FUGRO NATIONAL INC LONG BEACH CA F/G 8/5
MX SITING INVESTIGATION GRAVITY SURVEY - GARDEN VALLEY, NEVADA.(U)
MAY 80 F09704-80-C-0006 UNCLASSIFIED FN-TR-33-6N NL. END 4 H2

AD-A112 223

DTIC

ADA 112223

3

TEVEL INVENTORY
LEVEL INVENTORY FN-TR-33-GN DOCUMENT IDENTIFICATION
This document has been approved for public raisers and sale; its distribution is unlimited.
DISTRIBUTION STATEMENT
ACCESSION FOR NTIS GRAA! DTIC TAB UNANNOUNCED JUSTIFICATION BY DISTRIBUTION / AVAILABILITY CODES DIST AVAIL AND/OR SPECIAL DISTRIBUTION STAMP DISTRIBUTION STAMP
82 (128
DATE RECEIVED IN DTIC
PHOTOGRAPH THIS SHEET AND RETURN TO DTIC-DDA-2

DTIC FORM 70A

MX SITING INVESTIGATION

GRAVITY SURVEY - GARDEN VALLEY

NEVADA

Prepared for:

U.S. Department of ir Force
Ballistic Missile Ct (BMO)
Norton Air Force Base, ...lifornia 92409

Prepared by:

Fugro National, Inc. 3777 Long Beach Boulevard Long Beach, California 90807

30 May 1980

FURNO NATIONAL, INC

ス エ SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered) READ INSTRUCTIONS REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM 2. GOVT ACCESSION NO. FM-TR-33-6.V

4. TITLE (and Subtitle)

NIX 5: Ting Investigation Stouty

Survey - Sorden Vailey 5. TYPE OF REPORT & PERIOD COVERED Final 6. PERFORMING ORG. REPORT NUMBER FN-TR-33-6N 7. AUTHOR(s) Fugge Cational F04764-80-C-0006 10. PROGRAM ELEMENT, PROJECT, TASK 9. PERFORMING ORGANIZATION NAME AND ADDRESS Enter Western Inc. Garmenty Fugra National, PC. 130x 7765 64312 F Long Beach Ca 90807 11. CONTROLLING OFFICE NAME AND ADDRESS
U.S. DEPONTANCEMENT OFFICE ATTEMPT OF THE SPORE ON A WISSING SUSTEMS COCCUPITED TO 12. REPORT DATE 30 Mari 13. NUMBER OF PAGES (SAMSO かっけらい みをら つる 92409 14. MONITORING AGENCY NAME & ADDRESS(it different from Controlling Office) 15#. DECLASSIFICATION/ DOWNGRADING SCHEDULE 16. DISTRIBUTION STATEMENT (of this Report) Distribution Unlimited 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, If different from Report) Distribution Colimited 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse side if necessary and identify by block number) Depth to Rock, Valley Fill, Faults, Gravity profile, Graben 20. ABSTRACT (Continue on reverse side if necessary and identify by block number) Gravity measurements were made in Garden Valley for the purpose of estimating

the overall shape of the structural basin, the thickness of alluvial fill, and the location of concealed faults. The estimates will be useful in modeling the dynamic response of ground motion in the basin and in evaluating groundwater

DD 1 JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE

resources.

FOREWORD

Methodology and Characterization studies during fiscal years 1977 and 1978 included gravity surveys in ten valleys in Arizona (five), Nevada (two), New Mexico (two), and California (one). The gravity data were obtained for the purpose of estimating the gross structure and shape of the basins and the thickness of the valley fill. There was also the possibility of detecting shallow rock in areas between boring locations. Generalized interpretations from these surveys were included in Fugro National's Characterization Reports (FN-TR-26a through e).

During the FY 77 surveys, measurements were made to form an approximate one-mile grid over the study areas and contour maps showing interpreted depth to bedrock were made. In FY 79, the decision was made to concentrate on verifying and refining suitable area boundaries. This decision resulted in a reduction in the gravity program. Instead of obtaining gravity data on a grid, the reduced program consisted of obtaining gravity measurements along profiles across the valleys where Verification Studies were also performed.

The Defense Mapping Agency (DMA), St. Louis was requested to provide gravity data from their library to supplement the gravity profiles. For Big Smoky, Reveille and Railroad valleys, a sufficient density of library data is available to permit construction of interpreted contour maps instead of just two-dimensional cross sections.

In late summer of FY 79, supplementary funds became available to begin data reduction. At that time inner zone terrain corrections were begun on the library data and the profiles from Big Smoky Valley, Nevada, and Butler and La Posa valleys, Arizona. The profile data from Whirlwind, Hamlin, Snake East, White River, Garden and Coal valleys, Nevada became available from the field in early October, 1979.

A continuation of gravity interpretations has been incorporated into the FY 80 program and the results are being summarized in a series of valley reports. In reports covering Nevada-Utah gravity studies will be numbered, "FN-TR-33-", followed by the abbreviation for the subject valley. In addition, more detailed reports of the results of FY 77 surveys in Dry Lake and Ralston valleys, Nevada are being prepared. Verification studies are continuing in FY 80 and gravity studies are included in the program. DMA will continue to obtain the field measurements and it is planned to return to the grid pattern. The interpretation of the grid data will allow the production of contour maps which will be valuable in the deep basin structural analysis needed for computer modeling in the water resources program. The

gravity interpretations will also be useful in Nuclear Hardness and Survivability (NH&S) evaluations.

