Analyse à Plusieurs Variables

JAD DABAGHI

Enseignant-Chercheur en Mathématiques iad.dabaghi@devinci.fr

Table des matières

1 Intégrales sur des courbes et surfaces paramétrées

Equations aux dérivées partielles

Intégrales sur des courbes paramétrées

Intégrales sur des courbes paramétrées

Motivation : Nous allons définir et étudier deux types d'intégrales

- les intégrales sur des courbes paramétrées
- les intégrales sur des surfaces paramétrées

Intégrales sur des courbes paramétrées

Motivation: Nous allons définir et étudier deux types d'intégrales

- les intégrales sur des courbes paramétrées
- les intégrales sur des surfaces paramétrées

Plan de travail:

- définir la notion de courbe paramétrée.
- *Intégrale curviligne* d'une 1-forme différentielle le long d'une courbe paramétrée, et la *circulation* d'un champ de vecteurs le long d'une courbe paramétrée.

Courbe paramétrée

Courbe paramétrée

Definition

Une courbe paramétrée de classe \mathcal{C}^1 est un couple (I, γ) où I est un intervalle de \mathbb{R} et $\gamma: I \to \mathbb{R}^n$ une application de classe \mathcal{C}^1 . L'ensemble $\gamma(I) \subset \mathbb{R}^n$ est appelé le support de γ .

Courbe paramétrée

Definition

Une courbe paramétrée de classe \mathcal{C}^1 est un couple (I, γ) où I est un intervalle de \mathbb{R} et $\gamma: I \to \mathbb{R}^n$ une application de classe \mathcal{C}^1 . L'ensemble $\gamma(I) \subset \mathbb{R}^n$ est appelé le support de γ .

Example

Soit $\gamma:[0,2\pi]\to\mathbb{R}^2$ définie par

$$\gamma(t) = (\cos(t), \sin(t))$$

Example

Soit $\gamma: \mathbb{R} \to \mathbb{R}^2$ définie par

$$\gamma(t) = \left(\sin^3(t), \cos(t) - \cos^4(t)\right)$$

Example

Soit $\gamma: \mathbb{R} \to \mathbb{R}^2$ définie par

$$\gamma(t) = \left(\sin^3(t), \cos(t) - \cos^4(t)\right)$$

Interprétation cinématique : L'étude d'un arc paramétré correspond à l'étude du mouvement d'un point mobile M(t) dont la position à l'instant t est le point f(t)

- le support de l'arc paramétré est appelé trajectoire du mouvement
- Les vecteurs f'(t) et f''(t) sont appelés respectivement vitesse et accélération du point M(t) à l'instant t.

Definition

Soit $\gamma : [a,b] \to \mathbb{R}^n$ une courbe paramétrée.

- **1** On dit que γ est *fermée* si $\gamma(a) = \gamma(b)$.
- 2 On dit que γ est *simple* si $\gamma|_{a,b}$ est injective.
- 3 On dit que γ est *régulière* si $\gamma'(t) \neq 0$ pour tout $t \in [a,b]$.

Definition

On appelle reparamétrage d'une courbe paramétrée γ une courbe paramétrée $\tilde{\gamma}: [c,d] \to \mathbb{R}$ telle qu'il existe $\varphi: [c,d] \to [a,b]$, \mathcal{C}^1 -difféomorphisme de [c,d] sur [a,b], telle que

$$\widetilde{\gamma} = \gamma \circ \varphi$$

Intégrale curviligne d'une 1-forme différentielle

Intégrale curviligne d'une 1-forme différentielle

Soit $n \in \mathbb{N}^*$. Soit U un ouvert de \mathbb{R}^n . Soit ω une 1-forme différentielle sur $U \subset \mathbb{R}^n$,

$$\omega = a_1 dx_1 + \cdots + a_n dx_n$$

Soit $\gamma: [a,b] \to \mathbb{R}^n$ une courbe paramétrée avec $\gamma([a,b]) \subset U$.

Intégrale curviligne d'une 1-forme différentielle

Soit $n \in \mathbb{N}^*$. Soit U un ouvert de \mathbb{R}^n . Soit ω une 1-forme différentielle sur $U \subset \mathbb{R}^n$,

$$\omega = a_1 dx_1 + \cdots + a_n dx_n$$

Soit $\gamma:[a,b]\to\mathbb{R}^n$ une courbe paramétrée avec $\gamma([a,b])\subset U$.

Definition

L'intégrale curviligne de ω sur la courbe γ est

$$\int_{\gamma} \omega = \int_{a}^{b} \omega(\gamma(t)) dt = \int_{a}^{b} \sum_{j=1}^{n} a_{j}(\gamma(t)) \gamma_{j}'(t) dt = \int_{a}^{b} (a_{1}(\gamma(t)) \gamma_{1}'(t) + \cdots + a_{n}(\gamma(t)) \gamma_{n}'(t)) dt$$

Ici, $\omega(\gamma(t))$ est obtenu en remplaçant (x_1,\ldots,x_n) par $(\gamma_1(t),\ldots,\gamma_n(t))$ dans l'expression de ω .

Theorem (Invariance par changement de paramètre croissant/décroissant)

Soit ω une 1-forme différentielle sur $U \subset \mathbb{R}^n$. Soit $\gamma : [a,b] \to \mathbb{R}^n$ une courbe paramétrée et $\widetilde{\gamma}$ un reparamétrage de γ , tel que $\widetilde{\gamma} = \gamma \circ \varphi$ où φ est un \mathcal{C}^1 -difféomorphisme.

