# Доверительные интервалы. Проверка гипотез.

Леонид Иосипой

Курс «Вероятностные модели и статистика» Центр непрерывного образования, ВШЭ

20 апреля 2021

- Повторение
- Доверительные интервалы
- Бутстрэп
- Проверка гипотез
- Критерии согласия

1. Закон больших чисел (ЗБЧ).

#### Теорема (Закон больших чисел, ЗБЧ)

Пусть  $X_1, X_2, X_3, \ldots$  — н.о.р.с.в. Пусть также  $\mu = \mathbb{E}[X_1]$  и  $\sigma^2 = \text{Var}(X_1)$  существуют. Определим  $S_n = X_1 + \ldots + X_n$ . Тогда для любого t > 0,

$$\mathbb{P}\left(\left|\frac{S_n}{n} - \mu\right| > t\right) \to 0 \quad \text{при } n \to \infty.$$

Это утверждение иногда записывают так:  $\frac{S_n}{n} \stackrel{\mathbb{P}}{\to} \mu$ .

2. Центральная предельная теорема (ЦПТ).

#### Теорема (Центральная предельная теорема, ЦПТ)

В обозначениях, которые для ЗБЧ, для любых а < b,

$$\mathbb{P}\left(a < \frac{S_n - \mathbb{E}[S_n]}{\sqrt{\mathsf{Var}(S_n)}} < b
ight) o \mathbb{P}(a < Z < b)$$
 при  $n \to \infty$ ,

где  $Z \sim \mathcal{N}(0,1)$ .

#### 3. Свойства оценок.

Оценка  $\widehat{\theta}(x_1,\ldots,x_n)$  параметра  $\theta$  называется несмещенной, если

$$\mathbb{E}_{ heta}\left[\widehat{ heta}(X_1,\ldots,X_n)
ight]= heta$$
 для всех  $heta\in\Theta$ .

Несмещенность означает, что при многократном вычислении оценки на разных данных среднее арифметическое полученных оценок будет стремится к истинному значению параметра  $\theta$ .

#### 3. Свойства оценок.

Оценка  $\widehat{\theta}(x_1,\ldots,x_n)$  параметра  $\theta$  называется состоятельной, если для всех  $\theta \in \Theta$ 

$$\widehat{ heta}(X_1,\ldots,X_n)\stackrel{\mathbb{P}_ heta}{ o} heta$$
 при  $n o\infty$ .

Состоятельность оценки означает концентрацию оценки около истинного значения параметра с ростом размера выборки n (что устремив  $n \to \infty$ , оценка сойдется к истинному значению параметра  $\theta$ ).

#### 4. Оценивание характеристик распределения.

• Несмещенная и состоятельная оценка  $\mathbb{E}[X]$ :

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i.$$

• Несмещенная и состоятельная оценка Var(X):

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2}.$$

• Несмещенная и состоятельная оценка  $\mathbb{E}[g(X)]$ :

$$\frac{1}{n}\sum_{i=1}^n g(x_i).$$

Пусть имеется реализация выборки  $x_1, \ldots, x_n$  из некоторого распределения с неизвестным (одномерным) параметром

$$\theta \in \Theta \subset \mathbb{R}$$
.

До сих пор мы занимались «точечным оцениванием» неизвестного параметра — находили оценку, способную в некотором смысле заменить параметр.

Существует другой подход к оцениванию, при котором мы указываем интервал, накрывающий параметр с заданной наперед вероятностью. Такой подход называется «интервальным оцениванием».

Пусть  $\alpha \in (0,1)$ . Две оценки  $\widehat{\theta}_1$  и  $\widehat{\theta}_2$  определяют границы доверительного интервала для параметра  $\theta$  с коэффициентом доверия  $1-\alpha$ , если для выборки  $\mathbf{X}=(X_1,\ldots,X_n)$  из закона распределения  $F_\theta$  при всех  $\theta \in \Theta$  справедливо неравенство

$$\mathbb{P}\Big(\widehat{\theta}_1(\mathbf{X}) < \theta < \widehat{\theta}_2(\mathbf{X})\Big) \geq 1 - \alpha.$$

Как правило, длина доверительного интервала возрастает при увеличении коэффициента доверия  $1-\alpha$  и стремится к нулю с ростом размера выборки n.

