Foundations of Computer Science Comp109

University of Liverpool

Boris Konev konev@liverpool.ac.uk

Olga Anosova

O.Anosova@liverpool.ac.uk

Last lecture recap: algebra on sets

Proving with sets often includes consideration of several cases, knowing the main laws can speed up the process:

Suppose that A,B,C,U are sets with $A\subseteq U$, $B\subseteq U$, $C\subseteq U$

Commutative laws

Associative laws

Distributive laws

Identity laws

Complement laws

Cardinality of sets

Cardinality of finite sets

Definition The cardinality of a *finite* set A is the number of distinct elements in A, and is denoted by |A|.

Examples:

- **■** |{4,5}| =
- $\blacksquare |\emptyset| =$
- $|\{\emptyset\}| =$
- **■** |{1,1}| =
- $|\{1,3,5\} \cap \{3,4\}| =$
- $\blacksquare |\{1,3,5\} \cup \{3,4\}| =$

Example: The cardinality of the set of all subsets

Definition The **power set** Pow(A) of a set A is the set of all subsets of A. In other words,

$$Pow(A) = \{C \mid C \subseteq A\}.$$

Examples

- \blacksquare $A = \{a\}$. Then all subsets of A are:
- $B = \{a, b\}$. Then all subsets of B are:
- $C = \{a, b, c\}.$ Then the number of subsets is

Cardinality of a power set

$$|A| = n \Longrightarrow |Pow(A)| = ??$$

We use the correspondence between bit vectors and subsets: |Pow(A)| is the number of bit vectors of length n.

The number of *n*-bit vectors is

We prove the statement by induction.

Base Case:

Inductive Step: Assume that the property holds for n=m, so the number of m-bit vectors is . Now consider the set B of all (m+1)-bit vectors. We must show that |B|=

Computing the cardinality of a union of two sets

If A and B are sets then

$$|A \cup B| =$$

Example

Suppose there are 100 third-year students. 40 of them take the module "Sequential Algorithms" and 80 of them take the module "Multi-Agent Systems". 25 of them took both modules. How many students took neither modules?

Computing the cardinality of a union of three sets

$$|A \cup B \cup C| =$$

Proof (optional)

We need lots of notation.

$$|A - (B \cup C)| = n_a, |B - (A \cup C)| = n_b, |C - (A \cup B)| = n_c,$$

$$|(A \cap B) - C| = n_{ab}, |(A \cap C) - B| = \underline{n_{ac}, |(B \cap C) - A|} = n_{bc},$$

$$\blacksquare |A \cap B \cap C| = n_{abc}.$$

Then

$$|A \cup B \cup C| = n_a + n_b + n_c + n_{ab} + n_{ac} + n_{bc} + n_{abc}$$

$$= (n_a + n_{ab} + n_{ac} + n_{abc}) + (n_b + n_{ab} + n_{bc} + n_{abc})$$

$$+ (n_c + n_{ac} + n_{bc} + n_{abc}) - (n_{ab} + n_{abc})$$

$$- (n_{ac} + n_{abc}) - (n_{bc} + n_{abc}) + n_{abc}$$

These are special cases of the general principle of inclusion and exclusion

Principle of inclusion and exclusion

Let A_1, A_2, \ldots, A_n be sets.

Then

$$|A_1 \cup \dots \cup A_n| = \sum_{1 \le k \le n} |A_i|$$

$$- \sum_{1 \le j < k \le n} |A_j \cap A_k|$$

$$+ \sum_{1 \le i < j < k \le n} |A_i \cap A_j \cap A_k|$$

$$- \dots$$

$$+ (-1)^{n-1} |A_1 \cap \dots \cap A_n|.$$

Russel's paradox

Why is this set theory "naive"

It suffers from paradoxes.

A leading example:

A barber is the man who shaves all those, and only those, men who do not shave themselves.

■ Who shaves the barber?

Russell's Paradox

Russell's paradox shows that the 'object' $\{x \mid P(x)\}$ is not always meaningful.

Set
$$A = \{B \mid B \notin B\}$$

Problem Is $A \in A$?

For any set C, denote by P(C) the statement " $C \notin C$ ". Then $A = \{B \mid P(B)\}$.

- If $A \in A$, then (from the definition of P),
- If $A \notin A$, then (from the definition of P),

Gödel's puzzle

There are exactly two types of people on an island: Truthers and Liars. Truthers always say true statements, and Liars always say false statements. One day Alice, a perfectly sound reasoner who never proves anything that is false comes to visit the island.

She meets Bob, who lives on the island, who claims to Alice: "You never prove that I am a truther."

Is he right?

Summary

- The cardinality |A| of a *finite* set A is the number of distinct elements in A.
- If $|A| = n \in \mathbb{Z}^+$, then the number of all subsets =
- *Inclusion-exclusion principle* for 3 events:

$$|A \cup B \cup C| =$$

Russel's paradox and Gödel's theorems prove that axiomatic theory is not a perfect final solution.