

Test Report

Page: 1 of 84

EMC Training

23, Headington Drive, Cambridge. CB1 9HE Tel: 01954 251974 (test site) or: 01223 241140 (accounts) Fax: 01954 251907 web: www.dbtechnology.co.uk email: mail@dbtechnology.co.uk

REPORT ON ELECTROMAGNETIC COMPATIBILITY TESTS

Performed at: TWENTY PENCE TEST SITE

> Twenty Pence Road, Cottenham, Cambridge U.K. **CB24 8PS**

> > on

Sepura PLC

STP9040/STP9240

dated

15th December 2013

Document History

Issue	Date	Affected page(s)	Description of modifications	Revised by	Approved by
1	15/12/13		Initial release		

Based on report template: v090319

dB)	Report No: Issue No:	R3275 1	FCC ID: XX6STP9040/XX6STP9240		
	Test No:	T5115	Test Report	Page:	2 of 84

Equipment Under Test (EUT):	STP9040/STP9240
Test Commissioned by:	Sepura PLC Radio House St Andrews Road Cambridge Cambridgeshire CB4 1GR
Representative:	Steve Wood
Test Started:	19th August 2013
Test Completed:	23rd October 2013
Test Engineer:	Dave Smith
Date of Report:	15th December 2013
Written by: Dave Smith	Checked by: Derek Barlow
Signature: D-A-Switt	Signature:
Date: 15th December 2013	Date: 19th December 2013
Technology can only report on the specific un rapolating this data to a product line lies solely wit	

dΒ for ext

Test Standards Applied

Part 90 of CFR47	Private Land Mobile Radio Services
CFR 47	Code of Federal Regulations: Pt 15 Subpart B- Radio Frequency Devices -
Class B	Unintentional Radiators

dB)	Report No: Issue No:	R3275 1	FCC ID: XX6STP9040/XX6STP9240		
	Test No:	T5115	Test Report	Page:	3 of 84

Emissions Test Results Summary

Part 90					PASS
Test	Port	Method	Limit	PASS/FAIL	Notes
Output		90.205	90.205(h)	No	#1
Power				Limit	
Radiated					
Output	antenna	90.205	90.205(h)	No	#1
Power		2.1046		Limit	
Conducted					
Types of	antenna	90.207	Specified by		
Emissions		2.1047	manufacturer		
Bandwidth	antenna	90.209	90.209(b)(5)	PASS	#2
		2.1049			
Emissions		90.210	90.221(d)	PASS	#3
Masks		2.1051			
Radiated					
Emissions	antenna	90.210	90.221(d)	PASS	#3
Masks		2.1051			
Conducted					
Frequency	antenna	90.213	90.213	PASS	
Stability		2.1055			
Frequency	antenna	90.214	90.214	PASS	
Transient					
Behaviour					
Adjacent		90.221	90.221(b)	PASS	
Channel					
Power					

specs_canadav111211

CFR 47	PASS

Test	Port	Method	Limit	PASS/FAIL	Notes
Conducted Emissions	ac power	ANSI C63.4:2003	FCC(B)	N/A	#4
Radiated Emissions		ANSI C63.4:2003	FCC(B)	PASS	

specs fccv100412

- #1 There is no specific limit on output power.
- #2 The additional note 6 of FCC Waiver 11-63 was applied which allows a bandwidth of up to 22kHz providing the additional Adjacent Channel Power requirements are met.
- #3 The additional note 5 of FCC Waiver 11-63 was applied which only stipulates limits 75kHz from the carrier providing the additional Adjacent Channel Power requirements are met.
- What was a state of the Hot applicable as the EUT is not mains powered.

This Report shows that the EUT met all of the requirements for the tests performed - as shown above.

Report No: R3275 Issue No: 1 Test No: T5115

FCC ID: XX6STP9040/XX6STP9240

Test Report

Page:

4 of 84

Contents

1 EUT Details	6
1.1 General	
1.2 Modifications to EUT and Peripherals	7
1.3 EUT Operating Modes	
Figure 1 Car Kit Configuration	
Photograph 1 Connected to Spectrum Analyser	
Photograph 2 Connected to Tetra Test Set	
Photograph 3 Radiated Emissions - Standalone	
Photograph 4 Radiated Emissions - Standalone	
Photograph 5 Radiated Emissions - Standalone	
Photograph 6 Radiated Emissions - Standalone	
Photograph 7 Radiated Emissions - STP9240	
Photograph 8 Radiated Emissions - STP9240	
Photograph 9 Radiated Emissions - STP9240	
Photograph 10 Radiated Emissions - STP9240	13
Photograph 11 Radiated Emissions - RSM	
Photograph 12 Radiated Emissions - RSM	
Photograph 13 Radiated Emissions - RSM	
Photograph 14 Radiated Emissions - Car Kit	16
Photograph 15 Radiated Emissions - Car Kit	
Photograph 16 Radiated Emissions - Car Kit	17
Photograph 17 Radiated Emissions - Car Kit	17
2 Test Equipment	18
3 Test Methods	19
3.1 Antenna Conducted Carrier Power	
3.2 Antenna Conducted Transmitter Unwanted Emissions	19
3.3 Antenna Conducted Occupied Bandwidth	19
3.4 Antenna Conducted Adjacent Channel Power	19
3.5 Frequency Stability	
3.6 Transient Frequency Behaviour	
3.7 Radiated Transmitter Emissions (Substitution Method)	
3.8 Receiver Radiated Emissions	21
4 Test Results	
4.1 Conducted Antenna Output Power	
4.2 Conducted Antenna Occupied Bandwidth	
4.3 Frequency Stability - DMO Mode - Absolute Frequency Measurements	
4.4 Frequency Stability - DMO Mode - Deviations from Nominal Volt/Temp - ppm	
4.5 Frequency Stability - TMO Mode - Frequency Error Hz	
4.6 Frequency Stability - TMO Mode - Deviation from nominal volt/temp - ppm	
4.7 Conducted Emission Antenna Adjacent Channel Power	
4.8 Transmitter Transient Frequency Behaviour - Results	
4.9 Conducted Emission Antenna Spurious Emissions	
4.10 Radiated Emissions - Transmit Carrier ERP	
4.11 Radiated Emissions - Transmit Spurious Below 1GHz	
4.12 Radiated Emissions - Transmit Spur - Above 1GHz - Standalone	
4.13 Radiated Emissions - Transmit Spur - Above 1GHz - RSM	
4.14 Radiated Emissions - Transmit Spur - Above 1GHz - Car Kit	
4.15 Radiated Emissions - Receive Mode - Below 1GHz	
4.16 Radiated Emissions - Receive Mode - Above 1GHz	
PLOT 1 Conducted Antenna Power - 450MHz	
PLOT 2 Conducted Antenna Power - 460MHz	
PLOT 3 Conducted Antenna Power - 470MHz	
PLOT 4 Occupied Bandwidth - 450MHz	
PLOT 5 Occupied Bandwidth - 460MHz	
PLOT 6 Occupied Bandwidth - 470MHz	
PLOT 7 Adjacent Channel Power 450MHz	45

1

FCC ID: XX6STP9040/XX6STP9240

Test Report

Page:

PLOT 8	Adjacent Channel Power - 460MHz	46
PLOT 9	Adjacent Channel Power - 470MHz	47
PLOT 10	Transient Frequency - 450MHz - On	48
PLOT 11	Transient Frequency - 460MHz - On	48
PLOT 12	Transient Frequency - 470MHz - On	49
PLOT 13	Transient Frequency - 450MHz - Off	49
PLOT 14	Transient Frequency - 460MHz - Off	50
PLOT 15	Transient Frequency - 470MHz - Off	50
PLOT 16	Antenna Conducted Spurious Emissions - 9kHz to 1GHz	51
PLOT 17	Antenna Conducted Spurious Emissions - 1GHz to 2GHz	52
<i>PLOT 18</i>	Antenna Conducted Spurious Emissions - 2GHz to 6GHz	53
PLOT 19	Radiated Emissions - Standalone - Tx - 25MHz to 200MHz	54
PLOT 20	Radiated Emissions - Standalone - Tx - 200MHz to 500MHz	55
PLOT 21	Radiated Emissions - Standalone - Tx - 500MHz to 1GHz	56
PLOT 22	Radiated Emissions - Standalone - Tx - 1GHz to 2GHz	57
PLOT 23	Radiated Emissions - Standalone - Tx - 2GHz to 5GHz	58
PLOT 24	Radiated Emissions - RSM - Tx - 25MHz to 200MHz	59
PLOT 25	Radiated Emissions - RSM - Tx - 200MHz to 500MHz	60
PLOT 26	Radiated Emissions - RSM - Tx - 500MHz to 1GHz	61
PLOT 27	Radiated Emissions - RSM - Tx - 1GHz to 2GHz	62
PLOT 28	Radiated Emissions - RSM - Tx - 2GHz to 5GHz	63
PLOT 29	Radiated Emissions - Car Kit - Tx - 25MHz to 200MHz	64
PLOT 30	Radiated Emissions - Car Kit - Tx - 200MHz to 500MHz	65
PLOT 31	Radiated Emissions - Car Kit - Tx - 500MHz to 1GHz	66
PLOT 32	Radiated Emissions - Car Kit - Tx - 1GHz to 2GHz	67
PLOT 33	Radiated Emissions - Car Kit - Tx - 2GHz to 5GHz	68
PLOT 34	Radiated Emissions - Standalone - Rx - 25MHz to 275MHz	69
PLOT 35	Radiated Emissions - Standalone - Rx - 250MHz to 1GHz	70
PLOT 36	Radiated Emissions - Standalone - Rx - 1GHz to 2GHz	71
PLOT 37	Radiated Emissions - Standalone - Rx - 2GHz to 5GHz	72
<i>PLOT 38</i>	Radiated Emissions - RSM - Rx - 25MHz to 275MHz	73
<i>PLOT 39</i>	Radiated Emissions - RSM - Rx - 250MHz to 1GHz	74
PLOT 40	Radiated Emissions - RSM - Rx - 1GHz to 2GHz	75
PLOT 41	Radiated Emissions - RSM - Rx - 2GHz to 5GHz	76
PLOT 42	Radiated Emissions - Car Kit - Rx - 25MHz to 275MHz	77
PLOT 43	Radiated Emissions - Car Kit - Rx - 250MHz to 1GHz	78
PLOT 44	Radiated Emissions - Car Kit - Rx - 1GHz to 2GHz	79
PLOT 45	Radiated Emissions - Car Kit - Rx - 2GHz to 5GHz	80
PLOT 46	Radiated Emissions - STP9240 - Rx - 25MHz to 275MHz	81
PLOT 47	Radiated Emissions - STP9240 - Rx - 250MHz to 1GHz	82
PLOT 48	Radiated Emissions - STP9240 - Rx - 1GHz to 2GHz	83
PLOT 49	Radiated Emissions - STP9240 - Rx - 2GHz to 5GHz	84

	Report No: Issue No:	R3275 1	FCC ID: XX6STP9040/XX6STP9240		
dB	Test No:	T5115	Test Report	Page:	6 of 84

1 EUT Details

1.1 General

The EUT was a TETRA Voice + Data Hand Portable.

The device can transmit and receive over the following frequency band:

450MHz to 470MHz.

The device can transmit in Trunked Mode Operation (TMO mode) or Direct Mode Operation (DMO mode)

Measurements were made at the top, near middle and bottom of the appropriate frequency range:

Bottom: 450 MHz Middle: 460 MHz Top: 470 MHz

The nominal output power is 32.5dBm (1.8W).

The product can be used on a standalone basis in which case it is powered from an internal battery. It can also be used in conjunction with a Car Kit in which case it is powered from a lead acid vehicle battery with nominal voltage of 13.2V.

This report additionally includes radiated emissions measurements:

- o with a Remote Speaker Microphone (RSM) connected;
- o in a Car Kit configuration.

All tests were performed on the STP9040 which is the fully featured unit. For the STP9240 variant it was only considered necessary to perform receiver mode radiated emissions measurements.

Unless otherwise stated, tests were performed with nominal power supply voltage.

The product is intended to comply with the FCC part 90 requirements using the "Tetra Waiver" as described in FCC 11-63.