#### Задача

Пусть  $X_1,\ldots,X_n$  — выборка из нормального распределения  $\mathcal{N}(\theta,\sigma^2)$  с неизвестным параметром  $\theta\in\mathbb{R}$  и известным параметром  $\sigma^2>0$ .

Построить точный доверительный интервал для параметра  $\theta$  уровня доверия  $1-\alpha$ .

Решение. Будем пользоваться фактом, что нормальное распределение устойчиво по суммированию:

#### если

- ►  $X_1 \sim \mathcal{N}(\mu_1, \sigma_1^2)$ ,
- $\blacktriangleright X_2 \sim \mathcal{N}(\mu_2, \sigma_2^2),$
- ▶ X₁ и X₂ независимы.

TO

$$X_1 + X_2 \sim \mathcal{N}(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2).$$

Поэтому распределение суммы элементов выборки нормально:

$$n\overline{X} = X_1 + \ldots + X_n \sim \mathcal{N}(n\theta, n\sigma^2).$$

Следовательно, после стандартизации суммы мы получим стандартное нормальное распределение:

$$\frac{n\overline{X} - n\theta}{\sqrt{n\sigma^2}} = \frac{\sqrt{n}(\overline{X} - \theta)}{\sigma} \sim \mathcal{N}(0, 1).$$

По заданному  $\alpha > 0$  найдём число c такое, что

$$\mathbb{P}\left(-c < \frac{\sqrt{n}(\overline{X} - \theta)}{\sigma} < c\right) = 1 - \alpha.$$



Разрешив затем неравенство внутри вероятности относительно  $\theta$ , получим точный доверительный интервал:

$$\mathbb{P}\left(\overline{X} - \frac{c\sigma}{\sqrt{n}} < \theta < \overline{X} + \frac{c\sigma}{\sqrt{n}}\right) = 1 - \alpha.$$

Это можно записать и так:

$$heta \in \left(\overline{X} - rac{c\sigma}{\sqrt{n}}, \overline{X} + rac{c\sigma}{\sqrt{n}}
ight)$$
 с вероятностью  $1-lpha$ .

Пусть F(x) — функция распределения некоторого закона. Число  $c_{\alpha}$  называется квантилью уровня  $\alpha$ , если  $F(c_{\alpha}) = \alpha$ .

Если функция F строго монотонна, квантиль определяется единственным образом.

Итак, искомый точный доверительный для нормального распределения имеет вид:

$$\mathbb{P}\left(\overline{X} - \frac{c_{1-\alpha/2}\sigma}{\sqrt{n}} < \theta < \overline{X} + \frac{c_{1-\alpha/2}\sigma}{\sqrt{n}}\right) = 1 - \alpha,$$

где мы использовали тот факт, что  $c_{lpha/2} = -c_{1-lpha/2}.$ 

- Какова середина полученного доверительного интервала?
- Какова его длина?
- ▶ Что происходит с его границами при  $n \to \infty$ ?

- ▶ Зачем мы брали симметричные квантили?
- Какой будет длина, например, у такого доверительного интервала?

$$\mathbb{P}\left(\overline{X} - \frac{c_{1-\alpha/3}\sigma}{\sqrt{n}} < \theta < \overline{X} + \frac{c_{1-2\alpha/3}\sigma}{\sqrt{n}}\right) = 1 - \alpha$$

► Какой из двух доверительных интервалов одного уровня доверия и разной длины следует предпочесть?

