3 8086 的寻址方式和指令系统

• 8086 指令格式

• 8086 的寻址方式

• 8086 的指令系统

3.1 8086 指令格式

[标号:] [前缀指令] 指令助记符 操作数 [;注释] 源 指 符 操 的 号 功 作操 地 数作 能 址 数

3.2 8086 的寻址方式

- 寄存器寻址方式
- 立即寻址方式
- 直接寻址方式
- 寄存器间接寻址方式
- 寄存器相对寻址方式
- 基址变址寻址方式
- 相对基址变址寻址方式

立即寻址方式

MOV AX, 1000H

直接寻址方式

MOV AX, [100H]

寄存器间接寻址方式

MOV SI, 100H MOV AX, [SI]

寄存器相对寻址方式

MOV BP, 200H MOV AX, [BP+34H]

$$\mathsf{EA} = \left(\begin{array}{c} \mathsf{BX} \\ \mathsf{BP} \\ \mathsf{SI} \\ \mathsf{DI} \end{array} \right) + \mathsf{disp}$$

基址变址寻址方式

MOV SI, 100H MOV BX, 10H MOV AX, [BX+SI]

$$\mathsf{EA} = \left[\begin{array}{c} \mathsf{BX} \\ \mathsf{BP} \end{array} \right] + \left[\begin{array}{c} \mathsf{SI} \\ \mathsf{DI} \end{array} \right]$$

相对基址变址寻址方式

MOV SI, 100H MOV BX, 10H MOV AX, [BX+SI+2]

$$EA = \begin{bmatrix} BX \\ BP \end{bmatrix} + \begin{bmatrix} SI \\ DI \end{bmatrix} + disp$$

$$I \qquad III \qquad III$$

3.3 8086 的指令系统

- 数据传送指令
- 算术运算指令
- 逻辑运算和移位指令
- 控制转移指令
- 字符串处理指令
- 处理器控制指令

MOV

格式: MOV DST, SRC

SRC: Register, Memory, Segment Register, Immediate.

DST: Register, Memory.

功能: SRC→DST

FR: No influence.

注意:

CS和IP不能作为目的操作数。

目的操作数不允许用立即数形式。

立即数不能直接传送到段寄存器。

不许在两个段寄存器之间直接传送信息。

不许在两个存储单元之间直接传送数据。

MOV

Example:

- 1. MOV BL, AX
- 2. MOV 100H, AX
- 3. MOV DS, 2000H
- 4. MOV ES, DS
- 5. MOV CS, 3000H
- 6. MOV [BX], [1000H]
- 7. MOV ES: AX, 2000H
- 8. MOV VAR[SI][DI], AX

- 9. MOV AL, FOH
- 10. MOV AX, DS
- 11. MOV IP, 100H
- 12. MOV AX, IP
- 13. MOV [BX], BL
- 14. MOV [BX], 10
- 15. MOV [DX], 10

PUSH

格式: PUSH SRC

SRC: Register, Segment Register, Memory.

功能: SP—2→SP, SRC →SS: [SP].

Flags: No influence.

POP

格式: POP DST

DST: Register, Segment Register, Memory.

操作: SS:[SP] →DST, SP+2→SP.

Flags: No influence.

PUSH/POP

Example:

设SS=3000H, SP=20H, AX=1234H, BX=0ABCDH, 依次执行下列指令:

- 1 PUSH AX
- 2 PUSH BX
- ③ POP AX

分析堆栈中数据和SP的变化.

PUSHF

格式: PUSHF

功能: SP—2→SP, FR →SS: [SP].

Flags: No influence.

POPF

格式: POPF

功能: SS:[SP] →FR, SP+2→SP.

Flags: Affected.

XCHG

格式: XCHG OD1, OD2

操作数: Register, Memory.

功能: R←→R/M.

Flags: No influence.

LEA

格式: LEA REG, SRC

SRC: Memory.

