A semblance based TDOA algorithm for sound source localization

Aldeia, G. S. I., Crispim, A. E., Barreto, G., Alves, K., Ferreira, H., Nose-Filho, K.

Guilherme Seidyo Imai Aldeia

Universidade Federal do ABC

Petrópolis/RJ 2019

Índice

- Introdução
- Semblance
- 3 Algoritmo proposto
- 4 Metodologia
- 6 Resultados
- 6 Conclusões

Contextualização

O uso de drones em cenários de busca e resgate está ganhando interesse na pesquisa. Podemos fazer o uso de microfones para localizar pessoas pedindo por ajuda, porém:

- X A fonte sonora precisa estar ativa;
- X O ego-noise (ruído produzido pelo próprio drone) tem grande interferência.

Problema de localização da fonte sonora

Sound Source

Temos:

- Um array de microfones com posições conhecidas (podemos medir d);
- Conhecimento da velocidade de propagação do som (v).

Problema de localização da fonte sonora

Sound Source

Assumimos que:

- O som se propaga com uma frente de onda plana;
- O som chega nos diferentes microfones em diferentes instantes de tempo.

Problema de localização da fonte sonora

Sound Source

Sejam:

- k_d a direção da fonte do som em relação à um ponto de referência (e.g. o primeiro microfone), parametrizado por θ (ou, no caso tridimensional, pelo par (θ, φ));
- τ uma função de correção dos tempos de atraso relativo em cada canal.

Função de correção au

O atraso τ para o microfone de índice i e localização m_i , assumindo que a fonte do som esteja em k_d , é dado por:

$$\tau(m_i) = -\frac{k_d \cdot m_i}{v},\tag{1}$$

onde k_d é um vetor que aponta para uma direção parametrizada por azimuth $(\theta_d \in [-\pi,\pi])$ e elevação $(\phi_d \in [-\frac{\pi}{2},\frac{\pi}{2}])$.

Pela equação:

- Conhecendo d, τ, v podemos achar θ ;
- Conhecendo d, θ, v podemos achar τ .

Mas inicialmente não conhecemos nem θ nem τ .

Objetivos

• Gerais:

- Propor um algoritmo para localização de fonte sonora utilizando sinais de microfones.
- Específicos:
 - Utilizar uma abordagem baseada no domínio do tempo;
 - Analisar a interferência do ego-noise no algoritmo proposto;
 - Comparar com um algoritmo do estado-da-arte.

Índice

- Introdução
- Semblance
- Algoritmo proposto
- 4 Metodologia
- Resultados
- 6 Conclusões

Corrigindo os atrasos dos sinais no tempo

A correção calculada para a direção correta da fonte sonora gera o (provável) melhor alinhamento dos sinais.

Semblance

A função de correlação cruzada *Semblance* (utilizada em física de reflexão) mede o **nível de similaridade** entre os sinais de diferentes sensores.

$$Z_d = \frac{\sum_n |\sum_k \hat{s}_k(n)|^2}{N_r \sum_n \sum_k |\hat{s}_k(n)|^2},$$
 (2)

onde k é o índice do microfone, n as amostragens no tempo, N_r o número de sensores, e $\hat{s}_k(n) = s_k(n - \tau_k)$ o sinal na amostragem no tempo n do k-ésimo microfone após ter a correção τ_k (para um dado Θ e Φ) aplicada.

Índice

- Introdução
- Semblance
- Algoritmo proposto
- 4 Metodologia
- Resultados
- 6 Conclusões

Estratégia para solucionar o problema

Não temos informações sobre k_d ou τ , mas:

- Sabemos como calcular o atraso au para uma direção k_d ;
- Temos uma função de coerência robusta para quantificar a similaridade dos sinais;

É esperado que o melhor alinhamento esteja relacionado com a correção aplicada para a direção correta da fonte sonora

Global Semblance

Nossa proposta inicial foi o algoritmo Global Semblance.

