Tecnologias e Arquitecturas de Computadores

Licenciatura em Engenharia Informática Curso Europeu de Informática

2ª Avaliação Parcelar

Nome Aluno:	
Nº Aluno:	

Deve assinalar a resposta correta, circundando-a nas perguntas de escolha múltipla e inserindo um "X" nas restantes. Se precisar de alterar alguma resposta deve riscá-la e indicar a nova resposta. As respostas incorretas, serão penalizadas.

Duração Total do Teste: 1h:30m

Sem consulta

24 de Maio de 2014

1. Das seguintes instruções indique quais são possíveis:

a. MOV	CL,BL	b. MOV	CL,[BL]	c. MOV	CL,[BX]	d. MOV	CL,BX
e. MOV	CX,BL	f. MOV	CX,[BL]	g. MOV	CX,[BX]	h. MOV	CX,BX

2. Considerando os seguintes dados:

AX = 1234H

BX = 5678H

CX = 9ABCH

DX = DEF8H

Data	Segment:	Stack	Stack Segment:			
ENDEREÇO	CONTEÚDO	ENDEREÇO	CONTEÚDO			
1122H	0CH	1122H	1DH			
1123H	20H	1123H	31H			
1124H	BDH	1124H	CEH			
5677H	3FH	5677H	40H			
5678H	DDH	5678H	EEH			
5679H	50H	5679H	61H			

O resultado final do seguinte conjunto de instruções tem o seguinte efeito:

MOV BX,1122H

MOV AL,[BX]

SUB CL,AL

INC BX

MOV [BX],CL

Indique a veracidade de cada uma das instruções:

V	F]	
		a)	BH fica com o valor 11H.
		b)	BL fica com o valor 22H.
		c)	BX fica com o valor 1123H.
		d)	BX fica com o valor 3322H.
		e)	AL fica o valor 22H.
		f)	AL fica com o valor 1DH.
		g)	AL fica com o valor 0CH.
		h)	CL fica com o valor 0CH.
		i)	CL fica com o valor B0H.
		j)	O conteúdo do endereço SS:1123H fica com o valor B0H.
		k)	O conteúdo do endereço DS:1123H fica com o valor B0H.
		1)	BX fica com o valor 200CH.
		m)	DS:1122H fica com o valor 20H.
		n)	DS:1123H fica com o valor B0H.
		0)	DS:1123H fica com o valor 0CH.

3. Dado o seguinte programa, indique a veracidade de cada uma das afirmações:

```
1:.8086
2: . model small
3: . st ack 2048
                        para 'data'
4: dados segment
5:
                  Vect or 1
                                db
                                       1H, 2H, 3H, 4H, 5H, 6H, 7H, 8H, 9H, 10H
6:
                                       11, 12, 13, 14, 15, 20, 17, 18, 19, 16
                 Vect or 2
                                db
7:
                                       10
                 Num
                                db
8: dados ends
9: codi go
                 segment para 'code'
10:
          main proc
11:
                 assume cs: codi go, ds: dados
12:
                 mον
                        ax, dados
13:
                 mον
                         ds, ax
14:
                         cl, Num
                 mov
15:
                         ch, 0
                 mov
                         si, 0
16:
                 mov
17:
          s1:
                 mov
                         al, vect or 1[si]
18:
                 mov
                         ah, vect or 2[si]
                        vect or 2[si], al
vect or 1[si], ah
19:
                 mον
20:
                 moν
21:
                 i nc
                         si
22:
                 cmp
                         cx, si
23:
                 j ne
                         s1
24:
                         ah, 4Ch
                 mον
25:
                 i nt
                         21h
26:
          main endp
27:
          codi go
                         ends
28:
          end
                 main
```

V	F]	
		a)	Vector1[9] tem a mesma informação que Vector2[9].
		b)	Vector1 armazena 10 bytes.
		c)	Vector1 armazena 10 double bytes.
		d)	Assumindo que ao segmento de dados foi atribuído o valor 1234H, a variável Num fica alojada em 1234H:0020H.
		e)	No final da execução do programa o registo CX tem o valor 10.
		f)	O resultado do programa seria o mesmo se se trocassem as instruções das linhas 18 e 19 entre si.
		g)	A instrução da linha 15 é desnecessária no contexto deste programa.
		h)	As instruções das linhas 14 e 15 servem para colocar o registo CX com o valor de Num.
		i)	Da 1ª vez que é executada, a instrução da linha 21 faz com que SI fique com o valor 1.
		j)	A instrução da linha 22 tem como objetivo verificar se os elementos dos 2 vetores são iguais.
		k)	A instrução da linha 22 tem como objetivo verificar se se chegou ao último elemento dos vetores.
		l)	As instruções entre as linhas 17 e 23 são executadas enquanto SI tiver um valor diferente de 10.
		m)	A instrução da linha 24 é executada quando SI tiver o valor 11.
		n)	A instrução da linha 24 é executada quando CX tiver o valor 11.
		0)	O programa tem como objetivo comparar os elementos de dois vetores.

4. Sabendo que pretende somar o valor presente em CL ao valor em AH, deixando o resultado em AX, indique qual/quais o(s) grupo(s) de instruções que o permite realizar corretamente:

a. MOV	AL,0	b. MOV	CH,0
ADD	AH,CL	ADD	AH,CL
ADC	AH,0	ADC	AH,0
c. MOV	AL,0	d. MOV	AX,0
MOV	CH,0	MOV	AL,AH
ADD	AX,CX	MOV	CH,0
		ADD	AX,CX
e. MOV	CH,0	f. MOV	CH,0
ADD	AH,CL	MOV	AL,AH
ADC	AL,0	ADD	AL,CL
ADC	AL,U	ADC	CH,0
g. MOV MOV MOV ADD	AH,0 AL,AH CH,0 AX,CX	h. MOV MOV MOV ADD	CH,0 AL,AH AH,0 AX,CX

5. Sabendo que pretende dividir o valor 50 pelo valor 4 que se encontra no registo AL, indique qual/quais o(s) grupo(s) de instruções que o permite realizar corretamente:

a. MOV MOV MOV MOV DIV	BX,0 DX,0 BL,AL AX,50 BX	b. MOV MOV MOV DIV	AX,50 BL,4 BH,0 BX		MOV DIV	BX,50 AL
d. MOV DIV	AX,50 4	e. MOV MOV MOV DIV	DX,0 AL,50 AH,0 4	f.	MOV MOV DIV	BL,AL AX,50 BL

<sup>Se OPER for de 8 bits divide AX por OPER, ficando o quociente em AL e o resto em AH.
Se OPER for de 16 bits divide DX:AX por OPER, ficando o quociente em AX e o resto em DX.</sup>