

2021

Measuring Investor Sentiment by combining ML and photo from news

指导教师: 林健武老师 汇报人: 徐嘉营 徐有珩 李晨霄 时间: 2021,10,21

- 01 Introduction
- 02 Data & Variable
- 03 Empirical Results
- 04 Conclusion

PART ONE

Introduction

Background

Model

Structure

单击此处输入标题名称

This is a good space for a short subtitle

PhotoPe (photo pessimism)

daily market-level investor sentiment index how visual content in news relates to financial markets.

Model

convolutional neural networks (CNNs), to classify a large sample of news photos based on sentiment.

Relationship

- 1. Based on behavioral model, investors' sentiment predicts market return reversal
- 2. correlation and effectiveness of information embedded in photo and text.

Additional insight

We have many PowerPoint templates that has been specifically designed to help anyone that is stepping into the world of PowerPoint for the very first time.

PART TWO

Data & Variable

Photo Classification

This is a good space for a short subtitle

CNNs

key model of the research area of mage classification Achieve high accuracy with sufficient training data

Transfer learning

Fine-tune the original model by replacing the final layer with small sample.

Google inception model (V3 model)

a pretrained model with over 1000 different classes,

Investors' sentiment index

Verify

Training set with crowding source of information
Achieve 87% accuracy

Variables Construction

$$PhotoPes_t = \frac{\sum_i (Neg_{it})}{n_t}$$

Neg ---whether photo i on day t is predicted to have negative sentiment.

Nt-- the number of photos on date t.

TextNeg--pessimism score for each article i on day t
Nt--the number of articles in date t

$$TextPes_t = \frac{\sum_{i} (TextNeg_{it})}{n_t}$$

textpe

Market Return The daily returns on the CRSP value-weighted (VWRETD) index, the S&P 500 Index (SPX), the SPDR S&P 500 ETF (SPY), the Dow Jones Industrial Average Index (INDU), and the SPDR Dow Jones Industrial Average ETF (DIA).

Summary statistics

 15 (15 (15 (15 (15 (15 (15 (15 (15 (15 (
dillin.

Variable	N	Mean	Median	P25	P75	Std dev
PhotoPes	3048	0.228	0.222	0.180	0.270	0.077
TextPes	3048	0.686	0.681	0.646	0.722	0.056
Panel B: Su	ımmary s	tatistics of	f market re	turns		
R _t (%)	N	Mean	P50	P25	P75	Std dev
VWRETD	3048	0.045	0.081	-0.391	0.586	1.332
SPX	3048	0.042	0.070	-0.380	0.570	1.335
SPY	3048	0.049	0.070	-0.370	0.580	1.327
INDU	3048	0.039	0.060	-0.390	0.550	1.283
DIA	3048	0.047	0.070	-0.370	0.550	1.296
Panel C: Co	orrelation:	s between	sentiment	variables		
						PhotoPes
TextPes						0.079***

PART THREE

Empirical Results

Behavioral Finance

- 1. Inverstors are irrational. Biases such as extrapolation and overconfidence exsist
- 2. limits to arbitrage prevent rational investors from correcting price instantly. Prediction: market return reversal

To learn this circumstance, we must study the pessimism embedded in photos

The impact of PhotoPes on market returns

$$R_t = \beta_1 L5(PhotoPes_t) + \beta_2 L5(R_t) + \beta_3 L5(R_t^2) + \beta_4 X_t + \varepsilon_t$$

Rt denotes daily log returns on the VWRETD index, the S&P 500 Index (SPX), the SPDR S&P 500 ETF (SPY), the Dow Jones Industrial Average Index (INDU), and the SPDR Dow Jones Industrial Average ETF (DIA).

L5 transforms a variable into a row vector consisting of five lags of that variable; and Xt is a set of exogenous variables that includes an intercept, day-of-the-week indicators (except for Monday), and an indicator variable for whether time t is in a recession period

