Loss function and cooperative learning

How ML works

- Statistical view
 - 우도(likelyhood)를 최대화하는 파라미터 탐색

$$\arg\max_w P(Y|X;w)$$

Loss function

- MAE (Mean Absolute Error)
- MSE (Mean Squared Error)
- RMSE (Rooted Mean Squared Error)
- Cross Entropy
- KLD

$$L = |y - f(x)|$$

MSE and RMSE

Mean Squared Error

$$L = (y - f(x))^2$$

Rooted Mean Squared Error

$$L = \sqrt{(y - f(x))^2}$$

Huber Loss

Combination of MSE and MAE

$$L = \begin{cases} \frac{1}{2} (y - f(x))^2, & \text{if } |y - f(x)| \le \delta \\ \delta |y - f(x)| - \frac{1}{2} \delta^2, & \text{otherwise} \end{cases}$$

- Quadratic for smaller error
- Linear otherwise

Cross Entropy

- Entropy: (최소)정보량의 평균
 - $entropy = -\sum_{k=1}^{m} p_k \log_2 p_k$
 - 정보량 $I(x) = -\log p(x)$
- Cross Entropy:
 - $H(P,Q) = \sum_i p_i \log_2 \frac{1}{q_i} = -\sum_i p_i \log_2 q_i$

- ox / 1 - 1 - 1 - 1 - 0 = 0• Binary CE - 1x | 191 - 0 - 19 = 0

$$L = -y \cdot \log f(x) - (1 - y) \cdot \log(1 - f(x))$$

p: usually sigmoid function is used

Multi-class CE

$$L = -\sum_{i} y_i \cdot \log p_i$$

Cross entropy vs. MSE

Cross entropy	MSE				
-범주형 데이터 예측 시 주로 사용 -각 클래스에 속할 확률을 의미하는 확률분포를 이용해 실제분포와의 엔 트로피의 차이를 구한 것.	-수치형 데이터 예측 시 주로 사용 -정답값과 예측값의 차이를 제곱하고 평균을 내준 것.				
딥러닝에서 쓰이는 대표적인 손실 함수					

KL-Divergence

- The difference between two distributions
- 어떤 이상적인 분포에 대해, 그 분포를 근사하는 다른 분포를 사용해 샘플링을 한다면 발생할 수 있는 정보 엔트로피 차이를 계산

$$D_{KL}(P||Q) = -\sum_{x} \left(P(x).\log Q(x) - P(x).\log P(x)\right) = H(P,Q) - H(P,P)$$

H(P,P) is the entropy of P

H(P,Q) is the cross – entropy of P and Q

Prof. Hyerim Bae (hrbae@pusa

KLD(Kullback Leibler Divergence)

• In mathematical statistics, the Kullback–Leibler divergence, (also called relative entropy), is a measure of how one probability distribution is different from a second, reference probability distribution.

P: Distribution P represents the data, the observations, or a probability distribution precisely measured.

Q: Distribution Q represents instead a theory, a model, a description or an approximation of P

• The Kullback–Leibler divergence is then interpreted as the **average difference of the number of bits** required for encoding samples of P using a code optimized for Q rather than one optimized for P.

■ 출처: <u>https://en.wikipedia.org/wiki/Kullback%E2%80%93Leibler_divergence</u>

KLD(Kullback Leibler Divergence)

•
$$KL(p||q)$$

$$= H(p,q) - H(p)$$

$$= -\int p(x)lnq(x)dx - (-\int p(x)lnp(x)dx) = -\int p(x)\ln\left\{\frac{q(x)}{p(x)}\right\}dx$$

- $H(p,q) = -\int p(x)lnq(x)dx$
- $H(p) = -\int p(x)lnp(x)dx$
 - *p* : *true distribution*
 - *q* : *predicted distribution*
- $KL(p||q) \neq KL(q||p)$
- p와 q가 같다면 KL(p||q) = 0

example

■ 실제 사면체 주사위의 확률분포 $p=(\frac{1}{4},\frac{1}{4},\frac{1}{4},\frac{1}{4})$

추정한 사면체 주사위의 확률 분포 $q = (\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{8})$ 라 가정.

