

Non-Interactive and Reusable UC Commitments with Adaptive Security

Marc Fischlin¹, Benoit Libert², Mark Manulis¹

¹TU Darmstadt & CASED, Germany ²University catholique de Louvain, Belgium

Commitment Schemes

Commitments belong to fundamental building blocks in cryptography:

imply key exchange, oblivious transfer [DG03]

secure two and multi-party computation [CLOS02]

used in digital auctions, voting, e-cash systems

hiding: c leaks no info about m

c cannot be opened to m': binding

security goals

Example: Pedersen Commitments [Ped01]

DL-hard group $\mathbb{G} = \langle g \rangle$ of prime order q

public key $y = g^x$ for some $x \in_R \mathbb{Z}_q$

communication complexity

one element of \mathbb{G} , one element of \mathbb{Z}_q ≈ 512 bits for 128-bit security if $\mathbb{G} \subset E(\mathbb{F}_p)$

both stages are non-interactive

Universally Composable Commitments

Commitment scheme is UC-secure if

for any \mathcal{A} there exists \mathcal{S} such that no ENV can tell ideal and real execution apart

Inevitable set-up assumption

UC-secure commitments require set-up [CF01] e.g. *Common Reference String (CRS)*

"Quality Criteria" for UC Commitments

Efficiency

communication complexity # of bits communicated in both phases, ideally $O(\lambda)$

includes length of c and d

computational complexity total amount of work (often measured in pk ops)

length of the CRS invariant in the # of message bits and users

CRS-reusability CRS should be re-usable for polynomially many commitments

Interactivity UC commitments should be non-interactive in both stages

main countermeasure against DoS attacks
e.g. in concurrent sessions or in more complex protocols

"Quality Criteria" for UC Commitments

Adaptive Security

UC commitments should resist adaptive corruptions adaptive corruptions reveal the entire state of a party and can happen at any time especially important for commitments due to the two-stage process

Secure erasures

UC commitments should not rely on secure erasures
often required to achieve adaptive security (e.g. erasure of ephemeral secrets)
can be realized using erasable memory [DFIJ99] or with trusted hardware assumption

Hardness Assumptions

ideally UC commitments should rely on weaker, more natural assumptions

10th Anniversary of UC Commitments

	UC scheme (CRS model)	CRS re-use	non-inter. stages	without erasures	adaptive security	hardness assumptions	
bit commitments	CF01 (1)	*	✓	✓	✓	TDP	
	CF01 (2)	✓	✓	×	✓	CFP + CCA PKE	
	CF01 (3)	✓	✓	✓	✓	DDH + UOWHF	
oit co	CLOS02	✓	✓	✓	✓	TDP	
ring commitments	DN02 (1)	✓	×	✓	✓	p-subgroup	
	DN02 (2)	✓	×	✓	✓	DCR	
	DG03	✓	×	✓	✓	DCR + Strong RSA	fact.
	CS03	✓	×	×	✓	DCR + CHRF	
	NFT09	×	✓	×	✓	DCR + sEUF-OT	
	NFT09	×	✓	×	✓	DDH + sEUF-OT	
	Lin11 (1)	✓	×	✓	×	DDH + CRHF	dlog
	Lin11 (2)	✓	*	×	✓	DDH + CRHF	
tweaks	Our Scheme I	✓	✓	×	✓	DLIN + CRHF	
7/1.	Our Scheme I	I ✓	✓	×	✓	DLIN + CRHF	pairing

CRYP

CRYPTOGRAPHIC PROTOCOLS

Ideal Functionality for Multiple Commitments

 $\mathcal{F}_{ ext{MCOM}}$ as in [CF01] but with publicly delayed messages as in [HMQ04] :

high-level description

on (commit, sid, cid, P_i, P_j, M)

record (sid, cid, P_i, P_j, M) publicly delayed output (receipt, sid, cid, P_i, P_j) to P_j ignore any further input (commit, sid, cid, P_i, P_j, *)

on (open, sid, cid, P_i, P_j)

if recorded then publicly delayed output (open, sid, cid, P_i, P_j, M) to P_j

on (corrupt-committer, sid, cid)

if (sid, cid, P_i , P_j , M) is recorded then send M to the adversary S if S responds with M' then change the record to (sid, cid, P_i , P_j , M')

Lindell's Basic Scheme [Lin11]

CRS DL-hard group \mathbb{G} , generators g_1 , g_2 , random c, d, $h \in \mathbb{G}$, $h_1 = g_1^{\rho}$, $h_2 = g_2^{\rho}$ Cramer-Shoup PKE [CS98] with $pk_{CS} = (g_1, g_2, c, d, h)$ and CRHF H Dual-Mode PKE [PVW08] with $pk_{DM} = (g_1, g_2, h_1, h_2)$ $(h_1, h_2) \approx (g_1^{\rho_1}, g_2^{\rho_2})$ alternative key for perfect hiding

