Datenbanken

05 Relationale Algebra

Seminaristischer Unterricht

Gliederung

- Einführung:
 - Was ist Relationale Algebra?
 - Basisoperatoren der Relationalen Algebra
 - Operatorbäume
- Fortgeschrittene Operatoren
 - Vereinigungsmenge
 - Differenz
 - Schnittmenge
- Beispiele aus der Praxis

2

Universitätsschema

Schema der Beispieldatenbank

```
Studenten: {[MatrNr:integer, Name: string, Semester: integer]}
```

Vorlesungen: {[VorlNr:integer, Titel: string, SWS: integer, gelesenVon:integer]}

Professoren: {[PersNr:integer, Name: string, Rang: string, Raum: integer]}

Assistenten: {[PersNr:integer, Name: string, Fachgebiet: string, Boss:integer]}

voraussetzen: {[Vorgänger:integer, Nachfolger:integer]}

hören: {[MatrNr:integer, VorlNr:integer]}

Professoren					Studenten				Vorlesungen									
Per	sNr	Name	2	Rang	Rau	ım	Ma	atrNr	Na	ame	Sem	ester	1	VorlNr		Titel	sws	gelesen
21	.25	Sokrate	es	C4	22	6	24	1002	Xenokrates			18	Ļ					Von
21	.26	Russe	ı	C4	23	2	25	5403	Jonas			12	L	5001	Grundzüge		4	2137
21	.27	Kopernik	cus	C3	31	οIJ	26	5120	Fi	chte		10	L	5041	Ethik		4	2125
21	.33	Poppe	r	C3	52	<u> </u>	26	5830	Arist	oxenos		8	L	5043	Erke	nntnistheorie	3	2126
21	34	Augustir	$\overline{}$	C3	30	9	27	7550	Schop	enhauer		6	L	5049		Mäeutik	2	2125
_	36	Curie	$\overline{}$	C4	36			3106		rnap		3	L	4052		Logik	4	2125
\vdash	.37	Kant	-	C4	7			9120		ohrastos		2		5052	Wissenschaftstheorie		3	2126
			=			┤		9555		uerbach		2	Γ	5216	Bioethik		2	2126
		voraussetzen						Γ	5259	Der Wiener Kreis		2	2133					
	Vorg	orgänger Nachfolger		hören MatrNr Vo						5022	Glaub	Glaube und Wissen		2134				
	5	001		5041			ŀ			VorIN			Γ	4630	Die	e 3 Kritiken	4	2137
	5001			5043	3		ŀ	26120 5001		-		_						
	5001			5049					550	5001	-							
	5	041		5216					550				_		Α -	-!		
	5	043		5052				281	504						Assistenten			
	5	041		5052				28106		5052		<u>PersIN</u>	-	Nan	ne	Fachgebi		Boss
	5	052		5259			281		106	5216		3002	Platon		on	Ideenlehre		2125
			::£-		_		28106		5259		3003	Aristoteles		eles	Syllogistik		2125	
	prüfen			29120		120	5001		3004	Wittgenstein		nstein	Sprachtheorie		2126			
	MatrNr Vor		_	ersNr		ote	291		120	5041		3005		Rhetikus Plan		Planetenbewe	Planetenbewegung	
28106		5001	+	2126		1	29		120	5049		3006	Newton k		Keplersche Gesetze		2127	
25403 5041		-	2125		2	295		555	5022		3007		Spinoza		Gott und Natur		2126	
27550 4630 2137 2				╽	254	103	5022	ऻ'					Hen	drik Gärt	ner 5			

Relationale Algebra

- Formale Sprache f
 ür die Formulierung von Abfragen innerhalb eines relationalen Schemas
- Ermöglicht Relationen miteinander zu verknüpfen oder zu reduzieren und komplexere Informationen daraus herzuleiten
- Definiert Operationen, die sich auf einer Menge von Relationen anwenden lassen (z.B. verknüpfen, filtern, etc.)
- Ergebnisse aller Operationen sind ebenfalls Relationen (ist abgeschlossen)
- Relationale Algebra ist die Basis für die Datenbanksprache SQL (Structured Query Language) (Übersetzung intern SQL→RA)

Operatoren der Relationalen Algebra

- σ Selektion
- π Projektion
- x Kreuzprodukt ←
- ⋈ Join (Verbund)
- ρ Umbenennung
- Mengendifferenz
- ÷ Division
- UVereinigung
- ∩ Mengendurchschnitt

- → Semi-Join (linker)
- Semi-Join (rechter)
- ► linker äußerer Join
- ▼ rechter äußerer Join

Operatoren stammen aus der Mengenlehre

SQL: SELECT Statement

Operator Projektion

Definition Projektion

Bei der Projektion werden die Attribute/Spalten einer (Argument-)Relation R extrahiert. D.h. es sind nur die Attribute vorhanden die ausgewählt wurden.

