Discrete Structures II Spring 2021 Homework III

- 1. Which of the following languages is/are recursive?
 - (a) $L_1 = \{ \langle M \rangle : 0 \in L(M) \}$
 - (b) $L_2 = \{ \langle M \rangle : L(M) \text{ is context-free} \}$
 - (c) $L_3 = \{ \langle M \rangle : L(M) = \phi \}$
 - (d) $L_4 = \{ \langle M \rangle : L_d \subset L(M) \}$
 - (e) $L_5 = \{ \langle M \rangle : L(M) \text{ is not r.e.} \}$
- 2. Which of the following problems is/are decidable?
 - (a) Given a TM M; does M accept a string that starts with a 0?
 - (b) Given a TM M; does M accept a string of length > 10?
 - (c) Given a TM M; is L(M) empty?
- 3. Is the set of non-recursive languages closed under complement? Prove your answer.
- 4. Is the set of non r.e languages closed under complement? Justify.
- 5. Is the set of non r.e languages closed under union or intersection? Prove your answer.
- 6. Consider the language $L_{ne} = \{ \langle M \rangle : L(M) \neq \phi \}$ (defined in 9.7.3). Is L_{ne} recursive? What can you say about its complement? Prove your answer.
- 7. Prove that $4SAT \propto 5SAT$.
- 8. Prove that $6SAT \propto 4SAT$.
- 9. In the GUARD COVER problem we are given a graph G and a positive integer k and asked whether G has a set S of k or less vertices such that every vertex of G can be reached from a vertex of S by a path of at most two edges. Show that GUARD COVER is NP-Complete by reduction from VERTEX COVER.
- 10. In the MAXIMUM COMMON EDGE SUBGRAPH problem (MCES) the input consists of two graphs G_1 and G_2 and an integer k > 0 and the posed question is whether there is a subgraph of G_1 consisting of k edges that is isomorphic to a subgraph of G_2 . Prove that MCES is NP-hard (by reduction from a suitable problem of your choice).
- 11. Show that Dominating Set \propto Set Cover.