

本章内容

- 2.1 基本概念
- 2.2 文法的定义
- 2.3 语言的定义
- 2.4 文法的分类
- 2.5 CFG的语法分析树

2.1 基本概念

- ➤ **#** (String)
 - ▶串是一个有穷符号 (symbol) 序列
 - >符号的典型例子:字母、数字、标点符号、...

例:

- →符号: a、b、c →串: abcb

2.1 基本概念

- > # (String)
 - ▶串是一个有穷符号 (symbol) 序列
 - 》串s的长度,通常记作|s|,是指s中符号的个数
 - ➤例: |abcb|=4
 - > 空串 (empty string) 是长度为0的串, 用 ε (epsilon) 表示
 - $> |\varepsilon| = 0$

串上的运算——连接

- 一如果x和y是串,那么x和y的连接(concatenation)是把y附加到x后面而形成的串,记作xy
 - ▶ 例如,如果 x=dog且 y=house, 那 么xy=doghouse
 - 文字是连接运算的单位元(identity),即,对于任何串S都有,ES = SE = S

设x,y,z是三个字符串,如果x=yz,则称y是x的前缀,z是x的后缀

串上的运算——幂

▶串s的幂运算

$$\begin{cases} s^0 = \varepsilon, \\ s^n = s^{n-1}s, n \ge 1 \end{cases}$$

- $>s^1=s^0s=\varepsilon s=s$, $s^2=ss$, $s^3=sss$, ...
- 》例: 如果 s = ba, 那么 $s^1 = ba$, $s^2 = baba$, $s^3 = bababa$, …

串s的n次幂:将n个s连接起来

字母表(Alphabet)

▶字母表∑是一个有穷符号集合

例:

- **一二进制字母表:** {0,1}
- >ASCII字符集
- >Unicode字符集

 \triangleright 字母表 \sum_{1} 和 \sum_{2} 的乘积(product)

$$\triangleright \sum_{1} \sum_{2} = \{ab | a \in \sum_{1}, b \in \sum_{2}\}$$

例: $\{0,1\}$ $\{a,b\}$ = $\{0a,0b,1a,1b\}$

- \triangleright 字母表 \sum_{1} 和 \sum_{2} 的乘积(product)
- >字母表∑的n次幂(power)

$$\begin{cases} \sum^{0} = \{ \varepsilon \} \\ \sum^{n} = \sum^{n-1} \sum_{i} n \geq 1 \end{cases}$$

例:
$$\{0,1\}^3 = \{0,1\} \{0,1\} \{0,1\}$$

= $\{000,001,010,011,100,101,110,111\}$

字母表的n次幂:长度为n的符号串构成的集合

- \triangleright 字母表 \sum_{1} 和 \sum_{2} 的乘积(product)
- >字母表∑的n次幂(power)
- ▶字母表∑的正闭包(positive closure)

$$\triangleright \Sigma^+ = \Sigma \cup \Sigma^2 \cup \Sigma^3 \cup \dots$$

例: $\{a, b, c, d\}^+ = \{a, b, c, d, aa, ab, ac, ad, ba, bb, bc, bd, ..., aaa, aab, aac, aad, aba, abb, abc, ...\}$

字母表的正闭包:长度正数的符号串构成的集合

- \triangleright 字母表 \sum_{1} 和 \sum_{2} 的乘积(product)
- >字母表∑的n次幂(power)
- ▶字母表∑的正闭包(positive closure)
- >字母表∑的克林闭包(Kleene closure)
 - $\triangleright \Sigma^* = \Sigma^0 \cup \Sigma^+ = \Sigma^0 \cup \Sigma \cup \Sigma^2 \cup \Sigma^3 \cup \dots$

ঙ্গি: $\{a, b, c, d\}^* = \{\varepsilon, a, b, c, d, aa, ab, ac, ad, ba, bb, bc, bd, ..., aaa, aab, aac, aad, aba, abb, abc, ...\}$

字母表的克林闭包:任意符号串(长度可以为零)构成的集合

提纲

- 2.1 基本概念
- 2.2 文法的定义
- 2.3 语言的定义
- 2.4 文法的分类
- 2.5 CFG的语法分析树

2.2 文法的定义

- >自然语言的例子——句子的构成规则
 - ▶<句子>→<名词短语><动词短语>
 - ▶<名词短语>→<形容词><名词短语>
 - ▶<名词短语>→<名词>
 - ▶<动词短语>→<动词><名词短语>
 - ▶<形容词> → little
 - **>** <名词> → boy
 - > <名词> → apple
 - > < 动词 $> \to eat$

