Übungsblatt 5 zur Algebraischen Zahlentheorie

Aufgabe 1. Ideale und Faktorringe von Dedekindringen

Sei A ein Dedekindring und $\mathfrak{a} \subseteq A$ ein Ideal.

- a) Zeige: Der Faktorring A/\mathfrak{a} ist ein Hauptidealring, falls $\mathfrak{a} \neq (0)$.
- b) Zeige: Das Ideal a lässt sich durch zwei Elemente erzeugen.

Aufgabe 2. Beispiel für eine Volumenberechnung

Sei $K:=\mathbb{Q}[\sqrt{-5}]$. Sei $\mathfrak{p}:=(3,1+2\sqrt{-5})\subseteq\mathcal{O}_K$. Bestimme das Volumen des vollständigen Gitters $j[\mathfrak{p}]\subseteq K_{\mathbb{R}}$, wobei $j:K\hookrightarrow K_{\mathbb{R}}$ die Einbettung in den Minkowskiraum ist.

Aufgabe 3. Charakterisierung von Gittern

Zeige, dass eine Untergruppe $\Gamma \subseteq \mathbb{R}^n$ genau dann ein Gitter ist, wenn sie diskret ist (wenn also zu jedem Punkt $\gamma \in \Gamma$ eine offene Umgebung $U \subseteq \mathbb{R}^n$ von γ mit $U \cap \Gamma = \{\gamma\}$ existiert).

Aufgabe 4. Undiskretheit von Ganzheitsringen

Sei K ein Zahlkörper vom Grad ≥ 3 . Zeige, dass zu jedem $\varepsilon > 0$ ein Element $a \in \mathcal{O}_K \setminus \{0\}$ existiert, dessen komplexer Betrag kleiner als ε ist.

O Aufgabe 5. Geradenbündel über dem Spektrum von Ganzheitsringen

Sei A ein Dedekindring. Zeige: Die gebrochenen Ideale von K sind als A-Moduln projektiv.