EC4219: Software Engineering

Lecture 5 — First-Order Logic

Sunbeom So 2024 Spring

First-Order Logic (FOL)

- An extension of propositional logic (PL) with predicates, functions, and quantifiers.
- FOL is also called predicate logic, and the first-order predicate calculus.
- FOL is expressive enough to reason about programs.
- While the validity of PL formulas is decidable, the validity of FOL formulas is not.

Terms (Variables, Constants, and Functions)

- Terms are the objects that we are reasoning about.
- Terms in FOL evaluate to values other than truth values, such as integers, strings, or lists.
- Terms in FOL are defined by the grammar below:

$$t \rightarrow x \mid c \mid f(t_1, \cdots, t_n)$$

- ightharpoonup Basic terms are variables (denoted x) and constants (denoted c).
- ightharpoonup Composite terms are functions. When a function takes n terms as arguments, we say that the function is an n-ary function (or, the function has the arity n).
 - cf) A constant can be viewed as a 0-ary function.
- ullet (Example) g(x,b): a binary function g applied to a variable x and a constant b

Predicates

- The propositional variables of PL are generalized to predicates in FOL.
- ullet An n-ary predicate takes n terms as arguments.
- A FOL propositional variable is a **0**-ary predicate.
- ullet For example, p(f(x),g(x,f(x))) is a binary predicate applied to two terms.

Syntax

- Atom: basic elements
 - ▶ truth symbols ⊥ ("false") and ⊤ ("true")
 - n-ary prediactes applied to n terms
- **Literal**: an atom α or its negation $\neg \alpha$.
- Formula: a literal, application of a logical connective to formulas, or the application of a quantifier to a formula.

Notations: Quantification

- In $\forall x. F[x]$ and $\exists x. F[x]$, x is the quantified variable, and F[x] is the scope of the quantifier $\forall x$. We say x is bound in F[x].
- ullet $\forall x. \forall y. F[x,y]$ can be abbreviated by $\forall x,y. F[x,y]$.
- The scope of the quantified variable extends as far as possible.
 For example, consider

$$orall x. \overbrace{p(f(x),x)
ightarrow (\exists y. \underbrace{p(f(g(x,y)),g(x,y))}_{G}) \wedge q(x,f(x))}^{F}.$$

The scope of x is F, and the scope of y is G.

Notations: Quantification (cont'd)

- Given F[x], a variable x is *free* if there is an occurrence of x not bound by any quantifier.
- ullet free(F) and $\mathrm{bound}(F)$ denote the free and bounbd variables of F, respectively.
- It is possible that $free(F) \cap bound(F) \neq \emptyset$.
 - ▶ Given $F: \forall x.p(f(x),y) \rightarrow \forall y.p(f(x),y)$, free $(F) = \{y\}$ and bound $(F) = \{x,y\}$.
- ullet A formula $oldsymbol{F}$ is closed if $oldsymbol{F}$ has no free variables.
- ullet Suppose ${\sf free}(F)=\{x_1,\cdots,x_n\}$. Then,
 - ▶ F's universal closure is $\forall x_1 \cdots \forall x_n . F$. Can be written $\forall * . F$.
 - ▶ F's existential closure is $\exists x_1 \cdots \exists x_n . F$. Can be written $\exists * . F$.

Interpretation

A FOL interpreation $I:(D_I,lpha_I)$ is a pair of a domain D_I and an assignment $lpha_I$.

- ullet A **domain** D_I is a nonempty set of values, such as integers or real numbers.
- An assignment α_I maps variables to elements of D_I . It also maps constants, function symbols, and predicate symbols to elements, functions, and predicates over D_I .
 - lacktriangle Each variable symbol x is assigned a value x_I from D_I .
 - **ightharpoonup** Each constant is assigned a value from D_I .
 - lacktriangle Each n-ary function symbol f is assigned an n-ary function $f_I:D_I^n o D_I$
 - lacktriangle Each n-ary predicate symbol p is assigned an n-ary predicate $p_I:D_I^n o \{true,false\}.$

Example: Interpreation

Consider the formula

$$F: (x+y>z) \to (y>z-x)$$

that contains the binary function symbols + and -, and the binary predicate symbol >, and the variables x, y, and z.

