COMP824 2023 Week 9 Relational Data

Department of Mathematical Sciences Auckland University of Technology

Overview

Relational data

Keys

Joins

Visualising Geographic Data

Reading

Chapter 13 Wickham and Grolemund (2020), R for Data Science https://r4ds.had.co.nz/

Figure 1: http://r4ds.had.co.nz/

The Process of Analytics

Learning objectives

- Recognise relational data
- Understand the main types of mutating and filtering joins
- Join datasets using appropriate tidyverse join functions

Relational data

Multiple tables of related data = **relational data**

Example

- Each flight has an airline.
- Each airline has multiple flights
- The tibbles airlines and flights are related.

Flights data

nycflights13::flights

```
# A tibble: 336,776 x 19
  year month day dep time sched~1 dep d~2 arr t~3 sched~4
 <int> <int> <int> <int> <int> <int> <int>
                                                  <int>
                              515
                                            830
                                                    819
1 2013
                      517
2 2013 1
                      533
                              529
                                            850
                                                    830
                              540
3 2013
                      542
                                            923
                                                    850
# ... with 336,773 more rows, 11 more variables:
   arr_delay <dbl>, carrier <chr>, flight <int>,
   tailnum <chr>, origin <chr>, dest <chr>,
#
   air_time <dbl>, distance <dbl>, hour <dbl>,
   minute <dbl>, time hour <dttm>, and abbreviated
   variable names 1: sched dep time, 2: dep delay,
#
   3: arr time, 4: sched arr time
```

Airline data

nycflights13::airlines

Other related datasets

```
library(nycflights13)
airlines
flights
planes
airports
weather
```

Digrammatic Representation of nycflights13 datasets

Figure 3: https://r4ds.had.co.nz/relational-data.html

Keys

Relational data

Keys

Joins

Visualising Geographic Data

Keys

Keys: variables used for connecting pairs of tables

- Primary key: variable/s which uniquely identify observations in their own table
 - weather: year, month, day, hour, origin
 - airports: faa
 - planes: tailnum
- Foreign key: variable/s which unique identify observations in another table
 - flights\$tailnum is foreign key because it is a primary key in the table planes

Keys: Good practice

Good practice

- Identify primary key
- Check they uniquely identify observations
- If no primary key exists add a surrogate key

Example: Check key uniquely identifies observations 1

```
planes %>%
  count(tailnum) %>%
  filter(n > 1) # unique
```

```
# A tibble: 0 x 2
# ... with 2 variables: tailnum <chr>, n <int>
```

Example: Check key uniquely identifies observations 2

```
weather %>%
  count(year, month, day, hour, origin) %>%
  filter(n > 1) # not unique
```

```
# A tibble: 3 x 6
  year month  day hour origin  n
  <int> <int <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <int  <in
```

Example: Adding a surrogate key 1

```
(tb <- tibble(x=c("A","B","B"), y=c(4,6,6)))
# A tibble: 3 \times 2
  X
  <chr> <dbl>
1 A
2 B
3 B
tb \%% count(x, y)%>% filter(n > 1)
# A tibble: 1 \times 3
  <chr> <dbl> <int>
1 B
            6
```

Example: Adding a surrogate key 2

tb %>% mutate(surrogate_key = row_number())

Joins

Relational data

Keys

Joins

Visualising Geographic Data

Joins

- Mutating joins: add new variables from a data frame to another
- **Filtering joins**: filters a data frame based on whether they match another data frame

Relational data is usually stored in a **relational database management system** (RDBMS).

Mutating Joins: Example

```
flights2 <- flights %>%
  select(year:day, hour, origin, dest, tailnum, carrier)
flights2
```

Suppose we want to add the airline name to the dataset.

Example

```
flights2 %>%
  # remove columns for easier printing
  select(-origin, -dest) %>%
  # left join by carrier code
  left_join(airlines, by = "carrier")
```

Types of mutating joins

- Inner joins keeps only observations in x and y
- Outer joins
 - Left join keeps all observations in x
 - Right join keeps all observations in y
 - Full join keeps all observations in x and y

Types of mutating joins

Figure 4: https://r4ds.had.co.nz/relational-data.html

Example

```
(x <- tribble( ~key, ~val_x, 1, "x1", 2, "x2", 3, "x3" ))
(y <- tribble( ~key, ~val_y, 1, "y1", 2, "y2", 4, "y3" ))
```

```
# A tibble: 3 x 2
  key val_x
 <dbl> <chr>
 1 x1
2 2 x2
3 3 x3
# A tibble: 3 x 2
   key val_y
 <dbl> <chr>
     1 y1
2 2 y2
     4 y3
```

Inner Joins

- New data has observations in **both** data sets.
- Unmatched observations are not included

```
x %>%
inner_join(y, by="key")
```

