Section 1

a Preprocessing (Orange Tool) Class Works

1) Perform imputation on Heart Disease dataset.

Input

Info
303 instances
13 features (0.2 % missing data)
Target with 2 values
No meta attributes.

	diameter narrowing	major vessels colored
303	0	?
288	0	?
193	1	?
167	0	?

Imputation

- Replace Missing values with average or most frequent value.
- Replace with a random value.
- Remove Rows with missing values.

Output

Output 1 (Average/Most frequent value)

Output 2 (Replace with random value)

Info 303 instances (no missing data) 13 features Target with 2 values No meta attributes.

Output 3- Remove rows with missing values.

Info 297 instances (no missing data) 13 features Target with 2 values No meta attributes.

2) Perform Discretization on Iris dataset

Input

Info 150 instances (no missing data) 4 features Target with 3 values

No meta attributes.

	iris	sepal length	sepal width	petal length	petal width
1	Iris-setosa	5.1	3.5	1.4	0.2
2	Iris-setosa	4.9	3.0	1.4	0.2
3	Iris-setosa	4.7	3.2	1.3	0.2
4	Iris-setosa	4.6	3.1	1.5	0.2
5	Iris-setosa	5.0	3.6	1.4	0.2

Process

Discretization

- Equal frequency discretization
- Equal width discretization
- Remove numeric values

Output

Output 1 (Equal frequency discretization)

	iris	sepal length	sepal width	petal length	petal width
1	lris-setosa	< 5.45	≥ 3.15	< 2.45	< 0.8
2	Iris-setosa	< 5.45	2.85 - 3.15	< 2.45	< 0.8
3	Iris-setosa	< 5.45	≥ 3.15	< 2.45	< 0.8
4	Iris-setosa	< 5.45	2.85 - 3.15	< 2.45	< 0.8
5	Iris-setosa	< 5.45	≥ 3.15	< 2.45	< 0.8

Output 2 (Equal width discretization)

	iris	sepal length	sepal width	petal length	petal width
1	Iris-setosa	< 5.5	2.8 - 3.6	< 2.967	< 0.9
2	Iris-setosa	< 5.5	2.8 - 3.6	< 2.967	< 0.9
3	Iris-setosa	< 5.5	2.8 - 3.6	< 2.967	< 0.9
4	Iris-setosa	< 5.5	2.8 - 3.6	< 2.967	< 0.9
5	Iris-setosa	< 5.5	2.8 - 3.6	< 2.967	< 0.9

Output 3 (Remove numeric values)

	iris
1	Iris-setosa
2	Iris-setosa
3	Iris-setosa
4	Iris-setosa
5	Iris-setosa

3. Perform continuization on Titanic dataset.

Input

Info
2201 instances (no missing data)
3 features
Target with 2 values
No meta attributes.

	survived	status	age	sex
1	yes	first	adult	male
2	yes	first	adult	male
3	yes	first	adult	male
4	yes	first	adult	male
5	yes	first	adult	male

Process

Continuization

- Most frequent is base.
- One feature per value.
- Remove non-binary values.
- Remove categorical features.
- Treat as ordinal.
- Divide by number of values.

Output

Output 1 (Most frequent is base)

	survived	status=first	status=second	status=third	age=child	sex=female
1	yes	1	0	0	0	0
2	yes	1	0	0	0	0
3	yes	1	0	0	0	0
4	yes	1	0	0	0	0
5	yes	1	0	0	0	0

Output 2 (One feature per value)

	survived	status=crew	status=first	status=second	status=third	age=adult	age=child	sex=female	sex=male
1	yes	0	1	0	0	1	0	0	1
2	yes	0	1	0	0	1	0	0	1
3	yes	0	1	0	0	1	0	0	1
4	yes	0	1	0	0	1	0	0	1
5	yes	0	1	0	0	1	0	0	1

Output 3 (Remove non-binary values)

	survived	age=child	sex=male
1	yes	0	1
2	yes	0	1
3	yes	0	1
4	yes	0	1
5	yes	0	1

Output 4 (Remove categorical features)

	survived
1	yes
2	yes
3	yes
4	yes
5	yes

Output 5 (Treat as ordinal)

	survived	status	age	sex
1	yes	1	0	1
2	yes	1	0	1
3	yes	1	0	1
4	yes	1	0	1
5	yes	1	0	1

Output 6 (Divide by number of values)

	survived	status	age	sex
1	yes	0.333333	0	1
2	yes	0.333333	0	1
3	yes	0.333333	0	1
4	yes	0.333333	0	1
5	yes	0.333333	0	1

4. Perform normalization on Iris dataset

Input

Info 150 instances (no missing data) 4 features Target with 3 values No meta attributes.

	iris	sepal length	sepal width	petal length	petal width	
1	Iris-setosa	5.1	3.5	1.4	0.2	
2	Iris-setosa	4.9	3.0	1.4	0.2	
3	Iris-setosa	4.7	3.2	1.3	0.2	
4	Iris-setosa	4.6	3.1	1.5	0.2	
5	Iris-setosa	5.0	3.6	1.4	0.2	

Normalization

- Standardize μ =0 and variance = 1.
- Center to $\mu = 0$.
- Scale to variance = 1.
- Normalize to interval [-1,1].
- Normalize to interval [0,1].

