- 1. M. Sajben, J.C. Kroutil, and C.P. Chen, "A High-Speed Schlieren Investigation of Diffuser Flows with Dynamic Distortion", AIAA Paper 77-875, 1977.
- 2. T.J. Bogar, M. Sajben, and J.C. Kroutil, "Characteristic Frequencies of Transonic Diffuser Flow Oscillations," AIAA Journal, vol. 21, no. 9, pp. 1232–1240, 1983.
- 3. J.T. Salmon, T.J. Bogar, and M. Sajben, "Laser Doppler Velocimetry in Unsteady, Separated, Transonic Flow," AIAA Journal, vol. 21, no. 12, pp. 1690-1697, 1983.
- 4. T. Hsieh, A.B. Wardlaw Jr., T.J. Bogar, P. Collins, and T. Coakley, "Numerical Investigation of Unsteady Inlet Flowfields," AIAA Journal, vol. 25, no. 1, pp. 75-81, 1987.
- 5. NPARC Alliance Validation Archive, "Sajben Transonic Diffuser: Study #1,", 2008, http:// www.grc.nasa.gov/WWW/wind/valid/transdif/transdif01/transdif01.html
- 6. NPARC Alliance Validation Archive, "Sajben Transonic Diffuser: Study #2,", 2008, http:// www.grc.nasa.gov/WWW/wind/valid/transdif/transdif02/transdif02.html

建模操作说明

从**文件**菜单中选择**新建**。

新建

在新建窗口中,单击 ◎ 模型向导。

模型向导

- 1 在**模型向导**窗口中,单击 二维。
- 2 在选择物理场树中选择流体流动 > 高马赫数流动 > 湍流 > 高马赫数流动, Spalart-Allmaras (hmnf).
- 3 单击添加。
- 4 单击 🗪 研究。
- 5 在选择研究树中选择所选物理场接口的预设研究 > 带初始化的稳态。
- 6 単击 ▼ 完成。

全局定义

参数1

- 1 在模型开发器窗口的全局定义节点下,单击参数 1。
- 2 在参数的设置窗口中,定位到参数栏。
- 3 在表中输入以下设置:

名称	表达式	值	描述
x0	-6.99809[in]	-0.17775 m	入口 x 位置
xEnd	14.98353[in]	0.38058 m	出口 x 位置
h_in	2.44483[in]	0.062099 m	扩张器入口高度
h_out	2.59830[in]	0.065997 m	扩张器出口高度
h_th	1.732[in]	0.043993 m	喉部高度

- 4 右键单击全局定义>参数 1 并选择重命名。
- 5 在重命名"参数"对话框中,单击确定。

参数 2

- 1 在**主屏幕**工具栏中单击 P; 参数, 然后选择添加 > 参数。
- 2 在参数的设置窗口中,定位到参数栏。
- 3 在表中输入以下设置:

名称	表达式	值	描述
Rein	7e5	7E5	入口雷诺数
case	1	1	案例号: 1 = 弱激 波, 2 = 强激波
Min	0.46	0.46	入口马赫数
gamma	1.4	1.4	比热率
Pr	0.72	0.72	普朗特数
Rs	287[J/kg/K]	287 J/(kg·K)	比气体常数
Tin_tot	500[R]	277.78 K	入口总温度
Tin_stat	Tin_tot/(1+ 0.5*Min^2* (-1+gamma))	266.5 K	入口静态温度
pin_tot	19.58[psi]	1.35E5 Pa	入口总压力

名称	表达式	值	描述
pin_stat	pin_tot/(1+ 0.5*Min^2* (-1+ gamma))^(gamm a/(-1+gamma))	1.1677E5 Pa	入口静态压力
rhoin	pin_stat/Rs/ Tin_stat	1.5267 kg/m³	入口密度
mu_ref	rhoin*u_in* h_in/Rein	2.0387E-5 kg/(m·s)	参考动力黏度
u_in	Min* sqrt(gamma* Rs*Tin_stat+ eps)	150.53 m/s	入口速度
pOut	if(case==1, 16.05, 0)[psi]+ if(case==2, 14.1,0)[psi]	1.1066E5 Pa	出口压力

