

DTIC FILE COPY

(1)

TECHNICAL REPORT BRL-TR-3100

BRL

AD-A222 621

EFFECT OF INITIAL CONDITIONS ON
THE DEVELOPMENT OF TWO-PHASE JETS

CSABA K. ZOLTANI
ALI F. BICEN

APRIL 1990

DTIC
ELECTED
JUN 13 1990
S D
Co B

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

U.S. ARMY LABORATORY COMMAND

BALLISTIC RESEARCH LABORATORY
ABERDEEN PROVING GROUND, MARYLAND

90 06 11 155

NOTICES

Destroy this report when it is no longer needed. DO NOT return it to the originator.

Additional copies of this report may be obtained from the National Technical Information Service, U.S. Department of Commerce, 5285 Port Royal Road, Springfield, VA 22161.

The findings of this report are not to be construed as an official Department of the Army position, unless so designated by other authorized documents.

The use of trade names or manufacturers' names in this report does not constitute indorsement of any commercial product.

UNCLASSIFIED

REPORT DOCUMENTATION PAGE			Form Approved OMB No. 0704-0188
<p>Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1202, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.</p>			
1. AGENCY USE ONLY (Leave blank)	2. REPORT DATE	3. REPORT TYPE AND DATES COVERED	
	APRIL 1990	Final	Jan 89 - Dec 89
4. TITLE AND SUBTITLE		5. FUNDING NUMBERS	
Effect of Initial Conditions on the Development of Two-Phase Jets		1L161102AH43	
6. AUTHOR(S)			
Csaba K. Zoltani and Ali F. Bicen			
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)		8. PERFORMING ORGANIZATION REPORT NUMBER	
9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)		10. SPONSORING / MONITORING AGENCY REPORT NUMBER	
USA Ballistic Research Laboratory ATTN: SLCBR-DD-T Aberdeen Proving Ground, MD 21005-5066		BRL-TR-3100	
11. SUPPLEMENTARY NOTES			
12a. DISTRIBUTION / AVAILABILITY STATEMENT		12b. DISTRIBUTION CODE	
Approved for Public Release - Distribution Unlimited			
13. ABSTRACT (Maximum 200 words) The results of an experimental investigation into the behavior of an unconfined, steady, fully turbulent, two-phase jet of diameter of 12.7 mm at the exit, with an exit flow velocity of 50 m/s and containing particles with a mass density of loading of 1.5% is described. The second phase consisted of glass beads 80 μm in diameter. Velocity profiles in a plane parallel to the exit of the jet at several downstream stations, as well as the rms values, turbulent intensity and velocity cross correlations were measured for both phases. The radial rms velocities of the particles, although similar to those of the fluid, were found to be surprisingly higher than for a jet of 25.4 mm in diameter with a lower exit velocity. Measurements of the particle velocities were extremely sensitive to changes in the upstream boundary conditions. <i>K. C. Zoltani</i>			
14. SUBJECT TERMS		15. NUMBER OF PAGES	
Laser Doppler Anemometry, Two Phase Flow		24	
		16. PRICE CODE	
17. SECURITY CLASSIFICATION OF REPORT	18. SECURITY CLASSIFICATION OF THIS PAGE	19. SECURITY CLASSIFICATION OF ABSTRACT	20. LIMITATION OF ABSTRACT
UNCLASSIFIED	UNCLASSIFIED	UNCLASSIFIED	SAR

INTENTIONALLY LEFT BLANK.

TABLE OF CONTENTS

	Page
Table of Contents.....	3
List of Illustrations.....	5
Nomenclature.....	7
I. Introduction.....	9
II. Experimental System and Flow Conditions.....	9
III. Results and Discussion.....	11
IV. Conclusions.....	12
References.....	13
Figures.....	14
Distribution List.....	21

Accession For	
NTIS GRA&I	<input checked="" type="checkbox"/>
DTIC TAB	<input type="checkbox"/>
Unannounced	<input type="checkbox"/>
Justification _____	
By _____	
Distribution/ _____	
Availability Codes	
Dist	Avail and/or Special
A-1	

INTENTIONALLY LEFT BLANK.

LIST OF ILLUSTRATIONS

Figure	Page
1. Size distribution of glass beads.....	14
2. Effect of trigger level on "cross-talk"..... (a) low trigger level (b) medium trigger level (c) high trigger level	15
3. Centerline distribution of streamwise velocities of single-phase and particle flows.....	16
4. Radial distributions of streamwise velocities of single-phase and particle flows at $z/D = 1$	17
5. Radial distributions of streamwise velocities of single-phase and particle flows at $z/D = 9$	18
6. Radial distributions of streamwise velocities of single-phase and particle flows at $z/D = 18$	19

IINTENTIONALLY LEFT BLANK.

