาคารสิ่งปลูกสร้าง

ประมวลผลด้วยแบบจำลองกล้องคู่ที่อิสระต่อกัน

RESULT 4: แบบจำลองอาคารโดยพิจารณาบริเวณฟาซาดของอาคารสิ่งปลูกสร้าง (ต่อ)

ประมวลผลด้วยแบบจำลองกล้องคู่ที่อิสระต่อกัน

ประมวลผลด้วยแบบจำลองกล้องคู่ที่มีความสัมพันธ์ต่อกัน

CONCLUSION

ความถูกต้องเชิงตำแหน่งของแผนที่มาตราส่วนใหญ่

- สามารถประมวลผลภาพถ่ายโดยให้โปรแกรมคำนึงถึงลักษะความเป็นจริงทางกายภาพของระบบกล้องคู่ได้
- แบบจำลองกล้องคู่ที่มีความสัมพันธ์ต่อกัน : ความถูกต้องทางราบ 18 cm, ความถูกต้องทางดิ่ง 29 cm แบบจำลองกล้องคู่ที่อิสระต่อกัน : ความถูกต้องทางราบ 10 cm, ความถูกต้องทางดิ่ง 29 cm (คิดค่าความถูกต้องที่ระดับความเชื่อมั่นที่ 95%)
- เมื่อพิจารณาค่าระยะห่างของคู่ภาพแต่ละคู่ พบว่าแบบจำลองกล้องคู่ที่มีความสัมพันธ์ต่อกันสามารถคงลักษณะความ
 เป็นจริงทางกายภาพได้ เพราะฉะนั้นควรเลือกใช้แผนที่ที่ประมวลผลด้วยแบบจำลองกล้องคู่ที่มีความสัมพันธ์ต่อกัน

ความสามารถในการลอกลายบนแผนที่มาตราส่วนใหญ่

• แผนที่ที่ประมวลผลทั้งสองแบบสามารถขีดเส้นรายละเอียดบนแผนที่ได้ แต่มีบางบริเวณบนแผนที่จะมีเส้น เหลี่ยมของวัตถุที่ไม่คมชัด แสดงให้เห็นว่าภาพถ่ายเฉียงที่ใช้ในการประมวลผลเพื่อผลิตแผนที่ยังต้องมีการ พัฒนาเพื่อเพิ่มประสิทธิภาพความคมชัดของวัตถุ

แบบจำลองอาคารโดยพิจารณาบริเวณฟาซาด

• แบบจำลองอาคารที่ประมวลผลทั้งสองแบบพบว่าไม่ได้มีความแตกต่างกัน รวมถึงแบบจำลองที่สร้างได้ (รูป ก.) มีประสิทธิภาพของฟาซาดที่ดีกว่าแบบจำลองอาคารที่ประมวลผลมาจากภาพถ่ายดิ่งที่ถ่ายจากยูเอวีทั่วไป (รูป ข.) แสดงให้เห็นว่าภาพถ่ายเฉียงและจำนวนภาพที่มากขึ้นช่วยเพิ่มประสิทธิภาพในการผลิตแบบจำลองอาคาร

SUGGESTION

- เพิ่มขนาดพื้นที่ที่ทำการศึกษา จำนวนจุดควบคุมภาคพื้นดิน และจำนวนจุดตรวจสอบที่ใช้ในประมวลผล
- พิ่มการบินถ่ายด้วยยูเอวีที่เป็นระบบกล้องเดี่ยวในพื้นที่ที่ทำการศึกษา จะได้สามารถนำมาศึกษาและเปรียบเทียบ ความแตกต่างกับระบบกล้องคู่ได้
- กรณีการศึกษาความสามารถในการลอกลายบนแผนที่อาจเพิ่มประสิทธิภาพความคมชัดของวัตถุบนแผนที่ให้ดียิ่งขึ้น โดยลองบินถ่ายภาพให้ค่าระยะส่วนซ้อนของภาพ (Overlap) และส่วนเกย (Side lap) มีค่าที่มากขึ้น
- กรณีการศึกษาประสิทธิภาพฟาซาดของอาคาร ควรเพิ่มภาพที่ใช้ในการประมวลผลหลายประเภท รวมถึงรูปแบบการ บินหลายรูปแบบ เช่น ภาพถ่ายดิ่งจริงบินแบบกริด, ภาพถ่ายเฉียงบินแบบกริด และภาพถ่ายเฉียงบินเป็นวงกลมรอบ อาคารสิ่งปลูกสร้าง เป็นต้น
- โพิ่มประสิทธิภาพระบบบันทึกการถ่ายภาพที่ทำการเชื่อมต่อรายละเอียดข้อมูลที่ถ่ายภาพจากระบบกล้องคู่ให้ผู้ใช้ สามารถติดตามผลได้

THANK YOU FOR YOUR ATTENTION

Q&A