The impact of PhotoPes on market returns

	Panel A: PhotoPes										
	(1)	(2	2)	(:	3)	(4	1)	(5	5)	
	VWF	RETD _t	SI	PX_t	SI	PY_t	INL	$\overline{DU_t}$	DI	A_t	
Variables	β	t-stat	β	t-stat	β	t-stat	β	t-stat	β	t-stat	
PhotoPes _{t-1}	-0.042*	-1.837	-0.041*	-1.803	-0.040*	-1.787	-0.046**	-2.182	-0.047**	-2.183	
PhotoPes _{t-2}	0.055**	2.004	0.051*	1.886	0.046*	1.726	0.043*	1.687	0.038	1.502	
PhotoPes _{t-3}	-0.033	-1.324	-0.030	-1.213	-0.030	-1.294	-0.024	-1.053	-0.025	-1.142	
PhotoPes _{t-4}	0.030	1.299	0.024	1.047	0.026	1.143	0.030	1.387	0.033	1.487	
PhotoPes _{t-5}	0.057**	2.137	0.059**	2.228	0.056**	2.119	0.057**	2.193	0.054**	2.103	
Sum t-1 to t-5	0.067		0.063		0.058		0.060		0.053		
Sum t-2 to t-5	0.1	109	0.104		0.098		0.106		0.100		
	$\chi^{2}(1)$	p-value	$\chi^{2}(1)$	p-value	$\chi^{2}(1)$	<i>p</i> -value	$\chi^{2}(1)$	p-value	$\chi^{2}(1)$	p-value	
$\chi^2(1)[\text{Sum t-1 to t-5} = 0]$	2.272	0.132	2.081	0.149	1.700	0.192	1.979	0.160	1.644	0.200	
$\chi^2(1)[\text{Sum t-2 to t-5} = 0]$	6.615**	0.010	6.200**	0.013	5.466**	0.019	6.973***	0.008	6.257**	0.012	
Adj. R-squared	0.033		0.038		0.029		0.042		0.040		
N	3044		3044		3044		3044		3044		

- ➤ PhotoPestt-1 is negatively ➤ related to market returns in all specifications
- the average impact of a one standard deviation shift in PhotoPes on the next day's VWRETD is 4.2 bps
 - the average impact of a one > the reversal is concentrated on standard deviation shift in lags two and five
 - ➤ the initial decline in returns is followed by a complete reversal.

PhotoPes and sentiment embedded in text

Complement or Substitute?

$$R_t = \beta_1 L5(PhotoPes_t) + \beta_2 L5(TextPes_t) + \beta_3(PhotoPes \times TextPes)_{t-1} + \beta_4 L5(R_t) + \beta_5 L5(R_t^2) + \beta_6 X_t + \varepsilon_t,$$

- ➤ To support the substitutive perspective, we expect to find that the coefficient for the interaction term (PhotoPes × TextPes)_{t-1} is positive.
- ➤ In all five specifications, the coefficients for (PhotoPes × TextPes)_{t-1} are positive and significant at the 10% level, supporting the substitutive hypothesis.

$$R_t = \beta_1 L5(TextPes_t) + \beta_2 L5(R_t) + \beta_3 L5(R_t^2) + \beta_4 X_t + \varepsilon_t,$$

	(1)	(2)	(3	3)	(4	1)	(5	5)
	VWI	RETD _t	SI	PX_t	SF	Y_t	INL	DU_t	DI	A_t
Variables	β	t-stat	$\overline{\beta}$	<i>t</i> -stat	$\overline{\beta}$	t-stat	$\overline{\beta}$	t-stat	$\overline{\beta}$	t-stat
TextPes _{t-1}	-0.071*	-1.663	-0.083*	-1.904	-0.087**	-1.977	-0.085**	-2.002	-0.086**	-1.998
TextPes _{t-2}	-0.056	-1.466	-0.061	-1.590	-0.065*	-1.661	-0.062*	-1.686	-0.061	-1.628
$TextPes_{t-3}$	-0.007	-0.150	0.001	0.018	-0.004	-0.078	0.005	0.108	-0.003	-0.069
$TextPes_{t-4}$	0.021	0.527	0.017	0.436	0.021	0.540	0.027	0.709	0.029	0.756
$TextPes_{t-5}$	0.107**	2.280	0.116**	2.448	0.124***	2.612	0.110**	2.408	0.116**	2.521
Sum t-1 to t-5	-0.006		-0.010		-0.011		-0.005		-0.005	
Sum t-2 to t-5	0.0	065	0.0	073	0.076		0.080		0.081	
	$\chi^{2}(1)$	<i>p</i> -value	$\chi^{2}(1)$	<i>p</i> -value	$\chi^{2}(1)$	<i>p</i> -value	$\chi^{2}(1)$	<i>p</i> -value	$\chi^{2}(1)$	p-value
$\chi^2(1)[Sum \ t-1 \ to \ t-5 = 0]$	0.054	0.816	0.112	0.738	0.120	0.729	0.041	0.840	0.030	0.862
$\chi^2(1)[\text{Sum t-2 to t-5} = 0]$	1.697	0.193	2.171	0.141	2.454	0.117	2.812*	0.094	2.931*	0.087
Adj. R-squared	0.028		0.035		0.028		0.038		0.039	
N	30)44	3044		3044		3044		3044	

- ➤ The average impact of a one standard deviation shift in TextPes on the next day's INDU is 8.5 bps.
- ➤ Markets take more time to reflect information in news text compared to photos

Attention and Photo

➤ The relation between the pessimism embedded in news and market returns varies depending on the presence of salient news photos.