Radiated field strength tests were performed at the dB Technology Test Site Registered with the FCC: Registration number: 90528.

dB)	Report No: Issue No:	R3275 1	FCC ID: XX6STP9040/XX6STP9240		
	Test No:	T5115	Test Report	Page:	7 of 84

1.2 Modifications to EUT and Peripherals

Details of any modifications that were required to achieve compliance are listed below. The modification numbers are referred to in the results sections as appropriate.

Mod No:	Details	Implemented for
0	Original sample as supplied.	
1	Screening can properly fitted.	
l '		

1.3 EUT Operating Modes

The EUT was tested in the following operating mode or modes. Generally, operating modes are chosen that will exercise the functions of the EUT as fully as possible and in a manner likely to produce maximum emission levels or susceptibility. Individual test result sheets reference the operating mode of the EUT.

Operating Mode	Details
1	Transmitting on selected channel.
2	Receiving on selected channel.

	Report No: Issue No:	R3275 1	FCC ID: XX6STP9040/XX6STP9240		
dB	Test No:	T5115	Test Report	Page:	8 of 84

Figure 1 Car Kit Configuration

Item	Manufacturer	Model	Description	Serial No:	Notes
1 2 3 4 5 6 7 8	Sepura Sepura Sepura Sepura Sepura Sepura Kingshill	STP9040 300 00663 300 00797 300 00657 300 00492 300 00796 300 00719 18V10CA	TETRA Hand Portable Antenna CarKit Hands Free Kit Handset Cradle Speaker Bench Power Supply	1PR201327G8099S 566	

The same sample of Tetra Hand Portable was used for the conducted antenna tests.

The serial number of the STP9240 was 1PR101322G8021L.

Test Report

Page:

Photograph 1 Connected to Spectrum Analyser

Photograph 2 Connected to Tetra Test Set

Test Report

Page:

Photograph 3 Radiated Emissions - Standalone

Photograph 4 Radiated Emissions - Standalone

Test Report

Page:

Photograph 5 Radiated Emissions - Standalone

Photograph 6 Radiated Emissions - Standalone

Test Report Page: 12 of 84

Photograph 7 Radiated Emissions - STP9240

Photograph 8 Radiated Emissions - STP9240

Test Report Page: 13 of 84

Photograph 9 Radiated Emissions - STP9240

Photograph 10 Radiated Emissions - STP9240

Test Report Page: 14 of 84

Photograph 11 Radiated Emissions - RSM

Photograph 12 Radiated Emissions - RSM

Test Report

Page:

Photograph 13 Radiated Emissions - RSM

Test Report Page: 16 of 84

Photograph 14 Radiated Emissions - Car Kit

Photograph 15 Radiated Emissions - Car Kit

Test Report

Page:

Photograph 16 Radiated Emissions - Car Kit

Photograph 17 Radiated Emissions - Car Kit

	Report No: Issue No:	R3275 1	FCC ID: XX6STP9040/XX6STP9240		
dB	Test No:	T5115	Test Report	Page:	18 of 84

2 Test Equipment

The test equipment used during the tests was one or more of the items listed below. Individual test result sheets indicate which items were used.

A23 A24 A30 A30 A8 BMCO 3115 DR A8 BMCO 31 A8 BMCO 31	og CBL6111A R Guide (1-18GHz) CBL6144 26MHz-3GHz Bicon (30MHz to 1GHz) 15 DR Guide B RF Power Meter M-20G pre-amp 30dBm / +20dBm) 10MHz to 20GHz ESVS10 Spectrum Analyser Spectrum Analyser er 0MHz to 190MHz r 500MHz to 2GHz ter 1GHz to 2GHz 10GHz) MicroTronics HPM13017 Test Set (10MHz - 26.5GHz) 2GHz Signal Generator Tetra Test Set	1012 9507-4525 27590 9115-180 6070 236923/003 10 5009 843744/002 MY44212494 MY45110758 02 F653-9 15 033 236252/025 3847A05254 296501/321	30/01/2013 28/10/2013 28/10/2013 21/01/2013 30/01/2013 18/12/2012 20/08/2013 18/12/2012 17/12/2012 24/09/2013 19/11/2013 20/08/2013 20/08/2013 20/08/2013 17/05/2013 14/03/2013	1 ye.
A23 A24 A30 A30 A8 BMCO 3115 DR Chase X-wing Bilog Schwarzbeck MiniB EMCO 31 A8 PM6 PRE10 PS10 R4 R8 R8 Agilent E7405A Agilent E7405A Agilent E7405A Low Pass RF Filte Band Pass Filte	R Guide (1-18GHz) CBL6144 26MHz-3GHz Bicon (30MHz to 1GHz) 15 DR Guide B RF Power Meter M-20G pre-amp 30dBm / +20dBm) 10MHz to 20GHz ESVS10 Spectrum Analyser Spectrum Analyser er 0MHz to 190MHz r 500MHz to 2GHz ter 1GHz to 2GHz 10GHz) MicroTronics HPM13017 Test Set (10MHz - 26.5GHz) 2GHz Signal Generator	9507-4525 27590 9115-180 6070 236923/003 10 5009 843744/002 MY44212494 MY45110758 02 F653-9 15 033 236252/025 3847A05254	28/10/2013 28/10/2013 21/01/2013 30/01/2013 18/12/2012 20/08/2013 18/12/2012 17/12/2012 24/09/2013 19/11/2013 20/08/2013 20/08/2013 20/08/2013 01/08/2013 17/05/2013	1 years 1 year
A24 Chase X-wing Bilog A30 Schwarzbeck MiniB A8 EMCO 31 PM6 Marconi 6960 PRE10 LUCIX 100N PS10 Marconi 6910 RF Power Sensor (- R4 R&S Agilent E7405A Agilent E7405A Low Pass RF Filte Band Pass Filte Band Pass Filte RFF02 Band Pass Filte	CBL6144 26MHz-3GHz Bicon (30MHz to 1GHz) 15 DR Guide B RF Power Meter M-20G pre-amp 30dBm / +20dBm) 10MHz to 20GHz ESVS10 Spectrum Analyser Spectrum Analyser er 0MHz to 190MHz r 500MHz to 2GHz ter 1GHz to 2GHz 10GHz) MicroTronics HPM13017 Test Set (10MHz - 26.5GHz) 2GHz Signal Generator	27590 9115-180 6070 236923/003 10 5009 843744/002 MY44212494 MY45110758 02 F653-9 15 033 236252/025 3847A05254	28/10/2013 21/01/2013 30/01/2013 18/12/2012 20/08/2013 18/12/2012 17/12/2012 24/09/2013 19/11/2013 20/08/2013 20/08/2013 20/08/2013 01/08/2013 17/05/2013	1 yea 3 yea 1 yea
A30 Schwarzbeck MiniB A8 EMCO 31 PM6 Marconi 6960l PRE10 LUCIX 100N PS10 Marconi 6910 RF Power Sensor (- R4 R&S Agilent E7405A Agilent E7405A Agilent E7405A Low Pass RF Filte Band Pass Filte Band Pass Filte RFF15 Band Pass Filte RFF22 High Pass Filter - 1.35GHz (1 Marconi 6203 Microwave SG9 HP 8648C 9kHz-3.	Sicon (30MHz to 1GHz) 15 DR Guide B RF Power Meter M-20G pre-amp 30dBm / +20dBm) 10MHz to 20GHz ESVS10 Spectrum Analyser Spectrum Analyser er 0MHz to 190MHz r 500MHz to 2GHz ter 1GHz to 2GHz 10GHz) MicroTronics HPM13017 Test Set (10MHz - 26.5GHz) 2GHz Signal Generator	9115-180 6070 236923/003 10 5009 843744/002 MY44212494 MY45110758 02 F653-9 15 033 236252/025 3847A05254	21/01/2013 30/01/2013 18/12/2012 20/08/2013 18/12/2012 17/12/2012 24/09/2013 19/11/2013 20/08/2013 20/08/2013 20/08/2013 20/08/2013 17/05/2013	3 year 1 ye 1 y
A8 EMCO 31 PM6 Marconi 6960l RE10 LUCIX 100M PS10 Marconi 6910 RF Power Sensor (- R4 R&S R8 Agilent E7405A R9 Agilent E7405A Low Pass RF Filter Band Pass Filter Band Pass Filter Band Pass Filter Band Pass Filter High Pass Filter - 1.35GHz (1 Marconi 6203 Microwave Marconi 6203 Microwave BG9 HP 8648C 9kHz-3.	15 DR Guide B RF Power Meter M-20G pre-amp 30dBm / +20dBm) 10MHz to 20GHz ESVS10 Spectrum Analyser Spectrum Analyser er 0MHz to 190MHz r 500MHz to 2GHz ter 1GHz to 2GHz 10GHz) MicroTronics HPM13017 Test Set (10MHz - 26.5GHz) 2GHz Signal Generator	6070 236923/003 10 5009 843744/002 MY44212494 MY45110758 02 F653-9 15 033 236252/025 3847A05254	30/01/2013 18/12/2012 20/08/2013 18/12/2012 17/12/2012 24/09/2013 19/11/2013 20/08/2013 20/08/2013 20/08/2013 01/08/2013 17/05/2013	1 ye
PM6	B RF Power Meter M-20G pre-amp 30dBm / +20dBm) 10MHz to 20GHz ESVS10 Spectrum Analyser Spectrum Analyser er 0MHz to 190MHz r 500MHz to 2GHz ter 1GHz to 2GHz 10GHz) MicroTronics HPM13017 Test Set (10MHz - 26.5GHz) 2GHz Signal Generator	236923/003 10 5009 843744/002 MY44212494 MY45110758 02 F653-9 15 033 236252/025 3847A05254	18/12/2012 20/08/2013 18/12/2012 17/12/2012 24/09/2013 19/11/2013 20/08/2013 20/08/2013 20/08/2013 20/08/2013 01/08/2013 17/05/2013	1 ye
RE10 LUCIX 100M PS10 Marconi 6910 RF Power Sensor (- R4 R8 Agilent E7405A R9 Agilent E7405A Low Pass RF Filte Band Pass Filte Band Pass Filte FF15 Band Pass Filte FF22 High Pass Filter - 1.35GHz (1 Marconi 6203 Microwave GG9 HP 8648C 9kHz-3.	M-20G pre-amp 30dBm / +20dBm) 10MHz to 20GHz ESVS10 Spectrum Analyser Spectrum Analyser er 0MHz to 190MHz r 500MHz to 2GHz ter 1GHz to 2GHz 10GHz) MicroTronics HPM13017 Test Set (10MHz - 26.5GHz) 2GHz Signal Generator	10 5009 843744/002 MY44212494 MY45110758 02 F653-9 15 033 236252/025 3847A05254	20/08/2013 18/12/2012 17/12/2012 24/09/2013 19/11/2013 20/08/2013 20/08/2013 20/08/2013 01/08/2013 17/05/2013	1 ye
S10 R4 R8 R8 Agilent E7405A Agilent E7405A Low Pass RF Filte Band Pass Filte Band P	30dBm / +20dBm) 10MHz to 20GHz ESVS10 Spectrum Analyser Spectrum Analyser er 0MHz to 190MHz r 500MHz to 2GHz ter 1GHz to 2GHz 10GHz) MicroTronics HPM13017 Test Set (10MHz - 26.5GHz) 2GHz Signal Generator	5009 843744/002 MY44212494 MY45110758 02 F653-9 15 033 236252/025 3847A05254	18/12/2012 17/12/2012 24/09/2013 19/11/2013 20/08/2013 20/08/2013 20/08/2013 01/08/2013 17/05/2013	1 ye
R4 R&S R8 Agilent E7405A R9 Agilent E7405A FF02 Low Pass RF Filte FF09 Band Pass Filte FF15 Band Pass Filte FF22 High Pass Filter - 1.35GHz (1 Marconi 6203 Microwave GG9 HP 8648C 9kHz-3.	ESVS10 Spectrum Analyser Spectrum Analyser er OMHz to 190MHz r 500MHz to 2GHz ter 1GHz to 2GHz IOGHz) MicroTronics HPM13017 Test Set (10MHz - 26.5GHz) 2GHz Signal Generator	843744/002 MY44212494 MY45110758 02 F653-9 15 033 236252/025 3847A05254	17/12/2012 24/09/2013 19/11/2013 20/08/2013 20/08/2013 20/08/2013 20/08/2013 01/08/2013 17/05/2013	1 ye
R8 Agilent E7405A R9 Agilent E7405A FF02 Low Pass RF Filte FF09 Band Pass Filte Band Pass Filte FF15 Band Pass Filte FF22 High Pass Filter - 1.35GHz (1 Marconi 6203 Microwave GG9 HP 8648C 9kHz-3.	Spectrum Analyser Spectrum Analyser er OMHz to 190MHz r 500MHz to 2GHz ter 1GHz to 2GHz 10GHz) MicroTronics HPM13017 Test Set (10MHz - 26.5GHz) 2GHz Signal Generator	MY44212494 MY45110758 02 F653-9 15 033 236252/025 3847A05254	24/09/2013 19/11/2013 20/08/2013 20/08/2013 20/08/2013 20/08/2013 01/08/2013 17/05/2013	1 ye
R9 Agilent E7405A FF02 Low Pass RF Filte FF09 Band Pass Filte FF15 Band Pass Filte FF22 High Pass Filter - 1.35GHz (1 G16 Marconi 6203 Microwave G9 HP 8648C 9kHz-3.	Spectrum Analyser er OMHz to 190MHz r 500MHz to 2GHz ter 1GHz to 2GHz 10GHz) MicroTronics HPM13017 Test Set (10MHz - 26.5GHz) 2GHz Signal Generator	MY45110758 02 F653-9 15 033 236252/025 3847A05254	19/11/2013 20/08/2013 20/08/2013 20/08/2013 20/08/2013 01/08/2013 17/05/2013	1 ye
FF02 Low Pass RF Filte FF09 Band Pass Filter FF15 Band Pass Filter FF22 High Pass Filter - 1.35GHz (1 G16 Marconi 6203 Microwave FF99 HP 8648C 9kHz-3.	er OMHz to 190MHz r 500MHz to 2GHz ter 1GHz to 2GHz 10GHz) MicroTronics HPM13017 Test Set (10MHz - 26.5GHz) 2GHz Signal Generator	02 F653-9 15 033 236252/025 3847A05254	20/08/2013 20/08/2013 20/08/2013 20/08/2013 01/08/2013 17/05/2013	1 ye 1 ye 1 ye 1 ye 1 ye 1 ye
FF09 Band Pass Filter FF15 Band Pass Filter FF22 High Pass Filter - 1.35GHz (1 G16 Marconi 6203 Microwave GG9 HP 8648C 9kHz-3.	r 500MHz to 2GHz ter 1GHz to 2GHz 10GHz) MicroTronics HPM13017 Test Set (10MHz - 26.5GHz) 2GHz Signal Generator	F653-9 15 033 236252/025 3847A05254	20/08/2013 20/08/2013 20/08/2013 01/08/2013 17/05/2013	1 ye 1 ye 1 ye
FF15 Band Pass Filt FF22 High Pass Filter - 1.35GHz (1 G16 Marconi 6203 Microwave GG9 HP 8648C 9kHz-3.	ter 1GHz to 2GHz 10GHz) MicroTronics HPM13017 Test Set (10MHz - 26.5GHz) 2GHz Signal Generator	15 033 236252/025 3847A05254	20/08/2013 20/08/2013 01/08/2013 17/05/2013	1 ye 1 ye 1 ye
FF22 High Pass Filter - 1.35GHz (1 G16 Marconi 6203 Microwave GG9 HP 8648C 9kHz-3.	IOGHz) MicroTronics HPM13017 Test Set (10MHz - 26.5GHz) 2GHz Signal Generator	033 236252/025 3847A05254	20/08/2013 01/08/2013 17/05/2013	1 ye
G16 Marconi 6203 Microwave GG9 HP 8648C 9kHz-3.	Test Set (10MHz - 26.5GHz) 2GHz Signal Generator	236252/025 3847A05254	01/08/2013 17/05/2013	1 ye
GG9 HP 8648C 9kHz-3.	2GHz Signal Generator	3847A05254	17/05/2013	1 ye
	-			1 ye
	-	296501/321		1
			1 1,00,2010	' '

