

Aula 7 Reconhecendo Placas

Prof.: Lucas Amparo Barbosa SENAI CIMATEC CV Research Group

Sumário da Aula

- 1. Saliência Visual
- 2. Mean Shift
 - a. Tracking utilizando Mean Shift
- 3. Padrões Visuais
- 4. Support Vector Machine
 - a. Dataset de treino
 - b. Treinamento
 - c. Métricas

Objetos Salientes

Prestar atenção no que se destaca

1. Saliência Visual

- → Regiões de detalhe visual
 - Maior luminância
 - Maior contraste
 - Cores chamativas
- → Análise do Espectro de Frequência
 - ◆ Transformada de Fourier
- → Pode ser inteligente ou não
 - Usando modelo pré-treinado para determinado padrão
 - Usando a variação de cada imagem em específico

MATEC

2. Mean Shift

- → Regiões parecidas tendem a ter a mesma média
- → Auxilia no rastreamento

Reconhecendo Padrões

Se eu souber o que procurar, facilita...

3. Padrões Visuais

- → Buscar uma região de interesse
 - Segmentação de Cor
 - ◆ Saliência
 - Mean Shift
 - etc...
- → Descrever essa região (features)
 - ◆ Cor
 - ◆ Contraste
 - Normais
- → Treinar um modelo para reconhecer esses padrões

4. Support Vector Machine

- → Aprendizado Supervisionado
- → Busca encontrar separadores no hiperespaço
 - ◆ Função base de kernel
 - radial
 - linear...
- → Teoricamente, cada dimensão terá o seu separador
 - Se o feature vector tiver 256 bins, o SVM terá 256 dimensões

- Polynomial $K(a,b) = (1 + \sum_{j} a_j b_j)^d$
- Radial Basis Functions

$$K(a,b) = \exp(-(a-b)^2/2\sigma^2)$$

Saturating, sigmoid-like:

$$K(a,b) = \tanh(ca^T b + h)$$

5. O dataset

- → GTSRB Dataset
 - ♦ 50000 exemplos
 - 40 classes

6. Processo de Treinamento

- → Os dados de treino não devem ser os mesmos dos de teste
- → Leave One Out
 - Treina com todos os exemplos, exceto um, que é utilizado como teste
- → k-Fold
 - ♦ Divide o dataset em k partes, utiliza k-1 para treino e 1 para teste
- → k-Fold com Validação Cruzada
 - ♦ Similar ao k-Fold, porém executa k treinos, alternando o teste
 - O resultado vem da média

7. Métricas de Validação

- → Positivos
 - Acertou a classe
- → Negativos
 - ◆ Errou a classe

Actual

	Negative	Positive
Negative	True Negative	False Positive
Positive	False Negative	True Positive

Predicted

→ Todas as métricas podem ter falsos e verdadeiros, positivos ou negativos

7. Métricas de Validação

- → Acurácia
 - O quanto você acertou das classes?
- → Precisão
 - Quantas vezes você acertou os positivos?
- → Identificação
 - Seu algoritmo é capaz de recuperar uma identidade?
- → Verificação
 - O quão bom é a sua taxa de reconhecimento, dado um limite de confiança?

Para saber mais...

- → Saliency
- → Handwritten Digits
- → SVM Docs
- → <u>Métricas para ML</u>
- → Curvas ROC e CMC

Realização

Federação das Indústrias do Estado da Bahia