- 추정한 확률분포 q를 통해 코딩했을 경우
 - 코딩결과: (0, 10, 110, 111)
 - Entropy = Average code length = 2.25 => Cross entropy!
- 실제 분포 p를 통한 최적의 코딩을 했을 경우
 - 코딩결과: (00,01,10,11)
 - Entropy = Average code length = 2

모델링한 p와 q가 달라서 엔트로피 차이가 발생 => KL - divergence

$$(-\sum_{x} p(x) \log_2 q(x)) - (-\sum_{x} p(x) \log_2 p(x))) = -\sum_{x} p(x) \log_2 \frac{q(x)}{p(x)}$$

= 2.25 - 2 = 0.25

VAE

- The structure is the same as autoencoder
 - We want encoder from autoencoder.
 - We want decoder from VAE
- Finding the posterior from simpler distribution

$$x = g_{\theta}(z)$$
 $p(x) = p(x|z)$ On the perspective of probability
 $p(x) = E_{z \sim p_{\theta}(z)}[p(x|z)]$
 $p(x) = E_{z \sim p_{\theta}(z|x)}[p(x|z)] \cong E_{z \sim q_{\emptyset}(z|x)}[p(x|z)]$

Variational inference

$$\log(p(x)) =$$
 $\log(p(x)) =$ $\log(p(x)) \geq$

$$\log(p(x)) = \log\left(\int p(x,z)dz\right) = \log\left(\int p(x|z)p(z)dz\right)$$

$$\log(p(x)) = \log \left(\int p(x|z) \frac{p(z)}{q_{\phi}(z|x)} q_{\phi}(z|x) dz \right)$$

$$\log(p(x)) \geq \int \logigg(p(x|z)rac{p(z)}{q_{\phi}(z|x)}igg)q_{\phi}(z|x)dz$$

By Jensen's Inequality

Jensen's Inequality:

If g(x) is a convex function on R_X , and E[g(X)] and g(E[X]) are finite, then $E[g(X)] \geq g(E[X])$.

$$\log(p(x)) \geq \int \log(p(x|z))q_{\phi}(z|x)dz \ - \int \logigg(rac{q_{\phi}(z|x)}{p(z)}igg)q_{\phi}(z|x)dz$$

$$ELBO(\phi) = \mathbb{E}_{q_{\phi}(z|x)}[\log(p(x|z))] - KL(q_{\phi}(z|x)\|p(z))$$

$$\begin{split} &\int \log(p(x|z))q_{\phi}(z|x)dz \, = \mathbb{E}_{q_{\phi}(z|x)}[\log(p(x|z))] \\ &\int \log\left(\frac{q_{\phi}(z|x)}{p(z)}\right)q_{\phi}(z|x)dz = KL(q_{\phi}(z|x)||p(z)) \end{split}$$

$$\log(p(x)) = \int \log(p(x)) q_{\phi}(z|x) dz$$

$$\begin{split} \log(p(x)) &= \int \log \left(\frac{p(x,z)}{p(z|x)}\right) q_{\phi}(z|x) dz \\ &= \int \log \left(\frac{p(x,z)}{q_{\phi}(z|x)} \cdot \frac{q_{\phi}(z|x)}{p(z|x)}\right) q_{\phi}(z|x) dz \\ &= \int \log \left(\frac{p(x,z)}{q_{\phi}(z|x)}\right) q_{\phi}(z|x) dz + \int \log \left(\frac{q_{\phi}(z|x)}{p(z|x)}\right) q_{\phi}(z|x) dz \end{split}$$