未用尖括号括起来部分表示语言的基本符号

尖括号括起来部分称为语法成分

$$G = (V_T, V_N, P, S)$$

 $\triangleright V_T$: 终结符集合

终结符 (terminal symbol) 是文法所定义的语言的基本符号,有时也称为token

 \triangleright 例: $V_T = \{ apple, boy, eat, little \}$

$$G = (V_T, V_N, P, S)$$

- $\triangleright V_T$: 终结符集合
- $\triangleright V_N$: 非终结符集合
 - 非终结符(nonterminal) 是用来表示语法成分的符号, 有时也称为"语法变量"
 - 》例: $V_N = \{ < 0 \ F > , < 2 \ A \ ightaure = \{ < 0 \ F > , < 2 \ ightaure = \{ < 0 \ F > , < 2 \ ightaure = \{ < 0 \ F > , < 2 \ ightaure = \{ < 0 \ F > , < 2 \ ightaure = \{ < 0 \ F > , < 2 \ ightaure = \{ < 0 \ F > , < 2 \ ightaure = \{ < 0 \ F > , < 2 \ ightaure = \{ < 0 \ F > , < 2 \ ightaure = \{ < 0 \ F > , < 2 \ ightaure = \{ < 0 \ F > , < 2 \ ightaure = \{ < 0 \ F > , < 2 \ ightaure = \{ < 0 \ F > , < 2 \ ightaure = \{ < 0 \ F > , < 2 \ ightaure = \{ < 0 \ F > , < 2 \ ightaure = \{ < 0 \ F > , < 2 \ ightaure = \{ < 0 \ F > , < 2 \ ightaure = \{ < 0 \ F > , < 2 \ ightaure = \{ < 0 \ F > , < 2 \ ightaure = \{ < 0 \ F > , < 2 \ ightaure = \{ < 0 \ F > , < 2 \ ightaure = \{ < 0 \ F > , < 2 \ ightaure = \{ < 0 \ F > , < 2 \ ightaure = \{ < 0 \ F > , < 2 \ ightaure = \{ < 0 \ F > , < 2 \ ightaure = \{ < 0 \ F > , < 2 \ ightaure = \{ < 0 \ F > , < 2 \ ightaure = \{ < 0 \ F > , < 2 \ ightaure = \{ < 0 \ F > , < 2 \ ightaure = \{ < 0 \ F > , < 2 \ ightaure = \{ < 0 \ F > , < 2 \ ightaure = \{ < 0 \ F > , < 2 \ ightaure = \{ < 0 \ F > , < 2 \ ightaure = \{ < 0 \ F > , < 2 \ ightaure = \{ < 0 \ F > , < 2 \ ightaure = \{ < 0 \ F > , < 2 \ ightaure = \{ < 0 \ F > , < 2 \ ightaure = \{ < 0 \ F > , < 2 \ ightaure = \{ < 0 \ F > , < 2 \ ightaure = \{ < 0 \ F > , < 2 \ ightaure = \{ < 0 \ F > , < 2 \ ightaure = \{ < 0 \ F > , < 2 \ ightaure = \{ < 0 \ F > , < 2 \ ightaure = \{ < 0 \ F > , < 2 \ ightaure = \{ < 0 \ F > , < 2 \ ightaure = \{ < 0 \ F > , < 2 \ ightaure = \{ < 0 \ F > , < 2 \ ightaure = \{ < 0 \ F > , < 2 \ ightaure = \{ < 0 \ F > , < 2 \ ightaure = \{ < 0 \ F > , < 2 \ ightaure = \{ < 0 \ F > , < 2 \ ightaure = \{ < 0 \ F > , < 2 \ ightaure = \{ < 0 \ F > , < 2 \ ightaure = \{ < 0 \ F > , < 2 \ ightaure = \{ < 0 \ F > , < 2 \ ightaure = \{ < 0 \ F > , < 2 \ ightaure = \{ < 0 \ F > , < 2 \ ightaure = \{ < 0 \ F > , < 2 \ ightaure = \{ < 0 \ F > , < 2 \ ightaure = \{ < 0 \ F > , < 2 \ ightaure = \{ < 0 \ F > , < 2 \ ightaure = \{ < 0 \ F > , < 2 \ ightaure = \{ < 0 \ F > , < 2 \ ightaure = \{ < 0 \ F > , < 2 \ ightaure = \{ < 0 \ F > , < 2 \ ightaure = \{ < 0 \ F > ,$