The Tetra Test Set is owned by Sepura.

	Report No: Issue No:	R3275 1	FCC ID: XX6STP9040/XX6STP9240		
dB	Test No:	T5115	Test Report	Page:	19 of 84

3 Test Methods

3.1 Antenna Conducted Carrier Power

The antenna output is connected to a spectrum analyser via a suitable PAD. The bandwidth on the spectrum analyser is set to greater than the EUT occupied bandwidth. A peak measurement is recorded. Additional measurements are made with antenna output connected to a power meter providing average measurements.

3.2 Antenna Conducted Transmitter Unwanted Emissions

Measurements are made with the antenna output connected to a spectrum analyser via a suitable PAD. Sweeps are made over the specified frequency ranges . The limit is set relative to the measured carrier power. A peak detector is used.

3.3 Antenna Conducted Occupied Bandwidth

Measurements are made with the antenna output connected to a spectrum analyser via a suitable PAD. Sweeps are made with a 300Hz Resolution Bandwidth and a 1kHz Video Bandwidth. A peak detector is used. Markers are used to determine the 99% power bandwidth.

3.4 Antenna Conducted Adjacent Channel Power

Measurements are made with the antenna output connected to an Tetra Test Set via a suitable PAD. The Analyser is set to make adjacent channel power measurements using the pre-configured settings for Tetra with 25 kHz channel spacing.

3.5 Frequency Stability

The EUT is placed in an environmental chamber. The temperature inside the chamber is set to the required level and allowed to stabilise.

For DMO mode the antenna output is connected to a spectrum analyser via a suitable PAD. The EUT is set to transmit with constant carrier (at a frequency 2.25kHz above channel centre frequency). The frequency is measured using the frequency counter function of the spectrum analyser.

For TMO mode the antenna output is connected to a Tetra Test Set. The EUT is set to transmit using normal burst operation. the frequency error, as indicated by the Tetra Test Set, is recorded.

Measurements are made at the specified temperature and over the required voltage supply range of the EUT.

	Report No: Issue No:	R3275 1	FCC ID: XX6STP9040/XX6STP9240		
(dB)	Test No:	T5115	Test Report	Page:	20 of 84

3.6 Transient Frequency Behaviour

The test equipment was set up as shown above.

The spectrum analyser was set to Hz span with its inbuilt FM demodulation function activated.

Initially only the EUT was set to transmit an unmodulated signal and the centre frequency of the analyser adjusted to give 0Hz FM deviation.

The EUT transmitter was then switched off and the signal generator set to provide a carrier only output. The frequency of the signal generator was adjusted to again give 0Hz FM deviation on the spectrum analyser.

The signal generator FM modulation was then switched on and adjusted to give 25kHz FM deviation on the spectrum analyser.

The spectrum analyser was then set to trigger only on video output from the receiver. The directional coupler was used to feed an attenuated portion of the EUT transmitter into the receiver. The receiver was tuned to the transmit frequency and so produced a change on its video output when the transmitter was switched on and off. This signal was used to trigger the spectrum analyser.

FM deviation data was recorded from the spectrum analyser for both carrier switch on and switch off and at all three test frequencies.

	Report No: Issue No:	R3275 1	FCC ID: XX6STP9040/XX6STP9240		
(dB)	Test No:	T5115	Test Report	Page:	21 of 84

3.7 Radiated Transmitter Emissions (Substitution Method)

Initial scans are performed in a semi-anechoic screened room at a distance of 3m. Scans are performed over the frequency range specified in the test standard with the antenna both horizontally and vertically polarised. During these scans the EUT and peripherals are rotated through 360°. Bench top EUTs are placed on a non-conducting bench at a height of 0.8m above the ground plane. Floor standing EUTs are placed 0.1m above the ground plane. The EUT cables were manipulated in an attempt to produce maximum emissions. The results of the scans are shown in the plots included at the end of the report.

Significant emissions identified by the scans are measured using a substitution method. Maximised emission readings are obtained by rotating the EUT through 360° and adjusting the height of the antenna from 1m to 4m. Measurements are made with the antenna both horizontally and vertically polarised and the results tabulated.

The EUT is then replaced with a calibrated reference antenna fed from a signal generator. The level fed into the reference antenna is measured with a power meter. Measurements are made to determine the power output of the signal generator required to give the same emission levels as were observed from the EUT.

The radiated power from the EUT is calculated as:

Signal Level + Gain of + Radiated Level - Radiated Level fed into Reference Antenna + Radiated Level - Radia

For example, assuming following measurements:

Signal Level fed into Reference Antenna = -14.3dBm
Gain of Reference Antenna = 7.1 dBi
Radiated Level from EUT (i.e. Level at Measuring Receiver) = 37 dBuV
Radiated Level from Reference Antenna (i.e. Level at Measuring Receiver) = 61.5 dBuV

Then the Radiated Power from the EUT = -14.3 + 7.1 + 37 - 61.5 dBm (isotropic) = -31.7 dBm (isotropic)

3.8 Receiver Radiated Emissions

Initial scans are performed in a semi-anechoic screened room at a distance of 3m. Scans are performed over the frequency range specified in the test standard with the antenna both horizontally and vertically polarised. During these scans the EUT and peripherals are rotated through 360°. Bench top EUTs are placed on a non-conducting bench at a height of 0.8m above the ground plane. Floor standing EUTs are placed 0.1m above the ground plane. The EUT cables were manipulated in an attempt to produce maximum emissions. The results of the scans are shown in the plots included at the end of the report.

Significant emissions identified by the scans are measured on an open area test site at the appropriate test distance using a CISPR16 quasi-peak receiver. Maximised readings are obtained by rotating the EUT through 360° and adjusting the height of the antenna from 1m to 4m. Measurements are made with the antenna both horizontally and vertically polarised and the results tabulated.

Tabulated results show levels based on the following calculation:

Field Strength (dBuV) = receiver reading (dBuV) + CF (dB/m)

CF is the correction factor for the antenna and cable.

For example:

at 114MHz receiver reading was 17.9 dBuV, combined correction factor = 13.1 (dB/m).

Total field strength = 17.9 + 13.1 = 31.0 dBuV/m.

	Report No: Issue No:	R3275 1	FCC ID: XX6STP9040/XX6STP9240		
dB	Test No:	T5115	Test Report	Page:	22 of 84

4 Test Results

The following sections contain tabulated test results. Plots of various scans are included at the back of this section.

4.1 Conducted Antenna Output Power

Factor Set 1: Factor Set 2: Factor Set 3:

Test Equipment: R9 PS10 PM6

Conducted Emissions (Signal)

Oondacte	u Limissions (orginal)			
Compar	^{ny:} Sepura PLC		Product: STP9040/STP9240	
Date:	19/08/2013		Test Eng: Dave Smith	
Ports:	antenna			
Test:	90.209	using limits of	90.209(b)(5)	
Ports:				

Test:	antenna 90.209	using limits o	f 90.209(b)(5)	
Ports: Test:		using limits o	f	
Notes				
	Measurements Measurements	were also made with	ng a peak detector are shown in plots 1 to 3. de using a power meter with an average detector. ith continuous modulation.	
	measurements		of the cable and attenuators the following	
	Channel	Peak dBm	Average dBm	
	450 MHz	35.5	32.71	
	460 MHz	35.4	32.90	
	470 MHz	35.4	33.00	
	•			

dB)	Report No: Issue No:	R3275 1	FCC ID: XX6STP9040/XX6STP9240		
	Test No:	T5115	Test Report	Page:	24 of 84

4.2 Conducted Antenna Occupied Bandwidth

Factor Set 1:
Factor Set 2: -- -Factor Set 3: -- -Test Equipment: R9

Conducted Emissions (Signal)

Conducte	u Ellissions (Signal)			
Compan	^{ry:} Sepura PLC		Product: STP9040/STP9240	
Date:	19/08/2013		Test Eng: Dave Smith	
Ports:	antenna			
Test:	90.210	using limits of	90.221(d)	
Ports:	_	_		
Toote				

Test:	using limits of								
Notes	Comments and Observations								
	Measurements were made with continuous modulation applied. Spectrum analyser results are shown in plots 4 to 6. Using the "Bandwidth Power" function of the spectrum analyser, the following measurements were recorded:								
	450MHz 20.83 kHz								
	460MHz 20.87 kHz								
	470MHz 20.93 kHz								
	Limit: Using note 6 in the "Tetra Waiver" (FCC11-63) the limit is 22kHz (providing Adjacent Chappel Power requirements are met)								
	(providing Adjacent Channel Power requirements are met). PASS								

| Report No: | R3275 | | FCC ID: XX6STP9040/XX6STP9240 | | Test No: | T5115 | Test Report | Page: | 25 of 84

