Санкт-Петербургский Национальный Исследовательский Университет ИТМО Факультет Программной Инженерии и Компьютерной Техники

Лабораторная работа №3 По дисциплине **Базы Данных**

Выполнил: Студент группы Р3116 Воронов Григорий Алексеевич

> Преподаватель: Гаврилов Антон Валерьевич Николаев Владимир Вячеславович

1. Текст задания

Для отношений, полученных при построении предметной области из лабораторной работы №1, выполните следующие действия:

- опишите функциональные зависимости для отношений полученной схемы (минимальное множество);
- приведите отношения в 3NF (как минимум). Постройте схему на основе 3NF (как минимум). Постройте схему на основе полученных отношений;
- опишите изменения в функциональных зависимостях, произошедшие после преобразования в 3NF (как минимум). Постройте схему на основе 3NF;
- преобразуйте отношения в BCNF. Докажите, что полученные отношения представлены в BCNF:

Если ваша схема находится уже в BCNF, докажите это.

Какие денормализации будут полезны для вашей схемы? Приведите подробное описание;

Придумайте функцию, связанную с вашей предметной областью, согласуйте ее с преподавателем и реализуйте на языке PL/pgSQL.

2. Функциональные зависимости

people: id → (first_name, last_name, father_name, birthday, max_age, action_id, body_shape_id, state_id, gender)

miracles: id → (name, unesco_number, creation_date, loss_date)

emotions: id \rightarrow (name, danger)

feelings: $id \rightarrow (owner_id, emotion_id)$

creators: id \rightarrow (creator, miracle)

states: id → (owner_id, name, intensity, start_time, end_time)

body_shapes: id → (name, body_fat)

3. Нормальные формы

Таблица находится в 1НФ <=> ни одна из строк не содержит в любом своем поле более одного значения и ни одно из ее ключевых полей не пусто. Моя модель удовлетворяет 1H Φ , поскольку все атрибуты атомарны, и нет повторяющихся групп.

Таблица находится в 2НФ <=> удовлетворяет 1НФ и все поля, не входящие в первичный ключ, связаны полной функциональной зависимостью с первичным ключом. Моя модель удовлетворяет 2НФ, поскольку все неключевые атрибуты полностью функционально зависят от первичных ключей.

Таблица находится в 3НФ <=> удовлетворяет 2НФ и ни одно из ее неключевых полей не зависит функционально от любого другого неключевого поля. Моя модель удовлетворяет 2HФ, поскольку все неключевые атрибуты функционально зависят только от первичных ключей.

4. Нормальная форма Бойса-Кодда

Таблица находится в НФБК <=> ключевые атрибуты составного ключа не должны зависеть от неключевых атрибутов. *Модель удовлетворяет НФБК*

5. Денормализация

Добавление избыточных атрибутов:

В некоторых случаях добавление избыточных атрибутов может улучшить производительность запросов.

Например, если часто запрашивается количество чудес, созданных человеком, то разумно добавить атрибут miracle_count, дабы сократить время выполнения такого запроса. Однако нужно помнить, что в таком случае необходимо обновлять такой атрибут при каждом добавлении или удалении чуда.

Или же если часто запрашивается текущее состояние человека, то можно добавить current_state в таблицу people.

Объединение связанных таблиц:

В некоторых случаях, объединение таблиц может уменьшить количество операций JOIN и ускорить обработку запросов. Например, если часто запрашиваются данные о человеке и его действии, то можно объединить эти две таблицы в people_actions. Однако при добавлении или изменении записей о действиях в таблице actions, соответствующие данные в таблице people_actions также должны быть обновлены.

6. Функция на языке PL/pgSQL

Функция на языке PL/pgSQL для вычисления среднего возраста всех людей.

```
CREATE OR REPLACE FUNCTION update_average_age()
RETURNS TRIGGER AS $$
DECLARE
    avg_age NUMERIC;
BEGIN
    -- Вычисляем средний возраст всех людей
    SELECT AVG(EXTRACT(YEAR FROM age(current_date, p.birthday)))
INTO avg_age
    FROM people p;

    -- Выводим результат на экран
    RAISE NOTICE 'Average age of people: %', avg_age;

RETURN NEW;
```

```
END;
$$ LANGUAGE plpgsql;

CREATE TRIGGER update_average_age_trigger
AFTER INSERT OR UPDATE OF birthday ON people
FOR EACH ROW
EXECUTE FUNCTION update_average_age();
```

7. Вывод

При выполнении лабораторной работы я познакомился с понятием нормализации и денормализации. Научился определять функциональные зависимости модели, а также анализировать последнюю на соответствие различным нормальным формам. Познакомился с процедурным языком PL/pgSQL. Изучил эффективные способы денормализации схемы базы данных и ситуации, в которых возможно их применение.