Домашнее задание №2

Иванов Вячеслав, группа 699 6 октября 2018 г.

Оглавление

1	Найти градиент по $\mathbf U$ и по $\mathbf V$ функции $J(\mathbf U,\mathbf V):=\ \mathbf U\mathbf V-\mathbf Y\ _F^2+rac{\lambda}{2}(\ \mathbf U\ _F^2+\ \mathbf V\ _F^2)$	3
	1.1 $\frac{dJ(\mathbf{U}, \mathbf{V})}{d\mathbf{V}}$	3
	$1.2 \qquad \frac{dJ(\overrightarrow{\mathbf{U}}, \mathbf{V})}{d\mathbf{U}} \qquad \dots \qquad \dots \qquad \dots$	4
2	Найти градиент и гессиан функции $f(\mathbf{w}) = \sum_{i=1}^m \log(1 + e^{-y_i \mathbf{w}^T \mathbf{x}_i})$, где $x_i \in \mathbb{R}^n, \ y_i \in \mathbb{R}$	4
3	Найти матрицу Якоби для функции $f:\mathbb{R}^n o\mathbb{R}^n,\; f_j(\mathbf{w}):=rac{e^{w_j}}{\sum_{k=1}^n e^{w_k}}$	4
4	Доказать тождество Шермана-Моррисона-Вудбери	5
5	Найти градиент отношения Релея для заданной матрицы $\mathbf{A} \in \mathbf{S}^n$. Исследовать	
	связь между отношением Релея и задачей поиска собственного вектора, соответ-	
	ствующего максимальному собственному значению.	5
6	Найти градиенты функций от собственных значений матрицы:	6
	$6.1 f(\mathbf{X}) := \sum_{i=1}^{n} \lambda_i(\mathbf{X}) \dots \dots$	6
	$6.2 f(\mathbf{X}) := \prod_{i=1}^{n} \lambda_i(\mathbf{X})$	6
7	Найти градиент логарифма функции правдоподобия для многомерного нормально-	
	го распределения по вектору средних значений и по матрице ковариаций	7

1 Найти градиент по U и по V функции $J(\mathbf{U},\mathbf{V}):=\|\mathbf{U}\mathbf{V}-\mathbf{Y}\|_F^2+\frac{\lambda}{2}(\|\mathbf{U}\|_F^2+\|\mathbf{V}\|_F^2)$

Решение.

Определение.
$$f: \mathbb{R}^{n \times m} \to \mathbb{R} \implies \frac{df(\mathbf{X})}{d\mathbf{X}} := \left[\frac{\partial f}{dx_{ij}}(\mathbf{X})\right]_{\substack{1 \leqslant i \leqslant n \\ 1 \leqslant i \leqslant m}}$$

Утверждение 1. $\|\mathbf{X}\|_F^2 = \operatorname{tr}(\mathbf{X}^T\mathbf{X})$

Утверждение 2.
$$\frac{d \operatorname{tr}(\mathbf{X}^T \mathbf{A} \mathbf{X})}{d \mathbf{X}} = (\mathbf{A} + \mathbf{A}^T) \mathbf{X}$$
, в частности $\frac{d \|\mathbf{X}\|_F^2}{d \mathbf{X}} = 2 \mathbf{X}$, $\frac{d \|\mathbf{X} \mathbf{Y}\|_F^2}{d \mathbf{Y}} = 2 \mathbf{X}^T \mathbf{X} \mathbf{Y}$.

Утверждение 3 (Свойства следа).

•
$$\operatorname{tr}(A_1 A_2 \dots A_n) = \operatorname{tr}(A_n A_1 \dots A_{n-1})$$
 (в частности, $\operatorname{tr}(AB) = \operatorname{tr}(BA)$)

•
$$\operatorname{tr}(A^T A) = \operatorname{tr}(AA^T)$$

Утверждение 4.

$$\frac{d \operatorname{tr}(\mathbf{AXB})}{d\mathbf{X}} = \mathbf{A}^T \mathbf{B}^T$$

Доказательство. Доказано на семинаре от 11.09.2018.