Outer Joins: Left Join

```
x %>%
left_join(y, by="key")
```

Outer Joins: Right join

```
x %>%
right_join(y, by="key")
```

Outer Joins: Full join

2 2 x2 y2 3 3 x3 <NA> 4 4 <NA> y3

Ways of defining the key column

Natural join: joins by all columns that appear in both tables x %>%
 left_join(y, by = NULL)

```
flights2 %>% left_join(weather)
```

```
# A tibble: 336,776 x 18
  year month day hour origin dest tailnum carrier
                                               temp
 <int> <int> <int> <dbl> <chr> <chr> <chr>
                                               <dbl>
1 2013 1 1 5 EWR IAH N14228 UA
                                               39.0
2 2013 1 1 5 LGA IAH N24211 UA
                                               39.9
3 2013 1 1 5 JFK MIA N619AA AA
                                               39.0
# ... with 336,773 more rows, and 9 more variables:
#
   dewp <dbl>, humid <dbl>, wind_dir <dbl>,
#
   wind speed <dbl>, wind gust <dbl>, precip <dbl>,
#
   pressure <dbl>, visib <dbl>, time hour <dttm>
```

Ways of defining the key column

Specify key column using: by

```
flights2 %>% left_join(planes, by = "tailnum")
```

```
# A tibble: 336.776 x 16
 year.x month day hour origin dest tailnum carrier
  <int> <int> <int> <dbl> <chr> <chr> <chr>
   2013 1 1
                     5 EWR IAH N14228 UA
2 2013 1 1
                     5 LGA IAH N24211 UA
   2013 1 1
                     5 JFK MIA N619AA AA
 ... with 336,773 more rows, and 8 more variables:
#
   year.y <int>, type <chr>, manufacturer <chr>,
#
   model <chr>, engines <int>, seats <int>, speed <int>,
#
   engine <chr>
```

Ways of defining the key column

- Same variable with different names in each table
 - x %>% left_join(y, by=c("a" = "b"))
 - Matches x\$a with y\$b

```
flights2 %>% left_join(airports, c("dest" = "faa"))
```

```
# A tibble: 336,776 x 15
  year month day hour origin dest tailnum carrier name
 <int> <int> <int> <dbl> <chr> <chr> <chr>
                                              <chr>
1 2013
                    5 EWR IAH N14228 UA Geor~
2 2013 1 1
                    5 LGA IAH N24211 UA
                                              Geor~
3 2013 1 1
                    5 JFK MIA N619AA AA
                                              Miam~
# ... with 336,773 more rows, and 6 more variables:
   lat <dbl>, lon <dbl>, alt <dbl>, tz <dbl>, dst <chr>,
#
   tzone <chr>>
```

Filtering Joins

- semi_join(x, y) keep all in x that have match in y
- anti_join(x, y) drop all in x that have match in y

Similar to filter, but anti-join and semi-join scale better to use with more variables.

Filtering Joins: Example

Filtering Joins: Example

Filtering Joins: Example

Questions of interest

- 1. Which students in the class sat the exam?
- 2. Which students didn't sit the exam?
- 3. Did any students not in the class sit the exam, what was their grade?

Filtering Joins: Semi-joins and Anti-joins

1. Which students in the class sat the exam?

```
classlist %>%
  semi_join(exams, by=c("studentID"="studID"))
```

Filtering Joins: Semi-joins and Anti-joins

2. Which students didn't sit the exam?

```
classlist %>%
  anti_join(exams, by=c("studentID"="studID"))
```

Filtering Joins: Semi-joins and Anti-joins

3. Did any students not in the class sit the exam, what was their grade?

```
exams %>%
  anti_join(classlist, by=c("studID"="studentID"))

# A tibble: 1 x 2
  studID grade
  <dbl> <chr>
1     5 D
```

Example: Flights Data - Top 10 destinations

```
top_dest <- flights %>% count(dest, sort = TRUE) %>%
  slice_head(n = 10) %>% print(n = 10)
```

```
# A tibble: 10 \times 2
  dest
  <chr> <int>
 1 ORD
         17283
2 ATL 17215
3 LAX 16174
4 BOS
       15508
 5 MCO
       14082
 6 CLT
        14064
 7 SF0
         13331
8 FI.I.
         12055
 9 MIA
         11728
10 DCA
          9705
```

Filtering Joins: Semi-joins

1. Find all flights to the top destinations.

```
flights %>% semi join(top dest)
# A tibble: 141,145 x 19
  year month day dep_time sched~1 dep_d~2 arr_t~3 sched~4
 <int> <int> <int> <int> <int> <int> <dbl> <int>
                                                 <int>
1 2013
          1
                      542
                             540
                                            923
                                                   850
2 2013 1
                      554
                             600
                                      -6
                                            812
                                                   837
3 2013 1
                      554
                             558
                                      -4
                                            740
                                                   728
# ... with 141,142 more rows, 11 more variables:
#
   arr_delay <dbl>, carrier <chr>, flight <int>,
#
   tailnum <chr>, origin <chr>, dest <chr>,
#
   air time <dbl>, distance <dbl>, hour <dbl>,
#
   minute <dbl>, time_hour <dttm>, and abbreviated
#
   variable names 1: sched dep time, 2: dep delay,
   3: arr time, 4: sched arr time
```

