CS210201 Logic Design 數位邏輯設計

Digital Systems and Binary Numbers Chapter 1

Chapter Objectives

- Understand binary number system.
- Know how to Convert between binary, octal, decimal, and hexadecimal numbers.
- Know how to take the complement and reduced radix complement of a number.
- Know how to form the code of a number.

Digital Systems and Digital Signals

Digital vs Analog

- Analog: continuous values used (e.g.-8.0 to 12.0)
- Digital: a discrete set of values used (e.g. {0,1})
- PC is an example of a digital system
- The microphone & speaker of a sound system are analog devices (sound is analog in nature)

Digital Advantages

- Digitizing e.g. convert audio signal (analog) into digital form for storage on a CD.
- Digital data can be stored compactly.
- Digital data can be processed and transmitted more efficiently and reliably than analog data.
- Noise does not affect digital data as much as analog data.
- Digital systems are easier to design & more reliable.

Signal

- For digital systems, the variable takes on discrete values
 - Two level, or binary values are the most prevalent values
- Binary values are represented abstractly by:
 - digits 0 and 1
 - words (symbols) False (F) and True (T)
 - words (symbols) Low (L) and High (H)
 - and words On and Off.
- Binary (two) values are represented by values or ranges of values of physical quantities

Binary Logic and Digital Circuit

- Binary logic
 - uses only two values: 1, 0 (True, False)
- We can use Voltage Range to define logic 1 and logic 0 in electronic devices.
- Usually, we associate HIGH voltage with 1 (True) and LOW voltage with 0 (False).

Digital System

 A digital system is an interconnection of digital modules. To understand the operation of each digital module, it is necessary to have a basic knowledge of digital circuits and their logical function.

 A major trend in digital design methodology is the use of a HDL to describe and simulate the functionality of a digital circuit, it is important that students become familiar with an HDL-based design methodology.

Binary Numbers

Decimal number

Base or radix

^tj Power

$$\cdots + 10^{5}a_{5} + 10^{4}a_{4} + 10^{3}a_{3} + 10^{2}a_{2} + 10^{1}a_{1} + 10^{0}a_{0} + 10^{-1}a_{-1} + 10^{-2}a_{-2} + 10^{-3}a_{-3} + \cdots$$

Decimal point

Example:

$$7,329 = 7 \times 10^3 + 3 \times 10^2 + 2 \times 10^1 + 9 \times 10^0$$

General form of base-r system

$$a_n \cdot r^n + a_{n-1} \cdot r^{n-1} + \dots + a_2 \cdot r^2 + a_1 \cdot r^1 + a_0 + a_{-1} \cdot r^{-1} + a_{-2} \cdot r^{-2} + \dots + a_{-m} \cdot r^{-m}$$

Coefficient: $a_i = 0$ to r - 1

Binary Numbers

Example: Base-2 number

$$(11010.11)_2 = (26.75)_{10}$$

= $1 \times 2^4 + 1 \times 2^3 + 0 \times 2^2 + 1 \times 2^1 + 0 \times 2^0 + 1 \times 2^{-1} + 1 \times 2^{-2}$

Example: Base-5 number

$$(4021.2)_5$$

$$= 4 \times 5^{3} + 0 \times 5^{2} + 2 \times 5^{1} + 1 \times 5^{0} + 2 \times 5^{-1} = (511.5)_{10}$$

Example: Base-16 number

$$(B65F)_{16} = 11 \times 16^3 + 6 \times 16^2 + 5 \times 16^1 + 15 \times 16^0 = (46,687)_{10}$$

Binary Numbers

Example: Base-2 number

$$(110101)_2 = 32 + 16 + 4 + 1 = (53)_{10}$$

Special Powers of 2

- 2¹⁰ (1024) is Kilo, denoted "K"
- 2²⁰ (1,048,576) is Mega, denoted "M"
- 2³⁰ (1,073, 741,824) is Giga, denoted "G"

Powers of two

- Table 1.1
Powers of Two

n	2 ⁿ	n	2 ⁿ	n	2 ⁿ
0	1	8	256	16	65,536
1	2	9	512	17	131,072
2	4	10	1,024 (1K)	18	262,144
3	8	11	2,048	19	524,288
4	16	12	4,096 (4K)	20	1,048,576 (1M)
5	32	13	8,192	21	2,097,152
6	64	14	16,384	22	4,194,304
7	128	15	32,768	23	8,388,608

