Statistics Masters Comprehensive Exam

November 7, 2009

Student Name:	

1. Answer 8 out of 12 problems. Mark the problems you selected in the following table.

Problem	1	2	3	4	5	6	7	8	9	10	11	12
Selected												
Scores												

- 2. Write your answer right after each problem selected, attach more pages if necessary. **Do not** write your answers on the back.
- 3. Assemble your work in right order and in the original problem order. (Including the ones that you do not select)

1. Let X and Y be two random variables with joint density

$$f(x,y) = \begin{cases} 1, & 0 < x < 1, 0 < y < 1 \\ 0, & \text{otherwise} \end{cases}$$

Define
$$U = X + Y, V = X/(X + Y)$$
.

- (a) Find the the joint density of U and V.
- (b) Find the the marginal density of U.
- (c) Find the the marginal density of V.

2. Let $(X_1, X_2, X_3) \sim \text{Trinomial}(n, p_1, p_2, p_3)$, that is,

$$P(X_1 = x_1, X_2 = x_2, X_3 = x_3) = \frac{n!}{x_1! x_2! x_3!} p_1^{x_1} p_2^{x_2} p_3^{x_3},$$

where $p_3 = 1 - p_1 - p_2$, $x_3 = n - x_1 - x_2$, find $P(X_1 = k | X_3 = m)$.

- 3. Let X_1, \ldots, X_4 be a random sample an $Normal(\theta, 1)$ population. We wish to test $H_0: \theta = 2$ versus $H_1: \theta = 1$.
 - (a) Consider the following tests procedures
 - i. Reject H_0 if $\sum_{i=1}^4 X_i < C_1$.
 - ii. Reject H_0 if $\min\{X_1, ..., X_4\} < C_2$.
 - (b) Find C_1 and C_2 so that the probability of Type I error is .05
 - (c) Calculate the power of the tests and compare the two tests.

4. Let X_1, \ldots, X_n be a random sample from a population with density

$$f(x|\theta) = \begin{cases} \left(\frac{\theta}{x}\right)^{\theta+1}, & \text{if } x > \theta\\ 0, & \text{if otherwise,} \end{cases}$$

where $\theta > 4$.

- (a) Find the maximum likelihood estimator (MLE) of θ^4 .
- (b) Is the above MLE a minimal sufficient statistics? Explain fully.

- 5. Let X_1, X_2 be independent random variables.
 - (a) If $X_1 \sim Poisson(5)$ and $X_2 \sim Poisson(2)$, find $P(X_1 = 1 | X_1 + X_2 = 2)$.
 - (b) If $X|\theta \sim Poisson(\theta)$ and $\theta \sim Gamma(\alpha, \beta)$, find $E(\theta^4|X=2)$.

6. Let X_1, \ldots, X_n be a random sample from a Bernoulli (θ) , and suppose we put a Beta (α, β) prior distribution on θ .

Find Bayes estimators of θ using loss functions

- (a) $L(\theta, a) = (\theta a)^2$
- (b) $L(\theta, a) = \frac{(\theta a)^2}{\theta(1 \theta)}$,
- (c) Show that with the second loss function, the MLE of θ is the Bayes estimator of θ , when $\alpha = \beta = 1$.

7. The probability integral $I_d(a, b)$ for (a > 0, b > 0) and for 1 > d > 0 is defined as the incomplete Beta-integral if $I_d(a, b)$ is given by

$$I_d(a,b) = \frac{1}{B(a,b)} \int_0^d x^{a-1} (1-x)^{b-1} dx$$

where $B(a,b) = \int_0^1 x^{a-1} (1-x)^{b-1} dx$. Express the probability P(X>c) (c>0) in terms of incomplete Beta-integral in each of the following.

- (a) $X \sim F(f_1, f_2)$, a central F-distribution with degrees of freedom (f_1, f_2) , where $f_i > 0$ are integers.
- (b) $X \sim t_f$, a central t-distribution with degrees of freedom f, where f > 0 is an integer.

- 8. Let $\{X_1,\ldots,X_n\}$ be a random sample from the Bernoulli distribution with density $f(x,\theta)=\theta^x(1-\theta)^{1-x}, x=0,1$, where $0<\theta<1$. Let the density of the prior distribution be given by $P(\theta)\propto\theta^{a-1}(1-\theta)^{b-1}, 0\leq\theta\leq1$, where a>0,b>0.
 - (a) Given the loss function as $l(\theta, s) = (s \theta)^2$ for the estimator s of θ , derive the Bayese estimator of θ .
 - (b) Derive the maximum likelihood estimator (MLE) $\hat{\theta}$ of θ and compare the MLE with the Bayese estimator.

- 9. Let $\{X_1, \ldots, X_n\}$ be a random sample from the density $f(x; \theta) = \frac{1}{\theta_2 \theta_1}, \theta_1 < x < \theta_2$.
 - (a) Derive the MLE (Maximum Likelihood Estimator) $\hat{\theta}_1$ and $\hat{\theta}_2$ of θ_1 and θ_2 respectively. Are your estimators forming a set of sufficient and complete statistics for $\{\theta_1, \theta_2\}$?
 - (b) Derive the UMVUE (Uniformly Minimum Varianced Unbiased Estimator) of $\theta_2 \theta_1$.

- 10. Let $(X_1, Y_1), \ldots, (X_n, Y_n)$ be independently and identically distributed as (X, Y), where (X, Y) follows a bivariate normal distribution with means $EX = \mu_1$ and $EY = \mu_2$ and with the variances $Var(X) = \sigma_1^2$ and $Var(Y) = \sigma_2^2$ respectively. Assume that X is un-correlated with Y.
 - (a) Derive the likelihood ratio test (LRT) for testing $H_0: \sigma_1^2 = \sigma_2^2$ against the alternative hypothesis $H_1: \sigma_1^2 \neq \sigma_2^2$.
 - (b) Derive the probability distribution of your test statistic under H_1 . What is the power function of the LRT test?

11. Let X_1, X_2, \dots, X_n be a random sample from a distribution with pmf

$$f(x) = \theta^x (1 - \theta)^{1-x}, x = 0, 1; 0 < \theta < 1.$$

Find UMVUEs for

- (a) θ
- (b) θ^2
- (c) $\theta(1-\theta)$.

12.	A sample of size n is drawn from each of k normal populations with the same but unown variance. Describe a procedure to derive the likelihood ratio test for testing the hypothesis that the means are all zero.