Déterminiser l'automate caractéristique

L'automate caractéristique :

- est non déterministe (des ϵ -transitions);
- \triangleright contient des expansions (justement les ϵ -transitions).

On veut un analyseur ascendant :

- déterministe;
- sans expansions explicites (lectures et réductions).
- ⇒ on déterminise l'automate caractéristique.
- \Rightarrow on obtient un automate dit LR-AFD.

Automate LR-AFD, exemple

Automate LR(0)

L'automate LR-AFD décrit un automate à pile déterministe appelé automate LR(0) effectuant 2 types d'actions :

- lecture
- réduction

Dans un état contenant $X \to \cdots \bullet a \dots$: Lecture de a

Dans un état contenant $X \to \alpha \bullet$: Réduction par $X \to \alpha \bullet$

La pile permet de mémoriser les états parcourus lors des lectures et des réductions.

Définition de l'automate LR(0)

Un état est un ensemble d'item : si Q est l'ensemble des états

$$Q \subseteq \mathcal{P}(It_G)$$

L'alphabet de pile est Q.

L'état initial q₀ :

- ▶ contient l'item initial de la forme $[S' \to \bullet S]$;
- sert à initialiser la pile.

L'état final q_f contient l'item final, de la forme $[S' \to S \bullet]$.

Définition de l'automate LR(0) : relation de transition

On note δ la relation de transition de l'AF LR-AFD.

$$\delta(q,X)=q'$$
 signifie :

- si l'état courant est q;
- et que $X \in V_T \cup V_N$ est le symbole courant à traiter;
- alors l'état courant devient q'.

Exemple:

$$\delta(E_1, S) = E_2 \quad \text{ou} \quad E_1 \stackrel{S}{\longrightarrow} E_2$$

Définition de l'automate LR(0) : relation de transition

Relation de transition de l'automate LR(0) pour une lecture :

$$(q,a) \rightarrow q\delta(q,a)$$

- ▶ si q est en sommet de pile
- si a est sous la tête de lecture
- ▶ et l'un des items de q est de la forme $[X \to \cdots \bullet a \dots]$;
- ▶ alors on empile l'état successeur de q pour a dans δ .

Définition de l'automate LR(0) : relation de transition

Relation de transition de l'automate LR(0) pour une réduction :

$$(qq_1 \dots q_n, \epsilon) \rightarrow q\delta(q, X)$$

- ▶ si q_n est en sommet de pile;
- ▶ si l'un des items de q_n est de la forme $[X \to \alpha \bullet]$, $|\alpha| = n$;
- alors on dépile n états;
- ▶ puis on empile $\delta(q, X)$ le successeur par X de l'état q en sommet de pile.

Et les expansions?

Les ϵ -transition d'expansion ont disparu avec la déterminisation.

Elles se font implicitement à l'intérieur des états.

lecture de c possible après expansions successives par :

▶
$$S \rightarrow B \rightsquigarrow [S \rightarrow \bullet B] \in E1$$

▶
$$B \rightarrow c \rightsquigarrow [B \rightarrow \bullet c] \in E1$$

Construction de LR-AFD - en première approche

On construit Q (les états) et δ (les transitions) de l'automate caractéristique à partir de la grammaire.

On le déterminise, on obtient LR-AFD.

En fait, on peut construire directement LR-AFD (ouf!).

Construction algorithmique directe de LR-AFD

Principe:

- on sature les états par expansion;
- ▶ on transite sur chaque symbole Y tel que $[\cdots \rightarrow \cdots \bullet Y \dots]$.

Saturation des états par expansion

Un ensemble d'items *E* est saturé si :

- ▶ pour tout item $[X \to \alpha \bullet Y\beta]$ de $E, Y \in V_N$;
- ▶ pour toute production $Y \rightarrow \gamma$ de G de membre gauche Y;
- ▶ l'item $[Y \to \bullet \gamma]$ appartient aussi à E.

On en déduit la fonction Saturation pour une grammaire G:

Algorithme de construction de Q et δ

L'état initial est Saturation($[S' \rightarrow \bullet S]$).

Ensuite, pour chaque état saturé E et chaque symbole $Y \in V_T \cup V_N$ (lecture pour V_T , réduction pour V_N) :

▶ si E contient un ensemble de n items de la forme $\ll Y \gg 1$

$$\{ [X \to \alpha_i \bullet Y\beta_i] \mid 1 \le i \le n \}$$

alors on calcule

$$E' = \text{Saturation}(\{[X \to \alpha_i Y \bullet \beta_i] \mid 1 \le i \le n\})$$

- ▶ si cet état E' n'existe pas, on l'ajoute à Q;
- et on définit $\delta(E, Y) = E'$.

Exemple et remarque

Pour ne pas manquer de place sur sa feuille : séparer le contenu des états et la relation de transition.

Conflits LR(0), grammaire LR(0)

L'automate LR(0) construit peut ne pas être déterministe (2 cas).

État autorisant 2 réductions (ou plus) :

conflit LR(0) reduce/reduce

Ex:
$$\begin{bmatrix}
 A \to b \bullet \\
 [B \to b \bullet]
 \end{bmatrix}$$

Etat autorisant 1 réduction et 1 lecture (ou plus) :

Ex:
$$\begin{bmatrix}
 [A \to \bullet b] \\
 [B \to c \bullet]
 \end{bmatrix}$$

Conflits LR(0), grammaire LR(0)

Une grammaire est dite LR(0) si aucun de ses états ne contient de conflit LR(0) :

- ni shift-reduce
- ni reduce-reduce

Les conflits shift/shift n'existent pas (aucun sens).