Output

Output 1 (Standardize μ =0 and variance = 1)

	iris sepal length		sepal width	petal length	petal width	
1	Iris-setosa	-0.901	1.032	-1.341	-1.313	
2	Iris-setosa	-1.143	-0.125	-1.341	-1.313	
3	Iris-setosa	-1.385	0.338	-1.398	-1.313	
4	Iris-setosa	-1.507	0.106	-1.284	-1.313	
5	Iris-setosa	-1.022	1.263	-1.341	-1.313	

Output 2 (Center to μ =0.)

	iris	sepal length	sepal width	petal length	petal width	
1	Iris-setosa	-0.743	0.446	-2.359	-0.999	
2	Iris-setosa	-0.943	-0.054	-2.359	-0.999	
3	Iris-setosa	-1.143	0.146	-2.459	-0.999	
4	Iris-setosa	-1.243	0.046	-2.259	-0.999	
5	Iris-setosa	-0.843	0.546	-2.359	-0.999	

Output 3 (Scale to variance = 1)

	iris	sepal length	sepal width	petal length	petal width	
1	Iris-setosa	6.180	8.099	0.796	0.263	
2	Iris-setosa	5.937	6.942	0.796	0.263	
3	Iris-setosa	5.695	7.405	0.739	0.263	
4	Iris-setosa	5.574	7.173	0.853	0.263	
5	Iris-setosa	6.058	8.331	0.796	0.263	

Output 4 (Normalize to interval [-1,1])

	iris	sepal length	sepal width	petal length	petal width	
1	Iris-setosa	-0.5556	0.25	-0.8644	-0.9167	
2	Iris-setosa	-0.6667	-0.1667	-0.8644	-0.9167	
3	Iris-setosa	-0.7778	0.00	-0.8983	-0.9167	
4	Iris-setosa	-0.8333	-0.0833	-0.8305	-0.9167	
5	Iris-setosa	-0.6111	0.3333	-0.8644	-0.9167	

Output 5 (Normalize to interval [0,1])

	iris	sepal length	sepal width	petal length	petal width	
1	Iris-setosa	0.2222	0.6250	0.0678	0.0417	
2	Iris-setosa	0.1667	0.4167	0.0678	0.0417	
3	Iris-setosa	0.1111	0.50	0.0508	0.0417	
4	Iris-setosa	0.0833	0.4583	0.0847	0.0417	
5	Iris-setosa	0.1944	0.6667	0.0678	0.0417	

5) Perform Randomization on Iris dataset.

Input

🗈 Data Info (1) - Orange

? X

Data table properties

Name: iris

Size: 150 rows, 5 columns

Features: 4 numeric

Targets: categorical outcome with 3 classes

Additional attributes

Name: Iris flower dataset

Description: Classical dataset with 150 instances of Iris setosa, Iris

virginica and Iris versicolor.

Author: Edgar Anderson, Ronald Fisher

Year: 1936

Reference: R. A. Fisher (1936). "The use of multiple measurements in

taxonomic problems". Annals of Eugenics. 7 (2): 179-188.

doi: 10.1111/j.1469-1809.1936.tb02137.x

? 🗎 | → 150

Info

150 instances (no missing data)

4 features

Target with 3 values No meta attributes.

	iris	sepal length	sepal width	petal length	petal width	
1	Iris-setosa	5.1	3.5	1.4	0.2	
2	Iris-setosa	4.9	3.0	1.4	0.2	
3	Iris-setosa	4.7	3.2	1.3	0.2	
4	Iris-setosa	4.6	3.1	1.5	0.2	
5	Iris-setosa	5.0	3.6	1.4	0.2	

Randomization

Output
Output 1 (Randomize Classes)

	iris	sepal length	sepal width	petal length	petal width
1	Iris-versicolor	5.1	3.5	1.4	0.2
2	Iris-versicolor	4.9	3.0	1.4	0.2
3	Iris-setosa	4.7	3.2	1.3	0.2
4	Iris-setosa	4.6	3.1	1.5	0.2
5	Iris-setosa	5.0	3.6	1.4	0.2

Output 2 (Randomize Features)

	iris	sepal length sepal width		petal length	petal width	
1	Iris-setosa	6.7	2.7	4.8	0.2	
2	Iris-setosa	6.3	2.6	6.7	1.2	
3	Iris-setosa	4.4	3.1	1.5	2.3	
4	Iris-setosa	6.7	3.4	5.3	0.2	
5	Iris-setosa	4.8	3.4	5.0	1.8	

Output 3 (Randomize Metadata)

iris		sepal length	sepal width	petal length	petal width	
1	Iris-setosa	5.1	3.5	1.4	0.2	
2	Iris-setosa	4.9	3.0	1.4	0.2	
3	Iris-setosa	4.7	3.2	1.3	0.2	
4	Iris-setosa	4.6	3.1	1.5	0.2	
5	Iris-setosa	5.0	3.6	1.4	0.2	

6) Perform Remove Sparse on zoo data set

Input

Info
101 instances (no missing data)
16 features
Target with 7 values
1 meta attribute

	type	name	hair	feathers	eggs	milk
1	mammal	aardvark	1	0	0	1
2	mammal	antelope	1	0	0	1
3	fish	bass	0	0	1	0
4	mammal	bear	1	0	0	1
5	mammal	boar	1	0	0	1

Output

Output 1 (Remove sparse zeros)

	type	name	eggs	predator	toothed	backbone	breathes	legs	tail
1	mammal	aardvark	0	1	1	1	1	4	0
2	mammal	antelope	0	0	1	1	1	4	1
3	fish	bass	1	1	1	1	0	0	1
4	mammal	bear	0	1	1	1	1	4	0
5	mammal	hoar	0	1	1	1	1	Δ	1

Output 2 (Remove sparse missing values)

	type	name	eggs	predator	toothed	backbone	breathes	legs	tail
1	mammal	aardvark	0	1	1	1	1	4	0
2	mammal	antelope	0	0	1	1	1	4	1
3	fish	bass	1	1	1	1	0	0	1
4	mammal	bear	0	1	1	1	1	4	0
5	mammal	boar	0	1	1	1	1	4	1

7) Perform Feature Selection on Wine dataset.

Input

Info 178 instances (no missing data) 13 features Target with 3 values No meta attributes.

