Technologie des Asservissements

Edouard Laroche (laroche@lsiit.u-strasbg.fr)
Bernard Bayle (bernard@eavr.u-strasbg.fr)
Jacques Gangloff (jacques@eavr.u-strasbg.fr)
http://eavr.u-strasbg.fr/perso/edouard/Student/

Université Louis Pasteur, ENSPS Option ISAV Master ISTI-AR

Objectifs

- Connaître les différents systèmes électriques d'actionnement (moteur + électronique de puissance)
- Connaître les différents types de commande d'actionneur électrique.
- Être capable de choisir et de mettre en œuvre une solution moteur + variateur

2

Bibliographie 1

- Electrotechnique industrielle, Guy Séguier et Francis Notelet, Tech et Doc, 1994
- L'Electronique de puissance, Guy Séguier, Dunod, 1990
- Modélisation et commande de la machine asynchrone, J.P. Caron et J.P. Hautier, Technip,
- Control of Electrical Drives, W. Leonard, Springer-Verlag, 1996

3

Bibliographie 2

- Vector control of AC machines, Peter Vas, Oxford university press, 1990
- Commande des machines à vitesse variable, Techniques de l'ingénieur, vol D3.III, n°3611, 1996
- Actionneurs électriques, Guy Grellet et Guy Clerc, Eyrolles, 1997
- Modélisation contrôle vectoriel et DTC, sous la direction de C. Canudas de Wit, Hermes, 2000

Plan

- 1. Introduction à l'Électrotechnique (E.L.)
- 2. Les actionneurs électriques (E.L.)
- 3. Les convertisseurs statiques (E.L.)
- 4. Les variateurs (B.B.)
- 5. Architecture de la commande (J.G.)

ch 1. Introduction à l'électrotechnique

- Exemple d'ensemble moteur + convertisseur
- Grandeurs électriques
- Lois des circuits électriques
- Lois de la magnétostatique

1.1. Les chaînes d'alimentation des moteurs (1)

• moteur à courant continu : redresseur, filtre et hacheur

Alimentation des moteurs (2)

• moteurs à courant alternatif (synchrone et asynchrone) : redresseur, filtre et onduleur

8

1.2. Lois des circuits électriques

- · éléments de base
- · conventions
- · puissance
- · régime sinusoïdal
- régime alternatif non sinusoïdal, harmoniques
- · systèmes triphasés équilibrés
- · systèmes triphasés déséquilibrés

Éléments de base de l'électricité

- Source de tension continue: v(t)=E
- Source de tension sinusoïdale: $v(t)=E\sqrt{2\cos(\omega t)}$
- Source de courant continu: i(t)=I
- Source de courant alternatif: $i(t)=I\sqrt{2\cos(\omega t-\delta)}$
- Résistance (Ohm, Ω): v(t)=Ri(t)
- Inductance (Henry, H): v(t)=Ldi(t)/dt
- Condensateur (Farad, F): i(t)=Cdv(t)/dt

..

Loi des nœuds, loi des mailles

Convention des dipôles électriques

convention récepteur: on compte la puissance absorbée par le dipôle

convention générateur: on compte la puissance fournie par le dipôle

Valeur moyenne, valeur efficace

- valeur moyenne: $\langle v(t) \rangle = \frac{1}{T} \int_{T} v(t) dt$
- valeur efficace: $V = \sqrt{\langle v^2(t) \rangle} = \sqrt{\frac{1}{T} \int_T v^2(t) dt}$
- définition: un signal périodique est alternatif si sa valeur moyenne est nulle

13

Puissance électrique

- puissance instantanée: p(t)=v(t)i(t), (Watt, W)
- puissance active = puissance moyenne: $P = \langle p(t) \rangle$
- puissance apparente: *S=VI* (produit des valeurs efficaces, VA)
- facteur de puissance $F_p = P/S$

14

Régime sinusoïdal: grandeurs de Fresnel

$$v(t) = V\sqrt{2}\cos(\omega t + \alpha) \to \underline{V} = V\exp(j\alpha)$$
$$i(t) = I\sqrt{2}\cos(\omega t + \beta) \to \underline{I} = I\exp(j\beta)$$

Puissance en régime sinusoïdal

$$v(t) = V\sqrt{2}\cos(\omega t)$$

$$i(t) = I\sqrt{2}\cos(\omega t - \varphi)$$

$$P = VI\cos(\varphi)$$

$$Q = VI\sin(\varphi)$$

$$S = VI$$

$$S^{2} = P^{2} + Q^{2}$$
puissance réactive (var)