Filtering Joins: Semi-joins

1. Find all flights to the top destinations.

```
flights %>% semi_join(top_dest)
```

Equivalent to:

```
flights %>% filter(dest %in% top_dest$dest)
```

Filtering Joins: Anti-joins

2. Find flights whose plane isn't in planes

```
flights %>%
  anti join(planes, by = "tailnum") %>%
  count(tailnum, sort = TRUE)
# A tibble: 722 x 2
 tailnum
           n
  <chr> <int>
1 <NA> 2512
2 N725MQ 575
3 N722MQ 513
# ... with 719 more rows
```

Filtering Joins: Anti-joins

2. Find flights whose plane isn't in planes

```
flights %>%
  anti_join(planes, by = "tailnum") %>%
  count(tailnum, sort = TRUE)
```

Equivalent to:

```
flights %>%
  filter(! tailnum %in% planes$tailnum) %>%
  count(tailnum, sort = TRUE)
```

Further topics in relational data

- Duplicate keys
- Join problems
- Set operations

If you are going to be working with relational data, you should read up about these topics. See Chapter 13 Wickham and Grolemund (2020).

Visualising Geographic Data

Relational data

Keys

Joins

Visualising Geographic Data

Join flights and airports

Add longitude and latitude of airports to flights data

Application: Join flights and airports

flights_loc

```
# A tibble: 329,174 x 11
 carrier flight tailnum origin dest name origin
                                              lat o~1
 <chr> <int> <chr> <chr> <chr>
                                                <dbl>
1 UA 1545 N14228 EWR IAH Newark Libert~ 40.7
          1714 N24211 LGA IAH La Guardia 40.8
2 UA
3 AA
          1141 N619AA JFK MIA John F Kenned~ 40.6
# ... with 329,171 more rows, 4 more variables:
   lon origin <dbl>, name dest <chr>, lat dest <dbl>,
#
#
   lon dest <dbl>, and abbreviated variable name
#
   1: lat origin
```

Visualise Flight Paths

```
flight paths plot <- flights loc %>%
  slice head(n= 100) %>%
  ggplot() +
  geom_segment(mapping = aes(
    x = lon origin, xend = lon dest,
    y = lat origin, yend = lat dest,
    col = origin),
    arrow = arrow(length = unit(0.1, "cm"))) +
    borders(database = "state") +
    #borders(database = "world") +
  coord quickmap() +
  labs(y = "Latitude", x = "Longitude")
```

Visualise Flight Paths (n = 100 flights)

flight_paths_plot

Most common destinations

```
(dest_freq <- flights %>%
  count(dest) %>%
  inner_join(airports, by=c("dest"="faa")) %>%
  arrange(-n) )
```

```
# A tibble: 101 x 9
dest n name lat lon alt tz dst tzone
<chr> <int> <chr> <int> <chr> <int> Chr> (dbl) (dbl) (dbl) (dbl) (chr) (chr)

1 ORD 17283 Chicago 42.0 -87.9 668 -6 A Amer~

2 ATL 17215 Hartsfie 33.6 -84.4 1026 -5 A Amer~

3 LAX 16174 Los Ange 33.9 -118. 126 -8 A Amer~

# ... with 98 more rows
```

Plot of most common destinations from NYC airports

Plot of most common destinations from NYC airports

common_dest_plot

Leaflet plot

```
library(leaflet)
m <- leaflet(dest freq) %>%
  addTiles() %>%
  #addProviderTiles(providers$Esri.WorldImagery) %>%
  addCircleMarkers(lng = ~lon,
                                                   lat = ~lat.
                   popup = ~as.character(name),
                   label = ~as.character(name).
                   radius = \sim n/1600) %>%
  setView(lng = -100, lat = 42, zoom = 3)
# save html widget as image
htmlwidgets::saveWidget(m, "temp.html", selfcontained=TRUE)
webshot2::webshot("temp.html".
                  file="Rfigs/leaflet map.png",
                  cliprect="viewport",
                  vwidth = 800, vheight = 450)
```

Leaflet plot

Summary

Relational data

Keys

Joins

Visualising Geographic Data

Learning objectives

- Recognise relational data
- Understand the main types of mutating and filtering joins
- Join datasets using appropriate tidyverse join functions

References

Wickham, Hadley, and Garrett Grolemund. 2020. *R for Data Science: Import, Tidy, Transform, Visualize, and Model Data.*