	Wine	Alcohol	Malic Acid	Ash	Alcalinity of ash	Magnesium
1	1	14.23	1.71	2.43	15.6	127
2	1	13.20	1.78	2.14	11.2	100
3	1	13.16	2.36	2.67	18.6	101
4	1	14.37	1.95	2.50	16.8	113
5	1	13.24	2.59	2.87	21.0	118

Output

Output 1 (Gain Ratio)

	Wine	Flavanoids	Proline	Color intensity	0/OD315 of diluted	Alcohol
1	1	3.06	1065	5.64	3.92	14.23
2	1	2.76	1050	4.38	3.40	13.20
3	1	3.24	1185	5.68	3.17	13.16
4	1	3.49	1480	7.8	3.45	14.37
5	1	2.69	735	4.32	2.93	13.24

Output 2 (Information Gain)

	Wine	Flavanoids	Proline	Color intensity	0/OD315 of diluted	Alcohol
1	1	3.06	1065	5.64	3.92	14.23
2	1	2.76	1050	4.38	3.40	13.20
3	1	3.24	1185	5.68	3.17	13.16
4	1	3.49	1480	7.8	3.45	14.37
5	1	2.69	735	4.32	2.93	13.24

Output 3 (Random Features)

	Wine	Total phenols	Color intensity	Proline	Proanthocyanins	0/OD315 of diluted
1	1	2.80	5.64	1065	2.29	3.92
2	1	2.65	4.38	1050	1.28	3.40
3	1	2.80	5.68	1185	2.81	3.17
4	1	3.85	7.8	1480	2.18	3.45
5	1	2.80	4.32	735	1.82	2.93

8) Perform Feature Selection on Lenses dataset

Input

	lenses	age	prescription	astigmatic	tear_rate
1	none	young	myope	no	reduced
2	soft	young	myope	no	normal
3	none	young	myope	yes	reduced
4	hard	young	myope	yes	normal
5	none	young	hypermetrope	no	reduced

Output

Output 1 (Gain Ratio)

	lenses	tear_rate	astigmatic	prescription	age
1	none	reduced	no	myope	young
2	soft	normal	no	myope	young
3	none	reduced	yes	myope	young
4	hard	normal	yes	myope	young
5	none	reduced	no	hypermetrope	young

Output 2 (Information Gain)

	lenses	tear_rate	astigmatic	prescription	age
1	none	reduced	no	myope	young
2	soft	normal	no	myope	young
3	none	reduced	yes	myope	young
4	hard	normal	yes	myope	young
5	none	reduced	no	hypermetrope	young

Output 3 (Random Features)

	lenses	astigmatic	tear_rate	prescription	age
1	none	no	reduced	myope	young
2	soft	no	normal	myope	young
3	none	yes	reduced	myope	young
4	hard	yes	normal	myope	young
5	none	no	reduced	hypermetrope	young

b. Preprocessing (Orange Tool) Exercises

1) Replace missing values by the mean of the values of records having same class value. Display the entire data after replacement.

Input

Process

Output

2) Perform binning(3 bins) for the attribute AnnouncementsView.

Input

	Gender	InnouncementsView	NationalITy	PlaceofBirth	StageID	GradeID	SectionID
1	M	2	KW	KuwalT	lowerlevel	G-04	Α
2	M	3	KW	KuwalT	lowerlevel	G-04	Α
3	M	0	KW	KuwalT	lowerlevel	G-04	Α
4	M	5	KW	KuwalT	lowerlevel	G-04	Α
5	M	12	KW	KuwalT	lowerlevel	G-04	Α
6	F	13	KW	KuwalT	lowerlevel	G-04	Α
7	M	?	KW	KuwalT	MiddleSchool	G-07	Α

Output

Info

480 instances (no missing data) 18 features No target variable. No meta attributes.

	Gender	InnouncementsView	NationalITy	PlaceofBirth	StageID	GradeID	SectionID
1	M	2	KW	KuwalT	lowerlevel	G-04	Α
2	М	3	KW	KuwalT	lowerlevel	G-04	Α
3	М	0	KW	KuwalT	lowerlevel	G-04	Α
1	M	5	KW	KuwalT	lowerlevel	G-04	Α
5	M	12	KW	KuwalT	lowerlevel	G-04	Α
5	F	13	KW	KuwalT	lowerlevel	G-04	Α
7	M	38.03	KW	KuwalT	MiddleSchool	G-07	Α

	Gender	vnnouncementsView	NationalITy	PlaceofBirth	StageID	GradeID	SectionID
1	М	< 20	KW	KuwalT	lowerlevel	G-04	A
2	М	< 20	KW	KuwalT	lowerlevel	G-04	Α
3	М	< 20	KW	KuwalT	lowerlevel	G-04	Α
4	M	< 20	KW	KuwalT	lowerlevel	G-04	Α
5	М	< 20	KW	KuwalT	lowerlevel	G-04	Α
6	F	< 20	KW	KuwalT	lowerlevel	G-04	Α
7	M	20 - 40	KW	KuwalT	MiddleSchool	G-07	Α

3) Remove redundant variables/features having high correlation.

Input

	Gender	NationalITy	d
1	М	KW	20
2	M	KW	25
3	M	KW	30
4	M	KW	35
5	M	KW	50

Output

🚧 Correlations - Orange

(All combinations)							
ilte 1	+1.000	Discussion	d				
2	+0.692	VislTedResources	raisedhands				
3	+0.643	AnnouncementsView	raisedhands				
4	+0.590	AnnouncementsView	VislTedResources				
5	+0.414	AnnouncementsView	d				
6	+0.414	AnnouncementsView	Discussion				
7	+0.339	d	raisedhands				
В	+0.339	Discussion	raisedhands				
9	+0.243	VislTedResources	d				
10	+0.243	Discussion	VislTedResources				

	Gender	NationalITy	PlaceofBirth
1	М	KW	KuwalT
2	M	KW	KuwalT
3	M	KW	KuwalT
4	M	KW	KuwalT
5	М	KW	KuwalT

4) Select important variables/features using Information gain and gain ratio.