16

Impédance et puissance complexes: définitions

• dipôle passif: $\underline{V} = \underline{Z} \underline{I}$

Impédance et puissance complexes: calculs

$$\underline{S} = I^{2} \underline{Z} = \frac{V^{2}}{\underline{Z}^{*}}$$

$$P = I^{2} \operatorname{Re}(\underline{Z}) = V^{2} \operatorname{Re}\left(\frac{1}{\underline{Z}^{*}}\right)$$

$$Q = I^{2} \operatorname{Im}(\underline{Z}) = V^{2} \operatorname{Im}\left(\frac{1}{\underline{Z}^{*}}\right)$$

$$S = I^{2} |\underline{Z}| = \frac{V^{2}}{|Z|}$$

Admittance et puissance complexes: calculs

complexes: calculs
$$\underline{I} = \underline{Y}\underline{U}$$

$$\underline{S} = U^{2}\underline{Y}^{*} = \frac{I^{2}}{\underline{Y}}$$

$$P = V^{2} \operatorname{Re}(\underline{Y}) = I^{2} \operatorname{Re}\left(\frac{1}{\underline{Y}}\right)$$

$$Q = -V^{2} \operatorname{Im}(\underline{Y}) = I^{2} \operatorname{Im}\left(\frac{1}{\underline{Y}}\right)$$

$$S = V^{2}|\underline{Y}| = \frac{I^{2}}{|\underline{Y}|}$$
19

Signal alternatif non sinusoïdal

$$x(t) = \sum_{k} X_{k} \sqrt{2} \cos(k\omega t + \alpha_{k})$$
 signal périodique de période $2\pi/\omega$
$$x_{1}(t) = X_{1} \sqrt{2} \cos(\omega t + \alpha_{1})$$
 fondamental
$$d = \sqrt{\sum_{k=2}^{\infty} X_{k}^{2}}$$
 Le taux de distorsion d est le rapport des valeurs efficaces de la partie déformante du signal et du signal total

Régime périodique alternatif: tension alternative

$$v(t) = V\sqrt{2}\cos(\omega t) \qquad P = VI_1\cos(\varphi_1)$$

$$i(t) = \sum_k I_k \sqrt{2}\cos(k\omega t - \varphi_k) \quad Q = VI_1\sin(\varphi_1)$$

$$I^2 = \sum_k I_k^2 \qquad S = VI = V\sqrt{\sum_k I_k^2}$$

$$S^2 = P^2 + Q^2 + D^2$$

$$\text{puissance déformante (VA)} \qquad D = V\sqrt{\sum_{k=2}^{\infty} I_k^2}$$

Régime périodique alternatif:

$$v(t) = \sum_{k} V_{k} \sqrt{2} \cos(k\omega t + \alpha_{k})$$

$$i(t) = \sum_{k} I_{k} \sqrt{2} \cos(k\omega t + \alpha_{k} - \varphi_{k})$$

$$P_{1} = V_{1}I_{1} \cos(\varphi_{1})$$

$$P = \sum_{k} V_{k}I_{k} \cos(\varphi_{k})$$

$$Q_{1} = V_{1}I_{1} \sin(\varphi_{1})$$

$$Q = \sum_{k} V_{k}I_{k} \sin(\varphi_{k})$$

$$S = VI = \sqrt{\sum_{k} V_{k}^{2}} \sqrt{\sum_{k} I_{k}^{2}}$$
22

Système triphasé équilibré 1

 système triphasé équilibré direct (de tensions sinusoïdales):

Système triphasé équilibré 2

• système triphasé équilibré **inverse** (de tensions sinusoïdales):

Système triphasé équilibré 3 • système triphasé équilibré homopolaire (de tensions sinusoïdales): $\begin{bmatrix} v_1(t) = V\sqrt{2}\cos(\omega t + \alpha) \\ v_2(t) = V\sqrt{2}\cos(\omega t + \alpha) \\ v_3(t) = V\sqrt{2}\cos(\omega t + \alpha) \end{bmatrix}$ $\underbrace{\begin{bmatrix}v_1,v_2,v_3\\v_3\end{bmatrix} = \begin{bmatrix}v_1,\underline{v_1},\underline{v_1}\end{bmatrix}}_{\frac{V_1}{V_2}}$ $\underbrace{\begin{bmatrix}v_1,\underline{v_2},v_3\\v_3\end{bmatrix}}_{25} = \underbrace{\begin{bmatrix}v_1,\underline{v_1},\underline{v_1}\end{bmatrix}}_{25}$

1.3. Lois de la magnétostatique

- · Lois de Maxwell
- Théorème d'Ampère
- Conservation du flux magnétique
- Lois de comportement des matériaux
- Modélisation des bobines à noyau de fer et des transformateurs
- Production de couple

Électrocinétique 2

• <u>Théorème d'Ampère</u> : l'intégrale du champ magnétisant le long d'un contour fermé est égal au courant total traversant la surface définie par le contour

$$\oint_C \vec{H} \, \vec{dl} = \iint_S \vec{J} \, \vec{dS}$$

• Sens du champ: règle de la main droite

37

Électrocinétique 3

- Flux Ψ (Wb) $\Psi = \iint_{S} \vec{B} \, d\vec{S}$
- Conservation du flux: $\Psi_1 = \Psi_2$

38

Électrocinétique 4

- <u>Loi de Lenz</u>: la variation du flux donne lieu à une fem qui tend à s'opposer à la cause des variations
- Loi de Faraday: force électromotrice (V)

$$e = -\frac{d\Psi}{dt}$$

39

Loi de comportement magnétique des matériaux (caractéristique)

- Vide: $\vec{B} = \mu_0 \vec{H}$ $\mu_0 = 4\pi 10^{-7}$ H/m: perméabilité du vide
- Matériau magnétique linéaire: $\vec{B} = \mu \vec{H}$ avec $\mu = \mu_0 \mu_r > \mu_0$ μ_r : perméabilité relative

 $(\mu_r > 1, \text{ ex: } \mu_r \cong 10000 \text{ pour un 'bon' matériau}$ magnétique)