- 1) Si φ est strictement croissante alors $\int_{\widetilde{\gamma}} \omega = \int_{\gamma} \omega$.
- 2) Si φ est strictement décroissante alors $\int_{\widetilde{\gamma}}\omega=-\int_{\gamma}\omega$.

Theorem (Invariance par changement de paramètre croissant/décroissant)

Soit ω une 1-forme différentielle sur $U \subset \mathbb{R}^n$. Soit $\gamma : [a,b] \to \mathbb{R}^n$ une courbe paramétrée et $\widetilde{\gamma}$ un reparamétrage de γ , tel que $\widetilde{\gamma} = \gamma \circ \varphi$ où φ est un \mathcal{C}^1 -difféomorphisme.

- ① Si φ est strictement croissante alors $\int_{\widetilde{\gamma}} \omega = \int_{\gamma} \omega$.
- 2) Si φ est strictement décroissante alors $\int_{\widetilde{\gamma}}\omega=-\int_{\gamma}\omega$.

Preuve:

Theorem (Invariance par changement de paramètre croissant/décroissant)

Soit ω une 1-forme différentielle sur $U \subset \mathbb{R}^n$. Soit $\gamma : [a,b] \to \mathbb{R}^n$ une courbe paramétrée et $\widetilde{\gamma}$ un reparamétrage de γ , tel que $\widetilde{\gamma} = \gamma \circ \varphi$ où φ est un \mathcal{C}^1 -difféomorphisme.

- ① Si φ est strictement croissante alors $\int_{\widetilde{\gamma}}\omega=\int_{\gamma}\omega$.
- 2) Si φ est strictement décroissante alors $\int_{\widetilde{\gamma}}\omega=-\int_{\gamma}\omega$.

Preuve:

① On a $\widetilde{\gamma} = \gamma \circ \varphi$ où $\varphi : [c, d] \rightarrow [a, b]$.

$$\int_{\widetilde{\gamma}} \omega = \int_{c}^{d} \sum_{j=1}^{n} \omega_{j}(\widetilde{\gamma}(t)) \widetilde{\gamma}'_{j}(t) dt = \int_{c}^{d} \sum_{j=1}^{n} \omega_{j}(\gamma \circ \varphi(t)) \gamma'_{j}(\varphi(t)) \varphi'(t) dt$$

Changement de variable : $u = \varphi(t)$.

$$\int_{\widetilde{\gamma}} \omega = \int_{a}^{b} \sum_{j=1}^{n} \omega_{j}(\gamma(u)) \gamma_{j}'(u) du = \int_{\gamma} \omega$$

Soient ω_1, ω_2 des 1-formes différentielles sur $U \subset \mathbb{R}^n$, et $(\lambda, \mu) \in \mathbb{R}^2$. Soit γ une courbe paramétrée dans \mathbb{R}^n à support dans U i.e. $\exists (c, d) \in \mathbb{R}^2$ tq $\gamma([c, d]) \subset U$. On a

$$\int_{\gamma} \lambda \omega_1 + \mu \omega_2 = \lambda \int_{\gamma} \omega_1 + \mu \int_{\gamma} \omega_2$$

Soient ω_1, ω_2 des 1-formes différentielles sur $U \subset \mathbb{R}^n$, et $(\lambda, \mu) \in \mathbb{R}^2$. Soit γ une courbe paramétrée dans \mathbb{R}^n à support dans U i.e. $\exists (c, d) \in \mathbb{R}^2$ tq $\gamma([c, d]) \subset U$. On a

$$\int_{\gamma} \lambda \omega_1 + \mu \omega_2 = \lambda \int_{\gamma} \omega_1 + \mu \int_{\gamma} \omega_2$$

Preuve:

Soient ω_1, ω_2 des 1-formes différentielles sur $U \subset \mathbb{R}^n$, et $(\lambda, \mu) \in \mathbb{R}^2$. Soit γ une courbe paramétrée dans \mathbb{R}^n à support dans U i.e. $\exists (c, d) \in \mathbb{R}^2$ tq $\gamma([c, d]) \subset U$. On a

$$\int_{\gamma} \lambda \omega_1 + \mu \omega_2 = \lambda \int_{\gamma} \omega_1 + \mu \int_{\gamma} \omega_2$$

Preuve : ω_1 et ω_2 sont des formes différentielles donc

$$\omega_1 = a_1 dx_1 + \dots + a_n dx_n$$

$$\omega_2 = b_1 dx_1 + \dots + b_n dx_n \Rightarrow \lambda \omega_1 + \mu \omega_2 = (\lambda a_1 + \mu b_1) dx_1 + \dots + (\lambda a_n + \mu b_n) dx_n$$

Soient ω_1, ω_2 des 1-formes différentielles sur $U \subset \mathbb{R}^n$, et $(\lambda, \mu) \in \mathbb{R}^2$. Soit γ une courbe paramétrée dans \mathbb{R}^n à support dans U i.e. $\exists (c, d) \in \mathbb{R}^2$ tq $\gamma([c, d]) \subset U$. On a

$$\int_{\gamma} \lambda \omega_1 + \mu \omega_2 = \lambda \int_{\gamma} \omega_1 + \mu \int_{\gamma} \omega_2$$

