```
Suggested code may be subject to a license | 03Akshay/assignments-1
1 import numpy as np
2 import pandas as pd
3 from sklearn.impute import SimpleImputer
4 from sklearn.preprocessing import LabelEncoder, MinMaxScaler
5 from sklearn.model_selection import train_test_split
{\tt 6 from sklearn.linear\_model import LogisticRegression}\\
7 from sklearn.metrics import accuracy_score
1 raw_train=pd.read_csv('train.csv')
2 raw_test=pd.read_csv('test.csv')
3 raw_train.head()
\overline{z}
         Loan_ID Gender Married Dependents Education Self_Employed ApplicantIncome
     0 LP001002
     1 LP001003
                     Male
                               Yes
                                                  Graduate
                                                                      No
                                                                                      4583
     2 LP001005
                    Male
                               Yes
                                             0
                                                  Graduate
                                                                                      3000
                                                                      Yes
                                                      Not
     3 LP001006
                                             0
                                                                      No
                                                                                      2583
                     Male
                               Yes
                                                  Graduate
     4 I P001008
                               Nο
                                             0
                                                  Graduate
                                                                      Nο
                                                                                      6000
                     Male
             Generate code with raw_train
                                             View recommended plots
                                                                            New interactive sheet
1 raw_test.tail()
            Loan_ID Gender Married Dependents Education Self_Employed ApplicantIncome
                                                         Not
     357 LP002971
                       Male
                                                                                        4009
                                 Yes
                                              3+
                                                                        Yes
                                                    Graduate
     358 LP002975
                                               0
                       Male
                                 Yes
                                                    Graduate
                                                                        No
                                                                                        4158
     359
         LP002980
                       Male
                                  No
                                               0
                                                    Graduate
                                                                         No
                                                                                        3250
     360 LP002986
                       Male
                                 Yes
                                               0
                                                    Graduate
                                                                        No
                                                                                        5000
     361 LP002989
                       Male
                                  Nο
                                                    Graduate
                                                                        Yes
                                                                                        9200
1 raw_train.nunique() # shows me all the unique ids present
    Loan ID
                          614
    Gender
                            2
    Married
                            2
    Dependents
                            4
    Education
                            2
    Self_Employed
    ApplicantIncome
    CoapplicantIncome
    LoanAmount
                          203
    Loan_Amount_Term
                           10
    ____Credit_History
                            2
    Property Area
                            3
    Loan_Status
    dtype: int64
1 raw_train.info()
    <class 'pandas.core.frame.DataFrame'>
    RangeIndex: 614 entries, 0 to 613
    Data columns (total 13 columns):
        Column
                             Non-Null Count
     #
                                             Dtype
     0
         Loan_ID
                             614 non-null
                                              object
                             601 non-null
     1
         Gender
                                             object
     2
         Married
                             611 non-null
                                             object
         Dependents
                             599 non-null
                                              object
         Education
                             614 non-null
                                              object
         Self_Employed
                             582 non-null
                                              object
         ApplicantIncome
                             614 non-null
         CoapplicantIncome 614 non-null
                                              float64
                             592 non-null
                                              float64
     8
         LoanAmount
         Loan_Amount_Term
                                              float64
                             600 non-null
        Credit_History
     10
                             564 non-null
                                              float64
                             614 non-null
     11 Property Area
                                             object
     12 Loan Status
                             614 non-null
                                             object
```

dtypes: float64(4), int64(1), object(8)

```
memory usage: 62.5+ KB
1 raw_train.shape

→ (614, 13)
1 # To copy all the data into a dataframe
2 train_df = raw_train.copy()
3 test_df = raw_test.copy()
1 train_df.info()
<<class 'pandas.core.frame.DataFrame'>
    RangeIndex: 614 entries, 0 to 613
    Data columns (total 13 columns):
     # Column
                       Non-Null Count Dtype
         Loan_ID 614 non-null
Gender 601 non-null
Married 611 non-null
Dependents 599 non-null
                                              object
                                              object
         Education 614 non-null Self_Employed 582 non-null
                                              object
                                              object
                            614 non-null
         ApplicantIncome
                                              int64
         CoapplicantIncome 614 non-null
                                              float64
         LoanAmount
                             592 non-null
                                              float64
         Loan_Amount_Term
                             600 non-null
                                              float64
     10 Credit_History
                             564 non-null
                                              float64
     11 Property_Area
                             614 non-null
                                              object
     12 Loan_Status
                             614 non-null
                                              object
    dtypes: float64(4), int64(1), object(8)
    memory usage: 62.5+ KB
1 test_df.info() # here you can see the loan_Status data is missing
<class 'pandas.core.frame.DataFrame'>
    RangeIndex: 362 entries, 0 to 361
    Data columns (total 12 columns):
                      Non-Null Count Dtype
     # Column
                           362 non-null
351 non-null
362 non-null
353 non-null
         Gender
                                              object
         Married
         Dependents
                                              object
         Education 362 non-null Self_Employed 339 non-null ApplicantIncome 362 non-null
                                              obiect
                                              obiect
                                              int64
         CoapplicantIncome 362 non-null
                                              int64
         LoanAmount
                             362 non-null
                                              int64
         Loan_Amount_Term
                             356 non-null
                                               float64
     10 Credit_History 333 non-null
                                              float64
                             362 non-null
     11 Property_Area
                                              object
    dtypes: float64(2), int64(3), object(7)
    memory usage: 34.1+ KB
1 # From the baove data frame i see that there is data of loan_status for training
2 # the test data dosent have the loan_status so we can only use it for predicition
```

