TMS4416 . . . NL PACKAGE SMJ4416 . . . JD PACKAGE

(TOP VIEW)

5 HTTLD V-

- 16,384 X 4 Organization
- Single +5-V Supply (10% Tolerance)
- Performance Ranges:

renoma	ice naliyes.				о Цт Отв∐ vss
	ACCESS TIME ROW ADDRESS (MAX)	ACCESS TIME COLUMN ADDRESS (MAX)	READ OR WRITE CYCLE (MIN)	READ- MODIFY- WRITE CYCLE (MIN)	DQ1 2 17 DQ4 DQ2 3 16 CAS W 4 15 DQ3 RAS 5 14 AO A6 6 13 A1
'4416-12	120 ns	70 ns	230 ns	320 ns	A5 ∐7 12 A2
4416-15	150 ns	80 ns	260 ns	330 ns	A4 ∐8 11 ☐ A3
'4416-20	200 ns	120 ns	330 ns	440 ns	V _{DD} [9 10 A7

- Available Temperature Ranges*:
 - S . . . 55 °C to 100 °C
 - E... -40°C to 85°C
 - L...0°C to 70°C
- Long Refresh Period . . . 4 milliseconds
- Low Refresh Overhead Time . . . As Low As 1.7% of Total Refresh Period
- All Inputs, Outputs, Clocks Fully TTL Compatible
- 3-State Unlatched Outputs
- Early Write or G to Control Output Buffer Impedance
- Page-Mode Operation for Faster Access
- Low Power Dissipation
 - Operating . . . 200 mW (TYP)
 - Standby . . . 17.5 mW (TYP)
- New SMOS (Scaled-MOS) N-Channel Technology

	PIN NOMENCLATURE
A0-A7	Address Inputs
CAS	Column Address Strobe
DQ1-DQ4	Data In/Data Out
G	Output Enable
RAS	Row Address Strobe
V_{DD}	+5-V Supply
V _{SS}	Ground
w	Write Enable

description

The '4416 is a high-speed, 65,536-bit, dynamic, random-access memory, organized as 16,384 words of 4 bits each. It employs state-of-the-art SMOS (scaled MOS) N-channel double-level polysilicon gate technology for very high performance combined with low cost and improved reliability.

The '4416 features RAS access times to 120 ns maximum. Power dissipation is 200 mW typical operating, 17.5 mW typical standby.

New SMOS technology permits operation from a single +5-V supply, reducing system power supply and decoupling requirements, and easing board layout. Ipp peaks have been reduced to 60 mA typical, and a -1-V input voltage undershoot can be tolerated, minimizing system noise considerations. Input clamp diodes are used to ease system design.

Refresh period is extended to 4 milliseconds, and during this period each of the 256 rows must be strobed with \overline{RAS} in order to retain data. \overline{CAS} can remain high during the refresh sequence to conserve power.

All inputs and outputs, including clocks, are compatible with Series 54/74 TTL. All address lines and data-in are latched on chip to simplify system design. Data-out is unlatched to allow greater system flexibility.

PRODUCT PREVIEW

Copyright © 1984 by Texas Instruments Incorporated

^{*} M temperature range (-55°C to 125°C) to be available in future.

The TMS4416 is offered in 18-pin plastic dual-in line and 18-pin plastic chip carrier packages. It is guaranteed for operation from 0°C to 70°C. The SMJ4416 is offered in 18-pin ceramic side-braze dual-in-line and 18-pin ceramic chip carrier packages. It is available in -55°C to 100°C and -40°C to 85°C temperature ranges. Dual-in-line packages are designed for insertion in mounting-hole rows on 300-mil (7.62 mm) centers.

operation

address (A0 through A7)

Fourteen address bits are required to decode 1 of 16,384 storage locations. Eight row-address bits are set up on pins A0 through A7 and latched onto the chip by the row-address strobe (RAS). Then the six column-address bits are set up on pins A1 through A6 and latched onto the chip by the column-address strobe (CAS). All addresses must be stable on or before the falling edges of RAS and CAS. RAS is similar to a chip enable in that it activates the sense amplifiers as well as the row decoder. CAS is used as a chip select activating the column decoder and the input and output buffers.

write enable (W)

The read or write mode is selected through the write enable (\overline{W}) input. A logic high on the \overline{W} input selects the read mode and a logic low selects the write mode. The write enable terminal can be driven from standard TTL circuits without a pull-up resistor. The data input is disabled when the read mode is selected. When \overline{W} goes low prior to \overline{CAS} , data-out will remain in the high-impedance state allowing a write cycle with \overline{G} grounded.

data-in (DQ1 through DQ4)