Input

Process

Output

5) Perform normalization [-1,1] on the attribute raisedhands. Input

	raisedhands	Gender	NationalITy	PlaceofBirth	StageID	GradeID
1	15	M	KW	KuwalT	lowerlevel	G-04
2	20	M	KW	KuwalT	lowerlevel	G-04
3	10	М	KW	KuwalT	lowerlevel	G-04
4	30	М	KW	KuwalT	lowerlevel	G-04
5	40	М	KW	KuwalT	lowerlevel	G-04

Output

	raisedhands	Gender	NationalITy	PlaceofBirth	StageID	GradeID
1	-0.70	М	KW	KuwalT	lowerlevel	G-04
2	-0.60	M	KW	KuwalT	lowerlevel	G-04
3	-0.80	М	KW	KuwalT	lowerlevel	G-04
4	-0.40	М	KW	KuwalT	lowerlevel	G-04
5	-0.20	М	KW	KuwalT	lowerlevel	G-04

6) Do a stratified random sampling to draw a sample size of approximately 100 out of the total records.

Input

	Class	Gender	NationalITy	PlaceofBirth	StageID	GradeID	SectionID
1	М	М	KW	KuwalT	lowerlevel	G-04	A
2	М	М	KW	KuwalT	lowerlevel	G-04	Α
3	L	М	KW	KuwalT	lowerlevel	G-04	Α
4	L	М	KW	KuwalT	lowerlevel	G-04	Α
5	М	М	KW	KuwalT	lowerlevel	G-04	Α

Process

Output

7) Partition the data into 2 data sets (60:40) using random partitioning.

Input

Output

Info
288 instances
17 features (0.1 % missing data)
Target with 3 values
No meta attributes.

	Class	Gender	NationalITy	PlaceofBirth	StageID	GradeID	SectionID
1	М	М	Jordan	Jordan	lowerlevel	G-02	A
2	M	М	Iraq	Iraq	MiddleSchool	G-08	A
3	M	М	Jordan	Jordan	MiddleSchool	G-08	Α
4	M	М	Jordan	Jordan	MiddleSchool	G-08	Α
5	Н	F	Jordan	Jordan	MiddleSchool	G-08	A

Info 192 instances 17 features (0.1 % missing data) Target with 3 values No meta attributes.

	Class	Gender	NationalITy	PlaceofBirth	StageID	GradeID	SectionID
1	M	М	KW	KuwalT	MiddleSchool	G-07	В
2	Н	F	lebanon	lebanon	lowerlevel	G-02	В
3	Н	М	Palestine	Jordan	lowerlevel	G-02	Α
4	L	М	Jordan	Jordan	lowerlevel	G-02	Α
5	L	М	KW	KuwalT	lowerlevel	G-02	В

Use mtcars data set to

1) Replace the missing data with the average/median of the feature wt.

Input

	mpg	cyl	disp	hp	drat	wt
1	21.0	6	160.0	110	3.90	2.620
2	21.0	6	160.0	110	3.90	2.875
3	22.8	4	108.0	93	3.85	2.320
4	21.4	6	258.0	110	3.08	3.215
5	18.7	8	360.0	175	3.15	3.440

Output

Info

32 instances (no missing data) 11 features No target variable. No meta attributes.

	mpg	cyl	disp	hp	drat	wt
1	21.0	6	160.0	110	3.90	2.620
2	21.0	6	160.0	110	3.90	2.875
3	22.8	4	108.0	93	3.85	2.320
4	21.4	6	258.0	110	3.08	3.215
5	18.7	8	360.0	175	3.15	3.440

2) Transform the numerical variable am to manual-0 and automatic-1.

Input

	am	mpg	cyl	disp	hp
1	1	21.0	6	160.0	110
2	1	21.0	6	160.0	110
3	1	22.8	4	108.0	93
4	0	21.4	6	258.0	110
5	0	18.7	8	360.0	175

Process

	am	mpg	cyl	disp	hp
1	Automatic	21.0	6	160.0	110
2	Automatic	21.0	6	160.0	110
3	Automatic	22.8	4	108.0	93
4	Manual	21.4	6	258.0	110
5	Manual	18.7	8	360.0	175

3) Transform the numerical variable gear by appending "gear" to the number of gears given in the feature.

	gear	mpg	cyl	disp	hp
1	4	21.0	6	160.0	110
2	4	21.0	6	160.0	110
3	4	22.8	4	108.0	93
4	3	21.4	6	258.0	110
5	3	18.7	8	360.0	175

Output

	gear	mpg	cyl	disp	hp
1	Gear 4	21.0	6	160.0	110
2	Gear 4	21.0	6	160.0	110
3	Gear 4	22.8	4	108.0	93
4	Gear 3	21.4	6	258.0	110
5	Gear 3	18.7	8	360.0	175

4) Add a new attribute Engine type based on the condition for the attribute vs (0 = V-shaped, 1 = straight).

Input

	mpg	cyl	disp	hp	drat
1	21.0	6	160.0	110	3.90
2	21.0	6	160.0	110	3.90
3	22.8	4	108.0	93	3.85
4	21.4	6	258.0	110	3.08
5	18.7	8	360.0	175	3.15

Info
32 instances (no missing data)
12 features
No target variable.
No meta attributes.