ELBO

 D_KL

Minimize해야 하는 것

$$\begin{split} ELBO = & \int_{z} log \{ \begin{array}{l} \frac{p(z \,,\, x)}{q_{\mathrm{o}}(z \,|\, x)} \} \, q_{\mathrm{o}}(z \,|\, x) \, dz = \int_{z} log \{ \begin{array}{l} \frac{p(z) \, p(x \,|\, z)}{q_{\mathrm{o}}(z \,|\, x)} \} \, q_{\mathrm{o}}(z \,|\, x) \, dz \\ = & \int_{z} log \{ p(x \,|\, z) \} \, q_{\mathrm{o}}(z \,|\, x) \, dz - \int_{z} log \{ \begin{array}{l} \frac{q_{\mathrm{o}}(z \,|\, x)}{p(z)} \} \, q_{\mathrm{o}}(z \,|\, x) \, dz = \\ \hline E_{q_{\mathrm{o}}(z \,|\, x)} \big[log \{ p(x \,|\, z) \} \big] - D_{\mathrm{EL}}(q_{\mathrm{o}}(z \,|\, x) \, \|\, p(z)) \\ \end{array} \end{split}$$

- $\begin{array}{l} \bullet \bullet & \log p\left(x\right) = & E_{z \sim q\left(z|x\right)}\left[\log p(x|z)\right] D_{KL}\left(q\left(z|x\right)||p\left(z\right)\right) + D_{KL}\left(q\left(z|x\right)||p\left(z|x\right)\right) \\ = & ELBO + D_{KL}\left(q\left(z|x\right)||p\left(z|x\right)\right) \end{array}$
 - $L = -E_{z \sim q(z|x)} \left[\log p(x|z) \right] + D_{KL} \left(q\left(z|x
 ight) || p\left(z
 ight)
 ight)$

Cooperative and Non-cooperative Autonets: from Dimensionality Reduction to Classification

Imam Mustafa Kamal & Hyerim Bae

Super-encoder

Super-encoder consists of encoder (p), separator (s), decoder (q) networks. The term super-encoder comes from a supervised encoder and superior dimensionality reduction.

- p maps from x to latent-code z z = p(x)
- s asses the z separability based on label y $\hat{y} = s(p(x))$
- q reconstructs latent-code z to original data x $\hat{x} = q(p(x|y))$

Cooperative Super-encoder

Reconstruction loss

$$\mathcal{L}_{enc}(\phi, \psi) = \mathbb{E}_{x,y}[\|y - s_{\psi}(q_{\phi}(x))\|_1]$$

Separability loss

$$\mathcal{L}_{dec}(\phi, \psi, \theta) = \mathbb{E}_{x,y}[\|x - p_{\theta}(q_{\phi}(x|y))\|_1] \begin{bmatrix} \vdots & \vdots & \vdots & \vdots \\ y_{l}|y_{2}|y_{3}| \dots |y_{M}| & y \end{bmatrix}$$

Decoder parameter

 ψ Separator parameter

 ϕ Encoder parameter

Total / cooperative loss

$$\mathcal{L}(\phi, \psi, \theta) = \arg\min_{\phi, \psi, \theta} \alpha \mathcal{L}_{enc}(\phi, \psi) + \beta \mathcal{L}_{dec}(\phi, \psi, \theta)$$

Non-cooperative Super-encoder

$$\min_{p,q,s} \max_{D} V(\{p,q,s\},D) = \mathbb{E}_{x,y}[\log D(y)] + \mathbb{E}_{x,y}[\log(1 - D(s(q(x))))] + \mathbb{E}_{x,y}[p(q(x|y))]$$

- p and s try to minimize the discrepancy between real and fake label
- While D wants to maximize the different between real and fake label

Prof. Hyerim Bae (hrbae@pusa

Super-encoder: result

Table 1. Performance of latent-code separability by encoder and reconstruction error by the decoder