The basic decisions governing the gravity program are made by BMO following consultation with TRW Inc., Fugro National and the DMA. Conduct of the gravity studies is a joint effort between DMA and Fugro National. The field work, including planning, logistics, surveying, and meter operation is done by the Defense Mapping Agency Hydrographic/Topographic Center (DMAHTC), head-quartered in Cheyenne, Wyoming. DMAHTC reduces the data to Simple Bouguer Anomaly (see Section Al.4, Appendix Al.0). The Defense Mapping Agency Aerospace Center (DMAAC), St. Louis, calculates outer zone terrain corrections.

Fugro National provides DMA with schedules showing the valleys with the highest priorities. Fugro National also recommended locations for the profiles in the FY 79 studies within the constraints that they should follow existing roads or trails. Any required inner zone terrain corrections are calculated by Fugro National prior to making geologic interpretations.

TABLE OF CONTENTS

	Pag	e	
FOREW	ORD		
1.0	INTRODUCTION		
	1.1 Objective		
2.0	GRAVITY DATA REDUCTION		
3.0	GEOLOGIC SUMMARY 6		
4.0	INTERPRETATION		
	4.1 Regional - Residual Separation		
5.0	<u>CONCLUSIONS</u>		
BIBLI	OGRAPHY		
LIST OF APPENDICES APPENDIX			
A1. A2.			
	LIST OF FIGURES		
Figur Numbe			
1 2 3 4 5 6	Location Map - Garden Valley, Nevada		

TABLE OF CONTENTS (Cont.)

Page

LIST OF DRAWINGS

Drawing Number

> Gravity Station Location Map Garden Valley, Nevada

In Pocket

iv

1.0 INTRODUCTION

1.1 OBJECTIVE

Gravity measurements were made in Garden Valley for the purpose of estimating the overall shape of the structural basin, the thickness of alluvial fill, and the location of concealed faults. The estimates will be useful in modeling the dynamic response of ground motion in the basin and in evaluating groundwater resources.

1.2 LOCATION

Garden Valley is located in central Nevada and covers part of Nye and Lincoln counties. The valley is accessible only by improved and unimproved dirt roads. Caliente, Nevada is located approximately 60 miles (97 km) east of the site on U.S. Highway 93 (Figure 1).

Garden Valley is bounded on the northwest and west by Quinn Canyon Range, to the southwest by the Worthington Mountains and to the east by the Golden Gate Range (Figure 2).

1.3 SCOPE OF STUDY

The Defense Mapping Agency Hydrographic-Topographic Center/Geodetic Survey Squadron (DMAHTC/GSS) made the 60 gravity measurements for the three profiles used in this study (Appendix A2.0). Data from the DMA gravity library was also used to establish the regional gravity.

Profile positions are shown in Figure 2 and the locations of the individual stations are shown on Drawing 1. The profile lengths

FURRO HATIONAL, INC.

FN-TR-33-EN AREA COVERED BY THIS REPORT **EXPLANATION** SCALE 1:2,500,000 NEVADA ARIZONA CALIENTE LOCATION MAP GARDEN VALLEY, NEVADA MX SITING INVESTIGATION DEPARTMENT OF THE AIR FORCE FIGURE

HONBOOK EXPLANATION SCALE 1: 250.000 GRAVITY 3 GRAVITY PROFILE LOCATION MAP GARDEN VALLEY, NEVADA 7100RE MX SITING INVESTIGATION 2 DEPARTMENT OF THE AIR FORCE - SAMSO AHUTE 30 MAY 80

7

.

1

range between 6 miles (10 km) and 8 miles (14 km), crossing from bedrock to bedrock over the valley fill. The gravity sampling interval is approximately 1 mile (1.6 km) over the central valley and .25 mile (0.4 km) near the valley boundaries. The denser sampling was used near the valley flanks to define any steep gravity gradients associated with boundary faults, and to resolve anomalies with high spatial frequency that could be associated with shallow bedrock.

The tolerance for establishing station elevations was 5 feet (1.5 m). The tolerance for elevation control limits the gravity precision to 0.3 milligals.

2.0 GRAVITY DATA REDUCTION

DMAHTC/GSS obtained the basic observations and reduced them to Simple Bouguer Anomalies (SBA) for each station as described in Appendix Al.O. Up to three levels of terrain corrections were applied to convert the SBA to the Complete Bouguer Anomaly (CBA). First, the Defense Mapping Agency Aerospace Center (DMAAC), St. Louis, used its library of digitized terrain data and a computer program to calculate corrections out to 104 miles (167 km) from each station. When the program could not calculate the terrain effects near a station, a ring template was used to estimate the effect of terrain within approximately 3000 feet (914 m) of the station. The third level of terrain corrections was applied to those stations where 10 feet (3 m) or more of relief was observed within 130 feet (40 m). cases, the elevation differences were measured in the field at a distance of 130 feet (40 m) along six directions from the These data were used to calculate the effect of the very near relief. The CBA data for the Garden Valley stations are listed in Appendix A2.0.

