

UNIVERSITÀ DEGLI STUDI DI MILANO

RELAZIONE DI LABORATORIO: SPETTROMETRO A PRISMA

Lorenzo Liuzzo, Jiahao Miao, Riccardo Salto

Novembre 23, 2022

Contents

1.	Abstract									1
2.	Calibrazione dell'apparato									1
3.	Misura dell'angolo α del prisma									1
4.	Misura dell'indice di rifrazione del prisma.									2

1 Abstract

Al fine di determinare l'indice di rifrazione n di un prisma e di verificare la relazione di Cauchy

$$n^2 = A \cdot \frac{1}{\lambda^2} + B \tag{1}$$

$$n = A \cdot \frac{1}{\lambda^2} + B \tag{2}$$

, (dove i parametri di Cauchy A e B assumono significato fisico distinto tra le due equazioni), è stato utilizzato uno spettrometro per sfruttare gli effetti di riflessione e rifrazione del prisma stesso, note le lunghezze d'onda λ dello spettro del mercurio (precedentemente calcolate con uno spettrometro a reticolo), per quei particolari valori di λ . Nella tabella 1, per ogni riga dello spettro sono riportate il colore, la lunghezza d'onda λ , l'indice di rifrazione n corrispondente alla lunghezza d'onda con il relativo errore σ_n .

Sono in oltre state verificate le relazioni lineari con una probabilità associata al χ^2 pari rispettivamente a:

$$\chi_1 = 30\%$$
 $\chi_2 = 34\%$

colore	$\lambda[\mathbf{nm}]$	n	$sigma_n$
Giallo est.	578,1	1,7846	0,0008
Giallo int.	575,2	1,7847	0,0014
Verde	$545,\!6$	1,7915	0,0007
Verde acqua est.	496,9	1,8046	0,0007
blu	434,8	1,8248	0,0007
Viola est.	406,8	1,8405	0,0007
Viola int.	404,0	1,8417	0,0007

Table 1: indici di rifrazione per lunghezze d'onda dello spettro del mercurio

2 Calibrazione dell'apparato

Innanzitutto si è proceduto con la messa a fuoco del cannocchiale rispetto a un obbiettivo sufficientemente lontano affinché fosse valida l'approssimazione di onda piana. A questo punto è stato messo a fuoco il collimatore rispetto alla precedente regolazione del cannocchiale, in modo che fosse verificata l'approssimazione di campo lontano. La piattaforma che regge il prisma è stata poi messa in bolla. A questo punto è iniziata la presa dati.

3 Misura dell'angolo α del prisma

Per ottenere questa misura è stato sfruttato il fenomeno della riflessione. Tutte le misurazioni delle posizioni angolari sono state effettuate su nonio con risoluzione di 1' e successivamente convertite in radianti.

Tenendo fisso il cannocchiale è stata fatta ruotare la piattaforma affichè l'immagine della fenditura riflessa fosse centrata con il crocifilo. Una volta misurata sul nonio la posizione angolare θ_1 , la piattaforma è stata ruotata affichè il crocifilo centrasse l'immagine reale, ed è stata annotata la posizione angolare θ_2 .

È stata utilizzata la risoluzione dello strumento come incertezza associata alla singola misura $\sigma = 0.02$ ° (pari a $3 \cdot 10^{-4}$ rad). A questo punto è stata calcolata la differenza $\Delta\theta$ tra i due angoli, alla quale è stata associata come incertezza $\sigma_{\Delta\theta}$ la somma in quadratura delle singole incertezze sulle misure angolari, pari a:

$$\sigma_{\Delta\theta} = 0.02^{\circ}$$

È stato possibile ricavare l'angolo α dalla relazione geometrica:

$$\alpha = 180^{\circ} - \Delta\theta$$

La misura è stata ripetuta 8 volte e in tabella 2 sono riportate le misure degli angoli misurati θ_1 e θ_2 e la loro differenza $\Delta\theta$. A questo punto è stata fatta una media dei $\Delta\theta$ ottenendo come valore:

$$\Delta\theta = 240,03^{\circ}$$

a cui è stata associata come incertezza la deviazione standard della media del set di misure:

$$\sigma_{\Lambda\theta} = 0.03^{\circ}$$

A questo punto è stato possibile valutare l'angolo α , ottenendo un valore pari a:

$$\alpha = (60, 03 \pm 0, 03)^{\circ} = (1, 0477 \pm 0, 0006) \,\mathrm{rad}$$

$\theta_1[^\circ]$	$\theta_2 [^{\circ}]$	$\Delta \theta [^{\circ}]$
66,58	306,73	240,15
66,40	$306,\!52$	240,12
39,82	279,78	239,97
37,20	277,20	240,00
$34,\!83$	274,75	239,92
$35,\!60$	275,73	240,13
35,70	$275,\!65$	239,95
$47,\!80$	287,78	239,98

Table 2: valori degli angoli misurati θ_1 e θ_2 e della loro differenza $\Delta\theta$

4 Misura dell'indice di rifrazione del prisma

Per prima cosa è stato misurato l'angolo di zero θ_0 . La misura è stata ripetuta 10 volte e con una media è stato ottenuto come valore:

$$\theta_0 = (178, 67 \pm 0, 02)^{\circ} = (3, 118 \pm 0, 0003) \,\mathrm{rad}$$

Dove come errore associato è stata utilizzata la risoluzione al posto della deviazione standard della media delle 10 misure perché la deviazione standard risulta inferiore alla risoluzione dello strumento di misura. Le misure di θ_0 sono riportate in tabella 3.

