# **Project 2**

## **Predicting Players Rating**

The dataset comes in the form of an SQL database and contains statistics of about 25,000 football matches, from the top football league of 11 European Countries. It covers seasons from 2008 to 2016 and contains match statistics (i.e. scores, corners, fouls etc...) as well as the team formations, with player names and a pair of coordinates to indicate their position on the pitch.

In this project you are going to predict the overall rating of soccer player based on their attributes such as 'crossing', 'finishing etc.

```
In [1]: import numpy as np
    import pandas as pd
    import matplotlib.pyplot as plt
    %matplotlib inline
    import seaborn as sns
    import sqlite3
    from sklearn.linear_model import LinearRegression
    from sklearn.model_selection import train_test_split
    from sklearn import metrics
    from sklearn.metrics import r2_score
    from math import sqrt
    import statsmodels.formula.api as smf
```

```
In [2]: # Create the connection to the dB
# Read the Player Attributes table data into a dataframe

conn = sqlite3.connect('database.sqlite')
df = pd.read_sql_query("SELECT * FROM Player_Attributes", conn)
```

Out[3]:

| - |   | id | player_fifa_api_id | player_api_id | date                       | overall_rating | potential | preferred_foot | attacking_work_rate | defensive_work_rate | crossin |
|---|---|----|--------------------|---------------|----------------------------|----------------|-----------|----------------|---------------------|---------------------|---------|
| - | 0 | 1  | 218353             | 505942        | 2016-<br>02-18<br>00:00:00 | 67.0           | 71.0      | right          | medium              | medium              | 49      |
|   | 1 | 2  | 218353             | 505942        | 2015-<br>11-19<br>00:00:00 | 67.0           | 71.0      | right          | medium              | medium              | 49      |
|   | 2 | 3  | 218353             | 505942        | 2015-<br>09-21<br>00:00:00 | 62.0           | 66.0      | right          | medium              | medium              | 49      |
|   | 3 | 4  | 218353             | 505942        | 2015-<br>03-20<br>00:00:00 | 61.0           | 65.0      | right          | medium              | medium              | 48      |
|   | 4 | 5  | 218353             | 505942        | 2007-<br>02-22<br>00:00:00 | 61.0           | 65.0      | right          | medium              | medium              | 48      |

5 rows × 42 columns

In [4]: # The number of rows and columns in our original dataset

df.shape

Out[4]: (183978, 42)

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 183978 entries, 0 to 183977
Data columns (total 42 columns):
id
                       183978 non-null int64
                       183978 non-null int64
player fifa api id
player api id
                       183978 non-null int64
date
                       183978 non-null object
overall rating
                       183142 non-null float64
                       183142 non-null float64
potential
                       183142 non-null object
preferred foot
attacking work rate
                       180748 non-null object
defensive work rate
                       183142 non-null object
                       183142 non-null float64
crossing
finishing
                       183142 non-null float64
heading accuracy
                       183142 non-null float64
short passing
                       183142 non-null float64
                       181265 non-null float64
vollevs
                       183142 non-null float64
dribbling
                       181265 non-null float64
curve
                       183142 non-null float64
free kick accuracy
long passing
                       183142 non-null float64
                       183142 non-null float64
ball control
acceleration
                       183142 non-null float64
sprint speed
                       183142 non-null float64
                       181265 non-null float64
agility
reactions
                       183142 non-null float64
                       181265 non-null float64
balance
                       183142 non-null float64
shot power
                       181265 non-null float64
jumping
                       183142 non-null float64
stamina
strength
                       183142 non-null float64
long shots
                       183142 non-null float64
aggression
                       183142 non-null float64
                       183142 non-null float64
interceptions
                       183142 non-null float64
positioning
vision
                       181265 non-null float64
penalties
                       183142 non-null float64
                       183142 non-null float64
marking
standing tackle
                       183142 non-null float64
```

