

Universidade Federal de Santa Catarina Centro Tecnológico

Departamento de Informática e Estatística Ciências da Computação & Engenharia Eletrônica

Sistemas Digitais

INE 5406

Aula 12-T

4. O Processador MIPS multiciclo: análise de *timing* (tempos de estabilização dos sinais, atrasos dos caminhos, caminhos críticos e frequência máxima do relógio).

Profs. José Luís Güntzel e Cristina Meinhardt

{j.guntzel, cristina.meinhardt}@ufsc.br

Identificação dos Estágios entre Registradores

Descrição dos Estados no Nível RT

Nome do passo	Instrução tipo R	Instrução lw	Instrução sw	Instrução beq	Instrução j
Busca da instrução	0		RI = Mem[PC] PC = PC + 4		
Decodificação da instrução & leitura dos registradores Rs e Rt & cálculo do endereço de desvio (cond.)	A = Reg [RI[25-21]] B = Reg [RI[20-16]] ULASaída = PC + (extensão de sinal(RI[15-0]) <<2)				
Execução, cálculo do endereço de acesso à memória, término de uma instrução branch/jump	6 JLASaída = A op B	2 JLASaída = A + extensão de sinal (RI[15-0])		8 ie (A == B) então PC = ULASaída	9 C = PC[31-28] (RI[25-0] <<2)
Término de uma instrução store word ou de tipo R	7 Reg [RI[15-11]] = ULASaída	3 RDM = Mem [ULASaída]	Mem [ULASaída] 5 = B		
Término de uma instrução load word		Reg[RI[20-16]] 4 = RDM			
Número de estados	4	5	4	3	3

Nesta tabela, cada linha horizontal pode ser imaginada como uma borda (ativa) do relógio (observando, entretanto, que o período do relógio é fixo, independente do estado)

Execução Multiciclo das Instruções

Execução Multiciclo das Instruções

Tempo de Estabilização (TE) do PC em t0

TE (sPC) = tco(PC) *

Quais estados escrevem no PC?

Nome do passo	Instrução tipo R	Instrução lw	Instrução sw	Instrução beq	Instrução j
Busca da instrução	0		RI = Mem[PC] PC = PC + 4		
Decodificação da instrução & leitura dos registradores Rs e Rt & cálculo do endereço de desvio (cond.)	1 A = Reg [RI[25-21]] B = Reg [RI[20-16]] ULASaída = PC + (extensão de sinal(RI[15-0]) <<2)				
Execução, cálculo do endereço de acesso à memória, término de uma instrução branch/jump	6 JLASaída = A op B	2 JLASaída = A + extensão de sinal (RI[15-0])		8 e (A == B) então PC = ULASaída	9 C = PC[31-28] (RI[25-0] <<2)
Término de uma instrução store word ou de tipo R	7 Reg [RI[15-11]] = ULASaída	3 RDM = Mem [ULASaída]	Mem [ULASaída] 5 = B		
Término de uma instrução load word		Reg[RI[20-16]] 4 = RDM			
Número de estados	4	5	4	3	3

Assim ó (Explicação com formas de onda para o PC...)

Caso 2:

Instr. i {beq, j}

Instr. i+1 inicia com PC ainda sendo atualizado; basta considerar o tco do PC

Atualização do PC avança o Estado 0 da Instr. i+1 por um tempo = tco(PC)

Conclusão: considerando-se o tco(PC) na análise de *timing* do Estado 0, leva-se este efeito em conta

Tempo de Estabilização (TE) dos Sinais de Controle

Tempo de Estabilização (TE) dos Sinais de Controle

Tempo de Estabilização (TE) dos Sinais de Controle

(e dos Sinais de Próximo Estado...)

INE/CTC/UFSC Sistemas Digitais - semestre 2018/2 Slide 12T.19

Profs. Güntzel & Meinhardt

Tempo de Estabilização (TE) no Nível RT

O Caso dos registradores temporários (PC, RI, RDM, A, B, ULASaída) e do registrador de estados (RE)

^{*} Toma-se como referência a borda de relógio que inicia o ciclo do relógio **e** na qual o registrador é carregado (p. ex., t0, t1 etc).

Tempo de Estabilização (TE) no Nível RT

Para Elementos Combinacionais (exceto muxes)

$$TE(cULA) = max \{ TE(Instr), TE(ULAOp) \} + td_{ctrl-ULA}$$

 $TE(Resultado) = max{ TE(mA), TE(mB), TE(cULA) } + td_{ULA}$ $TE(Zero) = max{ TE(mA), TE(mB), TE(cULA) } + td_{ULA}$

Tempo de Estabilização (TE) no Nível RT

Leituras do Banco de Registradores (são assíncronas e portanto, ocorrem de maneira similar à operação de um bloco combinacional)

Tempo de Estabilização (TE) no Nível RT

O Caso dos Muxes

TE (mB) = max{ TE_S, TE(ULAFonteB) } + td_{mux4-1}

Onde:

TE_S = TE(sB) se sel= 00

TE_S = TE(c4) se sel = 01

TE_S = TE(es) se sel= 10

TE_S = TE(esd) se sel = 11

Assumindo como Exemplo os Seguintes Atrasos

Componente	Característica	Símbolo	Valor	
Memória	tempo para leitura	td _{LMEM}	300 ps	
Memória	tempo para escrita (setup)	td _{EMEM}	300 ps	
Banco de Registradores	tempo para leitura	td _{LREG}	70 ps	
Banco de Registradores	tempo para escrita (setup)	td _{EREG}	70 ps	
ULA	atraso para qualquer operação	td _{ULA}	60 ps	
Qualquer mux 2:1	atraso	td _{mux}	2 ps	
mux 3:1 e mux 4:1	atraso	td _{mux}	4 ps	
PC, RI, RDM, A, B, ULASaída	tempo de setup	tsu	5 ps	
PC, RI, RDM, A, B, ULASaída	tempo de carga	tco	5 ps	
PC, RI, RDM, A, B, ULASaída	tempo de hold	th	Desprezível (0 ps)	
RE (Registrador de Estados)	tempo de setup	tsu _{re}	Desprezível (0 ps)	
RE (Registrador de Estados)	tempo de carga	tco _{re}	Desprezível (0 ps)*	
RE (Registrador de Estados)	tempo de hold	th _{RE}	Desprezível (0 ps)	
Deslocador, extensão de sinal, portas E, OU	atraso	-	Desprezível (0 ps)	
Lógica de saída do controle	atraso	td _{LS}	Desprezível (0 ps)*	
Lógica de próximo estado do controle,	atraso	td _{LPE}	Desprezível (0 ps)	
Controle da ULA. * isto significa que o atraso para gera	Desprezível (0 ps)*			

INE/CTC/UFSC Sistemas Digitais - semestre 2018/2 **Profs. Güntzel & Meinhardt**

Exercicio 1:

- Elaborar em grupo de até 6 alunos um vídeo explicando o passo a passo do timing de um estado da FSM;
- O estado é determinado através do último digito da matrícula. Ex: matrícula terminada em 1, o estado é 1;
- Indicar as diferenças entre o MIPS monociclo e o MIPS multiciclo quanto ao timing;
- Utilizar a tabela do slide 24 para os valores de tempo;

Exercicio 2:

- Elaborar em grupo de até 6 alunos um vídeo apresentando uma ideia de como reduzir o período de relógio do MIPS multiciclo;
- Indicar quais são as vantagens e desvantagens da abordagem proposta;