4.3 Frequency Stability - DMO Mode - Absolute Frequency Measurements

Factor Set 1:
Factor Set 2: ---Factor Set 3: ---Test Equipment: R9

FrequencyStability

Compan	^{y:} Sepura PLC		Product: STP9040/STP9240	
Date:	20/08/2013		Test Eng: Dave Smith	
Ports:	antenna			
Test:	90.205	using limits of	90.205(h)	
Ports:		_		

Test: using limits of

		450MHz	460MHz	470MHz
		Channel	Channel	Channel
-30.0°C	6.4V	450.002270	460.002260	470.002320
	7.4V	450.002270	460.002270	470.002300
-20.0°C	6.4V	450.002140	460.002150	470.002150
	7.4V	450.002150	460.002160	470.002140
-10.0°C	6.4V	450.002120	460.002110	470.002110
	7.4V	450.002110	460.002110	470.002110
0.0°C	6.4V	450.002120	460.002140	470.002149
	7.4V	450.002140	460.002130	470.002140
10.0°C	6.4V	450.002203	460.002209	470.002149
	7.4V	450.002221	460.002220	470.002097
20.0°C	6.4V	450.002124	460.002171	470.002260
	7.4V	450.002119	460.002110	470.002161
30.0°C	6.4V	450.002164	460.002077	470.002110
	7.4V	450.002156	460.002096	470.002093
40.0°C	6.4V	450.002222	460.002227	470.002232
	7.4V	450.002209	460.002237	470.002239
50.0°C	6.4V	450.002203	460.002207	470.002283
	7.4V	450.002232	460.002212	470.002223
55.0°C	6.4V	450.002238	460.002246	470.002174
	7.4V	450.002240	460.002180	470.002252

	Report No: Issue No:	R3275 1	FCC ID: XX6STP9040/XX6STP9240		
	Test No:	T5115	Test Report	Page:	26 of 84

4.4 Frequency Stability - DMO Mode - Deviations from Nominal Volt/Temp - ppm

Factor Set 1:
Factor Set 2: -- -Factor Set 3: -- -Test Equipment: R9

FrequencyStability

Test:

. roquerro	, ,			
Compan	^{ny:} Sepura PLC		Product: STP9040/STP9240	
Date:	20/08/2013		Test Eng: Dave Smith	
Ports:	antenna			
Test:	90.205	using limits of	90.205(h)	
Ports:				

Notes Comments and Observations

using limits of

DMO Frequency deviation	n from nominal	voltage/temperature	- ppm
-------------------------	----------------	---------------------	-------

		450MHz	460MHz	470MHz
		Channel	Channel	Channel
-30.0°C	6.4V	0.336	0.326	0.338
	7.4V	0.336	0.348	0.296
-20.0°C	6.4V	0.047	0.087	-0.023
	7.4V	0.069	0.109	-0.045
-10.0°C	6.4V	0.002	0.000	-0.109
	7.4V	-0.020	0.000	-0.109
0.0°C	6.4V	0.002	0.065	-0.026
l	7.4V	0.047	0.043	-0.045
10.0°C	6.4V	0.187	0.215	-0.026
	7.4V	0.227	0.239	-0.136
20.0°C	6.4V	0.011	0.133	0.211
	7.4V	0.000	0.000	0.000
30.0°C	6.4V	0.100	-0.072	-0.109
	7.4V	0.082	-0.030	-0.145
40.0°C	6.4V	0.229	0.254	0.151
	7.4V	0.200	0.276	0.166
50.0°C	6.4V	0.187	0.211	0.260
	7.4V	0.251	0.222	0.132
55.0°C	6.4V	0.264	0.296	0.028
	7.4V	0.269	0.152	0.194

The part 90 Limit for the 421MHz to 512MHz band mobiles is 5ppm PASS

dB)	Report No: Issue No:	R3275 1	FCC ID: XX6STP9040/XX6STP9240		
	Test No:	T5115	Test Report	Page:	27 of 84

Frequency Stability - TMO Mode - Frequency Error Hz 4.5

Factor Set 1: Factor Set 2: Factor Set 3: Test Equipment: TTS

FrequencyStability

Notes

110queine)	- Otaomity			
Compan	^{y:} Sepura PLC		Product: STP9040/STP9240	
Date:	20/08/2013		Test Eng: Dave Smith	
Ports:	antenna			
Test:	90.205	using limits of	90.205(h)	
Ports:				
Test:		using limits of		

Comments and Observations

using limits of

		450MHz	460MHz	470MHz
		Channel	Channel	Channel
-30.0°C	6.4V	-20.500000	-20.700000	-20.200000
	7.4V	-20.800000	-14.800000	-16.100000
-20.0°C	6.4V	-21.100000	-18.600000	-11.500000
	7.4V	-18.500000	-14.500000	-25.400000
-10.0°C	6.4V	-22.100000	-12.700000	-19.200000
	7.4V	-21.000000	-22.600000	-16.900000
0.0°C	6.4V	-24.500000	-21.400000	-18.300000
	7.4V	-13.600000	-13.800000	-20.000000
10.0°C	6.4V	-19.800000	-27.200000	-18.000000
	7.4V	-21.600000	-21.000000	-18.300000
20.0°C	6.4V	-27.000000	-29.600000	-16.100000
	7.4V	-27.500000	-16.700000	-22.700000
30.0°C	6.4V	-12.600000	-26.200000	-24.900000
	7.4V	-21.500000	-28.200000	-18.900000
40.0°C	6.4V	-28.000000	-20.400000	-20.200000
	7.4V	-15.500000	-20.700000	-19.500000
50.0°C	6.4V	-21.100000	-21.400000	-23.300000
	7.4V	-13.300000	-22.200000	-21.400000
55.0°C	6.4V	-23.900000	-28.100000	-16.700000
	7.4V	-22.200000	-23.300000	-29.700000

See next page for deviation in ppm.

A	Report No: Issue No:	R3275 1	FCC ID: XX6STP9040/XX6STP9240		
(dB)	Test No:	T5115	Test Report	Page:	28 of 84

4.6 Frequency Stability - TMO Mode - Deviation from nominal volt/temp - ppm

Factor Set 1:
Factor Set 2:
Factor Set 3:
Test Equipment: TTS

FrequencyStability

Test:

. roquerro	, ,			
Compan	^{ny:} Sepura PLC		Product: STP9040/STP9240	
Date:	20/08/2013		Test Eng: Dave Smith	
Ports:	antenna			
Test:	90.205	using limits of	90.205(h)	
Ports:				

using limits of

7.4V

6.4V

7.4V

6.4V

7.4V

6.4V

7.4V

40.0°C

50.0°C

55.0°C

0.013

-0.001

0.027

0.014

0.032

800.0

0.012

Notes Comments and Observations TMO Frequency deviation - ppm 450MHz 460MHz 470MHz Channel Channel Channel -30.0°C 6.4V 0.016 -0.009 0.005 0.004 0.014 7.4V 0.015 -20.0°C 6.4V 0.014 -0.004 0.024 7.4V 0.005 -0.006 0.020 -10.0°C 6.4V 0.009 0.007 0.012 7.4V 0.014 -0.013 0.012 0.0°C 6.4V 0.007 -0.010 0.009 7.4V 0.006 0.006 0.031 10.0°C 6.4V -0.023 0.010 0.017 7.4V 0.013 -0.009 0.009 20.0°C 6.4V -0.028 0.001 0.014 7.4V 0.000 0.000 0.000 30.0°C 6.4V 0.033 -0.021 -0.005

The part 90 Limit for the 421MHz to 512MHz band mobiles is 5ppm PASS

-0.025

-0.008

-0.009

-0.010

-0.012

-0.025

-0.014

800.0

0.005

0.007

-0.001

0.003

0.013

-0.015

	Report No: Issue No:	R3275 1	FCC ID: XX6STP9040/XX6STP9240		
dB	Test No:	T5115	Test Report	Page:	29 of 84

4.7 Conducted Emission Antenna Adjacent Channel Power

Factor Set 1:
Factor Set 2: -- -Factor Set 3: -- -Test Equipment: SEP1

Conducted Emissions (Signal)

Notes

Conducted	Littissions (Signal)			
Company	^z Sepura PLC		Product:	STP9040/STP9240
Date:	18/08/2013		Test Eng:	Dave Smith
Ports:	antenna			
Test:	90.213	using limits of	90.213	
Ports:				
Test:		using limits of		

Comments and Observations

Readings in d	Вс		0			
			Channel			
	-75kHz	-50kHz	-25kHz	+ 25kHz	+ 50kHz	+ 75kH
4E0M11-	90.64	77.20	64.00	6E 20	76.00	00.27
450MHz	-80.64	-77.29	-64.88	-65.30	-76.82	-80.37
460MHz	-80.54	-76.63	-63.90	-64.20	-76.09	-80.24
470MHz	-80.16	-76.11	-64.02	-63.97	-75.53	-80.01
17011112	00.10	70.11	01.02	00.07	70.00	00.01
Limit (dBc)	-70	-70	-60	-60	-70	-70
	PASS	PASS	PASS	PASS	PASS	PASS

Limit shown is the maximum allowed level (dBc) for a product with output power above 1 W and operating in the 450 MHz to 470 MHz band (Part 90.221(b)

PASS

	Report No: Issue No:	R3275 1	FCC ID: XX6STP9040/XX6STP9240		
dB	Test No:	T5115	Test Report	Page:	30 of 84

4.8 Transmitter Transient Frequency Behaviour - Results

Factor Set 1:
Factor Set 2:
Factor Set 3:
Test Equipment: R9 R4 SG9

Conducted Emissions (Signal)

Conauctea I	Emissions (Signai)			
Company:	Sepura PLC		Product:	STP9040/STP9240
Date:	20/08/2013		Test Eng:	Dave Smith
Ports:	antenna			
Test:	90.214	using limits of	90.214	
Ports:				
Tost		using limits of		

Ports: Test:	using limits of
Notes	Comments and Observations
	The output of the antenna port of the EUT was fed through a Directional Coupler and then combined with the output of a signal generator. The spectrum analyser has an FM demodulation function.
	The EUT was initially set to produce a constant carrier output and the tuning of the spectrum analyser adjusted to give 0Hz FM deviation. The output of the EUT was turned off and a carrier only signal output from the
	signal generator set at approximately the same frequency as the EUT. This frequency was adjusted to again give OHz FM deviation on the spectrum analyser. The signal generator was then set to give 25kHz FM deviation (with 1kHz signal).
	The forward power output of the directional coupler was fed into a receiver tuned to the carrier frequency. The video output of this receiver was used to trigger the spectrum analyser when the EUT RF is turned on or off.
	The results of sweeps captured from the spectrum analyser are shown in plots 10 to 15.
	All of the plots show the EUT comfortably meets the Transient Frequency Behaviour limits for a 25kHz channel spacing transmitter as shown below:
	Frequency Duration

t1 ± 25 kHz 10 msec t2 ± 12.5 kHz 25 msec t3 ± 25 kHz 10 msec		Frequency	Duration	
	t1	±25 kHz	10 msec	
t3 ± 25 kHz 10 msec	t2	± 12.5 kHz	25 msec	
	t3	$\pm 25 \text{ kHz}$	10 msec	

	Report No: Issue No:	R3275 1	FCC ID: XX6STP9040/XX6STP9240		
dB	Test No:	T5115	Test Report	Page:	31 of 84

4.9 Conducted Emission Antenna Spurious Emissions

Factor Set 1:	
Factor Set 2:	
Factor Set 3:	
Test Equipment:	R9

Conducted Emissions (Signal)

_	Obnaucica i	ennissions (orginal)			
	Company:	Sepura PLC		Product:	STP9040/STP9240
	Date:	19/08/2013		Test Eng:	Dave Smith
I	Ports:	antenna			
١	Test:	90.213	using limits of	90.213	
	Ports:				
	- .				