NOMENCLATURE

- D jet pipe diameter
 d_p particle diameter
L upstream pipe length
 l_e integral length scale
 Re_p particle Reynolds number
 r radial coordinate
 S_e mean Stokes number at jet exit
 S_m mean Stokes number
 t_m time scale of mean flow
 t_p particle time constant
U streamwise fluid mean velocity
 U_0 bulk velocity of fluid at exit
 U_{om} peak streamwise mean velocity of fluid at exit
 U_p streamwise mean velocity of particles
 u streamwise rms velocity of fluid
 u_p streamwise rms velocity of particles
 z streamwise coordinate
 ν_f kinematic viscosity of fluid
 ρ_p particle density
 ρ fluid density

IINTENTIONALLY LEFT BLANK.

I. INTRODUCTION

Experimental verification of the predictions of advanced models of the ballistic cycle, Reference 1, lags far behind the results of parametric studies which increased computer power has made available to modelers. Until recently, beside wall temperature surveys and pressure measurements, little of the emerging non-intrusive technologies have been applied to the hostile environment of the flow in a gun tube.

Erosion in gun tubes, where the presence of propellant particles is thought to play a role, is a case in point. Neither the trajectories nor the distribution of the particulates in a fast convecting flow are known with any degree of certainty. The role of the particles in the generation and/or damping of turbulence is also an open issue. In view of the importance of turbulence on the level of heat transfer, this too is a vital, but as yet unresolved question.

Laser Doppler Velocimetry, Particle Image Velocimetry, holographic flow surveys, just to mention a few of the newer technologies have, as yet, found few practitioners in the ballistic diagnostic field. These approaches promise to add considerable information to our understanding of the basic physics of the ballistic cycle. It is with this in mind that the experiments described in this report were undertaken.

The earlier measurements obtained in a two-phase, unconfined jet of 25.4 mm diameter and peak exit velocity of 20 m/s with glass beads of mean diameter of 80 μm at a mass loading of 1.5% are reported in References 2 and 3. This study was undertaken in a similar arrangement comprising a smaller jet of 12.7 mm diameter and a peak exit velocity of 25 m/s laden with the same particles at two mass loadings of 1% and 5%. The results are compared with those of References 2 and 3 to quantify the effect of upstream boundary conditions, more specifically the L/D ratio, on the development of the two-phase jet.

The experimental system and the flow conditions considered are described in the following section. Section 3 presents and discusses the results and the report ends with a summary of the main findings in Section 4.

II. EXPERIMENTAL SYSTEM AND FLOW CONDITIONS

A detailed description of the experimental system is given in Reference 2. Briefly, the jet issued vertically downward from a pipe of 12.7 mm in diameter and 0.56 m in length giving an L/D ratio of 44. The air to the jet was supplied from a blower, controlled by means of a set of valves and monitored by a rotameter. The peak jet velocity at the exit was 25 m/s and the corresponding Reynolds number was around 17,500 based on the exit bulk velocity of about 21.5 m/s. The time scale of the flow at the exit, equation 1, was around 0.6 ms compared to that of the 80 μm glass bead particles of around 50 ms, equation 2.

$$t_m = D/U_0 , \quad (1)$$

$$t_p = d_p^2(1 + 2\rho_p/\rho)/36\nu_f . \quad (2)$$

The resulting mean Stokes number at the exit, Eq. 3, and those at downstream locations defined by Eq. 4 (Reference 4), were always less than unity so that the particles were considered to be unresponsive to the mean flow and a slip between the two phases was expected.

$$S_e = (D/U_0) / t_\rho . \quad (3)$$

$$S_m = S_e^{(1/6.57)} (z/D)^2 . \quad (4)$$

The glass beads of $80 \mu\text{m}$ mean diameter and 2950 kg/m^3 density were introduced in a plenum upstream of the jet pipe by means of a rotating brush/piston assembly at mass loadings of 1% and 5%; the 5% loading represented the maximum limit achievable with this arrangement under present flow conditions. The particle loading was controlled by the speed of the piston driven by a variable speed motor. The size distribution of the glass beads is shown in Figure 1. The majority of the particles had a diameter in the range of $65\text{--}90 \mu\text{m}$ so that the effect associated with polydispersed particles was minimized. For single phase flow measurements the particle disperser was used to seed the flow with titanium dioxide particles of micron size. Velocity measurements obtained with these particles in the absence of glass beads are assumed to approximate those of the carrier phase.

