Isotope	Practice	Worksheet
---------	----------	-----------

Name:

1.	Here a	are three isotopes of an element: ${}_{6}^{12}C$ ${}_{6}^{13}C$ ${}_{6}^{14}C$				
	a.	The element is:				
	b.	The number 6 refers to the				
	c. The numbers 12, 13, and 14 refer to the					
	d. How many protons and neutrons are in the first isotope?					
	e. How many protons and neutrons are in the second isotope?					
f. How many protons and neutrons are in the third isotope?						

2. Complete the following chart:

Isotope name	atomic #	mass #	# of protons	# of neutrons	# of electrons
92 uranium-235					
92 uranium-238					
5 boron-10					
5 boron-11					

Isotope Questions:

- 1. Naturally occurring europium (Eu) consists of two isotopes was a mass of 151 and 153. Europium-151 has an abundance of 48.03% and Europium-153 has an abundance of 51.97%. What is the atomic mass of europium?
- 2. Strontium consists of four isotopes with masses of 84 (abundance 0.50%), 86 (abundance of 9.9%), 87 (abundance of 7.0%), and 88 (abundance of 82.6%). Calculate the atomic mass of strontium.
- 3. Hydrogen is found primarily as two isotopes in nature. ¹₁H (1.0078 u) and ²₁H (2.0148 u). Calculate the percentage abundance of each isotope based on hydrogen's average atomic mass.
- 4. Lanthanium is composed of two isotopes $^{138}_{57}$ La (137.91 u) and $^{139}_{57}$ La (138.91 u). Look at the periodic table. What can you say about the abundance of $^{138}_{57}$ La?
- 5. Rubidium ignites spontaneously when exposed to oxygen to form rubidium oxide, Rb₂O. Rubidium exists as two isotopes: $^{85}_{37}$ Rb (84.91 u) and $^{87}_{37}$ Rb (86.91 u). If the average atomic mass of rubidium is 85.47 u determine the percentage abundance of $^{85}_{37}$ Rb?
- 6. Oxygen is composed of three isotopes $^{16}{_8}$ O (15.995 u), $^{17}{_8}$ O (16.999 u) and $^{18}{_8}$ O (17.999 u). One of these isotopes, $^{17}{_8}$ O, comprises of 0.04% of oxygen. Calculate the percentage abundance of the other two isotopes, using the average atomic mass of 15.9994 u.