Ports: Test:	using limits of										
Notes	Comments and Observations										
	Results of scans shown in plots 16 to 18.										
	The limit line shown on the plots is at -13dBm.										
	All spurious emissions were below this limit.										
	PASS										

32 of 84

4.10 Radiated Emissions - Transmit Carrier ERP

Factor Set 1: A30_dBi_10A - - -

Factor Set 2: -- -- Factor Set 3: -- --

Test Equipment: R8 A24 A30 SG9 PM6 PS10

Substitution Emissions

Company: Sepura PLC

Date: 04/09/2013

Product: STP9040/STP9240

Test Eng: Dave Smith

Ports:

Test: 90.205 using limits of 90.205(h)

Ports:

Test: using limits of

Op Mode	Mod State	CF Set	Freq. MHz	Cable Sig Gen Level Cable dBm	e Loss Rec'vr Level Cable	Ant Pol	Rec'vr Level EUT dBuV	Sig Gen Level Sub'n Ant dBm	Rec'vr Level Sub'n Ant dBuV	Sub'n Ant Gain dBd	ERP dBm	Limit dBm	Margin dB	Note
			Standalone											
1	1	1	450.000	110.0	110.0	v	113.4	-11.8	66.9	-2.4	32.3			Upr
	1 1	1	460.000	110.0	110.0	v	113.9	-11.8	65.2	-2.4	34.5			Upr
	1	1	470.000	110.0	110.0	ľ	113.2	-12.0	65.3	-2.5	33.5			Upr
1	1	1	450.000	0.0	0.0	Н	115.8	-11.8	68.1	-2.4	33.5			Flat
1	1	1	460.000	0.0	0.0	н	116.4	-11.8	67.7	-2.4	34.4			Flat
1	1	1	470.000	0.0	0.0	н	117.0	-12.0	66.9	-2.5	35.7			Flat
			RSM											
1	1	1	450.000	110.0	110.0	V	102.2	-11.8	66.9	-2.4	21.1			Upr
1	1	1	460.000	110.0	110.0	V	103.3	-11.8	65.2	-2.4	23.9			Upr
1	1	1	470.000	110.0	110.0	V	104.6	-12.0	65.3	-2.5	24.9			Upr
1	1	1	450.000	0.0	0.0	н	100.9	-11.8	68.1	-2.4	18.6			Flat
1	1	1	460.000	0.0	0.0	Н	104.3	-11.8	67.7	-2.4	22.3			Flat
1	1	1	470.000	0.0	0.0	Н	105.2	-12.0	66.9	-2.5	23.9			Flat
			Car Kit											
1	1	1	450.000	110.0	110.0	V	108.7	-11.8	66.9	-2.4	27.6			Upr
1	1	1	460.000	110.0	110.0	V	107.9	-11.8	65.2	-2.4	28.5			Upr
1	1	1	470.000	110.0	110.0	V	109.6	-12.0	65.3	-2.5	29.9			Upr
1	1	1	450.000	0.0	0.0	н	107.7	-11.8	68.1	-2.4	25.4			Flat
1	1	1	460.000	0.0	0.0	Н	109.5	-11.8	67.7	-2.4	27.5			Flat
1	1	1	470.000	0.0	0.0	Н	111.1	-12.0	66.9	-2.5	29.8			Flat
Results Minimum Margin PASS/FAIL														

Notes

The results above are radiated measurements using the substitution method.

There are no specific limits in the standard for this test.

Report No: Issue No: 1 R3275 1 FCC ID: XX6STP9040/XX6STP9240 Test No: T5115 Test Report Page: 33 of 84

4.11 Radiated Emissions - Transmit Spurious Below 1GHz

Factor Set 1: A30_dBi_10A - - -

Factor Set 2: ----Factor Set 3: ----

Test Equipment: R8 A24 A30 SG9 PM6 PS10 RFF09 RFF02

Substitution Emissions

Company: Sepura PLC Product: STP9040/STP9240

Date: 04/09/2013 Test Eng: Dave Smith

Ports:

Test: 90.210 using limits of 90.221(d)

Ports:

Test: using limits of

				Cable Loss										
Op	Mod	CF	Freq.	Sig Gen	Rec'vr	Ant	Rec'vr	Sig Gen	Rec'vr	Sub'n	ERP	Limit	Margin	Note
Mode	State	Set	MHz	Level	Level	Pol	Level	Level	Level	Ant				
				Cable	Cable		EUT	Sub'n	Sub'n	Gain				
								Ant	Ant					
				dBm	dBm		dBuV	dBm	dBuV	dBd	dBm	dBm	dB	
	_		Standalone	l		l l								
1	1	1	600.000	110.0	110.0	V	31.6	-12.8	60.1	-4.3	-45.6	-13.0	32.6	Upr
1	1	1	900.000	110.0	110.0	V	43.1	-14.2	51.1	-8.9	-31.2	-13.0	18.2	Upr
1	1	1	920.000	110.0	110.0	V	37.4	-14.3	49.4	-8.9	-35.1	-13.0	22.1	Upr
1	1	1	940.000	110.0	110.0	V	37.5	-14.4	50.4	-8.7	-36.1	-13.0	23.1	Upr
1	1	1	900.000	110.0	110.0	H	42.8	-14.2	53.1	-8.9	-33.4	-13.0	20.4	Flat
1	1	1	920.000	110.0	110.0	Н	38.8	-14.3	55.0	-8.9	-39.3	-13.0	26.3	Flat
1	1	1	940.000	110.0	110.0	Н	42.1	-14.4	54.9	-8.7	-35.9	-13.0	22.9	Flat
			RSM											
1	1	1	900.000	110.0	110.0	V	40.7	-14.2	51.1	-8.9	-33.5	-13.0	20.5	Upr
1	1	1	920.000	110.0	110.0	V	36.9	-14.3	49.4	-8.9	-35.6	-13.0	22.6	Upr
1	1	1	940.000	110.0	110.0	V	41.2	-14.4	50.4	-8.7	-32.3	-13.0	19.3	Upr
1	1	1	900.000	110.0	110.0	Н	42.6	-14.2	53.1	-8.9	-33.6	-13.0	20.6	Flat
1	1	1	920.000	110.0	110.0	н	38.1	-14.3	55.0	-8.9	-40.1	-13.0	27.1	Flat
1	1	1	940.000	110.0	110.0	н	38.6	-14.4	54.9	-8.7	-39.4	-13.0	26.4	Flat
	Resul	ts		Minimur PASS/F	_	n			18.2 PASS	dB				

Notes

Results of prescans shown in plots 19-21, 24-26 and 29-31. Measurements made with 120kHz RBW peak detector.

3m test distance.

| Report No: | R3275 | | FCC ID: XX6STP9040/XX6STP9240 | | Test No: | T5115 | Test Report | Page: | 34 of 84

4.12 Radiated Emissions - Transmit Spur - Above 1GHz - Standalone

Factor Set 1: A8_dbi_12B - - -

Factor Set 2: ----Factor Set 3: ----

Test Equipment: R8 A23 A8 PRE10 SG16 PM6 PS10 RFF015 RFF022

Substitution Emissions

 Company:
 Sepura PLC
 Product:
 STP9040/STP9240

 Date:
 30/09/2013
 Test Eng:
 Dave Smith

 Ports:
 Test:
 90.210
 using limits of
 90.221(d)

 Ports:
 90.210
 90.221(d)
 90.221(d)

Test: using limits of

Test: using limits of														
Op Mode	Mod State		Freq. MHz	Cable Sig Gen Level Cable	Loss Rec'vr Level Cable	Ant Pol	Rec'vr Level EUT dBuV	Sig Gen Level Sub'n Ant dBm	Rec'vr Level Sub'n Ant dBuV	Sub'n Ant Gain dBd	ERP dBm	Limit dBm	Margin dB	Note
1 1 1 1 1 1 1	1 1 1 1 1 1	1 1 1 1 1 1 1 1	2250.000 2300.000 2350.000 2700.000 2250.000 2300.000 2700.000	0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0	> > > > H H H H	78.6 78.8 77.8 75.1 83.9 81.7 80.8 78.2	-22.0 -21.9 -21.9 -22.3 -22.0 -21.9 -21.9 -22.3	97.1 96.9 96.8 96.3 99.6 99.1 98.8 97.7	7.4 7.5 7.6 7.9 7.4 7.5 7.6 7.9	-33.1 -32.5 -33.3 -35.5 -30.2 -31.8 -32.3 -33.9	-13.0 -13.0 -13.0 -13.0 -13.0 -13.0 -13.0	20.1 19.5 20.3 22.5 17.2 18.8 19.3 20.9	Lo Mid Hi Lo Mid Hi Lo
Results Minimum Margin PASS/FAIL									17.2 PASS	dB				

Notes

Standalone. 1.5m. Maximum of flat and upright. Max rotation and height. Measured with 1MHz RBW peak detector.

Results of prescans shown in plots 22 and 23.

| Report No: | R3275 | | FCC ID: XX6STP9040/XX6STP9240 | | Test No: | T5115 | Test Report | Page: | 35 of 84

4.13 Radiated Emissions - Transmit Spur - Above 1GHz - RSM

Factor Set 1: A8_dbi_12B - - -

Factor Set 2: ----Factor Set 3: ----

Test Equipment: R8 A23 A8 PRE10 SG16 PM6 PS10 RFF015 RFF022

Substitution Emissions

 Company:
 Sepura PLC
 Product:
 STP9040/STP9240

 Date:
 30/09/2013
 Test Eng:
 Dave Smith

 Ports:
 Test:
 90.210
 using limits of
 90.221(d)

 Ports:
 90.210
 90.221(d)
 90.221(d)

Test: using limits of

Test: using limits of														
Op Mode	Mod State		Freq. MHz	Cable Sig Gen Level Cable	Loss Rec'vr Level Cable	Ant Pol	Rec'vr Level EUT dBuV	Sig Gen Level Sub'n Ant dBm	Rec'vr Level Sub'n Ant dBuV	Sub'n Ant Gain dBd	ERP	Limit	Margin dB	Note
1 1 1 1 1	1 1 1 1 1	1 1 1 1 1 1	2250.000 2300.000 2350.000 2250.000 2300.000 2350.000	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	V V V H H H	76.9 74.8 75.8 79.9 79.1 78.3	-22.0 -21.9 -21.9 -22.0 -21.9 -21.9	97.1 96.9 96.8 99.6 99.1 98.8	7.4 7.5 7.6 7.4 7.5 7.6	-34.8 -36.6 -35.2 -34.2 -34.4 -34.8	-13.0 -13.0 -13.0 -13.0 -13.0	21.8 23.6 22.2 21.2 21.4 21.8	Lo Mid Hi Lo Mid Hi
Results Minimum Margin PASS/FAIL									21.2 PASS	dB				

Notes

RSM. 1.5m. Maximum of flat and upright. Max rotation and height. Measured with 1MHz RBW peak detector. Results of prescans shown in plots 27 and 28.

| Report No: | R3275 | | FCC ID: XX6STP9040/XX6STP9240 | | Test No: | T5115 | Test Report | Page: | 36 of 84

4.14 Radiated Emissions - Transmit Spur - Above 1GHz - Car Kit

Factor Set 1: A8_dbi_12B - - -

Factor Set 2: -- -- Factor Set 3: -- --

Test Equipment: R8 A23 A8 PRE10 SG16 PM6 PS10 RFF015 RFF022

Substitution Emissions

 Company:
 Sepura PLC
 Product:
 STP9040/STP9240

 Date:
 30/09/2013
 Test Eng:
 Dave Smith

 Ports:
 Test:
 90.210
 using limits of
 90.221(d)

 Ports:
 90.210
 using limits of
 90.221(d)

Test: using limits of

Test	:			u	sing limi	ts of	•							
Op Mode	Mod State		Freq. MHz	Cable Sig Gen Level Cable	Loss Rec'vr Level Cable	Ant Pol	Rec'vr Level EUT dBuV	Sig Gen Level Sub'n Ant dBm	Rec'vr Level Sub'n Ant dBuV	Sub'n Ant Gain dBd	ERP dBm	Limit dBm	Margin dB	Note
1 1 1 1 1	1 1 1 1 1	1 1 1 1 1 1	2250.000 2300.000 2350.000 2250.000 2300.000 2350.000	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	>	78.4 79.9 78.9 73.6 74.3 75.6	-22.0 -21.9 -21.9 -22.0 -21.9 -21.9	97.1 96.9 96.8 99.6 99.1 98.8	7.4 7.5 7.6 7.4 7.5 7.6	-33.3 -31.5 -32.2 -40.5 -39.2 -37.5	-13.0 -13.0 -13.0 -13.0 -13.0	20.3 18.5 19.2 27.5 26.2 24.5	Lo Mid Hi Lo Mid Hi
Results Minimum Margin PASS/FAIL									18.5 PASS	dB			,	

Notes

Car kit. 1.5m. Max rotation and height. Measured with 1MHz RBW peak detector. Results of prescans shown in plots 32 and 33.

