MUD(Meeting Using DeepLearning) 개발 기술 보고서

Today news?(뉴스 요약&추천 서비스)

Team: 박주영(T), 김혜원, 김아연, 홍승환 **발표자: 박주영**

CONTENTS 1.Abstract summary

- (1) Seq2seq model
- (2) Attention mechanism
- (3) Model 구조
- (3) 순환 신경망

CONTENTS

2. Test 개요

(1) 문제 정의

(2) 기술 설명

CONTENTS

3. Test

CONTENTS

4. 참고 문헌

자료 출처

⁽¹⁾ Data 전처리

(2) Model 구현

(3) train

(4) test

Abstractive 요약

CONTENTS

(1) Seq2seq model

(2) Attention mechanism

(3) Model 구조

CONTENTS 2

contents 3

CONTENTS 4

contents 5

contents 6

(1)Seq2seq model

Sequence_to_sequence model은 RNN의 가장 발전된 형태의 아키텍처입니다. LSTM, GRU 등 RNN cell을 길고 깊게 쌓아서 복잡하고 방대한 sequence data를 처리하는데 특화된 모델입니다.

(2) Attention mechanism

Seq2seq 모델의 가장 큰 문제점은 정보 손실 발생합니다. 이를 위한 대안으로 정확도가 떨어지는 것을 보정해주기 위한 등장한 기법인 어텐션 (attention)이 나오게 되었습니다.

Attention mechanism은 디코더에서 출력 단어를 예측하는 매 시점(time step)마다, 인코더에서의 전체 입력 문장을 다시 한 번 참고한다는 점입니다.

Model 구조

CONTENTS

(1) Seq2seq model

(2) Attention mechanism

(3) Model 구조

CONTENTS

contents 3

contents 4

Sequence to sequence model

Attention mechanism

순환 신경망

CONTENTS

(1) Seq2seq model

(2) Attention mechanism

(3) Model 구조

CONTENTS 2

contents 3

CONTENTS 4

(1)LSTM Cell

RNN 셀의 장기 의존성 문제를 해결할 뿐만 아니라 학습 또한 빠르게 수렴합니다.

LSTM은 RNN의 히든 state에 cell-state를 추가한 구조입니다.

(2) GRU Cell

GRU는 LSTM의 장기 의존성 문제에 대한 해결책을 유지하면서, 은닉 상태를 업데이트하는 계산을 줄였습니다. 다시 말해서, GRU는 성능은 LSTM과 유사하면서 복잡했던 LSTM의 구조를 간단화 시켰습니다.

LSTM은 출력,입력,삭제 게이트 총 3개의 게이트 존재 GRU는 업데이트 게이트와 리셋 게이트 총 2개의 게이트 존재 GRU는 LSTM보다 학습 속도 빠르다, 하지만 둘의 성능은 비슷하다!

CONTENTS 2

(1) 문제 정의

contents 3

contents 4

2. Test 개요

(1) 문제정의

Sequence to sequence model은 정답이 있는 data만 가능하다!

CONTENTS

CONTENTS

3

(1) Data 전처

(2) seq2seq

(3) train

(4) test

contents 4

(1) Data 전처리 과정

CONTENTS

CONTENTS

(1) Data 전처 리

3

- (2) seq2seq
- (3) train
- (4) test

CONTENTS

(1) Data 전처리 과정

```
normalize(datapath):
os.chdir("./")
doc ko=open('mergel1.csv','w',encoding='utf 8 sig', newline="")
wcsv = csv.writer(doc ko)
m = Mecab()
line = csv.reader(file1)
title,content,title1,content1,title2,content2=[],[],[],[],[],[]
m title,m content=[],[]
count=1
   i[1] = hangul.sub('', i[1])
   m title.append(m.morphs(i[0]))
   m content.append(m.morphs(i[1]))
   for w in m title:
       if w not in stopwords:
            title.append(w)
   for p in m content:
        if p not in stopwords:
            content.append(p)
   title1 = ' '.join(title[0])
   title2.append(title1)
   content1 = ' '.join(content[0])
   content2.append(content1)
   temp=content1
   wcsv.writerow([title1,content1])
```

```
title1,content1='',''
  title,content,title1,content1,=[],[],[],[]
  m_title,m_content=[],[]

if count == 10000:
    break
  else:
    count += 1
len(title2+content2)
return title2,content2
```