(commit, sid, cid, P_i, P_i, M)

 $x \leftarrow G(M, sid, cid, i, j) // reversible maping into <math>G$ $c_{CS} = (u_1, u_2, e, w, v) \leftarrow CS.ENC(pk_{CS}, x; r)$ store r

(open, sid, cid, P_i , P_j)

UC-secure against static corruptions only

- r must be stored until open stage
- for honest P_i : S encrypts 0
- for honest P_i: uses sk_{DM} to decrypt challenge
- for corrupted P_i: uses sk_{CS} to extract M

communication: $14 \cdot \lambda$ bits interactive in the open phase

Generic Framework for Our First Scheme

CRS

 pk_{CCA} for IND-CCA secure PKE with labels (GEN, ENC, DEC) crs_{NIZK} for simulation-sound NIZK[M : $c_{CCA} = Enc(pk_{CCA}, M, L; r)$]

(commit, sid, cid, P_i, P_i, M)

(open, sid, cid, P_i , P_j)

UC-secure against <u>adaptive corruptions</u>

- S prepares crs_{NIZK} for simulation
- for honest P_i : S encrypts random R
- for honest P_i : simulates π_{CCA}
- for corrupted P_i: uses sk_{CCA} to extract M

non-interactive in both phases

Building Block 1

Groups (\mathbb{G} , \mathbb{G}_T) of prime order q with bilinear map $e : \mathbb{G} \times \mathbb{G} \to \mathbb{G}_T$, $g, g_1, g_2 \in \mathbb{G}$

DLIN version of Cramer-Shoup PKE with labels [Sha07, HK07]

$$\begin{aligned} pk_{CS}: X_1 &= g_1^{\ x_1}g^x, \ X_2 &= g_2^{\ x_2}g^x \ , \ X_3 &= g_1^{\ x_3}g^y \ , \ X_4 &= g_2^{\ x_4}g^y \ , \ X_5 &= g_1^{\ x_5}g^z \ , \ X_6 &= g_2^{\ x_6}g^z \end{aligned}$$
 CRHF H

Encrypt
$$c_{CS} = (U_1, U_2, U_3, U_4, U_5)$$

= $(g_1^r, g_2^s, g^{r+s}, M \cdot X_5^r X_6^s, (X_1 X_3^{\alpha})^r \cdot (X_2 X_4^{\alpha})^s)$
with $\alpha = H(U_1, U_2, U_3, U_4, L)$ for some label L

<u>Decrypt</u>

check validity
$$U_5 \stackrel{?}{=} U_1^{x_1 + \alpha x_3} U_2^{x_2 + \alpha x_3} U_3^{x + \alpha y}$$

if valid return
$$M = U_4/U_1^{x5}U_2^{x6}U_3^{z}$$

IND-CCA secure under DLIN assumption : $(g^a, g^b, g^{ac}, g^{bd}, g^{c+d}) \approx (g^a, g^b, g^{ac}, g^{bd}, g^r)$

07.12.2011 | ASIACRYPT 2011 | Mark Manulis | www.manulis.eu

Building Block 2

Groups (\mathbb{G} , \mathbb{G}_T) of prime order q with bilinear map $e: \mathbb{G} \times \mathbb{G} \to \mathbb{G}_T$

Groth-Sahai Proofs (for Multi-Exponentiation Equations) [GS08]

CRS
$$g, g_1, g_2 \in \mathbb{G}$$
, vectors $\mathbf{g_1} = (g_1, 1, g)$, $\mathbf{g_2} = (1, g_2, g)$, $\mathbf{g_3} \in \mathbb{G}^3$

Commit to
$$x \in \mathbb{Z}_q$$
: $c = ((1, 1, g) \cdot \mathbf{g_3})^x \cdot \mathbf{g_1}^r \cdot \mathbf{g_2}^s$

NIWI/NIZK proofs for equations of the form

$$\underset{i=1}{\overset{m}{\prod}}A_{i}^{\textbf{y}i}\cdot\underset{j=1}{\overset{n}{\prod}}\textbf{X}_{j}^{\textbf{b}j}\cdot\underset{i=1}{\overset{m}{\prod}}\cdot\underset{j=1}{\overset{n}{\prod}}\textbf{X}_{j}^{\textbf{y}icij}=T$$

- if $\mathbf{g_3} = \mathbf{g_1}^{\xi_1} \cdot \mathbf{g_2}^{\xi_2}$ then c has perfect binding \Rightarrow soundness setting for GS proofs
- if $\mathbf{g}_3 = \mathbf{g}_1^{\xi_1} \cdot \mathbf{g}_2^{\xi_2} / (1, 1, g)$ then c has perfect hiding \Rightarrow WI setting for GS proofs in this case (ξ_1, ξ_2) can be used to simulate NIWI/NIZK proofs
- under DLIN assumption the two values for g₃ remain indistinguishable