Report No: R3275 FCC ID: XX6STP9040/XX6STP9240 Issue No: 1 /Î\ dB Test No: **Test Report** Page: T5115 37 of 84

4.15 Radiated Emissions - Receive Mode - Below 1GHz

A12_FS_13B - - CBL015_11A Factor Set 1: 1 m cable

Factor Set 2: Factor Set 3:

Test Equipment: R4 A12 R8 A24 PRE10

Com	pany:	Sepu		LC	·			Prod	^{uct:} S	TP9040	/STP9240		
Date		23/10						Test	Eng: D	ave Smith	1		
Ports													
Test		ANSI	C63.	4:200	03 using	limits	of	FCC	(B)				
Ports	s <i>:</i>												
Test	:				using	limits	of						
				_	l <u>_</u>	١.						l	
Plot	Op	Mod	Dist	Fact	Freq.	Ant	Rec. Level	Corr'n		Total	Limit	Margin	Notes
	Mode	State	m	Set	MHz	Pol	dBuV	Factor dB/m	Factor dB	Level dBuV/m	FCC_B dBuV/m	FCC_B dB	
							ивич	UB/III	ив	ubuv/III	ubuv/III	ив	
		dalone	_										 .
35	2	1	3	1	529.280	V	0.4	22.7		23.1	46.0	22.9	Mid
35	2	1	3	1	529.280	H	1.0	22.7		23.7	46.0	22.3	Mid
47		9240	2	4	F20 200	,,	1.0	20.7		20.0	40.0	25.2	Mid
47 47	2	1	3	1 1	529.280	V	-1.9	22.7		20.8	46.0		Mid
47	2 RS N	1	3	1	529.280	H	1.6	22.7		24.3	46.0	21.7	IVIIU
39	2	// 1	3	1	452.000	V	-2.2	20.7		18.5	46.0	27.5	Hi
39	2		3	1	452.000	H	-2.2 -2.0	20.7		18.7	46.0	27.3	Hi
55	Car	1	3	'	432.000	''	2.0	20.7		10.7	40.0	27.5	'''
42	2	1 1	3	1	160.029	V	8.1	12.1		20.2	43.5	23.3	Mid
42	2	1 1	3	1	160.029	H	6.3	12.1		18.4	43.5	25.1	Mid
42	2	1	3	1	231.900	V	8.3	13.1		21.4	46.0	24.6	Mid
42	2	1	3	1	231.900	Н	9.9	13.1		23.0	46.0	23.0	Mid
43	2	1	3	1	384.003	V	-0.6	18.9		18.3	46.0	27.7	Mid
43	2	1	3	1	384.003	Н	6.2	18.9		25.1	46.0	20.9	Mid
43	2	1	3	1	544.004	V	0.4	23.9		24.3	46.0	21.7	Mid
43	2	1	3	1	544.004	Н	1.1	23.9		25.0	46.0	21.0	Mid
43	2	1	3	1	672.005	V	-0.2	25.3		25.1	46.0	20.9	Mid
43	2	1	3	1	672.005	Н	0.2	25.3		25.5	46.0	20.5	Mid
43	2	1	3	1	928.007	V	0.2	29.7		29.9	46.0	16.1	Mid
43	2	1	3	1	928.007	Н	-0.2	29.7		29.5	46.0	16.5	Mid
	Resul	ts					Minimu	m Marc	in		16.1	dB	+
PASS/FAIL										PASS			
No	tes					Comr	nents a	nd Obse	rvation	าร			
			D '	40 - r			Ja+- 04	25 22	20. 41	0.42 - 1.4	16.47		
			resul	LS OT	scans shov	vn in p	HC STOIC	-ა၁, აგ	-39, 42	2-43 and 4	10-47.		
			Meas	urem	ents made	with	120kHz	QP det	ector.				

| Report No: | R3275 | FCC ID: XX6STP9040/XX6STP9240 | Test No: | T5115 | Test Report | Page: | 38 of 84

1 m cable

4.16 Radiated Emissions - Receive Mode - Above 1GHz

Factor Set 1: A8_3m_12B CBL050_11A RFF22_12A PRE10_12A

Factor Set 2: ---Factor Set 3: ----

Test Equipment: R8 A8 RFF22 PRE10 RFF15

Com	pany:	Sepu	ıra P	LC				Proa	<i>uct:</i> S	STP9040	/STP9240		
Date		06/09						Test	Eng:	ave Smith	า		
Ports				63.4:2003 using limits of FCC(B)									
Test		ANSI	C63.	4:20	03 using	limits	s of	FCC	(B)				
Ports Test					using	limite	of.						
7001	_				using	mme	5 01						
Plot	Op	Mod	Dist	Fact	Freq.	Ant	Rec.	Corr'n	Corr'n	Total	Limit	Margin	Notes
	Mode	State	m	Set	MHz	Pol	Level dBuV	Factor dB/m	Factor dB	Level dBuV/m	FCC_B dBuV/m	FCC_B dB	
	RSM I	ower	Chann										
41	2	1	1.5	1	4673.000	V	47.3	-2.3		45.0	80.0	35.0	pk
41	2	1	1.5	1	4673.000	V	36.5	-2.3		34.2	60.0	25.8	avg
41	2	1	1.5	1	4673.000	Н	49.2	-2.3		46.9	80.0	33.1	pk
41	2	1	1.5	1	4673.000	Н	38.6	-2.3		36.3	60.0	23.7	avg
	RSM I												١.
41	2	1	1.5	1	4763.000	V	46.7	-2.0		44.7	80.0	35.3	pk
41	2	1	1.5	1	4763.000	V	35.9	-2.0		33.9	60.0	26.1	avg
41 41	2 2	1 1	1.5 1.5	1	4763.000 4763.000	H H	48.0 41.7	-2.0 -2.0		46.0 39.7	80.0 60.0	34.0 20.3	pk
	RSM U				4703.000	"	41.7	-2.0		39.7	60.0	20.3	avg
41	1	1 1	1.5	1	4853.000	V	45.5	-1.8		43.7	80.0	36.3	pk
41	1	1	1.5	1	4853.000	v	34.3	-1.8		32.5	60.0	27.5	avg
41	1	1	1.5	1	4853.000	Н	45.8	-1.8		44.0	80.0	36.0	pk
41	1	1	1.5	1	4853.000	Н	34.5	-1.8		32.7	60.0	27.3	avg
	STP92	 240 Mi	id Cha	nnel									
41	2	1	1.5	1	4763.000	V	46.5	-2.0		44.5	80.0	35.5	pk
41	2	1	1.5	1	4763.000	V	34.8	-2.0		32.8	60.0	27.2	avg
41	2	1	1.5	1	4763.000	Н	47.4	-2.0		45.3	80.0	34.7	pk
41	2	1	1.5	1	4763.000	Н	35.7	-2.0		33.7	60.0	26.3	avg
	Resul	ts					Minimu PASS/F		jin		20.3 PASS	dB	
No	tes						ments a		ervation	าร	17100		
				ated	scans show maximised							ve the highes	st
			Meas	ured	with 1MHz	RBW	detect	or.					

PLOT 1 Conducted Antenna Power - 450MHz

Company:	Sepura		Product:	STP9040	
Date:	19/08/2013		Test Eng:	Dave Smith	
Method:	FCC Part 90		Method:		
Limit1:			Limit2:		
Limit3:			Limit4:		
450MHz max ho	ld				
Facility:	Environ			Mode:	Tx
				Modification State:	0
		File:	H37195D8	Analyser:	R9

PLOT 2 Conducted Antenna Power - 460MHz

Company:	Sepura		Product:	STP9040	
Date:	19/08/2013		Test Eng:	Dave Smith	
Method:	FCC Part 90		Method:		
Limit1:			Limit2:		
Limit3:			Limit4:		
460MHz max ho	ld				
Facility:	Environ			Mode:	Tx
				Modification State:	0
		File:	H37195DA	Analyser:	R9

PLOT 3 Conducted Antenna Power - 470MHz

Date: 19/08/2013 Test Eng: Dave Smith Method: FCC Part 90 Method: Limit1: Limit2: Limit3: 470MHz max hold Limit4: Facility: Environ Mode: Mode: Tx Modification State: 0 File: H37195DB Analyser: R9	Company:	Sepura		Product:	STP9040	
Limit1: Limit2: Limit4: 470MHz max hold Facility: Environ Mode: Tx Modification State: 0	Date:	19/08/2013		Test Eng:	Dave Smith	
Limit3: Limit4: 470MHz max hold Facility: Environ Mode: Tx Modification State: 0	Method:	FCC Part 90)	Method:		
470MHz max hold Facility: Environ Mode: Tx Modification State: 0	Limit1:			Limit2:		
Facility: Environ Mode: Tx Modification State: 0	Limit3:			Limit4:		
Modification State: 0	470MHz max	hold				
Modification State: 0						
Modification State: 0						
Modification State: 0						
Modification State: 0						
Modification State: 0						
Modification State: 0						
Modification State: 0	Facility:	Environ			Mode:	Tx
File: H37195DB Analyser: R9						
			File:	H37195DB	Analyser:	R9

dB)	Report No: Issue No:	R3275 1	FCC ID: XX6STP9040/XX6STP9240			
	Test No:	T5115	Test Report	Page:	42 of 84	

CI I.Cable_FAD

PLOT 4 Occupied Bandwidth - 450MHz

Company:	Sepura	Product:	STP9040
Date:	19/08/2013	Test Eng:	Dave Smith
Method:	FCC Part 90	Method:	
Limit1:		Limit2:	
Limit3:		Limit4:	
450MHz 99% occupied b	andwidth = 20.83kHz		
Facility:	Environ	V	Mode: Tx
		N	Modification State: 0
	File:	H371967A A	nalyser: R9

PLOT 5 Occupied Bandwidth - 460MHz

Date: Method:	19/08/2013 FCC Part 90		Test Eng:	Dave Smith	
Method:	ECC Part 00		•	Dave Smilli	
	FCC Fall 90		Method:		
Limit1:			Limit2:		
Limit3:			Limit4:		
460MHz 99% occupied b	oandwidth = 20.87k	κHz			
Facility:	Environ			Mode:	Tx
				Modification State:	0
	F	File:	H3719681	Analyser:	R9

CF1:Cable_PAD

PLOT 6 Occupied Bandwidth - 470MHz

			Product:	STP9040		
Date:	19/08/2013		Test Eng:	Dave Smith		
Method:	FCC Part 90		Method:			
Limit1:			Limit2:			
Limit3:			Limit4:			
470MHz 99% occupied	bandwidth = 20.9	932kHz				
Facility:	Environ			Mode:	Tx	
ĺ				Modification State:	0	
		File:	H37195FA	Analyser:	R9	

dB)	Report No: Issue No:	R3275 1	FCC ID: XX6STP9040/XX6STP9240		
	Test No:	T5115	Test Report	Page:	45 of 84

Date: 18.AUG.2013 00:37:42

PLOT 7 Adjacent Channel Power 450MHz

₩ dB	Report No: Issue No:	R3275 1	FCC ID: XX6STP9040/XX6STP9240		
	Test No:	T5115	Test Report	Page:	46 of 84

Date: 18.AUG.2013 00:40:52

PLOT 8 Adjacent Channel Power - 460MHz

dB)	Report No: Issue No:	R3275 1	FCC ID: XX6STP9040/XX6STP9240		
	Test No:	T5115	Test Report	Page:	47 of 84

Date: 18.AUG.2013 00:43:32

PLOT 9 Adjacent Channel Power - 470MHz

PLOT 10 Transient Frequency - 450MHz - On

PLOT 11 Transient Frequency - 460MHz - On

PLOT 12 Transient Frequency - 470MHz - On

PLOT 13 Transient Frequency - 450MHz - Off

PLOT 14 Transient Frequency - 460MHz - Off

PLOT 15 Transient Frequency - 470MHz - Off

PLOT 16 Antenna Conducted Spurious Emissions - 9kHz to 1GHz

Company:	Sepura		Product:	STP9040	
Date:	19/08/2013		Test Eng:	Dave Smith	
Method:	FCC Part 90		Method:		
Limit1:(RED)	-13dBm		Limit2:		
Limit3:			Limit4:		
Black: 450MHz, Limit set at -13 d		Red: 470MHz			
Facility:	Environ			Mode:	Tx
				Modification State:	0
		File:	H37197BF	Analyser:	R9

