Analysis of Coral Growth Lab Report

Philip Kim

March 31, 2021

Corals and Temperature

#	Treatment (°C)	$egin{array}{c} ext{Initial} \ ig(mg/cm^2ig) \end{array}$	$\begin{array}{c c} \mathbf{Final} \\ \left(mg/cm^2\right) \end{array}$	$\begin{array}{c} \textbf{Change} \\ \left(mg/cm^2\right) \end{array}$
1	26	552	563	11
2	26	341	352	11
3	26	461	467	6
4	26	430	437	7
5	26	312	320	8
6	26	364	374	10
7	26	468	479	11
8	26	449	460	11
9	26	398	415	17
10	26	394	401	7
11	26	360	369	9
12	28	517	528	11
13	28	428	443	15
14	28	407	415	8
15	28	441	452	11
16	28	472	488	16
17	28	383	391	8
18	28	466	479	13
19	28	345	354	9
20	28	382	393	11
21	28	494	503	9
22	30	573	585	12
23	30	354	369	15
24	30	532	545	13
25	30	393	410	17
26	30	269	277	8
27	30	517	526	9
28	30	469	484	15
29	30	306	322	16
30	30	431	446	15
31	26-30	306	312	06
32	26-30	372	378	06

#	$oxed{ {f Treatment} \ (^{\circ}{ m C}) }$	$egin{array}{c} ext{Initial} \ ig(mg/cm^2ig) \end{array}$	$\begin{array}{c c} \mathbf{Final} \\ \left(mg/cm^2\right) \end{array}$	$\begin{array}{c} \textbf{Change} \\ \left(mg/cm^2\right) \end{array}$
33	26-30	333	344	11
34	26-30	567	578	11
35	26-30	379	392	13
36	26-30	490	505	15
37	26-30	391	401	10
38	26-30	509	523	14
39	26-30	369	377	08
40	26-30	337	351	14
41	26-30	365	373	08

Sample Sizes (Denoted as N):

$$N_{26^{\circ}\text{C}} = \boxed{11}, \ N_{28^{\circ}\text{C}} = \boxed{9}, \ N_{30^{\circ}\text{C}} = \boxed{8}, \ N_{26\text{-}30^{\circ}\text{C}} = \boxed{11}$$

Average of Change (Denoted as MEAN):

$$\begin{split} \overline{X}_{26^{\circ}\text{C}} &= \frac{X_{1} + \dots + X_{11}}{N_{26^{\circ}\text{C}}}, \\ &= \boxed{9.82} \\ \\ \overline{X}_{28^{\circ}\text{C}} &= \frac{X_{12} + \dots + X_{23}}{N_{28^{\circ}\text{C}}}, \\ &= \boxed{11.10} \end{split}$$

$$\overline{X}_{30^{\circ}\text{C}} = \frac{X_{24} + \dots + X_{32}}{N_{30}^{\circ}\text{C}},$$
$$= \boxed{13.33}$$

$$\begin{split} \overline{X}_{26\text{--}30^{\circ}\text{C}} &= \frac{X_{33}+\dots+X_{41}}{N_{26\text{--}30}^{\circ}\text{C}}, \\ &= \left[10.55\right] \end{split}$$

Standard Deviations (Denoted as SD):

$$\sigma_{26^{\circ}\text{C}} = \sqrt{\frac{\left|X_{1} - \overline{X}_{26-30^{\circ}\text{C}}\right|^{2} + \dots + \left|X_{11} - \overline{X}_{26-30^{\circ}\text{C}}\right|^{2}}{N_{26^{\circ}\text{C}} - 1}},$$

$$= \boxed{3.03}$$

Standard Errors (Denoted as $\pm SE$):

$$\epsilon_{26^{\circ}C} = \frac{\sigma_{26^{\circ}C}}{\sqrt{N_{26^{\circ}C}}},$$
$$= \boxed{0.9127}$$

- 1. What was the mean \pm standard error of coral growth (= change mg/cm2) at each of the four temperature categories?
 - $26^{\circ}\text{C} = 09.82 \ (mg/cm^2) \pm 0.91$
 - $28^{\circ}C = 11.10 \ (mg/cm^2) \pm 0.89$
 - $30^{\circ}\text{C} = 13.33 \ (mg/cm^2) \pm 1.04$
 - $26\text{-}30^{\circ}\text{C} = 10.55 \ (mg/cm^2) \pm 0.98$
- 2. What would happen if global climate change causes the average seawater temperature to increase to 30?

•