```
sliding_tackle 181265 non-null float64
gk_diving 183142 non-null float64
gk_handling 183142 non-null float64
gk_kicking 183142 non-null float64
gk_positioning 183142 non-null float64
gk_reflexes 183142 non-null float64
dtypes: float64(35), int64(3), object(4)
memory usage: 59.0+ MB
```

## **Exploratory Data Analysis**

## **Data Cleaning**

#### **Model Evaluation without Categorical Variables**

In [8]: df.head(10)

Out[8]:

|   | overall_rating | potential | crossing | finishing | heading_accuracy | short_passing | volleys | dribbling | curve | free_kick_accuracy | <br>vision |
|---|----------------|-----------|----------|-----------|------------------|---------------|---------|-----------|-------|--------------------|------------|
| 0 | 67.0           | 71.0      | 49.0     | 44.0      | 71.0             | 61.0          | 44.0    | 51.0      | 45.0  | 39.0               | <br>54.0   |
| 1 | 67.0           | 71.0      | 49.0     | 44.0      | 71.0             | 61.0          | 44.0    | 51.0      | 45.0  | 39.0               | <br>54.0   |
| 2 | 62.0           | 66.0      | 49.0     | 44.0      | 71.0             | 61.0          | 44.0    | 51.0      | 45.0  | 39.0               | <br>54.0   |
| 3 | 61.0           | 65.0      | 48.0     | 43.0      | 70.0             | 60.0          | 43.0    | 50.0      | 44.0  | 38.0               | <br>53.0   |
| 4 | 61.0           | 65.0      | 48.0     | 43.0      | 70.0             | 60.0          | 43.0    | 50.0      | 44.0  | 38.0               | <br>53.0   |
| 5 | 74.0           | 76.0      | 80.0     | 53.0      | 58.0             | 71.0          | 40.0    | 73.0      | 70.0  | 69.0               | <br>66.0   |
| 6 | 74.0           | 76.0      | 80.0     | 53.0      | 58.0             | 71.0          | 32.0    | 73.0      | 70.0  | 69.0               | <br>66.0   |
| 7 | 73.0           | 75.0      | 79.0     | 52.0      | 57.0             | 70.0          | 29.0    | 71.0      | 68.0  | 69.0               | <br>65.0   |
| 8 | 73.0           | 75.0      | 79.0     | 51.0      | 57.0             | 70.0          | 29.0    | 71.0      | 68.0  | 69.0               | <br>65.0   |
| 9 | 73.0           | 75.0      | 79.0     | 51.0      | 57.0             | 70.0          | 29.0    | 71.0      | 68.0  | 69.0               | <br>65.0   |

10 rows × 35 columns

| In [9]: | # Count the number of number of null values in the columns |
|---------|------------------------------------------------------------|
|         | <pre>df.isnull().sum(axis=0)</pre>                         |
|         |                                                            |

| Out[9]: | overall_rating                | 836  |
|---------|-------------------------------|------|
|         | potential                     | 836  |
|         | crossing                      | 836  |
|         | finishing                     | 836  |
|         | heading_accuracy              | 836  |
|         | short_passing                 | 836  |
|         | volleys                       | 2713 |
|         | dribbling                     | 836  |
|         | curve                         | 2713 |
|         | <pre>free_kick_accuracy</pre> | 836  |
|         | <pre>long_passing</pre>       | 836  |
|         | ball_control                  | 836  |
|         | acceleration                  | 836  |
|         | sprint_speed                  | 836  |
|         | agility                       | 2713 |
|         | reactions                     | 836  |
|         | balance                       | 2713 |
|         | shot_power                    | 836  |
|         | jumping                       | 2713 |
|         | stamina                       | 836  |
|         | strength                      | 836  |
|         | long_shots                    | 836  |
|         | aggression                    | 836  |
|         | interceptions                 | 836  |
|         | positioning                   | 836  |
|         | vision                        | 2713 |
|         | penalties                     | 836  |
|         | marking                       | 836  |
|         | standing_tackle               | 836  |
|         | sliding_tackle                | 2713 |
|         | gk_diving                     | 836  |
|         | gk_handling                   | 836  |
|         | gk_kicking                    | 836  |
|         | gk_positioning                | 836  |
|         | gk_reflexes                   | 836  |
|         | dtype: int64                  |      |
|         |                               |      |

```
In [11]: df.isnull().sum(axis=0)
Out[11]: overall rating
                                0
         potential
                                 0
         crossing
                                 0
         finishing
                                 0
         heading_accuracy
                                 0
         short_passing
                                 0
         volleys
                                 0
         dribbling
                                0
                                 0
          curve
         free kick accuracy
                                0
         long_passing
                                 0
         ball control
                                 0
         acceleration
                                 0
         sprint speed
                                 0
         agility
                                 0
          reactions
                                0
                                 0
          balance
                                 0
         shot_power
                                 0
          jumping
          stamina
                                 0
                                 0
          strength
         long_shots
                                 0
         aggression
                                 0
         interceptions
                                0
         positioning
                                 0
          vision
                                 0
                                 0
          penalties
         marking
                                 0
         standing tackle
                                 0
         sliding tackle
                                 0
         gk_diving
                                 0
         gk_handling
                                0
         gk kicking
                                0
         gk_positioning
                                 0
         gk reflexes
                                 0
          dtype: int64
```

Since there is close to 184 thousand rows of data take a randon sample to do some EDA to see if there is correlation between the features and the overall rating of the player

In [13]: df\_subset.shape

Out[13]: (1000, 35)

In [14]: df\_subset.describe()

Out[14]:

|       | overall_rating | potential   | crossing    | finishing   | heading_accuracy | short_passing | volleys     | dribbling   | curve       | fr |
|-------|----------------|-------------|-------------|-------------|------------------|---------------|-------------|-------------|-------------|----|
| count | 1000.000000    | 1000.000000 | 1000.000000 | 1000.000000 | 1000.000000      | 1000.000000   | 1000.000000 | 1000.000000 | 1000.000000 |    |
| mean  | 68.313600      | 73.272762   | 55.568521   | 49.630526   | 57.633596        | 62.934578     | 49.624153   | 59.326051   | 53.110622   |    |
| std   | 7.040126       | 6.555597    | 16.629112   | 18.481994   | 16.103922        | 13.443303     | 17.728343   | 16.899600   | 17.453120   |    |
| min   | 39.000000      | 51.000000   | 6.000000    | 7.000000    | 7.000000         | 12.000000     | 3.000000    | 6.000000    | 6.000000    |    |
| 25%   | 64.000000      | 69.000000   | 47.000000   | 35.000000   | 50.000000        | 58.000000     | 37.000000   | 53.000000   | 42.000000   |    |
| 50%   | 69.000000      | 74.000000   | 59.000000   | 51.000000   | 60.000000        | 65.000000     | 52.000000   | 63.000000   | 55.500000   |    |
| 75%   | 73.000000      | 78.000000   | 68.000000   | 64.000000   | 69.000000        | 72.000000     | 64.000000   | 71.000000   | 66.000000   |    |
| max   | 89.000000      | 92.000000   | 86.000000   | 95.000000   | 94.000000        | 93.000000     | 91.000000   | 92.000000   | 89.000000   |    |

8 rows × 35 columns