插值 1 (int1)

- 1 在**主屏幕**工具栏中单击 f(※) 函数,然后选择全局 > 插值。
- 2 在插值的设置窗口中,定位到定义栏。
- 3 从数据源列表中选择文件。
- 4 找到函数子栏。在表中输入以下设置:

函数名称	文件中的位置	
top_pos	1	

- 5 单击 🦳 浏览。
- 6 浏览到该 App 的 "案例库"文件夹,然后双击文件 sajben_diffuser_upper_wall.txt。
- 7 单击 导入。
- 8 定位到单位栏。在函数表中,输入以下设置:

函数	单位	
top_pos	in	

插值 2 (int2)

- 1 在**主屏幕**工具栏中单击 f(※) 函数,然后选择全局 > 插值。
- 2 在插值的设置窗口中,定位到定义栏。

- 3 从数据源列表中选择文件。
- 4 找到函数子栏。在表中输入以下设置:

函数名称	文件中的位置	
ptop_weak	1	

- 5 单击 🦰 浏览。
- 6 浏览到该 App 的"案例库"文件夹,然后双击文件 sajben_diffuser_ptop_weak.txt。
- 7 单击 导入。

插值 3 (int3)

- 1 在**主屏幕**工具栏中单击 f(X) 函数, 然后选择全局 > 插值。
- 2 在插值的设置窗口中,定位到定义栏。
- 3 从数据源列表中选择文件。
- 4 找到函数子栏。在表中输入以下设置:

函数名称	文件中的位置	
ptop_strong	1	

- 5 单击 🦳 浏览。
- 6 浏览到该 App 的"案例库"文件夹,然后双击文件 sajben_diffuser_ptop_strong.txt。
- 7 单击 导入。

插值 4 (int4)

- 1 在**主屏幕**工具栏中单击 f(X) 函数, 然后选择全局 > 插值。
- 2 在插值的设置窗口中, 定位到定义栏。
- 3 从数据源列表中选择文件。
- 4 找到函数子栏。在表中输入以下设置:

函数名称	文件中的位置	
u_at4611	1	

- 5 单击 🦰 浏览。
- 6 浏览到该 App 的"案例库"文件夹,然后双击文件 sajben_diffuser_u-xh4611.txt。
- 7 单击 导入。

插值 5 (int5)

- 1 在**主屏幕**工具栏中单击 f(※) 函数, 然后选择全局 > 插值。
- 2 在插值的设置窗口中,定位到定义栏。
- 3 从数据源列表中选择文件。
- 4 找到函数子栏。在表中输入以下设置:

函数名称	文件中的位置		
u_at6340	1		

- 5 单击 🦳 浏览。
- 6 浏览到该 App 的"案例库"文件夹,然后双击文件 sajben_diffuser_u-xh6340.txt。
- 7 单击 导入。

定义

变量 1

- 1 在**主屏幕**工具栏中单击 **a= 变量**, 然后选择**局部变量**。
- 2 在变量的设置窗口中,定位到变量栏。
- 3 在表中输入以下设置:

名称	表达式	单位	描述
CFLnum	<pre>if(case==1,CFLweak,0)+ if(case==2,CFLstrong,0)</pre>		伪时间步进的 CFL 数
CFLweak	<pre>1.3^min(niterCMP-1,9)+ if(niterCMP>25,5* 1.2^min(niterCMP-26,12),0)</pre>		CFL 数,弱激波情况
CFLstrong	<pre>1+if(niterCMP>10, 1.2^min(niterCMP-10,12),0)+ if(niterCMP>120, 1.3^min(niterCMP-120,9),0)+ if(niterCMP>220, 1.3^min(niterCMP-220,9),0)</pre>		CFL 数,强激波情况

强激波的手动 CFL 数表达式对应于湍流计算中自带的表达式。在这种情况下,计算 结果已包含一个随出口压力变化而移动的激波,因此需要谨慎增加 CFL 数以获取稳 定的解。在弱激波仿真案例中,由于激波尚未形成,因此通过增大 CFL 数的递进幅 度可以缩短仿真时间。

几何 1

参数化曲线1 (pc1)

