Partial Derivatives

Exercise-13.3

Definition of derivative for function of 1 variable:

Desirative for 1 nariable:

$$f'(x_0) = \lim_{\Delta x \to 70} f(x_0 + \Delta x) - f(x_0)$$

$$\lim_{\Delta x \to 70} f(x_0 + \Delta x) - f(x_0)$$

$$\lim_{\Delta x \to 70} f(x_0 + \Delta x) - f(x_0)$$

$$\lim_{\Delta x \to 70} f(x_0 + \Delta x) - f(x_0)$$

$$\lim_{\Delta x \to 70} f(x_0 + \Delta x) - f(x_0)$$

$$\lim_{\Delta x \to 70} f(x_0 + \Delta x) - f(x_0)$$

$$\lim_{\Delta x \to 70} f(x_0 + \Delta x) - f(x_0)$$

$$\lim_{\Delta x \to 70} f(x_0 + \Delta x) - f(x_0)$$

$$\lim_{\Delta x \to 70} f(x_0 + \Delta x) - f(x_0)$$

$$\lim_{\Delta x \to 70} f(x_0 + \Delta x) - f(x_0)$$

$$\lim_{\Delta x \to 70} f(x_0 + \Delta x) - f(x_0)$$

$$\lim_{\Delta x \to 70} f(x_0 + \Delta x) - f(x_0)$$

$$\lim_{\Delta x \to 70} f(x_0 + \Delta x) - f(x_0)$$

$$\lim_{\Delta x \to 70} f(x_0 + \Delta x) - f(x_0)$$

$$\lim_{\Delta x \to 70} f(x_0 + \Delta x) - f(x_0)$$

$$\lim_{\Delta x \to 70} f(x_0 + \Delta x) - f(x_0)$$

$$\lim_{\Delta x \to 70} f(x_0 + \Delta x) - f(x_0)$$

$$\lim_{\Delta x \to 70} f(x_0 + \Delta x) - f(x_0)$$

$$\lim_{\Delta x \to 70} f(x_0 + \Delta x) - f(x_0)$$

$$\lim_{\Delta x \to 70} f(x_0 + \Delta x) - f(x_0)$$

$$\lim_{\Delta x \to 70} f(x_0 + \Delta x) - f(x_0)$$

$$\lim_{\Delta x \to 70} f(x_0 + \Delta x) - f(x_0)$$

$$\lim_{\Delta x \to 70} f(x_0 + \Delta x) - f(x_0)$$

$$\lim_{\Delta x \to 70} f(x_0 + \Delta x) - f(x_0)$$

$$\lim_{\Delta x \to 70} f(x_0 + \Delta x) - f(x_0 + \Delta x)$$

$$\lim_{\Delta x \to 70} f(x_0 + \Delta x) - f(x_0 + \Delta x)$$

$$\lim_{\Delta x \to 70} f(x_0 + \Delta x) - f(x_0 + \Delta x)$$

$$\lim_{\Delta x \to 70} f(x_0 + \Delta x) - f(x_0 + \Delta x)$$

$$\lim_{\Delta x \to 70} f(x_0 + \Delta x) - f(x_0 + \Delta x)$$

$$\lim_{\Delta x \to 70} f(x_0 + \Delta x) - f(x_0 + \Delta x)$$

$$\lim_{\Delta x \to 70} f(x_0 + \Delta x) - f(x_0 + \Delta x)$$

$$\lim_{\Delta x \to 70} f(x_0 + \Delta x) - f(x_0 + \Delta x)$$

$$\lim_{\Delta x \to 70} f(x_0 + \Delta x) - f(x_0 + \Delta x)$$

$$\lim_{\Delta x \to 70} f(x_0 + \Delta x) - f(x_0 + \Delta x)$$

$$\lim_{\Delta x \to 70} f(x_0 + \Delta x) - f(x_0 + \Delta x)$$

$$\lim_{\Delta x \to 70} f(x_0 + \Delta x) - f(x_0 + \Delta x)$$

$$\lim_{\Delta x \to 70} f(x_0 + \Delta x) - f(x_0 + \Delta x)$$

$$\lim_{\Delta x \to 70} f(x_0 + \Delta x) - f(x_0 + \Delta x)$$

$$\lim_{\Delta x \to 70} f(x_0 + \Delta x) - f(x_0 + \Delta x)$$

$$\lim_{\Delta x \to 70} f(x_0 + \Delta x) - f(x_0 + \Delta x)$$

