Geometría de la traza del movimiento de un electron expuesto a un campo electromagnético externo

Pablo Brianese

3 de agosto de 2021

Ley 1. La ecuación del movimiento para una partícula de masa m, carga q, expuesta a un campo electromagnético externo es

$$m\vec{a} = q\vec{E} + q\vec{v} \times \vec{B} \tag{1}$$

En unidades SI.

Si derivamos esta ley con respecto al tiempo, asumiendo que los campos eléctrico y magnético son constantes, obtenemos una ecuación para la aceleración

$$m\vec{j} = q\vec{a} \times \vec{B} \tag{2}$$

donde $\vec{j} = d\vec{a}/dt$ es la llamada sobreaceleración de la partícula. Para resolver esta ecuación suponemos además que ambos \vec{E} , \vec{B} son nonulos.

Teorema 1. El producto punto, $\vec{a} \cdot \vec{B}$, es constante.

Demostración. Partimos de la ecuación $m\vec{j}=q\vec{a}\times\vec{B}$. Multiplicamos por el campo magnético para obtener $m\vec{j}\cdot\vec{B}=q\vec{a}\times\vec{B}\cdot\vec{B}$. Porque el producto cruz $\vec{v}\times\vec{B}$ es ortogonal a \vec{B} , el lado derecho de la ecuación es nulo. Resulta $\vec{j}\cdot\vec{B}=0$. Pero el producto punto es lineal, luego conmuta con la derivación. Por lo tanto $\frac{d}{dt}(\vec{a}\cdot\vec{B})=0.$

Teorema 2. El módulo de la aceleración, a, es constante.

Demostración. Partimos de la ecuación $m\vec{j}=q\vec{a}\times\vec{B}$. Multiplicamos por la aceleración para obtener $m\vec{j}\cdot\vec{a}=q(\vec{a}\times\vec{B})\cdot\vec{a}$. Porque el producto cruz $\vec{a}\times\vec{B}$ es ortogonal a \vec{a} , el lado derecho de la ecuación es nulo. Resulta $\vec{j}\cdot\vec{a}=0$. Esto nos permite calcular $\frac{d}{dt}a^2=2\vec{a}\cdot\frac{d\vec{a}}{dt}=2\vec{a}\cdot\vec{j}=0$.

Fijemos una base ortonormal $\{\bar{b}_1, \bar{b}_2\}$ del plano ortogonal a \vec{B} . Esto nos permite definir dos escalares $\alpha = \vec{a} \cdot \bar{b}_1$, $\beta = \vec{a} \cdot \bar{b}_2$ que describen a la proyección ortogonal de \vec{a} sobre dicho plano. Sin mayor esfuerzo $\{\bar{b}_1, \bar{b}_2, \bar{B} = \vec{B}/B\}$ es

una base ortonormal de \mathbb{R}^3 . Pediremos además que $\{\bar{b}_1, \bar{b}_2, \bar{B}\}$ esté orientada positivamente. Con mayor claridad, lo que pedimos es que se verifiquen las ecuaciones $\bar{b}_1 \times \bar{b}_2 = \bar{B}, \ \bar{b}_2 \times \bar{B} = \bar{b}_1, \ \bar{B} \times \bar{b}_1 = \bar{b}_2$. Eso nos ayudará a calcular productos cruz. La siguientes propiedades se derivan de esta construcción

Teorema 3. Las variables α , β nos proveen las identidades

$$\vec{a} = \alpha \bar{b}_1 + \beta \bar{b}_2 + (\vec{a}_0 \cdot \bar{B})\bar{B} \tag{3}$$

$$a_0^2 = \alpha^2 + \beta^2 + (\vec{a}_0 \cdot \bar{B})^2 \tag{4}$$

$$\vec{a} \times \vec{B} = B(-\alpha \bar{b}_2 + \beta \bar{b}_1) \tag{5}$$

$$\vec{j} = \frac{d\alpha}{dt}\bar{b}_1 + \frac{d\beta}{dt}\bar{b}_2 \tag{6}$$

Demostración. (3) es consecuencia de la ortonormalidad de la base $\{\bar{b}_1, \bar{b}_2, \bar{B}\}$. La fórmula $\vec{a} \cdot \bar{B} = \vec{a}_0 \cdot \bar{B}$ se debe al teorema 1.

Todas las demás son consecuencia de esta primera ecuación (3).

- (4) se debe a la ortonormalidad de la base $\{\bar{b}_1, \bar{b}_2, \bar{B}\}$, y a la igualdad $a^2 = a_0^2$ que se desprende del teorema teorema 2.
 - (5) se debe a la orientación positiva de la base $\{\bar{b}_1, \bar{b}_2, \bar{B}\}.$
 - (6) se debe a la linealidad de la derivada.