DST: Register.

功能: offset address of SRC→REG.

Flags: No influence.

LDS

格式: LDS DST, SRC

SRC: Memory.

DST: Register.

功能: M→DS & R .

Flags: No influence.

Example:

设 DS=1200H, [12450H]=0F346H, [12452H]=0A90H, 说明LDS SI, [450H]指令执行后,SI和DS的内容.

XLAT

格式: XLAT

功能: DS: [BX+AL]→AL.

Flags: No influence.

Example: 若十进制数字0~9的LED七段码对照关系如表,存于TABLE开始的内存单元中,试用XLAT指令求数字2的七段码值.

BCD	0	1	2	3	4	5	6	7	8	9
7-segment	3FH	06H	5BH	4FH	66H	6DH	7DH	07H	7FH	6FH

In / Out

直接寻址 (n<256)

IN AL, n IN AX, n

OUT n, AL OUT n, AX

间接寻址

IN AL, DX IN AX, DX OUT DX, AX

功能: I/O ←→AL/AX.

ADD

格式: ADD DST, SRC

SRC: Register, Memory, Immediate.

DST: Register, Memory.

功能: DST+SRC→DST

Flags: OF, SF, ZF, AF, PF, CF.

ADC

格式: ADC DST, SRC

SRC: Register, Memory, Immediate.

DST: Register, Memory.

功能: DST+SRC+CF→DST

Flags: OF, SF, ZF, AF, PF, CF.

INC

格式: INC OPR

OPR: Register, Memory.

功能: OPR+1→OPR

Flags: OF, SF, ZF, AF, PF.

DAA/AAA

格式: DAA

功能: 压缩BCD码加法调整.

Flags: SF, ZF, AF, PF, CF.

Note: 操作数为AL.

格式: AAA

功能: 非压缩BCD码加法调整.

Flags: AF, CF.

Note: 操作数为AX.

SUB

格式: SUB DST, SRC

SRC: Register, Memory, Immediate.

DST: Register, Memory.

功能: DST-SRC→DST

Flags: OF, SF, ZF, AF, PF, CF.

SBB

格式: SBB DST, SRC

SRC: Register, Memory, Immediate.

DST: Register, Memory.

功能: DST—SRC—CF→DST

Flags: OF, SF, ZF, AF, PF, CF.

DEC

格式: DEC OPR

OPR: Register, Memory.

功能: OPD — 1→OPD

Flags: OF, SF, ZF, AF, PF.

例: 设(BX)=1000H, DS: [1000H]=0200H, 说明下

列指令分别执行后BX或内存的内容?

DEC BX DEC BL

DEC WORD PTR[BX] DEC BYTE PTR[BX]

NEG

格式: NEG OPR

OPR: register, memory.

功能: 0−OPR→OPR.

Flags: SF, ZF, AF, PF, OF, CF.

CMP

格式: CMP OPR1, OPR2

OPR2: Register, Memory, Immediate.

OPR1: Register, Memory.

功能: OPD1—OPD2

Flags: OF, SF, ZF, AF, PF, CF.

MUL/IMUL

格式: MUL SRC (无符号数)

IMUL SRC (有符号数)

SRC: Register, Memory.

功能: SRC×AL→AX

 $SRC \times AX \rightarrow DX$, AX

Flags: OF, CF.

DIV/IDIV

格式: DIV SRC (无符号数)

IDIV SRC (有符号数)

SRC: Register, Memory.

功能: AX÷SRC=AL.....AH

DX, AX \div SRC=AX.....DX

Flags: undefined.

AL AH

SRC AX

CBW/CWD

格式: CBW

CWD

功能: CBW-将AL的符号位扩展到AH.

CWD-将AX的符号位扩展到DX.

Flags: No influence.

NOT

格式: NOT DST

DST: register, memory.

功能: DST → DST.

Flags: No influence.

