Polynomial Functors in Lean4

Sina Hazratpour

April 25, 2025

Prelude

In this chapter we provide several different perspectives on polynomial functors.

As a first introduction, polynomial functors are categorfication of the usual polynomials from algebra. Categorification is the process of finding category-theoretic analogs of set-theoretic concepts by replacing sets with categories, elements by objects, functions with functors, equations between elements by isomorphisms between objects, and equations between functions by natural isomorphisms between functors.

Sets/Types	Categories
N	The category $\mathbf{Set}_{\mathrm{fin}}$ of finite sets and functions
$2 \in \mathbf{N}$	The set $2 = \{0, 1\}$
Equality $1+1=2$	Isomorphism $1 \coprod 1 \cong 2$ in $\mathbf{Set}_{\mathrm{fin}}$
Equality $2 \cdot 3 = 6$	Isomorphism $2 \times 3 \cong 6$ in $\mathbf{Set}_{\mathrm{fin}}$
Addition operation	The disjoint union functor
$+: \mathtt{Nat} imes \mathtt{Nat} o \mathtt{Nat}$	$+: \mathbf{Set}_{\mathrm{fin}} imes \mathbf{Set}_{\mathrm{fin}} o \mathbf{Set}_{\mathrm{fin}}$
Multiplication operation	The product functor
$\cdot: \mathtt{Nat} imes \mathtt{Nat} o \mathtt{Nat}$	$\times: \mathbf{Set}_{\mathrm{fin}} \times \mathbf{Set}_{\mathrm{fin}} \to \mathbf{Set}_{\mathrm{fin}}$
Commutativity of addition	Natural isomorphism
$\forall (m, n : \mathbf{N}), m + n = n + m$	$\mathbf{m} + \mathbf{n} \cong \mathbf{n} + \mathbf{m} \text{ in } \mathbf{Set}_{\mathrm{fin}}$
Commutativity of multiplication	Natural isomorphism
$\forall (m, n : \mathbf{N}), m \cdot n = n \cdot m$	$\mathbf{m} \times \mathbf{n} \cong \mathbf{n} \times \mathbf{m} \text{ in } \mathbf{Set}_{\mathrm{fin}}$
Associativity of addition	Natural isomorphism
$\forall (m, n, k : \mathbf{N}), m + (n+k) = (m+n) + k$	$\mathbf{m} + (\mathbf{n} + \mathbf{k}) \cong (\mathbf{m} + \mathbf{n}) + \mathbf{k} \text{ in } \mathbf{Set}_{\mathrm{fin}}$
Associativity of multiplication	Natural isomorphism
$\forall (m, n, k : \mathbf{N}), m \cdot (n \cdot k) = (m \cdot n) \cdot k$	$\mathbf{m}\times(\mathbf{n}\times\mathbf{k})\cong(\mathbf{m}\times\mathbf{n})\times\mathbf{k}\text{ in }\mathbf{Set}_{\mathrm{fin}}$
i:	:

In fact, N is a commutative semiring; it admits two monoid structure and can be

seen as an additive commutative monoid $(\mathbf{N},+,0)$ and a multiplicative commutative monoid $(\mathbf{N},\cdot,1)$. The two operations are related by the distributive law $m\cdot(n+k)=m\cdot n+m\cdot k$. One category-level higher, $\mathbf{Set}_{\mathrm{fin}}$ can be seen as a commutative rigcategory, that is a category with two monoidal structures, one for the product and one for the coproduct. The two monoidal structures are related by the distributive law $X\times (Y+Z)\cong (X\times Y)+(X\times Z)$. Iterating this process, we can climb the ladder of n-categories: The rig-categories are objects of a 2-category where 1-morphisms are monoidal functors and 2-morphisms are monoidal natural transformations.

Recall that a polynomial is a finite sum of monomials, where each monomial is a product of variables raised to some non-negative integer powers. A univariate polynomial is usually writted down as a formal sum

$$\sum_{i=0}^{n-1} a_i x^i \tag{0.0.1}$$

where x is the variable, a_i are coefficients in some ring R. To have a unique representation, we sort the monomials by their exponent, the terms of lower exponent come first, so although $x + x^2$ and $x^2 + x$ are the same polynomial, we choose the first one as the canonical representation.

Another way to think about this formal sum is to see the exponent i as a function of the coefficients: In this view, a polynomial is simply a function $R \to \mathbf{N}$ with finite support. So we can write 0.0.1 as

$$\sum_{c \in I} c \, x^{i(c)} \tag{0.0.2}$$

where I is a finite support. This is how usual polynomials are defined in the Lean4's mathematical library mathlib.

```
\label{eq:structure} \textbf{Structure Polynomial } (R: \textbf{Type*}) \text{ [Semiring R] where ofFinsupp } :: \\ \textbf{toFinsupp } : \text{AddMonoidAlgebra R Nat}
```

where AddMonoidAlgebra R Nat is defined as the type R \rightarrow Nat of functions from R to N with finite support.