Preuve : ω_1 et ω_2 sont des formes différentielles donc

$$\omega_1 = a_1 dx_1 + \dots + a_n dx_n$$

$$\omega_2 = b_1 dx_1 + \dots + b_n dx_n$$

$$\Rightarrow \lambda \omega_1 + \mu \omega_2 = (\lambda a_1 + \mu b_1) dx_1 + \dots + (\lambda a_n + \mu b_n) dx_n$$

$$\int_{\gamma} \lambda \omega_{1} + \mu \omega_{2} = \int_{c}^{d} (\lambda \omega_{1} + \mu \omega_{2}) (\gamma(t)) dt = \int_{c}^{d} \sum_{j=1}^{n} (\lambda a_{j} + \mu b_{j}) (\gamma(t)) \gamma'_{j}(t) dt$$

$$= \int_{c}^{d} \sum_{j=1}^{n} \lambda a_{j}(\gamma(t)) \gamma'_{j}(t) (dt) + \int_{c}^{d} \sum_{j=1}^{n} \mu b_{j}(\gamma(t)) \gamma'_{j}(t) dt = \lambda \int_{\gamma} \omega_{1} + \mu \int_{\gamma} \omega_{2}$$

Propriété (relation de Chasles)

Soit ω , une 1-forme différentielle sur $U \subset \mathbb{R}^n$. Soit γ une courbe paramétrée dans \mathbb{R}^n à support dans U i.e. $\exists (a,b) \in \mathbb{R}^2$ tq $\gamma([a,b]) \subset U$. Soit $c \in]a,b[$ et soient γ_1 et γ_2 les restrictions respectives de γ à [a,c] et [c,b]. Alors,

$$\int_{\gamma} \omega = \int_{\gamma_1} \omega + \int_{\gamma_2} \omega$$

Propriété (relation de Chasles)

Soit ω , une 1-forme différentielle sur $U \subset \mathbb{R}^n$. Soit γ une courbe paramétrée dans \mathbb{R}^n à support dans U i.e. $\exists (a,b) \in \mathbb{R}^2$ tq $\gamma([a,b]) \subset U$. Soit $c \in]a,b[$ et soient γ_1 et γ_2 les restrictions respectives de γ à [a,c] et [c,b]. Alors,

$$\int_{\gamma} \omega = \int_{\gamma_1} \omega + \int_{\gamma_2} \omega$$

Preuve:

Propriété (relation de Chasles)

Soit ω , une 1-forme différentielle sur $U \subset \mathbb{R}^n$. Soit γ une courbe paramétrée dans \mathbb{R}^n à support dans U i.e. $\exists (a,b) \in \mathbb{R}^2$ tq $\gamma([a,b]) \subset U$. Soit $c \in]a,b[$ et soient γ_1 et γ_2 les restrictions respectives de γ à [a,c] et [c,b]. Alors,

$$\int_{\gamma} \omega = \int_{\gamma_1} \omega + \int_{\gamma_2} \omega$$

Preuve: On a

$$\int_{\gamma} \omega(t)dt = \int_{a}^{b} \omega(\gamma(t))dt = \int_{a}^{b} \sum_{j=1}^{n} a_{j}(\gamma(t))\gamma_{j}'(t)dt = \int_{a}^{c} \sum_{j=1}^{n} a_{j}(\gamma(t))\gamma_{j}'(t)dt$$
$$+ \int_{c}^{b} \sum_{j=1}^{n} a_{j}(\gamma(t))\gamma_{j}'(t)dt = \int_{a}^{c} \sum_{j=1}^{n} a_{j}(\gamma_{1}(t))\gamma_{1,j}'(t)dt + \int_{c}^{b} \sum_{j=1}^{n} a_{j}(\gamma(t))\gamma_{2,j}'(t)dt$$

Rappel : On rappelle le théorème fondamental de l'analyse, qui fait le lien entre intégration et dérivation.

Rappel : On rappelle le théorème fondamental de l'analyse, qui fait le lien entre intégration et dérivation.

Theorem

Soit f une fonction de classe C^1 sur le segment [a,b] de \mathbb{R} . Alors on a

$$\int_{a}^{b} f'(t)dt = f(b) - f(a).$$

Rappel : On rappelle le théorème fondamental de l'analyse, qui fait le lien entre intégration et dérivation.

Theorem

Soit f une fonction de classe C^1 sur le segment [a,b] de \mathbb{R} . Alors on a

$$\int_{a}^{b} f'(t)dt = f(b) - f(a).$$

Conclusion : l'intégrale de la dérivée de f sur un segment s'exprime simplement en fonction des valeurs de f sur les bords du segment.

Rappel : On rappelle le théorème fondamental de l'analyse, qui fait le lien entre intégration et dérivation.

Theorem

Soit f une fonction de classe C^1 sur le segment [a,b] de \mathbb{R} . Alors on a

$$\int_{a}^{b} f'(t)dt = f(b) - f(a).$$

Conclusion : l'intégrale de la dérivée de f sur un segment s'exprime simplement en fonction des valeurs de f sur les bords du segment.

Comment généraliser ce résultat à une intégrale curviligne?