```
In [15]: # See the distribution of overall rating data.

plt.figure(figsize=(15,8))
    df_subset['overall_rating'].hist(bins=20, color='red', alpha=0.5)
    plt.show
```

Out[15]: <function matplotlib.pyplot.show(\*args, \*\*kw)>



```
In [16]: # See the distribution of agility data.

plt.figure(figsize=(15,8))
    df_subset['agility'].hist(bins=20, color='blue', alpha=0.5)
    plt.show
```

Out[16]: <function matplotlib.pyplot.show(\*args, \*\*kw)>



```
In [17]: # See if there is a relationship between agility and the overall rating of the player.

plt.figure(figsize=(15,8))
sns.set_style('whitegrid')
sns.scatterplot(x='agility', y='overall_rating', data=df_subset, hue='overall_rating', palette='Reds')
plt.show
```

Out[17]: <function matplotlib.pyplot.show(\*args, \*\*kw)>



```
In [18]: # See if there is a relationship between dribling and the overall rating of the player.

plt.figure(figsize=(15,8))
sns.set_style('whitegrid')
sns.scatterplot(x='dribbling', y='overall_rating', data=df_subset, hue='overall_rating', palette='rainbow')
plt.show
```

Out[18]: <function matplotlib.pyplot.show(\*args, \*\*kw)>



```
In [19]: # See if there is a relationship between free kick accuracy and the overall rating of the player.

plt.figure(figsize=(15,8))
    sns.set_style('whitegrid')
    sns.scatterplot(x='free_kick_accuracy', y='overall_rating', data=df_subset, hue='overall_rating', palette='Green plt.show
```

Out[19]: <function matplotlib.pyplot.show(\*args, \*\*kw)>



```
In [20]: # See if there is a relationship between a players vision and the overall rating.

plt.figure(figsize=(15,8))
sns.set_style('whitegrid')
sns.scatterplot(x='vision', y='overall_rating', data=df_subset, hue='overall_rating', palette='Blues')
plt.show
```

Out[20]: <function matplotlib.pyplot.show(\*args, \*\*kw)>



```
In [21]: # See if there is a relationship between a players marking ability and the overall rating.

plt.figure(figsize=(15,8))
    sns.set_style('whitegrid')
    sns.scatterplot(x='potential', y='overall_rating', data=df_subset, hue='overall_rating', palette='Oranges')
    plt.show
```

Out[21]: <function matplotlib.pyplot.show(\*args, \*\*kw)>



# **Building Linear Regression Model**

## Split the data in to Training and Test set

```
In [22]: X train, X test, y train, y test = train test split(df.drop('overall rating', axis=1), df['overall rating'],
                                                                    test size = 0.30, random state = 101)
In [23]: X train.head()
Out[23]:
                   potential crossing finishing heading_accuracy short_passing volleys dribbling curve free_kick_accuracy long_passing ... \
            93681
                      75.0
                                62.0
                                        44.0
                                                         53.0
                                                                       62.0
                                                                               55.0
                                                                                        65.0
                                                                                              58.0
                                                                                                                68.0
                                                                                                                             54.0 ...
           116493
                      83.0
                                39.0
                                        35.0
                                                         86.0
                                                                       64.0
                                                                              43.0
                                                                                        46.0
                                                                                              33.0
                                                                                                                27.0
                                                                                                                             62.0 ...
            17520
                      73.0
                                65.0
                                        71.0
                                                         71.0
                                                                       64.0
                                                                              65.0
                                                                                        69.0
                                                                                              59.0
                                                                                                                56.0
                                                                                                                             54.0 ...
            97796
                      68.0
                                53.0
                                        68.0
                                                         71.0
                                                                       63.0
                                                                              67.0
                                                                                        61.0
                                                                                              52.0
                                                                                                                65.0
                                                                                                                             55.0 ...
                                                         63.0
                                                                       67.0
                                                                               59.0
                                                                                                                56.0
                                                                                                                             64.0 ...
           124921
                      67.0
                                57.0
                                        49.0
                                                                                        66.0
                                                                                              58.0
          5 rows × 34 columns
          y train.head()
In [24]:
Out[24]:
          93681
                     64.0
          116493
                     81.0
          17520
                     71.0
          97796
                     68.0
          124921
                     67.0
          Name: overall rating, dtype: float64
In [25]: # Print the shape of train and test data
          print('X train: ', X train.shape)
          print('X_test: ', X_test.shape)
          print('y_train: ', y_train.shape)
          print('y_test: ', y_test.shape)
          X train: (128784, 34)
          X test: (55194, 34)
          y train: (128784,)
          y_test: (55194,)
```

## **Create and Train the Linear Regression Model**

## Evaluate the model by checking out it's coefficients

