天津医科大学理论课教案首页

(共4页、第1页)

课程名称:生物信息学 课程内容/章节:第四章(4.3) RNA 序列分析

授课对象:生物医学工程与技术学院 2016 级生信班 (本)

听课人数:28

授课方式:理论讲授 学时数:2 教材版本:生物信息学:基础及应用

教学目的与要求 (分掌握、熟悉、了解、自学四个层次) :

- 掌握 mRNA 选择性剪接的主要机制; miRNA 预测和 miRNA 靶基因预测的方法。
- 熟悉 miRNA 的特点、生成过程和作用方式; miRNA 的相关数据库和分析工具。
- 了解选择性剪接的相关数据库与分析工具; lncRNA 的定义、主要特征及其研究现状。
- 自学 IncRNA 的生物功能和作用方式; IncRNA 在疾病发生发展过程中的作用。

授课内容及学时分配:

- (5') 回顾与导入:回顾序列分析和基因识别的主要内容,总结 RNA 的主要类别,引出 RNA 分析的内容。
- (30') mRNA 选择性剪接:介绍剪接和选择性剪接的基本概念,讲解 mRNA 选择性剪接的主要机制,介绍相关的数据库和分析工具。
- (30') miRNA 及其靶基因预测:回顾 miRNA 的特点、生成过程、作用方式和生物学功能,讲解 miRNA 预测和 miRNA 靶基因预测的主要方法,介绍常用的数据库和分析工具。
- (10') lncRNA 简介:介绍 lncRNA 的定义、主要特征及其研究进展。
- (10') 学习数据库与分析工具的使用: 讨论学习数据库和分析工具使用方法的主要策略。
- (5') 总结与答疑: 总结授课内容中的知识点, 解答学生疑问。

教学重点、难点及解决策略:

• 重点: mRNA 选择性剪接的主要机制。

• 难点: mRNA 选择性剪接各种机制之间的区别。

• 解决策略:通过示意图和实例帮助学生理解、记忆。

专业外语词汇或术语:

选择性剪接 (alternative splicing) 微 RNA (miRNA, microRNA) 非编码 RNA (ncRNA, non-coding RNA) 长链非编码 RNA (lncRNA)

辅助教学情况:

- 多媒体: mRNA 选择性剪接的机制和实例, miRNA 的生成过程和作用方式, lncRNA 的生物功能和作用机制。
- 板书: 学习数据库和分析工具使用方法的主要策略。

复习思考题:

- 简述 mRNA 选择性剪接的主要机制。
- 简述 miRNA 的特点、生成过程和作用方式。
- 简述 miRNA 预测和 miRNA 靶基因预测的方法。
- 论述学习数据库和分析工具使用方法的主要策略。

参考资料:

- 朱玉贤, 李毅, 郑晓峰。现代分子生物学(第3版), 高等教育出版社, 2007。
- 李霞, 李亦学, 廖飞。生物信息学, 人民卫生出版社, 2010。
- 维基百科。

主任签字: 年 月 日 教务处制

天津医科大学理论课教案续页

(共4页、第2页)

- 一、回顾与导入(5分钟)
 - 1. 序列分析
 - DNA 序列分析:基本信息,序列特征,基因识别
 - RNA 序列分析:mRNA 选择性剪接,miRNA 与靶基因,lncRNA
 - 2. RNA 的分类 (RNA 既是携带遗传信息的主要生物大分子,也是重要的功能单位)
 - 编码 RNA: mRNA
 - 非编码 RNA: tRNA, rRNA; miRNA, siRNA, lncRNA
 - 3. ncRNA 的分类 (转录后不编码蛋白质的 RNA 分子的统称)
 - 基础结构性 ncRNA/看家 ncRNA: tRNA, rRNA, snRNA, snoRNA
 - 调节性 ncRNA
 - sRNA: <200nt, miRNA、siRNA、piRNA(已经开展了广泛的研究)
 - lncRNA: >200nt, 长链非编码 RNA (引起关注, 研究正逐步深入)

		•		
Non-coding RNA		Length (nt)	Species	Function
Ribosomal RNA (rRNA)		120~4700	All	Translation
Transfer RNA (tRNA)		70~100	AII	Translation
Small nuclear RNA (snRNA)		70~350	Eukaryote	Splicing, mRNA processing
Small nucleolar RNA (snoRNA)		70~300	Eukaryote, archaea	RNA modification, rRNA processing
miRNA —		21~25	Eukaryote	Translational regulation
siRNA	Small ncRNA	21~25	Eukaryote	Protection against viral infection
piRNA		24~30	Eukaryote	Genome stabilization
Long ncRNA		several hundreds~ several hundred thousa	Eukaryote nds	Transcription, splicing, transport regulation