Soit ω une 1-forme différentielle exacte sur $U \subset \mathbb{R}^n$ avec $\omega = df$. Soit γ une courbe paramétrée dans \mathbb{R}^n à support dans U ($\exists (a,b) \in \mathbb{R}^2$ tel que $\gamma([a,b]) \subset U$). Alors,

$$\int_{\gamma} \omega = f(\gamma(b)) - f(\gamma(a)) \tag{*}$$

Soit ω une 1-forme différentielle exacte sur $U \subset \mathbb{R}^n$ avec $\omega = df$. Soit γ une courbe paramétrée dans \mathbb{R}^n à support dans U ($\exists (a,b) \in \mathbb{R}^2$ tel que $\gamma([a,b]) \subset U$). Alors,

$$\int_{\gamma} \omega = f(\gamma(b)) - f(\gamma(a)) \tag{*}$$

Preuve:

Soit ω une 1-forme différentielle exacte sur $U \subset \mathbb{R}^n$ avec $\omega = df$. Soit γ une courbe paramétrée dans \mathbb{R}^n à support dans $U(\exists (a,b) \in \mathbb{R}^2$ tel que $\gamma([a,b]) \subset U$). Alors,

$$\int_{\gamma} \omega = f(\gamma(b)) - f(\gamma(a)) \tag{*}$$

Preuve: On a

$$\int_{\gamma} \omega = \int_{a}^{b} \omega(\gamma(t))dt = \int_{a}^{b} \sum_{j=1}^{n} a_{j}(\gamma(t))\gamma_{j}'(t) = \int_{a}^{b} \sum_{j=1}^{n} \frac{\partial f}{\partial x_{j}}(\gamma(t))\gamma_{j}'(t)dt$$
$$= \int_{a}^{b} \nabla f(\gamma(t)) \cdot \vec{\gamma'}(t)dt = \int_{a}^{b} (f \circ \gamma)'(t)dt = (f \circ \gamma)(b) - (f \circ \gamma)(a).$$

Soit ω une 1-forme différentielle exacte sur $U \subset \mathbb{R}^n$ avec $\omega = df$. Soit γ une courbe paramétrée dans \mathbb{R}^n à support dans $U(\exists (a,b) \in \mathbb{R}^2$ tel que $\gamma([a,b]) \subset U$). Alors,

$$\int_{\gamma} \omega = f(\gamma(b)) - f(\gamma(a)) \tag{*}$$

Preuve: On a

$$\int_{\gamma} \omega = \int_{a}^{b} \omega(\gamma(t))dt = \int_{a}^{b} \sum_{j=1}^{n} a_{j}(\gamma(t))\gamma_{j}'(t) = \int_{a}^{b} \sum_{j=1}^{n} \frac{\partial f}{\partial x_{j}}(\gamma(t))\gamma_{j}'(t)dt$$
$$= \int_{a}^{b} \nabla f(\gamma(t)) \cdot \vec{\gamma'}(t)dt = \int_{a}^{b} (f \circ \gamma)'(t)dt = (f \circ \gamma)(b) - (f \circ \gamma)(a).$$

Remarque : L'intégrale dépend des points de départ et d'arrivée mais pas du chemin γ parcouru entre les deux. Si la courbe γ est fermée, alors $\int_{\gamma} \omega = 0$.

Calculer l'intégrale curviligne $\int_{\Gamma} -\frac{y}{x^2+y^2} \, dx + \frac{x}{x^2+y^2} \, dy$ où Γ est l'arc de cercle de rayon a>0, d'orgine $(\frac{\sqrt{2}}{2}a,\frac{\sqrt{2}}{2})a$ et d'extrémité $(0,\frac{\pi}{2}a)$ et parcouru dans le sens trigonométrique.

Calculer l'intégrale curviligne $\int_{\Gamma} -\frac{y}{x^2+y^2} \, dx + \frac{x}{x^2+y^2} \, dy$ où Γ est l'arc de cercle de rayon a>0, d'orgine $(\frac{\sqrt{2}}{2}a,\frac{\sqrt{2}}{2})a$ et d'extrémité $(0,\frac{\pi}{2}a)$ et parcouru dans le sens trigonométrique.

Corrigé :

Calculer l'intégrale curviligne $\int_{\Gamma} -\frac{y}{x^2+y^2} dx + \frac{x}{x^2+y^2} dy$ où Γ est l'arc de cercle de rayon a>0, d'orgine $(\frac{\sqrt{2}}{2}a,\frac{\sqrt{2}}{2})a$ et d'extrémité $(0,\frac{\pi}{2}a)$ et parcouru dans le sens trigonométrique.

Corrigé:

① Soit $\omega: \mathbb{R}^2 \to \mathcal{L}(\mathbb{R}^2, \mathbb{R}^2)$ définie par

$$\omega(x,y) = P(x,y)dx + Q(x,y)dy$$
 où $P(x,y) = -\frac{y}{x^2 + y^2}$ et $Q(x,y) = \frac{x}{x^2 + y^2}$.

On a

$$\frac{\partial P}{\partial y}(x,y) = \frac{y^2 - x^2}{(x^2 + y^2)^2}$$
 et $\frac{\partial Q}{\partial x}(x,y) = \frac{y^2 - x^2}{(x^2 + y^2)^2}$.

Alors, ω est fermée. De plus Γ est étoilé. Alors ω est exacte. On peut utiliser la formule (*).

Calcul d'une primitive :

 ω est exacte : il existe f tq $\omega = df$. Or $df = \frac{\partial f}{\partial x} dx + \frac{\partial f}{\partial y} dy$. On obtient le système

$$\frac{\partial f}{\partial x}(x,y) = -\frac{y}{x^2+y^2}$$
 et $\frac{\partial f}{\partial y}(x,y) = \frac{x}{x^2+y^2}$.