Доказательство.

$$\left[\mathbf{X}^{T}\mathbf{A}\mathbf{X}\right]_{lm} = \sum_{i=1}^{n} x_{il} \sum_{j=1}^{n} a_{ij} x_{jm} = \sum_{i=1}^{n} \sum_{j=1}^{n} x_{il} a_{ij} x_{jm}$$

$$\operatorname{tr}(\mathbf{X}^{T}\mathbf{A}\mathbf{X}) = \sum_{l=1}^{n} \left[\mathbf{X}^{T}\mathbf{A}\mathbf{X}\right]_{ll} = \sum_{l=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} x_{il} a_{ij} x_{jl}$$

$$\frac{d \operatorname{tr}(\mathbf{X}^{T}\mathbf{A}\mathbf{X})}{d x_{lm}} = \left(\sum_{i=1}^{n} \sum_{j=1}^{n} x_{im} a_{ij} x_{jm}\right)'_{lm} = \sum_{j=1}^{n} a_{lj} x_{jm} + \sum_{i=1}^{n} x_{im} a_{il} = \sum_{i=1}^{n} (a_{li} + a_{il}) x_{im} = \left[(A + A^{T})X\right]_{lm}$$

1.1 $\frac{dJ(\mathbf{U},\mathbf{V})}{d\mathbf{V}}$

Во первых, по утверждению 2: $\frac{d\|\mathbf{V}\|_F^2}{d\mathbf{V}} = 2V$.

Во вторых, по свойствам следа:

$$\|\mathbf{U}\mathbf{V} - \mathbf{Y}\|_F^2 = \operatorname{tr}((\mathbf{U}\mathbf{V} - \mathbf{Y})^T(\mathbf{U}\mathbf{V} - \mathbf{Y})) =$$

$$= \|\mathbf{U}\mathbf{V}\|_F^2 + \|\mathbf{Y}\|_F^2 - \operatorname{tr}(\mathbf{Y}^T\mathbf{U}\mathbf{V}) - \operatorname{tr}(\mathbf{V}^T\mathbf{U}^T\mathbf{Y}) =$$

$$= \|\mathbf{U}\mathbf{V}\|_F^2 + \|\mathbf{Y}\|_F^2 - 2 \cdot \operatorname{tr}(\mathbf{Y}^T\mathbf{U}\mathbf{V})$$

Откуда по утверждению 2 получаем, что:

$$\frac{d\|\mathbf{U}\mathbf{V}\|_F^2}{d\mathbf{V}} = 2\mathbf{U}^T\mathbf{U}\mathbf{V}$$

Осталось посчитать $\frac{d\mathrm{tr}(\mathbf{Y}^T\mathbf{U}\mathbf{V})}{d\mathbf{V}}$. По свойствам следа, $\mathrm{tr}(\mathbf{Y}^T\mathbf{U}\mathbf{V})=\mathrm{tr}(\mathbf{U}\mathbf{V}\mathbf{Y}^T)$. Отсюда по утверждению 3 сразу получаем, что:

$$\frac{d\mathrm{tr}(\mathbf{Y}^T \mathbf{U} \mathbf{V})}{d\mathbf{V}} = \mathbf{U}^T \mathbf{Y}$$

Собирая промежуточные результаты в итоговое выражение, получаем, что:

$$\frac{dJ(\mathbf{U}, \mathbf{V})}{d\mathbf{V}} = 2\mathbf{U}^T(\mathbf{U}\mathbf{V} - \mathbf{Y}) + \lambda\mathbf{V}$$

1.2
$$\frac{dJ(U,V)}{dU}$$

И вновь, по утверждению 2: $\frac{d\|\mathbf{U}\|_F^2}{d\mathbf{U}}=2U.$ По утверждению 3 сразу получаем, что:

$$\frac{d\mathrm{tr}(\mathbf{Y}^T\mathbf{U}\mathbf{V})}{d\mathbf{U}} = \mathbf{Y}\mathbf{V}^T$$