#### Алгоритм построения точных доверительных интервалов:

- 1. Найти функцию  $G(\mathbf{X}, \theta)$  с известным распределением, которое не зависит от неизвестного параметра  $\theta$ . Необходимо, чтобы функция  $G(\mathbf{X}, \theta)$  была обратима по  $\theta$ .
- 2. Найти числа  $c_1$  и  $c_2$  квантили распределения, для которых

$$\mathbb{P}(c_1 < G(\mathbf{X}, \theta) < c_2) = 1 - \alpha.$$

**3**. Разрешив неравенство  $c_1 < G(\mathbf{X}, \theta) < c_2$  относительно  $\theta$ получить точный доверительный интервал.

#### Доверительные интервалы в нормальной модели

#### Задача

Пусть  $X_1,\ldots,X_n$  — выборка из нормального распределения  $\mathcal{N}(\mu,\sigma^2)$ . Мы построили точный доверительный интервал для среднего  $\mu\in\mathbb{R}$  нормального распределения  $\mathcal{N}(\mu,\sigma^2)$  при известной дисперсии  $\sigma^2>0$ .

Построим оставшиеся точные доверительные интервалы: для  $\sigma^2$  при известном и при неизвестном  $\mu$ , а также для  $\mu$  при неизвестной  $\sigma^2$ .

Можно ли, пользуясь схемой построения доверительного интервала для  $\mu$ , построить доверительный интервал для  $\sigma^2$ ?

Попробуйте разрешить неравенство относительно  $\sigma$ :

$$-c < \frac{\sqrt{n}(\overline{X} - \mu)}{\sigma} < c.$$

- Чем плох интервал бесконечной длины?
- А получился ли интервал бесконечной длины?

# Доверительные интервалы в нормальной модели

Для решения этих задач требуется отыскать такие функции от выборки и неизвестных параметров, распределения которых не зависят от этих параметров.

Особый интерес к нормальному распределению связан, разумеется, с центральной предельной теоремой: почти всё в этом мире нормально (или близко к нормальному).

Пусть  $X_1, \ldots, X_k$  независимы и имеют стандартное нормальное распределение  $\mathcal{N}(0,1)$ .

Распределением  $\chi^2$  (хи-квадрат) с k степенями свободы называется распределение случайной величины

$$Y = X_1^2 + \ldots + X_k^2.$$

Обозначение:  $\chi_k^2$ .

Плотность распределения хи-квадрат с k степенями свободы:

$$f(u) = \begin{cases} \frac{1}{2^{k/2}\Gamma(k/2)} u^{k/2-1} e^{-u/2}, & u > 0, \\ 0, & u \le 0, \end{cases}$$

где  $\Gamma(u)$  — гамма-функция Эйлера (специальная функция).



## Доверительные интервалы в нормальной модели

Английский статистик Госсет, публиковавший научные труды под псевдонимом Стьюдент, ввёл следующее распределение.

Пусть  $X_0, X_1, \ldots, X_k$  независимы и имеют стандартное нормальное распределение  $\mathcal{N}(0,1)$ .

Распределением Стьюдента с k степенями свободы называется распределение случайной величины

$$Y = \frac{X_0}{\sqrt{\frac{X_1^2 + \dots + X_k^2}{k}}}.$$

Обозначение:  $t_k$ .

Плотность распределения Стьюдента с k степенями свободы:

$$f(u) = \frac{\Gamma(\frac{k+1}{2})}{\sqrt{k\pi}\Gamma(\frac{k}{2})} \left(1 + \frac{u^2}{k}\right)^{-\frac{k+1}{2}},$$

где  $\Gamma(u)$  — гамма-функция Эйлера (специальная функция).