Arithmetic operation

Negative Numbers

- Sign-magnitude
 - (sign bit) + (positive magnitude)
 - Hard to implement in hardware
- 1's complement

$$-N = (2^{n}-1) - N$$

• 2's complement

```
-N^* = 2^n - N, for n = 4, -N = > 16-N
```

$$-$$
 e.g., $-3 \Rightarrow 16-3 = 13 = 11012$

- Easy way to form 1's complement
 - Complementing N bit-by-bit
- Easy way to form 2's complement
 - Complementing N bit-by-bit and then adding 1

Non-numeric Binary Codes

- Given n binary digits (called bits), a binary code is a mapping from a set of represented elements to a subset of the 2ⁿ binary numbers
- E.g. Light On/Off: 1/0
- E.g. Eight different colors

000	White		
001	Red		
010	Blue		
011	Yellow		

100	Purple
101	Orange
110	Green
111	Black

Representing Information with Digital Signals

- Pick a representation based on operations required
- E.g. A color representation to support the operation of subtractive color mixing (e.g., red + blue = purple)
 - No colors white
 - Primary colors red, yellow, blue
 - Derived colors orange, purple, green, black

Color	Code
White	000
Red	001
Yellow	010
Blue	100
Orange	011
Purple	101
Green	110
Black	111

Binary-Coded-Decimal (BCD)

- A common coding method to code each digit of a decimal number in terms of binary bits.
- Each digit is coded by its binary equivalent.
 - E.g. The digit "3" is encoded as 0011
 - E.g. The number 30 is encoded as 00110000
- BCD is NOT converting the number as a whole into binary.

BCD (Cont'd)

☐ TABLE 1-3
Binary-Coded Decimal (BCD)

Decimal Symbol	BCD Digit
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
8	1000
9	1001

Table 1-3 Binary-Coded Decimal (BCD)

- Q. What is the BCD representation of the decimal no. 547?
- Q. What does the BCD no. 000110011001 represent?

ASCII Character Code

- ASCII (American Standard Code for Information Interchange) is the standard binary code for the set of alphanumeric characters
- The character set includes:
 - _ numerals: 0, 1, ..., 9
 - alphabets: a, b, ..., z, A, B, ..., Z
 - special printable characters: \$, #, (, +, ...
 - control characters (used for data transmission and printed text formatting)

□ TABLE 1-4 American Standard Code for Information Interchange (ASCII)

		$B_7B_8B_5$								
B ₄ B ₃ B ₂ B ₁	000	001	010	011	100	101	110	111		
0000	NULL	DLE	SP	0	@	Р		р		
0001	SOH	DC1	!	1	A	Q	a	q		
0010	STX	DC2	"	2	В	R	b	r		
0011	ETX	DC3	#	3	C	S	С	S		
0100	EOT	DC4	\$	4	D	T	d	t		
0101	ENQ	NAK	%	5	E	U	e	u		
0110	ACK	SYN	&	6	F	V	f	\mathbf{v}		
0111	BEL	ETB	,	7	G	\mathbf{w}	g	w		
1000	BS	CAN	(8	H	X	h	x		
1001	HT	EM)	9	I	Y	i	y		
1010	LF	SUB	*	:	J	\mathbf{z}	j	z		
1011	VT	ESC	+	;	K]	k	{		
1100	FF	FS	,	<	L	ĺ	1	ì		
1101	CR	GS	-	=	M]	m	}		
1110	SO	RS		>	N	^	n	~		
1111	SI	US	/	?	O	_	O	DEI		
Control Ch	naracters:									
NULL	NULL				Data link escape					
SOH	Start of heading				D	Device control 1				
STX	Start of text				D	Device control 2				
ETX	End of text			DC3	D	Device control 3				
EOT	End of transmission			DC4	D	Device control 4				
ENQ	Enquiry			NAK	N	Negative acknowledge				
ACK	Acknowledge			SYN		Synchronous idle				
BEL	Bell			ETB	E	End of transmission block				
BS	Backspace			CAN	C	Cancel				
HT	Horizontal tab			EM	E	End of medium				
LF	Line feed			SUB	St	Substitute				
VT	Vertical tab			ESC	E	Escape				
FF	Form feed			FS		File separator				
CR	Carriage return			GS		Group separator				
	Shift out			RS		Record separator				
SO	SHILLOUL	Shiftin				Unit separator				
SO SI				US	U	nit sepai	rator			

Table 1-4 American Standard Code for Information Interchange (ASCII)