- 1 在几何工具栏中单击 🏏 更多体素, 然后选择参数化曲线。
- 2 在参数化曲线的设置窗口中,定位到参数栏。
- 3 在最小值文本框中键入 "x0[1/in]"。
- 4 在最大值文本框中键入 "xEnd[1/in]"。
- 5 定位到表达式栏。在 x 文本框中键入 "s[in]"。
- **6** 在 **y** 文本框中键入 "top pos(s)"。
- 7 单击 🖺 构建选定对象。

多边形 1 (pol1)

- 1 在几何工具栏中单击 / 多边形。
- 2 在多边形的设置窗口中,定位到对象类型栏。
- 3 从类型列表中选择开放曲线。
- 4 定位到坐标栏。从数据源列表中选择矢量。
- 5 在 x 文本框中键入 "x0 x0 x0 xEnd xEnd xEnd"。
- 6 在 y 文本框中键入 "h_in 0 0 0 0 h_out"。
- 7 单击 튀 构建选定对象。

转换为实体 1 (csol1)

- 1 在**几何**工具栏中单击 **转换**,然后选择**转换为实体**。
- 2 单击图形窗口, 然后按 Ctrl+A 选择这两个对象。
- 3 在转换为实体的设置窗口中,单击 📄 构建选定对象。

在喷嘴的扩散段添加一个矩形域,用于增加激波所在区域的分辨率。

矩形 1 (r1)

- 1 在几何工具栏中单击 ___ 矩形。
- 2 在矩形的设置窗口中,定位到大小和形状栏。
- **3** 在**宽度**文本框中键入 "0.16"。
- 4 在高度文本框中键入"0.1"。
- 5 定位到位置栏。在 x 文本框中键入 "0.025"。
- 6 单击 🖺 构建选定对象。

分割对象 1 (par1)

1 在几何工具栏中单击 布尔操作和分割,然后选择分割对象。

- 2 选择"对象" csol1。
- 3 在分割对象的设置窗口中,定位到分割对象栏。
- **4** 找到**工具对象**子栏。选择**■激活选择**切换按钮。
- 5 选择"对象"r1。
- 6 单击 🖺 构建选定对象。

添加**网格控制边**特征将内部边界指定为网格控制实体。通过这种方式,这些实体可用于控制网格,但在定义物理场和对结果作后处理时,软件会自动忽略这些实体。

网格控制边 1 (mce1)

- 1 在几何工具栏中单击 ❤️虚拟操作,然后选择网格控制边。
- 2 在对象 fin 中,选择"边界"3和5。

使用**选择列表**窗口选择边界更便捷。要打开此窗口,在**主屏幕**工具栏中,单击**窗口**并选择**选择列表**。(如果您正跨平台桌面运行,则在主菜单中查找**窗口**。)

3 在几何工具栏中单击 🟢 全部构建。

高马赫数流动, SPALART-ALLMARAS (HMNF)

流体1

- 1 在**模型开发器**窗口的**组件 1 (comp1)> 高马赫数流动,Spalart-Allmaras (hmnf)** 节点下,单击**流体 1**。
- 2 在流体的设置窗口中, 定位到热传导栏。

- **3** 从 k 列表中选择**用户定义**。在关联文本框中键入 "hmnf.Cp*hmnf.mu/Pr"。 此处使用恒定普朗特数来定义传导率。
- 4 定位到热力学栏。从 R_s 列表中选择用户定义。在关联文本框中键入 "Rs"。
- 5 从**指定 Cp 或** γ 列表中选择**比热率**。
- 6 从 γ 列表中选择用户定义。在关联文本框中键入 "gamma"。
- 7 定位到**动力黏度**栏。在 μ_{ref} 文本框中键入 "mu_ref"。
- **8** 在 T_{μ,ref} 文本框中键入 "Tin_stat"。

初始值1

- 1 在模型开发器窗口中,单击初始值 1。
- 2 在初始值的设置窗口中,定位到初始值栏。
- 3 将 u 矢量指定为

- 4 在p文本框中键入 "pin stat"。
- 5 在 nutilde 文本框中键入 "subst(hmnf.nutildeinit,p,pin stat)"。 这可以确保在计算 nutilde 的初始条件时,使用的压力对应于 pin stat。
- 6 在 T 文本框中键入 "Tin stat"。

