Petriho siete a ich aplikácie

Gabriel Juhás

Malý trik

Nech PN je Petriho sieť a nech Petriho sieť PNct vznikne z Petriho siete PN pridaním miesta ct - počítadla spustení prechodu t - a hrany z prechodu t do miesta ct

Malý trik

Nech PN je Petriho sieť a nech Petriho sieť PNct vznikne z Petriho siete PN pridaním miesta ct - počítadla spustení prechodu t - a hrany z prechodu t do miesta ct

Formálne:

Nech PN = (P,T,F,W,m0) je Petriho sieť.

Nech $t \in T$ je prechod, nech ct $\notin (P \cup T)$ a nech PNct = (Pct, T, Fct, Wct, m0ct) je Petriho sieť taká, že

Pct = Pt
$$\cup$$
 {ct},
Fct = F \cup {(t,ct)},
 \forall f \in F: Wct(f) = W(f)
Wct((t,ct)) = 1
 \forall p \in P: m0ct(p) = m0(p)
m0ct(ct) = 0

PΝ

PNct

Nech PN je Petriho sieť.

Prechod t ∈T je mŕtvy alebo tiež L0-živý v PN ak nie je spustiteľný v žiadnom značkovaní dosiahnuteľnom z m0 v PN (prechod t sa nikdy nedá spustiť)

Prechod t \in T je mŕtvy alebo tiež L0-živý v PN práve vtedy ak pre každé značkovanie mct Petriho siete PNct dosiahnuteľné z m0ct v PNct platí, že mct(ct) = 0.

Prechod t ∈T je L1-živý v PN ak existuje značkovanie m dosiahnuteľné z m0 v PN také, že prechod t je v PN spustiteľný v m (prechod t sa dá spustiť aspoň raz)

Prechod t ∈T je L1-živý v PN práve vtedy ak existuje značkovanie mct Petriho siete PNct dosiahnuteľné z m0ct v PNct pre ktoré platí, že mct(ct) = 1.

Prechod $t \in T$ je L2-živý v PN ak pre každé $k \in Z$ existuje značkovanie mct Petriho siete PNct dosiahnuteľné z m0ct v PNct pre ktoré platí, že mct(ct) = k (pre ľubovoľné kladné číslo k vieme prechod t spustiť aspoň k krát)

Prechod $t \in T$ je L3-živý v PN ak existuje postupnosť značkovaní $m: N \to [Pct \to N]$ taká, m(0) = m0ct a pre každé i $\in Z$ platí, že m(i) je dosiahnuteľné z m(i-1) v PNct a m(i)(ct) = i. (prechod t vieme spustiť nekonečne veľa krát)

Prechod t ∈T je L4-živý v PN ak pre každé značkovanie m dosiahnuteľné z m0 v PN existuje značkovanie m′ dosiahnuteľné v PN z m také, že prechod t je spustiteľný v m′ (prechod t sa dá spustiť vždy v budúcnosti)

Ak je prechod Li živý, potom je aj Lj živý pre všetky také $j \in \mathbb{Z}$, že j < i

Petriho sieť je Li živá, ak všetky jej prechody sú Li živé

Nech T = $\{t1, ..., tn\}$ (n je kladné celé číslo) a P = = $\{t1, ..., tk\}$ (k je kladné celé číslo)

Stavová rovnica

$$m' = m + C \cdot X$$

pre každé $i \in \{1, ..., k\}$ a pre každé $j \in \{1, ..., n\}$ prvok matice cij vyjadruje zmenu, ktorú spôsobí spustenie prechodu tj v mieste pi

pre každé $i \in \{1, ..., n\}$ i-ty stĺpec matice C vyjadruje zmenu, ktorú spôsobí spustenie prechodu ti pre každé $i \in \{1, ..., n\}$

pre každé i \in {1, .., k} i-ty riadok matice C vyjadruje zmenu, ktorú spôsobí spustenie jednotlivých prechodov v mieste pi

m'(p1)		m(p1)		c(p1,t1)		c(p1,tn)	x1	
	=	-	+					
		•		-	c(pi,tj)			
m'(pk)		m(pk)		c(pk,tn)		c(pk,tn)	xn	

۲

Stavová rovnica

$$m' = m + C \cdot X$$

pre každé $j \in \{1, ..., n\}$ i-ty stĺpec matice C vyjadruje zmenu, ktorú spôsobí spustenie prechodu ti

Nutnou podmienkou dosiahnuteľnosti značkovania m' zo značkovania m je existencia riešenia stavovej rovnice:

Ak stavová rovnica nemá nezáporné celočíselné riešenie, potom značkovanie m' nie je dosiahnuteľné zo značkovania m

stavovej rovnice, potom každá postupnosť prechodov spustiteľná zo značkovania m, v ktorej sa pre každé i $\in \{1, ..., n\}$ prechod ti opakuje xi-krát, vedie do značkovania m'

T-invariant = nezáporné celočíselné riešenie rovnice

$$C.X = 0$$

Petriho sieť je reverzibilná, ak existuje neprázdna postupnosť prechodov spustiteľná v počiatočnom značkovaní m0, taká, že jej spustenie vedie opäť do značkovania m0

Nutnou podmienkou reverzibility je existencia nenulového T-invariantu stavovej rovnice:

Ak neexistuje nenulový T-invariant, potom sieť nie je reverzibilnná

1	
1	
1	
1	

P-invariant = nezáporné celočíselné riešenie rovnice

$$X \cdot C = 0$$

Suma prvkov v i-tom stĺpci matice C predstavuje zmenu počtu značiek v sieti pri spustení prechodu ti

Ak X je P-invariant, potom suma prvkov c(p1,ti) až c(pk,ti) v i-tom stlpci matice C ováhovaných váhami x1 az xk je rovná nule -x1. c(p1,ti) + ... xk. c(pk,ti) = 0, t.j. spustenie ľubovoľného prechodu zachováva ováhovaný súčet značiek v sieti:

Nech m' je dosiahnuteľné z m, potom m' = m + C . Y a pre ľubovoľný riadkový vektor rozmeru k platí X . m' = X . m + X . C . Y

Nech X je P-invariant, teda X . C = 0, potom X . m' = X . m

Nech X je taký P-invariant, že pre nejaké i $\in \{1 ... k\}$ platí xi > 0, potom značkovanie miesta pj je ohraničené hodnotou X . m0 / xi

Nech X je P-invariant, že pre všetky $i \in \{1 ... k\}$ platí xi > 0, potom sieť je ohraničená

Petriho sieť, ktorá má nenulové P-invarianty

P-invariant