$$\lim_{\Delta x \to 70} f(x_0 + \Delta x) - f(x_0 + \Delta x)$$

$$\lim_{\Delta x \to 70} f(x_0 + \Delta x) - f(x_0 + \Delta x)$$

$$\lim_{\Delta x \to 70} f(x_0 + \Delta x) - f(x_0 + \Delta x)$$

$$\lim_{\Delta x \to 70} f(x_0 + \Delta x) - f(x_0 + \Delta x)$$

$$\lim_{\Delta x \to 70} f(x_0 + \Delta x) - f(x_0 + \Delta x)$$

$$\lim_{\Delta x \to 70} f(x_0 + \Delta x) - f(x_0 + \Delta x)$$

Partial derivatives for function of two variables:

If f is a function of two variables, its partial derivatives are the functions f_x and f_y at a specific point (x_0, y_0) defined by

$$f_x(x_0, y_0) = \frac{d}{dx} [f(x, y_0)] \bigg|_{x=x_0} = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x, y_0) - f(x_0, y_0)}{\Delta x}$$

$$f_{y}(x_{0}, y_{0}) = \frac{d}{dy} [f(x_{0}, y)] \bigg|_{y=y_{0}} = \lim_{\Delta y \to 0} \frac{f(x_{0}, y_{0} + \Delta y) - f(x_{0}, y_{0})}{\Delta y}$$

In general,

$$f_x(x, y) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x, y) - f(x, y)}{\Delta x}$$

$$f_y(x, y) = \lim_{\Delta y \to 0} \frac{f(x, y + \Delta y) - f(x, y)}{\Delta y}$$

RULE FOR FINDING PARTIAL DERIVATIVES OF z = f(x, y)

- 1. To find f_x , regard y as a constant and differentiate f(x, y) with respect to x.
- **2.** To find f_y , regard x as a constant and differentiate f(x, y) with respect to y.

Examples

Example 1 Find $f_x(1,3)$ and $f_y(1,3)$ for the function $f(x,y) = 2x^3y^2 + 2y + 4x$.

Solution. Since

$$f_x(x,3) = \frac{d}{dx}[f(x,3)] = \frac{d}{dx}[18x^3 + 4x + 6] = 54x^2 + 4$$

we have $f_x(1,3) = 54 + 4 = 58$. Also, since

$$f_y(1,y) = \frac{d}{dy}[f(1,y)] = \frac{d}{dy}[2y^2 + 2y + 4] = 4y + 2$$

we have $f_{y}(1,3) = 4(3) + 2 = 14$.

Example 2 Find $f_x(x, y)$ and $f_y(x, y)$ for $f(x, y) = 2x^3y^2 + 2y + 4x$, and use those partial derivatives to compute $f_x(1, 3)$ and $f_y(1, 3)$.

Solution. Keeping y fixed and differentiating with respect to x yields

$$f_x(x,y) = \frac{d}{dx}[2x^3y^2 + 2y + 4x] = 6x^2y^2 + 4$$

and keeping x fixed and differentiating with respect to y yields

$$f_y(x, y) = \frac{d}{dy}[2x^3y^2 + 2y + 4x] = 4x^3y + 2$$

Thus,

$$f_{\nu}(1,3) = 6(1^2)(3^2) + 4 = 58$$
 and $f_{\nu}(1,3) = 4(1^3)(3^2) + 2 = 14$

which agree with the results in Example 1. ◀

Partial Derivative Notation

$$f_x(x, y) = f_x = \frac{\partial f}{\partial x} = \frac{\partial}{\partial x} f(x, y) = \frac{\partial z}{\partial x}$$

$$f_y(x, y) = f_y = \frac{\partial f}{\partial y} = \frac{\partial}{\partial y} f(x, y) = \frac{\partial z}{\partial y}$$