3.0 GEOLOGY SUMMARY

The Grant Range consists primarily of east-southeast dipping lower Paleozoic limestone, dolomite, and quartzite which are cut by north-south trending thrust faults and normal faults (Howard, 1978). Except for the lower Paleozoic rocks which extend south from the Grant Range, the Quinn Canyon Range is almost entirely Tertiary volcanic rocks. The structure of the Quinn Canyon Range is fairly simple except where the Paleozoic rocks are exposed beneath the volcanics (Tschanz and Pampeyan, 1970). The Worthington Mountains consist of Ordovician to Mississippianaged limestones, dolomites, and quartzites. Structurally, these mountains consist of westward dipping strata which have been thrust eastward over east dipping formations of the same or younger age (Tschanz and Pampeyan, 1970). The Golden Gate Range is a westward dipping fault block broken by northeast trending faults. The range consists of limestone and dolomite overlain in the north by Tertiary ash flow tuffs and Quaternary basalt (Howard, 1978).

The western margin of Garden Valley has numerous, short, late Quaternary and possibly Holocene faults (Fugro National, 1980). These faults form discontinuous, north-south trending breaks very near the foot of the Worthington, Quinn Canyon, and Grant Ranges. No range bounding faults have been noted along the eastern margin of the valley.

Valley-fill sediments in Garden Valley consist of alluvial fan deposits of silt, sand, and gravel with some Pleistocene lake

-fuers national, inc.

deposits at the extreme northern end (Fugro National Fy 78 and 79 geology and drilling data). At the surface, fan units comprise approximately 90 percent of the valley and lake sediments make up about ten percent. Eakin (1963) states that sediment thickness in Garden Valley is at least several hundred feet thick and may be more than one thousand feet thick.

4.0 INTERPRETATION

A valley filled with alluvium which has a low-density relative to the surrounding bedrock creates a negative gravity anomaly. Gravity profiles across such valleys are often U-shaped, low in the middle of the valley where the fill is thickest and high on the ends where the fill thins and bedrock emerges. Interpretation requires removal of regional trends leaving the gravity reflection of the valley fill. The gravity data and interpreted geologic models for the three profiles across Garden Valley are shown in Figures 3 through 5.

4.1 REGIONAL-RESIDUAL SEPARATION

A fundamental step in gravity interpretation is isolation of the part of the CBA which represents the geologic feature of interest, in this case the relatively low density valley fill. The portion of the CBA which corresponds to this alluvial material is called the "residual anomaly".

The CBA contains long-wavelength components from deep and broad geologic structures extending far beyond the valley. These long-wavelength components, called the regional gravity, have been approximated by linear interpolation between CBA values at bedrock stations on opposite ends of the profiles. Where only one end of a profile was on bedrock, the regional value on the other end was assigned a quantity consistent with the regional trend of the valley. The regional gravity was subtracted from the CBA and the resulting residual anomaly profiles were used to model the valley. This regional separation technique is

TURRO NATIONAL, ING.

only approximate. Some regional effects may still remain after the subtraction but the error is probably small compared to the large residual anomaly values of these profiles.

The CBA values and the straight line regional field for each profile is shown in the top portion of Figures 3 through 5. The residual gravity anomaly (interpolated at evenly spaced points) is shown by the crosses (x) in the center portion of Figures 3 through 5.

4.2 DENSITY SELECTION

The construction of a geologic model from the residual anomaly, requires selection of density values representative of the alluvial fill and of the underlying rock. Since only very generalized density information is available, the geologic interpretation of the gravity data can only be a coarse approximation. Average in situ density of the fill material was measured between depths of 100 to 160 feet (30 to 49 m) in six shallow borings. The observed density range for the soil was 1.7 to 2.3 g/cm³. The largest measured density value was used in the modeling process, instead of the average, because the overall alluvium density is expected to increase due to compaction with depth (compaction with depth and age is discussed by Woollard, 1962 and Grant and West, 1965).

The basement material underlying the Garden basin is thought to be the Paleozoic carbonate rocks which are found in the surrounding mountain ranges. Published values for carbonate rocks

FUORO NATIONAL, ING

typically range between 2.6 and 2.8 g/cm 3 . The Paleozoic carbonate rocks in Nevada are generally reported to be relatively high in density, on the order of 2.8 g/cm 3 . This value was selected to represent the density of the basement rock.

Relative to a given basement density, the calculated basin depth is inversely proportional to the density value assigned to the valley fill materials. A one percent change in the average alluvial fill density will result in a five percent change in the calculated fill thickness.

4.3 MODELING

An iterative computer program that calculates the gravitational field for two-dimensional models was used to approximate the thickness of alluvium beneath each profile. The cross-sectional models appear as a set of 0.5-km-wide blocks whose tops are at surface elevation and whose bottoms represent the alluvium-bedrock boundary. The elevations at the bottoms of the blocks were adjusted by iterative computation until the computed gravity anomaly for the valley fill differed by less than one milligal from the observed residual anomaly.

The computed gravity anomaly from the final model is shown as a continuous line in the second block of Figures 3 through 5. The calculated basin models are shown in the third block of Figures 3 through 5 with a suggested geologic interpretation shown in the lowest block. The cross sections have a five times vertical exaggeration so that gentle slopes appear steep.