Preprocessing

```
<class 'pandas.core.frame.DataFrame'>
    RangeIndex: 614 entries, 0 to 613
    Data columns (total 12 columns):
                           Non-Null Count Dtype
        Column
     0
        Loan ID
                           614 non-null
                                           object
         Gender
                          601 non-null
                                           object
         Married
                          611 non-null
                                           object
        Dependents
                          599 non-null
                                           object
        Education
                          614 non-null
                                           object
         Self_Employed
                           582 non-null
         ApplicantIncome 614 non-null
         CoapplicantIncome 614 non-null
                                           float64
        LoanAmount
                           592 non-null
                                           float64
        Loan_Amount_Term
                          600 non-null
                                           float64
     10 Credit_History
                           564 non-null
                                           float64
     11 Property_Area
                           614 non-null
                                          object
    dtypes: float64(4), int64(1), object(7)
    memory usage: 57.7+ KB
```

Dropping unncessary columns

Check for dupliates

						00 of 361 entries	Filter
dex	Gender	Married	Dependents	Education	Self_Employed	ApplicantIncome	Coapplicant
0	Male	Yes	0	Graduate	No	5720	
1	Male	Yes	1	Graduate	No	3076	
2	Male	Yes	2	Graduate	No	5000	
3	Male	Yes	2	Graduate	No	2340	
4	Male	No	0	Not Graduate	No	3276	
5	Male	Yes	0	Not Graduate	Yes	2165	
6	Female	No	1	Not Graduate	No	2226	
7	Male	Yes	2	Not Graduate	No	3881	
8	Male	Yes	2	Graduate	NaN	13633	
9	Male	No	0	Not Graduate	No	2400	
10	Male	No	0	Not Graduate	No	3091	
11	Male	Yes	1	Graduate	NaN	2185	
12	Male	No	3+	Graduate	No	4166	
13	Male	Yes	2	Graduate	NaN	12173	
14	Female	No	0	Graduate	No	4666	
15	Male	No	1	Graduate	No	5667	
16	Male	Yes	2	Graduate	No	4583	
17	Male	Yes	3+	Graduate	No	3786	
18	Male	Yes	0	Graduate	No	9226	
19	Male	No	0	Graduate	No	1300	
20	Male	Yes	1	Not Graduate	No	1888	
21	Female	No	3+	Not Graduate	No	2083	
22	NaN	No	0	Graduate	No	3909	
23	Female	No	0	Not Graduate	No	3765	
24	Male	Yes	0	Graduate	No	5400	
25	Male	No	0	Graduate	No	0	
26	Male	Yes	2	Graduate	No	4363	
27	Male	Yes	0	Graduate	No	7500	
28	Male	Yes	0	Graduate	No	3772	
29	Male	No	0	Graduate	No	2942	
30	Female	No	0	Not Graduate	No	2478	
31	Male	Yes	2	Graduate	No	6250	
32	Male	No	0	Graduate	No	3268	
33	Male	Yes	0	Graduate	No	2783	
34	Male	Yes	0	Graduate	No	2740	
35	Male	No	0	Graduate	No	3150	
36	Male	Yes	2	Graduate	NaN	7350	
37	Male	Yes	0	Graduate	Yes	2267	
38	Male	No	0	Graduate	Yes	5833	
39	Male	No	0	Graduate	No	3643	
40		Yes	0	Graduate	No	5629	
41	Female	No	0	Graduate	No	3644	
42	Male	Yes	0	Not Graduate	No	1750	
	Male	No	0	Graduate	No	6500	
44		No	0	Graduate	No	3666	
45 46		Yes	0 NaN	Graduate Not	No No	4260 4163	
47				Graduate Not			
	Male Male	No	0	Graduate Graduate	No No	2356 6792	
				Not			
49 50		Yes	1	Graduate Graduate	Yes	8000 2419	
51		Yes	3+	Not	No	3500	
			1	Graduate			
	Male	Yes	2	Graduate	No No	3500 4116	
54	Male	Yes	0	Graduate Not	Yes	5293	
				Graduate			
25	Male	No	0	Graduate	No	2750	
		No	0	Not	No	1	1

