

Grafos

SCC0607 - Aula 14

Profo Ms. Anderson Canale Garcia

Baseado no material de: Cristina D. Aguiar Moacir Ponti Jr.

Sumário

- Introdução aos Grafos
- Aplicações
- Tipos de Grafos
- Grau dos Vértices
- Caminhos e Conectividade
- Ciclos
- Árvores e Floresta

Motivação

- Imagine um grupo de 5 pessoas. Elas tem relações de amizades entre si, mas nem todos são amigos de todos
 - o **Ana** é amiga de **Bruno** e **Diana**
 - o Bruno é amigo de Carlos
 - o Carlos é amigo de Eduardo
 - Diana é amiga de Eduardo
- Como podemos representar essas relações de amizade?

Rede de amizades

Grafos

• Estruturas abstratas que modelam objetos e a relação (conexão) entre eles

- Um grafo é uma estrutura composta por vértices e arestas
 - Vértices: os objetos (no exemplo, as pessoas)
 - Arestas: as conexões (no exemplo, as amizades entre pessoas)

Grafos – Aplicações

- Esse conceito pode ser aplicado em diversas áreas
 - Redes sociais
 - Roteiros de viagens
 - Modelagem de circuitos eletrônicos
 - Redes de transporte
 - o Redes de energia
 - Redes de computadores
 - Árvores genealógicas

O ...

Exemplo: rede social

Exemplo: Redes sociais

Exemplo: Rotas aéreas

Exemplo: Conexões da RNP

Fonte: https://memoria.pop-sc.rnp.br/2004/01/ampliada-capacidade-da-conexao-do-pop-sc-com-a-rnp-usando-tecnologia-sdh-stm-1/

João Marcos) José Maria Pedro

Grafo: Definição

- Um Grafo G é definido como um par (V, A)
 - V: conjunto de nós chamados vértices (ou nós)
 - A: conjunto de pares de vértices chamados arestas (ou arcos)
- Exemplo: rede social de amizades
 - Cada vértice é uma pessoa
 - Existe uma aresta entre duas pessoas se e somente se essas pessoas são amigas

Grafo sobre amizade

- Se sou seu amigo, isso significa que você é meu amigo?
 - \circ Se aresta (x,y) sempre implica em (y,x) => grafo não-direcionado
 - Caso contrário => grafo direcionado (ou dígrafo)
- Eu sou amigo de mim mesmo?
 - \circ Aresta (x,x) => laço ou self-loop
- Eu posso ser meu amigo diversas vezes?
 - o Relação modelada com arestas múltiplas ou paralelas

Dígrafos (grafos direcionados)

- Um grafo direcionado (ou dígrafo) G é definido como um par (V, A)
 - V: conjunto finito de vértices
 - ♠: conjunto de arestas
 - Relação binária ordenada em V
- Uma aresta (u,v) sai do vértice u (origem) e chega no vértice v (destino)

- Podem existir arestas de um vértice para ele mesmo (self-loops)
- Podem existir arestas com a mesma origem e mesmo destino (arestas múltiplas)

Grafos direcionados (dígrafos)

• G = (V,A)

$$\circ$$
 V = {1,2,3,4,5,6} e
 \circ A = {(1,2),(1,4),(2,5),(4,2),(5,4),
(3,5),(3,6),(3,6)}

Grafos direcionados | Vértices adjacentes

- Em um grafo direcionado, se existe uma aresta (u,v)
 - O vértice v é adjacente ao vértice u
 - A aresta sai do vértice u (origem)
 - A aresta chega no vértice v (destino)
 - A existência de (u,v) não implica na existência de (v,u), ou seja, o vértice u não é adjacente ao vértice v
 - Os vértices u e v são vizinhos

 V_1 é adjacente a V_2 ? NÃO V_2 é adjacente a V_1 ? SIM V_1 e V_2 são vizinhos? SIM

Grafo não-direcionado

- Um grafo não-direcionado G é definido como um par (V, A), em que o conjunto de arestas A é constituído de pares de vértices não ordenados
 - (u,v) e (v,u) são considerados como uma única aresta
 - o A relação de adjacência é simétrica

Grafos não-direcionados

•
$$G = (V,A)$$

 $\circ V = \{1,2,3,4,5\}$

$$\circ$$
 A = {(1,2),(1,4),(2,4),(2,5),(3,5),(4,5)}

Grafos não-direcionados | Vértices adjacentes

 Dois vértices u e v de um grafo não direcionado são adjacentes (ou vizinhos) quando eles forem os extremos de uma mesma aresta (u,v).

 V_3 é adjacente a V_4 ? SIM V_4 é adjacente a V_3 ? SIM V_5 é adjacente a V_4 ? NÃO

Grafos simples

- Não-direcionado
- Não-ponderado*
- Sem laços
- Sem paralelas

Grafo ponderado e não ponderado

- O quanto você é meu amigo?
 - Grafo ponderado => as arestas
 possuem um peso associado
 - Arestas: triplas (u, v, valor)

Arestas: duplas (u, v)

Grau dos vértices

- Quem possui mais (ou menos) amigos?
 - Quantidade de relacionamentos (conexões)
- Grau do vértice => número de vértices adjacentes a ele
 - o Pessoa mais popular tem o vértice de maior grau
 - o "Ermitões" são vértices de grau zero.