Scheme I: Our Tweak on [Lin11]

$$g_1 = g^{\alpha_1}, g_2 = g^{\alpha_2}, \text{ vectors } \mathbf{g_1} = (g_1, 1, g), \mathbf{g_2} = (1, g_2, g), \mathbf{g_3} = \mathbf{g_1}^{\xi_1} \cdot \mathbf{g_2}^{\xi_2}$$

DLIN Cramer-Shoup PKE $\text{pk}_{\text{CS}} = (X_1, ..., X_6), \text{CRHF H} : \{0,1\} \rightarrow \mathbb{Z}_q$

(commit, sid, cid, P_i , P_j , M) with $M \in \mathbb{G}$

label L = P_i ||sid||cid $c_{CS} = (U_1, U_2, U_3, U_4, U_5) \leftarrow CS.ENC(pk_{CS}, M, L; r, s)$ $\pi_{CS} \leftarrow GSNIZK[c_{CS} \text{ encrypts M}]$ erase ephemeral state except for π_{CS}

(open, sid, cid, P_i , P_j)

UC-secure against adaptive corruptions

- $S \text{ sets } \mathbf{g_3} = \mathbf{g_1}^{\xi_1} \cdot \mathbf{g_2}^{\xi_2} / (1, 1, g)$ WI setting
- for honest P_i : S encrypts random R
- for honest P_i : uses (ξ_1, ξ_2) to simulate π_{CS}
- for corrupted P_i: uses sk_{cs} to extract M

communication: 21 elements of \mathbb{G} non-interactive in both phases

Camenisch-Shoup UC Commitments [CS03]

CRS

group $\mathbb{G}_n \subset \mathbb{Z}_{n^2}^*$, safe RSA modulus n, generators g, h of \mathbb{G}_n [Ped91] $pk_{Ped} = (\gamma_1, \gamma_2)$, Verifiable PKE [CS03] $pk_{VE} = (n, g, y_1, y_2, y_3)$

(commit, sid, cid, P_i , P_j , M) with $M \in \mathbb{Z}_n$

$$c_{Ped} = \gamma_1^M \gamma_2^r$$

label L = P_i ||sid||cid
 $c_{VE} = (u, e, v) \leftarrow VE.ENC(pk_{VE}, (M, r), L; s)$
erase ephemeral state except r

(open, sid, cid, P_i, P_i)

_____M, r

UC-secure against <u>adaptive corruptions</u>

- \mathcal{S} knows $\log_{v1}(\gamma_2)$
- for honest P_i : S encrypts 0
- for corrupted P_i: uses sk_{VE} to extract M

communication: $94 \cdot \lambda$ bits

<u>interactive</u> in the commit phase

Building Block 3

in addition to DLIN-based Cramer-Shoup PKE and Groth-Sahai framework

Trapdoor commitments by Cathalo, Libert, and Yung [CLY09]

CRS vectors
$$\mathbf{f_1} = (f_1, 1, g)$$
, $\mathbf{f_2} = (1, f_2, g)$, $\mathbf{f_3} = \mathbf{f_1^{x_1} \cdot f_2^{x_2} \cdot (1, 1, g)^{x_3}}$, $f_1, f_2, g \in \mathbb{G}$

Trapdoor (x_1, x_2, x_3)

Commit to
$$X \in \mathbb{G} : c = (c_1, c_2, c_3) = (1, 1, X) \cdot f_1^{\alpha} \cdot f_2^{\beta} \cdot f_3^{\gamma}$$

Open: publish
$$(g^{\alpha}, g^{\beta}, g^{\gamma})$$
 Verify: $e(c_1, g) = e(f_1, g^{\alpha}) \cdot e(f_{3,1}, g^{\gamma})$
 $e(c_2, g) = e(f_2, g^{\beta}) \cdot e(f_{3,2}, g^{\gamma})$

$$e(c_3, g) = e(X \cdot g^{\alpha} \cdot g^{\beta}, g) \cdot e(f_{3,3}, g^{\gamma})$$

- if $x_3 \neq 0$ then c has perfect hiding and DLIN-based binding
- if $x_3 \neq 0$ then c can be equivocated using the trapdoor (x_1, x_2, x_3)
- if $x_3 = 0$ then c has perfect binding
- if $x_3 = 0$ and $dlog_g(f_1)$ and $dlog_g(f_2)$ are known then c becomes extractable

Scheme II: Our Tweak on [CS03]

