H21T3A3

- a) Zeigen Sie, dass $(2t+2) + 4x^3x' = 0$ (1) eine exakte Differentialgleichung ist.
- b) Berechnen Sie eine Lösung des Anfangswertproblems $(2t+2)+4x^3x'=0$; x(0)=1 (2) Geben Sie den maximalen Definitionsbereich D Ihrer Lösung an.
- c) Zeigen Sie, dass für jedes $(\tau, \xi) \in \mathbb{R}^2$ und jede Lösung $\lambda : I \to \mathbb{R}$ von $(2t+2)+4x^3x'=0$; $x(\tau)=\xi$ (3) sowohl I als auch $\lambda(I)$ beschränkt ist.

Vorbemerkung:

$$(2t+2) + 4x^3x' = 0$$
 hat die Form $f(t,x) + g(t,x)x' = 0$

Zu a)

$$F: \mathbb{R}^2 \to \mathbb{R}$$
; $(t, x) \to t^2 + 2t + x^4$ erfüllt $grad(F)(t, x) = \binom{f(t, x)}{g(t, x)}$, also ist die Differentialgleichung exakt.

Zu b)

Für jede Lösung $\lambda: I \to \mathbb{R}$ des Anfangswertproblems (2) ist $F(t, \lambda(t)) = F(0,1)$ für alle $t \in I$ konstant

Diese Gleichung liefert $t^2+2t+\left(\lambda(t)\right)^4=0+0+1$, also $\lambda(t)=\sqrt[4]{1-2t-t^2}=\sqrt[4]{\left(-1+\sqrt{2}\right)\left(-1-\sqrt{2}\right)}$. Der Fall $\lambda(t)=-\sqrt[4]{1-2t-t^2}$ ist ausgeschlossen, da $\lambda(0)=1$. Somit ist λ reellwertig auf $\left[-1-\sqrt{2}\;;\;-1+\sqrt{2}\right]$.

$$\lambda'(t) = \frac{-2-2t}{4\sqrt[4]{(1-2t-t^2)^3}} = \frac{-2-2t}{4(\lambda(t))^3} \text{ ist definiert nur auf }] - 1 - \sqrt{2}; -1 + \sqrt{2}[.$$

Es gilt
$$(2t+2) + 4(\lambda(t))^3 \lambda'(t) = (2t+2) + 4(\lambda(t))^3 \frac{(-2-2t)}{4(\lambda(t))^3} = 0.$$

Daraus folgt: λ :] $-1 - \sqrt{2}$; $-1 + \sqrt{2}$ [$\to \mathbb{R}$; $t \to \sqrt[4]{1 - 2t - t^2}$ löst das Anfangswertproblem (2).

Da $|\lambda(t)| \xrightarrow[t \to -1 \pm \sqrt{2}]{} \infty$, lässt sich λ nicht weiter fortsetzen, sodass die Fortsetzung immer noch Lösung wäre. Somit ist λ die maximale Lösung.

Sei $\lambda: I \to \mathbb{R}$ eine beliebige Lösung von (3). Zu zeigen: I und $\lambda(I)$ sind beschränkt.

Es gilt $F(t, \lambda(t)) = F(\tau, \xi)$. Daher ist $G := \{(t, \lambda(t): t \in I\} \subseteq F^{-1}(\{F(\tau, \xi)\})$.

 $\operatorname{Mit} p_1 \colon \mathbb{R}^2 \to \mathbb{R} \ ; (t,x) \to t \ \operatorname{und} p_2 \colon \mathbb{R}^2 \to \mathbb{R} \ ; (t,x) \to x \ \operatorname{gilt} \colon I = p_1(G) \ \operatorname{und} \lambda(I) = p_2(G).$

$$F(t,x) = t^2 + 2t + x^4 = (t+1)^2 + x^4 - 1 \ge -1 \implies F^{-1}(\{c\}) = \emptyset \text{ für alle } c < -1$$

und
$$F^{-1}(\{-1\}) = \{(-1,0)\}$$
 und $F^{-1}(\{c\}) = \{(t,x): (t+1)^2 + x^4 = c+1\}$ für alle $c > -1$.

D.h. $(t+1; x^2)$ liegt auf der Kreislinie $\partial B_{\sqrt{c+1}}(0)$, somit ist $F^{-1}(\{c\})$ beschränkt für alle $c \in \mathbb{R}$; insbesondere ist $F^{-1}(\{F(\tau, \xi)\})$ beschränkt, also auch G beschränkt. Und somit sind I und $\lambda(I)$ ebenfalls beschränkt.