	Engine Type	mpg	cyl	disp	hp	
1	V-Shaped	21.0	6	160.0	110	
2	V-Shaped	21.0	6	160.0	110	
3	Straight	22.8	4	108.0	93	
4	Straight	21.4	6	258.0	110	
5	V-Shaped	18.7	8	360.0	175	

5) Scale the feature disp.

	mpg	cyl	disp	hp	drat
1	21.0	6	160.0	110	3.90
2	21.0	6	160.0	110	3.90
3	22.8	4	108.0	93	3.85
4	21.4	6	258.0	110	3.08
5	18.7	8	360.0	175	3.15

6) Split the dataset into 70% training data set and 30% test dataset

Info
32 instances (no missing data)
11 features
No target variable.
No meta attributes.

	mpg	cyl	disp	hp	drat	wt	qsec	VS	am	gear	carb
1	21.0	6	160.0	110	3.90	2.620	16.46	0	1	4	4
2	21.0	6	160.0	110	3.90	2.875	17.02	0	1	4	4
3	22.8	4	108.0	93	3.85	2.320	18.61	1	1	4	1
4	21.4	6	258.0	110	3.08	3.215	19.44	1	0	3	1
5	18.7	8	360.0	175	3.15	3.440	17.02	0	0	3	2
6	18.1	6	225.0	105	2.76	3.460	20.22	1	0	3	1

Output

Info

23 instances (no missing data) 11 features No target variable. No meta attributes.

Section II

a) Data Visualization (Orange Tool) Class Work

Use car.csv data set to

1) Plot a bar chart to compare the price of different makes of car.

Input

	Feature 1	make	fuel_type	aspiration	num_of_doors	body_style	drive_wheels
1	1	alfa-romero	gas	std	two	convertible	rwd
2	2	alfa-romero	gas	std	two	convertible	rwd
3	3	alfa-romero	gas	std	two	hatchback	rwd
4	4	audi	gas	std	four	sedan	fwd
5	5	audi	gas	std	four	sedan	4wd

Interpretation

- Chevrolet is the cheapest car out of the lot
- Average price of the cars is around 18000
- 2) Create a histogram for analyzing city mileage.

	Feature 1	make	fuel_type	aspiration	num_of_doors	body_style	drive_wheels
1	1	alfa-romero	gas	std	two	convertible	rwd
2	2	alfa-romero	gas	std	two	convertible	rwd
3	3	alfa-romero	gas	std	two	hatchback	rwd
4	4	audi	gas	std	four	sedan	fwd
5	5	audi	gas	std	four	sedan	4wd

- Less frequency of cars having mileage > 40
- Average Mileage ranges from 28 to 32

3) Create a histogram for analyzing price. Show a stacked column distribution with respect to fuel_type. Similarly create a histogram for price w.r.t body_style and price w.r.t engine_location. Write your inferences for price of cars w.r.t the above variables.

Input

	Feature 1	make	fuel_type	aspiration	num_of_doors	body_style	drive_wheels
1	1	alfa-romero	gas	std	two	convertible	rwd
2	2	alfa-romero	gas	std	two	convertible	rwd
3	3	alfa-romero	gas	std	two	hatchback	rwd
4	4	audi	gas	std	four	sedan	fwd
5	5	audi	gas	std	four	sedan	4wd

a) Stacked column distribution of price w.r.t fuel type.

- Low demand for diesel types
- Cost of gas type are higher

Histogram for price w.r.t body style.

- Hatchback and Sedan body styles has higher demand than others
- As price increases the demand for the hatchback decreases

Histogram of price with respect to engine location.

- Most cars has engine located at front
- Price of cars with engine at front are higher

4) Visualize a bar plot for engine_size Vs make. Similarly visualize a bar plot for city_mpg vs fuel_type and write your inferences.

Input

	Feature 1	make	fuel_type	aspiration	num_of_doors	body_style	drive_wheels
1	1	alfa-romero	gas	std	two	convertible	rwd
2	2	alfa-romero	gas	std	two	convertible	rwd
3	3	alfa-romero	gas	std	two	hatchback	rwd
4	4	audi	gas	std	four	sedan	fwd
5	5	audi	gas	std	four	sedan	4wd

Output 1 (Bar plot for engine_size vs fuel_type.)

Output 2 (Bar plot for city_mpg vs fuel_type.)

- Diesel cars have average mileage
- Cars on gas has mileage variations

5) Create a scatter plot for price, vs engine_size, w.r.t num_of_cylinders(color), aspiration(shape), wheel_base(size).

Input

	Feature 1	make	fuel_type	aspiration	num_of_doors	body_style	drive_wheels
1	1	alfa-romero	gas	std	two	convertible	rwd
2	2	alfa-romero	gas	std	two	convertible	rwd
3	3	alfa-romero	gas	std	two	hatchback	rwd
4	4	audi	gas	std	four	sedan	fwd
5	5	audi	gas	std	four	sedan	4wd

Interpretation

- Here, the size of the engine increases as the price increases
- Positive correlation
- 6) Create a boxplot for price w.r.t body_styles.

	Feature 1	make	fuel_type	aspiration	num_of_doors	body_style	drive_wheels
1	1	alfa-romero	gas	std	two	convertible	rwd
2	2	alfa-romero	gas	std	two	convertible	rwd
3	3	alfa-romero	gas	std	two	hatchback	rwd
4	4	audi	gas	std	four	sedan	fwd
5	5	audi	gas	std	four	sedan	4wd

7) Create a violin plot for price w.r.t aspiration.

	Feature 1	make	fuel_type	aspiration	num_of_doors	body_style	drive_wheels
1	1	alfa-romero	gas	std	two	convertible	rwd
2	2	alfa-romero	gas	std	two	convertible	rwd
3	3	alfa-romero	gas	std	two	hatchback	rwd
4	4	audi	gas	std	four	sedan	fwd
5	5	audi	gas	std	four	sedan	4wd

Output

8) Illustrate sieve diagram and mosaic display for city_mpg vs highway_mpg.

