Intervals, Transformations, and Slope Solution (version 58)

1. The function f is graphed below.

Indicate the following intervals using interval notation. Remember, you can use \cup between two intervals to indicate the union. Except for range, all intervals will indicate x values; this is standard.

Feature	Where
Positive	$(-6,1) \cup (4,8)$
Negative	$(-7, -6) \cup (1, 4)$
Increasing	$(-7, -5) \cup (3, 7)$
Decreasing	$(-5,3) \cup (7,8)$
Domain	(-7,8)
Range	(-3,3)

Intervals, Transformations, and Slope Solution (version 58)

2. In the four graphs below, y = f(x) is graphed as a dotted line. With a solid line, please graph the transformations indicated by the equations below.

3. Let function g be defined by the table below. Use the formula $\frac{g(x_2)-g(x_1)}{x_2-x_1}$ to find the average rate of change between $x_1=29$ and $x_2=92$. Express your answer as a reduced fraction.

$$\begin{array}{c|cc} x & g(x) \\ \hline 29 & 33 \\ 33 & 92 \\ 68 & 29 \\ 92 & 68 \\ \end{array}$$

$$\frac{g(92) - g(29)}{92 - 29} = \frac{68 - 33}{92 - 29} = \frac{35}{63}$$

The greatest common factor of 35 and 63 is 7. Divide numerator and denominator by the greatest common factor.

$$AROC = \frac{5}{9}$$

2