- 二、mRNA 选择性剪接(30分钟)
 - 1. 基本概念
 - 剪接: 移除内含子、合并外显子
 - 选择性剪接: 一个 mRNA 前体 ⇒ 不同 mRNA 剪接异构体
 - 2. 【重点、难点】主要机制 (通过示意图和实例详解每种机制)
 - 外显子跳跃: 外显子被移除或保留, 最常见
 - 互斥外显子: 两个外显子只有一个 保留下来,相对较少见
 - 5' 选择性剪接:使用不同的 5' 端的供体位点
 - 3' 选择性剪接:使用不同的 3' 端的受体位点
 - 内含子保留:内含子作为外显子保留下来,最少见
 - 选择性起始: 在不同的位点起始转录
 - 选择性终止: 使用不同的 polyA 位 点
 - 3. 相关资源 (提醒注意数据库的时效性)
 - 数据库: ASTD, ASAP, ASPicDB
 - 分析工具: ESEfinder, RESCUE-ESE

天津医科大学理论课教案续页

(共4页、第3页)

三、miRNA 及其靶基因预测 (30 分钟)

- 1. miRNA 简介(通过示意图形象化展示相关内容)
 - 真核生物中广泛存在的一种长约 20 到 24 个核苷酸的内源性非编码单链 RNA 分子
 - 生成过程: 300~1000nt 的双链 pri-miRNA ⇒ 70~90nt 的双链具有茎环结构的 pre-miRNA ⇒ 20~24nt 的单链成熟 miRNA
 - 作用方式: 完全互补型──结合在 mRNA 的编码区中,导致靶基因 mRNA 降解,在植物中比较常见;不完全互补型──结合在 mRNA 的 3' UTR,导致靶基因 mRNA 的翻译受到抑制
 - 生物学功能:调控个体发育、细胞分化、组织发育、肿瘤发生发展、……

2. miRNA 的特征

- 序列:不具有开放阅读框,不编码蛋白质;成熟的 miRNA 5' 端为单一磷酸基团, 3' 端 为羟基
- 表达: 具有时序性和组织特异性
- 调控: miRNA 与靶基因间呈多对多的关系
- 物理位置: 倾向于成簇地出现在染色体上
- 进化: 在物种间高度保守

3. miRNA 预测

- 同源片段搜索
- 基于比较基因组学
- 基于序列和结构特征打分
- 结合作用靶标
- 基于机器学习

4. miRNA 靶基因预测

- 基于种子区域互补和保守性
- 基于机器学习

5. 相关资源

- 数据库: miRBase, TarBase, miRGen
- 分析工具: MiRscan, MiPred, miRFinder; miRanda, TargetScan, PicTar, miTarget

四、lncRNA 简介 (10 分钟)

- 1. IncRNA 的特征
 - 序列结构特征
 - 大多被 RNA 聚合酶 II 所转录
 - 有 5'帽子和 3'端的 polyA 尾巴
 - 剪接现象
 - 启动子区域和剪接位置具有保守性
- 长度偏短、外显子数目偏少
- 不存在较长的 ORF
- 密码子偏好性与内含子区域相似
- 二级结构中有丰富的长茎发夹结构
- 在不同物种间的保守性差
- 主要富集在细胞核

天津医科大学理论课教案续页

(共4页、第4页)

intergenic

Protein localization eg NRON

- 生物功能特征
 - 表达具有时空特异性, 与特定的生物过程相关
 - 具有复杂的调控功能, 在染色质改变、转录调控及后转录调控中发挥重要作用
 - 复杂的代谢机制,大多数 lncRNA 是稳定的,半衰期的变化范围较大
 - 与疾病存在密切关系
- 2. IncRNA 的研究进展(展示相关内容的示意图)
 - 基因数目: 13870 (人类基因组, GENCODE V19)
 - 类型: sense, antisense, intronic, intergenic, bidirectional
 - 作用方式:表观遗传学水平、转录水平和转录后水平
 - 生物学功能:基因转录、剪接、翻译、修饰和印迹等
 - 与疾病的关系:肿瘤、阿尔兹海 默病、心血管疾病等
- 五、学习数据库与分析工具的使用(10分钟)
 - 阅读官方的帮助手册
 - 请教有使用经验的专家
 - 查找简单的使用实例, 并重复其操作步骤
 - 使用 Google 等搜索引擎搜索相关资料
 - 各种 protocols 期刊: Nature protocols, Current Protocols (in Bioinformatics), SpringerProtocols, Methods in Molecular Biology

六、总结与答疑(5分钟)

- 1. 知识点
 - mRNA 选择性剪接: 主要机制
 - miRNA:特征、生成过程和作用方式, miRNA 及其靶基因预测方法
- 2. 技能
 - 学习使用方法: 阅读手册、请教专家、重复实例、搜索网络
 - 历史资料使用的是历史版本

Protein activity eg CCND1 ncRNA