o AIV	1					Loan_Data_analysis	s.ipyrib - c
5/	iviaie	res	2	Graduate	NO	3073	d
58	Female	Yes	2	Graduate	No	2779	3
59	Male	Yes	3+	Graduate	No	4720	
60	Male	Yes	0	Not Graduate	No	2415	1
61	Male	Yes	0	Graduate	Yes	7016	
62	Female	No	2	Graduate	No	4968	
63	Female	No	0	Graduate	No	2101	1
64	Male	Yes	3+	Not Graduate	No	4490	
65	Male	Yes	0	Graduate	No	2917	3
66	Male	Yes	0	Not Graduate	No	4700	
67	Male	Yes	0	Graduate	No	3445	
68	Male	Yes	0	Graduate	No	7666	
69	Male	Yes	0	Graduate	No	2458	5
70	Female	No	NaN	Graduate	No	3250	
71	Male	No	0	Graduate	No	4463	
72	Male	Yes	1	Graduate	NaN	4083	1
73	Male	Yes	0	Graduate	Yes	3900	2
74	Male	Yes	0	Not Graduate	No	4750	3
75	Male	No	0	Graduate	No	3583	3
76	Male	Yes	0	Graduate	No	3189	2
77	Male	No	0	Graduate	Yes	6356	
78	Female	Yes	0	Graduate	No	7950	
79	Male	Yes	3+	Graduate	No	3829	1
80	Male	Yes	3+	Graduate	No	72529	
81	Male	Yes	2	Not Graduate	No	4136	
82	Male	Yes	0	Graduate	No	8449	
83	Male	Yes	0	Graduate	No	4456	
84	Male	Yes	2	Graduate	No	4635	8
85	Male	Yes	0	Graduate	No	3571	1
86	Male	No	0	Graduate	No	3066	
87	Male	No	2	Not Graduate	No	3235	2
88	Female	No	0	Graduate	NaN	5058	
89	Male	Yes	0	Graduate	Yes	3188	2
90	Male	Yes	3+	Graduate	No	13518	
91	Male	Yes	1	Graduate	No	4364	2
92	Male	Yes	2	Not Graduate	No	4766	1
93	Male	Yes	1	Graduate	No	4609	2
94	Female	Yes	3+	Graduate	No	6260	
95		Yes	1	Graduate	No	3333	4
96		Yes	0	Graduate	No	3500	3
97	Male	Yes	3+	Graduate	No	9719	
98	Male	Yes	3+	Graduate	No	6835	
99		No	0	Graduate	No	4452	
				0.00000	1.10	1102)

11.

Like what you see? Visit the <u>data table notebook</u> to learn more about interactive tables.

Misising Value analysis

```
1 train_df.isna().sum()
   Gender
                         13
    Married
    Dependents
                         15
    Education
                          a
    Self_Employed
                         32
    ApplicantIncome
                          0
    CoapplicantIncome
                          0
    LoanAmount
    Loan_Amount_Term
    Credit History
                         50
    Property_Area
    dtype: int64
```

When we find missing values we can either remove them or impute values like:

for all numeric values---> mean

for all Categorical values ---> mode

```
1 # to check which are numerical and whicha re categorical
2 train_df.info()
  <class 'pandas.core.frame.DataFrame'>
   RangeIndex: 614 entries, 0 to 613
   Data columns (total 11 columns):
       Column
                        Non-Null Count
                                       Dtype
                        601 non-null
       Gender
                                       object
       Married
                        611 non-null
                                       object
       Dependents
                                       object
                        599 non-null
                        614 non-null
       Education
                                       object
       Self_Employed
                        582 non-null
                                       object
       ApplicantIncome
                        614 non-null
                                       int64
       CoapplicantIncome 614 non-null
                                       float64
       LoanAmount
                         592 non-null
                                        float64
       Loan_Amount_Term
                        600 non-null
                                        float64
       Credit_History
                         564 non-null
                                       float64
    10 Property_Area
                         614 non-null
                                       object
   dtypes: float64(4), int64(1), object(6)
   memory usage: 52.9+ KB
1 train_df.columns
```

```
'Loan_Amount_Term', 'Credit_History', 'Property_Area'],
          dtype='object')
1 numeical_columns = ['ApplicantIncome','CoapplicantIncome','LoanAmount','Loan_Amount_Term'] # Removed extra space after 'LoanAmount'
2 cate_columns= ['Gender','Married','Dependents','Education','Self_Employed','Credit_History','Property_Area'] # Removed extra spaces :
1 cat_imputer = SimpleImputer(strategy="most_frequent")
2 cat_imputer.fit(train_df[cate_columns])
4 train_df[cate_columns] = cat_imputer.transform(train_df[cate_columns])
5 test_df[cate_columns] = cat_imputer.transform(test_df[cate_columns]) # Changed train_df to test_df to impute on the test data
1 num_imputer = SimpleImputer(strategy="mean")
2 num_imputer.fit(train_df[numeical_columns])
4 train_df[numeical_columns] = num_imputer.transform(train_df[numeical_columns])
5 test_df[numeical_columns] = num_imputer.transform(test_df[numeical_columns]) # Changed train_df to test_df to impute on the test data
1 train_df.isna().sum()
  Gender
    Married
                         0
    Dependents
    Education
                         0
    Self Employed
                         0
    ApplicantIncome
                         0
    CoapplicantIncome
                         0
    LoanAmount
                         0
    Loan_Amount_Term
                         0
    Credit_History
                         0
    Property_Area
    dtype: int64
```

