Diseño de Algoritmos

Problemas extra para actividades telemáticas

Tema 4. Vuelta Atrás

- 1. Suma de dígitos
- 2. Huelga de transportistas

1. Suma de dígitos

- Dado un valor entero **n**, mostrar todos los números de **n** cifras que se pueden formar que cumplan la siguiente condición: "la suma de los dígitos que ocupan las posiciones pares es igual a la de los que ocupan las posiciones impares"
- Nota: Para simplificar el problema, considerar que solamente se pueden utilizar los dígitos del 1 al 5. Ejemplos:
 - Si **n**=2, los posibles números serían: 11, 22, 33, 44 y 55
 - Si **n**=3, los posibles números serían: 121, 132, 143, 154, 231, 242, 253, 341, 352 y 451
 - Si **n**=4, algunos de los posibles números serían: 1111, 1122, 1133, 1144, 1155, 1221, 1232, 1243, 1331, 1342, 1441, 1551, etc.
- **Nota:** se puede trabajar con un vector para almacenar cada uno de los dígitos y, antes de dar la salida, convertirlo a un valor numérico.

1. Suma de dígitos

- Guía: La función de factibilidad debe tener en cuenta:
 - La posición del dígito que se va completando en cada momento
 - La suma de los dígitos de las posiciones pares y la de los impares
 - ...

- Los transportistas siguen en huelga. Para tener más visibilidad en una ciudad, la Unión de Transportistas ha decidido que cada uno de los **n** transportistas vaya a uno de los **n** destinos diferentes.
- En la celda (i, j) de una matriz de **nxn** (número de transportistas x número destinos) se han almacenado los litros de combustible que gasta el transportista i si va al destino j.
- Implementa un algoritmo de Vuelta Atrás para decidir el lugar al que debe ir cada transportista de manera que se minimice el número total de litros de diésel consumidos.

• Ejemplo de tabla para 7 transportistas y 7 destinos diferentes:

	Destino 0	Destino 1	Destino 2	Destino 3	Destino 4	Destino 5	Destino 6
Transportista 0	17	45	90	51	55	58	83
Transportista 1	40	38	73	77	83	29	11
Transportista 2	51	56	14	86	22	75	37
Transportista 3	41	24	67	49	19	91	12
Transportista 4	28	26	56	33	67	32	62
Transportista 5	38	68	53	73	83	21	43
Transportista 6	52	76	44	10	42	31	12

- Representación de la solución:
 - Vector $S=\{s_1, s_2, ..., s_n\}$. Donde s_i representa el destino asignado al transportista i.
- Empezando por el primer transportista, en cada etapa el algoritmo irá avanzando en la construcción de la solución, comprobando siempre que el nuevo valor añadido a ella es compatible con los valores anteriores.
- Por cada solución que encuentre anotará su coste (litros consumidos) y lo comparará con el coste de la mejor solución encontrada hasta el momento.

- **Mejora:** realizar podas en el árbol implícito eliminando aquellos nodos que no van a llevar a la solución óptima.
- Para ello la función de factibilidad debe hacer uso de una cota que almacene los litros consumidos en la mejor solución hasta el momento, y además llevar la cuenta en cada nodo de los litros acumulados hasta ese momento.
- Si este valor es mayor que el valor de la cota, no merece la pena continuar explorando los hijos de ese nodo, pues nunca nos llevarán a una solución mejor de la que tenemos.