- Each symbol is just a syntactical element. Their meaning is defined by the interpretation $I=(D_I,\alpha_I)$.
- ullet Assume the domain is the integers: $D_I=\mathbb{Z}=\{\cdots,-1,0,1,\cdots\}$.
- Then, we may have the assignment

$$lpha_I: \{+\mapsto +_{\mathbb{Z}}, -\mapsto -_{\mathbb{Z}}, >\mapsto >_{\mathbb{Z}}, x\mapsto 13_{\mathbb{Z}}, y\mapsto 42_{\mathbb{Z}}, z\mapsto 1_{\mathbb{Z}}\}$$

Semantics

- Semantics of FOL formulas are inductively defined as in PL.
- The cases with logical connectives $(\neg, \land, \lor, \rightarrow, \leftrightarrow)$ are handled in the same way as in PL.
- The semantics of predicates and quantifiers are new.

```
Base cases
I \models \top
I \not\models \bot
I \models p(t_1, \dots, t_n) iff \alpha_I[p(t_1, \dots, t_n)] = true
Inductive cases
I \models \neg F
                                iff I \not\models F
I \models F_1 \land F_2 iff I \models F_1 and I \models F_2
I \models F_1 \lor F_2 iff I \models F_1 or I \models F_2
I \models F_1 \rightarrow F_2 iff I \not\models F_1 or I \models F_2
I \models F_1 \leftrightarrow F_2
                                iff (I \models F_1 \text{ and } I \models F_2) or (I \not\models F_1 \text{ and } I \not\models F_2)
I \models \forall x.F
                                iff for all v \in D_I, I \triangleleft \{x \mapsto v\} \models F
I \models \exists x.F
                                iff there exists v \in D_I such that I \triangleleft \{x \mapsto v\} \models F
```

Semantics: Predicates

$$ig|I\models p(t_1,\cdots,t_n)$$
 iff $lpha_I[p(t_1,\cdots,t_n)]=true$

Predicates are evaluated recursively.

$$\alpha_I[p(t_1,\cdots,t_n)] = \alpha_I[p](\alpha_I[t_1],\cdots,\alpha_I[t_n])$$

• During evaluating terms, functions are evaluated recursively as well.

$$\alpha_I[f(t_1,\cdots,t_n)] = \alpha_I[f](\alpha_I[t_1],\cdots,\alpha_I[t_n])$$

Semantics: Quantifiers

$$ig|I\models orall x.F$$
 iff for all $v\in D_I, I riangleleft \{x\mapsto v\}\models F$

- $J: I \triangleleft \{x \mapsto v\}$ denotes the x-variant of I. That is, $I: (D_I, \alpha_I)$ and $J: (D_J, \alpha_J)$ agree on everything except possibly the value of the variable x. Technically,
 - $ightharpoonup D_I = D_J$, and
 - $m{\lambda} = m{\alpha}_I[y] = m{\alpha}_J[y]$ for all constant, free variable, function, and predicate symbols y, except possibly x where $m{\alpha}_J[x] = v$.
- In words, "I is an interpretation of $\forall x.F$ iff all x-variants of I are interpretations of F".

$$I \models \exists x.F$$
 iff there exists $v \in D_I$ such that $I \triangleleft \{x \mapsto v\} \models F$

• "I is an interpretation of $\exists x.F$ iff some x-variant of I is an interpretation of F".

Example 1: Semantics

Consider the formula

$$F: (x+y>z) \to (y>z-x)$$

and the interpretation $I:(\mathbb{Z},lpha_I)$ where

$$lpha_I: \{+\mapsto +_{\mathbb{Z}}, -\mapsto -_{\mathbb{Z}}, >\mapsto >_{\mathbb{Z}}, x\mapsto 13_{\mathbb{Z}}, y\mapsto 42_{\mathbb{Z}}, z\mapsto 1_{\mathbb{Z}}\}.$$

The truth value of F under I is computed as follows:

