Reg. No.															
----------	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--

B.Tech. DEGREE EXAMINATION, MAY 2024

Fourth Semester

18AIC206J - ANALYSIS AND DESIGN OF ALGORITHMS

(For the candidates admitted during the academic year 2018-2019 to 2021-2022)

Note:

(i) Part - A should be answered in OMR sheet within first 40 minutes and OMR sheet should be handed over to hall invigilator at the end of 40th minute.

(ii)	Part - B & Part - C s	end of 40 th minute. hould be answered in ans	wer booklet.				
Time: 3	3 hours		1	Max. Ma	arks	: 100)
	PA	$ART - A (20 \times 1 = 20)$ Answer ALL Questi		Marks	BL	СО	PO
1	serves as a te	~	specified computational problem	1	1	1	1.1.2
	(A) Program	(B)	Flow chart				
	(C) Algorithm	(D)	Input and output				
2	. Worst case time com	nplexity of insertion so	ort is	1	1	1	1,2
	(A) $O(n^2)$	(B)	O(n+1)				
	(C) O(1)	(D)	O(log n)				
3	required to sort the e	elements using bubble		re ¹	1	1	1,4
	(A) 3	(B)					
	(C) 1	(D)	2				
4	Derive the recurrence sample (int n) { if (n>0) printf ("%D", n)	e relation for the follo	wing code		2	1	1,4
	sample (n-1);	8					
	$\{A\}$	n^2 (B)	T(n) = T(n-1) + 1				
	(C) $T(n) = (n) + 1$		T(n) = (n-1) + n				
5	. Merge sort uses			1	1	2	2,3
J	(A) Divide and con	ouer strategy (B)	Greedy approach				
	(C) Dynamic progr		Brute force strategy				
6	Time complexity of Strassen multiplication is					2	2
	(A) $T = \theta (N^{\log 2})$	•	$T = \theta \ (7^{\log 2})$				
	(C) $T = \theta (N^2)$		$T = \theta \ (N^{\log 7})$				
	() I = O (IV)	(D)	$I = \sigma(IV - I)$				
7	. How do you call the	• •		1	1	2	2,3
	(A) Outer key		Pivot key				
	(C) Partition key	(D)	Inner key				

8.	What is the basic operation of close technique?	est pair algorithm using brute force	1	2	2	2,5
	· ·	B) Area				
	(C) Manhattan distance (D) Euclidean distance				
9.	Which of the following problems is not	solved using dynamic programming?	1	1	3	2,5
		B) Fractional knapsack problem				
	(C) Edit distance problem (D) Matrix chain multiplication				
		problem				
10.	Which is correct?		1	2	3	2,5
10.	Algorithm	Design paradigm				
	i) Dijkstra's shortest path	a) Greedy design				
	ii) Floyd Warshall's all pair shortest p					
	iii) Kruskals minimum spanning tree	c) Dynamic programming				
	iv) Merge sort ALG	25 25 27 1 27 1 27 1 27 1				
		B) i) - c, ii) - b, iii) - a and iv) - b				
	(C) i) - a, ii) - c, iii) - a and iv) - b (D) i) - a, ii) - b, iii) - a and iv) - c				
11.	Let the frequency of letters in a file is g	iven below. Letters i, n, d, e, x are 16,	1	2	3	2,5
	7, 17, 25, 20 respectively. Which of the f					
	letter.					
		B) 01				
	(C) 001	D) 11				
12.	Which of the following problems can	be solved using the longest common	1	1	3	2,5
	subsequence problem?					
	(A) Longest increasing subsequence (B) Longest palindromic subsequence				
	(C) Longest bitonic subsequence (D) Longest decreasing subsequence				
13	In the given options, which of the follo	wing is a correct option that provides	1	2	4	2,4
13.	an optimal solution for 4-queens problem					
	*					
	(A) (3,1,4,2) (C) (4,3,2,1) (C)	D) (4,2,3,1)				
	70 10 1 1 1 1 1 1		1	2	4	2,4
14.	If a graph G can be colored with the m subjected to the constraints of the proble			_	•	۷,٦٠
	-	B) G-color				
	()	D) Chromatic coloring				
	The complexity of Hamiltonian cycle al		1	2	4	2,4
	(A) $(n-1)^n - \frac{1}{n-1}$	B) $(n-1)^2 - \frac{1}{n-1}$				
	(A) $(n-1)^n - \frac{1}{n-2}$ (C) $(n-1) - \frac{1}{n-2}$	B) $(n-1)^2 - \frac{1}{n-2}$ D) $(n-1) - \frac{2}{(n-2)^n}$				
	(C) $(n-1)-\frac{1}{n-1}$	$(n-1)-\frac{2}{n-1}$				
	n-2	$(n-2)^n$				
1.0	Which of the morblemes armed by a large	d by booktrooking mathod?	1	1	4	2,4
10.	Which of the problems cannot be solved (A) Subset sum problem (B) N-queen problem	-	•		-,•
	(C) Hamiltonian circuit problem (
	(-)	-, o p				
17.	What is the basic principle in Rabin Kar	rp algorithm?	1	2	5	1,2