These two views are equivalent. For simplicity, let's restrict ourselves to the case of polynomials with coefficients in $\mathbf N$ so that when expanded all the coefficients become 1 and instead we will have multiplicities of the monomials. So we can write the polynomial $x+3*x^2$ as $x+x^2+x^2+x^2$. In this presentation we encode a polynomial by its degree (a natural number n) and a finite list of multiplicities $m_0, m_1, \ldots, m_{n-1}$. This is just a function $m: \mathbf N \to \mathbf N$ with finite support.

A multivariate polynomial is a polynomial in several variables, say x_1, \dots, x_n .

They are usually denoted by a sum of the form

$$\sum_{i \in I} \prod_{j \in J} a_{ij} x_j^{e_{ij}}$$

where I and J are finite sets, a_{ij} are coefficients, and e_{ij} are non-negative integers.

Locally Cartesian Closed Categories

Definition 1.0.1 (exponentiable morphism). Suppose \mathbb{C} is a category with pullbacks. A morphism $f \colon A \to B$ in \mathbb{C} is **exponentiable** if the pullback functor $f^* \colon \mathbb{C}/B \to \mathbb{C}/A$ has a right adjoint f_* . Since f^* always has a left adjoint $f_!$, given by post-composition with f, an exponentiable morphism f gives rise to an adjoint triple

$$\begin{array}{c|c}
\mathbb{C}/B \\
f_! \left(\begin{array}{c} \uparrow \\ + f^* + \\ \downarrow \end{array} \right) f_* \\
\mathbb{C}/A
\end{array}$$

Definition 1.0.2 (pushforward functor). Let $f: A \to B$ be an exponentiable morphism in a category $\mathbb C$ with pullbacks. We call the right adjoint f_* of the pullback functor f^* the **pushforward** functor along f.

Theorem 1.0.3 (exponentiable morphisms are exponentiable objects of the slices). A morphism $f: A \to B$ in a category $\mathbb C$ with pullbacks is exponentiable if and only if it is an exponentiable object, regarded as an object of the slice $\mathbb C/B$.

Definition 1.0.4 (Locally cartesian closed categories). A category with pullbacks is **locally cartesian closed** if is a category $\mathbb C$ with a terminal object 1 and with all slices $\mathbb C/A$ cartesian closed.

Univaiate Polynomial Functors

In this section we develop some of the definitions and lemmas related to polynomial endofunctors that we will use in the rest of the notes.

Definition 2.0.1 (Polynomial endofunctor). Let $\mathbb C$ be a locally Cartesian closed category (in our case, presheaves on the category of contexts). This means for each morphism $t:B\to A$ we have an adjoint triple

$$\begin{array}{c|c} \mathbb{C}/B \\ t_! \left(\begin{array}{c} \uparrow \\ + \ t^* \end{array} \right) t_* \\ \mathbb{C}/A \end{array}$$

where t^* is pullback, and $t_!$ is composition with t.

Let $t:B\to A$ be a morphism in $\mathbb C.$ Then define $P_t:\mathbb C\to\mathbb C$ be the composition

$$P_t := A_! \circ t_* \circ B^*$$

$$\mathbb{C} \xrightarrow{\ B^* \ } \mathbb{C}/B \xrightarrow{\ t_* \ } \mathbb{C}/A \xrightarrow{\ A_! \ } \mathbb{C}$$

Multivariate Polynomial Functors

Let \mathbb{C} be category with pullbacks and terminal object.

Definition 3.0.1 (multivariable polynomial functor). A **polynomial** in \mathbb{C} from I to O is a triple (i, p, o) where i, p and o are morphisms in \mathbb{C} forming the diagram

$$I \stackrel{i}{\leftarrow} E \stackrel{p}{\rightarrow} B \stackrel{o}{\rightarrow} J.$$

The object I is the object of input variables and the object O is the object of output variables. The morphism p encodes the arities/exponents.

Definition 3.0.2 (extension of polynomial functors). The **extension** of a polynomial $I \stackrel{i}{\leftarrow} B \stackrel{p}{\rightarrow} A \stackrel{o}{\rightarrow} J$ is the functor $P = o_! f_* i^* \colon \mathbb{C}/I \to \mathbb{C}/O$. Internally, we can define P by

$$\mathrm{P}\left(X_{i} \mid i \in I\right) = \left(\sum_{b \in B_{j}} \prod_{e \in E_{b}} X_{s(b)} \;\middle|\; j \in J\right)$$

A **polynomial functor** is a functor that is naturally isomorphic to the extension of a polynomial.