Alors,

$$f(x,y) = -\frac{1}{y} \int \frac{1}{1 + \left(\frac{x}{y}\right)^2} dx = -\int \frac{1}{1 + u^2} du = -\arctan\left(\frac{x}{y}\right) + K(y)$$

Or

$$\frac{\partial f}{\partial y}(x,y) = \frac{x}{y^2 + x^2} + K'(y) \iff K'(y) = 0 \iff K(y) = c$$

Finalement

$$f(x,y) = -\arctan(\frac{x}{v}) + c \quad c \in \mathbb{R}.$$

Paramétrage de la courbe paramétrée Г

$$\Gamma: \left[\frac{\pi}{4}, \frac{\pi}{2}\right] \longrightarrow \mathbb{R}^2$$

$$t \mapsto (a\cos(t), a\sin(t))$$

Calcul de l'intégrale curviligne

$$\int_{\Gamma} \omega = f(\Gamma(\frac{\pi}{2})) - f(\Gamma(\frac{\pi}{4})) = f(0, \alpha) - f(\alpha \frac{\sqrt{2}}{2}, \alpha \frac{\sqrt{2}}{2})$$
$$= -\frac{\pi}{4}$$

Calculer $\int_{\Gamma} x^2 dx - xy dy$ où Γ est l'arc de parabole $x = y^2$, $0 \le x \le 1$, orienté dans le sens des x croissants.

16/37

Calculer $\int_{\Gamma} x^2 dx - xy dy$ où Γ est l'arc de parabole $x = y^2$, $0 \le x \le 1$, orienté dans le sens des x croissants.

1 Etude de la forme différentielle $\omega(x,y) = x^2 dx - xy dy$.

On pose

$$P(x,y) = x^2$$
 $Q(x,y) = -xy \Rightarrow \frac{\partial P}{\partial y}(x,y) = 0 \neq \frac{\partial Q}{\partial x}(x,y) = -y.$

La forme ω n'est pas fermée et donc n'est pas exacte. On ne peut appliquer la formule (\star) .

16/37

2 Paramétrisation de l'arc de la parabole

Posons y = t (on définit y comme étant le paramètre), on a

$$\begin{cases}
0 \leq x \leq 1 \\
x = y^2 \\
y = t
\end{cases}
\Rightarrow
\begin{cases}
0 \leq t \leq 1 \\
x = t^2 \\
y = t
\end{cases}$$

On pose alors:

$$\gamma: [0,1] \rightarrow \mathbb{R}^2$$
 $t \mapsto (t^2,t) := (x(t),y(t))$

3 Calcul de l'intégrale curviligne :

$$\int_{\Gamma} x^{2} dx - xy dy = \int_{0}^{1} x^{2}(t)x'(t) - x(t)y(t)y'(t) dt$$

$$= \int_{0}^{1} \left(t^{4} \times 2t - t^{2}t \right) dt$$

$$= \int_{0}^{1} \left(2t^{5} - t^{3} \right) dt$$

$$= \frac{1}{12}.$$

Un peu de mécanique : Le travail d'une force est l'énergie fournie par cette force lorsque son point d'application se déplace. Pour un déplacement infinitésimal \vec{du}

$$\delta W = \vec{F} \cdot d\vec{u}$$

Un peu de mécanique : Le travail d'une force est l'énergie fournie par cette force lorsque son point d'application se déplace. Pour un déplacement infinitésimal \vec{du}

$$\delta W = \vec{F} \cdot d\vec{u}$$

Le travail d'une force pour un déplacement fini est donc égal à la circulation de cette force le long du trajet Γ de son point d'application

$$W = \int_{\Gamma} \vec{F} \cdot d\vec{u}$$

Un peu de mécanique : Le travail d'une force est l'énergie fournie par cette force lorsque son point d'application se déplace. Pour un déplacement infinitésimal \vec{du}

$$\delta W = \vec{F} \cdot \vec{du}$$

Le travail d'une force pour un déplacement fini est donc égal à la circulation de cette force le long du trajet Γ de son point d'application

$$W = \int_{\Gamma} \vec{F} \cdot d\vec{u}$$

Definition

Soit U un ouvert de \mathbb{R}^n et $\Gamma = ([a,b],\gamma)$ une courbe paramétrée. Soit \vec{V} un champ de vecteurs continu sur U. L'intégrale curviligne ou circulation de \vec{V} sur Γ , est définie par :

$$\int_{\Gamma} \vec{V} = \int_{a}^{b} \vec{V}(\gamma(t)) \cdot \gamma'(t) dt$$

Remarque:

Remarque:

• Si $\vec{V}(x,y) = (P(x,y), Q(x,y))$ et $\gamma(t) = (x(t), y(t)), t \in [a,b]$, alors

$$\int_{\Gamma} \vec{V} = \int_{a}^{b} P(x(t), y(t)) x'(t) + Q(x(t), y(t)) y'(t) dt.$$

Il s'agit alors de l'intégrale curviligne de la forme différentielle $\omega = P \, dx + Q \, dy$, que l'on note aussi $\int_{\Gamma} P \, dx + Q \, dy$.

Remarque:

• Si $\vec{V}(x,y) = (P(x,y), Q(x,y))$ et $\gamma(t) = (x(t), y(t)), t \in [a,b]$, alors

$$\int_{\Gamma} \vec{V} = \int_{a}^{b} P(x(t), y(t)) x'(t) + Q(x(t), y(t)) y'(t) dt.$$

Il s'agit alors de l'intégrale curviligne de la forme différentielle $\omega = P \, dx + Q \, dy$, que l'on note aussi $\int_{\Gamma} P \, dx + Q \, dy$.

• Le vecteur $\gamma'(t) = (x'(t), y'(t))$ est le vecteur tangent à la courbe Γ au point $\gamma(t)$. Lorsque $\gamma(t)$ décrit la trajectoire d'un point matériel, le vecteur $\gamma'(t)$ est le vecteur vitesse.