31MA4-18AIC206J

Page 2 of 4

	(A) Hashing	(B)	Sorting				
	(C) Augmenting	` '	Dynamic programming				
18	. What is the average time complexity of	of ran	domized quick sort?	1	I	5	1,2
10.	(A) O(n log n)	(B)	$O(n^2)$				
	(C) $O(n^2 \log n)$		$O(n \log n^2)$				
10	. Which of the following problems is no	ot NP	complete?	1	2	5	1,2
17.	(A) Hamiltonian circuit		Bin packing				
	(C) Partition problem	` '	Halting problem	*			
20.	. A cycle is called if it visits al staring vertex.	ll ver	tices once and return back to the	1	2	5	1,2
	(A) Chord less cycle	(B)	Peripheral cycle				
	(C) Hamiltonian	(D)	Girth				
	D. D. D. (5		00 MC 1)	Marks	BL	co	РО
	PART – B (5 > Answer ANY)						
21.	. An array consists of the 10 elements a 70, 80] write a recursive algorithm to so 70 using divide and conquer technique	earch	and return the index of the element	4	4	1	1,4
22.	Multiply the following two matrices u $A = \begin{pmatrix} 2 & 5 \\ 5 & 2 \end{pmatrix} B = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$	sing t	the Strassen method	4	3	2	2,4
23.	Apply substitution method for the follow output. $T(n) = T(n-1) + n$ is $O(n^2)$	owing	g recurrence equation and show the	4	3	2	2,4
24.	Syllie or	e	set of symbols shown in the below f	4	3	3	4,5
		4 1	11	4	4	4	2,4
25.	5. Distinguish between back tracking me	bons	and dynamic programming.				
26.	5. Define NP-hard problem. Analyze its	impo	rtance.	4	3	5	1,4
27.	7. Differentiate quicksort and randomize time complexity of quicksort algorithm		icksort. Also derive the worst case	4	4	5	1,4
	PART – C (5 × 12 = Answer ALL Q			Marks	BL	со	PO
28. a	A. Assume a sequence of bottles with the A = {14, 7, 3, 2, 9, 6, 5, 8, 1}. Write bottles in desired order and also write required for arranging these bottles us the time complexity analysis also.	te the	suitable algorithm to arrange the many comparisons and swaps are	12	4	1	1,2

(OR)

b.	Solve the following recurrence equation using recursion tree method (i) $T(n) = T(n/3) + T(2n/3) + n$	6	4	1	2,4
	(ii) $T(n) = 3T(n/4) + cn^2$	6			
29. a.	Consider the array $A=(9, -3, 5, 2, 6, 8, -6, 1, 3)$. Let V is the last element in an array and it is the pivot element. Show the sorting of elements in an array stepwise and write the suitable algorithm. Derive the best case and worst case analysis of the above algorithm.	12	3	2	3,4
h	(OR) Develop the graham's seen algorithm for finding convey bull and analysis its	12	3	2	3,4
υ,	Develop the graham's scan algorithm for finding convex hull and analyze its time complexity.	12	J	2	3,4
30. a.	Use greedy technique to design an algorithm to generate Huffman coding. Analyze its time complexity.	12	3	3	4,5
b.	(OR) Consider the following instance of the knapsack problem. $n = 3$, $m = 20$	12	4	3	4,5
	$(W_1, W_2, W_3) = 18, 15, 10$ $(P_1, P_2, P_3) = 25, 24, 15$ Find the optimal solution using dynamic programming method and write the algorithm for same.				
31. a.	Write an algorithm for finding all pair shortest path using Floyd Warshall method and find its time complexity.	12	3	4	4,5
b.	(OR) Apply back tracking technique to design an algorithm to solve 8 queens'	12	3	4	4,5
	problem. illustrate with an example.				
32. a.	Elucidate the Rabin Karp algorithm for string matching with an example.	12	3	5	1,4
L:	(OR)			···	, ,
D.1.	Distinguish P, NP hard, NP complete problems with example.	6	4	5	1.4
ii.	Explain satisfiability problem with an example. Analyze what would happen if polynomial time solution if found for it.	6	3	5	1,4

* * * * *