Statistical Clustering of Temporal Networks through a Dynamic SBM

Written by Catherine Matias and Vincent Miele

Presenters: Rong, Trang, Simon, Konstantinos

Introduction

- We use a model that combines SBM for its static part with independent
 Markov chains for the evolution of the nodes groups through time
- Outline:
 - Model description
 - Parameters identifiability
 - Algorithm
 - Synthetic experiments
 - Application to a real dataset

Model description

- N vertices, Q groups, T time steps
- Y: adjacency matrix (TxNxN)
- Z: latent group membership that may vary through time (TxNxQ)
- For each vertex i, Z_i is an aperiodic stationary Markov chain with transition matrix π (QxQ) and initial stationary distribution α (1xQ)
- For fixed time t, random graph Y^t follows a stochastic block model. In other words, for each time t, conditional on Z^t, random variables Y_{ij}^t are independent and the distribution of each Y_{ij}^t only depends on Z_i^t, Z_i^t

Figure 1. Dependency structures of the model. Top: general view corresponding to hidden Markov model (HMM) structure; Middle: details on latent structure organization corresponding to N different iid Markov chains $Z_i = (Z_i^t)_{1 \le t \le T}$ across individuals; Bottom: details for fixed time point t corresponding to SBM structure.

Model description

We assume a very generic form for distribution of Y_{ij}^t:

$$Y_{ij}^{t}|\{Z_{iq}^{t}Z_{jl}^{t}=1\} \sim (1-\beta_{ql}^{t})\delta_{0}(\cdot) + \beta_{ql}^{t}F(\cdot,\gamma_{ql}^{t}),$$

- δ_a is a Dirac mass at 0
- F is a parametric family of distributions with no point mass at 0
- γ is the parameter of F, indicating strength of interaction
- $\beta \in [0,1]$ is sparsity parameter, with 1 corresponding to a complete graph
- The model is parameterized by:

$$\theta = (\pi, \beta, \gamma) = (\pi, \{\beta^t, \gamma^t\}_{1 \le t \le T}) = (\{\pi_{qq'}\}_{1 \le q, q' \le Q}, \{\beta^t_{ql}, \gamma^t_{ql}\}_{1 \le t \le T, 1 \le q \le l \le Q}) \in \Theta,$$

Varying connectivity parameters vs group membership

Figure 2. Connectivity parameters or group membership variation: a toy example.

Varying connectivity parameters vs group membership

- Two ways to interpret figure 2
- We choose to characterize groups by their stable within group connectivity parameter
- It is impossible to let both connectivity parameters and group membership vary through time without entering into label switching issues

Parameters identifiability

<u>Definition(Identifiability up to label switching):</u>

$$\forall \theta, \tilde{\theta} \in \Theta, \quad \mathbb{P}_{\theta}^{Y} = \mathbb{P}_{\tilde{\theta}}^{Y} \Rightarrow \exists \sigma \in \mathfrak{S}_{Q}, \theta = \sigma(\tilde{\theta}).$$

<u>Note:</u> Without further assumptions on the parameters $\theta = (\pi, \beta, \gamma)$ the parameters may not be recovered up to label switching.

Example(Non identifiability)

- Q=2(groups),2T time steps,N individuals
- $\theta = (\pi, \beta, \gamma)$ where π is the identity 2x2 matrix and (β, γ) constant on time .
- $\theta = (\pi, \beta, y)$ another set of parameters.

Parameter Identifiability(Cont'ed)

Thus,we choose groups that are characterized through their stable within-group connectivity parameter,i.e we impose the following constraints on the parameter θ :

$$\forall q \in \mathcal{Q}, \forall t, t' \in \{1, \dots, T\}, \begin{cases} \text{binary case, } \beta_{qq}^t = \beta_{qq}^{t'} := \beta_{qq}, \\ \text{weighted case, } \gamma_{qq}^t = \gamma_{qq}^{t'} := \gamma_{qq}. \end{cases}$$

Cont'ed

Furthermore, we assume(Assumption 1):

• For any t, all the entries of γ are <u>distinct</u>.(Guarantees that the groups don't look alike too much,no assumptions on the sparsity parameter β).