Input

	Feature 1	make	fuel_type	aspiration	num_of_doors	body_style	drive_wheels
1	1	alfa-romero	gas	std	two	convertible	rwd
2	2	alfa-romero	gas	std	two	convertible	rwd
3	3	alfa-romero	gas	std	two	hatchback	rwd
4	4	audi	gas	std	four	sedan	fwd
5	5	audi	gas	std	four	sedan	4wd

Output 1 (Sieve Diagram for city_mpg vs highway_mpg)

 $\chi^2 = 354.08, p = 0.000$

Output 2 (Mosaic Display for city_mpg vs highway_mpg)

Illustrate the following using diamonds data set

1) Create a histogram of "carat" w.r.t cut.

Input

	carat	cut	color	clarity	depth	table	price
1	0.23	Ideal	E	SI2	61.5	55.0	326
2	0.21	Premium	E	SI1	59.8	61.0	326
3	0.23	Good	E	VS1	56.9	65.0	327
4	0.29	Premium	1	VS2	62.4	58.0	334
5	0.31	Good	J	SI2	63.3	58.0	335

Interpretation

- Frequency of Ideal cuts are higher
- 2) Set the bin width of the histogram to 20.

	carat	cut	color	clarity	depth	table	price
1	0.23	Ideal	E	SI2	61.5	55.0	326
2	0.21	Premium	E	SI1	59.8	61.0	326
3	0.23	Good	E	VS1	56.9	65.0	327
4	0.29	Premium	I	VS2	62.4	58.0	334
5	0.31	Good	J	SI2	63.3	58.0	335

3) Make a scatterplot: carat vs price, set the color to clarity.

	carat	cut	color	clarity	depth	table	price
1	0.23	Ideal	E	SI2	61.5	55.0	326
2	0.21	Premium	E	SI1	59.8	61.0	326
3	0.23	Good	E	VS1	56.9	65.0	327
4	0.29	Premium	I	VS2	62.4	58.0	334
5	0.31	Good	J	SI2	63.3	58.0	335

4) Make a scatterplot: carat vs price, set the color to clarity. Also add regression line to the plot.

	carat	cut	color	clarity	depth	table	price
1	0.23	Ideal	E	SI2	61.5	55.0	326
2	0.21	Premium	E	SI1	59.8	61.0	326
3	0.23	Good	E	VS1	56.9	65.0	327
4	0.29	Premium	I	VS2	62.4	58.0	334
5	0.31	Good	J	SI2	63.3	58.0	335

5) For carat vs cut, make a violin and a boxplot.

	carat	cut	color	clarity	depth	table	price
1	0.23	Ideal	E	SI2	61.5	55.0	326
2	0.21	Premium	E	SI1	59.8	61.0	326
3	0.23	Good	E	VS1	56.9	65.0	327
4	0.29	Premium	I	VS2	62.4	58.0	334
5	0.31	Good	J	SI2	63.3	58.0	335

Output 1 (Violin plot)

Interpretation

Most diamonds have average average quality ideal cut

Output 2 (Box plot)

6) Illustrate Heat map and Venn Diagram using the data set.

	carat	cut	color	clarity	depth	table	price
1	0.23	Ideal	E	SI2	61.5	55.0	326
2	0.21	Premium	E	SI1	59.8	61.0	326
3	0.23	Good	E	VS1	56.9	65.0	327
4	0.29	Premium	I	VS2	62.4	58.0	334
5	0.31	Good	J	SI2	63.3	58.0	335

Output 1 (Heat map)

Output 2 (Venn Diagram)

7) Illustrate freeviz, linear projection and radviz using the data set.

Input

	carat	cut	color	clarity	depth	table	price
1	0.23	Ideal	E	SI2	61.5	55.0	326
2	0.21	Premium	E	SI1	59.8	61.0	326
3	0.23	Good	E	VS1	56.9	65.0	327
4	0.29	Premium	1	VS2	62.4	58.0	334
5	0.31	Good	J	SI2	63.3	58.0	335

Radviz

Freeviz

Linear projection

a Data Visualization (Weka)

1) Give a visualization of the distribution of Iris dataset w.r.t all the features

Rela	Relation: iris										
No.	. 1: sepallength Numeric	2: sepalwidth Numeric	3: petallength Numeric	4: petalwidth Numeric	5: class Nominal						
1	5.1	3.5	1.4	0.2	Iris-s						
2	4.9	3.0	1.4	0.2	Iris-s						
3	4.7	3.2	1.3	0.2	Iris-s						
4	4.6	3.1	1.5	0.2	Iris-s						
5	5.0	3.6	1.4	0.2	Iris-s						
6	5.4	3.9	1.7	0.4	Iris-s						
7	4.6	3.4	1.4	0.3	Iris-s						

Output

2) Display the plot matrix for the Iris data set Input

Relat	Relation: iris										
No.	1: sepallength Numeric	2: sepalwidth Numeric	3: petallength Numeric	4: petalwidth Numeric	5: class Nominal						
1	5.1	3.5	1.4	0.2	Iris-s						
2	4.9	3.0	1.4	0.2	Iris-s						
3	4.7	3.2	1.3	0.2	Iris-s						
4	4.6	3.1	1.5	0.2	Iris-s						
5	5.0	3.6	1.4	0.2	Iris-s						
6	5.4	3.9	1.7	0.4	Iris-s						
7	4.6	3.4	1.4	0.3	Iris-s						

Section III

a (Association Rule Mining -Class Work)

1) Generate association rules using Market Basket Data set in Orange Tool. Compare the different measures to assess the quality of rules.

