Chaînes de Markov: kit de survie

Krzysztof Worytkiewicz

DÉFINITION 1.

- 1. Un vecteur $x \in \mathbb{R}^n$ est stochastique si $\sum_{i=1}^n x_i = 1$.
- 2. Une matrice carrée est stochastique si toutes ses colonnes sont des vecteurs stochastiques.

On peut montrer qu'une matrice stochastique admet une valeur propre $\lambda = 1$ (voir Exo 1 du TP).

DÉFINITION 2.

1. Soient $M \in \mathcal{M}_n(\mathbb{R})$ et $x \in \mathbb{R}^n$ stochastiques. Une chaîne de Markov est une suite de vecteurs donnée par la récurrence

$$x^{(0)} := x$$
 $x^{(n+1)} := Mx^{(n)}$

On appelle les $x^{(i)}$ vecteurs d'état.

2. Si elle existe, la quantité $\lim_{i\to\infty} (M^i x^{(i)})$ est appellée état stationnaire.

Toute chaîne de Markov est une instance de ce qu'on appelle processus stochastique discret, c'est à dire une suite de variables aléatoires discrètes. On peut montrer que tout vecteur faisant partie d'une chaîne de Markov est stochastique (voir Exo 2 du TP). Or un vecteur stochastique $x \in \mathbb{R}^n$ encode la distribution d'une variable aléatoire discrete à n états

$$X: \{1, 2, \cdots, n\} \longrightarrow [0, 1]$$

d'où la terminologie.

THÉORÈME 1. (PERRON-FROBENIUS I) Soit $M \in \mathcal{M}_n(\mathbb{R})$ une matrice stochastique telle que

$$M_{i\bullet} \neq \mathbf{0}$$

pour tout $1 \leq i \leq n$.

- 1. On a $|\lambda| \leq 1$ pour toute valeur propre $\lambda \in \operatorname{Sp}(M)$.
- 2. Il existe un unique vecteur stochastique $p^* \in E_1$. De plus, on a $p_i^* \geqslant 0$ pour tout $1 \leqslant i \leqslant n$.

DÉFINITION 3. Une matrice stochastique $M \in \mathcal{M}_n(\mathbb{R})$ est régulière s'il existe $q_0 \in \mathbb{N}$ tel que

$$(M^q)_{i,j} \neq 0$$

pour tout $q \geqslant q_0$ et $1 \leqslant i, j \leqslant n$.

On peut montrer qu'une matrice stochastique régulière vérifie l'hypothèse de Perron-Frobenius I (voir Exo 3 du TP).

THÉORÈME 2. (Perron – Frobenius II) Soit $M \in \mathcal{M}_n(\mathbb{R})$ est régulière.

- 1. $\lambda = 1$ est de multiplicité 1.
- 2. Soit $\mu \in \operatorname{Sp}(M)$ telle que $\mu \neq \lambda$. On a
 - i. $|\mu| < 1$;
 - ii. $\sum_{i=1}^{n} p_i = 0$ pour tout $p \in E_{\mu}$.
- 3. Soit s un vecteur stochastique tel que $s_i > 0$ pour tout $1 \le i \le n$. On a

$$\lim_{q \to \infty} M^q s = p^*$$