

Amplificadores com Transistores de Efeito de campo

Prof. Alceu André Badin

Introdução

• FETs fornecem:

- o Excelente ganho de tensão
- o Alta impedância de entrada
- o Baixo consumo de potência
- o Boa resposta de frequência

Modelo de pequenos sinais do FET

- Transcondutância é denominada g_m e dada por:

$$g_{m} = \frac{dI_{D}}{dV_{GS}} = \frac{\Delta I_{D}}{\Delta V_{GS}}$$

Representação gráfica de g_m

Determinação analítica de g_m

$$g_{m} = \frac{d}{dV_{GS}} \left[I_{DSS} \left[1 - \frac{V_{GS}}{V_{P}} \right]^{2} \right) \qquad g_{m} = \frac{2I_{DSS}}{|V_{P}|} \left[1 - \frac{V_{GS}}{V_{P}} \right]$$

Para
$$V_{GS} = 0 \text{ V}$$

$$g_m = g_{m0} \left[1 - \frac{V_{GS}}{V_P} \right] = g_{m0} \sqrt{\frac{I_D}{I_{DSS}}}$$

Sendo:

$$g_{m0} = \frac{2I_{DSS}}{|V_P|}$$

Prof. Alceu A. Badin

UTFPR/DA

Impedância do FET

• Impedância de entrada:

$$Z_i = \infty \Omega$$

• Impedância de saída:

$$Z_o = r_d = \frac{1}{y_{os}}$$

$$Z_o = r_d = \frac{1}{y_{os}}$$
 onde $r_d = \frac{\Delta V_{DS}}{\Delta I_D}|_{V_{GS} = \text{constante}}$

 y_{os} = parâmetro de admitância listado em folhas de dados do FET

Circuito equivalente CA do FET

$$g_m = \frac{2I_{DSS}}{|V_P|} \left[1 - \frac{V_{GS}}{V_P} \right]$$

$$1 - \frac{V_{GS}}{V_P}$$

$$r_d = \frac{1}{y_{os}} = \frac{\Delta V_{DS}}{\Delta I_D}$$

Polarização fixa com fonte-comum

Definições:

Impedância de entrada:

$$Z_i = \frac{V_i}{I_i}$$

Impedância de saída:

$$Z_o = \frac{V_o}{I_o} \bigg|_{V_i = 0}$$

Ganho de tensão:

$$A_{v} = \frac{V_{o}}{V_{i}}$$

Prof. Alceu A. Badin

UTFPR/DAELT

• Impedância de entrada:

$$Z_i = R_G$$

• Impedância de saída:

$$Z_o = R_D || r_d$$

$$Z_o \cong R_D \Big|_{r_d \ge 10R_D}$$

$$A_{v} = \frac{V_{o}}{V_{i}} = -g_{m}(r_{d}||R_{D})$$

$$A_{v} = \frac{V_{o}}{V_{i}} = -g_{m}R_{D}\Big|_{r_{d} \ge 10R_{D}}$$

- A entrada é aplicada à porta e a saída é no dreno.
- Há uma fase de deslocamento de 180° entre a entrada e a saída do circuito.

Autopolarização com

fonte-comum

• Esta é uma configuração de amplificador de fonte-comum, então a entrada é aplicada à porta e a saída é retirada do dreno.

• Há uma fase de deslocamento de 180° entre a entrada e a saída.

Prof. Alceu A. Badin

UTFPR/DAEL⁻

• Impedância de entrada:

$$Z_i = R_G$$

• Impedância de saída:

$$Z_o = r_d || R_D$$

$$Z_o \cong R_D \Big|_{r_d \ge 10R_D}$$

$$A_{v} = -g_{m}(r_{d}||R_{D})$$

$$A_{v} = -g_{m}R_{D}|_{r_{d} \ge 10R_{D}}$$

Autopolarização com fonte-comum

• Remover a C_s afeta o ganho do circuito.

• Impedância de entrada:

$$Z_i = R_G$$

• Impedância de saída:

$$Z_o \cong R_D \Big|_{r_d \ge 10R_D}$$

$$A_{V} = \frac{V_{o}}{V_{i}} = -\frac{g_{m}R_{D}}{1 + g_{m}R_{S} + \frac{R_{D} + R_{S}}{r_{d}}}$$

$$A_{V} = \frac{V_{o}}{V_{i}} = -\frac{g_{m}R_{D}}{1 + g_{m}R_{S}}\Big|_{r_{d} \ge 10(R_{D} + R_{S})}$$

Common-Source (CS)

Voltage-Divider Bias

• Está é uma configuração de amplificador de fonte-comum, então a entrada é aplicada à porta e a saída é retirada do dreno.