40

Loi de comportement 2

 Matériau magnétique doux : tôles utilisées pour réaliser les circuits magnétiques (transformateurs et moteurs)

Loi de comportement 3

- Matériau magnétique dur : aimants permanents (excitation des MCC et MS de petites puissances)
- $B = \mu_0(H_c + H) = M + \mu_0 H$

Bobine à noyau de fer

- circuit magnétique homogène composé d'un matériau magnétique linéaire de section uniforme S, de longueur l avec μ_r>>1
- circuit électrique composé de *n* spires enroulées autour du circuit magnétique

43

Bobine à noyau de fer 2

- Pour un courant positif, déterminez le sens et l'amplitude du champ magnétisant
- Déterminez le flux vu du circuit électrique
- Déterminez l'inductance L de la bobine
- Donnez l'équation différentielle liant v(t) et i(t)

44

Méthode de résolution

- Théorème d'Ampère $\rightarrow H$
- Loi de comportement $\rightarrow B$
- Intégration sur la surface $\rightarrow \Phi$ (flux dans le matériau)
- Multiplication par $n \to \varphi$ (flux vu par la bobine)
- Loi de Faraday \rightarrow fem
- Prise en compte de la résistance et du flux de fuite → équation de détermination de la tension

45

Loi d'Hopkinson F=R\psi \quad \text{flux (Wb)} \\ force magnétomotrice = ni (A.tr) $R = \int \frac{1}{\mu} \frac{dl}{S}$ $R = \frac{l}{\mu S}$ dans le cas d'une section S et d'une perméabilité μ uniformes $L = \frac{n^2}{R}$

Transformateur 1

- circuit magnétique (μ_r) de section S et de longueur l
- circuit électrique primaire de n₁ spires de résistance R₁; circuit électrique secondaire de n₂ spires de résistance R₂;

17

Transformateur 2

- On suppose les circuits électriques primaire et secondaire respectivement parcourus par les courants i₁ et i₂ positifs
- Déterminez l'amplitude du champ magnétisant
- Déterminez le flux vu des circuits électriques primaires et secondaires
- Déterminez les inductances propres L₁ et L₂ du primaire et du secondaire ainsi que la mutuelle inductance M
- En tenant compte des chutes de tensions ohmiques, donnez les équations différentielles liant u₁(t), u₂(t), i₁(t) et i₂(t)

Bobine avec entrefer 1

- circuit magnétique homogène composé de matériau magnétique linéaire de section uniforme S, de longueur l avec μ_r>>1
- le circuit est interrompu sur une longueur e << l
- circuit électrique composé de *n* spires enroulées autour du circuit magnétique

49

Bobine avec entrefer 2

- Donnez l'expression de l'inductance
- Généralement, on néglige la réluctance du fer devant celle de l'entrefer

50

Circuit magnétique avec aimant

- circuit magnétique composé d'un matériau magnétique linéaire de section uniforme S, de longueur l_f avec μ_r>>1 et d'un aimant de même surface et de longueur l_a produisant un champ à vide M (T)
- Calculez le flux traversant le circuit magnétique

Résistance du circuit électrique

Fuites du circuit magnétique

 Une partie du flux qui traverse le primaire n'arrive pas au secondaire mais se boucle sur lui-même

$$\psi_1 = \psi_{f1} + \psi_{12} = l_{f1}i_1 + n_1\Psi_m$$

$$\psi_2 = \psi_{f2} + \psi_{21} = l_{f2}i_2 + n_2\Psi_m$$

53

Pertes dans les matériaux magnétiques

- Pertes par hystérésis $\propto \hat{B}^2 \omega$
- Pertes par courant de Foucault ∝ B²ω²
 → feuilletage des circuits magnétiques

7 learnetage des circuits magnetiques

Système électro-mécanique

- La partie électrique reçoit la puissance p=v.i
- La partie mécanique fournit la puissance Ω.C
- La partie magnétique couple les parties électriques et mécaniques et stocke une partie de l'énergie

Détermination du couple (1)

· Bilan d'énergie

$$\delta W_e = dW_{mag} + \delta W_{m\acute{e}ca} \qquad \qquad \delta W_e = v \cdot i \cdot dt = i \cdot d\phi$$

$$\delta W_{m\acute{e}ca} = C \cdot d\theta$$

$$dW_{mag} = i \cdot d\varphi - Cd\theta$$

$$= \frac{\partial W_{mag}}{\partial \varphi} \bigg|_{\theta = cste} \cdot d\varphi + \frac{\partial W_{mag}}{\partial \theta} \bigg|_{\varphi = cste} \cdot d\theta \implies \begin{cases} \frac{\partial W_{mag}}{\partial \varphi} \bigg|_{\theta = cste} = i \\ C = -\frac{\partial W_{mag}}{\partial \theta} \bigg|_{\varphi = cste} \end{cases}$$

Détermination du couple (2)