The gravity survey of Garden Valley indicates a complex structural basin which was formed as a graben bounded by normal fault system (Figure 6). The shape of the basin appears to be markedly different between the Quinn Canyon and the Golden Gate Ranges (Profiles GC-1 and GC-2) than the shape between the Worthington Mountains and the Golden Gate Range (Profile GC-3).

Both profiles GC-1 and GC-2 (Figures 3 and 4) indicate a nearly symmetrical basin bounded on both sides by at least two normal fault systems. The maximum depth beneath profile GC-1 is calculated to be about 4700 feet. At profile GC-2, the basin is 3 or 4 miles (5 or 6 km) wider and about 700 feet (213 m) shallower. On profile GC-2, there is a small, relatively positive gravity anomaly which may be an indication of a small horst in the center of the basin. An alternative interpretation will be discussed below.

The basin cross-section beneath profile GC-3 appears to be strongly assymetrical and much narrower than at profiles GC-1 and GC-2. The depth beneath GC-3 is comparable to the depth at GC-1. This assymetry may be due to young tectonic uplift of the Worthington Range block which is bounded on both flanks by young, probably Quaternary faults (Fugro National, Inc., 1980).

4.4 DISCUSSION OF RESULTS

The differences in Basin shape indicated by the gravity interpretation as well as the topographic expression of the valley (see Figure 6) and surrounding mountains suggest that there may have been significant forces operating at large angles to those

- fuero national, inc.

which are normally seen to have dominated formation of the basin and range structures. The axis of the valley trends NE-SW between profiles GC-1 and GC-2, but it is essentially N-S at GC-3. Similar distortions occur in the adjacent mountains, being particularly noticeable between the Worthington mountains and the Quinn Canyon ranges and in the Golden Gate Range near the east end of profile GC-1. An E-W trending fault has been mapped in the Golden Gate Range at this latter location. If this fault were projected into the valley, it would cross profile GC-2 where the previously mentioned, small, relatively positive gravity anomaly occurs. Cross-valley faulting in this vicinity could account for the surficial distortions, this small gravity anomaly and the changes in basin shape. It could be the reason that the maximum valley width occurs near profile GC-2.

5.0 CONCLUSION

There is a large, well defined, negative gravity anomaly associated with Garden Valley. An average density contrast of 0.50 g/cm³ between the alluvium and bedrock was used to calculate the thickness of the valley fill material.

The gravity interpretation indicates there are major range bounding normal faults on both sides of the valley. The basin is approximately 4800 feet (1463 m) deep on the north and south end. The central part of the basin shallows to a depth of 4000 feet (1219 m). The calculated bedrock depths are only approximations because litle is known about the actual density distribution in and around the valley. Future studies that acquire better density data or measure actual depths to bedrock in deep parts of the valley can be used to refine the gravity interpretation.

BIBLIOGRAPHY

- Cornwall, H. R., 1972, Geology and mineral deposits of southern Nye County, Nevada: Nevada Bureau of Mines and Geology Bull. 77, 49 p.
- Eakin, Thomas E., 1963b, Ground-Water Appraisal of Garden and Coal Valleys, Lincoln and Nye Counties, Nevada: Ground-Water Resources Reconnaissance Series, Report 18, 29 p., 1 plate.
- Eakin, T. E., 1963c, Ground-water appraisal of Pahranagat and Pahroc valleys, Lincoln and Nye counties, Nevada: Nevada Dept. of Conservation and Natural Resources, Ground-Water Resources Reconnaissance Series Report 21, 35 p.
- Fugro National, Inc. 1979, MX Siting Investigation Geotechnical Evaluation, Verification Studies, Volume IA, IB, V, FN-TR-27.
- ______, 1978 and 1979, Verification Study Data of Garden and Coal Valley, FN-TR-27-VI.
- , 1980, Interim Report on Active Faults and Earthquake Hazards in the FY 79 Verification Sites - Nevada -Utah Siting Region, FN-TR-36.
- Grant, F. S. and G. F. West, 1965, Interpretation Theory in Applied Geophysics: McGraw-Hill Book Co., New York.
- Hays, W. W., 1976, Interpretation of Gravity Data, U.S. Geol. Survey, Open file report 76-479.
- Howard, E. L., 1978, Geologic map of the Eastern Great Basin, Nevada and Utah, Terra Scan Group, Colorado.
- Maxey, G. B., and Eaken, T. E., 1949, Ground water in White River Valley, White Pine, Nye, and Lincoln Counties, Nevada: Nevada State Engineer, Water Resources Bull. 8.
- Stewart, J. H., and Carlson, J. E., 1978, Geologic map of Nevada, U.S. Geol. Survey and Nevada Bur. of Mines and Geol.
- Tschanz, C. M. and E. H. Pampeyan, 1970, Geology and mineral deposits of Lincoln County, Nevada: Nevada Bureau of Mines, Bull. 73, University of Nevada.
- West, R. E., 1971, An iterative computer program for calculating two-dimensional models for alluvial basins from gravity and geologic data (modified and extended by H. W. Powers Jr., 1974): University of Arizona, Geoscience Department, Geophysics Laboratory.