Impedâncias

• Impedância de entrada:

$$Z_i = R_1 || R_2$$

• Impedância de saída:

$$Z_o = r_d || R_D$$

$$Z_o \cong R_D \Big|_{r_d \ge 10R_D}$$

$$A_{v} = -g_{m}(r_{d}||R_{D})$$

$$A_{v} = -g_{m}R_{D} \bigg|_{r_{d} \ge 10R_{D}}$$

Seguidor de fonte (drenocomum)

- Em uma configuração de amplificador dreno-comum, a entrada é aplicada à porta, mas a saída é retirada da fonte.
- Não há fase de deslocamento entre a entrada e a saída.

Prof. Alceu A. Badin

JTFPR/DAELT

Impedâncias

• Impedância de entrada:

$$Z_i = R_G$$

• Impedância de saída:

$$Z_o = r_d ||R_S|| \frac{1}{g_m}$$

$$Z_o \cong R_S ||\frac{1}{g_m}|_{r_d \ge 10R_S}$$

$$A_{v} = \frac{V_{o}}{V_{i}} = \frac{g_{m}(r_{d} || R_{S})}{1 + g_{m}(r_{d} || R_{S})} \qquad A_{v} = \frac{V_{o}}{V_{i}} = \frac{g_{m}R_{S}}{1 + g_{m}R_{S}} \Big|_{r_{d} \ge 10}$$

Circuito de porta-comum

• A entrada é aplicada à fonte e a saída é retirada do dreno.

• Não há fase de deslocamento entre a entrada e a saída.

• Impedância de entrada:

$$Z_{i} = R_{S} I \left[\frac{r_{d} + R_{D}}{1 + g_{m} r_{d}} \right]$$

$$Z_{i} \cong R_{S} I \left[\frac{1}{g_{m}} \right|_{r_{d} \geq 10 R_{D}}$$

• Impedância de saída:

$$Z_o = R_D || r_d$$

$$Z_o \cong R_D ||_{r_d \ge 10}$$

$$A_{v} = \frac{V_{o}}{V_{i}} = \frac{\left[g_{m}R_{D} + \frac{R_{D}}{r_{d}}\right]}{\left[1 + \frac{R_{D}}{r_{d}}\right]} \qquad A_{v} = g_{m}R_{D}|_{r_{d} \geq 10R_{D}}$$

$$A_{v} = g_{m}R_{D}\big|_{r_{d} \geq 10R_{D}}$$

Equivalente CA do MOSFET tipo depleção

Equivalente CA do

MOSFET tipo intensificação

• g_m e r_d podem ser encontrados na folha de dados do FET.

Realimentação de dreno fonte-comum

• Há uma fase de deslocamento de 180° entre a entrada e a saída.

• Impedância de entrada:

$$Z_{i} = \frac{R_{F} + r_{d} || R_{D}}{1 + g_{m}(r_{d} || R_{D})}$$

$$Z_{i} \cong \frac{R_{F}}{1 + g_{m}R_{D}} \Big|_{R_{F} >> r_{d} || R_{D}, r_{d} \geq 10R_{D}}$$

• Impedância de saída:

$$Z_o = R_F || r_d || R_D$$

$$Z_o \cong R_D |_{R_F >> r_d || R_D, r_d \ge 10 R_D}$$

• Ganho de tensão:

$$A_{v} = -g_{m}(R_{F} || r_{d} || R_{D}) \quad A_{v} \cong -g_{m}R_{D} |_{R_{F} > r_{d} || R_{D}, r_{d} \ge 10 R_{D}}$$

Prof. Alceu A. Badin

UTFPR/DAELT

Polarização com divisor de tensão fonte-comum

- A entrada é aplicada à porta e a saída é retirada do dreno.
- Há uma fase de tensão de deslocamento de 180° entre a entrada e a saída.

• Impedância de entrada:

$$Z_i = R_1 || R_2$$

• Impedância de saída:

$$Z_o = r_d || R_D$$
$$Z_o \cong R_D |_{r_d \ge 10}$$

$$A_{v} = -g_{m}(r_{d} || R_{D})$$
 $A_{v} \cong -g_{m}R_{D}|_{r_{d} \geq 10R_{D}}$

Tabela-resumo

Polarização fixa [JFET ou D-MOSFET]

Porta-comum
[JFET ou D-MOSFET]

Polarização com realimentação de dreno E-MOSFET

Polarização por divisor de tensão E-MOSFET

Prof. Alceu A. Badin

UTFPR/DAELT

Tabela-resumo

Polarização fixa [JFET ou D-MOSFET]

Autopolarização com R_S sem desvio [JFET ou D-MOSFET]

Polarização por divisor de tensão [JFET ou D-MOSFET]

Polarização por divisor de tensão [JFET ou D-MOSFET]

Prof. Alceu A. Badin

UTFPR/DAELT

Tabela-resumo

Polarização fixa [JFET ou D-MOSFET]

Autopolarização com R_S com desvio [JFET ou D-MOSFET]

Autopolarização com R_S sem desvio [JFET ou D-MOSFET]

Polarização por divisor de tensão [JFET ou D-MOSFET]