CF1:Cable_PAD CF2:RFF15_120716

PLOT 17 Antenna Conducted Spurious Emissions - 1GHz to 2GHz

Company:	Sepura		Product:	STP9040	
Date:	19/08/2013		Test Eng:	Dave Smith	
Method:	FCC Part 90		Method:		
Limit1:(RED)	-13dBm		Limit2:		
Limit3:			Limit4:		
Black: 450MHz, Limit set at -13 d		Red: 470MHz			
Facility:	Environ			Mode:	Tx
				Modification State:	0
		File:	H37197B6	Analyser:	R9

PLOT 18 Antenna Conducted Spurious Emissions - 2GHz to 6GHz

Company:	Sepura		Product:	STP9040	
Date:	19/08/2013		Test Eng:	Dave Smith	
Method:	FCC Part 90		Method:		
Limit1:(RED)	-13dBm		Limit2:		
Limit3:			Limit4:		
Black: 450MHz, Limit set at -13 d		Red: 470MHz			
Facility:	Environ			Mode:	Tx
				Modification State:	0
		File:	H37197AF	Analyser:	R9

PLOT 19 Radiated Emissions - Standalone - Tx - 25MHz to 200MHz

Company:	Sepura		Product:	STP9040					
Date:	05/09/2013		Test Eng:	Dave Smith					
Method:	FCC Part 90		Method:						
Limit1:(VIO)	43+10 log(P)@	23m	Limit2:						
Limit3:			Limit4:						
Standalone. Transmit mode. Maximum of horizontal and vertical. Maximum of upright and flat. Black = 450MHz Blue = 460MHz Red = 470MHz Limit is approximate field strength correlation to -13dBm									
Facility:	Anech_2	Height	1.5m	Mode:	1				
Distance	3m	Polarisation	V+H	Modification State:	1				
Angle	0-360	File:	H380545A	Analyser:	R8				

PLOT 20 Radiated Emissions - Standalone - Tx - 200MHz to 500MHz

Company:	Sepura		Product:	STP9040		
Date:	04/09/2013	3	Test Eng:	Dave Smith		
Method:	FCC Part 9	90	Method:			
Limit1:(VIO)	43+10 log(P)@3m	Limit2:			
Limit3:			Limit4:			
Black = 450Ml Blue = 460MH Red = 470MH	Hz z z	ength correlation to	rtical, upright and o -13dBm	nat.		
Facility:	Anech_2	Height	1.5m	Mode:	1	
Distance	3m	Polarisation	V+H	Modification State:	1	
Angle	0-360	File:	H380471F	Analyser:	R8	

PLOT 21 Radiated Emissions - Standalone - Tx - 500MHz to 1GHz

Company:	Sepura		Product:	STP9040		
Date:	04/09/2013	3	Test Eng:	Dave Smith		
Method:	FCC Part 9	90	Method:			
Limit1:(VIO)	43+10 log(P)@3m	Limit2:			
Limit3:			Limit4:			
Black = 450M Blue = 460Mh Red = 470Mh	Hz Iz Iz	horizontal and ve	ertical. Maximum o	f upright and flat.		
Facility:	Anech_2	Height	1.5m	Mode:	1	
Distance	3m	Polarisation	V+H	Modification State:	1	
Angle	0-360	File:	H3804478	Analyser:	R8	

FCC ID: XX6STP9040/XX6STP9240 Test Report Page: 57 of 84

PLOT 22 Radiated Emissions - Standalone - Tx - 1GHz to 2GHz

Company:	Sepura F		Product:	STP9040				
Date:	05/09/2013		Test Eng:	Dave Smith				
Method:	FCC Part 90		Method:					
Limit1:(VIO)	43+10 log(P)@	23m	Limit2:					
Limit3:			Limit4:					
Standalone. Transmit mode. Maximum of horizontal and vertical. Maximum of upright and flat. Black = 450MHz Blue = 460MHz Red = 470MHz Limit is approximate field strength correlation to -13dBm								
Facility:	Anech_2	Height	1.5m	Mode:	1			
Distance	3m	Polarisation	V+H	Modification State:	1			
Angle	0-360	File: I	H38057D9	Analyser:	R8			

FCC ID: XX6STP9040/XX6STP9240 Page: 58 of 84

PLOT 23 Radiated Emissions - Standalone - Tx - 2GHz to 5GHz

Company:	Sepura		Product:	STP9040				
Date:	26/09/2013		Test Eng:	Dave Smith				
Method:	FCC Part 90		Method:					
Limit1:(VIO)	43+10 log(P)	@3m	Limit2:					
Limit3:			Limit4:					
Standalone Transmit mode. Maximum of horizontal and vertical. Maximum of upright and flat. Black = 450MHz Blue = 460MHz Red = 470MHz Limit is approximate field strength correlation to -13dBm								
Facility:	Anech_2	Height	1.5m	Mode:	1			
Distance	3m	Polarisation	V+H	Modification State:	1			
Angle	0-360	File:	H3826509	Analyser:	R9			

PLOT 24 Radiated Emissions - RSM - Tx - 25MHz to 200MHz

Company:	Sepura		Product:	STP9040						
Date:	05/09/2013		Test Eng:	Dave Smith						
Method:	FCC Part 90		Method:							
Limit1:(VIO)	43+10 log(P)@	@3m	Limit2:							
Limit3:			Limit4:							
Transmit mode. Black = 450MHz Blue = 460MHz Red = 470MHz	RSM Transmit mode. Maximum of horizontal and vertical. Maximum of upright and flat. Black = 450MHz Blue = 460MHz									
Facility:	Anech_2	Height	1.5m	Mode:	1					
Distance	3m	Polarisation	V+H	Modification State:	1					
Angle	0-360	File:	H380546B	Analyser:	R8					

Start 200MHz

*RBW 120 kHz

Blue = 460MHz

FCC ID: XX6STP9040/XX6STP9240

Test Report Page: 60 of 84

Stop 500MHz

Sweep 79.94mS (401 pts)

VBW 300 kHz

PLOT 25 Radiated Emissions - RSM - Tx - 200MHz to 500MHz

Company:	Sepura	Product:	STP9040					
Date:	04/09/2013	Test Eng:	Dave Smith					
Method:	FCC Part 90	Method:						
Limit1:(VIO)	43+10 log(P)@3m	Limit2:						
Limit3:		Limit4:						
	Radio with RSM. Transmit mode. Maximum of horizontal and vertical, upright and flat.							

Red = 470MHz Limit is approximate field strength correlation to -13dBm

Facility: Anech_2 Height 1.5m Mode: 1 Distance 3m Polarisation V+H Modification State: 1 Angle 0-360 File: H380470B Analyser: R8

PLOT 26 Radiated Emissions - RSM - Tx - 500MHz to 1GHz

Company:	Sepura	Product:	STP9040					
Date:	04/09/2013	Test Eng:	Dave Smith					
Method:	FCC Part 90	Method:						
Limit1:(VIO)	43+10 log(P)@3m	Limit2:						
Limit3:		Limit4:						
RSM Transmit mode	RSM Transmit mode. Maximum of horizontal and vertical. Maximum of upright and flat.							

Red = 470MHz Limit is approximate field strength correlation to -13dBm

Blue = 460MHz

Facility: Anech_2 Height 1.5m Mode: 1 Distance 3m Polarisation V+H Modification State: 1 0-360 H3804529 Angle File: Analyser: R8

FCC ID: XX6STP9040/XX6STP9240 Test Report Page: 62 of 84

CF1:A8_3m_120807 CF2:CBL059_CBL018_CBL065_CBL060_100806 CF3:RFF15_120716 CF4:PRE10_120627

PLOT 27 Radiated Emissions - RSM - Tx - 1GHz to 2GHz

Company:	Sepura		Product:	STP9040					
Date:	05/09/2013		Test Eng:	Dave Smith					
Method:	FCC Part 90		Method:						
Limit1:(VIO)	43+10 log(P)	@3m	Limit2:						
Limit3:			Limit4:						
Transmit mode. Black = 450MHz Blue = 460MHz Red = 470MHz	RSM Transmit mode. Maximum of horizontal and vertical. Maximum of upright and flat. Black = 450MHz Blue = 460MHz								
Facility:	Anech_2	Height	1.5m	Mode:	1				
Distance	3m	Polarisation	V+H	Modification State:	1				
Angle	0-360	File:	H38057DB	Analyser:	R8				

FCC ID: XX6STP9040/XX6STP9240 Test Report Page: 63 of 84

PLOT 28 Radiated Emissions - RSM - Tx - 2GHz to 5GHz

Company:	Sepura		Product:	STP9040	
Date:	26/09/2013		Test Eng:	Dave Smith	
Method:	FCC Part 90		Method:		
Limit1:(VIO)	43+10 log(P)	@3m	Limit2:		
Limit3:			Limit4:		
Black = 450MH Blue = 460MHz Red = 470MHz Limit is approxi	z mate field strenç	gth correlation to			
Facility:	Anech_2	Height	1.5m	Mode:	1
Distance	3m	Polarisation	V+H	Modification State:	1
Angle	0-360	File:	H38264D5	Analyser:	R9

PLOT 29 Radiated Emissions - Car Kit - Tx - 25MHz to 200MHz

Company:	Sepura		Product:	STP9040		
Date:	04/10/2013	3	Test Eng:	Dave Smith		
Method:	FCC Part 9	90	Method:			
Limit1:(VIO)	43+10 log(P)@3m	Limit2:			
Limit3:			Limit4:			
Black = 450Ml Blue = 460MH Red = 470MH	Hz z z	horizontal and ve				
Facility:	Anech_2	Height	1.5m	Mode:	1	
Distance	3m	Polarisation	V+H	Modification State:	1	
Angle	0-360	File:	H3904808	Analyser:	R8	

Start 200MHz

*RBW 120 kHz

FCC ID: XX6STP9040/XX6STP9240

Test Report Page: 65 of 84

 $\mathtt{Stop}\ \mathtt{500MHz}$

Sweep 79.94mS (401 pts)

VBW 300 kHz

PLOT 30 Radiated Emissions - Car Kit - Tx - 200MHz to 500MHz

Company:	Sepura		Product:	STP9040	
Date:	04/10/2013	i	Test Eng:	Dave Smith	
Method:	FCC Part 9	0	Method:		
Limit1:(VIO)	43+10 log(l	P)@3m	Limit2:		
Limit3:			Limit4:		
Black = 450MH Blue = 460MH Red = 470MHz	lz z z	horizontal and ve			
Facility:	Anech_2	Height	1.5m	Mode:	1
Distance	3m	Polarisation	V+H	Modification State:	1
Angle	0-360	File:	H3904801	Analyser:	R8

PLOT 31 Radiated Emissions - Car Kit - Tx - 500MHz to 1GHz

Company:	Sepura		Product:	STP9040	
Date:	04/10/2013		Test Eng:	Dave Smith	
Method:	FCC Part 90		Method:		
Limit1:(VIO)	43+10 log(P)	@3m	Limit2:		
Limit3:			Limit4:		
Black = 450MHz Blue = 460MHz Red = 470MHz	<u>, </u>	rizontal and vertic			
Facility:	Anech_2	Height	1.5m	Mode:	1
Distance	3m	Polarisation	V+H	Modification State:	1
Angle	0-360	File:	H3904810	Analyser:	R8

FCC ID: XX6STP9040/XX6STP9240 Test Report Page: 67 of 84

PLOT 32 Radiated Emissions - Car Kit - Tx - 1GHz to 2GHz

Company:	Sepura		Product:	STP9040	
Date:	04/10/2013		Test Eng:	Dave Smith	
Method:	FCC Part 90		Method:		
Limit1:(VIO)	43+10 log(P)@	@3m	Limit2:		
Limit3:			Limit4:		
Black = 450MHz Blue = 460MHz Red = 470MHz Limit is approxim	nate field streng	rizontal and vertica	3dBm		
Facility:	Anech_2	Height	1.5m	Mode:	1
Distance	3m	Polarisation	√+H	Modification State:	1
Angle	0-360	File:	H3904820	Analyser:	R8