Из свойств следа (из второго, если быть точным) и утверждения 2 получаем, что:

$$\|\mathbf{U}\mathbf{V}\|_F^2 = \operatorname{tr}(\mathbf{V}^T\mathbf{U}^T\mathbf{U}\mathbf{V}) = \operatorname{tr}(\mathbf{U}\mathbf{V}\mathbf{V}^T\mathbf{U}^T) = \|\mathbf{V}^T\mathbf{U}^T\|_F^2$$

$$\implies \frac{d\|\mathbf{U}\mathbf{V}\|_F^2}{d\mathbf{U}} = \left(\frac{d\|\mathbf{V}^T\mathbf{U}^T\|_F^2}{d\mathbf{U}^T}\right)^T = (2\mathbf{V}\mathbf{V}^T\mathbf{U}^T)^T = 2\mathbf{U}\mathbf{V}\mathbf{V}^T$$

Собирая промежуточные результаты в итоговое выражение, получаем, что:

$$\frac{dJ(\mathbf{U}, \mathbf{V})}{d\mathbf{U}} = 2(\mathbf{U}\mathbf{V} - \mathbf{Y})\mathbf{V}^T + \lambda \mathbf{U}$$

Найти градиент и гессиан функции $f(\mathbf{w}) = \sum_{i=1}^m \log(1 + e^{-y_i \mathbf{w}^T \mathbf{x}_i}),$ 2 где $x_i \in \mathbb{R}^n, \ y_i \in \mathbb{R}$

Решение.

$$\frac{\partial f}{\partial w_j}(\mathbf{w}) = \sum_{i=1}^m \frac{-y_i x_{ij} e^{-y_i \mathbf{w}^T \mathbf{x}_i}}{1 + e^{-y_i \mathbf{w}^T \mathbf{x}_i}}$$

Обозначим $\frac{-y_i e^{-y_i \mathbf{w}^T \mathbf{x}_i}}{1 + e^{-y_i \mathbf{w}^T \mathbf{x}_i}}$ через $\theta_i(\mathbf{w})$. Тогда $\nabla f(\mathbf{w}) = \mathbf{X}^T \theta$, где $\mathbf{X} \in \mathbb{R}^{m \times n}$ — матрица, строками которой являются векторы \mathbf{x}_i Далее,

$$\frac{\partial^2 f}{\partial w_i w_j}(\mathbf{w}) = \sum_{k=1}^m \left(\frac{-y_k x_{kj} e^{-y_k \mathbf{w}^T \mathbf{x}_k}}{1 + e^{-y_k \mathbf{w}^T \mathbf{x}_k}} \right)_i' = \sum_{k=1}^m \left(\frac{y_k^2 e^{-y_k \mathbf{w}^T \mathbf{x}_k}}{1 + e^{-y_k \mathbf{w}^T \mathbf{x}_k}} - \left(\frac{-y_k e^{-y_k \mathbf{w}^T \mathbf{x}_k}}{1 + e^{-y_k \mathbf{w}^T \mathbf{x}_k}} \right)^2 \right) x_{ki} x_{kj} =$$

$$= \sum_{k=1}^m \frac{y_k^2 e^{-y_k \mathbf{w}^T \mathbf{x}_k}}{1 + e^{-y_k \mathbf{w}^T \mathbf{x}_k}} \left(1 - \frac{e^{-y_k \mathbf{w}^T \mathbf{x}_k}}{1 + e^{-y_k \mathbf{w}^T \mathbf{x}_k}} \right) x_{ki} x_{kj} =$$

$$= \sum_{k=1}^m \frac{y_k^2 e^{-y_k \mathbf{w}^T \mathbf{x}_k}}{(1 + e^{-y_k \mathbf{w}^T \mathbf{x}_k})^2} x_{ki} x_{kj}$$

Если положить $\psi_k(\mathbf{w}) := \frac{y_k^2 e^{-y_k \mathbf{w}^T \mathbf{x}_k}}{(1 + e^{-y_k \mathbf{w}^T \mathbf{x}_k})^2}$, то в матричном виде выражение можно переписать так:

$$\mathbf{H}(f)(\mathbf{w}) = \mathbf{X}^T \operatorname{diag}(\psi_1(\mathbf{w}), \dots, \psi_m(\mathbf{w})) \mathbf{X}$$