- 1. $I \models x+y>z$ since $lpha_I[x+y>z]=13_{\mathbb{Z}}+_{\mathbb{Z}}42_{\mathbb{Z}}>_{\mathbb{Z}}1_{\mathbb{Z}}=true$
- 2. $I \models y > z x$ since $\alpha_I[y > z x] = 42_{\mathbb{Z}} +_{\mathbb{Z}} 1_{\mathbb{Z}} >_{\mathbb{Z}} 13_{\mathbb{Z}} = true$
- 3. $I \models F$ by 1, 2, and the semantics of \rightarrow

Example 2: Semantics

Consider the formula

$$F: \exists x. f(x) = g(x)$$

and the interpretation $I:(D:\{v_1,v_2\},\alpha_I)$ where

$$\alpha_I: \left\{ \begin{array}{ll} f & \mapsto & \{v_1 \mapsto v_1, v_2 \mapsto v_2\}, \\ g & \mapsto & \{v_1 \mapsto v_2, v_2 \mapsto v_1\}, \\ = & \mapsto & \{(a,b) \mapsto \mathit{true} \; \mathsf{if} \; a \; \mathsf{syntactically} \; \mathsf{equals} \; b \; \mathsf{else} \; \mathit{false}\} \end{array} \right\}$$

Compute the truth value of F under I.

Let J be the x-variant of I, i.e., $J:I \triangleleft \{x \mapsto v\}$ for some $v \in D$.

- 1. $J \not\models f(x) = g(x)$ For any $v \in D$, $\alpha_J[f(x) = g(x)] = false$ 2. $I \not\models \exists x. f(x) = g(x)$ by 1 and the semantics of \exists

Satisfiability and Validity

- ullet A formula F is satisfiable iff there exists an interpretation I such that $I \models F$.
- A formula F is valid iff for all interpretations I, $I \models F$.
- Technically, satisfiability and validity are defined for closed FOL formulas.
- But we allow two conventions for a formula F with free variables $(\operatorname{free}(F) \neq \emptyset)$.
 - ▶ If we say that a formula F is valid, we mean that its universal closure $\forall *.F$ is valid.
 - ▶ If we say that F is satisfiable, we mean that its existential closure $\exists *.F$ is satisfiable.
- Satisfiability and validity are dual as in PL.

 $\forall *.F$ is valid iff $\exists *.\neg F$ is unsatisfiable

Extension of the Semantic Argument Method

Most of the proof rules from PL carry over to FOL.

$$\begin{array}{c|c} I \models \neg F \\ I \not\models F \end{array} & \begin{array}{c} I \not\models \neg F \\ I \models F \end{array} & \begin{array}{c} I \models F \land G \\ I \models F, I \models G \end{array} & \begin{array}{c} I \not\models F \land G \\ I \not\models F \mid I \not\models G \end{array} \\ \\ \hline \begin{array}{c} I \models F \lor G \\ I \models F \mid I \models G \end{array} & \begin{array}{c} I \not\models F \lor G \\ I \not\models F, I \not\models G \end{array} & \begin{array}{c} I \not\models F \to G \\ I \not\models F \mid I \models G \end{array} & \begin{array}{c} I \not\models F \to G \\ I \not\models F, I \not\models G \end{array} \\ \hline \begin{array}{c} I \models F \leftrightarrow G \\ \hline I \models F \land G \mid I \models \neg F \land \neg G \end{array} & \begin{array}{c} I \not\models F \leftrightarrow G \\ \hline I \models F \land \neg G \mid I \models \neg F \land G \end{array} \\ \hline \begin{array}{c} I \not\models \forall x.F \\ \hline I \lhd \{x \mapsto v\} \not\models F \end{array} \text{ for any } v \in D_I \end{array} & \begin{array}{c} I \not\models \exists x.F \\ \hline I \lhd \{x \mapsto v\} \not\models F \end{array} \text{ for any } v \in D_I \end{array}$$

$$\frac{I \models \exists x.F}{I \triangleleft \{x \mapsto v\} \models F} \text{ for a fresh } v \in D_I \quad \frac{I \not\models \forall x.F}{I \triangleleft \{x \mapsto v\} \not\models F} \text{ for a fresh } v \in D_I$$

$$egin{aligned} J: I \lhd \cdots &\models p(s_1, \cdots, s_n) \ K: I \lhd \cdots &\not\models p(t_1, \cdots, t_n) \ I &\models \bot \end{aligned} ext{ for } i \in \{1, \cdots, n\}, lpha_J[s_i] = lpha_K[t_i] \end{aligned}$$

