Transfer Learning & Neural Style Transfer

School of AI - Singapore

Agenda

- Intro session
- Intro to Transfer Learning
- Style Transfer Code Deep Dive
- Live Demo
- Q/A
- Hackathon
- Resources to Start
- Feedback, Quick Polls (Upcoming Topics)
- Networking

https://www.theschool.ai/

Singapore School of Al

https://www.facebook.com/groups/2231906417039626/

Our Core Values

- 1. Embrace the Weird.
- 2. Inspire and Educate.
- 3. Data Driven Optimism.
- 4. Rapid Experimentation.
- 5. Be Frugal.
- 6. Choose Love, not Fear.
- 7. Draw the Owl.

Types of Events

- Class or Meetup
- Study Group
- Hands-on Workshop (Coding)
- Research Papers Reviews
- Webinars
- Hackathons

CORE TEAM

Sunil Thakur (Dean)

Email: sunilforu@gmail.com

Bala Prasanna (Dean)

Email: balaprasannav2009@gmail.com

Karthik Naga (Dean, USA) Email: knaga82@gmail.com

Sami Jawhar

Lokesh Korapati

Davis

Introduction to

Transfer learning

Intro to Transfer Learning

Traditional versus Transfer learning

Transfer Learning scenarios

- ConvNet as fixed feature extractor
- Fine-tuning the ConvNet
- Pretrained models

Scenario 1 ⇒ ConvNet as fixed feature extractor

- 1. Take a ConvNet Pre-trained on ImageNet
- 2. Remove the last fully-connected layer
 - a. (this layer's outputs are the 1000 class scores for a different task like ImageNet)
- 3. Treat the rest of the ConvNet as a fixed feature extractor for the new dataset.
- 4. Once you extract the feature vector / CNN codes for input images, train a linear classifier (e.g. Linear SVM or Softmax classifier) for the new dataset.

ImageNet (over 14M images)

Scenario I: train the top layer only

Scenario I: train the top layer only

Scenario I: train the top layer only

Scenario 2 ⇒ Fine-tuning the ConvNet

1. Not only replace and re-train the classifier on top of the ConvNet on the new dataset, but to also fine-tune the weights.

2. But How?

a. Using backpropagation

3. Fine-Tune

- a. All the layers of ConvNet
- b. Keep some of earlier layers fixed and only fine-tune later layers

Fine-Tune - All the layers

- 1. Because the weights are better than randomly initialized
- 2. You can try differential learning rates

```
>>>
>>> lr = 1e-3
>>>
>>> lr
0.001
>>>
>>> diff_lrs = [lr/6 , lr/3, lr]
>>>
>>> diff_lrs
```

Scenario II: fine-tune all layers

Keep earlier layers fixed and only fine-tune later layers

- 1. Earlier features of ConvNet contain more generic features
 - a. [f'{_}detectors' for _ in [edge, color]]
- 2. Later layers of the ConvNet becomes progressively more specific to the details of the classes contained in the original dataset

Scenario: Recap

Pre Trained Models

- 1. modern ConvNets take 2-3 weeks to train across multiple GPUs on ImageNet
- 2. common to see people release their final ConvNet checkpoints
- 3. For eg: the Caffe library has a *Model Zoo* where people share their network weights.

Reuse Pretrained Network

Improve network

Quiz:

What are we transferring ??

Visualization credit: https://distill.pub/2017/feature-visualization/

Limitations

- Transfer Learning Makes Sense If
 - Task A and B have the same input x
 - You have a lot more data for Task A than Task B

Limitations

Limitations

Application:

Style Transfer - Code Deep Dive

Content Image

Style Image

Generated image

Style Transfer

Use Pre-Trained ConvNet to Extract feature representations from an image

Style = The Great Wave, Hokusai

STYLE of 1st Image

Style Transferred Image

CONTENT of 2nd Image

Content = Cat

But How to extract Style & Contents from Images

- 1. Take a pre-trained model (say, vgg19)
- 2. Remove the head (last layer classifier)
- 3. Do a forward Propagation
 - a. Get feature maps for all different layers

STYLE - Earlier Layers

CONTENT - Later layers

How to Extract Content Representation

Cont...