Найти матрицу Якоби для функции $f:\mathbb{R}^n o \mathbb{R}^n,\ f_j(\mathbf{w}):=rac{e^{w_j}}{\sum_{k=1}^n e^{w_k}}$ 3

Утверждение 5.

$$\mathbf{J}(\mathbf{f})(\mathbf{w}) = \operatorname{diag}(f_1, \dots f_n)(\mathbf{w}) - \mathbf{f}(\mathbf{w})(\mathbf{f}(\mathbf{w}))^T$$

Доказательство.

$$\frac{\partial \mathbf{f}_{l}}{\partial \mathbf{w}_{l}}(\mathbf{w}) = \frac{e^{w_{l}}}{\sum_{k=1}^{n} e^{w_{k}}} - \frac{e^{2w_{l}}}{(\sum_{k=1}^{n} e^{w_{k}})^{2}} = \frac{e^{w_{l}}(\sum_{k\neq l} e^{w_{k}})}{(\sum_{k=1}^{n} e^{w_{k}})^{2}}$$
$$\frac{\partial \mathbf{f}_{l}}{\partial \mathbf{w}_{m}}(\mathbf{w}) = -\frac{e^{w_{l}+w_{m}}}{(\sum_{k=1}^{n} e^{w_{k}})^{2}}, \ l \neq m$$

В матричной записи:

$$\mathbf{J}(\mathbf{f})(\mathbf{w}) = \mathbf{f}(\mathbf{w})(\mathbf{f}(\mathbf{w}))^T - \operatorname{diag}(f_1, \dots f_n)(\mathbf{w})$$

4 Доказать тождество Шермана-Моррисона-Вудбери

Утверждение 6.

$$(\mathbf{A} + \mathbf{U}\mathbf{C}\mathbf{V})^{-1} = \mathbf{A}^{-1} - \mathbf{A}^{-1}\mathbf{U}(\mathbf{C}^{-1} + \mathbf{V}\mathbf{A}^{-1}\mathbf{U})^{-1}\mathbf{V}\mathbf{A}^{-1}$$
$$\mathbf{A} \in \mathbb{R}^{n \times n}, \ \mathbf{U} \in \mathbb{R}^{n \times m}, \ \mathbf{C} \in \mathbb{R}^{m \times m}, \ \mathbf{V} \in \mathbb{R}^{m \times n}$$

Доказательство.

$$\begin{split} &(\mathbf{A} + \mathbf{U}\mathbf{C}\mathbf{V}) \left(\mathbf{A}^{-1} - \mathbf{A}^{-1}\mathbf{U} (\mathbf{C}^{-1} + \mathbf{V}\mathbf{A}^{-1}\mathbf{U})^{-1}\mathbf{V}\mathbf{A}^{-1} \right) = \\ &= (\mathbf{E} + \mathbf{U}\mathbf{C}\mathbf{V}\mathbf{A}^{-1}) \left(\mathbf{E} - \mathbf{U}(\mathbf{C}^{-1} + \mathbf{V}\mathbf{A}^{-1}\mathbf{U})^{-1}\mathbf{V}\mathbf{A}^{-1} \right) = \\ &= \mathbf{E} + \mathbf{U}\mathbf{C}\mathbf{V}\mathbf{A}^{-1} - (\mathbf{E} + \mathbf{U}\mathbf{C}\mathbf{V}\mathbf{A}^{-1})\mathbf{U} \left(\mathbf{C}^{-1} + \mathbf{V}\mathbf{A}^{-1}\mathbf{U} \right)^{-1}\mathbf{V}\mathbf{A}^{-1} = \\ &= \mathbf{E} + \mathbf{U}\mathbf{C}\mathbf{V}\mathbf{A}^{-1} - \mathbf{U}\mathbf{C}(\mathbf{C}^{-1} + \mathbf{V}\mathbf{A}^{-1}\mathbf{U}) \left(\mathbf{C}^{-1} + \mathbf{V}\mathbf{A}^{-1}\mathbf{U} \right)^{-1}\mathbf{V}\mathbf{A}^{-1} = \\ &= \mathbf{E} \end{split}$$