$$G = (V_T, V_N, P, S)$$

 $\triangleright V_T$: 终结符集合

$$V_T \cap V_N = \Phi$$

 $\triangleright V_N$: 非终结符集合

 $\triangleright P$: 产生式集合

 $V_T \cup V_N$: 文法符号集

产生式(production)描述了将终结符和非终结符组合成串的方法产生式的一般形式:

$$\alpha \rightarrow \beta$$

读作: α 定义为 β

- $> \beta \in (V_T \cup V_N)^* : 称为产生式的体(body)或右部(right side)$

$$G = (V_T, V_N, P, S)$$

- $\triangleright V_T$: 终结符集合
- $\triangleright V_N$: 非终结符集合
- P: 产生式集合

产生式(production)描述了将终结符和非终结符组合成串的方法产生式的一般形式:

$$G = (V_T, V_N, P, S)$$

- $\triangleright V_T$: 终结符集合
- $\triangleright V_N$: 非终结符集合
- $\triangleright P$: 产生式集合
- ▶S: 开始符号

 $S \in V_N$ 。开始符号(start symbol) 表示的是该文法中最大的语法成分

►例: S = < 句子>

$$G = (V_T, V_N, P, S)$$

- $\triangleright V_T$: 终结符集合
- $\triangleright V_N$: 非终结符集合
- $\triangleright P$: 产生式集合
- ▶S: 开始符号

例:
$$G = (\{ id, +, *, (,) \}, \{E\}, P, E)$$
 $P = \{E \rightarrow E + E,$
 $E \rightarrow E * E,$
 $E \rightarrow (E),$
 $E \rightarrow id \}$

约定:

不引起歧义的 前提下,可以只写产生式

 $G: E \rightarrow E + E$ $E \rightarrow E * E$ $E \rightarrow (E)$

 $E \rightarrow id$

产生式的简写

>对一组有相同左部的α产生式

$$\alpha \rightarrow \beta_1, \alpha \rightarrow \beta_2, \dots, \alpha \rightarrow \beta_n$$

可以简记为:

$$\alpha \rightarrow \beta_1 | \beta_2 | \dots | \beta_n$$

读作: α 定义为 β_1 , 或者 β_2 , ..., 或者 β_n 。

 $\beta_1, \beta_2, ..., \beta_n$ 称为α的候选式(Candidate)

符号约定

- 户下述符号是终结符
 - $\triangleright(a)$ 字母表中排在前面的小写字母,如 $a \lor b \lor c$
 - **▶**(b) 运算符,如 +、*等
 - ▶(c) 标点符号, 如括号、逗号等
 - **➢**(*d*) 数字0、1、...、9
 - $\triangleright(e)$ 粗体字符串,如id、if等

符号约定

- 户下述符号是终结符
- 户下述符号是非终结符
 - $\triangleright(a)$ 字母表中排在前面的大写字母,如 $A \lor B \lor C$
 - ▶(b) 字母S。通常表示开始符号
 - $\triangleright(c)$ 小写、斜体的名字,如 expr、stmt等
 - \triangleright (d) 代表程序构造的大写字母。如E(表达式)、T(项)和F(因子)

符号约定

- ▶下述符号是终结符
- ▶下述符号是非终结符 文法符号 X,Y,Z
- 终结符 a,b,c非终结符 A,B,C

终结符号串 u, v, ..., z

文法符号串 α, β, γ

- ▶字母表中排在后面的大写字母(如X、Y、Z) 表示文法符号(即终结符或非终结符)
- ▶字母表中排在后面的小写字母(主要是u、v、...、z) 表示终结符号串(包括空串)
- \triangleright 小写希腊字母,如 α 、 β 、 γ ,表示文法符号串(包括空串)
- >除非特别说明,第一个产生式的左部就是开始符号

提纲

- 2.1 基本概念
- 2.2 文法的定义
- 2.3 语言的定义
- 2.4 文法的分类
- 2.5 CFG的语法分析树

2.3 语言的定义

自然语言文法的例子:

- ①<句子>→<名词短语><动词短语>
- ② <名词短语> → <形容词> <名词短语>
- ③<名词短语>→<名词>
- ④<动词短语>→<动词><名词短语>
- ⑤ <形 容词> → *little*
- ⑥ <名词> → boy
- ⑦ <名词> \rightarrow apple
- **⑧**<动词>→ eat

有了文法(语言规则), 如何判定一个词串是否是 满足文法的句子?