The velocity of the fluid and particle flow was measured by a dual-beam laser Doppler velocimeter operated in back-scatter mode. The detailed characteristics of the optical arrangement are given in Reference 2. When measuring particle velocity, in order to reduce the probability of "cross-talk" due to small particles, both the laser power and the amplifier gain were turned down to reduce the amplitude of the signal from the micron particles by at least a factor of ten. In this way the trigger level of the signal processor was effectively increased by the same factor, thereby reducing the possibility of measuring the amplitude signals which were mainly due to micron size particles.

The effect of the trigger level on the "cross-talk" phenomenon is demonstrated in Figure 2. It shows three velocity pdf's obtained with different trigger-level settings at a downstream location of $z/D = 17$ where the particles were expected to lead the fluid. Increasing the trigger level reduces the probability of lower velocities associated with the carrier phase. For the measurements of particle velocity, therefore, a high trigger-level setting was employed. In addition the test rig was thoroughly cleaned prior to measurements to minimize the residue of titanium dioxide particles.

The major sources of error associated with velocity measurements were due to finite-size statistics and velocity gradient broadening effects; see for example Reference 5. The overall error in the mean velocity is estimated to be of the order of 3% and around 10% for the rms velocity.

III. RESULTS AND DISCUSSION

The velocity results are presented in Figures 3 - 6 in the form of centerline and radial distributions and are all normalized by the peak mean velocity of fluid at the exit, U_{om} . This allows a clear description of the jet velocity decay and also gives a better comparison between the particles and fluid flow velocities.

It was assumed that for the relatively dilute concentrations considered, the single-phase flow results closely approximate those of the carrier phase. The degree of influence of the particles on the carrier phase flow depends on the size and concentration of particles and the slip velocity between the two phases. Reference 6, for example, indicates that for particle diameter to turbulent length scale ratios, d_p/l_e , of 0.001 to 0.1, the change in fluid turbulent intensity caused by the presence of particles is generally small and the results of Reference 4 show almost identical velocity characteristics for the fluid flow with and without the particles at mass loadings up to 20%. It is also expected that for particle Reynolds numbers (see Eq. 5) less than 110 as in the present case ($Re_p < 40$) no vortex shedding downstream of the particle would occur, Reference 7, to enhance the turbulence of the carrier phase.

$$Re_p = (U_p - U)d_p/\nu_f \quad (5)$$

Figure 3 shows the centerline distributions of the streamwise mean and rms velocity for the fluid and particle flow mass loadings of 1% and 5%. The glass beads lagged the fluid near the exit. The lag decreased from around 25% at the exit to zero at about $z/D = 7$. At locations downstream of $z/D = 7$ the particles led the fluid and the lead increased to around 40% at $z/D = 19$. Increasing particle loading from 1% to 5% had no significant effect on velocity characteristics. With mass loading of 5%, the momentum flow rate of particles is not high enough to cause a significant change in the flow and the particle-to-particle interaction is still negligible at this loading. In parallel with the results of References 3 and 4 the particles rms velocities were higher at the exit, up to 3 times, than the corresponding fluid values mainly due to the "fan-spreading" effect described in those references. Downstream of the exit and as the "fan-spreading" effect diminished, for $z/D > 5$, the particle rms velocities became lower than those of the fluid since they were unresponsive to both the mean flow and the turbulence. At $z/D > 14$, however, the two rms values were surprisingly comparable. This may probably be due to the bouncing of the glass beads off the bottom panel of the jet enclosure. This phenomenon needs to be checked, and the use of a PIV technique may provide insight in this respect.

Figures 4 - 6 show the radial profiles of the streamwise mean and rms velocity of the single-phase flow and the particles with 1% mass loading at $z/D = 1, 9$ and 18 respectively. Consistent with Figure 3, the particle mean velocities near the jet core at $z/D = 1$ were lower, the rms velocities higher and the profiles flatter than those of the fluid. The particle lag of 25% on the centerline compares with that of 8% with the 25.4

mm jet and a peak exit velocity of 20 m/s of Reference 3. This is partly due to the difference between the two exit Stokes numbers. The exit Stokes number here was 0.01 compared to 0.03 in Reference 3; with lower Stokes number more slip between the phases is expected. The main reason, however, is associated with differences in the two upstream boundary conditions. The L/D ratio in Reference 3 was around 22 as opposed to 44 here and the flow was consequently not fully developed pipe flow observed here.

Figures 5 and 6 are also consistent with Figure 3 and show that the particles led the fluid, the lead was more pronounced at $z/D = 18$ and the particle rms levels were lower at $z/D = 9$ but comparable at $z/D = 18$ to those of the fluid.