θ_0 °						
178,667						
178,683						
178,700						
$178,\!650$						
178,633						
178,667						
178,683						
178,667						
178,700						
178,650						

Table 3: misure dell'angolo di zero θ_0

A questo punto è stato misurato per ogni colore l'angolo di deviazione minima. Osservando una particolare riga dello spettro, è stata fatta ruotare la piattaforma contenete il prisma seguendo la riga col cannocchiale fino a che questa non invertiva il senso dello spostamento. È stata quindi segnata la posizione angolare $\theta(\lambda)$ corrispondente al punto in cui avveniva l'inversione. La misura è stata ripetuta 5 volte per ogni lunghezza d'onda. In tabella 4 sono riportate per ogni colore dello spettro i valori raccolti in questa fase espressi in gradi.

•	giallo est. [°]	gialli int. [°]	verde acqua [°]	verde [°]	blu [°]	viola est. [°]	viola int. [°]
	112,13	112,05	111,42	109,70	106,93	104,67	104,48
	$112,\!37$	112,63	$111,\!47$	109,58	$106,\!82$	104,63	104,52
	112,40	$112,\!62$	111,33	109,62	106,97	104,77	104,60
	$112,\!25$	112,00	$111,\!37$	109,80	107,02	104,65	$104,\!42$
	112,20	$112,\!02$	111,40	109,70	$106,\!83$	104,62	104,43

Table 4: misure relative degli angoli di deviazione minima $\theta(\lambda)$ per ogni colore dello spettro del mercurio

Dai dati raccolti, per ogni lunghezza d'onda, è stato ottenuto un valore medio $\theta(\lambda)_m$ la cui incertezza $\sigma_{\theta(\lambda)_m}$ è stata stimata attraverso la deviazione standard della media delle misure. L'angolo di deviazione minima δ è stato trovato sottraendo alla posizione relativa la posizione di zero θ_0 . L'incertezza su $\delta_m(\lambda)$, $\sigma_{\delta_m(\lambda)}$, è stata ottenuta sommando in quadratura i singoli errori dei due addendi. A questo punto, tramite la relazione:

$$n(\lambda) = \frac{sin(\frac{\delta_m(\lambda) + \alpha}{2})}{sin(\frac{\alpha}{2})}$$

è stato ricavato l'indice di rifrazione del prisma per ogni lunghezza d'onda. Con errore associato σ_n ottenuto dalla somma in quadratura dei due errori σ_1 e σ_2 :

$$\sigma_1 = \sigma_{\delta} \cdot \frac{\cos\left(\frac{\alpha + \delta}{2}\right)}{2\sin\left(\frac{\alpha}{2}\right)}$$
$$\sigma_2 = \sigma_{\alpha} \cdot \frac{\cos\left(\frac{\alpha + \delta}{2}\right)\sin\left(\frac{\alpha}{2}\right) - \sin\left(\frac{\alpha + \delta}{2}\right)\cos\left(\frac{\alpha}{2}\right)}{2\sin^2\left(\frac{\alpha}{2}\right)}$$

Figure 1: Relazione di Cauchy n^2

In tabella 5 sono riportate per ogni colore le misure dell'angolo di deviazione minima e dell'indice di rifrazione, con le loro incertezze.

colore	δ rad	σ_{δ} rad	n	σ_n
Giallo est.	1,159	0,001	1,7846	0,0008
Giallo int.	1,159	0,003	1,7847	0,0014
Verde	$1,\!1741$	0,0005	1,7915	0,0007
Verde acqua est.	1,2041	0,0007	1,8046	0,0007
blu	1,2524	0,0008	1,8248	0,0007
Viola est.	1,2916	0,0005	1,8405	0,0007
Viola int.	$1,\!2947$	0,0007	1,8417	0,0007

Table 5: valori dell'angolo di deviazione minima e dell'indice di rifrazione per ogni colore dello spettro del mercurio

A questo punto è stato possibile verificare la validità delle relazioni di Cauchy 1 e 2. Sono quindi state fatte due regressioni lineari con i valori delle lunghezze d'onda tabulate in modo da ottenere i coefficienti angolari a_1 e a_2 delle rette per poter trasferire l'incertezza delle lunghezze d'onda misurate con lo spettrometro a reticolo sull'asse y. In questo modo sono state effettuate di nuovo le due regressioni lineari pesate, utilizzando come lunghezze d'onda quelle precedentemente misurate. Sono stati trovati i seguenti coefficienti:

$$a_1 = (6, 56 \pm 0, 08)10^{-14} m^2$$
 $b_1 = (2, 990 \pm 0, 004)$
 $a_2 = (1, 81 \pm 0, 02)10^{-14} m^2$ $b_2 = (1, 731 \pm 0, 001)$

Per entrambe le regressioni è stato effettuato un test di χ^2 che ha dato come livello di confidenza per le relazioni 1 e ?? rispettivamente il 30% e il 34%. In Figura IWIBVIURBV sono riportati i grafici delle due regressioni.

Figure 2: Relazione di Cauchy n