$$\begin{aligned} R_t &= (E_t)[\beta_1 L5(PhotoPes_t) + \beta_2 L5(TextPes_t) + \beta_3(PhotoPes \times TextPes)_{t-1} + \beta_4 L5(R_t) + \beta_5 L5(R_t^2)] \\ &+ (1-E_t)[\gamma_1 L5(PhotoPes_t) + \gamma_2 L5(TextPes_t) + \gamma_3(PhotoPes \times TextPes)_{t-1} + \gamma_4 L5(R_t) + \gamma_5 L5(R_t^2)] + \beta_6 X_t + \varepsilon_t (1-E_t)[\gamma_1 L5(PhotoPes_t) + \gamma_2 L5(TextPes_t) + \gamma_3(PhotoPes \times TextPes)_{t-1} + \gamma_4 L5(R_t) + \gamma_5 L5(R_t^2)] + \beta_6 X_t + \varepsilon_t (1-E_t)[\gamma_1 L5(PhotoPes_t) + \gamma_2 L5(TextPes_t) + \gamma_3(PhotoPes \times TextPes)_{t-1} + \gamma_4 L5(R_t) + \gamma_5 L5(R_t^2)] + \beta_6 X_t + \varepsilon_t (1-E_t)[\gamma_1 L5(PhotoPes_t) + \gamma_2 L5(TextPes_t) + \gamma_3(PhotoPes \times TextPes)_{t-1} + \gamma_4 L5(R_t) + \gamma_5 L5(R_t^2)] + \beta_6 X_t + \varepsilon_t (1-E_t)[\gamma_1 L5(PhotoPes_t) + \gamma_2 L5(TextPes_t) + \gamma_3(PhotoPes_t) + \gamma_4 L5(R_t) + \gamma_5 L5(R_t^2)] + \beta_6 X_t + \varepsilon_t (1-E_t)[\gamma_1 L5(PhotoPes_t) + \gamma_5 L5(R_t^2)] + \beta_6 X_t + \varepsilon_t (1-E_t)[\gamma_1 L5(PhotoPes_t) + \gamma_5 L5(R_t^2)] + \beta_6 X_t + \varepsilon_t (1-E_t)[\gamma_1 L5(PhotoPes_t) + \gamma_5 L5(R_t^2)] + \beta_6 X_t + \varepsilon_t (1-E_t)[\gamma_1 L5(PhotoPes_t) + \gamma_5 L5(R_t^2)] + \beta_6 X_t + \varepsilon_t (1-E_t)[\gamma_1 L5(PhotoPes_t) + \gamma_5 L5(R_t^2)] + \beta_6 X_t + \varepsilon_t (1-E_t)[\gamma_1 L5(PhotoPes_t) + \gamma_5 L5(R_t^2)] + \beta_6 X_t + \varepsilon_t (1-E_t)[\gamma_1 L5(PhotoPes_t) + \gamma_5 L5(R_t^2)] + \beta_6 X_t + \varepsilon_t (1-E_t)[\gamma_1 L5(PhotoPes_t) + \gamma_5 L5(PhotoPes_t$$

Et is an indicator variable that takes a value of one if day t is in the top or bottom decile of PhotoPes.