$$\begin{split} & \left(\mathbf{A}^{-1} - \mathbf{A}^{-1} \mathbf{U} (\mathbf{C}^{-1} + \mathbf{V} \mathbf{A}^{-1} \mathbf{U})^{-1} \mathbf{V} \mathbf{A}^{-1} \right) (\mathbf{A} + \mathbf{U} \mathbf{C} \mathbf{V}) = \\ & = \left(\mathbf{E} - \mathbf{A}^{-1} \mathbf{U} (\mathbf{C}^{-1} + \mathbf{V} \mathbf{A}^{-1} \mathbf{U})^{-1} \mathbf{V} \right) (\mathbf{E} + \mathbf{A}^{-1} \mathbf{U} \mathbf{C} \mathbf{V}) = \\ & = \mathbf{E} + \mathbf{A}^{-1} \mathbf{U} \mathbf{C} \mathbf{V} - \mathbf{A}^{-1} \mathbf{U} (\mathbf{C}^{-1} + \mathbf{V} \mathbf{A}^{-1} \mathbf{U})^{-1} \mathbf{V} (\mathbf{E} + \mathbf{A}^{-1} \mathbf{U} \mathbf{C} \mathbf{V}) = \\ & = \mathbf{E} + \mathbf{A}^{-1} \mathbf{U} \mathbf{C} \mathbf{V} - \mathbf{A}^{-1} \mathbf{U} (\mathbf{C}^{-1} + \mathbf{V} \mathbf{A}^{-1} \mathbf{U})^{-1} (\mathbf{C}^{-1} + \mathbf{V} \mathbf{A}^{-1} \mathbf{U}) \mathbf{C} \mathbf{V} = \\ & = \mathbf{E} \end{split}$$

5 Найти градиент отношения Релея для заданной матрицы A ∈ Sⁿ. Исследовать связь между отношением Релея и задачей поиска собственного вектора, соответствующего максимальному собственному значению.

Определение. *Отношением Релея* для заданной матрицы $A \in S^n$ называют выражение вида:

$$R(\mathbf{x}|\mathbf{A}) := \frac{\mathbf{x}^T \mathbf{A} \mathbf{x}}{\mathbf{x}^T \mathbf{x}}$$

Утверждение 7. Собственный вектор, соответствующий максимальному собственному значению матрицы A, максимизирует отношение Релея для этой матрицы.

Доказательство.

Перепишем отношение Релея в бескоординатном виде через скалярное произведение:

$$R(\mathbf{x}|\mathbf{A}) = \frac{(\mathbf{x}, \mathbf{A}\mathbf{x})}{(\mathbf{x}, \mathbf{x})} = \frac{(\mathbf{x}, \mathbf{A}\mathbf{x})}{\|\mathbf{x}\|_2^2} = \left(\frac{\mathbf{x}}{\|\mathbf{x}\|_2}, \mathbf{A}\frac{\mathbf{x}}{\|\mathbf{x}\|_2}\right)$$

Из такой записи видно, что отношение Релея есть $(\mathbf{y}, \mathbf{A}\mathbf{y})$ для \mathbf{y} , лежащих на единичной сфере. На семинаре обсуждалось, что для операторов, порождающих ортонормированный базис из собственных векторов (к таковым относятся эрмитовые, подмножеством которых является S^n), данный функционал на единичной сфере достигает максимума на собственном векторе, принадлежащем максимальному собственному значению.