Lets look at VGG -19 Arch

["stack".join (conv1_1, conv1_2)]

Conv5_4

Refer to Pytorch Code, You will see this in Content Loss

Content Loss

Intuition

Content Loss

Let's look at content loss

Use backpropagation to optimize this loss.

We will look at Style Loss later

How to Extract Style

- 1. A feature space should capture Texture & Color information need to be used
- 2. This space looks at spatial correlation within layer of network

Cont..

For ex, we can look at feature maps at the first layer

Cont...

Correlation between feature maps at the first layer of depth k

- Is certain color detected in one map, similar to another map?
- See which colors & shapes in set of feature map are related and which are not

Cont..

Multiscale - Style Representation

 First conv layer in earlier blocks of VGG

Cont...

Con1_1, Conv2_1, Conv3_1, Conv4_1, Conv5_1

Con1_1

Conv2_1

Conv3_1

Conv4_1

Conv5_1

Refer to Pytorch Code, You will see this in Style Loss

Gram Matrix

Cont...

An input (4,4) to Conv Layer of Depth 8, (4,4,8)

- SAME Convolution padding to retain size
- 8 Feature map(Depth)

Cont..

One Feature Map -> Flatten to a row vector

fm.shape

(4,4)

fm.view(1, -1)

(1,16)

Cont...

Conv layer (8, 4,4) -> to Vectoried Feature Maps 8, (4*4)

- cv.shape
 - 0 (8,4,4)
- cv.view(8, (4*4))
 - 0 (8, 16)

Correlations of Each Layer is given by Gram Matrix

Gram Matrix is just torch.mm(fm_vectorized , fm_vectorized.T())

- Correlation across feature maps in individual layers of a VGG Net
- Find Similarities
 across features in a
 each layer
- How similar featuresin a single layer are

Cont...

How similar each feature maps are in a particular layer

- Finally, this 8,8
 Gram matrix
 indicate similarities
 between feature
 maps
- Indicate the similarity between4th and 2nd feature map in a layer

Style Loss

To compute the style loss, compute the list of gram matrices

Style Loss

Style Loss can be weighted using a scale w for each layers in this

Con1_1
Conv2_1
Conv3_1
Conv4_1
Conv5_1

```
W = [
1.0,
0.8,
0.6,
0.4,
0.3]
```

Total Loss

Content Loss + Style Loss

Style Loss

Conv2_1 Conv3_1 Conv4_1 Conv5_1 W = [1.0, 0.8 0.6, 0.4, 0.3]

Content Loss

Conv5_4

Balancing both style & content loss

Multiply content and style loss with constant term alpha, beta

alpha / beta alpha = 1 beta = 10 Ratio = 1 / 10

Some Outputs

Content Image

[Image Style Transfer Using Convolutional Neural Networks, L. Gatys, A. Ecker, M. Bethge, 2016]

Cont..

Content Image

Style Image

[Image Style Transfer Using Convolutional Neural Networks, L. Gatys, A. Ecker, M. Bethge, 2016]

Code, Jupyter Notebook

https://github.com/balaprasanna/neural_style_transfer

Image Style Transfer Using Convolutional Neural Networks ~ Leon A. Gatys, Alexander S. Ecker, Matthias Bethge

Live Demo

https://is.gd/dnO1D6

Q/A

School of Al / Accenture Hackathon

#healthhack

24-hour Global Hackathon

<u>Theme</u>: Healthcare (UN Sustainable Development Goal #3)

