Lecture 4

Mikhail Golosov

Herrendorf et al (2013), Comin et al (2021)

- Based on Herrendorf, Rogerson, Valentinyi "Two Perspectives on Preferences and Structural Transformation" (AER, 2013)
- How do these stories measure in the data?
- Integrate both into preferences:

$$u\left(c^{A},c^{M},c^{S}\right)=u\left(\left(\sum_{i\in\{A,M,S\}}\omega_{i}^{1/\sigma}\left(c^{i}+\bar{c}^{j}\right)^{\frac{\sigma-1}{\sigma}}\right)^{\frac{\sigma}{\sigma-1}}\right)$$

with $\bar{c}^M = 0$

- Let C be total consumption expenditures
- Allocation of demand within sectors, conditional on C, solves static problem

$$\max\left(\sum_{i\in\{A,M,S\}}\omega_i^{1/\sigma}\left(c^i+\bar{c}^j\right)^{\frac{\sigma-1}{\sigma}}\right)^{\frac{\sigma}{\sigma-1}}$$

s.t.

$$\sum_{i} p^{i} c^{i} = C$$

Expenditure shares

$$s^{i} \equiv \frac{p^{i}c^{i}}{C} = \frac{\omega_{i} \left(p^{i}\right)^{1-\sigma}}{\sum_{j} \omega_{j} \left(p^{j}\right)^{1-\sigma}} \left(1 + \sum_{j} \frac{p^{j}\bar{c}^{j}}{C}\right) - \frac{p^{i}\bar{c}^{i}}{C}$$

- By observing data on p_t^i , C_t , c_t^i can estimate all structural parameters using standard demand estimation methods
- What are c^A , c^M , c^S in the data?

- By observing data on p_t^i , C_t , c_t^i can estimate all structural parameters using standard demand estimation methods
- What are c^A , c^M , c^S in the data?
- Different ways to conceptualize them
 - final expenditure: purchases of food store = A, restaurant meals = S
 - sectorial value added: VA of both types of food purchases created in A,
 M, S, can back them out using sectorial VA data
 - I will focus on final expenditure, see the paper for sectoral VA

Final expenditures: shares

FIGURE 1. EXPENDITURE SHARES

Final expenditures: prices

Figure 2. Price Indices (1947 = 1)

Final expenditures: quantities

Mikhail Golosov (Herrendorf et al (2013), Co

Some observations

• Differential trends in prices/productivity

$$\frac{\dot{p}_t^S}{p_t^S} > \frac{\dot{p}_t^A}{p_t^A} > \frac{\dot{p}_t^M}{p_t^M}$$

- Non-homotheticity must play a role
 - to simultaneously have c_t^S/c_t^A increasing when p_t^S/p_t^A are also increasing

Final expenditures: estimations

TABLE 1—RESULTS WITH FINAL CONSUMPTION EXPENDITURE

	(1)	(2)	(3)
σ	0.85** (0.06)	1	0.89** (0.02)
\overline{c}_a	-1,350.38** (31.18)	-1,315.99** (26.48)	
\overline{C}_{S}	11,237.40** (2,840.77)	19,748.22** (1,275.69)	
ω_a	0.02** (0.001)	0.02** (0.001)	0.11** (0.005)
ω_m	0.17** (0.01)	0.15** (0.004)	0.24** (0.03)
$\omega_{\scriptscriptstyle S}$	0.81** (0.01)	0.84** (0.005)	0.65** (0.01)
$\chi^2(\overline{c}_a=0,\overline{c}_s=0)$	3,866.73**	4,065.33**	
AIC	-932.55	-931.35	-666.03
$RMS \ E_a$ $RMS \ E_m$ $RMS \ E_S$	0.004 0.009 0.010	0.004 0.009 0.011	0.040 0.022 0.061

Notes: χ^2 is the Wald Test Statistics for the hypothesis that \bar{c}_a and $\bar{c}_s = 0$ are jointly zero. AIC is the Akaike information criterion, *RMS* E_i is the root mean squared error for equation *i*. Robust standard errors in parentheses.

Final expenditures: estimations

- Both demand and supply stories are supported by the data
 - demand: $\bar{c}^A < 0$, $\bar{c}^S > 0$
 - \bullet supply: $\sigma < 1$
- Horserace between supply and demand stories?

Counterfactual: relative prices unchanged

FIGURE 6. FIT OF COLUMN 1 WITH RELATIVE PRICES FIXED AT 1947 VALUES

Final expenditures: estimations

- Non-homotheticities/income effects are the driving force
- Technical progress (i.e. price growth rates) are very different across sectors, but has relatively modest role quantitatively
- Even though the "knife-edge" condition

$$\bar{p}_t^A \bar{c}^A + \bar{p}_t^S \bar{c}^S = 0$$

does not hold, model fits the data well

 although BGP does not exist in a literal sence, equilibrium behaves approximately as such

Cross-country evidence

- Recent paper by Comin, Lashkari, Mestieri (Econometrica, 2021) does similar excercise for many (poor, middle income, rich) countries
 - use both household consumption data (U.S. and India) and aggregagate date
 - use more general version of preferences than Stone-Geary
 - four parameters: common elasticity σ , three sector-specific income effects $\{\epsilon_i\}_{i\in\{M,S,A\}}$
- Estimate these preferences in the data
 - restrict to common parameters for all countries
 - see how much can structural transformation can be explained using country-specific data on prices and income
- ullet Reject Stone-Geary specification \Longrightarrow non-homotheticities do not disappear

Cross-country data

Figure 1: Sectoral Shares of Employment and Value Added – Selected Developed Countries 1800–2000

Cross-country data

Figure 2: Baseline fit with common preference parameters $\{\sigma, \epsilon_a - \epsilon_m, \epsilon_s - \epsilon_m\}$ for six countries

Cross-country data

TABLE IV $\label{eq:Accounting} \mbox{ Accounting for Structural Change, Baseline Estimates}^a$

$\log(\frac{Agriculture}{Manufacturing})$	$\log(\frac{\text{Services}}{\text{Manufacturing}})$
0.97	0.57
0.46	0.61
Within-Country Variance Decomposition	
0.02	0.27
0.98	0.84
1.00	1.00
	0.97 0.46 Within-Country Varia 0.02 0.98

^a Explained over Total Variance is computed as
$$Var[log(\frac{L_{lt}^H}{L_{lt}^H})]/Var[log(\frac{L_{lt}^H}{L_{lt}^H})]$$
. Within over Explained Variance is computed as $Var[(1-\hat{\sigma})\log(\frac{P_{lt}^H}{L_{lt}^H})+(1-\hat{\sigma})(\hat{\epsilon}_i-1)\widehat{\log C_l^H}]/Var[log(\frac{L_{lt}^H}{L_{lt}^H})]$

Income effects drive most structural change, especially from A to M