Projektions-Symbol: Π

 $\Pi_{\text{Attributnamen}}$ (Relationenname) \subseteq

z.B.: Π_{Rang} (Professoren) \leftarrow C_3

May home (Proposoren)

- eventuell auftretende Duplikate werden entfernt
- Wenn mehrere Spalten extrahiert werden sollen, dann werden diese durch Komma getrennt:

 Π Name, Rang, Raum (Professoren)

 SELECT lang Frotssoren

 Professoren DISTINCT

Beispiel Projektion

 $\Pi_{MatrNr, Name}$ (Studenten)

Herausgreifen von Attributen – dabei werden alle Doppelten eliminiert (nur bei RA/nicht SQL)

 Π_{Rang} (Professoren)

$\Pi_{MatrNr, Name}$ (Studenten)								
MatrNr	Name							
24002	Xenokrates							
25403	Jonas							
• • •								

Π_{Rang} (Professoren)							
Rang							
C4							
C3							

Duplikate in SQL versus mathematische Relationen

Duplikate

Mathematische Relationen kennen keine Duplikate. In SQL Tabellen sind Duplikate aber erlaubt bzw. diese werden aus Effizienzgründen nicht automatisch beseitigt. Falls gewünscht müssen diese explizit beseitigt werden.

Operator Selektion

Definition Selektion

Bei der Selektion werden die Tupel einer Relation R mittels eines Selektionsprädikat gefiltert, d.h. das Ergebnis einer Selektion sind die Tupel der Relation R, die das Selektionsprädikat erfüllen.

- Selektions-Symbol: σ
- Selektionsprädikat als Subskript:
- (o) Relationenname)
 - z.B.: σ_{Semester>10}(Studenten)

SELECT * FROM

/ Studenten Where Semester 710

Selektionsprädikat ist ein sogenannter Boolescher Ausdruck (kann nur wahr oder falsch sein und wird mit arithmetischen Vergleichsoperatoren und den logischen Operatoren errechnet)

Boolescher Ausdruck / Selektionsprädikat

- Im Allgemeinen ist das Selektionsprädikat eine Formel F mit:
 - Attributnamen der Argumentrelation R oder Konstanten als Operanden
 - den arithmetischen Vergleichsoperatoren =,<,>, ≤, ≥,, ≠
 - − den logischen Operatoren; ∨, ∧, ¬
- Das Ergebnis der Selektion sind alle Tupel t ε R, für die die Formel F erfüllt ist

Was ist aus der Prädikatenlogik bereits bekannt?

Beispiel Selektion

 $\sigma_{\text{Semester} > 10}$ (Studenten)

Osemester > 10 (Studenten)MatrNrNameSemester24002Xenokrates1825403Jonas12

Selektion

Selektionsprädikat bezieht sich immer nur auf eine Zeile

 $\sigma_{\text{Name='Sokrates'}}$ (Professoren)

Professoren									
PersNr	Name	Rang	Raum						
2125	Sokrates	C4	226						

SQL: SELECT Statement

SELECT Attribut1, Attribut2,... oder * (für alle) FROM Tabelle1, Tabelle2,...

II - Projektion (Herausgreifen einzelner Attribute) X- Kartesisches Produkt

(Elemente verknüpfen)

WHERE Bedingung1 AND/OR Bedingung2 AND/OR ...

σ - Selektion (Auswählen von einzelnen Tupeln, die den Bedingungen entsprechen)

Beispiel Projektion und Selektion

Projektion: Wie heißen die Professoren der Beispieluniversität?

Select name FROM ? 10/05501Cen

Wie heißt der Student mit der Matrikelnummer 25403?

Wie sind Name und Matrikelnummer der Studenten, die bereits mehr als 6 Semester studiert haben?

It varie, Mark (Osmetro) (Strolenter))
SELECT Name, Moto Nor FROM Shidenter Whe schiesters

Beispiel Projektion und Selektion

Projektion: Wie heißen die Professoren der Beispieluniversität?