20/37

Soit Γ le cercle de centre (0,0) et de rayon 1 et \vec{V} le champ de vecteur défini par $\vec{V}(x,y) = {-y \choose x}$. Calculer la circulation de \vec{V} sur Γ .

1 paramétrisation de Γ:

 Γ est le cercle de centre (0,0) et de rayon 1. On utilise le paramétrage :

$$\gamma: [0,2\pi] \rightarrow \mathbb{R}^2$$

$$t \mapsto (x,y) = (\cos(t),\sin(t))$$

Calcul de l'intégrale :

$$\int_{\Gamma} \vec{V} = \int_{0}^{2\pi} \vec{V}(\gamma(t)) \cdot \gamma'(t) d\theta = \int_{0}^{2\pi} \begin{pmatrix} -\sin(t) \\ \cos(t) \end{pmatrix} \cdot \begin{pmatrix} -\sin(t) \\ \cos(t) \end{pmatrix} dt$$
$$= \int_{0}^{2\pi} \left(\sin^{2}(t) + \cos^{2}(t) \right) dt = \int_{0}^{2\pi} 1 dt = 2\pi$$

Propriété

Si $\vec{V} = \overrightarrow{\text{grad}} f$ (autrement dit \vec{V} dérive d'un potentiel scalaire) et si Γ est une courbe orientée d'origine A, d'extrémité B incluse dans U, alors :

$$\int_{\Gamma} \vec{V} = f(B) - f(A).$$

Propriété

Si $\vec{V} = \overrightarrow{\text{grad}} f$ (autrement dit \vec{V} dérive d'un potentiel scalaire) et si Γ est une courbe orientée d'origine A, d'extrémité B incluse dans U, alors :

$$\int_{\Gamma} \vec{V} = f(B) - f(A).$$

Remarque : Si Γ est fermée c-a-d si ses deux extrémités sont égales, alors $\int_{\Gamma} \vec{V} = 0$. Autrement dit, *la circulation sur une courbe fermée de tout champ de vecteurs dérivant d'un potentiel est nulle*.

Propriété

Si $\vec{V} = \overrightarrow{\text{grad}} f$ (autrement dit \vec{V} dérive d'un potentiel scalaire) et si Γ est une courbe orientée d'origine A, d'extrémité B incluse dans U, alors :

$$\int_{\Gamma} \vec{V} = f(B) - f(A).$$

Remarque : Si Γ est fermée c-a-d si ses deux extrémités sont égales, alors $\int_{\Gamma} \vec{V} = 0$. Autrement dit, *la circulation sur une courbe fermée de tout champ de vecteurs dérivant d'un potentiel est nulle*.

Démonstration:

$$\int_{\Gamma} \vec{V} = \int_{a}^{b} \vec{V}(\gamma(t)) \cdot \gamma'(t) dt = \int_{a}^{b} \vec{\nabla f}(\gamma(t)) \cdot \gamma'(t) dt = \int_{a}^{b} (f \circ \gamma)'(t) dt = (f \circ \gamma)(b) - (f \circ \gamma)(a)$$

$$= f(B) - f(A).$$

Formule de Green-Riemann

But: Pour ω une forme différentielle et Γ une courbe fermée, établir une relation entre une intégrale curviligne $\int_{\Gamma} \omega$ et une intégrale double $\iint_{D} f(x,y) dx dy$ où D est le domaine intérieur à Γ .

Formule de Green-Riemann

But: Pour ω une forme différentielle et Γ une courbe fermée, établir une relation entre une intégrale curviligne $\int_{\Gamma} \omega$ et une intégrale double $\iint_{D} f(x,y) dx dy$ où D est le domaine intérieur à Γ .

Theorem (Formule de Green-Riemann)

Soit Γ une courbe fermée qui entoure un domaine D (c-a-d $\Gamma = \partial D$). Soient P et Q deux fonctions de classe \mathcal{C}^1 . On a

$$\int_{\Gamma} P(x,y)dx + Q(x,y)dy = \iint_{D} \left(\frac{\partial Q}{\partial x}(x,y) - \frac{\partial P}{\partial y}(x,y) \right) dxdy$$

Application : calcul d'une surface intérieure à une courbe fermée

On prend dans la formule de Green-Riemann Q = 0 et P = -y on obtient

$$\int_{\Gamma} -y dx = -\iint_{D} \frac{\partial P}{\partial y}(x, y) dx dy = \iint_{D} dx dy$$

Or

$$\iint_D dxdy = \iint_D dS = S$$

On obtient donc une formule permettant de calculer la surface intérieure à Γ :

$$S = \int_{\Gamma} -y dx$$

Calculer $\int_{\Gamma} -x^2 y \, dx + xy \, dy$ où Γ est le cercle de centre (0,0) et de rayon R > 0.

Calculer $\int_{\Gamma} -x^2 y \, dx + xy \, dy$ où Γ est le cercle de centre (0,0) et de rayon R > 0.

1 Transformation de l'intégrale curviligne en une intégrale double : Γ est un cercle donc une courbe fermée. Posons $P(x,y) = -x^2y$ et Q(x,y) = xy. P et Q sont de classe C^1 et on a

$$\frac{\partial Q}{\partial x}(x,y) = y$$
 et $\frac{\partial P}{\partial y}(x,y) = -x^2$.

Calculer $\int_{\Gamma} -x^2 y \, dx + xy \, dy$ où Γ est le cercle de centre (0,0) et de rayon R > 0.

① Transformation de l'intégrale curviligne en une intégrale double : Γ est un cercle donc une courbe fermée. Posons $P(x,y) = -x^2y$ et Q(x,y) = xy. P et Q sont de classe \mathcal{C}^1 et on a

$$\frac{\partial Q}{\partial x}(x,y) = y$$
 et $\frac{\partial P}{\partial y}(x,y) = -x^2$.