IV. CONCLUSIONS

Measurements in an unconfined, axisymmetric jet with 1% and 5% mass loadings of 80 μm particles were carried out by laser Doppler velocimetry and the results compared to those of References 2 and 3 to quantify the effect of upstream boundary conditions on velocity characteristics. The most important findings were as follows:

The particles lagged the fluid by 25% near the exit but later led it by about 40% at 18 jet diameters downstream. The particle rms velocities near the exit were higher by a factor of three than the fluid values due to the "fan-spreading" effect.

The particle lag at the exit was three times more than that of Reference 3 mainly due to the difference between the two upstream L/D ratios. In the present case the L/D ratio was 44 compared to 22 of Reference 3 and consequently the flow in the upstream pipe was more fully developed.

Increasing the particle loading from 1% to 5%, the upper limit achievable with the present system, did not cause any significant effect on the development of two-phase jet.

There are several implications of these results for ballistic submodels. Early on, in their passage down the tube, the particles will be lagging the carrier phase. This trend will reverse as time progresses. This suggests that the particle drag models may need to be reexamined. The particle rms velocities, i.e. turbulence, will be considerably higher than that of the fluid during the initial phase. Clearly, the turbulence of the second phase can not be neglected. The "fan-spreading" effect will influence the migration of the particles, with effect on the boundary layer development and thus the heat transfer to the tube walls. As yet, none of these observations can be deduced from current ballistic models. Their modification is a task which need to be addressed soon.

REFERENCES

1. Horst, A.W., Keller, G.E., Gough, P.S., "New Directions in Multiphase Flow Interior Ballistic Modeling," to appear in Proc. 11th International Symposium on Ballistics.
2. Zoltani, C.K., Bicen, A.F., "Velocity Characteristics of Single-Phase and Particle-Laden Jet Flows," BRL TR-3005, June 1989.
3. Zoltani, C.K., Bicen, A.F. "Velocity Measurements in a Turbulent, Dilute, Two-Phase Jet," to appear in Experiments in Fluids, 1990.
4. Hardalupas, Y., Taylor, A.M.K.D., Whitelaw, J.H., "Velocity and Particle-Flux Characteristics of Particle-Laden Jets," Imperial College, Mech. Eng. Dept. Report FS/87/14, 1987.
5. Durst, F., Melling, A., Whitelaw, J.H., "Principles and Practice of Laser-Doppler Anemometry," 2nd Ed., Academic Press, New York, 1981.
6. Gore, R.A., Crowe, C.T., "Effect of Particle Sizing on Modulating Turbulent Intensity," Int. J. Multiphase Flow, Vol. 15, No. 2, 1989.
7. Hetsroni, G., "Particles-Turbulence Interaction," Int. J. Multiphase Flow, Vol. 15, No. 5, 1989.

Figure 1. Size distribution of glass beads

Figure 2. Effect of trigger level on "cross-talk"

- (a) low trigger level
- (b) medium trigger level
- (c) high trigger level

Figure 3. Centerline distributions of streamwise velocities of single-phase and particle flows

Figure 4. Radial distributions of streamwise velocities of single-phase and particle flows at $z = 1D$

Figure 5. Radial distributions of streamwise velocities of single-phase and particle flows at $z/D = 9$

Figure 6. Radial distributions of streamwise velocities of single-phase and particle flows at $z/D = 18$

IINTENTIONALLY LEFT BLANK.