Proposition 1. Considering the distribution \mathbb{P}_{θ}^{Y} on the set of observations and assuming constraint (2), the parameter $\theta = (\pi, \beta, \gamma)$ satisfies the following conditions.

- (a) Binary case: θ is generically identified from \mathbb{P}_{θ}^{Y} , up to label switching, as soon as N is not too small with respect to Q.
- (b) Weighted case: under additional assumption 1, the parameter θ is identified from \mathbb{P}_{θ}^{Y} , up to label switching, as soon as $N \ge 3$.

Variational Expectation-Maximization (VEM):

Complete-data log-likelihood of the model:

$$\log\{\mathbb{P}_{\theta}(\mathbf{Y}, \mathbf{Z})\} = \sum_{i=1}^{N} \sum_{q=1}^{Q} Z_{iq}^{1} \log(\alpha_{q}) + \sum_{t=2}^{T} \sum_{i=1}^{N} \sum_{1 \leq q, q' \leq Q} Z_{iq}^{t-1} Z_{iq'}^{t} \log(\pi_{qq'})$$

$$+ \sum_{t=1}^{T} \sum_{1 \leq i < j \leq N} \sum_{1 \leq q, l \leq Q} Z_{iq}^{t} Z_{jl}^{t} \log\{\phi(Y_{ij}^{t}; \beta_{ql}^{t}, \gamma_{ql}^{t})\}.$$

Dependence Structure of the conditional distribution P(Z|Y):

$$\mathbb{P}_{\theta}(\mathbf{Z}|\mathbf{Y}) = \mathbb{P}_{\theta}(\mathbf{Z}^{1}|\mathbf{Y}^{1}) \prod_{t=2}^{T} \mathbb{P}_{\theta}(\mathbf{Z}^{t}|\mathbf{Z}^{t-1},\mathbf{Y}^{t}).$$

However, the distribution $\mathbb{P}_{\theta}(Z^t|Z^{t-1},Y^t) = \mathbb{P}_{\theta}\{(Z_i^t)_{1 \leq i \leq N}|Z^{t-1},Y^t\}$ cannot be further factored. Indeed, for any $i \neq j$, the variables Z_i^t and Z_j^t are not independent when conditioned on Y^t . Our variational approximation naturally considers the following class of probability distributions $\mathbb{Q} := \mathbb{Q}_{\tau}$ parameterized by τ :

$$\mathbb{Q}_{\tau}(\mathbf{Z}) = \prod_{i=1}^{N} \mathbb{Q}_{\tau}(Z_{i}) = \prod_{i=1}^{N} \mathbb{Q}_{\tau}(Z_{i}^{1}) \prod_{t=2}^{T} \mathbb{Q}_{\tau}(Z_{i}^{t}|Z_{i}^{t-1})
= \prod_{i=1}^{N} \left\{ \prod_{q=1}^{Q} \tau(i,q)^{Z_{iq}^{1}} \right\} \times \prod_{t=2}^{T} \prod_{1 \leq q,q' \leq O} \tau(t,i,q,q')^{Z_{iq}^{t-1}Z_{iq'}^{t}},$$

where, for any values (t, i, q, q'), we have $\tau(i, q)$ and $\tau(t, i, q, q')$ both belong to the set [0, 1] and are constrained by $\Sigma_q \tau(i, q) = 1$ and $\Sigma_{q'} \tau(t, i, q, q') = 1$. This class of probability distributions \mathbb{Q}_{τ} corresponds to considering independent laws through individuals, whereas, for each $i \in \{1, \ldots, N\}$, the distribution of Z_i under \mathbb{Q}_{τ} is the distribution of a Markov chain (through time t), with inhomogeneous transition $\tau(t, i, q, q') = \mathbb{Q}_{\tau}(Z_i^t = q'|Z_i^{t-1} = q)$ and initial distribution $\tau(i, q) = \mathbb{Q}_{\tau}(Z_i^1 = q)$.

