Notes on Statistics

Dec. 32, 2999

1 Distributions from random samples

1.1 Random samples and statistics

Definition 1.1. The random variables X_1, \dots, X_n are called a ramdom sample of size n from the population f(x) if they are independent and identically distributed with pdf or pmf f(x), or iid random variables. Let $T(x_1, \dots, x_n)$ be a real-valued or vector-valued function whose domain includes of sample space of (X_1, \dots, X_n) , then the random variable or random vector $Y = T(X_1, \dots, X_n)$ is called a statistic, whose distribution is called the sampling distribution of Y.

Theorem 1.2. This is another theorem.

Proof. This proves the theorem.

Example 1.3. This is an example.

2 Point estimation

Example 2.1. This is another example.

Remark 2.2. This is just a remark.

- 3 Hypothesis testing
- 4 Interval estimation
- 5 A complete example
- 6 More examples
- 7 Analysis of variance
- 8 Linear regression
- A Distribution of transformations of random variables

$$f_{\mathbf{U}}(u_1, \dots, u_n) = \sum_{i} f_{\mathbf{X}}(h_{1i}(u_1, \dots, u_n), \dots, h_{ni}(u_1, \dots, u_n)) |J_i|,$$
(1)

- B Cochran's theorem
- C Two useful relations

References