		Performance evaluation						
Model	Encoder: latent-code separability (accuracy)				Decoder: reconstruction error			
	MNIST	Fashion-M	SVHN	CIFAR-10	MNIST	Fashion-M	SVHN	CIFAR-10
SE (co)	0.9893	0.9257	0.8813	0.7883	0.0123	0.0129	0.0336	0.0162
$SE^*(co)$	0.9786	0.8735	0.7569	0.5553	0.0198	0.0183	0.0405	0.0163
SE (nc)	0.9898	0.9161	0.8489	0.8015	0.0132	0.0129	0.0356	0.0163
$SE^*(nc)$	0.9742	0.8616	0.7435	0.5551	0.0262	0.0220	0.0413	0.0164
\mathbf{AE}	0.9262	0.8493	0.4632	0.3933	0.0243	0.0586	0.0208	0.0148
DAE	0.9684	0.8411	0.3892	0.3093	0.0150	0.0610	0.0404	0.0155
VAE	0.9657	0.8267	0.2868	0.3011	0.0130	0.0145	0.0297	0.0161
DVAE	0.9475	0.7866	0.3064	0.2993	0.0172	0.0204	0.0500	0.0163
β -VAE	0.9493	0.7899	0.2256	0.2895	0.0158	0.0173	0.0386	0.0164
AAE	0.9630	0.8388	0.3877	0.3181	0.0644	0.0576	0.0903	0.0161
DAAE	0.9528	0.2740	0.2156	0.2976	0.0230	0.6060	0.0144	0.0153
iDAAE	0.9588	0.2737	0.2180	0.2991	0.0928	0.6035	0.0141	0.0156

 $^{^*}$ Semi-supervised training with only 20% of label

- SE = Super-encoder
- SE* = Super-encoder with semi-supervised learning
- (co) = SE with Cooperation
- (nc) = SE with Non-cooperation

Latent-code Separability (1)

Compare with existing autoencoder models

(e) AE (f) DAE (g) VAE (h) DVAE

(i) \(\beta\)-VAE (j) AAE (k) DAAE (l) iDAAE

(c). SVHN

Latent-code Separability (2)

Compare with existing supervised and non-supervised dimensionality-reduction model

(a). MNIST

(b). Fashion-MNIST

(c). SVHN

(d). CIFAR-10

Image Reconstruction (Generation)

Compare with existing autoencoder models

(a) MNIST

(c) SVHN

(d) CIFAR-10

Cooperative Auto-classifier

• Auto-classifier comprises classifier (*C*) and generator (*G*) networks The term auto-classifier stands for an automatic classifier, where the classifier is devised to automatically deal with or exploit the dimensionality reduction.

- **C** estimates label (y) from input x,
- \boldsymbol{G} must reconstruct label \boldsymbol{y} to original data \boldsymbol{x} ,
- Implicitly, label *y* also represents the latent representation of original data *x*.
- So, *C* is two-fold model: both as a classifier and dimensionality-reduction model.

• Strict cooperation (AC (co) v1) :

$$\mathcal{L}(\phi, \theta) = \arg\min_{\phi, \theta} \mathcal{L}_C(\phi) + \mathcal{L}_G(\phi, \theta) + |\mathcal{L}_C(\phi) - \mathcal{L}_G(\phi, \theta)|$$

• Adjusted cooperation (AC (co) v2):

$$\mathcal{L}(\phi, \theta) = \arg\min_{\phi, \theta} \lambda(\mathcal{L}_C(\phi)) + \mathcal{L}_G(\phi, \theta)$$

Non-cooperative Auto-classifier

• Two types of games:

$$\min_{C} \max_{G^{+}} V(C, G^{+}) = \mathbb{E}_{x,y}[\log G^{+}(y)] + \mathbb{E}_{x,y}[\log(1 - G^{+}(C(x)))]$$

- Discriminative Generator: distinguish the real and fake image
- The real latent must generate a real image
- The fake latent must generate a fake image

Classifier vs. Discriminator (AC (nc) v2)

 $\min_{C,G} \max_{D} V(\{C,G\},D) = \mathbb{E}_{x,y}[\log D(y)] + \mathbb{E}_{x,y}[\log(1 - D(C(x)))] + \mathbb{E}_{x,y}[G(C(x))]$

• Discriminator: distinguish the real and fake latent-code

Auto-classifier: Result (1)

Table 2. Classification performance comparison of auto-classifier and some outstanding classifier models

• /	٩C	=	a	ΠŤ	n	-C	Ia	SS	ıtı	ıe	r

- (co) = cooperative learning
- (nc) = non-cooperative learning
- AC(co) v1 = strict losss
- AC (co) v2 = adjusted loss
- AC (nc) v1 = via generator
- AC (nc) v2 = via discriminator