		(1)			(2	2)			(3	3)	
		VWR	ETD _t		SPX _t				SPY _t			
	Et	=Salient p	hoto perio	od	Et	= Salient	photo perio	d	E _t	= Salient _I	photo perio	od
Variables	β	t-stat	γ	t-stat	β	t-stat	γ	t-stat	β	t-stat	γ	t-stat
PhotoPes _{t-1}	-0.070**	-2.479	-0.015	-0.332	-0.064**	-2.295	-0.016	-0.365	-0.063**	-2.260	-0.015	-0.342
TextPes _{t-1}	0.047	0.900	-0.070*	-1.883	0.031	0.606	-0.081**	-2.220	0.030	0.585	-0.080**	-2.137
$(PhotoPes \times TextPes)_{t-1}$	0.034	1.524	0.070	1.450	0.029	1.312	0.065	1.362	0.030	1.403	0.060	1.270
PhotoPes _{t-2}	0.100***	3.282	-0.034	-0.813	0.099***	3.316	-0.041	-0.978	0.094***	3.173	-0.044	-1.079
PhotoPes _{t-3}	-0.020	-0.659	-0.017	-0.411	-0.017	-0.565	-0.020	-0.498	-0.015	-0.526	-0.019	-0.489
PhotoPes _{t-4}	0.046*	1.710	0.009	0.216	0.042	1.571	-0.001	-0.033	0.042	1.632	0.003	0.066
PhotoPes _{t-5}	0.047	1.469	-0.009	-0.225	0.049	1.538	-0.004	-0.098	0.045	1.383	-0.006	-0.166
TextPes _{t-2}	0.044	0.684	-0.066*	-1.795	0.043	0.664	-0.071*	-1.912	0.051	0.761	-0.072*	-1.931
TextPes _{t-3}	-0.128**	-2.373	0.013	0.316	-0.113**	-2.174	0.022	0.538	-0.114**	-2.146	0.020	0.486
TextPes _{t-4}	-0.079	-1.412	0.002	0.057	-0.083	-1.488	-0.001	-0.018	-0.079	-1.488	-0.002	-0.050
TextPes _{t-5}	0.182***	3.133	0.059	1.520	0.186***	3.255	0.064	1.638	0.184***	3.135	0.065*	1.694
Sum t-1 to t-5 PhotoPes	0.10	03	-0.	-0.066 0.109			-0.0	082	0.103		-0.081	
Sum t-2 to t-5 PhotoPes	0.1	73	-0 .	051	0.1	73	-0.0	066	0.10	66	-0.0)66
Sum t-1 to t-5 TextPes	0.0	66	-0.	062	0.0	64	-0.0	067	0.0	72	-0.0	069
Sum t-2 to t-5 TextPes	0.0	19	0.0	800	0.0	33	0.0	14	0.0	42	0.0	011
	$\chi^{2}(1)$	p-value	$\chi^{2}(1)$	<i>p</i> -value	$\chi^{2}(1)$	p-value	$\chi^{2}(1)$	<i>p</i> -value	$\chi^{2}(1)$	p-value	$\chi^{2}(1)$	<i>p</i> -value
$\chi^2(1)$ [Sum t-1 to t-5 PhotoPes=0]	2.905*	0.088	0.602	0.438	3.224*	0.073	0.958	0.328	2.851*	0.091	0.941	0.332
$\chi^2(1)$ [Sum t-2 to t-5 PhotoPes=0]	9.777***	0.002	0.480	0.489	9.696***	0.002	0.823	0.364	8.943***	0.003	0.833	0.362
$\chi^2(1)$ [Sum t-1 to t-5 TextPes=0]	0.437	0.509	1.842	0.175	0.405	0.525	2.247	0.134	0.525	0.469	2.443	0.118
$\chi^2(1)$ [Sum t-2 to t-5 TextPes=0]	0.041	0.840	0.028	0.867	0.115	0.734	0.079	0.778	0.187	0.666	0.052	0.820
Adj. R-squared	0.075			0.086					0.0)71		
N	3044				30	44		3044				

During days when photos are salient, PhotoPes dominates and TextPes is not significant. In contrast, during days when photos are not salient, TextPes dominates and PhotoPes is not statistically significant.

Which information is more effectively transmitted by photos?

$$R_t = (F_t)[\beta_1 L5(PhotoPes_t) + \beta_2 L5(TextPes_t) + \beta_3(PhotoPes \times TextPe)s_{t-1} + \beta_4 L5(R_t) + \beta_5 L5(R_t^2)] + (1 - F_t)[\gamma_1 L5(PhotoPes_t) + \gamma_2 L5(TextPes_t) + \gamma_3(PhotoPes \times TextPes)_{t-1} + \gamma_4 L5(R_t) + \gamma_5 L5(R_t^2)] + \beta_6 X_t + \varepsilon_t,$$

- Ft is an indicator variable that takes a value of one if day t has an abovemedian fear score
- ➤ The coefficient for the pessimism embedded in photos is roughly 2.8 times larger during periods of elevated fear compared to periods of little fear, while the coefficient for TextPes is similar during both periods

traumatic

Application

Invest either in SPY or risk- free asset

- based on the pessimism embedded in news photo
 based on pessimism embedded in text
 involves pessimism from both text and photos
 The reversal pattern for PhotoPes starts
 on day t + 2 however, the reversal on day t + 2, however, the reversal pattern for TextPes does not turn positive until day t + 4.

	Strategy One	Strategy Two	Strategy Three
Times	1992	1891	1221
Sharpe Ratio	0.88	0.53	0.6
Excess Return	5.8	3.7	4.7

Validation of PhotoPes

Limits to arbitrage

- ➤ The average impact of a one standard deviation shift in PhotoPes on the next day's return on the highest and lowest volatility-sorted portfolio is 7.1 and 3.5 bps
- ➤ PhotoPes has a stronger impact on small companies compared to large companies.

The impact of PhotoPes on trading volume

$$V_t = \beta L5(V_t) + \gamma X_t + \varepsilon_t$$
 Remove the time trend

$$\bar{V}_t = \beta_1 L5(PhotoPes_t) + \beta_2 L5(|PhotoPes_t|) + \beta_3 L5(R_t) + \beta_4 L5(R_t^2) + \varepsilon_t$$

➤ One standard deviation increase in PhotoPes is associated with a moving future trading volume of 0.080 standard deviations

PART FOUR

Conclusion

