ECE353 Lectures

Hanhee Lee

January 9, 2025

Contents

1	Pro	blogue	2
	1.1	Components of a Robotic System	2
		1.1.1 Overview (Robots, the Environment)	3
			3
		1.1.3 Brain (Tracker, Planner, Memory)	4
		1.1.4 Environment (Physics, State)	4
	1.2	Equations of a Robotic System	5
		1.2.1 Sensing	5
		1.2.2 Tracking	5
		1.2.3 Planning	5
		1.2.4 Acting	6
		1.2.5 Simulating	6
	1.3	Setup of Planning Problems	7
2	Ker	rnels	7

1 Prologue

Summary:

• This course will focus on planning

• Variables:

- State: $\mathbf{x}(t)$

- Action(s): $\mathbf{u}(t)$

– Measurement: $\mathbf{y}_k^{(i)}$

- Context: $\mathbf{z}_k^{(i)}$

– Old Context: $\mathbf{z}_{k-1}^{(i)}$

- Plan: $\mathbf{p}_k^{(i)}$ - (i): Ith agent

• Conversion to DT is necessary because robots are digitalized system and then converted back to CT for execution.

FAQ:

- What does the environment do?
- What is the joint action set?

Components of a Robotic System 1.1

Summary:

Figure 1: Components of a Robotic System (Words)

1.1.1 Overview (Robots, the Environment)

Figure 3: Overview (Robots, the Environment)

Notes:

• Environment \rightarrow previous actions + current state \rightarrow robot \rightarrow new action \rightarrow environment

1.1.2 Robot (Sensors, Actuators, the Brain)

Definition:

Figure 4: Robot (Sensors, Actuators, the Brain)

Notes:

- Measurements can be noisy and inaccurate if not a perfect sensor.
- Measurements go into the brain which can create a plan.

1.1.3 Brain (Tracker, Planner, Memory)

Definition:

Figure 5: Brain (Tracker, Planner, Memory)

Notes:

- The tracker takes in the measurements and old context and updates the context.
- The planner takes in the context and creates a plan.
- The memory stores the context.

1.1.4 Environment (Physics, State)

Definition:

 $Figure\ 6:\ Environment\ (Physics,\ State)$

1.2 Equations of a Robotic System

1.2.1 Sensing

Definition: Take a measurement:

$$\mathbf{y}^{(i)}(t) = \operatorname{sns}^{(i)}(\mathbf{x}(t), \mathbf{u}(t), t)$$

Convert the measurement into a discrete-time signal using a sampling period of $T^{(i)}$:

$$\mathbf{y}_k^{(i)} = \mathrm{dt}(\mathbf{y}^{(i)}(t), t, T^{(i)})$$

Figure 7: Sensing

1.2.2 Tracking

Definition: Track (update) the context:

$$\mathbf{z}_k^{(i)} = \operatorname{trk}^{(i)} \left(\mathbf{z}_{k-1}^{(i)}, \mathbf{y}_k^{(i)}, k \right)$$

Figure 8: Tracking

1.2.3 Planning

Definition: Make a plan:

$$\mathbf{p}_k^{(i)} = \mathrm{pln}^{(i)} \big(\mathbf{z}_k^{(i)}, k \big)$$

Figure 9: Planning

1.2.4 Acting

Definition: Convert the plan into a continuous-time signal using a sampling period of $T^{(i)}$:

$$\mathbf{p}(t) = \operatorname{ct}(\mathbf{p}_k^{(i)}, t, T^{(i)})$$

Execute the plan:

$$\mathbf{u}^{(i)}(t) = \cot^{(i)}(\mathbf{p}^{(i)}(t), t)$$

Figure 10: Acting

1.2.5 Simulating

Definition: Simulate the environment's response:

$$\dot{\mathbf{x}}(t) = \text{phy}(\mathbf{x}(t), \mathbf{u}(t), t)$$

Figure 11: Simulating

1.3 Setup of Planning Problems

Summary: In a planning problem, it is assumed that:

- ullet the environment is representable using a discrete set of states, ${\mathcal S}$
- for each state, $s \in \mathcal{S}$, each agent, i, has a discrete set of actions, $\mathcal{A}_i(s)$, with $\mathcal{A}(s) := \times_i \mathcal{A}_i(s)$
- a move is any tuple, (s, a), where $s \in \mathcal{S}$ and $a \in \mathcal{A}(s)$
- a transition is any 3-tuple, (s, a, s'), where $s, s' \in \mathcal{S}$ and $a \in \mathcal{A}(s)$
- the transition resulting from a move may be deterministic/stochastic
- $rwd_i(s, a, s')$ is agent i's reward for the transition, (s, a, s')
- a **path** is any sequence of transitions of the form

$$p = \left\langle (s^{(0)}, a^{(1)}, s^{(1)}), (s^{(1)}, a^{(2)}, s^{(2)}), \dots \right\rangle$$

• each agent wants to realize a path that maximizes its own reward

Warning: A(s) is the joint action set of all agents at state s.

2 Kernels