Утверждение 8. $\nabla R(\mathbf{x}|\mathbf{A}) = (\mathbf{A} - R(\mathbf{x}|\mathbf{A})\mathbf{E})\frac{2\mathbf{x}}{\mathbf{x}^T\mathbf{x}}$

Доказательство.

$$\begin{split} & \triangledown \left(\frac{\mathbf{x}^T \mathbf{A} \mathbf{x}}{\mathbf{x}^T \mathbf{x}} \right) = \frac{\triangledown (\mathbf{x}^T \mathbf{A} \mathbf{x}) \mathbf{x}^T \mathbf{x} - (\mathbf{x}^T \mathbf{A} \mathbf{x}) \triangledown (\mathbf{x}^T \mathbf{x})}{(\mathbf{x}^T \mathbf{x})^2} = \frac{2 \mathbf{A} \mathbf{x} (\mathbf{x}^T \mathbf{x}) - \mathbf{x}^T \mathbf{A} \mathbf{x} (2 \mathbf{x})}{(\mathbf{x}^T \mathbf{x})^2} = \\ & = 2 \frac{(\mathbf{x}^T \mathbf{x}) \mathbf{A} - \mathbf{x}^T \mathbf{A} \mathbf{x}}{(\mathbf{x}^T \mathbf{x})^2} \mathbf{x} = \frac{2}{\mathbf{x}^T \mathbf{x}} \left(\mathbf{A} - \frac{\mathbf{x}^T A \mathbf{x}}{\mathbf{x}^T \mathbf{x}} \mathbf{E} \right) \mathbf{x} = (\mathbf{A} - R(\mathbf{x}|\mathbf{A}) \mathbf{E}) \frac{2 \mathbf{x}}{\mathbf{x}^T \mathbf{x}} \end{split}$$

6 Найти градиенты функций от собственных значений матрицы:

6.1 $f(X) := \sum_{i=1}^{n} \lambda_i(X)$

Утверждение 9. След матрицы инвариантен относительно смены базиса.

$$\operatorname{tr}(\mathbf{C}\mathbf{X}\mathbf{C}^{-1}) = \operatorname{tr}(\mathbf{C}^{-1}\mathbf{C}\mathbf{X}) = \operatorname{tr}(\mathbf{X})$$

Утверждение 10. f(X) = tr(X).

Доказательство.

Равенство верно по определению, если Х приведена к Жордановой форме.

Оно является тождеством в силу предыдущего утверждения.

Утверждение 11. $abla f(\mathbf{X}) = \mathbf{E}$

Доказательство.

Тривиально следует из определения матричной производной скалярной функции.

6.2
$$f(\mathbf{X}) := \prod_{i=1}^n \lambda_i(\mathbf{X})$$

Утверждение 12. Определитель матрицы инвариантен относительно смены базиса.

Доказательство. Тривиально следует из мультипликативности определителя и выражения для определителя обратной матрицы. □

Утверждение 13. f(X) = det(X).

Доказательство.

Равенство верно по определению, если Х приведена к Жордановой форме.

Оно является тождеством в силу предыдущего утверждения.

Утверждение 14.

$$\triangledown \det(\mathbf{X}) = \mathrm{C}(\mathbf{X})$$

где $C(\mathbf{X}) = [(-1)^{i+j} M_{ij}]_{\substack{1 \leqslant i \leqslant n \\ 1 \leqslant j \leqslant m}}$, а M_{ij} — дополнительный минор для позиции x_{ij} .

Доказательство. Доказано на семинаре.

7 Найти градиент логарифма функции правдоподобия для многомерного нормального распределения по вектору средних значений и по матрице ковариаций

Определение. Функция правдоподобия для многомерного нормального распределения:

$$p(\mathbf{X}|\mu, \Sigma) = \prod_{i=1}^{N} \frac{1}{(2\pi)^{n/2} \sqrt{\det \Sigma}} \exp\left(-\frac{1}{2} (\mathbf{x}_i - \mu)^T \Sigma^{-1} (\mathbf{x}_i - \mu)\right), \ \mathbf{x}_i \in \mathbb{R}^n$$

Утверждение 15. $\frac{\partial}{\partial \mathbf{A}} \mathrm{tr}(\mathbf{A}^{-1}\mathbf{B}) = -(\mathbf{A}^{-1}\mathbf{B}\mathbf{A}^{-1})^T$

Утверждение 16. $\frac{\partial \log p(\mathbf{X}|\mu,\Sigma)}{\partial \mu} = \sum_{i=1}^N \Sigma^{-1}(\mathbf{x}_i - \mu)$