FUURO HATIONAL, INC.

BIBLIOGRAPHY (Cont.)

Woollard, G. P., 1962, The relation of gravity anomalies to surface elevation, crustal structure, and geology: University of Wisconsin, Dept. of Geology, Geophysical and Polar Research Center, Madison, Wisconsin, Report 62-9.

30 MAY 80

30 MAY 80

KILOMETERS KILOFEET 16 --2000 --1000 CP6: -BLOCK . ELEVATION STATION FLEVALIONS . . IDENTIFICATION CO · <u>*</u> 0 200 400 600 800 1000 HETERS 0 1000 2000 3000 FEET 5x VERTICAL EXAGGERATION RESIDUAL GRAV OBSERVED VALLES "ATERPOLATED STERNOLATED SURFACE ELEVATIONS MODEL OF BEDROOM 5 REACE -THIS THE FEE HOW WORLD IN OISTANCE (KM) - CRAVITY INTERPRETEC FA . 7 . GATION PALLCZCIC FARBONATE HOLK BLOCK 4 SUGUESTED TECHOGICAL STRIFT 98 EXPLANATION FMSITE ABLES BISTANCE SCALE CBA LY 1 S RESTONAL SCALE HORIZONTAL SCALE Biock. 810CK VERTICAL -1000 H -3000 + O -2000 INTERPRETED GRAVITY PROFILE CC-2 DARDEN VALLEY, NEVADA *I*, . 1 60 4 6

Section .

EN TROOT GN

IC MAY BO

. ...

SALVANIA MENERAL STATES AND STATES

The same of the sides

.

;

EXPLANATION

SURFICIAL BASIN-FILL UNITS

Modern stream channel and floodplain deposits of: Alf, clay (CL) and sandy and (SM).

der stream channel and floodplain deposits in terraces composed of silty sand (SM).

tive playa deposits of sandy silt (ML)

Deposits - Inactive plays, older lake bed, and abandoned shoreline deposits of: s. sand and gravelly sand (SP); and A4og, sandy gravel (GP)

ts - Active, younger alluvial fan deposits of: A5yf, sandy silt (ML); y sant and gravelly sand (SM); and A5yg, weakly cemented sandy gravel (GM).

eposits – inactive, intermediate age alluvial fan deposits of: silty sand and gravelly sand (SM); and A51g, sandy gravel (GM)

 Older, highly eroded alluvial fan deposits of moderately cemented than 30 percent boulders and cobbles

vial Fan Deposits - Inactive, intermediate-age alluvial fan deposits of; cemented silty sand and gravelly sand (SM); and A51g, sandy gravel (GM)

in Deposits - Older, highly eroded alluvial fan deposits of moderately cemented th greater than 10 percent boulders and cobbles

ROCK UNITS

۷

latite, dacite, and andesite

sediment, and ignimbrite

omite, locally cherty, with interbedded shale and sandstone

bedded timestone and sandstone

tologic unit symbols indicates a mixture of either surficial basin-fill or rock units tap scale

underlies surface unit at shallow depth.

SYMBOLS

ock and surficial basin-fill units

Surficial basin-fill or rock units

surface rupture of faults wiftsetting surfiring basin-fill deposits, ball on downthrown side

resentation unit descriptions refer to the predominant soil types. Varying amounts of other soil It units pertain only to the upper several feet of soit. Due to variability of surficial deposits ted within each geologic unit

if geologic data stations is presented in Volume II. Drawing 1 A tabulation of all station data scription of all geologic units is included in Volume II. Section 1 0

is expessed fock from: Kleinhampl and Ziony (1967), Ischanz and Pampeyan (1970)

SCALE 1:125,000

Intermediate Alluvial Fan Deposis – inactive, intermediate age alluvial fan de A51s, moderately cemented sifty; and and gravelly sand (SM); and A51g. sandy g Surficial basin-fill units pertain only to the upper several feet of soil. Due to varial Older Alluvial Fan Deposits - Oldr, highly eroded alluvial fan deposits of mod ASys ASis Combination of geologic unit symbols indicates a mixture of either surficial bas Fault, trace of surface rupture of faults offsetting surficial basin-fill deposi Geology in areas of exposed rock from: Kleinhampl and Ziony (1967), Ischanz and Pampey The distribution of geologic data stations is presented in Volume VI. Drawing 1 A tabu and generalized description of all gestogic units is included in Volume XII. Section 1 6 and scale of map presentation unit descriptions refer to the predominant soil types Limestone and dolomite, locally churty, with interbedded shale and sandstone gravelly sand with greater than 0 percent boulders and cobbles Parenthetic unit underlies surface unit at shallow depth ROCK UNITS Contact between rock and surficial basin-fill units Contact between surficial basin-fill or rock units Shale, with interbedded limestone and sandstone Riyolite, quartz latite, dacite, ad andesite types can be expected within each geologic unit Tuff, tuffaceous sediment, and ignimbrite inseparable at map scale Gravity Station Orthoquartzite **Granite** Basalt Sedimentary (S) (I) snoauB -A5is(I2) ~ **C** A5is A5ig A5oc 14 12 S Ξ EI 2 25 Đ NOTES

g

GRAVITY STATION LOCATION MAP GARDEN VALLEY, NEVADA

MX SITING INVESTIGATION

0F

THE AIR FORCE

DRAWING

1

APPENDIX A1.0

GENERAL PRINCIPLES OF THE GRAVITY EXPLORATION METHOD

A1.0 GENERAL PRINCIPLES OF THE GRAVITY EXPLORATION METHOD

Al.1 GENERAL

A gravity survey involves measurement of differences in the gravitational field between various points on the earth's surface. The gravitational field values being measured are the same as those influencing all objects on the surface of the earth. They are generally associated with the force which causes a 1 gm mass to be accelerated at 980 cm/sec². This force is normally referred to as a 1 g force.

