Министерство науки и высшего образования Российской Федерации

Калужский филиал

федерального государственного бюджетного образовательного учреждения высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (КФ МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ <u>ИУК «Информатика и управление»</u>

КАФЕДРА <u>ИУК4 «Программное обеспечение ЭВМ, информационные мехнологии»</u>

ЛАБОРАТОРНАЯ РАБОТА №2

«Факторный анализ данных. Корреляция»

ДИСЦИПЛИНА: «Технологии анализа данных»

Выполнил: студент гр. ИУК4-82Б	(Подпись)	_ (<u>Карельский М.К.</u>)
Проверил:	(Подпись)	_ (Ерохин И.И)
Дата сдачи (защиты):		
Результаты сдачи (защиты): - Баллы	ная оценка:	
- Оценк	ca:	

Цель: формирование практических навыков проведения факторного анализа и обнаружения корреляции между параметрами.

Задачи:

- 1. Ознакомиться с понятием факторный анализ и корреляция.
- 2. Изучить средства языка Python для выполнения факторного анализа

Вариант 5

Считать данные из CSV файла в структуру DataFrame. Провести факторный анализ зависимости параметра Purchase от 2 характеристик: Оссираtion и Stay_In_Current_City_Years. Вывести результаты (summary) анализа и интерпретировать их. Построить столбчатую диаграмму, отражающую степень влияния каждого параметра на число Purchase. Повторить анализ для данных разного размера. Построить график зависимости коэффициента детерминации (R-square) от размера набора данных. Сделать выводы. Построить и визуализировать корреляционную матрицу для всех параметров (Purchase, Occupation, Stay_In_Current_City_Years). Сделать выводы о наличии связей между параметрами.

Листинг:

```
import pandas as pd
import numpy as np
import statsmodels.api as sm
import matplotlib.pyplot as plt
import seaborn as sns
data = pd.read csv('data.csv')
data['Stay In Current City Years'] =
data['Stay In Current City Years'].replace('4+', 4).astype(int)
X = data[['Occupation', 'Stay In Current City Years']]
y = data['Purchase']
X = sm.add constant(X)
model = sm.OLS(y, X).fit()
print (model.summary())
coefficients = model.params.drop('const')
coefficients.plot(kind='bar')
plt.title('Influence of factors on Purchase')
plt.xlabel('Factors')
plt.ylabel('Coefficient')
plt.show()
r_square_values = []
data sizes = range(50000, len(data), 50000)
for size in data sizes:
    sample data = data.sample(size)
    X sample = sample data[['Occupation', 'Stay In Current City Years']]
    y sample = sample data['Purchase']
    X sample = sm.add constant(X sample)
    model sample = sm.OLS(y sample, X sample).fit()
```

```
r_square_values.append(model_sample.rsquared)
plt.plot(data_sizes, r_square_values)
plt.title('R-square vs Data Size')
plt.xlabel('Data Size')
plt.ylabel('R-square')
plt.show()
correlation_matrix = data[['Purchase', 'Occupation',
'Stay_In_Current_City_Years']].corr()
sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm', fmt=".2f")
plt.title('Correlation Matrix')
plt.show()
```

Результат:

	OLS Regres	sion Results	;			
Dep. Variable: Model: Method: Date: Time: No. Observations: Df Residuals: Df Model: Covariance Type:	Purchase OLS Least Squares Thu, 14 Mar 2024 12:19:15 537577 537574 2 nonrobust	Prob (F-st	uared: .c: catistic):	-5.33 1.0	0.000 0.000 126.0 95e-55 93e+06 68e+07	
	coef	std err	t	P> t	[0.025	0.975]
const Occupation Stay_In_Current_City_Y	9169.9715 15.9980 Years 18.5975	1.042		0.000 0.000 0.000	9141.716 13.957 8.272	9198.227 18.039 28.923
Omnibus: Prob(Omnibus): Skew: Kurtosis:	33489.149 0.000 0.624 2.658	Durbin-Watson: Jarque-Bera (JB): Prob(JB): Cond. No.		1.668 37477.021 0.00 23.0		

Рис. 1. Результаты анализа

Рис. 2. Столбчатая диаграмма

Рис. 3. График

Рис. 4. Корреляционная матрица

Результаты анализа показывают, что модель линейной регрессии имеет низкое значение коэффициента детерминации, близкое к нулю. Это означает, что объясняющие переменные не объясняют значительной части вариации в зависимой переменной:

- Значение R-squared равно 0, что означает, что модель не объясняет никакой доли изменчивости зависимой переменной Purchase.
- P-values для всех коэффициентов модели намного меньше 0.05, что говорит о статистической значимости коэффициентов. То есть, существует статистически значимая связь между Occupation, Stay In Current City Years и Purchase.
- Коэффициенты для Occupation и Stay_In_Current_City_Years равны примерно 16 и 18.6 соответственно. Это означает, что при увеличении Occupation на единицу, ожидается увеличение Purchase на 16 единиц, а при увеличении Stay_In_Current_City_Years на единицу, ожидается увеличение Purchase на 18.6 единиц.
- Промежутки доверительных интервалов для коэффициентов не содержат нуля, что подтверждает статистическую значимость этих коэффициентов. В целом, модель показывает статистически значимую, но очень слабую связь между Occupation, Stay_In_Current_City_Years и Purchase.

Вывод: в ходе выполнения лабораторной работы были получены практические навыки проведения факторного анализа и обнаружения корреляции между параметрами.