CRS

$$\begin{split} &g_1 = g^{\alpha_1}, \, g_2 = g^{\alpha_2}, \, \text{vectors} \, \mathbf{g_1} = (g_1, \, 1, \, g) \, , \, \mathbf{g_2} = (1, \, g_2, \, g), \, \mathbf{g_3} = \mathbf{g_1}^{\xi_1} \cdot \mathbf{g_2}^{\xi_2} \\ &[\text{CLY09}] \, f_1, \, f_2 \in \mathbb{G} \, , \, \text{vectors} \, \mathbf{f_1} = (f_1, \, 1, \, g) \, , \, \mathbf{f_2} = (1, \, f_2, \, g) \, , \, \mathbf{f_3} = \mathbf{f_1}^{\chi_1} \cdot \mathbf{f_2}^{\chi_2} \cdot (1, \, 1, \, g)^{\chi_3} \\ &\text{DLIN Cramer-Shoup PKE pk}_{\text{CS}} = (X_1, \, ..., \, X_6), \, \text{CRHF H} : \{0,1\} \longrightarrow \mathbb{Z}_q \end{split}$$

(commit, sid, cid, P_i , P_j , M) with $M \in \mathbb{G}$

$$\begin{split} c_{\text{CLY}} &= (1, 1, \text{M}) \cdot \mathbf{f_1}^{\alpha} \cdot \mathbf{f_2}^{\beta} \cdot \mathbf{f_3}^{\gamma} \\ \text{label L} &= P_i || \text{sid} || \text{cid} \\ c_{\text{CS}} &= (U_1, U_2, U_3, U_4, U_5) \leftarrow \text{CS.ENC}(\text{pk}_{\text{CS}}, \text{M, L; r, s}) \\ \pi_{\text{CS}} &\leftarrow \text{GSNIZK}[c_{\text{CS}} \text{ is a valid ciphertext}] \\ \pi_{\text{CLY}} &\leftarrow \text{GSNIZK}[\text{consistency of } c_{\text{CS}} \text{ and } c_{\text{CLY}}] \\ \text{erase ephemeral state except for } (g^{\alpha}, g^{\beta}, g^{\gamma}) \end{split}$$

(open, sid, cid, P_i , P_j)

$$M, (g^{\alpha}, g^{\beta}, g^{\gamma}) \longrightarrow \text{verify } c_{CLY}$$

verify π_{CS} , π_{CLY}

UC-secure against adaptive corruptions

- S sets $\mathbf{g_3} = \mathbf{g_1}^{\xi_1} \cdot \mathbf{g_2}^{\xi_2} / (1, 1, g)$ perfect hiding
- for honest P_i : S commits to R and encrypts R
- for honest P_i : uses (x_1, x_2, x_3) to equivocate c_{CLY}
- for corrupted P_i: uses sk_{CS} to extract M

communication: $40 \cdot \lambda$ bits non-interactive in both phases

10th Anniversary of UC Commitments

UC scheme (CRS model)	CRS re-use	non-inter. stages	without erasures	adaptive security	communication complexity (bits)		
CF01 (1)	ж	✓	✓	✓	$O(\ell \cdot \lambda)$		
CF01 (2)	✓	✓	×	✓	$O(\ell \cdot \lambda)$	λ sec. par.	
CF01 (3)	✓	✓	✓	✓	$O(\ell \cdot \lambda)$	$\ell = M $ bits	
CLOS02	✓	✓	✓	✓	$O(\ell \cdot \lambda)$		
DN02 (1)	✓	ж	✓	✓	18·λ (13824)		
DN02 (2)	✓	ж	✓	✓	24·λ (18432)	$\lambda = 768 \text{ bits}$	
DG03	✓	ж	✓	✓	16·λ (12288)	$\ell \leq \lambda$	
CS03	✓	×	×	✓	94·λ (72192)		
NFT09	×	✓	×	✓	21·λ (16128)		
NFT09	ж	✓	×	✓	$O(\ell \cdot \lambda)$	3 256 hits	
Lin11 (1)	✓	×	✓	×	14·λ (3584)	$\lambda = 256 \text{ bits}$ $\ell \leq \lambda$	
Lin11 (2)	✓	×	×	✓	19·λ (4864)	v=n	
Our Scheme I	✓	✓	×	✓	$5.\lambda + 16.\lambda$ (5376)	$\lambda = 256 \text{ bits}$	
Our Scheme II	✓	✓	×	✓	$37 \cdot \lambda + 3 \cdot \lambda \ (10240)$	$\ell \leq \lambda$	

CRYP

CRYPTOGRAPHIC PROTOCOLS

Open Challenges

UC scheme (CRS)	CRS re-use	non-inter. stages	without erasures	adaptive security	communication complexity (bits)	
this work	✓	✓	×	✓	21·λ (5376)	
	in CRS model w/o stronger assumptions			reduce comm. compl. recall [Ped91] 2·λ (512)		
????	✓	✓	✓	✓	????	