单词串: little boy eats apple

推导 (Derivations) 和归约(Reductions)

- 》给定文法 $G=(V_T,V_N,P,S)$, 如果 $\alpha \to \beta \in P$, 那么可以将符号串 $\gamma \alpha \delta$ 中的 α 替换为 β , 也就是说,将 $\gamma \alpha \delta$ 重写(rewrite)为 $\gamma \beta \delta$, 记作 $\gamma \alpha \delta \to \gamma \beta \delta$ 。此时,称文法中的符号串 $\gamma \alpha \delta$ 直接推导(directly derive)出 $\gamma \beta \delta$
 - >简而言之, 就是用产生式的右部替换产生式的左部

推导 (Derivations) 和归约(Reductions)

- ightharpoonup如果 $\alpha_0 \Rightarrow \alpha_1$, $\alpha_1 \Rightarrow \alpha_2$, $\alpha_2 \Rightarrow \alpha_3$, ..., $\alpha_{n-1} \Rightarrow \alpha_n$, 则可以记作 $\alpha_0 \Rightarrow \alpha_1 \Rightarrow \alpha_2 \Rightarrow \alpha_3 \Rightarrow ... \Rightarrow \alpha_{n-1} \Rightarrow \alpha_n$, 称符号串 α_0 经过n步推导出 α_n ,可简记为 $\alpha_0 \Rightarrow^n \alpha_n$
 - $> \alpha \Longrightarrow^0 \alpha$
 - ▶→+表示"经过正数步推导"
 - ▶→*表示"经过若干(可以是0)步推导"

推导 (Derivations) 和归约(Reductions)

例

文法:

- ① <句子>→<名词短语><动词短语>
- ② <名词短语> → <形容词> <名词短语>
- ③ <名词短语>→<名词>
- ④ <动词短语>→<动词><名词短语>
- ⑤ <形容词>→ *little*
- ⑥ <名词>→boy
- ⑦ <名词>→apple
- **⑧** <动词> → eat

<句子> ⇒ <名词短语> <动词短语>

⇒<形容词><名词短语><动词短语>

⇒ little <名词短语> <动词短语>

⇒ little <名词> <动词短语>

推导

⇒ little boy <动词短语>

归约

- ⇒ little boy <动词><名词短语>
- ⇒ little boy eats <名词短语>
- ⇒ little boy eats <名词>
- \Rightarrow little boy eats apple

第编译一今天课开始上节 今天开始上第一节编译课

回答前面的问题

- 一有了文法(语言规则),如何判定某一词串是否 是该语言的句子?
 - ▶句子的推导(派生)-从生成语言的角度▶句子的归约→从识别语言的角度→均根据规则

句型和句子

- >如果 $S \Rightarrow^* \alpha$, $\alpha \in (V_T \cup V_N)^*$, 则称α是G的一个句型 (sentential form)
 - ▶一个句型中既可以包含终结符,又可以包含非终结符,也可能是空串
- \triangleright 如果 $S \Rightarrow^* w$, $w \in V_T^*$, 则称w是G的一个句子(sentence)
 - 户句子是不包含非终结符的句型

例

- <句子>⇒<名词短语><动词短语>
 - ⇒<形容词><名词短语><动词短语>
 - ⇒ little <名词短语> <动词短语>
 - ⇒ little <名词> <动词短语>
 - ⇒ little boy <动词短语>
 - ⇒ little boy <动词><名词短语>
 - ⇒ little boy eats <名词短语>
 - ⇒ little boy eats <名词>

句型

语言的形式化定义

》由文法G的开始符号S推导出的所有句子构成的集合称为文法G生成的语言,记为L(G)。即

例

》文法G

- $\textcircled{3} L \rightarrow a | b | c | \dots | z$
- **4** $D \rightarrow 0 \mid 1 \mid 2 \mid 3 \mid ... \mid 9$

