Use a joint truth table to compare the following logical expressions. For which pairs or expressions does one logically follow from the other. Which pairs are logically equivalent? $E = (A \Longrightarrow B) \Longrightarrow C$.

 $0 \ 0 \ 0$

1 0

0

1

0 1

0

	a	b	c	((a	\rightarrow	c)	\leftrightarrow	(b	\rightarrow	c))
	1	1	1	1						1
	1	1	0	1	0	0	1	1	0	0
	1	0	1	1		1	1	0	1	1
I:	1	0	0	1	0	0	0	0	1	0
	0	1	1	0	1			1	1	1
	0	1	0	0	1			1	0	0
	0	0	1	0	1	1	1	0	1	1
	0	0	0	0	1	0	1	0	1	0

Since $I=H\wedge G,\,I\Longrightarrow H$ and $I\Longrightarrow G$ since as shown above none of the statements are tautologies, therefore since $I=H\wedge G$, then $H\wedge G\Longrightarrow H$ and $H\wedge GimpliesG$. Which happen to be tautologies, thus they logically follow. However they aren't logically equivalent as $H\Longrightarrow H\wedge G$ isn't. E is a logical implication of H, and E is a logical implication of F. None of the pairs are logically equivalent.