result

CONTENTS 2

contents 3

- (1) Data 전처
- (2) seq2seq
- (3) train
- (4) test

CONTENTS

(1) Data 전처리 과정

```
lef make dict(contents):
   for i in contents:
       for word in i.split():
           content.append(word)
   vocab=Counter(content)
   vocab = Counter(content)
   maxn = max(vocab.values())
   vocab['<PAD>']=maxn+1
   vocab[' < S>'] = maxn + 2
   vocab['<E>'] = maxn + 3
   vocab['<UNK>'] = maxn + 4
   ix to word = {ch: i for i, ch in vocab.items()}
  word to ix = vocab
   for i,k in ix to word.items():
      counte += 1
      print("ix to word: {",i,": ",k,"}")
   counte=0
   for i,k in word to ix.items():
      if counte == 5: break
       counte += 1
      print("word_to_ix: {",i,": ",k,"}")
   print('contents number: %s, yoca numbers: %s' %(len(contents)_len(ix_to_word)))
   return word to ix, ix to word
```

result

```
# train > /home/usergpu/PycharmProjects/seq2seq/venv/bin/pythor ix_to_word: { 1 : 처해진다 } ix_to_word: { 2 : 두두두두 } ix_to_word: { 3 : 떨어뜨렸 } ix_to_word: { 4 : 컴파일 } ix_to_word: { 5 : 트웰브 } word_to_ix: { 조용히 : 19 } word_to_ix: { 되나는 : 7 } word_to_ix: { 무너뜨리 : 5 } word_to_ix: { 차릴 : 1 } word_to_ix: { 출 : 364 } contents number: 20000, voca numbers: 1320
```


CONTENTS

CONTENTS

- (1) Data 전처 리
- (2) seq2seq
- (3) train
- (4) test

CONTENTS

(1) Data 전처리 과정

```
make batch(encoder inputs, decoder inputs, targets, target weights):
  encoder size = len(encoder inputs[0])
🥊 decoder_size = len(decoder_inputs[0])
  encoder inputs, decoder inputs, targets, target weights = \
      np.array(encoder_inputs), np.array(decoder inputs), np.array(targets), np.array(target weights)
  result encoder inputs = []
  result decoder inputs = []
  result targets = []
  result_target_weights = []
  for i in range(encoder_size):
      result encoder inputs.append(encoder inputs[:, i])
  for j in range(decoder size):
      result decoder inputs.append(decoder inputs[:, j])
      result targets.append(targets[:, j])
      result target weights.append(target weights[:, j])
  return result encoder inputs, result decoder inputs, result targets, result target weights
```

result

Process finished with exit code 0

[2141, 10696, 929, 36, 29919, 1718, 13040, 96, 2387, 2075, 12001, 525, 29919, 943, 38626, 278, 1671, 1, 29919, 1718, 10696, 17009, 52, 34, 29919, 339, 2236, 11, 57263, 17817, 334, 56381, 12662, 2708, 271, 4141, 17817, 3785, 262, 56381, 10577, 409, [60770, 11, 96, 1718, 29919, 36, 929, 1280, 521, 37061, 170, 34, 22061, 732, 60769,

2 CONTENTS

CONTENTS

3

- Data 전처
- seq2seq
- train
- test

4 CONTENTS

3. Test

(2)Model 구현

bidirectional

attention

CONTENTS

contents 3

(1) Data 전처 리

(2) seq2seq

(3) train

(4) test

CONTENTS

(2)Model 구현

- [1] 초기 설정

```
import tensorflow as tf
 import numpy as np
 import util
title_content = util.normalize(datapath)
word_to_ix_ix_to_word = util.make_dict(contents)
forward only = False
hidden size = 300
vocab size = len(ix to word)
num layers = 3
learning rate = 0.001
batch size = 16
encoder size = 100
decoder size = util.doclength(title_sep=True)_# (Maximum) number of time steps in this batch
steps per checkpoint = 10
encoderinputs, decoderinputs, targets_, targetweights = util.make_suffle(content,title_word to ix_encoder_size=encoder_size=decoder_size=decoder_size_decoder_size=decoder_size_shuffle=False)
```


CONTENTS 7

contents 3

- (1) Data 전처 리
- (2) seq2seq
- (3) train
- (4) test

CONTENTS

(2)Model 구현

- [1] seq2seq 변수 선언

```
# variables
self.source_vocab_size = vocab_size
self.target_vocab_size = vocab_size
self.batch_size = batch_size
self.batch_size = batch_size
self.encoder_size = encoder_size
self.decoder_size = decoder_size
self.learning_rate = tf.Variable(float(learning_rate), trainable=False)
self.global_step = tf.Variable(0, trainable=False)

# networks
W = tf.Variable(tf.random_normal([hidden_size, vocab_size]))
b = tf.Variable(tf.random_normal([vocab_size]))
output_projection = (W, b)
self.encoder_inputs = [tf.compat.v1.placeholder(tf.int32, [batch_size]) for _ in range(encoder_size)]
self.decoder_inputs = [tf.compat.v1.placeholder(tf.int32, [batch_size]) for _ in range(decoder_size)]
self.targets = [tf.compat.v1.placeholder(tf.int32, [batch_size]) for _ in range(decoder_size)]
self.target_weights = [tf.compat.v1.placeholder(tf.float32, [batch_size]) for _ in range(decoder_size)]
```