We shall need the marginal components of \mathbb{Q}_{τ} , namely $\tau_{\text{marg}}(t, i, q) := \mathbb{Q}_{\tau}(Z_i^t = q)$. These quantities are computed recursively by

$$\tau_{\text{marg}}(1, i, q) = \tau(i, q) \text{ and } \forall t \ge 2,$$

$$\tau_{\text{marg}}(t, i, q) = \sum_{q'=1}^{Q} \tau_{\text{marg}}(t - 1, i, q') \tau(t, i, q', q).$$

$$\begin{split} J(\theta,\tau) := & \mathbb{E}_{\mathbb{Q}_{\tau}}[\log\{\mathbb{P}_{\theta}(\mathbf{Y},\mathbf{Z})\}] + \mathcal{H}(\mathbb{Q}_{\tau}) \\ = & \sum_{i=1}^{N} \sum_{q=1}^{Q} \tau(i,q)[\log(\alpha_{q}) - \log\{\tau(i,q)\}] \\ & + \sum_{i=2}^{T} \sum_{i=1}^{N} \sum_{1 \leqslant q,q' \leqslant Q} \tau_{\mathrm{marg}}(t-1,i,q) \tau(t,i,q,q')[\log(\pi_{qq'}) - \log\{\tau(t,i,q,q')\}] \\ & + \sum_{t=1}^{T} \sum_{1 \leqslant i < j \leqslant N} \sum_{1 \leqslant q,l \leqslant Q} \tau_{\mathrm{marg}}(t,i,q) \tau_{\mathrm{marg}}(t,j,l) \log\{\phi_{ql}^{t}(Y_{ij}^{t})\}. \end{split}$$

It consists of iterating the following two steps. At the *k*th iteration, with current parameter value $(\tau^{(k)}, \theta^{(k)})$, we do the following steps.

- (a) VE step: compute $\tau^{(k+1)} = \arg \max_{\tau} J(\theta^{(k)}, \tau)$.
- (b) M-step: compute $\theta^{(k+1)} = \arg \max_{\theta} J(\theta, \tau^{(k+1)})$.

Algorithm - Optimization

Proposition 2. The value $\hat{\tau}$ that maximizes in τ the function $J(\theta, \tau)$ satisfies the fixed point equation

$$\forall t \geqslant 2, \forall i \geqslant 1, \forall q, q' \in \mathcal{Q}, \quad \hat{\tau}(t, i, q, q') \propto \pi_{qq'} \prod_{j=1}^{N} \prod_{l'=1}^{Q} \phi_{q'l'}^{t} (Y_{ij}^{t})^{\hat{\tau}_{\text{marg}}(t, j, l')}$$

- Update this value: $\forall i \geqslant 1, \forall q \in \mathcal{Q}, \quad \hat{\tau}(i,q) \propto \alpha_q \prod_{j=1}^N \prod_{l=1}^{\mathcal{Q}} \phi_{ql}^1(Y_{ij}^1)^{\hat{\tau}(j,l)}.$
- Parameter α is not obtained from maximizing J as it is not a free parameter but rather the stationary distribution associated with transition π. Thus, α is obtained from the empirical mean of the marginal distribution over all data points:

$$\forall q \in \mathcal{Q}, \quad \hat{\alpha}_q = \frac{1}{NT} \sum_{t=1}^T \sum_{i=1}^N \hat{\tau}_{\text{marg}}(t, i, q).$$

Algorithm - Optimization

Other parameter values that maximize J:

$$\begin{split} \forall (q,q') \in \mathcal{Q}^2, \quad \hat{\pi}_{qq'} &\propto \sum_{t=2}^T \sum_{i=1}^N \tau_{\text{marg}}(t-1,i,q) \, \tau(t,i,q,q'), \\ \forall t, \forall q \neq l \in \mathcal{Q}^2, \quad \hat{\beta}_{ql}^t &= \frac{\sum_{i,j} \tau_{\text{marg}}(t,i,q) \, \tau_{\text{marg}}(t,j,l) \, \mathbf{1}_{Y_{ij}^t \neq 0}}{\sum_{i,j} \tau_{\text{marg}}(t,i,q) \, \tau_{\text{marg}}(t,j,l)}, \\ \forall q \in \mathcal{Q}, \quad \hat{\beta}_{qq} &= \frac{\sum_{t} \sum_{i,j} \tau_{\text{marg}}(t,i,q) \, \tau_{\text{marg}}(t,j,q) \, \mathbf{1}_{Y_{ij}^t \neq 0}}{\sum_{t,i,j} \tau_{\text{marg}}(t,i,q) \, \tau_{\text{marg}}(t,j,q)}. \end{split}$$

• Finally, optimization with respect to γ depends on the choice of the parametric family.