Data is written during a write or read-modify write cycle. Depending on the mode of operation, the falling edge of $\overline{\text{CAS}}$ or $\overline{\text{W}}$ strobes data into the on-chip data latches. These latches can be driven from standard TTL circuits without a pull-up resistor. In an early-write cycle, $\overline{\text{W}}$ is brought low prior to $\overline{\text{CAS}}$ and the data is strobed in by $\overline{\text{CAS}}$ with setup and hold times referenced to this signal. In a delayed write or read-modify-write cycle, $\overline{\text{CAS}}$ will already be low, thus the data will be strobed in by $\overline{\text{W}}$ with setup and hold times referenced to this signal. In delayed or read-modify-write, $\overline{\text{G}}$ must be high to bring the output buffers to high impedance prior to impressing data on the I/O lines.

data-out (DQ1 through DQ4)

The three-state output buffer provides direct TTL compatibility (no pull-up resistor required) with a fan-out of two Series $\underline{54/74}$ TTL loads. Data-out is the same polarity as data-in. The output is in the high-impedance (floating) state until \overline{CAS} is brought low. In a read cycle the output goes active after the access time interval $t_{a(C)}$ that begins with the negative transition of \overline{CAS} as long as $t_{a(R)}$ and $t_{a(E)}$ are satisified. The output becomes valid after the access time has elapsed and remains valid while \overline{CAS} and \overline{G} are low. \overline{CAS} or \overline{G} going high returns it to a high impedance state. In an early-write cycle, the output is always in the high impedance state. In a delayed-write or read-modify-write cycle, the output must be put in the high impedance state prior to applying data to the DQ input. This is accomplished by bringing \overline{G} high prior to applying data, thus satisfying t_{GHD} .

output enable (G)

The \overline{G} controls the impedance of the output buffers. When \overline{G} is high, the buffers will remain in the high impedance state. Bringing \overline{G} low during a normal cycle will activate the output buffers putting them in the low impedance state. It is necessary for both \overline{RAS} and \overline{CAS} to be brought low for the output buffers to go into the low impedance state. Once in the low impedance state, they will reamin in the low impedance state until \overline{G} or \overline{CAS} is brought high.

refresh

A refresh operation must be performed at least every four milliseconds to retain data. Since the output buffer is in the high-impedance state unless \overline{CAS} is applied, the \overline{RAS} -only refresh sequence avoids any output during refresh. Strobing each of the 256 row addresses (A0 through A7) with \overline{RAS} causes all bits in each row to be refreshed. \overline{CAS} can remain high (inactive) for this refresh sequence to conserve power.

TMS4416, SMJ4416 16.384-WORD BY 4-BIT DYNAMIC RAM

page mode

Page mode operation allows effectively faster memory access by keeping the same row address and strobing successive column addresses onto the chip. Thus, the time required to setup and strobe sequential row addresses for the same page is eliminated. To extend beyond the 64 column locations on a single RAM, the row address and RAS are applied to multiple 16K × 4 RAMs. CAS is then decoded to select the proper RAM.

power-up

After power-up, the power supply must remain at its steady-state value for 1 ms. In addition, the \overline{RAS} input must remain high for 100 μ s immediately prior to initialization. Initialization consists of performing eight \overline{RAS} cycles before proper device operation is achieved.

logic symbol†

[†]This symbol is in accordance with IEEE Std 91/ANSI Y32.14 and recent decisions by IEEE and IEC. See explanation on page 10-1.

functional block diagram

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) †

Voltage on any pin except VDD and data out (see Note 1)	1.5 V to 10 V
Voltage on VDD supply and data out with respect to VSS	1 V to 6 V
Short circuit output current	50 mA
Power dissipation	1 W
Operating free-air temperature range: TMS'	0°C to 70°C
Operating case temperature range: SMJ' - S version	-55°C to 100°C
- E version	40°C to 85°C
Storage temperature range	-65°C to 150°C

[†] Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the "Recommended Operating Conditions" section of this specification is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTE 1: All voltage values in this data sheet are with respect to VSS.

18

recommended operating conditions

	DADAMETED		TMS4416			
	PARAMETER		NOM	MAX	UNIT	
Supply voltage, V _{DD}		4.5	5	5.5	V	
Supply voltage, VSS			. 0		V	
High total income where W.	V _{DD} = 4.5 V	2.4		4.8	V	
High-level input voltage, V _{IH}	V _{DD} = 5.5 V	2.4		5.8	١ ٧	
Low-level input voltage, VIL (see Not	e 2)	VIK		0.8	V	
Operating free-air temperature, TA		0		70	°C	

NOTE 2: The algebraic convention, where the more negative (less positive) limit is designated as minimum, is used in this data sheet for logic voltage levels only.

electrical characteristics over full ranges of recommended operating conditions (unless otherwise noted)