FCC ID: XX6STP9040/XX6STP9240 Test Report Page: 68 of 84

PLOT 33 Radiated Emissions - Car Kit - Tx - 2GHz to 5GHz

Company:	Sepura		Product:	STP9040	
Date:	30/09/2013		Test Eng:	Dave Smith	
Method:	FCC Part 90		Method:		
Limit1:(VIO)	43+10 log(P)	@3m	Limit2:		
Limit3:			Limit4:		
Black = 450MHz Blue = 460MHz Red = 470MHz Limit is approxi	z mate field streng	orizontal and ver	-13dBm		
Facility:	Anech_2	Height	1.5m	Mode:	1
Distance	3m	Polarisation	V+H	Modification State:	1
Angle	0-360	File:	H38307E5	Analyser:	R9

PLOT 34 Radiated Emissions - Standalone - Rx - 25MHz to 275MHz

Company:	Sepura		Product:	STP9040		
Date:	05/09/2013		Test Eng:	Dave Smith		
Method:	ANSI C63.4		Method:			
Limit1:(VIO)	FCC(B)@3r	n	Limit2:			
Limit3:			Limit4:			
Receive Mode. Black = 450MH Blue = 460MHz Red = 470MHz	z Z	orizontal and ver	tical. Maximum of	upright and flat.		
Facility:	Anech_2	Height	1.5m	Mode:	2	
Distance	3m	Polarisation	V+H	Modification State:	1	
Angle	0-360	File:	H38056CC	Analyser:	R8	

Log 10 dB/

V1

VЗ

PA

Start 250MHz

FCC ID: XX6STP9040/XX6STP9240

 $Stop\ 1000MHz$ *RBW 120 kHz VBW 300 kHz Sweep 119.9mS (401 pts)

PLOT 35 Radiated Emissions - Standalone - Rx - 250MHz to 1GHz

Company:	Sepura		Product:	STP9040		
Date:	05/09/2013		Test Eng:	Dave Smith		
Method:	ANSI C63.4	4	Method:			
Limit1:(VIO)	FCC(B)@3	m	Limit2:			
Limit3:			Limit4:			
Black = 450MH Blue = 460MH Red = 470MHz	łz z	norizontal and ver	rtical. Maximum of ably) 539.3MHz	upright and flat.		
Facility:	Anech_2	Height	1.5m	Mode:	2	
Distance	3m	Polarisation	V+H	Modification State:	1	
Angle	0-360	File:	H3805683	Analyser:	R8	

PLOT 36 Radiated Emissions - Standalone - Rx - 1GHz to 2GHz

Company:	Sepura		Product:	STP9040		
Date:	06/09/2013		Test Eng:	Dave Smith		
Method:	ANSI C63.4		Method:			
Limit1:(VIO)	FCC(B)@3r	n	Limit2:			
Limit3:			Limit4:			
Black = 450Ml Blue = 460MH Red = 470MH	Hz z z		rtical. Maximum of			
Facility:	Anech_2	Height	1.5m	Mode:	2	
Distance	3m	Polarisation	V+H	Modification State:	1	
Angle	0-360	File:	H380644F	Analyser:	R8	

PLOT 37 Radiated Emissions - Standalone - Rx - 2GHz to 5GHz

CF1:A8_3m_120807 CF2:CBL050_110107 CF3:RFF22_120716 CF4:PRE10_120627

Company:	Sepura		Product:	STP9040		
Date:	30/09/2013	3	Test Eng:	Dave Smith		
Method:	ANSI C63.	4	Method:			
Limit1:(VIO)	FCC(B)@1	.5m	Limit2:			
Limit3:			Limit4:			
Black = 450M Blue = 460MH						
Red = 470MH	Z	ertical. Maximum	of upright and flat			
Red = 470MH	Z	ertical. Maximum Height	of upright and flat	Mode:	2	
Red = 470MH Maximum of h	z norizontal and v				2 1	

PLOT 38 Radiated Emissions - RSM - Rx - 25MHz to 275MHz

Company:	Sepura		Product:	STP9040	
Date:	05/09/2013		Test Eng:	Dave Smith	
Method:	ANSI C63.4		Method:		
Limit1:(VIO)	FCC(B)@3m		Limit2:		
Limit3:			Limit4:		
RSM Receive Mode. I Black = 450MHz Blue = 460MHz Red = 470MHz		izontal and verti	cal. Maximum of	upright and flat.	
Facility:	Anech_2	Height	1.5m	Mode:	2
Distance	3m	Polarisation	V+H	Modification State:	1
Angle	0-360	File:	H38055DC	Analyser:	R8

PLOT 39 Radiated Emissions - RSM - Rx - 250MHz to 1GHz

Company:	Sepura		Product:	STP9040		
Date:	05/09/2013		Test Eng:	Dave Smith		
Method:	ANSI C63.4		Method:			
Limit1:(VIO)	FCC(B)@3n	n	Limit2:			
Limit3:			Limit4:			
Black = 450M Blue = 460MH						
Red = 470MH						
		Height	1.5m	Mode:	2	
Red = 470MH	z	Height Polarisation	1.5m V+H	Mode: Modification State:	2	

CF1:A8_3m_120807 CF2:CBL059_CBL018_CBL065_CBL060_100806 CF3:PRE10_120627 CF4:RFF15_120716

PLOT 40 Radiated Emissions - RSM - Rx - 1GHz to 2GHz

Company:	Sepura		Product:	STP9040	
Date:	06/09/2013		Test Eng:	Dave Smith	
Method:	ANSI C63.4		Method:		
Limit1:(VIO)	FCC(B)@3m	า	Limit2:		
Limit3:			Limit4:		
Black = 450MH Blue = 460MHz Red = 470MHz	Iz Z		tical. Maximum of		
Facility:	Anech_2	Height	1.5m	Mode:	2
Distance	3m	Polarisation	V+H	Modification State:	1
Angle	0-360	File:	H3806419	Analyser:	R8

CF1:A8_3m_120807 CF2:CBL050_110107 CF3:RFF22_120716 CF4:PRE10_120627

VBW 3 MHz

Sweep 100mS (401 pts)

PLOT 41 Radiated Emissions - RSM - Rx - 2GHz to 5GHz

RBW 1 MHz

Company:	Sepura		Product:	STP9040		
Date:	01/10/2013	}	Test Eng:	Dave Smith		
Method:	ANSI C63.4	4	Method:			
Limit1:(VIO)	FCC(B)@1	.5m	Limit2:			
Limit3:			Limit4:			
Black = 450M Blue = 460M Red = 470M Maximum of v	łz Iz	izontal, upright ar	nd flat.			
Facility:	Anech_2	Height	1.5m	Mode:	2	
Facility: Distance	Anech_2 1.5m	Height Polarisation	1.5m V+H	Mode: Modification State:	2	

PLOT 42 Radiated Emissions - Car Kit - Rx - 25MHz to 275MHz

Company:	Sepura		Product:	STP9040		
Date:	04/10/2013	}	Test Eng:	Dave Smith		
Method:	ANSI C63.4	4	Method:			
Limit1:(VIO)	FCC(B)@3	m	Limit2:			
Limit3:			Limit4:			
Black = 450Ml Blue = 460MH Red = 470MH	lz					
Facility:	Anech_2	Height	1.5m	Mode:	2	
	_	Polarisation		Madification Ctatas	4	
Distance	3m	Folarisation	V+H	Modification State:	1	

PLOT 43 Radiated Emissions - Car Kit - Rx - 250MHz to 1GHz

Company:	Sepura		Product:	STP9040	
Date:	05/09/2013		Test Eng:	Dave Smith	
Method:	ANSI C63.4		Method:		
Limit1:(VIO)	FCC(B)@3m		Limit2:		
Limit3:			Limit4:		
Black = 450MH Blue = 460MHz Red = 470MHz		rizontal and ver	tical.		
Facility:	Anech_2	Height	1.5m	Mode:	2
Distance	3m	Polarisation	V+H	Modification State:	1
Angle	0-360	File:	H3A224F7	Analyser:	R8

CF1:A8_3m_120807 CF2:CBL059_CBL018_CBL065_CBL060_100806 CF3:PRE10_120627 CF4:RFF15_120716

PLOT 44 Radiated Emissions - Car Kit - Rx - 1GHz to 2GHz

Company:	Sepura		Product:	STP9040	
Date:	04/10/2013		Test Eng:	Dave Smith	
Method:	ANSI C63.4		Method:		
Limit1:(VIO)	FCC(B)@3m		Limit2:		
Limit3:			Limit4:		
Car kit Receive Mode. N Black = 450MHz Blue = 460MHz Red = 470MHz		izontal and vertica	al.		
Facility:	Anech_2	Height	1.5m	Mode:	2
Distance	3m	Polarisation	V+H	Modification State:	1
Angle	0-360	File:	H3904830	Analyser:	R8

PLOT 45 Radiated Emissions - Car Kit - Rx - 2GHz to 5GHz

Company:	Sepura		Product:	STP9040	
Date:	09/09/2013		Test Eng:	Dave Smith	
Method:	ANSI C63.4		Method:		
Limit1:(VIO)	FCC(B)@1.5r	m	Limit2:		
Limit3:			Limit4:		
Carkit - Maxiur Receive Mode Black = 450MHz Blue = 460MHz Red = 470MHz	Z	and Horizontal			
Facility:	Anech_2	Height	1.5m	Mode:	2
Distance	1.5m	Polarisation	V+H	Modification State:	1
Angle	0-360	File:	H3809706	Analyser:	R8

PLOT 46 Radiated Emissions - STP9240 - Rx - 25MHz to 275MHz

Company:	Sepura		Product:	STP9240	
Date:	05/09/2013		Test Eng:	Dave Smith	
Method:	ANSI C63.4		Method:		
Limit1:(VIO)	FCC(B)@3m		Limit2:		
Limit3:			Limit4:		
Mono display Receive Mode. I Blue = 460MHz	Maximum of hor	izontal and vertica	al. Maximum of u	pright and flat.	
Facility:	Anech_2	Height	1.5m	Mode:	2
Distance	3m	Polarisation	V+H	Modification State:	1
Angle	0-360	File:	H38056D3	Analyser:	R8

PLOT 47 Radiated Emissions - STP9240 - Rx - 250MHz to 1GHz

Company:	Sepura		Product:	STP9240	
Date:	05/09/2013		Test Eng:	Dave Smith	
Method:	ANSI C63.4		Method:		
Limit1:(VIO)	FCC(B)@3m		Limit2:		
Limit3:			Limit4:		
Blue = 460MHz		izontal and vertica			
Facility:	Anech_2	Height	1.5m	Mode:	2
Distance	3m	Polarisation	V+H	Modification State:	1
Angle	0-360	File:	H38056E6	Analyser:	R8

PLOT 48 Radiated Emissions - STP9240 - Rx - 1GHz to 2GHz

Date: 06/09/2013 Test Eng: Dave Smith Method: ANSI C63.4 Method: Limit1:(VIO) FCC(B)@3m Limit2: Limit3: Limit4: Mono Display Receive Mode. Maximum of horizontal and vertical. Maximum of upright and flat. Blue = 460MHz Facility: Anech_2 Height 1.5m Mode: 2	Company:
Limit1:(VIO) FCC(B)@3m Limit2: Limit3: Limit4: Mono Display Receive Mode. Maximum of horizontal and vertical. Maximum of upright and flat. Blue = 460MHz	Date:
Limit3: Limit4: Mono Display Receive Mode. Maximum of horizontal and vertical. Maximum of upright and flat. Blue = 460MHz	Method:
Mono Display Receive Mode. Maximum of horizontal and vertical. Maximum of upright and flat. Blue = 460MHz	Limit1:(VIO)
Receive Mode. Maximum of horizontal and vertical. Maximum of upright and flat. Blue = 460MHz	Limit3:
Facility: Anech_2 Height 1.5m Mode: 2	Receive Mode. Blue = 460MHz
	Facility:
Distance 3m Polarisation V+H Modification State: 1	1 1
Angle 0-360 File: H38064A8 Analyser: R8	· · · · · · · · · · · · · · · · · · ·

PLOT 49 Radiated Emissions - STP9240 - Rx - 2GHz to 5GHz

Company:	Sepura		Product:	STP9240	
Date:	01/10/2013		Test Eng:	Dave Smith	
Method:	ANSI C63.4		Method:		
Limit1:(VIO)	FCC(B)@1.5m	า	Limit2:		
Limit3:			Limit4:		
		ntal, upright and fla			
Facility:	Anech_2	Height 1	.5m	Mode:	2
Distance	3m	Polarisation \	/+H	Modification State:	1
Angle	0-360	File: H	13A224B7	Analyser:	R9