Some typical notations for the partial derivatives of z = f(x, y) at a point (x_0, y_0) are

$$\frac{\partial f}{\partial x}\Big|_{x=x_0,y=y_0}$$
, $\frac{\partial z}{\partial x}\Big|_{(x_0,y_0)}$, $\frac{\partial f}{\partial x}\Big|_{(x_0,y_0)}$, $\frac{\partial f}{\partial x}(x_0,y_0)$, $\frac{\partial z}{\partial x}(x_0,y_0)$

PARTIAL DERIVATIVES VIEWED AS RATES OF CHANGE AND SLOPES

Recall that if y = f(x), then the value of $f'(x_0)$ can be interpreted either as the rate of change of y with respect to x at x_0 or as the slope of the tangent line to the graph of f at x_0 . Partial derivatives have analogous interpretations. To see that this is so, suppose that C_1 is the intersection of the surface z = f(x, y) with the plane $y = y_0$ and that C_2 is its intersection with the plane $x = x_0$ (Figure 13.3.1). Thus, $f_x(x, y_0)$ can be interpreted as the rate of change of z with respect to x along the curve x_0 , and x_0 , and x_0 , and x_0 , where x_0 is the rate of change of x_0 with respect to x_0 along the curve x_0 at the point x_0 , and x_0 , and x_0 , and x_0 , where x_0 is the rate of change of x_0 with respect to x_0 along the curve x_0 at the point x_0 , where x_0 is the rate of change of x_0 with respect to x_0 along the curve x_0 at the point x_0 , where x_0 is the rate of change of x_0 with respect to x_0 along the curve x_0 at the point x_0 , where x_0 is the rate of change of x_0 with respect to x_0 along the curve x_0 at the point x_0 , where x_0 is the rate of change of x_0 with respect to x_0 along the curve x_0 at the point x_0 , where x_0 is the rate of change of x_0 with respect to x_0 along the curve x_0 at the point x_0 , where x_0 is the rate of change of x_0 .

▲ Figure 13.3.1

Geometrically, $f_x(x_0, y_0)$ can be viewed as the slope of the tangent line to the curve C_1 at the point (x_0, y_0) , and $f_y(x_0, y_0)$ can be viewed as the slope of the tangent line to the curve C_2 at the point (x_0, y_0) (Figure 13.3.1). We will call $f_x(x_0, y_0)$ the *slope of the surface in the x-direction* at (x_0, y_0) and $f_y(x_0, y_0)$ the *slope of the surface in the y-direction* at (x_0, y_0) .

Example 4 Recall that the wind chill temperature index is given by the formula

$$W = 35.74 + 0.6215T + (0.4275T - 35.75)v^{0.16}$$

Compute the partial derivative of W with respect to v at the point (T, v) = (25, 10) and interpret this partial derivative as a rate of change.

Solution. Holding T fixed and differentiating with respect to v yields

$$\frac{\partial W}{\partial v}(T,v) = 0 + 0 + (0.4275T - 35.75)(0.16)v^{0.16-1} = (0.4275T - 35.75)(0.16)v^{-0.84}$$

Since W is in degrees Fahrenheit and v is in miles per hour, a rate of change of W with respect to v will have units ${}^{\circ}F/(\text{mi/h})$ (which may also be written as ${}^{\circ}F\cdot\text{h/mi}$). Substituting T=25 and v=10 gives

$$\frac{\partial W}{\partial v}(25, 10) = (-4.01)10^{-0.84} \approx -0.58 \frac{{}^{\circ}F}{\text{mi/h}}$$

as the instantaneous rate of change of W with respect to v at (T, v) = (25, 10). We conclude that if the air temperature is a constant 25° F and the wind speed changes by a small amount from an initial speed of 10 mi/h, then the ratio of the change in the wind chill index to the change in wind speed should be about -0.58° F/(mi/h).

- **Example 5** Let $f(x, y) = x^2y + 5y^3$.
- (a) Find the slope of the surface z = f(x, y) in the x-direction at the point (1, -2).
- (b) Find the slope of the surface z = f(x, y) in the y-direction at the point (1, -2).

Solution (a). Differentiating f with respect to x with y held fixed yields

$$f_x(x,y) = 2xy$$

Thus, the slope in the x-direction is $f_x(1, -2) = -4$; that is, z is decreasing at the rate of 4 units per unit increase in x.

