STH & STU Tests

MyTooliT

Contents

1	Vorbereitung		
	1.1	Hardware	1
	1.2	Software	6
2	STE	H-Test	6
	2.1	Test-Vorgang	6
3	STU	U-Test	7
	3.1	Test-Vorgang	7

1 Vorbereitung

Damit der Test für eine STH oder STU durchgeführt werden kann benötigt man diverse Hardware- und Software-Komponenten. Der nächste Teil des Texts beschreibt als erstes das Hardware-Setup und dann die Installation der benötigten Software.

1.1 Hardware

- 1. PC aufbauen und Peripherie (Maus, Tastatur, Bildschirm) anschließen
- 2. ESD-Matte aufbauen und anschließen
- 3. Stromversorgung für STU einrichten
 - Power-Injector (24V) (oder selten für 5V: Micro-USB)
- 4. PEAK-CAN-Adapter an USB-Port anschließen
- 5. Programming-Board an USB-Port anschließen
- 6. Je nachdem ob man eine SHA/STH oder STU testen will unterscheidet sich welche Einheit man am Debug-Adapter des Programming-Boards anstecken muss:
 - STH-Test: Debug-Adapter von Programming-Board (mittels Adapter Cable) mit SHA/STH verbinden
 - STU-Test: Debug-Adapter von Programming-Board (mittels Adapter Cable) mit STU verbinden

Figure 1: Arbeitsplatz

Figure 2: 24V Vs. 5V

Figure 3: Programming Board

Figure 4: SHA

Figure 5: STU

1.2 Software

- 1. Windows 10 installieren
- 2. Python (3.9+) installieren
 - Nicht vergessen "Add Python to Path" zu selektieren
- 3. Simplicity Studio installieren (Simplicity Commander wird benötigt)
- 4. PEAK-System-Gerätetreiber für Windows installieren
- 5. ICOc installieren:

```
pip install icoc
```

- 6. Im Documents-Ordner (des aktuellen Benutzers) einen neuen Unter-Ordner namens Firmware erstellen und das aktuelle STH-Binary (.hex) dort speichern.
- 7. Im vorher erstellten Firmware-Ordner ebenfalls das aktuelle STU-Binary (.hex) speichern.
- 8. Nach diesen Schritten sollte die Ordner-Struktur in etwa so aussehen:

Documents

Firmware

```
manufacturingImageSthv2.1.10.hex
manufacturingImageStuv2.1.10.hex
```

- 9. Nachdem die Software-Komponenten nur erfolgreich installiert und eingerichtet wurden kann man mit
 - dem STH-Test oder
 - dem STU-Test

fortfahren.

2 STH-Test

2.1 Test-Vorgang

- 1. Schalter an Programming-Board in Position "AEM" schieben (Stromversorgung über Programming-Board)
- $2. \ \ Die \ Konfigurationswerte \ anpassen$

Um die Benutzer-Konfigurationsdatei zu öffnen kann man folgenden Befehl verwenden:

icon config

Eventuell sind folgende Daten in der Konfiguration zu ändern:

- 1. Seriennummer des Boards
 - 1. Seriennummer ermitteln: Steht im LCD des Programming-Boards ganz unten
 - $2. \text{ sth} \rightarrow \text{programming board} \rightarrow \text{serial number } \ddot{\text{a}} \text{ndern}$
- 2. Name des PCB (sth \rightarrow name)

- Neue Boards sollten üblicherweise den Namen "Tanja" haben
- 3. Verwendeter Beschleunigungssensor (sth \rightarrow acceleration sensor \rightarrow sensor) (Optional): Welcher Sensor verwendet wird lässt sich üblicherweise an Hand eines Sticker an der Rückseite des PCB ermitteln. Ein Sticker mit der Aufschrift
 - 1 weißt dabei auf den Sensor ADXL1001 hin, während
 - 2 auf den Sensor ADXL1002 verweist.

Falls kein Sticker vorhanden ist, kann eine Lupe oder die Lupenfunktion eines Mobiltelefons recht hilfreich sein um die Identifikation auf dem Sensor zu lesen.

- 4. Production Date auf Datum des PCB (sth → production date) (Optional)
- 5. Operator-Name auf den eigenen Namen setzen (operator \rightarrow name) (Optional)
- 3. test-sth in Powershell ausführen:

test-sth -v

- 4. Test-Ergebnis ansehen
 - Testergebnis OK: gehe zu Schritt 5
 - Testergebnis FAILED oder ERROR: Fehlersuche
- 5. Freigegeben für Einbau
- 6. Test für eingebaute SHA (STH) und vergossene STH wiederholen
 - Schalter an Programming-Board in Position "USB" schieben
- 7. Nachdem alle Test erfolgreich abgeschlossen wurden: Fertig für Versand

3 STU-Test

3.1 Test-Vorgang

1. Die Konfigurationswerte anpassen

Um die Benutzer-Konfigurationsdatei zu öffnen kann man folgenden Befehl verwenden:

icon config

Eventuell sind folgende Daten in der Konfiguration zu ändern:

- 1. Seriennummer des Boards
 - 1. Seriennummer ermitteln: Steht im LCD des Programming-Boards ganz unten
 - 2. $\mathtt{stu} \to \mathtt{programming}$ board \to serial number $\ddot{\mathrm{a}}\mathrm{ndern}$
- 2. Production Date auf Datum des PCB (stu → production date) (Optional)
- 3. Operator-Name auf den eigenen Namen setzen (operator \rightarrow name) (Optional)
- 2. test-stu in Powershell ausführen:

test-stu -v

- 3. Test-Ergebnis ansehen
 - Testergebnis OK: gehe zu Schritt 4
 - Testergebnis FAILED oder ERROR: Fehlersuche
- 4. Nachdem alle Test erfolgreich abgeschlossen wurden: Fertig für Versand