## Доверительные интервалы в нормальной модели

#### Теорема (Лемма Фишера)

Пусть  $X_1, \ldots, X_n$  — выборка из нормального распределения  $\mathcal{N}(\mu, \sigma^2)$ . Обозначим

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i, \quad S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})^2.$$

Тогда случайные величины  $\overline{X}$  и  $S^2$  независимы и

$$\frac{(n-1)S^2}{\sigma^2} \sim \chi_{n-1}^2.$$

Вернемся к задаче построения доверительных интервалов в нормальной модели. Какие статистики можно использовать?

▶ Доверительный интервал для  $\mu$  при известном  $\sigma^2$ :

$$\frac{\sqrt{n}(X-\mu)}{\sigma}\sim \mathcal{N}(0,1).$$

▶ Доверительный интервал для  $\mu$  при неизвестном  $\sigma^2$ :

$$\frac{\sqrt{n}(\overline{X}-\mu)}{S}\sim t_{n-1}.$$

ightharpoonup Доверительный интервал для  $\sigma^2$  при известном  $\mu$ :

$$\sum_{i=1}^{n} \left( \frac{X_i - \mu}{\sigma} \right)^2 = \frac{nS_0^2}{\sigma^2} \sim \chi_n^2, \quad \text{где } S_o^2 = \frac{1}{n} \sum_{i=1}^{n} (X_i - \mu)^2.$$

ightharpoonup Доверительный интервал для  $\sigma^2$  при неизвестном  $\mu$ :

$$\sum_{i=1}^{n} \left( \frac{X_i - \overline{X}}{\sigma} \right)^2 = \frac{(n-1)S^2}{\sigma^2} \sim \chi_{n-1}^2.$$

После разрешения неравенства относительно неизвестного параметра внутри вероятности, получим следующий ответ.

▶ Доверительный интервал для  $\mu$  при известном  $\sigma^2$ :

$$\mathbb{P}\left(\overline{X} - \frac{c_{1-\alpha/2}\sigma}{\sqrt{n}} < \mu < \overline{X} + \frac{c_{1-\alpha/2}\sigma}{\sqrt{n}}\right) = 1 - \alpha,$$

где  $c_{1-lpha/2}$  — квантиль распределения  $\mathcal{N}(0,1)$ .

▶ Доверительный интервал для  $\mu$  при неизвестном  $\sigma^2$ :

$$\mathbb{P}\left(\overline{X} - \frac{c_{1-\alpha/2}S}{\sqrt{n}} < \mu < \overline{X} + \frac{c_{1-\alpha/2}S}{\sqrt{n}}\right) = 1 - \alpha,$$

где  $c_{1-\alpha/2}$  — квантиль распределения  $t_{n-1}$ .

## Доверительные интервалы в нормальной модели

• Доверительный интервал для  $\sigma^2$  при известном  $\mu$ :

$$\mathbb{P}\left(\frac{nS_o^2}{c_{1-\alpha/2}} < \sigma^2 < \frac{nS_o^2}{c_{\alpha/2}}\right) = 1 - \alpha,$$

где  $c_{\alpha/2}$  и  $c_{1-\alpha/2}$  — квантили распределения  $\chi_n^2$ .

 $\blacktriangleright$  Доверительный интервал для  $\sigma^2$  при неизвестном  $\mu$ :

$$\mathbb{P}\left(\frac{(n-1)S^2}{c_{1-\alpha/2}} < \sigma^2 < \frac{(n-1)S^2}{c_{\alpha/2}}\right) = 1 - \alpha,$$

где  $c_{\alpha/2}$  и  $c_{1-\alpha/2}$  — квантили распределения  $\chi^2_{n-1}$ .

Бутстрэп — это набор практических методов, который основан на многократной генерации выборок на базе одной имеющейся выборки.

Бутстрэп используется для оценки каких-то параметров распределений, построения доверительных интервалов и т.д.

Рассмотрим параметрический и непараметрический бутстрэп.