• Énergie magnétique – coénergie magnétique

$$W_{mag} = \int_{0}^{\Phi} i \cdot d\Phi$$

$$\widetilde{W}_{mag} = \int_{0}^{I} \varphi \cdot di$$

$$dW_{mag} + d\widetilde{W}_{mag} = i \cdot d\Phi + \varphi \cdot di$$

$$W_{mag} + \widetilde{W}_{mag} = i \cdot \Phi$$

$$d\widetilde{W}_{mag} = \varphi \cdot di + Cd\theta$$

$$= \frac{\partial \widetilde{W}_{mag}}{\partial \theta} - di + \frac{\partial \widetilde{W}_{mag}}{\partial \theta} - d\theta \Rightarrow C = \frac{\partial \widetilde{W}_{mag}}{\partial \theta}$$

$$= \frac{\partial \widetilde{W}_{mag}}{\partial \theta} - di + \frac{\partial \widetilde{W}_{mag}}{\partial \theta} - d\theta$$

Détermination du couple (3)

- Cas linéaire (non saturé) : $C = \frac{1}{2} \frac{dL}{d\theta} i^2$
- Cas linéaire multivariable:

$$C = \frac{1}{2} \sum_{k=1}^{n} \sum_{l=1}^{n} \frac{dL_{kl}}{d\theta} i_{k} i_{l} = \frac{1}{2} \mathbf{i}^{\mathrm{T}} \frac{dL}{d\theta} \mathbf{i}$$
$$\mathbf{i} = \begin{bmatrix} i_{1} \\ \vdots \\ i_{n} \end{bmatrix}, \quad \mathbf{L} = \begin{bmatrix} L_{11} & \cdots & L_{1n} \\ \vdots & & \vdots \\ L_{n1} & \cdots & L_{nn} \end{bmatrix}$$

ch 2. Les convertisseurs statiques

- 4.1. Les composants (interrupteurs)
- 4.2. Les redresseurs à Diodes (rectifier)
- 4.3. Les hacheurs (chopper)
- 4.4. L'onduleur (inverter)

2.1. Les composants de l'électronique de puissance

- · Diode
- Thyristor
- · Transistor, Thyristor GTO
- Transistor et Diode en antiparallèle
- · Plages de tension et courant

- interrupteur passif monodirectionnel en courant et en tension
- condition de mise en conduction: $v_D \ge 0$
- condition de blocage: i_D≤0
- 2 technologies: diodes de redressement (50 Hz) et diodes rapides (diodes shotky) pour hacheurs et onduleurs

 $\begin{array}{c|c} & \text{Thyristor} \\ & & \\ \downarrow^{v_T} & & \\ \downarrow^{i_T} & & \\ \end{array}$

- diode commandable à la mise en conduction
- interrupteur passif monodirectionnel en courant et bidirectionnel en tension
- condition de mise en conduction: $v_T \ge 0$ et un courant dans la gachette
- condition de blocage: i_T≤0

62

Transistor et thyristor GTO

- interrupteur passif monodirectionnel en courant et bidirectionnel en tension
- commandable à la mise en conduction et au blocage
- condition de mise en conduction: $v_T \ge 0$ et un courant dans la gachette
- condition de blocage: $i_T \le 0$
- techno: bipolaire, mosfet, IGBT, GTO

Association transistor et diode

- interrupteur bidirectionnel en courant
- commandable à la mise en conduction et au blocage dans le sens $i_T > 0$
- mise en conduction et blocage automatiques dans le sens $i_T < 0$

Gammes d'utilisation

innovation

prix

limite technologique à un instant donné

10 kHz

10 kHz

10 kW

100 kW

100 kW

1 MW

2.2. Les redresseurs à Diodes

- · Redresseur monophasé
- · Conduction discontinue
- Redresseur triphasé
- · Modélisation fine

Redresseur monophasé $\bullet \text{ Structure}$ \bullet

Monophasé (3) : Étude et modélisation

- hypothèse : Conduction continue $(i_2 > 0)$
- Cas T1 et T4 passants, T2 et T3 bloqués

$$- v_2 = v_1$$
, $i_1 = i_2$

- condition : $v_1 > 0$
- Cas T1 et T4 bloqués, T2 et T3 passants

$$- \mathbf{v}_2 = -\mathbf{v}_1$$
, $\mathbf{i}_1 = -\mathbf{i}_2$

- condition : $v_1 < 0$

69

Conduction discontinue

- blocage de toutes les diodes si $i_2 < 0$,
- alors
 - le circuit amont est coupé du circuit aval
 - $-i_1 = i_2 = 0, v_2 = v_3,$
- Fin de la séquence de bloquage si $v_{2th} > v_2$ où
 - $-\mathbf{v}_{2\text{th}} = |\mathbf{v}_1|$ est la tension que délivrerait le redresseur seul
 - $-v_2 = v_3$ est imposé par le circuit aval.

Le redresseur triphasé

Le redresseur triphasé : formes d'ondes

2.3. Le Hacheur

- Structure
- · Formes d'onde
- Commande

Hacheur 4Q: formes d'ondes (1)

- Commande alternée: sur une période T, T₁ et T₄ sont mis en conduction pendant αT (T₂ et T₃ sont alors ouverts); T₂ et T₃ sont mis en conduction pendant $(1-\alpha)T(T_1 \text{ et } T_4 \text{ sont alors ouverts});$
- α est appelé rapport-cyclique (0≤α≤1)
- des temps morts sont appliqués à la mise en conduction afin d'éviter un court-circuit de la source à travers un bras de pont.