Rules for Quantifiers: "Universal" Rules

Universal elimination I:

$$rac{I \models orall x.F}{I riangleleft \{x \mapsto v\} \models F}$$
 for any $v \in D_I$

Existential elimination I:

$$rac{I
ot \exists x.F}{I riangleleft \{x \mapsto v\}
ot \models F}$$
 for any $v \in D_I$

These rules are usually applied using a domain element \boldsymbol{v} that was introduced earlier in the proof.

Rules for Quantifiers: "Existential" Rules

Existential elimination II:

$$rac{I \models \exists x.F}{I riangleleft \{x \mapsto v\} \models F}$$
 for a fresh $v \in D_I$

Universal elimination II:

$$rac{I
ot orall x.F}{I riangleleft \{x \mapsto v\}
ot \models F}$$
 for a fresh $v \in D_I$

These rules are applied using a domain element \boldsymbol{v} that has not been previously used in the proof.

• Why? Given $\exists x.F$, we choose a new value v since we do not know which value in particular satisfies F.

Contradiction Rule

$$egin{aligned} J: I \lhd \cdots &\models p(s_1, \cdots, s_n) \ K: I \lhd \cdots &\not\models p(t_1, \cdots, t_n) \ I &\models \bot \end{aligned} ext{ for } i \in \{1, \cdots, n\}, lpha_J[s_i] = lpha_K[t_i]$$

- A contradiction exists if two variants of the original interpretation I disagree on the truth value of an n-ary predicate p for a given tuple of domain values.
- A branch is closed if it contains a contradiction according to the contradiction rule. It is open otherwise.
 - ▶ In a finished proof of a valid formula, all branches must be closed.

Example 1: Semantic Argument Method

Determine the validity of the formula F.

$$F: (\forall x.p(x)) \to (\forall y.p(y))$$

Suppose F is invalid.

1.
$$I \not\models F$$
assumption2. $I \models \forall x.p(x)$ 1 and \rightarrow 3. $I \not\models \forall y.p(y)$ 1 and \rightarrow 4. $I \triangleleft \{y \mapsto v\} \not\models p(y)$ 3 and \forall , for some $v \in D_I$ 5. $I \triangleleft \{x \mapsto v\} \models p(x)$ 2 and \forall 6. $I \models \bot$ 4 and 5

Example 2: Semantic Argument Method

Determine the validity of the formula F.

$$F: (\forall x.p(x)) \leftrightarrow (\neg \exists x. \neg p(x))$$

Example 2: Semantic Argument Method

Determine the validity of the formula F.

$$F: (\forall x.p(x)) \leftrightarrow (\neg \exists x. \neg p(x))$$

We need to show both forward and backward directions.

$$F_1: (\forall x.p(x)) \to (\neg \exists x. \neg p(x)), \quad F_2: (\forall x.p(x)) \leftarrow (\neg \exists x. \neg p(x))$$

Suppose F_1 is not valid.

1.
$$I \models \forall x.p(x)$$

assumption

2.
$$I \not\models \neg \exists x. \neg p(x)$$

assumption

3.
$$I \models \exists x. \neg p(x)$$

2 and ¬

4.
$$I \triangleleft \{x \mapsto v\} \models \neg p(x)$$
 3 and \exists , for some $v \in D_I$

5.
$$I \triangleleft \{x \mapsto v\} \models p(x)$$

1 and ∀

6.
$$I \models \bot$$

4 and 5

Example 2: Semantic Argument Method (cont'd)

Determine the validity of the formula F.

$$F: (\forall x.p(x)) \leftrightarrow (\neg \exists x. \neg p(x))$$

We need to show both forward and backward directions.

$$F_1: (\forall x.p(x)) \to (\neg \exists x. \neg p(x)), \quad F_2: (\forall x.p(x)) \leftarrow (\neg \exists x. \neg p(x))$$

Suppose F_2 is not valid.