Formule de Green-Riemann :

$$\int_{\Gamma} -x^2 y \, dx + xy \, dy = \iint_{D} (y + x^2) \, dx dy \quad \text{où } D = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 \le R^2\}.$$

25/37

3 Calcul de l'intégrale double : Utilisation des coordonées polaires

$$\iint_{D} (y + x^{2}) dxdy = \int_{0}^{R} \int_{0}^{2\pi} (r \sin(\theta) + r^{2} \cos^{2}(\theta)) r drd\theta$$

$$= \int_{0}^{R} r \left(\int_{0}^{2\pi} (r \sin(\theta) + r^{2} \cos^{2}(\theta)) d\theta \right) dr$$

$$= \int_{0}^{R} r \left(\int_{0}^{2\pi} r \sin(\theta) + r^{2} \left(\frac{1 + \cos(2\theta)}{2} \right) d\theta \right) dr$$

$$= \int_{0}^{R} r \left[-r \cos(\theta) + \frac{r^{2}}{2} (\theta + \frac{1}{2} \sin(2\theta)) \right]_{0}^{2\pi}$$

$$= \pi \int_{0}^{R} r^{3} dr$$

$$= \frac{\pi}{4} R^{4}.$$

Calculer l'aire de l'ellipse d'équation $\frac{x^2}{a^2} + \frac{y^2}{b^2} \le 1$.

On cherche à calculer $\iint_D dxdy$ où $D = \left\{ (x,y) \in \mathbb{R}^2 \mid \frac{x^2}{a^2} + \frac{y^2}{b^2} \le 1 \right\}$.

1 Identification de la forme différentielle :

$$\iint_D dxdy = \iint_D \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right) dxdy \quad \text{où} \quad \frac{\partial Q}{\partial x} = 0, \frac{\partial P}{\partial y} = -1$$

28/37

1 Identification de la forme différentielle :

$$\iint_D dx dy = \iint_D \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) \ dx dy \quad \text{où} \quad \frac{\partial Q}{\partial x} = 0, \\ \frac{\partial P}{\partial y} = -1$$

Formule de Green-Riemman :

$$\iint_D dxdy = \int_{\Gamma} -y \, dx \quad \text{où } \Gamma = \partial D = \left\{ (x,y) \in \mathbb{R}^2 \mid \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \right\}.$$

1 Identification de la forme différentielle :

$$\iint_{D} dx dy = \iint_{D} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) \ dx dy \quad \text{où} \quad \frac{\partial Q}{\partial x} = 0, \frac{\partial P}{\partial y} = -1$$

Formule de Green-Riemman :

$$\iint_D dxdy = \int_{\Gamma} -y \, dx \quad \text{où } \Gamma = \partial D = \left\{ (x,y) \in \mathbb{R}^2 \mid \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \right\}.$$

6 Paramétrage de la courbe :

$$\gamma: [0, 2\pi] \to \mathbb{R}$$

$$t \mapsto (x(t), y(t)) = (a\cos(t), b\sin(t))$$

Ainsi

$$\int_{\Gamma} \omega \, dx = \int_{0}^{2\pi} -y(t)x'(t) \, dt = \int_{0}^{2\pi} ab \sin^{2}(t) \, dt = ab \int_{0}^{2\pi} \frac{1-\cos(2t)}{2} \, dt = \pi ab$$

Introduction

Les équations aux dérivées partielles ou EDP permettent de résoudre de nombreux phénomènes physiques et naturels.

Introduction

Les équations aux dérivées partielles ou EDP permettent de résoudre de nombreux phénomènes physiques et naturels.

🕦 aéronautique, aérodynamique

- 🕦 aéronautique, aérodynamique
- problématiques environnementales (tsunami, tremblement de terre)

- 🕦 aéronautique, aérodynamique
- 🧿 problématiques environnementales (tsunami, tremblement de terre)
- 8 Biologie et dynamique de populations (modèle de croissance de tumeurs par ex)

- 🕦 aéronautique, aérodynamique
- problématiques environnementales (tsunami, tremblement de terre)
- 3 Biologie et dynamique de populations (modèle de croissance de tumeurs par ex)
- économie et finance (options américaines)

- 🕦 aéronautique, aérodynamique
- problématiques environnementales (tsunami, tremblement de terre)
- 3 Biologie et dynamique de populations (modèle de croissance de tumeurs par ex)
- 4 économie et finance (options américaines)
- traitement des images

• équation de Poisson : permet de décrire des phénomènes d'équilibre

$$-\Delta u = f$$

30/37

• équation de Poisson : permet de décrire des phénomènes d'équilibre

$$-\Delta u = f$$

 équation de la chaleur : permet de décrire le phénomène physique de conduction thermique

$$\partial_t u - \nabla \cdot (\mathbb{K} \nabla u) = f$$
$$u(t=0) = u_0$$

• équation de Poisson : permet de décrire des phénomènes d'équilibre

$$-\Delta u = f$$

 équation de la chaleur : permet de décrire le phénomène physique de conduction thermique

$$\partial_t u - \nabla \cdot (\mathbb{K} \nabla u) = f$$
$$u(t=0) = u_0$$

équation des ondes : qui étudie la propagation d'une onde dans un milieu

$$\partial_t^2 u - \Delta u = f$$
$$u(t = 0) = u_0$$
$$\partial_t u(t = 0) = v_0$$