该文法生成的语言是: 标识符

 $T \Rightarrow TL$

 $\Rightarrow TDL$

 $\Rightarrow TDDL$

 $\Rightarrow TLDDL$

• • •

 $\Rightarrow TD...LDDL$

 $\Rightarrow DD...LDDL$

请写出无符号整数或浮点数的文法

T: 字母数字串

语言上的运算

运算	定义和表示
L和M的并	$LUM = \{s \mid s$ 属于L或者s属于M}
L和M的连接	$LM = \{ st \mid s $ 属于 L 且 t 属于 $M \}$
L的幂	$ \begin{cases} L^0 = \{ \varepsilon \} \\ L^n = L^{n-1}L, n \geqslant 1 \end{cases} $
L的Kleene闭包	$L^* = \bigcup_{i=0}^{\infty} L^i$
L的正闭包	$L^{\scriptscriptstyle +} = \cup_{i=1}^{\infty} L^i$

例: $\diamondsuit L = \{A, B, \dots, Z, a, b, \dots, z\}, D = \{0, 1, \dots, 9\}$ 。则 $L(L \cup D)^*$ 表示的语言是标识符

提纲

- 2.1 基本概念
- 2.2 文法的定义
- 2.3 语言的定义
- 2.4 文法的分类
- 2.5 CFG的语法分析树

2.4 文法的分类

- ➤ Chomsky 文法分类体系
 - ▶0型文法 (Type-0 Grammar)
 - ▶1型文法 (Type-1 Grammar)
 - ▶2型文法 (Type-2 Grammar)
 - ▶3型文法 (Type-3 Grammar)

0型文法 (Type-0 Grammar)

$$\alpha \rightarrow \beta$$

- ► 无限制文法(Unrestricted Grammar) /短语结构文法 (Phrase Structure Grammar, PSG)
 - $\triangleright \forall \alpha \rightarrow \beta \in P$, α 中至少包含1个非终结符
- ▶ 0型语言
 - \rightarrow 由0型文法G生成的语言L(G)

1型文法 (Type-1 Grammar)

$$\alpha \rightarrow \beta$$

- ▶ 上下文有关文法(Context-Sensitive Grammar, CSG)
 - $\triangleright \forall \alpha \rightarrow \beta \in P$, $|\alpha| \leq |\beta|$
 - \triangleright 产生式的一般形式: $\alpha_1 A \alpha_2 \rightarrow \alpha_1 \beta \alpha_2 (\beta \neq \epsilon)$
- ▶ 上下文有关语言 (1型语言)
 - \triangleright 由上下文有关文法 (1型文法) G生成的语言L(G)

CSG中不包含ε-产生式

2型文法 (Type-2 Grammar)

$$\alpha \rightarrow \beta$$

- ▶ 上下文无关文法 (Context-Free Grammar, CFG)
 - $\triangleright \forall \alpha \rightarrow \beta \in P, \ \alpha \in V_N$
 - \triangleright 产生式的一般形式: $A \rightarrow \beta$

例: $S \rightarrow L \mid LT$ $T \rightarrow L \mid D \mid TL \mid TD$ $L \rightarrow a \mid b \mid c \mid d \mid ... \mid z$ $D \rightarrow 0 \mid 1 \mid 2 \mid 3 \mid ... \mid 9$

2型文法 (Type-2 Grammar)

$$\alpha \rightarrow \beta$$

- ▶ 上下文无关文法 (Context-Free Grammar, CFG)
 - $\triangleright \forall \alpha \rightarrow \beta \in P, \ \alpha \in V_N$
 - \triangleright 产生式的一般形式: $A \rightarrow \beta$
- ▶ 上下文无关语言 (2型语言)
 - \triangleright 由上下文无关文法 (2型文法) G生成的语言L(G)

3型文法 (Type-3 Grammar)

$$\alpha \rightarrow \beta$$

- ▶ 正则文法 (Regular Grammar, RG)
 - \triangleright 右线性(Right Linear)文法: $A \rightarrow wB$ 或 $A \rightarrow w$
 - ► 左线性(Left Linear) 文法: A→Bw 或 A→w
 - 产左线性文法和右线性文法都称为正则文法

例(右线性文法)

- ① $S \rightarrow a \mid b \mid c \mid d$
- ② $S \rightarrow aT/bT/cT/dT$
- ③ $T \rightarrow a \mid b \mid c \mid d/0 \mid 1 \mid 2 \mid 3 \mid 4 \mid 5$
- $\textcircled{4} \quad T \rightarrow aT/bT/cT/dT/0T/1T/2T/3T/4T/5T$

文法G(上下文无关文法)

- ① $S \rightarrow L \mid LT$
- $\textcircled{3} L \rightarrow a \mid b \mid c \mid d$

3型文法 (Type-3 Grammar)