Even though in many applications the gravitational field at the earth's surface is assumed to be constant, small but distinguishable differences in gravity occur from point to point. In a gravity survey, the variations are measured in terms of milligals. A milligal is equal to 0.001 cm/second² or 0.00000102 g. The differences in gravity are caused by geometrical effects, such as differences in elevation and latitude, and by lateral variations in density within the earth. The lateral density variations are a result of changes in geologic conditions. For measurements at the surface of the earth, the largest factor influencing the pull of gravity is the density of all materials between the center of the earth and the point of measurement.

To detect changes produced by differing geological conditions, it is necessary to detect differences in the gravitational field as small as a few milligals. To recognize changes due to

FURRO NATIONAL, INC.

geological conditions, the measurements are "corrected" to account for changes due to differences in elevation and latitude.

Given this background, the basic concept of the gravitational exploration method, the anomaly, can be introduced. If, instead of being an oblate spheroid characterized by complex density variations, the earth were made up of concentric, homogeneous shells, the gravitational field would be the same at all points on the surface of the earth. The complexities in the earth's shape and material distribution are the reason that the pull of gravity is not the same from place to place. A difference in gravity between two points which is not caused by the effects of known geometrical differences, such as in elevation, latitude, and surrounding terrain, is referred to as an "anomaly."

An anomaly reflects lateral differences in material densities. The gravitational attraction is smaller at a place underlain by relatively low density material than it is at a place underlain by a relatively high density material. The term "negative gravity anomaly" describes a situation in which the pull of gravity within a prescribed area is small compared to the area surrounding it. Low-density alluvial deposits in basins such as those in the Nevada-Utah region produce negative gravity anomalies in relation to the gravity values in the surrounding mountains which are formed by more dense rocks.

The objective of gravity exploration is to deduce the variations in geologic conditions that produce the gravity anomalies identified during a gravity survey.

- Fuero Hatishal, inc.

A1.2 INSTRUMENTS

The sensing element of a LaCoste and Romberg gravimeter is a mass suspended by a zero-length spring. Deflections of the mass from a null position are proportional to changes in gravitational attraction. These instruments are sealed and compensated for atmospheric pressure changes. They are maintained at a constant temperature by an internal heater element and thermostat. The absolute value of gravity is not measured directly by a gravimeter. It measures relative values of gravity between one point and the next. Gravitational differences as small as 0.01 milligal can be measured.

A1.3 FIELD PROCEDURES

The gravimeter readings were calibrated in terms of absolute gravity by taking readings twice daily at nearby USGS gravity base stations. Gravimeter readings fluctuate because of small time-related deviations due to the effect of earth tides and instrument drift. Field readings were corrected to account for these deviations. The magnitude of the tidal correction was calculated using an equation suggested by Goguel (1954):

 $C = P + N\cos \emptyset (\cos \emptyset + \sin \emptyset) + S\cos \emptyset (\cos \emptyset - \sin \emptyset)$ where C is the tidal correction factor, P, N, and S are time-related variables, and \emptyset is the latitude of the observation point. Tables giving the values of P, N, and S are published annually by the European Association of Exploration Geophysicists.

TUERO NATIONAL, INC.

The meter drift correction was based on readings taken at a designated base station at the start and end of each day. Any difference between these two readings after they were corrected for tidal effects was considered to have been the result of instrumental drift. It was assumed that this drift occurred at a uniform rate between the two readings. Corrections for drift were typically only a few hundredths of a milligal. Readings corrected for tidal effects and instrumental drift represented the observed gravity at each station. The observed gravity values represent the total gravitational pull of the entire earth at the measurement stations.

A1.4 DATA REDUCTION

Several corrections or reductions are made to the observed gravity to isolate the portion of the gravitational pull which is due to the crustal and near-surface materials. The gravity remaining after these reductions is called the "Bouquer Anomaly." Bouguer Anomaly values are the basis for geologic interpretation. To obtain the Bouguer Anomaly, the observed gravity is "djusted to the value it would have had if it had been measured at the geoid, a theoretically defined surface which approximates the surface of mean sea level. The difference between the "adjusted" observed gravity and the gravity at the geoid calculated for a theoretically homogeneous earth is the Bouquer Anomaly.