<u>No of Copies</u>	<u>Organization</u>	<u>No of Copies</u>	<u>Organization</u>
1	Office of the Secretary of Defense OUSD(A) Director, Live Fire Testing ATTN: James F. O'Bryon Washington, DC 20301-3110	1	Director US Army Aviation Research and Technology Activity Ames Research Center Moffett Field, CA 94035-1099
2	Administrator Defense Technical Info Center ATTN: DTIC-DDA Cameron Station Alexandria, VA 22304-6145	1	Commander US Army Missile Command ATTN: AMSMI-RD-CS-R (DOC) Redstone Arsenal, AL 35898-5010
1	HQDA (SARD-TR) WASH DC 20310-0001	1	Commander US Army Tank-Automotive Command ATTN: AMSTA-TSL (Technical Library) Warren, MI 48397-5000
1	Commander US Army Materiel Command ATTN: AMCDRA-ST 5001 Eisenhower Avenue Alexandria, VA 22333-0001	1	Director US Army TRADOC Analysis Command ATTN: ATAA-SL White Sands Missile Range, NM 88002-5502
1	Commander US Army Laboratory Command ATTN: AMSLC-DL Adelphi, MD 20783-1145	(Class. only) 1	Commandant US Army Infantry School ATTN: ATSH-CD (Security Mgr.) Fort Benning, GA 31905-5660
2	Commander US Army, ARDEC ATTN: SMCAR-IMI-I Picatinny Arsenal, NJ 07806-5000	(Unclass. only) 1	Commandant US Army Infantry School ATTN: ATSH-CD-CSO-OR Fort Benning, GA 31905-5660
2	Commander US Army, ARDEC ATTN: SMCAR-TDC Picatinny Arsenal, NJ 07806-5000	1	Air Force Armament Laboratory ATTN: AFATL/DLODL Eglin AFB, FL 32542-5000
1	Director Benet Weapons Laboratory US Army, ARDEC ATTN: SMCAR-CCB-TL Watervliet, NY 12189-4050		<u>Aberdeen Proving Ground</u>
1	Commander US Army Armament, Munitions and Chemical Command ATTN: SMCAR-ESP-L Rock Island, IL 61299-5000	2	Dir, USAMSAA ATTN: AMXSY-D AMXSY-MP, H. Cohen
1	Commander US Army Aviation Systems Command ATTN: AMSAV-DACL 4300 Goodfellow Blvd. St. Louis, MO 63120-1798	1	Cdr, USATECOM ATTN: AMSTE-TD
		3	Cdr, CRDEC, AMCCOM ATTN: SMCCR-RSP-A SMCCR-MU SMCCR-MSI
		1	Dir, VLAMO ATTN: AMSLC-VL-D

<u>No. of Copies</u>	<u>Organization</u>	<u>No. of Copies</u>	<u>Organization</u>
1	Commander USA Concepts Analysis Agency ATTN: D. Hardison 8120 Woodmont Avenue Bethesda, MD 20014-2797	3	PEO-Armaments Project Manger Tank Main Armament Systems ATTN: AMCPM-TMA, K. Russell AMCPM-TMA-105 AMCPM-TMA-120 Picatinny Arsenal, NJ 07806-5000
1	C.I.A. 01R/DB/Standard Washington, DC 20505	1	Commander Armament RD&E Center US Army AMCCOM ATTN: SMCAR-AEE Picatinny Arsenal, NJ 07806-5000
1	US Army Ballistic Missile Defense Systems Command Advanced Technology Center P.O. Box 1500 Huntsville, AL 35807-3801	8	Commander Armament RD&E Center US Army AMCCOM ATTN: SMCAR-AEE-B A. Beardell B. Brodman D. Downs S. Einstein S. Westley S. Bernstein C. Roller J. Rutkowski Picatinny Arsenal, NJ 07806-5000
1	Chairman DoD Explosives Safety Board Room 856-C Hoffman Bldg. 1 2461 Eisenhower Avenue Alexandria, VA 22331-0600	2	Commander US Army ARDEC ATTN: SMCAR-AES, S. Kaplowitz; D. Spring Picatinny Arsenal, NJ 07806-5000
1	Commander US Army Materiel Command ATTN: AMCPM-GCM-WF 5001 Eisenhower Avenue Alexandria, VA 22333-5001	2	Commander Armament RD&E Center US Army AMCCOM ATTN: SMCAR-HFM, E. Barrières SMCAR-CCH-V, C. Mandala Picatinny Arsenal, NJ 07806-5000
1	Commander US Army Materiel Command ATTN: AMCDE-DW 5001 Eisenhower Avenue Alexandria, VA 22333-5001	1	Commander Armament RD&E Center US Army AMCCOM ATTN: SMCAR-FSA-T, M. Salsbury Picatinny Arsenal, NJ 07806-5000
4	Project Manager Autonomous Precision-Guided Munition (APGM) Armament RD&E Center US Army AMCCOM ATTN: AMCPM-CW AMCPM-CWW AMCPM-CWS, M. Fisette AMCPM-CWA-S, R. DeKleine Picatinny Arsenal, NJ 07806-5000	1	Commander, USACECOM R&D Technical Library ATTN: ASQNC-ELC-I-T, Myer Center Fort Monmouth, NJ 07703-5301
2	Project Manager Production Base Modernization Agency ATTN: AMSMC-PBM, A. Siklosi AMSMC-PBM-E, L. Laibson Picatinny Arsenal, NJ 07806-5000		