PARAMETER		TEST CONDITIONS	TN	TMS4416-12		
	PARAMETER	TEST CONDITIONS	MIN	TYP [†]	MAX	UNIT
V _{IK}	Input clamp voltage	$I_{\parallel} = -15 \text{ mA},$ see Figure 1			-1.2	٧
Voн	High-level output voltage	I _{OH} = -2 mA	2.4			V
VOL	Low-level output voltage	I _{OL} = 4.2 mA	7		0.4	V
Ìį .	Input current (leakage)	$V_I = 0 \text{ V to } 5.8 \text{ V},$ $V_{DD} = 5 \text{ V},$ All other pins = 0 V			±10	μА
ю	Output current (leakage)	$V_O = 0.4 \text{ V to } 5.5 \text{ V},$ $V_{DD} = 5 \text{ V}, \overline{\text{CAS high}}$			±10	μΑ
DD1	Average operating current during read or write cycle	At t _C = minimum cycle			54	mA
DD2 [‡]	Standby current	After 1 memory cycle, RAS and CAS high		3.5	5	mA
lDD3	Average refresh current	t _C = minimum cycle, RAS cycling, CAS high			46	mA
I _{DD4}	Average page-mode current	t _{C(P)} = minimum cycle, RAS low, CAS cycling			46	mA

 $^{^{\}dagger}$ All typical values are at T_A = 25 °C and nominal supply voltages.

 $^{^{\}ddagger}V_{IL} \ge -0.6 \text{ V on all inputs.}$

electrical characteristics over full ranges of recommended operating conditions (unless otherwise noted)

DADAMETED		PARAMETER TEST CONDITIONS TMS44		TMS4416-15		TMS4416-20			
	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	MIN	TYP†	MAX	UNIT
VIK	Input clamp voltage	I _I = -15 mA, see Figure 1			-1.2			-1.2	٧
VoH	High-level output voltage	I _{OH} = -2 mA	2.4			2.4			V
VOL	Low-level output voltage	I _{OL} = 4.2 mA			0.4			0.4	V
l _l	Input current (leakage)	$V_I = 0 \text{ V to } 5.8 \text{ V},$ $V_{DD} = 5 \text{ V},$ All other pins = 0 V			± 10			± 10	μΑ
lo	Output current (leakage)	$V_{O} = 0.4 \text{ V to } 5.5 \text{ V},$ $V_{DD} = 5 \text{ V}, \overline{CAS} \text{ high}$			± 10			± 10	μΑ
IDD1	Average operating current during read or write cycle	At t _C = minimum cycle		40	48		35	42	mA
I _{DD2} ‡	Standby current	After 1 memory cycle, RAS and CAS high		3.5	5		3.5	5	mA
^l DD3	Average refresh current	t _c = minimum cycle, RAS cycling, CAS high		25	40		21	34	mA
I _{DD4}	Average page-mode current	t _{c(P)} = minimum cycle, RAS low, CAS cycling		25	40		21	34	mA

 $^{^{\}dagger}All$ typical values are at $T_{A}~=~25\,^{o}C$ and nominal supply voltages.

capacitance over recommended supply voltage range and operating free-air temperature range, f=1 MHz

	DADAMETER	1	TMS4416			
	PARAMETER		P [†] MAX	UNIT		
Ci(A)	Input capacitance, address inputs		5 7	pF		
C _{i(RC)}	Input capacitance, strobe inputs		B 10	pF		
C _{i(W)}	Input capacitance, write enable input		B 10	pF		
C _{i/o}	Input/output capacitance, data ports		8 10	pF		

 $^{^{\}dagger}\text{All}$ typical values are at $T_{\mbox{\scriptsize A}}$ =25 $^{\circ}\mbox{\scriptsize C}$ and nominal supply voltages.

 $^{^{\}ddagger}V_{IL} \geq -0.6 \ V$ on all inputs.

TMS4416 16,384-WORD BY 4-BIT DYNAMIC RAM

switching characteristics over recommended supply voltage range and operating free-air temperature range

	PARAMETER	TEST CONDITIONS	ALT.	TMS44	UNIT	
- ANAMETEN		TEST CONDITIONS	SYMBOL	MIN	MAX	ONIT
t (0)	Access time from CAS	$C_L = 100 \text{ pF},$	toto		70	
ta(C)	Access time from CAO	Load = 2 Series 74 TTL gates	tCAC		70	ns
t _a (R)	Access time from RAS	t _{RLCL} = MAX, C _L = 100 pF	†RAC		120	ns
		Load = 2 Series 74 TTL gates				
t _a (G)	Access time after \overline{G} low	C _L = 100 pF, Load = 2 Series 74 TTL gates			30	ns
^t dis(CH)	Output disable time after CAS high	C _L = 100 pF, Load = 2 Series 74 TTL gates	tOFF	0	30	ns
t _{dis} (G)	Output disable time after G high	C _L = 100 pF, Load = 2 Series 74 TTL gates		0	30	ns

PARAMETER		TEST CONDITIONS	ALT.	TMS4416-15		TMS4416-20		
		TEST CONDITIONS	SYMBOL	MIN	MAX	MIN	MAX	UNIT
t _a (C)	Access time from CAS	C _L = 100 pF,	tCAC		00		100	
'a(C)		Load = 2 Series 74 TTL gates	CAC		80		120	ns
		tRLCL = MAX,		1				
t _{a(R)}	Access time from RAS	C _L = 100 pF	^t RAC	150	150		200	ns
_		Load = 2 Series 74 TTL gates		<u> </u>				
t (0)	Access time after G low	C _L = 100 pF,		40)	50	ns
t _{a(G)}	Access time after G low	Load = 2 Series 74 TTL gates			40		50	115
t	Output disable time after CAS high	$C_L = 100 pF$,	*	0	30	0	40	ns
¹dis(CH)	Output disable time after CAS high	Load = 2 Series 74 TTL gates	tOFF		30		40	15
+	Output disable time	C _L = 100 pF,		0	30		40	
^t dis(G)	after G high	Load = 2 Series 74 TTL gates		"	30	0	40	ns

timing requirements over recommended supply voltage range and operating free-air temperature range