```
In [27]: # Find the intercept
print(lm.intercept_)
```

-3.7138600642612545

```
In [28]: # Find the Coefficient of X train data
    coeff_df = pd.DataFrame(lm.coef_,X_train.columns,columns=['Coefficient'])
    print(coeff_df)
```

|                               | Coefficient |
|-------------------------------|-------------|
| potential                     | 0.381386    |
| crossing                      | 0.021691    |
| finishing                     | 0.012632    |
| heading_accuracy              | 0.069519    |
| short_passing                 | 0.049780    |
| volleys                       | 0.002269    |
| dribbling                     | -0.012380   |
| curve                         | 0.010761    |
| <pre>free_kick_accuracy</pre> | 0.014515    |
| long_passing                  | 0.006448    |
| ball_control                  | 0.135916    |
| acceleration                  | 0.005902    |
| sprint_speed                  | 0.009651    |
| agility                       | -0.008306   |
| reactions                     | 0.208145    |
| balance                       | 0.007479    |
| shot_power                    | 0.015337    |
| jumping                       | 0.016442    |
| stamina                       | -0.005122   |
| strength                      | 0.061832    |
| long_shots                    | -0.011895   |
| aggression                    | 0.020297    |
| interceptions                 | 0.013100    |
| positioning                   | -0.010003   |
| vision                        | -0.002524   |
| penalties                     | 0.013118    |
| marking                       | 0.034321    |
| standing_tackle               | 0.002232    |
| sliding_tackle                | -0.029936   |
| gk_diving                     | 0.166042    |
| gk_handling                   | 0.031718    |
| gk_kicking                    | -0.032619   |
| gk_positioning                | 0.054697    |
| gk_reflexes                   | 0.022835    |
|                               |             |

## **Make the Predictions**

```
In [29]: y pred = lm.predict(X test)
In [30]: # Compare the Actual Overall Rating to the Predicted Overall Rating
         ActualvsPred = pd.DataFrame({'Actual': y test, 'Predicted': y pred})
In [31]: print(ActualvsPred.head(20))
                 Actual Predicted
         89795
                   81.0 76.500393
                   72.0 68.447011
         145987
         81345
                   65.0 64.701619
         40399
                   76.0 73.147422
                   76.0 72.540214
         143301
         134213
                   70.0 70.926820
         183666
                   74.0 76.433557
         89101
                   57.0 56.650473
         48414
                   71.0 70.949247
                   63.0 62.383194
         124003
         179632
                   70.0 70.053771
         101291
                   64.0 63.346655
         95221
                   78.0 79.922389
         30845
                   69.0 61.572655
         4734
                   74.0 69.891753
         53097
                   74.0 73.911948
         128101
                   68.0 68.187802
         12918
                   69.0 64.483406
         50195
                   59.0 67.410854
         162266
                   63.0 62.247938
In [32]: # Calculate the R Squared value of the Actual Overall Rating to the Predicted Overall Rating
         score = r2 score(y test,y pred)
         print('R Sqaured Score of the Test data is: ', score)
```

R Sqaured Score of the Test data is: 0.8424268878510373

```
In [33]: print('Mean Absolute Error (MAE) of Test data is: ',metrics.mean_absolute_error(y_test,y_pred))
print('Mean Squared Error (MSE) of Test data is: ',metrics.mean_squared_error(y_test,y_pred))
print('Root Mean Squared Error (RMSE) of Test data is: ',np.sqrt(metrics.mean_squared_error(y_test,y_pred)))
```

Mean Absolute Error (MAE) of Test data is: 2.124357660885702
Mean Squared Error (MSE) of Test data is: 7.7783783388997545
Root Mean Squared Error (RMSE) of Test data is: 2.788974424210404

In [34]: # The R2 Score of 0.8424, therefore our model can predict the overall rating of the players with # approximately 84% accuracy based on the player attributes.

### **Model Evaluation with Categorical Variables**