Hacheur 1Q: modèle

$$v_2 = C \cdot v_1$$
 $i_1 = C \cdot i_2$
 $\langle C \rangle = \alpha$
 v_1
 v_2
 v_3
 v_4
Hacheur
 v_2
 v_4
 v_4

- C : signal de commutation
 - C = 1 : le transistor conduit $(v_2 = v_1; i_1 = i_2)$
 - C = 0: le transistor est bloqué $(v_2 = 0 ; i_1 = 0)$

Hacheur 4Q: modèle

$$v_2 = (2C-1) \cdot v_1$$

 $i_1 = (2C-1) \cdot i_2$ $\langle C \rangle = \alpha$

- C : signal de commutation
 - C = 1 : le transistor conduit $(v_2 = v_1; i_1 = i_2)$
 - C = 0: le transistor est bloqué $(v_2 = -v_1; i_1 = -i_2)$

Hacheur 4Q: formes d'ondes (2)

charge RL; α =0,7; f_H =10 kHz

Hacheurs: commande

- Hacheur 1Q $(v_2 \in \{v_1, 0\})$ valeur de référence $\langle v_2 \rangle_T = \alpha v_1 \Rightarrow \alpha = \frac{v_2}{v_1}$ valeur estimée
- Hacheur 4Q $(v_2 \in \{v_1, -v_1\})$ $\langle v_2 \rangle_T = (2\alpha 1) \cdot v_1 \Rightarrow \alpha = \frac{1}{2} \left(1 + \frac{v_2^*}{v_1}\right)$
- Limiter de α entre 0 et 1 (ou ϵ et 1- ϵ ; ϵ = qque %)

2.4. L'onduleur

- Structures
- onduleur monophasé : structure et formes d'ondes
- onduleur triphasé : structure et formes d'ondes

80

L'onduleur : structures

Onduleur monophasé: modèle

· Idem au hacheur 4Q

32

L'onduleur monophasé : commande

Comme pour le hacheur 4Q, on a:

$$\langle v_2 \rangle_T = (2\alpha - 1) \cdot v_1$$

Pour réaliser une tension v^* quelconque, il suffit de choisir:

$$\alpha = \frac{1}{2} \left(1 + \frac{v^*}{v_1} \right)$$

avec:

$$v^* = V\sqrt{2}\cos(\omega t)$$

92

L'onduleur monophasé : formes d'ondes

charge RL; $f_H = 1 \text{ kHz}$; V = 230 V

L'onduleur triphasé : modèle (1)

$$v_{1} = 0$$
Onduleur
$$v_{a} = \widetilde{v}_{a} - v_{0}$$

$$v_{b} = \widetilde{v}_{b} - v_{0}$$

$$v_{c} = \widetilde{v}_{c} - v_{0}$$
Neutre non-connecté $\Rightarrow i_{a} + i_{b} + i_{c} = 0$

$$v_{a} = Ri_{a} + L \frac{di_{a}}{dt}$$
Charge équilibrée :
$$v_{b} = Ri_{b} + L \frac{di_{c}}{dt} \Rightarrow v_{a} + v_{b} + v_{c} = 0$$

$$v_{c} = Ri_{c} + L \frac{di_{c}}{dt} \Rightarrow v_{0} = \frac{1}{3}(C_{a} + C_{b} + C_{c}) \cdot v_{1}$$
85

ch. 3. Les actionneurs électriques

- Généralités
- Moteur à courant continu
- Moteur synchrone
- · Moteur asynchrone
- Autres moteurs : MRV, pas-à-pas et piézo-électrique

91

3.1. Généralités

- Nomenclature
- · Technologies
- · Terminologie
- · Principe général

92

Nomenclature

- Type de mouvement: linéaire / rotatif
- Type d'Alimentation: courant continu / courant alternatif
- Dynamique: vitesse constante / vitesse variable

93

Technologies des actionneurs

- Alimentation à courant continu (DC motor)
 - moteur à courant continu
- Alimentation à courant alternatif (AC motor)
 - moteur synchrone (DC brushless)
 - moteur asynchrone (induction motor)
- Universel
 - moteur à courant continu à excitation série
- Autres types
 - moteur pas-à-pas (step motor)
 - moteur à réluctance variable (MRV)
 - moteur piézo-électrique

Terminologie

- Stator : partie statique
- Rotor : partie mobile
- Entrefer : interface entre le stator et le rotor généralement occupée par de l'air
- machine = moteur ou générateur (réversibilité)

95

Principe général

- Le stator produit un champ à 2p pôles de la forme : $B_s(\xi) = B_s^{\text{max}} \cos(p\xi \alpha_s)$
- Le stator produit un champ à 2p pôles de la forme : $B_r(\xi) = B_r^{\text{max}} \cos(p\xi \alpha_r)$
- L'interaction entre les deux donne un couple de la forme $C = C^{\text{max}} \sin(\alpha_s \alpha_r)$
- On cherche à imposer $\alpha_s = \alpha_r + \frac{\pi}{2}$

3.2. Le moteur à courant continu

- Principe
- Modélisation

97

Principe

- Stator: champ d'excitation fixe
- Rotor : champ induit fixe grâce au collecteur

98

MCC: technologies

- excitation (stator): matériau magnétique (fer) +
 - aimants
 - bobinage
 - · excitation indépendante
 - excitation série (en série avec l'induit)
 - excitation parallèle (en parallèle avec l'induit)
- induit (rotor): bobinage
 - avec fer (cas classique)
 - sans fer (moteurs spéciaux à faible inertie)