Start time: 16 February 2019 at 2:00 pm - End time: 17 February 2019 at 6:00 pm

Prizes: USD 10,000 for global winning team and USD 1,500 for Singapore winning

team; **USD 6,500** for consolation prizes

Singapore Location: Accenture Digital Hub

For more information: knaga82@gmail.com

Resources to Start

- Programming Skills
- Math Skills
- Artificial Intelligence
- Machine Learning
- Deep Learning
- Tooling and Python Libraries
- Frameworks
- YouTube channels
- Blogs and Research Papers

Programming Languages

Python

- https://www.udacity.com/course/programming-foundations-with-python--ud036
- O https://developers.google.com/edu/python/
- O https://www.kaggle.com/learn/python

Math Skills

- Probability & statistics
 - O https://ocw.mit.edu/courses/mathematics/18-05-introduction-to-probability-and-statistics-spring-2014/index.htm
- Linear Algebra
 - O Brown University course on Linear Algebra for CS. <u>3Blue1Brown</u>
- Calculus
 - O https://www.khanacademy.org/math/differential-calculus
 - MIT lectures on <u>Multivariable Calculus</u>
 - O MIT linear algebra videos by Gilbert Strang

0

Advanced

- Computational Linear Algebra Fast.ai
- Multi-variate Calculus—Khan Academy

Artificial Intelligence

Book

- Artificial Intelligence: A Modern Approach http://aima.cs.berkeley.edu/
- O https://www.udacitv.com/course/intro-to-artificial-intelligence--cs271
- https://www.edx.org/course/artificial-intelligence-ai-columbiax-csmm-101x-4

Machine Learning

- Udacity
 - https://eu.udacity.com/course/intro-to-machine-learning--ud120
- Coursera
 - O Andrew Ng https://www.coursera.org/learn/machine-learning
- Learn Machine Learning in 3 Months
 - https://github.com/IISourcell/Learn Machine Learning in 3 Months
 - O https://www.youtube.com/watch?v=Cr6VqTRO1v0

Deep Learning

Online Courses

- O https://www.coursera.org/specializations/deep-learning
- https://www.udacity.com/course/deep-learning--ud730
- http://cs231n.stanford.edu

Books

- http://www.deeplearningbook.org/
- O http://neuralnetworksanddeeplearning.com/index.html

Learn Deep Learning in 6 Weeks

- https://github.com/IISourcell/Learn Deep Learning in 6 Weeks
- https://www.youtube.com/watch?v=waXHrc2m9K8

Frameworks

- Tensorflow
 - O https://www.tensorflow.org/tutorials/
- Pytorch
 - https://pytorch.org/
- Keras.
 - O https://keras.io/
- Framework comparisons
 - O https://www.youtube.com/watch?v=MDP9FfsNx60

Tooling and Python Libraries

- Anaconda & Jupyter Notebook—These are a must for ML & data science.
 - Follow the <u>instructions here</u> to install and set them up.
 - https://colab.research.google.com/github/tensorflow/lucid/blob/master/notebooks/tutorial.ipynb
- Numpy, Matplotlib, Pandas, Scikit-Learn
 - https://medium.com/activewizards-machine-learning-company/top-15-python-libraries-for-data-s
 cience-in-in-2017-ab61b4f9b4a7
 - https://medium.freecodecamp.org/essential-libraries-for-machine-learning-in-python-82a9ada57
 aeb

Blogs & Research Papers

- fast.ai blog
- <u>Distill .pub</u>—Machine Learning Research explained clearly
- <u>Two Minute Papers</u>—Short video breakdowns of Al and other research papers
- <u>Arvix Sanity</u>—More intuitive tool to search through, sort, and save research papers
- Deep Learning Papers Roadmap
- <u>Machine Learning Subreddit</u>—They have 'what are you reading' threads discussing research papers
- Arxiv Insights This channel has some great breakdowns of AI research papers
- https://github.com/floodsung/Deep-Learning-Papers-Reading-Roadmap

YouTubers (recommended)

- Siraj Raval
- Arxiv Insight
- Sentdex
- Two Minute Papers
- Deep Lizard

Thank you