1.
$$I \not\models \forall x.p(x)$$
 assumption

2.
$$I \models \neg \exists x. \neg p(x)$$
 assumption

3.
$$I \triangleleft \{x \mapsto v\} \not\models p(x)$$
 1 and \forall , for some $v \in D_I$

4.
$$I \not\models \exists .x \neg p(x)$$
 2 and \neg

5.
$$I \triangleleft \{x \mapsto v\} \not\models \neg p(x)$$
 4 and \exists

6.
$$I \triangleleft \{x \mapsto v\} \models p(x)$$
 5 and \neg

7.
$$I \models \bot$$
 3 and 6

Example 3: Semantic Argument Method

Determine the validity of the formula F.

$$F:p(a) o\exists x.p(x)$$

Example 3: Semantic Argument Method

Determine the validity of the formula F.

$$F:p(a) o\exists x.p(x)$$

Assume F is invalid.

1.
$$I \not\models F$$
 assumption
2. $I \models p(a)$ 1 and \rightarrow
3. $I \not\models \exists x.p(x)$ 1 and \rightarrow
4. $J: I \triangleleft \{x \mapsto \alpha_I[a]\} \not\models p(x)$ 3 and \exists
5. $I \models \bot$ 2 and 4

Note that 2 and 4 are contradictory, since $\alpha_I[a] = \alpha_J[x]$.

Example 4: Semantic Argument Method

Show that the formula F is invalid.

$$(\forall x.p(x,x)) \to (\exists x.\forall y.p(x,y))$$

It suffices to find an interpretation I such that $I \models \neg F$. Choose $D_I = \{0,1\}$ and $p_I = \{(0,0),(1,1)\}$. The interpretation falsifies F.

¹We use a common notation for defining relations; $p_I(a,b)$ is true iff $(a,b) \in p_I$. For example, $p_I(0,0)$ is true but $p_I(1,0)$ is false.

Soundness and Completeness of FOL

- A proof system is *sound* if every proven formula is valid.
- A proof system is *complete* if every valid formula is provable.

Theorem (Sound)

If every branch of a semantic argument proof of $I \not\models F$ closes, then F is valid.

Theorem (Complete)

Every valid formula F has a semantic argument proof.

Substitution

A substitution is a map from FOL formulas to FOL formulas.

$$\sigma: [F_1 \mapsto G_1, \cdots, F_n \mapsto G_n]$$

- ullet To compute $F\sigma$, replace each occurrence of F_i in F by G_i simultaneously.
- ullet For example, consider the formula F and the substitution σ

$$F: (orall x.p(x,y))
ightarrow q(f(y),x) \ \sigma: \{x \mapsto g(x), y \mapsto f(x), q(f(y),x) \mapsto \exists h(x,y) \}.$$

Then,

$$F\sigma: (\forall x.p(g(x),f(x)))
ightarrow \exists x.h(x,y)$$

Safe Substitution

- A restricted application of substitution, which has a useful semantic property.
- Idea: Before applying substitution, replace bound variables with fresh variables.
- ullet For example, consider the formula F and the substitution σ

$$F: (orall x.p(x,y))
ightarrow q(f(y),x) \ \sigma: \{x \mapsto g(x), y \mapsto f(x), q(f(y),x) \mapsto \exists h(x,y) \}.$$

Then, safe substitution proceeds as follows.

- $lacktriang{1}{2}$ Renaming: $(\forall x'.p(x',y))
 ightarrow q(f(y),x)$
- $lacksquare{2}$ Substitution: $(\forall x'.p(x',f(x)))
 ightarrow \exists x.h(x,y)$

Theorems for Safe Substitution

A FOL version of substitution of equivalent formulas:

Theorem

Consider the substitution

$$\sigma: \{F_1 o G_1, \cdots, F_n o G_n\}$$

such that for each i, $F_i \iff G_i$. Then, $F \iff F\sigma$ when $F\sigma$ is computed by a safe substitution.

Theorem

If H is a valid formula schema and σ is a substitution obeying H's side conditions, then $H\sigma$ is also valid.

- formula schema: formula templates with at least one placeholder such as F_1, F_2, \cdots .
- side conditions: conditions specifying that certain variables do not occur free in the placeholders.