99

MCC à excitation séparée : équations

 $E\left(\mathbf{V}\right):\text{fem };\Omega\left(\text{rad/s}\right):\text{vitesse de rotation };k:\text{constante de fem ou de couple };C_{m}\left(\mathbf{N}\right):\text{couple moteur };u\left(\mathbf{V}\right):\text{tension d'induit };i\left(\mathbf{A}\right):\text{courant d'induit };\phi\left(\mathbf{G}\right):\text{flux inducteur };u_{e}\left(\mathbf{V}\right):\text{tension inducteur };i_{e}:\text{courant inducteur };R\left(\Omega\right):\text{résistance d'induit };L\left(\mathbf{H}\right):\text{inductance d'induit};J\left(\mathbf{kg.m^{2}}\right):\text{inertie};C_{r}(\mathbf{N}):\text{couple résistante}$

MCC à excitation séparée : équations simplifiées

Vu la dynamique de la partie mécanique, on peut considérer le courant d'induit comme égal à sa valeur moyenne

On considère le flux comme étant réglable de manière indépendante

MCC à aimants : équations

$$\begin{split} E\left(\mathbf{V}\right): \text{fem} \;;\; \Omega\left(\text{rad/s}\right): \text{ vitesse de rotation } \;;\; K\left(\mathbf{N}.\text{s ou N.m.A}^{-1}\right): \text{ constante de fem ou de couple} \;;\; C_{m}(\mathbf{N}): \text{ couple moteur} \;;\; u\left(\mathbf{V}\right): \text{ tension d'induit } \;;\; i\left(\mathbf{A}\right): \text{ courant d'induit } \;;\; R\left(\Omega\right): \text{ résistance d'induit} \;;\; L\left(\mathbf{H}\right): \text{ induetance d'induit} \;;\; k\left(\mathbf{H}\right): \text{ induetance d'induit} \;;\; d\left(\mathbf{H}\right): \mathbf{H} \;;\; k\left(\mathbf{H}\right): \mathbf{H} \;;\; k\left(\mathbf{$$

10:

Moteur universel

- Il s'agit d'un MCC à excitation série
- En notant $\varphi = Li$ et $k\varphi = kLi = k_1i$:
- $C_m = k \varphi i = k_1 i^2$
- Le couple est positif quelque soit le signe de i
- Alimentation à partir d'un gradateur monophasé
- Solution faible coût (ex.: perceuse)

04

3.3. La machine synchrone

- Principe
- Technologie
- Modèle

105

Principe

- L'excitation du rotor et les courants alternatifs du stator produisent deux champs tournants qui s'attirent.
- En fonctionnement normal, les deux champs sont synchrones.
- Pour alimenter correctement le stator, il est nécessaire de connaître la position du rotor (auto-pilotage)

106

Technologies

- Stator = induit : bobinage triphasé placé dans des encoches réalisées au sein d'un matériau magnétique feuilleté. Il réalise dans l'entrefer un champ tournant à la vitesse ω/p où ω est la pulsation des courants et p le nombre de paires de pôles du bobinage
- Rotor = inducteur = excitation : roue polaire à p paires de pôles produisant un champ tournant synchrone avec sa position. On distingue des rotors:
 - à pôles lisses ou à pôles saillants
 - à aimants permanents (PMSM) ou bobinés.

107

Inductance de deux circuits

- deux enroulements au stator ou au rotor décalés d'un angle α
- l'inductance mutuelle est de la forme:

$$M_{12} = M \cos(\alpha)$$

Flux du stator sur lui-même

• 3 circuits (a, b et c) décalés de $2\pi/3p$

$$\begin{cases} \varphi_{sa} = L_s i_a + M_s i_b + M_s i_c \\ \varphi_{sb} = M_s i_a + L_s i_b + M_s i_c \\ \varphi_{sc} = M_s i_a + M_s i_b + L_s i_c \end{cases}$$

$$\begin{bmatrix} \varphi_{sa} \\ \varphi_{sb} \\ \varphi_{sc} \end{bmatrix} = \begin{bmatrix} L_s & M_s & M_s \\ M_s & L_s & M_s \\ M_s & M_s & L_s \end{bmatrix} \cdot \begin{bmatrix} i_a \\ i_b \\ i_c \end{bmatrix}$$

$$\underbrace{M_s & M_s & L_s \\ M_s & \text{inductance correspondant au flux principal;} \\ f_b : \text{inductance correspondant au flux de fuite} \end{cases}$$

Flux mutuel entre le stator et le rotor

- le rotor est à la position θ par rapport au stator
- cela correspond à la position $p\theta$ en angle électrique (période $2\pi/p$ ramenée à 2π)

b rotor
$$\phi_{ra} = M_{rs}$$

$$\phi_{rb} = M_{rs}$$

$$\phi_{rc} = M_{rs}$$

$$\phi_{rc} = M_{rs}$$

$$\phi_{rc} = \phi_{rs}$$

$$\phi_{rc} = \phi_{rs}$$

$$\phi_{rc} = \phi_{rs}$$

$$\begin{cases} \phi_{ra} = M_{rs}i_f \cos(p\theta) \\ \phi_{rb} = M_{rs}i_f \cos\left(p\theta - \frac{2\pi}{3}\right) \\ \phi_{rc} = M_{rs}i_f \cos\left(p\theta + \frac{2\pi}{3}\right) \\ \phi_{rc} = M_{rs}i_f \cos\left(p\theta + \frac{2\pi}{3}\right) \\ \cos(p\theta) \\ \phi_{rb} \\ \phi_{rc} = \phi_f \cdot \cos\left(p\theta - \frac{2\pi}{3}\right) \\ \cos\left(p\theta + \frac{2\pi}{3}\right) \\ \cos\left(p\theta + \frac{2\pi}{3}\right) \end{cases}$$

