1. Let *C* and *D* be nonempty sets. Prove that $C \times D = D \times C$ if and only if C = D. Why do we need the condition that *C* and *D* are nonempty?

Proof. Let *C* and *D* be nonempty sets.

(⇒) Suppose $C \times D = D \times C$. Let (x, y) to be an arbitrary ordered pair from set $C \times D$. Hence, $x \in C$ and $y \in D$. Since $C \times D = D \times C$ and $(x, y) \in C \times D$, $(x, y) \in D \times C$. It implies that for all x in set C is also in set D, and for all y in set D is also in set C. Therefore, $C \subseteq D$ and $D \subseteq C$. C = D is the only possible result.

(\Leftarrow) Suppose C = D. We can rewrite $C \times D$ as $D \times D$ and rewrite $D \times C$ as $D \times D$ as well. Therefore, $C \times D = D \times D = D \times C$.

If either C or D is empty and the another one is nonempty , $C \times D = D \times C = \emptyset$. However, empty set does not equal to another nonempty set, $C \neq D$. The conclusion will not hold anymore without the condition C and D are nonempty.

2. Find a condition for the sets A and B such that you can create a theorem of the form "Let A and B be sets. We have $A \setminus B = B \setminus A$ if and only if (your condition on A and B). That is, you're looking to state and prove necessary and sufficient conditions for $A \setminus B = B \setminus A$.

Solution. Let *A* and *B* be sets. We have $A \setminus B = B \setminus A$ if and only if A = B.

To prove the statement above, we need to prove in both directions:

- (\Rightarrow) Suppose $A \setminus B = B \setminus A$. By defination, $A \setminus B$ is the set of all elements in A but not B and $B \setminus A$ is the set of all elements in B but not A. Hence, $A \setminus B$ and $B \setminus A$ disjoint. For disjoint set to be equal, they must both be empty. In this case, $A = B = \emptyset$.
- (\Leftarrow) Suppose A = B, and then $A \setminus B$ is equivalent to $A \setminus A$, which is the set of all elements in A but not A. Hence, empty set. Similarly., $B \setminus A$ is empty as well. Therefore, $A \setminus B = B \setminus A = \emptyset$.
- 3. Let A be a set. The *complement* of A denoted \overline{A} or A^C is defined as the set of all objects that are not in A. This can be problematic, as this can include literally anything at all: the "complement" of the set $\{1,2\}$ could include the number -3 as easily as it could include your cell phone. We then must specify the set U = universe in which the set exists if we are to discuss the complement of the set within that universe. So if we are talking about $U = \mathbb{Z}$ for our previous example, then the complement of $\{1,2\}$ would be $\mathbb{Z}\setminus\{1,2\}$; however if we were using \mathbb{R} as our universe, the complement would be $\mathbb{R}\setminus\{1,2\}$.

Prove the following about set complements, assuming A, B, $C \subseteq U$.

(a) A = B if and only if $\overline{A} = \overline{B}$

Proof. Let *A* and *B* be two sets.

(⇒) Suppose A = B. We can write \overline{A} as U - A and \overline{B} as U - B. Given A = B, we can conclude that U - A = U - B and hence $\overline{A} = \overline{B}$.

(\Leftarrow)Suppose $\overline{A} = \overline{B}$. We also know that $\overline{A} = U - A$ and $\overline{B} = U - B$. Therefore, U - A = U - B and A = B.

(b) $\overline{\overline{A}} = A$

Proof. Let A be a set. We know that $\overline{A} = U - A$ and $\overline{\overline{A}} = U - \overline{A} = U - (U - A) = A$ by the definition of the complement set.

(c) $\overline{A \cup B \cup C} = \overline{A} \cap \overline{B} \cap \overline{C}$

Proof. Let *A*, *B*, and *C* be sets.

Let $x \in \overline{A \cup B \cup C}$. We know that $x \notin A \cup B \cup C$. It implies that $x \notin A$, $x \notin B$, and $x \notin C$ by the definition of the complement set. Hence, $x \in \overline{A}$, $x \in \overline{B}$, and $x \in \overline{C}$, implies that $x \in \overline{A} \cap \overline{B} \cap \overline{C}$. Therefore, every elements in $\overline{A \cup B \cup C}$ is also in $\overline{A} \cap \overline{B}$, $n\overline{A \cup B \cup C} \subseteq \overline{A} \cap \overline{B}$.

Let $x \in \overline{A} \cap \overline{B} \cap \overline{C}$. It implies from the definition of intersects that x is in \overline{A} , \overline{B} and \overline{C} . Hence, x is $\notin A$, $x \notin B$ and $x \notin C$, or we can write it out as x is not in A, x is not in B, and x is not in C. According to the De Morgan's Law, we can conclude that x is not in A, B or C. Hence, $x \in \overline{A \cup B \cup C}$. Therefore, every elements in $\overline{A} \cap \overline{B} \cap \overline{C}$ is also in $\overline{A \cup B \cup C}$, $\overline{A} \cap \overline{B} \cap \overline{C} \subseteq \overline{A \cup B \cup C}$.

 $\overline{A \cup B \cup C}$ and $\overline{A} \cap \overline{B} \cap \overline{C}$ are mutually subset of each other, which implies that $\overline{A \cup B \cup C} = \overline{A} \cap \overline{B} \cap \overline{C}$.

