Centre No./Index No:	Signature:	
Candidate's Name:		
Name of School:		•••••

P525/3 CHEMISTRY Paper 3 July - August 3 1/4 Hours

ELITE EXAMINATION BUREAU MOCK 2019

Uganda Advanced Certificate of Education

CHEMISTRYPRACTICAL

Paper 3

3Hours 15Minutes

Instructions to the Candidates:

- Answer **all** questions in this paper.
- All answers must be written in the spaces provided only.
- Reference text books are not allowed.
- Mathematical tables and silent non-programmable calculators may be used.
- Candidates are not allowed to start working within the first 15 minutes. This time is for checking the materials and apparatus required.

(Where necessary use C = 12, O = 16, H = 1, R = 122.5)

For examiners use only			
Question 1	Question 2	Question 3	Total

1.	FA1, whi FA2, whi crystals (Solid R v	provided with the folloch is approximately a ch is a solution made NH ₄) ₂ Fe(SO ₄) ₂ .6H ₂ which contains an oxinuric acid solution.	0.02M Potassium oby dissolving 9. to make 250cm	8g of Ammonio	um ferrous sulphate
		equired to standardiz between R and Fe²⁺		t to determine	the mole ratio of the
	In acidic	medium, both R and	Manganate (VII)) ions react wit	h Iron(II) ions
	vol Titrate th Repeat th (i)	ette 20.0 or 25.0cm ³ ume of 1M sulphuric e resultant solution v ne titration until you o Record your resul	acid using a mea vith FA1 until the obtain consistent	asuring cylinde e end point. results	•
	Results				
	Volume o	f pipette used		cm.	(½ marks)
	Final bure	ette reading (cm³)			
	Initial bur	rette reading (cm³)			
	Volume o	f FA1 used (cm ³)			
	(ii)	Volume of FA1 us	sed for calculatin	g average volu	(4½ marks) ume. (½ mark)
	(iii)	Average volume o	of FA1 used		cm ³ . (2 ½ marks)

(a) Calculate the number of moles of **Fe²⁺** ions in **FA2** that reacted. (2marks)

Questions

•••••	Determine the concentration of FA1 in moldm ⁻³ .	(3 ½ marks)
Proced	ure In accurately about 0.2g of R . Dissolve it in a minimum amount	
sulphurion Make the	nd transfer the solution into a 250cm ³ volumetric flask.Add 50cm acid followed by 150cm ³ of FA2 and shake mixture. The solution upto the mark with distilled water and label it FA3 . 25.0 (or 20.0)cm ³ of FA3 into a conical flask and add an equal	
	c acid using a measuring cylinder.	
Saipilaii	e dela using a measuring cylinder.	
·	he resultant solution with FA1 until the end point.	
Titrate to Repeat to i)	he resultant solution with FA1 until the end point. The titration until you obtain consistent results. Record your results in table II below.	
Titrate to Repeat to i) Results	he resultant solution with FA1 until the end point. The titration until you obtain consistent results. Record your results in table II below.	(½ mark)
Titrate to Repeat to i) Results	he resultant solution with FA1 until the end point. The titration until you obtain consistent results. Record your results in table II below.	(½ mark) (½ mark)
Titrate to Repeat to i) Results Ma	the resultant solution with FA1 until the end point. The titration until you obtain consistent results. Record your results in table II below. The ass of weighing bottle + R	
Titrate the Repeat to i) Results Market	the resultant solution with FA1 until the end point. The titration until you obtain consistent results. Record your results in table II below. The ass of weighing bottle + R	(½ mark) (½ mark)
Titrate the Repeat to i) Results Market	the resultant solution with FA1 until the end point. The titration until you obtain consistent results. Record your results in table II below. The ass of weighing bottle + R graph gra	(½ mark) (½ mark)
Titrate to Repeat to i) Results Market Market Volume Table I	the resultant solution with FA1 until the end point. The titration until you obtain consistent results. Record your results in table II below. The ass of weighing bottle + R graph gra	(½ mark) (½ mark)
Titrate to Repeat to i) Results Market Market Volume Table I: Final bui	the resultant solution with FA1 until the end point. The titration until you obtain consistent results. Record your results in table II below. The second your results in table II below.	(½ mark) (½ mark)