Selektion:

Wie heißt der Student mit der Matrikelnummer 25403?

$$\Pi_{Name}(\sigma_{MatrNr=25403} \text{ (Studenten))}$$

SELECT Name **FROM** Studenten **WHERE** MatrNr=25403

Wie sind Name und Matrikelnummer der Studenten, die bereits mehr als 6 Semester studiert haben?

$$\Pi_{Name,MatrNr}(\sigma_{Semester>6} (Studenten))$$

SELECT name, MatrNr **FROM** Studenten **WHERE** Semester>6

Operator Kartesisches Produkt

Definition Kartesisches Produkt

Das Kartesische Produkt zwischen zwei Relationen R und S enthält alle [R]*[S]möglichen Paare von Tupeln aus R und S. Das Schema der Ergebnisrelation sch $(R \times S)$ ist die Vereinigung der Attribute aus sch(R) und sch(S).

- Symbol: x
- Verbindet zwei Relationen R und S: R x S
- Ergebnisschema:sch(R x S) = sch(R) U sch(S)

Operator Kartesisches Produkt

Das kartesische Produkt zwischen zwei Mengen A und B ist die Kombination aller Elemente zwischen den Elementen aus A und B:

 $A \times B = \{(a; b) | a \in A \land b \in B\}$

A X B = $\{(+,1), (+,2), (+,3), (-,1), (-,2), (-,3), (*,1), (*,2), (*,3)\}$ Durch das kartesische Produkt zwischen A und B wird eine Paar-Menge definiert.

Beispiel Kartesisches Produkt

Kartesisches Produkt (Kreuzprodukt)

Professoren x Vorlesungen

	Professo	ren	Vorlesungen				
PersNr	Name	Rang	Raum	VorlNr	Titel	SWS	gel.v.
2125	Sokrates	C4	226	5001	Grundzüge	4	2137
2125	Sokrates	C4	226	5041	Ethik	4	2125
2137	Kant	C4	7	5041	Ethik	4	2125

- Problem: riesige Zwischenergebnisse
- Beispiel: (Professoren x Vorlesungen)
- "bessere" Operation: Join

Operatoren der Relationalen Algebra

Kartesisches Produkt (Kreuzprodukt)

Professoren x Vorlesungen

	Professo	ren	Vorlesungen				
PersNr	Name	Rang	Raum	VorlNr	Titel	SWS	gel.v.
2125	Sokrates	C4	226	5001	Grundzüge	4 /	2137
2125	Sokrates	C4	226	5041	Ethik	4	2125
2137	Kant	C4	7	5041	Ethik	4	2125

Welcher Professor liest Ethik?

n.Name op.PersNr=v.gelesenVon^ v.Titel='Ethik'

Professoren p x ('))

Vorlesungen v'))

SELECT Name FROM Professoren, Vorlesungen WHERE PersNr=gelesenVon AND Titel='Ethik'

Beispiel Projektion, Selektion und Kartesisches Produkt

Welche Vorlesungen (Titel) hält Professor Sokrates? Think (O'plesenbon = Pester (Professoren × borlesunger))
name = 'sounties' SELECT tikl FROM Professorle, Vorlesunger Where peleser Vou =
Pestr AND have =
150kmts Welche Assistenten arbeiten für Kopernikus?

The professoren.

The Assistenten stem of box = losh 1 (Professoren & Assistenten)

SELECT Assistenten. Name From Professoren 1 Assistenten WAER E

Person Professoren. Hanne = Kopernikus AND boss = RDJessoren. Pustr Welche Studenten (Name und MatrNr) hören die Vorlesung Grundzüge?

H Name (O studenten MatrNr = hoesen MatrNr > hoesen Vorler: (S × h × V))

Studenten MatrNr — Vorlesungen. Vorlen 1 + itel = 1 grundzüge; SECECT Name, S. Motolfr Fron Studentin as 5, hoeren as h, inlessing asv whise s. Matolfr and h. Norlly and titel = 18 ruedzing!

Beispiel Projektion, Selektion und Kartesisches Produkt

Welche Vorlesungen (Titel) hält Professor Sokrates?