Solution (b). Differentiating f with respect to y with x held fixed yields

$$f_y(x,y) = x^2 + 15y^2$$

Thus, the slope in the y-direction is $f_y(1, -2) = 61$; that is, z is increasing at the rate of 61 units per unit increase in y.

■ ESTIMATING PARTIAL DERIVATIVES FROM TABULAR DATA

For functions that are presented in tabular form, we can estimate partial derivatives by using adjacent entries within the table.

Example 6 Use the values of the wind chill index function W(T, v) displayed in Table 13.3.1 to estimate the partial derivative of W with respect to v at (T, v) = (25, 10). Compare this estimate with the value of the partial derivative obtained in Example 4.

Table 13.3.1 TEMPERATURE T (°F)

(h)		20	25	30	35
WIND SPEED v (mi/h)	5	13	19	25	31
	10	9	15	21	27
	15	6	13	19	25
	20	4	11	17	24

Solution. Since

$$\frac{\partial W}{\partial v}(25, 10) = \lim_{\Delta v \to 0} \frac{W(25, 10 + \Delta v) - W(25, 10)}{\Delta v} = \lim_{\Delta v \to 0} \frac{W(25, 10 + \Delta v) - 15}{\Delta v}$$

we can approximate the partial derivative by

$$\frac{\partial W}{\partial v}(25, 10) \approx \frac{W(25, 10 + \Delta v) - 15}{\Delta v}$$

With $\Delta v = 5$ this approximation is

$$\frac{\partial W}{\partial v}(25, 10) \approx \frac{W(25, 10 + 5) - 15}{5} = \frac{W(25, 15) - 15}{5} = \frac{13 - 15}{5} = -\frac{2}{5} \frac{^{\circ}F}{\text{mi/h}}$$

and with $\Delta v = -5$ this approximation is

$$\frac{\partial W}{\partial v}(25, 10) \approx \frac{W(25, 10 - 5) - 15}{-5} = \frac{W(25, 5) - 15}{-5} = \frac{19 - 15}{-5} = -\frac{4}{5} \frac{^{\circ}F}{mi/h}$$

We will take the average, $-\frac{3}{5} = -0.6^{\circ} \text{F/(mi/h)}$, of these two approximations as our estimate of $(\partial W/\partial v)(25, 10)$. This is close to the value

$$\frac{\partial W}{\partial v}(25, 10) = (-4.01)10^{-0.84} \approx -0.58 \frac{{}^{\circ}F}{\text{mi/h}}$$

found in Example 4.

Activate Win

IMPLICIT PARTIAL DIFFERENTIATION

Example 7 Find the slope of the sphere $x^2 + y^2 + z^2 = 1$ in the y-direction at the points $(\frac{2}{3}, \frac{1}{3}, \frac{2}{3})$ and $(\frac{2}{3}, \frac{1}{3}, -\frac{2}{3})$ (Figure 13.3.2).

Figure 13.3.2

Solution. The point $(\frac{2}{3}, \frac{1}{3}, \frac{2}{3})$ lies on the upper hemisphere $z = \sqrt{1 - x^2 - y^2}$, and the point $(\frac{2}{3}, \frac{1}{3}, -\frac{2}{3})$ lies on the lower hemisphere $z = -\sqrt{1 - x^2 - y^2}$. We could find the slopes by differentiating each expression for z separately with respect to y and then evaluating the derivatives at $x = \frac{2}{3}$ and $y = \frac{1}{3}$. However, it is more efficient to differentiate the given equation $x^2 + y^2 + z^2 = 1$

implicitly with respect to y, since this will give us both slopes with one differentiation. To perform the implicit differentiation, we view z as a function of x and y and differentiate both sides with respect to y, taking x to be fixed. The computations are as follows:

$$\frac{\partial}{\partial y}[x^2 + y^2 + z^2] = \frac{\partial}{\partial y}[1]$$

$$0 + 2y + 2z\frac{\partial z}{\partial y} = 0$$

$$\frac{\partial z}{\partial y} = -\frac{y}{z}$$

Substituting the y- and z-coordinates of the points $(\frac{2}{3}, \frac{1}{3}, \frac{2}{3})$ and $(\frac{2}{3}, \frac{1}{3}, -\frac{2}{3})$ in this expression, we find that the slope at the point $(\frac{2}{3}, \frac{1}{3}, \frac{2}{3})$ is $-\frac{1}{2}$ and the slope at $(\frac{2}{3}, \frac{1}{3}, -\frac{2}{3})$ is $\frac{1}{2}$.