Vértice isolado: vértice de grau 0

Vértice final: vértice de grau 1

Vértice par: vértice com grau par

Vértice impar: vértice com grau impa

Grau dos vértices | Definição

O grau de um vértice em grafos direcionados é dado por:
 Nº de arestas que saem (grau de saída ou out-degree)

Nº de arestas que chegam (grau de entrada ou in-degree)

- Exemplo: vértice 5 em:
 - Grau de entrada = 2
 - Grau de saída = 2
 - Grau = 4

Graus dos vértices | Definição

- O grau de um vértice em grafos não direcionados é dado pelo número de arestas que incidem nele
 - o Um vértice de grau zero é dito isolado ou não conectado

- Exemplo
 - Grau do vértice 1 = 2
 - Grau do vértice 3 = 0 (isolado)

Caminho

- Eu estou ligado a uma celebridade por alguma cadeia de amigos?
 - o Existe um caminho entre mim e uma celebridade?
 - Caminho => sequência de arestas que conectam dois vértices

Caminho | Definição

• Um caminho de comprimento k de um vértice x a um vértice y em um grafo G = (V,A) é uma sequência de vértices $(v_0, v_1, v_2,...,v_k)$ tal que:

 $0 \times x = v_0 y = v_k e(v_{i-1}, v_i)$ está em A para i = 1, 2, ..., k

- O comprimento de um caminho é o número de arestas nele, isto é, o caminho contém:
 - \circ Os vértices $v_0, v_1, v_2, ..., v_k$
 - \circ As arestas $(v_0, v_1), (v_1, v_2), ..., (v_{k-1}, v_k)$

Caminho

- Quão próxima é a minha ligação com essa celebridade?
 - Diversos caminhos que ligam dois vértices
 - Caminho mais curto (menor caminho)
 - Aquele com menor soma de pesos das arestas (ponderado)
 - Ou com menor número de arestas (não ponderado)
 - Caminho mais longo
 - Aquele com maior soma de peso das arestas (ponderado)
 - Ou com maior número de arestas (não ponderado)

Conexão

- Existe um caminho de amigos entre quaisquer duas pessoas no mundo?
 - o Teoria da separação por até "seis graus"
 - Grafo conexo ou conectado => existe um caminho entre quaisquer dois vértices
 - Componente conexo => parte conectada de um grafo não conexo
 - Grafo completo => grafo simples em que cada vértice está conectado a todos os outros

Grafo conexo | Definição

• Um grafo **G** é conexo se para quaisquer dois vértices distintos de **u** e **v** existe um caminho de **u** a **v**

• Um dígrafo G é fortemente conexo se para quaisquer dois vértices distintos u e v, v é alcançável

a partir de **u** e vice-versa

Componente conexo | Definição

• Um componente conexo de um grafo G é um subgrafo

conexo de G

Grafo não conexo com 2 componentes conexos

Grafo completo | Definição

- Um grafo completo é um grafo onde todos os vértices estão conectados diretamente por uma aresta.
- Para um grafo completo com n vértices, cada vértice tem uma aresta para os n-1 outros vértices.
- Existe um único grafo completo com n vértices, denotado K_n

Ciclos

• Quanto tempo demora para que eu ouça uma fofoca que contei?

- Ciclo => caminho no qual o primeiro e o último vértices são iguais
- Ciclo simples => ciclo em que nenhum vértice se repete (exceto o primeiro e último)
- Grafo cíclico => possui pelo menos um ciclo
- Grafo acíclico => grafos sem ciclos

Ciclos | Exemplos

- a) É cíclico? Sim
- b)É cíclico? Sim
- c) É cíclico? Sim
- d)É cíclico? Não

Grafos acíclicos

Grafo acíclico

Seja *m* o número de **vértices** e *n* o número de **arestas**

Se *m* < *n*-1, então *G* é um grafo não conexo

Árvore

- Em uma árvore, *m* = *n* − 1
- Todo vértice tem grau 2

Floresta

- Conjunto de árvores disjuntas
 - o Grafo acíclico não conectado
 - Os componentes conexos de uma floresta são árvores

Subgrafos | Definição

- Um subgrafo S de um grafo G é um grafo tal que:
 - Os vértices de S são um subconjunto dos vértices de G
 - As arestas de S são um subconjunto das arestas de G

• Um subgrafo gerador (spanning subgraph) de G é um subgrafo que contém todos os vértices de G

Árvore Geradora

- Uma árvore geradora (spanning tree) de um grafo é um subgrafo gerador que é uma árvore
 - o Pode haver mais de uma árvore geradora
 - A árvore geradora mínima (minimum spanning tree) é a árvore geradora com menor soma de pesos de arestas

Referências

CORMEN, T.H.; LEISERSON, C.E.; RIVEST, R.L.; STEIN, C. **Algoritmos: Teoria e Prática**. Campus. 2002.

ZIVIANI, N.; **Projeto de Algoritmos com Implementações em Pascal e C**, 2 edição, Pioneira Thonsom Learning, 2004.

BHARGAVA, Aditya Y. Entendendo algoritmos: um guia ilustrado para programadores e outros curiosos. 1. ed. São Paulo: Novatec Editora LTDA, 2017. ISBN 978-85-7522-563-9.