2. Modelling Sequential and Parallel Systems

Computer-Aided Verification

Dave Parker

University of Birmingham 2017/18

Module aims & focus

• Aims of the module:

- introduce the basic ideas of automatic verification
- familiarise you with key techniques & algorithms for verification
- illustrate uses & applications of automatic verification
- give practical experience in state of the art verification software
- provide a foundation for further study in the area of verification
- Mix of: theory + algorithms + tools
 - no programming, but use of modelling languages

Prerequisites

background in: propositional logic, automata, graph algorithms

Module delivery

- Lectures:
 - Tue 11-12:
 - Lecture Room 7, Arts Building
 - Thur 12-1:
 - G29, Mechanical and Civil Engineering
- Tutorials (feedback on exercises) (not all weeks):
 - Thur 4–5 (surnames A–L, by default):
 - UG06, Murray Learning Centre
 - Fri 10–11 (surnames M–Z, by default):
 - Lecture Theatre 1, Sports and Exercise Sciences

Assessment

• Split:

- 80% exam (1.5hr, in the summer)
- 20% continuous assessment

Continuous assessment

- 4 exercises (1st is formative; 2-4 are assessed: 6%/8%/6%)
- 1 week for each: due Thurs of weeks 3, 5, 8, 11
- 1 extra assessed exercise for "extended" version (due week 10)
- submitted through Canvas
- solutions worked through in tutorial sessions

Reference material

Useful books

Principles of Model Checking

Christel Baier and Joost-Pieter Katoen [BK08] The MIT Press, 2008

Logic in Computer Science: Modelling and reasoning about systems

Michael Huth and Mark Ryan Cambridge University Press, 2004

Model Checking

Edmund M. Clarke, Orna Grumberg, Doron Peled 2nd edn., MIT Press, 2000

Links to further papers/tutorials will be added to Canvas

Resources

Canvas

- https://canvas.bham.ac.uk/courses/27245
- lecture slides/videos, links, assessments, announcements

Facebook group

- https://www.facebook.com/groups/bham.cav.1718
- questions, discussion, announcements

Office hours

room 133 (see my door/webpage for times)

2. Modelling Sequential and Parallel Systems

Computer-Aided Verification

Dave Parker

University of Birmingham 2016/17

Model checking

Models

- To verify computerised systems
 - we need precise mathematical models of their behaviour
- "All models are wrong, but some are useful" [George Box]
 - results of verification are only as good as the model
- It's all about abstraction

```
do {
    if (is_request) {
        size = makerequest(WRQ, name, dp, mode) - 4;
} else {
        size = readit(file, &dp, 0);
        if (size < 0) {
            nak(errno + 100, NULL);
            break;
        }
        dp->th_opcode = _htons((u_short)DATA);
        dp->th_block = _htons((u_short)block);
}

    timeout = 0;
timeout:
    if (trace)
        tpacket("sent", dp, size + 4);
```


Overview

- Labelled transition systems
 - definitions, notation, ...
- Modelling sequential systems
 - e.g. simple programs
- Nondeterminism
- Parallelism and concurrency
 - interleaving, shared variables, handshaking
 - SOS-style semantics

• See [BK08] chapter 2 (specifically: 2.1–2.1.1, 2.2–2.2.3)

Labelled transition systems

- States = possible configurations of system
 - e.g. valuations of program variables
 - e.g. values of registers in a hardware circuit
- Transitions = possible ways system can evolve
 - e.g. execution of a single program statement
 - e.g. sequential circuit update

Labelled transition systems

- A labelled transition system (LTS) is:
 - a tuple $(S,Act,\rightarrow,I,AP,L)$
- where:
 - S is a set of states ("state space")
 - Act is a set of actions
 - $\rightarrow \subseteq S \times Act \times S$ is a transition relation
 - $I \subseteq S$ is a set of initial states
 - AP is a set of atomic propositions
 - L: S → 2^{AP} is a labelling function

- An LTS is also known as:
 - transition system (TS), state-transition system, Kripke structure
- Essentially: directed graph
 - where nodes/vertices = states, edges = transitions

Example: Drinks machine

Example LTS (S,Act,→,I,AP,L):

```
- S = { ready, wait, coffee, beer }
- Act = { coin, press1, press2, serve }
- \rightarrow = \{
   (ready, coin, wait),
   (wait, press 1, coffee),
   (wait, press2, beer),
   (coffee, serve, ready),
   (beer, serve, ready)
- | = {ready}
- AP = {inactive,chosen}
– L(ready) = {inactive},
   L(wait) = \emptyset,
   L(coffee) = L(beer) = \{chosen\}
```


Labellings and finiteness

State labelling

- states are labelled with atomic propositions a,b,... ∈ AP
- represent facts/observations, e.g. "failed", "size≤max", ...

Transition labelling

- transitions are labelled with actions $\alpha, \beta, \dots \in Act$
- will be used for communication between components

Finiteness

- an LTS is finite if S, Act and AP are finite
- we will usually (but not always) assume finite LTSs

Transitions

Transitions

- we write $s - \alpha \rightarrow s'$ if $(s, \alpha, s') \in \rightarrow$

Direct successors/predecessors

- Post(s,α) = { s' ∈ S | s -α→ s' } and Post(s) = $U_{\alpha \in Act}$ Post(s,α)
- Pre(s,α) = { s' ∈ S | s' -α→ s } and Pre(s) = $\bigcup_{\alpha \in Act}$ Pre(s,α)

Terminal states

- state s is terminal if Post(s) = \emptyset , i.e., has no outgoing transitions
- might represent termination of a program
- often represents erroneous/undesired behaviour
- e.g. deadlock (not all components have terminated)

Paths & reachability

- An path (or run, trajectory, execution) is
 - an alternating sequence $s_0 \alpha_0 s_1 \alpha_1 s_2 \alpha_2 \dots$
 - such that $s_i \alpha_i \rightarrow s_{i+1}$ for all $i \ge 0$ and $s_0 \in I$
- i.e. one possible behaviour/execution of the system modelled
- A finite path is
 - a finite prefix of an (infinite) path, ending in a state
 - e.g. $s_0 \alpha_0 s_1 \alpha_1 ... \alpha_{n-1} s_n$
- Reachability
 - state s' is reachable from s if there is a finite path from s to s'
 - s is a reachable state if it is reachable from some $s_0 \in I$
 - reachability (the process of determining reachable states)
 is a fundamental problem/task in model checking

Example

Transitions

- Post(wait,press1) = {coffee}
- Post(wait) = {coffee,beer}
- Pre(ready) = {coffee,beer}
- A finite path
 - ready coin wait press1 coffee

- An infinite path/execution
 - ready coin wait press1 coffee serve ready (coin wait press2 beer serve ready) $^{\omega}$
- All states are reachable and non-terminal

Programs as LTSs

- How to model a (sequential) program as an LTS?
 - states are tuples (l_i, x, y) of location & variable values

