授業準備: Webclassからコードをダウンロードし、 Google colaboratoryで開いておいてください

演習授業中の質問対応について

医療とAI・ビッグデータ入門 演習20

本スライドは、自由にお使いください。 使用した場合は、このQRコードからアンケート に回答をお願いします。

まとめの演習

Webclassで課題を提出してください。締め切りは**2024/02/15 23:59**まで

(必修課題) Heart Attack dataset を使い、分類を行なってください

- 使用するモデルは演習10-演習14で取り扱った、LogisticRegression, SVC,

 DecisionTreeClasifier, RandomForestClasifierのうち、どれか一つを選択してくだ
 さい。
- webclassからkadai_ML.ipynbをダウンロードし、空欄となっているコード5~コード8にコードを書き、実行できることを確認してください。
- kadai_ML_(学生番号).ipynbに名前を変更し、webclassで提出してください。

(発展課題)全員が提出する必要はありません。提出された場合は成績に加点します。

皮膚がんの画像データを使って、分類を行なってください。

- ニューラルネットワークで自分でモデルを設計してください。
- webclassからkadai_DL.ipynbをダウンロードし、空欄となっているコード6~コード8にコードを書き、実行できることを確認してください。
- kadai_DL_(学生番号).ipynbをwebclssで提出してください。

Heart Attack dataset を使い、分類を行なってください

コード3 heart.csvをGoogle Driveにアップロードして、pd.read_csv()で読み込む

```
df = pd.read_csv('/content/drive/MyDrive/heart.csv')
df
```

* Google Driveの MyDrive直下にheart.csvをおいている必要があることに注意

	age	sex	ср	trtbps	chol	fbs	restecg	thalachh	exng	oldpeak	slp	caa	thall	output
0	63	1	3	145	233	1	0	150	0	2.3	0	0	1	1
1	37	1	2	130	250	0	1	187	0	3.5	0	0	2	1
2	41	0	1	130	204	0	0	172	0	1.4	2	0	2	1
3	56	1	1	120	236	0	1	178	0	0.8	2	0	2	1
4	57	0	0	120	354	0	1	163	1	0.6	2	0	2	1
298	57	0	0	140	241	0	1	123	1	0.2	1	0	3	0
299	45	1	3	110	264	0	1	132	0	1.2	1	0	3	0
300	68	1	0	144	193	1	1	141	0	3.4	1	2	3	0
301	57	1	0	130	131	0	1	115	1	1.2	1	1	3	0
302	57	0	1	130	236	0	0	174	0	0.0	1	1	2	0

Heart Attack dataset を使い、分類を行なってください

	age	sex	ср	trtbps	chol	fbs	restecg	thalachh	exng	oldpeak	slp	caa	thall	output
0	63	1	3	145	233	1	0	150	0	2.3	0	0	1	1
1	37	1	2	130	250	0	1	187	0	3.5	0	0	2	1
2	41	0	1	130	204	0	0	172	0	1.4	2	0	2	1
3	56	1	1	120	236	0	1	178	0	0.8	2	0	2	1
4	57	0	0	120	354	0	1	163	1	0.6	2	0	2	1
298	57	0	0	140	241	0	1	123	1	0.2	1	0	3	0
299	45	1	3	110	264	0	1	132	0	1.2	1	0	3	0
300	68	1	0	144	193	1	1	141	0	3.4	1	2	3	0
301	57	1	0	130	131	0	1	115	1	1.2	1	1	3	0
302	57	0	1	130	236	0	0	174	0	0.0	1	1	2	0

Heart Attack dataset を使い、分類を行なってください

age sex cp trtbps chol fbs restecg thalachh exng oldpeak slp caa thall output

age:年齢 sex:性別

cp:Chest pain type (0=典型的狭心症、1=非定型狭心症、2=非狭心症性疼痛、3=無症状)

trtbps:安静時血圧

chol: コレステロール値

fbs:空腹時血糖 120mmHg/dl以上の時1、以下の時0

restecg:安静時心電図結果~0=正常、1=ST-T波正常、2=左室肥大

thalachh: 最大心拍数

exng:運動誘発狭心症~1=あり、0=なし

oldpeak:安静時に比べて運動により誘発されるST低下

slp: 運動ピークSTセグメントの傾き: 0: 上り勾配、1: 平坦、2: 下り勾配

caa:主要血管の数(0-3)

thall:タリウム負荷試験: 0:正常0、1:正常1、2:固定欠損、3:可逆欠損

output:ターゲット変数(1=心臓発作の可能性が高い)