Algoritmo proposto - Global Semblance

- Criar uma grade de "chutes" uniformemente espaçados (pares (θ, ϕ));
- Calcular o atraso para cada possível direção;
- Medir a correlação nos sinais corrigidos;
- 4 Escolher direção com maior correlação.

Global Semblance

return z, Θ, Φ ;

```
Algoritmo 1: Find semblance global (find_global)
  input : \Delta: interval between angles to be tested
            SoS: speed of sound on the medium
            Fs: sampling rate
            s: matrix containing the audio of the 8-channel microphones
            micPos: array with coordinates [x, y, z] of the microphones positions
  output: z: matrix mapping correlation with angles
            Θ: tested values for elevation
            Φ: tested values for azimuth
  step = \Delta * \pi/180:
  \Theta = [\theta \mid \theta \leftarrow [-\pi, -\pi + step, ..., \pi]];
  \Phi = [\phi \mid \phi \leftarrow [-\pi/2, -\pi/2 + step, ..., \pi/2]]:
  \tau = [\ ];
  for (i, \theta) in (range(\Theta), \Theta) do
      for (i, \phi) in (range(\Phi), \Phi) do
          kd = [cos(\theta) * cos(\phi), sin(\theta) * cos(\phi), sin(\phi)];
          for (k, mic) in (range(micPos), micPos) do
              \tau[i, j, k] = round(((kd * mic')/SoS) * Fs):
  for i in range(\Theta) do
      for i in range(\Phi) do
          for k in range(numMic) do
             \hat{s}_k(n) = \hat{s}_k(n - \tau[i, j, k])
          z[i, i] = semblance(\hat{s})
```

Painel de Semblance

Painel de Semblance: Heatmap obtido calculando a correlação Semblance para todas as combinações de (θ, ϕ) :

Local Semblance

Uma variação estudada em testes preliminares, chamada **Local Semblance**, se mostrou mais eficiente.

Variação - Local Semblance

- Dividir o áudio em vários frames (podendo ter sobreposição ou não);
- Aplicar o Global Semblance para cada frame;
- Combinar os painéis em um único utilizando os maiores valores (utilizando o pooling max);
- 4 Escolher direção de maior correlação.
- ✓ Capaz de realçar a relação SNR nos frames onde a fonte sonora está ativa, obtendo melhores resultados.

Local Semblance

Algoritmo 2: Find semblance local (find_local)

```
input : frameSize: size of the frames
        overlap: overlap between frames
        \Delta: interval between angles to be tested
        SoS: speed of sound on the medium
        Fs: sampling rate
        s: the data of the 8-channel
        micPos: array with coordinates [x, y, z] of the microphones positions
output: z: matrix mapping correlation with angles
        Θ: tested values for elevation
        Φ: tested values for azimuth
sTotal = length(x);
                                                                            // total samples
sSize = round(frameSize * Fs);
                                                                              // sample size
sOverlap = round(overlap * sSize):
                                                                          // sample overlap
nFrames = ceil((sTotal - sSize)/(sSize - sOverlap)) + 1;
painels = [];
for i in range(nFrames) do
   begFrame = i * (sSize - sOverlap);
   endFrame = beaFrame + sSize:
   sFrame = s[beqFrame : endFrame, :];
   painels[i] = find\_alobal(\Delta, SoS, Fs, sFrame):
return pooling(painels), \Theta, \Phi;
```

Índice

- Introdução
- Semblance
- Algoritmo proposto
- Metodologia
- Resultados
- 6 Conclusões

Benchmark

Temos:

- 3 gravações de um drone com 8 microfones acoplados, com apenas sinal de fala (com direção conhecida);
- 1 gravação de puro ruído dos rotoes do drone, obtida com os mesmos microfones.

Foram feitas diversas combinações com diferentes relações SNR: $[24, 21, 18, \ldots, 3, 0, -3, -4, -5, \ldots, -19, -20, -21]$

Isso permite encontrar um limiar de SNR para dizer onde o algoritmo começa a apresentar problemas.