Four separate reductions, to account for four geometrical effects, are made to the observed gravity at each station to arrive at its Bouguer Anomaly value.

a. Free-Air Effect: Gravitational attraction varies inversely as the square of the distance from the center of the earth. Thus corrections must be applied for elevation. Observed gravity levels are corrected for elevation using the normal vertical gradient of:

FA = -0.09406 mg/ft (-0.3086 milligals/meter) where FA is the free-air effect (the rate of change of gravity with distance from the center of the earth). The free-air correction is positive in sign since the correction is opposite the effect.

b. Bouguer Effect: Like the free-air effect, the Bouguer effect is a function of the elevation of the station, but it considers the influence of a slab of earth materials between the observation point on the surface of the earth and the corresponding point on the geoid (sea level). Normal practice, which is to assume that the density of the slab is 2.67 grams per cubic centimeter was followed in these studies. The Bouguer correction (B_C), which is opposite in sign to the free-air correction, was defined according to the following formula.

 $B_C = 0.01276$ (2.67) hf (milligals per foot)

 $B_C = 0.04185$ (2.67) h_m (milligals per meter)

where $h_{\mbox{\scriptsize f}}$ is the height above sea level in feet and $h_{\mbox{\scriptsize m}}$ is the height in meters.

TUORO HATIONAL, IND.

c. Latitude Effect: Points at different latitudes will have different "gravities" for two reasons. The earth (and the geoid) is spheroidal, or flattened at the poles. Since points at higher latitudes are closer to the center of the earth than points near the equator, the gravity at the higher latitudes is larger. As the earth spins, the centrifugal acceleration causes a slight decrease in gravity. At the higher latitudes where the earth's radii are smaller, the centrifugal acceleration diminishes. The gravity formula for the Geodetic Reference System, 1967, gives the theoretical value of gravity at the geoid as a function of latitude. It is:

g=978.0381 (1 + 0.0053204 $\sin^2 \phi$ - 0.0000058 $\sin^2 2\phi$) gals where g is the theoretical acceleration of gravity and ϕ is the latitude in degrees. The positive term accounts for the spheroidal shape of the earth. The negative term adjusts for the centrifugal acceleration.

The previous two corrections (free air and Bouguer) have adjusted the observed gravity to the value it would have had at the geoid (sea level). The theoretical value at the geoid for the latitude of the station is then subtracted from the adjusted observed gravity. The remainder is called the Simple Bouguer Anomaly (SBA). Most of this gravity represents the effect of material beneath the station, but part of it may be due to irregularities in terrain (upper part of the Bouguer slab) away from the station.

d. Terrain Effect: Topographic relief around the station has a negative effect on the gravitational force at the station. A nearby hill has upward gravitational pull and a nearby valley contributes less downward attraction than a nearby material would have. Therefore, the corrections are always positive. Corrections are made to the SBA when the terrain effects were 0.1 milligal or larger. Terrain corrected Bouguer values are called the Complete Bouguer Anomaly (CBA). When the CBA is obtained, the reduction of gravity at individual measurement points (stations) is complete.

A1.5 INTERPRETATION

The first step in interpretation is to separate the portion of the CBA that might be caused by the lightweight, basin-fill material overlying the heavier bedrock material which forms the surrounding mountains and presumably the basin floor. Since the valley-fill sediments are absent at the stations read in the mountains, the CBA values at these bedrock stations are used as the basis for constructing a regional field over the valley. A regional field is an estimation of the values *he CBA would have had if the light weight sediments (the anomaly) had not been there.

The difference between the CBA and the regional field is called the "residual" field or residual anomaly. The residual field is the interpreter's estimation of the gravitational effect of the geologic anomaly. The zero value of the residual anomaly is not exactly at the rock outcrop line but at some

TUBRO NATIONAL, INC.

distance on the "rock" side of the contact. The reason for this is found in the explanation of the terrain effect. There is a component of gravitational attraction from material which is not directly beneath a point.

If the "regional" is well chosen, the magnitude of the residual anomaly is a function of the thickness of the anomalous (fill) material and the density contrast. The density contrast is the difference in density between the alluvial and bedrock material. If this contrast were known, an accurate calculation of the thickness could be made. In most cases, the densities are not well known and they also vary within the study area. In these cases, it is necessary to use typical densities for materials similar to those in the study area.

If the selected average density contrast is smaller than the actual density contrast, the computed depth to bedrock will be greater than the actual depth and vice-versa. The computed depth is inversely proportional to the density contrast. A ten percent error in density contrast produces a ten percent error in computed depth. An iterative computer program is used to calculate a subsurface model which will yield a gravitational field to match (approximately) the residual gravity anomaly.