Teorema 4. Las funciones α , β satisfacen el sistema de ecuaciones diferenciales

$$\begin{cases} \frac{d\alpha}{dt} = \frac{qB}{m}\beta\\ \frac{d\beta}{dt} = -\frac{qB}{m}\alpha \end{cases}$$
 (7)

Demostración. Partimos de la ecuación $m\vec{j} = q\vec{a} \times \vec{B}$. Reemplazamos \vec{j} , $\vec{a} \times \vec{B}$ por sus fórmulas (6), (5) en función de α , β . Obtenemos

$$\frac{d\alpha}{dt}\bar{b}_1 + \frac{d\beta}{dt}\bar{b}_2 = \frac{qB}{m}(\beta\bar{b}_1 - \alpha\bar{b}_2) \tag{8}$$

El sistema (7) se deduce usando que \bar{b}_1 , \bar{b}_2 son linealmente independientes. \square

El siguiente caso particular resulta muy interesante. Su particularidad es que muestra una familia de trayectorias parabólicas en presencia de un campo magnético nonulo.

Teorema 5. Si la aceleración inicial, \vec{a}_0 , es paralela al campo magnético, \vec{B} , entonces la aceleración \vec{a} es constante.

Demostración. Partimos de la ecuación (4), que dice $a_0^2 = \alpha^2 + \beta^2 + (\vec{a}_0 \cdot \bar{B})^2$. Si \vec{a}_0 es paralelo a \vec{B} , entonces $\vec{a}_0 = (\vec{a}_0 \cdot \bar{B})\bar{B}$ y $a_0^2 = (\vec{a}_0 \cdot \bar{B})^2$. Junto a la primera ecuación, estas implican $\alpha = \beta = 0$. Por la ecuación (3), se sigue $\vec{a} = (\vec{a}_0 \cdot \bar{B})\bar{B} = \vec{a}_0$

Teorema 6. Si la aceleración inicial, \vec{a}_0 , es paralela al campo magnético, \vec{B} , entonces la solución a la ecuación diferencial (1) está dada por

$$\vec{r} - \vec{r_0} = \vec{a_0} \frac{t^2}{2} + \vec{v_0}t$$
 $donde$ $\vec{a_0} = \frac{q}{m} \vec{E} + \frac{q}{m} \vec{v_0} \times \vec{B}$ (9)

Demostración. Partimos del Teorema 5. La aceleración \vec{a} es constante. Luego $\vec{v} - \vec{v_0} = \vec{a_0}t$. Integrar nuevamente arroja $\vec{r} - \vec{r_0} = \vec{a_0}t^2/2 + \vec{v_0}t$. La fórmula para $\vec{a_0}$ se deriva de la identidad $m\vec{a_0} = q\vec{E} + q\vec{v_0} \times \vec{B}$.

En lo que sigue vamos a ignorar este caso, en el cual la velocidad inicial y el campo magnético son paralelos, y supondremos $\vec{a}_0 \neq (\vec{a}_0 \cdot \bar{B}) \bar{B}$. Esto nos permite proyectar el vector \vec{a}_0 sobre el plano ortogonal al campo magnético \vec{B} . El resultado es el vector proyección $\vec{\pi}_0 = \vec{a}_0 - (\vec{a}_0 \cdot \bar{B}) \bar{B}$. Que tiene módulo positivo $\pi_0 = (a_0^2 - (\vec{a}_0 \cdot \bar{B})^2)^{1/2}$, y por eso puede ser regularizado $\bar{\pi}_0 = \vec{\pi}_0/\pi_0$. Este vector es importante, y en el siguiente teorema lo vemos por primera vez.

Teorema 7. Existe un ángulo $\theta = \theta(t)$ tal que $\alpha = \pi_0 \cos \theta$, $\beta = \pi_0 \sin \theta$.

Demostración. La ecuación (4) nos dice que $\pi_0^2 = a_0^2 - (\vec{a}_0 \cdot \vec{B})^2 = \alpha^2 + \beta^2$. Se deduce la ecuación de una circunferencia $\alpha^2 + \beta^2 = \pi_0^2$ de radio π_0 . Luego, para cada tiempo t existe un ángulo $\theta = \theta(t)$ tal que $\alpha = \pi_0 \cos \theta$ y $\beta = \pi_0 \sin \theta$. \square

Teorema 8. La velocidad angular $\omega = \frac{d\theta}{dt}$ es $\omega = \frac{qB}{m}$.

Demostración. Partimos del sistema de ecuaciones diferenciales (7). Reemplazando $\alpha = \pi_0 \cos \theta$, $\beta = \pi_0 \sin \theta$, y usando la regla de la cadena, obtenemos

$$\begin{cases}
(\pi_0 \sin \theta) \frac{d\theta}{dt} = \frac{qB}{m} (\pi_0 \sin \theta) \\
(-\pi_0 \cos \theta) \frac{d\theta}{dt} = \frac{qB}{m} (-\pi_0 \cos \theta)
\end{cases}$$
(10)

Conjuntamente, estas dos ecuaciones implican $\omega = \frac{qB}{m}$.

En lo que sigue es importante que $\vec{\pi}_0$ sea nonulo, porque nos permite usarlo para entender los vectores que viven en el plano ortogonal a \vec{B} .