AND

格式: AND DST, SRC

SRC: immediate, memory, register.

DST: memory, register.

功能: DST ∧ SRC→DST.

OR

格式: OR DST, SRC

SRC: immediate, memory, register.

DST: memory, register.

功能: DST V SRC→DST.

XOR

格式: XOR DST, SRC

SRC: immediate, memory, register.

DST: memory, register.

功能: DST ∀ SRC→DST.

TEST

格式: TEST DST, SRC

SRC: immediate, memory, register.

DST: memory, register.

功能: DST \(\Lambda \) SRC.

SHR

格式: SHR DST, CNT

DST: memory, register.

CNT: 1, CL.

功能:

Flags: CF, PF, SF, ZF, OF.

SAR

格式: SAR DST, CNT

DST: memory, register.

CNT: 1, CL.

功能:

Flags: CF, PF, SF, ZF, OF.

SHL/SAL

格式: SHL DST, CNT

SAL DST, CNT

DST: memory, register.

CNT : 1, CL.

功能:

Flags: CF, PF, SF, ZF, OF.

ROL

格式: ROL DST, CNT

DST: memory, register.

CNT: 1, CL.

功能:

ROR

格式: ROR DST, CNT

DST: memory, register.

CNT: 1, CL.

功能:

RCL

格式: RCL DST, CNT

DST: memory, register.

CNT: 1, CL.

功能:

RCR

格式: RCR DST, CNT

DST: memory, register.

CNT: 1, CL.

功能:

JMP

格式: JMP label IP

功能: 无条件地转移到目标单元.

Flags: No influence.

Example: 在偏移地址为0035H的内存单元有一条两字节的短转移指令JMP SHORT ADDR,如果其中位移量为①14H、②ECH,问目标地址的偏移量?

条件转移指令

格式: J* label

功能: 满足条件'*',则转移到目标单元.

Flags: No influence.

修改IP; 转移范围: -128~127

条件转移指令——单个标志

标志	指令助记符	测试条件	指令功能	
65	JC	CF=1	Jump if carry set	
CF	JNC	CF=0	Jump if no carry	
75	JZ/JE	ZF=1	Jump if equal / jump if zero set	
ZF	JNZ/JNE	ZF=0	Jump if not equal / jump if not zero	
C.F.	JS	SF=1	Jump if sign set / jump if negative	
SF		Jump if no sign / jump if positive		
05	JO	OF=1	Jump if overflow set	
OF JNO OF=0	Jump if no overflow			
PF	JP/JPE	PF=1	Jump if parity set / Jump if parity even	
	JNP/JPO	PF=0	Jump if no parity / Jump if parity odd	

条件转移指令

A—Above, B—Below, E—Equal, N—not

G—Greater than, L—Less than, E—Equal, N—not

	指令	测试条件	指令功能
	JA/JNBE	CF∨ZF=0	Jump if above / not bellow or equal (a>b)
无 符	JAE/JNB	CF=0	Jump if above or equal / not bellow (a≥b)
号数	JB/JNAE	CF=1	Jump if bellow / not above or equal (a <b)< td=""></b)<>
	JBE/JNA	CF∨ZF=1	Jump if bellow or equal / not above (a≤b)
	JG/JNLE	(SF∀OF) √ZF=0	Jump if greater than/ not less than or equal (a>b)
有符	JGE/JNL	SF∀OF=0	Jump if greater than or equal / not less than (a≥b)
号数	JL/JNGE	SF∀OF=1	Jump if less than/ not greater than or equal (a <b)< td=""></b)<>
	JLE/JNG	(SF∀OF) √ZF=1	Jump if less than or equal / not greater than (a≤b)

条件转移指令

Example: 设指令CMP AX,BX后跟着一条J* NEXT条指令,其中*为GE、LE、AE、NBE、BE,如果AX和BX的值分别如下:

		•		
AX	4000H	2000H	F000H	F000H
ВХ	4000H	3000H	E000H	2000H
判断对每	f组给出的AX和I	BX数据,使月	用哪几种条件和	移指令可
引起程序	转移到NEXT地	址.		