<u>No. of Copies</u>	<u>Organization</u>	<u>No. of Copies</u>	<u>Organization</u>
1	Commander US Army Harry Diamond Laboratories ATTN: SLCHD-TA-L 2800 Powder Mill Rd Adelphi, MD 20783-1145	1	Commander US Army Belvoir Research and Development Center ATTN: STRBE-WC Fort Belvoir, VA 22060-5006
1	Commandant US Army Aviation School ATTN: Aviation Agency Fort Rucker, AL 36360	1	Director US Army TRAC-Ft Lee ATTN: ATRC-L, (Mr. Cameron) Fort Lee, VA 23801-6140
1	Project Manager US Army Tank-Automotive Command Improved TOW Vehicle ATTN: AMCPM-ITV Warren, MI 48397-5000	1	Commandant US Army Command and General Staff College Fort Leavenworth, KS 66027
2	Program Manager US Army Tank-Automotive Command ATTN: AMCPM-ABMS, T. Dean Warren, MI 48092-2498	1	Commandant US Army Special Warfare School ATTN: Rev and Tng Lit Div Fort Bragg, NC 28307
1	Project Manager US Army Tank-Automotive Command Fighting Vehicle Systems ATTN: AMCPM-BFVS Warren, MI 48092-2498	3	Commander Radford Army Ammunition Plant ATTN: SMCAR-QA/HI LIB Radford, VA 24141-0298
1	President US Army Armor and Engineer Board ATTN: ATZK-AD-S Fort Knox, KY 40121-5200	1	Commander US Army Foreign Science and Technology Center ATTN: AMXST-MC-3 220 Seventh Street, NE Charlottesville, VA 22901-5396
1	Project Manager US Army Tank-Automotive Command M-60 Tank Development ATTN: AMCPM-ABMS Warren, MI 48092-2498	2	Commander Naval Sea Systems Command ATTN: SEA 62R SEA 64 Washington, DC 20362-5101
1	Commander US Army Training and Doctrine Command ATTN: ATCD-MA, MAJ Williams Fort Monroe, VA 23651	1	Commander Naval Air Systems Command ATTN: AIR-954-Technical Library Washington, DC 20360
2	Director US Army Materials Technology Laboratory ATTN: SLCMT-ATL Watertown, MA 02172-0001	1	Assistant Secretary of the Navy (R, E, and S) ATTN: R. Reichenbach Room 5E787 Pentagon Bldg Washington, DC 20375
1	Commander US Army Research Office ATTN: Technical Library P. O. Box 12211 Research Triangle Park, NC 27709-2211		

<u>No. of Copies</u>	<u>Organization</u>	<u>No. of Copies</u>	<u>Organization</u>
1	Naval Research Laboratory Technical Library Washington, DC 20375	3	Commander Naval Weapons Center ATTN: Code 388, C. F. Price Code 3895, T. Parr Information Science Division China Lake, CA 93555-6001
1	Commandant US Army Command and General Staff College Fort Leavenworth, KS 66027	1	Program Manager AFOSR Directorate of Aerospace Sciences ATTN: L. H. Caveny Bolling AFB Washington, DC 20332-0001
2	Commandant US Army Field Artillery Center and School ATTN: ATSF-CO-MW, B. Willis Ft. Sill, OK 73503-5600	5	Commander Naval Ordnance Station ATTN: L. Torreyson T. C. Smith D. Brooks W. Vienna Technical Library Indian Head, MD 20640-5000
1	Office of Naval Research ATTN: Code 473, R. S. Miller 800 N. Quincy Street Arlington, VA 22217-9999	1	AL/TSTL (Technical Library) ATTN: J. Lamb Edwards AFB, CA 93523-5000
3	Commandant US Army Armor School ATTN: ATZK-CD-MS, M. Falkovitch Armor Agency Fort Knox, KY 40121-5215	1	AFSC/SDOA Andrews AFB, MD 20334
2	Commander US Naval Surface Warfare Center ATTN: J. P. Consaga C. Gotzmer Indian Head, MD 20640-5000	1	AFATL/DLYV Eglin AFB, FL 32542-5000
4	Commander Naval Surface Warfare Center ATTN: Code 240, S. Jacobs Code 730 Code R-13, K. Kim R. Bernecker Silver Spring, MD 20903-5000	1	AFATL/DLXP Eglin AFB, FL 32542-5000
2	Commanding Officer Naval Underwater Systems Center ATTN: Code 5B331, R. S. Lazar Technical Library Newport, RI 02840	1	AFATL/DLJE Eglin AFB, FL 32542-5000
5	Commander Naval Surface Warfare Center ATTN: Code G33, J. L. East W. Burrell J. Johndrow Code G23, D. McClure Code DX-21 Technical Library Dahlgren, VA 22448-5000	1	NASA/Lyndon B. Johnson Space Center ATTN: NHS-22 Library Section Houston, TX 77054
		1	AFELM, The Rand Corporation ATTN: Library D 1700 Main Street Santa Monica, CA 90401-3297
		3	AAI Corporation ATTN: J. Herbert J. Frankle D. Cleveland P. O. Box 126 Hunt Valley, MD 21030-0126