Example 8 Suppose that $D = \sqrt{x^2 + y^2}$ is the length of the diagonal of a rectangle whose sides have lengths x and y that are allowed to vary. Find a formula for the rate of change of D with respect to x if x varies with y held constant, and use this formula to find the rate of change of D with respect to x at the point where x = 3 and y = 4.

Solution. Differentiating both sides of the equation $D^2 = x^2 + y^2$ with respect to x yields

$$2D\frac{\partial D}{\partial x} = 2x$$
 and thus $D\frac{\partial D}{\partial x} = x$

Since D = 5 when x = 3 and y = 4, it follows that

$$5 \frac{\partial D}{\partial x}\Big|_{x=3,y=4} = 3 \text{ or } \frac{\partial D}{\partial x}\Big|_{x=3,y=4} = \frac{3}{5}$$

Thus, D is increasing at a rate of $\frac{3}{5}$ unit per unit increase in x at the point (3, 4).

PARTIAL DERIVATIVES AND CONTINUITY

In contrast to the case of functions of a single variable, the existence of partial derivatives for a multivariable function does not guarantee the continuity of the function. This fact is shown in the following example.

► Example 9 Let

$$f(x,y) = \begin{cases} -\frac{xy}{x^2 + y^2}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}$$

- (a) Show that $f_x(x, y)$ and $f_y(x, y)$ exist at all points (x, y).
- (b) Explain why f is not continuous at (0,0).

Solution:

$$f_x(x,y) = -\frac{(x^2 + y^2)y - xy(2x)}{(x^2 + y^2)^2} = \frac{x^2y - y^3}{(x^2 + y^2)^2}$$
$$f_y(x,y) = -\frac{(x^2 + y^2)x - xy(2y)}{(x^2 + y^2)^2} = \frac{xy^2 - x^3}{(x^2 + y^2)^2}$$

Applying formulas

$$f_x(0,0) = \lim_{\Delta x \to 0} \frac{f(\Delta x, 0) - f(0, 0)}{\Delta x} = \lim_{\Delta x \to 0} \frac{0 - 0}{\Delta x} = 0$$
$$f_y(0,0) = \lim_{\Delta y \to 0} \frac{f(0, \Delta y) - f(0, 0)}{\Delta y} = \lim_{\Delta y \to 0} \frac{0 - 0}{\Delta y} = 0$$

This shows that f has partial derivatives at (0,0) and the values of both partial derivatives are 0 at that point.

Solution (b). We saw in Example 3 of Section 13.2 that

$$\lim_{(x,y)\to(0,0)} -\frac{xy}{x^2+y^2}$$

does not exist. Thus, f is not continuous at (0,0).

PARTIAL DERIVATIVES OF FUNCTIONS WITH MORE THAN TWO VARIABLES

For a function f(x, y, z) of three variables, there are three *partial derivatives*:

$$f_x(x, y, z)$$
, $f_y(x, y, z)$, $f_z(x, y, z)$

The partial derivative f_x is calculated by holding y and z constant and differentiating with respect to x. For f_y the variables x and z are held constant, and for f_z the variables x and y are held constant. If a dependent variable

$$w = f(x, y, z)$$

is used, then the three partial derivatives of f can be denoted by

$$\frac{\partial w}{\partial x}$$
, $\frac{\partial w}{\partial y}$, and $\frac{\partial w}{\partial z}$

► **Example 10** If
$$f(x, y, z) = x^3y^2z^4 + 2xy + z$$
, then
$$f_x(x, y, z) = 3x^2y^2z^4 + 2y$$
$$f_y(x, y, z) = 2x^3yz^4 + 2x$$

$$f_{y}(x,y,z) = 2x^{3}yz^{4} + 2x$$

$$f_z(x, y, z) = 4x^3y^2z^3 + 1$$

$$f_z(-1, 1, 2) = 4(-1)^3(1)^2(2)^3 + 1 = -31$$

In general:

then partial derivatives are denoted

by \(\frac{\gammaw}{2} \omega_1 \frac{\gammaw}{\gammaw} \frac{\gammaw}{\gamma} \frac{\gammaw}{\gammaw} \frac{\gammaw}{\