Équations du modèle triphasé

$$\begin{cases} \phi_{a} = \phi_{sa} + \phi_{ra} \\ \phi_{b} = \phi_{sb} + \phi_{rb} \\ \phi_{c} = \phi_{sc} + \phi_{rc} \end{cases}$$

$$\begin{cases} \phi_{a} = R_{s}i_{a} + \frac{d\phi_{a}}{dt} \\ v_{b} = R_{s}i_{b} + \frac{d\phi_{b}}{dt} \\ v_{c} = R_{s}i_{c} + \frac{d\phi_{c}}{dt} \end{cases}$$

$$\begin{cases} \phi_{a} = R_{s}i_{a} + \frac{d\phi_{c}}{dt} \\ v_{b} = R_{s}i_{b} + \frac{d\phi_{c}}{dt} \end{cases}$$

$$\begin{cases} \phi_{a} = R_{s}i_{a} + \frac{d\phi_{c}}{dt} \\ v_{c} = R_{s}i_{c} + \frac{d\phi_{c}}{dt} \end{cases}$$

$$\begin{cases} \phi_{a} = R_{s}i_{a} + \frac{d\phi_{c}}{dt} \\ v_{c} = R_{s}i_{c} + \frac{d\phi_{c}}{dt} \end{cases}$$

$$\begin{cases} \phi_{a} = R_{s}i_{a} + \frac{d\phi_{c}}{dt} \\ v_{c} = R_{s}i_{c} + \frac{d\phi_{c}}{dt} \end{cases}$$

$$\begin{cases} \phi_{a} = R_{s}i_{a} + \frac{d\phi_{c}}{dt} \\ v_{c} = R_{s}i_{c} + \frac{d\phi_{c}}{dt} \end{cases}$$

$$\begin{cases} \phi_{a} = R_{s}i_{a} + \frac{d\phi_{c}}{dt} \\ v_{c} = R_{s}i_{c} + \frac{d\phi_{c}}{dt} \end{cases}$$

$$\begin{cases} \phi_{a} = R_{s}i_{a} + \frac{d\phi_{c}}{dt} \\ v_{c} = R_{s}i_{c} + \frac{d\phi_{c}}{dt} \end{cases}$$

$$\begin{cases} \phi_{a} = R_{s}i_{a} + \frac{d\phi_{c}}{dt} \\ v_{c} = R_{s}i_{c} + \frac{d\phi_{c}}{dt} \end{cases}$$

$$\begin{cases} \phi_{a} = R_{s}i_{a} + \frac{d\phi_{c}}{dt} \\ v_{c} = R_{s}i_{c} + \frac{d\phi_{c}}{dt} \end{cases}$$

$$\begin{cases} \phi_{a} = R_{s}i_{a} + \frac{d\phi_{c}}{dt} \\ v_{c} = R_{s}i_{c} + \frac{d\phi_{c}}{dt} \end{cases}$$

$$\begin{cases} \phi_{a} = R_{s}i_{a} + \frac{d\phi_{c}}{dt} \\ v_{c} = R_{s}i_{c} + \frac{d\phi_{c}}{dt} \end{cases}$$

$$\begin{cases} \phi_{a} = R_{s}i_{a} + \frac{d\phi_{c}}{dt} \\ v_{c} = R_{s}i_{c} + \frac{d\phi_{c}}{dt} \end{cases}$$

$$\begin{cases} \phi_{a} = R_{s}i_{a} + \frac{d\phi_{c}}{dt} \\ v_{c} = R_{s}i_{c} + \frac{d\phi_{c}}{dt} \end{cases}$$

$$\begin{cases} \phi_{a} = R_{s}i_{a} + \frac{d\phi_{c}}{dt} \\ v_{c} = R_{s}i_{c} + \frac{d\phi_{c}}{dt} \end{cases}$$

$$\begin{cases} \phi_{a} = R_{s}i_{a} + \frac{d\phi_{c}}{dt} \\ v_{c} = R_{s}i_{c} + \frac{d\phi_{c}}{dt} \end{cases}$$

