Analogové elektronické obvody Ústav mikroelektroniky			Jméno Radek Kučera		ID 240855
FEKT VUT v Brně		Ročník 2.	Obor MET	Skupina	
Spolupracoval Jakub Charvot	Měřeno dne 4.10.2022	Odevzdáno d	lne	Hodnocen	í
Název úlohy Pracovní bod a jeho pohyb					

Teoretický rozbor

Pracovní bod tranzistoru

Pracovní bod bipolárního tranzistoru se nastavuje proudem do báze I_B . V zapojení na obrázku 2 je velikost I_B dána velikostí odporu R_b . Pro zesilovač třídy A se velikost I_B resp. R_b nastaví, tak aby napětí na kolektoru bylo polovina napájecího napětí - pracovní bod se bude nacházet ve středu převodní charakteristiky.

Šířka pásma zesilovače je rozdíl mezi nejvyšší a nejnižší frekvecní přenášeného signálu, kde při těchto mezních frekvencí je pokles o 3dB oproti nejvyššímu zesílení.

Obrázek 1: Závislost mezi kolektorovým a bázovým proudem a napětím kolektor-emitor tranzistoru.

Schéma zapojení

Obrázek 2: Zesilovač s bipolárním tranzistorem.

Obrázek 3: Zesilovač s unipolárním tranzistorem.

Vypočítané hodnoty pro zesilovač s bipolárním tranzistorem

$$R_b = 2~M\Omega, \quad I_B = 5,46~\mu A, \quad I_C \approx I_E = 2,73~m A, \quad U_{CB} = 11,35~V, \quad U_{CE} = 6~V$$

$$U_{BE} = 0,65~V, \quad C_v \doteq 1,6~\mu F, \quad f_0 \doteq 6,4~Hz$$

Vypočítané hodnoty pro zesilovač s unipolárním tranzistorem

$$R_{g1}=7,8~M\Omega,~~I_G=0~A~~I_D=2,73~mA,~~U_{GS}=1,365~V,~~U_{DS}=6~V$$

$$C_v\doteq 9~nF,~~f_0\doteq 18~Hz$$

Parametry tranzistorů

BC109C:

$$h_{21e} = \beta \approx h_{21E} \approx 500$$
, $S = 0, 1 \ AV^{-1}$, $r_{in} \approx 5 \ k\Omega$, $r_{out} \approx 100 \ k\Omega$

BS107A:

$$G_m = 2 \ mA/V$$

Simulace pro bipolární tranzistor

Jednostupňový tranzistorový zesilovač, třída A, bez stabil izace prac. bodu

Zdroj V1 je harmonický 1kHz/20mV

Obrázek 4: Nastavený pracovní bod zesilovače.

Obrázek 5: Průběhy napětí a proudů na zesilovači.

Obrázek 6: Průběhy napětí a proudů na zesilovači pro $U_{vstup} = \{10; 20; 30\}~mV.$

Obrázek 7: Průběhy napětí a proudů na zesilovači pro $R_b = \{0,5;2;5\}~M\Omega.$

Obrázek 8: Frekvneční charakteristika, $A_{maxs}=43,34\ dB.$

Obrázek 9: Frekvneční charakteristika pro $C_v=\{0,1~;1;10\}~\mu F,$ $A_{f0}=\{215,6~;21,4~;2,1\}~Hz.$

Simulace pro unipolární tranzistor

Jednostupňový tranzistorový zesilovač, třída A, bez stabilizace prac. bodu MOSFET s indukovaným kanálem N

Zdroj V1 je harmonický 1kHz/200mV

Obrázek 10: Nastavený pracovní bod zesilovače.

Obrázek 11: Průběhy napětí na zesilovači.

Obrázek 12: Průběhy napětí na zesilovači pro $U_{vstup} = \{100; 200; 600\}~mV.$

Obrázek 13: Průběhy napětí na zesilovači pro $R_b = \{5; 6, 7; 10\}~M\Omega.$

Obrázek 14: Frekvneční charakteristika.

Obrázek 15: Frekvneční charakteristika pro $C_v = \{0,1;1;10;100\} \ nF.$

Měření

Obrázek 16: Nezkreslené zesílení.

Obrázek 17: Mírně zkreslené zesílení.

Obrázek 18: Zkreslené zesílení, dosažení saturace.

Obrázek 19: Změna pracovního bodu, $R_b=1M\Omega$

Obrázek 20: Změna pracovního bodu, $R_b=4,16M\Omega$

Obrázek 21: Kmitočtová charakteristika zesilovače v závislosti na změně hodnoty vazebního kapacitoru. $A_{maxm}=46,18\ dB$

Tabulka hodnot

Tabulka 1: Porovnání hodnot při nastaveném pracovním bodu

BJT	$U_{CE}\left[V\right]$	$U_{CB}\left[V\right]$	$U_{BE} [mV]$	$h_{21E}[-]$
Výpočet	6,000	11,350	650,000	500
Simulace	6,001	11,366	633,563	520
Měření	6,000	-	-	570

Závěr

Simulovali jsme zesilovače s bipolárním a unipolárním tranzistorem, následně jsme ověřili simulace měřením pouze pro zesilovač s bipolárním transtorem, tudíž zhodnocení bude o tomto zesilovači.

Velikost odporu R_b nám v simulaci vyšla 2,2 $M\Omega$ a při meření 3,02 $M\Omega$, rozdíl mezi hodnotami je způsobený vyšší hodnotou h_{21E} pro reálný tranzistor oproti simulovanému viz tabulka 1, ve které je porovnání napětí na tranzistoru v pracovním bodě. Přeškrtlé hodnoty jsme zapoměli změřit.

Simulované a naměřené průběhy pro různé vstupní napětí nám vyšly přibližně stejné. Avšak některé simulované průběhy, vhledem k nepřesným modelům součástek, vycházejí velice nepřesně viz obrázek 7. Maximální simulované zesílení $A_{maxs}=43,34\ dB$ se oproti maximálnímu naměřenému $A_{maxm}=46,18\ dB$ moc neliší.

Dolní mezní frekvence naměřené a simulované se téměř shodují viz obrázek 9 a 21, protože jejich hodnoty závisí na velikosti kondezátoru C_v , jehož reálné a simulované parametry se moc neliší. Také lze vidět, že ze zvětšující kapacitou klesá dolní mezní frekvecne.