#### Параметрический бутстрэп:

- ightharpoonup Делается предположение, что данные получены из некоторого параметрического семейства  $F_{\theta}$ .
- ▶ Новые выборки генерируются из закона  $F_{\widehat{\theta}}$ , где  $\widehat{\theta}$  некоторая оценка неизвестного параметра  $\theta$ .
- Если семейство распределений  $F_{\theta}$  непрерывно зависит от параметра и оценка  $\widehat{\theta}$  не сильно уклонилась от истинного значения, то  $F_{\widehat{\theta}}$  будет близко к закону, из которого получена выборка.
- ▶ Новые выборки используем для оценки того, что нужно.

#### Непараметрический бутстрэп:

- Никакого предположения относительно семейства распределений  $F_{\theta}$  не делается.
- ▶ Новые выборки генерируются с помощью выбора с возвращением из исходной выборки.
- У этой идеи есть теоретическое подспорье: мы тем самым генерируем новую выборку из эмпирической функции распределения, которая является хорошим приближением истинной функции распределения.
- ▶ Новые выборки используем для оценки того, что нужно.

Теперь подробнее о теоретическом обосновании непараметрического бутстрэпа.

Эмпирическая функция распределения  $\widehat{F}_n(u)$  определяется формулой

$$\widehat{F}_n(u) = \frac{1}{n} \sum_{i=1}^n \mathbf{I}_{\{x_i \le u\}},$$

где  $I_{\{x_i < u\}}$  — индикатор события  $\{x_i \le u\}$ .

График  $\widehat{F}_n(x)$  представляет собой ступенчатую функцию, растущую скачками высоты 1/n. Скачки происходят в точках с координатами  $x_1, \ldots, x_n$ .



Известно, что эмпирическая функция распределения является очень хорошим приближением для истинной функции распределения.

Следовательно, чтобы сгенерировать бустрэп-выборку, можно использовать закон, соответствующий эмпирической функции распределении. А это и будет выбором с возвращением.

### Бутстрэп

# Как строить доверительные интервалы с помощью бутстрэпа?

Существует и несколько методов построения доверительных интервалов. Наиболее простой из них — pivotal интервал.

Его идея заключается в том, чтобы посчитать некоторую характеристику, доверительный интервал для которой мы хотим построить, много раз на основе бутрэп-выборок и затем по отрезать выборочные квантили.

# **Пример.** Допустим мы хотим построить доверительный интервал для некоторого параметра $\theta$ параметрического

распределения  $F_{\theta}$  на основе одной выборки  $x_1, \ldots, x_n$ .

▶ Сгенерируем m новых бутстрэп-выборок. (Для параметрического бутстрэпа построим оценку  $\widehat{\theta}$  параметра  $\theta$  и будем генерировать из  $F_{\widehat{\theta}}$ , а для непараметрического бутстрэпа будем выбирать с возвращением из  $x_1, \dots, x_n$ .) На их основе мы посчитаем m новых оценок  $\widehat{\theta}_1, \dots, \widehat{\theta}_m$ .

- lacktriangle Упорядочим  $\widehat{ heta}_i$  и выберем те из них,  $\widehat{ heta}_-$  и  $\widehat{ heta}_+$ , которые стоят на местах  $[(\alpha/2)m]$  и  $[(1-\alpha/2)m]$  по возрастанию;
- В качестве доверительного интервала возьмем

$$(\widehat{\theta}_{-}, \widehat{\theta}_{+}).$$

#### Плюсы и минусы бустрэпа.

Бутстрэп прост в использовании, не требует сложных вычислений и применим даже к весьма громоздким моделям.

С другой стороны, мы не можем явным образом оценить его погрешность. В случае, если оценка  $\widehat{\theta}$  значимо промахнулась мимо  $\theta_0$  или эмпирическая функция распределения  $\widehat{F}_n$  сильно отличается от истинной F, мы рискуем сильно ошибиться в выводах на основе бутстрэп-выборок.

В проверке гипотез мы делаем предположение о процессе, генерирующем данные, и наша задача состоит в том, чтобы определить, содержат ли данные достаточно информации, чтобы отвергнуть это предположение или нет.