Teorema 9. La base $\{\bar{b}_1, \bar{b}_2\}$ del plano ortogonal a \vec{B} , puede elegirse como

$$\bar{b}_1 = \bar{\pi}_0 \qquad \qquad \bar{b}_2 = \bar{B} \times \bar{\pi}_0 \tag{11}$$

Además, de este modo puede elegirse el valor inicial de θ como

$$\theta_0 = 0 \tag{12}$$

Demostración. En efecto. El vector $\bar{b}_1 = \bar{\pi}_0$ es unitario y ortogonal a \bar{B} . Un buen candidato. Por otro lado, el vector \bar{b}_2 queda inmediatamente determinado por la restricción que impusimos sobre la base $\{\bar{b}_1, \bar{b}_2, \bar{B}\}$ de \mathbb{R}^3 . Al especificar

que esta tiene que estar orientada positivamente, se verifica $\bar{B} \times \bar{b}_1 = \bar{b}_2$. Y esta última ecuación define a \bar{b}_2 .

Por otro lado, si volvemos a la ecuación (3), para el instante t=0 dice $\vec{a}_0 = \alpha_0 \bar{b}_1 + \beta_0 \bar{b}_2 + (\vec{a}_0 \cdot \bar{B}) \bar{B}$. Reemplazando α , β por sus expresiones en función de θ , obtenemos

$$\vec{a}_0 = \pi_0 \cos \theta_0 \bar{b}_1 + \pi_0 \sin \theta_0 \bar{b}_2 + (\vec{a}_0 \cdot \bar{B}) \bar{B}$$
(13)

Pero $\vec{\pi}_0 = \vec{a}_0 - (\vec{a}_0 \cdot \vec{B})\vec{B}$. Entonces $\bar{\pi}_0 = \cos\theta_0\bar{b}_1 + \sin\theta_0\bar{b}_2$. Aquí se aprecia que $\theta_0 = 0$ es una elección viable para el ángulo inicial.

Teorema 10. El ángulo es $\theta = \omega t$.

Demostración. Es una consecuencia trivial de 8 y 9.

Teorema 11. La solución \vec{v} a la ecuación $m\vec{j} = q\vec{a} \times \vec{B}$, donde el campo magnético es constante, está dada por

$$\vec{v} - \vec{v}_0 = \frac{\sin \omega t}{\omega} \vec{\pi}_0 - \frac{\cos \omega t}{\omega} \vec{B} \times \vec{\pi}_0 + (\vec{a}_0 \cdot \vec{B}) \vec{B} t \tag{14}$$

Demostración. Partimos de la ecuación (3)

$$\vec{a} = \alpha \bar{b}_1 + \beta \bar{b}_2 + (\vec{a}_0 \cdot \bar{B})\bar{B} \tag{15}$$

Reemplazamos $\bar{b}_1,\,\bar{b}_2$ por los vectores que propusimos en 9

$$\vec{a} = \alpha \bar{\pi} + \beta \bar{B} \times \bar{\pi} + (\vec{a}_0 \cdot \bar{B}) \bar{B} \tag{16}$$

Reemplazamos α , β por las expresiones en función de θ que obtuvimos en 7

$$\vec{a} = (\pi_0 \cos \theta) \bar{\pi}_0 + (\pi_0 \sin \theta) \bar{B} \times \bar{\pi}_0 + (\vec{a}_0 \cdot \bar{B}) \bar{B}$$
(17)

$$= (\cos \theta)\vec{\pi}_0 + (\sin \theta)\bar{B} \times \vec{\pi}_0 + (\vec{a}_0 \cdot \bar{B})\bar{B} \tag{18}$$

Reemplazamos θ por ωt , usando el teorema 10

$$\vec{a} = (\cos \omega t)\vec{\pi}_0 + (\sin \omega t)\bar{B} \times \vec{\pi}_0 + (\vec{a}_0 \cdot \bar{B})\bar{B} \tag{19}$$

Integrando con respecto a t obtenemos el resultado que deseamos.

Teorema 12. La solución \vec{r} a la ecuación $m\vec{a} = q\vec{E} + q\vec{v} \times \vec{B}$, donde el campo eléctrico \vec{E} y el campo magnético \vec{B} son constantes, es

$$\vec{r} - \vec{r_0} = -\frac{(\cos \omega t)\vec{\pi}_0 + (\sin \omega t)\vec{B} \times \vec{\pi}_0}{\omega^2} + (\vec{a}_0 \cdot \vec{B})\vec{B}\frac{t^2}{2} + \vec{v_0}t$$
 (20)

Donde

$$\vec{\pi}_0 = \vec{a}_0 - (\vec{a}_0 \cdot \bar{B})\bar{B} \tag{21}$$

$$\vec{a}_0 = \frac{q}{m}\vec{E} + \frac{q}{m}\vec{v}_0 \times \vec{B} \tag{22}$$

$$\bar{B} = \vec{B}/B \tag{23}$$

Observar que esta última fórmula también funciona en el caso en que \vec{a}_0 sea paralelo a \vec{B} . Allí, sencillamente $\vec{\pi}_0 = 0$.