	DADAMETED	ALT.	TMS	UNIT	
	PARAMETER	SYMBOL	MIN	MAX	UNII
t _{c(P)}	Page mode cycle time	tPC	120		ns
tc(rd)	Read cycle time*	tRC	230		ns
t _c (W)	Write cycle time	twc	230		ns
t _{c(rdW)}	Read-write/read-modify-write cycle time	tRWC	320		ns
tw(CH)	Pulse width, CAS high (precharge time)**	tCP	40		ns
tw(CL)	Pulse width, CAS low [†]	tCAS	70	10,000	ns
tw(RH)	Pulse width RAS high (precharge time)	t _{RP}	80		ns
tw(RL)	Pulse width, RAS low [‡]	tRAS	120	10,000	ns
tw(W)	Write pulse width	twp	30		ns
tt	Transition times (rise and fall) for RAS and CAS	tŢ	3	50	ns
t _{su(CA)}	Column address setup time	tASC	0		ns
t _{su(RA)}	Row address setup time	tASR	0		ns
t _{su(D)}	Data setup time	t _{DS}	0		ns
t _{su(rd)}	Read command setup time	tRCS	0		ns
t _{su} (WCH)	Write command setup time before CAS high	tcwL	50		ns
t _{su} (WRH)	Write command setup time before RAS high	t _{RWL}	50		ns
th(CLCA)	Column address hold time after CAS low	†CAH	35		ns
th(RA)	Row address hold time	tRAH	15		ns
th(RLCA)	Column address hold time after RAS low	tAR	85		ns
th(CLD)	Data hold time after CAS low	t _{DH}	40		ns
th(RLD)	Data hold time after RAS low	tDHR	100		ns
th(WLD)	Data hold time after W low	t _{DH}	30		ns
th(RHrd)	Read command hold time after RAS high	trrh	10		ns
th(CHrd)	Read command hold time after CAS high	tRCH	0		ns
th(CLW)	Write command hold time after CAS low	twch	40		ns
th(RLW)	Write command hold time after RAS low	twcr	100		ns
^t RLCH	Delay time, RAS low to CAS high	tcsH	150		ns
[†] CHRL	Delay time, CAS high to RAS low	tCRP	0		ns
^t CLRH	Delay time, CAS low to RAS high	trsh	80		ns
	Delay time, CAS low to W low		100		
tCLWL	(read, modify-write-cycle only)***	tCMD	120		ns
	Delay time, RAS low to CAS low				
^t RLCL	(maximum value specified only to guarantee access time)	tRCD	20	50	ns
	Delay time, RAS low to W low		170		
trlwl .	(read, modify-write-cycle only)***	tRWD	170		ns
tWLCL	Delay time, W low to CAS low (early write cycle)	twcs	-5		ns
tGHD	Delay time, G high before data applied at DQ		30		ns
^t rf	Refresh time interval	tREF		4	ms

^{*.} Note: All cycle times assume t_t = 5 ns.

^{**} Page mode only.

^{***}Necessary to insure $\overline{\mathbf{G}}$ has disabled the output buffers prior to applying data to the device.

[†]In a read-modify-write cycle, t_{CLWL} and t_{su(WCH)} must be observed. Depending on the user's transition times, this may require additional <u>CAS</u> low time t_{W(RL)}.

†In a read-modify-write cycle, t_{RLWL} and t_{su(WRH)} must be observed. Depending on the user's transition times, this may require additional <u>RAS</u> low time t_{w(RL)}.

TMS4416 16,384-WORD BY 4-BIT DYNAMIC RAM

timing requirements over recommended supply voltage range and operating free-air temperature range

