July 27, 2020 to August 24, 2020

Note: For any geometry problem whose statement begins with an asterisk (*), the first page of the solution must be a large, in-scale, clearly labeled diagram. Failure to meet this requirement will result in an automatic 1-point deduction.

SJMO 4. (*) Let B and C be points on a semicircle with diameter AD such that B is closer to A than C. Diagonals AC and BD intersect at point E. Let P and Q be points such that $\overline{PE} \perp \overline{BD}$ and $\overline{PB} \perp \overline{AD}$, while $\overline{QE} \perp \overline{AC}$ and $\overline{QC} \perp \overline{AD}$. If BQ and CP intersect at point T, prove that $\overline{TE} \perp \overline{BC}$.

SJMO 5. A nondegenerate triangle with perimeter 1 has side lengths a, b, and c. Prove that

 $\left| \frac{a-b}{c+ab} \right| + \left| \frac{b-c}{a+bc} \right| + \left| \frac{c-a}{b+ac} \right| < 2.$

SJMO 6. We say a positive integer n is k-tasty for some positive integer k if there exists a permutation $(a_0, a_1, a_2, \ldots, a_n)$ of $(0, 1, 2, \ldots, n)$ such that $|a_{i+1} - a_i| \in \{k, k+1\}$ for all $0 \le i \le n-1$. Prove that for all positive integers k, there exists a finite N such that all integers $n \ge N$ are k-tasty.