HIGHER-ORDER PARTIAL DERIVATIVES

Suppose that f is a function of two variables x and y. Since the partial derivatives $\partial f/\partial x$ and $\partial f/\partial y$ are also functions of x and y, these functions may themselves have partial derivatives. This gives rise to four possible **second-order** partial derivatives of f, which are defined by

$$\frac{\partial^2 f}{\partial x^2} = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial x} \right) = f_{xx} \qquad \frac{\partial^2 f}{\partial y^2} = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial y} \right) = f_{yy}$$

Differentiate twice with respect to *x*.

$$\frac{\partial^2 f}{\partial v \partial x} = \frac{\partial}{\partial v} \left(\frac{\partial f}{\partial x} \right) = f_{xy}$$

Differentiate first with respect to x and then with respect to y.

Differentiate twice with respect to y.

$$\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial y} \right) = f_{yx}$$

Differentiate first with respect to *y* and then with respect to *x*.

Example 12 Find the second-order partial derivatives of $f(x, y) = x^2y^3 + x^4y$.

Solution. We have

$$\frac{\partial f}{\partial x} = 2xy^3 + 4x^3y$$
 and $\frac{\partial f}{\partial y} = 3x^2y^2 + x^4$

so that

$$\frac{\partial^2 f}{\partial x^2} = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial x} \right) = \frac{\partial}{\partial x} (2xy^3 + 4x^3y) = 2y^3 + 12x^2y$$

$$\frac{\partial^2 f}{\partial y^2} = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial y} \right) = \frac{\partial}{\partial y} (3x^2y^2 + x^4) = 6x^2y$$

$$\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial y} \right) = \frac{\partial}{\partial x} (3x^2y^2 + x^4) = 6xy^2 + 4x^3$$

$$\frac{\partial^2 f}{\partial y \partial x} = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial x} \right) = \frac{\partial}{\partial y} (2xy^3 + 4x^3y) = 6xy^2 + 4x^3$$

Third-order, fourth-order, and higher-order partial derivatives can be obtained by successive differentiation. Some possibilities are

$$\frac{\partial^{3} f}{\partial x^{3}} = \frac{\partial}{\partial x} \left(\frac{\partial^{2} f}{\partial x^{2}} \right) = f_{xxx} \qquad \qquad \frac{\partial^{4} f}{\partial y^{4}} = \frac{\partial}{\partial y} \left(\frac{\partial^{3} f}{\partial y^{3}} \right) = f_{yyyy}$$

$$\frac{\partial^{3} f}{\partial y^{2} \partial x} = \frac{\partial}{\partial y} \left(\frac{\partial^{2} f}{\partial y \partial x} \right) = f_{xyy} \qquad \qquad \frac{\partial^{4} f}{\partial y^{2} \partial x^{2}} = \frac{\partial}{\partial y} \left(\frac{\partial^{3} f}{\partial y \partial x^{2}} \right) = f_{xxyy}$$

Example 13 Let $f(x, y) = y^2 e^x + y$. Find f_{xyy} .

Solution.

$$f_{xyy} = \frac{\partial^3 f}{\partial y^2 \partial x} = \frac{\partial^2}{\partial y^2} \left(\frac{\partial f}{\partial x} \right) = \frac{\partial^2}{\partial y^2} (y^2 e^x) = \frac{\partial}{\partial y} (2y e^x) = 2e^x \blacktriangleleft$$

Equality of Mixed Partials:

13.3.2 THEOREM Let f be a function of two variables. If f_{xy} and f_{yx} are continuous on some open disk, then $f_{xy} = f_{yx}$ on that disk.

It follows from this theorem that if $f_{xy}(x, y)$ and $f_{yx}(x, y)$ are continuous everywhere, then $f_{xy}(x, y) = f_{yx}(x, y)$ for all values of x and y. Since polynomials are continuous everywhere, this explains why the mixed second-order partials in Example 12 are equal.