```
In [35]: conn = sqlite3.connect('database.sqlite')
df1 = pd.read_sql_query("SELECT * FROM Player_Attributes", conn)
```

In [36]: df1.drop(['id', 'player\_fifa\_api\_id', 'player\_api\_id', 'date'], axis=1, inplace=True)

In [37]: df1.head()

Out[37]:

|   | overall_rating | potential | preferred_foot | attacking_work_rate | defensive_work_rate | crossing | finishing | heading_accuracy | short_passing |
|---|----------------|-----------|----------------|---------------------|---------------------|----------|-----------|------------------|---------------|
| 0 | 67.0           | 71.0      | right          | medium              | medium              | 49.0     | 44.0      | 71.0             | 61.0          |
| 1 | 67.0           | 71.0      | right          | medium              | medium              | 49.0     | 44.0      | 71.0             | 61.0          |
| 2 | 62.0           | 66.0      | right          | medium              | medium              | 49.0     | 44.0      | 71.0             | 61.0          |
| 3 | 61.0           | 65.0      | right          | medium              | medium              | 48.0     | 43.0      | 70.0             | 60.0          |
| 4 | 61.0           | 65.0      | right          | medium              | medium              | 48.0     | 43.0      | 70.0             | 60.0          |

5 rows × 38 columns

http://localhost:8888/notebooks/Acadgild/Project2/Project 2.ipynb#

#### In [38]: df1.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 183978 entries, 0 to 183977 Data columns (total 38 columns): overall rating 183142 non-null float64 183142 non-null float64 potential preferred foot 183142 non-null object attacking work rate 180748 non-null object defensive work rate 183142 non-null object 183142 non-null float64 crossing 183142 non-null float64 finishing heading\_accuracy 183142 non-null float64 183142 non-null float64 short passing volleys 181265 non-null float64 183142 non-null float64 dribbling 181265 non-null float64 curve 183142 non-null float64 free kick accuracy long passing 183142 non-null float64 ball control 183142 non-null float64 acceleration 183142 non-null float64 sprint speed 183142 non-null float64 181265 non-null float64 agility 183142 non-null float64 reactions balance 181265 non-null float64 183142 non-null float64 shot power jumping 181265 non-null float64 stamina 183142 non-null float64 183142 non-null float64 strength long shots 183142 non-null float64 183142 non-null float64 aggression interceptions 183142 non-null float64 183142 non-null float64 positioning vision 181265 non-null float64 penalties 183142 non-null float64 marking 183142 non-null float64 standing\_tackle 183142 non-null float64 181265 non-null float64 sliding tackle gk diving 183142 non-null float64 gk handling 183142 non-null float64 183142 non-null float64 gk kicking 183142 non-null float64 gk positioning 183142 non-null float64 gk reflexes

dtypes: float64(35), object(3)

memory usage: 53.3+ MB

| In [39]: | df1.isnull().sum(axi                      | s=0)        |
|----------|-------------------------------------------|-------------|
| Out[39]: | overall_rating                            | 836         |
|          | potential                                 | 836         |
|          | preferred foot                            | 836         |
|          | attacking_work_rate                       | 3230        |
|          | defensive_work_rate                       | 836         |
|          | crossing                                  | 836         |
|          | finishing                                 | 836         |
|          | heading_accuracy                          | 836         |
|          | short_passing                             | 836         |
|          | volleys                                   | 2713        |
|          | dribbling                                 | 836         |
|          | curve                                     | 2713        |
|          | <pre>free_kick_accuracy</pre>             | 836         |
|          | long_passing                              | 836         |
|          | ball_control                              | 836         |
|          | acceleration                              | 836         |
|          | sprint_speed                              | 836         |
|          | agility                                   | 2713        |
|          | reactions                                 | 836         |
|          | balance                                   | 2713        |
|          | shot_power                                | 836         |
|          | jumping                                   | 2713        |
|          | stamina                                   | 836         |
|          | strength                                  | 836         |
|          | long_shots                                | 836         |
|          | aggression                                | 836         |
|          | interceptions                             | 836         |
|          | positioning<br>                           | 836         |
|          | vision                                    | 2713        |
|          | penalties                                 | 836         |
|          | marking                                   | 836         |
|          | <pre>standing_tackle sliding tackle</pre> | 836<br>2713 |
|          | <b>0–</b>                                 | 836         |
|          | <pre>gk_diving gk handling</pre>          | 836         |
|          | gk_handing<br>gk_kicking                  | 836         |
|          | gk_positioning                            | 836         |
|          | gk_reflexes                               | 836         |
|          | dtype: int64                              | 0.50        |
|          | acype, inco-                              |             |

```
In [40]: pd.value_counts(df1['preferred_foot'])
Out[40]: right
                  138409
         left
                   44733
         Name: preferred_foot, dtype: int64
In [43]: # See what other values are in the attacking work rate column aside from the null values
         pd.value_counts(df1['attacking_work_rate'])
Out[43]: medium
                   125070
         high
                    42823
         low
                     8569
                     3639
         None
                      348
         norm
                      106
         У
                      104
         le
                       89
         stoc
         Name: attacking_work_rate, dtype: int64
```