	PARAMETER		TMS4416-15	TMS4416-20	LINIT
	PARAMETER	SYMBOL	MIN MAX	MIN MAX	UNIT
t _{c(P)}	Page mode cycle time	tPC	140	210	ns
t _{c(rd)}	Read cycle time*	tRC	260	330	ns
t _{c(W)}	Write cycle time	twc	260	330	ns .
tc(rdW)	Read-write/read-modify-write cycle time	tRWC	360	440	ns
tw(CH)	Pulse width, CAS high (precharge time)**	tCP	50	80	ns
tw(CL)	Pulse width, CAS low†	tCAS	80 10,000	120 10,000	ns
tw(RH)	Pulse width RAS high (precharge time)	tRP	100	120	ns
tw(RL)	Pulse width, RAS low [‡]	tRAS	150 10,000	200 10,000	ns
tw(W)	Write pulse width	tWP	40	50	ns
tt	Transition times (rise and fall) for RAS and CAS	tΤ	3 . 50	3 50	ns
t _{su(CA)}	Column address setup time	tASC	0	0	ns
t _{su(RA)}	Row address setup time	tASR	0	0	ns
t _{su(D)}	Data setup time	tDS	0	0	ns
tsu(rd)	Read command setup time	tRCS	0	0	ns
t _{su} (WCH)	Write command setup time before CAS high	tCWL	60	80	ns
t _{su} (WRH)	Write command setup time before RAS high	tRWL	60	80	ns
th(CLCA)	Column address hold time after CAS low	†CAH	40	50	ns
th(RA)	Row address hold time	tRAH	20	25	ns
th(RLCA)	Column address hold time after RAS low	tAR	110	130	ns
th(CLD)	Data hold time after CAS low	t _{DH}	60	80	ns
th(RLD)	Data hold time after RAS low	tDHR	130	160	ns
th(WLD)	Data hold time after W low	tDH	40	50	ns
th(RHrd)	Read command hold time after RAS high	tRRH	10	10	ns
th(CHrd)	Read command hold time after CAS high	tRCH	0	0	ns
th(CLW)	Write command hold time after CAS low	tWCH	60	80	ns
th(RLW)	Write command hold time after RAS low	tWCR	130	160	ns
tRLCH	Delay time, RAS low to CAS high	tCSH	150	200	ns
^t CHRL	Delay time, CAS high to RAS low	tCRP.	0	0	ns
^t CLRH	Delay time, CAS low to RAS high	tRSH	80	120	ns
*****	Delay time, CAS low to W low	tourn	120	150	ns
tCLWL	(read, modify-write-cycle only) ***	tCMD	120	150	115
•=	Delay time, RAS low to CAS low		20 70	25 80	ns
tRLCL	(maximum value specified only to guarantee access time)	tRCD	20 /0	25 60	115
tours	Delay time, RAS low to W low	tnun	190	230	ns
tRLWL	(read, modify-write-cycle only) ***	tRWD	130	230	115
tWLCL	Delay time, W low to CAS low (early write cycle)	twcs	-5	- 5	ns
^t GHD	Delay time, \overline{G} high before data applied at DQ		30	40	ns
t _{rf}	Refresh time interval	tREF	4	4	ms

Note: All cycle times assume $t_t = 5$ ns.

^{**} Page mode only.

^{***} Necessary to insure $\overline{\mathbf{G}}$ has disabled the output buffers prior to applying data to the device.

[†] In a read-modify-write cycle, t_{CLWL} and t_{su{WCH}} must be observed. Depending on the user's transition times, this may require additional CAS low time t_{W(CL)}.

In a read-modify-write cycle, t_{RLWL} and t_{su(WRH)} must be observed. Depending on the user's transition times, this may require additional RAS low time t_{w(RL)}.

recommended operating conditions

		SMJ4416						
PARAMETER			S VERSI	ON	E	E VERSION		
		MIN	NOM	MAX	MIN	NOM	MAX	Ī.
Supply voltage, V _{DD}		4.5	5	5.5	4.5	5	5.5	V
Supply voltage, VSS			0			0		V
Disk level is an author of M	V _{DD} = 4.5 V	2.4		4.8	2.4		4.8	
High-level input voltage, VIH	V _{DD} = 5.5 V	2.4		5.8	2.4		5.8	\
Low-level input voltage, V _{IL} (see Note 2)		VIK		0.8	VIK		0.8	V
Operating case temperature, TC		- 55		100	-40		85	°C

NOTE 2: The algebraic convention, where the more negative (less positive) limit is designated as minimum, is used in this data sheet for logic voltage levels only.

electrical characteristics over full ranges of recommended operating conditions (unless otherwise noted)

PARAMETER		TEST COMPLETIONS		SMJ4416-12		
		TEST CONDITIONS	MIN	MIN TYP† MAX		TINU
VIK	Input clamp voltage	l₁ = −15 mA, see Figure 1			-1.2	٧
Voн	High-level output voltage	I _{OH} = -2 mA	2.4			V
VOL	Low-level output voltage	I _{OL} = 4.2 mA			0.4	V
4	Input current (leakage)	$V_{\parallel} = 0 \text{ V to } 5.8 \text{ V,}$ $V_{DD} = 5 \text{ V,}$ All other pins = 0 V			± 10	μΑ
l _O	Output current (leakage)	$V_{O} = 0.4 \text{ V to } 5.5 \text{ V},$ $V_{DD} = 5 \text{ V}, \overline{CAS} \text{ high}$			±10	μΑ
^I DD1	Average operating current during read or write cycle	At t _C = minimum cycle			54	mA
I _{DD2} ‡	Standby current	After 1 memory cycle, RAS and CAS high		3.5	5	mA
IDD3	Average refresh current	t _c = minimum cycle, RAS cycling, CAS high			46	mA
I _{DD4}	Average page-mode current	t _{c(P)} = minimum cycle, RAS low, CAS cycling			46	mA

 $^{^{\}dagger}$ All typical values are at T $_{C}$ = 25 $^{\circ}$ C and nominal supply voltages.

