TE1 AA06/07 (Teoria delle Equazioni)

SOLUZIONE DELL'ESAME DI METÀ SEMESTRE DEL 5/4/07

- 1. Dimostrare che un estensione finita è necessariamente algebrica. Produrre un esempio di un estensione algebrica non finita.
- RISPOSTA: Vedi note Milne. Prima parte della Proposizione 1.30 a pagina 11 (Erano richieste solo le prime due righe della dimostrazione e non l'intero enunciato). Per quanto riguarda l'esempio, basta considerare $\overline{\mathbf{Q}}/\mathbf{Q}$.
 - 2. Descrivere gli elementi del gruppo di Galois del polinomio $(x^5 2) \in \mathbf{Q}[x]$ determinando anche alcuni sottocampi del campo di spezzamento.
- RISPOSTA: Il campo di spezzamento del polinomio è $\mathbf{Q}(\zeta_5, 2^{1/5})$. Pertanto il gruppo di Galois ha $[\mathbf{Q}(\zeta_5, 2^{1/5}) : \mathbf{Q}] = 20$ elementi. Inoltre

Gal(
$$\mathbf{Q}(\zeta_5, 2^{1/5})/\mathbf{Q}$$
) = $\left\{ \begin{array}{c} 2^{1/5} \mapsto \zeta^i 2^{1/5} \\ \zeta \mapsto \zeta^j \end{array} \middle| i = 0, \dots, 4, j = 1, \dots, 4 \right\}.$

Per quanto riguarda i sottocampi, alcuni dei sottocampi sono:

$$\mathbf{Q}(\zeta_5, 2^{1/5}), \mathbf{Q}(2^{1/5}), \mathbf{Q}(\zeta_5 2^{1/5}), \mathbf{Q}(\zeta_5^2 2^{1/5}), \mathbf{Q}(\zeta_5^3 2^{1/5}), \mathbf{Q}(\zeta_5^4 2^{1/5}), \mathbf{Q}(\sqrt{5}2^{1/5}), \mathbf{Q}(\zeta_5), \mathbf{Q}(\sqrt{5}) \in \mathbf{Q}$$

ce ne sono altri?

- 3. Dopo aver verificato che è algebrico, calcolare il polinomio minimo di $\cos \pi/9$ su **Q**.
- RISPOSTA: $\cos \pi/9 = \frac{1}{2}(\zeta_{18}^2 + \zeta_{18}^{-2})$ è algebrico in quanto combinazione lineare a coefficienti razionali di radici dell'unità. Inoltre $f_{\cos \pi/9} = X^3 \frac{3}{2}X \frac{1}{8}$.
 - 4. Si consideri $E = \mathbf{F}_3[\alpha]$ dove α è una radice del polinomio $X^2 + 1$. Determinare il polinomio minimo su \mathbf{F}_3 di $1/(\alpha + 2)$.
- **RISPOSTA:** Notare che $1/(\alpha+2) = \alpha+1$ e che $(\alpha+1)^2 = 2\alpha$. Pertanto il polinomio minimo è $X^2 + X + 2 \in \mathbf{F}_3[X]$.
 - 5. Descrivere il reticolo dei sottocampi di $\mathbf{Q}(\zeta_{11})$.
- **RISPOSTA:** Il gruppo di Galois $Gal(\mathbf{Q}(\zeta_{11})/\mathbf{Q})$ è ciclico e ha 10 elementi. I suoi sottogruppi sono tutti ciclici e hanno rispettivamente 10, 5, 2 e 1 elemento. I sottocampi corrispondenti secondo la corrispondenza di Galois sono: \mathbf{Q} , $\mathbf{Q}(\cos 2\pi/11)$), $\mathbf{Q}(\sqrt{-11})$ e $\mathbf{Q}(\zeta_{11})$. Si noti inoltre che $X^5 + X^4 4X^3 3X^2 + 3X + 1$ è il polinomio minimo di $2\cos 2\pi/11$.
 - 6. Descrivere la nozione di campo perfetto dimostrando che i campi finiti sono perfetti.
- RISPOSTA: Vedi note Milne. Definizione 2.13 a pagina 23 e Esempio 2.16 a pagina 24.
 - 7. Si enunci nella completa generalità il Teorema di corrispondenza di Galois.
- RISPOSTA: Vedi note Milne. Teorema 3.16 a pagina 29.
 - 8. Produrre un esempio di un polinomio di grado 3 il cui gruppo di Galois ha tre elementi giustificando la risposta.
- RISPOSTA: Il polinomio dell'esercizio 3 è un esempio. Altrimenti $X^3 + X^2 2X 1$ che il polinomio minimo di $2\cos 2\pi/7$ va anche bene.
 - 9. Calcolare il polinomio minimo di $\zeta_{16} \in \mathbf{Q}(\zeta_{16})$ su $\mathbf{Q}(\sqrt{-1})$.

RISPOSTA:
$$X^2 - \sqrt{-1} \in \mathbb{Q}(\sqrt{-1})[X]$$
.