```
In [44]: # See what other values are in the defensive work rate column aside from the null values
         pd.value counts(df1['defensive work rate'])
Out[44]:
         medium
                    130846
         high
                     27041
         low
                    18432
          _0
                      2394
                      1550
         0
         1
                      441
                       348
         ormal
         2
                       342
         3
                       258
                       234
         7
                       217
         0
                       197
                      197
         6
         9
                      152
                       116
         es
                       106
                       104
         ean
                        89
         tocky
                        78
         Name: defensive work rate, dtype: int64
In [45]: # Create a function to replace null values in the preferred foot column with the preferred
         # foot as right since most players are right footed.
         def impute preferred foot (cols):
              preferred foot = cols[0]
             if pd.isnull(preferred foot):
                  return 'right'
              else:
                  return preferred foot
In [46]: # Apply the function to replace the null values in the preferred foot column
         df1['preferred foot'] = df1[['preferred foot']].apply(impute preferred foot, axis=1)
```

| In [47]: | df1.isnull().sum(axis=0)         |             |  |  |  |  |
|----------|----------------------------------|-------------|--|--|--|--|
| Out[47]: | overall_rating                   | 836         |  |  |  |  |
|          | potential                        | 836         |  |  |  |  |
|          | preferred_foot                   | 0           |  |  |  |  |
|          | attacking_work_rate              | 3230        |  |  |  |  |
|          | defensive_work_rate              | 836         |  |  |  |  |
|          | crossing                         | 836         |  |  |  |  |
|          | finishing                        | 836         |  |  |  |  |
|          | heading_accuracy                 | 836         |  |  |  |  |
|          | short_passing                    | 836         |  |  |  |  |
|          | volleys                          | 2713        |  |  |  |  |
|          | dribbling                        | 836         |  |  |  |  |
|          | curve                            | 2713        |  |  |  |  |
|          | <pre>free_kick_accuracy</pre>    | 836         |  |  |  |  |
|          | long_passing                     | 836         |  |  |  |  |
|          | ball_control                     | 836         |  |  |  |  |
|          | acceleration                     | 836         |  |  |  |  |
|          | sprint_speed                     | 836         |  |  |  |  |
|          | agility                          | 2713        |  |  |  |  |
|          | reactions                        | 836         |  |  |  |  |
|          | balance                          | 2713        |  |  |  |  |
|          | shot_power                       | 836         |  |  |  |  |
|          | jumping                          | 2713        |  |  |  |  |
|          | stamina                          | 836         |  |  |  |  |
|          | strength                         | 836         |  |  |  |  |
|          | long_shots                       | 836         |  |  |  |  |
|          | aggression                       | 836         |  |  |  |  |
|          | interceptions                    | 836         |  |  |  |  |
|          | positioning                      | 836         |  |  |  |  |
|          | vision                           | 2713        |  |  |  |  |
|          | penalties                        | 836         |  |  |  |  |
|          | marking                          | 836<br>836  |  |  |  |  |
|          | standing_tackle                  |             |  |  |  |  |
|          | sliding_tackle                   | 2713<br>836 |  |  |  |  |
|          | <pre>gk_diving gk handling</pre> | 836         |  |  |  |  |
|          | gk_nanuiing<br>gk_kicking        | 836         |  |  |  |  |
|          | gk_kicking<br>gk positioning     | 836         |  |  |  |  |
|          | gk_reflexes                      | 836         |  |  |  |  |
|          | dtype: int64                     | 0.50        |  |  |  |  |
|          | acype. Incoa                     |             |  |  |  |  |

```
In [48]: pd.value counts(df1['preferred foot'])
Out[48]: right
                  139245
         left
                   44733
         Name: preferred foot, dtype: int64
         # Create a function to replace None, norm and null values in the attacking work rate column with
In [49]:
         # medium since most players are classified with medium attacking rate. Replace y, le, and stoc.
         def impute attacking rate (cols):
             attacking work rate = cols[0]
             if pd.isnull(attacking_work_rate):
                 return 'medium'
             elif attacking work rate == 'None' or attacking work rate == 'norm':
                 return 'medium'
             elif attacking work rate == 'y' or attacking work rate == 'le' or attacking work rate == 'stoc':
                 return 'low'
             else:
                 return attacking work rate
In [50]: # Apply the function to replace the None, norm, and null values in the attacking work rate column
         df1['attacking work rate'] = df1[['attacking work rate']].apply(impute attacking rate, axis=1)
         pd.value_counts(df1['attacking_work_rate'])
In [51]:
Out[51]: medium
                   132287
                    42823
         high
                     8868
         low
         Name: attacking work rate, dtype: int64
```