 $^{^{\}ddagger}V_{IL} \ge -0.6 \text{ V on all inputs.}$

SMJ4416 16.384-WORD BY 4-BIT DYNAMIC RAM

electrical characteristics over full ranges of recommended operating conditions (unless otherwise noted)

PARAMETER		TECT COMPLTICALS		SMJ4416-15		SMJ4416-20			UNIT
		TEST CONDITIONS	MIN	TYP [†]	MAX	MIN	TYP [†]	MAX	UNIT
VIK	Input clamp voltage	I _I = -15 mA, see Figure 1			-1.2			-1.2	V
VOH	High-level output voltage	I _{OH} = -2 mA	2.4			2.4			٧
VOL	Low-level output voltage	I _{OL} = 4.2 mA			0.4			0.4	>
lį.	Input current (leakage)	$V_I = 0 \text{ V to } 5.8 \text{ V},$ $V_{DD} = 5 \text{ V},$ All other pins = 0 V			± 10			±10	μΑ
lo	Output current (leakage)	$V_O = 0.4 \text{ V to } 5.5 \text{ V},$ $V_{DD} = 5 \text{ V}, \overline{CAS} \text{ high}$			±10			±10	μΑ
IDD1	Average operating current during read or write cycle	At t _C = minimum cycle		40	48		35	42	mA
IDD2 [‡]	Standby current	After 1 memory cycle, RAS and CAS high		3.5	5		3.5	5	mA
l _{DD3}	Average refresh current	t _C = minimum cycle, RAS cycling, CAS high		25	40		21	34	mA
I _{DD4}	Average page-mode current	$t_{C(P)} = minimum cycle,$ \overline{RAS} low, \overline{CAS} cycling		25	40	,	21	34	mA

 $^{^{\}dagger}$ All typical values are at $T_{C}=25\,^{\circ}C$ and nominal supply voltages.

capacitance over recommended supply voltage range and operating case temperature range, f = 1 MHz

PARAMETER		SMJ4416 TYP [†] MAX			
C _{i(A)}	Input capacitance, address inputs		5	7	pF
C _{i(RC)}	Input capacitance, strobe inputs		8	10	pF
C _{i(W)}	Input capacitance, write enable input		8	10	pF
C _{i/o}	Input/output capacitance, data ports		8	10	pF

[†]All typical values are at T_C =25°C and nominal supply voltages.

[‡]V_{II.} ≥ -0.6 V on all inputs.

switching characteristics over recommended supply voltage range and operating case temperature range

PARAMETER		TEGT CONDITIONS	ALT.	SMJ4416-12		UNIT
		TEST CONDITIONS	SYMBOL	MIN	MAX	UNII
t _{a(C)}	Access time from CAS	C _L = 100 pF, Load = 2 Series 74 TTL gates	†CAC		70	ns
t _{a(R)}	Access time from RAS	t _{RLCL} = MAX, C _L = 100 pF Load = 2 Series 74 TTL gates	tRAC		120	ns
t _a (G)	Access time after G low	C _L = 100 pF, Load = 2 Series 74 TTL gates			30	ns
^t dis(CH)	Output disable time after CAS high	C _L = 100 pF, Load = 2 Series 74 TTL gates	tOFF	0	30	ns
^t dis(G)	Output disable time after G high	C _L = 100 pF, Load = 2 Series 74 TTL gates		0	30	ns

PARAMETER		TECT COMPITIONS	ALT.	SMJ4416-15		SMJ4416-20		UNIT
		TEST CONDITIONS	SYMBOL	MIN	MAX	MIN	MAX	UNII
ta(C)	Access time from CAS	CL = 100 pF,	tCAC				120	
·a(C)	Access time from GAG	Load = 2 Series 74 TTL gates	CAL		80		120	ns
t _a (R)	Access time from RAS	t _{RLCL} = MAX,		150				
		C _L = 100 pF	tRAC		150		200	ns
		Load = 2 Series 74 TTL gates				ļ		
t-(0)	Access time after G low	C _L = 100 pF,			40	[50	ns
ta(G)		Load = 2 Series 74 TTL gates			40		50	115
t.:	Output disable time after CAS high	$C_L = 100 pF$,	torr	0	30	0	40	ns
^t dis(CH)	Output disable time after CAS high	Load = 2 Series 74 TTL gates	^t OFF	Ŭ	30		40	115
•	Output disable time	C _L = 100 pF,		0	30	0	40	ns
^t dis(G)	after G high	Load = 2 Series 74 TTL gates		١ '	30	"	40	l ns

timing requirements over recommended supply voltage range and operating case temperature range

