Assignment 2

1

F is not a PRF.

Suppose we have the distinguisher D, D queries $F_{A,b}(0)$ which equals b. D can compute b with one query. Because b is known, and we know that D can compute Ax by every x. D can compute A by posing queries for the unit vectors. So F is not a PRF.

2

Assume the statement is false, which means there exist some PPT adversary *A*,

$$|Pr[PrivK_{A,\Pi}^{CPA}(n)=1] - Pr[PrivK_{A,\widetilde{\Pi}}^{CPA}(n)=1]| > t(n)$$

For some non-negligible t(n). We constructs a PPT distinguisher D contradicting the requirement from the definition of pseudo-random functions, so we have:

$$|Pr[D^{F_k(.)}(1^n)] - Pr[D^{f(.)}(1^n)]| > t(n)$$

We assume the working of the distinguisher D, which is given access to some oracle $O: \{0,1\}^n \to \{0,1\}^n$ and receives an input 1^n

- Run $A(1^n)$, and query $A(1^n)$'s oracle to the encryption function for i-th time with a message made up by l_i message blocks $(m_1, m_2, ..., m_{l_i})$, we do:
 - Choose a uniform initial value ctr^* ∈ {0, 1}^m
 - Query O for $j = 1, ..., l_i$ to obtain $y_j = O(ctr_i + j)$
 - Return the ciphertext blocks $\langle ctr_i, c_i, ..., c_{l_i} \rangle = \langle ctr_i, y_i \oplus m_{b,1}, ..., y_{l*} \oplus m_{b,l^*} \rangle$ to A.
- Once A output the messages m_0 , m_1 consisting of l^* blocks $m_{0,1}, ..., m_{0,l^*}, m_{1,1}, ..., m_{1,l^*}$ respectively, choose a uniform bit $b \in 0, 1$, we do:
 - Choose a uniform initial value $ctr^* \in \{0,1\}^m$
 - Query O for $j = 1, ..., l_i$ to obtain $y_i = O(ctr_i + j)$
 - Return the ciphertext blocks $\langle ctr_i, c_i, ..., c_{l_i} \rangle = \langle ctr_i, y_i \oplus m_{b,1}, ..., y_{l*} \oplus m_{b,l^*} \rangle$ to A.
- Answer queries to the encryption oracle as above, until A produces an output bit b'. Then output 1 if b = b', and 0 otherwise.

We argue D is PPT hence D runs in polynomial time.

Note that D is essentially just the experiment $PrivK_{A,\Pi}^{CPA}$ or $PrivK_{A,\Pi}^{CPA}$ depending on witch oracle D is given. with the first step of key generation in the experiment being simulated by uniformly choosing $k \in \{0,1\}^n$ or $f \in Func_n$.

$$Pr_{k \leftarrow (0,1)^n}[D^{F_k(.)}(1^n) = 1] = Pr[PrivK_{A,\Pi}^{CPA}(n) = 1]$$

$$Pr_{k \leftarrow Func_n}[D^{F_k(.)}(1^n) = 1] = Pr[PrivK_{A,\Pi}^{CPA}(n) = 1]$$

3

3.1

This scheme has indistinguishable encryptions in the presence of an eavesdropper.

We prove that $F_k(0^n)$ is pseudorandom.

The scheme is not CPA-secure as encryption is deterministic.

3.2

The one-time pad is perfectly indistinguishable.

It has also indistinguishable encryption in the presence of an eavesdropper.

. It is not CPA-secure as encryption is deterministic.

3.3

This scheme does not even have indistinguishable encryptions in the presence of an eavesdropper. It cannot be CPA-secure.

3.4

This scheme is CPA-secure.

It has indistinguishable encryptions in the presence of an eavesdropper

4

4.1

This is not CPA-secure. Follow this attacker *A*:

- The key *k* is chosen at random and fixed.
- A get 2 different messages $m_0, m_1 \in \{0, 1\}^{2m}$. Then A interacts with the encryption oracle E_k and obtains two ciphertexts y_0, y_1
- A sends m_0 , m_1 to the challenger and gets $c^* = E_k(m_b)$ for $b \leftarrow_R \{0, 1\}$. A intercepts the first 2m bits of c^* as c'
- if c' is identical to the first 2m bits of y_0 , A outputs b=0; otherwise, b=1

Therfore, *A* wins the game with probability 1.

4.2

This scheme is CPA-secure. Considering $y_1 = p_k(0^n \oplus r)$ as a random function.

5

We construct an adversary *A* for each of the MACs.

5.1

On input 1^n , A queries (0^n1^n) and gets $t = Mac_k(0^n1^n) = F_k(0^n) \oplus F_k(1^n)$. Now A outputs $(1^n0^n, t)$. This is a valid messages-tag pair as $Mac_K(1n0^n) = F_k(1^n) \oplus F_k(0^n) = F_k(0^n) \oplus F_k(1^n) = t$. So A wins with probability 1.