 $\alpha \rightarrow \beta$

- ▶ 正则文法 (Regular Grammar, RG)

 - \triangleright 左线性(Left Linear) 文法: $A \rightarrow Bw$ 或 $A \rightarrow w$
 - 产左线性文法和右线性文法都称为正则文法
- ▶ 正则语言 (3型语言)
 - \triangleright 由正则文法(3型文法)G生成的语言L(G)

正则文法能描述程序设计语言的多数单词

四种文法之间的关系

- >逐级限制
 - > 0型文法: α中至少包含1个非终结符
 - ▶1型文法 (CSG) : |α|≤|β|
 - \triangleright 2型文法 (CFG) : $\alpha \in V_N$
 - \triangleright 3型文法 $(RG): A \rightarrow wB$ 或 $A \rightarrow w \quad (A \rightarrow Bw \quad \text{id} A \rightarrow w)$
- 〉逐级包含

提纲

- 2.1 基本概念
- 2.2 文法的定义
- 2.3 语言的定义
- 2.4 文法的分类
- 2.5 CFG的语法分析树

CFG 的分析树

G:

- $(1) E \rightarrow E + E$
- $(2) E \rightarrow E * E$
- $\mathfrak{S} E \rightarrow -E$
- $\textcircled{4}E \rightarrow (E)$
- (5) $E \rightarrow id$

- > 根节点的标号为文法开始符号
- \triangleright 内部结点表示对一个产生式 $A \rightarrow \beta$ 的应用,该结点的标号是此产生式左部A。该结点的子结点的标号从左到右构成了产生式的右部 β
- ▶ 叶结点的标号既可以是非终结符,也可以是终结符。从左到右排列叶 节点得到的符号串称为是这棵树的产出(yield)或边缘(frontier)

分析树是推导的图形化表示

ho 给定一个推导 $S \Rightarrow \alpha_1 \Rightarrow \alpha_2 \Rightarrow ... \Rightarrow \alpha_n$,对于推导过程中得到的每一个句型 α_i ,都可以构造出一个边缘为 α_i 的分析树

推导过程: $E \Rightarrow -E \Rightarrow -(E) \Rightarrow -(E+E) \Rightarrow -(id+E) \Rightarrow -(id+id)$

(句型的)短语

- 〉给定一个句型,其分析树中的每一棵子树的边缘称为该句型的一个短语(phrase)
 - 》如果子树只有父子两代结点,那么这棵子树的边缘称为该句型的一个直接短语(immediate phrase)

文法:

- $\bigcirc E \rightarrow E + E$
- $\bigcirc E \to E * E$
- $\textcircled{3} E \rightarrow -E$
- $\textcircled{4}E \rightarrow (E)$
- $(5) E \rightarrow id$

分析树:

 $\begin{array}{c|c}
E \\
 \hline
 & E \\
 & E \\
 & E \\
 \hline
 & E \\
 & E \\
 & E
\end{array}$

短语:

- \rightarrow (E+E)
- \triangleright (E+E)
- $\succ E+E$

直接短语:

 $\triangleright E + E$

直接短语一定是某产生式的右部

但产生式的右部不一定是给定句型的直接短语

例

文法:

- ①<句子>→<动词短语>
- ②<动词短语>→<动词><名词短语>
- ③<名词短语>→<名词><名词短语>|<名词>
- ④<动词>→提高
- ⑤<名词>→ 高 人 | 人 民 | 民 生 | 生 活 | 活 水 | 水 平

输入:提高人民生活水平

<句子>

二义性文法 (Ambiguous Grammar)

▶如果一个文法可以为某个句子生成多棵分析树,则称这个文法是二义性的

例

- 户文法
- 户句型
 - \triangleright if E_1 then if E_2 then S_1 else S_2

例

- 户文法
 - $\gt S \rightarrow \text{ if } E \text{ then } S$ | if E then S else S | other

消歧规则:每个else和最近的尚未匹配的if匹配

- 户句型
 - \triangleright if E_1 then if E_2 then S_1 else S_2

二义性文法的判定

- ▶对于任意一个上下文无关文法,不存在一个算法, 判定它是否为二义性的;但能给出一组充分条件, 满足这组充分条件的文法是无二义性的
 - ▶满足,肯定无二义性
 - >不满足,也未必就是有二义性的

本章小结

- > 基本概念
- 户文法的定义
- ▶语言的定义
- 户文法的分类
- **▶CFG的分析树**

