Μικροεπεξεργαστές και Εφαρμογές 2016 - 2017

3η Εργαστηριακή Άσκηση.

Δημοκρίτειο Πανεπιστήμιο Θράκης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Τομέας Ηλεκτρονικής & Τεχνολογίας Συστημάτων Πληροφορικής Εργαστήριο Ηλεκτρονικής

Αναπληρωτής Καθηγητής ΓΕΩΡΓΙΟΣ ΣΥΡΑΚΟΥΛΗΣ

Δούρβας Νίκος Λιώλης Ορέστης Πιστόλα Θεοδώρα

Αναπαράσταση Floating-point αριθμών με βάση το IEEE 754 Standard

Αρχικά μετατρέπουμε των αριθμό σε αυτή τη μορφή:

$$FP_{10} = (-1)^{S} * 2^{(b)} * 1, f$$

• $\Pi.\chi. 5{,}34 = (-1)^0 * 2^2 * 1{,}335$

Single-precision format

• e = 127 + b (exponent – 8 bits)

•
$$f = \frac{f_{22}}{2^1} + \frac{f_{21}}{2^2} + \frac{f_{20}}{2^3} + \dots + \frac{f_0}{2^{23}}$$
 (fraction – 23 bits)

Πρόσθεση floating-point δεδομένων - 1

Πρόσθεση floating-point δεδομένων - 2

0 100 0000 1 010 1010 1110 0001 0100 1000

0 100 0001 0 000 1000 0111 1010 1110 0001

0 | 100 0001 0 | 101 1101 1110 1011 1000 0101

$$(2^2 * 1,335) + (2^3 * 1,06625) = (2^3 * \frac{1,335}{2}) + (2^3 * 1,06625) = 2^3 * 1,73375 = 13,87$$

Αλγόριθμος πρόσθεσης floating-point δεδομένων - 1

- 1. Χωρίζουμε για κάθε αριθμό το exponent και το fraction
- 2. Συγκρίνουμε τα e_1 και e_2
 - a) Αν είναι ίσα, προσθέτουμε τα f_1 και f_2 και δημιουργούμε το f'.
 - b) Αν $e_1 > e_2$, αφαιρώ το e_2 από το e_1 . Κάνουμε δεξιά ολίσθηση στο f_2 τόσες θέσεις όσες υποδεικνύει η παραπάνω αφαίρεση και στην συνέχεια προσθέτουμε τα f_1 και f_2 και δημιουργούμε το f'.
 - c) Αν $e_1 < e_2$, αφαιρώ το e_1 από το e_2 . Κάνουμε δεξιά ολίσθηση στο f_1 τόσες θέσεις όσες υποδεικνύει η παραπάνω αφαίρεση και στην συνέχεια προσθέτουμε τα f_1 και f_2 και δημιουργούμε το f'.

Πράξεις μεταξύ floating-point δεδομένων - 2

- 3. Δημιουργούμε το τελικό exponent, παίρνοντας το μεγαλύτερο από τα e_1 και e_2 .
- 4. Ελέγχουμε αν το f' ξεπερνά τα 24 bits
 - a) Αν δεν τα ξεπερνά, αφαιρούμε το πιο σημαντικό bit και φτιάχνουμε το f.
 - b) Αν τα ξεπερνά, κάνουμε δεξιά ολίσθηση κατά μια θέση (επειδή προσθέτουμε 2 αριθμούς) και μετά αφαιρούμε το πιο σημαντικό bit για να φτιάξουμε το f.
- 5. Τέλος ενώνουμε τα *e* και *f* και φτιάχνουμε τον τελικό αριθμό