<u>No. of Copies</u>	<u>Organization</u>	<u>No. of Copies</u>	<u>Organization</u>
1	Aerojet Ordnance Company ATTN: D. Thatcher 2521 Michelle Drive Tustin, CA 92680-7014	3	Lawrence Livermore National Laboratory ATTN: L-355, A. Buckingham M. Finger L-324, M. Constantino P. O. Box 808 Livermore, CA 94550-0622
1	Aerojet Solid Propulsion Company ATTN: P. Micheli Sacramento, CA 96813	1	Olin Corporation Badger Army Ammunition Plant ATTN: R. J. Thiede Baraboo, WI 53913
1	Atlantic Research Corporation ATTN: M. King 5390 Cherokee Avenue Alexandria, VA 22312-2302	1	Olin Corporation Smokeless Powder Operation ATTN: D. C. Mann P. O. Box 222 St. Marks, FL 32355-0222
4	AL/LSCF ATTN: J. Levine L. Quinn D. Williams T. Edwards Edwards AFB, CA 93523-5000	1	Paul Gough Associates, Inc. ATTN: Dr. Paul S. Gough 1048 South Street Portsmouth, NH 03801
1	AVCO Everett Research Laboratory ATTN: D. Stickler 2385 Revere Beach Parkway Everett, MA 02149-5936	1	Physics International Company ATTN: Library, H. Wayne Wampler 2700 Merced Street San Leandro, CA 9457-5602
2	Calspan Corporation ATTN: C. Murphy P. O. Box 400 Buffalo, NY 14225-0400	1	Princeton Combustion Research Laboratory, Inc. ATTN: M. Summerfield 475 US Highway One Monmouth Junction, NJ 08852-9650
1	General Electric Company Armament Systems Department ATTN: M. J. Bulman 128 Lakeside Avenue Burlington, VT 05401-4985	2	Rockwell International Rocketdyne Division ATTN: BA08, J. E. Flanagan J. Gray 6633 Canoga Avenue Canoga Park, CA 91303-2703
1	IITRI ATTN: M. J. Klein 10 W. 35th Street Chicago, IL 60616-3799	3	Thiokol Corporation Huntsville Division ATTN: D. Flanigan Dr. John Deur Technical Library Huntsville, AL 35807
1	Hercules, Inc. Allegheny Ballistics Laboratory ATTN: William B. Walkup P. O. Box 210 Rocket Center, WV 26726		
1	Hercules, Inc. Radford Army Ammunition Plant ATTN: J. Pierce Radford, VA 24141-0299		

No. of Copies	<u>Organization</u>	No. of Copies	<u>Organization</u>
2	Thiokol Corporation Elkton Division ATTN: R. Biddle Technical Library P. O. Box 241 Elkton, MD 21921-0241	1	University of Minnesota Department of Mechanical Engineering ATTN: E. Fletcher Minneapolis, MN 55414-3368
1	Veritay Technology, Inc. ATTN: E. Fisher 4845 Millersport Highway East Amherst, NY 14501-0305	1	Case Western Reserve University Division of Aerospace Sciences ATTN: J. Tien Cleveland, OH 44135
1	Universal Propulsion Company ATTN: H. J. McSpadden Black Canyon Stage 1 Box 1140 Phoenix, AZ 84029	3	Georgia Institute of Technology School of Aerospace Engineering ATTN: B.T. Zim E. Price W.C. Strahle Atlanta, GA 30332
1	Battelle Memorial Institute ATTN: Technical Library 505 King Avenue Columbus, OH 43201-2693	1	Institute of Gas Technology ATTN: D. Gidaspow 3424 S. State Street Chicago, IL 60616-3896
1	Brigham Young University Department of Chemical Engineering ATTN: M. Beckstead Provo, UT 84601	1	Johns Hopkins University Applied Physics Laboratory Chemical Propulsion Information Agency ATTN: T. Christian Johns Hopkins Road Laurel, MD 20707-0690
1	California Institute of Technology 204 Karman Laboratory Main Stop 301-46 ATTN: F.E.C. Culick 1201 E. California Street Pasadena, CA 91109	1	Massachusetts Institute of Technology Department of Mechanical Engineering ATTN: T. Toong 77 Massachusetts Avenue Cambridge, MA 02139-4307
1	California Institute of Technology Jet Propulsion Laboratory ATTN: L. D. Strand, MS 512/102 4800 Oak Grove Drive Pasadena, CA 91109-8099	1	Pennsylvania State University Applied Research Laboratory ATTN: G.M. Faeth University Park, PA 16802-7501
1	University of Illinois Department of Mechanical/Industrial Engineering ATTN: H. Krier 144 MEB; 1206 N. Green Street Urbana, IL 61801-2978	1	Pennsylvania State University Department of Mechanical Engineering ATTN: K. Kuo University Park, PA 16802-7501
1	University of Massachusetts Department of Mechanical Engineering ATTN: K. Jakus Amherst, MA 01002-0014	1	Purdue University School of Mechanical Engineering ATTN: J. R. Osborn TSPC Chaffee Hall West Lafayette, IN 47907-1199

