WHAT IS CLAIMED IS:

19

Docket No.: P18896

1	1. A method comprising:
2	calculating, in parallel, a first multiplication product of a first coefficient and a
3	first sample, and a second multiplication product of the first coefficient
4	and a second sample; and
5	wherein the first sample and the second sample are from a plurality of sequential
6	samples;
7	wherein the first sample is an (n)th sample and the second sample is an (n+2)th
8	sample in the plurality of sequential samples.
9	2. The method as recited in Claim 1, further comprising:
10	full scale negative testing the first sample and the second sample.
11	3. The method as recited in Claim 1, further comprising:
12	accumulating subsequent multiplication products with the first multiplication
13	product into a final product.
14	4. The method as recited in Claim 3, further comprising:
15	saturating the final product.
16	5. The method as recited in Claim 1, wherein the first sample and second sample
17	are odd samples in the plurality of sequential samples.
18	6. The method as recited in Claim 1, wherein the first sample and second sample

are even samples in the plurality of sequential samples.

19 Express Mail No.: EV325531643US

20	7. The method as recited in Claim 1, further comprising:
21	calculating, in parallel, a third multiplication product of a second coefficient and a
22	third sample and a fourth multiplication product of the second coefficient
. 23	and a fourth sample;
24	wherein the third sample and the fourth sample are from the plurality of
25	sequential samples;
26	wherein the third sample is an (n+1)th sample and the second sample is an
27	(n+3)th sample in the plurality of sequential samples
28	8. The method as recited in Claim 1, further comprising:
29	calculating, in parallel a fifth multiplication product of a second coefficient and
30	the first sample, and a sixth multiplication product of the second
31	coefficient and the second sample generating a sixth product, and
32	accumulating in parallel, the fifth multiplication product with the first
33	multiplication product and the sixth multiplication product with the second
34	multiplication product.
35	9. The method as recited in Claim 5, wherein the first coefficient and second
36	coefficient are filter coefficients.
37	10. The method as recited in Claim 1, wherein the calculating in parallel
. 38	comprises executing a multiply accumulate single-instruction-multiple-data (SIMD)
39	instruction.

Docket No.: P18896 20 Express Mail No.: EV325531643US

40

11. A method comprising:

41	calculating a finite impulse response (FIR), wherein the calculating includes
42	executing, in parallel, a first multiply accumulate operation of a first
43	sample with a first coefficient and a second multiply accumulate operation
44	of a second sample with the first coefficient;
45	wherein the first sample and the second sample are from a plurality of sequential
46	samples;
47	wherein the first sample is an (n)th sample and the second sample is an (n+2)th
48	sample in the plurality of sequential samples.
40	12. The method or recited in Claim 11, wherein the executing in negation
49	12. The method as recited in Claim 11, wherein the executing, in parallel,
50	comprises:
51	selecting the first sample in a first location of an upper half of a first register and
52	selecting the second sample in a corresponding location of a lower half of
53	the first register;
54	selecting a first operand in a first location of an upper half of a second register and
55	selecting a second operand in a corresponding location of a lower half of
56	the second register, wherein the first operand and the second operand are
57	each the first coefficient;
58	multiplying the first sample and the first operand and accumulating a first result in
59	a lower half of a third register; and
60	multiplying the second sample and the second operand and accumulating a second
61	result in an upper half of the third register.

Docket No.: P18896

52	13. The method as recited in Claim 12, further comprising saturating the first
53	result and the second result.

- 14. The method as recited in Claim 12, wherein the first location and the corresponding location of the first register are one of the upper bits of each half of the first register and the lower bits of each half of the first register.
- 15. The method as recited in Claim 11, wherein the first coefficient is a filter coefficient.
 - 16. The method as recited in Claim 11, wherein the calculating in parallel comprises executing a multiply accumulate single-instruction/multiple-data (SIMD) instruction.
 - 17. An apparatus comprising:

64

65

66

69

70

71

72

73

74

75

- a first plurality of multiplexers to select a first sample in a first location of an upper half of a first register and a second sample in a corresponding location of a lower half of the first register;
- a second plurality of multiplexers to select a first operand in a first location of an
 upper half of a second register and a second operand in a corresponding
 location of a lower half of the second register, wherein the first operand
 and the second operand are each a first coefficient;
- a first multiplier to multiply the first sample with the first operand; and a second multiplier to multiply the second sample with the second operand;