- [2] seq2seq network 선언

```
single_cell = tf.compat.v1.nn.rnn_cell.GRUCell(num_units=hidden_size)
cell = tf.compat.v1.nn.rnn_cell.MultiRNNCell([single_cell] * num_layers)
```


CONTENTS

contents 3

- (1) Data 전처
- (2) seq2seq
- (3) train
- (4) test

contents 4

(2)학습(train)


```
self.outputs, self.states = tf.contrib.legacy_seq2seq.embedding_attention_seq2seq(
```

```
if not forward_only:
    self.outputs, self.states = tf.contrib.legacy_seq2seq.embedding_attention_seq2seq(
        self.encoder_inputs, self.decoder_inputs, cell,
        num_encoder_symbols=vocab_size,
        num_decoder_symbols=vocab_size,
        embedding_size=hidden_size,
        output_projection=output_projection,
        feed_previous=False)

self.logits = [tf.matmul(output, output_projection[0]) + output_projection[1] for output in self.outputs]
    self.loss = []
    for logit, target, target_weight in zip(self.logits, self.targets, self.target_weights):
        crossentropy = [tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logit, labels=target)
        self.loss.append(crossentropy * target_weight)
    self.cost = tf.compat.v1.add_n(self.loss)
    self.train_op = tf.compat.v1.train.AdamOptimizer(learning_rate).minimize(self.cost)
```


CONTENTS

3 CONTENTS

Data 전처

seq2seq

train

test

CONTENTS 4

3. Test

(2)예측(precision,test)


```
self.outputs, self.states = tf.contrib.legacy seq2seq.embedding attention seq2seq(
   self.encoder_inputs, self.decoder_inputs, cell,
   num encoder symbols-vocab size,
   num decoder symbols=vocab size,
   embedding size=hidden size,
   output projection=output projection,
self.logits = [tf.matmul(output, output projection[0]) + output projection[1] for output in self.outputs]
```


CONTENTS

3 CONTENTS

Data 전처

seq2seq

train

test

CONTENTS 4

3. Test

(2)예측(precision,test)


```
self.outputs, self.states = tf.contrib.legacy seq2seq.embedding attention seq2seq(
   self.encoder_inputs, self.decoder_inputs, cell,
   num encoder symbols-vocab size,
   num decoder symbols=vocab size,
   embedding size=hidden size,
   output projection=output projection,
self.logits = [tf.matmul(output, output projection[0]) + output projection[1] for output in self.outputs]
```


CONTENTS 2

contents 3

(1) Data 전처

- (2) seq2seq
- (3) train
- (4) test

CONTENTS 4

- 오류(error)

실제 결과물

contents 2

contents 3

CONTENTS

CONTENTS

(1) 문제점

(2) 해결방안

contents 6

Headline

Headline을 추출하려 할 때, 다중 문서에 대한 headline 추출해야 한다. 하지만 이와 관련 문서가 거의 없다.

정확성

Headline을 attention을 이용하여 추출하려 할 때, 정확성이 많이 떨어진다. 이에 정확성을 올리기 위한 방법생각해야함.

Data set

최종 목표는 뉴스 본문에 대한 요약 본이다.문제는 dataset이 없다.현재 dataset으로는 뉴스 중간에 포함 되 어있는 중간 제목들을 이용하여 요 약할 계획.

Attention으로 요약_ 이 가능한가?

현재 제가 찾아본 요약 관련 알고리즘은 주로 textrank또는 lexrank입니다. 하지만 seq2seq model에 copy mechanism과 pointer nerwork를 이용한 다른 몇 논문을 참고하여 요약할 예정.

CONTENTS 2

CONTENTS 3

CONTENTS

contents 6

https://reniew.github.io/31 → Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation

https://git.mif.vu.lt/TankBusterPBL/TankBuster/blob/2583045df556e522a1a14fc2de35cc4ec43dd596/bin/Tensorflow/Tensorflow/tutorials/rnn/translate/seq2seq_model.py

https://github.com/dongjun-Lee/text-summarization-tensorflow

https://github.com/graykode/nlp-tutorial/blob/master/4-2.Seq2Seq(Attention)/Seq2Seq(Attention) Tensor.ipynb

https://wikidocs.net/22893

https://www.tensorflow.org/versions/r1.15/api_docs/python/tf/contrib/legacy_seq2seq/embedding_attention_seq2seq

https://tensorflowkorea.gitbooks.io/tensorflow-kr/content/g3doc/tutorials/seq2seq/

https://github.com/petewarden/tensorflow_makefile/blob/master/tensorflow/models/rnn/translate/seq2seq_model.py

→seq2seq과 ATTENTION 기술 설명

https://ratsgo.github.io/natural%20language%20processing/2017/03/09/rnnlstm/