<u>No. of Copies</u>	<u>Organization</u>	<u>No. of Copies</u>	<u>Organization</u>
1	SRI International Propulsion Sciences Division ATTN: Technical Library 333 Ravenwood Avenue Menlo Park, CA 94025-3493	1	Washington State University Department of Mechanical Engineering ATTN: C. T. Crowe Pullman, WA 99163-5201
1	Rensselaer Polytechnic Institute Department of Mathematics Troy, NY 12181	1	Honeywell, Inc. ATTN: R. E. Tompkins MN38-3300 10400 Yellow Circle Drive Minnetonka, MN 55343
2	Director Los Alamos Scientific Laboratory ATTN: T3, D. Butler M. Division, B. Craig P. O. Box 1663 Los Alamos, NM 87544	1	Science Applications, Inc. ATTN: R. B. Edelman 23146 Cumorah Crest Drive Woodland Hills, CA 91364-3710
1	General Applied Sciences Laboratory ATTN: J. Erdos 77 Raynor Avenue Ronkonkama, NY 11779-6649		<u>Aberdeen Proving Ground</u> Cdr, CSTA ATTN: STECS-LI, R. Hendrickson
1	Battelle PNL ATTN: Mr. Mark Garnich P. O. Box 999 Richland, WA 99352		
1	Stevens Institute of Technology Davidson Laboratory ATTN: R. McAlvy, III Castle Point Station Hoboken, NJ 07030-5907		
1	Rutgers University Department of Mechanical and Aerospace Engineering ATTN: S. Temkin University Heights Campus New Brunswick, NJ 08903		
1	University of Southern California Mechanical Engineering Department ATTN: OHE200, M. Gerstein Los Angeles, CA 90089-5199		
2	University of Utah Department of Chemical Engineering ATTN: A. Baer G. Flandro Salt Lake City, UT 84112-1194		

INTENTIONALLY LEFT BLANK.

USER EVALUATION SHEET/CHANGE OF ADDRESS

This Laboratory undertakes a continuing effort to improve the quality of the reports it publishes. Your comments/answers to the items/questions below will aid us in our efforts.

1. BRL Report Number BRL-TR-3100 Date of Report APRIL 1990

2. Date Report Received _____

3. Does this report satisfy a need? (Comment on purpose, related project, or other area of interest for which the report will be used.)

4. Specifically, how is the report being used? (Information source, design data, procedure, source of ideas, etc.)

5. Has the information in this report led to any quantitative savings as far as man-hours or dollars saved, operating costs avoided, or efficiencies achieved, etc? If so, please elaborate.

6. General Comments. What do you think should be changed to improve future reports? (Indicate changes to organization, technical content, format, etc.)

Name _____

CURRENT ADDRESS Organization _____

Address _____

City, State, Zip Code _____

If indicating a Change of Address or Address Correction, please provide the New or Correct Address in Block 6 above and the Old or Incorrect address below.

Name _____

OLD ADDRESS Organization _____

Address _____

City, State, Zip Code _____

FOLD HERE-----

DEPARTMENT OF THE ARMY

Director
U.S. Army Ballistic Research Laboratory
ATTN: SLCBR-DD-T
Aberdeen Proving Ground, MD 21005-5066
OFFICIAL BUSINESS

NO POSTAGE
NECESSARY
IF MAILED
IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST CLASS PERMIT No 0001, APG, MD

POSTAGE WILL BE PAID BY ADDRESSEE

Director
U.S. Army Ballistic Research Laboratory
ATTN: SLCBR-DD-T
Aberdeen Proving Ground, MD 21005-5089

FOLD HERE-----