```
In [52]: # Create a function to replace null and other values that is not high, medium or low in the defensive work rate
         # either high, medium or low.
         def impute defensive rate (cols):
             defensive work rate = cols[0]
             if pd.isnull(defensive work rate):
                  return 'medium'
             elif defensive_work_rate in ('_0', 'o', '0', '1', '2', '3'):
                  return 'low'
             elif defensive_work_rate in ('ormal', 'es', 'ean', 'tocky', '4','5','6'):
                  return 'medium'
             elif defensive work rate in ('7','8','9'):
                  return 'high'
             else:
                  return defensive work rate
In [53]: # Apply the function to replace the values in the defensive work rate column
         df1['defensive work rate'] = df1[['defensive work rate']].apply(impute defensive rate, axis=1)
In [54]: pd.value counts(df1['defensive work rate'])
Out[54]: medium
                   132876
         high
                    27488
                    23614
         low
         Name: defensive work rate, dtype: int64
In [57]: # Replace all the null values in the columns with numerical values with mean values
         df1.fillna(df.mean(), inplace=True)
```

| In [58]: | df1.isnull().sum(axis | <b>=</b> 0) |
|----------|-----------------------|-------------|
| Out[58]: | overall_rating        | 0           |
|          | potential             | 0           |
|          | preferred_foot        | 0           |
|          | attacking_work_rate   | 0           |
|          | defensive_work_rate   | 0           |
|          | crossing              | 0           |
|          | finishing             | 0           |
|          | heading_accuracy      | 0           |
|          | short_passing         | 0           |
|          | volleys               | 0           |
|          | dribbling             | 0           |
|          | curve                 | 0           |
|          | free_kick_accuracy    | 0           |
|          | long_passing          | 0           |
|          | ball_control          | 0           |
|          | acceleration          | 0           |
|          | sprint_speed          | 0           |
|          | agility               | 0           |
|          | reactions             | 0           |
|          | balance               | 0           |
|          | shot_power            | 0           |
|          | jumping               | 0           |
|          | stamina               | 0           |
|          | strength              | 0           |
|          | long_shots            | 0           |
|          | aggression            | 0           |
|          | interceptions         | 0<br>0      |
|          | positioning<br>vision | 0           |
|          | penalties             | 0           |
|          | marking               | 0           |
|          | standing_tackle       | 0           |
|          | sliding_tackle        | 0           |
|          | gk_diving             | 0           |
|          | gk handling           | 0           |
|          | gk_kicking            | 0           |
|          | gk_positioning        | 0           |
|          | gk_reflexes           | 0           |
|          | dtype: int64          | •           |
|          | 5.5pc. 11.00          |             |

```
In [59]: # We will convert the preferred foot, attacking work rate and defensive work rate columns
         # to dummy variable (LabelEncoding) and drop one column (OneHotEncoding)
         # This will create a new dataframe for each feature
         pref foot = pd.get dummies(df1['preferred foot'], drop first=True)
         attack_rate = pd.get_dummies(df1['attacking_work_rate'], drop_first=True)
         def_rate = pd.get_dummies(df1['defensive_work_rate'], drop_first=True)
In [60]:
         pref_foot.head()
Out[60]:
             right
          0
               1
          2
In [61]: attack_rate.head()
Out[61]:
```

|   | low | medium |
|---|-----|--------|
| 0 | 0   | 1      |
| 1 | 0   | 1      |
| 2 | 0   | 1      |
| 3 | 0   | 1      |
| 4 | 0   | 1      |

```
def rate.head()
In [62]:
Out[62]:
              low medium
                0
           0
                        1
           1
                0
           2
           3
                0
                        1
          # We will drop the preferred foot, attacking work rate, and defensive work rate columns from the
In [64]:
          # original dataset since we created the dummy variable.
          df1.drop(['preferred foot', 'attacking work rate', 'defensive work rate'], axis=1, inplace=True)
In [65]: # We will concatenate the pref foot, attack rate, and def rate dummy variables to our dataset.
          df1 = pd.concat([df1,pref foot, attack rate, def rate],axis=1)
          df1.head()
In [66]:
Out[66]:
          t_passing volleys dribbling curve free_kick_accuracy ... gk_diving gk_handling gk_kicking gk_positioning gk_reflexes right low me
                                      45.0
                                                        39.0 ...
                                                                                 11.0
              61.0
                      44.0
                               51.0
                                                                      6.0
                                                                                            10.0
                                                                                                           8.0
                                                                                                                      8.0
                                                                                                                              1
                                                                                                                                  0
              61.0
                                                        39.0 ...
                      44.0
                               51.0
                                      45.0
                                                                      6.0
                                                                                 11.0
                                                                                            10.0
                                                                                                           8.0
                                                                                                                      8.0
                                                                                                                                  0
              61.0
                      44.0
                               51.0
                                      45.0
                                                        39.0 ...
                                                                      6.0
                                                                                 11.0
                                                                                            10.0
                                                                                                           8.0
                                                                                                                      8.0
                                                                                                                              1
                                                                                                                                  0
              60.0
                      43.0
                               50.0
                                      44.0
                                                        38.0 ...
                                                                      5.0
                                                                                 10.0
                                                                                             9.0
                                                                                                           7.0
                                                                                                                      7.0
                                                                                                                                  0
              60.0
                      43.0
                               50.0
                                      44.0
                                                        38.0 ...
                                                                      5.0
                                                                                 10.0
                                                                                             9.0
                                                                                                           7.0
                                                                                                                      7.0
                                                                                                                              1
                                                                                                                                  0
```

# **Building Linear Regression Model**

## Split the data in to Training and Test set

## **Create and Train the Linear Regression Model**