Чтобы иметь возможность отвергнуть предположение, нам необходимо зафиксировать альтернативу — другое предположение о данных, относительно которого мы будем решать, отвергать основную гипотезу или нет.

#### Пример

Предположим, что кто-то подбросил 10 раз монетку, и в 8 случаях она упала гербом вверх. Можно ли считать эту монетку симметричной?

Пусть 
$$X_1, \ldots, X_n \sim \mathbf{B_p}$$
.

 $H_0: p = \frac{1}{2}$  (основная гипотеза).

 $H_1: p \neq \frac{1}{2}$  (альтернативная гипотеза).

Как проверить гипотезу  $H_0$  о том, что p=1/2?

Правило, позволяющее принять или отвергнуть гипотезу  $H_0$  на основе данных называется статистическим критерием.

Обычно критерий задается при помощи статистики критерия  $T(x_1, \ldots, x_n)$  такой, что для нее типично принимать умеренные значения в случае, когда гипотеза  $H_0$  верна, и большие (иногда малые) значения, когда  $H_0$  не выполняется.

Статистика критерия T должна обладать важным свойством:

- при верной  $H_0$  статистика T должна иметь известное нам распределение  $G_0$ ;
- при неверной  $H_0$  должна иметь какое-либо распределение отличное от  $G_0$ .

В нашем примере в качестве статистики T можно взять

$$T(x_1,\ldots,x_n)=x_1+\ldots+x_n.$$

Тогда гипотезе  $H_0$ : p=1/2 противоречат значения, которые близки к 0 или n.

Более того,

- ▶ при верной  $H_0$  имеет биномиальное распределение  ${\bf B_{n,1/2}};$
- ▶ при верной  $H_1$  имеет биномиальное распределение  ${\bf B_{n,p}}$ , но с  $p \ne 1/2$ .

Если значение T попало в область, имеющую при выполнении гипотезы  $H_0$  малую вероятность, то можно заключить, что данные противоречат гипотезе  $H_0$  в пользу альтернативы  $H_1$ .

Если значение T попало в область, имеющую при выполнении гипотезы  $H_0$  большу́ю вероятность, то можно заключить, что данные не свидетельствуют против гипотезы  $H_0$  в пользу альтернативы  $H_1$ .

#### Формализация задачи:

выборка:  $\mathbf{X} = (X_1, ..., X_n), X_i \sim F$ 

нулевая гипотеза:  $H_0: F \in \mathcal{F}_0$ 

альтернатива:  $H_1: F \in \mathcal{F}_1$ ,  $\mathcal{F}_1 \cap \mathcal{F}_0 = \varnothing$ 

статистика:  $T(x_1,...,x_n)$ ,  $T(\mathbf{X}) \sim G_0$  при  $H_0$  $T(\mathbf{X}) \sim G_0$  при  $H_1$ 



реализация выборки:  $\mathbf{x} = (x_1, \dots, x_n)$ 

реализация статистики:

достигаемый уровень значимости

или p-value:

$$\mathbf{x}=(x_1,\ldots,x_n)$$

$$t = T(\mathbf{x})$$

$$p(\mathbf{x}) = \mathbb{P}(T(\mathbf{X}) \geq t \mid H_0)$$

(если для T экстремальные значения — большие)



Достигаемый/Фактический уровень значимости (p-value) — это вероятность для статистики T при верной  $H_0$  принять значение t или ещё более экстремальное.

Если для для статистики T экстремальными значениями являются большие значения, то это можно записать так:

$$p(\mathbf{x}) = \mathbb{P}(T(\mathbf{X}) \geq t \mid H_0).$$

Нулевая гипотеза  $H_0$  отвергается при  $p(\mathbf{x}) \leq \alpha$ ,  $\alpha$  — уровень значимости, который мы задаем.



Спасибо за внимание!