Expression du couple (1)

$$C = \frac{1}{2} \cdot \boldsymbol{i}^{\mathrm{T}} \cdot \frac{d\boldsymbol{L}}{d\theta} \cdot \boldsymbol{i} = \frac{1}{2} \cdot \begin{bmatrix} i_a \\ i_b \\ i_c \end{bmatrix}^{\mathrm{T}} \cdot \frac{\mathrm{d}}{\mathrm{d}\theta} \begin{bmatrix} \varphi_a \\ \varphi_b \\ \varphi_c \end{bmatrix}$$

$$C = -\frac{p \cdot \varphi_f}{2} \cdot \left[i_a \cdot \sin(p\theta) + i_b \cdot \sin\left(p\theta - \frac{2\pi}{3}\right) + i_c \cdot \sin\left(p\theta + \frac{2\pi}{3}\right) \right]$$

$$\begin{split} C &= -\frac{p \cdot \phi_f}{2} \cdot \left[i_a \cdot \sin(p\theta) + i_b \cdot \sin\left(p\theta - \frac{2\pi}{3}\right) + i_c \cdot \sin\left(p\theta + \frac{2\pi}{3}\right) \right] \\ &= -\frac{p \cdot \phi_f}{2} \cdot \left[i_a \quad i_b \quad i_c \right] \cdot \begin{bmatrix} \sin(p\theta) \\ \sin\left(p\theta - \frac{2\pi}{3}\right) \\ \sin\left(p\theta + \frac{2\pi}{3}\right) \end{bmatrix} \end{split}$$

3.4. Le moteur asynchrone triphasé

- Structure
- · Technologie
- Principe
- · Fonctionnement sur réseau alternatif

116

Structure de la MAS

- stator identique à celui du moteur synchrone (enroulement triphasé à 2p pôles)
- · rotor:
 - à cage (le plus courant) : système de barres reliées par un anneau de court-circuit et placé dans un empilement de tôles magnétiques
 - bobiné : système d'enroulements triphasés à 2ppôles (court-circuités en fonctionnement normal)
 - massif, composé d'un seul matériau avec un compromis entre la conductivité et la perméabilité

Technologie

- stator : identique à celui du MS (enroulement triphasé à 2p pôles parcourus par des courants à la pulsation ω produisant un champ tournant à la vitesse ω/p)
- rotor : partie passive permettant la circulation de courants et perméable au champ magnétique.
 - rotor à cage : une cage formée de barres et d'anneaux de court-circuit forme le circuit électrique qui est plongé dans un empilement de tôles magnétiques (le plus répandu)
 - rotor bobiné : bobinage similaire à celui du stator, généralement court-circuité
 - rotor massif (appli: frein à courant de Foucault)

118

MAS: principe

- Un champ de vitesse ω/p est créé au stator
- Le rotor tournant à la vitesse Ω voit le champ tourner à la vitesse ω/p - Ω
- Ce champ induit donc au rotor des courants à la pulsation $\omega_r = \omega - p\Omega$
- Ce champ induit au rotor entraîne la production d'un couple qui tend à faire tourner le rotor à la vitesse de synchronisme $\Omega_s = \omega/p$

MAS: principe - 2

• On note $\omega_r = g\omega$ où g est appelé glissement (slip en anglais)

-g = 1: arrêt

 $\Omega = (1-g)\frac{\omega}{r}$

-g = 0: synchronisme

• Alimenté par un réseau 50 Hz, les vitesses de synchronisme possibles sont $\omega/p = 3000$, 1500, 1000, 750, 600... tours/min

MAS: modèle

• Schéma électrique équivalent par phase

 R_s , $R_r(\Omega)$: résistance statorique et rotoriques ; $L_m(H)$: inductance magnétisante ; $N_r(H)$: inductance des fuites totalisées au rotor ; g (s.u.): glissement ; ω (rad/s): pulsation du réseau ; p: nombre de paires de pôles.

Moteur asynchrone connecté au réseau

- vitesse de synchronisme ω/p (3000, 1500, 1000, 750, 600... tours/min
- · expression du couple
- rendement approché : 1-g
- démarrage étoile-triangle

122

Moteur asynchrone connecté au réseau : Couple $C = C_{\text{max}} \cdot \frac{2}{\frac{g}{g} + \frac{g}{g}}$ $C_{\text{max}} = \frac{3 \cdot P \cdot U^2}{2 \cdot N_r \cdot \omega^2}$ $g^* = \frac{R_r}{N_r \cdot \omega}$

Démarrage sur réseau alternatif

- · Démarrage direct
 - faible inertie
 - pic de courant important
- Démarrage étoile-triangle
 - tension et courant abaissés de √3 par rapport au démarrage direct
- Démarreur (gradateur triphasé)
 - limitation du courant maximal pendant toute la période du démarrage

125

123

3.5. Autres moteurs

- Moteur à réluctance variable et moteur pas-à-pas
- Moteur piézo-électrique

3.5.1. Moteur à réluctance variable ou moteur pas-à-pas

- Principe
- Alimentation
- Domaine d'utilisation

127

MRV: Caractéristiques

- Moteur simple et robuste
- Alimentation plus coûteuse que MS et MAS
- Bruit phonique important
- Applications : moyenne puissance pour des applications peu coûteuses (électroménager, automobile), positionnement sans capteur de position (robotique)

131

3.5.2. Le Moteur Piézoélectrique

- Principe
- · Caractéristiques

L'effet piézo-électrique • Céramique qui se déforme sous application d'un champ électrique (effet direct, actionneur piézo) • Apparition d'un champ électrique lorsqu'on applique une contrainte mécanique (effet inverse, capteur piézo)

Moteur piézo : gamme d'utilisation • vitesse réglée avec l'amplitude de la tension (excitation à fréquence constante) • gamme des petites et très petites puissances • fort couple sans réducteur • vitesse jusqu'à 1000 tr/min • couple d'arrêt important

137

ch 4. Les variateurs