Доказательство.

$$\frac{\partial \log p(\mathbf{X}|\mu, \Sigma)}{\partial \mu} = \frac{\partial}{\partial \mu} \sum_{i=1}^{N} \log \left[\frac{1}{(2\pi)^{n/2} \sqrt{\det \Sigma}} \exp \left(-\frac{1}{2} (\mathbf{x}_i - \mu)^T \Sigma^{-1} (\mathbf{x}_i - \mu) \right) \right] =$$

$$= \frac{\partial}{\partial \mu} \left(-\frac{1}{2} \sum_{i=1}^{n} (\mathbf{x}_i - \mu)^T \Sigma^{-1} (\mathbf{x}_i - \mu) \right) =$$

$$= -\frac{1}{2} \frac{\partial}{\partial \mu} \sum_{i=1}^{n} \left(\mathbf{x}_i^T \Sigma^{-1} \mathbf{x}_i - \mu^T \Sigma^{-1} \mathbf{x}_i - \mathbf{x}_i^T \Sigma^{-1} \mu + \mu^T \Sigma^{-1} \mu \right) =$$

$$= \sum_{i=1}^{N} \Sigma^{-1} (\mathbf{x}_i - \mu)$$

Утверждение 17. $\frac{\partial \log p(\mathbf{X}|\mu,\Sigma)}{\partial \Sigma} = -\frac{1}{2}(N\Sigma^{-1} - \Sigma^{-1}(\mathbf{x}_i - \mu)(\mathbf{x}_i - \mu)^T\Sigma^{-1})$

Доказательство.

$$\frac{\partial \log p(\mathbf{X}|\mu, \Sigma)}{\partial \Sigma} = \frac{\partial}{\partial \Sigma} \sum_{i=1}^{N} \log \left[\frac{1}{(2\pi)^{n/2} \sqrt{\det \Sigma}} \exp \left(-\frac{1}{2} (\mathbf{x}_i - \mu)^T \Sigma^{-1} (\mathbf{x}_i - \mu) \right) \right] =$$

$$= \frac{\partial}{\partial \Sigma} \left(-\frac{N}{2} \log \det \Sigma - \frac{1}{2} \sum_{i=1}^{n} (\mathbf{x}_i - \mu)^T \Sigma^{-1} (\mathbf{x}_i - \mu) \right)$$

Перепишем сумму таким образом, чтобы можно было воспользоваться утверждением 15:

$$(\mathbf{x}_i - \mu)^T \Sigma^{-1} (\mathbf{x}_i - \mu) = \operatorname{tr} \left(\Sigma^{-1} (\mathbf{x}_i - \mu) (\mathbf{x}_i - \mu)^T \right)$$

Тогда:

$$\frac{\partial}{\partial \Sigma} (\mathbf{x}_i - \mu)^T \Sigma^{-1} (\mathbf{x}_i - \mu) = -(\Sigma^{-1} (\mathbf{x}_i - \mu) (\mathbf{x}_i - \mu)^T \Sigma^{-1})^T =$$
$$= -\Sigma^{-1} (\mathbf{x}_i - \mu) (\mathbf{x}_i - \mu)^T \Sigma^{-1}$$

Т.к. матрица ковариаций симметрична.

Также, по правилу дифференцирования сложной функции получаем:

$$\frac{d}{d\Sigma}\log\det\Sigma = \frac{1}{\det\Sigma}\frac{d\det\Sigma}{d\Sigma} = \frac{C(\Sigma)}{\det\Sigma} = \frac{(\det\Sigma)\Sigma^{-T}}{\det\Sigma} = \Sigma^{-T} = \Sigma^{-1}$$

Итого получаем, что:

$$\frac{\partial \log p(\mathbf{X}|\mu, \Sigma)}{\partial \Sigma} = -\frac{1}{2} (N \Sigma^{-1} - \Sigma^{-1} (\mathbf{x}_i - \mu) (\mathbf{x}_i - \mu)^T \Sigma^{-1})$$