Input

	Bread	Milk	Diapers	Beer	Eggs	Cola
1	1	1	?	?	?	?
2	1	?	1	1	1	?
3	?	1	1	1	?	1
4	1	1	1	1	?	?
5	1	1	1	?	?	1

Supp	Conf	Covr	Strg	Lift	Levr	Antecedent		Consequent
0.600	0.750	0.800	1.000	0.938	-0.040	Milk=1	→	Bread=1
0.600	0.750	0.800	1.000	0.938	-0.040	Bread=1	→	Milk=1
0.600	0.750	0.800	1.000	0.938	-0.040	Diapers=1	→	Bread=1
0.600	0.750	0.800	1.000	0.938	-0.040	Bread=1	→	Diapers=1
0.600	0.750	0.800	1.000	0.938	-0.040	Diapers=1	→	Milk=1
0.600	0.750	0.800	1.000	0.938	-0.040	Milk=1	→	Diapers=1
0.600	1.000	0.600	1.333	1.250	0.120	Beer=1	→	Diapers=1
0.600	0.750	0.800	0.750	1.250	0.120	Diapers=1	→	Beer=1

Interpretation

- There is a high chance that a person buying bread, diapers and egg will also buy beer.
- 2) Generate association rules using Food mart Data set in Orange Tool. Compare the different measures to assess the quality of rules.

Input

	₹}
62560	Frozen Vegetables=3, Clams=3, STORE_ID_24=1
62559	Flavored Drinks=4, Waffles=4, Canned Vegetables=3, Frozen Chicken=3, STORE_ID_24=1
62558	Soup=3, Fresh Vegetables=3, Donuts=3, STORE_ID_24=1
62557	Cleaners=4, Eggs=4, Fresh Fruit=3, Muffins=4, Tools=3, Sour Cream=5, Wine=5, STORE_ID_24=1
62556	Fresh Vegetables=3, Deli Meats=2, Flavored Drinks=3, Beer=3, Personal Hygiene=3, Lightbulbs=3, Computer M
62555	Milk=3, Eggs=5, Paper Wipes=2, Cottage Cheese=3, Pot Scrubbers=4, STORE_ID_24=1
62554	Cereal=3, Fresh Fruit=3, Popcorn=4, Muffins=3, Candles=4, Chocolate=3, STORE_ID_24=1

Supp	Conf	Covr	Strg	Lift	Levr	Antecedent		Consequent
0.050	0.287	0.175	1.619	1.017	0.001	Fresh Fruit	→	Fresh Vegetables
0.035	0.299	0.117	2.421	1.059	0.002	Dried Fruit	→	Fresh Vegetables
0.035	0.293	0.119	2.375	1.035	0.001	Soup	→	Fresh Vegetables
0.031	0.262	0.118	2.405	0.926	-0.002	Cheese	→	Fresh Vegetables
0.028	0.279	0.099	2.854	0.987	-0.000	STORE_ID_13	→	Fresh Vegetables
0.027	0.260	0.105	2.691	0.921	-0.002	Cookies	→	Fresh Vegetables
0.025	0.278	0.089	3.160	0.982	-0.000	STORE_ID_17	→	Fresh Vegetables
0.022	0.284	0.079	3.577	1.004	0.000	Paper Wipes	-	Fresh Vegetables
0.022	0.278	0.078	3.625	0.985	-0.000	Canned Vegetables	-	Fresh Vegetables
0.020	0.253	0.080	3.523	0.894	-0.002	Wine	→	Fresh Vegetables

3) Generate association rules using supermarket Data set in WEKA using Apriori algorithm.

Input


```
Size of set of large itemsets L(2): 498
Size of set of large itemsets L(3): 1959
Size of set of large itemsets L(4): 2888
Size of set of large itemsets L(5): 1679
Size of set of large itemsets L(6): 317
Size of set of large itemsets L(7): 11
Best rules found:
1. biscuits=t frozen foods=t pet foods=t milk-cream=t vegetables=t 516 ==> bread and cake=t 475
2. baking needs=t biscuits=t milk-cream=t margarine=t fruit=t vegetables=t 505 ==> bread and cake=t 464
3. biscuits=t frozen foods=t milk-cream=t margarine=t vegetables=t 585 ==> bread and cake=t 537
                                                              <conf: (0.92)
5. baking needs=t frozen foods=t milk-cream=t margarine=t fruit=t vegetables=t 517 ==> bread and cake=t 474
7. biscuits=t frozen foods=t tissues-paper prd=t milk-cream=t vegetables=t 575 ==> bread and cake=t 526
```

4) Generate association rules using supermarket Data set in WEKA using FP – growth Algorithm

Input

Relat	Relation: supermarket-weka.filters.unsupervised.attribute.Remove-R1-9,11,57,70,79-81,88-89,98,100-102,107-114,116-120,										
No.	1: grocery misc Nominal	2: baby needs Nominal	3: bread and cake Nominal	4: baking needs Nominal	5: coupons Nominal	6: juice-sat-cord-ms Nominal	7: tea Nominal	8: biscu Nomina			
1		t	t	t		t		t			
2											
3			t	t		t		t			
4			t	t		t		t			
5			t	t		t	t				
6			t	t		t	t	t			
7			t	t		t	t	t			


```
=== Run information ===
              weka.associations.FPGrowth -P 2 -I -1 -N 10 -T 0 -C 0.9 -D 0.05 -U 1.0 -M 0.1
Scheme:
             supermarket-weka.filters.unsupervised.attribute.Remove-R1-9,11,57,70,79-81,88-89,98,100-102,107-1
Relation:
              4627
Instances:
Attributes:
            105
              [list of attributes omitted]
=== Associator model (full training set) ===
FPGrowth found 101 rules (displaying top 10)
 1. [vegetables=t, milk-cream=t, frozen foods=t, biscuits=t, pet foods=t]: 516 ==> [bread and cake=t]: 475 <c
 2. [fruit=t, vegetables=t, milk-cream=t, baking needs=t, biscuits=t, margarine=t]: 505 ==> [bread and cake=t]:
 3. [vegetables=t, milk-cream=t, frozen foods=t, biscuits=t, margarine=t]: 585 ==> [bread and cake=t]: 537 <c
 4. [fruit=t, vegetables=t, frozen foods=t, biscuits=t, canned vegetables=t]: 536 ==> [bread and cake=t]: 492
 5. [fruit=t, vegetables=t, milk-cream=t, baking needs=t, frozen foods=t, margarine=t]: 517 ==> [bread and cake
 6. [fruit=t, milk-cream=t, frozen foods=t, biscuits=t, pet foods=t]: 511 ==> [bread and cake=t]: 468 <conf:(
 7. [vegetables=t, milk-cream=t, frozen foods=t, biscuits=t, tissues-paper prd=t]: 575 ==> [bread and cake=t]:
 8. [fruit=t, vegetables=t, frozen foods=t, biscuits=t, beef=t]: 536 ==> [bread and cake=t]: 490 <conf:(0.91)
 9. [fruit=t, baking needs=t, frozen foods=t, biscuits=t, cheese=t]: 538 ==> [bread and cake=t]: 491 <conf:(0
10. [fruit=t, milk-cream=t, frozen foods=t, biscuits=t, margarine=t]: 592 ==> [bread and cake=t]: 540 <conf:(
```