Preprocessing

1 train_df.head()

$\overline{\Rightarrow}$		Gender	Married	Dependents	Education	Self_Employed	ApplicantIncome	Coapplican
	0	Male	No	0	Graduate	No	5849.0	
	1	Male	Yes	1	Graduate	No	4583.0	
	2	Male	Yes	0	Graduate	Yes	3000.0	
	3	Male	Yes	0	Not Graduate	No	2583.0	

1 train_df.head()

$\overline{\Rightarrow}$		Gender	Married	Dependents	Education	Self_Employed	ApplicantIncome	LoanAmount
	0	Male	No	0	Graduate	No	5849.0	146.412162
	1	Male	Yes	1	Graduate	No	9107.0	128.000000
	2	Male	Yes	0	Graduate	Yes	3000.0	66.000000
	3	Male	Yes	0	Not Graduate	No	9657.0	120.000000

Next steps: Generate code with train_df View recommended plots New interactive sheet

1 test_df.tail()

```
Gender Married Dependents Education Self_Employed ApplicantIncome LoanAmou
                                                                         5786.0
 357
        Male
                                                          Yes
                                                                                       113
                   Yes
                                3+
                                      Graduate
                                                                         4867 0
 358
        Male
                   Yes
                                 0
                                      Graduate
                                                           Nο
                                                                                       115
 359
        Male
                                 0
                                      Graduate
                                                                         5243.0
                                                                                       126
 360
        Male
                   Yes
                                 0
                                      Graduate
                                                           No
                                                                         7393.0
                                                                                       158
4
```

```
1 # Application of label_encoder
```

7/26/24, 1:06 AM

```
Gender 2
Married 2
Dependents 4
Education 2
Self_Employed 2
ApplicantIncome 583
LoanAmount 204
Loan_Amount_Term 11
Credit_History 2
Property_Area 3
dtype: int64
```

1 train_df.Dependents.unique()

```
→ array(['0', '1', '2', '3+'], dtype=object)
```

1 train_df.Property_Area.unique()

```
= array(['Urban', 'Rural', 'Semiurban'], dtype=object)
```

```
1 for col in cate_columns:
```

- 2 train_df[col] = LabelEncoder().fit_transform(train_df[col])
- 3 test_df[col] = LabelEncoder().fit_transform(test_df[col])

4

1 train_df.head()

$\overline{\Rightarrow}$		Gender	Married	Dependents	Education	Self_Employed	ApplicantIncome	LoanAmount	Loan_Amount_Term	Credit_History	Property_Ar
	0	1	0	0	0	0	5849.0	146.412162	360.0	1	
	1	1	1	1	0	0	9107.0	128.000000	360.0	1	
	2	1	1	0	0	1	3000.0	66.000000	360.0	1	
	3	1	1	0	1	0	9657.0	120.000000	360.0	1	
	4	1	0	0	0	0	6000.0	141.000000	360.0	1	
	4)

```
Next steps: Generate code with train_df View recommended plots New interactive sheet
```

- 1 # log transformation
- 2 train_df[numeical_columns]= np.log(train_df[numeical_columns])
- 3 test_df[numeical_columns] = np.log(test_df[numeical_columns])

Scaling

```
1 min_max_scaler = MinMaxScaler()
2 train_df = min_max_scaler.fit_transform(train_df)
3 test_df = min_max_scaler.transform(test_df)
```

Building the Model

```
1 X_train, X_test, y_train, y_test = train_test_split(train_df, train_y, test_size=0.2, random_state=42)
1 log = LogisticRegression()
```

```
2 log.fit(X_train, y_train)
```

² train_df.nunique()

¹ numeical_columns.remove('CoapplicantIncome')

```
* LogisticRegression
LogisticRegression()

1 y_pred_test = log.predict(X_test) # predicted values

1 acc = accuracy_score(y_test, y_pred_test)
2 acc

0.7886178861788617
```