Assignment 10

Group 1-1

January 14, 2024

1 Exercise 13.11.3

Problem Let $(X, \operatorname{dist}_X) := (\mathbb{R}, \operatorname{dist}_{\mathbb{R}})$ and set $D := \mathbb{N} \subseteq \mathbb{R}$. Let $(Y, \operatorname{dist}_Y)$ be a metric space and let $a : \mathbb{N} \to Y$ be a function. Show that $a : \mathbb{N} \to Y$ is continuous (when viewed as a function defined on $D := \mathbb{N}$ as a subset of the metric space $(X, \operatorname{dist}_X)$ mapping to the metric space $(Y, \operatorname{dist}_Y)$).

Proof. Need to show that for all $n \in D := \mathbb{N}$, a is continuous at n. I.e. for all $\varepsilon > 0$, there exists $\delta > 0$, for all $x \in D = \mathbb{N}$, if $0 < \operatorname{dist}_X(x, a) < \delta$, then $\operatorname{dist}_Y(a(x), a(n)) < \varepsilon$. Let $\varepsilon > 0$.

Choose $\delta = 1/2$.

Take $x \in \mathbb{N}$.

Need to show that $0 < |x - a| < \delta \implies \operatorname{dist}_Y(a(x), a(n)) < \varepsilon$.

Since $x, a \in N$ and, we have |x - a| >= 1 or |x - a| = 0

 $0 < |x - a| < \delta \implies \operatorname{dist}_Y(a(x), a(n)) < \varepsilon$ is true.

We conclude a is continuous on \mathbb{N} .

2 Exercise 13.11.5

Problem Let $(X, \operatorname{dist}_X)$ and $(Y, \operatorname{dist}_Y)$ be metric spaces, let $D \subseteq X$ and let $f: D \to Y$. Assume that $f: D \to Y$ is Lipschitz continuous, which means that there exists a constant M > 0 such that for all $x, z \in D$,

$$\operatorname{dist}_{Y}(f(x), f(z)) \leq M \operatorname{dist}_{X}(x, z).$$

Show that $f: D \to Y$ is uniformly continuous on D.

Proof. Need to show that

for all
$$\varepsilon > 0$$
,
there exists $\delta > 0$,
for all $p, q \in D$,
 $0 < \operatorname{dist}_X(p, q) < \delta \implies \operatorname{dist}_Y(f(p), f(q)) < \varepsilon$

Let $\varepsilon > 0$.

Since f is Lipschitz continuous, there exists a constant M>0 such that for all $x,z\in D$, $\mathrm{dist}_Y(f(x),f(z))\leq M\mathrm{dist}_X(x,z)$.

Obtain such M.

Choose $\delta = \frac{\varepsilon}{M}$,

Let $p, q \in D$.

Then it holds that $\operatorname{dist}_Y(f(p), f(q)) \leq M \operatorname{dist}_X(p, q)$

Need to show that $0 < \operatorname{dist}_X(p,q) < \delta \implies \operatorname{dist}_Y(f(p),f(q)) < \varepsilon$.

Assume $0 < \operatorname{dist}_X(p,q) < \delta$, then it holds that

$$\operatorname{dist}_{Y}(f(p), f(q)) \leq M \operatorname{dist}_{X}(p, q) < M\delta = \varepsilon$$

We conclude that f is uniformly continuous on D.

3 Exercise 14.12.2

Problem Consider the function $f: \mathbb{R}^2 \setminus \{0\} \to \mathbb{R}$ defined by

$$f(x) = \frac{\exp(x_1^2 - 3x_2)}{x_1^2 + x_2^2}.$$

Prove that $f: \mathbb{R}^2 \setminus \{0\} \to \mathbb{R}$ is continuous considered as a function mapping from the domain $\mathbb{R}^2 \setminus \{0\}$ in the normed vector space $(\mathbb{R}^2, \|\cdot\|_2)$ to $(\mathbb{R}, |\cdot|)$.

Proof. Note:

- 1. $p(x_1, x_2) = x_1^2 3x_2$ is a polynomial function, thus continuous.
- 2. $\exp : \mathbb{R} \to \mathbb{R}$ is continuous. (Standard function)
- 3. $\exp(p(x_1, x_2)) = \exp(x_1^2 3x_2)$ is continuous. (Composition of continuous functions)
- 4. $q(x_1, x_2) = x_1^2 + x_2^2$ is a polynomial function, thus continuous, and $q(x_1, x_2) \neq 0$ for all $(x_1, x_2) \in \mathbb{R}^2 \setminus \{0, 0\}$.

Then it holds that
$$f(x) = \frac{\exp(p(x))}{q(x)} = \frac{\exp(x_1^2 - 3x_2)}{x_1^2 + x_2^2}$$
 is continuous.

4 Exercise 14.12.4

Problem Show that the function $f: \mathbb{R}^2 \to \mathbb{R}$ defined by

$$f(x) = \begin{cases} \frac{x_1^4 + 2x_2^4}{x_1^2 + x_2^2} & \text{if } (x_1, x_2) \neq (0, 0), \\ 0 & \text{if } (x_1, x_2) = (0, 0), \end{cases}$$

is continuous as a function from the normed vector space $(\mathbb{R}^2, \|\cdot\|_2)$ to the normed vector space $(\mathbb{R}, |\cdot|)$.

Proof. Note:

1. $p(x_1, x_2) = x_1^4 + 2x_2^4$ is a polynomial function, thus continuous.

2. $q(x_1, x_2) = x_1^2 + x_2^2$ is a polynomial function, thus continuous, and $q(x_1, x_2) \neq 0$ for all $(x_1, x_2) \in \mathbb{R}^2 \setminus \{0, 0\}$.

Then it holds that $f(x) = \frac{x_1^4 + 2x_2^4}{x_1^2 + x_2^2}$ is continuous on $\mathbb{R}^2 \setminus \{0, 0\}$. We need to show that f is continuous at (0, 0).

By the $\varepsilon-\delta$ characterization of continuity, it suffices to show that

for all
$$\varepsilon > 0$$

there exists $\delta > 0$
for all $x \in \mathbb{R}^2$
 $0 < ||x - (0,0)|| < \delta \implies |f(x) - f(0,0)| < \varepsilon$

Let $\varepsilon > 0$.

Choose $\delta = \sqrt[4]{\frac{\varepsilon}{2}}$. Take $x \in \mathbb{R}^2$.

Assume $0 < ||x|| < \delta$, then it holds that $x \neq (0,0)$ and $x_1^2 + x_2^2 < \delta^2$

Need to show that $|f(x) - f(0,0)| < \varepsilon$.

It holds that

$$|f(x) - f(0,0)| = \left| \frac{x_1^4 + 2x_2^4}{x_1^2 + x_2^2} - 0 \right|$$

$$= \frac{|x_1^4 + 2x_2^4|}{|x_1^2 + x_2^2|}$$

$$< |x_1^4 + 2x_2^4|$$

$$\le |x_1^4| + |2x_2^4|$$

$$= x_1^4 + 2x_2^4$$

$$< 2(x_1^4 + x_2^4)$$

$$< 2(x_1^4 + x_2^4)$$

$$< 2(x_1^2 + x_2^2)^2$$

$$< 2\delta^4$$

$$= 2 \cdot \sqrt[4]{\frac{\varepsilon}{2}}$$

$$= \varepsilon$$

We conclude that f is continuous on \mathbb{R}^2 .