Interpretation

- There is a 92% probability that a person purchasing fruits, frozen food & biscuits may also purchase bread and cake.
- There is a 92% probability that a person purchasing fruits, baking needs and biscuits may also buy bread and cake.
- There is a 91% probability that a person buying fruits, snacks may also buy bread and cake.

b (Association Rule Mining -Class Work)

1) Generate association rules using Lenses Data set in Orange Tool

Input

	lenses	age	prescription	astigmatic	tear_rate
1	none	young	myope	no	reduced
2	soft	young	myope	no	normal
3	none	young	myope	yes	reduced
4	hard	young	myope	yes	normal
5	none	young	hypermetrope	no	reduced

Supp	Conf	Covr	Strg	Lift	Levr	Antecedent		
0.250	0.500	0.500	1.000	1.000	0.000	astigmatic=no	\rightarrow	prescription=hypermetrope
0.250	0.500	0.500	1.000	1.000	0.000	prescription=hypermetrope	\rightarrow	astigmatic=no
0.250	0.500	0.500	1.000	1.000	0.000	astigmatic=no	\rightarrow	prescription=myope
0.250	0.500	0.500	1.000	1.000	0.000	prescription=myope	\rightarrow	astigmatic=no
0.250	0.500	0.500	1.000	1.000	0.000	astigmatic=yes	\rightarrow	prescription=hypermetrope
0.250	0.500	0.500	1.000	1.000	0.000	prescription=hypermetrope	\rightarrow	astigmatic=yes
0.250	0.500	0.500	1.000	1.000	0.000	astigmatic=yes	→	prescription=myope

2) Generate association rules using Lenses Data set in WEKA using Apriori algorithm.

Input

Relation: contact-lenses										
No	1: age Nominal	2: spectacle-prescrip Nominal	3: astigmatism Nominal	4: tear-prod-rate Nominal	5: contact-lenses Nominal					
1	young	myope	no	reduced	none					
2	young	myope	no	normal	soft					
3	young	myope	yes	reduced	none					
4	young	myope	yes	normal	hard					
5	young	hypermetrope	no	reduced	none					
6	young	hypermetrope	no	normal	soft					
7	young	hypermetrope	yes	reduced	none					


```
Minimum support: 0.2 (5 instances)
Minimum metric <confidence>: 0.9
Number of cycles performed: 16
Generated sets of large itemsets:
Size of set of large itemsets L(1): 11
Size of set of large itemsets L(2): 21
Size of set of large itemsets L(3): 6
Best rules found:
2. spectacle-prescrip=myope tear-prod-rate=reduced 6 ==> contact-lenses=none 6 < conf:(1)> lift:(1.6) lev:(0.
3. spectacle-prescrip=hypermetrope tear-prod-rate=reduced 6 ==> contact-lenses=none 6 <conf:(1)> lift:(1.6)
5. astigmatism=yes tear-prod-rate=reduced 6 ==> contact-lenses=none 6
                                                            <conf:(1)> lift:(1.6) lev:(0.09) [2] c
6. contact-lenses=soft 5 ==> astigmatism=no 5 \langle conf:(1) \rangle lift:(2) lev:(0.1) [2] conv:(2.5)
7. contact-lenses=soft 5 ==> tear-prod-rate=normal 5 <conf:(1)> lift:(2) lev:(0.1) [2] conv:(2.5)
8. tear-prod-rate=normal contact-lenses=soft 5 ==> astigmatism=no 5
                                                           <conf:(1)> lift:(2) lev:(0.1) [2] conv:(
                                                          <conf:(1)> lift:(2) lev:(0.1) [2] conv:(
9. astigmatism=no contact-lenses=soft 5 ==> tear-prod-rate=normal 5
10. contact-lenses=soft 5 ==> astigmatism=no tear-prod-rate=normal 5 <conf:(1)> lift:(4) lev:(0.16) [3] conv:
```

Interpretation

- Tear production rate has been reduced significantly with a support of 100%
- 3) Generate association rules using Lenses Data set in WEKA using FP growth Algorithm

I	Relation: contact-lenses					
	No.	1: age Nominal	2: spectacle-prescrip Nominal	3: astigmatism Nominal	4: tear-prod-rate Nominal	5: contact-lenses Nominal
	1	young	myope	no	reduced	none
	2	young	myope	no	normal	soft
	3	young	myope	yes	reduced	none
	4	young	myope	yes	normal	hard
	5	young	hypermetrope	no	reduced	none
	6	young	hypermetrope	no	normal	soft
	7	young	hypermetrope	yes	reduced	none