Algoritmos de Otimização Aplicação de Algoritmos em uma função específica

M. Cardoso¹

¹Engenharia de Computação e Informação Universidade Federal do Rio de Janeiro

Dezembro de 2024

As funções

min
$$f_1(x) = \sum_{i=0}^5 \left(100(x_{i+1} - x_i^2)^2 + (1 - x_i)^2\right)$$
s.a. $x \in \mathbb{R}^7$

min
$$f_2(x) = \sum_{i=0}^{33} x_i^4 - 16x_i^2 + 5x_i$$
 s.a.
$$x \in \mathbb{R}^{100}$$

min
$$f_3(x) = (x_1^2 + x_2 - 11)^2 + (x_1 + x_2^2 - 7)^2$$

s.a. $x \in \mathbb{R}^2$

$$f_1(x) = \sum_{i=0}^{5} (100(x_{i+1} - x_i^2)^2 + (1 - x_i)^2)$$

$$(100(x_{i+1}-x_i^2)^2+(1-x_i)^2)\geq 0$$

Pois $(10(x_{i+1}-x_i^2))^2 \ge 0$ e $(1-x_i)^2 \ge 0$

Mínimo quando ambas são zero

Na segunda parcela, é preciso que x_i seja igual a 1 $(1 - x_i = 0)$.

Consequentemente, $x_{i+1} = 1$ para zerar a primeira parcela

O x que garante o mínimo será $x^T = (1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1$

$$f_1(x) = \sum_{i=0}^{5} (100(x_{i+1} - x_i^2)^2 + (1 - x_i)^2)$$

$$(100(x_{i+1}-x_i^2)^2+(1-x_i)^2)\geq 0$$

Pois
$$(10(x_{i+1}-x_i^2))^2 \ge 0$$
 e $(1-x_i)^2 \ge 0$.

Mínimo quando ambas são zero

Na segunda parcela, é preciso que x_i seja igual a 1 $(1 - x_i = 0)$.

Consequentemente, $x_{i+1} = 1$ para zerar a primeira parcela

O x que garante o mínimo será $x' = (1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1$

$$f_1(x) = \sum_{i=0}^{5} \left(100(x_{i+1} - x_i^2)^2 + (1 - x_i)^2\right)$$

$$(100(x_{i+1}-x_i^2)^2+(1-x_i)^2)\geq 0$$

Pois $(10(x_{i+1}-x_i^2))^2 \ge 0$ e $(1-x_i)^2 \ge 0$.

Mínimo quando ambas são zero.

Na segunda parcela, é preciso que x_i seja igual a 1 $(1 - x_i = 0)$

Consequentemente, $x_{i+1} = 1$ para zerar a primeira parcela

O x que garante o mínimo será $x^{T} = (1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1$

$$f_1(x) = \sum_{i=0}^{5} \left(100(x_{i+1} - x_i^2)^2 + (1 - x_i)^2\right)$$

$$(100(x_{i+1}-x_i^2)^2+(1-x_i)^2)\geq 0$$

Pois $(10(x_{i+1}-x_i^2))^2 \ge 0$ e $(1-x_i)^2 \ge 0$.

Mínimo quando ambas são zero.

Na segunda parcela, é preciso que x_i seja igual a 1 $(1 - x_i = 0)$.

Consequentemente, $x_{i+1} = 1$ para_zerar a primeira parcela.

O x que garante o mínimo será $x' = (1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1$

$$f_1(x) = \sum_{i=0}^{5} \left(100(x_{i+1} - x_i^2)^2 + (1 - x_i)^2\right)$$

$$(100(x_{i+1}-x_i^2)^2+(1-x_i)^2)\geq 0$$

Pois $(10(x_{i+1}-x_i^2))^2 \ge 0$ e $(1-x_i)^2 \ge 0$.

Mínimo quando ambas são zero.

Na segunda parcela, é preciso que x_i seja igual a 1 $(1 - x_i = 0)$.

Consequentemente, $x_{i+1} = 1$ para zerar a primeira parcela.

O x que garante o mínimo será $x' = (1 \ 1 \ 1 \ 1 \ 1 \ 1)$

$$f_1(x) = \sum_{i=0}^{5} (100(x_{i+1} - x_i^2)^2 + (1 - x_i)^2)$$

$$(100(x_{i+1}-x_i^2)^2+(1-x_i)^2)\geq 0$$

Pois $(10(x_{i+1}-x_i^2))^2 \ge 0$ e $(1-x_i)^2 \ge 0$.

Mínimo quando ambas são zero.

Na segunda parcela, é preciso que x_i seja igual a 1 $(1 - x_i = 0)$.

Consequentemente, $x_{i+1} = 1$ para zerar a primeira parcela.

O x que garante o mínimo será $x^T = (1 \ 1 \ 1 \ 1 \ 1 \ 1)$

$$f_2(x) = \sum_{i=0}^{99} x_i^4 - 16x_i^2 + 5x_i$$

Como a função:

$$x_i^4 - 16x_i^2 + 5x_i$$

já possui mínimo, o mínimo de $\it f_2$ será um vetor cujos valores serão o $\it x$ que garante o mínimo para $\it x^4-16\it x^2+5\it x$ Plotemos

$$f_2(x) = \sum_{i=0}^{99} x_i^4 - 16x_i^2 + 5x_i$$

Como a função:

$$x_i^4 - 16x_i^2 + 5x_i$$

já possui mínimo, o mínimo de f_2 será um vetor cujos valores serão o x que garante o mínimo para x^4-16x^2+5x Plotemos

$$f_2(x) = \sum_{i=0}^{99} x_i^4 - 16x_i^2 + 5x_i$$

Como a função:

$$x_i^4 - 16x_i^2 + 5x_i$$

já possui mínimo, o mínimo de f_2 será um vetor cujos valores serão o x que garante o mínimo para x^4-16x^2+5x Plotemos

Analisando a função f_2