Heart Attack dataset を使い、分類を行なってください

コード4 y_data(正解値データ)、x_data(特徴量データ)を作成する

```
y_data = df.iloc[:, 13]
x_data = df.iloc[:, 0:13]
```

```
y_data
298 0
299 0
300 0
301 0
302 0
Name: output, Length: 303, dtype: int64
y_data.shape
(303,)
```

	age	sex	ср	trtbps	chol	fbs	restecg	thalachh	exng	oldpeak	slp	caa	thall
0	63	1	3	145	233	1	0	150	0	2.3	0	0	1
1	37	1	2	130	250	0	1	187	0	3.5	0	0	2
2	41	0	1	130	204	0	0	172	0	1.4	2	0	2
3	56	1	1	120	236	0	1	178	0	0.8	2	0	2
4	57	0	0	120	354	0	1	163	1	0.6	2	0	2
298	57	0	0	140	241	0	1	123	1	0.2	1	0	3
299	45	1	3	110	264	0	1	132	0	1.2	1	0	3
300	68	1	0	144	193	1	1	141	0	3.4	1	2	3
301	57	1	0	130	131	0	1	115	1	1.2	1	1	3
302	57	0	1	130	236	0	0	174	0	0.0	1	1	2
303 rows x 13 columns													
x_data.shape													
(303, 13)													

Heart Attack dataset を使い、分類を行なってください

kadai_ML.ipynbのコード5~8に以下のコードを書いて実行してください。

コード5: train_test_split()で学習データと検証データに分割してください

コード6: 学習モデルを選択してください(LogisticRegression, SVC,

DecisionTreeClasifier, RandomForestClasifierのうちどれか一つ)

*LogisticRegressionで行う場合には、収束しないエラーが起こることがあり、その場合は、

(モデル名)= LogisticRegression(max_iter=1000)でインスタンス化を行なってください。

コード7:学習データを入れて、学習を行なってください

コード8:モデルの評価を行なってください(正解率、AUC、precisionなど好きなもの一つ以上)

(発展課題)皮膚がんの画像データを使って、分類を行なってください。

1) images_skin_cancer.zipをGoogle Driveにアップロードしてください。

良性腫瘍(正解値:0)

悪性腫瘍 (正解値:1)

1197枚のデータ

出典(https://www.kaggle.com/datasets/fanconic/skin-cancer-malignant-vs-benign)

(発展課題)皮膚がんの画像データを使って、分類を行なってください。

コード1: Google Driveにマウントする

```
from google.colab import drive
drive.mount('/content/drive', force_remount=True)
```

コード2: images_skin_cancer.zip を解凍する

!unzip '/content/drive/MyDrive/images_skin_cancer.zip'

* Google Driveの MyDrive直下にimages_skin_caner.zipをおいている必要があることに注意

(発展課題)皮膚がんの画像データを使って、分類を行なってください。

コード4:前処理(このまま全部実行してください)

- ・ 画像データを読み込み、x_trainとy_trainを作成する
- 今回はカラーモード、サイズは64×64で読み込む

(発展課題)皮膚がんの画像データを使って、分類を行なってください。

コード5 ランダムシード値の設定

set random seed(0)

(発展課題)皮膚がんの画像データを使って、分類を行なってください。

kadai_DL.ipynbのコード6~8に以下のコードを書いて実行してください。

コード6 モデルを設計してください

(中間層は2層以上でニューラルネットワークで作成してください)

- コード7 学習をしてください(モデル名.fit())

 (batch_size =, epochs =, validation_split =の値を自分で決める)

 *かなり時間がかかるので、epochs数は10~20ぐらいから始めるのをお勧め
- コード8 accuracyとval_accuracyの学習過程の図示、lossとval_lossの学習過程の図示

演習を始める前に2つアナウンス

医療とAI・ビッグデータ応用のご案内

「医療とAI・ビッグデータ応用」の履修について

■開講時期:前期 2024年度は4月25日~7月18日の予定

■単位数:1単位

■対象学科

必修科目: 医学科2年、歯学科2年

選択必修科目:保健衛生学科·検査技術学専攻2年~

自由科目:口腔保健学科·口腔保健衛生学専攻/口腔保健工学専攻2年~

保健衛生学科・看護学専攻 2年~

■履修方法:

必修科目以外については、4月初旬に各教務係から案内があります。

希望者は申し込みをしてください。

演習を始める前に2つアナウンス

授業評価アンケート

授業評価アンケートについて

Webclass QR⊐-F

学科•専攻	コース番号
医学科	IL2300828
看護学専攻	IL2300325
検査技術学専攻	IL2300332
歯学科	IL2300143
口腔保健衛生学専攻	IL2300597
口腔保健工学専攻	IL2300596
自由科目、複合領域コース	入門コース内のアンケートから 回答してください。