	PARAMETER		SMJ	UNIT	
	FARANETER	SYMBOL	MIN	MAX	ONT
t _{c(P)}	Page mode cycle time	tPC	120		ns
t _C (rd)	Read cycle time*	tRC	230		ns
t _{c(W)}	Write cycle time	twc	230		ns ,
tc(rdW)	Read-write/read-modify-write cycle time	tRWC	320		ns
tw(CH)	Pulse width, CAS high (precharge time) **	tCP	40		ns
tw(CL)	Pulse width, CAS low [†]	tCAS	70	10,000	ns
tw(RH)	Pulse width RAS high (precharge time)	t _{RP}	80		ns
tw(RL)	Pulse width, RAS low [‡]	tRAS	120	10,000	ns
tw(W)	Write pulse width	twp	30		ns
tt	Transition times (rise and fall) for RAS and CAS	tŢ	3	50	ns
t _{su(CA)}	Column address setup time	tASC	0		ns
t _{su(RA)}	Row address setup time	tASR	0		ns
t _{su(D)}	Data setup time	t _{DS}	0		ns
t _{su(rd)}	Read command setup time	tRCS	0		ns
t _{su} (WCH)	Write command setup time before CAS high	tcwL	50		ns
t _{su} (WRH)	Write command setup time before RAS high	tRWL	50		ns
th(CLCA)	Column address hold time after CAS low	tCAH	35		ns
th(RA)	Row address hold time '	tRAH	15		ns
th(RLCA)	Column address hold time after RAS low	tAR	85		ns
th(CLD)	Data hold time after CAS low	t _{DH}	40		ns
th(RLD)	Data hold time after RAS low	tDHR	100		ns
th(WLD)	Data hold time after W low	t _{DH}	30		ns
th(RHrd)	Read command hold time after RAS high	tRRH	10		ns .
th(CHrd)	Read command hold time after CAS high	tRCH	0		ns
th(CLW)	Write command hold time after CAS low	tWCH	40		ns
th(RLW)	Write command hold time after RAS low	twcr	100		ns
^t RLCH	Delay time, RAS low to CAS high	tCSH	150		ns
tCHRL	Delay time, CAS high to RAS low	tCRP	0		ns
^t CLRH	Delay time, CAS low to RAS high	trsh	80		ns
	Delay time, CAS low to W low		1		
tCLWL	(read, modify-write-cycle only) * * *	tCWD	120		ns
	Delay time, RAS low to CAS low		T		
^t RLCL	(maximum value specified only to guarantee access time)	tRCD	20	50	ns
	Delay time, RAS low to W low		475		
tRLWL	(read, modify-write-cycle only) * * *	tRWD	170	į	ns
tWLCL	Delay time, W low to CAS low (early write cycle)	twcs	-5		ns
tGHD	Delay time, G high before data applied at DQ	<u> </u>	30		ns
t _{rf}	Refresh time interval	tREF		4	ms

Note: All cycle times assume t_t = 5 ns.

^{**} Page mode only.

^{***}Necessary to insure $\overline{\mathbf{G}}$ has disabled the output buffers prior to applying data to the device.

[†]In a read-modify-write cycle, tCLWL and tsu(WCH) must be observed. Depending on the user's transition times, this may require additional CAS low time tw(CL).

[‡]In a read-modify-write cycle, t_{RLWL} and t_{Su(WRH)} must be observed. Depending on the user's transition times, this may require additional RAS low time t_{W(RL)}.

timing requirements over recommended supply voltage range and operating case temperature range