APPENDIX A2.0

GARDEN VALLEY, NEVADA
GRAVITY DATA

1

•

W

GARDEN VALLEY GRAVITY DATA

PROFILE GO-1

STATION LAT.	LONG. ELEV. T	FR-COR	. NORTH	FAST	DRSV	THEC	111	CF/
_	DEG MIN +CORE					GRAV		1000
			~~~~~	~~~~				
GC0101 38 747	1153238587041	0 32	9422043	62800	145549	200302	177	AUGOR
GC0102 38 738	1153212581401	0 26	4422027	62839	145017	P85005	47	R0481
GC0103 38 727	1155188578381	0 23	0422007	62874	145456	200273	- 3A3	80120
GC0104 38 718	1153163575491	0 20	8421991	62911	145340	201259	-750	79823
GC0105 38 708	1153136571781		2421973				-1154	74526
GC0106 38 695	1153112568861	0 17	8421950	62986	145189	952005	-1500	79776
GC0107 38 681	115308656571T	0 16	5421924	63024	145148	209205	-1816	74154
GC0108 38 669	1155066562731	0 15	9421903	63054	145146	200188	9805-	75586
GC0110 38 607	1152054547577	0 13	0421791	63219	145252	200098	-3313	78141
GC0111 38 556	1152863537141	0 11	4421699	63354	145519	200023	-3453	7/941
GC0112 38 507	1152771529491	0 10	3421610	63490	146398	199951	-4023	78021
GC0113 38 457	1152678522701	0 9	8421520	63627	146733	19987A	- 4954	70316
GC0115 38 433	1152632520341	0 9	4421477	63695	147161	199843	-3713	78530
GC0116 38 420	1152609519091	0 9	4421453	63729	147414	199823	-3557	78832
GC0117 38 408	1152586518017	0 9	3421432	63763	147624	199806	- 3432	74993
GC0118 38 395	115256351693T	0 9	5421408	63797	147825	197787	-3314	72150
GC0119 38 382	1152540515941	0 9	6421385	63832	148016	199768	-3194	74304
GC0120 38 371	1152517515127	0 10	1421365	63865	144242	199752	- 3031	79500
GC0121 38 358	1152494514301		5421341					79777
_	1152471516501		7421318					87068

END OF LIST

#### GARDEN VALLEY GRAVITY DATA

#### PROFILE GC-2

STATION	LAT.	LONG.	FIFV.	TED=	COR.	ипртн	EAST	()RSV	744T	FAA	c.D.4
IDENT.	DEG MIN		TODE	T Ai	ZOLLT.	LITM	UTM	- •			CRA
777777								GRAV	GPAV		+1000
600201	38 328										
C0202		1153669				421258			199689	797	40583
	38 320	1155643				421244		144262	199577	555	80461
GCO203	38 307	1153620			184	155154	622541	144366	199659	351	A0370
GC0204	38 299	1153595	58778	0	176	421206			199647	5 2	80185
GC0205	38 301	1155567	5841B	0		121211	-		199649		79984
GC0206	38 293	1155541	5804B	0		421197			19963A		79859
GC0207	38 288	1155514				88115			199630		•
GC0208		1153490		Ö		121168					79680
GC0209		1155464		0					199615	-	79536
GC0210		1453431		•		121156			199604		793A3
GC0211			56668			121140			199591		79216
		1153327		0		121087			199547		78872
GC0213		1153134		0		120941	629701	45734	99429	-2924	12782
GC0214		1153027	5327P	ŋ	1024	120907	631271	460601	99399	-3192	74739
GC0215		1152926		0	994	120850			9935		79014
GC0216	38 67	1152863	52478	0	_	120794			99307		
GC0217	38 56	1152838	5238B	0		20775			99291		79807
GC0218		1152815		0		20751			199273		
GC0219		1152791	5222B	ő		20733					
600550	38 14	1152777	5222B	0					19925A		· •
GC0521	375998	1152757		•	_	20698			99230		A0610
GC0525	375990	1152734	•	0		50669			99206		8078B
GC0223			5220B	0		20655			99195		9480B
_	375978	1152711	5256R	0		20633	635941				80458
GC0224	375966	1152690	5278B	0	964	20612	636251				81016

END OF LIST

47

....

#### GARDEN VALLEY GRAVITY DATA

#### PROFILE GC-3

STATTON LAT.	LONG. FLEV.	TER-COR. NORTH	FAST DASV THEC	FAA CHA
IDENT. DEG MIN	DEG MIN +CODE	MTD TURNIN	I'TM GPAV GRAV	+1000
77777777				
GC0304 375285	1153432 5932R	0 328419335	62558143190198165	458 86953
GC0305 375286	1153404 5800B	0 259419337	62599143817198166	233 80722
GC0306 375286	1453377 5685R	0 242419338	62639144234198166	-027 A0425
GC0307 375287	1153350 5596R	0 242419340	62678144340198167	-1155 79999
GC0308 375288	1153323 5545R	0 221419343	62718144137198169	-1848 79461
GC0309 375288	1153296 5544B	0 199419344	62758144022198169	-1970 79320
GC0310 375288	1153211 5551H	0 160419345	62882144313198169	-1025 79605
GC0311 375289	1153127 5596R	0 162419349	63005144445198170	-1655 80019
GC0312 375290	1153017 5689B	0 158419354	63167144575198172	-56 A0699
GC0313 375293	1152963 5757B	0 165419361	6324614427619R177	280 A0610
GC0314 375293	1152934 5816R	0 172419361	63288144028198177	587 80923
GC0315 375294	1152905 5881B	0 192419364	6333114377519P177	949 81082
GC0316 375294	1152A77 595AB	0 203419364	63372143401198177	1298 81180
GC0317 375295	1152850 6044R	0 229419367	63411143018198179	1/27 81340
GC0318 375295	1152823 6141R	0 276419368	63451142477198179	2692 R1424
GC0319 374295	1152795 62488	0 288419368	63492141820198179	2445 A1423
GC0320 375296	1152767 6369R	0 363419371	63533141050198180	2814 A1454

FND OF LIST

1

# END

# DATE FILMED 4-82

DTIC