Examples: Valid Templates

Consider the valid formula schema

$$H: (\forall x.F) \leftrightarrow (\neg \exists x. \neg F).$$

Then, the formula

$$G: (\forall x. \exists y. q(x,y)) \leftrightarrow (\neg \exists x. \neg \exists y. q(x,y))$$

is valid, because $G=H\sigma$ for $\sigma:\{F\mapsto \exists y.q(x,y)\}$.

Consider the valid formula schema

$$H: (\forall x.F) \leftrightarrow F$$
 provided $x \not\in \mathsf{free}(F)$.

Then, the formula

$$G: (\forall x. \exists y. p(z,y)) \leftrightarrow \exists y. p(z,y)$$

is valid because $G = H\sigma$ for $\sigma : \{F \mapsto \exists y.p(z,y)\}.$

Negation Normal Form (NNF)

- The normal forms of PL extend to FOL.
- A FOL formula F can be transformed into NNF by using the following equivalences.

Example: NNF

Convert the formula G into NNF where

$$G: \forall x. (\exists y. p(x,y) \land p(x,z)) \rightarrow \exists w. p(x,w)$$

① Use the equivalence $F_1 o F_2 \iff \neg F_1 \lor F_2$.

$$\forall x. \neg (\exists y. p(x,y) \land p(x,z)) \lor \exists w. p(x,w)$$

② Use the equivalence $\neg \exists x. F[x] \iff \forall x. \neg F[x]$.

$$\forall x. (\forall y. \neg (p(x,y) \land p(x,z))) \lor \exists w. p(x,w)$$

Use the equivalence $\neg(F_1 \land F_2) \iff \neg F_1 \lor \neg F_2.$

$$\forall x. (\forall y. \neg p(x,y) \lor \neg p(x,z)) \lor \exists w. p(x,w)$$

Prenex Normal Form (PNF)

 A formula is in PNF if all of its quantifiers appear at the beginning of the formula:

$$Q_1x_1\cdots Q_nx_n.F[x_1,\cdots,x_n]$$

where $\mathbf{Q}_i \in \{\forall, \exists\}$ and F is quantifier-free.

- ullet Every FOL F has an equivalent PNF. To convert F into PNF,
 - **1** Convert F into NNF: F_1
 - 2 Rename quantified variables to unique names: F_2
 - 3 Remove all quantifiers from F_2 : F_3
 - **4** Add the quantifiers in front of F_3 :

$$F_4: Q_1x_1\cdots Q_nx_n.F_3$$

where Q_i are the quantifiers such that if Q_j is in the scope of Q_i in F_1 , then i < j.

• A FOL formula is in CNF (resp., DNF) if (1) it is in PNF and (2) its main quantifier-free subformula is in CNF (resp., DNF).

Example: PNF

Convert the formula F into PNF form.

$$F: orall x.
eg(\exists y. p(x,y) \land p(x,z)) \lor \exists y. p(x,y)$$

Convert into NNF.

$$F_1: \forall x. (\forall y. \neg p(x,y) \lor \neg p(x,z)) \lor \exists y. p(x,y)$$

Rename quantified variables.

$$F_2: \forall x. (\forall y. \neg p(x,y) \lor \neg p(x,z)) \lor \exists w. p(x,w)$$

Remove all quantifiers.

$$F_3: \neg p(x,y) \lor \neg p(x,z) \lor p(x,w)$$

ullet Add the quantifiers in front of F_3 .

$$F_4: \forall x. \forall y. \exists w. \neg p(x,y) \lor \neg p(x,z) \lor p(x,w)$$

Decidability

- Satisfiability can be formalized as a decision problem in formal languages.
 - Let L_{PL} be the set of all satisfiable formulas. Given w, is $w \in L_{PL}$?
- A formal language L is decidable if there exists a procedure that, given a word w, (1) eventually halts and (2) answers "yes" if $w \in L$ and "no" if $w \not\in L$. Otherwise, L is undecidable.
- ullet L_{PL} is decidable but L_{FOL} is not.

Summary

FOL is an extension of propositional logic (PL) with predicates, functions, and quantifiers.

- Syntax and semantics of FOL
- Satisfiability and validity
- Substitution, Normal forms