4. Let *A*, *B*, and *C* denote sets. Prove the following:

(a)
$$A \times (B \cup C) = (A \times B) \cup (A \times C)$$

Proof.

$$A \times (B \cup C)$$

By definition of Cartesian product:

$$= \{(x,y)|(x \in A) \land (y \in (B \cup C)\}$$

Then, by definition of Union:

$$= \{(x,y) | (x \in A) \land ((y \in B) \lor (y \in C))\}$$

Distruibute the and operator using the distributive property of boolean algebra:

$$= \{ ((x,y) | (x \in A) \land (y \in B)) \lor ((x \in A) \land (y \in C))) \}$$

We can rewrite it into two sets:

$$= \{(x,y)|(x \in A) \land (y \in B)\} \cup \{(x,y)|(x \in A) \land (y \in C)\}$$

= $(A \times B) \cup (A \times C)$

(b)
$$A \times (B \cap C) = (A \times B) \cap (A \times C)$$

Proof. Let (x,y) to be an arbitrary ordered pair from set $A \times (B \cap C)$, $(x,y) \in A \times (B \cap C)$. Then, we can state that $x \in A$ and $y \in (B \cap C)$. By the definition of intersect, since $y \in (B \cap C)$, $y \in B$ and $y \in C$ is true. By the distributive property, $(x \in A \text{ and } y \in B)$ and $(x \in A \text{ and } y \in C)$ has to be true as well. Putting x and y in ordered pair, we have $(x,y) \in (A \times B)$ and $(x,y) \in (A \times C)$ from Cartesian Product. Therefore, $(x,y) \in (A \times B) \cap (A \times C)$ from the definition of intersection. Therefore, every elements in $A \times (B \cap C)$ is also in $(A \times B) \cap (A \times C)$, $A \times (B \cap C) \subseteq (A \times B) \cap (A \times C)$

Let (x,y) to be an arbitrary ordered pair from set $(A \times B) \cap (A \times C)$, $(x,y) \in (A \times B) \cap (A \times C)$. By definition of intersection, we can conclude that $(x,y) \in A \times B$ and $(x,y) \in A \times C$. x, in this case, is in A, and y is in B and y is in C, $y \in B$ and $y \in C$. By definition of union, we can say that $y \in B \cup C$. Putting (x,y) into ordered pair, we can conclude $(x,y) \in A \times (B \cup C)$ from Cartesian Product. Therefore, every elements in $(A \times B) \cap (A \times C)$ is also in $A \times (B \cap C)$, $(A \times B) \cap (A \times C) \subseteq A \times (B \cap C)$.

 $A \times (B \cap C)$ and $(A \times B) \cap (A \times C)$ are mutually subset of each other, which implies that $A \times (B \cap C) = (A \times B) \cap (A \times C)$.

(c)
$$A \times (B - C) = (A \times B) - (A \times C)$$

Proof. Let (x,y) to be an arbitrary ordered pair from set $A \times (B-C)$. Then, we can state that $x \in A$ and $y \in (B-C)$. The set B-C includes all all elements in set B but not in set C, or we can write as $y \in B$ and $y \notin C$. From $x \in A$ and $y \in B$, we can conclude that $(x,y) \in A \times B$ by Cartesian Product, and from $x \in A$ and $y \notin C$, we can conclude that $(x,y) \notin A \times C$ by Cartesian Product. Hence, to satisfy both statements, it implies that $(x,y) \in (A \times B) - (A \times C)$. Therefore, every elements in $A \times (B-C)$ is also in $(A \times B) - (A \times C)$, $A \times (B-C) \subseteq (A \times B) - (A \times C)$.

Let (x,y) to be an arbitrary ordered pair from set $(A \times B) - (A \times C)$. Then, we can state that $(x,y) \in (A \times B)$ and $(x,y) \notin (A \times C)$. Hence, $(x \in A \text{ and } y \in B)$ and not $(x \in A \text{ and } y \in C)$. By the De Morgan's Law, we can conclude that $(x \in A \text{ and } y \in B)$ and $(x \notin A \text{ or } y \notin C)$. Since $x \in A$ must be true, $y \notin C$. Therefore, $x \in A$, $y \in B$ and $y \notin C$. It implies that $(x,y) \in A \times (B-C)$ from Cartesian Product. Therefore, every elements in $(A \times B) - (A \times C)$ is also in $A \times (B-C)$, $(A \times B) - (A \times C) \subseteq A \times (B-C)$.

 $A \times (B - C)$ and $(A \times B) - (A \times C)$ are mutually subset of each other, which implies that $A \times (B - C) = (A \times B) - (A \times C)$.

(d)
$$A \times (B\Delta C) = (A \times B)\Delta(A \times C)$$

Proof. Let (x, y) to be an arbitrary ordered pair from set $A \times (B\Delta C)$. Then, we can state that $x \in A$ and $y \in (B\Delta C)$. The elements in set $B\Delta C$ includes everything in B and in C but not in both B and C. We can represent using symbol $y \in B \cup C$ and $y \notin B \cap C$. Hence, (x, y) is either in $A \times B$ or $A \times C$ but not in both. By definition of symmetric difference, we will have $(x, y) \in (A \times B)\Delta(A \times C)$. Therefore, every elements in $A \times (B\Delta C)$ is also in $(A \times B)\Delta(A \times C)$, $A \times (B\Delta C) \subseteq (A \times B)\Delta(A \times C)$.

Let (x,y) to be an arbitrary ordered pair from set $(A \times B)\Delta(A \times C)$. Then, we can state that $x \in A$ and $y \in B$ or $y \in C$ and $y \notin (B \cap C)$. By definition of symmetric difference, we can conclude that $y \in (B\Delta C)$. Hence, $(x,y) \in A \times (B\Delta C)$ by Cartesian Product. Therefore, every elements in $(A \times B)\Delta(A \times C)$ is also in $A \times (B\Delta C)$, $(A \times B)\Delta(A \times C) \subseteq A \times (B\Delta C)$.

 $A \times (B\Delta C)$ and $(A \times B)\Delta(A \times C)$ are mutually subset of each other, which implies that $A \times (B\Delta C) = (A \times B)\Delta(A \times C)$.