Métrica de erro

O erro foi calculado pela equação Great circle distance:

$$\Delta \sigma = \arctan \frac{\sqrt{(\cos \phi_2 \sin(\Delta \theta))^2 + (\cos \phi_1 \sin \phi_2 - \sin \phi_1 \cos \phi_2 \cos(\Delta \theta))^2}}{\sin \phi_1 \sin \phi_2 + \cos \phi_1 \cos \phi_2 \cos(\Delta \theta)}.$$
 (3)

Essa equação dá o ângulo entre 2 pontos na superfície de uma esfera. Foi considerado um erro aceitável até 10°.

Ajuste de hiper-parâmetros

Os algoritmos possuem um grupo de hiper-parâmetros que influenciam na qualidade do resultado:

- Em comum aos algoritmos Local Semblance e Global Semblance:
 - ullet Δ tamanho do espaçamento da grade de chutes;
- No caso do Local Semblance:
 - Overlap sobreposição entre os frames;
 - FrameSize tamanho de cada frame.

Para encontrar a melhor configuração, foi utilizado o gridsearch.

Gridsearch

Gridsearch: técnica comum no campo de aprendizado de máquina para ajuste de hiper-parâmetros. Faz uma busca exaustiva entre todas combinações, obtendo aquela que minimiza o erro.

- $\bullet \text{ overlap} = [0, 0.1, 0.2, 0.3, 0.4, 0.5]$
- $\Delta = [17.5, 15, 12.5, 10, 7.5, 5]$

Comparação com o estado-da-arte

Os resultados foram comparados com o GCC-PHAT (Generalized Cross Correlation PHAse-Transform method), utilizando dois poolings diferentes - max e sum.

Índice

- 1 Introdução
- Semblance
- 3 Algoritmo proposto
- 4 Metodologia
- 6 Resultados
- 6 Conclusões

Resultados do Gridsearch

- Melhor resultado: $\Delta = 10$, FrameSize = 0.064s, 20% Overlap entre os frames;
 - No geral, valores de Δ menores que 10 não tem diferença significativa no resultado;
 - Para o FrameSize, quanto menor o valor, melhor o resultado;
 - Um pequeno grau de *Overlap* (20%) tem melhores resultados.

Desempenho médio dos métodos

Discussão

À respeito dos métodos propostos:

- Apresentaram um erro de \approx 2° em vários casos;
- Local Semblance leva cerca de 6.8 segundos para executar em cada áudio, com duração de 5s;
- Abordagem Global usa 1 core, a Local é paralelizada em todos os cores de um i7@1.3GHz;
- O Local Semblance é capaz de acertar a direção até em casos de SNR de -16dB.

Discussão

Comparado com o GCC-PHAT:

- GCC-PHAT foi comparado nas mesmas condições: Δ =10 e *frames* de 0.064s;
- o Local Semblance superou o GCC-PHAT;
- O Global Semblance tem um resultado intermediário entre o GCC-PHAT (max pooling) e o GCC-PHAT (sum pooling);

Índice

- Introdução
- Semblance
- 3 Algoritmo proposto
- 4 Metodologia
- 6 Resultados
- 6 Conclusões

Conclusões

- Nesse artigo propomos uma nova técnica baseada na função de coerência Semblance para o problema de localização de fonte sonora;
- O algoritmo foi testado com 3 áudios em diferentes configurações de SNR;
- Algoritmo apresenta boa performance.

Continuação da jornada

Um próximo artigo sobre o método está para ser publicado!

4th Workshop on Communication Networks and Power Systems (WCNPS 2019)

On the application of SEGAN for the attenuation of the ego-noise in the speech sound source localization problem

Conferência dias 3 e 4 de outubro 2019

https://ieee-wcnps.org/

Agradecimentos

Os autores agradecem à Universidade Federal do ABC pelo apoio financeiro.

Contato

Guilherme Aldeia (discente e apresentador do trabalho)

⊠ guilherme.aldeia@aluno.ufabc.edu.br

Kenji Nose-Filho (professor docente orientador):

⊠ kenji.nose@ufabc.edu.br

Link da apresentação:

☐ galdeia.github.io/presentations/SBrT.pdf