Model Selection

- Number of groups Q is important.
- Maximizing an integrated classification likelihood (ICL).
- For any number of groups Q1, let $\hat{\theta}_Q$ be the estimated parameter value with Q groups and $\hat{\mathbf{Z}}$ the corresponding maximum a posteriori classification $\hat{\theta}_Q$ In our case, the general form of the ICL is given by

$$ICL(Q) = \log\{\mathbb{P}_{\hat{\theta}_{O}}(\mathbf{Y}, \hat{\mathbf{Z}})\} - \frac{1}{2}Q(Q-1)\log\{N(T-1)\} - \text{pen}(N, T, \beta, \gamma),$$

• The first penalization term accounts for transition matrix π and pen(N, T, β , γ) is a penalizing term for the connectivity parameters (β , γ).

Algorithm Initialization

- Initialize our VEM procedure by running k-means on the rows of a concatenated data matrix containing all the adjacency time step matrices Yt stacked in consecutive column blocks.
- Initial clustering of the individuals is constant across time.
- A consequence of this choice is that this initialization works well when the group memberships do not vary too much across time.
- Increasing T increases the probability for an individual to change group at some point in time and thus, starting with a constant-in-time clustering of the individuals, it becomes more difficult to infer the group memberships at each time point correctly.

Adjusted Rand Index(ARI)

<u>Definition</u>: Rand Index(RI) is a measure of the similarity between two data clusterings. ARI is the corrected-for-chance version of RI.

Clustering Performance of the Algorithm using ARI:

Evaluation of the estimated and true latent structure using two different criteria:

- 1. The averaged value of ARI over all the time steps.
- Global ARI value which compares the clustering of the nodes for all time steps.

Cont'ed

Cons:

- The averaged ARI doesn't give any information about the group membership trajectories along time.
- Using the global ARI is more difficult to obtain good performance.
- Both suffer when either the within-group stability is too low or when the groups look alike (Same β, not sufficiently distinct γ between groups)

Pros:

- The averaged ARI outperforms global ARI in the planted partition model.
- Both work well in identifiable cases.

An application on real dataset

An application on real dataset

- 184 nodes, 190 weeks
- Very sparse networks -> truncate to get the middle section: week 81-170
- Divide these 90 weeks into 10 bins, thus each bin is roughly 2 months
- Combine adjacency matrices in each bin
- Symmetrize these 10 adjacency matrices
- Delete absent nodes

Graph Characteristics

1) Unweighted (Binary)

$$Y_{ij}^{t} \mid \{Z_{iq}^{t} \mid Z_{jl}^{t} = 1\} \sim (1 - \beta_{ql}^{t}) \delta_{0}(y) + \beta_{ql}^{t} F(y, \gamma_{ql}^{t})$$

$$\downarrow$$

$$Y_{ij}^{t} \mid \{Z_{iq}^{t} \mid Z_{jl}^{t} = 1\} \sim (1 - \beta_{ql}^{t}) \delta_{0}(y) + \beta_{ql}^{t} \delta_{1}(y)$$

$$\longrightarrow$$
 $Y_{ii}^{t} \sim Bernoulli(\beta_{ql}^{t})$

Graph Characteristics

2) Undirected (Symmetric)

Parameters β_{ql}^{t} and γ_{ql}^{t} satisfy

$$\beta_{ql}^{t} = \beta_{lq}^{t}$$
 and $\gamma_{ql}^{t} = \gamma_{ql}^{t}$

for all $1 \le q$, $1 \le Q$.

Model Selection

Loglikelihood Measures how likely
the parameters are,
given the data

ICL Penalized form of
Loglikelihood

Re-Ordered Adjacency Matrices

"Alluvial Plot" - Group Switching Through Time

Connectivity Through Time