• **équation de Navier-Stokes :** qui décrit le mouvement d'un fluide visqueux décrit par les variables u(x,t) (vitesse du fluide) et p(x,t) (pression du fluide)

$$\partial_t u - \nu \Delta u + u \cdot \nabla u = -\nabla p$$

$$\nabla \cdot u = 0 \qquad \text{hypothèse d'incompressibilité}$$

$$u(t=0) = u_0$$

• **équation de Navier-Stokes :** qui décrit le mouvement d'un fluide visqueux décrit par les variables u(x,t) (vitesse du fluide) et p(x,t) (pression du fluide)

$$\partial_t u - \nu \Delta u + u \cdot \nabla u = -\nabla p$$

$$\nabla \cdot u = 0 \qquad \text{hypothèse d'incompressibilité}$$

$$u(t=0) = u_0$$

 équation de Schrodinger : équation fondamentale en mécanique quantique qui décrit l'évolution dans le temps d'une particule massive non relativiste

$$ih\partial_t \Psi(r,t) = -\frac{h^2}{2m} \Delta \Psi(r,t) + V(r) \Psi(r,t)$$

En général on ne sait pas résoudre analytiquement les EDP

équation de Navier-Stokes : constitue un problème du prix du millénaire posé par l'institut Clay

- En 1934 Jean-Leray démontre l'existence en dimension 2 d'une solution
- Problème ouvert : démonstration de l'existence de solution de l'équation en dimension 3 dans le cas incompressible

On approxime les solutions

- On conçoit des schémas numériques robustes
- On prouve qu'ils sont consistants, stables, convergents...

Définition d'une EDP

Definition

Une équation aux dérivées partielles (EDP) pour la fonction u est une relation entre u, les variables x_1, \dots, x_d et un nombre fini de dérivées partielles de u de la forme

$$F(x_1, \cdots, x_d, D_1u, \cdots, D_du, D_1D_1u, D_1D_2u, \cdots, D^{\alpha}u, \cdots) = 0$$

Pour résoudre une EDP on ajoute des conditions de bords

- conditions de Dirichlet où u est fixée sur le bord de Ω : $u|_{\partial\Omega}=g$
- conditions de Neumann où la dérivée normale de u est fixé $\frac{du}{dn}|_{\partial\Omega}=g$

Remarque : Les contraintes sont en général imposées par la nature du problème que l'on essaye de modéliser.

Etude de l'équation de la chaleur en 1D

On considère le problème de la diffusion de la chaleur dans une barre homogène de longeur L, de coefficient de conduction $\mathbb K$

$$\frac{\partial T}{\partial t}(x,t) - \mathbb{K} \frac{\partial^2 T}{\partial^2 x}(x,t) = 0 \quad \text{pour } x \in [0,L] \quad \text{et} \quad t \in [0,tF]$$

$$T(x,0) = T_i(x) \quad \text{pour } x \in [0,L]$$

$$T(0,t) = T_0, \quad T(L,t) = T_0 \quad \text{Conditions de bords de type Dirichlet}$$

Résolution analytique : Changement de variables : $u = T - T_0$ et on obtient une EDP avec des conditions de Dirichlet homogènes

$$\frac{\partial u}{\partial t}(x,t) - \mathbb{K}\frac{\partial^2 u}{\partial x^2}(x,t) = 0 \qquad \text{pour } x \in [0,L] \quad \text{et} \quad t \in [0,t_F]$$

$$u(x,0) = C(x) \qquad \text{pour } x \in [0,L]$$

$$u(0,t) = u(L,t) = 0 \qquad \text{Conditions de Dirichlet homogène}$$

Méthode de séparation des variables

On cherche une solution sous la forme à variables séparées :

$$u(x,t)=f(t)g(x)$$

On obtient

$$f'(t)g(x) = \mathbb{K}f(t)g''(x)$$

On divise par f(t)g(x) et on obtient

$$\frac{1}{\mathbb{K}}\frac{f'(t)}{f(t)} = \frac{g''(x)}{g(x)}$$

Le membre de gauche est une fonction de t seulement, tandis que le membre de droite n'est fonction que de x. On obtient deux équations indépendantes :

$$\frac{f'(t)}{f(t)} = \beta \mathbb{K}$$
 et $\frac{g''(x)}{g(x)} = \beta$

On obtient deux équations différentielles ordinaires :

$$f'(t) - \beta \mathbb{K} f(t) = 0$$
$$g'(x) - \beta \mathbb{K} g(x) = 0$$

En intégrant la première équation on trouve :

$$f(t)=c_1e^{\beta\mathbb{K}t}$$

Interprétation physique : Le signe de la constante β donne l'évolution de la température au cours du temps. Si la constante β est positive, la température croit exponentiellement, ce qui n'est physiquement pas acceptable. En revanche, si la constante β est négative, la température décroît exponentiellement, ce qui est à priori la solution à retenir. On pose $\beta=-\omega^2<0$. On résout

$$g'(x) + \omega^2 \mathbb{K} g(x) = 0$$

On trouve

$$u(x,t) = e^{-\mathbb{K}\omega^2 t} \left[A\cos(\omega x) + B\sin(\omega x) \right]$$

Condition aux limites : u(0,t) = 0 en x = 0 donne A = 0. La seconde condition au limite u(L,t) = 0 en x = L permet d'obtenir la solution

$$u(x,t) = \sum_{n=1}^{+\infty} C_n e^{-\mathbb{K}\left(\frac{n\pi}{L}\right)^2 t} \sin\left(\frac{n\pi}{L}x\right)$$

37/37