82	wherein the first sample and the second sample are from a plurality of sequential
83	`samples;
84	wherein the first sample is an (n)th sample and the second sample is an (n+2)th
85	sample in the plurality of sequential samples.
86	18. The apparatus as recited in Claim 14, further comprising:
. 87	a first accumulator to accumulate a first product of the first multiplier; and
88	a second accumulator to accumulate a second product of the second multiplier.
89	19. The apparatus as recited in Claim 14, where a first selection control for the
90	first plurality of multiplexers and a second selection control for the second plurality of
91	multiplexers is according to a first qualifier and a second qualifier specified in a single-
92	instruction/multiple-data (SIMD) instruction.
93	20. The apparatus as recited in Claim 14, wherein the first coefficient is a filter
94	coefficient.
95	21. An apparatus comprising:
96	a first plurality of multiplexers to select a first sample in a first location of an
97	upper half of a first register and a second sample in a corresponding
98	location of a lower half of the first register;
99	a second plurality of multiplexers to select a first operand in a first location of an
100	upper half of a second register and a second operand in a corresponding
101	location of a lower half of the second register, wherein the first operand
102	and the second operand are each a first coefficient;

Docket No.: P18896

103	a first multiplier to multiply the first sample with the first operand; and
104	a second multiplier to multiply the second sample with the second operand;
105	wherein the first sample and the second sample are from a plurality of sequential
106	samples;
107	wherein the first sample is an (n)th sample and the second sample is an (n+2)th
108	sample in the plurality of sequential samples.
109	22. The apparatus as recited in Claim 21, the apparatus further comprising:
110	a first accumulator to accumulate a first product of the first multiplier; and
111	a second accumulator to accumulate a second product of the second multiplier.
112 113	23. The apparatus as recited in Claim 21, where a first selection control for the first plurality of multiplexers and a second selection control for the second plurality of
•	
114	multiplexers is according to a first qualifier and a second qualifier specified in a single-
115	instruction/multiple-data (SIMD) instruction.
116	24. The apparatus as recited in Claim 21, wherein the first coefficient is a filter
117	coefficient.
118	25. A data processing system comprising:
119	an addressable memory to store an instruction for a multiply-accumulate
120	operation;
121	a processing core coupled to the addressable memory, the processor core
122	comprising:
123	an execution core to access the instruction:

124	a first source register to store a plurality of sequential samples;
125	a second source register to store a plurality of coefficients; and
126	a destination register to store a plurality of results;
127	a wireless interface to receive data; and
128	an I/O system and decoder to provide the plurality of samples to the first source
129	register from the data;
130	wherein the execution core comprises:
131	a first plurality of multiplexers to select a first sample in a first
132	location of an upper half of a first register and a second sample in a
133	corresponding location of a lower half of the first register;
134	a second plurality of multiplexers to select a first operand in a first
135	location of an upper half of a second register and a second operand in a
136	corresponding location of a lower half of the second register, wherein the
137	first operand and the second operand are each a first coefficient;
138	a first multiplier to multiply the first sample with the first operand:
139	and
140	a second multiplier to multiply the second sample with the second
141	operand;
142	wherein the first sample is an (n)th sample and the second sample is an (n+2)th
143	sample in the plurality of sequential samples.
144	26. The data processing system as recited in Claim 25, the execution unit further
145	comprising:
146	a first accumulator to accumulate a first product of the first multiplier; and
147	a second accumulator to accumulate a second product of the second multiplier.

148	27. The data processing system as recited in Claim 25, where a first selection
149	control for the first plurality of multiplexers and a second selection control for the second
150	plurality of multiplexers is according to a first qualifier and a second qualifier specified in
151	a single-instruction/multiple-data (SIMD) instruction.
152	28. The data processing system as recited in Claim 25, wherein the first

coefficient is a filter coefficient.

153

154

155

163

164

- 29. An article comprising a storage medium having instructions stored thereon, the instructions operable to:
- calculate, in parallel, a first multiplication product of a first coefficient and a first sample, and a second multiplication product of the first coefficient and a second sample;
- wherein the first sample and the second sample are from a plurality of sequential samples;
- wherein the first sample is an (n)th sample and the second sample is an (n+2)th sample in the plurality of sequential samples.
 - 30. The article as recited in Claim 29, wherein the first sample and second sample are odd samples in the plurality of sequential samples.
- 31. The article as recited in Claim 29, wherein the first sample and second sample are even samples in the plurality of sequential samples.
- 32. The article as recited in Claim 29, the instructions further operable to:

801	calculate, in parallel, a third multiplication product of a second coefficient and a
169	third sample and a fourth multiplication product of the second coefficient
170	and a fourth sample;
171	wherein the third sample and fourth sample are from the plurality of sequential
172	samples;
173	wherein the third sample is an (n+1)th sample and the second sample is an
174	(n+3)th sample in the plurality of sequential samples
175	33. The article as recited in Claim 29, the instructions further operable to:
176	calculate, in parallel a fifth multiplication product of a second coefficient and the
177	first sample, and a sixth multiplication product of the second coefficient
178	and the second sample generating a sixth product, and
179	accumulate in parallel, the fifth multiplication product with the first multiplication
180	product and the sixth multiplication product with the second multiplication
181	product.
182	34. The article as recited in Claim 33, wherein the first coefficient and second
183	coefficient are filter coefficients.
104	
184	35. The article as recited in Claim 29, wherein to calculate in parallel comprises to

execute a multiply accumulate single-instruction-multiple-data (SIMD) instruction.

185