PARAMETER		ALT.	SMJ4416-15	SMJ4416-20	UNIT	
	PARAMETER	SYMBOL	MIN MAX	MIN MAX	UNIT	
t _C (P)	Page mode cycle time	tPC	140	210	ns	
t _{c(rd)}	Read cycle time*	tRC	260	330	ns	
t _c (W)	Write cycle time	twc	260	330	ns	
tc(rdW)	Read-write/read-modify-write cycle time	tRWC	360	440	ns	
tw(CH)	Pulse width, CAS high (precharge time) **	tCP	50	80	ns	
tw(CL)	Pulse width, CAS low [†]	tCAS	80 10,000	120 10,000	ns	
tw(RH)	Pulse width RAS high (precharge time)	t _{RP}	100	120	ns	
tw(RL)	Pulse width, RAS low [‡]	tRAS	150 10,000	200 10,000	ns	
tw(W)	Write pulse width	tWP	40	50	ns	
t _t	Transition times (rise and fall) for RAS and CAS	tŢ	3 50	3 50	ns	
t _{su(CA)}	Column address setup time	tASC	0	0	ns	
t _{su(RA)}	Row address setup time	†ASR	0	0	ns	
t _{su(D)}	Data setup time	tDS	0	0	ns	
t _{su(rd)}	Read command setup time	tRCS	0	0	ns	
t _{su} (WCH)	Write command setup time before CAS high	tCWL	60	80	ns	
t _{su} (WRH)	Write command setup time before RAS high	tRWL	60	80	ns	
th(CLCA)	Column address hold time after CAS low	[†] CAH	40	50	ns	
th(RA)	Row address hold time	tRAH	20	25	ns	
th(RLCA)	Column address hold time after RAS low	tAR	110	130	ns	
th(CLD)	Data hold time after CAS low	t _{DH}	60	80	ns	
th(RLD)	Data hold time after RAS low	^t DHR	130	160	ns	
th(WLD)	Data hold time after W low	tDH	40	50	ns	
th(RHrd)	Read command hold time after RAS high	^t RRH	10	10	ns	
th(CHrd)	Read command hold time after CAS high	tRCH	0	0	ns	
th(CLW)	Write command hold time after CAS low	twch	60	80	ns	
th(RLW)	Write command hold time after RAS low	tWCR	130	160	ns	
tRLCH	Delay time, RAS low to CAS high	tCSH	150	200	ns	
^t CHRL	Delay time, CAS high to RAS low	^t CRP	0	0	ns	
[†] CLRH	Delay time, CAS low to RAS high	tRSH	80	120	ns	
•=/	Delay time, CAS low to W low		120	150		
tCLWL '	(read, modify-write-cycle only) ***	tCWD	120	1 150	ns	
	Delay time, RAS low to CAS low		20 70	25 80	ns	
[†] RLCL	(maximum value specified only to guarantee access time)	tRCD	20 70	25 60	115	
•=	Delay time, RAS low to W low		190	230		
tRLWL	L (read, modify-write-cycle only) ***		190	230	ns	
tWLCL	Delay time, W low to CAS low (early write cycle)	twcs	– 5	- 5	ns	
[†] GHD	Delay time, \overline{G} high before data applied at DQ		30	40	ns	
t _{rf}	Refresh time interval	tREF	4	4	ms	

Note: All cycle times assume $t_t = 5$ ns.

Page mode only.

^{***} Necessary to insure \overline{G} has disabled the output buffers prior to applying data to the device.

[†] In a read-modify-write cycle, t_{CLWL} and t_{su(WCH)} must be observed. Depending on the user's transition times, this may require additional CAS low time tw(CL).

‡ In a read-modify-write cycle, t_{RLWL} and t_{su(WRH)} must be observed. Depending on the user's transition times, this may require additional

RAS low time tw(RL)

PARAMETER MEASUREMENT INFORMATION

NOTE: Each input is tested separately.

FIGURE 1 - INPUT CLAMP VOLTAGE TEST CIRCUIT

early write cycle timing

write cycle timing

read-write/read-modify-write cycle timing

NOTE: A write cycle or read-modify-write cycle can be intermixed with read cycles as long as the write and read-modify-write timing specifications are not violated.

TMS4416, SMJ4416 16,384-Word by 4-bit Dynamic Ram

NOTE: A read cycle or a read-modify-write cycle can be intermixed with write cycles as long as read and read-modify-write timing specifications are not violated.

Dynamic RAM and Memory Support Devices

4-104

NOTE: A read cycle or a write cycle can be intermixed with read-modify-write cycles as long as read and write timing specifications are not violated

RAS-only refresh timing VIH VIL CAS VIH VIL DON'T CARE Tourish tourish

Texas Instruments reserves the right to make changes at any time in order to improve design and to supply the best product possible.

PINS DIM.	16*	18	20	24
A(MAX)	8,255	8,255	8,255	8,255
	(0.325)	(0.325)	(0.325)	(0.325)
B(MAX)	19,56	22,86	24,38	32,00
	(0.770)	(0.900)	(0.960)	(1.260)
C(MAX)	7,645	7,645	7,645	7,645
	(0.301)	(0.301)	(0.301)	(0.301)

 Dimensions A, B, and C are applicable for both 16-pin cerdip and cerpak.

NOTES: a. All dimensions are shown in millimeters and parenthetically in inches. Millimeter dimensions govern.

b. Cerpak only.

PINS DIM.	24	.28
A (MAX)	15,88 (0.625)	15,88 (0.625)
B (MAX)	32,77 (1.290)	37,85 (1.490)
C (MAX)	15,24 (0.600)	15,24 (0.600)

Mechanical Data

11-4

plastic packages (N suffix)

PINS DIM.	16	18	. 20	22	24	28	40
A (MAX)	8,255	8,255	8,255	10,80	15,88	15,88	15,49
	(0.325)	(0.325)	(0.325)	(0.425)	(0.625)	(0.625)	(0.61)
B (MAX)	22,1	23,37	27,18	28,45	32,26	36,58	53,1
	(0.870)	(0.920)	(1.070)	(1.120)	(1.270)	(1.440)	(2.090)
C (MAX)	6,858	6,858	6,858	9.017	13,97	13,97	13,97
	(0.270)	(0.270)	(0.270)	(0.355)	(0.550)	(0.550)	(0.550)
D (MIN)	3,175	3,175	3,175	3,175	2,921	2,921	3,175
	(0.125)	(0.125)	(0.125)	(0.125)	(0.115)	(0.115)	(0.125)

ceramic chip carrier package (FG suffix)

plastic chip carrier package (FP suffix)