5.2

On input 1^n , A queries $m_0 = 0^n$, $m_1 = 0^{\frac{n}{2}} 1^{\frac{n}{2}}$ and $m_2 = 1^n$. We donote the tags as t_0 , t_1 , t_2 .

$$t_{0} \oplus t_{1} \oplus t_{2}$$

$$= (F_{k}([1]||0^{\frac{n}{2}}) \oplus F_{k}([2]||0^{\frac{n}{2}}) \oplus F_{k}([1]||0^{\frac{n}{2}}) \oplus F_{k}([2]||1^{\frac{n}{2}}) \oplus F_{k}([1]||1^{\frac{n}{2}}) \oplus F_{k}([2]||1^{\frac{n}{2}}))$$

$$= F_{k}([2]||0^{\frac{n}{2}}) \oplus F_{k}([1]||1^{\frac{n}{2}}) - F_{k}([1]||1^{\frac{n}{2}}) \oplus F_{k}([2]||0^{\frac{n}{2}})$$

$$= Mac_{k}(1^{\frac{n}{2}}0^{\frac{n}{2}})$$

$$(1)$$

Therfore, *A* outputs $(1^{\frac{n}{2}}0^{\frac{n}{2}}, t_0 \oplus t_1 \oplus t_2)$ and wins with probability 1.

5.3

Let $m \in (0, 1^{\frac{n}{2}})$ be an arbitary messages. Then A outputs $(m, ([1]_2||m))$. This is a valid message-tag pair as Mac_k could choose $r = [1]_2||m|$ and output

$$t = (r, F_k(r) \oplus F_k([1]_2||m)) = (r, 0^n)$$

Therfore, A wins with probability 1.

6

For arbitary two messages $m_1, m_2 \in 0, 1^n$ and $m_1, m_2 \neq 0^n$. So we can query the oracle $t_1 = Mac_k(m_1||0^n)$, $t_2 = Mac_k(0^n||m_2)$. Then let c_1 be the first $\frac{n}{2}$ bits of t_1 and c_2 be the last $\frac{n}{2}$ bits of t_2 . Then A can output $(m_1||m_2, c_1||c_2)$.

7

 \widetilde{H} is a collision resistant hash function. We prove by reduction.

Assume that \widetilde{H} is not a collision resistant. Then there is a PPT adversary \widetilde{A} such that:

$$Pr[Hash - col_{\widetilde{A},\widetilde{\Pi}}(n) = 1] \ge \frac{1}{q(n)}$$

We use \widetilde{A} to constructs A as follows: On input s, A simulates \widetilde{A} . The latter will output x, x' eventually. Now A checks whether $H^8(x) = H^8(x')$ and $x \neq x'$. If this is not the case A will just output x and x'. Otherwise, A will checks whether $\widetilde{H}^8(x) = \widetilde{H}^8(x')$. If this is the case, then a collision was found and A outputs x and x'. Otherwise, $H^8(x) \neq H^8(x')$ and $H^8(H^8(x)) = H^8(H^8(x'))$, a collision is found too.

We have:

$$Pr[Succ_{\widetilde{A}}(n)] = Pr[Hash - col_{\widetilde{A},\widetilde{\Pi}}(n) = 1] > \frac{1}{q(n)}$$

$$Pr[Hash - col_{\widetilde{A},\widetilde{\Pi}}(n) = 1 | Succ_{\widetilde{A}}(n)] = 1$$

$$Pr[Hash - col_{\widetilde{A},\widetilde{\Pi}}(n) = 1$$

$$= Pr[Hash - col_{\widetilde{A},\widetilde{\Pi}}(n) = 1 | Succ_{\widetilde{A}}(n)] * Pr[Succ_{\widetilde{A}}(n)] + Pr[Hash - col_{\widetilde{A},\widetilde{\Pi}}(n) = 1 | \neg Succ_{\widetilde{A}}(n)] * Pr[\neg Succ_{\widetilde{A}}(n)]$$

$$\geq Pr[Hash - col_{\widetilde{A},\widetilde{\Pi}}(n) = 1 | Succ_{\widetilde{A}}(n)] * Pr[Succ_{\widetilde{A}}(n)]$$

$$= 1 * Pr[Succ_{\widetilde{A}}(n)]$$

$$> \frac{1}{q(n)}$$
(2)

This completes the reduction as Π is a collision resistant hash function. Therefore our assumption was wrong and $\widetilde{\Pi}$ is collision resistant.

8

9

9.1

Let $k = 0^n$ and $m \in \{0, 1\}^n$ be arbitary. Then $f_1(0^n, m) = E(0^n, m)$. Let $k' \in [0, 1]^n$ also be arbitary where $k' \neg k$. Then let $m' = E^{-1}(k', E_{0^n}(m) \oplus k') \oplus k'$ So $f_1(0^n, m) = f_1(k', m')$

9.2

9.3

the same as 9.1

10

10.1

The probability that both of them receive the same plate number is $\frac{1}{10} = \frac{1}{2600}$

10.2

$$1 \times (1 - \frac{1}{2600}) \times (1 - \frac{2}{2600}) \times \dots \times (1 - \frac{n}{2600}) > 1\%$$

So n = 6, the maximum number of this type of license plates is n + 1 = 7.

10.3

$$1 \times (1 - \frac{1}{2600 \times 10^m}) \times (1 - \frac{2}{2600 \times 10^m}) \times ... \times (1 - \frac{49}{2600 \times 10^m}) > 1\%$$

So m = 2, which is the digits should be added at the end of this serial number format.