Model	Classification accuracy (MSE)					
	MNIST	Chest X-Ray	Fashion-M	CIFAR-10		
AC (co) v1, MSE	0.9962	0.8654	0.9408	0.8201		
AC (co) v1, MAE	0.9944	0.8445	0.9218	0.8014		
AC (co) v2, MSE	0.9959	0.8590	0.9392	0.8192		
AC (co) v2, MAE	0.9939	0.8654	0.9235	0.8021		
AC (nc) v1, MSE	0.9958	0.8718	0.9378	0.8208		
AC (nc) v1, MAE	0.9955	0.8670	0.9181	0.8091		
AC (nc) v2, MSE	0.9958	0.8718	0.9390	0.8238		
AC (nc) v2, MAE	0.9933	0.9933	0.9241	0.8066		
Independent CNN	0.9951	0.8429	0.9360	0.8017		
Maxout Networks (Goodfellow et al. [109])	0.9400	N/A	N/A	0.8600		
VAE (M1 + M2) (Makhzani et al. [40])	0.9904	N/A	N/A	N/A		
VAT (Miyato et al. [110])	0.9936	N/A	N/A	N/A		
CatGAN (Springenberg[111])	0.9909	N/A	N/A	0.8042		
Task-Oriented GAN [90]	0.9312	N/A	N/A	N/A		
Ladder Networks (Rasmus et al. [112])	0.9943	N/A	N/A	0.7960		
SRC (Xie et al. [113])	0.8595	N/A	N/A	N/A		
CRC (Xie et al. [113])	0.8325	N/A	N/A	N/A		
KENRR (Linear) (Xie et al. [113])	0.8770	N/A	N/A	N/A		
KENRR (POLY) (Xie et al. [113])	0.8795	N/A	N/A	N/A		
KENRR (RBF) (Xie et al. [113])	0.8795	N/A	N/A	N/A		
KENRR (Hellinger) (Xie et al. [113])	0.8845	N/A	N/A	N/A		

Prof. Hyerim Bae (hrbae@pusa

Auto-classifier: Result (2)

Table 3. Performance measures of classification comparison among independent classifier, cooperative and non-cooperative classifier

Dataset	F1 score						
Dataset	Independent CNN	AC (co) v1	AC (co) v2	AC (nc) v1	AC (nc) v2		
MNIST	0.9950	0.9962	0.9959	0.9957	0.9957		
Chest X-Ray	0.8233	0.8506	0.8449	0.8615	0.8587		
Fashion-M	0.9360	0.9409	0.9391	0.9376	0.9389		
CIFAR-10	0.8012	0.8186	0.8185	0.8215	0.8222		
Dataset	Precision						
Dataset	Independent CNN	AC (co) v1	AC (co) v2	AC (nc) v1	AC (nc) v2		
MNIST	0.9950	0.9962	0.9958	0.9957	0.9957		
Chest X-Ray	0.8102	0.8393	0.8359	0.8573	0.8487		
Fashion-M	0.9360	0.9408	0.9392	0.9378	0.9390		
CIFAR-10	0.8017	0.8201	0.8192	0.8208	0.8238		
Dataset			Recall				
Dataset	Independent CNN	AC (co) v1	AC (co) v2	AC (nc) v1	AC (nc) v2		
MNIST	0.9951	0.9962	0.9960	0.9958	0.9958		
Chest X-Ray	0.8520	0.8712	0.8596	0.8668	0.8753		
Fashion-M	0.9362	0.9412	0.9392	0.9378	0.9391		
CIFAR-10	0.8100	0.8207	0.8208	0.8269	0.8222		

Cooperative and non-cooperative networks are more robust than standalone CNN (classifier)

Reference

- https://ratsgo.github.io/deep%20learning/2017/09/24/loss/
- https://www.analyticsvidhya.com/blog/2019/08/detailed-guide-7-loss-functions-machine-learning-python-code/