

**Chapter 16 - Lab** 

**Query Optimization 2** 

#### **Preliminaries**

- Statistics for query planning and optimization
  - System relations for storing statistics: pg\_class, pg\_stats, ...
- PostgreSQL stores various statistics
  - Representative useful statistics
    - Most common values/frequencies and histogram
  - Most common values and most common frequencies
    - A list of the most common values in the column and their frequencies
      - The frequency of a value is the number of its occurrences divided by total numbers of rows

| Most common values | Most common frequencies |  |
|--------------------|-------------------------|--|
| 580                | 0.004                   |  |
| 230                | 0.003                   |  |
| 410                | 0.002                   |  |
| 350                | 0.002                   |  |
| 90                 | 0.002                   |  |

<Most common values/frequencies example >



### **Preliminaries**

#### PostgreSQL stores various statistics

- Histogram
  - A list of values the divide the column's values into groups of approximately equal population
  - The value in most common values are omitted



<Histogram example >



# Lab Setup

- Remove table "supplier" from PostgreSQL
  - DROP TABLE supplier;
- Download the file from blackboard
  - "supplier.dump"



# Lab Setup (Windows)

- Open Command Prompt (cmd.exe) and type the following commands:
  - cd C:\Program Files\PostgreSQL\16\bin
    - This is the default path. If you installed it somewhere else, go to that path.
  - 2. psql -U postgres postgres < [filepath]\supplier.dump
    - For [filepath], type the path where you downloaded "supplier.dump".
  - Type your own PostgreSQL password



# Lab Setup (Mac OS X)

- Open Terminal and type the following commands:
  - 1. cd /Library/PostgreSQL/16/bin
    - This is the default path. If you installed it somewhere else, go to that path.
  - 2. ./psql -U postgres postgres < [filepath]/supplier.dump
    - For [filepath], type the path where you downloaded "supplier.dump".
  - Type your own PostgreSQL password

```
in — -zsh — 108×21
Last login: Fri Oct 28 10:27:58 on ttys000
[(base) hyubjinlee@hyubjinleeui-MacBookPro ~ % cd /Library/PostgreSQL/14/bin
(base) hyubjinlee@hyubjinleeui-MacBookPro bin % ./psql -U postgres postgres < /Users/hyubjinlee/Desktop/supp
lier.dump
[Password for user postgres:
SET
SET
SET
SET
SET
SET
SET
SET
SET
CREATE TABLE
ALTER TABLE
COPY 10000
ALTER TABLE
(base) hyubjinlee@hyubjinleeui-MacBookPro bin %
```



### **Table Information**

- "supplier" has 10,000 rows
- "supplier" 's schema is as follows:

| Attribute   | Data Type              | Cardinality | Features    |
|-------------|------------------------|-------------|-------------|
| s_suppkey   | integer                | 10,000      | primary key |
| s_name      | character varying(200) | 10,000      |             |
| s_address   | character varying(200) | 10,000      |             |
| s_nationkey | integer                | 25          |             |
| s_phone     | character varying(200) | 10,000      |             |
| s_acctbal   | double precision       | 9,955       |             |
| s_comment   | character varying(200) | 10,000      |             |



# Lab Setup

- Execute PostgreSQL SQL Shell (psql) and login your database
  - Server [localhost]: Press the enter key
  - Database [postgres]: Press the enter key
  - Port [5432]: Press the enter key
  - Username [postgres]: Press the enter key
  - Password for user postgres: Type your own password
- Type on psql command line
  - SET enable\_bitmapscan=false;
  - SET max\_parallel\_workers\_per\_gather=0;



- Estimate the results of the following queries and compare it to the actual results (Be sure to show the calculation process in your homework)
  - a. SELECT count(\*) FROM supplier WHERE s\_suppkey<=350;</li>
  - b. SELECT count(\*) FROM supplier WHERE s\_acctbal<=405.68;</p>
  - Hint
    - Note that 's\_suppkey' is the primary key of the supplier relation
    - Getting the number of tuples of the supplier relation
      - SELECT reltuples FROM pg\_class WHERE relname='supplier';
    - Getting the histogram of a column of the supplier relation (num\_bucket =100)
      - SELECT histogram\_bounds FROM pg\_stats WHERE tablename='supplier' AND attname='[column name]';
    - Getting the most common values and most common frequencies of a column of the supplier relation
      - SELECT most\_common\_vals, most\_common\_freqs FROM pg\_stats WHERE tablename='supplier' AND attname='[column name]'



- What is a good way to evaluate the following queries
  - a. SELECT \* FROM supplier WHERE s\_suppkey<=350;</p>
  - b. SELECT \* FROM supplier WHERE s\_suppkey>350;
- Verify whether your estimation is correct by using 'EXPLAIN ANALYZE'



# Lab Setup

- Create four synthetic data tables that has (100 / 1,000 / 10,000 / 100,000) rows with values between 0 and 100
  - CREATE TABLE t1(val integer);
  - CREATE TABLE t2(val integer);
  - CREATE TABLE t3(val integer);
  - CREATE TABLE t4(val integer);
  - INSERT INTO t1(val) SELECT random()\*100 FROM (SELECT generate\_series(1,100)) as T;
  - INSERT INTO t2(val) SELECT random()\*100 FROM (SELECT generate\_series(1,1000)) as T;
  - INSERT INTO t3(val) SELECT random()\*100 FROM (SELECT generate\_series(1,10000)) as T;
  - INSERT INTO t4(val) SELECT random()\*100 FROM (SELECT generate\_series(1,100000)) as T;



- Estimate how PostgreSQL will determine the join order for the next two queries
  - a. SELECT count(\*) FROM t1 NATURAL JOIN t2 NATURAL JOIN t3 NATURAL JOIN t4;
  - SELECT count(\*) FROM t4 NATURAL JOIN t3 NATURAL JOIN t2 NATURAL JOIN t1;
- Verify whether your estimation is correct by using 'EXPLAIN ANALYZE'



- Force a join order by using the command below
  - SET join\_collapse\_limit=1;
- Estimate which of the two queries will be executed faster
  - a. SELECT count(\*) FROM t1 NATURAL JOIN t2 NATURAL JOIN t3 NATURAL JOIN t4;
  - SELECT count(\*) FROM t4 NATURAL JOIN t2 NATURAL JOIN t3 NATURAL JOIN t1;

Verify whether your estimation is correct by using 'EXPLAIN ANALYZE'



#### Homework

- Complete today's practice exercises
- Write your queries and take screenshots of execution results
- Submit your report on blackboard
  - 10:29:59, November 19th, 2024
  - Only PDF files are accepted
  - No late submission





### **End of Lab**