 $\Pi_{\text{Titel}}(\sigma_{\text{Name='Sokrates'}^{\wedge} \text{ gelesenVon=PersNr}}(\text{Vorlesungen x Professoren}))$

SELECT Titel **FROM** Vorlesungen, Professoren where Name='Sokrates' and gelesenVon=PersNr

Welche Assistenten arbeiten für Kopernikus?

 $\Pi_{\text{Assistenten.Name}}(\sigma_{\text{Name='Kopernikus'^}}(\sigma_{\text{Boss=PersNr}}(Assistenten\ x\ Professoren))$

SELECT Assistenten.Name **FROM** Assistenten, Professoren **WHERE** Name='Kopernikus' and Boss=PersNr

Welche Studenten (Name und MatrNr) hören die Vorlesung Grundzüge?

 $\Pi_{\text{Studenten.Name, Studenten.MatrNr}}(\sigma_{\text{Titel='Grundzuege'}^{\wedge} \text{ hoeren.MatrNr=Studenten.MatrNr}^{\wedge} \text{ hoeren.VorlNr=Vorlesungen.VorlNr}}$ (Studenten x hoeren x Vorlesungen))

SELECT Name, Studenten.MatrNr from Studenten, hoeren, Vorlesungen where Titel='Grundzuege' and hoeren.MatrNr=Studenten.MatrNr and hoeren.VorlNr= Vorlesungen.VorlNr

Inline versus Operatorbaum

Anfrage: Welcher Professor liest Ethik?

Inline:

 $\Pi_{\text{Name}}^{\circ}(\sigma_{\text{Titel='Ethik'}^{\wedge}})$ gelesenVon=PersNr (Vorlesungen \hat{x}) Professoren))

Operatorbaum:

Vergleich Mathematische Formel

Zum Beispiel (a+b)*(a-b)*(4*a-1) Punht vo Strict rechange

Auswertungsbaum des Mathematischen Ausdrucks (wird im Rechner so intern verwendet!)

Übersetzung in die relationale Algebra

Allgemein hat eine (ungeschachtelte) Übersetzung in die relationale Algebra: SQL-Anfrage die Form: $\Pi_{A_1,...,A_n}(\sigma_p(R_1 \times ... \times R_k))$ select $A_1, ..., A_n$ Sinarer Operator from $R_1, ..., R_k$ where P; Banne Starke luter wit Relation

Beispiel Operatorbaum

Welche Studenten hören welche Vorlesungen?

 $\Pi_{\text{studenten.Name, vorlesungen.titel}} (\sigma_{\text{hoeren.VorlNr=vorlesungen.VorlNr}})$

Vorlesungen x $\sigma_{\text{studenten.MatrNr=hoeren.MatrNr}}$ (Studenten x hoeren)))

Umbenennungsoperator

Welcher Professor hält mindestens 2 Veranstaltungen?

Welcher Professor liest mindestens 2 Vorlesungen? (Self Join)

		Vorlesunger	v1)		Vorlesungen v2					
	VorINr	Titel	SWS	gelesenV on	VorlNr	Titel	SWS	gelesenV on		
	5001	Grundzüge	4	(2137)	001	Grundzüge	4	2137		
	5041	Ethik	4	Z1Z5	5041	Ethik	4	2125		
	5043	Erkenntnistheorie	3	2126	5043	Erkenntnistheorie	3	2126		
	5049	Mäeutik	2	2125	5049	Mäeutik	2	2125		
	4052	Logik	4	2125	4052	Logik	4	2125		
	5052	Wissenschaftstheori e	3	2126	5052	Wissenschaftstheori e	3	2126		
ı	5216	Bioethik	2	2126	5216	Bioethik	2	2126		
	5259	Der Wiener Kreis	2	2133	5259	Der Wiener Kreis	2	2133		
	5022	Glaube und Wissen	2	213	5022	Glaube und Wissen	2	2134		
	4630	Die 3 Kritiken	4	2137	4630	Die 3 Kritiken	4	2137		

V1.gelesenVon=v2.gelesenVon

SELECT manne FROM Professore, Vorlesungen (a) V/1 Vorlesungen (as) VZ Orpers No = Vn. selesen von Where V1. y lesen Von = V2. jelsen Von > And V1. vorelv != V2. vorelv and Postr = felicenton on un pelesen bon = 12. pelesen bon 1 un. vorler + 12. vorler Pn) soon Vor le surje 1/2 Vorlesunge VA

Operatorbaum zur Anfrage

(Vorlesungen v₁ x Vorlesungen v₂)))