Example:符号函数Y=f(X),设任意给定的X值存放在XX单元,函数Y的值存放在YY单元,试编写一段指令序列实现,根据X的不同取值给Y赋值。

$$Y = egin{cases} 1 & \exists X > 0 \ 0 & \exists X = 0 \ -1 & \exists X < 0 \end{cases}$$

LOOP/LOOPZ/LOOPNZ

格式: LOOP label

功能: CX-1→CX

CX≠0则转移至label,CX=0退出循环.

指令助记符	循环退出条件
LOOP	CX=0
LOOPE/LOOPZ	CX=0 or ZF=0
LOOPNE/LOOPNZ	CX=0 or ZF=1

CALL

格式: CALL PROCEDURE

功能: 断点地址入栈;子程序入口地址装入(CS:)IP.

near CALL:

SP-2→SP,断点地址入栈;子程序入口地址→IP.

far CALL:

SP-4→SP,断点地址入栈;子程序入口地址→CS:IP.

Flags: No influence.

RET

格式: RET

功能: SS:[SP]→IP, SP+2→SP.

& SS:[SP] \rightarrow CS, SP+2 \rightarrow SP. (far)

格式: RET disp16

功能: RET;SP+disp16→SP.

Flags: No influence.

汇编语言程序控制流程

• 分支程序

IF-THEN-ELSE

• 循环程序

DO-UNTIL loops

• 子程序

串操作指令

段地址: 源串——DS,可段超越;目的串——ES.

偏移地址: Source——SI; Destination——DI.

元素个数: CX

处理方向: DF

地址改变: SI, DI 自动修改.

重复前缀: REP/REPE/REPNE

	BYTE	WORD
DE-0	SI+1	sı+2
DF=0	DI+1	DI+2
DF_1	SI-1	SI-2
DF=1	DI-1	DI-2

Instruction Code	Condition for repeat	Condition for Exit
REP	CX≠0	CX=0
REPE/REPZ	ZF=1且CX≠0	CX=0或ZF=0
REPNE/REPNZ	ZF=0且CX≠0	CX=0或ZF=1

MOVS/MOVSB/MOVSW

格式: MOVSB

MOVSW

功能: DS:[SI] →ES:[DI];

SI, DI自动修改.

Flags: No influence.

Example: 把内存中数据段中以SRC开始的字符串

"HELLO!"传送到附加段中以DST开始的单元中.

CMPS/CMPSB/CMPSW

格式: CMPSB

CMPSW

功能: DS:[SI] — ES:[DI];

SI, DI自动修改..

Flags: AF, CF, OF, PF, SF, ZF.

Example: 内存中PASSWORD处放有密码,INWORD

处为键盘输入密码,检查输入密码是否正确,正确在

RESULT处存1,不对存-1.

SCAS/SCACB/SCASW

格式: SCASB

SCASW

功能: AL (or AX) — ES:[DI]

修改DI.

Flags: AF, CF, OF, PF, SF, ZF.

Example: 在BLOCK开始的数据块中查找字母"M",若没找到, DI=0;若找到, DI存查找次数.

LODS/LODSB/LODSW

格式: LODSB

LODSW

功能: DS:[SI] → AL (or AX)

修改SI.

Flags: No influence.

STOS/STOSB/STOSW

格式: STOSB

STOSW

功能: AL (or AX) → ES:[DI]

修改DI.

Flags: No influence.

Example: 设ES=3000H, DI=0200H, 数据区长度100字节,对该数据区清0.

处理器控制指令

• 标志操作指令

Carry Flag: CLC, CMC, STC

Direction Flag: CLD, STD

Interrupt Flag: CLI, STI

停机指令 HLT

空操作指令 NOP