```
In [75]: lm1 = LinearRegression()
lm1.fit(X_train1, y_train1)
Out[75]: LinearRegression(copy_X=True, fit_intercept=True, n_jobs=None,
```

normalize=False)

## Evaluate the model by checking out it's coefficients

```
In [76]: # Find the intercept
print(lm1.intercept_)
```

-3.385317880706424

```
In [77]: # Find the Coefficient of X train data
coeff_df1 = pd.DataFrame(lm1.coef_,X_train.columns,columns=['Coefficient'])
print(coeff_df1)
```

|                               | Coefficient |
|-------------------------------|-------------|
| potential                     | 0.379404    |
| crossing                      | 0.022461    |
| finishing                     | 0.013157    |
| heading_accuracy              | 0.068397    |
| short_passing                 | 0.051094    |
| volleys                       | 0.001255    |
| dribbling                     | -0.010241   |
| curve                         | 0.011260    |
| <pre>free_kick_accuracy</pre> | 0.014685    |
| long_passing                  | 0.006015    |
| ball_control                  | 0.134659    |
| acceleration                  | 0.005330    |
| sprint_speed                  | 0.011517    |
| agility                       | -0.008333   |
| reactions                     | 0.206745    |
| balance                       | 0.006603    |
| shot_power                    | 0.015242    |
| jumping                       | 0.016285    |
| stamina                       | -0.003735   |
| strength                      | 0.060123    |
| long_shots                    | -0.012203   |
| aggression                    | 0.019422    |
| interceptions                 | 0.012227    |
| positioning                   | -0.008913   |
| vision                        | -0.002528   |
| penalties                     | 0.012153    |
| marking                       | 0.033513    |
| standing_tackle               | 0.002884    |
| sliding_tackle                | -0.028418   |
| gk_diving                     | 0.168623    |
| gk_handling                   | 0.032292    |
| gk_kicking                    | -0.034173   |
| gk_positioning                | 0.056890    |
| gk_reflexes                   | 0.023825    |
| right                         | -0.012523   |
| low                           | 1.201846    |
| medium                        | -0.108176   |

low 0.237049 medium -0.280066

#### **Make the Predictions**

```
In [78]: y pred1 = lm1.predict(X test1)
In [79]: # Compare the Actual Overall Rating to the Predicted Overall Rating
         ActualvsPred1 = pd.DataFrame({'Actual': y test1, 'Predicted': y pred1})
In [80]:
         print(ActualvsPred1.head(20))
                         Predicted
                 Actual
         89795
                   81.0 76.111882
         145987
                   72.0 68.868899
                   65.0 64.514367
         81345
         40399
                   76.0 74.088600
                   76.0 72.186087
         143301
         134213
                   70.0 71.078865
                   74.0 77.415047
         183666
         89101
                   57.0 56.946604
         48414
                   71.0 70.983164
         124003
                   63.0 62.456015
         179632
                   70.0 70.228510
                   64.0 63.799896
         101291
         95221
                   78.0 79.896610
         30845
                   69.0 61.548103
         4734
                   74.0 69.939717
         53097
                   74.0 73.631112
                   68.0 68.003258
         128101
         12918
                   69.0 65.502644
                   59.0 68.702345
         50195
         162266
                   63.0 62.179165
```

```
In [81]: # Calculate the R Squared value of the Actual Overall Rating to the Predicted Overall Rating

score1 = r2_score(y_test1,y_pred1)
print('R Squared Score of the Test data is: ', score1)

R Squared Score of the Test data is: 0.8445423047381513

In [82]: print('Mean Absolute Error (MAE) of Test data is: ',metrics.mean_absolute_error(y_test1,y_pred1))
print('Mean Squared Error (MSE) of Test data is: ',metrics.mean_squared_error(y_test1,y_pred1))
print('Root Mean Squared Error (RMSE) of Test data is: ',np.sqrt(metrics.mean_squared_error(y_test1,y_pred1)))

Mean Absolute Error (MAE) of Test data is: 2.111661475923508
Mean Squared Error (MSE) of Test data is: 2.776190194826021

In [83]: # The R2 Score of 0.8445, therefore our model can predict the overall rating of the players with
# approximately 84% accuracy based on the player attributes. The R2 score did not change significantly therefore
# the categorical columns did not impact my model.

In []:
```