$\lambda \square 1$

- 1 在**物理场**工具栏中单击 边界,然后选择入口。
- 2 选择"边界"1。
- 3 在入口的设置窗口中, 定位到流动属性栏。
- 4 从输入状态列表中选择总。
- 5 在 $p_{0,tot}$ 文本框中键入 "pin_tot"。
- **6** 在 T_{0.tot} 文本框中键入 "Tin_tot"。
- 7 在 Ma₀ 文本框中键入 "Min"。

□ 1

- 1 在物理场工具栏中单击 边界,然后选择出口。
- 2 选择"边界"3。
- 3 在出口的设置窗口中,定位到流动条件栏。
- 4 从流动条件列表中选择亚音速。

- 5 定位到**流动属性**栏。从**边界条件**列表中选择**压力**。
- 6 在 p₀ 文本框中键入 "p0ut"。

CFL 数

要应用手动定义的 CFL 数,首先启用**高级物理场选项**。

- 1 在模型开发器工具栏中单击 ፟ 显示更多选项按钮。
- 2 在显示更多选项对话框中,在树中,选中物理场 > 高级物理场选项节点的复选框。
- 3 单击确定。
- 4 在模型开发器窗口中,单击高马赫数流动, Spalart-Allmaras (hmnf)。
- 5 在高马赫数流动, Spalart-Allmaras 的设置窗口中,单击以展开高级设置栏。
- 6 从 CFL 数表达式列表中选择手动。
- 7 在 CFL_{loc} 文本框中键入 "CFLnum"。

网格 1

映射1

在网格工具栏中单击 映射。

分布1

- 1 右键单击映射 1 并选择分布。
- 2 选择"边界"4和6。
- 3 在分布的设置窗口中,定位到分布栏。
- 4 从分布类型列表中选择预定义。
- 5 在单元数文本框中键入"40"。
- 6 在单元大小比文本框中键入"1/4"。

分布 2

- 1 在模型开发器窗口中,右键单击映射 1 并选择分布。
- 2 选择"边界"5和7。
- 3 在分布的设置窗口中, 定位到分布栏。
- 4 从分布类型列表中选择预定义。
- 5 在单元数文本框中键入"90"。

分布3

- 1 右键单击映射 1 并选择分布。
- 2 选择"边界"2和8。

- 3 在分布的设置窗口中,定位到分布栏。
- 4 从分布类型列表中选择预定义。
- 5 在单元数文本框中键入"50"。
- 6 在单元大小比文本框中键入 "3"。
- 7 选中反向复选框。

分布4

- 1 右键单击映射 1 并选择分布。
- 2 选择"边界"1和3。
- 3 在分布的设置窗口中,定位到分布栏。
- 4 从分布类型列表中选择预定义。
- 5 在单元数文本框中键入"25"。
- 6 在单元大小比文本框中键入 "2.5"。
- 7 选中对称分布复选框。
- 8 单击 🛄 全部构建。
- **9** 在**图形**工具栏中单击 **增放到窗口大小**按钮。

边界层1

- 1 在网格工具栏中单击 ☑ 边界层。 在本例中,边界层与内部网格之间的网格过渡区域由指定的分布显式控制。因此, 可以禁用过渡区域的网格平滑默认设置。
- 2 在边界层的设置窗口中,单击以展开过渡栏。
- 3 清除平滑过渡到内部网格复选框。

边界层属性

1 在模型开发器窗口中,单击边界层属性。

2 选择"边界"2、4、6和8-10。

- 3 在边界层属性的设置窗口中,定位到层栏。
- 4 在层数文本框中键入"20"。
- 5 在厚度调节因子文本框中键入 "0.11"。
- 6 单击 📗 全部构建。

研究 1

参数化扫描

- 1 在研究工具栏中单击 23 参数化扫描。
- 2 在参数化扫描的设置窗口中,定位到研究设置栏。
- 3 单击 十添加。
- 4 在表中输入以下设置:

参数名称		参数值列表	参数单位
case (案例号:	1=弱激波,2=强激波)	1	

此步骤之后单击计算即可。