	(11)	volumes of FA1 used for calculating average volume.	
		cm ³ .	(½ mark)
	(iii)	Average volume of FA1 used cm ³	(2 ½ marks)
റ	uesti	nns	
•	(a)	Calculate the number of moles of Manganate(VII) ions that reac	(1mark)
	(b)	(i) Number of moles of Iron(II) ions in 250cm ³ of FA3 .	•
	(i) Number of moles of Iron(II)ions that reacted with R . (2m	arks)
	(i	ii) Mole ratioof R to Iron (II) ions. (2 ½	2 marks)

•••••	• • • • • • • • • • • • • • • • • • • •	

2. You are provided with substance **Q** which contains two cations and two anions. You are required to carry out tests below on **Q**to identify the cations and anions in **Q**. Identify any gas(es) evolved.

Record your observations and deductions in the table below.

TESTS	OBSERVATIONS	DEDUCTIONS
(a) Heat two spatula endfuls of Q strongly in a dry test tube until there is no further change.		
(b) To two spatula end-fuls of Q , add about 4cm ³ of distilled water and shake well. Filter the mixture and divide the filtrate into four portions.		
(i) To the first portion, add Lead(II) nitrate solution followed by dilute nitric acid.		
(ii) to the second portion, add Barium nitrate solution followed by dilute nitric acid.		
(iii) To the third portion,		

add 3 drops of acidified potassium permanganate solution.	
(iv) To the fourth portion, add silver nitrate solution followed by excess aqueous ammonia.	
(c) Wash the residue with distilled water and add dilute nitric acid. Warm to dissolve. To the resultant solution add aqueous ammonia dropwise until in excess. Filter the mixture and keep both the filtrate and residue.	
(d) Acidify the filtrate with dilute nitric acid. Divide the ACIDIC solution into three parts.(i) To the first part, add sodium hydroxide solution drowise until in excess.	
(ii) To the second part, add aqueous ammonia until in excess.	
(iii) Use the third part to carry out a test of your own choice to confirm the cation in Q .	
(e) Dissolve the residue	

from (c) above in a minimum volume of dilute nitric acid. Divide the resultant solution into four portions.		
(i) To the first portion, add sodium hydroxide solution dropwise until in excess.		
(ii) To the second portion, add ammonia solution drop-wise until in excess.		
(iii) To the third portion, add 3 drops of dilute hydrochloric acid and heat the mixture. Allow to cool.		
(iv) To the fourth portion, add Potassium chromate(VI) solution followed by excess Sodium hydroxide solution.		
Questions: Identify the (i) Cations in Q	and	······
	and	

3. You are provided with an organic compound **S**.You are required to carry out tests below on **S** and describe the nature of **S**

Record your observation and deductions in the table below.

TESTS	OBSERVATIONS	DEDUCTIONS
(a) Burn a little of S on a spatula end or in a dry porcelain dish.		
(b) To a spatula endful of S add about 5cm ³ of distilled water and shake the mixture. Divide the resultant into four parts		
(i) To the first part, add litmus solution.		
(ii) To the second part, add 3 drops of acidified potassium Manganate(VII) solution		
(iii) To the third part, add Neutral Iron(III) chloride solution.		
(iv) To the fourth part, add sodium carbonate solution.		
(c) To a little of S add about 3cm ³ of ethanol and shake the mixture. Divide the resultant solution in two parts.		
(i) To the first part, add 3 drops of Brady's reagent.		

(ii) To the second part, add 4 drops of concentrated sulphuric acid and heat the mixture. Pour the product in a beaker of cold water.			
d) Describe the nature of S .			

END